diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 000000000..7863cccea --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file records the configuration used when building these files. When it is not found, a full rebuild will be done. +config: c37a2bd043103a706e176fb9ec1a2481 +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 000000000..e69de29bb diff --git a/CNAME b/CNAME new file mode 100644 index 000000000..4cf46977a --- /dev/null +++ b/CNAME @@ -0,0 +1 @@ +docs.stingray.science \ No newline at end of file diff --git a/_downloads/1027494781794f48a5d8afc7ff6c2fc5/simulator-2.py b/_downloads/1027494781794f48a5d8afc7ff6c2fc5/simulator-2.py new file mode 100644 index 000000000..9e2768823 --- /dev/null +++ b/_downloads/1027494781794f48a5d8afc7ff6c2fc5/simulator-2.py @@ -0,0 +1,20 @@ +from matplotlib import rcParams +rcParams['font.family'] = 'sans-serif' +rcParams['font.sans-serif'] = ['Tahoma'] + +import matplotlib.pyplot as plt +from stingray.simulator import simulator + +# Instantiate simulator object +sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) +# Define a spectrum +w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:] +spectrum = np.power((1/w),2/2) +# Simulate +lc = sim.simulate(spectrum) + +plt.plot(lc.counts, 'g') +plt.title('User-defined Model Simulation', fontsize='16') +plt.xlabel('Counts', fontsize='14') +plt.ylabel('Flux', fontsize='14') +plt.show() \ No newline at end of file diff --git a/_downloads/281ad6814950bcd6a32c9d01c96dd224/simulator-3.pdf b/_downloads/281ad6814950bcd6a32c9d01c96dd224/simulator-3.pdf new file mode 100644 index 000000000..38eb389e1 Binary files /dev/null and b/_downloads/281ad6814950bcd6a32c9d01c96dd224/simulator-3.pdf differ diff --git a/_downloads/28cbdc2e58c1d9bf4e5dcd02158d3f81/simulator-3.png b/_downloads/28cbdc2e58c1d9bf4e5dcd02158d3f81/simulator-3.png new file mode 100644 index 000000000..a56726f28 Binary files /dev/null and b/_downloads/28cbdc2e58c1d9bf4e5dcd02158d3f81/simulator-3.png differ diff --git a/_downloads/53d6a719342bb95c167fbdcb1fc14cc1/simulator-3.py b/_downloads/53d6a719342bb95c167fbdcb1fc14cc1/simulator-3.py new file mode 100644 index 000000000..b2f48b24b --- /dev/null +++ b/_downloads/53d6a719342bb95c167fbdcb1fc14cc1/simulator-3.py @@ -0,0 +1,22 @@ +from matplotlib import rcParams +rcParams['font.family'] = 'sans-serif' +rcParams['font.sans-serif'] = ['Tahoma'] + +import matplotlib.pyplot as plt +from stingray import sampledata +from stingray.simulator import simulator + +# Obtain a sample light curve +lc = sampledata.sample_data().counts +# Instantiate simulator object +sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) +# Obtain an artificial impulse response +ir = sim.relativistic_ir() +# Simulate +lc_new = sim.simulate(lc, ir) + +plt.plot(lc_new.counts, 'g') +plt.title('Impulse Response based Simulation', fontsize='16') +plt.xlabel('Counts', fontsize='14') +plt.ylabel('Flux', fontsize='14') +plt.show() \ No newline at end of file diff --git a/_downloads/57e221082e8b56500cefe6d46e4708c5/simulator-1.py b/_downloads/57e221082e8b56500cefe6d46e4708c5/simulator-1.py new file mode 100644 index 000000000..fc3eac6e8 --- /dev/null +++ b/_downloads/57e221082e8b56500cefe6d46e4708c5/simulator-1.py @@ -0,0 +1,17 @@ +from matplotlib import rcParams +rcParams['font.family'] = 'sans-serif' +rcParams['font.sans-serif'] = ['Tahoma'] + +import matplotlib.pyplot as plt +from stingray.simulator import simulator + +# Instantiate simulator object +sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) +# Specify beta value +lc = sim.simulate(2) + +plt.plot(lc.counts, 'g') +plt.title('Random-walk Distribution Simulation', fontsize='16') +plt.xlabel('Counts', fontsize='14', ) +plt.ylabel('Flux', fontsize='14') +plt.show() \ No newline at end of file diff --git a/_downloads/5918583ff0fc69067a254ce95024dadb/simulator-1.hires.png b/_downloads/5918583ff0fc69067a254ce95024dadb/simulator-1.hires.png new file mode 100644 index 000000000..1019d76ad Binary files /dev/null and b/_downloads/5918583ff0fc69067a254ce95024dadb/simulator-1.hires.png differ diff --git a/_downloads/62c21690ff66bac966d836faf3d3e8a8/simulator-2.png b/_downloads/62c21690ff66bac966d836faf3d3e8a8/simulator-2.png new file mode 100644 index 000000000..8ea828e5a Binary files /dev/null and b/_downloads/62c21690ff66bac966d836faf3d3e8a8/simulator-2.png differ diff --git a/_downloads/9b1049a0bb3a88bde8ef9037e8090597/simulator-1.png b/_downloads/9b1049a0bb3a88bde8ef9037e8090597/simulator-1.png new file mode 100644 index 000000000..d564c9b2a Binary files /dev/null and b/_downloads/9b1049a0bb3a88bde8ef9037e8090597/simulator-1.png differ diff --git a/_downloads/a8bca686e9c247f93d953deed8a266fb/simulator-2.hires.png b/_downloads/a8bca686e9c247f93d953deed8a266fb/simulator-2.hires.png new file mode 100644 index 000000000..b199de710 Binary files /dev/null and b/_downloads/a8bca686e9c247f93d953deed8a266fb/simulator-2.hires.png differ diff --git a/_downloads/a97179e14e3edfdc5f4c94b97302c0ce/simulator-3.hires.png b/_downloads/a97179e14e3edfdc5f4c94b97302c0ce/simulator-3.hires.png new file mode 100644 index 000000000..f8cddcc93 Binary files /dev/null and b/_downloads/a97179e14e3edfdc5f4c94b97302c0ce/simulator-3.hires.png differ diff --git a/_downloads/e6f4bd25496b463f5843540b50e92112/simulator-2.pdf b/_downloads/e6f4bd25496b463f5843540b50e92112/simulator-2.pdf new file mode 100644 index 000000000..939197d4d Binary files /dev/null and b/_downloads/e6f4bd25496b463f5843540b50e92112/simulator-2.pdf differ diff --git a/_downloads/fa0debfa94ffa24a10f2357632d98fa8/simulator-1.pdf b/_downloads/fa0debfa94ffa24a10f2357632d98fa8/simulator-1.pdf new file mode 100644 index 000000000..892960bed Binary files /dev/null and b/_downloads/fa0debfa94ffa24a10f2357632d98fa8/simulator-1.pdf differ diff --git a/_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png b/_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png new file mode 100644 index 000000000..aaf977d38 Binary files /dev/null and b/_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png new file mode 100644 index 000000000..e13b95a28 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png new file mode 100644 index 000000000..827458b00 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png new file mode 100644 index 000000000..dcf45669d Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png new file mode 100644 index 000000000..102e9fde0 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png new file mode 100644 index 000000000..58e8cc2e1 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png new file mode 100644 index 000000000..f97067b19 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png new file mode 100644 index 000000000..ed68f5b6d Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png new file mode 100644 index 000000000..aad0393a6 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png new file mode 100644 index 000000000..602198ed1 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png new file mode 100644 index 000000000..2d427df90 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png new file mode 100644 index 000000000..4b3d2eed8 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png new file mode 100644 index 000000000..f62438bbf Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png new file mode 100644 index 000000000..bd3a41b10 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png new file mode 100644 index 000000000..ed2aabbc7 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png new file mode 100644 index 000000000..79cb7ff5a Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png new file mode 100644 index 000000000..fc6d6c980 Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png differ diff --git a/_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png b/_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png new file mode 100644 index 000000000..f8d5bc72d Binary files /dev/null and b/_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png new file mode 100644 index 000000000..256a68be2 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png new file mode 100644 index 000000000..9eeaeb1a4 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png new file mode 100644 index 000000000..21506f036 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png new file mode 100644 index 000000000..c5be9a39b Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png new file mode 100644 index 000000000..5ca399421 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png new file mode 100644 index 000000000..92f37cb1c Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png new file mode 100644 index 000000000..7dd3b4c42 Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png differ diff --git a/_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png new file mode 100644 index 000000000..ff1d6c42b Binary files /dev/null and b/_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png new file mode 100644 index 000000000..a5ee3488b Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png new file mode 100644 index 000000000..7f76e95c9 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png new file mode 100644 index 000000000..a90fe0115 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png new file mode 100644 index 000000000..437c15d65 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png new file mode 100644 index 000000000..ec4c61c56 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png new file mode 100644 index 000000000..9331b87e6 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png new file mode 100644 index 000000000..2c22ec4ac Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png new file mode 100644 index 000000000..98d1704d0 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png new file mode 100644 index 000000000..6697462c1 Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png differ diff --git a/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png new file mode 100644 index 000000000..0ef5eab4c Binary files /dev/null and b/_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png new file mode 100644 index 000000000..7f23bc867 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png new file mode 100644 index 000000000..d5b4275b1 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png new file mode 100644 index 000000000..9e5778d2d Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png new file mode 100644 index 000000000..343d072c3 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png differ diff --git a/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png new file mode 100644 index 000000000..20851cc74 Binary files /dev/null and b/_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_10_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_10_0.png new file mode 100644 index 000000000..caad05b62 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_10_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_12_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_12_0.png new file mode 100644 index 000000000..d81c7a8ae Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_12_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_15_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_15_1.png new file mode 100644 index 000000000..2f0524806 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_15_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_16_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_16_1.png new file mode 100644 index 000000000..b45f7d4d9 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_16_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_18_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_18_1.png new file mode 100644 index 000000000..363a608de Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_18_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_21_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_21_0.png new file mode 100644 index 000000000..2ffa0aaa8 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_21_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_23_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_23_0.png new file mode 100644 index 000000000..3f6aca96f Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_23_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_25_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_25_0.png new file mode 100644 index 000000000..5ba20f55f Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_25_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_26_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_26_1.png new file mode 100644 index 000000000..3b719765a Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_26_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_27_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_27_1.png new file mode 100644 index 000000000..0b7838f2f Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_27_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_29_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_29_1.png new file mode 100644 index 000000000..f77de65b1 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_29_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_30_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_30_1.png new file mode 100644 index 000000000..6052fac5d Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_30_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_33_2.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_33_2.png new file mode 100644 index 000000000..03764b0f1 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_33_2.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_34_1.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_34_1.png new file mode 100644 index 000000000..5742ef23a Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_34_1.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_36_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_36_0.png new file mode 100644 index 000000000..256d5f02c Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_36_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_5_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_5_0.png new file mode 100644 index 000000000..dee235b68 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_5_0.png differ diff --git a/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_7_0.png b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_7_0.png new file mode 100644 index 000000000..0fd7ad4c3 Binary files /dev/null and b/_images/notebooks_Deadtime_Dead_time_model_in_Stingray_7_0.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_2.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_2.png new file mode 100644 index 000000000..8d52581c1 Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_2.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_3.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_3.png new file mode 100644 index 000000000..2316ef4fa Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_3.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_4.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_4.png new file mode 100644 index 000000000..cb77bf390 Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_4.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_5.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_5.png new file mode 100644 index 000000000..cc2be2fe5 Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_5.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_0.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_0.png new file mode 100644 index 000000000..8d52581c1 Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_0.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_1.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_1.png new file mode 100644 index 000000000..2316ef4fa Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_1.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_2.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_2.png new file mode 100644 index 000000000..cb77bf390 Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_2.png differ diff --git a/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_3.png b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_3.png new file mode 100644 index 000000000..cc2be2fe5 Binary files /dev/null and b/_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_3.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_10_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_10_1.png new file mode 100644 index 000000000..b3b14f281 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_10_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_13_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_13_1.png new file mode 100644 index 000000000..08710c3ae Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_13_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_16_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_16_1.png new file mode 100644 index 000000000..a5a966b03 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_16_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_24_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_24_1.png new file mode 100644 index 000000000..9e79f9ca9 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_24_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_31_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_31_1.png new file mode 100644 index 000000000..838b64789 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_31_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_34_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_34_1.png new file mode 100644 index 000000000..07605ad01 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_34_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_36_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_36_1.png new file mode 100644 index 000000000..bc0d49fd0 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_36_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_38_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_38_1.png new file mode 100644 index 000000000..631c0e15e Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_38_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_8_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_8_1.png new file mode 100644 index 000000000..66aa08386 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[fake_data]_8_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_10_2.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_10_2.png new file mode 100644 index 000000000..4b9f2aab5 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_10_2.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_18_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_18_1.png new file mode 100644 index 000000000..3af389aa2 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_18_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_19_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_19_1.png new file mode 100644 index 000000000..46c8ec4cb Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_19_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_28_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_28_1.png new file mode 100644 index 000000000..b58d74957 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_28_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_29_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_29_1.png new file mode 100644 index 000000000..747152220 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_29_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_37_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_37_1.png new file mode 100644 index 000000000..f4751dcdc Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_37_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_43_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_43_1.png new file mode 100644 index 000000000..8c7f00ddc Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_43_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_45_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_45_1.png new file mode 100644 index 000000000..1e45e3748 Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_45_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_47_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_47_1.png new file mode 100644 index 000000000..a31897fbc Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_47_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_49_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_49_1.png new file mode 100644 index 000000000..8f1dd489c Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_49_1.png differ diff --git a/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_8_1.png b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_8_1.png new file mode 100644 index 000000000..577e0a6db Binary files /dev/null and b/_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_[real_data]_8_1.png differ diff --git a/_images/notebooks_EventList_EventList_Tutorial_54_1.png b/_images/notebooks_EventList_EventList_Tutorial_54_1.png new file mode 100644 index 000000000..2fc4b3bcd Binary files /dev/null and b/_images/notebooks_EventList_EventList_Tutorial_54_1.png differ diff --git a/_images/notebooks_EventList_EventList_Tutorial_56_1.png b/_images/notebooks_EventList_EventList_Tutorial_56_1.png new file mode 100644 index 000000000..1166c35df Binary files /dev/null and b/_images/notebooks_EventList_EventList_Tutorial_56_1.png differ diff --git a/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png new file mode 100644 index 000000000..0e84b8b35 Binary files /dev/null and b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png differ diff --git a/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png new file mode 100644 index 000000000..2b5be7eba Binary files /dev/null and b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png differ diff --git a/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png new file mode 100644 index 000000000..169b63e93 Binary files /dev/null and b/_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png new file mode 100644 index 000000000..d63165e85 Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png new file mode 100644 index 000000000..3fc6988b8 Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png new file mode 100644 index 000000000..ddc490b5a Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png differ diff --git a/_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png b/_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png new file mode 100644 index 000000000..12a290e99 Binary files /dev/null and b/_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png differ diff --git a/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png new file mode 100644 index 000000000..573ada0e6 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png differ diff --git a/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png new file mode 100644 index 000000000..a2942e3c4 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png new file mode 100644 index 000000000..091446589 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png differ diff --git a/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png new file mode 100644 index 000000000..72e660035 Binary files /dev/null and b/_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png new file mode 100644 index 000000000..f7fd26bd9 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png new file mode 100644 index 000000000..29daa4162 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png new file mode 100644 index 000000000..eac68eea5 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png new file mode 100644 index 000000000..7d96f57ff Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png new file mode 100644 index 000000000..c5aea668f Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png new file mode 100644 index 000000000..e7e05d408 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png new file mode 100644 index 000000000..e004cb22f Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png new file mode 100644 index 000000000..1c9f854c1 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png differ diff --git a/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png new file mode 100644 index 000000000..91d486909 Binary files /dev/null and b/_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png differ diff --git a/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_19_0.png b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_19_0.png new file mode 100644 index 000000000..fa72cf748 Binary files /dev/null and b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_19_0.png differ diff --git a/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_30_1.png b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_30_1.png new file mode 100644 index 000000000..d364408e7 Binary files /dev/null and b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_30_1.png differ diff --git a/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_32_0.png b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_32_0.png new file mode 100644 index 000000000..00a39ba3e Binary files /dev/null and b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_32_0.png differ diff --git a/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_7_0.png b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_7_0.png new file mode 100644 index 000000000..96a072960 Binary files /dev/null and b/_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_7_0.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_109_1.png b/_images/notebooks_Modeling_ModelingExamples_109_1.png new file mode 100644 index 000000000..7ecf80252 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_109_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_119_2.png b/_images/notebooks_Modeling_ModelingExamples_119_2.png new file mode 100644 index 000000000..a27216cbe Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_119_2.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_128_1.png b/_images/notebooks_Modeling_ModelingExamples_128_1.png new file mode 100644 index 000000000..228d435f2 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_128_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_138_0.png b/_images/notebooks_Modeling_ModelingExamples_138_0.png new file mode 100644 index 000000000..a8ad0596d Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_138_0.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_18_1.png b/_images/notebooks_Modeling_ModelingExamples_18_1.png new file mode 100644 index 000000000..519931c9a Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_18_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_43_1.png b/_images/notebooks_Modeling_ModelingExamples_43_1.png new file mode 100644 index 000000000..b0cbba701 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_43_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_5_1.png b/_images/notebooks_Modeling_ModelingExamples_5_1.png new file mode 100644 index 000000000..6819ca853 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_5_1.png differ diff --git a/_images/notebooks_Modeling_ModelingExamples_83_0.png b/_images/notebooks_Modeling_ModelingExamples_83_0.png new file mode 100644 index 000000000..17bfc1a00 Binary files /dev/null and b/_images/notebooks_Modeling_ModelingExamples_83_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_14_0.png b/_images/notebooks_Multitaper_multitaper_example_14_0.png new file mode 100644 index 000000000..6a0eb013b Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_14_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_16_0.png b/_images/notebooks_Multitaper_multitaper_example_16_0.png new file mode 100644 index 000000000..547d6defd Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_16_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_23_0.png b/_images/notebooks_Multitaper_multitaper_example_23_0.png new file mode 100644 index 000000000..2911baf6b Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_23_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_26_1.png b/_images/notebooks_Multitaper_multitaper_example_26_1.png new file mode 100644 index 000000000..885c8ace2 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_26_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_0.png b/_images/notebooks_Multitaper_multitaper_example_32_0.png new file mode 100644 index 000000000..4742e993c Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_1.png b/_images/notebooks_Multitaper_multitaper_example_32_1.png new file mode 100644 index 000000000..5c5db9c78 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_2.png b/_images/notebooks_Multitaper_multitaper_example_32_2.png new file mode 100644 index 000000000..8a9543916 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_2.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_32_3.png b/_images/notebooks_Multitaper_multitaper_example_32_3.png new file mode 100644 index 000000000..0ce418e44 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_32_3.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_37_0.png b/_images/notebooks_Multitaper_multitaper_example_37_0.png new file mode 100644 index 000000000..5b3b6b36e Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_37_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_39_2.png b/_images/notebooks_Multitaper_multitaper_example_39_2.png new file mode 100644 index 000000000..eed63d8a8 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_39_2.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_41_1.png b/_images/notebooks_Multitaper_multitaper_example_41_1.png new file mode 100644 index 000000000..4a3de608d Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_41_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_43_1.png b/_images/notebooks_Multitaper_multitaper_example_43_1.png new file mode 100644 index 000000000..35e82c107 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_43_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_47_1.png b/_images/notebooks_Multitaper_multitaper_example_47_1.png new file mode 100644 index 000000000..bb32453f0 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_47_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_49_1.png b/_images/notebooks_Multitaper_multitaper_example_49_1.png new file mode 100644 index 000000000..3a5336ae8 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_49_1.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_52_0.png b/_images/notebooks_Multitaper_multitaper_example_52_0.png new file mode 100644 index 000000000..bd182ea07 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_52_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_55_0.png b/_images/notebooks_Multitaper_multitaper_example_55_0.png new file mode 100644 index 000000000..5b2183959 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_55_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_57_0.png b/_images/notebooks_Multitaper_multitaper_example_57_0.png new file mode 100644 index 000000000..0cd425744 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_57_0.png differ diff --git a/_images/notebooks_Multitaper_multitaper_example_8_1.png b/_images/notebooks_Multitaper_multitaper_example_8_1.png new file mode 100644 index 000000000..6fa34b1d5 Binary files /dev/null and b/_images/notebooks_Multitaper_multitaper_example_8_1.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png new file mode 100644 index 000000000..b8f494c2f Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png new file mode 100644 index 000000000..8cf61c3ed Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png new file mode 100644 index 000000000..2edba4792 Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png new file mode 100644 index 000000000..e13171be5 Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png new file mode 100644 index 000000000..c82a6d78c Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png new file mode 100644 index 000000000..fc049467c Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png differ diff --git a/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png new file mode 100644 index 000000000..817fe545b Binary files /dev/null and b/_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png new file mode 100644 index 000000000..e79c01933 Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png new file mode 100644 index 000000000..8c91c8f14 Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png new file mode 100644 index 000000000..8ad262519 Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png differ diff --git a/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png new file mode 100644 index 000000000..e88ffeaee Binary files /dev/null and b/_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_0.png new file mode 100644 index 000000000..f71430c80 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_1.png new file mode 100644 index 000000000..328bbf7d5 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_11_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png new file mode 100644 index 000000000..fd63e8a89 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png new file mode 100644 index 000000000..f68b2ffbd Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png new file mode 100644 index 000000000..7139aa355 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png new file mode 100644 index 000000000..b49dc5d26 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png new file mode 100644 index 000000000..9fdc2a792 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png new file mode 100644 index 000000000..f1de35fc0 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png new file mode 100644 index 000000000..4b34e09a3 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png new file mode 100644 index 000000000..352003772 Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png new file mode 100644 index 000000000..346a9a89e Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png new file mode 100644 index 000000000..54a65aded Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png differ diff --git a/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png new file mode 100644 index 000000000..7c4ee5b7e Binary files /dev/null and b/_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png b/_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png new file mode 100644 index 000000000..089248ae1 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png new file mode 100644 index 000000000..69d93f6f7 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png differ diff --git a/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png new file mode 100644 index 000000000..5e33af2e2 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png new file mode 100644 index 000000000..94e535436 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png new file mode 100644 index 000000000..f0f83dec2 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_13_0.png b/_images/notebooks_Simulator_Concepts_Simulator_13_0.png new file mode 100644 index 000000000..f25657c5b Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_13_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_21_0.png b/_images/notebooks_Simulator_Concepts_Simulator_21_0.png new file mode 100644 index 000000000..514d54952 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_21_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_25_0.png b/_images/notebooks_Simulator_Concepts_Simulator_25_0.png new file mode 100644 index 000000000..343c1b6c2 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_25_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_33_0.png b/_images/notebooks_Simulator_Concepts_Simulator_33_0.png new file mode 100644 index 000000000..187b12c14 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_33_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_49_0.png b/_images/notebooks_Simulator_Concepts_Simulator_49_0.png new file mode 100644 index 000000000..f88f2302f Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_49_0.png differ diff --git a/_images/notebooks_Simulator_Concepts_Simulator_60_0.png b/_images/notebooks_Simulator_Concepts_Simulator_60_0.png new file mode 100644 index 000000000..8bd41e9b0 Binary files /dev/null and b/_images/notebooks_Simulator_Concepts_Simulator_60_0.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_13_1.png b/_images/notebooks_Simulator_Lag_Analysis_13_1.png new file mode 100644 index 000000000..e97e1e40a Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_13_1.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_22_0.png b/_images/notebooks_Simulator_Lag_Analysis_22_0.png new file mode 100644 index 000000000..1644b8350 Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_22_0.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_25_0.png b/_images/notebooks_Simulator_Lag_Analysis_25_0.png new file mode 100644 index 000000000..6955d3a6f Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_25_0.png differ diff --git a/_images/notebooks_Simulator_Lag_Analysis_38_0.png b/_images/notebooks_Simulator_Lag_Analysis_38_0.png new file mode 100644 index 000000000..b10d96311 Binary files /dev/null and b/_images/notebooks_Simulator_Lag_Analysis_38_0.png differ diff --git a/_images/notebooks_Simulator_Power_Spectral_Models_16_1.png b/_images/notebooks_Simulator_Power_Spectral_Models_16_1.png new file mode 100644 index 000000000..f76edfd21 Binary files /dev/null and b/_images/notebooks_Simulator_Power_Spectral_Models_16_1.png differ diff --git a/_images/notebooks_Simulator_Power_Spectral_Models_17_1.png b/_images/notebooks_Simulator_Power_Spectral_Models_17_1.png new file mode 100644 index 000000000..656bf56da Binary files /dev/null and b/_images/notebooks_Simulator_Power_Spectral_Models_17_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_16_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_16_1.png new file mode 100644 index 000000000..e274e201d Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_16_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_18_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_18_1.png new file mode 100644 index 000000000..0e8543dfa Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_18_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_20_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_20_1.png new file mode 100644 index 000000000..cf1cbdd97 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_20_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_21_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_21_1.png new file mode 100644 index 000000000..aaeb5bdce Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_21_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_23_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_23_1.png new file mode 100644 index 000000000..ee369fbbf Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_23_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_26_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_26_1.png new file mode 100644 index 000000000..b2c31baab Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_26_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_27_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_27_1.png new file mode 100644 index 000000000..68d095f4d Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_27_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_30_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_30_1.png new file mode 100644 index 000000000..c20803d16 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_30_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_31_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_31_1.png new file mode 100644 index 000000000..9a03321fd Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_31_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_35_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_35_1.png new file mode 100644 index 000000000..a45c44fb7 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_35_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_37_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_37_1.png new file mode 100644 index 000000000..f4733d333 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_37_1.png differ diff --git a/_images/notebooks_Simulator_Simulator_Tutorial_49_1.png b/_images/notebooks_Simulator_Simulator_Tutorial_49_1.png new file mode 100644 index 000000000..fcc526880 Binary files /dev/null and b/_images/notebooks_Simulator_Simulator_Tutorial_49_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png new file mode 100644 index 000000000..63154596b Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_13_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_13_1.png new file mode 100644 index 000000000..66c639b2f Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_13_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png new file mode 100644 index 000000000..faa356f3d Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_0.png new file mode 100644 index 000000000..6dc6098f6 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_1.png new file mode 100644 index 000000000..3f55eea95 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_27_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_27_0.png new file mode 100644 index 000000000..279a1b77f Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_27_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_31_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_31_1.png new file mode 100644 index 000000000..95a3e1750 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_31_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_34_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_34_0.png new file mode 100644 index 000000000..04059e698 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_34_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_48_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_48_1.png new file mode 100644 index 000000000..9be2495ca Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_48_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_50_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_50_1.png new file mode 100644 index 000000000..abca598c6 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_50_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_52_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_52_1.png new file mode 100644 index 000000000..87495233f Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_52_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_55_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_55_1.png new file mode 100644 index 000000000..29669e85d Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_55_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_57_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_57_1.png new file mode 100644 index 000000000..efeab9b72 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_57_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_5_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_5_1.png new file mode 100644 index 000000000..751b7bdd7 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_5_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_64_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_64_1.png new file mode 100644 index 000000000..5b94885be Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_64_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_66_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_66_1.png new file mode 100644 index 000000000..3bf20c4e7 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_66_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_67_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_67_1.png new file mode 100644 index 000000000..b8d09e732 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_67_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_71_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_71_0.png new file mode 100644 index 000000000..79ceb8c8a Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_71_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_75_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_75_0.png new file mode 100644 index 000000000..167922b41 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_75_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_78_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_78_0.png new file mode 100644 index 000000000..2b72b9139 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_78_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_7_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_7_1.png new file mode 100644 index 000000000..1357319d5 Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_7_1.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_81_0.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_81_0.png new file mode 100644 index 000000000..67326bf1f Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_81_0.png differ diff --git a/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_9_1.png b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_9_1.png new file mode 100644 index 000000000..e3573bfda Binary files /dev/null and b/_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_9_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_102_1.png b/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_102_1.png new file mode 100644 index 000000000..52409498b Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_102_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_96_1.png b/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_96_1.png new file mode 100644 index 000000000..dcc230da2 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_96_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_98_1.png b/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_98_1.png new file mode 100644 index 000000000..52c8ee782 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_98_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_12_1.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_12_1.png new file mode 100644 index 000000000..ab0438acd Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_12_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_13_1.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_13_1.png new file mode 100644 index 000000000..0e82911c9 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_13_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_17_0.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_17_0.png new file mode 100644 index 000000000..f16f1870f Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_17_0.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_19_1.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_19_1.png new file mode 100644 index 000000000..e9550d537 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_19_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_22_1.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_22_1.png new file mode 100644 index 000000000..6cc163273 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_22_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_24_1.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_24_1.png new file mode 100644 index 000000000..e57128479 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_24_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_27_1.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_27_1.png new file mode 100644 index 000000000..2101d53f4 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_27_1.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_3_0.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_3_0.png new file mode 100644 index 000000000..8f403702b Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_3_0.png differ diff --git a/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_4_0.png b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_4_0.png new file mode 100644 index 000000000..68cad7ac9 Binary files /dev/null and b/_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_4_0.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png new file mode 100644 index 000000000..d85c4db29 Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png differ diff --git a/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png new file mode 100644 index 000000000..3746fc5b5 Binary files /dev/null and b/_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_11_1.png b/_images/notebooks_Window_Functions_window_functions_11_1.png new file mode 100644 index 000000000..ae8515568 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_11_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_12_1.png b/_images/notebooks_Window_Functions_window_functions_12_1.png new file mode 100644 index 000000000..f976bdd8d Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_12_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_15_1.png b/_images/notebooks_Window_Functions_window_functions_15_1.png new file mode 100644 index 000000000..7e5342d80 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_15_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_16_1.png b/_images/notebooks_Window_Functions_window_functions_16_1.png new file mode 100644 index 000000000..dacc0ea44 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_16_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_19_1.png b/_images/notebooks_Window_Functions_window_functions_19_1.png new file mode 100644 index 000000000..ea65ecae5 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_19_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_20_2.png b/_images/notebooks_Window_Functions_window_functions_20_2.png new file mode 100644 index 000000000..9ec3462ff Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_20_2.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_23_1.png b/_images/notebooks_Window_Functions_window_functions_23_1.png new file mode 100644 index 000000000..e8c3d66d9 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_23_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_24_1.png b/_images/notebooks_Window_Functions_window_functions_24_1.png new file mode 100644 index 000000000..f8b10576c Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_24_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_27_1.png b/_images/notebooks_Window_Functions_window_functions_27_1.png new file mode 100644 index 000000000..652c55838 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_27_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_28_2.png b/_images/notebooks_Window_Functions_window_functions_28_2.png new file mode 100644 index 000000000..d66f07530 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_28_2.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_31_1.png b/_images/notebooks_Window_Functions_window_functions_31_1.png new file mode 100644 index 000000000..275d834a1 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_31_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_32_1.png b/_images/notebooks_Window_Functions_window_functions_32_1.png new file mode 100644 index 000000000..3bd6619c6 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_32_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_35_1.png b/_images/notebooks_Window_Functions_window_functions_35_1.png new file mode 100644 index 000000000..87e88e6a1 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_35_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_36_1.png b/_images/notebooks_Window_Functions_window_functions_36_1.png new file mode 100644 index 000000000..442bb1764 Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_36_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_7_1.png b/_images/notebooks_Window_Functions_window_functions_7_1.png new file mode 100644 index 000000000..88500e0ff Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_7_1.png differ diff --git a/_images/notebooks_Window_Functions_window_functions_8_2.png b/_images/notebooks_Window_Functions_window_functions_8_2.png new file mode 100644 index 000000000..728abee3d Binary files /dev/null and b/_images/notebooks_Window_Functions_window_functions_8_2.png differ diff --git a/_images/simulator-1.png b/_images/simulator-1.png new file mode 100644 index 000000000..d564c9b2a Binary files /dev/null and b/_images/simulator-1.png differ diff --git a/_images/simulator-2.png b/_images/simulator-2.png new file mode 100644 index 000000000..8ea828e5a Binary files /dev/null and b/_images/simulator-2.png differ diff --git a/_images/simulator-3.png b/_images/simulator-3.png new file mode 100644 index 000000000..a56726f28 Binary files /dev/null and b/_images/simulator-3.png differ diff --git a/_images/stingray_logo.png b/_images/stingray_logo.png new file mode 100644 index 000000000..971fb4f85 Binary files /dev/null and b/_images/stingray_logo.png differ diff --git a/_modules/index.html b/_modules/index.html new file mode 100644 index 000000000..4e58c05f1 --- /dev/null +++ b/_modules/index.html @@ -0,0 +1,116 @@ + + + + + + + Overview: module code — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+ +
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/base.html b/_modules/stingray/base.html new file mode 100644 index 000000000..6aed053e0 --- /dev/null +++ b/_modules/stingray/base.html @@ -0,0 +1,3077 @@ + + + + + + + stingray.base — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.base

+"""Base classes"""
+
+from __future__ import annotations
+
+from collections.abc import Iterable
+from collections import OrderedDict
+
+import pickle
+import warnings
+import copy
+
+import numpy as np
+from astropy.table import Table
+from astropy.time import Time, TimeDelta
+from astropy.units import Quantity
+from stingray.loggingconfig import setup_logger
+
+from .io import _can_save_longdouble, _can_serialize_meta
+from .utils import (
+    sqsum,
+    assign_value_if_none,
+    make_nd_into_arrays,
+    make_1d_arrays_into_nd,
+    get_random_state,
+    find_nearest,
+    rebin_data,
+)
+from .gti import (
+    create_gti_mask,
+    check_gtis,
+    cross_two_gtis,
+    join_gtis,
+    gti_border_bins,
+    get_btis,
+    merge_gtis,
+    get_total_gti_length,
+    bin_intervals_from_gtis,
+    time_intervals_from_gtis,
+)
+from typing import TYPE_CHECKING, Type, TypeVar, Union
+
+if TYPE_CHECKING:
+    from xarray import Dataset
+    from pandas import DataFrame
+    from astropy.timeseries import TimeSeries
+    from astropy.time import TimeDelta
+    import numpy.typing as npt
+
+    TTime = Union[Time, TimeDelta, Quantity, npt.ArrayLike]
+    Tso = TypeVar("Tso", bound="StingrayObject")
+
+
+__all__ = [
+    "convert_table_attrs_to_lowercase",
+    "interpret_times",
+    "reduce_precision_if_extended",
+    "StingrayObject",
+    "StingrayTimeseries",
+]
+
+logger = setup_logger()
+
+
+def convert_table_attrs_to_lowercase(table: Table) -> Table:
+    """Convert the column names of an Astropy Table to lowercase."""
+    new_table = Table()
+    for col in table.colnames:
+        new_table[col.lower()] = table[col]
+    for key in table.meta.keys():
+        new_table.meta[key.lower()] = table.meta[key]
+
+    return new_table
+
+
+
+[docs] +class StingrayObject(object): + """This base class defines some general-purpose utilities. + + The main purpose is to have a consistent mechanism for: + + + round-tripping to and from Astropy Tables and other dataframes + + + round-tripping to files in different formats + + The idea is that any object inheriting :class:`StingrayObject` should, + just by defining an attribute called ``main_array_attr``, be able to perform + the operations above, with no additional effort. + + ``main_array_attr`` is, e.g. ``time`` for :class:`StingrayTimeseries` and + :class:`Lightcurve`, ``freq`` for :class:`Crossspectrum`, ``energy`` for + :class:`VarEnergySpectrum`, and so on. It is the array with which all other + attributes are compared: if they are of the same shape, they get saved as + columns of the table/dataframe, otherwise as metadata. + """ + + not_array_attr: list = [] + + def __init__(cls, *args, **kwargs) -> None: + if not hasattr(cls, "main_array_attr"): + raise RuntimeError( + "A StingrayObject needs to have the main_array_attr attribute specified" + ) + + @property + def main_array_length(self): + if getattr(self, self.main_array_attr, None) is None: + return 0 + return np.shape(np.asanyarray(getattr(self, self.main_array_attr)))[0] + +
+[docs] + def data_attributes(self) -> list[str]: + """Clean up the list of attributes, only giving out those pointing to data. + + List all the attributes that point directly to valid data. This method goes through all the + attributes of the class, eliminating methods, properties, and attributes that are complicated + to serialize such as other ``StingrayObject``, or arrays of objects. + + This function does not make difference between array-like data and scalar data. + + Returns + ------- + data_attributes : list of str + List of attributes pointing to data that are not methods, properties, + or other ``StingrayObject`` instances. + """ + return [ + attr + for attr in dir(self) + if ( + not attr.startswith("__") + and attr not in ["main_array_attr", "not_array_attr"] + and not isinstance(getattr(self.__class__, attr, None), property) + and not callable(value := getattr(self, attr)) + and not isinstance(value, StingrayObject) + and not np.asanyarray(value).dtype == "O" + ) + ]
+ + +
+[docs] + def array_attrs(self) -> list[str]: + """List the names of the array attributes of the Stingray Object. + + By array attributes, we mean the ones with the same size and shape as + ``main_array_attr`` (e.g. ``time`` in ``EventList``) + + Returns + ------- + attributes : list of str + List of array attributes. + """ + + main_attr = getattr(self, getattr(self, "main_array_attr")) + if main_attr is None: + return [] + + return [ + attr + for attr in self.data_attributes() + if ( + not attr.startswith("_") + and not attr == self.main_array_attr + and isinstance(getattr(self, attr), Iterable) + and attr not in self.not_array_attr + and not isinstance(getattr(self, attr), str) + and np.shape(getattr(self, attr))[0] == np.shape(main_attr)[0] + ) + ]
+ + +
+[docs] + def internal_array_attrs(self) -> list[str]: + """List the names of the internal array attributes of the Stingray Object. + + These are array attributes that can be set by properties, and are generally indicated + by an underscore followed by the name of the property that links to it (E.g. + ``_counts`` in ``Lightcurve``). + By array attributes, we mean the ones with the same size and shape as + ``main_array_attr`` (e.g. ``time`` in ``EventList``) + + Returns + ------- + attributes : list of str + List of internal array attributes. + """ + + main_attr = getattr(self, "main_array_attr") + main_attr_value = getattr(self, main_attr) + if main_attr_value is None: + return [] + + all_attrs = [] + for attr in self.data_attributes(): + if ( + not attr == "_" + self.main_array_attr # e.g. _time in lightcurve + and attr not in ["_" + a for a in self.not_array_attr] + and not np.isscalar(value := getattr(self, attr)) + and value is not None + and not np.size(value) == 0 + and attr.startswith("_") + and np.shape(value)[0] == np.shape(main_attr_value)[0] + ): + all_attrs.append(attr) + + return all_attrs
+ + +
+[docs] + def meta_attrs(self) -> list[str]: + """List the names of the meta attributes of the Stingray Object. + + By array attributes, we mean the ones with a different size and shape + than ``main_array_attr`` (e.g. ``time`` in ``EventList``) + + Returns + ------- + attributes : list of str + List of meta attributes. + """ + array_attrs = self.array_attrs() + [self.main_array_attr] + self.internal_array_attrs() + + all_meta_attrs = [ + attr + for attr in self.data_attributes() + if (attr not in array_attrs and not attr.startswith("_")) + ] + if self.not_array_attr is not None and len(self.not_array_attr) >= 1: + all_meta_attrs += self.not_array_attr + return all_meta_attrs
+ + +
+[docs] + def dict(self) -> dict: + """Return a dictionary representation of the object.""" + + main_attr = self.main_array_attr + meta_attrs = self.meta_attrs() + array_attrs = self.array_attrs() + internal_array_attrs = self.internal_array_attrs() + + results = OrderedDict() + results[main_attr] = getattr(self, main_attr) + + for attr in internal_array_attrs: + if isinstance(getattr(self.__class__, attr.lstrip("_"), None), property): + attr = attr.lstrip("_") + results[attr] = getattr(self, attr) + + for attr in array_attrs: + results[attr] = getattr(self, attr) + + for attr in meta_attrs: + results[attr] = getattr(self, attr) + + return results
+ + +
+[docs] + def pretty_print(self, func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) -> str: + """Return a pretty-printed string representation of the object. + + This is useful for debugging, and for interactive use. + + Other parameters + ---------------- + func_to_apply : function + A function that modifies the attributes listed in ``attrs_to_apply``. + It must return the modified attributes and a label to be printed. + If ``None``, no function is applied. + attrs_to_apply : list of str + Attributes to be modified by ``func_to_apply``. + attrs_to_discard : list of str + Attributes to be discarded from the output. + """ + print(self.__class__.__name__) + print("_" * len(self.__class__.__name__)) + items = self.dict() + results = "" + np.set_printoptions(threshold=3, edgeitems=1) + for attr in items.keys(): + if attr in attrs_to_discard: + continue + value = items[attr] + label = f"{attr:<15}: {items[attr]}" + + if isinstance(value, Iterable) and not isinstance(value, str): + size = np.shape(value) + if len(size) == 1: + label += f" (size {size[0]})" + else: + label += f" (shape {size})" + + if func_to_apply is not None and attr in attrs_to_apply: + new_value, new_label = func_to_apply(items[attr]) + label += f"\n{attr + ' (' +new_label + ')':<15}: {new_value}" + + results += label + "\n" + return results
+ + + def __str__(self) -> str: + """Return a string representation of the object.""" + return self.pretty_print() + + def __eq__(self, other_ts): + """Compare two :class:`StingrayObject` instances with ``==``. + + All attributes (internal, array, meta) are compared. + """ + + if not isinstance(other_ts, type(self)): + raise ValueError(f"{type(self)} can only be compared with a {type(self)} Object") + + self_arr_attrs = self.array_attrs() + other_arr_attrs = other_ts.array_attrs() + + if not set(self_arr_attrs) == set(other_arr_attrs): + return False + + self_meta_attrs = self.meta_attrs() + other_meta_attrs = other_ts.meta_attrs() + + if not set(self_meta_attrs) == set(other_meta_attrs): + return False + + for attr in self.meta_attrs(): + # They are either both scalar or arrays + if np.isscalar(getattr(self, attr)) != np.isscalar(getattr(other_ts, attr)): + return False + + if np.isscalar(getattr(self, attr)): + if not getattr(self, attr, None) == getattr(other_ts, attr, None): + return False + else: + if not np.array_equal(getattr(self, attr, None), getattr(other_ts, attr, None)): + return False + + for attr in self.array_attrs(): + if not np.array_equal(getattr(self, attr), getattr(other_ts, attr)): + return False + + for attr in self.internal_array_attrs(): + if not np.array_equal(getattr(self, attr), getattr(other_ts, attr)): + return False + + return True + + def _default_operated_attrs(self): + operated_attrs = [attr for attr in self.array_attrs() if not attr.endswith("_err")] + return operated_attrs + + def _default_error_attrs(self): + return [attr for attr in self.array_attrs() if attr.endswith("_err")] + +
+[docs] + def get_meta_dict(self) -> dict: + """Give a dictionary with all non-None meta attrs of the object.""" + meta_attrs = self.meta_attrs() + meta_dict = {} + for key in meta_attrs: + val = getattr(self, key) + if val is not None: + meta_dict[key] = val + return meta_dict
+ + +
+[docs] + def to_astropy_table(self, no_longdouble=False) -> Table: + """Create an Astropy Table from a ``StingrayObject`` + + Array attributes (e.g. ``time``, ``pi``, ``energy``, etc. for + ``EventList``) are converted into columns, while meta attributes + (``mjdref``, ``gti``, etc.) are saved into the ``meta`` dictionary. + + Other Parameters + ---------------- + no_longdouble : bool + If True, reduce the precision of longdouble arrays to double precision. + This needs to be done in some cases, e.g. when the table is to be saved + in an architecture not supporting extended precision (e.g. ARM), but can + also be useful when an extended precision is not needed. + """ + data = {} + array_attrs = self.array_attrs() + [self.main_array_attr] + self.internal_array_attrs() + + for attr in array_attrs: + vals = np.asanyarray(getattr(self, attr)) + if no_longdouble: + vals = reduce_precision_if_extended(vals) + data[attr] = vals + + ts = Table(data) + meta_dict = self.get_meta_dict() + for attr in meta_dict.keys(): + if no_longdouble: + meta_dict[attr] = reduce_precision_if_extended(meta_dict[attr]) + value = meta_dict[attr] + rep = repr(value) + # Work around issue with Numpy 2.0 and Yaml serializer. + if "np.float" in rep: + value = float(value) + elif "np.int" in rep: + value = int(value) + meta_dict[attr] = value + ts.meta.update(meta_dict) + + return ts
+ + +
+[docs] + @classmethod + def from_astropy_table(cls: Type[Tso], ts: Table) -> Tso: + """Create a Stingray Object object from data in an Astropy Table. + + The table MUST contain at least a column named like the + ``main_array_attr``. + The rest of columns will form the array attributes of the + new object, while the attributes in ds.attrs will + form the new meta attributes of the object. + + """ + cls = cls() + + if len(ts) == 0: + # return an empty object + return cls + + array_attrs = ts.colnames + + # Set the main attribute first + for attr in array_attrs: + if attr.lower() == cls.main_array_attr: # type: ignore + mainarray = np.array(ts[attr]) # type: ignore + setattr(cls, cls.main_array_attr, mainarray) # type: ignore + break + + for attr in array_attrs: + if attr.lower() == cls.main_array_attr: # type: ignore + continue + setattr(cls, attr.lower(), np.array(ts[attr])) + + attributes_left_unchanged = [] + for key, val in ts.meta.items(): + if ( + isinstance(getattr(cls.__class__, key.lower(), None), property) + and getattr(cls.__class__, key.lower(), None).fset is None + ): + attributes_left_unchanged.append(key) + continue + + setattr(cls, key.lower(), val) + if len(attributes_left_unchanged) > 0: + # Only warn once, if multiple properties are affected. + attrs = ",".join(attributes_left_unchanged) + warnings.warn( + f"The input table contains protected attribute(s) of StingrayTimeseries: {attrs}. " + "These values are set internally by the class, and cannot be overwritten. " + "This issue is common when reading from FITS files using `fmt='fits'`." + " If this is the case, please consider using `fmt='ogip'` instead." + ) + return cls
+ + +
+[docs] + def to_xarray(self) -> Dataset: + """Create an ``xarray`` Dataset from a `StingrayObject`. + + Array attributes (e.g. ``time``, ``pi``, ``energy``, etc. for + ``EventList``) are converted into columns, while meta attributes + (``mjdref``, ``gti``, etc.) are saved into the ``ds.attrs`` dictionary. + """ + from xarray import Dataset + + data = {} + array_attrs = self.array_attrs() + [self.main_array_attr] + self.internal_array_attrs() + + for attr in array_attrs: + new_data = np.asanyarray(getattr(self, attr)) + ndim = len(np.shape(new_data)) + if ndim > 1: + new_data = ([attr + f"_dim{i}" for i in range(ndim)], new_data) + data[attr] = new_data + + ts = Dataset(data) + + ts.attrs.update(self.get_meta_dict()) + + return ts
+ + +
+[docs] + @classmethod + def from_xarray(cls: Type[Tso], ts: Dataset) -> Tso: + """Create a `StingrayObject` from data in an xarray Dataset. + + The dataset MUST contain at least a column named like the + ``main_array_attr``. + The rest of columns will form the array attributes of the + new object, while the attributes in ds.attrs will + form the new meta attributes of the object. + """ + cls = cls() + + if len(ts[cls.main_array_attr]) == 0: # type: ignore + # return an empty object + return cls + + # Set the main attribute first + mainarray = np.array(ts[cls.main_array_attr]) # type: ignore + setattr(cls, cls.main_array_attr, mainarray) # type: ignore + + all_array_attrs = [] + for array_attrs in [ts.coords, ts.data_vars]: + for attr in array_attrs: + all_array_attrs.append(attr) + if attr == cls.main_array_attr: # type: ignore + continue + setattr(cls, attr, np.array(ts[attr])) + + for key, val in ts.attrs.items(): + if key not in all_array_attrs: + setattr(cls, key, val) + + return cls
+ + +
+[docs] + def to_pandas(self) -> DataFrame: + """Create a pandas ``DataFrame`` from a :class:`StingrayObject`. + + Array attributes (e.g. ``time``, ``pi``, ``energy``, etc. for + ``EventList``) are converted into columns, while meta attributes + (``mjdref``, ``gti``, etc.) are saved into the ``ds.attrs`` dictionary. + + Since pandas does not support n-D data, multi-dimensional arrays are + converted into columns before the conversion, with names ``<colname>_dimN_M_K`` etc. + + See documentation of `make_nd_into_arrays` for details. + + """ + from pandas import DataFrame + + data = {} + array_attrs = self.array_attrs() + [self.main_array_attr] + self.internal_array_attrs() + + for attr in array_attrs: + values = np.asanyarray(getattr(self, attr)) + ndim = len(np.shape(values)) + if ndim > 1: + local_data = make_nd_into_arrays(values, attr) + else: + local_data = {attr: values} + data.update(local_data) + + ts = DataFrame(data) + + ts.attrs.update(self.get_meta_dict()) + + return ts
+ + +
+[docs] + @classmethod + def from_pandas(cls: Type[Tso], ts: DataFrame) -> Tso: + """Create an `StingrayObject` object from data in a pandas DataFrame. + + The dataframe MUST contain at least a column named like the + ``main_array_attr``. + The rest of columns will form the array attributes of the + new object, while the attributes in ds.attrs will + form the new meta attributes of the object. + + Since pandas does not support n-D data, multi-dimensional arrays can be + specified as ``<colname>_dimN_M_K`` etc. + + See documentation of `make_1d_arrays_into_nd` for details. + + """ + import re + + cls = cls() + + if len(ts) == 0: + # return an empty object + return cls + + array_attrs = ts.columns + + # Set the main attribute first + mainarray = np.array(ts[cls.main_array_attr]) # type: ignore + setattr(cls, cls.main_array_attr, mainarray) # type: ignore + + nd_attrs = [] + for attr in array_attrs: + if attr == cls.main_array_attr: # type: ignore + continue + if "_dim" in attr: + nd_attrs.append(re.sub("_dim[0-9].*", "", attr)) + else: + setattr(cls, attr, np.array(ts[attr])) + + for attr in list(set(nd_attrs)): + setattr(cls, attr, make_1d_arrays_into_nd(ts, attr)) + + for key, val in ts.attrs.items(): + if key not in array_attrs: + setattr(cls, key, val) + + return cls
+ + +
+[docs] + @classmethod + def read(cls: Type[Tso], filename: str, fmt: str = None) -> Tso: + r"""Generic reader for :class`StingrayObject` + + Currently supported formats are + + * pickle (not recommended for long-term storage) + * any other formats compatible with the writers in + :class:`astropy.table.Table` (ascii.ecsv, hdf5, etc.) + + Files that need the :class:`astropy.table.Table` interface MUST contain + at least a column named like the ``main_array_attr``. + The default ascii format is enhanced CSV (ECSV). Data formats + supporting the serialization of metadata (such as ECSV and HDF5) can + contain all attributes such as ``mission``, ``gti``, etc with + no significant loss of information. Other file formats might lose part + of the metadata, so must be used with care. + + ..note:: + + Complex values can be dealt with out-of-the-box in some formats + like HDF5 or FITS, not in others (e.g. all ASCII formats). + With these formats, and in any case when fmt is ``None``, complex + values should be stored as two columns of real numbers, whose names + are of the format <variablename>.real and <variablename>.imag + + Parameters + ---------- + filename: str + Path and file name for the file to be read. + + fmt: str + Available options are 'pickle', 'hea', and any `Table`-supported + format such as 'hdf5', 'ascii.ecsv', etc. + + Returns + ------- + obj: :class:`StingrayObject` object + The object reconstructed from file + """ + + if fmt is None: + pass + elif fmt.lower() == "pickle": + with open(filename, "rb") as fobj: + return pickle.load(fobj) + elif fmt.lower() == "ascii": + fmt = "ascii.ecsv" + + ts = convert_table_attrs_to_lowercase(Table.read(filename, format=fmt)) + + # For specific formats, and in any case when the format is not + # specified, make sure that complex values are treated correctly. + if fmt is None or "ascii" in fmt: + for col in ts.colnames: + if not ((is_real := col.endswith(".real")) or (is_imag := col.endswith(".imag"))): + continue + + new_value = ts[col] + + if is_imag: + new_value = new_value * 1j + + # Make sure it's complex, even if we find the real part first + new_value = new_value + 0.0j + + col_strip = col.replace(".real", "").replace(".imag", "") + + if col_strip not in ts.colnames: + # If the column without ".real" or ".imag" doesn't exist, + # define it, and make sure it's complex-valued + ts[col_strip] = new_value + else: + # If it does exist, sum the new value to it. + ts[col_strip] += new_value + + ts.remove_column(col) + + return cls.from_astropy_table(ts)
+ + +
+[docs] + def write(self, filename: str, fmt: str = None) -> None: + """Generic writer for :class`StingrayObject` + + Currently supported formats are + + * pickle (not recommended for long-term storage) + * any other formats compatible with the writers in + :class:`astropy.table.Table` (ascii.ecsv, hdf5, etc.) + + ..note:: + + Complex values can be dealt with out-of-the-box in some formats + like HDF5 or FITS, not in others (e.g. all ASCII formats). + With these formats, and in any case when fmt is ``None``, complex + values will be stored as two columns of real numbers, whose names + are of the format <variablename>.real and <variablename>.imag + + Parameters + ---------- + filename: str + Name and path of the file to save the object list to. + + fmt: str + The file format to store the data in. + Available options are ``pickle``, ``hdf5``, ``ascii``, ``fits`` + """ + if fmt is None: + pass + elif fmt.lower() == "pickle": + with open(filename, "wb") as fobj: + pickle.dump(self, fobj) + return + elif fmt.lower() == "ascii": + fmt = "ascii.ecsv" + + probe_file = "probe.bu.bu." + filename[-7:] + + CAN_SAVE_LONGD = _can_save_longdouble(probe_file, fmt) + CAN_SERIALIZE_META = _can_serialize_meta(probe_file, fmt) + + to_be_saved = self + + ts = to_be_saved.to_astropy_table(no_longdouble=not CAN_SAVE_LONGD) + + if fmt is None or "ascii" in fmt: + for col in ts.colnames: + if np.iscomplex(ts[col].flatten()[0]): + ts[f"{col}.real"] = ts[col].real + ts[f"{col}.imag"] = ts[col].imag + ts.remove_column(col) + + if CAN_SERIALIZE_META: + ts.write(filename, format=fmt, overwrite=True, serialize_meta=True) + else: + ts.write(filename, format=fmt, overwrite=True)
+ + +
+[docs] + def apply_mask(self, mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None): + """Apply a mask to all array attributes of the object + + Parameters + ---------- + mask : array of ``bool`` + The mask. Has to be of the same length as ``self.time`` + + Other parameters + ---------------- + inplace : bool + If True, overwrite the current object. Otherwise, return a new one. + filtered_attrs : list of str or None + Array attributes to be filtered. Defaults to all array attributes if ``None``. + The other array attributes will be set to ``None``. The main array attr is always + included. + + Returns + ------- + ts_new : StingrayObject object + The new object with the mask applied if ``inplace`` is ``False``, otherwise the + same object. + """ + all_attrs = self.internal_array_attrs() + self.array_attrs() + if filtered_attrs is None: + filtered_attrs = all_attrs + + if inplace: + new_ts = self + else: + new_ts = type(self)() + for attr in self.meta_attrs(): + setattr(new_ts, attr, copy.deepcopy(getattr(self, attr))) + + # If the main array attr is managed through an internal attr + # (e.g. lightcurve), set the internal attr instead. + if hasattr(self, "_" + self.main_array_attr): + setattr( + new_ts, + "_" + self.main_array_attr, + copy.deepcopy(np.asanyarray(getattr(self, self.main_array_attr))[mask]), + ) + else: + setattr( + new_ts, + self.main_array_attr, + copy.deepcopy(np.asanyarray(getattr(self, self.main_array_attr))[mask]), + ) + + for attr in all_attrs: + if attr not in filtered_attrs: + # Eliminate all unfiltered attributes + setattr(new_ts, attr, None) + else: + setattr(new_ts, attr, copy.deepcopy(np.asanyarray(getattr(self, attr))[mask])) + return new_ts
+ + + def _operation_with_other_obj( + self, + other, + operation, + operated_attrs=None, + error_attrs=None, + error_operation=None, + inplace=False, + ): + """ + Helper method to codify an operation of one time series with another (e.g. add, subtract). + Takes into account the GTIs, and returns a new :class:`StingrayTimeseries` object. + + Parameters + ---------- + other : :class:`StingrayTimeseries` object + A second time series object + + operation : function + An operation between the :class:`StingrayTimeseries` object calling this method, and + ``other``, operating on all the specified array attributes. + + Other parameters + ---------------- + operated_attrs : list of str or None + Array attributes to be operated on. Defaults to all array attributes not ending in + ``_err``. + The other array attributes will be discarded from the time series to avoid + inconsistencies. + + error_attrs : list of str or None + Array attributes to be operated on with ``error_operation``. Defaults to all array + attributes ending with ``_err``. + + error_operation : function + The function used for error propagation. Defaults to the sum of squares. + + Returns + ------- + ts_new : StingrayTimeseries object + The new time series calculated in ``operation`` + """ + + if operated_attrs is None: + operated_attrs = self._default_operated_attrs() + + if error_attrs is None: + error_attrs = self._default_error_attrs() + + if not isinstance(other, type(self)): + raise TypeError( + f"{type(self)} objects can only be operated with other {type(self)} objects." + ) + + this_time = getattr(self, self.main_array_attr) + # ValueError is raised by Numpy while asserting np.equal over arrays + # with different dimensions. + try: + assert np.array_equal(this_time, getattr(other, self.main_array_attr)) + except (ValueError, AssertionError): + raise ValueError( + f"The values of {self.main_array_attr} are different in the two {type(self)} " + "objects." + ) + + if inplace: + ts_new = self + else: + ts_new = type(self)() + setattr(ts_new, self.main_array_attr, this_time) + for attr in self.meta_attrs(): + setattr(ts_new, attr, copy.deepcopy(getattr(self, attr))) + + for attr in operated_attrs: + setattr( + ts_new, + attr, + operation(getattr(self, attr), getattr(other, attr)), + ) + + for attr in error_attrs: + setattr( + ts_new, + attr, + error_operation(getattr(self, attr), getattr(other, attr)), + ) + + return ts_new + +
+[docs] + def add( + self, other, operated_attrs=None, error_attrs=None, error_operation=sqsum, inplace=False + ): + """Add two :class:`StingrayObject` instances. + + Add the array values of two :class:`StingrayObject` instances element by element, assuming + the main array attributes of the instances match exactly. + + All array attrs ending with ``_err`` are treated as error bars and propagated with the + sum of squares. + + GTIs are crossed, so that only common intervals are saved. + + Parameters + ---------- + other : :class:`StingrayTimeseries` object + A second time series object + + Other parameters + ---------------- + operated_attrs : list of str or None + Array attributes to be operated on. Defaults to all array attributes not ending in + ``_err``. + The other array attributes will be discarded from the time series to avoid + inconsistencies. + error_attrs : list of str or None + Array attributes to be operated on with ``error_operation``. Defaults to all array + attributes ending with ``_err``. + error_operation : function + Function to be called to propagate the errors + inplace : bool + If True, overwrite the current time series. Otherwise, return a new one. + """ + return self._operation_with_other_obj( + other, + np.add, + operated_attrs=operated_attrs, + error_attrs=error_attrs, + error_operation=error_operation, + inplace=inplace, + )
+ + + def __add__(self, other): + """Operation that gets called with the ``+`` operator. + + Add the array values of two :class:`StingrayObject` instances element by element, assuming + the main array attributes of the instances match exactly. + + All array attrs ending with ``_err`` are treated as error bars and propagated with the + sum of squares. + + GTIs are crossed, so that only common intervals are saved. + """ + + return self._operation_with_other_obj( + other, + np.add, + error_operation=sqsum, + ) + + def __iadd__(self, other): + """Operation that gets called with the ``+=`` operator. + + Add the array values of two :class:`StingrayObject` instances element by element, assuming + the main array attributes of the instances match exactly. + + All array attrs ending with ``_err`` are treated as error bars and propagated with the + sum of squares. + + GTIs are crossed, so that only common intervals are saved. + """ + + return self._operation_with_other_obj( + other, + np.add, + error_operation=sqsum, + inplace=True, + ) + +
+[docs] + def sub( + self, other, operated_attrs=None, error_attrs=None, error_operation=sqsum, inplace=False + ): + """ + Subtract *all the array attrs* of two :class:`StingrayObject` instances element by element, assuming the main array attributes of the instances match exactly. + + All array attrs ending with ``_err`` are treated as error bars and propagated with the + sum of squares. + + GTIs are crossed, so that only common intervals are saved. + + Parameters + ---------- + other : :class:`StingrayTimeseries` object + A second time series object + + Other parameters + ---------------- + operated_attrs : list of str or None + Array attributes to be operated on. Defaults to all array attributes not ending in + ``_err``. + The other array attributes will be discarded from the time series to avoid + inconsistencies. + error_attrs : list of str or None + Array attributes to be operated on with ``error_operation``. Defaults to all array + attributes ending with ``_err``. + error_operation : function + Function to be called to propagate the errors + inplace : bool + If True, overwrite the current time series. Otherwise, return a new one. + """ + return self._operation_with_other_obj( + other, + np.subtract, + operated_attrs=operated_attrs, + error_attrs=error_attrs, + error_operation=error_operation, + inplace=inplace, + )
+ + + def __sub__(self, other): + """Operation that gets called with the ``-`` operator. + + Subtract *all the array attrs* of two :class:`StingrayObject` instances element by element, assuming the main array attributes of the instances match exactly. + + All array attrs ending with ``_err`` are treated as error bars and propagated with the + sum of squares. + + GTIs are crossed, so that only common intervals are saved. + """ + + return self._operation_with_other_obj( + other, + np.subtract, + error_operation=sqsum, + ) + + def __isub__(self, other): + """Operation that gets called with the ``-=`` operator. + + Subtract *all the array attrs* of two :class:`StingrayObject` instances element by element, assuming the main array attributes of the instances match exactly. + + All array attrs ending with ``_err`` are treated as error bars and propagated with the + sum of squares. + + GTIs are crossed, so that only common intervals are saved. + """ + + return self._operation_with_other_obj( + other, + np.subtract, + error_operation=sqsum, + inplace=True, + ) + + def __neg__(self): + """ + Implement the behavior of negation of the array attributes of a :class:`StingrayObject` + Error attrs are left alone. + + The negation operator ``-`` is supposed to invert the sign of all array attributes of a + time series object, leaving out the ones ending with ``_err``. + + """ + + ts_new = copy.deepcopy(self) + for attr in self._default_operated_attrs(): + setattr(ts_new, attr, -np.asanyarray(getattr(self, attr))) + + return ts_new + + def __len__(self): + """ + Return the number of bins of a the main array attributes + + This method overrides the ``len`` function for a :class:`StingrayObject` + object and returns the length of the array attributes (using the main array attribute + as probe). + """ + return np.size(getattr(self, self.main_array_attr)) + + def __getitem__(self, index): + """ + Return an element or a slice of the :class:`StingrayObject`. + + Parameters + ---------- + index : int or slice instance + Index value of the time array or a slice object. + + Returns + ------- + ts_new : :class:`StingrayObject` object + The new :class:`StingrayObject` object with the set of selected data. + """ + + if isinstance(index, (int, np.integer)): + start = index + stop = index + 1 + step = 1 + elif isinstance(index, slice): + start = assign_value_if_none(index.start, 0) + stop = assign_value_if_none(index.stop, len(self)) + step = assign_value_if_none(index.step, 1) + else: + raise IndexError("The index must be either an integer or a slice " "object !") + + new_ts = type(self)() + + for attr in self.meta_attrs(): + setattr(new_ts, attr, copy.deepcopy(getattr(self, attr))) + + for attr in self.array_attrs() + [self.main_array_attr]: + setattr(new_ts, attr, getattr(self, attr)[start:stop:step]) + + return new_ts
+ + + +def _ts_sum(ts): + """Sum the number of values of a time series object. + + If it has a ``counts`` attribute, sum the counts. Otherwise, count the number + of time samples. Masked values are ignored. + """ + if hasattr(ts, "counts"): + return np.sum(ts.counts[ts.mask]) + return np.count_nonzero(ts.mask) + + +
+[docs] +class StingrayTimeseries(StingrayObject): + """Basic class for time series data. + + This can be events, binned light curves, unevenly sampled light curves, etc. The only + requirement is that the data (which can be any quantity, related or not to an electromagnetic + measurement) are associated with a time measurement. + We make a distinction between the *array* attributes, which have the same length of the + ``time`` array, and the *meta* attributes, which can be scalars or arrays of different + size. The array attributes can be multidimensional (e.g. a spectrum for each time bin), + but their first dimension (``array.shape[0]``) must have same length of the ``time`` array. + + Array attributes are singled out automatically depending on their shape. All filtering + operations (e.g. ``apply_gtis``, ``rebin``, etc.) are applied to array attributes only. + For this reason, it is advisable to specify whether a given attribute should *not* be + considered as an array attribute by adding it to the ``not_array_attr`` list. + + Parameters + ---------- + time: iterable + A list or array of time stamps + + Other Parameters + ---------------- + array_attrs : dict + Array attributes to be set (e.g. ``{"flux": flux_array, "flux_err": flux_err_array}``). + In principle, they could be specified as simple keyword arguments. But this way, we + will run a check on the length of the arrays, and raise an error if they are not of a + shape compatible with the ``time`` array. + + dt: float + The time resolution of the time series. Can be a scalar or an array attribute (useful + for non-evenly sampled data or events from different instruments) + + mjdref : float + The MJD used as a reference for the time array. + + gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + high_precision : bool + Change the precision of self.time to float128. Useful while dealing with fast pulsars. + + timeref : str + The time reference, as recorded in the FITS file (e.g. SOLARSYSTEM) + + timesys : str + The time system, as recorded in the FITS file (e.g. TDB) + + ephem : str + The JPL ephemeris used to barycenter the data, if any (e.g. DE430) + + skip_checks : bool + Skip checks on the time array. Useful when the user is reasonably sure that the + input data are valid. + + **other_kw : + Used internally. Any other keyword arguments will be set as attributes of the object. + + Attributes + ---------- + time: numpy.ndarray + The array of time stamps, in seconds from the reference + MJD defined in ``mjdref`` + + not_array_attr: list + List of attributes that are never to be considered as array attributes. For example, GTIs + are not array attributes. + + dt: float + The time resolution of the measurements. Can be a scalar or an array attribute (useful + for non-evenly sampled data or events from different instruments). It can also be 0, which + means that the time series is not evenly sampled and the effects of the time resolution are + considered negligible for the analysis. This is sometimes the case for events from + high-energy telescopes. + + mjdref : float + The MJD used as a reference for the time array. + + gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + high_precision : bool + Change the precision of self.time to float128. Useful while dealing with fast pulsars. + + """ + + main_array_attr: str = "time" + not_array_attr: list = ["gti"] + _time: TTime = None + high_precision: bool = False + mjdref: TTime = 0.0 + dt: float = 0.0 + + def __init__( + self, + time: TTime = None, + array_attrs: dict = {}, + mjdref: TTime = 0, + notes: str = "", + gti: npt.ArrayLike = None, + high_precision: bool = False, + ephem: str = None, + timeref: str = None, + timesys: str = None, + skip_checks: bool = False, + **other_kw, + ): + StingrayObject.__init__(self) + + self.notes = notes + self.mjdref = mjdref + self.gti = gti + self.ephem = ephem + self.timeref = timeref + self.timesys = timesys + self._mask = None + self.high_precision = high_precision + self.dt = other_kw.pop("dt", 0) + + self._set_times(time, high_precision=high_precision) + for kw in other_kw: + setattr(self, kw, other_kw[kw]) + for kw in array_attrs: + new_arr = np.asanyarray(array_attrs[kw]) + if self.time.shape[0] != new_arr.shape[0]: + raise ValueError(f"Lengths of time and {kw} must be equal.") + setattr(self, kw, new_arr) + from .utils import is_sorted + + if not skip_checks: + if self.time is not None and not is_sorted(self.time): + warnings.warn("The time array is not sorted. Sorting it now.") + self.sort(inplace=True) + + @property + def time(self): + return self._time + + @time.setter + def time(self, value): + value = self._validate_and_format(value, "time", "time") + if value is None: + for attr in self.internal_array_attrs() + self.array_attrs(): + setattr(self, attr, None) + self._set_times(value, high_precision=self.high_precision) + + @property + def gti(self): + if self._gti is None and self._time is not None: + if isinstance(self.dt, Iterable): + dt0 = self.dt[0] + dt1 = self.dt[-1] + else: + dt0 = dt1 = self.dt + self._gti = np.asanyarray([[self._time[0] - dt0 / 2, self._time[-1] + dt1 / 2]]) + return self._gti + + @gti.setter + def gti(self, value): + if value is None: + self._gti = None + return + value = np.asanyarray(value) + self._gti = value + self._mask = None + + @property + def mask(self): + if self._mask is not None: + return self._mask + if self._gti is not None: + self._mask = create_gti_mask(self.time, self._gti, dt=self.dt) + else: + self._mask = np.ones_like(self.time, dtype=bool) + return self._mask + + @property + def n(self): + return self.main_array_length + + def _set_times(self, time, high_precision=False): + if time is None or np.size(time) == 0: + self._time = None + return + time, _ = interpret_times(time, self.mjdref) + if not high_precision: + self._time = np.asanyarray(time) + else: + self._time = np.asanyarray(time, dtype=np.longdouble) + + def __str__(self) -> str: + """Return a string representation of the object.""" + return self.pretty_print( + attrs_to_apply=["gti", "time", "tstart", "tseg", "tstop"], + func_to_apply=lambda x: (np.asanyarray(x) / 86400 + self.mjdref, "MJD"), + attrs_to_discard=["_mask", "header"], + ) + + def _validate_and_format(self, value, attr_name, compare_to_attr): + """Check if the size of a value is compatible with the size of another attribute. + + Different cases are possible: + + - If the value is None, we return None + - If the value is a scalar, we fail + - If the value is an array, we check if it has the correct shape by comparing it with + another attribute. In the special case where the attribute is the same, if it is None + we assign the new value. Otherwise, the first dimension of the value and the current + value of the attribute being compared with has to be the same. + + Parameters + ---------- + value : array-like or None + The value to check. + attr_name : str + The name of the attribute being checked. + compare_to_attr : str + The name of the attribute to compare with. + + Returns + ------- + value : array-like or None + The value to check wrapped in a class:`np.array`, if it is not None. Otherwise None + """ + if value is None: + return None + value = np.asanyarray(value) + if len(value.shape) < 1: + raise ValueError(f"{attr_name} array must be at least 1D") + # If the attribute we compare it with is the same and it is currently None, we assign it + # This can happen, e.g. with the time array. + compare_with = getattr(self, compare_to_attr, None) + if attr_name == compare_to_attr and compare_with is None: + return value + + # In the special case where the current value of the attribute being compared + # is None, this also has to fail. + if compare_with is None: + raise ValueError( + f"Can only assign new {attr_name} if the {compare_to_attr} array is not None" + ) + if value.shape[0] != compare_with.shape[0]: + raise ValueError( + f"Can only assign new {attr_name} of the same shape as the {compare_to_attr} array" + ) + return value + + @property + def exposure(self): + """ + Return the total exposure of the time series, i.e. the sum of the GTIs. + + Returns + ------- + total_exposure : float + The total exposure of the time series, in seconds. + """ + + return get_total_gti_length(self.gti) + + def __eq__(self, other_ts): + return super().__eq__(other_ts) + +
+[docs] + def apply_gtis(self, new_gti=None, inplace: bool = True): + """ + Apply Good Time Intervals (GTIs) to a time series. Filters all the array attributes, only + keeping the bins that fall into GTIs. + + Parameters + ---------- + inplace : bool + If True, overwrite the current time series. Otherwise, return a new one. + + """ + # I import here to avoid the risk of circular imports + + if new_gti is None: + new_gti = self.gti + + check_gtis(new_gti) + + # This will automatically be recreated from GTIs once I set it to None + good = create_gti_mask(self.time, new_gti, dt=self.dt) + newts = self.apply_mask(good, inplace=inplace) + # Important, otherwise addition/subtraction ops will go into an infinite loop + if inplace: + newts.gti = new_gti + return newts
+ + +
+[docs] + def split_by_gti(self, gti=None, min_points=2): + """ + Split the current :class:`StingrayTimeseries` object into a list of + :class:`StingrayTimeseries` objects, one for each continuous GTI segment + as defined in the ``gti`` attribute. + + Parameters + ---------- + min_points : int, default 1 + The minimum number of data points in each time series. Light + curves with fewer data points will be ignored. + + Returns + ------- + list_of_tss : list + A list of :class:`StingrayTimeseries` objects, one for each GTI segment + """ + + if gti is None: + gti = self.gti + + list_of_tss = [] + + start_bins, stop_bins = gti_border_bins(gti, self.time, self.dt) + for i in range(len(start_bins)): + start = start_bins[i] + stop = stop_bins[i] + + if (stop - start) < min_points: + continue + + new_gti = np.array([gti[i]]) + mask = create_gti_mask(self.time, new_gti) + + # Note: GTIs are consistent with default in this case! + new_ts = self.apply_mask(mask) + new_ts.gti = new_gti + + list_of_tss.append(new_ts) + + return list_of_tss
+ + +
+[docs] + def to_astropy_timeseries(self) -> TimeSeries: + """Save the ``StingrayTimeseries`` to an ``Astropy`` timeseries. + + Array attributes (time, pi, energy, etc.) are converted + into columns, while meta attributes (mjdref, gti, etc.) + are saved into the ``meta`` dictionary. + + Returns + ------- + ts : `astropy.timeseries.TimeSeries` + A ``TimeSeries`` object with the array attributes as columns, + and the meta attributes in the `meta` dictionary + """ + from astropy.timeseries import TimeSeries + from astropy.time import TimeDelta + from astropy import units as u + + data = {} + array_attrs = self.array_attrs() + + for attr in array_attrs: + if attr == "time": + continue + data[attr] = np.asanyarray(getattr(self, attr)) + + if data == {}: + data = None + + if self.time is not None and np.size(self.time) > 0: # type: ignore + times = TimeDelta(self.time * u.s) # type: ignore + ts = TimeSeries(data=data, time=times) + else: + ts = TimeSeries() + + ts.meta.update(self.get_meta_dict()) + + return ts
+ + +
+[docs] + @classmethod + def from_astropy_timeseries(cls, ts: TimeSeries) -> StingrayTimeseries: + """Create a `StingrayTimeseries` from data in an Astropy TimeSeries + + The timeseries has to define at least a column called time, + the rest of columns will form the array attributes of the + new time series, while the attributes in table.meta will + form the new meta attributes of the time series. + + Parameters + ---------- + ts : `astropy.timeseries.TimeSeries` + A ``TimeSeries`` object with the array attributes as columns, + and the meta attributes in the `meta` dictionary + + Returns + ------- + ts : `StingrayTimeseries` + Timeseries object + """ + + time = ts["time"] + mjdref = None + if "mjdref" in ts.meta: + mjdref = ts.meta["mjdref"] + + new_cls = cls() + time, mjdref = interpret_times(time, mjdref) + new_cls.time = np.asanyarray(time) # type: ignore + + array_attrs = ts.colnames + for key, val in ts.meta.items(): + setattr(new_cls, key, val) + + for attr in array_attrs: + if attr == "time": + continue + setattr(new_cls, attr, np.asanyarray(ts[attr])) + + return new_cls
+ + +
+[docs] + def change_mjdref(self, new_mjdref: float, inplace=False) -> StingrayTimeseries: + """Change the MJD reference time (MJDREF) of the time series + + The times of the time series will be shifted in order to be referred to + this new MJDREF + + Parameters + ---------- + new_mjdref : float + New MJDREF + + Other parameters + ---------------- + inplace : bool + If True, overwrite the current time series. Otherwise, return a new one. + + Returns + ------- + new_ts : :class:`StingrayTimeseries` object + The new time series, shifted by MJDREF + """ + time_shift = (self.mjdref - new_mjdref) * 86400 # type: ignore + + ts = self.shift(time_shift, inplace=inplace) + ts.mjdref = new_mjdref # type: ignore + return ts
+ + +
+[docs] + def shift(self, time_shift: float, inplace=False) -> StingrayTimeseries: + """Shift the time and the GTIs by the same amount + + Parameters + ---------- + time_shift: float + The time interval by which the time series will be shifted (in + the same units as the time array in :class:`StingrayTimeseries` + + Other parameters + ---------------- + inplace : bool + If True, overwrite the current time series. Otherwise, return a new one. + + Returns + ------- + ts : ``StingrayTimeseries`` object + The new time series shifted by ``time_shift`` + + """ + if inplace: + ts = self + else: + ts = copy.deepcopy(self) + ts.time = np.asanyarray(ts.time) + time_shift # type: ignore + # Pay attention here: if the GTIs are created dynamically while we + # access the property, + if ts._gti is not None: + ts._gti = np.asanyarray(ts._gti) + time_shift # type: ignore + + return ts
+ + + def _operation_with_other_obj( + self, other, operation, operated_attrs=None, error_attrs=None, error_operation=None + ): + """ + Helper method to codify an operation of one time series with another (e.g. add, subtract). + Takes into account the GTIs correctly, and returns a new :class:`StingrayTimeseries` object. + + Parameters + ---------- + other : :class:`StingrayTimeseries` object + A second time series object + + operation : function + An operation between the :class:`StingrayTimeseries` object calling this method, and + ``other``, operating on all the specified array attributes. + + Other parameters + ---------------- + operated_attrs : list of str or None + Array attributes to be operated on. Defaults to all array attributes not ending in + ``_err``. + The other array attributes will be discarded from the time series to avoid + inconsistencies. + + error_attrs : list of str or None + Array attributes to be operated on with ``error_operation``. Defaults to all array + attributes ending with ``_err``. + + error_operation : function + The function used for error propagation. Defaults to the sum of squares. + + Returns + ------- + ts_new : StingrayTimeseries object + The new time series calculated in ``operation`` + """ + + if self.mjdref != other.mjdref: + warnings.warn("MJDref is different in the two time series") + other = other.change_mjdref(self.mjdref) + + if not np.array_equal(self.gti, other.gti): + warnings.warn( + "The good time intervals in the two time series are different. Data outside the " + "common GTIs will be discarded." + ) + common_gti = cross_two_gtis(self.gti, other.gti) + masked_self = self.apply_gtis(common_gti) + masked_other = other.apply_gtis(common_gti) + return masked_self._operation_with_other_obj( + masked_other, + operation, + operated_attrs=operated_attrs, + error_attrs=error_attrs, + error_operation=error_operation, + ) + + return super()._operation_with_other_obj( + other, + operation, + operated_attrs=operated_attrs, + error_attrs=error_attrs, + error_operation=error_operation, + ) + + def __add__(self, other): + """ + Add the array values of two time series element by element, assuming they + have the same time array. + + This magic method adds two :class:`TimeSeries` objects having the same time + array such that the corresponding array arrays get summed up. + + GTIs are crossed, so that only common intervals are saved. + + Examples + -------- + >>> time = [5, 10, 15] + >>> count1 = [300, 100, 400] + >>> count2 = [600, 1200, 800] + >>> gti1 = [[0, 25]] + >>> gti2 = [[0, 25]] + >>> ts1 = StingrayTimeseries(time, array_attrs=dict(counts=count1), gti=gti1, dt=5) + >>> ts2 = StingrayTimeseries(time, array_attrs=dict(counts=count2), gti=gti2, dt=5) + >>> ts = ts1 + ts2 + >>> assert np.allclose(ts.counts, [ 900, 1300, 1200]) + """ + + return super().__add__(other) + + def __sub__(self, other): + """ + Subtract the counts/flux of one time series from the counts/flux of another + time series element by element, assuming the ``time`` arrays of the time series + match exactly. + + This magic method adds two :class:`StingrayTimeSeries` objects having the same + ``time`` array and subtracts the ``counts`` of one :class:`StingrayTimeseries` with + that of another, while also updating ``countrate``, ``counts_err`` and ``countrate_err`` + correctly. + + GTIs are crossed, so that only common intervals are saved. + + Examples + -------- + >>> time = [10, 20, 30] + >>> count1 = [600, 1200, 800] + >>> count2 = [300, 100, 400] + >>> gti1 = [[0, 35]] + >>> gti2 = [[0, 35]] + >>> ts1 = StingrayTimeseries(time, array_attrs=dict(counts=count1), gti=gti1, dt=10) + >>> ts2 = StingrayTimeseries(time, array_attrs=dict(counts=count2), gti=gti2, dt=10) + >>> ts = ts1 - ts2 + >>> assert np.allclose(ts.counts, [ 300, 1100, 400]) + """ + + return super().__sub__(other) + + def __getitem__(self, index): + """ + Return the corresponding count value at the index or a new :class:`StingrayTimeseries` + object upon slicing. + + This method adds functionality to retrieve the count value at + a particular index. This also can be used for slicing and generating + a new :class:`StingrayTimeseries` object. GTIs are recalculated based on the new light + curve segment + + If the slice object is of kind ``start:stop:step`` and ``dt`` is not 0, GTIs are also + sliced, by crossing with ``zip(time - self.dt /2, time + self.dt / 2)`` + + Parameters + ---------- + index : int or slice instance + Index value of the time array or a slice object. + + Examples + -------- + >>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9] + >>> count = [11, 22, 33, 44, 55, 66, 77, 88, 99] + >>> ts = StingrayTimeseries(time, array_attrs=dict(counts=count), dt=1) + >>> assert np.allclose(ts[2].counts, [33]) + >>> assert np.allclose(ts[:2].counts, [11, 22]) + """ + + new_ts = super().__getitem__(index) + step = 1 + if isinstance(index, slice): + step = assign_value_if_none(index.step, 1) + + dt = self.dt + if np.isscalar(dt): + delta_gti_start = delta_gti_stop = dt * 0.5 + else: + delta_gti_start = new_ts.dt[0] * 0.5 + delta_gti_stop = new_ts.dt[-1] * 0.5 + + new_gti = np.asanyarray( + [[new_ts.time[0] - delta_gti_start, new_ts.time[-1] + delta_gti_stop]] + ) + if step > 1 and delta_gti_start > 0: + new_gt1 = np.array(list(zip(new_ts.time - new_ts.dt / 2, new_ts.time + new_ts.dt / 2))) + new_gti = cross_two_gtis(new_gti, new_gt1) + new_gti = cross_two_gtis(self.gti, new_gti) + + new_ts.gti = new_gti + return new_ts + +
+[docs] + def truncate(self, start=0, stop=None, method="index"): + """ + Truncate a :class:`StingrayTimeseries` object. + + This method takes a ``start`` and a ``stop`` point (either as indices, + or as times in the same unit as those in the ``time`` attribute, and truncates + all bins before ``start`` and after ``stop``, then returns a new + :class:`StingrayTimeseries` object with the truncated time series. + + Parameters + ---------- + start : int, default 0 + Index (or time stamp) of the starting point of the truncation. If no value is set + for the start point, then all points from the first element in the ``time`` array + are taken into account. + + stop : int, default ``None`` + Index (or time stamp) of the ending point (exclusive) of the truncation. If no + value of stop is set, then points including the last point in + the counts array are taken in count. + + method : {``index`` | ``time``}, optional, default ``index`` + Type of the start and stop values. If set to ``index`` then + the values are treated as indices of the counts array, or + if set to ``time``, the values are treated as actual time values. + + Returns + ------- + ts_new: :class:`StingrayTimeseries` object + The :class:`StingrayTimeseries` object with truncated time and arrays. + + Examples + -------- + >>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9] + >>> count = [10, 20, 30, 40, 50, 60, 70, 80, 90] + >>> ts = StingrayTimeseries(time, array_attrs={"counts": count}, dt=1) + >>> ts_new = ts.truncate(start=2, stop=8) + >>> assert np.allclose(ts_new.counts, [30, 40, 50, 60, 70, 80]) + >>> assert np.allclose(ts_new.time, [3, 4, 5, 6, 7, 8]) + >>> # Truncation can also be done by time values + >>> ts_new = ts.truncate(start=6, method='time') + >>> assert np.allclose(ts_new.time, [6, 7, 8, 9]) + >>> assert np.allclose(ts_new.counts, [60, 70, 80, 90]) + """ + + if not isinstance(method, str): + raise TypeError("The method keyword argument is not a string !") + + if method.lower() not in ["index", "time"]: + raise ValueError("Unknown method type " + method + ".") + + if method.lower() == "index": + new_ts = self._truncate_by_index(start, stop) + else: + new_ts = self._truncate_by_time(start, stop) + new_ts.tstart = new_ts.gti[0, 0] + new_ts.tseg = new_ts.gti[-1, 1] - new_ts.gti[0, 0] + return new_ts
+ + + def _truncate_by_index(self, start, stop): + """Private method for truncation using index values.""" + + new_ts = self.apply_mask(slice(start, stop)) + + dtstart = dtstop = new_ts.dt + if isinstance(self.dt, Iterable): + dtstart = self.dt[0] + dtstop = self.dt[-1] + + gti = cross_two_gtis( + self.gti, + np.asanyarray([[new_ts.time[0] - 0.5 * dtstart, new_ts.time[-1] + 0.5 * dtstop]]), + ) + + new_ts.gti = gti + + return new_ts + + def _truncate_by_time(self, start, stop): + """Helper method for truncation using time values. + + Parameters + ---------- + start : float + start time for new time series; all time bins before this time will be discarded + + stop : float + stop time for new time series; all time bins after this point will be discarded + + Returns + ------- + new_ts : StingrayTimeseries + A new :class:`StingrayTimeseries` object with the truncated time bins + + """ + + if stop is not None: + if start > stop: + raise ValueError("start time must be less than stop time!") + + if not start == 0: + start = self.time.searchsorted(start) + + if stop is not None: + stop = self.time.searchsorted(stop) + + return self._truncate_by_index(start, stop) + +
+[docs] + def concatenate(self, other, check_gti=True): + """ + Concatenate two :class:`StingrayTimeseries` objects. + + This method concatenates two or more :class:`StingrayTimeseries` objects along the time + axis. GTIs are recalculated by merging all the GTIs together. GTIs should not overlap at + any point. + + Parameters + ---------- + other : :class:`StingrayTimeseries` object or list of :class:`StingrayTimeseries` objects + A second time series object, or a list of objects to be concatenated + + Other parameters + ---------------- + check_gti : bool + Check if the GTIs are overlapping or not. Default: True + If this is True and GTIs overlap, an error is raised. + """ + + if check_gti: + treatment = "append" + else: + treatment = "none" + new_ts = self._join_timeseries(other, strategy=treatment) + return new_ts
+ + + def _join_timeseries(self, others, strategy="intersection", ignore_meta=[]): + """Helper method to join two or more :class:`StingrayTimeseries` objects. + + This is a helper method that can be called by other user-facing methods, such as + :class:`StingrayTimeseries().join()`. + + Standard attributes such as ``pi`` and ``energy`` remain ``None`` if they are ``None`` + in both. Otherwise, ``np.nan`` is used as a default value for the missing values. + Arbitrary array attributes are created and joined using the same convention. + + Multiple checks are done on the joined time series. If the time array of the series + being joined is empty, it is ignored (and a copy of the original time series is returned + instead). If the time resolution is different, the final time series will associate + different time resolutions to different time bins. + If the MJDREF is different (including being 0), the time reference will be changed to + the one of the first time series. An empty time series will be ignored. + + Parameters + ---------- + other : :class:`StingrayTimeseries` or class:`list` of :class:`StingrayTimeseries` + The other :class:`StingrayTimeseries` object which is supposed to be joined with. + If ``other`` is a list, it is assumed to be a list of :class:`StingrayTimeseries` + and they are all joined, one by one. + + Other parameters + ---------------- + strategy : {"intersection", "union", "append", "infer", "none"} + Method to use to merge the GTIs. If "intersection", the GTIs are merged + using the intersection of the GTIs. If "union", the GTIs are merged + using the union of the GTIs. If "none", a single GTI with the minimum and + the maximum time stamps of all GTIs is returned. If "infer", the strategy + is decided based on the GTIs. If there are no overlaps, "union" is used, + otherwise "intersection" is used. If "append", the GTIs are simply appended + but they must be mutually exclusive. + + Returns + ------- + `ts_new` : :class:`StingrayTimeseries` object + The resulting :class:`StingrayTimeseries` object. + """ + + new_ts = type(self)() + + if not ( + isinstance(others, Iterable) + and not isinstance(others, str) + and not isinstance(others, StingrayObject) + ): + others = [others] + else: + others = others + + # First of all, check if there are empty objects + for obj in others: + if not isinstance(obj, type(self)): + raise TypeError( + f"{type(self)} objects can only be merged with other {type(self)} objects." + ) + if getattr(obj, "time", None) is None or np.size(obj.time) == 0: + warnings.warn("One of the time series you are joining is empty.") + others.remove(obj) + + if len(others) == 0: + return copy.deepcopy(self) + + for i, other in enumerate(others): + # Tolerance for MJDREF:1 microsecond + if not np.isclose(self.mjdref, other.mjdref, atol=1e-6 / 86400): + warnings.warn("Attribute mjdref is different in the time series being merged.") + others[i] = other.change_mjdref(self.mjdref) + + all_objs = [self] + others + + # Check if none of the GTIs was already initialized. + all_gti = [obj._gti for obj in all_objs if obj._gti is not None] + + if len(all_gti) == 0 or strategy == "none": + new_gti = None + else: + # For this, initialize the GTIs + new_gti = merge_gtis([obj.gti for obj in all_objs], strategy=strategy) + + all_time_arrays = [obj.time for obj in all_objs if obj.time is not None] + + new_ts.time = np.concatenate(all_time_arrays) + order = np.argsort(new_ts.time) + new_ts.time = new_ts.time[order] + + new_ts.gti = new_gti + + dts = list(set([getattr(obj, "dt", None) for obj in all_objs])) + if len(dts) != 1: + warnings.warn("The time resolution is different. Transforming in array") + + new_dt = np.concatenate([np.zeros_like(obj.time) + obj.dt for obj in all_objs]) + new_ts.dt = new_dt[order] + else: + new_ts.dt = dts[0] + + def _get_set_from_many_lists(lists): + """Make a single set out of many lists.""" + all_vals = [] + for ls in lists: + all_vals += ls + return set(all_vals) + + def _get_all_array_attrs(objs): + """Get all array attributes from the time series being merged. Do not include time.""" + return _get_set_from_many_lists( + [obj.array_attrs() + obj.internal_array_attrs() for obj in objs] + ) + + for attr in _get_all_array_attrs(all_objs): + # if it's here, it means that it's an array attr in at least one object. + # So, everywhere it's None, it needs to be set to 0s of the same length as time + new_attr_values = [] + for obj in all_objs: + if getattr(obj, attr, None) is None: + warnings.warn( + f"The {attr} array is empty in one of the time series being merged. " + "Setting it to NaN for the affected events" + ) + new_attr_values.append(np.zeros_like(obj.time) + np.nan) + else: + new_attr_values.append(getattr(obj, attr)) + + new_attr = np.concatenate(new_attr_values)[order] + setattr(new_ts, attr, new_attr) + + all_meta_attrs = _get_set_from_many_lists([obj.meta_attrs() for obj in all_objs]) + # The attributes being treated separately are removed from the standard treatment + # When energy, pi etc. are None, they might appear in the meta_attrs, so we + # also add them to the list of attributes to be removed if present. + to_remove = ["gti", "dt"] + new_ts.array_attrs() + for attr in to_remove: + if attr in all_meta_attrs: + all_meta_attrs.remove(attr) + + for attr in ignore_meta: + logger.info(f"The {attr} attribute will be removed from the output ") + if attr in all_meta_attrs: + all_meta_attrs.remove(attr) + + def _safe_concatenate(a, b): + if isinstance(a, str) and isinstance(b, str): + return a + "," + b + else: + if isinstance(a, tuple): + return a + (b,) + return (a, b) + + for attr in all_meta_attrs: + self_attr = getattr(self, attr, None) + new_val = self_attr + for other in others: + other_attr = getattr(other, attr, None) + if self_attr != other_attr: + warnings.warn( + "Attribute " + attr + " is different in the time series being merged." + ) + new_val = _safe_concatenate(new_val, other_attr) + setattr(new_ts, attr, new_val) + + new_ts.mjdref = self.mjdref + + return new_ts + +
+[docs] + def join(self, *args, **kwargs): + """ + Join other :class:`StingrayTimeseries` objects with the current one. + + If both are empty, an empty :class:`StingrayTimeseries` is returned. + + Standard attributes such as ``pi`` and ``energy`` remain ``None`` if they are ``None`` + in both. Otherwise, ``np.nan`` is used as a default value for the missing values. + Arbitrary array attributes are created and joined using the same convention. + + Multiple checks are done on the joined time series. If the time array of the series + being joined is empty, it is ignored. If the time resolution is different, the final + time series will have the rougher time resolution. If the MJDREF is different, the time + reference will be changed to the one of the first time series. An empty time series will + be ignored. + + Note: ``join`` is not equivalent to ``concatenate``. ``concatenate`` is used to join + multiple **non-overlapping** time series along the time axis, while ``join`` is more + general, and can be used to join multiple time series with different strategies (see + parameter ``strategy`` below). + + Parameters + ---------- + other : :class:`StingrayTimeseries` or class:`list` of :class:`StingrayTimeseries` + The other :class:`StingrayTimeseries` object which is supposed to be joined with. + If ``other`` is a list, it is assumed to be a list of :class:`StingrayTimeseries` + and they are all joined, one by one. + + Other parameters + ---------------- + strategy : {"intersection", "union", "append", "infer", "none"} + Method to use to merge the GTIs. If "intersection", the GTIs are merged + using the intersection of the GTIs. If "union", the GTIs are merged + using the union of the GTIs. If "none", a single GTI with the minimum and + the maximum time stamps of all GTIs is returned. If "infer", the strategy + is decided based on the GTIs. If there are no overlaps, "union" is used, + otherwise "intersection" is used. If "append", the GTIs are simply appended + but they must be mutually exclusive. + + Returns + ------- + `ts_new` : :class:`StingrayTimeseries` object + The resulting :class:`StingrayTimeseries` object. + """ + return self._join_timeseries(*args, **kwargs)
+ + +
+[docs] + def rebin(self, dt_new=None, f=None, method="sum"): + """ + Rebin the time series to a new time resolution. While the new + resolution need not be an integer multiple of the previous time + resolution, be aware that if it is not, the last bin will be cut + off by the fraction left over by the integer division. + + Parameters + ---------- + dt_new: float + The new time resolution of the time series. Must be larger than + the time resolution of the old time series! + + method: {``sum`` | ``mean`` | ``average``}, optional, default ``sum`` + This keyword argument sets whether the counts in the new bins + should be summed or averaged. + + Other Parameters + ---------------- + f: float + the rebin factor. If specified, it substitutes ``dt_new`` with + ``f*self.dt`` + + Returns + ------- + ts_new: :class:`StingrayTimeseries` object + The :class:`StingrayTimeseries` object with the new, binned time series. + """ + + if f is None and dt_new is None: + raise ValueError("You need to specify at least one between f and " "dt_new") + elif f is not None: + dt_new = f * self.dt + + if np.any(dt_new < np.asanyarray(self.dt)): + raise ValueError("The new time resolution must be larger than the old one!") + + gti_new = [] + + new_ts = type(self)() + + for attr in self.array_attrs() + self.internal_array_attrs(): + bin_time, bin_counts, bin_err = [], [], [] + if attr.endswith("_err"): + continue + e_temp = None + for g in self.gti: + if g[1] - g[0] < dt_new: + continue + else: + # find start and end of GTI segment in data + start_ind = self.time.searchsorted(g[0]) + end_ind = self.time.searchsorted(g[1]) + + t_temp = self.time[start_ind:end_ind] + c_temp = getattr(self, attr)[start_ind:end_ind] + + if hasattr(self, attr + "_err"): + e_temp = getattr(self, attr + "_err")[start_ind:end_ind] + + bin_t, bin_c, bin_e, _ = rebin_data( + t_temp, c_temp, dt_new, yerr=e_temp, method=method, dx=self.dt + ) + + bin_time.extend(bin_t) + bin_counts.extend(bin_c) + bin_err.extend(bin_e) + gti_new.append(g) + if new_ts.time is None: + new_ts.time = np.array(bin_time) + setattr(new_ts, attr, bin_counts) + if e_temp is not None: + setattr(new_ts, attr + "_err", bin_err) + + if len(gti_new) == 0: + raise ValueError("No valid GTIs after rebin.") + new_ts.gti = np.asanyarray(gti_new) + + for attr in self.meta_attrs(): + if attr == "dt": + continue + setattr(new_ts, attr, copy.deepcopy(getattr(self, attr))) + new_ts.dt = dt_new + return new_ts
+ + +
+[docs] + def sort(self, reverse=False, inplace=False): + """ + Sort a ``StingrayTimeseries`` object by time. + + A ``StingrayTimeseries`` can be sorted in either increasing or decreasing order + using this method. The time array gets sorted and the counts array is + changed accordingly. + + Parameters + ---------- + reverse : boolean, default False + If True then the object is sorted in reverse order. + inplace : bool + If True, overwrite the current time series. Otherwise, return a new one. + + Examples + -------- + >>> time = [2, 1, 3] + >>> count = [200, 100, 300] + >>> ts = StingrayTimeseries(time, array_attrs={"counts": count}, dt=1, skip_checks=True) + >>> ts_new = ts.sort() + >>> ts_new.time + array([1, 2, 3]) + >>> assert np.allclose(ts_new.counts, [100, 200, 300]) + + Returns + ------- + ts_new: :class:`StingrayTimeseries` object + The :class:`StingrayTimeseries` object with sorted time and counts + arrays. + """ + + mask = np.argsort(self.time) + if reverse: + mask = mask[::-1] + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def fill_bad_time_intervals( + self, + max_length=None, + attrs_to_randomize=None, + buffer_size=None, + even_sampling=None, + seed=None, + ): + """Fill short bad time intervals with random data. + + .. warning:: + This method is only appropriate for *very short* bad time intervals. The simulated data + are basically white noise, so they are able to alter the statistical properties of + variable data. For very short gaps in the data, the effect of these small + injections of white noise should be negligible. How short depends on the single case, + the user is urged not to use the method as a black box and make simulations to measure + its effect. If you have long bad time intervals, you should use more advanced + techniques, not currently available in Stingray for this use case, such as Gaussian + Processes. In particular, please verify that the values of ``max_length`` and + ``buffer_size`` are adequate to your case. + + To fill the gaps in all but the time points (i.e., flux measures, energies), we take the + ``buffer_size`` (by default, the largest value between 100 and the estimated samples in + a ``max_length``-long gap) valid data points closest to the gap and repeat them randomly + with the same empirical statistical distribution. So, if the `my_fancy_attr` attribute, in + the 100 points of the buffer, has 30 times 10, 10 times 9, and 60 times 11, there will be + *on average* 30% of 10, 60% of 11, and 10% of 9 in the simulated data. + + Times are treated differently depending on the fact that the time series is evenly + sampled or not. If it is not, the times are simulated from a uniform distribution with the + same count rate found in the buffer. Otherwise, times just follow the same grid used + inside GTIs. Using the evenly sampled or not is decided based on the ``even_sampling`` + parameter. If left to ``None``, the time series is considered evenly sampled if + ``self.dt`` is greater than zero and the median separation between subsequent times is + within 1% of the time resolution. + + Other Parameters + ---------------- + max_length : float + Maximum length of a bad time interval to be filled. If None, the criterion is bad + time intervals shorter than 1/100th of the longest good time interval. + attrs_to_randomize : list of str, default None + List of array_attrs to randomize. ``If None``, all array_attrs are randomized. + It should not include ``time`` and ``_mask``, which are treated separately. + buffer_size : int, default 100 + Number of good data points to use to calculate the means and variance the random data + on each side of the bad time interval + even_sampling : bool, default None + Force the treatment of the data as evenly sampled or not. If None, the data are + considered evenly sampled if ``self.dt`` is larger than zero and the median + separation between subsequent times is within 1% of ``self.dt``. + seed : int, default None + Random seed to use for the simulation. If None, a random seed is generated. + + """ + + rs = get_random_state(seed) + + if attrs_to_randomize is None: + attrs_to_randomize = self.array_attrs() + self.internal_array_attrs() + for attr in ["time", "_mask"]: + if attr in attrs_to_randomize: + attrs_to_randomize.remove(attr) + + attrs_to_leave_alone = [ + a + for a in self.array_attrs() + self.internal_array_attrs() + if a not in attrs_to_randomize + ] + + if max_length is None: + max_length = np.max(self.gti[:, 1] - self.gti[:, 0]) / 100 + + btis = get_btis(self.gti, self.time[0], self.time[-1]) + if len(btis) == 0: + logger.info("No bad time intervals to fill") + return copy.deepcopy(self) + filtered_times = self.time[self.mask] + + new_times = [filtered_times.copy()] + new_attrs = {} + mean_data_separation = np.median(np.diff(filtered_times)) + if even_sampling is None: + # The time series is considered evenly sampled if the median separation between + # subsequent times is within 1% of the time resolution + even_sampling = False + if self.dt > 0 and np.isclose(mean_data_separation, self.dt, rtol=0.01): + even_sampling = True + logger.info(f"Data are {'not' if not even_sampling else ''} evenly sampled") + + if even_sampling: + est_samples_in_gap = int(max_length / self.dt) + else: + est_samples_in_gap = int(max_length / mean_data_separation) + + if buffer_size is None: + buffer_size = max(100, est_samples_in_gap) + + added_gtis = [] + + total_filled_time = 0 + for bti in btis: + length = bti[1] - bti[0] + if length > max_length: + continue + logger.info(f"Filling bad time interval {bti} ({length:.4f} s)") + epsilon = 1e-5 * length + added_gtis.append([bti[0] - epsilon, bti[1] + epsilon]) + filt_low_t, filt_low_idx = find_nearest(filtered_times, bti[0]) + filt_hig_t, filt_hig_idx = find_nearest(filtered_times, bti[1], side="right") + if even_sampling: + local_new_times = np.arange(bti[0] + self.dt / 2, bti[1], self.dt) + nevents = local_new_times.size + else: + low_time_arr = filtered_times[max(filt_low_idx - buffer_size, 0) : filt_low_idx] + low_time_arr = low_time_arr[low_time_arr > bti[0] - buffer_size] + high_time_arr = filtered_times[filt_hig_idx : buffer_size + filt_hig_idx] + high_time_arr = high_time_arr[high_time_arr < bti[1] + buffer_size] + + if len(low_time_arr) > 0 and (filt_low_t - low_time_arr[0]) > 0: + ctrate_low = np.count_nonzero(low_time_arr) / (filt_low_t - low_time_arr[0]) + else: + ctrate_low = np.nan + if len(high_time_arr) > 0 and (high_time_arr[-1] - filt_hig_t) > 0: + ctrate_high = np.count_nonzero(high_time_arr) / (high_time_arr[-1] - filt_hig_t) + else: + ctrate_high = np.nan + + if not np.isfinite(ctrate_low) and not np.isfinite(ctrate_high): + warnings.warn( + f"No valid data around to simulate the time series in interval " + f"{bti[0]:g}-{bti[1]:g}. Skipping. Please check that the buffer size is " + f"adequate." + ) + continue + ctrate = np.nanmean([ctrate_low, ctrate_high]) + nevents = rs.poisson(ctrate * (bti[1] - bti[0])) + local_new_times = rs.uniform(bti[0], bti[1], nevents) + new_times.append(local_new_times) + + for attr in attrs_to_randomize: + low_arr = getattr(self, attr)[max(buffer_size - filt_low_idx, 0) : filt_low_idx] + high_arr = getattr(self, attr)[filt_hig_idx : buffer_size + filt_hig_idx] + if attr not in new_attrs: + new_attrs[attr] = [getattr(self, attr)[self.mask]] + new_attrs[attr].append(rs.choice(np.concatenate([low_arr, high_arr]), nevents)) + for attr in attrs_to_leave_alone: + if attr not in new_attrs: + new_attrs[attr] = [getattr(self, attr)[self.mask]] + if attr == "_mask": + new_attrs[attr].append(np.ones(nevents, dtype=bool)) + else: + new_attrs[attr].append(np.zeros(nevents) + np.nan) + total_filled_time += length + + logger.info(f"A total of {total_filled_time} s of data were simulated") + + new_gtis = join_gtis(self.gti, added_gtis) + new_times = np.concatenate(new_times) + order = np.argsort(new_times) + new_obj = type(self)() + new_obj.time = new_times[order] + + for attr in self.meta_attrs(): + setattr(new_obj, attr, getattr(self, attr)) + + for attr, values in new_attrs.items(): + setattr(new_obj, attr, np.concatenate(values)[order]) + new_obj.gti = new_gtis + return new_obj
+ + +
+[docs] + def plot( + self, + attr, + witherrors=False, + labels=None, + ax=None, + title=None, + marker="-", + save=False, + filename=None, + plot_btis=True, + axis_limits=None, + ): + """ + Plot the time series using ``matplotlib``. + + Plot the time series object on a graph ``self.time`` on x-axis and + ``self.counts`` on y-axis with ``self.counts_err`` optionally + as error bars. + + Parameters + ---------- + attr: str + Attribute to plot. + + Other parameters + ---------------- + witherrors: boolean, default False + Whether to plot the StingrayTimeseries with errorbars or not + labels : iterable, default ``None`` + A list or tuple with ``xlabel`` and ``ylabel`` as strings. E.g. + if the attribute is ``'counts'``, the list of labels + could be ``['Time (s)', 'Counts (s^-1)']`` + ax : ``matplotlib.pyplot.axis`` object + Axis to be used for plotting. Defaults to creating a new one. + axis_limits : list, tuple, string, default ``None`` + Parameter to set axis properties of the ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for the``matplotlib.pyplot.axis()`` method. + title : str, default ``None`` + The title of the plot. + marker : str, default '-' + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + save : boolean, optional, default ``False`` + If ``True``, save the figure with specified filename. + filename : str + File name of the image to save. Depends on the boolean ``save``. + plot_btis : bool + Plot the bad time intervals as red areas on the plot + """ + import matplotlib.pyplot as plt + + if ax is None: + plt.figure(attr) + ax = plt.gca() + + valid_labels = (isinstance(labels, Iterable) and not isinstance(labels, str)) and len( + labels + ) == 2 + if labels is not None and not valid_labels: + warnings.warn("``labels`` must be an iterable with two labels for x and y axes.") + + if labels is None or not valid_labels: + labels = ["Time (s)"] + [attr] + + xlabel = labels[0] + ylabel = labels[1] + # Default values for labels + + ax.plot(self.time, getattr(self, attr), marker, ds="steps-mid", label=attr, zorder=10) + + if witherrors and attr + "_err" in self.array_attrs(): + ax.errorbar( + self.time, + getattr(self, attr), + yerr=getattr(self, attr + "_err"), + fmt="o", + zorder=10, + ) + + ax.set_ylabel(ylabel) + ax.set_xlabel(xlabel) + + if axis_limits is not None: + ax.set_xlim(axis_limits[0], axis_limits[1]) + ax.set_ylim(axis_limits[2], axis_limits[3]) + if title is not None: + ax.set_title(title) + + if save: + if filename is None: + ax.figure.savefig("out.png") + else: + ax.figure.savefig(filename) + + if plot_btis and self.gti is not None and len(self.gti) > 1: + tstart = min(self.time[0] - self.dt / 2, self.gti[0, 0]) + tend = max(self.time[-1] + self.dt / 2, self.gti[-1, 1]) + btis = get_btis(self.gti, tstart, tend) + for bti in btis: + plt.axvspan( + bti[0], + bti[1], + alpha=0.5, + facecolor="r", + zorder=1, + edgecolor="none", + ) + return ax
+ + +
+[docs] + def estimate_segment_size(self, min_counts=None, min_samples=None, even_sampling=None): + """Estimate a reasonable segment length for segment-by-segment analysis. + + The user has to specify a criterion based on a minimum number of counts (if + the time series has a ``counts`` attribute) or a minimum number of time samples. + At least one between ``min_counts`` and ``min_samples`` must be specified. + In the special case of a time series with ``dt=0`` (event list-like, where each time + stamp correspond to a single count), the two definitions are equivalent. + + Other Parameters + ---------------- + min_counts : int + Minimum number of counts for each chunk. Optional (but needs ``min_samples`` + if left unspecified). Only makes sense if the series has a ``counts`` attribute and + it is evenly sampled. + min_samples : int + Minimum number of time bins. Optional (but needs ``min_counts`` if left unspecified). + even_sampling : bool + Force the treatment of the data as evenly sampled or not. If None, the data are + considered evenly sampled if ``self.dt`` is larger than zero and the median + separation between subsequent times is within 1% of ``self.dt``. + + Returns + ------- + segment_size : float + The length of the light curve chunks that satisfies the conditions + + Examples + -------- + >>> import numpy as np + >>> time = np.arange(150) + >>> counts = np.zeros_like(time) + 3 + >>> ts = StingrayTimeseries(time, counts=counts, dt=1) + >>> assert np.isclose(ts.estimate_segment_size(min_counts=10, min_samples=3), 4.0) + >>> assert np.isclose(ts.estimate_segment_size(min_counts=10, min_samples=5), 5.0) + >>> counts[2:4] = 1 + >>> ts = StingrayTimeseries(time, counts=counts, dt=1) + >>> assert np.isclose(ts.estimate_segment_size(min_counts=3, min_samples=1), 3.0) + >>> # A slightly more complex example + >>> dt=0.2 + >>> time = np.arange(0, 1000, dt) + >>> counts = np.random.poisson(100, size=len(time)) + >>> ts = StingrayTimeseries(time, counts=counts, dt=dt) + >>> assert np.isclose(ts.estimate_segment_size(100, 2), 0.4) + >>> min_total_bins = 40 + >>> assert np.isclose(ts.estimate_segment_size(100, 40), 8.0) + """ + if min_counts is None and min_samples is None: + raise ValueError("You have to specify at least one of min_counts or min_samples") + + mean_data_separation = np.median(np.diff(self.time)) + + if even_sampling is None: + # The time series is considered evenly sampled if the median separation between + # subsequent times is within 1% of the time resolution + even_sampling = False + if ( + self.dt is not None + and self.dt > 0 + and np.isclose(mean_data_separation, self.dt, rtol=0.01) + ): + even_sampling = True + logger.info(f"Data are {'not' if not even_sampling else ''} evenly sampled") + + if min_counts is None: + if even_sampling and hasattr(self, "counts"): + min_counts = 0 + else: + min_counts = min_samples + + mean_ctrate = _ts_sum(self) / self.exposure + + rough_estimate = np.ceil(min_counts / mean_ctrate) + + # If data are evenly sampled, even sampling make the segment an integer multiple of dt. + # Otherwise, just use steps of 1 second. + if even_sampling: + step = self.dt + else: + step = 1.0 + + rough_estimate = np.ceil(min_counts / mean_ctrate / step) * step + + segment_size = np.max([rough_estimate, min_samples * step]) + + keep_searching = True + + while keep_searching: + start_times, stop_times, results = self.analyze_segments(_ts_sum, segment_size) + mincounts = np.min(results) + if mincounts >= min_counts: + keep_searching = False + else: + segment_size += step + + return segment_size
+ + +
+[docs] + def analyze_segments(self, func, segment_size, fraction_step=1, **kwargs): + """Analyze segments of the light curve with any function. + + Intervals with less than one data point are skipped. + + Parameters + ---------- + func : function + Function accepting a :class:`StingrayTimeseries` object as single argument, plus + possible additional keyword arguments, and returning a number or a + tuple - e.g., ``(result, error)`` where both ``result`` and ``error`` are + numbers. + segment_size : float + Length in seconds of the light curve segments. If None, the full GTIs are considered + instead as segments. + + Other parameters + ---------------- + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving window), + this indicates the ratio between step step and ``segment_size`` (e.g. + 0.5 means that the window shifts of half ``segment_size``) + kwargs : keyword arguments + These additional keyword arguments, if present, they will be passed + to ``func`` + + Returns + ------- + start_times : array + Lower time boundaries of all time segments. + stop_times : array + upper time boundaries of all segments. + result : list of N elements + The result of ``func`` for each segment of the light curve. If the function + returns multiple outputs, they are returned as a list of arrays. + If a given interval has not enough data for a calculation, ``None`` is returned. + + Examples + -------- + >>> import numpy as np + >>> time = np.arange(0, 10, 0.1) + >>> counts = np.zeros_like(time) + 10 + >>> ts = StingrayTimeseries(time, counts=counts, dt=0.1) + >>> # Define a function that calculates the mean + >>> mean_func = lambda ts: np.mean(ts.counts) + >>> # Calculate the mean in segments of 5 seconds + >>> start, stop, res = ts.analyze_segments(mean_func, 5) + >>> len(res) == 2 + True + >>> np.allclose(res, 10) + True + """ + + if segment_size is None: + start_times = self.gti[:, 0] + stop_times = self.gti[:, 1] + start = np.searchsorted(self.time, start_times) + stop = np.searchsorted(self.time, stop_times) + elif self.dt > 0: + start, stop = bin_intervals_from_gtis( + self.gti, segment_size, self.time, fraction_step=fraction_step, dt=self.dt + ) + start_times = self.time[start] - 0.5 * self.dt + # Remember that stop is one element above the last element, because + # it's defined to be used in intervals start:stop + stop_times = self.time[stop - 1] + self.dt * 1.5 + else: + start_times, stop_times = time_intervals_from_gtis( + self.gti, segment_size, fraction_step=fraction_step + ) + start = np.searchsorted(self.time, start_times) + stop = np.searchsorted(self.time, stop_times) + + results = [] + + n_outs = 1 + for i, (st, sp, tst, tsp) in enumerate(zip(start, stop, start_times, stop_times)): + if sp - st <= 1: + warnings.warn( + f"Segment {i} ({tst}--{tsp}) has one data point or less. Skipping it " + ) + + continue + lc_filt = self[st:sp] + lc_filt.gti = np.asanyarray([[tst, tsp]]) + + res = func(lc_filt, **kwargs) + results.append(res) + if isinstance(res, Iterable) and not isinstance(res, str): + n_outs = len(res) + + # If the function returns multiple outputs, we need to separate them + + if n_outs > 1: + outs = [[] for _ in range(n_outs)] + for res in results: + for i in range(n_outs): + outs[i].append(res[i]) + results = outs + + # Try to transform into a (possibly multi-dimensional) numpy array + try: + results = np.array(results) + except ValueError: # pragma: no cover + pass + + return start_times, stop_times, results
+ + +
+[docs] + def analyze_by_gti(self, func, fraction_step=1, **kwargs): + """Analyze the light curve with any function, on a GTI-by-GTI base. + + Parameters + ---------- + func : function + Function accepting a :class:`StingrayTimeseries` object as single argument, plus + possible additional keyword arguments, and returning a number or a + tuple - e.g., ``(result, error)`` where both ``result`` and ``error`` are + numbers. + + Other parameters + ---------------- + fraction_step : float + By default, segments do not overlap (``fraction_step`` = 1). If ``fraction_step`` < 1, + then the start points of consecutive segments are ``fraction_step * segment_size`` + apart, and consecutive segments overlap. For example, for ``fraction_step`` = 0.5, + the window shifts one half of ``segment_size``) + kwargs : keyword arguments + These additional keyword arguments, if present, they will be passed + to ``func`` + + Returns + ------- + start_times : array + Lower time boundaries of all time segments. + stop_times : array + upper time boundaries of all segments. + result : array of N elements + The result of ``func`` for each segment of the light curve + """ + return self.analyze_segments(func, segment_size=None, fraction_step=fraction_step, **kwargs)
+
+ + + +def interpret_times(time: TTime, mjdref: float = 0) -> tuple[npt.ArrayLike, float]: + """Understand the format of input times, and return seconds from MJDREF + + Parameters + ---------- + time : class:`astropy.Time`, class:`time.Time`, class:`astropy.TimeDelta`, class:`astropy.Quantity`, class:`np.array` + Input times. + + Other Parameters + ---------------- + mjdref : float + Input MJD reference of the times. Optional. + + Returns + ------- + time_s : class:`np.array` + Times, in seconds from MJDREF + mjdref : float + MJDREF. If the input time is a `time.Time` object and the input mjdref + is 0, it will be defined as the MJD of the input time. + + Examples + -------- + >>> import astropy.units as u + >>> newt, mjdref = interpret_times(None) + >>> assert newt is None + >>> time = Time(57483, format='mjd') + >>> newt, mjdref = interpret_times(time) + >>> assert newt == 0 + >>> assert mjdref == 57483 + >>> time = Time([57483], format='mjd') + >>> newt, mjdref = interpret_times(time) + >>> assert np.allclose(newt, 0) + >>> assert mjdref == 57483 + >>> time = TimeDelta([3, 4, 5] * u.s) + >>> newt, mjdref = interpret_times(time) + >>> assert np.allclose(newt, [3, 4, 5]) + >>> time = np.array([3, 4, 5]) + >>> newt, mjdref = interpret_times(time, mjdref=45000) + >>> assert np.allclose(newt, [3, 4, 5]) + >>> assert mjdref == 45000 + >>> time = np.array([3, 4, 5] * u.s) + >>> newt, mjdref = interpret_times(time, mjdref=45000) + >>> assert np.allclose(newt, [3, 4, 5]) + >>> assert mjdref == 45000 + >>> newt, mjdref = interpret_times(1, mjdref=45000) + >>> assert newt == 1 + >>> newt, mjdref = interpret_times(list, mjdref=45000) + Traceback (most recent call last): + ... + ValueError: Unknown time format: ... + >>> newt, mjdref = interpret_times("guadfkljfd", mjdref=45000) + Traceback (most recent call last): + ... + ValueError: Unknown time format: ... + """ + if time is None: + return None, mjdref + + if isinstance(time, TimeDelta): + out_times = time.to("s").value + return out_times, mjdref + + if isinstance(time, Time): + mjds = time.mjd + if mjdref == 0: + if np.all(mjds > 10000): + if isinstance(mjds, Iterable): + mjdref = mjds[0] + else: + mjdref = mjds + + out_times = (mjds - mjdref) * 86400 + return out_times, mjdref + + if isinstance(time, Quantity): + out_times = time.to("s").value + return out_times, mjdref + + if isinstance(time, (tuple, list, np.ndarray)): + return time, mjdref + + if not isinstance(time, Iterable): + try: + float(time) + return time, mjdref + except (ValueError, TypeError): + pass + + raise ValueError(f"Unknown time format: {type(time)}") + + +def reduce_precision_if_extended( + x, probe_types=["float128", "float96", "float80", "longdouble"], destination=float +): + """Reduce a number to a standard float if extended precision. + + Ignore all non-float types. + + Parameters + ---------- + x : float + The number to be reduced + + Returns + ------- + x_red : same type of input + The input, only reduce to ``float`` precision if ``np.float128`` + + Examples + -------- + >>> x = 1.0 + >>> val = reduce_precision_if_extended(x, probe_types=["float64"]) + >>> assert val is x + >>> x = "1wrt" + >>> assert reduce_precision_if_extended(x, probe_types=["float64"]) is x + >>> x = np.asanyarray(1.0).astype(int) + >>> val = reduce_precision_if_extended(x, probe_types=["float64"]) + >>> assert val is x + >>> x = np.asanyarray([1.0, 2]).astype(int) + >>> val = reduce_precision_if_extended(x, probe_types=["float64"]) + >>> assert val is x + >>> x = np.asanyarray([1.0]).astype(int) + >>> val = reduce_precision_if_extended(x, probe_types=["float64"]) + >>> assert val is x + >>> x = np.asanyarray(1.0).astype(np.float64) + >>> reduce_precision_if_extended(x, probe_types=["float64"], destination=np.float32) is x + False + >>> x = np.asanyarray([1.0]).astype(np.float64) + >>> reduce_precision_if_extended(x, probe_types=["float64"], destination=np.float32) is x + False + """ + + def obj2sctype(x): + """Convert an object to a numpy scalar type.""" + if hasattr(np, "obj2sctype"): + return np.obj2sctype(x) + + if isinstance(x, str): + return "str" + + if isinstance(x, Iterable) and np.size(x) > 1: + return obj2sctype(x[0]) + + if "numpy" not in str(type(x)): + return "None" + + return x.dtype.type + # return np.dtype(x).type + + if any([t in str(obj2sctype(x)) for t in probe_types]): + x_ret = x.astype(destination) + return x_ret + return x +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/bispectrum.html b/_modules/stingray/bispectrum.html new file mode 100644 index 000000000..6abd43f42 --- /dev/null +++ b/_modules/stingray/bispectrum.html @@ -0,0 +1,559 @@ + + + + + + + stingray.bispectrum — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.bispectrum

+import numpy as np
+from scipy.linalg import toeplitz
+import warnings
+import matplotlib.pyplot as plt
+
+from scipy.linalg import hankel
+
+from stingray import lightcurve
+import stingray.utils as utils
+from stingray.utils import fftshift, fft2, ifftshift, fft
+
+__all__ = ["Bispectrum"]
+
+
+
+[docs] +class Bispectrum(object): + """Makes a :class:`Bispectrum` object from a :class:`stingray.Lightcurve`. + + :class:`Bispectrum` is a higher order time series analysis method and is calculated by + indirect method as Fourier transform of triple auto-correlation function also called as + 3rd order cumulant. + + Parameters + ---------- + lc : :class:`stingray.Lightcurve` object + The light curve data for bispectrum calculation. + + maxlag : int, optional, default ``None`` + Maximum lag on both positive and negative sides of + 3rd order cumulant (Similar to lags in correlation). + if ``None``, max lag is set to one-half of length of light curve. + + window : {``uniform``, ``parzen``, ``hamming``, ``hanning``, ``triangular``, ``welch``, ``blackman``, ``flat-top``}, optional, default 'uniform' + Type of window function to apply to the data. + + scale : {``biased``, ``unbiased``}, optional, default ``biased`` + Flag to decide biased or unbiased normalization for 3rd order cumulant function. + + + Attributes + ---------- + lc : :class:`stingray.Lightcurve` object + The light curve data to compute the :class:`Bispectrum`. + + fs : float + Sampling frequencies + + n : int + Total Number of samples of light curve observations. + + maxlag : int + Maximum lag on both positive and negative sides of + 3rd order cumulant (similar to lags in correlation) + + signal : numpy.ndarray + Row vector of light curve counts for matrix operations + + scale : {``biased``, ``unbiased``} + Flag to decide biased or unbiased normalization for 3rd order cumulant function. + + lags : numpy.ndarray + An array of time lags for which 3rd order cumulant is calculated + + freq : numpy.ndarray + An array of freq values for :class:`Bispectrum`. + + cum3 : numpy.ndarray + A ``maxlag*2+1 x maxlag*2+1`` matrix containing 3rd order cumulant data for different lags. + + bispec : numpy.ndarray + A`` maxlag*2+1 x maxlag*2+1`` matrix containing bispectrum data for different frequencies. + + bispec_mag : numpy.ndarray + Magnitude of the bispectrum + + bispec_phase : numpy.ndarray + Phase of the bispectrum + + References + ---------- + 1) The biphase explained: understanding the asymmetries invcoupled Fourier components of astronomical timeseries + by Thomas J. Maccarone Department of Physics, Box 41051, Science Building, Texas Tech University, Lubbock TX 79409-1051 + School of Physics and Astronomy, University of Southampton, SO16 4ES + + 2) T. S. Rao, M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time + Series Models, Lecture Notes in Statistics, Volume 24, D. Brillinger, S. Fienberg, + J. Gani, J. Hartigan, K. Krickeberg, Editors, Springer-Verlag, New York, NY, 1984. + + 3) Matlab version of bispectrum under following link. + https://www.mathworks.com/matlabcentral/fileexchange/60-bisp3cum + + Examples + -------- + + :: + + >> from stingray.lightcurve import Lightcurve + >> from stingray.bispectrum import Bispectrum + >> lc = Lightcurve([1,2,3,4,5],[2,3,1,1,2]) + >> bs = Bispectrum(lc,maxlag=1) + >> bs.lags + array([-1., 0., 1.]) + >> bs.freq + array([-0.5, 0., 0.5]) + >> bs.cum3 + array([[-0.2976, 0.1024, 0.1408], + [ 0.1024, 0.144, -0.2976], + [ 0.1408, -0.2976, 0.1024]]) + >> bs.bispec_mag + array([[ 1.26336794, 0.0032 , 0.0032 ], + [ 0.0032 , 0.16 , 0.0032 ], + [ 0.0032 , 0.0032 , 1.26336794]]) + >> bs.bispec_phase + array([[ -9.65946229e-01, 2.25347190e-14, 3.46944695e-14], + [ 0.00000000e+00, 3.14159265e+00, 0.00000000e+00], + [ -3.46944695e-14, -2.25347190e-14, 9.65946229e-01]]) + """ + + def __init__(self, lc, maxlag=None, window=None, scale="biased"): + # Function call to create Bispectrum Object + self._make_bispetrum(lc, maxlag, window, scale) + + def _make_bispetrum(self, lc, maxlag, window, scale): + """ + Makes a Bispectrum Object with given lighcurve, maxlag and scale. + + Helper method. + """ + + if not isinstance(lc, lightcurve.Lightcurve): + raise TypeError("lc must be a lightcurve.ightcurve object") + + # Available Windows. Used to resolve window paramneter + WINDOWS = [ + "uniform", + "parzen", + "hamming", + "hanning", + "triangular", + "welch", + "blackmann", + "flat-top", + ] + + if window: + if not isinstance(window, str): + raise TypeError("Window must be specified as string!") + window = window.lower() + if window not in WINDOWS: + raise ValueError("Wrong window specified or window function is not available") + + self.lc = lc + self.fs = 1 / lc.dt + self.n = self.lc.n + + if maxlag is None: + # if maxlag is not specified, it is set to half of length of lightcurve + self.maxlag = int(self.lc.n / 2) + else: + if not (isinstance(maxlag, int)): + raise ValueError("maxlag must be an integer") + + # if negative maxlag is entered, convert it to +ve + if maxlag < 0: + self.maxlag = -maxlag + else: + self.maxlag = maxlag + + if isinstance(scale, str) is False: + raise TypeError("scale must be a string") + + if scale.lower() not in ["biased", "unbiased"]: + raise ValueError("scale can only be either 'biased' or 'unbiased'.") + self.scale = scale.lower() + + if window is None: + self.window_name = "No Window" + self.window = None + else: + self.window_name = window + self.window = self._get_window() + + # Other Attributes + self.lags = None + self.cum3 = None + self.freq = None + self.bispec = None + self.bispec_mag = None + self.bispec_phase = None + + # converting to a row vector to apply matrix operations + self.signal = np.reshape(lc, (1, len(self.lc.counts))) + + # Mean subtraction before bispecrum calculation + self.signal = self.signal - np.mean(lc.counts) + + self._cumulant3() + self._normalize_cumulant3() + self._cal_bispec() + + def _get_window(self): + """ + Returns a window function of self.window_name type + """ + N = 2 * self.maxlag + 1 + window_even = utils.create_window(N, self.window_name) + + # 2d even window + window2d = np.array( + [ + window_even, + ] + * N + ) + + ## One-sided window with zero padding + window = np.zeros(N) + window[: self.maxlag + 1] = window_even[self.maxlag :] + window[self.maxlag :] = 0 + + # 2d window function to apply to bispectrum + row = np.concatenate(([window[0]], np.zeros(2 * self.maxlag))) + toep_matrix = toeplitz(window, row) + toep_matrix += np.tril(toep_matrix, -1).transpose() + window = toep_matrix[..., ::-1] * window2d * window2d.transpose() + return window + + def _cumulant3(self): + """ + Calculates the 3rd Order cummulant of the lightcurve. + + Assigns + ------- + self.cum3, + self.lags + """ + # Initialize square cumulant matrix if zeros + cum3_dim = 2 * self.maxlag + 1 + self.cum3 = np.zeros((cum3_dim, cum3_dim)) + + # calculate lags for different values of 3rd order cumulant + lagindex = np.arange(-self.maxlag, self.maxlag + 1) + self.lags = lagindex * self.lc.dt + + # Defines indices for matrices + ind = np.arange((self.n - self.maxlag) - 1, self.n) + ind_t = np.arange(self.maxlag, self.n) + zero_maxlag = np.zeros((1, self.maxlag)) + zero_maxlag_t = zero_maxlag.transpose() + + sig = self.signal.transpose() + + rev_signal = np.array([self.signal[0][::-1]]) + col = np.concatenate((sig[ind], zero_maxlag_t), axis=0) + row = np.concatenate((rev_signal[0][ind_t], zero_maxlag[0]), axis=0) + + # converts row and column into a toeplitz matrix + toep = toeplitz(col, row) + rev_signal = np.repeat(rev_signal, [2 * self.maxlag + 1], axis=0) + + # Calculates Cummulant of 1D signal i.e. Lightcurve counts + self.cum3 = self.cum3 + np.matmul(np.multiply(toep, rev_signal), toep.transpose()) + + def _normalize_cumulant3(self): + """ + Scales (biased or ubiased) the 3rd Order cumulant of the lightcurve . + + Updates + ------- + seff.cum3 + """ + + # Biased scaling of cummulant + if self.scale == "biased": + self.cum3 = self.cum3 / self.n + else: + # unbiased Scaling of cummulant + maxlag1 = self.maxlag + 1 + + # Scaling matrix initialized used to do unbiased normalization of cumulant + scal_matrix = np.zeros((maxlag1, maxlag1), dtype="int64") + + # Calculate scaling matrix for unbiased normalization + for k in range(maxlag1): + maxlag1k = maxlag1 - (k + 1) + scal_matrix[k, k:maxlag1] = np.tile(self.n - maxlag1k, (1, maxlag1k + 1)) + scal_matrix += np.triu(scal_matrix, k=1).transpose() + + maxlag1ind = np.arange(self.maxlag - 1, -1, -1) + lagdiff = self.n - maxlag1 + + # Rows and columns for Toeplitz matrix + col = np.arange(lagdiff, self.n - 1) + col = np.reshape(col, (1, len(col))).transpose() + row = np.arange(lagdiff, (self.n - 2 * self.maxlag) - 1, -1) + row = np.reshape(row, (1, len(row))) + + # Toeplitz matrix + toep_matrix = toeplitz(col, row) + # Matrix used to concatenate with scaling matrix + conc_mat = np.array([scal_matrix[self.maxlag, maxlag1ind]]) + join_matrix = np.concatenate((toep_matrix, conc_mat), axis=0) + scal_matrix = np.concatenate((scal_matrix, join_matrix), axis=1) + co_mat = scal_matrix[maxlag1ind, :] + co_mat = co_mat[:, np.arange(2 * self.maxlag, -1, -1)] + + # Scaling matrix calculated + scal_matrix = np.concatenate((scal_matrix, co_mat), axis=0) + # Set numbers less than 1 to be equal to 1 + scal_matrix[scal_matrix < 1] = 1 + self.cum3 = np.divide(self.cum3, scal_matrix) + + def _cal_bispec(self): + """ + Calculates bispectrum as a fourier transform of 3rd Order Cumulant. + + Attributes + ---------- + self.freq + self.bispec + self.bispec_mag + self.bispec_phase + """ + self.freq = (1 / 2) * self.fs * (self.lags / self.lc.dt) / self.maxlag + + # Apply window if specified otherwise calculate with applying window + if self.window is None: + self.bispec = fftshift(fft2(ifftshift(self.cum3))) + else: + self.bispec = fftshift(fft2(ifftshift(self.cum3 * self.window))) + + self.bispec_mag = np.abs(self.bispec) + self.bispec_phase = np.angle((self.bispec)) + +
+[docs] + def plot_cum3(self, axis=None, save=False, filename=None): + """ + Plot the 3rd order cumulant as function of time lags using ``matplotlib``. + Plot the ``cum3`` attribute on a graph with the ``lags`` attribute on x-axis and y-axis and + ``cum3`` on z-axis + + Parameters + ---------- + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` method. + + save : bool, optionalm, default ``False`` + If ``True``, save the figure with specified filename. + + filename : str + File name and path of the image to save. Depends on the boolean ``save``. + + Returns + ------- + plt : ``matplotlib.pyplot`` object + Reference to plot, call ``show()`` to display it + """ + cont = plt.contourf(self.lags, self.lags, self.cum3, 100, cmap=plt.cm.Spectral_r) + plt.colorbar(cont) + plt.title("3rd Order Cumulant") + plt.xlabel("lags 1") + plt.ylabel("lags 2") + + if axis is not None: + plt.axis(axis) + + if save: + if filename is None: + plt.savefig("bispec_cum3.png") + else: + plt.savefig(filename) + return plt
+ + +
+[docs] + def plot_mag(self, axis=None, save=False, filename=None): + """ + Plot the magnitude of bispectrum as function of freq using ``matplotlib``. + Plot the ``bispec_mag`` attribute on a graph with ``freq`` attribute on the x-axis and y-axis and + the ``bispec_mag`` attribute on the z-axis. + + Parameters + ---------- + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` method. + + save : bool, optional, default ``False`` + If ``True``, save the figure with specified filename and path. + + filename : str + File name and path of the image to save. Depends on the bool ``save``. + + Returns + ------- + plt : ``matplotlib.pyplot`` object + Reference to plot, call ``show()`` to display it + """ + + cont = plt.contourf(self.freq, self.freq, self.bispec_mag, 100, cmap=plt.cm.Spectral_r) + plt.colorbar(cont) + plt.title("Bispectrum Magnitude") + plt.xlabel("freq 1") + plt.ylabel("freq 2") + + if axis is not None: + plt.axis(axis) + + if save: + if filename is None: + plt.savefig("bispec_mag.png") + else: + plt.savefig(filename) + return plt
+ + +
+[docs] + def plot_phase(self, axis=None, save=False, filename=None): + """ + Plot the phase of bispectrum as function of freq using ``matplotlib``. + Plot the ``bispec_phase`` attribute on a graph with ``phase`` attribute on the x-axis and + y-axis and the ``bispec_phase`` attribute on the z-axis. + + Parameters + ---------- + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` function. + + save : bool, optional, default ``False`` + If ``True``, save the figure with specified filename and path. + + filename : str + File name and path of the image to save. Depends on the bool ``save``. + + Returns + ------- + plt : ``matplotlib.pyplot`` object + Reference to plot, call ``show()`` to display it + """ + + cont = plt.contourf(self.freq, self.freq, self.bispec_phase, 100, cmap=plt.cm.Spectral_r) + plt.colorbar(cont) + plt.title("Bispectrum Phase") + plt.xlabel("freq 1") + plt.ylabel("freq 2") + + if axis is not None: + plt.axis(axis) + + # Save figure + if save: + if filename is None: + plt.savefig("bispec_phase.png") + else: + plt.savefig(filename) + return plt
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/covariancespectrum.html b/_modules/stingray/covariancespectrum.html new file mode 100644 index 000000000..dbb6977ff --- /dev/null +++ b/_modules/stingray/covariancespectrum.html @@ -0,0 +1,685 @@ + + + + + + + stingray.covariancespectrum — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.covariancespectrum

+# -*- coding: utf-8 -*-
+
+from collections.abc import Iterable
+
+import numpy as np
+
+from stingray import Lightcurve
+from stingray.events import EventList
+import stingray.utils as utils
+
+__all__ = ["Covariancespectrum", "AveragedCovariancespectrum"]
+
+
+
+[docs] +class Covariancespectrum(object): + """ + Compute a covariance spectrum for the data. The input data can be + either in event data or pre-made light curves. Event data can either + be in the form of a ``numpy.ndarray`` with ``(time stamp, energy)`` pairs or + a :class:`stingray.events.EventList` object. If light curves are formed ahead + of time, then a list of :class:`stingray.Lightcurve` objects should be passed to the + object, ideally one light curve for each band of interest. + + For the case where the data is input as a list of :class:`stingray.Lightcurve` objects, + the reference band(s) should either be + + 1. a single :class:`stingray.Lightcurve` object, + 2. a list of :class:`stingray.Lightcurve` objects with the reference band for each band + of interest pre-made, or + 3. ``None``, in which case reference bands will + formed by combining all light curves *except* for the band of interest. + + In the case of event data, ``band_interest`` and ``ref_band_interest`` can + be (multiple) pairs of energies, and the light curves for the bands of + interest and reference bands will be produced dynamically. + + + Parameters + ---------- + data : {``numpy.ndarray`` | :class:`stingray.events.EventList` object | list of :class:`stingray.Lightcurve` objects} + ``data`` contains the time series data, either in the form of a + 2-D array of ``(time stamp, energy)`` pairs for event data, or as a + list of light curves. + Note : The event list must be in sorted order with respect to the + times of arrivals. + + dt : float + The time resolution of the :class:`stingray.Lightcurve` formed from the energy bin. + Only used if ``data`` is an event list. + + band_interest : {``None``, iterable of tuples} + If ``None``, all possible energy values will be assumed to be of + interest, and a covariance spectrum in the highest resolution + will be produced. + Note: if the input is a list of :class:`stingray.Lightcurve` objects, then the user may + supply their energy values here, for construction of a + reference band. + + ref_band_interest : {``None``, tuple, :class:`stingray.Lightcurve`, list of :class:`stingray.Lightcurve` objects} + Defines the reference band to be used for comparison with the + bands of interest. If ``None``, all bands *except* the band of + interest will be used for each band of interest, respectively. + Alternatively, a tuple can be given for event list data, which will + extract the reference band (always excluding the band of interest), + or one may put in a single :class:`stingray.Lightcurve` object to be used (the same + for each band of interest) or a list of :class:`stingray.Lightcurve` objects, one for + each band of interest. + + std : float or np.array or list of numbers + The term ``std`` is used to calculate the excess variance of a band. + If ``std`` is set to ``None``, default Poisson case is taken and the + std is calculated as ``mean(lc)**0.5``. In the case of a single + float as input, the same is used as the standard deviation which + is also used as the std. And if the std is an iterable of + numbers, their mean is used for the same purpose. + + Attributes + ---------- + unnorm_covar : np.ndarray + An array of arrays with mid point ``band_interest`` and their + covariance. It is the array-form of the dictionary ``energy_covar``. + The covariance values are unnormalized. + + covar : np.ndarray + Normalized covariance spectrum. + + covar_error : np.ndarray + Errors of the normalized covariance spectrum. + + References + ---------- + [1] Wilkinson, T. and Uttley, P. (2009), Accretion disc variability\ + in the hard state of black hole X-ray binaries. Monthly Notices\ + of the Royal Astronomical Society, 397: 666–676.\ + doi: 10.1111/j.1365-2966.2009.15008.x + + Examples + -------- + See the `notebooks repository <https://github.com/StingraySoftware/notebooks>`_ for + detailed notebooks on the code. + + """ + + def __init__(self, data, dt=None, band_interest=None, ref_band_interest=None, std=None): + self.dt = dt + self.std = std + + # check whether data is an EventList object: + if isinstance(data, EventList): + data = np.vstack([data.time, data.energy]).T + + # check whether the data contains a list of Lightcurve objects + if isinstance(data[0], Lightcurve): + self.use_lc = True + self.lcs = data + else: + self.use_lc = False + + # if band_interest is None, extract the energy bins and make an array + # with the lower and upper bounds of the energy bins + if band_interest is None: + if not self.use_lc: + self._create_band_interest(data) + else: + self.band_interest = np.vstack( + [np.arange(len(data)), np.arange(1, len(data) + 1, 1)] + ).T + else: + if np.size(band_interest) < 2: + raise ValueError( + "band_interest must contain at least 2 values " + "(minimum and maximum values for each band) " + "and be a 2D array!" + ) + + self.band_interest = np.atleast_2d(band_interest) + + if self.use_lc is False and not dt: + raise ValueError( + "If the input data is event data, the dt keyword " + "must be set and supply a time resolution for " + "creating light curves!" + ) + + # if we don't have light curves already, make them: + if not self.use_lc: + if not np.all(np.diff(data, axis=0).T[0] >= 0): + utils.simon("The event list must be sorted with respect to " "times of arrivals.") + data = data[data[:, 0].argsort()] + + self.lcs = self._make_lightcurves(data) + + # check whether band of interest contains a Lightcurve object: + if np.size(ref_band_interest) == 1 or isinstance(ref_band_interest, Lightcurve): + if isinstance(ref_band_interest, Lightcurve): + self.ref_band_lcs = ref_band_interest + # ref_band_interest must either be a Lightcurve, or must have + # multiple entries + + elif ref_band_interest is None: + if self.use_lc: + self.ref_band_lcs = self._make_reference_bands_from_lightcurves( + ref_band_interest + ) + else: + self.ref_band_lcs = self._make_reference_bands_from_event_data(data) + else: + raise ValueError( + "ref_band_interest must contain either " + "a Lightcurve object, a list of Lightcurve " + "objects or a tuple of length 2." + ) + else: + # check whether ref_band_interest is a list of light curves + if isinstance(ref_band_interest[0], Lightcurve): + self.ref_band_lcs = ref_band_interest + assert len(ref_band_interest) == len(self.lcs), ( + "The list of " + "reference light " + "curves must have " + "the same length as " + "the list of light curves" + "of interest." + ) + # if not, it must be a tuple, so we're going to make a list of light + # curves + else: + if self.use_lc: + self.ref_band_lcs = self._make_reference_bands_from_lightcurves( + bounds=ref_band_interest + ) + else: + self.ref_band_lcs = self._make_reference_bands_from_event_data(data) + + self._construct_covar() + + def _make_reference_bands_from_event_data(self, data, bounds=None): + """ + Helper method constructing reference bands for each band of interest, and constructing + light curves from these reference bands. This operates only if the data given to + :class:`Covariancespectrum` is event list data (i.e. photon arrival times and energies). + + Parameters + ---------- + data : numpy.ndarray + Array of shape ``(N, 2)``, where N is the number of photons. First column contains the + times of arrivals, second column the corresponding photon energies. + + bounds : iterable + The energy bounds to use for the reference band. Must be of type ``(elow, ehigh)``. + + Returns + ------- + + lc_all: list of :class:`stingray.Lightcurve` objects. + The list of `:class:`stingray.Lightcurve` objects containing all reference + bands, between the values given in ``bounds``. + + """ + + if not bounds: + bounds = [np.min(data[:, 1]), np.max(data[:, 1])] + + if bounds[1] <= np.min(self.band_interest[:, 0]) or bounds[0] >= np.max( + self.band_interest[:, 1] + ): + elow = bounds[0] + ehigh = bounds[1] + + toa = data[np.logical_and(data[:, 1] >= elow, data[:, 1] <= ehigh)] + + lc_all = Lightcurve.make_lightcurve(toa, self.dt, tstart=self.tstart, tseg=self.tseg) + + else: + lc_all = [] + for i, b in enumerate(self.band_interest): + elow = b[0] + ehigh = b[1] + + emask1 = data[np.logical_and(data[:, 1] <= elow, data[:, 1] >= bounds[0])] + + emask2 = data[np.logical_and(data[:, 1] <= bounds[1], data[:, 1] >= ehigh)] + + toa = np.vstack([emask1, emask2]) + lc = Lightcurve.make_lightcurve(toa, self.dt, tstart=self.tstart, tseg=self.tseg) + lc_all.append(lc) + + return lc_all + + def _make_reference_bands_from_lightcurves(self, bounds=None): + """ + Helper class to construct reference bands for all light curves in ``band_interest``, assuming the + data is given to the class :class:`Covariancespectrum` as a (set of) lightcurve(s). Generally + sums up all other light curves within ``bounds`` that are *not* the band of interest. + + Parameters + ---------- + bounds : iterable + The energy bounds to use for the reference band. Must be of type ``(elow, ehigh)``. + + Returns + ------- + lc_all: list of :class:`stingray.Lightcurve` objects. + The list of :class:`stingray.Lightcurve` objects containing all reference bands, + between the values given in ``bounds``. + + """ + + if not bounds: + bounds_idx = [0, len(self.band_interest)] + + else: + low_bound = self.band_interest.searchsorted(bounds[0]) + high_bound = self.band_interest.searchsorted(bounds[1]) + + bounds_idx = [low_bound, high_bound] + + lc_all = [] + for i, b in enumerate(self.band_interest): + # initialize empty counts array + counts = np.zeros_like(self.lcs[0].counts) + for j in range(bounds_idx[0], bounds_idx[1], 1): + if i == j: + continue + else: + counts += self.lcs[j].counts + + # make a combined light curve + lc = Lightcurve(self.lcs[0].time, counts, skip_checks=True) + + # add to list of reference light curves + lc_all.append(lc) + + return lc_all + + def _construct_covar(self): + """ + Helper method to construct the covariance attribute and fill it with values. + """ + + self.avg_covar = False + covar = np.zeros(len(self.lcs)) + covar_err = np.zeros(len(self.lcs)) + xs_var = np.zeros(len(self.lcs)) + + for i in range(len(self.lcs)): + lc = self.lcs[i] + + if np.size(self.ref_band_lcs) == 1 or isinstance(self.ref_band_lcs, Lightcurve): + lc_ref = self.ref_band_lcs + else: + lc_ref = self.ref_band_lcs[i] + + cv = self._compute_covariance(lc, lc_ref) + cv_err = self._calculate_covariance_error(lc, lc_ref) + + covar[i] = cv + covar_err[i] = cv_err + + xs = self._calculate_excess_variance(lc_ref) + if not xs > 0: + utils.simon( + "The excess variance in the reference band is " + "negative. This implies that the reference " + "band was badly chosen. Beware that the " + "covariance spectra will have NaNs!" + ) + + xs_var[i] = xs + + self.unnorm_covar = covar + energy_covar = covar / xs_var**0.5 + + self.covar = energy_covar + + self.covar_error = covar_err + + return + + def _make_lightcurves(self, data): + """ + Create light curves for all bands of interest from ``data``. Takes the information the + ``band_interest`` attribute and event data in ``data``, and produces a list of + :class:`stingray.Lightcurve` objects. + + Parameters + ---------- + data : numpy.ndarray + Array of shape ``(N, 2)``, where ``N`` is the number of photons. First column contains the + times of arrivals, second column the corresponding photon energies. + + Returns + ------- + lc_all : iterable of :class:`stingray.Lightcurve` objects + A list of :class:`stingray.Lightcurve` objects of all bands of interest. + """ + + self.tstart = np.min(data[:, 0]) + self.tend = np.max(data[:, 0]) + + self.tseg = self.tend - self.tstart + + lc_all = [] + + for i, b in enumerate(self.band_interest): + elow = b[0] + ehigh = b[1] + + toa = data[np.logical_and(data[:, 1] >= elow, data[:, 1] <= ehigh)] + + lc = Lightcurve.make_lightcurve(toa, self.dt, tstart=self.tstart, tseg=self.tseg) + lc_all.append(lc) + + return lc_all + + def _create_band_interest(self, data): + """ + If no bands of interest are given, but event data is, create bands of interest for each + discrete energy value in the second column of ``data``. + + Parameters + ---------- + data : numpy.ndarray + Array of shape (N, 2), where N is the number of photons. First column contains the + times of arrivals, second column the corresponding photon energies. + + """ + + unique_energy = np.unique(data[:, 1]) + energ_diff = np.diff(unique_energy) + + energy_low = np.zeros_like(unique_energy) + energy_high = np.zeros_like(unique_energy) + + energy_low[:-1] = unique_energy[:-1] - 0.5 * energ_diff + energy_high[:-1] = unique_energy[:-1] + 0.5 * energ_diff + + energy_low[-1] = unique_energy[-1] - 0.5 * energ_diff[-1] + energy_high[-1] = unique_energy[-1] + 0.5 * energ_diff[-1] + + energy_list = np.vstack([energy_low, energy_high]).T + + self.band_interest = energy_list + + def _calculate_excess_variance(self, lc): + """Calculate excess variance in a band with the standard deviation.""" + std = self._calculate_std(lc) + return np.var(lc) - std**2 + + def _calculate_std(self, lc): + """Return std calculated for the possible types of `std`""" + if self.std is None: + std = np.mean(lc) ** 0.5 + elif isinstance(self.std, Iterable): + std = np.mean(self.std) # Iterable of numbers + else: # Single float number + std = self.std + + return std + + def _compute_covariance(self, lc1, lc2): + """Calculate and return the covariance between two time series.""" + return np.cov(lc1.counts, lc2.counts)[0][1] + + def _calculate_covariance_error(self, lc_x, lc_y): + """Calculate the error of the normalized covariance spectrum.""" + # Excess Variance of reference band + xs_x = self._calculate_excess_variance(lc_x) + # Standard deviation of light curve + err_y = self._calculate_std(lc_y) + # Excess Variance of reference band + xs_y = self._calculate_excess_variance(lc_y) + # Standard deviation of light curve + err_x = self._calculate_std(lc_x) + # Number of time bins in lightcurve + nn = lc_x.n + # Number of segments averaged + if not self.avg_covar: + mm = 1 + else: + mm = self.nbins + + num = xs_x * err_y + xs_y * err_x + err_x * err_y + denom = nn * mm * xs_y + + return (num / denom) ** 0.5
+ + + +
+[docs] +class AveragedCovariancespectrum(Covariancespectrum): + """ + Compute a covariance spectrum for the data, defined in [covar spectrum]_ Equation 15. + + Parameters + ---------- + data : {numpy.ndarray | list of :class:`stingray.Lightcurve` objects} + ``data`` contains the time series data, either in the form of a + 2-D array of ``(time stamp, energy)`` pairs for event data, or as a + list of :class:`stingray.Lightcurve` objects. + Note : The event list must be in sorted order with respect to the + times of arrivals. + + segment_size : float + The length of each segment in the averaged covariance spectrum. + The number of segments will be calculated automatically using the + total length of the data set and the segment_size defined here. + + dt : float + The time resolution of the :class:`stingray.Lightcurve` formed + from the energy bin. Only used if `data` is an event list. + + band_interest : {``None``, iterable of tuples} + If ``None``, all possible energy values will be assumed to be of + interest, and a covariance spectrum in the highest resolution + will be produced. + Note: if the input is a list of :class:`stingray.Lightcurve` objects, + then the user may supply their energy values here, for construction of a + reference band. + + ref_band_interest : {None, tuple, :class:`stingray.Lightcurve`, list of :class:`stingray.Lightcurve` objects} + Defines the reference band to be used for comparison with the + bands of interest. If None, all bands *except* the band of + interest will be used for each band of interest, respectively. + Alternatively, a tuple can be given for event list data, which will + extract the reference band (always excluding the band of interest), + or one may put in a single :class:`stingray.Lightcurve` object to be used (the same + for each band of interest) or a list of :class:`stingray.Lightcurve` objects, one for + each band of interest. + + std : float or np.array or list of numbers + The term ``std`` is used to calculate the excess variance of a band. + If ``std`` is set to ``None``, default Poisson case is taken and the + ``std`` is calculated as ``mean(lc)**0.5``. In the case of a single + float as input, the same is used as the standard deviation which + is also used as the std. And if the std is an iterable of + numbers, their mean is used for the same purpose. + + Attributes + ---------- + unnorm_covar : np.ndarray + An array of arrays with mid point band_interest and their + covariance. It is the array-form of the dictionary ``energy_covar``. + The covariance values are unnormalized. + + covar : np.ndarray + Normalized covariance spectrum. + + covar_error : np.ndarray + Errors of the normalized covariance spectrum. + + References + ---------- + .. [covar spectrum] http://arxiv.org/pdf/1405.6575v2.pdf + """ + + def __init__( + self, data, segment_size, dt=None, band_interest=None, ref_band_interest=None, std=None + ): + self.segment_size = segment_size + + Covariancespectrum.__init__( + self, + data, + dt=dt, + band_interest=band_interest, + ref_band_interest=ref_band_interest, + std=std, + ) + + def _construct_covar(self): + """ + Helper method to construct the covariance attribute and fill it with values. + """ + self.avg_covar = True + + start_time = self.lcs[0].time[0] + + covar = np.zeros(len(self.lcs)) + covar_err = np.zeros(len(self.lcs)) + xs_var = np.zeros(len(self.lcs)) + + for i in range(len(self.lcs)): + lc = self.lcs[i] + + if np.size(self.ref_band_lcs) == 1: + lc_ref = self.ref_band_lcs + else: + lc_ref = self.ref_band_lcs[i] + + tstart = start_time + tend = start_time + self.segment_size + cv = 0.0 + cv_err = 0.0 + xs = 0.0 + + self.nbins = int((tend - tstart) / self.segment_size) + for k in range(self.nbins): + start_ind = lc.time.searchsorted(tstart) + end_ind = lc.time.searchsorted(tend) + + lc_seg = lc.truncate(start=start_ind, stop=end_ind) + lc_ref_seg = lc_ref.truncate(start=start_ind, stop=end_ind) + + cv += self._compute_covariance(lc_seg, lc_ref_seg) + cv_err += self._calculate_covariance_error(lc_seg, lc_ref_seg) + xs += self._calculate_excess_variance(lc_ref_seg) + if not xs > 0: + utils.simon( + "The excess variance in the reference band is " + "negative. This implies that the reference " + "band was badly chosen. Beware that the " + "covariance spectra will have NaNs!" + ) + + tstart += self.segment_size + tend += self.segment_size + + covar[i] = cv / self.nbins + covar_err[i] = cv_err / self.nbins + xs_var[i] = xs / self.nbins + + self.unnorm_covar = covar + energy_covar = covar / xs_var**0.5 + + self.covar = energy_covar + + self.covar_error = covar_err + + return
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/crosscorrelation.html b/_modules/stingray/crosscorrelation.html new file mode 100644 index 000000000..6ed88bce5 --- /dev/null +++ b/_modules/stingray/crosscorrelation.html @@ -0,0 +1,485 @@ + + + + + + + stingray.crosscorrelation — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.crosscorrelation

+import warnings
+import numpy as np
+from scipy import signal
+import matplotlib.pyplot as plt
+from stingray.utils import ifft, fftfreq
+
+from stingray.lightcurve import Lightcurve
+from stingray.crossspectrum import Crossspectrum, AveragedCrossspectrum
+from stingray.exceptions import StingrayError
+import stingray.utils as utils
+
+__all__ = ["CrossCorrelation", "AutoCorrelation"]
+
+
+
+[docs] +class CrossCorrelation(object): + r"""Make a cross-correlation from light curves or a cross spectrum. + + You can also make an empty :class:`Crosscorrelation` object to populate + with your own cross-correlation data. + + Parameters + ---------- + lc1: :class:`stingray.Lightcurve` object, optional, default ``None`` + The first light curve data for correlation calculations. + + lc2: :class:`stingray.Lightcurve` object, optional, default ``None`` + The light curve data for the correlation calculations. + + cross: :class: `stingray.Crossspectrum` object, default ``None`` + The cross spectrum data for the correlation calculations. + + mode: {``full``, ``valid``, ``same``}, optional, default ``same`` + A string indicating the size of the correlation output. + See the relevant ``scipy`` documentation [scipy-docs]_ + for more details. + + norm: {``none``, ``variance``} + if "variance", the cross correlation is normalized so that perfect + correlation gives 1, and perfect anticorrelation gives -1. See + Gaskell \& Peterson 1987, Gardner \& Done 2017 + + Attributes + ---------- + lc1: :class:`stingray.Lightcurve` + The first light curve data for correlation calculations. + + lc2: :class:`stingray.Lightcurve` + The light curve data for the correlation calculations. + + cross: :class: `stingray.Crossspectrum` + The cross spectrum data for the correlation calculations. + + corr: numpy.ndarray + An array of correlation data calculated from two light curves + + time_lags: numpy.ndarray + An array of all possible time lags against which each point in corr is calculated + + dt: float + The time resolution of each light curve (used in ``time_lag`` calculations) + + time_shift: float + Time lag that gives maximum value of correlation between two light curves. + There will be maximum correlation between light curves if one of the light curve + is shifted by ``time_shift``. + + n: int + Number of points in ``self.corr`` (length of cross-correlation data) + + auto: bool + An internal flag to indicate whether this is a cross-correlation or an auto-correlation. + + norm: {``none``, ``variance``} + The normalization specified in input + + References + ---------- + .. [scipy-docs] https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.signal.correlate.html + """ + + def __init__(self, lc1=None, lc2=None, cross=None, mode="same", norm="none"): + self.auto = False + self.norm = norm + if isinstance(mode, str) is False: + raise TypeError("mode must be a string") + + if mode.lower() not in ["full", "valid", "same"]: + raise ValueError("mode must be 'full', 'valid' or 'same'!") + + self.mode = mode.lower() + self.lc1 = None + self.lc2 = None + self.cross = None + + # Populate all attributes by ``None` if user passes no lightcurve data + if lc1 is None or lc2 is None: + if lc1 is not None or lc2 is not None: + raise TypeError("You can't do a cross correlation with just one " "light curve!") + + else: + if cross is None: + # all object input params are ``None`` + self.corr = None + self.time_shift = None + self.time_lags = None + self.dt = None + self.n = None + else: + self._make_cross_corr(cross) + return + else: + self._make_corr(lc1, lc2) + + def _make_cross_corr(self, cross): + """ + Do some checks on the cross spectrum supplied to the method, + and then calculate the time shifts, time lags and cross correlation. + + Parameters + ---------- + cross: :class:`stingray.Crossspectrum` object + The crossspectrum, averaged or not. + + """ + + if not isinstance(cross, Crossspectrum): + if not isinstance(cross, AveragedCrossspectrum): + raise TypeError( + "cross must be a crossspectrum.Crossspectrum \ + or crossspectrum.AveragedCrossspectrum object" + ) + + if self.cross is None: + self.cross = cross + self.dt = 1 / (cross.df * cross.n) + if self.dt is None: + self.dt = 1 / (cross.df * cross.n) + + prelim_corr = abs(ifft(cross.power).real) # keep only the real + self.n = len(prelim_corr) + + # ifft spits out an array that looks like [0,1,...n,-n,...-1] + # where n is the last positive frequency + # correcting for this by putting them in order + + times = fftfreq(self.n, cross.df) + time, corr = np.array(sorted(zip(times, prelim_corr))).T + self.corr = corr + self.time_shift, self.time_lags, self.n = self.cal_timeshift(dt=self.dt) + + def _make_corr(self, lc1, lc2): + """ + Do some checks on the light curves supplied to the method, and then calculate the time + shifts, time lags and cross correlation. + + Parameters + ---------- + lc1::class:`stingray.Lightcurve` object + The first light curve data. + + lc2::class:`stingray.Lightcurve` object + The second light curve data. + + """ + + if not isinstance(lc1, Lightcurve): + raise TypeError("lc1 must be a lightcurve.Lightcurve object") + if not isinstance(lc2, Lightcurve): + raise TypeError("lc2 must be a lightcurve.Lightcurve object") + + if not np.isclose(lc1.dt, lc2.dt): + raise StingrayError("Light curves do not have " "same time binning dt.") + else: + # ignore very small differences in dt neglected by np.isclose() + lc1.dt = lc2.dt + self.dt = lc1.dt + + # self.lc1 and self.lc2 may get assigned values explicitly in which case there is no need to copy data + if self.lc1 is None: + self.lc1 = lc1 + if self.lc2 is None: + self.lc2 = lc2 + + # Subtract means before passing scipy.signal.correlate into correlation + lc1_counts = self.lc1.counts - np.mean(self.lc1.counts) + lc2_counts = self.lc2.counts - np.mean(self.lc2.counts) + + # Calculates cross-correlation of two lightcurves + self.corr = signal.correlate(lc1_counts, lc2_counts, self.mode) + + self.n = np.size(self.corr) + self.time_shift, self.time_lags, self.n = self.cal_timeshift(dt=self.dt) + + # Normalization that makes the maximum correlation equal to 1, and + # maximum anticorrelation -1. + if self.norm == "variance": + # Note that self.corr is normalized so that the maximum is + # proportional to the number of bins in the first input + # light curve. Hence, the division by the lc size + variance1 = np.var(lc1.counts) - np.mean(lc1.counts_err) ** 2 + variance2 = np.var(lc2.counts) - np.mean(lc2.counts_err) ** 2 + self.corr = self.corr / np.sqrt(variance1 * variance2) / lc1_counts.size + +
+[docs] + def cal_timeshift(self, dt=1.0): + """ + Calculate the cross correlation against all possible time lags, both positive and negative. + + The method signal.correlation_lags() uses SciPy versions >= 1.6.1 ([scipy-docs-lag]_) + + References + ---------- + .. [scipy-docs-lag] https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.correlation_lags.html + + Parameters + ---------- + dt: float, optional, default ``1.0`` + Time resolution of the light curve, should be passed when object is populated with + correlation data and no information about light curve can be extracted. Used to + calculate ``time_lags``. + + Returns + ------- + self.time_shift: float + Value of the time lag that gives maximum value of correlation between two light curves. + + self.time_lags: numpy.ndarray + An array of ``time_lags`` calculated from correlation data + """ + if self.dt is None: + self.dt = dt + if self.corr is None: + if (self.lc1 is None or self.lc2 is None) and (self.cross is None): + raise StingrayError( + "Please provide either two lightcurve objects or \ + a [average]crossspectrum object to calculate correlation and time_shift" + ) + else: + # This will cover very rare case of assigning self.lc1 and lc2 + # or self.cross and also self.corr = ``None``. + # In this case, correlation is calculated using self.lc1 + # and self.lc2 and using that correlation data, + # time_shift is calculated. + if self.cross is not None: + self._make_cross_corr(self.cross) + else: + self._make_corr(self.lc1, self.lc2) + + self.n = len(self.corr) + n1 = n2 = self.n + if self.lc1 is not None: + n1 = np.size(self.lc1.counts) + if self.lc2 is not None: + n2 = np.size(self.lc2.counts) + + if self.cross is not None: + # Obtains correlation lags if a cross spectrum object is given + # Correlation against all possible lags, positive as well as negative lags are stored + # signal.correlation_lags() method uses SciPy versions >= 1.6.1 + x_lags = signal.correlation_lags(self.n, self.n, self.mode) + + else: + # Obtains correlation lags if two light curves are provided + # Correlation against all possible lags, positive as well as negative lags are stored + # signal.correlation_lags() method uses SciPy versions >= 1.6.1 + x_lags = signal.correlation_lags(n1, n2, self.mode) + + self.time_lags = x_lags * self.dt + # time_shift is the time lag for max. correlation + self.time_shift = self.time_lags[np.argmax(self.corr)] + + return self.time_shift, self.time_lags, self.n
+ + +
+[docs] + def plot( + self, labels=None, axis=None, title=None, marker="-", save=False, filename=None, ax=None + ): + """ + Plot the :class:`Crosscorrelation` as function using Matplotlib. + Plot the Crosscorrelation object on a graph ``self.time_lags`` on x-axis and + ``self.corr`` on y-axis + + Parameters + ---------- + labels : iterable, default ``None`` + A list of tuple with ``xlabel`` and ``ylabel`` as strings. + + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for ``matplotlib.pyplot.axis()`` function. + + title : str, default ``None`` + The title of the plot. + + marker : str, default ``-`` + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + + save : boolean, optional (default=False) + If True, save the figure with specified filename. + + filename : str + File name of the image to save. Depends on the boolean ``save``. + + ax : ``matplotlib.Axes`` object + An axes object to fill with the cross correlation plot. + """ + if ax is None: + fig, ax = plt.subplots(1, 1, figsize=(6, 4)) + + ax.plot(self.time_lags, self.corr, marker) + if labels is not None: + try: + ax.set_xlabel(labels[0]) + ax.set_ylabel(labels[1]) + except TypeError: + utils.simon("``labels`` must be either a list or tuple with " "x and y labels.") + raise + except IndexError: + utils.simon("``labels`` must have two labels for x and y " "axes.") + # Not raising here because in case of len(labels)==1, only + # x-axis will be labelled. + + # axis is a tuple containing formatting information + if axis is not None: + ax.axis(axis) + + if title is not None: + ax.set_title(title) + + if save: + if filename is None: + plt.savefig("corr.pdf", format="pdf") + else: + plt.savefig(filename) + else: + plt.show(block=False) + + return ax
+
+ + + +
+[docs] +class AutoCorrelation(CrossCorrelation): + """ + Make an auto-correlation from a light curve. + You can also make an empty Autocorrelation object to populate with your + own auto-correlation data. + + Parameters + ---------- + lc: :class:`stingray.Lightcurve` object, optional, default ``None`` + The light curve data for correlation calculations. + + mode: {``full``, ``valid``, ``same``}, optional, default ``same`` + A string indicating the size of the correlation output. + See the relevant ``scipy`` documentation [scipy-docs] + for more details. + + Attributes + ---------- + lc1, lc2::class:`stingray.Lightcurve` + The light curve data for correlation calculations. + + corr: numpy.ndarray + An array of correlation data calculated from lightcurve data + + time_lags: numpy.ndarray + An array of all possible time lags against which each point in corr is calculated + + dt: float + The time resolution of each lightcurve (used in time_lag calculations) + + time_shift: float, zero + Max. Value of AutoCorrelation is always at zero lag. + + n: int + Number of points in self.corr(Length of auto-correlation data) + """ + + def __init__(self, lc=None, mode="same"): + CrossCorrelation.__init__(self, lc1=lc, lc2=lc, mode=mode) + self.auto = True
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/crossspectrum.html b/_modules/stingray/crossspectrum.html new file mode 100644 index 000000000..bc1ae446d --- /dev/null +++ b/_modules/stingray/crossspectrum.html @@ -0,0 +1,3255 @@ + + + + + + + stingray.crossspectrum — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.crossspectrum

+import copy
+import warnings
+from collections.abc import Iterable, Iterator, Generator
+
+import numpy as np
+import scipy
+import scipy.optimize
+import scipy.stats
+import matplotlib.pyplot as plt
+
+from stingray.exceptions import StingrayError
+from stingray.utils import rebin_data, rebin_data_log, simon
+
+from .base import StingrayObject
+from .events import EventList
+from .gti import cross_two_gtis, time_intervals_from_gtis
+from .lightcurve import Lightcurve
+from .fourier import avg_cs_from_iterables, error_on_averaged_cross_spectrum
+from .fourier import avg_cs_from_timeseries, poisson_level
+from .fourier import normalize_periodograms, raw_coherence
+from .fourier import get_flux_iterable_from_segments
+from .fourier import get_rms_from_unnorm_periodogram
+from .power_colors import power_color
+
+from scipy.special import factorial
+
+
+__all__ = [
+    "Crossspectrum",
+    "AveragedCrossspectrum",
+    "DynamicalCrossspectrum",
+    "cospectra_pvalue",
+    "normalize_crossspectrum",
+    "time_lag",
+    "coherence",
+    "get_flux_generator",
+]
+
+
+def get_flux_generator(data, segment_size, dt=None):
+    """Get a flux generator from different segments of a data object
+
+    It is just a wrapper around
+    ``stingray.fourier.get_flux_iterable_from_segments``, providing
+    this method with the information it needs to create the iterables,
+    starting from an event list or a light curve.
+
+    Only accepts `Lightcurve`s and `EventList`s.
+
+    Parameters
+    ----------
+    data : `Lightcurve` or `EventList`
+        Input data
+    segment_size : float
+        Segment size in seconds
+
+    Other parameters
+    ----------------
+    dt : float, default None
+        Sampling time of the output flux iterables. Required if input data
+        is an event list, otherwise the light curve sampling time is selected.
+
+    Returns
+    -------
+    flux_iterable : ``generator``
+        Generator of flux arrays.
+
+    Examples
+    --------
+    >>> mean = 256
+    >>> length = 128
+    >>> times = np.sort(np.random.uniform(0, length, int(mean * length)))
+    >>> events = EventList(time=times, gti=[[0, length]])
+    >>> dt = 0.125
+    >>> segment_size = 4
+
+    Create a light curve
+    >>> lc = events.to_lc(dt=dt)
+
+    Create a light curve with a different error distribution
+    >>> lc_renorm = copy.deepcopy(lc)
+    >>> lc_renorm.counts = lc.counts / mean
+    >>> lc_renorm.counts_err = lc.counts_err / mean
+    >>> lc_renorm.err_dist = "gauss"
+
+    Create an iterable from events, forgetting ``dt``. Should fail
+    >>> get_flux_generator(events, segment_size, dt=None)
+    Traceback (most recent call last):
+    ...
+    ValueError: If data is an EventList, you need to specify...
+
+    Create an iterable from events
+    >>> iter_ev = get_flux_generator(events, segment_size, dt=dt)
+
+    Create an iterable from the light curve
+    >>> iter_lc = get_flux_generator(lc, segment_size, dt=dt)
+
+    Create an iterable from the non-poisson light curve
+    >>> iter_lc_nonpois = get_flux_generator(lc_renorm, segment_size, dt=dt)
+
+    Verify that they are equivalent
+    >>> for l1, l2 in zip(iter_ev, iter_lc): assert np.allclose(l1, l2)
+
+    Note that the iterable for non-Poissonian light curves also returns the uncertainty
+    >>> for l1, (l2, l2e) in zip(iter_lc, iter_lc_nonpois): assert np.allclose(l1, l2 * mean)
+
+    """
+    times = data.time
+    gti = data.gti
+
+    counts = err = None
+    if isinstance(data, Lightcurve):
+        counts = data.counts
+        N = counts.size
+        if data.err_dist.lower() != "poisson":
+            err = data.counts_err
+    elif isinstance(data, EventList):
+        if dt is None:
+            raise ValueError("If data is an EventList, you need to specify the bin time dt")
+        N = int(np.rint(segment_size / dt))
+
+    flux_iterable = get_flux_iterable_from_segments(
+        times, gti, segment_size, N, fluxes=counts, errors=err
+    )
+    return flux_iterable
+
+
+
+[docs] +def coherence(lc1, lc2): + """ + Estimate coherence function of two light curves. + For details on the definition of the coherence, see Vaughan and Nowak, + 1996 [#]_. + + Parameters + ---------- + lc1: :class:`stingray.Lightcurve` object + The first light curve data for the channel of interest. + lc2: :class:`stingray.Lightcurve` object + The light curve data for reference band + + Returns + ------- + coh : ``np.ndarray`` + The array of coherence versus frequency + + References + ---------- + .. [#] https://iopscience.iop.org/article/10.1086/310430 + """ + + warnings.warn( + "The coherence function, as implemented, does not work as expected. " + "Please use the coherence function of AveragedCrossspectrum, with the " + "correct parameters.", + DeprecationWarning, + ) + if not isinstance(lc1, Lightcurve): + raise TypeError("lc1 must be a lightcurve.Lightcurve object") + + if not isinstance(lc2, Lightcurve): + raise TypeError("lc2 must be a lightcurve.Lightcurve object") + + cs = Crossspectrum(lc1, lc2, norm="none") + + return cs.coherence()
+ + + +def time_lag(lc1, lc2): + """ + Estimate the time lag of two light curves. + Calculate time lag and uncertainty. + Equation from Bendat & Piersol, 2011 [bendat-2011]_. + + Parameters + ---------- + lc1: :class:`stingray.Lightcurve` object + The first light curve data for the channel of interest. + lc2: :class:`stingray.Lightcurve` object + The light curve data for reference band + + Returns + ------- + lag : np.ndarray + The time lag + lag_err : np.ndarray + The uncertainty in the time lag + + References + ---------- + .. [bendat-2011] https://www.wiley.com/en-us/Random+Data%3A+Analysis+and+Measurement+Procedures%2C+4th+Edition-p-9780470248775 + """ + + warnings.warn( + "This standalone time_lag function is deprecated. " + "Please use the time_lag method of AveragedCrossspectrum, with the " + "correct parameters.", + DeprecationWarning, + ) + + if not isinstance(lc1, Lightcurve): + raise TypeError("lc1 must be a lightcurve.Lightcurve object") + + if not isinstance(lc2, Lightcurve): + raise TypeError("lc2 must be a lightcurve.Lightcurve object") + + cs = Crossspectrum(lc1, lc2, norm="none") + lag = cs.time_lag() + + return lag + + +def normalize_crossspectrum( + unnorm_power, tseg, nbins, nphots1, nphots2, norm="none", power_type="real" +): + """ + Normalize the real part of the cross spectrum to Leahy, absolute rms^2, + fractional rms^2 normalization, or not at all. + + Here for API compatibility purposes. Will be removed in the next + major release. + + Parameters + ---------- + unnorm_power: numpy.ndarray + The unnormalized cross spectrum. + + tseg: int + The length of the Fourier segment, in seconds. + + nbins : int + Number of bins in the light curve + + nphots1 : int + Number of photons in the light curve no. 1 + + nphots2 : int + Number of photons in the light curve no. 2 + + Other parameters + ---------------- + norm : str + One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'abs'` + (absolute rms) + + power_type : str + One of `'real'` (real part), `'all'` (all complex powers), `'abs'` + (absolute value) + + Returns + ------- + power: numpy.nd.array + The normalized co-spectrum (real part of the cross spectrum). For + 'none' normalization, imaginary part is returned as well. + """ + warnings.warn( + "normalize_crossspectrum is now deprecated and will be removed " + "in the next major release. Please use " + "stingray.fourier.normalize_periodograms instead.", + DeprecationWarning, + ) + dt = tseg / nbins + nph = np.sqrt(nphots1 * nphots2) + mean = nph / nbins + return normalize_periodograms( + unnorm_power, dt, nbins, mean, n_ph=nph, norm=norm, power_type=power_type + ) + + +def normalize_crossspectrum_gauss( + unnorm_power, mean_flux, var, dt, N, norm="none", power_type="real" +): + """ + Normalize the real part of the cross spectrum to Leahy, absolute rms^2, + fractional rms^2 normalization, or not at all. + + Here for API compatibility purposes. Will be removed in the next + major release. + + Parameters + ---------- + unnorm_power: numpy.ndarray + The unnormalized cross spectrum. + + mean_flux: float + The mean flux of the light curve (if a cross spectrum, the geometrical + mean of the flux in the two channels) + + var: float + The variance of the light curve (if a cross spectrum, the geometrical + mean of the variance in the two channels) + + dt: float + The sampling time of the light curve + + N: int + The number of bins in the light curve + + Other parameters + ---------------- + norm : str + One of `'leahy'` (Leahy+83), `'frac'` (fractional rms), `'abs'` + (absolute rms) + + power_type : str + One of `'real'` (real part), `'all'` (all complex powers), `'abs'` + (absolute value) + + Returns + ------- + power: numpy.nd.array + The normalized co-spectrum (real part of the cross spectrum). For + 'none' normalization, imaginary part is returned as well. + """ + warnings.warn( + "normalize_crossspectrum_gauss is now deprecated and will be " + "removed in the next major release. Please use " + "stingray.fourier.normalize_periodograms instead.", + DeprecationWarning, + ) + mean = mean_flux * dt + return normalize_periodograms( + unnorm_power, dt, N, mean, variance=var, norm=norm, power_type=power_type + ) + + +def _averaged_cospectra_cdf(xcoord, n): + """ + Function calculating the cumulative distribution function for + averaged cospectra, Equation 19 of Huppenkothen & Bachetti (2018). + + Parameters + ---------- + xcoord : float or iterable + The cospectral power for which to calculate the CDF. + + n : int + The number of averaged cospectra + + Returns + ------- + cdf : float + The value of the CDF at `xcoord` for `n` averaged cospectra + """ + if np.size(xcoord) == 1: + xcoord = [xcoord] + + cdf = np.zeros_like(xcoord) + + for i, x in enumerate(xcoord): + prefac_bottom1 = factorial(n - 1) + for j in range(n): + prefac_top = factorial(n - 1 + j) + prefac_bottom2 = factorial(n - 1 - j) * factorial(j) + prefac_bottom3 = 2.0 ** (n + j) + + prefac = prefac_top / (prefac_bottom1 * prefac_bottom2 * prefac_bottom3) + + gf = -j + n + + first_fac = scipy.special.gamma(gf) + if x >= 0: + second_fac = scipy.special.gammaincc(gf, n * x) * first_fac + fac = 2.0 * first_fac - second_fac + else: + fac = scipy.special.gammaincc(gf, -n * x) * first_fac + + cdf[i] += prefac * fac + if np.size(xcoord) == 1: + return cdf[i] + + return cdf + + +def cospectra_pvalue(power, nspec): + """ + This function computes the single-trial p-value that the power was + observed under the null hypothesis that there is no signal in + the data. + + Important: the underlying assumption that make this calculation valid + is that the powers in the cross spectrum follow a Laplace distribution, + and this requires that: + + 1. the co-spectrum is normalized according to [Leahy 1983]_ + 2. there is only white noise in the light curve. That is, there is no + aperiodic variability that would change the overall shape of the power + spectrum. + + Also note that the p-value is for a *single trial*, i.e. the power + currently being tested. If more than one power or more than one power + spectrum are being tested, the resulting p-value must be corrected for the + number of trials (Bonferroni correction). + + Mathematical formulation in [Huppenkothen 2017]_. + + Parameters + ---------- + power : float + The squared Fourier amplitude of a spectrum to be evaluated + + nspec : int + The number of spectra or frequency bins averaged in ``power``. + This matters because averaging spectra or frequency bins increases + the signal-to-noise ratio, i.e. makes the statistical distributions + of the noise narrower, such that a smaller power might be very + significant in averaged spectra even though it would not be in a single + cross spectrum. + + Returns + ------- + pval : float + The classical p-value of the observed power being consistent with + the null hypothesis of white noise + + References + ---------- + + * .. [Leahy 1983] https://ui.adsabs.harvard.edu/#abs/1983ApJ...266..160L/abstract + * .. [Huppenkothen 2017] http://adsabs.harvard.edu/abs/2018ApJS..236...13H + + """ + if not np.all(np.isfinite(power)): + raise ValueError("power must be a finite floating point number!") + + # if power < 0: + # raise ValueError("power must be a positive real number!") + + if not np.isfinite(nspec): + raise ValueError("nspec must be a finite integer number") + + if not np.isclose(nspec % 1, 0): + raise ValueError("nspec must be an integer number!") + + if nspec < 1: + raise ValueError("nspec must be larger or equal to 1") + + elif nspec == 1: + lapl = scipy.stats.laplace(0, 1) + pval = lapl.sf(power) + + elif nspec > 50: + exp_sigma = np.sqrt(2) / np.sqrt(nspec) + gauss = scipy.stats.norm(0, exp_sigma) + pval = gauss.sf(power) + + else: + pval = 1.0 - _averaged_cospectra_cdf(power, nspec) + + return pval + + +
+[docs] +class Crossspectrum(StingrayObject): + main_array_attr = "freq" + type = "crossspectrum" + + """ + Make a cross spectrum from a (binned) light curve. + You can also make an empty :class:`Crossspectrum` object to populate with your + own Fourier-transformed data (this can sometimes be useful when making + binned power spectra). Stingray uses the scipy.fft standards for the sign + of the Nyquist frequency. + + Parameters + ---------- + data1: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` + The dataset for the first channel/band of interest. + + data2: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None`` + The dataset for the second, or "reference", band. + + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + power_type: string, optional, default ``real`` + Parameter to choose among complete, real part and magnitude of the cross spectrum. + + fullspec: boolean, optional, default ``False`` + If False, keep only the positive frequencies, or if True, keep all of them . + + Other Parameters + ---------------- + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the input + `Lightcurve` GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the `Lightcurve` objects before making + the cross spectrum. + + lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data1``, but no + :class:`stingray.events.EventList` objects allowed + + lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data2``, but no + :class:`stingray.events.EventList` objects allowed + + dt: float + The time resolution of the light curve. Only needed when constructing + light curves in the case where ``data1``, ``data2`` are + :class:`EventList` objects + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!) + + + Attributes + ---------- + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples + + power: numpy.ndarray + The array of cross spectra (complex numbers) + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging more than one spectra). Note that for a single + realization (``m=1``) the error is equal to the power. + + df: float + The frequency resolution + + m: int + The number of averaged cross-spectra amplitudes in each bin. + + n: int + The number of data points/time bins in one segment of the light + curves. + + k: array of int + The rebinning scheme if the object has been rebinned otherwise is set to 1. + + nphots1: float + The total number of photons in light curve 1 + + nphots2: float + The total number of photons in light curve 2 + + """ + + def __init__( + self, + data1=None, + data2=None, + norm="frac", + gti=None, + lc1=None, + lc2=None, + power_type="all", + dt=None, + fullspec=False, + skip_checks=False, + save_all=False, + ): + self._type = None + # for backwards compatibility + if data1 is None: + data1 = lc1 + if data2 is None: + data2 = lc2 + + empty = data1 is None and data2 is None + good_input = not empty + + if not skip_checks: + good_input = self.initial_checks( + data1=data1, + data2=data2, + norm=norm, + gti=gti, + lc1=lc1, + lc2=lc2, + power_type=power_type, + dt=dt, + fullspec=fullspec, + ) + + self.dt = dt + norm = norm.lower() + self.norm = norm + self.k = 1 + + if empty or not good_input: + return self._initialize_empty() + + return self._initialize_from_any_input( + data1, + data2, + dt=dt, + norm=norm, + power_type=power_type, + fullspec=fullspec, + gti=gti, + save_all=save_all, + ) + +
+[docs] + def initial_checks( + self, + data1=None, + data2=None, + norm="frac", + gti=None, + lc1=None, + lc2=None, + segment_size=None, + power_type="real", + dt=None, + fullspec=False, + ): + """Run initial checks on the input. + + Returns True if checks are passed, False if they are not. + + Raises various errors for different bad inputs + + Examples + -------- + >>> times = np.arange(0, 10) + >>> counts = np.random.poisson(100, 10) + >>> lc1 = Lightcurve(times, counts, skip_checks=True) + >>> lc2 = Lightcurve(times, counts, skip_checks=True) + >>> ev1 = EventList(times) + >>> ev2 = EventList(times) + >>> c = Crossspectrum() + >>> ac = AveragedCrossspectrum() + + If norm is not a string, raise a TypeError + >>> Crossspectrum.initial_checks(c, norm=1) + Traceback (most recent call last): + ... + TypeError: norm must be a string... + + If ``norm`` is not one of the valid norms, raise a ValueError + >>> Crossspectrum.initial_checks(c, norm="blabla") + Traceback (most recent call last): + ... + ValueError: norm must be 'frac'... + + If ``power_type`` is not one of the valid norms, raise a ValueError + >>> Crossspectrum.initial_checks(c, power_type="blabla") + Traceback (most recent call last): + ... + ValueError: `power_type` not recognized! + + If the user passes only one light curve, raise a ValueError + + >>> Crossspectrum.initial_checks(c, data1=lc1, data2=None) + Traceback (most recent call last): + ... + ValueError: You can't do a cross spectrum... + + If the user passes an event list without dt, raise a ValueError + + >>> Crossspectrum.initial_checks(c, data1=ev1, data2=ev2, dt=None) + Traceback (most recent call last): + ... + ValueError: If using event lists, please specify... + """ + if isinstance(norm, str) is False: + raise TypeError("norm must be a string") + + if norm.lower() not in ["frac", "abs", "leahy", "none"]: + raise ValueError("norm must be 'frac', 'abs', 'leahy', or 'none'!") + + if power_type not in ["all", "absolute", "real"]: + raise ValueError("`power_type` not recognized!") + + # check if input data is a Lightcurve object, if not make one or + # make an empty Crossspectrum object if lc1 == ``None`` or lc2 == ``None`` + + if lc1 is not None or lc2 is not None: + warnings.warn( + "The lcN keywords are now deprecated. Use dataN instead", DeprecationWarning + ) + + if data1 is None or data2 is None: + if data1 is not None or data2 is not None: + raise ValueError("You can't do a cross spectrum with just one light curve!") + else: + return False + + dt_is_invalid = (dt is None) or (dt <= np.finfo(float).resolution) + + if segment_size is None: + # checks to be run for non-averaged spectra + if gti is not None and len(gti) > 1: + raise TypeError("Non-averaged cross spectra need a single GTI") + + if type(data1) != type(data2): + raise TypeError("Input data have to be of the same kind") + + if isinstance(data1, EventList): + if dt_is_invalid: + raise ValueError( + "If using event lists, please specify the bin time to generate lightcurves." + ) + elif isinstance(data1, Lightcurve): + if data1.err_dist.lower() != data2.err_dist.lower(): + simon( + "Your lightcurves have different statistics." + "The errors in the Crossspectrum will be incorrect." + ) + + # If dt differs slightly, its propagated error must not be more than + # 1/100th of the bin + if not np.isclose(data1.dt, data2.dt, rtol=0.01 * data1.dt / data1.tseg): + raise StingrayError("Light curves do not have same time binning dt.") + + if data1.tseg != data2.tseg: + simon( + "Lightcurves do not have same tseg. This means that the data" + "from the two channels are not completely in sync. This " + "might or might not be an issue. Keep an eye on it." + ) + elif isinstance(data1, (list, tuple)): + if not isinstance(data1[0], Lightcurve) or not isinstance(data2[0], Lightcurve): + raise TypeError("Inputs lists have to contain light curve objects") + + if data1[0].err_dist.lower() != data2[0].err_dist.lower(): + simon( + "Your lightcurves have different statistics." + "The errors in the Crossspectrum will be incorrect." + ) + elif isinstance(data1, (Generator, Iterator)): + pass + else: + raise TypeError("Input data are invalid") + + return True
+ + +
+[docs] + def rebin(self, df=None, f=None, method="mean"): + """ + Rebin the cross spectrum to a new frequency resolution ``df``. + + Parameters + ---------- + df: float + The new frequency resolution + + Other Parameters + ---------------- + f: float + the rebin factor. If specified, it substitutes df with ``f*self.df`` + + Returns + ------- + bin_cs = :class:`Crossspectrum` (or one of its subclasses) object + The newly binned cross spectrum or power spectrum. + Note: this object will be of the same type as the object + that called this method. For example, if this method is called + from :class:`AveragedPowerspectrum`, it will return an object of class + :class:`AveragedPowerspectrum`, too. + """ + + if f is None and df is None: + raise ValueError("You need to specify at least one between f and df") + elif f is not None: + df = f * self.df + + # rebin cross spectrum to new resolution + binfreq, bincs, binerr, step_size = rebin_data( + self.freq, self.power, df, self.power_err, method=method, dx=self.df + ) + # make an empty cross spectrum object + # note: syntax deliberate to work with subclass Powerspectrum + bin_cs = copy.copy(self) + + # store the binned periodogram in the new object + bin_cs.freq = binfreq + bin_cs.power = bincs + bin_cs.df = df + bin_cs.power_err = binerr + + if hasattr(self, "unnorm_power") and self.unnorm_power is not None: + unnorm_power_err = None + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + unnorm_power_err = self.unnorm_power_err + + _, binpower_unnorm, binpower_err_unnorm, _ = rebin_data( + self.freq, self.unnorm_power, df, dx=self.df, yerr=unnorm_power_err, method=method + ) + + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + bin_cs.unnorm_power_err = binpower_err_unnorm + + bin_cs.unnorm_power = binpower_unnorm + + if hasattr(self, "cs_all"): + cs_all = [] + for c in self.cs_all: + cs_all.append( + rebin_data(self.freq, c, dx_new=df, yerr=None, method=method, dx=self.df)[1] + ) + bin_cs.cs_all = cs_all + if hasattr(self, "pds1"): + bin_cs.pds1 = self.pds1.rebin(df=df, f=f, method=method) + if hasattr(self, "pds2"): + bin_cs.pds2 = self.pds2.rebin(df=df, f=f, method=method) + + bin_cs.m = np.rint(step_size * self.m) + + return bin_cs
+ + +
+[docs] + def to_norm(self, norm, inplace=False): + """Convert Cross spectrum to new normalization. + + Parameters + ---------- + norm : str + The new normalization of the spectrum + + Other parameters + ---------------- + inplace: bool, default False + If True, change the current instance. Otherwise, return a new one + + Returns + ------- + new_spec : object, same class as input + The new, normalized, spectrum. + """ + if norm == self.norm: + return copy.deepcopy(self) + + variance1 = variance2 = variance = None + if self.type == "powerspectrum": + # This is the case for Powerspectrum + mean = mean1 = mean2 = self.nphots / self.n + if hasattr(self, "err_dist") and self.err_dist != "poisson": + variance = self.variance + nph = self.nphots + else: + nph = np.sqrt(self.nphots1 * self.nphots2) + mean1 = self.nphots1 / self.n + mean2 = self.nphots2 / self.n + mean = nph / self.n + if hasattr(self, "err_dist") and self.err_dist != "poisson": + variance1 = self.variance1 + variance2 = self.variance2 + variance = np.sqrt(self.variance1 * self.variance2) + + if inplace: + new_spec = self + else: + new_spec = copy.deepcopy(self) + + power_type = "all" + if hasattr(self, "power_type"): + power_type = self.power_type + + for attr in ["power", "power_err"]: + unnorm_attr = "unnorm_" + attr + if not hasattr(self, unnorm_attr) or getattr(self, unnorm_attr) is None: + continue + power = normalize_periodograms( + getattr(self, unnorm_attr), + self.dt, + self.n, + mean, + n_ph=nph, + variance=variance, + norm=norm, + power_type=power_type, + ) + setattr(new_spec, attr, power) + new_spec.norm = norm + if hasattr(self, "pds1"): + p1 = normalize_periodograms( + getattr(self.pds1, unnorm_attr), + self.dt, + self.n, + mean1, + n_ph=self.nphots1, + variance=variance1, + norm=norm, + power_type=power_type, + ) + setattr(new_spec.pds1, attr, p1) + p2 = normalize_periodograms( + getattr(self.pds2, unnorm_attr), + self.dt, + self.n, + mean2, + n_ph=self.nphots2, + variance=variance2, + norm=norm, + power_type=power_type, + ) + setattr(new_spec.pds2, attr, p2) + new_spec.pds1.norm = new_spec.pds2.norm = norm + + return new_spec
+ + + def _normalize_crossspectrum(self, unnorm_power): + """ + Normalize the real part of the cross spectrum to Leahy, absolute rms^2, + fractional rms^2 normalization, or not at all. + + Parameters + ---------- + unnorm_power: numpy.ndarray + The unnormalized cross spectrum. + + Returns + ------- + power: numpy.nd.array + The normalized co-spectrum (real part of the cross spectrum). For + 'none' normalization, imaginary part is returned as well. + """ + + nph = np.sqrt(self.nphots1 * self.nphots2) + mean = nph / self.n + variance = None + if self.err_dist != "poisson": + variance = np.sqrt(self.variance1 * self.variance2) + return normalize_periodograms( + unnorm_power, + self.dt, + self.n, + mean, + n_ph=nph, + variance=variance, + norm=self.norm, + power_type=self.power_type, + ) + +
+[docs] + def rebin_log(self, f=0.01): + """ + Logarithmic rebin of the periodogram. + The new frequency depends on the previous frequency + modified by a factor f: + + .. math:: + + d\\nu_j = d\\nu_{j-1} (1+f) + + Parameters + ---------- + f: float, optional, default ``0.01`` + parameter that steers the frequency resolution + + + Returns + ------- + new_spec : :class:`Crossspectrum` (or one of its subclasses) object + The newly binned cross spectrum or power spectrum. + Note: this object will be of the same type as the object + that called this method. For example, if this method is called + from :class:`AveragedPowerspectrum`, it will return an object of class + """ + + binfreq, binpower, binpower_err, nsamples = rebin_data_log( + self.freq, self.power, f, y_err=self.power_err, dx=self.df + ) + + new_spec = copy.copy(self) + new_spec.freq = binfreq + new_spec.power = binpower + new_spec.power_err = binpower_err + new_spec.m = nsamples * self.m + new_spec.dt = self.dt + new_spec.k = nsamples + + if hasattr(self, "unnorm_power") and self.unnorm_power is not None: + unnorm_power_err = None + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + unnorm_power_err = self.unnorm_power_err + _, binpower_unnorm, binpower_err_unnorm, _ = rebin_data_log( + self.freq, self.unnorm_power, f, dx=self.df, y_err=unnorm_power_err + ) + + new_spec.unnorm_power = binpower_unnorm + if hasattr(self, "unnorm_power_err") and self.unnorm_power_err is not None: + new_spec.unnorm_power_err = binpower_err_unnorm + + if hasattr(self, "pds1"): + new_spec.pds1 = self.pds1.rebin_log(f) + if hasattr(self, "pds2"): + new_spec.pds2 = self.pds2.rebin_log(f) + + if hasattr(self, "cs_all"): + cs_all = [] + + for c in self.cs_all: + cs_all.append(rebin_data_log(self.freq, c, f, dx=self.df)[1]) + new_spec.cs_all = cs_all + + return new_spec
+ + +
+[docs] + def coherence(self): + """Compute Coherence function of the cross spectrum. + + Coherence is defined in Vaughan and Nowak, 1996 [#]_. + It is a Fourier frequency dependent measure of the linear correlation + between time series measured simultaneously in two energy channels. + + Returns + ------- + coh : numpy.ndarray + Coherence function + + References + ---------- + .. [#] https://iopscience.iop.org/article/10.1086/310430 + """ + # this computes the averaged power spectrum, but using the + # cross spectrum code to avoid circular imports + + return raw_coherence( + self.unnorm_power, self.pds1.unnorm_power, self.pds2.unnorm_power, 0, 0, self.n + )
+ + +
+[docs] + def phase_lag(self): + """Calculate the fourier phase lag of the cross spectrum. + + This is defined as the argument of the complex cross spectrum, and gives + the delay at all frequencies, in cycles, of one input light curve with respect + to the other. + """ + return np.angle(self.unnorm_power)
+ + +
+[docs] + def time_lag(self): + r"""Calculate the fourier time lag of the cross spectrum. + The time lag is calculated by taking the phase lag :math:`\phi` and + + ..math:: + + \tau = \frac{\phi}{\two pi \nu} + + where :math:`\nu` is the center of the frequency bins. + """ + if self.__class__ in [Crossspectrum, AveragedCrossspectrum]: + ph_lag = self.phase_lag() + + return ph_lag / (2 * np.pi * self.freq) + else: + raise AttributeError("Object has no attribute named 'time_lag' !")
+ + +
+[docs] + def plot( + self, labels=None, axis=None, title=None, marker="-", save=False, filename=None, ax=None + ): + """ + Plot the amplitude of the cross spectrum vs. the frequency using ``matplotlib``. + + Parameters + ---------- + labels : iterable, default ``None`` + A list of tuple with ``xlabel`` and ``ylabel`` as strings. + + axis : list, tuple, string, default ``None`` + Parameter to set axis properties of the ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for the``matplotlib.pyplot.axis()`` method. + + title : str, default ``None`` + The title of the plot. + + marker : str, default '-' + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + + save : boolean, optional, default ``False`` + If ``True``, save the figure with specified filename. + + filename : str + File name of the image to save. Depends on the boolean ``save``. + + ax : ``matplotlib.Axes`` object + An axes object to fill with the cross correlation plot. + """ + + if ax is None: + fig = plt.figure("crossspectrum") + ax = fig.add_subplot(1, 1, 1) + + ax2 = None + if np.any(np.iscomplex(self.power)): + ax.plot(self.freq, np.abs(self.power), marker, color="k", label="Amplitude") + + ax2 = ax.twinx() + ax2.tick_params("y", colors="b") + ax2.plot( + self.freq, self.power.imag, marker, color="b", alpha=0.5, label="Imaginary Part" + ) + + ax.plot(self.freq, self.power.real, marker, color="r", alpha=0.5, label="Real Part") + + lines, line_labels = ax.get_legend_handles_labels() + lines2, line_labels2 = ax2.get_legend_handles_labels() + lines = lines + lines2 + line_labels = line_labels + line_labels2 + + else: + ax.plot(self.freq, np.abs(self.power), marker, color="b") + lines, line_labels = ax.get_legend_handles_labels() + + xlabel = "Frequency (Hz)" + ylabel = f"Power ({self.norm})" + + if labels is not None: + try: + xlabel = labels[0] + ylabel = labels[1] + + except IndexError: + simon("``labels`` must have two labels for x and y axes.") + # Not raising here because in case of len(labels)==1, only + # x-axis will be labelled. + + ax.set_xlabel(xlabel) + if ax2 is not None: + ax.set_ylabel(ylabel + "-Real") + ax2.set_ylabel(ylabel + "-Imaginary") + else: + ax.set_ylabel(ylabel) + + ax.legend(lines, line_labels, loc="best") + + if axis is not None: + ax.set_xlim(axis[0:2]) + ax.set_ylim(axis[2:4]) + if ax2 is not None: + ax2.set_ylim(axis[2:4]) + if title is not None: + ax.set_title(title) + + if save: + if filename is None: + plt.gcf().savefig("spec.png") + else: + plt.gcf().savefig(filename) + + return ax
+ + +
+[docs] + def classical_significances(self, threshold=1, trial_correction=False): + """ + Compute the classical significances for the powers in the power + spectrum, assuming an underlying noise distribution that follows a + chi-square distributions with 2M degrees of freedom, where M is the + number of powers averaged in each bin. + + Note that this function will *only* produce correct results when the + following underlying assumptions are fulfilled: + + 1. The power spectrum is Leahy-normalized + 2. There is no source of variability in the data other than the + periodic signal to be determined with this method. This is important! + If there are other sources of (aperiodic) variability in the data, this + method will *not* produce correct results, but instead produce a large + number of spurious false positive detections! + 3. There are no significant instrumental effects changing the + statistical distribution of the powers (e.g. pile-up or dead time) + + By default, the method produces ``(index,p-values)`` for all powers in + the power spectrum, where index is the numerical index of the power in + question. If a ``threshold`` is set, then only powers with p-values + *below* that threshold with their respective indices. If + ``trial_correction`` is set to ``True``, then the threshold will be corrected + for the number of trials (frequencies) in the power spectrum before + being used. + + Parameters + ---------- + threshold : float, optional, default ``1`` + The threshold to be used when reporting p-values of potentially + significant powers. Must be between 0 and 1. + Default is ``1`` (all p-values will be reported). + + trial_correction : bool, optional, default ``False`` + A Boolean flag that sets whether the ``threshold`` will be corrected + by the number of frequencies before being applied. This decreases + the ``threshold`` (p-values need to be lower to count as significant). + Default is ``False`` (report all powers) though for any application + where `threshold`` is set to something meaningful, this should also + be applied! + + Returns + ------- + pvals : iterable + A list of ``(index, p-value)`` tuples for all powers that have p-values + lower than the threshold specified in ``threshold``. + + """ + if not self.norm == "leahy": + raise ValueError("This method only works on Leahy-normalized power spectra!") + + if np.size(self.m) == 1: + # calculate p-values for all powers + # leave out zeroth power since it just encodes the number of photons! + pv = np.array([cospectra_pvalue(power, self.m) for power in self.power]) + else: + pv = np.array([cospectra_pvalue(power, m) for power, m in zip(self.power, self.m)]) + + # if trial correction is used, then correct the threshold for + # the number of powers in the power spectrum + if trial_correction: + threshold /= self.power.shape[0] + + # need to add 1 to the indices to make up for the fact that + # we left out the first power above! + indices = np.where(pv < threshold)[0] + + pvals = np.vstack([pv[indices], indices]) + + return pvals
+ + +
+[docs] + @staticmethod + def from_time_array( + times1, + times2, + dt, + segment_size=None, + gti=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + ): + """Calculate AveragedCrossspectrum from two arrays of event times. + + Parameters + ---------- + times1 : `np.array` + Event arrival times of channel 1 + times2 : `np.array` + Event arrival times of channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for `AveragedCrossspectrum`. + gti : [[gti0, gti1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + """ + + return crossspectrum_from_time_array( + times1, + times2, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + @staticmethod + def from_events( + events1, + events2, + dt, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two event lists + + Parameters + ---------- + events1 : `stingray.EventList` + Events from channel 1 + events2 : `stingray.EventList` + Events from channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + """ + + return crossspectrum_from_events( + events1, + events2, + dt, + segment_size=segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + +
+[docs] + @staticmethod + def from_lightcurve( + lc1, + lc2, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + lc1 : `stingray.Lightcurve` + Light curve from channel 1 + lc2 : `stingray.Lightcurve` + Light curve from channel 2 + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + """ + return crossspectrum_from_lightcurve( + lc1, + lc2, + segment_size=segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + +
+[docs] + @staticmethod + def from_stingray_timeseries( + ts1, + ts2, + flux_attr, + error_flux_attr=None, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + ts1 : `stingray.Timeseries` + Time series from channel 1 + ts2 : `stingray.Timeseries` + Time series from channel 2 + flux_attr : `str` + What attribute of the time series will be used. + + Other parameters + ---------------- + error_flux_attr : `str` + What attribute of the time series will be used as error bar. + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + """ + return crossspectrum_from_timeseries( + ts1, + ts2, + flux_attr=flux_attr, + error_flux_attr=error_flux_attr, + segment_size=segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + +
+[docs] + @staticmethod + def from_lc_iterable( + iter_lc1, + iter_lc2, + dt, + segment_size, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + ): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 1. If arrays, use them as counts + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 2. If arrays, use them as counts + dt : float + The time resolution of the light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + save_all : bool, default False + If True, save the cross spectrum of each segment in the ``cs_all`` + attribute of the output :class:`Crossspectrum` object. + """ + + return crossspectrum_from_lc_iterable( + iter_lc1, + iter_lc2, + dt, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + )
+ + + def _initialize_from_any_input( + self, + data1, + data2, + dt=None, + segment_size=None, + norm="frac", + power_type="all", + silent=False, + fullspec=False, + gti=None, + use_common_mean=True, + save_all=False, + ): + """Initialize the class, trying to understand the input types. + + The input arguments are the same as ``__init__()``. Based on the type + of ``data1``, this method will call the appropriate + ``crossspectrum_from_XXXX`` function, and initialize ``self`` with + the correct attributes. + """ + if segment_size is None and isinstance(data1, StingrayObject): + common_gti = cross_two_gtis(data1.gti, data2.gti) + data1.gti = common_gti + data2.gti = common_gti + data1 = data1.apply_gtis(inplace=False) + data2 = data2.apply_gtis(inplace=False) + + data1_is_binned = ( + "counts" in data1.array_attrs() or "_counts" in data1.internal_array_attrs() + ) + data2_is_binned = ( + "counts" in data2.array_attrs() or "_counts" in data2.internal_array_attrs() + ) + + if data1_is_binned and data2_is_binned: + assert data2.time.size == data1.time.size and np.allclose( + data2.time - data1.time, 0 + ), "Time arrays are not the same" + elif data1_is_binned or data2_is_binned: + raise ValueError("Please use input data of the same kind") + + if isinstance(data1, EventList): + spec = crossspectrum_from_events( + data1, + data2, + dt, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + elif isinstance(data1, Lightcurve): + spec = crossspectrum_from_lightcurve( + data1, + data2, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + spec.lc1 = data1 + spec.lc2 = data2 + elif isinstance(data1, (tuple, list)): + dt = data1[0].dt + # This is a list of light curves. + spec = crossspectrum_from_lc_iterable( + data1, + data2, + dt, + segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + gti=gti, + use_common_mean=use_common_mean, + save_all=save_all, + ) + else: # pragma: no cover + raise TypeError(f"Bad inputs to Crosssspectrum: {type(data1)}") + + for key, val in spec.__dict__.items(): + setattr(self, key, val) + return + + def _initialize_empty(self): + """Set all attributes to None.""" + self.freq = None + self.power = None + self.power_err = None + self.unnorm_power = None + self.unnorm_power_err = None + self.df = None + self.dt = None + self.nphots1 = None + self.nphots2 = None + self.m = 1 + self.n = None + self.fullspec = None + self.k = 1 + return + +
+[docs] + def deadtime_correct( + self, dead_time, rate, background_rate=0, limit_k=200, n_approx=None, paralyzable=False + ): + """ + Correct the power spectrum for dead time effects. + + This correction is based on the formula given in Zhang et al. 2015, assuming + a constant dead time for all events. + For more advanced dead time corrections, see the FAD method from `stingray.deadtime.fad` + + Parameters + ---------- + dead_time: float + The dead time of the detector. + rate : float + Detected source count rate + + Other Parameters + ---------------- + background_rate : float, default 0 + Detected background count rate. This is important to estimate when deadtime is given by the + combination of the source counts and background counts (e.g. in an imaging X-ray detector). + paralyzable: bool, default False + If True, the dead time correction is done assuming a paralyzable + dead time. If False, the correction is done assuming a non-paralyzable + (more common) dead time. + limit_k : int, default 200 + Limit to this value the number of terms in the inner loops of + calculations. Check the plots returned by the `check_B` and + `check_A` functions to test that this number is adequate. + n_approx : int, default None + Number of bins to calculate the model power spectrum. If None, it will use the size of + the input frequency array. Relatively simple models (e.g., low count rates compared to + dead time) can use a smaller number of bins to speed up the calculation, and the final + power values will be interpolated. + + Returns + ------- + spectrum: :class:`Crossspectrum` or derivative. + The dead-time corrected spectrum. + """ + # I put it here to avoid circular imports + from stingray.deadtime import non_paralyzable_dead_time_model + + if paralyzable: + raise NotImplementedError("Paralyzable dead time correction is not implemented yet.") + + model = non_paralyzable_dead_time_model( + self.freq, + dead_time, + rate, + bin_time=self.dt, + limit_k=limit_k, + background_rate=background_rate, + n_approx=n_approx, + ) + correction = 2 / model + new_spec = copy.deepcopy(self) + new_spec.power *= correction + + # Now correct internal attributes for both the spectrum and its possible + # sub-spectra (PDSs from single channels, dynamical spectra, etc.) + objects = [new_spec] + if hasattr(new_spec, "pds1"): + objects += [new_spec.pds1, new_spec.pds2] + + for obj in objects: + for attr in ["unnorm_power", "power_err", "unnorm_power_err"]: + if hasattr(obj, attr): + setattr(obj, attr, getattr(obj, attr) * correction) + + for attr in ["cs_all", "unnorm_cs_all"]: + if hasattr(new_spec, attr): + dynsp = getattr(new_spec, attr) + for i, power in enumerate(dynsp): + dynsp[i] = power * correction + + return new_spec
+
+ + + +
+[docs] +class AveragedCrossspectrum(Crossspectrum): + type = "crossspectrum" + """ + Make an averaged cross spectrum from a light curve by segmenting two + light curves, Fourier-transforming each segment and then averaging the + resulting cross spectra. + + Parameters + ---------- + data1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object + A light curve from which to compute the cross spectrum. In some cases, + this would be the light curve of the wavelength/energy/frequency band + of interest. + + data2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object + A second light curve to use in the cross spectrum. In some cases, this + would be the wavelength/energy/frequency reference band to compare the + band of interest with. + + segment_size: float + The size of each segment to average. Note that if the total duration of + each :class:`Lightcurve` object in ``lc1`` or ``lc2`` is not an + integer multiple of the ``segment_size``, then any fraction left-over + at the end of the time series will be lost. Otherwise you introduce + artifacts. + + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + Other Parameters + ---------------- + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + + dt : float + The time resolution of the light curve. Only needed when constructing + light curves in the case where data1 or data2 are of :class:EventList + + power_type: string, optional, default ``all`` + Parameter to choose among complete, real part and magnitude of + the cross spectrum. + + silent : bool, default False + Do not show a progress bar when generating an averaged cross spectrum. + Useful for the batch execution of many spectra + + lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data1``, but no + :class:`stingray.events.EventList` objects allowed + + lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects + For backwards compatibility only. Like ``data2``, but no + :class:`stingray.events.EventList` objects allowed + + fullspec: boolean, optional, default ``False`` + If True, return the full array of frequencies, otherwise return just the + positive frequencies. + + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!) + + use_common_mean: bool + Averaged cross spectra are normalized in two possible ways: one is by normalizing + each of the single spectra that get averaged, the other is by normalizing after the + averaging. If `use_common_mean` is selected, the spectrum will be normalized + after the average. + + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + + Attributes + ---------- + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + power: numpy.ndarray + The array of cross spectra. + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging power spectra of segments of a light curve). + Note that for a single realization (``m=1``) the error is equal to the + power. + + df: float + The frequency resolution. + + m: int + The number of averaged cross spectra. + + n: int + The number of time bins per segment of light curve. + + nphots1: float + The total number of photons in the first (interest) light curve. + + nphots2: float + The total number of photons in the second (reference) light curve. + + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. + """ + + def __init__( + self, + data1=None, + data2=None, + segment_size=None, + norm="frac", + gti=None, + power_type="all", + silent=False, + lc1=None, + lc2=None, + dt=None, + fullspec=False, + save_all=False, + use_common_mean=True, + skip_checks=False, + ): + self._type = None + # for backwards compatibility + if data1 is None: + data1 = lc1 + if data2 is None: + data2 = lc2 + + empty = data1 is None and data2 is None + good_input = not empty + + if not skip_checks: + good_input = self.initial_checks( + data1=data1, + data2=data2, + norm=norm, + gti=gti, + lc1=lc1, + lc2=lc2, + power_type=power_type, + dt=dt, + fullspec=fullspec, + segment_size=segment_size, + ) + norm = norm.lower() + self.norm = norm + self.dt = dt + self.save_all = save_all + self.segment_size = segment_size + self.show_progress = not silent + + if empty or not good_input: + return self._initialize_empty() + + if isinstance(data1, Generator): + warnings.warn( + "The averaged Cross spectrum from a generator of " + "light curves pre-allocates the full list of light " + "curves, losing all advantage of lazy loading. If it " + "is important for you, use the " + "AveragedCrossspectrum.from_lc_iterable static " + "method, specifying the sampling time `dt`." + ) + data1 = list(data1) + data2 = list(data2) + + return self._initialize_from_any_input( + data1, + data2, + dt=dt, + segment_size=segment_size, + gti=gti, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + save_all=save_all, + ) + +
+[docs] + def initial_checks(self, data1, segment_size=None, **kwargs): + """ + + Examples + -------- + >>> times = np.arange(0, 10) + >>> ev1 = EventList(times) + >>> ev2 = EventList(times) + >>> ac = AveragedCrossspectrum() + + If AveragedCrossspectrum, you need ``segment_size`` + >>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) + Traceback (most recent call last): + ... + ValueError: segment_size must be specified... + + And it needs to be finite! + >>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) + Traceback (most recent call last): + ... + ValueError: segment_size must be finite! + """ + good = Crossspectrum.initial_checks(self, data1, segment_size=segment_size, **kwargs) + if not good: + return False + if isinstance(self, AveragedCrossspectrum) and segment_size is None and data1 is not None: + raise ValueError("segment_size must be specified") + + if ( + isinstance(self, AveragedCrossspectrum) + and segment_size is not None + and not np.isfinite(segment_size) + ): + raise ValueError("segment_size must be finite!") + return True
+ + +
+[docs] + def coherence(self): + """Averaged Coherence function. + + + Coherence is defined in Vaughan and Nowak, 1996 [#]_. + It is a Fourier frequency dependent measure of the linear correlation + between time series measured simultaneously in two energy channels. + + Compute an averaged Coherence function of cross spectrum by computing + coherence function of each segment and averaging them. The return type + is a tuple with first element as the coherence function and the second + element as the corresponding uncertainty associated with it. + + Note : The uncertainty in coherence function is strictly valid for Gaussian \ + statistics only. + + Returns + ------- + (coh, uncertainty) : tuple of np.ndarray + Tuple comprising the coherence function and uncertainty. + + References + ---------- + .. [#] https://iopscience.iop.org/article/10.1086/310430 + """ + if np.any(self.m < 50): + simon( + "Number of segments used in averaging is " + "significantly low. The result might not follow the " + "expected statistical distributions." + ) + c = self.unnorm_power + p1 = self.pds1.unnorm_power + p2 = self.pds2.unnorm_power + + meanrate1 = self.nphots1 / self.n / self.dt + meanrate2 = self.nphots2 / self.n / self.dt + + P1noise = poisson_level(norm="none", meanrate=meanrate1, n_ph=self.nphots1) + P2noise = poisson_level(norm="none", meanrate=meanrate2, n_ph=self.nphots2) + + coh = raw_coherence(c, p1, p2, P1noise, P2noise, self.n) + + # Calculate uncertainty + uncertainty = (2**0.5 * coh * (1 - coh)) / (np.sqrt(coh) * self.m**0.5) + + uncertainty[coh == 0] = 0.0 + + return (coh, uncertainty)
+ + +
+[docs] + def phase_lag(self): + """Return the fourier phase lag of the cross spectrum.""" + lag = np.angle(self.unnorm_power) + coh, uncert = self.coherence() + + dum = (1.0 - coh) / (2.0 * coh) + + dum[coh == 0] = 0.0 + + lag_err = np.sqrt(dum / self.m) + return lag, lag_err
+ + +
+[docs] + def time_lag(self): + """Calculate time lag and uncertainty. + + Equation from Bendat & Piersol, 2011 [bendat-2011]__. + + Returns + ------- + lag : np.ndarray + The time lag + + lag_err : np.ndarray + The uncertainty in the time lag + """ + ph_lag, ph_lag_err = self.phase_lag() + + lag = ph_lag / (2 * np.pi * self.freq) + lag_err = ph_lag_err / (2 * np.pi * self.freq) + + return lag, lag_err
+
+ + + +class DynamicalCrossspectrum(AveragedCrossspectrum): + type = "crossspectrum" + """ + Create a dynamical cross spectrum, also often called a *spectrogram*. + + This class will divide two :class:`Lightcurve` objects into segments of + length ``segment_size``, create a cross spectrum for each segment and store + all powers in a matrix as a function of both time (using the mid-point of + each segment) and frequency. + + This is often used to trace changes in period of a (quasi-)periodic signal + over time. + + Parameters + ---------- + data1 : :class:`stingray.Lightcurve` or :class:`stingray.EventList` object + The time series or event list from the subject band, or channel, for which + the dynamical cross spectrum is to be calculated. If :class:`stingray.EventList`, ``dt`` + must be specified as well. + + data2 : :class:`stingray.Lightcurve` or :class:`stingray.EventList` object + The time series or event list from the reference band, or channel, of the dynamical + cross spectrum. If :class:`stingray.EventList`, ``dt`` must be specified as well. + + segment_size : float, default 1 + Length of the segment of light curve, default value is 1 (in whatever + units the ``time`` array in the :class:`Lightcurve`` object uses). + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normaliation of the periodogram to be used. + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the cross spectrum. + + sample_time: float + Compulsory for input :class:`stingray.EventList` data. The time resolution of the + lightcurve that is created internally from the input event lists. Drives the + Nyquist frequency. + + Attributes + ---------- + segment_size: float + The size of each segment to average. Note that if the total + duration of each input object in lc is not an integer multiple + of the ``segment_size``, then any fraction left-over at the end of the + time series will be lost. + + dyn_ps : np.ndarray + The matrix of normalized squared absolute values of Fourier + amplitudes. The axis are given by the ``freq`` + and ``time`` attributes. + + norm: {``leahy`` | ``frac`` | ``abs`` | ``none``} + The normalization of the periodogram. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + time: numpy.ndarray + The array of mid-point times of each interval used for the dynamical + power spectrum. + + df: float + The frequency resolution. + + dt: float + The time resolution of the dynamical spectrum. It is **not** the time resolution of the + input light curve. It is the integration time of each line of the dynamical power + spectrum (typically, an integer multiple of ``segment_size``). + + m: int + The number of averaged powers in each spectral bin (initially 1, it changes after rebinning). + """ + + def __init__( + self, data1=None, data2=None, segment_size=None, norm="frac", gti=None, sample_time=None + ): + self.segment_size = segment_size + self.sample_time = sample_time + self.gti = gti + self.norm = norm + + if segment_size is None and data1 is None and data2 is None: + self._initialize_empty() + self.dyn_ps = None + return + + if segment_size is None or data1 is None or data2 is None: + raise TypeError("data1, data2, and segment_size must all be specified") + + if isinstance(data1, EventList) and sample_time is None: + raise ValueError("To pass input event lists, please specify sample_time") + elif isinstance(data1, Lightcurve): + sample_time = data1.dt + if segment_size > data1.tseg: + raise ValueError( + "Length of the segment is too long to create " + "any segments of the light curve!" + ) + if segment_size < 2 * sample_time: + raise ValueError("Length of the segment is too short to form a light curve!") + + self._make_matrix(data1, data2) + + def _make_matrix(self, data1, data2): + """ + Create a matrix of powers for each time step and each frequency step. + + Time increases with row index, frequency with column index. + + Parameters + ---------- + data1 : :class:`Lightcurve` or :class:`EventList` + The object providing the subject band/channel for the dynamical + cross spectrum. + data2 : :class:`Lightcurve` or :class:`EventList` + The object providing the reference band for the dynamical + cross spectrum. + """ + avg = AveragedCrossspectrum( + data1, + data2, + dt=self.sample_time, + segment_size=self.segment_size, + norm=self.norm, + gti=self.gti, + save_all=True, + ) + self.dyn_ps = np.array(avg.cs_all).T + conv = avg.cs_all / avg.unnorm_cs_all + self.unnorm_conversion = np.nanmean(conv) + self.freq = avg.freq + current_gti = avg.gti + self.nphots1 = avg.nphots1 + self.nphots2 = avg.nphots2 + + tstart, _ = time_intervals_from_gtis(current_gti, self.segment_size) + + self.time = tstart + 0.5 * self.segment_size + self.df = avg.df + self.dt = self.segment_size + self.m = 1 + + def rebin_frequency(self, df_new, method="average"): + """ + Rebin the Dynamic Power Spectrum to a new frequency resolution. + Rebinning is an in-place operation, i.e. will replace the existing + ``dyn_ps`` attribute. + + While the new resolution does not need to be an integer of the previous frequency + resolution, be aware that if this is the case, the last frequency bin will be cut + off by the fraction left over by the integer division + + Parameters + ---------- + df_new: float + The new frequency resolution of the dynamical power spectrum. + Must be larger than the frequency resolution of the old dynamical + power spectrum! + + method: {"sum" | "mean" | "average"}, optional, default "average" + This keyword argument sets whether the powers in the new bins + should be summed or averaged. + """ + new_dynspec_object = copy.deepcopy(self) + dynspec_new = [] + for data in self.dyn_ps.T: + freq_new, bin_counts, bin_err, step = rebin_data( + self.freq, data, dx_new=df_new, method=method + ) + dynspec_new.append(bin_counts) + + new_dynspec_object.freq = freq_new + new_dynspec_object.dyn_ps = np.array(dynspec_new).T + new_dynspec_object.df = df_new + new_dynspec_object.m = int(step) * self.m + + return new_dynspec_object + + def rebin_time(self, dt_new, method="average"): + """ + Rebin the Dynamic Power Spectrum to a new time resolution. + + Note: this is *not* changing the time resolution of the input light + curve! ``dt`` is the integration time of each line of the dynamical power + spectrum (typically, an integer multiple of ``segment_size``). + + While the new resolution does not need to be an integer of the previous time + resolution, be aware that if this is the case, the last time bin will be cut + off by the fraction left over by the integer division + + Parameters + ---------- + dt_new: float + The new time resolution of the dynamical power spectrum. + Must be larger than the time resolution of the old dynamical power + spectrum! + + method: {"sum" | "mean" | "average"}, optional, default "average" + This keyword argument sets whether the powers in the new bins + should be summed or averaged. + + Returns + ------- + time_new: numpy.ndarray + Time axis with new rebinned time resolution. + + dynspec_new: numpy.ndarray + New rebinned Dynamical Cross Spectrum. + """ + if dt_new < self.dt: + raise ValueError("New time resolution must be larger than old time resolution!") + + new_dynspec_object = copy.deepcopy(self) + + dynspec_new = [] + for data in self.dyn_ps: + time_new, bin_counts, _, step = rebin_data( + self.time, data, dt_new, method=method, dx=self.dt + ) + dynspec_new.append(bin_counts) + + new_dynspec_object.time = time_new + new_dynspec_object.dyn_ps = np.array(dynspec_new) + new_dynspec_object.dt = dt_new + new_dynspec_object.m = int(step) * self.m + return new_dynspec_object + + def rebin_by_n_intervals(self, n, method="average"): + """ + Rebin the Dynamic Power Spectrum to a new time resolution, by summing contiguous intervals. + + This is different from meth:`DynamicalPowerspectrum.rebin_time` in that it averages ``n`` + consecutive intervals regardless of their distance in time. ``rebin_time`` will instead + average intervals that are separated at most by a time ``dt_new``. + + Parameters + ---------- + n: int + The number of intervals to be combined into one. + + method: {"sum" | "mean" | "average"}, optional, default "average" + This keyword argument sets whether the powers in the new bins + should be summed or averaged. + + Returns + ------- + time_new: numpy.ndarray + Time axis with new rebinned time resolution. + + dynspec_new: numpy.ndarray + New rebinned Dynamical Cross Spectrum. + """ + if not np.issubdtype(type(n), np.integer): + warnings.warn("n must be an integer. Casting to int") + + n = int(n) + + if n == 1: + return copy.deepcopy(self) + if n < 1: + raise ValueError("n must be >= 1") + + new_dynspec_object = copy.deepcopy(self) + + dynspec_new = [] + time_new = [] + for i, data in enumerate(self.dyn_ps.T): + if i % n == 0: + count = 1 + bin_counts = data + bin_times = self.time[i] + else: + count += 1 + bin_counts += data + bin_times += self.time[i] + if count == n: + if method in ["mean", "average"]: + bin_counts /= n + dynspec_new.append(bin_counts) + bin_times /= n + time_new.append(bin_times) + + new_dynspec_object.time = time_new + new_dynspec_object.dyn_ps = np.array(dynspec_new).T + new_dynspec_object.dt *= n + new_dynspec_object.m = n * self.m + + return new_dynspec_object + + def trace_maximum(self, min_freq=None, max_freq=None): + """ + Return the indices of the maximum powers in each segment + :class:`Powerspectrum` between specified frequencies. + + Parameters + ---------- + min_freq: float, default ``None`` + The lower frequency bound. + + max_freq: float, default ``None`` + The upper frequency bound. + + Returns + ------- + max_positions : np.array + The array of indices of the maximum power in each segment having + frequency between ``min_freq`` and ``max_freq``. + """ + if min_freq is None: + min_freq = np.min(self.freq) + if max_freq is None: + max_freq = np.max(self.freq) + + max_positions = [] + for ps in self.dyn_ps.T: + indices = np.logical_and(self.freq <= max_freq, min_freq <= self.freq) + max_power = np.max(ps[indices]) + max_positions.append(np.where(ps == max_power)[0][0]) + + return np.array(max_positions) + + def shift_and_add(self, f0_list, nbins=100, output_obj_type=AveragedCrossspectrum, rebin=None): + """Shift and add the dynamical cross spectrum. + + This is the basic operation for the shift-and-add operation used to track + kHz QPOs in X-ray binaries (e.g. Méndez et al. 1998, ApJ, 494, 65). + + Parameters + ---------- + freqs : np.array + Array of frequencies, the same for all powers. Must be sorted and on a uniform + grid. + power_list : list of np.array + List of power spectra. Each power spectrum must have the same length + as the frequency array. + f0_list : list of float + List of central frequencies + + Other parameters + ---------------- + nbins : int, default 100 + Number of bins to extract + rebin : int, default None + Rebin the final spectrum by this factor. At the moment, the rebinning + is linear. + output_obj_type : class, default :class:`AveragedCrossspectrum` + The type of the output object. Can be, e.g. :class:`AveragedCrossspectrum` or + :class:`AveragedPowerspectrum`. + + Returns + ------- + output: :class:`AveragedPowerspectrum` or :class:`AveragedCrossspectrum` + The final averaged power spectrum. + + Examples + -------- + >>> power_list = [[2, 5, 2, 2, 2], [1, 1, 5, 1, 1], [3, 3, 3, 5, 3]] + >>> power_list = np.array(power_list).T + >>> freqs = np.arange(5) * 0.1 + >>> f0_list = [0.1, 0.2, 0.3, 0.4] + >>> dps = DynamicalCrossspectrum() + >>> dps.dyn_ps = power_list + >>> dps.freq = freqs + >>> dps.df = 0.1 + >>> dps.m = 1 + >>> output = dps.shift_and_add(f0_list, nbins=5) + >>> assert np.array_equal(output.m, [2, 3, 3, 3, 2]) + >>> assert np.array_equal(output.power, [2. , 2. , 5. , 2. , 1.5]) + >>> assert np.allclose(output.freq, [0.05, 0.15, 0.25, 0.35, 0.45]) + """ + from .fourier import shift_and_add + + final_freqs, final_powers, count = shift_and_add( + self.freq, self.dyn_ps.T, f0_list, nbins=nbins, M=self.m, df=self.df, rebin=rebin + ) + + output = output_obj_type() + good = ~np.isnan(final_powers) + + output.freq = final_freqs[good] + output.power = final_powers[good] + output.m = count[good] + output.df = self.df + output.norm = self.norm + output.gti = self.gti + output.segment_size = self.segment_size + + return output + + def power_colors( + self, + freq_edges=[1 / 256, 1 / 32, 0.25, 2.0, 16.0], + freqs_to_exclude=None, + poisson_power=0, + ): + """ + Compute the power colors of the dynamical power spectrum. + + See Heil et al. 2015, MNRAS, 448, 3348 + + Parameters + ---------- + freq_edges: iterable + The edges of the frequency bins to be used for the power colors. + + freqs_to_exclude : 1-d or 2-d iterable, optional, default None + The ranges of frequencies to exclude from the calculation of the power color. + For example, the frequencies containing strong QPOs. + A 1-d iterable should contain two values for the edges of a single range. (E.g. + ``[0.1, 0.2]``). ``[[0.1, 0.2], [3, 4]]`` will exclude the ranges 0.1-0.2 Hz and + 3-4 Hz. + + poisson_power : float or iterable, optional, default 0 + The Poisson noise level of the power spectrum. If iterable, it should have the same + length as ``freq``. (This might apply to the case of a power spectrum with a + strong dead time distortion) + + Returns + ------- + pc0: np.ndarray + pc0_err: np.ndarray + pc1: np.ndarray + pc1_err: np.ndarray + The power colors for each spectrum and their respective errors + """ + power_colors = [] + if np.iscomplexobj(self.dyn_ps): + warnings.warn("When using power_colors, complex powers will be cast to real.") + + for ps in self.dyn_ps.T: + power_colors.append( + power_color( + self.freq, + ps.real, + freq_edges=freq_edges, + freqs_to_exclude=freqs_to_exclude, + df=self.df, + poisson_power=poisson_power, + m=self.m, + ) + ) + + pc0, pc0_err, pc1, pc1_err = np.array(power_colors).T + return pc0, pc0_err, pc1, pc1_err + + def compute_rms(self, min_freq, max_freq, poisson_noise_level=0): + """ + Compute the fractional rms amplitude in the power spectrum + between two frequencies. + + Parameters + ---------- + min_freq: float + The lower frequency bound for the calculation. + + max_freq: float + The upper frequency bound for the calculation. + + Other parameters + ---------------- + poisson_noise_level : float, default is None + This is the Poisson noise level of the PDS with same + normalization as the PDS. + + Returns + ------- + rms: float + The fractional rms amplitude contained between ``min_freq`` and + ``max_freq``. + + rms_err: float + The error on the fractional rms amplitude. + + """ + dyn_ps_unnorm = self.dyn_ps / self.unnorm_conversion + poisson_noise_unnrom = poisson_noise_level / self.unnorm_conversion + if not hasattr(self, "nphots"): + nphots = (self.nphots1 * self.nphots2) ** 0.5 + else: + nphots = self.nphots + + good = (self.freq >= min_freq) & (self.freq <= max_freq) + + M_freq = self.m + if isinstance(self.m, Iterable): + M_freq = self.m[good] + + rmss = [] + rms_errs = [] + + for unnorm_powers in dyn_ps_unnorm.T: + r, re = get_rms_from_unnorm_periodogram( + unnorm_powers[good], + nphots, + self.df, + M=M_freq, + poisson_noise_unnorm=poisson_noise_unnrom, + segment_size=self.segment_size, + kind="frac", + ) + + rmss.append(r) + rms_errs.append(re) + return rmss, rms_errs + + +def crossspectrum_from_time_array( + times1, + times2, + dt, + segment_size=None, + gti=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + save_all=False, +): + """Calculate AveragedCrossspectrum from two arrays of event times. + + Parameters + ---------- + times1 : `np.array` + Event arrival times of channel 1 + times2 : `np.array` + Event arrival times of channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be averaged + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + results = avg_cs_from_timeseries( + times1, + times2, + gti, + segment_size, + dt, + norm=norm, + use_common_mean=use_common_mean, + fullspec=fullspec, + silent=silent, + power_type=power_type, + return_auxil=True, + return_subcs=save_all, + ) + + return _create_crossspectrum_from_result_table(results, force_averaged=force_averaged) + + +def crossspectrum_from_events( + events1, + events2, + dt, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two event lists + + Parameters + ---------- + events1 : `stingray.EventList` + Events from channel 1 + events2 : `stingray.EventList` + Events from channel 2 + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float, default None + The length, in seconds, of the light curve segments that will be averaged + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + + if gti is None: + gti = cross_two_gtis(events1.gti, events2.gti) + + return crossspectrum_from_time_array( + events1.time, + events2.time, + dt, + segment_size, + gti, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + save_all=save_all, + ) + + +def crossspectrum_from_lightcurve( + lc1, + lc2, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + lc1 : `stingray.Lightcurve` + Light curve from channel 1 + lc2 : `stingray.Lightcurve` + Light curve from channel 2 + + Other parameters + ---------------- + segment_size : float, default None + The length, in seconds, of the light curve segments that will be averaged + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + save_all : bool, default False + Save all intermediate spectra used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + error_flux_attr = None + + if lc1.err_dist == "gauss": + error_flux_attr = "_counts_err" + + return crossspectrum_from_timeseries( + lc1, + lc2, + "_counts", + error_flux_attr=error_flux_attr, + segment_size=segment_size, + norm=norm, + power_type=power_type, + silent=silent, + fullspec=fullspec, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + + +def crossspectrum_from_timeseries( + ts1, + ts2, + flux_attr, + error_flux_attr=None, + segment_size=None, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two time series + + Parameters + ---------- + ts1 : `stingray.StingrayTimeseries` + Time series from channel 1 + ts2 : `stingray.StingrayTimeseries` + Time series from channel 2 + flux_attr : `str` + What attribute of the time series will be used. + + Other parameters + ---------------- + error_flux_attr : `str` + What attribute of the time series will be used as error bar. + segment_size : float, default None + The length, in seconds, of the light curve segments that will be averaged + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects + save_all : bool, default False + Save all intermediate spectra used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + if gti is None: + gti = cross_two_gtis(ts1.gti, ts2.gti) + + err1 = err2 = None + if error_flux_attr is not None: + err1 = getattr(ts1, error_flux_attr) + err2 = getattr(ts2, error_flux_attr) + + results = avg_cs_from_timeseries( + ts1.time, + ts2.time, + gti, + segment_size, + ts1.dt, + norm=norm, + use_common_mean=use_common_mean, + fullspec=fullspec, + silent=silent, + power_type=power_type, + fluxes1=getattr(ts1, flux_attr), + fluxes2=getattr(ts2, flux_attr), + errors1=err1, + errors2=err2, + return_auxil=True, + return_subcs=save_all, + ) + + return _create_crossspectrum_from_result_table(results, force_averaged=force_averaged) + + +def crossspectrum_from_lc_iterable( + iter_lc1, + iter_lc2, + dt, + segment_size, + norm="none", + power_type="all", + silent=False, + fullspec=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate AveragedCrossspectrum from two light curves + + Parameters + ---------- + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 1. If arrays, use them as counts + iter_lc1 : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves from channel 2. If arrays, use them as counts + dt : float + The time resolution of the light curves + (sets the Nyquist frequency) + segment_size : float + The length, in seconds, of the light curve segments that will be averaged + + Other parameters + ---------------- + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + fullspec : bool, default False + Return the full periodogram, including negative frequencies + silent : bool, default False + Silence the progress bars + power_type : str, default 'all' + If 'all', give complex powers. If 'abs', the absolute value; if 'real', + the real part + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. The GTIs of the input light curves are + intersected with these. + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + + common_gti = gti + + def iterate_lc_counts(iter_lc): + for lc in iter_lc: + if hasattr(lc, "counts"): + n_bin = np.rint(segment_size / lc.dt).astype(int) + + gti = lc.gti + if common_gti is not None: + gti = cross_two_gtis(common_gti, lc.gti) + + err = None + if lc.err_dist == "gauss": + err = lc.counts_err + + flux_iterable = get_flux_iterable_from_segments( + lc.time, gti, segment_size, n_bin, fluxes=lc.counts, errors=err + ) + for out in flux_iterable: + yield out + else: + yield lc + + results = avg_cs_from_iterables( + iterate_lc_counts(iter_lc1), + iterate_lc_counts(iter_lc2), + dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + fullspec=fullspec, + power_type=power_type, + return_auxil=True, + return_subcs=save_all, + ) + return _create_crossspectrum_from_result_table(results, force_averaged=force_averaged) + + +def _create_crossspectrum_from_result_table(table, force_averaged=False): + """Copy the columns and metadata from the results of + ``stingray.fourier.avg_cs_from_XX`` functions into + `AveragedCrossspectrum` or `Crossspectrum` objects. + + By default, allocates a Crossspectrum object if the number of + averaged spectra is 1, otherwise an AveragedCrossspectrum. + If the user specifies ``force_averaged=True``, it always allocates + an AveragedCrossspectrum. + + Parameters + ---------- + table : `astropy.table.Table` + results of `avg_cs_from_iterables` or `avg_cs_from_iterables_quick` + + Other parameters + ---------------- + force_averaged : bool, default False + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + if table.meta["m"] > 1 or force_averaged: + cs = AveragedCrossspectrum() + cs.pds1 = AveragedCrossspectrum() + cs.pds2 = AveragedCrossspectrum() + else: + cs = Crossspectrum() + cs.pds1 = Crossspectrum() + cs.pds2 = Crossspectrum() + + cs.freq = cs.pds1.freq = cs.pds2.freq = np.array(table["freq"]) + cs.norm = cs.pds1.norm = cs.pds2.norm = table.meta["norm"] + + cs.power = np.array(table["power"]) + cs.pds1.power = np.array(table["pds1"]) + cs.pds2.power = np.array(table["pds2"]) + cs.unnorm_power = np.array(table["unnorm_power"]) + cs.pds1.unnorm_power = np.array(table["unnorm_pds1"]) + cs.pds2.unnorm_power = np.array(table["unnorm_pds2"]) + + cs.pds1.type = cs.pds2.type = "powerspectrum" + + if "subcs" in table.meta: + cs.cs_all = np.array(table.meta["subcs"]) + cs.unnorm_cs_all = np.array(table.meta["unnorm_subcs"]) + + for attr, val in table.meta.items(): + if not attr.endswith("subcs"): + setattr(cs, attr, val) + setattr(cs.pds1, attr, val) + setattr(cs.pds2, attr, val) + + cs.err_dist = "poisson" + if cs.variance is not None: + cs.err_dist = cs.pds1.err_dist = cs.pds2.err_dist = "gauss" + + # Transform nphods1 in nphots for pds1, etc. + for attr, val in table.meta.items(): + if attr.endswith("1"): + setattr(cs.pds1, attr[:-1], val) + if attr.endswith("2"): + setattr(cs.pds2, attr[:-1], val) + + # I start from unnormalized, and I normalize after correcting for bad error values + P1noise = poisson_level(norm="none", meanrate=cs.countrate1, n_ph=cs.nphots1) + P2noise = poisson_level(norm="none", meanrate=cs.countrate2, n_ph=cs.nphots2) + + dRe, dIm, _, _ = error_on_averaged_cross_spectrum( + cs.unnorm_power, + cs.pds1.unnorm_power, + cs.pds2.unnorm_power, + cs.m, + P1noise, + P2noise, + common_ref="False", + ) + + bad = np.isnan(dRe) | np.isnan(dIm) + + if np.any(bad): + warnings.warn( + "Some error bars in the Averaged Crossspectrum are invalid." + "Defaulting to sqrt(2 / M) in Leahy norm, rescaled to the appropriate norm." + ) + + Nph = np.sqrt(cs.nphots1 * cs.nphots2) + default_err = np.sqrt(2 / cs.m) * Nph / 2 + + dRe[bad] = default_err + dIm[bad] = default_err + + power_err = dRe + 1.0j * dIm + + cs.unnorm_power_err = power_err + + mean = table.meta["mean"] + nph = table.meta["nphots"] + cs.power_err = normalize_periodograms( + power_err, cs.dt, cs.n, mean, n_ph=nph, variance=cs.variance, norm=cs.norm + ) + + cs.pds1.power_err = cs.pds1.power / np.sqrt(cs.pds1.m) + cs.pds2.power_err = cs.pds2.power / np.sqrt(cs.pds2.m) + cs.pds1.unnorm_power_err = cs.pds1.unnorm_power / np.sqrt(cs.pds1.m) + cs.pds2.unnorm_power_err = cs.pds2.unnorm_power / np.sqrt(cs.pds2.m) + + assert hasattr(cs, "df") + assert hasattr(cs, "dt") + return cs +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/deadtime/fad.html b/_modules/stingray/deadtime/fad.html new file mode 100644 index 000000000..8637c8221 --- /dev/null +++ b/_modules/stingray/deadtime/fad.html @@ -0,0 +1,562 @@ + + + + + + + stingray.deadtime.fad — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.deadtime.fad

+import warnings
+import numpy as np
+import scipy
+import matplotlib.pyplot as plt
+
+from scipy.ndimage import gaussian_filter1d
+from scipy.interpolate import UnivariateSpline
+from astropy.table import Table
+
+from stingray.lightcurve import Lightcurve
+from stingray.loggingconfig import setup_logger
+from ..crossspectrum import AveragedCrossspectrum, get_flux_generator
+from ..powerspectrum import AveragedPowerspectrum
+from ..fourier import normalize_periodograms, fft, fftfreq, positive_fft_bins
+from ..utils import show_progress
+from ..gti import cross_two_gtis
+
+
+__all__ = ["calculate_FAD_correction", "get_periodograms_from_FAD_results", "FAD"]
+
+logger = setup_logger()
+
+
+
+[docs] +def FAD( + data1, + data2, + segment_size, + dt=None, + norm="frac", + plot=False, + ax=None, + smoothing_alg="gauss", + smoothing_length=None, + verbose=False, + tolerance=0.05, + strict=False, + output_file=None, + return_objects=False, +): + r"""Calculate Frequency Amplitude Difference-corrected (cross)power spectra. + + Reference: Bachetti \& Huppenkothen, 2018, ApJ, 853L, 21 + + The two input light curve must be strictly simultaneous, and recorded by + two independent detectors with similar responses, so that the count rates + are similar and dead time is independent. + The method does not apply to different energy channels of the same + instrument, or to the signal observed by two instruments with very + different responses. See the paper for caveats. + + Parameters + ---------- + data1 : `Lightcurve` or `EventList` + Input data for channel 1 + data2 : `Lightcurve` or `EventList` + Input data for channel 2. Must be strictly simultaneous to ``data1`` + and, if a light curve, have the same binning time. Also, it must be + strictly independent, e.g. from a different detector. There must be + no dead time cross-talk between the two time series. + segment_size: float + The final Fourier products are averaged over many segments of the + input light curves. This is the length of each segment being averaged. + Note that the light curve must be long enough to have at least 30 + segments, as the result gets better as one averages more and more + segments. + dt : float + Time resolution of the light curves used to produce periodograms + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + + Other parameters + ---------------- + plot : bool, default False + Plot diagnostics: check if the smoothed Fourier difference scatter is + a good approximation of the data scatter. + ax : :class:`matplotlib.axes.axes` object + If not None and ``plot`` is True, use this axis object to produce + the diagnostic plot. Otherwise, create a new figure. + smoothing_alg : {'gauss', ...} + Smoothing algorithm. For now, the only smoothing algorithm allowed is + ``gauss``, which applies a Gaussian Filter from `scipy`. + smoothing_length : int, default ``segment_size * 3`` + Number of bins to smooth in gaussian window smoothing + verbose: bool, default False + Print out information on the outcome of the algorithm (recommended) + tolerance : float, default 0.05 + Accepted relative error on the FAD-corrected Fourier amplitude, to be + used as success diagnostics. + Should be + ``` + stdtheor = 2 / np.sqrt(n) + std = (average_corrected_fourier_diff / n).std() + np.abs((std - stdtheor) / stdtheor) < tolerance + ``` + strict : bool, default False + Decide what to do if the condition on tolerance is not met. If True, + raise a ``RuntimeError``. If False, just throw a warning. + output_file : str, default None + Name of an output file (any extension automatically recognized by + Astropy is fine) + + Returns + ------- + results : class:`astropy.table.Table` object or ``dict`` or ``str`` + The content of ``results`` depends on whether ``return_objects`` is + True or False. + If ``return_objects==False``, + ``results`` is a `Table` with the following columns: + + + pds1: the corrected PDS of ``lc1`` + + pds2: the corrected PDS of ``lc2`` + + cs: the corrected cospectrum + + ptot: the corrected PDS of lc1 + lc2 + + If ``return_objects`` is True, ``results`` is a ``dict``, with keys + named like the columns + listed above but with `AveragePowerspectrum` or + `AverageCrossspectrum` objects instead of arrays. + + """ + gti = cross_two_gtis(data1.gti, data2.gti) + data1.gti = data2.gti = gti + if isinstance(data1, Lightcurve): + dt = data1.dt + + flux_iterable1 = get_flux_generator(data1, segment_size, dt=dt) + flux_iterable2 = get_flux_generator(data2, segment_size, dt=dt) + # Initialize stuff + freq = None + # These will be the final averaged periodograms. Initializing with a single + # scalar 0, but the final products will be arrays. + pds1_unnorm = 0 + pds2_unnorm = 0 + ptot_unnorm = 0 + cs_unnorm = 0 + pds1 = 0 + pds2 = 0 + ptot = 0 + cs = 0j + M = 0 + nph1_tot = nph2_tot = nph_tot = 0 + average_diff = average_diff_uncorr = 0 + + if plot: + if ax is None: + fig, ax = plt.subplots() + + for flux1, flux2 in show_progress(zip(flux_iterable1, flux_iterable2)): + if flux1 is None or flux2 is None: + continue + + N = flux1.size + segment_size = N * dt + if smoothing_length is None: + smoothing_length = segment_size * 3 + if freq is None: + fgt0 = positive_fft_bins(N) + freq = fftfreq(N, dt)[fgt0] + + # Calculate the sum of each light curve, to calculate the mean + # This will + nph1 = flux1.sum() + nph2 = flux2.sum() + nphtot = nph1 + nph2 + + # Calculate the FFTs + f1 = fft(flux1)[fgt0] + f2 = fft(flux2)[fgt0] + ftot = fft(flux1 + flux2)[fgt0] + + f1_leahy = f1 * np.sqrt(2 / nph1) + f2_leahy = f2 * np.sqrt(2 / nph2) + ftot_leahy = ftot * np.sqrt(2 / nphtot) + + fourier_diff = f1_leahy - f2_leahy + if plot: + ax.scatter(freq, fourier_diff.real, s=1) + + if smoothing_alg == "gauss": + smooth_real = gaussian_filter1d(fourier_diff.real**2, smoothing_length) + else: + raise ValueError("Unknown smoothing algorithm: {}".format(smoothing_alg)) + + p1 = (f1 * f1.conj()).real + p1 = p1 / smooth_real * 2 + p2 = (f2 * f2.conj()).real + p2 = p2 / smooth_real * 2 + pt = (ftot * ftot.conj()).real + pt = pt / smooth_real * 2 + + c = f2 * f1.conj() + c = c / smooth_real * 2 + + nphgeom = np.sqrt(nph1 * nph2) + power1 = normalize_periodograms(p1, dt, N, nph1 / N, n_ph=nph1, norm=norm) + power2 = normalize_periodograms(p2, dt, N, nph2 / N, n_ph=nph2, norm=norm) + power_tot = normalize_periodograms(pt, dt, N, nphtot / N, n_ph=nphtot, norm=norm) + cs_power = normalize_periodograms(c, dt, N, nphgeom / N, n_ph=nphgeom, norm=norm) + + if M == 0 and plot: + ax.plot(freq, smooth_real, zorder=10, lw=3) + ax.plot(freq, f1_leahy.real, zorder=5, lw=1) + ax.plot(freq, f2_leahy.real, zorder=5, lw=1) + + # Save the unnormalised (but smoothed) powerspectra and cross-spectrum + pds1_unnorm += p1 + pds2_unnorm += p2 + ptot_unnorm += pt + cs_unnorm += c + + # Save the normalised and smoothed powerspectra and cross-spectrum + ptot += power_tot + pds1 += power1 + pds2 += power2 + cs += cs_power + + average_diff += fourier_diff / smooth_real**0.5 * np.sqrt(2) + average_diff_uncorr += fourier_diff + nph1_tot += nph1 + nph2_tot += nph2 + nph_tot += nphtot + M += 1 + + std = (average_diff / M).std() + stdtheor = 2 / np.sqrt(M) + stduncorr = (average_diff_uncorr / M).std() + is_compliant = np.abs((std - stdtheor) / stdtheor) < tolerance + verbose_string = """ + -------- FAD correction ---------- + I smoothed over {smoothing_length} power spectral bins + {M} intervals averaged. + The uncorrected standard deviation of the Fourier + differences is {stduncorr} (dead-time affected!) + The final standard deviation of the FAD-corrected + Fourier differences is {std}. For the results to be + acceptable, this should be close to {stdtheor} + to within {tolerance} %. + In this case, the results ARE {compl}complying. + {additional} + ---------------------------------- + """.format( + smoothing_length=smoothing_length, + M=M, + stduncorr=stduncorr, + std=std, + stdtheor=stdtheor, + tolerance=tolerance * 100, + compl="NOT " if not is_compliant else "", + additional="Maybe something is not right." if not is_compliant else "", + ) + + if verbose and is_compliant: + logger.info(verbose_string) + elif not is_compliant: + warnings.warn(verbose_string) + + if strict and not is_compliant: + raise RuntimeError("Results are not compliant, and `strict` mode " "selected. Exiting.") + + results = Table() + + results["freq"] = freq + results["pds1"] = pds1 / M + results["pds2"] = pds2 / M + results["cs"] = cs / M + results["ptot"] = ptot / M + results["pds1_unnorm"] = pds1_unnorm / M + results["pds2_unnorm"] = pds2_unnorm / M + results["cs_unnorm"] = cs_unnorm / M + results["ptot_unnorm"] = ptot_unnorm / M + results["fad"] = average_diff / M + results.meta["fad_delta"] = (std - stdtheor) / stdtheor + results.meta["is_compliant"] = is_compliant + results.meta["M"] = M + results.meta["dt"] = dt + results.meta["nph1"] = nph1_tot / M + results.meta["nph2"] = nph2_tot / M + results.meta["nph"] = nph_tot / M + results.meta["norm"] = norm + results.meta["smoothing_length"] = smoothing_length + results.meta["df"] = np.mean(np.diff(freq)) + + if output_file is not None: + results.write(output_file, overwrite=True) + + if return_objects: + result_table = results + results = {} + results["pds1"] = get_periodograms_from_FAD_results(result_table, kind="pds1") + results["pds2"] = get_periodograms_from_FAD_results(result_table, kind="pds2") + results["cs"] = get_periodograms_from_FAD_results(result_table, kind="cs") + results["ptot"] = get_periodograms_from_FAD_results(result_table, kind="ptot") + results["fad"] = result_table["fad"] + + return results
+ + + +
+[docs] +def calculate_FAD_correction( + lc1, + lc2, + segment_size, + norm="frac", + gti=None, + plot=False, + ax=None, + smoothing_alg="gauss", + smoothing_length=None, + verbose=False, + tolerance=0.05, + strict=False, + output_file=None, + return_objects=False, +): + r"""Calculate Frequency Amplitude Difference-corrected (cross)power spectra. + + Reference: Bachetti \& Huppenkothen, 2018, ApJ, 853L, 21 + + The two input light curve must be strictly simultaneous, and recorded by + two independent detectors with similar responses, so that the count rates + are similar and dead time is independent. + The method does not apply to different energy channels of the same + instrument, or to the signal observed by two instruments with very + different responses. See the paper for caveats. + + Parameters + ---------- + lc1: class:`stingray.ligthtcurve.Lightcurve` + Light curve from channel 1 + lc2: class:`stingray.ligthtcurve.Lightcurve` + Light curve from channel 2. Must be strictly simultaneous to ``lc1`` + and have the same binning time. Also, it must be strictly independent, + e.g. from a different detector. There must be no dead time cross-talk + between the two light curves. + segment_size: float + The final Fourier products are averaged over many segments of the + input light curves. This is the length of each segment being averaged. + Note that the light curve must be long enough to have at least 30 + segments, as the result gets better as one averages more and more + segments. + + norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none`` + The normalization of the (real part of the) cross spectrum. + + + Other parameters + ---------------- + plot : bool, default False + Plot diagnostics: check if the smoothed Fourier difference scatter is + a good approximation of the data scatter. + ax : :class:`matplotlib.axes.axes` object + If not None and ``plot`` is True, use this axis object to produce + the diagnostic plot. Otherwise, create a new figure. + smoothing_alg : {'gauss', ...} + Smoothing algorithm. For now, the only smoothing algorithm allowed is + ``gauss``, which applies a Gaussian Filter from `scipy`. + smoothing_length : int, default ``segment_size * 3`` + Number of bins to smooth in gaussian window smoothing + verbose: bool, default False + Print out information on the outcome of the algorithm (recommended) + tolerance : float, default 0.05 + Accepted relative error on the FAD-corrected Fourier amplitude, to be + used as success diagnostics. + Should be + ``` + stdtheor = 2 / np.sqrt(n) + std = (average_corrected_fourier_diff / n).std() + np.abs((std - stdtheor) / stdtheor) < tolerance + ``` + strict : bool, default False + Decide what to do if the condition on tolerance is not met. If True, + raise a ``RuntimeError``. If False, just throw a warning. + output_file : str, default None + Name of an output file (any extension automatically recognized by + Astropy is fine) + + Returns + ------- + results : class:`astropy.table.Table` object or ``dict`` or ``str`` + The content of ``results`` depends on whether ``return_objects`` is + True or False. + If ``return_objects==False``, + ``results`` is a `Table` with the following columns: + + + pds1: the corrected PDS of ``lc1`` + + pds2: the corrected PDS of ``lc2`` + + cs: the corrected cospectrum + + ptot: the corrected PDS of lc1 + lc2 + + If ``return_objects`` is True, ``results`` is a ``dict``, with keys + named like the columns + listed above but with `AveragePowerspectrum` or + `AverageCrossspectrum` objects instead of arrays. + + """ + return FAD( + lc1, + lc2, + segment_size, + dt=lc1.dt, + norm=norm, + plot=plot, + ax=ax, + smoothing_alg=smoothing_alg, + smoothing_length=smoothing_length, + verbose=verbose, + tolerance=tolerance, + strict=strict, + output_file=output_file, + return_objects=return_objects, + )
+ + + +
+[docs] +def get_periodograms_from_FAD_results(FAD_results, kind="ptot"): + """Get Stingray periodograms from FAD results. + + Parameters + ---------- + FAD_results : :class:`astropy.table.Table` object or `str` + Results from `calculate_FAD_correction`, either as a Table or an output + file name + kind : :class:`str`, one of ['ptot', 'pds1', 'pds2', 'cs'] + Kind of periodogram to get (E.g., 'ptot' -> PDS from the sum of the two + light curves, 'cs' -> cospectrum, etc.) + + Returns + ------- + results : `AveragedCrossspectrum` or `Averagedpowerspectrum` object + The periodogram. + """ + if isinstance(FAD_results, str): + FAD_results = Table.read(FAD_results) + + if kind.startswith("p") and kind in FAD_results.colnames: + powersp = AveragedPowerspectrum() + powersp.nphots = FAD_results.meta["nph"] + if "1" in kind: + powersp.nphots = FAD_results.meta["nph1"] + elif "2" in kind: + powersp.nphots = FAD_results.meta["nph2"] + elif kind == "cs": + powersp = AveragedCrossspectrum(power_type="all") + powersp.pds1 = get_periodograms_from_FAD_results(FAD_results, kind="pds1") + powersp.pds2 = get_periodograms_from_FAD_results(FAD_results, kind="pds2") + powersp.nphots1 = FAD_results.meta["nph1"] + powersp.nphots2 = FAD_results.meta["nph2"] + else: + raise ValueError("Unknown periodogram type") + + powersp.freq = FAD_results["freq"] + powersp.power = FAD_results[kind] + powersp.unnorm_power = FAD_results[kind + "_unnorm"] + powersp.power_err = np.zeros_like(powersp.power) + powersp.unnorm_power_err = np.zeros_like(powersp.unnorm_power) + powersp.m = FAD_results.meta["M"] + powersp.df = FAD_results.meta["df"] + powersp.dt = FAD_results.meta["dt"] + powersp.n = len(powersp.freq) * 2 + powersp.norm = FAD_results.meta["norm"] + + return powersp
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/deadtime/model.html b/_modules/stingray/deadtime/model.html new file mode 100644 index 000000000..d3879f78d --- /dev/null +++ b/_modules/stingray/deadtime/model.html @@ -0,0 +1,658 @@ + + + + + + + stingray.deadtime.model — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.deadtime.model

+import warnings
+from stingray.utils import njit, prange
+
+from stingray.loggingconfig import setup_logger
+
+from collections.abc import Iterable
+import numpy as np
+import matplotlib.pyplot as plt
+from scipy.special import factorial
+from scipy.interpolate import interp1d
+
+logger = setup_logger()
+
+MAX_FACTORIAL = 100
+__INVERSE_FACTORIALS = 1.0 / factorial(np.arange(MAX_FACTORIAL))
+PRECISION = np.finfo(float).precision
+TWOPI = np.pi * 2
+
+STERLING_PARAMETERS = np.array([1 / 12, 1 / 288, -139 / 51840, -571 / 2488320])
+
+__all__ = [
+    "r_det",
+    "r_in",
+    "pds_model_zhang",
+    "non_paralyzable_dead_time_model",
+    "check_A",
+    "check_B",
+]
+
+
+@njit()
+def _stirling_factor(m):
+    """First few terms of series expansion appearing in Stirling's approximation."""
+    fact = 1.0
+    power = 1.0
+    for i in range(1, 5):
+        power *= m
+        fact += STERLING_PARAMETERS[i - 1] / power
+    return fact
+
+
+@njit()
+def e_m_x_x_over_factorial(x: float, m: int):
+    r"""Approximate the large number ratio in Eq. 34.
+
+    The original formula for :math:`G_n` (eq. 34 in Zhang+95) has factors of the kind
+    :math:`e^{-x} x^l / l!`. This is the product of very large numbers, that mostly
+    balance each other. In this function, we approximate this product for large :math:`l`
+    starting from Stirling's approximation for the factorial:
+
+    .. math::
+
+       l! \approx \sqrt{2\pi l} (\frac{l}{e})^l A(l)
+
+    where :math:`A(l)` is a series expansion in 1/l of the form
+    :math:`1 + 1 / 12l + 1 / 288l^2 - 139/51840/l^3 + ...`. This allows to transform the product
+    above into
+
+    .. math::
+
+       \frac{e^{-x} x^l}{l!} \approx \frac{1}{A(l)\sqrt{2\pi l}}\left(\frac{x e}{l}\right)^l e^{-x}
+
+    and then, bringing the exponential into the parenthesis
+
+    .. math::
+
+       \frac{e^{-x} x^l}{l!}\approx\frac{1}{A(l)\sqrt{2\pi l}} \left(\frac{x e^{1-x/l}}{l}\right)^l
+
+    The function inside the brackets has a maximum around :math:`x \approx l` and is well-behaved,
+    allowing to approximate the product for large :math:`l` without the need to calculate the
+    factorial or the exponentials directly.
+    """
+    # Numerical errors occur when x is not a float
+    x = float(x)
+
+    if x == 0.0 and m == 0:
+        return 1.0
+
+    # For decently small numbers, use the direct formula
+    if m < 50 or (x > 1 and m * max(np.log10(x), 1) < 50):
+        return np.exp(-x) * x**m * __INVERSE_FACTORIALS[m]
+
+    # Use Stirling's approximation
+    return 1.0 / np.sqrt(TWOPI * m) * np.power(x * np.exp(1 - x / m) / m, m) / _stirling_factor(m)
+
+
+
+[docs] +def r_in(td, r_0): + """Calculate incident countrate given dead time and detected countrate. + + Parameters + ---------- + td : float + Dead time + r_0 : float + Detected countrate + """ + tau = 1 / r_0 + return 1.0 / (tau - td)
+ + + +
+[docs] +def r_det(td, r_i): + """Calculate detected countrate given dead time and incident countrate. + + Parameters + ---------- + td : float + Dead time + r_i : float + Incident countrate + """ + tau = 1 / r_i + return 1.0 / (tau + td)
+ + + +@njit() +def _Gn(x, n): + """Term in Eq. 34 in Zhang+95.""" + s = 0.0 + + for m in range(0, n): + new_val = e_m_x_x_over_factorial(x, m) * (n - m) + + s += new_val + # The curve above has a maximum around x~l + if x != 0 and s > 0 and m > 2 * x and -np.log10(np.abs(new_val / s)) > PRECISION: + break + + return s + + +@njit() +def _h(k, n, td, tb, tau): + """Term in Eq. 35 in Zhang+95.""" + # Typo in Zhang+95 corrected. k * tb, not k * td + factor = k * tb - n * td + + if k * tb - n * td < 0: + return 0.0 + + val = k - n * (td + tau) / tb + tau / tb * _Gn(factor / tau, n) + + return val + + +INFINITE = 699 + + +@njit() +def A0(r0, td, tb, tau): + """Term in Eq. 38 in Zhang+95. + + Parameters + ---------- + r0 : float + Detected countrate + td : float + Dead time + tb : float + Bin time of the light curve + tau : float + Inverse of the incident countrate + """ + s = 0.0 + for n in range(1, int(max(2, tb / td * 2 + 1))): + s += _h(1, n, td, tb, tau) + + return r0 * tb * (1 + 2 * s) + + +@njit() +def A_single_k(k, r0, td, tb, tau): + """Term in Eq. 39 in Zhang+95. + + Parameters + ---------- + k : int + Order of the term + r0 : float + Detected countrate + td : float + Dead time + tb : float + Bin time of the light curve + tau : float + Inverse of the incident countrate + """ + if k == 0: + return A0(r0, td, tb, tau) + # Equation 39 + s = 0.0 + + for n in range(1, int(max(3, (k + 1) * tb / td * 2))): + new_val = _h(k + 1, n, td, tb, tau) - 2 * _h(k, n, td, tb, tau) + _h(k - 1, n, td, tb, tau) + + s += new_val + + return r0 * tb * s + + +def A(k, r0, td, tb, tau): + """Term in Eq. 39 in Zhang+95. + + Parameters + ---------- + k : int or array of ints + Order of the term + r0 : float + Detected countrate + td : float + Dead time + tb : float + Bin time of the light curve + tau : float + Inverse of the incident countrate + """ + if isinstance(k, Iterable): + return np.array([A_single_k(ki, r0, td, tb, tau) for ki in k]) + + return A_single_k(k, r0, td, tb, tau) + + +def limit_A(rate, td, tb): + """Limit of A for k->infty, as per Eq. 43 in Zhang+95. + + Parameters + ---------- + rate : float + Incident count rate + td : float + Dead time + tb : float + Bin time of the light curve + """ + r0 = r_det(td, rate) + return r0**2 * tb**2 + + +
+[docs] +def check_A(rate, td, tb, max_k=100, save_to=None, linthresh=0.000001, rate_is_incident=True): + r"""Test that A is well-behaved. + + This function produces a plot of :math:`A_k - r_0^2 t_b^2` vs :math:`k`, to visually check that + :math:`A_k \rightarrow r_0^2 t_b^2` for :math:`k\rightarrow\infty`, as per Eq. 43 in Zhang+95. + + With this function is possible to determine how many inner loops `k` (`limit_k` in function + pds_model_zhang) are necessary for a correct approximation of the dead time model + + Parameters + ---------- + rate : float + Count rate, either incident or detected (use the `rate_is_incident` bool to specify) + td : float + Dead time + tb : float + Bin time of the light curve + + Other Parameters + ---------------- + max_k : int + Maximum k to plot + save_to : str, default None + If not None, save the plot to this file + linthresh : float, default 0.000001 + Linear threshold for the "symlog" scale of the plot + rate_is_incident : bool, default True + If True, the input rate is the incident count rate. If False, it is the detected one. + """ + if rate_is_incident: + tau = 1 / rate + r0 = r_det(td, rate) + else: + r0 = rate + tau = 1 / r_in(td, rate) + + limit = limit_A(rate, td, tb) + fig = plt.figure() + + k_values = np.arange(0, max_k + 1) + A_values = A(k_values, r0, td, tb, tau) + + plt.plot(k_values, A_values - limit, color="k") + plt.semilogx() + plt.yscale("symlog", linthresh=linthresh) + plt.axhline(0, ls="--", color="k") + plt.xlabel("$k$") + plt.ylabel("$A_k - r_0^2 t_b^2$") + if save_to is not None: + plt.savefig(save_to) + plt.close(fig) + return k_values, A_values
+ + + +@njit() +def _B_raw(k, r0, td, tb, tau): + """Term in Eq. 45 in Zhang+95.""" + if k == 0: + return 2 * (A_single_k(0, r0, td, tb, tau) - r0**2 * tb**2) / (r0 * tb) + + new_val = A_single_k(k, r0, td, tb, tau) - r0**2 * tb**2 + + return 4 * new_val / (r0 * tb) + + +@njit() +def _safe_B_single_k(k, r0, td, tb, tau, limit_k=60): + """Term in Eq. 39 in Zhang+95, with a cut in the maximum k. + + This can be risky. Only use if B is really 0 for high k. + """ + if k > limit_k: + return 0.0 + return _B_raw(k, r0, td, tb, tau) + + +def _safe_B(k, r0, td, tb, tau, limit_k=60): + """Term in Eq. 39 in Zhang+95, with a cut in the maximum k. + + This can be risky. Only use if B is really 0 for high k. + """ + if isinstance(k, Iterable): + return np.array([_safe_B_single_k(ki, r0, td, tb, tau, limit_k=limit_k) for ki in k]) + return _safe_B_single_k(int(k), r0, td, tb, tau, limit_k=limit_k) + + +def B(k, r0, td, tb, tau, limit_k=60): + """Term in Eq. 39 in Zhang+95, with a cut in the maximum k. + + The cut can be risky. Only use if B is really 0 for high k. Use `check_B` to test. + + Parameters + ---------- + k : int or array of ints + Order of the term + r0 : float + Detected countrate + td : float + Dead time + tb : float + Bin time of the light curve + tau : float + Inverse of the incident countrate + + Other Parameters + ---------------- + limit_k : int + Limit to this value the number of terms in the inner loops of + calculations. Check the plots returned by the `check_B` and + `check_A` functions to test that this number is adequate. + """ + return _safe_B(k, r0, td, tb, tau, limit_k=limit_k) + + +
+[docs] +def check_B(rate, td, tb, max_k=100, save_to=None, linthresh=0.000001, rate_is_incident=True): + r"""Check that :math:`B\rightarrow 0` for :math:`k\rightarrow \infty`. + + This function produces a plot of :math:`B_k` vs :math:`k`, to visually check that + :math:`B_k \rightarrow 0` for :math:`k\rightarrow\infty`, as per Eq. 43 in Zhang+95. + + With this function is possible to determine how many inner loops `k` (`limit_k` in function + pds_model_zhang) are necessary for a correct approximation of the dead time model + + Parameters + ---------- + rate : float + Count rate, either incident or detected (use the `rate_is_incident` bool to specify) + td : float + Dead time + tb : float + Bin time of the light curve + + Other Parameters + ---------------- + max_k : int + Maximum k to plot + save_to : str, default None + If not None, save the plot to this file + linthresh : float, default 0.000001 + Linear threshold for the "symlog" scale of the plot + rate_is_incident : bool, default True + If True, the input rate is the incident count rate. If False, it is the detected one. + """ + if rate_is_incident: + tau = 1 / rate + r0 = r_det(td, rate) + else: + r0 = rate + tau = 1 / r_in(td, rate) + + fig = plt.figure() + k_values = np.arange(1, max_k + 1) + B_values = B(k_values, r0, td, tb, tau, limit_k=max_k) + threshold = max(tb / td, 1) * 10.0 ** (3 * np.log10(k_values) - PRECISION) + + plt.plot(k_values, threshold, label="Est. propagation of float errors", color="red") + plt.plot(k_values, -threshold, color="r") + + plt.plot(k_values, B_values, color="k", ds="steps-mid") + plt.axhline(0, ls="--", color="k") + plt.semilogx() + plt.yscale("symlog", linthresh=linthresh) + plt.xlabel("$k$") + plt.ylabel("$B_k$") + plt.xlim([0.9, max_k]) + plt.legend() + if save_to is not None: + plt.savefig(save_to) + plt.close(fig) + return k_values, B_values
+ + + +@njit(parallel=True) +def _inner_loop_pds_zhang(N, tau, r0, td, tb, limit_k=60): + """Calculate the power spectrum, as per Eq. 44 in Zhang+95.""" + P = np.zeros(N // 2) + for j in prange(N // 2): + eq8_sum = 0.0 + + for k in range(1, min(N, limit_k)): + Bk = _safe_B_single_k(k, r0, td, tb, tau, limit_k=limit_k) + + eq8_sum += (N - k) / N * Bk * np.cos(2 * np.pi * j * k / N) + + P[j] = _safe_B_single_k(0, r0, td, tb, tau) + eq8_sum + + return P + + +
+[docs] +def pds_model_zhang(N, rate, td, tb, limit_k=60, rate_is_incident=True): + """Calculate the dead-time-modified power spectrum. + + Parameters + ---------- + N : int + The number of spectral bins + rate : float + Incident count rate + td : float + Dead time + tb : float + Bin time of the light curve + + Other Parameters + ---------------- + limit_k : int + Limit to this value the number of terms in the inner loops of + calculations. Check the plots returned by the `check_B` and + `check_A` functions to test that this number is adequate. + rate_is_incident : bool, default True + If True, the input rate is the incident count rate. If False, it is the + detected count rate. + + Returns + ------- + freqs : array of floats + Frequency array + power : array of floats + Power spectrum + """ + if rate_is_incident: + tau = 1 / rate + r0 = r_det(td, rate) + else: + r0 = rate + tau = 1 / r_in(td, rate) + + # Nph = N / tau + logger.info("Calculating PDS model (update)") + P = _inner_loop_pds_zhang(N, tau, r0, td, tb, limit_k=limit_k) + if tb > 10 * td: + warnings.warn( + f"The bin time is much larger than the dead time. " + f" Calculations might be slow. tb={tb / td:.2f} * td" + ) + + maxf = 0.5 / tb + df = maxf / len(P) + freqs = np.arange(len(P)) * df + + return freqs, P
+ + + +
+[docs] +def non_paralyzable_dead_time_model( + freqs, + dead_time, + rate, + bin_time=None, + limit_k=200, + background_rate=0.0, + n_approx=None, +): + """Calculate the dead-time-modified power spectrum. + + Parameters + ---------- + freqs : array of floats + Frequency array + dead_time : float + Dead time + rate : float + Detected source count rate + + Other Parameters + ---------------- + bin_time : float + Bin time of the light curve + limit_k : int, default 200 + Limit to this value the number of terms in the inner loops of + calculations. Check the plots returned by the `check_B` and + `check_A` functions to test that this number is adequate. + background_rate : float, default 0 + Detected background count rate. This is important to estimate when deadtime is given by the + combination of the source counts and background counts (e.g. in an imaging X-ray detector). + n_approx : int, default None + Number of bins to calculate the model power spectrum. If None, it will use the size of + the input frequency array. Relatively simple models (e.g., low count rates compared to + dead time) can use a smaller number of bins to speed up the calculation, and the final + power values will be interpolated. + + Returns + ------- + power : array of floats + Power spectrum + """ + if rate + background_rate > 1 / dead_time: + raise ValueError( + "The sum of the source and background count rates is larger than the inverse " + "of the dead time. This is not a physical situation. Please check your input." + ) + + if bin_time is None: + bin_time = 1 / (2 * max(freqs)) + + n_bins = n_approx if n_approx is not None else max(max(freqs), 10) + + zh_f, zh_p = pds_model_zhang( + int(n_bins) * 2, + (rate + background_rate), + dead_time, + bin_time, + limit_k=limit_k, + rate_is_incident=False, + ) + + # Rescale by the source rate wrt background rate + if background_rate > 0: + zh_p = (zh_p - 2) * rate / (rate + background_rate) + 2 + + pds_interp = interp1d(zh_f, zh_p, bounds_error=False, fill_value="extrapolate") + return pds_interp(freqs)
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/events.html b/_modules/stingray/events.html new file mode 100644 index 000000000..259c74f55 --- /dev/null +++ b/_modules/stingray/events.html @@ -0,0 +1,979 @@ + + + + + + + stingray.events — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.events

+"""
+Definition of :class:`EventList`.
+
+:class:`EventList` is used to handle photon arrival times.
+"""
+
+import warnings
+
+import numpy as np
+
+from stingray.utils import _int_sum_non_zero
+from stingray.loggingconfig import setup_logger
+
+from .base import StingrayTimeseries
+from .filters import get_deadtime_mask
+from .gti import generate_indices_of_boundaries
+from .io import pi_to_energy, get_file_extension
+from .io import FITSTimeseriesReader
+from .lightcurve import Lightcurve
+from .utils import simon, njit
+from .utils import histogram
+
+__all__ = ["EventList"]
+
+logger = setup_logger()
+
+
+@njit
+def _from_lc_numba(times, counts, empty_times):
+    """Create a rough event list from a light curve.
+
+    This function creates as many events as the counts in each time bin of the light curve,
+    with event times equal to the light curve time stamps.
+
+    Parameters
+    ----------
+    times : array-like
+        Array of time stamps
+    counts : array-like
+        Array of counts
+    empty_times : array-like
+        Empty array to be filled with time stamps
+    """
+    last = 0
+    for t, c in zip(times, counts):
+        if c <= 0:
+            continue
+        val = c + last
+        empty_times[last:val] = t
+        last = val
+    # If c < 0 in some cases, some times will be empty
+    return empty_times[:val]
+
+
+def simple_events_from_lc(lc):
+    """
+    Create an :class:`EventList` from a :class:`stingray.Lightcurve` object. Note that all
+    events in a given time bin will have the same time stamp.
+
+    Bins with negative counts will be ignored.
+
+    Parameters
+    ----------
+    lc: :class:`stingray.Lightcurve` object
+        Light curve to use for creation of the event list.
+
+    Returns
+    -------
+    ev: :class:`EventList` object
+        The resulting list of photon arrival times generated from the light curve.
+
+    Examples
+    --------
+    >>> from stingray import Lightcurve
+    >>> lc = Lightcurve([0, 1, 2], [2, 3, -1], dt=1)
+    >>> ev = simple_events_from_lc(lc)
+    >>> assert np.allclose(ev.time, [0, 0, 1, 1, 1])
+    """
+    counts = lc.counts.astype(int)
+    allcounts = _int_sum_non_zero(counts)
+    times = _from_lc_numba(lc.time, counts, np.zeros(allcounts, dtype=float))
+    return EventList(time=times, gti=lc.gti)
+
+
+
+[docs] +class EventList(StingrayTimeseries): + """ + Basic class for event list data. Event lists generally correspond to individual events (e.g. photons) + recorded by the detector, and their associated properties. For X-ray data where this type commonly occurs, + events are time stamps of when a photon arrived in the detector, and (optionally) the photon energy associated + with the event. + + Parameters + ---------- + time: iterable + A list or array of time stamps + + Other Parameters + ---------------- + dt: float + The time resolution of the events. Only relevant when using events + to produce light curves with similar bin time. + + energy: iterable + A list of array of photon energy values in keV + + mjdref : float + The MJD used as a reference for the time array. + + ncounts: int + Number of desired data points in event list. Deprecated + + gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + pi : integer, numpy.ndarray + PI channels + + notes : str + Any useful annotations + + high_precision : bool + Change the precision of self.time to float128. Useful while dealing with fast pulsars. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + header : str + The full header of the original FITS file, if relevant + + detector_id : iterable + The detector that recorded each photon (if the instrument has more than + one, e.g. XMM/EPIC-pn) + + timeref : str + The time reference, as recorded in the FITS file (e.g. SOLARSYSTEM) + + timesys : str + The time system, as recorded in the FITS file (e.g. TDB) + + ephem : str + The JPL ephemeris used to barycenter the data, if any (e.g. DE430) + + rmf_file : str, default None + The file name of the RMF file to use for calibration. + + skip_checks : bool, default False + Skip checks for the validity of the event list. Use with caution. + + **other_kw : + Used internally. Any other keyword arguments will be ignored + + Attributes + ---------- + time: numpy.ndarray + The array of event arrival times, in seconds from the reference + MJD defined in ``mjdref`` + + energy: numpy.ndarray + The array of photon energy values + + ncounts: int + The number of data points in the event list + + dt: float + The time resolution of the events. Only relevant when using events + to produce light curves with similar bin time. + + mjdref : float + The MJD used as a reference for the time array. + + gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + pi : integer, numpy.ndarray + PI channels + + high_precision : bool + Change the precision of self.time to float128. Useful while dealing with fast pulsars. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + detector_id : iterable + The detector that recoded each photon, if relevant (e.g. XMM, Chandra) + + header : str + The full header of the original FITS file, if relevant + + """ + + main_array_attr = "time" + + def __init__( + self, + time=None, + energy=None, + ncounts=None, + mjdref=0, + dt=0, + notes="", + gti=None, + pi=None, + high_precision=False, + mission=None, + instr=None, + header=None, + detector_id=None, + ephem=None, + timeref=None, + timesys=None, + rmf_file=None, + skip_checks=False, + **other_kw, + ): + if ncounts is not None: + warnings.warn( + "The ncounts keyword does nothing, and is maintained for backwards compatibility.", + DeprecationWarning, + ) + + if rmf_file is not None: + if pi is None: + warnings.warn("PI channels must be provided to calibrate the energy") + else: + energy = pi_to_energy(pi, rmf_file) + + StingrayTimeseries.__init__( + self, + time=time, + energy=None if energy is None else np.asanyarray(energy), + mjdref=mjdref, + dt=dt, + notes=notes, + gti=np.asanyarray(gti) if gti is not None else None, + pi=None if pi is None else np.asanyarray(pi), + high_precision=high_precision, + mission=mission, + instr=instr, + header=header, + detector_id=detector_id, + ephem=ephem, + timeref=timeref, + timesys=timesys, + rmf_file=rmf_file, + skip_checks=skip_checks, + **other_kw, + ) + + if other_kw != {}: + warnings.warn(f"Unrecognized keywords: {list(other_kw.keys())}") + + if (self.time is not None) and (self.energy is not None): + if np.size(self.time) != np.size(self.energy): + raise ValueError("Lengths of time and energy must be equal.") + + @property + def ncounts(self): + """Number of events in the event list.""" + return self.n + +
+[docs] + def to_lc(self, dt, tstart=None, tseg=None): + """ + Convert event list to a :class:`stingray.Lightcurve` object. + + Parameters + ---------- + dt: float + Binning time of the light curve + + Other Parameters + ---------------- + tstart : float + Start time of the light curve + + tseg: float + Total duration of light curve + + Returns + ------- + lc: :class:`stingray.Lightcurve` object + """ + return Lightcurve.make_lightcurve( + self.time, dt, tstart=tstart, gti=self._gti, tseg=tseg, mjdref=self.mjdref + )
+ + +
+[docs] + def to_binned_timeseries(self, dt, array_attrs=None): + """Convert the event list to a binned :class:`stingray.StingrayTimeseries` object. + + The result will be something similar to a light curve, but with arbitrary + attributes corresponding to a weighted sum of each specified attribute of + the event list. + + E.g. if the event list has a ``q`` attribute, the final time series will + have a ``q`` attribute, which is the sum of all ``q`` values in each time bin. + + Parameters + ---------- + dt: float + Binning time of the light curve + + Other Parameters + ---------------- + array_attrs: list of str + List of attributes to be converted to light curve arrays. If None, + all array attributes will be converted. + + Returns + ------- + lc: :class:`stingray.Lightcurve` object + """ + if array_attrs is None: + array_attrs = self.array_attrs() + + ranges = [self.gti[0, 0], self.gti[-1, 1]] + nbins = int((ranges[1] - ranges[0]) / dt) + ranges = [ranges[0], ranges[0] + nbins * dt] + times = np.arange(ranges[0] + dt * 0.5, ranges[1], dt) + + counts = histogram(self.time, range=ranges, bins=nbins) + + attr_dict = dict(counts=counts) + + for attr in array_attrs: + if getattr(self, attr, None) is not None: + logger.info(f"Creating the {attr} array") + + attr_dict[attr] = histogram( + self.time, bins=nbins, weights=getattr(self, attr), range=ranges + ) + meta_attrs = dict((attr, getattr(self, attr)) for attr in self.meta_attrs()) + new_ts = StingrayTimeseries(times, array_attrs=attr_dict, **meta_attrs) + new_ts.dt = dt + return new_ts
+ + +
+[docs] + def to_lc_iter(self, dt, segment_size=None): + """Convert event list to a generator of Lightcurves. + + Parameters + ---------- + dt: float + Binning time of the light curves + + Other parameters + ---------------- + segment_size : float, default None + Optional segment size. If None, use the GTI boundaries + + Returns + ------- + lc_gen: `generator` + Generates one :class:`stingray.Lightcurve` object for each GTI or segment + """ + + segment_iter = generate_indices_of_boundaries( + self.time, self.gti, segment_size=segment_size, dt=0 + ) + + for st, end, idx_st, idx_end in segment_iter: + tseg = end - st + + lc = Lightcurve.make_lightcurve( + self.time[idx_st : idx_end + 1], + dt, + tstart=st, + gti=np.asanyarray([[st, end]]), + tseg=tseg, + mjdref=self.mjdref, + use_hist=True, + ) + yield lc
+ + +
+[docs] + def to_lc_list(self, dt, segment_size=None): + """Convert event list to a list of Lightcurves. + + Parameters + ---------- + dt: float + Binning time of the light curves + + Other parameters + ---------------- + segment_size : float, default None + Optional segment size. If None, use the GTI boundaries + + Returns + ------- + lc_list: `List` + List containing one :class:`stingray.Lightcurve` object for each GTI or segment + """ + return list(self.to_lc_iter(dt, segment_size))
+ + +
+[docs] + @staticmethod + def from_lc(lc): + """ + Create an :class:`EventList` from a :class:`stingray.Lightcurve` object. Note that all + events in a given time bin will have the same time stamp. + + Bins with negative counts will be ignored. + + Parameters + ---------- + lc: :class:`stingray.Lightcurve` object + Light curve to use for creation of the event list. + + Returns + ------- + ev: :class:`EventList` object + The resulting list of photon arrival times generated from the light curve. + """ + return simple_events_from_lc(lc)
+ + +
+[docs] + def simulate_times(self, lc, use_spline=False, bin_time=None): + """Simulate times from an input light curve. + + Randomly simulate photon arrival times to an :class:`EventList` from a + :class:`stingray.Lightcurve` object, using the inverse CDF method. + + ..note:: + Preferably use model light curves containing **no Poisson noise**, + as this method will intrinsically add Poisson noise to them. + + Parameters + ---------- + lc: :class:`stingray.Lightcurve` object + + Other Parameters + ---------------- + use_spline : bool + Approximate the light curve with a spline to avoid binning effects + + bin_time : float default None + Ignored and deprecated, maintained for backwards compatibility. + + Returns + ------- + times : array-like + Simulated photon arrival times + """ + # Need import here, or there will be a circular import + from .simulator.base import simulate_times + + if bin_time is not None: + warnings.warn("Bin time will be ignored in simulate_times", DeprecationWarning) + + vals = simulate_times(lc, use_spline=use_spline) + self.time = vals + self._gti = lc.gti
+ + +
+[docs] + def simulate_energies(self, spectrum, use_spline=False): + """ + Assign (simulate) energies to event list from a spectrum. + + Parameters + ---------- + spectrum: 2-d array or list [energies, spectrum] + Energies versus corresponding fluxes. The 2-d array or list must + have energies across the first dimension and fluxes across the + second one. If the dimension of the energies is the same as + spectrum, they are interpreted as bin centers. + If it is longer by one, they are interpreted as proper bin edges + (similarly to the bins of `np.histogram`). + Note that for non-uniformly binned spectra, it is advisable to pass + the exact edges. + """ + from .simulator.base import simulate_with_inverse_cdf + + if self.ncounts is None or self.ncounts == 0: + simon("Simulating on an empty event list") + return + + if isinstance(spectrum, list) or isinstance(spectrum, np.ndarray): + energy = np.asanyarray(spectrum)[0] + fluxes = np.asanyarray(spectrum)[1] + + if not isinstance(energy, np.ndarray): + raise IndexError("Spectrum must be a 2-d array or list") + + else: + raise TypeError("Spectrum must be a 2-d array or list") + + if energy.size == fluxes.size: + de = energy[1] - energy[0] + energy = np.concatenate([energy - de / 2, [energy[-1] + de / 2]]) + + self.energy = simulate_with_inverse_cdf( + fluxes, self.ncounts, edges=energy, sorted=False, interp_kind="linear" + )
+ + +
+[docs] + def sort(self, inplace=False): + """Sort the event list in time. + + Other parameters + ---------------- + inplace : bool, default False + Sort in place. If False, return a new event list. + + Returns + ------- + eventlist : `EventList` + The sorted event list. If ``inplace=True``, it will be a shallow copy + of ``self``. + + Examples + -------- + >>> events = EventList(time=[0, 2, 1], energy=[0.3, 2, 0.5], pi=[3, 20, 5], + ... skip_checks=True) + >>> e1 = events.sort() + >>> assert np.allclose(e1.time, [0, 1, 2]) + >>> assert np.allclose(e1.energy, [0.3, 0.5, 2]) + >>> assert np.allclose(e1.pi, [3, 5, 20]) + + But the original event list has not been altered (``inplace=False`` by + default): + >>> assert np.allclose(events.time, [0, 2, 1]) + + Let's do it in place instead + >>> e2 = events.sort(inplace=True) + >>> assert np.allclose(e2.time, [0, 1, 2]) + + In this case, the original event list has been altered. + >>> assert np.allclose(events.time, [0, 1, 2]) + + """ + order = np.argsort(self.time) + return self.apply_mask(order, inplace=inplace)
+ + +
+[docs] + def join(self, other, strategy="infer"): + """ + Join two :class:`EventList` objects into one. + + If both are empty, an empty :class:`EventList` is returned. + + GTIs are crossed if the event lists are over a common time interval, + and appended otherwise. + + Standard attributes such as ``pi`` and ``energy`` remain ``None`` if they are ``None`` + in both. Otherwise, ``np.nan`` is used as a default value for the :class:`EventList` where + they were None. Arbitrary attributes (e.g., Stokes parameters in polarimetric data) are + created and joined using the same convention. + + Multiple checks are done on the joined event lists. If the time array of the event list + being joined is empty, it is ignored. If the time resolution is different, the final + event list will have the rougher time resolution. If the MJDREF is different, the time + reference will be changed to the one of the first event list. An empty event list will + be ignored. + + Parameters + ---------- + other : :class:`EventList` object or class:`list` of :class:`EventList` objects + The other :class:`EventList` object which is supposed to be joined with. + If ``other`` is a list, it is assumed to be a list of :class:`EventList` objects + and they are all joined, one by one. + + Other parameters + ---------------- + strategy : {"intersection", "union", "append", "infer", "none"} + Method to use to merge the GTIs. If "intersection", the GTIs are merged + using the intersection of the GTIs. If "union", the GTIs are merged + using the union of the GTIs. If "none", a single GTI with the minimum and + the maximum time stamps of all GTIs is returned. If "infer", the strategy + is decided based on the GTIs. If there are no overlaps, "union" is used, + otherwise "intersection" is used. If "append", the GTIs are simply appended + but they must be mutually exclusive. + + Returns + ------- + `ev_new` : :class:`EventList` object + The resulting :class:`EventList` object. + """ + + return self._join_timeseries(other, strategy=strategy, ignore_meta=["header", "ncounts"])
+ + +
+[docs] + @classmethod + def read(cls, filename, fmt=None, rmf_file=None, **kwargs): + r"""Read a :class:`EventList` object from file. + + Currently supported formats are + + * pickle (not recommended for long-term storage) + * hea or ogip : FITS Event files from (well, some) HEASARC-supported missions. + * any other formats compatible with the writers in + :class:`astropy.table.Table` (ascii.ecsv, hdf5, etc.) + + Files that need the :class:`astropy.table.Table` interface MUST contain + at least a ``time`` column. Other recognized columns are ``energy`` and + ``pi``. + The default ascii format is enhanced CSV (ECSV). Data formats + supporting the serialization of metadata (such as ECSV and HDF5) can + contain all eventlist attributes such as ``mission``, ``gti``, etc with + no significant loss of information. Other file formats might lose part + of the metadata, so must be used with care. + + Parameters + ---------- + filename: str + Path and file name for the file to be read. + + fmt: str + Available options are 'pickle', 'hea', and any `Table`-supported + format such as 'hdf5', 'ascii.ecsv', etc. + + Other parameters + ---------------- + rmf_file : str, default None + The file name of the RMF file to use for energy calibration. Defaults to + None, which implies no channel->energy conversion at this stage (or a default + calibration applied to selected missions). + + kwargs : dict + Any further keyword arguments to be passed to `load_events_and_gtis` + for reading in event lists in OGIP/HEASOFT format + + Returns + ------- + ev: :class:`EventList` object + The :class:`EventList` object reconstructed from file + """ + if fmt is None: + for fits_ext in ["fits", "evt"]: + if fits_ext in get_file_extension(filename).lower(): + fmt = "hea" + break + if fmt is not None and fmt.lower() in ("hea", "ogip"): + additional_columns = kwargs.pop("additional_columns", None) + + evt = FITSTimeseriesReader( + filename, output_class=EventList, additional_columns=additional_columns + )[:] + + if rmf_file is not None: + evt.convert_pi_to_energy(rmf_file) + return evt + + return super().read(filename=filename, fmt=fmt)
+ + +
+[docs] + def convert_pi_to_energy(self, rmf_file): + """Calibrate the energy column of the event list. + + Defines the ``energy`` attribute of the event list by converting the + PI channels to energy using the provided RMF file. + + Parameters + ---------- + rmf_file : str + The file name of the RMF file to use for calibration. + """ + + self.energy = pi_to_energy(self.pi, rmf_file)
+ + +
+[docs] + def get_energy_mask(self, energy_range, use_pi=False): + """Get a mask corresponding to events with a given energy range. + + Parameters + ---------- + energy_range: [float, float] + Energy range in keV, or in PI channel (if ``use_pi`` is True) + + Other Parameters + ---------------- + use_pi : bool, default False + Use PI channel instead of energy in keV + """ + if use_pi: + energies = self.pi + else: + energies = self.energy + return (energies >= energy_range[0]) & (energies < energy_range[1])
+ + +
+[docs] + def filter_energy_range(self, energy_range, inplace=False, use_pi=False): + """Filter the event list from a given energy range. + + Parameters + ---------- + energy_range: [float, float] + Energy range in keV, or in PI channel (if ``use_pi`` is True) + + Other Parameters + ---------------- + inplace : bool, default False + Do the change in place (modify current event list). Otherwise, copy + to a new event list. + use_pi : bool, default False + Use PI channel instead of energy in keV + + Examples + -------- + >>> events = EventList(time=[0, 1, 2], energy=[0.3, 0.5, 2], pi=[3, 5, 20]) + >>> e1 = events.filter_energy_range([0, 1]) + >>> assert np.allclose(e1.time, [0, 1]) + >>> assert np.allclose(events.time, [0, 1, 2]) + >>> e2 = events.filter_energy_range([0, 10], use_pi=True, inplace=True) + >>> assert np.allclose(e2.time, [0, 1]) + >>> assert np.allclose(events.time, [0, 1]) + + """ + mask = self.get_energy_mask(energy_range, use_pi=use_pi) + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def apply_deadtime(self, deadtime, inplace=False, **kwargs): + """Apply deadtime filter to this event list. + + Additional arguments in ``kwargs`` are passed to `get_deadtime_mask` + + Parameters + ---------- + deadtime : float + Value of dead time to apply to data + inplace : bool, default False + If True, apply the deadtime to the current event list. Otherwise, + return a new event list. + + Returns + ------- + new_event_list : `EventList` object + Filtered event list. if `inplace` is True, this is the input object + filtered for deadtime, otherwise this is a new object. + additional_output : object + Only returned if `return_all` is True. See `get_deadtime_mask` for + more details. + + Examples + -------- + >>> events = np.array([1, 1.05, 1.07, 1.08, 1.1, 2, 2.2, 3, 3.1, 3.2]) + >>> events = EventList(events, gti=[[0, 3.3]]) + >>> events.pi=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1]) + >>> events.energy=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1]) + >>> events.mjdref = 10 + >>> filt_events, retval = events.apply_deadtime(0.11, inplace=False, + ... verbose=False, + ... return_all=True) + >>> assert filt_events is not events + >>> expected = np.array([1, 2, 2.2, 3, 3.2]) + >>> assert np.allclose(filt_events.time, expected) + >>> assert np.allclose(filt_events.pi, 1) + >>> assert np.allclose(filt_events.energy, 1) + >>> assert not np.allclose(events.pi, 1) + >>> filt_events = events.apply_deadtime(0.11, inplace=True, + ... verbose=False) + >>> assert filt_events is events + """ + local_retall = kwargs.pop("return_all", False) + + mask, retall = get_deadtime_mask(self.time, deadtime, return_all=True, **kwargs) + + new_ev = self.apply_mask(mask, inplace=inplace) + + if local_retall: + new_ev = [new_ev, retall] + + return new_ev
+ + +
+[docs] + def get_color_evolution(self, energy_ranges, segment_size=None, use_pi=False): + """Compute the color in equal-length segments of the event list. + + Parameters + ---------- + energy_ranges : 2x2 list + List of energy ranges to compute the color: + ``[[en1_min, en1_max], [en2_min, en2_max]]`` + segment_size : float + Segment size in seconds. If None, the full GTIs are considered + instead as segments. + + Other Parameters + ---------------- + use_pi : bool, default False + Use PI channel instead of energy in keV + + Returns + ------- + color : array-like + Array of colors, computed in each segment as the ratio of the + counts in the second energy range to the counts in the first energy + range. + """ + if energy_ranges is None or np.shape(energy_ranges) != (2, 2): + raise ValueError("Energy ranges must be specified as a 2x2 array") + + def color(ev): + mask1 = ev.get_energy_mask(energy_ranges[0], use_pi=use_pi) + mask2 = ev.get_energy_mask(energy_ranges[1], use_pi=use_pi) + en1_ct = np.count_nonzero(mask1) + en2_ct = np.count_nonzero(mask2) + + if en1_ct == 0 or en2_ct == 0: + warnings.warn("No counts in one of the energy ranges. Returning NaN") + return np.nan, np.nan + color = en2_ct / en1_ct + color_err = color * (np.sqrt(en1_ct) / en1_ct + np.sqrt(en2_ct) / en2_ct) + return color, color_err + + starts, stops, (colors, color_errs) = self.analyze_segments(color, segment_size) + + return starts, stops, colors, color_errs
+ + +
+[docs] + def get_intensity_evolution(self, energy_range, segment_size=None, use_pi=False): + """Compute the intensity in equal-length segments (or full GTIs) of the event list. + + Parameters + ---------- + energy_range : ``[en1_min, en1_max]`` + Energy range to compute the intensity + segment_size : float + Segment size in seconds. If None, the full GTIs are considered + instead as segments. + + Other Parameters + ---------------- + use_pi : bool, default False + Use PI channel instead of energy in keV + + Returns + ------- + intensity : array-like + Array of intensities (in counts/s), computed in each segment. + """ + if energy_range is None or np.shape(energy_range) != (2,): + raise ValueError("Energy ranges must be specified as a 2-element list") + + def intensity(ev): + mask1 = ev.get_energy_mask(energy_range, use_pi=use_pi) + en1_ct = np.count_nonzero(mask1) + segment_size = ev.gti[0, 1] - ev.gti[0, 0] + rate = en1_ct / segment_size + rate_err = np.sqrt(en1_ct) / segment_size + return rate, rate_err + + starts, stops, (rate, rate_err) = self.analyze_segments(intensity, segment_size) + + return starts, stops, rate, rate_err
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/exceptions.html b/_modules/stingray/exceptions.html new file mode 100644 index 000000000..70eb2b2f2 --- /dev/null +++ b/_modules/stingray/exceptions.html @@ -0,0 +1,102 @@ + + + + + + + stingray.exceptions — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.exceptions

+# Exception Handling for Stingray
+
+__all__ = ["StingrayError"]
+
+
+
+[docs] +class StingrayError(Exception): + pass
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/gti.html b/_modules/stingray/gti.html new file mode 100644 index 000000000..e699f998d --- /dev/null +++ b/_modules/stingray/gti.html @@ -0,0 +1,2016 @@ + + + + + + + stingray.gti — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.gti

+import re
+import numpy as np
+import warnings
+from collections.abc import Iterable
+import copy
+
+from astropy.io import fits
+from .utils import contiguous_regions, jit, HAS_NUMBA
+from .utils import assign_value_if_none, apply_function_if_none
+from .utils import check_iterables_close, is_sorted
+from stingray.exceptions import StingrayError
+from stingray.loggingconfig import setup_logger
+
+
+__all__ = [
+    "load_gtis",
+    "check_gtis",
+    "create_gti_mask_jit",
+    "create_gti_mask",
+    "create_gti_mask_complete",
+    "create_gti_from_condition",
+    "cross_two_gtis",
+    "cross_gtis",
+    "get_btis",
+    "get_gti_extensions_from_pattern",
+    "get_gti_from_all_extensions",
+    "get_gti_from_hdu",
+    "get_gti_lengths",
+    "get_total_gti_length",
+    "check_separate",
+    "append_gtis",
+    "join_gtis",
+    "generate_indices_of_gti_boundaries",
+    "time_intervals_from_gtis",
+    "bin_intervals_from_gtis",
+    "gti_border_bins",
+    "generate_indices_of_segment_boundaries_unbinned",
+    "generate_indices_of_segment_boundaries_binned",
+    "split_gtis_by_exposure",
+    "split_gtis_at_index",
+    "find_large_bad_time_intervals",
+]
+
+logger = setup_logger()
+
+
+def gti_len(gti):
+    """Deprecated, will be removed in version 2.0. Use get_total_gti_length."""
+    warnings.warn(
+        "This function is deprecated. Use get_total_gti_length " "instead", DeprecationWarning
+    )
+    return get_total_gti_length(gti, minlen=0)
+
+
+
+[docs] +def get_gti_lengths(gti): + """ + Calculate the length of each Good Time Interval. + + Parameters + ---------- + gti : [[gti00, gti01], [gti10, gti11], ...] + The list of good time intervals. + + Returns + ------- + lengths : `np.ndarray` + List of GTI lengths. + + Examples + -------- + >>> gti = [[0, 1000], [1000, 1001], [3000, 3020]] + >>> assert np.allclose(get_gti_lengths(gti), [1000, 1, 20]) + """ + return np.diff(gti, axis=1).flatten()
+ + + +
+[docs] +def get_total_gti_length(gti, minlen=0): + """ + Calculate the total exposure during Good Time Intervals. + + Parameters + ---------- + gti : [[gti00, gti01], [gti10, gti11], ...] + The list of good time intervals. + minlen : float + Minimum GTI length to consider. + + Returns + ------- + length : float + The total exposure during GTIs. + + Examples + -------- + >>> gti = [[0, 1000], [1000, 1001], [3000, 3020]] + >>> assert np.isclose(get_total_gti_length(gti), 1021) + >>> assert np.isclose(get_total_gti_length(gti, minlen=5), 1020) + """ + lengths = get_gti_lengths(gti) + return np.sum(lengths[lengths >= minlen])
+ + + +
+[docs] +def load_gtis(fits_file, gtistring=None): + """ + Load Good Time Intervals (GTIs) from ``HDU EVENTS`` of file ``fits_file``. + File is expected to be in FITS format. + + Parameters + ---------- + fits_file : str + File name and path for the FITS file with the GTIs to be loaded. + + gtistring : str + If the name of the FITS extension with the GTIs is not ``GTI``, the + alternative name can be set with this parameter. + + Returns + ------- + gti_list : list + A list of GTI ``(start, stop)`` pairs extracted from the FITS file. + """ + + gtistring = assign_value_if_none(gtistring, "GTI") + logger.info("Loading GTIS from file %s" % fits_file) + lchdulist = fits.open(fits_file, checksum=True, ignore_missing_end=True) + lchdulist.verify("warn") + + gtitable = lchdulist[gtistring].data + gti_list = np.array( + [[a, b] for a, b in zip(gtitable.field("START"), gtitable.field("STOP"))], + dtype=np.longdouble, + ) + lchdulist.close() + return gti_list
+ + + +
+[docs] +def get_gti_extensions_from_pattern(lchdulist, name_pattern="GTI"): + """ + Gets the GTI extensions that match a given pattern. + + Parameters + ---------- + lchdulist: `:class:astropy.io.fits.HDUList` object + The full content of a FITS file. + name_pattern: str + Pattern indicating all the GTI extensions. + + Returns + ------- + ext_list: list + List of GTI extension numbers whose name matches the input pattern. + + Examples + -------- + >>> from astropy.io import fits + >>> start = np.arange(0, 300, 100) + >>> stop = start + 50. + >>> s1 = fits.Column(name='START', array=start, format='D') + >>> s2 = fits.Column(name='STOP', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI005XX') + >>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='GTI00501') + >>> lchdulist = fits.HDUList([hdu1]) + >>> gtiextn = get_gti_extensions_from_pattern( + ... lchdulist, name_pattern='GTI005[0-9]+') + >>> assert np.allclose(gtiextn, [1]) + """ + hdunames = [h.name for h in lchdulist] + pattern_re = re.compile("^" + name_pattern + "$") + gtiextn = [] + for ix, extname in enumerate(hdunames): + if pattern_re.match(extname): + gtiextn.append(ix) + return gtiextn
+ + + +def hdu_contains_gti(hdu): + """ + Test if a given FITS HDU contains a list of GTIs. + + Examples + -------- + >>> from astropy.io import fits + >>> start = np.arange(0, 300, 100) + >>> stop = start + 50. + >>> s1 = fits.Column(name='START', array=start, format='D') + >>> s2 = fits.Column(name='STOP', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='BLABLA') + >>> assert hdu_contains_gti(hdu1) + >>> s2 = fits.Column(name='blabla', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='BLABLA') + >>> hdu_contains_gti(hdu1) + False + """ + colnames = [c.lower() for c in hdu.data.columns.names] + return "start" in colnames and "stop" in colnames + + +
+[docs] +def get_gti_from_hdu(gtihdu): + """ + Get the GTIs from a given FITS extension. + + Parameters + ---------- + gtihdu: `:class:astropy.io.fits.TableHDU` object + The GTI HDU. + + Returns + ------- + gti_list: [[gti00, gti01], [gti10, gti11], ...] + List of good time intervals. + + Examples + -------- + >>> from astropy.io import fits + >>> start = np.arange(0, 300, 100) + >>> stop = start + 50. + >>> s1 = fits.Column(name='START', array=start, format='D') + >>> s2 = fits.Column(name='STOP', array=stop, format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501') + >>> gti = get_gti_from_hdu(hdu1) + >>> assert np.allclose(gti, [[0, 50], [100, 150], [200, 250]]) + """ + gtitable = gtihdu.data + + colnames = [col.name for col in gtitable.columns] + # Default: NuSTAR: START, STOP. Otherwise, try RXTE: Start, Stop + if "START" in colnames: + startstr, stopstr = "START", "STOP" + else: + startstr, stopstr = "Start", "Stop" + + gtistart = np.array(gtitable.field(startstr), dtype=np.longdouble) + gtistop = np.array(gtitable.field(stopstr), dtype=np.longdouble) + gti_list = np.vstack((gtistart, gtistop)).T + + return gti_list
+ + + +
+[docs] +def get_gti_from_all_extensions(lchdulist, accepted_gtistrings=["GTI"], det_numbers=None): + """ + Intersect the GTIs from the all accepted extensions. + + Parameters + ---------- + lchdulist: `:class:astropy.io.fits.HDUList` object + The full content of a FITS file. + accepted_gtistrings: list of str + Base strings of GTI extensions. For missions adding the detector number + to GTI extensions like, e.g., XMM and Chandra, this function + automatically adds the detector number and looks for all matching + GTI extensions (e.g. "STDGTI" will also retrieve "STDGTI05"; "GTI0" + will also retrieve "GTI00501"). + + Returns + ------- + gti_list: [[gti00, gti01], [gti10, gti11], ...] + List of good time intervals, as the intersection of all matching GTIs. + If there are two matching extensions, with GTIs [[0, 50], [100, 200]] + and [[40, 70]] respectively, this function will return [[40, 50]]. + + Examples + -------- + >>> from astropy.io import fits + >>> s1 = fits.Column(name='START', array=[0, 100, 200], format='D') + >>> s2 = fits.Column(name='STOP', array=[50, 150, 250], format='D') + >>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501') + >>> s1 = fits.Column(name='START', array=[200, 300], format='D') + >>> s2 = fits.Column(name='STOP', array=[250, 350], format='D') + >>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='STDGTI05') + >>> lchdulist = fits.HDUList([hdu1, hdu2]) + >>> gti = get_gti_from_all_extensions( + ... lchdulist, accepted_gtistrings=['GTI0', 'STDGTI'], + ... det_numbers=[5]) + >>> assert np.allclose(gti, [[200, 250]]) + """ + if isinstance(lchdulist, str): + lchdulist = fits.open(lchdulist) + acc_gti_strs = copy.deepcopy(accepted_gtistrings) + if det_numbers is not None: + for i in det_numbers: + acc_gti_strs += [x + "{:02d}".format(i) for x in accepted_gtistrings] + acc_gti_strs += [x + "{:02d}.*".format(i) for x in accepted_gtistrings] + gtiextn = [] + for pattern in acc_gti_strs: + gtiextn.extend(get_gti_extensions_from_pattern(lchdulist, pattern)) + gtiextn = list(set(gtiextn)) + gti_lists = [] + for extn in gtiextn: + gtihdu = lchdulist[extn] + gti_lists.append(get_gti_from_hdu(gtihdu)) + return cross_gtis(gti_lists)
+ + + +
+[docs] +def check_gtis(gti): + """ + Check if GTIs are well-behaved. + + Check that: + + 1. the shape of the GTI array is correct; + 2. no start > end + 3. no overlaps. + + Parameters + ---------- + gti : list + A list of GTI ``(start, stop)`` pairs extracted from the FITS file. + + Raises + ------ + TypeError + If GTIs are of the wrong shape + ValueError + If GTIs have overlapping or displaced values + """ + if len(gti) < 1: + raise ValueError("Empty GTIs.") + + for g in gti: + if np.size(g) != 2 or np.ndim(g) != 1: + raise TypeError( + "Please check the formatting of the GTIs. They need to be" + " provided as [[gti00, gti01], [gti10, gti11], ...]." + ) + + gti = np.array(gti) + gti_start = gti[:, 0] + gti_end = gti[:, 1] + + # Check that GTIs are well-behaved + if not np.all(gti_end >= gti_start): + raise ValueError("The GTI end times must be larger than the " "GTI start times.") + + # Check that there are no overlaps in GTIs + if not np.all(gti_start[1:] >= gti_end[:-1]): + raise ValueError("This GTI has overlaps.") + + return
+ + + +
+[docs] +@jit(nopython=True) +def create_gti_mask_jit(time, gtis, mask, gti_mask, min_length=0): # pragma: no cover + """ + Compiled and fast function to create GTI mask. + + Parameters + ---------- + time : numpy.ndarray + An array of time stamps + + gtis : iterable of ``(start, stop)`` pairs + The list of GTIs. + + mask : numpy.ndarray + A pre-assigned array of zeros of the same shape as ``time`` + Records whether a time stamp is part of the GTIs. + + gti_mask : numpy.ndarray + A pre-assigned array zeros in the same shape as ``time``; records + start/stop of GTIs. + + min_length : float + An optional minimum length for the GTIs to be applied. Only GTIs longer + than ``min_length`` will be considered when creating the mask. + + """ + gti_el = -1 + next_gti = False + for i, t in enumerate(time): + if i == 0 or t > gtis[gti_el, 1] or next_gti: + gti_el += 1 + if gti_el == len(gtis): + break + limmin = gtis[gti_el, 0] + limmax = gtis[gti_el, 1] + length = limmax - limmin + if length < min_length: + next_gti = True + continue + next_gti = False + gti_mask[gti_el] = True + + if t < limmin: + continue + + if t >= limmin: + if t <= limmax: + mask[i] = 1 + + return mask, gti_mask
+ + + +
+[docs] +def create_gti_mask( + time, gtis, safe_interval=None, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001 +): + """ + Create GTI mask. + + Assumes that no overlaps are present between GTIs + + Parameters + ---------- + time : numpy.ndarray + An array of time stamps + + gtis : ``[[g0_0, g0_1], [g1_0, g1_1], ...]``, float array-like + The list of GTIs + + + Other parameters + ---------------- + safe_interval : float or ``[float, float]``, default None + A safe interval to exclude at both ends (if single float) or the start + and the end (if pair of values) of GTIs. If None, no safe interval + is applied to data. + + min_length : float + An optional minimum length for the GTIs to be applied. Only GTIs longer + than ``min_length`` will be considered when creating the mask. + + return_new_gtis : bool + If ``True```, return the list of new GTIs (if ``min_length > 0``) + + dt : float + Time resolution of the data, i.e. the interval between time stamps. + + epsilon : float + Fraction of ``dt`` that is tolerated at the borders of a GTI. + + Returns + ------- + mask : bool array + A mask labelling all time stamps that are included in the GTIs versus + those that are not. + + new_gtis : ``Nx2`` array + An array of new GTIs created by this function. + """ + if time is None or np.size(time) == 0: + raise ValueError("Passing an empty time array to create_gti_mask") + if gtis is None or np.size(gtis) == 0: + raise ValueError("Passing an empty GTI array to create_gti_mask") + gtis = np.array(gtis, dtype=np.longdouble) + + mask = np.zeros(len(time), dtype=bool) + + if min_length > 0: + lengths = gtis[:, 1] - gtis[:, 0] + good = lengths >= np.max(min_length, dt) + if np.all(~good): + warnings.warn("No GTIs longer than " "min_length {}".format(min_length)) + return mask + gtis = gtis[good] + + if not HAS_NUMBA: + return create_gti_mask_complete( + time, + gtis, + safe_interval=safe_interval, + min_length=min_length, + return_new_gtis=return_new_gtis, + dt=dt, + epsilon=epsilon, + ) + + check_gtis(gtis) + + dt = apply_function_if_none(dt, time, lambda x: np.median(np.diff(x))) + dt_start = dt_stop = dt + epsilon_times_dt_start = epsilon_times_dt_stop = epsilon * dt + if isinstance(dt, Iterable): + idxs = np.searchsorted(time, gtis) + idxs[idxs == time.size] = -1 + dt_start = dt[idxs[:, 0]] + dt_stop = dt[idxs[:, 1]] + epsilon_times_dt_start = epsilon * dt_start + epsilon_times_dt_stop = epsilon * dt_stop + + gtis_new = copy.deepcopy(gtis) + gti_mask = np.zeros(len(gtis), dtype=bool) + + if safe_interval is not None: + if not isinstance(safe_interval, Iterable): + safe_interval = np.array([safe_interval, safe_interval]) + # These are the gtis that will be returned (filtered!). They are only + # modified by the safe intervals + gtis_new[:, 0] = gtis[:, 0] + safe_interval[0] + gtis_new[:, 1] = gtis[:, 1] - safe_interval[1] + + # These are false gtis, they contain a few boundary modifications + # in order to simplify the calculation of the mask, but they will _not_ + # be returned. + gtis_to_mask = copy.deepcopy(gtis_new) + gtis_to_mask[:, 0] = gtis_new[:, 0] - epsilon_times_dt_start + dt_start / 2 + gtis_to_mask[:, 1] = gtis_new[:, 1] + epsilon_times_dt_stop - dt_stop / 2 + + if isinstance(dt, Iterable): + dt = np.min(abs(dt_stop - dt_start)) + + mask, gtimask = create_gti_mask_jit( + (time - time[0]).astype(np.float64), + (gtis_to_mask - time[0]).astype(np.float64), + mask, + gti_mask=gti_mask, + min_length=float(min_length - 2 * (1 + epsilon) * dt), + ) + + if return_new_gtis: + return mask, gtis_new[gtimask] + + return mask
+ + + +
+[docs] +def create_gti_mask_complete( + time, gtis, safe_interval=0, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001 +): + """ + Create GTI mask, allowing for non-constant ``dt``. + + Assumes that no overlaps are present between GTIs. + + Parameters + ---------- + time : numpy.ndarray + An array of time stamps. + + gtis : ``[[g0_0, g0_1], [g1_0, g1_1], ...]``, float array-like + The list of GTIs. + + + Other parameters + ---------------- + safe_interval : float or [float, float] + A safe interval to exclude at both ends (if single float) or the start + and the end (if pair of values) of GTIs. + + min_length : float + An optional minimum length for the GTIs to be applied. Only GTIs longer + than ``min_length`` will be considered when creating the mask. + + return_new_gtis : bool + If ``True``, return the list of new GTIs (if ``min_length > 0``). + + dt : float + Time resolution of the data, i.e. the interval between time stamps. + + epsilon : float + Fraction of ``dt`` that is tolerated at the borders of a GTI. + + Returns + ------- + mask : bool array + A mask labelling all time stamps that are included in the GTIs versus + those that are not. + + new_gtis : Nx2 array + An array of new GTIs created by this function. + """ + + check_gtis(gtis) + + dt = assign_value_if_none(dt, np.zeros_like(time) + np.median(np.diff(np.sort(time)) / 2)) + + epsilon_times_dt = epsilon * dt + mask = np.zeros(len(time), dtype=bool) + + if safe_interval is None: + safe_interval = [0, 0] + elif not isinstance(safe_interval, Iterable): + safe_interval = [safe_interval, safe_interval] + + newgtis = np.zeros_like(gtis) + # Whose GTIs, including safe intervals, are longer than min_length + newgtimask = np.zeros(len(newgtis), dtype=bool) + + for ig, gti in enumerate(gtis): + limmin, limmax = gti + limmin += safe_interval[0] + limmax -= safe_interval[1] + if limmax - limmin >= min_length: + newgtis[ig][:] = [limmin, limmax] + cond1 = time >= (limmin + dt / 2 - epsilon_times_dt) + cond2 = time <= (limmax - dt / 2 + epsilon_times_dt) + + good = np.logical_and(cond1, cond2) + mask[good] = True + newgtimask[ig] = True + + res = mask + if return_new_gtis: + res = [res, newgtis[newgtimask]] + return res
+ + + +
+[docs] +def create_gti_from_condition(time, condition, safe_interval=0, dt=None): + """ + Create a GTI list from a time array and a boolean mask (``condition``). + + Parameters + ---------- + time : array-like + Array containing time stamps. + + condition : array-like + An array of bools, of the same length of time. + A possible condition can be, e.g., the result of ``lc > 0``. + + Returns + ------- + gtis : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The newly created GTIs. + + Other parameters + ---------------- + safe_interval : float or ``[float, float]`` + A safe interval to exclude at both ends (if single float) or the start + and the end (if pair of values) of GTIs. + dt : float + The width (in sec) of each bin of the time array. Can be irregular. + """ + + if len(time) != len(condition): + raise StingrayError("The length of the condition and " "time arrays must be the same.") + + idxs = contiguous_regions(condition) + + if not isinstance(safe_interval, Iterable): + safe_interval = [safe_interval, safe_interval] + + dt = assign_value_if_none(dt, np.zeros_like(time) + (time[1] - time[0]) / 2) + + gtis = [] + for idx in idxs: + logger.debug(idx) + startidx = idx[0] + stopidx = idx[1] - 1 + + t0 = time[startidx] - dt[startidx] + safe_interval[0] + t1 = time[stopidx] + dt[stopidx] - safe_interval[1] + if t1 - t0 < 0: + continue + gtis.append([t0, t1]) + return np.array(gtis)
+ + + +
+[docs] +def cross_two_gtis(gti0, gti1): + """ + Extract the common intervals from two GTI lists *EXACTLY*. + + Parameters + ---------- + gti0 : iterable of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + gti1 : iterable of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The two lists of GTIs to be crossed. + + Returns + ------- + gtis : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The newly created GTIs. + + See Also + -------- + cross_gtis : From multiple GTI lists, extract common intervals *EXACTLY* + + Examples + -------- + >>> gti1 = np.array([[1, 2]]) + >>> gti2 = np.array([[1, 2]]) + >>> newgti = cross_two_gtis(gti1, gti2) + >>> assert np.allclose(newgti, [[1, 2]]) + >>> gti1 = np.array([[1, 4]]) + >>> gti2 = np.array([[1, 2], [2, 4]]) + >>> newgti = cross_two_gtis(gti1, gti2) + >>> assert np.allclose(newgti, [[1, 4]]) + >>> gti1 = np.array([[1, 2]]) + >>> gti2 = np.array([[2, 3]]) + >>> newgti = cross_two_gtis(gti1, gti2) + >>> len(newgti) + 0 + """ + gti0 = join_equal_gti_boundaries(np.asanyarray(gti0)) + gti1 = join_equal_gti_boundaries(np.asanyarray(gti1)) + # Check GTIs + check_gtis(gti0) + check_gtis(gti1) + + gti0_start = gti0[:, 0] + gti0_end = gti0[:, 1] + gti1_start = gti1[:, 0] + gti1_end = gti1[:, 1] + + # Create a list that references to the two start and end series + gti_start = [gti0_start, gti1_start] + gti_end = [gti0_end, gti1_end] + + # Concatenate the series, while keeping track of the correct origin of + # each start and end time + gti0_tag = np.array([0 for g in gti0_start], dtype=bool) + gti1_tag = np.array([1 for g in gti1_start], dtype=bool) + conc_start = np.concatenate((gti0_start, gti1_start)) + conc_end = np.concatenate((gti0_end, gti1_end)) + conc_tag = np.concatenate((gti0_tag, gti1_tag)) + + # Put in time order + order = np.argsort(conc_end) + conc_start = conc_start[order] + conc_end = conc_end[order] + conc_tag = conc_tag[order] + + last_end = conc_start[0] - 1.0 + + # The maximum end must not be larger than the second last end! + max_end = conc_end[-2] + + final_gti = [] + for ie, e in enumerate(conc_end): + # Is this ending in series 0 or 1? + this_series = int(conc_tag[ie]) + other_series = int(this_series == 0) + + # Check that this closes intervals in both series. + # 1. Check that there is an opening in both series 0 and 1 lower than e + try: + st_pos = np.argmax(gti_start[this_series][gti_start[this_series] < e]) + so_pos = np.argmax(gti_start[other_series][gti_start[other_series] < e]) + st = gti_start[this_series][st_pos] + so = gti_start[other_series][so_pos] + + s = np.max([st, so]) + except: # pragma: no cover + continue + + # If this start is inside the last interval (It can happen for equal + # GTI start times between the two series), then skip! + if s <= last_end: + continue + # 2. Check that there is no closing before e in the "other series", + # from intervals starting either after s, or starting and ending + # between the last closed interval and this one + cond1 = (gti_end[other_series] > s) * (gti_end[other_series] < e) + cond2 = gti_end[other_series][so_pos] < s + condition = np.any(np.logical_or(cond1, cond2)) + if e > max_end: + condition = True + # Also, the last closed interval in the other series must be before e + # Well, if none of the conditions at point 2 apply, then you can + # create the new gti! + if not condition: + final_gti.append([s, e]) + last_end = e + + return np.array(final_gti)
+ + + +
+[docs] +def cross_gtis(gti_list): + """ + From multiple GTI lists, extract the common intervals *EXACTLY*. + + Parameters + ---------- + gti_list : array-like + List of GTI arrays, each one in the usual format + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + Returns + ------- + gti0: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + The newly created GTIs. + + See Also + -------- + cross_two_gtis : Extract the common intervals from two GTI lists *EXACTLY* + + Examples + -------- + >>> gti1 = np.array([[1, 2]]) + >>> gti2 = np.array([[1, 2]]) + >>> newgti = cross_gtis([gti1, gti2]) + >>> assert np.allclose(newgti, [[1, 2]]) + >>> gti1 = np.array([[1, 4]]) + >>> gti2 = np.array([[1, 2], [2, 4]]) + >>> newgti = cross_gtis([gti1, gti2]) + >>> assert np.allclose(newgti, [[1, 4]]) + """ + for g in gti_list: + check_gtis(g) + + ninst = len(gti_list) + if ninst == 1: + return gti_list[0] + + gti0 = gti_list[0] + + for gti in gti_list[1:]: + gti0 = cross_two_gtis(gti0, gti) + if len(gti0) == 0: + return [] + + return gti0
+ + + +
+[docs] +def get_btis(gtis, start_time=None, stop_time=None): + """ + From GTIs, obtain bad time intervals, i.e. the intervals *not* covered + by the GTIs. + + GTIs have to be well-behaved, in the sense that they have to pass + ``check_gtis``. + + Parameters + ---------- + gtis : iterable + A list of GTIs. + + start_time : float + Optional start time of the overall observation (e.g. can be earlier + than the first time stamp in ``gtis``). + + stop_time : float + Optional stop time of the overall observation (e.g. can be later than + the last time stamp in``gtis``). + + Returns + ------- + btis : numpy.ndarray + A list of bad time intervals. + """ + # Check GTIs + if len(gtis) == 0: + if start_time is None or stop_time is None: + raise ValueError("Empty GTI and no valid start_time " "and stop_time. BAD!") + + return np.asanyarray([[start_time, stop_time]]) + check_gtis(gtis) + + start_time = assign_value_if_none(start_time, gtis[0][0]) + stop_time = assign_value_if_none(stop_time, gtis[-1][1]) + + if gtis[0][0] <= start_time: + btis = [] + else: + btis = [[start_time, gtis[0][0]]] + # Transform GTI list in + flat_gtis = gtis.flatten() + new_flat_btis = zip(flat_gtis[1:-2:2], flat_gtis[2:-1:2]) + btis.extend(new_flat_btis) + + if stop_time > gtis[-1][1]: + btis.extend([[gtis[-1][1], stop_time]]) + + return np.asanyarray(btis)
+ + + +@jit(nopython=True) +def _check_separate(gti0, gti1): + """Numba-compiled core of ``check_separate``.""" + gti0_start = gti0[:, 0] + gti0_end = gti0[:, 1] + gti1_start = gti1[:, 0] + gti1_end = gti1[:, 1] + + if (gti0_end[-1] <= gti1_start[0]) or (gti1_end[-1] <= gti0_start[0]): + return True + + for g in gti1.flatten(): + for g0, g1 in zip(gti0[:, 0], gti0[:, 1]): + if (g <= g1) and (g >= g0): + return False + for g in gti0.flatten(): + for g0, g1 in zip(gti1[:, 0], gti1[:, 1]): + if (g <= g1) and (g >= g0): + return False + return True + + +
+[docs] +def check_separate(gti0, gti1): + """ + Check if two GTIs do not overlap. + + Parameters + ---------- + gti0: 2-d float array + List of GTIs of form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + gti1: 2-d float array + List of GTIs of form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + Returns + ------- + separate: bool + ``True`` if GTIs are mutually exclusive, ``False`` if not. + + Examples + -------- + >>> gti0 = [[0, 10]] + >>> gti1 = [[20, 30]] + >>> assert check_separate(gti0, gti1) + >>> gti0 = [[0, 10]] + >>> gti1 = [[0, 10]] + >>> check_separate(gti0, gti1) + False + >>> gti0 = [[0, 10]] + >>> gti1 = [[10, 20]] + >>> assert check_separate(gti0, gti1) + >>> gti0 = [[0, 11]] + >>> gti1 = [[10, 20]] + >>> check_separate(gti0, gti1) + False + >>> gti0 = [[0, 11]] + >>> gti1 = [[10, 20]] + >>> check_separate(gti1, gti0) + False + >>> gti0 = [[0, 10], [30, 40]] + >>> gti1 = [[11, 28]] + >>> assert check_separate(gti0, gti1) + """ + + gti0 = np.asanyarray(gti0) + gti1 = np.asanyarray(gti1) + if len(gti0) == 0 or len(gti1) == 0: + return True + + # Check if independently GTIs are well behaved + check_gtis(gti0) + check_gtis(gti1) + t0 = min(gti0[0, 0], gti1[0, 0]) + return _check_separate((gti0 - t0).astype(np.double), (gti1 - t0).astype(np.double))
+ + + +def join_equal_gti_boundaries(gti, threshold=0.0): + """ + If the start of a GTI and the end of the previous one is within a certain time value, join them. + + Parameters + ---------- + gti: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + threshold: float number (units sec) + Maximum time interval to join two adjacent GTIs + + Returns + ------- + gti: 2-d float array + The newly created GTI array. + """ + new_gtis = [] + for l in gti: + new_gtis.append(l) + touching = (np.abs(gti[:-1, 1] - gti[1:, 0])) <= threshold + ng = [] + count = 0 + while count < len(gti) - 1: + if touching[count]: + new_gtis[count + 1] = [new_gtis[count][0], new_gtis[count + 1][1]] + else: + ng.append(new_gtis[count]) + count += 1 + ng.append(new_gtis[-1]) + return np.asanyarray(ng) + + +def merge_gtis(gti_list, strategy): + """Merge a list of GTIs using the specified method. + + Invalid GTI lists (None or empty) are ignored. + + Parameters + ---------- + gti_list : list of 2-d float arrays + List of GTIs. + + Other parameters + ---------------- + strategy : {"intersection", "union", "append", "infer", "none"} + Method to use to merge the GTIs. If "intersection", the GTIs are merged + using the intersection of the GTIs. If "union", the GTIs are merged + using the union of the GTIs. If "none", a single GTI with the minimum and + the maximum time stamps of all GTIs is returned. If "infer", the strategy + is decided based on the GTIs. If there are no overlaps, "union" is used, + otherwise "intersection" is used. If "append", the GTIs are simply appended + but they must be mutually exclusive. + + Examples + -------- + >>> gti1 = np.array([[1, 2], [3, 4], [5, 6]]) + >>> gti2 = np.array([[1, 2]]) + >>> gti3 = np.array([[4, 5]]) + >>> gti = merge_gtis([gti1, gti2], "intersection") + >>> assert np.array_equal(gti, [[1, 2]]) + >>> assert merge_gtis([gti1, gti2, gti3], "intersection") is None + >>> assert merge_gtis([gti2, gti3], "intersection") is None + >>> gti = merge_gtis([gti1, gti2], "infer") + >>> assert np.array_equal(gti, [[1, 2]]) + >>> gti = merge_gtis([gti2, gti3], "infer") + >>> assert np.array_equal(gti, [[1, 2], [4, 5]]) + """ + all_gti_lists = [] + global_min = np.inf + global_max = -np.inf + for gti in gti_list: + if gti is None or len(gti) == 0: + continue + all_gti_lists.append(gti) + global_min = min(global_min, np.min(gti)) + global_max = max(global_max, np.max(gti)) + + if len(all_gti_lists) == 0: + return None + + if strategy == "none": + return np.asanyarray([[global_min, global_max]]) + + if len(all_gti_lists) == 1: + return all_gti_lists[0] + + cross = cross_gtis(all_gti_lists) + if len(cross) == 0: + cross = None + if strategy == "infer": + if cross is None: + strategy = "union" + else: + strategy = "intersection" + + if strategy == "intersection": + return cross + + gti0 = all_gti_lists[0] + for gti in all_gti_lists[1:]: + if strategy == "union": + gti0 = join_gtis(gti0, gti) + elif strategy == "append": + gti0 = append_gtis(gti0, gti) + return gti0 + + +
+[docs] +def append_gtis(gti0, gti1): + """ + Union of two non-overlapping GTIs. + + If the two GTIs "touch", this is tolerated and the touching GTIs are + joined in a single one. + + Parameters + ---------- + gti0: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + gti1: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + Returns + ------- + gti: 2-d float array + The newly created GTI array. + + Examples + -------- + >>> assert np.allclose(append_gtis([[0, 1]], [[2, 3]]), [[0, 1], [2, 3]]) + >>> np.allclose(append_gtis([[0, 1], [4, 5]], [[2, 3]]), + ... [[0, 1], [2, 3], [4, 5]]) + True + >>> assert np.allclose(append_gtis([[0, 1]], [[1, 3]]), [[0, 3]]) + """ + + gti0 = np.asanyarray(gti0) + gti1 = np.asanyarray(gti1) + # Check if independently GTIs are well behaved. + check_gtis(gti0) + check_gtis(gti1) + + # Check if GTIs are mutually exclusive. + if not check_separate(gti0, gti1): + raise ValueError("In order to append, GTIs must be mutually exclusive.") + + new_gtis = np.concatenate([gti0, gti1]) + order = np.argsort(new_gtis[:, 0]) + return join_equal_gti_boundaries(new_gtis[order])
+ + + +
+[docs] +def join_gtis(gti0, gti1): + """ + Union of two GTIs. + + If GTIs are mutually exclusive, it calls ``append_gtis``. Otherwise we put + the extremes of partially overlapping GTIs on an ideal line and look at the + number of opened and closed intervals. When the number of closed and opened + intervals is the same, the full GTI is complete and we close it. + + In practice, we assign to each opening time of a GTI the value ``-1``, and + the value ``1`` to each closing time; when the cumulative sum is zero, the + GTI has ended. The timestamp after each closed GTI is the start of a new + one. + + :: + + (g_all) 0 1 2 3 4 5 6 7 8 9 + (cumsum) -1 -2 -1 0 -1 -2 -1 -2 -1 0 + GTI A |-----:-----| : |-----:-----| |-----:-----| + FINAL GTI |-----:-----------| |-----:-----------------:-----| + GTI B |-----------| |-----------------| + + In case one GTI ends exactly where another one starts, the cumulative sum is 0 + but we do not want to close. In this case, we make a check that the next element + of the sequence is not equal to the one where we would close. + + :: + + (g_all) 0 1,1 3,3 5 + (cumsum) -1 0,-1 -1,-2 0 + GTI A |-----| |-----------| + FINAL GTI |-----------------------------| + GTI B |-----------| + + Parameters + ---------- + gti0: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + + gti1: 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + + Returns + ------- + gti: 2-d float array + The newly created GTI + """ + + gti0 = np.asanyarray(gti0) + gti1 = np.asanyarray(gti1) + + # Check if independently GTIs are well behaved. + check_gtis(gti0) + check_gtis(gti1) + + if check_separate(gti0, gti1): + return append_gtis(gti0, gti1) + + g0 = gti0.flatten() + # Opening GTI: type = 1; Closing: type = -1 + g0_type = np.asanyarray( + list(zip(-np.ones(int(len(g0) / 2), dtype=int), np.ones(int(len(g0) / 2), dtype=int))) + ) + g1 = gti1.flatten() + g1_type = np.asanyarray( + list(zip(-np.ones(int(len(g1) / 2), dtype=int), np.ones(int(len(g1) / 2), dtype=int))) + ) + + g_all = np.append(g0, g1) + g_type_all = np.append(g0_type, g1_type) + order = np.argsort(g_all) + g_all = g_all[order] + g_type_all = g_type_all[order] + + sums = np.cumsum(g_type_all) + + # Where the cumulative sum is zero, we close the GTI. + # But pay attention! If one GTI ends exactly where another one starts, + # the cumulative sum is zero, but we do not want to close the GTI. + # So we check that the next element of g_all is not equal to the one where + # we would close. + closing_bins = (sums == 0) & (g_all != np.roll(g_all, -1)) + # The next element in the sequence is the start of the new GTI. In the case + # of the last element, the next is the first. Numpy.roll gives this for + # free. + starting_bins = np.roll(closing_bins, 1) + + starting_times = g_all[starting_bins] + closing_times = g_all[closing_bins] + + final_gti = [] + for start, stop in zip(starting_times, closing_times): + final_gti.append([start, stop]) + + return np.sort(final_gti, axis=0)
+ + + +
+[docs] +def time_intervals_from_gtis(gtis, segment_size, fraction_step=1, epsilon=1e-5): + """ + Compute start/stop times of equal time intervals, compatible with GTIs. + + Used to start each FFT/PDS/cospectrum from the start of a GTI, + and stop before the next gap in data (end of GTI). + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + + segment_size : float + Length of the time segments + + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving + window), this indicates the ratio between step step and + ``segment_size`` (e.g. ``0.5`` means that the window shifts by half + ``segment_size``). + + Returns + ------- + spectrum_start_times : array-like + List of starting times to use in the spectral calculations. + + spectrum_stop_times : array-like + List of end times to use in the spectral calculations. + + """ + spectrum_start_times = np.array([], dtype=np.longdouble) + for g in gtis: + if g[1] - g[0] + epsilon < segment_size: + continue + + newtimes = np.arange( + g[0], + g[1] - segment_size + epsilon, + np.longdouble(segment_size) * fraction_step, + dtype=np.longdouble, + ) + spectrum_start_times = np.append(spectrum_start_times, newtimes) + + assert len(spectrum_start_times) > 0, "No GTIs are equal to or longer than segment_size." + return spectrum_start_times, spectrum_start_times + segment_size
+ + + +def calculate_segment_bin_start(startbin, stopbin, nbin, fraction_step=1): + """Get the starting indices of intervals of equal length. + + A bit like `np.arange`, but checks that the last number is + at least ``nbin`` less than ``stopbin``. Useful when getting + starting intervals of equal chunks of a binned light curve. + + It is possible to make these intervals sliding, through the + ``fraction_step`` parameter. + + Parameters + ---------- + startbin : int + Starting bin of the interval. + + stopbin : int + Last bin of the interval. + + nbin : int + Number of bins in each interval. + + Other Parameters + ---------------- + fraction_step : float + If the step is not a full ``nbin`` but less (e.g. a moving window), + this indicates the ratio between the step and ``nbin`` (e.g. + ``0.5`` means that the window shifts by half ``nbin``). + + Returns + ------- + spectrum_start_bins : array-like + List of starting bins in the original time array to use in spectral + calculations. + + Examples + -------- + >>> st = calculate_segment_bin_start(0, 10000, 10000) + >>> int(st[-1]) + 0 + >>> st = calculate_segment_bin_start(0, 5, 2) + >>> int(st[-1]) + 2 + >>> st = calculate_segment_bin_start(0, 6, 2) + >>> int(st[-1]) + 4 + """ + st = np.arange(startbin, stopbin, int(nbin * fraction_step), dtype=int) + if st[-1] + nbin > stopbin: + return st[:-1] + return st + + +
+[docs] +def bin_intervals_from_gtis(gtis, segment_size, time, dt=None, fraction_step=1, epsilon=0.001): + """ + Compute start/stop times of equal time intervals, compatible with GTIs, + and map them to the indices of an array of time stamps. + + Used to start each FFT/PDS/cospectrum from the start of a GTI, + and stop before the next gap in data (end of GTI). + In this case, it is necessary to specify the time array containing the + times of the light curve bins. + Returns start and stop bins of the intervals to use for the PDS. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + segment_size : float + Length of each time segment. + + time : array-like + Array of time stamps. + + Other Parameters + ---------------- + dt : float, default median(diff(time)) + Time resolution of the light curve. + + epsilon : float, default 0.001 + The tolerance, in fraction of ``dt``, for the comparisons at the + borders. + + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving + window), this indicates the ratio between step step and + ``segment_size`` (e.g. ``0.5`` means that the window shifts by half + ``segment_size``). + + Returns + ------- + spectrum_start_bins : array-like + List of starting bins in the original time array to use in spectral + calculations. + + spectrum_stop_bins : array-like + List of end bins to use in the spectral calculations. + + Examples + -------- + >>> time = np.arange(0.5, 13.5) + + >>> gtis = [[0, 5], [6, 8], [9, 10]] + + >>> segment_size = 2 + + >>> start_bins, stop_bins = bin_intervals_from_gtis(gtis,segment_size,time) + + >>> assert np.allclose(start_bins, [0, 2, 6]) + >>> assert np.allclose(stop_bins, [2, 4, 8]) + >>> assert np.allclose(time[start_bins[0]:stop_bins[0]], [0.5, 1.5]) + >>> assert np.allclose(time[start_bins[1]:stop_bins[1]], [2.5, 3.5]) + """ + time = np.asanyarray(time) + gtis = np.asanyarray(gtis) + if dt is None: + dt = np.median(np.diff(time)) + + epsilon_times_dt = epsilon * dt + nbin = np.rint(segment_size / dt).astype(int) + + if time[-1] < np.min(gtis) or time[0] > np.max(gtis): + raise ValueError("Invalid time interval for the given GTIs") + + spectrum_start_bins = np.array([], dtype=int) + + gti_low = gtis[:, 0] + dt / 2 - epsilon_times_dt + gti_up = gtis[:, 1] - dt / 2 + epsilon_times_dt + + for g0, g1 in zip(gti_low, gti_up): + if (g1 - g0 + dt + epsilon_times_dt) < segment_size: + continue + startbin, stopbin = np.searchsorted(time, [g0, g1], "left") + stopbin += 1 + if stopbin > time.size: + stopbin = time.size + + if time[startbin] < g0: + startbin += 1 + # Would be g[1] - dt/2, but stopbin is the end of an interval + # so one has to add one bin + if time[stopbin - 1] > g1: + stopbin -= 1 + + newbins = calculate_segment_bin_start(startbin, stopbin, nbin, fraction_step=fraction_step) + spectrum_start_bins = np.append(spectrum_start_bins, newbins) + assert len(spectrum_start_bins) > 0, "No GTIs are equal to or longer than segment_size." + return spectrum_start_bins, spectrum_start_bins + nbin
+ + + +
+[docs] +def gti_border_bins(gtis, time, dt=None, epsilon=0.001): + """ + Find the indices in a time array corresponding to the borders of GTIs. + + GTIs shorter than the bin time are not returned. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]``. + + time : array-like + Array of time stamps. + + Other Parameters + ---------------- + dt : float or array of floats. Default median(diff(time)) + Time resolution of the light curve. Can be an array of the same dimension + as ``time`` + + epsilon : float, default 0.001 + The tolerance, in fraction of ``dt``, for the comparisons at the + borders. + + fraction_step : float + If the step is not a full ``segment_size`` but less (e.g. a moving + window), this indicates the ratio between step step and + ``segment_size`` (e.g. ``0.5`` means that the window shifts by half + ``segment_size``). + + Returns + ------- + spectrum_start_bins : array-like + List of starting bins of each GTI + + spectrum_stop_bins : array-like + List of stop bins of each GTI. The elements corresponding to these bins + should *not* be included. + + Examples + -------- + >>> times = np.arange(0.5, 13.5) + + >>> gti_border_bins([[16., 18.]], times) + Traceback (most recent call last): + ... + ValueError: Invalid time interval for the given GTIs + + >>> start_bins, stop_bins = gti_border_bins( + ... [[0, 5], [6, 8]], times) + + >>> assert np.allclose(start_bins, [0, 6]) + >>> assert np.allclose(stop_bins, [5, 8]) + >>> assert np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5]) + >>> assert np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5]) + + >>> start_bins, stop_bins = gti_border_bins( + ... [[0, 5], [6, 13]], times, dt=np.ones_like(times)) + + >>> assert np.allclose(start_bins, [0, 6]) + >>> assert np.allclose(stop_bins, [5, 13]) + >>> assert np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5]) + >>> np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5]) + True""" + time = np.asanyarray(time) + gtis = np.asanyarray(gtis) + if dt is None: + dt = np.median(np.diff(time)) + + dt_start = dt_stop = dt + epsilon_times_dt_start = epsilon_times_dt_stop = epsilon * dt + if isinstance(dt, Iterable): + idxs = np.searchsorted(time, gtis) + idxs[idxs == time.size] = -1 + dt_start = dt[idxs[:, 0]] + dt_stop = dt[idxs[:, 1]] + epsilon_times_dt_start = epsilon * dt_start + epsilon_times_dt_stop = epsilon * dt_stop + + if time[-1] < np.min(gtis) or time[0] > np.max(gtis): + raise ValueError("Invalid time interval for the given GTIs") + + spectrum_start_bins = [] + spectrum_stop_bins = [] + + gti_low = gtis[:, 0] + dt_start / 2 - epsilon_times_dt_start + gti_up = gtis[:, 1] - dt_stop / 2 + epsilon_times_dt_stop + + for g0, g1 in zip(gti_low, gti_up): + startbin, stopbin = np.searchsorted(time, [g0, g1], "left") + stopbin += 1 + if stopbin > time.size: + stopbin = time.size + + if time[startbin] < g0: + startbin += 1 + # Would be g[1] - dt/2, but stopbin is the end of an interval + # so one has to add one bin + if time[stopbin - 1] > g1: + stopbin -= 1 + + spectrum_start_bins.append(startbin) + spectrum_stop_bins.append(stopbin) + + return np.array(spectrum_start_bins), np.array(spectrum_stop_bins)
+ + + +def generate_indices_of_boundaries(times, gti, segment_size=None, dt=0): + """ + Get index boundaries and times from different parts of the observation. + + It wraps around `generate_indices_of_gti_boundaries`, + `generate_indices_of_segment_boundaries_binned`, and + `generate_indices_of_segment_boundaries_unbinned` depending on: + + + ``segment_size`` being ``None`` (give GTI boundaries, segment boundaries + otherwise) + + ``dt`` being 0 or nonzero (unevenly sampled, evenly sampled otherwise) + + Examples + -------- + >>> times = [0.1, 0.2, 0.5, 0.8, 1.1] + >>> gtis = [[0, 0.55], [0.6, 2.1]] + >>> vals0 = generate_indices_of_boundaries(times, gtis, segment_size=None) + >>> vals1 = generate_indices_of_gti_boundaries(times, gtis) + >>> assert check_iterables_close(vals0, vals1) + >>> vals0 = generate_indices_of_boundaries(times, gtis, segment_size=0.5) + >>> vals1 = generate_indices_of_segment_boundaries_unbinned(times, gtis, segment_size=0.5) + >>> assert check_iterables_close(vals0, vals1) + >>> times = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + >>> gtis = [[0.05, 0.55]] + >>> vals0 = generate_indices_of_boundaries(times, gtis, segment_size=0.5, dt=0.1) + >>> vals1 = generate_indices_of_segment_boundaries_binned(times, gtis, 0.5, dt=0.1) + >>> assert check_iterables_close(vals0, vals1) + """ + if segment_size is not None: + if dt is None or dt == 0: + segment_iter = generate_indices_of_segment_boundaries_unbinned(times, gti, segment_size) + else: + segment_iter = generate_indices_of_segment_boundaries_binned( + times, gti, segment_size, dt=dt + ) + else: + segment_iter = generate_indices_of_gti_boundaries(times, gti, dt=0) + return segment_iter + + +
+[docs] +def generate_indices_of_gti_boundaries(times, gti, dt=0): + """ + Get the indices of events from different GTIs of the observation. + + This is a generator, yielding the boundaries of each GTI and the + corresponding indices in the time array. + + Parameters + ---------- + times : float `np.array` + Array of times. + gti : [[gti00, gti01], [gti10, gti11], ...] + Good time intervals. + + Other parameters + ---------------- + dt : float + If times are uniformly binned, this is the binning time. + + Yields + ------ + g0: float + Start time of current GTI. + g1: float + End time of current GTI. + startidx: int + Start index of the current GTI in the time array. + stopidx: int + End index of the current GTI in the time array. Note that this is + larger by one, so that `time[startidx:stopidx]` returns the correct + time interval. + + Examples + -------- + >>> times = [0.1, 0.2, 0.5, 0.8, 1.1] + >>> gtis = [[0, 0.55], [0.6, 2.1]] + >>> vals = generate_indices_of_gti_boundaries(times, gtis) + >>> v0 = next(vals) + >>> assert np.allclose(v0[:2], gtis[0]) + >>> assert np.allclose(v0[2:], [0, 3]) + """ + gti = np.asanyarray(gti) + times = np.asanyarray(times) + startidx, stopidx = gti_border_bins(gti, times, dt=dt) + + for s, e, idx0, idx1 in zip(gti[:, 0], gti[:, 1], startidx, stopidx): + yield s, e, idx0, idx1
+ + + +
+[docs] +def generate_indices_of_segment_boundaries_unbinned(times, gti, segment_size, check_sorted=True): + """ + Get the indices of events from different segments of the observation. + + This is a generator, yielding the boundaries of each segment and the + corresponding indices in the time array. + + Parameters + ---------- + times : float `np.array` + Array of times. + gti : [[gti00, gti01], [gti10, gti11], ...] + Good time intervals. + segment_size : float + Length of segments. + + Other Parameters + ---------------- + check_sorted : bool, default True + If True, checks that the time array is sorted. + + Yields + ------ + t0: float + Start time of current segment. + t1: float + End time of current segment. + startidx: int + Start index of the current segment in the time array. + stopidx: int + End index of the current segment in the time array. Note that this is + larger by one, so that `time[startidx:stopidx]` returns the correct + time interval. + + Examples + -------- + >>> times = [0.1, 0.2, 0.5, 0.8, 1.1] + >>> gtis = [[0, 0.55], [0.6, 2.1]] + >>> vals = generate_indices_of_segment_boundaries_unbinned( + ... times, gtis, 0.5) + >>> v0 = next(vals) + >>> assert np.allclose(v0[:2], [0, 0.5]) + >>> # Note: 0.5 is not included in the interval + >>> assert np.allclose(v0[2:], [0, 2]) + >>> v1 = next(vals) + >>> assert np.allclose(v1[:2], [0.6, 1.1]) + >>> # Again: 1.1 is not included in the interval + >>> assert np.allclose(v1[2:], [3, 4]) + """ + gti = np.asanyarray(gti) + times = np.asanyarray(times) + + start, stop = time_intervals_from_gtis(gti, segment_size) + + if check_sorted: + assert is_sorted(times), "Array is not sorted" + + all_times = np.sort( + np.array( # Wrap in a numpy array + list( # Transform into a proper iterable. Set is not recognized by np.array + set( # Only unique values. Start and stop have a lot of overlap + np.concatenate([start, stop]) # Concatenate start and stop + ) + ) + ) + ) + + idxs = times.searchsorted(all_times) + idx_dict = dict([(s, a) for s, a in zip(all_times, idxs)]) + startidx = np.asanyarray([idx_dict[s] for s in start]) + stopidx = np.asanyarray([idx_dict[s] for s in stop]) + + for s, e, idx0, idx1 in zip(start, stop, startidx, stopidx): + yield s, e, idx0, idx1
+ + + +
+[docs] +def generate_indices_of_segment_boundaries_binned(times, gti, segment_size, dt=None): + """ + Get the indices of binned times from different segments of the observation. + + This is a generator, yielding the boundaries of each segment and the + corresponding indices in the time array + + Parameters + ---------- + times : float `np.array` + Array of times, uniformly sampled + gti : [[gti00, gti01], [gti10, gti11], ...] + good time intervals + segment_size : float + length of segments + + Yields + ------ + t0: float + First time value, from the time array, in the current segment + t1: float + Last time value, from the time array, in the current segment + startidx: int + Start index of the current segment in the time array + stopidx: int + End index of the current segment in the time array. Note that this is + larger by one, so that `time[startidx:stopidx]` returns the correct + time interval. + + Examples + -------- + >>> times = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] + >>> gtis = [[0.05, 0.55]] + >>> vals = generate_indices_of_segment_boundaries_binned(times, gtis, 0.5, dt=0.1) + >>> v0 = next(vals) + >>> assert np.allclose(v0[:2], [0.05, 0.55]) + >>> assert np.allclose(v0[2:], [0, 5]) + """ + gti = np.asanyarray(gti) + times = np.asanyarray(times) + startidx, stopidx = bin_intervals_from_gtis(gti, segment_size, times, dt=dt) + + if dt is None: + dt = 0 + for idx0, idx1 in zip(startidx, stopidx): + yield times[idx0] - dt / 2, times[min(idx1, times.size - 1)] - dt / 2, idx0, idx1
+ + + +def split_gtis_at_indices(gtis, index_list): + """Split a GTI list at the given indices, creating multiple GTI lists. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + index_list : int or array-like + Index or list of indices at which to split the GTIs + + Returns + ------- + gti_lists : list of 2-d float arrays + List of GTI lists, split at the given indices + + Examples + -------- + >>> gtis = [[0, 30], [50, 60], [80, 90]] + >>> new_gtis = split_gtis_at_indices(gtis, 1) + >>> assert np.allclose(new_gtis[0], [[0, 30]]) + >>> assert np.allclose(new_gtis[1], [[50, 60], [80, 90]]) + """ + gtis = np.asanyarray(gtis) + if not isinstance(index_list, Iterable): + index_list = [index_list] + previous_idx = 0 + gti_lists = [] + if index_list[0] == 0: + index_list = index_list[1:] + for idx in index_list: + gti_lists.append(gtis[previous_idx:idx, :]) + previous_idx = idx + if index_list[-1] != -1 and index_list[-1] <= gtis[:, 0].size - 1: + gti_lists.append(gtis[previous_idx:, :]) + + return gti_lists + + +
+[docs] +def find_large_bad_time_intervals(gtis, bti_length_limit=86400): + """Find large bad time intervals (BTIs) in a list of GTIs, and split the GTI list accordingly. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + bti_length_limit : float + Maximum length of a BTI. If a BTI is longer than this, an edge will be + returned at the midpoint of the BTI. + + Returns + ------- + bad_interval_midpoints : list of float + List of midpoints of large bad time intervals + + Examples + -------- + >>> gtis = [[0, 30], [86450, 86460], [86480, 86490]] + >>> bad_interval_midpoints = find_large_bad_time_intervals(gtis) + >>> assert np.allclose(bad_interval_midpoints, [43240]) + """ + gtis = np.asanyarray(gtis) + bad_interval_midpoints = [] + # Check for compulsory edges + last_edge = gtis[0, 0] + for g in gtis: + if g[0] - last_edge > bti_length_limit: + logger.info(f"Detected large bad time interval between {g[0]} and {last_edge}") + bad_interval_midpoints.append((g[0] + last_edge) / 2) + last_edge = g[1] + + return bad_interval_midpoints
+ + + +
+[docs] +def split_gtis_by_exposure(gtis, exposure_per_chunk, new_interval_if_gti_sep=None): + """Split a list of GTIs into smaller GTI lists of a given total (approximate) exposure. + + Parameters + ---------- + gtis : 2-d float array + List of GTIs of the form ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + exposure_per_chunk : float + Total exposure of each chunk, in seconds + + Other Parameters + ---------------- + new_interval_if_gti_sep : float + If the GTIs are separated by more than this time, split the observation in two. + + Returns + ------- + gti_list : list of 2-d float arrays + List of GTI lists, split into chunks of the given exposure / separated by more + than the given limit separation + + Examples + -------- + >>> gtis = [[0, 30], [86450, 86460]] + >>> new_gtis = split_gtis_by_exposure(gtis, 400, new_interval_if_gti_sep=86400) + >>> assert np.allclose(new_gtis[0], [[0, 30]]) + >>> assert np.allclose(new_gtis[1], [[86450, 86460]]) + >>> gtis = [[0, 30], [40, 70], [90, 120], [130, 160]] + >>> new_gtis = split_gtis_by_exposure(gtis, 60) + >>> assert np.allclose(new_gtis[0], [[0, 30], [40, 70]]) + >>> assert np.allclose(new_gtis[1], [[90, 120], [130, 160]]) + + """ + gtis = np.asanyarray(gtis) + rough_total_exposure = np.sum(np.diff(gtis, axis=1)) + compulsory_edges = [] + if new_interval_if_gti_sep is not None: + compulsory_edges = find_large_bad_time_intervals(gtis, new_interval_if_gti_sep) + + base_gti_list = split_gtis_at_indices(gtis, np.searchsorted(gtis[:, 1], compulsory_edges)) + final_gti_list = [] + for local_gtis in base_gti_list: + local_split_gtis = split_gtis_by_exposure(local_gtis, exposure_per_chunk) + final_gti_list.extend(local_split_gtis) + return final_gti_list + + n_intervals = int(np.rint(rough_total_exposure / exposure_per_chunk)) + + if n_intervals <= 1: + return np.asarray([gtis]) + + if len(gtis) <= n_intervals: + new_gtis = [] + for g in gtis: + if g[1] - g[0] > exposure_per_chunk: + new_edges = np.arange(g[0], g[1], exposure_per_chunk) + if new_edges[-1] < g[1]: + new_edges = np.append(new_edges, g[1]) + + new_gtis.extend([[ed0, ed1] for ed0, ed1 in zip(new_edges[:-1], new_edges[1:])]) + else: + new_gtis.append(g) + gtis = np.asarray(new_gtis) + + exposure_edges = [] + last_exposure = 0 + for g in gtis: + exposure_edges.append(last_exposure) + last_exposure += g[1] - g[0] + total_exposure = last_exposure + + exposure_edges = np.asarray(exposure_edges) + + exposure_per_interval = total_exposure / n_intervals + exposure_intervals = np.arange(0, total_exposure + exposure_per_interval, exposure_per_interval) + + index_list = np.searchsorted(exposure_edges, exposure_intervals) + + vals = split_gtis_at_indices(gtis, index_list) + return vals
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/io.html b/_modules/stingray/io.html new file mode 100644 index 000000000..86f3c191c --- /dev/null +++ b/_modules/stingray/io.html @@ -0,0 +1,1656 @@ + + + + + + + stingray.io — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.io

+import math
+import copy
+import os
+import sys
+import traceback
+import warnings
+from collections.abc import Iterable
+
+import numpy as np
+from astropy.io import fits
+from astropy.table import Table
+from astropy.logger import AstropyUserWarning
+import matplotlib.pyplot as plt
+from astropy.io import fits as pf
+
+import stingray.utils as utils
+from stingray.loggingconfig import setup_logger
+
+
+from .utils import (
+    assign_value_if_none,
+    is_string,
+    order_list_of_arrays,
+    is_sorted,
+    make_dictionary_lowercase,
+)
+from .gti import (
+    get_gti_from_all_extensions,
+    load_gtis,
+    get_total_gti_length,
+    split_gtis_by_exposure,
+    cross_two_gtis,
+)
+
+from .mission_support import (
+    read_mission_info,
+    rough_calibration,
+    get_rough_conversion_function,
+    mission_specific_event_interpretation,
+)
+
+# Python 3
+import pickle
+
+_H5PY_INSTALLED = True
+DEFAULT_FORMAT = "hdf5"
+
+try:
+    import h5py
+except ImportError:
+    _H5PY_INSTALLED = False
+    DEFAULT_FORMAT = "pickle"
+
+HAS_128 = True
+try:
+    np.float128
+except AttributeError:  # pragma: no cover
+    HAS_128 = False
+
+logger = setup_logger()
+
+
+
+[docs] +def read_rmf(rmf_file): + """Load RMF info. + + .. note:: Preliminary: only EBOUNDS are read. + + Parameters + ---------- + rmf_file : str + The rmf file used to read the calibration. + + Returns + ------- + pis : array-like + the PI channels + e_mins : array-like + the lower energy bound of each PI channel + e_maxs : array-like + the upper energy bound of each PI channel + """ + + with pf.open(rmf_file, checksum=True, memmap=False) as lchdulist: + lchdulist.verify("warn") + lctable = lchdulist["EBOUNDS"].data + pis = np.array(lctable.field("CHANNEL")) + e_mins = np.array(lctable.field("E_MIN")) + e_maxs = np.array(lctable.field("E_MAX")) + + return pis, e_mins, e_maxs
+ + + +
+[docs] +def pi_to_energy(pis, rmf_file): + """Read the energy channels corresponding to the given PI channels. + + Parameters + ---------- + pis : array-like + The channels to lookup in the rmf + + Other Parameters + ---------------- + rmf_file : str + The rmf file used to read the calibration. + """ + calp, cal_emin, cal_emax = read_rmf(rmf_file) + es = np.zeros(len(pis), dtype=float) + for ic, c in enumerate(calp): + good = pis == c + if not np.any(good): + continue + es[good] = (cal_emin[ic] + cal_emax[ic]) / 2 + + return es
+ + + +
+[docs] +def get_file_extension(fname): + """Get the extension from the file name. + + If g-zipped, add '.gz' to extension. + + Examples + -------- + >>> get_file_extension('ciao.tar') + '.tar' + >>> get_file_extension('ciao.tar.gz') + '.tar.gz' + >>> get_file_extension('ciao.evt.gz') + '.evt.gz' + >>> get_file_extension('ciao.a.tutti.evt.gz') + '.evt.gz' + """ + fname_root = fname.replace(".gz", "") + fname_root = os.path.splitext(fname_root)[0] + + return fname.replace(fname_root, "")
+ + + +
+[docs] +def high_precision_keyword_read(hdr, keyword): + """Read FITS header keywords, also if split in two. + + In the case where the keyword is split in two, like + + MJDREF = MJDREFI + MJDREFF + + in some missions, this function returns the summed value. Otherwise, the + content of the single keyword + + Parameters + ---------- + hdr : dict_like + The FITS header structure, or a dictionary + + keyword : str + The key to read in the header + + Returns + ------- + value : long double + The value of the key, or ``None`` if something went wrong + + """ + try: + value = np.longdouble(hdr[keyword]) + return value + except KeyError: + pass + try: + if len(keyword) == 8: + keyword = keyword[:7] + value = np.longdouble(hdr[keyword + "I"]) + value += np.longdouble(hdr[keyword + "F"]) + return value + except KeyError: + return None
+ + + +def _case_insensitive_search_in_list(string, list_of_strings): + """Search for a string in a list of strings, in a case-insensitive way. + + Example + ------- + >>> _case_insensitive_search_in_list("a", ["A", "b"]) + 'A' + >>> assert _case_insensitive_search_in_list("a", ["c", "b"]) is None + """ + for s in list_of_strings: + if string.lower() == s.lower(): + return s + return None + + +def _get_additional_data(lctable, additional_columns, warn_if_missing=True): + """Get additional data from a FITS data table. + + Parameters + ---------- + lctable: `astropy.io.fits.fitsrec.FITS_rec` + Data table + additional_columns: list of str + List of column names to retrieve from the table + + Other parameters + ---------------- + warn_if_missing: bool, default True + Warn if a column is not found + + Returns + ------- + additional_data: dict + Dictionary associating to each additional column the content of the + table. + """ + additional_data = {} + if additional_columns is not None: + for a in additional_columns: + key = _case_insensitive_search_in_list(a, lctable._coldefs.names) + if key is not None: + additional_data[a] = np.array(lctable.field(key)) + else: + if warn_if_missing: + warnings.warn("Column " + a + " not found") + additional_data[a] = np.zeros(len(lctable)) + + return additional_data + + +
+[docs] +def get_key_from_mission_info(info, key, default, inst=None, mode=None): + """Get the name of a header key or table column from the mission database. + + Many entries in the mission database have default values that can be + altered for specific instruments or observing modes. Here, if there is a + definition for a given instrument and mode, we take that, otherwise we use + the default). + + Parameters + ---------- + info : dict + Nested dictionary containing all the information for a given mission. + It can be nested, e.g. contain some info for a given instrument, and + for each observing mode of that instrument. + key : str + The key to read from the info dictionary + default : object + The default value. It can be of any type, depending on the expected + type for the entry. + + Other parameters + ---------------- + inst : str + Instrument + mode : str + Observing mode + + Returns + ------- + retval : object + The wanted entry from the info dictionary + + Examples + -------- + >>> info = {'ecol': 'PI', "A": {"ecol": "BLA"}, "C": {"M1": {"ecol": "X"}}} + >>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode=None) + 'BLA' + >>> get_key_from_mission_info(info, "ecol", "BU", inst="B", mode=None) + 'PI' + >>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode="M1") + 'BLA' + >>> get_key_from_mission_info(info, "ecol", "BU", inst="C", mode="M1") + 'X' + >>> get_key_from_mission_info(info, "ghghg", "BU", inst="C", mode="M1") + 'BU' + """ + filt_info = make_dictionary_lowercase(info, recursive=True) + key = key.lower() + if inst is not None: + inst = inst.lower() + if inst in filt_info: + filt_info.update(filt_info[inst]) + filt_info.pop(inst) + if mode is not None: + mode = mode.lower() + if mode in filt_info: + filt_info.update(filt_info[mode]) + filt_info.pop(mode) + + if key in filt_info: + return filt_info[key] + + return default
+ + + +
+[docs] +def lcurve_from_fits( + fits_file, + gtistring="GTI", + timecolumn="TIME", + ratecolumn=None, + ratehdu=1, + fracexp_limit=0.9, + outfile=None, + noclobber=False, + outdir=None, +): + """Load a lightcurve from a fits file. + + .. note :: + FITS light curve handling is still under testing. + Absolute times might be incorrect depending on the light curve format. + + Parameters + ---------- + fits_file : str + File name of the input light curve in FITS format + + Returns + ------- + data : dict + Dictionary containing all information needed to create a + :class:`stingray.Lightcurve` object + + Other Parameters + ---------------- + gtistring : str + Name of the GTI extension in the FITS file + timecolumn : str + Name of the column containing times in the FITS file + ratecolumn : str + Name of the column containing rates in the FITS file + ratehdu : str or int + Name or index of the FITS extension containing the light curve + fracexp_limit : float + Minimum exposure fraction allowed + noclobber : bool + If True, do not overwrite existing files + """ + warnings.warn( + """WARNING! FITS light curve handling is still under testing. + Absolute times might be incorrect.""" + ) + # TODO: + # treat consistently TDB, UTC, TAI, etc. This requires some documentation + # reading. For now, we assume TDB + from astropy.io import fits as pf + from astropy.time import Time + import numpy as np + from stingray.gti import create_gti_from_condition + + lchdulist = pf.open(fits_file) + lctable = lchdulist[ratehdu].data + + # Units of header keywords + tunit = lchdulist[ratehdu].header["TIMEUNIT"] + + try: + mjdref = high_precision_keyword_read(lchdulist[ratehdu].header, "MJDREF") + mjdref = Time(mjdref, scale="tdb", format="mjd") + except Exception: + mjdref = None + + try: + instr = lchdulist[ratehdu].header["INSTRUME"] + except Exception: + instr = "EXTERN" + + # ---------------------------------------------------------------- + # Trying to comply with all different formats of fits light curves. + # It's a madness... + try: + tstart = high_precision_keyword_read(lchdulist[ratehdu].header, "TSTART") + tstop = high_precision_keyword_read(lchdulist[ratehdu].header, "TSTOP") + except Exception: # pragma: no cover + raise (Exception("TSTART and TSTOP need to be specified")) + + # For nulccorr lcs this would work + + timezero = high_precision_keyword_read(lchdulist[ratehdu].header, "TIMEZERO") + # Sometimes timezero is "from tstart", sometimes it's an absolute time. + # This tries to detect which case is this, and always consider it + # referred to tstart + timezero = assign_value_if_none(timezero, 0) + + # for lcurve light curves this should instead work + if tunit == "d": + # TODO: + # Check this. For now, I assume TD (JD - 2440000.5). + # This is likely wrong + timezero = Time(2440000.5 + timezero, scale="tdb", format="jd") + tstart = Time(2440000.5 + tstart, scale="tdb", format="jd") + tstop = Time(2440000.5 + tstop, scale="tdb", format="jd") + # if None, use NuSTAR default MJDREF + mjdref = assign_value_if_none( + mjdref, + Time(np.longdouble("55197.00076601852"), scale="tdb", format="mjd"), + ) + + timezero = (timezero - mjdref).to("s").value + tstart = (tstart - mjdref).to("s").value + tstop = (tstop - mjdref).to("s").value + + if timezero > tstart: + timezero -= tstart + + time = np.array(lctable.field(timecolumn), dtype=np.longdouble) + if time[-1] < tstart: + time += timezero + tstart + else: + time += timezero + + try: + dt = high_precision_keyword_read(lchdulist[ratehdu].header, "TIMEDEL") + if tunit == "d": + dt *= 86400 + except Exception: + warnings.warn( + "Assuming that TIMEDEL is the median difference between the" " light curve times", + AstropyUserWarning, + ) + # Avoid NaNs + good = time == time + dt = np.median(np.diff(time[good])) + + # ---------------------------------------------------------------- + if ratecolumn is None: + for name in ["RATE", "RATE1", "COUNTS"]: + if name in lctable.names: + ratecolumn = name + break + else: # pragma: no cover + raise ValueError("None of the accepted rate columns were found in the file") + + rate = np.array(lctable.field(ratecolumn), dtype=float) + + errorcolumn = "ERROR" + if ratecolumn == "RATE1": + errorcolumn = "ERROR1" + + try: + rate_e = np.array(lctable.field(errorcolumn), dtype=np.longdouble) + except Exception: + rate_e = np.zeros_like(rate) + + if "RATE" in ratecolumn: + rate *= dt + rate_e *= dt + + try: + fracexp = np.array(lctable.field("FRACEXP"), dtype=np.longdouble) + except Exception: + fracexp = np.ones_like(rate) + + good_intervals = (rate == rate) * (fracexp >= fracexp_limit) + + rate[good_intervals] /= fracexp[good_intervals] + rate_e[good_intervals] /= fracexp[good_intervals] + + rate[~good_intervals] = 0 + + try: + gtitable = lchdulist[gtistring].data + gti_list = np.array( + [[a, b] for a, b in zip(gtitable.field("START"), gtitable.field("STOP"))], + dtype=np.longdouble, + ) + except Exception: + gti_list = create_gti_from_condition(time, good_intervals) + + lchdulist.close() + + res = { + "time": time, + "counts": rate, + "err": rate_e, + "gti": gti_list, + "mjdref": mjdref.mjd, + "dt": dt, + "instr": instr, + "header": lchdulist[ratehdu].header.tostring(), + } + return res
+ + + +
+[docs] +def load_events_and_gtis( + fits_file, + additional_columns=None, + gtistring=None, + gti_file=None, + hduname=None, + column=None, +): + """Load event lists and GTIs from one or more files. + + Loads event list from HDU EVENTS of file fits_file, with Good Time + intervals. Optionally, returns additional columns of data from the same + HDU of the events. + + Parameters + ---------- + fits_file : str + + Other parameters + ---------------- + additional_columns: list of str, optional + A list of keys corresponding to the additional columns to extract from + the event HDU (ex.: ['PI', 'X']) + gtistring : str + Comma-separated list of accepted GTI extensions (default GTI,STDGTI), + with or without appended integer number denoting the detector + gti_file : str, default None + External GTI file + hduname : str or int, default 1 + Name of the HDU containing the event list + column : str, default None + The column containing the time values. If None, we use the name + specified in the mission database, and if there is nothing there, + "TIME" + return_limits: bool, optional + Return the TSTART and TSTOP keyword values + + Returns + ------- + retvals : Object with the following attributes: + ev_list : array-like + Event times in Mission Epoch Time + gti_list: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + GTIs in Mission Epoch Time + additional_data: dict + A dictionary, where each key is the one specified in additional_colums. + The data are an array with the values of the specified column in the + fits file. + t_start : float + Start time in Mission Epoch Time + t_stop : float + Stop time in Mission Epoch Time + pi_list : array-like + Raw Instrument energy channels + cal_pi_list : array-like + Calibrated PI channels (those that can be easily converted to energy + values, regardless of the instrument setup.) + energy_list : array-like + Energy of each photon in keV (only for NuSTAR, NICER, XMM) + instr : str + Name of the instrument (e.g. EPIC-pn or FPMA) + mission : str + Name of the instrument (e.g. XMM or NuSTAR) + mjdref : float + MJD reference time for the mission + header : str + Full header of the FITS file, for debugging purposes + detector_id : array-like, int + Detector id for each photon (e.g. each of the CCDs composing XMM's or + Chandra's instruments) + """ + from astropy.io import fits as pf + + hdulist = pf.open(fits_file) + probe_header = hdulist[0].header + # Let's look for TELESCOP here. This is the most common keyword to be + # found in well-behaved headers. If it is not in header 0, I take this key + # and the remaining information from header 1. + if "TELESCOP" not in probe_header: + probe_header = hdulist[1].header + mission_key = "MISSION" + if mission_key not in probe_header: + mission_key = "TELESCOP" + mission = probe_header[mission_key].lower() + + mission_specific_processing = mission_specific_event_interpretation(mission) + if mission_specific_processing is not None: + mission_specific_processing(hdulist) + + db = read_mission_info(mission) + instkey = get_key_from_mission_info(db, "instkey", "INSTRUME") + instr = mode = None + if instkey in probe_header: + instr = probe_header[instkey].strip() + + modekey = get_key_from_mission_info(db, "dmodekey", None, instr) + if modekey is not None and modekey in probe_header: + mode = probe_header[modekey].strip() + + if gtistring is None: + gtistring = get_key_from_mission_info(db, "gti", "GTI,STDGTI", instr, mode) + if hduname is None: + hduname = get_key_from_mission_info(db, "events", "EVENTS", instr, mode) + + if hduname not in hdulist: + warnings.warn(f"HDU {hduname} not found. Trying first extension") + hduname = 1 + + datatable = hdulist[hduname].data + header = hdulist[hduname].header + + ephem = timeref = timesys = None + + if "PLEPHEM" in header: + # For the rare cases where this is a number, e.g. 200, I add `str` + # It's supposed to be a string. + ephem = str(header["PLEPHEM"]).strip().lstrip("JPL-").lower() + if "TIMEREF" in header: + timeref = header["TIMEREF"].strip().lower() + if "TIMESYS" in header: + timesys = header["TIMESYS"].strip().lower() + + if column is None: + column = get_key_from_mission_info(db, "time", "TIME", instr, mode) + ev_list = np.array(datatable.field(column), dtype=np.longdouble) + + detector_id = None + ckey = get_key_from_mission_info(db, "ccol", "NONE", instr, mode) + if ckey != "NONE" and ckey in datatable.columns.names: + detector_id = datatable.field(ckey) + + det_number = None if detector_id is None else list(set(detector_id)) + + timezero = np.longdouble(0.0) + if "TIMEZERO" in header: + timezero = np.longdouble(header["TIMEZERO"]) + + ev_list += timezero + + t_start = ev_list[0] + t_stop = ev_list[-1] + if "TSTART" in header: + t_start = np.longdouble(header["TSTART"]) + if "TSTOP" in header: + t_stop = np.longdouble(header["TSTOP"]) + + mjdref = np.longdouble(high_precision_keyword_read(header, "MJDREF")) + + # Read and handle GTI extension + accepted_gtistrings = gtistring.split(",") + + if gti_file is None: + # Select first GTI with accepted name + try: + gti_list = get_gti_from_all_extensions( + hdulist, + accepted_gtistrings=accepted_gtistrings, + det_numbers=det_number, + ) + except Exception as e: # pragma: no cover + warnings.warn( + ( + f"No valid GTI extensions found. \nError: {str(e)}\n" + "GTIs will be set to the entire time series." + ), + AstropyUserWarning, + ) + gti_list = np.array([[t_start, t_stop]], dtype=np.longdouble) + else: + gti_list = load_gtis(gti_file, gtistring) + + pi_col = get_key_from_mission_info(db, "ecol", "PI", instr, mode) + if additional_columns is None: + additional_columns = [pi_col] + if pi_col not in additional_columns: + additional_columns.append(pi_col) + # If data were already calibrated, use this! + additional_data = _get_additional_data(datatable, additional_columns) + if "energy" not in additional_columns: + additional_data.update(_get_additional_data(datatable, ["energy"], warn_if_missing=False)) + del additional_columns + + hdulist.close() + # Sort event list + if not is_sorted(ev_list): + warnings.warn("Warning: input data are not sorted. Sorting them for you.") + order = np.argsort(ev_list) + ev_list = ev_list[order] + if detector_id is not None: + detector_id = detector_id[order] + + additional_data = order_list_of_arrays(additional_data, order) + + pi = additional_data[pi_col].astype(np.float32) + cal_pi = pi + + # EventReadOutput() is an empty class. We will assign a number of attributes to + # it, like the arrival times of photons, the energies, and some information + # from the header. + returns = EventReadOutput() + + returns.ev_list = ev_list + returns.gti_list = gti_list + returns.pi_list = pi + returns.cal_pi_list = cal_pi + + if "energy" in additional_data and np.any(additional_data["energy"] > 0.0): + returns.energy_list = additional_data["energy"] + else: + try: + func = get_rough_conversion_function( + mission, instrument=instr, epoch=t_start / 86400 + mjdref + ) + returns.energy_list = func(cal_pi, detector_id=detector_id) + logger.info( + f"A default calibration was applied to the {mission} data. " + "See io.rough_calibration for details. " + "Use the `rmf_file` argument in `EventList.read`, or calibrate with " + "`EventList.convert_pi_to_energy(rmf_file)`, if you want to apply a specific " + "response matrix" + ) + except ValueError: + returns.energy_list = None + returns.instr = instr.lower() + returns.mission = mission.lower() + returns.mjdref = mjdref + returns.header = header.tostring() + returns.additional_data = additional_data + returns.t_start = t_start + returns.t_stop = t_stop + returns.detector_id = detector_id + returns.ephem = ephem + returns.timeref = timeref + returns.timesys = timesys + + return returns
+ + + +class EventReadOutput: + def __init__(self): + pass + + +class FITSTimeseriesReader(object): + main_array_attr = "time" + + def __init__( + self, + fname, + output_class=None, + force_hduname=None, + gti_file=None, + gtistring=None, + additional_columns=None, + data_kind="events", + ): + self.fname = fname + self._meta_attrs = [] + self.gtistring = gtistring + self.output_class = output_class + self.additional_columns = additional_columns + if "EventList" in str(output_class) or data_kind.lower() in ["events", "times"]: + self._initialize_header_events(fname, force_hduname=force_hduname) + else: + raise NotImplementedError( + "Only events are supported by FITSTimeseriesReader at the moment. " + f"{data_kind} is an unknown data kind." + ) + self.data_kind = data_kind + if additional_columns is None and self.detector_key != "NONE": + additional_columns = [self.detector_key] + elif self.detector_key != "NONE": + additional_columns.append(self.detector_key) + self.data_hdu = fits.open(self.fname)[self.hduname] + self.gti_file = gti_file + self._read_gtis(self.gti_file) + + @property + def time(self): + return self[:].time + + def meta_attrs(self): + return self._meta_attrs + + def _add_meta_attr(self, name, value): + """Add a meta attribute to the object.""" + if name not in self._meta_attrs: + self._meta_attrs.append(name) + setattr(self, name, value) + + @property + def exposure(self): + """ + Return the total exposure of the time series, i.e. the sum of the GTIs. + + Returns + ------- + total_exposure : float + The total exposure of the time series, in seconds. + """ + + return get_total_gti_length(self.gti) + + def __getitem__(self, index): + """Return an element or a slice of the object, e.g. ``ts[1]`` or ``ts[1:2].""" + + data = self.data_hdu.data[index] + + return self.transform_slice(data) + + def transform_slice(self, data): + # Here there will be some logic to understand whether transfomring to events or something else + + if self.data_kind == "times": + return data[self.time_column][:] + self.timezero + if self.output_class is None: + return data + if self.data_kind == "events": + return self._transform_slice_into_events(data) + + def _transform_slice_into_events(self, data): + """Take a slice of data from a FITS event file and make it a StingrayTimeseries. + + Data taken from a FITS file will typically be a Numpy record array. This method + tries to interpret the information contained in the record array based on what + we know of the mission and the instrument. For sure, there will be a TIME column + that will become the ``time`` array of the timeseries object. If there is a PI/PHA + column, it will become the ``pi`` array, and if we know the conversion law for the mission, + this will also be converted to energy. If there is an ENERGY column, it will directly + be loaded into the energy column. + Additional meta (e.g. GTIs, MJDREF, etc.) information will also be added to the object. + + Parameters + ---------- + data : np.recarray + The slice of data to transform + + Returns + ------- + new_ts : any StingrayTimeseries subclass + The transformed timeseries object. It will typically be an ``EventList`` object, + but the user can change this by specifying the ``output_class`` parameter in the + constructor of the reader. + + """ + columns = [self.time_column] + for col in self.pi_column, self.energy_column: + if col is not None: + columns.append(col) + new_ts = self.output_class() + if self._mission_specific_processing is not None: + data = self._mission_specific_processing(data, header=self.header, hduname=self.hduname) + + # Set the times + setattr( + new_ts, + self.main_array_attr, + data[self.time_column][:] + self.timezero, + ) + # Get conversion function PI->Energy + try: + pi_energy_func = get_rough_conversion_function( + self.mission, + instrument=self.instr, + epoch=self.t_start / 86400 + self.mjdref, + ) + except ValueError: + pi_energy_func = None + + if self.energy_column in data.dtype.names: + new_ts.energy = data[self.energy_column] + elif self.pi_column in data.dtype.names: + new_ts.pi = data[self.pi_column] + if pi_energy_func is not None: + new_ts.energy = pi_energy_func(new_ts.pi) + + det_numbers = None + if self.detector_key is not None and self.detector_key in data.dtype.names: + new_ts.detector_id = data[self.detector_key] + det_numbers = list(set(new_ts.detector_id)) + self._read_gtis(self.gti_file, det_numbers=det_numbers) + + if self.additional_columns is not None: + for col in self.additional_columns: + if col == self.detector_key: + continue + if col in data.dtype.names: + setattr(new_ts, col.lower(), data[col]) + + for attr in self.meta_attrs(): + local_value = getattr(self, attr) + if attr in ["t_start", "t_stop", "gti"] and local_value is not None: + setattr(new_ts, attr, local_value + self.timezero) + else: + setattr(new_ts, attr, local_value) + + return new_ts + + def _initialize_header_events(self, fname, force_hduname=None): + """Read the header of the FITS file and set the relevant attributes. + + When possibile, some mission-specific information is read from the keywords and + extension names found in ``xselect.mdb``. + + Parameters + ---------- + fname : str + The name of the FITS file to read + + Other parameters + ---------------- + force_hduname : str or int, default None + If not None, the name of the HDU to read. If None, an extension called + EVENTS or the first extension. + """ + hdulist = fits.open(fname) + if not force_hduname: + probe_header = hdulist[0].header + else: + probe_header = hdulist[force_hduname].header + + # We need the minimal information to read the mission database. + # That is, the name of the mission/telescope, the instrument and, + # if available, the observing mode. + mission_key = "MISSION" + if mission_key not in probe_header: + mission_key = "TELESCOP" + self._add_meta_attr("mission", probe_header[mission_key].lower()) + self._add_meta_attr( + "_mission_specific_processing", + mission_specific_event_interpretation(self.mission), + ) + + # Now, we read the mission info, and we try to get the relevant + # information from the header using the mission-specific keywords. + db = read_mission_info(self.mission) + instkey = get_key_from_mission_info(db, "instkey", "INSTRUME") + instr = mode = None + if instkey in probe_header: + instr = probe_header[instkey].strip() + + modekey = get_key_from_mission_info(db, "dmodekey", None, instr) + if modekey is not None and modekey in probe_header: + mode = probe_header[modekey].strip() + self._add_meta_attr("instr", instr) + self._add_meta_attr("mode", mode) + + gtistring = self.gtistring + + if self.gtistring is None: + gtistring = get_key_from_mission_info(db, "gti", "GTI,STDGTI", instr, self.mode) + self._add_meta_attr("gtistring", gtistring) + + if force_hduname is None: + hduname = get_key_from_mission_info(db, "events", "EVENTS", instr, self.mode) + else: + hduname = force_hduname + + # If the EVENT/``force_hduname`` extension is not found, try the first extension + # which is usually the one containing the data + if hduname not in hdulist: + warnings.warn(f"HDU {hduname} not found. Trying first extension") + hduname = 1 + self._add_meta_attr("hduname", hduname) + + self._add_meta_attr("header", dict(hdulist[self.hduname].header)) + self._add_meta_attr("nphot", self.header["NAXIS2"]) + + # These are the important keywords for timing. + ephem = timeref = timesys = None + if "PLEPHEM" in self.header: + # For the rare cases where this is a number, e.g. 200, I add `str` + # It's supposed to be a string. + ephem = str(self.header["PLEPHEM"]).strip().lstrip("JPL-").lower() + if "TIMEREF" in self.header: + timeref = self.header["TIMEREF"].strip().lower() + if "TIMESYS" in self.header: + timesys = self.header["TIMESYS"].strip().lower() + self._add_meta_attr("ephem", ephem) + self._add_meta_attr("timeref", timeref) + self._add_meta_attr("timesys", timesys) + + timezero = np.longdouble(0.0) + if "TIMEZERO" in self.header: + timezero = np.longdouble(self.header["TIMEZERO"]) + t_start = t_stop = None + if "TSTART" in self.header: + t_start = np.longdouble(self.header["TSTART"]) + if "TSTOP" in self.header: + t_stop = np.longdouble(self.header["TSTOP"]) + self._add_meta_attr("timezero", timezero) + self._add_meta_attr("t_start", t_start) + self._add_meta_attr("t_stop", t_stop) + + self._add_meta_attr( + "time_column", + get_key_from_mission_info(db, "time", "TIME", instr, mode), + ) + + self._add_meta_attr( + "detector_key", + get_key_from_mission_info(db, "ccol", "NONE", instr, mode), + ) + + self._add_meta_attr( + "mjdref", np.longdouble(high_precision_keyword_read(self.header, "MJDREF")) + ) + + # Try to get the information needed to calculate the event energy. We start from the + # PI column + default_pi_column = get_key_from_mission_info(db, "ecol", "PI", instr, self.mode) + if default_pi_column not in hdulist[self.hduname].data.columns.names: + default_pi_column = None + self._add_meta_attr("pi_column", default_pi_column) + + # If a column named "energy" is found, we read it and assume the energy conversion + # is already done. + if "energy" in [val.lower() for val in hdulist[self.hduname].data.columns.names]: + energy_column = "energy" + else: + energy_column = None + self._add_meta_attr("energy_column", energy_column) + + def _read_gtis(self, gti_file=None, det_numbers=None): + """Read GTIs from the FITS file.""" + # This is ugly, but if, e.g., we are reading XMM data, we *need* the + # detector number to access GTIs. + # So, here I'm reading a bunch of rows hoping that they represent the + # detector number population + if self.detector_key is not None: + with fits.open(self.fname) as hdul: + data = hdul[self.hduname].data + if self.detector_key in data.dtype.names: + probe_vals = data[:100][self.detector_key] + det_numbers = list(set(probe_vals)) + del hdul + + accepted_gtistrings = self.gtistring.split(",") + gti_list = None + + if gti_file is not None: + self._add_meta_attr("gti", load_gtis(gti_file, self.gtistring)) + return + + # Select first GTI with accepted name + try: + gti_list = get_gti_from_all_extensions( + self.fname, + accepted_gtistrings=accepted_gtistrings, + det_numbers=det_numbers, + ) + except Exception as e: # pragma: no cover + warnings.warn( + ( + f"No valid GTI extensions found. \nError: {str(e)}\n" + "GTIs will be set to the entire time series." + ), + ) + + self._add_meta_attr("gti", gti_list) + + def _get_idx_from_time_range(self, start, stop): + """Get the index of the times in the event list that fall within the given time range. + + Instead of reading all the data from the file and doing ``np.searchsorted``, which could + easily fill up the memory, this function does a two-step procedure. It first uses + ``self._trace_nphots_in_file`` to get a grid of times and their corresponding + indices in the file. Then, it reads only the data that strictly include the requested time + range, and on those data it performs a searchsorted operation. The final indices will be + summed to the lower index of the data that was read. + + Parameters + ---------- + start : float + Start time of the interval + stop : float + Stop time of the interval + + Returns + ------- + lower_edge : int + Index of the first photon in the requested time range + upper_edge : int + Index of the last photon in the requested time range + """ + time_edges, idx_edges = self._trace_nphots_in_file( + nedges=int(self.exposure // (stop - start)) + 2 + ) + + raw_min_idx = np.searchsorted(time_edges, start, side="left") + raw_max_idx = np.searchsorted(time_edges, stop, side="right") + + raw_min_idx = max(0, raw_min_idx - 2) + raw_max_idx = min(time_edges.size - 1, raw_max_idx + 2) + + raw_lower_edge = idx_edges[raw_min_idx] + raw_upper_edge = idx_edges[raw_max_idx] + + assert ( + start - time_edges[raw_min_idx] >= 0 + ), f"Start: {start}; {start - time_edges[raw_min_idx]} > 0" + assert ( + time_edges[raw_max_idx] - stop >= 0 + ), f"Stop: {stop}; {time_edges[raw_max_idx] - stop} < 0" + + with fits.open(self.fname) as hdulist: + filtered_times = hdulist[self.hduname].data[self.time_column][ + raw_lower_edge : raw_upper_edge + 1 + ] + # lower_edge = np.searchsorted(filtered_times, [start, stop]) + lower_edge, upper_edge = np.searchsorted(filtered_times, [start, stop]) + # Searchsorted will find the first number above stop. We want the last number below stop! + upper_edge -= 1 + + return lower_edge + raw_lower_edge, upper_edge + raw_lower_edge + + def apply_gti_lists(self, new_gti_lists, root_file_name=None, fmt=DEFAULT_FORMAT): + """Split the event list into different files, each with a different GTI. + + Parameters + ---------- + new_gti_lists : list of lists + A list of lists of GTIs. Each sublist should contain a list of GTIs + for a new file. + + Other Parameters + ---------------- + root_file_name : str, default None + The root name of the output files. The file name will be appended with + "_00", "_01", etc. + If None, a generator is returned instead of writing the files. + fmt : str + The format of the output files. Default is 'hdf5'. + + Returns + ------- + output_files : list of str + A list of the output file names. + + """ + + if len(new_gti_lists[0]) == len(self.gti) and np.all( + np.abs(np.asanyarray(new_gti_lists[0]).flatten() - self.gti.flatten()) < 1e-3 + ): + ev = self[:] + if root_file_name is None: + yield ev + else: + output_file = root_file_name + f"_00." + fmt.lstrip(".") + ev.write(output_file, fmt=fmt) + yield output_file + + for i, gti in enumerate(new_gti_lists): + if len(gti) == 0: + continue + + lower_edge, upper_edge = self._get_idx_from_time_range(gti[0, 0], gti[-1, 1]) + + ev = self[lower_edge : upper_edge + 1] + if hasattr(ev, "gti"): + ev.gti = gti + + if root_file_name is not None: + new_file = root_file_name + f"_{i:002d}." + fmt.lstrip(".") + logger.info(f"Writing {new_file}") + ev.write(new_file, fmt=fmt) + yield new_file + else: + yield ev + + def _trace_nphots_in_file(self, nedges=1001): + """Trace the number of photons as time advances in the file. + + This function traces the number of photons as time advances in the file. + This is a way to quickly map the distribution of photons in time, without + reading the entire file. This map can be useful to then access the wanted + data without loading all the file in memory. + + Other Parameters + ---------------- + nedges : int + The number of time edges to trace. Default is 1001. + + Returns + ------- + time_edges : np.ndarray + The time edges + idx_edges : np.ndarray + The index edges + """ + + if hasattr(self, "_time_edges") and len(self._time_edges) >= nedges: + return self._time_edges, self._idx_edges + + fname = self.fname + + with fits.open(fname) as hdul: + size = hdul[1].header["NAXIS2"] + nedges = min(nedges, size // 10 + 2) + + time_edges = np.zeros(nedges) + idx_edges = np.zeros(nedges, dtype=int) + for i, edge_idx in enumerate(np.linspace(0, size - 1, nedges).astype(int)): + idx_edges[i] = edge_idx + time_edges[i] = hdul[1].data["TIME"][edge_idx] + + mingti, maxgti = np.min(self.gti), np.max(self.gti) + if time_edges[0] > mingti: + time_edges[0] = mingti + if time_edges[-1] < maxgti: + time_edges[-1] = maxgti + + self._time_edges, self._idx_edges = time_edges, idx_edges + + return time_edges, idx_edges + + def split_by_number_of_samples(self, nsamples, root_file_name=None, fmt=DEFAULT_FORMAT): + """Split the event list into different files, each with approx. the given no. of photons. + + Parameters + ---------- + nsamples : int + The number of photons in each output file. + + Other Parameters + ---------------- + root_file_name : str, default None + The root name of the output files. The file name will be appended with + "_00", "_01", etc. + If None, a generator is returned instead of writing the files. + fmt : str + The format of the output files. Default is 'hdf5'. + + Returns + ------- + output_files : list of str + A list of the output file names. + """ + n_intervals = int(np.rint(self.nphot / nsamples)) + exposure_per_interval = self.exposure / n_intervals + new_gti_lists = split_gtis_by_exposure(self.gti, exposure_per_interval) + + return self.apply_gti_lists(new_gti_lists, root_file_name=root_file_name, fmt=fmt) + + def filter_at_time_intervals( + self, time_intervals, root_file_name=None, fmt=DEFAULT_FORMAT, check_gtis=True + ): + """Filter the event list at the given time intervals. + + Parameters + ---------- + time_intervals : 2-d float array + List of time intervals of the form ``[[time0_0, time0_1], [time1_0, time1_1], ...]`` + + Other Parameters + ---------------- + root_file_name : str, default None + The root name of the output files. The file name will be appended with + "_00", "_01", etc. + If None, a generator is returned instead of writing the files. + fmt : str + The format of the output files. Default is 'hdf5'. + + Returns + ------- + output_files : list of str + A list of the output file names. + """ + if len(np.shape(time_intervals)) == 1: + time_intervals = [time_intervals] + if check_gtis: + new_gti = [cross_two_gtis(self.gti, [t_int]) for t_int in time_intervals] + else: + new_gti = [np.asarray([t_int]) for t_int in time_intervals] + return self.apply_gti_lists(new_gti, root_file_name=root_file_name, fmt=fmt) + + +
+[docs] +def mkdir_p(path): # pragma: no cover + """Safe ``mkdir`` function + + Parameters + ---------- + path : str + The absolute path to the directory to be created + """ + import os + + os.makedirs(path, exist_ok=True)
+ + + +
+[docs] +def read_header_key(fits_file, key, hdu=1): + """Read the header key key from HDU hdu of the file ``fits_file``. + + Parameters + ---------- + fits_file: str + The file name and absolute path to the event file. + + key: str + The keyword to be read + + Other Parameters + ---------------- + hdu : int + Index of the HDU extension from which the header key to be read. + + Returns + ------- + value : object + The value stored under ``key`` in ``fits_file`` + """ + + hdulist = fits.open(fits_file, ignore_missing_end=True) + try: + value = hdulist[hdu].header[key] + except KeyError: # pragma: no cover + value = "" + hdulist.close() + return value
+ + + +
+[docs] +def ref_mjd(fits_file, hdu=1): + """Read ``MJDREFF``, ``MJDREFI`` or, if failed, ``MJDREF``, from the FITS header. + + Parameters + ---------- + fits_file : str + The file name and absolute path to the event file. + + Other Parameters + ---------------- + hdu : int + Index of the HDU extension from which the header key to be read. + + Returns + ------- + mjdref : numpy.longdouble + the reference MJD + """ + + if isinstance(fits_file, Iterable) and not is_string(fits_file): # pragma: no cover + fits_file = fits_file[0] + logger.info("opening %s" % fits_file) + + hdulist = fits.open(fits_file, ignore_missing_end=True) + + ref_mjd_val = high_precision_keyword_read(hdulist[hdu].header, "MJDREF") + + hdulist.close() + return ref_mjd_val
+ + + +
+[docs] +def common_name(str1, str2, default="common"): + """Strip two strings of the letters not in common. + + Filenames must be of same length and only differ by a few letters. + + Parameters + ---------- + str1 : str + str2 : str + + Other Parameters + ---------------- + default : str + The string to return if ``common_str`` is empty + + Returns + ------- + common_str : str + A string containing the parts of the two names in common + + """ + if not len(str1) == len(str2): + return default + common_str = "" + # Extract the MP root of the name (in case they're event files) + + for i, letter in enumerate(str1): + if str2[i] == letter: + common_str += letter + # Remove leading and trailing underscores and dashes + common_str = common_str.rstrip("_").rstrip("-") + common_str = common_str.lstrip("_").lstrip("-") + if common_str == "": + common_str = default + logger.debug("common_name: %s %s -> %s" % (str1, str2, common_str)) + return common_str
+ + + +
+[docs] +def split_numbers(number, shift=0): + """ + Split high precision number(s) into doubles. + + You can specify the number of shifts to move the decimal point. + + Parameters + ---------- + number: long double + The input high precision number which is to be split + + Other parameters + ---------------- + shift: integer + Move the cut by `shift` decimal points to the right (left if negative) + + Returns + ------- + number_I: double + First part of high precision number + + number_F: double + Second part of high precision number + + Examples + -------- + >>> n = 12.34 + >>> i, f = split_numbers(n) + >>> assert i == 12 + >>> assert np.isclose(f, 0.34) + >>> assert np.allclose(split_numbers(n, 2), (12.34, 0.0)) + >>> assert np.allclose(split_numbers(n, -1), (10.0, 2.34)) + """ + if isinstance(number, Iterable): + number = np.asanyarray(number) + number *= 10**shift + mods = [math.modf(n) for n in number] + number_F = [f for f, _ in mods] + number_I = [i for _, i in mods] + else: + number *= 10**shift + number_F, number_I = math.modf(number) + + return np.double(number_I) / 10**shift, np.double(number_F) / 10**shift
+ + + +
+[docs] +def savefig(filename, **kwargs): + """ + Save a figure plotted by ``matplotlib``. + + Note : This function is supposed to be used after the ``plot`` + function. Otherwise it will save a blank image with no plot. + + Parameters + ---------- + filename : str + The name of the image file. Extension must be specified in the + file name. For example filename with `.png` extension will give a + rasterized image while ``.pdf`` extension will give a vectorized + output. + + kwargs : keyword arguments + Keyword arguments to be passed to ``savefig`` function of + ``matplotlib.pyplot``. For example use `bbox_inches='tight'` to + remove the undesirable whitespace around the image. + """ + + if not plt.fignum_exists(1): + utils.simon( + "use ``plot`` function to plot the image first and " + "then use ``savefig`` to save the figure." + ) + + plt.savefig(filename, **kwargs)
+ + + +def _can_save_longdouble(probe_file: str, fmt: str) -> bool: + """Check if a given file format can save tables with longdoubles. + + Try to save a table with a longdouble column, and if it doesn't work, catch the exception. + If the exception is related to longdouble, return False (otherwise just raise it, this + would mean there are larger problems that need to be solved). In this case, also warn that + probably part of the data will not be saved. + + If no exception is raised, return True. + + Parameters + ---------- + probe_file : str + The name of the file to be used for probing + fmt : str + The format to be used for probing, in the ``format`` argument of ``Table.write`` + + Returns + ------- + yes_it_can : bool + Whether the format can serialize the metadata + """ + if not HAS_128: # pragma: no cover + # There are no known issues with saving longdoubles where numpy.float128 is not defined + return True + + try: + Table({"a": np.arange(0, 3, 1.212314).astype(np.float128)}).write( + probe_file, format=fmt, overwrite=True + ) + yes_it_can = True + os.unlink(probe_file) + except ValueError as e: + if "float128" not in str(e): # pragma: no cover + raise + warnings.warn( + f"{fmt} output does not allow saving metadata at maximum precision. " + "Converting to lower precision" + ) + yes_it_can = False + return yes_it_can + + +def _can_serialize_meta(probe_file: str, fmt: str) -> bool: + """ + Try to save a table with meta to be serialized, and if it doesn't work, catch the exception. + If the exception is related to serialization, return False (otherwise just raise it, this + would mean there are larger problems that need to be solved). In this case, also warn that + probably part of the data will not be saved. + + If no exception is raised, return True. + + Parameters + ---------- + probe_file : str + The name of the file to be used for probing + fmt : str + The format to be used for probing, in the ``format`` argument of ``Table.write`` + + Returns + ------- + yes_it_can : bool + Whether the format can serialize the metadata + """ + try: + Table({"a": [3]}).write(probe_file, overwrite=True, format=fmt, serialize_meta=True) + + os.unlink(probe_file) + yes_it_can = True + except TypeError as e: + if "serialize_meta" not in str(e): # pragma: no cover + raise + warnings.warn( + f"{fmt} output does not serialize the metadata at the moment. " + "Some attributes will be lost." + ) + yes_it_can = False + return yes_it_can +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/lightcurve.html b/_modules/stingray/lightcurve.html new file mode 100644 index 000000000..b99eb8b1d --- /dev/null +++ b/_modules/stingray/lightcurve.html @@ -0,0 +1,1924 @@ + + + + + + + stingray.lightcurve — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.lightcurve

+"""
+Definition of :class::class:`Lightcurve`.
+
+:class::class:`Lightcurve` is used to create light curves out of photon counting data
+or to save existing light curves in a class that's easy to use.
+"""
+
+import os
+import logging
+import warnings
+from collections.abc import Iterable
+
+import numpy as np
+from astropy.table import Table
+from astropy.time import TimeDelta, Time
+from astropy import units as u
+
+from stingray.base import StingrayTimeseries, reduce_precision_if_extended
+import stingray.utils as utils
+from stingray.exceptions import StingrayError
+from stingray.gti import (
+    check_gtis,
+    create_gti_mask,
+    cross_two_gtis,
+    join_gtis,
+)
+from stingray.utils import (
+    assign_value_if_none,
+    baseline_als,
+    poisson_symmetrical_errors,
+    simon,
+    is_sorted,
+    check_isallfinite,
+)
+from stingray.io import lcurve_from_fits
+from stingray import bexvar
+from stingray.base import interpret_times
+from stingray.loggingconfig import setup_logger
+
+__all__ = ["Lightcurve"]
+
+valid_statistics = ["poisson", "gauss", None]
+
+logger = setup_logger()
+
+
+
+[docs] +class Lightcurve(StingrayTimeseries): + """ + Make a light curve object from an array of time stamps and an + array of counts. + + Parameters + ---------- + time: Iterable, `:class:astropy.time.Time`, or `:class:astropy.units.Quantity` object + A list or array of time stamps for a light curve. Must be a type that + can be cast to `:class:np.array` or `:class:List` of floats, or that + has a `value` attribute that does (e.g. a + `:class:astropy.units.Quantity` or `:class:astropy.time.Time` object). + + counts: iterable, optional, default ``None`` + A list or array of the counts in each bin corresponding to the + bins defined in `time` (note: use ``input_counts=False`` to + input the count range, i.e. counts/second, otherwise use + counts/bin). + + err: iterable, optional, default ``None`` + A list or array of the uncertainties in each bin corresponding to + the bins defined in ``time`` (note: use ``input_counts=False`` to + input the count rage, i.e. counts/second, otherwise use + counts/bin). If ``None``, we assume the data is poisson distributed + and calculate the error from the average of the lower and upper + 1-sigma confidence intervals for the Poissonian distribution with + mean equal to ``counts``. + + input_counts: bool, optional, default True + If True, the code assumes that the input data in ``counts`` + is in units of counts/bin. If False, it assumes the data + in ``counts`` is in counts/second. + + gti: 2-d float array, default ``None`` + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals. They are *not* applied to the data by default. + They will be used by other methods to have an indication of the + "safe" time intervals to use during analysis. + + err_dist: str, optional, default ``None`` + Statistical distribution used to calculate the + uncertainties and other statistical values appropriately. + Default makes no assumptions and keep errors equal to zero. + + bg_counts: iterable,`:class:numpy.array` or `:class:List` of floats, optional, default ``None`` + A list or array of background counts detected in the background extraction region + in each bin corresponding to the bins defined in `time`. + + bg_ratio: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` + A list or array of source region area to background region area ratio in each bin. These are + factors by which the `bg_counts` should be scaled to estimate background counts within the + source aperture. + + frac_exp: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` + A list or array of fractional exposers in each bin. + + mjdref: float + MJD reference (useful in most high-energy mission data) + + dt: float or array of floats. Default median(diff(time)) + Time resolution of the light curve. Can be an array of the same dimension + as ``time`` specifying width of each bin. + + skip_checks: bool + If True, the user specifies that data are already sorted and contain no + infinite or nan points. Use at your own risk + + low_memory: bool + If True, all the lazily evaluated attribute (e.g., countrate and + countrate_err if input_counts is True) will _not_ be stored in memory, + but calculated every time they are requested. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + header : str + The full header of the original FITS file, if relevant + + **other_kw : + Used internally. Any other keyword arguments will be ignored + + Attributes + ---------- + time: numpy.ndarray + The array of midpoints of time bins. + + bin_lo: numpy.ndarray + The array of lower time stamp of time bins. + + bin_hi: numpy.ndarray + The array of higher time stamp of time bins. + + counts: numpy.ndarray + The counts per bin corresponding to the bins in ``time``. + + counts_err: numpy.ndarray + The uncertainties corresponding to ``counts`` + + bg_counts: numpy.ndarray + The background counts corresponding to the bins in `time`. + + bg_ratio: numpy.ndarray + The ratio of source region area to background region area corresponding to each bin. + + frac_exp: numpy.ndarray + The fractional exposers in each bin. + + countrate: numpy.ndarray + The counts per second in each of the bins defined in ``time``. + + countrate_err: numpy.ndarray + The uncertainties corresponding to ``countrate`` + + meanrate: float + The mean count rate of the light curve. + + meancounts: float + The mean counts of the light curve. + + n: int + The number of data points in the light curve. + + dt: float or array of floats + The time resolution of the light curve. + + mjdref: float + MJD reference date (``tstart`` / 86400 gives the date in MJD at the + start of the observation) + + tseg: float + The total duration of the light curve. + + tstart: float + The start time of the light curve. + + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals. They indicate the "safe" time intervals + to be used during the analysis of the light curve. + + err_dist: string + Statistic of the Lightcurve, it is used to calculate the + uncertainties and other statistical values appropriately. + It propagates to Spectrum classes. + + mission : str + Mission that recorded the data (e.g. NICER) + + instr : str + Instrument onboard the mission + + detector_id : iterable + The detector that recoded each photon, if relevant (e.g. XMM, Chandra) + + header : str + The full header of the original FITS file, if relevant + + """ + + main_array_attr = "time" + + def __init__( + self, + time=None, + counts=None, + err=None, + input_counts=True, + gti=None, + err_dist="poisson", + bg_counts=None, + bg_ratio=None, + frac_exp=None, + mjdref=0, + dt=None, + skip_checks=False, + low_memory=False, + mission=None, + instr=None, + header=None, + **other_kw, + ): + self._time = None + self._mask = None + self._counts = None + self._counts_err = None + self._countrate = None + self._countrate_err = None + self._meanrate = None + self._meancounts = None + self._bin_lo = None + self._bin_hi = None + self._n = None + StingrayTimeseries.__init__(self) + + if other_kw != {}: + warnings.warn(f"Unrecognized keywords: {list(other_kw.keys())}") + + self.mission = mission + self.instr = instr + self.header = header + self.dt = dt + + self.input_counts = input_counts + self.low_memory = low_memory + + self.mjdref = mjdref + + if time is None or len(time) == 0: + return + + if counts is None or np.size(time) != np.size(counts): + raise StingrayError( + "Empty or invalid counts array. Time and counts array should have the same length." + "If you are providing event data, please use Lightcurve.make_lightcurve()" + ) + + time, mjdref = interpret_times(time, mjdref=mjdref) + self.mjdref = mjdref + + time = np.asanyarray(time) + counts = np.asanyarray(counts) + + if err is not None: + err = np.asanyarray(err) + + if not skip_checks: + time, counts, err = self.initial_optional_checks(time, counts, err, gti=gti) + + if err_dist.lower() not in valid_statistics: + # err_dist set can be increased with other statistics + raise StingrayError( + "Statistic not recognized." "Please select one of these: ", + "{}".format(valid_statistics), + ) + elif not err_dist.lower() == "poisson": + simon( + "Stingray only uses poisson err_dist at the moment. " + "All analysis in the light curve will assume Poisson " + "errors. " + "Sorry for the inconvenience." + ) + + self._time = time + + if dt is None and time.size > 1: + logger.info( + "Computing the bin time ``dt``. This can take " + "time. If you know the bin time, please specify it" + " at light curve creation" + ) + dt = np.median(np.diff(self._time)) + elif dt is None and time.size == 1: + warnings.warn( + "Only one time bin and no dt specified. Setting dt=1. " + "Please specify dt if you want to use a different value" + ) + dt = 1.0 + + self.dt = dt + + if isinstance(dt, Iterable): + warnings.warn( + "Some functionalities of Stingray Lightcurve will not work when `dt` is Iterable" + ) + + self.err_dist = err_dist + + if isinstance(self.dt, Iterable): + self.tstart = self._time[0] - 0.5 * self.dt[0] + self.tseg = self._time[-1] - self._time[0] + self.dt[-1] / 2 + self.dt[0] / 2 + else: + self.tstart = self._time[0] - 0.5 * self.dt + self.tseg = self._time[-1] - self._time[0] + self.dt + + self._gti = None + if gti is not None: + self._gti = np.asanyarray(gti) + + if os.name == "nt": + warnings.warn( + "On Windows, the size of an integer is 32 bits. " + "To avoid integer overflow, I'm converting the input array to float" + ) + counts = counts.astype(float) + + if input_counts: + self._counts = np.asanyarray(counts) + self._counts_err = err + else: + self._countrate = np.asanyarray(counts) + self._countrate_err = err + + if bg_counts is not None: + self.bg_counts = np.asanyarray(bg_counts) + else: + self.bg_counts = None + if bg_ratio is not None: + self.bg_ratio = np.asanyarray(bg_ratio) + else: + self.bg_ratio = None + if frac_exp is not None: + self.frac_exp = np.asanyarray(frac_exp) + else: + self.frac_exp = None + + if not skip_checks: + self.check_lightcurve() + + @property + def time(self): + return self._time + + @time.setter + def time(self, value): + value = self._validate_and_format(value, "time", "time") + if value is None: + for attr in self.internal_array_attrs(): + setattr(self, attr, None) + self._time = value + self._bin_lo = None + self._bin_hi = None + + @property + def meanrate(self): + if self._meanrate is None: + self._meanrate = np.mean(self.countrate[self.mask]) + return self._meanrate + + @property + def meancounts(self): + if self._meancounts is None: + self._meancounts = np.mean(self.counts[self.mask]) + return self._meancounts + + @property + def counts(self): + counts = self._counts + if self._counts is None and self._countrate is not None: + counts = self._countrate * self.dt + # If not in low-memory regime, cache the values + if not self.low_memory or self.input_counts: + self._counts = counts + + return counts + + @counts.setter + def counts(self, value): + value = self._validate_and_format(value, "counts", "time") + self._counts = value + self._countrate = None + self._meancounts = None + self._meancountrate = None + self.input_counts = True + + @property + def counts_err(self): + counts_err = self._counts_err + if counts_err is None and self._countrate_err is not None: + counts_err = self._countrate_err * self.dt + elif counts_err is None: + if self.err_dist.lower() == "poisson": + counts_err = poisson_symmetrical_errors(self.counts) + else: + counts_err = np.zeros_like(self.counts) + + # If not in low-memory regime, cache the values ONLY if they have + # been changed! + if self._counts_err is not counts_err: + if not self.low_memory or self.input_counts: + self._counts_err = counts_err + + return counts_err + + @counts_err.setter + def counts_err(self, value): + value = self._validate_and_format(value, "counts_err", "counts") + + self._counts_err = value + self._countrate_err = None + + @property + def countrate(self): + countrate = self._countrate + if countrate is None and self._counts is not None: + countrate = self._counts / self.dt + # If not in low-memory regime, cache the values + if not self.low_memory or not self.input_counts: + self._countrate = countrate + + return countrate + + @countrate.setter + def countrate(self, value): + value = self._validate_and_format(value, "countrate", "time") + + self._countrate = value + self._counts = None + self._meancounts = None + self._meancountrate = None + self.input_counts = False + + @property + def countrate_err(self): + countrate_err = self._countrate_err + if countrate_err is None and self._counts_err is not None: + countrate_err = self._counts_err / self.dt + elif countrate_err is None: + countrate_err = np.zeros(np.size(self.time)) + + # If not in low-memory regime, cache the values ONLY if they have + # been changed! + if countrate_err is not self._countrate_err: + if not self.low_memory or not self.input_counts: + self._countrate_err = countrate_err + + return countrate_err + + @countrate_err.setter + def countrate_err(self, value): + value = self._validate_and_format(value, "countrate_err", "countrate") + + self._countrate_err = value + self._counts_err = None + + @property + def bin_lo(self): + if self._bin_lo is None: + self._bin_lo = self.time - 0.5 * self.dt + return self._bin_lo + + @property + def bin_hi(self): + if self._bin_hi is None: + self._bin_hi = self.time + 0.5 * self.dt + return self._bin_hi + + def initial_optional_checks(self, time, counts, err, gti=None): + logger.info( + "Checking if light curve is well behaved. This " + "can take time, so if you are sure it is already " + "sorted, specify skip_checks=True at light curve " + "creation." + ) + + mask = None + if gti is not None: + mask = create_gti_mask(time, gti, dt=0) + # Check if there are non-finite values in the light curve + # This will result in a warning if GTIs are defined and non-finite points + # are outside the GTIs, otherwise an error. + # To do this, we use this ``nonfinite_flag`` variable and a ``nonfinite`` list. + # This list will contain all arrays with non-finite points inside GTIs. + # If the nonfinite_flag is True but the nonfinite list is empty, then there are no non-finite + # points in the GTIs. + nonfinite_flag = False + nonfinite = [] + + for arr, name in zip([time, counts, err], ["time", "counts", "err"]): + if arr is None: + continue + if not check_isallfinite(arr): + nonfinite_flag = True + if mask is None or (not check_isallfinite(arr[mask])): + nonfinite.append(name) + + if len(nonfinite) > 0: + label = ", ".join(nonfinite) + raise ValueError(f"Nonfinite values inside GTIs in {label}") + + if nonfinite_flag: + warnings.warn("There are non-finite points in the data, but they are outside GTIs. ") + + logger.info("Checking if light curve is sorted.") + unsorted = not is_sorted(time) + + if unsorted: + logger.warning("The light curve is unsorted.") + return time, counts, err + +
+[docs] + def check_lightcurve(self): + """Make various checks on the lightcurve. + + It can be slow, use it if you are not sure about your + input data. + """ + # Issue a warning if the input time iterable isn't regularly spaced, + # i.e. the bin sizes aren't equal throughout. + + check_gtis(self.gti) + + idxs = np.searchsorted(self.time, self.gti) + uneven = isinstance(self.dt, Iterable) + + if not uneven: + for idx in range(idxs.shape[0]): + istart, istop = idxs[idx, 0], min(idxs[idx, 1], self.time.size - 1) + + local_diff = np.diff(self.time[istart:istop]) + if np.any(~np.isclose(local_diff, self.dt)): + uneven = True + + break + if uneven: + simon( + "Bin sizes in input time array aren't equal throughout! " + "This could cause problems with Fourier transforms. " + "Please make the input time evenly sampled." + "Only use with LombScargleCrossspectrum, LombScarglePowerspectrum and QPO using GPResult" + )
+ + + def _operation_with_other_obj(self, other, operation): + """ + Helper method to codify an operation of one light curve with another (e.g. add, subtract, ...). + Takes into account the GTIs correctly, and returns a new :class:`Lightcurve` object. + + Parameters + ---------- + other : :class:`Lightcurve` object + A second light curve object + + operation : function + An operation between the :class:`Lightcurve` object calling this method, and ``other``, + operating on the ``counts`` attribute in each :class:`Lightcurve` object + + Returns + ------- + lc_new : Lightcurve object + The new light curve calculated in ``operation`` + """ + if self.mjdref != other.mjdref: + warnings.warn("MJDref is different in the two light curves") + other = other.change_mjdref(self.mjdref) + + common_gti = cross_two_gtis(self.gti, other.gti) + if not np.array_equal(self.gti, common_gti): + warnings.warn( + "The good time intervals in the two time series are different. Data outside the " + "common GTIs will be discarded." + ) + mask_self = create_gti_mask(self.time, common_gti, dt=self.dt) + mask_other = create_gti_mask(other.time, common_gti, dt=other.dt) + + # ValueError is raised by Numpy while asserting np.equal over arrays + # with different dimensions. + try: + diff = np.abs((self.time[mask_self] - other.time[mask_other])) + assert np.all(diff < self.dt / 100) + except (ValueError, AssertionError): + raise ValueError( + "GTI-filtered time arrays of both light curves " + "must be of same dimension and equal." + ) + + new_time = self.time[mask_self] + new_counts = operation(self.counts[mask_self], other.counts[mask_other]) + + if self.err_dist.lower() != other.err_dist.lower(): + simon( + "Lightcurves have different statistics!" + "We are setting the errors to zero to avoid complications." + ) + new_counts_err = np.zeros_like(new_counts) + elif self.err_dist.lower() in valid_statistics: + new_counts_err = np.sqrt( + np.add(self.counts_err[mask_self] ** 2, other.counts_err[mask_other] ** 2) + ) + # More conditions can be implemented for other statistics + else: + raise StingrayError( + "Statistics not recognized." + " Please use one of these: " + "{}".format(valid_statistics) + ) + + lc_new = Lightcurve( + new_time, + new_counts, + err=new_counts_err, + gti=common_gti, + mjdref=self.mjdref, + skip_checks=True, + dt=self.dt, + ) + + return lc_new + + def __add__(self, other): + """ + Add the counts of two light curves element by element, assuming the light curves + have the same time array. + + This magic method adds two :class:`Lightcurve` objects having the same time + array such that the corresponding counts arrays get summed up. + + GTIs are crossed, so that only common intervals are saved. + + Examples + -------- + >>> time = [5, 10, 15] + >>> count1 = [300, 100, 400] + >>> count2 = [600, 1200, 800] + >>> gti1 = [[0, 20]] + >>> gti2 = [[0, 25]] + >>> lc1 = Lightcurve(time, count1, gti=gti1, dt=5) + >>> lc2 = Lightcurve(time, count2, gti=gti2, dt=5) + >>> lc = lc1 + lc2 + >>> assert np.allclose(lc.counts, [ 900, 1300, 1200]) + """ + + return self._operation_with_other_obj(other, np.add) + + def __sub__(self, other): + """ + Subtract the counts/flux of one light curve from the counts/flux of another + light curve element by element, assuming the ``time`` arrays of the light curves + match exactly. + + This magic method takes two :class:`Lightcurve` objects having the same + ``time`` array and subtracts the ``counts`` of one :class:`Lightcurve` with + that of another, while also updating ``countrate``, ``counts_err`` and ``countrate_err`` + correctly. + + GTIs are crossed, so that only common intervals are saved. + + Examples + -------- + >>> time = [10, 20, 30] + >>> count1 = [600, 1200, 800] + >>> count2 = [300, 100, 400] + >>> gti1 = [[0, 35]] + >>> gti2 = [[0, 35]] + >>> lc1 = Lightcurve(time, count1, gti=gti1, dt=10) + >>> lc2 = Lightcurve(time, count2, gti=gti2, dt=10) + >>> lc = lc1 - lc2 + >>> assert np.allclose(lc.counts, [ 300, 1100, 400]) + """ + + return self._operation_with_other_obj(other, np.subtract) + + def __neg__(self): + """ + Implement the behavior of negation of the light curve objects. + + The negation operator ``-`` is supposed to invert the sign of the count + values of a light curve object. + + Examples + -------- + >>> time = [1, 2, 3] + >>> count1 = [100, 200, 300] + >>> count2 = [200, 300, 400] + >>> lc1 = Lightcurve(time, count1) + >>> lc2 = Lightcurve(time, count2) + >>> lc_new = -lc1 + lc2 + >>> assert np.allclose(lc_new.counts, [100, 100, 100]) + """ + lc_new = Lightcurve( + self.time, + -1 * self.counts, + err=self.counts_err, + gti=self.gti, + mjdref=self.mjdref, + skip_checks=True, + dt=self.dt, + ) + + return lc_new + + def __getitem__(self, index): + """ + Return the corresponding count value at the index or a new :class:`Lightcurve` + object upon slicing. + + This method adds functionality to retrieve the count value at + a particular index. This also can be used for slicing and generating + a new :class:`Lightcurve` object. GTIs are recalculated based on the new light + curve segment + + If the slice object is of kind ``start:stop:step``, GTIs are also sliced, + and rewritten as ``zip(time - self.dt /2, time + self.dt / 2)`` + + Parameters + ---------- + index : int or slice instance + Index value of the time array or a slice object. + + Examples + -------- + >>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9] + >>> count = [11, 22, 33, 44, 55, 66, 77, 88, 99] + >>> lc = Lightcurve(time, count, dt=1) + >>> assert np.isclose(lc[2], 33) + >>> assert np.allclose(lc[:2].counts, [11, 22]) + """ + if isinstance(index, (int, np.integer)): + return self.counts[index] + elif isinstance(index, slice): + start = assign_value_if_none(index.start, 0) + stop = assign_value_if_none(index.stop, len(self.counts)) + step = assign_value_if_none(index.step, 1) + + new_counts = self.counts[start:stop:step] + new_time = self.time[start:stop:step] + + new_gti = [[self.time[start] - 0.5 * self.dt, self.time[stop - 1] + 0.5 * self.dt]] + new_gti = np.asanyarray(new_gti) + if step > 1: + new_gt1 = np.array(list(zip(new_time - self.dt / 2, new_time + self.dt / 2))) + new_gti = cross_two_gtis(new_gti, new_gt1) + new_gti = cross_two_gtis(self.gti, new_gti) + + lc = Lightcurve( + new_time, + new_counts, + mjdref=self.mjdref, + gti=new_gti, + dt=self.dt, + skip_checks=True, + err_dist=self.err_dist, + ) + if self._counts_err is not None: + lc._counts_err = self._counts_err[start:stop:step] + return lc + else: + raise IndexError("The index must be either an integer or a slice " "object !") + +
+[docs] + def baseline(self, lam, p, niter=10, offset_correction=False): + """Calculate the baseline of the light curve, accounting for GTIs. + + Parameters + ---------- + lam : float + "smoothness" parameter. Larger values make the baseline stiffer + Typically ``1e2 < lam < 1e9`` + p : float + "asymmetry" parameter. Smaller values make the baseline more + "horizontal". Typically ``0.001 < p < 0.1``, but not necessary. + + Other parameters + ---------------- + offset_correction : bool, default False + by default, this method does not align to the running mean of the + light curve, but it goes below the light curve. Setting align to + True, an additional step is done to shift the baseline so that it + is shifted to the middle of the light curve noise distribution. + + + Returns + ------- + baseline : numpy.ndarray + An array with the baseline of the light curve + """ + baseline = np.zeros_like(self.time) + for g in self.gti: + good = create_gti_mask(self.time, [g], dt=self.dt) + _, baseline[good] = baseline_als( + self.time[good], + self.counts[good], + lam, + p, + niter, + offset_correction=offset_correction, + return_baseline=True, + ) + + return baseline
+ + +
+[docs] + @staticmethod + def make_lightcurve(toa, dt, tseg=None, tstart=None, gti=None, mjdref=0, use_hist=False): + """ + Make a light curve out of photon arrival times, with a given time resolution ``dt``. + Note that ``dt`` should be larger than the native time resolution of the instrument + that has taken the data. + + Parameters + ---------- + toa: iterable + list of photon arrival times + + dt: float + time resolution of the light curve (the bin width) + + tseg: float, optional, default ``None`` + The total duration of the light curve. + If this is ``None``, then the total duration of the light curve will + be the interval between the arrival between either the first and the last + gti boundary or, if gti is not set, the first and the last photon in ``toa``. + + **Note**: If ``tseg`` is not divisible by ``dt`` (i.e. if ``tseg``/``dt`` is + not an integer number), then the last fractional bin will be + dropped! + + tstart: float, optional, default ``None`` + The start time of the light curve. + If this is ``None``, either the first gti boundary or, if not available, + the arrival time of the first photon will be used + as the start time of the light curve. + + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Good Time Intervals + + use_hist : bool + Use ``np.histogram`` instead of ``np.bincounts``. Might be advantageous + for very short datasets. + + Returns + ------- + lc: :class:`Lightcurve` object + A :class:`Lightcurve` object with the binned light curve + """ + toa, mjdref = interpret_times(toa, mjdref=mjdref) + + toa = np.sort(np.asanyarray(toa)) + # tstart is an optional parameter to set a starting time for + # the light curve in case this does not coincide with the first photon + if tstart is None: + # if tstart is not set, assume light curve starts with first photon + # or the first gti if is set + tstart = toa[0] + if gti is not None: + tstart = np.min(gti) + + # compute the number of bins in the light curve + # for cases where tseg/dt is not integer. + # TODO: check that this is always consistent and that we + # are not throwing away good events. + if tseg is None: + tseg = toa[-1] - tstart + if gti is not None: + tseg = np.max(gti) - tstart + + logger.info("make_lightcurve: tseg: " + str(tseg)) + + timebin = int(tseg / dt) + # If we are missing the next bin by just 1%, let's round up: + if tseg / dt - timebin >= 0.99: + timebin += 1 + + logger.info("make_lightcurve: timebin: " + str(timebin)) + + tend = tstart + timebin * dt + good = (tstart <= toa) & (toa < tend) + if not use_hist: + binned_toas = ((toa[good] - tstart) // dt).astype(np.int64) + counts = np.bincount(binned_toas, minlength=timebin) + time = tstart + np.arange(0.5, 0.5 + len(counts)) * dt + else: + histbins = np.arange(tstart, tend + dt, dt) + counts, histbins = np.histogram(toa[good], bins=histbins) + time = histbins[:-1] + 0.5 * dt + + return Lightcurve( + time, counts, gti=gti, mjdref=mjdref, dt=dt, skip_checks=True, err_dist="poisson" + )
+ + +
+[docs] + def rebin(self, dt_new=None, f=None, method="sum"): + """ + Rebin the light curve to a new time resolution. While the new + resolution need not be an integer multiple of the previous time + resolution, be aware that if it is not, the last bin will be cut + off by the fraction left over by the integer division. + + Parameters + ---------- + dt_new: float + The new time resolution of the light curve. Must be larger than + the time resolution of the old light curve! + + method: {``sum`` | ``mean`` | ``average``}, optional, default ``sum`` + This keyword argument sets whether the counts in the new bins + should be summed or averaged. + + Other Parameters + ---------------- + f: float + the rebin factor. If specified, it substitutes ``dt_new`` with + ``f*self.dt`` + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with the new, binned light curve. + """ + + if f is None and dt_new is None: + raise ValueError("You need to specify at least one between f and " "dt_new") + elif f is not None: + dt_new = f * self.dt + + if dt_new < self.dt: + raise ValueError("New time resolution must be larger than " "old time resolution!") + + bin_time, bin_counts, bin_err = [], [], [] + gti_new = [] + + # If it does not exist, we create it on the spot + self.counts_err + + for g in self.gti: + if g[1] - g[0] < dt_new: + continue + else: + # find start and end of GTI segment in data + start_ind = self.time.searchsorted(g[0]) + end_ind = self.time.searchsorted(g[1]) + + t_temp = self.time[start_ind:end_ind] + c_temp = self.counts[start_ind:end_ind] + + e_temp = self.counts_err[start_ind:end_ind] + + bin_t, bin_c, bin_e, _ = utils.rebin_data( + t_temp, c_temp, dt_new, yerr=e_temp, method=method + ) + + bin_time.extend(bin_t) + bin_counts.extend(bin_c) + bin_err.extend(bin_e) + gti_new.append(g) + + if len(gti_new) == 0: + raise ValueError("No valid GTIs after rebin.") + + lc_new = Lightcurve( + bin_time, + bin_counts, + err=bin_err, + mjdref=self.mjdref, + dt=dt_new, + gti=gti_new, + skip_checks=True, + ) + return lc_new
+ + +
+[docs] + def join(self, other, skip_checks=False): + """ + Join two lightcurves into a single object. + + The new :class:`Lightcurve` object will contain time stamps from both the + objects. The ``counts`` and ``countrate`` attributes in the resulting object + will contain the union of the non-overlapping parts of the two individual objects, + or the average in case of overlapping ``time`` arrays of both :class:`Lightcurve` objects. + + Good Time Intervals are also joined. + + Note : Ideally, the ``time`` array of both lightcurves should not overlap. + + Parameters + ---------- + other : :class:`Lightcurve` object + The other :class:`Lightcurve` object which is supposed to be joined with. + skip_checks: bool + If True, the user specifies that data are already sorted and + contain no infinite or nan points. Use at your own risk. + + Returns + ------- + lc_new : :class:`Lightcurve` object + The resulting :class:`Lightcurve` object. + + Examples + -------- + >>> time1 = [5, 10, 15] + >>> count1 = [300, 100, 400] + >>> time2 = [20, 25, 30] + >>> count2 = [600, 1200, 800] + >>> lc1 = Lightcurve(time1, count1, dt=5) + >>> lc2 = Lightcurve(time2, count2, dt=5) + >>> lc = lc1.join(lc2) + >>> lc.time + array([ 5, 10, 15, 20, 25, 30]) + >>> assert np.allclose(lc.counts, [ 300, 100, 400, 600, 1200, 800]) + """ + if self.mjdref != other.mjdref: + warnings.warn("MJDref is different in the two light curves") + other = other.change_mjdref(self.mjdref) + + if self.dt != other.dt: + utils.simon("The two light curves have different bin widths.") + + if self.tstart < other.tstart: + first_lc = self + second_lc = other + else: + first_lc = other + second_lc = self + + if len(np.intersect1d(self.time, other.time) > 0): + utils.simon( + "The two light curves have overlapping time ranges. " + "In the common time range, the resulting count will " + "be the average of the counts in the two light " + "curves. If you wish to sum, use `lc_sum = lc1 + " + "lc2`." + ) + valid_err = False + + if self.err_dist.lower() != other.err_dist.lower(): + simon("Lightcurves have different statistics!" "We are setting the errors to zero.") + + elif self.err_dist.lower() in valid_statistics: + valid_err = True + # More conditions can be implemented for other statistics + else: + raise StingrayError( + "Statistics not recognized." + " Please use one of these: " + "{}".format(valid_statistics) + ) + + from collections import Counter + + counts = Counter() + counts_err = Counter() + + for i, time in enumerate(first_lc.time): + counts[time] = first_lc.counts[i] + counts_err[time] = first_lc.counts_err[i] + + for i, time in enumerate(second_lc.time): + if counts.get(time) is not None: # Common time + counts[time] = (counts[time] + second_lc.counts[i]) / 2 + counts_err[time] = np.sqrt( + ((counts_err[time] ** 2) + (second_lc.counts_err[i] ** 2)) / 2 + ) + + else: + counts[time] = second_lc.counts[i] + counts_err[time] = second_lc.counts_err[i] + + new_time = list(counts.keys()) + new_counts = list(counts.values()) + if valid_err: + new_counts_err = list(counts_err.values()) + else: + new_counts_err = np.zeros_like(new_counts) + + del [counts, counts_err] + + else: + new_time = np.concatenate([first_lc.time, second_lc.time]) + new_counts = np.concatenate([first_lc.counts, second_lc.counts]) + new_counts_err = np.concatenate([first_lc.counts_err, second_lc.counts_err]) + + new_time = np.asanyarray(new_time) + new_counts = np.asanyarray(new_counts) + new_counts_err = np.asanyarray(new_counts_err) + gti = join_gtis(self.gti, other.gti) + + lc_new = Lightcurve( + new_time, + new_counts, + err=new_counts_err, + gti=gti, + mjdref=self.mjdref, + dt=self.dt, + skip_checks=skip_checks, + ) + + return lc_new
+ + +
+[docs] + def truncate(self, start=0, stop=None, method="index"): + """ + Truncate a :class:`Lightcurve` object. + + This method takes a ``start`` and a ``stop`` point (either as indices, + or as times in the same unit as those in the ``time`` attribute, and truncates + all bins before ``start`` and after ``stop``, then returns a new :class:`Lightcurve` + object with the truncated light curve. + + Parameters + ---------- + start : int, default 0 + Index (or time stamp) of the starting point of the truncation. If no value is set + for the start point, then all points from the first element in the ``time`` array + are taken into account. + + stop : int, default ``None`` + Index (or time stamp) of the ending point (exclusive) of the truncation. If no + value of stop is set, then points including the last point in + the counts array are taken in count. + + method : {``index`` | ``time``}, optional, default ``index`` + Type of the start and stop values. If set to ``index`` then + the values are treated as indices of the counts array, or + if set to ``time``, the values are treated as actual time values. + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with truncated time and counts + arrays. + + Examples + -------- + >>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9] + >>> count = [10, 20, 30, 40, 50, 60, 70, 80, 90] + >>> lc = Lightcurve(time, count, dt=1) + >>> lc_new = lc.truncate(start=2, stop=8) + >>> assert np.allclose(lc_new.counts, [30, 40, 50, 60, 70, 80]) + >>> lc_new.time + array([3, 4, 5, 6, 7, 8]) + >>> # Truncation can also be done by time values + >>> lc_new = lc.truncate(start=6, method='time') + >>> lc_new.time + array([6, 7, 8, 9]) + >>> assert np.allclose(lc_new.counts, [60, 70, 80, 90]) + """ + + return super().truncate(start=start, stop=stop, method=method)
+ + +
+[docs] + def split(self, min_gap, min_points=1): + """ + For data with gaps, it can sometimes be useful to be able to split + the light curve into separate, evenly sampled objects along those + data gaps. This method allows to do this: it finds data gaps of a + specified minimum size, and produces a list of new `Lightcurve` + objects for each contiguous segment. + + Parameters + ---------- + min_gap : float + The length of a data gap, in the same units as the `time` attribute + of the `Lightcurve` object. Any smaller gaps will be ignored, any + larger gaps will be identified and used to split the light curve. + + min_points : int, default 1 + The minimum number of data points in each light curve. Light + curves with fewer data points will be ignored. + + Returns + ------- + lc_split : iterable of `Lightcurve` objects + The list of all contiguous light curves + + Examples + -------- + >>> time = np.array([1, 2, 3, 6, 7, 8, 11, 12, 13]) + >>> counts = np.random.rand(time.shape[0]) + >>> lc = Lightcurve(time, counts, dt=1, skip_checks=True) + >>> split_lc = lc.split(1.5) + + """ + + # calculate the difference between time bins + tdiff = np.diff(self.time) + # find all distances between time bins that are larger than `min_gap` + gap_idx = np.where(tdiff >= min_gap)[0] + + # tolerance for the newly created GTIs: Note that this seems to work + # with a tolerance of 2, but not if I substitute 10. I don't know why + epsilon = np.min(tdiff) / 2.0 + + # calculate new GTIs + gti_start = np.hstack([self.time[0] - epsilon, self.time[gap_idx + 1] - epsilon]) + gti_stop = np.hstack([self.time[gap_idx] + epsilon, self.time[-1] + epsilon]) + + gti = np.vstack([gti_start, gti_stop]).T + if hasattr(self, "gti") and self.gti is not None: + gti = cross_two_gtis(self.gti, gti) + + lc_split = self.split_by_gti(gti, min_points=min_points) + return lc_split
+ + +
+[docs] + def sort(self, reverse=False, inplace=False): + """ + Sort a Lightcurve object by time. + + A Lightcurve can be sorted in either increasing or decreasing order + using this method. The time array gets sorted and the counts array is + changed accordingly. + + Parameters + ---------- + reverse : boolean, default False + If True then the object is sorted in reverse order. + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + Examples + -------- + >>> time = [2, 1, 3] + >>> count = [200, 100, 300] + >>> lc = Lightcurve(time, count, dt=1, skip_checks=True) + >>> lc_new = lc.sort() + >>> lc_new.time + array([1, 2, 3]) + >>> assert np.allclose(lc_new.counts, [100, 200, 300]) + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with sorted time and counts + arrays. + """ + + mask = np.argsort(self.time) + if reverse: + mask = mask[::-1] + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def sort_counts(self, reverse=False, inplace=False): + """ + Sort a :class:`Lightcurve` object in accordance with its counts array. + + A :class:`Lightcurve` can be sorted in either increasing or decreasing order + using this method. The counts array gets sorted and the time array is + changed accordingly. + + Parameters + ---------- + reverse : boolean, default ``False`` + If ``True`` then the object is sorted in reverse order. + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + Returns + ------- + lc_new: :class:`Lightcurve` object + The :class:`Lightcurve` object with sorted ``time`` and ``counts`` + arrays. + + Examples + -------- + >>> time = [1, 2, 3] + >>> count = [200, 100, 300] + >>> lc = Lightcurve(time, count, dt=1, skip_checks=True) + >>> lc_new = lc.sort_counts() + >>> lc_new.time + array([2, 1, 3]) + >>> assert np.allclose(lc_new.counts, [100, 200, 300]) + """ + + mask = np.argsort(self.counts) + if reverse: + mask = mask[::-1] + return self.apply_mask(mask, inplace=inplace)
+ + +
+[docs] + def estimate_chunk_length(self, *args, **kwargs): + """Deprecated alias of estimate_segment_size.""" + warnings.warn("This function was renamed to estimate_segment_size", DeprecationWarning) + return self.estimate_segment_size(*args, **kwargs)
+ + +
+[docs] + def estimate_segment_size(self, min_counts=100, min_samples=100, even_sampling=None): + """Estimate a reasonable segment length for segment-by-segment analysis. + + The user has to specify a criterion based on a minimum number of counts (if + the time series has a ``counts`` attribute) or a minimum number of time samples. + At least one between ``min_counts`` and ``min_samples`` must be specified. + + Other Parameters + ---------------- + min_counts : int + Minimum number of counts for each chunk. Optional (but needs ``min_samples`` + if left unspecified). Only makes sense if the series has a ``counts`` attribute and + it is evenly sampled. + min_samples : int + Minimum number of time bins. Optional (but needs ``min_counts`` if left unspecified). + even_sampling : bool + Force the treatment of the data as evenly sampled or not. If None, the data are + considered evenly sampled if ``self.dt`` is larger than zero and the median + separation between subsequent times is within 1% of ``self.dt``. + + Returns + ------- + segment_size : float + The length of the light curve chunks that satisfies the conditions + + Examples + -------- + >>> import numpy as np + >>> time = np.arange(150) + >>> count = np.zeros_like(time) + 3 + >>> lc = Lightcurve(time, count, dt=1) + >>> assert np.isclose( + ... lc.estimate_segment_size(min_counts=10, min_samples=3), 4) + >>> assert np.isclose(lc.estimate_segment_size(min_counts=10, min_samples=5), 5) + >>> count[2:4] = 1 + >>> lc = Lightcurve(time, count, dt=1) + >>> assert np.isclose(lc.estimate_segment_size(min_counts=3, min_samples=1), 3) + >>> # A slightly more complex example + >>> dt=0.2 + >>> time = np.arange(0, 1000, dt) + >>> counts = np.random.poisson(100, size=len(time)) + >>> lc = Lightcurve(time, counts, dt=dt) + >>> assert np.isclose(lc.estimate_segment_size(100, 2), 0.4) + >>> min_total_bins = 40 + >>> assert np.isclose(lc.estimate_segment_size(100, 40), 8.0) + """ + return super().estimate_segment_size(min_counts, min_samples, even_sampling=even_sampling)
+ + +
+[docs] + def analyze_lc_chunks(self, segment_size, func, fraction_step=1, **kwargs): + """Analyze segments of the light curve with any function. + + .. deprecated:: 2.0 + Use :meth:`Lightcurve.analyze_segments(func, segment_size)` instead. + + Parameters + ---------- + segment_size : float + Length in seconds of the light curve segments + func : function + Function accepting a :class:`Lightcurve` object as single argument, plus + possible additional keyword arguments, and returning a number or a + tuple - e.g., ``(result, error)`` where both ``result`` and ``error`` are + numbers. + + Other parameters + ---------------- + fraction_step : float + By default, segments do not overlap (``fraction_step`` = 1). If ``fraction_step`` < 1, + then the start points of consecutive segments are ``fraction_step * segment_size`` + apart, and consecutive segments overlap. For example, for ``fraction_step`` = 0.5, + the window shifts one half of ``segment_size``) + kwargs : keyword arguments + These additional keyword arguments, if present, they will be passed + to ``func`` + + Returns + ------- + start_times : array + Lower time boundaries of all time segments. + stop_times : array + upper time boundaries of all segments. + result : array of N elements + The result of ``func`` for each segment of the light curve + """ + warnings.warn( + "The analyze_lc_chunks method was superseded by analyze_segments", DeprecationWarning + ) + return super().analyze_segments(func, segment_size, fraction_step=fraction_step, **kwargs)
+ + +
+[docs] + def to_lightkurve(self): + """ + Returns a `lightkurve.LightCurve` object. + This feature requires ``Lightkurve`` to be installed + (e.g. ``pip install lightkurve``). An `ImportError` will + be raised if this package is not available. + + Returns + ------- + lightcurve : `lightkurve.LightCurve` + A lightkurve LightCurve object. + """ + try: + from lightkurve import LightCurve as lk + except ImportError: + raise ImportError( + "You need to install Lightkurve to use " "the Lightcurve.to_lightkurve() method." + ) + time = Time(self.time / 86400 + self.mjdref, format="mjd", scale="utc") + return lk(time=time, flux=self.counts, flux_err=self.counts_err)
+ + +
+[docs] + @staticmethod + def from_lightkurve(lk, skip_checks=True): + """ + Creates a new `Lightcurve` from a `lightkurve.LightCurve`. + + Parameters + ---------- + lk : `lightkurve.LightCurve` + A lightkurve LightCurve object + skip_checks: bool + If True, the user specifies that data are already sorted and contain no + infinite or nan points. Use at your own risk. + """ + + return Lightcurve( + time=lk.time, + counts=lk.flux, + err=lk.flux_err, + input_counts=False, + skip_checks=skip_checks, + )
+ + +
+[docs] + def to_astropy_timeseries(self, **kwargs): + """Save the light curve to an :class:`astropy.timeseries.TimeSeries` object. + + The time array and all the array attributes become columns. The meta attributes become + metadata of the :class:`astropy.timeseries.TimeSeries` object. + The time array is saved as a TimeDelta object. + + Other Parameters + ---------------- + no_longdouble : bool, default False + If True, the data are converted to double precision before being saved. + This is useful, e.g., for saving to FITS files, which do not support long double precision. + """ + return self._to_astropy_object(kind="timeseries", **kwargs)
+ + +
+[docs] + def to_astropy_table(self, **kwargs): + """Save the light curve to an :class:`astropy.table.Table` object. + + The time array and all the array attributes become columns. The meta attributes become + metadata of the :class:`astropy.table.Table` object. + + Other Parameters + ---------------- + no_longdouble : bool, default False + If True, the data are converted to double precision before being saved. + This is useful, e.g., for saving to FITS files, which do not support long double precision. + """ + return self._to_astropy_object(kind="table", **kwargs)
+ + + def _to_astropy_object(self, kind="table", no_longdouble=False): + """Save the light curve to an :class:`astropy.table.Table` or :class:`astropy.timeseries.TimeSeries` object. + + If ``kind`` is ``timeseries``, the time array and all the array attributes become columns. + + Other Parameters + ---------------- + kind : str, default ``table`` + The type of object to return. Accepted values are ``table`` or ``timeseries``. + no_longdouble : bool, default False + If True, the data are converted to double precision before being saved. + This is useful, e.g., for saving to FITS files, which do not support long double precision. + """ + data = {} + + for attr in [ + "_counts", + "_counts_err", + "_countrate", + "_countrate_err", + "_bin_lo", + "_bin_hi", + ]: + if hasattr(self, attr) and getattr(self, attr) is not None: + vals = np.asanyarray(getattr(self, attr)) + if no_longdouble: + vals = reduce_precision_if_extended(vals) + data[attr.lstrip("_")] = vals + + time_array = self.time + if no_longdouble: + time_array = reduce_precision_if_extended(time_array) + + if kind.lower() == "table": + data["time"] = time_array + ts = Table(data) + elif kind.lower() == "timeseries": + from astropy.timeseries import TimeSeries + + ts = TimeSeries(data=data, time=TimeDelta(time_array * u.s)) + else: # pragma: no cover + raise ValueError("Invalid kind (accepted: table or timeseries)") + + for attr in [ + "_gti", + "mjdref", + "_meancounts", + "_meancountrate", + "instr", + "mission", + "dt", + "err_dist", + ]: + if hasattr(self, attr) and getattr(self, attr) is not None: + vals = getattr(self, attr) + rep = repr(vals) + # Work around issue with Numpy 2.0 and Yaml serializer. + if rep.startswith("np.float"): + vals = float(vals) + if no_longdouble: + vals = reduce_precision_if_extended(vals) + ts.meta[attr.lstrip("_")] = vals + + return ts + +
+[docs] + @staticmethod + def from_astropy_timeseries(ts, **kwargs): + return Lightcurve._from_astropy_object(ts, **kwargs)
+ + +
+[docs] + @staticmethod + def from_astropy_table(ts, **kwargs): + return Lightcurve._from_astropy_object(ts, **kwargs)
+ + + @staticmethod + def _from_astropy_object(ts, err_dist="poisson", skip_checks=True): + if hasattr(ts, "time"): + time = ts.time + else: + time = ts["time"] + + kwargs = ts.meta + err = None + input_counts = True + + if "counts_err" in ts.colnames: + err = ts["counts_err"] + elif "countrate_err" in ts.colnames: + err = ts["countrate_err"] + + if "counts" in ts.colnames: + counts = ts["counts"] + elif "countrate" in ts.colnames: + counts = ts["countrate"] + input_counts = False + else: + raise ValueError( + "Input timeseries must contain at least a " "`counts` or a `countrate` column" + ) + + kwargs.update( + { + "time": time, + "counts": counts, + "err": err, + "input_counts": input_counts, + "skip_checks": skip_checks, + } + ) + if "err_dist" not in kwargs: + kwargs["err_dist"] = err_dist + + lc = Lightcurve(**kwargs) + + return lc + +
+[docs] + def plot( + self, + witherrors=False, + labels=None, + ax=None, + title=None, + marker="-", + save=False, + filename=None, + axis_limits=None, + axis=None, + plot_btis=True, + ): + """ + Plot the light curve using ``matplotlib``. + + Plot the light curve object on a graph ``self.time`` on x-axis and + ``self.counts`` on y-axis with ``self.counts_err`` optionally + as error bars. + + Parameters + ---------- + witherrors: boolean, default False + Whether to plot the Lightcurve with errorbars or not + + labels : iterable, default ``None`` + A list of tuple with ``xlabel`` and ``ylabel`` as strings. + + axis_limits : list, tuple, string, default ``None`` + Parameter to set axis properties of the ``matplotlib`` figure. For example + it can be a list like ``[xmin, xmax, ymin, ymax]`` or any other + acceptable argument for the``matplotlib.pyplot.axis()`` method. + + axis : list, tuple, string, default ``None`` + Deprecated in favor of ``axis_limits``, same functionality. + + title : str, default ``None`` + The title of the plot. + + marker : str, default '-' + Line style and color of the plot. Line styles and colors are + combined in a single format string, as in ``'bo'`` for blue + circles. See ``matplotlib.pyplot.plot`` for more options. + + save : boolean, optional, default ``False`` + If ``True``, save the figure with specified filename. + + filename : str + File name of the image to save. Depends on the boolean ``save``. + + ax : ``matplotlib.pyplot.axis`` object + Axis to be used for plotting. Defaults to creating a new one. + + plot_btis : bool + Plot the bad time intervals as red areas on the plot + """ + if axis is not None: + warnings.warn( + "The ``axis`` argument is deprecated in favor of ``axis_limits``. " + "Please use that instead.", + DeprecationWarning, + ) + axis_limits = axis + + flux_attr = "counts" + if not self.input_counts: + flux_attr = "countrate" + + return super().plot( + flux_attr, + witherrors=witherrors, + labels=labels, + ax=ax, + title=title, + marker=marker, + save=save, + filename=filename, + plot_btis=plot_btis, + axis_limits=axis_limits, + )
+ + +
+[docs] + @classmethod + def read( + cls, filename, fmt=None, format_=None, err_dist="gauss", skip_checks=False, **fits_kwargs + ): + """ + Read a :class:`Lightcurve` object from file. + + Currently supported formats are + + * pickle (not recommended for long-term storage) + * hea : FITS Light curves from HEASARC-supported missions. + * any other formats compatible with the writers in + :class:`astropy.table.Table` (ascii.ecsv, hdf5, etc.) + + Files that need the :class:`astropy.table.Table` interface MUST contain + at least a ``time`` column and a ``counts`` or ``countrate`` column. + The default ascii format is enhanced CSV (ECSV). Data formats + supporting the serialization of metadata (such as ECSV and HDF5) can + contain all lightcurve attributes such as ``dt``, ``gti``, etc with + no significant loss of information. Other file formats might lose part + of the metadata, so must be used with care. + + Parameters + ---------- + filename: str + Path and file name for the file to be read. + + fmt: str + Available options are 'pickle', 'hea', and any `Table`-supported + format such as 'hdf5', 'ascii.ecsv', etc. + + Other parameters + ---------------- + + err_dist: str, default='gauss' + Default error distribution if not specified in the file (e.g. for + ASCII files). The default is 'gauss' just because it is likely + that people using ASCII light curves will want to specify Gaussian + error bars, if any. + skip_checks : bool + See :class:`Lightcurve` documentation + **fits_kwargs : additional keyword arguments + Any other arguments to be passed to `lcurve_from_fits` (only relevant + for hea/ogip formats) + + Returns + ------- + lc : :class:`Lightcurve` object + """ + + if fmt is not None and fmt.lower() in ("hea", "ogip"): + data = lcurve_from_fits(filename, **fits_kwargs) + data.update({"err_dist": err_dist, "skip_checks": skip_checks}) + return Lightcurve(**data) + + return super().read(filename=filename, fmt=fmt)
+ + +
+[docs] + def apply_gtis(self, inplace=True): + """ + Apply GTIs to a light curve. Filters the ``time``, ``counts``, + ``countrate``, ``counts_err`` and ``countrate_err`` arrays for all bins + that fall into Good Time Intervals and recalculates mean countrate + and the number of bins. + + Parameters + ---------- + inplace : bool + If True, overwrite the current light curve. Otherwise, return a new one. + + """ + + check_gtis(self.gti) + + good = self.mask + newlc = self.apply_mask(good, inplace=inplace) + dt = newlc.dt + if "dt" in self.array_attrs(): + dt = newlc.dt[0] + newlc.tstart = newlc.time - 0.5 * dt + newlc.tseg = np.max(newlc.gti) - np.min(newlc.gti) + return newlc
+ + +
+[docs] + def bexvar(self): + """ + Finds posterior samples of Bayesian excess variance (bexvar) for the light curve. + It requires source counts in ``counts`` and time intervals for each bin. + If the ``dt`` is an array then uses its elements as time intervals + for each bin. If ``dt`` is float, it calculates the time intervals by assuming + all intervals to be equal to ``dt``. + + Returns + ------- + lc_bexvar : iterable, `:class:numpy.array` of floats + An array of posterior samples of Bayesian excess variance (bexvar). + """ + + # calculate time intervals for each bin if not provided by user + # assumes that time intervals in each bin are equal to ``dt`` + if not isinstance(self.dt, Iterable): + time_del = self.dt * np.ones(shape=self.n) + else: + time_del = self.dt + + lc_bexvar = bexvar.bexvar( + time=self._time, + time_del=time_del, + src_counts=self.counts, + bg_counts=self.bg_counts, + bg_ratio=self.bg_ratio, + frac_exp=self.frac_exp, + ) + + return lc_bexvar
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/mission_support/missions.html b/_modules/stingray/mission_support/missions.html new file mode 100644 index 000000000..4d50fe719 --- /dev/null +++ b/_modules/stingray/mission_support/missions.html @@ -0,0 +1,296 @@ + + + + + + + stingray.mission_support.missions — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.mission_support.missions

+"""This module contains functions to interpret data from different missions.
+
+The key functions are:
+
+- `read_mission_info`: Search the relevant information about a mission in xselect.mdb.
+- `get_rough_conversion_function`: Get a rough PI-Energy conversion function for a mission.
+- `mission_specific_event_interpretation`: Get the mission-specific FITS interpretation
+  function. This function will take a FITS :class:`astropy.io.fits.HDUList` object and
+  modify it in place to make the read into Stingray easier.
+- `rough_calibration` (obsolete): Make a rough conversion between PI channel and energy.
+
+Whenever a given mission needs complicate processing, its functions can be made available
+for specific missions in their own separate modules. For example, the RXTE mission has its
+own module, ``rxte.py``, which contains functions to interpret RXTE data.
+"""
+
+import os
+import warnings
+from .rxte import rxte_calibration_func, rxte_pca_event_file_interpretation
+
+
+
+[docs] +def rough_calibration(pis, mission): + """Make a rough conversion between PI channel and energy. + + Only works for NICER, NuSTAR, IXPE, and XMM. + + Parameters + ---------- + pis: float or array of floats + PI channels in data + mission: str + Mission name + + Returns + ------- + energies : float or array of floats + Energy values + + Examples + -------- + >>> rough_calibration(0, 'nustar') + 1.62 + >>> rough_calibration(0.0, 'ixpe') + 0.0 + >>> # It's case-insensitive + >>> rough_calibration(1200, 'XMm') + 1.2 + >>> rough_calibration(10, 'asDf') + Traceback (most recent call last): + ... + ValueError: Mission asdf not recognized + >>> rough_calibration(100, 'nicer') + 1.0 + """ + if mission.lower() == "nustar": + return pis * 0.04 + 1.62 + elif mission.lower() == "xmm": + return pis * 0.001 + elif mission.lower() == "nicer": + return pis * 0.01 + elif mission.lower() == "ixpe": + return pis / 375 * 15 + raise ValueError(f"Mission {mission.lower()} not recognized")
+ + + +def _patch_mission_info(info, mission=None): + """Add some information that is surely missing in xselect.mdb. + + Examples + -------- + >>> info = {'gti': 'STDGTI', 'ecol': 'PHA'} + >>> new_info = _patch_mission_info(info, mission=None) + >>> assert new_info['gti'] == info['gti'] + >>> new_info = _patch_mission_info(info, mission="xmm") + >>> new_info['gti'] + 'STDGTI,GTI0' + >>> new_info = _patch_mission_info(info, mission="xte") + >>> new_info['ecol'] + 'PHA' + """ + if mission is None: + return info + if mission.lower() == "xmm" and "gti" in info: + info["gti"] += ",GTI0" + if mission.lower() == "xte" and "ecol" in info: + info["ecol"] = "PHA" + info["ccol"] = "PCUID" + return info + + +
+[docs] +def read_mission_info(mission=None): + """Search the relevant information about a mission in xselect.mdb.""" + curdir = os.path.abspath(os.path.dirname(__file__)) + fname = os.path.join(curdir, "..", "datasets", "xselect.mdb") + + # If HEADAS is defined, search for the most up-to-date version of the + # mission database + if os.getenv("HEADAS"): + hea_fname = os.path.join(os.getenv("HEADAS"), "bin", "xselect.mdb") + if os.path.exists(hea_fname): + fname = hea_fname + if mission is not None: + mission = mission.lower() + + db = {} + with open(fname) as fobj: + for line in fobj.readlines(): + line = line.strip() + if mission is not None and not line.lower().startswith(mission): + continue + if line.startswith("!") or line == "": + continue + allvals = line.split() + string = allvals[0] + value = allvals[1:] + if len(value) == 1: + value = value[0] + + data = string.split(":")[:] + if mission is None: + if data[0] not in db: + db[data[0]] = {} + previous_db_step = db[data[0]] + else: + previous_db_step = db + data = data[1:] + for key in data[:-1]: + if key not in previous_db_step: + previous_db_step[key] = {} + previous_db_step = previous_db_step[key] + previous_db_step[data[-1]] = value + return _patch_mission_info(db, mission)
+ + + +def _wrap_function_ignoring_kwargs(func): + def func_wrapper(pi, **kwargs): + return func(pi) + + return func_wrapper + + +SIMPLE_CONVERSION_FUNCTIONS = { + "nustar": lambda pi: pi * 0.04 + 1.62, + "xmm": lambda pi: pi * 0.001, + "nicer": lambda pi: pi * 0.01, + "ixpe": lambda pi: pi / 375 * 15, +} + + +
+[docs] +def get_rough_conversion_function(mission, instrument=None, epoch=None): + """Get a rough PI-Energy conversion function for a mission. + + The function should accept a PI channel and return the corresponding energy. + Additional keyword arguments (e.g. epoch, detector) can be passed to the function. + + Parameters + ---------- + mission : str + Mission name + instrument : str + Instrument onboard the mission + epoch : float + Epoch of the observation in MJD (important for missions updating their calibration). + + Returns + ------- + function + Conversion function + """ + + if mission.lower() in SIMPLE_CONVERSION_FUNCTIONS: + return _wrap_function_ignoring_kwargs(SIMPLE_CONVERSION_FUNCTIONS[mission.lower()]) + + if mission.lower() == "xte": + func = rxte_calibration_func(instrument, epoch) + return func + + raise ValueError(f"Mission {mission.lower()} not recognized")
+ + + +
+[docs] +def mission_specific_event_interpretation(mission): + """Get the mission-specific FITS interpretation function. + + This function will read a file name or a FITS :class:`astropy.io.fits.HDUList` + object and modify it (see, e.g., :func:`rxte_pca_event_file_interpretation` for an + example) + """ + + if mission.lower() == "xte": + return rxte_pca_event_file_interpretation + + return None
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/mission_support/rxte.html b/_modules/stingray/mission_support/rxte.html new file mode 100644 index 000000000..101a277d1 --- /dev/null +++ b/_modules/stingray/mission_support/rxte.html @@ -0,0 +1,476 @@ + + + + + + + stingray.mission_support.rxte — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.mission_support.rxte

+import re
+import numpy as np
+from scipy.interpolate import interp1d
+from astropy.time import Time
+from astropy.table import Table
+
+from astropy.io import fits
+
+c_match = re.compile(r"C\[(.*)\]")
+
+_EDGE_TIMES = [
+    "1995-12-30T00:00:00.0",  # launch
+    "1996-03-21T18:33:00.0",
+    "1996-04-15T23:05:00.0",
+    "1999-03-22T17:37:00.0",
+    "2000-05-13T00:00:00.0",
+    "2012-01-05T00:00:00.0",  # decommissioning
+]
+
+_EDGE_EPOCHS = Time(_EDGE_TIMES, format="isot", scale="utc").mjd
+
+
+def _split_chan_spec(chan, sep="~"):
+    """Split a channel specification into a tuple of integers.
+
+    If the specification is, e.g., ``10-13``, it will be interpreted as
+    ``(10, 13)``. The same thing will be omitted if the starting digit(s) of the first int are
+    omitted, e.g. ``10-3`` will still be interpreted as ``(10, 13)``.
+    If there is only one integer, it will be duplicated.
+
+    Examples
+    --------
+    >>> _split_chan_spec("10~13")
+    (10, 13)
+    >>> _split_chan_spec("10-3", sep="-")
+    (10, 13)
+    >>> _split_chan_spec("10")
+    (10, 10)
+
+    """
+    if sep in chan:
+        cs = chan.split(sep)
+    else:
+        cs = (chan, chan)
+    if len(cs[1]) < len(cs[0]):
+        c0 = cs[0]
+        c1 = cs[0][: -len(cs[1])] + cs[1]
+        cs = (c0, c1)
+    return (int(cs[0]), int(cs[1]))
+
+
+def _split_C_string(string, sep="~"):
+    """Interpret the C string in the TEVTB2 key and return a list of channel tuples."""
+    channel_list = []
+    if ":" in string:
+        cs_range = string.split(":")
+        return [(c, c) for c in range(int(cs_range[0]), int(cs_range[1]) + 1)]
+
+    for chan in string.split(","):
+        cs = _split_chan_spec(chan, sep)
+        channel_list.append(cs)
+    return channel_list
+
+
+def _decode_energy_channels(tevtb2):
+    """Understand the channel information TEVTB2 key.
+
+    Parameters
+    ----------
+    tevtb2 : str
+        The TEVTB2 key from the FITS header.
+
+    Returns
+    -------
+    chans: list of tuples
+        A list of tuples, each containing the start and stop channel of a group of channels.
+
+    Examples
+    --------
+    >>> tevtb2 = '(M[1]{1},C[43,44~45]{6})'
+    >>> chans = _decode_energy_channels(tevtb2)
+    >>> assert chans == [(43, 43), (44, 45)]
+    >>> _decode_energy_channels('(M[1]{1})')
+    Traceback (most recent call last):
+    ...
+    ValueError: No C line found in the TEVTB2 key.
+    """
+    dll_fmt_string_split = re.split(",(?=[A-Z])", tevtb2)
+    for line in dll_fmt_string_split:
+        if not line.startswith("C"):
+            continue
+        line = c_match.match(line).group(1)
+        break
+    else:
+        raise ValueError("No C line found in the TEVTB2 key.")
+
+    return _split_C_string(line)
+
+
+
+[docs] +def pca_calibration_func(epoch): + """Return the appropriate calibration function for RXTE for a given observing epoch. + + This function has signature ``func(pha, detector_id)`` and gives the energy corresponding + to the PHA channel for the given detector (array values allowed). + + Internally, this is done by pre-allocating some arrays with the energy values for each + PHA channel and detector group (1-4 and 0, due to a damage that PCU 0 incurred in 2000), + and then returning a function that looks up the energy for each channel. + + This does not require any interpolation, as the calibration is tabulated for each channel, + and it is pretty efficient given the very small number of channels supported by the PCA (255). + + Parameters + ---------- + epoch : float + The epoch of the observation in MJD. + + Returns + ------- + conversion_function : callable + A function that converts PHA channel to energy. This function accepts + two arguments: the PHA channel and the PCU number. + + Examples + -------- + >>> conversion_function = pca_calibration_func(50082) + >>> float(conversion_function(10, 0)) + 3.04 + >>> conversion_function = pca_calibration_func(55930) + >>> float(conversion_function(10, 0)) + 4.53 + >>> float(conversion_function(10, 3)) + 4.49 + >>> assert np.array_equal(conversion_function(10, [0, 3]), [4.53, 4.49]) + >>> assert np.array_equal(conversion_function([10, 11], [0, 3]), [4.53, 4.90]) + """ + caltable = Table.read( + """ + Abs STD2 E1 E2 E3 E4 E5_0 E5_1234 + 0-4 0 1.51 1.61 1.94 2.13 1.95 2.06 + 5 1 1.76 1.91 2.29 2.54 2.38 2.47 + 6 2 2.02 2.22 2.64 2.96 2.81 2.87 + 7 3 2.27 2.52 2.99 3.37 3.24 3.28 + 8 4 2.53 2.83 3.35 3.79 3.67 3.68 + 9 5 2.78 3.13 3.70 4.21 4.09 4.09 + 10 6 3.04 3.44 4.05 4.63 4.53 4.49 + 11 7 3.30 3.75 4.41 5.04 4.96 4.90 + 12 8 3.55 4.05 4.76 5.46 5.39 5.31 + 13 9 3.81 4.36 5.12 5.88 5.82 5.71 + 14 10 4.07 4.67 5.47 6.30 6.25 6.12 + 15 11 4.32 4.98 5.82 6.72 6.68 6.53 + 16 12 4.58 5.28 6.18 7.14 7.11 6.94 + 17 13 4.84 5.59 6.54 7.56 7.55 7.35 + 18 14 5.10 5.90 6.89 7.98 7.98 7.76 + 19 15 5.35 6.21 7.25 8.40 8.42 8.17 + 20 16 5.61 6.52 7.60 8.82 8.85 8.57 + 21 17 5.87 6.83 7.96 9.24 9.28 8.98 + 22 18 6.13 7.14 8.32 9.67 9.72 9.40 + 23 19 6.39 7.45 8.68 10.09 10.16 9.81 + 24 20 6.65 7.76 9.03 10.51 10.59 10.22 + 25 21 6.91 8.07 9.39 10.93 11.03 10.63 + 26 22 7.17 8.38 9.75 11.36 11.47 11.04 + 27 23 7.43 8.69 10.11 11.78 11.90 11.45 + 28 24 7.69 9.00 10.47 12.21 12.34 11.87 + 29 25 7.95 9.31 10.83 12.63 12.78 12.28 + 30 26 8.21 9.63 11.19 13.06 13.22 12.69 + 31 27 8.47 9.94 11.55 13.48 13.66 13.11 + 32 28 8.73 10.25 11.91 13.91 14.10 13.52 + 33 29 8.99 10.56 12.27 14.34 14.54 13.93 + 34 30 9.25 10.88 12.63 14.76 14.98 14.35 + 35 31 9.52 11.19 12.99 15.19 15.42 14.76 + 36 32 9.78 11.50 13.36 15.62 15.86 15.18 + 37 33 10.04 11.82 13.72 16.05 16.30 15.60 + 38 34 10.30 12.13 14.08 16.47 16.74 16.01 + 39 35 10.57 12.45 14.44 16.90 17.19 16.43 + 40 36 10.83 12.76 14.81 17.33 17.63 16.85 + 41 37 11.09 13.08 15.17 17.76 18.07 17.26 + 42 38 11.36 13.39 15.54 18.19 18.52 17.68 + 43 39 11.62 13.71 15.90 18.62 18.96 18.10 + 44 40 11.89 14.03 16.26 19.05 19.41 18.52 + 45 41 12.15 14.34 16.63 19.49 19.85 18.94 + 46 42 12.42 14.66 17.00 19.92 20.30 19.36 + 47 43 12.68 14.98 17.36 20.35 20.75 19.78 + 48 44 12.95 15.29 17.73 20.78 21.19 20.20 + 49 45 13.21 15.61 18.09 21.22 21.64 20.62 + 50 46 13.48 15.93 18.46 21.65 22.09 21.04 + 51 47 13.74 16.25 18.83 22.08 22.54 21.46 + 52 48 14.01 16.57 19.20 22.52 22.98 21.88 + 53 49 14.28 16.89 19.56 22.95 23.43 22.30 + 54-5 50 14.81 17.52 20.30 23.82 24.33 23.15 + 56-7 51 15.35 18.16 21.04 24.70 25.24 24.00 + 58-9 52 15.88 18.81 21.78 25.57 26.14 24.85 + 60-1 53 16.42 19.45 22.52 26.45 27.05 25.70 + 62-3 54 16.96 20.09 23.26 27.33 27.95 26.55 + 64-5 55 17.50 20.74 24.01 28.21 28.86 27.40 + 66-7 56 18.04 21.39 24.75 29.09 29.78 28.26 + 68-9 57 18.58 22.03 25.50 29.97 30.69 29.12 + 70-1 58 19.12 22.68 26.25 30.86 31.61 29.97 + 72-3 59 19.67 23.33 27.00 31.74 32.52 30.83 + 74-5 60 20.21 23.99 27.75 32.63 33.44 31.70 + 76-7 61 20.76 24.64 28.50 33.52 34.36 32.56 + 78-9 62 21.30 25.29 29.26 34.42 35.29 33.43 + 80-1 63 21.85 25.95 30.02 35.31 36.21 34.29 + 82-3 64 22.40 26.61 30.77 36.21 37.14 35.16 + 84-5 65 22.95 27.27 31.53 37.10 38.07 36.03 + 86-7 66 23.50 27.93 32.29 38.00 39.01 36.91 + 88-9 67 24.06 28.59 33.06 38.91 39.94 37.78 + 90-1 68 24.61 29.25 33.82 39.81 40.88 38.66 + 92-3 69 25.17 29.91 34.59 40.72 41.82 39.53 + 94-5 70 25.72 30.58 35.35 41.62 42.76 40.41 + 96-7 71 26.28 31.25 36.12 42.53 43.70 41.30 + 98-9 72 26.84 31.92 36.89 43.44 44.64 42.18 + 100-1 73 27.40 32.59 37.67 44.36 45.59 43.06 + 102-3 74 27.96 33.26 38.44 45.27 46.54 43.95 + 104-5 75 28.52 33.93 39.22 46.19 47.49 44.84 + 106-7 76 29.09 34.61 39.99 47.11 48.45 45.73 + 108-9 77 29.65 35.28 40.77 48.03 49.41 46.62 + 110-1 78 30.22 35.96 41.55 48.96 50.36 47.52 + 112-3 79 30.79 36.64 42.34 49.88 51.33 48.41 + 114-5 80 31.36 37.32 43.12 50.81 52.29 49.31 + 116-7 81 31.93 38.00 43.91 51.74 53.25 50.21 + 118-9 82 32.50 38.68 44.70 52.67 54.22 51.12 + 120-1 83 33.07 39.37 45.49 53.61 55.19 52.02 + 122-3 84 33.64 40.06 46.28 54.54 56.17 52.93 + 124-5 85 34.22 40.74 47.07 55.48 57.14 53.83 + 126-7 86 34.80 41.43 47.87 56.42 58.12 54.74 + 128-9 87 35.38 42.13 48.66 57.37 59.10 55.66 + 130-1 88 35.95 42.82 49.46 58.31 60.08 56.57 + 132-3 89 36.54 43.51 50.26 59.26 61.07 57.49 + 134-5 90 37.12 44.21 51.06 60.21 62.06 58.40 + 136-8 91 37.99 45.26 52.27 61.64 63.54 59.78 + 139-41 92 38.87 46.31 53.48 63.07 65.04 61.17 + 142-4 93 39.75 47.36 54.70 64.51 66.54 62.56 + 145-7 94 40.64 48.42 55.92 65.95 68.04 63.96 + 148-50 95 41.53 49.49 57.14 67.40 69.55 65.36 + 151-3 96 42.42 50.55 58.37 68.86 71.07 66.76 + 154-6 97 43.32 51.62 59.60 70.32 72.59 68.17 + 157-9 98 44.21 52.70 60.84 71.78 74.12 69.59 + 160-2 99 45.12 53.78 62.08 73.25 75.65 71.01 + 163-5 100 46.02 54.86 63.33 74.73 77.19 72.43 + 166-8 101 46.93 55.95 64.58 76.21 78.74 73.86 + 169-71 102 47.84 57.04 65.84 77.70 80.30 75.30 + 172-4 103 48.76 58.13 67.10 79.19 81.86 76.74 + 175-7 104 49.68 59.23 68.37 80.69 83.43 78.18 + 178-80 105 50.60 60.33 69.64 82.20 85.00 79.63 + 181-3 106 51.53 61.44 70.91 83.71 86.58 81.09 + 184-6 107 52.46 62.55 72.19 85.23 88.17 82.55 + 187-9 108 53.39 63.67 73.48 86.75 89.76 84.02 + 190-2 109 54.33 64.79 74.77 88.28 91.37 85.49 + 193-5 110 55.27 65.92 76.07 89.81 92.98 86.97 + 196-8 111 56.22 67.05 77.37 91.36 94.59 88.46 + 199-201 112 57.17 68.18 78.68 92.91 96.22 89.95 + 202-4 113 58.12 69.32 79.99 94.46 97.85 91.45 + 205-7 114 59.08 70.47 81.30 96.02 99.49 92.95 + 208-10 115 60.04 71.62 82.63 97.59 101.14 94.46 + 211-3 116 61.00 72.77 83.96 99.17 102.79 95.97 + 214-6 117 61.97 73.93 85.29 100.75 104.46 97.49 + 217-9 118 62.95 75.10 86.63 102.34 106.13 99.02 + 220-2 119 63.93 76.27 87.98 103.93 107.81 100.55 + 223-5 120 64.91 77.44 89.33 105.54 109.50 102.09 + 226-8 121 65.90 78.62 90.69 107.15 111.19 103.64 + 229-31 122 66.89 79.81 92.05 108.76 112.90 105.19 + 232-4 123 67.89 81.00 93.42 110.39 114.61 106.75 + 235-7 124 68.89 82.20 94.80 112.02 116.33 108.32 + 238-41 125 70.23 83.80 96.64 114.21 118.65 110.42 + 242-5 126 71.58 85.42 98.50 116.41 120.97 112.53 + 246-9 127 72.94 87.04 100.37 118.63 123.32 114.65 + 250-5 128 74.99 89.50 103.19 121.98 126.87 117.86""", + format="ascii", + ) + abs_chan = caltable["Abs"] + chans = [_split_chan_spec(chan, sep="-") for chan in abs_chan] + + col_idx = np.searchsorted(_EDGE_EPOCHS, epoch) + if col_idx == 5: + col_1234 = "E5_1234" + col_0 = "E5_0" + else: + col_1234 = col_0 = f"E{col_idx}" + + # Create a step function for each group of PCUs + energies_0 = np.zeros(256) + energies_1234 = np.zeros(256) + for chan_sep, energy_0, energy_1234 in zip(chans, caltable[col_0], caltable[col_1234]): + energies_0[chan_sep[0] : chan_sep[1] + 1] = energy_0 + energies_1234[chan_sep[0] : chan_sep[1] + 1] = energy_1234 + + def func(chan, detector_id=0): + if detector_id == 0: + return energies_0[int(chan)] + return energies_1234[int(chan)] + + return np.vectorize(func)
+ + + +
+[docs] +def rxte_calibration_func(instrument, epoch): + """Return the calibration function for RXTE at a given epoch. + + Examples + -------- + >>> calibration_func = rxte_calibration_func("PCa", 50082) + >>> assert calibration_func(10) == pca_calibration_func(50082)(10) + >>> rxte_calibration_func("HEXTE", 55930) + Traceback (most recent call last): + ... + ValueError: Unknown XTE instrument: HEXTE + """ + if instrument.lower() == "pca": + return pca_calibration_func(epoch) + raise ValueError(f"Unknown XTE instrument: {instrument}")
+ + + +
+[docs] +def rxte_pca_event_file_interpretation(input_data, header=None, hduname=None): + """Interpret the FITS header of an RXTE event file. + + At the moment, only science event files are supported. In these files, + the energy channels are stored in a column named PHA. However, this is not + the PHA column that can be directly used to convert to energy. These are + channels that get changed on a per-observation basis, and can be converted + to the "absolute" PHA channels (the ones tabulated in `pca_calibration_func`) + by using the TEVTB2 keyword. This function changes the content of the PHA column by + putting in the mean "absolute" PHA channel corresponding to each local PHA + channel. + + Parameters + ---------- + input_data : str, fits.HDUList, fits.HDU, np.array + The name of the FITS file to, or the HDUList inside, or the HDU with + the data, or the data. + + Other parameters + ---------------- + header : `fits.Header`, optional + Compulsory if ``hdulist`` is not a class:`fits._BaseHDU`, a + :class:`fits.HDUList`, or a file name. The header of the relevant extension. + hduname : str, optional + Name of the HDU (only relevant if hdulist is a :class:`fits.HDUList`), + ignored otherwise. + + """ + if isinstance(input_data, str): + return rxte_pca_event_file_interpretation( + fits.open(input_data), header=header, hduname=hduname + ) + + if isinstance(input_data, fits.HDUList): + if hduname is None and "XTE_SE" not in input_data: + raise ValueError( + "No XTE_SE extension found. At the moment, only science events " + "are supported by Stingray for XTE." + ) + if hduname is None: + hduname = "XTE_SE" + new_hdu = rxte_pca_event_file_interpretation(input_data[hduname], header=header) + input_data[hduname] = new_hdu + return input_data + + if isinstance(input_data, fits.hdu.base._BaseHDU): + if header is None: + header = input_data.header + input_data.data = rxte_pca_event_file_interpretation(input_data.data, header=header) + return input_data + + data = input_data + if header is None: + raise ValueError( + "If the input data is not a HDUList or a HDU, the header must be specified" + ) + + tevtb2 = header["TEVTB2"] + local_chans = np.asarray([int(np.mean(ch)) for ch in _decode_energy_channels(tevtb2)]) + + data["PHA"] = local_chans[data["PHA"]] + + return data
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/modeling/parameterestimation.html b/_modules/stingray/modeling/parameterestimation.html new file mode 100644 index 000000000..888fb9552 --- /dev/null +++ b/_modules/stingray/modeling/parameterestimation.html @@ -0,0 +1,2126 @@ + + + + + + + stingray.modeling.parameterestimation — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.modeling.parameterestimation

+__all__ = ["OptimizationResults", "ParameterEstimation", "PSDParEst", "SamplingResults"]
+
+
+import logging
+import matplotlib.pyplot as plt
+from matplotlib.ticker import MaxNLocator
+
+
+# check whether emcee is installed for sampling
+try:
+    import emcee
+
+    can_sample = True
+except ImportError:
+    can_sample = False
+
+try:
+    import corner
+
+    use_corner = True
+except ImportError:
+    use_corner = False
+
+from multiprocessing import Pool
+
+import numpy as np
+import scipy
+import scipy.optimize
+import scipy.stats
+import scipy.signal
+import copy
+
+try:
+    from statsmodels.tools.numdiff import approx_hess
+
+    comp_hessian = True
+except ImportError:
+    comp_hessian = False
+
+from stingray.modeling.posterior import (
+    Posterior,
+    PSDPosterior,
+    LogLikelihood,
+    PSDLogLikelihood,
+    logmin,
+    fitter_to_model_params,
+)
+from stingray.loggingconfig import CustomFormatter, setup_logger
+
+logger = setup_logger()
+
+
+
+[docs] +class OptimizationResults(object): + """ + Helper class that will contain the results of the regression. + Less fiddly than a dictionary. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + + res: instance of ``scipy.OptimizeResult`` + The object containing the results from a optimization run + + neg : bool, optional, default ``True`` + A flag that sets whether the log-likelihood or negative log-likelihood + is being used + + log : a logging.getLogger() object, default None + You can pass a pre-defined object for logging, else a new + logger will be instantiated + + Attributes + ---------- + result : float + The result of the optimization, i.e. the function value at the + minimum that the optimizer found + + p_opt : iterable + The list of parameters at the minimum found by the optimizer + + model : ``astropy.models.Model`` instance + The parametric model fit to the data + + cov : numpy.ndarray + The covariance matrix for the parameters, has shape ``(len(p_opt), len(p_opt))`` + + err : numpy.ndarray + The standard deviation of the parameters, derived from the diagonal of ``cov``. + Has the same shape as ``p_opt`` + + mfit : numpy.ndarray + The values of the model for all ``x`` + + deviance : float + The deviance, calculated as ``-2*log(likelihood)`` + + aic : float + The Akaike Information Criterion, derived from the log(likelihood) and often used + in model comparison between non-nested models; + For more details, see [#]_ + + bic : float + The Bayesian Information Criterion, derived from the log(likelihood) and often used + in model comparison between non-nested models; + For more details, see [#]_ + + merit : float + sum of squared differences between data and model, normalized by the + model values + + dof : int + The number of degrees of freedom in the problem, defined as the number of + data points - the number of parameters + + sexp : int + ``2*(number of parameters)*(number of data points)`` + + ssd : float + ``sqrt(2*(sexp))``, expected sum of data-model residuals + + sobs : float + sum of data-model residuals + + References + ---------- + .. [#] https://doi.org/10.1109/TAC.1974.1100705 + .. [#] https://projecteuclid.org/euclid.aos/1176344136 + + """ + + def __init__(self, lpost, res, neg=True, log=None): + self.neg = neg + self.result = res.fun + self.p_opt = np.atleast_1d(res.x) + self.model = lpost.model + + if log is None: + self.log = logging.getLogger("Fitting summary") + self.log.setLevel(logging.DEBUG) + if not self.log.handlers: + ch = logging.StreamHandler() + formatter = CustomFormatter() + ch.setFormatter(formatter) + ch.setLevel(logging.DEBUG) + self.log.addHandler(ch) + + self._compute_covariance(lpost, res) + self._compute_model(lpost) + self._compute_criteria(lpost) + self._compute_statistics(lpost) + +
+[docs] + def _compute_covariance(self, lpost, res): + """ + Compute the covariance of the parameters using inverse of the Hessian, i.e. + the second-order derivative of the log-likelihood. Also calculates an estimate + of the standard deviation in the parameters, using the square root of the diagonal + of the covariance matrix. + + The Hessian is either estimated directly by the chosen method of fitting, or + approximated using the ``statsmodel`` ``approx_hess`` function. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + + res: instance of ``scipy``'s ``OptimizeResult`` class + The object containing the results from a optimization run + """ + + if hasattr(res, "hess_inv"): + if not isinstance(res.hess_inv, np.ndarray): + self.cov = np.asanyarray(res.hess_inv.todense()) + else: + self.cov = res.hess_inv + + self.err = np.sqrt(np.diag(self.cov)) + else: + if comp_hessian: + # calculate Hessian approximating with finite differences + self.log.info("Approximating Hessian with finite differences ...") + + phess = approx_hess(np.atleast_1d(self.p_opt), lpost) + + self.cov = np.linalg.inv(phess) + self.err = np.sqrt(np.diag(np.abs(self.cov))) + + else: + self.cov = None + self.err = None
+ + +
+[docs] + def _compute_model(self, lpost): + """ + Compute the values of the best-fit model for all ``x``. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + """ + fitter_to_model_params(lpost.model, self.p_opt) + + self.mfit = lpost.model(lpost.x)
+ + +
+[docs] + def _compute_criteria(self, lpost): + """ + Compute various information criteria useful for model comparison in + non-nested models. + + Currently implemented are the Akaike Information Criterion [#]_ and the + Bayesian Information Criterion [#]_. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + + References + ---------- + .. [#] https://doi.org/10.1109/TAC.1974.1100705 + .. [#] https://projecteuclid.org/euclid.aos/1176344136 + + """ + if isinstance(lpost, Posterior): + self.deviance = -2.0 * lpost.loglikelihood(self.p_opt, neg=False) + elif isinstance(lpost, LogLikelihood): + self.deviance = 2.0 * self.result + + # Akaike Information Criterion + self.aic = self.result + 2.0 * self.p_opt.shape[0] + + # Bayesian Information Criterion + self.bic = self.result + self.p_opt.shape[0] * np.log(lpost.x.shape[0])
+ + + # Deviance Information Criterion + # TODO: Add Deviance Information Criterion + +
+[docs] + def _compute_statistics(self, lpost): + """ + Compute some useful fit statistics, like the degrees of freedom and the + figure of merit. + + Parameters + ---------- + lpost: instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + """ + try: + self.mfit + except AttributeError: + self._compute_model(lpost) + + self.merit = np.sum(((lpost.y - self.mfit) / self.mfit) ** 2.0) + self.dof = lpost.y.shape[0] - float(self.p_opt.shape[0]) + self.sexp = 2.0 * len(lpost.x) * len(self.p_opt) + self.ssd = np.sqrt(2.0 * self.sexp) + self.sobs = np.sum(lpost.y - self.mfit)
+ + +
+[docs] + def print_summary(self, lpost): + """ + Print a useful summary of the fitting procedure to screen or + a log file. + + Parameters + ---------- + lpost : instance of :class:`Posterior` or one of its subclasses + The object containing the function that is being optimized + in the regression + """ + + self.log.info("The best-fit model parameters plus errors are:") + + fixed = [lpost.model.fixed[n] for n in lpost.model.param_names] + tied = [lpost.model.tied[n] for n in lpost.model.param_names] + bounds = [lpost.model.bounds[n] for n in lpost.model.param_names] + + parnames = [n for n, f in zip(lpost.model.param_names, np.logical_or(fixed, tied)) if not f] + + all_parnames = [n for n in lpost.model.param_names] + for i, par in enumerate(all_parnames): + self.log.info("{:3}) Parameter {:<20}: ".format(i, par)) + + if par in parnames: + idx = parnames.index(par) + + err_info = " (no error estimate)" + if self.err is not None: + err_info = " +/- {:<20.5f}".format(self.err[idx]) + self.log.info("{:<20.5f}{} ".format(self.p_opt[idx], err_info)) + self.log.info("[{:>10} {:>10}]".format(str(bounds[i][0]), str(bounds[i][1]))) + elif fixed[i]: + self.log.info("{:<20.5f} (Fixed) ".format(lpost.model.parameters[i])) + elif tied[i]: + self.log.info("{:<20.5f} (Tied) ".format(lpost.model.parameters[i])) + + self.log.info("\n") + + self.log.info("Fitting statistics: ") + self.log.info(" -- number of data points: %i" % (len(lpost.x))) + + try: + self.deviance + except AttributeError: + self._compute_criteria(lpost) + + self.log.info(" -- Deviance [-2 log L] D = %f.3" % self.deviance) + self.log.info( + " -- The Akaike Information Criterion of the model is: " + str(self.aic) + "." + ) + + self.log.info( + " -- The Bayesian Information Criterion of the model is: " + str(self.bic) + "." + ) + + try: + self.merit + except AttributeError: + self._compute_statistics(lpost) + + self.log.info( + " -- The figure-of-merit function for this model " + + " is: %f.5f" % self.merit + + " and the fit for %i dof is %f.3f" % (self.dof, self.merit / self.dof) + ) + + self.log.info(" -- Summed Residuals S = %f.5f" % self.sobs) + self.log.info(" -- Expected S ~ %f.5 +/- %f.5" % (self.sexp, self.ssd)) + + return
+
+ + + +
+[docs] +class ParameterEstimation(object): + """ + Parameter estimation of two-dimensional data, either via + optimization or MCMC. + Note: optimization with bounds is not supported. If something like + this is required, define (uniform) priors in the ParametricModel + instances to be used below. + + Parameters + ---------- + fitmethod : string, optional, default ``L-BFGS-B`` + Any of the strings allowed in ``scipy.optimize.minimize`` in + the method keyword. Sets the fit method to be used. + + max_post : bool, optional, default ``True`` + If ``True``, then compute the Maximum-A-Posteriori estimate. If ``False``, + compute a Maximum Likelihood estimate. + """ + + def __init__(self, fitmethod="BFGS", max_post=True): + self.fitmethod = fitmethod + + self.max_post = max_post + +
+[docs] + def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): + """ + Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) + fit to the data. + + MAP fits include priors, ML fits do not. + + Parameters + ---------- + lpost : :class:`Posterior` (or subclass) instance + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : {``list`` | ``numpy.ndarray``} + List/array with set of initial parameters + + neg : bool, optional, default ``True`` + Boolean to be passed to ``lpost``, setting whether to use the + *negative* posterior or the *negative* log-likelihood. Useful for + optimization routines, which are generally defined as *minimization* routines. + + scipy_optimize_options : dict, optional, default ``None`` + A dictionary with options for ``scipy.optimize.minimize``, + directly passed on as keyword arguments. + + Returns + ------- + res : :class:`OptimizationResults` object + An object containing useful summaries of the fitting procedure. + For details, see documentation of class:`OptimizationResults`. + """ + + if not isinstance(lpost, Posterior) and not isinstance(lpost, LogLikelihood): + raise TypeError("lpost must be a subclass of " "Posterior or LogLikelihoood.") + + newmod = lpost.model.copy() + + p0 = t0 + + # p0 will be shorter than t0, if there are any frozen/tied parameters + # this has to match with the npar attribute. + if not len(p0) == lpost.npar: + raise ValueError("Parameter set t0 must be of right " "length for model in lpost.") + + args = (neg,) + + if not scipy_optimize_options: + scipy_optimize_options = {} + + # different commands for different fitting methods, + # at least until scipy 0.11 is out + funcval = 100.0 + i = 0 + + while funcval == 100 or funcval == 200 or funcval == 0.0 or not np.isfinite(funcval): + if i > 20: + raise RuntimeError("Fitting unsuccessful!") + # perturb parameters slightly + t0_p = np.random.multivariate_normal(p0, np.diag(np.abs(p0) / 100.0)) + + params = [getattr(newmod, name) for name in newmod.param_names] + bounds = np.array([p.bounds for p in params if not np.any([p.tied, p.fixed])]) + + if any(elem is not None for elem in np.hstack(bounds)) and self.fitmethod not in [ + "L-BFGS-B", + "TNC", + "SLSQP", + ]: + logger.warning( + "Fitting method %s " % self.fitmethod + "cannot incorporate the bounds you set!" + ) + + if any(elem is not None for elem in np.hstack(bounds)) or self.fitmethod not in [ + "L-BFGS-B", + "TNC", + "SLSQP", + ]: + use_bounds = False + else: + use_bounds = True + + # if max_post is True, do the Maximum-A-Posteriori Fit + if self.max_post: + if use_bounds: + opt = scipy.optimize.minimize( + lpost, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + bounds=bounds, + **scipy_optimize_options, + ) + + else: + opt = scipy.optimize.minimize( + lpost, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + **scipy_optimize_options, + ) + + # if max_post is False, then do a Maximum Likelihood Fit + else: + if isinstance(lpost, Posterior): + if use_bounds: + # This could be a `Posterior` object + opt = scipy.optimize.minimize( + lpost.loglikelihood, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + bounds=bounds, + **scipy_optimize_options, + ) + else: + opt = scipy.optimize.minimize( + lpost.loglikelihood, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + **scipy_optimize_options, + ) + + elif isinstance(lpost, LogLikelihood): + if use_bounds: + # Except this could be a `LogLikelihood object + # In which case, use the evaluate function + # if it's not either, give up and break! + opt = scipy.optimize.minimize( + lpost.evaluate, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + # bounds=bounds, + **scipy_optimize_options, + ) + + else: + opt = scipy.optimize.minimize( + lpost.evaluate, + t0_p, + method=self.fitmethod, + args=args, + tol=1.0e-10, + **scipy_optimize_options, + ) + + funcval = opt.fun + + if np.isclose(opt.fun, logmin) or np.isclose(opt.fun, 2 * logmin): + funcval = 100 + + i += 1 + + res = OptimizationResults(lpost, opt, neg=neg) + + return res
+ + +
+[docs] + def compute_lrt(self, lpost1, t1, lpost2, t2, neg=True, max_post=False): + """ + This function computes the Likelihood Ratio Test between two + nested models. + + Parameters + ---------- + lpost1 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 1 + + t1 : iterable + The starting parameters for model 1 + + lpost2 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 2 + + t2 : iterable + The starting parameters for model 2 + + neg : bool, optional, default ``True`` + Boolean flag to decide whether to use the negative log-likelihood + or log-posterior + + max_post: bool, optional, default ``False`` + If ``True``, set the internal state to do the optimization with the + log-likelihood rather than the log-posterior. + + Returns + ------- + lrt : float + The likelihood ratio for model 2 and model 1 + + res1 : OptimizationResults object + Contains the result of fitting ``lpost1`` + + res2 : OptimizationResults object + Contains the results of fitting ``lpost2`` + + """ + + self.max_post = max_post + + # fit data with both models + res1 = self.fit(lpost1, t1, neg=neg) + res2 = self.fit(lpost2, t2, neg=neg) + + # compute log likelihood ratio as difference between the deviances + lrt = res1.deviance - res2.deviance + + return lrt, res1, res2
+ + +
+[docs] + def sample( + self, + lpost, + t0, + cov=None, + nwalkers=500, + niter=100, + burnin=100, + threads=1, + print_results=True, + plot=False, + namestr="test", + pool=False, + ): + """ + Sample the :class:`Posterior` distribution defined in ``lpost`` using MCMC. + Here we use the ``emcee`` package, but other implementations could + in principle be used. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` subclass + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : iterable + list or array containing the starting parameters. Its length + must match ``lpost.model.npar``. + + nwalkers : int, optional, default 500 + The number of walkers (chains) to use during the MCMC procedure. + The more walkers are used, the slower the estimation will be, but + the better the final distribution is likely to be. + + niter : int, optional, default 100 + The number of iterations to run the MCMC chains for. The larger this + number, the longer the estimation will take, but the higher the + chance that the walkers have actually converged on the true + posterior distribution. + + burnin : int, optional, default 100 + The number of iterations to run the walkers before convergence is + assumed to have occurred. This part of the chain will be discarded + before sampling from what is then assumed to be the posterior + distribution desired. + + threads : **DEPRECATED** int, optional, default 1 + The number of threads for parallelization. + Default is ``1``, i.e. no parallelization + With the change to the new emcee version 3, threads is + deprecated. Use the `pool` keyword argument instead. + This will no longer have any effect. + + print_results : bool, optional, default ``True`` + Boolean flag setting whether the results of the MCMC run should + be printed to standard output. Default: True + + plot : bool, optional, default ``False`` + Boolean flag setting whether summary plots of the MCMC chains + should be produced. Default: False + + namestr : str, optional, default ``test`` + Optional string for output file names for the plotting. + + pool : bool, default False + If True, use pooling to parallelize the operation. + + Returns + ------- + + res : class:`SamplingResults` object + An object of class :class:`SamplingResults` summarizing the + results of the MCMC run. + + """ + + if threads > 1: + raise DeprecationWarning("Keyword 'threads' is deprecated. Please use 'pool' instead.") + + if not can_sample: + raise ImportError("emcee not installed! Can't sample!") + + ndim = len(t0) + + if cov is None: + # do a MAP fitting step to find good starting positions for + # the sampler + res = self.fit(lpost, t0, neg=True) + cov = res.cov + # sample random starting positions for each walker from + # a multivariate Gaussian + p0 = np.array([np.random.multivariate_normal(t0, cov) for i in range(nwalkers)]) + if pool: + with Pool() as pooling: + # initialize the sampler + sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False], pool=pooling) + + # run the burn-in + pos, prob, state = sampler.run_mcmc(p0, burnin) + + sampler.reset() + + state = emcee.State(pos, prob, random_state=state) + # do the actual MCMC run + + _ = sampler.run_mcmc(initial_state=state, nsteps=niter) + else: + # initialize the sampler + sampler = emcee.EnsembleSampler(nwalkers, ndim, lpost, args=[False]) + + # run the burn-in + pos, prob, state = sampler.run_mcmc(p0, burnin) + + sampler.reset() + state = emcee.State(pos, prob, random_state=state) + + # do the actual MCMC run + _ = sampler.run_mcmc(initial_state=state, nsteps=niter) + + res = SamplingResults(sampler) + + if print_results: + res.print_results() + + if plot: + fig = res.plot_results(fig=None, save_plot=True, filename=namestr + "_corner.pdf") + + return res
+ + + def _generate_model(self, lpost, pars): + """ + Helper function that generates a fake PSD similar to the + one in the data, but with different parameters. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass + The object containing the relevant information about the + data and the model + + pars : iterable + A list of parameters to be passed to ``lpost.model`` in order + to generate a model data set. + + Returns + ------- + model_data : numpy.ndarray + An array of model values for each bin in ``lpost.x`` + + """ + + assert isinstance(lpost, LogLikelihood) or isinstance(lpost, Posterior), ( + "lpost must be of type LogLikelihood or Posterior or one of its " "subclasses!" + ) + + # assert pars is of correct length + assert len(pars) == lpost.npar, "pars must be a list " "of %i parameters" % lpost.npar + # get the model + m = lpost.model + + # reset the parameters + fitter_to_model_params(m, pars) + + # make a model spectrum + model_data = lpost.model(lpost.x) + + return model_data + + @staticmethod + def _compute_pvalue(obs_val, sim): + """ + Compute the p-value given an observed value of a test statistic + and some simulations of that same test statistic. + + Parameters + ---------- + obs_value : float + The observed value of the test statistic in question + + sim: iterable + A list or array of simulated values for the test statistic + + Returns + ------- + pval : float in range [0, 1] + The p-value for the test statistic given the simulations. + + """ + # cast the simulations as a numpy array + sim = np.array(sim) + + # find all simulations that are larger than + # the observed value + ntail = sim[sim > obs_val].shape[0] + + # divide by the total number of simulations + pval = float(ntail) / float(sim.shape[0]) + + return pval + +
+[docs] + def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None): + """ + Simulate likelihood ratios. + For details, see definitions in the subclasses that implement this + task. + """ + raise NotImplementedError( + "The behaviour of `simulate_lrts` should be defined " + "in the subclass appropriate for your problem, not in " + "this super class!" + )
+ + +
+[docs] + def calibrate_lrt( + self, + lpost1, + t1, + lpost2, + t2, + sample=None, + neg=True, + max_post=False, + nsim=1000, + niter=200, + nwalkers=500, + burnin=200, + namestr="test", + seed=None, + ): + """Calibrate the outcome of a Likelihood Ratio Test via MCMC. + + In order to compare models via likelihood ratio test, one generally + aims to compute a p-value for the null hypothesis (generally the + simpler model). There are two special cases where the theoretical + distribution used to compute that p-value analytically given the + observed likelihood ratio (a chi-square distribution) is not + applicable: + + * the models are not nested (i.e. Model 1 is not a special, simpler + case of Model 2), + * the parameter values fixed in Model 2 to retrieve Model 1 are at the + edges of parameter space (e.g. if one must set, say, an amplitude to + zero in order to remove a component in the more complex model, and + negative amplitudes are excluded a priori) + + In these cases, the observed likelihood ratio must be calibrated via + simulations of the simpler model (Model 1), using MCMC to take into + account the uncertainty in the parameters. This function does + exactly that: it computes the likelihood ratio for the observed data, + and produces simulations to calibrate the likelihood ratio and + compute a p-value for observing the data under the assumption that + Model 1 istrue. + + If ``max_post=True``, the code will use MCMC to sample the posterior + of the parameters and simulate fake data from there. + + If ``max_post=False``, the code will use the covariance matrix derived + from the fit to simulate data sets for comparison. + + Parameters + ---------- + lpost1 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 1 + + t1 : iterable + The starting parameters for model 1 + + lpost2 : object of a subclass of :class:`Posterior` + The :class:`Posterior` object for model 2 + + t2 : iterable + The starting parameters for model 2 + + neg : bool, optional, default ``True`` + Boolean flag to decide whether to use the negative + log-likelihood or log-posterior + + max_post: bool, optional, default ``False`` + If ``True``, set the internal state to do the optimization with the + log-likelihood rather than the log-posterior. + + Returns + ------- + pvalue : float [0,1] + p-value 'n stuff + """ + + # compute the observed likelihood ratio + lrt_obs, res1, res2 = self.compute_lrt(lpost1, t1, lpost2, t2, neg=neg, max_post=max_post) + + rng = np.random.RandomState(seed) + + if sample is None: + # simulate parameter sets from the simpler model + if not max_post: + # using Maximum Likelihood, so I'm going to simulate parameters + # from a multivariate Gaussian + + # set up the distribution + mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov, seed=seed) + + # sample parameters + s_all = mvn.rvs(size=nsim) + if lpost1.npar == 1: + s_all = np.atleast_2d(s_all).T + + else: + # sample the :class:`Posterior` using MCMC + s_mcmc = self.sample( + lpost1, + res1.p_opt, + cov=res1.cov, + nwalkers=nwalkers, + niter=niter, + burnin=burnin, + namestr=namestr, + ) + + # pick nsim samples out of the :class:`Posterior` sample + s_all = s_mcmc.samples[rng.choice(s_mcmc.samples.shape[0], nsim, replace=False)] + + # if lpost1.npar == 1: + # s_all = np.atleast_2d(s_all).T + + else: + s_all = sample[rng.choice(sample.shape[0], nsim, replace=False)] + + # simulate LRTs + # this method is defined in the subclasses! + lrt_sim = self.simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=seed) + # now I can compute the p-value: + pval = ParameterEstimation._compute_pvalue(lrt_obs, lrt_sim) + + return pval
+
+ + + +
+[docs] +class SamplingResults(object): + """ + Helper class that will contain the results of the sampling + in a handy format. + + Less fiddly than a dictionary. + + Parameters + ---------- + sampler: ``emcee.EnsembleSampler`` object + The object containing the sampler that's done all the work. + + ci_min: float out of [0,100] + The lower bound percentile for printing credible intervals + on the parameters + + ci_max: float out of [0,100] + The upper bound percentile for printing credible intervals + on the parameters + log : a logging.getLogger() object, default None + You can pass a pre-defined object for logging, else a new + logger will be instantiated + + Attributes + ---------- + samples : numpy.ndarray + An array of samples from the MCMC run, including all chains + flattened into one long (``nwalkers*niter``, ``ndim``) array + + nwalkers : int + The number of chains used in the MCMC procedure + + niter : int + The number of MCMC iterations in each chain + + ndim : int + The dimensionality of the problem, i.e. the number of + parameters in the model + + acceptance : float + The mean acceptance ratio, calculated over all chains + + L : float + The product of acceptance ratio and number of samples + + acor : float + The autocorrelation length for the chains; should be shorter + than the chains themselves for independent sampling + + rhat : float + weighted average of between-sequence variance and within-sequence + variance; Gelman-Rubin convergence statistic [#]_ + + mean : numpy.ndarray + An array of size ``ndim``, with the posterior means of the parameters + derived from the MCMC chains + + std : numpy.ndarray + An array of size ``ndim`` with the posterior standard deviations of + the parameters derived from the MCMC chains + + ci : numpy.ndarray + An array of shape ``(ndim, 2)`` containing the lower and upper bounds + of the credible interval (the Bayesian equivalent of the confidence + interval) for each parameter using the bounds set by ``ci_min`` and ``ci_max`` + + References + ---------- + .. [#] https://projecteuclid.org/euclid.ss/1177011136 + """ + + def __init__(self, sampler, ci_min=5, ci_max=95, log=None): + if log is None: + self.log = logging.getLogger("MCMC summary") + self.log.setLevel(logging.DEBUG) + + if not self.log.handlers: + ch = logging.StreamHandler() + ch.setLevel(logging.DEBUG) + self.log.addHandler(ch) + + # store all the samples + self.samples = sampler.get_chain(flat=True) + + chain_dims = sampler.get_chain().shape + self.nwalkers = float(chain_dims[0]) + self.niter = float(chain_dims[1]) + + # store number of dimensions + self.ndim = chain_dims[2] + + # compute and store acceptance fraction + self.acceptance = np.nanmean(sampler.acceptance_fraction) + self.L = self.acceptance * self.samples.shape[0] + + self._check_convergence(sampler) + self._infer(ci_min, ci_max) + +
+[docs] + def _check_convergence(self, sampler): + """ + Compute common statistics for convergence of the MCMC + chains. While you can never be completely sure that your chains + converged, these present reasonable heuristics to give an + indication whether convergence is very far off or reasonably close. + + Currently implemented are the autocorrelation time [#]_ and the + Gelman-Rubin convergence criterion [#]_. + + Parameters + ---------- + sampler : an ``emcee.EnsembleSampler`` object + + References + ---------- + .. [#] https://arxiv.org/abs/1202.3665 + .. [#] https://projecteuclid.org/euclid.ss/1177011136 + """ + + # compute and store autocorrelation time + try: + self.acor = sampler.get_autocorr_time() + except emcee.autocorr.AutocorrError: + self.log.info("Chains too short to compute autocorrelation lengths.") + + self.rhat = self._compute_rhat(sampler)
+ + +
+[docs] + def _compute_rhat(self, sampler): + """ + Compute Gelman-Rubin convergence criterion [#]_. + + Parameters + ---------- + sampler : an `emcee.EnsembleSampler` object + + References + ---------- + .. [#] https://projecteuclid.org/euclid.ss/1177011136 + """ + chain = sampler.get_chain() + # between-sequence variance + mean_samples_iter = np.nanmean(chain, axis=1) + + # mean over the means over iterations: (self.ndim) + mean_samples = np.nanmean(chain, axis=(0, 1)) + + # now compute between-sequence variance + bb = (self.niter / (self.nwalkers - 1)) * np.sum( + (mean_samples_iter - mean_samples) ** 2.0, axis=0 + ) + + # compute variance of each chain + var_samples = np.nanvar(chain, axis=1) + + # compute mean of variance + ww = np.nanmean(var_samples, axis=0) + + # compute weighted average of ww and bb: + rhat = ((self.niter - 1) / self.niter) * ww + (1 / self.niter) * bb + + return rhat
+ + +
+[docs] + def _infer(self, ci_min=5, ci_max=95): + """ + Infer the :class:`Posterior` means, standard deviations and credible intervals + (i.e. the Bayesian equivalent to confidence intervals) from the :class:`Posterior` samples + for each parameter. + + Parameters + ---------- + ci_min : float + Lower bound to the credible interval, given as percentage between + 0 and 100 + + ci_max : float + Upper bound to the credible interval, given as percentage between + 0 and 100 + """ + self.mean = np.mean(self.samples, axis=0) + self.std = np.std(self.samples, axis=0) + self.ci = np.percentile(self.samples, [ci_min, ci_max], axis=0)
+ + +
+[docs] + def print_results(self): + """ + Print results of the MCMC run on screen or to a log-file. + + + """ + + self.log.info("-- The acceptance fraction is: %f.5" % self.acceptance) + try: + self.log.info("-- The autocorrelation time is: {}".format(self.acor)) + except AttributeError: + pass + + self.log.info("R_hat for the parameters is: " + str(self.rhat)) + + self.log.info("-- Posterior Summary of Parameters: \n") + self.log.info("parameter \t mean \t\t sd \t\t 5% \t\t 95% \n") + self.log.info("---------------------------------------------\n") + for i in range(self.ndim): + self.log.info( + "theta[" + + str(i) + + "] \t " + + str(self.mean[i]) + + "\t" + + str(self.std[i]) + + "\t" + + str(self.ci[0, i]) + + "\t" + + str(self.ci[1, i]) + + "\n" + ) + + return
+ + +
+[docs] + def plot_results(self, nsamples=1000, fig=None, save_plot=False, filename="test.pdf"): + """ + Plot some results in a triangle plot. + If installed, will use [corner]_ + for the plotting, if not, + uses its own code to make a triangle plot. + + By default, this method returns a ``matplotlib.Figure`` object, but + if ``save_plot=True`` the plot can be saved to file automatically, + + Parameters + ---------- + + nsamples : int, default 1000 + The maximum number of samples used for plotting. + + fig : matplotlib.Figure instance, default None + If created externally, you can pass a Figure instance to this method. + If none is passed, the method will create one internally. + + save_plot : bool, default ``False`` + If ``True`` save the plot to file with a file name specified by the + keyword ``filename``. If ``False`` just return the ``Figure`` object + + filename : str + Name of the output file with the figure + + References + ---------- + .. [corner] https://github.com/dfm/corner.py + """ + if use_corner: + fig = corner.corner( + self.samples, + labels=None, + fig=fig, + bins=int(20), + quantiles=[0.16, 0.5, 0.84], + show_titles=True, + title_args={"fontsize": 12}, + ) + + else: + if fig is None: + fig = plt.figure(figsize=(15, 15)) + + plt.subplots_adjust( + top=0.925, bottom=0.025, left=0.025, right=0.975, wspace=0.2, hspace=0.2 + ) + + ind_all = np.random.choice(np.arange(self.samples.shape[0]), size=nsamples) + samples = self.samples[ind_all] + for i in range(self.ndim): + for j in range(self.ndim): + xmin, xmax = samples[:, j].min(), samples[:, j].max() + ymin, ymax = samples[:, i].min(), samples[:, i].max() + ax = fig.add_subplot(self.ndim, self.ndim, i * self.ndim + j + 1) + + ax.xaxis.set_major_locator(MaxNLocator(5)) + ax.ticklabel_format(style="sci", scilimits=(-2, 2)) + + if i == j: + ntemp, binstemp, patchestemp = ax.hist( + samples[:, i], 30, density=True, histtype="stepfilled" + ) + ax.axis([ymin, ymax, 0, np.max(ntemp) * 1.2]) + + else: + ax.axis([xmin, xmax, ymin, ymax]) + + # make a scatter plot first + ax.scatter(samples[:, j], samples[:, i], s=7) + # then add contours + xmin, xmax = samples[:, j].min(), samples[:, j].max() + ymin, ymax = samples[:, i].min(), samples[:, i].max() + + # Perform Kernel density estimate on data + try: + xx, yy = np.mgrid[xmin:xmax:100j, ymin:ymax:100j] + positions = np.vstack([xx.ravel(), yy.ravel()]) + values = np.vstack([samples[:, j], samples[:, i]]) + kernel = scipy.stats.gaussian_kde(values) + zz = np.reshape(kernel(positions).T, xx.shape) + + ax.contour(xx, yy, zz, 7) + except ValueError: + logger.info("Not making contours.") + + if save_plot: + plt.savefig(filename, format="pdf") + + return fig
+
+ + + +
+[docs] +class PSDParEst(ParameterEstimation): + """ + Parameter estimation for parametric modelling of power spectra. + + This class contains functionality that allows parameter estimation + and related tasks that involve fitting a parametric model to an + (averaged) power spectrum. + + Parameters + ---------- + ps : class:`stingray.Powerspectrum` or class:`stingray.AveragedPowerspectrum` object + The power spectrum to be modelled + + fitmethod : str, optional, default ``BFGS`` + A string allowed by ``scipy.optimize.minimize`` as a valid + fitting method + + max_post : bool, optional, default ``True`` + If ``True``, do a Maximum-A-Posteriori (MAP) fit, i.e. fit with + priors, otherwise do a Maximum Likelihood fit instead + + """ + + def __init__(self, ps, fitmethod="BFGS", max_post=True): + self.ps = ps + ParameterEstimation.__init__(self, fitmethod=fitmethod, max_post=max_post) + +
+[docs] + def fit(self, lpost, t0, neg=True, scipy_optimize_options=None): + """ + Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) + fit to the power spectrum. + + MAP fits include priors, ML fits do not. + + Parameters + ---------- + lpost : :class:`stingray.modeling.PSDPosterior` object + An instance of class :class:`stingray.modeling.PSDPosterior` that defines the + function to be minimized (either in ``loglikelihood`` or ``logposterior``) + + t0 : {list | numpy.ndarray} + List/array with set of initial parameters + + neg : bool, optional, default ``True`` + Boolean to be passed to ``lpost``, setting whether to use the + *negative* posterior or the *negative* log-likelihood. + + scipy_optimize_options : dict, optional, default None + A dictionary with options for ``scipy.optimize.minimize``, + directly passed on as keyword arguments. + + Returns + ------- + res : :class:`OptimizationResults` object + An object containing useful summaries of the fitting procedure. + For details, see documentation of :class:`OptimizationResults`. + """ + + self.lpost = lpost + + res = ParameterEstimation.fit( + self, self.lpost, t0, neg=neg, scipy_optimize_options=scipy_optimize_options + ) + + res.maxpow, res.maxfreq, res.maxind = self._compute_highest_outlier(self.lpost, res) + + return res
+ + +
+[docs] + def sample( + self, + lpost, + t0, + cov=None, + nwalkers=500, + niter=100, + burnin=100, + threads=1, + print_results=True, + plot=False, + namestr="test", + ): + """ + Sample the posterior distribution defined in ``lpost`` using MCMC. + Here we use the ``emcee`` package, but other implementations could + in principle be used. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` subclass + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : iterable + list or array containing the starting parameters. Its length + must match ``lpost.model.npar``. + + nwalkers : int, optional, default 500 + The number of walkers (chains) to use during the MCMC procedure. + The more walkers are used, the slower the estimation will be, but + the better the final distribution is likely to be. + + niter : int, optional, default 100 + The number of iterations to run the MCMC chains for. The larger this + number, the longer the estimation will take, but the higher the + chance that the walkers have actually converged on the true + posterior distribution. + + burnin : int, optional, default 100 + The number of iterations to run the walkers before convergence is + assumed to have occurred. This part of the chain will be discarded + before sampling from what is then assumed to be the posterior + distribution desired. + + threads : int, optional, default 1 + The number of threads for parallelization. + Default is ``1``, i.e. no parallelization + + print_results : bool, optional, default True + Boolean flag setting whether the results of the MCMC run should + be printed to standard output + + plot : bool, optional, default False + Boolean flag setting whether summary plots of the MCMC chains + should be produced + + namestr : str, optional, default ``test`` + Optional string for output file names for the plotting. + + Returns + ------- + + res : :class:`SamplingResults` object + An object containing useful summaries of the + sampling procedure. For details see documentation of :class:`SamplingResults`. + + """ + self.lpost = lpost + + if cov is None: + fit_res = ParameterEstimation.fit(self, self.lpost, t0, neg=True) + cov = fit_res.cov + t0 = fit_res.p_opt + + res = ParameterEstimation.sample( + self, + self.lpost, + t0, + cov=cov, + nwalkers=nwalkers, + niter=niter, + burnin=burnin, + threads=threads, + print_results=print_results, + plot=plot, + namestr=namestr, + ) + + return res
+ + + def _generate_data(self, lpost, pars, rng=None): + """ + Generate a fake power spectrum from a model. + + Parameters + ---------- + lpost : instance of a :class:`Posterior` or :class:`LogLikelihood` subclass + The object containing the relevant information about the + data and the model + + pars : iterable + A list of parameters to be passed to ``lpost.model`` in order + to generate a model data set. + + Returns + ------- + sim_ps : :class:`stingray.Powerspectrum` object + The simulated :class:`Powerspectrum` object + + """ + # create own random state object + if rng is None: + rng = np.random.RandomState(None) + + model_spectrum = self._generate_model(lpost, pars) + + # use chi-square distribution to get fake data + model_powers = ( + model_spectrum + * rng.chisquare(2 * self.ps.m, size=model_spectrum.shape[0]) + / (2.0 * self.ps.m) + ) + + sim_ps = copy.copy(self.ps) + + sim_ps.power = model_powers + + return sim_ps + +
+[docs] + def simulate_lrts(self, s_all, lpost1, t1, lpost2, t2, seed=None): + """ + Simulate likelihood ratios for two given models based on MCMC samples + for the simpler model (i.e. the null hypothesis). + + Parameters + ---------- + s_all : numpy.ndarray of shape ``(nsamples, lpost1.npar)`` + An array with MCMC samples derived from the null hypothesis model in + ``lpost1``. Its second dimension must match the number of free + parameters in ``lpost1.model``. + + lpost1 : :class:`LogLikelihood` or :class:`Posterior` subclass object + Object containing the null hypothesis model + + t1 : iterable of length ``lpost1.npar`` + A starting guess for fitting the model in ``lpost1`` + + lpost2 : :class:`LogLikelihood` or :class:`Posterior` subclass object + Object containing the alternative hypothesis model + + t2 : iterable of length ``lpost2.npar`` + A starting guess for fitting the model in ``lpost2`` + + max_post : bool, optional, default ``True`` + If ``True``, then ``lpost1`` and ``lpost2`` should be :class:`Posterior` subclass + objects; if ``False``, then ``lpost1`` and ``lpost2`` should be + :class:`LogLikelihood` subclass objects + + seed : int, optional default ``None`` + A seed to initialize the ``numpy.random.RandomState`` object to be + passed on to ``_generate_data``. Useful for producing exactly + reproducible results + + Returns + ------- + lrt_sim : numpy.ndarray + An array with the simulated likelihood ratios for the simulated + data + """ + + assert lpost1.__class__ == lpost2.__class__, ( + "Both LogLikelihood or " "Posterior objects must be " "of the same class!" + ) + + nsim = s_all.shape[0] + lrt_sim = np.zeros(nsim) + + rng = np.random.RandomState(seed) + + # now I can loop over all simulated parameter sets to generate a PSD + for i, s in enumerate(s_all): + # generate fake PSD + sim_ps = self._generate_data(lpost1, s, rng) + + neg = True + + # make LogLikelihood objects for both: + if isinstance(lpost1, LogLikelihood): + sim_lpost1 = PSDLogLikelihood( + sim_ps.freq, sim_ps.power, model=lpost1.model, m=sim_ps.m + ) + sim_lpost2 = PSDLogLikelihood( + sim_ps.freq, sim_ps.power, model=lpost2.model, m=sim_ps.m + ) + max_post = False + else: + # make a :class:`Posterior` object + sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost1.model, m=sim_ps.m) + sim_lpost1.logprior = lpost1.logprior + + sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power, lpost2.model, m=sim_ps.m) + + sim_lpost2.logprior = lpost2.logprior + max_post = True + + parest_sim = PSDParEst(sim_ps, max_post=max_post, fitmethod=self.fitmethod) + + try: + lrt_sim[i], _, _ = parest_sim.compute_lrt( + sim_lpost1, t1, sim_lpost2, t2, neg=neg, max_post=max_post + ) + except RuntimeError: + logger.warning("Fitting was unsuccessful. " "Skipping this simulation!") + continue + + return lrt_sim
+ + +
+[docs] + def calibrate_highest_outlier( + self, + lpost, + t0, + sample=None, + max_post=False, + nsim=1000, + niter=200, + nwalkers=500, + burnin=200, + namestr="test", + seed=None, + ): + r""" + Calibrate the highest outlier in a data set using MCMC-simulated + power spectra. + + In short, the procedure does a MAP fit to the data, computes the + statistic + + .. math:: + + \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} + + and then does an MCMC run using the data and the model, or generates parameter samples + from the likelihood distribution using the derived covariance in a Maximum Likelihood + fit. + From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit + in the same way as the data, and the highest data/model outlier extracted as for the data. + The observed value of :math:`T_R` can then be directly compared to the simulated + distribution of :math:`T_R` values in order to derive a p-value of the null + hypothesis that the observed :math:`T_R` is compatible with being generated by + noise. + + Parameters + ---------- + lpost : :class:`stingray.modeling.PSDPosterior` object + An instance of class :class:`stingray.modeling.PSDPosterior` that defines the + function to be minimized (either in ``loglikelihood`` or ``logposterior``) + + t0 : {list | numpy.ndarray} + List/array with set of initial parameters + + sample : :class:`SamplingResults` instance, optional, default ``None`` + If a sampler has already been run, the :class:`SamplingResults` instance can be + fed into this method here, otherwise this method will run a sampler + automatically + + max_post: bool, optional, default ``False`` + If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier + Otherwise, do a Maximum Likelihood fit. If ``True``, the simulated power spectra will + be generated from an MCMC run, otherwise the method will employ the approximated + covariance matrix for the parameters derived from the likelihood surface to generate + samples from that likelihood function. + + nsim : int, optional, default ``1000`` + Number of fake power spectra to simulate from the posterior sample. Note that this + number sets the resolution of the resulting p-value. For ``nsim=1000``, the highest + resolution that can be achieved is :math:`10^{-3}`. + + niter : int, optional, default 200 + If ``sample`` is ``None``, this variable will be used to set the number of steps in the + MCMC procedure *after* burn-in. + + nwalkers : int, optional, default 500 + If ``sample`` is ``None``, this variable will be used to set the number of MCMC chains + run in parallel in the sampler. + + burnin : int, optional, default 200 + If ``sample`` is ``None``, this variable will be used to set the number of burn-in steps + to be discarded in the initial phase of the MCMC run + + namestr : str, optional, default ``test`` + A string to be used for storing MCMC output and plots to disk + + seed : int, optional, default ``None`` + An optional number to seed the random number generator with, for reproducibility of + the results obtained with this method. + + Returns + ------- + pval : float + The p-value that the highest data/model outlier is produced by random noise, calibrated + using simulated power spectra from an MCMC run. + + References + ---------- + For more details on the procedure employed here, see + + * Vaughan, 2010: https://arxiv.org/abs/0910.2706 + * Huppenkothen et al, 2013: https://arxiv.org/abs/1212.1011 + """ + # fit the model to the data + res = self.fit(lpost, t0, neg=True) + + rng = np.random.RandomState(seed) + + # find the highest data/model outlier: + out_high, _, _ = self._compute_highest_outlier(lpost, res) + # simulate parameter sets from the simpler model + if not max_post: + # using Maximum Likelihood, so I'm going to simulate parameters + # from a multivariate Gaussian + + # set up the distribution + mvn = scipy.stats.multivariate_normal(mean=res.p_opt, cov=res.cov, seed=seed) + + if lpost.npar == 1: + # sample parameters + s_all = np.atleast_2d(mvn.rvs(size=nsim)).T + + else: + s_all = mvn.rvs(size=nsim) + + else: + if sample is None: + # sample the :class:`Posterior` using MCMC + sample = self.sample( + lpost, + res.p_opt, + cov=res.cov, + nwalkers=nwalkers, + niter=niter, + burnin=burnin, + namestr=namestr, + ) + + # pick nsim samples out of the :class:`Posterior` sample + s_all = sample.samples[rng.choice(sample.samples.shape[0], nsim, replace=False)] + + # simulate LRTs + # this method is defined in the subclasses! + out_high_sim = self.simulate_highest_outlier(s_all, lpost, t0, max_post=max_post, seed=seed) + # now I can compute the p-value: + pval = ParameterEstimation._compute_pvalue(out_high, out_high_sim) + + return pval
+ + +
+[docs] + def simulate_highest_outlier(self, s_all, lpost, t0, max_post=True, seed=None): + r""" + Simulate :math:`n` power spectra from a model and then find the highest + data/model outlier in each. + + The data/model outlier is defined as + + .. math:: + + \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} . + + Parameters + ---------- + s_all : numpy.ndarray + A list of parameter values derived either from an approximation of the + likelihood surface, or from an MCMC run. Has dimensions ``(n, ndim)``, where + ``n`` is the number of simulated power spectra to generate, and ``ndim`` the + number of model parameters. + + lpost : instance of a :class:`Posterior` subclass + an instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + t0 : iterable + list or array containing the starting parameters. Its length + must match ``lpost.model.npar``. + + max_post: bool, optional, default ``False`` + If ``True``, do MAP fits on the power spectrum to find the highest data/model outlier + Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will + be generated from an MCMC run, otherwise the method will employ the approximated + covariance matrix for the parameters derived from the likelihood surface to generate + samples from that likelihood function. + + seed : int, optional, default ``None`` + An optional number to seed the random number generator with, for reproducibility of + the results obtained with this method. + + Returns + ------- + max_y_all : numpy.ndarray + An array of maximum outliers for each simulated power spectrum + """ + # the number of simulations + nsim = s_all.shape[0] + + # empty array for the simulation results + max_y_all = np.zeros(nsim) + + rng = np.random.RandomState(seed) + + # now I can loop over all simulated parameter sets to generate a PSD + for i, s in enumerate(s_all): + # generate fake PSD + sim_ps = self._generate_data(lpost, s, rng=rng) + + # make LogLikelihood objects for both: + if not max_post: + sim_lpost = PSDLogLikelihood( + sim_ps.freq, sim_ps.power, model=lpost.model, m=sim_ps.m + ) + else: + # make a :class:`Posterior` object + sim_lpost = PSDPosterior(sim_ps.freq, sim_ps.power, lpost.model, m=sim_ps.m) + sim_lpost.logprior = lpost.logprior + + parest_sim = PSDParEst(sim_ps, max_post=max_post) + + try: + res = parest_sim.fit(sim_lpost, t0, neg=True) + max_y, maxfreq, maxind = self._compute_highest_outlier(sim_lpost, res, nmax=1) + max_y_all[i] = max_y[0] + except RuntimeError: + logger.warning("Fitting unsuccessful! " "Skipping this simulation!") + continue + + return np.hstack(max_y_all)
+ + + def _compute_highest_outlier(self, lpost, res, nmax=1): + r""" + Auxiliary method calculating the highest outlier statistic in + a power spectrum. + + The maximum data/model outlier is defined as + + .. math:: + + \max{(T_R = 2(\mathrm{data}/\mathrm{model}))} + + Parameters + ---------- + lpost : instance of a :class:`Posterior` subclass + and instance of class :class:`Posterior` or one of its subclasses + that defines the function to be minimized (either in ``loglikelihood`` + or ``logposterior``) + + res : :class:`OptimizationResults` object + An object containing useful summaries of the fitting procedure. + For details, see documentation of :class:`OptimizationResults`. + + nmax : int, optional, default ``1`` + The number of maxima to extract from the power spectra. By default, + only the highest data/model outlier is extracted. This number allows + to extract the ``nmax`` highest outliers, useful when looking for + multiple signals in a power spectrum. + + Returns + ------- + max_y : {float | numpy.ndarray} + The ``nmax`` highest data/model outliers + + max_x : {float | numpy.ndarray} + The frequencies corresponding to the outliers in ``max_y`` + + max_ind : {int | numpy.ndarray} + The indices corresponding to the outliers in ``max_y`` + """ + residuals = 2.0 * lpost.y / res.mfit + + ratio_sort = copy.copy(residuals) + ratio_sort.sort() + max_y = ratio_sort[-nmax:] + + max_x = np.zeros(max_y.shape[0]) + max_ind = np.zeros(max_y.shape[0]) + + for i, my in enumerate(max_y): + max_x[i], max_ind[i] = self._find_outlier(lpost.x, residuals, my) + + return max_y, max_x, max_ind + + @staticmethod + def _find_outlier(xdata, ratio, max_y): + """ + Small auxiliary method that finds the index where an array has + its maximum, and the corresponding value in ``xdata``. + + Parameters + ---------- + xdata : numpy.ndarray + A list of independent variables + + ratio : Numpy.ndarray + A list of dependent variables corresponding to ``xdata`` + + max_y : float + The maximum value of ``ratio`` + + Returns + ------- + max_x : float + The value in ``xdata`` corresponding to the entry in ``ratio`` where + ``ratio == `max_y`` + + max_ind : float + The index of the entry in ``ratio`` where ``ratio == max_y`` + """ + max_ind = np.where(ratio == max_y)[0][0] + max_x = xdata[max_ind] + + return max_x, max_ind + +
+[docs] + def plotfits(self, res1, res2=None, save_plot=False, namestr="test", log=False): + """ + Plotting method that allows to plot either one or two best-fit models + with the data. + + Plots a power spectrum with the best-fit model, as well as the data/model + residuals for each model. + + Parameters + ---------- + res1 : :class:`OptimizationResults` object + Output of a successful fitting procedure + + res2 : :class:`OptimizationResults` object, optional, default ``None`` + Optional output of a second successful fitting procedure, e.g. with a + competing model + + save_plot : bool, optional, default ``False`` + If ``True``, the resulting figure will be saved to a file + + namestr : str, optional, default ``test`` + If ``save_plot`` is ``True``, this string defines the path and file name + for the output plot + + log : bool, optional, default ``False`` + If ``True``, plot the axes logarithmically. + """ + + # make a figure + f = plt.figure(figsize=(12, 10)) + # adjust subplots such that the space between the top and bottom + # of each are zero + plt.subplots_adjust(hspace=0.0, wspace=0.4) + + # first subplot of the grid, twice as high as the other two + # This is the periodogram with the two fitted models overplotted + s1 = plt.subplot2grid((4, 1), (0, 0), rowspan=2) + + if log: + logx = np.log10(self.ps.freq) + logy = np.log10(self.ps.power) + logpar1 = np.log10(res1.mfit) + + (p1,) = s1.plot(logx, logy, color="black", drawstyle="steps-mid") + (p2,) = s1.plot(logx, logpar1, color="blue", lw=2) + s1.set_xlim([np.min(logx), np.max(logx)]) + s1.set_ylim([np.min(logy) - 1.0, np.max(logy) + 1]) + if self.ps.norm == "leahy": + s1.set_ylabel("log(Leahy-Normalized Power)", fontsize=18) + elif self.ps.norm == "rms": + s1.set_ylabel("log(RMS-Normalized Power)", fontsize=18) + else: + s1.set_ylabel("log(Power)", fontsize=18) + + else: + (p1,) = s1.plot(self.ps.freq, self.ps.power, color="black", drawstyle="steps-mid") + (p2,) = s1.plot(self.ps.freq, res1.mfit, color="blue", lw=2) + + s1.set_xscale("log") + s1.set_yscale("log") + + s1.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)]) + s1.set_ylim([np.min(self.ps.freq) / 10.0, np.max(self.ps.power) * 10.0]) + + if self.ps.norm == "leahy": + s1.set_ylabel("Leahy-Normalized Power", fontsize=18) + elif self.ps.norm == "rms": + s1.set_ylabel("RMS-Normalized Power", fontsize=18) + else: + s1.set_ylabel("Power", fontsize=18) + + if res2 is not None: + if log: + logpar2 = np.log10(res2.mfit) + (p3,) = s1.plot(logx, logpar2, color="red", lw=2) + else: + (p3,) = s1.plot(self.ps.freq, res2.mfit, color="red", lw=2) + s1.legend([p1, p2, p3], ["data", "model 1 fit", "model 2 fit"]) + else: + s1.legend([p1, p2], ["data", "model fit"]) + + s1.set_title("Periodogram and fits for data set " + namestr, fontsize=18) + + # second subplot: power/model for Power law and straight line + s2 = plt.subplot2grid((4, 1), (2, 0), rowspan=1) + pldif = self.ps.power / res1.mfit + + s2.set_ylabel("Residuals, \n first model", fontsize=18) + + if log: + s2.plot(logx, pldif, color="black", drawstyle="steps-mid") + s2.plot(logx, np.ones(self.ps.freq.shape[0]), color="blue", lw=2) + s2.set_xlim([np.min(logx), np.max(logx)]) + s2.set_ylim([np.min(pldif), np.max(pldif)]) + + else: + s2.plot(self.ps.freq, pldif, color="black", drawstyle="steps-mid") + s2.plot(self.ps.freq, np.ones_like(self.ps.power), color="blue", lw=2) + + s2.set_xscale("log") + s2.set_yscale("log") + s2.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)]) + s2.set_ylim([np.min(pldif), np.max(pldif)]) + + if res2 is not None: + bpldif = self.ps.power / res2.mfit + + # third subplot: power/model for bent power law and straight line + s3 = plt.subplot2grid((4, 1), (3, 0), rowspan=1) + + if log: + s3.plot(logx, bpldif, color="black", drawstyle="steps-mid") + s3.plot(logx, np.ones(len(self.ps.freq)), color="red", lw=2) + s3.axis([np.min(logx), np.max(logx), np.min(bpldif), np.max(bpldif)]) + s3.set_xlabel("log(Frequency) [Hz]", fontsize=18) + + else: + s3.plot(self.ps.freq, bpldif, color="black", drawstyle="steps-mid") + s3.plot(self.ps.freq, np.ones(len(self.ps.freq)), color="red", lw=2) + s3.set_xscale("log") + s3.set_yscale("log") + s3.set_xlim([np.min(self.ps.freq), np.max(self.ps.freq)]) + s3.set_ylim([np.min(bpldif), np.max(bpldif)]) + s3.set_xlabel("Frequency [Hz]", fontsize=18) + + s3.set_ylabel("Residuals, \n second model", fontsize=18) + + else: + if log: + s2.set_xlabel("log(Frequency) [Hz]", fontsize=18) + else: + s2.set_xlabel("Frequency [Hz]", fontsize=18) + + ax = plt.gca() + + for label in ax.get_xticklabels() + ax.get_yticklabels(): + label.set_fontsize(14) + + # make sure xticks are taken from first plots, but don't + # appear there + plt.setp(s1.get_xticklabels(), visible=False) + + if save_plot: + # save figure in png file and close plot device + plt.savefig(namestr + "_ps_fit.png", format="png") + + return
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/modeling/posterior.html b/_modules/stingray/modeling/posterior.html new file mode 100644 index 000000000..83e2bbabb --- /dev/null +++ b/_modules/stingray/modeling/posterior.html @@ -0,0 +1,1040 @@ + + + + + + + stingray.modeling.posterior — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.modeling.posterior

+import abc
+import warnings
+
+import numpy as np
+from collections.abc import Iterable
+
+np.seterr("warn")
+
+from scipy.special import gamma as scipy_gamma
+from scipy.special import gammaln as scipy_gammaln
+
+try:
+    from astropy.modeling.fitting import fitter_to_model_params
+except ImportError:
+    from astropy.modeling.fitting import _fitter_to_model_params as fitter_to_model_params
+
+from astropy.modeling import models
+
+from stingray import Lightcurve, Powerspectrum
+from stingray.utils import assign_if_not_finite
+
+
+# TODO: Add checks and balances to code
+
+# from stingray.modeling.parametricmodels import logmin
+
+__all__ = [
+    "set_logprior",
+    "Posterior",
+    "PSDPosterior",
+    "LogLikelihood",
+    "PoissonLogLikelihood",
+    "PSDLogLikelihood",
+    "GaussianLogLikelihood",
+    "LaplaceLogLikelihood",
+    "PoissonPosterior",
+    "GaussianPosterior",
+    "LaplacePosterior",
+    "PriorUndefinedError",
+    "LikelihoodUndefinedError",
+]
+
+logmin = -10000000000000000.0
+
+
+class PriorUndefinedError(Exception):
+    pass
+
+
+class LikelihoodUndefinedError(Exception):
+    pass
+
+
+class IncorrectParameterError(Exception):
+    pass
+
+
+
+[docs] +def set_logprior(lpost, priors): + """ + This function constructs the ``logprior`` method required to successfully + use a :class:`Posterior` object. + + All instances of class :class:`Posterior` and its subclasses require to implement a + ``logprior`` methods. However, priors are strongly problem-dependent and + therefore usually user-defined. + + This function allows for setting the ``logprior`` method on any instance + of class :class:`Posterior` efficiently by allowing the user to pass a + dictionary of priors and an instance of class :class:`Posterior`. + + Parameters + ---------- + lpost : :class:`Posterior` object + An instance of class :class:`Posterior` or any of its subclasses + + priors : dict + A dictionary containing the prior definitions. Keys are parameter + names as defined by the ``astropy.models.FittableModel`` instance supplied + to the ``model`` parameter in :class:`Posterior`. Items are functions + that take a parameter as input and return the log-prior probability + of that parameter. + + Returns + ------- + logprior : function + The function definition for the prior + + Examples + -------- + Make a light curve and power spectrum + + >>> photon_arrivals = np.sort(np.random.uniform(0,1000, size=10000)) + >>> lc = Lightcurve.make_lightcurve(photon_arrivals, dt=1.0) + >>> ps = Powerspectrum(lc, norm="frac") + + Define the model + + >>> pl = models.PowerLaw1D() + >>> pl.x_0.fixed = True + + Instantiate the posterior: + + >>> lpost = PSDPosterior(ps.freq, ps.power, pl, m=ps.m) + + Define the priors: + + >>> p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.)) + >>> p_amplitude = lambda amplitude: ((-10 <= np.log(amplitude)) & + ... ((np.log(amplitude) <= 10.0))) + >>> priors = {"alpha":p_alpha, "amplitude":p_amplitude} + + Set the logprior method in the lpost object: + + >>> lpost.logprior = set_logprior(lpost, priors) + """ + + # get the number of free parameters in the model + # free_params = [p for p in lpost.model.param_names if not + # getattr(lpost.model, p).fixed] + free_params = [key for key, l in lpost.model.fixed.items() if not l] + + # define the logprior + def logprior(t0, neg=False): + """ + The logarithm of the prior distribution for the + model defined in self.model. + + Parameters + ---------- + t0 : {list | numpy.ndarray} + The list with parameters for the model + + Returns + ------- + logp : float + The logarithm of the prior distribution for the model and + parameters given. + """ + + if len(t0) != len(free_params): + raise IncorrectParameterError( + "The number of parameters passed into " + "the prior does not match the number " + "of parameters in the model." + ) + + logp = 0.0 # initialize log-prior + ii = 0 # counter for the variable parameter + + # loop through all parameter names, but only compute + # prior for those that are not fixed + # Note: need to do it this way to preserve order of parameters + # correctly! + for pname in lpost.model.param_names: + if not lpost.model.fixed[pname]: + with warnings.catch_warnings(record=True) as out: + logp += np.log(priors[pname](t0[ii])) + if len(out) > 0: + if isinstance(out[0].message, RuntimeWarning): + logp = np.nan + + ii += 1 + + logp = assign_if_not_finite(logp, logmin) + + if neg: + return -logp + else: + return logp + + return logprior
+ + + +
+[docs] +class LogLikelihood(object, metaclass=abc.ABCMeta): + """ + + Abstract Base Class defining the structure of a :class:`LogLikelihood` object. + This class cannot be called itself, since each statistical distribution + has its own definition for the likelihood, which should occur in subclasses. + + Parameters + ---------- + x : iterable + x-coordinate of the data. Could be multi-dimensional. + + y : iterable + y-coordinate of the data. Could be multi-dimensional. + + model : an ``astropy.modeling.FittableModel`` instance + Your model + + kwargs : + keyword arguments specific to the individual sub-classes. For + details, see the respective docstrings for each subclass + + """ + + def __init__(self, x, y, model, **kwargs): + self.x = x + self.y = y + + self.model = model + +
+[docs] + @abc.abstractmethod + def evaluate(self, parameters): + """ + This is where you define your log-likelihood. Do this, but do it in a subclass! + + """ + pass
+ + + def __call__(self, parameters, neg=False): + return self.evaluate(parameters, neg)
+ + + +
+[docs] +class GaussianLogLikelihood(LogLikelihood): + """ + Likelihood for data with Gaussian uncertainties. + Astronomers also call this likelihood *Chi-Squared*, but be aware + that this has *nothing* to do with the likelihood based on the + Chi-square distribution, which is also defined as in of + :class:`PSDLogLikelihood` in this module! + + Use this class here whenever your data has Gaussian uncertainties. + + Parameters + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an Astropy Model instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, x, y, yerr, model): + self.x = x + self.y = y + self.yerr = yerr + self.model = model + + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the Gaussian log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + + """ + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + loglike = np.sum( + -0.5 * np.log(2.0 * np.pi) + - np.log(self.yerr) + - (self.y - mean_model) ** 2 / (2.0 * self.yerr**2) + ) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class PoissonLogLikelihood(LogLikelihood): + """ + Likelihood for data with uncertainties following a Poisson distribution. + This is useful e.g. for (binned) photon count data. + + Parameters + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, x, y, model): + self.x = x + self.y = y + self.model = model + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + + """ + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + loglike = np.sum(-mean_model + self.y * np.log(mean_model) - scipy_gammaln(self.y + 1.0)) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class PSDLogLikelihood(LogLikelihood): + """ + A likelihood based on the Chi-square distribution, appropriate for modelling + (averaged) power spectra. Note that this is *not* the same as the statistic + astronomers commonly call *Chi-Square*, which is a fit statistic derived from + the Gaussian log-likelihood, defined elsewhere in this module. + + Parameters + ---------- + freq : iterable + Array with frequencies + + power : iterable + Array with (averaged/singular) powers corresponding to the + frequencies in ``freq`` + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + m : int + 1/2 of the degrees of freedom + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, freq, power, model, m=1): + LogLikelihood.__init__(self, freq, power, model) + + self.m = m + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname] and not self.model.tied[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + + """ + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + with warnings.catch_warnings(record=True) as out: + if not isinstance(self.m, Iterable) and self.m == 1: + loglike = -np.sum(np.log(mean_model)) - np.sum(self.y / mean_model) + + else: + dof = 2.0 * self.m + loglike = -( + np.sum(dof * np.log(mean_model)) + + np.sum(dof * self.y / mean_model) + + np.sum(dof * (2.0 / dof - 1.0) * np.log(self.y)) + ) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class LaplaceLogLikelihood(LogLikelihood): + """ + A Laplace likelihood for the cospectrum. + + Parameters + ---------- + x : iterable + Array with independent variable + + y : iterable + Array with dependent variable + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + yerr : iterable + Array with the uncertainties on ``y``, in standard deviation + + Attributes + ---------- + x : iterable + x-coordinate of the data + + y : iterable + y-coordinte of the data + + yerr : iterable + the uncertainty on the data, as standard deviation + + model : an ``astropy.modeling.FittableModel`` instance + The model to use in the likelihood. + + npar : int + The number of free parameters in the model + """ + + def __init__(self, x, y, yerr, model): + LogLikelihood.__init__(self, x, y, model) + self.yerr = yerr + + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname] and not self.model.tied[pname]: + self.npar += 1 + +
+[docs] + def evaluate(self, pars, neg=False): + """ + Evaluate the log-likelihood for a given set of parameters. + + Parameters + ---------- + pars : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-likelihood. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-likelihood, i.e. + ``-loglike``, rather than ``loglike``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + loglike : float + The log(likelihood) value for the data and model. + """ + + if np.size(pars) != self.npar: + raise IncorrectParameterError("Input parameters must" + " match model parameters!") + + fitter_to_model_params(self.model, pars) + + mean_model = self.model(self.x) + + with warnings.catch_warnings(record=True) as out: + loglike = np.sum(-np.log(2.0 * self.yerr) - (np.abs(self.y - mean_model) / self.yerr)) + + loglike = assign_if_not_finite(loglike, logmin) + + if neg: + return -loglike + else: + return loglike
+
+ + + +
+[docs] +class Posterior(object): + """ + Define a :class:`Posterior` object. + + The :class:`Posterior` describes the Bayesian probability distribution of + a set of parameters :math:`\\theta` given some observed data :math:`D` and + some prior assumptions :math:`I`. + + It is defined as + + .. math:: + + p(\\theta | D, I) = p(D | \\theta, I) p(\\theta | I)/p(D| I) + + where :math:`p(D | \\theta, I)` describes the likelihood, i.e. the + sampling distribution of the data and the (parametric) model, and + :math:`p(\\theta | I)` describes the prior distribution, i.e. our information + about the parameters :math:`\\theta` before we gathered the data. + The marginal likelihood :math:`p(D| I)` describes the probability of + observing the data given the model assumptions, integrated over the + space of all parameters. + + Parameters + ---------- + x : iterable + The abscissa or independent variable of the data. This could + in principle be a multi-dimensional array. + + y : iterable + The ordinate or dependent variable of the data. + + model : ``astropy.modeling.models`` instance + The parametric model supposed to represent the data. For details + see the ``astropy.modeling`` documentation + + kwargs : + keyword arguments related to the subclasses of :class:`Posterior`. For + details, see the documentation of the individual subclasses + + References + ---------- + * Sivia, D. S., and J. Skilling. "Data Analysis: \ + A Bayesian Tutorial. 2006." + * Gelman, Andrew, et al. Bayesian data analysis. Vol. 2. Boca Raton, \ + FL, USA: Chapman & Hall/CRC, 2014. + * von Toussaint, Udo. "Bayesian inference in physics." \ + Reviews of Modern Physics 83.3 (2011): 943. + * Hogg, David W. "Probability Calculus for inference". \ + arxiv: 1205.4446 + + """ + + def __init__(self, x, y, model, **kwargs): + self.x = x + self.y = y + + self.model = model + + self.npar = 0 + for pname in self.model.param_names: + if not self.model.fixed[pname]: + self.npar += 1 + +
+[docs] + def logposterior(self, t0, neg=False): + """ + Definition of the log-posterior. + Requires methods ``loglikelihood`` and ``logprior`` to both + be defined. + + Note that ``loglikelihood`` is set in the subclass of :class:`Posterior` + appropriate for your problem at hand, as is ``logprior``. + + Parameters + ---------- + t0 : numpy.ndarray + An array of parameters at which to evaluate the model + and subsequently the log-posterior. Note that the + length of this array must match the free parameters in + ``model``, i.e. ``npar`` + + neg : bool, optional, default ``False`` + If ``True``, return the *negative* log-posterior, i.e. + ``-lpost``, rather than ``lpost``. This is useful e.g. + for optimization routines, which generally minimize + functions. + + Returns + ------- + lpost : float + The value of the log-posterior for the given parameters ``t0`` + """ + + if not hasattr(self, "logprior"): + raise PriorUndefinedError( + "There is no prior implemented. " + "Cannot calculate posterior!" + ) + + if not hasattr(self, "loglikelihood"): + raise LikelihoodUndefinedError( + "There is no likelihood implemented. " + "Cannot calculate posterior!" + ) + + logpr = self.logprior(t0) + loglike = self.loglikelihood(t0) + + if np.isclose(logpr, logmin): + lpost = logmin + else: + lpost = logpr + loglike + + if neg is True: + return -lpost + else: + return lpost
+ + + def __call__(self, t0, neg=False): + return self.logposterior(t0, neg=neg)
+ + + +
+[docs] +class PSDPosterior(Posterior): + """ + :class:`Posterior` distribution for power spectra. + Uses an exponential distribution for the errors in the likelihood, + or a :math:`\\chi^2` distribution with :math:`2M` degrees of freedom, where + :math:`M` is the number of frequency bins or power spectra averaged in each bin. + + + Parameters + ---------- + ps : {:class:`stingray.Powerspectrum` | :class:`stingray.AveragedPowerspectrum`} instance + the :class:`stingray.Powerspectrum` object containing the data + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + m : int, default ``1`` + The number of averaged periodograms or frequency bins in ``ps``. + Useful for binned/averaged periodograms, since the value of + m will change the likelihood function! + + Attributes + ---------- + ps : {:class:`stingray.Powerspectrum` | :class:`stingray.AveragedPowerspectrum`} instance + the :class:`stingray.Powerspectrum` object containing the data + + x : numpy.ndarray + The independent variable (list of frequencies) stored in ``ps.freq`` + + y : numpy.ndarray + The dependent variable (list of powers) stored in ``ps.power`` + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + """ + + def __init__(self, freq, power, model, priors=None, m=1): + self.loglikelihood = PSDLogLikelihood(freq, power, model, m=m) + + self.m = m + Posterior.__init__(self, freq, power, model) + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ + + +
+[docs] +class PoissonPosterior(Posterior): + """ + :class:`Posterior` for Poisson light curve data. Primary intended use is for + modelling X-ray light curves, but alternative uses are conceivable. + + Parameters + ---------- + x : numpy.ndarray + The independent variable (e.g. time stamps of a light curve) + + y : numpy.ndarray + The dependent variable (e.g. counts per bin of a light curve) + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + Attributes + ---------- + x : numpy.ndarray + The independent variable (list of frequencies) stored in ps.freq + + y : numpy.ndarray + The dependent variable (list of powers) stored in ps.power + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + """ + + def __init__(self, x, y, model, priors=None): + self.x = x + self.y = y + + self.loglikelihood = PoissonLogLikelihood(self.x, self.y, model) + + Posterior.__init__(self, self.x, self.y, model) + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ + + +
+[docs] +class GaussianPosterior(Posterior): + """ + A general class for two-dimensional data following a Gaussian + sampling distribution. + + Parameters + ---------- + x : numpy.ndarray + independent variable + + y : numpy.ndarray + dependent variable + + yerr : numpy.ndarray + measurement uncertainties for y + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + """ + + def __init__(self, x, y, yerr, model, priors=None): + self.loglikelihood = GaussianLogLikelihood(x, y, yerr, model) + + Posterior.__init__(self, x, y, model) + + self.yerr = yerr + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ + + +
+[docs] +class LaplacePosterior(Posterior): + """ + A general class for two-dimensional data following a Gaussian + sampling distribution. + + Parameters + ---------- + x : numpy.ndarray + independent variable + + y : numpy.ndarray + dependent variable + + yerr : numpy.ndarray + measurement uncertainties for y, in standard deviation + + model : instance of any subclass of ``astropy.modeling.FittableModel`` + The model for the power spectrum. + + priors : dict of form ``{"parameter name": function}``, optional + A dictionary with the definitions for the prior probabilities. + For each parameter in ``model``, there must be a prior defined with + a key of the exact same name as stored in ``model.param_names``. + The item for each key is a function definition defining the prior + (e.g. a lambda function or a ``scipy.stats.distribution.pdf``. + If ``priors = None``, then no prior is set. This means priors need + to be added by hand using the :func:`set_logprior` function defined in + this module. Note that it is impossible to call a :class:`Posterior` object + itself or the ``self.logposterior`` method without defining a prior. + + """ + + def __init__(self, x, y, yerr, model, priors=None): + self.loglikelihood = LaplaceLogLikelihood(x, y, yerr, model) + + Posterior.__init__(self, x, y, model) + + self.yerr = yerr + + if not priors is None: + self.logprior = set_logprior(self, priors)
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/modeling/scripts.html b/_modules/stingray/modeling/scripts.html new file mode 100644 index 000000000..87298f262 --- /dev/null +++ b/_modules/stingray/modeling/scripts.html @@ -0,0 +1,419 @@ + + + + + + + stingray.modeling.scripts — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.modeling.scripts

+import numpy as np
+from astropy.modeling import models
+
+from stingray.modeling import PSDParEst, PSDPosterior, PSDLogLikelihood
+from stingray.modeling import GaussianPosterior, GaussianLogLikelihood
+from stingray import Powerspectrum
+
+__all__ = ["fit_powerspectrum", "fit_crossspectrum", "fit_lorentzians"]
+
+
+
+[docs] +def fit_powerspectrum( + ps, model, starting_pars=None, max_post=False, priors=None, fitmethod="L-BFGS-B" +): + """ + Fit a number of Lorentzians to a power spectrum, possibly including white + noise. Each Lorentzian has three parameters (amplitude, centroid position, + full-width at half maximum), plus one extra parameter if the white noise + level should be fit as well. Priors for each parameter can be included in + case `max_post = True`, in which case the function will attempt a + Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one + entry for each parameter. + The parameter names are `(amplitude_i, x_0_i, fwhm_i)` for each `i` out of + a total of `N` Lorentzians. The white noise level has a parameter + `amplitude_(N+1)`. For example, a model with two Lorentzians and a + white noise level would have parameters: + [amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2]. + + Parameters + ---------- + ps : Powerspectrum + A Powerspectrum object with the data to be fit + + model: astropy.modeling.models class instance + The parametric model supposed to represent the data. For details + see the astropy.modeling documentation + + starting_pars : iterable, optional, default None + The list of starting guesses for the optimizer. If it is not provided, + then default parameters are taken from `model`. See explanation above + for ordering of parameters in this list. + + fit_whitenoise : bool, optional, default True + If True, the code will attempt to fit a white noise level along with + the Lorentzians. Be sure to include a starting parameter for the + optimizer in `starting_pars`! + + max_post : bool, optional, default False + If True, perform a Maximum-A-Posteriori fit of the data rather than a + Maximum Likelihood fit. Note that this requires priors to be specified, + otherwise this will cause an exception! + + priors : {dict | None}, optional, default None + Dictionary with priors for the MAP fit. This should be of the form + {"parameter name": probability distribution, ...} + + fitmethod : string, optional, default "L-BFGS-B" + Specifies an optimization algorithm to use. Supply any valid option for + `scipy.optimize.minimize`. + + Returns + ------- + parest : PSDParEst object + A PSDParEst object for further analysis + + res : OptimizationResults object + The OptimizationResults object storing useful results and quantities + relating to the fit + + Examples + -------- + + We start by making an example power spectrum with three Lorentzians + >>> m = 1 + >>> nfreq = 100000 + >>> freq = np.linspace(1, 1000, nfreq) + + >>> np.random.seed(100) # set the seed for the random number generator + >>> noise = np.random.exponential(size=nfreq) + + >>> model = models.PowerLaw1D() + models.Const1D() + >>> model.x_0_0.fixed = True + + >>> alpha_0 = 2.0 + >>> amplitude_0 = 100.0 + >>> amplitude_1 = 2.0 + + >>> model.alpha_0 = alpha_0 + >>> model.amplitude_0 = amplitude_0 + >>> model.amplitude_1 = amplitude_1 + + >>> p = model(freq) + >>> power = noise * p + + >>> ps = Powerspectrum() + >>> ps.freq = freq + >>> ps.power = power + >>> ps.m = m + >>> ps.df = freq[1] - freq[0] + >>> ps.norm = "leahy" + + Now we have to guess starting parameters. For each Lorentzian, we have + amplitude, centroid position and fwhm, and this pattern repeats for each + Lorentzian in the fit. The white noise level is the last parameter. + >>> t0 = [80, 1.5, 2.5] + + Let's also make a model to test: + >>> model_to_test = models.PowerLaw1D() + models.Const1D() + >>> model_to_test.amplitude_1.fixed = True + + We're ready for doing the fit: + >>> parest, res = fit_powerspectrum(ps, model_to_test, t0) + + `res` contains a whole array of useful information about the fit, for + example the parameters at the optimum: + >>> p_opt = res.p_opt + + """ + if not (isinstance(starting_pars, np.ndarray) or isinstance(starting_pars, list)): + starting_pars = model.parameters + + if priors: + lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m) + else: + lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m) + + parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post) + res = parest.fit(lpost, starting_pars, neg=True) + + return parest, res
+ + + +
+[docs] +def fit_crossspectrum( + cs, model, starting_pars=None, max_post=False, priors=None, fitmethod="L-BFGS-B" +): + """ + Fit a number of Lorentzians to a cross spectrum, possibly including white + noise. Each Lorentzian has three parameters (amplitude, centroid position, + full-width at half maximum), plus one extra parameter if the white noise + level should be fit as well. Priors for each parameter can be included in + case `max_post = True`, in which case the function will attempt a + Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one + entry for each parameter. + The parameter names are `(amplitude_i, x_0_i, fwhm_i)` for each `i` out of + a total of `N` Lorentzians. The white noise level has a parameter + `amplitude_(N+1)`. For example, a model with two Lorentzians and a + white noise level would have parameters: + [amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2]. + + Parameters + ---------- + cs : Crossspectrum + A Crossspectrum object with the data to be fit + + model: astropy.modeling.models class instance + The parametric model supposed to represent the data. For details + see the astropy.modeling documentation + + starting_pars : iterable, optional, default None + The list of starting guesses for the optimizer. If it is not provided, + then default parameters are taken from `model`. See explanation above + for ordering of parameters in this list. + + max_post : bool, optional, default False + If True, perform a Maximum-A-Posteriori fit of the data rather than a + Maximum Likelihood fit. Note that this requires priors to be specified, + otherwise this will cause an exception! + + priors : {dict | None}, optional, default None + Dictionary with priors for the MAP fit. This should be of the form + {"parameter name": probability distribution, ...} + + fitmethod : string, optional, default "L-BFGS-B" + Specifies an optimization algorithm to use. Supply any valid option for + `scipy.optimize.minimize`. + + Returns + ------- + parest : PSDParEst object + A PSDParEst object for further analysis + + res : OptimizationResults object + The OptimizationResults object storing useful results and quantities + relating to the fit + """ + if not (isinstance(starting_pars, np.ndarray) or isinstance(starting_pars, list)): + starting_pars = model.parameters + if priors: + lgauss = GaussianPosterior(cs.freq, np.abs(cs.power), cs.power_err, model, priors) + else: + lgauss = GaussianLogLikelihood(cs.freq, np.abs(cs.power), model=model, yerr=cs.power_err) + + parest = PSDParEst(cs, fitmethod=fitmethod, max_post=max_post) + res = parest.fit(lgauss, starting_pars, neg=True) + + return parest, res
+ + + +
+[docs] +def fit_lorentzians( + ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None, fitmethod="L-BFGS-B" +): + """ + Fit a number of Lorentzians to a power spectrum, possibly including white + noise. Each Lorentzian has three parameters (amplitude, centroid position, + full-width at half maximum), plus one extra parameter if the white noise + level should be fit as well. Priors for each parameter can be included in + case `max_post = True`, in which case the function will attempt a + Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one + entry for each parameter. + The parameter names are `(amplitude_i, x_0_i, fwhm_i)` for each `i` out of + a total of `N` Lorentzians. The white noise level has a parameter + `amplitude_(N+1)`. For example, a model with two Lorentzians and a + white noise level would have parameters: + [amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2]. + + Parameters + ---------- + ps : Powerspectrum + A Powerspectrum object with the data to be fit + + nlor : int + The number of Lorentzians to fit + + starting_pars : iterable + The list of starting guesses for the optimizer. If it is not provided, + then default parameters are taken from `model`. See explanation above + for ordering of parameters in this list. + + fit_whitenoise : bool, optional, default True + If True, the code will attempt to fit a white noise level along with + the Lorentzians. Be sure to include a starting parameter for the + optimizer in `starting_pars`! + + max_post : bool, optional, default False + If True, perform a Maximum-A-Posteriori fit of the data rather than a + Maximum Likelihood fit. Note that this requires priors to be specified, + otherwise this will cause an exception! + + priors : {dict | None}, optional, default None + Dictionary with priors for the MAP fit. This should be of the form + {"parameter name": probability distribution, ...} + + fitmethod : string, optional, default "L-BFGS-B" + Specifies an optimization algorithm to use. Supply any valid option for + `scipy.optimize.minimize`. + + Returns + ------- + parest : PSDParEst object + A PSDParEst object for further analysis + + res : OptimizationResults object + The OptimizationResults object storing useful results and quantities + relating to the fit + + Examples + -------- + + We start by making an example power spectrum with three Lorentzians + >>> np.random.seed(400) + >>> nlor = 3 + + >>> x_0_0 = 0.5 + >>> x_0_1 = 2.0 + >>> x_0_2 = 7.5 + + >>> amplitude_0 = 150.0 + >>> amplitude_1 = 50.0 + >>> amplitude_2 = 15.0 + + >>> fwhm_0 = 0.1 + >>> fwhm_1 = 1.0 + >>> fwhm_2 = 0.5 + + We will also include a white noise level: + >>> whitenoise = 2.0 + + >>> model = (models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + + ... models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + + ... models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + + ... models.Const1D(whitenoise)) + + >>> freq = np.linspace(0.01, 10.0, 1000) + >>> p = model(freq) + >>> noise = np.random.exponential(size=len(freq)) + + >>> power = p*noise + >>> ps = Powerspectrum() + >>> ps.freq = freq + >>> ps.power = power + >>> ps.df = ps.freq[1] - ps.freq[0] + >>> ps.m = 1 + + Now we have to guess starting parameters. For each Lorentzian, we have + amplitude, centroid position and fwhm, and this pattern repeats for each + Lorentzian in the fit. The white noise level is the last parameter. + >>> t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1] + + We're ready for doing the fit: + >>> parest, res = fit_lorentzians(ps, nlor, t0) + + `res` contains a whole array of useful information about the fit, for + example the parameters at the optimum: + >>> p_opt = res.p_opt + + """ + + model = models.Lorentz1D() + + if nlor > 1: + for i in range(nlor - 1): + model += models.Lorentz1D() + + if fit_whitenoise: + model += models.Const1D() + + return fit_powerspectrum( + ps, model, starting_pars, max_post=max_post, priors=priors, fitmethod=fitmethod + )
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/powerspectrum.html b/_modules/stingray/powerspectrum.html new file mode 100644 index 000000000..20c16099b --- /dev/null +++ b/_modules/stingray/powerspectrum.html @@ -0,0 +1,1760 @@ + + + + + + + stingray.powerspectrum — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.powerspectrum

+import warnings
+from collections.abc import Generator, Iterable
+
+import numpy as np
+import scipy
+import scipy.optimize
+import scipy.stats
+
+from stingray.crossspectrum import AveragedCrossspectrum, Crossspectrum, DynamicalCrossspectrum
+from stingray.stats import pds_probability, amplitude_upper_limit
+
+from .events import EventList
+from .gti import cross_two_gtis, time_intervals_from_gtis
+
+from .lightcurve import Lightcurve
+from .fourier import avg_pds_from_iterable, unnormalize_periodograms
+from .fourier import avg_pds_from_timeseries
+from .fourier import get_flux_iterable_from_segments
+from .fourier import poisson_level
+from .fourier import get_rms_from_unnorm_periodogram
+
+
+__all__ = ["Powerspectrum", "AveragedPowerspectrum", "DynamicalPowerspectrum"]
+
+
+
+[docs] +class Powerspectrum(Crossspectrum): + type = "powerspectrum" + """ + Make a :class:`Powerspectrum` (also called periodogram) from a (binned) + light curve. Periodograms can be normalized by either Leahy normalization, + fractional rms normalization, absolute rms normalization, or not at all. + + You can also make an empty :class:`Powerspectrum` object to populate with + your own fourier-transformed data (this can sometimes be useful when making + binned power spectra). + + Parameters + ---------- + data: :class:`stingray.Lightcurve` object, optional, default ``None`` + The light curve data to be Fourier-transformed. + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normaliation of the power spectrum to be used. Options are + "leahy", "frac", "abs" and "none", default is "frac". + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the power spectrum. + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!). + + Attributes + ---------- + norm: {"leahy" | "frac" | "abs" | "none" } + The normalization of the power spectrum. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + power: numpy.ndarray + The array of normalized squared absolute values of Fourier + amplitudes. + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging power spectra of segments of a light curve). + Note that for a single realization (``m=1``) the error is equal to the + power. + + unnorm_power: numpy.ndarray + The array of unnormalized powers + + unnorm_power_err: numpy.ndarray + The uncertainties of ``unnorm_power``. + + df: float + The frequency resolution. + + m: int + The number of averaged powers in each bin. + + n: int + The number of data points in the light curve. + + nphots: float + The total number of photons in the light curve. + + """ + + def __init__(self, data=None, norm="frac", gti=None, dt=None, lc=None, skip_checks=False): + self._type = None + if lc is not None: + warnings.warn( + "The lc keyword is now deprecated. Use data " "instead", DeprecationWarning + ) + if data is None: + data = lc + + good_input = data is not None + if good_input and not skip_checks: + good_input = self.initial_checks( + data1=data, data2=data, norm=norm, gti=gti, lc1=lc, lc2=lc, dt=dt + ) + + norm = norm.lower() + self.norm = norm + self.dt = dt + + if not good_input: + return self._initialize_empty() + + return self._initialize_from_any_input(data, dt=dt, norm=norm) + +
+[docs] + def rebin(self, df=None, f=None, method="mean"): + """ + Rebin the power spectrum. + + Parameters + ---------- + df: float + The new frequency resolution. + + Other Parameters + ---------------- + f: float + The rebin factor. If specified, it substitutes ``df`` with + ``f*self.df``, so ``f>1`` is recommended. + + Returns + ------- + bin_cs = :class:`Powerspectrum` object + The newly binned power spectrum. + """ + bin_ps = Crossspectrum.rebin(self, df=df, f=f, method=method) + bin_ps.nphots = bin_ps.nphots1 + + return bin_ps
+ + +
+[docs] + def compute_rms(self, min_freq, max_freq, poisson_noise_level=None): + """ + Compute the fractional rms amplitude in the power spectrum + between two frequencies. + + Parameters + ---------- + min_freq: float + The lower frequency bound for the calculation. + + max_freq: float + The upper frequency bound for the calculation. + + Other parameters + ---------------- + poisson_noise_level : float, default is None + This is the Poisson noise level of the PDS with same + normalization as the PDS. If poissoin_noise_level is None, + the Poisson noise is calculated in the idealcase + e.g. 2./<countrate> for fractional rms normalisation + Dead time and other instrumental effects can alter it. + The user can fit the Poisson noise level outside + this function using the same normalisation of the PDS + and it will get subtracted from powers here. + + Returns + ------- + rms: float + The fractional rms amplitude contained between ``min_freq`` and + ``max_freq``. + + rms_err: float + The error on the fractional rms amplitude. + + """ + + good = (self.freq >= min_freq) & (self.freq <= max_freq) + + M_freq = self.m + K_freq = self.k + + if isinstance(self.k, Iterable): + K_freq = self.k[good] + + if isinstance(self.m, Iterable): + M_freq = self.m[good] + + if poisson_noise_level is None: + poisson_noise_unnorm = poisson_level("none", n_ph=self.nphots) + else: + poisson_noise_unnorm = unnormalize_periodograms( + poisson_noise_level, self.dt, self.n, self.nphots, norm=self.norm + ) + + rms, rmse = get_rms_from_unnorm_periodogram( + self.unnorm_power[good], + self.nphots, + self.df * K_freq, + M=M_freq, + poisson_noise_unnorm=poisson_noise_unnorm, + segment_size=self.segment_size, + kind="frac", + ) + + return rms, rmse
+ + +
+[docs] + def _rms_error(self, powers): + r""" + Compute the error on the fractional rms amplitude using error + propagation. + Note: this uses the actual measured powers, which is not + strictly correct. We should be using the underlying power spectrum, + but in the absence of an estimate of that, this will have to do. + + .. math:: + + r = \sqrt{P} + + .. math:: + + \delta r = \\frac{1}{2 * \sqrt{P}} \delta P + + Parameters + ---------- + powers: iterable + The list of powers used to compute the fractional rms amplitude. + + Returns + ------- + delta_rms: float + The error on the fractional rms amplitude. + """ + nphots = self.nphots + p_err = scipy.stats.chi2(2.0 * self.m).var() * powers / self.m / nphots + + rms = np.sum(powers) / nphots + pow = np.sqrt(rms) + + drms_dp = 1 / (2 * pow) + + sq_sum_err = np.sqrt(np.sum(p_err**2)) + delta_rms = sq_sum_err * drms_dp + return delta_rms
+ + +
+[docs] + def classical_significances(self, threshold=1, trial_correction=False): + """ + Compute the classical significances for the powers in the power + spectrum, assuming an underlying noise distribution that follows a + chi-square distributions with 2M degrees of freedom, where M is the + number of powers averaged in each bin. + + Note that this function will *only* produce correct results when the + following underlying assumptions are fulfilled: + + 1. The power spectrum is Leahy-normalized + 2. There is no source of variability in the data other than the + periodic signal to be determined with this method. This is + important! If there are other sources of (aperiodic) variability in + the data, this method will *not* produce correct results, but + instead produce a large number of spurious false positive + detections! + 3. There are no significant instrumental effects changing the + statistical distribution of the powers (e.g. pile-up or dead time) + + By default, the method produces ``(index,p-values)`` for all powers in + the power spectrum, where index is the numerical index of the power in + question. If a ``threshold`` is set, then only powers with p-values + *below* that threshold with their respective indices. If + ``trial_correction`` is set to ``True``, then the threshold will be + corrected for the number of trials (frequencies) in the power spectrum + before being used. + + Parameters + ---------- + threshold : float, optional, default ``1`` + The threshold to be used when reporting p-values of potentially + significant powers. Must be between 0 and 1. + Default is ``1`` (all p-values will be reported). + + trial_correction : bool, optional, default ``False`` + A Boolean flag that sets whether the ``threshold`` will be + corrected by the number of frequencies before being applied. This + decreases the ``threshold`` (p-values need to be lower to count as + significant). Default is ``False`` (report all powers) though for + any application where `threshold`` is set to something meaningful, + this should also be applied! + + Returns + ------- + pvals : iterable + A list of ``(p-value, index)`` tuples for all powers that have + p-values lower than the threshold specified in ``threshold``. + + """ + if not self.norm == "leahy": + raise ValueError("This method only works on " "Leahy-normalized power spectra!") + + if trial_correction: + ntrial = self.power.shape[0] + else: + ntrial = 1 + + if np.size(self.m) == 1: + # calculate p-values for all powers + # leave out zeroth power since it just encodes the number of + # photons! + pv = pds_probability(self.power, n_summed_spectra=self.m, ntrial=ntrial) + else: + pv = np.array( + [ + pds_probability(power, n_summed_spectra=m, ntrial=ntrial) + for power, m in zip(self.power, self.m) + ] + ) + + # need to add 1 to the indices to make up for the fact that + # we left out the first power above! + indices = np.where(pv < threshold)[0] + + pvals = np.vstack([pv[indices], indices]) + + return pvals
+ + +
+[docs] + def modulation_upper_limit(self, fmin=None, fmax=None, c=0.95): + r""" + Upper limit on a sinusoidal modulation. + + To understand the meaning of this amplitude: if the modulation is + described by: + + ..math:: p = \overline{p} (1 + a * \sin(x)) + + this function returns a. + + If it is a sum of sinusoidal harmonics instead + ..math:: p = \overline{p} (1 + \sum_l a_l * \sin(lx)) + a is equivalent to :math:`\sqrt(\sum_l a_l^2)`. + + See `stingray.stats.power_upper_limit`, + `stingray.stats.amplitude_upper_limit` + for more information. + + The formula used to calculate the upper limit assumes the Leahy + normalization. + If the periodogram is in another normalization, we will internally + convert it to Leahy before calculating the upper limit. + + Parameters + ---------- + fmin: float + The minimum frequency to search (defaults to the first nonzero bin) + + fmax: float + The maximum frequency to search (defaults to the Nyquist frequency) + + Other Parameters + ---------------- + c: float + The confidence value for the upper limit (e.g. 0.95 = 95%) + + Returns + ------- + a: float + The modulation amplitude that could produce P>pmeas with 1 - c + probability. + + Examples + -------- + >>> pds = Powerspectrum() + >>> pds.norm = "leahy" + >>> pds.freq = np.arange(0., 5.) + >>> # Note: this pds has 40 as maximum value between 2 and 5 Hz + >>> pds.power = np.array([100000, 1, 1, 40, 1]) + >>> pds.m = 1 + >>> pds.nphots = 30000 + >>> assert np.isclose( + ... pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99), + ... 0.10164, + ... atol=0.0001) + """ + + pds = self + if self.norm != "leahy": + pds = self.to_norm("leahy") + + freq = pds.freq + fnyq = np.max(freq) + power = pds.power + freq_mask = freq > 0 + if fmin is not None or fmax is not None: + if fmin is not None: + freq_mask[freq < fmin] = 0 + if fmax is not None: + freq_mask[freq > fmax] = 0 + freq = freq[freq_mask] + power = power[freq_mask] + + maximum_val = np.argmax(power) + nyq_ratio = freq[maximum_val] / fnyq + + # I multiply by M because the formulas from Vaughan+94 treat summed + # powers, while here we have averaged powers. + return amplitude_upper_limit( + power[maximum_val] * pds.m, pds.nphots, n=pds.m, c=c, nyq_ratio=nyq_ratio, fft_corr=True + )
+ + +
+[docs] + @staticmethod + def from_time_array( + times, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True + ): + """ + Calculate an average power spectrum from an array of event times. + + Parameters + ---------- + times : `np.array` + Event arrival times. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + """ + + return powerspectrum_from_time_array( + times, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + )
+ + +
+[docs] + @staticmethod + def from_events( + events, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, + ): + """ + Calculate an average power spectrum from an event list. + + Parameters + ---------- + events : `stingray.EventList` + Event list to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. + """ + if gti is None: + gti = events.gti + return powerspectrum_from_events( + events, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + )
+ + +
+[docs] + @staticmethod + def from_stingray_timeseries( + ts, + flux_attr, + error_flux_attr=None, + segment_size=None, + norm="none", + silent=False, + use_common_mean=True, + gti=None, + save_all=False, + ): + """Calculate AveragedPowerspectrum from a time series. + + Parameters + ---------- + ts : `stingray.Timeseries` + Input Time Series + flux_attr : `str` + What attribute of the time series will be used. + + Other parameters + ---------------- + error_flux_attr : `str` + What attribute of the time series will be used as error bar. + segment_size : float + The length, in seconds, of the light curve segments that will be averaged. + Only relevant (and required) for AveragedCrossspectrum + norm : str, default "frac" + The normalization of the periodogram. "abs" is absolute rms, "frac" is + fractional rms, "leahy" is Leahy+83 normalization, and "none" is the + unnormalized periodogram + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or on + the full light curve. This gives different results (Alston+2013). + Here we assume the mean is calculated on the full light curve, but + the user can set ``use_common_mean`` to False to calculate it on a + per-segment basis. + silent : bool, default False + Silence the progress bars + gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], ...] + Good Time intervals. Defaults to the common GTIs from the two input + objects. Could throw errors if these GTIs have overlaps with the + input object GTIs! If you're getting errors regarding your GTIs, + don't use this and only give GTIs to the input objects before + making the cross spectrum. + save_all : bool, default False + Save all intermediate PDSs used for the final average. + """ + return powerspectrum_from_timeseries( + ts, + flux_attr=flux_attr, + error_flux_attr=error_flux_attr, + segment_size=segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + )
+ + +
+[docs] + @staticmethod + def from_lightcurve( + lc, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, + ): + """ + Calculate a power spectrum from a light curve. + + Parameters + ---------- + events : `stingray.Lightcurve` + Light curve to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. + """ + if gti is None: + gti = lc.gti + return powerspectrum_from_lightcurve( + lc, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + )
+ + +
+[docs] + @staticmethod + def from_lc_iterable( + iter_lc, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, + ): + """ + Calculate the average power spectrum of an iterable collection of + light curves. + + Parameters + ---------- + iter_lc : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves. If arrays, use them as counts. + dt : float + The time resolution of the light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only relevant (and required) for + ``AveragedPowerspectrum``. + gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. + """ + + return powerspectrum_from_lc_iterable( + iter_lc, + dt, + segment_size=segment_size, + gti=gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + )
+ + +
+[docs] + def _initialize_from_any_input( + self, + data, + dt=None, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, + ): + """ + Initialize the class, trying to understand the input types. + + The input arguments are the same as ``__init__()``. Based on the type + of ``data``, this method will call the appropriate + ``powerspectrum_from_XXXX`` function, and initialize ``self`` with + the correct attributes. + """ + if isinstance(data, EventList): + spec = powerspectrum_from_events( + data, + dt, + segment_size, + norm=norm.lower(), + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + elif isinstance(data, Lightcurve): + spec = powerspectrum_from_lightcurve( + data, + segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + spec.lc1 = data + elif isinstance(data, (tuple, list)): + if not isinstance(data[0], Lightcurve): # pragma: no cover + raise TypeError(f"Bad inputs to Powerspectrum: {type(data[0])}") + dt = data[0].dt + # This is a list of light curves. + spec = powerspectrum_from_lc_iterable( + data, + dt, + segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + gti=gti, + save_all=save_all, + ) + else: # pragma: no cover + raise TypeError(f"Bad inputs to Powerspectrum: {type(data)}") + + for key, val in spec.__dict__.items(): + setattr(self, key, val) + return
+ + +
+[docs] + def _initialize_empty(self): + """Set all attributes to None.""" + self.freq = None + self.power = None + self.power_err = None + self.unnorm_power = None + self.unnorm_power_err = None + self.df = None + self.dt = None + self.nphots1 = None + self.m = 1 + self.n = None + self.k = 1 + return
+
+ + + +
+[docs] +class AveragedPowerspectrum(AveragedCrossspectrum, Powerspectrum): + type = "powerspectrum" + """ + Make an averaged periodogram from a light curve by segmenting the light + curve, Fourier-transforming each segment and then averaging the + resulting periodograms. + + Parameters + ---------- + data: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object + The light curve data to be Fourier-transformed. + + segment_size: float + The size of each segment to average. Note that if the total + duration of each :class:`Lightcurve` object in lc is not an integer + multiple of the ``segment_size``, then any fraction left-over at the + end of the time series will be lost. + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normalization of the periodogram to be used. + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the power spectrum. + + silent : bool, default False + Do not show a progress bar when generating an averaged cross spectrum. + Useful for the batch execution of many spectra. + + dt: float + The time resolution of the light curve. Only needed when constructing + light curves in the case where data is of :class:EventList. + + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + skip_checks: bool + Skip initial checks, for speed or other reasons (you need to trust your + inputs!). + + Attributes + ---------- + norm: {``leahy`` | ``frac`` | ``abs`` | ``none`` } + The normalization of the periodogram. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + power: numpy.ndarray + The array of normalized powers + + power_err: numpy.ndarray + The uncertainties of ``power``. + An approximation for each bin given by ``power_err= power/sqrt(m)``. + Where ``m`` is the number of power averaged in each bin (by frequency + binning, or averaging power spectra of segments of a light curve). + Note that for a single realization (``m=1``) the error is equal to the + power. + + unnorm_power: numpy.ndarray + The array of unnormalized powers + + unnorm_power_err: numpy.ndarray + The uncertainties of ``unnorm_power``. + + df: float + The frequency resolution. + + m: int + The number of averaged periodograms. + + n: int + The number of data points in the light curve. + + nphots: float + The total number of photons in the light curve. + + cs_all: list of :class:`Powerspectrum` objects + The list of all periodograms used to calculate the average periodogram. + """ + + def __init__( + self, + data=None, + segment_size=None, + norm="frac", + gti=None, + silent=False, + dt=None, + lc=None, + large_data=False, + save_all=False, + skip_checks=False, + use_common_mean=True, + ): + self._type = None + if lc is not None: + warnings.warn( + "The lc keyword is now deprecated. Use data " "instead", DeprecationWarning + ) + # Backwards compatibility: user might have supplied lc instead + if data is None: + data = lc + + good_input = data is not None + if good_input and not skip_checks: + good_input = self.initial_checks( + data1=data, + data2=data, + norm=norm, + gti=gti, + lc1=lc, + lc2=lc, + dt=dt, + segment_size=segment_size, + ) + + norm = norm.lower() + self.norm = norm + self.dt = dt + self.save_all = save_all + self.segment_size = segment_size + self.show_progress = not silent + self.k = 1 + + if not good_input: + return self._initialize_empty() + + if isinstance(data, Generator): + warnings.warn( + "The averaged power spectrum from a generator of " + "light curves pre-allocates the full list of light " + "curves, losing all advantage of lazy loading. If it " + "is important for you, use the " + "AveragedPowerspectrum.from_lc_iterable static " + "method, specifying the sampling time `dt`." + ) + data = list(data) + + return self._initialize_from_any_input( + data, + dt=dt, + segment_size=segment_size, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + ) + +
+[docs] + def initial_checks(self, *args, **kwargs): + return AveragedCrossspectrum.initial_checks(self, *args, **kwargs)
+
+ + + +
+[docs] +class DynamicalPowerspectrum(DynamicalCrossspectrum): + type = "powerspectrum" + """ + Create a dynamical power spectrum, also often called a *spectrogram*. + + This class will divide a :class:`Lightcurve` object into segments of + length ``segment_size``, create a power spectrum for each segment and store + all powers in a matrix as a function of both time (using the mid-point of + each segment) and frequency. + + This is often used to trace changes in period of a (quasi-)periodic signal + over time. + + Parameters + ---------- + lc : :class:`stingray.Lightcurve` or :class:`stingray.EventList` object + The time series or event list of which the dynamical power spectrum is + to be calculated. If :class:`stingray.EventList`, ``dt`` must be specified as well. + + segment_size : float, default 1 + Length of the segment of light curve, default value is 1 (in whatever + units the ``time`` array in the :class:`Lightcurve`` object uses). + + norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" + The normaliation of the periodogram to be used. + + Other Parameters + ---------------- + gti: 2-d float array + ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. + This choice overrides the GTIs in the single light curves. Use with + care, especially if these GTIs have overlaps with the input + object GTIs! If you're getting errors regarding your GTIs, don't + use this and only give GTIs to the input object before making + the power spectrum. + + sample_time: float + Compulsory for input :class:`stingray.EventList` data. The time resolution of the + lightcurve that is created internally from the input event lists. Drives the + Nyquist frequency. + + Attributes + ---------- + segment_size: float + The size of each segment to average. Note that if the total + duration of each input object in lc is not an integer multiple + of the ``segment_size``, then any fraction left-over at the end of the + time series will be lost. + + dyn_ps : np.ndarray + The matrix of normalized squared absolute values of Fourier + amplitudes. The axis are given by the ``freq`` + and ``time`` attributes. + + norm: {``leahy`` | ``frac`` | ``abs`` | ``none``} + The normalization of the periodogram. + + freq: numpy.ndarray + The array of mid-bin frequencies that the Fourier transform samples. + + time: numpy.ndarray + The array of mid-point times of each interval used for the dynamical + power spectrum. + + df: float + The frequency resolution. + + dt: float + The time resolution of the dynamical spectrum. It is **not** the time resolution of the + input light curve. It is the integration time of each line of the dynamical power + spectrum (typically, an integer multiple of ``segment_size``). + + m: int + The number of averaged cross spectra. + """ + + def __init__(self, lc=None, segment_size=None, norm="frac", gti=None, sample_time=None): + self.segment_size = segment_size + self.sample_time = sample_time + self.gti = gti + self.norm = norm + + if segment_size is None and lc is None: + self._initialize_empty() + self.dyn_ps = None + return + + if segment_size is None or lc is None: + raise TypeError("lc and segment_size must all be specified") + + if isinstance(lc, EventList) and sample_time is None: + raise ValueError("To pass an input event lists, please specify sample_time") + elif isinstance(lc, Lightcurve): + sample_time = lc.dt + if segment_size > lc.tseg: + raise ValueError( + "Length of the segment is too long to create " + "any segments of the light curve!" + ) + if segment_size < 2 * sample_time: + raise ValueError("Length of the segment is too short to form a light curve!") + + self._make_matrix(lc) + +
+[docs] + def shift_and_add(self, f0_list, nbins=100, rebin=None): + """Shift-and-add the dynamical power spectrum. + + This is the basic operation for the shift-and-add operation used to track + kHz QPOs in X-ray binaries (e.g. Méndez et al. 1998, ApJ, 494, 65). + + Parameters + ---------- + freqs : np.array + Array of frequencies, the same for all powers. Must be sorted and on a uniform + grid. + power_list : list of np.array + List of power spectra. Each power spectrum must have the same length + as the frequency array. + f0_list : list of float + List of central frequencies + + Other parameters + ---------------- + nbins : int, default 100 + Number of bins to extract + rebin : int, default None + Rebin the final spectrum by this factor. At the moment, the rebinning + is linear. + + Returns + ------- + output: :class:`AveragedPowerspectrum` + The final averaged power spectrum. + + Examples + -------- + >>> power_list = [[2, 5, 2, 2, 2], [1, 1, 5, 1, 1], [3, 3, 3, 5, 3]] + >>> power_list = np.array(power_list).T + >>> freqs = np.arange(5) * 0.1 + >>> f0_list = [0.1, 0.2, 0.3, 0.4] + >>> dps = DynamicalPowerspectrum() + >>> dps.dyn_ps = power_list + >>> dps.freq = freqs + >>> dps.df = 0.1 + >>> dps.m = 1 + >>> output = dps.shift_and_add(f0_list, nbins=5) + >>> assert isinstance(output, AveragedPowerspectrum) + >>> assert np.array_equal(output.m, [2, 3, 3, 3, 2]) + >>> assert np.array_equal(output.power, [2. , 2. , 5. , 2. , 1.5]) + >>> assert np.allclose(output.freq, [0.05, 0.15, 0.25, 0.35, 0.45]) + """ + return super().shift_and_add( + f0_list, nbins=nbins, output_obj_type=AveragedPowerspectrum, rebin=rebin + )
+ + + def _make_matrix(self, lc): + """ + Create a matrix of powers for each time step and each frequency step. + + Time increases with row index, frequency with column index. + + Parameters + ---------- + lc : :class:`Lightcurve` object + The :class:`Lightcurve` object from which to generate the dynamical + power spectrum. + """ + avg = AveragedPowerspectrum( + lc, + dt=self.sample_time, + segment_size=self.segment_size, + norm=self.norm, + gti=self.gti, + save_all=True, + ) + conv = avg.cs_all / avg.unnorm_cs_all + self.unnorm_conversion = np.nanmean(conv) + self.dyn_ps = np.array(avg.cs_all).T + self.freq = avg.freq + current_gti = avg.gti + + tstart, _ = time_intervals_from_gtis(current_gti, self.segment_size) + + self.time = tstart + 0.5 * self.segment_size + self.df = avg.df + self.dt = self.segment_size + self.meanrate = avg.nphots / avg.n / avg.dt + self.nphots = avg.nphots + self.m = 1 + +
+[docs] + def power_colors( + self, + freq_edges=[1 / 256, 1 / 32, 0.25, 2.0, 16.0], + freqs_to_exclude=None, + poisson_power=None, + ): + """ + Return the power colors of the dynamical power spectrum. + + Parameters + ---------- + freq_edges: iterable + The edges of the frequency bins to be used for the power colors. + + freqs_to_exclude : 1-d or 2-d iterable, optional, default None + The ranges of frequencies to exclude from the calculation of the power color. + For example, the frequencies containing strong QPOs. + A 1-d iterable should contain two values for the edges of a single range. (E.g. + ``[0.1, 0.2]``). ``[[0.1, 0.2], [3, 4]]`` will exclude the ranges 0.1-0.2 Hz and + 3-4 Hz. + + poisson_level : float or iterable, optional + Defaults to the theoretical Poisson noise level (e.g. 2 for Leahy normalization). + The Poisson noise level of the power spectrum. If iterable, it should have the same + length as ``frequency``. (This might apply to the case of a power spectrum with a + strong dead time distortion) + + Returns + ------- + pc0: np.ndarray + pc0_err: np.ndarray + pc1: np.ndarray + pc1_err: np.ndarray + The power colors for each spectrum and their respective errors + """ + if poisson_power is None: + poisson_power = poisson_level( + norm=self.norm, + meanrate=self.meanrate, + n_ph=self.nphots, + ) + + return super().power_colors( + freq_edges=freq_edges, + freqs_to_exclude=freqs_to_exclude, + poisson_power=poisson_power, + )
+
+ + + +def powerspectrum_from_time_array( + times, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, +): + """ + Calculate a power spectrum from an array of event times. + + Parameters + ---------- + times : `np.array` + Event arrival times. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + table = avg_pds_from_timeseries( + times, + gti, + segment_size, + dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + return_subcs=save_all, + ) + + return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) + + +def powerspectrum_from_events( + events, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, +): + """ + Calculate a power spectrum from an event list. + + Parameters + ---------- + events : `stingray.EventList` + Event list to be analyzed. + dt : float + The time resolution of the intermediate light curves + (sets the Nyquist frequency) + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + if gti is None: + gti = events.gti + return powerspectrum_from_time_array( + events.time, + dt, + segment_size, + gti, + norm=norm, + silent=silent, + use_common_mean=use_common_mean, + save_all=save_all, + ) + + +def powerspectrum_from_lightcurve( + lc, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False +): + """ + Calculate a power spectrum from a light curve + + Parameters + ---------- + lc : `stingray.Lightcurve` + Light curve to be analyzed. + + Other parameters + ---------------- + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + err = None + if lc.err_dist == "gauss": + err = lc.counts_err + if gti is None: + gti = lc.gti + + table = avg_pds_from_timeseries( + lc.time, + gti, + segment_size, + lc.dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + fluxes=lc.counts, + errors=err, + return_subcs=save_all, + ) + + return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) + + +def powerspectrum_from_timeseries( + ts, + flux_attr, + error_flux_attr=None, + segment_size=None, + norm="none", + silent=False, + use_common_mean=True, + gti=None, + save_all=False, +): + """Calculate power spectrum from a time series + + Parameters + ---------- + ts : `stingray.StingrayTimeseries` + Input time series + flux_attr : `str` + What attribute of the time series will be used. + + Other parameters + ---------------- + error_flux_attr : `str` + What attribute of the time series will be used as error bar. + segment_size : float + The length, in seconds, of the light curve segments that will be + averaged. Only required (and used) for ``AveragedPowerspectrum``. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + This is likely to fill up your RAM on medium-sized datasets, and to + slow down the computation when rebinning. + + Returns + ------- + spec : `AveragedCrossspectrum` or `Crossspectrum` + The output cross spectrum. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + if gti is None: + gti = ts.gti + + err = None + if error_flux_attr is not None: + err = getattr(ts, error_flux_attr) + + results = avg_pds_from_timeseries( + ts.time, + gti, + segment_size, + ts.dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + fluxes=getattr(ts, flux_attr), + errors=err, + return_subcs=save_all, + ) + + return _create_powerspectrum_from_result_table(results, force_averaged=force_averaged) + + +def powerspectrum_from_lc_iterable( + iter_lc, + dt, + segment_size=None, + gti=None, + norm="frac", + silent=False, + use_common_mean=True, + save_all=False, +): + """ + Calculate an average power spectrum from an iterable collection of light + curves. + + Parameters + ---------- + iter_lc : iterable of `stingray.Lightcurve` objects or `np.array` + Light curves. If arrays, use them as counts. + dt : float + The time resolution of the light curves + (sets the Nyquist frequency). + + Other parameters + ---------------- + segment_size : float, default None + The length, in seconds, of the light curve segments that will be + averaged. If not ``None``, it will be used to check the segment size of + the output. + gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` + Additional, optional Good Time intervals that get intersected with + the GTIs of the input object. Can cause errors if there are + overlaps between these GTIs and the input object GTIs. If that + happens, assign the desired GTIs to the input object. + norm : str, default "frac" + The normalization of the periodogram. `abs` is absolute rms, `frac` + is fractional rms, `leahy` is Leahy+83 normalization, and `none` is + the unnormalized periodogram. + use_common_mean : bool, default True + The mean of the light curve can be estimated in each interval, or + on the full light curve. This gives different results + (Alston+2013). By default, we assume the mean is calculated on the + full light curve, but the user can set ``use_common_mean`` to False + to calculate it on a per-segment basis. + silent : bool, default False + Silence the progress bars. + save_all : bool, default False + Save all intermediate PDSs used for the final average. Use with care. + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + force_averaged = segment_size is not None + # Suppress progress bar for single periodogram + silent = silent or (segment_size is None) + + common_gti = gti + + def iterate_lc_counts(iter_lc): + for lc in iter_lc: + if hasattr(lc, "counts"): + n_bin = np.rint(segment_size / lc.dt).astype(int) + + gti = lc.gti + if common_gti is not None: + gti = cross_two_gtis(common_gti, lc.gti) + err = None + if lc.err_dist == "gauss": + err = lc.counts_err + + flux_iterable = get_flux_iterable_from_segments( + lc.time, gti, segment_size, n_bin, fluxes=lc.counts, errors=err + ) + for out in flux_iterable: + yield out + elif isinstance(lc, Iterable): + yield lc + else: + raise TypeError( + "The inputs to `powerspectrum_from_lc_iterable`" + " must be Lightcurve objects or arrays" + ) + + table = avg_pds_from_iterable( + iterate_lc_counts(iter_lc), + dt, + norm=norm, + use_common_mean=use_common_mean, + silent=silent, + return_subcs=save_all, + ) + return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) + + +def _create_powerspectrum_from_result_table(table, force_averaged=False): + """ + Copy the columns and metadata from the results of + ``stingray.fourier.avg_pds_from_XX`` functions into + `AveragedPowerspectrum` or `Powerspectrum` objects. + + By default, allocates a Powerspectrum object if the number of + averaged spectra is 1, otherwise an AveragedPowerspectrum. + If the user specifies ``force_averaged=True``, it always allocates + an AveragedPowerspectrum. + + Parameters + ---------- + table : `astropy.table.Table` + results of `avg_cs_from_iterables` or `avg_cs_from_iterables_quick` + + Other parameters + ---------------- + force_averaged : bool, default False + + Returns + ------- + spec : `AveragedPowerspectrum` or `Powerspectrum` + The output periodogram. + """ + if table.meta["m"] > 1 or force_averaged: + cs = AveragedPowerspectrum() + else: + cs = Powerspectrum() + + cs.freq = np.array(table["freq"]) + cs.power = np.array(table["power"]) + cs.unnorm_power = np.array(table["unnorm_power"]) + + for attr, val in table.meta.items(): + setattr(cs, attr, val) + + if "subcs" in table.meta: + cs.cs_all = np.array(table.meta["subcs"]) + cs.unnorm_cs_all = np.array(table.meta["unnorm_subcs"]) + + cs.err_dist = "poisson" + if hasattr(cs, "variance") and cs.variance is not None: + cs.err_dist = "gauss" + + cs.power_err = cs.power / np.sqrt(cs.m) + cs.unnorm_power_err = cs.unnorm_power / np.sqrt(cs.m) + cs.nphots1 = cs.nphots + return cs +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/pulse/modeling.html b/_modules/stingray/pulse/modeling.html new file mode 100644 index 000000000..ff25f4349 --- /dev/null +++ b/_modules/stingray/pulse/modeling.html @@ -0,0 +1,314 @@ + + + + + + + stingray.pulse.modeling — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.pulse.modeling

+import numpy as np
+from astropy.modeling import models, fitting
+
+
+__all__ = ["sinc_square_model", "sinc_square_deriv", "fit_sinc", "fit_gaussian", "SincSquareModel"]
+
+
+def sinc(x):
+    """
+    Calculate a sinc function.
+
+    sinc(x)=sin(x)/x
+
+    Parameters
+    ----------
+    x : array-like
+
+    Returns
+    -------
+    values : array-like
+    """
+    values = np.sinc(x / np.pi)
+    return values
+
+
+
+[docs] +def sinc_square_model(x, amplitude=1.0, mean=0.0, width=1.0): + """ + Calculate a sinc-squared function. + + (sin(x)/x)**2 + + Parameters + ---------- + x: array-like + + Other Parameters + ---------------- + amplitude : float + the value for x=mean + mean : float + mean of the sinc function + width : float + width of the sinc function + + Returns + ------- + sqvalues : array-like + Return square of sinc function + + Examples + -------- + >>> assert np.isclose(sinc_square_model(0, amplitude=2.), 2.0) + """ + sqvalues = amplitude * sinc((x - mean) / width) ** 2 + return sqvalues
+ + + +
+[docs] +def sinc_square_deriv(x, amplitude=1.0, mean=0.0, width=1.0): + """ + Calculate partial derivatives of sinc-squared. + + Parameters + ---------- + x: array-like + + Other Parameters + ---------------- + amplitude : float + the value for x=mean + mean : float + mean of the sinc function + width : float + width of the sinc function + + Returns + ------- + d_amplitude : array-like + partial derivative of sinc-squared function + with respect to the amplitude + d_mean : array-like + partial derivative of sinc-squared function + with respect to the mean + d_width : array-like + partial derivative of sinc-squared function + with respect to the width + + Examples + -------- + >>> assert np.allclose(sinc_square_deriv(0, amplitude=2.), [1., 0., 0.]) + """ + x_is_zero = x == mean + + d_x = ( + 2 + * amplitude + * sinc((x - mean) / width) + * (x * np.cos((x - mean) / width) - np.sin((x - mean) / width)) + / ((x - mean) / width) ** 2 + ) + d_x = np.asanyarray(d_x) + d_amplitude = sinc((x - mean) / width) ** 2 + d_x[x_is_zero] = 0 + + d_mean = d_x * (-1 / width) + d_width = d_x * (-(x - mean) / (width) ** 2) + + return [d_amplitude, d_mean, d_width]
+ + + +_SincSquareModel = models.custom_model(sinc_square_model, fit_deriv=sinc_square_deriv) + + +
+[docs] +class SincSquareModel(_SincSquareModel): + def __reduce__(cls): + members = dict(cls.__dict__) + return (type(cls), (), members)
+ + + +
+[docs] +def fit_sinc(x, y, amp=1.5, mean=0.0, width=1.0, tied={}, fixed={}, bounds={}, obs_length=None): + """ + Fit a sinc function to x,y values. + + Parameters + ---------- + x : array-like + y : array-like + + Other Parameters + ---------------- + amp : float + The initial value for the amplitude + + mean : float + The initial value for the mean of the sinc + + obs_length : float + The length of the observation. Default None. If it's defined, it + fixes width to 1/(pi*obs_length), as expected from epoch folding + periodograms + + width : float + The initial value for the width of the sinc. Only valid if + obs_length is 0 + + tied : dict + + fixed : dict + + bounds : dict + Parameters to be passed to the [astropy models]_ + + Returns + ------- + sincfit : function + The best-fit function, accepting x as input + and returning the best-fit model as output + + References + ---------- + .. [astropy models] http://docs.astropy.org/en/stable/api/astropy.modeling.functional_models.Gaussian1D.html + """ + if obs_length is not None: + width = 1 / (np.pi * obs_length) + fixed["width"] = True + + sinc_in = SincSquareModel( + amplitude=amp, mean=mean, width=width, tied=tied, fixed=fixed, bounds=bounds + ) + fit_s = fitting.LevMarLSQFitter() + sincfit = fit_s(sinc_in, x, y) + return sincfit
+ + + +
+[docs] +def fit_gaussian(x, y, amplitude=1.5, mean=0.0, stddev=2.0, tied={}, fixed={}, bounds={}): + """ + Fit a gaussian function to x,y values. + + Parameters + ---------- + x : array-like + y : array-like + + Other Parameters + ---------------- + amplitude : float + The initial value for the amplitude + mean : float + The initial value for the mean of the gaussian function + stddev : float + The initial value for the standard deviation of the gaussian function + tied : dict + fixed : dict + bounds : dict + Parameters to be passed to the [astropy models]_ + + Returns + ------- + g : function + The best-fit function, accepting x as input + and returning the best-fit model as output + """ + g_in = models.Gaussian1D( + amplitude=amplitude, mean=mean, stddev=stddev, tied=tied, fixed=fixed, bounds=bounds + ) + fit_g = fitting.LevMarLSQFitter() + g = fit_g(g_in, x, y) + return g
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/pulse/pulsar.html b/_modules/stingray/pulse/pulsar.html new file mode 100644 index 000000000..fccfe7b0d --- /dev/null +++ b/_modules/stingray/pulse/pulsar.html @@ -0,0 +1,1109 @@ + + + + + + + stingray.pulse.pulsar — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.pulse.pulsar

+"""
+Basic pulsar-related functions and statistics.
+"""
+
+import functools
+import math
+from collections.abc import Iterable
+import warnings
+from scipy.optimize import minimize, basinhopping
+import scipy.stats
+import numpy as np
+import matplotlib.pyplot as plt
+
+from .fftfit import fftfit as taylor_fftfit
+from ..utils import simon, jit
+from . import HAS_PINT, get_model, toa
+
+
+__all__ = [
+    "pulse_phase",
+    "phase_exposure",
+    "fold_events",
+    "ef_profile_stat",
+    "pdm_profile_stat",
+    "z_n",
+    "fftfit",
+    "get_TOA",
+    "z_n_binned_events",
+    "z_n_gauss",
+    "z_n_events",
+    "htest",
+    "p_to_f",
+    "z_n_binned_events_all",
+    "z_n_gauss_all",
+    "z_n_events_all",
+    "get_orbital_correction_from_ephemeris_file",
+]
+
+
+def _default_value_if_no_key(dictionary, key, default):
+    try:
+        return dictionary[key]
+    except:
+        return default
+
+
+
+[docs] +def p_to_f(*period_derivatives): + """Convert periods into frequencies, and vice versa. + + For now, limited to third derivative. Raises when a + fourth derivative is passed. + + Parameters + ---------- + p, pdot, pddot, ... : floats + period derivatives, starting from zeroth and in + increasing order + + Examples + -------- + >>> assert p_to_f() == [] + >>> assert np.allclose(p_to_f(1), [1]) + >>> assert np.allclose(p_to_f(1, 2), [1, -2]) + >>> assert np.allclose(p_to_f(1, 2, 3), [1, -2, 5]) + >>> assert np.allclose(p_to_f(1, 2, 3, 4), [1, -2, 5, -16]) + """ + nder = len(period_derivatives) + if nder == 0: + return [] + fder = np.zeros_like(period_derivatives) + p = period_derivatives[0] + fder[0] = 1 / p + + if nder > 1: + pd = period_derivatives[1] + fder[1] = -1 / p**2 * pd + + if nder > 2: + pdd = period_derivatives[2] + fder[2] = 2 / p**3 * pd**2 - 1 / p**2 * pdd + + if nder > 3: + pddd = period_derivatives[3] + fder[3] = -6 / p**4 * pd**3 + 6 / p**3 * pd * pdd - 1 / p**2 * pddd + if nder > 4: + warnings.warn("Derivatives above third are not supported") + + return fder
+ + + +
+[docs] +def pulse_phase(times, *frequency_derivatives, **opts): + """ + Calculate pulse phase from the frequency and its derivatives. + + Parameters + ---------- + times : array of floats + The times at which the phase is calculated + *frequency_derivatives: floats + List of derivatives in increasing order, starting from zero. + + Other Parameters + ---------------- + ph0 : float + The starting phase + to_1 : bool, default True + Only return the fractional part of the phase, normalized from 0 to 1 + + Returns + ------- + phases : array of floats + The absolute pulse phase + + """ + + ph0 = opts.pop("ph0", 0) + to_1 = opts.pop("to_1", True) + ph = ph0 + + for i_f, f in enumerate(frequency_derivatives): + ph += 1 / math.factorial(i_f + 1) * times ** (i_f + 1) * f + + if to_1: + ph -= np.floor(ph) + return ph
+ + + +
+[docs] +def phase_exposure(start_time, stop_time, period, nbin=16, gti=None): + """Calculate the exposure on each phase of a pulse profile. + + Parameters + ---------- + start_time, stop_time : float + Starting and stopping time (or phase if ``period==1``) + period : float + The pulse period (if 1, equivalent to phases) + + Other parameters + ---------------- + nbin : int, optional, default 16 + The number of bins in the profile + gti : [[gti00, gti01], [gti10, gti11], ...], optional, default None + Good Time Intervals + + Returns + ------- + expo : array of floats + The normalized exposure of each bin in the pulse profile (1 is the + highest exposure, 0 the lowest) + """ + if gti is None: + gti = np.array([[start_time, stop_time]]) + + # Use precise floating points ------------- + start_time = np.longdouble(start_time) + stop_time = np.longdouble(stop_time) + period = np.longdouble(period) + gti = np.array(gti, dtype=np.longdouble) + # ----------------------------------------- + + expo = np.zeros(nbin) + phs = np.linspace(0, 1, nbin + 1) + phs = np.array(list(zip(phs[0:-1], phs[1:]))) + + # Discard gtis outside [start, stop] + good = np.logical_and(gti[:, 0] < stop_time, gti[:, 1] > start_time) + gti = gti[good] + + for g in gti: + g0 = g[0] + g1 = g[1] + if g0 < start_time: + # If the start of the fold is inside a gti, start from there + g0 = start_time + if g1 > stop_time: + # If the end of the fold is inside a gti, end there + g1 = stop_time + length = g1 - g0 + # How many periods inside this length? + nraw = length / period + # How many integer periods? + nper = nraw.astype(int) + + # First raw exposure: the number of periods + expo += nper / nbin + + # FRACTIONAL PART ================= + # What remains is additional exposure for part of the profile. + start_phase = np.fmod(g0 / period, 1) + end_phase = nraw - nper + start_phase + + limits = [[start_phase, end_phase]] + # start_phase is always < 1. end_phase not always. In this case... + if end_phase > 1: + limits = [[0, end_phase - 1], [start_phase, 1]] + + for l in limits: + l0 = l[0] + l1 = l[1] + # Discards bins untouched by these limits + goodbins = np.logical_and(phs[:, 0] <= l1, phs[:, 1] >= l0) + idxs = np.arange(len(phs), dtype=int)[goodbins] + for i in idxs: + start = np.max([phs[i, 0], l0]) + stop = np.min([phs[i, 1], l1]) + w = stop - start + expo[i] += w + + return expo / np.max(expo)
+ + + +
+[docs] +def fold_events(times, *frequency_derivatives, **opts): + """Epoch folding with exposure correction. + + By default, the keyword `times` accepts a list of + unbinned photon arrival times. If the input data is + a (binned) light curve, then `times` will contain the + time stamps of the observation, and `weights` should + be set to the corresponding fluxes or counts. + + Parameters + ---------- + times : array of floats + Photon arrival times, or, if `weights` is set, + time stamps of a light curve. + + f, fdot, fddot... : float + The frequency and any number of derivatives. + + Other Parameters + ---------------- + nbin : int, optional, default 16 + The number of bins in the pulse profile + + weights : float or array of floats, optional + The weights of the data. It can either be specified as a single value + for all points, or an array with the same length as ``time`` + + gti : [[gti0_0, gti0_1], [gti1_0, gti1_1], ...], optional + Good time intervals + + ref_time : float, optional, default 0 + Reference time for the timing solution + + expocorr : bool, default False + Correct each bin for exposure (use when the period of the pulsar is + comparable to that of GTIs) + + mode : str, ["ef", "pdm"], default "ef" + Whether to calculate the epoch folding or phase dispersion + minimization folded profile. For "ef", it calculates the (weighted) + sum of the data points in each phase bin, for "pdm", the variance + in each phase bin + + Returns + ------- + phase_bins : array of floats + The phases corresponding to the pulse profile + + profile : array of floats + The pulse profile + + profile_err : array of floats + The uncertainties on the pulse profile + """ + + mode = opts.pop("mode", "ef") + nbin = opts.pop("nbin", 16) + weights = opts.pop("weights", 1) + # If no key is passed, *or gti is None*, defaults to the + # initial and final event + gti = opts.pop("gti", None) + if gti is None: + gti = [[times[0], times[-1]]] + # Be safe if gtis are a list + gti = np.asanyarray(gti) + ref_time = opts.pop("ref_time", 0) + expocorr = opts.pop("expocorr", False) + + if opts: + raise ValueError( + f"Unidentified keyword(s) to fold_events: {', '.join([k for k in opts.keys()])} \n Please refer to the description of the function for optional parameters." + ) + + if not isinstance(weights, Iterable): + weights *= np.ones(len(times)) + + gti = gti - ref_time + times = times - ref_time + # This dt has not the same meaning as in the Lightcurve case. + # it's just to define stop_time as a meaningful value after + # the last event. + dt = np.abs(times[1] - times[0]) + start_time = times[0] + stop_time = times[-1] + dt + + phases = pulse_phase(times, *frequency_derivatives, to_1=True) + gti_phases = pulse_phase(gti, *frequency_derivatives, to_1=False) + start_phase, stop_phase = pulse_phase( + np.array([start_time, stop_time]), *frequency_derivatives, to_1=False + ) + + if mode == "ef": + raw_profile, bins = np.histogram(phases, bins=np.linspace(0, 1, nbin + 1), weights=weights) + # TODO: this is wrong. Need to extend this to non-1 weights + raw_profile_err = np.sqrt(raw_profile) + + if expocorr: + expo_norm = phase_exposure(start_phase, stop_phase, 1, nbin, gti=gti_phases) + simon("For exposure != 1, the uncertainty might be incorrect") + + else: + expo_norm = 1 + + raw_profile = raw_profile / expo_norm + raw_profile_err = raw_profile_err / expo_norm + + elif mode == "pdm": + if np.allclose(weights, 1.0): + raise ValueError( + "Can only calculate PDM for binned light curves!" + + "`weights` attribute must be set to fluxes!" + ) + + raw_profile, bins, bin_idx = scipy.stats.binned_statistic( + phases, weights, statistic=np.var, bins=np.linspace(0, 1, nbin + 1) + ) + + # I need the variance uncorrected for the number of data points in each + # bin, so I need to find that first, and then multiply + _, bincounts = np.unique(bin_idx, return_counts=True) + raw_profile = raw_profile * bincounts + + # dummy array for the error, which we don't have for the variance + raw_profile_err = np.zeros_like(raw_profile) + + else: + raise ValueError( + "mode can only be `ef` for Epoch Folding or " + + "`pdm` for Phase Dispersion Minimization!" + ) + + return bins[:-1] + np.diff(bins) / 2, raw_profile, raw_profile_err
+ + + +
+[docs] +def ef_profile_stat(profile, err=None): + """Calculate the epoch folding statistics \'a la Leahy et al. (1983). + + Parameters + ---------- + profile : array + The pulse profile + + Other Parameters + ---------------- + err : float or array + The uncertainties on the pulse profile + + Returns + ------- + stat : float + The epoch folding statistics + """ + mean = np.mean(profile) + if err is None: + err = np.sqrt(mean) + return np.sum((profile - mean) ** 2 / err**2)
+ + + +
+[docs] +def pdm_profile_stat(profile, sample_var, nsample): + """Calculate the phase dispersion minimization + statistic following Stellingwerf (1978) + + Parameters + ---------- + profile : array + The PDM pulse profile (variance as a function + of phase) + + sample_var : float + The total population variance of the sample + + nsample : int + The number of time bins in the initial time + series. + + Returns + ------- + stat : float + The epoch folding statistics + """ + s2 = np.sum(profile) / (nsample - len(profile)) + stat = s2 / sample_var + return stat
+ + + +@functools.lru_cache(maxsize=128) +def _cached_sin_harmonics(nbin, z_n_n): + """Cached sine values corresponding to each of the nbin bins. + + Parameters + ---------- + nbin : int + Number of bins + z_n_n : int + The number of harmonics (n) in the Z^2_n search + """ + dph = 1.0 / nbin + twopiphases = np.pi * 2 * np.arange(dph / 2, 1, dph) + cached_sin = np.zeros(z_n_n * nbin) + for i in range(z_n_n): + cached_sin[i * nbin : (i + 1) * nbin] = np.sin(twopiphases) + return cached_sin + + +@functools.lru_cache(maxsize=128) +def _cached_cos_harmonics(nbin, z_n_n): + """Cached cosine values corresponding to each of the nbin bins. + + Parameters + ---------- + nbin : int + Number of bins + z_n_n : int + The number of harmonics (n) in the Z^2_n search + """ + dph = 1.0 / nbin + twopiphases = np.pi * 2 * np.arange(dph / 2, 1, dph) + cached_cos = np.zeros(z_n_n * nbin) + for i in range(z_n_n): + cached_cos[i * nbin : (i + 1) * nbin] = np.cos(twopiphases) + return cached_cos + + +@jit(nopython=True) +def _z_n_fast_cached_sums_unnorm(prof, ks, cached_sin, cached_cos): + """Calculate the unnormalized Z^2_k, for (k=1,.. n), of a pulsed profile. + + Parameters + ---------- + prof : :class:`numpy.array` + The pulsed profile + ks : :class:`numpy.array` of int + The harmonic numbers, from 1 to n + cached_sin : :class:`numpy.array` + Cached sine values for each phase bin in the profile + cached_cos : :class:`numpy.array` + Cached cosine values for each phase bin in the profile + """ + + all_zs = np.zeros(ks.size) + N = prof.size + + total_sum = 0 + for k in ks: + local_z = ( + np.sum(cached_cos[: N * k : k] * prof) ** 2 + + np.sum(cached_sin[: N * k : k] * prof) ** 2 + ) + total_sum += local_z + all_zs[k - 1] = total_sum + + return all_zs + + +
+[docs] +def z_n_binned_events_all(profile, nmax=20): + """Z^2_n statistic for multiple harmonics and binned events + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile (containing the number of + photons falling in each pulse bin) + n : int + Number of harmonics, including the fundamental + + Returns + ------- + ks : list of ints + Harmonic numbers, from 1 to nmax (included) + z2_n : float + The value of the statistic for all ks + """ + cached_sin = _cached_sin_harmonics(profile.size, nmax) + cached_cos = _cached_cos_harmonics(profile.size, nmax) + ks = np.arange(1, nmax + 1, dtype=int) + + total = np.sum(profile) + if total == 0: + return ks, np.zeros(nmax) + all_zs = _z_n_fast_cached_sums_unnorm(profile, ks, cached_sin, cached_cos) + + return ks, all_zs * 2 / total
+ + + +
+[docs] +def z_n_gauss_all(profile, err, nmax=20): + """Z^2_n statistic for n harmonics and normally-distributed profiles + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile + err : float + The (assumed constant) uncertainty on the flux in each bin. + nmax : int + Maximum number of harmonics, including the fundamental + + Returns + ------- + ks : list of ints + Harmonic numbers, from 1 to nmax (included) + z2_n : list of floats + The value of the statistic for all ks + """ + cached_sin = _cached_sin_harmonics(profile.size, nmax) + cached_cos = _cached_cos_harmonics(profile.size, nmax) + ks = np.arange(1, nmax + 1, dtype=int) + + all_zs = _z_n_fast_cached_sums_unnorm(profile, ks, cached_sin, cached_cos) + + return ks, all_zs * (2 / profile.size / err**2)
+ + + +
+[docs] +@jit(nopython=True) +def z_n_events_all(phase, nmax=20): + """Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2. + + Parameters + ---------- + phase : array of floats + The phases of the events + n : int, default 2 + Number of harmonics, including the fundamental + + Returns + ------- + ks : list of ints + Harmonic numbers, from 1 to nmax (included) + z2_n : float + The Z^2_n statistic for all ks + """ + all_zs = np.zeros(nmax) + ks = np.arange(1, nmax + 1) + nphot = phase.size + + total_sum = 0 + phase = phase * 2 * np.pi + + for k in ks: + local_z = np.sum(np.cos(k * phase)) ** 2 + np.sum(np.sin(k * phase)) ** 2 + total_sum += local_z + all_zs[k - 1] = total_sum + + return ks, 2 / nphot * all_zs
+ + + +
+[docs] +def z_n_binned_events(profile, n): + """Z^2_n statistic for pulse profiles from binned events + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile (containing the number of + photons falling in each pulse bin) + n : int + Number of harmonics, including the fundamental + + Returns + ------- + z2_n : float + The value of the statistic + """ + _, all_zs = z_n_binned_events_all(profile, nmax=n) + return all_zs[-1]
+ + + +
+[docs] +def z_n_gauss(profile, err, n): + """Z^2_n statistic for normally-distributed profiles + + See Bachetti+2021, arXiv:2012.11397 + + Parameters + ---------- + profile : array of floats + The folded pulse profile + err : float + The (assumed constant) uncertainty on the flux in each bin. + n : int + Number of harmonics, including the fundamental + + Returns + ------- + z2_n : float + The value of the statistic + """ + _, all_zs = z_n_gauss_all(profile, err, nmax=n) + return all_zs[-1]
+ + + +
+[docs] +def z_n_events(phase, n): + """Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2. + + Parameters + ---------- + phase : array of floats + The phases of the events + n : int, default 2 + Number of harmonics, including the fundamental + + Returns + ------- + z2_n : float + The Z^2_n statistic + """ + ks, all_zs = z_n_events_all(phase, nmax=n) + return all_zs[-1]
+ + + +
+[docs] +def z_n(data, n, datatype="events", err=None, norm=None): + """Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2. + + If datatype is "binned" or "gauss", uses the formulation from + Bachetti+2021, ApJ, arxiv:2012.11397 + + Parameters + ---------- + data : array of floats + Phase values or binned flux values + n : int, default 2 + Number of harmonics, including the fundamental + + Other Parameters + ---------------- + datatype : str + The data type: "events" if phase values between 0 and 1, + "binned" if folded pulse profile from photons, "gauss" if + folded pulse profile with normally-distributed fluxes + err : float + The uncertainty on the pulse profile fluxes (required for + datatype="gauss", ignored otherwise) + norm : float + For backwards compatibility; if norm is not None, it is + substituted to ``data``, and data is ignored. This raises + a DeprecationWarning + + Returns + ------- + z2_n : float + The Z^2_n statistics of the events. + """ + data = np.asanyarray(data) + + if norm is not None: + warnings.warn( + "The use of ``z_n(phase, norm=profile)`` is deprecated. Use " + "``z_n(profile, datatype='binned')`` instead", + DeprecationWarning, + ) + if isinstance(norm, Iterable): + data = norm + datatype = "binned" + else: + datatype = "events" + + if data.size == 0: + return 0 + + if datatype == "binned": + return z_n_binned_events(data, n) + elif datatype == "events": + return z_n_events(data, n) + elif datatype == "gauss": + if err is None: + raise ValueError("If datatype='gauss', you need to specify an uncertainty (err)") + return z_n_gauss(data, n=n, err=err) + + raise ValueError(f"Unknown datatype requested for Z_n ({datatype})")
+ + + +
+[docs] +def htest(data, nmax=20, datatype="binned", err=None): + """htest-test statistic, a` la De Jager+89, A&A, 221, 180D, eq. 2. + + If datatype is "binned" or "gauss", uses the formulation from + Bachetti+2021, ApJ, arxiv:2012.11397 + + Parameters + ---------- + data : array of floats + Phase values or binned flux values + nmax : int, default 20 + Maximum of harmonics for Z^2_n + + Other Parameters + ---------------- + datatype : str + The datatype of data: "events" if phase values between 0 and 1, + "binned" if folded pulse profile from photons, "gauss" if + folded pulse profile with normally-distributed fluxes + err : float + The uncertainty on the pulse profile fluxes (required for + datatype="gauss", ignored otherwise) + + Returns + ------- + M : int + The best number of harmonics that describe the signal. + htest : float + The htest statistics of the events. + """ + if datatype == "binned": + ks, zs = z_n_binned_events_all(data, nmax) + elif datatype == "events": + ks, zs = z_n_events_all(data, nmax) + elif datatype == "gauss": + if err is None: + raise ValueError("If datatype='gauss', you need to specify an uncertainty (err)") + ks, zs = z_n_gauss_all(data, nmax=nmax, err=err) + else: + raise ValueError(f"Unknown datatype requested for htest ({datatype})") + + Hs = zs - 4 * ks + 4 + bestidx = np.argmax(Hs) + + return ks[bestidx], Hs[bestidx]
+ + + +def fftfit_fun(profile, template, amplitude, phase): + """Function to be minimized for the FFTFIT method.""" + + pass + + +
+[docs] +def fftfit(prof, template=None, quick=False, sigma=None, use_bootstrap=False, **fftfit_kwargs): + """Align a template to a pulse profile. + + Parameters + ---------- + prof : array + The pulse profile + template : array, default None + The template of the pulse used to perform the TOA calculation. If None, + a simple sinusoid is used + + Other parameters + ---------------- + sigma : array + error on profile bins (currently has no effect) + use_bootstrap : bool + Calculate errors using a bootstrap method, with `fftfit_error` + **fftfit_kwargs : additional arguments for `fftfit_error` + + Returns + ------- + mean_amp, std_amp : floats + Mean and standard deviation of the amplitude + mean_phase, std_phase : floats + Mean and standard deviation of the phase + """ + prof = prof - np.mean(prof) + + template = template - np.mean(template) + + return taylor_fftfit(prof, template)
+ + + +def _plot_TOA_fit( + profile, template, toa, mod=None, toaerr=None, additional_phase=0.0, show=True, period=1 +): + """Plot diagnostic information on the TOA.""" + from scipy.interpolate import interp1d + import time + + phases = np.arange(0, 2, 1 / len(profile)) + profile = np.concatenate((profile, profile)) + template = np.concatenate((template, template)) + if mod is None: + mod = interp1d(phases, template, fill_value="extrapolate") + + fig = plt.figure() + plt.plot(phases, profile, drawstyle="steps-mid") + fine_phases = np.linspace(0, 1, 1000) + fine_phases_shifted = fine_phases - toa / period + additional_phase + model = mod(fine_phases_shifted - np.floor(fine_phases_shifted)) + model = np.concatenate((model, model)) + plt.plot(np.linspace(0, 2, 2000), model) + if toaerr is not None: + plt.axvline((toa - toaerr) / period) + plt.axvline((toa + toaerr) / period) + plt.axvline(toa / period - 0.5 / len(profile), ls="--") + plt.axvline(toa / period + 0.5 / len(profile), ls="--") + timestamp = int(time.time()) + plt.savefig("{}.png".format(timestamp)) + if not show: + plt.close(fig) + + +
+[docs] +def get_TOA( + prof, + period, + tstart, + template=None, + additional_phase=0, + quick=False, + debug=False, + use_bootstrap=False, + **fftfit_kwargs, +): + """Calculate the Time-Of-Arrival of a pulse. + + Parameters + ---------- + prof : array + The pulse profile + template : array, default None + The template of the pulse used to perform the TOA calculation, if any. + Otherwise use the default of fftfit + tstart : float + The time at the start of the pulse profile + + Other parameters + ---------------- + nstep : int, optional, default 100 + Number of steps for the bootstrap method + + Returns + ------- + toa, toastd : floats + Mean and standard deviation of the TOA + """ + nbin = len(prof) + + ph = np.arange(0, 1, 1 / nbin) + if template is None: + template = np.cos(2 * np.pi * ph) + + mean_amp, std_amp, phase_res, phase_res_err = fftfit( + prof, template=template, quick=quick, use_bootstrap=use_bootstrap, **fftfit_kwargs + ) + phase_res = phase_res + additional_phase + phase_res = phase_res - np.floor(phase_res) + + toa = tstart + phase_res * period + toaerr = phase_res_err * period + + if debug: + _plot_TOA_fit( + prof, + template, + toa - tstart, + toaerr=toaerr, + additional_phase=additional_phase, + period=period, + ) + + return toa, toaerr
+ + + +def _load_and_prepare_TOAs(mjds, ephem="DE405"): + toalist = [None] * len(mjds) + for i, m in enumerate(mjds): + toalist[i] = toa.TOA(m, obs="Barycenter", scale="tdb") + + toalist = toa.TOAs(toalist=toalist) + if "tdb" not in toalist.table.colnames: + toalist.compute_TDBs(ephem=ephem) + if "ssb_obs_pos" not in toalist.table.colnames: + toalist.compute_posvels(ephem, False) + return toalist + + +
+[docs] +def get_orbital_correction_from_ephemeris_file( + mjdstart, mjdstop, parfile, ntimes=1000, ephem="DE405", return_pint_model=False +): + """Get a correction for orbital motion from pulsar parameter file. + + Parameters + ---------- + mjdstart, mjdstop : float + Start and end of the time interval where we want the orbital solution + parfile : str + Any parameter file understood by PINT (Tempo or Tempo2 format) + + Other parameters + ---------------- + ntimes : int + Number of time intervals to use for interpolation. Default 1000 + + Returns + ------- + correction_sec : function + Function that accepts in input an array of times in seconds and a + floating-point MJDref value, and returns the deorbited times + correction_mjd : function + Function that accepts times in MJDs and returns the deorbited times. + """ + from scipy.interpolate import interp1d + from astropy import units + + if not HAS_PINT: + raise ImportError( + "You need the optional dependency PINT to use this " + "functionality: github.com/nanograv/pint" + ) + + simon("Assuming events are already referred to the solar system barycenter (timescale is TDB)") + + mjds = np.linspace(mjdstart, mjdstop, ntimes) + toalist = _load_and_prepare_TOAs(mjds, ephem=ephem) + m = get_model(parfile) + delays = m.delay(toalist) + + correction_mjd_rough = interp1d( + mjds, + (toalist.table["tdbld"] * units.d - delays).to(units.d).value, + fill_value="extrapolate", + ) + + def correction_mjd(mjds): + """Get the orbital correction. + + Parameters + ---------- + mjds : array-like + The input times in MJD + + Returns + ------- + mjds: Corrected times in MJD + """ + xvals = correction_mjd_rough.x + # Maybe this will be fixed if scipy/scipy#9602 is accepted + bad = (mjds < xvals[0]) | (np.any(mjds > xvals[-1])) + if np.any(bad): + warnings.warn( + "Some points are outside the interpolation range:" " {}".format(mjds[bad]) + ) + return correction_mjd_rough(mjds) + + def correction_sec(times, mjdref): + """Get the orbital correction. + + Parameters + ---------- + times : array-like + The input times in seconds of Mission Elapsed Time (MET) + mjdref : float + MJDREF, reference MJD for the mission + + Returns + ------- + mets: array-like + Corrected times in MET seconds + """ + deorb_mjds = correction_mjd(times / 86400 + mjdref) + return np.array((deorb_mjds - mjdref) * 86400) + + retvals = [correction_sec, correction_mjd] + if return_pint_model: + retvals.append(m) + return retvals
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/pulse/search.html b/_modules/stingray/pulse/search.html new file mode 100644 index 000000000..4f9c241ec --- /dev/null +++ b/_modules/stingray/pulse/search.html @@ -0,0 +1,738 @@ + + + + + + + stingray.pulse.search — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.pulse.search

+import numpy as np
+from collections.abc import Iterable
+from .pulsar import ef_profile_stat, pdm_profile_stat
+from .pulsar import fold_events, z_n, pulse_phase
+from ..utils import jit, HAS_NUMBA
+from ..utils import contiguous_regions
+from astropy.stats import poisson_conf_interval
+import matplotlib.pyplot as plt
+
+
+__all__ = [
+    "epoch_folding_search",
+    "z_n_search",
+    "search_best_peaks",
+    "plot_profile",
+    "plot_phaseogram",
+    "phaseogram",
+    "phase_dispersion_search",
+]
+
+
+@jit(nopython=True)
+def _pulse_phase_fast(time, f, fdot, buffer_array):
+    for i in range(len(time)):
+        buffer_array[i] = time[i] * f + 0.5 * time[i] ** 2 * fdot
+        buffer_array[i] -= np.floor(buffer_array[i])
+    return buffer_array
+
+
+def _folding_search(
+    stat_func, times, frequencies, segment_size=np.inf, use_times=False, fdots=0, **kwargs
+):
+    fgrid, fdgrid = np.meshgrid(
+        np.asanyarray(frequencies).astype(np.float64), np.asanyarray(fdots).astype(np.float64)
+    )
+    stats = np.zeros_like(fgrid)
+    times = (times - times[0]).astype(np.float64)
+    length = times[-1]
+    if length < segment_size:
+        segment_size = length
+    start_times = np.arange(times[0], times[-1], segment_size)
+    count = 0
+    for s in start_times:
+        good = (times >= s) & (times < s + segment_size)
+        ts = times[good]
+        if len(ts) < 1 or ts[-1] - ts[0] < 0.2 * segment_size:
+            continue
+        buffer = np.zeros_like(ts)
+        for i in range(stats.shape[0]):
+            for j in range(stats.shape[1]):
+                f = fgrid[i, j]
+                fd = fdgrid[i, j]
+                if use_times:
+                    kwargs_copy = {}
+                    for key in kwargs.keys():
+                        if isinstance(kwargs[key], Iterable) and len(kwargs[key]) == len(times):
+                            kwargs_copy[key] = kwargs[key][good]
+                        else:
+                            kwargs_copy[key] = kwargs[key]
+                    stats[i, j] += stat_func(ts, f, fd, **kwargs_copy)
+                else:
+                    phases = _pulse_phase_fast(ts, f, fd, buffer)
+                    stats[i, j] += stat_func(phases)
+        count += 1
+
+    if fgrid.shape[0] == 1:
+        return fgrid.flatten(), stats.flatten() / count
+    else:
+        return fgrid, fdgrid, stats / count
+
+
+@jit(nopython=True)
+def _bincount_fast(phase):
+    return np.bincount(phase)
+
+
+@jit(nopython=True)
+def _profile_fast(phase, nbin=128):
+    phase_bin = np.zeros(len(phase) + 2, dtype=np.int64)
+    # This is done to force bincount from 0 to nbin -1
+    phase_bin[-1] = nbin - 1
+    phase_bin[-2] = 0
+    for i in range(len(phase)):
+        phase_bin[i] = np.int64(np.floor(phase[i] * nbin))
+    bc = _bincount_fast(phase_bin)
+    bc[0] -= 1
+    bc[-1] -= 1
+    return bc
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+[docs] +def search_best_peaks(x, stat, threshold): + """Search peaks above threshold in an epoch folding periodogram. + + If more values of stat are above threshold and are contiguous, only the + largest one is returned (see Examples). + + Parameters + ---------- + x : array-like + The x axis of the periodogram (frequencies, periods, ...) + + stat : array-like + The y axis. It must have the same shape as x + + threshold : float + The threshold value over which we look for peaks in the stat array + + Returns + ------- + best_x : array-like + the array containing the x position of the peaks above threshold. If no + peaks are above threshold, an empty list is returned. The array is + sorted by inverse value of stat + + best_stat : array-like + for each best_x, give the corresponding stat value. Empty if no peaks + above threshold. + + Examples + -------- + >>> # Test multiple peaks + >>> x = np.arange(10) + >>> stat = [0, 0, 0.5, 0, 0, 1, 1, 2, 1, 0] + >>> best_x, best_stat = search_best_peaks(x, stat, 0.5) + >>> len(best_x) + 2 + >>> assert np.isclose(best_x[0], 7.0) + >>> assert np.isclose(best_x[1], 2.0) + >>> stat = [0, 0, 2.5, 0, 0, 1, 1, 2, 1, 0] + >>> best_x, best_stat = search_best_peaks(x, stat, 0.5) + >>> assert np.isclose(best_x[0], 2.0) + >>> # Test no peak above threshold + >>> x = np.arange(10) + >>> stat = [0, 0, 0.4, 0, 0, 0, 0, 0, 0, 0] + >>> best_x, best_stat = search_best_peaks(x, stat, 0.5) + >>> best_x + [] + >>> best_stat + [] + + """ + stat = np.asanyarray(stat) + x = np.asanyarray(x) + peaks = stat >= threshold + regions = contiguous_regions(peaks) + if len(regions) == 0: + return [], [] + best_x = np.zeros(len(regions)) + best_stat = np.zeros(len(regions)) + for i, r in enumerate(regions): + stat_filt = stat[r[0] : r[1]] + x_filt = x[r[0] : r[1]] + max_arg = np.argmax(stat_filt) + best_stat[i] = stat_filt[max_arg] + best_x[i] = x_filt[max_arg] + + order = np.argsort(best_stat)[::-1] + + return best_x[order], best_stat[order]
+ + + +
+[docs] +def plot_profile(phase, profile, err=None, ax=None): + """Plot a pulse profile showing some stats. + + If err is None, the profile is assumed in counts and the Poisson confidence + level is plotted. Otherwise, err is shown as error bars + + Parameters + ---------- + phase : array-like + The bins on the x-axis + + profile : array-like + The pulsed profile + + Other Parameters + ---------------- + ax : `matplotlib.pyplot.axis` instance + Axis to plot to. If None, create a new one. + + Returns + ------- + ax : `matplotlib.pyplot.axis` instance + Axis where the profile was plotted. + """ + if ax is None: + plt.figure("Pulse profile") + ax = plt.subplot() + mean = np.mean(profile) + if np.all(phase < 1.5): + phase = np.concatenate((phase, phase + 1)) + profile = np.concatenate((profile, profile)) + ax.plot(phase, profile, drawstyle="steps-mid") + if err is None: + err_low, err_high = poisson_conf_interval(mean, interval="frequentist-confidence", sigma=1) + ax.axhspan(err_low, err_high, alpha=0.5) + else: + err = np.concatenate((err, err)) + ax.errorbar(phase, profile, yerr=err, fmt="none") + + ax.set_ylabel("Counts") + ax.set_xlabel("Phase") + return ax
+ + + +
+[docs] +def plot_phaseogram(phaseogram, phase_bins, time_bins, unit_str="s", ax=None, **plot_kwargs): + """Plot a phaseogram. + + Parameters + ---------- + phaseogram : NxM array + The phaseogram to be plotted + + phase_bins : array of M + 1 elements + The bins on the x-axis + + time_bins : array of N + 1 elements + The bins on the y-axis + + Other Parameters + ---------------- + unit_str : str + String indicating the time unit (e.g. 's', 'MJD', etc) + + ax : `matplotlib.pyplot.axis` instance + Axis to plot to. If None, create a new one. + + plot_kwargs : dict + Additional arguments to be passed to pcolormesh + + Returns + ------- + ax : `matplotlib.pyplot.axis` instance + Axis where the phaseogram was plotted. + """ + if ax is None: + plt.figure("Phaseogram") + ax = plt.subplot() + + ax.pcolormesh(phase_bins, time_bins, phaseogram.T, **plot_kwargs) + ax.set_ylabel("Time ({})".format(unit_str)) + ax.set_xlabel("Phase") + ax.set_xlim([0, np.max(phase_bins)]) + ax.set_ylim([np.min(time_bins), np.max(time_bins)]) + return ax
+ + + +
+[docs] +def phaseogram( + times, + f, + nph=128, + nt=32, + ph0=0, + mjdref=None, + fdot=0, + fddot=0, + pepoch=None, + plot=False, + phaseogram_ax=None, + weights=None, + **plot_kwargs, +): + """ + Calculate and plot the phaseogram of a pulsar observation. + + The phaseogram is a 2-D histogram where the x axis is the pulse phase and + the y axis is the time. It shows how the pulse phase changes with time, and + it is very useful to see if the pulse solution is correct and/or if there + are additional frequency derivatives appearing in the data (due to spin up + or down, or even orbital motion) + + Parameters + ---------- + times : array + Event arrival times + + f : float + Pulse frequency + + Other parameters + ---------------- + nph : int + Number of phase bins + + nt : int + Number of time bins + + ph0 : float + The starting phase of the pulse + + mjdref : float + MJD reference time. If given, the y axis of the plot will be in MJDs, + otherwise it will be in seconds. + + fdot : float + First frequency derivative + + fddot : float + Second frequency derivative + + pepoch : float + If the input pulse solution is referred to a given time, give it here. + It has no effect (just a phase shift of the pulse) if `fdot` is zero. + if `mjdref` is specified, pepoch MUST be in MJD + + weights : array + Weight for each time + + plot : bool + Return the axes in the additional_info, and don't close the plot, so + that the user can add information to it. + + Returns + ------- + phaseogr : 2-D matrix + The phaseogram + + phases : array-like + The x axis of the phaseogram (the x bins of the histogram), + corresponding to the pulse phase in each column + + times : array-like + The y axis of the phaseogram (the y bins of the histogram), + corresponding to the time at each row + + additional_info : dict + Additional information, like the pulse profile and the axes to modify + the plot (the latter, only if `return_plot` is True) + """ + + use_mjdref = False + if mjdref is not None: + use_mjdref = True + + if pepoch is None: + pepoch = (times[-1] + times[0]) / 2 + if use_mjdref: + pepoch /= 86400 + + plot_unit = "s" + if use_mjdref: + pepoch = (pepoch - mjdref) * 86400 + plot_unit = "MJD" + + phases = pulse_phase((times - pepoch), f, fdot, fddot, to_1=True, ph0=ph0) + + allphases = np.concatenate([phases, phases + 1]).astype("float64") + allts = np.concatenate([times, times]).astype("float64") + + if weights is not None and isinstance(weights, Iterable): + if len(weights) != len(times): + raise ValueError("The length of weights must match the length of " "times") + weights = np.concatenate([weights, weights]).astype("float64") + + if use_mjdref: + allts = allts / 86400 + mjdref + + phas, binx, biny = np.histogram2d( + allphases, + allts, + bins=(np.linspace(0, 2, nph * 2 + 1), np.linspace(np.min(allts), np.max(allts), nt + 1)), + weights=weights, + ) + + if plot: + phaseogram_ax = plot_phaseogram( + phas, binx, biny, ax=phaseogram_ax, unit_str=plot_unit, **plot_kwargs + ) + additional_info = {"ax": phaseogram_ax} + else: + additional_info = {} + + return phas, binx, biny, additional_info
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/simulator/simulator.html b/_modules/stingray/simulator/simulator.html new file mode 100644 index 000000000..e8a30c56b --- /dev/null +++ b/_modules/stingray/simulator/simulator.html @@ -0,0 +1,763 @@ + + + + + + + stingray.simulator.simulator — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.simulator.simulator

+import pickle
+from os import error
+import numpy as np
+import numbers
+import warnings
+from scipy import signal
+import astropy.modeling.models
+from stingray import utils
+from stingray import Lightcurve
+from stingray import AveragedPowerspectrum
+
+__all__ = ["Simulator"]
+
+
+
+[docs] +class Simulator(object): + """ + Methods to simulate and visualize light curves. + + TODO: Improve documentation + + Parameters + ---------- + dt : int, default 1 + time resolution of simulated light curve + N : int, default 1024 + bins count of simulated light curve + mean : float, default 0 + mean value of the simulated light curve + rms : float, default 1 + fractional rms of the simulated light curve, + actual rms is calculated by mean*rms + err : float, default 0 + the errorbars on the final light curve + red_noise : int, default 1 + multiple of real length of light curve, by + which to simulate, to avoid red noise leakage + random_state : int, default None + seed value for random processes + poisson : bool, default False + return Poisson-distributed light curves. + """ + + def __init__( + self, dt, N, mean, rms, err=0.0, red_noise=1, random_state=None, tstart=0.0, poisson=False + ): + self.dt = dt + + if not isinstance(N, (int, np.integer)): + raise ValueError("N must be integer!") + + self.N = N + + if mean == 0: + warnings.warn( + "Careful! A mean of zero is unphysical!" + "This may have unintended consequences!" + ) + self.mean = mean + self.nphot = self.mean * self.N + self.rms = rms + self.red_noise = red_noise + self.tstart = tstart + self.time = dt * np.arange(N) + self.tstart + self.nphot_factor = 1000_000 + self.err = err + self.poisson = poisson + + # Initialize a tuple of energy ranges with corresponding light curves + self.channels = [] + + self.random_state = utils.get_random_state(random_state) + + assert rms <= 1, "Fractional rms must be less than 1." + assert dt > 0, "Time resolution must be greater than 0" + +
+[docs] + def simulate(self, *args): + """ + Simulate light curve generation using power spectrum or + impulse response. + + Examples + -------- + * x = simulate(beta): + For generating a light curve using power law spectrum. + + Parameters: + * beta : float + Defines the shape of spectrum + + * x = simulate(s): + For generating a light curve from user-provided spectrum. + **Note**: In this case, the `red_noise` parameter is provided. + You can generate a longer light curve by providing a higher + frequency resolution on the input power spectrum. + + Parameters: + * s : array-like + power spectrum + + * x = simulate(model): + For generating a light curve from pre-defined model + + Parameters: + * model : astropy.modeling.Model + the pre-defined model + + * x = simulate('model', params): + For generating a light curve from pre-defined model + + Parameters: + * model : string + the pre-defined model + * params : list iterable or dict + the parameters for the pre-defined model + + * x = simulate(s, h): + For generating a light curve using impulse response. + + Parameters: + * s : array-like + Underlying variability signal + * h : array-like + Impulse response + + * x = simulate(s, h, 'same'): + For generating a light curve of same length as input signal, + using impulse response. + + Parameters: + * s : array-like + Underlying variability signal + * h : array-like + Impulse response + * mode : str + mode can be 'same', 'filtered, or 'full'. + 'same' indicates that the length of output light + curve is same as that of input signal. + 'filtered' means that length of output light curve + is len(s) - lag_delay + 'full' indicates that the length of output light + curve is len(s) + len(h) -1 + + Parameters + ---------- + args + See examples below. + + Returns + ------- + lightCurve : `LightCurve` object + + """ + if isinstance(args[0], (numbers.Integral, float)) and len(args) == 1: + return self._simulate_power_law(args[0]) + + elif isinstance(args[0], astropy.modeling.Model) and len(args) == 1: + return self._simulate_model(args[0]) + + elif utils.is_string(args[0]) and len(args) == 2: + return self._simulate_model_string(args[0], args[1]) + + elif len(args) == 1: + return self._simulate_power_spectrum(args[0]) + + elif len(args) == 2: + return self._simulate_impulse_response(args[0], args[1]) + + elif len(args) == 3: + return self._simulate_impulse_response(args[0], args[1], args[2]) + + else: + raise ValueError("Length of arguments must be 1, 2 or 3.")
+ + +
+[docs] + def simulate_channel(self, channel, *args): + """ + Simulate a lightcurve and add it to corresponding energy + channel. + + Parameters + ---------- + channel : str + range of energy channel (e.g., 3.5-4.5) + + *args + see description of simulate() for details + + Returns + ------- + lightCurve : `LightCurve` object + """ + + # Check that channel name does not already exist. + if channel not in [lc[0] for lc in self.channels]: + self.channels.append((channel, self.simulate(*args))) + + else: + raise KeyError("A channel with this name already exists.")
+ + +
+[docs] + def get_channel(self, channel): + """ + Get lightcurve belonging to the energy channel. + """ + + return [lc[1] for lc in self.channels if lc[0] == channel][0]
+ + +
+[docs] + def get_channels(self, channels): + """ + Get multiple light curves belonging to the energy channels. + """ + + return [lc[1] for lc in self.channels if lc[0] in channels]
+ + +
+[docs] + def get_all_channels(self): + """ + Get lightcurves belonging to all channels. + """ + + return [lc[1] for lc in self.channels]
+ + +
+[docs] + def delete_channel(self, channel): + """ + Delete an energy channel. + """ + + channel = [lc for lc in self.channels if lc[0] == channel] + + if len(channel) == 0: + raise KeyError("This channel does not exist or has already been " "deleted.") + else: + index = self.channels.index(channel[0]) + del self.channels[index]
+ + +
+[docs] + def delete_channels(self, channels): + """ + Delete multiple energy channels. + """ + n = len(channels) + channels = [lc for lc in self.channels if lc[0] in channels] + + if len(channels) != n: + raise KeyError( + "One of more of the channels do not exist or have " "already been deleted." + ) + else: + indices = [self.channels.index(channel) for channel in channels] + for i in sorted(indices, reverse=True): + del self.channels[i]
+ + +
+[docs] + def count_channels(self): + """ + Return total number of energy channels. + """ + + return len(self.channels)
+ + +
+[docs] + def simple_ir(self, start=0, width=1000, intensity=1): + """ + Construct a simple impulse response using start time, + width and scaling intensity. + To create a delta impulse response, set width to 1. + + Parameters + ---------- + start : int + start time of impulse response + width : int + width of impulse response + intensity : float + scaling parameter to set the intensity of delayed emission + corresponding to direct emission. + + Returns + ------- + h : numpy.ndarray + Constructed impulse response + """ + + # Fill in 0 entries until the start time + h_zeros = np.zeros(int(start / self.dt)) + + # Define constant impulse response + h_ones = np.ones(int(width / self.dt)) * intensity + + return np.append(h_zeros, h_ones)
+ + +
+[docs] + def relativistic_ir(self, t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1): + """ + Construct a realistic impulse response considering the relativistic + effects. + + Parameters + ---------- + t1 : int + primary peak time + t2 : int + secondary peak time + t3 : int + end time + p1 : float + value of primary peak + p2 : float + value of secondary peak + rise : float + slope of rising exponential from primary peak to secondary peak + decay : float + slope of decaying exponential from secondary peak to end time + + Returns + ------- + h : numpy.ndarray + Constructed impulse response + """ + + dt = self.dt + + assert t2 > t1, "Secondary peak must be after primary peak." + assert t3 > t2, "End time must be after secondary peak." + assert p2 > p1, "Secondary peak must be greater than primary peak." + + # Append zeros before start time + h_primary = np.append(np.zeros(int(t1 / dt)), p1) + + # Create a rising exponential of user-provided slope + x = np.linspace(t1 / dt, t2 / dt, int((t2 - t1) / dt)) + h_rise = np.exp(rise * x) + + # Evaluate a factor for scaling exponential + factor = np.max(h_rise) / (p2 - p1) + h_secondary = (h_rise / factor) + p1 + + # Create a decaying exponential until the end time + x = np.linspace(t2 / dt, t3 / dt, int((t3 - t2) / dt)) + h_decay = np.exp((-decay) * (x - 4 / dt)) + + # Add the three responses + h = np.append(h_primary, h_secondary) + h = np.append(h, h_decay) + + return h
+ + + def _find_inverse(self, real, imaginary): + """ + Forms complex numbers corresponding to real and imaginary + parts and finds inverse series. + + Parameters + ---------- + real : numpy.ndarray + Co-effients corresponding to real parts of complex numbers + imaginary : numpy.ndarray + Co-efficients correspondong to imaginary parts of complex + numbers + + Returns + ------- + ifft : numpy.ndarray + Real inverse fourier transform of complex numbers + """ + + # Form complex numbers corresponding to each frequency + f = [complex(r, i) for r, i in zip(real, imaginary)] + + f = np.hstack([self.mean * self.N * self.red_noise, f]) + + # Obtain time series + return np.fft.irfft(f, n=self.N * self.red_noise) + + def _timmerkoenig(self, pds_shape): + """Straight application of T&K method to a PDS shape.""" + pds_size = pds_shape.size + + real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape) + imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape) + imaginary[-1] = 0 + + counts = self._find_inverse(real, imaginary) + + self.std = counts.std() + + rescaled_counts = self._extract_and_scale(counts) + err = np.zeros_like(rescaled_counts) + + if self.poisson: + bad = rescaled_counts < 0 + if np.any(bad): + warnings.warn("Some bins of the light curve have counts < 0. Setting to 0") + rescaled_counts[bad] = 0 + lc = Lightcurve( + self.time, + np.random.poisson(rescaled_counts), + err_dist="poisson", + dt=self.dt, + skip_checks=True, + ) + lc.smooth_counts = rescaled_counts + else: + lc = Lightcurve( + self.time, rescaled_counts, err=err, err_dist="gauss", dt=self.dt, skip_checks=True + ) + + return lc + + def _simulate_power_law(self, B): + """ + Generate LightCurve from a power law spectrum. + + Parameters + ---------- + B : int + Defines the shape of power law spectrum. + + Returns + ------- + lightCurve : array-like + """ + # Define frequencies at which to compute PSD + w = np.fft.rfftfreq(self.red_noise * self.N, d=self.dt)[1:] + + pds_shape = np.power((1 / w), B) + + return self._timmerkoenig(pds_shape) + + def _simulate_power_spectrum(self, s): + """ + Generate a light curve from user-provided spectrum. + + Parameters + ---------- + s : array-like + power spectrum + + Returns + ------- + lightCurve : `LightCurve` object + """ + # Cast spectrum as numpy array + pds_shape = np.zeros(s.size * self.red_noise) + pds_shape[: s.size] = s + + return self._timmerkoenig(pds_shape) + + def _simulate_model(self, model): + """ + For generating a light curve from a pre-defined model + + Parameters + ---------- + model : astropy.modeling.Model derived function + the pre-defined model + (library-based, available in astropy.modeling.models or + custom-defined) + + Returns + ------- + lightCurve : :class:`stingray.lightcurve.LightCurve` object + """ + # Frequencies at which the PSD is to be computed + # (only positive frequencies, since the signal is real) + nbins = self.red_noise * self.N + simfreq = np.fft.rfftfreq(nbins, d=self.dt)[1:] + + # Compute PSD from model + simpsd = model(simfreq) + + return self._timmerkoenig(simpsd) + + def _simulate_model_string(self, model_str, params): + """ + For generating a light curve from a pre-defined model + + Parameters + ---------- + model_str : string + name of the pre-defined model + params : list or dictionary + parameters of the pre-defined model + + Returns + ------- + lightCurve : :class:`stingray.lightcurve.LightCurve` object + """ + from . import models + + # Frequencies at which the PSD is to be computed + # (only positive frequencies, since the signal is real) + nbins = self.red_noise * self.N + simfreq = np.fft.rfftfreq(nbins, d=self.dt)[1:] + + if model_str not in dir(models): + raise ValueError("Model is not defined!") + + if isinstance(params, dict): + model = eval("models." + model_str + "(**params)") + # Compute PSD from model + simpsd = model(simfreq) + elif isinstance(params, list): + simpsd = eval("models." + model_str + "(simfreq, params)") + else: + raise ValueError("Params should be list or dictionary!") + + return self._timmerkoenig(simpsd) + + def _simulate_impulse_response(self, s, h, mode="same"): + """ + Generate LightCurve from impulse response. To get + accurate results, binning intervals (dt) of variability + signal 's' and impulse response 'h' must be equal. + + Parameters + ---------- + s : array-like + Underlying variability signal + h : array-like + Impulse response + mode : str + mode can be 'same', 'filtered, or 'full'. + 'same' indicates that the length of output light + curve is same as that of input signal. + 'filtered' means that length of output light curve + is len(s) - lag_delay + 'full' indicates that the length of output light + curve is len(s) + len(h) -1 + + Returns + ------- + lightCurve : :class:`stingray.lightcurve.LightCurve` object + """ + lc = signal.fftconvolve(s, h) + + if mode == "same": + lc = lc[: -(len(h) - 1)] + + elif mode == "filtered": + lc = lc[(len(h) - 1) : -(len(h) - 1)] + + time = self.dt * np.arange(0.5, len(lc)) + self.tstart + err = np.zeros_like(time) + return Lightcurve(time, lc, err_dist="gauss", dt=self.dt, err=err, skip_checks=True) + + def _extract_and_scale(self, long_lc): + """ + i) Make a random cut and extract a light curve of required + length. + + ii) Rescale light curve i) with zero mean and unit standard + deviation, and ii) user provided mean and rms (fractional + rms * mean) + + Parameters + ---------- + long_lc : numpy.ndarray + Simulated lightcurve of length 'N' times 'red_noise' + + Returns + ------- + lc : numpy.ndarray + Normalized and extracted lightcurve of length 'N' + """ + if self.red_noise == 1: + lc = long_lc + else: + # Make random cut and extract light curve of length 'N' + extract = self.random_state.randint(self.N - 1, self.red_noise * self.N - self.N + 1) + lc = np.take(long_lc, range(extract, extract + self.N)) + + mean_lc = np.mean(lc) + + if self.mean == 0: + return (lc - mean_lc) / self.std * self.rms + else: + return (lc - mean_lc) / self.std * self.mean * self.rms + self.mean + +
+[docs] + def powerspectrum(self, lc, seg_size=None): + """ + Make a powerspectrum of the simulated light curve. + + Parameters + ---------- + lc : lightcurve.Lightcurve object OR + iterable of lightcurve.Lightcurve objects + The light curve data to be Fourier-transformed. + + Returns + ------- + power : numpy.ndarray + The array of normalized squared absolute values of Fourier + amplitudes + + """ + if seg_size is None: + seg_size = lc.tseg + + return AveragedPowerspectrum(lc, seg_size).power
+ + +
+[docs] + @staticmethod + def read(filename, fmt="pickle"): + """ + Reads transfer function from a 'pickle' file. + + Parameters + ---------- + fmt : str + the format of the file to be retrieved - accepts 'pickle'. + + Returns + ------- + data : class instance + `TransferFunction` object + """ + if fmt == "pickle": + with open(filename, "rb") as fobj: + return pickle.load(fobj) + + else: + raise KeyError("Format not understood.")
+ + +
+[docs] + def write(self, filename, fmt="pickle"): + """ + Writes a transfer function to 'pickle' file. + + Parameters + ---------- + fmt : str + the format of the file to be saved - accepts 'pickle' + """ + if fmt == "pickle": + with open(filename, "wb") as fobj: + pickle.dump(self, fobj) + else: + raise KeyError("Format not understood.")
+
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/stats.html b/_modules/stingray/stats.html new file mode 100644 index 000000000..adf8aeee9 --- /dev/null +++ b/_modules/stingray/stats.html @@ -0,0 +1,1399 @@ + + + + + + + stingray.stats — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.stats

+import warnings
+from collections.abc import Iterable
+
+import numpy as np
+from scipy import stats
+from stingray.utils import simon
+from stingray.utils import vectorize, float64, float32, int32, int64
+
+
+__all__ = [
+    "p_multitrial_from_single_trial",
+    "p_single_trial_from_p_multitrial",
+    "fold_profile_probability",
+    "fold_profile_logprobability",
+    "fold_detection_level",
+    "phase_dispersion_detection_level",
+    "phase_dispersion_probability",
+    "phase_dispersion_logprobability",
+    "pds_probability",
+    "pds_detection_level",
+    "z2_n_detection_level",
+    "z2_n_probability",
+    "z2_n_logprobability",
+    "classical_pvalue",
+    "chi2_logp",
+    "equivalent_gaussian_Nsigma",
+    "equivalent_gaussian_Nsigma_from_logp",
+    "power_confidence_limits",
+    "power_upper_limit",
+    "pf_from_ssig",
+    "pf_from_a",
+    "pf_upper_limit",
+    "a_from_pf",
+    "a_from_ssig",
+    "ssig_from_a",
+    "ssig_from_pf",
+    "amplitude_upper_limit",
+]
+
+
+@vectorize([float64(float32), float64(float64)], nopython=True)
+def _extended_equiv_gaussian_Nsigma(logp):
+    """Equivalent gaussian sigma for small log-probability.
+
+    Return the equivalent gaussian sigma corresponding to the natural log of
+    the cumulative gaussian probability logp. In other words, return x, such
+    that Q(x) = p, where Q(x) is the cumulative normal distribution. This
+    version uses the rational approximation from Abramowitz and Stegun,
+    eqn 26.2.23, that claims to be precise to ~1e-4. Using the log(P) as input
+    gives a much extended range.
+
+    The parameters here are the result of a best-fit, with no physical meaning.
+
+    Translated from Scott Ransom's PRESTO
+    """
+
+    t = np.sqrt(-2.0 * logp)
+    num = 2.515517 + t * (0.802853 + t * 0.010328)
+    denom = 1.0 + t * (1.432788 + t * (0.189269 + t * 0.001308))
+    return t - num / denom
+
+
+@np.vectorize
+def equivalent_gaussian_Nsigma_from_logp(logp):
+    """Number of Gaussian sigmas corresponding to tail log-probability.
+
+    This function computes the value of the characteristic function of a
+    standard Gaussian distribution for the tail probability equivalent to the
+    provided p-value, and turns this value into units of standard deviations
+    away from the Gaussian mean. This allows the user to make a statement
+    about the signal such as “I detected this pulsation at 4.1 sigma
+
+    The example values below are obtained by brute-force integrating the
+    Gaussian probability density function using the mpmath library
+    between Nsigma and +inf.
+
+    Examples
+    --------
+    >>> pvalues = [0.15865525393145707, 0.0013498980316301035,
+    ...            9.865877e-10, 6.22096e-16,
+    ...            3.0567e-138]
+    >>> log_pvalues = np.log(np.array(pvalues))
+    >>> sigmas = np.array([1, 3, 6, 8, 25])
+    >>> # Single number
+    >>> assert np.isclose(equivalent_gaussian_Nsigma_from_logp(log_pvalues[0]),
+    ...                   sigmas[0], atol=0.01)
+    >>> # Array
+    >>> assert np.allclose(equivalent_gaussian_Nsigma_from_logp(log_pvalues),
+    ...                    sigmas, atol=0.01)
+    """
+    if logp < -300:
+        # print("Extended")
+        return _extended_equiv_gaussian_Nsigma(logp)
+    return stats.norm.isf(np.exp(logp))
+
+
+
+[docs] +def equivalent_gaussian_Nsigma(p): + """Number of Gaussian sigmas corresponding to tail probability. + + This function computes the value of the characteristic function of a + standard Gaussian distribution for the tail probability equivalent to the + provided p-value, and turns this value into units of standard deviations + away from the Gaussian mean. This allows the user to make a statement + about the signal such as “I detected this pulsation at 4.1 sigma + + The example values below are obtained by brute-force integrating the + Gaussian probability density function using the mpmath library + between Nsigma and +inf. + + Examples + -------- + >>> assert np.isclose(equivalent_gaussian_Nsigma(0.15865525393145707), 1, + ... atol=0.01) + >>> assert np.isclose(equivalent_gaussian_Nsigma(0.0013498980316301035), 3, + ... atol=0.01) + >>> assert np.isclose(equivalent_gaussian_Nsigma(9.865877e-10), 6, + ... atol=0.01) + >>> assert np.isclose(equivalent_gaussian_Nsigma(6.22096e-16), 8, + ... atol=0.01) + >>> assert np.isclose(equivalent_gaussian_Nsigma(3.0567e-138), 25, atol=0.1) + """ + return equivalent_gaussian_Nsigma_from_logp(np.log(p))
+ + + +@vectorize([float64(float32, float32), float64(float64, float64)], nopython=True) +def _log_asymptotic_incomplete_gamma(a, z): + """Asymptotic natural log of incomplete gamma function. + + Return the natural log of the incomplete gamma function in + its asymptotic limit as z->infty. This is from Abramowitz + and Stegun eqn 6.5.32. + + Translated from Scott Ransom's PRESTO + """ + + x = 1.0 + newxpart = 1.0 + term = 1.0 + ii = 1 + + while np.abs(newxpart) > 1e-15: + term *= a - ii + newxpart = term / np.power(z, ii) + x += newxpart + ii += 1 + + return (a - 1.0) * np.log(z) - z + np.log(x) + + +@vectorize([float64(float32), float64(float64)], nopython=True) +def _log_asymptotic_gamma(z): + """Natural log of the Gamma function in its asymptotic limit. + + Return the natural log of the gamma function in its asymptotic limit + as z->infty. This is from Abramowitz and Stegun eqn 6.1.41. + + Translated from Scott Ransom's PRESTO + """ + half_log_twopi = 0.91893853320467267 # (1/2)*log(2*pi) + one_twelfth = 8.3333333333333333333333e-2 + one_degree = 2.7777777777777777777778e-3 # 1 / 360 + one_over_1680 = 5.9523809523809529e-4 + one_over_1260 = 7.9365079365079365079365e-4 + x = (z - 0.5) * np.log(z) - z + half_log_twopi + y = 1.0 / (z * z) + x += (((-one_over_1680 * y + one_over_1260) * y - one_degree) * y + one_twelfth) / z + return x + + +@np.vectorize +def chi2_logp(chi2, dof): + """Log survival function of the chi-squared distribution. + + Examples + -------- + >>> chi2 = 31 + >>> # Test check on dof + >>> chi2_logp(chi2, 1) # doctest:+ELLIPSIS + Traceback (most recent call last): + ... + ValueError: The number of degrees of freedom cannot be < 2 + >>> # Test that approximate function works as expected. chi2 / dof > 15, + >>> # but small and safe number in order to compare to scipy.stats + >>> assert np.isclose(chi2_logp(chi2, 2), stats.chi2.logsf(chi2, 2), atol=0.1) + >>> chi2 = np.array([5, 32]) + >>> assert np.allclose(chi2_logp(chi2, 2), stats.chi2.logsf(chi2, 2), atol=0.1) + """ + if dof < 2: + raise ValueError("The number of degrees of freedom cannot be < 2") + + # If very large reduced chi squared, use approximation. This is an + # eyeballed limit parameter space where the difference between the + # approximation and the scipy version is tiny, but above which the scipy + # version starts failing. + if (chi2 / dof > 15.0) or ((dof > 150) and (chi2 / dof > 6.0)): + return _log_asymptotic_incomplete_gamma(0.5 * dof, 0.5 * chi2) - _log_asymptotic_gamma( + 0.5 * dof + ) + + return stats.chi2.logsf(chi2, dof) + + +@vectorize( + [ + float64(float32, int32), + float64(float32, int64), + float64(float64, int32), + float64(float64, int64), + ], + nopython=True, +) +def _logp_multitrial_from_single_logp(logp1, n): + """Calculate a multi-trial p-value from the log of a single-trial one. + + This allows to work around Numba's limitation on longdoubles, a way to + vectorize the computation when we need longdouble precision. + + Parameters + ---------- + logp1 : float + The natural logarithm of the significance at which we reject the null + hypothesis on each single trial. + n : int + The number of trials + + Returns + ------- + logpn : float + The log of the significance at which we reject the null hypothesis + after multiple trials + """ + # If the the probability is very small (p1 * n) < 1e-6, use Bonferroni + # approximation. + logn = np.log(n) + if logp1 + logn < -7: + return logp1 + logn + + return np.log(1 - (1 - np.exp(logp1)) ** n) + + +
+[docs] +def p_multitrial_from_single_trial(p1, n): + r"""Calculate a multi-trial p-value from a single-trial one. + + Calling *p* the probability of a single success, the Binomial + distributions says that the probability *at least* one outcome + in n trials is + + .. math:: + + P(k\geq 1) = \sum_{k\geq 1} \binom{n}{k} p^k (1-p)^{(n-k)} + + or more simply, using P(k ≥ 0) = 1 + + .. math:: + + P(k\geq 1) = 1 - \binom{n}{0} (1-p)^n = 1 - (1-p)^n + + + Parameters + ---------- + p1 : float + The significance at which we reject the null hypothesis on + each single trial. + n : int + The number of trials + + Returns + ------- + pn : float + The significance at which we reject the null hypothesis + after multiple trials + """ + logpn = _logp_multitrial_from_single_logp(np.log(p1).astype(np.double), n) + + return np.exp(np.longdouble(logpn))
+ + + +@vectorize( + [ + float64(float32, int32), + float64(float32, int64), + float64(float64, int32), + float64(float64, int64), + ], + nopython=True, +) +def _logp_single_trial_from_logp_multitrial(logpn, n): + """Calculate a multi-trial p-value from the log of a single-trial one. + + This allows to work around Numba's limitation on longdoubles, a way to + vectorize the computation when we need longdouble precision. + + Parameters + ---------- + logpn : float + The natural logarithm of the significance at which we want to reject + the null hypothesis after multiple trials + n : int + The number of trials + + Returns + ------- + logp1 : float + The log of the significance at which we reject the null hypothesis on + each single trial. + """ + logn = np.log(n) + # If the the probability is very small, use Bonferroni approximation. + if logpn < -7: + return logpn - logn + + # Numerical errors arise when pn is very close to 1. (logpn ~ 0) + if 1 - np.exp(logpn) < np.finfo(np.double).resolution * 1000: + return np.nan + + p1 = 1 - np.power(1 - np.exp(logpn), 1 / n) + return np.log(p1) + + +
+[docs] +def p_single_trial_from_p_multitrial(pn, n): + r"""Calculate the single-trial p-value from a total p-value + + Let us say that we want to reject a null hypothesis at the + ``pn`` level, after executing ``n`` different measurements. + This might be the case because, e.g., we + want to have a 1% probability of detecting a signal in an + entire power spectrum, and we need to correct the detection + level accordingly. + + The typical procedure is dividing the initial probability + (often called _epsilon_) by the number of trials. This is + called the Bonferroni correction and it is often a good + approximation, when ``pn`` is low: ``p1 = pn / n``. + + However, if ``pn`` is close to 1, this approximation gives + incorrect results. + + Here we calculate this probability by inverting the Binomial + problem. Given that (see ``p_multitrial_from_single_trial``) + the probability of getting more than one hit in n trials, + given the single-trial probability *p*, is + + .. math :: + + P (k \geq 1) = 1 - (1 - p)^n, + + we get the single trial probability from the multi-trial one + from + + .. math :: + + p = 1 - (1 - P)^{(1/n)} + + This is also known as Šidák correction. + + Parameters + ---------- + pn : float + The significance at which we want to reject the null + hypothesis after multiple trials + n : int + The number of trials + + Returns + ------- + p1 : float + The significance at which we reject the null hypothesis on + each single trial. + """ + + logp = _logp_single_trial_from_logp_multitrial(np.log(pn).astype(np.float64), n) + + if np.any(np.isnan(logp)): + if np.any(1 - pn < np.finfo(np.double).resolution * 1000): + warnings.warn("Multi-trial probability is very close to 1.") + warnings.warn("The problem is ill-conditioned. Returning NaN") + + return np.exp(logp)
+ + + +
+[docs] +def fold_profile_probability(stat, nbin, ntrial=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + stat : float + The epoch folding statistics + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + p : float + The probability that the profile has been produced by noise + """ + p1 = stats.chi2.sf(stat, (nbin - 1)) + return p_multitrial_from_single_trial(p1, ntrial)
+ + + +
+[docs] +def fold_profile_logprobability(stat, nbin, ntrial=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + stat : float + The epoch folding statistics + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + logp : float + The log-probability that the profile has been produced by noise + """ + p1 = chi2_logp(stat, (nbin - 1)) + return _logp_multitrial_from_single_logp(p1, ntrial)
+ + + +
+[docs] +def fold_detection_level(nbin, epsilon=0.01, ntrial=1): + """Return the detection level for a folded profile. + + See Leahy et al. (1983). + + Parameters + ---------- + nbin : int + The number of bins in the profile + epsilon : float, default 0.01 + The fractional probability that the signal has been produced + by noise + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + detlev : float + The epoch folding statistics corresponding to a probability + epsilon * 100 % that the signal has been produced by noise + """ + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + return stats.chi2.isf(epsilon.astype(np.double), nbin - 1)
+ + + +
+[docs] +def phase_dispersion_probability(stat, nsamples, nbin, ntrial=1): + """Calculate the probability of a peak in a phase dispersion + minimization periodogram, due to noise. + + Uses the beta-distribution from Czerny-Schwarzendorf (1997). + + Parameters + ---------- + stat : float + The value of the PDM inverse peak + + nsamples : int + The number of samples in the time series + + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + p : float + The probability that the profile has been produced by noise + """ + d2 = nsamples - nbin + d1 = nbin - 1 + + beta = stats.beta(d2 / 2.0, d1 / 2.0) + p1 = beta.cdf(stat) + + return p_multitrial_from_single_trial(p1, ntrial)
+ + + +
+[docs] +def phase_dispersion_logprobability(stat, nsamples, nbin, ntrial=1): + """Calculate the log-probability of a peak in a phase dispersion + minimization periodogram, due to noise. + + Uses the beta-distribution from Czerny-Schwarzendorf (1997). + + Parameters + ---------- + stat : float + The value of the PDM inverse peak + + nsamples : int + The number of samples in the time series + + nbin : int + The number of bins in the profile + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + logp : float + The log-probability that the profile has been produced by noise + """ + d2 = nsamples - nbin + d1 = nbin - 1 + + beta = stats.beta(d2 / 2.0, d1 / 2.0) + p1 = beta.logcdf(stat) + + return _logp_multitrial_from_single_logp(p1, ntrial)
+ + + +
+[docs] +def phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=1): + """Return the detection level for a phase dispersion minimization + periodogram.. + + Parameters + ---------- + nsamples : int + The number of time bins in the light curve + + nbin : int + The number of bins in the profile + + epsilon : float, default 0.01 + The fractional probability that the signal has been produced + by noise + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + + Returns + ------- + detlev : float + The epoch folding statistics corresponding to a probability + epsilon * 100 % that the signal has been produced by noise + """ + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + + d2 = nsamples - nbin + d1 = nbin - 1 + + beta = stats.beta(d2 / 2.0, d1 / 2.0) + + return beta.ppf(epsilon.astype(np.double))
+ + + +
+[docs] +def z2_n_probability(z2, n, ntrial=1, n_summed_spectra=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + z2 : float + A Z^2_n statistics value + n : int, default 2 + The ``n`` in $Z^2_n$ (number of harmonics, including the fundamental) + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + n_summed_spectra : int + Number of Z_2^n periodograms that were averaged to obtain z2 + + Returns + ------- + p : float + The probability that the Z^2_n value has been produced by noise + """ + epsilon_1 = stats.chi2.sf(z2 * n_summed_spectra, 2 * n * n_summed_spectra) + epsilon = p_multitrial_from_single_trial(epsilon_1, ntrial) + return epsilon
+ + + +
+[docs] +def z2_n_logprobability(z2, n, ntrial=1, n_summed_spectra=1): + """Calculate the probability of a certain folded profile, due to noise. + + Parameters + ---------- + z2 : float + A Z^2_n statistics value + n : int, default 2 + The ``n`` in $Z^2_n$ (number of harmonics, including the fundamental) + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + n_summed_spectra : int + Number of Z_2^n periodograms that were averaged to obtain z2 + + Returns + ------- + p : float + The probability that the Z^2_n value has been produced by noise + """ + + epsilon_1 = chi2_logp(np.double(z2 * n_summed_spectra), 2 * n * n_summed_spectra) + epsilon = _logp_multitrial_from_single_logp(epsilon_1, ntrial) + return epsilon
+ + + +
+[docs] +def z2_n_detection_level(n=2, epsilon=0.01, ntrial=1, n_summed_spectra=1): + """Return the detection level for the Z^2_n statistics. + + See Buccheri et al. (1983), Bendat and Piersol (1971). + + Parameters + ---------- + n : int, default 2 + The ``n`` in $Z^2_n$ (number of harmonics, including the fundamental) + epsilon : float, default 0.01 + The fractional probability that the signal has been produced by noise + + Other Parameters + ---------------- + ntrial : int + The number of trials executed to find this profile + n_summed_spectra : int + Number of Z_2^n periodograms that are being averaged + + Returns + ------- + detlev : float + The epoch folding statistics corresponding to a probability + epsilon * 100 % that the signal has been produced by noise + """ + + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + retlev = stats.chi2.isf(epsilon.astype(np.double), 2 * n_summed_spectra * n) / ( + n_summed_spectra + ) + + return retlev
+ + + +
+[docs] +def pds_probability(level, ntrial=1, n_summed_spectra=1, n_rebin=1): + r"""Give the probability of a given power level in PDS. + + Return the probability of a certain power level in a Power Density + Spectrum of nbins bins, normalized a la Leahy (1983), based on + the 2-dof :math:`{\chi}^2` statistics, corrected for rebinning (n_rebin) + and multiple PDS averaging (n_summed_spectra) + + Parameters + ---------- + level : float or array of floats + The power level for which we are calculating the probability + + Other Parameters + ---------------- + ntrial : int + The number of *independent* trials (the independent bins of the PDS) + n_summed_spectra : int + The number of power density spectra that have been averaged to obtain + this power level + n_rebin : int + The number of power density bins that have been averaged to obtain + this power level + + Returns + ------- + epsilon : float + The probability value(s) + """ + + epsilon_1 = stats.chi2.sf(level * n_summed_spectra * n_rebin, 2 * n_summed_spectra * n_rebin) + + epsilon = p_multitrial_from_single_trial(epsilon_1, ntrial) + return epsilon
+ + + +def pds_logprobability(level, ntrial=1, n_summed_spectra=1, n_rebin=1): + r"""Give the probability of a given power level in PDS. + + Return the probability of a certain power level in a Power Density + Spectrum of nbins bins, normalized a la Leahy (1983), based on + the 2-dof :math:`{\chi}^2` statistics, corrected for rebinning (n_rebin) + and multiple PDS averaging (n_summed_spectra) + + Parameters + ---------- + level : float or array of floats + The power level for which we are calculating the probability + + Other Parameters + ---------------- + ntrial : int + The number of *independent* trials (the independent bins of the PDS) + n_summed_spectra : int + The number of power density spectra that have been averaged to obtain + this power level + n_rebin : int + The number of power density bins that have been averaged to obtain + this power level + + Returns + ------- + epsilon : float + The probability value(s) + + Examples + -------- + Let us test that it is always consistent with `pds_probability`. + We use relatively small power values, because for large values + `pds_probability` underflows. + >>> powers = np.random.uniform(2, 40, 10) + >>> nrebin = np.random.randint(1, 10, 10) + >>> nsummed = np.random.randint(1, 100, 10) + >>> ntrial = np.random.randint(1, 10000, 10) + >>> logp = pds_logprobability(powers, ntrial, nsummed, nrebin) + >>> p = pds_probability(powers, ntrial, nsummed, nrebin) + >>> assert np.allclose(p, np.exp(logp)) + """ + + epsilon_1 = chi2_logp(level * n_summed_spectra * n_rebin, 2 * n_summed_spectra * n_rebin) + + epsilon = _logp_multitrial_from_single_logp(epsilon_1, ntrial) + return epsilon + + +
+[docs] +def pds_detection_level(epsilon=0.01, ntrial=1, n_summed_spectra=1, n_rebin=1): + r"""Detection level for a PDS. + + Return the detection level (with probability 1 - epsilon) for a Power + Density Spectrum of nbins bins, normalized a la Leahy (1983), based on + the 2-dof :math:`{\chi}^2` statistics, corrected for rebinning (n_rebin) + and multiple PDS averaging (n_summed_spectra) + + Parameters + ---------- + epsilon : float + The single-trial probability value(s) + + Other Parameters + ---------------- + ntrial : int + The number of *independent* trials (the independent bins of the PDS) + n_summed_spectra : int + The number of power density spectra that have been averaged to obtain + this power level + n_rebin : int + The number of power density bins that have been averaged to obtain + this power level + + Examples + -------- + >>> assert np.isclose(pds_detection_level(0.1), 4.6, atol=0.1) + >>> assert np.allclose(pds_detection_level(0.1, n_rebin=[1]), [4.6], atol=0.1) + """ + epsilon = p_single_trial_from_p_multitrial(epsilon, ntrial) + epsilon = epsilon.astype(np.double) + if isinstance(n_rebin, Iterable): + retlev = [ + stats.chi2.isf(epsilon, 2 * n_summed_spectra * r) / (n_summed_spectra * r) + for r in n_rebin + ] + retlev = np.array(retlev) + else: + r = n_rebin + retlev = stats.chi2.isf(epsilon, 2 * n_summed_spectra * r) / (n_summed_spectra * r) + return retlev
+ + + +
+[docs] +def classical_pvalue(power, nspec): + """ + Note: + This is stingray's original implementation of the probability + distribution for the power spectrum. It is superseded by the + implementation in pds_probability for practical purposes, but + remains here for backwards compatibility and for its educational + value as a clear, explicit implementation of the correct + probability distribution. + + Compute the probability of detecting the current power under + the assumption that there is no periodic oscillation in the data. + + This computes the single-trial p-value that the power was + observed under the null hypothesis that there is no signal in + the data. + + Important: the underlying assumptions that make this calculation valid + are: + + 1. the powers in the power spectrum follow a chi-square distribution + 2. the power spectrum is normalized according to [Leahy 1983]_, such + that the powers have a mean of 2 and a variance of 4 + 3. there is only white noise in the light curve. That is, there is no + aperiodic variability that would change the overall shape of the power + spectrum. + + Also note that the p-value is for a *single trial*, i.e. the power + currently being tested. If more than one power or more than one power + spectrum are being tested, the resulting p-value must be corrected for the + number of trials (Bonferroni correction). + + Mathematical formulation in [Groth 1975]_. + Original implementation in IDL by Anna L. Watts. + + Parameters + ---------- + power : float + The squared Fourier amplitude of a spectrum to be evaluated + + nspec : int + The number of spectra or frequency bins averaged in ``power``. + This matters because averaging spectra or frequency bins increases + the signal-to-noise ratio, i.e. makes the statistical distributions + of the noise narrower, such that a smaller power might be very + significant in averaged spectra even though it would not be in a single + power spectrum. + + Returns + ------- + pval : float + The classical p-value of the observed power being consistent with + the null hypothesis of white noise + + References + ---------- + + * .. [Leahy 1983] https://ui.adsabs.harvard.edu/#abs/1983ApJ...266..160L/abstract + * .. [Groth 1975] https://ui.adsabs.harvard.edu/#abs/1975ApJS...29..285G/abstract + + """ + + warnings.warn("This function was substituted by pds_probability.", DeprecationWarning) + + if not np.isfinite(power): + raise ValueError("power must be a finite floating point number!") + + if power < 0: + raise ValueError("power must be a positive real number!") + + if not np.isfinite(nspec): + raise ValueError("nspec must be a finite integer number") + + if nspec < 1: + raise ValueError("nspec must be larger or equal to 1") + + if not np.isclose(nspec % 1, 0): + raise ValueError("nspec must be an integer number!") + + # If the power is really big, it's safe to say it's significant, + # and the p-value will be nearly zero + if (power * nspec) > 30000: + simon("Probability of no signal too minuscule to calculate.") + return 0.0 + + else: + pval = _pavnosigfun(power, nspec) + return pval
+ + + +def _pavnosigfun(power, nspec): + """ + Helper function doing the actual calculation of the p-value. + + Parameters + ---------- + power : float + The measured candidate power + + nspec : int + The number of power spectral bins that were averaged in `power` + (note: can be either through averaging spectra or neighbouring bins) + """ + sum = 0.0 + m = nspec - 1 + + pn = power * nspec + + while m >= 0: + s = 0.0 + for i in range(int(m) - 1): + s += np.log(float(m - i)) + + logterm = m * np.log(pn / 2) - pn / 2 - s + term = np.exp(logterm) + ratio = sum / term + + if ratio > 1.0e15: + return sum + + sum += term + m -= 1 + + return sum + + +
+[docs] +def power_confidence_limits(preal, n=1, c=0.95): + """Confidence limits on power, given a (theoretical) signal power. + + This is to be used when we *expect* a given power (e.g. from the pulsed + fraction measured in previous observations) and we want to know the + range of values the measured power could take to a given confidence level. + Adapted from Vaughan et al. 1994, noting that, after appropriate + normalization of the spectral stats, the distribution of powers in the PDS + and the Z^2_n searches is always described by a noncentral chi squared + distribution. + + Parameters + ---------- + preal: float + The theoretical signal-generated value of power + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain the result. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence level (e.g. 0.95=95%) + + Returns + ------- + pmeas: [float, float] + The upper and lower confidence interval (a, 1-a) on the measured power + + Examples + -------- + >>> cl = power_confidence_limits(150, c=0.84) + >>> assert np.allclose(cl, [127, 176], atol=1) + """ + rv = stats.ncx2(2 * n, preal) + return rv.ppf([1 - c, c])
+ + + +
+[docs] +def power_upper_limit(pmeas, n=1, c=0.95): + """Upper limit on signal power, given a measured power in the PDS/Z search. + + Adapted from Vaughan et al. 1994, noting that, after appropriate + normalization of the spectral stats, the distribution of powers in the PDS + and the Z^2_n searches is always described by a noncentral chi squared + distribution. + + Note that Vaughan+94 gives p(pmeas | preal), while we are interested in + p(real | pmeas), which is not described by the NCX2 stat. Rather than + integrating the CDF of this probability distribution, we start from a + reasonable approximation and fit to find the preal that gives pmeas as + a (e.g.95%) confidence limit. + + As Vaughan+94 shows, this power is always larger than the observed one. + This is because we are looking for the maximum signal power that, + combined with noise powers, would give the observed power. This involves + the possibility that noise powers partially cancel out some signal power. + + Parameters + ---------- + pmeas: float + The measured value of power + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain pmeas. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence value for the probability (e.g. 0.95 = 95%) + + Returns + ------- + psig: float + The signal power that could produce P>pmeas with 1 - c probability + + Examples + -------- + >>> pup = power_upper_limit(40, 1, 0.99) + >>> assert np.isclose(pup, 75, atol=2) + """ + + def ppf(x): + rv = stats.ncx2(2 * n, x) + return rv.ppf(1 - c) + + def isf(x): + rv = stats.ncx2(2 * n, x) + return rv.ppf(c) + + def func_to_minimize(x, xmeas): + return np.abs(ppf(x) - xmeas) + + from scipy.optimize import minimize + + initial = isf(pmeas) + + res = minimize(func_to_minimize, [initial], pmeas, bounds=[(0, initial * 2)]) + + return res.x[0]
+ + + +
+[docs] +def amplitude_upper_limit(pmeas, counts, n=1, c=0.95, fft_corr=False, nyq_ratio=0): + r"""Upper limit on a sinusoidal modulation, given a measured power in the PDS/Z search. + + Eq. 10 in Vaughan+94 and `a_from_ssig`: they are equivalent but Vaughan+94 + corrects further for the response inside an FFT bin and at frequencies close + to Nyquist. These two corrections are added by using fft_corr=True and + nyq_ratio to the correct :math:`f / f_{Nyq}` of the FFT peak + + To understand the meaning of this amplitude: if the modulation is described by: + + ..math:: p = \overline{p} (1 + a * \sin(x)) + + this function returns a. + + If it is a sum of sinusoidal harmonics instead + ..math:: p = \overline{p} (1 + \sum_l a_l * \sin(lx)) + a is equivalent to :math:`\sqrt(\sum_l a_l^2)`. + + See `power_upper_limit` + + Parameters + ---------- + pmeas: float + The measured value of power + + counts: int + The number of counts in the light curve used to calculate the spectrum + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain pmeas. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence value for the probability (e.g. 0.95 = 95%) + fft_corr: bool + Apply a correction for the expected power concentrated in an FFT bin, + which is about 0.773 on average (it's 1 at the center of the bin, 2/pi + at the bin edge. + nyq_ratio: float + Ratio of the frequency of this feature with respect to the Nyquist + frequency. Important to know when dealing with FFTs, because the FFT + response decays between 0 and f_Nyq similarly to the response inside + a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq + + Returns + ------- + a: float + The modulation amplitude that could produce P>pmeas with 1 - c probability + + Examples + -------- + >>> aup = amplitude_upper_limit(40, 30000, 1, 0.99) + >>> aup_nyq = amplitude_upper_limit(40, 30000, 1, 0.99, nyq_ratio=1) + >>> assert np.isclose(aup_nyq, aup / (2 / np.pi)) + >>> aup_corr = amplitude_upper_limit(40, 30000, 1, 0.99, fft_corr=True) + >>> assert np.isclose(aup_corr, aup / np.sqrt(0.773)) + """ + + uplim = power_upper_limit(pmeas, n, c) + a = a_from_ssig(uplim, counts) + if fft_corr: + factor = 1 / np.sqrt(0.773) + a *= factor + if nyq_ratio > 0: + factor = np.pi / 2 * nyq_ratio + sinc_factor = np.sin(factor) / factor + a /= sinc_factor + return a
+ + + +
+[docs] +def pf_upper_limit(*args, **kwargs): + """Upper limit on pulsed fraction, given a measured power in the PDS/Z search. + + See `power_upper_limit` and `pf_from_ssig`. + All arguments are the same as `amplitude_upper_limit` + + Parameters + ---------- + pmeas: float + The measured value of power + + counts: int + The number of counts in the light curve used to calculate the spectrum + + Other Parameters + ---------------- + n: int + The number of summed powers to obtain pmeas. It can be multiple + harmonics of the PDS, adjacent bins in a PDS summed to collect all the + power in a QPO, or the n in Z^2_n + c: float + The confidence value for the probability (e.g. 0.95 = 95%) + fft_corr: bool + Apply a correction for the expected power concentrated in an FFT bin, + which is about 0.773 on average (it's 1 at the center of the bin, 2/pi + at the bin edge. + nyq_ratio: float + Ratio of the frequency of this feature with respect to the Nyquist + frequency. Important to know when dealing with FFTs, because the FFT + response decays between 0 and f_Nyq similarly to the response inside + a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq + + Returns + ------- + pf: float + The pulsed fraction that could produce P>pmeas with 1 - c probability + + Examples + -------- + >>> pfup = pf_upper_limit(40, 30000, 1, 0.99) + >>> assert np.isclose(pfup, 0.13, atol=0.01) + """ + + return pf_from_a(amplitude_upper_limit(*args, **kwargs))
+ + + +
+[docs] +def pf_from_a(a): + """Pulsed fraction from fractional amplitude of modulation. + + If the pulsed profile is defined as + p = mean * (1 + a * sin(phase)), + + we define "pulsed fraction" as 2a/b, where b = mean + a is the maximum and + a is the amplitude of the modulation. + + Hence, pulsed fraction = 2a/(1+a) + + Examples + -------- + >>> pf_from_a(1) + 1.0 + >>> pf_from_a(0) + 0.0 + """ + return 2 * a / (1 + a)
+ + + +
+[docs] +def a_from_pf(p): + """Fractional amplitude of modulation from pulsed fraction + + If the pulsed profile is defined as + p = mean * (1 + a * sin(phase)), + + we define "pulsed fraction" as 2a/b, where b = mean + a is the maximum and + a is the amplitude of the modulation. + + Hence, a = pf / (2 - pf) + + Examples + -------- + >>> a_from_pf(1) + 1.0 + >>> a_from_pf(0) + 0.0 + """ + return p / (2 - p)
+ + + +
+[docs] +def ssig_from_a(a, ncounts): + """Theoretical power in the Z or PDS search for a sinusoid of amplitude a. + + From Leahy et al. 1983, given a pulse profile + p = lambda * (1 + a * sin(phase)), + The theoretical value of Z^2_n is Ncounts / 2 * a^2 + + Note that if there are multiple sinusoidal components, one can use + a = sqrt(sum(a_l)) + (Bachetti+2021b) + + Examples + -------- + >>> round(ssig_from_a(0.1, 30000), 1) + 150.0 + """ + return ncounts / 2 * a**2
+ + + +
+[docs] +def a_from_ssig(ssig, ncounts): + """Amplitude of a sinusoid corresponding to a given Z/PDS value + + From Leahy et al. 1983, given a pulse profile + p = lambda * (1 + a * sin(phase)), + The theoretical value of Z^2_n is Ncounts / 2 * a^2 + + Note that if there are multiple sinusoidal components, one can use + a = sqrt(sum(a_l)) + (Bachetti+2021b) + + Examples + -------- + >>> assert np.isclose(a_from_ssig(150, 30000), 0.1) + """ + return np.sqrt(2 * ssig / ncounts)
+ + + +
+[docs] +def ssig_from_pf(pf, ncounts): + """Theoretical power in the Z or PDS for a sinusoid of pulsed fraction pf. + + See `ssig_from_a` and `a_from_pf` for more details + + Examples + -------- + >>> assert round(ssig_from_pf(pf_from_a(0.1), 30000), 1) == 150.0 + """ + a = a_from_pf(pf) + return ncounts / 2 * a**2
+ + + +
+[docs] +def pf_from_ssig(ssig, ncounts): + """Estimate pulsed fraction for a sinusoid from a given Z or PDS power. + + See `a_from_ssig` and `pf_from_a` for more details + + Examples + -------- + >>> assert np.isclose(round(a_from_pf(pf_from_ssig(150, 30000)), 1), 0.1) + """ + a = a_from_ssig(ssig, ncounts) + return pf_from_a(a)
+ +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/utils.html b/_modules/stingray/utils.html new file mode 100644 index 000000000..e7e2c1490 --- /dev/null +++ b/_modules/stingray/utils.html @@ -0,0 +1,2567 @@ + + + + + + + stingray.utils — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.utils

+import numbers
+import os
+import re
+import copy
+import random
+import string
+import sys
+import warnings
+import tempfile
+from collections.abc import Iterable
+
+import numpy as np
+import scipy
+from numpy import histogram as histogram_np
+from numpy import histogram2d as histogram2d_np
+from numpy import histogramdd as histogramdd_np
+from .loggingconfig import setup_logger
+
+logger = setup_logger()
+
+try:
+    import pyfftw
+    from pyfftw.interfaces.numpy_fft import (
+        ifft,
+        fft,
+        fftfreq,
+        fftn,
+        ifftn,
+        fftshift,
+        fft2,
+        ifftshift,
+        rfft,
+        rfftfreq,
+    )
+
+    pyfftw.interfaces.cache.enable()
+    HAS_PYFFTW = True
+    logger.info("Using PyFFTW")
+except ImportError:
+    from numpy.fft import ifft, fft, fftfreq, fftn, ifftn, fftshift, fft2, ifftshift, rfft, rfftfreq
+
+    HAS_PYFFTW = False
+
+
+# If numba is installed, import jit. Otherwise, define an empty decorator with
+# the same name.
+try:
+    from numba import jit
+
+    HAS_NUMBA = True
+    from numba import njit, prange, vectorize, float32, float64, int32, int64
+    from numba.core.errors import NumbaValueError, NumbaNotImplementedError, TypingError
+except ImportError:
+    warnings.warn(
+        "The recommended numba package is not installed. Some functionality might be slower."
+    )
+    HAS_NUMBA = False
+    NumbaValueError = NumbaNotImplementedError = TypingError = Exception
+
+    def njit(f=None, *args, **kwargs):
+        def decorator(func, *a, **kw):
+            return func
+
+        if callable(f):
+            return f
+        else:
+            return decorator
+
+    jit = njit
+
+    def vectorize(*args, **kwargs):
+        def decorator(func, *a, **kw):
+            return np.vectorize(func)
+
+        return decorator
+
+    def generic(x, y=None):
+        return None
+
+    float32 = float64 = int32 = int64 = generic
+
+    def prange(x):
+        return range(x)
+
+
+try:
+    from tqdm import tqdm as show_progress
+except ImportError:
+
+    def show_progress(a):
+        return a
+
+
+try:
+    from statsmodels.robust import mad as mad  # pylint: disable=unused-import
+except ImportError:
+
+    def mad(data, c=0.6745, axis=None):
+        """
+        Mean Absolute Deviation (MAD) along an axis.
+
+        Straight from statsmodels's source code, adapted
+
+        Parameters
+        ----------
+        data : iterable
+            The data along which to calculate the MAD
+
+        c : float, optional
+            The normalization constant. Defined as
+            ``scipy.stats.norm.ppf(3/4.)``, which is approximately ``.6745``.
+
+        axis : int, optional, default ``0``
+            Axis along which to calculate ``mad``. Default is ``0``, can also
+            be ``None``
+        """
+        data = np.asanyarray(data)
+        if axis is not None:
+            center = np.apply_over_axes(np.median, data, axis)
+        else:
+            center = np.median(data)
+        return np.median((np.fabs(data - center)) / c, axis=axis)
+
+
+__all__ = [
+    "simon",
+    "rebin_data",
+    "rebin_data_log",
+    "look_for_array_in_array",
+    "is_string",
+    "is_iterable",
+    "order_list_of_arrays",
+    "optimal_bin_time",
+    "contiguous_regions",
+    "is_int",
+    "get_random_state",
+    "baseline_als",
+    "excess_variance",
+    "create_window",
+    "poisson_symmetrical_errors",
+    "standard_error",
+    "nearest_power_of_two",
+    "find_nearest",
+    "check_isallfinite",
+    "heaviside",
+    "make_dictionary_lowercase",
+]
+
+
+
+[docs] +def make_dictionary_lowercase(dictionary, recursive=False): + """Make all keys of a dictionary lowercase. + + Optionally, if some values are dictionaries, they can be made lowercase too. + + Parameters + ---------- + dictionary : dict + The dictionary to be made lowercase + + Other Parameters + ---------------- + recursive : bool + If ``True``, make all keys of nested dictionaries lowercase too. + + Examples + -------- + >>> d1 = {"A": 1, "B": 2, "C": {"D": 3, "E": {"F": 4}}} + >>> d2 = make_dictionary_lowercase(d1) + >>> assert d2 == {"a": 1, "b": 2, "c": {"D": 3, "E": {"F": 4}}} + >>> d3 = make_dictionary_lowercase(d1, recursive=True) + >>> assert d3 == {"a": 1, "b": 2, "c": {"d": 3, "e": {"f": 4}}} + """ + new_dict = {} + for key, value in dictionary.items(): + if recursive and isinstance(value, dict): + value = make_dictionary_lowercase(value, recursive=True) + + new_dict[key.lower()] = value + + return new_dict
+ + + +def force_array(x): + """Convert an input to a numpy array. + + If it is not iterable, convert to a 1-element array. + + Parameters + ---------- + x : iterable or number + The input to be converted + + Returns + ------- + x : numpy.ndarray + The input converted to a numpy array + + Examples + -------- + >>> assert isinstance(force_array(1), np.ndarray) + >>> assert isinstance(force_array([1]), np.ndarray) + """ + if not isinstance(x, Iterable): + x = [x] + + return np.asanyarray(x) + + +
+[docs] +@njit() +def heaviside(x): + """Heaviside function. Returns 1 if x>0, and 0 otherwise. + + Examples + -------- + >>> heaviside(2) + 1 + >>> heaviside(-1) + 0 + """ + if x >= 0: + return 1 + else: + return 0
+ + + +@njit +def any_complex_in_array(array): + """Check if any element of an array is complex. + + Examples + -------- + >>> any_complex_in_array(np.array([1, 2, 3])) + False + >>> assert any_complex_in_array(np.array([1, 2 + 1.j, 3])) + """ + for a in array: + if np.iscomplex(a): + return True + return False + + +def make_nd_into_arrays(array: np.ndarray, label: str) -> dict: + """If an array is n-dimensional, make it into many 1-dimensional arrays. + + Call additional dimensions, e.g. ``_dimN_M``. See examples below. + + Parameters + ---------- + array : `np.ndarray` + Input data + label : `str` + Label for the array + + Returns + ------- + data : `dict` + Dictionary of arrays. Defaults to ``{label: array}`` if ``array`` is 1-dimensional, + otherwise, e.g.: ``{label_dim1_2_3: array[1, 2, 3], ... }`` + + Examples + -------- + >>> a1, a2, a3 = np.arange(3), np.arange(3, 6), np.arange(6, 9) + >>> A = np.array([a1, a2, a3]).T + >>> data = make_nd_into_arrays(A, "test") + >>> assert np.array_equal(data["test_dim0"], a1) + >>> assert np.array_equal(data["test_dim1"], a2) + >>> assert np.array_equal(data["test_dim2"], a3) + >>> A3 = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]] + >>> data = make_nd_into_arrays(A3, "test") + >>> assert np.array_equal(data["test_dim0_0"], [1, 5]) + """ + data = {} + array = np.asanyarray(array) + shape = np.shape(array) + ndim = len(shape) + if ndim <= 1: + data[label] = array + else: + for i in range(shape[1]): + new_label = f"_dim{i}" if "_dim" not in label else f"_{i}" + dumdata = make_nd_into_arrays(array[:, i], label=label + new_label) + data.update(dumdata) + return data + + +def get_dimensions_from_list_of_column_labels(labels: list, label: str) -> list: + """Get the dimensions of a multi-dimensional array from a list of column labels. + + Examples + -------- + >>> labels = ['test_dim0_0', 'test_dim0_1', 'test_dim0_2', + ... 'test_dim1_0', 'test_dim1_1', 'test_dim1_2', 'test', 'bu'] + >>> keys, dimensions = get_dimensions_from_list_of_column_labels(labels, "test") + >>> for key0, key1 in zip(labels[:6], keys): assert key0 == key1 + >>> assert np.array_equal(dimensions, [2, 3]) + """ + all_keys = [] + count_dimensions = None + for key in labels: + if label not in key: + continue + match = re.search("^" + label + r"_dim([0-9]+(_[0-9]+)*)", key) + if match is None: + continue + all_keys.append(key) + new_count_dimensions = [int(val) for val in match.groups()[0].split("_")] + if count_dimensions is None: + count_dimensions = np.array(new_count_dimensions) + else: + count_dimensions = np.max([count_dimensions, new_count_dimensions], axis=0) + + return sorted(all_keys), count_dimensions + 1 + + +def make_1d_arrays_into_nd(data: dict, label: str) -> np.ndarray: + """Literally the opposite of make_nd_into_arrays. + + Call additional dimensions, e.g. ``_dimN_M`` + + Parameters + ---------- + data : dict + Input data + label : `str` + Label for the array + + Returns + ------- + array : `np.array` + N-dimensional array that was stored in the data. + + Examples + -------- + >>> a1, a2, a3 = np.arange(3), np.arange(3, 6), np.arange(6, 9) + >>> A = np.array([a1, a2, a3]).T + >>> data = make_nd_into_arrays(A, "test") + >>> A_ret = make_1d_arrays_into_nd(data, "test") + >>> assert np.array_equal(A, A_ret) + >>> A = np.array([[[1, 2, 12], [3, 4, 34]], + ... [[5, 6, 56], [7, 8, 78]], + ... [[9, 10, 910], [11, 12, 1112]], + ... [[13, 14, 1314], [15, 16, 1516]]]) + >>> data = make_nd_into_arrays(A, "_test") + >>> A_ret = make_1d_arrays_into_nd(data, "_test") + >>> assert np.array_equal(A, A_ret) + >>> data = make_nd_into_arrays(a1, "_test") + >>> A_ret = make_1d_arrays_into_nd(data, "_test") + >>> assert np.array_equal(a1, A_ret) + """ + + if label in list(data.keys()): + return data[label] + + # Get the dimensionality of the data + dim = 0 + all_keys = [] + + all_keys, dimensions = get_dimensions_from_list_of_column_labels(list(data.keys()), label) + arrays = np.array([np.array(data[key]) for key in all_keys]) + + return arrays.T.reshape([len(arrays[0])] + list(dimensions)) + + +@njit +def _check_isallfinite_numba(array): + """Check if all elements of an array are finite. + + This is faster than ``np.isfinite`` for large arrays, because it + exits at the first occurrence of a non-finite value. + + Examples + -------- + >>> assert _check_isallfinite_numba(np.array([1., 2., 3.])) + >>> _check_isallfinite_numba(np.array([1., np.inf, 3.])) + False + """ + for a in array: + if not np.isfinite(a): + return False + return True + + +
+[docs] +def check_isallfinite(array): + """Check if all elements of an array are finite. + + Calls ``_check_isallfinite_numba`` if numba is installed, otherwise + it uses ``np.isfinite``. + + Examples + -------- + >>> assert check_isallfinite([1, 2, 3]) + >>> check_isallfinite([1, np.inf, 3]) + False + >>> check_isallfinite([1, np.nan, 3]) + False + """ + if HAS_NUMBA: + # Numba is very picky about the type of the input array. If an exception + # occurs in the numba-compiled function, use the default Numpy implementation. + try: + return _check_isallfinite_numba(np.asanyarray(array)) + except Exception: + pass + return bool(np.all(np.isfinite(array)))
+ + + +def is_sorted(array): + """Check if an array is sorted. + + Checks if an array has extended precision before calling the + ``is_sorted`` numba-compiled function. + + Parameters + ---------- + array : iterable + The array to be checked + + Returns + ------- + is_sorted : bool + True if the array is sorted, False otherwise + """ + + array = np.asanyarray(array) + # If the array is empty or has only one element, it is sorted + if array.size <= 1: + return True + + # If Numba is not installed, use numpy's implementation + if not HAS_NUMBA: + return np.all(np.diff(array) >= 0) + # Test if value is compatible with Numba's type system + try: + _is_sorted_numba(array[:2]) + except NumbaValueError: + array = array.astype(float) + + return _is_sorted_numba(array) + + +@njit() +def _is_sorted_numba(array): + """Check if an array is sorted. + + .. note:: + The array cannot have extended precision. + This function should always be wrapped into a function that + checks the type of the array and converts it to float if needed. + + Parameters + ---------- + array : iterable + The array to be checked + + Returns + ------- + is_sorted : bool + True if the array is sorted, False otherwise + """ + for i in prange(len(array) - 1): + if array[i] > array[i + 1]: + return False + return True + + +def _root_squared_mean(array): + array = np.asanyarray(array) + return np.sqrt(np.sum(array**2)) / array.size + + +
+[docs] +def simon(message, **kwargs): + """The Statistical Interpretation MONitor. + + A warning system designed to always remind the user that Simon + is watching him/her. + + Parameters + ---------- + message : string + The message that is thrown + + kwargs : dict + The rest of the arguments that are passed to ``warnings.warn`` + """ + + warnings.warn("SIMON says: {0}".format(message), **kwargs)
+ + + +
+[docs] +def rebin_data(x, y, dx_new, yerr=None, method="sum", dx=None): + """Rebin some data to an arbitrary new data resolution. Either sum + the data points in the new bins or average them. + + Parameters + ---------- + x: iterable + The dependent variable with some resolution, which can vary throughout + the time series. + + y: iterable + The independent variable to be binned + + dx_new: float + The new resolution of the dependent variable ``x`` + + Other parameters + ---------------- + yerr: iterable, optional + The uncertainties of ``y``, to be propagated during binning. + + method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum`` + The method to be used in binning. Either sum the samples ``y`` in + each new bin of ``x``, or take the arithmetic mean. + + dx: float + The old resolution (otherwise, calculated from difference between + time bins) + + Returns + ------- + xbin: numpy.ndarray + The midpoints of the new bins in ``x`` + + ybin: numpy.ndarray + The binned quantity ``y`` + + ybin_err: numpy.ndarray + The uncertainties of the binned values of ``y``. + + step_size: float + The size of the binning step + + Examples + -------- + >>> x = np.arange(0, 100, 0.01) + >>> y = np.ones(x.size) + >>> yerr = np.ones(x.size) + >>> xbin, ybin, ybinerr, step_size = rebin_data( + ... x, y, 4, yerr=yerr, method='sum', dx=0.01) + >>> assert np.allclose(ybin, 400) + >>> assert np.allclose(ybinerr, 20) + >>> xbin, ybin, ybinerr, step_size = rebin_data( + ... x, y, 4, yerr=yerr, method='mean') + >>> assert np.allclose(ybin, 1) + >>> assert np.allclose(ybinerr, 0.05) + """ + + y = np.asanyarray(y) + if yerr is None: + yerr = np.zeros_like(y) + else: + yerr = np.asanyarray(yerr) + + if isinstance(dx, Iterable): + dx_old = dx + elif dx is None or dx == 0: + dx_old = np.diff(x) + else: + dx_old = np.array([dx]) + + if np.any(dx_new < dx_old): + raise ValueError( + "New frequency resolution must be larger than " "old frequency resolution." + ) + + # left and right bin edges + # assumes that the points given in `x` correspond to + # the left bin edges + xedges = np.hstack([x, x[-1] + dx_old[-1]]) + + # new regularly binned resolution + xbin = np.arange(xedges[0], xedges[-1] + dx_new, dx_new) + + output = np.zeros(xbin.shape[0] - 1, dtype=type(y[0])) + outputerr = np.zeros(xbin.shape[0] - 1, dtype=type(yerr[0])) + step_size = np.zeros(xbin.shape[0] - 1) + + all_x = np.searchsorted(xedges, xbin) + min_inds = all_x[:-1] + max_inds = all_x[1:] + xmins = xbin[:-1] + xmaxs = xbin[1:] + for i, (xmin, xmax, min_ind, max_ind) in enumerate(zip(xmins, xmaxs, min_inds, max_inds)): + filtered_y = y[min_ind : max_ind - 1] + filtered_yerr = yerr[min_ind : max_ind - 1] + output[i] = np.sum(filtered_y) + outputerr[i] = np.sum(filtered_yerr) + step_size[i] = max_ind - 1 - min_ind + + prev_dx = xedges[min_ind] - xedges[min_ind - 1] + prev_frac = (xedges[min_ind] - xmin) / prev_dx + output[i] += y[min_ind - 1] * prev_frac + outputerr[i] += yerr[min_ind - 1] * prev_frac + step_size[i] += prev_frac + + if not max_ind == xedges.size: + dx_post = xedges[max_ind] - xedges[max_ind - 1] + post_frac = (xmax - xedges[max_ind - 1]) / dx_post + output[i] += y[max_ind - 1] * post_frac + outputerr[i] += yerr[max_ind - 1] * post_frac + step_size[i] += post_frac + + if method in ["mean", "avg", "average", "arithmetic mean"]: + ybin = output / step_size + ybinerr = np.sqrt(outputerr) / step_size + + elif method == "sum": + ybin = output + ybinerr = np.sqrt(outputerr) + + else: + raise ValueError( + "Method for summing or averaging not recognized. " + "Please enter either 'sum' or 'mean'." + ) + + tseg = x[-1] - x[0] + dx_old[-1] + + if (tseg / dx_new % 1) > 0: + ybin = ybin[:-1] + ybinerr = ybinerr[:-1] + step_size = step_size[:-1] + + dx_var = np.var(dx_old) / np.mean(dx_old) + + if np.size(dx_old) == 1 or dx_var < 1e-6: + step_size = step_size[0] + + new_x0 = (x[0] - (0.5 * dx_old[0])) + (0.5 * dx_new) + xbin = np.arange(ybin.shape[0]) * dx_new + new_x0 + + return xbin, ybin, ybinerr, step_size
+ + + +
+[docs] +def rebin_data_log(x, y, f, y_err=None, dx=None): + """Logarithmic re-bin of some data. Particularly useful for the power + spectrum. + + The new dependent variable depends on the previous dependent variable + modified by a factor f: + + .. math:: + + d\\nu_j = d\\nu_{j-1} (1+f) + + Parameters + ---------- + x: iterable + The dependent variable with some resolution ``dx_old = x[1]-x[0]`` + + y: iterable + The independent variable to be binned + + f: float + The factor of increase of each bin wrt the previous one. + + Other Parameters + ---------------- + yerr: iterable, optional + The uncertainties of ``y`` to be propagated during binning. + + method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum`` + The method to be used in binning. Either sum the samples ``y`` in + each new bin of ``x`` or take the arithmetic mean. + + dx: float, optional + The binning step of the initial ``x`` + + Returns + ------- + xbin: numpy.ndarray + The midpoints of the new bins in ``x`` + + ybin: numpy.ndarray + The binned quantity ``y`` + + ybin_err: numpy.ndarray + The uncertainties of the binned values of ``y`` + + step_size: float + The size of the binning step + """ + + dx_init = apply_function_if_none(dx, np.diff(x), np.median) + x = np.asanyarray(x) + y = np.asanyarray(y) + y_err = np.asanyarray(apply_function_if_none(y_err, y, np.zeros_like)) + + if x.shape[0] != y.shape[0]: + raise ValueError("x and y must be of the same length!") + if y.shape[0] != y_err.shape[0]: + raise ValueError("y and y_err must be of the same length!") + + minx = x[0] * 0.5 # frequency to start from + maxx = x[-1] # maximum frequency to end + binx_for_stats = [minx, minx + dx_init] # first + dx = dx_init # the frequency resolution of the first bin + + # until we reach the maximum frequency, increase the width of each + # frequency bin by f + while binx_for_stats[-1] <= maxx: + binx_for_stats.append(binx_for_stats[-1] + dx * (1.0 + f)) + dx = binx_for_stats[-1] - binx_for_stats[-2] + + binx_for_stats = np.asanyarray(binx_for_stats) + + real = y.real + real_err = y_err.real + # compute the mean of the ys that fall into each new frequency bin. + # we cast to np.double due to scipy's bad handling of longdoubles + binx, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), x.astype(np.double), statistic="mean", bins=binx_for_stats + ) + + biny, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), real.astype(np.double), statistic="mean", bins=binx_for_stats + ) + + biny_err, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), + real_err.astype(np.double), + statistic=_root_squared_mean, + bins=binx_for_stats, + ) + + if np.iscomplexobj(y): + imag = y.imag + biny_imag, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), imag.astype(np.double), statistic="mean", bins=binx_for_stats + ) + + biny = biny + 1j * biny_imag + + if np.iscomplexobj(y_err): + imag_err = y_err.imag + + biny_err_imag, bin_edges, binno = scipy.stats.binned_statistic( + x.astype(np.double), + imag_err.astype(np.double), + statistic=_root_squared_mean, + bins=binx_for_stats, + ) + biny_err = biny_err + 1j * biny_err_imag + + # compute the number of powers in each frequency bin + nsamples = np.array( + [len(binno[np.where(binno == i)[0]]) for i in range(1, np.max(binno) + 1, 1)] + ) + + return binx, biny, biny_err, nsamples
+ + + +def apply_function_if_none(variable, value, func): + """ + Assign a function value to a variable if that variable has value ``None`` on input. + + Parameters + ---------- + variable : object + A variable with either some assigned value, or ``None`` + + value : object + A variable to go into the function + + func : function + Function to apply to ``value``. Result is assigned to ``variable`` + + Returns + ------- + new_value : object + The new value of ``variable`` + + Examples + -------- + >>> var = 4 + >>> value = np.zeros(10) + >>> apply_function_if_none(var, value, np.mean) + 4 + >>> var = None + >>> apply_function_if_none(var, value, lambda y: float(np.mean(y))) + 0.0 + """ + if variable is None: + return func(value) + else: + return variable + + +def assign_value_if_none(value, default): + """ + Assign a value to a variable if that variable has value ``None`` on input. + + Parameters + ---------- + value : object + A variable with either some assigned value, or ``None`` + + default : object The value to assign to the variable ``value`` if + ``value is None`` returns ``True`` + + Returns + ------- + new_value : object + The new value of ``value`` + + """ + return default if value is None else value + + +
+[docs] +def look_for_array_in_array(array1, array2): + """ + Find a subset of values in an array. + + Parameters + ---------- + array1 : iterable + An array with values to be searched + + array2 : iterable + A second array which potentially contains a subset of values + also contained in ``array1`` + + Returns ------- array3 : iterable An array with the subset of values + contained in both ``array1`` and ``array2`` + + """ + return next((i for i in array1 if i in array2), None)
+ + + +
+[docs] +def is_string(s): + """ + Portable function to answer whether a variable is a string. + + Parameters + ---------- + s : object + An object that is potentially a string + + Returns + ------- + isstring : bool + A boolean decision on whether ``s`` is a string or not + """ + return isinstance(s, str)
+ + + +
+[docs] +def is_iterable(var): + """Test if a variable is an iterable. + + Parameters + ---------- + var : object + The variable to be tested for iterably-ness + + Returns + ------- + is_iter : bool + Returns ``True`` if ``var`` is an ``Iterable``, ``False`` otherwise + """ + return isinstance(var, Iterable)
+ + + +
+[docs] +def order_list_of_arrays(data, order): + """Sort an array according to the specified order. + + Parameters + ---------- + data : iterable + + Returns + ------- + data : list or dict + """ + if hasattr(data, "items"): + data = dict([(key, value[order]) for key, value in data.items()]) + elif is_iterable(data): + data = [i[order] for i in data] + else: + data = None + return data
+ + + +
+[docs] +def optimal_bin_time(fftlen, tbin): + """Vary slightly the bin time to have a power of two number of bins. + + Given an FFT length and a proposed bin time, return a bin time + slightly shorter than the original, that will produce a power-of-two number + of FFT bins. + + Parameters + ---------- + fftlen : int + Number of positive frequencies in a proposed Fourier spectrum + + tbin : float + The proposed time resolution of a light curve + + Returns + ------- + res : float + A time resolution that will produce a Fourier spectrum with ``fftlen`` frequencies and + a number of FFT bins that are a power of two + """ + + return fftlen / (2 ** np.ceil(np.log2(fftlen / tbin)))
+ + + +
+[docs] +def contiguous_regions(condition): + """Find contiguous ``True`` regions of the boolean array ``condition``. + + Return a 2D array where the first column is the start index of the region + and the second column is the end index, found on [so-contiguous]_. + + Parameters + ---------- + condition : bool array + + Returns + ------- + idx : ``[[i0_0, i0_1], [i1_0, i1_1], ...]`` + A list of integer couples, with the start and end of each ``True`` blocks + in the original array + + Notes + ----- + .. [so-contiguous] http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-numpy-array + """ + # Find the indices of changes in "condition" + diff = np.logical_xor(condition[1:], condition[:-1]) + (idx,) = diff.nonzero() + # We need to start things after the change in "condition". Therefore, + # we'll shift the index by 1 to the right. + idx += 1 + if condition[0]: + # If the start of condition is True prepend a 0 + idx = np.r_[0, idx] + if condition[-1]: + # If the end of condition is True, append the length of the array + idx = np.r_[idx, condition.size] + # Reshape the result into two columns + idx.shape = (-1, 2) + return idx
+ + + +
+[docs] +def is_int(obj): + """Test if object is an integer.""" + return isinstance(obj, (numbers.Integral, np.integer))
+ + + +
+[docs] +def get_random_state(random_state=None): + """Return a Mersenne Twister pseudo-random number generator. + + Parameters + ---------- + seed : integer or ``numpy.random.RandomState``, optional, default ``None`` + + Returns + ------- + random_state : mtrand.RandomState object + """ + if not random_state: + random_state = np.random.mtrand._rand + else: + if is_int(random_state): + random_state = np.random.RandomState(random_state) + elif not isinstance(random_state, np.random.RandomState): + raise ValueError( + "{value} can't be used to generate a numpy.random.RandomState".format( + value=random_state + ) + ) + + return random_state
+ + + +def _offset(x, off): + """An offset.""" + return off + + +def offset_fit(x, y, offset_start=0): + """Fit a constant offset to the data. + + Parameters + ---------- + x : array-like + y : array-like + offset_start : float + Constant offset, initial value + + Returns + ------- + offset : float + Fitted offset + """ + from scipy.optimize import curve_fit + + par, _ = curve_fit(_offset, x, y, [offset_start], maxfev=6000) + return par[0] + + +def _als(y, lam, p, niter=10): + """Baseline Correction with Asymmetric Least Squares Smoothing. + + Modifications to the routine from Eilers & Boelens 2005 [eilers-2005]_. + The Python translation is partly from [so-als]_. + + Parameters + ---------- + y : array-like + the data series corresponding to ``x`` + lam : float + the lambda parameter of the ALS method. This control how much the + baseline can adapt to local changes. A higher value corresponds to a + stiffer baseline + p : float + the asymmetry parameter of the ALS method. This controls the overall + slope tollerated for the baseline. A higher value correspond to a + higher possible slope + + Other parameters + ---------------- + niter : int + The number of iterations to perform + + Returns + ------- + z : array-like, same size as ``y`` + Fitted baseline. + + References + ---------- + .. [eilers-2005] https://www.researchgate.net/publication/228961729_Technical_Report_Baseline_Correction_with_Asymmetric_Least_Squares_Smoothing + .. [so-als] http://stackoverflow.com/questions/29156532/python-baseline-correction-library + + """ + from scipy import sparse + + L = len(y) + + indptr = np.arange(0, L - 1, dtype=np.int32) * 3 + indices = np.vstack( + (np.arange(0, L - 2).T, np.arange(0, L - 2).T + 1, np.arange(0, L - 2).T + 2) + ).T.flatten() + data = np.tile([1, -2, 1], L - 2) + D = sparse.csc_matrix((data, indices, indptr), shape=(L, L - 2)) + + w = np.ones(L) + for _ in range(niter): + W = sparse.spdiags(w, 0, L, L) + Z = W + lam * D.dot(D.transpose()) + z = sparse.linalg.spsolve(Z, w * y) + w = p * (y > z) + (1 - p) * (y < z) + return z + + +def fix_segment_size_to_integer_samples(segment_size, dt, tolerance=0.01): + """Fix segment size to an integer number of bins. + + In the most common case, it will be reduced to an integer number of bins, + approximating to the lower integer. However, when it is close to the next + integer, it will be approximated to the higher integer. + + Parameters + ---------- + segment_size : float + The segment size in seconds + dt : float + The sample time in seconds + + Other Parameters + ---------------- + tolerance : float + The tolerance to consider when approximating to the higher integer + + Returns + ------- + segment_size : float + The segment size in seconds, fixed to an integer number of bins + n_bin : int + The number of bins in the segment + + Examples + -------- + >>> seg, n = fix_segment_size_to_integer_samples(1.0, 0.1) + >>> assert seg == 1.0, n == 10 + >>> seg, n = fix_segment_size_to_integer_samples(0.999, 0.1) + >>> assert seg == 1.0, n == 10 + """ + n_bin_float = segment_size / dt + n_bin_down = np.floor(segment_size / dt) + n_bin_up = np.ceil(segment_size / dt) + n_bin = n_bin_down + + if n_bin_up - n_bin_float < tolerance: + n_bin = n_bin_up + + segment_size = n_bin * dt + return segment_size, int(n_bin) + + +
+[docs] +def baseline_als(x, y, lam=None, p=None, niter=10, return_baseline=False, offset_correction=False): + """Baseline Correction with Asymmetric Least Squares Smoothing. + + Parameters + ---------- + x : array-like + the sample time/number/position + y : array-like + the data series corresponding to ``x`` + lam : float + the lambda parameter of the ALS method. This control how much the + baseline can adapt to local changes. A higher value corresponds to a + stiffer baseline + p : float + the asymmetry parameter of the ALS method. This controls the overall + slope tolerated for the baseline. A higher value correspond to a + higher possible slope + + Other Parameters + ---------------- + niter : int + The number of iterations to perform + return_baseline : bool + return the baseline? + offset_correction : bool + also correct for an offset to align with the running mean of the scan + + Returns + ------- + y_subtracted : array-like, same size as ``y`` + The initial time series, subtracted from the trend + baseline : array-like, same size as ``y`` + Fitted baseline. Only returned if return_baseline is ``True`` + + Examples + -------- + >>> x = np.arange(0, 10, 0.01) + >>> y = np.zeros_like(x) + 10 + >>> ysub = baseline_als(x, y) + >>> assert np.all(ysub < 0.001) + """ + + if lam is None: + lam = 1e11 + if p is None: + p = 0.001 + + z = _als(y, lam, p, niter=niter) + + ysub = y - z + offset = 0 + if offset_correction: + std = mad(ysub) + good = np.abs(ysub) < 10 * std + if len(x[good]) < 10: + good = np.ones(len(x), dtype=bool) + warnings.warn( + "Too few bins to perform baseline offset correction" " precisely. Beware of results" + ) + offset = offset_fit(x[good], ysub[good], 0) + + if return_baseline: + return ysub - offset, z + offset + else: + return ysub - offset
+ + + +
+[docs] +def excess_variance(lc, normalization="fvar"): + r"""Calculate the excess variance. + + Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source + intrinsic variance: if a light curve has a total variance of :math:`S^2`, + and each point has an error bar :math:`\sigma_{err}`, the *excess variance* + is defined as + + .. math:: \sigma_{XS} = S^2 - \overline{\sigma_{err}}^2; + + the *normalized excess variance* is the excess variance divided by the + square of the mean intensity: + + .. math:: \sigma_{NXS} = \dfrac{\sigma_{XS}}{\overline{x}^2}; + + the *fractional mean square variability amplitude*, or + :math:`F_{var}`, is finally defined as + + .. math:: F_{var} = \sqrt{\dfrac{\sigma_{XS}}{\overline{x}^2}} + + Parameters + ---------- + lc : a :class:`Lightcurve` object + normalization : str + if ``fvar``, return the fractional mean square variability :math:`F_{var}`. + If ``none``, return the unnormalized excess variance variance + :math:`\sigma_{XS}`. If ``norm_xs``, return the normalized excess variance + :math:`\sigma_{XS}` + Returns + ------- + var_xs : float + var_xs_err : float + """ + lc_mean_var = np.mean(lc.counts_err**2) + lc_actual_var = np.var(lc.counts) + var_xs = lc_actual_var - lc_mean_var + mean_lc = np.mean(lc.counts) + mean_ctvar = mean_lc**2 + var_nxs = var_xs / mean_lc**2 + + fvar = np.sqrt(var_xs / mean_ctvar) + + N = len(lc.counts) + var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc**2 + var_nxs_err_B = np.sqrt(lc_mean_var / N) * 2 * fvar / mean_lc + var_nxs_err = np.sqrt(var_nxs_err_A**2 + var_nxs_err_B**2) + + fvar_err = var_nxs_err / (2 * fvar) + + if normalization == "fvar": + return fvar, fvar_err + elif normalization == "norm_xs": + return var_nxs, var_nxs_err + elif normalization == "none" or normalization is None: + return var_xs, var_nxs_err * mean_lc**2
+ + + +
+[docs] +def create_window(N, window_type="uniform"): + """A method to create window functions commonly used in signal processing. + + Windows supported are: + Hamming, Hanning, uniform (rectangular window), triangular window, + blackmann window among others. + + Parameters + ---------- + N : int + Total number of data points in window. If negative, abs is taken. + window_type : {``uniform``, ``parzen``, ``hamming``, ``hanning``, ``triangular``,\ + ``welch``, ``blackmann``, ``flat-top``}, optional, default ``uniform`` + Type of window to create. + + Returns + ------- + window: numpy.ndarray + Window function of length ``N``. + """ + + if not isinstance(N, int): + raise TypeError("N (window length) must be an integer") + + windows = [ + "uniform", + "parzen", + "hamming", + "hanning", + "triangular", + "welch", + "blackmann", + "flat-top", + ] + + if not isinstance(window_type, str): + raise TypeError("type of window must be specified as string!") + + window_type = window_type.lower() + if window_type not in windows: + raise ValueError("Wrong window type specified or window function is not available") + + # Return empty array as window if N = 0 + if N == 0: + return np.array([]) + + window = None + N = abs(N) + + # Window samples index + n = np.arange(N) + + # Constants + N_minus_1 = N - 1 + N_by_2 = int((np.floor((N_minus_1) / 2))) + + # Create Windows + if window_type == "uniform": + window = np.ones(N) + + if window_type == "parzen": + N_parzen = int(np.ceil((N + 1) / 2)) + N2_plus_1 = int(np.floor((N_parzen / 2))) + 1 + + window = np.zeros(N_parzen) + windlag0 = np.arange(0, N2_plus_1) / (N_parzen - 1) + windlag1 = 1 - np.arange(N2_plus_1, N_parzen) / (N_parzen - 1) + window[:N2_plus_1] = 1 - (1 - windlag0) * windlag0 * windlag0 * 6 + window[N2_plus_1:] = windlag1 * windlag1 * windlag1 * 2 + lagindex = np.arange(N_parzen - 1, 0, -1) + window = np.concatenate((window[lagindex], window)) + window = window[:N] + + if window_type == "hamming": + window = 0.54 - 0.46 * np.cos((2 * np.pi * n) / N_minus_1) + + if window_type == "hanning": + window = 0.5 * (1 - np.cos(2 * np.pi * n / N_minus_1)) + + if window_type == "triangular": + window = 1 - np.abs((n - (N_by_2)) / N) + + if window_type == "welch": + N_minus_1_by_2 = N_minus_1 / 2 + window = 1 - np.square((n - N_minus_1_by_2) / N_minus_1_by_2) + + if window_type == "blackmann": + a0 = 0.42659 + a1 = 0.49656 + a2 = 0.076849 + window = ( + a0 - a1 * np.cos((2 * np.pi * n) / N_minus_1) + a2 * np.cos((4 * np.pi * n) / N_minus_1) + ) + + if window_type == "flat-top": + a0 = 1 + a1 = 1.93 + a2 = 1.29 + a3 = 0.388 + a4 = 0.028 + window = ( + a0 + - a1 * np.cos((2 * np.pi * n) / N_minus_1) + + a2 * np.cos((4 * np.pi * n) / N_minus_1) + - a3 * np.cos((6 * np.pi * n) / N_minus_1) + + a4 * np.cos((8 * np.pi * n) / N_minus_1) + ) + + return window
+ + + +
+[docs] +def poisson_symmetrical_errors(counts): + """Optimized version of frequentist symmetrical errors. + + Uses a lookup table in order to limit the calls to poisson_conf_interval + + Parameters + ---------- + counts : iterable + An array of Poisson-distributed numbers + + Returns + ------- + err : numpy.ndarray + An array of uncertainties associated with the Poisson counts in + ``counts`` + + Examples + -------- + >>> from astropy.stats import poisson_conf_interval + >>> counts = np.random.randint(0, 1000, 100) + >>> # ---- Do it without the lookup table ---- + >>> err_low, err_high = poisson_conf_interval(np.asanyarray(counts), + ... interval='frequentist-confidence', sigma=1) + >>> err_low -= np.asanyarray(counts) + >>> err_high -= np.asanyarray(counts) + >>> err = (np.absolute(err_low) + np.absolute(err_high))/2.0 + >>> # Do it with this function + >>> err_thisfun = poisson_symmetrical_errors(counts) + >>> # Test that results are always the same + >>> assert np.allclose(err_thisfun, err) + """ + from astropy.stats import poisson_conf_interval + + counts_int = np.asanyarray(counts, dtype=np.int64) + count_values = np.nonzero(np.bincount(counts_int))[0] + err_low, err_high = poisson_conf_interval( + count_values, interval="frequentist-confidence", sigma=1 + ) + # calculate approximately symmetric uncertainties + err_low -= np.asanyarray(count_values) + err_high -= np.asanyarray(count_values) + err = (np.absolute(err_low) + np.absolute(err_high)) / 2.0 + + idxs = np.searchsorted(count_values, counts_int) + return err[idxs]
+ + + +
+[docs] +def standard_error(xs, mean): + """ + Return the standard error of the mean (SEM) of an array of arrays. + + Parameters + ---------- + xs : 2-d float array + List of data point arrays. + + mean : 1-d float array + Average of the data points. + + Returns + ------- + standard_error : 1-d float array + Standard error of the mean (SEM). + + """ + + n_seg = len(xs) + xs_diff_sq = np.subtract(xs, mean) ** 2 + standard_deviation = np.sum(xs_diff_sq, axis=0) / (n_seg - 1) + error = np.sqrt(standard_deviation / n_seg) + return error
+ + + +
+[docs] +def nearest_power_of_two(x): + """ + Return a number which is nearest to `x` and is the integral power of two. + + Parameters + ---------- + x : int, float + + Returns + ------- + x_nearest : int + Number closest to `x` and is the integral power of two. + + """ + x = int(x) + x_lower = 1 if x == 0 else 2 ** (x - 2).bit_length() + x_upper = 1 if x == 0 else 2 ** (x - 1).bit_length() + x_nearest = x_lower if (x - x_lower) < (x_upper - x) else x_upper + return x_nearest
+ + + +
+[docs] +def find_nearest(array, value, side="left"): + """ + Return the array value that is closest to the input value (Abigail Stevens: + Thanks StackOverflow!) + + Parameters + ---------- + array : np.array of ints or floats + 1-D array of numbers to search through. Should already be sorted + from low values to high values. + + value : int or float + The value you want to find the closest to in the array. + + Other Parameters + ---------------- + side : str + Look at the ``numpy.searchsorted`` documentation for more information. + + Returns + ------- + array[idx] : int or float + The array value that is closest to the input value. + + idx : int + The index of the array of the closest value. + + """ + idx = np.searchsorted(array, value, side=side) + if idx == len(array) or np.fabs(value - array[idx - 1]) < np.fabs(value - array[idx]): + return array[idx - 1], idx - 1 + else: + return array[idx], idx
+ + + +def check_iterables_close(iter0, iter1, **kwargs): + """Check that the values produced by iterables are equal. + + Uses `np.isclose` if the iterables produce single values per iteration, + `np.allclose` otherwise. + + Additional keyword arguments are passed to `np.allclose` + and `np.isclose`. + + Parameters + ---------- + iter0 : iterable + iter1 : iterable + + Examples + -------- + >>> iter0 = [0, 1] + >>> iter1 = [0, 2] + >>> check_iterables_close(iter0, iter1) + False + >>> iter0 = [(0, 0), (0, 1)] + >>> iter1 = [(0, 0.), (0, 1.)] + >>> assert check_iterables_close(iter0, iter1) + >>> iter1 = [(0, 0.), (0, 3.)] + >>> check_iterables_close(iter0, iter1) + False + """ + for i0, i1 in zip(iter0, iter1): + if isinstance(i0, Iterable): + if not np.allclose(i0, i1): + return False + continue + if not np.isclose(i0, i1): + return False + return True + + +def check_allclose_and_print( + v1, + v2, + rtol=1e-05, + atol=1e-08, +): + """Check that the values in the array v1 and v2 are equal. + It prints the values that are different. + + Uses `np.allclose` and it has the option to specify rtol and atol + + Parameters + ---------- + v1 : array + v2 : array + rtol : The relative tolerance parameter + atol : The absolute tolerance parameter + + If the following equation element-wise True, then allclose returns True. + absolute(a - b) <= (atol + rtol * absolute(b)) + + """ + try: + assert np.allclose(v1, v2, rtol, atol) + except Exception as e: + v1 = np.asanyarray(v1) + v2 = np.asanyarray(v2) + bad = np.abs(v1 - v2) >= (atol + rtol * np.abs(v2)) + + raise AssertionError( + f"Different values in the arrays check by allclose: \ + {v1[bad]} vs {v2[bad]}, indices are {np.where(v1[bad])[0]}\ + and {np.where(v2[bad])[0]}" + ) + + +@njit(nogil=True, parallel=False) +def compute_bin(x, bin_edges): + """Given a list of bin edges, get what bin will a number end up to + + Parameters + ---------- + x : float + The value to insert + bin_edges: array + The list of bin edges + + Returns + ------- + bin : int + The bin number. None if outside bin edges. + + Examples + -------- + >>> bin_edges = np.array([0, 5, 10]) + >>> compute_bin(1, bin_edges) + 0 + >>> compute_bin(5, bin_edges) + 1 + >>> compute_bin(10, bin_edges) + 1 + >>> assert compute_bin(11, bin_edges) is None + """ + + # assuming uniform bins for now + n = bin_edges.shape[0] - 1 + a_min = bin_edges[0] + a_max = bin_edges[-1] + + # special case to mirror NumPy behavior for last bin + if x == a_max: + return n - 1 # a_max always in last bin + + bin = int(n * (x - a_min) / (a_max - a_min)) + + if bin < 0 or bin >= n: + return None + return bin + + +@njit(nogil=True, parallel=False) +def _hist1d_numba_seq(H, tracks, bins, ranges): + delta = 1 / ((ranges[1] - ranges[0]) / bins) + + for t in range(tracks.size): + i = (tracks[t] - ranges[0]) * delta + if 0 <= i < bins: + H[int(i)] += 1 + + return H + + +def _allocate_array_or_memmap(shape, dtype, use_memmap=False, tmp=None): + """Allocate an array. If very big and user asks for it, allocate a memory map. + + Parameters + ---------- + shape : tuple + Shape of the output array + dtype : str or anything compatible with `np.dtype` + Type of the output array + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str, default None + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``). A temporary file with random + name is allocated if this is not specified. + + Returns + ------- + H : array + The output array + """ + if use_memmap and np.prod(shape) > 10**7: + if tmp is None: + tmp = tempfile.NamedTemporaryFile("w+", suffix=".npy").name + H = np.lib.format.open_memmap(tmp, mode="w+", dtype=dtype, shape=shape) + else: + H = np.zeros(shape, dtype=dtype) + return H + + +def hist1d_numba_seq(a, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 1-d histogram. + + Parameters + ---------- + a : array-like + Input array, to be histogrammed + bins : integer + number of bins in the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Histogrammed values of a, in ``bins`` bins. + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> if os.path.exists('out.npy'): os.unlink('out.npy') + >>> x = np.random.uniform(0., 1., 100) + >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.]) + >>> Hn = hist1d_numba_seq(x, bins=5, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.all(H == Hn) + >>> # The number of bins is small, memory map was not used! + >>> assert not os.path.exists('out.npy') + >>> H, xedges = np.histogram(x, bins=10**8, range=[0., 1.]) + >>> Hn = hist1d_numba_seq(x, bins=10**8, range=[0., 1.], + ... use_memmap=True, tmp='out.npy') + >>> assert np.all(H == Hn) + >>> assert os.path.exists('out.npy') # Created! + >>> # Here, instead, it will create a temporary file for the memory map + >>> Hn = hist1d_numba_seq(x, bins=10**8, range=[0., 1.], + ... use_memmap=True) + >>> assert np.all(H == Hn) + """ + hist_arr = _allocate_array_or_memmap((bins,), a.dtype, use_memmap=use_memmap, tmp=tmp) + + return _hist1d_numba_seq(hist_arr, a, bins, np.asanyarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist2d_numba_seq(H, tracks, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j)] += 1 + + return H + + +def hist2d_numba_seq(x, y, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 2-d histogram. + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + x : array-like + Input array, to be histogrammed + y : array-like + Input array (equal length to x), to be histogrammed + shape : (int, int) + shape of the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 5), + ... range=[(0., 1.), (2., 3.)]) + >>> Hn = hist2d_numba_seq(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]]) + >>> assert np.all(H == Hn) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5000, 5000), + ... range=[(0., 1.), (2., 3.)]) + >>> Hn = hist2d_numba_seq(x, y, bins=(5000, 5000), + ... range=[[0., 1.], [2., 3.]], + ... use_memmap=True) + >>> assert np.all(H == Hn) + """ + + H = _allocate_array_or_memmap(bins, np.uint64, use_memmap=use_memmap, tmp=tmp) + return _hist2d_numba_seq(H, np.array([x, y]), np.asanyarray(list(bins)), np.asanyarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist3d_numba_seq(H, tracks, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + k = (tracks[2, t] - ranges[2, 0]) * delta[2] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j), int(k)] += 1 + + return H + + +def hist3d_numba_seq(tracks, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 3d histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + tracks : (array-like, array-like, array-like) + List of input arrays of identical length, to be histogrammed + bins : (int, int, int) + shape of the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> H, _ = np.histogramdd((x, y, z), bins=(5, 6, 7), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> Hn = hist3d_numba_seq((x, y, z), bins=(5, 6, 7), + ... range=[[0., 1.], [2., 3.], [4., 5.]]) + >>> assert np.all(H == Hn) + >>> H, _ = np.histogramdd((x, y, z), bins=(300, 300, 300), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> Hn = hist3d_numba_seq((x, y, z), bins=(300, 300, 300), + ... range=[[0., 1.], [2., 3.], [4., 5.]]) + >>> assert np.all(H == Hn) + """ + H = _allocate_array_or_memmap(bins, np.uint64, use_memmap=use_memmap, tmp=tmp) + + return _hist3d_numba_seq( + H, np.asanyarray(tracks), np.asanyarray(list(bins)), np.asanyarray(range) + ) + + +@njit(nogil=True, parallel=False) +def _hist1d_numba_seq_weight(H, tracks, weights, bins, ranges): + delta = 1 / ((ranges[1] - ranges[0]) / bins) + + for t in range(tracks.size): + i = (tracks[t] - ranges[0]) * delta + if 0 <= i < bins: + H[int(i)] += weights[t] + + return H + + +def hist1d_numba_seq_weight(a, weights, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 1-d histogram with weights. + + Parameters + ---------- + a : array-like + Input array, to be histogrammed + weights : array-like + Input weight of each of the input values ``a`` + bins : integer + number of bins in the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Histogrammed values of a, in ``bins`` bins. + + Adapted from https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> if os.path.exists('out.npy'): os.unlink('out.npy') + >>> x = np.random.uniform(0., 1., 100) + >>> weights = np.random.uniform(0, 1, 100) + >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.], weights=weights) + >>> Hn = hist1d_numba_seq_weight(x, weights, bins=5, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.all(H == Hn) + >>> # The number of bins is small, memory map was not used! + >>> assert not os.path.exists('out.npy') + >>> H, xedges = np.histogram(x, bins=10**8, range=[0., 1.], weights=weights) + >>> Hn = hist1d_numba_seq_weight(x, weights, bins=10**8, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.all(H == Hn) + >>> assert os.path.exists('out.npy') + >>> # Now use memmap but do not specify a tmp file + >>> Hn = hist1d_numba_seq_weight(x, weights, bins=10**8, range=[0., 1.], + ... use_memmap=True) + >>> assert np.all(H == Hn) + """ + if bins > 10**7 and use_memmap: + if tmp is None: + tmp = tempfile.NamedTemporaryFile("w+").name + hist_arr = np.lib.format.open_memmap(tmp, mode="w+", dtype=a.dtype, shape=(bins,)) + else: + hist_arr = np.zeros((bins,), dtype=a.dtype) + + return _hist1d_numba_seq_weight(hist_arr, a, weights, bins, np.asanyarray(range)) + + +@njit(nogil=True, parallel=False) +def _hist2d_numba_seq_weight(H, tracks, weights, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j)] += weights[t] + + return H + + +def hist2d_numba_seq_weight(x, y, weights, bins, range, use_memmap=False, tmp=None): + """Numba-compiled 2d histogram with weights + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + x : array-like + List of input values in the x-direction + y : array-like + List of input values in the y-direction, of the same length of ``x`` + weights : array-like + Input weight of each of the input values. + bins : (int, int, int) + shape of the final histogram + range : [min, max] + Minimum and maximum value of the histogram + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> weight = np.random.uniform(0, 1, 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 5), + ... range=[(0., 1.), (2., 3.)], + ... weights=weight) + >>> Hn = hist2d_numba_seq_weight(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=weight) + >>> assert np.all(H == Hn) + """ + H = _allocate_array_or_memmap(bins, np.double, use_memmap=use_memmap, tmp=tmp) + + return _hist2d_numba_seq_weight( + H, + np.array([x, y]), + weights, + np.asanyarray(list(bins)), + np.asanyarray(range), + ) + + +@njit(nogil=True, parallel=False) +def _hist3d_numba_seq_weight(H, tracks, weights, bins, ranges): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + i = (tracks[0, t] - ranges[0, 0]) * delta[0] + j = (tracks[1, t] - ranges[1, 0]) * delta[1] + k = (tracks[2, t] - ranges[2, 0]) * delta[2] + if 0 <= i < bins[0] and 0 <= j < bins[1]: + H[int(i), int(j), int(k)] += weights[t] + + return H + + +def hist3d_numba_seq_weight(tracks, weights, bins, range, use_memmap=False, tmp=None): + """Numba-compiled weighted 3d histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + tracks : (x, y, z) + List of input arrays of identical length, to be histogrammed + weights : array-like + List of weights for each point of the input arrays + bins : (int, int, int) + shape of the final histogram + range : [[xmin, xmax], [ymin, ymax], [zmin, zmax]]] + Minimum and maximum value of the histogram, in each dimension + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> weights = np.random.uniform(0, 1., 100) + >>> H, _ = np.histogramdd((x, y, z), bins=(5, 6, 7), + ... range=[(0., 1.), (2., 3.), (4., 5)], + ... weights=weights) + >>> Hn = hist3d_numba_seq_weight( + ... (x, y, z), weights, bins=(5, 6, 7), + ... range=[[0., 1.], [2., 3.], [4., 5.]]) + >>> assert np.all(H == Hn) + """ + + H = _allocate_array_or_memmap(bins, np.double, use_memmap=use_memmap, tmp=tmp) + return _hist3d_numba_seq_weight( + H, + np.asanyarray(tracks), + weights, + np.asanyarray(list(bins)), + np.asanyarray(range), + ) + + +@njit(nogil=True, parallel=False) +def _index_arr(a, ix_arr): + strides = np.array(a.strides) / a.itemsize + ix = int((ix_arr * strides).sum()) + return a.ravel()[ix] + + +@njit(nogil=True, parallel=False) +def _index_set_arr(a, ix_arr, val): + strides = np.array(a.strides) / a.itemsize + ix = int((ix_arr * strides).sum()) + a.ravel()[ix] = val + + +@njit(nogil=True, parallel=False) +def _histnd_numba_seq(H, tracks, bins, ranges, slice_int): + delta = 1 / ((ranges[:, 1] - ranges[:, 0]) / bins) + + for t in range(tracks.shape[1]): + slicearr = np.array( + [(tracks[dim, t] - ranges[dim, 0]) * delta[dim] for dim in range(tracks.shape[0])] + ) + + good = np.all((slicearr < bins) & (slicearr >= 0)) + slice_int[:] = slicearr + + if good: + curr = _index_arr(H, slice_int) + _index_set_arr(H, slice_int, curr + 1) + + return H + + +def histnd_numba_seq(tracks, bins, range, use_memmap=False, tmp=None): + """Numba-compiled n-d histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Parameters + ---------- + tracks : (array-like, array-like, array-like) + List of input arrays, to be histogrammed + bins : (int, int, ...) + shape of the final histogram + range : [[min, max], ...] + Minimum and maximum value of the histogram, in each dimension + + Other parameters + ---------------- + use_memmap : bool + If ``True`` and the number of bins is above 10 million, + the histogram is created into a memory-mapped Numpy array + tmp : str + Temporary file name for the memory map (only relevant if + ``use_memmap`` is ``True``) + + Returns + ------- + histogram: array-like + Output Histogram + + From https://iscinumpy.dev/post/histogram-speeds-in-python/ + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> # 2d example + >>> H, _, _ = np.histogram2d(x, y, bins=np.array((5, 5)), + ... range=[(0., 1.), (2., 3.)]) + >>> alldata = np.array([x, y]) + >>> Hn = histnd_numba_seq(alldata, bins=np.array([5, 5]), + ... range=np.array([[0., 1.], [2., 3.]])) + >>> assert np.all(H == Hn) + >>> # 3d example + >>> H, _ = np.histogramdd((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> alldata = np.array([x, y, z]) + >>> Hn = histnd_numba_seq(alldata, bins=np.array((5, 6, 7)), + ... range=np.array([[0., 1.], [2., 3.], [4., 5.]])) + >>> assert np.all(H == Hn) + """ + tracks = np.asanyarray(tracks) + H = _allocate_array_or_memmap(bins, np.uint64, use_memmap=use_memmap, tmp=tmp) + slice_int = np.zeros(len(bins), dtype=np.uint64) + + return _histnd_numba_seq(H, tracks, bins, range, slice_int) + + +def _wrap_histograms(numba_func, weight_numba_func, np_func, *args, **kwargs): + """Histogram wrapper. + + Make sure that the histogram fails safely if numba is not available or does not work. + + In particular, if weights are complex, it will split them in real and imaginary part. + """ + weights = kwargs.pop("weights", None) + use_memmap = kwargs.pop("use_memmap", False) + tmp = kwargs.pop("tmp", None) + + if np.iscomplexobj(weights): + return ( + _wrap_histograms( + numba_func, + weight_numba_func, + np_func, + *args, + weights=weights.real, + use_memmap=use_memmap, + tmp=tmp, + **kwargs, + ) + + _wrap_histograms( + numba_func, + weight_numba_func, + np_func, + *args, + weights=weights.imag, + use_memmap=use_memmap, + tmp=tmp, + **kwargs, + ) + * 1.0j + ) + + if not HAS_NUMBA: + return np_func(*args, weights=weights, **kwargs)[0] + + try: + if weights is None: + return numba_func(*args, use_memmap=use_memmap, tmp=tmp, **kwargs) + if weight_numba_func is None: + raise TypeError("Weights not supported for this histogram") + return weight_numba_func(*args, weights=weights, use_memmap=use_memmap, tmp=tmp, **kwargs) + except (NumbaValueError, NumbaNotImplementedError, TypingError, TypeError): + warnings.warn( + "Cannot calculate the histogram with the numba implementation. " + "Trying standard numpy." + ) + + return np_func(*args, weights=weights, **kwargs)[0] + + +def histogram3d(*args, **kwargs): + """Histogram implementation. + + Accepts the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> # 3d example + >>> H, _ = np.histogramdd((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> Hn = histogram3d((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> assert np.all(H == Hn) + """ + + return _wrap_histograms( + hist3d_numba_seq, hist3d_numba_seq_weight, histogramdd_np, *args, **kwargs + ) + + +def histogramnd(*args, **kwargs): + """Histogram implementation. + + Accepts the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> z = np.random.uniform(4., 5., 100) + >>> # 2d example + >>> H, _, _ = np.histogram2d(x, y, bins=np.array((5, 5)), + ... range=[(0., 1.), (2., 3.)]) + >>> Hn = histogramnd((x, y), bins=np.array([5, 5]), + ... range=np.array([[0., 1.], [2., 3.]])) + >>> assert np.all(H == Hn) + >>> # 3d example + >>> H, _ = np.histogramdd((x, y, z), bins=np.array((5, 6, 7)), + ... range=[(0., 1.), (2., 3.), (4., 5)]) + >>> alldata = (x, y, z) + >>> Hn = histogramnd(alldata, bins=np.array((5, 6, 7)), + ... range=np.array([[0., 1.], [2., 3.], [4., 5.]])) + >>> assert np.all(H == Hn) + """ + + return _wrap_histograms(histnd_numba_seq, None, histogramdd_np, *args, **kwargs) + + +def histogram2d(*args, **kwargs): + """Histogram implementation. + + Accepts the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> y = np.random.uniform(2., 3., 100) + >>> weight = np.random.uniform(0, 1, 100) + >>> H, xedges, yedges = np.histogram2d(x, y, bins=(5, 5), + ... range=[(0., 1.), (2., 3.)], + ... weights=weight) + >>> Hn = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=weight) + >>> assert np.array_equal(H, Hn) + >>> Hn1 = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=None) + >>> Hn2 = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]]) + >>> assert np.array_equal(Hn1, Hn2) + >>> Hn = histogram2d(x, y, bins=(5, 5), + ... range=[[0., 1.], [2., 3.]], + ... weights=weight + 1.j * weight) + >>> assert np.array_equal(Hn.real, Hn.imag) + >>> assert np.array_equal(H, Hn.real) + """ + return _wrap_histograms( + hist2d_numba_seq, hist2d_numba_seq_weight, histogram2d_np, *args, **kwargs + ) + + +def histogram(*args, **kwargs): + """Histogram implementation. + + Accepts the same arguments as `numpy.histogramdd`, but tries to use a Numba implementation + of the histogram. Bonus: weights can be complex. + + Examples + -------- + >>> x = np.random.uniform(0., 1., 100) + >>> weights = np.random.uniform(0, 1, 100) + >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.], weights=weights) + >>> Hn = histogram(x, weights=weights, bins=5, range=[0., 1.], tmp='out.npy', + ... use_memmap=True) + >>> assert np.array_equal(H, Hn) + >>> Hn1 = histogram(x, weights=None, bins=5, range=[0., 1.]) + >>> Hn2 = histogram(x, bins=5, range=[0., 1.]) + >>> assert np.array_equal(Hn1, Hn2) + >>> Hn = histogram(x, weights=weights + weights * 2.j, bins=5, range=[0., 1.], + ... tmp='out.npy', use_memmap=True) + >>> assert np.array_equal(Hn.real, Hn.imag / 2) + """ + + return _wrap_histograms( + hist1d_numba_seq, hist1d_numba_seq_weight, histogram_np, *args, **kwargs + ) + + +def equal_count_energy_ranges(energies, n_ranges, emin=None, emax=None): + """Find energy ranges containing an approximately equal number of events. + + Parameters + ---------- + energies : array-like + List of event energies + n_ranges : int + Number of output ranges + + Other parameters + ---------------- + emin : float, default None + Minimum energy. Defaults to the minimum of ``energies`` + emax : float, default None + Maximum energy. Defaults to the maximum of ``energies`` + + Returns + ------- + bin_edges : array-like + Edges of the energy ranges, in a single array of length + ``n_ranges+1`` + + Examples + -------- + >>> energies = np.random.uniform(0, 10, 1000000) + >>> edges = equal_count_energy_ranges(energies, 5, emin=0, emax=10) + >>> assert np.allclose(edges, [0, 2, 4, 6, 8, 10], atol=0.05) + >>> edges = equal_count_energy_ranges(energies, 5) + >>> assert np.allclose(edges, [0, 2, 4, 6, 8, 10], atol=0.05) + >>> edges = equal_count_energy_ranges(energies, 0) + >>> assert np.allclose(edges, [0, 10], atol=0.05) + """ + need_filtering = False + if emin is not None or emax is not None: + need_filtering = True + + if emin is None: + emin = energies.min() + + if emax is None: + emax = energies.max() + + if need_filtering: + good = (energies >= emin) & (energies <= emax) + energies = energies[good] + + if n_ranges > 1: + percentiles = np.percentile(energies, np.linspace(0, 100, n_ranges + 1)[1:-1]) + percentiles = np.concatenate([[emin], percentiles, [emax]]) + else: + percentiles = [emin, emax] + + return percentiles + + +def sum_if_not_none_or_initialize(A, B): + """If A is None, define A as a copy of B. Otherwise, sum A + B. + + Parameters + ---------- + A : object + The initial value + B : object + The value to be summed + + Examples + -------- + >>> sum_if_not_none_or_initialize(None, 2) + 2 + >>> sum_if_not_none_or_initialize(1, 2) + 3 + """ + if A is None: + return copy.deepcopy(B) + return A + B + + +def assign_if_not_finite(value, default): + """Check if a value is finite. Otherwise, return the default. + + Parameters + ---------- + value : float, int or `np.array` + The input value + default : float + The default value + + Returns + ------- + output : same as ``value`` + The result + + Examples + -------- + >>> assign_if_not_finite(1, 3.2) + 1 + >>> assign_if_not_finite(np.inf, 3.2) + 3.2 + >>> input_arr = np.array([np.nan, 1, np.inf, 2]) + >>> assert np.allclose(assign_if_not_finite(input_arr, 3.2), [3.2, 1, 3.2, 2]) + + """ + if isinstance(value, Iterable): + values = [assign_if_not_finite(val, default) for val in value] + values = np.array(values) + return values + + if not np.isfinite(value): + return default + return value + + +def sqsum(array1, array2): + """Return the square root of the sum of the squares of two arrays.""" + return np.sqrt(np.add(np.square(array1), np.square(array2))) + + +@njit +def _int_sum_non_zero(array): + """Sum all positive elements of an array of integers. + + Parameters + ---------- + array : array-like + Array of integers + """ + sum = 0 + for a in array: + if a > 0: + sum += int(a) + return sum +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_modules/stingray/varenergyspectrum.html b/_modules/stingray/varenergyspectrum.html new file mode 100644 index 000000000..cf80b2c54 --- /dev/null +++ b/_modules/stingray/varenergyspectrum.html @@ -0,0 +1,1263 @@ + + + + + + + stingray.varenergyspectrum — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Source code for stingray.varenergyspectrum

+import numpy as np
+import warnings
+from stingray.base import StingrayObject
+from stingray.gti import check_separate, cross_two_gtis
+
+from stingray.lightcurve import Lightcurve
+from stingray.utils import assign_value_if_none, simon, excess_variance, show_progress
+
+from stingray.fourier import (
+    avg_cs_from_timeseries,
+    avg_pds_from_timeseries,
+    fftfreq,
+    get_average_ctrate,
+)
+from stingray.fourier import poisson_level, error_on_averaged_cross_spectrum, cross_to_covariance
+from abc import ABCMeta, abstractmethod
+
+
+__all__ = [
+    "VarEnergySpectrum",
+    "RmsEnergySpectrum",
+    "RmsSpectrum",
+    "LagEnergySpectrum",
+    "LagSpectrum",
+    "ExcessVarianceSpectrum",
+    "CovarianceSpectrum",
+    "ComplexCovarianceSpectrum",
+    "CountSpectrum",
+]
+
+
+def get_non_overlapping_ref_band(channel_band, ref_band):
+    """
+    Ensures that the ``channel_band`` (i.e. the band of interest) is
+    not contained within the ``ref_band`` (i.e. the reference band)
+
+    Parameters
+    ----------
+    channel_band : iterable of type ``[elow, ehigh]``
+        The lower/upper limits of the energies to be contained in the band
+        of interest
+
+    ref_band : iterable
+        The lower/upper limits of the energies in the reference band
+
+    Returns
+    -------
+    ref_intervals : iterable
+        The channels that are both in the reference band in not in the
+        bands of interest
+
+    Examples
+    --------
+    >>> channel_band = [2, 3]
+    >>> ref_band = [[0, 10]]
+    >>> new_ref = get_non_overlapping_ref_band(channel_band, ref_band)
+    >>> assert np.allclose(new_ref, [[0, 2], [3, 10]])
+
+    Test this also works with a 1-D ref. band
+    >>> new_ref = get_non_overlapping_ref_band(channel_band, [0, 10])
+    >>> assert np.allclose(new_ref, [[0, 2], [3, 10]])
+    >>> new_ref = get_non_overlapping_ref_band([0, 1], [[2, 3]])
+    >>> assert np.allclose(new_ref, [[2, 3]])
+    """
+    channel_band = np.asanyarray(channel_band)
+    ref_band = np.asanyarray(ref_band)
+    if len(ref_band.shape) <= 1:
+        ref_band = np.asanyarray([ref_band])
+    if check_separate(ref_band, [channel_band]):
+        return np.asanyarray(ref_band)
+    not_channel_band = [
+        [0, channel_band[0]],
+        [channel_band[1], np.max([np.max(ref_band), channel_band[1] + 1])],
+    ]
+
+    return cross_two_gtis(ref_band, not_channel_band)
+
+
+def _decode_energy_specification(energy_spec):
+    """Decode the energy specification tuple.
+
+    Parameters
+    ----------
+    energy_spec : iterable
+        list containing the energy specification
+        Must have the following structure:
+            * energy_spec[0]: lower edge of (log) energy space
+            * energy_spec[1]: upper edge of (log) energy space
+            * energy_spec[2] +1 : energy bin edges (hence the +1)
+            * {`lin` | `log`} flat deciding whether the energy space is linear
+              or logarithmic
+
+    Returns
+    -------
+    energies : numpy.ndarray
+        An array of lower/upper bin edges for the energy array
+
+    Examples
+    --------
+    >>> _decode_energy_specification([0, 2, 2, 'lin'])
+    Traceback (most recent call last):
+     ...
+    ValueError: Energy specification must be a tuple
+    >>> a = _decode_energy_specification((0, 2, 2, 'lin'))
+    >>> assert np.allclose(a, [0, 1, 2])
+    >>> a = _decode_energy_specification((1, 4, 2, 'log'))
+    >>> assert np.allclose(a, [1, 2, 4])
+    """
+    if not isinstance(energy_spec, tuple):
+        raise ValueError("Energy specification must be a tuple")
+
+    if energy_spec[-1].lower() not in ["lin", "log"]:
+        raise ValueError("Incorrect energy specification")
+
+    log_distr = True if energy_spec[-1].lower() == "log" else False
+
+    if log_distr:
+        energies = np.logspace(
+            np.log10(energy_spec[0]), np.log10(energy_spec[1]), energy_spec[2] + 1
+        )
+    else:
+        energies = np.linspace(energy_spec[0], energy_spec[1], energy_spec[2] + 1)
+
+    return energies
+
+
+
+[docs] +class VarEnergySpectrum(StingrayObject, metaclass=ABCMeta): + main_array_attr = "energy" + """ + Base class for variability-energy spectrum. + + This class is only a base for the various variability spectra, and it's + not to be instantiated by itself. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, floats + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax``], floats; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + return_complex: bool, default False + In spectra that produce complex values, return the whole spectrum. + Otherwise, the absolute value will be returned. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the error bars corresponding to spectrum + + energy : array-like + The centers of energy intervals + """ + + def __init__( + self, + events, + freq_interval, + energy_spec, + ref_band=None, + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + return_complex=False, + ): + self.events1 = events + self.events2 = assign_value_if_none(events2, events) + self._analyze_inputs() + # This will be set to True in ComplexCovariance + self.return_complex = return_complex + + self.freq_interval = freq_interval + self.use_pi = use_pi + self.bin_time = bin_time + + if isinstance(energy_spec, tuple): + energies = _decode_energy_specification(energy_spec) + else: + energies = np.asanyarray(energy_spec) + + self.energy_intervals = list(zip(energies[0:-1], energies[1:])) + + self.ref_band = np.asanyarray(assign_value_if_none(ref_band, [0, np.inf])) + + if len(self.ref_band.shape) <= 1: + self.ref_band = np.asanyarray([self.ref_band]) + + self.segment_size = self.delta_nu = None + if segment_size is not None: + self.segment_size = segment_size + self.delta_nu = 1 / self.segment_size + + self._create_empty_spectrum() + + if events.time is None or len(events.time) == 0: + simon("There are no events in your event list! Can't make a spectrum!") + else: + self._spectrum_function() + + @property + def energy(self): + """Give the centers of the energy intervals.""" + return np.sum(self.energy_intervals, axis=1) / 2 + + def _analyze_inputs(self): + """Make some checks on the inputs and set some internal variable. + + If the object of events1 is the same as events2, set `same_events` to True. + This will, for example, tell the methods to use events1 for the subject bands + and events2 for the reference band (useful in deadtime-affected data). + + Also, if the event lists are distinct, calculate common GTIs. + """ + events1 = self.events1 + events2 = self.events2 + common_gti = events1.gti + if events2 is None or events2 is events1: + self.events2 = self.events1 + self.same_events = True + else: + common_gti = cross_two_gtis(events1.gti, events2.gti) + self.same_events = False + self.gti = common_gti + + def _create_empty_spectrum(self): + """Allocate the arrays of the output spectrum. + + Default value is NaN. This is because most spectral timing products are + prone to numerical errors, and it's more informative to have a default invalid + value rather than something like, e.g., 0 or 1 + """ + if self.return_complex: + dtype = complex + else: + dtype = float + + self.spectrum = np.zeros(len(self.energy_intervals), dtype=dtype) + np.nan + self.spectrum_error = np.zeros_like(self.spectrum, dtype=dtype) + np.nan + + def _get_times_from_energy_range(self, events, erange, use_pi=False): + """Get event times from the wanted energy range. + + Parameters + ---------- + events : `EventList` + Input event list + erange : [e0, e1] + Energy range in keV + + Other parameters + ---------------- + use_pi : bool, default False + Use the PI channel instead of energies + + Returns + ------- + out_ev : `EventList` + The filtered event list. + """ + if use_pi: + energies = events.pi + else: + energies = events.energy + mask = (energies >= erange[0]) & (energies < erange[1]) + return events.time[mask] + + def _get_good_frequency_bins(self, freq=None): + """Get frequency mask corresponding to the wanted frequency interval + + Parameters + ---------- + freq : `np.array`, default None + The frequency array. If None, it will get calculated from the number + of spectral bins using `np.fft.fftfreq` + + Returns + ------- + freq_mask : `np.array` of bool + The frequency mask. + """ + if freq is None: + n_bin = np.rint(self.segment_size / self.bin_time) + freq = fftfreq(int(n_bin), self.bin_time) + freq = freq[freq > 0] + good = (freq >= self.freq_interval[0]) & (freq < self.freq_interval[1]) + return good + + def _construct_lightcurves( + self, channel_band, tstart=None, tstop=None, exclude=True, only_base=False + ): + """ + Construct light curves from event data, for each band of interest. + + Parameters + ---------- + channel_band : iterable of type ``[elow, ehigh]`` + The lower/upper limits of the energies to be contained in the band + of interest + + tstart : float, optional, default ``None`` + A common start time (if start of observation is different from + the first recorded event) + + tstop : float, optional, default ``None`` + A common stop time (if start of observation is different from + the first recorded event) + + exclude : bool, optional, default ``True`` + if ``True``, exclude the band of interest from the reference band + + only_base : bool, optional, default ``False`` + if ``True``, only return the light curve of the channel of interest, not + that of the reference band + + Returns + ------- + base_lc : :class:`Lightcurve` object + The light curve of the channels of interest + + ref_lc : :class:`Lightcurve` object (only returned if ``only_base`` is ``False``) + The reference light curve for comparison with ``base_lc`` + """ + if self.use_pi: + energies1 = self.events1.pi + energies2 = self.events2.pi + else: + energies2 = self.events2.energy + energies1 = self.events1.energy + + gti = cross_two_gtis(self.events1.gti, self.events2.gti) + + tstart = assign_value_if_none(tstart, gti[0, 0]) + tstop = assign_value_if_none(tstop, gti[-1, -1]) + + good = (energies1 >= channel_band[0]) & (energies1 < channel_band[1]) + base_lc = Lightcurve.make_lightcurve( + self.events1.time[good], + self.bin_time, + tstart=tstart, + tseg=tstop - tstart, + gti=gti, + mjdref=self.events1.mjdref, + ) + + if only_base: + return base_lc + + if exclude: + ref_intervals = get_non_overlapping_ref_band(channel_band, self.ref_band) + else: + ref_intervals = self.ref_band + + ref_lc = Lightcurve( + base_lc.time, + np.zeros_like(base_lc.counts), + gti=base_lc.gti, + mjdref=base_lc.mjdref, + dt=base_lc.dt, + err_dist=base_lc.err_dist, + skip_checks=True, + ) + + for i in ref_intervals: + good = (energies2 >= i[0]) & (energies2 < i[1]) + new_lc = Lightcurve.make_lightcurve( + self.events2.time[good], + self.bin_time, + tstart=tstart, + tseg=tstop - tstart, + gti=base_lc.gti, + mjdref=self.events2.mjdref, + ) + ref_lc = ref_lc + new_lc + + ref_lc.err_dist = base_lc.err_dist + return base_lc, ref_lc + + @abstractmethod + def _spectrum_function(self): + pass + +
+[docs] + def from_astropy_table(self, *args, **kwargs): + raise NotImplementedError("from_XXXX methods are not implemented for VarEnergySpectrum")
+ + +
+[docs] + def from_xarray(self, *args, **kwargs): + raise NotImplementedError("from_XXXX methods are not implemented for VarEnergySpectrum")
+ + +
+[docs] + def from_pandas(self, *args, **kwargs): + raise NotImplementedError("from_XXXX methods are not implemented for VarEnergySpectrum")
+
+ + + +class RmsSpectrum(VarEnergySpectrum): + """Calculate the rms-Energy spectrum. + + For each energy interval, calculate the power density spectrum in + absolute or fractional r.m.s. normalization, and integrate it in the + given frequency range to obtain the rms. If ``events2`` is specified, + the cospectrum is used instead of the PDS. + + We assume absolute r.m.s. normalization. To get the fractional r.m.s. + we just divide by the mean count rate. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + norm : str, one of ["abs", "frac"] + The normalization of the rms, whether absolute or fractional. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + energy_spec, + ref_band=None, + freq_interval=[0, 1], + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + norm="frac", + ): + self.norm = norm + VarEnergySpectrum.__init__( + self, + events, + freq_interval=freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + ref_band=ref_band, + segment_size=segment_size, + events2=events2, + ) + + def _spectrum_function(self): + # Get the frequency bins to be averaged in the final results. + good = self._get_good_frequency_bins() + n_ave_bin = np.count_nonzero(good) + + # Get the frequency resolution of the final spectrum. + delta_nu_after_mean = self.delta_nu * n_ave_bin + + for i, eint in enumerate(show_progress(self.energy_intervals)): + # Extract events from the subject band and calculate the count rate + # and Poisson noise level. + sub_events = self._get_times_from_energy_range(self.events1, eint) + countrate_sub = get_average_ctrate(sub_events, self.gti, self.segment_size) + sub_power_noise = poisson_level(norm="abs", meanrate=countrate_sub) + + # If we provided the `events2` array, calculate the rms from the + # cospectrum, otherwise from the PDS + if not self.same_events: + # Extract events from the subject band in the other array, and + # calculate the count rate and Poisson noise level. + sub_events2 = self._get_times_from_energy_range(self.events2, eint) + countrate_sub2 = get_average_ctrate(sub_events2, self.gti, self.segment_size) + sub2_power_noise = poisson_level(norm="abs", meanrate=countrate_sub2) + + # Calculate the cross spectrum + results = avg_cs_from_timeseries( + sub_events, + sub_events2, + self.gti, + self.segment_size, + self.bin_time, + silent=True, + norm="abs", + ) + if results is None: + continue + cross = results["power"] + + m_ave, mean = [results.meta[key] for key in ["m", "mean"]] + mean_power = np.mean(cross[good]) + power_noise = 0 + rmsnoise = np.sqrt( + delta_nu_after_mean * np.sqrt(sub_power_noise * sub2_power_noise) + ) + else: + results = avg_pds_from_timeseries( + sub_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="abs" + ) + if results is None: + continue + sub_power = results["power"] + m_ave, mean = [results.meta[key] for key in ["m", "mean"]] + + mean_power = np.mean(sub_power[good]) + power_noise = sub_power_noise + rmsnoise = np.sqrt(delta_nu_after_mean * power_noise) + + meanrate = mean / self.bin_time + + rms = np.sqrt(np.abs(mean_power - power_noise) * delta_nu_after_mean) + + # Assume coherence 0, use Ingram+2019 + num = rms**4 + rmsnoise**4 + 2 * rms * rmsnoise + den = 4 * m_ave * n_ave_bin * rms**2 + + rms_err = np.sqrt(num / den) + if self.norm == "frac": + rms, rms_err = rms / meanrate, rms_err / meanrate + + self.spectrum[i] = rms + self.spectrum_error[i] = rms_err + + +RmsEnergySpectrum = RmsSpectrum + + +
+[docs] +class ExcessVarianceSpectrum(VarEnergySpectrum): + """Calculate the Excess Variance spectrum. + + For each energy interval, calculate the excess variance in the specified + frequency range. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a list is specified, this is interpreted as a list of bin edges; + if a tuple is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, floats; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + freq_interval, + energy_spec, + bin_time=1, + use_pi=False, + segment_size=None, + normalization="fvar", + ): + self.normalization = normalization + accepted_normalizations = ["fvar", "none"] + if normalization not in accepted_normalizations: + raise ValueError( + "The normalization of excess variance must be " + "one of {}".format(accepted_normalizations) + ) + + VarEnergySpectrum.__init__( + self, + events, + freq_interval, + energy_spec, + bin_time=bin_time, + use_pi=use_pi, + segment_size=segment_size, + ) + + def _spectrum_function(self): + spec = np.zeros(len(self.energy_intervals)) + spec_err = np.zeros_like(spec) + for i, eint in enumerate(self.energy_intervals): + lc = self._construct_lightcurves(eint, exclude=False, only_base=True) + + spec[i], spec_err[i] = excess_variance(lc, self.normalization) + + return spec, spec_err
+ + + +class CountSpectrum(VarEnergySpectrum): + """Calculate the energy spectrum. + + For each energy interval, compute the counts. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + use_pi : bool, default ``False`` + Use channel instead of energy + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__(self, events, energy_spec, use_pi=False): + VarEnergySpectrum.__init__( + self, + events, + None, + energy_spec, + use_pi=use_pi, + ) + + def _spectrum_function(self): + events = self.events1 + + for i, eint in show_progress(enumerate(self.energy_intervals)): + sub_events = self._get_times_from_energy_range(events, eint, use_pi=self.use_pi) + + sp = sub_events.size + self.spectrum[i] = sp + self.spectrum_error[i] = np.sqrt(sp) + + +class LagSpectrum(VarEnergySpectrum): + """Calculate the lag-energy spectrum. + + For each energy interval, calculate the lag between two bands. + If ``events2`` is specified, the energy bands are chosen from this second + event list, while the reference band from ``events``. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the lag values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + # events, freq_interval, energy_spec, ref_band = None + def __init__( + self, + events, + freq_interval, + energy_spec, + ref_band=None, + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + ): + VarEnergySpectrum.__init__( + self, + events, + freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + ref_band=ref_band, + segment_size=segment_size, + events2=events2, + ) + + def _spectrum_function(self): + # Extract the photon arrival times from the reference band + ref_events = self._get_times_from_energy_range(self.events2, self.ref_band[0]) + + # Calculate the PDS in the reference band. Needed to calculate errors. + results = avg_pds_from_timeseries( + ref_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="none" + ) + + # Nph per interval, so on average it's the total number of events divided by + # the number of intervals + ref_power_noise = poisson_level(norm="none", n_ph=ref_events.size / results.meta["m"]) + freq = results["freq"] + ref_power = results["power"] + m_ave = results.meta["m"] + + # Get the frequency bins to be averaged in the final results. + good = self._get_good_frequency_bins(freq) + mean_ref_power = np.mean(ref_power[good]) + n_ave_bin = np.count_nonzero(good) + + m_tot = n_ave_bin * m_ave + + f = (self.freq_interval[0] + self.freq_interval[1]) / 2 + for i, eint in enumerate(show_progress(self.energy_intervals)): + # Extract the photon arrival times from the subject band + sub_events = self._get_times_from_energy_range(self.events1, eint) + + results_cross = avg_cs_from_timeseries( + sub_events, + ref_events, + self.gti, + self.segment_size, + self.bin_time, + silent=True, + norm="none", + ) + + results_ps = avg_pds_from_timeseries( + sub_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="none" + ) + + if results_cross is None or results_ps is None: + continue + + # Nph per interval, so on average it's the total number of events divided by + # the number of intervals + sub_power_noise = poisson_level( + norm="none", n_ph=sub_events.size / results_ps.meta["m"] + ) + + cross = results_cross["power"] + sub_power = results_ps["power"] + + Cmean = np.mean(cross[good]) + + mean_sub_power = np.mean(sub_power[good]) + + # Is the subject band overlapping with the reference band? + # This will be used to correct the error bars, following + # Ingram 2019. + common_ref = self.same_events and len(cross_two_gtis([eint], self.ref_band)) > 0 + + _, _, phi_e, _ = error_on_averaged_cross_spectrum( + Cmean, + mean_sub_power, + mean_ref_power, + m_tot, + sub_power_noise, + ref_power_noise, + common_ref=common_ref, + ) + + # The frequency of these lags is measured from the *weighted* mean of the frequencies + # in the cross spectrum. The weight is just the absolute value of the CS + csabs = np.abs(cross[good]) + fmean = np.sum(freq[good] * csabs) / np.sum(csabs) + lag = np.angle(Cmean) / (2 * np.pi * fmean) + + lag_e = phi_e / (2 * np.pi * fmean) + self.spectrum[i] = lag + self.spectrum_error[i] = lag_e + + +LagEnergySpectrum = LagSpectrum + + +class ComplexCovarianceSpectrum(VarEnergySpectrum): + """Calculate the complex covariance spectrum. + + For each energy interval, calculate the covariance between two bands. + If ``events2`` is specified, the energy bands are chosen from this second + event list, while the reference band from ``events``. + + Mastroserio et al. 2018, MNRAS, 475, 4027 + + We assume absolute r.m.s. normalization. To get the fractional r.m.s. + we just divide by the mean count rate. + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + norm : str, one of ["abs", "frac"] + The normalization of the covariance, whether absolute or fractional. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + energy_spec, + ref_band=None, + freq_interval=[0, 1], + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + norm="frac", + return_complex=True, + ): + self.norm = norm + VarEnergySpectrum.__init__( + self, + events, + freq_interval=freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + ref_band=ref_band, + segment_size=segment_size, + events2=events2, + return_complex=return_complex, + ) + + def _spectrum_function(self): + # Extract events from the reference band and calculate the PDS and + # the Poisson noise level. + ref_events = self._get_times_from_energy_range(self.events2, self.ref_band[0]) + countrate_ref = get_average_ctrate(ref_events, self.gti, self.segment_size) + ref_power_noise = poisson_level(norm="abs", meanrate=countrate_ref) + + results = avg_pds_from_timeseries( + ref_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="abs" + ) + freq = results["freq"] + ref_power = results["power"] + m_ave = results.meta["m"] + + # Select the frequency range to be averaged for the measurement. + good = (freq >= self.freq_interval[0]) & (freq < self.freq_interval[1]) + n_ave_bin = np.count_nonzero(good) + mean_ref_power = np.mean(ref_power[good]) + + m_tot = m_ave * n_ave_bin + # Frequency resolution + delta_nu = n_ave_bin * self.delta_nu + + for i, eint in enumerate(show_progress(self.energy_intervals)): + # Extract events from the subject band + sub_events = self._get_times_from_energy_range(self.events1, eint) + countrate_sub = get_average_ctrate(sub_events, self.gti, self.segment_size) + sub_power_noise = poisson_level(norm="abs", meanrate=countrate_sub) + + results_cross = avg_cs_from_timeseries( + sub_events, + ref_events, + self.gti, + self.segment_size, + self.bin_time, + silent=True, + norm="abs", + ) + + results_ps = avg_pds_from_timeseries( + sub_events, self.gti, self.segment_size, self.bin_time, silent=True, norm="abs" + ) + + if results_cross is None or results_ps is None: + continue + + cross = results_cross["power"] + sub_power = results_ps["power"] + mean = results_ps.meta["mean"] + + # Is the subject band overlapping with the reference band? + # This will be used to correct the error bars, following + # Ingram 2019. + common_ref = self.same_events and len(cross_two_gtis([eint], self.ref_band)) > 0 + Cmean = np.mean(cross[good]) + if common_ref: + # Equation 6 from Ingram+2019 + Cmean -= sub_power_noise + + Cmean_real = np.abs(Cmean) + + mean_sub_power = np.mean(sub_power[good]) + + _, _, _, Ce = error_on_averaged_cross_spectrum( + Cmean, + mean_sub_power, + mean_ref_power, + m_tot, + sub_power_noise, + ref_power_noise, + common_ref=common_ref, + ) + if not self.return_complex: + Cmean = Cmean_real + + # Convert the cross spectrum to a covariance. + cov, cov_e = cross_to_covariance( + np.asanyarray([Cmean, Ce]), mean_ref_power, ref_power_noise, delta_nu + ) + + meanrate = mean / self.bin_time + + if self.norm == "frac": + cov, cov_e = cov / meanrate, cov_e / meanrate + + self.spectrum[i] = cov + self.spectrum_error[i] = cov_e + + +class CovarianceSpectrum(ComplexCovarianceSpectrum): + """Calculate the covariance spectrum. + + This is just the absolute value of the complex covariance + spectrum. Refer to that documentation for details. + + For the original formulation of the covariance spectrum, + see: + Wilkinson & Uttley 2009, MNRAS, 397, 666 + + Parameters + ---------- + events : :class:`stingray.events.EventList` object + event list + + freq_interval : ``[f0, f1]``, list of float + the frequency range over which calculating the variability quantity + + energy_spec : list or tuple ``(emin, emax, N, type)`` + if a ``list`` is specified, this is interpreted as a list of bin edges; + if a ``tuple`` is provided, this will encode the minimum and maximum + energies, the number of intervals, and ``lin`` or ``log``. + + Other Parameters + ---------------- + ref_band : ``[emin, emax]``, float; default ``None`` + minimum and maximum energy of the reference band. If ``None``, the + full band is used. + + use_pi : bool, default ``False`` + Use channel instead of energy + + events2 : :class:`stingray.events.EventList` object + event list for the second channel, if not the same. Useful if the + reference band has to be taken from another detector. + + norm : str, one of ["abs", "frac"] + The normalization of the covariance, whether absolute or fractional. + + Attributes + ---------- + events1 : array-like + list of events used to produce the spectrum + + events2 : array-like + if the spectrum requires it, second list of events + + freq_interval : array-like + interval of frequencies used to calculate the spectrum + + energy_intervals : ``[[e00, e01], [e10, e11], ...]`` + energy intervals used for the spectrum + + spectrum : array-like + the spectral values, corresponding to each energy interval + + spectrum_error : array-like + the errorbars corresponding to spectrum + """ + + def __init__( + self, + events, + energy_spec, + ref_band=None, + freq_interval=[0, 1], + bin_time=1, + use_pi=False, + segment_size=None, + events2=None, + norm="abs", + ): + ComplexCovarianceSpectrum.__init__( + self, + events, + freq_interval=freq_interval, + energy_spec=energy_spec, + bin_time=bin_time, + use_pi=use_pi, + norm=norm, + ref_band=ref_band, + return_complex=False, + segment_size=segment_size, + events2=events2, + ) +
+ +
+
+
+
+ +
+
+ + + \ No newline at end of file diff --git a/_sources/_zenodo.rst.txt b/_sources/_zenodo.rst.txt new file mode 100644 index 000000000..2ce07f8ec --- /dev/null +++ b/_sources/_zenodo.rst.txt @@ -0,0 +1,45 @@ +.. list-table:: + :header-rows: 1 + + * - Stingray Release + - DOI + - Citation + * - `v2.1 `__ + - `10.5281/zenodo.11383212 `__ + - `[Link to BibTeX] `__ + * - `v2.0.0rc1 `__ + - `10.5281/zenodo.10604413 `__ + - `[Link to BibTeX] `__ + * - `v2.0.0 `__ + - `10.5281/zenodo.10813181 `__ + - `[Link to BibTeX] `__ + * - `v1.1.2 `__ + - `10.5281/zenodo.7970570 `__ + - `[Link to BibTeX] `__ + * - `v1.1 `__ + - `10.5281/zenodo.7135161 `__ + - `[Link to BibTeX] `__ + * - `v1.0-beta `__ + - `10.5281/zenodo.6290078 `__ + - `[Link to BibTeX] `__ + * - `v1.0 `__ + - `10.5281/zenodo.6394742 `__ + - `[Link to BibTeX] `__ + * - `v0.3 `__ + - `10.5281/zenodo.4881255 `__ + - `[Link to BibTeX] `__ + * - `v0.2 `__ + - `10.5281/zenodo.3898435 `__ + - `[Link to BibTeX] `__ + * - `v0.1.3 `__ + - `10.5281/zenodo.3242835 `__ + - `[Link to BibTeX] `__ + * - `v0.1.2 `__ + - `10.5281/zenodo.3242829 `__ + - `[Link to BibTeX] `__ + * - `v0.1.1 `__ + - `10.5281/zenodo.3242825 `__ + - `[Link to BibTeX] `__ + * - `v0.1 `__ + - `10.5281/zenodo.3239519 `__ + - `[Link to BibTeX] `__ diff --git a/_sources/acknowledgements.rst.txt b/_sources/acknowledgements.rst.txt new file mode 100644 index 000000000..e6277171c --- /dev/null +++ b/_sources/acknowledgements.rst.txt @@ -0,0 +1,7 @@ +**************** +Acknowledgements +**************** + +Thank you to JetBrains for the free use of `PyCharm `_. + +Stingray participated in the `Google Summer of Code `_ in 2018, 2020, 2021, 2022, 2023, 2024 under `Open Astronomy `_, in 2017 under the `Python Software Foundation `_, and in 2016 under Timelab. diff --git a/_sources/api.rst.txt b/_sources/api.rst.txt new file mode 100644 index 000000000..a2b32fced --- /dev/null +++ b/_sources/api.rst.txt @@ -0,0 +1,438 @@ +.. _api: + +Stingray API +************ + +Library of Time Series Methods For Astronomical X-ray Data. + +Base Class +========== +Most `stingray`` classes are subclasses of a single class, :class:`stingray.StingrayObject`, which +implements most of the I/O functionality and common behavior (e.g. strategies to combine data and +make operations such as the sum, difference, or negation). This class is not intended to be +instantiated directly, but rather to be used as a base class for other classes. Any class wanting +to inherit from :class:`stingray.StingrayObject` should define a ``main_array_attr`` attribute, which +defines the name of the attribute that will be used to store the "independent variable" main data array. +For example, for all time series-like objects, the main array is the time array, while for the +periodograms the main array is the frequency array. +All arrays sharing the length (not the shape: they might be multi-dimensional!) of the main array are called +"array attributes" and are accessible through the ``array_attrs`` method. +When applying a mask or any other selection to a :class:`stingray.StingrayObject`, +all array attributes are filtered in the same way. Some array-like attributes might have the same length +by chance, in this case the user or the developer should add these to the ``not_array_attr`` attribute. +For example, :class:`stingray.StingrayTimeseries` has ``gti`` among the not_array_attrs, since it is an +array but not related 1-to-1 to the main array, even if in some cases it might happen to have the same numbers +of elements of the main array, which is ``time``. + +StingrayObject +-------------- + +.. autoclass:: stingray.StingrayObject + :members: + +---- + +Data Classes +============ + +These classes define basic functionality related to common data types and typical methods +that apply to these data types, including basic read/write functionality. Currently +implemented are :class:`stingray.StingrayTimeseries`, :class:`stingray.Lightcurve` and +:class:`stingray.events.EventList`. + +All time series-like data classes inherit from :class:`stingray.StingrayTimeseries`, which +implements most of the common functionality. The main data array is stored in the ``time`` +attribute. +Good Time Intervals (GTIs) are stored in the ``gti`` attribute, which is a list of 2-tuples or 2-lists +containing the start and stop times of each GTI. The ``gti`` attribute is not an array attribute, since +it is not related 1-to-1 to the main array, even if in some cases it might happen to have the same number +of elements of the main array. It is by default added to the ``not_array_attr`` attribute. + + +StingrayTimeseries +------------------ + +.. autoclass:: stingray.StingrayTimeseries + :members: + +---- + +Lightcurve +---------- + +.. autoclass:: stingray.Lightcurve + :members: + +---- + +EventList +--------- + +.. autoclass:: stingray.events.EventList + :members: + +---- + + +Fourier Products +================ + +These classes implement commonly used Fourier analysis products, most importantly :class:`Crossspectrum` and +:class:`Powerspectrum`, along with the variants for averaged cross/power spectra. + +Crossspectrum +------------- + +.. autoclass:: stingray.Crossspectrum + :members: + +---- + +Coherence +--------- + +Convenience function to compute the coherence between two :class:`stingray.Lightcurve` +objects. + +.. autofunction:: stingray.coherence + +---- + +Powerspectrum +------------- + +.. autoclass:: stingray.Powerspectrum + :members: + :private-members: + :inherited-members: + +---- + +AveragedCrossspectrum +--------------------- + +.. autoclass:: stingray.AveragedCrossspectrum + :members: + :inherited-members: + +---- + + +AveragedPowerspectrum +--------------------- + +.. autoclass:: stingray.AveragedPowerspectrum + :members: + :inherited-members: + +---- + +Dynamical Powerspectrum +----------------------- + +.. autoclass:: stingray.DynamicalPowerspectrum + :members: + :inherited-members: + +---- + +CrossCorrelation +---------------- + +.. autoclass:: stingray.CrossCorrelation + :members: + +---- + +AutoCorrelation +--------------- + +.. autoclass:: stingray.AutoCorrelation + :members: + :inherited-members: + +---- + +Dead-Time Corrections +--------------------- + +.. automodule:: stingray.deadtime.fad + :members: + :imported-members: + +.. automodule:: stingray.deadtime.model + :members: + :imported-members: + +---- + + +Higher-Order Fourier and Spectral Timing Products +================================================= + +These classes implement higher-order Fourier analysis products (e.g. :class:`Bispectrum`) and +Spectral Timing related methods taking advantage of both temporal and spectral information in +modern data sets. + +Bispectrum +---------- + +.. autoclass:: stingray.bispectrum.Bispectrum + :members: + +---- + + +Covariancespectrum +------------------ + +.. autoclass:: stingray.Covariancespectrum + :members: + +---- + +AveragedCovariancespectrum +-------------------------- + +.. autoclass:: stingray.AveragedCovariancespectrum + :members: + :inherited-members: + +---- + +VarEnergySpectrum +------------------ +Abstract base class for spectral timing products including +both variability and spectral information. + +.. autoclass:: stingray.varenergyspectrum.VarEnergySpectrum + :members: + +---- + +RmsEnergySpectrum +----------------- + +.. autoclass:: stingray.varenergyspectrum.RmsEnergySpectrum + :members: + :inherited-members: + +---- + +LagEnergySpectrum +----------------- + +.. autoclass:: stingray.varenergyspectrum.LagEnergySpectrum + :members: + :inherited-members: + +---- + +ExcessVarianceSpectrum +---------------------- + +.. autoclass:: stingray.varenergyspectrum.ExcessVarianceSpectrum + :members: + :inherited-members: + +---- + + +Utilities +========= + +Commonly used utility functionality, including Good Time Interval operations and input/output +helper methods. + +Statistical Functions +--------------------- + +.. automodule:: stingray.stats + :members: + :imported-members: + +GTI Functionality +----------------- +.. automodule:: stingray.gti + :members: + :imported-members: + +I/O Functionality +----------------- + +.. automodule:: stingray.io + :members: + +Mission-specific I/O +-------------------- + +.. automodule:: stingray.mission_support.missions + :members: + +.. automodule:: stingray.mission_support.rxte + :members: + + +Other Utility Functions +----------------------- + +.. automodule:: stingray.utils + :members: + :imported-members: + +Modeling +======== + +This subpackage defines classes and functions related to parametric modelling of various types of +data sets. Currently, most functionality is focused on modelling Fourier products (especially +power spectra and averaged power spectra), but rudimentary functionality exists for modelling +e.g. light curves. + + +.. _loglikelihoods: + +Log-Likelihood Classes +---------------------- + +These classes define basic log-likelihoods for modelling time series and power spectra. +:class:`stingray.modeling.LogLikelihood` is an abstract base class, i.e. a template for creating +user-defined log-likelihoods and should not be instantiated itself. Based on this base class +are several definitions for a :class:`stingray.modeling.GaussianLogLikelihood`, appropriate for +data with normally distributed uncertainties, a :class:`stingray.modeling.PoissonLogLikelihood` +appropriate for photon counting data, and a :class:`stingray.modeling.PSDLogLikelihood` +appropriate for (averaged) power spectra. + +.. autoclass:: stingray.modeling.LogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.GaussianLogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PoissonLogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PSDLogLikelihood + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.LaplaceLogLikelihood + :members: + :inherited-members: + +---- + +Posterior Classes +----------------- + +These classes define basic posteriors for parametric modelling of time series and power spectra, based on +the log-likelihood classes defined in :ref:`loglikelihoods`. :class:`stingray.modeling.Posterior` is an +abstract base class laying out a basic template for defining posteriors. As with the log-likelihood classes +above, several posterior classes are defined for a variety of data types. + +Note that priors are **not** pre-defined in these classes, since they are problem dependent and should be +set by the user. The convenience function :func:`stingray.modeling.set_logprior` can be useful to help set +priors for these posterior classes. + +.. autoclass:: stingray.modeling.Posterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.GaussianPosterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PoissonPosterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.PSDPosterior + :members: + :inherited-members: + +.. autoclass:: stingray.modeling.LaplacePosterior + :members: + :inherited-members: + +---- + +Parameter Estimation Classes +---------------------------- + +These classes implement functionality related to parameter estimation. They define basic ``fit`` and +``sample`` methods using ``scipy.optimize`` and ``emcee``, respectively, for optimization and Markov Chain Monte +Carlo sampling. :class:`stingray.modeling.PSDParEst` implements some more advanced functionality for modelling +power spectra, including both frequentist and Bayesian searches for (quasi-)periodic signals. + +.. autoclass:: stingray.modeling.ParameterEstimation + :members: + +.. autoclass:: stingray.modeling.PSDParEst + :members: + :inherited-members: + +---- + +Auxiliary Classes +----------------- + +These are helper classes instantiated by :class:`stingray.modeling.ParameterEstimation` and its subclasses to +organize the results of model fitting and sampling in a more meaningful, easily accessible way. + +.. autoclass:: stingray.modeling.OptimizationResults + :members: + :private-members: + +.. autoclass:: stingray.modeling.SamplingResults + :members: + :private-members: + +---- + +Convenience Functions +--------------------- + +These functions are designed to help the user perform common tasks related to modelling and parameter +estimation. In particular, the function :func:`stingray.modeling.set_logprior` is designed to +help users set priors in their :class:`stingray.modeling.Posterior` subclass objects. + +.. autofunction:: stingray.modeling.set_logprior + +.. automodule:: stingray.modeling.scripts + :members: + :imported-members: + +---- + +Pulsar +====== + +This submodule broadly defines functionality related to (X-ray) pulsar data analysis, especially +periodicity searches. + +.. automodule:: stingray.pulse + :members: + :imported-members: + +Simulator +========= + +This submodule defines extensive functionality related to simulating spectral-timing data sets, +including transfer and window functions, simulating light curves from power spectra for a range +of stochastic processes. + + +.. autoclass:: stingray.simulator.simulator.Simulator + :members: + :undoc-members: + +Exceptions +========== + +Some basic Stingray-related errors and exceptions. + +.. autoclass:: stingray.exceptions.StingrayError + :members: + :undoc-members: diff --git a/_sources/citing.rst.txt b/_sources/citing.rst.txt new file mode 100644 index 000000000..c3952bb00 --- /dev/null +++ b/_sources/citing.rst.txt @@ -0,0 +1,97 @@ +*************** +Citing Stingray +*************** + +Citations are still the main currency of the academic world, and *the* best way to ensure that Stingray continues to be supported and we can continue to work on it. +If you use Stingray in data analysis leading to a publication, we ask that you cite *both* a `DOI `_, which points to the software itself, *and* our papers describing the Stingray project. + +DOI +=== + +If possible, we ask that you cite a DOI corresponding to the specific version of Stingray that you used to carry out your analysis. + +.. include:: _zenodo.rst + +If this isn't possible — for example, because you worked with an unreleased version of the code — you can cite Stingray's `concept DOI `__, `10.5281/zenodo.1490116 `__ (`BibTeX `__), which will always resolve to the latest release. + +Papers +====== + +Please cite both of the following papers: + +.. raw:: html + + + + + +Other Useful References +======================= + +.. raw:: html + + Stingray is listed in the Astrophysics Source Code Library. + Copy the corresponding BibTeX to clipboard. diff --git a/_sources/contributing.rst.txt b/_sources/contributing.rst.txt new file mode 100644 index 000000000..655d7500e --- /dev/null +++ b/_sources/contributing.rst.txt @@ -0,0 +1,422 @@ +=================================== +Get Help, Report Bugs or Contribute +=================================== + +Reporting Bugs and Issues, Getting Help, Providing Feedback +=========================================================== + +We would love to hear from you! +We are writing Stingray to be useful to you, so if you encounter problems, have questions, would like to request features or just want to chat with us, please don't hesitate to get in touch! + +The best and easiest way to get in touch with us regarding bugs and issues is the GitHub `Issues page `_. +If you're not sure whether what you've encountered is a bug, if you have any questions or need advice getting some of the code to run, or would like to request a feature or suggest additions/changes, you can also contact us via the Slack group or our mailing list. + +Please use `this link `_ to join Slack or send `one of us `_ an email to join the mailing list. + +Getting Involved with Development +================================= + +We encourage you to get involved with Stingray in any way you can! +First, read through the `README `_. +Then, fork the `stingray `_ and `notebooks `_ repositories (if you need a primer on GitHub and git version control, `look here `_) and work your way through the Jupyter notebook tutorials for the main modules. +Once you've familiarized yourself with the basics of Stingray, go to the `Stingray issues page `_ and try to tackle one! +Finally, you can read `these slides `_ from a talk on Stingray in 2021 at the 9th Microquasar Workshop. + +For organizing and coordinating the software development, we have a Slack group and a mailing list -- please use `this link `_ for Slack or send `one of us `_ an email to join. + + +Contributing to Stingray +======================== + + All great things have small beginnings. + +Hello there! We love and appreciate every small contribution you can +make to improve Stingray! We are proudly open source and believe +our(yes! yours as well) work will help enhance the quality of research +around the world. We want to make contributing to stingray as easy and +transparent as possible, whether it’s: + +- Reporting a bug +- Discussing the current state of the code +- Submitting a fix +- Proposing new features + +A successful project is not just built by amazing programmers but by the +combined, unrelenting efforts of coders, testers, reviewers, and +documentation writers. There are a few guidelines that we need all +contributors to follow so that we can have a chance of keeping on top of +things. + +Contribution Guidelines +----------------------- + +Contributions from everyone, experienced and inexperienced, are welcome! +If you don’t know where to start, look at the `Open +Issues `__ and/or +get involved in our `Slack +channel `__. This code is +written in Python 3.8+, but in general we will follow the Astropy/ Numpy +minimum Python versions. Tests run at each commit during Pull Requests, +so it is easy to single out points in the code that break this +compatibility. + +- **Branches:** + + - Don’t use your main **branch (forked) for anything. Consider + deleting your main** branch. + - Make a new branch, called a feature branch, for each separable set + of changes: “one task, one branch”. + - Start that new feature branch from the most current development + version of stingray. + - Name of branch should be the purpose of change eg. + *bugfix-for-issue20* or *refactor-lightcurve-code.* + - Never merge changes from stingray/main into your feature branch. + If changes in the development version require changes to our code + you can rebase, but only if asked. + +- **Commits:** + + - Make frequent commits. + - One commit per logical change in the code-base. + - Add commit message. + +- **Naming Conventions:** + + - Change name of the remote origin(*yourusername/stingray*) to your + *github-username.* + - Name the remote that is the primary stingray repository( + *StingraySoftware/stingray*) as stingray. + +Contribution Workflow +~~~~~~~~~~~~~~~~~~~~~ + +These, conceptually, are the steps you will follow in contributing to +Stingray. These steps keep work well organized, with readable history. +This in turn makes it easier for project maintainers (that might be you) +to see what you’ve done, and why you did it: + +1. Regularly fetch latest stingray development version ``stingray/main`` + from GitHub. +2. Make a new feature branch. **Recommended:** Use virtual environments + to work on branch. +3. Editing Workflow: + + 1. One commit per logical change. + 2. Run tests to make sure that changes don’t break existing code. + 3. Code should have appropriate docstring. + 4. Format code appropriately, use ``black`` as described below. + 5. Update appropriate documentation if necessary and test it on + sphinx. + 6. Write tests that cover all code changes. + 7. If modifications require more than one commit, break changes into + smaller commits. Commits involving just the docs might use ``[docs only]`` in + their commit message to avoid running all the tests. *Very* trivial commits + (e.g. a space in a docstring) might skip *all* tests with ``[skip ci]`` in + their commit message. + 8. Write a changelog entry in ``towncrier`` format (see below) + 9. Push the code on your remote(forked) repository. + +4. All code changes should be submitted via PRs (i.e. fork, branch, work + on stuff, just submit pull request). Code Reviews are super-useful: + another contributor can review the code, which means both the + contributor and reviewer will be up to date with how everything fits + together, and can get better by reading each other’s code! :) +5. Take feedback and make changes/revise the PR as asked. + +Coding Guidelines +----------------- + +Compatibility and Dependencies +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Compatibility:** All code must be compatible with **Python 3.8** + **or later**, and with the **latest two major releases of Astropy**. +- **Dependency Management:** + + - The core package and affiliated packages should be importable with + no dependencies other than the `Python Standard + Library `__, + `astropy `__>=4.0, + `numpy `__>=1.17.0, + `scipy `__>=1.1, + `matplotlib `__>=3.0 + - Additional dependencies are allowed for sub-modules or in function + calls, but they must be noted in the package documentation and + should only affect the relevant component. In functions and + methods, the optional dependency should use a normal ``import`` + statement, which will raise an ``ImportError`` if the dependency + is not available. + +Coding Style and Conventions +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Style Guide:** + + - Follow the `PEP8 style + guide `__. Follow the + existing coding style within the sub-package and avoid changes + that are purely stylistic. + - Indentation should be **ONLY** with **four spaces** no mixing of + tabs-and-spaces. + - Maximum line length should be **100** characters unless doing so + makes the code unreadable, ugly. + - Functions and methods should be lower-case only, and separated by + a ``_`` in case of multiple words eg. ``my_new_method``. + - Use verbose variable names (readability > economy). Only loop + iteration variables are allowed to be a single letter. + - Classes start with an upper-case letter and use CamelCase eg. + ``MyNewClass``. + - Inline comments should start with two spaces and a single #. + +- **Formatting Style:** The new Python 3 formatting style should be + used, i.e., f-strings ``f"{variable_name}"`` or + ``"{0}".format(variable_name}`` should be used instead of + ``"%s" % (variable_name)``. Additionally, the project enforces + code formatting and style checks through the **pre-commit** tool, + ensuring consistency and adherence to style guidelines across contributions. + +- To set up pre-commit locally for the Stingray project, follow these steps: + + 1. Install the pre-commit package: + + .. code-block:: bash + + $ pip install pre-commit + + 2. Run pre-commit on all files in the Stingray repository: + + .. code-block:: bash + + $ pre-commit run --all-files + + This will run the pre-commit tools on all files in the Stingray git repository. The tools may automatically modify some files, while in other cases, they will report issues that require manual correction. If pre-commit makes changes to any files, those changes will appear as new modifications, which need to be staged before committing. + + + + +- **Linter/Style Guide Checker:** Our testing infrastructure currently + enforces a subset of the PEP8 style guide. You can check locally + whether your changes have followed these by running + `flake8 `__ with the following + command: + + ``flake8 astropy --count --select=E101,W191,W291,W292,W293,W391,E111,E112,E113,E30,E502,E722,E901,E902,E999,F822,F823`` + +- **Code Formatters:** We follow Astropy, enforcing this style guide + using the black code formatter, see `The Black Code + Style `__ + for details. Please run + + ``black stingray`` + + before each commit + +- **Imports:** + + - Absolute imports are to be used in general. The exception to this + is relative imports of the form ``from . import modulename``, this + convention makes it clearer what code is from the current + sub-module as opposed to from another. It is best to use when + referring to files within the same sub-module. + - The import ``numpy as np``, ``import scipy as sp``, + ``import matplotlib as mpl``, and + ``import matplotlib.pyplot as plt`` naming conventions should be + used wherever relevant. ``from packagename import *`` should never + be used, except as a tool to flatten the namespace of a module. + +- **Variable access in Classes:** + + - Classes should either use direct variable access, or Python’s + property mechanism for setting object instance variables. + ``get_value/set_value`` style methods should be used only when + getting and setting the values requires a + computationally-expensive operation. + - Attribute names should be descriptive if possible, use names of + desserts otherwise (e.g. for dummy test classes) + +- **super() function:** Classes should use the built-in ``super()`` + function when making calls to methods in their super-class(es) unless + there are specific reasons not to. ``super()`` should be used + consistently in all sub-classes since it does not work otherwise. + +- **Multiple Inheritance:** Multiple inheritance should be avoided in + general without good reason. + +- **init.py:** The ``__init__.py`` files for modules should not contain + any significant implementation code. ``__init__.py`` can contain + docstrings and code for organizing the module layout, however if a + module is small enough that it fits in one file, it should simply be + a single file, rather than a directory with an ``__init__.py`` file. + +Standard output, warnings, and errors +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Print Statement:** Used only for outputs in methods and scenarios + explicitly requested by the user +- **Errors and Exceptions:** Always use the ``raise`` with built-in or + custom exception classes. The nondescript ``Exception`` class should + be avoided as much as possible, in favor of more specific exceptions + (*IOError, ValueError* etc.). +- **Warnings:** Always use the + ``warnings.warn(message, warning_class)``\ for warnings. These get + redirected to ``log.warning()`` by default, but one can still use the + standard warning-catching mechanism and custom warning classes. +- **Debugging and Informational messages:** Always use + ``log.info(message)`` and ``log.debug(message)``. The logging system + uses the built-in Python logging module. + +Data and Configuration +~~~~~~~~~~~~~~~~~~~~~~ + +- **Storing Data:** + + - Packages can include data in a directory named *data* inside a + subpackage source directory as long as it is less than about 100 + kB. + - If the data exceeds this size, it should be hosted outside the + source code repository, either at a third-party location on the + internet. + +Documentation and Testing +~~~~~~~~~~~~~~~~~~~~~~~~~ + +- **Docstrings:** + + - Docstrings must be provided for all public classes, methods, and + functions. + - Docstrings should follow the `numpydoc + style `__ + and reStructured Text format. + - Write usage examples in the docstrings of all classes and + functions whenever possible. These examples should be short and + simple to reproduce. Users should be able to copy them verbatim + and run them. + +- **Unit tests:** Provided for as many public methods and functions as + possible, and should adhere to the standards set in the Testing + Guidelines. +- **Building Documentation:** + + - Use sphinx to build the documentation. + - All extra documentation should go into a /docs sub-directory under + the main stingray directory. + +Updating and Maintaining the Changelog +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Stingray uses ```towncrier`` `__ +which is used to generate the ``CHANGELOG.rst`` file at the root of the +package. + +As described in ``docs/changes/README.rst``, the changelog fragment +files should be added to each pull request. The changelog will be read +by users, so this description should be aimed at stingray users instead +of describing internal changes which are only relevant to the +developers. The idea is that the changelog lists all new features, API +changes, bugfixes, and so on that have been added to stingray between +versions so that a user can easily follow the changes without having to +go through the entire git log. + +The towncrier tool will automatically reflow your text. You can install +towncrier and then run ``towncrier --draft`` if you want to get a +preview of how your change will look in the final release notes. + +Testing Guidelines +------------------ + +The testing framework used by stingray is the ``pytest`` framework with ``tox``. +To run the tests, you will need to make sure you have the pytest package +(version 3.1 or later) as well as the tox tool installed. + +- Execute tests using the ``tox -e `` command. +- All tests should be py.test compliant: http://pytest.org/latest/. +- Keep all tests in a /tests subdirectory under the main stingray + directory. +- Write one test script per module in the package. +- Extra examples can go into an /examples folder in the main stingray + directory, scripts that gather various data analysis tasks into + longer procedures into a /scripts folder in the same location. + +Community Guidelines +-------------------- + +Our Pledge +~~~~~~~~~~ + +In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our +project and our community a harassment-free experience for everyone, +regardless of age, body size, disability, ethnicity, gender identity and +expression, level of experience, nationality, personal appearance, race, +religion, or sexual identity and orientation. + +Our Standards +~~~~~~~~~~~~~ + +Examples of behavior that contributes to creating a positive environment +include: + +- Using welcoming and inclusive language +- Being respectful of differing viewpoints and experiences +- Gracefully accepting constructive criticism +- Focusing on what is best for the community +- Showing empathy towards other community members + +Examples of unacceptable behavior by participants include: + +- The use of sexualized language or imagery and unwelcome sexual + attention or advances +- Trolling, insulting/derogatory comments, and personal or political + attacks +- Public or private harassment +- Publishing others’ private information, such as a physical or + electronic address, without explicit permission +- Other conduct which could reasonably be considered inappropriate in a + professional setting + +Our Responsibilities +~~~~~~~~~~~~~~~~~~~~ + +Project maintainers are responsible for clarifying the standards of +acceptable behavior and are expected to take appropriate and fair +corrective action in response to any instances of unacceptable behavior. + +Project maintainers have the right and responsibility to remove, edit, +or reject comments, commits, code, wiki edits, issues, and other +contributions that are not aligned to this Code of Conduct, or to ban +temporarily or permanently any contributor for other behaviors that they +deem inappropriate, threatening, offensive, or harmful. + +Scope +~~~~~ + +This Code of Conduct applies both within project spaces and in public +spaces when an individual is representing the project or its community. +Examples of representing a project or community include using an +official project e-mail address, posting via an official social media +account, or acting as an appointed representative at an online or +offline event. Representation of a project may be further defined and +clarified by project maintainers. + +Enforcement +~~~~~~~~~~~ + +Instances of abusive, harassing, or otherwise unacceptable behavior may +be reported by contacting the project team at any of our personal email +addresses or through private Slack communication. The project team will +review and investigate all complaints, and will respond in a way that it +deems appropriate to the circumstances. The project team is obligated to +maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted +separately. + +Project maintainers who do not follow or enforce the Code of Conduct in +good faith may face temporary or permanent repercussions as determined +by other members of the project’s leadership. + +Attribution +~~~~~~~~~~~ + +This Code of Conduct is adapted from the `Contributor +Covenant `__, version 1.4, available at +`http://contributor-covenant.org/version/1/4 `__ diff --git a/_sources/core.rst.txt b/_sources/core.rst.txt new file mode 100644 index 000000000..ac15d1c16 --- /dev/null +++ b/_sources/core.rst.txt @@ -0,0 +1,104 @@ +Core Stingray Functionality +*************************** + +Here we show how many of the core Stingray classes and methods +work in practice. We start with basic data constructs for +event data and light curve data, and then show how to produce +various Fourier products from these data sets. + +Working with Event Data +======================= + +.. toctree:: + :maxdepth: 2 + + notebooks/EventList/EventList Tutorial.ipynb + +Working with Lightcurves +======================== + +.. toctree:: + :maxdepth: 2 + + notebooks/Lightcurve/Lightcurve tutorial.ipynb + notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb + +Fourier Analysis +================ + +Powerspectra +------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb + +Dynamical Power Spectra +----------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb + notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb + +Cross Spectra +------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb + +Cross- and Autocorrelations +--------------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/CrossCorrelation/cross_correlation_notebook.ipynb + + +Bispectra +--------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Bispectrum/bispectrum_tutorial.ipynb + + +Bayesian Excess Variance +------------------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Bexvar/Bexvar tutorial.ipynb + + +Multi-taper Periodogram +----------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Multitaper/multitaper_example.ipynb + + +Lomb Scargle Crossspectrum +-------------------------- +.. toctree:: + :maxdepth: 2 + + notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb + + +Lomb Scargle Powerspectrum +-------------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb diff --git a/_sources/dataexplo.rst.txt b/_sources/dataexplo.rst.txt new file mode 100644 index 000000000..f340c0a40 --- /dev/null +++ b/_sources/dataexplo.rst.txt @@ -0,0 +1,29 @@ +More Data Exploration +********************* + +These notebook tutorials show some ways to explore data with +Stingray. + + +A quick look at a NuSTAR observation +==================================== + +Stingray transparently loads datasets from many HEASOFT-supported missions. +In this Tutorial, we will show an example quicklook of a NuSTAR observation. + +.. toctree:: + :maxdepth: 2 + + notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb + + +Studying very slow variability with the Lomb-Scargle periodogram +================================================================ + +In this Tutorial, we will show an example of how to use the Lomb-Scargle +periodogram and cross spectrum to study very slow variability in a light curve. + +.. toctree:: + :maxdepth: 2 + + notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb diff --git a/_sources/deadtime.rst.txt b/_sources/deadtime.rst.txt new file mode 100644 index 000000000..85ed2a4cf --- /dev/null +++ b/_sources/deadtime.rst.txt @@ -0,0 +1,12 @@ +Dealing with dead time +********************** + +Stingray implements a few features to deal with instrumental dead time. +This is particularly useful in missions with long dead time, such as NuSTAR or IXPE. +In this tutorial, we will show the effects of dead time on X-ray observations, and explain how Stingray can help model it and, under some conditions, even correct for it. + +.. toctree:: + :maxdepth: 2 + + notebooks/Deadtime/Dead time model in Stingray.ipynb + notebooks/Deadtime/FAD correction in Stingray.ipynb diff --git a/_sources/history.rst.txt b/_sources/history.rst.txt new file mode 100644 index 000000000..b6a373925 --- /dev/null +++ b/_sources/history.rst.txt @@ -0,0 +1,44 @@ +******* +History +******* + +For a brief overview of the history and state-of-the-art in spectral timing, and for more information about the design and capabilities of Stingray, please refer to `Huppenkothen et al. (2019) `_. + +Stingray originated during the 2016 workshop `The X-ray Spectral-Timing Revolution `_: a group of X-ray astronomers and developers decided to agree on a common platform to develop a new software package. +At that time, there were a number of official software packages for X-ray spectral fitting (XSPEC, ISIS, Sherpa, ...), but +such a widely used and standard software package did not exist for X-ray timing, that was mostly the domain of custom, proprietary software. +Our goals were to merge existing efforts towards a timing package in Python, following the best guidelines for modern open-source programming, thereby providing the basis for developing spectral-timing analysis tools. +We needed to provide an easily accessible scripting interface, a GUI, and an API for experienced coders. +Stingray's ultimate goal is to provide the community with a package that eases the learning curve for advanced spectral-timing techniques, with a correct statistical framework. + +Further spectral-timing functionality, in particularly command line scripts based on the API defined within Stingray, is available in the package `HENDRICS `_. +A graphical user interface is under development as part of the project `DAVE `_. + +Previous projects merged to Stingray +==================================== + +* Daniela Huppenkothen's original Stingray +* Matteo Bachetti's `MaLTPyNT `_ +* Abigail Stevens' RXTE power spectra code and phase-resolved spectroscopy code +* Simone Migliari's and Paul Balm's X-ray data exploration GUI commissioned by ESA + + +Changelog +========= + +.. include:: ../CHANGELOG.rst + + +Presentations +============= + +Members of the Stingray team have given a number of presentations which introduce Stingray. +These include: + +- `2nd Severo Ochoa School on Statistics, Data Mining, and Machine Learning (2021) `_ +- `9th Microquasar Workshop (2021) `_ +- `European Week of Astronomy and Space Science (2018) `_ +- `ADASS (Astronomical Data Analysis Software and Systems; meeting 2017, proceedings 2020) `_ +- `AAS 16th High-Energy Astrophysics Division meeting (2017) `_ +- `European Week of Astronomy and Space Science 2017 `_ +- `Python in Astronomy (2016) `_ diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 000000000..052eb9303 --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,330 @@ +***************************************** +Stingray: Next-Generation Spectral Timing +***************************************** + +.. image:: images/stingray_logo.png + :width: 700 + :scale: 40% + :alt: Stingray logo, outline of a stingray on top of a graph of the power spectrum of an X-ray binary + :align: center + +Stingray is a Python library designed to perform times series analysis and related tasks on astronomical light curves. +It supports a range of commonly-used Fourier analysis techniques, as well as extensions for analyzing pulsar data, simulating data sets, and statistical modelling. +Stingray is designed to be easy to extend, and easy to incorporate into data analysis workflows and pipelines. + +.. important:: + + If you use Stingray for work presented in a publication or talk, please help the project by providing a proper :doc:`citation `. + +Features +======== +Current Capabilities +-------------------- + +1. Data handling and simulation +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +* loading event lists from fits files (and generally good handling of OGIP-compliant missions, like RXTE/PCA, NuSTAR/FPM, XMM-Newton/EPIC, NICER/XTI) +* constructing light curves and time series from event data +* various operations on time series (e.g. addition, subtraction, joining, and truncation) +* simulating a light curve with a given power spectrum +* simulating a light curve from another light curve and a 1-d (time) or 2-d (time-energy) impulse response +* simulating an event list from a given light curve _and_ with a given energy spectrum +* Good Time Interval operations +* Filling gaps in light curves with statistically sound fake data + +1. Fourier methods +~~~~~~~~~~~~~~~~~~ +* power spectra and cross spectra in Leahy, rms normalization, absolute rms and no normalization +* averaged power spectra and cross spectra +* dynamical power spectra and cross spectra +* maximum likelihood fitting of periodograms/parametric models +* (averaged) cross spectra +* coherence, time lags +* Variability-Energy spectra, like covariance spectra and lags *needs testing* +* covariance spectra; *needs testing* +* bispectra; *needs testing* +* (Bayesian) quasi-periodic oscillation searches +* Lomb-Scargle periodograms and cross spectra +* Power Colors + +3. Other time series methods +~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +* pulsar searches with Epoch Folding, :math:`Z^2_n` test +* Gaussian Processes for QPO studies +* cross correlation functions + +Future Plans +------------ + +We welcome feature requests: if you need a particular tool that's currently not available or have a new method you think might be usefully implemented in Stingray, please :doc:`get in touch `! + +Other future additions we are currently implementing are: + +* bicoherence +* phase-resolved spectroscopy of quasi-periodic oscillations +* Fourier-frequency-resolved spectroscopy +* full HEASARC-compatible mission support +* pulsar searches with :math:`H`-test +* binary pulsar searches + +Platform-specific issues +------------------------ + +Windows uses an internal 32-bit representation for ``int``. This might create numerical errors when using large integer numbers (e.g. when calculating the sum of a light curve, if the ``lc.counts`` array is an integer). +On Windows, we automatically convert the ``counts`` array to float. The small numerical errors should be a relatively small issue compare to the above. + +Installation instructions +========================= + +There are currently three ways to install Stingray: + +* via ``conda`` +* via ``pip`` +* from source + +Below, you can find instructions for each of these methods. + +Dependencies +------------ +A **minimal installation** of Stingray requires the following dependencies: + ++ astropy>=4.0 ++ numpy>=1.17.0 ++ scipy>=1.1.0 ++ matplotlib>=3.0,!=3.4.0 + +In **typical** uses, requiring input/output, caching of results, and faster processing, we **recommend the following dependencies**: + ++ numba (**highly** recommended) ++ tqdm (for progress bars, always useful) ++ pyfftw (for the fastest FFT in the West) ++ h5py (for input/output) ++ pyyaml (for input/output) ++ emcee (for MCMC analysis, e.g. for PSD fitting) ++ corner (for the plotting of MCMC results) ++ statsmodels (for some statistical analysis) + +For **pulsar searches and timing**, we recommend installing + ++ pint-pulsar + +Some of the dependencies are available in ``conda``, the others via ``pip``. +To install all required and recommended dependencies in a recent installation, you should be good running the following command: + + $ pip install astropy scipy matplotlib numpy h5py tqdm numba pint-pulsar emcee corner statsmodels pyfftw tbb + +For the Gaussian Process modeling in `stingray.modeling.gpmodeling`, you'll need the following extra packages + ++ jax ++ jaxns ++ tensorflow ++ tensorflow-probability ++ tinygp ++ etils ++ typing_extensions + +For the Bexvar calculations in `stingray.bexvar` and `stingray.lightcurve`, you'll need `UltraNest `_. + +Most of these are installed via ``pip``, but if you have an Nvidia GPU available, you'll want to take special care +following the installation instructions for jax and tensorflow(-probability) in order to enable GPU support and +take advantage of those speed-ups. + +For development work, you will need the following extra libraries: + ++ pytest ++ pytest-astropy ++ tox ++ jinja2==3.1.3 ++ docutils ++ sphinx-astropy ++ nbsphinx>=0.8.3,!=0.8.8 ++ pandoc ++ ipython ++ jupyter ++ notebook ++ towncrier<22.12.0 ++ black + +Which can be installed with the following command: + + $ pip install pytest pytest-astropy jinja2<=3.0.0 docutils sphinx-astropy nbsphinx pandoc ipython jupyter notebook towncrier<22.12.0 tox black + +Installation +------------ +Installing via ``conda`` +~~~~~~~~~~~~~~~~~~~~~~~~ + +If you manage your Python installation and packages +via Anaconda or miniconda, you can install ``stingray`` +via the ``conda-forge`` build: :: + + $ conda install -c conda-forge stingray + +That should be all you need to do! Just remember to :ref:`run the tests ` before +you use it! + +Installing via ``pip`` +~~~~~~~~~~~~~~~~~~~~~~ + +``pip``-installing Stingray is easy! Just do:: + + $ pip install stingray + +And you should be done! Just remember to :ref:`run the tests ` before you use it! + +Installing from source (bleeding edge version) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For those of you wanting to install the bleeding-edge development version from +source (it *will* have bugs; you've been warned!), first clone +`our repository `_ on GitHub: :: + + $ git clone --recursive https://github.com/StingraySoftware/stingray.git + +Now ``cd`` into the newly created ``stingray`` directory. +Finally, install ``stingray`` itself: :: + + $ pip install -e "." + +Installing development environment (for new contributors) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +For those of you wanting to contribute to the project, install the bleeding-edge development version from +source. First fork +`our repository `_ on GitHub and clone the forked repository using: :: + + $ git clone --recursive https://github.com//stingray.git + +Now, navigate to this folder and run +the following command to add an upstream remote that's linked to Stingray's main repository. +(This will be necessary when submitting PRs later.): :: + + $ cd stingray + $ git remote add upstream https://github.com/StingraySoftware/stingray.git + +Now, install the necessary dependencies:: + + $ pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm + +Finally, install ``stingray`` itself:: + + $ pip install -e "." + +.. _testsuite: + +Test Suite +---------- + +Please be sure to run the test suite before you use the package, and please report anything +you think might be bugs on our GitHub `Issues page `_. + +Stingray uses `py.test `_ and `tox +`_ for testing. To run the tests, try:: + + $ tox -e test + +You may need to install tox first:: + + $ pip install tox + +To run a specific test file (e.g., test_io.py), try:: + + $ cd stingray + $ py.test tests/test_io.py + +If you have installed Stingray via pip or conda, the source directory might +not be easily accessible. Once installed, you can also run the tests using:: + + $ python -c 'import stingray; stingray.test()' + +or from within a python interpreter: + +.. doctest-skip:: + + >>> import stingray + >>> stingray.test() + +Building the Documentation +-------------------------- + +The documentation including tutorials is hosted `here `_. +The documentation uses `sphinx `_ to build and requires the extensions `sphinx-astropy `_ and `nbsphinx `_. + +One quick way to build the documentation is using our tox environment: :: + + $ tox -e build_docs + +You can build the API reference yourself by going into the ``docs`` folder within the ``stingray`` root +directory and running the ``Makefile``: :: + + $ cd stingray/docs + $ make html + +If that doesn't work on your system, you can invoke ``sphinx-build`` itself from the stingray source directory: :: + + $ cd stingray + $ sphinx-build docs docs/_build + +The documentation should be located in ``stingray/docs/_build``. Try opening ``./docs/_build/index.rst`` from +the stingray source directory. + +Using Stingray +=============== + +The documentation below is built on top of Jupyter notebooks that can be run locally. +The easiest way to retrieve the notebooks is by `cloning the notebooks repository `_ and browsing the directories, which are conveniently divided by topic. + +A Spectral timing exploration +----------------------------- + +In this Tutorial, we will show an example spectral timing exploration of a +black hole binary using NICER data. The tutorial includes a hardness-intensity +diagram, the modeling of the power density spectrum, power colors, lag-frequency, +lag-energy, and rms/covariance spectra. + +.. toctree:: + :maxdepth: 1 + + notebooks/Spectral Timing/Spectral Timing Exploration.ipynb + + +Stingray fundamentals +--------------------- +.. toctree:: + :maxdepth: 2 + + core + dataexplo + pulsar + modeling + simulator + deadtime + +Advanced +-------- + +.. toctree:: + :maxdepth: 2 + + timeseries + largedata + api + +Additional information +====================== + +.. toctree:: + :maxdepth: 2 + + history + contributing + citing + acknowledgements + +Indices and tables +================== + +* :ref:`genindex` +* :ref:`modindex` +* :ref:`search` diff --git a/_sources/largedata.rst.txt b/_sources/largedata.rst.txt new file mode 100644 index 000000000..eb2546188 --- /dev/null +++ b/_sources/largedata.rst.txt @@ -0,0 +1,7 @@ +Working with large data sets +**************************** + +.. toctree:: + :maxdepth: 2 + + notebooks/Performance/Dealing with large data files.ipynb diff --git a/_sources/modeling.rst.txt b/_sources/modeling.rst.txt new file mode 100644 index 000000000..14858fc1e --- /dev/null +++ b/_sources/modeling.rst.txt @@ -0,0 +1,16 @@ +The Stingray Modelling Interface +******************************** + +Stingray provides a custom-built fitting interface, built on top +of `scipy `_ and `emcee `_ as well as a set of general functions +and classes that allow the user to perform standard model fitting tasks +on Fourier products, but also enable users to implement their own models +and classes based on this framework. + +Below, we show on some examples how this interface can be used. + +.. toctree:: + :maxdepth: 2 + + notebooks/Modeling/ModelingExamples.ipynb + diff --git a/_sources/notebooks/Bexvar/Bexvar tutorial.ipynb.txt b/_sources/notebooks/Bexvar/Bexvar tutorial.ipynb.txt new file mode 100644 index 000000000..b97a34a38 --- /dev/null +++ b/_sources/notebooks/Bexvar/Bexvar tutorial.ipynb.txt @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Baysian Excess Variance (Bexvar)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Bayesian Excess Variance (bexvar) is a statistical measurement of variability in Poisson-distributed light curves. Bexvar is a Bayesian formulation of excess variance. A brief summary of theoretical understanding of bexvar is given at the end of this tutorial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method implemented in Stingray, provides posterior samples of bexvar given a light curve data as input parameters. \n", + "This tutorial is intended to give a demonstration of How to use `bexvar()` method implemented in Stingray.\n", + "The method takes following input parameters. (Given here for completeness)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "  ```time``` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "     A list or array of time stamps for a light curve. \n", + "  `time_del` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of time intervals for each bin of light curve. \n", + "  `src_counts` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of counts observed from source region in each bin. \n", + "  `bg_counts` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of counts observed from background region in each bin. If ``None`` \n", + "    we assume it as a numpy array of zeros, of length equal to length of ``src_counts``. \n", + "  `bg_ratio` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of source region area to background region area ratio in each bin. \n", + "    If ``None`` we assume it as a numpy array of ones, of length equal to the length of \n", + "    ``src_counts``. \n", + "  `frac_exp` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of fractional exposers in each bin. If ``None`` we assume it as \n", + "    a numpy array of ones, of length equal to length of ``src_counts``. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us start by importing the bexvar module" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import bexvar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now consider an example dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "bg_counts = np.array([722, 696, 701, 721, 722, 703, 722, 695])\n", + "bg_ratio = np.array([0.01474, 0.01158, 0.01214, 0.01308, 0.010877, 0.01177, 0.01058, 0.01138])\n", + "frac_exp = np.array([0.37416, 0.21713, 0.37937, 0.50140, 0.11617, 0.39221, 0.64275, 0.31160])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call bexvar function to get posterior distribution of bexvar." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method uses [UltraNest](https://johannesbuchner.github.io/UltraNest/) python package to obtain the posteriors of bexvar. Ultranest gives a brief summary of log evidence (log(z)) and its uncertainties, and the parameter constraints. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-2e+01 [-20.4040..-20.4040]*| it/evals=3622/5046 eff=77.9595% N=400 \n", + "[ultranest] Likelihood function evaluations: 5051\n", + "[ultranest] logZ = -24.86 +- 0.0784\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1590.2, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.08, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.08 tail:0.01 total:0.08 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -24.856 +- 0.156\n", + " single instance: logZ = -24.856 +- 0.093\n", + " bootstrapped : logZ = -24.856 +- 0.156\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : 0.350 │ ▁ ▁ ▁▁▁▁▁▁▁▁▂▃▄▅▆▇▇▇▆▅▄▃▂▁▁▁▁▁▁▁ ▁ ▁▁ │0.575 0.461 +- 0.020\n", + " logsigma : 0.010 │▇▅▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁ ▁ ▁ │0.227 0.028 +- 0.018\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "\n", + " bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del, frac_exp=frac_exp,\n", + " bg_counts=bg_counts, bg_ratio=bg_ratio)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then plot the samples to visualize the posterior distribution of bexvar." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEICAYAAACuxNj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAY3ElEQVR4nO3debRlZXnn8e/PQnACBbkaoMACG0w7FlpBE2MWOCLYgENr0VFwaHHATmxcrTh0HBJ6kcGJNo1dKiJGQZSwRIU2SAftdItQYFkMghSDocoSCmxxDA349B/nvXIo7r371K17huJ+P2vtdfZ59rv3eWqfA8/d+9373akqJEmaywPGnYAkafJZLCRJnSwWkqROFgtJUieLhSSpk8VCktRpu3EnMCy77rprLVu2bNxpSNI249JLL721qqZmWna/LRbLli1j9erV405DkrYZSX442zJPQ0mSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHW6396UtzWWHf+1ea9744mHLmAmkjQZPLKQJHUaWrFIckqSW5Jc0Rf7QpI1bboxyZoWX5bk133LPt63ztOSXJ5kXZKTkmRYOUuSZjbM01CnAh8DTpsOVNUrpueTfBC4va/9dVW1fIbtnAy8HvgOcC5wMHDewqcrSZrN0I4squpbwE9mWtaODl4OnD7XNpLsBuxUVRdVVdErPEcscKqSpA7j6rN4FnBzVV3bF9s7yXeTfDPJs1psD2B9X5v1LTajJMckWZ1k9aZNmxY+a0lapMZVLI7k3kcVG4G9qmp/4Djg80l22tKNVtWqqlpRVSumpmYckl2SNA8jv3Q2yXbAS4CnTceq6g7gjjZ/aZLrgP2ADcDSvtWXtpgkaYTGcWTxXODqqvrt6aUkU0mWtPl9gH2B66tqI/CzJM9o/RxHAV8eQ86StKgN89LZ04FvA49Lsj7J69qildy3Y/uPgLXtUtovAW+squnO8TcDnwTWAdfhlVCSNHJDOw1VVUfOEn/1DLGzgLNmab8aeOKCJidJ2iLewS1J6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnYZWLJKckuSWJFf0xd6XZEOSNW06pG/ZO5OsS3JNkhf0xQ9usXVJjh9WvpKk2Q3zyOJU4OAZ4h+uquVtOhcgyeOBlcAT2jr/LcmSJEuAvwVeCDweOLK1lSSN0HbD2nBVfSvJsgGbHw6cUVV3ADckWQcc0Jatq6rrAZKc0dpetdD5SpJmN44+i7ckWdtOU+3cYnsAN/W1Wd9is8VnlOSYJKuTrN60adNC5y1Ji9aoi8XJwGOB5cBG4IMLufGqWlVVK6pqxdTU1EJuWpIWtaGdhppJVd08PZ/kE8BX29sNwJ59TZe2GHPEJUkjMtIjiyS79b19MTB9pdQ5wMokOyTZG9gXuBi4BNg3yd5JtqfXCX7OKHOWJA3xyCLJ6cCBwK5J1gPvBQ5Mshwo4EbgDQBVdWWSM+l1XN8FHFtVd7ftvAX4OrAEOKWqrhxWzpKkmQ3zaqgjZwh/ao72JwAnzBA/Fzh3AVOTJG0h7+CWJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE5DKxZJTklyS5Ir+mJ/neTqJGuTnJ3kES2+LMmvk6xp08f71nlaksuTrEtyUpIMK2dJ0syGeWRxKnDwZrHzgSdW1ZOBHwDv7Ft2XVUtb9Mb++InA68H9m3T5tuUJA3Z0IpFVX0L+MlmsX+oqrva24uApXNtI8luwE5VdVFVFXAacMQQ0pUkzWGcfRavBc7re793ku8m+WaSZ7XYHsD6vjbrW2xGSY5JsjrJ6k2bNi18xpK0SI2lWCR5N3AX8LkW2gjsVVX7A8cBn0+y05Zut6pWVdWKqloxNTW1cAlL0iK33ag/MMmrgRcBz2mnlqiqO4A72vylSa4D9gM2cO9TVUtbTJI0QiM9skhyMPB24LCq+lVffCrJkja/D72O7OuraiPwsyTPaFdBHQV8eZQ5S5K2sFgk2TnJkwdsezrwbeBxSdYneR3wMWBH4PzNLpH9I2BtkjXAl4A3VtV05/ibgU8C64DruHc/hyRpBDpPQyW5EDistb0UuCXJ/66q4+Zar6qOnCH8qVnangWcNcuy1cATu/KUJA3PIEcWD6+qnwEvAU6rqqcDzx1uWpKkSTJIsdiu3e/wcuCrQ85HkjSBBikWHwC+Tu8O60taB/S1w01LkjRJOvssquqLwBf73l8PvHSYSUmSJkvnkUWS/ZJcMD0gYJInJ3nP8FOTJE2KQU5DfYLegH93AlTVWmDlMJOSJE2WQYrFQ6rq4s1id83YUpJ0vzRIsbg1yWOBAkjyMnpjOUmSFolBxoY6FlgF/G6SDcANwCuHmpUkaaIMcjXU9cBzkzwUeEBV/Xz4aUmSJsmsxSLJjMN5TD/VtKo+NKScJEkTZq4jix1HloUkaaLNWiyq6v2jTESSNLkGuSlvnyRfSbIpyS1JvtyG/JAkLRKDXDr7eeBMYDdgd3pDf5w+zKQkSZNl0JvyPltVd7Xp74AHDTsxSdLkGOQ+i/OSHA+cQe/GvFcA5ybZBaDviXaSpPupQYrFy9vrGzaLr6RXPOy/kKT7uUFuytt7FIlIkibXIFdDLUlyWJI/SXLc9DTIxpOc0q6guqIvtkuS85Nc2153bvEkOSnJuiRrkzy1b52jW/trkxw9n3+oJGn+Bung/grwauCR9G7Um54GcSpw8Gax44ELqmpf4IL2HuCFwL5tOgY4GXrFBXgv8HTgAOC90wVGkjQag/RZLK2qJ89n41X1rSTLNgsfDhzY5j8DXAi8o8VPq6oCLkryiPbs7wOB86c70pOcT68AefmuJI3IIEcW5yV5/gJ+5qOranqI8x8Dj27zewA39bVb32KzxSVJIzLIkcVFwNlJHkDvaXkBqqp22toPr6pKUlu7nWlJjqF3Cou99tproTYrSYveIEcWHwJ+n97NeTtV1Y5bWShubqeXaK+3tPgGYM++dktbbLb4fVTVqqpaUVUrpqamtiJFSVK/QYrFTcAVrS9hIZwDTF/RdDTw5b74Ue2qqGcAt7fTVV8Hnp9k59ax/fwWkySNyCCnoa4HLkxyHnDHdHCQ51kkOZ1eB/WuSdbTu6rpRODMJK8Dfsg9N/2dCxwCrAN+Bbymfc5Pkvw5cElr9wHvGpek0RqkWNzQpu3bNLCqOnKWRc+ZoW3Re4TrTNs5BThlSz5bkrRwBrmD2+dabIFlx39t3uveeOKhC5iJJC2czmKRZAp4O/AE+kabrapnDzEvSdIEGaSD+3PA1cDewPuBG7mn/0CStAgMUiweWVWfAu6sqm9W1WsBjyokaREZpIP7zva6McmhwI+AXYaXkiRp0gxSLP4iycOBtwH/FdgJ+I9DzUqSNFEGuRrqq232duCg4aYjSZpEgzzP4q+S7JTkgUkuSLIpyStHkZwkaTIM0sH9/Kr6GfAieldC/SvgPw0zKUnSZBmkWEyfqjoU+GJV3T7EfCRJE2iQDu6vJrka+DXwpnaT3r8MNy1J0iTpPLKoquOBPwBWVNWd9Ab5O3zYiUmSJscgRxb0j/JaVb8Efjm0jCRJE2eQPgtJ0iI3a7FI8sz2usPo0pEkTaK5jixOaq/fHkUikqTJNVefxZ1JVgF7JDlp84VV9SfDS0uSNEnmKhYvAp4LvAC4dDTpSJIm0azFoqpuBc5I8v2q+t4Ic5IkTZhBroa6LcnZSW5p01lJlg49M0nSxBikWHwaOAfYvU1fabF5SfK4JGv6pp8leWuS9yXZ0Bc/pG+ddyZZl+SaJC+Y72dLkuZnkJvyHlVV/cXh1CRvne8HVtU1wHKAJEuADcDZwGuAD1fV3/S3T/J4YCW9Z4DvDnwjyX5Vdfd8c5AkbZlBjixuTfLKJEva9ErgtgX6/OcA11XVD+doczhwRlXdUVU3AOuAAxbo8yVJAxikWLwWeDnwY2Aj8DJ6RwELYSVwet/7tyRZm+SUJDu32B7ATX1t1reYJGlEBhlI8IdVdVhVTVXVo6rqiKr656394CTbA4cBX2yhk4HH0jtFtRH44Dy2eUyS1UlWb9q0aWtTlCQ14xwb6oXAZVV1M0BV3VxVd1fVb4BPcM+ppg3Ann3rLW2x+6iqVVW1oqpWTE1NDTF1SVpcxlksjqTvFFSS3fqWvRi4os2fA6xMskOSvYF9gYtHlqUkabAhyhdakocCzwPe0Bf+qyTLgaL3+NY3AFTVlUnOBK4C7gKO9UooSRqtzmKR5D1V9RdtfoequmNrP7Q9E+ORm8VeNUf7E4ATtvZzJUnzM9cQ5e9I8vv0rn6a5gi0krQIzXVkcTXwb4F9kvyv9v6RSR7XbqyTJC0Sc3Vw/xR4F72b4A4EPtrixyf5P8NNS5I0SeY6sngB8Gf07n34ELAW+GVVLdQNeZKkbcSsRxZV9a6qeg69K5M+CywBppL8U5KvjCg/SdIEGOTS2a9X1WpgdZI3VdUfJtl12IlJkibHIMN9vL3v7atb7NZhJSRJmjxbdAe3T8yTpMVpnMN9SJK2ERYLSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkTmN5rKpmtuz4r8173RtPPHQBM5Gke/PIQpLUyWIhSeo0tmKR5MYklydZk2R1i+2S5Pwk17bXnVs8SU5Ksi7J2iRPHVfekrQYjfvI4qCqWl5VK9r744ELqmpf4IL2HuCFwL5tOgY4eeSZStIiNu5isbnDgc+0+c8AR/TFT6uei4BHJNltDPlJ0qI0zmJRwD8kuTTJMS326Kra2OZ/DDy6ze8B3NS37voWu5ckxyRZnWT1pk2bhpW3JC0647x09g+rakOSRwHnJ7m6f2FVVZLakg1W1SpgFcCKFSu2aF1J0uzGdmRRVRva6y3A2cABwM3Tp5fa6y2t+QZgz77Vl7aYJGkExlIskjw0yY7T88DzgSuAc4CjW7OjgS+3+XOAo9pVUc8Abu87XSVJGrJxnYZ6NHB2kukcPl9V/yPJJcCZSV4H/BB4eWt/LnAIsA74FfCa0acsSYvXWIpFVV0PPGWG+G3Ac2aIF3DsCFKTJM1g0i6dlSRNIIuFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTOIco1wJadvzXtmr9G088dIEykXR/5JGFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTyItFkj2T/GOSq5JcmeRPW/x9STYkWdOmQ/rWeWeSdUmuSfKCUecsSYvdOIb7uAt4W1VdlmRH4NIk57dlH66qv+lvnOTxwErgCcDuwDeS7FdVd480a0laxEZ+ZFFVG6vqsjb/c+D7wB5zrHI4cEZV3VFVNwDrgAOGn6kkadpY+yySLAP2B77TQm9JsjbJKUl2brE9gJv6VlvPLMUlyTFJVidZvWnTpmGlLUmLztiKRZKHAWcBb62qnwEnA48FlgMbgQ9u6TaralVVraiqFVNTUwuZriQtamMpFkkeSK9QfK6q/h6gqm6uqrur6jfAJ7jnVNMGYM++1Ze2mCRpRMZxNVSATwHfr6oP9cV362v2YuCKNn8OsDLJDkn2BvYFLh5VvpKk8VwN9UzgVcDlSda02LuAI5MsBwq4EXgDQFVdmeRM4Cp6V1Id65VQkjRaIy8WVfVPQGZYdO4c65wAnDC0pCRJc/IObklSJ4uFJKnTOPosNIGWHf+1ea9744mHLmAmkiaRRxaSpE4WC0lSJ4uFJKmTxUKS1MliIUnq5NVQ2mpeSSXd/3lkIUnqZLGQJHWyWEiSOlksJEmd7ODWWNk5Lm0bPLKQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ6+G0jZra66kAq+mkrbENnNkkeTgJNckWZfk+HHnI0mLyTZxZJFkCfC3wPOA9cAlSc6pqqvGm5m2Zd7jIQ1umygWwAHAuqq6HiDJGcDhgMVCY7G1p8DmyyKlcdlWisUewE1979cDT9+8UZJjgGPa218kuWYEuW2pXYFbx53ELCY1t0nNC0acW/5yi5pP6n6b1LzA3B4z24JtpVgMpKpWAavGncdckqyuqhXjzmMmk5rbpOYF5jYfk5oXmNtctpUO7g3Ann3vl7aYJGkEtpVicQmwb5K9k2wPrATOGXNOkrRobBOnoarqriRvAb4OLAFOqaorx5zWfE3yabJJzW1S8wJzm49JzQvMbVapqnF+viRpG7CtnIaSJI2RxUKS1MlisRW6hiBJskOSL7Tl30myrMWfl+TSJJe312f3rXNh2+aaNj1qxLktS/Lrvs//eN86T2s5r0tyUpKMOLc/7strTZLfJFnelo1qv/1RksuS3JXkZZstOzrJtW06ui++1fttvnklWZ7k20muTLI2ySv6lp2a5Ia+fbZ8S/Pamtzasrv7Pv+cvvje7btf134L248qryQHbfY7+5ckR7Rlo9pnxyW5qn1nFyR5TN+yof3O5lRVTvOY6HW0XwfsA2wPfA94/GZt3gx8vM2vBL7Q5vcHdm/zTwQ29K1zIbBijLktA66YZbsXA88AApwHvHCUuW3W5knAdWPYb8uAJwOnAS/ri+8CXN9ed27zOy/EftvKvPYD9m3zuwMbgUe096f2tx31PmvLfjHLds8EVrb5jwNvGmVem32vPwEeMuJ9dlDfZ76Je/77HNrvrGvyyGL+fjsESVX9P2B6CJJ+hwOfafNfAp6TJFX13ar6UYtfCTw4yQ6TkNtsG0yyG7BTVV1UvV/macARY8ztyLbuQurMrapurKq1wG82W/cFwPlV9ZOq+r/A+cDBC7Tf5p1XVf2gqq5t8z8CbgGmtvDzh5LbbNp3/Wx63z30fgtHjCmvlwHnVdWvtvDztza3f+z7zIvo3VsGw/2dzcliMX8zDUGyx2xtquou4HbgkZu1eSlwWVXd0Rf7dDvE/c/zPJTc2tz2TvLdJN9M8qy+9us7tjmK3Ka9Ajh9s9go9tuWrrsQ+21r8vqtJAfQ+0v2ur7wCe1Ux4fn+QfL1ub2oCSrk1w0faqH3nf90/bdz2ebC5HXtJXc93c26n32OnpHCnOtu1D/fc7KYjFGSZ4A/CXwhr7wH1fVk4BntelVI05rI7BXVe0PHAd8PslOI85hTkmeDvyqqq7oC497v0209pfnZ4HXVNX0X9LvBH4X+D16pzXeMYbUHlO9ISz+HfCRJI8dQw4zavvsSfTu75o20n2W5JXACuCvh/k5g7BYzN8gQ5D8tk2S7YCHA7e190uBs4Gjquq3f+lV1Yb2+nPg8/QOWUeWW1XdUVW3tRwupfdX6H6t/dK+9ec75MpW7bfmPn/tjXC/bem6C7Hftmq4m1bsvwa8u6oumo5X1cbquQP4NKPfZ/3f2/X0+p32p/ddP6J991u8zYXIq3k5cHZV3dmX78j2WZLnAu8GDus78zDM39ncFrIDZDFN9O5+vx7Ym3s6qZ6wWZtjuXdH7Zlt/hGt/Utm2Oaubf6B9M7ZvnHEuU0BS9r8Pu0Ht0vN3IF2yChza+8f0HLaZxz7ra/tqdy3g/sGep2OO7f5BdlvW5nX9sAFwFtnaLtbew3wEeDEEe+znYEd2vyuwLW0jl7gi9y7g/vNo8qrL34RcNA49hm9onkd7eKEUfzOOvNeyI0ttgk4BPhB+1Lf3WIfoPeXAMCD2o9+Xfsi92nx9wC/BNb0TY8CHgpcCqyl1/H9Udr/uEeY20vbZ68BLgP+Td82VwBXtG1+jDYCwKhya8sOBC7abHuj3G+/R+988C/p/QV8Zd+6r205r6N3umfB9tt88wJeCdy52W9teVv2P4HLW25/BzxslPsM+IP2+d9rr6/r2+Y+7btf134LO4z4u1xG74+SB2y2zVHts28AN/d9Z+eM4nc21+RwH5KkTvZZSJI6WSwkSZ0sFpKkThYLSVIni4UkqZPFQpLUyWIhzVOSpyT5VhtK+jdJKskHxp2XNAzeZyHNQ5IH0btZ6qiqujjJn9O7mfDt5X9Uuh/yyEKan+fSGy344vZ+Lb1hFyrJJ4f1oQv+QBtpQBYLaX6eSG/Yh2lPBS5L8mDgXyd5X5IzkjwwyX9J8pEkJwEkmUry6SRLk5yS5D8kOagtOyXJw9r6H03yZ0l+J72n3b0D+J2R/0slegNaSdpyt9F7QA9J9gNeQm+so/2BL1bVR5L8d+DtwIOBn9IbOI6q2pTkn4EP0ntWwXLgKUnuBi6hN8rudm2dZ9IbI+n0qjppRP826T4sFtL8nA4cluQK4FbgyKq6rT1gaG1r8xB6BeLY6nu4VZKH0Rso766q+kXbxpH0Brb798Aq4E/pjQC8J71i8uWR/KukWdjBLS2gJJ+gPY+B3uMyd6T3YJ+b6I1Y+g16xeD99J6XcElVXZjkcuC9VfX3Sd4G7ETviXHX0CsWr697HlokjZzFQpLUyQ5uSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkThYLSVKn/w/Mcv0r9yyyzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "plt.hist(bexvar_distribution, bins=20)\n", + "plt.ylabel(\"# of samples\")\n", + "plt.xlabel(r\"$\\sigma_{bexvar}$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the light curve is intrinsically variable, then the posterior distribution of bexvar should exclude low values. Users can compute \n", + "the lower 10% quantile of the posterior, and use it as a variability indicator (see [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529))." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method uses fractional exposers (`frac_exp`) in each bin to compute the count rates (i.e.$~\\scriptstyle{R_i = C_i/(\\Delta{t_i}\\times f_i)}$). In its current form it only considers time bins with `frac_exp` < 1. The `bg_ratio` parameter is used to scale the `bg_counts` to estimate counts in source region. The `bg_count`, `bg_ratio` and `frac_exp` are optional parameters, if they are not provided, the method defines default values for them as described in documentation. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us see an example to get bexvar distribution without these optional parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-4e+01 [-36.8486..-36.8486]*| it/evals=3615/5101 eff=76.8985% N=400 \n", + "[ultranest] Likelihood function evaluations: 5125\n", + "[ultranest] logZ = -41.34 +- 0.09729\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1692.4, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.10, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.10 tail:0.01 total:0.10 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -41.331 +- 0.174\n", + " single instance: logZ = -41.331 +- 0.092\n", + " bootstrapped : logZ = -41.335 +- 0.174\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : -0.517│ ▁ ▁ ▁▁▁▁▁▁▁▁▁▁▂▂▃▄▆▇▇▆▅▄▃▂▁▁▁▁▁▁▁▁▁ │0.383 0.020 +- 0.081\n", + " logsigma : 0.029 │ ▁▂▆▇▇▅▃▂▂▁▁▁▁▁▁▁▁ ▁▁▁▁▁ ▁ ▁ │1.236 0.213 +- 0.074\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "\n", + "bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bexvar: Theoretical background" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This section provides a theoretical understanding of Bayesian excess variance (bexvar). This is an optional read.\n", + "\n", + "Given a lightcurve data ${\\scriptstyle 𝐷 = (𝑆_1,𝐵_1,~…~,𝑆_𝑁,𝐵_𝑁)}$\n", + " where ($\\scriptstyle{S_i}$) denotes counts obtained from source region and ($\\scriptstyle{B_i}$) denotes counts obtained from background extraction region in $\\scriptstyle{i^{th}}$ time bin.\n", + "If it is assumed that the counts $\\scriptstyle{𝑆_𝑖}$ and $\\scriptstyle{𝐵_𝑖}$ can be expressed as\n", + "Poisson processes. \n", + "$$ \\scriptstyle {𝑆_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((( 𝑅_𝑆(𝑡_𝑖) ~+~ 𝑅_𝐵(𝑡_𝑖) \\times 𝑟)~×~𝑓_𝑖~\\times~Δ𝑡)}$$\n", + "$$ \\scriptstyle {𝐵_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅_𝐵(𝑡_𝑖) × 𝑓_𝑖 × Δ𝑡)}$$\n", + "\n", + "Here, $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is source count rate and $\\scriptstyle{𝑅_B(𝑡_𝑖)}$ is background count rate in $\\scriptstyle{i^{th}}$ time bin. \n", + "It is further assumed that $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is distributed according to a log normal distribution, with some unknown parameters (i.e., $\\scriptstyle{log(\\bar{𝑅_{S}})}$, and $\\scriptstyle{\\sigma_{bexvar}}$).\n", + "$$\\scriptstyle{log(𝑅_𝑆(𝑡_𝑖))~\\sim~𝑁𝑜𝑟𝑚𝑎𝑙(log(\\bar{𝑅_𝑆}),~ \\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})} $$\n", + "\n", + "This $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ provides intrinsic variability on log-count rate and it is defined as Bayesian excess variance (bexvar). The posterior distribution of $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ can be used to identify intrinsically variable object.\n", + "\n", + "The bexvar() method in Stingray returns posterior samples of $\\scriptstyle{\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}}$ given a light curve data.\n", + "The samples are generated following the same prescription given in [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529). The method uses flat, uninformative priors on $\\scriptstyle{log(\\bar{𝑅_𝑆})}$ and $\\scriptstyle{log(\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}$ and obtains the posterior samples using nested sampling Monte Carlo algorithm MLFriends (Buchner [2016](https://link.springer.com/article/10.1007/s11222-014-9512-y),\n", + "[2019](https://arxiv.org/abs/1707.04476)) implemented in the [UltraNest](https://johannesbuchner.github.io/UltraNest/) Python package (Buchner [2021](https://arxiv.org/abs/2101.09604)).\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "vscode": { + "interpreter": { + "hash": "f6246b25e200e4c5124e3e61789ac81350562f0761bbcf92ad9e48654207659c" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/Bispectrum/bispectrum_tutorial.ipynb.txt b/_sources/notebooks/Bispectrum/bispectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..e8eef7914 --- /dev/null +++ b/_sources/notebooks/Bispectrum/bispectrum_tutorial.ipynb.txt @@ -0,0 +1,1177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## Bispectrum Tutorial" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial is intended to demonstrate bispectrum Analysis on Lightcurve data.
\n", + "\n", + "The Bispectrum is an example of a Higher Order Spectrum (HOS) and contains more information that simple Powerspectrum or non-ploy spectra.
For detailed information on Bispectra visit : https://arxiv.org/pdf/1308.3150" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "In Stingray, Bispectrum can be created from a Lightcurve(For more information on Lightcurve, visit Lightcurve Notebook).
\n", + "\n", + "First we import relevant classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import lightcurve\n", + "import numpy as np\n", + "from stingray.bispectrum import Bispectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lightcurve Object can be created from an array of time stamps and an array of counts. Creating a simple lightcurve to demonstrate Bispectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1,11)\n", + "counts = np.array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])\n", + "lc = lightcurve.Lightcurve(times,counts)\n", + "\n", + "lc.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYXOeZ9/HvQxd1qBKCAdSLJYoA2ZJiy3FcY6+7HRcV\nZK8db5KNs8mm7ZvdJLvZxOnJJnFiJ7aQ3HvsxGluyLbAlkC9gdogQIUBRO/M8/4xg4ywQAPMmTPD\n3J/rmktomJlzay5xc+ac37kfpbVGCCHE5BdkdgFCCCG8Qxq+EEIECGn4QggRIKThCyFEgJCGL4QQ\nAUIavhBCBAhp+EIIESCk4QshRICQhi+EEAEixOwChkpKStJZWVlmlyGEEH6joqKiQWud7M5jfarh\nZ2VlUV5ebnYZQgjhN5RS1e4+Vg7pCCFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRIAwNKWjlLIB\nbcAA0K+1LjBye0IIIUbmjVjmJ7XWDV7YjhBCiFHIIR0hvOC9g3aqTrWZXYYIcEY3fA28qZSqUErd\nf64HKKXuV0qVK6XK7Xa7weUI4X29/Q4eeKKCH/xlv9mliABndMP/hNY6F7gG+LxS6pLhD9BaP6q1\nLtBaFyQnu3V1sBB+pdzWREfvADtrW9Bam12OCGCGNnytdZ3rz3rgFWCpkdsTwheVVDk/uTZ19FLT\n1GVyNSKQGdbwlVJRSqmYwa+BK4E9Rm1PCF9VUlnP1NhwALbXnDa5GhHIjNzDnwq8r5TaCWwBXtda\n/83A7Qnhc443d1F1qp21y7OICA1iR02z2SWJAGZYLFNrfQTIMer1hfAHJZXOwzmXL5jKOwfq2SkN\nX5hIYplCGKiksp7pcRHMSYkm12phz/FWevsdZpclApQ0fCEM0tvvYPOhBlbOS0EpRa41nt5+BwdO\ntppdmghQ0vCFMEh5tTOOeek8Z9w4xxoHIId1hGmk4QthkE2VdkKDFStmJwGQZplCUnQ426XhC5NI\nwxfCICWVdgoyE4gOd2YjnId1LJLUEaaRhi+EAY43d1F5qu3M4ZxBeRkWjtg7aOnsM6kyEcik4Qth\ngE2uq2svnZdy1v056RYAdtXJXr7wPmn4QhigpLKe1LgI5k6NPuv+bGscSsGOY9LwhfdJwxfCw5xx\nzEYunZeMUuqs78VGhDIrOVqO4wtTSMMXwsMqqk/T3tPPyrkp5/z+4IlbmZwpvE0avhAeVlJVT0iQ\nYsXsxHN+P8dqobGjl9rTMjlTeJc0fCE8bFOlnYKseGIiQs/5/Tyr88StHNYR3iYNXwgPOtHSxYGT\nbR9L5ww1b1oM4SEyOVN4nzR8ITxoU+VgHHPk1dtCg4NYnBYnDV94nTR8ITyopNLOtNgI5k2NGfVx\nOVYLe+pa6BuQyZnCe6ThC+EhfQPO6ZjnimMOl2u10NPvoPJkm5eqE0IavhAeU1F9mrae/lEP5wzK\ndZ24lUFqwpuk4QvhISWVdlccM+m8j02Pn0JSdJhccSu8Shq+EB5SUllPfubIccyhlFLkpFvYWSsN\nX3iPNHwhPOBkS/d545jD5VotHLa309otkzOFd0jDF8IDNlXVA6PHMYfLzbCgNeyqaTGqLCHOIg1f\nCA/YVOWMY86fNnocc6js9MErbk8bVZYQZ5GGL8QE9Q84eO9gAyvnnj+OOVTclFBmJkexQ/bwhZdI\nwxdigrYda6at27045nAyOVN4kzR8ISaopNI1HXPO+eOYw+VZLTS091DXLJMzhfGk4QsxQSWVdpZk\nxhPrRhxzuFxrPCCTM4V3SMMXYgLqW7vZd6J1XIdzwDk5MywkiJ3S8IUXSMMXYgJKBhcrH2F1q/MJ\nCwli0fRY2cMXXiENX4gJ2FRpZ2psOAtS3Y9jDpdrjWe3TM4UXiANX4hxcsYx7WOOYw6XY42ju08m\nZwrjGd7wlVLBSqntSqk/G70tIbxpe00zrd39YxqncC55rhO3MldHGM0be/gPAvu9sB0hvKqksp5g\nN6djjsaaMIWEKJmcKYxnaMNXSqUD1wJ/MHI7QpihpNJOfkY8cVPGHsccSil15gIsIYxk9B7+L4Cv\nAXI2KsD8tuQwN/5mM919A2aXYoj6tm72Hm9l5TjjmMPlpFs4ZG+nTSZnCgMZ1vCVUtcB9VrrivM8\n7n6lVLlSqtxutxtVjvCil7fV8sO/HWBHTTN/3nXC7HIM4c5i5WMxODlzd63M1RHGMXIPfwVwvVLK\nBjwLXKaUenL4g7TWj2qtC7TWBcnJnvnhEeb58EgjX39pF8tmJjI7JZoNpbZJOSempMpOSkw4C1Nj\nPfJ6uemy5KEwnmENX2v9Ta11utY6C7gDeFtrvcqo7QnzHW3o4LNPVpCREMnvVuWzdnkWu+ta2HZs\nco3/7R9w8F7VxOOYQ8VFhjIzKUqO4wtDSQ5feMTpjl7Wrd9CkFKsL1pKXGQoN+elERMRQnFptdnl\nedQOD8Uxh8uRyZnCYF5p+FrrEq31dd7YlvC+nv4BPvtEBcdbuvn9mnwyEiMBiAoP4fYCK3/dfYJT\nrd0mV+k5JZV2goMUnxjHdMzR5Fot2Nt6ONEyed4r4VtkD19MiNaab7y0my22Jn5yWw75mQlnfX/N\nskwGtOapDybPXn5JVT1LMiwTjmMOl2sdXAFLDusIY0jDFxPyf28d4pXtdXzlirlcnzP9Y9/PTIzi\nsnkpPL3lGD39/h/RrG/rZk9dq8cP5wAsSI0lLDhIGr4wjDR8MW6v7qjj529WccuSdL5w2ewRH1e0\nIouG9l5enwQRzXerGgBYOdfzibKwkCAWTo+VK26FYaThi3HZamviqy/s4sIZCfzg5sWjplU+MTuJ\nWclRFE+CiGZJZT3JMeFcMN0zcczhcq0Wdte10C+TM4UBpOGLMbM1dHD/xnLS46fwyOp8wkJG/2+k\nlKJoeRa7alv8Omc+3sXKxyIvw0JX3wBVp9oNeX0R2KThizFp7uzlnuKtADxeVIglMsyt5928JJ2Y\n8BCKN9sMrM5YO2ubaenq89jVteciJ26FkaThC7f19jt44MkKak938eiaArKSotx+blR4CLcVWPmL\nH0c0SyrtBCm4eLZxDT8jIZL4yFBZ8lAYQhq+cIvWmm++vJsPjjTxo1uzKcxKOP+ThjkT0fzwmAEV\nGq+k0s6SjHjiIj0bxxxKKXXmAiwhPE0avnDLb945xEvbavnS5XO4MS9tXK+RlRTFJ+el8PSH/hfR\ntLf1sLuuxdDDOYNyrRaq6tto7+k3fFsisEjDF+f1p53H+ck/qrgpL40HPzVnQq+1dnkWDe09/GW3\nf0U03x1crNyA/P1wuVbn5MxdsgKW8DBp+GJUFdVNfOWFnSzNSuChW0aPX7rj4tlJzEyO8rv5OiVV\ndpKiPTcdczQ5rsmZO2tkVLLwLGn4YkTHGju5b2MF0+MieGR1PuEhwRN+zaAgxdplWeysaWa7n0zR\nHHDoM4uVBwUZE8ccKj4qjKzESHbU+Mf7I/yHNHxxTi2dfawr3oJDax4vKiQ+yr34pTtuyU8nOjyE\nDaU2j72mkXbUNNPcaWwcczhZ8lAYQRq++Jjefgf/8lQFx5o6eWRVPjOToz36+tHhIdyan87ru09Q\n3+b7Ec1NlfXOOKaHp2OOJtdq4VRrDydaury2TTH5ScMXZ9Fa860/7qb0cCMP3ZzNhTMTDdnO2uVZ\n9A1onvaDiGZJlZ28jHi3LzLzhBzr4HF82csXniMNX5zlt5sO83x5LV+8bDa35Kcbtp0ZSVFcOi+Z\npz48Rm+/786NaWjvYVdtC5caMCxtNAunOydn+vMoCuF7pOGLM17fdYIf/a2S63Om829XzDV8e0XL\ns7C39fDXPb4b0fRmHHOo8JBgFsjkTOFh0vAFANuOnebLz++gIDOeH92abdhwsKEumZPMjKQo1vvw\nfJ2SSjtJ0WGGTcccTZ5rcuaAw78njArfIQ1fUNPUyf0by5ka64xfRoROPH7pDmdEM5MdNc0+mUgZ\ncGjePWjnEi/FMYfLscbR2TvAwfo2r29bTE7S8ANcS1cf9xRvpbffweNFhSRGh3t1+7fkpxMVFuyT\nEc2dtYNxTO8ezhmUa40HkMM6wmOk4QewvgEHn39qG0cbOvjdqnxmp3g2fumOmIhQbiuw8uddx30u\nojk4HfMSL8Yxh8pKjMQSGeqTn36Ef5KGH6C01vzXq3t4/1AD3795Mctnm9PUwDlFs29A88yHNabV\ncC6bKuvJtVq8GsccSilFTrpcgCU8Rxp+gHr03SM8s6WGz106i9sLrKbWMjM5mpVzk3nqw2qfiWg2\ntvewq67FtMM5g3KsFqpOtdEhkzOFB0jDD0B/23OCh/52gGsXp/LvV84zuxzAGdGs96GI5rsH7WiN\nV8cpnEue1YJDw+46GaQmJk4afoDZWdPMl57bQa7Vwk9vzzElfXIuK+cmk5UY6TMnbwfjmIumx5la\nR44seSg8SBp+AKk93cm9G8pJig7n92sKvBa/dEdQkGLNsiy2HWs2fQ78gEPzbpWdS+aYE8ccKiEq\njMzESEnqCI+Qhh8gWrv7uLe4nJ7+AdYXFZLk5filO24tcEY0i03ey99V28zpzj5Wmnw4Z1BOuoWd\nshiK8ABp+AGgf8DBF57ezmF7O7+9O585U2PMLumcYiNCuSU/nT/vPEFDe49pdXwUx/SNhp9rtXCi\npdtvF38XvkMa/iSntebbr+3l3So737txEZ8wKVPurjXLsugdcPCMiVM0S6rs5FgtHl0DYCJyM5zH\n8bfLYR0xQdLwJ7nH3j/KUx8e47MrZ3LH0gyzyzmv2SnRXDwniSc/rKZvwPsRzcb2HnbVNnPpXHPj\nmEMtTI0lNFjJiVsxYdLwJ7G/7z3J//5lP9csmsbXr5pvdjluW7cii1OtPfxtz0mvb/u9gw0+Eccc\nKiI0mAWpsTIbX0yYYQ1fKRWhlNqilNqplNqrlPquUdsSH7e7toUvPbuD7HQLP7s91/S0yVhcOjeF\nzMRIU07ellTWkxgVxuI0c+OYw+VaLeyqbZbJmWJCjNzD7wEu01rnALnA1UqpiwzcnnA53tzFvRu2\nkhAVxu/X5DMlzHfil+4YjGhWVJ9md633LjhyODTvHmwwbTrmaHKtFjp6BzhU3252KcKPGdbwtdPg\n/85Q1012TwzW0dPPPcVb6eod4PGiQlJiIswuaVxuK0gn0ssRzV11LTR19PrU4ZxBH12AddrkSoSn\n7T3ewvPl3pkjZegxfKVUsFJqB1APvKG1/vAcj7lfKVWulCq32+1GlhMQNpTZOHCyjV/fvYR503wz\nfumO2IhQblmSzp92HvdaRLOksh6l4GIfiWMONSMxitiIEHbUyIiFyeRkSzf3FG/l529U0e6FeUmG\nNnyt9YDWOhdIB5YqpRad4zGPaq0LtNYFycm+94PmT/oHHDxZVs3yWYms9PIarEZYuzyT3gEHz27x\nTkSzpNJOTrqFBB+JYw4VFKTIscrkzMmko6efezdspb27n8eLCokODzF8m15J6Witm4F3gKu9sb1A\n9ca+Uxxv6aZoeZbZpXjE7JQYZ0Tzg2OGRzSbOnrZWdvsk4dzBuVZLVSebKWzVyZn+rsBh+bBZ7ez\n/0Qrv75rCQtSvbOEppEpnWSllMX19RTgCuCAUdsTsL7URnr8FD61YKrZpXjM2mVZnGzt5u97jY1o\nvndmOqbv5O+HyxmcnOnFE9nCGN97fR9v7q/nO9dfwCfne+//nJF7+KnAO0qpXcBWnMfw/2zg9gLa\nvuOtbDnaxJplmQT7WMJkIj45P4WMBOOnaJZU2kmICiPbx+KYQ+W6TtzKXB3/trHMxvrNNtatyGLN\nsiyvbtuwg0Za611AnlGvL862odRGRGiQ6YuZeFpwkGLNsky+9/p+9tS1sMiAhuw4Mx0zyefimEMl\nRodjTZgix/H92DsH6vnOa3u5fEEK37p2ode379YevlLqQaVUrHJ6TCm1TSl1pdHFCfec7ujljzvq\nuCkv3bTl+Ix0W4GVKaHGLXS+u66Fxo5enz6cMyjXGi+jkv3UvuOtfOHpbSxIjeWXd+SZ8knc3UM6\n92itW4ErgXhgNfCQYVWJMXl2aw09/Q7WLs80uxRDxE0J5eYlaby68ziNBkQ0SyrtKAWX+EGyKSc9\njuMt3dTL5Ey/cqq1m3s3bCUmIpTH1hYS5YVEzrm42/AHfxV9GnhCa713yH3CRP0DDp78oJplMxOZ\nP807Z/rNULQ8i95+B89u9fwFKiVV9WT7aBxzuLwMWQHL33T2OuOXLV19PFZUwLQ48y6GdLfhVyil\n/oGz4f9dKRUD+MZq0wHuzf2nqGvuYu0kiWKOZM7UGFbMTuTJD6rp92BE83RHLztqmrnUD/buAS6Y\nHkdIkEzO9BfO+OUO9h1v5Vd35nGByUtmutvw7wW+ARRqrTuBMGCdYVUJtxWX2kizTOHyBb5//Hmi\nipbP4ERLN//Yd8pjr+kri5W7a3BypjR8//CDv+znjX2n+M/rFvpEXNrdhv+G1nqb6wIqtNaNwM+N\nK0u4Y/+JVj440sTqZZmEBE/+SdeXzU8hPX4KxZttHnvNTZV24iNDyU63eOw1jZZjjWNXbYtMzvRx\nT35QzR/eP8raZZmsWzHD7HKA8zR814jjBCBJKRWvlEpw3bKANG8UKEa2scwZxbyjcHJFMUcSHKRY\nuyyLLbYm9h6f+MVHDodmU5WdS+Ym+9W1C7nWeNp7+jlil8mZvmpTlZ1vv7aXT85L5j+v8378ciTn\n2y38LFABzHf9OXh7Ffi1saWJ0TR39vLK9jpuzE2blFHMkdzuwYjmnuODcUz/OJwzaPACrO1yWMcn\nVZ5s4/NPbWPu1Bh+ddcSn/r0PWolWutfaq1nAP+utZ6ptZ7huuVoraXhm+i5rTV09zkm/cna4eIi\nQ7lpSRqv7jhOU0fvhF7rTBzTB6djjmZmUhQxESFyHN8H1bc5p19GhgXzeFGBVwaijYVbv3q01r9S\nSi1XSt2llFozeDO6OHFuAw7NxrJqLpyR4LWhS75k7bIsevodPLt1YlM0SyrryU6LIzE63EOVeUdQ\nkCIn3SJLHvqYrt4B7ttQTlNHL4+tLSQ1borZJX2Mu1faPgH8BPgEUOi6FRhYlxjFYBRz3Yoss0sx\nxbxpMSyflciTZeOPaDZ3OuOYK/3g6tpzybVaOHCyja7eAbNLETjPB335+R3sqmvhl3fksjjdN2cy\nuft5owBYqLWWWIAPKN5sY3pcBJf7QMzLLGuXZ/HZJyp4Y98prlmcOubnv3uwAYcfxTGHy7VaGHBo\n9hxvoTArwexyAt4P/36Av+45ybeuXcCVF0wzu5wRuXs2YQ/gu/+KAFJ5so2yI42sXpblUyeDvO3y\nBVNJs0wZ9xKIJZX1xEeGkuNHccyhzix5KHN1TPfMlmM8sukIqy7K4N5P+Eb8ciTudowkYJ9S6u9K\nqdcGb0YWJs6tuNRGeEjgRDFHMjhF88OjTew/0Tqm5w5Ox7x4jn/FMYdKjgknzTKFHTIq2VTvH2zg\nW3/cw8q5yXznny5AKd/+/+TuIZ3vGFmEcE9LZx+vbK/lxtw04v1g7ovRPlNo5edvVrGh1MZDt2S7\n/by9x1tpaPe/OOZwuRkW2cM30cFTbfzLUxXMSYnm13fl+cUnbndTOpvOdTO6OHG258qPBWQUcySW\nyDBuykvjle11nB5DRLOksh7wj+mYo8mzWqhr7sLe5p1F3sVH7G09rCveSkRoMI8VFRITEWp2SW5x\nN6XTppRqdd26lVIDSqmxfY4WEzIYxVw6I4GF0wMvijmStcudEc3nyt2follSZSc7PY4kP4tjDjd4\nAZbk8b2ru2+A+zaW09Dew2NrC0iz+F78ciTu7uHHaK1jtdaxwBTgFuBhQysTZ3n7QD21p7smzQLl\nnjJ/WiwXzUzgCTcjms2dvWw/dtpvpmOO5oLpcQQHKcnje5HDofnK8zvZWdvMLz6T51czmGAca9pq\npz8CVxlQjxhBcelRUuMiuHJh4EYxR1K0fAZ1zV28ub/+vI99zxXH9Nf8/VBTwoKZPy1G9vC96Cf/\nqOT13Sf45jXzuXqR/wUX3Tppq5S6echfg3Dm8mXJHS85eKqNzYca+epV8/zixJC3Xb4gxRXRPHre\nH8KSSjuWyNAzh0P8Xa7Vwms7juNwaJ9ej3cyeL68hodLDnPn0gzuu3im2eWMi7vd45+G3K4C2oAb\njCpKnK241EZYSBB3Ls0wuxSfFBIcxOplmXxwpIkDJ0c+tTQ4HdOf45jD5VottPX0c6RBJmcaqfRQ\nA//x8m4unpPEf9/g+/HLkbh7DH/dkNt9Wuv/1Vqf//OzmLCWrj5e3lbHDTnT/WIJPrN8psBKeEjQ\nqFM0951opaG9Z1Icvx/00YnbiY+LFud2qL6dB56sYGZyFL+5ewmhfvwp292UTrpS6hWlVL3r9pJS\nKt3o4gS8UF5DV9+ARDHPIz7qo4hmc+e5I5qTJY451KzkaGLCQ9hRc9rsUialxvYe1hVvISwkiMfW\nFhLrJ/HLkbj7q2o98Bow3XX7k+s+YaDBKGZhVjyL0nxzGJMvWbs8i+4+B8+NsNB5SaWdxWlxJMf4\ndxxzqKAgRbY1Tk7cGqC7b4D7n6igvrWH368pwJoQaXZJE+Zuw0/WWq/XWve7bsXA5NlN8lHvHKjn\nWFMnRct9ez6Hr1iQGsuFMxLYWFb9seX/Wjr72HbstN9fXXsuuVYLB0600d0nkzM9xeHQfPXFXVRU\nn+bnn8klLyPe7JI8wt2G36iUWqWUCnbdVgGNRhYmYEOZjWmxEVx5gUQx3VW0PMsV0Tx7ofP3Dtn9\nejrmaHLSLfQ7tEeWfRROP3+zij/tPM7Xr57Pp8cxjdVXudvw7wFuB04CJ4BbgSKDahLAofo23jvY\nwOplmX59ksjbrlg4lelxER87eVtSaSduSii51smxpzZUboZryUOZq+MRL1bU8qu3D/GZAisPrPTP\n+OVI3O0k/w2s1Vona61TcP4C+K5xZYkNpdWEyVTMMQsJDmLVskxKDzdSebINGBrHTJo0ccyhUmIi\nnJMz5Tj+hJUdbuSbL+9ixexEvnfTIr+NX47E3YafrbU+EwPQWjcBecaUJFq7+3hpWy3X50z3u+X3\nfMEdhRnOiGaZDXDGMe1tPVw6Ca6uHUmu1SINf4IO253xy8zEKB6+O39SfrJ2918UpJQ681lYKZWA\n+6OVxRi9UF5LZ++AzM0Zp4SoMG7Inc4r2+po6exjU5UdgJWTKI45XI41jtrTXTS0y+TM8Wjq6OWe\n4q2EBCnWFxUSN8W/45cjcbfh/xQoU0r9j1Lqf4BS4EejPUEpZVVKvaOU2qeU2quUenCixQYCh0Oz\nscxGQaZEMSdi7fIsuvoGeL68hpLKehalxU6qOOZwg+cmZJDa2PX0D/DZJ8o50dLNo5MkfjkSd6+0\n3QjcDJxy3W7WWj9xnqf1A1/RWi8ELgI+r5RaOJFiA0FJVT3VjZ1yodUEXTA9jqVZCTy++SjbjjVz\n6dzJezgHYFFaLMFBSg7rjJHWmq+9uIutttP87PYc8jMn30n9odw+SKW13qe1/rXrts+Nx5/QWm9z\nfd0G7AfSxl/qyDp6+pks66uv32xjamy4X07i8zVFK7I40dLNgENPyjjmUJFhIcydKpMzx+oXbx7k\n1R3H+epV87gue7rZ5RjOK2cllFJZOE/yfujp127u7OWG32zm128f8vRLe92h+nbeO9jAqgsliukJ\nVy6cSmpcBLERIZNmOuZocq0WdtY043BMjp0fo71zoJ5fvnWQW/PT+dyls8wuxysM7ypKqWjgJeBL\nWuuPjTJUSt2vlCpXSpXb7fYxv37clFAWp8Xx0zeqeHVHnQcqNs/GMhthwUHceaFMxfSEkOAgfnpb\nDj+8JTsgxkrnWS20dvdztLHD7FL8wsMlh7AmTOH7Ny2edPHLkRj6U6CUCsXZ7J/SWr98rsdorR/V\nWhdorQuSk8f+sVspxUO3LGZpVoLrUuimCVZtjtbuPl6qqOW6nFS/X3rPlyyfncQ1k+hKydEMXoAl\nC5uf3566FrbaTrN2WRZhIZN/Z2CQYf9S5fyV+RiwX2v9M6O2AxAeEswjq/OZHhfBfRsrqPbDPZwX\ny2vp6B1gnczNEeM0KzmaqLBgOY7vhg2lNqaEBnNbQWBd2Gjkr7YVwGrgMqXUDtft00ZtLD4qjMeL\nCnFozbrirbR09hm1KY8bjGIuybCwOF2imGJ8goMU2ekWdtZKwx9NU0cvr+48zs1L0iZt3n4khjV8\nrfX7Wmultc7WWue6bn8xansAM5OjeWRVPjVNnTzwZAW9/edf1NoXbKqyY2vspGiF7N2LicnNsLD/\nRKtMzhzFM1uO0dvvCMjo86Q7eHXhzEQeujmbsiON/L9XdvtFXLO41EZKTDjXSBRTTFCu1ULfgGbv\n8ZGXegxk/QMOnvygmhWzE5k7Ncbscrxu0jV8gFvy0/niZbN5oaKWh0sOm13OqA7b29lUZWfVRRLF\nFBP30ZKHcljnXP6x7xQnWrpZuyzL7FJMMWnn4fzbFXOxNXby479XkpkY6bMXVTxRVu2MYsoC5cID\npsZGkBoXISMWRlBcaiM9fgqfWhCYa0xM2l1KpRQ/ujWbgsx4vvz8TrYd8701P9u6+3ihvIbrslMn\n9ZwX4V0yOfPc9h1vZcvRJtYsy5yUY7LdMWkbPkBEqDOuOS02gvs2lFPT1Gl2SWd5qcIZxQzEk0fC\nOLlWC8eaOmmUyZln2VBqIyI0iNsDLIo51KRu+ACJ0eE8XlRI34DDGdfs8o24psOh2VBWTV6GhZwA\nuOxfeM/g/yeJZ37kdEcvf9xRx0156Vgiw8wuxzSTvuEDzE6J5ner87E1dPC5pyroGzA/rvnuQTtH\nGzpk5r3wuMVpcQQp2FEja9wOenZrDT39DtYuzzS7FFMFRMMHWD4riR/cvJjNhxr5zz/uMT2uuaHU\nRnJMONcsCozL/oX3RIXL5Myh+gccPFFmY9nMROZPizW7HFMFTMMHuK3Ayuc/OYtnt9bwyLtHTKvj\naEMH71TaufvCjICa4yG8Jy/DOTnT7B0bX/Dm/lMcb+mWc2UEWMMH+MoV87guO5WH/nqAv+4+YUoN\nG8tshAaQdUIEAAARPUlEQVQr7pKpmMIgOekWWrr6ONrgf3OlPG39ZhtplilcvmByL4LjjoBr+EFB\nip/clkNehoUvPbfD6x9723v6eaG8lmsXp5ISE+HVbYvAMTg5M9BP3O4/0cqHR5tYvSwzIEZkn09A\nvgMRocH8fk0BKbHh/POGcmpPey+u+fK2Wtp7+mVujjDUnJQY5+TMAB+VPBjFvKMwcKOYQwVkwwdI\nig5nfVEhPf0D3FO8ldZu4+OaDoemuNRGjtUSECswCfMEBykWp8cF9InbwSjmjblpAR3FHCpgGz7A\n7JQYfrcqnyP2Dj7/1DbD45rvH2rgiL2DdXLySHhBjtXCvhOt9PQH5uTM58pr6O4LzKmYIwnohg+w\nYnYS/3vTIt472MC3X9traKqhuNRGUnQ4nw6QFZiEufJckzP3BeDkzAGH5omyai6ckcCC1MCOYg4V\n8A0f4DOFGTywchZPf3iMP7x31JBt2Bo6eKeyXqKYwmtyrfFAYE7OfHP/Keqau1i3IsvsUnzKpJ2W\nOVZfu2oex5o6+P5f95ORGMlVF3h2Nv3GsmqCleJuiWIKL5kWF8G02IiAbPjFm21Mj4vg8gCdijkS\n2dV0CQpS/Oz2XLLTLTz47HZ2eTDO1tHTzwvlNVybnUpKrEQxhffkWOMCblRy5ck2yo40snpZlkQx\nh5F3Y4iI0GD+sKaAxKhw7t1QTl1zl0de9+VttbT19MvJI+F1udZ4bI2dnO7oNbsUrykutREeIlHM\nc5GGP0xyTDjr1xXS3TvAvcVbaZtgXFNrVxQzPY48iWIKLzuzAlaAXIDV0tnHK9truTE3jfgoiWIO\nJw3/HOZOjeHhVUs4WN/OF57eTv8E4prvH2rgsL2DtcuzUCowF10Q5slOd03ODJALsJ4rPyZRzFFI\nwx/BxXOS+Z8bFrGpys53/7Rv3HHNDaU2kqLDuDZbopjC+6LCQ5iTEhMQIxYGHJqNZdUsnZHAwukS\nxTwXafijuOvCDO6/ZCZPfFDN45ttY37+scZO3jpQz11LMwgPCfZ8gUK4IdcaGJMz39p/itrTXbLG\nxCik4Z/HN66ez1UXTOV7r+/jjX2nxvTcjWU2ZxTzosBedEGYKzfDwunOPqobfWuJT0/bUGYjNS6C\nKxdKFHMk0vDPIyhI8YvP5LE4LY4vPrOdPXXurSLU0dPPc+U1XLM4lakSxRQmOnPidhLHM6tOtbH5\nUCOrLpKpmKORd8YNU8Kccc34yFDu3bCVEy3nj2u+sr2Otu5++XgpTDcnJZopocGTuuFvKLURFhLE\nnUvlwsbRSMN3U0psBI+vK6SjZ4B7istp7+kf8bFaazaU2licFseSDIliCnOFBAdN6smZLZ19vLyt\njhtyppMgUcxRScMfg/nTYvn1XXlUnWrji8+MHNcsPdzIwfp2iiSKKXxEntXCvuOTc3LmCxU1dPUN\nSBTTDdLwx+jSeSl85/oLePtAPd97ff85H7N+s43EqDCuy5EopvANuVYLvQMO9p9oM7sUjxpwaDaU\n2SjMimdRWpzZ5fg8afjjsPqiTO79xAyKS20Ubz57umZNUydvHTjFXRdKFFP4jhzXidvJNlfnnQP1\n1DR1UbRcVpBzhzT8cfqPTy/g8gVT+e8/7+PtAx/FNc9EMS+UKKbwHalxEaTEhE+64/jFpTamxUZw\n5QUSxXSHYQ1fKfW4UqpeKbXHqG2YKThI8X935rJweixfeHo7e4+30Nnbz3Nba7h60TSmxUkUU/gO\npRS5VsukavgHT7Xx/qEGVi/LJFSimG4x8l0qBq428PVNFxkWwmNrC4mbEsq9xeX8btMRWiWKKXxU\nboaFow0dNHdOjsmZG8qcUUyZiuk+wxq+1vpdoMmo1/cVU2MjeGxtIW3dffzfWwdZlBZLfma82WUJ\n8TG56a7j+LXuXTzoy1q6nFHM63OmkxgdbnY5fsP0z0FKqfuVUuVKqXK73W52OeOycHosv75rCWEh\nQTywcpZEMYVPyrZaiAgN4ldvHfT7eOYL5TV09g7Ip+kxMr3ha60f1VoXaK0LkpOTzS5n3D45P4Vd\n376S67Knm12KEOcUHR7CT27Lobz6NF97cZffDlMbnIpZkClRzLEyveFPJhGhEsMUvu267Ol89ap5\nvLrjOL9486DZ5YxLSWU9x5o65UKrcZBFzIUIMJ+7dBZHGzr45VsHyUqK5Ka8dLNLGpPiUhtTY8O5\netE0s0vxO0bGMp8ByoB5SqlapdS9Rm1LCOE+pRTfv2kxy2Ym8vUXd7PlqP9kKw7Vt/PewQZWXShR\nzPEwMqVzp9Y6VWsdqrVO11o/ZtS2hBBjExYSxO9W5ZOeMIX7nyjnaEOH2SW5ZWOZjbDgIO68UKZi\njof8ihQiQMVFhrK+qJAgpbineCunO3w7n9/a3ceLFbVcl5NKkkQxx0UavhABLDMxikdX51N3uovP\nPlnh03HNF8tr6ewdYJ3MzRk3afhCBLiCrAR+fFs2W4428c2XdvtkXNPh0Gwss7Ekw8LidIlijpc0\nfCEEN+Sm8eUr5vLy9jp+9fYhs8v5mE1VdmyNnRStkL37iZBYphACgH+9bDa2xg5+9kYVmYmR3JCb\nZnZJZ6wvtZESE841EsWcENnDF0IAzrjmD25ezNIZCXz1hV2U23wjrnnY3s67VXZWXSRRzImSd08I\ncUZ4SDCPrMonLX4K9z9RQXWj+XHNjaWuKKYsUD5h0vCFEGeJjwrj8aJCHFqzrngrLZ19ptXSNhjF\nzE4lOUaimBMlDV8I8TEzkqJ4dHUBtU1dfPbJcnr7HabU8WJFLR29skC5p0jDF0Kc09IZCfzw1sV8\ncKSJ/3jF+3FNh2sqZl6G5cyavGJipOELIUZ0U146D35qDi9W1PJwyWGvbnvTQTtHGzpk5r0HSSxT\nCDGqL10+h+rGDn7890oyEiL5pxzvrPmwodRGckw41yxK9cr2AoHs4QshRqWU4oe3ZlOYFc9XXthJ\nRfVpw7d5xN5OSaWduy/MICxE2pSnyDsphDiv8JBgHlldQGpcBPdvLOdYY6eh29tYVk1osOIumYrp\nUdLwhRBuSYgKY31RIf0OzbriLbR0GRPXbO/p58WKWq5dnEpKTIQh2whU0vCFEG6bmRzNI6vzOdbU\nyeeeqqBvwPNxzZcqamnv6Ze5OQaQhi+EGJOLZiby0M3ZbD7UyLde2ePRuKbDodlQaiPHaiFXopge\nJw1fCDFmt+Sn86+Xzea58hp+t+mIx173vUMNHGnoYJ1EMQ0hsUwhxLh8+Yq52Bo7+eHfDpCZGMmn\nF088Plm8+ShJ0eEeeS3xcbKHL4QYF6UUP741m/zMeP7tuR1sPzaxuObRhg7ekSimoeRdFUKMW0Ro\nMI+uzmdqbAT3bSynpmn8cc2NZTZCghR3SxTTMNLwhRATkhgdzuNFhfT0O7ineCut3WOPa7b39PNi\neS3XZqeSEitRTKNIwxdCTNjslGgeWZXP0YYOPv/UtjHHNV/eVktbT79MxTSYNHwhhEcsn53E929a\nzHsHG/ivV/e6HdccjGJmp8eRJ1FMQ0nDF0J4zO2FVv7l0lk8s+UYv3/Pvbjm+4caOGx3TsVUShlc\nYWCTWKYQwqO+euU8jjV28oO/HiAjIYqrz7Pw+IZSG0nRYVybLVFMo8kevhDCo4KCFD+9PYecdAtf\nem47O2uaR3xsdWMHb1fWc9fSDMJDgr1YZWCShi+E8LiI0GB+v6aApOhw/nljOXXNXed83MayaoKV\n4u6LMr1cYWCShi+EMERyTDjriwrp7h3g3uKttA2La3b09PP81hquWZzKVIlieoU0fCGEYeZMjeHh\nVUs4WN/OF57eTv+QuObL2+to6+mnaLns3XuLoQ1fKXW1UqpSKXVIKfUNI7clhPBNF89J5ns3LmJT\nlZ3v/mkfWmu0dkYxF6fFsSQj3uwSA4ZhKR2lVDDwG+AKoBbYqpR6TWu9z6htCiF8051LM7A1dPDI\nu0fISopi3tQYDtW385PbciSK6UVGxjKXAoe01kcAlFLPAjcA0vCFCEBfv3o+1Y2dfO/1fcxIiiIx\nKozrJIrpVUYe0kkDaob8vdZ1nxAiAAUFKX7+mVyy0+I4Yu/gzqUZRIRKFNObTD9pq5S6XylVrpQq\nt9vtZpcjhDDQlLBgfr+2gAdWzuLeT8gSht5mZMOvA6xD/p7uuu8sWutHtdYFWuuC5ORkA8sRQviC\nlJgIvnHNfOKjwswuJeAY2fC3AnOUUjOUUmHAHcBrBm5PCCHEKAw7aau17ldKfQH4OxAMPK613mvU\n9oQQQozO0OFpWuu/AH8xchtCCCHcY/pJWyGEEN4hDV8IIQKENHwhhAgQ0vCFECJASMMXQogAodxd\naNgblFJ2oNrsOiYoCWgwuwgfIe/F2eT9OJu8Hx+ZyHuRqbV266pVn2r4k4FSqlxrXWB2Hb5A3ouz\nyftxNnk/PuKt90IO6QghRICQhi+EEAFCGr7nPWp2AT5E3ouzyftxNnk/PuKV90KO4QshRICQPXwh\nhAgQ0vA9QCllVUq9o5Tap5Taq5R60OyazKaUClZKbVdK/dnsWsymlLIopV5USh1QSu1XSi0zuyYz\nKaX+zfVzskcp9YxSKsLsmrxJKfW4UqpeKbVnyH0JSqk3lFIHXX8asrK7NHzP6Ae+orVeCFwEfF4p\ntdDkmsz2ILDf7CJ8xC+Bv2mt5wM5BPD7opRKA74IFGitF+EcnX6HuVV5XTFw9bD7vgG8pbWeA7zl\n+rvHScP3AK31Ca31NtfXbTh/oAN2/V6lVDpwLfAHs2sxm1IqDrgEeAxAa92rtW42tyrThQBTlFIh\nQCRw3OR6vEpr/S7QNOzuG4ANrq83ADcasW1p+B6mlMoC8oAPza3EVL8AvgY4zC7EB8wA7MB61yGu\nPyiloswuyixa6zrgJ8Ax4ATQorX+h7lV+YSpWusTrq9PAlON2Ig0fA9SSkUDLwFf0lq3ml2PGZRS\n1wH1WusKs2vxESHAEuC3Wus8oAODPq77A9ex6Rtw/iKcDkQppVaZW5Vv0c7opCHxSWn4HqKUCsXZ\n7J/SWr9sdj0mWgFcr5SyAc8ClymlnjS3JFPVArVa68FPfC/i/AUQqC4Hjmqt7VrrPuBlYLnJNfmC\nU0qpVADXn/VGbEQavgcopRTOY7T7tdY/M7seM2mtv6m1TtdaZ+E8Gfe21jpg9+C01ieBGqXUPNdd\nnwL2mViS2Y4BFymlIl0/N58igE9iD/EasNb19VrgVSM2Ig3fM1YAq3Huze5w3T5tdlHCZ/wr8JRS\naheQC3zf5HpM4/qk8yKwDdiNswcF1BW3SqlngDJgnlKqVil1L/AQcIVS6iDOT0EPGbJtudJWCCEC\ng+zhCyFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRICQhi8Cimty5edcX09XSr1odk1CeIvEMkVA\ncc06+rNrUqMQASXE7AKE8LKHgFlKqR3AQWCB1nqRUqoI54TCKGAOzgFfYTgvqOsBPq21blJKzQJ+\nAyQDncB9WusDSqnbgG8DAzgHgl3i5X+XEOclh3REoPkGcFhrnQt8ddj3FgE3A4XA/wKdroFnZcAa\n12MeBf5Va50P/DvwsOv+/wKu0lrnANcb+08QYnxkD1+Ij7zjWs+gTSnVAvzJdf9uINs1DXU58IJz\nDAwA4a4/NwPFSqnncQ4EE8LnSMMX4iM9Q752DPm7A+fPShDQ7Pp0cBat9QNKqQtxLvxSoZTK11o3\nGl2wEGMhh3REoGkDYsbzRNcaB0ddx+tRTjmur2dprT/UWv8XzgVPrJ4qWAhPkT18EVC01o1Kqc2u\nBaTHM5b3buC3SqlvAaE4Z/7vBH6slJoDKJxrku70VM1CeIrEMoUQIkDIIR0hhAgQ0vCFECJASMMX\nQogAIQ1fCCEChDR8IYQIENLwhRAiQEjDF0KIACENXwghAsT/B7NiWFcKMAmnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['times','counts'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Bispectrum` Object takes 4 parameter.
\n", + "\n", + "1. `lc` : The light curve (lc).\n", + "2. `maxlag` : Maximum lag on both positive and negative sides of 3rd order cumulant (Similar to lags in correlation).\n", + "3. `window` : Specifies the type of window to apply as as string\n", + "4. `scale` : 'biased' or 'unbiased' for normalization\n", + "\n", + "Arguments 2 and 3 are optional. If `maxlag` is not specified, it is set to no. of observations in lightcurve divided by 2. i.e `lc.n/2` ." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Different attribute values can be observed by calling relevant properties. Most common are:
\n", + "1. self.freq - Frequencies against which Bispectrum is calculated.\n", + "2. self.lags - Time lags in lightcurve against which 3rd order cumulant is calculated.\n", + "3. self.cum3 - 3rd Order cumulant function\n", + "4. self.bispec_mag - Magnitude of Bispectrum\n", + "5. self.bispecphase - Phase of Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.5, -0.4, -0.3, -0.2, -0.1, 0. , 0.1, 0.2, 0.3, 0.4, 0.5])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.3885, -0.0915, 0.1685, -0.5085, 0.8135, -0.0675, -0.2708,\n", + " 0.0229, 0.1426, -0.0567, 0. ],\n", + " [-0.0915, 0.2328, -0.5162, -2.0652, 0.3058, 0.1968, 0.8135,\n", + " 0.5492, 0.0209, -0.2484, 0.0063],\n", + " [ 0.1685, -0.5162, -0.3999, 0.9821, -0.4989, 0.5011, 0.3058,\n", + " -0.5085, -0.2348, 0.2379, 0.0426],\n", + " [-0.5085, -2.0652, 0.9821, -0.3096, 0.5704, 2.1084, -0.4989,\n", + " -2.0652, 0.1685, 0.8632, 0.0999],\n", + " [ 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823, 0.5704,\n", + " 0.9821, -0.5162, -0.0915, 0.0872],\n", + " [-0.0675, 0.1968, 0.5011, 2.1084, -0.3823, 0.864 , -1.3613,\n", + " -0.3096, -0.3999, 0.2328, -0.3885],\n", + " [-0.2708, 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823,\n", + " 0.5704, 0.9821, -0.5162, -0.0915],\n", + " [ 0.0229, 0.5492, -0.5085, -2.0652, 0.9821, -0.3096, 0.5704,\n", + " 2.1084, -0.4989, -2.0652, 0.1685],\n", + " [ 0.1426, 0.0209, -0.2348, 0.1685, -0.5162, -0.3999, 0.9821,\n", + " -0.4989, 0.5011, 0.3058, -0.5085],\n", + " [-0.0567, -0.2484, 0.2379, 0.8632, -0.0915, 0.2328, -0.5162,\n", + " -2.0652, 0.3058, 0.1968, 0.8135],\n", + " [ 0. , 0.0063, 0.0426, 0.0999, 0.0872, -0.3885, -0.0915,\n", + " 0.1685, -0.5085, 0.8135, -0.0675]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 6.1870122 , 9.78649295, 6.29941723, 8.10990858,\n", + " 3.90975859, 1.49707597, 10.53408125, 8.44275685,\n", + " 7.73419771, 7.91909148, 3.40576093],\n", + " [ 9.78649295, 12.99063169, 11.9523207 , 12.31681 ,\n", + " 7.34404789, 1.93438197, 5.05536311, 15.92827099,\n", + " 6.61153784, 3.09535492, 7.91909148],\n", + " [ 6.29941723, 11.9523207 , 4.84009298, 8.98535468,\n", + " 5.6746004 , 1.71227576, 9.35566037, 12.00797853,\n", + " 1.60576409, 6.61153784, 7.73419771],\n", + " [ 8.10990858, 12.31681 , 8.98535468, 18.69373893,\n", + " 9.83780286, 2.72630968, 7.87985137, 5.32007463,\n", + " 12.00797853, 15.92827099, 8.44275685],\n", + " [ 3.90975859, 7.34404789, 5.6746004 , 9.83780286,\n", + " 5.93123174, 1.60598497, 0.51743271, 7.87985137,\n", + " 9.35566037, 5.05536311, 10.53408125],\n", + " [ 1.49707597, 1.93438197, 1.71227576, 2.72630968,\n", + " 1.60598497, 1.262 , 1.60598497, 2.72630968,\n", + " 1.71227576, 1.93438197, 1.49707597],\n", + " [ 10.53408125, 5.05536311, 9.35566037, 7.87985137,\n", + " 0.51743271, 1.60598497, 5.93123174, 9.83780286,\n", + " 5.6746004 , 7.34404789, 3.90975859],\n", + " [ 8.44275685, 15.92827099, 12.00797853, 5.32007463,\n", + " 7.87985137, 2.72630968, 9.83780286, 18.69373893,\n", + " 8.98535468, 12.31681 , 8.10990858],\n", + " [ 7.73419771, 6.61153784, 1.60576409, 12.00797853,\n", + " 9.35566037, 1.71227576, 5.6746004 , 8.98535468,\n", + " 4.84009298, 11.9523207 , 6.29941723],\n", + " [ 7.91909148, 3.09535492, 6.61153784, 15.92827099,\n", + " 5.05536311, 1.93438197, 7.34404789, 12.31681 ,\n", + " 11.9523207 , 12.99063169, 9.78649295],\n", + " [ 3.40576093, 7.91909148, 7.73419771, 8.44275685,\n", + " 10.53408125, 1.49707597, 3.90975859, 8.10990858,\n", + " 6.29941723, 9.78649295, 6.1870122 ]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -7.65814471e-01, -8.39758950e-01, 7.49083269e-01,\n", + " -9.35797260e-01, -1.22623935e+00, -3.13514588e+00,\n", + " 4.35308043e-01, 6.65460441e-01, 6.17269495e-01,\n", + " 4.39881603e-01, -3.14159265e+00],\n", + " [ -8.39758950e-01, 1.84719564e+00, 1.70902436e+00,\n", + " -6.50042861e-01, -5.76818268e-01, -9.16177187e-02,\n", + " 1.76512372e+00, 2.97853199e+00, 1.45401552e+00,\n", + " 0.00000000e+00, -4.39881603e-01],\n", + " [ 7.49083269e-01, 1.70902436e+00, 1.64851065e+00,\n", + " -5.51373516e-01, -1.32816666e+00, 2.45429375e-01,\n", + " 2.86246989e+00, 3.08272440e+00, -1.10623774e-15,\n", + " -1.45401552e+00, -6.17269495e-01],\n", + " [ -9.35797260e-01, -6.50042861e-01, -5.51373516e-01,\n", + " -2.97776986e+00, -2.96295975e+00, -4.83162811e-01,\n", + " 1.34000660e+00, 0.00000000e+00, -3.08272440e+00,\n", + " -2.97853199e+00, -6.65460441e-01],\n", + " [ -1.22623935e+00, -5.76818268e-01, -1.32816666e+00,\n", + " -2.96295975e+00, -1.30996608e+00, -1.24358981e-01,\n", + " -3.14159265e+00, -1.34000660e+00, -2.86246989e+00,\n", + " -1.76512372e+00, -4.35308043e-01],\n", + " [ -3.13514588e+00, -9.16177187e-02, 2.45429375e-01,\n", + " -4.83162811e-01, -1.24358981e-01, 3.14159265e+00,\n", + " 1.24358981e-01, 4.83162811e-01, -2.45429375e-01,\n", + " 9.16177187e-02, 3.13514588e+00],\n", + " [ 4.35308043e-01, 1.76512372e+00, 2.86246989e+00,\n", + " 1.34000660e+00, 3.14159265e+00, 1.24358981e-01,\n", + " 1.30996608e+00, 2.96295975e+00, 1.32816666e+00,\n", + " 5.76818268e-01, 1.22623935e+00],\n", + " [ 6.65460441e-01, 2.97853199e+00, 3.08272440e+00,\n", + " 0.00000000e+00, -1.34000660e+00, 4.83162811e-01,\n", + " 2.96295975e+00, 2.97776986e+00, 5.51373516e-01,\n", + " 6.50042861e-01, 9.35797260e-01],\n", + " [ 6.17269495e-01, 1.45401552e+00, 1.10623774e-15,\n", + " -3.08272440e+00, -2.86246989e+00, -2.45429375e-01,\n", + " 1.32816666e+00, 5.51373516e-01, -1.64851065e+00,\n", + " -1.70902436e+00, -7.49083269e-01],\n", + " [ 4.39881603e-01, 0.00000000e+00, -1.45401552e+00,\n", + " -2.97853199e+00, -1.76512372e+00, 9.16177187e-02,\n", + " 5.76818268e-01, 6.50042861e-01, -1.70902436e+00,\n", + " -1.84719564e+00, 8.39758950e-01],\n", + " [ 3.14159265e+00, -4.39881603e-01, -6.17269495e-01,\n", + " -6.65460441e-01, -4.35308043e-01, 3.13514588e+00,\n", + " 1.22623935e+00, 9.35797260e-01, -7.49083269e-01,\n", + " 8.39758950e-01, 7.65814471e-01]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plots" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bispectrum in stingray also provides functionality for contour plots of:
\n", + "\n", + "1. 3rd Order Cumulant function\n", + "2. Magnitude Bispectrum\n", + "3. Phase Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX+4LN1V1/lZVd1Vfe8959z76msCJoTwSxzQccRXMiOO\ngvwQQyDD6GDk1xDEyCgqIiPgOA8MwmNAGIgDI7wiIkJEQMGIUX7NMIEZYZIgiAR0IAaT8EJ4Q+57\nz7n3nqru6j1/7NpVu3btqtrVXXV+3Nvf5znP6a6qrqqurvqutb9r7bVEKcUBBxxwwAGPF6LLPoED\nDjjggAMuHgfyP+CAAw54DHEg/wMOOOCAxxAH8j/ggAMOeAxxIP8DDjjggMcQB/I/4IADDngMcSD/\nA7wQESUiHzjzMV5cHmcx53EuA4/ydzvg0cCB/B9BiMh3iMivicg9EfkPIvI5MxzjZSLy/4rIfRF5\nt4h8p4i8cOrj7HBev0NEvkdEnhWR50Tk34rIF4hIfNnntitE5NtE5Csu+zwOeLRwIP9HE68G3l8p\ndQJ8EvAVIvL7fBvu4pmKyJ8AXgt8PfAk8KFABvyEiDwx1XEGzqG1PxH5AOCngLcDv1spdRv474Df\nBxxPefwDDrjuOJD/Iwil1L9TSj0wb8u/DwAQkY8UkXeIyBeJyK8Bf79c/j+KyDMi8qsi8tld+xYR\nAb4W+Aql1GuVUg+VUr8GfA5wBvzlcrvPEpH/W0S+TkTeDXyZiMQi8jWlV/5W4BOcfd8Wkb9Xnsc7\nReQrjMfu25/n9P4X4P9RSn2BUuqZ8lr8e6XUpyml7prv7hzzbSLyMeXrLytHDd8hIqci8nPlSOJL\nRORdIvJ2Efk432etz39Hx3V7pYj8Qrnft4rIn7XWmd/kr5THeUZEXlmuexXwacBfFZEzEfnnXb/N\nAQeMwYH8H1GIyP8uIg+AXwSeAV5vrX4v4LcA7wu8SkQ+HvhC4GOBDwI+hm58MPAi4HvshUqpLfBP\nyn0YvAR4K/B84CuBPwO8DPi9wFPAn3D2/W3ABvjAcpuPQxuVrv25+Bjge3vOPQSfCPxD4Ang3wA/\niH5OXgB8OfDNO+73XejvfgK8Evg6Efkwa/17AbfL4/xp4BtF5Aml1NPAdwJfrZQ6Ukp94o7HP+CA\nBg7k/4hCKfXn0FLHfw38U7QsY7AFvlQplSmlHgKfAvz9csRwH79XbfBk+f8Zz7pnrPUAv6qU+t+U\nUhvrOF+vlHq7Uuo3gb9pNhSR5wMvBT5fKXVfKfUu4OuAV/Tsz8Vv7TivMfhxpdQPKqU2aAP324BX\nK6XWwHcBLxaRO2N3qpT6F0qpX1Ya/xfwQ+jfxmANfLlSaq2Uej16FPXBe36XAw7oxIH8H2EopQql\n1E8ALwT+B2vVbyilzq33vx2tkxv8Ss9uny3/v7dn3Xtb63H2OXSc9wWWwDMicldE7qK97Of17M/F\nuzvOawx+3Xr9EHhWKVVY7wGOxu5URP6YiPykiPxm+d1eStNQvrs0OAYPdjnOAQeE4kD+jwcWlJp/\nCbeU6zPA+1jvX9Szr38PvAMdSK0gIhHwx4Ef3fE4b0ePTp5USt0p/06UUh/asz8XP1KeQxfuAzet\nc47Rnv2uaOwPLd20ICIpWhL7GuD5Sqk7aBlOAo9zKL17wOQ4kP8jBhF5noi8QkSOygDrHwX+FE1S\ndvHdwGeJyIeIyE3gS7s2VLoG+BcCf11EPlVEViLyXsC3oPXsrxs4zl8UkReWWUFfbO33GbQU8rUi\nciIikYh8gIj84cCvTnnef0BE/lZ5TojIB5YB3DvAfwBWIvIJIrIE/jqQjti/i58BXiEiSxHxxTAM\nkvI4vwFsROSPoeMZofh14P33OM8DDmjhQP6PHhRa4nkH8B60t/n5SqnXdX5AqX+JTtv8P4BfKv93\nH0Cpfwx8Bjqz593AW4AbwEcopd7d89G/iw6g/izw0+hYhI3PRBPlW8pz/15GyDhKqV8G/ivgxcDP\ni8hzaI/7TcCpUuo54M+hDdU70Z77O/x7C8L/jB5RvQedafTajvM6Bf4i2vi9B/hUoPP38ODvAR9S\nymHfv8f5HnBABTk0cznggAMOePxw8PwPOOCAAx5DHMj/gAMOOOAxxIH8DzjggAMeQxzI/4ADDjjg\nMcS1Kjf75JO31Ytf7E2lvt6YNeju7js0tXxCiDlm81yU9b6ZeKBa2zQ/ubU+5xyigaZv49tEOq9H\ne7l4DuL/vGeZ9zf2LFP1d0PM+Ys5gcbnqmtT7dtZXu1o2ziF+nNS7lZV30UfIkIw300Qkeq13onS\n56lU+d56bf9tPcvM9xBpv446lrfeR8521nWyrtGb3/z/PauU2mceB79bfqs6Yz243ds4/UGl1Mfv\nc6yLxrUi/xe/+Pn81Bu/YfbjxBd5WYp82v1tOvZnli8S/XdRiOtjFWy8mxTb+uEq1Lr8v2kt61te\nHU6WnmWLwW18cD83Zh9x5F/vvbd898Amr3+n8hqa62eul3utOt9v9ft8q8k3K6T8H5HGW9JYkURC\nHC2IZUkszv9oqc+7yPV5bfLGOatN1ly3XkNe/yn7vUGy1H+ALOvX9nKWzjU012ORVNdEFml9j9n3\ndpwg0R/pm6kehDPWfFn84YPbfVbxo08ObnTFcK3I/6JQsLkYAzAF8XeRfdd62whcEcTRsiK0WJYU\nal0Rb6E2FdH2L28ShY+4Q0nfwJCob18+w9NYXzTXV+fq8SLj2HNe8are1/Zh45i7k327pcG+xL8T\n+ojfwCV+qA2iuYfjBLXJ9LgoTpr39tRO1SOIA/l34MIMwFgMkb1vG/tBcB+SORHg9Veblp5ysV0H\nkv3CIueaKHb18vvQZwTC99FtLFxD0XX8ELK3vfohpPF2EuKXRdpbf0Lw16cQm+BtA+AjfgPXAJT7\nnkvMlAjSVcDe7890AjPiCrLbY4JQzySE7Pu2LY+jNrqop9dLukJwjYAhOJfsbcPg3c8EpO+iUP0G\nbNpjNaWuEAlnLNJY0+Yc16oXybIm/mQZTvwG9n1eevmKUgIqruZ9fRVxIP8eXLj3P4bohz7jarLW\n64s2AENevw9GCgoZBVSfuWgSC8CQPNTcth3PGCPhjEEa6yBwHOlruq/cM8b734v4bTgyT8sAHNCL\nA/l7UGzXtQc6hwGwb85dCL/vcz7Sdx6Gapg8pwGI99/fGCnoojCGzP2f7wh6256+V8aZvgVxEsnF\n6fxo0lfr8nsmHslnF2za9zZMJwNFIiRpwKjqIPtcb9hZJxeCscTft71L8C7x+7wkmH0EsIvX78IX\nENavF5cmxQxv239e7r4uivAN0lhpkp+Q+Ie8f/J1eGbPGHQEgg/ox4H88ZP+bN7/Lh7UPqRvf/6S\nDMAUCBkFXDRCj+kzGobswZV0hKyIyLdCEs0z/6MK9M4waho0AAZTEb/BriPoxxiPNfkPefqzyj9j\nUzR9CPX2Nx5DcAEGYAqv30WfEZjTAPjmHwxt21q+bX7WF7TNt5r8s0I4SYpZDIDx+oELkXtaGErp\n3AcT38MSQZpewsTIC8BjSf6DpO/JG5/mwDukaQbsJ8jbN1rrcjm/AZhA7x88RMfcgDkMQB/xD+b7\ndxA+dJO+/tM6cxorjpcFU8EEesEEeacn/iDvf5cAbygOo4AgPFbkH6Lpt7XYGbz/rolXgyfX3m7Q\n219b3ye/QANwAfClhc5nAJq59Z3bbdvHtgkfhkk/K4TzAiCuyHpKA1AHepcX6/FXJzAj8RtMZABE\nCAv4XkM8FuS/E+lb3r9tAHY/iYGyCyM/O8rbzy/eAMwh+XTBTgud2gA08+3D5ByDPtIHOF3HXtJ/\nT/WTCqu4DvpOYQCagd75Hv9e739u4j8gCI88+YdIPH3rXPlnb+/fp793noB//U7efu75no/ICADm\nMQC9cs9Iwtevo3IbTfb38qhB+g8LOC/gbl4XJ1vFALUB0MHa3eIAdqDX3NcX7vVfBNbhWVmPMx5Z\n8t/F2x/a387yz9iHKZT0Ydjbd/8ny6YhmNoAXIDeD+0CaQWbSQ3AUCkFF32kr983JZ57edwiff0n\n3C1/5vONcCc1+9UGII13DwTbgV4og70zEn9w5s9U8I1090Qkh4DvtcG+pO/WcZlc/jEImKRlYy9v\n35V9TLZFlwTE5cwEDkHL6JbXI46TyQ1AdYgO4ncJH4ZJ30g8z+XSIv3zDdzNIcv1COE82WLPjT0v\nYm4n+vVYA2C8frACvdFydo+/ZQDmCMaGjnQvGSLyrcDLgHcppX6XZ/1t4DuAF6G5+WuUUn+/XPfx\nwGvQXsC3KKVeve/5PDLkPxXp2+99BqBaH+r9h87mndHbV84wuKInexRgGwDor5g4gKn1/i7Cd5dN\nZQC8ZaWdMgsuQknf1vVt0jdG4PRsSZ5pLz9PCzhaYwzAeUz5Wq8fYwDsOj7VHwvggiUepyjb3hga\n6e4JiQJn+Ibh24BvAL69Y/2fB96ilPpEEfltwL8Xke8ECuAbgY8F3gG8UURep5R6yz4nc+3JP3RW\n7hjiHzre3tk/9s3f421N4e0r9+FI9BT7uQ3AFBgkfU+Br30NQJfcA+Gevt62lnZcXf9u3ib9LI/I\n85ize0uykvxTQzqlAVgtoC7OEZdzAbaDgWC7jk/D6zfXcGadv+H9e6py7oSZSX8OKKXeICIv7tsE\nOBbdNegI+E1gA7wE+CWl1FsBROS7gJcDjyf5XwTpd3n/wfLPjjV8Jvf2Pbr/VTYAo0jfXjaZARjW\n+ftIf0jXv5tJi/TzLOb0nvb6zfujY+t7Hq1ZFVDLQOMygdxAr/5ilxDgNcS/qwHouu+t1+5I94Lw\npIi8yXr/tFLq6ZH7+AbgdcCvAsfAn1RKbUXkBcDbre3egTYIe+HSyV9EYuBNwDuVUi8b2n5u0q/r\nxiyrbftS4kZ7/wNe/yzevi/Vcw4DYNfvHxkfCZJ2+uZH2KSyowHoK8PgzsY18JG+IX5fMNfW9Q3J\n51lElsWcnSbkWcwmE5ZZwRn19ayNQR0HCM0EstM7wQr0bs4ujPgr77/Im78VhBmBvrTlrvt+AohA\nElLPH55VSj215+H+KPAzwB8BPgD4YRH58T332YlLJ3/gLwG/AJwMbagCcwf2JX7zuqXzd3j/XgMw\n0uuf3dv3ZfvMYABsvT/EAIz28ruu5SbfywCEyD19aZuurl9r+k2J57mHbdI33v6DewuWWcHNrGCZ\nFzwgqQxAkhrPvjYAq3g4E8it49MK9EKrCJosUv81ngJxUhsACBsFhN73PsNwvfBK4NVKN2X+JRH5\nj8DvBN4JvI+13QvLZXvhUslfRF4IfALwlcAX7Lu/KUi/67OTZP90eP2zevs+739mAxCCvUnf3T5O\nJjAA3XKPj/j7Jmn5grlZHpXefZP08yxG7m25meUs84IkK1hmmuyNAUhyW9bJOS+23EnsKvlxGdRt\nBoLbdXwsrx+r/641agupiLmLgTCfqUyTOwpwf+MpnJ09oWv7XNgM3/8EfDTw4yLyfOCDgbcCd4EP\nEpH3Q5P+K4BP3fdgl+35fz3wV9H6lhci8irgVQAvetHzLui0xqNT/pkys2GqG9tO9xyzziGJLjQa\nsnsM5E6a/q4ocu0XxwlxtCh/p2XzHD19AQq11ttvN2WKZNP71x5/m/gflhzdFdD1Ef8mE5bQIP5l\nviHJYtZJwYMsBmLyJCbPCvI0Jk22tYEpVFkOoj6fJCqcSV1OoNdcd3Ptzf/AeRpVZ7gdjYDaZM1R\nwD5xgGvi5YvIPwI+Eh0feAfwpcASQCn1TcDfAL5NRH4Ore19kVLq2fKznwf8IHqY961KqZ/f93wu\njfxFxOS7vllEPrJruzJo8jTAU0/9DmUX9HLh6+5Ur+su/dv3Ofuz9rYGnfLP0PDWrCfgYVgutRfk\nkrIh6rJOulrX773/DUw53a4m2va2i6T+DnHSfNiddQ3JxxkhAY3rBDSvVfXBvDmScEcXG4ekbMNh\ntvGNRKz5AABEVEbANxowr+NYr7sRmZGAQssuESdJURK/4l4eY7cQuZPo1Mxq0laiM26OTiDJtuRZ\nwek9c54xa2IekLBOCm6Rs05j7h8nrNOYRao4Os45PslJ0i1JUrCK4U4Kq1hr/6tYe/wnyZY01n/H\nSzvDx/L6LcnHe51GTNTb1Qi0RgEGIwyAmHvbbhJzhaGU+lMD638V+LiOda8HXj/l+Vym5/8RwCeJ\nyEuBFXAiIt+hlPr0oQ/aBb28662GH+113QG/ZqOQcDnHJjevAQB/kGvIAPjQQ/ANA+CD2dZa39tc\no4v446ST+Ivt2tLPneC59XuZa1W9dw2B24t1yAj0Eb8NYwTKz5rRAHWxy5r4XaMQwY0IkmiDMQBN\nQyCkRQS5HSBU3EnLQK99EOD4JNejgCTmjIR1qd3fJ2GZF6zTGHUScXSck6QFSbrl6Djn9o1tSfiK\nOwk8kWh5R//p1M86yLusPX87vZMeeWfkKMDsax8pCHP/98F2ghxvvy6IUWKf7mD2fgUWyYXOU74w\nXBr5K6W+BPgSgNLz/8IQ4rfRZwT2HQW42/rWuTCjgEEDYL+2yC5IE3UfAMezrx6Crm0sohe7wJaP\n+Ksv7iF+a539/b3XxdNnN3g04GvIvekwjmNjD9ZowJWE+kYDRHC83JDGhRULMLrwlttJxKpRpE2n\nZt4BzuMt58mWU+dUjsjJUy0Dre/BOo1ZpzE30w1JWnB8suboOCdNtqXXr4n/RqyJX3v9WutPY9WW\ne8y968o8Q9fnAgyAQcsQuCPhPhgHyGMYDvDjsjX/STCHEbDX2/sZgm0AoCSzIQMA42UgH4ZkIAOb\n+B0JqEH8i6Sb+Mt1oInbXHs3a8ZNkx09GnAlIXNsaKd67ooRo4EKESQYGciQrpTyjxkVCE8kJt1T\ncdfuLHu0Jku0fs+95unkJzoOcPNkowk/LUjSgjTZcieB1ULLPDdiuJ1o4teEr0oDIA25B6gLuNEj\n+XRdmws0AAaDspDrDM0EEVgst8MbXkNcCfJXSv0Y8GP77meOeID92VB44wC2J9tnAMptBmWgoVGA\nTwYq17WI38BD/PVFGE/87mvbEEw+GpgKg6MBbQQKtSDnoWUAwuMAd7NyWU8cIEkhSQrStODoZM3x\n0VpLPQu9nycSbQC0vq9KqWdrEb+V2ml7/bbk4+vv3HVNLiAO4MNUstABbVwJ8g+HELPorR0zVTxg\n31rnowPB5rW1zc4ykAVXBvISv2mu4SF3WaRt4jen4wR49f86XbKdQTNuNBAcIJ4DAaOBJIJCNsTR\nelQc4E6q6glfXXGALOb4JOfoZN0I8N5JugO8zfo9HV6/e83cEuN9BqC8FqGYahRgsJcsdEAL14z8\nNQwJ7GoEQkYB7ra7YFQg2H29jwzUMQqo4CN+Ax/x2+vKc7MDvK3v7QR8oXkdh0YDowPEc89SdUYD\nuU8FmCEOYDJ7bt/YNjJ7nkiopB47wOvKPQ2vH+o6Pn3oMwDmWlyiATAIkoWmOI5AfAj4Xj3MaQTs\n9ftidCAYvMHgygD4ECADAd3Eb7J3fMTvZPbY3wv8ck/rGnRkUfkMwU6S0EWg/L2S+AZFKQUVakG+\nfajXTxgHSLJtI8BrMntMgNcEedvEX1/fVovGUMwgA801a3iULHRAA9ea/A2GpCDYPR4wFYICwdA7\nCqi8nV3mBLjwEX+JIeLv0/lDA7563bAsFDIaiC/C+zdec3kt4jipFJ4kYvI4AFAFeO+kqjPACzSI\n3/b6vSjypt4/9J2vYBygC52jgQO8eCTIH/YfBUAzHjCV129jMBAM40cBvkJZBj3ZPl7iN5k9bu58\nuc6cd/V9BojffR1qCMaOBvSErRlhlz0uctgksDpqGACDqeIAbmbPE4kmfjfAa3R+G5UB8LVodL+X\n+d9F8hMaAJh3FGAw6f5FsVg+mubkepG/Gv4RppKC5sJgIBjGjQLcA/QFg2Hc7F3z3yF+tzSC/h8e\n8DUYyv5xP+Magsb+5/D+LdK3JQUBOD+DRUK8SIjjG9PHAQp/Zo+p32+I3+f1j/6O5v+uBgBGG4HZ\ncdXO5wriepE/BN9sU4wE5oIbCAbCRgFTlYYImb1rjmnO2SH+EImsT+LR68PTQO3tW6OB0rmeVP5x\nid94z4uEtq89XRzgbl7W6l+0SzeYAG8f8fd6/UPXpk/rnzgQPBvcSYh7QiJYJIc8/6uFiY3ARRsA\n2GEUMEYG6kPI7N2ezJ4hucdbF99ZFhL4dT9n91jwbTsZXOLPzloesirJTqyahJPEARKqQm1u6QY3\nwLsLgvT+LqKfOBA8KTrmoRzQjetL/gYTGYHLHAV0GgAIHgUEl8sNnb1rnwPjid+UQ44j/y0WEvjV\n6wINwRTef5e3v8n16Mkzj0Jlp0iRTh4HMAFet3SDjUGvf+i7Dq2/oDjAXuiZfHhAP64/+RtcYyPQ\nKQPBfimhXcFg3+xde521bEyA11cH322B6DMGfaOC0DkBeyOE+M3f0c3GRysZaOI4gB3g1XKRX+7p\nRFeg1/7OQ9fkqsYBBkh/qudXBOJDwPeaYEIjcBEGIKg7mFsaAgZHAd45AeaBDczl3+VB8vW77Vs/\nZAzGZAHt7P13yTwu6RucPSjnS6xhmcPqaDAO0DAEgXGAvgCvDdfr98IJWjdgauP4akbNEAfYK+Mn\ngPTnTNneByLyrYApZf+7POtfjq7pvwU2wOcrpX6iXPc24BQogM0ELSOvG/mr8Nl7ExiBOUcBXS0j\nXQNgn2PwKKBvTkAX8Rt0EP9Ynd+0PrTh06mHjEHXqKCzDhMjRgIjvH1lyT7tb3E2GAdIYFRdoKwQ\nT+mG5nXoyu7pndTlLreLoq3X3UUDLzsOMIL0+yYbjoWImjLg+23oJu3f3rH+R4HXKaWUiPznwHej\n2zgafJRp7jIFrhn5lxi64WxMZASmMgBdXoktY/hms45KCR2YGewl/oDMnlC5x0f8vuX7GgNvBtF2\nHeb970L85n2yhPUS4aZ311PEAYCqdIN9vXxyT6fX3yX59Mk9uxiAoXX7GIAdSL9Q60kNwFRQSr1B\nRF7cs/7MenuLmeerXU/yN7hAI7CPAfBnv/hz3oNGAWMmhtkGgAHi91ybXYnf6Nmux2ojZHTQZww6\nh/dD8o9N/NlpMOm7AV/FAyQvy2VMHAdIYxp9ePvknsYyn9c/NgA+lwGAcCOwJ+lfgvTzpIi8yXr/\ndNmFcBRE5JOBvwk8D93f3EABPyIiBfDNu+zbxfUmf4OZjMC+BiCE9O3lXQbAHBt2HwVUlDpA/GN0\n/iHid18bjDEIY4zBIPbw9snXqPOiJflUJD9xHCAroobOX31fH+F3ef32ebp6/1CwdygOsIsBgOFR\nwESkPxR7CoWu5x/kgD87hQ6vlPo+4PtE5A+h9f+PKVf9QaXUO0XkecAPi8gvKqXesM+xHg3yN5jY\nCHQZAOgnx1DSb9WtaXSMctZNkRJqEEj8IeUbdoFrEPYZHRTbTZ0sY8P1/icgfnW+QZ1vkFWBnJgT\nXKOObk4SByhkAzzExAFs4nflHp/m3/L63YldVj1/oCZ4TwprY5upDYAPE5J+l+x4nVBKRO8vIk8q\npZ5VSr2zXP4uEfk+4MOBA/m30OXV+G7IriFxefOFFI2rdjWS9H3vdX0hvxFoGByL8LzNYnywH8oA\n4h+T0gk2KQ8/fE2PfrcJS1cGZw/0Ny4rpsqtm81RgG0EStktXh0RO7OCzegvURtuLOrfvVGb39H3\nK8LPzvW5uOUo+tI9Q4oAdsk/feTet86XYtxB+j4nxGsAekaee0MgmrcUUX0okQ8EfrkM+H4YkALv\nFpFbQKSUOi1ffxzw5fse79Ek/y74HoCAINUYA7Av3Cwgg1icEUhH4DOOmw9rHB/Vb6ybuCb7hzvl\n7/dh19mn1wGyWiCrjjJyZpRgd0wz8QDXCJT/4zIeUMRNI1CoAMK3Zx2HEr6LLnI32IXkndF0YyKh\n/TnvLHJdFsN1Pvo8fEP2WVH/LidJHSi/KhCRfwR8JDo+8A7gS0Gnpymlvgn448BnisgaPQT8k6Uh\neD5aCgLN2a9VSv2rfc/n8SJ/H8YYBAvTZgANlKO2RgD1ZzoMw/ahkwniq6kzLdm3ztfN0JlIf50F\nnt9aKMcuTitAWQU+Lm5WkJFVkiXcuukYAZ0VZIwA8Q0KNuTFg/ZsXZfU3fLMoYTvw5Qk767vGW0W\n2zU4DsiQd+8jextpfDVr8Sil/tTA+q8Cvsqz/K3A75n6fA7k74P9AI3w/vtaRHYhRD8f2sYOFuv3\n3SMGe/1cQbIkulHtv1DryhhcuhFY1MHvSpjqI0tLDhFAnRf18qF+CeAxAlZ57bKstlodNYyAyQy6\nEZ9oUi+2sDlr6PeNmMXQdwiBPcHPB09crJPozf7s/y1p0T/aHOvdd2Gf2kctRIKkjyZNPprfakpc\nlWqFA+jLImovm5bsbSTxDU+tHpOxZBmoizQE5vfblyShW/Lpg88IGANQBlRVScCSHldGYFbCt9GT\n6gsDRG9/vnOy4KYK2PpGm76ssTFkf8BuOJC/C/ehsm5o1/vfRfoZmuQ1J+Ym3Lp/7KIcBVmZLNZD\nbra9iPNqZEYNwfX0ndV7+5LGCAAc3WwagTI4rJwSHKP0+13gzvp20UX07nu7CKBD+FCT/FCgNit8\nqVvhSOOtd07EzhDZzeBfAxzI30bfbMgZvP85JqT4iNQ8XHMHYnVmypIkLic8eaRX33e9tBEBNMls\nHfA7hEo+QwjIEJqN8G0sknZA1lnf+d7j3YNfVqzIf0cpJxSms9ncTZkeBRzI38AKojXg3PxTeP82\ndiX+IZK0c52NR6XLBex0uEHE0YIkukES3ag9baukgQ5a+0cB7n5gGiNgz43wH6xjBnAXpiB9F70Z\nQjMTmPH6fXq9732Hd18t68nQMaSv78V5PGkT6J3M63/EcbhK0E389jq4cO1/DAH6JrbUnlXE6Tom\n3wpQzGIAkuiGlnuiZSVVmJIGJpfdRZ/hm3s0YJe8aKBP+slnlOZ8GUJHN3V20FwwXr9b7tvAud/9\nbTyHs3TmJn0bSSTDpa5HQCKIDgHfRxA2sduBtRICzQfA5Gb3ZP6EZvw0mpzvSG59hK9fR+Rb7fXf\nyyPqmWHYS+EiAAAgAElEQVTTGgAT5I1lSVxsdT0bC77CZjaGrtfkhqDL4zeTnvowh/dvo2EE1rUR\nmHoUYHv9vd59+bqD8N33bqaOIX1zHwKNYnVTIo1VPRfiIPsM4vEl/wHi927bkQ4XKv305eqHoG/a\nehfp64fP1Iq3SylMYwDsIG8S3dC18AtrJGWlL/pmtNbEEXYtXENgyh4Ew6elu3WRDBLHGMxN/AZW\nEbmqPtDUBsD2+vck/Mb7DtI396GBDsxOV4bBBHqBeVp7PoJ4PK+SR+ZpEL8xBjjevxX8nWrW7xjt\n3oU7jd1H+lkR8VwuPCydrTS2h977G4BGkLeUe1R2Wq5MWhkyfaOAscZwtLbrI37fKMCQfL5Glsta\n+plT9jH7t+oIRXfq1pyTykAerb9P0tGvu0nfTdH0kf69POa80O0psyLqbE25L+xZ0ZPgkO1zVTBB\ntkof8Q81wDAe4p65/32TtkKKUvlIH+B0HTdIPyvbAb4nBzM/6UYsQH0zp/Fm5yygVpB3c1aXSC7h\nq2wZQ8cooD8YPAZ2ZdRRCJF+poZbPC6r/0fnBeIWj9vXANgZPovEW0dHv25no/Xn5Ut5D/qdD0P+\n9j2YxmoSGegg+YzHNSP/PTAk87jVEEsorPxnR/6xvf99yj3vQvh6WVR+vtb1bdI3D9zdXDgv7c0q\nNnSsH74kUqUHNt4ANIK82Vkt+ZhKma16NvUsVph2FLALWkFfd2RQjgC6yj3sDYf0t89lqPOCbaZ/\nrKi02JF1DtWvVM4QHg03uBsn3hm3+nX/TPAh0s8KqRwP/afP/k6iv0lWLKoaPPvIQK7k09XhbCdE\nEl7W45rh0fxWLkKJvyOvWm2ynYK/QwgJXnZVKHQlnnt53CL98wLuZlK91rBpJK5iAGMNQCvIuynr\nzGxyuP/A+xnvKMAxAKEpoaPhyjvuex/xu2TvW7YLekhfnReobMM2gyjNiLIN8fmG6HxDZFJC12s9\nL2DXOIAV6C1oT74yCCF9k0nWN+I8L7Tz4d6DWk0xIwDZWQayc/sr2acvxfcA4DqS/9jJL4H6fmOf\nPl3Y2UdfLRRfxk8XiXV5/aGk7xta2w/c3RyyPCIvA74crVktagOQxvWMylAD0Bnkzc7g4f02QQ6M\nAvZJCa3Oacog31zSj0X6mvA3XtI/v69/q8V6S0IzCcH8WjsHgp1Ar/b622ma+nU/6efb2ulwR5x3\n8ybpnxf6PtTYcr4R7qT63j8vYm4nddeyMTKQndtv9zo4YBjXj/zHIFTfH6qXUuRN+cfe1vL+Q6Sf\nPm+2rw55F+n3eVnnBZyeLcmzmDyrSX4Vr6lHAM1g1pOr4YqIsSy11u8GeTd5oyFKo3yBg5BRgIvJ\nRgGuA9E32WsK6ae8Jtu7Wa3nO6SfnwmbPKZYC5s8YrMWVrcKoCBBjwzi86IZB8jX4wLBTnpn7fV3\neP49pB8iM9qkn+cxZ/eWJOkWyDlPttVVPY/NFY4rMh9jAExuP1DJkMElPYYggqSHgO/1gUfmgRHE\nb7oXORp/Jf9Yy3YN/tqSzxDpAzt5WWenCXkWkWUxeVbfwElSoBnWDL/tAHD/LGAT5I1l2Q7yrte6\nbEEp+/gI3oYC2GS9o4BdU0JD0av77yv9DJB+cW/DZt0m/SIXNutI/88jNnnB6lZTIvTGAYYMQKfX\n3w7iQjfph8qMhvTzLOb0nnZCkrQgzyKOTtZwtOa8EHRSk+JhITyR6HsxK8JkIDfQW3n9Y/sWXwBE\n5OOB16A9rm9RSr3aWf8E8K3ABwDnwGcrpf5dyGd3waWRv4i8D/DtwPPR9/DTSqnX7L3jXfR989oe\n6tvt63z1fXqCv6HoT+NsBnP3eeDMewPjfRkDoIPAZv0SWHcagN4g79mDugUidFeytOvXLJLRo4DR\nZbNDi7tNVU8nX6PunTczdwJIP7sfs8mFLNsCitTxOFfW/aV8cYC+CWG9Xv+6RfpQlwXpStt0Zca7\nWfsezLOI03tJ9T7JC/Ks9uozyxFZVXNQ3FiU/znxBXr1pxfo+3t/SDSij0PffkRi4BuBjwXeAbxR\nRF6nlHqLtdlfA35GKfXJIvI7y+0/OvCzo3GZnv8G+CtKqZ8WkWPgzSLyw0FfqOshnYr4Tc11s8zS\n91vBX8cw9Ek/vhTPrrTN0AfO1fXNA5dlcen5x2wyYVk+cGfYoxRtAOo0ZhN8i/HNARgM8prJSWdl\nwNeSe0JGAReSEhpK8LbuHyr9nD1op2uWpL99LmObMUj6+fmWPNuSZYo0FY5ux9xaL/SIYC2k64Ik\nu090u5Ygg+IAfV6/0/e2i/RDY0t99+AaIT/R92CWxRyfrIGc82LLnaSUgQp4ItEykB4BbHtloEYn\nu8hx2K4OPhz4pbIxCyLyXcDLAZvvPgR4NYBS6hdF5MVlF6/3D/jsaFwa+SulngGeKV+fisgvAC9g\n1y+0j77vEr/5n3huJF/DdLPKTv20gr5ua8auLJ8+Xd9NmTMSz3MP2w9cXj505oG7mRUsc/3wPCDh\njIQkNQ9TzirWnqb5Fr5ZwCFBXmVknzKtwyVzVV7rrlHAhaeE2lq//Xqs9NNB+sVzWRXE3ZRkb0g/\nux+xWUde0j+9p69fnporGNOMzRStQLD0xQEGvH63ymZo2uY+9+DdLOXmiTXaSAs40rEo7WhrU+ZK\nkvYo4IpJPk+KyJus908rpZ623r8AeLv1/h3AS5x9/Czw3wI/LiIfDrwv8MLAz47GldD8ReTFwO8F\nfmpgQ//yoYwedzsbfcRv3jvyjzf3Hzq9/6F6P1Pq+uYhlHvb6oFLsqLy/KE0AGl7BGAMgG8WsHcm\nr/H6jcdfZbPUD3XrF3ODvx4vepdg8IXALffgmZy1vZu1snc2FeHHDU2/Jn5N+Ib882xLdq7gdgz3\nzO/WbwAiQFbl+fCgGQcY8PrdAoC7JhTY9+CDe4sG6bv34DqLeVCOQvMs5vhEP0dZUnD7hpaBzgvF\nnUR/d3dWcK/kYzqfTYEoeIbvs0qpp/Y82quB14jIzwA/B/wbYLZmxJdO/iJyBPwT4POVUvc8618F\nvArgRS96fr0idKq+D74bwyUh2/N35R+T/WOOae0vLptRx9GyIioj91TpiJEOrOmbVwHbygDUXvcW\nE9Z7WM6MdGkxA8uDt049i1l3ZCisE71uyYY0LUjSgjTZslqY2ZdU56EfMu1d2Q9YA4sEsPL6k2V5\nZoEwk5VMK8EdZ07brSwbr+2yzj7vvixBoTZZU8ozv/Xaug/ccg8GdQI7soqbNiqrDeEiMb8pwJZN\nbnm1qVBbt3oPSRqRpBFpGrFYFiyWinipWCwVki6I0kXZVH7ROE+VlCOAZA2LHBVnSJzAIieJbzRO\n/5iHnJa3uM62qc/RVOKs+U/fg1VHS6dRuoktLVLF2jJWSUn85r5cpzGLMtUzSYsyDoW+F8uPNe/H\nbfVsmNf6vuyIb1w92eedwPtY719YLqtQ8t8rAUR3a/+PwFuBG0Of3QWXSv4iskQT/3cqpf6pb5ty\n6PQ0wFNPffC0hUCGYAyC6/EtktEGAEzJgaYBAEP4W9KYclhrHhr9ID6R1N5XwwDc2HKebMmSoqHl\nH5GTp9oLWzvmdJ3G3DzZcHSck6RbkqTgTqJn/q5iuJ3oGb/6AdtaJXKXjQyfhpF1vHlZLRre/1jI\nIq2rTRpv1WkFaP8fhMVnsWtcxhoA2qWe5UR73eq8qH5uQ98xEGUbFllR5u/XJ7OiYJFoYj99zj5R\n/f/4JOb4JCZZCYtEESeKRbJlkWyJUm1oZBUjqf7f+B3KZjH2CKp6vzoijpfE5f0YRwuOlxvSuLBi\nUPocT5KCtIhYlbKP2dOdtBwBxFues45xfJLrEUASc0ZSGYD7JCxLR+XBcaLvw1Tfh8YJOT5as4ph\ntdCzgJ9ItAHQHv+2zEQrenv06uA+/T2Jx0BkqoJ+bwQ+SETeD03crwA+tXkouQM8UErlwOcAb1BK\n3RORwc/ugsvM9hHg7wG/oJT6X4M/OLYBx1j4gnk+/d9nAKz1oQYgqTI4dFqdyXNOY5NLXW6I8ERi\nAr6Ku/ZjnWzhWBM+DtnnJzEPsrgacquTiCTRD9zRcc7tG7XX/0RSe1XmIev1+l0DsLYIcrWoCcn6\nkz0qU/qIvxE/MQQvi7ZRsFi5ZQDMOZf/Bz2MpKy3v9QSi/35iBSVxqhVAXftw25YUbBZC/FSwf2m\ngT++HZNlAs8VQESS6tFAshJuHQvprYLVrYL0VkFypIhup8S3U6LbadPrt1Geo/6fwyKvJLs4PioN\n+oZYNta9qAAjrZhqsGFOyKlzeOOEPLhX3zvrNG44IGlacHSyroj/TqqJfxXXxJ/GqqX3XzcopTYi\n8nnAD6J9gm9VSv28iHxuuf6bgP8M+AciooCfB/5032f3PafL9Pw/AvgM4OdKjQvgrymlXj96T7sO\n87pmcebNoX5L/+8yAM65jBkBGAmoNgDaAzxJICvKfGtLJriT6MkxJsWORB/g6ASSbEueFZzeMyQX\nVx7YzXTD8UnO0cm6GmIbL0s/ZKrhXbWmzA8Z3mSJTlEe2Mb8OZJPn9fvg52lkrCpFQvzzWVpyW5l\nLCYqtWGfl4+/f2/zoPX9IdxEJXWWk+2PRndS5DxGpQXFc9oALEqZD2CxFjbLCO6DPvEIbkNyrnX/\nULlHTlad5N+SfzitzjFJj6pNC7Ug56FlAPQ9eJIU4U7I0ZosKdpOyImWgx6UktDNkw1JUlTEnyRF\nRfxmBGrfj7bOX92XZSlvu45PodbEXN3ZvSW3vd5Z9k3W638N/I7Qz+6Ly8z2+QkmKdM5AYa8fVf/\ntwPAgQYAmilpfQZAoykBQD0EJ28O5kOH4EBL7rmTNr0sI/nUD9j4KfN7lcAdIffYwco0VuRb5TUA\nLewrAzmofrWjmzoukKxxDWBMyjaLkfMC7m1wtf14beQ+vSxZxaRpVHr728rzj08W/XKPC1f+uUFD\n/zfyD0ASQSEb4mgNrBvnOOSE3M3KIzhOyGljJFoWE0wKjk/q+/D2jW15D+oA742YivTr2NO2X+6x\n4jyuDLsXppN9rhwuPeA7DiUxGuln6sBOX9DXfm8HgAMNgCb4dcsAQEmsJRkl6JzrvjjA7URrsGOH\n4EClr7pyT/NBazbBbk2e8V3zRE/kUs6yluQz5PUHoNke0JZP9LWopLSLkoHYLQ7AmWPgbxUslsIi\n0ZlAXTq/kXuiO6k2OEMYkH+S+CZ50SzGd2MBSaTjALb0A34n5E6q6px/a5h7fAJ5Vuicf5IG8Vey\nY6w/b4i/jjuZUWgd7AUOPXonwuEquuiawGPLP4nj+VteYasExIABsFGotS6fMEUcoGMIbuurq9gn\n99ReP9CUfMx37oMh9l1q4AR6/VCXHtB9ic31AJOymkSi4wFzyUCbvDmRKiAOsCVrZAIl6EDwZu37\nDlFD5+/N7hmCm/5JM28sTrUBKLZrcjuVtowDaOlHgp2QO7RHoeWJ6O9dEn8lO5ajT0P8zbhTfUK2\n19/5DG31M3QFA75XDgfy90Ct13Vgckj+2TgjkDjprAHUNwKo0xT1zRsSB9AemeV9DcQBAEtfVWWW\njw7y1hk+dnncPaokOl5/a12g198n9+g8dJswofakyzTCuWQgFwFxgAhQqwI5jynKdNgqDnCr0Jr+\nWjgnJk6aOn98stAe/50yyNul83dhIP3T3JsJVDOo8/K6NOMAtALBthNyN+/PRkvSbZVefCehMfqs\n78VtlW2mj+f3+g/tGvfDtbp6CjVcp6WUhFoFu4bgeKqdBsB+H2oAoJKGQgwAEBQHMB5ZXxzAHoKD\nzqPWgTXtaZk0OiP3uF5/45y6JtEtrRHR2k9IDcnHh4Agryv36NnQfq/5QmSgMXEAmrJKDKi0YJvF\n8FxmBYK1zr/Jo/C0zlC48g9nTvpncyJdEt3QhkA2wEN8geCWE5LoUWgrDmCy0aCV0tmX2WOIP8Tr\nN6jSPQ/oxbUi/wZc3X9I/3fLOhjd3ib9PgNgb2PLP64BgKrSZ4gBgLYHo4NX08QBzBD8vBwFuDn9\n5mGzh9cu6dclcgPjKyGyT4/XHyr3mBmoTTSD5JPLQMax8H2nvvkARzeRZI2sdJVP+2y5rcsz2HGA\neFmwSLattM5gnd+H1uxfav3//ExXVU2PvDOpk/gGcbQmidxgde2E2IFgqOMA9ii0lnpq4rdjTnZm\nT3VsM5P3MrT+g+zz+ECFpH/2wQoAhxiAZgropuXVhMQBuobgrTgAxtvy5/TbXj+YafOe7+xL93QJ\nfyjQa8Px+rGqV/bJPea1hiNWzyUDlaiIvej2/gEkWTZiAADRHXT5h4E4wF46fxe65J9qg7OqrHa+\n9Xw+Yq8JYRCW0glNuWc09uix/bjg2pF/wzO7AOzk/TsGQJ+4RZg9EpAxAGPiAJ1DcJqpeGaYXafS\nNasl+nKnW+gbXfkyfrrg8/o9QV7z/X1yj/nT8Gn/5v3EMpAdBwj4qsJNHQhO6oqnQ3GAJNXEv5fO\n34WBALBBYlVU9QWC7QlhwbPSGU7phLbc00pA6ND7r3qu/1XCtSJ/pZxHbarZvr4UT2g/aF2TvwYM\nQFUILtAAGEwZBzAt83wlHPryp+uT6Ujx9KGLoOxAr4Ht9VvfO0TuyYqo0Rc2jVU5EvCNAiaUgSyM\njgOUMYChOIA6L6bR+X2oJiw6+r+pqspxfU4jA8FD2WjG4x/K7AnF7C0bRfaalX6Vca3IvxO75vs7\nen+X5NMb/LWX7WIAKInF4qYW6RMWB9Cod9SOAzTlHjfIa3v91f+xer8NV/Kxv3eP16+/77DckxW6\n6F0N25++QBlohjjAFojL0g2TyD0uXPnHgspO67LaA4HgvglhvlEo6HvQEL+vVn+X1x+KKt3zgF5c\nyyvUKf2EGoG+5txuALh86HrlHx9CDUCJ7lIQ4XGA46W/JovxwKCd0z85TMaPL+A74PWPlXuM13/e\nKmxaZtfH2+BsoDiqpZ8gGcij9U8RBzCHiVcxslpMK/e4sGf/JksdAC5RLTeB4EUCcfPeNOiaEOYb\nhd6I2ymdQJDOP8bLH9tVrxPRIeB7ZaC9YuvH2Ff6GcpK6fP07deu9w87SUB2I/g54gB2CQef1z8Z\nfIFeA9vrt1I7zXcNlXvsjlJtmBLJECQDOXGA6lS7ZKAxcQB3QhhWHKCrMFxWTC/3+GDSPwF4QNVc\nZ3XUigPE1P2V3RnB7oSwaiFgj0KhndLpI/5BGfKAvXHNyH+mqn6Bmv9o+ceGzwCY5dCMAcAscQCo\n6/R3wS/5TAB7UhfUXj/N1E79HcPkHrurlP/emFcG6osD7DshrKqKumtaZyiq4K97HO3xqyJH0uPG\nmjhOqhnBhVqQbx/qFQGVQY3T4UvpNGjk9Hvkm8Pkrmlwba9iS/pxJll5RwO2JOTJ6R8s7cAI+ceX\n/++rA+QrQhUnM8UBjN7f9vp7MSbYi57Q1YifDHj94MzgHSH3mHoy/bU4p5OBqte+OID1W+81IcwY\ng4uSGzoNgIbilKq9JroSqB0HSCJjsIcrg3YR/1Ba5+yB3S4c8vyvFlrSz67oquZpv/aVduhb31cC\nAroLwUErZjF1HACocvpd2IHeToQYgPIatAK9A16/+Q7j5J66paBGXym2aWSgBrZ6AlzBZng+wAC8\n281NOq4DxANYL+sey86oo7pfy/7KvglhQ5VB9TbNb9ol9+wTtO0qAX6ZEJGPB16DTuz6FqXUqzu2\n+/3AvwZeoZT63nLZ24BToAA2E7SMvH7k3yjdarCP7r+D5h8s/9jweX6+GIATI5gyDmCjz+s3ko8X\nfdfZN7PXntTl0/q3Dy2vf6Tcs+nS/MNkIJ0aKoyVgew4wM7zAYYKw+1aHK8PPbPZbVQkf1aeR7LW\njQTtdcDQhDBfILgu2zBDssEcmMjzF5EY+EbgY9EN2N8oIq9TSr3Fs91XAT/k2c1HKaWe3ftkSlwr\n8lfOI+TN+hnK+PFk+rRSPAPy/EfLP+CtAtqbBTR5HMA/vO6a1LWz3m+uQZ/X7w3yDss9ts5vN7I3\n5QNWMcEyUHsEACEykBdTxwHWa78BGGMQOsheWdbStNuUVaEbwJfefnvS1/2yHHSy04QwE3fKiqhT\n7uny+u17M0Tvn0wZmBYfDvySUuqtACLyXcDLgbc42/0FdGvb3z/3CV0r8rfh/YH3qe/f91Dtor92\nNYAxcA1AUccrKkOwKdeX5BkDcdl82zxo2gutG5cbQ6CLcUEcrUtDYA7s74LkDfIarX+TV4ZJbbLm\ncoPl0p9C2+X1s9vQfBV3ZffsD0NKukx0uAw0SxzAEP+ydjaAtkEIkS4t+Ii/67PKnIcLX+8Ka8Ji\n7BpJ74SwpmEeS/xXkNyfFJE3We+fLvuPG7wAeLv1/h3AS+wdiMgLgE8GPoo2+SvgR0SkAL7Z2fdO\nuLbk3/rxXenHLsNrYDfktiDLsiSBz+PveF15/QHbNtDzwANNQ2C+R5FCRu01lnnXMXG57Ialnd9w\nsmZ04LhOVwwh/LMwwvfBvQYDXj/Uk4ZiWZLLw0ovNsFZU7/H1I0BPWMU6poxpkrkKq5nMpuZpOa9\nIRwT8Lbfu8i3un59PWO4KQM1pB8bQ3GAERPCbIhN+nZAfYw8lK+rLmt6BnH9+Pf2W+4qwW3Fbmz4\niNn83qH6/r6k3ztKGwORtuPmx7MT6PBfD3yRUmqrW5w38AeVUu8UkecBPywiv6iUesM+B7u25A90\n69LWCKDxoNnE5ZZotpf1GAFZDpB9F+kPef9dmNgYzEL4Bsb7N9fA9fpL8vCVa7Z7BRdqAaVeXNeO\nsdoIEpfef92/wJQNMB0k68lETcLXr/0phi6ajWK2rVaRrTkAVhygYQB2mRA2MNrsNAYu7O2s1+Ia\nDR/xH90cJn773D0FC6ssqTIZId+qIC9fvx9H+t544NXBO4H3sd6/sFxm4yngu0rifxJ4qYhslFLf\nr5R6J4BS6l0i8n1oGenxIX8Jafnbl/Jp36jrJsELztDaYApv30UI6XdhD2MATE/4Lsw1Wq8rcmiQ\nRRnk7YIZBYDOGjnmIWmsJ6WdruPGKACkqhtjvHxD/nWp6nGE70MtAznF4cYEgm2SdwPB7jqfp7mP\nMegwAK3Xhvhv3azf+4g/Peq+f4sc4vrCNEi7kn/CNf2x8s7kBkBk92e1iTcCHyQi74cm/VcAn2pv\noJR6v/qw8m3ADyilvl9EbgGRUuq0fP1xwJfve0LXivxhxAQPYwTch8ysM7Bu/mo7x/Pf2dt3sav3\n34cRxkAfbwbC98GQRpy0UjuHEMuyyh0HrDryzVEAxJUMBE2CN7LOVFklxgDUcwWGA8FTzggOQo9n\n3+qt7BndNkjfR/zpcdvb96Cao+JcepONVm03k55/FUcASqmNiHwe8IPoVM9vVUr9vIh8brn+m3o+\n/nzg+8oRwQJ4rVLqX+17TlfrCgVil5vDK//YD5h5aJbNksSTefsu3Nz/IYQaiD5jUGI2wrfhFm8L\n8PptGBkoFj2D1B4FANW8haxF/tMRvouuQHBfXaDQyqC9mUAzGAN3dODtuWBGbumxX+bpgl2ttnCu\nhZOoMVcQ1xuPuWQopV4PvN5Z5iV9pdRnWa/fCvyeqc/nWpL/IOx0ytLDqrx++wEzxOfR/yfz9l34\nvP8QjCVpXyaR2c9chO87fkeQNxS+UYAvGAwXkzvuCwQH9wdwDYCTCdQyABvPSNVe595HPQFjoBUc\nFnedTfyro359PxBdhH7FM3dqTCf7XDk8WuTfN9nLzf7x6f9QyT/mNUOv98G+ks/Qvvvezwnb6+8J\n8oaiKxicxhvu5bEVmJ0Xfc3iu/oDwI6poH2VQfe5b4Y0/xu3hgO7IejoVmfjSpP+Y4BrRv52lkDg\njeMEgFv6P7TlH5fc9/X250bIpDb7IZ+7OcXIIG8o3GCwPQo4Xc/fstuuC5TGWycQ3J8KahuAnVNB\nd8HQ3Bc7Mysko2cMqhnq7cyuAy4fg+QvIkulmmNYEXlyymnGYxB849g3ve8B6JN/hvL994Vv1m8X\ndvHY7ZFM2TXKNKuRWzd1Ct9cBsAN8u4o93TBloHclNA5DUC7WXx7RnBfKmgDQ6mgpQHwoTc2EArf\n8zA18Vtwa1NdL0T7X+8rik7yF5GPAv4hsBKRnwZepZR6W7n6h4APm//0ZkCI/DMX6XdhCknGV6LC\nIn3TO1blZfemo5twa4ZywYum3APTF9kyMpCbEgq6euTUMlBYs/gJU0G70GMU9FE74JNDXQPgEv/q\nqP9cQuHIPxcViJ1sktcjjD7P/6uBP1qmI/0J9Kyyz1BK/STt0h5XH0PyT0f652zYNfDr7sOFj/TN\nMoBk2ZyaP6UMZHv9MLnX78INBptsoDniAO1m8b7CcBOmgtqw5630oPcbL9LmbHd7f6Z3b2Aq5z6o\nixBevWwcL0R6De51Rh/5J0qpnwdQSn2viPwC8E9F5IuYravKBLC9nAG9M2j271XCUPvJDtJX5wXq\nfIPKCt0WMF+j8jVMLQMtmqmd+wR5Q2EHg4HJ4wBdzeK7G8RMmAral+2zA6QrIWJimaeFlvdf1p+a\nyQAcvP4w9JH/WkTeSyn1awDlCOCjgR8APuBCzm5qjJ39OzdCvP+hcwkg/e1zWVXQS51viG6nFUUp\nmEYGWlge/4RB3j64ncbMnIAp4wB2VdF2s3hfg5jtNKmgITLQLuhyiGb2+Puyf6Y0AgfiD0cf+X8x\nembZr5kFSql3iMgfBj5v7hPzwRQ7Cs70gX7vf0j+uSgj4CLkuCNIf5tt9LJME7+BnBd6FHB0s5YM\ndjUATl7/XHKPtyYRkKRHFNT3xRRxAKPxN71+LCPgaxDj7w2wcypoKMYYi66A7wXB7k0x1yhgsv2J\nPH4BX6XUj3Qsfw74ytnOaG54bvyW/GO2sb3yuQzB2P3uSPr5mQDCItPr4vOC6I4eAVQGcG0Fg8fI\nQCZP3QR6Z/D6K9K3CN8uUwEQL3RvWZgmDuB6/V2N4rX275I+NAPB41NBx2C0sbC337UR0lg4zYmA\nSRiKQ18AACAASURBVEcBdgHDA4ZxzfL8Z4Bv9q+v9IJdsOwysAfpb/KYYq2Jb7NUrCxiUecbovMN\nUUn6VTB4rAGw0jsnTe10Sb8k/Cp4Wf52pr1gvDqqmovX+9BxgDEGwNX67Y5h7Z4C7UbxTYMwPhU0\nFIZE97nm8UUaAqs5kduhbu5YwE6Q6DDD91rDl9Zmv/elf/qCbRc1GrAxAelv8ojNWihyIb21pVgL\n6bogye43ZKCoPN7odFA7vdNqzbjPZJ5e0rcbypf/FVS/Y7w6qpreQD0reEwg2N86srtH8CqGdktI\n2DkVtOu6uF3cJgioF6wrIxLbGUBzocwuillMNgpwvf6D9j+MUeQvIhFwpJS6N9P5TIO+Mg89n+ms\nse4agosYDUxI+tn9mE1eev7riPSWcVsLkrLim/58mQ0E4emgzqSuAtOSsa5zPwZBpL/J9TV3m5gs\nrBaDi4Qk1bnqZj6AHQjuiwPYE7psj79ufKX7B3TJQH2poBr+TCCoDUBXVcq5SK0oSu/bGII4asZW\n9kVH3G2KUcCB6HdDyAzf1wKfCxTomtQnIvIapdTf2vfgod3sZ8FAIBhoB4EvYjQwA+ln2Zb8fEue\nbTm6HaMvN3q7vGCVZcQnNZNFEJ4O6vX6Ny1C60NfY5lO0s895J/o96rIdc46kCwSinhZnUcuDwfj\nAF1ev1/qqUcBNyo5qHsE4MsEGuwPPDHcY7V+Hzd0sa8hcEZpjcKLE44C5vH6H+/Cbh+ilLonIp8G\n/Et0FtCbgb3IP7SbvYtRmT42hmqcQFv+6TICMP1oYGbSP72nmSvLFPl5zHG+YHWrZrMVG50NlG2I\nQ9NBO7x+aD+s3gbxPUHcIdJXrudvjBTA0uoxOzIOUGv90mwWv+kO+PqnvXSngjZfB6aC7oEh4jQj\nDSPVVe8LS7pzs5BCjYBL/Oa153ncZRRwnYK8Q86u6HTG1wAvBR4An6WU+umQz+6CEPJfisgS+G+A\nb1BKrUVkikleod3s50NHzZ/Kp3ONAEw/GrgA0s8yRZ5p0klS+6eL2azLeMBaSG/VMhCgZaC+dFCP\n1w/dD2TVOzgkiDtE+vZfWZGyIvxykt4ucQC7jIOd4XNeQJaXDJjoa7mKjRRUG4BVPJwK6isK15cK\nuiumMCCuIQiWhVzS7zIWA6MAYwDcc+o+3/Le216tVM9AZ/ePAR9U/r0E+DvAS3Z1lIcQQv7fDLwN\n+FngDSLyvsAUmv8LGOhmDyAirwJeBfCiFz2vWh77Tr3vJhxa5tmHPa37QkYDnkbcKmu7m9ustYgi\n98gXWdNGZ+eKpPxKebYly4RF0v6cOi9QabPBdwPrtS7968nw0ZLPphHwHSMBzdZkxvR1QFcHzbeQ\nRFQGwJ4Qpr11/dpk9qxiOLdI38A0jbeXdfUPbjYvb7aZBIijhYfoxhH4rqRXWPLTUNxhclmoB8YA\nAFc3IygMIc7uy4FvV0op4CdF5I6IvDfw4oDPjsYg+Sul/jbwt61Fv1IWfbsQKKWeBp4GeOqpD1YN\n0p+Y7BtwvH23vkdr6LPLjEyn+YZwE5WsqyJspXCASmO2ZJWfGANRtoGzZhZJvFZmLbDlmJg8E7hX\nABFJCmkqpKlwdDvm1rH29hdLRbxULJYKSRfEt1M9B+B2iqziVnNvU/Pd9frz8q9Qa4rtpiIUr6bs\nqWfTEFA6ZDqvyGI3HTfn6PYUSI8a6ZB2eWg7EAx23f66UfxdhDvWIW3SH2oab3cXs0lfNzKXxjUy\nhGuIDi4voNkpB5n323W3DBvSUCnweekzAJ3voxC/dlI8KSJvst4/XXKXQYiz69vmBYGfHY2QgO8X\neBY/JyJvVkr9zB7HfifD3eybUKpN1mPIfoxXUtSeYmvYN5cxoCS3o5t6FHD2oJFBrlYF3K0dr4QN\ni6zg/H5Mxai3ChZLQRsBvez4BJJS+knSiCSNSNOIxVITf3qrYHWrID5ZIKtY/6X6P0c62Fv1dy3r\nvkt6XDXyrjN81hXx59vmpKYWugxASRKtImTuNbIXuMbJnKNVs8ZXZ8gUhgPIecjxsjYAJ+a08pgn\nEjAGAJqkf6MkfkP6vh7Cpu+wTfpVaqWH9H0e90UYgGLb9P57t3UMQMGmWZpiDBbN58w3Z2EXAzAN\nVOgcimeVUk9NdNALQYh5fKr8++fl+5cB/xb4XBH5HqXUV+947MFu9l7MRfZj0NGH1cY+xqAit9II\nCA+qddGdFDmPKUptPmLDioLN2jYTsKJgYZjNpB6mMUkacXw71mSfKBbJlkWyJUpBVrH2+kvPv+VR\n37rZDvLGEcV2Xcs9JfFnhbQmNbVgG4A4gUUt93SFUVvXqBw5NYxT2YKwKk3cM+N4rAGAmvSNx29I\nvvb4a9K3jYFL+jbh6//N9y5CCC2OFqOln3xrRiG+Y/q9f++2rgHwef8GC8f7D9DVbQNQLesxAFcM\nIc5u1zbLgM+ORgj5vxD4MKXUGYCIfCnwL4A/hM762Yn8u7rZD3zq4ok+FB4Jw0awMShb68nZg/oz\nRzeRZA2c14cDVFpQPKcNwAIFtwripYL7RoDecutYe/mnz5W7XwmLRBEnitWtQgd5j7TcE6ULZKX/\nSJZNj99IKelRXfrXknuM12+Iv1nuwG8ACrUhLkkljpb9MpDnOolTqtor9wSUlbYNgF0TyHjsAGlh\nCmH06/k26ZtlhvS7SL71viPdUV+zeQyA7zjdRmiE/GPQNXHS3ffQb+VkAUG3AZgCCjVVZdoQZ/d1\nwOeVmv5LgOeUUs+IyG8EfHY0Qsj/eYA9Bl8Dz1dKPRSR7rF5AHzd7Ps/YD0Nl032QxhrDFwc3dRZ\nNpbXLycgqzXbu/Vlj0nZZjE8l2kDUDLGYi2c29LP7Zgs2+6m8x/dbOv8pYZek/5Diu2mIv46mwUa\nKY2RIRbHgwyJA4A+9jJvB8/dWIQtSQU8vMYA5NuHJPGN0gDU99u9HG6XFsIn7UCYnj9E+I0qpdGC\nfEcDsCuM9ONd5zEIg/JPX4p1gNzjQ6gBuErocnZF5HPL9d+E5sKXAr+ETvV8Zd9n9z2nkCv0ncBP\nicg/K99/IvBaEbnFRaZlgl/zvy7oMQYNcnPSRIWbsGwageiOzshpJF3c1lU6ubfBMOnqVsFmGcF9\nvdUiERbL7X46v6Oht+UenTdvPP+h8sYN9BgAFikqzrp//+WyJUmNLTAXYgB80o5+79fzQ738rmyZ\nJL5BwZK8eNBYPmQAxnr/PumnT+rpzQaqTsIj/xjsOXHKZwCqdZNq/tPB5+yWpG9eK+DPh352X4Rk\n+/wNEflXwB8oF32uUspEtT9typMZhLq6PWRGwyK4IX1bb7N/JpCp7bOvzt8n94BdHsE/qQlGBIIN\ncWzy/uu0g9zjQ1d3MBt9en5fALef8J30Voss4zipJqnZI4HZSj1M5f2HYKTX3/hoz0SwqTR/pdSV\nNCRTIOgXUkq9UUR+BVgBiMiLlFL/adYz6zqXniwQG5O0XiucINVcsOsKQWdT930zgRZLHeA1On90\nO+3W+Y9uNnX+DrnHeP1AJfe4LQ/bk5qgKw4AdZ2ZOF62SMRrAMpGJLvIPT4Y4kgiMynsISdJbQCG\n9HyvAQgl/Gqdc05lI5QEgg3AFNp/fZww7z9I/tlR7vHhylcFvcIISfX8JOBrgd8OvAt4EfCLwIfO\ne2o+bIMJOcRIXHpvzkVb3hgeAeyTCURD54/SRa3zn6xGpUzak7mM12/knnbAt1nf3u1za1YbMqm8\nttD5ALCX3ONDnwFw9fzxXj69M2DNvevGiWwDUKiyaxnTjQD6pJ+uZW7wtxcz1cg5GIDdEOL5/w3g\nvwR+RCn1e8sJXp8+72l1QHmyffbwzHtzyec0DG6am+XpD2W47JMJtMmjSuePy8BupfO72T09KZO2\n3GMHeZvEj2MAoK+6pZkQ1kJgINjOQMonaiTj7w9sr9vRy3cIv3Ef2kbAKlBXHddqhWjiE9BtAHb1\n/n3Sz5DOPyr3fwKvv7E7jwGYBuqRNSQhV2itlHq3iEQiEiml/k8R+frZz8wHo/nbw0d31uBVh038\nHedcFZdz15sZwTtmAi2WRaXzyyqudf5S4vHp/K6G7so9zSCvK/lAd3lj2DcO0GhIvmiWmZgSxvs3\ncoshfZ+Xvxfhe7JiFKeDBqBQG/LtjDGAQO+/sb7PAExM/AZ9QeAD2ggh/7sicgS8AfhOEXkXZf7I\nhcP2/F0NcWIjoDbZtN6/Z1KLufl9Lfi624bY24zLBDI9fLXXb+n8ybKt83do6GFyj10B01/eeGwc\ngC26qJgnDmCuq5lwNgdq+cfR9W0vf1/Ct1+v11XWl+K0jAvVRsBthm7KVfhGPUPev5mQB/0TvqBJ\n9ENG4TLQVQxuVyge74Dvy9Gawl9GZ/fcBr58zpPqhZvf3WUE4OqMBkoyBRpeT0VUEbV3ZKMsI9GX\nCgrhmUCyiqsA76DOb6V12t25+uQeoCqF/LDw1beHsXEAcOYFdMhAc/QNdmEMgFfWsUtSm2XQajfZ\n2MYlewNPgT8AlZ0iRQroJjWuAdDnyCjZS5fh6Jjda0k/Q6TuMwpe799sP8MIzcA3E/iANkJSPW0v\n/x/MeC7DUKou4dtXIdMQ7RSjgX0yfnq8fXNzmqbdrXrpFoIDwQOZQMA4nd+Re3LTqMWRe6AuhWyI\nv1373tfo3JxhfxxgsDDcjmmdY9Ep6+xL+Pkw8RvUVN1vAFoNdWbK/An19Eelf06Anft+PEbo/DVE\n5JTuLhVKKXUy21l1wZC/gW0Elsu2ZjqlERiLAW+/VfN+S+0l7WMAoM4EsgLB0R0tYUkah+v8A3IP\nNBudNztfdZ0hdMUB3AlhEBYH2Cetcwidss4Q4fvknC7vfgT5g2UANjoQ7zMABqEGoEv66cv5bx+r\n2/tvbHcBhnoqKKxn9BFD56+qlDruWndpKCtF9j4gIUYA5jMEgd6+t+WcpYhUBsCXCdRTF2goEByk\n83fIPfo7+HP6m52vTLNzVdXDNxhudF6/DikMVzAf6XfKOkOEP8a7t14rdzS7XiN5WV7DQWUAzs9G\nGYB90BXkHRP8PeDq4GoVwBiC7fmXaY+t1wY+IwDzjgZGePu97ee6dG3CZwN3BYLlZFUTvqPzd8k9\nIUFeI/dA3faw/2y72hxaFyCkMJx4ZKEd0evlhxL+PmTvbme6k509qGssWWgYgEVCnB4NGoAp5Z8h\nXGbwdzqJaftYB3yvFMwD4w1RDRkB3yzDHiMQnPHjSd+0vX2X6Ds9f6gmzDQMgOPpD6aCVts5gWCL\n8N26Pf1yT39OvyHvyuvfNLN9VrHqkYGageBmXCC8MNw+JDPk5bfaS5p14JdydiV732sskj970G0A\nADgjXiQQL3caAYRIP2O9/1GVP/fERcYUHgVcr6tlBXwrI7D0EL7PCNjoMwIwbjSwh7dvCLWzb+vA\nCABGBoLLJuwtnX9A7hnK6beDvOeW/NN1tu0+t9AlA7XiANu1JqWOaxZqBIK9fNvD7/Lu+4h7F53f\n184TywAkS7jlWWe+G/0G4CK9/8axJzYAB7LfD9fr6rkBX2ryGzQCvgyhrhrjboaPL+NnAm/fPICu\nATCVFIHpMoGgDvC6Or+b1jlC7gGH+DfNpuchZztFHMD2PPsMwM5evmkcb+AjfvYne2VdNF8Z8HrZ\ng0EDEMc3JisJPYX3r/dj5KfdjMAg4U9c9VcpLsVQXgSuH/lDW+sfMxIYYwS6MIW3j8mxLk+rK6gJ\n3ZlAZXek0KJw+kA9Ov8IuQdoB3lL4s9y64tYTc93jQOMLgznxAL29vJdot9XynENhkX46rxJNL0G\nIOmQhyzEHSMAIj+pjZnwNQau/h9qBC6a7C8LIvJbgH+Mbtb+NuBTlFLv6dg2Bt4EvFMp9bJy2ZcB\nfwb4jXKzv1aWge7E9SJ/sW7EpH3TiD35ybO+sWzpWe8WWjN6v11WYA/SNzAeVMKmesC6ioS1asUU\neZOcynMZHAFYhrJL57flHnMeSWS3NzQsojuFaZIQnkjgPTncSRV3M4EbW86Lus3hKq4bnlfvPf1v\n9T67O2OZY9qVNLuKqrU9fIvYXcL3Zen4rp39HnQ6rZmFu163t7W263yNnnthDICs9Dm7RsDsr9Gk\n3kFDuqtGpPV+6tHc2kv85poDDdK3Uz0btY56Yi6+dX1E30vyl0jwCtVw0mbEFwM/qpR6tYh8cfn+\nizq2/UvALwBuuv3XKaW+JvSA14/8zU1verf6CD/pMAJmW19TiZLMqwfIXueVdh6OCuT6EEcLbkTW\nw2HVjGnVi/HNIm3szDIAvlRQQzqW3GN/b1vuqXbpMQCmtn0a196/6XFrDECd7VOTvm0IfP1v69f+\nzlj6fZP0O6+VuQabs0Y+fm/gtgvLZSuQXqERXKcmfUuOIV9X7/tGCeKMDOSERkZWRfpHN2vjbRtw\ne/Rm+ioX96wRnJ/0NclfDOk/Ll78jng58JHl638A/Bge8heRFwKfAHwl8AX7HPBakn8w4dvbDRG+\nee8Qo0320KHdO7Mpx8AlsmqZTfruxKLOnQ0YAKivSUd2T/v8FrV2KxtMaeN7ecxJUlS6v+lx+7CA\nu7keERjSN0RvSH/Iy7fX+conu6Oi6joVWz/h++ScMfCNEn1wPPrGMixJxjUSHQai4eXbIzY3TmPH\narZriuK8no3d4eW3Tn1mT7+rU9kjhCdF5E3W+6eVUk+P+PzzlVLPlK9/DXh+x3ZfD/xVwDcP6y+I\nyGeiJaG/0iUbGVw78pdbVqrblIRvtrFnjDrefZ+Uswt016iyXkyoxDO40wED0JHdA/0GTBcOKwvR\nRWtgXenyJ0nd43ZVpX0qr7Qz5OWbdT4v371OjRFRiH6/L0KNgG+7td8gNJCvm5q9Q/j7evldMMR/\nIP02lHKr1HbiWaXUU30biMiPAO/lWfU/NY+plIi0tCYReRnwLqXUm0XkI53Vfwddfl+V/78W+Oy+\n87le5B+1ZR/AT/g26QUQPhj9/mHLu5+K7F0Yr3q0xDO44x4DYJeSXrTjFkPnm0Q6g+TGApJoAxSV\nt54Vint5zBOJVJq/6+Xr1939b6vrMOTlZ+e76ff7IiQhYNfP3fAsm8HLdxFC+n3rgki/a9b9YwSl\n1Md0rRORXxeR91ZKPSMi741unOXiI4BPEpGXorsqnojIdyilPl0p9evWvv4u8AND53PNyD9qe/g+\n7x6GCb9cZggfnIDYHlJOCIzXv7PEM3gAjwEo99mV0x923ou6fLATCLbjAGkRtbx8/Tqs/20n6Vte\n/oURvoEtCY7BjrPIG7+TaZ+5p5ffOrWo2ZNAvx5H+no/jq7fV/LC3IvXwABsFZW0OTNeB/z3wKvL\n///M3UAp9SXAlwCUnv8XKqU+vXz/3pZs9MnAvxs64PUif5F6GGwwRPhmG2+WTlvWmZv0DQzxV3Xi\nd5F4huAzAJ4SDqN368QBTJNzEwe4l8dWYNjv5YM/gFvvP5D05yZ8G/aoyYNR/R+69uMZpdn36r5e\nvvdUnG5k7nJ3XRDpQ2+rygaugRG4ALwa+G4R+dPArwCfAiAivx34FqXUSwc+/9Ui8l+gH/e3AX92\n6IDXj/x9mSp0EL7538jUMXnsTaK3H6h8q7ixmG4mogtN/Av94MxNYk4aaHWdjORjTUgbCy0BPSSJ\nb7TiAFnp+Xd5+dAOdnfKX12kb+fg32oXP5sUtubuIsSz9xGcu8ypdz+1l++DnWhgL6tfB5I+dHv7\nTl0kr4L+mBsApdS7gY/2LP9VoEX8SqkfQ2cEmfefMfaY14/806P6bR/hl8ttwoe2tFMtq8oXCKfr\nBcfLDXfS6S+P6Qsby5K42F6M91oaAPPancm7D0wg2MQBYI2JA3R5+dAj7UAY6Z89gHyNWte59lWA\ndA7YQXJned9nWnA+b4+8+uTHOWaZuqWa5yb96n35MQF9PVxJ6ApBQdWz4lHD9SJ/oiDCh7aXD35p\nxyb9rIg5XceV95rG68lHAEYzT6IbkJ1dnGzhSGBT1sC34wCUgeA0LjrTNM1nvNIOdJP+/QdVjSJl\nvP58rclkva5LVE9tAFy5zF7uvSDt5TXJN6/70FyRuUsLuFVR9yJ9+3VX5lW1w0QXTvSd1BUzAI8q\nrhf5R1H3A9jj5duvu0g/3wr38rhRswbgydV0BqAK8lpyj8pO/R7lnAhI7Ry9S2tCWCGbUgZqSzvV\nsj5pB4JIv/orUZU3mNoALJyZ0NWX7iJ525tvXuOudGHfKHSq0gpdMCNQ/bqf9GGcrh/U3IbrNQp4\n1HC9yF+izuCtz8vX/4dJPysi7uV13Ro90z6uDjuVAaiye1jA+W+islNNeGXhuNmNwAxevw0TCDY9\nZCfR83tIf3s3Q2WF7k5WnoOinC17dHOaOIAnSA5tkoduotevN63l3fdlOXEu3nI8k4qlR2PGGHsy\nfqYm/b4R7hUeBeg8/wvJ9rlwXC/yp9b8fV6+/t8O4kI36WdF7fE3+88KxgDoTJX9DEAjyJudlTNS\n85YXVHlAU8NTv2cumDhA98S1aUhfnW+qmjgqK4jOC93J7OhmTST7GgDb6/d0ZbMRQvaN91aBP999\nqXsbFJwkxeSjAFd+q5b7SB/6ydwdsfm28/XcXiSHUcAl4nqRv0hQS0Q3SNb1cBnib9ajr1sQ2gZA\nYzcD4Avyqk2mb+6H9xsSxSwGwJkcdBEw8lY9f4HJSX+bbRoVMUEX+bR/PWB3A+B4/b4ifgY+sreX\ndxE+wOl60bgnzWtdPkOX0T5eFo2JcPvAzu3vnaAF4bq+b1vzu0J3720PfNVJK1ywEdgCgTN8rx2u\nFfkrtkG18kNIPysinsulRfrnG7ibw/lmOgNg5JAqyFvk+v/D+zW5JWtY6lz8OWWgfVI7hzA4U3li\n0lfZhvxMWCybM+FtA6D74K53iwO4Xr+nmJ9+PeDxOyW8Q0ef50Vc9TowqbPHy2ISKcieq9EbzIXd\nJZ6+pjddWCT6PinfirvumkwOuw64XuSvVG/phVDSzwrhPXmb9M8LeO5hRJ7HcLSm6UPGVsnbcANg\ngrxJfLMR5GWTtwKWre/LBKOAmb3+3oqaMCvpb/KYYi1slorFuiDJ7hNlG+LzDdH5hqgk/Z0CwT6v\nv6PURyjhg77/TEaZfT+eF1j3pLkfFXcSbQSyIqoK6e0rBbke/4WRfh/5d/TcVpQp3b4JYgcjsBeu\nFfmDqoKJfaQPUj5gbdL3P2T67/RsSZ7F5FkZ4Dlas1rYBsC+XGEGoBHk3ZzVxF/mqjfy1G1sJhgF\n+GrBTOT1e7V8tzTF3KSfR2zWmgBXtwqgICFrnGcjEAzhBsDr9beL++nXTcIH18uPgkeedzO7E5q+\nX+8kioeFkBWLvaWgZqB32R/MtV/3EX8g6Xv7b/e1XL0CowClDrLPlYBCDZL+OM+q7jx1dpqQZxFZ\nFpNnTZmnOQIINwCtIK+RfDZ5Rfzka1S+hvUSyZ0Svo3vPnIUMAPxtwgfvF4+cCGkX+TCZu1mYnQY\ngPI6B2UCdXr93a04we/ld2WTGdK/m7fvxTzX92CSFpwfrTnfCKuFHglMJQVV96X5Dc3vZzCht6+c\ndYqOjnsGh1HAheBSyF9E/hbwiUAO/DLwSqXU3aHPKfpJ383Vtx+0u3kY6ZsHr4mmAUjjqLHOZwB6\ng7xW3nrVkJuBQJe7vs8ITEj8obIOdJRSnpH0758q8vMtyaqOy2zyiE1esMoy1HlBfF7oTKDbaXgg\nuNPr33TKOlB7iF2jziGp0Yw6zb14fJKTZzHZcc7tG1vON7K3FGRLPtVvaX4v+/9EEo9L/Oa115u/\ngqOALYdUz6nxw8CXKKU2IvJV6Ep1XS3LKii1baRs7utdnd1btkh/kwnLrOBu1qzhsoptA9A0Dkm0\n8UyV7w/yKqtEQYV8jUqWnlGAJxgMfgPgIX6Dqh6/DP/so2Sd8nUry2Nm0s+zLVmm4B7k5zHH+aKU\nf8rfzIlxBGUC9Xr97f7Ldi2j4QAu3M3E6+Wf3lu27sM8j0mSgjyLyE/WJEnBeWFaZNZSkE4J1VJQ\nEqlOI+CXfP7/9s49VpasOu+/1dVd3ffec849gxnjAcaA5PxhhB1sj0YoVmRiCCZjEoITozxw7OCY\nRHJiHGHZE5AFkhWLOCRYMVbiMZaCBIpDbI/AOHZ4iMQiEohhDAM2ToQSTMwbmzvn3rn3VHVX7/yx\na1fv2rXr2dWvc+qTrs7t6np31bfW/tbaa8XNiH9d0i8h9XVGATDUCVoHOyF/pdR7rY8fBv52o+1Q\n3JyDS/p9vWyTKOH6zZgwSnjiOOTW1HmIrq8MwCzIG4Anzxa5FLraIK+pTZOenMzmOamn8SiggQxk\nT3QLZJLl4LvwEz643bGgQcPzLZB+Rv75q8h9cg2ApIFgLbV5MoGqvH7H8QA6yYx2bMl2Pm6fjZlE\nCWE051qccDsKiU9C4jggigKOT+bEsZaCTkPzXCvuCrUR0Omhyywe4EpBudx+I/k4xjz7ba3PlcTf\nlPR95J56+pVEXoU9nhx2CNgHzf+V6K71tTCz7Zrm6pvgmU36cTTi5llYIP2rUcK1mzGTKGESrwjj\nFuUGwCUaYwAy7yoN8mYv0TxPiOo8yTXqdh/iWgPgBoNL5B63kJ1rAJp6+VBD+lBJ/OrsXBO+Q/zL\nxyOWESxSwreJP3oiYBELUbQkPlc54r95lhCdK6YzIY70vyhyU3PzBmB0OkWdJ0iYntfE/J3Uev32\nDNy2qcPNnsE4ewYB7YREIbdPwnS77lKQr25/TjvvKvNY/68lfvPXbXIfa8cnS36ILUfI/H8+X40C\nDLGnz79aRKtYgHGGeqqZNQR8O6CqZZlS6l3pOq9Dz5F/R8V+XgW8CuCp9z4pLQ88Qk+/WM2EdGnS\ndJICIFxmy+NoRDi1JwYFzAmYRAnxdEUa8TRgPtVBN/1vSRgmaU9aVWhAPg2Wuh4LiyzFJGFBMA7J\n4o+mJ+sT6F7EsznqfIHMxsgsyAd77abdnh6uGVId1H08gyBc3SZ7uafGjr4LNc1kAq25ynhave2m\nNwAAIABJREFU7BC2iFeNziF7cQW0h51CZnlSNhO0ZDpmxIIxCvO7msOPJ+b3tn5zQ45TzwUC41AR\nhIpxuGQcLhlN9bFlFiDTwHuvfQgw5SkWBLIgHC2IEnLPYJSsrsm+PHvu2SwgewZNPMl+BhfR6jU0\nz6D7PNrr2/+fWW+wfXxTRnsrSAlcJprAbUIv/LW3cZCrzurC17zJbOcWezxAiMiT0E7wM9H1+F/u\n68ErIq8Gfgz9ev2qUuoX22xvY2PkX9WyDEBEfgR4CfACpVShX6W1n4eAhwC+/TufoSD/8p2Eq/aB\nNgWehorzYDUCMC/f0QmE0ZI4Srh5Zh6WgNsnIZMoYR4mXCNmHgaokxFhGDNNDcD1K0tmY/2S3RXC\nSWhS7Wz9VxEs72jvejknCK7okhSLSD+4oa4+qdKXYXSankIX4jdoaAAakT6Ue02mWQ4rzbUOwlVU\nuPL+hdvZd6PTKXIeoKYJyeM4BgDGc2ExGWljaRmAYwLiSAgjRRzpqz4+CTi6HnDtWJheS5hdS5he\nSxhPlDYu03FqZMfFe+zcy0zj9pCJ0dfNM2i87LPYnGP6K4Rakrlh/yrhEo5jTepn1k5PtFG4HQVc\nPVvd+3mon8vxVBGGCccnceaEXL+yzByR01A/j9NA6/3a21deA6Clv/S1t0soWL8teDrAmb/GyJcQ\nfK0BgGIrVvNblHxXIH6rtlerBjodsFR5Q75BPAh8QCn1RhF5MP2ci4OKyHPQxH8/Olnm90TkPUqp\nzzTZ3sWusn1ejO5A/z1Kqdt169twXz7jDZr852kygtimQcXpNB1+O17i8UlMFAWptKNHAABPoIfa\nV6cLwmnC0cmc46N59rKZF20aqDTXOr/fZLkgljsEMiZhQjDWfVhVEuvAbThZGQDIP+htiT87aLkB\nCEb6PEzwt5i5U0P6Lqz+AE2MQM5YHF1Fwjky09p/tkumLKMAOU8YRQu4Zf++EMwV44mRdPK/PehR\nwHQ6YjzRhB9MlP57Mia4PmV0OtUZPyczfQ6m/LN9f801LSIkCGEcEwQTgpQwg9FYj+yyqyk6IVEi\nEK9c8HWcEEP8R8dxRvxHqdwzC+B0qon/SrAifuOMuH2RXSTL+SpJYewYAXuE52JdA2DQN/GXlXg/\nHLwUeH76/7ehG7W45P2twEcMZ4rI/wB+APiFhtvnsCvN/y3AFHifiAB8WCn1T+o2EiR9mPMGIBwl\nrHTeJdfDETMr6GbU81PgPFhyHi65mdtzTBwGxFMddAOsl26eyT3mZdONyZechH6XIF4qgpFuuRfI\nRHv/xgAsYp29E040+ZhUz66kb8OuEJpMYbGKA5hRwFqkb6PNKCCc6IJr5O386FRLP2oasCTKqVQh\nC8ZRkk3iMiQ/I2EcaqKPIoHHE8LpiOPrQertLzPPv6vcY3v/QXCUk34Y6XOLl6YvcdEQnYRJL06I\neQaN7Hh0HDMNV8Q/CzTxXw9XZO9zRgqXpxZ6ZGpkSduzh7wBWETZ58Jz2MUApM9D9lxsgvh3gyeL\nyCPW54dS1aIpnmL14P0S8BTPOp8C/qWIfANwB93h65EW2+ewq2yfb+mynZgR9cimnNWDPg0klX/M\niyjcFZo8f8cvPpoThUkxoJsOwY+OV3LPNFxyOiV72fTQetWX1odkuSCRhTYAo0n6koWpBJR6//EE\ndaRTDdcm/tzBK2QgX7B2HbQYBQhXYTJfyUC3bmNTu5olyHlAkgZJMhnoWqI9+blwnvP8R3Bdb+/T\n+UfXp9rrTz1/jq7mvX6on+2b5L3/RM2zEYBtAKYB6fPQjxNiJnmF00Q7IOY5DMlJjytHZJnFngCr\nFAmFNGRI5R8scm1jAKpy6usMgEHfxL8hLNH80QBfU0rdV7VCVRzU/qCUUiJSeJ2UUp9OU+PfixZD\nPw4Uzq5sexf7kO3TCsFoTLJcEI4ke/l8GmwhDpBqsOeBTv/Uy1YabBgtuWnpsMbbOj6ap96+9rS0\nl2X3pfV7Wcb7T9SYOLnNleBEe//JFDU7yrymjKD7In6DEgPQG+nbaBkLyNY7uqpJIpwD56vdAWqa\nZDIQZwsM4c+uJSwmI4K5IdoR41DldP7wSGnCb6rze7CSfvK/gc6UmlsSEORHotoJceMAxgkpxAHK\nnBBYjTynyeo5HGspyRC/cUTMTF99/FXrTBeFuR4+Um9jAFwZyIbPAMBmiL9Jh7UdoyoOKiJfFpF7\nlFJfFJF7gK+U7OPXgF9Lt/l54E/Trxptb+PAyF8Pq+sMgBsHsDVY0EPmLA3PGjkcn0AcJVlO9dFx\nrHX+MVZQbYkd5K3CncWcYDJJe9zeITTefxDClWv5YbD70PfxALsGoG/Sd9FqFJBfR05Is5+S7Bcx\nv2QAjCItA50/YXn+15I0DkBO5zcB3kqdH6q9/hLpJ4cR2XPoSpFNkhGqnJBwmmQjzyzelBK/jj2t\nEg6mQfUotPQSbd0fil69CXq3NQCOl+8+E4fg8Ruo7QV83w38MPDG9O+7fCuJyDcqpb4iIt+M1vuf\n12Z7GwdF/kLe82piAGClwc7SKfYa+SH4486xzDB7FugXbhVUsz2s+nS6OEkDv2pMEqTB32Sqtflr\nV4Hb/Xn7PrgGYNMvTZNRgJEF0jx7FaaT3tLtRkxR0wA1S+AGljFYMEPHAYKJgidSbXyy8vxNgLe1\nzu+BL/CbZPKP1s1dA6DRLBmh2gkZcZSLN61Gn3bCgZvZU+X128jOH1aEDnnP3/x/HQPgyEC5Z8D9\n2zWrZ089/ZZ4I/BOEflR4E+AlwOIyFOBtyqlHkjX+81U858DP26VxfFuX4WDIn9wShOk+fT28FvD\nr8HCiLtCu96PRYtXtAZrhuBhmHAargJrK0+rXf50vHRSP43mbySFa+mKmyB+AzsQDNvxmtJjNZaB\nUgmoKh10GQXweFRIBwUK+fyVOj/kvX77vrt6doX3bxsAKAaCV2n6pjbMKg5Q54SE0yRL6TTEX5fS\naev8Bj6930bCQicBbMkA6Itbk/jL5B7f5wOBUurPgBd4ln8BHdg1n/9ym+2rcFDkLylR255X/SjA\nr8EClbnYdTn9bYxAIfVzdoQYQjbYxkNrjwI2bQDGqxEAtJSBStJBRwDXKaSDjsNlpvNrr7+bzl9A\nEoNDPDmv3161JA5wPDEEnU9GqHVC4lEhl78spdNF0xLPuaAvbMcAZCfZA/FvAUu2JvtsHQdF/mDJ\nPq0MQPtc7LKc/i7wpn6aiV/bRPoyb9wAeEYxrWSgnOdfnw4K5CZyVer8LeFKP+bguWcvHY26z6Eb\nB2g7IaxNSqfP669C7ryN9w+tDAB0mAwG/RH/BfH6d4UDI3/j+Xc3AE1zsaty+rtMnfelfsr0WBd8\n89Un7xOeDJ+NGQCrvlDu+K1koKut0kFluprI1Ujnb9PO0Qn8Jsz9Xr8jR1bFAZo4IeeL6pTOdWDX\nddJB30knAwAUJ4M1DALvu8d/GXBQ5C8i9eWIPfprlwlhbXL6m6Ay9RM2ZwDsuvoOejcATmG5wLNf\ngZVkUIE26aBAFuCt1Pk7ouD9Ayw9pE99HKBVMkJJSqcr99hevy351Or9jny1lgGo+k09qZ5rE/+W\nvHyd7TMUdtsLlHr9nlGALxBsUDchzJfTr7fr7nUZ7z+X+skREoSbGQG4DVVA/722WqU3A+CpKMqI\nUgNgjp2dp/syhxPk1u1G6aAmwNtI52/bxN1BwFiT5GhiP045IvU9h3UTwuw4wNfjVWaPL6VzHbnH\nRaLmq9pP644Amk4GW7dWj2+fg+TTGgdF/lIn+7SUgaomhLXN6W8C2/vPUj8xgdHjVXOUPoxASSct\nTYi3dYmJK3rVtQ2Ah/gzUikxANBgUtjR1WbpoKCDvF10/iakYRd7Q1+PMQDJcl4g/dyma0wIq0rp\n9KFtQ3d35NJZAkrvUaNAsEFT4t+x3LNUcL6oX+8QcVDkD+ReuD4MQFkutpvTD/2UybUnfmVVPy1k\nhLiOAahooZinhyd0obnZUXcDUEL8WYPzlcJRLgM1OExVOmhZSewC1vD6czN+k3h1LSNyBsCgLg5Q\nNyFsFpSndBqs6/XnzzU1YF0MgLVOrQEw29l/2xD/4OH3hgMjf9EP5CptuhRdA8EmDtAlp78pchO/\nmBRIcS0DYBO/6RZmyT7+BjG3YBz21iTe7nUL2LO0mslAJShLBzWfe9P5fXKF4/0DEISF57GQ/dNx\nQphpylKW0ukSv+v11+n92WWlwd8yAwA0mweQ3o/G9YD69PgHg9AJh0X+adl/W3ctGwUUUDEhzASC\n7ThAn3KPC3viV5zcTtM/JwTBEaAbo7c2ABXefq7dHlUdwm61NwAlxJ95/jbWkYEq0kEb5fOvqfVn\n8NS/ceMAXQLBvglh66QXuyiOTIqtPH0GAFpMBIN6A2DWT9dtRfw7IPkhz3+fkM5UbWIAmspAtmtq\n4gDuS9f3KMBM/ApHqexjiHF6BGNN5JK+OLVxgCbEbwd8j65WG4AkRqbH1QYg9frLiD/n+dvoTQay\n0kFh7Xz+Jsj1i7XJjHwcoCwQvFpWDAS7E8KiZFRaPLAvuSd/jvZoZYMGwOAAiP+i48DIP33oN2AA\nijLQZmEHfzOUeMaVo4CmxJ/2DJZZoOWgSgMAipv6BZ0eF7+05Z7lHS/xJ8tVO8sCNiEDVdXt6cvr\nNzN+3d+hJg5QNSHMHwjWz2BdgNegbaA3d0nKvDctDUB2P+oNgL46VvetaVZPE2zYKGyxsNvWcVjk\nr5aFyUr2Cwfkht3rGYAVNqX9m9TPHNoYgJbEb5rFC2RNZNTR1eom8dHNVYN4KOr8JcTv9jP2oi8Z\nCLrp/B2IwzQ4z6Qxm/gsp6RrIFhD3xjfc9e3158/txYGAMolHccAQH4yWCnxD17/VnFY5N8QXs3f\nB08cwE7Dq0PbF9HnocXJHYLROO0Ulf5NX7ywbSZQA+L3boM1AqiSTbwBXj/xAzkDYLxLAxNkzAyA\n7VFC61nBlZjP/d6/q0E3+S4l+JwE5EHWPxnWmBCmURfcBX+A1/ce+CZJ5oh+wwagFF1SOquMwjAj\nuBYXkvwNushAhmq0EVif3JvgzmJOOFoUjIB5+YLpTMcCkhgx3n4So4JIxwfGsU7ZhHxevEmLtLNi\nnHTIQgexK9cygs88fof04+SsVN+3texwJOk1TdLfY5xWxsw3ki+0lnQyarJZwbB64c06TTV+d4az\nbQzs47mE4vsuJbPMky05ZG5U2sSfGPkSEpqRfVOir4O9TWHU0sQAQGlTmOLBamJKXb7rmfSXCqK4\navh6uDgs8pf0R7CyBYAsJc00KLexXiA4j3W01TrESwXLOTDPkWYgY4LlZEWc01nWdzULCGdGIMxk\nIPHJQOAnfLuXgCH96VHRy68g/dw9Tw3A2sRf2LFDIqZ2TBfY25UZAsgTjTsasIyAuNs4weAm6cmA\nZzS6nlffBI1HyjQwAFBM7bQng1VhTwh/FxCRHwTegG7Sfr9S6hHPOjPg99H9z8fAbyilXp9+9wbg\nx4Cvpqu/Vin1X6uOeVjk3xHdZaDNw0gkhWVL/2ggqBsNmMwgKx5gG4KM8K9dLRJ+Sy+/Cn0Tf5Y5\nYuAQ7FooMwTg9/w9RqDVKAAaGwHo06uvfg+qvH4bxsnqNBfAxZ4TvlJC7HQC3BA+he7M9SsV60TA\n9yqlbonIBPiQiPyuUurD6fdvVkq9qekBD4/8W3j9LtqOAnaNVqOBhoag4OVPj/1avkX68fJO63Pf\nqMffJ/G7aGIIfEagbBTgoLUURHOib+PBVx2j6X46ZwLtOeHvAkqpT4MuXlmxjsJMBIJJ+q9zSOzw\nyH9N5KoYHoABMFjHEKjoppaFZpR6+fHyTmNZpyl6If7CTnuUfupQJw25Gjc0GgVAs4BwYZs1yH1T\naB0H8OFiEP6TRcSWah5SSj3U90FEJAA+BnwL8MtKqY9YX/8zEfkHwCPAa5RSX6/a14GRf/o6dfD6\nXTR6kdI0vH1DmSEIR1dWspCZMTyOEdfr6tnLd5EZpZ6JPyf92KSySQNg4DMEZV7tpgLCG0IXr99G\nqziAwYEQvloKcdRI9vmaUuq+qhVE5P3AN3m+ep1SqrbhOoBSKgGeKyKnwMMi8hyl1KeAfw/8HPqx\n+zng3wCvrNrXgZF/v2giAxnvbB+NAOTjA1l2UNloAFoHb7tg4x5/WfbItmAMQQsj0FtAeINYZ2TR\nOA5QevD9IfxNQSn1wh73dUNEPgi8GPiUUurL5jsR+VXgPXX7ODzy78Hrz+3O88AfggzkooksZGD6\nCfRJ+Ab6mD0Tv4XSwO82vH+3DWELI7BOQHgTv9OmUBsHsHEAhK8UxNF+pHqKyN3APCX+K8BfBf5V\n+t09Sqkvpqu+DB1ArsThkf+G4E6/d7EJA+DL9OltvyWGoG8v34UrIfRJ/FsN/LqwCuM1MgKu1t0l\nIIx/lrAP68dn+osnVMpAA7wQkZcBvwTcDfyOiHxcKfV9IvJU4K1KqQeAe4C3pbr/CHinUsp4+L8g\nIs9FP2KfBf5x3TEPi/zTSHhfXr+LKhkowwbiAFHDNnFdpva7aaObRCHDp0/iLxzMoydvyvu3i+LB\nivSrjMAaowAgXyjOQtkzv46B2EQg2ZWBggOjmm1DKfUw8LBn+ReAB9L/PwZ8R8n2P9T2mMMv4qBJ\nNtCu4gBNjYR/W4AFxxP/pKG+kMk+GyT+gvQDmzMALvHb/+9qBFI0loJYOTxNjYF3fzvIFvL2Bjgg\nLJdC1Czge3A4rF/CQt9ev4uyglyHFAcAiBJtqeKlpC0rE07COVfG/ROB9vjH2/P4YbPSj0v8WRtM\n5/suRqBFQBj8hgCKxgA2/260hSsDweEZgYuIg/sFki3MvvWViM6dQ48GYB1vvnyfLuFLdpwoEeKl\ncDzpdxSwCvRaZNQ38RcOauWS2/Vk+vD+fcRv/4Ui6Ztl7mefETBoIQUBZFVDU/jeh3VGB5uCbQBg\nMAL7gOHOp3BfmOyzp0S0ja4GoM9gryH71b5XpH8WB0SJZDXJr4cqaxNoRgEmKLwOjNcP6Qu9YeL3\nSj821jEAVYTvW6/paKDKCKSoCwjn0MAQwP4YA/u47kgA9tMQ6GyfQfbZA2jC7OvhLRC+czuqOjP5\nAsH63LYjA7mED3BzHmReviH/8wS+Hq8aUtxJhLvCIPtejwISpkF3Kcj2+IPRZEX8m4Iv59/1/rui\nhPiVY0hkUkH4vmVVRsCRghqPAgxSSaiJIYD9MAZ2QDhbNowGtopLd5d9GmnhYavoFJZbbctxAB/h\nu9LOWRxwnsCdRBO+/iecL+zPirtCIUrGmaE4niRESTcpKJfTzxgWafmRDadhlnr/XeWfhsTvLssM\nQRtJKKw/t1zzk6aT2hxD0EQmzbzwDRsBk22US6qoMAKwe0OwxcJuW8fBkX/XB7TOyy+8XOlnO+Vu\nW3EAGz7CB036RtKxvfw7CdyIi4QfxSPiOOD8aM75QjhPFLMAzpPVKED3L1atAsK59E7j9cPm8++r\nvP8uqCN+V/qxvHyzTqvRQAcjAJsbDcAq1tU33BTTKiNgziNbPowGNoYLfUdbE35JMM7Xm7WPOIAv\n2FtG9lD08qNkxOOxlHr5j9/RhB9HQTZLMY4CouOY82TJ6VSPAu4kq1HASbhsHRDOgr2MgQ1LPnXo\nEvxtS/z2si0aAehnNADV8YG+DEDdxLNcE6CGo4HBCPSHnd5JEXkN8CbgbqXU1+rWVw2ql65N+CUG\nwO7NCjSOA/gMgBvsrSJ8vb4m+rN4VPDyDenfiKTg5cdRwM2ziSb/dOh6dBwTRyPikznnR3NOQ8mk\nIDMK0COAZmmhdnpndv+akFJPsz0z6aeq3k+VAWhD/E1kHTpKQi3hHQ0ENSMf655XGYJ1DICP8O32\nnbnj5EqO7KckpJZDwLd3iMi9wIuAz627r7UJv+myDnGAroFgn5cfJZIFb31a/s1bk8zLj6IgI/3b\nZ2MmepYXfx5d4eg4zr6PjmOuX1lmUpAZBZiG9lWjgEJ6Zxro9enwhf6tfRgIl/DbBn+7Er/9uSrI\ny5qjgYaoDBCX3QPHEKxrANqQvvt9UyNgzitbPowG1sIu79qbgZ8GGpUyddGa8KHey/cVnvKQyCbj\nAGVpmq60cyMqevlxNOLmWZh9XkTCJEq4GsVcu6nP/4ko5EY05erJItsmPplzfDTXxqQkIOxLC83V\n8TGBXnMP09GSQWVapoWckWgoa1SmfZbJP12IvyHhtzYC9rp9jwZ8GDvxEvwB4iaB4Kak767nzqRf\nLR8X1t+lJKSUsIg21751l9gJ+YvIS4HPK6U+UdW5Jl33VcCrAL75m+/uftA64m8J11sqiwPU9Qm2\ndf+uQdxbZ5Ocp2+I/+pZzCROCKMk8/yvoa/7NiGcwM0zy7s+mnO+gBu6ZTp3hTBNRpxZt+okTAhZ\nEAZXVj0E3PTOxPm7hYJeBfmnr5m/a5BxYUYw2giI2yFsk3CMMFDdWMUD3yigK+m7y4sj54XHifKM\nsPdAEjp0bOwOVTUuAF6LlnxqkXbDeQjgu+77C5lz45sxmPvBfWUAoLwVn28bGyXtI220CQTnG8Wb\nAIKttyvO4oDMhwtTXT7Q+r5eprc7OoEwWnLzLHc23D4JmUQJ8zDJSP+J45DbJyHjqSIME45PYo5O\n5oRhwiyA2RhOQ038swCmwZKTcJnOBVgSjiQlfqeUQ+r1N/Xwy6AWUVEiqoJFbMaMrjN9rvE+Qg+B\ne5Z5ib7htoXlZl82cTvPJVijp8CzngvHOPgkIB/Ms55fNi4YAN969nfFZc2a1YM/bXtAc2yM/Msa\nF4jItwHPAozX/3TgURG5Xyn1pZp95j7XThn31RH3dRTyGQCzreelqaoq2qYyqDsCmAZLVm2djCEQ\ncPKMT6cqGwXcsCLPxycQRwlRFHCLEAiYo7d9An0d82nAeKo4Oo45PokJp0vCMOH6FZ39Mwt0Cugs\n0F7+SbhkGuh/RvdfNWuZ5GfzmnvtaXC+lXK+6TG2YgQ2QfRl69n77Yv4K7z/pjGAdQzAoRC/LFU2\nar5o2PrYSCn1SeAbzWcR+SxwX5NsHygOAcuGf7WjgDoDYMPzklWhaYewJgYANAlPkxGzNOCroQsB\nnALnwZLHC2cRE4cB8VQHfLOtTkaE0yT9t+QoDfhqwlechmi5J1DpP+P1K+3lW81acnKPz+t3ettu\nrZ77BoyAu59eib5qHR/x26RtrtUeLVU4Lk2xSQPQlPhLz+0Cevwi8oPAG4BvBe5XSj1Sst4/B/4R\n+nH8JPAPlVLnIvIk4D8Dz0TX83/5Bevhq1GWEdCrATDL3GM37CXQpjR0yMJrAMJRAhivXy+7K7Tj\nAFYlmCtLzsMlUZikXr+FE1ZxgOki9frnhNOEaaiJ/3Sqif9KoIlfe/0J4UifVziSFekbz9/N63fr\n+dhZN5tAk2wg+jEC9n6AbkTf1OM32BbxlxjmTRgAH8qI32sktkz8orbm+X8K+AHgV0rPReRpwE8A\nz1ZK3RGRdwJ/B/iPwIPAB5RSbxSRB9PPP1N1wJ2Tv1LqmV239Y0C1jYAkCesll6/i6YlIcLsJTMU\ntZJzpoHJ8wdtMWriAMcx8TQoxAHCqc7zn6ae//HRnNNQ6/yzQBP/9VATvyZ8lRoAKco9dV6/ex9h\nc96/fYyKtMYyL74Tmmj0TVAX/O1T3+8J6xiAwr5aEP9FhlLq0wB1CTBozr4iInPgKvCFdPlLgeen\n/38b8N/Zd/JvB1XIBuhkAGBlBHyB35KXp2sHMVf3r6oJVCUDnYQQJaoyDnAjIgsEQz4OEEcB02nC\nUZraWRbgnQYqF+BdtYFcyT1ZkNfn9ZfVsd8GfL+nQZ/B4SYkv25Wz6aJv4EsVxYA7tMAFPZ9mAHe\nJ4uILdU8lCar9Aal1OdF5E3ouVF3gPcqpd6bfv0Uq4fvl4Cn1O3vwMhfo4kBACtP2ZcH3KQpyJpe\nv402cwHWiQOcTtN0UE8cYJrq/Caz53Sqib8swJvX+R25x0rnLM3wmc+LfW0beP+NMn7q5I2Wo4FO\nRqArubch6KYyT9v9+rBlA7CPAV4XomASN5J9vqaUuq9yXxUZkEqp2vlOInIX2sN/FnAD+C8i8gql\n1Nvt9ZRSSkRqH+mDJH/wGwDoOQ5g1qG715/bVU0qKFAbCK6KA2gjUB0HcAO8s6A8wJvX+S25B/La\nvuv1u5OcPGWLt9rMu8oQrGsENjmi2UJgtymapoBCdXrnap39J/6+UZYB2QIvBP6vUuqrACLyW8Bf\nAt4OfFlE7lFKfVFE7gG+UrezgyJ/t7ZPkwkhnecDbAhNM4GA1nGAu0IzE1ilE7VSpHEAoF2AN6fz\nW3JPE68fVkbArlvfJ3xBUKie3FVmCPoKDvd9jT6Zx17e9/EqDPM6ZSBs7/8yEn9P+BzwPBG5ipZ9\nXgAYqendwA8Db0z/1o4kDor8wUPuJfVB1jIA9nL68fpzu21gANaNA5yGOhDsxgFOQ038ZQHeUp3f\nqd9T6fX7etl2kH/Kb2DNdk2Ngc8Q9JwhtBa2Edj1GeWWv00b+ce7/R4Hd2WpCLeQ7SMiLwN+Cbgb\n+B0R+bhS6vtE5KnAW5VSDyilPiIivwE8CiyAPyCdAIsm/XeKyI8CfwK8vO6YB0f+UDLdu0MgGKie\nEGbvv+c6530aADcOQJzPa8niAMkqs6cswOvq/OZcV03ZazJ8bPjKFfct/zQhwCbGwDUEm8gQ6ohd\nZPRsSv8vbFdB/JfJ61dKPQw87Fn+BeAB6/Prgdd71vsz9EigMQ6S/KG7AQCajQIqyjj0hSYeTxMD\n4MYBroc6EOzGAUxmT1WAt6jze/ryZidX4vX7Whi6+n/nm9aD3FFnDOyMIU+G0DpoU/5iV/p+Hfoy\nAIdA/KIYZvjuA1zPyxvk7SsQbB9nw+3tmpaEgPo4gK4HZEYD+TjAebLy+o3UUwjwjixv3xgA+0Vs\n6vUbGOJ39X9Y3/tvko3VpDJok/IHi4bnWXO8VnWLDDZN/GUGuaX+D20koP0n/ouOgyJoJVbmAAAH\nT0lEQVR/aBjk7SMQzGa9fgNfWeh1ZKDSwnCsJnKZzB5/gLdE7qnz+h2o+Vwf2RB/S/2/dYG30htc\nQ5h1hfyaoKo0SB2qjMU2ZZ4ydDDOdQZgIP79wMGRPzQM8nYMBEN+PkDvWr+vgXzPBsAtDGfHAXwB\nXn0OY3xyTwZD9GVevyX5KLdufl/yj88DXjdm0NQ4lI0Oyr7zrdfl+E323weqfo+W+n8Z6mTOfSR+\nUYpJvHkncBc4SPI3qNP4m6xTVxe8D3gJ3731nvaQLroGgk0cAPwB3nCkDUMurdP1+jsgq13v61K1\nrvyzLU+4q3FpMGO8dH0b2/T4OxjkNvLPgP3CgZH/slbi6SsOYJZ1RSPCd74r6w5WNSEM/HGAaUDq\n2dtxAHK1+V25x3u+trxjvP6KQK9yJnnlmpd0kH8KqCi2t00EjP3nWjVSgP0g+SpsWP8vwz56/TCU\ndN47dNL4O8QB2qIx4ZfMKWhiANaLA0gxs8cj9xSCvF3hk3zq0j/L4COeDc4SriWtUXFRrUGA9kZh\nn7AhA7CvxH/RcZDkDx01/oZxgDZYi/A9ssemDEB+NFBP/Gt5/Y7Mo2Al/9Tp/y29/y5e/7qNyQG/\nPOcYhMIcktyOS9JLXezCKHTQ/6tQZQAG4t8dDor8nUZenTT+puuUoZWc06SJvGdZYF6u3uMAZAHe\nrcAi+Fr5x2MICxk/DQK9XaS6qolIrSpSure2bHQAzQwC7M4o9Kj/Q0kG0AEQ/5Dnv0dIlossFx3W\n0PgbrGOjFw+/apln5mvTOEBzA8B2vP6qSV5l8o+r/+dudDUJNSX88mbi5QRfN0O1Em1GB9DcIEB1\n9tGm0UH+gSEIvG8Qty/uPkNEvoquW7ENPBlo1FrygHARrwku5nVdxGuC7V7XM5RSd6+zAxH5PfQ5\n1+FrSqkXr3OsbeOgyH+bEJFH6upzHxou4jXBxbyui3hNcHGv6xDhUSUHDBgwYMBFx0D+AwYMGHAJ\nMZB/OR6qX+XgcBGvCS7mdV3Ea4KLe10Hh0HzHzBgwIBLiMHzHzBgwIBLiIH8BwwYMOASYiD/GojI\na0REiUiTXN+9h4j8axH5YxF5TEQeFpHTXZ9TV4jIi0Xkf4nIZ0TkwV2fTx8QkXtF5IMi8kci8oci\n8updn1NfEJFARP5ARN6z63MZMJB/JUTkXuBFwOd2fS494n3Ac5RS3w78b+Bf7Ph8OkFEAuCXgb8G\nPBv4uyLy7N2eVS9YAK9RSj0beB7w4xfkugBeDXx61ycxQGMg/2q8Gfhpdte7u3copd6rVFbP4MPA\n03d5PmvgfuAzSqn/o5SKgV8HXrrjc1obSqkvKqUeTf9/E02WT9vtWa0PEXk68P3AW3d9LgM0BvIv\ngYi8FPi8UuoTuz6XDeKVwO/u+iQ64mnA/7M+/ykXgCRtiMgzge8APrLbM+kFv4h2pLZYWXBAFQ6u\nsFufEJH3A9/k+ep1wGvRks/Boeq6lFLvStd5HVpieMc2z21AM4jIEfCbwE8qpc52fT7rQEReAnxF\nKfUxEXn+rs9ngMalJn+l1At9y0Xk24BnAZ8QEdDSyKMicr9S6ktbPMVOKLsuAxH5EeAlwAvU4U70\n+Dxwr/X56emyg4eITNDE/w6l1G/t+nx6wHcDf0NEHgBmwImIvF0p9Yodn9elxjDJqwFE5LPAfUqp\ng6+yKCIvBv4t8D1Kqa/u+ny6QkTG6ID1C9Ck/1Hg7yml/nCnJ7YmRHsbbwP+XCn1k7s+n76Rev4/\npZR6ya7P5bJj0PwvH94CHAPvE5GPi8h/2PUJdUEatP6nwH9DB0XfeejEn+K7gR8Cvjf9fT6eeswD\nBvSKwfMfMGDAgEuIwfMfMGDAgEuIgfwHDBgw4BJiIP8BAwYMuIQYyH/AgAEDLiEG8h8wYMCAS4iB\n/AfsDUTk1gb3/Q1ptcxbIvKWTR1nwIBDwaWe4TvgUuEc+FngOem/AQMuNQbPf8DeQUSOROQDIvKo\niHwyLbJnvvvZtIb/h0TkP4nIT6XLfyKtgf+YiPy6u0+l1BNKqQ+hjcCAAZceg+c/YB9xDrxMKXWW\nNtH5sIi8G7gP+FvAXwQmwKPAx9JtHgSepZSKDrlBzYAB28Lg+Q/YRwjw8yLyGPB+dKnmp6BLH7xL\nKXWe1rr/bWubx4B3iMgr0NVKBwwYUIGB/AfsI/4+cDfwXUqp5wJfRleDrML3ozt7fSfw0bTw24AB\nA0owkP+AfcR1dP33uYj8FeAZ6fL/Cfx1EZml9e5fAiAiI+BepdQHgZ9Jtz/awXkPGHAwGLyjAfuI\ndwC/LSKfBB4B/hhAKfXRVPt/DD0a+CTwOBAAbxeR62jJ6N8ppW64O01Lc58AoYj8TeBFSqk/2sL1\nDBiwdxiqeg44KIjIkVLqlohcBX4feJXpeTtgwIDmGDz/AYeGh0Tk2egYwNsG4h8woBsGz3/AgAED\nLiGGgO+AAQMGXEIM5D9gwIABlxAD+Q8YMGDAJcRA/gMGDBhwCTGQ/4ABAwZcQvx/iwq0yCPFTuwA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu8LdtV1/kdVet19nnkAglIci8kYPjYSIM2IdCidhBR\nvMSklW4ID5vwEAPGpgU6EO02dGv6E9RugwaMVwghRoMIESKGJoCG2AqSgNJI+DSPGMhNDBDJzXns\ns9ejavQfs2bVrFlzVs1aj3P22Xv9Pp/92WtV1arHWlW/McZvjDmmqCpHHHHEEUdcPmT3+wSOOOKI\nI464PzgagCOOOOKIS4qjATjiiCOOuKQ4GoAjjjjiiEuKowE44ogjjrikOBqAI4444ohLiqMBuMQQ\nkVeLyP96v8/jMkNEvkRE3rLH/b1QRP6ffe3viIuNowG4wBCRd4vIXRG5LSIfFJF/LiKP2PWq+iJV\n/av36dzuO1FV56Ai8re85c+vlr/20Oegqv9QVf+Yc2wVkd996OMecQQcDcBlwJ9U1WvARwO/Cfyd\n+3w+yRCR/B4c5teALxCRibPsy4BfvgfHPuKI+4qjAbgkUNUz4PuBT7TLROS1IvLXqtdPFpEfFpEn\nROR3RORfiUhWrXu3iLxURN5ZRRLfLSILZz/PFZF/X33234jIJzvrHhGRN4rIb4vIfxaRV4nIfwG8\nGvivq+jkCed8/q6IvFlE7gCfJSJvFZGvcvbXihwqj/lrReRXROSWiPxVEfn46jxuisj3icis56t5\nP/ALwB+v9vfhwB8A3uRuJCL/RETeLyIfEpG3icjvddZ9hIj8s+p4bxeRvxY4xxdV5/iEiHy7iIh/\nPSLytuojP199L18YipTcKKE69puqY/8M8PHetr9HRH6s+k3/PxH5gp7v4ohLhqMBuCQQkRPgC4Gf\njmzyDcDjwFOAjwL+EuD2CfkSDEl+PPAJwP9S7ff3A68B/hzwEcDfA94kIvPKg/9h4NeBpwNPA75X\nVX8JeBHwU6p6TVUfco7zxcDLgetAqkT0x4FPBT4DeAnwGPClwCPAJwFfNPD51wH/Q/X6BcAPAUtv\nmx8Bngl8JPBzwD901n07cAf4XZjo4csCx3gu8GnAJwNfUJ1zC6r6h6uXn1J9L/944Lztsc8wEd5X\nVH8AiMhV4MeAf1Sd9wuA7xCRTwzs54hLiKMBuPj4wcrD/hDwOcDfiGy3xpDIx6rqWlX/lbYbRb1K\nVd+jqr+DIWhLql8N/D1V/beqWqjq92DI8zOAZwNPBf5nVb2jqmeqOkTqP6Sq/1pVyypqScFfV9Wb\nqvqLwH8A3qKq71LVD2GI+/cPfP6fAs8RkSdhDMHr/A1U9TWqektVl8C3AJ8iIk+qjNznAy9T1VNV\nfSfwPYFjvEJVn1DV3wD+JfD7Eq8tCufYf6X6fv+Dd+znAu9W1e9W1Y2q/jvgB4D/ftdjH3ExcDQA\nFx//beVhL4AXAz8pIr8rsN3fAH4VeIuIvEtEvtlb/x7n9a9jiB3gY4FvqKSNJypj80i1/hHg11V1\nM+J83zO8SQe/6by+G3h/re/DqnoX+OeYqOYjVPVfu+tFJBeRV4jIr4nITeDd1aonYyKmiXfeoWt4\nv/P6dOicEhE69q87rz8W+HTvt/kSTKRyxBFHA3BZUHnnbwQK4A8G1t9S1W9Q1Y8Dngd8vYh8trPJ\nI87rjwHeV71+D/ByVX3I+TtR1TdU6z7GS7DWh4ydqvf+DnDivD8Ueb0OI4O9PrDui4HnA38UeBJG\nzgIQ4LeBDfCws737Xe2K1vV7xtse2/9tLN4D/KT321xT1a/Z4/kd8QDjaAAuCcTg+cCHAb8UWP9c\nEfndVXLyQxhDUTqb/HkRebhKkv5lwOrTfx94kYh8enWMqyLyeSJyHfgZ4D8Br6iWL0TkM6vP/Sbw\n8ECCFuDfA39aRE6qxOdXbvcNDOInMRJZqErqOkbW+s8YMv4/7ApVLYA3At9SnePvocknbIPfBD7O\nef/zwO8Vkd9XJd6/pefYn0g7//DDwCeIyJ8RkWn192lVEv6II44G4BLgn4nIbeAmRrv/skor9/FM\n4MeB28BPAd+hqv/SWf+PgLcA78KUTv41AFV9B/BngVcBH8TISC+s1hXAnwR+N/AbmCTzF1b7+xfA\nLwLvF5EP9Jz/3wJWGGL8HtrJ171BDX6iynH4eB1GWnkv8E66ifQXYyKD9wP/AHgD3SRyKr4F+J5K\nsvkCVf1l4H/H/Da/Qjcx/mKMnPR+4LXAdzvXdAv4Y5jk7/uqbb4VmG95bkdcMMhxQpgjhiAi7wa+\nSlV//H6fy4MAEflW4Hepaqga6Igjzg2OEcARR+yIqtb+kysJ7NkYmeqf3u/zOuKIIYSSc0ccccQ4\nXMfIPk/FSFX/J2YswRFHnGscJaAjjjjiiEuKowR0xBFHHHFJcSEloMWTbui1j3oKkikZINJYOhHI\nxBRwm24sZl0mznoUqbfRehu7LBPFvNoXxkRh/ccV6VsfXyf1f/GWuPt0loX2pWV3WWy9G3lmOUiG\nooCiWlI6rwsVVKFQoVQoEYoSCjXfnH1dAmUhlKVQFIKqUBYCqmRlczytrkfdS6iWSabu2/r3d7/W\nbGAb976D5t6x953dtu++s/t17zto7j3zm9ilzrW1IvrmdelcbGsL503ZWt7d3j0v97rsukyaLd17\npv2q+p6d82/dS+49Io1/au+N5hq1Xq7uVvUFaX3N6lxn6VybAr/8/777A6r6FHbAfykfobdZJ237\nbm79qKp+7i7H2ycupAG49lFP4fO/66+yyGGRwyyDRXWli1xZ5DD1Yp8r1bbz3Nwp87xkkinz3P6Z\nG3OeKdOseX+vMcniDTJzmUbXZT2NNfNqnFYuU3KZ1PtxP2OXicsYxSrpnJvtqwHBG+9z8xN0MqfQ\nNevyjFV5l0I3rMsz7qyVdSncXOfcXGXcWecsC+GDK7i1hrNCuLmCswJunuac3pmyWmbcujljs8m4\nfXNGviy4cqd5QDfVj7+emesr5ub/bF7U29jXk0nZej+v/s/mZXD9bF7U9x00956978Dce1ecbez9\nZe83d5m938yykkmWk8u0/m1ymVB4A61Lba6jUOe6y2b5smgegHXZEPDSfe1ssyyk9WzMq3NynwV7\nbmDuHf++sq+bc3fuKfdeKjaQVw9sPqsNdqHr+toKXdfX7b4utaiveVMW9TWsS6mvbVlkLAvz+g99\n9Je7I6e3wm3WfEv+7KRtX1j8xJN3Pd4+cSENgGTaIf9FdfOGyB/gbvVsnBVSPZgZbZ/Ifqj03rdx\nvwzDtvAf0mm2aBmSmvA325a1uwebNP+tMcgnkM9q8i90U5P/pixYlzk3K9LflMKyEM4KWJfmtzrb\nGPI/K2C1NMSyXO7WRXqI/Ps+d6/I3/3d+pBJXpNmnk9rcpxkjUGY5w3ZTzOtDcI8K2rSnNvzPTTx\nB15LPku61u7FgxnPWL+pUHJe1W8ReQ2mh9NvqeonVct+H6Z77gIz8vtrVfVnIp/PgXcA71XV5w4d\n70IagIwu+bsPYAx3W8+34BqBxgPyDQP1Q2q2O8yNtYth6fP+oU3+EyYmXh7r3Y+F5+GVZUGhG1bl\nXUot2JQFt9c5y4r076wzlkVmPP11RfobWFVfiyX/1bL5/lc7GoIYQt7/vSZ/S4Z5sMtGHLsYBPv+\nYMTvR4aTmeMozBBVcjHnbPdZ6Lo+lvu61MIcr7ouc84Z61IqI1bu7VmVDOaLREn4zuAWr8UMqnQb\nEv514H9T1R8RkUer98+JfP7rMCP9b6SczoU0ACLdB7CP+H00hsAYgWXhE3DXCMTgGodDYrR3BDWR\ntMh/ddqQ8z2AilSe/7oO8QtdmzC9FG6ujPe/LDI+tBLuFtbjF1Zl4/0DbDbNj+y+djEk/2wr/bi4\nl+S/ze/uYoxBuCfE7zserhHARAPbRQJgogE/EjhfUNW3icjT/cU0hP4kmj5cLYjIw8DnYUb8f33K\n8S6kAchle/K3aBsBiElC87xs6aZzj/Bd78nFvTIMMe8/Sv6blfmbnwQ/t1dU0k+h61r3L3Rd6/5W\nq7XSz92i0f3PKk6w0o/r7R/K87fo0/3vBfn78s8QIfp5AutFh9BnEGAPxO/KPBHi180Smcy7xiCf\nQLFCqqjR7r/29oFCN63XbqRg8mcmL3Cvnr8Aniwi73DeP6aqjw185n8CflRE/iaGeP5AZLtXYubD\nuJ56MhfSAGSyG/lb3C3M35Uc+iUhA98YQNcgWNwLw7AN+evyFlCZvUMagXzGhk2S7n9zlXd0f+v9\n+9hV/4dh79/F/ST/IWkvFakGwb4/JPG7r2sjkM+azzhGwD1WMqq8wD6NgAhMJslVgR9Q1WeNPMTX\nAH9RVX+gmtHtuzCdaZ1zEJs3+FkReU7qji+kARDiyd5tMCwJmYfY1RTt+lSDYBEzDPM9ObWD5L86\nBUzMKZPZweSgbXV/Czfxu1rmbDZZS//3sZlmTNbhkN+Xf8Lb9Ov+Q+Qfqi4z78eRf9sD303+iSFm\nEPZG/BHS9z3+VvmpawTqE9o+L9Akhx8IfBlG2wf4J8B3Brb5TOB5VY5gAdwQkder6pf27fhiGgDZ\nH/lbDEtCBvbBtsbANxRjDUIKQkQQ8g6TyN/1tJa3YX5t/0bAkX7G6v5u4ncsNt5NUQSsal/lT5/u\nD/ee/CUyij/FMPievU/6rmxk121F/AnefrQSCEyRwGbZHnWyQ17ATw7vAyLCbJFIOB/a6hDvA/4b\n4K3AH8F0hW1BVV8KvLQ6n+cA3zhE/nBBDcCh0CcJ+fANgVnW3bYvf9DarkrCbcqidyxADEnkf3Yb\nVg0J1MPd9mwEXO9/rO7vJn597T8VNgHsIkTqIemnT/e3OBT5u4TbSag6sPKIiwmTup7ewif9PqOw\nD+JPJv3NqlMB1MkL2PUj8wItnMNKUBF5A6bC58ki8jjwMky79W+rJlY6w0zDiog8FfhOVX102+Md\nDcAWcKOBZZFXD3VDEkYOkvq1xRhjANtHB773P4r8T9vT8O7bCOhkXg/2WpV3k3X/Plj5Z7mFQQhW\n8bQGhLWlH7s+Jv3cU/L3idPCHUjlIGQYfGLsMwqjiH+st+/LO74RwMqS/cnh0DVBPDm8D2QZzOf7\n6Qygql8UWfWpgW3fB3TIX1XfiokWBnEhDcC9MOzhMQOQYgggLhG1tvHqr0Pwb/ZdyV/vnCLTKUxy\nmJmHUDdL83DtagAC0k+q7h/y/mMwBqH/Ae+TfyAu/dwv8u+QbrHpkuYQAoah1tcdxIzCGOLfmvRj\nqEh+27zAEWFcTAMg5kG8e+A8j7t/dwSxnyR2DYF9bzEUFeyCZM3fIX9Wa3S17nT6aSKB7SuDQtKP\n1f2t9DNG97fJ310RagFhXre9/nNH/vsarOcZhpBR6AwQHCL+bUnfSpCzaRMFeBVArbyANQI7DBq7\nzLiQ34BIU3YHhzEE68obXXQcjHCSuE36/VGBWddmvHUpg5VA7d49ieR/eqdF/lYCCrW728kIRLz/\ndZmzLDJurrKW7h+SftxBXy76qn98uPr/LODlg/H+Xemnrzoohn2Sf53s9chfe9pzRAUJW1Y5BLdV\nh7+8T+ZJIf4Y6ceWTcKe/j6Tw7tABGbzc5hQSMCFNAAZ9sFrbo99GoF12Xin8U6ecVnIImYIzLph\niSiGIPkXqyTy15tn9dnX3+BsCpNV44EVI+Ugp+bf6P5LlsUZt9d9ur/5aKjmP5T8DdX/x2QgV/7x\nvf+Q9GPXpXr/Q+Tvj6gdJH/X63bJvycC6MseBY1DzDBY79q+ttuyZ9IPGYHZtLt8i7xAX3L4suNC\nGgARS5x1E2hgP0bAJX8zGrVtBNZlU4I6JAtZJBmCrHvyrnfjdocMkv/yNIn8y1srZJohizXMpuh6\njTiJ4W2Swv3ST6TPjzPa18L3/n35Z9sRwC7Rw27Szz0l/1gSeAAaJXtD6DLx5oy328eIP4X0Uwh/\nE3hArRGwkhB0KoBaRiCQF9h60FgiRGRvSeB7jYtpAIBJpkyygk1pPfHdjIAdQ9TRpTdwtpGqDLAv\nGoA+WQj6DYFZnwUjAr9t8y7kr8sNumzO1l6Ve3uPMgID0k+f7g9h79/FGPnHhSV2973v/Z8L8ne1\ndp/8+5KmruceQqRSCCIG4hCkHyL8Vg7AW+8aAYu+5HBCXuCy42IaAFGPRG00sJ0RaEs+YVmCOhqA\nVFloU0qLMCyCJaSlDA5dNySyG/mXT7R15agRyGdJlUFD3n+f7u8mfvuMgCv/9CWFQ/X/vsY/m5et\nZeea/MdWAfnoMxIxAxGq84+Rfgrhh7bzl03ysBR0TvICIjCZHiOAc4MMuDEraLd73c4I+JLPqhUJ\ntLddrQxRgFQJYq33EZKFmvMyGBsRQFv6mWVXdib/8vYamefoWYHOS/SsQGZr8xBO10156Op0MCkc\nqvm/s1ZubzJurnLurLOo7m8RI/5tq3+KeR4d9GXJ32Kb5C/skfwdzT1I/iHiHIs+I+BKLu579/Uu\nXr4DXXeXydTJAVgjcIC8wGXGfTUAIvK5wLcBOWZE2ysi230a8FPAC1T1+4f3S93zOzwRRJoRCJG/\nS/yrZc6KAFHU9+JQkhiGZCGwjefay9ybd5/kr2cb1BPf7Tc2qjIoUfqJ6f4p3v8uvf9n8yJa4bOL\n9BMifztye+/kP2QALGEOwZVdQuhL4O6R8P3tFM8IWOySF/AGjV123DcDUM1c8+3A5wCPA28XkTep\n6jsD230r8JbkfeMOnOo3AhA2BH3kH2xBEPIWE2UhdzRxTBYy59Q2BJZM9kn+yzvmAHO6UtAYIzBG\n+nHlNWhHWfWyEd7/WGPgev/nhvzdhGuM/GOSyrZIMRgHJPzWPiuPv6Xt7yMv0NpuP0bAjAQ+loGO\nxbOBX1XVdwGIyPcCzwfe6W33F4AfAD4tdcdZpwoobATMRBftaKAlRfSQf5SE5kVrfECKLGTQXza6\nLLJWJdChyH911xmL4BiBTmXQpvLCQuWhCd7/zVXOB1dt3T8k/fRp/5De/nk9y2v5x/X+H2jyH4oA\nQoQ5BLv9JPK97kL4kW2D+3SMQH3Puev3mBe4zLifBuBpwHuc948Dn+5uICJPA/4U8FkMGAAR+Wqq\nJkkPP/LhnfVtgwDulHCWrP2RvSHZx8VqmTGbl7UxmM0LVstGY7aGwFYLVWfKLrLQssiqyTkCZW2h\nplqt93Ey2Kz6k1i67skHeO0iUrx/i9D3epGwbd/+oTr/JAxJO30YMgS7nE/oOLFz2OfxDwQzEOyY\nBD4EXgl8k6qWIgMEZWbVeQzgU/6rp7cYdp6pM7l1tzrIRgFXWvdaJWwEvNLQCFK/SyS0RwnXmrZX\nNupGC26nUV8WgpJlbiqBNmVBLkXTqVELNJsiVdWGFHNTymeTd6s1Mp2iE7O9LNbIWYYuQRYTZF0y\nmW0o1pBPzfeTT0uzbpohi7z+z2za/gvMGSCqjsc7oZQp8/yskrCUZWE85iu5VOW1apLjkyYKWORd\n42ANrIv5vNjLJDAxhMZ6GDTdYH25bl2XHhe1z+EbgXbr5WlHk66P6BuBbcjcRyqp+sdaVUY/JMN4\n5C7TaTcKCCZwA/vrO8/Q9YeWua0t7LgG9zu+h9Oenmfcz2/hvcAjzvuHq2UungV8b0X+TwYeFZGN\nqv5g6kHcSa3neeP1Nw9tkxOwhNNIM10jgENCfpMwaMoGY3ANwZiy0UnWnnBmkq3JNG/qmjVnkttE\n2Mz8TSrpwEoB6+r/bIosCqQa3CBnGbKYkK+K5ngzRea5MQLzCbKYVISfO83iAg9edfxcppRSkMuG\nQjZMsryWRua5sClLFnnuRF1aS0GzrPmeQoZgMil78wAhQwGQLwtWJJCfWxaaIO02fZ4qg+CU627K\noh142nPx+tCoSNwIuHCjOpc8x3rKfYYktG4yA+4czghAbzQg0wHit86OW9GUB17H1u8CMQ7Tg4j7\naQDeDjxTRJ6BIf4XAF/sbqCqz7CvReS1wA+PIX8XfhTQTOkIseogQ+RhIwDUck8q+btYlePKRue5\nVESTMT9gFGClpyTvP4aqyiI1CjDXWX3nkSggROqzeVlXAsVI32K6KoLjAA4FGwW4A/fcXvs+WnKe\n15gtWgRsydhHSpQQ28YvCXXfn2Akv9uno4wAeDkBe+yUaCBojPL+9SHv372Wo/df4759E6q6EZEX\nAz+KKQN9jar+ooi8qFr/6kMc10YBQ0YAmtG/izxuBGKSTypS8wPzImNSeZbLXJgWGZNsXZ92oZMm\nCoB2FAAwWzdRAESjAFZFmvdv4RKEa3AgOQoAWlIQxKOAIaI/JLr5itCkQE0U4EtBLsmHp1yspCBX\n9sln/UYghj4jEKv795e7ROkO+rtGQ94xwt5VEnLusdr7d69pG+/fvaZqLMB5g4i8BrDz+36Ss/wv\nAH8eKIB/rqoviXw+B94BvFdVnzt0vPtqClX1zcCbvWVB4lfVF47Yc9JWKUYA2t6pbwR2IX+LlPwA\nK8HYyaKqCNJaXsg0NxNe1FGAIf46CrAykI0CqsqKWBQw6P1bhIikrrc261KiAJCWFAQmAT+royDz\nf+bJb1YGcvMAQ/JQKkKjvBeB0twYlqX0SkFNW+J24r6TD9i0jcEopBI9dMm+gutBK8Dcfv52+/OH\nkITGeP+ud1+dv0zmUelHRYJGeBuIQD7ZbvKmAF4LvAp4XbN/+SxMheSnqOpSRD6y5/NfB/wScCPl\nYJciFrJ5ACsDubkAiyEj4CYqXSOwC/H7GMoPLAqppSAbBUAjBdkowJDIZPsooEKv9j8kM1QyUEoU\nAFmvFAT3JgpwDce2o4Ch3bPJl4J80mk6UyYkhf32z7bssa/nzxDZQ5TwffK00Ykub8HimikBPlRe\nwEeKZJUi/Tjk3yfJ3S+o6ttE5One4q8BXqFqunSp6m+FPisiDwOfB7wc+PqU410KAxCCLwVZTFoj\niMNGANKSg9silB94aGYiAisF2SgAsjohbKMAwEhBbhQAVQuHcBQAk7YxWHi3RgrpRzAUBUC/FARx\n8nfzAD7GGApb0juEFBmoHrvhRAHLyli78zm73r+NCCwp9VYGWbjkHzMCIb3b328P6buSCfkEliDz\n640x2jIvEDQCEM0hBLe1SJV+PPLfawQwS44Aniwi73DeP1ZVMPbhE4A/JCIvx8wJ/I2q+vbAdq8E\nXgJcTz2ZS2cA3GRwvcyRgpr+O3EjYCWKQ8PND5xVA5H8KABoJYQLNT9pnRC2UQCYByUSBeh6ZSSf\nM0OmHflnS9gOjH1RANArBUETabkE7Ms920QGdvt5j8ff/A7pMpCNAuy9Zkemu1KQO1OVhZsnSK4M\ncrEt4UPYm3a0cslnRgIqnLzElnmBYHLYbhsbkezLP6ne//lK+n5AVZ818jMT4MOBz8CMh/o+Efk4\nVa1vBRGxeYOfFZHnjNnxpYVfFurmAzZlm5jaaJLCoakK94mmLYIhHz8KgLJOCNsoAGgSwjYKACMF\nuVEAwKboRAGQIP/0yQ7QasML/VEA0CsF+d/zzKnCsthmPMBmk3XmAnBRn0Nkt42xCkcBqVJQLpNo\nUrh5k1gZBP2E76+PkD5QE7/1mDPJySfzuhW45DMjBx0iL0BC8rdz/rN2zX9E97fe/wM0IczjwBsr\nwv8ZESkxZfG/7WzzmcDzRORRYAHcEJHXq+qX9u34QhuAkNaf9rkmH+CPFm5w74wAGD3cjQKo6tlv\nzBguC81npp97PvGigHVN6m4UAPQnfy36ukh66/qiADMYr18KgnAUAGEZaCgacEdsj13fHS/ShetM\n9ElBjeQzkBT2BoTJZB4fPdJH+JBM+igtqaTQtalmmszryES4fpi8gI++0s+enEZM+rEj1PcCUSbT\nvSWBQ/hBTDeEfykinwDMgA+4G6jqS4GXAlQRwDcOkT9ccAPgojUgrDUmoBsF2NcGaaOFD2kELOE8\nsWx8vw+bdRPCNgoAryx0ZBQApA/8SoCooiLRKMCMpu2XgmJRAHSbww1VAvWRu9vWw8dZogzUIn8v\nCvClIH96wtSkcMggtDCC9MEjfnzi31STqE+hPKOUgmm2QGYnh80L2G1DryddDz8o/fSQ/3mMAETk\nDcBzMLmCx4GXAa8BXiMi/wFYAV+mqioiT8V0UX502+NdGgOQij4jMDRa+BBGwPYhMonguBRUl4Vy\nBtnCKwudNPXktla/igIEzOCwKgqwSYeo9z/kffmzSTnvY1EAEJWC7HfgV1/FegjtUiEUSwTXCeiA\nTQnJQPV4jUAUEJOC/HyALwvFksItxKQdCJZ5hrx9+96So31dakEhG2bZFbOPEmMEbF5gyfi8QM+g\nsWDy137Ovy4/8duj+7vkv68qIMlgMtvPw6+qXxRZ1fHmVfV9QIf8VfWtwFtTjndpDUAsCuhsN3K0\n8L6MgNsN0xLaWV4w28QTwrGyUBsFAE1Z6MzpLFm1ipCFN1ozNPBrDJxZpfqigIYQu1IQUBm8+KAd\nV8cfygPky6I1Kbz7uVAiuDUWw1sOcRkoFAWkSkGuEbCwHnhvH/sE0oewt2/fB4nfMUSr8m7VhRYo\njeGahJLDXkBSwzUEqZU//v3ne/84Nf8Duv8RbVxaA+AjJgXZ9wbx0cIQTlhug9i8A2fVwLN4QtjA\nLwuNtogIRAGcFWHvf2gA2AiYlshNFABFVAqCJh/Q15LjEAhJRSkykJ3TAXCqy4aloL58QKuZXJ8R\nGCB9s99xxL8pq8GH+Zn5vbJFZQhMRLAR0pLDI/IC9XL3dcT778pfw9LP3stAD5sDOBgulQFw8wBD\nGGMEDPq91FSE5h2w0sRqmUejgJurLJgQrgeH2QfUHRwWiwL24f27iWBPBjL/myiAjKgU5OYDDtU6\nOkT0wWVlVwZat4x9W95xS4tTpKBQPiCYFFaPbHqSoL63D13id7X+EPGvy5xlKaxL4drUyIz2d1uV\nlcE6QHIYiHv/oWtO1P3tMiOZXm5cKgPgwx8T4EtBvhGA4YFiu0hBMfJv2hzknSjggyuAvJoDuZsQ\n7h0cFosCLHyPa8cowMpA0I4CgKgU5OYD+noyWfRJQKGGcKFS0NCykBQUk4egiQLGSEFuPmB0UjjR\n27fLYsQF9l5EAAAgAElEQVRvSdEl/uY8S1ibvM3VqelDVecF9p0cHvL+q2sOSj8O+sh/mwrBi4ZL\nbQDGYsxAsbFGoI/8rcRho4AnsA+OREcIu1GA8VyvdAeHuVEANO2iod8QjIGTB7DwowAgKgWFSkPt\n9xuKCFwdfxtpKJQIDpN/Wwbyk8HzvBwtBbn5gG2SwmOI3xqYMPFLi/jN/M0m0pznyo1pwZ21Ms/P\nmOeL9LzAmEFjIUzaXn6K9OPDJf9UNSAFe+wFdE9x6Q3A2Chg3wPFXOIHguS/2WSdssaUhPBgWagf\nBbjtomPyz7b6fyUDhaIAICoFNa+7UlBNypHKn13HAsS2OdtU+Z4K3ek92+WffVKQv60vBflJ4dio\nYftZC1fmsftKJX57/1vit/e6nZjoJrnT5nrHvIBFaC6AlL5TI6UfF35HgMuIS2cAxuQBLPryAbsM\nFIt5/UCL/N0OmKtlEZSCtikLjUYB0C//RKCbZdcri8CNAoCoFATd0lBfCjor3NHB24f1fiVQSh4g\nFB34I8pjUhA0UUCfFOQmhUOVQdsSvzlmP/G7y5rzV25UfsBB8wIuQt7/lrr/vr1/ET1OCHOREOsW\n2pcUdteljBEYknxc4m8kINPuYCghvCyEm9VI4WvTeFloJwrAKcHra8k7BH8sQA9sojMmBfWNEgZh\ntaoIuJ6PuWx9Z/uET/YxGchuY4k+JAVBOyHcJwXFksJm3boj85j/Xc+3j/jt/Rsi/rPCTlcqLHKT\nb7q5ypjnwo1ZcZi8wJbFB6nk7xq8y4wLbwCaMLz5sf0ooA7FPSnI/1zjAcUHinXRNQKp5L9a5uTL\ngsVqxXpm3g9FAazy+pxiCeFoFAD9XthY2EogmwfwZCA/CoCuFLQsmu85JAW53UJn86Ijlc3mBYXX\nRRm63r3/3k8Ed8h/QAYKaf4pCWFfCvLzAaGksH0fKuW0792KHmAU8dtKp7riaWXnqy64Wb3ea17A\nwu07lej9++gjf7/AY1uYgWDHHMC5hjs1n3nf3eYadLyCa5OyEy4unVGqzQNTth6iRfUATbNqIFNF\n1K3pDvOCs8pznUysZ2+8/MmkrDXss+WM2bzg5Oqa6zdWnFzdcO3GikVuCHCRa3UcuDEruDotuTEr\nuDYpKw+U/iigvprb7YfQHwPgtx72Wgp0Jt+ObBcqTTTv9zc0P2QM/PV97/0qIF/m8btlW/K3281z\nre+5iZPXaIxZM3dwk/coa+/fEr0dOGeXua+n2QKAdXlWn0fIMPjwtW+fCC35u+ireOqDie6qEb4i\njYvkj0y3GJoXoAcPQquH84YLagCk1Xd9TL2vbyjMsvZ711BYA7HMG69ikqmpmCgynoTrTSnr0kYA\nwmwzbAhOrq5rOcMl/4dmphHcQzPlxhSeNFOuTgtuzEpuTAun0ZrBsjhrX0S2YDI7qb4tOlLQQUnf\ncZZClRrm98q8ZWnemomQ2p8t5nmwBNQnfX8ksDvfM1Ab3Oa9tkjxikf+Ey+h7RoFl/wbQ5G3iB9s\npdS09doYhSlSySjTycIk+0vvN7bXr+taWmt/ryX+99wXzVono3UdrdeuAZvUBqs+X3f8QrHqTnCz\nA/mDN1iusxKMtHiYQYMPKi6oAWjDNQb722fzelMWTKvEq40OjDEom/K5nqhgtoEbU1jNCs5OioA8\nVDCbl0wmZRL5m6RcF4UGpCDXCHQu8jCkHzs39z+EqzTGDAYzxqD92/ttIHxP337PLkLev6v9TzND\n/i45GifANwDDXr9L/HaZ7/WLKizv1NNFSrExxjxbRI0AUJNgyAiEp0YF1xA0Bq65PntN00xrA2YJ\n3zVeomokwGLTnuYSzHt3mTcn8D5hv/ew8dsSIt0JlB4QPJhnfR/gl9y53kYuBZPM6Iw2OrDGwI8K\nbtDUVo+LCgpunBTcmMJDc+X6FD5s1kg+VoeNkT/QVAU5MA29AtNHHpD0fa/frVCxcGW3sVrtbF7W\nA8KsjOZ6/0Pyj10W8v7d53yRp5G/6/W7xA9bev3FBpa3jQddrJC5mQDKGoHeJme1EajfEI8E7Da2\n+spcT0P+Wl/TPC/JZdHq9eSeN97oZXvu9bwRR9wXHA1AAD7ZW4QeUGg862lmSMwaAxsVMG0n3VyJ\nKBQVQJMvsFEBECV/V+8fgh0gtirv1sumkwVCNwrYF+n3EVJQo3byMKnkv8hNn9xUhOSfUCfQRR6I\nACrpx036+uQf8/pd4oc0rz+TnAkTM6fD8rQppVyeAnWZgdlvPkEnC3dumi4ycx+4pbZtwnfRSEK1\nx5833r+9pkmWO+Q/bRst3/svxvxSDipjERp5Y+ef7kUnAtpT6WYGEkoqPgC41AZg8Iap0Pb2J8yy\nK/UNbhJPTZ22NQY2KoCuRGQNwdVpO3HsVl74EtFi0pZ85nk5mvwtloWp1IglhYNthUeQ/jZtdm0U\nENL/m/NOjwTmziAwWwk0JP/YZcGIIOtKP+B6/23yH+P1u2Rv/k+6BLo6hU1F/NVrTu/U52HmdVgi\n8+sIxqgPGQGDeF7AOit2WUj6seTvSj5uVddO8HMCOzYhfBAgIq8B7PSOn+St+wbgbwJPUdUPRD6f\nA+8A3quqzx063qUxAKlkb+EnlNybe5ot6gdTs2k92javjIE1BFPmVRVEOyqoE8cJUcH1qdbld2P0\n/iH0JYXNxQxU7gwkckOIdV8M6f/mHPdfpx2Sf0JtoGdVia2f+IWw9OOT/xiv3y+HjUo+y1vm9VlV\nrXVa/YarNVxbweJa7R0LMMvnbMQkh91qnBZ68gJtjNP9+7z/lvxj9X/blNBiT3mAzjUfIBksIkjf\n9HDj8FrgVcDrvGM8Avwx4DcGPv91wC8BN1IOdiENgDg15mMRIn6g9vrrJFz1YEo+MV9iPquNgWm+\ndqVVkmYlonne1CX7UQF0y0ltVGCJZh/kb9GXFIZxlTv+ftPPIawBd0sVxz9gbimo6/2HNf8y6v1D\n4/270o+r+/vkP6a00/wPEGdI8tlUg6ZOz+oZtPz++QpIsYL5tVHJ4WWR9SZJx+r+na6lKdhhHIqo\nBtpjhO+v5jrPF1T1bSLy9MCqvwW8BPih2GdF5GHg84CXA1+fcrwLaQDGIlY+Zm/oWXYl6JE1G1by\nST4xUopMzOQnlTEYlog2zSCVSDnpLpJPDLGksDnXhvRjhL/PCTZiCeAxCPX+CVUC2eV9+3G9/1CB\nx5VA0tcl/528/j7J5/QMVmv0zmkdAejJotHEV2s4WaHzkyYvMDshz6+3xgt0EE0ON+9Dur9/PR2E\nvP99wq0eShx9fp/xZBF5h/P+MVV9rO8DIvJ8jKTz8yK9z8YrMUbieurJXGoD0Ef8EPH6XY+s/sDM\n0c5PYTKrjYFmU6YYvd2ViKAZselLRKFyUmCv5G/hzx0Q0o334dGnfCbWojc0BmBMOag1DDH5Z8j7\nh7b3b6UfoF3x45D/mAFdHa8/JPncPoVN0RD/ao3eNIReJ+/Xa+SqE8GByQtsVsj8pJMXMCOLHQoY\nyAu40lay9BNCrBw0FcWqSQQnkH5MBrpPZaAfUNVnpe9aToC/hJF/+razeYOfrSaFT8KlMwB9g0Xc\nhzLm9df6ZVWBAcBkYwZSQdsYTDbVTdoYg0xzplAnj+MS0aZVTjrPdGfJJwY3H+Dr3YceTRnT/y3G\nl4D2jwBO+bzv/YfIf6giJqW0065vEebytCL+VVjyOT2D26foWUF5y9xzGSCrNVw7aVfIbPrzAlE4\nBLmuW1WU6SWfLoYqf8YagUB78eAlOM/5Az4i+OOBZwDW+38Y+DkRebaqvt/Z7jOB54nIo8ACuCEi\nr1fVzlzCLi6NAegdJUg7yRsccGO9fjcJZ2fSsn10JrPGGOQz0/hq0jYGE9u7ZCBf4I8tODQ6SeFz\ngG17tYRGA1vvfjYvam8/Vvo5hJj045J/Smlna5BUquSzWlM+saS8vUKrMEiXG7Jrs9qfVSqDcLKo\nz3nbvIDrJfeVfLqIef+18+QjZQTwxnnGYihWdTlozKGoeSCjajK4B2SYaVQPAFX9BeAj7XsReTfw\nLL8KSFVfCry02uY5wDcOkT9ccAMwRPoQ9vrrmuuQ1289sk1hblz7H0wbhZntbWKkoKgxqJPH806+\noCURZfduCjtrfPq+p0Mg1Kd91wogdzDYEKxBSPf+hytiYITXP0LyKW+t0OWmMgJV2+hrDQFnYLZ1\n8wJgjEtCXqDQTYsk3bxAX8lnuN1DROYJDf7qMwLW0YrBHiMSGbRbaDfH3qeUui+IyBuA52ByBY8D\nL1PV74ps+1TgO1X10W2Pd0ENgCSTf9Drtx5YzOu34fhqXffPl+nUMQanTWQQMAZSOAOsnOSxmy8I\nSURWqz+UIbBJ4dCo5zFh9Bhj4e43tU/7OvG5nQeSwikYkn5SRsJC2Ou3r6OSz+md5h67UzkajuRT\nfmiJnm0ob69Z3zT3gf219KxA1yXZ9aLOCwiYfVTRQLMsnBfowMkL9On+Lfhefij5u63+76On9bg/\nq9qDAFX9ooH1T3devw/okL+qvhV4a8rxLqgB6Eey128NgeP1653Ttudfla3pJNEYTDbo6rRpbesk\nj6VqbxvOFxiJyLTZPZwh2JQFG5qe9H2IGdltNNe+AWAu7o685GaimDwo/4S8/xBSdH9XFoEer986\nGf59liD5WCOwWQmru/ZkCyZnG7InNZPx2AYOWpG/a1a12MDspM4LpDaTa8h/0ro2c60J3r9vGGJG\nwPX4e7z/2AREthw0RPzhpPeOEEHmDyaVPphnvSV8z8wd0NXSYG1Y7g64Wa2bJJxTgQFnRv+bTTvG\noK7PtsZgtgbuOD3OI8agJ1+Qy4RVefdgEUEzHsHpJuo9KPbBj5WHpkRfLlI9tDGVP9ugT/pJ0f19\nWSTq9e8g+ejZhuWdnNXdjM2qGuOwFmZXSuY0XrYuN2RnG7KHDEHWnn+VLHaXpTaT8w1cs8whaL+/\nTyca6HEO/DEAfYPBYp5/ZHkzq9qDEw3cC1waA7A3r9+rwACQswxZGPnENQbKmbmBrTE4PTPrYsbA\nrSQK5Au08tSsd7NvQ+BOmGFmqsqr6QrbraVjBsEiZBhiRiF1FPGuk3d0S0C73r+LbXR/vwNmJ9E7\nQvIpn1ii65LyQ8vKCBSsbxYUa0P+Z3dyipVQbITZiTOREUt0WYTzAqt2mSiYNuBjmsnFpJ/OoC/H\nu++Vf7ZpAR2rBIosD0UDY52UXux3JPA9xYU3APv2+vVsUz+YFrLIkUqYtsZAFk5f/W2NgZc8tp5a\nHRHIlFV5t5Uj2LaaZ1lk3N5kTgRQTY3pGAOgYxDcOWyb77wbso/tDxSal3ZXuPKPi1DiF+K6P7gt\nHvKO7t/r9Vsnw7nPagcjQfJZ3snZrIXVacbd25b4m++n2AizVYH7C8TzAms4uTqqmVxI+mkO3uP9\nb9sAzoedZS5heSxSzWWylUx5EXFfDYCIfC7wbUCOyWa/wlv/JcA3Ye7PW8DXqOrPp+zb1frc5m2d\nroq+Blt5+v5DaR9GG47rukSXBTLPkbMMWCKLSWMMboFMI8Zg0kzAHjQGrbJSL3m8WSGTWWMIqoZ0\ntSGo3o8xBLfXeasvUTOdoSEyt7NlX3Rg8wauQUhpyXE/5mp1vX+LULuH0OQnfdJPzOsPtnPYQvJZ\n3slY3c1ZLZU7t+2550BGsRLmVy1zGyNgyN8QY29eAJKayfVGNxYx7981DkNRQEj7j5F/QPax0462\nz/0wMpBkHOcDGIuqa923A58DPA68XUTepKrvdDb7j8B/o6ofFJE/ATwGfPrgvqv/Ha9/s4TC8/rt\nA+mSvQ3FA16/rcDQsw2blTCZbeofX9alIwexmzGY5B1joJOZSd7tyRD4pHtzldWjbu3/SaYtg2D+\nb2cM7G/i4l5rsn7tv9/wbVfpp5UM3YPks7o7oVgLZ3dyVqcZxTrj1s2CzVq5VVUBLZfK1WXG9Rtt\nWaNYK/OrbflFonmBlGZyTclnvT8/8Vu/3tLjHykJBRPBAYNwcBnoAcX9NFvPBn5VVd8FICLfCzwf\nqA2Aqv4bZ/ufxoyCS8IhvX6rxRYboVgr3FHyadkYg9vrOjLYyRhsCnMurjGo6rlbEcH8pKkckpx1\n9cBaQ7Auzzr5AZf8b67yTgM6oEX2m1J2NgZwf5Nwrrfvev+p0k/KSNixko91MMrbq5YRiEk+y2XB\nndslt24WrM5KNhvl5Frz/V7H3JebtbC4aq7PJofVIf960FgsLxAYNNYr/VgE6/4H1qcgFBGEEr6B\nPIB1hizsuR9loPtrAJ4GvMd5/zj93v1XAj+SsmMha9f1u2H4Xsg/Y3W3qcDIp4p5pEpYFUxmjVek\n61WdINKzohoxOAE26JkxGK1GXtVNXvd2cSuJXEw2jQe3NO9ldmJu7sy0pl7VvbwWrUSxJf+b67yl\ntd9c5fV8BFequQgWOR2y38YYAEGDcGiEWj27jeDc5O+Q9GNeh5ugtWa+qkogW/eac2+177NNrff3\nkX+xzmryXy1LVmcld26X9fWs5o3ccf1GTrFSNtOMfKos7+TMWZI9aW6OMy8pn1gaI3DtBF2vkc3U\nyFJgIoHNEsmbsmSbHO5N/HoYbPy24xzAHUTyAAd3OjI52EjgQ+OBEK5E5LMwBuAP9mzz1cBXAzzy\nMU9pbtTC0dNxJkAHOAEwk2rIdNqeDQsqbX9C9hCUTyyr3WyAkhkm4QaQT2wEYPYgi4mJACo2qXMD\nVa2wiQCq17ZqqJ6E3byvid/KQT78aoeE/iguQvPturi5NmS4jTGAdt4A6K0q8qUoPwHsTpTjTp95\ntoFV/T5yndXcyi42m6z2/s+KRv6xczCYcxJsB+n266yeD9rtsV9q0XjF+aSS6ObmXtusmhwPmPEi\nGxsZFl4BwYQJG4q1MpmZJmzFRCnWMJ9nbNbKagmzRcZmY77j2SJjNs+Yz4X5PCOfluQz+3nIp6W5\nB6dZTVSymNT3lkyn9X1HNRZFJvP6mVERyiqCtEbANJKr5K581n7ONlXOisoIhNZborZOz8qJhu0y\n97635+bCVstZVOfuRgV2UKULO6bmiPtrAN4LPOK8f7ha1oKIfDLwncCfUNX/HNtZ1VL1MYBPfdYz\nFTwPJZ+Yv2KG5DOjy+YTc9Oc3Take3oG0zU6M1p8NpuaEH2aIfMJ5YeW5iG6vWZS5wC0IvO8Jn2X\n3GU+6RgCoCH9SfNepp4hCKFKDDfX1X7fjCIODYKZ1j1QbIMvOyE4WNKWerCVHXG7LhtjAHAlt3PE\ntsl+U1oPPy06sEghfnseMfJfVUS/2WSslllN/H5juLkzMAxgcVJFStVczO4o43lRRXXY8RFldZ1F\nraG437OtzJJ8BnPMvQZoPjORAMBq3XTvnOQIZlfqlBHqPK9lGxNdVr/fVDAJX5gtm+XXb+RcvZYx\nn2dcuabMTkoWVwtmV0ryacn0Rk52bUr20Nz0DHpobu6zk4WRf04WZmzAZAbzE1MWOr8GsxNUpJIU\nw150nQi2c0p72r91MxSC61uw5O88E/V/e987ExU1pdLOrHX5rDWPhTuI0i4rdLPVrHVRiPS3qjjH\nuJ8G4O3AM0XkGRjifwHwxe4GIvIxwBuBP6Oqvzxm53U43lkxqTycWZMMzicwOa1vQGMIpuidU2Q2\nRapksEwzytsrZDExeqr13CrSr72r+STJyzefnca9fGjfWPa1HThWz9nr3PihS66Sd/amt3PB2ijA\nEviyJnjz3yVD//XY6MAcp328eV62cg7beP2pxG9h+wNZGchGDrPM7N9+gVdyO/bAEL/7elpkgDEC\nbu+kvPp+ayNQeaKSz5qfZWIIUMA4G9XrOh8EdZO3OUYOstiszTnM5pM6AQxw9ZpJAOfTskX+86sF\nsph0yf/aiTE+LvkvrpnnIkL+MY/ZRgQtQ+Cies5ahiCwPgjX63e8+9Zc1Z5RUJGW1+82WbTXEHOQ\nLiPumwFQ1Y2IvBj4UYxb8xpV/UUReVG1/tXAXwE+AviOqhXqJq2XdnW79XkbriFY3m68tEkVrt82\n5K93Ts3DMpsit0+RxcTkBhZ5ren70s6gl2/X+aTf50W4XlB9DV3vPwWTLA9GAc0k4TLYcsGNDmA4\nOuiTiw5N/KG5AOx2dauIKgoAYZGrc/1G/mmMmJ2wxkhBpUP6fvmrqMLsxNxnWC/YeeSqCEABZtMm\nMetUKU2XBVCQT7TJO62U6ziJ3xs5sysF+Uxb5J89aU52fYYs8jb5nyzMfeiS/+zEEGuE/O21meuM\nyye5TGEyj+YHBGAy7+YHQoagz+u367fw+vfeRuUYAWwHVX0z8GZv2aud118FfNU2+06eji6fwMlD\nyPK0uTFXpnkbp3eQSd4kiSc5cnpGXpG/npkbrCb9mUfuvpcPXV0zhL6bacD7HwptLVGlRAGpTdcg\nLBcNRQcWY4kfSCJ/V/t3X7uJ4dUyB6caCLr5hLFSkEXLK55X5FdNZmIO2EQDdnrHjCYCANDphikw\nOWtId1PJRdYIzK4UzK8a0s8n2iL/7ElzZJq1yf+qiQBa5D+/DlV12YYNZVl0yN8lft8Q2JxA69pd\nQ5BPWmWiUUPgwtP0W5JPotdvz9v1+mMTD11GPBBJ4LGQdiPcNMxP6vwAk7mRhmx+YLU2huD0rM4P\nyGxtwvYxCdwQsQ95Dq7Hn+j99/VC9w2EjQKa5K0xDGeFMM3GGQGLMdGBT/ywu9c/1AHUbRPtRgZu\nFADaSgiPkYJ8BPMC0Pr9ZNMUIchsbeKwSnKEeF4AqMl/dsVUoLnkbyOAFvmfLMx9FyN/jZO/7/1b\nQ2BG166DhqAlCwUMQetq3PWus5Po9dtz7PP6U7vOXgZcSAMAbDcQJZYoXmy8RPG0aQcN8QSuT+4x\nsu+b5KJzftt7//VuqmQw1YQfy1LqCABMFGBVrG0MgI++6AD2J/ds0/q5/owXBbjnbRCXgsBMqxlC\nq2LGzQvglUlWyeE690RaXgCoyX96wxQitMj/xqKb8D25WhN+Kvm791Zfe3BrCLrLp938gP1mq+Rw\n2xCkef1A7zmHvH5bcbY3iMRzeOccF9cA7AI/P7BZthPFt09N3fTUK1cLJWwtUkg+2RBsp/3HEIoC\n7Otto4AY/OgADkv8dl1ownigMzm8HwW4iElB87z5DWIEaNY5eQGc5LC9t2BUXsDCkn92bWqSvi75\nV96+T/4yv27uo0TyD13T+Hki0iuGYl4/0JJ8tvH671W7kW0gIq8B7Py+n1Qt+xvAnwRWwK8BX66q\nT0Q+nwPvwEwi/9yh4x0NQB9sfsCO6qwTxbNmcA+0yT5E4qnEHjuH+rVX9xyo/AnptTGYAU1FXZLZ\nlHNKpyT0UHhiFSd+oJf8Y8QfWh5KBNv913D7AgX2myoF+UYgl2krWQwgTnJ427yANQJumafMJy3y\nb0k+LvnPTdWPTuadxGmfFx1q/pdqCJIrhlzih1akW+i6jna39frdyrO9YL9J4NcCrwJe5yz7MeCl\nVeHMt2KmfvymyOe/Dvgl4EbKwS6mAdA9T/XmJ4ptfmASaU7lfm7f8MJhNwxOgc0DuFUr08zSj/H8\nJ05EECoJ3Qd28fpjBL/X84tEAWArgOzyrIqg+qUgF7lMUZGt8gIAWulzlnJ2qfEPVc1AmEzd/7sY\nAvd76KsYGuP1Q2MUhrx+O97kPEJV3yYiT/eWvcV5+9PAfxf6rIg8DHwe8HLg61OOdzENwKHgJopD\n09wdGEPefx9iLXDvRxRwVsATS7kvxD+4vRslxKSgvGmWN8/VqaRqDHIKGbZ08fm1aF6gb9AYsHWN\n/1DJZH/VzPaGYLBiqF4R9/pTzjXm9duy471BpCn8GMaTReQdzvvHqkGsqfgK4B9H1r0SeAlwPXVn\nRwMwFl6iuIM99T0PGpcdvf/O7gJRgC0DNfX65vXYktA+uOT/xGo74k8h/XzZ/k6KeR6VgcYiRQrq\nnE+kfn6XQWMyn5iZv7ao8R9L/m7VjGnnYS/S+T5HyupDFUNjBnWN8fo3jlG4D/hA2limLkTkL2Pc\nkn8YWGfzBj8rIs9J3efRAGyLfGKSeZbwbemaKwmldD6MGIzQXKfNscPe/7bJYDcKqMcHOAPDdikJ\ndWH1/pvrxus/vWMIIET+sTr+EHzCD60v5vF9xHIBsShgSAoaIsOhvEB00JhtU0I1CXxqjX/VSnwX\n8m/aeJj3riEwYzsK+1V0rnEMmm6d4yOUFK/fNQoPCkTkhZjk8GerBjWzzwSeJyKPYlJYN0Tk9ar6\npX37PRqAbeCEpnlF1LXn4hK6V/PcwSYyr2kMAe9/G4TGA0A7CnAHhu1aEurq/Zb8b9+cRb3+FOIf\nIvw+hPbpzhGQgrMiLgVZIxCSR2Lw8wKt5LAdj0I3LyCLdXKN/67k7/7vYntD4M41YHEIr98n/r3N\nMX3gkcDVxFkvwcyNchraRlVfikkOU0UA3zhE/nA0AOloPUBLitI8KGvOWhODYA1CPQIy0gCr2AxX\nB4UiCM/737WplZWBbHsIoBMF7FISasn/5sq8vnnakP2tm1NH/ukn/W0Jf7oyn1vPmhHEKTJQixwC\nUUBfryCDKhKwLxmZF3CTwz15gWCNv504aI/k78sltrEf0IoK2qFP0V2UiJRWDtt6/fa3PXSF2zYQ\nkTcAz8HkCh4HXoYh9jnwY1VLnJ9W1ReJyFMxMyk+uu3xjgZgCO7D4w2Pt55LLuZG9SfLjpa79cGN\nGDrtb9O8/21b3Ta9gJooYJdksJ/steR/emdSe/2NBNQm/VTCtwSfgpgMtAxGBOH9dr3GrhTUNgKQ\nmheIDhrryQuYk5321vinkL9FjPxducSM4G48/rAh8K7fXxSAvXb3/Mz/zV69fr/b7c4Q9jYQTFW/\nKLD4uyLbvg/okL+qvhV4a8rxjgYghurBWZdnFGWb9F1vaQ1OBNA2BqUUHWMAND3UXdgoIVY6Wmx6\nvf9dB4MBnShgl5JQt77fJntP70xryce8bur9Y4Q/huD7MF0VdRRg4TeE8xGKAha5drZxpSCDxgg0\nOpQ48GEAACAASURBVLkxAqm6eGozOXMB4Rr/MeTvetUx8m+a+IVIHnAmEQ5FBSF5qA+H8vrdliOX\nHUcD4CIg84SI331QzBSBZt7d9jyxE+BuPV9szBhAxCBAN5+w6+U5paBuHsCtBnKbxG1TEhrS+13y\nv1Vr/znFTVis9lM1NQbu6GAfbjI4tN5tGQ1dKajJnbiRAMSSw0Mjh2G4mVynxv9A5O+XTrrGIC0q\nGCcPHcrrt8R/9gAlgQ+Fi2kAtCQ0N2gUPTLPulx2HpBlOWlpou5k4b4xKGQzaAxsUyuLVv7AvSyn\n/8mh4LeKtlFASkmor/e7yV5X7799c0a+LJiuCib7HmEWge2gGZKBXPnJTwb7UcDCu6XcttFtKQhq\no1CTYDcv4CNkEAabyXk1/tAdOLUv8rf/2/M8hA2BQez39eShwPdxKK/fEv/ZdkppF8d20A8gRnv7\neXDmKjNpeHPzu8YAVvUcstYYQJMrsMYAaA2RjxoEB3ud0Yj+KCClJDRV718tc/JlwZU7a6aroupr\nA+uANu9LNrsiJgP5/YAgHiX4I4TdMVnme/K9ym4kUEshCTJISjM5t8YfDkP+vsMTMgQ+xkUFXUPQ\nl4zexeu3xL+6N77HucbFNAB9cwEMJHV94r+9mXRIP5QUM5p51xhYmcg1BmWCMTDr2gYh5v3vOypw\no4CUktCQ3u+Sv6v3L26tmKxLpquCk5uN/DN1cgDWGISWuRhjICbrso4CIE7wq6XZxjcK7sxh/jIL\nM++BIfw2MdoPhZPDW+cFlraBXFPjD+MmRUkl/xQPPyUqcA2BC3++aLN9dhCvf7XvHMAxAjiH2DhJ\n1S20fSvzDE1QPs1sn/ucRd42Bsbb05YxAJhmbWOwZukkkafNFI6OVHQIxMYDuHDLQH1so/dP1iUn\nt1ZMlwVX7nT1/2KSMVu2Y/PVfLJXA9EnA807BsFMGLNwNj8LJIR9KciXPhoS3G9ewCzcbkasseRv\nCDNeDZQSFbgX2xcVHNLrb5ZHTvES4WIagCzvlsAlePsxmadvxqpFrq2JT67kwiLPWxOl28jAnR4x\nlEAuWzkDyGVTGwUXLjn4JZ8+cbjrfbL3t21Pk5e1vgv7cLsPWR/5L536/tUyJ2d/T9t0WXQIP2gg\nnAqi9Syv8w3rmZGhVs60ipNJGRkgVrRmDYNq/uCAFOQaATsDGpTVPaTV+ww7K5pBVnu9ZBWBO6XE\nfruEVkfNqn/O2EZpvnftE6xPrvG6+XA1UPv6+hCOJJYBz97+3wSigaEkr+/12/V7ayAoslvH3/uI\ni2kAJGva3B6I+C3OqvWLXDmrtmkMQTMVYmMItF7WlogKNtXo0S4BdLNVfUagrzw0NheqJQWL25us\nRf7LIuNDK6m/B7+Nc1+Zp034dq5hkpFvytZ7H6t59xYNefsuggYiUk7qGoFB+FVB0TYRFnFD4N4D\nxvvNK4egawjc8SY2OnCjQ3uPQ39f/BDxx7T+GPH7r21psJ36s0HYINi8mT1GIy82TlPzucMS/747\nyD6IuJAGQNHOhNZ7J36HcxcTd51vCMAlgk1ZOg9A1xAYgjhrGYJmyr1tvXmq47VJHqA9cKe97bIQ\n7qwbQ9D6LgKav9vWoQ/red7y2GF/5D+EkCE4rBGw5NjMiRy7B5alOJFhWTsETW+cJiJ02yekjZgd\nR/wu0ccKtdpRz34Ngntu5nWc+O2yI/GPx8U0AFqyKu8enPhXpSsHWMQNgUsElgRs5UjYGzyrCcB9\nqC3iJA/uAxcl+QHyN3/m9QdXzffhVvv4Cd+VJ/3EsJ7ntdbvk/8hiN+FrQZyS1D3YwRg2BC0o0L/\nHoC2IXAdAnsfuDIhDGn85rpSNf7QKNlttfJdDEKM+O1+90H8/sxyW0OyowR0nqAYA7Av4vdJ34X7\nvm0MmpvW5gma+XAbQ2CTZ26eoOsNnrWO6ZN8iOD75jzta4PrEsSddV5/L+534pd6bjZZh/wthlo6\nHIr8QzJQa33ACMAOhqD1u6dM0tBEhaF7wJKi7TDqGgIrD9lKsnAfny7x+wnUIY/aIj5gKnEyigpj\nDIL5f86J/wLgghoAIwEdivhDHtEib7ZxDYGVh6whWOR+nqAtDYRIYAzBx8h9qPWtv958P+a8bZLX\nH+TV19QtJcxezSetip9De/4+DpsXaIx/P3bLE9SH9e51oJf4fX3fJ/5Y1OufexfpRqHfIIwnfvs/\nhfhtue9eIBxm9r97gAfzrAegWnJnrcnEf6t6jnzi7yN99/0i7wmTPXnIJQU/YWwrRNyEsVs1EiL3\nPmIfIn3we9g0uLnK6+/HLff0R/iulllwovY+rGfdHMBB9P6BKKDe7iB5AYu2NGR+f7yIcPs8gVm/\nf+Lvi3rD1+lfr0W3d5JP9BauQbDvdyV+/77cK/FfAFxIA1CotKpYfOJ39WxIJ36f5G1r4fHGYLvK\nIRgm9ZSp7vokIAvXOIbKPS3521p/6D6AVv4JEaybCPbJ/5Befwx7zwtYeJKgwf7yBECQ+H0NfRfi\nH4p4w9dbfXYjnfYZ7vX7BsEaxr7WDX4t/xDx+6Qf6v66G7Jx83qcI1xQA2A82FgJ49Cw8BjpD81J\nm2wMOqQwnDAOIYXIzXbDRsFFWxLrL/eMkX8qzgP5W+xsBCBqCFYrdxRxWlSQkiewSCH+sd5+n/Mz\nCgNGwZfK+hyzfRL/eawGEpHXYGb++i1V/aRq2Ydj5gF+OvBu4AtU9YORz+fAO4D3qupzh44XNQAi\ncgMzEcHDwI+o6j9y1n2Hqn5t4jXdc5Qq/M7ZJKjvQ5j4U0l/1E3jkEHIGFhSsA9EX8I4BfsY2eh6\niLEWD26tP2w/gYtfDnoI8k+VgertD5EX8FHde20i7EYFIWegO7BsuJRziPi3cn52nVs5IVLYB/GH\nvP3zSPwOXgu8Cnids+ybgZ9Q1VeIyDdX778p8vmvA34JuJFysL4I4LuBXwF+APgKEfl84ItVdQl8\nRsrO7xc2pXQ8/thN795YFimk795wtm+MHw20PpdICq48ZENjSwT7nMFoqAmnW+sfK/f0scuDdT89\n/xB2zgtYBFtKO7KHZwxcadCNCsznunkC6PbCGaqRr69nhPPTe2+Pud6eZb5RGEP823j7+ysDlf45\nvEdAVd8mIk/3Fj8fM0sYwPdgJnvpGAAReRj4PODlwNenHK/PAHy8qn5+9foHqxnp/4WIPC9lx/cT\nG21XrkA8cWTRNyVh7EZZLTNm83L0jbSiaUJmHwT7348K3MqhPuzD+3cR6uzpl3vC9qRvE8H3gvi3\nPc7ejIBFojEIjSnoRoVNniBE/EPe/ljS35ksEwyD+76P+FO9/QtU/vlRqvqfqtfvBz4qst0rMXMH\nX0/dcZ8BmItIpqolgKq+XETeC7wNuJZ6gPuBUhv5AuINoMbc7LHqgdDy0UahxxicZaEk2uGxqiOn\ncLknxL8/V/7Z14xe9wt7yQvYzy2b+YhdJ8Ai5gT4UQG05aGYvp9C+qmOj73Pt3F4/GtvIfAd+J/r\nI/5tSX+vMpDImCTwk0XkHc77x1T1sdQPq6qKSEcvFBGbN/jZalL4JPRRyz8D/gjw487BXysi7wf+\nTuoB7geKEmyn4dDAEP91KuEPVQ/YTpJjS81aD0fAGGzTt3y2g7Pjkn+s3HMfD1CoJcShsEu0scug\nMRsl9m5DekTojyexGCNzpj4Hoft432WUUcPgnFtI5lkmGq7YNvcRH1DVZ438zG+KyEer6n8SkY8G\nfiuwzWcCzxORR4EFcENEXq+qX9q346gBUNWXRJb/38Az08/93qPQtvcK42/0PrKPdY2MfWY+LzrH\niBFDyEvsq52OYVtJyJJPX7ln6JwfBOxqBELYRRJyJ6MZcgJi8qDZLu7tjyH9Q5dLxu55ew7+HAw+\n8Y8h/dg9eZB79fCtIN4EfBnwiur/D/kbqOpLMUU7VBHANw6RP1zUMtBSat0atrvJR5cz7nhjhUJs\n26J4Ni9InTk35k2lwiWMULmnXRdDSvXP/cSueYdd8wLLZd6Zc6Czvx4nwJcHYRzp3+8yyb7rdw1E\nyNsfjtrHFSacx3tVRN6ASfg+WUQeB16GIf7vE5GvBH4d+IJq26cC36mqj257vAtpAMpSavKy2KYc\nbB9Jo1ifeXt8n7DdB2Qoydw3laGPsYYhVO4Z2v+D4v276JuGMunze8wLhH5vCEcHIWNg4ZP+NiWS\n9ypp2if79J1Tipcfux/PI9mHoKpfFFn12YFt3wd0yF9V34qpFBrEhTQARSHcuhmvUYf0m3tbgrM3\n+NBxQnPS2mOGZCXXe4oloGPH8REyIBahcs8h8h/7kIVm7LpXOQF7rPuRF/B/c5cQhwyCbwzs593/\nKYR/v3Xz2FzMoe1i57ML2e+9OOGi9gISkT/dt15V37jtwUXkc4FvA3JMKPMKb71U6x8FToEXqurP\nDe3XRgAu9nEzD+1j1iLn9OO5hO9iaKxB6DN9BqN73Gb/vuHwyz23wTYPWd9MX4fAeckLxPIBsYjQ\njywPlSg9pBGI3fexY28z4PBBr0I7NFLM1lcCfwD4F9X7zwL+DfDbmELlrQxANWT524HPAR4H3i4i\nb1LVdzqb/QlMwvmZwKcDf7f634uyEG7fvPe9OXbPA8TJPbbOf5Bj0YS/Px+WLOZV1OGT//2Sfu6F\nQThEXsDFIQzCUOHCvvTysVFdsaQz3/IQYoYgNcIcQ/J+xLYXyMXuBTQFPtEORKjKkF6rql++47Gf\nDfyqqr6r2u/3Yka8uQbg+cDrVFWBnxaRh2w5VN+OpVQWt5q0aWxy8POOYhlZPu+OxPXlAHeZRaza\nwkVYRhj+/u6Vxnoog3CIvEAf0kpI846hdz3/0G9+CLK/V160f7/780innsdBSP6CIsUAPOIR7m8C\nH7OHYz8NeI/z/nG63n1om6cBHQMgIl8NfDXA/MZTWjfB0A2xmabJHPsyJId4oEKE0pdsc+EahJDR\nCHlmfnTie335suh8X9NVEf2ut/1O9j2W4BB5gVT4v2Fvy4UI7G/pGoJQJBlaFvoN4fw4UKnnsZ7l\nR+knESkG4CdE5EeBN1TvvxBncNh5QTWa7jGA6x/9zM5IuVSSh/iN5j8g2zygdj+7eMyxEDtE9qFl\nMcKfe6+Xbjni2LLYEbLHZF3u9NBawt53NODvP+mzq67hS0GKbOL+VpNJ2WvcY79bqNY+Kr147W0e\npIqvsTLUrlAZ13H3vGDQAKjqi0XkTwF/uFr0mKr+0z0c+73AI877h6tlY7fpQEUGCX/oIQ3dQO6D\nYl9vnfjdpacM25G9v828voays70hhqYm2xoEuw/3WieTtPYAKde8i+d2qJHFh+5YGoL/W4bIfz4v\nmM3LYD7AwjXqoVLo0P0bG5AVur92MQq7fHaX8S67jpW5SEitXfo54Jaq/riInIjIdVW9teOx3w48\nU0SegSH1FwBf7G3zJuDFVX7g04EPDen/PlK8sSGyD70P6eipRGj3t+8HoI/soU0GltztZ0LX6xKC\nNQiWbFyD4G8/BiGjcB6NgMUu0cG+YMn/5KoZ/uv+7n33n1/p5RsOv2JsGZCLzOfaxj/l2KHP70rE\nqZ8PPav7NAKKtqbnfJCQUgb6ZzHa+ocDH4/R4F9NYGDCGKjqRkReDPwopgz0Nar6iyLyomr9q4E3\nY0pAfxVTBpqUeFYJE39fWDjkUffp5KHP3ItweRvCdz/nRzGdlr3OtViCd41cn/c5xiCsyKM5g21w\nr3sMdY49IAP560LSYuz9ydV17fmnRIF9v0GIGNu5g9BAw6y+r/yIIuU3D0lOu6CvoCH1ebjMSIkA\n/jymYuffAqjqr4jIR+7j4Kr6ZgzJu8te7bzW6vijMaQBpjw8KVp5DL6HfAiMJXz3Mz7p2/+2idyq\ndFoPnJjRp/YBD0UH9pjbNgvzI4F95AXu5aAyi323uPadEEv+J1fXSUQ6Vrbp26d1AKArEVr03ffu\n5/uQOkis73z9Z7TPAdodSqkPpqyUYgCWqrqSKskhIhP6JjU9D/ASMrEfetsE6WxeJoW+KfpsipGI\nVfOk3ORmeTdf4RK/JX237fQC01VylvUbA7vfFIOQcr2uIThvyeFDoM/798n/+o1Vfe/N5sXoBoEW\ni5Ph7yPUTNCNbmO/udluvCMQk5Xc44YQcsbGOj+XGSkG4CdF5C8BV0Tkc4CvxbSKPreQTPdC+tBN\nlIa8h77Qd0xeIAS3Emcs4fuvY96+21nSnZDDkL4MGgN7nH3JXg9aXmBfiN2zlvAt+V+7sWKRN8Z7\nm3bhQ4iRY4oTMBbLiIPjIhZ1+1JOzHiEIt5dWqZfFKQYgG/GjAb+BeDPYSSb7zzkSe0TKclSf7uU\nZGlMpz2k9t93s29D+mZ5M/XkNLOTkZvX67KZiKSepcqbtq/VlMz5bnYlhljF0IMgCU0D+YyxsL+h\nJf/rN9Ytz3+Rw41q8Oli1xMec16buBPQB1cycuHmFAaPHfh8X7TQJ3O6Ts+uUL2gSeCqXcPrVPVL\ngL9/b05pd4ikVe0Mkb77OZf4e0PHSG5hGxL0H5qUmx3ipA9hb98Sv39ddh7iadaekcqNClyEjMEu\n2Hde4DzANQyu/BP6Ld1yT/v6xklRe6/7IrBx2F9EGDIKff2pYFgeGsptudOsjhgadGHRawBUtRCR\njxWRmaqmtqQ/N0gp/9qG+EMJUwu/TW9zoP2QVirpu+fnevt2G3vzu8Q/z5V5Xlanm7EspHU9flRw\nr4zBvvIC96pENKUSKIYQ+Z9c3VQSUEP+D8213xGJneOOpOf/9n5E2EJiQtkiZBCGnuHQM+C+tt6+\nPXd774ccnu2hFNr3RZxfpEhA7wL+tYi8CbhjF6rq/3Wws9oRIpqk6zfr00okQzcV0CHAkC471jDE\nEr8pNzx45+fJPBAm/kmm9STjk6xgngvLImOew6KaeNxGBQ2sF2okoiFjkCoZ+Nh3XmDf2MWwxH5n\nt9xzNi94aObKF3Eyv7IjsfUR41nhOQKRPFEHA05AX4VQX1lsyjMQIn7X2TlvEJG/CHwV5uH6BeDL\nVfUssN2nAT8FvEBVv3+bY6UYgF+r/jJGzDZ/vzFUNTOmUiDmTbTRrjwKEeEoRB6Y0A1vzw3C3j50\niX9erXeJ37xvjMA8VyaZsikFMIZgWc0768pD7VwBxPIFY64zhH0YgUNEAf7+UkpB+wYfurX+ttyz\nln0m8NBMW/mabT3ZeaKE5BLlvMhqZ8CXB1N/d5tAtkjpWeWvT414Y8Tv3vO7Yp8DwUTkacD/iGnA\neVdEvg8zSPa13nY58K3AW3Y5XtQAiMg/UNU/Azyhqt+2y0HuNdwq0G1LJfuIP/TAtQmwPpP2Nuxo\nFOi/4e15uNulEL+7bJ6Z18va+7cRgTEE8zwsD7XRnIOdqHxbqcDHvpPDu2JXY+Lfd26tv5v0vTFt\n9Guf0FKQ4u1OsuF92cjQNQQQNgQp93vIGFjESN997ee3zLph4j/PEQCGl6+IyBo4Ad4X2OYvAD8A\nfNquB4rhU6s5J79CRF6Hx2aq+ju7HPiQyDI9CPHb9S6punKI9YYtUoxCkpfsXkfkhm+O2ZyL6yG6\nN3yM+KcOAUwzZZ4py9r7N4bAl4egMQR+VGDQloii1zwyT7DP8QLbwif/2dJc2Go+CVYC2ffW+w8V\nKsTKPd3kpSW1G7P+6x0i9D7jEVtnI8CQIbiS+4YAxkSDvjGA4YgXtiN+/36/h3iyiLzDef9Y1cgS\nAFV9r4j8TeA3gLvAW1S15eVXUcKfwszNcjAD8GrgJ4CPA36WNnNptfxcI6Vsclvid0NQl+S7GrmP\n9k3X8pIrWC01hFRv3y5PJf5mG/PhTVkwz2FaZLUhMBJQ1iEBmydYFvGOiEFSgC4x3ANJaFcZKPRZ\nS/7+uaQkgmdOlU+s3NOS241p87vGCH4bYjfruh7x3DuGjQxdidAaAjcqbJyAtgPg3tu2ggiacSch\npES9Y4l/npfM8/0U0CqMSQJ/QFWfFVspIh+GmQflGcATwD8RkS9V1dc7m70S+CZVLWXHLqRRA6Cq\nfxv42yLyd1X1a3Y6yj2GKQM9jMfvJk4t+shv2CBAd2B1P5E2r83/McRfV/kEiD+XKZmYneRSVLpm\nYwjWpTDPiiAJ+HkCPyqIX2+gkuQe5wXGIIX8Z8vNYA7AvQ9Tyj3tfWh/26vTwrsHh7z9sNzhEzzQ\n8Yzdz9YOQUAiDBUNRMeTQDQq8I1BX9Q7hvivTYvqPp+RSU4u53Ie3z8K/EdV/W0AEXkjZkZG1wA8\nC/jeivyfDDwqIhtV/cGxB0tpB/1Akb9FyojAWI2wXT9UKunCesfN630ahDZSiN96h33Eb7z9hvjd\nByKXCZnmtSGYZCYqqK/RMQShPIGVh4ahHMIIQL8h2CYKSPX8++DX/qeWe04z+LBZ8/v6kVwMKQQf\n24eNBu094t4HscjQdwbchDE0huCskJrMY1HBPoj/2qSs7/VcFvV9nst0jwZgr72AfgP4DBE5wUhA\nnw24khGq+gz7WkReC/zwNuQP6e2gHyiINDd4ylDwVOI3/9vk6hL9JCuqmz/dIKTA94gORfzuQ2FD\nWmsISi3I8ymTbF0bgjF5gn4oQa34HOUFUsg/35jvuphkvZVAfh17SrnnFec3vjotcT3b4PluQfJg\n7gEXNiK0r0stIKNlCNalAGXQENiigXjlEITkIYuxxH9jVnTu9RDxu9HueYKq/lsR+X5MC/4N8O+A\nx7wuyXvDhTQAcHjid8smY+S+T4Pg1nzHavjdc3PJoY/47QPvPxS5FhQ6odBN7f3VRsExBPvLEzha\n8RbRQN2gbM9GINXrt+TvfzaWA5jNi1Hlnk+a+R6u8W59xKIB+9vX5+sQvU+E7UiwbRAKXQcdgphE\n6DoDoYRxKE/gIoX4b8zKjr4/RPy5TBE9n60gVPVlwMu8xUHiV9UX7nKsC2kA3FYQY4nfLhsmfqc2\nukXuhzMIfYO33GUh4s/FJLz6iD/k/RlDsCYXYwysITDb75YnCOMwklDICAzJQNuSf74p8adTXM/M\nvMnWyx9f7tklO5/s+0ge2kTvyx/+tjEjYJ0C/z4IRoZbJozPCuklfpv/CCV2k4l/s4TiwRy9u09c\nTAOQaRLxQ7hcEoaJvxt6jzcI8c90CfLgHr99MArT8WOSz1ARs03l8dnPWQIAWoagL09gz9U1BAah\n76YxAq4mbI1ASl/51LxAzAjs4vn7x3OnJ7Xk77Z2Hir3bMizTXiNfJPu0fvbDhkCf1+NU9DcB26+\nKBgZbpEwhnbF01BFz2ji36zqe/0y40IagIx4ZU9sgBSEK2fscvO/S7KW3FwYKcTsx9745rXUr31s\nej6zPfkzSP52WU3+y9PqYCCOEUiBMQI5UAA2GlCMofO/J0ucTY7ATY4bEmiMgEWo6+o8sAxMwjX3\nZ+wKSDKhmch8/T6k6U+XRcvTd8cBrOc5p9dnbKYZ61lOfgOuzFdR2cd6/g/Nzs9UG+2IYdp6nWnO\nFCirCNHKg4WuKbINpRpjALApNyyr6HCZm9/aRAZl9UwIN2ikQ5vz2jvxHwzKprw/AxF3xYU0ACKH\n8/q7NfP2hzcHbEivbQjcbaBtDKxXBHFDEDu/fZO/Ls1UzwIw2SCzk3pfYB74tiSw7lZTZGCNQIOy\ncz3NcnO+bg8bd2yFmxj0B9bFJh/ZpT/9kJGwUYRrEFwDsZ7nrGc5m2nG2fVZrfeHqn1swjfU3M0a\nxHlu7wutHI6SaWZIx40CLEottkpw9hl6q5drVXfe3E++MZi0jYFu6sgAGmNgIwNoJ46tMQA6ye42\n6c+GSb9YAQHizy8k7W2FC/lNZOzH6/flnhDBNhxXVJ9j66jANQQGvsZ7IPJfncLyNrpZmtdUIkxR\nubf5BMlnSZFAbSBqIwDNl1S23jcPvfH2z1oRQH0WnXYCbhWNP9mOlYZc8rfkPVn3yzWpSIki7l6d\n1pq/JX93kJdb5x/r7Lkuzb1q7pFGFpznVJU32f/f3rvH2rJdZ52/UVXrcfbZd99LMDiO7WCDAlIE\nCQHfbiQjsMEB58aKMQrBNDEJHWSFNG5HBMU2UbdaQkjOP5HdLbqdixOcKAYTmZBYJiHOg6gVMBF2\nsEjjKyAKLyc3cRzFPvecfdaravQfc86qWbNmvdZa+3HWqU86OmvVqr2qau+qb4zxjccks5dvDPGw\nSG0IGt6/NQBh4tSPEGPGwJzbrmYMFqk5X98YMDPPiJ8zuJ3efhOFSvSZfxRwkgZA5Gq9fl87d6Vx\naTrzKgGGRQVxjxj7WT0qODb5lw+yI//1C0YbXd0vz0HzjYkEFufm92qNQK7bYR5m4jqKQwmoem8e\ndve+ygeEXN0VBcAwGcjX4q8SLuF7frHp1Pv9Dt82PLRyiPP8h0YBx4SfGyqRzqvPLGLGAKqKMqiM\ngcsZVMag6i3A2rFY49Zob78NUxQAnKgBSCTeLHUsr7+3izCICpr6t0PFckOigqOSf74xhO/If31p\nEmP3L6vTy+ZVhX46L/MCsdLA1t9H7XfRlReIS0FtUQCEQ8SOKwP1oa2803n9dxZ18o/p/X3k7+A6\naBdp/d7Y2rLbGHwZyHje+z3qvvdfv9CmQQijA98YzFia+0Rz4E4ZEThjMEtgkealMbit3v6p4SQN\ngPMjr8rr98m1E4EhcCVysF9UMIb8HQaT/+UD2Gzh0hs7PjcRjYJ5wKE0Au54MYzJC/jvY1KQwzKj\n0STWtQ4zHLY859DFXMLO3pS8VuMf0/vHJHtdJOSigCzJrRSUmCqrPAEMYR4iA7VVEdXul+gP2r9z\npKLG3Sf+MdxxEk07jQHAPLlzHG+/DUeKAhQnyT16OE0DIM1Vf47p9Y9uI29EBNVG3xAYxKMCc67e\nTJaB5xh9eNaXkG/q5H+5gs0WfWAiAAHYeeeb7apoINvB/AxRPVJeIGmVggy0MTDPR1gSGpOBoF4C\nuu+avV1z/NtGOwzR+/uwyqtkMNjyYq+nZB/03cOl9+/KJh0yj9i7DENgFHyDkJGhSWUMwoqizB2x\nHwAAIABJREFUydu/HpykAUhon39vXg/3+oFGGAoV4Y6aAVJTKZryUHdU0DbSYTz5G71/UyN/fXBZ\niwAUYDurqHi+KbfHksOH5QUKFqmUr50U5OAnhGOjIro8fV8G2of0Y4Tvvtd/7RP/vnp/G/xksEn8\n5mViGDhaFAAt3n+IXU/9fDaPG4Z8V/O6nbSYWRrSpEoigzESR/P2rxCqlMb4UcNpGgBpn4gJh3n9\nYfOUOd44Q1DVy8MYeeho5L+xer9P/pcruH+JWv3FRQCl17+xCe7dBl2cjc4LuK5R8wsrt5ZvmpMt\n2xPCfWhbYGQI2gg//F7/fRf5j9X729BVEuq2h9i3HBQC7X9o05Tz8LsMxG4TjyDSDMESUjq3x5sa\nta4aJ2kARNqbpszrw7x+v4Qy1E5HTwXskIdCHI38V/dNsneX18i/+PwatWybALK0OYDNFrlr+gG6\n8gL7No1ti7QWEeyKdimoLQrwsY6QfqwpzG3vQte6zDHiP0Tv70JXSSjUo4CxiP3NerX/GIZ21rr9\n/BxBTWKqjMKjgIJ46fejgEfjNzwSCe1zcmA/rx+IJKKqMHafsLvWVGXvn0oeqUcF5hr2IH/r7TfI\n/3KFbrc18i/ub8oIQNc7kvO5Oa35rIoEOvICfU1jUST+5Eoj/2S2SiiUgvaFLwP1Eb7/M23buojf\nST6H6P1t6CsJddhXBqpFtoH3r1ehv7d95xokW9gI8+z4x51Q4iQNgEj76lfAIK8ferpmA8/Ir4xx\nmvhQxAyBQSUP7U3+YY2/I/8HJgLwyd+PAGRVnYgsc4TxeYEQbrJoiEW6YogURHW0UWOjh5J/28Lk\nXcTvPm9bwevYCEtCod4Y1hYFjCkFDe9x3a2vdm5OJMrQzaUpNMg3pg/lEYkGHjWc5G9VqNfMw3G9\n/kZVhNtmyc99z1j4hiDMExxE/n6Nv6/5b7Y18i/ub1FbcC/emnuyLSpBJpYXoL1prAsuL+DPDxoi\nBcUXot8PbaQffjbU6z+G3t+GWEko0BkFDM0DdHn/ndhnomYsR+Bv22xhPivzTezWyOIJkzs4piEI\nylT3haoctN7HTeI0DYDEG6agklEO8voHPBhiqxs0WLOzs2nKos0QDCJ/N+2wpcbfkb/eW6GrXY38\nt/dy8q091iYvqzFkaYimlhcAZOYRfEvTWF9eoIwKEljnWjaJdUlB/qC4Epasw9EQDr4M1EX64ee3\ngfhDhCWhMCwK8OHfQz5avf+hRN9XIRR+7pyIssjA/u4vV3C2NPsvz9F8Y3JOV2EIbhlE5Cng/cAf\nxDxq/7Oqfjyy39PAx4E3q+qH9znWSf4WE/oln7Cpa7DXb9+XD4ZLhDoEVQ6hIXCJYn/G/tBoYRD5\n99X4W/IvXthQfGFtjYAh/83DlHxrh33tBDBGQLwyHFklpUql2daTg6xhyG2PAIzOC+wjBW0CPmkb\nE+0WjOnCIcQP9dn1rmrnSOOHSsRKQiEeBYxFp/ffR+w+2vb1Isba611evtfttowAZLM1RmCzhbO7\nJueUb4wROEJ+IHTO9v4eDlvxL4L3Av9cVb9eROZA40JFJAW+G/jYIQc6SQMgUlX4wHG9/poe6ryk\ngYagq2IoZghqpZPQSv4ZmUmoDajx98m/eGGDrvOS/NcPUtYPEtK5ks0ckeRk88r7E+vi+slhtn6V\n0Li8gI+hUpBPqrUlBPcY/RAahTbid/u2ef1h46H738lVxzQIYUmoeV2VELshcUOTwe4eG+X99xmE\nzbb9vfPyN1tD+O5zzxBwuULPltW95WShs7uVk2Gfu70MwZHkn2NDRJ4E/gTwzQCq2lYP+zbgnwBP\nH3K8kzQAcKDXD9WNH/P6faPgIWoIPAypGGozBJ3kP6LG3yf/4gtrdhupkf/mYUq6K8gzT0/eKgvb\njOOSw7otSJ7I98oLxJrGxkhB1Uy3ZhTgE3qsHDS2n8M+ck9smcLy+N4ymG71q2NEB22NYcZINofE\nDckD9Hr/XYQfkn1sW8zL97e7z1Y5utohy8xEAOdnVRmy2/f8rMoPpPO9E8XHWsZRtS7H9eBFIuIv\n8v6sqj7rvX8l8JvAPxCRrwQ+CbxdVR+4HUTkpcCbgNcyGYAmTBJ4+IA0t89gr99/IMLGFoIVTp2X\n4p/fgIohfy3eUeS/ut/Q+/0af5/81w9S8p3UyP+FezmLRcJ8UbnW2dwwVbrZMLuw3uIBeYGYAfTz\nIkOlIOdd+1GAT1OLgOTbZKBjEb/fc+LWwt15A9sWtlZ8aeWCQ6IDVxIK+0cBje2htx/z/mNk37bd\nEnarl7/ZVmXHqx26LVC36tr9Dcn5HFnlyMUS3eWQpZUhcPmBbL5XolhFqgf1evE5VX1Vx+cZ8EeA\nt9kF4t8LvBP437x93gO8Q1ULOVDGuhEDICJfBPxj4BXAfwG+QVV/O9jn5cAPAi/G/KmeVdX3Dvn+\nRLTT6zfvg6oZn/z7vP7dpv1BgLIiqGYIIp+PrRhqkP8eNf4++W8eJuw2SY38H9wv2G2V9Vp4wi6r\nuDs0LwC9w+RSqYhmiBRUEWCVEF7l3RNCh8o9fQneNvKvlx3bTu5cyv99g3CM6MAvCa2OZYbEmd9X\nfzK4EfmGdf9t93sb4dvPhnj5QEn6oSGQWYKucpInF8hqR/LUwkiOlvzL/MB8W0sUl/mBLkNg77/R\nTZvXg88An1HVX7DvP4wxAD5eBXzIkv+LgGdEZKeqPzr2YDcVAbwT+BlVfbeIvNO+f0ewzw74DlX9\nRRF5AvikiPyUqn66/+ult2LGbev0+qFuFJzX793MJZxGGYGC8VCyRfTztoqhEA3y36PG3yf/1YOU\n3EpAjvxfuJezWUgZASzWCXfODTmMyQuMGSZnEsPVvHgnBZkuYaEaGKfl6ztpMxJwBO2igPkiPhW0\ni/jd94zx+mNjusGN8aiG+rlRzs4YAOUMpLHRQVgSWo2EUG8uTbVgTPW7bXnk+7z/NocnJu14hqDL\ny28aguo9QPLkArXkb4zC2hiCzbbKD8xmtUSxOueqJ1F8LPkHoOB4C8Ko6q+LyH8XkT+gqv8B+NPA\np4N9Xulei8gHgI/uQ/5wcwbgjcBr7OsfAH6OwACo6vPA8/b1CyLyHPBSgl9GDCLSO8oh6vVDXfKJ\nef1huVoXAnmoUcvSUzHk4ML4WbI8uMbfJ//NZcLD+8J6XZH/5f2cy/twdu68fwVSIOnNC8CApjHn\npUEZBcUS3QA78jKRv859r9pbKJ56WagfBbiS0PkiZ7dLao1bx5B72tapdZhZUijnOnlLIJr/JSoX\n9UUHUBmAIVGAC8/CVb728v77vHz32QAvHyhJf7cxv5t8a2TJNNNScjT5pjmyTKvck8sPZNt6ovj8\nzMhCfqI4yA84+eeYRuDIeBvwQVsB9CvAXxWRbwVQ1fcd80A3ZQBebAke4NcxMk8rROQVwFcBv9C1\nn/cTNb0fmnN8gG7yd2h7CEKPKEsj2+bVd9vxuDVZKG1+7hbWCJOliaRVtLJz57mryH+XmwfSnpvz\n+HWV2/93pea/2yTkGyHfJiX5b9YFm1XBemW9/axgs7Ba8qxgvkiBwshBD1IWd3N2GyH7wtp6ajkF\nm1pOAICZ9zqrZLVyNLCXE/D1arOouJGC/FlB/thoNyLakWT4Osuq9YJ9rx+4MvL3JZesnHxajfUw\ng/7yg6OD0CD4jWFgoo9RJaGh1h++H1K5szfxm3sx30lZhpxvhTnAvZzZBRRsjNT4lIsB5wiXZdSt\nXBojcP/SyELW8a/noM6uRP5RPW4ZqKp+CiPz+IgSv6p+8yHHujIDICI/DXxx5KPv8t+oqopI650q\nIueYcqdvV9V7Hfu9FXgrwMte/jvHnaxP1MdAixTk0CYFOcSkoEJzNJkZ4sx2SL4wVUfZvNTaZTYz\nHtF8ZpO0O2SZIqsEWWakG6OrZ3ND5OmuYLFIrJefMF8qu535U8yXJhG8WAiLRUI6K0gzUx66uJub\n13M11RqzxBxnkZkO4vms/i9L7f9Gl5VsUdNoc92WD6SbBw+GPP3Q2n/I/Nd+Z7D/OmwKc1JQmBy+\nSjiDMMYYwPDoAOBinteM0sUsr0UjfhTg4JZoBCuFBmOaNWx09Jwbwco9kfu8fufuaFKM1fhtyJKV\n3XzhCnGQzgpzjy1Se49l5h6z95t/j8nMu8/Ce63MCZjGxG2xqt1njzOuzACo6uvaPhOR3xCRl6jq\n8yLyEuCzLfvNMOT/QVX9kZ7jPQs8C/CH/+jvVffH9T1+RzK1KCDNmt5OOY7Ww3zWnfhtg18hFKs9\nbvnchaeuaQwgz7fMkiWZba4SQN3NbdfydfKLzGeIv7wjMF+kFF+oD+BKM2G+yHjhXkWKC5sDuHue\nsFiYHMD8rCjJf34nJ5sryZOLMjRPzudloo6zpfHG7GvTxDM3Ibmr1LDX4Ifj7m/mX/O2kNpi4Tv7\nepUbD3hbwCo3S0ZurCyyWac13X+zTmsS0FXDv798mWGIMYD+3EHdGFQRycU8j0pRYI63sx3ChczK\nfMA8uUMhOUmakmZ3jSHI58bRcA2F2bxykjZbU43D0nj/My8isAQsziFZWv3/ibnx/hcFaq2WrnJ0\ntkPdYj3rnMyTgkrnYpHW7jFZZob8z8+qqiDnZFj5x3n6ki1K+UezhXE0ipxN8fC4OQA97niS68RN\nSUAfAb4JeLf9/8fCHcSkuL8PeE5Vv2fc1zcDimg5XIzox6LH22+FbwxCfdIibBQzG1fgjECaIevL\n+tXOZ8h8Vq7s5XwqWWQl+TvtPp0p6wfmAXQVP4uFfQBnwhMXKfM7OelcWd7Nmd8pSGcFs4uU5HyG\nLLOaEeD8zJC/S8yFD+TiifK1u07n/bslAd3/zvuPkf86F4/8zfVt7Gv/Qdysk85egKtAeI81ezoM\n8fjGAKyXzn5S0cW8aM1DhIgZArf0ojMEWXpmHSNjCHT9gnmfzWFJXRaNGQOXlN3DGMwx8pDz+pOn\nFqXX7zsYpddvX5dORpgAjnj9pUM1RQA3ZgDeDfywiHwL8F+BbwAQkS8B3q+qzwCvBt4C/JKIfMr+\n3N9W1R8fe7BY9YOKNBaxBiPPNEbfxiSiWETgG4MsTvA1+afH+3ev3U2b2geWYkUhM2bZEqOgulLL\nDLJqSUd3dcl8ht7z1voFlkvTAezjqZnw8L5hpDvnSprlLO4WpeSzuGvL8uzDWHpkF8u65++8seV5\n9UC6RJx9IMMIx11noXlJ/luP8M0/89qRvCH8+oLxzvtvmwl0THTp/20YYhDG5g3ceZzPhruhNUNg\nG8UqQzCrGQJx97/LkTljkG2M1u4bg529vgHGQG1HX8wYOE//Krz+ifgr3IgBUNXfwpQ3hdt/DXjG\nvv55IiX0YxCTgcz2luaYWERwrPxA2iIFBd5/kxgrz7iBgsoIZHNTGeR9LFkKMxMNuD5RMGWbxefX\ndtibHXU8L1g9SMu95mcFy7s56UyPLvnENH9H/rluK/IvpCT/nX3tSz9AKf2E3j+YTuBjGoNYvX8M\nsa7btqRj7N4cYwyGeP1dGGMISmkI6gUTexoDuaBKHAfG4Jhe/6Z46P1+j0/+BfWE/KOEk+wEVtVo\n+7sj18YD6kj4GETfFgXQ7f3HpB+f/FurFgqqhxTP82/JC6RL0xvgMAOy+a6UghwOlXxiD6S5pm09\nr2Gv0W3bFabqp1/3p7FQvO/9h01gh6KL8H20jVwYahQajom9jDZjcAj5+wgNwSxZkMquNASzbAnZ\nwgz3yze1PAHQNAZzr2cmZgwy+/uIGAOeMM9GGVn6Xr8j/1BatIbAef3bfDXJPQNwkgYghLsJok0w\nXXmAWIIYzM07pA/AfUd4PP+zQPqpe8bbmmfchly3VV4AKt3WQywvAGbuf/HCppYXMKfWI/k4j+zu\nWfVQ9kg+/rWZ/8fp/lAn/y7vP8Rmne6dBB464nnsGhBtxsI3DLXvjBiDY8MZgqr3xBgC9z6RlDRb\nGPIvjcGuShrv1rXtrcbgLlVJaWAMSvj3mKvwGen1Xwfxqx5/6ut14UQNgNYIM0b87oZuzQNAf4LY\neftZ8CQGnn+j+iecHRRp/AplkVgpXw02OZwuTCWHnwMgm8Plg0ZeQJZmMqjDgnVZhTG7SJGF8fZ9\nIzBG8uny+v3rHKr7d4XZofe/rr23TW1WChpTBnpnIMn6+v+Qlbe6iGnIAi5pWs2QcgnkY8I3BLNk\naftqTESwZdU0Bk4iWpw38wWLs/HGACav/xpwogagHa0ykENfZdDQctCY/DPA+/c9Yp/8/UW/W6OB\nYkUheS05TLaoRQMCrXkBmSXIffv7OYLk01bf7z+gfbo/EJV+xnj/IdbrtBwT0YXZABWpkmCqmVND\nMHQ/h3A0OPj38OpKjABYQ1A8qM3W8o1BIVZqTRNTRqrani+IGQP3LDlj4BoH/f4R38Hw1wpO5+zY\nUezh9d/SOUDXjsfGAHTKQDAsD9BF/rFy0Ngwqoj3XyfKetLX94zdak9ATzRg8wJnT8Hmsh4NzGdw\nv9omQGqTwj4GSz7uoWyRfEK5x70G6tENlfRjrjte8nko+Tts1of1BYRzf2CY574vugxGITN2XC2h\nNcpHxRVYVONWnDFIs0U8XwDNSiJXVuqMgZco9mXFmtdvo8tct1by6SiUCHAVxK9MfQC3CoVKQzJp\ne4BUpJbMasWQaqCoEZg3O389ovTR5xkbuIvqloQaeQFs09imag4TQOczuFzV8wJ+BYZfehdWX0Qk\nH1d2586hzet324aWfHahS/7x9wmnge52Se8qYTH0JYT3WQ96LGL38zpfRfY8Du5vK+M2SzZl2asz\nBi4qcOfWni+IJI9jxsA1n7V6/flgr3/y9ttxkgagD/X8QM/DOrZCKNT/y++Jj6jtk378ihg38dHA\nRgMJ5UTNBsK8QKxp7HJV5QWoFoOv1faPlHyGeP1Qj276Sj739f77VghrWyOgLfHbRv7VOhP7k/9w\n+ShsNtuRy44sSa9ECrq/Tbm3TWt9B1UF0oosSdna84pJREAzX8BZM3kMlTE4gtd/XcRvOoGnReFv\nDcwanRVBhhjyoA1OBMfQtyhFVCPvr4hxKz5VaL/GEm15gVjTWJYil9aLHCL5eA8lWu9dMNdUH+/g\ntvldr8NGPbRfXsz7j+3j/j9E9skiw9XqCw/V/+Zjdf4QbcbEH2fexPHyAes84f4u4d4m5cHWTTBV\nFql46x74zXCrQRIRaWLnD8WTxyU8WdF5/a6hq434J29/HE7SAOwNn7QPHREBlfzTs0DF0E5YAzP/\npS4JDcsLzLKleejCvAC2acyLBhqST8s4h329fmif8xObrDjG++9q/tpX9omhbdrmWOLvixrCMc5A\nNc4cf41rU7NPcnhlUEj+9zYpqzw2FbUZFUC/RNTIF3jJ4xLWwQjHOMTI/yaJX5VaN/qjhJM0AJHK\nzgZCGWhQHiCGsAS0DxHiHNoJW8GRWxG8r89+Dx+UocPkam32fm1/h+Qz1usHauQfK/kMpZ8QfWMf\nfPknXeewqLYvaiuHpSzPugkkbLZqSwB3kf9QeShMJjdI31+eFMzfM1lWP1BwUFLYST73NgkPtilf\n2Aj37OPyMIc7qbBMUxapsiuKMioARktE0ZJSiz6vfx/SP+YQuKuCiKTAJ4BfVdU3tOzzNPBx4M2q\n+uF9j3WSBgCoV83sKQN1wm8G80fQ+vpl6P23kv+wTti6/AP7SkJ9w+TK/zskH5eEg6bXHzZ8hV4/\nNMm/Tff30eX9+8nf+vbjV+aExiDU/4/RENZH+rWcVJoZTzr4u++TFG4j/89v3NoLygtb7FoJwp00\nrUUFvkTkDAHQIxE18wVdo1CGEv+jQPYteDvwHHAR+9AaiO8GPnbogU7WAFwZHEHuMxo6wDDdn44c\nAOW2hR0N0G30hg+T65J8tsWqPH/z/ziv37+mmO7vIxz17NDl/Yfb0nVe/oyTf4b2AkB31U+b/t+F\ntnLRwaTvV9BA+TdMswWF5HslhdskH0f+9zZYCUhqi+Zsi3hU8GALWZLUFs7xowL3u2uTiELi7yL9\nmyb6gub9uS9E5GXA1wJ/F/ibLbu9DTMm/+lDj3eSBqCAhkaepk2vLCoDeQh1cmD8vKAO79+cQ+Ux\n14gy4hlDtxGovx+RF6A5TM4f5+BPVRxS2glxrd9do399bpuv+7fN+uny/pvbxnn+Tt/ug28M/AYw\nh5j339UfsC/p1+TKfANrc3fMMk8KAoYkhWPk/9sbeGELn1+bCODepbmGlV09bVPAKrFRQW0FtXpU\n4EtEzhDc3yXRxPGWdSkRtRH/TZP9NeA9wHcCT8Q+FJGXAm8CXstkAIYjduMcLAPFEMo/AfaRfuqe\nsV3zNS168wJmnz5JqDlMDmhIPn1efziWoMvrN6+rvEZsyqdDl/fvY6j841cCjW0G88nfTwCH+n9f\nQ9jBpB/sp1iDbWvsw6RwVz4glHzWuUTJ//LBjM06iS6l6YxBW1TgfncmMRyPChqJ40eI6HXcgjAv\nEpFPeO+ftYtZISJvAD6rqp8Ukde0/Px7gHeoaiGRlQPH4iQNgKohzkUy/K+yF/wEsNP/Q0Rm4O+7\n+EkFf4hDVzSwR9OYq1QKGm6GNHQBg73+Kq9BQ/qJJX5j3n9s6meb/DPb5OR7TE/riwqG6P41wgfw\n15vYk/TDSLRc+5ZIUph4PqBL77+3gc9v4P69OZcPstLAunWV3YylzSIvo4J726ZEVK2rHE8c++Wk\noUR0CIaszXBD+Jyqhuv9Orwa+DoReQbTFnchIj+kqt/o7fMq4EOW/F8EPCMiO1X90X1O5iQNgEOj\nVLJFFz8YQQdwLfkLkcTvuCFojvybRsBdm/nALRJySHI4tV3LodffV9oJ8Qofsz3m9TfLPbsSv+X7\nFu+/9jPB+9nGfIGrBPJLQYeWhfo9AK4CKEYyYY3+YdJOC+l7i7ADcA5kc3S3Lmvr/XyA+7s7I+BL\nPutcesn/hXtzLh/Myt/X5YNZGQUsFnktKgglojAqgGbiOCwndRJRiFjZbdso7KuajRRDwXFGQajq\nu4B3AdgI4G8F5I+qvtK9FpEPAB/dl/zhxA1AH44mAZUDrSzhuwcxAr+aYUyYG2rUMc3adWqW7wuJ\nPkj186kWxyk0HzS8zW3r8/p94oe61++2xaSfWNlnzPv3cR3VP21oNoAFHv+BEk8r8bsqtM3WDFdL\ns2g+YFNQJoUfbLVX71/lTfLP7xlD+nCeki9MJOCigLFRQVvi2C8nhWbyPUb226Ipg4wxFI8CRORb\nAVT1fcf+7pM0ACLVMnn+cn31OuSI5+9mmPvjbP1tbrWj8AEscd+OSgBdv4DkpnxSgCydsxOYJ3fI\nNTMzTJIlqeTACki4mOXcK5OKuXkYNnbR7MSMJnak73tP1fvqus3P+EsVxq8//F00F9HZ2eqhaopq\nobn5mXIufVES+yLR0giEa9iabWZff5u7Pt8ILLN6c80yrRuBLCtqRmC+yEeRvt8L4EjMff8Sc6xZ\nQpl89+vc11aqcPmVRKscgDOQqcyqZUddj0nb+hL7wpuk6ebn6PqFznzAIl2ZVcVStYSr3ClJtxKS\nNpbQHdHfXxiHxpH/fJG3RgEuN+A7KJsC2EG8tEJY55UhcKuu+feHeV83+vWGSLutrIYzcMbA/9lH\nwRio6s8BP2dfR4lfVb/50OOcpAFIoJf8awOrWtYF6IRP/r4ndm63ZbvqcUqNUcjSOZrMoIB5Ysh1\nUzxkkS7Jki0PtsrFLGedCvcs8V/Mc9ikUeKv9NPjE7+Dq8hw+7qxxI7o/FLDmffwxYg+S5RdITWD\n4a7LzwEsU61VAIXkPwRtBqGtFHSzTsES18oS1dKv+LF9GE5iM79rW2Em1TgPGDAV1A0W3Lf5EGCX\nm/n5YMYouygAWqUgFwW4+8MYtRxIYSNsC2N4N4Wp9nFGsvydLeDOwhxjDPk7dBkBf/+d50A4hNHt\nbYIWcq0R5zFxkgbAx2DyH+L9d2GXG0/s/iXMt2Z9VEDzjfHI1kC2Q+ZnzJKl8RqLlY0ItlDA3ZmV\nVbYpF3OTG7i3ScrXY4g/FRP+dxF/bMRACCMRVWV59ddVZBCLAmrbrCFwRsDf5mMI2Yfkvljk0RlA\nQ+CSyM4olMfewcr7yqUlfhdxrUuvOSFLnERmR457UcDREMo/fiQ621ZRAFRSUEcU4HBvk7IrCpZp\nysPcGt9EjI4fRAHQJH5/Wxf5l5fREwm46jWISJqN90mvN19VGU2I4SQNgEhzoQ5gMPm3wj10bctB\nOiOw2QIPzAO5PDcLsqRzxJb2ite5mWpuHopSSlhxPsuZWeK8mFMSZ4z4Z6UE1E78TqPuI34/CvK3\nOyMQvo5JQZDYhcuHSUE+YjIQQRnoEKmnb5/YULhyf0ti4PoQ1L4GXwryO7NDKSjXrPwdN2SgCCRb\nVHmAEDHHw91/9n/dbqsoADoTwrnsWKRLIC4FdUUBQKvXD/SSv8MQIwAFseF7IUIjMCTvdWyoXm/O\n6Zg4TQOAT4iV99/Yz6/O8NDw/tvgFq7wcdS8gPGm75HWyuXaiN+vR+8i/jbSB8rfh6TzhhFwPxvm\nA2A/Kch8XunOXTKQ2daMDuaLYq8F4LuWh/SjAEdSbnWwUAqCwhrruhSUOuMY4pA8gNd97uQft7Ri\nGQVAPSEciQKAhhTUFQU4rK0xGCr5dF7KQCMAj44U9CjiJA1AIjpI+imnxoXST4gw+QvNkLzNEBwr\nL2A9myqy4XjEH5Ye2l4AUW2QWCwfYF6Pk4LCfX3EiD62LUwEt23bztOyFDREVDrySM9V07vIJJSC\n/HyALwXlmpFoWk8Gj4HveIRjR9y96BUjlFEAVAnhSBQwT2BTPOxMCG8LeGph79SznHtUBvMY5B/C\nj7QqDDcCNx0FqErrQMLbjpM0ACDjdX8fXd5/m/zTFg0cKS8w825y37gBjWuEjhHC/jWWrwOP1L33\nSln972vLBwyVgsw1aNDJXC3AHnYDG9IKto2s+tkXq8BLDaUgqPIBvhQUjQJ8GWjICnOc3v3VAAAa\ncklEQVQxuOTvLq8bBhcFQLMs1IsCgNaE8K4oeHKe4CKyUAqCcXp/H1wUsPRYKN7weFgkMOUB2nGi\nBqBCL/k7+IlfH877H4IuI3BgXgC7HmsoabURf9TbD6/Nv/4WMnJSUH1uUjwfAP1SkHldJYTNw21I\np+n1Gy807AloI/9jGQVXEVSiQwqCKh/gS0FhFLAXYlGA5/2r/YW5Ed663SJu3eqWKACcw9AsC3XX\n0yYFOa3/WJ4/NKWgZlVYuxHwMSQhPKGJkzQAIhLV/Wvk7xCTfmLev5/8tQ+jbrdmucRwv04jAPvm\nBcYQ/yBvPxb5RBDLB/hGwD9+rltbfpo3pCCIJ4RjaKsGatveVgmUL9JyHEQbwp/r6gwOpaBYaWiW\nbBtRQE0G2jcPEHj/6llGmW8HRQGpzKJloa4HpSshDMMTvWMQywc4QxsbguiMQFcUcJ0ykEkCTxLQ\nLYJEpZ8auqQfhw7v3yXhWo0A1A2BLx3tkRfwO3YHEf+epK+7tRllEWzvSgqb9/HSUCcFufexhLAf\nBTjEZCCIk/++iWBoXxO4cawWKShWGrorOqKAsBoofB8ahjDv5Hn/an9JsqR0PDqjAEDmZy1loUlv\nQhiOT/7lpbUkhZ0sGI44iRmBKQoYj5M0AMIe0o+PmPcfe21RNuSMiQbuX1ZGgP68ANAwZq3zZqCd\n9COE37geZwSC7wqNANSTwtAsDQWvG7MjIdyGNhnIIZb0deiThHa7+DRQv+TRxyomBaXU5hs5Kag3\nChgDG32G3r+uzS9F7cn0RgFwUFnoVWNIo5hffttnBK4rCigK2bsP5aZxogZA+sk/rPnv8/7bkr8e\nRktCYXLYtfG765iflWSaat7v7Q8g/WiVU6wUFs8f96actlUGmfNq5gP6pKA2zDo8fqjIuY3gh/QC\nhATvogjfKPjHr6KQqku4TQrqjAIc2hLBsW0R79/lAHRRNKMAqI+IcFFAvhtVFmpg7oZ7ezYtj0Ff\neagj+li3cBf8RPAUKVQ4SQPg0CB/h11AiC2fAZ0ef4zc98sL9CeHRy0R2Oflx7T+iCZdMwIOwZC7\nmCwUloZCe29AhboMFK4M5lA1acU/h+6ooA2uxt1HaCT8qhV3/DYpqC0KAKrfYVceIFZ6HHj/Lgeg\nyzQSBcyqSqGeKABoTQizqUtB1xEJQLP6qkK8W3iSgvbDiRoAiVde+Lp/LPHrEBqBIPlbe32oEaih\nPTlc04p7SL+X8NuIJ+J5xoyALwVVw8+qWyksDY1FAW09AG2IdQXHcMxKoHA8RGl8IlJQ2CXcFQXs\nM3eqdDos/ByArnJ0YayTLHuiAGg0hwGNslBIolLQkvgiPcfEpqhHW0O7hWNJ4euQgaZO4FuGqgqo\nXfePvu5qvrEIH8Ry34gRgCAvcEjTWBYfJQwB4Q/07gfXoOebXiMAzaQwNKWgtt6ACoZ4VrmUyT+D\nZldwCDeXZogW2/Dsg/d+biAWBcSkIKh3CfdGAWPQkvwF0HWOznboMkVmc3SVl1GAEgyKSzOzLWgO\nAxploRBPCBuIlWmuxhD4ndiuR6AZ8XUnhacoYBhO0gC4CKBX+nFo8/57kr81tJD7wXkBlxyG8lo6\nCX8M2Q8xAmlwi3g/05YUhjAi6JaCQgyd/hmS9jHglj00r7ujAF8KgnqXcG8UYPX49hOp5k7Fkr/m\n/9z8v0ijUQCuGsiLAoDe5rDzmRlIGBsZbWyP2r/R8Q1BY+W3YDLr0EYxHy4KuKqGsKkT+JZBkDr5\nt0k/Q7z/WPK3yxhcYV6gcc4hgexD9AOb3GrRSHn8TdQIQDMf0CYFjYGTgRyOsQqT7+37eYAxUUCs\nS3hQFOCMa6z5sDxYPPlr/rc5AC8KgKw7CqA5LhrqzWEkdCSEfXix4YGykJ9T6WrEG9IoNjQKuI3L\nRorIy4EfBF6M+QU/q6rvbdn3aeDjwJtV9cP7HO8kDUANfdLPEO/foiH/OOOQBTfSFeUFuvMUB5L8\ngH0aUpAXHbSPk67OOZSCoOoVqNDsCXBH75OBrgNuJbZ6QrjZJdwXBWRtj57/d+zx/ncb20tBFQXI\nIkNXPVFAvulsDgMac4LcuhRgavMflhGRloZv3/xAg/zpNgLQ3yh2nVLQkXMAO+A7VPUXReQJ4JMi\n8lOq+ml/JxFJge8GPnbIwW7EAIjIFwH/GHgF8F+Ab1DV327ZNwU+Afyqqr5h8EHCkk+LqPTT5/3H\npKBwQZhDjAAMywuE5xo75xiGjrIY8HNt+QCVamvX2gIOfm/AbYDv5XfJQE6eCqUgqHcJ90UBmngy\nUDqHMHHvD3xr8f7zrbvnCmYHRAF9ZaEXc7i3cVVbbX+v/fIDvuTjr/fcWJ8BRjeK1SqDbmBM9D5Q\n1eeB5+3rF0TkOeClwKeDXd8G/BPg6UOOd1MRwDuBn1HVd4vIO+37d7Ts+3bgOeBi8Lerd+dFkqbR\nROlY77/x8y1GAGrkvnfT2Lwl+TwEA3oYogjPxxrMoZVBEDEGgRR0bMTGO2/YzzvrkoGgWwo6KAoY\noP3vNkK+M3+FdEYtF9CIAqBz0Rjztr0s1E8IL1LXjCW1XE21lsPw/EAb+YdLffYZAehrFKuigFsw\nGO5FIvIJ7/2zqvpsbEcReQXwVcAvBNtfCrwJeC2PqAF4I/Aa+/oHMGtfNgyAiLwM+Frg7wJ/c9QR\nItLPKO+/a1vXgjBwfEmoNkeo5xyGYN+IwGsIK0sKPXQlhR380tBK+hkuA/keJlCXCWDUSIgYqff1\nA3RFAb4UNDwKyDwnZVev/+/x/vOt+f3kme1A7ooC/EVjMhN51EZEdJSFAqUUVP/7QHdEEM8PtEk+\njvjDv2FstbauRjHfCLhzh6uLAkYuCfk5VX1V304ico7x8L9dVe8FH78HeIeqFiKHRdA3ZQBebEMd\ngF/HJDxieA/wncATLZ+XEJG3Am8F+NIv/d3HOMfbi5sgfx/5ptEQNgT+AjKPK5zMkki631iIY2C3\nqRnzLizSgm2R2tdhyS6EhnpIfsCPHPy+jb4GvmVaRVwh/KRw2C3szvNRKQsVkRmG/D+oqj8S2eVV\nwIcs+b8IeEZEdqr6o2OPdWUGQER+GvjiyEff5b9RVRWRxpMgIm8APquqnxSR1/Qdz4ZRzwK86o9+\nmZYTF73St3LpPb8T07Xju/2cF+4SZ+58sPJNbMBb6PFD05MnIvu07Nf4znAf934sme/y9uPFju+S\niNnc/HNJ33RuZgWl3nabB8h1S6FO6tiV/wPl9l1hJKBtIawLYZ0nxlPOhZ33fpWbB3tbOLlAShJx\n8oGTDna7hM06YV17b16n65zZJmc77/fSYhKSHyXEhqK5HMAyVZ6Ywe+Yw8U85+6s4GKec54V3J0J\ns2RpZ1SZf6Xuvzhr7Xl1fnTIewuqaDadFcwuUpLzGbLMkEVG8sQcuViWf0O5ewZn9v3yHOZnprw4\nm8P8jB07tsWqXJCoy1CbJUndKI+6LBRHMz9Q/8LmsWLrDswT24zmxnCkeI14scog8CMBP0dgXh/J\nGVHtnTg7FGJY/fuA51T1e+KH01d6+38A+Og+5A9XaABU9XVtn4nIb4jIS1T1eRF5CfDZyG6vBr5O\nRJ7BNCBeiMgPqeo39h5ckibJu4+gbgQcYl6RMwKWOGtGIDAQbcQ6mPRDI+Lv00ba+xqCIYiRv5ML\nRpK/I5OrJv/Rl9gx9hnqM4Fi+/re6DI12ved1BCkW8N5YROpqSy7vf89jEC6MdKRT/7Jk4s6+Z8t\nR5N/DKZnIw22xUZ5uLOOoS4L+Qv9LM/yWlTg/o+Rf0j8PupGAOqkH76/lbX7rwbeAvySiHzKbvvb\nwJcCqOr7jnmwm5KAPgJ8E/Bu+/+PhTuo6ruAdwHYCOBvDSJ/HzGST+flraFg5YxIs1NMi7dGoPzZ\nCI5O+ENC9aGrSznDNQTXRP4+9iH/2s8H3v8Y+ATvKoDC7b7378g/JKVlatdtTg3xzxKzPKnrTG94\n/z58I7DbmMT/Loetmesjyy2ySpBliqwSZhfmhI5N/u7v6DArx3c0B/j5RiBLciu7JDYqMPu2yUJA\nMyIIft9jyN/hob1/TIVQvTrIIHx/GERpXXJ0LFT152m3oLH9v/mQ492UAXg38MMi8i3AfwW+AUBE\nvgR4v6o+c8iXK1qWJYqboeNI3hqBUhLyfzCIFoB4YnZjErjRRC6MJ/zwvTsH/1zKpqG2uch23z5D\nMNRYBORfjoceSf6OSNrI3/f+94Ev/YRw8s+hiBkBqC9lOEuM9NPl/c+TO8ySJRIjf4dsjuQLdHFW\nbvIjgxj3HZv8u+CPXIhtN4jnB+roloW6jOxQtDWLVef2aOQErhI3YgBU9beAPx3Z/mtAg/xV9ecw\nlUJDj1AuoKIiTSPgcEheYOOR/xDCj+3X5um7157mXiLWEexj39WmQlwz+e8r/fiIbYNu78yXeXz9\nP1wnwCf+UPp5YlZJP3dnORfzgotZzvksZ5EumSUL5smdYYnfNCsHAPp7thkBXeUHk7/v7bdhkSi+\nLR1uCOKyUFvZqJOF+vT+oeg3Ao83TrITWFUbtejik+gx8gIxjPHyoZv0oS67NI61iM/2dz/XZiCG\nwif/1ItIbgn5O8S8/0O6MkP5p8v793X/J+e6v/QTossIWGdEljmyLZoJ34Hkb/5GzSR9DH4lUPOz\npiEYIgs1Uc8P7Ov1x9BmBPoWIxoKUSULl7B7RHCSBgDqs2hcNCCqx80LxLAP6UPD26953W7fQLqR\nLqI/1ECElT7uHG8J+YeJ39D7H2MEwgRvn/dfVf3Udf+7s2Jc4rcLLu/iJsHOTX+A3D1rJIX3If9N\n8bBG/j7aIoKuEd59hmCsLHQs8nfojgQeX5yoAdDojV0uqjIkL+A+96MFZwR8SShmFPYkfWghfrdv\nTN7p0P67/Js+KjqE/N1SkEPIvw8++Tv4RL9uRATV6zb9v6/6J7ZPWIO+TDWu+7d4/xnZ+KhsQGWQ\nOdkO8s8Wg8h/aH+GX0sf+/sNMwSVLNTVTXws8nfwjcA6TwevJtYHKY6XBL5unKQBUPvI+AuTVAuX\nDMwL1Lb1JIe7CD983yfxRIl/RA4gPG5Lwrc3+PX1fvv+Ksi/z/v3EXaLrluMgm8Ehj6Yi0Vek3+g\nXobo4KSJUPd35O/X/M+TO2Xid5D0Ez2xbiPALu8m/8X5Uch/Fpne2mUMQkPQJgtVVxMer/eU9kJ9\npbnbMYfqJnGiBqA9jHU4al4ARpM+9Hj73naNtXtni7qkcAzdv/b9N0/+Xbp/9fq4I31dA1KIsBQx\n1P0v5vlxpJ/oSdnKoNzee355aFuT10DyPxaqJRqHG4JhstDx0bbc6L4QVWZHagS7bpykAXASUCqZ\nt1JV9bo1L+BXANm8QGkEQsloiBE4AvHnugWtvLRyvr77Wn/2TmgU3HftYxi8yOO2kH8o/YQYIv84\nzBd5Q+sPP/fr0B1C3d8v+Tyf5fsnfrvQkRQGqq7tPcg/9P67HKfFgAmubVFBzBC0dRM7WejYRB3i\nqr//UcBJGoCwCqgLByWHY4agj/T97QOJ338oneHquyYfEl6bO1aXYbgl5O8QGxQWMwz7NIDF5J8Q\nzvsPdf+LeVHT/Q3pe97/oeTv0GIEzEVcr+cfDlRrMwgxY9AfEdRloYmkrxYnaQAgrAKqcgFteQGI\nJIfLL+vJC4T7d3n7MJr4ux7cIQbBv0YfUcNgB7052emqyb8PMemnz/t3GJuY65s/06X7O+nH1fzP\nkqUd93xEWc4aAXbrqjII9ib/IU5SlqTsiry7FHSAQQglonANX++s7P91Weg2G4JJArp1MPPX+/o8\nepPDfcPkal/W4+3DXsTvvy5H9Qak738W+7zr+kPINZP/WOnHoeuzUP7JtgW7PbOKQ3X/Rbo8vvQT\nQ5ohiyfqzsiRyH9IQ9gQdBmEMCoIDYEvC121EXhES/ePipM0AIWam8YZgTrRZ503+t7JYXpkHtib\n+N25F5qXOYB9Sb8PJkralse7LeQ/xPvvkn+ybdE5DbTN+4fhuv88uXM9o56DyqDrSviGC6lsO3IB\ntdP1fq7NGDhvrR4RNCeNHsMI+PffMZAUMF8fP7F+HThJA6D4CahmJDA6OewQ5gV2635vH/YmfujO\nAfgGIURflNCHPvJ3v9+rIP8QIfl3ef9jEdP/Q+lnjO7vRj5fifdfO3FjBMg3o8n/WGsydK2s1WYc\n2qKDyhjUE8exaOAQI+DnnCacqgHQauk3Q0LGSxsT4g7NC5idr5b4HeG6h2Rnr8fsP8wgjMVNkv8x\nCb4L9QmglfcP43V/X/o5WuK3D25gX4T8bxptxiE0DM0VutpGNVdGYN8qobDgYMKJGoCCMBHVNAJD\nk8OdeQEfV0j8kNgHx38ovLu/hScPMQjXQf4x9Ek/zc/r253+7xLAbTNa/BJQ/3Uo/dxJ6yOe23T/\nwcPejglbqhsj/7He/3UZjb6owRmERZLbZ9i/ufeXhPqaDA+CKunu0UwonKQBgGpx6EWiHnnau2Wk\nY9mXF6h2vBrid8bMX9N0W1Trta5zjUYHY+Ebwusg/775/leF2Ox/5/076eepuZa6/8U8r+n+/qgH\nX/cvxz24cR1h1HgovHswTNQfQv5DcawlFdtGgMSNQ7hetL+t3wh0RZ23FSLyeuC9QIoZj//ulv2e\nBj4OvFlVP7zPsU7SAKiK1Q6bRmCRFr3J4cF5gXwXrfs/OvF7D8w690rqRhqEMYni6yZ/H2O9/32x\niKw8NUT3vzuTdt1/fRk/2D7GINIJXnrqXnPgEPK/TRhuSNx9bwi/viBNvyS09Yg+JjkeC6IcrQxU\nRFLg7wFfDXwG+Dci8hFV/XRkv+8GPnbI8U7TANj/fSNQoT053IfWvMAVEr+74f3qCH+Q1VUZhD7y\n98/rGOQ/puonRCj/DIGLAvzRD/OkubSjP+LZH/UQlnyKqnEIeqesdjxybYSvde89vJeGkH+X939M\n+Wff6DOOHN8I+GWjbhuYe9HlbpwRCJO9Q1aUuyX4H4BfVtVfARCRDwFvBD4d7Pc2zMLxTx9yMNHr\n1CyvCSLym5iVxq4aLwI+dw3HuW6c4nWd4jXBdF2H4veo6u865AtE5J9jzncIlsDKe/+sqj7rfdfX\nA69X1b9m378F+B9V9W94+7wU+IfAa4HvxywKP0lADof+QYdCRD6hqq+6jmNdJ07xuk7xmmC6rtsA\nVX39NR/yPcA7VLWQ2KDIEThJAzBhwoQJjyh+FXi59/5ldpuPVwEfsuT/IuAZEdmp6o+OPdhkACZM\nmDDh9uDfAF8mIq/EEP+bgf/J30FVX+lei8gHMBLQaPKHyQAcimf7d3kkcYrXdYrXBNN1nRRUdSci\nfwP4SUwZ6Per6r8XkW+1n7/vmMc7ySTwhAkTJkzox9X22k+YMGHChFuLyQBMmDBhwmOKyQCMgIh8\nkYj8lIj8J/v/7+jYNxWRfysiH73Oc9wHQ65LRF4uIv9CRD4tIv9eRN5+E+faBxF5vYj8BxH5ZRF5\nZ+RzEZH/037+70Tkj9zEeY7FgOv6y/Z6fklE/pWIfOVNnOcY9F2Tt9/TIrKzNfITjojJAIzDO4Gf\nUdUvA37Gvm/D24HnruWsDseQ69oB36GqXw78MeB/EZEvv8Zz7IXXRv81wJcDfylyjl8DfJn991bg\n/7nWk9wDA6/rPwN/UlX/EPB3uOVJ1IHXdLSRBxPimAzAOLwR+AH7+geAPxfbSUReBnwt8P5rOq9D\n0Xtdqvq8qv6iff0Cxri99NrOcBjKNnpV3QCujd7HG4EfVIN/DTwlIi+57hMdid7rUtV/paq/bd/+\na0z9+G3GkL8VVCMPPnudJ/e4YDIA4/BiVX3evv514MUt+70H+E7qQ4huM4ZeFwAi8grgq4BfuNrT\nGo2XAv/de/8ZmkZqyD63DWPP+VuAn7jSMzocvddkRx68iUcgSntUMfUBBBCRnwa+OPLRd/lvVFVF\npFFDKyJvAD6rqp8UkddczVmOx6HX5X3POcYj+3ZVvXfcs5xwKETktRgD8Mdv+lyOgKONPJgQx2QA\nAqjq69o+E5HfEJGXqOrzVjaIhaWvBr5ORJ7BDH66EJEfUtVvvKJTHoQjXBciMsOQ/wdV9Ueu6FQP\nwZA2+iH73DYMOmcR+QqM7Pg1qvpb13Ru++JaRx5MiGOSgMbhI8A32dffBPxYuIOqvktVX6aqr8C0\ncf/sTZP/APRel5in8PuA51T1e67x3MagbKMXkTnm9/+RYJ+PAH/FVgP9MeALnvx1W9F7XSLypcCP\nAG9R1f94A+c4Fr3XpKqvVNVX2Gfpw8C3TeR/XEwGYBzeDXy1iPwn4HX2PSLyJSLy4zd6ZodhyHW9\nGngL8KdE5FP23zM3c7pxqOoOcG30zwE/7NroXSs98OPArwC/DPx94Ntu5GRHYOB1/e/A7wT+b/u3\n+cQNne4gDLymCVeMaRTEhAkTJjymmCKACRMmTHhMMRmACRMmTHhMMRmACRMmTHhMMRmACRMmTHhM\nMRmACRMmTHhMMRmACY8cROR/FZHnROSDV/Ddf8FOOy1E5JFYlHzChH0xdQJPeBTxbcDrVPUz/kYR\nyWx9+SH4/4A/D3zvgd8zYcKtx2QAJjxSEJH3Ab8X+AkR+X7gSeD32W3/TUS+EdPI9hpgAfw9Vf1e\n28n8fwFfjRlCtsGst/ph//tV9Tl7nOu5oAkTbhCTAZjwSEFVv1VEXg+8VlU/JyL/B2ae/B9X1Yci\n8lbMeIenRWQB/EsR+RhmeukfsPu+GPg08P03cxUTJtwOTAZgwingI6r60L7+M8BXeKtHPYlZ/OVP\nAP9IVXPg10TkZ2/gPCdMuFWYDMCEU8AD77UAb1PVn/R3uG1ziyZMuA2YqoAmnBp+EvjrdnQ1IvL7\nReQu8P8Cf1HMWs0vAV57kyc5YcJtwBQBTDg1vB94BfCLNvH7m5glLv8p8Kcw2v9/Az4e+2EReRMm\nWfy7gH8mIp9S1T97Dec9YcK1Y5oGOuGxhIh8APhoWAU0YcLjhEkCmjBhwoTHFFMEMGHChAmPKaYI\nYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU/z/pw86qjP4jcAAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu0Ldtd1/n5VdWqWvucvc85994gYHJDItAorXbThofi\nEJCBIE/RHk3k0QbFGDEIGuVl+2iBMVBsJAoarjwigkQ6pulIRwkPUd6dBOlOJ2kbjGASwiO595yz\n9zl7Va1Va/Yfs2bVrFlz1mM99t5n3/UdY49dr1Wrqtas+Z2/3/f3+01RSnHAAQcccMABLqLLvoAD\nDjjggAOuJg4EccABBxxwgBcHgjjggAMOOMCLA0EccMABBxzgxYEgDjjggAMO8OJAEAcccMABB3hx\nIIgDJkNEXiUif/2yr+MqQkQ+UUTefdnXccABu8CBIA7oQER+RUTOReRMRJ4Rkf9DRJ40+5VSL1NK\nfd0lXdtLROSnLuO7nWsoq+dzX0R+UUQ+8zKv6YAD9oEDQRwQwmcppY6BDwZ+A/iHl3w9oyEi8QV8\nzc9Wz+cO8J3AD4jIYxfwvQcccGE4EMQBvVBKLYDXAh9ptonIq0Xk66vl54jID4nIXRF5WkR+UkSi\nat+viMjXiMjbK0vku0Vkbp3nM6vR910R+RkR+b3WvidF5HUi8lsi8n4R+VYR+V3Aq4DfX43e71rX\n849F5A0i8gD4JBH5CRH5Eut8LctDRJSIfKmI/JKInIrI14nIh1bXcV9EfkBE0hHPZw18F3AEfKh1\n/leIyG+KyHtF5Iut7Z8hIv+h+o53icjfsvbNReR7q/u9KyJvEpEPrPbdFpHvrM73HhH5+gsiwgOe\nxTgQxAG9EJEbwOcBPxc45BXAu4EPAD4Q+FrArt/yBcCnojvP/wr4n6rzfhS6Y/1zwBPAtwOvF5Gs\n6vh+CPhV4AXAc4HXKKXeAbyMavSulLpjfc/nA98AnABjXVCfCvw+4OOArwSeAr4QeBL43cCfHDqB\niCTAlwBnwC9Vmz8IuF1d958Bvs2yLh4A/yPa8vgM4M+LyB+r9v2p6nNPVs/kZcB5te/VwAr4MOCj\ngD9Sfe8BB+wNB4I4IIQfrEbo94BPAb4pcNwS7Yb6EKXUUin1k6pd4OtblVLvUko9je7ATaf7UuDb\nlVI/r5QqlVL/FMjRnfXHAL8d+KtKqQdKqYVSaqjT/9+VUj+tlFpXVs8Y/F2l1H2l1NuA/wd4o1Lq\nnUqpe8C/RnfEIXxc9Xx+vbqnz60+Z57J366exxvQ5PERAEqpn1BKvbW6zv8b+H7gE6zPPQF8WPVM\n3qKUul9ZEZ8OfEX1PH4T+PvAi0fe5wEHbIQDQRwQwh+rRuhz4OXAvxORD/Ic903ALwNvFJF3ishX\nO/vfZS3/KrrjB/gQ4BWVK+Vu1dk+We1/EvhVpdRqwvW+a/iQDn7DWj73rB/3fPbnlFJ3lFLPUUp9\nnFLqR61973eu/aE5l4h8rIj828p1dg9tJTynOu6fAT8MvEZEfk1E/q6IzNDPaga813pW3w78tum3\nfMAB43EgiAN6UY1kXweUwB/07D9VSr1CKfU7gM8G/rKIfLJ1yJPW8vOBX6uW3wV8Q9XJmr8bSqnv\nr/Y9v3LfdL4ydKnO+gPghrXuI7fLwD8HXg88qZS6jdZUBKCyOP5npdRHAn8A+Ey0O+pdaOvqOdaz\nuqWU+q8v5xYOeLbgQBAH9EI0Pgd4DHiHZ/9nisiHiYig3VElsLYO+Qsi8jwReRz4a8C/qLb/E+Bl\n1YhaRORmJeCeAP8n8F7gG6vtcxH5+OpzvwE8b4SA/IvAHxeRGyLyYWgt4CrgBHhaKbUQkY9BaycA\niMgnicjvqTSY+2iX01op9V7gjcD/IiK3RCSqBPVP8H7DAQfsCAeCOCCEfyUiZ+iO6huAP1X56l18\nOPCjaD/7zwL/SCn1b639/xzdub0T+E/A1wMopd4M/FngW4Fn0G6ql1T7SuCz0ILsf0GL4J9Xne/H\ngbcBvy4i7+u5/r8PFGhC+afA942/9b3iS4G/LSKnwN8AfsDa90HoiLH7aDL+d2i3E2hLIgXejn5e\nr0VrPwccsDfIYcKgA/YFEfkV4Esc//wBBxzwiOBgQRxwwAEHHODFgSAOOOCAAw7w4uBiOuCAAw44\nwIuDBXHAAQcccIAXvjjzRx4nkqoPmh0RCUSxECcgAhIpohhEFBKBJJHeEYu1HEEU6f8i6A9E+i/S\n/xUKpdYoFKGwfBUM1/djH5bc1GvwQXSIfv8xMuKYwHmECJFI71drWK/1f7WGdQlKQWm262W1Msuq\nWob1WqrDBbWGclUdUirKUqHW1U8oUv2vvj8S/TNXP7EIIFUbqY+x1gWIBImkah/1Q9DtSKrtBlHP\nsxl6bn37fd9hvls3dus4Z93eD3U7VkpZbUZV7VxZxzS/o4hUy1JvF2mv6w9WEc9KVX/r+vyYNq/W\nzX5z7KYY0RZtvOVtv/Y+pdQHbP6F8HvkCXXGctSxv8LpDyulPm2b77tIXEuC+MD4iFc9+fFk84jb\nd2Lmx4okXZPdXHN0siKZKeJbCfHjc2QeEz1+RHQrg3QGxzeQk2M4vgFpBvNjiFNkfgKzOcQpK1aU\nakVePqBU/oZRTkoCJngeG3m5HjxmG+SlfrmyOPyCZvE4ozOW2YhjEmKZkcU3iSUhIYHFfVgVqPwU\nFmdQ5HD2EHV6BsUSzh6yvp+jHixZ38spn16g8hXFmXB+mlAWwuJBzOJMOD9fc3qv5N7dsv7Oo6OI\nNBOyuf5vts0yiGe6nSQzRZwqZtmaJNXPPJkpogwkS4huJMg8QeYxkiXITX2vkul1QLelPvTt79kn\nWRY+Pp1VfxkkVZpIkur2m1jbqnasROp2V6oVq3VOqVatbaVa1u0uL6VuG1kcEcuMuMplNMtJlFXr\n+rcV09mXBSwXsCoAUKtcbwO9bVXo3xr073xBiD7yr//qtuc4Y8nfij9m1LEvKX/sOcNHXR1cS4KI\nY7YjB/OSGXJI2i9lLLPJBNCHfZGD6fDHHRtZy/p/Fvu+M3wdNnn03ZMhD/MM8/IBWXwTBJL5LVjc\nRzhp7J9jPS5Vp2dwfIOougrzbeXTC1JWwIrz04Q5JRBje1CLXF0+MWy6jwAxDH0+8eQSzuadTb62\n7G7LS6naiPn910BOFi+t33NJqVaaNCLq5VhmkGRInNZEIUmqBwKrvLnWahtwoSRxQBjXkiAkku3I\n4fg4SA6XAXsEt915wqP/Yt09d7GOSSPXmvATRBarXhIbIo8OSZSFJgWoOzoBKJYodNevsqbatVqs\nSFkAK1aF+a6YWaaXi1zfR5rJxRLDFpbEICmMOVfsIYnKerBhrAcbtvVg0LQhP1EYUjD/V+QkUeYn\nCggTBacHkrgCuJYEEccwy6jJYZata3LQL7smB8nihhyyrCGHyiyvkaTekZcxr8dYAJtiCjn0EYCB\njwj6PpeXbUvCTxrQb1mEySOLm2fXIok4haNbFUmcwo0TfdDZQ+TkGAUID4ken9ffHj821yRxtmZe\nHb54EHPrTsSy6n9CxADU20LEACA3Z8PEcJGk0Dl39/OhQY6v3RorwIaxHoq11L+9SxR5qcjivB4I\ntKyHNdOJ4sYJpJXb6YoThUSQzUcO3h7s91p2jWtJEBJBdrOsyWF+s6zJIbqT1eQgJ0cNORzfaMjB\njFh7rAczOurbP8YNNc69JNX/aUFnPjLwnefhSjr72u4l93t9nb3/2rJ4HSQ348+2n8FqnetT7Zgk\n4qpPvjRi2AcphM7pcy0FBjlGe+hub1sPpi3ZbSqNVKu9aCLZEVHEObp6i7mAq00S1xXXmCC2IAfX\nenDP70RZaNN69w04L9ejyCFEBM15up/1kYJeNt8X1x24a0U8XMXcSIZdT3YH4qIhjnWrMynW1fw4\nOyaJ1VL2Qwz71BUmnq8FH0mA170EjSAd1h66gwfT7rYlCoDYJQqMe7FoLuaKkkQkQpqNHLwdLIjL\nh4iqySHKqMlBsqQhh3TWkEM665DDZWsP9ujNvHxDRGAf68ImBPe4hhT6zj9kRbT3Z/Hae71+F8W6\n5cMu1apRoV2SiK3RbrGsOxJJl/UVqLnWJlIWJJXivsz1XqMz7I0YLoMUQsf0aGg+MrD3udZDu700\ny/bv3B0QrHuJoixXrcgnaBOFnN/XJDE/PugSl4RrSRBRTE0O8WPzmhyix+cNOdShrDM9KvWRgx0W\n6EESZbCeHtJqMGR12B32WHeRgUsI7rH2uc3yoopeerCCmwksSqHqa1shjhrTCANCpGEiY2ySWDan\ndEnCdBoAnGorEB3hJCfV2Z5eEJnJSJ9ZMKccFJ+BWoCeTAy7JIUpVsLYzwXcS0AntNWGbT1Au00Z\nC9K2HELuJ5coSrUkllWj4TlEEctMk8TRLWS5QC1Oqy+tdIkzy/V0zSAiTwLfg56+VwFPKaVe6Rxz\nG/he9PwqCfD3lFLfXe37S+ipaBXwVuCLJ8yw2MH1JIhIbUwOY+GGuu7SzeS6luwXr8/VNEQKer2f\nGBZl6/CaLDQ2tzBuJF13k3FVNOGT65ZoXZ9mBySRZlWi1ybEsE9S2JQQvOca+M6Ae8nAzXuAxnpw\n25ZLFuOsCkMUiixe9hJFLIm2Jqha3arQLkbQ7uArJF5LpEOmd4QV8Aql1C9Uc6O8RUR+RCn1duuY\nvwC8XSn1WSLyAcB/FJHvQ88L/xeBj1RKnYvID6CnpX31phdzLQkC0eQg86QhhyxpyMEkFHnIoWM9\njMBYQdpGiEx8riV32cBHCL5jfaQAfmJYWKQx70mYs8lCRym56+0Ow73WplNZW53I/khi/XC1PTFc\nRVJwYQVZhGDcSz5x2sC1HvQ2P8H3kUV7oDCeKLL4JmC5nExuTJw/ErrEpqgmh3pvtXwqIu8Anoue\nB6Q+DDipJuk6Bp5GEwvoPv1IRJboGRV/jS1wLQlCkgiZJ0S3s4YcWnkONxpyaH1ueAS2T9ghrbbu\nEDLz258Nk4K7HiKGRYfjzGdU/bl57B5jHxdCt2Np7qMhieY6R5LEctGQRGqJm3muK2IAqtIgZF5p\nC1YuQ00MG5LCpRLC0Dnd7OkAbHG6z3rIy6jjZvQRxjiyGCaKvHxALEmVZT9DTG7Mo69LPEdE3myt\nP6WUesp3oIi8APgo4OedXd+Knrb219AzFH6eUmoNvEdE/h56kq1z4I1KqTduc7HXkiAQGU8OW3T6\nJmPUjMRcN9MmlkVIdxjjPnI/767bxGDWbWKwCWMeW1rESpjXLWWILGCKddH0/Pp/43YaQRJY0S6c\nadeDtU1/6znR40eoB/pco4gh0PleOCHs6jye0hp98FkP9j4XTbRb2Gpsk4WJgoor61Efr8+jk+7S\nyHzfA5IoI42OrqwuEQl1dv4IvE8p9aKhg0TkGPiXwFcope47uz8VPaXuHwY+FPgREflJdPmAzwFe\nCNwF/lcR+UKl1PeOvTgX15MgYqk6gqTRGgw52HVqfK4laI+6AuJeN9R1PBn4BUG/7uD6fzclBegS\nA8Bi1SaGvMpCzoEs9eU72N/VdUFpcdt/fJgs2iShLYhujgSwMUlI1riVWrWLDDyd8UblLTbBtueZ\n+Hm37pJPpPZZD+5vZ+C2v+4gAPyuJnt7ZIVTr4FzYlmRRkf1IbEkrd/8KusS20BEZmhy+D6l1Os8\nh3wx8I1KV1L8ZRH5z8DvBD4E+M9Kqd+qzvM64A+gBe2NcG0JIrrVhLB2iu9BmBw2QBJlQStiDMbo\nDkMuJHfbJsRQFF2TwBCF32Jou6Bc9JGFgeloNAm6ZLGuo15a2IQkimWXGKyOtZcMdkEE+9QdoBn4\nbBBwYWAGKVMHIQaNJTFEGF2yMORQrGPyUnErLcniJcW6qVhgfnMjXgONLnGJSXUS6RpfOzmX1hW+\nE3iHUuqbA4f9F+CTgZ8UkQ8EPgI957sAHyciN9Aupk8G3hw4xyhcS4KQKBpNDh1MEKd3iT7XUig8\n1bdtLDGY7TYxFHlMUeULpNmaIo9JM+uEg0QBY8liHtvXbbuW/CQBTjixRRJ2tIubXCXpTG8znUZq\n6ij1VEWdin13/hug1h8c95LPenDhsx6gG+EG7bYQIo3udrs922K3ScBcc7+IK7dTzo0EivU5pQqJ\n149OUt0IfDzwRcBbReQXq21fiw5pRSn1KuDrgFeLyFvRzf6rlFLvA94nIq8FfgEtWv8HwKtvjMW1\nJAjtFJx1K7NChxy2sR7cqqRj3EzuaHi8a6l/BLcJMQAURdwihvPzpPoPR0f6A4YoiiImTcse9xMY\nspjHytuhgEsWbbHajm7y5UiA9Qytkq6mwxDQ/mnze5+d6XbgdhjblOO+ZjDidJ/1EPotQ9vBHQSE\n0c3aFytTvykGmEbU4nWtSxjx2ugSRrx+RPMllFI/xUDUh1Lq14A/Etj3N4G/uavruaYEEXUrs46B\naz0E9AfvRzdwM+3CteTLW3Ajk8YSQ5F3XUyGKIo8Is2cyp6McT+1ycKI32ATRZckwFhS3fDX2uVQ\noSFoHe3iIwng0en0L/E6Q9YDNL9bH25aP02YVKTTXtoRUuY3j6s2UHKVdQmZJlI/UrieBCHiJ4cd\nWg82bMthrFg9FNJqu5ZcgRDGEYO93SUGgCKPWsSgCaMqU5GVXRcTDVG4VgVBiwL6XFAhkvC7nfyR\nTSYDV4dJBkiiCMf8P/Jw9Icp7qWx1oObRBmKYBtDIiEY4tBkYYjBvAOPli5xXXCpBCEinwa8Eh2e\n9R1KqW8MHPfRwM8CL1ZKvXbwxHHUFN+rt+2eHNxIpiF03UvDIa3bEgM0OoNLDHo5bhEDRTV6LyJI\npT7GJgzb/VRff8D9pMNk9fI8aVxetlVhRp22JmG7mMbmSGhybpOEHlHStIVVwShcZ0IJoM96cNHn\nWtoGTea+cL/QgvVjGdi6xK10WV3vs0aXuDRcGkGISAx8G/ApwLuBN4nI652UcnPc3wHGJ3xEUTuj\ndExUx4bitO1O8rmZfBaF61ry6Q72C+rzAY/JZZhKDOm50+mT1ETRtSa2cT+BLwLKrvvUjWiKnAqw\n40iilYFbFu3f2UcWZttQ2Yo+XFFy2dZ6WIzQE8aicTl2B1mmzTxRuW2eyWOyWHgs0xbF/aIRr/V1\nXm5SXbTbUhtXCpdpQXwM8MtKqXcCiMhr0Ekeb3eO+zJ0TPBHjz6zRL3kMMp6mKA/wHg3k8+1pNdD\ny+2XcmrIqtEZXGIwyzYxpHnJzFQ/zWLSvKTIYoqqmRTEHWuiIY7x7ifbqrADVM16O/FqeiKdnyQA\n63dXq7zbNqYQSB+mkMs+yCTgXuq9jAnWwzZws/UXgcoAdzLF+3O4mQjzWLiVwjO5TrhrdIlHL6nu\nUcNlEsRzgXdZ6+8GPtY+QESeC3wu8EkMEISIvBR4KcDzn/d4s6O0XuiqQ6hnrcIiC/vFT1I9wbqN\n2dx7LlGqZS2YzGp7tjmbMLI4qklCj4ijznIIYwRoX8iq0RlcYgBNDjYxzIqu78AQBedQHCUt95PB\npu4ncy8uSehnsnkiXYck7N/OzIlsY1X0E4j5fB+BjHVf2Uiz3ZCErT/0YBvroVuKpR/b6BFgsver\ndlFEQV3CiNd28MKjVOzvKuOqi9Tfgo7xXUtPFUqAqp7JUwAv+m9f4BcHSucFjtMWWUBFGO6L7iMM\n+zNxWodgAnapGf21hjyqZR3Xv67EON2jFetmuVuzBmyh13Y33UyaF9F0voYk9Gi+OYcZ8Q9hlrff\nbNuaSM9XFEcJFIqC5lxtjSKhqR1GO0S2iDoWxdxphbZonQUKBrqTDbkw8w74b3De+3t6YU1mM4gr\n6mK6DrAHDGlUtlyO9UCsHiTM2iS/cgYFOyIIifRUttcRl0kQ7wGetNafV22z8SLgNRU5PAf4dBFZ\nKaV+cCdXsAvCqCwLqcx5OzfCzBfhg3aP2BO/R63lh6uGMEwIoO0D1r7bZlQ3j9vEMZYMhuBaFC5J\nGH3C/k5DEkafqPdZJOHmUdhWxM1Aq7Q7h/aUqA1MB2FPQrMTuG0lZD1cBjnsIbnTbW+bwPyO20U2\n6f8+HcsNg46lnUhpJiYSY+2bgAWDRyXs+RJxmQTxJuDDReSFaGJ4MfD59gFKqReaZRF5NfBDOyMH\nHzYlDLOvaogda2JtRrQNecQyI4uXlS9dZ4/mZVRF7HQJA2AeD1sRAGladspmdAgjlTpiyYdZvmJZ\nlcCeFSXLNK7dUH0kYX+fSxL29bmWhGtFGNiCdXea0wZ2LoQXUyyARwnbiOkXBLd9boJQKHTb7di2\nCFr5MbEOWmk5M3f07EQgnk2LaHxUcGkEoZRaicjLgR9Gh7l+l1LqbSLysmr/qy7r2mqMIQxoWxRx\n6tUl+i0JMKMgDeOCiurSA3kZVUQi9cvmWhGg3Uwm58Hg6GhVi9RT0EcSBi5J2ETkkoQRsKFNEn1a\nRMjFBDjuhfBoUIlMDknuRZ/1YLstrtgIddOZD3eBXZDEEOzAhVhmOqKwehUSkjrwRADlBiQc4MWl\nahBKqTcAb3C2eYlBKfWSCSceLxhOaSQBwvAZ4kaXGBKvzbJPl3AJw7ibmg61+T7fNhOW2hnBb+h+\nsknC6BLQTxIGIZKApuMIWREGbkG/kJvJoNeqmKJDjLE8fK4lu0DgATsliVDwghkwlKpqTEaPiBpX\nE9DVIw7w4qqL1PvH1MiTpBvZonBcT5Yu0Sdeu/DpEq54rSM5tBWh/bJdKwL8biaYTg62FQFhkgCd\nN+GShP19PpLQF9VvRWgME4LB3nQIH+z2Y6wHmxgeYZKwy6LsCtvqEib81mdZ2hn3k/WIbSDUc55f\nNxwIYioChGIam2tN9InXY3QJV4vISyPkSuclq8Vdj5sJ+slhmXXdRwZjSKLWJQZIQmPV5EtMtCJc\n+BLn9qpD+H5/23q4ZiSxL2xiTfiSLm2r0mTcQzv8uZ2jNKvdwtezetJucSCITeDmTJh12+Vk6RJ9\n4rUPri5hxOumNHLUEqxDVoSBznLeTIcIYZAk0Il1vqQ6EwabZuvGyrGsCAjNIxFOnBvCFB3C1ZmC\ncK0HlxzsEuOXTBJ9809fFkIkcTMZN1DQulx7ilRfcUc79BWaOUQOGMaBIMZgaNTooJnJzEJAvB6j\nSzRTNOoXQBNFW7C2MY9pRQjtJNzVsSJggCSsXIk+koCuFgHiLcGwKUzC3GYftn77lWfZFab7LAhn\nToqtcQERTN1Jn3Z//jGWRFOjScOu/mqsiFBxx0E9YkuIKJJDFNOzBEOahM+dkFr6Q6LdGB1dosKm\nukReSh0Cq3WItmBt09IU07040idIA+4lG9uQhIFLEmlWBK2IXaA3YW6X8CVdhdxMj6jLaZ50S2Xs\nAlN1CZscbCvCEINd3DGL29FbCVmTYX+wJAZxPStMTcGqaP+FUOQNObjuBLPPPk9ZoFa5dlesiiZi\npixqV0css7rzSqKsXra3a11Ch7iaF+FGoupJ3kNll0NIs7L+c8tlbAqTTDerSnYYsqmL/5kKsW65\nD3SElW3hPFjpTmjhlHowJc/tekGmfpDevm6VkTClrTvYRafQYz2oPK//zDZ7v3d5z9g2vNVuY1M1\noimYOjiw60XZFZDtsvluu7ALFqqB6gxjIQJxqkb9DZ9LnhSRfysibxeRt4nIl3uO+Z0i8rMikovI\nX3H23RGR14rI/ysi7xCR37/NvT37LIipUUvFwItukM6aY0O6hIWxuoQtXmtLQlsRD1fNLFw3E7sy\nqvVNnciK7XUInxUBjSWhjxmfUAfs3Yow6OgQQ6GuIfcSdC1JT5tQea6nNg1pEQdLogPfb2+L0+Hq\nwBo+i6K3FMfVwwp4hVLqF0TkBHiLiPyIU+X6aeAvAn/M8/lXAv9GKfXfi0gK3NjmYq4/QWxSQA36\niWGD0V/ddY9IqrN1CRtZvKxF6iaBLm69PBeBKSRh4MuVqPdZeRpZum5pEaGQV7sezxhspUPYCAnT\n0LYaqo6/Jgl7+wWK12NmNhyDuVvqxYQlX1Lunc/N9HAlrdkI3XlEfKGvVw1KqfcC762WT0XkHejC\npm+3jvlN4DdF5DPsz4rIbeAPAS+pjiuArcL2rt4T2gXUeu/EYDoD7wgRwrqE5yvHFvvTwrUmhkaw\n1i9BM42j34rYhVA9Bi5J9CXU2Ugz/azsEhxj3BnhaUmb59nRIaaGu/ZZDzAoUntJwl5+RC0J2K81\nMQbtqUrNtrYVYeYRCZXi2Ba6WN/oPIjniMibrfWnqkKj3fOKvAD4KODnR577hcBvAd8tIv8N8Bbg\ny5VSD8ZenIvrSRBT4ROe7eXQKJFw/kMIfUl1Q8X+YllVeRKqI1iH6jQZNCP21SBZZOcr8qP+phGy\nIqCfJKCbUAddKwJMxzOt/IZBPXKemDDXG+I6ZD30hLmOIonq2F1BibgzvO4FF0USbiSTjT4roiEJ\nTymOi8f7lFIvGjpIRI7R8+B8hVLq/shzJ8B/B3yZUurnReSVwFcDf33Ti312E0QowcndRpcYWsum\nA6iW2xZFV5foS6qDvmJ/+ufK4hxtRcTcSEx+RBP2amo0GbivQdMpb2dVbEISvoS65rrGWRG+Geey\nkbcyOh/CWBgr539AmLbX6/8OCXSszm0inIZCXC84QuciLYkhHQIawrBJwhv6egUhIjM0OXyfUup1\nEz76buDdSiljcbwWTRAb4+o+pX1iJDF4X/ye5ZALqcaIpLoxxf5cwdoX9mpbEVnAzaRLcPsD2cZY\nEUMYQxImBFaHv46zInxkYHcANwKXvbUO0SdMTwhz3bt4PXE2xF3hot1Nxr3U/B9OnPTqEVtCRO2s\n1IbouQ2+E3iHUuqbp3xWKfXrIvIuEfkIpdR/BD6Z7gydk/DsIohtiGFUFNNSk0RIl/Bgki6xtju5\nvCNYt+s0NWc2ZGEsh/Pz4OV0JgsaQp8VASNIouoImwqww1ZEE94YcSPp+tOMe6mXDKboEL56SxU6\nbcWt5jpEEvb2XYjXl1yh9LLFa6B2M/msCEMguxLv94CPB74IeKuI/GK17WuB54MuZioiHwS8GbgF\nrEXkK4CPrFxRXwZ8XxXB9E7gi7e5mGcHQQyFqk4kBuV0om4H36tLjEmqC+gSRI2w1lgRTfkNu06T\nuZLFSupG6wnBAAAgAElEQVTMahNKqovmmbBSgQBhjLUippKEQZHpqU+nWhG2e8GuxeNaFqYT0MlR\ngYS5vlDXFjEMWA99FkSg49+1eD1qrvULwmWL1wZDrqarBqXUTzHgiFBK/Tp6gjXfvl9ET7S2E1xv\ngpgYkRTa7yMGVXV0ksWofOXVH7y6RABjdAm7kzOCdUMO3TpNi1K/qCZsNE3bczWM0SB24WqCNkmA\nQxSOFaHrNJVBK6I9JWmz3bz8LlGs1nlLqB7UIUL5D33CtNmPbidiCHNAkN6ZeH0Fs4IvgiRCbiZb\nrA59Lli+YCJEOJTaeKSglFdMbP1nO2JQD7odvo/2B3WJ0PFeXaLRI7qCdbdOkwl7NRZFTtvNZEii\nOEq8pTbGEkOf9TAKjhUBDVn4rIh2TZ4uKZhoFZ/FMFqHcK2HMcI0TVsx/yVLBrWG3pDpa5BU14dN\nCWSMUG0QcjXZmdgH+HE9CWIqQu4BB8rpRFvE8WCJ3JwhWQz5CsmaEaAyL7cZLdYvvzkm166nSsRW\nZVFPaCKrZuarZH6LOGo6iWJ9zo3EuJvKOjHo4Uq4X8Q8kQnvz+FOppgnesS0SNecArfvFNy7m3J8\nq6DIY87I6tIYvg7fHv1PxXJEiFFd/sNeT9vPe+4pLZLF3alIszgKkkBnu+VeUqu8az2MdS0VS1S+\n6rSRFoxlEdIl7O22kD0q2umsbjemzchsThKnxNGsziLOyyYkvpl/xDfxjnH1uVWDd4u+Tt7sswcE\nZpsJdW7+N2VoDMw2817YAvaYUOnRELiIqUcuA89agmiNAA28pGBGhM2Lrx5UnYEn4cBYFposzCiy\nepnTWd0JtF5+e7RoNIpEz6Fbv/RJBov7yGxOmhxZVV9XFGu4lS65X+gXIKtcTHp0HbEo4f254om5\n8P4FcLwkT5v8g3t3des2ZbrHFO6biiJAEsWRDnc1BHF0tKrKk2vrYR435Z/r5ZiqNlXz4qdRU58K\npJ4gJpakVecK0O4lhwha+Q9uXa4RriVDDj7L0gvXwugjjDHhsRZcq9UOeMjim1Y9osTKrSnrgpBZ\nLDyTg0sSvhyEfU0jum9S0JWSDxjCs4Mg+vz/PdaDK0ZDlxx8JGEfKzdnqLxEssqqgIYoquXaB53O\nBq0KHacEcZKRxTdr0bpUCbfSc/Ky5H4R81hW8kwOt1LIShPd1Mwb8X7WcFJwRsrtOznn5wlnpBTp\njKLYrFnUxflGwiYHoCYHYz20yaERqA052NaDIYch66GlPbjitBvVNMa11Ilq2nSqtAHdArqWqL3/\nuH26PpLw1fxyrYnHspK8VHVhxKwqluhiarFIH9xXyD7nvkjhitZhunJ4dhCEwRii6HEt2eSgRjpP\njWA52QUFDVmAJov5MWpxiqwK5OiWnvhE9KgwLx+QRlTx3Xn9Muel4pk85nYKxoe/iPXyg3gNFK3R\nfZHHnN3fTPAsPKNZvSNgzluWg/5ryCGzxGnjWjKjSpscjPVgo896AKZZDxB2LVkDCWM99A0YzLFi\nufBMu9D7St0+YJAwWgMMgLOHTXu5caLPx3Yk4Xc57R4hD+QmpNAlBP0EXELYaR2mSFq/6XXC9byr\nAXizojvHtF1LxnVgyGH9sE0Q0Y1kFGl0rQrLxTDkggLtdgLk/D4kaUuXWK3zWpfQknRbl4CYedzo\nEiBwpHUJgDRb17qEi22yru35IFzYriWgJgebEFzXkoHrWppsPdhEULpupTzsWnJE6Zoc8tXogUMI\nmxBGNxDitLY+Q7oEdjK6hcsiCRfbkYKG3RZcQjhYEOPwrCSIDhzrwac72NvXD1cdV4IbMOd7ldSi\nROZxx6oAGhdUn1Vxdta4G8oC4UTrEvNbpFFbl6ASr40uATFQtnQJ0OK10SWMeG1yEezS4LaADNsR\nhg1bdzDf4bqWXN2hT5j2WQ+tzqAsusK0DVeYhsa11KM72G5He/CwbZc6ijDOHjYDi5Nj/3lok4gr\nXod0iftFjCEHX1LirmDP57APUtirBXGNcXhKIxByLdm1viLChNHXSXRdUI6wDW2r4vgGcAo3TlCc\nNrrEbF7rEtrddNTSJYBafLyVAkXEExktXQK0eF1kcVVIrxlR2wlsQD3i38U8165rySYHW6D0uZZs\nYboPnbyHPusBOm4kd7uPHIxlaQ8efJH2bntQixVixYOagUS9bpGBjzBacUanZ82AYge6xK20Ea91\nKPV+4HMz7ZIUXEKYUsBxCBIJUai+yyOO63lX0NUU3Gzp4P6ua8nXAaxzWC31C5PMFG5hSJswfGTh\ndgoGfS4oVSybxDsI6xKVeG10CTivX3Sgzrg24jUo7iI8ATyI19yDOsTUZF+HCvwZEnEJZCy09VC2\nXEvQ1h18QqjPtbSR9eALa+1zLdnbe9oG6NBHn2i9LWn4CCO6ZX0W9qhLXAz6SGEXhHCwIMbh8JQs\nTCWHVV3orv1WuYRhk0VpuwYermrtQuZJ0AVVC9sn1Qjx5Lh5+aGtS1QkYesS0IjXoO/tsaytS9ji\nNUdVclrZJKrl1b26xGHQn5kd9stPCWm1rYcpmBzWamC7lny6w9DAIZA34Fqb4LQLg6p91N9rkYZr\nZayx3JTHN6bpEvNbE0hiPHaRa7ApKQwRwkGDGIdnJ0EErAcbY8hhmUfMsrVFFAbOi7Rsp+J7rYsB\nstBuhXMk06Jk7W8+O4PjY0yilMnCNrqEga1LNOK11iVMUp2tSyxW7cnk5xZpgO7Qc+e+07TsEMcQ\npoa0hoTpQesBxoe11m4knxbRzneYMnBorsNfmsFHHJ0zWKQRskKFh43FGdAkwLImqvyaMbrENGzn\nkjK/3z4IYVTJ97EQ8f4O1wHX865cuO4l7z6/MA0EyQGo/w/DetXtDiJf1VmY9SjSRxbVvujxedMB\nQDuHwqNLmKQ6o0uYpDpbl4Aqqc7SJRb1NKbSqqlz06rtND9abz3N6VBI67YYbT14XEuAQxhd3WHa\nwMGGhzx8xFG1S7v/81mhMtdtJHpcDwrqco2nZ45+1cZUl9NFwUcKOyWEKTMKPovx7CAIH7z1c8L5\nDm4HUBZ9o6Nh0tDWffX2eQijtDNtoe4EgMbnfPawecF9ukS1z9YlgGqyFK1LmKQ6V5cwRKDnItaj\neTMncYgwYDpptFxLju6wjfXQwVBYqw3XtdQjSkO3bcCUgUMbrXbRun6HPCzisNWB9dPntcXp1SVM\nMubxcXdfhX2TxBT3TogU+iKURCldj83ARwahCr6bIKLl7rtOuN4EMVRjqUUS/bqDgSEH42cei7KI\nidP2KMaMNGEcYcSPzbWvuSYPXUW2diWcPWwiV4wusSpqXcIk1bm6hBGvH8uwkupgHmu3k0sWep+f\nMLzwdHjGPWW7lmAaOfShzntwOodgWKvrWpogSo8fODTwtQcDu124l9ohjyUkhiyc43t1CRMybekS\nwkn9WR9JXLSwO4kQbLiE4CODTeesf5bhehOEhaHqmzBelG77mX3wD7lWS+m4EOyOwow6tXtC70/S\nNZikWRZIlhA/Pmf99HnlTnB0CbBGiG1dYkqxP13xUtUlFjQhOC4mizDsMeioMs9VR+cLaR2Lra0H\nmxx6MChKW+QwdeAQQllpOb5BBeAQyBrur2q9Kn68O6PcGF2idk/2FPu7KIQIYdA6GEkGvXOPXyJE\n5LuAzwR+Uyn1u3uO+2jgZ4EXK6Vea22P0ZMJvUcp9ZnbXs/1J4iAxeBaD2NFaXuEWHo6g3imesnD\nNwp0icPuHFodwtm6Gi0uaqGypUsc32ji4KGlS9RJdSOL/Zk6PFlsiv7RIQsbbbKAKQLlNq4lH3qt\nh5DvOWA9uGU0QhFLhhz6Bw5tBN1J9jGeQYX+PpdA1iQoIlaUTy9ql6R9NR1dYmRSXWd2wx1g7Pla\nhLBLMtilBiE7LbXxauBbge8Jf53EwN8B3ujZ/eXAO9CzzW2N60kQjsnZZz10sqUHyMGsl0th6R2E\nDHeM5TImdl76lsVgtll5FtrSiDg6WcH9ZiTX0iWgEa+hSapLM21hTCj2l0alJWC3yUJPzkKQLKon\nGXwmdoTUtiGtY62HQWF6hO4A4YAFu11Mga8tuPC1jXrfUigLqduGIQm7QEY7wKHBxkl1HkyOChpz\n/BAhrAbch75zBD57VaCU+vci8oKBw74M+JfAR9sbReR5wGcA3wD85V1cz/UkCB88ZRIMOhVaR5LD\n+Xn7hT06igKk0cUy16/fzEnoLJeNn8V0HHUHsVwDCbNszRzdURldou4MbF0C2i+/pUsMFfsDTQB5\nGdVkkZe63IIpi7AZWUDLHeUJaXXRJ0y7CFkP+uFuL0r3WZXhQUM/lrl02oEPvrahodvh+aluG8ly\nTWqRRH3U04s6W18quWFSUt3kO9sCuyKDEBFcHkE8R0TebK0/pZR6auyHReS5wOcCn4RDEMC3AF8J\nlpi0Ja4vQYQE6hGuJYMhcijy5iVNM+kQxhicW/NBHx213ROGRAzmx+39uiNY1OZtE+Z4XifVeXUJ\nhov9lWpZdfxlTQJN6YM2WRi9YhxZgE0YvpBWn2sphJ1YD74r7GkboYGDb9AwFqYduG0gBLttzLIY\nbpqHXX2+ckeaQYTnG+tyLlOS6naGkR30XonArbm1KWKpy5+MwPuUUtvMGf0twFcppdYiza8mIka3\neIuIfOIW52/hUglCRD4NeCU6Y+s7lFLf6Oz/AuCr0O33FPjzSqn/a/QX+JKd8FXgHOdbDpED0Fnf\nBEVgop40Mw0h0p1BdV3zE+BMjxaN3xkqXQKa6JU6+3p8sT8dCtvMfQ19ZNEVt22ysKGjoZr1MYX4\n9PfswHqY4FoCRovSpm342sVUuG2g+e37EAExq5mqrEwDrUvwjB5ERDcSojvtTxrrYWqxvyHsRAQe\nSwTBcOWBaxgITriieBHwmoocngN8uoisgI8FPltEPh2YA7dE5HuVUl+4zZddGkFUQsu3AZ8CvBt4\nk4i8Xin1duuw/wx8glLqGRH5o8BT6AcxDSNcB33JcECHHPLFxWUQ5ZW1XeSK23diTGcAEKcRsKpD\nHQGiO407oaVL2MX+XF3CKvZnZ9HGMqNUOoKliXjqkkWxNoQQjoTyIeRaGhPWOtl6cLGhKN2nR+26\nXeQD4frZ3C7FbWp4E9QlgGBSHQzrEjX2mWi2KxIYIoAdEYSINFV29wyl1Aut73018ENKqR8EfhD4\nmmr7JwJ/ZVtygMu1ID4G+GWl1DsBROQ1wOcANUEopX7GOv7ngOft8gLGRCzZkSk2OWw7UtzEFXF0\npL8zzYRbdyIWD2LmlLXv2egSQB3BsoYmqc6nSwQmIYrjptyCHeLokkVersniphCgSxahSCgf+iYB\nAnZvPRgEBw/Doc7uwGEXluQUFHlJmok1eGhP9NCnSwwm1bm6xK799mPPty8SuIIWhIh8P/CJaK3i\n3cDfBGYASqlXXfT1XCZBPBd4l7X+bvqtgz8D/OvJ3zIQleLD2IilTf3N9aXl0z+vXQ5GDJeaJCAi\nSRuXgitemw6gVezPJglAKmEwibWvOY5mVdnwZU0QxrIATRZppF1SrmUBmixOZlCsu24ofazUbiWg\nJyFOenMeWuRg5TzUYa2BUt6dOR7oBiwYhEKdfVbltu1iOvSvfH5uyMGdDUg/7yQvWxFONuw2Ah6X\nUroHi2ETDWCbDv8KEoILpdSfnHDsSwLbfwL4iV1czyMhUovIJ6EJ4g/2HPNS4KUAz//g280Oe6rG\nkdBJSNVIcY+WdJpFG5FECKsiIpk1k9bE86Txp5t5A9IZKs8RZ5a66gTNyeK0Dl1MSEgkQYn0EIbe\nnkZwI1lRqiWgyMs1eSmczPRkRQ1hNF1UmBTSkaRwr+1O6iujUT0DADz6VD3XgkMQOhdhXZ2+cSfo\n6CPdGQ+5gy4bq6WQoIgDEVMqXzWk4E4fa+ZIH4Ndib+7xD7JYbd5EFcKl3lX7wGetNafV21rQUR+\nL/AdwB9VSr0/dLIqVOwpgBf97ud6YiVnQZGt8eJqf63dt+jYc3dU1p6CcZsRY5rpc2xDFKul1AlT\nq6WQZnrZ1AqSLKnzPcSUCDcvTDozGVuoVa6f0WzuddVIZVkMEQYYodtPGNCE0F4YKXggWRbM1jDl\nTHxtw05Os9uGdi/tpl1sgiJXHB0NH6fythXh7dwKayrTepB1BTv+A/aKyySINwEfLiIvRBPDi4HP\ntw8QkecDrwO+SCn1/13UhTUJSXbZZrsj0J2t8f3aoYmbdgqGKCBMFmNDINd5VTralIWuazfF1JMP\n5RUZuFZEkvkzVD2ksSlhNC4pRSyVO+siSMETpqlnwmiv62fVvBotklj628Yyl9r9B+u6XVw0SZyf\nr5ll49qJgetulY71YA0mrio2cD15qzsf0MKlEYRSaiUiLwd+GB3m+l1KqbeJyMuq/a8C/gbwBPCP\nqrCu1agYYpG6MYc6ABfuSNH139r9kOkI8sW6JgkD04nvwqqA8ZZFWXSTrdYPV5rW6pnIHCsiy2rC\nqP32cd59RknqJ43lQhNHBQGIUy9hALXobZZLtbwQS6G+hwmfc+PaTfvQ0WJdktDhx66FqY+5aJIw\n+tTGaQt2rhAewjigjUiuNnlugUt1nCml3gC8wdn2Kmv5S4Av2fd1mA7UJgmcQUfY1QSmM9g1UUCb\nLIZgwnKNDmFg+9NrKwL8VkRZ1IQqScU4UzpkizQM0RjRO5GENGkTxl5JwUWgxxw7iOChrqzrHUDM\njEPG1zYuniSAKuKqS2ZuOY7BUtX2CPxR6wgP1sNWuJ7KSgiWVWHDF9Fki5IhV5NxJWRzvzUB7MT9\n5EOfK8GIkbabyaCxIiqR2lgR0ESqVB36qGSnVd4QSb2tLh6k/xvrY6ZrASXVdyQmf2GfpDAGlT41\nRBLRjcRrZZZFHBhAgE0Yl0ESY+AK8kCPWL189EjCwYEcxuP6E4T98gdGE0F/szNS9JVyNqRgkwT4\nM6t3ZVVMgXEz2fBaEelMi5CVFTEFqixqUmnBIhhJMhz1vzqmaFdZvQhScC0Jt10EBhKt3BKrfehk\nRegOIOxtlydebwVbrIaqnVySJnFVw1Tl4GJ6NGE3Zgc2KZj5hQ3MSBHHsmisCl8nQL0esiYMLoMo\nbLhWRMvPvGm8u6/zt7/TJR17EHeRhdN8WoSrV1ltxrQT9WDpdUUmqFZYtN0+lrn5rS9flxiDQbEa\n2hbEVbEmQsThm2v+YD1MwvUliBA5BPIiWoSxaKZz9PmbfZ3A+fl6kjUB2xPFGDHShDTG1dzWNiSz\nRoLmZd9FKOOWkUV7QeyxjExcf4sQ2qGvZl9ItCZfDUS92Udfvi5hYCLdWuGurhZhvyN2QMO+SSLN\nLiakdlcWycGCeMQgXVdQ/eJ7RofQtiJkngRdTXaSVDyzje/m5bdJAui1JmCaTpHNo04Bt14xsuoD\n1WKFzF09YlWL1HuNVhl6Ea0S03uFTRKuJeEbOARcTQYR+hn2DyLMGS5fl2hqi629kxD1QeW5rtFk\nkwR0CeOq4GA97ATXkyBc+KwJz7banVCNtKMbCaVjdttJUqsiIp4pyqUOMW27FMB1OcFw1dc+q2Jc\nZc/xUHmp79n30tuYOtIaYfLbL6ucHOt9x8f7sSjcc9rk0GdFWM8j9OR15dw+kjDrmiSMpXmRuoTR\nzkJzYNvouJnMgt0mfBbEo5ArYeOq6hlXDNefIFwi8IwUTSVGY0XUeQOL1WAHECIJn8sJhq0Jg13r\nFF6x+ubMb0VM8OkO7ffO5mf/t+dJNp3NvojCxZAV4az7Mo5DkU3OVD30i9f6+H2QxKqIBqc1tdtG\nMOTVtI/MIlSfm+mirYmRHX1oVsmdQKR5LtcM15sgnM5OsqzdUEyEk8k0NnV47NLZng6gyTfwdQhd\nl5O9PsWagPHZ0z7Y4a6hWjEtKwI2LobWMd/daqnW//ZUrznRrUzPR3B8o3FjHN+oJ63ZKYybyUcO\njsVQ35PV+bXckvmq1x0JurBfN7gBLkKXKJfSO52p0SH62ga0XY/mmUgrPPoCdIkpOFgHO8P1Jggb\nPkvCsSLs+altK8KFiVoxL/9qKSTp/qyJTdA3cmwlztlWhF2CIwCvH9d9IT3kYJOCXTFV5jHqwVLP\nl1wsUelME0VNErOdEIUkWTivwxZFrXbRcjV1rIl4dHh0A78uYdrFReoSq6UEdQh3wOSzwGtNwuz3\n6RLW8ZOxQ6F6r9bDNcf1JYjAS+9b18Xs/FbE0Aixjc1IAsZZE2OxzKOKxJyrq0tvdJPnWlaEa2nZ\n6CMDa72Zla2sXXehqV3jx+eapLKkIYrjG2A6IUMUWwrZNUmExOq+Tq5jXayCkU3ddmL2gk+X8InX\nsJ17cZl35zs3CA0e6uKOfZnVFll6SaJv+SLgtMdeYXpXZHEotXF94HMz2aPC2qz2CNZuVc9Zpt1N\ncaocVwJMcTnB7qwJPZNY+zw+V8KQFQH4X6AeghhDCuYYMwFPMlOo/AzJkpooosePkIowaqKwNYqp\nROFL4oOuWB2yInJn+4TKwD6SMBbnZegSvYMHN+vejuwzCw5ZdlxOV4EkQnhErIcRUzH/VeALqtUE\n+F3ABwA3ge8BPhCd0vOUUuqV21zL9SeIPtG11RG0rQg37NV1NRmXko8kLsvl5HMb+Lb5Q16dQn4G\nAxbDWFKoavR5p3OdZWvmN1eo/Iz4sXnteqqJ4uSoPWfyriOeBqyIjqupR7RWi1V3MFETAoTFa7NP\nb2u0qukkcX6+9mpXYwcPQG3RdRDo+FthsLB5KOzYOSfM9/esX4j1ADvNgxgzFbNS6puAb6qO/yzg\nLymlnhaRDHiFUuoXROQEeIuI/IgzjfMkXE+CkICwO8KFELIi+l1NBl2XU3t7f2Id7Nbl5HMluCPF\nXn+zgcdK0Mvt2fnGkIKZqc9cH8D8Zskyr+ZPzhdEGTVRRLczJC+1z78iioYkRgjZzj6vm8nAZ0UM\ntBm3E5V5ZXHithXo0yXMIGJf4vWUwYO+j7abybYwB0nC2X4lQmF9QRNXE4NTMTv4k8D3Ayil3gu8\nt1o+FZF3oGfuPBCEF1PcBoStCJnHYVeTZS2MsSb25XIaE87ojgrNSL3ZXxGj53P2MZuSgiEEex7n\no6OIcpmQ3SwpixlxqmqiiG8ltbVjiKIV8VSHxY4kCl+Gt9nusyJGuJrsgQWA1OJ7e0ABblY+TE2q\ng/3mS/S5mcz9DZHmVdElHuGkuOcycipmEbkBfBrwcs++FwAfBfz8NhdzvQliCnqsCFuwtl1NTSkO\nMAL1rl1OsJk14fqa1zl1VjW03UwdK4LppKCtgnGkUOTr+h5P75Wc3I45ymNmGTVRzE9KkmVJarSI\nxYroTrZdxFNFAqMjmuptAXeJpUc0kzK1X6l2V99Ynqat9IvXZnsT7bTJJES+wYO7zedSmupmqvNa\nLiMUdmx49j6sh2kupueIyJut9aeq2TA3wWcBP62Uerp9OXIM/EvgK5RS9zc8N/BsIYgx0SkVplgR\nKtfzA6xzNyfCYNjlZNZDJAENUWwK15VgjxRDVoRNCua+d0UKRa7qbXpebkWaSU0U82NNqtnNNati\nTZJqolg/XG0U8dQpR24QyomAfivCuy/8KrW7+r4Ip+aoTYv9mWfZh6HBA4TbBdDOvodpLqcpukRf\nqGtPRz86rPVyXE3vG5j07D2MmIq5woup3EsGIjJDk8P3KaVet82FwnUmiIEZxEJupmZ/vxURIomp\nLqe27xlCLqcp8ImRBsFRIVXF0puzCeSAlxzKal9DDop8sa4toYYwmo4yzeJ6Tmc9z0VUkVqVlJiX\nRKxaFtz66QVyc6aPMBnZ1XJ1Un3t1ix5rfkm9A20/5sOqVg2baIO3XWiuwb0iNaz9YjX1V1U/8eJ\n1/b+fbmbfEEMXuzChXSREU6Phg4xOBUzgIjcBj4B+EJrmwDfCbxDKfXNu7iY60kQplifcTUUebcR\n2tEp7scxHWk4Hty88NxI9Mg2059JM1WRRemQBQ5ZlFUnOy4c1iDNhKOjqI5xj2eqdhUkM0Wcqnp0\nmKRNUbYoa0a50Y0EmSf1CFGypHYv2fdsLChDjrZP3dyne53mvrQV0fjTDQFowouqe9GfPDqK6iKE\nt+5E9T2Ze5nfLGvh2r5unXxnXDsr5ATU6VkThppW0U6c6d+5jxTcTt9HCn2dSg9JSJagKgvUPEPT\nXow1YdqJ/fvrMU7zHI+OjAbRfqZpJvXzM9FLs2xc2zCWg2RJ3S5AW8ymXdT6in1v9vsUWK6thxHH\nTopectEKohifFOebKGwjiGx3/RZGTsUM8LnAG5VSD6yPfzzwRcBbReQXq21fW83cuRGuKUHEkB2H\nK3fah1b/XaIYcuq0XE5m40SyAHsflVVBZVVElYuhESa3IQbjUvIRg68DMFaTsaTUgyVqHrd0GHm4\nIspXJHlZ35shQWMtxbPIuRepOzW7c7t9p9EgzP0cnaz08q2kQ2o21k+fVzWz0CXMj2+gTs90tNPZ\nWbsjWhVtK8HzX+UewhgDD0n4MvTNMzREEdXivv79TPsoC8EQRTwzllnUeo7ZvHFBmvZhymuYdrAp\nMZjrr+9nCimMOd7XqU6cO3w0HOuhXe7lamFoKuZq/dXAq51tP8Vw1zUJ15MgogiZn6AWp+Fj3Gxq\nHJIwL/vUrzYLI8nCZ1X4yMLAEIMhgDEvPzTEYF52LzE4VpZ97y5RqEVZzTGx6hAFNK4nmyhs4rOJ\n4ugoYn7c3Nf8RJ8nPVb1PUR3+kdoKl+xfnqhdQkeapcTNLoEVVvYNSm4sNwsPqKwNS2bKIxVluRl\n7b5ziQKaNmFrEn3EoM+zDg4adkEMk0gBusTQV213U4TcSfXvXXYmCjugi+tJEBLV8x+35jke+lj1\nP+R2srWI1r7A9jFkMeSCatwM7J8YAr7gIFHkq1ZHZ4jCvTebKICWVWG7QrKb616X0hAMScjNGdEt\n4OxhV5eAagQZsCJ2hQBRQDcR0xCtLoXSJQpoW2WGKEIDhzHEABu2jSnWwhRS2BQh91LPsSpftVyn\nW5VZj8sAACAASURBVEOii5v46oJxLQlCsUYlGVJFqchyoYkizvvnW3ashhBR9KEtaA+7oRLUKL3C\nwBCD7V4achfA9Jff+1wsF4qyiML42G2iMEToup9s8otnUatTG+tS6kNdyoO2LiEnx/snBYOAcCtZ\n4o2SM+suUZi2YesTLlGAf+Dgto9dEcNW1sJFdaI9YrQZRNgBGAeEcS0JYq3WFOtzYkmIDVEs7nfd\nSAMQ8Bau28TJFyILuzMd0it2QgxjR4SBe7efgSEKAJ9OYYiwT6cANnIp9cGI19HjR8A5ki2b3/0i\nolf6onI8RAHtgUUErbbhIwpg1MDBF5iwM2LY1IXkwt0/5F7y/IZjrAejO9ilYHYCkYMF8ShBsSYv\nHxBLQhJlpNERMr/VtiaM22mEvzNELG3XizUytENkHXcCeMhihF5hEHrxzXkH/cihF3/AvVTfv5MD\n0KdT1IJ21dm5RGEE901dSkOoxWtLl9g7fJ2mL5TTcj11QqqtiCeXKOyIp76Bw1DE2mRi2LW1sEnW\n+1R0dKaqbVbkUD6z2P47rjmuJUHYFkSpKvPdtiZ8RDGAVkfpyZuwjwmew068M1FCjuAbIguYFqo6\n+cUf6Dztmea8Yr4nE90QBdDRKRIrgmQbl9IQOrrEvkkinbVG23ViHXiJwkew9bonNNaOeDJE0ReZ\ntDNi2JYUpo6wDUlMTZYLuA/X93Mrt0dbt+txr/6zGteSIMq18ExecCtdEktDEFl8k1hmmiQq1NZB\n34T2FsYQBeB0mH7roj52BFkYbEMMvW4CN/SwZ7KWulNzM4ut+x6jU9j3tI1LaQhdXeJoP1/kPssq\n10Zfw3SiGIp4MlbmViGr6aw/d2EoPLWvrMkU2CXZ+3RCD4aqttqitFqUdcJnEwSwLSRcUv4RR5Ag\nROQW8DXoVO9/rZT659a+f6SU+tILuL6NsFbC6TIGSrI4h0QTBEASZWFrou+knrBY8I+mffA1RZ8r\nKkgWMH5EOHY06BsJui/2QIVTL2FaVoVky5ooalHWJoo9WA0+dHSJfZBEiIRp//597ayPKKArZOvj\ntiOGUQMHGCaGMaQwpiONN3QxeUKYXd2hrATqdd5EBx4QRp8F8d3AL6HrevxpEfkTwOcrpXLg4y7i\n4jbFSsEzue508lIBOVm8pFQrUrXqtSboK+TmQafyqb1iE4ZnlA1+68JHFvX3+YhhqpugbyQ4duTn\nIQOKZdCqkGzpTby7CBifs8wTJ6kuaXeA2yAwIgc80Uweq8KB265CEU/1fkuAnkwMm1oLQ23lMkbV\nPnKwdAdDDosHcWtOkgP86COID1VK/Ylq+QdF5K8BPy4in30B17UVSiXcL3TncyPRXXYWr0dZEywX\nfrdTCK5l4axPJYz6PA5ZwLiIpK1JwfdS2y63EYXtOmRR7ZN02XE/rZ8+737fDrG+m9cuhSZCit3r\nEr5nb//WZn2iVeHm37hEAf6otZ1ZlDA8eNghEdSVdoeE6lB9LAuGHNb38pbusFqKlYC4i4uOwgUh\nH3H0EUQmIpFSag2glPoGEXkP8O+B4wu5ug2xWsO9QoC4siCgWEvLmgAo+6yJqoFuO21Pp/MPFQm0\nO1doOlKnJlSHGKZaC/ZLbpZb922OG2FJ+absDJBFy6qw3E/AbpOWLBhyKO9rf3Ni126aN+Lv1iQR\nsh76zhmyKgKH+xI1W5nauyCGkLUwNIAYwMadp48k+sKUXevBEaWN7rAq2hNXHRBGH0H8K+APAz9q\nNiilXi0ivw78w31f2DYoFbw/BxDmsZCXwq20bFkTt9JzYlm1rIk0OgLbmsDjdvKOoJ1IC5cU+qyM\nMYRhb/O99LsiBefY1utjP4MhQd9DFh2rAqBYEgEqi+vkpV3ADmM07gTQlzmnhGcWxI/NtWjdKva3\noS7hWg++GkO+gpEeBMOKrf22Baav3bEqNyWGCaSwzxGzJBlqhFDttR48uoMhh+KsKU1vl6Xf/oKf\nhXkQSqmvDGz/N8CH7+2KdoCVgru5dhTNY7iZ+K2JW2nbmoAqHNa2JmbztttpLIZIw8IgYTij0skv\n/FhSmM17b2mQMHyuKJcsrPtVoCf84SHR4/OdkISPHIw7wZSgSJZrUhZIlhA/Pt9Ol/BZD3ZnYVtY\nBiPIouN+ci0zrOi3PmLYgavxkXCfVJapIYf10+cd3aFVmt4qS39AGNc0zNWyIBJYlHqqz3msG0QW\ni9eaAFrJdSQZohpa6CvBMSq5x40IgmFNwiKMSdZCr/vI6ghsUnBHiq4GU5Flcz6bEKy5nqFNGAGy\nsIlC0sqa2EKX8JHD4jSuR4vJck1ZCPMT4GxNyory6UVLl9BJdUwiCa/1YN+7DfMcDEJkYbcHc3+e\n/bJLqxJGWZZ7x6roj2RyS2m06jG1RWmf7rB4ENeTWR3Qj2tJEOsy4vRsRl6U3D5aVxaEtiYgIoul\nZU2YcNgyXpJGR6Osick++tC2wLzZLf+069feEyko6Y6oZAJpBAmjLLrXmFZlt6vRsMrzalS8mS5h\nhzAaV4Ihh/xBXBUGjOFmyeI0Jk4jYEXSEnubkONRuoT5LVzrISTq+gjDxoBl4XXTVdexsVUJ40gh\nZF0u95iN3DPo6uQ+BHQHoz/ZuoMhh3t3d1SLSWTQ+n5UcS0JoiyFs/sz0iwGChbpGmNNgOJm0rYm\nQIfD+qwJn4Bt0OlOfaThi4RyG74r9kI/adjzLnte9E1JoVR+F1gsTqflWFate/QRRnU9HcJIUk0U\n6M5PAZw9JLrVTEM0hiSGyOH+XX2283O4RcxqpphTcn6a6OqxaDfEJrqE13pw24qt19gYIgwDj3vS\n1AlrHbNPUgglsk3pGMeSSZKC/R6FsqmN9VCRg12EzxWlbUvSzHS4yWyNzzYMEoSI/PG+/dvMeyoi\nnwa8Ej1z0ncopb7R2S/V/k8HHgIvUUr9wtB5y1K4dzcjzfQIochKYMl8BYuVcCdrWxOgw2Fta8KE\nw5ZqVZFEEiSK1jV7rYYRxDGGNMx2+/8OScFYTmPRIg6bNGw3k7mG5UI/G6jvS8U5cKZnfTurKq7C\nJPHajVQ6P01aboT7d5spT7N5xP27a27diVg8iEmWTQdhxGtbl2iK/Xl0iR7rQWxCtJ+HQYgwxsDR\nIuptrf9bEMNAmxGlwpFMQ8LyWDJZLhqhekS461AynC1Kl0upp8E1U+BeNWzTLw59dirGWBB/BvgD\nwI9X658E/AzwW2i36EYEISIx8G3ApwDvBt4kIq9XSr3dOuyPogXxDwc+FvjH1f9+rODsfloTxNGR\n7mDytPRaE3mZcCtdt6wJEw471poYvN8AcYCnI3E7kJWzvidSWAWK06zISdxZ7WnChF3UxFFdX6tT\nsUhDlgtNCEkz9afAaF1iLDmc3is5P19zdKRas6/Nj6PqkvQ2LV43ugRgFfujQxJD1oMr7m5FGKH8\nk3p5P9aC22461qQ5b4g4JpbNGIQJmXZEaV8ynK07GHKwBww7m9Nbop3lgmzTL4787CSMIYgZ8JFK\nqfdWN/DBwKuVUl+86ZdW+Bjgl5VS76zO+xrgcwD7Zj4H+B6llAJ+TkTuiMgHm2sJIS7XpPeWFEcJ\nZ6QUecz5ecLtO0XLmgBhUfqtCRhIrtuEKByR16BDHj0j0H2SQq8FEXqXPJGCvcThkEY9qRM09+To\nEqBH8zZJrO/mnUil/EGk3QlnepR4eq+kyBX37q7IF4oiX3P7TlJvh3hQl/Am1fncOUPaAzskDJ+1\n6R6/Q1JoXdpYN6T57k2sjdncL1R7xGl78ipXlDYDBlt3MOSgLYgr6WLauF8EXjDis5MwhiCedDrk\n3wCev+kXWngu8C5r/d10rQPfMc8FOgQhIi8FXgpwdPwBpFWMeGGNsooqtT5PS0jXvH8BT8y1gK2r\nb5sM7BKIRyXXeeH66MfAQx6uS2afpBB68QexJXEkpgw7xuUEcFqFv2oT1RWv1/c2Dz85P19X2lSD\nVRG15lawoRZlKyHNoI4UcqwHSbKWW03f5B4Iww0pNphCDDtyO2pXbLf9xDLzBj7ABOIYWfp76uQ/\nO7MepuM5IvJma/0ppdRT1vo2/eKYz07CGIL4MRH5YeD7q/XPw0qeuyqoHvJTALc/8MNUkcUURwlp\nVlp/a9KsJEvXzGN4Yg7zWFsQ8xiyWJHFTceeRlq4NtAd3MxaD4+mNnoxfD7a5WK0f9i9pjGWwpjO\noK8D8H0mlsTrrkqirHu8QBKncHQLOb9vJYg54rWlSwBNGfGHK+asqvkQdHPWriPNUKf3Sm7fSSoX\nU0SaCSe343oe5+xm2ZoH257RLrqTNS4mo0Mc36Ce59qQw/xYk8P8RP9G5rdxXYYDCEXlDw41ttQV\nYLjd2JF9HQTyzUKWpD7PgMVxdKtdRNO2LnvahC5YuCDKV8CqFqi5WRLPIiDm/Fzfd5FH8MB/7VMR\net89eJ9S6kW7+db9Y5AglFIvF5HPBf5QtekppdT/toPvfg/wpLX+vGrb1GM6UCIURwmkUpPD7TuF\nXk7LKnmuIYebSUMOWbzmRtImBhvaD5v0Nv6pxNEr/LVOsD9SMNvyUt93FoezTM19u/dpXnqXBMzx\nLmnUhCHoelhVpzBWl2jh/oqjkxWQVDPVxfWczUWutYdsrgni1p0oOA+2EallHhM9ftSUr6gIQU6O\nG8vhxokWpTP9n9kclWSt59Jxq0GYOMa6IOsH6OhCO7YwfdalWW4NlMrp5NEH88zqastY1mUVHh1q\nE6ZumVqsSFnUE1Sdn/rbxXBvcuHYpl+cjfjsJIwNc/0F4FQp9aMickNETpRSp9t8MfAm4MNF5IXo\nm3gx8PnOMa8HXl750j4WuDekPwCUsbTI4ehoVZNDlq41OSTU5HA7bchhn5jsv/UQxy5cSC5ZGFLI\nS8GMY3XYrxm75nsjDNuqMEUTvbrE2UMd5XR6hpyA0SUA76gRtB/6FnEV1ii11RDPFPObZWsebHtG\nu+h21tQ2OjlqE8PxjSbMODvWI/ajWxCnemCyPq+ff+verM7TFvE7rsgxBSJD2AMpuOvub2rfl0/E\nLkv/QCoU+GCj1vncgYNPq0pnyNlDr4XZ1y52AYXa3EXbxcb9ooj81ojPTsKYMNc/i/btPw58KNrP\n9Srgk7f5YqXUSkReDvwwOiTru5RSbxORl1X7XwW8AR3K9cvocK5xwnjkksO6JocnMkMOqrIi2h8d\naz0keNwlHoSsDPe8/s92iWMf1oImBsjLqAr11e61vMR6Fs0zMXqMucYQAYwiDHNai3+S+a1qDvET\nFKd6pA69SXXQHjUCVjnnZtS4L5fSihXlekVePuh0rrEkrQ7RZ30GQ4brA0YQx5akYB8baiugP2MG\nDJsSB4TJw24LNUnEKTKbw/n9tjUBwYx8oJ53xG0XyUzVNbquErbpF0Of3eZ6xlgQfwGtrP98dRG/\nJCK/bZsvNVBKvQF9s/a2V1nLqvr+SRBRlVsp7+gOhhyeyNq6g0sKadR+QfNy3RpFm9HvEKbkFrgv\ni484tiUFaBNDXlbm9rohCY12zz2GLPQ9TCMM01mu1nnTMUhAvB6pS/DMQuc1eLAvl5ImhhXF+rzu\nEM291etlmzCA8aRBj35VYV+koNuJframDbQtTHCtTJcU+lyyHXgGDUFrAoIZ+WLyaDx61VWeLGib\nftH32W0w5hfLlVKFmEQZkYSJdesuGlFFEIYcTo6XHd3BJ0qb8NY+uEL1LjGWTKa6kMC1FvzE8HDV\ndDAPVzE3EteKcMnDXZ5OGC5JTNEl1OlZp9hfdEcf4orXpljfvlxKmhhWlGrJ/ULp8Gjredj5NHbn\naY+iXbfLGNKwsWtS8LWTYh3XgycjA21KGqF7rI9bt59Jy5oA7YaMU0jOvIMHnzVhXJGJq2FtBTVp\nIPgoYQxB/DsR+VrgSEQ+BfhSdCnwKwuJaOkONTlYuoNNDrb1MEaHMK6mUGLZvrGptaD/Ny+8WTbE\nkJdRfZx+NiFisEdf9rNTlitCuyE6gi1hIuyQBG1dQi1OtXsH4Jhe8dqnS+zTpVSqFQ9XOXmpp7s1\npVuaTjOvn4dNiub38hFG51EPYFNSgGGr0rQRM2iA5l1xScN+h4ZIw1xH76BLT8RdI5YZYizMvqAG\njytS5jHru3k9gDigH2MI4qvR2dRvBf4c2nz5jn1e1LaIItXSHQw53Em7uoNpzD7rYd+i9Vi4Heou\nrAXwE4P5r5djL1H4rQqYQhbQdjG19q1dgVd3CGOS6vp0iX26lPJyzf0irok3L/XztrWcEFmY33EM\nYfSJu2NIwd7W1058bUT/b357Y2W6223CcPfpdZc0upZnB2OsCajqe2W6dIvHFekOIA7oRy9BVKnb\n36OU+gLgn1zMJW0PETg+KTq6gyEH17XkwtUfbIwJcx2DqSbpEClAv7Vgr4eIYVHCg+rUuqChOW9c\ndfhD7qZxZKG3dUfT9npQvB6pS5hB55rKlfRwRXQj2ZtLKS9jTpcxD1e6c83idd2BZvG67jRDZGF+\nyyHC6DzyCpsFJvQPHhpSaNqI/i3j+v0ZQxj6/LHzXrVvwiUNlzBstxNR83xa1gRVu+gJkXYHELuA\nUurSvAn7Rm8Pp5QqReRDRCRVSu24qMr+IJGqyaFPd3Cth20thl35IUNRTX2jQL28PTG4CamLUpxI\nL7+7SXeCdgRUs922SpqOxeRb2C6opEMarnjd0SXcYn+VLuFLoDJzN+/HpRTxTB5XLhpxqgRLS88J\nkwUMhRSHsI2r0V53icEcb9qFaQ+GLPRxw4Sh0UcY7f162f8saquq2uUK2MHkutOzTmDDAf0YMwR+\nJ/DTIvJ6rLxDpdQ37+2qtoRIkwBnKre6usM2MEL1toQwFDvd51pyX3i9PJ0YQJPDotQvv4FeVzU5\njCWK9rb2dh9ZmOiwcKhvQJeAZpa/EUl16sGyPW/zDl1Kmhj0s71XCA9WjQVmyMJoEq7475JF+/kN\nWxcGu3I1muNtYrAHD/OY6v7abWJbwtDwtaF1axDRunfL7RRLUutVU5LrdgH1LBep/1P1FwEn+72c\n3SCSrih9O3V9nttZD4PCmuf4cccNk4JedsNStyeGxcp2MYHpgk3HoOFmgreJQnd+/VaF2deQRUMS\no3WJvqQ6jy5hRoz7cindLyIWpZ7JcFE2RSDNczREYbvqppFFv59+lxYlNMRgWw5m+zxWHbIwx7h5\nRRrN795HGGEXZtfaNPdsu51genLdAf0IEoSI/DOl1BcBd5VSr7zAa9oaifiT4XxRSy769IexmJJV\nGRp5jCUG89Lb28a++C4xuO6leiRclUY3nUJDHjbGaxJ+F1TTCWytSzjF/jh72HQGe3IpaWLQc6Hb\nz822wsxEVW0/fn+k2FiyCLmQYLy+4A4coCI7p4kuVube2mRhPttnXbTvtX1PoefQPAM/UUDjdnKt\niaHkugP60WdB/D4R+e3AnxaR78HpEZRST+/1yraASH++g8GYvAcfGqF6egPrM0WHSEEvhxLbwi8+\n+EeEtsWwKCEvIopCv9V5FQEGXaJotkGIKPQI2Q6NDFsVhiQal9M0XWJssb99upTuFs3zvHcesUjX\nzK3nZnekfQEAffknIbJo/97j3Ujmfx8xuNqUayG4ZGEjZF2E3FHt+/IR5ji306A1AXVy3W6w01Ib\nVwp9BPEq4MeA3wG8hXZPoKrtVxKR6Ib8REaHGHzWw9htbjb1WIwlBfMd+n+XFGDaiw/TiaHImx6g\nKOIWUUDTIZjOYBdEoeficEmiPyx2alJdPQvbvlxKK71snqV5di5R2NpOW6dQjLMiuts2bR9jXI2h\ngUPb7dhuGzZZ+I7TcNsL1XW5EXP2M2mWjbDvczuZNtKxJsCbXHdAGEGCUEr9A+AfiMg/Vkr9+Qu8\npq0hNKI0+F1Lm1oPBv3VXPsFqxAp6OXdEoNZHkMMRR5xfp5wdLSiyCPSzLou0J2dEa0domhgOvmm\n84cxRNG8/C5JhLKxJxX7MwSxJ5fSooTTs1n9HNNsrZez0iEKuyP16RTK00k2z9HnwgtZk277cCOS\nphCDO3BI05IcBslCo0sW47ULnwXh1yfaQn6bKNLoKJxcd0AQY8p9P1LkABBLV3cYg031h7ERDFNc\nSDCsL9ifHSIGaDqEvKpDUxRxixjAEEVcTddqiMKsd4lCz8rnj3jyEYVGW9A2JNFoE203ik+XcE41\nXOwvLZo5o/fgUiqKmLP7M87PE+v5mYx+hyhivDqF67tv31g4WmybtgFdDSo0cGjuZ13f46Zk0Q/b\numjuvxG1/W4nCAj51SE+a2IXeLZHMT1yEOnqDiHrYZvchzGNYqq14CMF6L789ud9uQxjiQGoO7XW\nKNEhCrPNdHyYzsByMblEYV50myj0cqjTW+9Ol/AlT5kZ33bsUjo7TSnyiHt3s9ZzS7OyXnaJAvC4\nn1SbPCz3U59VcRHEYNqGfT+2pbQfsvATRXhZ//fpEyFr4oB+XEuC2FV886bYxoXkbh9DDNAfmTSW\nGIo8hqJ6adPmeuxOwawXVZ0rH1GEIp58RGFcT43bqen8dqlLsCpqq2HXLqV7d9P6ORanEem5ng+9\n7jgt0jBEYTpUn04BXfdTG+1OcRtrEizdpG4HXYvS7DMDBHM/5+fshCx8Irfe7rOofBFO48Ji7XLk\nsTvh0gEdXEuCAC7AevBVphwmhimk4G6fSgwQfvl9xJCeN9dfkFAUUctqcIkCGn80gYinIaIwRGCT\nxD50CTNa3JdL6ex+CoXi+G7OLC9J8xIz7S2ptMjCnqdkqk7RxrTABLu9uIMGu22Y37plVVYDB7tN\nuP+3IQsNc38+yyJkTZj18WGxefmgtiZ2AaWenVFMjyxEppPA5vrDbqyFIVKwl/sik8YQg16PLYtB\nkZ6vSPOSWVXMrO7gPEQB1J2BEbLdiKcxobENUTQv/BhdYnJSnTXt595cSveWpHnJjdOCWb5iWSTM\n8rh+jkDHqmi7ajbXKXZFDJ22AdXAQbcNQN/LOUHi261l4ScKf9TX9LDYR003EJHHgX8BvAD4FeB/\nUEo94xzzEdUxBr8D+BtKqW8RkW8CPgso0MnPX6yUutv3ndeSIEIYaz2MJZWQ6KzXp7mSfBgihzFW\nw5A7yX75Z3nJrGhny7WIgrZ/XcMf8dQXGtugiXhqtIkwSdhJdWOK/dkkAbpjsMkBNHncSpfcL8z1\nxsCaWylQRDyRwftzBQhPAO9nDScFZ6TcvpNzfp5wdj+luD2DewApszRmaUjBsiLs59aa7dCaDhca\ni8s8sybRzj/yHpvH4NMYhtqGaQNm4NBCRRRFEe2ULLQFpduHRrvdGG2mQdc16VqgvoCHXUHRLUa5\nJ3w1/P/tnXuwLVld3z+//eg+5947d14gjozJYNRUqPJBghYVTARBhXEC0VKiFQxGE4Ikiq9SRqqi\nqZRVg6YMRkx0ApRYUBpUEMpHYMRQljGjDkh8TYxvAgyPuc6d+zpnP3/5Y/XqXr16rX7s1zlnT3+r\nTp29e/fu3b336vVdv9/39+C9qnqfiLw6e/49pXNR/WPg8yEvtvoR4B3Zyw8A92ad514L3Ou/38de\nE8RJlusuEoEkm9jMYE0GmpOEu/3cSHMrwm4vH0O9m8ImX4nzvJoNbW7IeiKapsOcJADGk/DNM82G\ny5SQfyDwnmzCK9/w9SQBBN1NsQ5/dSVPXHdTXeXdoYy5NYUb80n+3V+dDUmHxu10MDSlMy5N4GAk\nXBouSZPj3Jo4PJwbayIdcu3qiORoXiKFC+nMi2panRRCUXnu7+6PgfOjgiQAkmSRk8QqCBHF9HBk\nLNFakhjVk8R0kJOEPe/jOZ5GUX1sYceK/ziErmVyThFeDDwne/xm4H3UT/DPA/5MVf8KQFXf47z2\nIPDVTR+41wThos566OJe6posV0x+xeC1nzddSiNJuMewOO/cNO62694cbW/Qpm0hREkimwy6kkSB\nOElAcXP7JOG+Vi3dQMWK8FFUOI2vHM+NUs6NCqK4Ohvmv4kliksTM3lfngjXM6K4em1Mki6NWJ2a\nlfiqpGB/21iYdjxs24wPdwwc5MScvTdZ5i4mqC4e2o4NMEQx8xYW9QsIF9XfIEYSYF1qvpuS4Diw\n4wYoLSxiY+aM4Smq+kj2+GPAUxr2/1rgpyOvfSNlV1QQe0sQp6XZD/jRO1Vrwp0A7eC+MZcKSRhI\nxUrwJwJYf6UIhiRm6ajidgJyl1MVhfhanEyIJAC0dLNDOLoJqLiazHviVoQf2dQF50Yp6XBGOpzn\nUU3nRspjkyHp0AjXtnTG5YlwMJzx+FER1vr45SRICiWrYA1SqI7tQWkBYY5Tb112IQMLOw5miXmf\nSxLTdFhYTitYE6XrK7knm62I0OQfw6rVEOqgKhXrvgZPEpGHnOf3q+r99omI/CrwqYH3vab8mari\niq0eRCQBXoRxI/mvvQbD0m9tOtm9JQgXm7Ie1kETSfjb7co1VE7BIjQRQHWlaLHSpBCxJKAgiepx\nI+9xbvyDTGy9Pjffv3+zN7kM6qyIGLo0dRnKmHMjcqK4MjUuJ0MSRYTTwVC5PBXOj5Zcny9zoliH\nFNqUh6lWQTU6CVStCH/b2m6m6aJEEiG41kRXl5M5ycI9Ce2siNiYaXI57RiPquozYy+q6vNjr4nI\nx0XkDlV9RETuAD5R8zkvBD6gqh/3jvENwD3A81S1cfLbS4IYOPNl15IaqwyktgKVr0uYx4PWuoS7\nUgy5lCCsQ4Bxc9gQRhfTw1EuRtahTpeIuxSaXU7HpbfG9QiotyJchPo+l19v71pwieLKdJn/VpYo\nrkwHnB9pHgpriQLCpLAKITSNYX9swPYXD12siVVcTuakqgsK0EYrIuZmcnFGdYh3AS8D7sv+v7Nm\n36/Dcy+JyAuA7wa+WFVvtPnAvSSIGE7KeqieR9Wa8HUJKFxObgisXSmG3EwQJo02QnUbWJKYJcPS\nyrGNeB1aHZrz9jWJsB7hRqeE/MptxOp1YIVsExZriMIK2TYs9vyoELLrSCGWowNxMqhfuAxqNLI6\n/gAAIABJREFUrQgI61YWscVDG/jWxKZcTklSPlHf1eReU8yK8NHFFdUFS22OSNwQ7gPeJiLfBPwV\n8BKArOr2G1T17uz5eeBLgX/lvf/1QAo8ICIAD6rqK+o+cK8JYt2CfNtEF5dTcR1LJovyJBxbKVrU\nrgwTKTKnW6KNy6n6uWFL4mAYi26q6hFQ50IorIiY1WDdS+smNLWNeIqRQlPByNjkVr+YWWJanJat\nCLChxdWeDvlxN7B46Opyqp5DgCRauJrM87gWcYrdTCtBVS9hIpP87R8F7naeXwduD+z3mV0/c68J\nwsVpHBxdQ2Hd98RWivl+SZHAFsIqeoRFW5Ioo8ndVJCEG+fe5DaIWREhN9Mmo1ZiEU+PTYakzjn5\nnQstQuOxjUUbet906faQKKwICFsMQL5CX3UM+FhHwK7Cj7gou5qg3oqA8njxsWmhWinnN+0T9pYg\nmqyH0M3YlkQ2PcC6hMI2oc6VYLEOObhwicINeeykSwRIwl8VuuU47GPzWr0WsQu4EU9WyHZLmbuI\nEcAqi5fyStlUOI1ZEYBTIA+I6BCbwKZcTiYarjqIrcUZsyKgai3EdIgezdhbgnBxGq0HH+1CYW3G\naFmsNqh3JVhsihwsuiTVuTd/+aTKJGEjm8q9JcrEYCu/mufl1WNTTsSm4QrZk8WCK5nVVp+tv7kJ\ny2gzRSlsQxQuScRdkF1gw54b93OsiVVdTuBZN56rCcJWBPjkWSYL3+LsUY+9JAh3bbSqKX8SaKNL\nuPuGxOoYTCmM1cXIOmzE5WSTx0a+9VMWIG0pDiAvp1C2IuI5EfbxtuAShT33ODbpkljmVsSN+bA0\njtZFXoZlasuxZIEKLYliPZdT/ULCDXuFqhXhjhW7bRuLRZMHcdI1pLeDvSSIs4w6XaKwHpqPczCk\ndENt0moIIUQS+UTQgSSaRGug4mqCuBXhPt8FhjKqzcXYznlMcguzzoooPa8kLzoVer2xErIC2hJF\nkzXRRBJJGu/Z4Ie9QtiKgN7NtCr2miB24VraVpGukC5RvOZWrwxPAjHxetvoni9R3v96/puFSSLk\navLJIiRW28fbgCGFcU4Mo0FaScorVZb1sO55GYtliS1zba0IYCXXUpIuzG911LxvWYeKTycxa8LC\nT6zLt/sRVgHBGsJWBIQXE3BymtVZw14TRAibFAq3Dd/lZDWIG/PtWgPronuxvyxXIllU3EtuZBMU\nonXIfWCrdu7ixg+Rgt0GkAwOSxO/azn45LGq+8sefyjjTCgvWxGTxdCbMJXj+SZdW2U0WRW+NdE+\nsa78vRwcmnvVtTarxfvCxGBf26QGtKRcrn+fsLcEsakJfxuJNV0/3/cnF315wxErpwHdi/3N874J\nIV+zIY5qKKMli3C2bH3pja6oIwVRNU2JZo+bnccH5ubKWpuWLJphmBBGVC2PEELWyEJnlFuSDjJd\nomxF+NFM69brCqENUTQJ2P74cF1NvjhtUVjNYQLwNasezdhbgghhkz7IXZqoxWA30SrV19r5mjeR\nTd0FXYv9uT0l3PP2y3EYVEMZiyivsli9TjRTJ1KYT9F5NsEfXzX9rwGxrU6B0TABqJBG/nnD+kY2\n8+UkSHpDmZesCEsUvhVRKQef50NsfmzUEUWjNZGUf686V1PMioC4G7JHO+wlQdQUOTzz6CpWl96b\nRTK5mG4pHt6iW+Z1eBIIleMwaH/zd/Hzr0QKi6npez3PVrqjBJ1cM32wJ8AwyQmDUYJkhMEwYcQI\nlWZLcKHzYMmQxaII6zULhqJhjm9FHDgLinJ11yVHLTSHVVCnU7jWhEsSXVxNUAjWBcJi9Taww1Ib\nO8eJEETL1nmfDvwUpua5Ysri/siqn1lnPZzVlYUvVq8kTCfSSoxcF03idawsx8FhfWSTSxLl/0Wb\nyTY+fpcU7CTciRSmmeUwnZm/ZGz+ABJzPB0lccIAY2VECMNYQeHCg3a7tSImC82KGhZj5GBYza4+\nGJpTsTClLuIup/RozuRwvSkjZFWELEyoWpluL3QoE9zBCqe1oy5wZxonZUE0ts7DzBTfqaofEJGb\ngPeLyAOq+ke7PtkYNjXA2ruqltRZD37SXFvCmB6OShEl20Jdsb9Y/PtxTTmOdbFxUpjO0Ekx5Uqa\nZiRxwyGLcZQwcreURxjmvMLRT0MZwaCwIgDS4YSyFWFW0q4VYcXqtKUOYX+71Kn8uw5ZxIjCHRtT\n7/htkiy7LCI2ZV107AdxpnBSBNHYOi/rnPRI9viqiDwMPBU4NQTRhG1qFLHMahc5YbSYBKZpXDTc\nJIL5Eoc+QYCdCCbJIlqOYxUrojUpZK6i1qRgn9vXkjF67UbJkmgiDEYJupi2IgxXw3Cvb6FzTL8K\nzd2RtgSHtSKOF+WaRklS5B50ybS3ZLFJonDDYeM5NMUYSiv5HD02iZMiiE6t80TkLuAZwG+1/YAm\nQXqdMgirTvzrln2w8e7uJGhDXmNitbUiyuWTzUZ/Ipilm49oqYN1LcQmgiSdBkuE++U4DApySAZh\noksGh3FimE9gdlxPDC4B+MSQvaaTOTpZIKn5jiXN3pOM0WnxWNI0f5wThuuSGmVE4BCGOPqGq2EM\nZWyuaVkQxcXElCUPJc/dnsKliRkfB3Pz3U6z3IOjI6fURTbxG31gs1NFU86EC1+rcjGZDlpZETse\n2nuDrRHEBlvnXQB+Hvg2Vb1Ss9/LgZcD3HHnbcDqJBAjgDYT/CbDKkPwSeLWdMFkUfRN9kni9gNT\nn+n6cMnjpSMVJDGdDPMchV0jJ6VETCe27M/1N9vObG4DHjBupnSo2Z/Ji3B/83Q4KInNLkrk4KFE\nDj4CrqT8fRk5mMfFf0mHMJkbskjG5v0+Wbi6hX0MBVnMp4YshgnMJxWySEaHJStiunRJgowcMjF1\nOshJwo4PmBlrDRMx9PhlQ2B2XCSTBeNkd7PsLB2a/t6Ho9LYsPC79sWaM9nxsU0soXcxdcUmWueJ\nyBhDDm9V1bc3fN79wP0An/OMuzQd1vsYu5KAP8lsswhcjGQWOmeho1yMtCvEwqJYmHozC7fMgmNZ\nHC45TpZMkgXXSKhENCVjptNyh7ltaxP5JAAlcnD7OccmAKBCDsnA/PctKt+tVMJiWrIeSnCth6kX\nCVVyMxly0OvxaKmKZREji+xxlCygTBbZlQ5HKenwfC7GL3TExeQoLyB4a7rgsQlcTMjHyPW5chnh\nduASS7hpmuejHB2NuEZiQk7Lq4uNIeTWjJGDOzYgvHAIkcNZDUI5DTgpF1Nj6zwxLY/eCDysqj/c\n5eAidmDEXUFtiSC077pWwsrdzbxxfjEx1UOL1UtBFjcnZM1rCndCjqSYCJJ0yeOXk/ylKWVrwhcK\n80O0aFPaBv4k4JNDmixrJwALnxw2Yj1ELIiQawlArxuicCHpKEgatWSRjGEyiZNFkppzs2QByHyK\nHF40eRYC6fA8k8V1koGJboJJPk4mC9O3wo4R0CzXRHJL88JF55InQ0MU0+p3ualx4KKJHOzYsIi1\ndXXhW5dnESLyNcD3A38H+EJVfahm3yHwEPARVb3He+07gf8APFlVH637zJMiiDat854NfD3w+yLy\nwex936uqv9x0cEHyCSKE2ATfhgjqJvdtu5fy+d9B4XJaZBOk8NjE7gzW53x9XkwCQMlve/MtU6aT\ngVkxXkla9BCmnMjUsStdCQ3kYG/2utVhU++Pla0HKFsPbVxLbcvrlt5vyELSUcliqJBFThKFxWEE\n7muGJI6uwChhdHCR4cAcY76cMF0ecW4ERsxY5PqcdUvengqXJnBLqlnOyTKPHrMLiAsXp7lm5WpX\nfkLbWmPBRQM5uNYDUHoMcdfSNgr2qdb3X9kg/gD4KuAnWuz7KuBh4KK7MUsf+DLgQ20+8EQIok3r\nPFX9DVasiSxZhEdbIjDbmsnA3efEGp7XkkSzLmEngeN55lIooSpet4poSVevFutOAvnzoG85Tg51\n1kOI9FtbD9MqGQBR15JO5mhTQ44alPUKhyyswO1HQ1mysISymCLcBMdXkIOLuSgPWQ5IVorc6hIw\nxLolYZBbm7cfCJeOgQthXaJcTM/73dPI9gjqtK825OBqUhC2LNt08zsLUNWHwcxvdRCRO4GvAH4A\n+A7v5f8IfDcBr00I+5lJjQQnBwufDEIryzrNQVTNsmETWMTLGfsYDROGg3GWNTtnvpyUdAmzQmyv\nS9yOEa+PkyVX808pT3C1k0Fgv65EUZkEaiaAruRg0Wg91CEWzhokB/MdLG+Y73BwbtSZMPT6DDk/\nrorbUCGLXNy+cA64Cklq4nfmJixWxge5LmHcTYclXQLILU5fl7DNp6wucY2Em28pCNP2FYn97m3H\nQ8xaLQvS9eQQci351sMpIoUniYjrGro/0083iddhSOAmd6OIvBjjcvrfTSRjsZcEAXELoisZgEcI\nsQm9aaLZECQLawQq1kS1q1mZLGp1iWy1aHWJUG2ew8PmhkNdO9b5K0QgOgF0RWvrIZYEF9AZQrDk\noMdzljfmuQ4RmpJiqpgeL5BshtPMgoiShSduC5htF7KDHVxAj6+WdYlMvLa6BBxxMVkEdYk818TR\nJaAQr03fhmn22FyRjTrzx0fdeLD9H0JoG80Wci0Vj8vWg+te2mRk00I7ldd/VFWfGXuxLvpTVRtX\n/SJyD/AJVX2/iDzH2X4O+F6Me6k19pIgrAWxNhlAmRBcEoj5rHeAOpIAQxL25jc3hUsW0EaXiK8M\nyxPDuugqSu/UenBQaz145LCcwCClIliD91PdmDM4V38LhsmiLG7r1WvGooBCnxglhS6RkYSrS5jv\nxlqd5re+NbUVcoccDAtdAqSIgJsOigJ/02FlnCTptDI22iwsfMRE6Rg5uK6lk67AvA7qoj9b4tnA\ni0TkbuAAuCgibwFeCzwNsNbDncAHROQLVfVjsYPtJ0GI5AXWfAQJwUULQsgrdu4C7vnMs2SpUYIc\nXGwkiUKXMK4Eu0o0aKdLuJNBaXvNyjA0Sfg4OhpFfcurkIOPEFEEXY4trIcm1xJQIgeAUNXuEGnE\nCEOP58iBfWysixhZSGrcTHr1GnLTBbh2zdMlyMdMMjjMP87VJQrxuqpLQDE+bEOn44VZ0U+yYo9J\nssjHSHhsdHO11QUsABVysChIws2H2a57SdmZSN0IVb0XuBcgsyC+S1Vfmr38KXY/EflL4JmnNYpp\nywhrELXWAdRaCDkplCbs3VsRuWPo+AoyPqjVJUwVvnLmtV0l2oQp/8hWl4DyoHcnAwt3UuiOdlEp\nbSOWYmGtvvVQlNNYzyXo6g56XJDDfBb37Y4InPtkjnuKCytQQ5AwQmQxuO0AybKxlUzEtrrEuZtQ\nrpZ0CZtUZ3UJm1QX0iVsUp3NlzgYmUY950fGrXJwuMzHSYwwoDtpdBGlzTlXv9vQWDlFWkRniMhX\nAj8KPBn4JRH5oKp+uRf9uVHsJUFIpkHUWgdQnSRiVkKIFE7QxeQX1Yi5nGwMfDipbpkLk9ad4B/Z\nTgIW7mRgESIOaE8esQmgLhM25lqy2In14OkOYMhhXls+PTw5VYjDIY0QYVjhWw6KH0POjxlcBK7d\nQKezQpcAEwprdQnML+zqEkC+oPB1CcAJcDA1sA6Gpry2TxYQJ4yuaCNKW/iupRAJ7EM/alV9B/CO\nwPY8+tPb/j5MnbvQse5q85l7SRDgrBRdrEMI7uNY+OMO0ZYkLOqS6gBuT414bXWJvPLnyLZ2NPBJ\nA8LE0RaxCaCyX8C15MMnAt/NGLUeVnAtARXdAWC2gjZjvIbe9cxgNM4mtcwtNUgNYYBJwLOEsQQk\n3z5HbsJxN92o6hLzaa5L2KS6trqEGSPkXf58sgBvjDjX1YYwci2jBTnUVfS11sMuLIalrtb7+yxg\nPwlCl/GJwO7i6whdSMEt2rZL2Jj3rORCHveeoY143ZRUZ1G0+Swmgfw1jzRiiBGHK3RCu1IJoUzY\nOmHaRaP10BKhkFbXtTSfDlhM6yaK+OQ4mwwYp+XrqxBHgDSsq2l42wHLvz5icNshcISkM2OXJONC\nl7hwAbhW0iXcpDogT6qL6RLW4gSiZOGisqDoUH21DTm0sR56rI49JQgNZsd2shKgIAWXCE6KHCLI\n/ctWvI7oEtOl6QrUJamu5DpwCMM8X400gNIk0UaULr3Vcy256Gw9dHQtQTWk1SUHaz2EdIjRWBvI\nAxbTIcOk7Aqxx7Tk4Q7PUbI0pDGZA8e5XiHpKKxLgFlgZLpEnlTXstjfYxNTFXWyMOXl02ERNp1r\nEjVkUYFHFu7CIS2NkdVDnXush/38ylXL/YEtNkQKoXILu0Dd7dbocqJbsb9J3lym3CS+pEk0kEYb\nnK8hB4s611JTWGtt3kMITVFLgXwHSw6LqdToEO1WtpZcckshw8LRcyyJWPI4vGkOV4ofxmoTJV0C\nKrpEKamOdsX+JosB50aLPNAhHWo+XtyxYlAkOLYaF97CwVoPPpqsB9+9ZPUH+3zTYbCqHRZHZwx7\nShDLsPtgE6QQ2mcV+DVsWsAngabX19El0qHm282qsUoY8bNwUT8x2AkgVoCvybVk0eRmam09uGgR\n0jqfSYUcFp4FMRxrg3hdRcVScF+rWCgjxumSA8x5DW89KKVISjo3EvN0VugSNqnO0SXaFPsrJlvJ\nLc8mq8KgG1l0dS312A72kyDQaj3/ECHA6qSwrotplff7ZRaScaFLnDNaRFeSCOkS/o1v9tsUYYCv\ndRwMq7HsoSzYUM5DXVhra+uhrjsc9SGtduKPkQMQ3NYFi1lYjR2Oq9/taLYk4TiPfJLJPKxLgBk7\nVpegudifzdK3RGDHC5CPGfPYlnYpyKIMv9lTFV1F6Zj1sAss6JRJfaawnwSRuZi2RQqhDNldoNov\nzsXVkngd0yWAxmJ/pvsYJXeC2W8ThGHPnnz/cm8Hv+lP1bXUOazVsR7qCvKtEtKaWw8ZOcx26H2c\nTcx3Ps5KYCymwsFNwLUlCXMWfx3RJWxSXamrXXOxv+nSLeeyJB0aspgsTBc/s7gIu6BcYbtAMQ5s\nJJRFne7QxXqoC2/dZkvgfcGeEsSyWo1zQ6SgToOTuuYwPuT8Zqq/1pNEGSFrwt70zcX+IBksmC7L\nlkQbwihbCPWE0UZ3sPCF6VZhrS783JVYvaUWIa2+7gAwm8DR0Xor1+mku8vk5luGwJB5ZlEMkwEw\nz8Rrg8EtsPzrY6NLQCFeQ6dif0A+XhY6y8ZA2aooxkx3F5SFby3UJcT51kOPzWFPCUKLm99iA6Tg\nEkJXK2JVq0MCvXvXJYk2xf7K1kHR57kNYdibOEQYPnxyCLcOLbuWOoW11lkPFgHXUlNIqzl0VXfo\nMsFPjlcnE/9zklS4eMuA4+tDDlhwdLWsS4ARr4O6BLQu9jdfTvIFhkmuK5IxgdLYKVyWXYTtclAE\nhF1L9d0iq9/rNl1OO+wHsXPsMUHMtkYKqzSFWRXuZ0kW8y7nx0UNHl+XuHCuegy66xJmsrdRH2HC\nmC6rlkSMMMo9e8X5rPrqm75ryUWrsFYLX4/yhelVQ1od19LR0bLVpN+GRLpaIklqvtPDwwEwZDRz\nIoJYwGMRXSJLqmtb7M+Sw4g0t0CHMmahZnvIBeUL21CUe/GtCou6Oksu+ryH7WI/CQKaySFAEl3I\nYZ3GMBKK3dsUIuJ3V5Iw7oOBQxKFVVDclGaSNFbFMnt9kE/yxr1Q3tdFQTpVi8HFytZDCIESKX7Y\ncqi3tG8Buq4lC3/ib2tNtCGD6aR+nyQdMp0oh4dWFB9kobIDRsmSEcqAoqFRcX2GJMyH2HvDfh/X\nSiRhx4whhBkMyInCh7Uo3IKR5YFW1rrMeygtJEJupVBCnLuo8ENb3W3l4/T6QxvsL0HE4Pb2PaFk\nt6KWztn7+svi9DKzJsyNZ4misCbUsSaW+HpFSHewaBKmY1jorH6/UVIhCUnTvLeCeV70ZSi2jRgw\nh2w3m4vgHsqs4ge5FZGkspKmEEKSDhpJAgzZjNMismqY2BDbJUmqLG/MGQCazb6SDkuLKIHivhgl\nxgobpbmbToYJmnVsBCNejwZpNM2jCICAcsl587hYRAzyMWGXMm2Jwd12EsSwVFauOXXacfZmqLbw\niEDStHWCm6RDU0r5/LiTEN0Vbknn04CFzjLfcv01h0gCXIGybE3UkYTdXhy7Xpi2aNXydZiES2mM\nEvPfXSC4eSluvSOLLHrJrMrN+S6mwyxHYQAIR0fVj2pDEoeHg7XF7RgWU2GcBSstJzDMHhe6SpZU\nZ+8X26UOIDHfnQ4nFesTvN8gMw6sywmKx4XLyXx3xaKiShg+uhJDeSz1FsO6OD2z0yYRaaeXk4Rv\nReQkMtp5COtpIQmbPdsWvsvJJwmzzzLocnJJwqKNMG3+x78rMyFl5bFFylFMowT8/AdLCp4l6RKD\nHQ+2KF6dFWH8/9lq2NEiNkUSba2I2QSGY/f5IE+208mcJTC0vSayBZBta5pbEcm4cDWNpsbVNEqK\nZMNhgqjm7qahjIKuSos6l1MxRpalIAfzvtWJoSeF9XHyM9M2IFK++U/QndQGJ00SIR9yWxTuonqS\ngMLl5FoYdW0hzfs3cJOPD2B2jIxsGKdnVWQCrUItWbS1IqyrCdi4uylEEoaYyljMJDeUgJKbCcoa\nmmk+NM/dS0pmUZgPrC1xb3UJlyRspBNQbKfQtQwRFK6lsEZhENIX4HQRg6qs0RfldGM/KVacy8oH\nuvnvJwedFujxfC3he1V0tRxCcN0AdSIhxG/4LtZDk3upyUXGKKE0e7pIxllE2CjXIiwG50ZGi3Aa\n/AwTZTTWfIVuJ2sbVZQeFGPRboshNNGvg1B5j+UksyJuFL+7CefNQojcvJDpzFgRGTHkGehzp2zJ\nYppbEjaAYDRI86gyd7t9nA4Huf7kuhTdxcK5kZYsBruf/XPHWnGswV5bDSLyQyLyf0Tk90TkHSJy\nS2S/N4nIJ0TkDwKvfUt2jD8UkR9s+sw9tiCyu7jJcjgFbiYXu7QmGifSDlhVvO4S1uqjzt1U7BTR\nIaAYIxYBjaqS4BixIsCWvjDWw9HRMrca0oP2wvUmXU1Q5GyMA225/QWJpsPcvRQUrIkXyagTr9vo\nEiEt4qxEJOlSou13N4wHgHtVdS4ir8W0Fv2ewH4/Cbwe+Cl3o4g8F3gx8HmqOhGRTwm8t4T9JAik\nukIMCdY1ricrVJ8EdkESKhIuk+TAhri2xTridUyYbqM9xFDRIRogaVr+SgILhTotApYsZsNsMl6d\nJLaBopFREfLKufJ3WgjW2YVZwToZl91LwwSdT/KeEm6EE4TF6xB8XaIsXm+PGFoFOJxCqOp7nKcP\nAl8d2e/XReSuwEvfDNynqpNsv080feaeEgRlgggI0iXUEUVNJJM10wfnNv81nrQusSqaSMLdHhKm\nXaxzI1fCXccHAIXWAI1tY0NZ7JAVRp/Mo1bEYiY5SRgsO5HEpq2IGGzIq4+KYN0ytwaIitdtdImy\nFmGwCWI4ZYTwJBF5yHl+v6rev8JxvhH4bx3f89nAPxCRHwCOge9S1d+pe8PZm4HaQAbGtWARIIdg\n2OuKYvbSaS6/Sfj5Enq8iE5anTCM+N83hC4RTna7+966CWClm70p3NVF61BokxcxQplPy1YEDHKS\nmE2K6KZNk8S2oJN5HvYaFayzHAkT3ZRWc0vcREwoe5ACsPkS5UTM1Yhh14RgKvu0Jq1HVfWZsRdF\n5FeBTw289BpVfWe2z2uAOfDWjqc6Am4DngV8AfA2EfkM1biZvacEIUXEClT1CJcIguRR1SGatIlt\nkQScfWvCdS35JFHsGxamzeP21+6Guq4C380Uk5WtFQFFv4ZSUx/HknBJwr57E+6mJG2elGz0UnHW\n4LqZwtkHhRVRulcivdgrusT4wIjXK+gSPoO0IYVTZiGsBVV9ft3rIvINwD3A8+om9gg+DLw9e99v\ni8gSeBLwydgb9lPyF6NByCgjhlFiSCKLUMl3SwPKXen1bsKTGxmyaeQlEtYV0DNXy64Qimm3kSj2\ncRdhuis0khOzCdiIplFeRbWIaBoly7xfgxWI3QinNtFNq0Y1HR0tmU1W60Ohk3nRHMntkQFlonBD\nXxdOlJONcJod5xFORZTTKI9yso/d0ik2wgmIRiQVUVHF3xMFIvIC4LuBF6nqjRUO8QvAc7NjfTaQ\nAI/WveHsLUvbQAbFRDiPiNXZ43zFuKE8iW3qEmcVdbqEu4/FqtaDj2DZjVFS1iEC8F/vYkXYNdd8\nJnl+hG9JWPHazZWIWRJdXU3TiTaG01osJ1SsCDmwZUY8wbrl/ZHrEi2S6lxdwkUhXp8N62C5FI6O\ndnK/vx5IgQfELHweVNVXiMinAW9Q1bsBROSngedg9I4PA9+nqm8E3gS8KQt/nQIva7JC9ncWy/zs\nMp+WJ4OQeynw2rrhrtt0Oe0CXSOYmhAjiW5hrWtOFlnC3CbhaxEWo7GWSCLbu0ISri6xi+imUjRT\noCNdqXqwrdPkhr2Cdw9FdInAZzfpEq543aMKVf3MyPaPAnc7z78ust8UeGmXz9zLX0NRE+II5RXj\nfFqOfXcFa+e5Txx+JJPbWawOWxOvr886u7+AeHLYjhATr0NhrU3oPJHU5UN0hBsoELMiFlMpkcR8\nOsjzJLqSxKYE68VUHDG9gC2/MaBcQNK3ImITfwgV8bqFLlE53w0kce4CumRXeRA7x14SBCgLnZlG\nJxkE01IxiIgVsQmcdUtiG3DF67rGL5taTbbOh3D1J+JuJj/s2bcixmnmWqohCYPdkIQVqn2LYT4T\nI1Z7Upzf78QVrMu1mtwFla3bVFTLrUuqg/pif6tYE2eFUM4S9nLmUlUz0AbjfDACZT3CjciorcWz\nfsJcTxJVlF1OzdbDqu6lWPnvUpSbRSRKJwbrr/etiPl0kJOEhU8Sbq7EptxNk+NlSfyuw3w6cCwe\nA5sX4UfMuXWaoIUl4ZZUjyTVdS321ybrvyeUzWMvZy3Nbn07OcgwKRdrg6CrKYet28SPrz6tAAAV\nuUlEQVQGooYybFq81km3nIg8ousUISZMm+friNM1oa558EIHd5MzHlyE+kWMMMlzliRmk0FR9bWG\nJAyWtSSxihWxmEkeTWUxm1gCyz41E6tLVWwrVsSoFA6uZFGAMT3PQxddwhev3ZDYYtv6Vv6mLNSl\n7qzUxs6xlwQBaiqUZvfdUMaIn0kb8MfHrIhNorcmythpHZ22OoS7QIDG8SAHo2Lx62RYh0jCoEoS\nsYS6TZCEC1+HmM+k5HoKWRF6fVbUaXIQcyEB7ZLqIrqEG3wfinTaFmH0qOJEZioRuQ2TJn4X8JfA\nS1T1sci+Q+Ah4COqek+b4yvGxWSVt6GMy9nD80m1FMcO0ZOEQcy1tI1IlkYdouV4CFlt7mp7kJoV\neYwkrC7RRBLZ0daKbppNykX6fDLw3Uw6CVsRJqIvewwV/SGoS0TQRZfIBWwHPWHsFic1S70aeK+q\n3icir86eh6oSArwKeBi42OUD8gGyJE/IkbrQ1wy14qTnbvJvqC44rSSx0NlGQlw3aRmsG95a24bU\nLhzqXE5uafhYzS7HihgwL5GERYgkDOpzJXyS2ERUU9DN5MzFbvZ+papA4HhBF1JEvG6jS4RwWglD\nexfTxvFiTCIHwJuB9xEgCBG5E/gK4AeA72h7cCtSW9jHOUn4yVItyj5DtpLyfLPrkgSsrkvkNXO2\njG26gVaZ/DdiYdgx4HeZsyjpUIEy4F6YsT8uXEuiyIeokkSXhDrrfoLuJBESpfPXQm6mc079r4Pi\nWnNLwmoSENclGlBX7K/kcorgtBLGPuGkSm08RVUfyR5/DHhKZL/XYVLLG+8EEXm5iDwkIg9devRq\n3l8ZzKAp9VoeH8RLcZANcq8sx2lEa2JqWZwvFNVx0rX2N45hUl9uxBkH1deKZkIhyMEobyoExYrc\nTr6jZMk4NX9WB3BfG46V4ViDpTnANB9qmyW9KuqCMrbRn71C0B1yVUILBZ8wYvv1aIetfXN1VQnd\nJ6qqIlJxsIrIPcAnVPX9IvKcps/LSubeD/A5z7hLr0yVi8mMaeZiWuicdHgeBIaj1FgSx1cQbkKH\nE+CaOdAFTAkOMgvjwrksUch0pB8AaldUa7qIuhbgk4Oh6XR2fhxPlLPElqT1ndMyVMjTQxd30ypk\nEvpcd5sJg5w7z0eV9wxlzGJR3mdOMfGMBikLnZMMDgsdIlT+Gwo3SMjt6KyYg26WzIoYnBvBuRHL\nG3OGqZl0k1QxnV2L79NYC4VF4bqchmMyi2LArPS+AemBLc9RjAGXPA4PB4xT8uilUbIs1Ysap8vc\nmhiNizwISTOCy8alHW9QNE4qjTuXSNs8HjnuvNC4nB2vXSss1D536+GsS4Xpbvt77ApbI4i6qoQi\n8nERuUNVHxGRO4BQ44pnAy8SkbuBA+CiiLxFVVunil+ZKulwks/jk8V1hjIiHZ437qaDiyaK4uhK\nFtlkB+7VjBgy0/nqNeQmkzCU36a3VN0Ku4SkI4cMxoXVE8MoWzlnESOuhbUpbINMfDLwycNsixOI\nJQ+7ikwGh2ZxsJjGSQKM7zymTTnlWGLQ48JNU0ztBVGMxou825t9tXA92deKEh2WKA4PyVxPw9zd\n5BMDGHIIEQMUhOETA5hFS4gYXJSu2y9+6bb4dcuEh7CYljUgSxpOZFMd2ozf0D52fPR5EM04Kdvr\nXcDLgPuy/+/0d1DVezEt9cgsiO/qQg4WJhlrQjqckQzstuuMBmkxWRxeRGbH6PFVs8O5myCZwjVj\nVchNF4wf+toNBhdNa0adLIIm9zbbla5kPQyTU5kDsaoQ7hJLF+vDdTN0Igmohr3mr1uiqBco8zPO\nrIoBWVIdmpNBkWBX1EsqXiOLeLIVWstFjELEYN6vQWIA4/4KEYO5nlGFGOw15uRQIoBxuTJyyYJo\nHns6nxRjdA0rImQ9+HDJYVM6hCgkR/tJNidFEPdhmlV8E/BXwEsA/KqEm4IhiSVwxFCMq8Eu64Yy\nyktyCMB8ipIRxYULZpK4dqPkZhDilXbrOtC1RRPJdLYeWsDeMJsu0rdpdDu/YsKwFUItYbQmCai4\nlvwoN/t72UlVJ/OiKurxwmn4NN+4+8li28RQQlvXkksOMVena0VsGL6F4JPDlT11C20SJ0IQqnoJ\neF5ge6kqobP9fZhIp5VhSSIdFroEkFUoy3SJbN+2ukTRmtFvLtSuPEeMSKIi6KrWQ8S91KQ/bAK2\nnMZJY7JQLiZHJANjQUJHkoBqcccM9gp1sgi6ZELwG6x1dT9ZqwKoEAOQ6ww+MQC5zuASA5TdSf44\nK1kO9r8f1OFt74yYNrECYuRgH1+Zal4sskccTyh5f7KQbKIwg2W6PCrEa3zxmkKXsMh0Cb16rXRc\nq1W0RR4q2HIycYlkG9aDj9MyqbdF040+XQrJQLkyXdaThI/YZOWGd2YIkYSpulvkEoSsCt/9ZK2K\nJveTQZwY7PYQMUBYgIYaYnARa7rV0bXkouJmAqhxjfoEUOdecslhujzKyeHqbDO5C4OlkqxZr+20\n4glFEBZWvLa6hBWvc13CF68PLhTiNUaTyDttxUqEBz43d0VErICY1RGMIHFxhrSHtlhldWdbmYaO\nY7/aEEm4bkZwrIiFUyrCQ54fESAJ6GZNWLhWRVv3U7Fty8TgWgjZ/5wcPD2iQg5NVkFMrF4RMfHZ\nJ4fH9jS5bZN4QhIEtNQlMvE61yWseO3oEqRpMJEqhNi6vIk48vevYj2coHsphnVN+xARhI59Yy6V\nbea9Cy4m5ncHyuHP2X4lV1Me+lqe+EpJdF6BR/e37EoWbdxP1qoAKsQA7UJWzX5D53G9tRDcFnu8\nAkpWRAe41kPMtTRdHjFZLJkshlydDbkxlzNnKYvIDwH/CNMN7s+Af66qlwP7fTvwLzBD+Pez/Y5F\n5POBH8dEhc6BV6rqb9d95hOWIGAzugTTWeFicsnCdzu5rU7dbUTq+7SNhvKthxWwDYF6E/7dOiKI\nfY4lBfc141o022/N559FnicDlN2M2R7BHIkQSUA0R2IdshgejEwv8oD7ySBODFAfslpLDE2kQMC1\n1BTS6qOFpWAzqleFTw5XpgU5XJkOeXy6GYIQVca7cTE9ANyrqnMReS0myrNUgUJEngp8K/B0VT0S\nkbcBXwv8JPCDwL9T1V/J0gd+kKKiRRBPaIKADegSNa6l2hiJGsKAmtVck/UQEafbosuqalMiXxsi\nqPvMECmYx4YY8nSVbMW9NklAfY5Eqed5Ta5ERK8IIeZ+ys+hBTHUupFakILdFnQtQZgc2i5afDcT\nRMetayXErIc25HD9jEWmqup7nKcPAl8d2XUEHIrIDDgHfNQegqKm3c3O9iie8ARh0TmpzuoS7oTh\nNxvK/vu+6go5BETP0vYYXOuhAb57qS22EemxLiFAmRT8/VxiuD4nJ4jbUzZDEtAuRyLwe65at8vC\nWhWurdcUstrJWqhzE23JteQi5mbq4gp1w1ktOUyXkpPDZGHI4fLGLAgYT1tbEE8SkYec5/dnVSC6\n4hsxFbFLUNWPiMh/AD6EKf/wHodYvg14d/b6APj7TR/SE4SDlZLqrChs3Q/TSZQooAVZ2G0Qvnlj\n1kNHcbq+vMbJkULdZ9eRgnkeJobjhXA8B1DM/Gl7YdvjLUiHk/xuyBcGTSQB4RyJ2G/qu2ki1xkK\nkzYlt52Mcet+YgViaEsKge2dsqW7ujw75kSErAeXHG7MJzk5PDYZ5uRwaWLI4fhkLIhHVfWZsRfr\nShSp6juzfV6D0RDeGnj/rZhiqE8DLgM/KyIvVdW3AN8MfLuq/ryIvAR4IxCteAE9QVTQOaluPjGD\nejQti5mR9pWNZAHhbT6a4s1bupe2JVRvghCgSgr+e6xLrI4Yim3CLalyaQIw4GICj+U/0wIwJJEM\nDpksrrcnCcgJoHafwP4Wq5CFW2U1RAydSaHBEthUSGtrLKa1oa75bhVhuh05XOrWYXYnqCtRBCAi\n3wDcAzxPNdjg5PnAX6jqJ7P9346xFN6CqVrxqmy/nwXe0HQ+PUEE4OoStcX+FlMnyolmoqj4p4vB\n34osQtaDF9oaQpvaS+sK1JtwG1mESMF/X4gYwBCBTwyTzK10iSVbJwm8iZTAb9sCoW8gloDZmhg6\nkIJ/DaX960JaN4C8V0Sg5EbdGLZj/MZ8wmQhOTlMFoOcHI4X5ORgx8W6kKUy3mKJnfxzRF6AqW79\nxaoaK+fwIeBZInIO42J6HqbhGhjN4YsxScdfAvxJ02f2BFGDRl3CTsjjg7WIAoob0g+bdPfJUWM9\n5OJ0BDa8NYSuYX+7JgXzvBsxTKfDopnLTdPtk4SLDRFGE1kE6yRZtHQnRQkh9t424dWrwHMzxSKZ\nrHvJdS255GDzHCaLAVemg5wcLk8kJ4drV7dT4mOLeD2QAg+I+U4eVNVXuCWKVPW3ROTngA9g3FC/\nS1blGviXwI+IyAg4Bl7e9IE9QTSgTpcYyshMHE4J6ShRjJIihyKGkFUBhRBaZz34cHIfQlhFf+hC\nCE3HgjgphN67DjFMJwOOjsxQn6YLYAYIJkVAgYGjR5iyHJYkbOhzkCRqEumCOkS2PTQZ1xKOEwDh\nZu23thRiWkLd59W91jWkdUvwycGEarcnh8cvny2CUNXPjGwvlShS1e8Dvi+w328Af6/LZ/YE0QJR\nXcKZw2JEwSg1+RPuZGKJwrckIlZFCTHroUacjpFBU7njroRg0UVobnqfTwxQEEFbYphOim033zLN\n8uFn3A5czuyB21MT4QJwa7rIHhvrcbo0vUCqJHGTSaD0E+li5FAD/1tpSxilbaHHrEEGdftughya\nciFmx0G3aVmcLsjhylS5OrMuJUMOZpwYcrg+L8hhOhlsrE2oLJW0r+b6xEYoqc60MhzlDWlKFoWt\n7zM7znrvrkAU9rlFyHrwYcVpD7Hw1lCC3CrEsCopxN67CjEAGRmUicFOBNeumO9rKyQBwRyJEmqs\nisqk7pOAn7Hvvt6GENoSQdN+bY6zbsG9hbHAxTuO30Y4Rg5GlDbkcGlSkMPjRwU5PH45zcdDjzh6\ngugAP6kOihXMUEYwoCAKq1GsQxRQXRmGwltD4nTEvbTJJimbdCEV2zdMDFMlOcqSpm4eb4UkmDdM\nNNOArrQCQqQRRNtchq44CdeSF8nkL3LcyqyWHOzYaSSHvtx3I3qCWAFusb+iq9kGicJFKMw1YD3E\nxOmmpjoWbQXqbZCC+/nbIIZksshLIUwPR1zDfE+Hh5YsZxzMwcrP50cCmOOfG9lJZJL3lADTxjQZ\nHSL2XTYvxkWkhlMJ044RTiH3kv96F3Te/+QLQFqrIVR8b7IQHp/aiKWCHIzr0ZCDHR8XLm8mzlWU\nXZXa2Dl6glgRhS6xBlFkCXY5UbhJdyG0sR5ahgaGttVP4JvTFcqvS+m/m8sQC1e1OkNbYhhPF6Uw\nxCkFSeS4MOPSMRQxSpYkFliyuJgssL3JLYIkMa8Rry3akEcMdSSxwazm6rFbnOuG+jkA5jvyxnMX\ncrh0XJDDtSvjnBymVwdcuDzZ20l9k5BwrsXZhoh8EtOpbtt4EvDoDj5n19jH69rHa4L+utbF31TV\nJ69zABH575jzbYNHVfUF63zeLrGXBLEriMhDdWnzZxX7eF37eE3QX1eP7aLvudejR48ePYLoCaJH\njx49egTRE8R6WKVM71nAPl7XPl4T9NfVY4voNYgePXr06BFEb0H06NGjR48geoLo0aNHjx5B9ATR\nASJym4g8ICJ/kv2/tWbfoYj8roj84i7PcRW0uS4R+XQR+R8i8kci8oci8qrQsU4aIvICEfljEflT\nEXl14HURkf+Uvf57IvJ3T+I8u6LFdf3T7Hp+X0R+U0Q+7yTOswuarsnZ7wtEZC4isR7MPbaEniC6\n4dXAe1X1s4D3Zs9jeBXw8E7Oan20ua458J2q+nTgWcC/FpGn7/AcGyEiQ+DHgBcCTwe+LnCOLwQ+\nK/t7OfBfdnqSK6Dldf0FppHM5wD/nlMu8ra8Jrvfa4H3+K/12D56guiGFwNvzh6/GfjHoZ1E5E7g\nK2jR0u+UoPG6VPURVf1A9vgqhvyeurMzbIcvBP5UVf9cVafAz2CuzcWLgZ9SgweBW0Tkjl2faEc0\nXpeq/qaqPpY9fRC4c8fn2BVtfiuAbwF+HvjELk+uh0FPEN3wFFV9JHv8MeApkf1eh2kNuF4fz92h\n7XUBICJ3Ac8Afmu7p9UZTwX+n/P8w1RJrM0+pw1dz/mbgF/Z6hmtj8ZrEpGnAl/JGbDy9hV9sT4P\nIvKrwKcGXnqN+0RVVUQqMcIicg/wCVV9v4g8Zztn2R3rXpdznAuYFd23qeqVzZ5lj3UhIs/FEMQX\nnfS5bACvA75HVZcS6YzYY7voCcKDqj4/9pqIfFxE7lDVRzK3RMjsfTbwIhG5GzgALorIW1T1pVs6\n5VbYwHUhImMMObxVVd++pVNdBx8BPt15fme2res+pw2tzllEPhfj1nyhql7a0bmtijbX9EzgZzJy\neBJwt4jMVfUXdnOKPXoXUze8C3hZ9vhlwDv9HVT1XlW9U1XvAr4W+LWTJocWaLwuMXfpG4GHVfWH\nd3huXfA7wGeJyNNEJMF8/+/y9nkX8M+yaKZnAY877rXTisbrEpG/Abwd+HpV/b8ncI5d0XhNqvo0\nVb0ru5d+DnhlTw67RU8Q3XAf8KUi8ifA87PniMinicgvn+iZrYc21/Vs4OuBLxGRD2Z/d4cPdzJQ\n1Tnwb4B3Y0T0t6nqH4rIK0TkFdluvwz8OfCnwH8FXnkiJ9sBLa/r3wK3A/85+20eOqHTbYWW19Tj\nhNGX2ujRo0ePHkH0FkSPHj169AiiJ4gePXr06BFETxA9evTo0SOIniB69OjRo0cQPUH06NGjR48g\neoLoceYgIt8qIg+LyFu3cOyvyarVLkXkmZs+fo8eZwl9JnWPs4hXAs9X1Q+7G0VklMXXr4M/AL4K\n+Ik1j9Ojx5lHTxA9zhRE5MeBzwB+RUTeBNwM/K1s24dE5KWYRL/nACnwY6r6E1km+I8CX4opEjcF\n3qSqP+ceX1Ufzj5nNxfUo8cpRk8QPc4UVPUVIvIC4Lmq+qiIfD+mn8AXqeqRiLwcUz7jC0QkBf6n\niLwHU332b2f7PgX4I+BNJ3MVPXqcDfQE0WMf8C5VPcoefxnwuU73sZsxzYH+IfDTqroAPioiv3YC\n59mjx5lCTxA99gHXnccCfIuqvtvd4bTVjerR4yygj2LqsW94N/DNWWlyROSzReQ88OvAPxHTK/wO\n4LkneZI9epwF9BZEj33DG4C7gA9kwvQnMS1U3wF8CUZ7+BDwv0JvFpGvxIjZTwZ+SUQ+qKpfvoPz\n7tHj1KGv5trjCQkR+UngF/0oph49ehToXUw9evTo0SOI3oLo0aNHjx5B9BZEjx49evQIoieIHj16\n9OgRRE8QPXr06NEjiJ4gevTo0aNHED1B9OjRo0ePIP4/kadCXr3KWBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example\n", + "\n", + "Another example is demostrated here for a periodic lighturve with poisson noise." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "freq = 1 #Hz\n", + "exposure = 50. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*freq*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc = lightcurve.Lightcurve(times,noisy)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZhJREFUeJzt3X+MHOWd5/H357xeJdpEYu88t0H+cZPT+f4IEUe4EWHJ\nSsch5QQELasTFxFpQ8StZJEjOqLN3u4kJ5FNpN2NbqUoR8jiOAkCFkKWbAjxMiYJy5LDOTBmbIyN\nfyTxETu2MXhig39gY2P8vT+6PO5p93RVd1d1V1V/XtJouquernqe+vGpp6uruxQRmJlZvfyzYVfA\nzMzy53A3M6shh7uZWQ053M3MasjhbmZWQw53M7MacribmdWQw93MrIYc7mZmNfQbw5rxokWLYnx8\nfFizNzOrpA0bNvw6IsbSyg0t3MfHx5menh7W7M3MKknS7izlfFrGzKyGHO5mZjXkcDczqyGHu5lZ\nDTnczcxqKHO4S1og6XlJj7YZJ0l3SNopabOkS/OtppmZdaObnvttwPZ5xl0DLE/+VgB39VkvMzPr\nQ6Zwl7QE+AjwzXmKXA/cFw3rgAskXZhTHUfKwWMn+eGL+4ddDTOruKw9968AfwqcmWf8YmBP0/O9\nybA5JK2QNC1pemZmpquKjor/es9z3HL/Rg4ff2vYVTGzCksNd0nXAQciYkO/M4uIVRExERETY2Op\n354dSXteOwHA6TPzHUfNzNJl6bl/CPh9SbuA7wBXSbq/pcw+YGnT8yXJMDMzG4LUcI+Iz0bEkogY\nB24E/iki/rCl2GrgpuSqmcuBwxHhE8dmZkPS8w+HSboFICJWAmuAa4GdwHHg5lxqZ2ZmPekq3CPi\nJ8BPkscrm4YHcGueFTMzs975G6pmZjXkcDczqyGHe8k0znCZmfXH4V5SkoZdBTOrMIe7mVkNOdzN\nzGrI4W5mVkMOdzOzGnK4m5nVkMPdzKyGHO4l46vczSwPDveS8lXuZtYPh7uZWQ053M3MasjhbmZW\nQ1nuofoOSeslvSBpq6QvtClzpaTDkjYlf7cXU10zM8siy806TgJXRcQxSQuBn0p6LCLWtZRbGxHX\n5V9FMzPrVmq4J3dZOpY8XZj8+Yq9gvgXf80sD5nOuUtaIGkTcAB4PCKebVPsCkmbJT0m6aJcazmC\n/Iu/ZtaPTOEeEW9HxCXAEuAySe9vKbIRWBYRFwNfBR5pNx1JKyRNS5qemZnpp95mZtZBV1fLRMTr\nwJPA1S3Dj0TEseTxGmChpEVtXr8qIiYiYmJsbKyPapuZWSdZrpYZk3RB8vidwIeBHS1l3qPk1kGS\nLkumezD/6pqZWRZZrpa5ELhX0gIaof1QRDwq6RaAiFgJ3AB8UtJp4ARwY/hmoGZmQ5PlapnNwAfa\nDF/Z9PhO4M58q2ZmZr3yN1TNzGrI4V4yPptlZnlwuJeU/KO/ZtYHh7uZWQ053M3MasjhbmZWQw53\nM7MacribmdWQw93MrIYc7iXjq9zNLA8O97LyZe5m1geHu5lZDTnczcxqyOFuZlZDDnczsxpyuJuZ\n1VCW2+y9Q9J6SS9I2irpC23KSNIdknZK2izp0mKqa2ZmWWS5zd5J4KqIOCZpIfBTSY9FxLqmMtcA\ny5O/DwJ3Jf+tW77Q3cxykNpzj4ZjydOFyV9rBF0P3JeUXQdcIOnCfKs6WuTr3M2sD5nOuUtaIGkT\ncAB4PCKebSmyGNjT9HxvMqwwf/LdFxifnOJvfrKT8ckpjp86PW/ZiGB8coq/WrN9zvAjb77F+OTU\neX87DxxjfHKKx7e9CsB/+Osnufwvn5jz2ubyvTj72r99Zhfjk1N84u71HDt5mqMnG+24+M9/PFvm\nhrueZnxyii/+w7Y5r//oymdmy+z69Rtzpj9z9CTjk1M8uP5X89bhG0+9xPjkFF97cmfb+v3x322a\nffy572+Zffypb2/km2sbrz365lsArNmyn/HJKXYffOO8aTX7t//zMcYnp/jAF38MwGtvnDpvOY5P\nTnHT3esB+PwPXpwz7uTptzMt9/HJKf7Hd1+YfdxYr0cZn5zid//qiUb7HtrE+OQUJ0+/PVuvQ2+c\n4qLbfzj7mh2vHAHg4LHG8nzg2d0AfHTlM7z3s+3rMD45xR/d8xwvv36ibV0feHb37PB9SZlHnt93\n3nR2H3xjttx/Wfn0nHG/Onic8ckppjbvnx12xxO/YHxyijffevu8af2vH+5obDNff2a2Phf/+Y+4\n+itPzdbhB5vOr8N8zi6P+9ft5sCRNxmfnOKh5/akv7CN1v3vF68ebTv+o19/hqPJPvuNp17ix1tf\nYXxyiv83c6ztNP/7g8/zvqZ12Y8bV53b167532tnh+85dHx2+K8OHp9dps31/uBf/mNf8+5VpnCP\niLcj4hJgCXCZpPf3MjNJKyRNS5qemZnpZRKz/n7DXgD+9pnGzvb68bfmLXsmeZ/xjbUvzRl+4Mib\nbcu/sOd1AB7b0thxdh88zivzlO3X3003doj/8/MZDh472bbM9O7XALj7//5yzvD1uw7NPt768pE5\n486G7Nnl1M6XfrgDgL/+0c/ajn+4KXC+/ey5g8Sjm/dz/7rGcv/1sVMArN70MgDbWurR6tTbZwB4\nLVlf+14/0bbcUz9vbB/3Juv3rOMnzw+u+Xy3pe2b9hwGYP/hxrp8eOO+2Wmerde+107wxqlz89iQ\nLPtfHToOwEPTjWmu33WITndEfGLHAX7eElJn3ff0uTadLfP9NuH+4r5zy/K5Xa/NGbf15UZb/uGF\nl2eH3fP0LgDeOHl+R+ebaxvbzvpfnttmjrx5mh2vHOVnyQGs3QFmPntfa6y3h6b38FLSsfj7jfNv\na914Ptn/Wq3/5aHZ7e2BZ3czleyfW/Yeblt+9Qsvc/xU9u2lk3UvnVtu2/efWy/bWh6fXabNXj3S\nfr8uWldXy0TE68CTwNUto/YBS5ueL0mGtb5+VURMRMTE2NhYt3U1M7OMslwtMybpguTxO4EPAzta\niq0GbkqumrkcOBwR+zEzs6HIcrXMhcC9khbQOBg8FBGPSroFICJWAmuAa4GdwHHg5oLqO1C+cMXO\n0+lcjFmJpIZ7RGwGPtBm+MqmxwHcmm/VupNll8u6Ww7ySpWisyI6zCCPZnaafhGGFa3KcaPwlVA2\nCJX/hmqW/WT+MvXdy4oOkDzDrq7mW0bu/NdHmfeCyod7kQbeK+1jdtFDn3bU8nm+5lY5azOv9wzr\nupvl0LZsXguyy+n0su0Xoyz1aBjxcG+/MkYt9Oyc1qBoPeDmsfvmsX21m0avnRH12f8c5O7S3Ebv\npp2NeLiPtn536lFS2JLqkMe9HgQGccps2FuOTwumc7h3UK43WeXUuoy8zHrTbVb5vL2lqU24Z3lL\nmnWHGGSPtvCrZQqabl5LqNv2D/pzkLLzu6/hKvM7iMqHe38Lt7wrpn/DaVudlyh0dzCqyrIozweS\nlqfKh7v1oSrpU7As7waK7qAV/YYk7+qX6XDgN3PtjXS4p+2wg95o+pldL3UdtWwv5TvoPuuUR6+7\nn1M7za/M6x1A1umU7ZRI2Q4yIx3u862Mkm0zPRrMlla2Dbpfae0pyymMTtvooD+XGGTIlmPpV0Nt\nwr2qIVPRag+t2z/o5XV2fsP44LLbOZatJ1uk0Wlp72oT7r1IPS0zmGoUpBqbf1l6wkXoN2u7XTLD\nuJKovmsvmzLvZSMd7qNuhDp6PaviImrXg897XVdxuYwah/sI6+tUQ426bF39pkre7a7ochx2tZvn\nX9VTskVzuJdIX1fsl6QrVfX9bL7lWPyvbHZXvohA63eaedWp03RKspm3VbZt3+HewSDOYTbPo4hL\nIQtrwrA+UC3bHlQHfaxLMbyORZmDvgyy3GZvqaQnJW2TtFXSbW3KXCnpsKRNyd/txVS3Xf2KmGb1\nN5ssTShk2XVZvmxhnWd95jvtlcf2VYNNtCcl21xKvR6y3GbvNPCZiNgo6d3ABkmPR8S2lnJrI+K6\n/KtoVh6DPBgNLDfKlpgZlDhTSyO15x4R+yNiY/L4KLAdWFx0xcqggtu85ayIbWAYlyxm+fC8zL1Q\n615X59wljdO4n+qzbUZfIWmzpMckXTTP61dImpY0PTMz03VlB2VUtvF82ulDYB7yyPthrImgfKfW\nrCFzuEt6F/A94NMRcaRl9EZgWURcDHwVeKTdNCJiVURMRMTE2NhYr3XOzSiEeKf9rp9zv1VcdmXp\nmc5Z7iX43CO3+eY0466vHMpntn0ryeY1K1O4S1pII9gfiIiHW8dHxJGIOJY8XgMslLQo15qmKKT3\nUJatpgdl29DyMuxvtFZ4k0jV74/PDeJSyHlnPiTNB6KybRtZrpYR8C1ge0R8eZ4y70nKIemyZLoH\n86zo/PXr57XzXc3Q+zT70c+52LJtWFlVpd69bBOZXlOGa8v73N7L8o7I5spytcyHgI8DWyRtSoZ9\nDlgGEBErgRuAT0o6DZwAbgzfMsesrXZZ2H1AOlGts9Rwj4ifkrIlRcSdwJ15VWpQ6nz8ydKyPOKh\ndRFWfYkOov55/ep5N2Pq0rues71VfWMrmL+h2sGwz+8WLsdTWnUJj/O0HL0G2SHo9otodV0FbY1q\nu7tQm3DPM4jrcIPsQW/wA8u8PuYz33rNUnffiHquMr3rHWZNyrxdVD7cy7xwR1H3Pz9QnpDI23zL\nIusy6nbR9LskK7cmvOt3VPlwL1KNcwfwvpFJBc83DaLG7a40y2t3qepuV7a8cLi3MbRLIft57ZC2\nrJJtz4Upa8ZnXe1Zqt9rE0u6aEaew9164h26d/kcEL0GrLPahHvZ3hJlVfgVOR0WTD8/PzDwG1Un\n7ajoara6KvExtvLhXuTb5UEfMPq7E1PrpYmD2epKvG2fJ49F0tU24W9+2hBVPtyL4H1qcMrQE+/4\n7ilJcwftXGW6yqlMdSkTh7v1pXW3KvNuVq8MyL8xPU1xiEc9XwbdmcO9g9p/Q7UPrbtVXXq2VesF\nzvlVwk43lu6wgvpadc33AM5p2VVsFcwqW1443NuoS1BB2u+5D6watZHHDlz0AWQQ67X5YDHK21GZ\nm16bcC/XMTO75v08z+vci7yuuf38c5xYh+kPq1dX1lMAVe3lWvEqH+5F7nLecbrX/c8PFFKNtgbd\nwyz2gFDOg42VR+XDvR8drgAfYC2KMbDf8arDATCnd09lMYh1MrzPJs6fbx3WWRGy3IlpqaQnJW2T\ntFXSbW3KSNIdknYmN8m+tJjqWrc6Hab6uodq9Y9/Pck70zqfw+9uIQ9lnQxpQ9DwZl0ZWe7EdBr4\nTERslPRuYIOkxyNiW1OZa4Dlyd8HgbuS/zZk7tX05+zyKzpIis6pQeRgfj8cVp2ttrmDVLZ3sak9\n94jYHxEbk8dHge3A4pZi1wP3RcM64AJJF+Ze2871zH+auU9xcPOoW6cmZv+XbA8y6re11YO6CUVJ\n48BTwPsj4kjT8EeBLyW35EPSE8CfRcT0fNOamJiI6el5R3c0PjnV0+sGYfEF72Tf6yeGXQ0zK7GH\n/9sVXLrst3t6raQNETGRVi7zB6qS3gV8D/h0c7B3WakVkqYlTc/MzPQyidJzsJtZmv/8N08XPo9M\n4S5pIY1gfyAiHm5TZB+wtOn5kmTYHBGxKiImImJibGysl/qamVkGWa6WEfAtYHtEfHmeYquBm5Kr\nZi4HDkfE/hzraWZmXchytcyHgI8DWyRtSoZ9DlgGEBErgTXAtcBO4Dhwc/5VNTOzrFLDPfmQtOPH\n4dH4VPbWvCplZmb9GelvqJqZ1ZXD3cyshhzuZmY15HA3M6shh7uZWQ053M3MasjhbmZWQw53M7Ma\ncribmdWQw93MrIYc7mZmNeRwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOzGspym727JR2Q9OI846+U\ndFjSpuTv9vyraWZm3chym717gDuB+zqUWRsR1+VSIzMz61tqzz0ingIODaAuZmaWk7zOuV8habOk\nxyRdlNM0zcysR1lOy6TZCCyLiGOSrgUeAZa3KyhpBbACYNmyZTnM2szM2um75x4RRyLiWPJ4DbBQ\n0qJ5yq6KiImImBgbG+t31mZmNo++w13SeyQpeXxZMs2D/U7XzMx6l3paRtKDwJXAIkl7gc8DCwEi\nYiVwA/BJSaeBE8CNERGF1djMzFKlhntEfCxl/J00LpU0M7OS8DdUzcxqyOFuZlZDDnczsxqqXLj7\ns1ozs3SVC3czM0vncDczqyGHu5lZDVUu3H3K3cwsXeXC3czM0jnczcxqyOFuZlZDlQt3n3I3M0tX\nuXA3M7N0DnczsxpyuJuZ1VDlwt2/LWNmli413CXdLemApBfnGS9Jd0jaKWmzpEvzr6aZmXUjS8/9\nHuDqDuOvAZYnfyuAu/qvlpmZ9SM13CPiKeBQhyLXA/dFwzrgAkkX5lVBMzPrXh7n3BcDe5qe702G\nnUfSCknTkqZnZmZ6mtnUlv09vc7MbJQM9APViFgVERMRMTE2NtbTNNa91OlNhJmZQT7hvg9Y2vR8\nSTKsIL5axswsTR7hvhq4Kblq5nLgcEQUdu7kzJmipmxmVh+/kVZA0oPAlcAiSXuBzwMLASJiJbAG\nuBbYCRwHbi6qsgDhnruZWarUcI+Ij6WMD+DW3GqU4oyz3cwsVQW/oTrsGpiZlV/1wt2nZczMUlUu\n3J3tZmbpKhfuznYzs3SVC/czPuluZpaqcuHubDczS1e5cHfP3cwsXeXC3dFuZpaucuHudDczS1e5\ncPdpGTOzdJULd2e7mVm66oW7z8uYmaWqXrg7283MUlUv3IddATOzCqheuLvrbmaWqoLhPuwamJmV\nX6Zwl3S1pJ9J2ilpss34KyUdlrQp+bs9/6o2+FJIM7N0WW6ztwD4GvBhYC/wnKTVEbGtpejaiLiu\ngDrO4Wg3M0uXped+GbAzIl6KiFPAd4Dri63W/NxxNzNLlyXcFwN7mp7vTYa1ukLSZkmPSbqo3YQk\nrZA0LWl6Zmamh+q6525mlkVeH6huBJZFxMXAV4FH2hWKiFURMRERE2NjYz3NyFfLmJmlyxLu+4Cl\nTc+XJMNmRcSRiDiWPF4DLJS0KLdazplXEVM1M6uXLOH+HLBc0nsl/SZwI7C6uYCk90hS8viyZLoH\n864s+OcHzMyySL1aJiJOS/oU8CNgAXB3RGyVdEsyfiVwA/BJSaeBE8CNUdD5E/fczczSpYY7zJ5q\nWdMybGXT4zuBO/OtWnu+zt3MLJ2/oWpmVkPVC/dhV8DMrAIqF+5OdzOzdJULd18tY2aWrnLhfsbZ\nbmaWqnLh7m+ompmlq1y4u+duZpaucuHubDczS1e5cPeF7mZm6SoX7o52M7N01Qt3p7uZWarKhbt/\nW8bMLF3lwt3ZbmaWrnrhPuwKmJlVQPXC3V13M7NUmcJd0tWSfiZpp6TJNuMl6Y5k/GZJl+Zf1QZn\nu5lZutRwl7QA+BpwDfA+4GOS3tdS7BpgefK3Argr53rO8g+HmZmly9JzvwzYGREvRcQp4DvA9S1l\nrgfui4Z1wAWSLsy5roB77mZmWWQJ98XAnqbne5Nh3ZbJxc6ZY0VM1sysVgb6gaqkFZKmJU3PzMz0\nNI0H/uiDOdfKzGywvv7xf1/4PLLcIHsfsLTp+ZJkWLdliIhVwCqAiYmJnk6wXPFvFrHrSx/p5aVm\nZiMjS8/9OWC5pPdK+k3gRmB1S5nVwE3JVTOXA4cjYn/OdTUzs4xSe+4RcVrSp4AfAQuAuyNiq6Rb\nkvErgTXAtcBO4Dhwc3FVNjOzNFlOyxARa2gEePOwlU2PA7g136qZmVmvKvcNVTMzS+dwNzOrIYe7\nmVkNOdzNzGrI4W5mVkMa1k/oSpoBdvf48kXAr3OsThW4zaPBbR4N/bT5X0XEWFqhoYV7PyRNR8TE\nsOsxSG7zaHCbR8Mg2uzTMmZmNeRwNzOroaqG+6phV2AI3ObR4DaPhsLbXMlz7mZm1llVe+5mZtZB\n5cI97WbddSDpbkkHJL3YNOyfS3pc0i+S/789zDrmTdJSSU9K2iZpq6TbkuG1bLekd0haL+mFpL1f\nSIbXsr3NJC2Q9LykR5PntW6zpF2StkjaJGk6GVZ4mysV7hlv1l0H9wBXtwybBJ6IiOXAE8nzOjkN\nfCYi3gdcDtyarNu6tvskcFVE/DvgEuDq5F4IdW1vs9uA7U3PR6HN/zEiLmm6/LHwNlcq3Ml2s+7K\ni4ingEMtg68H7k0e3wv8wUArVbCI2B8RG5PHR2ns/IupabuTm8mfvSHwwuQvqGl7z5K0BPgI8M2m\nwbVu8zwKb3PVwn1gN+Iuod9purvVK8DvDLMyRZI0DnwAeJYatzs5PbEJOAA8HhG1bm/iK8CfAmea\nhtW9zQH8o6QNklYkwwpvc6abdVi5RERIquVlTpLeBXwP+HREHJE0O65u7Y6It4FLJF0AfF/S+1vG\n16q9kq4DDkTEBklXtitTtzYnfi8i9kn6l8DjknY0jyyqzVXruWe6EXdNvSrpQoDk/4Eh1yd3khbS\nCPYHIuLhZHDt2x0RrwNP0vicpc7t/RDw+5J20TilepWk+6l3m4mIfcn/A8D3aZxeLrzNVQv3LDfr\nrqvVwCeSx58AfjDEuuROjS76t4DtEfHlplG1bLeksaTHjqR3Ah8GdlDT9gJExGcjYklEjNPYd/8p\nIv6QGrdZ0m9JevfZx8B/Al5kAG2u3JeYJF1L47zd2Zt1/8WQq5Q7SQ8CV9L45bhXgc8DjwAPActo\n/JrmRyOi9UPXypL0e8BaYAvnzsd+jsZ599q1W9LFND5IW0Cjk/VQRHxR0r+ghu1tlZyW+ZOIuK7O\nbZb0r2n01qFxGvzbEfEXg2hz5cLdzMzSVe20jJmZZeBwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOz\nGnK4m5nVkMPdzKyG/j9Mccz20QZE3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, 'unbiased' scaled Bispectrum is calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25, scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5000.00000001, -4800.00000001, -4600.00000001, -4400.00000001,\n", + " -4200.00000001])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.0021, 0.0022, 0.0023, 0.0024, 0.0025])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags[-5:]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.16469688e-04, -1.15175317e-06, -1.07527932e-05,\n", + " 3.12465067e-05, -1.49891250e-05, -1.13491830e-05,\n", + " -3.01378025e-05, 8.84909091e-06, -9.76499980e-06,\n", + " -4.03093430e-05, -1.39169834e-05, -1.06733571e-05,\n", + " -3.56900080e-05, -4.36904080e-05, -1.64739272e-05,\n", + " -6.07642325e-06, -9.40724231e-05, 3.20972054e-05,\n", + " 1.10825598e-06, 1.57445478e-05, 1.50738698e-04,\n", + " -1.53088049e-05, -1.06758132e-05, -8.50761732e-05,\n", + " -2.70732731e-05, 5.15575763e-04, -2.26276548e-06,\n", + " -5.46966498e-05, -3.49049233e-05, 6.93111630e-05,\n", + " -1.96629892e-05, -4.00897434e-05, -5.37940654e-07,\n", + " -1.25908665e-04, -4.04722751e-05, -1.95122973e-05,\n", + " 7.48985545e-06, -1.59418559e-05, -3.40950546e-07,\n", + " -5.28946188e-05, -6.77547458e-05, -2.58282563e-06,\n", + " -2.16597857e-05, 2.08264564e-05, 1.62145798e-05,\n", + " 6.20770115e-05, 5.74011370e-05, 3.04301082e-05,\n", + " 5.42455829e-05, 6.16520488e-05, 5.25699675e-05])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.10270301, 0.09674684, 0.1026435 , 0.10278492, 0.09607422,\n", + " 0.09961388, 0.10090391, 0.10316149, 0.09881147, 0.10027435,\n", + " 0.09052907, 0.10086312, 0.09964639, 0.09224589, 0.10189853,\n", + " 0.09783874, 0.1029246 , 0.10003251, 0.1003841 , 0.09654483,\n", + " 0.10021589, 0.10265071, 0.09913028, 0.10406698, 0.10248613,\n", + " 0.12079938, 0.10038381, 0.09376602, 0.09916139, 0.10218425,\n", + " 0.09798569, 0.10296954, 0.10377357, 0.10144925, 0.09848511,\n", + " 0.09731673, 0.10031293, 0.09733791, 0.10085873, 0.09769191,\n", + " 0.10021328, 0.1000008 , 0.10362033, 0.10352851, 0.09763424,\n", + " 0.10249754, 0.09752426, 0.09520164, 0.09959243, 0.12395456,\n", + " 0.10188173])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ -1.44942123e-02, 1.67988284e-02, -3.06544878e-03,\n", + " 1.24304742e-02, -4.69267453e-04, 1.80410887e-02,\n", + " 1.18875941e-03, -1.85154750e-03, 2.17338081e-02,\n", + " 1.03821918e-02, -7.09489717e-03, 1.05358508e-02,\n", + " 4.01625879e-03, -2.05403388e-02, 1.17686452e-03,\n", + " 2.56746832e-02, 2.17353559e-02, -7.69020683e-03,\n", + " 1.54447950e-02, -9.03814639e-04, 3.43660863e-03,\n", + " -5.37971533e-04, 9.42017522e-03, 1.42720920e-03,\n", + " 1.17025084e-03, -5.00982277e-03, -1.53439701e-02,\n", + " -7.63874625e-04, -4.10637611e-02, 2.41131565e-02,\n", + " -1.95500843e-02, -2.98681684e-02, 1.23914953e-03,\n", + " -2.75100800e-02, -3.88428578e-03, -7.87537903e-03,\n", + " -1.53613857e-03, 1.47624077e-02, -4.86162981e-03,\n", + " -2.76731089e-03, 9.30828311e-03, -2.86531767e-02,\n", + " -1.16465064e-02, -2.30165990e-02, -7.71187242e-03,\n", + " 2.00694116e-02, -5.16511843e-02, -1.98737477e-03,\n", + " -9.87738671e-03, -2.09922507e-17, 1.39146079e-02])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXv4ZlVd//16zzAMR0EYQI4OKHoFdWlIYPXTDoICmVQe\nLsgksSKe8DE7KURmP5Pfg1lZpImUphZGJKHTTwzBSn/2PKMcRJSTAmKAowgICDMMM3w/zx9737jZ\nsw9r7b3W3vu+v+t1Xff1/d73Xue99vqs9fl81l4yMxKJRCKRiMWKsQuQSCQSicUmCZpEIpFIRCUJ\nmkQikUhEJQmaRCKRSEQlCZpEIpFIRCUJmkQikUhEJQmaxOBIMknPjJzH2jyf7WLmMwaLXLfEYpIE\nTcILSf8g6VuSHpL0VUm/GiGPl0r6gqRHJN0n6UJJB4TOp0O5niXpnyXdK+lBSddL+m1JK8cuW1ck\nfVDS28cuR2KxSYIm4cu5wCFm9hTgZcDbJT2vKmCXGbekVwAfAf4CWAMcDmwGPifpqaHyaSnDNulJ\negbweeBO4IfMbDfglcDzgF1D5p9ILBpJ0CS8MLOvmNnG2df88wwAST8p6S5Jb5b0LeDv8t9/T9IG\nSd+U9Lq6tCUJ+DPg7Wb2ETPbZGbfAn4VeBj4rTzcayX9l6R3SboP+CNJKyX9ab7auB34mVLau0l6\nf16OuyW9fbYSqUqvonj/E/h/zey3zWxD3ha3mNmrzeyBWd1Led4h6Zj8/z/KV0P/IOl7kr6cr5DO\nknSPpDslvbgqbiH+P9S026mSbsrTvV3Srxeuze7J7+T5bJB0an7tNODVwJskPSzpX+vuTSLRhyRo\nEt5I+mtJG4GbgQ3AZYXLTwP2AJ4OnCbpOOB3gWOBQ4FjqOfZwEHAPxd/NLMl4JI8jRlHA7cD+wDn\nAL8GvBT4YeBI4BWltD8IbAWemYd5MZkAq0uvzDHARxvK7sLPAn8PPBX4InA52TO4P/A24H0d072H\nrO5PAU4F3iXpiML1pwG75fn8CvAeSU81swuAC4E/MbNdzOxnO+afSDSSBE3CGzP7DTJ10QuAfyFT\nbc1YAt5qZpvNbBPwKuDv8pXQI1SvFmasyf9uqLi2oXAd4Jtm9ldmtrWQz1+Y2Z1mdj/w/8wCStoH\nOAF4o5k9Ymb3AO8CTmpIr8yeNeXy4f+Y2eVmtpVMmO4FnGtmW4CLgLWSdvdN1Mw+YWa3WcZngE+R\n3ZsZW4C3mdkWM7uMbHX47J51SSScSYIm0Qkze9zMPgccAPxfhUvfMbNHC9/3I7NrzPhGQ7L35n/3\nrbi2b+E6pTTb8nk6sArYIOkBSQ+QrR72bkivzH015fLh24X/NwH3mtnjhe8Au/gmKul4Sesl3Z/X\n7QSeLJTvy4XbjI1d8kkkupIETaIv25HbaHLKrwPfABxY+H5QQ1q3AHeRGdmfQNIK4OXApzvmcyfZ\nqmuNme2ef55iZoc3pFfmyrwMdTwC7FQo80qyFUtXnpQemfprGyStJlMr/imwj5ntTqbKlGM+6fXt\niegkQZNwRtLekk6StEtufH8JcDJPFgBlLgZeK+kwSTsBb60LaNmZFb8L/IGkX5S0g6SnAX9LZn94\nV0s+b5B0QO6ddmYh3Q1k6qQ/k/QUSSskPUPSTzhWnbzcPybpnXmZkPTM3Li/O/BVYAdJPyNpFfAH\nwGqP9MtcB5wkaZWkKpvTjO3zfL4DbJV0PJn9yZVvA4f0KGci0UoSNAkfjExNdhfwXbJZ9BvNbF1t\nBLNPkrkq/ztwa/63PgOzfwJeQ+Zhdh9wI7Aj8ONmdl9D1L8hM65/CbiWzHZU5BSyQfnGvOwfxUMV\nZma3AT8KrAVukPQg2UriauB7ZvYg8BtkQvFushXJXdWpOfEWspXid8k83j5SU67vAW8gE7TfBX4R\nqL0fFbwfOCxXKX6sR3kTiVqUDj5LJBKJREzSiiaRSCQSUUmCJpFIJBJRSYImkUgkElFJgiaRSCQS\nUUmvGQdW77Cr7bzzk7c8aAnMUQz7hO2CluqvNeVbjmcrmtNqImb9qqgqe9P1JmKUvSr/tny6tn1T\n+n3TnAJjPTtNNJXpu/d//V4z67NHih/SnvYwW5zC3sH3Ljez4/rkNzZJ0AA777wXxxz3v5702+pN\n2UbqzTuO20SzclTRt2xNaYfOy5di2arydi17zHJXlaEuv7rylsP73JO+jJl3Uzkg3PPnWyeX/P75\nIyc3vd3CiYfZwh+tPMop7Gsf//Sa9lDTJqnOKhjrgfMhxAC6ecftnNMZuk1mZasrn0u5YwvHugGy\n3FauQqbuN5dyuMZratc+7dUn7qx9Zm1XbK++/c63XRJxSC07Mm0z9ypCPxCus/DVm7Z2zrucVqyH\neujBYvOO21UOhm0DZFM569KcKrO69Cl3U7w+/c6FJGDik1p4JJoGp1nH91HNxKCYV3HW2VYel8Gm\ni4BtKt+Y+A6wrquxMYRN37rEKncfVVpTmcbqQytWwI47OSqUvhe3LEMwjSd1Ysw6ZqjZ+9DxY1Al\ndMr/d2Wo1U5MXAZYn3qN2Qd8hEXVc9I0Uepbrimnl6gn2WhqGEvIzAOxH9AqO8c80KYOc6FL3WO0\n19A2wCHSSYxHunsTZSoeQXXEmrUWia2bj0FVu7jUYaj769OmTeHKq9pYNqep2fJC3SetEDsk1Vmi\nCzEHi9huun3sJEnYbMuYarI2u1mINvWdaMSwYxXxseGMLWSWI/P3BCe2oY+hM8TD4zqI1Nl5hmRq\ngstln9SUB7jZvXdp1y79pI06V/I6u1FiHJKNZqL4zv76bGr0DVtXBp/rY7lyw7ScNVz2CbXtKSrT\nto8nZJv6OIZMWWA2EcMGtmIFrF4tp88ikARNQEIPikMbxUMIG5+NgG16/aF39Q8Zv462eru2S507\nemzq8ovp8lwmVL+ZV6eUKZIEjQehl/0h863LewwPpvJs3CfskB5GUxE2xQ2PIalaycRazUyFEPVL\nAiY8SdA0UHwlRvk1GWOUZej8qj6u+A5qfV9h0lUYhxA2oexcUwrfh3kdpId8tlcIdtxxhdOnDUnH\nSbpF0q2Szqy4Lknn5devl3RE4dpvSvqKpBskvbEi7u9IMklr8u9rJW2SdF3+Od+pvi6Bliu+qqDY\ndHkQuthOmlYWsR7ELumW28O1fWK4jncRxn0Z28DtoxKN4YVX7qNjt8cYSFoJvAc4HjgMOFnSYaVg\nxwOH5p/TgPfmcX8Q+DXgKOA5wEslPbOQ9oHAi4H/LqV3m5k9N/+c7lLOJGgcKHbomO6TroTWg/c1\nNvehi6BoK8O8zqjLhFLVTmUAjtXHlvmGzqOAW83sdjN7DLgIOLEU5kTgw5axHthd0r7ADwCfN7ON\nZrYV+AzwC4V47wLeBFjfQiZB48GUOnPVbL5MqF3ZsfAVmD6rhrYwU7qXVfgY85sG2tj17OJNOMaE\nxoXyan5om2EDayRdXficVri2P3Bn4ftd+W84hPkK8AJJe0raCTgBOBBA0onA3Wb2pYryHJyrzT4j\n6QUuFRi9BReV2BsZZ8R0XS2mWeUyO2WvsFkasXasdy1PMW/feL5qUN8y9UnHN57rHiGfjZgxCZ2/\n15sB4F4zOzJoAQAzu0nSO4BPAY8A1wGP50Ln98nUZmU2AAeZ2X2Sngd8TNLhZvZQU15pRbMAjDXz\nir33JgRTUaO17W0p/j6ki/DYGxt9VjdTuZcT427yVUjOAflvTmHM7P1m9jwzeyHwXeCrwDOAg4Ev\nSbojD3+tpKeZ2WYzuy+Pew1wG/CstkKOKmh6ektUxpX0Tkk35+EvlbT7UPUZg7Fnen0ZQkAOOXDP\n0q3zUiy/HcFnw2Ms+kxUQpR/zM27MJ3JSEeuAg6VdLCk7YGTgHWlMOuAU/Lx9PnAg2a2AUDS3vnf\ng8jsMx8xsy+b2d5mttbM1pKp2o4ws29J2it3QEDSIWQOBre3FXK0UargLXEsWUWukrTOzG4sBCt6\nSxxN5i1xdEvcK4CzzGxrviw8C3hzlzL23RAWWzXTVo7Y6q2QuKpSulJuixi7+1135Jf7xbwOdKHb\ncMzNyUM/KytW4OS63EY+zr0euBxYCXzAzG6QdHp+/XzgMjL7y63ARuDUQhKXSNoT2AKcYWYPtGT5\nQuBtkrYAS8DpZnZ/WznHHIWe8JYAkDTzligKmie8JYD1kmbeEmvr4prZpwrx1wOv6FI4F6+mvobP\nPg+Wi5Ap/u37ENUNBKEf0JgCZ1bW0Bsti99dJydDD6yhianGi9kubc/1vEzMipjZZWTCpPjb+YX/\nDTijJm6rMT9f1cz+vwS4xLeMY7ZqlSfE0Q5h9neMC/A64J+qMs89N04D2GmnNU+65uti29d4OpTT\nwDw9RHUDcV/BPaXB3VXYTOm+uRjvYzmk9GXePRHnmYVtWUlnA1uBC6uum9kFwAUAe+x5yBN+4qE3\nRLbRdeBreqDbbBKhN8919abyzdfH62pehLfPKmg5EMtNf5bOVNpaK2DV6kGzHJUxe3Ifb4lVTXEl\nvRZ4KfCifNk4V/TZue4qGFxVb76EmKGHGGyGXC3OiKWSmze6COCh7lNZ2Mx7W88LY3qd9fGWqI0r\n6Tiy3awvM7ONQ1WmC64DquvKJZRAiv3Q+7rwTm0w8F05ua7EXD2/fDaujsWUhe6ENmIuG0Zr6T7e\nEnVx86TfDawGrpAEsN71fTy+hO6oXTYX9jFwx/TE6kIMIRPL6F5cMYVI33ezY2hnj9CEUM9OrU4h\nkWDV6qWxizEYo97Jnt4S28TNf39mRXBnQhloXdQHxcHK1YOtTtiEYAh1k68wDWUHmaW1KIxhjyrn\nW5V3EjCJKtIdraCv0bA42+zrAj0GsQbmrvUM6aJdTK8vUxFcY25k9HkeQqTlm0+fNKe6WpxHUgvW\nMNXONeT+C9eB2aVMId1TQwmc5YaPEXxIW1lMz80QjgkxXLa1AlbtMHd+Sp1J7zoLTB8DvStDD5RN\nhlMXQ7av/aGNqawk5omqfunjkNGHGP01lkNEU5ukftedJGgGYKiHwYcQXjehBxCfhzk99O5Mua26\n9CHf+qQ+NT7LU4ewzBl6j0Ob6iHGptUpMWY5m9q2bQUaUoVUpV4dQsiU4/W5DyHvoWSsXJW8zhKB\nadvJ79qJ63TnMWwkIWd4VXUMkb6Li/Y8CKMYdBEy5TB1quAxVsNtDjq+b7FIDMfyfAJLaMlvt3yM\n9y512a1fDF832I4tYMrpxvBoa0trUbyHXO9ryElH0+rGN82Z4Ap5H6qegUWwiy4ayUZTwNUQ2NUw\n2GbAbPOecaXrzuchDJ4+eRTrUf7Eznvq1NVl6vXr6+JeTCeE88ki0PNcr9+SdIOkr0j6R0k7lOL+\njiSTtKbw21l5WrdIeolLGZOgKVEUBmMMTD6Dx5CrApc4ofZduITrI3RCqeyGzrOqruUJUJc0QhDr\nWalKd4y9aaHrN3szgMunOZ0nzuY6HjgMOFnSYaVgxXO9TiM71wtJ+wNvAI40sx8ke8vKSYW0DyQ7\nzvm/C78dloc5HDgO+OvZQWhNJEHTg1iuzD6Dx9gzWB+BXHSFdgnnSt+Vji9jtnnXevZdCcYI25ZO\nX3tbLLfqifHEuV5m9hgwO5uryBPnepnZemB2rhdk5pMdJW0H7AR8sxDvXWTvjbRSWhflRzp/nez1\nYEe1FTIJmokypKvvGA9PLLVHH6eK2ITMsyg42oz+Lra/ulW8j8qqLo4PTf2+q4BdANZIurrwOa1w\nre7MLtrCmNndwJ+SrVg2kL20+FMAkk4E7jazL7mk1VaBhbgLYzIzbk5wpuPEUOUeUt0R8360zbKH\ndkyoEzZ9N762pdfkQTjEysmHKT6fWmGs2sHZvfleMzsyeBmkp5KtUA4GHgD+WdIvAf8C/D6Z2iwI\naUUTgHlUpcCw5XZRMw5tE+uS1xRnyKGFTBdCqC9jtu0U71sg+pzrdQzwdTP7jpltIRMwPwY8g0z4\nfEnSHXn4ayU9zTG/bVjY1u9LTPWAT/5990LU4eoCO4TDQXnGOeRemJDutvOijpva7L5IbBflNqE8\n5bap4YmzucgG/JOAXyyFWQe8XtJFZEfeP2hmGyT9N/B8STsBm4AXAVeb2ZeBvWeRc2FzpJndK2kd\n8BFJfw7sR+Zg8IW2QiZBU4GPmie2z37dsn8IIdOUf2ja8vFRzXTxCOuzt8RlRdFVIIR+o8K8rOKq\nBECISYGLI8oQ/T3UeTQ9z/X6vKSPAteSHXv/RfLj7Rvyu0HSxcCNeZwzzOzxtnImQVOii8dTqI7Z\nZiAPrd93LUPMh6+Pe/LY6pCqyUbTPezi3FGX9qKtZNoY8l5P0abTRM9zvd4KvLUl/bWl7+cA5/iU\nMQmaiTCUsTykR88UmfoAEXMlGiPuovQLX+ZN2Eyd5dmLJsaYs7UxDMchmMoAGGMvVd9Brqxi8k0r\ndtv2XZH28XDzyTuqsFkBK1YvH1+saTytE2HowWuswTLkXpO6tHzURF3UlSGY8v0OIWx88hqDLve+\nSbD72LOmon5dLqRW7smUH+g+xtM+QqZ8LfRGxTHjD0ls9c0YbVE14Iea+FQ5ZfTd1xTT6Wc5MT9P\n3USJMRiEnG11SSuWS3Vbek0PdYh8Ywysrvd/agJuzNX0UKsLn+fSReAEfc5XCO20Klx6E2davX9k\nuq4AYs08+z6AoYRLl/T6pNV3019dXULumXHNsw9T8vQLnX/dht1YalEXl/7yhuG0mglHEjQlug7u\nLh2764MUW58cQsjUlXHIzZdj0iRs+tohEhl9Vo8uWwRcNg4nurF4T3wgQq0m+uik68rUlF/INF3T\ndn04pyBgYq1qYHnvc5kCQ20RCIFWiBVJdZaY4bLruwlftUrXwWYsLxrX8i63DXezMoR2H+/71oGp\nDLR19FFfh2AKfWcRmXavWxDqluQxDesuDLXnY4zBbQxbTTkPl7y6vC6njI8toc8elKGoa7Mh7lsi\nDumujUhR4PisnPraPULP2ELaJ0Iyxuy0zjY3K09TuKGZstCZQvtERUI7tB5MuTBMq3dNgL6qiaZ0\nm2bYbWXwud5ETE+mPmrGKQ96Zerq6bJno0349d0AO1VcJyJj13Ps/BeVaT/RAxLL3TZkOfoS+yEK\nVXZf1WKTSmUIV9oQNjiXyUXbSnZq9oXQjiFTn4Ak6lk+L9uZAGM+KFMagKrYvON2T/q4UrSFTL2O\nEHdTYtf6x+iXocsy1LPj2/+mgKTjJN0i6VZJZ1Zcl6Tz8uvXSzoi//3Zkq4rfB6S9Mb82h/nYa+T\n9ClJ++W/r5W0qRDn/HJ+VcxXi0bCJiRuYzgK9BmAx9xB7hqu62A7lqde0+74qvL4vnqlKZ+qMFOj\nXO6pOZMEIdCbASStBN4DHAvcBVwlaZ2Z3VgIdjzZAWWHkh189l7gaDO7BXhuIZ27gUvzOO80s7fk\n194A/CFwen7tNjN7rk85JzTELg981EGuzGbzTYboLkxxEOpD3YrJt41iv6mheD/7rgyaVghjbgB2\nEYB9y9hXUIQowwAcBdxqZreb2WPARcCJpTAnAh+2jPXA7pL2LYV5EZkA+QaAmT1UuLYzYH0KmQRN\nDTFnM74Djs/1UIPUxB8ub8r16Vs/3zYKnb9vXmVbzqJTVKmGYORnYo2kqwuf0wrX9gfuLHy/K/8N\nzzAnAf9Y/EHSOZLuBF5NtqKZcXCuNvuMpBe4VGDxe5wHIXfxt+GzNB/SPTa2vj5G+lMzgrsSo9xT\ncWpZVIK14UqhnZ1VZ/ea2ZFhMt4WSdsDLwPOKv5uZmcDZ0s6C3g92UmcG4CDzOw+Sc8DPibp8NIK\naBtGXdF0NWI1xZX0Skk3SFqS5HxzmlyPp/I6kb4rlTZiCtXZJ1b5x9isOoS3WVX4oQzm5dVxCJXY\njNhCr0112JUJTmjuBg4sfD8g/80nzPHAtWb27Zo8LgReDmBmm83svvz/a4DbgGe1FXI0QVMwYh0P\nHAacLOmwUrCiEes0MiNWW9yvAL8AfNa5LEvtYWIImzGM0E2focoAcYRm1x34XYRU6HK7uDeX1V+x\n1GGxJ1cuZQ3RxstkBXcVcKikg/OVyUnAulKYdcAp+cT9+cCDZrahcP1ktlWbHVr4eiJwc/77Xvn4\ni6RDyMbm29sKOeadeMKIBSBpZsQqeks8YcQC1kuaGbHW1sU1s5vy33oVrskzqK0Dl72gusxaq9Lq\nSuhBKMYsMVSaTZsn+2wodcmzLt/iNRfVlk85523G7ipkiv8PITBc8gnZNtlLNfvXy8y2Sno9cDmw\nEviAmd0g6fT8+vnAZcAJwK3ARuDUJ8oh7UzmsfbrpaTPlfRsYAn4Bt/3OHsh8DZJW/Jrp5vZ/W3l\nHFPQVBmojnYIs79j3E64bIBr6pS+4Wd5tF3vSoiH1McV17VMQ9rD6srQBddVapMq1mX14ho2JL79\nLLS3XlObucTvQpVr/LythMzsMjJhUvzt/ML/BpxRE/cRYM+K319eE/4S4BLfMs5XiwYk99w4DWDn\nHbdp5yfwETZ91A2xBpUQ6VYNnjHSHHJgjbUyC5X30LYAX8cUH7qqNF3T6ELbyjMRljEFTR8j1iqH\nuI2Y2QXABQB7PvUQg266eh9XZZfBJYTwqkoXwgmHkJQFzpCzyq5qzaYVnk/es/Sa0hpK+A7tATdk\nGmWq6jm456IE2y+f82jG9DrrY8RyiRsMX72yKy52hJBMeaYWQ8C6ENOLzzX/qv/rwsQk5KAe4pmJ\n5UUXO5/EtowmaMxsK5lv9uXATcDFMyPWzJBFpne8ncyI9TfAbzTFBZD085LuAn4U+ISky13K46o3\nLxPLjTl22lOkSthMubyhcKnnUKqeEB6IUxMyTQJmuW1kHYtRW7anEWubuPnvl/L99/U401VF4Rqn\nKlyTt1Lslc08PVS+5V0OwqnIPN1LF0ILmUkiwQ6rxy7FYKRX0HhQ3ATWtq+hKp5L2qEYcm9MKELM\n2ic7sMwJIVaRXVdnMfpsmyOCi+oy0Z/5Goki4+N62nY9lKHZl3KeXVy0fRla1961HLFoc2meF0KW\nP7Trc0zm/b7NA0nQlAg1AHdNo04wVKXn6m4c06PGJd1QbtHle9N3MOvrwFEl1LumOyZNKwyXcF2Z\n+oo76v1csQJ22D58uhNl2nc6AdQ/kGMObF3zdHEtHct2tdxoassmm2KIe9BFyHR1fe8y0apyEkh9\nrztJ0JQYe5blo+YKoUsPvfLqWo6m723lcI03zwPF0P2y2DdCrUjr7pWPQ83MrhJb2MxzX5kiSdAU\nGGunuE9aQ9hcXBl8k1tF/lXfh9yDM8T+n1j3te3+hXabrst7yE2ps/xGR0Kr0obNZcfYKxlXQg8M\nk3joPGnzTpqXe+nCFOviUyZXTzLXfhhCWIRalSXcSYIGMMdW8HH9DO095srQgqNqplrl/h0rv77h\n+hLLPXYo9/SYefh6cPoImxCbSpPQGI4kaBzxHVD6DrZDCoy+eyea6jqWOnKe2q/I0AOgb7lDT7ZC\n7syflc2njIsgbHoeILm7pI9KulnSTZJ+NP/9j/Ow10n6lKT9CnHOytO6RdJLXMo4/60cgLaDz/ra\nRIbQ47uUwddYHuohDG3LaWv7mO0b0y7V1/XbN01Xr7PY/TVEPxvKbhmsLVaEeTNA4RDIY8mOS7lK\n0jozK57rVTxA8miyAyRnx6r8JfBvZvaK/L2RO+W/v9PM3pLn8QbgD4HT8wMmTwIOB/YDrpT0LDN7\nvKmcSdDkdOmUoV5bE9Po2oeQD6rrAO3qXVfn6jrWnhCXPGPgOnnwtauEYgwnFd/8x3Zq6UmfAyQ3\nkh1k9loAM3sMeCz//6FC/J0BK6R1kZltBr4u6da8DP9fUyGToCkwlBdRmUl5w5SIPVC4pN00EHR9\nK8FUVyY+dHHX7dLXXNpqzMHaRdjOuYpsjaSrC98vyI85gX4HSG4FvgP8naTnANcAv5kfhoakc4BT\ngAeBnyqktb4irUaSjaaFtg46pdVInz0xTUxRAE6Z2O3V1yYUa4f/nA/m2xDVXiZlbwZw+cC9ZnZk\n4XNBW/KObAccAbzXzH4YeAR4wsZjZmeb2YHAhWRvy+9MEjQOtHW4KQibvvHanBf6uFU3DYwuxtsp\nDapjE8KtN+TgWed1WHc9NC4rrS4TqSHr0JM+B0jeBdxlZp/Pf/8omeApcyEwO9rZJb9tSIKmgK87\n5ljl6BLeV1XSZCup8u4p/+br/VNOo67cXe5Bk40nFn3bIjR1m1urKJezi6PBFOxTLgJmAbzTOh8g\naWbfAu6U9Ow83IvIbTuSDi3EPxG4uZDWSZJWSzqYzMHgC22FnGzrDY2PB9kQHi59jOdlugwUxeux\n9oo00SRgutgZFkBPP6nVmattLRYhhIxv3KB2qBUrgnidmdlWSbNDIFcCH5gdIJlfP5/s3K4TyA6Q\n3AicWkji/wYuzIXU7YVr5+YCaAn4BjBL7wZJF5MJpK3AGW0eZ5AEDeC+YXPGUIbPtnz6CsdQ5ZgX\nZsKmb13GaI8QKrOq35tUmnXXpyCwm8rep3xT0Wr40PMAyeuAIyt+f3lF8Nm1c4BzfMqYVGeetNkb\npkqVOizkxjufcnQhVBlCpRPCrX0ouk5WptyfoV3F6xLX1xYz9TaZKknQeODSyWJ59MRKz3cTZ4i8\nY23QGxqfFeXYM+E2YeOqChu7HlX0mUTVxa8iaJ+TYLvt3T4LQBI0DnQxak+ZqodyCgbrNmKVcbmo\nWvp4aE2pHnXE2gM39ediHph+7xmZrh0spPG5Sh8dYs/NPKoA54kpDs6uO+VnYYvfu+TVlkdoyv26\n73OYnoUwTO9JmBAxDLAhyjHFAcyFUMb4kIRoy3Kd+rhgD+kW7Gqf8R2sXVXMQ9R1skJGglU7xEt/\nYszniDUQXdxoQz88sYTMWIN9kxfT0GWKuXHRlao9K0NNJMoCp23TrK/jQFu6oYVryGclhkfbcia1\nmgMh97T4MDUhE0MHXvb6Ce18MOUBYyorOx/vw2K7hVKNdXm2YrbdlPvMvJJajvZjAiDMnhZX9cpQ\nqjLXh9fFQNzlwa9KN5SwKXq4hR6UQqw6piJkfOl6n/vW1zd+aLtS+GdwBWy3fFRnrV5nkrY52FrS\nmjjFGY8YqvI5AAAgAElEQVTYXldVKhKX32KVo26QL/8+lJCbN/rcp3kVMjBdF+fEtKkVNJJ+StJd\nwIb8hLW1hcufil2wqdFnv0nXa8UwQ26arNrM1kSdfr6Lq2yM1ccQ+bjie7+Hvvcx4o7R1qHUw33T\nS2Q09Zw/AV6Sv9vmFcAVkl5jZusBDVO8adBVhz1kOaa067xut3Wsh7VKNeOzuXaoXf6+9XfZ99Il\n/S6qrKqVrovzwBADdJ3TQVc1WF25h3TUWDSaWm17M7sBwMw+Kukm4F8kvZnvn7a2kBQ7VJfBYYhB\nqGu+Md2u29KP+ZD2EWi+92zMwaatfYecebsIm3L4umtd8/cpj2/adcImCFqBtuv/Us15oclGs0XS\n02ZfcqHzIuCPyF4NvdD0UVmM5Q495CATI6+QDgVTZEr7RkIJ1hj5uaQ1xBsMptqP5pEmQXMmsE/x\nBzO7C/gJ4NyYhZp3qmZabb/NU6eOqQLzJeqsMwJ9jeltE6Cp2PzK9QyZZ1NaPipTF+bB+UHScZJu\nkXSrpDMrrkvSefn16yUdUbh2h6QvS7queFy0pHdKujkPf6mk3fPf10ralIe/TtL55fyqqG1BM7uy\n5vcH8XxF9KLgok4bS3U0I6Ye2fUh7mtwjrmSHFq91FQO6PeKo2I6rml13VjpYteo+72Ybsg9XOU2\n8Em7i7o0aL8J9GYASSuB9wDHkp2YeZWkdWZ2YyHY8WRaqEOBo4H35n9n/JSZ3VtK+grgrPy8m3cA\nZwFvzq/dZmbP9SnntEX1RKhz+R1qv0tV+i6G2JCEnI2GMr4XPbN80ogtbFz3SxWvD6Gmbcp/9n+M\ndgmxB62JPm03qrAJw1HArWZ2O4Cki8hOxCwKmhOBD+fn0qyXtLukfc1sQ12iZlb0LF4PvKJPIZOg\nITv4bCjPI9f02jyi6oRO7H0vvp5Qvtddw5TD+XoYueRx3767sOeGh53K0lQGF0K71ba1TVu7hO5T\n5UG6b5pdHAtC1WME1hTVWsAFZnZB/v/+wJ2Fa3fx5NVKXZj9gQ1kjl1XSnoceF8h3SKvA/6p8P1g\nSdcBDwJ/YGb/p60CXq0maQWwi5k95BMv4c9UvaCmqq8OWa779t2Fn/jFh/iB3R7kQ+t3ZafLNg5e\nhpBpTmESFSvNmOlGRSt8VGf3mtk2p2AG4n+Y2d2S9ibbwnKzmX12dlHS2WRHNl+Y/7QBOMjM7pP0\nPOBjkg5vkwkubwb4iKSnSNoZ+Apwo6Tf61qrUtp9jFiVcSXtIekKSV/L/z41RFkTy4M7Dl/Da37t\nQd78nN145dPXcO7x32G30xbamz8x39wNHFj4fkD+m1MYM5v9vQe4lEwVB4Ck1wIvBV6dq90ws81m\ndl/+/zXAbcCz2grpcvDZYbm0+jngk8DBwGsc4jVSMGIdDxwGnCzpsFKwohHrNDIjVlvcM4FPm9mh\nwKfz74lEKw8csyvnnPJNXvuMNaz65Md57K8u4PDvfZdzjtrEwW9Y4uHdl8+7qRJzw1XAoZIOlrQ9\ncBKwrhRmHXBKPnF/PvCgmW2QtLOkXQHyhcSLyRYTSDoOeBPwMjN7Ykkvaa98/EXSIWRj8+1thXRZ\nc67K33f2c8C7zWyLpBBTvM5GLGBtQ9wTgZ/M438I+E++7y2RSFSy+jUr+fOjvsXhrGLL+/+OL77v\nEb71zS284MZPsdevHsEfHnEUH9zlET708X1Ye0PZQSeR8ESClf2Pac69wl4PXA6sBD6Qv83l9Pz6\n+cBlwAnArcBG4NQ8+j7ApZIgkwUfMbN/y6+9G1hNpk4DWG9mpwMvBN4maQuwBJxuZve3ldNF0LwP\nuAP4EvBZSU8HQtho+hixmuLuU/Cm+BalvUAzJJ1Gtkpip50W7h2hCU9223ULe+6wFR5+nKX7H+XR\njUt8996tbHxwe3bbsoUdttuVvXfYBNsvq7cvJeYAM7uMTJgUfzu/8L8BZ1TEux14Tk2az6z5/RLg\nEt8ytgoaMzsPOK/w0zck/ZRvRmNgZla3+sq9Ky4A2GPPQ5ISfplzz1+v4E2v2YM3PO9hfuSMk/nR\nPS7lR+6CHV5xJBsPew4fvPEe/vGiPVl7+3fGLmoiMXe0ChpJv13x84OSrjGz63rk3ceItaoh7rdn\nPuK5mu2eHmVMLCM2//3jnL1hb37v2Ps49rRfZ7vv3sl3dtzKn137KDf/zQ7st+mBsYuYWBiMx5nc\nnpxouDgDHAmczvdVVr8OHAf8jaQ39ci7sxGrJe464Jfz/38Z+HiPMiaWGbtf+T3O/vB+fPCr3+TK\njfA7n9mVr5+3gtWbtoxdtERibnGx0RwAHGFmDwNIeivwCTKj0DVkxwl408eIVRc3T/pc4GJJvwJ8\nA3hVl/JNkSE2ZrrkP7V9C6HfhLD2hnu5+O6duffgXVn7xXFUZa6v02mL79IuU72vZXzfFp6YDi53\naW9gc+H7FjKD+yZJm2viONHViFUXN//9PrK3TDujpeaHLUYHd91hXyVcql4qONZrPHzSa9rN7TMg\nulzr2x67PPAou3zxUe9y9K2HD33P3Gk6v6Xviz+r6Jpm35eIhixLKAxj69Jjo5ZhSFxa+0Lg85Jm\nKqifBT6S+13fWB9tPvE55AziHYDlMpgN/d6lLm8rcH2hYuhVyViHVDXl2+WwsVCHmZXL1ZZujHOV\nuj4zXd4x1lbXsfrHcsXF6+yPJf0b8GP5T6eb2ey9O6+OVrIJUjd4unbY0O/CGvIlf/P+5umQhB7U\ni+n65lUXr6lcTSuXuolB6ElAjHTr0qubmM2LynARcGphM7tK0jeAHQAkHWRm/x21ZHNE24MT8g27\nPtd88wit8ujCIgkbn7T65OUTzuVlrXUrgGKYUIQa7H1e1lolcIbuc2bG1qVeloe5wsW9+WXAnwH7\nkbkKHwTcDBwet2jzSegVxhQG3aEfxC6vb59nQrVvzPNY6vLpsnLrUh7fVWQT895f5hEX9+Y/Bp4P\nfNXMDgaOITufYNlRZYTvw+Ydt3vSp+r6ULjOhEOmGSKtsewwQzhPuFzrU55yvC7pzOKEaI++KsIY\n9yURBpendEv+SugVklaY2X9I+ovoJVtAQpzVMiZD2aNcmXp7+TKWzaBJiE9t4A6hHkwMj8udeEDS\nLsBngQsl3QM8ErdYw+OyJ6Et7tRm3THydUl3aFfpqdFkYHdhCoP7rA5DeziG7LcxnoFQ7WAYj9v4\n93koXO7CicCjwG+ReZntBrwtZqGmRqxTB33xdTqINbMbe8YYas/QlIVVHWOtMsZyqa/C1027HKcL\nU6j3PNNqozGzR8zscTPbamYfMrPzZgffLDea7Cmz60NRpV9vCuuaTohyhUwn5uooVN3LfaJotwht\n0yv+dS1X1adPGbrED5V/VbouLLKg6HOAZH59paQvSvrfhd/eKenmPPylknYvXDsrT+sWSS9xKWPt\nXZL0PbLzpLe5RLZp/ykuGSTCUPeguD5AXfd2DJ1mOf0yY6kD6xhqclHOp6+6tq8XV5V60NdTcGiV\naNf7HENIGcZW6/9mgMIhkMeSHZdylaR1ZlbcTF88QPJosgMki0ey/CZwE1Ac068Azspf9/UO4Czg\nzfkBkyeReR3vB1wp6Vlm9nhTOWtXNGa2q5k9peKzaxIy84nPLNt15rnIM8U26gb/2Pm0lSGUm2/I\nvUCh4vRNZwH76xMHSJrZY8DsEMgiTxwgaWbrgdkBkkg6APgZ4G+LEczsU2ZPGJHWk73zcpbWRfmR\nzl8new/lUbTg4t688FhqhSdRfHBdhU3yMotD7DqHVmXNA777jSbAGklXFz6nFa7VHQ6JY5i/IDuy\neakh/9cBn/TIbxuWVw+LTExVwJBG4KKKwXX14xq2K0NvaHRNL6bqsCqPJvraXrrm24dyvx4i30kI\nVlvyeanmvWZ2ZOgiSHopcI+ZXSPpJ2vCnA1sJXvnZWfSXD4QXYWMz2pgyNmnj4otNlMTMnWG/1j0\n2czZlTHbfEoTljlY8fU5QPLHgZdJuoNM5fbTkv5hFkjSa4GXAq/O36Tvmt82JEHTk7pBxte+EVsf\nPgQxyhXCLXUi6o9KXL2xquow1XoV27zrZCXGfQvhbTfBZ6/zAZJmdpaZHWBma/N4/25mvwSZJxuZ\nSu1lZraxlNZJklZLOpjMweALbYWcXKvNC00PwRBG9Cns2h7DmOtK7Lbp2/5NLvJNHoZT2s9SRZ1A\n7HqPQ6nSpiYgsg2b/U9t7XOAZAvvBlYDV0gCWG9mp+dpX0x2RMxW4Iw2jzNIgqYTsR7yUC6iy5V5\naou6e+26AXGKTOW5KDM1IROaPgdIFsL8J/Cfhe/PbAh7DnCOTxkX+w70oKs6rO9qxncncwhh46uy\nKV7rovMeYr9NVb5D5+maRt0qxbetxnxzhYuA7FOmroI5MQ2SoKmg7+bILmnXhXMVbk0Pch81n8/G\nPtd8Qnoa9VVhToGmSU1Xwew7YZkHYnr5ufbBUHkumdi0dfmYyJdPTR2Z2gzJxyOt6Vps1UPTDvWq\n+LGN/LF3mMeky0bQLpOMNnwnRUMQw8uv6LgwhoffciAJmgKxO9IU3T1d6apea0uzixBsy2+eZ/FT\ncYzw8RqbAiFXxFP3VJxH5veJnCi+uuSqjXIxytR2zUdF1yXvIQd/17buSkwnjFgbFmM6mriGrSpD\nSPtiXTlC2XdC3pclg41Jdbb8GHrDXZNKKZTR02dmFkJFFyL9mIRUuzStxELvuXAdxEOEGRKXlanv\nc9I1r0Rc0oomAE3G7b7ea33UHl3juTgIdMkr1my9C6FWWq5tNVQ7tU1SuqTtEsdVtdpHzeoabp73\nIS0qaUXTk6J3UHkA7ipkyuFnHxcX0iE942C+7SEw3IATeyXYtsLqk2YIYdyl3/fJr44Yq/xEO/M9\nSgSkjxtpVdyQA3DTjDDWDM11xh9TKC3Sg97FthWyD4V0Ka+iqb+MaQupS3fsvrUEbHp8+czzk6Ap\n0CRsmjppLCEzBb17Vd18hV0fNdDYA0IIpuJtGEvY+KjGQvQVV1Vek/BznaBNSd07zywfkepI1R6G\nLvsa+jBl90rfvSuxbSBTpuo+hnQSKOflQmivr5A2l9DGfZe27rNHLOHO/D7FEZnNhpo6Yd1sO8RG\nxNCE8mJzSTvGIBpzZdOlvG19w2W2PoRbex2hVEh9VWJdHSWK/4fob2M4CJiJzY9rsPzGJq1oKojt\nGRMyja4z5FAz61DOB1NexfngsmfJJ05s+tgmQ8QZa0UVK51ENUnQAFqqHuyaBr+Yxn9X9+emGXKR\nNnXXmOqpNntX3W+x8nehT3sV+1lT/+ri8TUvg2Vd3duetxgahFna84yk4yTdIulWSWdWXJek8/Lr\n10s6Iv99B0lfkPQlSTdI+p+FOK/Mf1uSdGTh97WSNkm6Lv+cX86viqQ6c6C8RI8pZIppxnqw6vKD\nYR+6RdzvEELNF0LF1Ce/Jpr6ZCjnlbIRf+yJRoxnbskI8lJNSSuB9wDHAncBV0laZ2Y3FoIdT3ZA\n2aHA0cB787+bgZ82s4clrQI+J+mTZrYe+ArwC8D7KrK9zcye61POJGgcqdIHx14JdFGjhRjkhnDF\nHcvbZ0ourr64DLyx2s1l0hPalja2gJkTjgJuNbPbASRdBJxIdjDZjBOBD+fn0qyXtLukfc1sA/Bw\nHmZV/jEAM7spTy9IIZPqzIPZ8n1sdZMvUxOIrg95yMFgSO/BeeobbSyK7awrE7mXayRdXficVri2\nP3Bn4ftd+W+4hJG0UtJ1wD3AFWb2eYfyHJyrzT4j6QUuFRilFSXtAfwTsBa4A3iVmX23ItxxwF+S\nHVH6t2Z2blN8SXsCHwV+BPigmb0+dNkn0vFqKc8qQwuBqde/TAj3Vh+mMCinvR/tjL1Hawmv82ju\nNbMj24P5kx/D/FxJuwOXSvpBM/tKQ5QNwEFmdp+k5wEfk3S4mT3UlM9YK5ozgU+b2aHAp/PvT6Kg\nezweOAw4WdJhLfEfBd4C/G6IQhYNsj6rmFheVL57JRZNyPjch5irzjpj/hSETGh8nUyG7iN92nzs\n/hyIu4EDC98PyH/zCmNmDwD/ARzXlJmZbTaz+/L/rwFuA57VVsixBM2JwIfy/z8E/FxFmCd0j2b2\nGDDTPdbGN7NHzOxzZAKnE128fYr4eNJ0SbfrxjzX9OvSCu1V55Nendqr7rcxBruhhMyiCbOqyVyX\nyV2f/Oecq4BDJR0saXvgJGBdKcw64JTc++z5wINmtkHSXvlKBkk7kjkU3NyUWR5nZf7/IWQOBre3\nFXKsVt4nN0QBfAvYpyJMlV7xaI/4XsR2k+yjzqgSXiEfEN/d/qFwUV+4qL6GVBX5Cvqu+0361Cd0\nW4ytZmojRHsNXT8zgmzYNLOtkl4PXE5mYviAmd0g6fT8+vnAZcAJwK3ARuDUPPq+wIdywbECuNjM\n/jeApJ8H/grYC/iEpOvM7CXAC4G3SdpC9sq2083s/rZyRns6JV0JPK3i0tnFL2ZmkqxrPl3j5wa1\n0wB23nHPbVwqu9DWYbs+EH3tLk3lqUo/FK6usE2DclubFVd6U5mdlvc3+bZtUz3aBNgQ7u9Taeci\nfZ/fqQvTJszsMjJhUvzt/ML/BpxREe964Idr0rwUuLTi90uAS3zLGK3HmNkxddckfXvmXidpXzKP\nhzJNekWX+G3luwC4AGDPpx7yhKDqO6DH8v0PLVzK6Q7lmtplD1L5nrSlPeYqbKhBuElgNxF7tRTS\nNb7rarCIr4q2a76JZsay0awDfjn//5eBj1eEadI9usTvTV9D45C65ibqnBOG3hfUhq/QaQrjc+9C\nDCxN9zi24PPtX7EG0q7plp0rQtq8uqQ1xF6rJYNHtrp9FoGxBM25wLGSvgYck39H0n6SLoNM9wjM\ndI83kekPb2iKn6dxB/DnwGsl3VXwVOtE6L0cQ9L3gZ13Q2yonepNxHCUiMVy3gDpK8DGnnQtGqO0\nZu4e96KK379JZrSafd9G99gUP7+2NlhBc2Lopfss8WMS2ynCNf+QM9piuiGZyj1L+OH7PE/VLjVP\npNYbibKuP0ZnHsPA6auyalM3hRQ4Q6hE6vL2DRtLMA7tsTjUpCOGfaVY/tD35XFbHLWYC0nQjEiV\nsJn9Po/EGLxDCssx1KA+7ttD9IUutpyqOK716nr/uhjx6+IN4eSSaCa968yB2MbcMl08d3zSD0lf\n463PbLXp+pDCOYSQqSpz7EHSh7LQ8zHU93UyCe2k0qd/zOukb2qkVpwAfTqzyz6SqlllqM2jQ1E3\nM57qQBBjFj1EXUM4R9T93mdSEeL+z/NemXlnmk/pxPDRa4+p/mrKO1R5YjysfewGs7hTG0D6qIym\nsIrxJfT+mro8+u5zK5ZnzEnKEsvLRpNUZzWUO2HTJsGySmHsWfbYg26X/UOx1W/zRMgNjK5MIe2u\ndpmuLFq/mTJJ0JQoDo7lgTLWprIYxCxbkxDpu5oao01jTQya0p1S34mlLvNJ2/Ue9LG3VJUlhI0w\n0U5qwQIhXG2XW6d0dZn1UQmFUGtM5T5MXYU2tpCZwn0aQ41mBo8GeKnmvJBWNB64dMap7M8Y6sGJ\n9ZCW6zalFUAomurUpqqNnX8bbSsLF8+0oQf35H02HknQeNLXABlikKhLx9cuEqMMTfiWq6uKckqD\nQlvZqwSqS31DqG+7tJNL//J1625Kp+7Th7INcUr9pQuSjpN0i6RbJVUdIilJ5+XXr5d0RP77gZL+\nQ9KNkm6Q9JuFOK/Mf1uSdGQpvbPytG6R9BKXMs53C88R5X0JIfXMsR6UGKqP2CqhKQ0aTS7lVZsz\nQ+VTlV8I+qQXuixjqLtC9t3HDR7Z0j+dwknEx5Kd2XWVpHVmdmMh2PFkB5QdSnam13vzv1uB3zGz\nayXtClwj6Yo87leAXwDeV8rvMLIXHB8O7AdcKelZ+ZHQtaQVTQd8Z3R1RkifTtu0ionBPKqqpiBk\nqjwQ6zZnDrGZNhRdN6l2rafrqm5optDHSjSdRDzjRODDlrEe2H12zIqZXQtgZt8je3nx/vn3m8zs\nlor8TgQuyo90/jrZYWpHtRUyCZoCMTqur+qka5gxmOBDNzq+KpkhhE1MW0xd+NDeYU1hp/p8DETV\nScT7+4aRtJbsELTPB8hvG9JIUcJl1TCkcHARVIs44Pt4+s2Yyj6mvsTYR1PVT1wM9kPTZy/VPN33\nJb+Xaq6RdHXh+wX5wY1BkLQL2amZbzSzh0KlW2R+7syIjGVTGHOm1qaPHsoDr4tefN4GHR8X8TZ8\nXMj75FOV3tht7lqGKZTVk3vN7Miaa00nEbeGkbSKTMhcaGb/4lAWl/y2IanOehJL1z4FdUBXFUho\nb6hYOv4pEaoPuUxcYgiZEITyyGy6VmyDeesjNTSdRDxjHXBK7n32fOBBM9sgScD7gZvM7M8d81sH\nnCRptaSDyRwMvtAWaa7E+pTpouqpYozO76Jy6moM9iWk0J7DmWsQmlaBMfpXCG+sUOWqut8u+5XG\n2LC5eWv/DZtmtlXS7CTilcAHzOwGSafn188nOzzyBDLD/Ubg1Dz6jwOvAb4s6br8t983s8sk/Tzw\nV8BewCckXWdmL8nTvhi4kcxr7Yw2jzNIgqYXTa9b6fLgjLFfpMrNNoQba9fd8PPA1AXYPHpj9RVW\nfe1aU7+nTVSdRJwLmNn/BpxREe9zQKW0M7NLgUtrrp0DnONTxvls2TnAtePPOrjrAzHUZsyxB45y\nebqWIRbFMg2VT5EYDgPzSNdNp8utncYmCZqOhHiVhYvOPESedbSpFEIIG5e8ymFDMOTsNJb6ZQyV\nT9t9j6lqijnhqrP7jSVwlkw8umn5DL/Lp6Ye+Op5++YTYwd+CEKqE+rqGmvAaiNGOUK1l69L9xCD\nZsi0+7aTr73QxfaYVjhxSYKmgqEeXtf0Q3kC+dZpKjrreRoM+g6iY9fRZxDv0y/7rIxc8h67HRNP\nZhojyQSJuVFyaqqyoQRKVf4+7egqcFz3pExlMJpKOcawNXWd1DUJqjo7aBNDeVXOsCXx6KaVQdKa\nB5Kg6YGrPrsLQ82KxxQyxWu+rzkZU9j0EVKhhcoQ+2/64nKv+qbddk9CqDWnMiGYR5Kg6Ymv11gd\noR70oYWMi/fVVPdu9Emn6xsLQlJl4J6aW3koj8EQwqqvui/RnSRoejLruFNSxbgQw2g99F6EeWrz\neSlnSEIKvZAbomNpIRL1JEETEB933rp4XRlDXVYe6Pu4fHdNp0/cWOqv8mAWa/Aq2yn61CeGUT6G\nu3IIgTOFzZlLS7Bp4/IZfpdPTRuwFd1mxy5uk0Mwpk1m1m4hN3j6eiT55j2Ei3WT119TmFB5dUlj\nLGEzxqbLunLP0yp5nkiCpsDUdui7MIXyxtoTEXpz4JgDSN2gNiNm2Vz3hTUJjaZno4+w6dt3hlrZ\nTOV5n1dS65Vwefin0OmmIGBcqRsQXI3Z8+4x5FJ2V5WQ7+DqKziGXNlMoW+2TWZilXFpSTz22PJx\nb07HBDSwecdtX5M/hYdjKEIOzlVCZayyDIlvPUNvRGxahfjE6av+6pLmkKze9OQjuBNhSYLGkbLA\ncSFWxx1yNRND2HS1bc3bINDHOcLXIaIpTpd2K9rLys4WVR+XtOqudS3fEP1hHvqcpOMk3SLpVkln\nVlyXpPPy69dLOqJw7QOS7pH0lVKcPSRdIelr+d+n5r+vlbRJ0nX55/xyflUkQQNoKWx65Ydg6NlS\nF6HYRMiy+6iR6soSmi5OIE1tHKr9u7RVXd59hI1Pebrm61O+eRj827D8pZounyYkrQTeAxwPHAac\nLOmwUrDjyQ4oOxQ4DXhv4doHgeMqkj4T+LSZHQp8Ov8+4zYze27+Od2lvknQBGQIYRLDgydU3iFp\nEza+bR2rXXxn913SDxWvz4RniNW866bLoZm4YDsKuNXMbjezx4CLgBNLYU4EPmwZ64HdJe0LYGaf\nBe6vSPdE4EP5/x8Cfq5PIZOgyQmxEayNPoNQ04Pr6r3UdebeJ42uTPzh3oYp6vjrPN1irkx8w4Yg\nhoAvpz9h9gfuLHy/K//NN0yZfcxsQ/7/t4B9CtcOztVmn5H0ApdCjtKCkvYA/glYC9wBvMrMvlsR\n7jjgL8mOKP1bMzu3Kb6kY4Fzge2Bx4DfM7N/dy1XrI1cQzwEVftQquhSx2LaQzx0MYR2zMGvnHbo\nturrxjuka3VsIRNq39bYLC2JR903bK6RdHXh+wVmdkGEYlViZibJ8q8bgIPM7D5JzwM+JulwM3uo\nKY2xVjRN+j+gVfdYF/9e4GfN7IeAXwb+3rdgIXTZRab4QAyhOumKi2pwKuqpNqawunG187iEG0KI\nhAwXgok8v/ea2ZGFT1HI3A0cWPh+QP4bnmHKfHumXsv/3gNgZpvN7L78/2uA24BntVVgLEHjov9r\n0j1WxjezL5rZN/PfbwB2lLTat3CuuuI2VUnsTtrHZbiLmid2fdracoqrzbY2nIKwccXVgyxGnSYy\noM8jVwGHSjpY0vbAScC6Uph1wCm599nzgQcLarE61pFN1sn/fhxA0l75IgBJh5A5GNzeVsix7m6T\n/m9GlV7xaI/4LweuNbPNVQWQdBqZBwY777jnNtebNhiGVu2U3UddyjIFQqmIxtoYO8TgNhX1mW9e\n4G7v83kuYjJkG/VmyeAxaw/XgpltlfR64HIyE8MHzOwGSafn188HLgNOAG4FNgKnzuJL+kfgJ8nU\nc3cBbzWz95OZIC6W9CvAN4BX5VFeCLxN0hZgCTjdzKqcCZ5EtCdN0pXA0younV38UtL/eVMVX9Lh\nwDuAFzfEuwC4AGDPpx7Smn9502aowXGsByOkcIihMw/tnh0r/ZB9ITR96x3LyaQtjbHbbd4ws8vI\nhEnxt/ML/xtwRk3ck2t+vw94UcXvlwCX+JYx2h01s2Pqrkn6tqR9zWxDUf9XokmvWBtf0gHApcAp\nZnZb74p4MKSQ6fMwxniQQxrAu3pFua4GYwjFIQZKnxl72xsB+ryxYEgX/iR0FoOxbDSV+r8STbrH\nOuGpoSIAAAl9SURBVP3h7sAngDPN7L9CFbbNa6cuTBNj7QEZ087SRl/X26LdrM6WMMR+mrHxsTF2\nYch6Ts1lPBQy2H7TVqfPIjCWoDkXOFbS14Bj8u9I2k/SZZDpHoGZ7vEm4GIzu6Epfh7+mcAfFl6R\nsHefgjY9UF0Hl5gPzlADwNC79+vyWcRBqImiO3sIe968tJ/rvY65eTbRnVHuRIP+75tkRqvZ9210\njy3x3w683bs8DeI2pP2hz65+H7VJU1iX+rjWuSqfrk4QPvlWxZ0HQrzSpS2ebz/pwxgOCn3jTeFt\nEsuR1JI5fQfnNkK+OiZ2WXzospmzasAtbzb1sQn4eD2FdlxwFR5VZRtyE2yRqQ2gTcIgppPJVJ04\nFpHUogViuWmGSi/UqsYlbozwbftkyp5svnkP6RruMylx3WsT0xNuioNnXZnGUP8O/baBFUs2l6vy\nrqR3nVUQ27W2mE9MXfKUBpcpbfLrWxYXwVFeobmmG3JSMvsbsx90SXuK9pOplWfRSK1bQ4iON2+v\nponFlITMjCFmsF3rHVJ1NEQ929SnfWxxicUg3e2I1Kmv+rjwFv+P4fkVegBwtZvEwGXl0XVGPqRn\n3SzPLvH6pOGDr4NCH2G6CLYVJdVZIiR91ARN+0Fm133Cj6myCOl26hK/78bGEGUImV4ItdpU3cF9\n1Ysh0kkMy/xMAeacWHtt+hjNYxuMm1YMXRwvQpQvlsNHH4r2lBCOA7FWcn1oq5ur230bTenE9GZL\nNJNam/BHOfdl6L0JU/WyKxJSyEyJcplCqOVc7qursAml+nXBVUh0TXtKyIxVmx8fuxiDkVRnNG/Y\ndMXHE2lqFAemIYVOKJVJFXVG6aHug4uasIt7r4/qsS2sSzsM6TI+Ne+4RDiSoAlI1SDWZWCLsY/F\nZ8NocUCu+vgyloCNObj42MGqytFWtrKqs49tqynuVCY/QwiCRRU2ko6TdIukWyVVHSIpSefl16+X\ndERbXEl7SLpC0tfyv08tXDsrD3+LpJe4lDEJmgD4GuVDEvLhCbHx0sdxYQh8BnRXung9tW0srYsT\n+v52WaEM4R7dRMi+4tumsZ7jbMPmFqdPEy0nEc84nuyAskPJzuB6r0PcylOM8+snAYcDxwF/PTsI\nrbG+bQESYelivI8Rvi9dVzZTViH2waX9p7JRMYQ6LHb4Ij5tFqp9y/10wn236STiGScCH7aM9cDu\n+fEq3qcY579flB/p/HWyw9SOaitkEjQBGHPw6LIDPXTedd+r6DrYTmGAbmKig1BUhqyvqyCPlV8o\n1/wIVJ1EvL9jmKa4dacYu+S3DZNrtXnFx1so9AY6n3xDb/L0cZUtq4+6GqN9GNrVN5QLrU8f8c3T\n15Osj/daX5fkIlV9Zl4dCLTk9bytkXR14fsF+QnBg9D3FGRIgiYovu7CbQ9YDPfjWLPQLuk21W+C\nM0dvugqxssoG3NVdVeH73HMfQdE3n6FXLXPEvWZ2ZM21ppOI28Ksaohbd4qxS37bkFRnI+Oi+536\nwxVi30fINwf4MhWVV1M/8FVTutoUQnmkhWjDqdyHOaPpJOIZ64BTcu+z5wMP5mox71OM899PkrRa\n0sFkDgZfaCukzHqtiBYCSd8BvjFQdmuAewfKa0gWsV6LWCdYzHoNWaenm9lefRKQ9G9kZXbhXjM7\nriGtE4C/AFYCHzCzcySdDmBm50sS8G4yL7GNwKlmdnVd3Pz3PYGLgYPIxsZXmdn9+bWzgdcBW4E3\nmtknW+ubBM2wSLq6YRk8tyxivRaxTrCY9VrEOi0SSXWWSCQSiagkQZNIJBKJqCRBMzyDuSUOzCLW\naxHrBItZr0Ws08KQbDSJRCKRiEpa0SQSiUQiKknQJBKJRCIqSdAEoum12qVwXq/llnSspGskfTn/\n+9MLUKc9Jf2HpIclvXugugz6KvWhiFSvV0q6QdKSpFFchiPV652Sbs7DXypp96Hqs+wxs/QJ8AH+\nBDgz//9M4B0VYVYCtwGHANsDXwIOa4oP/DCwX/7/DwJ3L0Cddgb+B3A68O4B6lFbxkKYE4BPAgKe\nD3y+a/0GvD+x6vUDwLOB/wSOHLJOkev1YmC7/P93DH2/lvMnrWjCUfda7SLer+U2sy+a2Tfz328A\ndpS0OkL5q4hVp0fM7HPAo7EK7lHGGSFfpT4UUeplZjeZ2S3DVWMbYtXrU2Y2e8/NerL3dCUGIAma\ncNS9VrtIl9dyF3k5cK2ZbQ5QXheGqNMQDP0q9aGIVa+xGaJeryNbESUGYNpva5wYkq4EnlZx6ezi\nF7N+r9Wuii/pcLLl/ou7plvFmHVaJBa9fotE/q6urcCFY5dluZAEjQdmdkzdNUl1r9Uu0vSK7dr4\nkg4ALgVOMbPbelekwFh1GpihX6U+FLHqNTbR6iXptcBLgReZWZoYDERSnYWj7rXaRbxfy517xnyC\nzOj8X5HKXkeUOo3A0K9SH4pY9RqbKPWSdBzwJuBlZrZxqMokSF5noT7AnsCnga8BVwJ75L/vB1xW\nCHcC8FUyz5izHeL/AfAIcF3hs/c81ym/dgdwP/AwmR79sMh12aaMZF5vp+f/C3hPfv3LFLytutRv\nwH4Xo14/n9+TzcC3gcsXpF63ktlvZs/R+UPXa7l+0itoEolEIhGVpDpLJBKJRFSSoEkkEolEVJKg\nSSQSiURUkqBJJBKJRFSSoEkkEolEVJKgSSw8kh6OmPbgb6JOJOaN9GaARKIfjwJvIXuz9g+OXJZE\nYpKkFU1i2SBpF0mflnStsvN9Tixce0t+hsnnJP2jpN/Nf3+DpBvzM0wuKqdpw7+JOpGYO9KKJrGc\neBT4eTN7SNIaYL2kdcCRZG/Gfg7Zu7KuBa7J45wJHGxmm9NBWYlEN9KKJrGcEPC/JF1P9sqY/cle\n7f/jwMfN7FEz+x7wr4U41wMXSvolsjf+JhIJT5KgSSwnXg3sBTzPzJ5L9h6vHVri/AzZO7WOAK6S\nlLQAiYQnSdAklhO7AfeY2RZJPwU8Pf/9v4CflbSDpF3IXiOPpBXAgWb2H8Cb8/i7jFDuRGKuSbOz\nxHLiQuBfJX0ZuBq4GcDMrsptNdeTrXK+DDxIdv78P0jajUztdp6ZPVBOVNIdwFOA7SX9HPBiM7tx\ngPokEnNBentzIkHmkWZmD0vaCfgscJqZXTt2uRKJRSCtaBKJjAskHUZms/lQEjKJRDjSiiaRSCQS\nUUnOAIlEIpGIShI0iUQikYhKEjSJRCKRiEoSNIlEIpGIShI0iUQikYjK/w/N1dMGrR7RJwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2YJNdd3/v5dXVXdc/O9IxW2l3JXssysmxhy9gEIzuB\nSwwE4id24tybJ4ZLeHtCQhzia0hIwA43wL3AfRTghvAkThyHYOwAcUgCFwfsmJfgGBO/CSyELQlb\niJW9svZFuzvqmd3pqu7qc/84dbpPnTqnqnpm5JU9/X2efbanXs5L1anzPef3KkopVlhhhRVWWOGw\n0LneDVhhhRVWWOELCytiWWGFFVZY4VCxIpYVVlhhhRUOFStiWWGFFVZY4VCxIpYVVlhhhRUOFSti\nWWGFFVZY4VCxIpYVGiEibxGRf3K923GUISJ/Q0R+4xDL+3YR+cBhlbfCCjZWxLICInJGRPZEZFdE\nrojIr4vIs8x5pdTrlFI/cp3adt0nwKINSkR+yjn+muL4zz3VbVBK/YJS6uutupWIPPeprneFFfaD\nFbGsYPCXlVLrwC3AeeBfXOf2tIaIRJ+Dav4EeK2IdK1j3wZ88nNQ9worfF5hRSwrlKCUGgP/GXiB\nOSYiPyciP1r8vklEfk1EtkXksoj8roh0inNnRORNIvJAsfN5m4j0rXJeLSL3Fff+TxH5Euvcs0Tk\nl0XkoohcEpF/KSJfDLwF+LPFbmrbas+/FpF3i8hV4KtF5H0i8res8ko7nWKF/10i8ikR2RGRHxGR\n24t2jETkl0Qkrnk054A/Av5iUd5x4M8B77IvEpH/JCLnRORJEXm/iLzQOnejiPzXor6PisiPetr4\nuqKN2yLyZhERtz8i8v7ilj8snss3+HZ29q6mqPtdRd0fAW53rr1TRH6zeKd/LCKvrXkWK6xQixWx\nrFCCiKwB3wB8KHDJ9wJngRPAKeAfA3ZcoL+BnnxvB54H/J9FuV8K/Czwd4AbgX8DvEtEkmLH8WvA\no8BtwDOBdyqlHgReB3xQKbWulNqy6vkm4MeADaCtqOwvAl8GvBz4PuCtwDcDzwLuAv73hvvfAXxr\n8fsbgV8FUuea9wB3ACeBPwB+wTr3ZuAqcDN6t/NtnjpeDXw58CXAa4s2l6CU+qri54uL5/IfG9pt\n6h6jd6R/s/gHgIgcA34T+MWi3d8I/CsReYGnnBVWaMSKWFYw+P+KHcGTwNcBPxG4boKenJ6tlJoo\npX5XlQPO/Uul1GeUUpfRE7+ZrL8T+DdKqQ8rpXKl1NvRk/LLgbuBZwD/SCl1VSk1Vko1kcWvKqV+\nTyk1K3ZZbfDjSqmRUuoTwMeB31BKPaKUehJNCF/acP+vAK8QkU00wbzDvUAp9bNKqR2lVAr8MPBi\nEdksyPOvAT+klLqmlHoAeLunjnuUUttKqU8DvwO8pGXfgrDq/sHi+X7cqfvVwBml1NuUUlOl1MeA\n/wL89YPWvcLRxIpYVjD4q8WOoA+8HvgfInKz57qfAB4GfkNEHhGRNzrnP2P9fhRNGADPBr63EPFs\nFyT2rOL8s4BHlVLTJdr7meZLKjhv/d7z/L1ed7NSag/4dfQu7Eal1O/Z50UkEpF7RORPRGQEnClO\n3YTe4XWddvv6cM76fa2pTS3hq/tR6/ezgZc57+ZvoHdWK6ywNFbEskIJxW7il4Ec+ErP+R2l1Pcq\npb4I+CvAPxCRr7UueZb1+1bgs8XvzwA/ppTasv6tKaX+Q3HuVkcxPq8y1FTn76vAmvX3UzUpvgMt\nDvx5z7lvAl4D/AVgEy3WAxDgIjAFTlvX28/qoCj131kUmLrdd2PwGeB/OO9mXSn1dw+xfSscIayI\nZYUSROM1wA3Ag57zrxaR5xZK5SfRBDSzLvl7InK6UG7/AGDk//8WeJ2IvKyo45iIvEpENoCPAI8D\n9xTH+yLyFcV954HTDYp1gPuA/01E1gqF9Xfs7wk04n+gRYU+q7kNtHjvEnqS/3/MCaVUDvwy8MNF\nG+9koa/ZD84DX2T9/YfAC0XkJYXBxA/X1P0CyvqdXwOeJyLfIiK94t+XF8YTK6ywNFbEsoLBfxWR\nXWCE1o18W6GLcHEH8FvALvBB4F8ppX7HOv+LwG8Aj6BNdH8UQCl1L/C3gX8JXEGL0769OJcDfxl4\nLvBptHHANxTl/XfgE8A5EXmipv0/BWToCfftlJXmhwal8duFDsnFO9AipseAB6gaQLwevZM5B/x7\n4D9QVf63xQ8Dby9EV69VSn0S+L/R7+ZTVA0aXo8Wq50Dfg54m9WnHeDr0Ur7zxbX/FMg2WfbVjji\nkFWirxUOCyJyBvhbSqnfut5t+XyAiPxT4GallM86bIUVPm+x2rGssMLnCIWvyJcUosC70eK6X7ne\n7VphhcOGT1m6wgorPDXYQIu/noEW2f2/aF+YFVb4gsJKFLbCCiussMKhYiUKW2GFFVZY4VBxZEVh\nN920qW599glyNSHNO0xmwjiHvYmgZgKAUjCb/5ZKGSJ6t9fpqOJvfQ8s7jP3KssgVylBRNGJFFHx\nr9NRdIpbZspct7jeYGZtMNVMsDecdp12m2zY19vnpLM4oUptr17bFqZM0y8RhQilfiql+5fn+t8s\nF6TFcsc8+zbodNS8/VI8526k6Ecw6M5IOhB1YmSWA6A6HaazjL1ph71c2Jvotrn9sscJlJ9/mzaY\nZ2DKcoUH7vvpyKLf9jn3PjNe7LLdts+vLeqdzWR+n4gek26d+Uwq10fRDJFy+3zfit2e0nNxxobd\nJ6VEj5Ga5+qD+z7sfnWc/tvvxG6Pi0ufeuQJpdSJpRri4EVyo9pl0uraM+y8Vyn1yoPUdz1xZInl\n2bed5D2/+yYe2l4Exh1lHf74yQ73n+uxO+qRphFZps9naTmA7nivS38wJU70ZBTH+fycucdGlkaM\n9xaP29y7sZGxPpwQJzlbiWKvKCadSule93eW6tk3tc859dptakKSlK9N03DA4Lpr7XNxMrN+58RJ\nTtJVDIrL93LdzyyNyNKInVGP3Z0md5WirDj3PufgPXFOkuTEyUw/92NTvnhL8aLjU+7YHHM8OU2S\nacf/az3Fhb0LfOrJPvdfjrj/XK/y/g2ytDPvf6g9pu5F+3Ub7Hdpl2G/N9995hmU2+Efc2ac2GX4\n2p9l0XyM9gdT1jey0vMy5e2MevN7d3di7/VNMG0y19pjAxZjwu6DeT7u2LNR9x7MMw2N3WT+XGeV\nZwvwjr/4DY9WDi6JXSb8cHR3q2u/Pf/tmw5a3/XEkSWWySwrkQrA6fUJSaQfyf2gPTqoDtTxXpdp\nKoxbPD53crfJxSBLI+Ik95IKUJqEbLiTvzvZmt9tCKaOSJa5Nk2j+UeapZ3KRKP7tiAXWEySG8NF\nu0MTuSEVe4IITeimjPFel+FW2V0kTXLGuWKUdUhzIZtdI0mO6/umF9ib6uOmTlOWb9Ix/a60NTCZ\n2ZO9Syrzeop73efpe6Z1ffeVUSEXi1RkNGNM19tPm1RAP4vxXnf+D2C4lXqJ1CW4dP48Z1Z7m8my\nbuyFxsHGRua02xmTaVT9lmoIbIVmHFliyfLFQE+iGc/ZUAy6G5waXCaJ+vQjuC/JefzssdJ9hlSA\nCrm4g3FjI/N+VD5yMXBJpdRmzwq3DdxVcN110ExEpQnQ6XMc58GJzBAoLHYrpXuTnI0hZGnODnFl\nYrFJxZSZppF392ImSvOuRttJiVyyNGKcK9K8w3bWZaO3xzTSO5Z8NiGddUitMRKXJsq8VI4PbjvN\ns3B/+3bFPnIBSs/U1xYX9m7Evt9GapGvjGb00pzJCEaUn1eIOPuDaWk873y6hxom3HTy2rxOu72p\nQ3ht+mHKCY159/nZZZlvsC12dmLiVI/DwyYX6UDSbynWu3qoVX/OcWSJZVysRg2pbManiDsDIulx\n6/oFRlmHfgQf6+5y5sx6aaLqpYsBN6H4MItHaYvGQttqG2kaFeRTXbHtB/Yk65v07FW0b6Xsu9bA\nLreOHF1yMfeYZ5FOZS72mN9T7Armuxcy0nghovGRio9c7F3KNBXWRnq1OkkiRiT0B1MgI05njKdT\nxjmkuZCrKXkRAzNX0/luZWzpVux3mXQV6VSqIqmCxMvtXIivbPGULYIybfY9SwN3Uk5qyM4Vcc3b\nXUz0ZcKL9LNKc47tZFwl5loaVcjYxpzksnz+rDef2OPYKGM7HXAuPcb61gQdDKGMOhFmaHfugzvO\nTTvWtxaLkDbfICzehenzzgiSpMP6sJ1OZIUyjiyxXJ3ARy92ef7mjFODPQZdvcLKZntsZ/qxnBrM\n+LMnO9wQ7/LwuWSuA7AngG4wRmJ5ZXlYaLNbMZOs7yM1E19ptRgvZOg+nZGv3LZwJ7AFcs+xMkoT\np7N694lzDMz76SaKSaKPT5KI9cGkdduTqPpe7RWx2W25k7hBqJ1GnwAQpzOyNJ8TqH2N3ec61O1e\nkkQT3A6xdwdlrsmynG7SZZLodkySiG6ivKRi6yJALwBA7wgnccTVYTy/37TH3DN/JmYcOXqvuv7V\n6hKte40Yz4i/NIl6xnKgPr3wYFHniKcluYjIK4GfBiLgZ5RS9zjn70SH7fkzwA8opX7SOncG2EF/\nhFOl1EuL4z+MDrt0sbj0Hyul3i0iXwfcA8TolcI/Ukr997r2HVlimU473Pton+2bU57MjvHC4zts\nxVc4v9fj4t5ClnxykLMZC1vJmIeuZFy+mHtXgi7cwe9TkLaBUWz7PrA6LEsCcZy3mshC19ikBGG9\nglkt+8Rcphx7sgwpa+tESTbUUF+3PpiwXkw2STG597vQjzSJRNIl7gwAiKSLDgZc7p//d3lnECd5\nhbwr4kKjqD42Zedqd67Lm59fwujCbofvN1TFQZX2pDnDrZQRCdeIUcPOnFRcQwJDAvb7Mtc9wRqT\nUURyasb6xrhEQlnaqbzLtsr+Uj+z8oLIJWSbVJqgd82WMcQIvDusJcTOdeiIECctF5s1orAiv86b\n0cFQzwIfFZF3FTl+DC4DbwD+aqCYr1ZK+WLv/ZRNQgWeQKcu/6yI3AW8F52ML4gjSyxK6Q/w4XMJ\nV7KUcZ5walBWTp4YTHnOhiJXE4Zxn624y0PJHmcvJt6VpgtXkb7sALVJpYlQ7I/WXhm67WgqYxni\nmrcz8+903JWoTS72NfpY/c4lJJuvIxUDY7VkytL15vQjRRLNSDoz4miAFHaqUadH0slIohn9qEOW\nlj+TkCjLtMMllzgtW3NtJYqtBMZTGETaOnB3FOsxdYBJLLRDbhIHmWdiyMUlFddiyvQBYJuc9SEw\ngptOXmN3EM8txMw99v+mnT5RYbkv5fcdsnh0Sdi3EHEXPbYFmk0u60Ozi1x8bwd5H08h7gYeVko9\nAiAi70Sna5gTi1LqAnBBRF510MqKxG8GnwAGIpIUyey8OLLEAgtrkCztkE7H3HkDPH9TD/bbhymn\n1zdZ795IribEnfMM45StOOGhJOWTF7tzUYYpK2idtIRZ7PyefZKK+dsn6jJtsZX5vgnAp2z1mRG7\nE5mtJK5biZpn5epi3Lp9ZTSRir0bdMnO7avZrWwlOZH0IN3V53sDBt2dct88zyS0WHDJxYhjzIR8\n85r2oSGG7UxbySXHU+/u5SBwCaXN7rWOVNaH2dxcvF90eytRc3KJ01nlnqY669oXJMoaMgmNTbsO\n2+Rdo6ov8xndfI5xk4jca/39VqXUW4vfz6SctO0s8LIlylbAb4lIjs7q+lbr3P8hIt8K3At8r1Lq\ninPvXwP+oI5U4AgTy2wmi4kpi9jZidm9acz4dMqLjy8GmChFJL35KvbEYEoSdehHivuLXH9zu3yf\ndVKLFXXp+nQxWflk9/sRk9hoJe4qiU3aiyrcsn2TSppGJf8HewIOtcGGK693ScXXpjrfh2XQJHbz\nIcvKSnYzIfcjGOeL33v7bKJv0eHrb/MEX9W92OeWtZBaVsQVQt2CDer8phbEsPCbaSkWnhuSHC65\nSAeSpLWz5xNG9/EU4CuVUo+JyEngN0XkIaXU+4F/DfwImnh+BB3L7m+am0Tkheh0Cl/fVMGRJRal\npDI5XHqiz8cBSEnzAfAktxybks8mfObqlFGmRWXDeMbzNwEmc3KB+m1znbWLWdFW9Q6W+MAiwfl5\nR6G9H9hbft9Ow5Wl220O1ZtaxGivIA2pwEJJWrIWS8tmynVwLc6WgfYHiRjnM9JcCquwCXR1FuBc\n7bI31fUbq7DSTsljFRfSmRnLJHPfuULsYkhlO4XtVI/FXcdPpI1TYKlf1tiwzXzrx56to3Dffdnw\nIksjsiQnTcrOjFqMtz/xkSumanOdvRBpO2bK53LsBKS2Q6bvnqehOOwxytlATxfHWkEp9Vjx/wUR\n+RW0aO39Sql5qm4R+bfoBHDm79PoSNzfqpT6k6Y6jiyx+DDa1nmNPg6MpykwIJ3tMcoiYDG4TvQn\nnOiDzoOkyaVp294kDmv7gdnX++opXRPwS3FX/QbG9HleZqI91EGbkLhy7zr4ym5yZLQV3nWTqY9w\nq9eUzZMrYrs0YpxPSfMOe9OONjXuatLLp7rPxo9lvoOseYeGaNxoDMZQwK73HIsoC/bEDP7n6poW\n16EtyYbIpmmnYROM+dt1nIRFm6umzfWizqa6m8jFB7stCzRbJZp7DwsitFfe1+OjwB0i8hw0oXwj\nOi12izbIMaCjlNopfn89OkEcInKLUurx4tL/FT0VIiJbwK8Db1RK/V6belbEQtnp0XwoDwOglfrP\nWl+sRm9dT9lKNoiky6B7hSTqA/BQUnWm9ImGmgZym12Le60RJ7WBuytxdRZZWg57csM8wsp0Ti5Z\n2vGKr3yE1aSPcPsCZYKxy9V9rYY18TlT2n2NPSvaLO2wneqdQzrrkM8mqCJwlHGQBK1gd9tpjxfQ\nZs0uQua9powLhYTa7FLaEHXd5Gk/Xx9Rz9vVwlhCX+fqO6pjr0n/55/QD4ZlyCVk8LF0nfvQkT6V\nUEpNReT1aOusCPhZpdQnROR1xfm3iMjNaD3JEJiJyPcALwBuAn5FZxanC/yiUuq/FUX/uIi8BL2d\nOwP8neL469HZXX9QRH6wOPb1hYGAF0eaWMwq03Z6tEUcDwPjPGWcd7l1PWcY56x1uwwiHXtko7fH\nMM65eRDRj2bAVS5f7Ffqcb3D25oaG7jkYoti+oNpiWDq4H54toOhKTeNo8pk2O/CINdhULK5wUPZ\ncdGtx43b1GYlbSu9wUfMZVKxJ1Dj5OdO8iE9D2i9RtlBcuGvkOYyF1c1wVdvXf2hCApNurQQubhO\nlqUx4YmEsGibX+xZB5+Zd53ero4Q24anCbXRrdfUVfdMfWJaH4mGHEyfLlBKvRt4t3PsLdbvc2gR\nmYsR8OJAmd8SOP6jFCnG2+LIEouIKoWjmCRRyaPerN4vjLpspznbGdy2HpFEKXCeSLp85uqUs7ta\nfLYVw0tumvFgd4/HHx+U6jKD3XZEtOvZL2yCCoUZCSnHXdjnd0Y9NoZFPK3CUXAvX3xwdn2hckNm\nn03wrUjrJqf5CjzLWd8yxxarWNvU1xxzoUVeecnzHuqVrN1EBQnF9DNxdqghcdcyYyB0ryFanygu\nBJ8HfkinZrcfbM/7ZuOSNuI1H0IhX3zRI9x7QubJZd2cq9wv6wPtZ3sY6MhSyvvPaxxZYoHFgBmj\nRRuTJCp50puJKUsj7k9zzg2nbGcJo80poPhMQSoGz16fsRV3eCje49NXuhVlrFuvQdnJa/lVZH28\nKL9y3IbvAzVy8+R4yl4OO1e784jP83pbWJjtl2Dm1zqkGNJFhXRMWZp7RTZJkjsmp+0wHzN73eAu\nxbRzBx13KqTTMm2sQ929obaBXxTnE0n5yMUHX5TkOJmxMyr3YXcnnvsMmfa3ia3mnivtrOLyLrZO\nnAvtSMX0wedYutMiwvYK9TiyxGLyMtjkYmMhrliIELI0YjvN2M663FzelPDC4ylb8ZTtrEs/SthK\nJjyU5HPRmL1r8YbVryGXOoR2Dj5P8Toi8BNAR/tWwL5IRbfP35f9iBfcgJZt0Fa2bovB2sDe7YZE\nm75wOvuFj/ybwsP7zIRD5ALVd+W7tup53ymJO3e3eyXxaJOpcmhnVNENWbsvX5mhnYpBSAzsllH3\nTA8K6Szhef95jiNLLCKLlZC9CjWIPStF40x572jGc29OuXNLk9NzNzOesQaD7g1s9PaAlGHcZSuG\nh5I9HjlbZqEQuWhT3Kyov/wB16Fu4DeFj6mz1Texkua/G+A6Oy7qKIuifCLBg8IWzdhYxgfIkIv+\nv7pqdWOwtdGV2bqow0RoVQ5VUmnreFg3DtxwLsbceH04mU/Iu9s91kYZo0RHN06cazWqu09b52Tq\nc+F66vue587OwojDp/urg7nXl2fpsPygjhKOLLG4CH6EvolqR38E43yPO7d06PVcjcnVlGy2R5rr\nSenW9ZytOGIr2ePjZ7XYrLLqDMiRfU5dISuctmHx3f4etlLSRypgW6+Fd2K+sCg2ygpo//kmuH4e\nYLzvZ9oJVrT4z/zvQ93O0Hv9UzQpLfu+fe0MWd6555Ytf5rKfJG0bmVMtAN3uvc1+YykNWPI3Lux\noSNiLwu3zvGePx/NCu1x3YmlCKh2L/CYUurVInIc+I/AbWiTt9easAIi8ibgO9DLnjcopd5bHP8y\n4OeAAdpS4ruVchO2lqFUlTTWN7KlxBWPnB2wl+8xzruk+YATgz1GWX8ech10vLFhLPQjxb2P9iuO\ndga234UN14Q0hHn4EKf99qo6FETQDhLoTja25ZivPhttRHhuQEJXQVoxmXWMD9wglm1MWUM7RBuR\ndIvgkyYIZbOxg73brZqJ1xs3GBxmGKDS/R7nyLoxVEck9QYAi/dkIiQD7G73Gu9127qsb5Rdv93W\nkC+Q3R5fnS6ZHPZuRQTitvlYPs9x3YkF+G7gQbS9NcAbgd9WSt0jIm8s/v5+EXkB2hHohcAz0LFu\nnqeUytGhCP428GE0sbwSeE9dpXZ+cnsAmYFZmzPCmiy0BdgetgOlwYnBlGcd65KraRGGfcy9j/oz\n8flJJRyxdtnwMeXgkOXdme/j1OdnpWOuT4orfmkLX7Rb17ppfjwtmyD7nO5CE1Kpzz7SLf5MIkXU\n6dEtPoeo0yOJFoTsIy8Tkn4e98wzKZnrbHGjT3fgPgMbdf5CvvLs56TbXm7bfn1Kqgp+//s2xALM\n9S3u/cuiNtCrx3zaPO/9OJu2XRCsUI/rSixFmIBXAT8G/IPi8GuAVxS/3w68D/j+4vg7i+Bnfyoi\nDwN3F7kFhkqpDxVlvgMdKrqWWAzq8lS0jdP1+OMD0ukYgOdt6mvu2BxzY/8GNqLjKBGiG86iQ7GP\nuf9czqOPaB5t8hCH5SYDvzd1VenpS1TVFHXWjs9l9FG2BVCdqWq1TWViKFn+BMjFXBtyuvP5VYT8\nPgz6ESSdmd6l5LovkXRJOrM58dgIifvc+n16Dnt3aPpSeiaBKA1u0FC3bp/i2hYdtTLzrtHZNCEp\niL8/mLKblhdNJpqFbR3XZKlW1y7zt6vPc3fhBvazaRsCaUUqB8f13rH8c+D7gA3r2CkrrMA54FTx\n+5nAh6zrzhbHJsVv93gFIvKdwHcCJMdPVs4fRO9w+WKf+1iQi87x0YM8Q6K4WAWPuW0d+s+cECdX\n2B15FMQBE0jwT0Sl0Pwt226HDK9LhexDaNJzlfXLPMe24fp9q/dlRDiuP9Ey2I8e63OF0m6yhQWg\ni9BOt04UFArv4/r32M6a9vWtRGQtxIRNATftxWEbh86n8h3rIJQrq7CnFCLyauCCUur3ReQVvmuU\nUkpEanUly6AID/1WgPVnPU9Vw1SEk0e5HuE+v4jLF/t8YDTj3M0po2ydF9zwBLccO0aeTfjEFcXF\nPU0kNw/g5admPJSkXBh1GyfhOjPTkPLfPZdl0TzdqnuN17yzWOn6wqHESV5RcC5raWTD97zLbfEr\n8kMe1u51NkIk5sYKMyFdSn1xxHGmDnPOfd56ld4J7lLa6lHsyc6nxPZ5iLvm6yFxXoiYM6tf5Rhu\n5XLSdBFY1KCbqFLqgibP/FK9Lce2e62v/cExaevsnmbhWr5QcD13LF8B/BUR+UtAHxiKyM8D500w\nNBG5BTDxaEIRPR+jHLqgdaTP8V53EQIjy0s7AF9sJB982+sHHh1wJdtjOxtwx2bGKOuQ5ovzJwZT\nbt/MOTXo8cdrioeulBWsQZFYze7E6zTosXBzPyRXjOIjTbd/UB+Wxm27qzgN1d2GVNyJLnR/k89O\naWL2kAjgDenSRq/lIxj33uB4CiiQQ3GvmvSBuq79rZLLYzIgpguMC1fEa9ph2h4iFLc8N4p0k9Xm\nol2d4AIxdN8yYXT2AxHoxoe2Tn5a47oRi1LqTcCbAIodyz9USn2ziPwE8G3oHMvfBvxqccu7gF8U\nkX+GVt7fAXxEKZWLyEhEXo5W3n8r8C+WaYs9eEMD255IQ7sYWHwwZ86sc+nyhHOnU+7cXAym2zdT\nbtsYEEmXU4PL88yUZ3YUn75SfR3uxOHGhNoP6jyL3TAqdQmT3Ha6cOXbdZ7nbUjFbaN7v/1M9iO6\nsoNQ1iFEEO4k6MbtCl3nwvWhMF7uvok5RGyuwUNtfQ1Wc2YB5iI0/kwGSTs52Dw0/civEwo9RxPs\n03ZgbkMuoV3wMpEbVtg/rreOxYd7gF8Ske8AHgVeC1BE7/wldPrNKfD3CoswgO9iYW78Hloq7m3Y\nuxcb7t9u8Me6FdClJyI+OOqxffsuL7lRcXKQc2owYRCdmudXv3X9Ckk049Sgy1aidy9G9+LzebE/\nOtuZaxmzVncStmGb9/pWa254DYOQpZIr3/aV40Mb6xyXVKapzCegNn4I/QOOfpvkbdiRj92IDiHY\nE6i92l8flknOJRjX7Hl+nUd81kgwjm7MDtJqYMfT2017JV2Ku0sxzpE6dI5OAWwyTdqWke5z9NU3\nKawu695vSAdZNxZC4V5WOBieFsSilHof2voLpdQl4GsD1/0Y2oLMPX4vcNcydXZ7s3ka1mXQNGH5\nVt5nLybs5Sl/9mTE+b0eg+6IXE3Ym+5wfk9/YDozZUQ/gge7KZcuLxwqXVPhZbyLvcrNuN6j3zcp\nhc77Pe04Ia3OAAAgAElEQVRbiPJcoplbTZVNhEN98GFMe6KdW8cVOe+BUs57mHqtwnxttsO7QDmM\nvu3FXQf7nW5sZBVLpzq4pL7MJFkXasgsPMxkbk/4Brai3hvHa6pTL5s+mn5uDCfsOGmYzfM0sftc\nBCNIH0AZ76ZkeCohAr2nuI6nC54WxHI90IkUN940Xkr+vJ+otGZg71ztct+lKTo52B5J5yqjSfn+\n08cyhnFEP4p5KEo5e7HsrT+Pv9Ry225/ND4ltq9PbeESipkEq7qfxQo71G7XSdIllGVjp7UlpH4R\nuXnQ9ZsbV8oOtd9DLqDzx7d1sjMe4z4nVp9peMjyLhTvKxyzrewYW0dkY7rznYPZSRhFfZz4gl6a\n9vnLdH3H3L6N9xb1GbjhVppQ77MSHldPd897EXkl8NNoB7qfUUrd45y/E3gb8GeAH1BK/aRzPsJy\nTC+OvQR4C1rnPQW+Syn1keKc1zk9hCNLLFFHsT7MgkrUpo92HnK7xorFnlSyNOLCCO5Dk8tzNxf+\nHwDP2VCs925ibzoiiVL6UUI/Snn4XDmCso0mU1vfh1O25KoaCjQRTYhQQE+ASXc6nwTLzyPstBZy\nAAz509ShzWRT8ueJ1MI0fFIQS6/HoDsjiWb0u/oZxWmYpKFMLmbys3cejW1K/c9zXqeVCrgi9gq0\nx7zfpmcxJx/PriWOy0YtDJhP+DapuCbnofbYbfaRo0syZvdSybPTcifS9vn7cNjkIp3DUd4XpPBm\n4OvQ7hUfFZF3KaUesC67DLwB7dPng+uYDvDjwP+llHpPYVT148ArGpzTvTjCxIJOD9st0tA6/hx1\npruLa2ZkadmR0qd4tcsw5DLOY+46riey52wojifPpJvPiONTwHnSPKMfxfS7KZ+86DdJDpmxhpwc\nfROSHQjQ9Yb3xZJyyzVydMAKQ28+Hp+lWphg3HpCH7aPHNugksAsooiIUMQHm17Tv+O1xrb5kKVR\naZdilNelMrrlicWMO7ev1Weqc+K4BGOXZ67V103nidlM20IEZPrm21WWdhXxYpzbuo5y5OHwd1M3\nFutg6mprrNIUhHMZuO/raYK7gYeVUo8AiMg70Q7kc2IpsjteEJFXuTcHHNNBf7iGaDaBzxa/vc7p\nwAdDDTyyxAL6A2yDOtPjSv6UBtGHIZe9XJPLi45PydWYbLZH1B2Sz/aKQJb9Qu/SoR8p/nRnurCs\nCbSrTT/qJhcbdQEKK9dOpfED9D2zpt3RMu09bJidTD9ShZinXmTaVjxZ55Aa6m9TeebZ2+PZrqeJ\nXOr8XOr+bkIbSz9Xt9ZkRh/Sn/l0Jcs8zyafmeuAm0TkXuvvtxZ+eKAdwD9jnTsLvGyJsn2O6QDf\nA7xXRH4S6AB/zqrP55wexJElllkxDzZ5nrtbeB8W5qC+SbCaIClLIy6lEfdNM8Z5l1G2xu3DJzg5\nGLEzGfPp3UV642E848tPzNiKuzy0DdueXYArJw+F8/CJHnyOZK284K2djvkQfRNb6Pk1xfqyg00G\nzY6tti8bF8pLhMZBUrmWWDlgWzH5RYe+sCvLkKOtwDeE4S5+fOPVd8wmk7oUwPaYMGMopNC2RWal\nuto6eto6P2fn5fqZ+Mou3R/czfoja7dF9frDIxkRRdRrrS98Qin10kOrfN6GWsf0vwv8faXUfxGR\n1wL/DvgL+6nnyBILHA6p2LAdwcJlLs7tjmLuT3PG+ZQ0H3BxbJT7GsM4t4JYztiKYx56Eh6/1tx2\nU1dTdsAm/Uobqxldbl4KEWNPbD6E/GDK4fE7FXL0tX1ZAwTfRK/JZPFMTYRqYxlWl7dmGTQ9Fx+5\nzNvU6p1Hzv+d0kLDwN4h2NEVfO97sYBY7DQr4YQcT3+7Hh+hVP+u7lhCFo0+tEnJULdAWfzu1BLx\n0wQhZ/E28DqmK6W+Ge03+N3Fdf8J+Jn91ndkiaU+qP6CVHzRU234LHXsFZhvMkqdgfzxNGI7Tblz\nq8sdm1qOfKI/4ZZjx9js6VBpcXSeYe8qwzjmk09GPLgN5aRJ1V1HnYOjry0ulhF9GHJZ/C7vKHyT\nmjth+dpTzhpZ/yx9qK7AF78r5sRd4zhaNkNPuorMmnzb1m0Q2iW2Mw1eTpTjEko1tEvkHbOL8+X3\nFXpXtj7G56tUCerq0QUZGN2RLyiqDZ+1X8jAo25H6EOd3u9piI8Cd4jIc9AT/DcC39TmxpBjenH6\ns8CfR7t+fA3wqeK41zm9rp4jTCz1sm7743e9uOsIJmQG2hQjyvi6jPMuz9vM5yawMk0hiomky1aS\nk86mhey/LBpru5qu+3jqvNX9CZbckOxl/Y+7o/BH+20OWLkfUV0T9pPvHpqND+pgjylgHmLH9Qty\nc6nUyfx9hAL14sUmNFnj1UWmriOXZWGLmL3WhIHv0DVIabrPR8JN9ewLhxTSRSk1FZHXA+9Fmxv/\nbOFA/rri/FtE5Ga0OfEQmInI9wAvUEqNggXr1CM/LSJdYEwRsLfBOd2LI0ssEF7V+CYOexKoW2nW\n7VRMOfZvO4HVztUuDzJlnEfoXeoV/V8Ol8ZX2M60nH8Y59x1fAbEc3KJk6jWiqtuMjxIID7fxGc/\n14OSgLtbOaxV5V7ujwW2TJtCbXF1XPYkVxfWpnK8JRHUkYq7yvenZShPwK4IMqTwNwg5WNpwjQxs\nCzZz3u6Lry5fnLE6cjHn2yy67MRznw/e+Eqpd6NzT9nH3mL9Pkc5hqKvjPdROKYXf38A+LLAtV7n\n9BCOLLHMVFjn0LSqt1EncmoKtOebkNMk5093ACLSfMBdx6+wN+2Qzhavaiuezs1k+1HMfZcgKyyX\nbNJzveHdNoUCCi6bGdLXn1aZHRt2K3X17u7EQQshG1WCLROhne3TwFXem/t8Zfuepx0XzUzQ3gjS\nNcnamuA+u9Dz9vvcuBGu/TmA7Gfm1u2iKUqyqzMKGXq49ZVMhkf1C4tW/kLObsyI91zDhP045zZB\nhGWU95/XOLLE4sMyIg4zsUG9CKlaxyLel7m/rLDWuoo/3aHYuQw4vb6Y6E4NJqz3jhN31og7l4AM\niLmPqfNBzgiJqUybfW2a37+fnCUtxDG6bf6y/eKOxUrbnN/didnd7tFNtDOinWzMRtsVp49cSuc9\nSvNK3pxsOUOPEEJiVB9B6v/DkaR9Y2Du2NuC+EP6MeM/47VGy8pk5xK6uce2CvPBF3lgfUiJXHZ2\nYjbISu2z29VGzGqjbV6gFZpx5ImljYjFDadvJuFgIEfPpOybeEI7BNAf3OPXFHrn0uH0esawlzPo\nDhlEQ7p0ybtDTg0ukOYd+lGX+6KUc9f8pqelVXpaJRVfFFnQMZ0OgrYRdl0ELdCyiN3tHmujjEkS\nVRz1DA5LjNFGXGberU3OcVIvGppfF0jVsCxJ+RxkXYusRdmLMd8q4VZBEH4LL/+4chdLrr7IJRR3\nl2KTiglimaV6XBh9SJZGpHHVQda0q80zDHn/63PLR35YQePIEouayVI7FHsCsEN3+FBSYNYE9/OJ\ncsqDPOfMCLZTuDOLuWNzyqC7QyRdIumxO7lcCmL5spMd/vByxJmRn1xCOSpgkfnPbnfTpBNa9frC\nou/sxMRpzsawfK1PTNSkCzp+aswoSYrnaK2IneCZSWm17qzsk5xxrua7lVxNICr8xZacRw4Scr0u\nbYA5bkgqpN9rI4byWTlCOYVCHTG7id6AucNuRUfj6A7rTMbdttpY7HBsM/bOnFR2t3vz+jY2Mr2j\nodxXl3DrTPB9Ju+HCRG1ysfyhQ6l9qcINh+pTSq1VjuhtK8OqfitePSksk3Oxy7Bdtbl4l6X2zd3\nSDozLo7L+cVPr08Ki7GIh67Y/jK9WqsXQ5R27Kcm2GHPQ332HXezWPpIyFufk0NmuJV6xXt15DK/\nLu2wO4oZD1PSvMPetKMzSBbI1VTrtXLRYV8Kc+OmydFnxVUnJm0iFVPmsvA5yLZZvZsJe30jq4xH\nV4+Ypeb/xQRuRJTrW/vf5ZZJ0Ox09LndUY+dnbi0O9Tk0tO7l4Y+hvSh9oJrtJ1w08lr8+NPc3+W\npy2OLLG0gRs3y87vUPEHiMuTSR2alM7VgR+RJTkPTXO2U8V2lsz9XQzu2Byz3jvOM9Z25scMuZhJ\nuW5y8UXntdtb5x+xDGzrutrUsoE8LmDtpjaYTzS6bVVrqLrJZjvVoq501iGfTeaJvlr1o2UCtNI9\nnr60JZVld0V+cim3OXHEdaPtZL5rrVv4uL5FNqmsjTJ2iVnfWrQ7rGtbzuLNJRUbu9u9OanVfV8+\ncjHj+fL5PmujjCdY46aT1w591yKi03UcBRxZYpnNpHY12SYp0vy3a0XleiXXkJCNurAk+kPosZvM\nuJIt/F2SSHHH5pjjyWmSWYdBMuTFNy6cYh+60mktrw8la1r0Y0EqoTLbrrDdPOl1JstzyyBP8iuj\nRDeTjis6cmHanmU5e/meJpZcyNV0bg0WyiBZpwyuI8plCeUgsPu9zI58tJ0goxlrhc/IeOjPbeNO\nzIZU0vMdNnf2ODbK6GU519KY8bBbynnkkowpq06XERpzvnwtvTQnPd9hN6knGNvAwSbFzSd0+7dh\nTi4HiY58lHFkicXAlw1xP2WEdiyHYZXiHnv88QHpdMx2Jrz4eE6aC9nsGnH3RvLZHtemU9K8x23r\n0I9m8MVX+NSDN+yjZ9V2+BTV0D6hFbQzX62bxG2iLocsccipJoUxaB2B1rN0CClWbOW9b+XfZElk\n56xvI/oKwSWMUD6d+a7ac22ofTbJ97KcSVIvYoTybiPLcnaTHpM04uow5tpGzCSJWB9MWscVc6MC\nVBxJrX72B1OdK5Zy9k6Tu6WbqEaLzVI8tyynm3SZxBGTJJr3/4kLa8C1FbHsA0eWWDqdshLNJRh7\nVRNCSTka8Anx3ucZ7HZ4crt+3zXmgzgzErbTiCezYzx3c5db1y+znUY8cOXY/J6bB/DyUzOS7mXO\nnFmv7BRs2Cs8X2iVEHwr2zZphyvHnft9RJFlERtk8zY1ieXKimT/dUk0mxtEGKSzDmneYZwLO1e7\n7NbolOz22+PIlxPHFqUuC5+fTNO1BvUJr/S53bTHNTQpdPErmd10ALujeP4+RknCZBShhh2Ob40r\nz8BV8Jv/sywiTvPKTqjNzrjNpO+LbrA+nJTeQxznPMEak0S337730HaXHeg0RMn+QsGRJZYQfArg\nxnsOOPCqeVs6FYIJ5SnZToX3fVY4txdz23qVNG7f1KKIrTjhvniXBx4dcOmJQeW6Jqe30Ifuis/M\ntRWSWHJHWLfSNRZmbfU8ddfZ8cLc1MQA4ymtSMXAjXDsOviZ9rQLZROIjBzYZZes4Kw+7+7EZFn5\nHfnQTVQpgVeoT+vDbBH7y0qWF8c5u4OY9Y2xV5RqEIoz5tvpmx2Jayyz4fFdsgnMNfYwMKSyccyU\nl7M+pEi0do3dQcx4zzZSiGoNVVbw48gSi4hfF2IQks/vF6FJok7GbBNMk039Q1c6bKeKl9yoP/gk\nmnHX8T1ODk4CsBVfIIkGbCXXuH844dFHFna/tg7DhU+UYn/shlQ2PHoPc3/dBLgsmpT67nXzv52J\nCsqBETWZlDHO9T8zSYUmZlcc5vqR2A5+capjX+1YDrbBvlo6I+95J/xIWTxVFf3Z7fOhP5gyplsy\nh7fvMav8rUTNCXkcKbZLk7O//8A88Zh+BoHwNlZ7bT2KaZchlbKebeHzAiYU/6yyo7VJZRDpRcU4\n0sn+doCN4eJd2ouog3z3JYgg/aMx5R6NXtbAkEvIM70UfLJGVBOyw69DKOruMtgdxfMV2qPAlec9\nyZfeqLh13Uq5C6x1uwzjGc/fhK14wseOadFYGzSJm9zsgXUr8YM4StqWeb4wMvuFCY9jct6DVuiP\nc70jHG3rVAZ6ws1q+xCaVF00WcVB+76Fwstn2cL51XV8dUWvQMmM3jWYqLPgSrpqbhLc5Jy56FuY\nBA2h9Kz8RhMiGDjfo018ThrnzKnb7YMb2drdQZqUzHb7VmiPI08ssD/Ffd09rjw3NDGHFKs+MYlP\nx2H7p5jrP/5Hx0m/+ArjHJKozx2bZwH41JN9Rpku49RgxitPw4fjXT72yXpyCYlX3H48VagLrFi5\ntmkXk0a1ZtU2DNkk3bJYyBdJoN65c0G2tiOhHfSwCfu1XITyLsQVWdaVU043PCstGrbRuxbQxGv6\n5hMZ2WFczHVNdZs895MkKpEL6OdVDn9kUH7P7rO2Q8ukSc44WsQsWzh6+ndRBzHsOapYEUuBNitI\ng6YV67zMufhqxs7IsRbzWto0h9yf31+juP7UgzeQfdGIcQ6jrJq//cRgyqnBhCTq0+/u8sEHFuTS\nRh/SNDm7ZNDGSmlZcmq14vdMosvowxZJvtq/F3Nc97NDnIRDuDeRy7JRdl2HPnd170v94BKd3ba6\nXCfbFmGaBY5BUyQAtw0+1JGLXZZvl+x71jZ2RzEUeqJ0KvNdvw9Nu7VlIB1BkqduEfZ0wpElFl+i\nryarprqIp6FEVjaMbF3/9k/gJUsVT8hvXzRd36T36CNDsvQq2zenvOzkop7bhynP3riJuDNgo3ee\nJJrQj3b4n59c00RlKWJDfW0zObse9W3NZdvAFuO4ZrzuM2+bqjaSrve3L29L2wWI61TotsvWobll\nhnQnPrgh713YpOISiD3G3EWRO46rk3d4ld/0Xu0y3Wdh2mrIxVd2KPKyPlafnG/R/jIJ+aINrPxY\n9oejYfvWAklSXt3aMtZlYGTLRr5u/sVmkC7hoV+HNvc+/tgxPvbJdT58QV97YjDllmPHWOts0L06\nYjM+xR2bY25bh6/54mtsFMrZjY2MjeFk6QCUJq1rG5hVvdsn3z8D845MAqhy3Vo+bxOjrfuxV9+h\nGG82ko5/5b8sUs/q2d7JQjGBeXR5IVKxx5gpJzSB+hcvs8a/bVJx9URml7Lj7FT8jqB+onN/28/C\nHO8PptpSLdGWam65vn+2OM5+575dV1tSeToSi4i8UkT+WEQeFpE3es7fKSIfFJFURP6h53wkIh8T\nkV+zjh0Xkd8UkU8V/99QHO+JyNtF5I9E5EEReVNT+47sjsWN3tFm5Wx7HdethGAhWy7nge+UrrHr\n9a8KndAu+3C83N2J+dgn1xnnu7z8ZIdh7yrxxg6D9RvZnZznU0/2Ae3v8pVfNOa+YaZFBQHUBc30\n7ULqAhs2TUrmfl9AxNDzL1l9Wc/UF0QRFuKuXE3tlPeks6rPRakNmb+Pddc1RnOI/c/nIKKY0GTf\nJseOeU52JGJ7lxJ6Lu7O1Bd+vy2Mjsiu3+AgYe59hOIa7LRdJLXGIVmFiUgEvBn4OuAs8FEReZdS\n6gHrssvAG4C/Gijmu4EH0RkmDd4I/LZS6p6CrN4IfD/w14FEKfUiEVkDHhCR/6CUOhNq45EllrZw\nJ8taL2tre774MBdB9eqsq0Iy4pBJZluYyeHBP1lnO73Kub0BLz1xhVODC4VCfzEEbh7AK54x474k\n5ezFpFROXb+b2hOaUNtMDKF7Qx+9vRvx+eEYxHFeFXNFmlDzaeHDkpcTUul6/Y6bIZh3bwI7hhYm\nTVEXlhGHLTvZuk6JJsdJ1YCkPkK2IfXhVuo316+JdNyUvqJkQFHTvzpxdagu1yqtP5jO/X6eprgb\neFgp9QiAiLwTeA06dTAASqkLwAUReZV7s4icBl6Fzgj5D6xTrwFeUfx+Ozq75PcDCjhWpCweABlz\nryw/jiyxSEdVPmafh24Irt8CVGW7thVMnZOVkRm7IUNC+hRfOBUf3Anw8bPHuHwxZzsT7tws70pO\nDKbcsTkmzYXNeMAfr4156EonqNh0FdqubsagTkcw38EFdCRxXHUcrYP7HHwWXHa7Qshnk3k4fWMx\nZKdJqPMtMecN7HflkouvTW3Ipan+eTsajEXcOox14Q7x3BNe1+tPrez6Bhl9yGg7mZOLa6zh7l58\nhDjfOSTVSOJu/9qI+kL9tevKUh2Gv5fm7KaLJHJZlhN7jAf2hQ6Ia+ccxk0icq/191uVUm8tfj8T\n+Ix17izwsiVa8s+B7wM2nOOnlFKPF7/PAaeK3/8ZTTqPA2vA31dKXa6r4MgSi4uSb4THegbKg9F8\n3HZ4Dd8H5NbhOxbHi1VsG1KxFZrdRFW8k+sCXqZpxAcfWGf79l1ecqN2dDu9nvH8rT7r3ZvJ1ZS1\n7nlODISbBzH3JSmPnK166tv1LAix/PyaFM8maZOBnVlz4T/hX/m6z6h6jSXK8exWQIvB7O/cjm6s\nw7ks2mV8QWxyqYPrj2HEOaFslwa+xY6NOqU11KdfMOfdcWqej4lubCITl8uoxu6yCaWX5qwVE/Ak\niRiRBHcuprymdtfB9Ml1Em2+ryriNP1eG2Uc28m4WsQ6swnmOuAJpdRLD7tQEXk1cEEp9fsi8orQ\ndUopJSJGsXU32p77GcANwO+KyG+ZHZMPK2JpCVtBmqU5adxsCVOxwDEBAgMTfzAUu/Nx2jJnX16Y\nJpn/aDvhQeDCaMzdz5xwYtCZR/TN1aSI8hvz3M2Mk4OIT25c4wOP9Oe7LtfU16cfaopaa663raJ8\nH/B8ArH1Npby21gTpbGfPIJ/2+lsOzpWmEy1l1/U6TGM9+hHC8J2PdJ95s52G23dwIQiIGPSnDyt\nVF7mJ5iq4UJ9UEzXg95n6WSevz223J24Xba53+TxMQEggXkASlOu31fLb+7shntpckJeFj5rPNPv\nSRJxtYiVZgwGrhOpNOEx4FnW36eLY23wFcBfEZG/BPSBoYj8vFLqm4HzInKLUupxEbkFuFDc803A\nf1NKTdDitd8DXgqsiMWFmon3A2wjVzUkU5eBsk7W6/Pqb2OCayzVzERbtzMJtj3OGW6lbAwnZGnE\nR+bDccodm2fYTiNGk4WY7MRgyonBlH4EHzqf8fjZY95ydV/LIffNsbrrQ1iIQ/wy+VB4nBC5+55p\nv6tD3wy6M+LOGlzb1WUPBiSdq2zFsGVFynXNdu36fEEz54Q40DsV15y3znfCjjJgoyoWC4vUQkEx\nfZZOG2RaBGa9w1DbQn00O5jjW2PvvXbfzb023Bh5rue7753X6XIWf/t3faY/Or1xTjaI2N2O6SZq\nvhA4VIggyaFMuR8F7hCR56AJ5RvRk38jlFJvAt6kmyOvAP5hQSoA7wK+Dbin+P9Xi+OfBr4G+Pci\ncgx4OVqcFsSRJRYXbT5i/XvxUZq4R67+xEcq7kophDYTo20KvR9nQ9cbfUEufZJo0eZhL+fZGzcR\nSY+t+DG24mN8KNnlwT9ZX+y+HJ2Uz5/H24ak7K8zb4+zSs/SqjjNNzEuyNY/4Yb0F0mkWOt2iaSL\nunpJl3XsOWwlOUk0ox8t+tgmvEmln857cseEr63u/fsJjGqTS6m8xA01szi/QVZa4IR2RnVl++Bz\nivX5yNjPw0cwTbDraWOJFiIYqLdmvN5QSk1F5PXAe4EI+Fml1CdE5HXF+beIyM3AvWirr5mIfA/w\nAqVUndL9HuCXROQ7gEeB1xbH3wy8TUQ+gbadfJtS6v66Nq6IxULTADZRXW8oFvTjZMp2qj9U433s\nC4MBiw9nLrqpUdKC3xO60t6Q70JAVxOeMBbk8tITWgdw63rGif5tRJcfg2nGs089j7XuGZKoRz/S\noWDqJs0QfD4MbowmWBCMS+7uxJh0p3Nz2DJZucYF1efej0w8tS5duqhU71i6+Yy4M2AYz9hKOsXu\nzv9e3Xp8+ram5+IjmIOY0vrKsHcrSVdZFnEKm1zaTMTuAmkZM/KD+obsx+LNtzBx/14Q26SVOfa+\n0Dm8IJRKqXcD73aOvcX6fQ4tIqsr431oyy/z9yXgaz3X7aJNjlvjyBKLz/O+Du4H2e9qc1QTgM9V\nRPvubyMjrlsd1X/09bLopsnfJZe4M9CT7VVt/CHTlDgacGIw5qtuUcAuD59LvGW1aaMPJRm+CTbp\n0S24Dnu2r1AduYQQdXo6AGU2KR1LorJIx7cbc6Mk+Dzb94vQzgCaE3i5aPIg95H8fuGSzmH44/jK\nbgubKELRBEI76BX2h+tGLCLyLOAdaJM2hTan+2kROQ78R+A24AzwWqXUleKeNwHfgV5ivUEp9d7i\n+JcBP4e2sX438N1K1VPHEunNAQozTB36O+kqBvkiAJ8dK8kN4+GuRuvIJ/TRtBnoIVPlNh76izb1\n+EAaFel6p7zwhse48RkvBGBbbfPH23qiHcY5X3WLJtePnw2Ti6sH8vsvhMOCzK9xRZSe5+QzfV78\n7bHQs47lswnEMawV+qMoJs8mRWbJos4SgZTrqvPePqiT3X7FMG5bdkY9NuaucDmwCDFvm8X7Tcv9\noYXats1njv9UoU53tcLnDtdzxzIFvlcp9QcisgH8voj8JvDteLw/ReQFaCXVC9Fmb78lIs9TSuXA\nvwb+NvBhNLG8EnjPsg1qsvWfh4FIcnaKv0P+KW0cKm0sIzoJt68TJBRfzC4fdkY9fuePemw/b5dR\nlnP3SW3W/qc7ZSY+fUyLzPqR4v5zvdLEVKc4DbW3cq4mDtruKPYSVtOEYj+bJMkZ5zLPdz9lSlQ4\nSE6Zkqspad5lnEvl/lAfbDP0JgR1PkuIPE39LkKiqJ0RmMCYDE0WTn9oE5/pvFtulkXehFuhti8i\nT3S8u4j9IBS3rxK1wnLO9Juw677tjHqH8i36IB1Zxo/l8xrXjVgKR5zHi987IvIg2vEn5P35GuCd\nSqkU+FMReRi4W0TOAEOl1IcAROQd6DAGSxGLz48lpKhts8q2y/XBpxw8KKHUTcbl65styj72yXWu\nZLukeYfT64vJI4kUt20MiDsDTg5GJJG2GLvviZzdUVw2MqhxjGz17NKF347Pt8KUBWECb7K008Qy\nIVdTor6O8pyrKbmakOa9eR11KQNcv44m2L5PvvJCE5sv3pU7ifoWFrbPh4EJ2xOKRF1H+Pb42iH2\nWpH5SMOd7N1JvFJXnVFDg96k6X77G7BJxQ3Bs9r97A9PCx2LiNwGfCl6xxHy/nwm8CHrtrPFsUnx\n281Ni/IAACAASURBVD3eCLNq9E0MITPGkLNd6TqPl7zrvGg+4MMklWUmt3n7k6o1HOh+nTmzzn+b\nXuUlN8W86PiUJJrxjDVY7x6nm8+Iejdyx+ZZ0nxAP4KPddNWbQW/yfX8Oqsvxvlud1s7qw23dB0h\nB1LXqsedIO2+jqfaEdKQiyTaEVmTisyvCd0fbGvaqwRNNAg97/l5xzm3jWWdSy6+BYaPXCBARA0h\nakxf3T66Y9lV0sdJOM6YfY+7MHJ3USGyLVuYLcRvoVA6rnGHS5p2nSssh+tOLCKyDvwX4HuUUiOx\nlB+O9+dh1PWdwHcCDG460VpM1XaFbRAKhx+6pmkCCe1A2pBKk4OXrbwsHS+I7/Gzx9gdTTh3LeUl\nNyqGvT0G3RFxZ429fMSnd/XK99b1nFMD4Q/XUq/eJbSr8sbesvoSysNu2miX5et/naOk8WPxYW/a\nKelY2sJ1rKsTuyxjntuEiqVfVnUsdetoVa4TjduQhdsHO3xOWbdYbkeTgUsd3HA4rmgrpPvy35tX\nrtvYyCo7sENV5AuH5cfytMd17aWI9NCk8gtKqV8uDoe8P0Pepo9RNqsLeqEWsXbeCnDD7c+tEFbb\ncB3LOCP6/BAM6hzWyp7m7ayb7ARcdsbAUrmBCMkh2bP5wB4+l3AlS9nOBtw12eXU4Aqf3k1I80UZ\np9cn2kQ3VnzksV6p/KbwKzZcgjATdRtZ/DyIYIOuo2nCGHRrLPA8Ie7NOzL1+/wh6hz9bLQllarj\nXxFOP10klnOdaV0TcdsKr9RG3+KoxbgPxUJzJ3pX3Ox+AxUDjKy6k6iLYVenbyy3q1yG0RmtLMMO\nhutpFSbAvwMeVEr9M+tUyPvzXcAvisg/Qyvv7wA+opTKRWQkIi9Hi9K+FfgXh9HGg+RLgXJCKqj3\nU4GFGW06lQqZNJGLfb4pDW3FpNeze/BNIpcuJ7z/as52Bl9yvNyWu47vcTw5TTa7xjDeYSuGD16Y\nculyslDaNjzPkBjPiL9C7TL3mthcdviVw4ZvYnZD9bge+i6WHVe+dx8ilaSr2AE2hmASy4VIxe2H\nfY0N+3rfda5hSJORg12uTSq202Zoh9Pm2fkMKgzq9Efg1w0dGkQgDgej/ULC9dyxfAXwLcAfich9\nxbF/TMD7s/As/SV0aOgp8PcKizCA72Jhbvwe9mER1hah1WRIDux6FrsRkO2Pquy0Bna+dFNW087F\nBP5zY0K5sbZ8K8pFO8PGC1kace+jEeM85e4TevJ+8Y1TTvTvgEtnSJINvnjrFFvxY2zGAz4cpzzw\n6CC4U4JqdFwju2+7SzEwKWxVUs57ExJNGgdJ7STZg+m1oiD/xx+amG1yMUEmmzz0D0Iu7oKjMn6O\nTUkTbUxhvOnt9vrgWqmFrnOTv7mOp24+FoOQ46i7U9F9UGQW4fl0H6E+1AXL9F3vtsWHp4RkvsBx\nPa3CPkAptVIJXxu458fQOQTc4/cCdy3bhlpnxCVzMTxVJopPBVxS8ekh/KSy+Gg/flYrtl92Mi+C\nVgLdIp+JmrA37XBiMOWrblH0u3t88uJk7u9jh885qENeSXFuHbfD3C+LSHRJWv9StRR0EYqSUOfB\n7QshZODTsbik0tY7fJmx2EYE11RvyJnTLb9Jr9gWvlA37nMNjYP96LJWaIejoUlqQJuAe65fyjLO\njL7JM02jyrV2UqlF1snqas1NzLSouywnr7YjnAyqTah79/jD5xLGeUqar/NlJx7m5PpJstkeZ57c\nmetehnHO/3KzYitW3FesoivEZvQTznC0w+jP+xDQAdgRdrvU62TaTCZJVOyaurrfbSYhr9jLSocQ\neuY+pCUCWfx2y14gx3Z6tLOA7sdpsC6C8n6SirU1od7LyxkrkyT36qZa6zlrjGZsuEr9pwQrUdgX\nPqRTNZWs8yGA6ta+TfgO16TRLsedGMppjKsrVF876tAUj8yFj1RCoUsMzl5M+J08ZZwf44XHLxdm\nuouJ4TkbikiEYZyyFSc8tJby8LnEO9nZCnAbPisqH3mGTHzbIJIuKje6nDVgQS7QjoxCQSWXtSo0\naHKydRXYOrSQX1zahlya4oQtm0OlztnTZ7BiUnlX7vEYS4T8k9r4jYXa5yOXlRhsfziyxALViaBN\ndN7Qx9RW5FBvqVKexOvChTTJ6G1Fqis/d1f9Ib2QjbpYSpcuJ7xvmjHOE+46vnCmfP5Wn63uScgz\nBpspW/EFNuMBW8mY+8/15mWFCAbKIq2KiWvgXdSJwCpiK6NfsRCJle8mUkV73Da2n4R9Sus6NL1r\nnw7DNfFdtCWs43PbXD0WttIyu+VlogDXkcq83KlfOt4U8NT3XS6TAMzARy4+stsXOqsdyxc8Otb4\nbfqofLDt9u17mnxO7Hur1/gV3AeNctvG7PKg1jC7o5j3p8ZiLOeOzTFx5wZId2GaER8bstHrc2Iw\nJYmikre+qdu1sMrSaG5C7eY8r5ucDmOV6ZJNG7iTuP5dTmS1DFw9lCvqtAnG3b1UREBJ2ZmyTqTb\nxp/EF6miDodhbeV3kPST5TI60vBicbVb2S+OLLGIqMrAqYs55Toj2mgb+sEXHyp1VpdVM1L/ytiO\nGtAWrq+CKWc/8MeP6pOl40LvMuDLTpwnSk4TJX2ezM7z8EjXNYxzXnRcAV3uIyvpA1r1I2mXkM0H\nV4RZCulSHDMhXcznocdJmWh8O5iQCKpOX+FrX9UrPaAXcHYM+5m8K3ofqx9td+zu7tjb1hbGBq65\nvVuvL1yQK2ZcdlwEQ9dU9FdPL4jIK4GfRluX/IxS6h7n/J3A24A/A/yAUuoni+N94P1Agh7g/1kp\n9UPFuR9Bh86aof0Hv10p9dni3JcA/4Yivwvw5UqpYEa3I0ws1a1+2aSzLMrwEUpoImmCHRK+ya6+\nqcw2xOIS2jIigpDYKbQL2hn1CouxFFjjruOPkURq7qFvcKI/4UXHoR91+Vg35dLlpFRuXXtc/xxX\n3h4KwGmv8ONU596wIVE1YkAoZqBvgRDSUS2c9sqixDY6C9PXtouIxp12gNT8k3b7RUvTWE6sceR1\nxLXETUbX6CMX8/9Bd/F1CDl5HhiHpLwXkQidfOvr0CGsPioi71JKPWBddhl4Azpuoo0U+Bql1G7h\noP4BEXlPEWvxJ5RS/6So4w3ADwKvE5Eu8PPAtyil/lBEbsT9eBwcWWLpiCs7tUmmmVQW1+6PXFyk\nzqSzKKt+otggY2fHBBSsfrR1TppNCK6UGxwes7RT5GpJSfNjlSCWzzrWJY7WubG/U5j0xjwUpZy9\nmHjb5+aaD1mu2TlRfBOxu8I30Y3NrsU2lw6VDeUx4RoUbJCVdg4bx6YMItjrat8Sl2Dq0hzEcV71\nG/HERXN9lg6C0DjcL0IxwWzY3+Eg0pZhbo4dt30h+MZ5kyVnHZ6mQSjvBh5WSj0CICLvRO805sSi\nlLqAzk//KvvGIp3IbvFnr/ininN2dsljLBzqvh64Xyn1h8V1l5oaeGSJBZg7lFUH8kIOvbvTLKYJ\nBfjbz8fphhNvM1nEae6dcHzwieOWaWedSNCFMUe+M4u5Y9MKYtm7kbgzIJIet66fZ5RF6B19yoOB\nNAQuqfj6aOsQ5ivkwO6lYcEVhBubzdX/6PS2szmpmGyj/QjGkfISTLVtWH319NN+14H0wG13G027\noHojBUeUvI9IFS6pmP+N6X1Ib+kLBFu3i7V/tyGYp4GPy00icq/191uLkFSgg+x+xjp3FnhZ24KL\nHc/vA88F3qyU+rB17sfQ0UueBL66OPw8QInIe4ET6CjzP15Xx5EmFjN4fZYoxnehbZyuwyCXJnGE\nfzINWPnsI66TL6hfWVy4nNlslnY4ezFhO83Yzro8f3PGsJcSR3phlM32OL/XY5RFbMVw55aC23d5\n5OygsZ46IwnTt0o4D+f5mejG21mXrWSPteQkAHl+me00Is2FcV7uu2/y9Hl2bwx1QrJxpDSp5Asf\nDUMqIX8kt59ePx5nFd8kvvLpBVOLmEJRj3Vd4ejJzaK3OoOR3GtibPtzNZGK+bvOMdN3fBlyObRd\niwgSiOrgwRNKqZceTsVlFBFLXiIiW8CviMhdSqmPF+d+APiBIqni64EfQvPEVwJfDlwDfltEfl8p\n9duhOo4sseSzsGmjQTnZ0XLk4sqb6+T/7kfhKvRDbcgKWfMyK8U644F65WuzXNudYE1Zu6OY+9Oc\n7XTKk9mA507GnBrscH6vx9ndhV7DkEs/2uPTV7pcutivhHPPsog4zYOivWU9+nW2TCHL95h29c5j\nb7rDaBLxZNZhO5V5nhnXGdXnd2P/ztIO2XBSImqfCbnv/ZVD4Ojrd5zdsz1uyhkiq2j0YQksRNzx\n4T6DEHG3IQRzjyEXn4MwMI/YUBtMcolvoDYHjEcf9zREKCDvUlBKbYvI76ATI37cOf0L6KSJP4Te\nEb1fKfUEgIi8G20UsCIWF/lMgtYvtmmmi2VEDC65hMxHfWgzoH0JqJaRsy8XUsQfBqYpMrGNh89F\nRYTkmJsHVRHjicGUEwOt0O93p5xJrvL42WP+HCjusaIdbVIHmLaPc/1vlEVcm45Z7+0BcG06ZZT1\n5+e9z9mZiH3kkmXGPNbvj9TGFyl0bShf0DLwRZbwoY25uq6/ZuK3djdmh1W+vhBnOU7CbUhlXodn\nkVYXrdl3vxuw8lAhAvGhTLkfBe4QkeegCeUbgW9q1wQ5AUwKUhmgDQD+aXHuDqXUp4pLXwM8VPx+\nL/B9IrIGZMCfB36qrp4jSyyzXNgd9VqJqvyhOppFF2ag1wVgtK9z0UQuy66m6iY1XxDKZepyowuH\ncOlywkeu5jzvxJTb1rWYKIlmnF6f8Iw1rThPoph+FOsgkd1dHn98UFmtu0Ri6va2rSbasdmxbGdd\nNnpaRLeddYtjsJ3KUhZ1pj1G/wJlHdiyCBFKnQ7Bh2XC0SzrjLsM5t+E43Njxp1LKjs7cXgB6Im3\ndpDnHApYeegEc0AopaYi8nr0hB8BP1sE6X1dcf4tInIzcC+FebCIfA/wAuAW4O2FnqUD/JJS6teK\nou8RkeejzYkfBUx5V4qo8h9FK/TfrZT69bo2HlliyfMOl54YsL6RofOA11vVuFFs6+CSizkWgm+y\nagrncRC0Xf21he9jdLNxlvvT4w9GOY/fssdzNhTP39TXudZYt63DzQPFmbU9Pn52Vkkda2dtXEvL\n725SxNcy//vijtlIOu3MxJfFaDtpHQyzabfpS4Ngo63pedtr2oy9tjrIpnA8NrmUdiqpnbGyW8kz\n1OZ7tGH6tl5Y2+ncNWG9x9ONVAyUUu9Gi6rsY2+xfp+jnKfK4H50tl5fmX+tpr6fR5sct8KRJRYD\nbfW1MIdtK04Im+JWxV1tScVWkrZVLh4W9iNCc1d4oVhdIR1CmkZw2y7QIc2TwjoMLlpl9iN48fGc\nrXjMfU9kXL7YLymdd1M9KUySiF6a08tyJnG5Pl8aXbv8YTxj0J0x6GolxVZ8gYtRV++muqoxVYLB\nsmmhXYR2i/sJTdKEkC+NjYo4dJ+7gbZjq+66g8SBc5/f+nDCxjFN9mlxbGfk3JPU59TZFzod6Fd9\npb4QceSJBarkYsP+ANvsWlwiCZGKO3AXJsbNH7wvDa0Py3wQtiOeXWZInNdmEvWKFZyV65kz66Sn\nrzLOFeO8W3JITKIZdx3fI4kUJwZaPPZQssfZiyZ5mH5nu9u9eS4Wg16az8nG7Fpc9CPmori1bpe4\nMwBgrdtlGOdsxRE3xHCpsBC0YT8ne1UNB5sEXTTtUnzm40uV3yI4ZdKw26gvP7AAC4h/7Xa17Vft\n9+jUYUjlhlhHrt5OFQz1OLLJ5SlLT3xEsCKWArs7MVnmz7poYz/k4p6D6k7FPueLNVUXHNOd9JfZ\nfbgOhz4nQx+puLsAn7jHRyyuFVGWRVpBf2LMeDrlJTfqModxPs9KGUmXQfcySbSnIyQnKZ+82IWR\nVpB3k672Jy7g27VU69eikH4Ew15OHB2jW3wOg+4Gw96TbMYz+l39PJPEHwzURS/NmRCVkpXtB77x\ncRCz17qJvE1wSts3yJRXB3ect71Pmx7npR2/nW57Gdh1bwwnrA8zkq7ihhi2ElUsYgSokovvuzww\nVmHzjybsSa8tuXjLycq+IOAfnG4AS/t3EzGVjlkkV7Vw8++47DbUfUAlgrFIxZ5AfblPTABJqBKM\nO0FkWaRNi9MJ/W7KnZuKE4MpcWdA3BkgShF3BpwajEhzYRhH9CPFQ1adIxIm1orT1rHYbbT73u/q\n3cqgO9O7lVQ7JEe9HoPujCRS9KPy7sPd1dWJOe2IAcuER7HrMro/32LDhc8nZdmFxrysSgSIWYVc\nTF0hs2Nv5s6KQ2c1i2R9u8qLv3mkAGehVx3j+u9BpN+72a32I0U/0ubOmbWAcPuywnJYEUsB92No\nco6qk7vbH/hhDcx5GBVPuBmDOgWpb6Xty3RYniD8IoAx3VpSMW0xZVXMfX1WdlnEzggrzlhC0tkj\nji4RSY/dyeV5vLFhnPPlJxT9qMuD3b15GSMSrhV1mrZtJIWSto0SdprNw7r44FrV2c+qP5jCQJPo\n+mDinVzbkosbYaDOmz4UX2y/5OJzmtVllL8Dd/eyH/IMRRY4bNhje3ueEE3oR4rtVLiSwc7V7vxa\n37e2wnJYEQtlfYeNkMPgvkK1HJLJZp1PwcZGViIbO9CliyY/FQMzscXpjCzNi5AleWWyCnlwe8sL\nBFY05PKw7injfEA622ErnnJ+ryxCuHU9JYlm9KMYWJCLvUP0rWx9WORkmcA0I4rXSkm+7PubrPyG\nW2ltjpJlJ984yefiIfd+t0++vraZ8EMRAEILq5IFZbFLdBdRdUTeJv9PE+xvcBkza5dctlOp7LZC\n2TIPDJHahcsXEo40sYQsP+q80evMkl1xhf2ht5l4Q5OA++GY+GV2OzY2MkyI9p1R1blumYRMdnva\nmMC6f9tiudBEb08MIXIZ53rn8txNK1VtEcRy0L2BrWSPJNqjHyXcF+3xyFkdq8uuw/aQN17v9vM0\nBOLLIAk6UGXmEqBvl5BU9XPuAiRJNDG3ibMWJzPWh9lcFzCOFNuEScIXmHPZiAy7O/E89pn93n3j\n35xfH7JYdDQ4MrYhFBPyJoRQDLU58VsLnlBcuSyNuJASxH5SOa9QxpElFhFVm+fdRy4hebCrR2lD\nMG1QSXGbRYy2k7mOYzzszlfI9ge0MWROLiFPYp+Iw4jE5mKc+WoZlslJ4dP5uKTiM0Cw27oz0nEk\n9vKUcV4OYrkZn6Kbz4i7A56x9hhpnhUOlToUTLndBuH2z5N6TbPib/1Z6DTLthiy7BPTFHW5Ok46\n82dhl+fCTJx2H4zpc5YY89iec305+dW8To9ItByqaBFs1VjX7aY91reYt9U3/kPjoslC0X33y8Qa\ni5PqomQ/WLgENPuvHa4fmUC02rF8waPJ5PGg4qtQelo73IsvHlmduKM/mLKb9pgkEeuDScXKyY5F\nBeVdg91fXy6Qsmy9mUh8ylLfyr5VWR4T5p1RMfFNx2xnXb7keM616ZhBd8QgGpLN9ubhV4ZxzstO\nCv0uPH6tsboS5om+5mHzXZ3QjOyJMqlMU6n16Dd9CumT7Hfs9juNdb6YNMkZFDuqcV5ezftEmU3K\n/VBcOvPOuomCtGwu3fiNBHaCdaFU3ECnBrFDeL7oEMZrv25MhZ/Rop3z9qULhb1vcXmYUQeOEo40\nsYCfPEp6Cmuyz7K8NBDBv3qqy3du6z+Cbfr/2Xv7cEmuu77zc7qqq27fubdva0Z3RrJkWbZeLGz5\nBcuWbZ4QQhJ4vEuyZhNYA1nyAg9eAqxhHwgJeEn4IzxrWC/ECSxexRgeZxOcPISAd2PjYEhwAMu2\nsGRblrSyZEv2iJE0mlFP3zu3u6q7+uwfp07VqVPnVFXfe0ca+c73eeaZvt1V55yqOnV+5/f2/Xnq\n3EeR2xeUJkFBQuhi4W3LejbH2jUx026nqbxAW7Sd2dYiEewm/SLLOk2VAN6dzJllCZP0GDdt7XBq\noBiIT19cK84dRkvu3JZ87nzAl3dK81myUESS5uJXlEM26rGIeFONZ7nH2L73DjOla6xRUq2h0mTW\naWMsMEks9QJejqdurvHVEXKxDriEj960bAzK8ZvBLGp+9IjioNCcXIt1ZUzOLHt3tU1Tk9BULvY9\nKgVCtYKkLazTJGCHqPK+usbYxJd3RajsH0desEB9cvkctMXuTJMLesqx+tTnLvQuTedrbGymtYVc\n+ybMfnxY7YUxF5CqNtSVgLJpV29eqzbxqR90Vn2fjdGcNA34TNJjfP2UcRpzw0a1r2GUcfMwIJOL\nPEw45MFxyTvlou3w0uYvniZZ9kiyUntTO2UVQq2vU491TlAImOEoYWdCrUCXvlY7bNuVTKl5xoaj\nJO/f/bx8vgBXPzZ/mz1ntfDS4/FpBLWNUoNQKY8ptZcupiWTygWqzAm6rZ1JPRTe1y+0bOQ6CsQD\n44rz/uihyTlrL5imjX0Vk5HLRr+f/AZQwsXVtg2ficouUGWiTWsxX2QfCWRb9rnrHveTrJJBrz/v\nEqkkSODBRwPG119klsGtW+r364+lXHvsGFv9UwAEV50mDpTf5d5zimy03r9akF20+dmyLhTiOCNN\nS63FNU4SFfKs76svudHOBfLdr8lY0X/oMgE+/02TplLpZ1DrooYuSYhNVPom7Dliwhcs00QGqees\nLTCa3iFb0/NBJ+teweHgimAx4JuA5i7VeV5TpFfFYV43pxw0jl87yl0hwE3oqkXYC1jTjrPYwXt2\n2DZsp3ilrbTsd32SMo8DJsQMRwlnTh8DLjJOBa85ro4LRIiQEilKAXdqsOTNJ3vcF0x58NGNWh+a\nFl9pJlnhW8nkolLky4S+HzNCxGRZo5KZT0r+sjTNKqWKfYugnaVvzjVNYlmaYd1lmaFZ020S9KsS\nOdp9+SIenfO9oc6Jbww+FoO2Ma+iQet3p5J3dEXQ7Bve1VIIMQR+CsWQ+REp5b8xfvs/pZQ/9ByM\n7zmDb5ekJ2GXJD8fXOVjXRN5vzCFS6fjHQEDPtgBBXawQbEYEiJzW3ZIdSEoHLWOCCXzO83tBdQo\nWXSwgo6+ikPJmT0YJwEX0gGT+S4v3dwB4KFxwCRVz3IrWvKmkz1gtyJcXAubjgZT//vNm0UI8yBg\ndxyxPqnzzOm5lERBzVyzNlgU9ytE1u6Teb75uS3Z0mZW0PPMDCF2Ra+VfqfVNic2XIuyGUXZNtdd\nv/v45uwk5K5mWW/fjnDxQ4foXTGFAb8OfBH498D3CSH+JvA9UsoEeNNzMbjnCk02bx+FCrTvaJoo\nLezfuhZdMo+1d42dnadN5H8rCLouC5ArrNj8bAt0U9sxNaAwlirMNc4KynNQZWw/8bRgnEZM0qwI\nEdbYHiwY9jPiIGYt2OWBx8uyx7piYRwsCURYhh1T5rfMFjpwo75DLxiWiSpmPG160n4N18LnEiZN\nxcPse+fTWmwuOzN03M7oh2oItG/+dEmwdQWa7AdtC7tLALRl/tvkoLYZWLe5aQRKXO4QQrwFeA+q\nHsv7pJTvsn6/DbWGvw54p5Ty3fn3LwY+AJxCZYneJaV8j3He/wz8MGpn9R+llD9p/HYD8ADws7o9\nH5oEy00GP//vCCHeCfyhEOK/a7/sFw5ctmiX6u3a6cHc67w8COW2L1vcbsvFlwR+gee6Bp3Y5jqv\nkWE5qr/YXdHkF6poLQbfl9ZWfHkHD45VsS5tGgO4fmPOjZuKb2wUPwWssxZO+cyjSrgkC8EsKzcS\nQubJkr0+sCiYls3F1+bv0phNQ+YTi1XZEC42fLt4+xm37bxdz8jFCecSKmoceXRcx8XUN5+7zvMm\naiFzPCZWTbI175np+zM3jrYWp4WKmVBb9n+INe+Dg9Pm50W6fgVV/fE08GkhxIeklA8Yh50H3gF8\nu3X6AvhxKeVnhBCbwJ8JIX5fSvmAEOKbUZUjXyOlTIQQJ61zfxH4SJcxNs3aWAjRk1IuAaSUPyeE\neAL4OFA3WL/A0OuVE0wLFTPKZ2M0905kZwy+Y8d3ULV6v+e7xlJnMa4SG66avGm33QU+gad9WPql\n1w5tDa2t+KDzO86c6TNOprz2hOTkIOPUYM4gOEXUG5CGU7YHM64Z9HjdTVPuPx1zzbrkJRtLbthI\nafNsuxZmpUH1lP8jzgoiTFPrMiOyzGCPNoGi2zc/79dU49ScW8K+D4r9JDHapSNMEx24E3yLv42k\nU9MnGsbSWc7ANg3qfnRpZFey82WEO4FHpJRfAhBCfBAlEArBIqV8GnhaCPFt5olSyjPAmfzzjhDi\nQeC6/Ny/D7wrt0rpNsj7+Hbgy8DFLgNsEiz/D/CXgY8Zg/oNIcSTwL/o0vjlDCHUZByOkkJrmU9A\nDnsFiWBN5c6T0Lqqyl3zQnxom9CunZQrqazt/ErCWAsJ54Fqf9gMtMbO0NQO7V3+2mBRSexU5+Rm\nKCs/5cFHNxgnF3nt1RAHa9w2eoooGHDm4kUeuTBglsEokrz+JTNevrXkju09AtEnk4vC8Z8t50Vp\n4lnmjnzSYzfvx3CUMCEufEy1a2jwNfjuq4u5QN8HH5oSFeu5L47kRsvP0pZNXx1v85xtSuIs3y93\nkIiZWOxs2xIuGqZgL8dR9zeZ8+oyMIddLYS4x/j7LinlXfnn64CvGr+dBt64agdCiBtR1SQ/mX91\nK/CNQoifA2bAT0gpPy2E2AD+IUpD+okubXsFi2lbs77/PeCWroO/XCF6ZWVAPSFnhBUSQWcyX0Py\nY+U46yXoImAOTFXREHpp5uCY43L5DjRMwbhfgdJKb+7ZqfsyspMkMJLj6osiwJnTx9idzBmnCZO0\nxzBK+WIuVDRMoaKRLqfF/0m2xixTNe/9eRL17HC9UfHBnltt0VGrailes2ZazkObxscOUTZDept8\nZOZ1qGO7z1+fgKmMrcHno+fmKr4d+1paw+qLwJXD4g1bKY/lGSnl6w+p4/pIlLD498CPSSl15rHW\nNAAAIABJREFUwYkQOI7yob8B+HdCiJcBPwv8kpRyVwjhaq6GIxtu3BOgSRt1NcJGG26HnXuNrtxw\nfLZpL/X6Fx3NS1bCYpdomFUif3zMAdD8Erv8QT7h0taW/ZtJa+4TeDuTPp94oM/4pl1u3Kw+u1u3\nVBExU6gApEvFBTNOAiZpj1lWCuQa7UrDgmZen+0fgOYFzSVUupAiurSUprbN83zJlF3yrFyJlkV/\nLVpYedxqWnFXzaXr99Wx+P1/lxGeAF5s/H19/l0nCCH6KKHyr6WUv238dBr4bSmlBD4lhFgCV6O0\noe8QQvwCMAKWQoiZlPKXfX0cWcESBpITx5PCPq92wXntDsPmqmFzIplCw3y52qNa3EluFTbZGoGi\nG0mcsTtROyD9knWtsmcKl1V2xfWFpLtA1JqG6r8uvKuoJynW2uuQz/Hgoxs8vT3j1dfMGUVw+/GU\nl25KomBYO0/nseis+1nm353p+6Az7H3EpFXetnrggWIGtvirDIGyMayHMtvUJb6xudCkVZh+LlfU\nmtmfGU5tOr7NuZs4xmHPbX2MmcjoKypWOS+ps477UZ9Ltefg+Nunte0bh5d5/2ngFiHES1EC5buA\n7+k2BCGAXwMelFL+ovXz7wDfDPxnIcStQITSnL7ROP9ngd0moQJHWLCsh/D1J2Rea33JLCsXZFVV\nTn9W/6tj5swywWxBYVZZc2xs1lruqlmV0O6nfqzuv/7bLJPMrppVxqRDaAcdNlxmn+aY9fhcY9Lj\nmGXCeR2+9tV588p16IV75pCFejx2BUezXXMsRZuL6m/TDK5dV6avm4YJJ9bcO/9BMCQ6q8zWt159\nDXHvmTxEWRLFzwJqURwEeeVB6xnXx1lfzFz3aJwunM9uLSjL59bPWxrXOPfeC9fY7Pmm/Ej++WP3\nbc/DUVydL9Xju2yQNMmm2ti55sdhoW2+mn2r30th9YFDHcnBIKVcCCF+BPgoKtz4/VLKLwghfjD/\n/b1CiGuAe4AhSsP4MeAVwKuB7wU+L4S4L2/yp6WUHwbeD7xfCHE/kAJ/J9deVkarYBFC/I2Wi/zt\npt+fK7TFddtYD5fcsZ3kJIS9gowQVA6D+rcs8hns4zSPlI04WBZttEH30fV4DTNXo2lMuu22Mbj+\n1tce91Tp3umil+/kRdGvrx/ftTSN236pdZvDSN+fsg/XMzH/trE9WHDbKAPcz2yrfwq+8hmWd38e\ngMGbXsVtN7yOUfxF4mBQLEKjqBxb2/My76MPeuyTNChYAPT1rwWK/2wYZa192ffVPZ5ynulnCjBO\nw2IM5v3zzUs7T6i8Tnse+a+7rU3zOly/udB2nD1OPT5fP/Z7cLkhFwQftr57r/H5SZSJzMYfA86b\nJaVMgf+xpd+f7TK+LhrL9wPfAPxh/vc3A38KnEVtN553wdIxrruCqBdy03CTNJuSyQWZnFcESyD6\nKmmup+zwmj/KPtaFsnhUv8jm1ueaUL8FBL3qcb7ja78v5wYNSXX8ZR91nqwm6GsOREjUWy8SBzM5\nJ11OC4p537nVv8u+M1neP3Pse4tFTWjpxW8UZ0S9QfEMysz4ftFmJhdky3nucHcvDk33YCRGyPs/\nzuJPH+L8f70AwPHxPYTfsMu1t72R4MQZhtrkGUhG0cKoOFm9tiQTtblj3r/y+PIe6HHrBT7JekqY\nWNfvu7eudl3Q4yjGlp9/7XJKutwjk4v8XZhX2rf7Nftrgnmefn5dz9HPtOmaKsca998F1/sY9BQr\ntp6H/me45nw39wXRu1KPxUAfeEUe/4wQ4lrgN6SUf++Sjmw1tMZ12+hJySYbEB1nwUK9WMu9ymIq\npIQst3FHURmOKqsLugn7xRWGJmmer48t+lhYtvQwUvuKloloj8lefIVLk9XXlLdt8msJKSHZRSY7\nMDsHya46NIwYxBsQRope3rQV22Mv/rYWoTACIvV/ADKMC4GVLqek2bRYkKOeSmwMCav3Z5EiMzUm\nEcQQrkO8UTzDTM6rC4glhPQiCjBKQpZf+C/MP/4wT/zRgk/9kfr+Gy7ucurCZ+lfnHLyla8nGi3y\ntkphGxLW7r3Zd0io7l1tvMY9iCIWLEiXU0bxtFjkomBQv37zvi7S+r0FdS9q9zvHbFeNY5EW4wKI\n4g2itQ31TOOT9bkAtfliwp7Teg42zj8T9rWpUeVzRL1ztrDzvVOmgNAwBWTlfOu9NueH+YzJUpjt\nNl/DFdTQRbC8WAuVHE8BN1yi8ewXneK6hRBvB94OcMP1J8qKgWGcvxDlzsq14IugFC6BCCvnuHZy\nlQkcRAVJYm2CL6yXK4zU5zAqz3fB0aYam/UC+trIvxemgNHjWaTleem8HBNA4GnPuFdlmd8Slf1k\nGFUWCPXih8ZntbtmkVhCJSk/AyK/R0EYV9rS96HIpi8WmH6x+MksgXSOnC2YJz2SmTp2uhMgZwv1\nW5YQiLg4t1igpKyQXtpjZ5GU9yF/ljJL1D0w7mUQxgRiQSDmZMwr96F2b/NznPc2iKvzR5/jaYN0\nDlG/fN5BCmEKYeyfN/bf1vxTgtUhVJrmsDlOe/6j5mbtvTTaNN/JytAq70N5P33vtXle5Rmac+4K\nOqOLYPkDIcRHgd/M/34bRtLkCwl5gtFdAK+742a5E6Zkco8sqe44wTAJhVrl3oNF3fzkQlXl1mVv\n3XTsZh9BX78MMm+7+YXMFn6ad+e4HCaJbDmHrDQ5BCIkWhsQrZ8iENepXRtUdnXqf8fYQvOF7tdM\nUOX9kmRyl2yhzC/aHDaZB7kZ7AKj+DyB6BMFA4Iwf9H7/Uq7ehxNz7DsW/02TgKSpbKrv/hYyImv\nfzNR1OfGtYcZbCrzyKk39+j/xdvoveYbGAd7kJuJfHDtkotx9zdqmw997zK5RzqbVsyBAHHvAoNQ\n2faj3oAoGKh729fXZWkmtTHI+pj6fYL1U1VtHCraeibHZIl1njVnKnMtK++tOQbbjNxmSirmvTX/\nzXfON6YsrZqovX1Y5kk9VzO5S5pWzeHrYVhqzv0BQXRV4/hXgUsIfi2iVbBIKX9ECPHfA38x/+ou\nKeV/uLTDWhkrx3WnywWPTnYMx28ABpVIHGTEQWnfrTqtg/xv/+0rnX8z4zzXcbPK8ZXfelap1KW7\nDdu2bPZl/hY7NI3yuvrFOIbRLnGwU9j5zeNsf0j1WsprsMfuwmQekGQBk7SfF9wqHddxsGQYLRlG\n1QXdbLceTBCQZKExDiP0NQtJsrIf9V1KtrnDyTu/lejYgGu3HgIg/IbbEK/8RsaLgtGihj/fg9O7\npRA174H6Nyt8RSb0M9TjnqRhce/tgIiyrd1yPrXcV3uO2H4roBBa+nfzmdbnaVppx40w/72cQ+Y9\nKK6pw5ywr8M3prrzPTTGUYfvuZTXHeRt6GPV+x/3LhaBDlfQHV29Up8BdqSUHxNCrAshNqWUO5dy\nYCti5bju3XmPPztbmk/sMMqmMEtX6O9+UQn59Xxugz2eMvS0DCWFekixHe47y3QobchaIIsoKFe7\nbWgLoy7HB+O0HsK9FgasBT1GkXuKto2hfk/qIbWzTDEi3378EbZf+WbCofIhZde+nF2PUMnknPvP\nD/jc+YAn90R5nVZ4tO/6/c/KXhCDxrZcz6WpH/u8esh2/bymcHAXyvlThuy7w6W7j993v9z9u4XK\nbOEfU/VdqY6vafz7gXRokl+r6BJu/AMov8Rx4CaUP+O9wF+5tEPrDl9cd9M5F+dw91O56cGRkJgs\n6pN0lWzcVY51JUrqnAkbU8eLZR43zUpSxt1J38kDZtOJmFniPnr1Va5tlcTPnYthjZrF7NufeBh4\n+7GPU/9XqUuiOCN52SQv9LXOTcOv8pLrblbHLs47r+vP9+AL5zd4bFdw/+m4KHfsYmo4rKQ6O0mv\nU8XSlgRKXxsuRt/91H7f3EyL57d5bNEppwqqc9t8/1wlwrvAvAZ7TlUSORdlCWsNfczgEAXLUUIX\njeWHUVFXnwSQUn7RQaf8vMMV192ExaJXZK3v4qaiMCemDV+dChe61m1RC5RarGwmZXNclXPjDFN1\nNOvS2wWm9P+7lq5ZrS0eWhULq/eg27X0jazoul/H5InyLVyqv34lu9ocQ23BzYWhPU6b3t+kZ0mT\noEKbr3eTLn/KQ+OAz59X540iyV942Yz7nkk5c/pY0Wd1npRCJ4qXhRAy4Rqj63f7GF9Guo/iZBX6\nHNfxdnmAJqwNFuwQFXOnK31QXXi0k2yuWmtIEZj2gL6Trslk1GjaWF1BO7oIlkRKmWryMSFESLeU\n2hcMzN2gl8SxA2twG0dR06JsLxZdie98ZI2uNn3nmlUg2yoN+gpCrVJ/pmk37LuH/poxpdBM0/q5\nvvHonesoUrZ3lTOinOJTqpL3s+dCHr5Q7fclG0tGEdwX7/Kl0wPnom4uTptDKsKlrVa7DR/vXBdy\n0KZCXV3O39hMO2sttfK+TTV9PO9b29y3i5lVznVs+LqSybqeiWZcPhzI1ty0rxV0ESx/JIT4aWAg\nhPgW4IdQlPovaIi8HkubicHe9WvYO7cozhonte9FsGtMuNheu05sU1ux+wfHztXgaYJ6jQrXjs2+\nji47aRs+LaWNTt402bl2zrOpYqc223MV5dK/xaEsMtx13ogNW6isBXDHdsKL1mFvseDkYI3Pre/x\nuSf7nDu7Vhzn4vqK49LcZ16DXdGwGKODWbipZnwXNJGD6j6gvlGwF3PfhmaVmj4HKabVNK/t45qo\n+k2hMhnHda19nzWKjjq6CJZ/hMq+/zzwP6HMTe+7lIN6rmH6NSCrkU3axHu6cJCPBdZ8KV21xW1U\nC3C5hUs5Vr+Q8b2c9uJQHG/UJVfnt/s49HV02RWa43WZ5+wFqak8s0uomNUBNSbjuBAusTF+lzZ3\nVaRoWuJAEvTMnBeVo/TZcyGfOhvy8NmQO6+bsxYoEssbNwds9U+RLqfEwWlgwCiCe48teOyxjYKU\ncfOYKSwyojgorl8zCWuYNWi0kHEt3quYYG34WLtt5uny3tWLwvnmWJsJ6lIhNu6L6zfX5sg1F2fT\nEDFZsp5XAN1N+myMDnesUl5x3gMFVcoHpJR/C/iXz82QnhvIZdU5GMVZ4fQuvnfUZHeVOtW/V+pY\ntNmxrYXVpZkcpKjWQVCjhHeZEvaxwNkvslke1td/pQyBw3Snq39CWRZ4Qilc9H321W7x4cs7gocv\nBDw2EZw7u8YfJwGvf8mMJOuRZlPSQFGhjBMVen5qsOTNJ3sMgl1ngIWJNAkq44Zq1Uy7MFVbTRQX\n9it8zOdqF7Zrun+rzIe2kturYFX/p3kN9vttlsU2q00eZmXNo4JGwSKlzIQQLxFCRDlB2dcUtDNP\nvzzmArSzE1UWsi6lTittW5PRNP/UIpasF6Fp8euyMK7q3G2Dq2SAraG56s10MeG5TFouYWJDL7Yz\nQuYE1VrzE5gQkyYBG5tpYYIy29V09xrZcl5JXkuynsqnyaOHdiZ97nkcZpkiLr1l6wnGacjp3TJk\nfSta8k3XwmfPB5zZs64pv39aW9GlsHUZ46IsdlwX6m0+utYovZbSxDUNOS2d2HZBraZF1jWPm7RQ\n+3t7/nSdr76CYGka1AJQ7GPN+RfGkr1hRBhL54bnCrqjiynsS8CfCCE+hFHv2MHl/4KClA5zS/6C\nmULFBVOguFAIKavol/4N2qNr2tBW+VGjyUnrc8Q7v3NUGoSqb6mpmFkUL70LhX0vXFFIrrKyGrtJ\nNeKqn2RwNmN3GOXXYwm8SJnIbOr7KlFmfaw7kz6febQHTEmyqj8mDiS3H1fRZMNojc+fD3lwXNWK\nk1xALxJRxMpVtBaPUPH5E1aJ1uocwejRAHzt+SpV7scX1FZN02y3aWz27/a714RLK1SumMJMPJr/\n6wGbl3Y4zx2WS+GsROeL1jG1FtdvNpzCxSFU7FKw0GKvdjhOuwqZJrjyQ8xzmyoNNgkX039jCx37\nPtifKz6UQdmeXmzjOGOHiI0R7I77lUUaYH2SsktEGFed+rWdcSZySo/6cxwEVd9UkgR84oENZrfu\n8toTsmAIuG2UcTy+UdG59E4zjBJGUcxDY8GTe4KdSb+mrfQNgTePSjOMjHtqcXNE5vkCGGx/k+3/\nM5+N6TuzTb8mmiIOfTDn/UEd33a5ZBOrCEr7vbXbqrX9AtBU2sqECCFuA34deB3wTinlu43f3g/8\nNeBpKeXtxvevQeUobgCPAX9LSjnJg7behSr8lQL/QEqp2e6d8AoWIcS/klJ+LzCWUr6n+yW/sODc\njXnCILtWZ3T24wgA0JqPLyoIqhqHHUhQLBqeHa25213VDOZbGLRQ6ScZc4KKcGlDWQo6I4ncQlZD\nL5R6sS38MdZiu0laCJfZNGQ+oYJ+kkGiTGO+nWhJqx4a3y0bs64feHzALJvy2hM9tgeLCgdX0OsT\n91JODjK2IsFnzwek2zPOnV1TGxTq46zfq7qjHdxapn2vbM0H1PPUiYuufvQxNsxn0u0ZZ4ciXGzN\n2J7vq+QA2TC1YFsTfiGgY5mQ88A7gG93NPEbwC9Tr1/2PuAnpJR/JIT4PuAfAD8DPAP8dSnlnwsh\nbkclol/XNMYmjeUOIcSLgO8TQnwAi5xWSulOT36Bwk6ksxMTV81AN3fWZoipC3aYrwuu7xvLAHvy\nUA6KYmEkqJgNXGP3RhDlAkZfw2Qc147RQlc7tTcGc+diG8VLNklLQUXoXGhDkzcsCdiwaOejYFAQ\nbkbBgDjwk07qfqcZfOJpwSxTG7mbh6cJen0e25lydqrMcHEguXN7wSiSPHhswZkzA2VqHQTsjqOa\nljWPAzYG1tg8Gx37XsnclxAiG02H3mtq8cWY8C3cUaT9lFUNuEv/7WW9m8Oane9IbvbswhZhrwGH\nDXl4eSytZUKklE8DTwshvq02Dik/LoS40dHurcDH88+/jxIgPyOlvNc45guo1JNYSumlfW4SLO8F\n/gB4GfBnVAWLzL//moBzUUzdZoCKFhC5c1yK8GVrYdewa4tHcebcTVbG01ID3HU9vjyUetvNWpC+\nlso1OJIpfeN27ZL1v908adCXm6LvU1M/tqDSbc0tP4nZvrrmhSJ77C2VtlLUngmJe8tCWzH9Q678\nlHvPKeGSZAviYMYkLfvZHiwYRQuGUZ9RFHFfMOX02TIT3w47Nv13bc+7SYN2CQQ3pUm3iL8uC+3m\npr4nKbs7JRW9FjQbm+74H1cYdKVvYz62hbm7wvbjOCveVd1eeXzZbtMacJmhU5mQfeALKAH1O8B3\nUiX21fibwGeahAo0CBYp5T8H/rkQ4lellH//AIO9rOHa2ZswVe7G46wF2+RL8h1nC5WuqnhbBnyX\nPBTz2oCK36S6260nl5m5IXaCp32s/lv/tjFMCw6mabgozjMXWhtNyYPm/dwczqtmNkJnrouNQbgk\n6q0jE1XbPoquYhSfV+awsBoIsZHnqNi8Zw+OBbMs5NXHy/tx/bGU6ze2iHrrjOIJw/5F1oIBD8UJ\nD58ttVm9Odkdl0EIvh1+xZHf0QfSJPi7Hm+O1Xd8MYcnKmCioBAa9wuBaQsXU6i0zX9fMq6Po838\nvMG8jGyMAq/JWAukpvyY/UIiO5e4AK4WQtxj/H1XXvbjUuL7UGv+zwAfgmrdDiHEK4GfB761raEu\ntPlf80Kl+NtcMBO9SHaf+D6133SGR3FWtVtHzULA5MQyExjtJEX9AvjJ9uqaixZOtt9EO8p9pgX7\nZbMFrrlbLBLv8jHFoeQqsxDhsQU7qKx0FyWLvnYvXY7HzFHcy4E7sqzYzeZ06oEIy+Jbub+kQvne\nsKnQeOjZHrNM8JrjGduDBScHEYNgSJgtCcLjnFibcv1GyjBSzMUPxRm7k4id3N+iE/K6bjD2m/He\n1lb1++pmwc68jxyCIYqXRPl7MxnHhZ9L++O0cHEJFft5uuZgF6HSdE0+uLQd3wbuOcAzUsrXe35b\nuUxIF0gpHyIXGkKIW4HCjCaEuB74D8DfllI+2tbWIRVzfuEhCGTjLq6N6mVV6Im6n0gbfV4TKaZG\n/bdyZ2+2YQqn4SgpzEcbg3me+9G+kNp92uSSGpVchoVgltOX6791KG7TtYPlB/OEirvybFwOWue1\nGaV8VVho+Xp0ua9JErA7nDNbJLz2RI9hf0oUTIh660wXY87NlkDAMMp4w7ZkFIXcGyqLwo7lzPct\nZvb1dcnId7dV1fhS4xmaGqfTlOkwk5UbsKzI1wEYjhIjcGLu2HR1pCsyLAemWdIcXz3puB7lZs9/\njcS6/ib+sMsAK5cJ6QIhxEkp5dNCiB7wv6LcIQghRsB/BP6RlPJPurR1ZAWLDTVB6zueUSyZZore\nvXp8PZPbPL9LTL7dVxxKJ134KlnjOm5/06o+2cYjpp2cbQEELqoVO2Tb7ccp+56Giwq9fxfKj6aX\n20X/b8O20UdxVtQ7gbxWO6rEr3aw1gqo5QIwjntEceBcgMpnnDDLBiTLHU4NzvOV3QgzN2YYZdx+\nfAlEPBQkfElvPBy5T7rvVfIxuiSZdm7LMffsnfzOTslobB87HCWdOeXaxuMSMF3hmv/2vL2kAkUe\njvPeVyZECPGD+e/vFUJcA9wDDIGlEOLHgFfk4cO/CfwllLntNPBPpJS/Bny3EOKH825+GxWuDPAj\nwM3APxZC/OP8u2/NAwScOLKCRfSkY3dW7ng2jy24KlIFgkbAIFgwTqqUL91zRLpTiZhj0f+3ne8S\nWOaL7oLt3NRoc6TaY7RzWGzUI8UCdihNHqu8vIV2YJADdllsbaHiW9hEoKLTdIlaH/QCZIfEagJD\nNZ4es2zKLIu5/Xi1rRs2Ujb6x8nkgjiYshbEwJQvnR54Ew59C505Z92JrSV9jpnL04QmTjANV9Km\nmYxYtLWif6crmjSYw2j7MtRSKnCVCZFSvtf4/CTKROY697s9378HlRtjf/9PgX+6yviOrGDpCdMB\n3Cv+j+KsECqjWFVRVJXlBCAZGySVbThoeO+q/Fa+xMmmyJny3O5RZ0X7Rn8uU4w/UqwuNFexY1f6\nTeqEjjoMWo/TJVAq2mUmlOmrMIX5mRVcwkSHDK8bXGUAXzoN02zKLIt41XEVgXbDRspWdIr13iZS\nCF587DSQsBbErAVTHni8Tj1i5y9pmGSVriCRiu8sVuy91Vo7tm8sM9qr+8nMe1jmJNU1LfBHJpbP\n/hAEQMf3whdJqPFcmb2uVJA8InBpH1GyJIkzZnnpXrMQlHmejyhR/21TWqwyaW27fVMymG/HbmoT\n5njaalOsgtpi1pa0ZtnDD7K4uMKTzcx1PT4fd5W6X8tCM1GCZSP/vKvqwGe9oiyvvbjrBXtdE2Ca\nWfQ5V1nR72LGLAt5+daSU4M5mVS8ZJmck8kFk/y+3TaSzLIpp8/G7Ezcz9YXYlzRXIx7E8aylnNU\nXE/BpZVh8uWpNno1E6PNrFCP/qv6fVxj9MGXK1anXXL/bTNQaNgajQsurfoKDoYjK1iWsurwBfUC\nFU7UYYrauaqFZ5zAOBHsTqKq+WzFiBEfLYyazC1RZ1aI5Ko291Xs0k11YA4SKeMrsHRQ6AUUqCRD\n2jA3EONkwYW0x1PTPpv9KYtoCMA02WEyDyo10EvG3+pYC+LLKKgIl0VuNk2igPNn17hnsmR8TUKS\nHeOmrR1etL5DJufcf35QCJa1QAmXtSDhK3HGubNrRbKu7xn7mAvse2OzDhTRXZaAcQkUF1ybAnOc\nvnN9JSFMFmX9fRffWXm8J4nZIxRdMGmCrgiXg+HIChZNm+9yitrCRTvvdTLffphencckecivI3DA\nhGsh34/a7goTbh7fwarnNb3Iq5q/usBOOm2C8oGQ17zvkS6npEuVbb+3WJBkcfG7DybNugvlQq8C\nKR55MubZNGGcxpzdyEiyPklWLrTDKGN7IFkLQtbCBY/FFzlz+liNCcLfTx0ugWJ+bvKPdMGqvj/v\nsRVtdjWh0ql9i8uuSVve3EwviXCR1ANCvlZxdAWLrBMrmjCFS5oEKwmVNpg8YTZWMZftF7b20hyl\nc7hFmtruXxf6jSZUQos9XGm673EiGKeSSdpjnAQMQiVYlBlMNAoVs3yCqbVo2Fxq2q+RJj2SxYxx\nCjdulO1tDxbcsJHkeTURa0HEWiCJw10ee2wDF3ycYbaAXbWq46XizPIJIa9prUOUX3FsSyBIW56O\neUyaBAVNkMkgcAXdcWQFC7QLh52CbqQ9f8TXfjUzvUza03+7HKhmToHu1zZ9NRFXrjq2LgJGw5Wc\n2QWrCORVFrZVyw+4+k+yHsmyV2RFJ8ued2epx2YWh9L/V7jJYlkzyWmtIEkCdidzntxOuHFTcs1A\nkV6qRM1+LlyW3LjRYxRJrop2+cqzpcYM9Sqeejz9JCvYkZvgoi+xN1iHmYDp6hOqIb72eKAuVPwC\non1DYmstvnYLyiGdJH1ImvVSCqaLS1dN83LCkRYsPtK9aiJe+0RoIq+rRcsYE9ikcvFRUWjYwqWL\nUPHtPn2LhC+p0UabAHLltLiihrq+sK4cCB2RtLMTVUgsvT4shxlwFJc170fRgihQVSFG0bOcDUIv\ns7GGrXXqoAFNItlE4LgzgQcnfcbXX+TGoQTKnfHZaViYyEYRvPaEZBTPi0x9HzQ5qE1iaaMp+bVt\nvuwndLjNnNpUK6i60aqGjWsUfpQG4eL6vgux64ntg2nQRxVHWrBo2HbnVc+xv29bMLWJZmNYLkAm\n91SyEI0RMm00Jo0mASM6rGsGf1u4ZtO54A9FbeKfso81+9SC2LxOmyG5SZPRNDprgVq4h1HGehgy\nCIZ5bsl54pwdwCdcdH0eZ1a/I+zaFUIMKB/K9ozZYsEsi2r9bQ8WbK/N2R70GUUhD8UJT0/81zaz\nXunUoV366Ina5sSqKEOO6+HG5lig2Rrg0pxME+cqmxT3e7N0bsIulUnwKODIChYhqi9Sm0BpmvjO\nEF6fD6FBqAwCmGZlOVyfgGnSgsy/td3ZXPDsRdoXNt10P9p408zsa5dQscsC+45TbdVbZ4UiAAAg\nAElEQVS5zwb5oZrEsmjDMuWYVS7NdtX9TxnFkq1oybCfMQi3CAkJRcggHDKMppivh+t52j6MLsml\nLo323Nk10mTOLEt47YmS7ub6jZSbhwGD8GpODiZl8bB4wcNnq4tk0/NyhZt3WTTtOd8e7FEdj0na\n2XROF+Gi29TjsPNQXBpOl7G2XVMcSuLwUKjuWUplZj0KOLKCRaPrLs13nG9immR99uJj7rw19GKp\nhQtQULzsd+dUMSM4WIibXmhfmKZPqNjJdbpd04xRFWz+BaBNqOiFV/1fvvQ7hjnJLBBl9x/FS+JQ\nLeBxIBnFGYHoK9r8MCIQVdp82xyqx16/pvpzdcGM6NP5F+eeUXk9a8GU20aSk4OMGzZSBuEpBsGQ\nQPR50fpTJJkisRxFkgfHC86dj4t73QZXwqJ5LT60tW0Ky9k0LDcyDgHr3Ch5hIupifjysHx+yDbo\neaGZsM2xmhu9K9gfjqxgEb0qc23XFxPqPoQm4dK4kzRe6GlWn8gmb1gTmnw8redaL3+XMGkXvEIi\nruc22DkLleMdC0h5bIadFa/5xnTBLy1cbNu8TS2i7q0jMm+REvT7DMJlQZuv2XorGp0WpA52g1Vp\naiJjXj3yZAwkQMBT0z5RT4UnpstphcTy9dsZoyjiEySFcGnCKqSialz1nXVbHggYbABplZhStenY\nwJiCpKPmYqNrKQsTmr/MGVCwEMShdL6TV9ANR1awKEqXdk4kF2wBs8qL4CKtNCdycZxHqLQtDvtJ\nXjxIrooLTeSc2nHd5F+pLtK9QhClSUAaZySWqc+8jsjIK/E5nV3PPBB9WOypz9F6hTLfbs+ZU2Qk\nGfqQJGX4qi+qL016PPJkzCxLgJgkSzk1eJqnpn1MEstTgznDfgYMuC9IOH029jrBYX+Lr+8aoJvj\nWx/bFHBQb+NwhEuTWcy10bDrDen3L1lQq72zX1zJYzkCEEIaO6neoTsuof7y+QSRnsimb8UF80Ux\nx1vZiXc0Cbh2kW1ljLsSU7Ye40nG8+0g61Qw/j5Usa/92bFllhRElEDuwFfzxPQb+e6veV1uavn2\ne6P7OH02Zpolquzx8eoxL92UbEXXkck5g/Bp1oJj3BckPAKceybwCtTKeDrOddNXZtPjtKF9Djab\nymz/XxdN2tWmS3O1efJcx5e44sRfFUdYsFg7acditGpope0k9S3Excvq2SW1wa5yZ495FQFpR+zY\nY16VAHMVCnyXU91/jp+lufzc/fw0CZhl6txA9FWhL5RwCcSwVugL6sEeNc3FXAgtv4X5W9fcm3Pn\nY+4lASJu2VIkljcPA7aiU4QXJxBGnByc5I7tp4mDAWthwmcMipTDgpmdD90jJ81zfHA9Px8HHbSb\n49oYLJr8THDwDP8mSCkqTAtfyziygsXEQcMKVzE9mVrLpaAT17BDqFeJ6DHhMks1nWcKPTOJz+Wf\nsMfZBleUUnoJFtJV4WIeNmGHR2sTmDaHmYShJSeZutfnzsfcvUiZZSGvOr4gXU7J5IIwjCCMyOQu\n4zRke7DgG69ZMookn3qiv68F0j7HVYNlP3BpGy6m6S7h8m2+IqfpayXmAXOzV2rJV7AargiWHKZZ\nzIZv194kUOxzXEyxNuxCX0U/xm7Kt3P3jdFvXvKPvUnraPrN1gBXCeeGZsqPttBXH7mhD+r6Vdiz\nZhk2e1A1WaqvR5P21iRU7M+mgHGdZy/Eu5OITyUZ41QwSXvcNDzDtceOkWUXeGSSoYlS42DJ67dT\n1gK4+yl/MmWTNuUr6qXhMu+2mV6bIrpsoaLMwe650nUjZj57X6XIpnPs757PTYsPQoi3oGqnBMD7\npJTvsn6/DVWo63XAO6WU7zZ+ez/w14CnpZS3G9//78BfB1LgUeDvSSnH+W8/BXw/6uG8Q0r50abx\nHVnBImVTslSdgddEU46KiTZqfacpy1FF0mVm6mqiavNZmN91hev8jWFaGXtbPoFdArYJXfMpul5D\nkpv8ZpmoOFPLQl/7y1uwubp8cO3MzfBon1P//iRgnCRcSAfcPJ/Vjrl5GBAFA4b9C6wFAz4RlhFj\n9jNzR2j5n0dVw+huLrU3Nk2mr1Wd5F1zVroIl6Y5dlh8eUt5OM57IUQA/ArwLcBp4NNCiA9JKR8w\nDjsPvAP4dkcTvwH8MvAB6/vfB34qr1D588BPAf9QCPEKVPnjVwIvAj4mhLhVSumV9EdWsLjQ5nOx\n+Yu6mNAq2dZWpJRe4IAiR8OMDLN3khqrhEb7nJQHfVnMhcrMMRkEkmm4sIRj9VgNzcfURNXuo3Px\nXUebidHl3+rysvt3ukGFpwtKahfXNbhMgmbRMCiz520TWZIEfCnpMU5mjNOyeFgcSG4abrLJBsx2\nednwWgbhE6wFx7jbETHm2lSYEXo+s5XPn2VqLa6EXN95tkApQ3v9WktbrpBvXrcJl7boxMsMdwKP\nSCm/BCCE+CDwVqAQLHnZ4KeFEN9mnyyl/LgQ4kbH9//J+PNu4Dvyz28FPiilTIAvCyEeycfwCd8A\nrwiWFthhsT6iPv0SubSUAzERW+YvMxLM1VdbxnybKW0VHjDdZpuAtRcD147dF3TQFg3k0nx812IK\nrzjOiiJewIEr+y0SQd/4vDFqzjhva2tG6X8xYZJYjtOEO7cX3LI1I+qtw94uMtkh2jjBehgyjDK+\n6VrBJ/OIMRdMoWKaXH3Jny5ciojKVdFlo+Qap+sd1cLcPO8wsGK48dVCiHuMv++SUt6Vf74O+Krx\n22ngjQcfYQXfB/xbo7+7rf6uazr5eREs+7HlCSHuQKlwA1St5x+VUkohRIxS6e4AzgFvk1I+1jYG\nKasP2KcdgEHrbdXFaNqZtaHqpM1qCXtF3obDPKHHY/Ml6TEWY90HTU2TgPFpFbuTyCiMViYt2i+r\neW2rLLr2S17mtpSs0y5Nx9RefGOvIC9NrGveK+p84d0YVNiFcwJIaDeFFddlbVJMuvv2c3vcfzpm\nnMAkPcYd209wcnCS6Nh1nJ89xmfPqXbjQPLGkxlrYcL9p+NaG3a+0arRUTuTfoUZeRXGbT0PXHlc\n9hjsoJf9mIVXHdfzjGeklK9/PjoWQrwTRWnxr/fbxvOlsezHlverwA8An0QJlrcAH0EJoWellDcL\nIb4L+HngbW0DWMpmYaLRJCzcNC3NwsW1E6pmlrcLFVetelcYbFNehW9sJpW+nR9jjt/Mpt8kVZU1\nPVE9PhqPVVEkIkZ1bc1c2GzzkXmcjcMK/1wbLAoTlrd8sGUWtR33XRZlO+Hx9NmY30tSxukx7tg+\nT9xbcvpi1Wl//cacYaQixu57pldz6tvmOZdw8eWxuOj2mxZmf+CAHYxRmix9gTAHQcWHcki0+M8h\nngBebPx9ff7dgSGE+Lsox/5fkVLqHdLK/T0vgmVVW54Q4jFgKKW8G0AI8QGUU+oj+Tk/m5//W8Av\nCyGEcVMaYddasR2NbTsXV1y8areeE9JtPPV69zbP1yq8TrVF3kM5bv9tL8rmb7bJZGcnIkoyNof1\n8XTd+TUtFrXFyOG30nXo9eJeC989wOLRZmbp6kTWmIzjWrE3u9JjW8itid1JxMcmME7h1ccNn1Qg\neeVVgkF4nOmiJLG8L/Zn6tuwc3Ogrn3axJ9tAtIleGomP2tj1SXqzNlXC7FqrOdJ/gwPWueoCcvD\ny2P5NHCLEOKlqAX+u4DvOWijeaTZTwLfJKXcM376EPBvhBC/iNrw3wJ8qqmty8HH0sWWN88/29/r\nc74KkGtAF4ATwDNNncqlqDkt0yQgTbNKnRQNV5a+LVSqRIzm59Js4/UlWLtE2+5tEzja59pJk+ZO\nUi1iq73wXTOdTQezpmrZj0BtstM35TeYju9+kkECu0m/cr37yb9QVSR7hR/Gdz9MVl17vLbT3nwe\nusKkWY/ezj3ylRvw3d97Hl9jnCiG5GGUccvWjI3+9cTLHlF0ikw+QZKlbEUhn40T7j+tTFl2X/b9\ntjWrLqWQ28bqo1rRv1UCTRo0PbtiaKWPtLoBArfG3xQufTk68PN17keAj6LCjd8vpfyCEOIH89/f\nK4S4BrgHGAJLIcSPAa+QUk6EEL8J/CWUH+c08E+klL+GihSLgd8XQgDcLaX8wbztf4cKDlgAP9wU\nEQaXULAIIT4GXOP46Z1Syt/NjzmwLW/FMb0deDvA4OptoO4/0bU6NOzdaG0BL2Ld67vWpqTDJuEC\nmpokK9hXbZJD3Z8rFNl+GbQj2F68Kn0b12+2Y9YhN4+zd52VRbRj/L8rL8c1vpK80j+XZ4SVQlvm\ntfjMHmthtXKjTJ4FIIiuKkgoTX6uJuFij91+BnFcPkvtj/EJFde9aF6kS637EeDZNOHrTwRsD/oM\nwgkEQ9JstyCx3B4s+KvXLbhmILn7qZQzp485F2Vzw9RVI+siVHzwJWhWWI7jarJp05w2n0vbeKpW\ngbLNS53IvF9IKT+McgmY373X+PwkymTlOve7Pd/f3NDfzwE/13V8l0ywSCn/atPvK9rynqB6k0wb\nnz7ntBAiBLZQTnzXmO4C7gI4fstNhR0ijrOKFgKrZeM3CRfzdxNtIZxaC7EjuYoF3iFQXO3rdrsk\nubnG5fSPmItOQ7vtSYr1IIkmIkUXXHU4fIubeZ1FmHcuVAIRwiIFULT5gVRcYWG1L9d11sbkqaOe\nXzVRnDEZxzXzlwtdFmj79zJbPybJZpwa7NRILG/YSDk1mDOKjnF3vMuDj25U22zR8ppoeQ6SUOgr\nA26Pp6sWumnUg6lv/KzgBccG4TAhgdnlJ6MuCZ6vqLCVbHlSykwIMRFCvAnlvP/bwL8wzvk7qJjq\n7wD+sKt/xeUEd/kwzB26bdoyz3d93i9cXEalUOnWvktg+o6r9l2tgQKQ6IVbsbjXdu8HTVpsa6cr\n7BBZ18KtF5O1XHgEIiQkRCa7AISEiu3YatfZn7WIukxiLgxHSWPb1YCQBh+CpU1r6Gz9WQZv2O7l\n2pfCzcOAE9HNSCFYDx9jGIWM4l0+8UBVuOhx6P+bhH6XsOT62FdjkbDH1JRkG8dlkTFzDrcxLV8q\noXLU8Hz5WPZjy/shynDjj+T/AH4N+Fe5o/88ypG1Mg6DtuGwMnShbTHZ32Ld5Rq1QAEq1Rp10trG\nkEK4mG03oUs2d3UMqy1Odvi1uSC3agTBkqC3BlkKexfVl1lKFAyIg5Q1BxGl3Uc5bkPQWlnkcbhg\nxx57Q1KeKdzr1+yO4nIdd8/jATDjDdsqmfLlozVGYoT86r2KxPLaV/K6q58gDuasBTvc8/gaLmYF\nPSZfKL4txPdLGdQ0V9qSbM1xRnHG5rEFgwBGMcwWMAsk8fGEnYvhSsEWhxXOvJRXNJZLiv3Y8qSU\n9wC3O76fAd95qAO00IX6BbrvtA42Frep4HK0A7eha1LmKu3VzXEt1RHNKJ2o1FKyZbeESV/7ZhkE\n/XfRjakprxit1mVBtHM8/vThHrDHG7YX6roiRWBJECGFIJML4kDwhu0FMOOex9ca221iIVg1I94c\nZ5fratt0mGwWGmYibFcGcRMvxHfr+cblEBX2vMCMCtPQ5p04rtb/8MEWLm0ZyG3svM27PIfvJg2c\nn8Ht+2hyqptmtijWC0RGU9Kjvqa2F8+X8exzkLY5/5s4rZIkqCTRmffVjALcJC24wtJsilw7BbEy\nBckwJlssSLKQmZUp7UrQK8dlL6zVHbzLbOWqTWPnNzVFxXW5N0kS8J8/v8n41l0macadJx/n+LUv\nB+Ds9It8ZVeZh+JgmYcr14XLzqRqGjTbtvtv+t28Pt/vvn7s+26biHVbO5M+cdwjTYKCww7opKns\nt4LqFVRxdAWLhJ28mp8ZVrk2WJCmWaUaYGM0SUsVyibCSn947bK2qKhxVoWY3fZkrDKrTSp2E6aA\ncZFtul8qMwTUnV/TJFxcxcO6sgOYO1R7rLoSo2uH7Lq3dkLfDhHjZMokDdhbzEiXU6I1JVjS5ZS9\nxYIk8y+mPpLC6piDVqFgh7pWw37bNzd2kq+LhUD3c+/DG8yyXZKsxx3bjzNd9JjMS59DHEhu2ZoB\nazRpLi50IWs154sLNkuC2Y7JpGBuGHxalN5gNGk5+61WuV9cMYUdAWSZ2tGYeQVRMmd3GBHGIcNR\nUln4XE7acvEvFz9zd+7jITJ/g+pC6NNi2kwJk3GMmKhxqDwOd/yCrb1AuVCbgnWTtHKeLVT0NTQJ\nF/ueNWkuPuFkX/fOTkSaBOyO3ddo8zyZ/dh5GdNMJRWO05ATa3vE8aY6drlXy2Ox0cRr1kWLq+Ui\npXVt0HdscY5xvKZWacODj24wTi4yTo8VxcNAlTo+sXYVUW+d9fCp/GglXHYmfXZ3osbQXn0N9tj0\nvW7KN4GqFuN8hxy0PhptVgIz56wJdt6Y7utypM2/3HFkBQtQESrrO2lRL30eB0yInQmFXbLxTbTl\ntpgLoU/A+KB3u1qorO+kzPNciTlBkYWu+wEqL5kpKOzMdZ1zUY7bMhvqKDmPcKkL4noCp76GrtBC\nZTYNrWRIWTwr1/02s6qhJHncuRgyG82ZpEFuDjsBQDZ/imTZrIXWNI2k3ETY98W8B+r/MqTdfsZm\n8l+d8scxFsdzKftz39szp4/xscmcJ69PuG1Lcv1GynoYEvXWCUSoqPejGTduBIxumeW5Lt4h1DZQ\n5jVoxmY7aRXcz97UpF1s4vo7WxBp+EhgtRVCH+8TFhWC2UM2iV0JNz4CCIKl0kryBWePiHmUsTeM\nCGNZhIPadCqroCSaXE3VtmllVBseLrMoYzhKmBCra4hV4l1IudhG1kvo4jXT96Ipwa3CSeZYtPzm\nsDJMuwltO32b9BFUMqTZTxN0YS0zMXEtKCPDhBWlPsvKhcDWMG0BacLnxPY9w0rSppHbUt7rbr4m\ne77ZC7KdxHr/6ZgzewlfN4qYpBm3Hz9NIPr8+R6c3lVm1VEEb3nxkvvWd7n34Wo4so+926yQGcay\noK8xr62tHII+xmdO89UT8s5BB8+Zq7+2ROIr6IYjK1iEgM3NlCRSi8CEmL0kqNCdd02Ig/bELvvl\nszmJXH1VE+3coZ466U8LF1OgqPPKa/Hl6ei2dogqi6YPlUzolhfQ6QNpsG37TGqmttPWvm8caRJU\nqjZqp65d2941JheahEsTfGacNiaDLuPqupnRz+Dc+Zg/Pg/j6xMm6QZxsKzxWd20leS5LjuFaawc\nm7+fQsAYzA82mnKOmkOPq4ERrg1Y2zx2BTrYQuW58r98reHICpYgkI07do1VckC8znjrZfcxwTZl\n4/teHrMPM+nO/s0UKr7F2PSrrKqd+QRi+V2dGgfaX1xTuzKFS5twczqwDeESxRmDANbywwIRqlwW\nC9PMra24xu/yJ5hjt+FztNvHuJgSmuDSXGyt1YbWXt58slfck2GU8ZoTC7aiU9y4OWF7MGUUUdDA\ndNXEbaHiMhGa5kE1ZvccNxMfbXTVis3/XX1cKijn/cErSL4QcGQFixCyNjn3K1B8SWPuY9WENos5\n+eDKvtdjcpFa+hZbl6ayShlhu8/iuwO+hPbi3LW4kqmpedv2EBK6fo971WcciLxMsDaDWeY/fS9T\na9FvImc0718Xxl4bPvr/Nq3aJm1sumdnzgz4L4sZbzq1ZBTB7cenHI9vJLw4IT52khs3nybJZoyi\niLvjXT774FbjvGl6v/SYfZRGUbx0anMFFU8lAbWqvdTH4Q6uccEVmXZFa1kdR1aw2IW+XDAX42pY\nZzXEU8PnFLQXZJPdloG//6ZwVZ/20iZQNKqlg9tfnFWy/bvn5ngYbB0OWp/w3u9L37Sou2rez6ah\ndzet23L5tMzj2/ivDoo2f5wL2qylI6KSJODjyYw7r5vzld2Ijf6EjY0TpMsp42SHs9MBcbDkTSd7\nwAUefHSjCP32jmuf12kHL6gx5s89rguTVX2Zus0rpq/Dx5EVLEsJu5O+N4HLNhu5COxMNFFa2Lsv\nE7vjPhsj9xh9C3MT/5V9DRvDtDYe+0U0F75OyZSOsEwXumZb+8KDfTA1BrMdH3y+EF2xsCkCrDIm\nj0+oHFezlrQKbA3EpZmu4gNsG5P5HM+dXeOPk4BZBkm2xy1b5xknAY9Oyl2QFi5rwS4PPD7g3DPV\nHZLt29NwJVS68n5cbYGKDNSF5cw54JrDNryMAS01Ww4LUuINX/9aw9EVLJloFCo6Y3cQ5AvQMPUS\n2LmEUD05sVd7qftJxjzWORl+B6dtLvD5SPT1aEbXKM4Y5bkeY7KacGkyzfjyXcy6Ina0kW/H3LTw\nNy2+Ls3F5ydqy/Cuta39XfkhmVxAB/N3bYPRIjx8fqDDINus/N1istXmsKZgB7PNnUmfP324xyyb\nMkktbbFIpIQ4GLAWTrk/XnLmiWO19nxafBMtjGtc5n3WwuUgpkUffKbkyw05ke97UJTV75NSvsv6\n/Tbg14HXoUqVvHuFc38ceDewLaV8RgjRB96XtxUCH5BS/m9N4zu6gmVZX0VcQmUt//cskjQuKSTM\nfBBNeFe0Ey6cpqYoqvsytHAxc0j0sfbuq8Y4vBB1O7ZFwKcdsaNYVoSLGRHjCxu1d5p2sapWHq5D\neOFN4WKzLsfhomBd1kSEPv4xk6lAR+SpZyRJ9uFQbfLZuPJbzGPMxXYVs5XLP2DPj6Yxtn1vI0kC\nPvHABrNbd7ltJNmKlgyjJbeNMrYiVWcvDk4r4RJIHhqmfPHBq9RYLEd7K5VKy1yysWOZ3+xNU1Ow\nQNMYwB2efRhYcjh5LEKIAPgV4FtQRQ8/LYT4kJTyAeOw88A7UJV2O58rhHgx8K3AV4zTvhOIpZSv\nEkKsAw8IIX5TSvmYb4xHVrAAnbKJbdjZ54UD2iIddJ6bnxPGEhKViFn8TTV6prZweXMZVl+0tQnQ\nl9jmSkSzF2pTCKapP3LJzih3mQtXWVAqfRj8ZU38YRpmeDk4wo2DfLFa4BQ2BTPBCotg5XqNxeow\nmbBdaLoXrbVWrHnxyfu3ePJlE157Nbzq+JJM1gk6b9yAawZLRvF5xsnBIp+6CCEfzGfkQyU3zZEr\n05TkepngTuARKeWXAIQQH0SVaC8Ei5TyaeBpIcS3rXjuL6FKmvyucY4EjuX1rgZASoXjvI4jK1h6\nPclsGlYiZoajpLDfpnFGYmgHOxfDmk8mTQPOPRM0qvygFhGdNQ5KgJi0K20Fn0paCkUQmcZlFT1z\nUd3didjYTNkcwg7KwVmYwnINo3YNhlCxa8bbqOeXuG3nrqQ9F8xr8P0OFESNVZqZ+vV3QRyXNv+r\nolKjM2EyG5uap885r8fog7l4HYa5xkT1WZamIVO7hHoIdBMvl2qrOke++OBVpC+bME4Fk7TH7cef\nYLro8cCzZdLkWgBvOil56AI8NqkLF5f51U/o2f2Zmmgrv+3M9o+qm52u+TSXGFcLIe4x/r4rL1QI\nRjn2HKeBN3Zs13uuEOKtwBNSys/m5Uw0fgslfM4A68D/IqU839TJ0RUsgcqu18SNAOefWiNNgmJx\nVigXsCbnX5oGmAU3bNOIvXi6MpGbOJJsYkXzJTX5s9RCskcc99gYKt8KqMJPLvMXlJpKl0g1b1hr\ny8LadoyzTUvT2dmJiJKMzWE18KCiQXYgxgTYGM5ZC0vBki3nyOrL1Gi2cO10XcfElsZi/m8eZ+Og\n5kM7zBjK5D97E1R3qLv7fvxLQ3YnU2aLKRfSYzWhfH1elXJ7EDOKQh4ci0Iwu4SK+XkV/i+fac0X\nPOOCS7D6nsNhaS1LWQaMdMAzUsrXH0rHHZCbuH4aZQazcScqpvtFwFXAfxVCfExrPS4cXcEiqhNp\nkQi2npmyl0TMpuvoxTnKzVU2bbiLK8omRmzaPZmUMTbNiisM1+xLL5p6QdVcYVs7U/Y2I55hvWw/\nrvtUXBCTpeLfwjCJeV4ovevv4kMxX2CXgOlif1fjL80TOxM3UaH+3Kwlqfu8eWyRV5BcFnks2sST\nyQVJ1j6mJuFSS0pNlqRJVvENmNfUdN3l2BuCEay52JRTo9tyBSK0PYtzzwz45E7Es7de4OtPSEb5\n5bziqikv2byaqDdgFJ9nGE25ZhBz3zl4ck94Q641TAHjYxTwJb2ax6wKuz+naeyQtcxDgK+E+0HO\nvQl4KaC1leuBzwgh7gS+B/g9KeUcZV77E+D1wBXBYkMISRxnXH1yj2eeXmd9knJsokwte0TsDiIg\nbbVV64V9kQjWJynzOCh8J7uJEkamyQv8O0c7QcyVL2ELGpOA0hz/BKWJafORK4dCt7FIBH2gn2bF\n2PWCt0qior2o+xhru+z2bdi+CvN/H1ykmGY7LjOYjTgsE2ld/riKmSupsijYGeVp0iuO9+VedBW0\nLpjn1bP/63POZ8rs0s/9nz9O8nXP8qZTS27YyDix1iPqDQizJYNgyKnBhEka8MaTPf6/Cz0eYlaJ\nqmwTMF3QmM2/whxzCReNwxQqUu6v0JgDnwZuEUK8FCUUvgu1+O/7XCnlF4CT+iAhxGPA6/OosK8A\nfxlVqfcY8CbgnzV1cmQFi5SieMGGo4Tziao9sTeM2BjN2dhMG+PvNaJICac0DZjEccHm6kMUZ2xu\npp2c8V2y/k0CSoC9zQg57Cl/kaMf1wt0/FTGZBxzIR5UCDj91+DOZL4Ujs79OPabtBaf4z3o9Ys6\n94EIiYOMUQSDQF1XW5Z/mgYVobBDlNf0KWvfmNpKY9jvPoMZ2kKJXX5A05SoNZ02P4XZ191P9Zhl\niv4lEE8xCIfspuf54gX1Pg2jJa8+LlkL4MEwKQIu7HLCJlzvmovp2P69KTKvS/Si8zovQ+e9lHIh\nhPgR4KOokOH352XdfzD//b1CiGuAe4AhsBRC/BjwCinlxHVuS5e/Avy6EOILqKD8X5dSfq7phCMr\nWExEUcbxUzPOs8bxU7OKbbxpYbbbKATMuC5gtD9FL/Zdd6ZNwsUkoEwHARfiQU6iOa/04ztXjxuq\nXGn2cU3kj11oMmz4wnF9fZjjbGzXs4A03UMXAWXQ6zPsp6wFql765nCeVyWst6NNS3MAACAASURB\nVF1LWqwEVQTs7rgX/C67YttHY4fYNrVpwxYqXSKrinbtoA1rXPc90wMikmzB9toznJ1VzcbbgwXD\nKGMURTy2C49NTC2uNNX60MVEp4+rfWdohmakl2lOfiFCSvlh4MPWd+81Pj+JMmd1OtdxzI3G511W\nLP9+5AWL+bKZQsVlLnAtorbJI03KWh2mgDGFis6Gr75Y/rDcJpimqI0RhaZlJxLaL7GtjeldeatD\n2kMYuJ+XtItQ6aIpmG11CQVOkwCMvKNBuCQQYUGbr7nC4mDJWtBjY5h6Fz6XxmZf12QcV7TAKMrY\nHM7zY933zp6DaaKi4lzElV0y8FuLXCVlflIYS6/m4tN87numxywLefVxURHWt2zN2OgfJ5MLhv2L\nbEUxo6jHg2NZ5GE1MRq4hIo5N7y5OsY5vjDxLvP1MJMjpRT7NnO+0HDkBYuGK1/DlXxYYdi1EvZA\nhfhGccbupE8UZZVcGX18JaMf98TtsjiaJI6V2HzXuKxkSh+9eJP5r4kdeRUiTh/0AtBFqPjON9F0\nvk6OrMBgNx6ES+JAmXDiULIxnFshuNX7Z1O7mAt1P1FlGYajxFiY/dpP08YgSpbsTKrRguY5q8Il\nqLRwMVELRnCM/6Fne8wywWuOZwyjJTdsJGxFp1jvbbJgwbXHAC4yjPqMopCHxvBsCj4SyaaQ6YLt\nwREQYgsV/X9RDK5DpFcbW/cVNOOKYMlx2Cpx4YdIM2Mn2yteyGlGJRTTB5dgKNR6TyRNZdELF8b3\nBseXh8q90rdtx3bmGwReIaX7cbXrCnFty+fxjiu1Mq0dTvZVoH0tXdFELjkjZE7AxmDe4PdZLVnS\nxSqwX/gSX33PwjcH9G9pMme2gNee6CnzVzwl6g1Il1PSbEqyVN/fvLVkLYi475zgWSTQ1TTsfrZt\nSY9dLQCrsJqviqVsD4P+WsGRFSzLfEPm4rWKrQW8CeVEyWqZ91G8LMqh6rbtfFWX+cvODNefXTT3\nvvBkDSO1xmFSaBcuNvWIWjxKh7RtFnSd6/vbDJn2JR36FmNbezTbqFHmG0SHRd/WswpEv6bAdEGT\nz02PY0bJjGwz9tpoor9vgm026wLz2de5x+r+LZe/rZafMoEn44z7gFkWA1NetP4Ee4sF49QouxxI\nXnHVFBjw0AXBmT1JasSMNPn1bLiONSMWfSSnLv62K9rJ4eDIChaoZipDdbKVi6dbE3BBR7yYsHfn\n+uWrL7puoTLIT51mfu3FOZbWhagsF+wsquTxMWnYeT1t5/r6h6qAseEKYTZzftrgWgwPEnVla2ht\n2NhMGzWotrbaNjcu023b3GiCy1FvwsVObH6fJAG7k4gnC5aEGEgwl5q4t+TaY5qw8iJxEAMBySKr\ntOkak8+f1CRYu+RcNZWYuILVcaQFC7iJEtuytjW6UX7XM5wLZ69HuNhCRX/WWbum9uIclxH50tSP\nKVzs63HZ0W3KEFfOii1U2l5U3w7btQC4Xn7b1+SDS2sp2nVEhsWBLHwsPnQ1n7oWw8PkCvNdV5P2\n4qvQ2DXTvClLXmm1AU8WvpOYm7dS4kAyihacWLuKzeA4AMHGeQbhs8CAtaDHQ89CFJfC29Q4nCYw\nx3wt53XD9VtM3j7f0WGaruRSHOpzv5xxpAWLd6HxqMRNuScrmSDyREeV53Bw9bsSRmokD9o0MIfR\nT2kSK192VxRdl52fuQDYMHeZvii9FwrcZp12M6SN1LFRcEfp1QMJqu34+3WZh/YD3eeTZMwymGUR\nt2wtGEXuHJlhtOQN20vWgpAHw4Rz52PncfsdT9O77it1rM574c23ywFHVrD0hHvS+DLhNfw7QFcM\nfX1X10bfEcVZwZQ8zaqmMPBn7vqEi4bmYtLmPV8OQZMWVr0faUVLWUWg2CY9sx9XIICv/VV3k5UF\n9ZhjgVvk5hvDymfyhbWZOW20OYJdwqVrnZImQb7KJsfXX1cntk9IlYXiMsaJ4N5zME5DJmmPm4YX\nODmYEvT6nLl4kbOzUoi86viCURRyX5Bw+qxbuLj6UfO2e15Yk2Z+BQfHkRUsrpr3Gm2+AY02YVL7\nzVP3xGzbJVw07BovvsXG7Mv8bAsXe7yuwAWXRmG+nKsIFHAHJLgF/OH4RVw73DTpkSwEs8ztrV81\nKqyp36aNiu3jMgVVFzObzy/XlB/SRvToCrNtmvNtZkhzPn95B8ZJwIV0wM1bKZCRZOW93l6bc2JN\nRY2tBTEPxQkPnw1r4/ahqeqpC12ESlspjFUg5dEpfXyEBYv637bLmuiymPmc+113nvZv1XF015jA\nWgA8QqwqXNzj9Wk21b6qNmnXC2hrV10DEuxrabpe7Ux3MRybJrQa71oSoEovKQSiD4u9vOHqa+EK\nyiiuyaG1uDStpvH7zGJa0Lv8Q657X/rkmpMPfddRtu3WhlybDFfIu71BKY+FZJHxbArjNOLWrazw\nb92wkXBycJKoN2AQThhFzzKM1lQBsWczb/VW3xxu8ju5PtfuhzGfB0dDFhwqjqxggboTfD+7Yntx\n88FFU19va1l5ee3Pvv6d3xtOT7s/k6LcHnPTYqb7sxcYl8DQ3+v76xI8ZkCC73rs87qQ+Lkc0LWw\n7CRgli32VT2yC1yayn4cwa7Fsqu50RWe7mq3KbTXtRB3DVt3R1aqekL3LZTv5eVbS67fmLPZX6uQ\nWK6HOwyjjDdsy8LvsnMx9N5Dk+8sTbOa/3K/GvBhCpXlUlyOTMmXBEdWsJhMo/uN/DDNSV1UXDOL\n2C5FvEp/beY4m1SwqS8XPYhvx+kai/pMbu5wH2ea9qAuTKo1OwLr+pzdG8eXRc7MzH3fC+yKlEsy\noSjzQ7Ur1vT5SSYsH0s3Z7vdR9s9bKOUd/3m1mxL7U+37zN5+trWm4qmKDr7mnzalv/cHtDnc8k8\nF+494t6UoHeeQTBkNz3Ln+fKYxwsedXxBWtByL0s2KH+3rloX6qlGZYrv+NNc/oK2nGEBUvdvLEf\nZ3AngeKgzND/uxb8tnDnJsGSJr2aUNEFvFTVyrAxw92Vy+M8ruar6RIZV9VybMGuq1vGcfcF3Kb9\naKtDAvp5qAzxJOsxXfRywaKqIWZylyQThTbTNXdlP7tRX/E1aM4hcT+bcjPQRaC4YOdcuZ5Flcyy\n+R1oCg7YnfS5PwmYLRJm2YBXLqeMoh2emvZRJLoK22tz4mAJRNy9KOeYS6jY5mAdfan7NMfdhi7B\nAFfgxpEVLE30Cl0jddrQVHypn6jaJ6Zw6ZILE8Vmhn9Vqyh2cIZQaeqv3k/Zt20S85k6mv72QWsw\neux64dbsvV0XaPueanSpe26PNZOLQmMhg+lC/T5rMZU1kSV2QVO0oLOwVVT3ZTQl8+6Xddr8rpFz\nraV9fV/sJEdz7I88GTPLEmZZzC1bQS5EFG7YSNnoHyfNpkAKRNyty4evyHrcdV6ZTAOHiSsklEcA\nbclKXcKDwZ201XSe1iCA4v9Smyj9CYUGkCpWW9tZrmy/JQ2G7cDW6BuUMr7+CnI+o0/75Xfdm6br\nNe9LkwaWJgE7k763nG5XaCGqr8nHaGtjlkGy7FVKE2dyQbLskWTVnB0fDjJ2X5BFk0bZBRXtpkPS\nY1PEossE2wZz0Z9NQy9bsp5fp8/GTLOEWRZy61bGMMo4NZiz0T/ORniCtDflho3TTPJx3hsmnHtm\nrXVM+1nIXwiLvxDiLcB7UDVV3ielfJf1u8h//2+BPeDvSik/k//2o8APoNTCfyml/Gf59/8WeHne\nxAgYSylfm//2auD/Iq/vArxBSjnzje/IChaoL5BN1A/uyKhqprJZhtd1LJSkhCZsJlnzeHd7GTry\nR42tbmteGyyK2vX2ghdSFSj2dbaGYBrX2RpC3bD78wnDJthj1tfmKwnddTEMeu4Q49k+bOwuU2PX\n8sM2mjYuvt9cc9gVMWcfX+t7ReFmMg2vGmwCcO58zKcuZoxTwW1bAXEg2exPSXtT0uUe4yRgkgaM\nIvjmayVXRRd44PFB40bHZZ613wfXe2Ae01a8ryvkspuptg1CiABVfOtbgNPAp4UQH5JSPmAc9t8A\nt+T/3gj8KvBGIcTtKKFyJ0oF/D0hxP8rpXxESvk2o4//A7iQfw6B/xv4XinlZ4UQJ4B50xifV8Ei\nhPhx4N3AtpTymfy7nwK+H7V6vkNK+dH8+zuA30Atlx8GflRKKYUQMfAB4A7gHPA2KeVj+xlPk5Zi\nR8QUUTP5y6Tra5jwMazapijfQmjv+rXNO4pVZI2923fBjtU/7N2Yq3qieW9MIeRyGledrM1CwL43\nTYu1/Xy6CC9dj2VV+Agc2xh3wb9hMc93CQG72JY6z51T0pSLZNfmcV1XE5dbpR/P72ZJbrNdHx4+\nG3Jmb8GT05hbtzKuP3aGyTzg9O6gctwbT2aM4j0+92S/8M/ZYzfJSSubLvtajbHZ0ZSujd/zjDuB\nR6SUXwIQQnwQeCtgCpa3Ah+QUkrgbiHESAhxLfB1wCellHv5uX8E/A3gF/SJubbzP6DKEQN8K/A5\nKeVnAaSU59oG+LwJFiHEi1ED/orx3StQNZhfCbwI+JgQ4lYpZYaSuD8AfBIlWN4CfAQlhJ6VUt4s\nhPgu4OeBt9EBTvp2h0mnbfHz1ddwttcQ2mn2abYNVZ4xLWB0NBTgrFnhKq9sVy70+pk61qxoYve1\n6Wrs5L8mAe5qz+y36D/yO3Bdi6/dp48LLO7VHdSNARWOmuttWFWouP7uWpbA/t3OoTHZgM1+ChNs\nsiRNspqW6npePrNeE12M7SfaAT51EZ7cE7z2RLW9YZRx+3FFx789SLlmAPedW/Cl06XgMQUwVAWM\nOUbXXNHzSt+jw9AyDhnXAV81/j6N0krajrkOuB/4uVzrmKJMZfdY534j8JSU8ov537cCUgjxUWAb\n+KCU8hdowPN5x34J+Engd43v3ooadAJ8WQjxCHCnEOIxYCilvBtACPEB4NtRguWtwM/m5/8W8MtC\nCJFL6n3D3m2CW+i0cQ05z3MJlxU5mnZ2Iu+kj+KsqFJY2eUn9WRBLTib8gN8RY9s2nqz7/qYqrtp\nn2PaBR/Bpb6mNCkFjNmOj4fN7jvuqQqSutCXriBpwyVcXIu4SwjafTf5VPZTvMueU8V9NuZI1HAf\nq21VGRXiUJJoQWQVGmsSjvb1aHQjeFXtPvJkwLNpwptPKkLQ7cGCV14lOBHdDFnK4HjCqcHTbEUD\nrlkvtZe2DZVLoFxqynwpxSpmtauFEOaCf5eU8q6Dj0E+KIT4eeA/AReB+6hnYn838JvG3yHwF4A3\noPw1fyCE+DMp5R/4+nleBIsQ4q3AE7m9zvzpOuBu428tZef5Z/t7fc5XAaSUCyHEBeAE8Iyj37cD\nbwcYXL1dG1dXR73ezXd58Su7shbbtOsckz7F9qXsjh1+gUG1DTvZsmmXau5Au+y4zWixwyIvfC6w\nnyJgdkBDFzgTDzuUf/aduyqiqOpfWPW6zQjEOKzWS2k6xx6Dia6s4eY8P/PEMZKve5Y3nVpy/caS\noLdWbTNnon751hKY8zlU6Pr/3965x0hylAf8903PTs+cb/eWs8/GYDs+sHlDgDi2pUBiggHjoEAi\nXooSHokSESAPJRFx8D/8AwITgRNAMQ6g4AAJBIKwwMQESIIUAYYQ8/QBxrzOXOyzz+vd88327Mx+\n+aO6Zqprqnt69sa7t7v1k1Y704/qqunu+qq+V7nXrJ2JOmCT2Ujg9Ay4R1UvKtl3J3Cu8/2cfFut\nY1T1vcB7AUTkTTh9a25P+U2MacFyGPiCY664CXgqsPmCRUQ+Czw0sOtq4PUYNdimkkv86wEe8sgL\nCjOaqnUagKD+1rd7uFH4fhm2Ay+o1Sa86KGFskxnbkbowJhwWe2aRaWyLJko9EJtqtv5uELKLStk\nrA8tChaiLD16KFUIFF1qQ4bqUBk+Q68wx9140DdeYaveTxHKGO1fLxTxb+vqdnB+B1bIsjA2w508\nki4LWAxF0Je5iYe9AIvqIz+7dbGeAbVYiUo1lGrHv5+uuurI4dP4Eg+wOmgBqzx68W4SaXJ45X4O\nP2BGU65wOZQOOHa0KIBsffzvfuyWW4dTlK8AF4rIQYyweCnwW94xNwKvze0vlwD3q+oRABE5U1Xv\nFpHzMELkUue8y4FDquoO5G8GXiciezAG/1/BaJxKedAEi6peHtouIk8EDgJ2tnIO8DURuZhyKXtn\n/tnfjnPO4Vza7sMY8WszSWcM1R5froDxsWulbyRNOlSrKyxWuMxlA9SrgxvzEgqaK5RZU9C5nZWb\nKypEWVLFKqN6VUc9+q3H9f3Fuk4y7hc764K78fraMDgyJFwm1R/CthB/jZGqgNKNCBfLpAGDO+io\ninfplQnBKWxj9viCanlsTZ1iEGeZavbY0Ta3ZDYrQo+FVpej3WIOsQOdPrZbO8TqULjUcTyw9ZwU\nqLpRZF0L7v8bJdfMvBbT4SfA+1T12yLyqnz/dRg79JXA7Rj11SudIj7meHa9RlWXnH0vpagGQ1Xv\nE5G3YQSaAjep6qeq6rjpqjBV/SZwpv2e208uUtV7RORG4EN5Ix6GcZW7RVUHIrIsIpdijPcvA96R\nF3Ej8HLgi8ALgc/Xta9k3ojR10Wbz8UXcJKAcTsUa3vxX8xJhlX3uj6+lxdQiLA/keUBaa3qzK0h\nV+uq/e717f9Rx1MtNCddC8pf/Enb66ScgerOwaR06TPQtfx/Hzfye5p6Fa7pdKCh2Z05ZrQ/mLJn\nCgEzzYBhmlxxZamL/NgU344xidB7McnexzLcAnmescYwiWWaKOftzZifa3NWp0uatGkncFuzy5Ej\nnWB5IR4soTJrVPUmjPBwt13nfFbgNSXnPr2i3FeUbP8AxuW4FqeUu0MudT+CcZvrY6SpvbOvZuRu\n/On8D4yu8B9zQ/8xjMStjZ/+BOcZrKvndl+GXm/A/HyvQjCUpxmvswqjm5Sxlw5I0wYLixnLS6O1\nK6bRCZe1sU5Mjv1cZ9Q9yxd0GpfpugJmoGv01rvDz9mgXZitTOO2XJbU0bd3+N6GbnqcwvbeaFZo\nO/xxVdr0kfZ12Kh7emjkH1qpcSRYG4X3qOwZtsLlq1nC0kMzHrOonNkxAZXzc21aSYc92mehNWCx\nlfCU05VO0uWOw9WBvW4wpx+HNCt7oehsZizbgS0XLKp6vvf9jcAbA8d9FXhCYPsq8KLpr+t5MuUv\nqu+iOwm3DCCog4fyUZ8l5Ajg599yU6FYrO1mYTHjWNZm7+LasF69LCHzRsT+zMuU6193fLEtf7tb\nx4KefApvr41SNy7HdcH2swr4JDJHInPDBJSl164xKp9k4J/GmDwx6r/EnleF9WTsZeOxRX7ZVTOk\nUDzI8FzX5lUx+3VnvfP0WKEkPb5333pZg+/8uMN9vS6PXUzIBkLayFhMu9zVnePwcVNOO4Enn64s\npl2+d7QZfF5doeL+t8/ZrIX1bmDLBctWsb4+ruooEyplKU0mpTHxy3DPKzPyjl+7/KF2PV9arQF7\nF4vuxSvOfr8NVR1GlWorZPjdiAtxXapckF2XWktV7rA61F3kK02NV6DNb2YJ39v6asMyZhXY6rrH\n22el8Jw4s6MyXC/CQh1rZKuo2m+FS5nhPOSZd+RIh6y/ylJPyAYdFloD7u4Wzz2zM2BfS1hsKbct\n9Yfp93tZY6wt1h3YDWI+VdVhpzK7VrC4hALpLBsRKv6x9rPvuVSMV5g8Cve3+8Jr73xv7Bq9wNS7\njiG4bIEsf1udgDkf1/heWYcSV1XXBXtl2dYpXFY/k2HkdN36ucKlOwjbiIZ1yAZj6hS3roX2TFCH\nTcJvYy3XXc/ZwKqiFm00+YKJ3XGFC5TPusrum//bThL2ZQSX2J6gHjt2tM3x5XWWsozHLCaFoNcL\n9vU4OK8MdI0DnRaLrRaHlvr85D6n7oF7sJFlLSYhCnO93SGkdr1gceNRyl4MX389je1gTKB4L0nZ\nYkRl7qN12uPWcWWlFQwCq/TiKej4y1c3tNfxVQlVke9lXmKhNliqFmxyPfHceruBaLaTmDRrKQuM\nDNVldP+KyxRYTOT2gxNwV1fAFAR+HjC7d6HHYqospiYPWtpUeumA+QUjXIbP5yQPwYr9GxUqw7JL\nlti230PxRL2swR2HO3QHXZ5yugmmvGBfjwsWEvbOnQ5AIncBPfa1mjx0j5m93HssNYODvM7DRK1p\n8ZmOTMeu/tXKhAqMd2ChgEJLlUdVHV1zsG5pOCam9vle9HfdTi4cn1CMtrdllsVk+Nd3KRvxho63\naptp6mppploryrmdGI+iRJrDmUoiTdJkQDsxWaSrMjOX1i2fLZYNFsqepUnlQm4TDKhdx1ycHbdm\nd+G2brNPOyBj03RArzcqe3R/x9PyTKqfvVa70y90zkWHhfIVSn3cQYsfT+SWabYd57GLSjZo0Fvv\n5t5+a5zo98kGKQutdZ64f5120uRQkhUir49n5hloplpbfVoXWdfh2jA7nV0rWBqNehlfQu61mddB\n+BQ6XUfdUeVBVX798RmD/0KWvexuxzymD9+AkAtdO3TsJOrlsjLCfv4083KH1p2flB25LOPxcFv+\n9KeNdZLG3DAJZdKYI036tBMjeMaXNZ68eFYvS8ysJXMXQxs3tLtlFI3T1TO6kNdelcB2XYezdMB9\neYZrd7nfVroe7PjqeJz5AtLPzVXnuahzTB115r3HUm7t94Am2aDDhfvupttvcHQ1LRz3hP092kkL\nMMKl10topuM59yLTs2sFC0wwUFpVR1NJm/1aa637Zc9SuJRt9yO67bXHOuZ0wPHlEo+bQqS2H+0/\n7vLs44+86xg7Q3V262BVNu3ECIClTFmi6JIbCpD0R8h+W0YdbX5/80Wl/Fxhi60+aTJHu2k988LR\n6pMSea4sT7aFBLMXlzwn1sFkmlmEf/3jyy1Y6A09Bf1jfWE1zSzT3+cLGLtteFzprKV6pl4WzAjm\n3hxfbnErvXxLexjvAuaeH5zXfGaaASmQ5edGD7BZsKsFC5R3pDZepDN8zpRieovyzjioLvKES726\necbeCgcDey3X68d2zACriZLuzwoj1LKRt2vPCKbpmGBMrUuow927sMb8aX06CSymsNiyHYIAI+Fi\n4x5CuKPNKo+wdt7ZdJrrRg22lguWublh/qnFlua/w7hacmKKmoqZbUi96B7nts2NrQipbstS5lQF\n25YNMqqyUVcRupeh5I+hz/4KqTaYtGo2WJVZwZ7nCpdH7RuQJspCa8C5pzXZ1zrLuJg37gK6tJOU\nW5MMdyXTWSNKjGPZ6UiNCUin5H1yg7pOBQrpQvKX1A2kLB5r6m5dlUu93CrdkcOjaVe4nSyuZ49R\nSSntZPoFl2yHXOX5Ny1V7tVlQqzMDgIl9y8dZWyeVf2rntdi5z4+Ey6L/5mG6mSr1ZkiinWtcBzw\n6mmFi4nUX+dAe42kYWKWRPNZS2OdNFnnkjOh3ezyrcNFQX0K5ww7Zdm1ggWKi0+ZRJKjkbpRfY06\n55CO31JL5x5wTy4LivQ/h9Y0969t1UIryxgPH4z6y7qVdgcU/Pfduk5KjxJuc7XdwGWqALPcfTjr\n27obYbKUwVIm+PaAKhVjqEMOeZd1+w0TGJnuB2AwOEY2ELKBjOUKc38zN9sBhBdsK0uoGcJ1o7bU\nEdZ1OsFJ98C9Rpnaa1LcVkilV0YoCn8aJuWa6/WSob2olzX4RrbGUtbn/l6HC9ZWOTj/IxJp8tMH\n+hw+PrqPP79/QDtZ5dB9jWASy0g9dq1gkYYWRmRWyMwvmP1WuKRNrRQqLv4UetI6LlVUReqHEgge\nX2lxfGluGHlv27HEyEOnSqgsL6V5zEeThcWscJ2yevlUxb7UwdYlO5qYFTkXenQHSicpChVzrcHQ\n1bgsKWJVah2XbL1Bb9BFm/lSz4MuS70m2aDB6kCGv9tQxbLSqnRDDblbl+XkqsJfMsFSGrwacM2d\nhmkjzP3ZQd3zT0aohAYLZZ6XbpqlLEvoZWvc18tY6rVY7hnV2HJvFL+z0DIzmoXWHIutJofSLoeP\nFgcPJ4OoMtfbHU4Bu1awNAJalZGxtcHeBbs1/OD7Bka78JbdZ8srnFOiSqiynfh6bjetudvRZXc1\n2LfS5UTWYrW7BzhRaIffObr1W15KkeV19mQD1tKEXscKj7CHUEitU5Wxtg7WCG715yvLpoy9C2us\nlJxT6tTguZG77q8uqwMhG5h6DrTv5ArrD2crq/2RowCMhIosr7OWJmPL1oaESig/nB/hHnJ5D5U7\nlpLEv6fBWe1InVbFNPFZdd3LXfx4pGmEiq/SHJvpezYpF2ujMu/3HCsHTKT+Y/bp0HnjQKfPBQsJ\nneYZnNlZZqGVsdhKOZRmfO/oru0mN8yu/sXcF952GEad0YPlOq6160NjXy8zC281Ux1LZDcpgtzH\nFQKTRp1WqOxZ6XHasjFUnqDFPewZzjxsG0NYoTKXDThtxUTu35922Ls4HuTnL8BkYx7GDdP1BYyf\nBNSNkrcjzaoAydB6ML5QsbPOMgFjUuTrME+YTULp4wqVuWzAXC6IdaFRmuXXV2+FMvhW/X5VTMrR\n5newZQLGD3IdrlHvZIawhvhQ2paqHGyWkxEqZYRyedk22xgmayw/ns3RTEcC5vhyj6Vzujz59AZn\ndgac1Vmj03wInWSBROZ42J67WO71WchTwdxw0rWdXdr87cAuFyz5A74M0Cu8dHWm9a4HSSsdDB/c\nMoFSt05j1/Fe2mJH1KOVJiwvtTkx3yqMom0sRQhbRrvTZ5Uma/lysyfmWzRTrR49O2t81A0wtYyp\n9Zx2udHxvspjtMBUo1TY+dcYdjy5q7gvUNpOyvVEmrQaJrV1q9FhodWnnTRpN121W29Yz7Vlhr+1\nnw3XvV8j+1hjTKiEg1EHw87aYh0xbDt8e1Ido37VjKXVGhSCKavsQpUR9zMw8Ju2mvaljueXKyTd\nYE9/4GKfn1XMQGUtTcY6816WsEKLOw6TR+onLLTm2NM8BkC3v8zPTuTXiXwWvQAACZ9JREFUSpQn\n7t8d6qtZsqsFi2XvwtpwLe9J+Oovl6Ftokaal0mj1PHUJeEybTLEVmvA8U4L7Y7qZ1eTrEqR4naW\nJ2gVRt9VwZ9lKgkfK7xtJxCM2SiM8MeFFnij85JcZeB36mG1kHudNFkfBkg289ehlXRIG/eTJuu0\nkwbW3dj/vZqMCxW3Hi6hmYqtz3D2l5nUKr5Q6STG+cLHtb2EZhXTDnCmEQrT5DmrmnEWjivxZLRY\n4bJCi1Y2GLbZX35geHx+P9dIgpH0WZbka7V0WR20yAZ9DrTvYXktIRuMyjzQrs54vRWIyBXA32AW\n+nqPqr7Z2y/5/isxC329QlW/lu/7E+D3MZ4xf6+q1+bb9wMfBs4HfgS8WFXvc8o8D7OkyRtU9a+r\n6hcFS04rNS+1a78IzVrqZvKt6x3ldyJWZRMakU7KSOy+aH7uKres8TQpo87S1WWHruELhypCwtId\nZfpxPsPjAkLLN2DXcQUdufCOe4yZ76b8TnPdzFay44CJY1lMByy0jGCx+bScs2upctzUI1WBlKP6\nFO1a7jWM2Ws0mg9RlSamDtN4dUHYOaV6dj2ibFY2LDsNB0mWpYdx6zN2TkmeOHu+zZAMTR61TwrB\nlBfuW2Vf66xgudMyqzgWEUmAdwHPwqxH/xURuVFVv+Mc9lzMQokXYpYm/jvgEhF5AkaoXIx58f9N\nRD6pqrcDVwGfU9U3i8hV+fe/dMp8G6N1sCqJgsXBHV27lOX+Gp7n6KKrKNtv7QAwEi52e9nxIfY6\n0dRW9XLcquoq1FamXRtR25UvSGbbMsJXR5QLl9AI170ndWxPdlZYNtMZzVg0V4XNQf9Evs/o2c2M\nxXTqvgNB3RH7NK7cVkUzX1NwmboWBW5doe87YFQNWqpSGJXZXvw6VhEKRu6NzINj9rfgSq8Be9A0\n2GWPVwfwpP3GY8wKlT06O8+wGXExcLuq3gGQr2v/fMxswvJ84IZ8JckviciiiJwNPBb4sqqeyM/9\nL8y699fk51yWn/9+4D/JBYuIvAD4IfBAnQruWsFy7/fvuOeG57zkx5t0uTOAezbpWpvFTmwTxHZt\nJzazTT93sgUcW/rhzR/4+O+cUfPwtoh81fl+vapen39+OPBTZ99hzKzEJXTMw4FvAW/M17zvYlRl\n9jpnqeqR/PP/AWcBiMhejIB5FvAXdSq/awWLqh7YrGuJyFdV9aLNut5msBPbBLFd24nt1iZVveIU\nqMNtIvIW4DOY2cetBGIqVFVFxKoc3gC8XVWPS52UJexiwRKJRCLblDuBc53v5+Tbah2jqu8F3gsg\nIm+C4coBd4nI2ap6JFeb3Z1vvwR4oYhcAywC6yKyqqrvLKvgqZHsKhKJRCJ1+QpwoYgcFJEW8FLg\nRu+YG4GXieFS4H6r5hKRM/P/52HsKx9yznl5/vnlwCcAVPXpqnq+qp4PXAu8qUqoQJyxbBbXTz5k\n27ET2wSxXduJndimiahqX0ReC9yMcTd+n6p+W0Rele+/DrgJYz+5HeNu/EqniI/lNpY14DWqupRv\nfzPwERH5PeDHwIs3WkdRrbfgVSQSiUQidYiqsEgkEonMlChYIpFIJDJTomCZESLy5yKiInKGs+2v\nROR2EfmuiDzH2f4LIvLNfN/f5ukXEJFURD6cb/+yiJy/+S0Z1vGtInJIRL4hIh8XkUVn37ZtVxki\nckXentvzqONTGhE5V0T+Q0S+IyLfztN0ICL7ReTfReT7+f+HOOdMdd+2ChFJROR/ReST+fdt36Zd\nh6rGv5P8w7j13YwxeJ2Rb3sc8HXMgtoHgR8ASb7vFuBSTK6eTwPPzbe/Grgu//xS4MNb2KZnA838\n81uAt+yEdpW0Ncnb8QiglbfvcVtdrwl1Pht4av55Hvhefm+uAa7Kt191MvdtC9v2ZxhPpU/m37d9\nm3bbX5yxzIa3A6/DXXLSpEf4Z1XNVPWHGO+Mi3P/8AVV/ZKaN+AG4AXOOe/PP38UeOZWjbRU9TOq\nahMsfQnjBw/bvF0lDFNkqGoPsCkyTllU9YjmSQVVdQW4DRNZ7f7W76d4D6a9b5uOiJwD/BrwHmfz\ntm7TbiQKlpNERJ4P3KmqX/d2laVUeDijgCR3e+GcvFO/Hzj9Qaj2tPwuo+RzO6ldlrI2bQty1eJT\ngC9TkpaDjd23reBazCDNTTC23du064hxLDUQkc8CDw3suhp4PUZttO2oapeqfiI/5mqgD3xwM+sW\nqUeex+ljwJ+q6rI7EVQtpOU45RGR5wF3q+r/iMhloWO2W5t2K1Gw1EBVLw9tF5EnYnS7X89f6HOA\nr4nIxZSnVLiTkVrJ3Y5zzmERaQL7gHtn15IiZe2yiMgrgOcBz8xVCm4dLadcuzZAnRQZpxwiMocR\nKh9U1X/NN5el5djIfdtsfgn4dRG5EmgDCyLyAbZ3m3YnW23k2Ul/mMVxrPH+8RQNi3dQbli8Mt/+\nGopG7o9sYVuuwKThPuBt39btKmlrM2/HQUbG+8dvdb0m1FkwtoNrve1vpWjovmaj922L23cZI+P9\njmjTbvrb8grspD9XsOTfr8Z4qnwXxysFuAiTvvoHwDsZZUBoA/+CMULeAjxiC9tyO0Z/fWv+d91O\naFdFe6/EeFb9AKMK3PI6Tajv0zDOIt9w7tGVGNvV54DvA58F9m/0vm1x+1zBsiPatJv+YkqXSCQS\nicyU6BUWiUQikZkSBUskEolEZkoULJFIJBKZKVGwRCKRSGSmRMESiUQikZkSBUtkRyIifywit4nI\nzDMGiMiL8ozC6yJy0azLj0S2OzHyPrJTeTVwuaq6OaMQkaaOkmtulG9h1gp/90mWE4nsSKJgiew4\nROQ6TAr8T4vI+zApZB6Zb/uJiPw2Zn3vyzBR2+9S1XfnGZffATwLExzaw6wn/lG3fFW9Lb/O5jQo\nEtlmRMES2XGo6qtE5ArgGap6j4i8AbN2x9NUtSsifwDcr6q/KCIp8N8i8hlMhuBH58eehUlp876t\naUUksn2JgiWyW7hRVbv552cDTxKRF+bf9wEXAr8M/JOqDoCficjnt6Cekci2JwqWyG7hAeezAH+k\nqje7B+RZdSORyEkSvcIiu5GbgT/M084jIo8SkdOALwAvyddcPxt4xlZWMhLZrsQZS2Q38h7gfMza\nOQIcxSxd+3HgVzG2lZ8AXwydLCK/gTHyHwA+JSK3qupzNqHekci2IGY3jkRKEJF/wKRu/+ikYyOR\nyIioCotEIpHITIkzlkgkEonMlDhjiUQikchMiYIlEolEIjMlCpZIJBKJzJQoWCKRSCQyU6JgiUQi\nkchM+X8sWHGKYmCUNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwZVle1/n57fd53nNfdTMrM6srq6kumqZhEKbpUWOE\nMERAtJ2ZCGUcQzBUpgeIcUJmFBxnwkGI6BBn1BCGx6ijjoNIGD56HBwcFAxGaaRBsIHuppqqrs7K\nyse9eR/nnnvO2c81f6y19l57n3Ozsrqqqwry/CIy8t579tmPtfde3/X7/b6/70+UUmxsYxvb2MY2\n9maa91afwMY2trGNbezxsw34bGxjG9vYxt5024DPxja2sY1t7E23DfhsbGMb29jG3nTbgM/GNrax\njW3sTbcN+GxsYxvb2MbedNuAz8Y+ZyYiPyAi/8NbfR5vRxORrxCRl9/q89jYxt4q24DPxj5rE5FP\ni8hCRGYiciIi/7eI3LCfK6U+qJT6C2/RuX2jiPx/b8WxO+dQmvGZisgvisjXvZXntLGNvV1sAz4b\ne732e5VSQ+AqcA/4a2/x+TyyiYj/JhzmZ8z4TIC/AfyoiGy/Ccfd2Mbe1rYBn429IaaUWgL/APgC\n+zcR+Vsi8l3m5z0R+acicioixyLy0yLimc8+LSLfISK/ajyo/11EEmc/X2e8hlMR+Tci8kXOZzdE\n5B+KyKGIPBCR7xWRdwM/APxHxus4dc7n+0Xkx0TkAvhKEfkpEfnjzv5aHpOIKBH5ZhF5XkTOReQv\niMg7zXlMReRHRSR6hPGpgL8J9IB3Ovv/NhG5LyJ3ROSPOn//PSLy78wxbonIn3c+S0Tk75rrPRWR\nnxORA/PZloj8DbO/2yLyXW8SyG5sY6/JNuCzsTfERKQP/EHgI5ds8m3Ay8A+cAD8WcDVdvovgN+N\nnpjfBfw5s98vQU/a/yWwC/wg8GERic2k+k+Bl4CngWvAjyilPg58EON1KKUmznH+EPDdwAh41LDc\n7wa+FHg/8KeBHwL+MHAD+ELgP3+1HYhIAPxxYAY8b/58Bdgy5/3HgO9zvKIL4I+gPabfA/xXIvL7\nzWffYL53w4zJB4GF+exvAQXwecCXAF9ljruxjb2tbAM+G3u99o+NZ3EG/C7gey7ZLkeH5t6hlMqV\nUj+t2sKC36uUuqWUOkaDg53Qvwn4QaXUzyqlSqXU3wZSNBC8D3gS+O+UUhdKqaVS6tUA5Z8opf61\nUqoy3tqj2F9USk2VUr8C/DLwz5VSLyilzoB/hp7kL7P3m/G5a67pPzHfs2PynWY8fgwNTM8BKKV+\nSin1MXOe/x74e8DvcL63C3yeGZOfV0pNjffztcB/Y8bjPvCXga9/xOvc2MbeNNuAz8Zer/1+41kk\nwLcC/0pErqzZ7nuATwH/XEReEJFv73x+y/n5JTSoALwD+DYTXjo1E/kN8/kN4CWlVPEazvfWq2+y\nYvecnxdrfh8+5LsfUUpNlFJ7Sqn3K6V+wvnsQefc53ZfIvLlIvKTJpx4hvZu9sx2/wfw48CPiMgr\nIvIXRSREj1UI3HHG6geBJ177JW9sY59b24DPxt4QMyvwfwiUwG9f8/m5UurblFLPAL8P+FMi8jud\nTW44Pz8FvGJ+vgV8t5nA7b++Uurvmc+eMiGtlUNedqqd3y+AvvP7OuB8K+yHgQ8DN5RSW+gclgAY\nT+l/Ukp9AfBbga9Dh+huob3CPWesxkqp97w1l7CxjV1uG/DZ2Btiou0DwDbw8TWff52IfJ6ICDpE\nVwKVs8m3iMh1EdkB/nvg75u//2/AB40nICIyMMn4EfBvgTvAh8zfExH5beZ794Drj0AG+EXgPxWR\nvoh8Hjr38nawEXCslFqKyPvQuSoAROQrReS9Juc1RYfhKqXUHeCfA/+ziIxFxDPkiN+x9ggb29hb\naBvw2djrtf9LRGboSfC7gW8wuZGuPQv8BDqv8TPA/6qU+knn8x9GT5wvAL8OfBeAUuqjwJ8Avhc4\nQYfuvtF8VgK/F51c/wya0PAHzf7+JfArwF0ROXrI+f9lIEOD1d8G/s9Hv/TPqX0z8J0icg78j8CP\nOp9dQTMLp2ig/1foUBxoDygCfhU9Xv8AnWvb2MbeViabZnIbe6tNRD4N/PFOPmRjG9vYb2LbeD4b\n29jGNraxN9024LOxjW1sYxt7020TdtvYxja2sY296bbxfDa2sY1tbGNvuq2rj3gsbG9vSz391B5U\nFagKqhKUAs8Dz9f/EPM/ehulAKW3dc0PUQKlKkgLKDvOZOApQk/hiY8nPoKn9wcgHgpFpUoUFcoe\nw1ilhMDz8CRAqgqqAspCn4uIOSea/30fwoSSikoVXBQ+WQmhp88j8hSeKH1ta0phKiUAZJWQlUJa\nQSAwCBRxAIFEUGSt88fz9P5Emh11x8oLwPMpVUGlSkqlz8AT8MRD8PDER6FQqqKipKwUpYKiEkTa\nKyXfUwSe4EuIVCXkKaSZPocwgCAEL0B5HkpVeOLrc7HjV1V6Wz/Q/7wARaXvTZFClqLmGWqRUxWC\neAoJBfE9JPQg8M2/AIIIvIBSFSgqPHzneKUeK2meK0VFZc5JqgrKHPIM8qK5j1Vzb1SpUGlJmUGZ\nC3mmyDKFeNDreQSRwk/A64cQhRAlqCAgK3MWpce80LvzRN9LEf08eCh8ARH9v70X9TPaeu6p3wWF\nvreVqupnqFIVldLPvlJCZR6BSpcmEXkVvtB+lu11ZzlqUVCmyhxO6kPbR0kPncKLQKJA34Mw0M+e\nmPfU/m+fRS0dWJ+v3lczriIegjTPRVVCWer7UJSotEQVFVUh/NLx9Egptb/ywrwGe6/sqhn5I237\nac5/XCn11a/neG93e2zB5+mnr/DRn/krsJyhlmd6Qi0yPZHEQyTs6Q2DTplIkaHyBZTZ2v2Wuzd4\n/uwW9xYhaalfooN+wdV+Rc8f0w+2CMpKH8uaOYYKYkqVU6qCUumHtKgy/Z10iTq9DdMTmC1QaYpc\nXfMuDHcod28wL7SCy9HyjHuLkINeziDUk7UvAb6EZNWCtGwrzKSl5/wsfGYWMY4qPn8Ssu3t6Otf\nnEE60+ftR3qsgqgZKzOWankGs+P6vGS4TxEnzIszFuUUX0Iir0fsD4grD3V+CID0tiAeUlDU274w\nbT+qvaDiHcOYSXQVjl6Auy9TfewF/f2nD/TYbF1BJtdI1ZK48vS9nh3CcgazuZ6o+wNIhkiyhRru\nIrMH+l6c3kZ9/Hnyj92hvDfH24oJrg7wnhjCsI+MhjDswc6BPoZXkZYXlCon9gdEXo+grPQ1lRmS\nbEEyrO9xVi30NgT6vp7dRb30CmSdySkKYTanuj8jf/GM80+XnN6NuP9KRRQL199Vsv2sEL17F++5\np+CJPeTaeznJ7/KJ05yXZyF3FrAsIfFhO4IneiUH/YLYqxhHJbGfNPeh0XN1HmrzrPoRBUX9fBZV\nVj+n9aaqIC2XTDOftPJYFPp5Oujp7WK/YhRuMwr3kOU56uhF1K3bqE/fI/v4A6qzlCJrFjFlrr/v\nhxXxjT7hzS1kb6Tv77APyXD9+2qeTSWy8k4B9Xtgf5bluX6uL47h/hHqzv16zLPDjMkP/sRLqwPz\n2mxGzp/33/dI235j+S/2Xn2r39j22IKPokIFMZIYHyBfQJA1k6k1C0jWgkhv3wWfz3wa9eAE/x33\nePez72ccfYrnz/SLHHtNLaUvIRTnbfCxgAb4QOBO5sEILo71BDW/0MBzPtOT1PEUdsbtc5tcq4EH\nYC/ZYhwt8KVP7A/08QFfAoJKX1cXgKzFvuLZrZTtuF8DT+u8XetejwWe46kGyt0cBQTs04+39Ol6\nET1/rF/809twdB+iEBXdhWSIHw8Z97YYxzfpbT/g9sWU06z9yIpSqCJDPTglf/EMSXzCcQKjASQz\nSGdEyQiy83qM1527yhfI8rzZ7+QavFtr1YQ353qiG/aR0cB4F6EGreE+he9RVunKRIwfaSC1z5Df\nPEf2PigRZHINVWbI1bwBnyhs/e9fneI9cZ/w5ozhJ46ZXIF4UJI8OyJ871XkHU/WQDgtHvDSLOVw\noY+3HcGi1P/v9woOejk7CQb8xw3oXByj8gfIaL91rvbnVwOe2B/oU/Z6xL5e2KSlVy/CwC5uTgDo\nx1sEV57Tz20cE48Tqvsz4s7tUWmJtxU3oDOZ1GO/1jrAk1Wr990uwDQw5RAn+MkICXsotHflRYdE\nSYA3ma0/zsZelz224FOpSq8+gx4yiJB0tnZiVfkC8kWzuoc2GN19GfX8S6T/7j7ZYUZ842Wirzzl\n2nvfR38345ceFMS+wpeIwIsQpVpgQ5nplfj8op541LDvgE+kJ/HZHHV+oVfsszlqWUIUIhZ8DPCk\nXqW1A4zF/oB+sKVXdy65pMzwA/1dXwKyakHhhBNjv6pXxGMZrY5N1yO0VmTau5ieoB6cwrEGQv1C\nhxqAgmvamyNAnbyMOruLunNYb0sU6ok+jlHDHvQHjPduEo+vcrR8mc/MnOkpnWlv8PiM8t4FoMNP\nfhTq48VDJIgeDppBpO9DZxsLQJyeavBx74lZpBRxQrlGWq5UBb4X6mOb8VJuWNKxGoDs+djxtQuh\nZIjaOkSe2MO/f0TyxJDo/gxJAuTpA+TGNf394S7T/IjbF1PuzZv7k/iwFakaeMZRRD/Yqj0vLo5R\ns5f0c5jlqItjGOy0QOhhwFN7egRQZqhwbDy7ixYI1bfMAFCpcvrBhPjgOX2fhj28nVMk7sIPEAUa\ndMx5qSCmUHl9zJZ1PJ6iygi8Zjzqc+2QrUqVw2BMEESo4DYShRAdEiabjhSfC3tswUehwyRgvIB4\nCDQAVIfW7O9l1g4xFRnqxRepPnGb9Bfvc+/XexzdSbhyr+Qg+XWiOGb7XV/Mb9kLOc+XRF6vWe3m\nCz1pmvBPDSpZXq+qZTTUL9ywr/+eFTXwVKcpAGJ+Z9ivJx+qRT2xU2aQZWiF/eXq5Bpk9OORDkGU\nIZksiH3aE5Mdgy5grjMLPMsZzBb62qZL1LLQGQQzqSg/Ihjto85NuOnOIdw9orw31+cV+3iTOcp6\nGFEIRUZ85Tn2kusE3h1emAbGi8xgtqC8N+fiJND5j+Ml/sEc9eAU6Q+gt9W+n93QlgEgZRcZ7hhN\nrsHkmv6ls/hQQQydUI5rpcoJrAfh64WHElnZrv58uN8K/SoR5uWUojqnPznQYzbY0SB0eqrHZf9G\nHVo8T29xuMi5twiJfQVUxGbePOgX7Cc5o3C7BgspUn0PLo7h9FQ/h1mOjBawk2lvbLgP8XAlbGWv\nt/aa0pkOW5n3JO5tESV7l4LQNPNJy7neb7BFb/u6Hvuds5VxAfRng506FJul9wENJPXz3hl7HQK8\nIKsW7XAogX7/gMCEdwG932rBKNoj3ruJslGOaM39+ixMPIiT9QuQFbt4Qw75trbHFnwEj8CLGrfb\n62kACvQE1QqtrcttmFCBJAGS6ElvNA5Ihku8vg4/qNPbjK5/EYEXtcMsYU/vO4ggyvUK350QOyEX\nPQE7wJSUzt9DvVo9ehEB4iACihWgaYWcXPBYnBGHPeLBLgWF9pCKFNLlan6rG3az4Q3XM1zjEUkS\nmHM1j1s6g7CnxyEZIqM5ajbHW5Zme1+Drr3eOK73XaqUnj/moHdGP9iCdApRgMQ+8cD5vsmVcP8I\n5Z5XYgSoI+feJsP2/XWv7RJvRZbnCOAHzirdLO7dfIISQZwQlvU+68mySNvj6RxXe6MZWbUgqCL8\nYKy9kd4WaqAnaRnt63N0FvEHvdyAT+PB9oOdFuhZYJSwp8dn2EeyQu8mChqAnR0iRUY82EF5PUqV\n1+EqdyKv8yUWyMtMfy8ZEoV7JvR1RODlXORtj6OoMjJZEA13kcFO6zM7/vYbPmEd3itV3rxbHS8m\nIMD39PXabSzgsjzWYWFAiowgGVL4zXzgS0DhQ7B7E+VH2gPa2BtujzH4tCeVUhUgejKxn0iyVU/a\nrcnVj/RnO2Pk6QOiZcHu8j7JMGB4Ffx37ukXuMjg5GX8rd36OFm1IB7saHArMj0JWmCBZrId9vTf\ntozIcnCsw0gPTuuXQXadbsxZjnrl12C8/dCQWOt/68GVGeQLnWui4/W533EBMsubUFQ3PxBE+vzT\nFMnyZlvnPNTyDEm29Mp6uA97h8jR/XoMWv+jPZDC96DSk8k4agCdYR/v+jbRi2dIEhDe3Kq/qx6c\nIFEAe0+sAlAXcOyYmM8sAIBeYdfnUqTawzM5nSAe4j5O/lqRbce6Ib7u/SozxI/qY9a5sc4EK2FP\nL5TMtv1gi/3eWX0O1jPxJVgJDdrnPRjsIEGkrwf0/eo8Q2p5pkPPvS2CICLwE5TX0+eTGhKHCQ2T\nFfrZjy5Q/VlN5oiTIYR7zItTCBfEfkng+ZeO1WWgD5gogv7euvBZPT5KEUtCYcZCA49DOsG8g/mC\nYLSPH4xbAF1QaG/zMk//NZonQhQ/YnXLxvP5zWue+ERer55cWkyYIDar1ZmeU9yVs++sjJMhspvj\nPZMTpSXeKzM98bkTbTojlmt1zBzQ7CsLQGYzAf3igp64+wM94Q50XibobaFOTRzavuRDJ0RUh+YW\n9ffr8+yQAdb+DHoFbP9ugab+v5m8VJo25www3NE5HddriDJkNNAeXZY3cXy7v24I0IKQPUaHHKCG\nu2TltP69H2w1HwYRsrtNePPEnE+//d07h/pcr1xv/uhH2otwfq+3F0s3X3CeH1GqnN34RuO9npvJ\n1lnhB8kQP+itYX/l7ZCQyfG1FjVdMzkoCyqlCvREf9kkaLbt+TaHpz2voKxQZ4eQzvDjYR2ea87N\nLLiSkX4W/Wj1GM4CxA092zxai1hiiTDWY50tYNiAUDy5hh/u6fCWrJIArFf1KNYNs73qtpbNZnOE\nM3P8YQ79TD+/vS2iZNS6h4XvEdiw68beUHtswYeq1K65P65jwml5QeBFRJ6hX9owHNSTk52YxMTl\n6WfIbo7/zlznKp55op0wLTLUgxcJhvsE8bB++VcAyGU59QfI3k3SKOA01b3PRuEe/b2bmhUWRJqg\nAA37zeRX3JBVTQc2oTnc41jL2itiCyztbfK1P9tqIYIITLikG1KsQ4NR0PJkXO8Hsw+bvNerdu0t\n2tX+3AEeoE2gMJ6Wd327tQ1Zjpo2k61EIewc6Al0cq0OM3bNMqTO8yOOl5BWHpF3xCS6qr2eCz3Z\n6pxchjJhWkmaMJw7gSmR2kuoJ2x3QoeVfKILQK2wkvneWtAC+p5hRy7PUA4oyGiIeuKYaLBTg1Br\nwZWMtAdkqOFAQ4SZLWpvhv5AL1LiYZO3PJ6iHpygjs5Ry0KHoseJzpWkaQNCQDDcZ5TssSinpOUF\nvoQtMsBlVoNvJ//YjUg0N7EdKlbLs/p61INTvYCDxjs390LAEA7iptzB39Tify7s8QUf0A9osMqs\nsR6KL2Edr18JA7jx8ihEdrfx7EQL7YkWzISSEQW9GuyU10OSYQNASxOm2LtJ6lXMi1OOzdzpyxl+\nuEe86wDQ9KTZv32BliXihvEeZmu8mdVtHq0ojk5+THuKFzqfddm+zfZFnOjJPr1FUem6E1+Cmhru\nS1CHoJp7E7T2Ye+BSlPjBeZrgFb/LmFPs6Gq5vq7IBR5PXr+mHF0QloqYn+wEvZqjV++QJKmoanN\ni3St9ugswDhAU4N553PpTqyPYpcRK9xfq6zOU5WqwPcDvcq/ONahKUPmUA9OmsWMDaFaj+i4vShY\nsSyvqcv2Oyvj2LHX4gGtXJs7Ti55yITZLn2e3fByENXnuI5o8dmaeBDHj0g4eAzs8QUfz0cFcR12\n8yUErwlZdKnJ9ucWCNkVoGE7CzQr/P5gbYGqAFHghFLsfmziO9bJb5+C2B+wk+jz03TpoD3J7xzA\njk6aMj2pV3DdsBOwCopB+yXVYb9crwofZjbfNBrqGqPhjvZeDBMpSNs1Q3UoZjRYOb4tOnXzKr4U\nOpHtRTVD0LLEoAMSSmnqbTLUIaMg0mOR5XrSHPbrnJNc3dd5H0uQKFKiYL33YI8xCvfoB1uUqmiK\nL33j5e2Y+2Cv3yStedhEFUR1Hcla2n6Z1aEtoKH4F1lNiqg/M2smSymGogHTfh9/8E6CA02jxniY\narjLopwyz16uCQNU1M99fQ75ogYv61UDOoRqiAkMe+2J3Iy1JHlNla/NhoQtGFySz3Hfue6En1UL\nIr+HH4wQpZCyDTZ2HHzrZVorsprZBsBkoj1gsyiS0aCpGzLPsc31vVGg87kwEflq4K+iSwP/ulLq\nQ53PxXz+tej27N+olPoF89mngXN0UUahlPqyzne/DfhLwL5S6sj87TvQjRZL4L9WSv34672GxxZ8\nFGql+Gwt8LiTAbQmwtZk0jcvQxS260FgZdUqSrVj1oEhMCzPWuEUX8JOHN8UqHbNAhHoFd5lNS12\nWzPx12PhUKgF2gDULXoEZHeyUnNhX9YgiPWYpAZ0DIVcnV/o79nr7QAP6HoRW5NRA0/RyS+t8wBM\nGI2w15Al+rMGiLJcA0/ceCbq/LDJ+TzEqwjKigBPv+L2+p0ktKUip2rJPNdqDv1g0vLMWpPhZUXK\nsLL6BifPssb7SdWSsmqUMNaefy+C3p6mHC9foKjKpuYmXBB5ELDm+o3Xo+un5kjsI8sSyXIN6p3N\nJY5RO1vrPYss1xO9u/sqq71Ye/w6tOaEuUpVcJrdAaifidgf4PuB+Vwvduw4+FK0VBpqIHXN5EPF\n5kZtwaqhXWfl6rzwRpgnkPRefwjPdLD9PuB3oRso/pyIfFgp9avOZl+DbuD4LPDlwPeb/619pQWW\nzr5vAF+Fbs5o//YFwNcD7wGeBH5CRN5lmjl+1vbYgs86XTMLPCvWWWWtnUyS4frV7LqJrQNo9X7M\nCrr1ZxMP9yV4aLjCssGCstJhORtmcJltUANG4Xv1tbrx9Fr17RIPSHYnsPeEritKRqTVgtQk5UtV\n0ItvILZeKiuaOp/hXHs/UahXlx0CgTXLzgoINA156axa3TDVurE1ObRWUt/mCeL2uIIBoHUUcSsh\nZAuArecRD2vpHwveKhnV+aFppse6VAWjcO9y1psFEheAujR29zrtfXEAKFVLzRyjCUVaa6SZ9Nww\nzXyjDGH/aTsgh3DheP3mszLTOcQHJ5T35hSv6IJWfydBlgVeljdekJPflDhu5y+hqV+z14StwclJ\nyyX9QN+X2qsvMvxgVD9Pp9mdWlppEi3YSRa1NFH3eut8Ybin66us12Pzo5aE4/482GnJOa1TQ3gb\n2vuATymlXgAQkR8BPoDuXmvtA8DfUVrM7iMiMhGRq6bV+sPsLwN/GvgnnX39iFIqBV4UkU+Zc/iZ\n13MRjy34KKVaseW1K9XXQLF0admflV1Gj8bxetaAjwWd8/yIeTajHwwZ7d5otOCc/ctwvw4PWQme\nGty8ED9OCNhvA5AzkdjQlQz3UcmoZoJZdYS09OgHU/oGQFWaopYFKi2b/SRDZLRviiez9jlYlpYt\nAnQLW3HIDR3Jo26YxPdCXTNySZIaqO9tK88CbUKA1YDLioYVZbxDWwS6KKc1MeGekbPROmZH9IMt\n7bkuV73V2mN2Ke1d+nXrd/O5H9XAMy/asi+BpxmcabnkcBlymoYcLgLuLBpdt9hXjKOSSVwS+xW+\nJC1Pk+UDo3RQQJZTzXN9/4DyeIm/kzR5RZvPsQAUBdqbcCWgrBkPVB29SBA8RxwOKFWhFQ6MtE89\nNrMHMBhznh9xZ+7x8ky/o9PII60K9pPlpXmh+l1ZM+b1c+OWTHSAZ16c1YtQOy5vQ7sG3HJ+f5m2\nV3PZNteAO+jH/idEpAR+UCn1QwAi8gHgtlLql6QdGr0GfGTNvl6XPbbg4yG1woFrbpIbxzvomii1\nkty8jIEEXB6GewQNLTwoVdCE6tzVvFkp6pfFN4nuAuKEYHKtBiALPKBDSaNQM46s2Yk7iIewOGvC\nbA5LTr30CpxfwNUZ5AvGk2vMK/2S+6JVFDRI6uu1RbhAQ781WmjzrKlHwUjf9cKxDrMVpmjRHe81\nY2snDAti1muqw6ZlezJ3ZXZqinvX83G2q4tTO56P9XbS4oLz/ITDZci9ecD9hc9WpJjEpbm2EJk9\n0IWaw/2VeiJxPZtuMW/XTE5LPxv5irfTD4aajacUo7BgFJ6x6E856OXsG8WDSVQ4QqLDRnapSKGs\noDjXwGs9hSjE64dUsV97Pt5WjIyTdgGwZVQ61ycYEotlldmiYUDd/SS94Q794T7M56j8wcq9Di6m\n7A5v4MsdYk8vGuy5+xLXhabu4tEKhFI6Gn3DfV3L4wKOW9tlPOKAALwehZfVRamXRkI+SxNPiJNH\nDrvtichHnd9/yILEG2C/XSl1W0SeAP5fEfkE8FHgz6JDbm+KPbbgQ6l1pWzoAuDufEHszxmEUq8E\nXXUC1zuqQ1aPykJ6BMZSV4FXqyQXbSqqu0q2agxK1XUvTfV3oemzNrfTCefJ8px+PGpRbkuVa76w\ne07LJqwrAMdnqCxHruaoMqM/uYYfhMyL05qlVqNJpCm3khiG1HgbkiHz4ozDRc5+r3mxAy9qigBf\nzYOMh8yrc4rOJB3ZwkdXNaA7kZtJ59L6LftzjGav2bE2itQ2zJhVC6ZZxr1FzOEi4O5CWJawFWkh\nWV9iIq+HOn1eqyzszJC9m22PLRnpc1Gq8b66Hp/NLYU9c47FSn5nFG4zlhHq7idQRYafDBkP9xkl\nzzAKp+z3zkyuZNKWl0mnqHzRDkC7Yc4oxD9oiAM18Liq3hZ0bMI+iJoFTxTUYTgZdcKes2OUYXd2\n3wurmCGzB2wPruAPHtTyOGvzsukMijlqdqiBxobSzD2WvZs8irlFufX+H1Zf9bm1oy4RwLHbwA3n\n9+vmb4+0jVLK/n9fRP4ROoR2AtwErNdzHfgFEXnfIx7vNdvjCz55RpwVzM1CZF7M+OjhsBZgnEQL\nxtGsDmXE/mCtq+/SsS+1RwCowrCVXOFGK09fA6EFPweAVL5A0hlBPKyBx5pVU2i9PLbC20yo8eQa\nhd8U27aYSFleh80k9k0Nh0k6Z7n+v8h08WC816hp25Wmo80mo4EOb/gei3TKZ2YRsZ8yjqy6cg8u\nppfrx9lmKLUoAAAgAElEQVTVqgGe8/yoJmOABl3tNT3iROGoHFhbYWEFcU3Fz6oF8+wOWbXgIldM\nc5/TNOJwEXCS6ZYFFqdjX9EPJnDyMurWbbh7BOd6Uq8BKB6uLXCOYi3zVAvdWhKFAS3X4wk8n0l0\nlTgrUHc/1rRkGPZh9x7sHNAf7tNLbuixWcxQyyM96TveTcsjcwRuLWvNW5bt+rHdSdPOwMlVWuKJ\n1UVjdtwUT9uC6Nm8XWezs6X356oquJJNF8eMkxEqjB1vVntpNUi72nSzuabcP/V0W/XazfldAiai\nVLOAcUHnUZ+pN89+DnhWRG6iQeDrgT/U2ebDwLeafNCXA2dKqTsiMgA8pdS5+fmrgO9USn0MeMJ+\n2TDivkwpdSQiHwZ+WET+FzTh4Fng377ei3iMwadA3f0ko3d8MQ/SW/ybu0P+5WcCnhiVXBuEPD0M\nDAgVjKNZneTsTvDwcABSXernms+73g40fVHS0iP2F/q4pZOPyHLt+QSNF2RriFwrKOqbrM4P9Ytq\nJxhTIBlMruEnOsZes7psjN7E++3/gAahpc7j2BqlYHKNfrxlwNnQrS3lNss1xXW0z7w4487c4/7C\nJ/Yj3r2dE3imX9GyIyrZNQd47sw99pOTWijT9uu51LpkkIfotrkJbNujpw06PtPM5yyTGnguCrsv\nxSAUYklQZ3drwVQfYDRE8SKyd5MiLlpet73/voQ6V5SMazC1XlpXw203Nrm9u59EvfQK1Qv3KU+W\nBFeHehKeLVA7x1qBwslhtSZ/Q4muhWy79WFR2ITZbEsJt4+OE4a04DwK9+gbXTS421D4jRCuJTEA\nBE+e4R8cwZW9BoTqkdQmAPlhc+kWFKzau9l3dX+GSkv82Vw/l0/psFsaBaTFg0ZQ9SGLQVkHOm8Q\n+IhA9AbU+SilChH5VuDH0W/s31RK/YqIfNB8/gPAj6Fp1p9CU63/qPn6AfCPjHcTAD+slPp/XuV4\nvyIiP4omNBTAt7xepps9+GNr6vmX8LOcg2ffz2+98imWZeP5gG5YllYeaakIvGYycmuCoCmKW1sL\ntOZ3aCjbdZLceDVuz51RaBS30yXq/kvNyxdEbaWBfFFX2EdG4sWukEtV4Ae9Vq+ali1nWrZnuM9o\nuKcnvNE+Kp0huwt8275hnXUmqpo664QYJY61mnUQoY5eZBQPeffkgP3kZbbjA/oqRp3c1pOje31d\nM55K3xvhRyG+HNEPdloV/SxnKzTylpnzsvdjnUqz/X/dZ4MwB0piryL2FbHvsRV5nGXColQsS90v\nx5dQH8N6f64ZDT5//wbbjmxLrZxhlRBy536Z87YsMZegQVAZEscQb2LEMk1ojGGv8fDcolO3GNoe\n/3zW5HCiQIdMMQCwo0NYsjtpvmcWPGp22IjTJjuoKNZ5rtOP1YucWrXdmJgckv25OW5nrCwpxJIR\n7DNiF0bnbS+tnV8M9L1ORjUoliqn9B1B1HWs065ZAsrbzJRSP4YGGPdvP+D8rIBvWfO9F4AvfoT9\nP935/buB7/4sT3etveXgYzjrH0WzLL5ORHaAvw88DXwa+ANKqROz7dpCJxH5UuBvAT30DfmTSj3E\n3YCaOabuHMLsJ7n2Bf8hX/PUaU2Xda3bAbRrj1SQ2j28AzzNfoLG7bfU59OXVknhQQR9WnkklS8Q\nQ/t2lZZXes0Y5YGWLWe1wCKm9kX2bmqttZ0x3DlsJo+u+vawr0Ma8ZCyOjdqyaNasZphR2kgnRHd\nn3Ft72YDOpfkZaxJstWaJGJJiKPrphL/k/r7bj8kaAOQk2x+GPDYmiL8qFZFtqKcNhwaeRrYd5J8\nxRNKS2ESFfhiQkyDHdjZ0l7PzlZbi+/wlq6Fgtb1Kzv2HevSgC0AqSCGK59v6N89/NmiLv5tvrxm\njNeZDafWXlCglQlgFbCKrOlSS1sXUNk2IWaf3WJULwoJk0BT8J8YIlef0OfslivYY7iMQ2grWNjz\nMv/Lkzu6zcjOlmZl9rYo6sVd2PqHDdF2wKeg0DTtTqj6jTDPg/hRhUUfA3vLwQf4k8DHqXUC+Hbg\nXyilPiQi325+/zOvUuj0/cCfAH4WDT5fDfyzRzq6qeJWP/uT7H7Rb2EyecpQiAvHK2kk8l+LtQpS\nO9ad/JqmWI7y7tF9DY7QdHB0w0edSVotzpDeltancibalbDfOumdItO9daApvkyGyPX3wvC2bppn\nV5pWpmY0rAttCxqvsPAKgmQIy7O1q2wA9fLH9A/r2kZ3a3k6ZIla/sWZmNR5M0HYFXsLgDrAY2tC\n6u+YJn+u2XHU0vw9Sq8Jx5Uqp+dnDMIp47CsQci2MihVrlXCdyf6XGyBrblmdX6hQd0dA/v/sxfI\nk+9qCk2T0UpN1AoFePu6DoEZdeqWda+r28LDHtsFb/d8u/fQKEhYq+WTXFmjdffVBYq9UHvru9sa\neLrerqMrV9O2rcezLFFLDUa2rXltwz5ydd/pQ7RsLcDqejkLyK4Mo+kVNAr3agJIi/23sTfU3lLw\nEZHrwO9Bu3N/yvz5A8BXmJ//NvBTwJ/hkkInkxgbK6U+Yvb5d4Dfz6OCD9RKvOrf/wL+1X0mOwd1\nBf55vlIEfLmtcePXAVC3l7ylF2tP53bdQ768daZbQ8c+wZNH+De22qtEeyxnlaYWZzWVVOLhpfVB\nrWtv/XxXJ/fNhF/4HuXOVeLhPhy9qM/NTjZRoLdLdPI8qxb4UhBUkfZ+ki2d3IZaSVg9OKkb4lkB\nykYI1SpxZ+06DD9q94w5PW2KYDuTkiR+U6cENcXZ9TTbC4ugvRKGdmGuzblgXpYg0ooHxBCMiP0B\nPf+CcbRgHGamdsaRMBpvN0y2zvWrtNR1NGYytXm16P4M7/NPkZs3kcm1lTye25jQNZWMIBnpsJcb\nKlqn82bFZjvjhx079370B+2QlwsI5lrKk2ULFHSfKx+vb1ihsY83iRugsFpxFngcz6mbm7KFyuvG\nK0xL/IO8HRoc7jT3vGruc80atVGFfKFlevyoBp5FOdU5RD9xzuU3ROHpbzh7qz2fv4Kuph05fztw\nqnDvohNkcHmhU25+7v59xUTkm4BvAnhqf7XiHdAv1HIGyRYBMEmutuphrL2WOgAXgFaAxwEGKwVi\nQwv6RdMvczXP8Y2XJgBPRNSK2+usyIBZU9tSZKt9ZNYpXWd5LZKZehWn6W2KqmQUbjO6/kUweBk5\nvGVaN/S1RxHEFPk5RVVSUNbhw8Dq1c2OG50wu3JNbeO3vO7GWgt1mvmprscoO+dvt1uzylZGAoas\n0K28bT1NrTbdrp96qHJEp5h15W9l1tKHG1un1IuMQoMZa9vwz4C2vf7uRGrvdV2UaxYj8cFzqIcU\nO1pChKXm93tb9IbPrILQI5hmNDpjaskFdiKmHfqy19IFUGuGdI+HI3rrUrXXePDAito6sBaoq3mu\n2Xg46huG8r1Om02/r22hWysyq5+Lsi45ULNDvdC5c/+1DOGl9kYRDn6z2FsGPiLydcB9pdTPi8hX\nrNtGKaVE5OG5m9dgpkjrhwC+7AuuqroZmxvXNn106nqQ5Tm9ZLxS2LcWeC6T0qGpB3KT2fWK1kOr\nC8RDXUG/q2PvgZPoD29u1as7dT7TsfgJqyEp15xYf52Qv2wV3P25yIjjIaNwr64rOc+PdDvnsFcX\nThaDMefZnbraPvD8ulJ8lOyt9CyyXolvu41aFpUtVhxvNzI23SJMwLZPoKuUbUOBiabrqTTVY7Sc\n6W6UQdTRDMuhMpOR6PDayiT4ENUJa6IUVoG7HkKvpz01O+bGs5ar+5ohuLtAzmf4LnC6nsfTB8iN\na8213/6YzgOtkQgC6tYgtj/VvDjTlfpRQL9/lTjZQh29uFZxYF0oq9mm+d32W1L5Qrcmr1stnOCP\ndfFpdZZqMOh3iCjHSyos0SCvgViioF5o2PGWZEvnAe09jkL9HcDfTlBpSXnciNd6/bBV9OqGa0u1\nJC0vSMtlXYCtW8UnWFks+85GXq+eDTXt/1jXIt05pLz19iMc/Gawt9Lz+W3A7xORrwUSYCwifxe4\nZzWIROQqYJcdlxU63TY/d//+cPN9eGJP/+xWt69hSsnynCAe4nthKw/k2lpKtZu0tAKRSjksuebl\nLlVBphb0J9daki/1DdpxmqeBFuq0QOEA0DolgLXAYybEFXPZUUFGLxhzXjWhx3lxRn+wRTDYIVVL\nzrO7pOVyZTfWW2wBkNXBsw3x3J5DVuBxjb5dSy7frMJlNGgntWmAp7as0JNkEEHYIxjsgLhU6rwl\nySMu2HQXEg8pNLT30wJQQKBDhC15HpoJcidEbLjJCWfVa2JXg6zIdL+c+QXsHOiF0ZpFjhWrDbwR\nqVwYD6/QsktRwPaV51B3P9mMy0Os9h7NebnesoQ9mFyDCWYB0jNe8Ax/PEcM3dma671bD8lK87TO\nwwBPMRgTAIrbuo7MHpeGLefvJLUX5G3Fq2w5J+SWVQsOlyGxV7HfWxB4kW5lYvNpTkjcApCVplJ3\nDqlePiH7eFuBYWNvjL1l4KOU+g7gOwCM5/PfKqX+sIh8D/ANwIfM/1bgbm2hk1KqFJGpiLwfTTj4\nI8Bfe9UT8EP9IkPj+ncZQQ7NUgrdVyUwml6vautaJTsA1N1HWl6wKKf40VViC0DrFIKtmdqJei+d\nCbsl19JVul4HQA9ptdAPtloyNraYdFFOa/HKdbYop7oFdDJuOmVigNVSejs1I2vDXF0z1ypoEF6R\nArI/x3EdRrXhNz8ZAU0M35Uv8oN45d7UNPo1+TXXXJo2y/Na0NKSNARgxwH7rSvtTqrG1NGLzTXP\nL1AvvYI6Oter+51TuHq8+t1Ormo02OM0u1uf/88fCl+6f8qeBaBovdfThEL1tKDSVIOLzY+4Cxvb\nyiIeQv+4BiEvClFH51Rn7RAjaCCS2AeWjRdsFoCSbJH2+5ymt9gd3DAABJIVjYhplGNryDyAfqgX\nHJZabdmfQVSHIS9yxb15YKjxGb5cGCWDtpKHtcjroWYv6Nzmp++RfeKYs/uPqGLyaibgh9Wrb/eY\n2Fud81lnHwJ+VET+GPAS8AfgVQudvpmGav3PeBSyQRDVvTvqkFoUaJFDQ4F1a0earps6j6LWNKED\nLl8hdyYICSKioFd3dJwXM6aZjy9HEO5pALLJ7qxo4uzQnmRni4YhFg/bCgHdifsyMHPbQKwbKgJK\nCSnQ+7PSMrH/6i+SBapeMtbj5o6HK8ti+gFBh/bcFQSF5lyjXHtA0KojsVaHduzqvch0Hx+/1xI1\nrfXw6i+29/PQFtaONeSRDtC7495qFni8so/RwTvxT+9pRt+DU6qXTyhPlvjLAu7P8I7PkKtT1M7d\nNp3aHR7TVXaaZfzycY9/fc8DCt73xIzt6+9FvfALr3ot7QWKybcZIooWptXeQH9yQDDa1wXM/WM9\n3lGIn+hWDNbqvFBaNvU4oMdqsEMxGHOa3tIK1mMHgMw7YNmMMtZ5wurUkl4aFQ13n77pijvNNQ0+\n9jUtfhwZL0xkbbGpFClqOUOdz6jOUvJpyezBGwQ+G2vZ2wJ8lFI/hWa1oZR6APzOS7ZbW+iklPoo\n8IWv6aBV0VJDriVt/IGWOCFAiqxZrVsG2CWV8VKkK39b601BLZopvS368aheNQfegn6wpQGwmJn8\nhqlAB2e1WjSNsBzPoT5P0BMFxgNyVBAAPZm45+jUwdjzcuti7CrSVY4ehELxCIs4mxsrVQ6+pycq\naLxAV6izvGhCV5bhZhQd6nCovS6bo1nOmuZglm69TvDSAVcrrNplkXXp1wD+6T3UxfGKLpv+cM2z\nYO+302JdnV/ocxnqFtZzSUmLi1oNvD1eIePJNV3k6wqzGqvuzzQI2fqYp55eGXML4uMo4ssPlsR+\nxPue8In9AXNSevs3wFEsFyOV1CIZDPtrikr1omueH7EopxwvYRyd0A+G9Ld2iUf7qMEhMrwLoyH+\n8ASJTygN683bihuZHquWsHUFtq9zmt7iztzjcBGQlsK7t28x6V8lvvIcKnhR68Q5VH/PsvXsfkzY\n1p5rUGQtYdLYV+wlW7UG4qXdUtfURAXRG5N21nXHb1gK+ze8vS3A5y2xqkSKFN8PWhTceXFGKhf0\ng4mW5TegcqmnA81q11XPtdYBoJouXGR6ghnua/21YIJfmuZxl2mU2Q6pGDDqijLaVsxOeETCni4c\ndbTg3P5E9bZu/ZALOkUbdKDRYstksZLvKaqSwPPr7axQY/25ASB3MluY9gqtfJodA8uw6oR9ZLQP\nvS09nqmpzrfyMF1PzubyXNVl08n0Yf1b/Ae3UM9/UntVV0+Rp9/TCm92gcf1emxuRAURMsm0x2OB\nx7DSHhayrPfp0JVdyz95hHfrTL/ADgDJcL/R2EOPpQWeepvJNbiqw3ItD8fmYCxoW5vNV57joio5\nzWLSygNSxuErjKOI0daeBqHhbWRnjDfs4zlSPq0FUxDB9nUepLc4XOScpvqYFoC+cMeoYFx5DpXc\nRobHTV2XiQTUjQ3tfXHeAVeY9FHaI6xjPW7A4nNnjy/4lAXq/BB/+zo2B2DVDQZhTpkXtZabLwHd\n9si1qrUDPFbmpgU+fvPSunUqtkeMAsgXxKN9/GBrNWyzjoFlWUHdcJT9Xic2X1CAn2iV624IyWlD\nDDYJrztkWm+ne939YEtTqSv9XQtAWoeucYcir7f2hS98r24Ylpmw4+pGHR27ZNhcl6GBW4ZgXQOU\nzJox6gJrJ5dlC3Ij43XZa7dAaYGn/KXPULwyI3r3OV5WwM13aeAzcjethnxrFgyuqnjqVRRm7F+1\nRXMQ1VprOk9iTv3OBemtORenIcnggnH8An4UwBXNuSnihCzTNVC+BHoR5fVqOjbAvDqnv3dzvYjr\nrBMKtKA0v9DsSnPuaekxzfQ/gFNfn+NTw1fYjvtM9p5p2njYWi+b2zNRBBXEnGZ3NPBk7alomvn8\n/OGAZ7eOuNLv6f0lW6hEFxeLBTQXeByz1yYXx4yDmCJYn+NZsTX3cANAnxt7jMGnhHSmJ3sxeYxc\nv0BpWRH7mQYhM8GsWzm1gMcQE2qmmhOiExMeIp01BZJZDra18NiIczpJ5MvyHG6736Ac6lg7rCU4\nqGRU55Ra7SGcrpW2DTGqmRAt6FzkinuLkF5QsZ/kxH5SN0gTpfAdVem0XOqYOhB4OMAdrujYAU5d\nyuok3KpAt5OMqb2yk/h5flRTnK0StM3V1ePVJQkUTofSomkMZwFIy+f08B/cgs98muoTt5n/0jEX\npyGT9D4x4EUBPN2jGIzJqgU9P1w//tbMc5Aa2m+jrhCarHnnNrvtM5xcRnHngvLeBWf3I2YPepw+\nUMRxyNPhIcNEl73K0++pK/Qjr6fzF2eHUGb4QN9Rn1ZDZ6xdG+7r+hYLQqagVDA50OFunUu5v2iz\nCxcl3JoFfN5WzlPD57XXcvBcc18MWSetFpQqJc2OOUnnpJV977okHOGXj3ukVUrWf4FRb49+clMX\nYtvFxLpSA6fY2y4IAzcq4TdFx63FQ8dc0H8jTLwNkLn2+IIP1BNcFPeY0+byx35F5A1NO+TVsMcK\n8NjJ0lmh29BVFPQQW7XvTChi20oHTiW/079FlU1Bo9uFNKvOSUsdGown1/TK38qqFFldg2Np3S54\nNl1C56jhbitE05L293r4UUHsa3Aahdv0gy39/c6L6obV0lKI/ZLIs/tz2x23W0bYv7WOKUED2Dbn\nleWtiSMGStMIzU6yLI8bZmLSpqXXiwDfUL1tozqTN3LVxIN0qb3RYQ9vEhOOfZK8RGJHjSGImBdn\n9TVEXq+pE7LPQCcfFEnPAfyiNdZufx4bdpVkCxUday20yRw/LanOUpJByfLcJ449ekNFOPb1eaGp\nz/3BOzVtv9L1LLZjal2wazy2y8KNNTMR4Phe3RBOATI7RpItRv099pOXuTFsT86xrzjo5WzHfUbh\nVX1t6MaG5kpB2TxgQM8fU6pbpGVez0TTDGIfw05T9cKn52/T90ZNd15XEcH+b73k8fYqHX0N8Oh7\n0YR6RalascMKlXpbMcnJw6npG/vs7PEGH9DMmGSELwHjUD/IsV/pBl3BrlZ8djsfug+9Czxd8UFH\nhfg0O6UfTYh3b+rV+7jpp2M9mXolFsQ1fboVWjP5ERumshOY8noN3dqu7gwA2XBeFBq16oupPl8j\nRc+V64z2nrlUQkiHbYZNq+O121iyhE/sNSE3O7lZJQhbQe62jOgey676S5XrTqzBNU0sKLOV+pa+\nik1/mjtNuwCrTdZvmpTZ0Fs5GNeMRqLd+jhFdQ5WWCHYQp2ZzsM7B8h7dAFadJriXd9G3v0scuU5\nTqpj5vmsvo7Cy7QHlrhCHeYeOmFO+7IFfoJt2qdEwG8mwZq4YlhxBBHEMf7ODP/GFuGtM3qvzNg9\nXBJEiuT9N5B3PKm/c3SfYHKN0hRNp2oJ/T6+jJt7YjrPFlXW9rK6ZidyI28jWa5bQiSHxMlNRuE2\nTw3PiP2q7nnVDyaPpIEYlJWmlAN7B8/hy11O0jZbsRdUjMPSANk1gosp6uzFVe/SpaWbiIJkOVyJ\nWs9LYdhvqOUKm1GPvX5eI79HYIRdJY6JEx9JVlmJG3v99niDj83TKEXsDxiE+gGcRNeJKw9175Na\n3BN0bHmw00p6t4DHsoUcZd5SFZyk95hmPjvJgp4/1gWaVq7EhM/KzgvhB7Ghgc6aHJJpPlZUWc2S\nijwtdtm6iQ4AwUyHlpKtGnTUnUM4PtPnen6BFBnjg+eYFg9WWgnYfMGlVOMOCSP2FWkppKUHlPii\nxUYDL2o1yFtXqFurDbuX4nsETtuB2i4TFrXsrd1tGF5Af1C3wg4GO5Q0gDcvTlvHC7yo8Xqs7Rwg\nXxLiH0/hySeRg+c4yfVEOc31d8dhE54t/bzV4A5o8lFrTMJefX+tblzLDACpZIgYoU1/5xT/xhnh\n/RneJEaefUfrK1aOJ1UNEcT1bl3rdkStwaj2IgqYzSnuzPC3E7ydGTI9QcVDRts6x2R75HDyMpz9\nir4fe0/onkX+alwxuJiijl5sGt8tZ2xfeY64P4D5Yd2uYhxFjMID/R4+uLVe/dyeq9WBOz7TKhFZ\njrjv62CnpoY/zOziqB9MtKRRECFRQLSuGPuzMBFFEG/qfKw9vuBTOdNMmRn5/JBJdEW/IKe3my6U\nADunyOgI5Uq/u8BjxQeNB1Sgq8ufP0uYZj77WcFB74xxpOnUfhRSVudrJwBfNNlB4mFNj9Yg1TQ1\nS0uffmCAwp6LLRptAZApXDyeou7cp7o/I3/xTIsy3pxriZciY3zlOabqvGao2XonNXtBT8jWi1hT\nD6SBowCyWtUZLHkhoCzboGNZXr5vCzMDc92rj2NB0YRESiO8enyvyZvZ1flSh6Uk9jW7yqUL9weG\nEaf3f5rd4eMnIU8N5+yZEJ0O6XyyGU9rw52aDnyU3jKts8M60b6IPHp5xTicMwj14mAUmsLJIm3Y\neNCePIusBsb6mF2qu/m7TK41gLCjFxH+O1brmgC9WAoior1n6rzakQlHjqNmjNeFkosqo24mWGS6\n1uU0rWtqvOMzGJmi0t4W42CEuv+iPuZLr5B/8gi1LAmuDvCe+TX8dz5tGuclWvXh3idRr7yCeuk2\n2ce1NxGZe9h/8l1cGzzJ0fLlVtRBnd1tlN279Hnr7czmqKNzijszffxlgb97BDe1wOi8OtcF3A9R\np3ebN+px15EK5UeNksjbyETkq4G/ir5jf10p9aHO52I+/1p0M7lvVEr9gvN5q5WN+dvadjYi8jS6\n84B5QfiIUuqDr/caHl/wWWO2JkXli6YRltXbsnpUWU6tutxZiSlLIDA5gbRcMs0GnGVC7HukZcQk\nLhmHhwxCcY6rH+6+yWPUYpdOEtsP2pX5sa/q2H7A5TRwoC3qmZa1iKUVK7UTWxBa/bmgObZLE6eR\n/VlXkBr7VfPyYkGm01nVoReXKm8REwLzOGqgbfJDgRdpkkN39btGl6wl4WK3icz3ooDT7A4vTAN+\n7UwfaxBONVi4hAHDJrQeZ0FBVk6JvJ4RD80Afc8mpmhRe3ywkxhZoXCPlhhqPQBrfnafJd/xPuyx\nq4VuoBcnuoB0ck2rNuQLDWyu522+K0qRlhfcvpjy/Jn21vd7BQe9OYNQGIWrHXmtqXzRjK3tZLu0\nHW1TXf9miRvTEy1Dc39GeW9e34docgajI1QQEezdRJ3fNuUFaVtMdbrUHVfzBb6MTZh3S7NCL47h\neKo9dYwsk9P0zuaj9DNQdJ6DFDEtQvxotyUE7IYbXXJNWvqGOj7Xz1+wRX9yrc0efR0mAsEboHBg\ngOP7gN+FFlL+ORH5sFLqV53NvgatAvMsuo3295v/rXVb2cAl7WzMZ7+ulPoPXvfJO/b4gk8UapmS\nyTXm1Tnz/MxQhu8wMSEFcbaV0aCmddYTk83JlBn0TYhssEPqVWS5Tvg+u7Xk3qJZOZ2mvgkt6JfZ\n1sS4LDLKTCfQ7eSCJhz0Bzv4YYgvp3XOZF6cUXg9xgfPwfC4XcdjbedAi0HunuIPD2sRSP+de8iz\n70CuPMc8VJznRzWjzw/GmiQRD1sFoe4K3ea0XI001+y1XfY3t7lXXHl6gkKz/gI/oXDEW7NqoRUo\nDp5DxbcbcUsbPuwUSdb3y3oXgx3OMy1+/sy4YJp5PDXMiLy+YZ5FjWxP4nge6YwgiPCDcZ2b6QcL\ntuMLzdTqMLSOlw0A9eMtgsABCli9Nw/rpJnONIvP67UIDr6ExP0BcaXJLcoy/ZbNs1JQsCinnGYB\ndxfClV7jkVqihr6H7dybKNWEHg3NW5IAfydpyxhZb262aBY1y4IiEzwDBJzPdLhwOdPXnQyRmzqf\nYq/ae+4pXae0fR1UTuwPtJdk+uioByeo6dLcl7wm7Cj3fkch3hNDrYiQlroA1/YjOrtLBOxu31jL\naNM1ZUC4QC+vNDhMs4xSHVH4Gf3B1sr33mJ7H/Ap05UUEfkRdMsZF3w+APwd01TzIyIycTQz17Wy\nseSnViYAACAASURBVN/5CvOz287mc2KPL/iYArd5OeU8PzJdKUP2kxkWgCTsNSKPNn5sqZ1+BDG6\nHwg0Ia5kxHl6qz7Mfi/kNFOtSeo0CxhHjQcQeT0NPMvzVRKDEeC0Xkc82MEP95gXZ3VSP6sWHGUv\nMxlcISiHLY+lnvQGO6bQcYLcP0LSVDfdcoBHV6zrScWXkCgZtT2dbk1QVayEDYEV2Z1uiMdSXK3X\no4HnEM7uamKFyVMFyRC/0xY8VUvY2m1YfoszJDXadbbplytSasBnbrqsWntqmJkwlHNuvhMCc205\nQ5jVuZkgiOmHI0ZhwYP0Fo7IMqdZQFpV7CcnBqhMsbKbN+tILT3UDAAFXkRZNgyteXFKKqFufb48\n1yDk0I/nxZl+pjOPZdmmMbuK7O71lyrX5+gApO3L06IdO96y2/4DoMw93S7iLMXfMyHR5LAdRnz2\nOb04yAoNPHvPtJiDNZDOFnXOCYyCtQFDcVXRQQPQ9W39vuxstYtkz+7qZ6Vbfwe6vs68TzAl9sva\ne7/IFRe5DpW/BbYnIh91fv8ho8oPumXMLeezl2l7NZdtcw24w/pWNnB5OxuAmyLyi8AZ8OeUUj/9\nGq9nxR5b8FGez3l+xHl+wjTzOc3C+gW1ADQa7OmeNFAz0sCyY8yK0SZVjVDheXaHrj0zLlotl21S\nXtO5e/SDLWR5rpPoDui4Peoly+tW18FoX4cmClqU2QfpLXr+WCtJGyq4uCGdsKe9tWSo+5+YinsL\nPLbQL/AW+vICiI1sT+vazQKyS5d2Q27WLms7bmt0WsBzbPomDS9QY32t0tsiiIctsgDAtHhAEEZE\n8QEB1wx93AljOQzCUhWcZ21G306ymmtqCWe6ahCXMKz8ZMgTe88QeXe4O7eFynoMDpch41CHbyKv\np49j2nLjJ00ey61NuszSGVHcazEFX74oib0F+70Fk/gKQTys73Xhe2TZotY1e5AKV43nE/sVsT9o\ny0GZiVj3IHLOJwprhYWuzE9dg2XybWpZUmRCkUkT0jXPsEyyVUA3RbEu8IB+NtTiXu31uDkn2yzQ\n64dwtqZBHTR5Pljpctu0B28AS5UZwXCfUaLzdAumQNl6lm3x+eu21yavc6SU+rI35sDOKTxCKxtY\naWdzB3hKKfVARL4U+Mci8h6l1Gqjs9dgjy34lCrnPD8hLT3SyiMtpRYg1A/ejFIVjCL9UJaGouqa\nXfWvq1lxV5elCohiGISLuuVyWgrjKGnCDFaC37J3LPCYIksVhTrxaTwD+8Kc50daNn6Rc28RctCb\nspPoPEY/HunJrUMSECOoOs2PWBRTLnLFaRbWsiaQs5Ms8MsQPzCPiFoN0XTN9Xhs/xQ7FqvbGpbU\n/IE+x9m8mSRMHx5z2FYhqFX/vjP3GIclg1C0BxUOiOJxfR8smeOyFhh1gapbOOzQ6Fu1WxZ8ulI0\nwwtd9zLYg/4RL81SU/nvHkmz4Sgb0HULfiNXdeIhnpANTy7KKS9MAz51FpP4cH2Y88z4VnO/Y8iM\nl7co2uPeC6rmvuRrjuXmm6xFWpOtuRxz7a0GfgVqWVDma6pmQSt6DLO2ermzOHBNilTXt5mwWnmy\nbLVosLkdSfx2gzrbF2o0qBXf6/fHUvBNFMH+k1hfl33GXABKSz3vTnOfe/O33TR5WXuZR9nmP2NN\nKxul1B/mknY2pnt0an7+eRH5deBdaMLCZ21vu1F9s0wpPVHGfsW+rwvZ3NWO/nmJL6cr390Or2jm\nVTiuGWgWiB7W2bRbuBl5Y4oqo/AKgt6WfukMU01s90tbkLo70cVzoCfH09vIcJ/xYJd5dc5+7wwN\nGjrZ3fPHsDxvREyNJIyldpdVju3cmJbWGzP/Ko+iyim9fC3gWPp1URdNmgnEo9Z2e5ROr4tySm+4\n28jr2xWpDZtZPTZfS+TbeiRfwrpldVFBUc10MW8nj2HDe7aosalJilaYT0pEswu7nohtmrYzbref\nyHJ9nka+3xcdsl0UXl2jYmtguscqVU5Z5i1wduu7VswBA19CDnoZ08yrizp9acKhtrA48no8NdTX\nsixDrg/1PTpeQs+/II53H36sVsuFQns+NQnBqIUP+8iz78Ab9oknMd7kzLDddnRd1FWt2KEenMKD\n09rzUKZQl2QIuzfah/c9gmQLNdQFtsHVYUP6cXTuqrkO9dXAaPOypihZ4lg76N1GiU7eSjk9lBRa\nad4Kj4IWTl0U3lqP/i22nwOeFZGbaED5euAPdbb5MPCtJh/05cCZCamtbWXjfGelnY2I7APHpn3N\nM2gSwwuv9yIeW/DpWuwnjELd4uAi16se6wH1g0bCYxTuabqvk5cI/BGF12ZoXWZ6xZ20JqO666cN\nkRUZaqBDPrK3Zl82LGfCcP3JNfwwBI7oB1v0vVEDPHYyNfUObvuAOlxWeWYM2iEBez0ugNSKAkWm\nQ5J+z4yVlo7pAo8VtGxo1u3rWZRT6IX0hp+PTIx3aVbFha0Lqs5XalXGUdQSNV3HrLPj7TKcalWE\njuRP3bfH/XKRNfIytvdQPRCh1s2LEzChz34w5KA3N6GtZAV815Ey3L8FDyEf6LHVhcuDMOepYVaP\ng9XQswl169WVquCp4ZK0FHqBXmyllcfR8oygHzUEF8dsK/f6d6cfD1A3glPnF3qsJhPddfXGNaL3\nXLQ8IgCyguoF3Q9SkuNW11EZDQmG+3oMjZ1md9kd3tAh16t6X8Ga9tzK6fLb8mb2btZqHxIFGoDW\ntRKxQBqFWicuiFDnhwSjfTN2OeNoRlp5KznMz9ZE1BvSz0cpVYjItwI/jqZa/03TcuaD5vMfAH4M\nTbP+FJpq/UcfYddr29kA/zHwnSKSoxkZH1RKve7K28cefLp6ZZrufLeO86alRz+w2w50IeLZXf3g\nmkr6BoQSlFF7fhgIrfMIFuWUyO8ZSrW2urbFVIMDGphsgd75BXJVa5TFk2v40ZVaPqcGHhu+CnQz\nNYmHWnHgEmHLLgC5Fnk9nZsyNFt73Zj+OLrWp5n8XBAqVaDB7pJF5KKcQmjAqUjXhjK74+dL0GpL\n4Cpq6+3CFgDWE7QhdtjmgLYFQalyDag21GbyDpiOmuKunIc7yGi/lXPzJaxradzQmh7vtsKDPR4V\n9Zj43novUUxLaPc4O7a1tKMMoXea4QdxXSsGmlxhdQvh/2fv3WMkybLzvt/NG498RGZlvaaqp7tn\nppecbVHcFSWvoJchQ34IkAgDNGxAlgTYpiBYIExCNuA/JFm2BdgQQMCwAMEWRBCSYBOQ9QBo2Pxj\nBcE2INgCTImkSGpJ7a5mOb3T7+6qrqrMysrMiIzI6z/OvTduRGZ19+y0uCv3HGAw1VX5iIyMuN89\n53zn+6SUlObPKGOZSfIA5MgGbsDUZj3r+cp/baprS1lZf9MRtT+Awz14VG+KzSePKL4h61RIFnDk\nAZ310F/8vb4399HEwM4D9nclI1JAp1g1DOqADctvNRzA3pE4oXYzIRfMzmo/rMsgow3K2V46yJW0\ngXR8k8qC9yguWCTfc5kPxpivIgAT/u6ngp8N8OOveI1/gLWysf/eamdjjPlZ4Gc/0wFvibcYfBS7\n6ZFnmZnpQ0w+I8oOGQ+O0eqU83zOs0VMqiX7cYOI5smJpPbDhTTHAxBS3Yw0oAk7UU9gq5yJA6hy\nXVwLVqOju5gXVlrk+SmcTVhf5HTesYviDStMOr4JZQt43E0WJTIwFyWgO433Eur39h1euS7QOm4C\nj23uO6OvaLDXyHBC4HFacA4IHAi1tc2cQV2buiwaX2vvPOkIGlrFUu6qYm/t4Hp2boaqBkF7HG02\nYZSgysIuVqnMTDmHS5v1MJvLuQZbfot9STDvrDekWhy5QHTq4job6chnd5/3VVlQGFrF/n2aqhCR\nP6/ehgJs6S1qZEqptkrUFoROljF5JfTtYXxgyQZBxhOaFyJlLp1q22OJ6/Kb/bs6uMM8NszLCQff\n/zsw3/plKEpW9ybMLAcnSkqgRMdrosSguhHdW49Rex/D/m1Olw/51iQDVujxE3bHN4X5aIenQ4O6\nRiaU9SUD27/D5eopqR7QtwOi8NQ7yXoVjGA2rAOyoXCmjAD5jF5XSuKDeEVv9YYyn8+FRRvx1oJP\nrGJ60ykwrdePFiNnECtfyamMmM8RJUE9OaqnrUNhSWwJReFT+OuiDUhuIW6rAYz27wgA2Sl9xz5y\nTdOXzos48dK4B9rShX0ZKiLqLEj1il4kM0iOBt4WBt08+Je8JzQXRHuMEVFjIXbZkFskwWwhLnQ9\n6NTCqFOSbN/33DxxZA1QNYZ4XxZO9Vh1IYl6cryOoOEsDbpVbdVsfXnKtEv1Ei+gRlQFSluCgdtE\nr93na9G9qQHGs+HKKelgjxy8m6w7d04SqTKRL9sZpTwN3r1n0oF+BLsBd6AfjUnXHcgDrri9jlWa\nSkmqG/k+S5virNJUzsf+HfuZAlLOeCxEA+oF15WcHPCo1L6WlqHs+7OUJwvo6phxsoD+U3b378gm\nx44baKB6Nkelurb9HgZGcu2IkpoxOsyaMkzdkPkWNYg5IfX7sPsajMTP41PHWws+W5lFWpqgYann\nqOdsBpZcFE/qm8EJg4YDia3XjrTQa4v1q/1bnOK00YpFNfVDha6MlJtlba1dlDLAZ4201Pim9+3R\n0VCyGzf3EVDFwxvUlWQiO+6nEyeP09zl1UOkEZEFMBOY0RFZleD1yjbet1ByQ7mfSJSl3UIppaba\n92cYby7ooRp3mHkpQPf79j0L2xxWfojXKWv7Y9qiSgFNAHJ/V84ILolRjnBgh5Jzs4TgGglZjzXD\nsaxBxb1mG4CoGXDuZwjESJcz6S/Or2DviHT/DlVHSnW1HMySVHfJ1ZXPOPOy6Y/kstKwDKpmL2C9\nWdJUvR25droZKutBdoEOWGIqTetNVxLXfkWIRFFfp5inVoVlPCa+e0DvIq83S0HJTXUj1PvvUo2P\nWOQPyKuYsb1cZRZuRj8Krvt9IQl0lhWduWQv6mBYn+OrM/p9K4J7dVbT72f1NaWGmYCqU0sPJZgG\ne7WzbjX196zLuj+PNxtvL/jM51KbPr7VyBpMlFJVQl+XfkG9KyzWC6blC0YHd64XOWxJvSstJZiX\nAZAv/S0mqLjnlQzm5YUvUVVmRWkVdw3I5Hi2h8oON2yok6iH6lJL40Nt2WDDLYKVKUn1gHJdMEqc\n0nPdQ9Gq3kFHutvUILNab22bBFeqc748ZrWQBnLc29Cdc/lJZM9ZQ2DTqwwsN0uJRSn1+cGXye2i\n7ejy47QirwyprhdXo1RNJtiSJW4zAlTZoZRu9qw4a7ZPfk22I4OfM6KOpsfI69a1KdQOgML+2Ian\njNOwc0Kws7lI0AC9gy+wYOqzPYmlPYaySR2HjRKguXgEk6esnV7a7Zuinu2fYDMfq+DB6ASm51vd\nYWXQOsg48lmzPwmo998l8QoFwWBo1heb8OO7otKxroCYnm1N5ZXiZBmT6lOS7m3ZDIBsvIoV2vV8\nAptvs1qI6oOz13DEnDyvKwTYaoH7t9VqdJYlrvwa9uZeR6n7tUKpzXmptzje2jOxviwo/+HX0T9w\nIZL0O8eo3o5fXBwrLOroxmK8YEoUJ+J7ss3u+jUAyOmVaRXLLm32wqs0myipnU3t5LV7jlYx6Mj2\ndora38faULtyXaVXIg0/2JNFBJqLBHhKrnzWukFergtPsQ6zHm/f4LIfILR5cPpYUjqzC2BVm+wB\nkjFp+Xw+3O7UCaNCc6ELBVzd/JOd3VCAGTwi3dkHJuSVYlIoL2EUkhZ8FhK13j+IrQBkJYXyztqz\n2hpftwXdeTnzPaek4+SGen5RDIuAAkAvyXZmJyLW+eTEN9r1bC6MO52QjI8a/lMOhPJKehQObGpN\nvBxz8THm7Jm85uMzVvfk+ckPnML7p6LabW0rnPcRqdCPCbKbDfCpChkSDh16Qzvz8Rj1gQzKbwiD\ndjMpX65mG3TmvFIsyg7ToiDpnDLMDuR72ysgz+mE14oLd/4c8AQzSaZYCdXbhTuObE+qFwHwzMvm\neMXLxgU+j+883lrwMZXxU9jC3rE6ZgGr6Lpwu6JE90B36z7EdVEVEKUNllm5LqTHUBU1vdWZptnd\nso6GG7IqAKRiiS0f5Ppynp9duSaUMV7MM1KR3KjREBOnHsgcUDorZmea5hvNy0v6KHrd2ySd01q1\n4OzRpgx+u+zl/m4zGTmpdp4ksYKgbrELhxvDeZOqIFVddtM+o0Sa6uO0asw7qTKH+Yvm4Chca7/s\njOzqXfAlVM3+TDg7JBlnl1RL2bIuva2uvcHCBS2kO9fXQotttqxk118VvnyWV5vf/SCW167nVQjA\n2xIoJrlnjq0vcrFKsCU+dXCHKrRCSLuBGVwdlSlFztY59M6v6o1Bq0Sn9sc1SLgNhbXTjoisCvgp\nqZ4xTmNvq+DmpNy16Gbh1P5KBkbDsJ/RuGOy81nmsibdGKzKQdZrSjAFmzh3b7dnwj6PNx9vLfio\nWBHdyEQHajyWsopSYK5nI11nmlVSot2kehChk6W7gZwRnKPfRs5tMkpksQVfzqitpsvGDRCyqCIi\ntB5RdVakZrBB43bHsE1UsXGsL+7B2TO/G0zdbtAO0oafNUozoAm2annJqFSY2Scv914JwwNJ0Hso\nyubuOPwviWV2w7Kt1P7Y9xx242M+3HnIUW9hDcgOrGnZxxinHBGKUVqFAvaOGmU4N33vlKzdtRAC\niu9BIaCdxALM/aiZGRXrBbo7sgzD0EGzRBNvXmO6g969JRnI+AzePUGfPqdzeSWf9d0vkvf7nM4/\nYlpsuogedHeaoGOPN0oz1PFd6eMkEToQDFUfHMmcjgV5c3lCNL7plcVfFY2Nk9vIOfFP+7NkHAtL\nlrGgkZzL9zg7QacZu8NDhr0DhnGd0YWzWVG1lj5fdwczKlD7C9l8uMFSqEH24qIGQiv/A7YMnTRn\nuRwDNNIZlWMNtt77jZXdOm/emvtf5nh7wSeJUO/uya7M+vO01ZnD/ocDHreoUS4x3WFjSFH+H9yw\nJnydJovN/d6VsvwC2xX5kRIxYjvP53Y3HcGaupcSij8iDfzIWlBvCzf9vhG2Tm9+49uYx2dSlz8+\ngBuHXg4lsk1Yn7VR1vMw7vUvHmHuSb3f19eTay4vpxDQnhN5WUSJeOt0M1Q2q+2Sg8xuP71NP5rK\nkO3VmfQ33EIETXkcgDwX2nC2VwNQYGOwbRPSsCK3oYAoSoj0EKOEMOLCzW9hLaRfFpUpmZcT2W33\n++jB9xEd3UXlM0x3yGn+gJPphHwtC6Rzjh0lFbvpkbi7Xk09+cSFEFFSYaV1d2D8SPxukggO3mke\nRD6DqzM7vxW9HIACoVS32K8vclS3knkgqBWow/JYOPRpJXFM9hSd7TFyqhYgSuPufUKn4DSDvZGn\nYDeiBTzri5zqfEmnH9PBAtDejpQwuZL3insQSSUilGPy5IxXbNw+j+8s3l7wiTu1ZI2jSQfRvulC\n4DEXj2QXNr6JDhblUPa+HW4YUeRsOgzile+vRCFV22c9l1yuzrk/k5LHD+wu6IVN7LZtt/tcUf06\nbSBqA5C5eAQnDzAffULxq8/IH8yJEkP0/oT4zikcH6BuHGLyGSo7JAoWtVJ3iOwpMvd/DfPr3yL/\n5eeobiRmYuN0U10YC0yfFnRCgkBAaVctl1NlDP2Vwszu1YZzZxMvyb9xroqVNJ6t5YKKew2acuMw\nbOmxwbprh+1p9YcyAxReF27eKAxHkwZ8ljsPhD3DgdmzixMr/Fq/Rpqs2eta5935HHP6zz0oR9kh\nxlLR3etrFaGzfdH2GzzaLBXbPokBL2DrAKitdNH4zDajXF/k3i9KLeXYG0AEDS8fQORxutqa/53A\nvs2+nWFjSG5x35tl4zWyb2vo6Mts9niq86Ucl81+PABhKdq2z6oANWiXVTc3ep8l1OeEg0a8vWci\nruVSVMssKpyxyasOoySpBUAvH3kBUDM7QZUFOttnUU1ZVNOGWVq4eLjXcuPs5bryjX1ferOPNUox\nLyecLGMezCK6GsZpxfuZlHzM5GHzhmj3VazrqOpmGyDkAejqDCZPMZ88pnowIX8wZ/IsJUrX7CA7\n9xh7k+6vvEKCq/9XpkQvJvIaH31C8fUzLr9dESUl6bMr9NGA6EZeg5B7/9f4alSoPLzl+8E5qsLG\nAmpmJ8ISs8Czfj6jOhfwcfMqLjoA2UwoxdZyIsxO3dR9gxzQdicNz7+zschnpOOblKn48Fyuzr32\nnJ9VCjYB0uSeMC0KpquYRekIBMoz+EILDsBaTVe11fTspB5+dooMgM72N9hbUSdB7+yTqpuyAfHe\nPPO6rzYuZHDZAtC1EZQzTV55a4W2JoADnPW8af7Xma8kK1lWctw2m1HDQAQUNl1fnTZcMEjtB2MD\n4HHyQCavvDWEV2lIU28PYZYTVJR4FXd5wVcLvn4e33m8veDTsbeHa1L6nV7PlluE6ebUbV2ETC+/\nK5u9oD/YgxjvYAr1gGgIOi62CU76OH/IwfAdkuElI1sDP+4f0jcp5vTjWv3aRVjGsGUk7zrazVBb\nAIhsH5YT1P4UPZuTHM7IVit0vLbAIf0wtT8WM7rxTcqgEZ3ORZaEnWPUhyuSYsVw+dwbj+mj/tbM\n59ooVuJYacs0CoR0QABYbbKCncsIQ2WH9UwIIs0S7jZVVwfnqS/il4e3fRalKTey18qUdZaKvQba\nWYMjTrhzfPGIaHzTKyU7Be32TjoCdDSy18KFteJuvn9edXi2qC0/5PU2YdwPP7dio5zsCCx6IE6d\nV2deD82rFtgBUaegri2dvxGOap3NIOvT2Ul9TyOc65FBXQtKWzIf5TOf/sYcEWDP67wp7ArNHp6L\nJIa9HTrJHNWNxFrdfud6t0vnncyW+qy9ghWHBfxmksFe8zN+Hv9C4u0FnzBcJgMNYcFwB1yuC4xW\ndv5BDNsaO/KrMz+fA6cN0ct2iI9PVqsbbEnrzeUJo7hHOnhXVAiuppjZY5m5mL1kst7ZRzsA8rvF\nes7BKUSP92+jdYLKeqRJTPRgIh4pTpH44B3UwZ0G6ACib7ec1Dfm4W3U790lPb63ffGwJZHG58sD\nP5nZvKHdpY9WNTPJRai2PLPN5v0rzCFNAEozEZdMM3E7HQ6EJQbN43KltlbpLiKi/W3k1dITRHTU\nqx1e82bZx/WWvFKyVR4fZtZfaZ03syT73ShkkFHHBxtaca78c9yf8nR+0nDF3XCKTSLI8yaz7Jpw\nStxG2/mnkGHnPoO1QvBGhrYf5krSRinU8LB+vM265FhqoPDWBRbY3GOh5bGzbaMym0sW6z+jpaZv\n6Suq4aDu7+3toPZ20MWqHpJ1lgvhNdBiPJrZicykhdfFmwKgjqo3P5/HWww+7ca8nZBuCwvSkDMJ\n+jPb4uqMtJuhk2MuV6eN+j3Ufjdu0fCaXNiFOFQOQJhEyUTUrc3sbGPOBdi8YUM2TzeThaG348Gn\nWC84XT7ko0mXD3e+zcHOLdKeZCh670Ru6ncOJNMZjLhcnZKqQaCIEMkE+9kU3jmod4lphvotX/aA\nbNqzPElcZwZhz8cCT/lk5k3DQGRUQsl7v7hbVpWZLmX4EuDdni/F5GaJ1pGwxoaHmO6jeqEPrMBN\nlG42ki2YJGmd/VZmxcky5kbf+hupQOnBgY+bonflJwIACn7eOC+twVtHWnClHrN44eeget2MOwff\nx24qxnVOidyHA7I0rRfWa6JYLzhbwmFvUV/TNPXc/HGfTeUzlQK40fAQHfVqkLTnVDQGV5vXZQCE\nW6kwQY/SfwdBP9OVT324Mpz72bHpnOzUcLD5Ho7q7bKc686NvccYF14FHriWxPN5fLZ4e8HHmC3y\n7/bfcY9etm/r5MW1/ZkNp0s7+BllhwzTA5z5l0zbN71d2s3bjcXahVVXDpupZrr0NfONklJgue3D\nAsKikt3zr50N+MZEMS0GfGnvsZT0bn0ZskeymIxvMi1fcDq7z/1Zwjg944s7e9JvevZNzEefYE4v\nUZcz1Pfhy19TnVOZQqyjO4F1dCj146yu87wBPNWzOaup62tY22Qnm28fG7KXzLIiWpZ03AJ0fBcT\npeTW88c5hyYHX/D2Ca6fMy+fM10UNSXb3QbeoVTmq9wi7YZWD3sLonWCjkaS/URJ3aR3xwi1UrL7\nbh34bVn0PPxZIPIDkvMrWXgdfXlvB/V9M3YP7tAfjbnY4ph7XYkzvNbcMOyzRcwoWYqYqsuKW2Us\nr47hftEvvMV5OthraCKq3g5mL7gX3GdtEwbaQ6rtyK2k0HImwHdWi4lCk6rstObqPtGmU6lnkLZl\nsOx352e/bEXBXM5QRRn0OLMGe/HzeHPx9oLP6hrGlV0kwhq5WF6XzSl/+7dGPyJkrYF460Q79PQm\nM8r3AMq8HtRbzmqWT3gTJ0VdTrPRZs000vlwEXIT9sZQrgvfxL4qhfOTV0qYXSqV92z1h9ykebku\n6C9WmMePWT88p3xyRdLV8H6BGh5yvj7jG+crpkWHo/4zbvTX9PRIGuyDvYbUD8WF9CeKldf6Wqfa\nqh7jRSe9HEsrOv2YKvRzsed7YZUWoNZZy6urDfHWfrRD0rF2ArMXG68PInkkSgGnpHrObtpHq1go\n82pBGiUyc1IWQFNLrS43lnaAmfo7vWbXvUGqwPZwZvNrS1I+c14VPvsylzPRLQvCESfyasnJUl5n\nnFaivr4WU0S6meieOfpyUC7zpS37GYTUcVKb/bnj3aaEEEpXBbbmlckpSxEiDb+fXnfk+3aNc8mr\nZ2R8vyrrb7imhtRzf4juupyd2PfZLGfnZrnhJfUdR0dtkF7e5nhrwcfkJebJiXdb9JFmnuosN6zi\nopBp8r3uKeW6IE0G6LS7dUq9fZFH1ZqRGlLqToO+rVVkvWXs7sv1cvaQuZNwkbL/Vk763c25wPay\nW3vwriogn5EmAw57Cz4c50DKe8OC436PUbSPefQ1zINH8tyqYDS+SdRPSPUzUt1lpIaY069hvxkW\n0AAAIABJREFUnjynfHJF9eyK9Y0B+mwKBzN0GtOLcnHY7LQk6IN5ENdbkJ7NGPbHRB+CduUVV5vf\nH8tncIv22RSTxHQSyfxUqum8k8njBnuY7pB5/mBjILQ9nAsIO2xyiupuKacE512rmHFyg1RPG9Tr\nvLoiiQ/q7Mcu1CbYcfuF2wEQbCoqWFaiC5/9dq0IbN+a2BWlzLVYNe356pSrlWGUWN2xci7X0ZPn\ncl24a9puovLqiodXop3m4rC7IunI8VyuTum7/t+7r6ngfPocMz1Hvfel5u+3KWq47z/oO14XvgwY\nJT6LaZMY5GcLRFm/0VsMM06nPWiUoqhq2az6RfASVN6AzqofKGtyN1+dem+v76VQSv0h4C8jFeq/\nZoz5ydbflf37DyOTvT9qjPknSqnbwM8AR8h+8KeNMX/ZPufvAHftS4yBC2PMb7d/+3PAnwQq4E8b\nY/7+Z/0Mby/4LMVhsZPEsoABjHZRw0NKyo0Bw4si4qKAo96EUbJFvZk6m3ERVWuv8KsHe0TDQxEu\ndYvi8lKAZ3ZW71qh2Qh1fYruDqY7kQUp6213Z4Ttu2S76CfdIUmnx43+FMi5NdDsxsdSSrNDpnS1\nlB3KQhxSu7ek3Pb0G5gnJ56WnV9FdO5N6HxhBssJUc+xuuo+ipcmKS8bk/C+ROXICeCBiPG4WSZx\n5ZHuCer0uUyoJ7E0tp06xfCQeTW1VGXNjb4bFIwa8iip6mKefZP1vXvw9BRjbaA3hDWDUMbQ74hT\nbbgDXlRT+ukQVRaioBCUe0IRS6CmL0dBNtsCnq3RzeAg8cw+k+1bteWmKKlZTuBsyvr5DJNX6OML\n1J7oqVWm5Ol8Qci2HMUVw3i38VbzckK6s0/SuVWXSx11vE0tP32O+egT+dmWPF1MyxdNgzqo1cyv\nGdZ0Ek5bw9o6QIupGPy9EU5pIbh/nEp829VWXlTKrApROyCfiZNuts98dSpiwqs3RBJQ6o0oHCil\nNPBXgD8IPAR+QSn1c8aYfxY87A8jdtcfIjbaf9X+vwT+cwtEQ+CXlFL/hzHmnxlj/v3gPf57EAFB\npdRvRay6fxB4F/g/lVJfNMY0+f+fMt5a8KkKKL5xRtqNasHDNPNCmbW6QfNiEcrrilQ3jc/ydYdR\nPOemY6dZ4DG/8W0A1P4FZnwGFoTAzovMzmRX/+JcegXFSna7x3LzKCt1EqWZ7NBavkEbse33y5mw\nv8rcM/luDUr209sCKvfuUX39Cat7wnZLlhUqz+HGjPTgDmb1Ak6fw9NTysczri5iZi8i0sGC9Ex6\nFEnnts14ajIFNJWaNxrzeW4nzZFs5+COH4ysLckv6Q92vDulSp5BmtbSKoM9St3hMj/l/iyxlgoF\ne93aSkGrCP3iAeb+t1l/8z7Ln3/M5HnCYLyi/0On6B94jPq+D7ywphOMNYuJJxXoNGM0PKTUHavC\nXFB2rNJDN4PkqrEQNth8BH2T0ebQJAT9w3Y4HbTxTXIvt7Ty154qc8zsDPNCSqHrSY6+PfEl1Pnq\nKR9Nuhz2SnrRmrSz5qC7Y/XUJOtxkVdXXK5OvSGeTizBIs0wz6xNwuPHmE8ekf+yWGOntsTlsrLL\nxVMaBnXhdWkVvV9HtsdllAI+ejvgbAMeqAktUUJJyaXNFEV0VajmWsWN6Qfdra1I6Gbk60Wj5/c9\nFr8L+JYx5mMApdTfBn4ECMHnR4CfsY6mP6+UGiulbhhjngBPAIwxl0qprwM3w+farOmPAP9G8Fp/\n2xiTA/eUUt+yx/D/fpYP8daCz7pSMm+wtCWgdw5Qw0NyL6tS1gZlLXfNiyKiF615No/kMZViWcFO\nYoDH3By8S1SWlihga/ZFKTdgPqt7H1diL+xYRuISaW8gO8FfUvoJ+aQ7FKHQvJ7zaRAV2uWtEIjs\n39J1Bx0fUJlSFi47n7Ker1hNK+IRXkWZYlUvikXpB/bKPKJadahWHTlm+z4iBrlld7tN0839P4n9\nnM18fcnl8uPN5yN9msj1Alzm0x8EQptx472FzSWLUFStgwV6xtV5xOyFXPrJ4xn6aAL7FxjbA3DA\n01DcBujteLHXeTkhWidELvvpz8T3hxbwuM/qsqFt5IMtG4ZG5qdlEdVKRDgrU9LTV75c6tiP7np2\ng5MlJef5nKeLPnkVcytbcZitiDp1FpLqgQWdc06WMRe5ZpzOGMViyJd0euIMOr4pMkx57pUMAHnv\n5QyihMvVKfdnKUe9OZV5yjA+ENX2ayIsizayH3duHLiEPaxtsz6t//veT5oxL18IgBQxvdWaUTxn\nECt6Og7Ks0If11oUICqzYr46E7+kdbyho/ebFAdKqV8M/v3Txpiftj/fBB4Ef3uIZDVhbHvMTSzw\nACilPgB+B/CPWs/9/cAzY8xHwWv9/JbX+kzxXQOf62qPSqk94O8AHwDfBv6IMebcPmdr3VEp9RXg\nf0K0/L8K/KcW8a+NuGfo/p53UR8coe7cQR3dlRmGdb4xlBfGOK047DqTt5L7l/UikleK+7OEVD/k\nqPcB+vB2PfcwHjeH1yzwECUiYQNWZ6zvDeJMdwjeljpqDig6am27gR2CUlA6CZvBUbUmsts+dXwX\nooQ46xPdeCZT4O/fFIn9gzvknbUvJXaAFDjgOdmLFYPfOqBz9z3UrS9TrBdyU6/W5OsOJwvpkRFD\nMhgRDfZs6fCkLhvabMedl35niG7tZiuzEmXq2QthQQWfHZCF7+k3ODi6ix4/tSUmifoYDui//xX5\nnEnMbv8J2b0JnZ2U5IeOpPT27heltKUUdIfghGLdOUwzcrPkMpf72ZVwSkrRQRvsidx/sZLP145Q\nRdm+j399x6wKSSYB6NDqI2oVMapSzKNfqvtJeztE706oupGUI23ZaRAr3s9EXeNkEZFXig93nkEq\nC/6imvJk3sH1g456K0aJkBFc5liuC8p0x1t5dGZzYgc+xwewcyw9zapknJRMV5rpquKw+1Ds5xMp\na+fli0ZW2yhRB/JFc3UJuwf09++gDmqNPmBTmimYIZK/i+CsIxksqqnt2Sp6EVYnscso2oeqEKsM\nf62VVl/vgnk54/4s5WQR8XTxZqjWqrNJFHpJnBpjfucbeeNtx6JUBvws8J8ZY9p0vj8G/K1/Ue/t\n4ruZ+WytPQI/CvxfxpifVEr9WeDPAn/mFXXHvwr8xwiCfxX4Q8Dfe9mbd0Ypna/cRb37RcrBiMo4\nVYLCTrRX5JX2UicgN6ZI9R/Z3fYpaWfJ/VkCdnckAJQC3+Zo/AFb90zt6fgoEWXh+ZU0Ox3w2PDU\n7FcJHKaZoENViLROuGvfBlIOwA7uyHvevifHcnCHucqZl885mclidLB3i0QndJKIbleTXOR0vvAO\n6os/RKk7lK3de77u8GQOV/EJo0QWlrQ/IB3chbFoo6nhYZNum8/w3RJ/vKn4HTng2RZlgXn2TXaP\n7qIHL3h0Vd9LZ0u4Wp0wSiYM3/2QdHwTtf/r6O87EfCzG49tIbbpKQuVMy8eNv4W7prRkZf7v5Zq\nbFlXnvG1lkxG2ya80kndE2ooYDcjIsK8uId52jweNRygj6zKwI1DATl7nEf9epM0LTS/dtbjvUzK\nbeG8UNoRrThHRAijMqXowrnP7973jlw77v5JtbFW5lhmXc5h92HgOVQv5C4z9UrSVjcvSWWOaL6+\nhF6M7n9IMngBk6fbVQ2gLt+C3EPDQ+blhKuV4WQRkWopOUYdzTA+8LJCqd1guXBivs8WNfBcfO/x\nDR4Bt4N/37K/e63HKKViBHj+pjHmfw2fpJSKgH8X+MqnfL9PHd818HlJ7fFHgD9gH/Y/A/8A+DNc\nU3dUSn0bGBljfh5AKfUzwL/DK8CHXg/14e/xlshNPa/Ni/u9rGCUJFJKWHfAgE6OgadAwf1ZwrTQ\ntgxnOFnGRJ0H7I9vizqBK49VdqbA7vwboOCAJ9tvvHdD4HDLhHzoPQNI+UDF4AYpw15CMNugxjcb\nr6GO7zJXOZerRzyZd7h/mfB0EXHcMzIPNDqk3/sdkPWF5fbeB9KjCQz4RnHRaNBOV5pnC8M4mTJK\nzulHGWk8oNe91QRTp0Jtj8WHm6V5VVgAGh3cIRomPJ2f+IXuo0nKUb/ksPuQYbrL6Ad/P9x85AHh\nunBKENNCvvsw2g1yY5vW7e/FAUm+XoBZUq2dbqAzFAy04ywQVWa1IYKnVQznDzFWj888lsxZHQxR\n+7tCeDg+qMuR9hi0ihjF4jNUA0Cn0QdyIcCznQThrdRdadIpFBzcsaoH8u9Ur6HVoP9o0t0oXdsz\nzHE/0M2zgq1RmjVUJh5dPWZ30Gd3+GXMw6/VquhhhBmz7QMWhZAFJoXiHfuxkk6PtCgxJw88Oy49\nuivrAHC5OufZIuXhLOa8gIsCO5bwBuLNKRz8AvChUuoOAgJ/FPjjrcf8HPATth/0u4GJMeaJ7ef8\ndeDrxpi/tOW1/y3gG8aYh63X+l+UUn8J2fh/CPzjz/ohvid6Pq3a45EFJpCV/cj+fF3dcWV/bv/+\npWHihPn6ckO9GLDllJrI8V4mA4n9aCw03csTsJpX4/TYz4Lcn8kN73oPZ0uAB4z7N0jXmTzPMdv8\nTAL1IFx2KM3lYFH2IpQOeNr9gShpWP+6OrpjeWkViQFc2+XRCaNaGZG5yjnPn/HRpMuDWY/zAh5d\nKZ5fat4ZVuRVny/tnXJzMGJ068twMAvIAfVCMIgVUDFdaS5yzckisv2wiFFSMU5zRvFcMhHXE8it\ne6cbQHVzM9uGJsOFvR1lgTm9R//oLrupKER/NOnyzYlmWmguetLPOOyeszs6Iul00ddYTVyuTjld\nTrg/S3gw63M7K/0GpB/tNNSPofbNIW3Os4SlpuY1FvnGtwOyJGyAhzR+60TK2TPMJzJn5ZxIo3dt\nfy7rCwgNQ+CJSfWAQbzgw52cvFI8W8ScLCKeLGBSxP5z7aZ9Ur1FHaB1PEYp1GBP+nRxT9ibtk8q\n7ELNYXfl+0cni4h7du/Q1fIfwG4ivdO97oJhbFmi5Qu5TqsClDDwPpoYfuGkz40e/L7j+xy9/0Po\nFw/kPtp2TUQJanho74clF3mXRYUVCK7oR2PM5IUM8BYrmYm6OoN+3/esHs5i3BhZV8PVpxBh/80I\nY0yplPoJ4O8jSejfMMb8ulLqx+zffwqpAP0w8C2Eav0n7NP/VeA/AL6mlPoV+7v/whjzVfvzH6VV\ncrOv/XcRUkIJ/PhnZbrB9wD4tGuPKhTANMYopd6YmYZS6k8Bfwrg9nsH1wKPX7Q7C0ZJTqq7Ajyq\nK6rWtmxmZidE5Q7j7IYFoHMAr2Tg9NvSdUd29e6GcRpcLgIXRrUFXNygqI9AhkfFojWWphk6irwK\nc1MOXmrbSbaP6mYePNX4JnOVy3kwMIx3+dLegg93xNZ4utI8m0cc9Uvez1J24zs1CEbCCot0Ata2\nGaAyETopGcQrP++TV4pRsmaclIySynsjJZ2eAKuf64g3P/t1sW1g0zLDnP5Yqru8lwkr8ahfMoor\nrzQxLyeUnbrJLd+XbI8dA+ygu0OqzxmnMTf6a4bx4YYYbOM8L+33m+1bwsqVXwTddQH4Jv6GZ4wj\nOEQJsKw/39IOIPdlfqsznotaONaSwIpyeofONPPfT19LH62nZWNy3McPnPajjFTveNvtl/nWuPk1\n73ezewsDDcVsrWJ6OqZQC270V/Z8G1Id2WtA/j1OK9LOmuN+j34kvchiLYO7aPlvXgib7gujkmnR\n4b2sINVdLoqnDPdukDhadPsamIlEVn//Dnl0xVFvwbTQvDcs/PlXcQ+cDpzd+FUmF4JBJQQJB5Sp\nNtzd+czr7BsPCxZfbf3up4KfDfDjW573D2G70pH9+49e8/u/CPzF7/Bwt8Z3FXyuqT0+c5RApdQN\n4Ln9/XV1x0f25/bvN8KyRX4a4F/5yveb62YLZBcnN1LVWXng4eqs6aUTJV4RezS+ubGQuQXFXNxr\nlo7cIGhLiYDZmcyMbNvdX+MMaqyHjCoLom4mRIJyCeW0Sd/duyFluQ6wI2W9vLpslHdGagh6CEnd\nc/jizkLM2azJGNQMO2VpqZFOQOFp3NI3izjslYySpbcEkCZ2r6nwDHL84VR7GNvKbk7Gv12es5Tk\ny9XT+jMlCV/aW9gNQV2Kas97uLJSO4bxLsMYT/rYGCx2tOzZiT9OBejByEv0hOGAp6dHAWi9aGSk\nbS+bhnHg7ZsYLD1g20Bu1JofqgpSOqRRs5TrNxFroNyUj2lsdoCot0MZ2GmLTNF25Y6ok4hNfGfF\nIF4wtsoV9TWQevBtvKelO+eBlb1WMV859J8YkM3BwfiWuO+GYT2c1P4KujsMBwdUvadcFLLx0Moq\nlwz2hNST9X2JLl9d+bKkq1ykes17WcFh7w2pEij1+irvb0F8N9lu19Uefw74j4CftP//34Pfb9Qd\njTGVUmqqlPo9SNnuPwT+h1e/f4ek02uUQ9yuLlyUIpK6NOQWCNf0zPA0U3PxiP7QMsoWM8zqhcyI\nbCuVvVQafot0/MvCLjimKiDsK4XW0YhYathYdfMcLka5wnz7H9Xvm8RooBclosu2JUxV+KHYKM3Q\nnVgyn8AkTauIflSXgK51h0yzBiOvsfg53xYX7nwlQfZjgWdavthQknADldcOMtpol8Y2QBKafSpX\nynTAcyaLuIlEJLRK6izJZcMeeKysklktBNSdA2exEo0yl8VsmelSt2/W1O29UZ05OsByA5b22msw\nH8tC3uvFRVMN45oypjvfZjQjChTOt83q1OXIntdCTM2AnnZU/EBSajEDBAgc2BTrBVpHXBbP/Ws6\nsG6D3Xx9ST879MoEovBwIuaBtu8VRQn9eIf3smf1R3LzWeOb4uEzvtlQM5HjXHPUL7k10AzjG6Sf\nxvzw83jt+G5mPltrjwjo/F2l1J8EPkGGnV5Vd/xPqKnWf49XkQ0AhfIltjbBoGEeBqJEsJjUN6+z\nB5jNRXOtDzCr2U4OoGxvB2haDUCt8mylZuoFdYtEy8vsqKFZggrNvZwKNMDeI9i7AcDH0yd8NOny\n+47F4GxUpZh//gtUv/rxtVRQNep6KZNwwTIgmQtC+9ZRas9p8xyGmaDLypz8iV80B3t+lx9SyM1i\nUgOQ/3xlnf1Ya4T5+tJnGm7RCsHDadZtszx3vaukI3JD0ocSVWmfkbnsysm2ONBxwGHVl1USYaLE\nq6PPyxlaxVbnT4DHXJ4I6AQCouZUtM7oTmp/m+vA4Z0D+9hsUy0hFMy0wrShuZ6TR1LdiM5OKs6z\nzufGqX246xIEEGcLAdX9O35w05XuHKhGRJIJQm3r3umBtn2ryYndxNUGcIzHJPb7y40InYr2Xk/s\n6pczzPKJdYh9xw/5zssJSXpMVO7IZ31+inl8RvlkRrSsRKeum/nyW5iBVqYU4kQ321AzSbXhB3Zl\nSLZvUszze5jTGgw/jzcX302228tqj//mNc/ZWnc0xvwi8KXNZ3y28ENwUUtC3+lthVI2bgF9HdfD\ndmbjbvJtGc+rgCcMt0A5JpIV7wwf++jqMfdnKd+eKd67EndULMH5dWYQvA322VR23S32nVOQdqDu\ngDxk3bmduCsZ+tfepnMGtehq2xeoWAFXsgBXhahYW9Dx2erioVdidhbjkX1P3Qk14Fy/LKbhVhpm\nXEFvzil0e+XpayjA7ajMqr7pogS4qgVEXYTCnk6ZuV2KtRm3o1TTBmt3vFYR3WnPOSXoULLGf+/u\neg6vH+cPFFyHl6tTThYrpNc9ox9dzxgMY6sJ38WFgPejj0kO3pHy61KOf1sHKiKiH+1AaTMla4pI\nEnmRWlFEkOMNRXLDXp1RCqUTtFIywNxJ0GrCKFkyjI+sceM9ePyY9Tfvv9bne/UJ+LzsFsZ3nXDw\n3YxwB+wEGCGYO+gkwALdidGDkcw5OBVq2FwQXBO0FFteRgWq/dgwogSSQmrP7cXrdS7SEPjC/4IZ\nH7U3AkDt3+HSzqqMkjUfZLUAqOkOxcPn8npKc2js5rXZ8hx1A/ENWi18tqLc4u4ByM4ouZ14SP0O\nFiMTKDcAjbLPtQZ6xUpq/WVBenBHehv5DDO757MSihKzNxKBVpcluMFOaICR/35dFnud7UZhJZG2\ngY4r0+iEsry0Pa9lQKkeCc27twN2sVV7I9QNa2PtSm42q9mQ3SkLeH4KSSRZmaM/uxKdK7sG4Kj2\nxSBQ3Tgk/uCKuC3i6kp8adbsMbnvIM2oxkdcFA8t8Nivr+oQdazXUSRzS3JfCemjWst9NU5uoLrU\npWFoOL8Cohn3+LFkdS0R1nBj4jItXzY++ILPvvXxlXyew9tyvPkD8mrpyQYCMvXAttIJERHaqpgX\n64UAz8UjePyY6lc/Jv+VzzOffxHx1oKPwfiyi6snT4ui4bsjbo9NZhNA1Ev8q0hYB06zFrXr7lDo\nqA6IZifXZ0QhgPVpPu5VYNSmmHZ3Nh7iylvz9aUH21605rBX+sZqZVYyvb5/sf292gv/2USUpYuV\n9B722OxNaMmC2jNKPqMJMyaQHborp71uFKXNQlcwPa8zknYprFjBi3NZ3MdjTLtU5c4f1H2YsFcX\nHJcHXlfaXG4yobzdhvUQuihc36eeh0qcgkKKDARnhz5j2ShHOiq6i9PnomCdxOLSuldgsj2xeHDH\n7oDn6Snri1zsxN9/V15/KA6vHLxT2w4EM0kbn8cYcrPkIn9gxweaUa4rFki/q0k6WXl9NHgiAGSN\n54Cm7fjlFdWv3qc6WxLf2aFz9z1474P6TQIChjJmcx5p95acN2v1kPf7XOQPvJV9zWKNfXYbXq8K\nWQwjPRQiw/1vU/3qx1z94xOe/UbTouI7js8zn0a8teADxt8ki2rK1crwbBF78cVU10DkLmAXNStm\nmzNpzaRK0p4XLDSLSS2psy3CXe7LhiqvoRc3FiwXdjdolGJub8S8kmPtRWt//K4GzsE7m++jE0ie\n1s30F+esn8+ozpfoZUmHYLHVLZkYHSgZu9+FjW+rK0dRilHey0pXriQU9sLCsABEsfK7fXecZlmh\n9+YyD+N2xqNdKfu54wwdWPOwt7Sqj8+CjjO0c94sW5WKdeL7SCcLN2S5Yq8rWULjoToC3QXLJqs3\nRWK9naS9urcxO/Pq4irVdIqVZKD7K4xTb1rOfI+nejanOlsSAfpGWauIf/CDVtmjFnClrKsBLtyx\n5NXypRpn5bqiUAv//GK98PfUySIiX+dUgweM02Mi3LZNMgrz0Sfkv/yc848MsxcR4288Z3RvQvJD\nz1E/+P2bFiPXhMn2IdtnXk05Xz689nEqzMJbm0KznGA++ibrbzzi6h+f8PgbA77+tZfY1n8e33G8\nteCjrLZZsV5Qriumq5hpISKhMkKx9gt1qGztdKLc7EovWnsRRqj1oYr1gjkT6UEkA9L0JvR2GpTc\nRsbigKMsRAMtbBi3ozVB74HHyrfIcayozNKXE8OGat6223EmeaFvfQg+cQ/DvdpSOa+8yKgXcixW\nm+Uh19MJez0uAuKAB552GeaaMND0ywGfATmShZkuMXnlRTBVV9NZVihv5RDXlGbqDHEjWoSQ0Em1\nWsrrMl9tBaJapkmul3zdoVyvKFRzMWuXf9sxjA+81bUHwPlKrmAPkCvfBwp/t55bwdG8ku9pb4S6\n9WWm5pJHE9Gpk1mctd9EnS1r2R0nL9WLrC2FLdUe9mLfJ2t+Fgdmck85iZpRojnsLrlcnTJMDwSA\nsj7mk8dUz+YsHpdMnva4nFZAwmD3ivXzGR2+ZQGoJcXUOn9ursr9nOqmoGnS6UlvZ8uS17guLRmi\nfHJFfqW5nFZcTr735nz+/xBvLfiwLul3hiRJTxSKO1NGsUyBb1VmtnHUq2VEUt0l6WR1g9sKFYYy\n9c66udID2cFGN31px83J+HDU2BB4rtNmC8KsFrbmLzVsmdEpfWYHm6oNi7Jjd7Iz//fE6sk12GBm\nSTrYk6aulQTq7EjtxQ04quFAegaBi2ujhBOlwobr7dTN8G6G0zJTSSSgscUYz8XWbCcMC0IqTT24\n6K5kByavRPPsYCjmgVbkdautAYEI69ie24AK3cnmdMbzRrmt4TOTxNKz2L3FZf6AqKO5la2k1Nld\nNQQ7m9YRlc+oXaR6zTDepW9SKGdSVjuWTNPN+aj9XSF+ZDbtscOo6gaYJCYGKbu9k0nP5/gupe6Q\nmgF73WkjW6+p8E/5aCL3gAdOd19EcGugOdCSJeeddaPMBm6OquRGf8Vh94qTpQzpOs24eTlhlO5D\ntocaTtFHfXrvzhiclei4w/i4QB+J2sL6+YxO9hinORjKIYXnD6SfE7F5nzTm7sJwPcqQrAHSF7tz\nSTZ5zsEZ3JoksF1s/dPF52W3Rry94FMWmItHRL0dht0D28C8sJnQeutTXC/IU0GtEKKZPMHMzqBY\nkewdMdy70QCg83zOKCkpO0VtK73Nu2Ub8IRlqFcBUNDw970q618SRtpZs0DsIqYFOACqdP24hple\nNCa1Q6BqtoDRXMptjn7tPF16O01RTEOtuBClKFsG9L0f5wRaWtKFy3xC1p9llV1LOAjPQZ57kFLD\nDIYZnb1ZraB941AWPKssvVEGdRPzASipuIe59dtQ4xdw8ag+lstZ0zzO0eitudp54ZXrOeqtGpnF\ndTFdaUaxgJrb3Iyi/cZxqu4OfLBT2wxke9teSgCoL72dzqWUGtXBHT8oqlVET49qNelqLVToqmD/\n4AtUo4/5eNpcHnrRmhv9NQfJ+5hPfgmAZOcYdm/5klu42XHzPrcGJVrVm4fKrEQNPDvE7J3B5Yz4\nTs7+5DlX5xHZDYhu1FI/5vGZUKcdANkMqJ0phuoTG35S1wBPI2zZ2BzMUB9ckSxL9qcnlEXvzYDP\n59GItxd8qgomTzH5DJUdknYzdHxgwafwGYuLxmT68hKzeIZxO2I3Q3GR0/nCCckP4gGoMiueLWKg\nYBBLD6AfjUkiO2znoj2b8TqUbahLW9B4TihS6Qy8oo4mr5o34QYABSSMcDeedG/IrnM1aqFxAAAg\nAElEQVRvBM5x1TGlnFWAk7ZZh69RC2gmnZ74EWGfH/cEhKwSt88C2+VEu1FwzLV2hPMojZIc1AOb\no13JaLqZiE6uL+m3Acid94C+PNU5jy4+Fk27m1+W4xjNmizGgByg4h5zlTfKUVKS1RvSPP5t1xUn\ny5hn84gLrXkvk+9xnBxL83t2Vmv/uc91cMdTkhvH347xGGUzvXIwavzJlaHMxSN/LTvfqXeOfwvl\n+iPuz1LL1is57K54p/sh5uE/xfz6t+Q4bkzh6ox0fJNyMNpQLQB8eS5klBbrBVGUymZgf06nWBGd\nL8m6c+I7TeKMWZaYTx5J/zJKrCBuugE8PrupCigv/TnxGW1ArPDlYHvveD2+zpp0fBNuzOgUK/p5\nxcHqYvO8fh6fOd5e8CkrO6uCl8iJhofoaETVWRGt5aIs10U9rLi8hMUL6dtMzzcG99aTnDiviIYZ\naXeHPO3x6GrFyUJO87gqGSUzKlNK9qTtIF1bu83Ftgb8a5Xf6ka/lNteDWRhCc4Z5OXr2Nb856R6\nSn94KDMz+3OZGXHltjSTRZ3SgzcE5buqNg1zzpi+5OZo4VAPy9oFwr2eTvqk3buY7iPv/ApN0Gn8\n34GPoywP9lDWwrxYL5ivzmToMIZeti9eQa3zb7J9XuQP+LVT+KdnPX7b3oIPd77F7uiIvjnc6Nu5\n4xUx0XqxatDNt0RlVkwL0dB7vtB0tQjZ9qPMm+BxNoVsJQuv7Q+WaRcGI3mM1erz4Bn2BC2bLZTG\nccellpdyLTs33SfPZaA0iVDZIbu9I6bFKQ9nQsTZTY9EWfvBI1bflMw+toQHkMVEW0X2hpp6KYQH\nopReMvIsOBOlUkocz+DyivjODnq3Pk6TV6znK/+zzs5ReyPZYOyL9bmvQFQFFC3AqZqbOC9F1WL3\nVWZFUTlh3pKkext2jlE3VujZnMH81fNbrxUd9ery8VsUby/4KFUPzjk9LJ1sZDz9aEcAYv6i+fzR\nruzEihWdYoW2TW191JfsYLBHYedqHKss1caLamoV24lwkZFv3CjbACYcNgwzgyDMxSNMV+y269JE\nrTotrD0pt/WitW8mL2j2GlyknTWH2Yrd9Iietjd9dogZz8T4rrWwa/tq9fuWjYXX9wQ6gd0D1Jmb\nM/ukpFhfemFOrWKID0j374iNOHgAaoRzjb0u26mmzMuJFZDsoJVkDh6A3Lkf7OGsoD/ceUhe9byw\n5bycQLRD3xrC1ddKnemketAsW7JFNQNXJipJdcEoEcuDVK+ZrjSpnjHsHaBdWc1mPmXa5XJ1ynzx\nVPpB0Q7R8FAyMkdXHyd1NtoVa3haWYIypu6/RYncC27ezF1rGO9Om3bWlOtCFu7hoAYJ1/Oz82Uv\nA1rKQjQI0wztJIasEZ+6UWCATjZvbCY6ywqzLOmMU+lvWSq9efQ1+gd3gC3c7y3v6z9n+O9gHECs\nLeL63LjnZn2iG683RPt5fLp4e8FHd2y/ou4BzNeXzYeomOhqyyLnWGmjXdRoF6bn6OML9GwuTd1b\nX+Z89dQvPk7RWex7RzXr5upss3QSvkeU+AyhATq9nU2K6OxEyiaZLRtFhXxGahVjp1R9XTxbxJ5Q\nAQKWB91bjZkK0x1KyWcxEQJBd9iYRN+WaeXVklR3RbBV15mAucbOoB2uXJPEPenBdDNI5k1l8Nmc\n9UWO6lawlzfcRE2UUlTTBuvPvW65LijUgtS5kVIrOGsVcdT7gPTwKQSN7Ly6sorczeOMiIhURGkb\n+K7E5M5L47FWfFOriEG84oh6BgvEiC2v7nO8e0g/kLSZL542XkerGJYvvOyTubQbgyiRTLg1rNlQ\n0HaZSTeDsaXMFyWMdqWEWsqGa5RU/nyZ7gEcvEPnlswdqRuHcHxLfKhaILd1QBYgnzWa/Gp4KAO3\nTkIpAB9/TC6LdVEWmPu/Jg604WYtKOsa+7jwOUDd03OZkJ0b8uy9fLZp+PgmItzwfh5vMfh0Og1b\n42n5gkU1ZRgf+IekRSk7yvYQZ5vyuXckIGQN2qbm0tNsU91hnJTsdamBp1rDsgU8LxtCDTMdu4sn\n7XpgNKuFLwOqohSr6iiR2RF4LeCZFh2eL3QDfI77h6TzOWb1QhYXy14z1ma6DRvuJq7MypMcynXF\ntNDsdUU1OpTcAbYCkJy70FG2Q9KRDC7qZsK8y/ryWS0AmenSz97o2Rz2x/7cOdl/R6sPWWUuMzRO\ndWBLjJNjKddZYUtHpw8/hyOfYNXFddTzr8+araKmUSfxJclULxknZcNZdLrSTCdn3OifBsfdnDFT\nxgTffz3n5ABIynBBD8wprS9amx4LQEL+OPTftRAf3DCylEHTgzvwvtiHsHckPZhraNDXRjsbcWSC\n1oybL5+Fv59fYX79W5hlRWe2gDtf9N9dbpakFoBYLTaHnwnK00E4pYNIRVCebVe3+DzeaLzF4KPl\nJsv2vXHYs0XMhzsT+tEO/c4Qc/FNkTEByHqY5GxT7t6GK3HMVU5RTho77E3gmV2f8YTRaryb7tD3\nLAB2B8fSML868/0nU6xQWQ+TZujukHI9eSXwhHbB92cJ72UFNwcj+iuFefzP7SzPrGHvvaimvnzo\nw8qVhGW2aaG5KCJSvUInpZXab5ULAwAySvmMQjIe6T+5hS/SQ+kTLGe1L9JsznqSy0zPskIfBaWb\nKCGvLmlbG/hDtkBXqIVdtOxN4dQp7OLX7+7Q777TMO7rRzv28a0sdrVA9XZI08xnQdvmd8D1hIQM\nMkoqpkXT2npRdviV04hRsm5sDMACWlXIsc4WIk66rAR4ZvMNiZoQILdmJO7xtnwWKmKEahgmGsGe\neDw64Gnbfm/NasvNeS/ffwHpm9nB1zr6wpa8eObVv9dfE8kbsyxJlyUaMHe+aK2zz6j0gH46RDnL\nkRB82iVt1yMLzke7//eG3EffaCil/hDwl5EhxL9mjPnJ1t+V/fsPI2ZyP2qM+Sf2b38D+LeB58aY\nLwXP+W8Rx+g1MgH8o8aYx9bs8+vAN+1Df94Y82Of9TO8veBj1n5XvKimfhL7qLcg6RRc0wbxEQ52\n+kZzdUm1Xtk5h4ikA6ku/YBbI64rSQQ3YqOnk2a+/OQW0pLylV+gL/3Fm4NyaWftpV/C2OtKr8vM\nntWLeMDAu1ydcrk6t3NOtXp0O65Whosi9nMicizyuAbTLyAcqCgREND22OMFqa7Iq4qk0xM5/K4Q\nHMgKuJTSlkpbApn2HFIWpMmARTXdUKoo1xVa10BZqqhuXjvgccaBy4nMKg2Exu68erZ97nYvbhvw\n9PSoVQKMgAWjpCKvjHcdnRaapwvFcU8uyNCQ73XjOuADtgu7lgWRzuhHonB92J3579pltpEbSN4i\nyfPSvo9/UFOKKTdLclt9aH9PUUezP74tPUW3GQzC5DmqKmRjsKwljNJu1tSSc/dWJf2lhh7eaygo\nfOZ4Q3M+SikN/BXgDyLOzb+glPo5Y8w/Cx72hxHbmQ8RG+2/av8P4gDwPwI/03rp/84Y81/Z9/jT\nwH8NOJD5DWPMb//MBx/E2ws+ZYmZnZDu3yHp9BgnC+/nUZmV3FCpbVxDQ3ixDTyO4bXtJm8Dj4lS\nVFQ0at6NaP3eXNraej4jSrPGa21Ma4cq2+Cbqa5E459nF65U1zd5qjv0FkLz3cho2ofYSbYvfg2S\nQ9sbx6BVIs912V/oPwS1MnZZkA720PEB83LCAlmQLlfnXK7OpdG+f5vIkgnYP6ezd0HyjtVG+/B9\nOBTfQbOYkKY3LUgs/MIm33WHqCPlwIikIYC64YHjxFOrwtpGlMzLC/LqSs5xf0BimV6lZXOV1kK7\nbVznPG0iRGS0UAvbRwKtSqLOilSL6+d0pRklmnFaNZxY/ffjjPj2ZkKBL1bSmB+PvS17sb6UZnon\nrq87p5O2ZdBW7oKZbAIsAG1sMAKKcvidh9T+cL5ro4cSMhzTpuL0S8OqVzslCdWNGgwyr93mzo3r\nEULz3moDUPC51NiqkXRPZP7M2Ux878TvAr5ljPkYQCn1t5GMJQSfHwF+xjqa/rxSauxMOo0x/7fN\nZhphjAkb3AO2C4u/sXiLwaeCs2eQHdJPxoySmS0POb2zFVFvB9O3cyBOjDKgabapxWF4fbfO5i44\nSpvlkHDnuJER2MFHs5Cdd5RmfhKdqvBCkk4yvw1AIVCEdGf5vziNptrQi+Qx4jY5kF7CtsxsSzgX\n0IhoqzBlfU4iOR9X01ooM1yELNPKlGJSF3UzL3d/nteGYCEIDY9/Cyp7AaMTGIrYpgMeH1dn9Ptj\niqLeBTtyRaorEpvlhgKom4Z8M8+0ctmPK6eJMO0Fcy7s+ahVCwBS3W0ZFEbeclt1IQn6QwJmUQBC\nqxbo1EOinrQRJX5ehqL0bEtHfy/XkslXJvIK3tukhDbo/pUw/IjGG+AQfs9NpYaCktqevDJ2vqvN\nNAtKcKqqyTGvDDfIG1hChLEBYm29w9bnM7CxETRKQXcoM2mhYd1vbhwopX4x+PdPWydmgJvAg+Bv\nD6mzGl7ymJvAE14SSqm/iBhyToB/PfjTHeu7NgH+S2PM//O6H+S6eGvBxxSV9ElGj0iP7tKPMnpR\n3nyQpY8CDf01Ywfcts20hKATOnaGNfEyoOWKhE3NvBrGBx6AGgZ2bh4mKvxiRXnZLF9ck9K3J7/d\nwuCOPeqsgIo0W1v5l3hjRsJFOD+0cU7tZ3RZYCjLIo1rMRzbcISFhnmZ2l9tzF7l0RXzsp5Duj9L\nOOpNOewtGPYPSAd3Mel2SqxZTkgHe/T0iMv1OXml/OyVHFuQpZU1oIfCp2T131Q+Q3eHnjDgYl7O\nOFm681KTA0ZxgVZXdfbgVKqtkrbqCkCVwcIp303P2rhv/059WDKMGVuw3DkWJmKUUrVM1HQnlkyk\n1YgPs1CfEdhIdbdxzYbRBh6f/a/xIFSs5TU2xGWDn3Uk51OvmzJQ4WdVcU+uiyS2PkS64TXkMn3/\nmZSSz3GdLUX7Z6uN2KDIW3LNG4lPV3Y7Ncb8zjfzxq8fxpg/D/x5pdSfA34C+AsIYL1njHmhlPoK\n8L8ppX6wlSl96nhrwQdjZGF5/BgTJYwPvkA1eEDSyRrEAM9ws5mPk8kP9aQAIpKNclU4aOca8dtE\nJN1N65rqDfUDV492C58tSwFNqwYr76LStLHTC7W73PH6Y+zUoJnqpRdS1SqC8jXmJ4LYZqssr2vo\nRYG0TOiT44RFtw2LLsXIzeQzSDPGu7eAJ5zncz6apHxzovkg0+Trghv9JwzjA5LxUaOp3iid5TOi\nOCHVXfJ1xbLCl1l9RhZmPaHwaZ7Xi/EIv1tOdM+rop8t4dmiy8kiamgDpnpNmq09saGnR1BO/Xfr\nZZFaHkg1Ffvli1VlVpLN2PkksE38tCYNOMady360imslcneOXhGvymq3HRfUA8Y6ssPF5UuU3d17\ntVTiUz2wA7cntcX7bleEbV2cPcPohOHuLTkHZe6HTj1oheVd9/9rsiJ3PV9X2fguxyMgTO9v2d99\n2se8LP4m8FXgLxhjcqxvjDHml5RSvwF8EfjFlzz/lfH2go9SkPVl4fvom6iy4ODoruX4vxzQZR6g\nznS0a1TnM0y3ufMikLmp1ttVi50gYgheJkpleNMdbosGbC6C68hlZ+DVmlVvh5LSz5q0m8DhZ3Cs\nMoBpUaCVVR4e36wtpAd7fhZqHrD5irU8P9UD/1pOTj9faz+38mTeQQ8mJMmxaHqBzy5UW8khC/xT\nljOxSqgKdvfvkOpLUv2MVHc56q047MX0o71meTPNxCfHUYq19OdYX9KPdrg1mLAoVxz1Vhx0d+hH\nO3JuQkFZCz5Ocdu4mRPwABQNDy3jTH6dVwrRG5VHHvZK3ssKdtO+P/eXq1OG2UHda7C77fZwcxjb\nfu82L6keQKe27pAv1zbwA3JK6GWjyvxTl5JKykYHwPUbayv6erZp05ZBNlaRiq5d7Othz6iRpad6\nQLruiKuopVurYUZnPBFx172dOps4eSCMy0CGSA62afXhAdeBvv0ewqiPIdpKKvmOQqk3RWz4BeBD\npdQdBFD+KPDHW4/5OeAnbD/odwMTY8yrSm4fGmM+sv/8EeAb9veHwJkxplJKfQEhMXxmtbu3FnxU\n1NzFmXv35PftC9dFWetAQV0KcLI75uKRPGawB3b35SIUGXUR9gC0ir3tM2m9wzRRKs3PVrPWnN6r\nS3EuApqs6srwZ1FNWVRTf5yvipr5NgcsAB2IjInpDpmuTv3ruah31/XcS14tma42d+wPryrgKePB\nsTDWnIp3OMvRnsn45LE4cd5YYMqC/sEddPcWUecJPT1qNMI3qL1p5hedsGzUj3b4wuiUng6AJwx3\nDEVZG8clcbMcNQLiHslgZBl/c1JtcC2IEHic4oGLy9Up/cGOAEhrsPm6CDPLyqy4WhlSvfSMu1QP\nSLSch1AdApolOmWMkFhmQS/TRXthtItzbmoX1vogbEYPENDrnZlcOGDrgNJ0enUZbMsi3M7QvY7i\nxaPmnI/TFyxWoi0YxtkzzHJm9d+C9wiHWsOSYwt42qW7hkzQ90gYY0ql1E8Afx+hWv8NY8yvK6V+\nzP79p5Cs5YeBbyE39J9wz1dK/S3gDyB9pYdIdvPXgZ9USt1F8uRPqJlu/xrw3yilVvZvP2aMeXUK\n+4p4a8GHLSUEc+8e7J97C+MNZ9DWHEtEhDl/KKKMz0+lPLNvbzoLQItq2pJZaS50/gZzts/drJ4W\nx9at06ym/M5O6vcazr2iNCD/T2VS3w1FXq1sjyYp7TE3b3o3yOm8V4RwEZNXC6reU4bJAVpFXBZP\nrp2VkddZ+SZ73ffYDAdA/WinNttzN/hyJsDqvo+PPqH6jVPW8xXRdInKxX0yPbjDfnq77qm1F4hw\nBsuKSBatRX4YHzQAuQFcttdjLmfiC7QsUd3KT837khVCikj1gEG88OW2W9mK97JcCBG2h2fiUWMT\n4gZWtw2fAo1eYij2CuK3c1HIORbq9cyDkHPgDQkPWgfkl+WlzMs4eaIslNMJzllAqpmXFw2QDwkT\n3pYAiHSC7sQU67p86I67XBeimbht528Zb+58eJXt84eYydNa7TzIiNX+uCkyO1vUtuZZH25cyQBs\nuJncBkZbhmP9teCuyW26i9/lMMZ8FQGY8Hc/FfxsgB+/5rl/7Jrf/3vX/P5ngZ/9jg/2mnh7wafT\naRpx2TCzuVdrNv3ZdhACK+j4SG7k56dy4c/mUp7pD7z0TGjPHRpcRdid3awWKmW2gOxKHEGtosBF\n8YRUD+hHqTW6Oqsn2cNSkAUeNZTp9Ly8qpv+6w6pXtKPMpz6L2D1rCLyqsNFrpkUiq7W/ghTXQCy\nYL50VgT8BH5eaW84Fg5LhvHwquJG/7RR09edGD0YoVfHojb+5IT1w3NW9yaiarysSLoa0lQW/YM7\nkEabdXwXLbXiNuhv01qDoPFelNYmu/S9BdVd1eZ5IIv2ckZi1Zx7UcVhr+Sot6IfZQI8VrRU9Xbo\npzu+ZHmey4I6iJXPXNzxhIt2W2X8ZBlzkWtPmJgmHS/fNEq2S8K4z+/LbfMrKSfigHQhIwWJLUWl\nQOSAZ9Iq3QUsS9iqFOCur1BVourY0pvuSg+mrTxgKexJB6J8KeXSiTjomhdWTcHpyCVxrUPXcq4V\n76alSPMUK8xBsVWBwVUXtso7uTmvtubiZw3V+c2ZJ/qXJN5e8NEdkdsnUEfGyvHvjerF3PVaAhVc\nZUxT1Tjrib9L1pfXtKn85eqUaVF4e+5RXJDqWucMTU0FTWJIVr5+bZTicnXKeT5nEC/QyQ3S8LHQ\nZM7Y4zFIg3UUpYyim+zvCABc17juR2P60ZhRcspRTxaUva6bTzr0MvXnq6cvzXxS3WUY9/zCmlf/\nH3vvGiNJlp2HfTfujUdmRj4qq6qrX/PoIWZnV1yakLlYGoJh2JZpy4RhQjJMCxQIWSIs2xThn+bK\n+qMfJrC/BFCCLGpF0CIJ0BIBm9YKokSAFGgDliiRK0jYJZfLWc6ru6equl75zozn9Y9zz40bkZHV\nNTs9w53tPsBM1yszIyMj7rnnnO8hbBICthPR8coDUJhzsrCCq6O9+1Rh9lfwRiG8YYgSgBwb76BA\n1RxIrwt3lnKdqrSrM2cXRgZwWEiv49cThvSZm8+D20rrXDmEWiNFE8W0QIcxCk1tsrN1hvcWISWN\nIsc4ovPa9w9M5QKrj+e6hSpP4k6XPHU+s0cJiqqdqAYkcR09+TmeCiJZrM31xyrSC6jRPfSjAwc2\nTdWtbEoRNRQ/XKADzxOVR/bhUqlKIoklq1j8FKaqytOtz8Ged6YSRDEQG+g7yDjPOruyd9PBLeJA\nRf3tzVMj59RabQxHd80PX8Qzj+c3+QQh8OBTAGj3ZomjTpIBdrCsnJ0fedwElaTJiEy7VuUc62JG\n+lzGnnudk84bqRhTS64TDejmYeRNRNVLYpQXSBanQEcuEYb79Pv9EfR8SbvA5nA+T6tjVgGxwsN4\naw7VjL5/gK4ycipGcVhPz0g2BsDewQOs/F4NbGBPpddBV40QighaCEhBCggsjdMWVlE79ywoYeCv\nIMU5BvsPiOuT5vBZ1fj+HsQrd62WGC9Wwt3R5mnt82uKiN4oAZlk4bbXBFfD/bhSfzabEx31sUqP\ncbmp9PGSIqqj8HoDrPILzLMrnG18vDfnCri05FuGoSNPLJTeHd67xx54HTKZAxyEHoCcqqmwt4/E\nWKiznxIv6hU6suVcpLmt+BB3adYSxuiO7tVEd9fFDDJoehPV6QOuNt8s85EUJQbBFQpNflahUUjQ\nqmEx4Mw36XM29xa3Bpt8OwA4ILVs64cVUuva8vCy84obtyOa17RUIaBCanl/m818vlPi+U0+KkQx\nOqpxFNJyAlkqoKxudh58ctSqHg4ZAMPbQExIm8Qrscpo3jJJpEGS0QI7SZXRyqJdqBQ+wpDk8vVm\nChENkUsPq+zSPh4ABsGaRBNdSwN3AbEtxAoQoJPEthTFKyekRm1Y+M2QQhHoYXkJvfh90k5zWx6v\nLNG9+ykEvduYpCd2we6qYdU+3BwDMsBgdA+h7NnKj6Lc2YZb55SkJolEKK+gvADdgweUAJKEBst3\nDoHDl6xbqn2PXIm29O6bTpfXhYXOS7MBgJOAmknH2bGvihlW+QKTlEzXrlJgXQgkRYh1nuHlmJB5\nszTFe4sIs1TahLwF9TYQcZd42lTGHqh9ss44+63db2awhzA+JAM5zySFpyyg7rWCwECx0wzokj5a\nd3QPK1F1CBhUwFWRmxyrimeDWSqxzj3rnDvwV1SRNWZugLm3Gi0uER9SBQSHa+dIWgFA4WvA94EO\niQLnZYo0fWRblUnhYRCsTWVZLXltmnuVSkOVTKV8Rsvks0O7fUfEc5t8cp3iInmIZUYSJpNEYpZK\nHHYyU52sLKucyZ8ACE7t7LA4hN8BjGnXKju3iC9uwwAekoJ4H7zoHEYbSDEB1Ahhb0woHCOHkpZr\nzDJpF+XDaIPAq6qf2k26WEHPjZfLYgU926CcJigu6V8ACD79BN5r70O8ctcmoVBE1VB1M6WE4ziz\nFqcr5O9Tog0XK2Cxhnz5VRzsP8BVdkI72NKrBsOXMyBQ0MkC4egeZHgbUpzb+QYHVz1uVcSLcihD\nAKdAeER+LbxbN8TJJhGwZs3QmPPYz9rs/m+iOaaFsCRMwZBwAwSxScd8ToneYJVNMUupur1KgYtE\nYD/UuEqBzZQ+/1FY4HQVGsM+GDg2RShLsLcTzxiYeOomIDfp6HffR/mINgUiUhXLnzcj4wkBZwZ7\nBGuP94F8Xhf0DEPoJKmSjjv7DHyaJ/ZjUwVRNe0moHl2jmWm7czKJS/zrCcpPExShVla/7yTIgNw\nbqWn7Geyw8ZAxIcNcvfcGr+5CSYpBCapcq4r3/xHVuaFPt4Cmrjhcnq47XnTzcuL+ODx3CYfrUss\nM23EG6ldcrwGpqmPWx2Wrdc46mQYR1RNuHYLHFz+s9pxUa4N3DTHYbSxz+MutNyCI/MwcwMZh09u\n90nhI/Qy+3h73EIQlJoXZTcJ8QB2k1sHyKdGk9G/63xtCO2Fk0fQmwX2br8BPT0jEugHjI4qEXpV\nJbTOPSOoKTAKcnRVjLxMkUif5Ptdh1MnLPPdRSc5BmE2rlFucSHMrW2ZMK7r+TmLIGBaYMEGR93c\ncqX2AvrMBkGBUVgg9EocdXNjGCfstcCOpdcFAzKsx8xibUAPBUQooTd0/CKSlRFcI671TLqpbYC5\nPjrRwCYebgnDX5NEUcnH7KMjfQRehp6/xmXLqOlsnWEQbGwbbishOOcaMEnAURVhjyqyHw8wS+n+\nvUjo3PYUwd73AuBWp8r2TPQVeQLkc6hGFcWvVUlRfXgh0CrEB7ee+A6OnclHCDEA8FdAzNh/orX+\nJed3/5vW+sc/huP7yEIKH3thFz2fCJFHXYlbq/rp4J1UKDMEHl34YRgDhrhorQ4afvIAcUkCrwPl\nzTDwC2tpwLt+qq5Ky21gUUuXbDeOMiRljoFfoKsI0ivypA79VAEQg9pwYQgdd+GNM3hOBSRCSTOT\nO4fA8DZ0vE/zJjkgxQS/QzpuvLs3bqAyvoI3DAlq/OpRZYQ1mUDnX93mGY1RVQxRH6vsHKt8scX5\nCb3SGJRtK233/T3n/JtKT6Vb6skKahtizQlUBTVIPD8XUO1o2yDODK6wtgM7wk1uoewZ/bxzhN4G\ng8C3CWcQFBZhWMkxVbv0vZDmdYXOqKXqgFty6VljtsDrADkZxrntMUJ2OTOTwAfGQ4Ihs4trb0wc\npzAiWPtmTjJEgwWEK3HkyhsxoMKFYBt0mtAaoexhL8wQykrtui04Cd3rwapAuOFat0PBCJluf9b8\nXHQujHV2Sfp6A3+FdUAbuUgK9BQlWk48L8W5Q0YeVtQGrjLzFKo3rgZ8XkVHqBHIX8Qzj+vO6v8O\n4E0QvvsvCiH+KwA/YqQW/r2P4+A+yvCExCi4g7Rco+9n2CuWOIwWZidVnRbeqYi6NcMAACAASURB\nVKYloXUCv1NDwHHiaZOXUV6AvneAwFvaJMcIMNIUi+q7d7Nz590uV0+sYhx4HZIMafMoMSg4qxbQ\nj4FxQsZqAA3rD18C9u5j7pBFO2oAoeoEWgwCoNuDMHMOkWYEbuBIc+h336dF7uBW9XPmGUWxtao4\n2/g1UAHAaLq4NlcDqgXGnXMkelNp2ZmoEf/aNLr471xOlpGr4Vjl05pCeM3hc1ficX7eTG40T5ga\nodYIgUebBW5taj+0yDtuGbmxyicIojsQWm/pqFnDOFZd2BQoVxm8rrl2WOPMUARc+/CmP5KbhOAO\n6fPUyjZdO5cojLagqs4bn99m8DUr8gT96ABSPMTZutqkMalZeWvCK6jR1mfN7999TgBGAdw3FRDr\nCCrb0rzTqYi+gyBA3z+gz4ITz5J4SjzXU1EMSHcepJ7uNvwiPlRcl3y+yyEd/d9CiL8K4J8JIf7L\nj+G4PvrIE4jFBcGXw74xe1ujqya1JMTVzyBIULjVj/EP2dUTdsU8A69jSIAV74H+RhmIrGp5bO7w\ncZRVmr62PRbFQAT7e+G6MTqJh1FXMFybMIwr4y13p3sQQMSLiuQHWP5NcbWBunMJcXdCiY0lfjoV\nYOJyA3MOPbzcp2M6jDJ05J5d+Jl/QmS+GYTfQRj1kUvPmrbxObThWh3wcbnzDOeUcJKQIrdVT1qu\nDRBi6hyH2laScJ5TZ+u6EnSDcAxQtWsr3qIEVgvoxbu2GgtNQugEA4cIWolxskGfG2STPadjc/lo\nm4Lk2rjyaUk8kEHrxqjQORAoBFGfbLZdpYkbtFGp8lOWm9QM+/7X9P61mZkdHL0BKU5wslojKT3L\nVQIIbi6LSnW9aVJoXxsAHNfRQg0xjs6RlNS2vUol9gIi+h51MuyFXYvEtIKuZrZJ5y2tqahLZapf\nTjqLy9r1/6HC81rVxJ/XuC75hEIIT2tdAoDW+qeEEI8B/L8gjd9PdmhNF5c0ysIqqO3oXokJ+ssc\nHa4+kmKJwO8QWm6Hf09bNaO8vk1CvOBseaTwDhRAqAKEah85clqgXRUENxx4uHth17xyDGl1ZhLP\ne4sQjxY+gARSnAP+ARlvmfNhgzXR1KUFIujzOfLjpQUy+JGkKutWYJ1OV9k50nJths0SmwKYJNLO\nOKxwa55Cr08p6Tk8JQCQUYxuNAR6dA52VSVt7HOdra2JmPBJzj8wXA8m/VIblNSmu2pUtVaeRih0\nqwOTgBQUpFfpmwl3d71aGg6NsouwiA8RRjG0GqDw6kKzq3xagwXX5jXOTK8WnHjYw8cRwXW5Am6y\nY6sD5QWV0kSeAJ3htihr8/3LeqXKIYUi8vXklGaB3NZbrElJIb5Ev3eAonOCN6d0YEyCzssMhZdV\nFUfeUJh3w0lGgSSDu8NogXXuYS+Qlug7CIIq8bgbljyt1BHSDFCOaK8M6onHRXy+iGca1yWffwTg\nPwbw6/wDrfXfE0KcAPibH/WBfeQhPAuXdXkhbkLZC7sYBDmkCGs3Wlqu7eLQHFi7Ngq1C14FUACU\n7ENLsZW4rPw7h3mcNItY68i4mXicobzgeYx57cQQHBmZ5YYUCtjMyN+Id878/ABgVIFFmgODFeSY\nFga5Z4ifTLgE7EwAAF6O6aZNCmF1zvr+gVGHOKv03Pg43VhcGvTdY8jeGNixY+SEu0sCRWdrYDOF\nyFN0e2NI34cUE4RyYRKhWZx2hWuvzK/ZdhwwMO08ocSTLEhJ4GJigQAizYG4sosQnSHJzRhZGrZQ\nmKQndH7N9dSPDoyxIRGZvdEKklUXBhGZxwV+pZLtzOLcpOZG3z+wyYjbkaHsQYYRVBiTx45TEQm/\nY++V5oCej1Ulm20dNoc8rbM1FMboqiFejsmf6aiToecL9P0jsm2/eAgYdNtTw1gxhLKHtFxjFOSY\nBZ59Tq5CsbgAq36LKKZrjys+sxlgFKW9dx1hWUYWvohnGzuTj9b6f97x838KUjX9ZIcKoON9k3A2\nKMqGH4mJrhpuSaq3VTy1xOPOI1z5dvO6AoDiobLznMrRcAOMjtt779A3t7aRdhyus2pzUCtMYk0M\n/DspfYvKCr0SgRcTzHfyGPpiQguro4eVhxFSX6MLo3CdJJBpRiCGWzGBGNjl1TkXygvQVTFejheY\npdK2P2zi4SqmidZzg+dXT86hxwMII3Jqw5FoaU1CRUq71zQjqaRsjbB/CGmUBLpquD1Mduwr6ARs\ny/ZYt8+mRAxACy/v+hfrujCpK4dk+DO8cRBm46CMPA215WiRv0ge4mB0H9ooP+jFCh4PN1ySMUCv\nbSSW+DqdZ+dbJNWw9ADZxwpze30zqZXljgKju8fHTElns0V8lUJBLWeUeFbLbcSdC1woUgSyY6+N\nUEYYBbchJ6fQb/8Byf7sj4B7r0H0HV22piePc955tjQIFhgEBPToyL1K9Je9k8LYdgE4tBBbGzva\nsJjP73KK/HiJZxMveD5uPLcwjlIXmGfnO2c2oexVkEwR2hkE7xSlrNsT1BKPs6hu7ciddphqSH/k\nyO0Hos/fhv7Dd1B8/dgs9E8qJFPX6bXLakaTI0dRbu9IizK3vAtG2xHgwVQpS2qr4XJKFc5d2GR2\nuv4mzjY+XuvHGLDCdZrBi42AY9yt31COzTQt8DFCmVcVxuayakftijQj3tLl1Ap7erdi4M4MuHt3\nt1ikmwgSsmLQF9TbF4wQA6D6h9cmHve92Odtmq+hpQLiAT4TdOc0LysnCfFxBhF0mgGGOItgCXR7\nRKJ0Ktiw27NSRoXO8PUrH9+7f4I9triYL83j/Up1oeUcFDrHPDvHWzOF1wYVfLjvH0CfvwXIAJ29\n+5iXleApyzkFXgeJMcCrni+rbcSkNICCxQVdr8dnlGz5uBgxFzTbc7593j3/NvTpN6C/8Qcovn6M\n/P0F/AdDePMl8OCB3XBY/lWDLOuaGypPGnfaqO4BNLsygIxDy81j+aot+kSR0n9pBn1B2oLF6bNK\nPi/Cjec2+RQ6x7qY2eE/AKsvZhfKxYVFuqhoCBXF0H41LHaN2pqJpzZz2YHIskgbwzVIyzUURC3x\npF+/AADIoyXUnQW8+ytqs4wHtJsz7RCtQqTFbKtKa0MhsVU4EwT15hh6vkT5ZAEP5PwpRvdwmryN\nf34S43gNAIsqAdk+ftVuc2dFPJBWXgCUqGZbmzmdT56DAPWFE7BJp3yyQHG1QXFKw155tYFvFm7c\nWWxXQQAdCw/NOfGYysOtOjgBQW4/RS2aXCpOQOY9t7b6zJxDJ4lNPJXp2QZiACICw0CamZtjqkdd\npAjifQReB/PsCl+77OAbU4lQZvj06BJ7o3vAnQUlsV2umHmKQnpY5RM8Whb45pRACa8PKfFQNXBp\nr59+fGCBKO8tIozCAgN/hZ4vai3mZkihKsuDyxlwco5yksAbhVWSZQkovk7y1IqPdnVYSzyrf3uJ\n5cTHcPoEISp6ljh4UImj7jgOdkHt+Rm6akhST/PHBjBAunV6PYUw99rF5iGOVx4OI7Jjr5Fd85RU\nss/nKCcJllcvFA4+inhuk48nPLrYnPEH78hab7aGeOLOcCTm7eLU9A9ptmqSBZQKINUAevaIetP7\nE8ijKTyjMCDHEe3+3RlLWAlsijyxfi5uAuKvA6+DvVBhEOSYpQlCWWI/fNW88QAiDOGNQnp+GWAl\nEvT9Axx2pgilxGGU0Y7ZBzA+AgJHUl85YIec4eKEMOPzW+jMzjdqlVsjBHOVuFIx2m48XxL9XiUs\n2ryRWZCySK0QpXZY+9z+EX6n/bOU1QJZ+6zapPh3hZkliDCEbgiT1iDRYVgTzWxGVw0Ryh4+O34E\noIPXhwJ7/m2qGoe3IfpGRmnHc1DS8HEYLXCro4zFw30DcJnXUY2oZkBHnTUGQVFTYHe9mgCuMgIC\njfB7DiY0j3LOtRUCbZ6zZEGE6vlj+jz2R5BHU/iDKXrI4A3pWhT9HknpSPcmbVQ/RUqzNq+D3EtR\n6Mr8bUuctCWswy4HK5fEHYiDPrzRAmHvZp5LL+KDxVOTjxDiz1z3e631//XsDudbDyHEnwLw06D9\n7M9qrb943d97Qtl5jmuGVkPwNIf5JlyXwxrAwH2cCipnSRc9xL/P07pVQ55CbBZV//neaxCBj9Dc\nNOLOrUptm4/LFVcEoIoSUg2QinWNK1Mdt2/ItcbGgN/r3n0gIXVgjAf0veEBfe++wipf4G63GvNZ\nhYUWlB0A4xIZwnVLTcs1UkESLfA70NF0ex4G0KIVd4D9EbyLCYJbZmZy+8CSZGuzgJYQ0RCaNdpm\nxuNlNKKkbqwu7N82Pzt+nAoIOOASaRsJqxU263fotVVA7yOekDCp2yJzk4UjlsnPmduZisJR51WE\nhyc4kLcsN0X4Hei4Y8+XTcQsqhr1kRvvoL6/h8+Or7AXHlXISsPFsl+bGAV3ALSbXTZt2K03EIz+\n2j1DTm5UcvY9ouHGmyyq++H2fYi4iyjuIjyfQ9wdQ3zXqxC336gnHjfca8ZsdtjIDoAViSX1a0M8\nNteNFD6127rnVm7H3sdmA4O7nwIGe/DjLtSdU+DvtB/GH1U8bb0TQgjz+x8Emcn9t1rrf33dY4UQ\nYwD/AMCrAN4B8MNa6yvzu78C4MdAzPD/SWv9ax/2Pdyk8vkxAH8CwD8z3/9HAP45gDNQB+OPPPkI\nISSAvwXgBwA8AvDbQogva61/b+djyhJdr4/cy+0sx21RaSEs+79tt3sdF8GGc/Nt2fg23BxbpdsP\nX4LgKoHVfHnB27XzB2mCSaF2+s+3yZkIFvKMD7Fy3EpD2TOLkhO9MaG12hZfVhiwSg11cc9VOUcn\n3qeFgY26QtTnK4arJOJuxbEYjWhQ7CzUuwbQgEkMvPOFEaXsjbcAGTWEE4cjqe+2UK/laLhIQxXY\nBGsXZKCeKPgxT/tMARzo0TbEnq+LJuLRiJ26sRce1cRxWaKJv3aDidfN+Q4nnV1QaNEZAnc7FSHz\nukTttqU54jHEHx9DLKiyK0ZHtV9vtbbdKKpWHsPd+RhEfFhtlJwIvA76/oE9L22OpSI+BD4db7ul\nfqshvGcir3PD9e4/BwHDXgfZaP9tAN//lMd+AcBvaK2/KIT4gvn+J4UQfwxk1f3dAO4C+HUhxKe0\n1tsSJR8gbpJ8fAB/jP2/hRB3APw9rfVfuP5hH2t8HsA3tdZvAYDxLf8hADuTD4oMevIYqjOECikJ\nbakUyPqO0v7YUcO9VjfLkQkhscqKxwOgTuxzINnoje1TiNG92vfV8dcXXmt8ZSoiFcaQkqqgQmf1\n3V2ygG29mGPUKoQ4eIBcepBOm6VN20oLYRfm2s85IdW4IGoL1LEuZoSmivefzt8xm2XRP9y+ca9B\nQNnz1/CLaYudCUgGABZ12+Vm8KLmIA2FDICQkpB2j9Gdi7UlHPN7BRAh0kC27eLpXodcuThJh2HQ\nPGe77jO0pOAWkAwTr5kS4Lqkbn1ejZak2H9QJ6o2Wphb/CH38TKAuP89u6udbyVUYIVJm/dwR7bQ\nIhphq6Bvr7jJevdDAH7BOJr+lhBiZNbuV6957A+B7LUB4OcB/CaAnzQ///tG3eZtIcQ3zTH8iw/z\nJm6SfF7ixGPiFMDLH+ZFP4K4B+Ch8/0jULavhRDiLwH4SwDw8j1nQTcILbf1xjeZXk/pAmxLAM1g\n9WOXN1Q6hl4qrCUh5OlOJ07RPySlgHwKVc5rC4h9rl07QfOeYBbcjhwYK4h5667T5Qgxc9zGDqfH\np5psOa/fFqGIqt1zy45fmPN9na/SzsTvwM5tS7Xp19J0MG1LQAC1pVzlh+a5dhL4Vvs26j/dD8ZR\n4rbvK0+qa6OtNSmDqmXrvNc247zWtjBAIIG2limHQ6BVOgSWM+hsvf05GL4SS02l5RoyjKrX5vfS\nTDz8foz7Ll/r0HOj21a/3j9o1N7zjorSfa9NoJBLX2jKHX1McSCE+B3n+y9prb9kvr7Jetf2N/ee\n8tgjZ60/AcDl5z0Av9V4zD18yLjJp/obQohfA/B/mO//GzjE009SmA/vSwDwuc+9odPhvtmVJ0CR\nbO3umDCnVUBtoutKZibjATQz2OUN7y4oUVwjBAJkrrUuZkiKS6CkFlkzmP8BAPBA9tOCqggtBJJy\nDaAEynW1yDe96F3ypCtfYtpTO6NIoU++QdDsg1u1mQG/J6t3Z+Rxmoi77jqDnnyVZjCN+U1NxRhA\nUW578nCLNPA6VRLmpA7YZODClZvcFGb41157l7VyU/WBj8OQLQtjtOZKKtUM6loSDFcUKOvtKwbB\nBNyabHKh+Fh5kVRBbcZWO3fGl6ZJotUXb0P/7tdoDvU9n68/cfM6L1Lo87evBdzwBk1E5GjLi3Wh\nM0B6kKpf+3v3/CZ6g6SYg9f3Nskevt63NnBALfFvZcYWGabr7mFXXshysPKUgDLPKJptzmviXGv9\nuWf2wh8wtNZaCHFNW+fDx1OTj9b6J4QQfxrAf2B+9CWt9a98lAf1LcRjAC853983P9sZbUZjNvEs\nL4kfcP6EHEPDEDoid0Q4QqJ2d8aVQLIgIiAARDG5ITrP3VpFODHTcxTpZe1nvHC0yb63waq3Wiym\nRVIDPADb8O88JQhwfEnHvyMB6fO3oR8+Bi6nxDd58MAmIOF3kEvPJh0+T27y6cxmRCY8Jt6Sy+Xg\n92VNwhpyMPwzAMizSunbQt6dxNWWtNzHA0BatszucE0V5Px+3ZirtIWbgNyfpeUa8+wceVlY2aY2\nkzPp+VZxgMEG1RPVOUi7jtfadZhbnRNP9pX34HV9iH4P4tXvtn+fS6+2KOiTbwBPziszvdhcF41F\nnCWNuOXrVgttn19SLLfOO8sucQXVfB+cTJuftZt0tq5/d1PoJBFrHujKKrntRJ7PPq1q+qOJm6x3\nu/7Gv+axp0KIO1rrY9Oie/IBXu8Dx03r2X8NYK61/nUhRFcI0ddafzvhD38bwOtCiAegk/JnAfzI\ndQ/Y5GVN2ZgTj548tqRLJs1pg8DSMgD27qPQOVb5BNI3LTq+cDcLaj8AlU5UWzT63bn0cJE8xNev\nfHxmL7M78q4a2UWHZd/5JmY0m3tTLzcaB9HQ7h5DEUGvH+/W6DISIlisLSGSGfOcgNxqQJ9+A/rt\nt1H+/mPkx0v4DzYEp335VVqMemOs8gu72LDRF3Mogstj6De/gexf/CGK0xXkURf+YgW8voC4/z0A\n6oZe/DxJsTHv2bNaYOtc4aizwiCoNMrYfbIt6bSpVLhkx5smoERvkORLmlsZlYTronksq3xq9fUA\nZW3VQ7mxsF8pcrv4soBnJ96HWFw4b4iSDmuSAbCt47b3rbw+JZ43v4HsK+9h+m9WUIHGcPgWvLhL\nG4DeGJP0EQ4CslzXF7TR0O+cEkx8PITYJ6t4NCp2e94WZ9amoKqA8tpmhH14Bv4KB6Z9qLyA5HkW\nZxDREGFvjERv7DnkZJUjrX3WbS25rQ5Dkdp70k2ahc4hPbp/rWr4Fvm5RbHhWwwNvZPU/gHjJuvd\nlwH8hJnpfD+AqUkqZ9c89ssA/jyAL5p//6Hz818SQvx1EODgdQD/6sO+iZtArf870JxkDOC7QL2+\nnwHwJz/siz+r0FrnQoifAPBrIPjgz2mtf/e6xyxzga+cCbw+PMNBNCRRUYZ/rpbWGZTY6QXEYg2M\nyc+kWlzzOos6zUjHysB0hQrMguBccI0ksBIJThZn+NplB1+58DBLJT47XuF29xDhalVJg6gAKoxR\nIEfTxXGWSscxcoq9MCOE2qbFfoGPgSud+bIiYs42lHQWK+joDAJA0SM0kJycGsmRFYor8gnKjxfw\nD64gjPRNoje2Iqh8ayT6foquCInYeHKO4nSFxTHQ28wg9yLI/T3o6G2IozeQ5/Ot5JUUHmYZ2THP\nUvJumaYCs9TDUTfHYXRlq6BmuEmnakdVCzS3BVmiv3ZdcQIyCubrYoZVPrWLZ+hlGEfkyLmTH2Zf\nmz63eXaFN6cRHi7ob291PAyC0iQhTnbu55Wi51NC7vaGdoHmjY7VKLMIwwrg4V4nXa9PhMuTc+Tv\nzjA56UIFGt23pwjfmAEHwCy/wKNlgcC7wKAIjbDmlDyhNhJesKqUHUaoJyCXPJ2tIcwclZXJeR51\nvPJwuurgyVpiGGh8djzF7e4hkZ3Xp1YlQqgAoSIJKreNCABFUc21XBRedbK3ZzjcnRB5CmG6EpVg\n71n1HtrM9W5quPcxxa71TgjxP5jf/wyAXwXBrL8Jglr/hesea576iwB+WQjxYwDeBfDD5jG/K4T4\nZRAoIQfwlz8s0g24WeXzl0HIhn9pDuRNIcSt6x/y8YfW+ldBJ/xGIQUwCErL9pfCB0JlEUpszuYx\nJ+PWAak2C2HhmVYuxuhA6fmCuBzdXgUqcNoDCqpWwufSQ4AOXo5fxiA4wWEnx2uDHPvhy6R1xbI3\ngU/HpALrJ88LMwAMgsI4gXo4iIaWxW6j2TZwyJPWhG6+oK8NCRJhTEKQiZlXJEaReX8Pco+EFtUd\n+h7xmNqMhribFJtalTLPrhBGPQTxGLh9AP/BCjGmkEcDePf3Kt265SW6vaGTeFIUXoZQ5gjlxpiP\nKcxSYBjQoj3wC+uLxBVjbffvAqdKrnjUVoXA37sJyFbCBXGyXGHSw6hupJaXaTuqzD5/BuUF2AuP\n8NnxFEcdWhRdl1oOviYBWNUNKxezJrVlfXxGVect2GuD+S5A5fZZ6AyzNEUo5+gMb0O8MkPwmRUO\nlhNIv0TwmfvArQMk3S6UznAYkUKAXpxWunRuuByl5izMtAKZxMsVCyceALjTLXGnm+JyQ9ftQXTf\nnn/VGVLbOqr4a6oooWTfmdVtt8rd1qm1HQHAOoruGXYVz4H6vBMq+MTo9betdybp8NcatHbf6LHm\n5xfYUVRorX8KwE99iEPeipskn0RrnQpuvwih0A4++kSF72mMghzKk/WBOAsP9g+hh2cQty7Novug\n1rvvyAHJxSzOqEVn2lbElelURFKndeMOn5sxCm7ju/emGKh96NNv1PXBAOL7dIZbw1sO5Un0/QEG\nat+S//j9NKMmwhnFQHdBx8wEweHt6phZoZnj1gG81xbwFiua2bDWmgwA5K27//cWIUJ5jtH+S5AA\nZEosdiYTWrmaxRlUFEPJCNojhWdeQElCZQ0gR0eRRt0oyK1EUCh7tn9P9gYtu1XH6hmomPptUWvB\nrpatwqTNaCLNdkVXDfFKn1pw7ibCDddAkE3p9PwxMD2hdvDJObWDAeBu1ep1Nzv83KfrEMAZbg8O\n0f3U90IBGIRvkerCH/8McP/fAUybr6uM0GyRVrYDbRHFddIoUAPSsFzUrjjs+Oj7Df6Y8ZXaaukl\nC4SKjRsrNXkXSl6DTNdOZFBLNjZ4htZ0480byQh4JtwcCr1N53iO4ybJ5/8RQvwvADpCiB8A8OMg\nu4VPdCiPhDWl2HFhcRIy1U4z24o8se0Pbl1Vbas1CUbyoNOE1aeyF7Nrx+BjUITQp181ycw85/mc\n+u37E+geaVMBqC1YNWuAhhmY8Dt1IzQzQNUqrGCw0bBSHGhWSS03s3jlLml5mWrQfQzL2yeFRlJ6\nmCQSSSFwtk4hxTlGB69BvJFC7D+h2UHz9QyZUqgASgU2EUnhQxY+xtEMy6yyqWbHULKaNjbQAFTD\nitkCRLzdVQr/jcgTUt5eXpKiNguBoi5M2kbidZNe22tYd0+t0Q36SPQGq3xSW6h5N89gilBElAid\nxJO9PYXX9SEBcpw9AOB3IHpOZV0WONv41rQtlKdA5wjdT30vydoFCuKV70PiVCZdNarml81gyZxu\nD9bryQ3FQ/oQheNb5QaZNho/pxI1J+AcOTmK2jdQAXmgCF6uDBqPLChMpbPL2dYE3wMA6rp/aWZ9\nkGwSalM1+fYDHHxHxE2SzxdAKgdfBfDfg8q1n/0oD+rjCCkqYU1eDJikCcBCdauZgGMSx4uTMZvC\nYoXyyQI6KajLEy+q6idZAKGrk+X0q/OyusGK1PjXTGqKzvnxghaZ8QQieAgY1eN5dmWTDkvHI79s\nvk06XtfrxxARU0P0tP4tZtdX4++4i5CL+oli4G5cI++xcRlL+ACpmdFIxw12ASnOMTh6A7phH8HB\nMy76kCq7gTCMIZUyn8XSEB/r799yslhpAPUk1ExAbtiNgdb0nhl0cnHVLkzaGUJGA0BWwAhuFXI1\n5cK7rUL6egGdXVAbUwUIZICwfwgdhEboNq1db+TyapTAL2fA5RTF6QrF6QplKEnxPJ5ABH5FCRA8\nY/JwulI4WQsAypgingOdA3Q/9b2ACuxQv7ovFJCv6FpIEmvZLUOjgRZQ61h0hlv8F0aguW02DlYT\nEJs59PQhXeumypFhDNUZ0n0iAfZ5sgrhBgSguxWPTnSGFQeryYVqazNna+cznUC/b+6VxQq4mJB0\nk+sCi3pifBHPPq5NPkaK4Re01n8OwN/9eA7p4wnlSYyCO47LobMQ7uhXd6TZFU8eVy6Hx0+sArN9\n+GBF3jiBD72eVoKaaHBJZGC1pGzvmfvpgQ9gQ3BYvvHTDPr9P0Bw+BKORq9aq2aaJ9ajttODUUrg\nxOPYU3PrqQbrZXh201a7TQ6mEdzuSQoCBExTer9JIZAUHroqox1u/xBgjg9zkJpVVmGOwVRkUgbo\ndobohreN/YQyrpPHdjHTAOm/OS0h1+7aXUjclpsdWidOsm1+Hq5IptNSrVU4DeBCjbTMihnZunbu\n9JwG3l2/A0R9IEuBfFZ9jolj+xzQ9SBCacRKVXV8RpUhz6ntOggCfHa8xiAIMQrofV9uAIASEKCB\nBmQ/8DoWyCDCGTCIIDc5vQ5baISxdaytn8N2iHztHDDYZTKhtt4th3StCNhhRXktMIacYJFOyIYi\n8Cl5h/HTJY92hIgk9Kag85Zm0O++D8QTYP8KGOzRc7NSiPeM0G76maHdviPi2uSjtS6EEK8IIQKt\n9TU07U9eSKHIUCvflnYBaMfcVUPLtq4ZU12eUtnuSP9rY+5VAvBmGxrem6+CUwAAIABJREFUX84q\n6LVhgW/NfMIYUGklxQLyntHmXw90o1h9qTQDHr8FWaT271uDXUJ51xjGFn0HMPmSEHssm28TUWCM\nxHrj1uqkOkl1dn9arrHKp7jcAO8tAgMQACLJ/kElvQYUnXenkrJab5uGcsLlaTWLCnwCYagAMowr\nq2ZG7ZnWmLiTQY/rwq3N896WeOi4zNA8PqyQXWlOSuJmUQIMoovbQbKdkV8bgnOEMS2uLQoRND9s\noU+slnb+Ivb34KUZVFJQAjro0649JsIuO9bal5MRXh8CZ87Y43ID5OWpAWrUl4C0XENGAwLXGCko\nBt2wsCv27lsLBp5Nue+7yaGja0uZ6p6qGeuzFChgVIEmhNmQ2YpmsSJ7isS0VENz/QYrIF4Q/y6u\nE5W3wlRKukhJZHROCUw0IdQLMupDPIHo96C5HffMZj4vwo2btN3eAvD/CSG+DMCC4LXWf/0jO6qP\nI8rc7jhr4VgGs1S7hWROHlO/+PiMEo/j1aI31Y5ab3II5gcZv5oaiqc5yDQ7VmH+DiNYlI4A2nkG\nJ49oFxrF27335qIMA1gwM4E25BB9vQaKai6hvABB2KFF+RoNNTfxzNIUp+vAuqUClHio5SMJDr1L\n2yuKATf5LC4rTx6nAmE7giZMXPMOPc0ogR+ktYXJJf26LTGbeFqEJTXvvtvOs3MeOAE10XJtum6t\nCWh6QrtvJ9Fa24Xm4H88hGQzuf092y7KpYdVVm+9spV0V61xsjpDUlAlOkslQpmi52e15JGXKVKx\nRhgSqVrDJAgDRBGje5hl5zjfTHG6DtFRJUIvM5uLiqtkz7k5J1L4wObCAmlwSe+dnt9UlH6HRGb5\nnOcG9LCoKnvtou/mS3J2zVNSy2irgky1r8IYWE9ps9Dv0fO4z5VmdiMp94x9ycWENn1Nt9hvMTR0\nq9Dv8xo3ST5/aP7zALRDrT6JkSUV4qUhjmgXfcOtweKiUjzgiscknnKV2arHJqKkgN4UVQICgDi1\nApEsdtkMHfUraKiTgABUO3tebDcFxCAi4l+/Vw1NudpxiaMA0O9VMwGv3n5yuTShVwLIMAg2NcSV\ndf50W3EsY1O4ice3c55NAawL0gYNvbJqbeUb2gE3bCFy6ZG7KwM5zHCdnUBtRLTA6U2BcprYz6Cc\nJhChhP8gh5dmEGkOfSu1tsmcIFxYtYXpMviiEWJ0zx7r1ufVAJTUqqu2Abjzex31aTEsUuDkEfS7\n7yP7xjn0poAcRzTLYX8lB94swpAUN24bePqtA0qSUR9pMbPvrauGxO1ZXkJvztGNhrjXu4vzzaMa\nL4x4UvWkYVURemO6Bo3GmRjdwyy/wPlmijenoeXqkP8PbTAI+l46hFma04k8sUaC+uLK3j8y8KsW\ndRhDFA7hc7Gia9hNEot6i1kvVhBpDsRLaJ7ZAPX5ZrmGlIPt6sckoPLJAvnxEsXpEslSIuzN4A2n\nUHdjyKMpoTpfxDOPnclHCPGLWusfBTDRWv/0x3hMH18wuqsN5cXh3gyAXfjdxKM3ueNWCZQrghLv\nfD3+GqjpkEkoGv7DJJ2Y2h7auVHs629yiIh/lu/UALPBu+fNAmEUAz65VyYF8WcYmRYaReGk5Mql\nwGF0ZZWNbRIycyGhAgSSLZc3GAW5nS9wjCOS6g9LD/riIb03d0jMMNpyXelorZb2vQKoqhqg9jP+\n3n6dFLXPwsqrXNf/57ZYG8wWqBa0FlHW1mhLPEbp2xWcDTtDqqbTvPa5lqvMOMoWEIGz8DoVsOj3\n6PvVkqwbIppN2M8o2UAv3q7IlnmKIItxd+91hPIhkrJAUgiEXllz8A28DoEcko09D2J0z1Z9XTXE\nIFjjqEvnm+3YO4ow7EkhEEpY6aCtYNQgf0ZuYrlOgNX5O/78AUAE5Bor4k79s3YSD/PFWqufxcps\nFnPkqUCeCkhfwDf3t7cpLNLxRTzbuK7y+T4hxF0Af1EI8QtA3cFWa90OrfqkhFSVTpX9mZm5sES9\nCdE/JH8WVG0weZC1uzAHPpXqzQF1FFcVj7kxmqKUVmfKzGfIlOzSzh30fEEumFgR/Jp3xbGDZmOj\nMObusF212SEDqCUgKSZQ3trCl6ukU0VSeAilox1nkGV8rpQKsBfeRldtsBduQ43D0oO+fEyVnxvM\nZgcgIvIhwuqi3s6KZC3x8M8Qd4Fzc+7GEQqapNMQPjSOoYGi894/tHphRZlZ5r+VVvIM/L1RAbvH\naV/bhe22xBaXq9FerCRmlpDhkCq9WymQJPDtpkJRVeu2e9par9yiuzyFzlOEo3sIw33oyWOah23p\n910CyQIHBw8Q9OdIe2t01YFF4umpaUM3+TtOKCgcBPfR9ze43zuvtPZauEp5WSAvaWbYCQZ0f5lr\n1huGtGFgd1rTEdAqrFUoIs1ps+K0yWoLkeuYGlUK2Wk5ty0ulwPGrUQA5Bd15xDq9QzyYoLwcoqe\nsQFH3DUE6s4zk9fBs5PX+Y6I65LPzwD4DQCvAfgK6p+5Nj//5IanaDFuk8hv2yVHMRmuqcd1x0ag\nSjINR8rm4xm6mZbbsnhb5EzmGXWG0IpmTQKg4SsH37h84/FMKU+tkye6ZijeGMrq+RnCzhBBdAfz\n7BzADKEsMEvRmoDoGI3+nUM8tSi99RShX5FrXfn8raTDweRS074SkYNycs5vZUVtksp4aHrxEwjT\nlpPjCOWKbmzbrhqN7CwkLWY26XC1d9ghbT82ILuuOrLHy+hEng06KEBr/8CyPA0FAC0EipISz/lm\nikGwxqh3m25C855F87pygobtJtLczIPMYja7ovPMrdddkZNK9WB0Dwj3jYju7xNacLGiTc54sIUY\nbEaY5ggxQh5GdUUKM/9zk9EqX6CriKCrE6MCEk2rTUTcJSHb3hjrYoZONKi1nKn63/GeePNlgAcr\nkSBvXG+B16mJ+gp203UQluLgFpCnkNydcCHdL3g+H0nsTD5a678B4G8IIf621vp//BiP6eMJT1KV\n4LpoPi1MC0K78jRmwddR3+qaNSU/AEIRJdm5vTldUUpb9Rj01NZwml8zuKQ5kvmVCMMKdOAa3/Fs\nB9hqx7ncCT1YQMSHGPT2obwAq3yKcZRhmRVWGofDIpaSxU4Soj0vvIjxzCnNzGwqpoWCXTjd44LZ\n3TS16Hhmxl/fuUVyPL0xgSjCEF7wBHpmKp9Qml2rmYEZsVOCl3OL0cckkQAyHHamgAICjxCON70W\ndkF8a1YKjQREoIwJrpIV3pyGpnV1gv34JQK63DEir0my9by1xGOf0CQgwFQGFRT52gXTJKCavp/h\nlelNDu9WDHFnBt0kEScLmscxvw2AHA8g4zHE6B5y1SFodeFjjZlNQLNUoqsmCII7dM/FnUrANgyt\nWkKOHKt8SsRao3ag8xSIMwgGmDRaYCxnJeJDJIHCPD2ucfJC2WtX/O6NIVrAIE0rDkAjb9ksfiuh\nXygc1OImlgrfeYkHQKkLJHqDmjEbx3ULEPfAAUASSW+eneNscobTtY9RWGDgFxgEQS0B8eIHVEgj\nYIq+f0BcI1cy39wM3LMOwg6UurfVhnPbbbwLbzp2FtKzkvw6W1PSYI4FKGEIFaATkV7dKp9iEBiV\nbJOE6hDptKpMOOzXjlDpYoVyklj+k5wk8EZTk4TWwHiwtUDubGe5UN+DWzRgj/epPWP0u4AnFpaO\nuFstSEbsdJlpzDJKOrNUWv6Rm4CkHFQtM2duY8mru8L1lEEjARkgg476SPKlTTzvLiS1M70NpDjG\naO8+vWZ3QRIzJoE/NZp/k+YkbsuzIk5EzerTVTM3ABqmDCgQvFoEis5vfEjq6A5Jk9FqSBKI/Qw6\nT6HiQ8iYPLIC3YEUOWZpikmqMI7WSMs1zbm6l/QZpRldwyEhCQu9sfy6wJCLEcbAAMDGaA9ycuZr\nLiajRx3vY548xPHKw8BfYS/skupH6cEKtTaSTCE92/pOiiVW+cLSA17ERx8f3CLwOyQ8IStlg4b+\nGprJyAlXsoV3SH0zOwllhcSZpSmAtCYSyTEICvT9vWowvDbcDgvHJrJdWjhkUNVA63B7hltXzuzE\nbQHZiMwcyX08y6SowLZNWHRTCt8mIVISGFbgi2a4aCxU7RK3eWf76Fz9tLQ3hd+xszUWPbVV3v4I\nGB/Re8vWwNUj4vw8OSdvIB5kbwpKRiZphOE9IwQ7Q1KUCKWHUJYYBp4dljc/XxeAoM/fpipxfFTj\nDfE5dc91XdzSGPixAnU8xmD/AVQ3QCiJY3PUyTAICqxyo/wwulepTMQmyTM0uRG6xntxPwtVF//c\nJRGjguoairsQmwJe10cJ0+Z0n8N9DP+8Bgev2s5V+42S4iAI0PMz9H1C5+VhBDW6V1kXjI/sZi4U\nUUX8NvYRloAdj+l8BD61JnmWOdijx2uNUXAbwAkCLyZx3RYEY2V0WOcihbKHUPbQ91MDI39Wc54X\nsSue2+QDXdLF2QhhFpOmAVj1uPan66oRQtnDPDvHMnOcGgtvKwHthUcVDNZl9jNax7TMeDGzaB1u\nybkyNy5T3iQgtmCwKseOXbWIhgbynVonUUaacdSNzRS6alQRQ83zINgxK1MBDXJNO8eL3babgYTz\n3/O/DRgzATOG0L01xGCPFpCmuR3rnF1Oa6g4ABUkPaIWYRj0UOgM44iESWGUscnGoKy9X8vN2ZCT\nrX74GFisiDd0r2473awyXR8ZvZ5Wx7hYQezPoPMU3dE9yOg+lHdcm4vMsyuokHhVMupbN12qms6A\n99+vv3/mPrnJhw3fbjKjiGLgIIDAE9vy9AASfD3o0ybB2dzYJDDYqytFO/MWrUKssvMtQdGOHNQU\nJmS8DxySN5ntIpgI03xbJorboSqokpBp3bqPV1AYBbfpWmVx3Qbgg2wn/Nb2V+B10PX6CHs9hPKR\n8Vx6dvFC4aAez2/yKfLKEwXYecM2b6Q21WZLUiw9BOFLkOLEVD4V9JRjLzxCNxMVDJbD3iQsNVIn\nRBY6h5IRLQLXHLPlz5g23NYQPYqtfAm1rVi/avumYMUDK9rZBs5wn9dUBnoztZUL+r2qRdjtbSPK\ndgE04FRCzWqLCZkO54letyKZMvycqx+oEZCjloBCqdvhwJsFOba++z70+5copwlkmlEldvjSFhoS\nQD1ZMCfs+AzloysUVxuoO3OIJAFeIlTafu8lzLNzrBxZp3l2bucVrDQhwwgqimmxdxOQhSwnVfXD\n878WVGHtvPdoRkM+RQFEcOqoOWQGBNDZvr54k9DtVfBj5taEMdbFbOt+YZKru9in5RrB3v2tVree\nn9XmnrVromnfwLdHg/irkk075SCvt95c3yOrObcgzbmgN8bR6FUA7zzzBPQiqnh+k48uKxHLLRXb\nSiCR215N6X0pVKUina9owc1TyDDG/t5LkOIYV8kKp2sfSenhMMoo8egQelLxL7bC/Lyt7aeFMLL5\nDa6Q+zW34eDAE9sSkIO+cxcGu/A5oInWFqSbAI0OlrXTVkGllN0mTHrTMMdo7Q2AaxMP/2sXRpZp\nSRYIoj5d7U4Coqonsgz8QmdQyxklnuMz6PcvkX79wnJSZPA+JdSDBxa6zX4+tuKZPLatwOLhFNnb\nU+LuTBLYd5+nUHiAUXwHXbW2qtZ5WWCZrSxJ01W37h48sAnIzjy4bRaG9QrEXIttmwWel82yc2o1\nsYoBYCHNFkF5zecCU8AytD/RGyTFEkmxsbI9rtK6MvNITk4s6cRAG5atqkkpuaizFvSoTUic9JvS\nTM2KWnEFRfe3TTpXb5HRobEwEfsTSID0Ez1yGP4khRBiDOAfAHgVwDsAflhrfdXyd38KwE+D5Fx/\nVmv9RfPz/xrAXwPwGQCf11r/jvn55wF8iR8O4K9prX/F/O43AdwBa3cB/6nWmm24W+P5TT5CtCce\nE03pGXZPrGx8q1NXE0F0Nkokrkk768OoUVlcRwgFgCKFlMppV2QotKqJlNaep22ovCs4wUXYsl5u\nJllrgtcMi6ob2iTBC0sQ9SHyhGZM7jHWZFOcmRXPooDq83CeUwoF5VZArtQOw97diLtWfZlfV+QJ\npKSFvNC5o+Cg7Odp0YncoolIvNMSIs3r6sUZRG9sraEDr0NIOV4s4yUQd+ENN/CGIen9jUJ6PlOl\n6Mljq9YNNbIIsaSoEn3FoUkB1aeFfjwAjhuyUIGiqjKMq9ZqtgawqF0fnHjWxQzrYkbACP8AKhqS\nYrSRMqr4bJWNhP383H9h2nEqRGKquFkqMQg26Pt7lZ4bc8L6hwhUp6YWD69TXdNuwnM2KzVIuxu7\nkk5L2ORVs9HOalc2J3U9X0IkC6jiEB05wFFne+b2rYVu5UN9BPEFAL+htf6iEOIL5vufdP/AiEb/\nLQA/AOARgN8WQnxZa/17AL4G4M8A+DuN5/0agM8ZN9Q7AP6tEOIfaW0XkD/Hieom8fwmH+lv9Zvp\n5/ULXHkBiqJu44vSVAhuC44X1aJetZCas6hpnT0tSbhzH+UFlixX6BxSdajKYC6NCw/mm9NNqM0b\nlttCeUrw3v6hdUd1EQLcipPCr5Ewrf6cYexzAmcYMS3uihZjN9nw+3atu5mn5M4pTCJi8EQoo5pD\npo7HhK5qnDOu8kQY0gLtEIiZ9S5VH1Lkpg2U1XXH4CgdqABifwSdZlB3EuhxBHnUrcRdTYXTHR1h\nlU/t56P8AJ2D1yghD/Yg9p8gOKCZD8ZDQuvxAmueQ8SHCHtjSMVipOstYdKuGlYQd1eTzB3+O4jH\nVmSbar/mpPDpOlotrZSRx8K2fQeuf8PNTVJ6UF713NhcEEpOBaQtGAFSqqqdC5CsEpM/+bN23Exb\nK+Y2EdraG6seY9ukTO42YAOr4M3nCKjke2ZXQHyIbm+Iw84NVC2+veKHAPyH5uufB/CbaCQfkDv1\nN7XWbwGAEOLvm8f9ntb66+ZntQdorV1towgf0lT0uU0+WsC2dOo/F7Wqx23JcPDXWog6N2Wxqs0C\nktLDpgBCk3jyMgXEU3rITvXElshuFNrIhGBBbYQ83V6IG+RHm5z4hl1cGrRbas3RIFXr3IcrLkvC\n5KTjvE6O3EJV+biVUNuVzmINfXEFfT4385k5cNCvJyFDlHTBE3XFgyH0IK1xf8B/B7Rq5vHnw9WP\n8gIDBfbrVY+TfNDtQexn5NiaZsDtg1riwPISqn9Y2xzkZYqL/CHZPvTIs4jBF1vilGkGpFf02WVr\na1DHKuocNbXtJsT9JtFIGO71bo3zElKZLk5XKC43kEkBb1MAB1lVAQXtr7sLHq+8gNqlxukXBrko\nAKjeGPDqbbQcOaHgGlw3a0HigoMYRchJ8Zp2rltFu+oSfK0r6chVLlaVpNFibZ11mY/3YaPUjU3o\n9XEghHCriC9prb+086/rcaS1PjZfnwA4avmbewAeOt8/AvD9T3tiIcT3A/g5AK8A+FGn6gGAnxdC\nZAD+TwD/q7Hy3hnPbfLJywzz7BxdNdw91zChvAAo21SgnRvI1VhzeELrAohM9VMLd/faeoDUm+ZW\nX/WaRg6GjbSAKinYAw5qNzCA6oadXVmuRNOdE7LTan3MbTnlVj/mdQgSTm2cs42Pw2iBUPagvY6F\nPGOxqgmy5sdLCw5QmxzeaEVmbQxMAC1AGmjv9zP3g99ro3WqF9tq5c3qp1JydqqeJr8r7kLcuUVz\ngH5v+znnZ+js3ce8PAcAC9E96pxhL1yiO9wnVj/7P3G4auNAtQlggzrUkwSSxc005Vw0ZPPvGUnp\n/rkXkHfQ7Mq6o2azAv40gTzq0uLASMUmqo7DqfSTguzNAeKFYXlZ2ScYsrCbgJpmdDlywCgmgE3u\nzGmwFbB7HQMAlrX2rZuIWJ3ASisZGDh/zcaCkIFFSJbThBoA4wRiQ2TqTrz/9HP/7ONca/25Xb8U\nQvw6gNstv/qr7jdaay2E+FAVSuP5/iWA7xZCfAaUbP6J1noDark9FkL0QcnnRwH8wnXP9dwmn00h\n8Hg5wziaoSMHlhdQKR9ndWQb3VO13VPgdXaewK4a4X7vHJNhjlBqjKMdf9iMxi6OB85uWP8dFVI7\nrM233tk5WnMuE6w8oGH0rWwbrTpIV/pdykYvHpXqN/fvl5kmYVKvRFctDbeGDzivCUq6QqxWATzN\nrG+L297a6aXCRmI8M3LnQ+GDCj1VVNWXNpJAQRgjZCO7kv/nnENewPMUiDuVpUAznPP+eDnDm9MO\npqkwatEJDqNH6KoY/f2XqK3kJiHefKQZ0K2ea+cmqKn84IZLJL0BOKvr9SEDnzT3Tr66DVVHJdYq\nBuYYm9I+QC0JhbKHnj9DJysNYs9RXrgmXO+fpu22q1IAoH0DxdeKG44sjpt4ANNGd77e6VfF1+tN\nkv4fQWit/5NdvxNCnAoh7mitj81spm3w/xjAS873983Pbvr6XxdCLAB8FsDvaK0fm5/PhRC/BGrr\nvUg+14UUPklwGFIgVAARxrVBvwvLdMMab+Up9CC1Gmu59ABdou8f4LPjc1s5rIsZIIHB7Td2628p\nkurJdQY4c4m2iqR6Ew76zeX9mBaiMpWBdmYGeraBcKXiVWCTqhuh7LX73TCPCFRF9HyBo06GcVRJ\nmtgbN+6QyCkAeXsC+dK0Ahw4u2p9bO6RMARi0JxCbbcVAVByAaz/klApDe8LIvcCNODW87PtRTtZ\nQE9PyICtOffjqoF30W2LpwUkDJGb2VgoyVoAkAilthbiyiNmv1SDimPV8CeiE3MNEpA3E1Fs0Ggx\nKTIHvhXlBEx1V6SUmI0jLVu0i2hY40qFIqLEY2Yc4u4Y8ngBEZKwpvW0uc5OgN1TDTimIwc4jK4Q\nyjG953ifSKT8t/HYwrITo2bgOp4C21QGq6K+vKwnHrZaaCQfER8iDyODHpwDGfF9XCANJ7Ou1wfy\nS7o3Dm4B8yVkMDUV76H1L1oVzwZwoIHtDshHE18G8OcBfNH8+w9b/ua3AbwuhHgASjp/FsCPXPek\n5m8fGsDBKwA+DeAdIYQCMNJanwshfAD/BYBff9pBPtfJJ5S60izbzCz0WuQpDfxrVZDvVD90o7Dx\nVhDvW98TMbpXQ4/1/QMLpQUoARVehrBDN0CbAyacRMe97lBGVgnbjRoj3z5RJfdCrcURQreiWqys\n4R3SDGxmVzQ0rKypXFvicRZ0nqEMggUCzyTuHRJFYn9EC8ainkx1kqB8QgnZYz23wN+ufly7ApNs\ndUF/I1hY0329ztBWPPa13n6byKlxF3gjhTh4UP2SNcXajt+tfqLYMPqrz6RKQBRJ6WGZFQg8UyWz\nWR4rA/BzumAL12bdfR9M8uz2LBfHavu5n617vjgJNaMwyg1szQ36XNSdS5Rd3xJNrzVRM7wtbony\n/KyrqtdbFzN0GUgggy3F6SbM341Q9uicFSWwaUk8fO26qMkwxsrXSLLz2nPVbM5RXdesogAY24yX\nUuKlxV3r2LoqZljlT0fTfZvFFwH8shDixwC8C+CHAcC4FPys1voHTQL5CQC/BoJa/5zW+nfN3/1p\nAH8TwCGAfyyE+Dda6/8MwL8P4AtmrlMC+HGTcHoAfs0kHglKPH/3aQf5nCefkuTWi7KSQeFZgyFh\nNqsggAlquU1MaQmEvTGECpBLDxKeHeZis0CoYqz8nlGPporpKlnVjoP+jYxUD30sCgp6/ti2l9hP\n3hU+rN1YziLEiedktcZhJ0cY3q92yJsCxdUG3shxiBQCq3xaoYBASaXN4bMtqIJkzowCZWnzuGbL\nKh5D3B1Cv/8HVRI6OUd+TFWXzyrWDJd2xV9d5FwjCeoitZ9bDSnFfze7gn73fRR/SPMNedSFn2bA\nZ1KI22/Q0yLfhrO7YeDULP9fOLvijiqRFBVpdZ17CL0SaUnVj5J9el5OIM7xNedaW5sKd54Td6vk\n3GjT6vXUqltwJHpDfBuAqqHzt0m5AajcUmGqn8GqsurYFWwzsNUi9rdaxCuRoLv/AFoIJOUaST7f\nmXT4ug9lr7J5YOJpI/GwCKp0zmE63Me7s2OzCWigVg3LihOanj6itrNz3q2AbxgDe/exNomHNRk/\nKaG1vgDwJ1t+/j6AH3S+/1UAv9ryd78C4Fdafv6LAH6x5edLAN/3QY/zuU4+1n8+c9BqjOphpriq\nBv+BB5tw8jK1ZEyAFi0Z9aG4fQdHQVoF6B48gAzuYJIe43jl4c0J7XxJX4ySzyAo8XL8yOq+oSDw\ngt2FL84goiFVMaEZwObbirtahZin54bkGgDIMApyyDyFni9RThPT0y/IKnh8ZAQdN0gKDzLIK8HT\nxCGJ1k5e9b0LirDnpOW4uM2VeCWSYonBa/8u9KOvErnPOJECIEWBSBLfgmdSwDZs2z0WTkaFIwRq\nqiARkWkbKw6kX7/A8kohnM0h9yLI/XPo3hjYu4+0mEGFfap+VABgacQ6/VriYR0zjlCWQCZrWnEd\nRf5IeUnXS+7lUFyJ3cAjpqaMnadV9dOG6APoPDlJh1Wi18XMaqZZ9BnbWLs6bf2Yvm87FlZS4MTT\nsBUn2RpaTpot6lWj0qH7hypEew/a89irNBc3CwsyAM8EraEizQ31fEl2CAev4Xz1Jr52GSOUGoed\n3GjnBbUqSk9Oa15HDJzhGaIY3SNXWDPLpPvixgi1a6PUu+1Knsd4bpNPoQWWmUZHLhGG+4YcmG4t\nMO7NXHFCOii8bBsl5yQeGw7yLBACo+AO8vIRJh2JP5gq0Oiedst7Af372mBGVQfvlJ3Kw3IbJo+3\nEG28ixObOfbUGN3eCIPgHH3/DuTFQ5JnSTOyHYBRgE4z4L13IAEcjO8DgKPccGnnNqJf9wMCYFnt\nbBMReB0kxRJ5maIbDisl7iK1SafQCaBpkbHmZXEHIpLW/dUbhnBNxujcOsmGVblblLFFfGjPi3WI\n7Q3oQn8lhZdmCJIC4u0p5FEf3mu3gLt3a739VTlHtzem2U83rSceM7PghT0t15ilKWYZLaDs6OnG\n2cYHQOisbjisOC0Nki4JXlY8H46a1xB/3m4Ccq4D4XfAauurfIJE+U5MAAAgAElEQVRVvsDZxocU\n55DBbSKUBqdVS82KgypD2mWgADvDOhBn/l0LdwwgwjIAuznjr+nfvPZ9MxjuzolICwHBUlDm+QVQ\nzbqigkz3GIV48vu4e/vT+BO334TyJDpyQAoO5lrW61MSonWOt3b8mwVtNkwiCvuHkP6Bua7rc9AX\n8WziuU0+mwJ4cxoilFd0kcaH0A67vlUZ2oTIE6g8BbBDR4r/zjLNqwi8DvbCI7wcn2GWSpysq9c4\nXgODwMPlBtWcoDPchg6fPKIdHwt1MuKr4U8S+h2EvfuEsjp5ZBcSbxRCJoVdgHSSQLz3DgIGJmQX\nNZQYAKCRfGZ6jnXaPojllh8A9EdEMUjLdY2SFqY5Df05bh9ATYxS80HfuEi2zDNY0j81HJRbB7Xz\nnQQKSTFHkdVbO93OEJ1XPwcxvA115y3Iz0yIRPngU0iH+1vzrlU5R2fvft04zoBJ0nKOVT41SUcC\n7Z62tTjb+JilMxx21uj6Q3SP3rCtqEInyLO509b17YCcRTAD1YGQQaXYbTT8AKd1xNeBEChKev+z\nVGKSSBxGG7LL6BkQQJOoyuc5SCuiZTO4AnSrTMAmRhbtlCIHPBiVdL814bCmnivjxOAWwCQp6UGZ\ndradx4KqNcEV2sgBHJgExDp7enFBVQ5vCJ/GkUozEHR7AV2kUNEQqjfemhl9q6G1MFD0FwE8z8kn\nE3h3ITEIQoTyHDK8bXv9lmhqFssaF4R1qNrC3JSu9H6bdE/gdXAQDfH6cIak6ODKrO9/OBOIpEQo\nfQwC4ssoVzl5s6BePTPRRyEwntAQn5MQHwdgbrwpcPKo7vsSd4lEyMGM9sdvQY9GdTIj/zta2N32\nSiR4vJhtwcfbFpq50RBzo6tD6PNv1J5f7I/g3TLD+P297arGTTyXUwsNFpx8VIC8N8D5+h0khbdl\nhjfwzzAIpugOhuj2vx+Yn0F0hlj5ugbwcGNdzNCJ9wm5JwTWxQxJtrTVRDPphF5V9bTakZceHi0L\nHEanSNSyATMurAK68iRkWS3KyguQlnTdiDAGlEOydbktJhlxyygpNpikIWapxNnGh/Jm1UZr1BDV\nbfoYuX5Crruq+3m0VKVEVagUM1zIfls0E0/zGuJ2tgCMn1UAEVxV0O9mFXby+1QprZaV9w+jCxkd\n2BLWqI7BHP0VnaOMPIhexLOP5zb5JInEV84FOtLHKFgj8Ka0SOrNlmiEZYLz8NP0oFv79k1yJA8w\nG8/XVUPc7mZIygT/6kmIxyuBd97rAVhiL1AYhT7xZYIBLQzLS+iHj6HfObVil94whLqTEAt/vqQk\n5Gqd2X/zLXdMMdgmHun5EpjvaDEsziCiGIlX4mR5hjenHRym1Ffv+aLarTtkXF6kQ2+Ne70BoaG8\nPvTF2+0VI8OuOfG4YIHV0srysPGZAiBWS2AcAwev4WLzFr52SVUAJyCOQVBgEJQYBecYR0B/cICb\nqIOwO21eplgXM1xugNN1hIcLhWFA6LZRSImw7g20OxFR4qLPY53zLaiMArrGKHC15/IasEQKI13E\nbTeHz8XnPSmWSMu1qbY8TFOBSSIx8AsE3gRBdKeCmLsJCKgrZixWVavrA0QToNP8nVvhNVUmKsuD\n6rHrYmYMFYPK74nvvU1FH7DXuYOEKyeJ5ZR5wxBwrLtFGFaQbaNuoJn0vFgR6Xm8A/n4Ij50PLfJ\nx/dLfNdA41ansNwURnm5fWoplDEHu+EF6DLuGbSQLLYSEMcrcYjDaIGvXXbQUwt8eqjx+pDQNat8\nga5aE0s+WRjL4UrskoUva6ZezTC7V8ul4Z83eCatNs1uhNRyOl+/h6SQjmadQM9HAyEXGJSQYbwr\nWKJfjXzqHgdA3Ao+h65Kw45zLyIzu4oPMcvOcbzy8GRdr0YiyaAObQEAl5sSl5tzDIICyiNTQffz\nB+ozCh6W0w49RSg1hgEBRVzn2sCjz3ieXQHwnsrpcFswHVWio6h64uPi1weqRVsKRfOQpiunc80q\nL4AsfQz8FOvAM865GrNMIpTGuK63bx/rvo6ScU3hmi22MR5StbFr09UIt+VZ/zpr/F0GhcCiR6vj\nycGupoXOkXspfUbxPrXh1lMrLOpGM1mKqHC+lhbJV4O68xzJfaLArys5PIMo8bHxfD4R8dwmn25Y\n4vOHOT6zlxESKM2h148gOkOoMIYWour1spcNz0F27ATFwYMt0zM9eUzJSAXWqG7rWFSMz98CjrpJ\nrXUzSyX6/hKQPYRGUl8ACGAcOwcRVQv7o8orZ7OoVT/W8dK0G+xA+f9n791iJMnS+77fiXtmRmZl\nVWV19X22Z3d2SHFXlLkEqRfbMmQJBGGDerBJWoIt2YQEwxKkB8MSab3owQSWsCFDAAUBtCyIMiRT\nhAyYfKBAi7L5JkoUDK72piV3p2emu6cvdemqrKzMjMiIPH74zjlxIjKre3Z39ubuD2h0VVZmZFzP\nd/t//7/tp7wAxeZnb/NY8975A2ypyaKJ9jIDX/WQf7VeGdqiS9JwZiJ4edgvVqLYqbfp+HT3xZ5D\ngH4pLAjliqBcidM1ctlECfVa6vqZ53ss6qkXrVvn1WYo1vG05pnAXXu72LcHji8ZxAsjRKed03HD\nkIgDlp6XlmwmWLeynzRYy755TOd+DwS6cylR6/y2qIDCxGULviVBj1ECUFLUygEhfPCDb9YpDONJ\ne1GYzVndPyda1vCx2A0LEyUoA6HWrW00xJ3WcXQdjkW6VYiTdWAVdem48iyIxdqibkAt/VSeUcdq\nbQUZTW9H7ZkAp1xJb6usGoVXaAc85cppTumLmfye95tnarD3Ygn11/YN2yvrfAaRbhzPOhAnsZwJ\nImaw19KneWnWEyWoyT3msaY1lmdLdKZc4DumbXMObw5zh56yEZJ7AMMB6eHbRvwrkjKbBRz4qLyu\njss2Rzkei6O0x+eXFbyeVxN9znhy0QZOWMfjI5TcJszC3e31yHGvKMI1qSn7+FG70OPErQVfad0w\naY8b3RllyTrtsRvfYh3LKKmdTHUUhFup7K2Wj/QbYhdk2AZ6ZIXHAut8TH9CD0iCywbC62vSgKiV\nJjeAx1gHBI3TGcSKJOi7c2XNggy6SDG/5Obvp3/NbF/KAhQsjcwgXnHYW7Wc3zYHZOHEabho+ozl\nCn18Qf1UAAjxxww/ZSTyDPP1Fjg9bMCq5bXtUgLOEa1nrtd1FSKu1ivnhPrRDmESi3yHpz7r2wY1\nTrd8VpXCzWwlRvJek9lZkbwrAqLX9s3bK+t8slA3juf4voh0XcwEAZVfokdSKrMQY6fZs7GhHDW5\nx1RfcDw/Z5KVjCJT0licG636S5e1KEOoaBfnZopbGKdVtsMkv83cIKr8Abcwioj2TQZkAACOet4O\nkIIQOtqIr+t8JtdQh28zrU6oV7ONxa8yQ4DlesHlShs0F6Sd/vkoqc3i3dD/N0ilhrgzDQcbnF3z\n6ozaOCY/yr1c2YW55xyCcLUZ1gGAvESVlZyD/fEGKtH2YA6yFWmY0Y8aNJxPKin73FD7Kx8m3xlg\n9Z1RpCJ00HNDkFxOm3muuTStdVWSTu4xTm4QqmOOFitGce2cTrfE15V00KHaWLw3ZB/cQbWb/eKA\nmmuSBCKed7mq3bUEcUB+2c86yEF8TC97U/bj4pLV/XOWJ5qMOfHpubBTGHDHRfGgdd3b2lPteZ4P\nMysjWkalm3vbqjJLg6Z0GWuQEAYxSYcA1C9FumvcmRPTq0UzxOxrH3Weq4/CtH5ddvPtlXU+cZCS\nnJ+gjx6gHx81ZaqLmWQWdsB020yAFZy6c0syHlVwvDjnD85T4Jw6XbEbX5cb2quR69kRzI6I8gNR\ndlycQ/FBS6xLm8i7j6Kf3nYcWH6EbXm+Wg+IPw/kpJQ7kd+tN1FDiVgvVs8dugrMg26C02bBCFlU\n0rs47K29TKdBYfmL6FW2jRXcL8lU61ogwWVMb7XmIJtR68pR2YeBN+cSJRtkn6oqSMMBB9nMLfK9\ncHcDQZUEPfo0yCWXsUwftqAHKu61r/u2vsJq0abtqcqGrcHMjYSDEaGKPPBAWz9ow6FYctEw8d7X\na95Tl0I1s1psyk0bZ6miRDI2JY5fCHAhTCpThvNF6lYtYEaxNswcywvX85HDUaIUa5GJ41suWEjD\nRrl0+7WXrNPeZ12zTsnfhxEytPtS4bVAslHWQn5r+3KLetq6v1pBTTxwCqZ2cBeQyoTb6Q7K8nX2\n8y2x74jzUUr9j8B/jDBAfg34L7XWZ+ZvPwf8DLIU/mWt9W+a1z8D/H3kafwN4K8YuvAUYU/9DHAC\n/JTW+t2X7kRxif63n2+QMdb8ZqrPbuyZc1bDATp7RH//HrvpJXfzBbuplFPm6wvhtdqSLTkqn+6k\nuilnNPs4E5LiaoVeHqOXs4aJAdD5qZs039C7N2JqLs6aXHNZXF+nVPEu/ahDz+M+L//tpglv0C77\nQDvC7do2luIuKapF+0l5SQZ207BiL1uZaDbvTLpfNOesez5NuaU/2KOKS9JQSjK2lwOycDs1Vit3\nvTjfinXboLmx/QRoR83zy6bPBnIdrpk+1vgWOt9nvjpuHbvVRirqS6eo6i/aYbQd9KGWF44glM49\nwHiM9qWmDb+d74B8Rg4wPbpiKVyFvbxVZpXep8wQqbc/STKbs5MdE93IUT/wCdTdTwFCyrmbXnpo\ntSYoadgBDA2V5xiae8BS6bSHT6v1h0PWDePd9j1i5exXC/rDA8IoZl4Jd90gtmCRgcuAnB6Qz9Jg\nr/22gPMjsDVfl57P/+/tO5X5/DPg5wy53S8APwf8NaXUH0LYVX8AuAn8llLqk1rrGvg7wJ8H/iXi\nfH4M+KeIo3qutf6EUuqngV8Afuqle7AsHMXIRmnKU4bUUdpGwczmTgwtSI5k2C3bYTiYUPeaocmi\nviSMYpmp8OeCqhL9uS9JM/SNW3DzZvO3bppfGQJIM3Phw0KBhn13XDbT2bb3EyZCjhg1C6Jvo2jf\n6al0HZCLshdbRLs8oEBkGbw984W6hFm43iifJEHP/etOvttSiiAMC+coNpgjfEXQ1QJVzBhmE9eU\nVlpLnaNuZzB6dgSnT9EnZ9Izu377Sh43l2H4TqerxHrnVguubKWqL1bHDqbtH7/sH05Guu3AFxto\nQDU7aa6BnV2x9wEYDSRxhPYesHIXDRegZAahioiKJfrJ51j/wXuOUoe8R9gfEEYJ2kdlpjnqM3+E\neO8+an/sHI9c6BnDdNKwfNQlVEtgSZrmhFFkrr9FCjZ9vK5Uu7s86xJCO6e0nU8tCkJXLmc+Q69O\nGrocW5W4PCWd3CNMJ4aFornnonotIxOeoKIbzt36ja/tW2XfEeejtf6/vF9/B/hPzM8/AfyK1roA\n7iulvgr8iFLqXWCktf4dAKXUPwD+FOJ8fgL4G+bz/wT4RaWUepmKnl5W1A/OhcE321JbNnQqF6tj\n0fqJe+jLU/TJGav75+hlRZJFkJ9B/5FTPPQlCebVGUl+A6zzmT5Hf/GrLH/nMatpTf8H54Q/WKDu\nCauyn/Xo2ZGwErz3QWteYT1fuXmE6GZOOJtvDpr6C4hF63RLCcuZzE0AsGz9Tc+O4PiZ40IDzEDr\njpsl0oYiPzIU9oAj0PRLaU8XGWmoeXPUOLo0HDTIMBv5e8SXVMI23EUxXRmBekqlaZiJ0/KP1Z5P\n43R4ckz9dC7X/uQM9cZNcdSetRyP7eWcnMmc0bMZ9fOlyA6Au35EiXM8L5LAsA7IyrP75hiXMY7n\n7JGjE/JJNdfnBSoNZcZrbwe1v3IADMt+oJB+VRKZaP/Jl1l/7V3qLz9m/jmhmkkOEqKbuZyLUSYO\n1T8faY76vk8LAKdjUbGEatq+VgCLc6LeDlE6pAqq1rnoAkpalzGQ85HqAaE6c8GLLQ+nYcY4uS4O\n9Ph+kwHa+R5vSJSqJJrcY5hP3KCzJerl/InwCRYFarZwDN1Xcua9tm+JfTf0fP4r4B+bn28hzsja\nQ/Payvzcfd1+5gGAyaTOgX2gzavesfWypvzyCcFOSjBOCSyVPBjuqB2qMGBRCM9aH0zkOTfEnJUQ\nYM7mZgDyiGR8uIFUOisfs2uExPTjI8ovn3L2fkBVRERfPiHbSV0ErrOhlFjsQvn4iPrBecvhrM8L\nqlJyMV1I5hZiEGBlJXQzUUMw2WJ4tqJqyyso4qtSnM7JGfqDU1b3zykeSJaVHCQE43OiG6feImVU\nUKNbVGHgolwBKsScFSFHi8jN2NwehEJYug5w4m3bGsDwYvG07j5HiVMqbb1u/rd0/PrxEfqDU6rH\nM+d8Ynu9ockUfVi96eXoi1lLidWSsybXzmH4zCEIp8bxXIXYsnbV7EtYx01paHneGq61A7a6qKlP\nJWCIgCCZN9c/X8Fot3UOVFWin3wF/Qfvsfr8Yy6/dMnTrwngY/C0Iv/gjGxfER72G4f6hpwPFfeo\nBiPzXVFDNGshzv618hr2TrE0zcFkuP4gaStAMPeqDUjCIKYO7TlZUNTaMb47BvqzszYrgdGoAkFC\nushztWA0vmXEBT3HY7JHbWmarPnVh4+o3GbtNeCgbd8y5/MimVet9a+Z9/x1oAL+4bdqPzr79BeA\nvwBwJ8+EmNDS96ehDG0Oc+mXRAlRsWQYT2Qqf/aVptRhiTnTsKHtiHuu39EeUKwhgt3JPZg+J/n+\nc8bnj1lNVyTfv4/62KH0Y7IduTutHovZbrCTuu/TRU2dRQRL2X4wTgkP+xL5Dj1YeFW2CCuBlw/K\nGskBykq2NVkRLStpNJvvim7kDTOCWQxtb6nWEuHKmiizLYe9tYNkD+MJfZ36g/9iXWJQ878PwtiY\nwvfJGWy/y0Kur5pGH+26bdubPtzNUDf3JJvzhOV0plCDvUaMjWZ4MQDhxQPCvawh6Dw7Q1efZ3T9\nbeZx4uQptlkS9OhHmwqc/hCujlIp4VWGSidN0UksjsYusmkoGWneb67/bNE4H3vOTAlW3ZgTHV+Q\nPZ2zcynnaTBeEY9Ckc2+kcv5MEJq7N4WUUN7KYzMtQUlWPn2jRJDmrtRBatB1XI8HWRZ12zPyGZM\nFiwgpewdIUcdzwT12CmZ2/tVPTkWx3JDqKOoyybzfRFjQ7d0/dq+ZfYtcz4vknkFUEr9OUTx7o97\nJbKrpF0fmZ+7r/ufeWgU9XYQ4MG2ffol4JcAfuj6jrYlt3A3k4f4+gT2Rq3yV1+nQgeznDlixWCc\nopc1wTiVhz7LYbBHUZ24UgFYJE8AzJgz4/CtHybcOyTb+wJZuUK9cRN185PNDvroqXwPtT9vCDTN\nAxPe2WkeHt/pYAhCy1WzOIeJa/j3wpFbLDYWaQsT9gTe1P4uQd4nHXuT4NZMGTDIz4TOHttM33yo\nbw1GAj1/GUWJ72DsrI0fXdv98kk0zTCwXSBrLcirFgu4//nRLmq0i9p/RvyxS5lyN4zWXQYKrRRk\nQ/m3ext2HqL2JGoO8+eEh/NmGNHabI5+/wv0b36SsC/lnu45cZLtS29Gxi3AKVSFCxh0NkQdvg25\niKmppRFRu7iUjNv2bOw+m9KTso10s5Aelw8Z7kxI4x5BEpONMvY+91S++sbYKZb6Tqc2SrogGUmb\nRWElfGtaC8+cRVf6DsVzPBtm+3hssqULErNdtPD7YPPqnKiX0M/edtmVzWJUForUgnVAp+fuPa5s\n2jXLZGDJVcOkfY+Z6/C9ZEqpPaSa9DHgXeAntdYbk8VKqR8D/hZSPPm7WuvPmte3AsKUUn8G+O+8\nTfxh4Ie01r93FSDsRfv5nUK7/RjwV4F/X2vtU+j+OvCPlFJ/EwEcvAX8K611rZSaKqX+KAI4+C8Q\npT37mT8L/Aukd/R/v+ygAVSoGsdjH7798Ubt3/ZH3IKfxIS7mfBF5X0jEX1AReW4v7qEk0Ut9CZP\nF+8y3Nll9KP/QaM50/0u3ybXpJTiW4fy3prjtEpTiXwNu/HJ8gGXK831PvTDoTxQqzYkuNVE9xY0\nlabwxq1G3trY6r6Un9Jx6vox1bo0x97YG8MJ/cUKPXvULv9tM29ex1HHRGW7lOYRv5brBbXRiQGv\ndBWNSfFAELZv429ncg01MT22DiNF187KxzyZL3hjNKHf20Fnj2QYcbZo0a84GhpTAkpuvcl4fJ2z\n8kmLPaAXjhoQwRWmJvcaB6QU9WBE5GVi6vJ0I1gANpGbUcK0OuELp3DYeyzX4+6nIIlJTMZme4Vq\nfItqMJIsxXOYERH65D7KMDxbkIrN8MPQ9G+itJlTMtfHN5f12OuxJRjZ5njszJcv01CtS6aUjK6/\nLWjSonCsHrqoUWnYOKDZXPqm2yiBrqIJ8gKhuSp4cvG17e/7Om2thU3/22A/C/xzrfVnlVI/a37/\na/4blFIh8LeBP4G0MX5XKfXrWusvcQUgTGv9DzFVKqXUp4H/U2v9e2aTVwHCrrTvVM/nF5HRrn+m\nZMH5Ha31f621/qJS6leBLyHluL9okG4A/w2NZ/2nNAf2vwL/mwEnnCJouZdbFDjHo25cEzLL3DAb\n+BF3R4IZcJkPeV8W+ixnXp1zuoSzMtqq6QKicjktpywMsWU/GMpAqGfue+0CbKlC/Fp0msvDOzuF\nUyNrYMkRbf8iEoqXd6YR0zIgDZ9CCv10CIvzpszWUYdUWSjbsNxX1yaovZE8wLbZ/nTOaloT3D8n\neUtih1qveH+WkIaau3nJrcFNmaO6//viGK08sYWGe86o0bKxoARvQetwmJXrBfPVWSvD7FoYT0S5\ncumhoDznYxFpvCBGWdRTnsyP+MJpj3dnPf7w3jmf2oP9698H6UPonzoZagvMWN2XaD6lUWkaj69z\nUjxw5Vt8EMEVZuXYdZSyqKc8L57KwGy8Qy+7jRoeCGLL7oMPRljWqPml009652zG//M44xPDiGJ9\nyht5yu4bn2mE9sa3qNKMs/IJD59fsKgC3tpRjBMJwvTZIylX9YXhOTJS2LWumFdnLai1vXb2Orrr\noTow9+V5u9cXJs7xvDONuJsXjvqoH41FBC/osWDqHFC5XjANYHT708Dn5f605884IHmjR7K7jV7H\nciJapKAB5+go5aR4wMPLms+fvEBO/LvTfgL4Y+bnXwZ+m47zAX4E+KrW+h0ApdSvmM996QWAMN/+\nM+BXzGdvcDUg7Er7TqHdPvGCv/088PNbXv/XwKe2vL4E/tOveyeU2nQ841tuobKDhNvmfMj7qGQl\nQAFDuFmWC4q1ofI3Uso+y/HCI5p8f6YYJWfczZ/ST3LXSN2AE0Mzr2MHSk2pCcwimj0SJ3Ixa2mz\nFMGaSCeMkykQEQUh8+qcMI5JfTXNZNX0rbJVQ7pozoll1LYql2q6NA92TdBvHuJaV6SGxFP4znov\nL7WFiZRmHEKudPDjULUdkXU6ta4o6iXTMqRYb0auN/oL5tW5lLbwzqdfy7dOrytVba+VgUjvpn3u\nDgsg4W5e0o8OpFzW2xF25SiB42cbn99m1bpEh4oXtps7M2YXq2OOl+c8XaSMkxV72TFFfSkL8vjW\nxj5YmQnKlQs+ns4jnsxhEMG1ecSN/kJkCux5SHPm1YnILxQZ0zLkbi4Dmsn5CTx6x8DSF3BTaKLC\nfN8J6cGiJf/gTncHTu3+toUs1ooSSjARGXRbM5dDVaCQzF2HIm1RrhfyHRonga7NCIL0b6M2inWL\n42n9ze6XeXbOlu9wudI8nac8vhq4+HXZGlh8+MxnopT6197vv2TaBh/GDrXWj83PT4DDLe9xQC1j\nD4Ef3fI+HxDm208hzspu6ypA2JX23YB2+46YipQrm1mFyioMiMK8mTTHNL4zUz/vD5qSC7jBTVvX\nHsU1Z0Vzw/vIFjfB7Sa6NUUd0I8ME7EpFVnxMmB7A70uHY2KzoamRJPIvNHpVHpW+/dALwlVzK3B\niIPeAktWebE6JsnuCLebzQp8ehhDptjs+AyeSSlEpSl87JAECMYzwo9PBKUXpYTriMPegjTUJMGO\ncI11nbaNLns76GzoJtGt+YuX3ytp08xEpGHGKFkyLTflCi5XmiSQPlea5Q3bg59BLc5hcd7m77N/\n86h60nDAJ3cGvDksGal9kVu377OByXiMQjp7bu/3duT14YHLiNNQAAjDwUTYLbIjd427YnBzVfB8\n8VWmZQgoR2IaqmaY0+3DNhBJWUFVkqQ9Rsmcj480N3pwNy8ZxhPCs6eiaouohI4m90izAVHwmMtV\nySS7TTqfC/vHex+wfjYjGJ+jcnF2KpMhYDuPU9FIYrtr2QkMHHN4NpRSqjnmKs2Ym1JbP8o57M0Z\nJYkbFO5S4iigH6X00jvyN3Pe1PW3oVwR7jUZZcNcHUlZdJt56qwq7kGaU1QnXK4kKHlrp6CovyPE\nosda6x++6o8vAnT5v5hB/G9ohOkqQJhS6keBudb6C9/Idq29ss6HIJDeRn9gMoghczMPkIYNnEqB\nRJirhUCYo6ShdckPpGRkImVLse87IMAsImKNExI5gq0N2a69AHWjo1TYhS3lTn5AoZvmi62X+99j\n5x7CNBP0khFM4/K03aCvS7dIufORpnBzj3iUCWAiP3ANf0vimYaDTadpB3czWfC3NeO3DR/6GjXt\n90ofrfAqnIsqIA3WQlBaxyTxRK7RogMtNz0TnTwRFJg3gNuCPatYYOHFCtiSlULjgMpKwodyhbpx\n4Mpei3LK00Us+1ovqHtPRMnUMEJ3CVzLarG1b5iGa8dFJzvaOb9er0cXhYig9fcZJ1Nu9GI+sbPi\ner9Hf6XQj95h/ZX3AVCFLO7p5B776R2G8UJYDo7vo9/7gPrBOav7Mg+X5B+4oWpLHeSTttqZHLnH\nm/0RMlUBpNThiiSU7AlwjseaRbY5OqlqtnH9VNyTrNYvRUeJgHdG23tpKnm+HXBgr6F5fgq9dJmv\nNStx8t1kLwJ0KaWeKqVuaK0fm5LYtvT8KnCX3cafYxMQZu2ngf+9s62rAGFX2ivtfGzWQ5azqKcs\n6qksPtFYBvO8tyuv/KbtDT/Y21hA02DNOMU5IOtkoN1sTFxszRIAACAASURBVOuAYh00KLGwQdRs\nZD8vMa0U7N6WGaFsCOtFC9qaxtddacMOgtqGcIveJY0ZZaafAGbW6JksbB6yTg1zGOZwcAeipOXY\nhNYmkml3Pyq3pY0sd9xytq7/MtumhhmqmEG8AhrCTKteWq1X1Db7SXPpcYFkcWaOyYErbsxFK8kg\n3mpdCbT+7BEcPWBtqZSSuBnk9VnE7b1wbdLcL6NdGOwxXz3hdImbdZL9EyXTKm6Yn20Z8ayMKOqY\nw17nngp1R3a6EaOTqf4tAUxdGl65mmu9mrt5wTi5i374b9B/8B7F78l6lCwrgnIFVUm4c11AFdbx\nfO2Y8ssnnD9LGIznhHvHhOY6RlmOlcy2mU9zDJvFRdE9mjOIFy4Lgk2Kpl442mAZ79Ib6cvT5t7K\n9xr26SwX5F23YlAJA4jqD5r5IGsdNpNideyyHv/8fxSmv32AAwvC+qz5/9e2vOd3gbeUUvcQR/HT\nwJ+GFwLCUEoFwE8C/659zTi5qwBhV9qr63zCwNGm6yilWl1wudKESWVYl1f0otHmABo4aKlWinpd\ntRZHuVFlxsU+iM3N65d02hoz36zVegVpRu07Hq9kkQKJoZ+ZV2feTI5Pt1/wRr5yQ7FueG9ZC2rI\n7wdlBjQQJqL+Cq0F0k6+W9OPj1A3gPyAMIlbRJs+ASjQGtK059YvydmFq6gvIV7gO6DmfFRmLiQi\n6u003HBl1YArRrgSlV6cOzYA/fwhnD9pSXarLGxgu3nZ9MPsIhclMuBblZL16Kuj5WkZUtTnFLXi\nrIw4Wgw4LxWPF3BZKW71I673RItonDSOpcUKcAViTC8rd5eFKmYY7/LWzjmT7LYMrs4v0cua1bQm\nSjT186WwJMzmclweo8N6vqK4DKmKgOIyJJuvCI2joiqJ4iYwmpYlxTpgWtqy8lUcZjXECzfn1OUJ\ntKqmdi7NlRY9+hygnektTfAw2BMi3vWFe9RCJVDqdP+eZPZRspkFmQzKBoJXkaB+D9lngV9VSv0M\n8B7iLFBK3UQg1T9ukGx/CfhNJM3+e1rrL5rPbwWEmb/9e8ADC1Tw7CpA2JX2Cjuf0JXbAPrRDrtp\nm3UZIAnbkbkbII01lZlmL+qlm+nxo75xUjFOBAHXbFf+Pk5rRklNtaYBAni9Ft/ptWdZKtBL6nV7\ncbYPb2t4sdPYVcsL4d2KhfPqoGe0g9ZSsupFUrIq9JI07qGt3HBiMx+DWMu3w5OrdS20MXrlbixf\nvls/PoLTKcnNmxxO7jWLd1lCZQKsKCFNcyq1nZTSz+iSoMe8OgemWEruUdxWAa111UgyVCUkZj4H\nmhkPf6I9SiWLHB5A/gj2x20KFl/rqStm5qMR9ZJ+NOZ6H4p14bR8fBbxNJR97kVrns4jIGRRa+d4\nQO4dcUAamLrSVS8bQTaU/t7kVGTOp2aU4+AO5c4+hSlpTbIdwyoB6uYnCWYL+pae5/au0Okc3HFD\npeHBHRQQlysGQPrelPBwQPz2REqtRgsq1IacFJxwHX2r0NpewMdJZYQH+4yTG/D8IdQlyeRNJ4+w\neUN1mCauGg6tSgmWVqL6WwSNJpD9Xwc9qV6YsnlLuXc5Q4cJUZS452deXVFm/R4wrfUJ8Me3vP4B\n8OPe77+BwKK773sRIOy3gT+65fWtgLAX2avrfIKo1ViXKHHSmjMQBE6zeHd1Spr69nbdEZA+yCip\nN6jjR0mTfwuJ4jG1kRDoOpRuX8gvVXT1UlriaNusEE63YTwxte1zLNVNGqybz2WG6SGXElxLuM59\neSnx0cvMj1LLFdy/Lwi9/qbYnEVgRcMDwqjnSCntsYnuzgl6tSDq7TDMrF6POCBZ3K3zMddKRURZ\nLvNNY08PaJjLMXnHY0XZdJTC5M0WAlJHacNdV504RU3VoZexszAgwcDtwTG1XhOqJlMQJ1oxSpai\nY+OheUdJe+GWzHRNUcMoEbkJe49EQQK9mLD/BuHhxwlVLPew1yMbKW9IMstRn/xBefCTyMw8iSzI\nxfIdqnXNZOc2aW8Hkpg47ztKJfUDn5DGvgFpuJJtxwGN4nZtyfKy9aMdGdp+8m/R9+8DoJYzYYVQ\nRTvLrYom65lvAQt0UWtVKdlqXZKOb1GFvQ1G8chDtG2Y4RBMB3tgHNCL4PzfiK35tpXdvifs1XU+\nYbQhaR0RMTRZgR85+QSHtlRS1HGrFmxne2wprVGslAfVotrsNqGtrlnUS6/U1HxXsQ5cVtJYU9JY\nVJH5vFHLDCX6DVXUyAh0rSpRVUk/HRLGMaE6Iw1nDhjhelBh0kzwv4B4seldBI4i336P497ybTZH\nPzluoOF24DFNZUHMZ+i6ROUHTtJcaS0zMhaZV5Xoy1PU+BbDfGIa8cd0A4FqXcosSpgJyq4uYa9s\n9IC8prVlx8abaNdRyoW+oKzPKMplS/9mL5syjCckYU9QkpENGtrBwjCebGV/aByI9K6arGHTbGl0\nWkIalqbfBdXKv4eCBuZubBTto88eNRRE4BwQUeJmfI4WMqdV1AGf2vuASbYjMzSRuQfyPur2p1s9\nyFaA03JAbQuVPFfR5RR9/PvoP3iP+mvHrOcrYsON2L/5SarBTuMw/KzHG/B+qc1O0VVJNL5FmI0c\neKDWFZEHJCKJml6Z5TxcLVCXp84BhXVsZotee4xvhb26zkeZMoTPNVWVjp3a55c6XUKxFqLMaRly\nXioWNewmdq6lpqhDxmntSitpmDmVxa65zCZoSw9Y5dBFJb0i/7t6IWThZvOzC2ZIw5S7uTggmXWx\nX7pJOaNAGvIm0ouCJlLUSsliPTKDmlcx/tYlSdijUJek4dI5Pb08b6QfjAPySTH1skJlEeFe5pjF\ndd5vSD49ckoVJU7pleXMDVaS99DRkcBvB3uESaPh4nbP1PErFREZtJ2DgG+LgL3zZOdsZFFWFLXt\nNclZvZ2vOOwdMUokk0wiWfS3Q0R6m5msWbDLNaThktHWz4lZp7RAApHpyr7e3CtPFordBD5zcC6l\ntnAg5ajzJ25w1V7HajDiYnXM89kz3p8lPJj1+OqFYllBUfd5azyT/t+tT8P4tA2yMGZ1ksIgxkqM\nb7vfk6BnHI8AGdYPn1N+WRiwgn4sIIYkJuIedb/fnr3yQSv+oKj/mv+/MT07QkUJvUiOU9hSM15o\ndSkQ8GJGYgIQuWYfzaDPWktP77WJvbrOB5qGvMeoLEqQObVDFS02Ib21LPbLGuwgtaB5GsVGKxwW\nbVmKbIPdN7sgTepLFvXUOaKzInwJE26w9e920X3pBS5mzgGFtRnmrAQd1stGruzU5VgD3OId1Wt2\ngz362VhkyZ9+pT18aUlS8z6UK4Kd1DkfNcqaDMjW4n1Yts/5ZksmZjskcTOnc3lKGiUk2Y0NaLnL\nAq0KqM12uqSmZrq91qutxKASVGjzs+ZuXtCPchn6XAfoU9ODnby5caq6dDPdnsRV5jLp5IomeAS9\nSO6/g17AYW/FrcHN1jHpLcdry7O7KQziBYe9Fdd6kvm8tbPk1kA46ES6fH/rMK77DuOErMR495iE\nrcKg0YY5Kjsl2JF6bbBjrrdBnda6kP7Mti/yHc+LsiB77yDP+DCeSDn17JHA7KvypZ8HWpWI1/bR\n26vrfPS6lW4DTQYUlS6KrfXKIaoaE4cwSiTTOeyt3IxLZdaIal1Trdty0NbSdSBQZHCOL0KcX9rb\nYZi9ySKesltfcpA15bDuQKVIXAuENzU9n160biHJnFaP11Tf4JQzDiiMIurVylCnnDOvzknCHsNs\nsjHs19qmPS4zH9Kijuk+5HkftbdDYMEL2yzfc6zczqJEQAC9HSM/PttQcLXDo6IlI591JbsuTVLX\nqdmf05xyLaSfoYoZJUkL+uxntv3o0FEk6bNHbhiXMBEyUmM2i3ZfbbKDDV66jqXButUb9M32+EaJ\nRYmFhCpkGN9sv3GwB6vFhqaTqgr64dAJ+vXCS/YyKVGNkxsbEPir2CDaOzVDmepBi6vPfi7NBZJe\nFMSWe+3mnsjRe6jTOuj0ZxLv/NhSKWz2H92Jy1t/U1Uh4wM+RNtuy9+el9lZxo1yvWjN6b22j85e\naefjhte8OQKb/agwMdP0A0Md0y6LiPNZM04q44SkzFaqtgpjUS9b5Tc3Q7JFIZOyQuc9GO3Szw/o\n5TfoRwuG8WVLpE22KwOVtidU1CYiN6CBq9Qit9IFgQMi9KNxC3RRrhc8W74jC5LHZNwyq5kzO21K\nbcZUmjrKfYcwunlT2JpNk7fl/MPkxSSk1gl15a6NAB6ANsAIlR8081lXZW9238x3aqVaIJNQRexl\nll0hdtfSSlHr2X2nvaQ/EJ6+IIkciwPgzqfLdk2A0s3QrPnIOH/g2VqtV0SB3T+574bxRAhL5yco\nj3+t0EvSDnO0zyodxT2iKCFN9xnGE15kVzogKz1hHfzyHJXtyLm3PITWshx140Dg3SBM2oM9GOy5\ne9z2Z1zWlniftxlcVzret45T0ovzDQ5FS0Ta2qZnFqxyudK8P/swqJqX21rD8kPMlL8q9uo6n/V6\nY3gNaGU/YZQSqsqLApektWKcStZx2Fs5UIFFmNk5BQvVnJYhUTBlGAijsZ0haTFJGyEsvaycYij7\nz2ByjTQ/IB3sN0zOekVRX5KGFnW3Mjxn4oQ+1EDcVQt7VZKmOUXQc98lxKQJb+18wG7aF3qWKDWo\ns1kzP3M6RZ8YqK+NKBGH45zO3gh1/W3msebJ7B3plfQnJMF+03v7MBYmsmBZRobzJwLjtiCGE1F2\n1flpk0X519c/D2GbTHIbG3MvbGaRrKCaXjxFW2Gyx88cEwBAloWuQV8Ea44WlgFiueFMushJm+1I\nJpNtcKb56D9X7jt7BLN3m4HY/THheEw42BNH7c0j6YsjcRKGR7BVkttC9eNnMNBxQDZ48OmZTDlU\n92fiBCyNEaYECHJN3jBAlL1DcdRKUVSXbtFvQaP9LNUvx6ZX9yGB9r7BZtDlZz00ZVfChHp9wbya\n8XSR8t7sdebzrbBX1/nob26QTPi21oQqIw0HQpVfFRSB1akPHct1Gq5Igkt5j30AfTMRWP18KX0Q\n+7r3sHSHLpuhvJC9DGBNLxSwxJUw6w9pQjE0oKgvOeyd04tCw7c19pQoy6Z/coX53FpMrgkVT5px\nUTzg/ZktZx07Hq/Qo+XfCAy8hdAdu4VPW/swaCi7ENvF1mY8WxzPxkdV/EIm7JaVK1nod/ZdQCAO\nJWoIM+kiIDvf1THp4SXuHkiCHpQX7vuusoqqCRg2/li2zrH2F3jzd2XOjzVXTnvJKQCuzk5Gu01G\nagZ8+9EO0TqR52R50XDyefNTXa2dRuLBY9kwsuEvNIvCHG+W3Gz2O4x3eXM0fa0++i2yV9f5+E1E\nP/rJD5wQVmmIL+fVjKIOmK78KXvt6GGSoCfUNotz0vEtCgNUACnPCbfXjFAdMxrsy4JZPpCSlFk0\nRASrbibUvSbs89UTR8NiI+S9TjVmGE+EtytuL1o6G26QdAKtiNovpWilnIxoGg64NRhw10b8dSmL\nnV/CCpOGeTt58e2kVwuiImE/vcP37z5w5aKN/fDQhw6ZZ6NnH3FlInWd76H2V+5cWmiwYyEAWVA7\njlJnQ4r1AljDekFq0VDhJpecnLuVnAdHx5IYaHifYGfpmuiul1WXpOuA3bTvzqfjLDMlquaMKbef\ndp/9jMNmPP7grTtfYSIchbOF6Dl1KGPKekoSQGTPl3W+3UzAztQksSACvcVedTIgMLyCmUfACzKv\n5JfFMmF9j2oT7PlaUu5/gdZH+QFh5jkeaPaXjiNbSmYVGWZ0e27AgDsCCK0Oku3J+TZbiPhi3m8H\nUFHSCkJ64YgfenE18kPbt5Fe53vCXl3nU9fuBrbWcjwG9TUty5bTAVuTX5MEkmlI7V96HhpId/bN\nDSyL4dEiMkCAKVGQ0B/fEkmDFhlkzfq8QFuvksSobIciWPPetDB9ncxAfgPeYukcUC8c0ZtO0Y/e\nEZLL62+3ItX23FLlGANsltSltrGWBD3pI6wWbgFomS83vHMdIq+huy0SN04lomlqK62bbMLPdnzm\nAARMYB1QaI9N62ax7g9Q++Y7PcezNfJOhV8u7GY6xiGkab7hgPxylzM7Le/LjluRQXscyxnDgaxe\nrmQ3O2pnHNZ8vjLbM7GIQnOuwyC+el/ynpz3/sA13W3jPFQxYRDLNm020YUx2wU5TcHMX2vbh4PW\n/JMtyyZhj2iwJ9mRzSptRpkKUedF+Yxxcp2IpOVMnM6Svd5V2VIRbtk2jkPPAVnH6GdAta6oqYQE\ndbVoAQ6s+imnU7iWSB8z7kGYUFSNEHIUJC0l1df20dkr7HzWgsqaeGUG87AUHtz56SJuDXjamryF\n2Eb1WhaT06citRAlpMMD5ioCVm5W5+k8Ig1K4BhixAEtZ2BIDuvTJatpTThfyZikkeY+XnyVPzjL\nWdZtiDdk/GgmsgmjOkXf/zesv/K+QJfnl6i7n0JnQ8r1govV887QagRo0ROKbL+qcgua6yOcPmVt\nNO/VMHdRPtBq/Dob7DVZyxUs0Hq1kPmiKIF1pzTiRcPO8fjzScYBKWg5VxX30IO91uJ9FSGrzoZc\nrI65WD131xAQwbKFRMdu/sk4IFvuAtPzsBszzsdqIgXjzca0Xi2I6rwBZXQkyx39kD+Mmx/B/tgN\n9roeRyROwC22xmm7Bb0/kOa8yXpERn3pYPe1NrNO3eyn23+0s1b5qhku9tgfbN/RZdRBT5ge7DXM\ncieEd7E6NhyCT8QBWee3DTlpz1G3/9QJInzgiJ0JU6kQnW5jA5lXZ4x3bzcCjFZ4cbqU4METbLRl\nvH60I8/29Agu3916L3299prhoG2vrvNZr9EXl6jkOewduhvPOh7p18QcLeQUjZKacdrcOU5XxbI3\nlyuJGueXUJWEYUyxLjgvFc9LyMLQlN9KQnVOkl4n3LkuhJ1Pjp3sr17W8kAYaYSjZczjBZwUZpi0\nkht4nMDpEt4Y7qCfH6FPnlM9nhEuK8IbC3mIzUL7/ix17NrTMnQPwLQMuJsv2MsWjk04XQfSq5id\nOmJNSlPSSuK2rLd9aK0yqUU2LWdSkqpKodEx4mZy4hrI91Wln5bj6fzdyo+rjM0MyWuSQ6dME4lI\n2EXxwEzz97ibLzjoVYLyqst25hWVpGFGGEWU64Vh626TtdrtkohzdmU/2+uyTX1okGDeveIczjay\nTJqeig6TNlza9GFax2/Pp90nzyzs3rFh+9nP/FIGds2C7L7/YmZYILzp/7oE0xvzyV8BcUDeNV7U\nU6dl1Nz3x4yzG8KzZ4/X9um23A8266Iut2fe9tyagEZFCWmYiUChrlpBZKiOGY1vSTlx9qx9zsuV\n3O9hQpgNJZg7f4CeGYRcB8H52j4ae3WdD2zceFGUOP2bUTKjWAetOYuzImScYmDNhkUgM5oxVSla\nJ3uH0lRfPOGsaBozooYop/uwt5IH0URjqqxIljUqOye+tyPw0ywnXcMbecof3qtajmNRwyd3xAm8\nd3HMm3s3SD5dEud91HCA+tgPUPT7nC1l6NGSm25rnFreMJA+kI5ikWmuS+mjmPNk5RTAROuzORQF\n6o4pWXR53kzJST823HBJLNwrdorc2hbAQquHYLdl32cXIl/m3DopI5PAQQcFleXieFbHFPWSUQKH\nfYHIh0qGInU02pRJqKVEGEYj43SaXoReLRoUleWos1lM3msWVSvl3ZlN2bgSvlP3SUw9eQ29WjRO\nyJwXJ0ntO0TzugKhignZFGazljT9SZDgR10F3KhEyDAJelRBSa0b8ERUryVbXs5gsEd/eEAYTwx1\nkwjE1brirHzMOL8h1+9FpVzf7Hm+imUDHHRc9XaIooTIBA4CBrqUgdnjd5ohZUuYazP5cgVHD+T+\nWs42z9Nr+8jt1XU+WhtE0qU8bJenEPccr1OtK0ax3IC+OJz9Oa0V8JyWOuXiHDW+xVn50NDmt5eY\nxwtY1lZmYQ48Znf/njiuoiAZZagb15wsMMBusMf37z6iWtcOUn1WhK3Bx3emj7m1P2E0uUcVBpwU\nD6BsBLjSUNOL1p68g3Kv2wl6gYjLouML1DmFVN+eHLM+KwjGc2lwX5Po3BJsWnirP/sCxgFZRmx/\nuNO3bQ/9NkRd1+mUldTxkxg12m2VA6swYL46bc1fCRtFExzUekVkekobzAfLi3aGtW0/+wM5q10K\nGJtR5P0Wt9rWhbRbbrrCrBPayA67WaLPVba8aB9T3JO+o7+fLzB/nyw7AtCAbc6MnPtsAXulI/gM\n4wlw7KH6Kk6KB4zH1xvkJLTh0T6C8fJUyuP2nG6ZyWkds3VCZn4pSnOSuCcs2tbyPdT+VCoV++P2\nBk6fbqImPwyK8kOYXivK4jVs29qr63zW2st8FoLwmQlPWJLvG1YCYXyWZn/jSM6KkDS0LNVzav2E\nYTIhyW4zXR0zLUvOynirpsnzEhZ1SBomwJxQnTA6NM5mKLM93YfrWvYm5boZNr3Rl+E3f58eXU65\nSJ63pIytpeHazSdBo6wqg4y6xbZsTSsl1DpxD13+ftOjePyM1f1z43xS4iSW8kyUNOwDZu6HJ8dU\nj2foZS0S00mMuiONaZXlG+gpwCHSWtmPv7huG8y1zWOb+QyfwS2zuA/2mFcnGxT5g7j93VZ6YUOE\nbHG+0Xtq7ZNvtudizfZSypWUK/donE60SR+kLdS8OxB51fxT1XE+XQcSSXlLddkdrjCHtsy62/Hu\nj7rJfgABpJgBX23njC5mqBsrR/A5zm5wYeRHrJ2VTxzsHARIEapI0GkWmVYL+s6Kv6ly1Tjxzj51\nsz83v2TKtBtlu72RbM9auWqJDJL3xTF9RI7ntW3aq+t8oP2wlitgJg9rlIheClDrYw5ZtRimbf+k\nobpfUuvHRl9mRlGHJssQev8sbDcaz0p4MDPN/fC5IOAm99C2d9J5kBQz0iwniScNyigQCLh1JO/P\nEt6bhVzvae4OSw6yVUOzE8aMkqVhRA5Iw3XLMXYHGa1ppSDfF60XHqBPztDTJfXTOatpTQKsn80I\n8jNU3m8W6rMz9Mlz1mcF9VOpl6/PC0LDYGxJKrfRykR+NuRHwP5Ca0XuzMJuG+XrswKV1XBxiTp/\nApN7Tha5JXR3xXFrpQTK3R2e9MtmV5n/921NfGictGFfsDB46U9cUBbC0DDsTwT2bYdoryoBddFq\n9n+/j9J9X2dg85sxtbyQczQVcTZ9fCGD0h5oQSMo0tFgn0IvRahRV6IjVUt5244s2IwqHRo13eVM\ngh7Tc9HWiSdeJrnNASdxc82iZHu/KN9z4APrdOz+AwTXpM+phrmUQb+HTCm1B/xj4GPAu8BPaq2f\nb3nfjwF/C6GC/7ta6892/v7fAv8TcKC1Pjav/RzwMwjf2F/WWv+mef23gRs0Ndw/qbXeJt/t7NV1\nPoGSG9gKikHjgM4eofID+oM9iCEJDCKtBeNctQgHLZdbV0r4Wq9u9WqWtbBTwyZDdYt/qzuTYhq9\nFv5raX+Kdc37FwnvzhRffK643leclyl38pC7eckkkwfHLzlts1BFzWBepxymoRUBqjTEct2pLGrY\nDOKeZEpjQfEF43mbQDLve/2RmSivdulllECpFThHrLf1B8pVMydlqFJUFpn9S2UxmX2R5NabXNt9\n00XdvsPrOlwLLFDQLPpGdlndONhcrK8AOOjluT2Uds8s7zdidMhc0zaEluxo2ZynFzm/bQ5om23b\nd8edFhlov7kxPaJX977BngdnXoGGMBsKeKA/Qw0XMFmhZvNGeHC0K+fDVBRsSXtenZGGSyBo8RBa\n2iLmJ236KbtPGIg0SIAxnDeVAgtW6DrXLaVdd50MKtPeRyoLHeFtcx6ij67spvl2ld1+FvjnWuvP\nKqV+1vz+1/w3KKVC4G8DfwJ4CPyuUurXtdZfMn+/A/xJ4H3vM38Ikdv+AeAm8FtKqU9qre1C+GeM\nqNyHslfX+SSxKDj65h7emUPR9Me3WiSL/oJ1Ujzo8LgFvD9r3+xpKKqUdj6nqBXLWpzSOKnoR7ls\n/3IqTeJuRBomTKsT6rIpxfSjsTR91yWj+Jw0XJOFkmENIk0WCsvxIFaO480vx/maNC3bBn8FM1xq\nkFxZiMoi4lFNMBYpBJWmro8hg4emLDIckBgGanXjGty82WyzKqXMpbbMZugKAhyXnPLLXtYZZTOY\nPpcF3jT6lSWg9IddH70jxKn5gcm4hq1FdOvCX5VN9vP4SBwZoO7cat4TGYkCj3nBqs2G+b78bTkD\nCwiwWa3/HdUpKssdqi5aS98tXQdN5rVtHujrsS6IwnvN6RuNG0dpS1vKQL3V+BbVYOTIVsGXvq7c\nIKcePELtPWnmjPzvW85koTdKo6EZLO5Hqw0ZdbW8aOagQLKOiy1lw9kcfXouQ6JeKZMo2T4r1Dl+\nrZSUfs8aeL0GgsQru1ny253rH/58f3fYTwB/zPz8y8Bv03E+wI8AX7Vy2EqpXzGf+5L5+/8M/FXg\n1zrb/RWtdQHcV0p91WznX3wjO/nqOp+g04/xB+zsImYgoZEfgYODzU4O3+a4fOgc0DbHY4EBFihg\nGahHydoQkg5E/8agp3RoiDMBwoTnqycbu26RS2k4YBBPGSVresb5ZKHAwtNg7dgX7GcE5CC2rBtd\nGgfDrTrAgisa2eFeJuWVvhGCy3tCnRMGlPWUMIhJD9+WMqKVP9g7bG3DOtquA/Izk0W9MmXDCMKs\nzYRQGDh3coo6nUqwYOv1/vdcXMLFfekDjccOQcaW724dd1WiHx+xfvic+vlSelZWzRUcVVCtK+r1\nhZl7qUxJ1JSQ+gOSfF8ACx2z2ZFFr0VZThQO2yU/v8xobVsGdFXGY+d9PC0e3/Ha2RzhWzMKr0Uh\ni65xPEW/z/Hi3VZprDLKt1EgpdNaxYTjQ6LhgbCa+2b7fyYgsEwGw2zSZJpOU6vjeKDJwPxjPD13\n5dww/wD19ifdn9T+PcN4sD1bkYBjSVFdSrl7/15DTrsHPgAAIABJREFUfAtSLkxThzhU41stxeNv\nxrRWlOV2scAtNlFK+VnEL2mtf+lDfvZQa/3Y/PwEONzynlvAA+/3h8CPAiilfgJ4pLX+nGr3ZW8B\nv9P5jBeR8ctKqRXwfwD/g9Yv5qJ6dZ1PJFPxVqLXwoddnXc2hxypu1+eNqSJtsENUJVMbn2a4/Ih\n07LkaBF5bMSN1AIIPNtnoRZuOGEkppjJv/mlyRgOnON5bybsBm/tKEIV0Y/GDn2V5PskQY9xsmAn\nidjPGsE5gRHHTs1U+NpmZl9EoM43pXUbZdRpvDtwRhKj0pBgnDaltNEuZDnz6twtKHWwIhkfElkQ\nwpa6u14IHNh3Aj6jNEBF6RgZAJfJJWmPKLolMzBRgjo7c4uIq+FPl6zPJSsKdlLUZIja33XM4So/\nIMpywqjnza0YaPPxM3hyLOAKs404PxJnmu+h833mpolu2Y+fLmKKOmacFqTBglHyXK5xaFinjRPS\ni3PpN/g9CQ9C7Up+/nnfdv++KCPaEulDk+1Zp5GmeTN3g8l8+gOR1o41Ty4/4AunA0ZJzWFPZsIc\nL13dsH3ba9O7/n2CLDNlM/34SGbF7IzYXulmmNI0FxTeFUPF1tRwINe0XKGPL6gez6ifztHLimwn\nRQ0/EKb08S2pEpj7xUdw2mOv1qWb/QGYZCUj3wHZAGa0ixrfckPJ3wE71lr/8FV/VEr9FrAtJfvr\n/i9aa62U+pCEhKCU6gP/PVJy+3rsz2itHymlhojz+c+Bf/CiD7zSzkeNb6GjI4GIfhMmWcXSOZ5R\nsnaM11bWOQpgEIPM1KyFi83IK+ijB80Cc/xMoNfX35boOViQJmtC1WOc3GgRJqqqYDfYY3cn4dbg\nhLd2puxlQl3jSjczKSsk40P6Uc44WTBNApZ16Pb3SvmFjQM1mUcWEfRj1CiTKDmVxm+aDLhYCfw8\n0VIWTJMBYXrYcMNZKO0WZyTOdaeVBVlqGGstuYNIxO5akasFIXi2nq9c70n4vDYbyDbjUsuLTeLX\njqn8gMrIq9ve33QVOyDKogogsvNgS8M7tjI9khcTXl51bj602YHRSEp91gm1e12RIMvqtQjs2Sws\nM1Lghi0iTPpOHNE3X7JDqJsMw/qqpoguGY4PiYqdzSyoa93jvMqZ2uxny7CnBQiQ5hRJxKI8oloL\nK3iie1vlReR+Kpt7v+5kWv2BA4RYNozvNtNa/4dX/U0p9VQpdUNr/VgpdQPY1vh/BNzxfr9tXvs4\ncA+wWc9t4P9VSv3ICz6D1tr+f6GU+kdIOe6189lmta7Q+b5h7DXcVcNBc6N34ZwessYuXmp8i7mp\nhfejnLvDokWJD5tN7VBF4kRmJ+izzztJaNe3SFNpclefZ3T9baKh8IL1dQp24epGvXXJSA0Z5UPj\ncB5LjX3Z1Mqj3g79ZMxetuCsFLSbzb62Wtg59us5alLC/nM4OSMsV9KEP7jjehnpOmAY7/LocoqA\nXhaAOERx0AOSwYhQ7TuqFumTyAJiyScju08qQ4dek7t1HpsZEQcJx8wSpak4mSQmzEKCZe2yHmzW\nc/i2RMnrU0wViXFyAz018yC33kQlMWkSo6dLET37+MdQk3uyj4ijrNYldbDi9qDiIBPi10ZGPW8x\nWIOZoTL7666lvc+Ws3b0HyUNdNufc/H/91FetmyWRELw6S2q/n1oVT03UGD+IC+QzmHSv81nDh4S\nBaFjwXClMiCMY4NgW7l7vtaVsB1kuWQtFhSS91p0QTpKDVHsrCn/eYzjvqn+QJ7PkzPiUUa4O0MX\nNcGb0kuUUrVoWRHQQs/5PHj2NddvKiv08VdalQ2SWGaktP7wgdmHsPX62wY4+HXgzwKfNf//2pb3\n/C7wllLqHuJAfhr401rrLwLX7JuUUu8CP6y1PlZK/Trwj5RSfxMBHLwF/CulVASMzXti4D8Cfutl\nO/nKOp/VupZp6+xGc+MvZy9EyRAmMsVvGpw634e66ZPc6FumgPaCvqG/8uTfoo+fNU7Hg8k6GhtA\nv/8Fegd3mh6Qbx1orz57JKUiz5G1LMtJD9+mF4447J17A6fNwuRP028ct/1/L5EhzqpsGu7efgyz\nCaPkeUv98feOE0bJisPekdE/6ok8A+1FQV88dPthzXJ3Rf4xh8mmtMFgT85Zdg79mdAcpanU8MuV\nOJ69kUBsJ29yXDxoLUppOJCAwN/mwR1Uf4A6O4Prt9uN7GJGkvacEqjt9QxjGrE5y15dnTgwBjQQ\n9m4WtBVW3QWgtO7PNiKsdS/5/TqPeaI1EAoNd9sW06sFyfmCw/HH5Ktt9jo/cfdJOjyAaAxVRyo8\nNPs4Hht4dNQQnkaNhEUS9FCpZFzKD6q680/DA3T2SMqep1Mnya7euGkqGCl1PXVZXRfI4HbL9Q0N\nlP34fhu6jym95QZ0otg6O/ddbp8FflUp9TPAe8BPAiilbiKQ6h/XWldKqb8E/CZSnvl7xvFcaVrr\nLyqlfhUBJVTAX9Ra10qpAfCbxvGEiOP5X162k6+s81lUAe/NCurBA8bpdaLoVitT2GqdRWBeT10Z\nSFQut38sDQetEptFUG01gzbSF5eGI+yBTKJ7FPXW9MURmO2t33lG9fgSlYVSEkvDBnqchTAcoNOc\n/viQUbJgnNZGj6h9C3Sn67vOyOm8dKHgnrT17uiQaSl18i+c9vjXx4qPjzRHvajVOxjGk2ZYcXnh\nJu71VUORPgPAtiDBZ1eOEnHiSSTRrHE89f4dTpbv8HvHCW/tzJ3cgVyfz7vttLbZdbJ2d8zjE6kI\nHfRshVVkm8+eynEszQCs10MAWajDMGqkBizCbtsxd352mYP9HHQ44qpmm/j79Ag9O236MNDAoi0T\n+JbjDM+eAoZrrQNC0eAQbD57OtDITli6oazhALQly3ItwVlrvstDEJbrBfPysdDkTN5EZTvo7Ahl\nnKea3IMooQuhbyHorJP3uPC0JRm1g8oe154G1HhmSo8f3ZDpeq1YLL71S67W+gT441te/wD4ce/3\n3wB+4yXb+ljn958Hfr7z2iXwma93P19Z53NZwedPUhbVird2DOOuXXS6zXbYfCjDBNYFUZC0HNC2\nwcleOILZiUyuzxZwei4EotDMVljzkT1pKj9Pn0O/lAfZNKZ9BU/9wSmr++eUR7If8Sh0zifcy1DL\nkODiElXMiBDoeBp0kG1X2FaqF4ue8uUB7LmKpEdzvd/jcycVXzhTvPNBxlm55OMjGCcRR4uI2/mK\nu/lTdtNDUXhdPH2x8/fOv0+6CbRE5sJsKBG0Xfjs5wZ71ONDzsonfPl5zOdOQyDlj0wWXMvelJKm\nPQ5PFkBnQ+b1lCTINolFvfvE6QzVZVst1CxuJLEALKzMwOrYAUhSlX048EDH8brF/aphUwQRqKKk\nYdSezRtGZ6RM6c6nKZVtNZ9FwEfgGWaLMBoK+s2AELRSjYx2X0pp1mkK8adV5DVzX958F2EiA6mr\nM8r1gtMlwrUYXdLvj0kHb6NTw4LgkHyVQ222HI/NkP1eoy1JWy2tbSSv5jiTbNgqm762j85eWedT\na6G6kSbxUmYWAnOzegvJtkhQnz2CqqQ/uUcRrMFkPF2kljVLpuhmKQDee7T1vc5sxGXISruqm9B2\nDAkQjGXxDnel7OeG5TC9pMjO/CQOhedoZ6IxSb4v7+2WtLp0L0sZxN02uKiyHTcI+4P7Iiuxn2p8\nH/u8hFEZMC1D+tHlN6aXEiUeQ8CSer1qehFmKFLZ7ADTF6JinFznU3tPSMMVb44qrmVvNpGxv8jb\nQdDlBb1s5GQJCAMIM5f1tAYvMQvo8KDt/KrSRf2FkTiwi+OGLo93fM68a+/MJxWNEifrALQHI43G\nlHPseV9KkNa8mR7Xj9m2DxaRltLqS1kNLFtyC1Xs5BYEkSiBgL1e5XrBfHUqz1unF6NmJwLBz3ZI\nB3sum9rLpkY7S2DuFRXR8ED2wclL4Oh6NhwPmGPLGycUJeacXErm52U/bm4NyRjt9762j9ZeWeez\nzTYWXUu1Ys0uus+O5UZdzkgn98wQ3qIV+Vkr1wuqdU2tH9Dv7dDP3kZnOSqJ0O99sB1Ga2cNkkg0\n7s3swlYaltufNkSJD4lvnm2hDKJp9trDUjFpmLn5pHk1a8kGWLPN1n5n9/Tvfw79+FkzOOrbYI/a\nm0361B4Udc17s3aGt4337qVmy269Hao0o6zb2duGzLWNtsHptACMk+t83/iYcXK33XexujWdbE8t\nLwg7irD2etRrea1aN5DwNDTzPd5iZ/e5Nou0i/i3HaP/3dnO1mzEcehZs/eMVTL1zcK67favTRrV\nWVNu8zWDts0EhWbgt5UBGYey8K6DrQTYf1GQkAxG1LpiXj52/TFoeqGhiprhUm8gNRoeiK7OBmS6\nElBKR1bdbmvD8fhmnVBVNuVZkwW5Em3eaxHTpuoKUM7XaVq/Jhb17ZV1Pnr99emyW3E1218BCAxv\nV3hwh97ubRb1tFV6syWDYh2TBitGyVOKKGe4f4co25FSzHsfNNxVls7e0npMrqH277VktC2z9aIK\nuJs/pG+3lx/ApGEWbomU2W16dfVuxF2tay5XTR/KQmyjIKSXv4maibqj/v3PUf72l6ifzonvnRN+\n/6wZ8jMlJd9CFfGZg4q7+YL3ZwnPFiELM+BarIP2gKfvLLvWcTwXq+PWAr51wQmvLiPtxtcb9KD/\nfrsgQWv+RFUlYb7fUoSdV2fuZ59uyTpy54S0duq47XNjh3s9WiMb7NgS22BPIv3agzwvZ40+kG9W\nybTLql2uJDPqew5vPJbj9LSYmoV807HaQCQMYsI0IzS9q0X94vJttS4p6suNY/fPgRNktKzYyRzG\nzYB3mI02Pm8HSV+Egmxe3A4eUmneLh17/bnmi74J2Ptre6G9ss5HBdoNZKZhJouxFa/qmHM8733A\n+uFzVvfP0UVNXNSENP2H3u5tLtbSaLeknzJ4KMiyYh2QBgvK7AHj/g3Su5+C/gD9tXebBjCmRDa5\nhjp8m+erJzyZLwxfXOaUUUHE4A77BQfZuwzjXYbXvw81lghSec1ULKGlZzL/EFKta4o6YLoKeTr3\n0V/aSTH0wmNGKPQHv8/6K+9z+aVLZqcxO9NT+kCYxKh791DDA2rdlCl8BzeMKw56xxwtFjxdNCJ9\nYCJrf+e6C6jtcXiO53kxZxCLCJ7jBLNMAj4Qwfzvvm2bSJ1t5Fv6m2pTJ8cSzoa2dFSduazW0hWd\nlSm9aM0oLhnEMgck7OjbrRUA+PvTkaEu6kunrAkvQMVB0zO0sGHwmDviJrvZ4nTqtXWiZWsYVc4b\nrTLhtvmZromK6KzDot440V4YN1xuVrzQyE9YTSF/INXPcrqsFC32ixeY3Ua5XghIyPYIfQHE9Iq+\n12v7SO2VdT5pCG/kNXfzgn50aAbuZu7BdGajYcv3lF14BJahyyqUmTMBiXwtwajV9UlD7Tmhmmr9\nkN30kL7R7tHJI9TpOeztSFlkco9pdUK5XpjtSI/keSms2ADPy1C+pxdy2Juyl03phSP6+3eIxrek\n8W37NYM91PDANXtBHtjLWibzp2XAs0XjAhrHvGYUn9PP7xKOdlGTIdn+M6qyIh6FhIf9RhNlOaNn\n+kZdC1XMOLlOP1qwlx1z2Fuxl0Gt18yrc0bDgxei3CydzVn5xJQLm7KdpRtyWi7DAxdIOCDCtoh4\nC5LMLeq+1LO1qkRVBWFo4buLlsaSCP4FLJKAcV2RhiW1PnYNa58JwLEE6JUgvTIjQ20QjVaG2s8a\n+tEOEdF2oIE1P9M1TkjZHlCUtJF8VYnOmsW463SsY7WWhssWEeiLrMub93QRm21IQJMGa9JQEG9u\nJiidCsOIdZRZ3obdGyJW3162H7IzbWCIRabW2mSjgZCebkC9rxq5+Abt20gs+j1h31Hn83VSdn8G\n+PtAD4EH/hVDHZEik7SfAU6An9Jav/uy785CuJuX9KPcwaAtVFh1bjpLwKj25WGOLO367V0ZtMz3\nIMs3SgN24v15Cb1QsZOIBIMVpIuCY4gnzgFZ7jB1/W3mqqCsZXvjpKKoY3lwQ8XSu399gbpiXTGK\nzxklEnH3dm+7aN6itoxoKVGQuP3tRWumZeCkH3zHY53m08W7TK69QfJpyIDk4XM5/u9/yy3cenbk\nEE7btHpCFbtotxeeu5LNop5SqgXjw49fuZhMV8dcLJpeksDEM8eNx/LUlaI0bMxGOQfkSmvtTKNl\nXYSjv8hXJVGYtxRvrVSFJY+dlgCRGeKtCVW1Ueb0S0YVFYSBEJJqLdmOoe6xpda9bGqOeyALJThS\nTGceBRLQZqbu8pNdnrpsjjRznG22vAt0HM/aOR5bUrTntWt+TycNM0aJbM9WAYo6RHDpoug7TCcS\nLFUlam/k9rdFxGoRiGY4+UM5Hfu5zvVTZm4sCjNXJi70slVOdM7TAERe20dv3zHn8w1Qdv8d4M8D\n/xJxPj8G/FPEUT3XWn9CKfXTwC8AP/Wy70+CNQe9mGE8kUXL8rf1y2bxsuy3lv9qVKLKFYGNKPd3\nZX4j2zGDj8smYlzHzvE4LZ9SkYUho6RmUQWcLtdA44D04AjV22GuCocYA3EE49RyxEUb+kBWoK6o\nRfZ7nNaM4iNGyTn92DzAW2rzsjgsYRVuyDvY77XlwqLWHC8figP6dxLCN562a+PG9OwIZR5wm0Fq\npVpZR0TEKNonChLHm1XrFSfFA0eN0uxjbI673UuyRJe23Oa0d6yZDEJ5jsXP+FSnqW5NWa44aOZo\nuqi+uiQNM2oja5GGzeImZK1yvs5KebxGyZJ+1GTTFpXX7VnYDMRmO5crzXQVC10PFXvZVN4fjbc7\nIK/U5izLZb5o0ZR1KWbw7BiSCB09Iprcw/oZgUBvgkG6jqfJ3KJW0NVFfAqcPAdmG1LuTxexIbv1\nHJDluNuCMu06oJfathIrtH5P8n1PbqPa6OXZc/JR2Gsl07Z9JzOfD03ZbSgeRlrr3wFQSv0D4E8h\nzucngL9hPv9PgF9USqmXMarGQVPG0LMjcTxGrRMLDx3sNRGzXUzHwv4LyOCiSc+1UtRrKwwmgACr\n43NSKPZTb3fc9H9EGq6wDqi3e5tivaAwglvWrBJpGgYGIh3yuNO/Xdbw7kyxm0ip7/9r79xjJFnP\ns/57u6qrunv6NrMznp2ze9Y+x5cTxU6Ui7ETEZCDczEmwglyQoQgQkEKEAgggsDE/1jKP44DOJBE\nOCZYBAjEwSFKZDAOSUBIUZzEGN8d+5z43PacPXtmdq493V3VVf3xx3epr6q7d/fsOZ717tQjjaa7\nuru6Ll3fW9/7Pu/z2CC01bruBEyX5ejDRmCstPU2+bMeH3ZQ3ZteZX19m053qzzwZWkh0toZ6UHP\nDNy2sOsK+GaG0uluEXR2OEy1AO+Xj0N2J61in01A1PtR3m47CLp0m+1hMXCSSa2upkd7KA0myl+e\n6cBgBz5LyV1RdI4abbKGru8M84zjtDi+dpA9TLXYbNiYEDUwVGBNMtA9LQ333TboHKcpx7PA/IYa\nngWGnmkBLgAxm+gbpywt5HWcnI1ukB1LQic0Bm15alxHnzdNuE1U3CVav0ySnxrSRPl42VmmH3gs\nSzAIY5fCWjVIW3bldjt1yu/WTFHDBKC1TcK8u/x4V5aJJ5bqw93oeIHnZoK5EkZEpo6Xqxknsz0n\nOmrPoTaNrPFS464EnzuQ7J6Zx9Xl9jNPAxjJiCPgArAgRSsiPwL8CMDlBy/oQWCJSdlS+E19G6Yv\nxdOp8i88m27bamdASCtQtINKHSWam7SMvrCT/NTNdm51x2UDUBVWzdo+nmQNdqdN+s3UmHdpDbpl\nNN9hnLuLbdksyMdBoll7nZe9nFhapu9pf8FFU80meiA3daeSaKZ5PZA+w2jHzIC8uliuU5SAcY8t\nBgBrga1TWXM30Kgb+o7VGo2p7j50NzSzcEkOf2UB2zOHU5VlPmzRvU2fjdYxyTwrBUyr89cJu86D\naRnsbMc6fAL0mzn9Zs62+Ug/ioAm0CzuzsOhdv0E3XDsyyoNLjqV55P0gKy5Tn94CXWjIvaZzjSb\nTykj6qqbU28XkiWEQUTQaJLO0XFrUYvU7cPrNnD7CDr1vR53HEnF6b15v5OV323uL29rFgTldVoi\nyd7jEEZEpq4Yxdq19wsHdsb9wlixNW4fX7HgcwvJ75/ghUt2v2gYP4z3A3zjN79Sgfmxd7dQNmVj\n9adaum4RYArV1TuodKaLH4C2hNaspN3JzBVXAbbaGf1ISuwx0IOL1jm7ObMmm+fsTpuuoG2hvYCK\nddr12c+swjgbuQY/SwUHzEA5v62LzabFxtkhY6AzuEA8vATD/cVB3iMROKfT2URrebULBetec5PX\nrp9ypXuw8D0Ap14cPp0pgkinSEJ7l57OCsZg1ERZ1pQNQlYo1lKYwfkJ2RpCrmbFXTOU0m/LJH1s\n4LIBaKdzXBKW1Vpvm8vrE5YM4bnTBhKy1izLxHTCAe2gz4mpAVnYmYYK+zpItrra2RO0KnN74Ojd\nx2nA7nTETueY4caONtYzVGsZXiKLW1hx115z05zbWwSgJTMRrXOnh5RVDddQBCE9k9osCZUu0N+r\nJIBlzqS3m4az273gk2Rm7KN9AmB78yGCjTGf3V+5ljuDUgTJ6mvzvOErFnxWSX6LyNfxwiW7nzGP\nq8vxPnPVqKsO0MSDm0IoN9CxtlFQUHtbTkVAvykttLeq0iIm5ZZkpxwkY65PyheHvQP2U1k6fx6t\n7m6nsOnenTZLFGhAm8c5xpByd46xtJwelu0y1+vKKDuuataSTi8UF+0wyhby8kkutCubWR1MXRDq\nDBca8qyXj98574JQqwfegNprbrrBb7F/47nSHfNxmtIJZ0Csz8lo4gzGrLSQjMZFEIqPncaYUx4w\ntTwxEi1OONPCUrDt40oDZj4vZks2AG21J0QNrf4czxuow+sFkWV4yQ2S/nmqHlvbKNmXHmr3cTj+\nHL2Nbdh8mBtJ4f+V5Kc6ndrq6vRb1/SpmEBrU0mWjad9pK5xsdNmePnrl/fIZIkLmKusBBZYg1bt\nADRzz7jsWlS/xwZlyRI9S0oXzfaWMhFvwjyzAWgl1bo667FtCBROuDy3x/wwoXH5SS68/o1802aL\nT+xN6tnPVwhnnnZTSn2GFyjZbZRTj0XkW9CEgx8CftaswsqH/z7wduB3b1XvMd9bfm4kUXz14duC\nucgn+XFpxlOYyUVAUOqP8LGKLWQDz1MnkVnf3K13GGUundNrbhImU9TzT6KOD6CzRtTqEne3UMYt\n0sq52L4U0LOH6kVl122bWO3rk6xBHBWB06cJ+9ibXqXXXKcfGrp1nha1HihLtxh2YCytotHPzj7D\nSCcVvcH+wvqDBHKNg0QHmOuTJuvxKZ1mz6TcDsie1Z+XVugEVrk+1l4+/VbZHjlqLujlLW1I9ZUB\n/MBj5Xb8tzYiHXRMKlIdPQf7x6iTEdLroh4YlcRFl60jkJD15kXUjcdRT30a9eQz5NfHBA8OkNfu\ns3nxEY6DxJxXPbMJwr5mZCYjPaNsDVBhTDY74XSmOEw0JT8O5iR5k8N0xpXuo6zH26VUoJW3sU6j\nlhCydCZ9E0ZgEMbEwdpCGtkGHQ6uwtHHdbrQBvVKgFmQE7oNyrMLPKv8kKYjF3ic79NoTP70EbPH\njxhdg+koZLC9Sy+d0fvmb+Bbt1/OF4ywao2XFl9VfT6rJLvNyz9KQbX+iPkD+LfAfzDkhH00W+62\nUJp5GD2wBfaTSbmtXolmuYGeJWimWU4/iogaZWmQqvRH4tE47Z2ilebP5uW0hzWos0GoFHiMRL66\ncYiMJoVbZJYSr22QYO+oMzJ078b1SdPNnkAHnrWmOMO7zHS321rLWlNoB4OSn0tGxjjTlOn9KTw1\nanOlewxr0A8v6O2yAcXWgLwAH2eJNjPzu9uh0CbzmiJlekInGhJIk73pEcepUUfwZqOqktLIp7kT\nbpVpRmNoLA3Q7phwqrWDwrSgHS9jWS0NPMutmuN5A3XyjK5z7R+jbhzowQ6Q4wMn9JkFjdKsx67L\nHbf966hrzzN7vGwZTatL7+LXcCN5miTXRnVRw2ioGWuC0vZ4dHlNcda4Omry6uE+l9cCLapL6BiD\nKoiQLKWztgFNbRhnyQYLs/UqG3A6QloQhTqoWa+fXnOTdtDXAc4eG2vZXTnX1pyweuzLJ9frx3oh\n8BmB+0fu+I6uweFzEYc3FBDT+uIe0c6zRGHEw4M70B5cAlHQTOu0m8VdDz63I9ltln8ceN2S5VPg\n+1/o9wqNIhB4SsXiCXeCKWYaB8qSXD9aVNH2CQyjHV63sUcgsRugS13XeQrZFDW57pop4+ElkqhM\nt7Wf6TXX6YTapKxKMwadkw+kSa+1qWtWWarTQ5blZAQfbYe83zNSpNa046ZO381L9ad2YLeDMsNp\nPEJNtVldEHfp97boxAPagRaA7DU36agY9cxnlgdtM5hYkc7QNFcqu+32Pf6Mw/2fEwdrrMczXj0Y\nM4yu6LSWSYNKXCZh2NlPYxAj/ZaZ9XR1cKvKy9ziLtuRE1SZnOAPxq7fCHQadyOFJNGssl5X12LM\nrCQ1Ukzus/YmJfFqjxsDbZo2zfU+XBg6EU//N+FqX9Yp1mij9YeXCBsRYWOPdjjnqZOIJBdH0z9M\nArZaU93ka2er/nE43afT6hI0N0v7mZHpVF/l/FpbDQFkLfLEUz0yhz23UVj8Xv3AEy5aZiy9IawQ\nR0qv+4QFnzbvzWwlClFAM2rS6BzR5QhIaXVDBtsJzUcecLqF7tjcIxCRDeCDwCuAJ4AfUEot5FBF\n5C3Av0Szl35RKfVus/xd6LaWXfPWnzD2C/ZzV9AThHcppf6ZWba0D/Nm23nXg8/dhE/JdN3xzTbS\nohSAcjUjCGMI44I2DCRR+fDZO0jyFPI5ZBV/+ukIxqcFK2unECaFxSKt309he2AstGSJtqzurW0S\nhpGW7DcziyxokM5PHIvKBh7b6KfXr9z/OGhjDec6AAAdd0lEQVSVZHFcYE5GqNEN/d/QmZ3pVhyj\nNp4j6G7Q727Ra2kNOLX3pdUH3dHSdcE8bzSdCKc62XXnoIosaICysz69nWE+14HcBh/Pv8h6GjWG\nsfGs6eqaj6/e7OT4F+EPaLcKOqVj5ZNSBhf1AJtqXTUZXiJb6ztxUXdIjOJBIE3U5Ko7TnJhSOPy\nmGYrRB7Y0A3IvS2S/MSk0RSd0GxLNi3SSgCMUDcepzO8RBDtEMgecWNq1CwK1Y3S/nosP4fpiDiM\nUK126SZJhbGm0rsTlDrKt60khmsbrhm3hLhb1Kd81+CKZcSq9Peyc+PD7+OysOoFyur9TUfamK63\nRrAxIHjwiObTR+T7U5oP7SCvfVXRPF1lCN4hGnNFdDaEg3cAv6OUereIvMM8/yf+G0QkAH4e+E40\ne/iPROQ3lVKfN295rw0sS/AvKDJPFqv6MFfi/AYfNV/ae6JyPYNYFoAc4tbCQBQmU9TkRtma2Pe5\nsUFn/4j58/q7FoRJOTbra+payOk+6vAJCCO2jc6bZSHZBsYkH5Or5+hFm8SxLmhP8mOS2WlJe+x4\n1nS5/6NUHO27HWJmPe2CdZSnqJOrOj1i+p/UifWmmTE/TLSF8SBGNnvQ3YULuulUTVezpOygZmsd\n2Tw1XfUzgkaTaP3yyoJxXhEsHUY72iPJ9LdA4Y3kAs/LujrwXBjqhlhPz8yqXAc3YUmt1hEr6ndu\n5jwdLXeBHVzUhAsjD1Tth7GprJAQsqQYR8NINzDvGGfbnS0dvIIGk+SYw1QrKLhts31WTkRUL1aH\nzxB3twjii0SNI/rRAU+NYnYnoWNeWpSo5QZqNtE1sSwlNCKn9tiE3o2YGu06S3i6M5dejFo9Ejkt\nZnl+y4I/26nQ4W/FXqvK91SxLAABRQ9Xa6DTjK0uMkzhwpBg45BgNEZe/oBWLbl38TbgTebxLwH/\nm0rwAd4APKaU+jKAiPyK+dznuQlE5HuBx7EUQb1sh9V9mCtxroOPZWKV6JetrutPkSBy0vmAGzBz\nNXPNgq64bAdqHzaNZHL/au+E7NrIDd7LhEklS1DHu3p9h4fFLClLWb/4CHG8xkFyneO0AdgBJCVX\n12gHfU+nywpeBk4bLskbHKVadQGgH9kZUKto2LR6cF6wVMdT1DQjP5iipjnzowQ1zWgMYsIHEl3Q\nH42RC5OSdUMJHi0dMrJ5asQdQ2dDkcjpQo3MokrYkCxZENhsdPRrNig66+zBxVLQGRvNPOv/UtVe\n84POspSofWxnO9UbGF8bUJpt6G2RBY2FwdKvn9n1LGDzZVpks78OrS7j7EgrH6QN2mHR+6Rmk4rC\nwWkRgEa7hGgSAbCSzo4hX5RM12yjpkmP2gCUzifk0tSzohNjhWCK+ALQMbWjeElfmdFy0wfy9mY7\nFqvOzTK430pFZBaAGGetAOj/G54/0r2NbaXUNfP4OWB7yXtcf6TBVeCN3vMfE5EfAj4O/LhS6kBE\nuugg9p3AP6qsa1Uf5kqc3+BD5U6v+qPz0kOWtlz9wXfCoaZ3Vu8Yq5YAUajrDemMYJo5F9PGINZ+\nKqYvA5/c4G+LzYl7WCwi52TzA9cNn8yLbbB3uMcptIKAdbOqfjRnqzUjkLho2HTffeq+W/ogrRnS\nCpkfGVrqINbpLX+gt4FnlSWCOaYBujmzLC2TLR3sVwUjwPW3EGk6dbBtPmtnO8OhNpHziCQBWlLJ\nl9qpohxkQqc+kJGWVCKc8gX6BsLOet1g6mncBRR6bqWZk6k3uhshKMRsLfrreuYUNEjTiUuZWWWK\nXGWEzTaqqulmj7upUzrqtVNMaHA6y4ka+oYlDo2atkmdrTp/aT5hnJmequambnRNRrrPyPrhGPO8\njKzsWAqFfUGW6pmhF3iWBXvJktJsqBA+XQzW1d9V9fyWZlQ2la6UZglWg46fMn8JIErRvP2026aI\nfNx7/n7Tp6jXdfM+Sgejf3lL9m8F/xr4SXRC8yeBfw78MFpJ5r1KqVGVLXwnONfBB7yeE1OktLUA\nFcauD6PqWWINw8CkH1rdok/Ih5vim6l9b41G95BoaC7ci5vIg5ecDz3e4KXy1AQszxLBWXcHLvgA\nroejmkYB2GrpC/E4DWiHDeJAOdrtMMqcZpd/PBRAJy0KtfY1IEgL+wNXR6kGxyWPpbvlKMaAm23c\nzII8VzOYQxCUBxCXmmt1nVupRE03+No0mwwvrRQ5DU+PTYBYfQlYt9JQQggw8jM6VWgRB2tOkFLM\n3Xz17t0Onv46lchi4LEpy7UN97u0UN0LnKTXSPIpcdDQ/WOmZpOrmf799df1OvwaimfNcDLbM03Q\nxfnR7QGmOTUcEplzVJKoATAMvfFsr3Q9HKbXNIV6+5Vam21ypNXTg4ZWrZiNXO+SKKVnSH6KrtV1\nTqfLYD/jZJqWoHQTk89WG/Wx2JC6YJBnYdOBfpPr2WJPKfX6VS+u6qMEEJHrIrKjlLpmUmLPL3nb\nqp5KlFKOWy4i/wb4sHn6RuDtIvIeYAjMRWQK/Bqr+zBX4twHHwt3sXuBx3q2VGEL8hYqjHWfhb8u\nKF1QamLzy0O4YC68l20iVtF6GVpd6JoLq5K/HkZZqa/I3sn6AajfzIkDne/qR1OSXLnG1Hao/wcS\nlTXfLDvI2gj7ckM+M8kW65fdFVYL12FUCjyAk7X3U10hkUtrWtj60EoVY9Olr8LIecBYtp+1bQ4I\ny+m6vcdRe1rbzAWpKqW3Iu8StXolarRlnNn0nZPaqViCO6p+ZWYtUNSJbMrNpm3DqBR4WNvQyt/e\nb9FS5EEH8KyREXa3dC3FCzo2zTjJj7k2bnCYLB5HPwDZ1CdA0GhCFLoesXF65HrQfGRz7YTbDvqE\n/T5Jvr9cYic3PkmmLYB0hnTbqLjrArc14nNIRvozgQ4EQRgvlZ8qO6Q2oeHNlCu07IWGVF8DzoqX\nrrqZujdgex/fbf7/xpL3/BHwahF5CB0ofhD4K6BrOF7a7vuAzwIopf6M/bBhxI2UUj9nnq/qw1yJ\n8xt85pWrw0uT+D4q+9OiBwbKs54S4m6hFVDpCwH0XZulwtqBfVhJi1YMxQA32EuzXaRwpEkcpAzj\n3NkzAKYORElup6hnhISNCXFQDBxrTanUUjxpE8sKGlIMnJaaPLxEoqYF/TorD9TVpsFlMw+r6uyn\nonKVGfZ3OQhl87Q8mFRhA5AdXMydd2rOYyA61SbTE9RzX0Q9+Szq2X1NUNgYwIXndW2lu+WstKsp\nFwHiaM39LnYnMw7TmGE0Iw5SZzmQzVM64aAIln4tp0pNrgYe1+ekxT4tczFRmg5dHfR98ddcafqz\n7VXy/YDG2chJNK2CDUB2P6CcsloWdHxk85yT+YHZrtbCuQoJdf+TMY1TzxpKevcQ6axBewBh7M5X\nIGEhGmuDt2GiBkG4QAbJ1cwJgsIxbfru91XsRFoKQG6Zf679c2V/wy+RuZzMIZ6sJkm8hHg38Ksi\n8jeAJ4EfABCRB9CU6rcaHcy/C3wUnRX+gFLqc+bz7xGRb0AnPp4A/uZtfOeqPsyVOL/Bx8IfKPNU\n54EN9MVWXLC+qu+yXLKsSPE4mEZWsd4qt5NLtnTP0S4CnlnbEXEwJW7MnXyKRdHk2nZOmrnKCPIm\neWNGHGSumXXVd1Z7I6Rr/HG8FE4nHNAO+zro+oHHd8dUU1BLGGLJyPVUVWshoFNtfl7/dgzMnIeP\nR2qwg5ObgRg7DGU8mdzMzhdCXQEdIGdOskYb/EUljb2t1oEjpLSDPtYVtaTuUMWqtE6rS9KYl6SS\nltkdWChTw0jnk5If0O5U2zJYWw6g1Fys/xcKFjbI2Ibk6uvLYBUzknmDfjMFUtPg2lo8b1XxXhNc\n/LrqgsurPS9ZSphBGPcIpMlheo1snhtTv6L+GcjEzOBW/Mb9dd/sNS8dfq9AKXUDePOS5c8Cb/We\n/3c0Lbr6vr92G9/xrsrzpX2YN8P5DT5BuCinMh0hYUq71XcXTNiYEEi0RE4+WbirX9oMt4QBVWzD\nkoGuehdmUzFR0T/RWdsgaDaJGqfEgR5gbBCygacTDnTnuznFQaPpZhe66FykkGwtoxMOCINu6W5/\noVKZjIiBOL6sUyLHV3V9ygs+Akvz8y7wnO47tQNLaV8WgEAHoWqacyW8gSQM9DEI5wVhQTd+biOj\niZYjjZplYoLf9xODePulWj1OjPVD1Giz05kwyeaGRSjOxVSnOouAp6ZH+m4fFgKQDC8VA5tH1XYz\nt/kElOkDUm1gAl5ASPIGYWNGrmxQ9BpevVRqv5m6dCtQmd0UzaCW3OETbOLApreK2uCyGWgQ+TMQ\n3PYlubacyNWM3nCb0NR3pNfVCgem5plEIYfJ02b2cgQhhWwQHonDwvwOtQleEVTtTdha0zBTG8Yp\n1kOp5mNUIUq/df/9y/yA7hCiFM2q39I5xvkNPhWok10dKMzgGcddCIcEedM1AeoO9qJxVNqDBUUE\nC0dbtus0NO7blgOxjCCXitFXtO1ej3tbRM1NU3M4JA50I6m1THDba+wMJIwIw4gwaKFMT884O/LS\nFzPG2ZHWJgsKcdBl8zg12oW9x4uLslIXslI1fn7ewebws3Shp6pKOlilh6dEFrfLH7zNQBWGkR7A\nvN4hsY6ZVsLHIybYdTuYmUSuZoxnZYeOqNHmSnfEo0etkkbe8SwolKnzFEZaSgYAL/io7gVduDcf\nDTodLDc6V0mpZmJTvbbmY2cYyRziYKZlk+bp0pmsVcrWskniUlp2vTbguJuqWUocX3DST3r2uPw8\nVP2h7OtR49Bp8IGeFWWBVlPvdTaJW484vyXZfIixJBxMrxZMTU+9od3qL/8NGi+p4fYrndjqJGvw\npaOQ1wz07D+QCbFa04QRFptTnX+TtTFfQS5Q06OFZTVePM5t8CkNMlPPydQOnkYXLQgN44lQD5xG\nQgRMQ2prgISpSzWJbTg0d7yMxnqd1mDtZp31QVRWzx6NdXMnhlk2GhdByHx3bORP/L6VdtA327Ff\nXDgeCcAGok44KAUgS8UlHBKF7fJFn6VOg80Wi5ciaiI76B6P3pbJz2eOVuyM3+yxzhYDEFRFIgu2\nmDtvPtnBBh7z3NfqFm/f7edkeMmJWloZolXyOX5vl4Xt8QqkyZXuEY8e6ZuP5yf6rnurNXHHjNEY\ndeNA31l3j9z5n+THzsXVr6VopYkiSNnAkM4paf4dJpbxqGc/0MZaZfiwxA772JEJTBAqftdXtVqE\nuUmKWwNY2yBrZAukmyoV3VHGZ/p3G69dJJAb7Jnf3vEsgFlAv1n0o/W3NdHG+g3pRujAuLbirLfB\nBKDpiTum6vAZx5YLu1tEkZ4VHqcNPncgQGhSoVM64QzlBeVqy0Q6N/XQ6myHSk2uxkuOcxt85io3\nEiGJHqBtwbdLIa6YjHQXd55CNlpsSm11i3x+mOo7KJPjZzoqmv68qbYbGCsBaEEO3nbum0FeJYkX\nDE7N9+iAFrYGhK0uUbOYnZW21a7P0pLNWsJAi5NaZp+1WghyPbjEQasIOqP9UrOs8oQ68ftLQG9z\nMtJFZDOLcjWXBVsKUxNB64GVnCjtdntY6Fq3r/v7SjkAAZUGw26J4eaLhUI54NiB184q/Fll1NSS\nM1e6Ex49anFtou3Mr3QDNltNrXhhGi9VkiBPPYG68gpkbYNktm9ssgMmWdEE3I9yrnR3C5uMeQPS\nE+K462y7tbdiYVq45tfUvcAZNjRxo0ghR0XQsYocyaj4rXrHVE1HMJsQtgcErX6JcViWpbrhjrdd\nJmFEJx7Qj7Qr6/VxSJI32GpnDPOMfnRQIgzoFGBOnAuEGOdXrQSfzVMmHNOJe4X6uS9R9cTnWP+a\nN5K3n+fRowbTXLv6JrkQNgJnO+Efn1KPkC2hCQRh7OqXS1PfLxIyf0F9Pvc9zm3wyeY5h+k1rQxt\nhDmdzpTx9AFKwcb130BJCsSRAqwIKRQCpHZAtuttD1Ctnk65zBOzLXqdYSOiE/eQLNXb051BkiBx\nXCg9W4zGwBi65SC0simuSiWmmEVEjTZR1CYOjp1qg74bfkYHETvbMdJAKsmZj2dF8PHg99ioVo+x\nKXzn4cClULS+1qiQVTH09lzNCFhS21nSeLs09bakUdjut5WFATNAR6FJbxUMv3agU3Rjb2C0s5JA\nMkc0CaQJ0xPXvb/RmrCVZhylTV7WztlomZRh5TyoJIFHvwjTEeubD9FZG7LpRF8nJHmDOJjTa64X\n7Dzrh5QZlekQttpHwMyxMNtBv6Q4vUx2phR4To9Rz35p8ThXj+XpvkuN6jVPUZMjfQ14PUkOtjk2\n7jLObpieJN3MDPMFKxCbZrUBoddMXZCrNvO6bfJvXNKZZs793ke58PXfxJseiOhHE1490Olnf3gr\ny2E1HaFFvzYzBBwTgFpGYHhypH8/nZsfqhp3hnMbfNK5cJB4umibD7lmttIAVik4SmtQKkw6RWTP\n3TJo9ZwStn+RWguCNDlkd1JOW1mywGYrpdfdNLUk07tSSXG5tFfULJpQo1OX2iuhwt4qKQZX0Gn0\n9IAzvVakxswFzv4R88PESeyoaaaNt7zZj+xswaWHHRX7JHmaR4+0FMx2Z5+dzh7toE9nuE3IJSdd\nlKuEbHaCld4PCYu02goWWq5MIbmaEjEByPUYBRHj+YmbyfgpF2tc546NSe20W30mHOvv8NhfegAP\nPXr5iCjW9bPt9thZapQUzeO4UB6w5+/pZ2B8SrSxrV1FTY3FKgHE8wYYbx2rBGDTk+UAhKN138yY\n0MIFnic+x/wzX9ZU84ub+oZhGbLUkSXc8+mosIqImsgjUVlOqD1gPD8pGdFtt2ckubDRgnZgAutI\nz5hC0HYQYQwS62ZWpx9n9fd0IF+qnWczA5/+BL1HXsO3br9cW4x7WBaMdbowLKUUdeo60ynnwGN8\nhktu5mq8aJzf4JMLjx7FXOmmwB55ONAXdnXWsCzf6zdRLknduB97A4K1vpZnMY1++1PdU/H0aLE4\nPIgUrx4cs9WeMIwvEoamd+XoudLdnhX4BEqSKtKbQHSoJXtsl7u3zas0tFydyhq6GZdHdaLTMWrv\nhPlRwnxciIparTcbfOTCOlx6mHy4zcnsOQ6SMY8exXxqP+TGVHhlP+Dl3Zztzoit1gFx0PL6eAoG\nF+wxjHZcCtKREyio1Fb2KGg0y0Vi+9/O8MLI9cgk+dQVtK3W3Tds7rkAFDXaqIlu7JYwIgqsG6ce\nnAp7gCZMb7jGxzDu0gmH5CozfkvKsfpupmmiru3CjUMnyBrFXeLeFqQmzekIJ1ayZuZSiQXdHqoE\nAh9+nSpqtEuBZ/qxZ5FWSPOhMcGDR8jOy1br8o1MT05FoxCgCcgjr3EBKItbnCRPlz4eB3PWmoG2\n22j0UAdXtdGeRRiV/gcmQxCaJtlAmpCdeCnbbLHmmM5QX/wS0fEB8QOv0YoQs72lTcq+gG4Q9kuK\nDZbpFzXahLZ37yVju1Gn3Tyc2+AzyeHJUUCSt0jmKTudPbLA0I2tLUJWvtuyd9PurtrUbZbVDAAn\nnpmrmRd0Qh47EZ46CIji8g9xGAlHaZtXDWY83H+aYbRDbIvjJgCpk1NdxDb6cGLkc4iaKH821J05\n+4BVgcfRnj1yhO/w6CtY5/taXFQlObPjHBCCaa5TgRsDuPIK8uE2N5KnuTZu8JkbHT57IPzx42vs\nXu9w9VVHXN5MTRAKTSrG+goVA0McjAhEB4WlaTXjBaSbEcPiB1wdIJwczD7HacrxTPe67E5CnpsI\nhylA5AJQSOh8lmi2Cdc29ExnXlB5XeOjL2iajLS8joSuSB42onINKmrq42nOmz2OWnn7CLq7yIUh\narjv5P7drNMX6zQW4BJGRHF7IZVkz6lOZ5Xv9sNkinr2S6hHnyT55PNc/5M2YaQYHO8T709pHk+R\nBzb07BXKg7s3+82vj8meHZHumv6r9ecJel146DVIb2up82nY8ALPoWe0Z1PKVXTbqI4+FmF3a7UE\nUlV9I53pBuIbh8jOFr3BRWR4ifH8xAWgkpAruoaoCR2T0vUKQKOtZZOyZMmX13ixkNtwnL4vISK7\n6O7fs8AmsHfLd91buB/3Cer9updwlvv0cqXU1otZgYj8D/Q23w72lFJveTHf99WOcxt8zhIi8vGb\niQTei7gf9wnq/bqXcD/u03nCaq2OGjVq1KhR4yuEOvjUqFGjRo0zRx18zgbvv9sb8BXA/bhPUO/X\nvYT7cZ/ODeqaT40aNWrUOHPUM58aNWrUqHHmqINPjRo1atQ4c9TB5yWCiPy4iCgR2fSW/VMReUxE\nvigi3+0t/2YR+Yx57V+JaJE1EYlF5INm+R+IyCvOfk/cNv60iPyxiHxaRH5dRIbea/fsfq2CiLzF\n7M9jIvKOu709t4KIPCgi/0tEPi8inxORv2+Wb4jI/xSRR83/de8zL+i83S2ISCAi/09EPmye3/P7\nVGMJlFL134v8Ax5E29E+CWyaZV8LfAqIgYeAPwEC89ofAt+CVkv5CPDnzfIfBd5nHv8g8MG7uE/f\nBYTm8U8BP3U/7NeKfQ3MfjwMRGb/vvZub9cttnkH+CbzuAd8yZyb9wDvMMvf8WLO213ct38I/Cfg\nw+b5Pb9P9d/iXz3zeWnwXuAfUzb+fBvwK0qpRCn1OPAY8AYR2QH6SqmPKX2V/Hvge73P/JJ5/CHg\nzXfrjk0p9VtKOY2WjwGXzeN7er9W4A3AY0qpLyulUuBX0Nv8VQul1DWl1CfM4xPgC8Alysf6lyif\ngxd63s4cInIZ+AvAL3qL7+l9qrEcdfB5kRCRtwHPKKU+VXnpEuArLF41yy6Zx9Xlpc+Ygf8IuMDd\nxw+j7x7h/tovi1X7dE/ApDG/EfgDYFspdc289BywbR7fyXm7G/gZ9I2c5+V6z+9TjSU4t8KiLwQi\n8tvAxSUvvRP4CXSK6p7DzfZLKfUb5j3vBDLgl89y22rcHkSkC/wa8A+UUsf+hFIppUTknumlEJHv\nAZ5XSv1fEXnTsvfca/tUYzXq4HMbUEp9x7LlIvJ16Fzzp8xFfxn4hIi8AXgGXQuyuGyWPUORwvKX\n433mqoiEwAC48dLtSRmr9stCRP468D3Am036wt9Gi6+6/boDrNqnr2qISBMdeH5ZKfVfzeLrIrKj\nlLpm0k/Pm+V3ct7OGn8a+Isi8lagBfRF5D9yb+9TjVW420Wn++kPeIKCcPBaysXQL7O6GPpWs/zv\nUC7M/+pd3Je3AJ8HtirL7+n9WrGvodmPhygIB6+929t1i20WdC3jZyrLf5pycf49d3re7vL+vYmC\ncHBf7FP9VznHd3sD7qc/P/iY5+9EM3C+iMe2AV4PfNa89nMUShMt4L+gC6d/CDx8F/flMXQ+/ZPm\n7333w37dZH/fimaM/Qk67XjXt+kW2/ttaILLp71z9FZ0Le13gEeB3wY27vS83eX984PPfbFP9V/5\nr5bXqVGjRo0aZ46a7VajRo0aNc4cdfCpUaNGjRpnjjr41KhRo0aNM0cdfGrUqFGjxpmjDj41atSo\nUePMUQefGvclROTvicgXROQlV2YQke83StJzEXn9S73+GjXOA2qFgxr3K34U+A6llK/xhYiEqhBM\nvVN8FvhLwC+8yPXUqHFuUQefGvcdROR9aHuEj4jIB9ByPq80y54Skb8KvBvdyBgDP6+U+gWjtP2z\nwHeiG2xT4ANKqQ/561dKfcF8z9nsUI0a9yHq4FPjvoNS6m+JyFuAb1dK7YnIu9DeL9+mlJqIyI8A\nR0qpPyUiMfB7IvJbaGXoR8x7t9HyQh+4O3tRo8b9jTr41Dgv+E2l1MQ8/i7g60Xk7eb5AHg18GeB\n/6yUyoFnReR378J21qhxLlAHnxrnBafeYwF+TCn1Uf8NRk25Ro0aZ4Ca7VbjPOKjwN82lgSIyGtE\nZA34P8BfFpHASPd/+93cyBo17mfUM58a5xG/CLwC7b0kwC7aZvnXgT+HrvU8Bfz+sg+LyPehiQlb\nwH8TkU8qpb77DLa7Ro37BrWqdY0aKyAi/w4t6/+hW723Ro0aLwx12q1GjRo1apw56plPjRo1atQ4\nc9Qznxo1atSoceaog0+NGjVq1Dhz1MGnRo0aNWqcOergU6NGjRo1zhx18KlRo0aNGmeO/w9iNRS7\nvTCLTgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window Functions for Bispectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Bispectrum` in `Stingray` now supports 2D windows to apply before calculating `Bispectrum`. \n", + "\n", + "Windows currently available in `Stingray` include:\n", + "1. Uniform or Rectangular window\n", + "2. Parzen Window\n", + "3. Hamming Window\n", + "4. Hanning Window\n", + "5. Triangular Window\n", + "6. Blackmann's Window\n", + "7. Welch Window\n", + "8. Flat-top Window\n", + "\n", + "Windows are available in `stingray.utils` package and can be used by calling `create_window` function.\n", + "\n", + "Now, we demonstrate Bispectrum with windows applied. By default, now window is applied." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "window = 'uniform'\n", + "\n", + "bs = Bispectrum(lc,maxlag=25,window = window, scale ='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'uniform'" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Window" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VfW59vHvTZhkhoQZJ9RSoFZLKdLWsQhOVSoOB2rF\nqXI4Tq0etVqPTD22Tkf7WrW8qK2F9uDLUai04FFqFastKkUUU6UiqEAgzFOAhCTP+8dee7sJO9kr\nyU729Hyua13Za/it9VsMz15Zw71kZjjnnMsvLdLdAeecc83Pi79zzuUhL/7OOZeHvPg751we8uLv\nnHN5yIu/c87lIS/+LqNIKpZ0evBZkn4tabukt9LctVpJ+rGkJxvY9nRJ61LdJ+eS8eKfpyS1kfSU\npE8l7Za0XNI5cfNPl1QtaU8wrJM0R9LX6lhnwkIm6VVJ3w/TLzMbbGavBqMnAyOBfmY2rH572HzM\n7KdmFmr/nMsUXvzzV0tgLXAa0Bn4D2COpKPilikxsw5AR2A48CHwF0kjmqmPRwKfmFlZfRtKatkE\n/XEuZ3jxz1NmVmZmU8zsEzOrNrM/AmuAryZY1sxsnZlNAp4E7mvodiVNCX6DmBn8xlEsaWjc/E8k\nnSnpmmBbXw9+85gazL9W0ipJ2yTNl9Qnrq1Jul7SR8BHcdOuk/RRsL2fSDpG0l8l7Qr60rqWvn4q\n6avB58uCdQ0Oxq+R9Pu4ffpt8PmoYLkrJH0maYuku+LWeZikp4NTWf8AvlZjmwOD35R2BH82FwTT\njw6mtQjGn5C0Ka7dLEk/bOjfi8s/XvwdAJJ6Al8AipMsOhcYIql9IzZ3AfAM0AWYDzxacwEzewqY\nCPzNzDqY2WRJ3wJ+BlwK9AY+DdYT7zvAScCguGlnEflSGw7cDswAvgccDnwJGFdLPxcDpwefTwNW\nA6fGjS+uYx9PBgYAI4BJkgYG0ycDxwTDWcAV0QaSWgF/AF4CegA3Ar+TNMDM1gC7gK8Ei58K7Ilb\nb7L+OHcQL/4uWnR+B/zGzD5MsngJICKFu6FeN7OFZlYFzAJOCNnuMuBXZrbMzMqBO4n8ZnBU3DI/\nM7NtZrYvbtr9ZrbLzIqB94GXzGy1me0EXuDzglrTYiJFFeAUIl880fFkxXaqme0zs3eBd+P28VLg\nnqCPa4FH4toMBzoA95pZhZn9Gfgjn385LQZOk9QrGH82GD8a6BRsx7lQvPjnueA0wiygArghRJO+\ngAE7EsyrBFolmN4KOBA3vjHu816gbchz9H2IHO0DYGZ7gK1Bn6LWJmhXGvd5X4LxDrVsbzFwiqTe\nQAEwB/hm8GXTGVheR19r7mN0G31q9PHTuM99gLVmVl1jfnT/or+JnAq8BrxK5EvoNOAvNdo5Vycv\n/nlMkoCngJ7ARWZ2IEkTgAuBZbVchP0MKJIUK6bBNo7k4CLXUCXBuqLrbg8UAuvjlklZTK2ZrSJS\nuG8EXjOzXUSK+gQiv700pNhuIHK6KeqIuM8lwOHR8/px86P7t5jIbyCnB59fB76Jn/JxDeDFP7/9\nEhgInF/jNMlBgvvt+0qaDHwf+HGi5czsM+BN4D5JHSS1AW4jctS/JAX9nQ1cJenEYN0/Bd40s09S\nsO7aLCbyG1G0uL5aY7y+5gB3SuoqqR+RL5aoN4l82dwuqZUizzucT3Bdw8w+IvKbyveAxcGXUSlw\nUSP64/KUF/88JelI4F+BE4GNcffzXxa3WB9Je4A9wNvA8cDpZvZSHav+FyIXK1cROWIdAZxnZvsb\n22cz+xNwN/AckSPoY4CxjV1vEouJ3Or6Wi3j9TWVyG9Ba4hc2J0VnWFmFUSK/TnAFuBxYHyN6zCL\nga3B9YLouIBlDeyPy1Pyl7k451z+8SN/55zLQ178nXMuD3nxd865POTF3znnMoCksyWtDOJL7kgw\nv6ukeZLek/SWpC/FzfuBpPeDSJBQMR85dcG3o1pbEW3T3Q2XZoe1a8FhRS1Qt66UWRWlZQVoS+78\nO3epsW3Hmi1m1r0x6zhehbaHMI/HwCfsftHMzk40T1IB8E8iKbbriNxdN87M/hG3zAPAHjObKumL\nwGNmNiL4EngGGEbkYc3/BSYGz6nUKqeSD4toy5SCjE3+dc2lHDrvLeCs8S1p+2/nUNqlDfe/2561\njxfQtizcf1SX+3477/JGP3i4hwOha86VVS8X1TF7GLDKzFYDSHoGGA38I26ZQcC9AGb2YRAi2JPI\nszpvmtneoO1iYAxwf1398dM+Lift3F7FnJ+Vs3PqfHqu/IwpX23J8Nsq+fSLhenumnOJ9OXg2I91\nHBxbApHspjEAkoYRedq9H5G8qlMkFUpqB5zLwU+RJ5RTR/7O1fT8U9WctvEdjrhxBz8ccQH9O5by\nwPyeHLO4NHlj55KQoGUrhVu4iiJJS+OmzDCzGfXY3L3A/5G0HFgBvANUmdkHku4j8tBgGZHMqapk\nK/Pi73Le4gX7GbLlMwZunMmFY8bQa+x67u3ZlU5zdqe7ay6/bDGzobXMW8/BR+v9ODiziiDO4yqI\nZWatIRIzHo1AfyqY91MivznUyU/7uLyw7M0yFk/eyv6Hn2a47efhczfR8ZYWVLXy/wKu4dQC2rRR\nqCGJt4Hjgpf2tCYSWzL/oG1JXeJePPR9Pg8bRFKP4OcRRE4N/XeyDfq/fJc31n1awf+bXMaeac9x\n9IZN/HSYGHwHbDq8U7q75vKcmVUSCQx8EfgAmGNmxZImSpoYLDYQeF/SSiL5Tz+IW8VzwZvh/gBc\nb2aJItcP4qd9XN6ZO8MYue0Nek3czG2njKLvddt59Pk+DFxSku6uuSwjKfw5/yTMbCGwsMa06XGf\n/0bkbXuJ2p5S3+35kb/LS4uerWDllE8omDuHK48p4sHvrWXrhZ3T3S3nmo0Xf5e33np9D2/cvZmK\nx5/gtNZVPHx+KS0mJnyXu3M5x4u/y2trVpUzf9Iu9t4zmy9s38aDp5bR50ct2N6zMe+nd/lCgjZt\nWoQaMk3m9ci5Zla2p5pnf2FsnvRnit5dydShHbngpr2sPr5RT/47l9G8+DsXeGF2JaunFNN6wfNM\nGNCLO6/exNpRdT2R7/JdC0HrNgo1ZBov/s7FeX3RPt66u5QD/3cG3+7amkcuXU/lVYelu1vOpZwX\nf+dqWFm8jwWTdrDvgZkcv2cnD4/YRvfbWrCnS5t0d81lGAlatVKoIdN48XcugWgw3NbJL8aC4c64\npcKD4VzO8OLvXB0WzKri0ynv0OG1v3Dj4N7cfO1WPj6tZ7q75TKEWojWbVqEGjJN5vXIuQyzeMF+\niid/RtWvn+TCnu35r7Hr2X95u3R3y7lG8eLvXAjL3ixj8T07YsFw943Y6sFwLhbpHGbINCn5lxvi\n3ZOS9Egw/z1JQ5K1lfSApA+D5edJ6pKKvjrXUB4M53JJo4t/8O7Jx4ikzA0CxkkaVGOxc4DjgmEC\n8MsQbRcBXzKzLxN5t+Wdje2rc6kwd4axYfIbdPrrm9z25S6Mu243Hwzvk+5uuTSIPOGbkkjnZpeK\nI//YuyfNrILIi4RH11hmNDDTIpYAXST1rqutmb0UxJwCLCHycgPnMoIHw7lsl4riH+bdk7UtE6Yt\nwNXAC4k2LmmCpKWSlu7GX87tmo8Hw7lslvFXqyTdBVQCv0s038xmmNlQMxvakVbN2zmX9xIFw/W/\ny4Ph8kUqL/iGuHbaWdIfJL0rqVjSVXHzbg6mvS9ptqS2ybaXiuKf9N2TdSxTZ1tJVwLfBi4zM0tB\nX51LuZrBcHee6MFwrn5CXju9HviHmZ0AnA78l6TWkvoCNwFDzexLQAGR10DWKRXFP+m7J4Px8cFd\nP8OBnWa2oa62ks4GbgcuMLO9Keinc00qUTDchnO7pbtbrikJClpVhxqSCHPt1ICOwcvbOwDbiJwV\ngchbGQ+T1BJoByR9LV2ji3/Id08uJPKW+VXAE8B1dbUN2jwKdAQWSVouKfY6M+cyVc1guIfGbPBg\nOBdVFL0+GQwT4uaFuf75KJH3+JYAK4AfmFm1ma0HHgQ+AzYQObh+KVlnUvIO3xDvnjQiv7KEahtM\nPzYVfXOuua0s3sfGSRWcVTKT468dwcMjqrm/qD1rnmhFhx3l6e6eSyEJClqGPiO9xcyGNmJzZwHL\ngW8BxxA5MP4LkdM8o4GjgR3A/0j6npn9tq6VZfwFX+eykQfDuXoKc+30KmBucMv8KmAN8EXgTGCN\nmW02swPAXOAbyTboxd+5JuTBcLlNgoLWFmpIIsy108+AEZHtqicwgMjp9M+A4ZLaBdcDRhA5jV6n\nlJz2cc7VbvGC/QzZ8hkDP3uSC8deQq+x63noiE60neX3MbgIM6uUFL3+WQD8KnrtNJg/HfgJ8LSk\nFYCAH5nZFmCLpGeBZUQuAL8DzEi2TS/+zjWDZW+Wse7TCs7Y8DTDrzmHn48q557uHdnxCyg4kPRO\nEJepZLRslZq70ENcOy0BRtXSdjIwuT7b89M+zjWTTRsPxILh+qzeEAuGK+nvmYWu+Xnxd66ZzZ1h\nrJ/6diwY7tqJOz0YLktJ0KKlhRoyjRd/59Lg5d+Xx4Lhxvbr5MFwrtl58XcuTaLBcOWP/CoWDNf6\nBr8M55qHF3/n0mjNqnKenbwnFgx3/zcqPBgui0SC3apDDZnGi79zaVZ5wGLBcF2XrYgFw60c2ivd\nXXM5zIu/cxnihdmVrJq8MhYMd8/4Eg+Gy3R+wdc5lwp/e2VvLBjuzHZ4MJxrMl78ncswK4v3sWDS\nDvbdP5vj9+zk4RHb6POjFuzp0ibdXXM1SEbL1uGGTOPF37kMtHN7Ff/z4IFYMNykIW09GM6llBd/\n5zJYNBjusEUvxYLh1o4qSne3XECCggILNWQaL/7OZbjFC/azbFIJVb9+kgt7tueBizaw//J26e6W\ny3Je/J3LAsXL97Jo0nb2P/w0Qw+U8fNRm+l4Swv2t2+V7q7lN0GLNuGGTOPF37ksEQ2G2zl1fiwY\nbvhtlR4M5xrEi79zWeb5p6pjwXA/PL6HB8O5BvHi71wWigbD2e9mxoLhdl3aMd3dyj8thNq0DDUk\nI+lsSSslrZJ0R4L5t0laHgzvS6qS1E3SgLjpyyXtkvTDpF1v4C4759Lsrdf3sHjy1s+D4c7d5MFw\nWUpSAfAYcA4wCBgnaVD8Mmb2gJmdaGYnAncCi81sm5mtjJv+VWAvMC/ZNr34O5fF1n1aEQuGO3rD\nplgw3KbDO6W7a/lBoFYtQg1JDANWmdlqM6sAngFG17H8OGB2gukjgI/N7NNkG/Ti71yWiwbDbZj8\nRiwYbtx1uz0YLvMUSVoaN0yIm9cXWBs3vi6YdghJ7YCzgecSzB5L4i+FQ/jviM7liEXPVvD1rSs5\n9sbtXHnuJfQdX8J9PYrovXBburuWsyShtqHL6BYzG5qCzZ4PvGFmB/3FSmoNXEDklFBSfuTvXA6J\nBsNVPP5ELBiuxcTW6e6WS249cHjceL9gWiK1Hd2fAywzs9IwG/Ti71yOWVm8j/mTdsWC4R48tcyD\n4ZqKlKpz/m8Dx0k6OjiCHwvMP3Rz6gycBjyfYB21XQdIyIu/czmobE91LBiu6N2VsWC41cd3T3fX\nXAJmVgncALwIfADMMbNiSRMlTYxb9ELgJTMri28vqT0wEpgbdpt+zt+5HLZgVhUnbyzm6Bt3cOM5\nl9K/43oefKE7h7+0Jd1dyw0tQG0LUrIqM1sILKwxbXqN8aeBpxO0LQPqFfnqR/7O5bjXF+2LBcN9\nu2trD4ZzgBd/5/JCNBhu3wMzY8Fw3W/zYLhGk1CrglBDpvHi71ye2LTxAHN+Vh4Lhpvy1ZYeDJfH\nvPg7l2eiwXAdXvtLLBju49N6prtbrpn5BV/n8tDLvy9nyIbPGLhxJmMvvpQjx67n3p5d6TRnd7q7\nll0k1CbzTumE4Uf+zuWpZW+WxYLhhtv+WDBcVfJ70l0OSMnfcogoUkl6JJj/nqQhydpKukRSsaRq\nSal4JNo5V8O6Tyt45se72TPtuVgw3OA78GC4sFoArQvCDRmm0cU/TBRpMO+4YJgA/DJE2/eBMcBr\nje2jc65uc2d8Hgz371/2YLh8kIpz/rEoUgBJ0SjSf8QtMxqYaWYGLJHURVJv4Kja2prZB8G0FHTR\nOZeMB8PVn/L8nH+YKNLalgkdY+qca3oeDJc/sv7KjqQJ0Xzs3RxId3ecy3q1BcNt79k+3V3LPErd\naxybWyqKf5go0tqWqU+MaUJmNsPMhprZ0I7404rOpUKiYLgLbtrrwXA5JBXFP0wU6XxgfHDXz3Bg\np5ltCNnWOZcmC2ZVsXpKMYcteokJA3px59WbWDuqKN3dyhwCWrYMN2SYRhf/kFGkC4HVwCrgCeC6\nutoCSLpQ0jrg68ACSS82tq/OufqLBsNVPv2UB8PlkJR8HSWLIg3u8rk+bNtg+jxCvIHeOdf0ipfv\nZfOkA5y+ZiZD/+0cfj6qgv/q1ZG1jxfQtiyPr7VJ0Do7Tzdn/QVf51zz8GC4ppXsYdlgmdMlLQ8e\ngF0cN72LpGclfSjpA0lfT7Y9L/7OuXrxYLjUC/OwrKQuwOPABWY2GLgkbvb/Af7XzL4InEDkNHqd\nvPg75+rt5d+XUzz5M+x3MxnbrxP/NXY9uy7tmO5uNT8JWhaEG+oWe1jWzCqA6AOv8b4LzDWzzwDM\nbFOkC+oMnAo8FUyvMLMdyTboxd851yAeDFdvRdFnkoJhQty8MA+8fgHoKulVSX+XND6YfjSwGfi1\npHckPRm807dO/rfknGuwvA+Gi17wDTPAlugzScEwo55bawl8FTgPOAu4W9IXgulDgF+a2VeAMiDh\nNYN4Xvydc40WHwx325e7eDBc/YV54HUd8KKZlZnZFiKhlycE09eZ2ZvBcs8S+TKokxd/51xKLHq2\nglWTV1Iwdw5XHlPEPeNL2Hph53R3q2lJqKAg1JBEmAdenwdOltRSUjvgJOADM9sIrJU0IFhuBAcH\nayaUeY+dOeey1t9e2cvGtVUM3/AEZ37vAo44v5Sf9uxE9fSKdHcto5lZpaToA68FwK+iD8sG86eb\n2QeS/hd4D6gGnjSz94NV3Aj8LvjiWA1clWybXvydcym1ZlU5myYd4NyS2XzhX8/gwVMLeLSwDX9/\n8jC6lpalu3uplcKHvJI9LBuMPwA8kKDtcqBeL73y0z7OuZSLBsNtnvRnit5dye1f9mC4TOPF3znX\nZF6YXZnbwXAiVff5Nzsv/s65JhUNhjvwf2fEguEqrzos3d3Ke178nXNNrnj5XhZM2sG+B2Yy9EAZ\nD4/YRvfbWrC/fXaGosXU7z7/jOLF3znXLHZur4oFw/Vc+VksGO7TLxamu2t5yYu/c65ZPf9UNZ9O\neScWDHfztVs9GC4N/FZP51yzW7xgP0O2fMbAjTO5cMwYeo1dz709u9Jpzu50d61+PM/fOefqJxoM\nt//hp2PBcB1vaeHBcM3E/5Sdc2mz7tMK/t/kslgw3E+HKbuC4SQoaBluyDBe/J1zaRcNhuv01zdj\nwXAfDO+T7m7lNC/+zrmMsOjZClZO+SQWDPfg99ZmfjCcBC1bhxsyjBd/51zGeOv1Pbxx92YqHn+C\n01pX8fD5pbSYmHmFMxd48XfOZZQ1q8qZP2kXe++ZzRe2b+PBU8vof1cLtvdM+nKqNBC0aBluyDBe\n/J1zGadsTzXP/sJiwXB3ntjRg+FSzIu/cy5jRYPhWi94PhYMt+Hcbunu1uf8nL9zzjWN1xft4627\nS2PBcA+Nyc1gOElnS1opaZWkQ97BK+l0STslLQ+GSXHzPpG0Ipi+NMz2Mu9ElHPO1bCyeB8bJ1Vw\nVslMjr92BA+PqOb+ovaseaIVHXaUp7t7jSapAHgMGEnknbxvS5pvZjVfx/gXM/t2Las5I3i3byh+\n5O+cywrRYLitk1+MBcOdcUtFmoPhUnbBdxiwysxWm1kF8Awwuil77sXfOZdVFsyqigXD3Ti4dzYF\nwxVJWho3TIib1xdYGze+LphW0zckvSfpBUmD46Yb8CdJf6+x3lr5aR/nXNaJBcN99iQXjr2EXmPX\n89ARnWg7a2/zdkQtUMs2YZfeYmb1es9uDcuAI8xsj6Rzgd8DxwXzTjaz9ZJ6AIskfWhmr9W1Mj/y\nd85lpWVvlrFo0vZYMNzPR23O5mC49cDhceP9gmkxZrbLzPYEnxcCrSQVBePrg5+bgHlETiPVKSv/\nlJxzDmDTxgOxYLg+qzfEguFK+ndpng6k7lbPt4HjJB0tqTUwFph/8KbUS5KCz8OI1O+tktpL6hhM\nbw+MAt5PtkE/7eOcy3pzZxgjNr1Nnxt2cNspozim43YenNuHgUtK0t21UMysUtINwItAAfArMyuW\nNDGYPx24GPg3SZXAPmCsmZmknsC84HuhJfDfZva/ybbpxd85lxNe/n05w7Z8wheun8PY8y+i1/fW\ncn/vbhTO29l0G5VSFt0QnMpZWGPa9LjPjwKPJmi3Gjihvtvz0z7OuZwRDYYrf+RXsWC41jf4MW4i\nXvydczllzapynp28JxYMd/83KpowGC7P4x1CPJYsSY8E89+TNCRZW0ndJC2S9FHws2uyfnQpSsXe\nOOeyXeUBiwXDdV22IhYMt3Jor3R3LWM0uvjHPZZ8DjAIGCdpUI3FziFyP+pxwATglyHa3gG8bGbH\nAS8H43Uq6NOFf5nanh69svOFys651HphdiWrJq+MBcPdM74ktcFwyu9I5zCPJY8GZlrEEqCLpN5J\n2o4GfhN8/g3wnWQdKVML2t58JSOndWXwie0av2fOuaz3t1f2xoLhzmxHzgbD1Vcqin+Yx5JrW6au\ntj3NbEPweSOQ8PltSROij0uvWbuPeaVlFFz1fYZM68Np57Vt2B4553LKyuJ9LJi0g333z+b4PTt5\neMS2dHcp7bLigq+ZGZHsikTzZpjZUDMb2r66PQ8/Ucgvijewb+QojpzyFc67vKCZe+ucy0Q7t1fx\nPw8eiAXDpYpJoYZMk4rin/Sx5DqWqattaXBqiODnpjCdOfLDrbzyUGumLdtP6YAjKJx6Fpfc2orO\nXf1LwDn3eTBcvktF8U/6WHIwPj6462c4sDM4pVNX2/nAFcHnK4Dnw3aow45ySu6r5uaXu7GiQ2cO\nu30c597dkQGD/Tyfcy4SDJcaRjVVoYZM0+jib2aVQPSx5A+AOdHHkqOPJhN5am01sAp4AriurrZB\nm3uBkZI+As4Mxuul5a/3ccvc3vxpL7S+7lqG/aQnXz/DLwQ751xK7j8K8ViyAdeHbRtM3wqMaGzf\nei/cxl2b+rD+olLGnjeaY4teo0NhMYuerWjsqp1zec4wqqoPpLsbDZIVF3wba8DSjcx+vCM/W76b\n7UOOp/fUb3LxjaJlq8y7COOcc80hL4o/QI+1u1h9TzW3/7U1a3r3oN1d47h4agf6HZl5j10757JH\n3p7zzzYVj1Zy88IeLK4ooM1NV3Pa1EKGndwh3d1yzrlmlXfFH6DTnN3c+tvDeWbdLnTZeAZMOYoR\n3wn9KjbnnAPALHLOP8yQafKy+AMMXFLCE9M7c+/yzez6xkn0nfw1Rl+Tt38czrk0SxaQGbfc1yRV\nSrq4xvQCSe9I+mOY7eV1teuzegfLHyrgx28ZJf1703nyBR4M55wLzTCqrDLUUJeQAZnR5e4DXkqw\nmh8QuWU+lLwu/gBtyw6w+6FqfvhSd5a2au/BcM65dAgTkAlwI/AcNRIPJPUDzgOeDLvBvC/+UW1n\n7eUH/93v82C4e4/0YDjnXCoVRUMog2FC3LykAZmS+gIXEkTi1/Bz4HagOmxnMi9kOo2OWVzKw6WF\nrP3uBq457QyOLOzCed3eYsGszLtNyzmXCaw+t3FuMbOhjdjYz4EfmVm14oLiJH0b2GRmf5d0etiV\nefGvIRIM14ZPrt3P7SccQc+pXbm038u8OL2Sndv9S8A51yTCBGQOBZ4JCn8RcK6kSuAk4AJJ5wJt\ngU6Sfmtm36trg37aJ4EOO8rZ/EBcMNxt4zlvWhcPhnPOHSQa75CCWz2TBmSa2dFmdpSZHQU8C1xn\nZr83szvNrF8wfSzw52SFH7z41ykaDLdoVzmt/nWCB8M555pEyIDMlPLTPklEg+HWXLiR8UEwXJde\nK3hhdt23bjnn8kG9zvnXvaYkAZk1pl9Zy/RXgVfDbM+P/EMYsHQj8x9pFwuG6z7tWx4M55zLal78\nQ+paWhYLhvtn126xYLijj/VYCOfylRlUVVeGGjKNF/96qni0kpv/0DMWDPfNn3T3YDjnXNbx4t8A\nhfN2xoLhqsZc6sFwzuUto8qqQw2Zxi/4NtDAJSU8sakLH1+2g+u/cRJ9C7swpscbzJ1h6e6ac84l\n5Uf+jdBn9Q6K7yUWDNdh0kUeDOdcHqk2UV7VItSQaTKvR1mm4EB1LBhuidrGguGGnNQ+3V1zzrla\nefFPkbaz9vLvz/SNBcMNnnqEB8M55zKWn/NPofhguCtPPcWD4ZzLcQYcqM7O5338yD/FIsFwrZny\n90pKBxxB4dSzuPTONnTuWpDurjnnXIwX/ybgwXDO5QczKK9WqCHTePFvQtFguD9ur4gFw5080r8A\nnHPp5+f8m1jvhdv42doelIyNBMP17/kGHYuWezCcczmgGjLyNs4wsrPXWab/is2xYLgtJwyIBcO1\n7+B//M659PDq00yiwXC3vtY+Fgx3wbROHgznXDYzUVkdbsg0XvybWfX0ilgwXOvrrvVgOOccAJLO\nlrRS0ipJdySYP1rSe5KWBy+APzmY3lbSW5LelVQsaWqY7XnxT4NoMNzTH2+JBcONvLh1urvlnKun\nyDl/hRrqIqkAeAw4BxgEjJM0qMZiLwMnmNmJwNXAk8H0cuBbZnYCcCJwtqThyfruxT9NBi4pYfbj\nHXngvR3s+sZJ9J76TcZMyLxfDZ1zzWIYsMrMVptZBfAMMDp+ATPbY2bR5Mj2RJ4xwyL2BNNbBUPS\nhEkv/mnUY+2uWDDcmt49YsFw/Y703wKcy0FFwema6DAhbl5fYG3c+Lpg2kEkXSjpQ2ABkaP/6PQC\nScuBTcAiM3szWWe8+KdZNBju5oU9YsFwp00t9GA457KAWSTeIcwAbDGzoXHDjPpvz+aZ2ReB7wA/\niZteFZzPnuNUAAAPyklEQVQO6gcMk/SlZOvy4p8hOs3Z/Xkw3GVXeTCcc/llPXB43Hi/YFpCZvYa\n0F9SUY3pO4BXgLOTbbBRxV9SN0mLJH0U/Oxay3IJr2LX1l5SoaRXJO2R9Ghj+phNjllcysNPFPLQ\nig3sOfUUjpzyFUZf49/PzmUqIzUXfIG3geMkHS2pNTAWmB+/gKRjJSn4PARoA2yV1F1Sl2D6YcBI\n4MNkG2xsZbkDeNnMjiNyJTrR7Ul1XcWurf1+4G7g1kb2L+sc+eFWljzQMhYM13nyBR4M51yOM7NK\n4AbgReADYI6ZFUuaKGlisNhFwPvBuf3HgH8JLgD3Bl6R9B6RL5FFZvbHZNtsbLzDaOD04PNvgFeB\nH9VYJnYVG0BS9Cr2P2prb2ZlwOuSjm1k/7JS27IDbH4Abr6qG7cM38XXbhvPeX3m8u5T+yhevjfd\n3XPOBcyUskhnM1sILKwxbXrc5/uA+xK0ew/4Sn2319gj/55mtiH4vBHomWCZuq5ih2mft1r+eh+3\nPfd5MNyQaX08GM45lxJJj/wl/QnolWDWXfEjZmaSGvz28oa2D26XmgDQ/rDChm4+Yx3+0hZ+tiES\nDHfZyFH0L3zLg+GcyxDRh7yyUdLib2Zn1jZPUqmk3ma2QVJvIveY1lTXVeww7ZP1bwYwA6Cwa/8G\nf/lksv4rNjN/U3s+vnIft54wgO7TunFJ31dYOL2Ksj3V6e6ecy4LNfa0z3zgiuDzFcDzCZap6yp2\nmPaOSDBcyX2fB8MddrsHwzmXbmawvyrckGkaW/zvBUZK+gg4MxhHUh9JC6H2q9h1tQ/W8QnwEHCl\npHUJci7yUjQY7k978WA451yDNepuHzPbCoxIML0EODdu/JCr2HW1D+Yd1Zi+5bLCeTu5c0M/1o/e\nwHfHXMqA7i/Refo/WfRsRbq75lxeqQYqsvTMq7/JK0sNXFLC7PWdWH/lDiYOH0Lv3t0Z0+1V5s7I\nycsezrkU88dHs1g0GO7upS09GM45Vy9e/LOcB8M5lz75fMHXZYhoMNwzJXvRZeMZPPUIRnzH7wRy\nziXm5/xzyDGLS3m8tJD1Yzdx7amn0LewC6ML3+T5p7L0ipRzGc6AA1n638uP/HNMfDBcyRf6eTCc\ncy4hL/45KBIMV82tfy5iaav2HHbbeM6b1oXBJ7ZLd9ecyynVBvurFGrINF78c5gHwznnauPn/HOc\nB8M513SM7H3Iy4/880D/FZuZ/0g7pi3bz5YTBtB92re45NZWtO/gf/3OZYra3ngYN/8ySe9JWiHp\nr5JOCKYfHrz58B+SiiX9IMz2/H9/nogPhlvRudCD4ZxLgWqD/ZXhhrokeeNh1BrgNDM7nsjL26Mv\ngK8E/t3MBgHDgevDZKF58c8z1dMruGVu71gw3Mn39+brZ/iFYOfSLPbGQzOrAKJvPIwxs7+a2fZg\ndAmReHzMbIOZLQs+7yYSoNmXJPycfx7qvXAbd23qw/qLShl73miOLXqNDoXFHgznXD3V8z7/IklL\n48ZnBO8jgcRvPDypjnVdA7xQc6Kko4i80vHNZJ3x4p+nBizdyOzSTqy/cjcThxxP76ldPBjOuaa1\nxcyGNnYlks4gUvxPrjG9A/Ac8EMz25VsPX7aJ49Fg+Fu/2vrWDDc2J929GA455pfXW88jJH0ZeBJ\nYHQQiR+d3opI4f+dmc0Ns0Ev/nmu4EA1FY9WxoLh2tx0tQfDORdSCoPd6nrjIQCSjgDmApeb2T/j\npgt4CvjAzB4K23cv/g6IC4Zbt8uD4ZxrZrW98VDSREkTg8UmAYXA45KWx10/+CZwOfCtYPpySefW\n3EZNfs7fxRyzuJQn1nZh/fggGK5nIaML/+rBcM7VotqgvCI1x9CJ3nhoZtPjPn8f+H6Cdq8D9c6P\n8CN/d5A+q3d8HgzXv3csGK5Hr1bp7ppzLoW8+LtDRIPhfvhS91gw3MhpXT0YzrmaTFRWtgg1ZJrM\n65HLGG1n7Y0FwxVc9X0PhnMuh/g5f1enaDDc6ks2cE0QDNe51zssmJWB76VzrplVG1SUZ+e7MvzI\n3yXVf8VmXnmodSwYrnDqWR4M51yW8/+9LpQOO8o/D4br0DkWDDdgsJ8GcnnMRGVluCHTePF39VIz\nGG7YT3p6MJxzWcjP+bt682A457KfF3/XINFguDXjd3NTEAx3ce9X+f10qDzg4XAuP1RX+wVfl4d6\nrN3F6nuqY8Fw7e4ax8VTO3gwnHNZwIu/a7RoMNziioJYMNywkzuku1vONTkzceBAi1BDpsm8Hrms\n1GnObm797eGxYLgBU47yYDjnMpif83cpM3BJCU9sigTDXfONk+hb2MWD4VxOM3/Iy7mIaDDcj9+y\nWDDcv0xt78FwzmUYL/4u5dqWHWD3Q58Hw7W9+UoPhnM5yTzYzblDRYPh5pWWxYLhTjuvbbq75VxG\nknS2pJWSVkm6I8H8L0r6m6RySbfWmPcrSZskvR92e178XZM6/KUtPPxEIb8o3sC+kaM4cspXOO/y\n7DxH6lxN0XP+YYa6SCoAHgPOAQYB4yQNqrHYNuAm4MEEq3gaOLs+fW9U8ZfUTdIiSR8FP7vWslzC\nb7Ta2ksaKenvklYEP7/VmH669Dryw62xYLjSAUfEguE6d/UvAecCw4BVZrbazCqAZ4DR8QuY2SYz\nexs4ULOxmb1G5MshtMYe+d8BvGxmxwEvB+MHSfKNVlv7LcD5ZnY8cAUwq5H9dGkWDYa7+eVusWC4\n86Z18WA4l9WsWvU58i+StDRumBC3qr7A2rjxdcG0JtPY4j8a+E3w+TfAdxIsU9c3WsL2ZvaOmZUE\n04uBwyT5TeM5oOWv98WC4Vr96wQPhnP5ZIuZDY0bZqSzM40t/j3NbEPweSPQM8EydX2jhWl/EbDM\nzMoTdUDShOg3aXn5rnrvgGt+vRdu466ZfZixciMV543m2KkDOGecP3Li8tp64PC48X7BtCaT9H+c\npD8BvRLMuit+xMxMUoMTvRK1lzQYuA8YVUe7GcAMgMKu/T1RLEsMWLqR+Wvbs/77kWC47tO6c3HR\nIg+Gc9nFjBaVKXmI8W3gOElHEyn6Y4HvpmLFtUl65G9mZ5rZlxIMzwOlknoDBD83JVhFXd9otbaX\n1A+YB4w3s48bsnMus3UtLfs8GK6waywY7uhj/Qyfyy9mVgncALwIfADMMbNiSRMlTQSQ1EvSOuAW\n4D8krZPUKZg3G/gbMCCYfk2ybTb2d+35RC7I3hv8fD7BMnV9oyVsL6kLsAC4w8zeaGQfXYareLSS\nGy7sxe0jtnH6TVfzzaOfo/tjO3jr9T3p7ppzdZJBq/LUvM/azBYCC2tMmx73eSORg+dEbcfVd3uN\nPed/LzBS0kfAmcE4kvpIWhh0KuE3Wl3tg+WPBSZJWh4MPRrZV5fBCuftjAXDVY251IPhnGtijTry\nN7OtwIgE00uAc+PGD/lGS9L+P4H/bEzfXPaJBsN9fNkOrg+C4cb0eIO5M/wagMtMMqPgQHYGF/oT\nvi6j9Fm9g+J7iQXDdZh0kQfDOdcEvPi7jFNwoDoWDLdEbWPBcENOap/urjl3EBm0qqgKNWQaL/4u\nY7WdtZd/f6ZvLBhu8NQjPBjOuRTxJ2tcRjtmcSkPlxay9rsbuPLUUziysAvndXuLBbMy70jK5R+Z\n0dLP+TvXNKLBcFP+XhkLhrv0zjYeDOdcI3jxd1mhw45yNj8QFwx323gPhnNp5+f8nWsm0WC4P26v\niAXDnTzSvwCcqy8/5++yTu+F2/jZ2h6UjN3I+PNG07/nG3QsWs4LsyvT3TXnsoYXf5eV+q/YzPxN\nkWC4G04YQPdp3bi4aBEv/FqU7cnOC3Au+6jaaFWenQcdftrHZa1oMNytr7Xnn1270e6ucZz/4/Ye\nDOdcCF78Xdarnl7BzX/oyeKKAtrcdDXf/El3hp3cId3dcnlABi0PVIcaMo0Xf5cTosFwT3/qwXDO\nheHn/F3OGLikhNnrO7H+Sg+Gc81DZhl5G2cYfuTvckqPtbs8GM5lJUlnS1opaZWkOxLMl6RHgvnv\nSRoStm0iXvxdzvFgONdsLPLvLcxQF0kFwGPAOcAgYJykQTUWOwc4LhgmAL+sR9tDePF3OSs+GE5X\nXeXBcC6TDQNWmdlqM6sAngFG11hmNDDTIpYAXYLX34Zpe4icOue/bceaLb+dd/mnzbS5ImBLM22r\nOeXWfs2DMT/MsX36XC7uV3Pu05GNXcG2HWte/O28y4tCLt5W0tK48RlmNiP43BdYGzdvHXBSjfaJ\nlukbsu0hcqr4m1n35tqWpKVmNrS5ttdccnG/cnGfIDf3K9v2yczOTncfGiqnir9zzmWp9cDhceP9\ngmlhlmkVou0h/Jy/c86l39vAcZKOltQaGAvMr7HMfGB8cNfPcGCnmW0I2fYQfuTfcDOSL5KVcnG/\ncnGfIDf3Kxf3KSkzq5R0A/AiUAD8ysyKJU0M5k8HFgLnAquAvcBVdbVNtk2Z+QMwzjmXb/y0j3PO\n5SEv/s45l4e8+NcgqZukRZI+Cn52rWW5hI9T19Ze0khJf5e0Ivj5rRzYp0JJr0jaI+nRZtqXlD8C\nH/bPpyk10X5dIqlYUrWktNw+2UT79YCkD4Pl50nq0lz7k1PMzIe4AbgfuCP4fAdwX4JlCoCPgf5A\na+BdYFBd7YGvAH2Cz18C1ufAPrUHTgYmAo82w37U2se4Zc4FXgAEDAfebOj+NePfT1Pt10BgAPAq\nMLQ596mJ92sU0DL4fF9z/33lyuBH/ocaDfwm+Pwb4DsJlqnrceqE7c3sHTMrCaYXA4dJaq7M4aba\npzIzex3Y31Qdr0cfoxryCHyYP5+m1CT7ZWYfmNnK5tuNQzTVfr1kZtHXZy0hcl+7qycv/ofqaZF7\nZwE2Aj0TLFPbY9Zh218ELDOz8hT0N4zm2KfmUFcfky2TyfvXVPuVbs2xX1cT+c3B1VNe3ucv6U9A\nrwSz7oofMTOT1OB7YRO1lzSYyK+qoxq63kTSuU+5JNf3L5dIuguoBH6X7r5ko7ws/mZ2Zm3zJJVK\n6m1mG4JfPzclWKyuR7FrbS+pHzAPGG9mHzd6R+Kka5+aWVM9Ap/u/Wv2R/ubSZPtl6QrgW8DI8zM\nv6wbwE/7HGo+cEXw+Qrg+QTL1PU4dcL2wR0JC4hcWHyjifpemybZpzRoqkfg071/zf5ofzNpkv2S\ndDZwO3CBme1trp3JOem+4pxpA1AIvAx8BPwJ6BZM7wMsjFvuXOCfRO5IuCtE+/8AyoDlcUOPbN6n\nYN4nwDZgD5HzsoOaeF8O6SORu40mBp9F5MUWHwMriLvLpSH714z/7ppivy4M/k7KgVLgxRzZr1VE\nrgdE/x9Nb+79yoXB4x2ccy4P+Wkf55zLQ178nXMuD3nxd865POTF3znn8pAXf+ecy0Ne/J1zLg95\n8XfOuTz0/wHRcxpuECIMWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Uniform window')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULMld3/n5ZVZlVvft7umZuYNGSLJ4iSMLGWMbJHbt\ns4vtRegs2PJjLVjex9hYa2sxa9Y8d22dBXYHG5vlYBkhswhpMZa1GC0ySMvLPAxrQAIDFuKskeWR\nJTFXM3fmtrr7dldmZVbsHxGR+cuoiKzqe3u4g7q+59xzq6syIyMzI+Ibv7cYY9hiiy222GKLy0J2\nrzuwxRZbbLHFRxe2xLLFFltsscWlYkssW2yxxRZbXCq2xLLFFltsscWlYkssW2yxxRZbXCq2xLLF\nFltsscWlYkssW6yFiLxORP7ne92PqwwR+SIR+YlLbO/LReQXLqu9LbbQ2BLLFojIoyJyLiKnInJL\nRH5MRJ7nfzfGvMoY8833qG/3fAF0fTAi8h3B969w33//090HY8w/Nca8TF3biMgnPd3X3WKLO8GW\nWLbw+DPGmD3g2cCHge+6x/3ZGCKS/x5c5j8ArxSRifruy4B//3tw7S22+H2FLbFsMYAxZg78EPAi\n/52IfL+IfIv7fF1EflREjkTkKRH51yKSud8eFZFvEJH3OMnnDSIyU+18noj8ujv3/xWRT1W/PU9E\nflhEnhCRJ0XkH4nIHwReB/xnTpo6Uv35bhF5u4jcBv6kiPysiPwV1d5A0nE7/L8uIr8jIici8s0i\n8omuH8ci8hYRKUYezQ3g3wGf49p7APjPgbfpg0Tk/xKRGyLyERH5eRH5FPXbgyLyL9313iki3xLp\n46tcH49E5LUiIuH9iMjPu1N+wz2Xz49Jdlqqcdd+m7v2rwCfGBz7QhH5SfdO/z8ReeXIs9hii1Fs\niWWLAURkF/h84JcSh3wN8EHgIeBZwDcCOi/QF2EX308EPhn4n1y7fwT4PuCvAQ8C3wO8TURKJ3H8\nKPB+4OOA5wBvNsb8NvAq4N8YY/aMMYfqOl8IfCuwD2yqKvsc4I8Bnwl8LfB64IuB5wEvBv7bNee/\nCfhS9/kLgB8BquCYdwAvAD4G+DXgn6rfXgvcBh7GSjtfFrnG5wGfAXwq8ErX5wGMMf+F+/iH3XP5\n52v67a89x0qkf9n9A0BErgE/Cfyg6/cXAP9YRF4UaWeLLdZiSyxbePzfTiL4CPDZwN9PHLfALk7P\nN8YsjDH/2gwTzv0jY8wHjDFPYRd+v1h/JfA9xphfNsa0xpg3YhflzwReAnws8LeNMbeNMXNjzDqy\n+BFjzC8aY5ZOytoEf88Yc2yM+S3g3cBPGGPeZ4z5CJYQ/sia898KfJaI3IclmDeFBxhjvs8Yc2KM\nqYDXAH9YRO5z5PkXgb9rjDkzxrwHeGPkGo8YY46MMf8J+Bng0za8tyTUtf+Oe77vDq79ecCjxpg3\nGGMaY8y/Bf4F8Jfu9tpbXE1siWULjz/nJIIZ8Grg50Tk4chxfx94L/ATIvI+Efn64PcPqM/vxxIG\nwPOBr3EqniNHYs9zvz8PeL8xprlAfz+w/pAVfFh9Po/8vTd2sjHmHPgxrBT2oDHmF/XvIpKLyCMi\n8h9E5Bh41P10HSvhTYJ+x+7hhvp8tq5PGyJ27ferz88HXhq8my/CSlZbbHFhbIlliwGcNPHDQAv8\nicjvJ8aYrzHGfALwZ4G/JSJ/Wh3yPPX5DwC/6z5/APhWY8yh+rdrjPln7rc/EBjGu0umuhr8fRvY\nVX8/XYvim7DqwB+I/PaFwCuA/wq4D6vWAxDgCaABnquO18/qbjG4/2BT4K8dvhuPDwA/F7ybPWPM\nf3eJ/dviCmFLLFsMIBavAO4Hfjvy++eJyCc5o/JHsAS0VIf8DRF5rjNufxPg9f//BHiViLzUXeOa\niHyuiOwDvwI8Bjzivp+JyB93530YeO4awzrArwN/QUR2ncH6K+7sCazFz2FVhTGvuX2seu9J7CL/\nv/ofjDEt8MPAa1wfX0hvr7kTfBj4BPX3bwCfIiKf5hwmXjNy7RcxtO/8KPDJIvIlIjJ1/z7DOU9s\nscWFsSWWLTz+pYicAsdY28iXOVtEiBcAPwWcAv8G+MfGmJ9Rv/8g8BPA+7Auut8CYIx5F/BXgX8E\n3MKq077c/dYCfwb4JOA/YZ0DPt+196+A3wJuiMjNkf5/B1BjF9w3MjSaXxqMxU87G1KIN2FVTB8C\n3sOqA8SrsZLMDeD/BP4Zq8b/TfEa4I1OdfVKY8y/B/4X7Lv5HVYdGl6NVavdAL4feIO6pxPgZVij\n/e+6Y74NKO+wb1tccci20NcWlwUReRT4K8aYn7rXffn9ABH5NuBhY0zMO2yLLX7fYiuxbLHF7xFc\nrMinOlXgS7Dqurfe635tscVlI2Ys3WKLLZ4e7GPVXx+LVdn9A2wszBZbfFRhqwrbYostttjiUrFV\nhW2xxRZbbHGpuLKqsAev75vnPf9BlsbQLgUDtEZYGlgshcUSFktoW6FpMtpWMEZgaRADYgzLTCAT\n8myJZCCSlv6Mkf7zku74zP0v0p8vttkV1vc+vUvj27Tt+v+XS/f30h/XXzPPzeB6qT6O/QawXA7/\n9sdnrrP6HsK/9T2J2P43BpZLYbkU2tb+G4N+jiKGPDfdZ98H/Rz8M8hze2yW2edQ5HBtYtiZGKZZ\nCc0c5s5Ba7aDmUyo2wVnTcbJgq5f4XNI9S1E+K6zzGDcvRvT37sx/Xjy70xk2E7/uX+m/jNAu7Rj\npV3SPVdYfUe+z+G40de2z2s41vR5HtkGW1Q9zmXkNYfjWo8JPd5SY82f65+nPj/z56j+6rGTZfae\npxlMM8gFcjH8zr979KYx5qH1d5nGH5IHzSmLjY59lJMfN8a8/G6udy9xZYnlec9/kLf93DdyXOfU\nSzvwqjbjuM44XeQc1XDjXHjsDG4dFTz2oWvUVU59kjGtWnZPas72CxZlDoWwd1BTlG3Xfqk+A1TV\nagLesmwpypaiWDKZLofnTww7wSnn7ueqsf2tq5xmkVHX/Sypq5yqyqnd9fz/hbuWviYwOFfD/961\n647z7cfupbuOO3cyXXbf6fuZ5TCbwLyBWzWc3J5wdntCXeWcHI+Hq9Tq2v6e/PX9Z/0M/L+9g5r9\ng5q9/QWT6ZI/cH/DSz+m5VMfPOdZO8+hOLkF7/8dAOQTXszZzpQP3X6C33xyl196XHj82E6VZpGt\nPA+P2HPRfdPPxff17HTK6cmUqso5PS6oq5yibNk7qCnLlr39xeBZaujn6p8pwFFlx4p+rvocYPD+\n/fM6dc++KFv23XjevdZQlO3KWKsT97punIf3v3LsxFA10l0P6J5PrE19L/4ZNYts5Rz/XP25sf76\nNnevNXzMQcNhCQ/vGA4L+G8+8Yt1poI7wikLXpO/ZKNjv7z96et3e717iStLLEtjBqQCUOZLylyw\nMX85NrhbgJq6znjyiR07odzGdvekZlHlLMqcU4puQYD0IrMpqkaoGjvR9Hd+QoeE4qEnbB1MrBDh\nd1WVd5PLt60JZqw9PXH9ec0iGyyI5y0ducwbmKu1pSiWK23E+ju4RmKBCEmF2gxIa29/wa0aPlJn\nHNc595dnlOU+Zs8Frs/2WCw/QtVmg2vVVR5d4FOLLKwuqqnzYs9zcO06S7QBlScY9zhCUvHPpnT3\noN9vSMLTk4bTffuc9t1Y1mS6jkh9O+E47MjKjQt/Xyn435pF1n0O37G+L31OuPkp1Yaqa189S3+s\nbvNx4PxaAwjzdmuHviiuLLE0SxmQCkCRGQ6KluM6Z7FcMsszHt6x5FI9YNmkrnLqOocTe860VhOo\n7glmbNLAqkSTgpZOIE0o4Bbn4De/IHZ9TCwM4cLWTdKgPb0IXQztgCQ3wabPKAa9UE6rljPsYunJ\nZXdvwVFtOFnkzNtT9mbPh/37ATCTkrZuqJfCvLXSgO17v3BNpnaB7Hb+jpRTi52GX1ghLjGmnu3K\ngl3r61uC8ced3V6d2n7joNvx7/P0uGB60lhJHDill15SO/ywb16ij93D3kHNyXFxIXKBoaQWXvv0\nuBiM71hbWuoL2/Pn6Ha91FhXtetjzbwZV89uCsmgnG3Y1u1LueQ9w5UlllAfXmSGMl8CGWVuqFrD\nfcUSaksu8wagoq5ynmSHxfFwkNsJWVDT79i89JJCaifroSenJ5RwBxqqA1ZUWBF1QEgMqYUs3HWu\nSAKR/hZlS61UKXrhLCfjOSY3JePU4ua/15LKtGqZ1i3TqqWm35menU45Oqg5rjPOmzn19JxyxxJL\ntTynNau6cK+m0f3UJBH2M3w3IWLn6vP8vYT3GBKuJxgvIXpSGSN/rSrVpLJzau/bk8u6MazHw/Sk\nYbeyxy/K/tqL0l5jHbn4jYd/zoNnUiw74q4T49C34/vsr6NVshp6o3NyXHB6XGBumk5i86j2NrOL\nbNHjyhJLY+CJ8wllbqUUsDaWeilUztg3zQzXZy2ni5wXHhoOS8NheZvf3V/w5MGs290AULtBWvQL\nj99Rwfii6XXOekJpCQWGuvCUdBEituMfW7RiC5HuvyelMaklJa01i4yT2xO41pPLeasksjVqPd2/\nMYLxC6V/H4sy7/4V+8vOdjGZLpnlhjI3FNlwEcujuTDXI7mbD9RYk+mS/WsNVSNM3Dn7B/Xg3Yb2\nulAN5L9feYf1qvpOj4OQ7Cq3GTAnq/3273L/oI6+a3+uv84pRU8ohUTbAWX3C8ilaiRKKneCMmG7\nhCGh7DsbksdT1U5nL+02KgkNwRZpXFliWSyF04VVeVWtcOAnWtsTC0CZG8q84XSRMcszDgvDYVnz\n6N5iYHhdpx5KSgXBbvaiE0svOF4Vto54YoRTq0VCG/l1u2FbWqetvwv12R6eXLTKJlTtbaJ3H1MV\neUnFwztXhAbx/WsNh4V9v3k2och2MPUTAOR7D5LLFKiZqUvFnCa0BOmfYUgw+p48qdxfwDw3nDsp\nTo+DGBF0fbigCjJmV9CLrb+H0/2CRdXCHtYpZX/CXmkdHnavNSvOHiFhATzw0Hly7EXHXMJutMm9\n+D6E43Fs/EFPKt7Wd97a7w4fqKJ9uVtbqUYmQlFuSFJbVdjvTyyWcOMcDouMWW6JZpoNbQAHxdKp\nx3DqsSV7U+GwyDksDDd2a26sIZgxKUBj6AVm9fn1mh1TTOe+0q5b6MYWqzGkVGxatx3aFlJGUrDk\nEnpWXRR6Jx6qv2yf1HtUHnueVCbTZedJtT9tKbJriDGY1u6oxRhymVBkq/khPalor6OYuhHiaitP\nKoelYd4Kswag4eT2hL39xeiz07jIghcSih5r9bWG2qmvTuuC3ePakspBzYMPnbN7rWHfSZlewoqp\n8ELpKLyPcMOTMvBfZFMVSseaVEJpJSSU2crjM+BUXjEvtC0uhitLLHULj54ID+9ad8JZnnFfsezI\n5aBYsj9tOShaqlacDUaoWmuD8QTz8K4lmFuHNbeOiijBxCYRDHXxfqGbb7jmpyZmjMjWLfZhG2M7\nPn2+3sWmrh29zgaEEvWAiqh5dN8H0oqTUrQapiiW7O4t7A61hPvcxiGTHNoaGmdPaGv7nYJ2gdXv\nOHp/Abn4z7t7i45UDguYt4Z5Dtbz0KrGOJ0Cq0Zm7yywKULVmyYU7Zp8fq2hWWS2n/s5Z86u4iUV\nT4TQS1gpgtH2jO47f+/EJVRgxXvQP8PR+wsILObu7jFGKn7O2d8M5WHNrtsshhLp3UIyKMvLcQR4\npuPKEstikfH48YTztt9BwpBcPMrcYEPOMqq2/+6+Ysm8zdy5EjXyaXLR2FRq8BNubDHW3j7roCdd\n6EUW9kkvFH4R0QvAysIy0odUHMyY99SmSNm5tGpkLRpFLAHm7aqkomNONLS6Tv/mCS2FnRwqZ36K\nuTQ/3dB2lKLsPanCWKoxpEglxEXUX2PS7d2MmXWYTFc9LLfYHFeWWJat8IFH93nwoXNOrjXcutZg\nVSiWXKpWnIQiyqifDewv4HZ/bgd4WBrqajlYXFKoqzAYsF94dLzKGMJjQiOv/j7ERXfAHjFXWb0g\npcgltEWkkHJzHj3Wt+cMxrEFpzvmdAp7C+aNce8zY2lamBT2H0BesGzazt34vCVKKuG9x/rmd/5g\n3+utLjbKqsJ8kGjVSLdL1giJPYXNpMWWsPCmVz0VxbJzIPBG9qJsOW/7Xb13tojaxor142ns99hv\nsfiZMY9Av7nS76RZZNTOruXjqLwLOfQaAh187O/PY1NJfIseV5ZY2qUdrI99cI+9g5qzg5qqqfCS\nyTQzgwC5GKlATyyHhWHeSKePhjU7eGXoLcrWeQfFjx/bPW2sflI76NSOONxlhx41IamERvtYHI1e\nEFLSWwybqOJCh4KV/kSMvQCcTrk1qa0kshRa0wyIxYj9rmozjtyiHyOVWNuhN1dRDJ/hkFz6zAOe\nuMJ7HCPyEP4Zj+/kh+QSc9cNVVqbqGcvuruPEWZILmPZHmKxNaFNS5NMs8jY3VsApiMXjzCjhT7/\nMm0tImxuvP99jitLLNKaLpjrqWpHLRhnWHKxA+rAbWJjpGLJp9/ReZUYWL11WdqYjpWFwKlsNllo\nPTn5yPSuiWBBWLdYp6QWjypCEtDrp2tlx67rjJPjIu7OrAIGddubODXEEFPP6c+xhVFjJebDL0KN\ncFTbzUNrFhgRyO3Lbs2Cuj2nagvmrU27olOe2IYCtVbRe4xpO1WMxHtyWY2QD89fl3qnazPo3zjB\nWHKJxYqMXiOQVta9Q92HmM3HY4xQ/L1phOl7tKSeckHv4MgFrPSSJJV6K7HcDa4usRjD7vFQp/5Y\ntec+WXKZ5bmzr4zDSix+F+TI5bAeunWGxmXiEyfMewS9SJ/amYftxX4LEZKRX4DX2SM8qYQOCIO2\nFbmMGbljfdYIo8RT9xG2t073Xlc2QHJ+f8VxndEuK1qzIM/tdGhNQ700nC4yjiorrfhFO9lf/15V\nMd9QWtE4cUGMOkdarYiFNYGJHuuCVmPuzxbxzUiMXM6DW7hTo/aYcT+Wgy0cOzF7WcxD0J+vN25d\ne3XWOSXESEWrwS7bM0wEJtOt8f6jGksXFKdTskxPGp58YoeibPmPkzmz3ACTzuU4NOovVEqYztaS\nwyy3XkdHRcMNt+t88uZsZQHwk+r0uBgsJLE8W50Rv+rjTXQbHmNSQYqEBlKActWMISZljZFLeH19\n7+HkD/u54iY9sqNOkVAVWXTA5gubh1Joa9WY1tXYup/PJuO2o+ENyqDvHmN2knCBjqnwYipGf43Q\nvqXbWYcVz7pIfjgdtOgX3TDP1tg4i7lcew81336ImDQe3lvokaihPfHCueal/5jaC4hKY+uyD9wL\niMjLge/Eqla+1xjzSPD7C4E3AH8U+CZjzLcHv+fAu4APGWM+z333l4DXAH8QeIkx5l3q+G/AVjxt\nga8yxvz4WP+uLLFIDmcHRZepGLA5paqSk+OColjyaF4Dhlmedca+Vf/3HjaJpXVdtgZCuzAdlVZ6\nOXqqTGbvjZFLDN0kcl48o4Zq9bdeRGILnXYhHqjI9G5ujY5/pa+Re4gt8qn2YilrotdRi09IrOkd\n+zjyzGZlmOVmRfKI9reQlWNidpdBUs81ed30ApoKfg3PjyGM7RhDjCT8GAjHyybjIBZXEovZCtv3\n52qSiLnBx1zew/P8fXT3WGddxgN9Xf8+wjl6Nznrng44Ungt8NnAB4F3isjbjDHvUYc9BXwV8OcS\nzfxN4LeBA/Xdu4G/AHxPcL0XAV8AfAq2+ulPicgnG2OSD+bKEksmhmJ/SY313ffk4jPhnp5MeXy6\nZJY31uOrsDssLZl4lPmSvenSBVHanW6ZSxepf1TALG+6XaVWe2h4ctnEcN1dO3FsKAmEnjLRNOwb\nuIGGUebrkJJcfBtjBvFN+qV382U53KXqzyuSXbCo5zK1sSz+s8Mst0Qca7vvRO/eHOLEpfUJs0Yn\n76dcdZGOefCF0kq46K4joJjtzLe7KWLXW0emQBdLA6tqthA6wDfmXNClhHHjYIxcdF9jBB9T72mv\nvruFiFxWHMtLgPcaY97n2n0z8AqgIxZjzOPA4yLyuZF+PBf4XOBbgb+lzvlt388ArwDebIypgP8o\nIu91ffg3qQ5eXWLJDXsHNacU1MWEM6zEAv0AO7s94YabhPNGmE2cFJL3dhVNKl5i8R5kmmDASi+P\nTeadasxfq/u/Nl1W2f2Dem2Q3Fg0fWjT0Tv6MdfQ1I425n4ZkktK5bOWsA7qteSyDnpBCfupP8cW\nmjxbnQa5TCnzpjunI0P/f50N3JsHx0R0/bUijJSt7CL3HyMVv+B6ddVFPLXGXHpTrukxh5LwOWtP\nRE1oHj4wMSS4FMKxpPt2IXJJ1DCqq3yQxHI3yCX2DMFzgA+ovz8IvPQC5//vwNcC+xe43i8F13vO\n2AlXllg89vyixqTLKwV0BlWwA7ZyAW47uXBYOvfiFrxrsjfyexfl0iU49ARz2OaAJahqbxFNKlkz\n1A2HKpixlPkhisgCqL+/aBzListzbaBkZTG/U8R2vxdpN7T5+AVl3WK9iXOG7uO+y9Crv1tRz4xJ\nN8Fxd0KmVUAq67CpQ8OYu/Im48VvZHSGb72RibWrE5F2bYxdYyS/mP8tJBdYdUnW14llTH46yCTL\nLuRufF1E3qX+fr0x5vV32wcR+TzgcWPMr4rIZ91teyncc2IJjUgi8gDwz4GPAx4FXmmMueWOjRqQ\nROSPAd8P7ABvB/6mMWbjFaMnl1WjXzfY3KCt9hact32Qm5VafOLK1UFjU8JkztCf2TQeLdQusZ+f\nAOGkjrpNbuDiubKoKTVNqUglBa0mG1OZXAZ0ht0QWi2xYryNJERMXiNi/PWYXYBUdHueXNYtPtro\nH0orKYkidi8xVU3KfrB5kOLQ5pC6tsbGmxGnTtYoyhZOp9TTZVeYDIaBobHrj7kR677D0E6ojfpa\nevFtacLRhOKP16R4j3DTGPPpid8+BDxP/f1c990m+OPAnxWR/xqYAQci8gPGmC8eOefC17vnxMKq\nEenrgZ82xjwiIl/v/v66NQak7wb+KvDLWGJ5OfCOi3TCk4uGl1q8AbgsdSW/GhCrGmuzzmNM74DL\nfOmSHJouDmbeWsP+uUqbnhq8Me+WWDqUGFK76G7ylasG09OTKUU5jL3wRtaqbKPFo7r2x+rKrMli\nm1JfhQ4Nvt+bxBjohSRGABdZMGKLpI9S3wT7ym4WcyeH8aJrsWPW9jkgi05FpW0L1aprbSgthi7z\nKXWnP29atSzK8Xo9Phret7OOVFJ/x7BSgC2iGgvvd3DtQBKv67g98h7jncALROTjsQv8FwBfuMmJ\nxphvAL4BwEks/+MaUgF4G/CDIvIPsWvvC4BfGTvhnhJLwoj0CuCz3Oc3Aj8LfB0JA5KIPAocGGN+\nybX5JqwnxFpiCT2U9pynVUxvHN/5WnIB40oa98SyP22dzcVQ5m1XrbJqndTSyCCpHwxVI3rgjy06\n61QhMY+a2EKrM7qmvId8saXT0SsO0S1wF0yR3vVrA8kghVSKm8uAlkYgHsSnj4VVUgnVi+FYuyzo\nHfpKZgS3qI+pgXq7yJBgvHorvPdp1bIg7wqr+XNCz6yiWA6yDej+hkhJ8zGDvia/lN0l1n6sH54I\nLwMil5OE0hjTiMirgR/Huht/nzHmt0TkVe7314nIw1hN0AGwFJGvBl5kjDlO90/+PPBdwEPAj4nI\nrxtjPse1/Rasc0AD/I0xjzC49xJLzIj0LGPMY+7zDeBZ7nPKgLRwn8PvVyAiXwl8JcDO9YeSndIT\ne8zbBWAnr50xX+cY66WWIhPqpaHoJJolD+9YY/68xeWLMszLmvMWbh0V3eSvqtUgMd2PdbaIlLok\nhE5X4r3SNt2ljbUbW8TuVrUQi4u4KDY531aQ3HwRiJUlhs3iSUKEi/CdEmS4WIbtRqUVp8bSRbwu\nglihLxjag8I55bFuwU+R7d3aQwaEx/C+L5PgLxPGmLdjtTP6u9epzzewKquxNn4Wu3H3f78VeGvi\n2G/FCgAb4Z4RyyZGJGOMEZGLK8ITcMav1wPc9/EvMHczWbXa7Ly1eace3sn4SD0kmKq10soT55Mu\noNKTiyUWTzCWZHbymsePJ6O7K92PGMZ2z9qH36shwjxeum1fiMrbmbq2Iw4BY/2808kfW9zu5L2F\nZGIrSLpCX7K6a45hE3VN+J0mm04aUUZmr26NeVT581J2t7ExEEq6YbsQz0HnSzh770Sgc7eNRcfr\nLAxF2Zd/9u+tK1F9gfEa3ltMivLfjY2FmOdXCC3F+zb1tVJeZXcCyWBarj/uowH3UmKJGpGAD4vI\ns40xj4nIs4HH3fEpA9KHGDLzRQxZK9ADbN3EHdpkauaNuAJOPcEcu8Gto/QB9qYte1P7feXsLmC4\nkYOVNuHoqeEoHOz0arOyK4whFlR2dnvSLWx6UQvVOjpCuVmsr0w5kPTUpNa2jpjUEssl5o/3O911\nZDJGYFG1VHCcGEO4g6la6ZIVbrK7TuH0uOjclP39+PYGpKLeqV+UfWGylKPDpmR3EYTkEnpQ6e9S\n78zfp+//7rWmS18z1s9Yu+s2J5tsvsY2W+F3FyHwLeK4Z8SSMiKJyN8Hvgx4xP3/I+6UqAHJGNOK\nyLGIfCbWeP+lWD3hpSBKMD42hCG5VHsL5i0cVTYh5VGdcVjYglIe08x0lSm9a3LV9mWRZ3nuvJV6\nclmZZLWJ6rFXdOMjqgytW1/5TU/k0+lgZxtO8tDTTOuk/S5RXyO289Sf9cLvF1ePTSZ8bHcbXtsv\n0lZiWa+a0zr2cGFdJ62dHhedesmPpVqd040flUPO3/ve/qKr46JdclNEvAk2VUVOqxZT9TXg/f3o\ne4ttLLT3m48B8TaaomyTHmBJQqkNYLpzdHqVmN1lzO7lsbaQXdl7ao61s0Ua99rGEsMjwFtE5CuA\n9wOvBFhjQPrr9O7G7+CCHmGwmd69H+hD+OC+Bx8658xVKbxVY+uat1aC8cGUZW7Yn7oFLrNqMq+W\n9tUp7WsxzPI+4vdELUDTqu2COVPkEmbH7e4h4rqaWqBi0ofWPYcLtV8AQyJaZwsKr6lLCafqkKd2\nzGE/w0LjDMD3AAAgAElEQVRiYdZmsLnBgGShr02uO9DTV0pd6t4XFdR1npYyC4HaDAh1Ml126U92\ncoM1Jw6vcSfwnl51lXcOGb69zkbSXch09+ExrVqmNN396M2AllKKsuWwNKoyqum8wSAt/XT3psb6\nosxZuI1cyvYTI4JwU5OaFyHCUIDLgAjk00vT7D+j8YwgFm1EMsY8CfzpxHFRA5JLlvbii1xTxCSr\nF8YMd+t2iXWV8+QTO90O206gBu81BvCsHXfs0pY6rgP1mN09Zzw4a/DkAkEqmNJOLh/MOebp1e2q\ng1Tz/n/fpj82VGOESElEfhHxUdTQSy1he7pPIWGFC5T/WzsSeNuT7nOsn2Mk5tub5XROFV1p4knh\nat73kff6flPXjY2LcKe/Vy66/oXn1VUOpbp3937uL2wRuXnjyFBVKdX2G02cm9ZsD6XDmMt9f7D0\nJEmfpWJRTLo2YqUCdMoWL3X538feUV3Z8b1AEV6QOic2HvX/oX0kJJVNHFTGMlRvkcYzgljuBWwU\n7PjOJcz6G6p2YuK8n9B7+wuXGr1hNhHmra394eNdQlLpFjh6cinzDB90WbpUMN49c0zlA+PeU54I\nvBE/jCSPfQ6/C9Udfmdq4RbA0+mg5K1GLPV6TNoKXUg3QdJLTr1PXXI3k7yXVpoa2tpJMc1K0tHR\nnGEJ7B3UScnJv08/rrxdZXdvYZ/pxAdyCveDreOyt1hpS8ebTKZLzm5PuveaSgRp76N3I9dtxlBj\npYZOgiiHhvpwPtln1BJWrfTwcyrMlDDY2HlyCZJ8pkgl9p3ONTZGKiHhX3r8isDk3gVc/p7iyhKL\niEkmlxvscrx6p8qj4nGoE9Z/7+0vqBrnTuzUATZKPxvo9ovMdH/3moiMqjU8f29psyufO4+x6VDS\n0H0IJ5s2wnvsdqlpeo+vcJcbS1UfU4f551FOTFeeuUev9ogR8BhphYtgiFiq9E2hFwtvY+m8whZO\nGmhqUPaXcIFJBXSG9xIjyLDfOh7EPxevAvMlGGadJCjsKJWSb3P/WjNI7DgvG47cdWNxItAXuQp3\n//Wa56rJRZ9XBvcZIlZue1N7z5gd0V97DClSWWdnGbvmFuO4ssSSZSY+SCd9dTlwk7Uw3Jo0UYIJ\nvXpOj4tOBVKUbVcG10st90GX/qXMlx2p9LnGxEkvSw6KvnLlLM+4kdssyTeCRWPMa6qLR3C2n3Ji\nOvXKrAFoOLk9YW9/0R3f9V1hRXXlFhFPUnpn3V07sQseUymGEd869cdgRzlCLpt4r62UP2hqqHti\nySb2gFSZhDDBoSZ3vZDtOulC23S0tHQ+Wc3A4NWK9pkykARnLhAXtynyhNI/f1ydmd4mMyh5rJ6p\nTgDpE0qmFu6B3cKRi1ZNhSqw7thOahlioN4cSRwZOnTo/zdR16auuyLxTK6G7eP3CleWWFLwhY00\nwprf3jhdlC0PPnQ+IBitA+5cSm9P2MmbLpDSJ620XmFW9QVLwoSIPltymRtbdCrPOSr6Gi+Puxov\nME4u3khbVznlpJfS9H1dtGb53UBP6sv2uLmIisoTei5TTHvaEws2u3GRWWnBv9OxtsfUeJv02ccU\nbbqL773ETJL8NsWYnU7/NpCSWSWhVDmGsC3oF/KTRJqgdeSSan/d80v1MTbv/TO+LNIRMUy2xvuP\nbqyWHOhRNULljKW6fOnAwyQYwA8+dL5SIEgvmr+7yLpAyqM65+Gd3Bnpe3Kp2rjtpcj69DB7U3EE\nQ+c1thG5uJxHlUslA31m2TtJWaHb28kN82a4u/fPLZVu3auAwmzBHmE23NDl9iJp4dfZo0KYtgKm\nlLkLopyYXiV4h0Q4cBdu+vvRpOLbnlQ5R51tQjpJ5KiycTWhQfwWhp0WZrkt7XBU2WO9a69WiYab\ni/CZamjVUexdhZuoTUjRS7iHLkRrJ2+6vobJI0Pje2iI19CeaL4/GnocRsdk2RKrZrnFneHKEksm\nq4vV6qKR1qXHdj0PXp+vGKUHye7qjJNrDR9z0Dg35AnXZy1lLl09F439acu+02KcLOg8ycrccF+R\nuTov1nju411i5BLmPPK2FU2WMbfKpyOzq45tqBrpDPypypoXwUUW/dnExhQVmVhDfdusSCz+ndxf\n5JwEnmkhtPF7o4JpCVLRC/T5pHHqSmHe0JFKuADav70azB7TjTcnSeuEivp4jVj9n4GkMPKuNAno\ndjpJzu36vRrWF87rvSYXG5FLDJ5U9gc201VD/DpyCft82RCBvNhKLB/VyOh1zHqi+gE3maZLr8Z0\n9h4xI3/oV98o6WXe5jxrZ0nVGg6K3mDsSaXIrY/yYbbgvFl0Npgy921mXQGxDz8+WyEXHZjn78tL\nZHphSyGW0E8/q1EvokDCWy1NO/Qeuxty2ZRUtI0hibaJ1r2PXW/M825df8NnX0UIwEsjMF5tUUvZ\nJ7cng0wJetOwzn02VjLBG/rXvSv9DvT9aylllttSE30l1r5w3q1J3anGQnLRCEnck8rAgSE36nn1\n9zsoWFf3BcJWitNtDfZ3hStLLCH8RPcIB9pFkjKmUorriOC6zqgeqNxONONhF+NyUPjMyIY8m5LL\nhNY4763M7u6q1leu9ISYAQIfM+fWUcHpyTRZPe+yMrVqnLe4IDhfGkDde4S0vPF6J7dqobvFpqRy\nN+6jdpEdz3S7yWKkx1msDspqRt20u24MHalEnrtWE2l1WOo4WH1XE+WNFnUjT5CLX/DD/2MI39Om\n9q0QnhBDzUSqvxdp+04gcndj8PcTtsSiMLZzj+1uxgZJGPMS/vbkE45JsBW05q3h4Z3w2EX3htpl\nw8kCqrY/xhr7fR8cuWA90jS5QJ8pWRuXY1UsUxMpVfL2zBVvgqbbWWv9fsy+cd6qXbCC729V2XgO\nTqddzEa4IMdUd+vcTvViPW8Mi6XNPN2ahjyfQOH0jrkl83ppVnK8hQgTTupkk36saDVMaowl64O4\n/npsLJlpdZyKo+muF1EBa9LsbQ4m+q68q/46cvH9v4XhfuAI4bAwHLmwoaPajpdb9bBPYfxSzHVa\n26RCAta2UX9srGT2mIei7v8WF8OVJZYlvb66U0tEBlgYaKgX4JQXT2rxCNv35FJXDfODBuvh41Qs\n+dKpvewCV7XS5RYDOpfkqs2ZZoZn7XjvMksuE+cxFtpcNMGksgmEi5DfMYZFlDyaRcato8KWXHbP\nUgf+eaTdUVdxclz05OKPDYhwTCU5UMP5nbp6L/OyoWozqlZozQIp9zF7uwBIXrq0+RdHWBjOj5MQ\nmth1n72H4f7BanqZlLSU2uCEAb7+b63C1KQS9lOTSywOZddVQdULftrLr1VqvaFDgiaVmHSi7Tyh\ndBdeQ6u2Y4SpoVPbxNqMqcieKRCRlwPfia3H8r3GmEeC318IvAH4o8A3GWO+3X0/A34eKLHr/w8Z\nY/6u++012IKJT7hmvtGl50dEPhX4Hlx9F+AzjDHzVP+uLrGYVQNqKslhbPHz8QqxBS6UAsLFQ+dd\nevKJHerKLyKWXD5uL1euxy0wJBUN7aLsyWWWw428N+rD6iQMU7XrPsX08SG5xKCllNgC488rJ03U\nCB3i5LjoF2f1TOsqpz7JKPb7pIQxMoT4u7M2Lquys2Wj5zC5D6ZugZzt0ZrTvuqn0hqtUwP5fzrg\nMZX00O+Y9fkeA7tcooSxlorGELt2uOjq9+bzfflzB55jgTHex0CF0kQoIfuqkTa2qY/HmSfGwYqN\nR6nuxuYltNF70yQbJkzVKmqfiXrsvd0xBCaXYLx35dxfC3w2tv7UO0XkbcaY96jDngK+Clv0UKMC\n/pQx5lREpsAviMg7fKFE4Ds8CanrTYAfAL7EGPMbIvIgOnFdBFeWWDy0V044UMdE5LrKuwHosU4X\n7EnFRy37iOKqylWK/Mbt5vpX06d7iSNGLp1a4IFqQC568fOZY31/AOqirwWzKcbIJIZYzEDy2JBQ\nqpzpScNuVXNGwSkqIHUkS4Duqy8HMG+tl11rGpgUMNuzB+UFy6Z1Ek180daG5cEz9ddR5LJuobpo\ntuLQGWTMEy3llh0jlPD6mlz8/2EAsQ6CHXi2JQzvAEf0Dhwxh4Shg0dvj6kUEcSyZjeLLGqc77QM\ngQQHvdRyclxYUjlR6tuI1PgMwUuA9xpj3gcgIm/GVtjtiMUY8zjwuIh8rj7RGGOgKwI7df/WTcaX\nAb9pjPkN18aT6zp4ZYnFmH6HDXag6TrmoSQS7pJCEikjf8fQRS0DPtOtP0+Ti3dHhp44QndkvehZ\n19ihyqzLKOv04bFJrknloggJJSXZxQmnHUiL64hp8C78sFX5o1JuqSmV2C69xAJgxgKbRlCW7aha\nMexD2I+VY2ozKJbl/w+fjz9ej7s7dQ8PyVGnpvfk4vvhNwWaEHQlyk3JBdqB40bcrjS0mdRVX2zO\nZxT30NKtbm+dC70nqm7TUjV2fpbDuX4ZEDHkmxvvr4vIu9Tfr3eFCsFWyP2A+u2DwEs374fkwK8C\nnwS81hjzy+rn/15EvhRb1vhrjDG3gE8GjIj8OLZs8ZuNMX9v7BpXlliWS4nqlMegd6GbHB/aZrpB\nH1TZ0zh6qhy4I8OE+4qli9aXlej8wfVcpL5V4eTMWxtgd678+3U24xA+ueAmGNvpDo5L/LbOEB+D\nf16nxwU1ky69/qbXXFU7LTsbS4d81Y12NsH7RCSxCcHA6kKXen4p+9FFMxWsCyKNqWl1WiJ/be2I\noI3ZfnPW7firPvvEenIZ71dt/VqoXFs+saaWuHUesYtcJ6bCvsjvvwe4aYz59KejYVdu5NNE5BB4\nq4i82BjzbuC7gW/GMvo3A/8A+MtYnvgTwGcAZ8BPi8ivGmN+OnWNK0ssxsR3qClVxSDC+IID7qI1\n2k9Ppp07MsBhYd2RF0sb7+Klk659lXOsajMO3K7ssM0Bw7wRfOEw6A3MYULBZP+Vu2YoYWyqvkkd\ndyexK3suY3IqtmQTNItsJVVPjFQuCh1jkVKPxfqqbW+henUsy8BYFuuLwF9/97jm7KBYIRcNnRZl\nUIX0JGP3uOLsoOj6rjdhsUV/E/dbTyoxlSN1XwRMb9RSc9Q/xzBOTaupN91c3UOkquleCMaYIxH5\nGeDlwLuNMR/2v4nIPwF+1P35QeDnjTE33W9vxzoFbIllHdapEWIJB2F1EbhIG+HxOrtwXeU8/tgu\ncMZhad2RD4uMZ+0snQvssosMLzLDQdFSZEKZux1iK65yZdZJLppcOpVFhFwGKr2ILSRFKqF6MKUW\n8vaGTXeXsWNTG4BNF9m6zpi3YiWWZUNrOgXlQC1m1Y+bqeh0EskxktP9HJNuUhmDU+radUh6MSo1\n0LRuB+TibQ2hK3V47unNKbvHNTu3rfR3RrGiVkv1fYxc9EYmlFa6mjBlL73EnokmtZjNLRxb06rt\n6sxcJkQgv5y8Y+8EXiAiH48llC8AvnCzPshDwMKRyg7WAeDb3G/PNsY85g7988C73ecfB75WRHax\nsvt/CXzH2HWuLLG0rWw0MVNqipguedOJHlOBaeiF5/HHdjnbX3De1q4ipa1GaWGJo8iCyeJiL7z9\nYJbDw7uG2URsbia3YD15c+bUSqt2n6rKu7T//t6091zsuXh1UEoKCVWJm+Ciu3G9SKzEbiQ2BDH4\noNSqzQZeYR5j9zC2SUm5co/hTl1eL5JLzS/Uk8WSRZGvLK5hvRZtmyzKlmI/Z1HlTOu2K8qlK4Em\nr0tPeDrLg/9eb2IGKujSOpqEWDe3PLTUVZYttXsPizJnsT/p2rkMafCyYYxpROTV2AU/B77PVdh9\nlfv9dSLyMNZOcgAsReSrgRcBzwbe6OwsGfAWY4yXTP6eiHwaVhX2KPDXXHu3XEn4d7rf3m6M+bGx\nPl5ZYjHLoUukxkXVO3XVe/7EaprAxXXMup0uJsQFC/pyx76uS9XKoCrlE+cTThd5p+rxpWEPi2H6\nDN/+k0/sdOTiJ+WpM4Z297pG/eULVNV1tuIEET6zUP+eQuhFlXIH3xShNDVvGA2ArJfi0u7AraMi\nWqs9hdECcoHkGzPmw7DkQWyRjZFSqDbz53SVTSNSS6EWVU8Mi9K274uUdSqmSKnrfXfMk+zwkXKH\nYn/JAwfn0WDc8P7C+RI6KoxJdClV3aYIA0L3DmpOKbrPl44MsvJy4mJcfMnbg+9epz7fwKrIQvwm\n8EcSbX7JyPV+AOtyvBGuLLHAatzA3exO9GT3f6cWznJksQyxGs9QdYvdvDXM8qwL9PNeYTfnq23q\nVBqz3HBY0hUOAzpy0dCSR+g5FOqzfSLAyXS5uvgk7nHdM4q50Y55oMXaT3237rm3ZkHVZhzV8Pjx\nJBrwucl4GSPRFdWqK/+77h70bzHVjj7vRHlP6YDNlN1mUeSDMsA6psUjpbp68KFzTkob3Onfna5W\nOlZ4TGeI0GQSkq//PCZNxLznNEJyjbU9OP6CG5gtrjCxLI0kd313QjCdl0pCx6vb1ru4mCtpDP73\no6dK6msN59ca5o1Nkz5vDYdt3kkmIcK8TMPCUU03mWyw5nBSai+y7jenz/bn7R/UXSJArzoLFyPd\n5hgBxxIMpp7FnU54f55/VvVyuJi3ZkG7bDiuS45qGZT59RjT23fHBJl6U/aNmG0qtrjFPM5SzyAM\nJj2l6OIyPLn44zS0GstLoWM2kDAbw4MPnUdLIJeTfmzEpJeB9K/GmXc5DsdbbHxp9dydjo2nRVK5\ngriyxOIRm9DawOyR0o2PGag1YuoE/X+4e40RjV5Qm0VG5SpCzl2w36aJ/nxJXh9IOW8B54F2EsQH\nDHaObjc9rVoWCUOpTtYYGnn9c9P/xxCTVPRvvr1NFpCx3/3zsck9gXa4qCyWwlG1+kzGpJAwM0FH\nLiP3M3DqiBTQ0hKHdmn25/vfPPzvp8dFZzupyQfk4hfmgQqKCdSmt5uU7WiNk02hAyF1Ekvd16FR\nvjdqeQP92UEB5VCiiD1r/Vlv3Pw9xmree0IKnURCu9JdQwSZXY0l92rcZQR5bpITZlNPrzA9vV5s\n9ISPqStSRZW0Z5HuWxUhnC6KfG9hbSiltaPM296uEpNW9lz2ZLDOAN2uUCUW1LvxjlzoyWUMKYcH\n/zw8xshTP4tYW96OEyOXkARiKMu2q8mSZxNb976xi24uVl0zzeLVGaNSaUK66lRTI+SiPcT0op5M\nBRMslmE/BseR2yQeSrXlCQOUZHlQWyIq6e0qxVDq0OlSLgJPKvpcn2csRE1unQZC199iaAvTSSpT\nzg3hnEqVJQ4JaNDGyCZnizSuLLGIxGvee4xN6vDvuuqTOoa7nE0rHYY7wzCbcCzXl18o6jrr1GO4\n7LExUrmvWLI37d2Ue9iYDh9IGUpQ3tNLT7xp1XbpXzxSOZ9if/trhCqmpD3mgsGssfbCDcPMxQPl\nMkWMwThiEWPJBmxwZFm2XQ6MTTC22I1hTAJLbUT89cJ2AGr/fz0krN1rTVcUy+f6AsDFB3m7ymS6\nHKRWsRuQeB9jJQAs2mTa+sl0yd7+YjAOOk1AxA2+I8YiPldS0HMLQhf6NpqAs1Tj9LJS3UsmyDM/\nRuZScGWJJc8N+24iQdxICPFdsx5oWr+cErX9wB9466gd7O7egsPSdFJGrMJjWFypUx+UfZSznVw1\nnlw8vOprb7p08S5DYqnaPtbFl4qdVPmK14zfAcfiXmIFpDSphs/GG3SBuB1nBHonOrbbDCULLTXt\nXmvcczGugmQNC7fAtrWrIGnJR6tfwvFSRtofI8dNvMW0ZBEeHy6SYwjVhnpRjuX60uf56+jiWRaW\nXGL3mbYVBuSgFvaqkW4chOdrN/jYPXu1q4cer6F0EuY48/d0C+PKPqzeT1jueIvNcWWJBSKuk2qx\nCAdTrNyq3y3FjksNRm249LuhcuLcgN3b6I3ww4njpSKdJ6mzNQz0wz25eFKxKWFMF0wJqCj+JYeF\nV4nZlObzshmUFairvFOXjNatGVEn6EmqbTHrUqEMFr2gDntoINfSY0xlpImgtzXRqcE8cplQ5pdQ\nhYy46kzvsv1vqXxn/vhwkUxfzz6nMH+dJww/3vq22qitInadsOpqKhNDStofSkC2rbECalr9qu0+\nsb75Zxp7Vvqamih38j65pbd3hfN/04SpW/S40sSSSkfuoQdXqmRxOCFiJU69NBHmxeoWlEaYdzYP\ne55e1H1fB4uvsnXEI45rl8rFABn3FcsuhxjYBbVeCse1dVf28S2HhcF7K89bYd5YkumC1vxiVYHP\nK5V6rmOLzMo5I9KKbsfv+seqMKba0AuHvb/08a1purT5Y33StVP8zltLpysbACW16LQoYT+7v4P7\ndb1bWexCVVMy1b7P7KxSAuk+anLztVg6SbrtrxUb0/odhjVl9D35Qm+6rXXonBEU9MYhVv21KONJ\nM/X1dVE6n+8szGq8rrzDxtga768OwkkxpueG9eoMDz+4Y4SiJ1+/g150uuhwsui0/v63QX6vyrqJ\n1vTSjM415gMqP1JrgrFpX04X/b0eFraiX1c3vDVQ+EWl7iQDu0C6gxS5XFbeqhRWFunEe0q5bofn\nz1sbq9Klzff1WPKiK8w5b2Xw3EOPuRh5xsZUrHDXuvv07YYOAL62iT5GQ2cb1vCkManyTt3qSxmf\nnkw7aRiUZLe34FZQPCuZZgUGGx6dcXg1gWV/3Cb556YnDXXtPNsczm5vunytetmdqDb8PXgvulP6\nmixhsbktNsOVJ5YQG5FLNV4DY3BsYkcXPTZRwnbl/Ihn1rRqobKG2uHi13DrWsP9BRyWfcR+CoeR\nbCy9Wm7e9ac+UW3UhtObU4r9YY2aFMlcVLWwzvMrhZAEwt+6XGFmsZKA0gZI2uj86GJXm85TyefU\n0mNHvyv/rHzgYOqeNrm/mOQzdn6MjL3UAv2irlWsvthV15ayEYZj0d+jdhHWEvRggR4+4bX3Gf42\nrVpMBU9VO1H1ImxenloTY++W3bB7UnNWFZzu2yScw83fXSIDScUAfJRhSywwmCThApGC1sWmyhPH\nCCXW5kDVE9llps5LZSVeKMnlwYfOu5gXH7F/VBsOCzr1F/R2mBj2pmDT8EP1QDXY3WmYm4bT/WJg\n7A6xVi1WG1s0deT4Sr0ruLOA1qpypOGkNyNipRb3uV02LJYT5q169iGhR9SR+rdp1XTv6LSwN7V/\nUA+cPULVqb6vdRJZynNxrDS29yL0zhmDlPcnGdOq6aTR0FMrRSjTqmVa9/1YVDZ6v5NqGUover5o\nwop3OrKJOmm61Cu+f5vAP5dQQtk9rpjWNk9aFzcDnNb9ZmmLi2FLLIy4xI4MqHCSpDzFNMJdlr5O\nTG0R9mmwGy4mLPbd69OTTxW/ApuqpXKqsfqaTUBpsyW71C6FN2JH7jE3XJ813edZPrEuupPbnYuo\nXmi0B0/s2YWODuXEwN5qBPWYV1RqAQqfq19EY/E40MexdO7GTYU5vw2ANBVFvsPetOWwzHvvwZKN\nMNZHb3z2CJ9JWJX0Qu1rb7lARaffSejBN0jCSN6NoU0XbJ9bzMed6JQw66DTAIWZKPRmLJZwcuX+\nyz6oed3c9cfU5Ctp8nVamy3uDFeeWPwE0rszj1QddVgNutLQwVt+EsdsLGM77qQaqWxHpZjUd/r7\n80nDrEkHUUJPKtdnzkMor11Qpa1kupPPefxaM9DPp6SIdWrD3YBcwuNjzzgWL6Sz48ZckXWf9vYX\nHBbWQ26a7cL8FGrXj6Ymz61XmHc31qk+1uWoGpC/W7TGgg49/PMbk8Cq1DMOveUiY9fHp3j39nOV\nZsXPA1+HRRN7bBx3Y2q/twn6jc6AxFRfdXv+N3+uJxj/7vRvY3V/YmQyVqbZ/7+3v+hc+OuDnNPj\nki4oU2U33pRcN4IIUl6NJfdq3GUCOs5Cx7R0v0cmLmxWnMhjd2/RJeDTO+nUdTbq98jxfuKHHjTd\nzl15Bc1b61oc4qBYcn224LCcMMsPAMizU8ClAclzZnnGYdlwVMHR3oK6yjtj6ib2D5/mwzsshOSS\ncuMOEctL5R0gwjxWGrt7Cw4L2J+2FNkupr0Fp2cAmOqE6d4e+9PbHBZTdlUFzjGC9NmdYyrQmLSy\nci8RaVZDjx0ticU2OWE/Q1I5LGHW4LzDFp1H2wqhqEU7HMdj+e3CMe6DMMO4kJS2wF/Lf7dOUr1o\nIGNRtuxiMwCc3Z4MtAF7ZR0lrGcSROTlwHdi3Ty/1xjzSPD7C4E3YAtyfZMx5tvd9zPg57Hy9wT4\nIWPM33W/PQD8c+DjsGnzX+lS5n828AhQYGMZ/rYx5l+N9e9KEwusBvGFv3msi08JMfCfD2JCYt4s\nYwtWbMKk+uG9dnS0/EBvX2dwOqWc1G5hsVLLfe78h3Yars8a9qa7TLOSHU8sMiWXU8r8jDKfMM0m\n3JznHBVwVMJRZSP/T25P2HWSzKb1QDS5pIyy/t5CNZInFB3IN8/73XhsUSrKlsPScF+xZH9qY1ao\nzzC3LbFIfUaRPcRB0Vry8RkJtDSrSExjV70Db7+AvmiXP1cTa+i11PUzMSY8wej+xAJyu77GSCX3\nbsTWpdh7iYVEreM//DPVBLNpn32/OgkmGSPjn0svTU2qvBtTsTZhGAip34l+99GxUlr1sCeYFRXi\nZaZzyS7H3djVUnkttkjXB4F3isjbjDHvUYc9BXwV8OeC0yvgTxljTkVkCvyCiLzDGPNLwNcDP22M\neUREvt79/XXATeDPGGN+V0RejK0D85yxPl55YklhjFTCyOEQsaCssG296KYGbypVR+p6Fn2wlzYC\nh4vrye0JO3nTLSxVm7E3bSgy0yVltGQydZ8bcplQZOIi901XodIvUkeVrVI5mNgbkkvqHvUC7kli\n05QpepEJ253ldM4KOk9YDD6ITvcn7J9HOB50sGas3fPIKx1T5YxlGoD13mYevUu5/Xzexp0J/LGp\nmJ9NF94xaSKcJ6E0q997tA/Buwnfe6diVKSi1/cwSHST53eP8RLgvcaY9wGIyJuBVwAdsRhjHgce\nF8MPvTsAACAASURBVJHP1ScaYwx0GYqmeN22xSuAz3Kf3wj8LPB1xph/q5r4LWBHREpjTJXq4D0j\nFhF5HvAm4FnYG3u9MeY7U+KYO+cbgK/AbvG+yhjz4+77PwZ8P7CDLX7zN90DTMIYWXHphfjirWNS\nbIDkant6QvoYg0q1pXex4a485ToapqhI9THcoYVxLwOPt3KYAuZob8G8sRUm560fDg3XZ+ddm7lM\nmbcnnDcn3Jxn3JxPOm+qQZ2XCey0UMUqLtb23n0MRqUWwLGdqH7Wg2dcqzgh116oCku1XZQt87Yv\n8tWaBfmkgKKPY/EBkvO2D6LT716TtkYqJsN7Re3tLzi5PenGhn8P+p5SzyJMsRM+Cz9GQk+rocpq\ngc+wAHBU2UXcx7PE3pOOrwrH8J3Edfnn6O+hauIErZ/tZrnXhvNCn28/t+j4GbCE2WWXUM/sovf3\nNOC6iLxL/f16Y8zr3efnAB9Qv30QeOmmDTuJ51eBTwJea4z5ZffTs1Rp4hvYtTnEXwR+bYxU4N5K\nLA3wNcaYXxORfeBXReQngS8nIo6JyIuwtZ0/BfhY4KdE5JONMS3w3cBfBX4ZSywvB96xrgN64K2r\nrdF1OrK4hW35drTKK5zkYeqIsZ29D4rrF9v4jmqsPjisxhdUVc7pyZSz/QW3DmuevQvzduIqUjZc\nn511bZ8uzrg5n/DEeXzI+Kh9u2AZjujva3WCry7MF0lXHpv8zSLjTB8Tif73ah7r4dVQtRn10tCa\nhjwvkC5ActIV+vLuxn7BDZ91rF+hR1MILRnofg6SmCacQ1JJTX3//O8xZ5Eelly8etZHnus++Gd7\ndnvS9SUkzKK08SmdKnnDBdjf+6DtiDSSmmubIk5GQ3I5b4fkDqw8gzu5dgySyUXiWG4aYz79Ui4c\nwK2ZnyYih8BbReTFxph3B8cYERmwsIh8CvBtwMvWXeOeEYtjxsfc5xMR+W0sE0fFMff9mx1T/kcR\neS/wEhF5FDhwOkJE5E1YveIosSzdOI5Fw/vJ4heilViDYOLq80OkdraxY1II03qErs3+GH+dGKnY\nH82g/yHBnDxQMb+/Yd7mLJZC1Wad5HJzXnAcmWB9XRcLqxazaTRCyU4/r1TRqqK0mYQ39ciJlYKO\nLahhgN5563arXYDkpJNYJC9pzaIrTRwr9BUiRp7hO6+rfBAwGJJqSiLVf2uPtxh0pcuwHx0pONdz\noLMrxI7XHl0r7r/V0DsttgCvuIpHgn7Dc8fuLUXSKaLV5/m+aknM/xbLjqHJ5RmIDwHPU38/1313\nIRhjjkTkZ7Ab8XcDHxaRZxtjHhORZwOP+2NF5LnAW4EvNcb8h3VtPyNsLCLycdg6zL9MWhx7DvBL\n6rQPuu8W7nP4/SiMkeTOMsxz5BFTcYztTFOIGj03JBeI7+TCfoVYCaaswJzAaenUrIVwclzQLG4z\nf7Bm3mZ8nCp5HCOVPqBySZnDzOUc61Utq/VdtGpOFw4D2K2qLg5CLwabEEyMpDy8O7n39CnKtsuD\n5bMQSF7afWwxhUnB0pxzXOcc1VZNEsuJFrvWMKBvGECp7R86o3PYhh9/2jXZ2xogTi6h9F0nxnZ4\n7Rhh6OcGvUJ++M76FCu1I8rwPaXylQ0CLdUGYpOFfF2lVX2dTc4ZczK59BRFwmW5G78TeIGIfDyW\nUL4A+MKNuiDyELBwpLKDdQD4Nvfz24Avw3qAfRnwI+6cQ+DHgK83xvziJte558QiInvAvwC+2hhz\nLNLbC2Li2F1e6yuBrwSYPfhQ931sQq3sNpVKJyzMlDpHIxVXEPr2x5DM/Dqi8giN9+xHPGUCaeb0\n5pQny5n/ArswToLaLRY6St9/3ptau8Qsz7mRG2YTm4a/KFvOTqcr9c7rOrNR2ypye1q3feQ2vRto\n7PklF09V0tbeyaqaLYRpnXhVL6CpySa5Cwod1u1Z+44jQZQp1+HY/eg+6jGhDdIxN+oxDzJ9jZgb\nbVg5cdSd3T3LTQIpYxLLunngj1snIcbKFXTXCSRB/XlMtZXa8D3TCn0ZYxoReTXWOysHvs8Y81si\n8ir3++tE5GHgXcABsBSRrwZeBDwbeKOzs2TAW4wxP+qafgR4i4h8BfB+4JXu+1dj7TF/R0T+jvvu\nZc5BIIp7SizO3e1fAP/UGPPD7uuUOJYS/z7kPoffr8AZv14PcPgJn5QkrBU7QCTlRKkm6Cb2mVjs\nSiwGIwavBx/0cU3SPn+NsYqNPo1H+F1ZthztLaynV2GY5dlKEOU0G96Pj32p2oybc0OZZ8zO+6zJ\ntyZ1tyB2CQ8pqIPaLqn7CD/r++rUeqHqb6SdzoMoX3aebz5A0rQVuexR5ktmuQuoC+KcYmqrWL30\ncIyESG0GxlyT62roGRdzhfdSWtj2WBoiTTDhwh1KGrpMcKzsdgwr1S2rPDoPTpxtMkUuYza4jpwS\n0mt43lgBOd+v/WuXUz7hMmGMeTvWnqy/e536fIPhuujxm1jtUKzNJ4E/Hfn+W4BvuUj/7qVXmAD/\nB/Dbxph/qH6KimPu+x8UkX+INd6/APgVY0wrIsci8plYVdqXAt910f5EpZSETneT71aOSRRs0rEC\nKbueD2LT5DJGKnqy++C+ZpF1QWp6Mp3Sk4uvCllVOWenU25NambnfV0X7QG2WEonqfjYl52J7V+Z\n19ycT11p39zaXSaqiJhbFMuy5Ul2WLh7GOSbKocLd4xQQnKJIrKr9u/CF/oCoG0wrtCXtA25TNmf\n2jiWyXQZJTL9vL3dZHDpyEIKjEoHunSw/k27Jofut+E4Kif1yuK8TkIO69ro/qci7y9CKrHnEhLK\n/YW/16bbTabI5SLXjG0C1nl77V6zkrYvwHcpEOk9Dz/KcS8llj8OfAnw70Tk191330hCHHOi3luw\nvtoN8DecdwPAX6d3N34HG3iEZdmGC5PDuoG8SdRvuGPWhDKbEI2Cn7fifO57ctG1WcL2NaGEkpBX\npfggPl8M6kl2esmlNtamcGLda3dyW+7Yx6r0k8zGvVyfNRwULXvTXWb5Hq1Z8OCs6gIpdY6xWQ6H\nLpjSxrzYRfapageAndt2YV8U8R1maqcafXeJPE+xTUBXQbLWFSR9322AZBjU2u22IyQeu44OnNQL\ndLSPgbTi40h0ka3umURiM2x6N5VtWC2sYUR9DKmgwzDyPtbndQgL5nlC0eN/3goc2MBFGJLLmMSl\n247ZjVbU3RGVmJZSdtx4jc3LLcZxL73CfgHvTL+KFXHMnfOtwLdGvn8X8OKLXD9V8z7UQ8PqDvVO\nEbajCw6FmG9QZGoMsXxRKewd1J1aSicPbBYZR5Vw3hruL6Sb/Na1GOeWvNrP1vTpWXSFSrtA9gR1\ngz4Fymk9pZnaiR4mBRxDuPvX9pQ7QmJHGVvIwnESuoSPPX//25hhuWqEndwMir953O2YDMfQZnEi\nTw/m7TBg0SPmMTgG/fz1+Zcxdy8FIjB5RnqZXTruufH+XmJssQhVHet2aJtOzM49uNs12niCnRZm\n+XCR1tHOPkjP2ydi8LuzTiVzOo3GB3THqx3b3kHNU9XOwE7g06tDy43G746lIwgGi/hZRyhHVcPJ\nwg6tMl+yNxVXGlk6zzG/C6yrhrqy9ouzyu5MNbGM2TVSXkzJ+1XHV40wb41zN7ZxLGGApMdODicj\niTB922GlR73QxbyPijKe1dp7I+3tL6iroYSwOs6GcRkAt2p7f2HpY+jfeSzoUru1byKBh+72o0Sa\nkGi8dx6VHf+zCcwbO96bRZaUOFKIhQJodWrM8SY8P+zXYbnNcnxRXFli8c5nsUR3o14xd6gCWAmm\nU9HNmmBCePXVOlLxffNGWz+JvF1l7F680XbvoF6dfIXeAaIi3H3Z474/+1MfdBg4OuSm+78jmDwD\nDPPW5oCqqpynTmbEsIntC3ppc2wh0h5083bpKkjaOBYdINn3fdnd47rFdl08xaCvzqYRemSFbrLh\nJidOpENyWVfud+CmHMs+ETPsB3FJY04jMYRt6nvqFnH6Esh1lSdjUda5HMf6Fg0fGLGh1m5DBcap\nFre4CK4wsZi1C8VYLRBdWW60kl9k4oaFmsJSsxp+Rxm66sLdORzEMLaD0/05g65wmCeXxVJ4cJZF\nXZPDIEpPMA+TM29NV/Y45qU28Pga/GAo9vtr+VTv66B3/vMW6qUNkJS8xCTUYLN81WAethd+DhEz\niutxE4s90Z5Tsfa1ylKnX9l0Zx/2O7ZgR8dE0Ff9fex4X1xsTBrS5KKlrZAk/DV0jEnY75B8LxKL\nsvrsWm5xSTaWrfH+auBOdK9JT6xEFUkYTtyBUbFcdQEd87Gvq2HAVqUWnxTB6Mm+Urcicf8rxvHI\nIlTXGTzgt7C25DHANMucXcUMSMZ/1uaTMrf5yXxlSoDHPrg3uE742dfMABtTUewvB/VD9LMKz4/d\nb9VmLE0Lkx3CyPvYcxlbtNftpFMeWak2YwZoDV06t5dMA7d2FRuSumY0DioVFxORIvTzXesEM7IJ\nqxrpnE0m016iw7l6h+8vRSgxD8J10Ju9GLlscTFcWWIR0YnvhgbYEJvEjMQQc+HU2W438UqLBcHp\nya0z56Z2kCvusTHb0hpvN51S3NsBgAG5+HiXxXIJWCklJsEUzk35oGhdokfb1qPYssdelRd7JjU5\ni2LSSSwhqXTXSOyc9X1Zd2PVv2A3WbXSReZD79Wl/w7bT8WBhAWuPDZxsvDPIoz+155put2wPR1M\nGZaISJJacJyWIvz32h53NwbyMBv4Tj5M4+/Vu+uwiXQS8ygMAykvNdpeYyuxfPQjk2Agt30NiJVg\nxCqexkVjXapzILmjTsG7DIfX7BYoNenWLRRdf9xxF3WP9oZUD7+Lts9q0aVyeXjHSiVV59U2JJci\ns1Ubi0w4WViJ4VlLATLmDfDsM/b2FzZ3mVpMVqSOcr36K0U2RWHdSWe57U8mwTObFLSmXzR9Isp1\nWYghTSjadVdDq0BjgbZdLq2I9KKPm0yXkSDb9QTjr5FK7e9tDeucJMrI2F4nwen+etdeD+8yrd2c\n19kYYxuMFML5ummqmC02w9UlFlIBiYZaRTWHMSN+YsfURetKosaQIqkwIr90O7hY/ZdY9ctQFZaq\nDBhDLAuAdzLQ7eqF/9akpjfoZ65Wi2vPdc2Tys7E1nnZ55yqbQck5NvyffQJNWMksa4krSb0MFuw\nLvaUgs9uPHDzDdSbMYTPOVxAPXwNFA9/P/q+unZc/311UO144X8L2w5zjHmE6WC8inVFtbQmq++m\nJYFX7kU9Ex2D0xcfAxDuZ1i0zbcTShmx2JYxpwmPcHO1SXaEu4JI7yDyUY4rSywidK6NMFxkfObT\nMXfHde6V6xBzDPBtpir4WQyLeunzoZ94WoIJd7bhYhdDeN2qtCnUQyOz3+naSO8+mNKTi/cIC0kl\nlwlFvsNBcUa9FJdjzNaF6aL03WKxbqeaQizbgX9G/n0PVGF+0rsklBraXVjf+yapelKxSj7gMazx\nktoAdJkTIuPOH6eDKfs0MOOF0lJOIKHEmromsELcYVup+9ekcuj2Kd6dfZ7TBdKCgb0FKG2C9pob\nvX6w6dtEWo9pCLbYHFeWWIzpSUXHi/jdqV5Ikvr+QD1w0aJAqd1vP4lbdtzCrHfNfvfm1TOx+IhQ\nXaJr3vu2Y/ALUej6vGIMr4315KLPlNssss5bzBYO6/t1ULQc1zmwYMeNurq1GYSrNmPhUtT7d+Ej\nnr30cvRUGY352ASxd+Kv1RvvC/sPbBzLouFkkXNU2yJYqcJZoU0lbvgdzwMXFuZKeX956dnD79yL\n0taj93YJ6N+fHise62KuNGHGXJPDfuqxnyLgVQyfS1il0r4f6e4lLMYVzTxRxEtc+P8vkv4ldv9b\nbI4rSyyLJdw4k5Wdu66kB3Fjn/5cV/nAO2dMFx1OhNiE07swO0kW0XNhtVqhRszmonX4ycVlz14v\nJdH4e55WDdPKZiJ+6mRGsb8cFA47qmx99aM647DIeNZOxt50Sb0UimxJmZ+7hJUTnpxPuHG+eq3Z\nBJ49waWVYYVcUpKkvn//eaUey6Rh3sLJIqdenmPKj4HSeqQ1NI70So5qGdRjSS36MQ8l/5y9HSX2\nzDeVxkIbl75O7WwQVSNd9U5/7CaBu0kPvMRx2ovMu/5CPOHmeHt9XNTcSaxei+BVkLpypX9Wd9Jf\nXWNpXQDo6XEx8Ni8NGRb4/1HPZZLa6Q/Y7Vw1iZptfWAPvVeTIHxMOVrv06N5r2u9g/qgegfIkUq\nqT7rtsfatDmvVvXy+p69y69Pe68JxtcT8QTz8K4lmId3Mk4XlmB8jZebcysVQLyu+iw3PLwLPveV\nJpeYFOX7ZevM+IdgbRK6Zsgg8n65oF6eUxbXbFvLc04WcLrIOaro7DzR5xXZSITFokKsW3j1Yg39\nrjlWHC1sbxLYB/011tlBxmJBwmNijgTQq+jGnlVo71spLe3GQqyyZezeY23H+pqqsRS2Ed5bOKef\nKRCRlwPfiY3e/V5jzCPB7y8E3gD8UeCbjDHf7r5/HpGS8MG5XwN8O/CQMeamy0L/va6tCfAmY8z/\nNta/K0ssbSucnkw7MX4MsV1pKlYiJI11RnXdfggdhBnDnXqyjE1Q//ve/oLdvWEsR7db9MWeVDbi\nad3CCSyOc04Pio5s9w5qzq7Puf+w5qiCh3czlTeMKKnYEscESS8NmlwGEkRt2D2uuiSWHj732Nl+\n0ans/OIyqWzk/eki42QB16ZnlDMrsSyWH+nUYEdVX+gr9Z7GPPJS6q11m4uQXNZlXNDnpSSLdbvv\n1FgN/06Nn4sauX2/dGlpT4wxQkmR8Fg//f9hzE/oNh7brOg+Xgouyd3Y1VJ5LbZI1weBd4rI24wx\n71GHPQV8Fbaarka0JLw/1xHPy4D/pM75S0BpjPlDIrILvEdE/pkx5tFUH68ssSxbGaQUhzV1HiJq\nrdSA22SChSqbp4NAdLtjlQKT/TqdDsildFJZ6tzJwu6Gp1XLAqsPf+pkxulxwelD55w8UHGrbnj2\nbk8eoZQSpuf3sSazPOOwMByWDY9da7h1tOCxD12jPsnYPa7Zub1g96Sy1y5trIuu83IGnNbTbpHZ\nvdYkE31mklNkPhuzGcSKjD2zjX9zhchiCTNj9jF//YFNIzgGhtJo+K7DmJN19VjWYWVBj9XBCTJM\nh33V0PNJq7zqKlfZGEzXbmpTFiPZUC0KdOM69fszHC8B3muMeR+AiLwZW7q9IxZXhOtxEflcfeJI\nSXh/7ncAX0tfrgTsg78mIhNsBvkaOB7r4JUlFo91C3ssDmUMm+7adF6uMTWFD7Bcp/KK4SJ+/R7e\nHpGqaukXubODIlqgK5WZWLsm+1T8IXzdF7CEcl+xdLnFhjnGZjns5Nao/wH2OaWwlSeLiQ2eTPXF\nLUj+Xc9cu/tTKLJdzMmTtn8HD3F9dsT1WcvDuzm/e30eJeNNdrPR38v+/HUoSpuOXyeUrKu4e/Am\n19ceZ4PvR7I+dN0u+3gXfe91lQ/uKbZQx9yqU33S+e3qKrcEVQ9JJVZUbQxeDarrrACDQEwALtju\n04jrIvIu9ffrXaFCsETwAfXbB4GXXvQCQUl4ROQVwIeMMb+hK/kCP4QlrsewFSD+B2PMU2NtX1li\nWZrN63WEky5FQn7ijUkEfmEOCSVlTNTBkLCZ9BLGQehrj/ULSJKKd33VC8si3HEnaqBoPXeHg2YY\nEKfqvXgpZW+65KBwElebUbXSFQ+zJNQAJ3yAfT6CrenipSaNRZFHCW+W28qXeTahyHagtoVHJ0zY\nmezz0M4ZD89z7j+0i82TN2fR6PfBI1ij3gr/XrFTVMM6L34h9J5fsXr3qRxf4e5dlzwOF/+6ygfx\nMpumFtLjIbzHtZu2YPyH5w7admPLb8i8SjNlb4rFBO1eawZ1VmAYiKnvb9CXyypNfDFV2E1jzKdf\nzoVjXVkpCb+LrYf1ssjhL8EaXT8WuB/41yLyU15iiuHKEssmSKXV1xPLfxf+HhLMOkIpynRsiR/0\ne/sLinI8vcUmfv3+uNi9jf3tz+t048R3pym7AqwjF/tvb9pS5jbuZX/qnpWTWKrW5iLbmwqzPMeq\njC25nFUFB0/NO9vK2P0VZdsRWJHtIvMTzMkt++POU0x3ZlyfHXN9NuHj93Og7ipJrjPmp1QrsYU2\n5m3mj/Pv+7AcZobQJLCJRDtQqRWpOKb+GN8+JOJXFPnEJKgxlXKsnTDm54jh89H995JHGDjqbTKx\na+viXb6oWKeKzQGkq9LK6XRl7jwD1WOpMu0bIVES/hOBjwe8tPJc4NdE5CXAFwL/jzFmgVWv/SLw\n6cCWWDbBpgNoZQEOIn43sdFsSirQ1zr37afUICFZaFLR3kIxySWljvP9qisnuQWqkDFdd3gd/51f\nLB4Hzq9Zm0sYsFjmpsspZoMsfYbkPlPy9VnLCw+H5PJkeW1FRbcoc2IlioE+pUvTV5A0bUWRHVBk\n0lWR3Mmta+zA3pGwK8SeTUz9s6JOUu2VZTtI0xKre+/flx9zYwSjpRXfHvTxLj5KX/dNHz9GMDGs\nVe9Gxn9fWnmYoj/Wpj/Xj+ux/HeeuPqKrb1ziC8yNnfPVqfY6TYCa4KJN4ZIH4R7d3gn8P+z9+7B\ntiVnfdivV6/H3ufsc+bcmbmjGfTwSEhCJSiSgJBcriRgG1FUwBEJThC4/MIFkUElKxWMkRUeqZgq\nsCkwNsRTihCUsEFxHraVshSFR8VUHLAliIESZSIhydJIurpz594zZ+97zl6v3fmj++v1rW91r7XO\nuffOjObcr+rW3WfvtXp19+r+vv5ev+9VSqmXwwqUN8My/xldCJeEN8b8PoBH2HWfAvA6FxX2aQB/\nCsAvKqX2AfxxAH937DmXXrDIzc0Zz5ykqkGdCWGmCAkZzmzTbOf+7l8nSwpXZYdVRdqQbHvKTCb7\nFYpq42OS/QolYvb6HBF4IaJTvx1Tha2DTbd1WnYoW4VCWwwx+3fiq1VyGH4SLovUCpcvFHs9TVEy\neTrV2t/Fu6062z4V+rIgmaxGSE8TDTMcqaWEtMPY3MfMiUQS0if2TmLJpPRuzwREEPXhvJUk5yVD\nxonP1VhFVXoGQfBLgRcKrZZ0XFLemsJRYXwS5nHZRf8FQWgDQu65JGNMo5R6K4APwYYbv8eVbn+L\n+/0JpdSjAD4C4BDATin1dgCvBfCVCJSEN8Z8YOSRPwvg55VSH4V1jv68Meb3xvp4qQULX4QlYzhS\nuIRoUuCMbPAwNLe4TzAQCsEkhrw5yb29WRJFB4057/vCo6OQ0MuLYUJljHkGx1aZgdmM97OqEqz3\nG2zbBhbIMkGWGIcsbIWILIHMhcsD+Q6PrxIADfJi7fMfYkmN9E6oHkuMqp1BvVM4LhXWt9MepM0U\nhUyfoX7EhMqY9kwMcCBURH0Xfn1Vap9nwtvmjDlkjgu1PYdkLk/INMW/I8h8SorkcErcnFwG1iMX\nKiEgT/mca00XjXjWdknRkp7Lcs1T5ATBB8R3T7DP12DNWZLGSsLzth5nnzewIcez6dIKFsOc9wNh\nMnLqmbPBuNYSOsXHTnWd9jIk2vgkVFCZUeFCz4lt7Nj15+kT0Bcq3LzjGULAXCT7K7UXwBYBA4DD\nHBhoFo5IuJSt8cJloQ2O9yrcqiw6NMH98zDc2Ml0MB8ONn/bDnHjYmYwEig0L7KC55RQCpnrJMWE\nCjd9cogZ/k5CiYI0PwRuuTqs/DVeKHJtN1IAb0roxph9jGTeVE8LFUEGNDbe/pjFgTDIJJK5pLsK\n6aJUBxv0AqdLK1hC1MNICgiX857aQo5Navu8RBuHhMreSYVTkYgYukf2h4gzIR5sEH1+NYQUCTGK\nPCBIfV5LQGsh6iMCdMKlcICWQOd/Id8LaRuH+Q4nlQW9XOgEx7nBUQUc5w1u7Tde2+iNtUo8Vlg3\nyNpH7VChr21rmRCHXhkzgxFxYS79AKH5Dvm9OIXwsui+sagqYsw091K4eIGyTpCVLfbKEpuqEzCc\nQkKGKHQoia2XWEAJN8txgZE5nJoqT3taCxEdTOjfihUGi4Fi9mCbJor03YfUPz9dWsGik13wdMgj\nW/jmBeb5XOg6ICxAQrb1OYB3tJlo05wiR34QHsNYVBZdGzuxc/PNVLXDkH9qwCxdYS55kqcx8b5y\njeCsrbBtDYDUR4l15Y13XrgQHVI4drsDLettCyzbPlp1iHwFydUegK6C5LrWvhaLnKMK7iQd8Ylw\nn4Y0N8lxh4hO5bxkr2eIAWY3icAbMUfy52dli6yyED1VnvpD0XmDVXqaHXsGCbSp4mZcO1wdVthU\n2SD4Qq43GQxBz6IoOC5M+PyFzN/U/l0XKPc1lhc+qWRcHY8h2EphQxRSzc9DY+Y3yazzokVVzIea\nCAoYZ66Tws0/Q0C/E8KvbJds91xT2QiThBQo0v/EzUvlZxN87OQKHnvJBusHSxxfafD4gcaLljuU\nrfECJpCbiYOsdQ5/AEidYLKM+SxtHLR/N37Amruq3RlQXAX2rWDB/oOo6897M1iUApnlIX8Kj9aK\nOu3F/YBdS2lpAyiIMW7WYdMNZ9ZBwErGmA8OK6wOalRVggMHdVKVNteH/vH3Nhr9lQ+rpMqxDZh/\nHjevcl+if8aBS5yMmPD8dQETKzCufYTAW+9rKXdOl1ewqHkhhNJGLZ39QGfP5fdMtUn3zXl+iOYK\nlWi7Ae1Ilu7Niy5DuXQO09BJW86R7Ke01/Pn8fb2TkqbQV+2+Hy1j/VJjqa+jVtVhZcfJHh8Zcse\nk4ChWi+AFSqUTNlRCnvaV/1EuE3WO+G3uwYNGuj9B2GvatCaumcmC8332GEgNi9zDhw9oZR30U8k\nVGJMT7YdE1xkIuLhvnYNu+sZQoHUWufktQAIQv9MrXtakzJPK2ZZiIVwc+J5MLwP/B7e3kXM1Pdp\nSJdWsCRJv/JiCLuIq/Qh1fu8FFu0oU0irw1V67uIHZhHzcRMZZTtXaQdxArF+HPNZMpRy81qSaui\nBwAAIABJREFUvd9ERFpVamTrBsvbNbKyRVrsrIA50V57KR87xbY1zkEPAK0TLjscZK2FZdFO48Ap\ne5oVLseuIuEtKhhF89EqVDuDaneGPYZufNbUKNvFqMYyGFdkTXANbsxPFbzXAaXeKfXeR975Y5ra\n5kXhsMIGnW+FC6DY8weRggLlARg3B8s1DIQDAMb8cqFxTglY+ZvUoO8dJYC+bwq7lNQTKA4sEAAo\n8Q2IM+Up9Fiu9fD7+X1TzBoIOxvn5JBIn8gUjeUUdI12WkNVJeAAgSEKmlUqg711ZZ3H6xJ1Zf0y\nJGBIezl98W0cP1Th8YMuauzqcty3QACWNilOYdkCgE0GtJn3THN19u/WVKxc8vlpzNzViyZjyZQh\nip2i6V3L9UZ1Robac/dMEhaUEJmKw8LdoilQVdLy5cHubmoM0tdDxANN6Dr6zPt93xx2cYoKFqXU\nIYB3wMZCf9AY80vst//BGPM9z0L/7hntdv2T/phAAcZDJWlhSkiLEMl25goV/pyY2W1MuITMeLET\nH51EeUXCYG6BDLkdwQqbCoCoc40lao9MzLG9stIy1806w/GqxnEBAAZHrUa9U3hokaBsWxzmVlO5\nsU3x1FmK2kWNdYjJBgvvgzFesOSJglYZ0Nj7dZZ5gbNtVc9hHmNWNM7g36HQ5Mj8zCW5bvjaqErd\nh52JCPtghjsLYyeTVDBpcCTQJOS3A/prn8/VWDkKujZkRpX30rU9s6MQ5GNE2nWs/3dMSgH6cpzl\nx0b58wA+Bosp851KqW8F8B3GmBI2pf+LmoxRvQS6gUABEIPnDp36Y/6XGEmhMpfmMKGYRsU1rjl2\nehmRdJ6Y/phGFu6w3fAxZGRqryw1jm8W+Hy6BWALdW3bBGWbYJXZJMqyTfD0tt9OD4o/7WrCe6ww\nvUSeLGGqpwAAeu/q4PlSqMzxr1yEpD9vzlqSz4wJQDKDzSEuXKZAJMdoqu93UyuQ5uuYQJfvjpts\n83w3CGy5T+enMcHypcaYb3Wf/6lS6p0Afl0p9Z8+C/2652R2fYFCsfKcuXGnIV+IMX9IyF47F9fr\nIhQzx035UaY2TF9w9kN1o/kugdNgzFYe0lrqQvtCXfQOJJgkva/17RRL3Tjtw0JzkPYSokLvcJQn\nOK4IRbnTZPLEQKsUyhiY1gYZaJUiT1gCbTXMAufjG2WwE9oKb2vKJMYpdLgJReWF+jcpEFwYtS9u\nNhNKPtZuLEl4TGCNzbP020mrQ3TOWXi4bJOESizv5T6dj8YES6GUSowxOwAwxvyoUuqzAH4DwOpZ\n6d09pJ1RTKi0Pob/FLkNt3Q5IlPlTIH+RpALlm+oOVoM0Zht+LwkfStT7cwRPFWpMQVBEmJ+8qRI\nARRVpXG2n3lhUufdPVzYl6XG6e0U1wEcuGJdRwW89sK1E0qo5ETFu7atQqF3KPTOglC2lQWiBKxZ\nzNG2CZyEBYXmtDdHAXPMlLYjoxB5u6HnzIWaOS9VpfaCaqzPPB8kthbm+iUlFP8YkVZ33rFTPwdo\nyUUf3TkGKnshUgpKF9PXvQBoTLD877CIlr9KXxhjfkEpdQ3A37/XHbvXlKY7n2xYOZt+VraoD2wy\n3+qwGsV5GqOgPXvER+O/51E1EjbjAtASU47Luadv/h3lPfDsZn7dLGYgToYPXT3DurDlgwmZuKc5\nHux676F3Si9akO9k28q6LokXMhZw0H5eaAub/tCi9UW+UHWCRRkDnXRbYw5USWhe/edieC2d4qV2\nEaK5kDxcM6hGmHNVahTMfzZG5znsSPiawbWBNT0lbOQaCwkiOpz4+Szi+5Xmn5u/KAqSXyOFy306\nH0UFizHm+yPf/x8AXnXPevQskdbGMjQOB5GnvUJCkgFOMZe5/g8gzhwmM6jRLfQQ45hKwqP7OHRN\nr+0yXmuG+kbCJbThebEz+TxpbuBjJc2QzC854rUwuBZoTXQ1itTgCoBto7BIOwEDdPDonI5ym/uS\n6yW0Sr3j/jzUM6Ow8ctr+Log/DBexiAmXPi8Ad2aCVb2DFSADAoVhwxM8ClBNAKhVU0dGKiPPDR5\nzgGD15SZo83MCophKQREfP57moqAwiFE8bJR/QPC3Sr0hfuZ9y94ShKDvX2HQcRMCVw13lvV/ToV\nF3TqhXJQiAYlYifszj3MKcFIpvDI+EmN+hW6TmIx8edT/w9CGkug8NTYyZGfCoGufCyRDP2U5kZP\nm8zV0bDvc9mi86Owok5ERznw0KJBoXfQKoVWGUxbArU7cbeVM4fNqDci5jSmrUpzi6zxsWGBJPL0\nfLcLT0lIld58BoQK/T96sBIFxAoByz+HxnyGszT+oo2uvTEtRb4L2vP0+/MR5Vgp9Y0AfhoWNv/d\nxpgfE7+/BjYA66sAvNMY8xPst/cA+GYA140xX8G+//cAPAHr6vgUgD9njDlhv78MwB8A+BHeXogu\nrWDJNfDIYYOz/a4q3+nttJccSNXmAIPjsukBAU7hHfnnRJgCX8w8X2Qh9tbCvaFtA2yLxhdmKhuF\ntNST9dCJUYU0BhoD34h0mqMyrlfcAWvbAii6OdhjfZQbk+aInkHjp3n142Xt8bFwYcNPwBJzS46n\nY2LG1/awmorCUW5wlFuIfSp5fFSkWOgDqKaEqU6BjdNathtkiwJXl2scFTrqZ4tV66QDCx8Djfuo\n6LQpG51WYW9V4/hmgaefWvrrCXZFCqIl08L4ewHQWxs0XwSeyTWlnmBzyaJ8nrl2FRJA/BC2Oqix\nt6pxVDgTJOMo2wZAPnSk969pfL2b0LoBhia2mFYvtSWODSYPi3Ieh42Z3pp/PpFSSsPWSHkjbL37\nDyul3m+M+QN22U0AbwPwLYEmfgHAzwB4r/j+3QC+zxjzL5RS3wngrwP4Qfb7TwL44Jw+XlrBcpgZ\nfP2LG2xqjW1rcFztsG1rHOX9uuuZAzusdwShbrBtd+MYUoIWgUUsHcwZA1XsJe05ooQ93g+g68fw\n//5JUdaUJyLfAxU9WmjLgI/yru487wNFXhHcCXeQ9+dqN/BrhJzqsTkd9jU+1oEwZvNNYyi0cVhi\nO5elv8RhdhVpuYW59RmYT/077D72eQCArmqsXvFqfPmVF+Eg+xyOcuC4OkOMxp7P+5ElQyiap7ca\nz1QJrl05w/FLtrhVoVc+l9Yjn7csiUeade+H5r90vqf4un6mstceV2d+Dcj+h9YXrSnqI29X9ifr\nVQPtE60ruxa6tTFnj4UEA7XB+8zHT30NkS19PfztZ6e7Mk13D4Ty9QA+TjXnlVLvA/AmWG0CAGCM\nuQ5bRvib5M3GmN9QSj0eaPfVsMFZAPArsIXEftA941sAfBLA7TkdnBQsSqn/fOx3VjP5OaUp1VDS\nMk3wNY8kqNpTrGu7oNa19hAhPnHOOXHbXYNqZ3yNjlCBKIm4y0kuVtpgFNaqk7QXjQTYsFei1lj8\nKt4PoA/7zvvUg4MH1XY3LhKKVad046H788TWms8T5fwPBRKlsTOt7wPNB80N9VurzFdebE3l+9rN\nz3DOaO4pB0X29UBgLvL2ZN+753TjpHeoVYYs2YdWGbTKkCdL4JnPwZxch/nEp9H+4TWUv3/DPn/b\nQN8+Rf7qV+KVj70Whf44TirN+jAchxS0fB6H8+TWlGlQtWdY18C61j6pM0sMDvNdTxAS8aACuV6I\n+DuitSLngu6tdmdod03vPVD/+Xj4GOldhdZU6B3zvofmgPrc7pxp2r3j0BqPCQRJc9YFkXyefU5/\nvp5n9GIAn2F/PwngDXeh3Y/CCqh/ClvY66UAoJRaAfgbsBrS981paI7G8lcA/AkAv+7+/pMA/h8A\nT8Fmzz3ngmWmatijxAAPJg/B5AWuFGdoTY16t0WidI/5KGNglF1wrak7Bm/q6IKbWoi0qeg6ZRyz\ndHkUFJ3U+7x4ANA5jFK+H0TESGJ/c0ZCPgV5LbVHv6umBJoKplwDaFyYpAbSA3vqyvN+f32ftf09\nza2Id33mRONt0OBK0aDanXrBRX3IkgXyZIl0ZIkaZZGJ6X3sjD2i8nfox2OM7W9dAc2pTYY8/gLM\nH30a9b/5HG7/4Smuf9JihT1ydgv7z5TIqhrq7DZe9rKvRLOX9OaJ5o7mj/qvVYpEaeTJHrRKbf9D\n7xUA0tyvv2p3ipeuNmh3jRPouZ+DwToBxtdKemD/z3I//378jZ0D05b2naYPAlmOFy2L3rqSa7Qb\nbxNcX93n8PvqvQO+XtKlnwtaL/Ru5do8D/E+8r3K1wQfU/e59nvf74Pt5tzPD5I6F1bYw0qpj7C/\n32WMedfd6UiUvhPA31NK/SCA9wOgxfUjAH7KGLNRap7PbI5gyQC81hjzeQBQSj0G4BeMMX/5vL2+\nhzSpGg7o7BTm478N7O8hX6yAfA97xYFlpu0GaBugrWD8Bsjtutc5g2VweBjtzIXfCsbi2jZNZR3H\nrOa6/0zFp+hflkGnOXQRSCWScBG8XyxPA/S8LLOIW25sSHO7ieoaZnMKVDWMc2gbACpj/eD9dH2l\nawfX0f9Z5tsCAL1YQescRb5vBSeZCcoNzPoWUD4Jc3a7Py98blZ7yJf7QLGCojZofPQeq1P7mc03\n6hrYnMJ88klUv3cdJx+r8YVPLPDR37U+li8v9/Ci6gyH208jP90Cm1PoKw+4KXZ9TC3Thk4dg152\n/d9urOC6fRPm9mnX31wcOPIMWO4jL1Yo8n0c7L+se1fbDUx1DLTXPWMz1Hc5D+4d9Oaf2s/ZnIvr\n/Dtd7QF5Bp1l0ItVf50w0nydhBgkrb/Qfig3/XVO/+Qaoc9undNzh8+awaB7+6Hs+sVzltLc72n7\nHnN7mKrsvJvbzPf27NINY8zrIr99Fk6bcPQS990dkTHm3wL4BgBQSr0aAJnR3gDgzyql/jaAIwA7\npdTWGPMzsbbmCJaXklBx9AUAL7tQz+8dzVINlVLfDeC7AeBlLzpwC7sG0mq4UOXJCugYR9vYRSsZ\n93lIMnnOJPj/8jMxDf48zfoVopBQAfpMiqgWgoIxRVPXXbHsPBsKlYoxLNlunvWfl2W2Lzq3p+fG\nMatWzHloPujvqgayCkgrmDa1bbgxmrbszwcXKo5M2cCUFhutLJmJrTRo6gSmbGHKxo4lNFfUjhiv\nfbYYA80Xn4+qBpbsxtatQ9//Ktjv3vjd58H8Z1lfoAmh0ruW9ysdeSZg9wD9PtgzYv2F9gQXKqwf\nnuQ80fOkcJnabzrv+sP3amhf0zV8HGxfmpF3/xzRhwG8Sin1cliB8mYA33GnjSqlHjHGXFdKJQD+\nW9gIMRhj/iN2zY8A2IwJFWCeYPk1pdSHAPyy+/vbwJImv5jIqZLvAoDX/QevMOrVXwUUq55JRed7\n0OpwYH4ImcOkvfg8FDSDiZOiaTuEQDpN0WlRmpeI+iaAbqNz9b9nUhFj42YwlOve5vRZw9QP3l9i\n5G6D9q4l4p/dGGje690Zquom8mSJbLlAvv+YNSNd2QyZANFiBegcDRrXDmmXgFYrb/aw4+9OxMoY\noNwgyTMURYoHi+tIswpFYWPdXvSKEoevypB/5SNQX/Zy4JGX9E60/B30zaPuFJytoNUVa0qluQxR\nmsOkBardmTMHPgM0QJJq5PkVaHW1b0oLETFJLkj5O+Bzzq8jIaZTqOLAj6lBE16bwkQ1ZZ7ieyJk\nBhusbTYn/n/2TE7SFBeiUP8GZlFgsA5bUyE/uoo8eVlnBqtm+atnUWzfnqsNYxql1FthnesawHuM\nMR9VSr3F/f6EUupRAB8BcAirYbwd1vJ0opT6ZQBfB2tuexLADxtjfg7Atyulvtc95n+DDVe+EE1y\nRGPMW5VS/xmA/9h99S5jzD+56APvEZ1bNWwT4GayRlvdjDqZuaNUOu+JyJkYinaZQ71nKWcDLuxz\nE9WHf9iZM7S7Ndo2vrG4AzTUV+64DDlJucM531v2+kB+hKo9BlwXdJJC55nzLfSvtWSjqVrT+LSQ\n1tRAC+80XtcaZZvgpNIodImHF7dxmLdYphkW6aq3Sqnd1jRo2w3aehhUIYMoQoETyzTD1Vd+NZBn\nyPcWODr6AtJ8DZ3tsHztA0hf8yKoL30Z8NCLoQ4fc8W/GicEn0FbD4MpYnPN1xGRVhnatsZZWQ8C\nQqyT+dj3k/sD+HvWSQqdZECOyPy3aM26e2ZB1xTQ6ggAUO+2aM0aVX2GqjTuHfTXiU5StPVwXYXm\nms833xPeEZ5kvh822KPzUVk682uF1rl06hPNLW1AgQYhh3zbdu/wpNKodgoHWTf3ebFEtjya9Zxn\nk4wxHwDwAfHdE+zzNVg+GLr32yPf/zRsANTYc39kTv/mHrV/B8DaGPOrSqk9pdSBMWzFPvd0btXw\ntDH4vadblK0GXG0PisjhVGjjwiFTX6qW/vVQcydyJmOhk/w+G665A1D5sFTapMS07GaKJ2yVbcFC\nN4HjaryvodDdhbb5HllSsVryCmWrXHj2Xq9N2+8qKFzpu054KQDa9TH3/TuuFLaNDbN9dJn6JMbD\nfI08Mb2oMeqLfSd5cByxeaexH+XA1zzyGbz0FV8DtdxHmmc4KK4BAPSXPQr1ipdBXXkpzOohPFNf\nZ8W/VE8Q1rvUv5+x8NhhqLUBYPvPw7L5O+hClFsxbwmA3Ldn1+xw/nmIum2n9O+k0DuUbeLeaYKy\n3cNxBQfUOQzN5f0cC/cOhVrzfha6RaGbwbqWfabx2v6nvWv5XM0N+w/Nqd3bCTb1ordfKHx6lbUo\ndOnLMdwpGZhZ2tYLgeaEG38XrF/iQQBfCuvPeALAn763XZtPMdVw7J51pfBrn7WnlsXELGwb9JK4\nTjedWSWWSU0UyjyOgTICiU/eomSzRYBZ8xwV+fu2tQz6VgWsb6c4vZ32IS1YMp9MOKT+8EQyniB5\n1to2KfFMZpIvtWAyYl63TdcW0LVHfVyf5D7p7spRhcf2Mhzlqc+joFwbGt/UHPPxSdrbb3Bc7eMN\nj3wSr3rRy5EXK6T7/5/98cVfAnXlpWiKBU6qz+Fzt0usa42TaoFNrT0Dpr7w8fD+8EQ9niAbSiil\n63kC7VJrvw7kGuTvSyb8cWZLfeK/8/dyXA7fwxAlQPWSLiX6RGhtyURgGgsQXtd8TW8b/v1wLHz8\nRDI7PoRoYdez7j2frydqt5vT1CW0Xtp0vwvTnBn7Xtioq38FAMaYjymlHrmnvboAhVTDMSobhU/f\nSqOwDnQNgEEWc8Wy1GNZyiGai9ba39Thvnf9VYPfTjfZoK+8/VCfOKNaHVbYrDOsDmqULjP7dJMF\ni0hxqAzKkI5Bj8is6qpK+lht7t/TTy2xuXqG9YMlDvYbLHVfqIdgdWSGeKh+CqcHr57hU1dO8KWH\nKb5k/xaKwxfBPPgF++PeEcziAGfN09jUp7ixLfD0NvXa1RRJBszhRWKYYrzMAq2BtcDeCrUpURV8\nH4QwDTF9oHuv9B48VpuAqqE+VmJex/DSuMC5BQjh6tqcOHgBGBwQOALAHOL9ueX21sF+BzlDqBu0\ntjmW2PWR0sz3KU5zBEtpjKkoflkpZYuIvwCIQ6FwZs0Xe4yhAh3SLgcajMF/9BB52edQbRdqq6kT\nh4EVag++74P7J6r7SegL37fKeCRe2a4seSvHRDS2CWMMInQvwZs0dYK1065CTDVEU0Kld23r8iV0\n7iPulC7QmBr1rsRJpfH0NsU1kXhvTSsGW92dthekvew3WN8ebq1Yn3qfR9ZQiPh6iQkrAJ5R0j1j\neFuyXxxYdOqdh5CJQ+txULmS0VjFyimhMjY23nd6P7SupGDluIF3DyvMXCgn54uR5giWf6GU+psA\nlkqpNwL4HlhI/S9qMoZl3rrFyAVKTEsJIsayxUwV98aYXu+ZZbjg0VygS77oybxFzDdGQaYWKI5E\ntdHtdQ5kMjL+ucQZxBQc/dNPLXtllCVTlkKSf54jVKKU5iwrPsOx4PMEY9KZ55xZxQmZRQMAFoMO\nzGwaOpTwec/KFpsDa3vkwiWNCFZOU3+TmZHak9fEAEnH5k+CZcbWsX8vVXewGEMMjh2Mpt5laF2E\nruHmPr6/Nyc5snWDqur2OpXPuE/nozmC5Qdgs+9/H8B/BWtueve97NSzRbSA02w3YExcNR4IlAAT\n5mB3dOqcWtySYtoL0aSpLYK8HEOyPQ/TjZ3cuMZGxIWlRGI+L6PfnOSgvOeBEMxVkIlMCZXQPBqO\n45TmqHYbFymU4NpZh4tFQsVGGQEPACKow2oxgMJWGwA1UmY28geUdYKsbHz9mayy/9dli41TG0nL\nIKEyZ65C8wDA188Zo6mT/nk11DGaGs+olnmHhxu6noT0xu3xbN1gb12hLjXqwhaf2yBHdZcEizH3\nnfcAPFTKe40xfw7A//jsdOnZoZ07MEnhwk+Gc4VKiHh5YPmdJK69zGlzrKQrRziOXUPP5P/fTQrV\nepHPkWPlwmnQJz/nZvg9Ey5zxkLjPzisvBObwlm9YNE5dk2Lk0rbKLjG1nkhBN/BeJmQAYAvnCVY\naIPjygqkW6lFbS6YYMlKy8QAIK0duGTZIi12qAvL0Igkui+f39GDghDAvBxCTBiP0dw5jtGd3Du1\nN2TfQgcO2QYX8oBBXWgvVOpCI1Ru+z7No1HBYoxplVJ/TCmVG2PmG36/SCio+ld9U5JkxFHKVc/p\nCfQXcoiRzqFipK0p4THVLj+tDUroCpoytcT8S7F5o+eHmNVsBjax8Xk7kqFKU0xragvtAUoCbFDt\nlAivVQ6JGSgC3Xto4bSPxGBTaydcgEWqAFTBMrdcqBBRJdPeWEStG+nLGJB4l/y53MQJtLNLQIS0\nZ87AQ2bdu+H4DgkVGVQg+yT7G/vbftfN1elh3tvLd2sMlu5rLJw+AeBfKqXeDwaZbIz5yXvWq2eZ\n5EknZMP2TGqkhjlfjGMUYpyhE9aYbbeaEC78Wb2/eflj99tGBCVEn1klQQHpo2jmCmFHvG4MtXWR\nU+3YnEs/APcFUMhptTOodmfYyy0IZemysMnE5Wu7NORHARYMXp3QiB9eWKZRaO1yRRIsdILjymDb\nKKz3G/+eQ1lgWeXqquxno0KeC5c5QoWocH6FvGh9+HHZhH0uU88ePHLErzF17xhNBWoAw8NXSHuJ\nfhZ7WQqU+/6Vi9EcwfJH7l8C4ODedufZI2NU74RFC25WCCM7KYfCLTnF2psrXEKbRN4XCjeVFCqe\nlbJ2Nic5Kgz72g9t7vpAZiguUAc1zdmcTpWVPRfDiWgqY4KNC5W8aMPFopwprDW1S4YssG0pSrDL\nezh2zOhFSytUri4bPLxosMosJMxBduay5zWyxGCh7al421qT2PokR8mSXLOyRVZZf0udp97fMjoF\nRb/k8cD/JOYqZ+Mu0s6kZ9/t/JP5lNmx519j2uFYOe3QuKitOQ55opB2z/vN/7fz1JkK5cFwrCLo\nfZqmqGBRSv2iMebPAzh2qf4vSJojSKRKLM0rd4v4CUmetHlfQ4JljEJCJfRs2S6ZSGLlZfkm5JUc\ngc53VUaECz91h95Bb66FILn7Joowla3yZrCyUVhqY9EBnNZStglWWROFNal2Coe5zXx/dJm4AIAK\nabbDF4o93PzsEnsnffNhXWicHuQXsu/nRRs8HNzpPEmT4oW0ynwYri6fwWmszPYcASMjCYcPPL+l\n4U7JwDDomhc2jWksX62U+hIA36mUei9EJp4x5uY97dmzTNJmO3b6XTlfwlxz1pwoFumjCGkfIVWf\n+4Ni98bi8Ck02WtBlUEF7QMXDg4rr9Wc3k5FMMPFU5l8iVwX7jlGIQ2O/o+ZZOaShfiw+FF5soQ5\ndRUkj672C0G5No9BWfOKZW93WyhPbLLLugZubLtxrTKCEVFY6ASLtEFerHFwWOHzT65wckM7raVF\nnWvUB2lv3LH8oVBuyVj0V1Vq5PkOZUMRa/0yxlOaBD1zivhhIkZTGsHUgWOsjwD8oUX68kKHw/NY\nGu7TPBoTLE8A+DUArwDw2xDI4O77FyTxRR0SFHxxrkWI51R7dJ8UQnTqB8I1vasqCUZbyb/zoh3N\nE+BChnwmPFIJJbBB7hkUT6oLmeGkZjXmrAfQq7vO758SCCG7d1G00fkf62dVal+XvtAGubYFxczt\nm0CaI09eBp2kHnuLIgWbOgFWNW7B4ArA8ltoG9k217XQKHVXlpdMY0e5waeKLfb2G3zhcA83n1oi\nWzeoi/66CB1yYsmKdOCh9xDSrKsqQVpqnKWNb5PGFwoKIRPnnHDnGMXMWOfREub4b2J/h7Tjuc++\nmwLG4GJFy74YKSpYjDF/D7aa2D8wxvzVZ7FPzzrJhEYedROC2vDQFI7pEnOTG5nukT4Syjeg6wgf\na28VjxghgRCKpBo9aUq/B2MQXFhk6y6noi70QGj2zHCBiCMJ4xJiRHRdXrTetk8n5bxoB3kYvD3u\nH+G5MQeH1XgCKwtJJqJ2OlDCAig3wO1TAKdQV0tolaHQjX+Ov3+TOTSEBvasRXNht5IEguyQfnn5\n4garTOEo1/hU0ddeUHYmGj8E1nceySeZp1xvMUHf1EkU+0sGhdBchw4qU4cB/k7yovWCT45viuYK\nlTEfI4+qo74RTQmPi5j+LjvNgc1/wQqVkJNREhcmsVPXwWE1gHuRm15m9wJWM3jw6lncmcyIIFXG\nTAihU/p5spjJFMOJCxR/z0RoMjCcy7xosbffeKFio5IMKjevEpGAjzEkVOR8BQUK+1xheGpeaOAg\na6FVZqsGbk6BPAO2G2SLAqSBhMyNFhJkKFwsIq4RkPH0eecFTHdNioU2+GS6RZ7v8PnP7kdNM55R\nu+TKqtLIDzqBLudt9BDiEAHGsvmpHQ5YyhnzmK/LRxpWBnsnJU4Pc9wsl1gdVj14GUmhkOoxn+Yc\noeKvZQeSmLCSfszgYeV5QEqpb4SFuNcA3m2M+THx+2tg66l8FYB3GmN+gv32HgDfDOC6MeYrAm3/\nNwB+AsBVY8wN9907YBPlWwBvM8Z8aKx/lxa2U2vTY1Sc+HcxgdK7njkA6R/5S+ikRKEm66BFAAAg\nAElEQVShltkPNwox3JijXG5sjNjSe6YMkfnOn1eVFg+JBOMzJ3v2ZFnUPWYO9M1+5FDvMRkXxspP\nwby/1A+OxBsjybQGDCZnyMwBph8SelyLXB3UvWRHXwRMlA4mbSN3JjfqF81LUycoVzVuVcCVHDgq\nDB5fadS7HawQ6fpBtVZ4u0CChxctLG+w0PcA8PSNRa8fg/HlylfFDpmZxrRZqXWHqBDvVfroaH2P\nnfRXh5WPNKTcEC9UmMAi8ut7hoAApiMNYxTTpLmmdu/8K7u7ksfiEtd/FsAbYavlflgp9X5jDC/F\nfhPA2wB8S6CJXwDwMwDeG2j7pbDliT/NvnstbCmSLwfwJQB+VSn1amPikQiXVrAoZSbDc/OixVFh\nPLKupKZOeoIDDldIMlP/f+AExn0rAILC5bxRMaFrQiYxfg1t+DHNgASQJO8HYKdg+ewpAT33ZCiv\nGZjBQppUIOSWzGBTBdoWuj930nexWWdW8Ow3uLXfADB4fEXj38FG6YfXmX2+wgM5XWeFS5rtcHyz\nGI2MosxwvqakeWfOfE5pyuSvCx1MiCHHGDH56TYn1meXF31zMu/7VD9Cz+gFs0zgj9FYYiQ1O2lS\nfJ7R6wF83BjzCQBQSr0PwJsAeMFijLkO4LpS6pvkzcaY31BKPR5p+6cAfD+Af8a+exOA9xljSgCf\nVEp93PXhN2MdvMSCpa/ic9pbdSfaRQocAdg2xtdsAOLMXgoVn3wmtBa6lhgdneTPxBqWGoB8HtFU\nNr6kganKaRxTQkAKF6+FRZjLXKHS/WF6gmAKoHOuQOJC/GC/wVFhHek8+itEC90dMkLP3YA0mhbH\nRYvysVMAOzy+SljRuAS8iqXNcdn5ip0dWeFyTVuT4ekmG2gvNJZgzlEZD9/mNMbUxwJDen0QibYx\nAUO+FT7/cj3E1gYd3Pj4QhQLDvC/h7SUgCbPTXCxZMs7IWMYfNA0PayU+gj7+12utDpga2J9hv32\nJIA33Gn/lFJvAvBZY8zvqn4J5RcD+C3xvBePtXVpBUuSmN6pi4jqf9gCP6ZDsdUAAQsel+N5HaHT\nPiEDTy1U8j2ENKSQMIip9qHrOYUKIe25zzwhksxWx+hrN1JzCUXbyOfHiqF5YtqGZDwxTcXfOjKn\n3ES5t6p9QTLSVnx9dmEKI9+INMd1fg773abIAGS+X8Aa29bgNQ9oAO3A39JpSlZTsZUMjddcFtrg\nuAA+n3bay1zmFvIR0BiAvknSEjuZ53EB4/svzGihw1kInYEnppLZd5zm+UAAZroTWsucSDa5h6Sm\n8hz6V24YY173bD1MKbUH4G/CmsHumC6tYDFuXdPCoSp/oUQ4oKu5QRpFqDph50NJvG2aayz8eTHi\nGovUVrzfIoIYTCdW2Y8Q8b7xvt8JSXiWwe+BLP4eU8r7uSPSdMifEWKc5PsJEb/+LG1cgqO9tjUN\nUl3AkGBJcwBVzy9C95JQ2Tupugx5Bs9yE7aOTPXYKYAGj6+0Exy6J0zIPMafIcv0PrYHUAABAF+E\nSgrUEAMM/T2o1xLx58XaCr3TKaESu75I4yd33q8YonZoH9Gal9fy36fo+eioD9BnAbyU/f0S992d\n0JcCeDkA0lZeAuB3lFKvv8jzLq1g2e26aoREPlcBdS8RDuiXcKU6LSHiDIwvdFkpka7pLeT9ZhAG\nytuUzwDCjDZnqvxoFJkQPCRsqpJfT/VYuiS6MfwmmWlPc8DbLvnpn+XSyDFuTixk+RzGSWOMMYaq\n1Pj8kys8dPUMTZ1gqSs8utS4sU2wTNcoFg8AS4sVZhYHqKvPeaywoWZk54QAJDk9cOPMCxfAChcg\nxQP5DmVrkyQLbbxAOam0qzuvBzXlgbBwCY0tOCcM3ZjWBGkNIZMuFbyaIr5uZH2dGJXudwpqCRVC\n4yTLZsdyd/yeKvo4cLIv0gzNx/JskYFBtbsrNRI/DOBVSqmXwzL4NwP4jjvqmzG/D8BXBlZKfQrA\n64wxNxxO5C8ppX4S1nn/KgD/eqy9SytY2lb5Ij+cDg4r64R2iXBLtw6Py34J0/NkIAMdo7R/dLkV\n3oSU7wZV7ULmH95e6DP/O2ebaU5BsZCWQ0KGJ9GdxywjtSiuyfFsft5f2bfznCI54wjdR8XD0myH\na3s1XrxN8aK9MzT5Fei9I3vf7gxVe4aTqgiWIqYsef43p72TCjdBvpFTbJsGj+4leHQJ1LtOwADA\npk7wjGNunWDpaxIkXIjZ+ui89ZApyr4AQI3+QUCiGcsqijGhHSKuLc8hXghvqtjXmECJ9WPsuh4i\ndECbj5r/nmfOe2NMo5R6K4APwYYUvscY81Gl1Fvc708opR4F8BEAhwB2Sqm3A3itMeZEKfXLAL4O\n1o/zJIAfNsb83MjzPqqU+sewwQENgO8diwgDLrFg2bUqmHtCCx+ATYRjWoQs/kX3TJHfGKECYaKd\nqRKsUuPpfhgiLvO288iJjVMPlJNtvJig42aYsXbJhNO7J1KUTJKft4CJa2ruY7+TgL92eGJr2Zen\nWOgTHBQWY7XanWJdW4wvYvIhgdqDuq+Gpp2ecGkbbFvjMMPgQpKBZ6qEmVs7bWUhotUe27PQ+0RU\nupn3RQo8AD4vqcpTv3ZCEYL0WyhJdYwuEpobw7zjaySYPzVBY4IhZBKLaSux/t0pGaO8+fXO2zIf\ngC26yL97gn2+BmuyCt377TPaf1z8/aMAfnRu/y6vYDEqWHEvlB0cKgs7xlSj2oRARaZ/PGEsVHdD\nbjLfZixJUQiZ85iNaDwh7SbEqPm1PDpICj9urojV7YjOZQBNOtaf3n0jv21OchyXFql4XWs8Ylrr\nW9E50HYweMTgyYSzOclRVbYgFFadOawuLN5XXWic7Wc+HPjmU0t7KLl6huMHSxyXBo/uGRzlnZZC\n/0uhwitWblsbpXglr3BtZfOMnnZthzQXIl+ZsugqJsrCYbGS08Aw2pHoPAJlLFJxrGaRXO+xvtC1\n/H9JMeEir+HXjqEl36dxurSCJVFmFLCPq+qDGHt2H1+gIUwwuYBJmEiIGIqUKRvVlbIVQoa3UZUa\nroLtLKLn8r5SH+V1vb8jaASDzR6A/ojNrYTQOU+/ed/HwD3HTDcUAntU2Ki/g6xFliyAM1sEWS8z\nFNpgle2w0Ik3BR64PKV1kWOTF0BlhgW6ig5EMmdw9J3vwmY2btsOhp+ICxTACpSHF61z/isstMZx\nbnBUGFxzOGPcnLg56fo0MIk5P0tIoPNorbtt9om9ax6NNVZaIrTWYtfyw17ocCfNpKG1TlFufB1L\nQXyfpunyChaXeU/kfQCR0zoQCJ+NnJ7HBAwlIub5Dnur2uev+JK3ucG2aHxSZlrqXmRMKE9hyv5N\nv8+FgxmtnSIEyAAjrAyXWQ4JVE4hBNopW/zqoO6Z1ErBLGKaGmmJRwWwylocZLDoxtWxvWb/MSxT\nK1wW2obmViJRNC8cttkBi2BCCgVgVYSLrUrhsgjsPilUri4bHGQtyjbBut5hlSU4yi2I5VHR4Piw\nwXUnYDi00Ok69wKmLvqHkn4FSbvO+AEhZiKSjv0xE2gIW08SIVxzTTdEMYFIfeDPBPp4arK/8lrf\nHjvg3Sufys4MI/9eqHRpBYvWBgdO85ij6sqTTM8kw5PFxMakzTcmUAiCncKbt63CogG22uAsbbyA\nkW1PCYrYZoziNE2YCmge5O/EpJYaHjUXwMCHRfcRsrAkEgwEuzKV8xCbF96WJGJ4e/sNjnJb+dGj\nG5dWY0mRIk+WOMhuY6EzLLWNKObgo2MHkLH1xIXLUWFwFNA6H10CDy1s8bCHFzvoJEW7a3CYtzjI\ndE/AXDtDJ2BOUqwOamzWmdWqTnJvohtjmDS/hVtre4FruKlpSisPaePyWX6u2DsMUWyfye8GwpBl\n/fN+htYj9ZNy2O7TndOlFSxKxRnsFHkTlcAUA4bZwkCfmRGjJKHiM/zdgl5ouAqFskrBiE2YaQ+x\nuP/Qtfz3ucXCvDYRSKKkMZTOdFQULSq2mTl8TYzJnW+jD+eFPwsYolMD6LLvcwKhXABtBTRO0yg3\nSFKNQu/8uyGmxA8YU8wwFoDho68eLHG23+BKTocLq6msshaHuf2X6z1olaJVDYAzn6lPSZaFTnBU\nJbimgYVucO20D19DeF05g5XJi3Ywr5Q/FU9cjPtYQqYmaeIlGr7PfgXLmIl1iqJarcMso37yd0Nr\nhPrZsxw4CmmVFyUDDHKjXqh0aQUL0RzICCCSEMkSFmWdE36yG7bbYqm5jX24mbcNfL31GPU0DA7M\nOJGMGcq6j0V8EXV5KM7UxZIdfU34SF9jpipqV84XvRNKVpVEcxKDfuc0B8E6UdoKlbpvSyezBc9l\nkXM8l/GF5rcsNU4PK5QPWu0FUFhog3qnULYJylZhmdo+taZGtbO+Fs6cssRm7G9bwhoDrqEGNpkX\n7IBlsNyvdjaSoAjEsfF4/wcRjZxx9zSI7jBC744EDH+H1FYvOGYGBtgUcRMrd9DTIYbCr6lvXLhs\nL0f5lLtOl1awKGWiJ/ygU3gkkUqavkJtlIxx2kRDdyJvgYVWvZORFCohBhqKoImdlKcivEJmpFjY\ncZ+GDIOezwtH0Xd0cpSoyTzqrSj62dOSAcrEPgoBn0NcW+tgXcaZFr0HidfGGV+I+DuQ0Yd87BTZ\ndXpQ49jX40lcxUkNoMFB1qDaGZxUWqAkd0L3yD/COAFf++fLfuX5bhLoNDgmeQAIOMpH73eIzPZg\n0j33NJIsyc1vc4JKxkgKFbknTl3uGmD8Qek+XZwurWCZojHtZWwjTflreIIYYM1GRWqcgBlqKTHY\njdAzx9BwgX44JS+0xUkKKMk8eYJj94xOwJSNGpxs+eebTy09KGGon3wMPENctie1lCkhyoVKXrS9\nU6lWWWcGc7QzLaqdrXm/vp0ONKIp+Bq6RjqRQ9rh+iS3IdpVgk+RY1/za1qUrR41oxR650OYO7SE\nXRDXjapIEsVKV0uaJXxmXCO1+yniibZSI5oqeyH7NRZAYq+hdzlmvrsY2TyW+877+4R5GyVUpGrq\nesr1WB3UqLKdFzDAPGEy1Tf5G7cnc5u3xzILMPiiGNq8JSOQAmYqnwCwuSBT80QhvpLGtDbeb94O\n72vPkSxh86uhKWzrtJVQRBQQhgqhvpFQoZLDAIKoxHQPtfn5dOt8O3oU1t9qW3yOdv38mMMG10V/\niUKmXbpuzhqW4b2yDSL+PuZGW/E2Y0gPfD3OKvJVjEclAnZOxmCN7tN8urSCRan5Cz1GMkM3FoUU\nzSJ2SXcUJ09ROWPEk9mmwobPQzJcOvR97zmMIfVQnMmmf1BHtZI5/Q19L5nghQo9BRinVhlMu+kE\nS1N55/1Yn2J95+Yvq/G562IAmS7Bkf7P8x2WuoJlaN0W5UKmK3lsq1L6Z7eJM6ElTiuzwiV4io9o\nYTHhzP8ns2UIGNO3X/ZDz7lWyXNDpM+P1zniZreQgIoGUAS+H1sv45rT3Qk/3gF3LfP++U6XVrAk\nCt4cBCCYiDhG8gQ7Fn4aqu/ANymPgFrqeGExH5F0ToY65rgOtRXauFMmi7zoiqJBQOyHQjyB7mQf\nCnPumZoihaZCFAtCoPtHC0pVNZBnMG0JrVbIE+PrsRRibUj7f8jH5ft6MIKJJa7dnOR4uqBS1Y1L\nmkxd/RZe8jgZCL48MTjIuNZFDv3Gl3qYEo5z/Rn0TmQlyZD2Jg8tq4Mae6u+dijzaqhfB5Fk5Fi/\n5vx+noNOXyO/T3Pp0goWrbraJ1XJQohnaAExoTKH4fONRuG3FOp4VPAolHiZ4rENxU+ToVDbMZL5\nOEQS+j/0zCLtwqZl/g1vjzN2yhwfM2uFHOSTlQInhAsAbIumb+9uyZtcA20DrTIfbuwjiEZO5rG/\nz3NfVrZACWyKzg93za3RozzBA/kO9U75AmJcUzlwiZ46SUGOewBYaCtcvP9OaMXUNwlVxH0acxIc\neenmGHGhYqPg+kR+r1D+1kWJwsKnsOnkGhwLzLhP03RpBUuiWFjhfuORhadqYocAKOegtXLioY/k\n86DCYgsNVkjM9E5vvT7dwWYL1UWRCaAhZsI1BxoDr345jPnv5ygA/Zr3Z639/nST9RgcJ8msZNLd\nlCkt5GSXvhutUqCtYFy4sXLf8cz7PN8NYHDGTvvSph/qD2+Dw7CcrnOsC/JDdRAw2zZx0V8uHLu1\nWstB1uKosEmdidJ4aFGi0KcodIosSQFoLLSNFjsubbE60iypFAL1pVon2CD3mHmyUiQRrR/aN6RZ\nxGD3pVAJJYYSLVIMEoRD8x2jkG+OCxhqK+TLqcohBP+dhjsTGXN5TGGXWiSfN/mpt/iEcCGGN1W7\nm99Dn2XUCSXLXZTudCNIn4k8tYY2+Fh/Q0Jloa3GWKTGn3xDxE1loUxuHkYq+87fl//sGEswP6iq\nncYShmSZ1Poq05ubXlImO4SEKCtbLG/XWN6ukZWtZ9KnmwzXTpX9d6Zw7cwiIm9q7ZlUoQ20ypAo\nbSPcBHEwy0f3LAjmldwm5/LgDaqKOfAFIixU6PuQj01S7Ht7mOr/40RrhNqYo3nP3YNBoTKyZp5P\npJT6RqXUHyqlPq6U+oHA769RSv2mUqpUSn3fnHuVUv++Uuq3lFL/Rin1EVfki377StfeR5VSv6+U\nGtbMZvScaCxKqb8D4M8AqAD8EYC/bIw5dr+9A8BfgT3qvs0Y8yH3/VcD+AUAS1i46L9mjDFKqQLA\newF8NYCnAXybMeZTU31od7Z4F9VZCdWVD5FkakRTeS6h0/j6JHcM1cbPHxWql8NCRcXOS7wvsfBn\nyimIRQdJCiE8HxxyBtz42jXkIwr5TngyJfcljT1fhpsG0QVEjoms4yFPonurGtvWJhy2poHWOXxp\nYp2jNc3gdBk9MUdQpqVfjX/H2yJNpckS//fpOscGrIRDucPZfoNtozzSMZCyPp5imdbQKsOmPsWN\nbYoTFzRgTXq2bTKJLbTBcaVw7DSJstRAnlsFqTLY3OgElJxzjptGRe/Gorc44kJV2uTMhbM8biPm\nXr4+aH9KugjD5wfCKZ/q3fatGNhSDHdKSikN4GcBvBG2/vyHlVLvN8b8AbvsJoC3AfiWc9z7twH8\nd8aYDyql/hP399cppVIA/xDAnzfG/K5S6iFwe2uAnitT2K8AeIcrWPPjAN4B4G8opV4LWw3ty2Er\nlf2qUurVrqjMPwDwXQD+Faxg+UYAH4QVQreMMa9USr0ZwI8D+LapDjTGChVZRVLSRU7/Y+VRJT19\ngwR/jbO2My9IQXfefkjmWrHTHhcIodDQkK08VDZgLcKGeWVIoBNanQO09cmUXEuj60LMqdc+E86D\nMrvsPilQqB3e9ukmw7YtUbYJWlMDOoXKSLB024LQBILvNFa2AMN3HhIoY+ti76TCKaxJjPrf1AnK\nVY1bFXAlBwCDo1b7TP2HFzWABus6xVNn3RiyxAw0yoXz3Ty6B3y63LFqn92FmxsZqrJfSiI077Fx\nhHyPTZ3g1nEOHIW1Qt/ujEqqYzljcyIGPcJDxDx5p1Gj95BeD+DjxphPAIBS6n0A3gRbiAsAYIy5\nDuC6UuqbznGvgS0MBgAPAPic+/wNAH7PGPO7ru2npzr4nAgWY8z/yf78LQB/1n1+E4D3GWNKAJ9U\nSn0cwOtdmcxDY8xvAYBS6r2wkviD7p4fcff/LwB+RimljDGjwee7ncLxTWvoDZ2sgfOFLE45Z8c2\nwdM3FqiqBHv7TTRPQ2JdDZ4VObFvTnJvoqFT2tNPLaM+ipgDNqYFAF0wQ0y76idUdsKFmAcvNBWK\nKgpRzM8x97uqSnBcAdVOoTU1FK95DwuhQs597uwOmYk8sQJrodPwXKGSVS3q3IJH8rBlQiXI8x3K\nVY1ta01b2zbxEDCFNjgJHJR4BBk5/Rc6wbY1uOXW3fokH9R2qdYJbpbdetnQUCeYLhcqofV66zgP\nQgvR3IT2wdh8ynZCflD+O++TjPiT9BzVY3lYKfUR9ve7jDHvcp9fDOAz7LcnAbxhZrtj974dwIeU\nUj8B6yb5E+77VwMwSqkPAbgKy6P/9thDng/O++8E8D+5zy+GFTRET7rvavdZfk/3fAbwJTufAfAQ\ngBtjD20aNWDeRDGbPWAXs4y4kr9zii3K0H3S5ttrj5ypM6JVpFChaKOqCuM7ceLfS20hJFSIeOXN\nUFgoCRegHzwQ0lbGTow9xh7TGJj/eKyNbatwUmnsTAukS28KU7qwWgyG+Gc9gSHyUqJm0gnGRMmT\nhETMv/NmqTzvR6dVCar9Bmdtg8f2yLmf4gHHMClyjEj+TfVmtm0KB4/YE/A0t7R2zLrf12qdgGq8\n8PH2nN4jAS1VNTQ9x+rc8znszWXo/bPCdjIMXAq6kG8odrC6G7Q7X+b9DWPM6+5JR+L0VwH818aY\n/1Up9V8C+DkAXw8rJ/5DAF8D4BTArymlftsY82uxhu6ZYFFK/SqARwM/vdMY88/cNe+EraH8j+5V\nP0SfvhvAdwPA8uGro9eGHMX0vYeTCGg3MvIkWttlZPFKm7w0J/SKaQWEDI/9r0qNKk99u9IBKk/R\nMpqJIO6poBS/jrc5CuHvTtkcaFD6YIqiDRZQ4yjFAwYdqCwZY+6S8qLFQhsc5m0HQukSJCmPhcKN\nKSqMtzlmsptDsh1i6PVB2vs9R7hGSFXaMFwbldXAxrJZ7YWc9aSlSKFymO/w8KJ2UWUGC51hoQ2W\neos831nYfUJgdmtHMvGsbFFDW+RkNvcHgWgyickXxVfjpl+xRkPvd4piAiVEtM5W7ADHv3+e0WcB\nvJT9/RL33Z3e+xcB/DX3+X8G8G73+UkAv2GMuQEASqkPAPgqAM++YDHGfP3Y70qpvwTgmwH8aWa2\nig36s+jXb+aTQfc86ZxMD8A68UN9eheAdwHAg698pZEn8lAdCZ70J80boVyPuSQX+cAsIBjZ3Axj\nLvQoeS12agsVyZJzcCBqp1w0h4dDb8hTYayAGmcGNPehTG8p3Oi7YD/cfXsONj9PzDDz3uexdL4J\n/n5k0qd8R2Po0iEBAYRhgaaYWlUlHk/tuLToyEd5l7MSSqK8urR1Xpap1c6K0qE+aI2FTrDQXenj\ngZ+OaYpUepkfVniJbbmeQ2Ul5iTdSgodYMZMYv5zBMIl9tuctXReMogjgJ+TPgzgVUqpl8PyvzcD\n+I67cO/nAHwtgP8LwJ8C8DH3/YcAfL9Sag824OprAfzU2EOeq6iwbwTw/QC+1hhzyn56P4BfUkr9\nJKzz/lUA/rUxplVKnSil/jis8/4vAPj77J6/COA3YX01vz7lX7F96EIYQ5oFCZVe0p8TMERzwixj\nFLqXY4XRd5RgODc6jG9aHvkiBSYA7KGzZ/P+U90Ynm+w1A2OXRsUBQTET4MxpsH9LXJM/GQu+8oT\n5WRuypiJIzY/VmOxp3qtMqBtujyWtrK5LbC/L7X2gQnUvjxU5EUf6400ilgABi8aBnTVMGPX0dzR\nYYDmhebwGFYD2/qor+HYSaissj0s9AoAoNWml/Oy0NqXPj4urR9yIGAwFOoHh1WvgFvMBDlWt8hf\nF9FcQmu4KrX3TUoKrYOxfTRX232uyZn83wrL8DWA9xhjPqqUeov7/Qml1KMAPgLrjN8ppd4O4LXG\nmJPQva7p7wLw0+6AvoWz7hhjbjme/GFY+fgBY8w/H+vjc+Vj+RnYiu2/opQCgN8yxrzFTc4/ho1Q\naAB8r4sIA4DvQRdu/EH3D7B2wF90jv6bsBJ4FvFse858qcIjVXfs0zDpD5AFkmZEpAhhwqOkqAbJ\nWWvxw4AhXPyUoOECRlZjJMh4nolNJZBp7FR86iincVHdmH6UodzsPdOaTEZjJrGQhka/y74Ctp/r\n26nHIOMo0bGiUiGieTwqbB2Tg6xLkORYYVplyBPVi6gamEVFH2OZ43y8oUMEEa/cKItj8VLVIYgb\nALhVAfSeCEa/0NafQtUol+khFvoAebLsjyU5Q54Yp6WlOMoNrp0Bx8UW10/SHkICD7Lgmoqcf4kc\nwdeHFJi964RGE3rHfr+4Mt6h58l5pAPb2B6a0nKeL2SM+QBsdCz/7gn2+Rr6Vp7Re933/zds2kbo\nnn8IG3I8i56rqLBXjvz2owB+NPD9RwB8ReD7LYD/4m70y58yS+0Z+t0gHnbbe9bIqWiswNccmjIz\njBXlKtLGnnrvweqQ/hb+/d0gYi4hAcOF81lqIV2qXUAQpZ25L5R3IE0vF6nfMRfBeg51c9niFqj6\nqBUui9bWdql2CtXOIDeNC0zoC5ZqZ6/huTs2YdEy41AphNAaPu+4Ygek52NS4p3Sztw1U9jznp4P\nUWHPCRmjsFlbO7PM0C7cRlpPQIf0Hd/d97FKjnITNnXik83KGao3Nx+FsI/GItCIOXCI/lABMd/H\n/cahiVhGQcmkp5vMm8K4+ZAzCMmE5mIwkWDnjJIgy3kipQxNDiVOkn2Vm178c5yWSgmS1e4My3wP\nat/pDDpHtTvDurZZ7rcqVwhKEM2nDUbAwBQ2lnQbWlek2VBww5T2JUOf6WS/zna45UBNjwrg0Z7U\n6yzPramxbTc4a2rc2Ha5L5RQSRr7UWFQlUP/GEUeco10jKbC5EPj45/lGg5dN2yj+zwWQBDymd2N\n6pWXlS6tYNnthlAO2brxMfvrk9yq+AH/wRhxYRKKv++Zz5hPIWgeEpuHNgb3cfD2ObPt9Yk5twmu\nvCrD2fS9gIaiY+xSqAyiogI+Fn7NnFwACiCIzTfhWq1P8l5VRiocNjeCp3QC7Lgqsa71II9F5fuo\ndqdY1xrHlc25oENIb8yOmfIaHtTP0BzExiSvPXqw7L2HudorBVYURYvT26kd46rGcQlse4mUZzgq\n7Do4Lhvc2ObB3Beg01oOHJ5eSCBKQR8imSsyx/kOCEifYhjKPCdoJiTgpw5l90K43NdYLgHtWtVt\niHWCvZMSy9s1zsoMdaGxKTJsTnLPtEJhlED/5COFSTD23lFetD2GXwmmKuG6Q8t+FNMAACAASURB\nVEKg177LV8nQDHMOaMOLUEqgA9WkecgP+s8knwohFMhn8/ZC8DBSYE0JmOFcdYyMnr85yZGtGxvy\nWmhsqn6exxzarDMcVxVOKo16VwKLh4CV01gWK9S7p3FSaRxXyoffyrmTSAXcNyDXQkzw0VxxcFPA\nChdKJo3NUwhtgDNh+nf68BZAhW2b4HGfR2HDjW9s8ygwood/SYFlaw8aJNylP436IMswU182rE9T\nNIaiUDHBMha0ERPucYij/jMOWJXT+3R+urSCBQATKpUH/wNc5nOpLdNCB1si0U6ldhI1l1GSIv++\n6hhuaLNwR/ZY/23blslmVfcMytyuC40aGijCpzQuVLKyRQU7ZsBBvzgTkDRBcQbmP4tcnjkbc+y0\nOoiIouey+fQJhS6ngn4PkkhoPC5vY1MnqNozmLwAlvsAAJMWqM7OsKkXOC77TD9m1pSmwbnZ4qSB\nSWENhIVL7PTdJcNa32BVaZdFbw9IVbXB2SNbWA0088JkTKjQv+Oqi468lVZIs52vU+9LL7t3sleW\nvXbqQsOs7f/c4c8pKHAjB7OYVhTz20kBPPc5FNZ+cFjdNX/PXQw3ft7TpRUsiTZYHVbYIMdpXqAu\nNPbWFercCpT6wKr9Dx6e9eLzgXg4K8/IB/p2dDplS4oxqlCCpnzuyuVTVHlq+39iNZK60L08g1VR\nB094JBR84mNux7w6rDxwoO/DJoueVHl/Q9/H7ilH2gNYngETvKQ5kvDzuRTo+8N8myRkAlnyC22T\nB3WSQhkD4+reK2O/yxIbbn1wWOHpp/rObqIYoyNmSWsixjzHmF6oqJucY5rDB6+e9QRM7znrhPWf\nhMu8rb/QwKPLDrjyqACO8wa39hvs7TcoCgsRVMEdYGbSWNKvXJec+FqQlSgH1+a70fUXvY9ZEmTf\n7tM8urSCRWvTy/beIMczjBlzgXKRfJWQDXmDHFJ7mTIPdKfV/iakzeJrq0Pj9FAwW7ZBZMgmMMwN\nIdMfbVieIOmd1EwY8E0+Njc872PMcR8jaXaTVQWlmYnXm4/BrhRFi0XaQc73oPLbyiVI2tyQsXc0\nZz3EhMp5KBZtxdum97wJYX45Rp3ntuwxwdPzfBfSSnrt6x1W2Q5lq/BArvBMlVi/S6qw1HZt5E64\nbE5yL1ykhk7X0fsLmbBi61K2cd76R3OuGzs03afz06UVLEp1ddm5KkwLn4oSjUfmhFVyItowlHDo\nN33gZBcTAF1Aj+klTvaINBfBbLlg9AxV5Ib0GBZpKkU7eD7Z16UTlhjbWOAB/V2VegjvwU7z59nU\nD109C6Il0Cmf6rGHnMo0P7L2B+ru9GsLfTW2gmS+66EYhCiUYAvMy8a/G0RzsDqo7diLvIcVV+U2\nD2WzznA922GhGx9OzoXMUd4Jl1XW4jC3hcQAYF1rl9ejcZQbHOfAQje4xg4WJNC5gAll6Z9rXTqS\n75poLKeLrpPrDsDAXMtNdXOrrp6HrPP+chT6urSCJUlMb3ES4yBmTJXu+AmO20dt8mKf2Y8lwnHa\nYHiilJQX7SBJTgqXUIGsmIAKJfJZMqiynTcp0H10D11bpMZrLYO+uj5MhcdyQdyD9oiYA2WdepnQ\nKiFEvGbh/EIHh1UQgoaT1VjENmgqQMNjhdHzC8GEQhQy74RMhGP3n0crjp36iTYnXY0V0nBPb6f4\nNDi6hMIipfVt8OjSjp0wxQopgAEUWsEC4LoyyenW92VzknufXp2nQGX6DDuwLmmdUfXIW2Jd8vGG\nir3RfE5FVxLR+gsJl969981gF6JLK1g46MsggsctprOWZVMLoQL0i1mNnZrKRvVKwHKK+Svs9124\nL7Xjr2GbiW+M2KnO3msGiXyy0BaNvyq7RMmxMZBpjDCrxmhqrrhmwT9PZUjfKbWmoXQdS2kOmDMA\n/fceq6lCJsJCvBOZDBqDKuFE3/t59eugCzkf5BxNtMn7yn0X9n3Kg4eyvpQ8QdnuHBqvOwCwBEpC\n6V1oC90PKF9jhfxKXosuAuPKhmt8oeEL3cm17scgAGD5u6B5lgnJoWvkvIz9fbeEizF2fJeBLrFg\nUdEEtqpK7Kl3VWPL4FWAaWgV/ndetANmS5stK20CYl3oqGmsqRNgVfv7+G9WOwjbsQfjIebXECwL\n/Jg8syr7hbtWB7VFziUfS6l74ca8DC8XxpLGBG4oaofajKJCR+BM+L2964Xpjvd52ypXQbIGdA74\nQl852rrBSaWxbS2yc7CUQaD9UJ/GtLwxknVuQnkxoTyLECo3oRGTH42bCE9vp9jbb3zektdSdYJC\na1QOfeCk0tjUCZ4JzD8XLhQ1Ru9WzgGPIpQJj2QF4Amp8p37/cn/RuC9BLDXYmtHmjljn+/TPLrE\ngmU6HLEqNY4x3BBzACFD9tzQczj8OD2D8lso3Feq9mRyigqXUIazf3Z3QvRaiMxPYTH8lBTHw31J\nMBKkOo3LJ1+K3B5g/mn6oppIyARCFGP+26YLtzVKeSgXo5Qr9GWFj4+2ivR77Bm8D/4z9wdNCBhe\n5wYYAnBKKlIDStQk8xPlNfE+UzsyF6fab2Bh+owvZ7zKrACudyooVCjf5aggOBnrUwyhFcgxAPBJ\npoANEpmzvyQyN42L+0kADLTIQTuRgw3/+277Wi4DXWLBoqKMYCz8VQIrjjGGELOj0753aoIJlyrp\nRTFxoEVCjqVFTsCE56XO/NBpIZTJTsWbSHuh0N5BXXMKZ61MlzsSoFjWNP3NT7Q8+IBfM0Z3YqIo\nS6uN1DuFdmfxs7QTLK2p0e4a1LvUCp8I4xmzzc8xVYWES+jwMXbw8UECRTyZkhcQo3e2YdqpZLzH\nResixAysH8WavkI5GD6J0nXxqLARY8elQZH2tRc+Fllmuhd4EnivXGuRpuueJimqpc4VDHPN1HdC\nO9zPY3nB086tXblpYxhYoUUti3CN1XzoMc5cdbkmRIFqfLJ/5FS/U+Kal9RCUNrggpVzfB+IbH1K\n5qxgI31CcCqh7HyuiUXDbx3To+eNmdiAoRko5MvgfedUFC2OClEES3daCYFT+pr3MzWvwZgEBU/N\nM0x7sedz4RACTqV5rN37ou9CPop+fynRsRMuMfKOd++PtACYx5UNST5zcDDHN4terhf3T/mnsv0X\n2lejQkVQJZ7DhYwM05Y5aPL+5xu50iM/DQt9/25jzI+J318D4OdhC3K90xjzE1P3KqX+e9hS7zsA\n1wH8JWPM55RSbwTwYwByABWAv26M+fWx/l1awRKigS14Bk4Qnbym6mbz7O28aFFBVAosxqOBfNub\nzNukvX+EmfQoUzgGT8/NDARVwsNSubDjCWIUPcMjrXIhKEIBBb2TaBEP4+Q2cbqvEN9dhIhhyACH\nowdLHOUWJl4nqc1lCZCEzJ/1jtC/h4gzLtJWQgcWfn9IE+LEhf/aZcP3UAqoHXSneP7OZOLnzaeW\n7BlWuGxbE8xxkX8/kO+QJcZjki00FR3rcl4oY1++k9g88XGH5ocLjKq0gQIXpZiAuVu0M3eOWg4A\nSikN4GcBvBG2uuOHlVLvN8b8AbvsJoC3AfiWc9z7d4wxP+iuexuAHwLwFtgy73/GCZmvgK3l8mKM\n0KUVLIngVxR/T6VJgaFdfAzIbupUE2I6PTPGCBPibVSlxuqgDmKH0Rg4rtkYPD03bREkTE+LQnda\nlMIldLLkn6c2ZywBDpXxzEEyn9gcx4Q/MRtpgstzm/i50MBh3kKrQIZ30pkki6KD3aE2el2e0Gak\nBup9VgE/QWwMY0KGTKbk4+LYZvz59O64uYmSSbtGjV9HValRPVhie9jgqOhq84SKiD28sDkvhbaR\nZCeVQaEVFjrxggmwxeKObxajY+ZzFfoMhIM7+BxdVMuI+WGeZ/R6AB83xnwCAJRS74PVNLxgMcZc\nB3BdKfVNc+81xpyw6/bhnLHGmP+Xff9RAEulVGGM6eP3MLq0goVTxRis1FpCiVVj7YQ+h8wXXCWn\njc6fNeYMDsH9E5DmprJM4aGrZ6P95PcS1lha7wZaS6/fTLhIoTtFXFvhwiqk6Y05xDmD6dnmJ/rA\n5zgvWlzJ4UsTxyhLjE8ilBpPjObY9CXzmxTCM4QLp1B7ElHBa5TuoEHCJCsbH0xC2kxTJzg7qrBt\nlHPQWyItZpW1uLpscJC1KLQtRVBojdLVgql3ygUCkIApe4798wgYIAAHw+aF3k3IHBui0Doeizx8\nFulhpdRH2N/vcqXVAastfIb99iSAN8xsd/RepdSPwlbofQbAnwzc/60AfmdMqACXXLDwkz6h5Z4i\nt9ArLDJqSrhI56GlDrqlqjRC9cGBLkKIqAcfkw/r0stnUt/3SgukCQCnyPE0lnjo6lnwxB/bdE2W\n+CzpuXRRB/ocgc2ZxVjkzlRfpFApUuPgXOz1gwTJwP0xvC/qHzBu3uFUzhQosv2YcKHfQp+p/1Ko\nkKOfhPsGAIcb4sKlLF2Qx37jtRfK1i/0DoU2vvqk1fQMytYA2OEwB06qBA/ktsbLNW3n/vPOsU9+\nl9B8nCeYI7TOuTl2KpgiGDAw412eh4w5VyG0G8aY193VDswgY8w7AbxTKfUOAG8F8MP0m1LqywH8\nOIBvmGrnUguWKYoxKmm3lydKEjD85C+FyhRycSiaLGT/XR1WqAqN07U1Z5we5sgPdt6pTtFkPNOY\nj8FCzHTLoC7CCLR8Ts5zmosxwrEiWHQfNxHypDsgzCzuxGShjAHXXXSSujK9xjPfKRpjkGP+lqk2\nY+aZmEmO05hfa4zJ8TB4biq7DuBsv8Fje8qhHlutZF1rJ6ipeJrySZSH+Q4nVYIsafHHtMJRZYuI\nHec2LPn4ZtEzWcZyhmg88vu5AmDM/8dzXuYEfzzH9FkAL2V/v8R9dzfv/Uew5Yt/GACUUi8B8E8A\n/AVjzB9NPeS+YHHkhYDTLIIOaQFBwmmwySnpsTI9beXgsPLYYXMYYZrtPHQLLXiJCkzPPkUnVHgd\n8kFf+eY5rLxw4ZhOd4OkIBwLpbVjMb3x8M8x85g3BRbxiLMYlW1YsElH/pxiUjEijXh1eL76HiGz\n4dw1QyTNj2PjyIt2ADPEhUtV9tGGrTNeOc3FaZZao2xNT6gQHeY7ZyIzHm/sOCftZYsvXF9Exxb7\nfgpjTq6T884f0d3LvI+nOJyTPgzgVUqpl8MKhTcD+I47vVcp9SpjzMfcdW8C8G/d90cA/jmAHzDG\n/Ms5D7kvWGYQMYSY6UYKoZ7vg0XjkFAhxOCCge3NEVacuMbET68S8r5Lpmw8ztjgWV64DMEaR+fl\nAhuujAiIrtG+01w+Zyyn46ICxhNHOAacxjKM2DtP9Bdpr5Q3MqYN+ucKYTDGEKNmwWLo0+r1MaSt\njJhApQZxXLToZ+krnFQ6givmsNa0FeaFtmazVaaw0Nq1sR1U6vRjc+blEELF1Hu+iHCRJrK9VRya\n/7kgY0yjlHorbHSWBvAeY8xHlVJvcb8/oZR6FMBHABwC2Cml3g7gtcaYk9C9rukfU0p9GWy48b+D\njQgDrEnslQB+SCn1Q+67b3ABAkG61IKll3Hs6knwzR+rL9L7O8D8JHFmnxetB90j0D9LgVyLXsJb\nwJQhmDRnJhKdOASa2RufEy7SBHURGgOX5KdMLoDpHdD1oXkNmUHGmMTYGKYwm6zW0nThxkzLGzMT\n0nO9mdEVkrPQPd12i7URAxCNvf9QO1O5VWMUDNwQkXoAnPO9dvPTZemXrfGCA7BChQdI5IkzbWou\nxKy2utQVrju/ixdkrgAdgB5CRWjMIQpp9sC02ZS/g2lw1WefjDEfgDVV8e+eYJ+vwZq5Zt3rvv/W\nyPV/C8DfOk//Lq1gUcp4LYIzOBICValHTUn8/5jzPUYUyy7xx0J0xVkfbiHOXIAhoyL4eB43HwP2\n88znsAMRlOaTuZFxss3Yxqa/fZGxcihUgu2KdxYylfnxjjjcAXI875AobbWV7QYAoJrSweZXWGgr\nkE8xtL8PfDzCNu8LySHHWDLp3aLz1inhRPNeVZ1JmL4H0AvD532+BjrN20TKB9izQ9oLEUHxd0Sm\n0E7i+7WBrk8hvxL3dfLxyGCVMZL3hlCU75SMOf8++mKlSyxY+syPABgLwShStyDlguBMlxYfaQTy\nWmrTq/mrGq6CbNQJWaTGhsT68E6FrTY97DJO0vziT3whrcudgrn2ImHzgXEhGQrzlTUyetpGhNlJ\naHs/lyQwAkmqngkyxsG1Nk6hpDoAPozYF/qqq64eS1MhSTUOMgttstTAOhLFFhNoRCRcvNZ6DvMe\nwOuUdAcLKcAk7E+MeVHCrDQJeeEs5nBKyG/WmYtatNFi2xZ4dJngRUsyfYUFC0WSAVbDOfRzERYu\noTnmfYxVepRlFohC893LdYqUm7hP8+kSC5ZhPZZQjkCIIYYECi/IhVXdQ1/lRMIlVqODFjMJlSPP\nc40rEmR8ISSqtBeLrtqsMx9iyomDWIaES6i2h4RLkVAzksa0OKllyGx+eV3vXl5/RTCO82ZNE5yL\nVhlMeQvYnAIATLlGnl9BoW+5mixDzWROPgkRBVNQ/7nfhIrNjZXhDc0Bj6LiRemWGjgurZNYvjOO\nxhDz6ZFmws2qfIyhUGlq62yfHPpWc7EAn4k3fwFWqBxkgE5of0j/xVC40DOmNNnQnuJ4bNyUORVV\nxoVKKCH0ImSMej7kxzwrdIkFy7hz2p/4xYlZ5gHEimdx4SI38WadDUwWvpiUECpHjN9sW4seS4WQ\npGksxCzoWRzEcin6SiayUAlmGidHnfUwMBylIOJ7khTzG4WKcvXaC2iIedF6jfI8p9Neu4myeSxt\nA1SOybUNtEqRJ8onSZKfY44pI4Z1JddOkTYehoXGL/0m9K6WGl7L5W1TMMhSA0fOD7LQBrfc4eNU\nwMvPSSSNRZLxyDSJl3d8s3BzUwFQeHxlw5ALbaPE8sTgMG/tfDsIHa1Sx4GmhUtM8PK+RgWx+55b\nH3qCJlB24D7dGV1awUJ0N22oUxQC2+PPv+iC5vfxTS+JhMtFKC866Hz+LF6a+GA/XFKWKFQRkzNr\n0jhCZgnqw51SVYbBGu82ze0rzSswDM+evJcxxA4I0mDbqIEg4jRWYiDWR7qPE2kR9M66iK7K9cd2\n6upy3rOsiUzh4UXrosUMFtqG5q8Oao+wfac0Vq74bvtVLitdesFCJM0+U4WrqtLeUzaWYZ61HZT9\n+nY6CwuqF9XlTk/2BGtNChQxtm3tv+NSYdvaZ0gG3qsWGfC3HPz/7X17kCVXed/vu31v98zszGh2\nWYldJIJkLFzmkUqMIlEVk/gBtlCciFA4KC4nAaegCBCTxCkHzD/6B4eHY+QYyrIssC0/AEeEsooY\nJBSnnJTLEiiEp2SHBWSBIiFW2tHO7Mztvrfvlz/O+bq/Pn36MQ/t7Ow9v6qpubdv9+lz+nF+53sr\n6WIdpY0lU6s4tx0XlVQgSek9J3E5ixGwGLG3fxpH43oJWumrXu33NaDqyaHpemtC3Dg3xNF4ismM\nkM0YOU8bfI0MxtNqtdAu7HViKhJLWs8rfa/cwNKucw1H9SJZvhxytTHUvNKq9jpXstLkYs43ts9t\nhMmMsDyaKcllgnhgWG9jAmxMymloNc6VS/IAC9EAawnj8cR4jLkp+CtJYJVE1kWcfe6RWxhvr5jN\nLsi8Y88IArEotD1s+kV09dSaZOTl1/74LrQx0kcuZ9ZjpMuTglAAYD2tE4r7kMok4kuBoqtDStW+\npjTz+qUUVYysfkW/X6ghrArC1E7XrXClrzI5FaQSGbXeYg6kdtWuDfDuxNZZ9rijaJt7vca5iamQ\nQl+IhkA8Kj7nPEU2M3muDgJFX202a6DMDLyv52lwBACqdgagvE+yX1PJiSyN8N0nFpAeS22p4QFO\nLJprvRobghGvsI2J41wxMKlgTKp+ky15LS6ll8eTaqS+W99F+u9TYRfncNSROpas5vyxz+QyLwjE\nouAaswVZGtXE5raSxC6p+AydbeQSx7MiTgDolgA0dNbaLK3nBJPVsK/Ko0DbewRuZUIAhWNAMjSk\nIh5s66n0tUoIQiprsaRTN+SynVdtUn6vnLIvO8i3VEMR4JcSxjkjzQfIeQKKkn2ZPnyLE3eSS6fU\nGRtRk7g8Rl+5T8+E15LcV228ToZV6dIHTS5PPLZksiPnU1ujJcKzZ2QrUg6KwEkANtdYGUhpvlNN\nepFI/TPrsbcq65PfWyw88Iq24zqpuHZGg2dWBcZMz1hK/gsNc00svpdbtrkxHy657KTuuvvbTsgl\nS+sG9TbUVB9pBF1AC6iWu/W54xarUscWoX/T2xaj0n0XqH6Wl7Z0cqhfc20PaHL11BUzXQnGLR/Q\ndZ2EbMe5WT3nbI3HVmKhKLGlieupSfS4uyLw+8K9Z4LU85z0wcLQSGSyGNhxfjfHdrMwLANK5RmI\nPRKL7rc8X2LU384zHI2N9LIWD3B8IUcSkSUNn3tyKbXIf3MvpPxxhjPrcSWHnNQVeipd9MYMaaml\nLEpWPltNkvFeFjLzirkllp1kGnXtED530ya4k4P+78YSNL2oQ2eVKJNu5klc7VaFLAp4eaKWfWOQ\nbcPRDOmUsBiVROvzbjMwktVaQlb1Uartyom+LPq0EHGh5htPzb5ZGhXXtXAUsAXN9Auv+1ArmewZ\nlzYuuxA144xzYLhYqsI8+/VxL256Jlzjt1GbluPptHckKrmp3m4JYNsuAAyhUHFNJaaqVkfIkaB8\nXnTLKxOkU8IZMBZVIK/2MmtzNnAdVbJsYFRjOXBiiTHOIxvvoomjfB/TfIDMqiEN8Qys67cpILYY\nETZGs8JFvrhOqCaD1Sl+ioXR8sR6VZbjcq9DwN4wx8RCtQlIw33IXFLpiupuKtRV/LdShG/lW0k1\nk9WN6kXKc+dYmUR8iR1dcmlTZQD1SatpX5k0siOmBK02MgPmeumX+SiAdQi5GGeEYgJ0jLEyEWzJ\n9VPVFuX8XZOB67lUG4NIJEPlzjqMkXNWq/Pex9W4r6pD7p2vYFtTXEWN3CSmyNoBFuytGitS14sg\nNxbH1+/aOSy5A6iQSlOAZ9P9kEDH7FiK7XyKk0tAWfLYEIdO/ZJ5bFsmeSWs2hVFyeOCXGxaokr/\nHYLTRv6+WSX2K/aEg/H+4sdsVkbINwWMCXykApQvVFf1x9pqukGK8E0eQF1HrIMxtdQi/dOrW8mz\nJJ/b8i3pvkrAmbuy9hnJZdLwSXSVCX15gnGh7qCKtCJVDwvyVStNfU1dia8PfOSiJ5Ocp4ZYRnbi\nHMaYcVkoTafFaZpkmkiuyUFD+uCSih6XjtHwEUGaGm8/E5+RF9dWrqkma90f99roz/r6Svu7SUPi\nthsnpgpnmkaYHh8jnU6seq0kl2r+sBJi0E8iwmRWlVpgyUV7K/qkS99z1ef5mRci2G/MMbGUwYN9\n4E4AAj1x+FQD+kXVpKIT6yFudmXVdd91QrwFqxeurHydSaQsOuYOptlwXJm4W4LOXKTOuSvS2arO\nGjwpjPxnMuP6u3VuWJlYi/MntgCV06Zcw81khHil7GMxuXSsoIVcjGeYmsxEaoliYFpdNTdNrql7\nfxWa7DCuDaxiI0CVNN28dLK/JAzV7Ws3cq0m3FQegfo66TG4CxKB2OOE4CpjcaQWn7rX3Kspskwl\nG02lwqlZFY3zAZ63bNrRNhcAhRSjpZm12Ny7tQRWSptW+lNZoNg+mB1K1WzmPDNA9wJxr5jtX9r8\nCx5zSyzaQ6PP6ldP2totFqg+kE1652LSs1mUdf0X/bv7v+bS6bg/CqloW0MhdazMgJXyYY6THDHK\nYEOpPlkZZzwsyDJO8sZcaV3Xyvc/TvJabIbPJiTXJUujSvLDoq2YCkLW10rQpEoC/Flwc56AiSrq\nsJzNdRG1EuBXxbnttz1LTbFMWlLpO/FIDJGgMKgrFZjuq7sY6purrDK2DpVQRdXW0eaT31s0+5wU\nRaeQywxprtPvq37mpc3lecvAWjbAegYsDAlH4ynOZGWsVdG+B+713mvc0UGAiK4H8GswUai3M/N7\nnN/J/n4DgC0Ar2fmL9jf3g7gjTBeEL/FzLfY7R8H8AO2iTUA68z8t4hoBOB2AD8Ewxl3MPN/bOvf\ngRILEf0CgF8BcCkzn7bb3gngX8L4/v08M99tt78UwO8AWIRJ+fx2ZmYiSgDcAeClAJ4E8Dpmfrj7\n3NYo7VPZeODznnJTd7TtL/u5htgmQnFRWc2PZthAqUop9Nct59Rt63Fuok4uTeiaWBJnYnHPqwP/\nJI7GVYGZA8wEoj17dKLJLI2ApD65+tBEKMPRrDEHFJM5v7axuBN127natvkkWnfS79ueL5eX9txz\nF06FCkjXGNkceQtmyf5SMM5372sSsqePspDyZSZO08jGpExhpA7jMbYQlTVcRgPjbpzmVIspkgj9\ntZixnhkJZj02sS6AIS/pgw+HmFQiAB8C8EqYmvWfJ6K7mPlBtdurAFxt/64D8BsAriOiF8OQyrUA\nMgCfIaJPMfMpZn6dOsd/gql7DwA/DSBh5pcQ0RKAB4noo23z7IERCxE9F6Z28iNq2wthKpq9CMBz\nANxLRC9g5hzmwrwRwP0wxHI9gE/DkNAZZv5+IroJpibz67ALbDgqA8AvgTTlgnKhJ0ONpsnD95C7\nE6JW37m6efdFkYmhqa8yeWwmcaXuxU7RRrA+1Yr0SZNi2alqtU2fmmsnKoquujJNGXiNC3JpX9qJ\nJNEHrnSpj9eLlspvKh+au13gsy+47WuVamZX+DqS3iWVwivRo8LTaLrWuoBck43nEQDjfIoTS2Kg\nN+cSY71Wj40GjEsXzWJIyh4vRBHGuXFnl1iXOJ7hydMLpi5Oy/07X9LLPlaQvBbAKWb+JgAQ0cdg\nKj5qYrkRRrJgAPcR0RoRnQTwgwDuZ+Yte+yfAXgNgPfJgVba+ScAfky6DuAIEQ1hFvYZgLNtHTxI\nieUDAH4RwB+rbTcC+BgzpwC+RUSnAFxLRA8DWGXm+wCAiO4A8GoYYrkRYJeaZAAAHBJJREFUwM32\n+DsBfJCIyF7QRgwGVdJompw12pILNqGLXPqQiQtdw6SqQioLMkmQmM5uXKze7aSyoSK5NxF7V3Zu\nXik9jjaCbVPriN6+TaoTUtH5zSTVjs+Wknr6pfvWBrcUcdGm9VrTasC+k2mtrQ5JZTdoG1uTbUkX\nmwPKaHottWjJRlRLosb0Zbcu2t7FpKzbeQLAdj4tgjIlQ8NCZNLxJ9EMy6MZVuMcx60LnCl3HBUE\nc0lMWNgeQGJdBF3k0oS9FLx7BnE5gG+r79+BkUq69rkcwFcBvJuIngVgG0ZV9oBz7MsBfFeVKb4T\nZp59DMASgH/LzE+1dfBAiIWIbgTwKDN/iagi3l4O4D71XS7GxH52t8sx3waKkp1PA3gWgNOe874J\nwJsAYOnS48X2wnBq69Nr1cFeVjHaTuLTP/uko6Y2tF5fPheuldaYDZQ2El/7vra3zg2Ng0Ditxv5\nUt77VDc7LS7VJnX0vd66LztN4LhT7LXtpoDUncKVWtquu3Z2kAWHD0MdD6IWJG3tNqnvNNqqOjb1\ndToZYKMSIEs2azPjxOIAy6OZMugT0twY9tO8lF5MRvAykNI9x4EZ0Gfc6jjj4DgR6Qn/Nma+ba9d\nYOaHiOi9AO4BcA7AF1FPOfBPAXxUfb/W7vMcAEcB/C8iulckJh+eMWIhonsBnPD89C4AvwSjBjuv\nsDfmNgA4/oLns2tw9ZWe1Z91ugrZXyf0k8j8piSBaQOhAPWXUAyshbTh0XMvi9++NWY3qbLcAk9N\nAWE1e48n15L0YS8rOd+xmsx9fXczHrSpxNzgPN9qeieLhTbbUpdtrus8u5nkCnLZBZk3EYZO9tk2\n8Wv1a9O+Gr5ro++HlAqQ/un4pTKGxpaLsKldksguJqIZNiZRJTtCEjEmsxnW4kGRMiidmjG7rvIV\nu2UPojzPOM3M1zT89iiA56rvV9htvfZh5g8D+DAAENEvQy3arbrrNTA2a8HPAPgMM08APEFEfw7g\nGgDnn1iY+RW+7UT0EgBXARBp5QoAXyCia9F8MR5FtX6zvpByzHfsRbkExojfCZ1QUbyNit8SfxxF\nE7kAfs+pOJ5VSKGPKkWTyopVBenCXnqlvqyCwsTTrEKYDX3TRl59jPRJdPGuxKTdXncjrbSpTHyq\nLU3cfUjFhzZC78I498dW9IF7fVz7SJLkNRtT3wmuVVJpIUKpiuoLfHVdmwEnc7TH06zPNdXlENxr\n4kqaupJr+YyazA5ie5ECbdmsnnLH2MxM22uxSQFzYsmUUPa9P3o8gNECLCvbXtfC4YDweQBXE9FV\nMPPfTTCTv8ZdAN5m7S/XAXiamR8DACK6jJmfIKK/AUMiL1PHvQLAXzKz1hA9AmNv+T0iOmL3v6Wt\ng+ddFcbMXwFwmXy39pNrmPk0Ed0F4A+J6FdhxK6rAXyOmXMiOktEL4Mx3v9zAL9um7gLwL8A8BcA\nXgvgT7vsK+a8ZfS66zbaJFG0kQvgX0k22V+aHlixK5SqAPnFX/MeUOTSQ8xuqyAo55exADqfWl4c\n34SKZOG8uHqy2AkRNcV8+LzOasdqlY3jxNAHaQOpuJO/71567U6ecUuBL9/90AuD/YZPam2zFfo8\nzdzjgXa1WE0K90jzhd0wcZ0YJpZYGAtWYln11IWT9C9pXkbpn1iy5SeSKdbT6gKtdu0zrpHLfoEY\nu3aQ0bAq/7cBuBvG3fgjzPw1Inqz/f1WGAenGwCcgnE3foNq4hPWxjIB8FZmXle/3YSqGgwwHmi/\nTURfg9Ev/jYzf7mtjxdUHIu9OH8E490whRm03Im3oHQ3/rT9A4xI93vW0P8UzIXpBZ38TyZnLam4\ndhGXXDRc6UXar+yjVvs+6EnXXxa1Ti6V2Br0W0G2kUNfI2yffdpSrviKLPlQkSid7dIPVy3jU3Fs\nno2RJVVPs52WnG2c/B1y6SPJuaVydb8rz90uVF5dkJiXnewv/Sv+20WMOHz0sef5SGWovNI2zxrv\nRNEcCMHIfmeGUywMRSVGOJtJ5mObAj+qXqckMiqx9Uzyk5l7Pk6mRd0kOUeWRsg2Blg6m2GSRNiE\nmQvcOKoLBcz8JzDkobfdqj4zgLc2HPvylnZf79m2CeNy3BsHTizMfKXz/d0A3u3Z7wEAL/ZsH2OH\ngzbHUaVoEFB6UvkmBt/EpicUn2rMxU5yDukEkE3w6bndF9zXn7aVaV+JwjvJOqoq3b+dqBN80oj+\n30U2FUnFmQD1ynicm3EW2Y0tcp4gn00B1BcP7rl0f91nYbeQFXMX3PvkevBpFa/uT9P9byL6om58\nUo0nknMA/W1FvuqVcTwrXNA3Uc/1JXaY6fExYEsfmyzJwCXxDGkuxEKVmBdRk63FMIGUVuIxCVAJ\ni1GpDpSYF6CUKjIMayW49wJi3heJ5TDgwInloDCbUa2Otquq8b6kCl3k4ntRtX2gS3+rc1TpbMG+\njLXSR32eYruHKGQ8XZX2+mR+dW0jrqrIN0ZfmdumCVnbKKRN6b97D32k4uvrdDJQKV3sfpFHt9IA\nd0L1uWHvZZFRpGFZzVqfEx+5+Pqp+9WGpj7rInJuu0B/YmlbtGjvRLft4s9mST6xZOr5jPNBofKa\nzAzJTDy2lzV7ayXg1dSHAYApts4Nsbya4anUkMsoyzHKcmxBkUvAjjC3xJI7+nM3GAyovjy63rvP\n3bJLcnFT7Xetas2+4hFTJxXXgO0jPn1uTZZivwH6kUvlGrRUauyaXGJnwvW15V6XJhvFcDSr5Iaq\n9aGFVATjnJDmhHw2Rc6TxtScO7IJ9ZBa+johZGk1J1hTe33612Q7kySmbilt7+IqLm1zTc9b2zPQ\nxxnBZ3PSnyVVS3YsxZkjUxyNTYG5tRg2OWW13SSaFcb+yYwgmZQWLPGMc8b2ZePi+k6SCKPM9HNp\nIzPkku2PezLNULR9sWNuiYXVu6hJpbLCU4XAdISySyxAM7m48CXrc1eSPnVBH/he3NSZKEpSQYVc\n9D4a/QiwKnFotVVjNLZjlPdJLFoP7xuf/l6ZjHxODDZGyXd+wOQGi6L66yCFydpW+/oaNBnz+8Ln\nsaRVfzshlyaHAh+8ixX1zPjUrtI/32fvOZyFkKBQtSlyEZuLObBUZ8r1SNMIW6tZUeNlnJeVSeUP\nMFH6pQ2mfC6W7TM1zodGcj25hTSN8NTGAiaqnzphbEB/zC2xSKZR0e22kQqAwu1X0PSS+4z6sr/P\n7bXJpiPHiLFepBW9X5uU4uuDW8t+2+m+Tw2ipRvfWJsmnS67ij6PTCTSjo66l/P7irKJaqTeONXJ\nxbEzxPHMGoHNfhENgXxqP48QDYZYjWdYiPpJdD6VmO/58NWY1/u32Y00uejr27YwkH1k8eSD9vhq\nIpAmeMfYcC3cRY6Ge42bMlZIuxJJL9LL9pEpxlMqpBeg3TlD7vvxhRyFLe3KDQDAU/Fi8fwEUtkd\n5pZYBsSNE7qQiq6LvZ0bchEbjFvXXuBzSdbbi3O0EApQ15XXdOd9Iq7Vvr5yv95jHXKRFPdt7s5A\n1ajetVr3qbfE9VOnoVk5Uqb3OIM6ubilAioTkUgnjqQSJ8YzTJJQJhEjjhZNWpe8NNJGNEISZViI\nzH2XhJkaTSUSXPuLayPSfWlDkwTnu8Zd5OJu95V29rXXhEZJ1CFA3wJMYml8WFqe1BNjxv5FhZDV\nVpGayHiNjfOytIS37yo1/2psVGRXLlv15MmtSnxRFu/fFEnMGE6eGffxCw1zSyyA37XWJZX6w8nA\nchnJC9QNt00uye55m1yTNYn4HAB2oyZzIfVc5BySEFJPQnGSd7o7y35iW2iCS6K6ep9WgejA0KNx\nmS8KoAq5FIbcFgnRbChT6wupLK9MsHJkWiQ3jGgIYgZPDbEQMyIaIh6kWIvNsyBlcH22sqZJuZLt\neQcp57v20c9t7dxO/3xefuLhpaXgrn64wbRNxNNX0vF5sBVaguXSSy9rGKdscyXm9bRUh43z0lNM\nIKRS1neZYXlknpETiwPg0iketosbb+btgF6YW2Ih9T5VDdp+UpEH1fzGSNaysqa7ikmQCdZHKj4p\npcl+0Ob66a5i9YOvJ2rf+HRszGIEpFbDJ+oFWDVUHJsMuAu1J6RdcpG22qAnFJckl5ZNrRYxypb6\nckMuj0/LcfpULgI98bqkMhzNsBgZT6F4wBhQZKSVaWZqsuQZBhQhiWYmFiKJijK4TWPM0qhUv9m8\nXIU6x5VUfLYsj8ebbltLKT6ycMfadJ6m/reh6Vnskkzdib8J7rN5BlzYNJsIVJ9DsGVr/cjzcmKx\nuq8mldXYtHs2i6yLMhc5xhYixvpShseXJwXB7Af2K0DyMGBuiWW/0VazomZ07pEVuTg+q9pVutA3\n8FD3r1iZbQywidirOtkJ+tp+mtCmqkuGbALblLTSZlzW9gghlbokpjBtjlmIk2oaHO10UO5UVdt0\nOT+0natGjj3ji9zz+aRhN01OH/TZ170XjYSgqqK6WIyqWZfdMbW1OUyjIpByPeMiBYxILfGAa4GU\nguWRsbcUEf5DYD3J8MQ+aAjmDXNNLFJOVx7cpSNTrBwxUbmLVkKRCUj830V95Or7fQnu9P9WV0vP\nb256FN2OL3+T7NemypCkfiKZpVMTJLpxNsbm2RhLZ1NsIcZGYlxcN84NiyAyN47GPXcb+uT1KtpS\nFSYBY4wd58B6SkUpYzm/lgybJjEfqbiOGTPOjaSyYOvjRjFm0xxpPkCaD7Ce2mtl08aLesT1WtK1\nZNyJsPJ9B5M5gNZMwy58rttd0fu+57ZtXzlPYxob+383mZzHuXnWXHVek1NEQe5K0ts6N8SGfZfX\nM+DEYoS12BCHSbNfSi4bkwhn1f1YHuVIIrKuyyIx9yuEF1BibolFcoUBVYKZTga2uh4X5AJUPai0\nnt+N7XBXsDtZsYr3k+9F0kTlcwjQxNPm4isEA6BCKqONqQkMS/NKjfR1tWrezSpX0DTJ6HGmaVSp\nMGmy+phr7ZKKwEcuri3C50penH9GyHlqqkbaAEkmQjbbxsYkwnpm7v3W5qhS/tmXm81HKnuJxtf9\n9tlD+uRR8xJAU9BmWnVt9qGLLHySu2/c9awWJmbLqGfrxvqma+e+F5sQR5Ac60mOMysTPLaW4aoV\nxonFqIjUTyKpElqeS9LDpDlZKccQzFrcO9V9K4gZo2w+SGpuiWXgzI0yWRQvjiUXDd8DX/ymXuou\nD5udqJl8L6r28a+0nTHilXL1BqDimSb7y29CKlLPZTiZYWkjw9NJ2b4b5KnPuRsVj5C4mzVa2tSe\nYcamYV5EH6lopwFNLq4tS5OKK60ANoULT4o4lmy2jXw2RZrHWLeEJqQibq6jjWmRTdqciGqk4qLt\nurm/xfGssDctRsD2cFqTGPWx7qLGVUfp69JGSPrYtjEIfHYfv9t8N8z7VSfrrj5UftsY2HxjceFp\nuLkxwsaxFOtHpzixVKaCGQ2qRv3VOLeqMrLSqiEYtyRyQDfmmFi4iPKV5HejNC/SOmTZAGvH0ora\nSCAPtq/mfO2h7yiyJNBBiyK1yDkE7mp5lOYY2YlXjIKTNMLmStw6ybmZZEdpKa1IW1k8LOwvegXb\nVPURaA6w9Dkz+AJFC9LzZCL2uVtLGnp9jkpcSIukApTSKGACJIdRYj9PkM0Ym5MBxjlhOhlUkiSO\n0imWNjJM0giTJMJkZdjrevtqy/sg/a4nIi0dJ7SatM+iJk7ySsbgNgmgy57RRC61cTjbm1ImVSS8\nBvJsa7cYd8ZYOlu1kaVJhPTRBWxcHmPr3DbOXDbGySXjASbqMcC6nRf2lwGAGZIIBcHsB2gWcoVd\n9Igjxtqx1Hg/JTk2EkMwxy7dBlCmCVk7ltZeJK0Skv2avHmQoDbp+HTe6ZRqgYBNL79kYp6Ij33G\n5eo5ps6U33oiWF7NsIkYW/b7JDYTpbTRVyqRYMZi3A6a1Cu+VXKWdkeuu9JTV2qUQjVkrzNQTtgR\njRAPFsHbpsTP4vL3Y3F4Bssjkx13OJoVeawAIEPkJZWuKpEuwfh+A/wE7SOXYv/EnzfN3cdHKvq5\n7QqQ7JLGffE62u7iphXqQl9nAen/5tkYW6sxRmmOpQ1DMJJC5enTykXssjGMipUBRMr2QjCkUsJ4\nBnZ2I8DB3BLLcGBSaZ8Zlisc30rIuDDa7y2TWZJUiSVN/Tp1d9Lp8gzzeTlt2Oy3xUudVH/3ndeX\n0l23JeTimyjlOJ/0IU4PcZIXwZRabVPpe4PnnKBJZeg6LOj9fZKQq/6rtJnYCppx6SUU0RA0TcHj\nTQAATVPEg0WsxltYi4dFgCRQpo7ZWo0bjfVt44o90ttuUFuoJHktg0HT/kCdBHzSRRNqEqbqhw/i\nfOBTSbapl+Ucfa5XnOTFO5HFQ2zBpmPJSim8qt41WZKFXIDcJq701MwZXXhSBhFdD+DXYDp/OzO/\nx/md7O83wNRjeT0zf8H+9nYAb4S5AL/FzLfY7e8H8A9hLs43ALxB12qxhcEeBHAzM/9KW//mllhG\nA+DKFcbCtqmLPRzNCmO2wPdAN8WnFF5HcVW895GQm9qiy7Dr/iYqvKZj2lQTbqJNaUvIxV3ZutUP\ntTQhvwuprCXAuLBNmpW1K6n43KFrhOIQmntcWyLMtnY1xonpqElSuABsbwJnnjY9X30SCytHsTLa\nwEJUBkjK5A2gUrvHJwn4yt/2QWJtIHKPFiITJCrXVeKoZELuWpjoc3tLNDv3F/CTkEsaNclc9vUc\n2xQnZj5z4XG4U7gSYkV6QYxJEmHpbFYmfswYWRrhydML0nNUycVE4os7ssS7LA4vrDgWIopgim+9\nEqas8OeJ6C5mflDt9iqYQolXw1SQ/A0A1xHRi2FI5VqYC/AZIvoUM58C8FkA77SFxN4L4J0A/oNq\n81dR1sFqxdwSS0RlQJR5uOq5wNK03X1YJhTtyioPtk6sp1/KiieXx5ffZ1w2qOrWVzpqRLgvuy+7\ncTolYHNUIRfZ34Vr05BtS8uTglTEPXOcExamwNhOGlp1I9em0rZHhab7kAwZkoW3L6no84nBWpcy\nEC+/JGJENAJn6+BzRiFI2RbiwXOwMjI6+LVkWHjHFdezp4pQE4tPHei20yTpAmWQrj7WfdaazuPa\nnlx0VbrsY5CvTPAthOKPIfLng9PnqzwTDZ8Foi7eWo0rdpfCe2xjZANlxfNQjPYmA7ImlXiwWGv/\ngHEtgFPM/E0AsOWHb4SRJgQ3ArjDFvy6j4jWiOgkgB8EcD8zb9lj/wymPPH7mPkedfx9MBV5Yfd7\nNYBvATjXp4NzSyxf/8rDp1/7/J/96/N0uuMATp+nc50vHPoxfci/+dCPqwEX47jO55iet9cGnlr/\n1t2//8l/drzn7gtE9ID6fhsz32Y/Xw7g2+q378BIJRq+fS4H8FUA77alibdhVGUPoI6fA/BxACCi\nZRjJ5ZUA/n2fzs8tsTDzpefrXET0ADNfc77Odz5wMY4JCOM6TDhsY2Lm6y+APjxk1Vz3wEgfX4Tj\nDUJE74JR4fyB3XQzgA8w86Yx3XRjboklICAg4JDiUQDPVd+vsNt67cPMHwbwYQAgol+GkWZgv78e\nwE8B+HGrRgOMNPRaInofgDUAMyIaM/MHmzoYiCUgICDgcOHzAK4moqtgyOImAD/j7HMXgLdZ+8t1\nAJ5m5scAgIguY+YnrJfXawC8zG6/HsAvAvj7YoMBAGZ+uXwmopsBbLaRChCI5Xzhtu5dDh0uxjEB\nYVyHCRfjmDphvbbeBuBuGHe2jzDz14jozfb3WwH8CYz95BSMu/EbVBOfsDaWCYC3KpfiD8IEL3zW\nqrzuY+Y376aPVEo7AQEBAQEBe8fOswkGBAQEBAS0IBBLQEBAQMC+IhDLPoGIfoGImIiOq23vJKJT\nRPRXRPSTavtLiegr9rf/bNMvgIgSIvq43X4/EV15/kdS9PH9RPSXRPRlIvokEa2p3w7tuJpARNfb\n8ZwionccdH+6QETPJaL/QUQPEtHXbJoOENExIvosEX3d/j+qjtnRfTsoEFFERP+HiD5lvx/6Mc0d\nmDn87fEPxq3vbgB/DeC43fZCAF+CMYZdBZN7J7K/fQ7GE4NgUiS8ym5/C4Bb7eebAHz8AMf0EwCG\n9vN7Abz3YhhXw1gjO47vAxDb8b3woPvV0eeTAH7Ifl4B8H/tvXkfgHfY7e/Yy307wLH9OwB/COBT\n9vuhH9O8/QWJZX/wARg3Pe0JcSOAjzFzyszfgvHOuNamVVhl5vvYvAF3AHi1OuZ37ec7Afz4Qa20\nmPkeZpY8N/fB+MEDh3xcDShSZDBzBkBSZFywYObH2CYVZOYNAA/BRFbra/27qN6Dnd638w4iugLA\nPwBwu9p8qMc0jwjEskcQ0Y0AHmXmLzk/NaVUuBwqIEltrxxjJ/WnATzrGej2TvFzKJPPXUzjEjSN\n6VDAqhb/NoD7ATybbbwCgMcBPNt+3s19OwjcArNI08nJDvuY5g4hjqUHiOheACc8P70LwC/BqI0O\nHdrGxcx/bPdx0zsEXECweZw+AeDfMPNZLQgyM5OuwX2Bg4h+CsATzPy/iehHfPsctjHNKwKx9AAz\nv8K3nYheAqPb/ZJ9oa8A8AUiuhbNKRUeRalW0tuhjvkOEQ0BXALgyf0bSRVN4xI0pHe44Me1C/RJ\nkXHBgYhGMKTyB8z8X+3m7xLRSWZ+zKqEnrDbd3Pfzjf+LoB/REQ3AFgAsEpEv4/DPab5xEEbeS6m\nPwAPozTevwhVw+I30WxYvMFufyuqRu4/OsCxXA+ThvtSZ/uhHlfDWId2HFehNN6/6KD71dFngrEd\n3OJsfz+qhu737fa+HfD4fgSl8f6iGNM8/R14By6mP00s9vu7YDxV/grKKwXANTDpq78Bk0ZBMiAs\nAPgvMEbIzwH4vgMcyykY/fUX7d+tF8O4WsZ7A4xn1TdgVIEH3qeO/v4wjLPIl9U9ugHGdvXfAXwd\nwL0Aju32vh3w+DSxXBRjmqe/kNIlICAgIGBfEbzCAgICAgL2FYFYAgICAgL2FYFYAgICAgL2FYFY\nAgICAgL2FYFYAgICAgL2FYFYAi5KENHPE9FDRLTvGQOI6KdtRuEZEV2z3+0HBBx2hMj7gIsVbwHw\nCmbWOaNAREMuk2vuFl+FqRX+m3tsJyDgokQgloCLDkR0K0wK/E8T0UdgUsg83257hIh+FsB7YILw\nEgAfYubftBmXfx3AK2GCQzOYeuJ36vaZ+SF7nvMzoICAQ4ZALAEXHZj5zUR0PYAfZebTRHQzTO2O\nH2bmbSJ6E4CnmfnvEFEC4M+J6B6YDME/YPd9NkxKm48czCgCAg4vArEEzAvuYuZt+/knAPxNInqt\n/X4JgKsB/D0AH2XmHMD/I6I/PYB+BgQcegRiCZgXnFOfCcC/Zua79Q42q25AQMAeEbzCAuYRdwP4\nVzbtPIjoBUR0BMD/BPA6W3P9JIAfPchOBgQcVgSJJWAecTuAK2Fq5xCA78GUrv0kgB+Dsa08AuAv\nfAcT0T+GMfJfCuC/EdEXmfknz0O/AwIOBUJ244CABhDR78Ckbr+za9+AgIASQRUWEBAQELCvCBJL\nQEBAQMC+IkgsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7iv8PZgt3\nsC/XeNkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQZFl+1/f53XdmVmVmVVd3Tbe6p2c0M7sgLUIKKSTZ\nOMwrsIRYkMA2yJgAyQJ5jRTGgWxABtsYUISAsDEhCT0MGMk8hILgIYMUEmCEwWglrYTA2l1J7OzO\nTPd2T/WjKquyKvO+Mo//OI977s3M7h5N78xA5zeio7LzcR/n3nu+5/f6/kQpxRZbbLHFFlu8kwje\n7QPYYostttji2cOWfLbYYosttnjHsSWfLbbYYost3nFsyWeLLbbYYot3HFvy2WKLLbbY4h3Hlny2\n2GKLLbZ4x7Elny0+YxCR7xKR/+HdPo73IkTk14jI7Xf7OLbY4t3Clny2+CVDRF4TkbmInIvIiYj8\nAxG5YT9XSn1IKfUn36Vj+xoR+efvxr47x7Aw43MmIj8rIh98N49piy3eK9iSzxZvF79ZKbUDXAWO\ngG97l4/niSEi4Tuwmx834zMG/hLwAyKy9w7sd4st3tPYks8WTwVKqRz4W8Dn2PdE5K+IyJ8yrw9E\n5O+LyEREjkXkn4lIYD57TUS+WUQ+Ziyo/0NEMm87HzRWw0RE/oWIfJ732Q0R+dsicl9EHorIt4vI\nLwe+C/j3jNUx8Y7nO0Xkh0TkAvi1IvJjIvJ7ve21LCYRUSLy+0Xk34jIVET+pIi8ZI7jTER+QESS\nJxifJfCXgR7wkrf9bxKReyJyV0S+1nv/N4nIvzT7uCUif9z7LBORv2rOdyIiPyUih+azkYj8JbO9\nT4vIn3qHSHaLLd4StuSzxVOBiPSB3wF8eMNXvgm4DVwGDoH/HvC1nf5z4MvQE/P7gD9mtvsF6En7\nvwQuAd8N/KCIpGZS/fvA68ALwGcB36+U+jjwIYzVoZQae/v5ncC3ALvAk7rlvgz4QuBLgT8EfA/w\nu4AbwAeA/+xxGxCRCPi9wDnwb8zbzwEjc9xfB3yHZxVdAL8bbTH9JuC/EpGvMp/9HvO7G2ZMPgTM\nzWd/BaiBl4EvAP4js98ttnhPYUs+W7xd/F1jWZwCvwH4sxu+V6FdczeVUpVS6p+ptrDgtyulbiml\njtHkYCf0rwe+Wyn1E0qphVLqe4ECTQRfDFwD/jul1IVSKldKPY5Q/p5S6v9VSi2NtfYk+DNKqTOl\n1EeBnwN+VCn1SaXUKfDD6El+E77UjM+b5px+q/mdHZM/Ycbjh9DE9H4ApdSPKaX+P3Oc/xr4G8Cv\n9n53CXjZjMlPK6XOjPXzFcB/Y8bjHvDngK9+wvPcYot3DFvy2eLt4quMZZEB3wj8UxF5bs33/izw\nCeBHReSTIvJHOp/f8l6/jiYVgJvANxn30sRM5DfM5zeA15VS9Vs43luP/8oKjrzX8zX/33nEbz+s\nlBorpQ6UUl+qlPpH3mcPO8c+s9sSkS8RkX9i3ImnaOvmwHzv/wR+BPh+EbkjIn9GRGL0WMXAXW+s\nvhu48tZPeYstPrPYks8WTwVmBf63gQXwH6z5fKqU+ial1GcDvwX4gyLy672v3PBePw/cMa9vAd9i\nJnD7r6+U+hvms+eNS2tll5sOtfP/C6Dv/X8dcb4b+OvADwI3lFIjdAxLAIyl9D8rpT4H+PeBD6Jd\ndLfQVuGBN1ZDpdTnvjunsMUWm7Elny2eCkTjK4E94ONrPv+giLwsIoJ20S2ApfeVbxCR6yKyD/xR\n4G+a9/934EPGEhARGZhg/C7wk8Bd4FvN+5mI/CrzuyPg+hMkA/ws8NtEpC8iL6NjL+8F7ALHSqlc\nRL4YHasCQER+rYj8ChPzOkO74ZZKqbvAjwL/i4gMRSQwyRG/eu0ettjiXcSWfLZ4u/i/ROQcPQl+\nC/B7TGyki1eAf4SOa/w48BeUUv/E+/yvoyfOTwKvAn8KQCn1EeD3Ad8OnKBdd19jPlsAvxkdXH8D\nndDwO8z2/m/go8CbIvLgEcf/54ASTVbfC/y1Jz/1zyh+P/AnRGQK/I/AD3ifPYfOLDxDE/0/Rbvi\nQFtACfAx9Hj9LXSsbYst3lOQbTO5Ld5tiMhrwO/txEO22GKLf4extXy22GKLLbZ4x7Elny222GKL\nLd5xbN1uW2yxxRZbvOPYWj5bbLHFFlu841hXH/FM4OBgpF64aWrvlMn4tVagWrZfSwCBkccKQpQI\nOtGqgTLlIwqFUgqFYqmE5WMMy0D81+u/HElMsFxCXUJZoeYlqlZIJEgUQBhAGOq/cQJRykJV5LXi\nvBbKBUQBJAEkoSIU1dqvj6WChTnufNH8th8p+pEiDlJYVM2YBSEEEUu1QJnMaSEgkFB/Z7nQf8MY\nJcJS1SzUgmqh1z1ijiUQhdA+KOWV5NRLQSlhaV4Hoo8nChKkLqEsULMCCcSMQ2TGImGJ0sdjr6fy\nMrwl0P/cANSwqKEqoapRRY2q118XiQTpp5CmEGcsVMVSLQklJJAIqlxvZ6n0hY4iiBI3XoGEen91\nCXUNZQVLhVoq3I2zBFUv9WFVQl3BYqGoSkUQQNYLiDNFmAVIL4IshaTHggWzWjGrhXklLJdCGC6J\nguZe8O83ez/EgSIKhFBifT2Wtb6G9hmQwF3rpVq6a7RUwmKpr0/Y2W4oEEiAIIiEzXbtOJcVKl+g\nygWLWl9n+wiqJSyXEJjdh7EiiECiAEnMdY5CiGIIIwgi8wz6Wfyd62autyDNPWrv08UCFs1fVS5R\nS8W/vHv6QCl1eeNGnwC/Qi6pc6on+u5rTH9EKfXlb2d/73U8s+TzwgvP8ZGf/At6ggD3V9VzPRl4\n7wHQG7qX0ttDJT392ndbVjkq6VGrknwxZaFq6mVJvSyJgqbcxH8dmvrIqFOOUqvSvd5d9lHHr8P5\nKer+MYuP3WZ5nBPsZ4QHfRgOkNEQhgO4fANGWhzgtDri4ycFnziNuTaouZQtGCc1O3EKwHlVMK/b\nxu+kjJjVDQlMiohxWvO5eyWHvZfg9A7Mz5qxiTOIM2T3sBmTco6an8DZPSgKyAs4uAK9ITK8ynRx\nzEU1IQoSoiAhlIgs3CVGE1StSupl4cZgoWry+pyTQtzx9SPFKyPhUnoD3vx51Kc+xeJjuj1OeNCH\nJEYOD+DaNWT/pr42tZE/s9c3SpCo584BgNkElZ/CyRHq1l3UmxMWD2bNte/HAAT9GBn3kVduIs9/\nHtNgxsITKxhEe8SzC33dTs9gNIThFWR41Z1jJAmiFOrsLty/hbp1F3JzbKWepNSsYjmrqG9PKe6W\nnN1LOL0XcvKwJusHXH/fgr1fFpB+/iHy0g248TL18IBPX7zBT98f8No5vHEuzCrhck9xKVO8f7Tk\npWFBL9ITdBaKuycH0Zhe4Ak2VDlqfqLHqT+monL3dl6fky/axDyvA4pl+54aJ3pcduKUNOw31/rs\nLpzdQ92+i3rtiPr2lOqNqb5EVUCVB1RFQF0EROmS4UFJeJARXd9t7vvL+3BwRd9/gz13z9TLwu3f\nf5b85ywLd/Xza695lcP5KeQF6v4xnF2weDBjeZyT/eG/+zpvE+dU/PHwi5/ou1+z+McHj//Wv914\nZskHQIkgcaZvOvNXop5ey9Wle89NTPZ38xPETGaqLs0KN9cT7c6IqDdk1xCUnUijQE/4dsIB9G8U\nZmLUD10zGe64Y1QPX3OTvaSpfvBglXh2RpoYzXGO4kNeGd1inMzZSxVZtEMokXsAo2BGFupJfRPG\nac2vvASX0peQixPU/Ew/oGcXkESQFZDmqCrXBF2XqNkETs9Q0wuY6PNieoFc3kfVJbu7h2TZbjMW\nswkqv6N/F2dEvSFxbw/iHTdRhxIRBTN6UcGkNIQd9PTk3b2uswoB1NED/df/0F9QxBkqLll79jsj\n5HIBeUlkCIfE/M0SPeaX95HD968QD8BFfcKgv0dUX4H+GMlGqEFzbew1UCKakDDyBbmZNEuzvaIg\nzAvCgz7R9Rnp7SnDu3MunUbEacXwc3vEHzhEXrnpFh4P56/yc8c9ZmYTV3pwESme31G8Mqp5aVhw\nKdvz7oO0uRZV3nbGxxlS6XtSiVAv9PHVy5IuslDIQsVJsWwR0KSMSIMlUFAvSxaqJg36ZKNr+n5H\n39dx/y7Bvn7Wkpkh31x7GCQLCQ8OkOfGkKXI7kBbeXuHyO4hVRyCWj2mLnwicguAOGvukx2AU32v\nZilhEhPY67/FU8UzSz7OTWYJyGIdAfkwZKMwq39/ki0rRwbq8j4MrxD39oiJIL9wVpXyrS1rGZjJ\nRiWRXiXHmbYUol7zfYvhgND89YmH3nDleC+lN0jDh2Th7grxZcmhsbwmjoCs1eNbSZfSG5p4pkeO\neNTpmZ4EyhqwRGRWjWY81GTmrIbwYAZ5geQFajYhGl7ZSFRyeIAaDvTEko2I44wouWQmywlaQcZY\njZb4N11nQ0Aka251S5wA9dxNhESJ3uZoiJR1c65pqrczGmpC2T1kImcbhXwu6hNGo2vaEjRW4dpj\n9Aioa3WLfX16RnjlgvDalOjOKb3jHMlCog9cQ15+Adm/SdUfcFrc4lPTmJMi4MLjQ594DnuH9BZR\nYw3WD/VrbwElu4fQN2Lg5m+tSmpVOqK1Vo+1nKwVGwUzzqtmkQCagIqltrTGyZQsPKeOS3YGl/TE\nbwggHJ6tHyRLOGbsrdWqBntUT0A665Avpvq5SHp6nK1lvAOkOZKlzaJgi6eOZ5d81NKtfJSInpTt\nxN0lINCuJvOZJYzuJKvyBZKdEj1/AUWB7J6hDq40FlSHbJR9nZfOzQJ4pHKKMvGEFrK0+ZtELubg\nVpGdDMbdcN/s/6RxPQHMT9gdXiWShCiYcH9e8dKwMO6RXece4eJEuyWsS+L0TB9zXqKyQh9HUTQT\nteeuWDzQ+1P5wt1sYlf1Huks7pyyNBNqOJkhz42RswtH4gJkyS6gLba8PicLd6G40NvKGzeLQ1lB\nEqOOHkCWtMZO0tT74gT6Yz3RWAKyY355H0lMLCVN9bEYq3ZS+fqi63FaHZGGfSJzr22CJaBNRKqG\nJ4ixOqNDj/xffBHZv8k8rLkoj7h9seDORUrfDPYgAlC8PKp4cbdiEO/RC3ZQk9dbbibstQNkdIEa\nnsLeoZ7kjasQ1VhsNSU7cdoQjiTOgsrCXdJwyk484/68cq7SWa3jbvM6oBcteY6JviT9XeL4piag\n2aQ5aXsN4qxxkfbHzhrWA7OeeKIgbbneuliomlAi7ZUIE/38sKfdxR7k8r6+7k8BQQC9/hPmeE2f\nyi7f03hmyQeMX9jcC84qeBQBPQHEN9Gz1D04KyhrJE3bi2YzWTpSgVXiSSJNYHYlCDqmAHrl6pOL\nO1Hv+DuTm6pLetmIXv86g+i8ccGUcyiMtWZdbd0JPmvOy03mWQp5SdCPtfvLzIKShc3Y2HMzlpPK\nCudKBJBxX29nOGidv51wQonIoh29cKgf6PF4FB5FPB65W5endcWqSE9KbqU9vEplA8aqZBDp1juP\nmuR8+HEeF2M0FpGbTOOm75vdbhSkxPFV6O2heiewc4YMB5Cm2kIx34mChDS44KWR/p2N5/WiJdcH\nIWmoLRgl0lh3dizKulnU2AUNaOv07C7S2yMGYuMK3Yku6TGz5+K5juOoRxz32U32GSU6RnRRaeu6\nWAbMa/0vX9RgCChKLum4jR+Hg8bd52I5560xte7sdXCubtrfsQQqpXlWFs0zI7299rVnAkO2+Azg\nGSYfpW9omxQTeDdll4D8+I8HSVPUWJvlIbCcVU0cZtfEYLKR+627oWPz0BcFkusHXWXGCvLdCzaQ\nbwnFTLKSptpq8nF6Bpxp19dbWalZd0t+Si8bAbWOv5jPrMunBd/yMsdj3VFSFM5V4bfPbMWnLCn3\nx7CT64n07MK5XOTyfhOgNxORSnrUCz25ueuklL4266we8GI0HdLxLRnPvWkD6gBRsofWSNXQk19j\nncYzY3HFmZuQ299tw5FOOXfuLom0u2edS65LaEp0LqBEPVRcQtqORcbEDKI9LvdKLx6zMO6wnkts\nAe1u6vX2IOo1i4s0Rawlbl1b7mDKxiIwt6KY367EPPMCZccWiOKMnd6Q3d41BjszHuYnpEE7KWGh\nan1M8Q7Cnjsvl3yyWL2+dpH0VuA8AsaSV1Wuk1G66I+Ryntm38Lic4snxzNLPjbmY1ej1gpybjiP\ngNh0AyaRnjwsAfWbmA+jIfSGLgMnSvYQNfZWifahz1sk1IopmCC1qLFnIZ06q6kF68abXqwcZuu7\n62IfaBeOsm1qukHvzu98i80Rj804qufaR56mkJ0RWQvouXETn/JdiXEGe1lDQuBiPZZ0QE+YPrJw\ntx3vyTdMEFmySjr2+LzYgZ/JBbi4Rr0sGUTj1grbZbGBu07inU/MmgC1RzoubhiXOtYERCY5Re+z\nPdn6riH9xrxNDgBVThxnDKLm/a5VYM+tViUq2dWB9iprk9AObWt7Q0xNQduFbF2xPnyLc3fAzo2X\nyYbP8zC/xUnRpEJbsoyClMizBF1yQ8dlGQWpHmPPveyTv0U3E5Uq1+7j2QTuH+vnxRKQJTxzHaKk\n14zPI2KKbwUSCNnW7ebwTJNPN0OJJW03nHXHoN1Ta+EREHnhsqBsWu20fuj8y5EkRHFKHI+bhz4/\nNZaQWTmaSdFm8FxUR4QSsTu8qo8hzSExD/zUi3d040atc8W489ruJwdLNpsmcNC/9SwIN6HbxABz\nvJHtAp3ecxlEMkSPixef0oPsrVyjpGWBNKve9U9hJAlUZjVebuglZ4/Zc/O5/ds4gonf5IspxVLH\nkkAH023acBrc5/rOSMfAqgXq+HXU7bt6LHbPUH6CSNWJGRmo+YkjHWclpLk+1/mJI6AuyVrUqnSk\n5tzBa9ALdjxCvmjF+PwMzHwxdZN9i4Ty02ZjfkzIjLOzuL17zqaDq1nlstO6CPYzwukF0Ysv8tz+\nTWcF+cgX0yam5KXZ18sSQlxcKSbWBGJhkhVWSNN73SKd0zPUm5PmPG4UcPkG0ttrCJqiNT5bPH08\ns+QTELRcEYBzw0VB2krD1B+ah3jDKmglfvMIVFQuw8bFFywJmVqYioqL+oRJMdXZRJLQ27/ZrDjt\nhLvJ5bQOedmK07R+/yji8T/3icvUFcnwKvPlORflA9Kwz46pM6IomtWxb3X4AWT7f+Pbr4x7y3e1\nPMqvvw7Sj13sTNJ0lXSgvX8PUZBQL0uyUIAl1DpmEklCXC3aSSNZqq9DUazG5nysu2fyohn7vraI\n/aSKdVDQWhA9Et26pqhxVYK1LMomUcCSEDRWUJU3iTXd++xx90v32GeV3oYZC52Y0NQX2feiIF2p\nkXO1ROFq/OaxqPImS7Nzry9nFWFu3LbGtV4vjt1iUV/+4i3ff1s8GZ5Z8hEJ175fLGdu1dV6MDGr\n1/4YmKw8jKoodOZbVujsKPRksTO61tqe23/ZSQywk4OZEOtl0aqlqFVJRUWcjVA7Ng130Px+javM\njwutdT2t+a06WtP6xiZCeNsVLyBNlbcCPK1YzL1j7XazsR77na6F0wkkW9iVvPLcUnY86A90lhQg\nSUToWXauDqRLOm4DpT7Geo5UOb3+2GVI2f0MbMjIWDyAcRMeInbMPBepdd35Malmf9719hcPRQFM\nXJxshVQscZmxUiKQ9PS/TXCft2NW9bKgqO+54tBxaohuiXbreWOzUkawcV8xksSE/cYC6iLox0g/\n1rG84RU3yVvoRIl+Y7XFu1zUbavovOrUCA32Wp/bmFzX5anqOTy45x1vpIuPszPCvNSvjcvYxvvs\norTr7nu7CALo9baKZhbPLvkoxU50ifP6oXvPmfiB939VtmsBqryxcPxAvK3zAdT0wrkBJOoRW/+8\nl+XUgl/kxqr/Ol8osqimXhZ6W3Yi606oNjZla0S6+/K/v26lXuVIEqFuvbn6mTuYYpW8aLKttDss\n14WjU51yrWM+Z5qUd0b6B/0x8+X5invFj1lk4S7q9A7Upa738RICwMRG4pR436Tp+vGcdYTjnadf\nWGxjL3FvjzhuV/cDOp3b25bsHja1V72hc909LG7pc4jHOiZF476VqtcE5/PCLQzkDJNN1RDQihKD\nzWK0FqU9/zWLmnWf22yzfKGYlBHzOmZWCy8Np4xTXf9l3XqqnjfWXVm7UgLZVGiZNAW4loT8hQrQ\nFOUemDR1c3/b2iBHPLMJqp4Ts0cYRNTo45/XAZMyYpzU7HFOHZRNrNZbkFhicgoNVa4VFO4ft7ND\nk0gTYVnrVPrdQ3N917utnzSbcYu3hmeWfFgukHLOTnKJfDE1K8Pmn3UH2AcgkoTMBmkxac2YFOei\ngLJi8WCmV3mgJ8Dz09UCxi68QLUlLFvM56Ne6ip/JeJUDNa5rcBYVb5ckEHrGDZMzLbYT90/Xo0j\neW47ZZMkOoiCFHX+QBPzZMryONfujTcnegICiBLtpqsn7txsjCUazEiDPlGQ6sJWI9GjdvQEHPvp\nznQIyIshdcd7JZZhXYJeMoaaHjVxKOt2sgsMW01vEiFsirMl0dP5q3z0JGFeZ7w0POXqQE+ENYWW\ncfEPpqydtanAG8dJO8vQj6+McldUCXDuxRIt0XWRL6YUC1trE/MwDykWAbMaV4D60nDKpSzS7qwq\nbxYvppBYTWbamjEWja3230hGw8H67MLR0E3yjjS7xDM9cou7ndE1Fqo2xar62AGK5ZJxoseloJE9\ncl6CCEc+anqkYzxvTpB+jMoLTToWl/ddsoGtY+riaVs/WzR4pslHzU+QONPulkXHv9xJ71wE+mmN\ngrSxPkZmcsoLHWydVWAeSjc5m5RY5fndwZscOxpp/gosChKysHlQ3QrVFMTZhyZfTJ07JQoSXdSY\nJUa7qrEkuhZVy41lVnc2riRZqrXGNiQxOHg+fCfdY1fspQ1E1yxnlVNtkeFVivqepy2nHU7FMjDW\nj9FFq+dNfIVTPTazCbGZ8FuHQUU8bLpF++cqSmlCtfpdbpsdxFmbdFqFl0PgCLWTu0lUJT1OqyPu\nXlzw6lnGvzoOuajgpOjxclnw4u45g7iTlVYYq8ePofk1NmuKkd3v6jmwx3n9kIf5CfM6YC9VbsVv\n049rVXJRn5DX57w5D7l9nnJSNO6eC0M+tg7IxrPU/KRxtxUFnF24RAKLJXg1XH5NW9JWgVhjhap6\njlQZcZyBIcy4WqDO7zakVxQwP0OGV0mDPjBlVoshTZsRFAGFictp2Oc2CkqXlk6Vo07PHHmGSay9\nEraUwbgA/YVY15qC9anzW7x9PLvko/xUz8LUGqgVoU2AeV3Riwp24rJZrVk5FEzFvtUAS2IY766V\nAlmLjivMF24EyCK9irOTi8300SnNey3fv3VjPA5r61Bs3cTFiSs+lMv7KD+w3Ml4c/U6dhtWKDOy\nWWZaF2uJFfuMoDfU51ifr4z19UHIKDlsamh8pKkmb6/o0GVGLVeDwqJUm2z7YyTOmnqVtEP6dmFg\nsu6c1t9w0Kp9senv+WJKYYjnYyc97ueQhdpx1o9MkkKQsBNdQi70PiUbofbM2PnZgjbt28LVgnnW\nj9HtmxtrZt19qhMiTojjjFFyqGMj0YxxMl35fi9acinbY3e5jzo/aVyC56crcR6t3BGuWjvGypHU\nFAT718qH5+ZU8zOdjp6NzLZPWYEZ+yzZ5VJWMq9P6UdKu92MRqEmpgbGmasXXCaeKvs34UbhwpHr\n6sd8j4HFZ8rSCQTSdCvWY/EMk0/bxq6XpdOi0iKIbeiqbE1CTpfKCCOqONOxEn9VZUmnt7eyrRWY\nCbxLPBYrxGNW8DZG4GdIWevDKfZ6D76YB23dw2ULIFuTQZauVwewqcuWEMzvWwSQpsjhAZF12wwH\nzuefL6YrYqaXe/EK8UjUQ+2MXEqyRD2XFn1RTRjE4/a5dERDuzJDegyMUoBVat6E3eYzVc9dXGdu\nSKdeltyfV7x6lnLf7HYQwSBSjNOa53oLBoZ4VH6q3XVoAiIboSzZbFiYKEuCxoqUbEQVhxT1mXEx\niSG41LmunAVh9teLMzJDQpasfQULdXqEqu63XXxnTWab6lg94LndnhsjN642ROPXxXXhXJdmH1aI\ntuv67Y816Xoegizc5XJvxl5aOtLxCWYFnloBcYY8/3kuztjEdjbjcbI8Wzw9PLvkY2BX0edVwcNc\nP0iXvPuzS0Q6+BkwXpywSGsG/b1Gl2o0aeo9enutVVVLydqH5zrzRRub/a8hntnETRaWgKK4SQ/3\niceu9O1UL52VXlseZb5yfDIaNtltfr0MrBQ6RpI0pB5nOrA77hP2K73q7A31BFrOXAAZ4OpgwCg+\ndBZCd3z0xhPojzXx1FqqJQpmTf2HJKj5ndWJfN1kY0noMbDjVKuBtnSKB9TL0snEPMxjbl+0LYrL\nGVzrVwxi3ZpATX9BWxPWXWfH1VhQsBpq0G7CcetaqKRHXj9sZUBmobgWBVx4LSzStJnco0SrGVS1\nlr+Zfxoe3GNpasS6xcrOJViuz1wDkBcO9fW8fKP9wbpWJCZjTtLUy8Q0CwxfRNePfXY0Cm0SiiUd\ndX5HW1Cbij9NnZw7Xq+IdOX4HoP3apq1iHw58OfReaZ/USn1rZ3PxXz+FcAM+Bql1M94n4fAR4BP\nK6U+aN77s8BvBkrgVeBrlVIT89k3A18HLID/Win1I2/3HJ5d8rHN2dBZMpMy4s5FRD/SBHMpW7h+\nJ74UyLwOeJiHPIxCrvUvuNzTGVq9/ZtgpXQ815CtV3Erzs5kWJmalmI58yq9k7YFU85R8wdrNNZO\nnYsijsfOj643nDcBZGgSHypTNBdnbdLZpP+WRC51fMWPvwG6CNIIXx4e6AltpAm5XhacVwWzOmWc\nwPWdEbvhPurha1rhGlbqcawFWVFRLHUA/c4sBiquDupmjGz6dJSspix3JVs83TRou1pcllg9bfUS\n0oST6OLTReAsHotBBNcGFZd7sc7UO7sLD+7pyffsAnWtWX3Pw5rCFBB3LVE34Rmdt0gSl2AANr4h\nJiZozj0/dXEqksIpdjtXl+kF5Yu4gm1V0Pdqoza7nIJ+jE88LSHUKtdFqtZq6aRqK1uy392+9RZk\nqbZQOhaotv38AAAgAElEQVRUHGdEYdImHXsuGyC7Z3pRZsd6eU69OG6Ecp/A+vlM4C0pHDxqO5o4\nvgP4DcBt4KdE5AeVUh/zvvYbgVfMvy8BvtP8tfgDwMdpK9f9Q+CblVK1iPxp4JuBPywinwN8NfC5\nwDXgH4nI+1S3o+ZbxLNLPmbFL+WcNOwzTqZcG+iH/VK2IA2Wzr8MMCm033yOVuTtR8r59ZvJYr0P\neS3WuB1slp1PPJw2D1wrAA36gTX6U1JlEIerLrWOqKkmmrnW6OqqNvjJD/Z11naldfHIWJZRY5Ak\ncoWUvQpu7rzMTnyLUXLdSNX8q3YSwMjbhtmHSnpE6B5F4c5D9lLtdtuJLukxOrunJ1+TleayAb1x\nXteobp22nxs6SVZVMDxc9i3k0LYLqEnDkUlbbsZXFQV86lNw+RQu36A3vLraR8eNf9S6NxR61V8v\nC9OyICELz3ViiSQQG9vJ19zz081t6n2aopjqOJwlHz+OU6662OzwSD/WrrZ1Ks/+AqbbIsPPAt2Q\nIefaFpg4nLME81N3//p9pNTRA5eFF3725bWp/3ocM9e4MF8oduJZq5ndkyCSZL1F/u7ii4FPKKU+\nCSAi3w98JeCTz1cC36eUUsCHRWQsIleVUndF5Drwm4BvAf6g/YFS6ke9338Y+E+8bX2/UqoAPiUi\nnzDH8ONv5yTedfLpmn8isg/8TeAF4DXgtyulTsx315p+IvKFwF8BesAPAX/ADPpmLJVeQfVOyEbX\nXGATaAU1bRprKBHFQjczs5Lw43RXu8UkcdpdVLmzLCJJVlWzOya//U6tylazt16wo2tc7t9aJR2L\nvDDNr7xtWXiV8K02CtCqBdoIO/nZWMC6IHKXPM2EHvfHq03c/Ey/ixMO4gPU0SdRdkLxC2KzR1tW\nO9GlRurmzZ9v9xgCXQB6cAVleNF3ObprYmbVdZaPa7IWJi6mkkVaeicNlqZFQOOO7UfNmV7uxU2t\nU5WvXDd1/9hYQWdEts7Ijqff9dVTgZA4IwaiZLex2iLcvalEmtojez90xy9N9Rq3KBAgmFXrCcEW\nFHeKR6UfN6nyoK1wqwnnkQ5r2moszb5c590ubMbf6ZleeGyIG9nuovUbp9S3z1nOapJZRfTyAYx3\n29t7EqyLO3mwxON0/N47+Czglvf/27Stmk3f+SzgLvC/AX8I2CynAf8Feh622/rwmm29Lbzr5MOq\n+fdHgH+slPpWEfkj5v+PM/2+E/h9wE+gyefLgR9+5F6V0g/6/Azp7ZHFOrBps9mycFffePUdAHaH\nV3WxaXDCTqwnWfc9G18xk/zKZAdt4vEeLvsdN+FZ4jl+XbdyXuNeaPnpvWJJP57TEkdt9fDxrCh/\nhbwOj3FPtIZThLzW2lxRaNyL9bxlvbjv5qdw9xdbhOFqipJYH1NXfNQ//3JONDc1QEary052LiBe\n1nA5h+GVRuyUZrx92ZS1igR2CIiJg5goSFvdVP120TYuqC1h3QeJ/MTTWPMC2FnqrCCnTt7V5rt/\n7DKzlJeNJzRuqK6qs0p6moDWZY/5Y7c7QGEEKdak0atZhfhFooaEGO+2M9p8vTSTlm2vg5ppa2dx\nnLN4kFNXAVCSmgQG5+azyBsldGe9dvXk7h2zeDBrtROvy5j96oxeviB+XwVXvBoeg7YgadI8a5sS\nFvzfGYva6vi9XbxFhYMDEfmI9//vUUp9z9s9BhH5IHBPKfXTIvJrNnznjwI18Nfe7v4ehXeVfDaY\nf18J/Brz+nuBHwP+MBtMPxF5DRgqpT5stvl9wFfxOPIBvdoyQfk4vsogGreDmp4rR9UlcTZi3L/i\nKvOjIG3aQHtxE7/7YUsd2/vrJkTzeRSksITeItKNvu6+gTIFckDLJ+9SvNcqVDewBKSr65u+PI7Q\nbCC4qzTtw3fB+SgKnZlk4lw2WcKliCe7jfVTl6tdUL3J1mZU2RUymVFDsCnQcWbiXidru5/aZn4L\n40qKZhXhNa899vDKyuFvbGtu4Wujge5R0983GWO6/Xi+qFu1JtZK0vJCGyY3Twlj2RHktAH+cD/T\nDQmtQvrlfVcrZhW04zhbbR8+2GtrBfrwrq27Lt6x2Oug67FmuqeSRZY06gDQFOeeHLWup38dLOnM\nThPyaUiUKHp5Te/BhPA4J7q+2xRk2/3bY7Nacp5waX17SvXGlLMHCdMHPY5u1xTFkqrosZ/P2Zkd\nkbyvQl44ZB386wR04pq9VhzQuruxxHNvc3zpM4gHSqkv2vDZpwE/2+O6ee9JvvMfA79FRL4CyICh\niPxVpdTvAhCRrwE+CPx6z3v0JPt7y3i3LZ915t+hUsouNd4E7N20yfSrzOvu+ysQka8Hvh7g+cs7\n676i4QXqASeIqKIEYeyI4qmgyl2tThSksFh4K+bSTUi2FNO+b0nIvue0wdYQSFco0p2TdU/4K/O3\nQkB2+8bqsYrQRKYYN94gK7OGeB4JS+7d2FdeNIWs+QI1q13zOspKZ+kVRjRynYjopnoO/1ztfWB+\n79QEIl3QuBF1uVpQao7LnneXeNTMtFLvL4wFUmo3lBUurUyKslHPFlPo2qrbikOtmr6JhEBf9+lF\nE/w3cZkWTEv4lk5eF/59s8aKqvKAuli/0vcLsh8HS9J1pbdXzqEo9LxYzqEqAlfIHL4Vod0NsMkr\nVqWj+sV3hXwehZ8CXhGRF9Ek8NXA7+x85weBbzTxoC8BTs28+s3mH8by+W894vly9Hz8q5VSs862\n/rqI/K9or9MrwE++3ZN418jnScw/pZQSkScVi34sjNn6PQBf9Mrl1nZdMFqVjYJBnJmsIW0VrKvZ\ncdYFTYxjXQGbnQyci8z7zgriTD/s411C+1B39bLshJamTSdTWC/l04nxWAXuVjW611itC7u97mpe\nenuu7cOkmDIpI57r6QQY24NGwKVJg7fqNpOE2N1lKaE9JitAacfYKhP4mX5eFX1XIjbox9pqsO67\ndZ1kaaRTWm3UO9fI3STWfahUS87GT3128N1thiCdy8pM+DKE0Hcv+QTlFymvw/ys6QVk3Yjeyr2m\n0IMSRkT9a64NRAt54Vxkm1KqN8K6fc3xiU2ZPj0jRBelqn5NXC2piiV12VyhoB81QqPjflsZwXZn\n7bSaD02xctCfEsVTojQh6cWUc7h0o2L8/JL4fXuE10baXbkzckKhNi0fYI9zN+Nlgz1XiOy3sYiC\nFPKLRpvwzinVG0+nuY4Ej9aDfVKYbLRvBH4EfaX/slLqoyLyIfP5d6HDD18BfAKdav21T7DpbwdS\n4B/qTG0+rJT6kNn2D6ATGmrgG95uphu8u5bPr2KN+QcceVkZVwErSbvJ9Pu0ed19/8lg6goUVtzS\nTJpGP83CFgl2NaBc4yk8y2RN1lsrBuN9r5v6G8c7erI0PXNUl3Qs7Ao6KxpfOWj1Y99qs+2SwbXf\nXkle8Dt6+gTrZYlptMl3vphyUT7g/ryiWOpbKV8ooqBsKtB9Yo4zGNnMJm8l7RNg10XmB7M7kDRF\n5YVTUnCB8b7XinwNufvj3Wog6LdRt/vojAWsFtRuJKCydrGosJPG7NxpPt5KLcpM15TpfklXm8QV\nP5MPqBclF1Iz3j3Urk/QY9khnq6ETtiPjYXdkf9Zd6wHnhoEOplhOauIZsYNmijzkyXST5r07sOD\n9rU39Tmu99FsoolodwDZsZushl6nteFBSXR9rInnxnONQnUcclGfGG04O+51i4C0rFbbUookQeV3\n9BjdO6a+rV197zUopX4ITTD+e9/lvVbANzxmGz+GDmvY/7/8iO9+Czo88tTwrpGPUmqt+WcKnX4P\n8K3m798zP1lr+imlFiJyJiJfik44+N3At72lgzExC7+jonMZxaWLOzwyAO8Fx5vixGYSeNQE14VV\nTWA4aDKg1rhuKKvVYG33ePwUXgvTAM89+BsKY1fSkj3Y+pc35yEQOPmWNAjYiTfoYdljsq4kaBOf\nqRtxEjiwkXgcrPLC2LOArNXjT5j+gkBt7mALPNE1ioldJmMoUaOIblHlqKLR/FOTGfKcsXpGQ7h2\nrSmE9I5NlNqcXdUVG7WKAVEPMZZlV+X57sUFkzLiA/sRO/XQ3QtWbfwtY5NieJxBX9+HYV6a866J\n0yV1ERClS6J4SdCPdcbblf2WtJBtSTFfnpONrulrkI2cu1UAspS4HyNZyLivXbzR9THRyweayIx4\nqRrskdcPyetzJmXkREnBCpNOGafrO6RKOUfNJqj7x9RvnFLcLZk+eArmyhYreLdjPuvwrcAPiMjX\nAa8Dvx3gMabf76dJtf5hniTZoAO/f06+mEK4awQ8nwxrLRt/+10XD+tb/zpRRFMn02pSZwjIThpi\nV6fQWBJFeyW3EZZ4dkattgC2MNYmENgxacZGH43O9god6cxqfS7jRH83DftGpt9D1/3lkY5uRnfb\nNaPTmYbzJz+fLEGsnL+1eqy7tOOGdO6pNQQErJCQOru7VhGhm7btlFM9srfxKAtHPPs3W11Fi/IB\n55UWyxyMxuyGN3WR6poaL5chl6XaqjT3aTTYI5KEYjljUky5O0v4xGmPezn0oinvH10iq0udIfhL\nIZ6VAViVBlJ7IDcKolKfd3x6wdysHYJ+RLCfIeO+divuHeptuOaJWhy3iGZarbu/S8xYyyHFGZId\noYAo0datmlVEz4808VhXrVHB8NGLlt7iSF+sSTFlJ05ZBLWz0l13XBOnWxznzE4jTo+fToBXBOL0\naQWL/+3He4J8fPNPKfUQ+PUbvrfW9FNKfQT4wFvesXXLxLq5Vb5QZJSmm2VBlOy23C7WRQar9SF+\nG4NWnY+BKNVIz/jfw5vE8FbdNuZkFQZ2B84HLn7TtHUqwuZ43d9NLhx/cnbWX5t4WkrfHi73YqNK\n3SYUnX68aIozbazEr2mxGWxGYmZupIWg6aEU98dwNl9b2OreOz1brSeCtaKnPmzCSKt1hRFM7iYh\nqFd/Uruorp0hh+9fP460f6cGezoes3tGeG2kYxzjvo5HHFxB9m86hQPfWtqJU02+0aVGLsemksNK\n2+qgH5u41kQnw6ix68KrG8VpReh+1MTiZPcQNTxaX2+Dl1U53n2kQjVRAqNrKBprq14WZIMXmrTw\nJAaOiOIpQT/ScZnPvqzH4erz+liSHtP6oWv9UCxD0uCipdadJbv6XtnJ3fV2sdDhYMW9moW7rg/X\nIJ7yXE8XmTYZb82izzaOs5mrqp67OFzQj4nTOb3ekyVGbPHW8J4gn3cbSoSFqo14aCcwaUQ7a1Wu\nzHJ+4ajzU8OqjA2spPE6xFoA001efq2JTTywyFLdvTTtuJN82P/7VoZtMtclIuvuiFf7mTyKeMbp\nrntox0nlBFlBW0T5oiaL9GQUB3ErkO8SL0wnU99NlIZrJsR152eJK9bp25JHmpjtdzyrZ53L1LdY\n3MRp2krvRJcAvQhQt/8V6qOfoH7jlOjlB/CBXBOQ2VbXtWivYb6YkpnGbwIwvtAT7t6hJp7leUtO\nyT//lmLD/eNWNX83M076EalNV44ziHrO+rHX6aXhlEm5IIt2NOkGsT6O57zala5o7LrMNo947KLh\nYaFrGP3zuAgmjIaHxC/2tJssSwj27zfSPNevalVpa+1URy33LegFzEmxbD2HPZsEVOWtWGirQ66N\nE/XHTsEgMgXJvmCvL2Pli61SdmSm0HGqp5EksMUqnm3yyXQmlI33TMqIXrQkX9REgW7eli+mG7We\nWjU+vtBhnDXZSNUj7txOsWn3PWDVkjGvbQKEhStw3dQwzq9b8Qlqjf/e1xCzxGJFQHfilEG01xTr\n9SYUywWz2rrgtItjJ9ZJB2vjXF4iw7qArxUodRpxvhVndd7i0Ai6Hrm4kKt7smKV3fHo7KdmvUvP\nEc/PfJT8X3yaiyPYOc5Jywo+t9BKyZaANiggtwhofqazCEfXtCr2cuZ6L1kMonGjauERj9VhW84q\nVztT5QFVERCnNUH/mDiJtap6nCH9dinAON1lJy7dYgFM8oxNdlhn1ayLE5rxl2xE1R/wcP4qn5pa\niyB2btdL2QI4YpCN6V19H6Qp0WioSW2NtaMTAqJWy4detHQE1Fvo+EwUpMS9PZ1Mk5zpote8aMRu\nDWzPIOddAKJ6zm7Ug/6VlnK8s3o2qI9IFhLFS3q7bzuxa4s1eHbJJ9A3u52c6mXJrE6AgDQIwE5M\noc4Ysisk8G5Wr71BSzXAw+PyxN2qtSP14dJ810y8VtrfqV2DfuAsVrLUMMWmWVuJYc3E3LhQylaw\ndpzUhnjGrm9Mrz+mDkue60202nfRrFzrZePS2qR1Z33zrcSMLtH7Y2JW3NP6IRe51nbb9TuY2viQ\n7xrqwO/z47vfrJtxJ7qEOn4d9YnXKH72iDc/GnMxCbhUVOxxRGpX3M9/Hlb4cxNqVRKNrrlrdu5N\nuLoRnJZUGkR7Wgvu7O4K8dS3p62CzboIqEuhMmMdZxdI9oDItqrePSRKeutjUf6YHlxpXtvWHzbp\nwRb0ztuJHo548lt89CTh35y2p4+LGq5kEfO64sXde5BdoXf4flT/yMV25stzCmPtnBTiZaI1cEQU\nQVEGwFSrSySXjLtviPiWLrQ1/ExHVD/LUwHsjIh6Q3aN1WX7QG1SHwEdp4qeUpxGgibzb4tnmXwM\nVD0nkj2yaIdL2Zw0WNKLlm3/O3Sq4OdtNxusj00YrO3XYutxfHKxfztuuS7p2FiBFSHNwl2d7l3O\nH5lt51xeVulg73BtkoTd9vUBpEHldOxsh1Gd79FsF3AK4OC73uomqL+ma+oTdYi0/YLM+dt9WpeJ\nKwg2Ei8kEeT3XPqulaeR/ZtrzlPHt4rFzJ2z3wwv3M/IdmfGylgS7pu6FKO+XHe6qa7bPgGapEwM\nIgt3GURaxdy2ywCTaGKzHJMIssTUtsSofk00q+mPamanEZZZokSRjAKdtjwaatLqH609V3s8VvrI\nbwPetCWvQNHO9DQqBgwHqN6QSPaIgoRL2YJJ0Uwfabg0DeoWpingDbNI8frzzCb0jGVmpYqK5aKV\njebr5IFOENiJ05ZyuSveBZ2EYZW8oVl4dD0JneQTl8W5pJGDsgRm+liFB30Wxzn90baT6WcCzy75\ndHrahKL7y2ShEAWpc4NgFG1bBZZdNeiuS8kSholr2Ifb1xATxi2LwE/7tIRgg6t+QkAX67Tjuj17\n/M/V9Aj1qU/BZIrcKIxqQ9MRtavifLkXOxKWzlhIlel+OkECLJyyszunZekm4C7h+G4P/1z8zDPp\njxFbZ90JKEdBqosnp0dtmRfQsbFuawGTymvHJV9MOS3vtfZvY04yvAqfA3GacsDPM759Tvy+PaIv\neAlufjb1/jVOTWbeL6XrZRSkLijuxkqVRIO95prb76LdPwBxvqAHLv4j/Yj08z9LN3WzmE2c9WPd\nivWyJF9qN5/r+TTYM/tvst5ckznbvuPBPSfmyXDgjmk0PASOgMIt1vRzkzCILmmJqLMHjbKFmdQV\nZ5CfEmcj4rhv4qlHQJuAQC9m0mDJ5V7srG01NS5Wv+Gdl/XH/WOdgLBDm4T6tBZwuXF9QpPgEklC\n1B8Q98f6mUhTyO6S9mPC/Ufr5W3xS8OzSz4dRJKwE6fmAeq4QTbBX2H5r70b3bparJVi97UWvgK2\nR0Dd+hQLvXpsgqW+gGarvbb9/Ph1uHMH9doRiwczorLSCtJXe2stIDu5WhJeR8B25b6u6V4Wlm51\n6ZNOXp8bift0fZIBDRnb4+o2wItnF6t6cWemSVleomwNjMkIVP2xq4UBVojH9sZx+xhehff3tJr0\n0QPkxnPIi7+CeRZxmt/izXnIODlxyuZPiqYp4B0ikzHmJz20CCjTWXvRuFNh76leyOFB+7PTM9Tw\npLWYaLLIKnrRCTtxSrGcMYjaRcNSzpsJvhNzCvZnWoECiKMeo/4hUXCy2ndqcqQlgM7NhO3kbpqF\ngUp1gWzUG3JpdIMoOCINLkyPJk08vpu3F+xovUOr6deVLMIjIesp3PPuZy+dOzd9kfwkiZqSguYZ\ntR2KdblDSrSp0PstQkQ9NRfevwt4dsknMJOZWZ1FZiJ0Uv3TO43LYR2SqFlVd1sixxlVHHJa3DIP\nfkAaXLRWiDbY3Fr9d3rLSNx2yW0KbotSjegmjcabdXeJUnpSuXOH5S+8QfGz9yhPl1oNONEFjXL1\nfdDXFeqDaNzEk6pct2e26DadiwfmXKpWPYWFLzZaL0sX75iUMeOk4nJvtpGA/HNf6bjq93fxVK0t\nXLsAQ0RycgS7h5D0OK2O+NQ0phctXQpyGvZXe7z0x8j7vwBuniK7h0yDGQ/nR9ydJdy5iBmn7YaC\nj4JdzChrUVhR12tnxPs3qeKQellwsTzxuuMetdUg/OC6lebpqlWUtS7KHF51Y65bQAj9KKBYLl07\neMARkG9FqvvHurr/jVMnEho8mBvR1xTS14m5ybh/xRDpQ5i9qoVw/SLYLoymnFNlT+5BXTLev0m4\nc0wvOuHuLGGc1I7Ue8GOXgTaAltP0685Z1PfZa81QDppWtnbWJOXYbhOlcLWWQG6xsh2KPbVvLd4\nanh2yQdacRq/pQFVI4dvH6Zuu+GW5IgVezRutvnynNP8Dm/OQx7mMZMiavnE9Qq0udEtGdmVd0tp\n2W4/6bUFTf2alK4Qpm2ilvRavYZUURiRxhoItLSKUUkAXLMyNw5e7dIm2GPYSxWTUtGPmg6wVmpH\nb1v/zUJhXuvVrR8nysLdR7uw1nVd9YRKrZIA8MgGaeem8t0ml+SLmkvZno7tlZ1sQHTNTm1ImYU+\nfv+4Ae7PK+r0HoN4vPYcWmm8VnbHKlOY84rjMbmaNq7KOCXePTSBcq/Jn7fAabU1sF1MvbGqg5L7\n84qHecpJEdCPmthMP1JkoY5ZOQvICs96xKFmNXUVkGBUx1870p/fKHTsy6qk+yocm7qhGuvEEVRR\nICNdo7Q7vKpFtjhZJZ77t1YWGfZau/YMXQIqCq24YDrg1kpn/IWhvr+tVX80P3LtMezC6Wr/hHFa\nk4Z9en5CyxZPFc8u+aQ95PD9TgOqLh4AeqXeWnn6pNOttjfSIH620Hx53hIz7EeKuWk8pltwQz8K\n0EH7xhJKg76zNGB10re9XGwWk53k3EQVX3V6X6yL+ZggdIhWDoyPc+L37SMv3YAbL1P1B5zmt1zn\n1lqVen9WBNWgFQ6OM/LF1HXXHCeV63FTLAOoIQtXV5h7qSIKQlITgHdk+4geKyrpQdJD1LghojhD\nDnJ4cA/GF417ap1Y5eH7mcgZeaUn3JeGmvxHyWHTk8mikwIfE6NEXBM7W7horzFgXk/WElCtSohD\nTSY2gcKIccr+TWc574b7LddfZX7jp/Dba5svpkSxjlGQjVB9Q0LmWs/DmofzEyZlwskaZekugTq3\nsc0ky0ukHxMe9EiYI0YQFNBtPoyyuiMcn+TXkY+9HvZ62mfp9MzVKGX9Xd1t1BLPsWktcutNV+tk\n0859rPQHAk10swkKiPdvgre4sZmqUHPYO+RofgQ1zAmY1WLKC7wU7+GqusUvBRJsFQ58PLPkswwC\nHqgHULZNcFtcmYZ9di69gGRerMOuuO1k4Fk7dkIoljqV1gptdmFrYcbm+bR+ZrfK8+G5uOw0Z5uJ\n+RIiLkg/WFXd9uETUJgXuvDxxsvUwwMe5rf41DTman/KON1tZUa1tuFlEamkB+Y4oiDhcg/nZgSv\nWDBtZzDZ9OIW6TwqBdy3RER0PCMxemZVjuoNdS2NjTN0FgUq6fGguEW9aMZTE8+VVjPAtVaeLY61\nhwLE8T470SUG8UNunzfB6HUEZNN5QZNJlOh4guqfttS+LbqZgZVpkdAI0J636oTSsK9dRIaEALeQ\nsKnyFzUMbLGmsXrSYOnuPXets5GO1xhNwdAjFJv04K7DZIYWS16FcNFqPCeb1LlzIxpqrn1cZU2M\nxxLPq7eofvHYFdYuTdsJ3aAOEvP/8KBv9Ao7JFTlqLO7xL09qPSzbF2fANmNlznc0QRULJeuXi0N\nglXLcIunimeWfMqlDsRqNCvYXrSEhdZ5W6iaNOuThdfaE5Qt8DSrRR3I1IVrk2K6Evewq0z7vjXz\ne+gJYCe6pIsL55sFNF27BHTDMJst5bLIlgU1RWvlDEb2x////k193LMJDK+0iOcTp7pY8KWht+rb\nIFGzKftuL1Xki9oVpxbLwDVds5PlTnTJyBGdtN1o1tVpxVztMdPO4KtVyUVtgt1hooUoh1dhd+KO\nrclqOiOf32kdYxQkjJLDdnFhp3lcCxsyHXeihJdH13mY33JW0JvzkOeYuDbs0CagWpVgsqpWMJto\nC7eV/kzr/mrqY2J60YJxcqKtBUNCAKflESeF8DAPKRaBIx+bjdh1eTpY6yfNdcfTvHBirdbqsdbH\n4oFZKNgWCR45hQf9VqsMhoPV+JTXqRTbc6nK6cVjTTyvfxJ16y7VLx4zf/WCKtfPTlUYUjfW3JAS\nMCKjz3uF13a75rzU3MgVmXbctkljUNZkL/0yDnd0Bt+81tZPL2pUFrpZmVs8HTyzo3pRBbx6lrqV\noHsYzfMxr4Higr30nItgoh/ueJco2WsJg+ZGl8zWiljY7K80WdKLglb1v95+wHM9IZTIaEqV61fe\nXZiJUvrjFRl9mzbacmX5LhsD2T0EIzt/Wh454vn4RLio9S3x0tC400yd01p05YZMEsVOAFC0fOk7\ncdwinlad1LoCP1tzESVN1bohlIt6wv155RI47PWJjLvHEs5JIdyZxczrjOs7Fc/1FqtW1yb4iRW2\nVbSPvIDRUGd+ZVfIFzoR4WGuV87agqRFQK3Nm4WCOwZbsAwtAqqXhbN0TgqhWIY8zENXYzNOQy5l\nDQmBtj6tasDMs3oAZ/V0O3taN6uzfrICGQ1ReUnQj116t01AmE/1RuOsJIpzgn5EeNBrSCgvm75E\ntq+SiUupdSrltlnjDJ30cHrG4sGM6o2pK65tLk1z7LPTiCguUflCt664Nlq7bZeOb+SK6tvaYo/7\nd26NlIkAACAASURBVJHhgF70Pi5le0zKKb7MT76ogcnqNn8JEFHE2dMSKZUvB/482pHxF5VS39r5\nXMznX4E2Ub9GKfUzIpIB/w/a+x4Bf0sp9T+Z3/ynwB8HfjnwxUYzExF5Afg48Atm8x9WSn3o7Z7D\nM0s+gTQuiHFSr1gnFieFuMwg0IFxXWipV+O9eAcl4tSEswh24q4SdE0aBIaElFlZNTehEmlX46+z\nNqyLz2I2ce2U/Wp2K0/Tkv6Bls6ctSAuTLHqOBGuDTTxXDa7vjtLyMJJS9nBR0zckqixbQUsdGFg\n2bJ6FqomX0zpxTtadsg2qbPn7jWyc+dqjrmKQ/L6IReVngj2UrAWqx3nRWBkgUxHVZvgMa/1Nc4i\nHcheSzzGtbZi/XhFli1Y4dL+mHqx2ulSp5prbbI06K/VgXPp5L6YrEFXay8KEvbS0kyGDTTxtNt5\nazen/72AvVSPxVqLBy8dv3v+WaLbVfR1t9PANIrrme0H/QjpJ876CQ/6WkT18KAZs0eRjoUtAO2P\ntfZcXhDmJfFxTr+6cJJC9nws+qNaH4PZN1nSbg0PLpFCbVJIzwtUPWdncI3nehPe9IZgUkZOWuq9\nAhEJge8AfgO6c/NPicgPKqU+5n3tN6LbzryC7mT6neZvAfw6pdS5iMTAPxeRH1ZKfRj4OeC3Ad+9\nZrevKqU+/2mexzNLPkmgWg9uFKQm4+y8FUj2YSd2lRs3Tn6KZCNHQlGQUi8LN9nYFOIsqsnC8xYJ\njZO65YqJox7Kd8X4bqdNCgnmtR8HcqtpSzxd68KmbXcmQz1JB25ymtXCm/OQKJgwSg5b37WJERJn\nLYmalfEKEnaCxiICKJYzPdat+NSqT73ylJIBLsoH65u2Gaz7LAuF53oL8kWTurtWp88ne3/yPTlC\n3bqryefKvo6ReZDdQ53Cu9AWhyY7VrL91rltXH0WXjdcqwPYccmFErn5difQSRzWstbJG2lrjPWx\nFPgE1CWefKGMhdqRNNpkgSdxo9CdhSyO9XfC/QwxSgwrpGOg7j+mDbXtNtsfM6nvMdi/RpyNWsKk\n9e2pi/lYfTuAZBQQXd/RxDMc6PjSsCO+28FK51YvPX0Qj0mLUxe3BFrCue8RfDHwCaXUJwFMq+yv\nRLebsfhK4PtMU7kPi8jYNunE+ilNCBOzzFFKfdxs7x05iffcqL5TCAPFc72Fe3CteySMI6DJZPJj\nM1GQ6j4z1g2TptpF0RsiVY84zoiNJQRtqfkw1nIiWVhyUqxZffbH7d5Bfo3PrG32Wz05J17qxYGc\nkkE9b00kKmonD/j9i3rREmo9QVmBSICHecg4KYiCk3bQ1ah4S9XTsYuAVjDfR3dSBLioT1qFmX4B\nqj62zbUYdpt2uzZBpDmv1d9cyvZa6sUb3W1xBnOcOrKNDSwezPSDYlfUAHu6aVlRHa3flnc8foEx\neOKpHvx+UH7rDvt9oKXRtpeWm+vFAtiJAQqKpSbEx2FFWHODpSDjPpGtoULHd1wLBtPCGi8Jwykk\ngOm11Lkfkkjf+709potjXpvOuT4otTDp858HaUqYpYQHuu5I5QvCWeUlGvQaa2tdd1jYXB+E6Y1V\nFDrlfTYh6+9yudcInj5NiEAUP7Hb7UBEPuL9/3uUUt9jXn8WcMv77DbaqvGx7jufBdw1ltNPAy8D\n36GU+oknOJ4XReRngVPgjyml/tmTnsgmPLPkEweBy0ryfe9NoFcT0LwOmsw0v8UuGL+/fumrWFtV\ngtj8jcImgykKEi0V71HNSmZZZxKKBnuuX5AysvL+RKHmJ46A3Ge+tIndpomjtPrYeNCB6Mb1OKuF\nu7METNtip/wwf9AUtFYZkaknsuSxSc3BxqWAlYK/fKFcjMhiXrcr3v2kBbtdm+btk5CdlP1j8C0N\nfaHbQq6ugVzU09lQptCy/MVjlJnoIqMebVs1z60w6iMsMlfrFODUADappHfbPtSqbL7rz1meNblR\nNcNYSNpl5GmwdZQoHBFal9uTxB2NFQQ0cR2jWK0V3V9v3JWmWBVoLCTbM8imxGcj5mHN7ekpr572\nnDBpHY/Zvf4rtSV4+YjoSlP8qvq6ONg1p7MWV3+88nw80uVmURRO51EXDE+AVcXtdxAPlFJf9JnY\nsGnC+fkiMgb+joh8QCn1c4/4yV3geaXUQxH5QuDvisjnKqUe4Ud9PJ5Z8gkJ2Q3NKukRgedZbQjI\nzhdGdHKdgvUK/Op8cBO0nSztBOImmDWTYXdbdH3ya7pJuuNcM5H4bQzsJB0FpYvPzOuANNETlCXd\nnTh1looTwOzq29ndepaOJXYfLWvQxIm6x2Bh95+F4uI1dnuiFPPHCHuu049bm1btu936Y8hP9Yo8\n0ZPlElO4aidLk6xRL0zHzWgHOGecWLfq0h23b504cuYR902Vt9K67XvRYM8ltzzuHKGxuGzyR/d4\n7FhqSZzXtN/FHxejj6d8pQKviSGYwmvTQVR6HdepCe5blYRwf435laXOgjydv8qrZxk/fyruzF/c\n1THHnqmPkp0R7A6IhgPUmxOWs0qT4HhXE8/eoU6YsK1CrMyPtXpMTVJguqD6HWZ9N50/xl3yfo/g\n08AN7//XzXtv6TtKqYmI/BPgy9HxnrVQShWYm0gp9dMi8irwPuAjm37zJHjPjeo7hvwCdfz6RgVg\nH36LgLi3h0rvrXR1dFXnm1KTDUKJqPGIZ40wKDT1NDFxQ45xhrDXtFrwxEudlZRoy0sA1aMhQCOs\nuSk2A5BRkoWq9b7VurNwWVHmGGxKs+2JZC0Ou8LvpnpbazAO4rXuyYG1EL2VfKsWZ9Gsznv9MdNO\nsN92o/XPawXOLTl3xO2ncoupapcs1cdbVjrmc/2qLuDMIlgWzjqxBGQJFNqk48MmXawjZj9BpBWr\nq3Ko50TDg5Z70/UECtok1BWHtZqFLR22ixNU/pp2G3utB4AmO+1yqqVlrFo4rPT/sdaOhavPMbpw\nKl+gZjWqv2gKQY3VI7sDJBsxrR+uNC3sRY2rm4VHEqYIlrwk7FeN5bUzwvWnsmNoXc6nZ00xbKKb\n74mxwGTc1yRqEh6qTvt4WLUW3wP4KeAVEXkRTShfDfzOznd+EPhGEw/6EuBUKXVXRC4DlSGeHjpp\n4U8/amfmN8dKqYWIfDY6ieGTb/cknlnyUdM56id/El45Mrpmj9bm0q6hKXG8v1bLzfVCeVT6roG1\nfFouk+7vNq3MDQE5t1GceQWIptg00UKhMvMSpuLVbqXdY/Jf+xMVtFeDyhCcTzzdCc9qw6n5g9Wd\neXwkUa8hJCLcLWknjnoOTNdaWgJEWeImizfnNs25dMH0FXQkenwFaT8mJsOrLhuPvGi1v26dp0dA\nThh2jUvMHyOrd+e7AqWcN72h7PmbNhGqKJDLBXHUo84aK8oSrSX92rWA9/sjeW03rGr15LUmbrlO\ng80P1hsSWhHO9duBGKjpkSae+8eoiZbAWTyY68LQB3PtIut7HUgPrqAGeyyqIyZlRLHYcNG65QKm\nCBbQxDMa6rirURmRyrPMzy5WREhJYsKDvo73ZInens1cXJ6vdPDdlCH4lhEIQf/tT7lKqVpEvhH4\nEXSq9V9WSn1URD5kPv8u4IfQadafQKdaf635+VXge03cJwB+QCn19wFE5LcC3wZcBv6BiPysUurL\ngP8Q+BMiUqEdwB9SSj0mi+TxeGbJp5oq8h97jXQyQ144Rl58ETl8/1ptLr8/TUVFnI3a/Xg8AoBV\nbbZ1k/6Ky21Thb39bI2CtiOdRbvOx61u+2PXZE4lvcf2z/EnqkZUVGf2xWssLBs7spO/nQQjSZx6\nc6twdp0b0L7wJzI78fqFiN2VN6D2IBu8oOtgForb57GTkrnaL3TQPVhjXXYyunwC6rrg5PnP0zE1\nI065dtw8ArLaYU4rsBOz8ZMq8sVU1z1ZYViPENTUtA04u9CTZK4TXHqH72ceQrGYubbvvWjprD13\nTOtIZ2pI5/5xO+254z4W0BO6HQ+b5u/dd5UqPTmoNvFwdqE7rx7nLjstmtVOj40sgcv7Lm6W1+cu\nvpeFijRcGgUGo01IR9w3TTXp2OPsj93xKZHmWtq+P36SQdJYX2LP3WTbKZGV9ubdeqj3CpRSP4Qm\nGP+97/JeK+Ab1vzuXwNfsGGbfwf4/9l71xhJsuw87LsRN175znp21fRrZnZmdrlr0gRpioAAW7Ag\nmCIMr23BhEzAFmXCAiEStgEDJmUbsGGAwP4SQMgy6YVESwQsWQRoSmuYNGHJEGjDXoqksLL3wdmZ\nnp3prqnqqq6qfGfGM69/nHtu3IiM7O7Z6eWstvoAg67JqsyMjIy43z3nfOf7frPh8d8A8Bsf85A3\n4saCj1oD6WQNebmEvJVQbbg7BmoSNZUBVPOgXtRrAGDCtkZ4jkxo6zFa/R17cTRAtzWLsRaThiY2\nB2c3/Bxb7r/+0kwusNWyc116ksI3NGbzGrO3SxDh2KZ0DBj2YB10KiKUQVAFoiyGUEr3o0q5obJP\n56PvHeoS01W52+djsey2m4KlfHLPfaZxXJ1I0EQAwBoGqOdZAukQPT5yOtVzZPUozIIda8O8LAZc\nqdWqPcNUXOVMu66V17R8kVqNzPfRZElQ+S44WgNTrmUiTr6emw1H4LRozm16RsCpy2EAyuMGkMWO\nYXmpZUbqB7rBHzlHyL0Ur2p1isB18XovwVG7XX53NeYmgBIcAaPhZpQwZufGi4iVDABUBUgBomZ3\n26bkxtd82Ssr//9lvPi4seDjegrBkQ95t08lAHanbCghAbQDMo1dqzTCizEDTlzMTF2+iell76pc\nV5pS2YaMjRcaw7lqxkJuk/ZrV9h0DHhbekjmWNclSEnhA5NTqOnFc/WtbFmf8vx0gast5RxLVqXO\nOhI2mADV5/mSynsMPPoxesPAHGfodnEYAaveEyRrB7eigiy21y2oR1+hXb4NZPp9RJoDx1xK0gOv\n1vmubCieEbalObDdPp3Lcyy4mqyXyFWKbu+InqNLuqx2Lfhc7h1AHL6FWXGNk9kTnC79iutnJNdo\ne8NNoVZbNigisBXc07HPpx2cTYR9c44r7DseaHaCMpO03UV1WcscG1gBQZNWtDCpiBOovSm63UOE\nrTsI5QjjZIbD6JAM6SanVeUPG3w22GtjuvYAyuwenRkAXC8zIw9kokH8tNzIPIVF+HHCERAvoOz2\nvRI39kw4EpC3u8DBDjF2oh6VpoqqcRc7Kj6teW0rH9vZhT2/Up9HAawdlW3lC1Qa8YtstHU40s6q\nzMKXVputG8+xwNKUY67/iEzmzi+pEXznCBhWB0uFtTjXV9bI6UA91q/xlCny8udSel8BzVmN/d5N\nwNPp0+Koz0PodnG7QzJHff8YcnoJ9ehrUA8e0WR+ffHRxyF67YrxGAu2PrNEaYO/nfHpcqxtXMfX\nha1EwerhAF0f4/wC7d5etUTIkcXIPBdX8Xv42sjHKg+QFA5asswu2Grag1cFHe598NCy9IHeQUlJ\n1q9fCRt4apkzgKqyOtuP1LJaMWjBliKts93UeAmkj4DZAtifQA4PMegeot0mq3YVX20e39Po0lyu\ntLIde5h0vczgbgBQsJHtVbLXZ82FvYyPFTcWfETown1tn9JuPeSW6R6GPXyZpE6l7EY3YLMApVA0\nbW4zkpKCBtbqEbqC3kdnTLaNNmcWk/QCj1cuAmeBo3bbsM4qN4TVK9oqjInSEbWSrU1OoZ48gnp0\nhuI9miJ3Wh686QI4uKahQRuEWB3BynqiQkKd/jOod99H8d4TAKjOcthh1d7JBjoz0vx8e5dOrLL6\nLweXyhoytI7cRdfdgTp/G+pb30Lx9RMkX3mC1UzCC9fw+07FGkACwJNrovDqxTYvrhszX446rdnQ\nldl6GtbMl+6TCaUq1Hn+nuvvs8hH5uf64OzjuYuTeYikIL02O4aBKq2m9QwWgOrirVW+OUTYJ3O9\nOkjx72rn1v4MDKSkSWjNBj0FgDjrsTXiAEDeXsI9nkEcLqD2x5C9A5qz4uN+1nxOrT/GhoKqrmIA\nvubKa7Ji8aD1A6UflRszK3t8GS8+bi74eC6V27bJvTfE1iFF62f7bxbZWItBygpds4k9w+U3FpI8\nWyzwYBriZOGgLYFPpQle7T7CbnhnuzAnsLVkZprqTL1ejKCmZV08P5khOSORSACQbMwGbGRBvDv0\nlguo6wdQJ2fmNQAYCZbKUCGqC8J6mQG6HPJcIARUd6lbDL5sq/DsmyNcfxhiNXMRdQvIyRpekCPq\nxkYPTA5mut93SA3nomoTYA+u0ofTb29bR/N3wYtlB0aBgs85A74pkdYICGwtbouxcu8qKVp40rD+\nLXOBo1aOtjek7HN+Vu2NVDIGUjG3DQ9ztSQ7BlgeSflq6zW0kWkvx+U1WHdU5edYAFRcLlFcx1DL\nHOmE7wG6ZtiiuxIMPEYhobpcGdCJU6jxkkzm7NkdbFpBmKj3t/R54ypGY/b4MUM4ojkDv6FxY8EH\nrksX82RK9eosJuOuVrfckW6r+T9lJ8TlmqQgT/hIJkZiq7TRrs5d2L0X6dL/3++2MAwucLvjInDW\nugF7t+zN2DtCmxrLu9xnhGoPSZuuOwUGLbg7S/jLHKLlQ97uQtwaUFY4PIToHpJ3j45KjwigDGk8\ng7tDC7et9YXQb7QiN/V44PlACNBluQTAFMAFlKY/wwvLnfnufQCEEQGAPVwgnaSQ3tooLwO0KMm7\nfZqMHx6ac1ZXS2gKZpFtAE/Dd2GsMLLIiLt68AwI8WZDOr5mrK0RWX5PHGQ9Lo380Sp3cNzKMAjI\nkK/CLKwpZcCLDRWZzBMvyhkhAHC78LwQ6vxtuhc603L+raYEYQObmp2X/+/LrUPX4hZdA5z9FIjh\n65vC3QnpcR4U5eFQjjgpmXn117cGR4W1yam8t37MbIJ6bT0o3C6Zblzujif0XfWOTGYtsvBl5vMd\nipsLPo61rMUJEF+Q6yEOEYStrYuPKTXAyiRsOZwiqZRTiKpZBR27h1Op8VtKCNL1IcMAbY8GEqNC\nUl9Fs3h4kRb9nl6QYd2c442ylE2VzZBhkpyjv3MMqYcpZejD3RvTTXznyEyuo3+82TyfnJI3CkcQ\nQLxxz1ga0DHJskR2eQH14BGEniwHsLFD3QAh/XmYbGCz3vg7E2lObqbWoGOuUmDnGN7OPTjHbyO8\n/y2E41m1wcwT+loWBrv3zWcsLRCah3EbgedpwRmFJb/ECtosCAuUMkHSKQeQbdp7hgyLfGRZKzjY\njzzjgFspf9VLZl1SEZjlV0hSKgOvcgf7USmvo67ehzo5A8YziMM9qCwuvZ9qi69ajQjoauwzATQL\nevoSKgwg4gRy0IKrsxQA5MHDoq3DwzKj5ddOcz3k6jUz9Mx7lGoUdnaxIeVTB516lreaUpWA3Uuf\ng4DzMr69uLng0xSXBEBR6y3kbrn7JT+a2t/maTmEyA81aKbZys6VuQsuYTRYR9ddM9X0jHozTyxt\nq7jQu/dFqebb1LCv3TgZMmMe92r3EXZ7d2iGJwgg+tf0fK3TlXkuFtl5VdZmMYJ69C7Uk+uqkGMQ\nQHzqPv1co+h6ehetHjxCPRiE+PMUui7vAhtZkF3XV8sM8u6C2HD3SpdWY66HBPLwNXiHb21X+I56\nQP+49n0F5IkkO8aagcOAQVY0A8+2RcrOFux+kPZlso0BORs2zrbTR1CTKWS/h8HOPaj26wjluXHb\nDd0usBgZxhmd//KtRdhH1mpjkZ0bo8NkLUvwYbHcs4covn6C9XUMOV4Syw6oSudkMWUHNmXdBpt+\nr9lqHoBgSao0B8Ip5IAOUhzu0TXUGtAmAih7PiB1AqVLtHZU1BL4sUGLVA/sx58XdFiKJ06Afgzo\ngVUAz5Rxeu5wnlIGvIFxo8FHzXQ5yGqUCgDKC9HZva8zmBo4MLUUukmpL1A2/mpqVrMQpj13sS2V\nb1wkdbbDpIDkLEUWO4i6OYrrGPJ2F+6eBUL14IzHc3EVP8LXRj7emUjtWvqQqK2Hb0G1zmnn2T/G\nLL/CIh7j8crFwJ/hlXZAi+7ZN6EePEL+cEKZUpJA3Na7xN4BRO8ISgisihkW6QnmWYKOF2DvzX+J\nbv6vvYvicrkpaw+YBcYFDENNDGBq+uyiyZbKKi7gARC+JD2v/nGFYZisaXedyxTS9xE4u5sCo7Xg\n7ykuZhUAqgzPZounZzxN7CyeY9K/V9rziWdTOAuiYdBzqNHXqR/3/jkxtfZawJ1rYH8Hg517yFoE\nCIIFQZfjcnHvxEb6ZuXmWKTn2mCOPretXO7Bg7r+AOrRY2TfHCGdrBEsM/gAZZd3Eqh9/cdsVc5N\nfmDTO8cqY9mKCLbQrZHsASracDwI7XUPqXc3XVRIBByi5ZlrZYPcYmc5QVDNwLUkFaAFZPleW47J\n4VT3kESaQ7XOIXbuUZUgvcDLePFxc8Eny5uHHoGNZjZruwEoL+A8rUxV50ViFrunv2/NsrmJNLAl\nHN1LYVKAYzG3nhrS17X+0cavPsoEt5qdlxP39dAlupll+AZYWaMXEj36zhFw+aDx9fmz1IkK/BiW\nGe0clw0T64BxlK3L4ZMyObnSspOpPZ1fD1ul25ZC2qpGbb9OHXhYHqdredzYWmjxhIRMtWSNyld0\nfQV68eSFlj+nXkRta26zGeLFs9eGONKZa3qJk0WBq9jbUGeeZyv0/QzSC6mE25KQy7g89zpTMMf1\nrLAW+Ir8Dpfu7AZ+p8w+uReFWtXgmUrUdqRlxrNR9vXCKoOPSTeZttfeEkoITBJy+n0ZLz5uLPio\nJDdlHRNhQMN80dDIfgAuTuae1gw7x26YotM/hlAKGTLEmpr7tAY1oMsbbL+t7ZI3dLxYKbtTswI+\nugvR70H0r+ENLuHshPD1btg09c3nSkj2HyhvvGho5ldC2cFnh3O0pMKr3Qx9/4D6SdcfAJcXph/S\n7R1pMsQYAZealuOtCwKLMtbZYsNAoe/rnaz2eTG6Wvxc2xuGG8K8a9XlGjVbwPU9qPHS9I5Mo3qP\nMq64uMaTVYZkXb2sj1opOl6AtqQSFyanVNqxd+bW5zAmeR81bGqwzkJY1FJBl562RZ6WemQ8i9M7\ngOi1IbUag9i5B9UeYpydV4aEAdD7jme0CMelPQBHHXgiucbZ0sc4PcVb+68gjHoIwsD0fHB8TGUw\nHnpdagp5oGd64oayGy/yWobJfDQtxwQ/AjCsiOgqPzLGgYDOxOLJVoq1vSGxB1lNpNnGPSDCPlah\nhHSo5CVZQJZ14Pgz8ufpkeBppsculvkLGjR1RCMp4qbGzQWfuED+7iXk58qav7CHTbXSLt+0V7GL\nZR5glU9w1K6antk/P1OKg+dy7B2y3h0z+Iha6cLIxLcGEL023MH19qyNw9Ta+1B+hCIr6+ih7ODV\n7rwKPKentFCGgbaTThF1DyH9Q1oQJh8YgLRLZsKqocfFbEPUsi0HkNPLanbQa0O0lpVMx5QM93c2\nSiTIU4jwnD5TOIWrsy9xawDBGmHrORbZGMm6WlMntYNh2asZv08aZLNFtWTEumU50aONSZ5KK/pw\nT/1eLeBRs4UBA7XM6JwCpRvqtp4DAOxbSvj6Z9E7wqy4RpJQ3yxfp5psIOm504WhG8uDHYjV1PSz\nmvxoWB1hlTv4ytUInxkGGHz/j0LFE8NupMV3TkO0XkgZGkd946a/L9UuNzp2sN26CVeDZ900b2EN\nrcZJY5Zdz4o51DKjEmWvDWjZHEgfs2CNJB+b8nduLCa6BECw5qYnU6N2EhezDbXtl/Hi4saCT545\nSL9J7C73tf1yar53hFUxa+zdrHIHD6YBkvWq0dedB0frANRo2GWDjr1IDVpaSXinspMUehbD+Jpc\nXpRzDhzMBuISj0dKvU2LwQbwaAl8p+VR6Sa26OeAWeCMdpfNVvPIWiFJSgXrtjcg0czFiLKM2hS8\n2bX6Xtl01j0joKry4MEj8O1Mqb+jmVOi3zN+MIuESBTLXGA3pGO7FRXo+wdltjO9MNIrZU+pVcry\n6zKNkn7FJM/+Ho36eK2PYTJXlvEZz0yfSi0ziGVGJIogAHooSQH8fO45gPsoB/SzjJC12pikJxtq\nyyY/zmKoyRT5yQzrZQZ5cQ3cPjKZ9jIXSAoHgUuzNU1zZt8YJXijnyLodwEsK5sVstHYKTcDPNMT\np3QQbEnQO8Isv3rqkG7FqsAtiSxATdm7YW6oUo5lR1ndOyIFbZrzcfcWwB2iS+e9PTwYneIqdnHc\nmhBDUNvb2xYk4PmmPsrNjxFv/UTM5L7n48aCj1oTAPk8TKl30KU9Qbr1ojuZe7iSrhEdDZw1Irkm\niXtWLkBDFmSRFcxCrP81u7aWLhsAxMayRB25dCF6RzSdPjun3fJ0UVUpBsqMSX8e27YaIEkcxGNa\nuJLESOCvAbhxSje/rtEzM6sxfAlImllhJYeOV8qSNPYKuPwUBoZia9h1+WZzN3BaCPvHRvxRhJMy\nS2woj/D3QdT2QDfltf6YZk+Zz9rSZSqwmjPKHoUfbRzLc4Vl18ymZWbQNkkgYPV/GLjMgp6UdgE6\n27laPNTXokAkFZn7uS3aPDz8fw31nokYADbKVvRwCUBN8c5EAVhUrunQFWh71txYPWPzZUlu0Nkn\n3weNp8YapB34I3S8ZVkO3aIcAjQAj13C1CralQgCYPc+Ppy/iy+ft3GVCNxtS3yqn+GoNcIg0KQS\nPeMkssj4X/F98zQQ/aRDCPFjAH4JxM/5G0qpL9R+L/TvfxxkqfBTSql/KoS4A+DXAByCEr4vKqV+\nST/n3wHwXwP4DIAfUUr9gfV6fwXATwMoAPxHSqnf+bif4RMDn20nQQixA+DvAbgP4H0AP6GUGunn\nNJ4Abe36twBEIJnx/1hLim8NL1ij9dke5OeOIT51H+LwLWSeizi/QlIs8WRFFzNZSz9fU75+wzVl\nQQDKhaHXptq0pp+6cUq7cCsLYJonU4DNTtwLqQcQjSgjsE2/2NIYtJsMPdpdbuiGtQakQdaiBa6l\nkQAAIABJREFUgVLBpSjr/TNkBCQoVRJc6MzlYAfYI6LBIjvHKndwuvSwGxa4FV0g93R/LCL/IdWi\nXa3g8lKnb2ZQFOhirIMknVc2P5uUGZRerFU8geeF6PsHeL1Hx8A7+3mWIHBngNeFxwZxQQCEZ6Rs\nwHNStdKbbbxH+npjo8UmnQAeq5rrTJSeF1M/BKDvAoCYLiDuU0Zk3ke7baI1MGrM0AQSMQUdR6dv\n6M0duYsiyNHx0ooDKa7eh/rgn5U9uEEX7k5I9tK+B3T0xmOdYpWHWJh1lDdUJQjZmyw6d6WbLWew\nanKq/6AH7Fslxn7PbBySfGrAZVVbt9kenZUbrN9AOtQnjLwOXbdhH9i5R0PQd87hNJnZAcZmQoWB\n6Qeulxmd594B4oKo5W0JLHKFYUCAys680gmotAZAhj5Ct+zlTpJHOFkUOJkHeHvyYjKfF6VwoL14\n/jrICO4EwO8LIb6klPq69Wd/FmT69gbITO6X9b85gP9UA1EXwB8KIf53/dyvAvi3Afz3tff7PpBh\n3WcBHAP4h0KIN7Ud97cdn2Tm03gSAPwUgH+klPqCEOIXAPwCgJ9/xgn4ZQD/IYDfA4HPjwH47ae9\nudPz4f3JTwP3XgN272NVzOjm0UN8HIGzRktWL75lLjayHrYobiIeVGZ/6iKMWtxQ9NqlzL9mjq20\nUdvT+g0iGgLR0IAQ70Lt2Co6yo3WnXt0s0/PKLvQdfskvzAA2m4N4eEeDXX6knom7OypyRnJmszc\nTuYOrmIXu+EMtyJauIOwhbB9n4CvqwU4Nb3Wjg13T1h0YitLMNnhcgwlfUS9I+yGKa7iKntpkY2N\ny2fY24MXDelzj3QPydI8M3bkOttc5KSyPE4lBv6sAgDSC+B5DSAElCW1YTmzZTfiuZcStodkAbAa\n0XMDYgnaQ7NCqYqmHyanwJOvQz062xTFvNtHcbmkMqZHCu12mW4TgJqDNlxrDIIuOnKX3tOO3gHE\nfjkHpNpDxPmV9uVxDNBw2IBjA91VTPdX6M4BqYU8DTEBQHtI12YWU3m4KfsOA4hYlv3AOKUqRjRE\nrpbmWA5C+lwDP0fgds3YQ872ICrFPL+i85SN8a2Zh3cnAR4uBBYN5M5POH4EwLtKqfcAQLuVfh6A\nDT6fB/BrehP+ZSHEQAhxpJQ6A3AGAEqpmRDiGwBeAfB1pdQ39OvV3+/zAP4nbaf9LSHEu/oY/p+P\n8yE+MfB5ykn4PIA/pf/sbwP4xwB+HltOgBDifQA9pdSXAUAI8WsA/k08A3zQiiDe+kEzgMceK02l\nNrtGvsqdrcADlKU2BiEeBtyINN+UC9k7MJkAO4RyVKi1DTchg1Bj1Gmu+jEBVKR48t4eJuk58tW1\nmaJnmvJ+lKLfOoTnaQDqj2kOorbjtc9TCUIrvXiPafEOWwjdTeWEuuU2R2WiPk5Kcgb7/+hZjU57\nFwirYq5xoXR5hcooriPR2b1fAnStjKSEIOBdLzFOZjhb+jhdeBgELo5bGYZBityh7zQXPkJfN63r\nMiwWYYRYkTMUGszp+0yReylCrwvPOyqzoNp3ApQ6aur661AnZyi+foLsmyOiRt/ulllorw3X9wxb\niwdubYdQG4CaSnAtqTDwcwyCbumnw8xAewRBqxHYPdK4UIbwwddCqU/XDHhEic8xxLziLwWUNiRx\nMUd//xVEcU50f4DOtT1bxAy3NCfVCi9EkU/1Z6I/2w0Lo/4tFrRJCdtDAzoAcBWP8GAa4J2JxFUi\ncLECxvNPZJncE0L8gfX/X1RKfVH//AoAe2L7BJTV2NH0N69Ar7kAIIS4DzKW+71nHMsrAL7c8Fof\nK74rej61k3CogQkAHoPKcsD2E5Dpn+uPPz38FrFgUgKeUSIwTn0DNCwEGknS2uIY+DClHVsypx42\nCJn+RzyhHg3v3KegEkGnb+YdeNCu7ptSUdmth1cazJm/s6fq7Zmimgo2ewZNsnO8P1vhZO4hKQgs\nuX1w3Bb6NJ+jLQeIdu4BYR+qPUReY7hxsPryycLBOxOJ/TDAIMgrQBS4LePkaVQImoIB0+6NQPdP\nYlkSMdSgkjnxZiJZO7RR0CCUFEvDfELD9DoDz4NpgNOFxEUMHOSkCrAbFjhq0aJeOOQcG7pdY10O\nlJ5Ai3yEOD7F41XTVLuLQTHCICBTNs6CKkxI/pyrETC9MMrh2TdHGD8kX4Pe5RN4d7twLpdwj/tE\nPdclROm4CF2BQZCDb3UbcPhaZ+YbZwa74dBkPIoHSwOt8RbRELOtYGErwQNlprPKHYwSxwI8irYk\nQOAMi/tzbC8O0H3zZJXhdOnhdNHCcXuMzw5T7B6+RuzJenihEXRlV1KA7uPAXVeyHil8qJzUv9n6\nolC5FvON8PbEQVxQxrPMXqCT6UejWl8qpX74xb15NYQQHZA76X+ilJo+6++/E/GJg0/9JNgpn1JK\nCSFeGNdRCPGXAPwlALh798A8Xt+x8U05DBTaXjWbKFSOgd5w2fL620pjbTnUFN8PqNTDDDfoIbon\nCcR0AfQmUJ0pEPUgQSUgD6CbKl5gw0q4/tm0arIBHht09OtBRlQeinp040VDzIprMxQ68BXdwDoY\ngPcjD225TySF5RgqJ/VkASBqDXTJZAlghkhKvfisEbgOuMQTuGvshgUGfm4a5h2526yRtkWxujFY\np02XzFhlggkjZtiUNtgA1hWXyqZwhcRuOETojtGSCsPANcdObKmaaVsWA9mo1PzrHZmsg8tefF3Z\nm5pB0DU9HLEYlUKdrD5thxdC9Htw9xZYX8doTeh6cPdCOJY4J1uEkIApcBi9Duk8wjxbmJ4kacg1\nn+PAaZG0z9X75n25l2VKgVp6hjM6nu3qeAGABIHjIJIOVjl9di5bMwi0pDKzV9KJzDm3I0dq/rYl\nCSDZ+TXs7dHCtU1lIk8h0hXa3hBHbYBJFPSdapkoy7kUIFXxceqZDC10FUIXuNtRANb4teZ3+qTi\nQwAWHx+39WPP9TdCCA+05v6PSqn/+QW930eOTxR8tpyEc65NCiGOADD9adsJ+FD/XH98I3Ta+kUA\n+OEffE115K753SrPzNkInLVecAcVi2NVq4VuMxyrNPa5Xn15UXXT5L6PFs+0QQjQcwdcVrC1qBoW\nZgEYOfitMvB6MTOmcP1jjLNzxFm58+94AQaBJXSpFbe9rICaj6Dyqwq1WHViIF8h6h2ZkmDozhEX\nuck4Is0KHPg5hoFCKLulwoBNItCfofFzSr+qnlwfQLQEUxf52CgcNA1W2sOm9e+PAYO/v7Y3wBv9\nJQZ+okGnXxq2LcdQ+WXptGnN+ag8pewQ0BuVGQY+NhZ/Pg/KpoEnCcR+AqWzYTqwlD7jvddoBom/\nd63MjV6bSCqsSBCWQ8pCKez5t7Eb6MHKmrupLTgLQNuof4CNYOCxVD3ifHMkgcpaKeIi1yC0xlVc\nZYbuRx76/t3N97C/B5fOU+jOEck1bkUFAndgfu9Fw7IEx8GzUh3KFj0M0faG2I9S/VrdyiZRyGjj\nngaoP8Rx3M5x3Pqua/r8PoA3hBCvgta6Pw/gJ2t/8yUAP6f7QX8CwESvqQLA3wTwDaXUX33O9/sS\ngL8jhPiroH77GwD+ycf9EJ8k223bSfgSgL8A4Av6339gPb5xApRShRBiKoT4UVDZ7t8H8NeeeQBF\nBrEYUZ8AwDAY4/EKpt5dyVg4agu/V79xOfgG54V1G/DUflbjGaDdRE3YCsy2RpUVZjK+yevevE65\nIGWtNq5WVYkblp0xu/nlGCqfAasPoWpzLACXvEiEUQHwIrrRXSERSmJn5evUzENtZjuXVWVkW7W6\ns3muzQ68PlwbBPS3Xoi4uG4EHl70+BhYlZozS1OyrKsarAEpfQSdtAo6trimPdujg5mBDEBMVABq\noK511TA6N6KxaplpdtyCWGV1e4x7r0H4Ep6W2xGHextsPfMczoD5OtTzQEZ5AdAEl9rz62EP/TLw\n6D5PfajYVucuQcjOoHdL0dQ8LZl/sDZ3DiARkNCqJ3HbWSKoEVGUHxEl2h58ZWFQ6MdkBM8boO9X\nCTjmM9Xuk0iudVnSwSAg0CETx4bnfzshxKbB4rcRSqlcCPFzAH4HRD79VaXU14QQP6N//ysg4tWP\nA3gXRLX+i/rpfxLAvwfg/xNCfEU/9p8rpX5LCPFvgdbOfQD/qxDiK0qpf02/9q+DCA05gJ/9uEw3\n4JPNfBpPAgh0fl0I8dMAPgDwEwDwjBPwl1FSrX8bzyIbAEBOzUsBoNPepXKaPyuBZ7mgndV80vz8\nIIBq0LIyJSRenHgIrg48cWoGS3lGgae57bqwoWYOWoA9lV+X4AEa+wX1WIUS54uHeDAN8HovQegK\nhLKDvndIrKbVlMCmvkjV5ezTDEqLMAIEgF73ENLfNQrNpA5Nv69kO1xeSppB2JR5ol6ZqT1FyFPI\niLKebIyz5WZmGDhrDANVgt/CKpFpnx1PL6p2sN2BAWMGHUuE0pwb/V2aY4IFQFz5s3t3WQw1OyW1\nBcvQb73MIJcZDUrqLIgn7k0c3S2levh3tmDm9KwEdvtYtUjn+jpGcbkyrq6mbMcqEyxrVAMkvsaZ\nkGHPs9lkASk2QYgp2zTs+wB4ck3fq63Bpvue5rtg23GrZWa7/XqtQbnhsoVV9TWk4gkEANkebrJG\nvdKCw87eIrnG671E+2fdoWvlsU0i++4IpdRvgQDGfuxXrJ8VgJ9teN7/hZpNlvW73wTwm1t+94sA\nfvFjHPJGfJJst60nAcCf3vKcxhOgh6E+95EOoKY9tRHmpquBT5NfSVN4IS2umoFT8aSxD6Pl0T22\nRUakMXh31wRADTs6fnzmLHG1OjdsHtZ3C5yWcTY1EQZb3SlLyZgFqQ1MpgZ4BWCsiA1hghUenj56\nVU74szVEPza6W1iOqSyltdJIwyw1dXvPewt9/wBv9Kl/ZS+IpqeyWAE43fQnYrXl+nm0fr8BPONZ\n5Vx826Gp9hzmO7d3yE3ZCOsA2psfDstV1RyrlU2Ty6w0PzvG8ybYtOQwz6kSDGy1748VaW6ACDiF\nsgg4XjSE53VMZmpHvk5IBTwallT1MClZpFamtjV0X2wgD7ByWgjlEgN/ht1wSHbsV+9DnT2EevT4\n433Gl9EYnzjh4BML1yUdNz2jwLTaVU60YmZ1qZropE2htXfKGTPNuO/CN8SyVHgWdvZTK18Z/5pt\nMeiWnvPW7m7j5moqnbCqdTw2Dfh9PfcQyg6VQeIPaBHgEkwQAPs0f6QenVVejqVM3L0WxHhGfzuf\nGOCzjdLiYmbKWUoIYhfxzA5Tpfl8sNoDqxekOdCz1KHPL6uL/TKD0BkYkgTh/h1EvdtankX3NVZP\n6PvoHaAe9aa+6SHUdcyATeCxjqO+cTAyOpp1tciJYs67b55nETv3SKlieA6xvwPvFp1no3GnfZE2\nenijc7MgijsJcHSXBoBZfZqBR5fy+LvCwQ7cA9KWk2NryHZbpqOVoJUf6Tm4C2sOTtD1A31clr04\nZxPsCDtKBKSzJJ+i3hGBv1UVMOc/SYB3Lg1xQvV7Zg7Ls2bC7BKpYtUPnnUbpgTG+u9XxQx5fmV6\nfJXsx9qkRR7dB4GjlSMu3wZOT7F++yHSb17jhYTjVEvqNzxuMPh4ZkZhkdGiTOKhAsm6OqEPwCol\nLenGSi8rdXyOCu1WD0DSC6RVPS/9bxMg2cFOnhuR5lQaYzkYO+qA2RqQdbI1cBi4mnrqtGhhPXtI\ni3uSUPPamqEQ+zuleyposVVxQSKWLQ9qQppr/HnNYKUXbgyNKiFoYeBSifU5zWKkXStVWErN2Au+\n0UvTWaPAAuqdD0iPrn9R6uZNpsYCQtw/hHjzM5sDpfz+8YR6c0CZifA52KLDZ4NOU/bD6ugni0LT\nywNCprU2u3MCwHMhee6IM1ldfuINjkjDEhiXY6h3PkD21XMiHKQZgfTxMcnDcNYzXQAX18i+eY3i\nckXmexp4ANAC/+qrG/M7NgHBzDxZRnSAKIdINXswRNnTagIe2vBkkO0l9bqiIdQwBabvledvMkX+\n1VPkJ3O4exG8N3fI4bQ7Bfo9ul40qMgG2SMDQtpOfaWP2+5JVa7Feolak12iLIe6fmDmqZKvPMHF\nt75NmaWX8dS4ueDjuIYdNUoErmIXJwsH+2EpA3LUGqEIyrkDnhvh7GHgL8y8D0AlCDNN73Yh20MI\nZTV/Oaw5G3pxy9On1oAXaDfvEKFrljYA1UsweqI+1goEdhOeB+4ipwM1e5vM6k4ncMZEmzUGcSy/\nA9BuO80qPQPR8kjaZLagPsRqWrp1Qk/w1xlFrJ9l65qNZ9WMpuVRac0SjmTQAUjYlMVNHX0u1KPH\nwKPHUOMl8pMZissVFudAljgYfvoawXgG8bk3SUGiNag25LnpD5QkD7Z1sMRCkWbGSbUeTWKrk9UD\nPJi0rCFVUnxwhURe6J6J8AEXCG99mi4H3ugUdDyh1zU3qjo5Q/7uJVYP6LxE2lAPbOrnhUY8NX84\nQfZwhtVMoo055N1rGkYFCIh3729+BvP+czPvRASOhh27hJmBy9dpRTjBBp6rmJo2kaRSZd8niSGl\nJaHU+SWyr55j+rUVZpcewm6CweWHkLcnkHe1B5RfglCTbQOfN6Z+2yKs5NpK17VhvFn3o8ksdY+X\nwX36tRUev9vGtx48Q0H+ZXxbcXPBRzh0g69TIwuzyIF2DgSug5Ys9E1HNznt9uhGGid02lhBeeDn\nRuWA+wz5OjHS7bzD5ZA+zw4NS521+lCoTeHdDwwBAEBZngJK3xL+WDrTYdBhgzW6EYUBIBrsi8r3\niFNaULWqNZKEdMjYAjuLyeHx0Rk5ii5zuDw6zkZecVKZE+LPVAcgJQRlhmaGhM4xZxKO9uvZNpBn\nL/IsEMoAxA11XnRnl/QayVkCeTqBPLwGegekWedHEObzJ9Wyp6bAm6N+ioVFBXQ4oh7m+RVGicCT\nGFjm/D1l2HdS5CjfKwEtjIt8vDGwGxcKuyHQDfvEjBvPUFzHWE4kvIBcR4vLJdkIWPNjLGiaZw6y\nxMF6Sd+vEwTA659G3OlisnpgaN82C8+WFTqZRxgldM20ZDmr83ovqczp2MELf7KmSsIoIco1GQsS\nQEStAWV6xgpihdVUItPvlU5yiFZMm5velMqDSQJ4sdEYFNZ1nqyXiPO5pbQhwC1lntszvUf+3ur3\nGbBxPKOrHKPLFyQwKsSmqskNjpsLPnmCqJCAf4BylMjTw2iFkc7h4B3ewM+xyrNSoFDvpFgrqsnv\nnS0NDFNHl1ykKCexzXS7Hcw6A4gRBJQyIkBpPGeV3Vi1gMOmw9qaWw8mAVZ5gs8Mpxjc/gE6Ph5S\n3DsgzTY3R5JfEFOtewjVm5CEyw69n7sTUrO61y6p4MxQq/WejJEeg5DdEPYlEPpVczBuuA/0UGCc\nwK1lQXVfF1arFqEL/80BnJM5oBXBgyOfFAC07tciH1F9vzWg/k4Y0HvZnkrcC+n0jZ4ddH+unvlU\nXFdvHyHv7aHIRzhqt3G7nWtlhFQPYlLYQGPv0jn4GuvIXajFKQ2ffg4IAOy2qAznvblDmYHuEdH7\n61Osj8m/XEHeHkDcPwTuvUYySvEjjBKBYUDH4LqSeh3zS7R7e8jXKcYpgSorFLAqweu9BK+07+rj\nrtp1sPtrh9Ix8/huWBjGYeh2y3EEzuJbEjJYw0sFwm4B6a2Ncy99CFm1IUcJQIYiLwFgjtClc2kD\nqz3TRyeHfHzM4DXff702xK0B5O0lepMpDmcRkkSRxPHLeKFxc8EnS6Fm54i6hxUAsvXaAFFh8/DP\nu6GsDRvqeRgAYdRD3Kn2OZJiuckK0tv1egO00VceoJJWYP0HbM6A2MOatbp4XXcNAE4XHk4Xa/zQ\n/gMcHr9OtODWgKTx80vkqV6YhITX0tYH0wXk3UUpca8N3VgQlf14tgXX5AHdIPdSUkZO85KFVp9t\n0grQfD5sILKjuKy6qMrbHfT2CqyXGfw3dyDu3AJ6B1i5OeK0FLP0wj5UJ6Yh3zroaK09RD2I6QUd\ng/YTqhyr9Txx+wcq1hCv9xIMA7XVHZWB52zpV1QQAKAtB1Vhz94BxA+G8Abfove9fbR5HbQGEG8O\ngO5DeL4HOV7S9/Tqq8DufRIBLRQiSccUuC101y2o87eByRTyDhC0Wxj4I1xJFwApQwduCTzymo6p\nqxWtmVrvCtkIQLeiAqHsmE1anWrvtDx4wQp54sAL1nBaUrPyvJIRWGcgSh9iiYrxH6uPAyjVI9IV\nYF13gJ4TYoIMk4S4H9inazyKC+zEK6Sr4CX4fAfi5oJPmlGTHagAUF0gFECVspuuoJYjYPWkOg+j\nWVtifwfhnU8ZAErWJHIZumlF1qQyaW1rsdWBhym9mn1monewXV6kBj5ccgNQkbNf5rSb/cMnbRy3\nR3ijL5DH17XSBUnnhG6XFun9HWAyJUYXT9ZbwKOEKEuJW6Lye9519tpliYsXf+3zQwOFI6jWBKJf\nzk8x+w0ofXMAog+b9wpdyJ0Q4v4hzcf0jpDkF3i8cnErmpfAmq+MugSrXYudexjnFxjP38Vh5xBR\nNIRqndMxaNdX8/fWnMq45kl01G4/02a9FDDNcdxaGzmYyOlAoWYGGPUgvu8Htn//5o21/fqTa8r4\nDt+iRrw2SaPSq2+AR737PhCnEGGAbvT9KLQW3+lCYhhUgUd98xv0HvvnkMNDeDv3Klk/z86w4kEo\niUnGbqX2cChnjVE3N/+6e91y9sjecNmxmkJFgMhoTgsuefRU7tXx+1DLceX7YdacEsKQFCgTGlAm\npC0j5DJD+3KF3eS7TuHgeyJuLvgUa6gn1xBhYCT5c68cOGMGW+VCnmuhRVuxQA/vGTM4ffNG0fdj\n5eaGwj3wc0Qy0btBDWiwVKo567Gb8LYpWZIQM87ajVd00WxpES2yWQ87+2HRUP733YmH0wX1u1hT\ni2MYUJ3ea+2Qx8r+Du3+g6ACPKv1vBTa5GHKp4UXlg6Sdq9If8as1SZxztUp2sEAnfZ9iO6KmF/B\nmEgGGoDWFvvM1eDj7rVKp9LbR8bwLM7nuIp9BM66BNZoSNp6ABD1kPf2cBW/p6X12/gXdq9wu+1i\nd/c+IE83CR56BiYuZtgcJNoecaEM8HBvaDcsMHQVlaeWYxoYtQdJtc8SAFLhsLXxbIkigLKiewSk\n9rwMa8sN5AH1kvSg63qZkU378BztnWMEDmWYtzsZbnf6NHx99hDqfc2+s1xvI61yjnU5aGrfT9IJ\nNnucOmjeSMLLGrIebVi38bzE6n2CWHCmIsHDzNpsEQCwHxvCgtKDp/XwdBlWdKfAoEXZs8XK/Fjh\niGbm6g2Nmws+QKX5t8250Nww7EJqWfyKLs3EUOM/JVfMQZeMvPwIi+QRzpY+lrlAJB3TN+r7h3SD\naEHKSnAT3tdDhLoJzrs/23Ih9Lu0ALNiAA+f6jKC9AIk67IUxUZhwNqoTi/0f6ziuxs6OAgdtCQw\nCHJ8dpiS5bbWuBNhH6rfK8uAFvBww9xWjW7y5+EQqAk8agBiq4ZYK2bHhTJzIqHfpWMAgH0iXKgn\n13B0DwignXRlYr9Xim3mBWV2DK70+jNIf9doqeW9PeTrhGag5ArDYK3VkfWsiHZVBWDIHcy0sq+h\nilimg0YyATMnj9sZAtc1jfnHKyCUIwxaB8Qc1Dv2eX6FJD3BPEtImNRt0ezM9Ax48oiugb2DijqE\n7Q3UdXfQkbtoy1kpcyN9OleDFhwsIbQ+HPdz+PObsJvmtZKYFL7+rIlp8LNxG2CRTaIelbyCAKrX\nhrtHmWvQyuDaigtceq0H6+Bx1qmz/XydwHM863PrDMsm5rC6wXqTRCJdn85HvwfMFnD3lvCaCCUv\n42PHzQUf3oVo18hVMcM4mWkGj9XnET5QMzMzTVJfAr6k0hPH3gHE4Vu4TB7hySrDMqcbgUyzBAK3\npXerDbLwgF4IaCDSuIda7qLssGnCpmYzG05nUtLXWmuugB4u0d+4g1VOQMTNZGrSCiN3PwhyvN5L\n0PcPK+Kq4CHRFSlwM/Cw3EpcKIQoJfYTuaxkkeZj8qClF0IsrWTBTKVr63DHR+iSf05l5wzQ3/VL\nmQy+mE22021XxDa55h+6okImAbRcS232J3BauN8FAmeB253+hjClnWEw0NbJJfxZ42JWYbgB0I6f\nVfq7/btvjBK80T9BuzNAsp4iXp1WZrX4tZHFVIJ6ck2ZCADsgUpSdXVsEAgZ4OHYv0N9rMECOD5G\n1mqjyEfmuMz58kI6nwMih5iSWE2Lz+5v8eApn2d4LnkYyciYEwJEkLAHYsX+Tpnp10RETck1CIDj\nsJLtG4DLV7qHV1WD2BZ8zMauPQiAllcp476MFxc3F3yEoN1Q1IPyIxqkS6XpzRSKBjA3sp44KWm3\n3Xb1NY/umj7Bk1VmBC755g1ll2Q7Lt8uyyPbbojegZ6H0Tu31oB2v0IgL2o7NjZZm2hKqlEt3jSX\nC5w1IIHdkJwk90MHiEtGk91Y3g2HxAgsqqUc0aOFg8kJts4XgMoCyUZu0vFROGUJJi+s8pxlSw3o\nWry1xoayU9JkeSPAUQMgAJvW2A1RshmFZgQmVHKhE2r9XQtH7QbLjAYlCT7G+sIL0HyJzTycZwmS\ndXn72UQDYwMB4J2JwsB/wp8MNn3YFZLESVeXVAo2wqRpFYDs42SNOt60RFZWcXTXmARy1slRsYj3\nQsNCRK/deB4Au5e5gqdVxzkyZDQH54UEQGEA9eQaLmerrPCgCQ0eLADSM2lqmUH6HoHXUZntV4Jl\nd/S10ATGTw3f+ygePE8PXnNeBoCbDD6uSywrGZms52ROF+ataE4Lnt5VbvZi9E3JGmRhAOzfAbRN\nwTiZIVlLUksoHAA00Nn3DqEmp6Zn1ChrYgMRLwxeaKyV2fKXg4+NaMApFKZkyZ2nEEpZix9lP3Uq\nLwC0td9KXMA0lo2+1eXb5TFYCsQMPGwkxlmP/frshAoAAz9DJBMDROzNYnpqlmwRUC24CSz4AAAg\nAElEQVSJ1L1eNqIOQCxUyb/T2RSfN8psG4ZEmQ1V69nYZaPKe9rP0WGXGYVSRs+Oy098rsrzkhtK\nNc/MRHJWEUj9+ijSRnxFpfwlha817x5BPXqM7JvXJEx6O4MLGACCjEo3WN0DUZowwdR6RD3qX2mK\nfbFmoBSVORm+TgVvvBoAfsNTSqsTeFavaqGzqrY3hKdlrATLLbG5Yu+I/KbiMXZbdyBjzUo7v0R+\nMoNa5lRiZZmgsA94bcpivRAi02xKTtz53mrYkGz7fl/Gdy5uLvg4wtq9Vns90qGFgvoyDSZuoV8C\nkLa+zlptxPkV8nVK7pE+Sckb8U53kwDwrBAyArpl3b6e9QilSp2sjxCc/VTUP+EAIM+VYaCqU+C1\nJrY9wApAl8RIwRgoLQ2uYteYc9kDuQPpV+0basQEoZTR4mIKb2PYs1EagDZAh8+jVcprCvs9pPCN\nojUfT/nhv31vw1xR+TBwW0bt+1lxFbt4fw7c17fqbggz1FwPEbrAtytyaikHSC0eGsoOhphjlJAG\noDlH3BMBqorXzxEeuAzdMq+XITN9NJWv6N/2EGMtjxMXijLTsA81On/ayzeHrWbgUVYovBChv+np\nVAk9f7ZV4PdlfKy4ueADmN1Z6A8xCJa43Vnhdts1ZmNsWW1AoHsINZxAsF2CVgBYrecAG5HpXb10\nUnQ8Yoq1PQKeeX5FWnFcwqvL4TQxeuzHQTu0vLAEEpnlxMy4mnAhNcI3BxiBKgEBIMfJ3bDQxx8A\nRUOjtWGGCKDsxHX5ckoASESyXCBbUhlPnb53CLEYodGdVZ8Xdmblw8tVinl+Ben6CPvHld01oDNA\ntniun0/AAHeh8rLklXOvC5v24/bx8Gs9YzfM1tlNDrf1Ra4th8jXSYUQAqCSFQHUb3lL/8tZkv1+\nqr1r+jUSgMszPfs7VEbjslUWVhI6AWjl8DJLVPkKIgsNa4xEYX0ziFqoHLPi2ugdAqho0NnnGtzP\n43Jq7dxFTlWtOlepkaMie4xSl42ywoDm6QADCGvQfJCwfK6ozFvTcONB7TAhq4Uspswqi+FZMj18\nLKo9JPWEqAfRv4Dov0hh0RfDdhNC/BiAXwKpBf4NpdQXar8X+vc/DvLz+Sml1D/Vv/tVAP86gAul\n1Oes5+wA+HsA7oMmm35CKTUSQtwH8A0AugyCLyulfubjfoabDT7QN5waIHBauN2uNbbrjo/QSr/a\nmE21iajAYfcFeCEOXGtqHwRA3Z171UXtI4bpK/BrVMzpUvp/q3xXBx2Ash9yGq0CENGP9eL9HP5A\n9eNi75VVnqElHaxyTevVFtR9/1B7ulxUF3Rb3JL/tQCIddAMCAkf0guMVFETtdwOLleSXbLEydzD\n671axmgLndZ19/IVRBZtDnTqiIsZFvkYT1aZAQjOTnjzwcG+Np6MIFtDU4ICoM3wqhuI253MmPLZ\nOoL8ubzeEdRRSgKjAy0MqzdGhv7tdeFhWK0o6nmm8iSlRpVc+lHl++QoVI5Jdo6+BqCn5YE2CFUi\ni03/xtPHyJ8FACZpNbuRjk+9LesxZycs6dhMxfZCFPm0fH+rJC0CbRHiJwRCQKlBqJmEFekdIQDO\nxrZ8559UCCFcAH8dwJ8BcALg94UQX1JK2cZDfxZkuPkGyMn0l/W/AHmf/bfAhjv4LwD4R0qpLwgh\nfkH//8/r3z1QSv2LL/Jz3Hjw4RuOU3AzJ5DV7KjtsoLud6AmLQKUAMQ1ZP5/u0w1K67Lss56vtGg\nFtsyoHrY4KC12YTlA7ONPs5RB6CWLKr1/abM5BmflT/jMBjDLmcOA4W+fwg5vaQexZPrDQkbswPH\nJgDZrw2QDhpQgrvd6N8gBwDIiwRJsTQisqOEBGIjmSKU1KtR+el2kdcgoEVIL1b2poGB52RR4Cqm\n88+20QBwC2MDQOwTg7OHUGEAuX8H/f4xJhktuLb2Xl1tox5MlJAu9WpUFpNWnUV/Z82zQuXUX6kD\nUC3YgI0VyeNiBrjYuI4m2bnphTWdbzsyZKbcpqZngLYMB0gz0Dt8ywBQE/AETqsk/ejgzAc9zWjU\n9hXUU0vgFQX9/WRKZByWTSo/gbEkUQCdtwaxUs6CvsviRwC8q5R6DwC0VfbnQUabHJ8H8GvaVO7L\nQoiBEOJIKXWmlPpdnc3U4/MA/pT++W8D+McoweeFx80Fn7Uy6TjbAHT8XeNa2Rh6kHChfU2k45t5\nFrZF3ghuODuBKR8VKsciG5sSXbJeGiXsSjQ0cj14tNgoVWUtNQSTAVjTjZvVvCg2ZUTA9ga/ylcb\nu9j6gl8CUtnUZ98gDx5J409JuUGF9oKgFwO2VM5XJtvg+rwtIEmeMgRyzKQzfi0NH6s8FyQiexED\nw8DFUYs+r1CKjs3uc9leQ35imuG2snJczDBJSTHhZO7hZEFSNEApxBk4a4TSsq9Yjmk3nuZAZwoR\nDRG4LQOoR63UEDOeFZzRSUEAhCw2GbmtSj3waaNkAOgp6ggqX0EsLd00XemzrRLiQiF050ahu05D\nN+U03bOT2kEWeVqOK8QJkWO6Y0APFHPmyCMPxl9ndl5RHmc7DZqFSwzBxmjHxaNyJs8SjLU3NiYM\nAIUbIrjcd3whIcTzm1ECe0KIP7D+/4tKqS/qn18B8Mj63QnKrAZP+ZtXAJxhexwqpfj3jwHY/uGv\nasfpCYD/Uin1fz7fx9geNxd8lKIFgP83T4lR1rSYW8KDHugGrkjusM1yw64YKPsNTEmeZ3QxsxGX\ndHyyd05XgPfshrZI9ZQ/g6QeiBMAUWD7JCNi3zQ28PDCtsqrzellLjTdfEzGX5ZNccXJUi9sG7YA\nOpJiafoqV7GL3RBk6eC0EGkpfdNzeBrbDxqE4glE2EekF0MCxxK86zvwpzWRA4eEY+8X1N8KXbEh\nsW8Dj7GgZnM7gPoG0BRmU2Z0kBROhbIOUMlsP/LoXKkUWasLD6QUDi807DImI7D0//NEvk7hupK+\nZwckMWMxItlGY5U7GOjTSp91BJw9pAdqxAFz3mHJ1li8FNct7bEZHAuVG+Yib0ZsoghnrbI9pNm1\nTkwzRQFJKNGGgxx1h8Hc6M2Fblfb2X8IXF6Ulhc6hFZgJ0Ahqazuzj1gQWVM0T2E2rccavl6A0oQ\nsPuuXoOVuvDLodU/3rhUSv3wJ/HGANlwCyF4MToDcFcpdSWE+CEAf18I8Vml1PQpL/HMuLngUxTl\nhasdMxV0T0dHZfreCi8rIDlLYp0q1mPTitD2zTzPr+gGNTv2UldLOr5pwKt4QjfC08Q5uV5ey86M\nAVyvDfQOoPwIeX4FoAQeFrfkRWMYpBgla5MZEUONX/EC8IFIH4stXc+7X6DsPSQg8VQG17Olb9hu\nVzExtKQzhmwdQu7fAYKLCuCYm39VU3zQ1t5K9yK81gDQGaJxBRU+AbdWi/A0SNZDOj4imSBZrzEI\ncmKNMaW+KKpltjipuJayuR2BZinrEu7ex8IZI5JVckZLkmrBrahAYGW0cTFDHvqIDt+C8iPM8qtK\n4yRwW5V5oKbI1yker1wEzprAShvUsVAtEyvY1gCgXpHJ8GZWBpHmdM3o0mJ5skpAZlt0icAoF9jS\nOUBZluPNyOYxE0AaAAKov9Q9NN+VdAKTSXV0pqSuP4A6Odu0tPCrgECZ5Hub9/DOvfL0NvVXWQnC\nUqqo6C7yRu+7Kz4EcMf6/9v6sY/6N/U459KcEOIIWm1ZKZVAK8Qqpf5QCPEAwJsA/mD7Sz07bi74\nrBWVf+IUagCIKQCcQ3U2WWiNU+J10NELFaszMwBlyIy5FZeKAJjswwDP9QdGrFIBBoAqQp0MPKNz\nsxu3HUexrwfpoiEya/dvZzu2dwskgIT6Ouy7wtRoCgIgABXQsed5ImkvCmy2VwIPacdxfyWBdEYY\n8JAqUCEdKCEgLJIHVtPSx6jXpkUkX8GLhiSHAxjQqZQg9d8oP9rIgkJX6OyHwNicC5Y54oFd/X0W\npzTkS/YNGR0DZ0H7gNhROvsq+2NtDTyvdjP0/QPTO7GZXTMnBfJl7dgIpPJ1UlncbSBi4DmZe7p8\nmm0AEJcYOethMdnQ7VLP5fQU6rHevMTUF6HBXOtguBQFi/hBXyWAEoi4jAzAGCk+LSoZUL4iLTgr\n2nJI5dnJKdSTR1CPzqAejzWxwCvZnPa4gw6VJBAfvAd1fFyRFxI796qDyVbYGQ+X2LgfK1gf7vKi\n8bkfOYTzouaHfh/AG0KIV0GA8ucB/GTtb74E4Od0P+hPAJhYJbVt8SUAfwHAF/S//wAAhBD7AK6V\nUoUQ4jUQieG9ra/ynHFjwUetFTXogTIDiiUqjUgvLXdRdffR+sDedEHSINB6Y1EPwjtCXMyMA6od\n0qFZF7OzYruANAeCCwNAvGB58Kp17zihBcNPKqUT0aUyLTfpCyfHIKiahdmxH6U4WRSmD0LlIs3U\nc9Zgpe/yMwjTNwGAccNG1waeixg4COmxSEqE7hwzIdFp71p9gVINOWoNgKkmeswnpuxlF0Psur0R\n1WT6e+1vpAVAnJlFkqSGGnsqtrPqeGnUstUyI6FSWBuWJAGWY7hBeRu1JQ3qclbForSh38VcZ6Jc\nlgxdYXb6UvimZyhdvzrjpC8dFqk9XXh4fw4chHxNEQBJSSaGZeZUnjXDGFtNybL6hHpAjv5c5pyy\nbw5f7yh7IUCNzGGV4xiA2D6kSVKJw6ZV12evpPBpEFuTUtTjMfKTmWG2GQ8nG4isUEkCcXkB9GOo\n3oEBF0MaqDM4vdBsUuxSoQ08bGvy3RJKqVwI8XMAfge07fhVpdTXhBA/o3//KwB+C0SzfhdEtf6L\n/HwhxN8FEQv2hBAnAP4rpdTfBIHOrwshfhrABwB+Qj/lXwbw3wghMtA3/jNKqY/NP7+x4COkU2qA\nNbGurFKQfbHyIFxFliQhF0x3r0U3hFZOoHmFcWNjnwUtPW+HXiucEPBo2qiQEZW68llZd5Y+6Wpp\nMVMA1bkBLzSNeqxGCAFEVkmhHtL1dX19hoE/wq6+mdn0LHD7xoSrLWe17GeT+suLO1Do8l3ZfKfy\nm2uUpLex8KQTUNZilzpqn9H+Xuj7SKs7SktGRVgKAwC038scwNrIKPFEfEWIMvQhWqWbqpFY0Yue\n0TTzQhRqimRNYHuVCOyHDpK1Q+dKpQYAC5VbANLGcTvDUUvrCT5Fc4xjEHQxCIDPDAmIQleg7Q0q\nDE069EOtIr00mWnfv1sp1bJemcMLedO5ZgBajSCw2cusB5dcbfsQlqmi35fOvtv6crlKjcI4ac21\n4LBa+V6rBB3bR8kOnl1iOSotxirXeUVPcNuoA/evTL+zH5e9vu+iUEr9Fghg7Md+xfpZAfjZLc/9\nd7c8fgXgTzc8/hsAfuPjHG9T3FjwQSuC+MHv3wSaWgoO5Ii8QWXHxAubikDpfadfSrfv71ATOZSY\nxI/weOVW6LMco2QNgBYDM7TXmZrsJfNcLLRUzyDolovyakpipkCpX8ZRb5oDUHNNeNm/U+klMRhJ\nQWSHsN3FINCSJ/JWaZR3+Ud07N1DhO1Do94cyrLEYlsoKCEgh+d4f7bCydwj7Tgd44SUD5J1hlvR\nfCPzIPBK4HkdEgLlxjT3JTp9Q/4wNtgeOVIqWzrFiJNCC6xGlV16CUAUrGotuoca1M9NX4JdS81u\nmzcrWuh15eYYr2ZY5eVn+aOJwDIPsMozvNp9ZECZymWRyQqXudDW0uV3Ureh2AbS9zqfopJjEkPF\np6aHQl9WD93eEX0vju6DWUxMsb8Dd4+uvQ0RVj6HHDUAstlgdtnN7gOOEqFBTxNr3Dna3qAkhDyL\nPeYFkLc+TfdWv0fW50Cpi2aXm2uKFra9BdtxjBKBo7aWA3LQzEq1IlkvkayXaPf26J5rfdf1fL4n\n4uaCj99CfviauRHoJpoC+bRyIwFA7qVEw+YHaiCEbgQV9YAhlelWocQiH+PxysVV7BrjrmXulj45\nkgAoLkYoghz9/rFhyq3WcyzSSz1wKAHMaCfLsv/9eLNBzMfFC9BEqxyzl8nBNXD7gnpRrcHGIufB\no/5TuoKaXtIQKL8GAOxfAHsH8LqH8Fo7tPizKsByTAugNu0aHL6F+90LBM4CD6ZBpY+UFI628M4w\n8DNNguBFKUXgtEpVYi8sJfuDoGIGlhcz5EiorNUakDK2/jpEVBVUNRp3GwBEUaic1Cf8XQK9IWAD\nkPBTs9uuaKH1j7FIHlX6KhwPFwKL3DOyQlexj3EijY1FW2qGnJUhAahsfJqyg75HQ7p49LsEOE27\n8t4EKk/hdQ/R92nDYA9MIyxVqTeAp4kK3CCzVD82uxeYrB0kaTXbv4WxMZR7VuTrhKzm64u/PYhc\n6xna5y3JLwzFnM97sl7hvuZ9SJdGK8znshQ77F7bIh/BdSQ6u/efeczPFUK81Iyz4saCT7qO8e7k\nBAAM24uDMpVyd3TUIoBoe0N4WdF4AfFiyb42T1YZrmIPpwupFxsHw2BtJv41fUjPYVL9PXBbyItr\nLLIxRokwjXt0UNKfI57RaJhFshw+i9MJ1tcxsof02v6bE8jxDDi8Bo6PCYSA6qKUp6SdpV9DjZem\nNyBvjyFuXVdAyACO7bo66AJZjMHhW3A7EpEc4avXUY3IQOZ1x22BZF1g4CfoaDVipgl7AC02nT4t\nEq2ByU5ji+pNEjABPFbGbgptlWwDUD2jMADUpk1GBYBC7Rujsy/2VJrnV4ZSztlt6CrEBQHRVSKw\nuJI4CKWhYC+stx0+x8hHvk5Nf5AGdH8P6p0PkL9bWnJwL4R/Rq9tDN4Q9eD1jgDUpJK0KvUG8DQN\nOCdJSS8HTP/EznqAEkyrpoXCEB+oxJiSNfhzRL5OkLvEKDSPbYBegry4rrBJCXQijBLqY9L3ESBw\nFqRQ7gTPyH3KYEWHl/Hi48aCT1Y4Zle+3FLSbVXOjj2k55ldoK0LlWuVZwDGDZRfg//lx+sT7Jxt\nMStunJaq2Fexi4Gfo61SwOuUcygNu1RlNd3XlsikigvjikonoDbPlKfEopsuzGust4lUzidQXlhl\n+nEwJTaLIXUPKZKb5nW881/lCoHjmD6BCVuV2NOK2tz0dkqTPCZQZMiob2PHUwZw61RhoFrv53kU\nQBNRuI+gbb3ZOK7jURZXevGQQCtQvX74533r/W53iIrd9gamtwaUwqasLiCFrz2giNiCdNMyfK3N\n9NQyg+iBMiINPhsRBKUqdRPwfIRwhTRGeUzkqK4qpJwx8HP9fWdANDbD2c+KXKWYWDpvG7+37per\nOMQocSoA33S8xoYiT6ls+zHEYl/Gtx9bwUcI0QPwV0D88N9WSv0d63f/nVLqL/8xHN93LHxX4XYn\nw8ncQ+BiY2ceuOVQ5sCnRaaJRsp9Dg7Ww6KFlABrmYsK4PDrEv25nLuhJrGPIebgu3iVE1h1vKCk\nymoGzobLYxBA3D4CggCuFl/MW3QM3ps7EHeOTNaj/EjTlK0FWpfoRBAAh/Qa7h5ZhIv7h1XTvBpQ\nVcILgdaAyh+pxOlC4sJ6m7YEbrfXRiyTS2/S8TfN2myJI4AGfb0QbbnpVcTfg1lMamQRoNqnqAdb\nPVfenwkI1vsLLyyb5g6wHxHlPJISkSxLq3zthK5oFHfdjzy05e5Wt1f7cTU/JdB/hoJ53XqaiSuC\nwZwrTFrfbCvo2I+1BtRP0SXPuCYr5Qqp56VI1Zwde4mMUmi2ZGnnQSoGI3JifUYZjlmbrpBIis0B\nXJ5lKu1LqtGWwP2OwvcNV7jd6ZO80fSM2KpZrNVNyII7x+a5ZYWFFxLC2RiivsnxtLP6PwB4B8Ry\n+A+EEH8OwE/qgaMf/eM4uO9kSMfH/W6EgT/TA5HV39sZit2X2Pp6NftgANgNhwjdsVl46swwAI2U\nVHsYMpJCD2i2S6qs7uUopiDbAOSFRHrQmlcel2Ms4BkLcsW8Fb5WLs7LMVHGoc3Y+N9+D0iSKvAA\nzcBjsZBYZ+sqdivAAwD7Iak02zIyG/RcezdqEwgAA0C2KrIdlca9NUNk/y2XszgMFV0b1pmoTcKb\nQxJ+ZfaFSANJJZsNZaecW7FsKBj42FbiWSHSFWU92shQLbMNd80KBRkonTu1BJApTS5R9bixY0vm\nw1lnHXhsRQnOgJg8wd8nM/H6foYPFw8NAFEWRGWw5+kD8abOBqCmbMjOevbD0pH3MDos3Vt5TCJO\n9PcalRsKa0i27x0CV+9DsRrEy3ih8TTweV0p9ef0z39fCPFfAPg/hBD/xh/DcX3HQxQ5BvIAgdNC\n6F4gkmszuGeLQpKacMkM21gYragDUK7IToG9W5qk9jdMrNZA4eRkHe2s0ZJEVmjLYZn1PB5ru2Eq\nixkA4ia9FwJeXNKBAQKew7cwzi/wjVGC00UL/8rxCfa8PcouJlMzzKfCoKSw+pKAzI5tGQ+Hlnh5\nsspwuojwcC5wt0Pn7CCEphhvAk/THNJWnxhWPGiQRAGamWPAZp+CAYjfe+M5TQuytpWwdc944e14\nMJYcYjGCunqPei9eiJDLh62DzSxty2cE9CwT65TVwu73VGjgnb6xDs9VCqx1o52zyecJne0wuzBv\nENIFSvkcttUwslOLEfUFsxjSC/HKzl1cxY8wSgSStYOTuQdggf2o7APVv38bnLkMaQNQ3Yoc4CHf\nHMetTGeXDcCjr2ERUgmZerauoYZHhYR69BWod99H8d4TvIwXH08Dn0AI4Sil1gCglPpFIcSHAH4X\nzfumf75iXQDLMcL2EIlcYuDPsAqbFYVtZtSzoiJsubYe4983WCxXnu/SjduWQ4RyhGEwL9Wgp1Ru\nW+vBx/UygxunVIILA1MeMeGFwLE2+zp8C5fpCd6ZKPzf5x4ezgUGAfAjB0t0ZQSV5tQ3AErdLaY3\nc3+HZWdYcLMeGrRE2KfeiUUt51Lb670Ew0AhlN0NwNmwX7aVxbX0UD1YeLTuLFpZ1Ld4EAGoHIPZ\nWNgkDD6PABEyUJ3652l4Mx3vBNSfGb9fkjeSkrCggrHRqttmz1Bhl+n3fVaYOaQwKK2tmZxRLI2F\neeh3qZ/FMkZbXntbtrMtbHFdWuQ/hJrrkmVMg9DEvjtAXJzj608iPImBSHoAMsj20rAtK4BvfY9s\nMCiFb/kgZYZJCjQBz6C0ggdKBQu+huOkZIl67RJ4zt+GOjkzQ64vJIT46Dbe38PxNPD5XwD8qwD+\nIT+glPpbQojHAP7ad/rAvuOhaY92KYYXSxt47NKMmXFxu42LmdDlGt6N86Q6R2VxBUjctGHXzn/b\n9w5N6s8DgjSjcU1lFp7RYP8WS9PKyNfox2bFtWbg0ULPDf9FNka39RrgSxriA8oFbHhoFBOU9GnX\nGFtSIzVjLJ5/Ue0hkF9hNxziz9we47jtW4vBfinGyourMa1bVQHHArxtsx0suSMyPcluH5A9HKy/\nF7hdotfLEni4t1LxcGpalO2p/yUqCt+eF9Ig8HJMA7LziVGiqOjC9QBgXCoKNACQ4mtL/ytA2nY8\nCC24xAaU14FNBeesx4+QZOdm8JPvdgYgZDHQtBhaU/+x1iVsytrtCN1u6dO0UY4NTP8t9IfYDVN8\n33CC0yV5Kg2CLgbygDKNyZTcgQ/f2ngPW9VdOiTvg4iYpeQdxdYgCsOAFK4jpwM1P4OQEWVxmrot\n+pYhpJ6rA7TJ3fgDY8WwlXTzMj52bAUfpdR/tuXx/w2k7fPPdzgu7eq09XU97JIQR6FyU6+vN4nr\nzXsBAJYmlrGLrjXAN4y27FiOSfPNjiCg/g3rcelhx9Iquhb6sSQ9qVDK2xbXVAlBsytPrmkB298x\nlOLMc5Gvk5Li3e/RZ7OZdrY6de/AyMjQ+wzwQ/s52vKwHFyN36fFtOE4zS5Ua7qpyZQ0vCpKFNws\nj8s5Dz7n/Jm2mMF5rYHJVowoqf29PKeHkopQLV/xj6tpKckSa+r7MjO6cM8CoLqrJgDEwRpdHOq/\nv4CKk9LjjUtt/V453R/1DBWcFRUGfo4h5nA9WVN0QON7M+hwPE23LXI6pUcRE2G2OHayRfpRO0ck\nZ9gNh+iuW1AP/gnU196lcvLxY+CNCcTRm43gbIMQHcAYLNOzzKvSRliOqWLghWa8QHQPAb2pqmvL\nqekZSVjNFhvacS/jxcaNpVrDkRvN6qr6c7UJbt+InPJv7JhjXWbQPvQAGnfiFXfUrFxAOWzDLfXo\nDPA9iMM9AhqgJBRogKhMefNrVCjgiRaaJMQhyZuyr5WrFDLqlaQCC3gmKdFcZXgHXtgn0Aitna1t\niaAHL6HBxygfLEZQ03ImCGluekYGUPi1amrSxeVS66otAZ5hYYIFu1JaWnyQfmlTbp1zeCFUBONT\nY7KvJjtu21BuW6ymm2w6DZr/P3vvHiNZdt6H/c69577qXf2Ynm7O7Mxyl7sU5ViGqUiGkSAOZCWK\nkICxEUuCBEeSBSuOJSj/RVSEAP4jBGgEECDHghRGMSQaViQhiSACkcGYMhQgsWhRUZiIy+c+ZneG\nPdMz/aiu6qq6zzr54zvfOefeutU9y51dcjn7AYPpR1X1rVv3nu983/d7tB8/6cJZDTWrjO0moFrS\nqWaYF0RWfm7QpwRUpEa8ls+Zy0FCMiAjOf1cQhsGmgRbQHq6XeVsnlzFgeZMjGMT4CapJNSjrwCH\nh1h95Q1qBe90gGtbdZBKQ3Ei8jrYSzpI0hLqtc9h9eevYvmvDrGcSXT3zhBNFvBenAPPfXBd5V1/\nXgJA3B2jVLm2oigASKp6vA61P2dHtKlivUUmIGtOnnSsWoOiosqN23H5E656npyw6LdFPL3JBzAi\njG64iYd9YvjmbFMZjv2+TTzOQtRmWtVs56iSF0vdNgKsmOGjU1SvPjL95vCFBcT5lG7o4cC2xFoS\nDuAkHb2YpBUlm0QKdCVprnWkRfEJmUBp0ILo76HodHGeH2nR0QDSO8Kws4dAL4AmeMFzYLjsTaTm\nx8BySr3/RlJR3M5wRSLZGEyLtKpFgeo0hVqUUGkFEfsEsuBKqO1DbZrBNT8DJ8Fte4QAACAASURB\nVAGZxzVFYx83WCvNmYGZisdJPCqtNECkAxHmUNBVa5YBgYb7FnYDUq4yQ1R+ZUrcFWBGCWjvRSh8\npe5RozlIDBAgaZmJUb++cwFcK/lWL9Y8g9zr+jIrB3h10ExSSarMDw+h7t5H/tVTqEWJ1WkKuSis\n+G0DsCIUWXsEiznU/a9CvXIX2ecf4uFrCeYTD8NphR08RATACyXUTUe1otEWFUGMnlY4Z/dcrnoM\nPF2rxYvlFEjGKAIfJ+mreLD0cbufGNShWh5aYVkd6r2229sWT3Xy4UG31SjLa+6kvDsOvAAFCkMs\nBKwUjH2xsCY/svmPho41t+MZzzdUkRpJGY9VfNmrPo5oodE2yQA2zoyaMYr66AU5ric5Djp0Q+13\nuzTkVcrAciFDqO4YqdM6owqJ2m9BZ0TDf0xMtcOIKNcyIHBJoj0AIOFUNQJZT/CLO4mH0XmsqVYd\nL+ClFaDPgb/TaReDdc3ogPrn4CaglgrRfN9W5Wz6efP3TgvSVCVpbq2egdqcxvBwGsGmgwAh5qid\nlOFwEeBG10dPblN769zx8OJ5isPDgTamu56QqO3tysMoskN44/YJrG2sHjekFwFeQH87lEAYwN+K\nUSGtX696dtgEi0gR0sajNwQGXcgbPfSPLgAESAYl5I0exPWRMUa86rOI/T4qRa3FyOsQ/675ID3L\nmhdHxk59FM6MfxAA+ixDPWNkseD34m2JK5OPEOJvXvZ7pdT/+uQO5xsPIcQPAPhl0Lr160qpj1/1\nnJrel48a5Jel8NXyDEImxsQsrWY1m+a1hVbaSqK5yBkbgE0HxDeXJouKKEIwIhkVsbdDcOn+3kaV\nagYyKCHWtMwAcqGM/I4RBe37WxZN5Agz8vFJLzT2y9JLLFKPeTeaxMjHHQQxSmRWm6vTJen8fAmV\nnJH23WIC9Lvamtppt7nvI5TA7hb8a3P4emBvEg6LqbbMLFqVipvCk3ohM6g4XtQ0WEGVy/oG4bLN\nhAyp1VjmAK9R0QTifErHGE/hs7aeO5vhSkC/DxcB5VbaXTlC1KOW0nZ0k4AnZ0f1tiUaMHh+HRGi\nG4zwbH9iyK5M6jQtR9TtG5jkfFUF5CIDxdYtqtziCDIOIadzao3ubtEccQNUnWedYu9FiP4egt0/\nx9bOqxjcmyF44RrEczeBm89DDPYtbJ6fg/o9xNp9kdcBpO5GKEXXcm8IMZzTtSYtty6RK+Nka15H\nJqTcsRNDDFNqcz86hRw9KbTbk2u7XbXeCSGE/v0PgiwVfkIp9WeXPVcIsQXgdwDcBnAHwA8ppc70\n734BwE+BdJp+Tin16bf6Hh6n8vkpAH8VwL/U3/+7AP4VgEega+CbnnyEED6AXwHw/SCv8s8JIT6l\nlPripc9zBCclIoNkCxBYh9IipTYJUE9AbdGWeFoWSGPLwMEVT3Nnt7tFCzEA7D9jpF02vRcjeMoy\nNE4CakK82/glfNwMZ2X5GADrw+YG6ZLfWxza88NJCD5IJBIBEA+hBsv6XKYZGtkuhnXflZpyMWBn\nbJvCPfeNxONaPF+ZgJrhHAMAwBUyjYdQAaHdRCihuJXISLQmas9V4277UyJEP9yiimcxWYe6p3bm\n1fbcbjDCDW+ByO/bGZzeVAEwG6vLktCaCSHqUHbB5oBRRJVmb7h27k20dQc6I4jv/LfhDQcIHbSb\nEqJ9o+aiGp3XIrWQBtAhGQCDc9rQORur2GfydkPRwr1vg9Qq1n8LxWOud/8BCBj2AZCZ3K8C+N4r\nnvtRAH+olPq4EOKj+vufF0J8CGRY950ADgB8RgjxglKqIRj45uJxkk8A4EPsgqftVX9DKfWTlz/t\nHY3vAfCyUupVANDufR8BsDn5EH3JJKBS5TbxLCY1l1LjLopLElDzhmjjnTg3ilnkeBF2L3AXSaYV\nlHkHuBG63WKSxe9N+qFB4/HfZOJj006CjlH7pwiJEvma7I3x0GmJZlKblxOzgEV+BzIOEfsH61ye\ntmA3ysb5ZJfWIIitmdymuMQugyVyTALi96D/N++kbFS0+vw2P2Py7tG2A8kZsJxCxOeXQsVr/+uo\nQdGLFCp93cLO89LAtxGH7arWsBUUKwOsbaq0ArkKcgOQuSwJua/bSrTujOh9N23QN0VLEhI3vgu4\ngdakU6t+NrS3+T5eC06GtUQVAlULV81NlPx1mz7eNzceZ737CIBPal+fzwohRnrtvn3Jcz8CMpkD\ngN8E8EcAfl7//Le1us1rQoiX9TH88Vt5E4+TfG427FePADzzVv7o2xDvA3DX+f4eKNvXQgjx0wB+\nGgCeubnb/LWRVlHl0gys1WyuocW0SAqM1p/D7a5yWZPzd1tjzdYBgHWmOS9S3NJyiH4KFkRgwmvn\nXKy97yZ/hRMVi6M6CxBAizovQsaEzbQhj40uFjojSsoNroj0IvJSMSrDAUYh6XlxJWX0soJ4HW7e\nSBKlWqAq7ZzDTWbx8MDu5N3k26xC114zr6kTmGrQmRuZCvWK1wIsSswXEnHQRxBQNaCas4pmNdZm\n0b4pMbcRe91w2lluuLJB5to+nxJSkPnTun3aJM+uHdOqgsWVo56AwwRl4Fu/nKs2F/p5LDvEygVN\nxQu+BtcS0BXnYu0Yl2eEkAv65u/U2pDcOWjZ8HwTYkcI8afO959QSn1Cf/04613bY953xXP3nLX+\nAYA957U+2/JabykeJ/n8oRDi0wD+J/39D8Mhnr6bQn94nwCAv/zh59XSsW8GQEZTQWzvrTQjO2VY\nvbONr72kna4qc0PM5OBFvKk5JgIHQqqfUktYoJu+KV7Kr+nqUMED4k5/LRnVOCwcTXhwMwlp1QBO\nQkIpWriWZxYCnmUQ/Smw/4xZuNyFtYaKkkTa7QWRUWtQ04e0W3aJsfq8mPfYMCuzPyfHzF5A9gvu\nYm9eo6Uq4WG+C4yQggzs3ETeVgW5r9tMYk0+zLw8oyF2d7vdNXMteZUoK+tKXLI4bdCFFGM6//EQ\nqkNtYDHo2o0Kw+2dz9O1Dl8LvflQszkwm9MczXm/zeuMbd4VsFFhgjcQZtbY0NVba5Hpx16UJ8iq\nRR09qm3FAdgNgp6x1u6hlmPe+J5dFOryDAHGQEBkY95UuYhVcx+ANpKXcvHeZLyJRHaslPruJ/aH\n32QopZQQ4m2V+74y+SilflYI8TdAPt4AZeDfezsP6huIrwO46Xx/Q/9sY6xQYV5OavyFWv9X36Bq\nsqCbZ3fLtHcYom0W+iK1mlGRVcqtuT62JSAnlBA4ye7SYNmN5hzHGUhz8OJ3nh8ZXbHa85tVT1s0\nk5CWs6nNV86OiLX/8JQgqKMOtQ93rq0lXDpWEkhFiVriwStfhjo6Jk+Z3S1yWb1EdsQdgLNhGVdT\n42hi9Lji7tica24dcv/GNWdrRXaxxRJ/Rm3tHSdpuMjHtmAfmMjvQAbd2jFU2rBwU2RYQHpWQsYX\nkjYWGryBvl4o2yqnlurHLMr8GevPEGFA4I8gpmu22QabnxEU+tGpdW9ttK9cSkHrIt0C/iB7eaqM\n3XATT+3Y9czSvYfa3p+x6XartrZrvkgRIIYMLajIKGrweeqMqFJKxldXWe98PM56t+kxwSXPPRJC\n7Cul7usWHcuZvOn19XHicaHWfwZgppT6jBCiI4ToK6WeEATkicTnAHxACPEs6KT8CIAfvewJeaVq\nfvMAXbyBF9CFeD4FJjPiZwAQ0zn0RkjvWC3UWi3PrI12aJVyeXjfnC+4wTvAexfn+OJZgg+NX8Xt\n/q5NIM6uudnTdmHfj5YFJrnEfucI23Fe84e5Mlw4sjYO47+pAn3zau4Ra12tFgX8rQUkLPqoyTsC\naLAb+4oSz+kh8PqrKP+fV1Dem8HfiiGfOYW4OYfS9uO84LuJgl0yAWjfFt+4h2arCpE3xzi6QCYX\nG1n4mxIFt8radtlmMeWk/JiJp3ZqtSUzJ1CbPGVNQ7DlmearZelhHGknUJ3Mgs7ILpY6DHm5iI11\nuDubVOXS8F6qY53YYkKqIRnUPzut5qzuPkB1eE6Qf71hYAUM87poqW7ccKrQtJphXk5wb14B8HE9\nsTNrVsEG6puFZosUsFWqm3ialY/bPq/9XB+vuEzKSVMJ2trK3wLxOOvdpwD8rJ7pfC+Ac51UHl3y\n3E8B+HEAH9f//77z898SQvwSCHDwAQB/8lbfxONArf8uaE6yBeA5UK/v1wB831v9408qlFKlEOJn\nAXwaBB/8J0qply57zrL08IXTRHvKkJ0zgPouRzOcV4sCIsvoYhWi1gYycvfTuSWzsVIuANkdG58Q\nt3fNcbR8BS+dhfj8SYL/70GAO9eBv7p3hu8YL0jvSiO6RGM2wosf2wXfu4hwb852zmdADIJSb+q5\nNwmYzXlCFNlzcXFObRpN/lwtClTH9Dt/sgBGc3rPyWBtJgbQjjYoKqjFBOroGOW9GapjIo+KTgA/\nPCZkWHBkKigpwpq/Ci/YJ6mPrPLwKCV32GXpYTuukK1WGIWzNT0+16K7Gfy7ZgKqARF0i6eZeJpI\nMAA1NYxmsiGHzwAnqV8zPGPZ/+24MomIVZrZFZSTLL2/C2vVoBPQ2ufbqH5qiZK15pg8meb0s9Iu\n9MFiTp/Vo1OULx+jvHcBfyeBtyjgQy/eaUZgGKAmuApgLQHx9X5RnhiX3pOU5kKRt8JuEtDmxN2Y\naQQqJxW3RWq8lHS0Wo5z+7xI7bXtAHm4cjTzS+0CvPYaZd6uf/cNhILa3Bp8M6+zYb0TQvw9/ftf\nA/AHIJj1yyCo9U9e9lz90h8H8LtCiJ8C8DqAH9LPeUkI8bsgUEIJ4GfeKtINeLzK52dAyIZ/rQ/k\na0KIa2/1Dz/pUEr9AeiEP1aswAZyFYmIyj4SrwdUKUGaQYRByfyMG/sQey+iUDm6ckxcARYhZBY1\na0FN5wCOoMYwEiCbYi95DrE8wna8xLUY+De2M2KyZx7UCcmWIJStpleTjHa1o7DEaKvEjZ7E9aTC\nMNyjgX6mxUib0G5g3QU1akBO3f97tNioNIO/o100dwB/K4YYdayYpWbXuwv0WSYwxgWWYQfx4BrE\n3inCFxYoOzN4WzH8gyHEzesEr9WVEy9WJgl4IcZRDrrugZMU2I09RD5xNRK50o6gm88zu21eFu6A\nm+dcbtuzJkwKOxjn5zb/HgDEyAGskGCFyPM0v4Q3CTCGem7SZE8cwB5zLHukuOz1KOGcvEpghjZz\nss7IfA48U4m8Dunz7VwDZnP4Owsivu7tmHPPM9CmxXR+vkLUKeBtOUnFJbc2BvTAutoGA1AAUhEZ\nR7lOonutoBnXK0liXQm+xmlzEHru74RMoDoj6/rbOEbTknMVKjItALtBm+5bJdrWO510+GsFWrsf\n67n65yfYUFQopT4G4GNv4ZDX4nGST6aUygVDhoWQuIQn+W6KyLeD8K6s93ZFfw94cQjsvk4X7PUP\nGogvACtauJhQsklzmg+5ApJOAtpEDAXItOrF4Qyj8IhMr9KSZEtcbbc4AvaTjdYAAHC7n5BiwfwM\nvFDX4ioXRXcxcULJENixO1sJGA0vsbdDLHS2l9ZD5IsiwySXete/AvAQ6F1D/NwH4QFEnh31yXl1\ngzCqqzgNYC0BuU6oTSvq5g7ToNJaEtAmdes1vb6GMKk5zqYHjd6xM1SZHD5JQQOokFZkKc3XnvSS\nGoem+bqGm3NxBjV9ha6Lo2PaFP3Fv1T/XIcHmDmDfG5XynICyBESbm1C6+ppg8GlX2Jekr01As2Y\nTXOotEKRepDHKXydfFiJwlibt6DC3HYYw+3d2I5vWlTcJZ5GNYh/izivy2kznwu/Htuhb9qTuK02\nh7hbP4CwvZX4XrzleJzk838IIf4rAIkQ4vsB/H2Q3cK7OjxYm+Ou3Ka2EA8YOYKYqp3ABxqLWVBU\ntDBlGdT5FGqysH44rN8FgBOQgTJvSEKx38etnpWlV/fuQ905QnlvBhH7kHFI1UUQA76zI9Z+Q2ZX\nPH8MnkUbAsshYTZDFNq6YJiaBORr1QFW1WYVZW6rZCs7m0mkQOStIL0J0Bshfu6DELsO2m0D3wWo\nJ6C6xThVfMazxX3vQUzLmrso6kqkacfsQnoNEIRbWS4sPVgXJq2dI2cBNX9vBWMBXanSVDaxBEbR\nupeQeQ3+bNK55WU5YI/iq6co3pjB34kRAbUExJ+Bbff5iLwVYj9HtlpABmMEbFcQxLXEc1HQ4tsP\nrSBodbzEckrLRJA6nZYgJusMHaXKa1tSboWxMOp1vZ+RXoid8Ab55ejB/mXeRmvnpA25qVvcrUmC\nE1CTkLwp8bCXFf/9TWrx30AotVoDCz3N8TjJ56MglYM/B/Cfgcq1X387D+qdCE8AB50C2/HYts8W\nkxpUWoUJzosj+JWsLTYBAqjZoUV/TbXB26LQM+sFxAjk4ZJKkkTpDS2E013kGzBQ6MSDh6co781Q\nvEGtNX+nAzE8hApixNu3MS8n2qa7bwy8FOxweeOQlJn7LUmnQIFSt15qighhQvMuvUAIgMiNgy7d\n3FpFOasWmtcjsSgFlqWHs8xDVpHHClCQXllvhKSpVMznoAn1Zfl8uY20msEPJKS3QCLJB6Yrx7QR\nuNAulYCt4LRYq2mZOVJKhlPickkaRFyzQLnH1xQm5XB342hwpXQltMml023xrSU9PYtQd++jfOMc\n5b0LzI+A2XEC+XWFvc5dBHEE8cJ3ANu3cXLxMiY53dbGshoeAG2pICQQ9BFs3aLPPPCRlVNcFJm2\nXigwDAvIIAbyAqtFieUsgoxW1tsmlNSmu8RkLlstjJ0DaaiV1rfn3v8L9fIdI5uEftdqFiaNMsW9\nP5qqIAB9zs0/3kwWnIDcc7sp8aR64+gY8hV4T1z07YhLk4+WYvikUurHAPwP78whvTPRC1Z4fniD\nhqup9sxxe9ZhgovypAYHjf0+LXRHXzStj+pwXXrDCEhy8E6K1ZOXZ4ZDUFu0NClRRBFUSGKaXkfa\n1wwlcP8NoEixs/eiTpbHpDbgVjIyrNs2OP+vkSb1fKBcXTjukLR4WMHVPgK+gc0DMmu9gALZamEQ\ndwwKWJQwg/VFKTByukObbKSb36vpfaMwEOtj7nduYDsSdZtqV3JGqzyzarjrreSCGNb+bkMxGUHc\nqoz9WFFom29+He+KxwObE8/RsUGniY4EV34yWkHE2hJAhuTfo1udbozCEolcIa1gLRU6NLua58em\nRcp8rHKVQSakQed1JJJ+hSBawd8iUVfsUKWbFUcA1qWXuOUX+8KI0sa+sFbwPB/NC1tpZBnx5NCY\nUTah0k30Wm9I3kpo4WTBuc4Clk7KDQjBKJADde+eNIf62usQe3Oo3Qkl6vfiicelyUcpVQkhbgkh\nQqWeAEzjWygCL4I8PVwfXml1ahHERikXcBPPV6BevgP1YHK5y2G8Yb7iJqA2dnt/D+qAxDUlbCIT\nN51K4fghHbd7U/INyTpfWhJEOcoFQF0exrhVboAO88/SagY0E1CQGnhuubpAWl4gW/lmkO4mHoDs\nGxK5gvSsaCsfx6bzpGZHVDXyAqFljjiZK16c3Z1rHK2hrhSodbhpXsbEyFYHU1cSp9EebJKG+bjX\nYjFBoJO8GwZ6z8lmQ+JRk4VBp/lbMbqLCwRxBhmsIJ/Zh9jdgkjGqNS0lni4rRz7AtwxuygyTdBd\nGEBItrLLwCgiq+pysAP5HR9EPJ1jt3MEeWMM/0M3IF74DpRbBzjP7hq0XzOxuvMdhlLHskcV+pL8\nnNhWQ4S57RCwL5Prp9TcWHClor8XuxkwTKn127jWm9FULsFEV24bfHvU0TH97W90A7L+ik8E7fbt\nEo/TdnsVwP8lhPgUAINFVEr90tt2VO9ElFdfUKyUW/MeuXsf5RcOjb/MWpXjhIiidtQMJyB+XOOG\nEf09A9X2OYm5Evx5CfXaa/T6zQgzgCkYThVU+xtc7VSzWrXTDLOIeNTDl77mvjhVFVc9PGNYlp5G\nEVLMS4ITAzSfiryOYc2b1lgThcRW1JpbdKmjZHPhmM6h0gyC24IsH1OkJvm0cnR48XejmVDawBgb\nSMP8PBewEAz2r27htCQerno45I0eRCeFp831WLuszI/NYzjxEKCBQA880wFgqh032EwR0J/39Q9C\n/OUUERv4PfdBlIOdms/TfqfOlWuL60lFgJ7FhM5JllGLelHA7zSqn8CZ7TRbY6xppxPXalHAT3P6\nrAGbgPgPB3FdHYST+9T6SgGbPXsEQITqybcSpfHbJx4n+byi/3kA+lc89t0TeUYtrDY/GMAsVrXE\n87XXUXzhCNOXligyD51hCRms4O/EBDvW/jsIGwmpubt3hthMZAPqSUjEQ6j9Zwjl5u769IK0WhRE\n/GuasRmoqKvb5SwMDgy3zRyvGfw7X0hS/Q61iZseFperC+2SqvkojXYbB8HZtcnX5I4hSCpdpXES\nqkn46LYmG7JxuBWnx5Uht58AYzhnFqEeIfaEGkF6kSF9GiO9NmFWoLXa4a9bdfs4uH3nckh6QygA\ngTYza86AaoTIRuKpTlPj62Te41ZMc8DdLSAZ6NZpDiCoJZ6upPecVrMa+u2VKf3t7ZjOK/Nt3ChV\njuDGd5lK2k08r5xHWJTUTj3oFBqJCLRxrCK/Q1VPem7I2zwjba1+dKIxbbFGwlmdpuYaUIsCMi/o\nut/NgPFeO+eIP9/zaQ0gdGnoewzvGcq9LbEx+Qgh/qlS6m8DmCilfvkdPKZ3JlZqXRG4KS/iCIay\nO6V7wRapBxmsyGmzoxfHpmFYszppa8s4qsm1vx8PoXY1Ee74Ie3+9DFYcEOj1+1WWq48jDM8Zf7H\nZeEuVMRVAaHstH+RWp5BFDHisF+zMSZggQ3m4GzHNymJT+/QL5h7od+/gobNljm1RfR7dROPXXDs\n59YgvtcWaJXpBa2HtUgrBek1DAGb0ZTXcX4u9LlsEofNZ9GsoorUtEKlCJGqGaHhGrBtY5nA7yGt\nc/l4g8MVt3p0CjF8iEAmGMbX8Gz/oUE/uoKZQbCF2O9jXp5hks3M52ST1LZ5fFNfENc/SMcNFuOc\nI/JXiHzbTm1chSbxbKqINjqEOtVOM/i6t69REvXdOXco0qspBW8irkxQbyIU1Js27ft2jssqnw8L\nIQ4A/B0hxCfRuLqUUqftT3uXRBgAt96//vMWRrNIxlSFAJrudqTZ+RL+Vo92oLoFIna3jOBjzRKg\nGY+pFyVkAvRJ1VrE5+TyGQbUMnArHn48L+gNwUgOF7q8KQG5iYdmCCv0PKuOrM4PCZW3nALJAP3B\nPnnFeGfYTewOmOVSgsUcqjlfa3jamKpPhsQhYdCF09b0ObHoBae5MDd/Ztqe2pJiubowkGJqOWVm\nAJ90RtRObEsaLuIKDt+pRcBThglJt0Dzo/g9BmQax1bjpupUeZ3UORxQtavN6JhT5SYcwC7eAnOo\nL3wV+ECGePcm4uFzlHAWE6hSn3O9uQlkglHnGrpyjFFEsPSuvG5tRGZfpsfr81U7rzohDYM9dIc5\ndpMjp3rUfCRHTYIrZn5M7PcRxEPSAcxLSJ75sDMtI946I5rz8Tl0jsE/GJqKRcQ+sEUoUAy69Pyd\na2RuFyYOJ6+gF+l0EQS3qJ2t7xcfjWiaGra1td+LJxaXJZ9fA/CHAN4P4P9GPfko/fN3b/ibZzVu\nSBECgaqpHkSgm98kHHan5ITjmJYVDtmOo1Q54g4BGB47CfEciK2ms2zDzEfam6jJQHfeE/u8NBNQ\nM/EQCsousEIpUqR+dEp/a5hClTmCeIhhd8/K0uRLqMUZ8OhlWkDG68KjV/In4rBmRQ3ALsKDLqpX\nH2F1as9fbZcah3R8vSHEYB+z6hRZxYi80AAjgBlG+nQlg32LruNosR8w2mAtx29ak0EMsSBoNsrc\ncFlKRXybtCSZnHKVIQh65ISLqW31RREZCcYR/Ifr+7zqmBQKuPJVX3udJG/Yq4mPHTBVpgpiID2H\nlCFGGtKsWGH8fGraXGJ3C2pnSlp7+nNy24oBAmxHN40VQjOaHkB0Tc0QdLYowQ/O6b4ZoHbvGJde\nYD0B6fazGAH+CFATjf67PjKuqcxZQgsEXHoRisBHwM6rzQe4mzWXhvCtp+v2bRMbk49S6h8B+EdC\niF9VSv3n7+AxvSOhfOIqqNnR1Y8VghabeAh16/104WZZbbdmGP7VrOY/4+4AAavKPI4m6AYj9Dtb\n7fOGlhDx0OymhYvwcsOdYXE4X3NbJWZDPB81rbpm4jlJfSRSohfQDaym9+sM+7wEBhlULwXKJV1Q\nUy1C6sxs5DND4NoWLRTjvfUbnKuDQnvghBZiblpqer4l9nbIZjuO4GkiLgBTjZrzoJUXZtWpITsu\nSwsFt7EhAXHiMS2g83oC0gKevACziCc74orOiFB2un3HLU9O8NLL4Qtprq818i/bOUcRnW9nQK7S\nylR5JgHdfWCH7zqM3TZvVHRCU9FDO186n0I9mKA6XkClFeSNCcTtOYnljvfWLBsYFRgDJqnSzIn+\nVuXVZ4n0XhdU/SRjqHFOiZI/J/03isBHWp2irxMEdFKsmfvpjZXQQBwxHNQSz3n+0Hg9AY4AKW/+\nPEAOD2rnqOnTBFjvrKZlxnvx5OJxLBW+7RIPQDfGzFugt32b+CIOA1qVy1aDM0Df5LfeD6F7+EIP\nkOflGdLlIc4yu6fKVnaBW5aBIV5mFemSPTc4x26ywDDcQ4AWCX83WBJFJsDWLeM9Yga0zWNtgiec\n3/EuVnqRGZqUsK2SpojnsvQgvVCTWR+agW1dSkjHxfkaEx8AqtMU8sYC/sEMYm9u5fkbopSG3xHr\nltl0bttNTvJiZQQRRQg691F81VYHohPQxqAzQtHpYp7exYOlbxQXrLCne/lTApJeRAvk7IjOm0Za\nGb0vB/nGXB7ZaKUBTgJiWHaYoHQ075alh9jPEfkdM0dDer7++QcxcBCT8KpDaOZozv54U9AM5cLQ\n8xIILdxYTRZa7NWSOINOYD4X4+XTov7Mm45AO6EWKGjhhq18lqWHXqARkZfIvwAAIABJREFUdGGf\nNlE71+hcDq7ZlqjmHCEGem6COKeNnLGUz0vbttVq6Jx4XjoLteySNi7ULq5ulCqvJaCC6Qba6qKp\nPm6r5LcWCupKfcGnKR7XUuHbLnwhSfVZKeozc7/f9bBp2laHSU1dmlFLWJGfTBR2ADzEazPb0mte\nuEzke25ADH3WYjPJhNt2zWiB/UKGNMRuyMA0xROp77/OgWDZfazsbjVGjthXSGSOUehpm4YcXXm9\nJuFvUXYOsCKIayKk3tYCvsNP8Xc0SZHZ4/x+itS2nPg9NVuMLOPP/CWGYh8dUws0bnTwdQUQIID0\nQoxCStDLkgbkk0waNWnmwtDCkyHg20JLJ2E6h7q2ReAF97PgDUm+RBL0jNeSGfTPzxybgxRJh5Bn\nRMokiwSAEpUMt2lRbpCDDQJwmELkJVSaUytStxtrAIQwoPO7IUQUWch+HNHrxRmEFg3lpCZi3yI2\neYjfxrlJHUSlrhrKKlsziGMJJJME+BoNYpqn6kpcehEif0YafeeHVrGiGc57wOAaVJggBoAQeG5w\nhF4QIfL79JqObJELc1/zANKtaEOYrTJkK89sGN+LJx9PbfLxRH2xEjKx3h36xqhZLuvgWQkAYGV3\nutKLaKGLIwB3awnIje24MgrMfX+LFqj0vC7l0tCXA3B5W84dbDfD1SYDakmId+3w9M3o3GNuEtqO\nx1T1lEs6Rl2RAM5QnxOHI0Lqg2Y0q0VB6tW6XbaxultMLEFWhsDgmpFGqSGYypwSz90HNcisabk1\n3ju3YGI/x1m2QiLpjTYVpelfBKRzywfRNhI+oEEAG4bQRYoAQBD0bNJxDMqU5kcFg33AX08QaTVD\nwm06h8RaqhwyPKDXGhDhUeSF4Zg1E4/od9uPD1inFUQTU9n4sCAGf6dDLVWuLi7OLQ/Hgf3XQt8v\nTRFR6YVrBocqTGyibcwia4mnxYvHxHBgkxe/Pb+P7Ti3SSdfAoXdADR5Vm06a/xcYAL2VFqW7y4d\nZSHEFoDfAXAbwB0AP6SUWhN9FEL8AIBfBn38v66U+rj++d8C8A8AfAeA71FK/anznF8Aya1VAH5O\nKfVp/fM/ArAP6wP97yml2IyuNZ7a5INVuQZFNn13ZxfnessD5DIJAF1ptb0MFyg9RxAPsd25ibYE\ndNAp9C5wG0kloeb3rQOqAy9ViRU4ZZn7JOhZcqpTpdmD0F83h+UXup0Y2arI8IpAQ3MDQACsWZce\nGvc83bZokjAZaceh0Vx0/KipYPtpfnniqe2op8B+bN+PrkRrul6sqdfCTGfej9L+SyhS9Lrb5j2N\ncYG0ssKksd+ACIsQqjyuma5xleEPptT6iSxsuvk+aq6YLmx4QEmBuT4y3K4N7EuV08IY+ICen/C8\nwReS5iBFSlXlZNaeeBomb5t4S0bMNR7WWmv+jk7io45NspxkNiUd6I2bEEjLmTZoZEuM0Iq+Nq3g\ng7jm9AswmKUB+GgLRsXJEKqhWmE8rJaHVkrHIXVvIvry5pFg6T1AshTRDE9qmVTqHWu7fRTAHyql\nPi6E+Kj+/ufdB2jptF8B8P0A7gH4nBDiU0qpLwL4AoC/CeC/bzznQyDzue8Emcp9RgjxguPt82Nu\noroqnt7kU5WWZe/6kegbghcGt4XgDuPL6CGG4TWbeE5fJ8TQcIAAtwznghPQfievC2Euz2qJxyCN\nAKA3BZIxVJhgnt2l45U6AQFGYcANs/ADtg3H7qoAKR/E2VoSEgUtAu78h8P3pU1MRYtatttyc6Tn\nBdYTEIZ6sW5KAjUZ7HEEMZwYm4Wi00W5ypBUYyu8qmcfTDrk8DqNajPLaH6naOddrjK9qOTa3sAu\nkgwNF0rRopXSMH51mppZiL8zh4ojgurqc1zTIOP352wmzPviuREsWo45UrwDZ8CCkTUqL6wlQhIi\n6e8Rkm02h8+JlwEYDmLMHFMz0WsRWQbGxOHYutACVklikzQUb46caoQ3bKxgfX8R4tl+YRNPJUn0\nFVi7z4A6wXdN264ZTGHgBNoZWYuF5sasrU2or3lOQIzMNHJPBamIiyIh6D2ggSjvOoWDjwD4a/rr\n3wTwR2gkH5BH28tKqVcBQDuefgTAF5VSX9I/a3vd31ZKZQBeE0K8rF/nj7+Rg3x6k48Q64mHf6VU\nDQ0GoDaMz1Ye0qpEV+WIRR+O6hBFEKPVTwd6Z710+tmRhpBGEQ2FzfNpljAM98wcwRAxndxTg1EH\nMdkfLM80GCGipAOst1waIqem/VY1fHC0i6QZiINabWrktNw6I8NhMUZeAKl482CZw2WvN8NtaelZ\nlRRjqsbSuX2PzAGCHlkx7J0jDKznjE7K7PfCbP+m+6ip/Nxj1XMP0ZH1mRInWzgimDyQ59+77zeO\n1mHxLDwaWPVrrOh8swVDLHuOF1AfKr2jRTmddtGmRAHUKuOaiKwjq5R0RvS5hlN6rencvKaB8+cl\nbTJCCeQlnX+3HRbESKtTnGUCi1LgLBPYTTSgpao2kqg3ShO1Vcd87TqahZi2OPQ23nfzdblKK6us\nbqXBWoIX51DjPdqQBaSG0ayO36HYEUK4VcQnlFKfeMzn7iml7uuvHwBo4TngfQDuOt/fA9ltXxbv\nA/DZxnPe53z/m0KIAsD/AuC/0YZ2G+PpTT4yWiPS1RSmgxiJ1zMs9my1MDvmtCJWuAle0OOMdmNB\njLI6RVopDVWmksLsrLni0bs47FAyEC7fgV+6qCBDp18uBLXk2sAF+lhEsE9zoyKF6qyrbpuWUEQS\nOS5qi9+rG2k1A4I+As11QjSBOJ+uwcwvyhP05DYlSJdr4i5UbDc+ndNuvUns0yg1ALRondyBlKEl\nGyYDYJeOl1FoPkuw8Gvs7ZBJGvNGnB0czxW4ymjaHJgkF0fAqA95gyRuamRGbjGyxURRRxa6u28x\ntPI6bqvO1SDj1qexfIBNhqxUgHNt4TGbGxts0Qno6ziD0HuZje6mm4IrhLw01aTA3NgdrPHJGALP\nX2+Y3xllA74OGuRtM88SIcBAnsK5bmLbPmy1gZ8+tOcVqG8e4yH9Lec1AEB1x2QD4Xz2hmCbntMc\ncTY3BGEZHqwpdr+VUFCmkn2MOFZKffemXwohPgPgesuvfrH2N5VSQoh3Ymj1Y0qprwsh+qDk87cB\nfPKyJzy1yWd1lQW5vgl4ZwrAOFMCF9SqEfWZByKS9lBCoFIlJrlEVnkm+UgR0sLP7bAmsS2ILbFP\nB/OQeIEH9MD2KoImv15nRC1BN9xWBCaWNAnbCnJhw2bm5SYgvQvlNs55cYRJNkMVlYTg0wN2E6mF\n9jL3x98pIK6P6glo2DJL0UoKJgbk4s58K359s0PXvI/LSKzuALx19x1FlGhGHfigOYjY3aLj02g8\nk9TcuUOYQKhRLfm2Lp64JAHBJh+hFClKPLqrHXOzGt9H6PeuAELjMWjjMZKQC65gsU8mr/o7HRLf\n5AQE1MVtmczsXO+JXDlyO/we5hbwwu/X+Vx45uUmIXN+zKZhTMmXYzklzysAgjcx3E6G1vFrCOku\nVxdr5FP2cFLpOXD/DdvOBSC0Lfya/NG3SCil/vqm3wkhjoQQ+0qp+0KIfQBtg/+vA7jpfH9D/+yy\n2PgcpRT/PxNC/BaoHfde8mmLSpWYVae0U7+sOlxMqAoKepZIJ9c9TCBD034qVO6IbVLfmBBVEVR6\nopWa9Q3NQ/ggrlU8anZEC8kj4q+o3YnhRCghTEV22bHz7jLYulUnTmobAiKIAgjSGmufNcCA+twB\ngElAhjgZ+JgXR7g/n+NwEeGgM4ffO0E/2KL2oENkxHSO8o1zVKcp1KIk7o9GwhmkVhC3ukwKx3AM\ngP0fqM9b+Dw2Es+aI+amc9ZMFKM+RBwSmdFpMfKcwxxCAzkldWUswzElI3ZHbRyzy3ESQWyG3ozS\nUgxeYM03XeHxrMvX1Q8A2sywGoMz27ssCRkE42RmSKYAbLWnExAAm9wB28ZtidgXzvxMv+cWzTUD\nc/aizbbneiM0csm/h4ekNr0oSEuRVUZCaVBwXGWp7hjn2nfI1fGTXmTV1TWAhYm2/qKg1mIyQDw8\nwNyb4F0WnwLw4wA+rv///ZbHfA7AB4QQz4ISyI8A+NHHeN3fEkL8Eghw8AEAfyKEkABGSqljIUQA\n4D8E8JmrDvKpTT5pJXDvgkieBpHD0Vyg9KLGZmRtpThDtd1Fj3aCWBPbXAtHeyzxepZPk1mRSZFl\ntpVzRdXTBExEfodIe+eHtAjqxQZ7WjHb2TVyGCM5PXeI/I6BoaoQgOMFlJYXmOQBJplERyrsVguC\nzLqhW0UAKRGsFiX8JjQ6L03ro/5cR3JfV0HGDdb9rDa0ItusmNXsyGrvcTTPK3NhACPVw8AKFw0J\n1FUigLqgpi8kySlhZFs8XKGgnoD4Pa25bj5GqCyzRMwN4c6+gqIi0vCjU/IMSitjBQ84CYgrK042\nrpagvu5Jx08Yz6ZaV+Ay8jTqiaYZDPgp5JgWq7OjhiWD03oMJZ2rDoAgJnvw7C4eLQtkKw+jcIZR\n1CebFBdEo7sAq4Z6+pWouzcZK/WOcYY+DuB3hRA/BeB1AD8EAFqr89eVUj+olCqFED8L4NOgyfY/\nUUq9pB/3NwD8dwB2AfxvQojPK6X+faXUS0KI3wXwRdBQ+2e051sXwKd14vFBiedK89GnNvmsVF2B\nwMRjaq1VqrQ3WGMRlILkPa4nEyzLAvsdQlbNyzOM+nvArjZIGw5ICLE7xqw8oRvNz9Hr0tyktii5\nMidFSgCAvKWdw/wkvWN0rQMAOBVFYRcr3h0HMZari9oiEHkdDIO2eaV9r91ghGf7lDCf7RfoymsW\nNQaQ7fLN6xB7JcT1KfwdMuLzdzrANStLrDYZdzUVwlsQURZ1tiSXWIcrs2Z3cP+rpAbd70LdfH7N\nbM8ct6k2dPJjZeqWcwxYUIqrbcYLsWnxuNYJWQaM621XJQTJ8iwcUc0egCg1gqMqy0hcVovK1sij\nax+Qhqp368TloKigTl83lu2b1JvNDAiNJKkTEKMJaXjPZN4G4ddNPA006VUR+R105cgkSrJYoGvE\noBuZk8RSPVu3MKtOcbI8M4t95K0cCHhUr8qGA4i8hH9ABF4x0vO9eIhlNav5IL0bQil1AuD7Wn5+\nCOAHne//AMAftDzu9wD83obX/hiAjzV+Ngfw4Td7nE9t8uGo4e6vSDzNXa4vpFYldpBWRUo+QCJE\nLHvY78zMRV+ucixliXj3JolNaj2reXGEtLzAg6WPUXiGKirRDcZGBBHAuuqBozawaVfpaoiVKrcf\nNhMnB11AkxKFTEixweE0SREiSUuo8tC0+zYFJ6BuoAmFbYkxlOS6ubsF0YJ2U3f0fKsxB6oRWQGt\niIB2bpP+/do5YTjv6etQd+9DPZgAow4t6PsvbHxf7CejYguVBmi3zrMwPs+TXCLyVhhHG8zVmCvF\nM79QrrWjjDCrJpyq5ZmFsXcA9FLiLzGZtI306qAa2xKPyJc0Bzw8JHmdRVGDrbvVj5HuCZ02oZvo\n9EZAatO6prEcWcPn5mtO3OypxARgjlrFBAsKUI++Qslaw71FJ6BK2lXZGO8B27cx0W1glzVNFRmp\nS/BGwERnRHv8LLMt1jGBVbLy4XsKB29TPLXJx5bA1Zuyti31PKftxuEQSpk+di+IagluXk4gB3sI\nENT0rO4vQhzOAxx0PSzLOXaTnNqBg/211pKR4uGKxZXO0YsuJ8hJLjWnRYdOPKvTFP7OHLi5rxe2\nEc7zezVBxiQtoe5/lSqA4UOaOWmAAQfzg0qVU4uO51BtXA03oexcg3rtNfO9unOEXOuzuXMgALbl\ntfZh5HVUHb8W9A69Y4nAJvG8fAfVq49Q3pvB31qYG0BwAnKBEnlJiWeyICFLpyrj68BqgAUOsrGo\nJaDaTpvnN+dTzWmyhFUmahruSRBTFVekdobB8kOdUX0D0qLvJ+IhVHdsUIhAPfGwWOlVnjXGcZTD\nnfXoW4ClaZgvtYYidNqVaUmt2rNMGIHdZhiJIm5TFumaiK7oUPXHdgrYvo0T3WZbfz1hqlBzffJx\nlTmdr90t2hTsbkHEQ2PQ13R8/UZjY7flKY2nOPm8+edw+4R10Phnpp3CUaQGtuw+luM8P0LkdzAv\nJjjLBA4XEQ7nEg9TYFEGOOgKZKsK15OHKIMccdCvQ0JdqDS3a1iXbgEEnREir4MUF/XjZFHQhTWk\nE2kGyBCz6hT35iTIuJfsUeI5fd2CI5hg6NgDNMNddGrng5NOFNVAEyKIgddfNUoC1TEtCB6z93kX\n2oaAc2YmTesA/vuiiA0SzbhoGuIogR78nQ7EdA41PidkoBDA0iHUMpnTgXIzuournZPUxySTeJQC\nXcmLSz0B1RQidFIzx1xalQNDMK1mtOtvctAwsq/HEjVNDbRG4pkXE9pMeD2qpLR6A2Alddq8kfj3\nXGWQuGq4Pltyqn1WAKmFw6dLq5mjMO6BRgcTY4AnvciRxnE2Wjq5Gn6R9rQyqtZ7L+I4u4uvnSsA\nEolc6SpU1SR+RL40pNe1ijmKgF1bNZarzLjDvhdPPp7a5FMq4CT1SWJFlnYxdIMXNYeNnXg9A9MV\n+RLq3JHxABErXdSY+XsNWY2sWujEQ4P6hynwxgXxzTuSBvdpVaLL1z0PoTUCziLAUDtGJt8lMkHc\nfQ7dQO96H3wZ6uU71G5yQs3mENOH6Ccv4kZ3gcjvU+KZHdV307zY6B1s04qbY16eETdleEBVUnJm\nWozMBUJ1iv6qA7WYUCtuOIC/M4F37wKiI+FpS3ISjmzRKmM+xo19w6sCYHbhrsx/Wp4AgJWnyUtI\nveB6WzHE7T3a6WrrBSP7v5xqYiWRWTHqG9LqUoMs7i9CnKQ+zjIPD/WlshsDk0xiWXq40StwPaEN\nQDcYE0yd26h8TvUsb+mXmOfH9CIMt0a0NrOqwbsZ1p2MrayPfv9u4jnLBGK5qKs7a9VwEYfwAfgH\nufHI2RhNe3gnuNqXXqgT8wzw+wgcvbrl6gLnOaF+R2EJThJWbNUJnqNq9XCqfM/rBnNxqLlXe8Bi\ngp3ODcjxQ92V6NfUC9TFGVCe0HObIBWgLoUUSigAydYtICSlkvfiycdTm3zyCjjLSLV5HF3QgqnJ\nnOZm3zBLEfkSanlGCxSw1l4ysGWtYszRNNjKVrT7e5QS+m5RCNAGVNtX+wJShBp+O6cdrvagR+pY\nEbgdKb24qXIJnC/RlwnU8ZehvvRlK7UDR/Azzeg1g9exff2D9N7So3qbwzGnYyWDk+UrRpW5Gdlq\nQURVAfjdCFL0UaoFUC70++oTd8XsYiXE9RHkDc0xYej17la9xVOk1kso13YOL9QrsHLrQMvjP0Ra\n2sqvUiW6e++HTAbwBl0EtwlwgP1nzJwgLS70Kdym1taQpGyQZob8qrpjzDPS7Xv5PDBJBwC6zt2U\nVR7uXdBiPQpnxjyuO9ih5DY4M/JB8/IMk+UMy5I4Yb2ApI3KVbbGM1mzuRbC8mN4ruUkHraS4Gs8\nScZQvSnxYwA7OwIgbtJmBNq8zrWsdhUkam65jWB1hkqVmJdnhIIL+iidxEPXgDAW3pHfMWoDNfpA\nEFulDKAOvODjd00KFxOMOtfM1yo9AYqvQ100iNZ83A5HjDloyAtKaEAtAb0XTz6e2uRTlB7emAt0\nZKB3X7Yi4IThEv3oSanRF6uRG93QjpfKaYGxarTrccKzgqwib5mHS2A6iYBBikXJxxGa4b1Kz6ld\nMptDPdBosbyAYr7QEHpeUa+w1HJKiafBD7EHktNur0iBkzt2Z+iYkClWstazhpPsLl46C3HQmWO/\naxcvXnjcmBeTmrkXoJFWZ3UTP7G7BfnMvC6S6YbjE8QzK7korDkdAGzfxtcvXjYSSIBvFvTIm2Mc\nXaDbHaE/+B5g9z5EMjZw3Isi075FC2pRJWNqMfantFixMV15gkfLAi+fJ7XEA1DV40ZWeXjlPMIo\n8rEdV+YYYtlD1CMy7zy9i7NMIFtJfdwrM7RvDt/NuWqKdMImIejqkisebgk+WFZU/YR79DkOWHDW\ncb1NBvBkQmjAl16uSxZxXKLqbVrNzjXAScjdCHD0NEjh0miSlYMYCFIDvRdNJYRT3ZZmZ1btV1Rz\nHcbcVvJ5aTho1fHCkJ8BloiKkfQ3oz3fTKh3Dmr9roinNvnkmYevPpKI/QKRH2AULgHQQsmIoxJZ\nXYKDPWT0bhjAOioLAEA3tkpIeiUIYiOjz7wFIqAKLEqn6ln6mOvcQAkx0XI8Z3RDTedm8eUevQ+Q\n2KX75lyCpq6SkBe1naw9ERpyfT5dn6G470szviflQ3ztXOGzD0N8cCgxyTM82y/WqiBG771y3kHk\nr/DduxYJp1y2uhvXtuhvcavN2aFy4infOEd57wIrnaGD26cQGl77YPkKvnCa6PNcv8lHUYlJrjAK\nidsVdTuo1NRUHLz4JzIj182QDOvUcKC5IyNCJqYTvDKN8aWJwLwEnunRxuRaDET+yngFuXE4l5hk\n0vx+O14i8mjnPsnrJoOjqETkrbCrXU43RTMBufYfdpYYmFniKPIxCme16odOIM2HuAIrVxfYfv57\nIXpDAoSwhXdTxXxDEmKgDSegcpUbqLKrkeaKubpVTy10NWfANK6Onkb/mZmQK+bqJJO6MGwCj32l\n+BrTgJLqeGHIzyqtLBAljvANjIffi8eIpzb5hNEKL+yWeHG4wl/YWhry2ZURR9SK4a911PSvNNTV\n5Y8ECCDlttFO2/VyJDLDdlxhHAXYjjy8kczx4R2F54aadLfK1+HNYbAmonnl8fIxoiYfRjwJFuF0\nocwtIfp7mHkLfOk0MwZ5XKGllUKsryReMLmyo8d4+jEtYqvu8cWNdg4fjzNkFp2AfHsWJXnaRBFE\nPMSkJAXxr5xT0nFbYF0JRD6980R6uCgy0wKlBXGFBCtEnkdtIK9j/HXIXTSF6O8hrWboBiN89+4E\nQGyShesLBACvzZRxgX2k8/i8JDACJ8XtGGYD0rYbZn7WGpSfQ+vxGcJrw/K5iapiV85eMEEc3bRy\nRcMDajmmp7oC8xD5J+hv3dID/wzqwcSADehzcEz1Gl5ShjCqzy9XlHw8DAIwj2lguqUIzTUvlFon\nDJtZUGKJuEC9BRhHgGO6xz5PIvbNNW+uu/QSpOumKu+9eCLx1CafbrTCX7lW4DvHOYbhnlUWCGKy\nPG7Cr7VsC2loZes8C0d117DvgRrkWIBsEVgxW3oL9IIco3CJGz2JG90AN3q2OrkoMnTlDMlgn3Zf\nmpjo6ypGjDpWloY9Ttyqhb1X2JJaH4OvqzYxHNAO0LGl3lT9TMQUXzql53WkwjNdhYNuafr2hj8B\n2oVvx2PEPrUyE7nCKKLKj4m2td1kQ4trTeIm0K6m/S78OITXCVBtLSCfJwFR1R2j1NYTnHT4/46E\nU3FU5njddk8saSHsBXWfpgIFgQSWZwQv1zOrbjDCv7VvCbwuSote7wh3ZkvcuwiwG1MC5uPgYxhH\nBCjhhZkSEf0egOVn6bnPmoxSQwQ39vtGcYLJnsvSwzhipg70DKqA9I4w1DbS55pjBkAnhQo9uU3V\nKaMDNe9HDOrzHle4lYVam7qAJMCbIcvpGLKVhwdLGGdZIDMwaACmGgJs21sG9SQgQ+ItGdkiroSC\nlGZCwwGBSNIMwW09ywHsvcLSQJlWbohDSO2NxOg+cX1Ej20I/b6VWGHd2fhpjqc2+fSkwndtA8Pw\nJs0gHn3FKk0nAwQuqdLdgfEgmoPJfM3Fe1PoHSsnoVLliPwZRlGJ6wm1qjgmucQoWlDrLxlDjXNj\nUS3CvJ54XIFSXphCibVLPZSUOJkNrpFhrANXavM6+HVS7ZfO6rOtg26Jg05hoKzcOgFgSqtuMMIH\nhgtIr274VQQ+6cPp41VCoNALZ+xrGRpXCgcwqDahE6kczUg1ob+HZTUzkFg36QDtiYelglw9traq\nt1xlkCHxbWYaNQdAH6PWYMtTqHIGlCfmmEd7L+K5wSki7xyvTCMAnkk8+53cHoMs0QuoLRV5HhLp\nIfJWRpiTQCkL2/rlYMg96rpwjO7i547CEotS1FqQJ6mPyCP9vUqVa7OYbjDSgBqamahFYc30zAmI\nDPiiqVTQlBmi80XgApcvs86dqRB5xJFKpKtGENb+d1uRsd+H7I7rSYht5Rn5uOPwzbQBHcO+1fKM\nkumj05qbqxh1DMTfFfR9L55sPLXJJ5YC29FN4PyQ9K3u3TciiqLfhdqZmp2dG8a2l3k1jk9KWs3Q\nE8manEsziJtBjO8giBEEW1BCoCvH6AYzsyicZQKTbEZVRbhNM4ida7TgsMgjJx5DOM0vT4Bsg+DA\nkUstqcMLBy8e3IZpawsddIo1mKzrhlquMmM53gQhpNUMMtw2yY7nFKzwMIr66AZjQj4FVmqfd7hc\nBWH/GaAzMvYVi1KsJR1WWW4mngABAq+9ZWkTcWb4NrHftyaA07s0g0LdWM3MAYsU/a1buN3fRSKP\n8Mo0MsmP27u88ShXesbkX5hKqHauygs6v07CMxI9YPNAMkATnZHhosWyh6SaYTuuaq+5LD0cLgIk\n8qx1BmOqHj1DWWlOmIh9alHtSlP1zMqTtc+2LaQXIkaOyFuZ9hu3HPlrDv7M+OvIK/TX9bkRQ7pJ\nU85JQm0qJY7UkjXvK4kOIBOoIIYIJc1OtaEhdreMjfuFs/F4L55cPLXJx1cCuPt52vXcvW+G8QIw\nOl4qPace8ybIdTJGEfhIq1Nk1QIXRYYs0EKeDbXsWitJ+9OrzsguHAEBEwKfEtEw2MMwJNMvhp8y\n4q01mjdd85ijqOa9s6xmyMrN/IW0UshWBNMFoNFalrQnva71mmkJ6UWmsnB3qwzD5RuazxsrPIwi\nHwcdR+HBa4FzB9oDSb9v6YfoBREOOkVj4Vpp6HKEyO/bikUrTDdVIThckzfzs/mZMRszKt21E+bs\n9s+nUIMlpLeDXhChI9WathiAmlCtNY6r21CvacOx2jn/fe3uqYLbtHzZAAAgAElEQVTcKF2suXD2\nYFB/gNU5YxSi4cOwfYPRUMvXSagxEYWLwEeWO1JMbmXSAuiSXohdz6pCABKL0jefFSegZelhWdLP\n6Pf0GPdzBYDrCZ1vhqTzvMi1tzAgjIo2Cm2JMtH3IIbEAQPr5AXWeO5xEuzjxErhPbSbE9+U5COE\n+G8B/EcAcgCvAPhJpdRE/+4XAPwUgArAzymlPq1//mEAvwEgAYnh/RfaKCkC+UZ8GMAJgB9WSt25\n8iDSBdSfvVRDgK0WBfx14n4tXKi1AhBs3QL8PjlPaogsL65rxmqAkYRX51OCCe9cI1QcYC0B9EMT\nSCTBNajpfajpKxY+6iDthFsBNcNdVJ3EkzpOlhy+kEaChW/avQQoB9ZvpcnDaNN6a/b+14RNdZgq\nyWdI+YWpUGp24xeOFYRLCASAiFpySX8PMtwDcIRE2hmC9BKzM15TiDifQnHrse2c8UBfh0n8qVUa\nrw2k3a93SIZoE0Oe5zhuu4oXbQOz1rMPPnZ1fmhNCN3k5+7Wo4jM5MolksG+SXKxfwGgMq/LmwaR\nL4FMtw0xs/YNALWc4ggyDuE/mFAr6gO3IPZfwDKWwCprdYN1Nx1rc1NPf9YS6AU5rieciOqLstuS\nc2ckNvFUBjlZ4wW5sjnanoKr27ZrVeRLqMnrwNmR4Q0Z76KLc8Oj63bGa899L956fLMqn38B4Be0\nrPc/BPALAH5eCPEhkK/Ed4L8Ij4jhHhBKVUB+FUAfxfAvwYlnx8A8M9BiepMKfW8EOJHAPxDAD98\n1QGoRYbquIXRzdBjwEI6Abv4cYtO82uUDBEM9hF5HZRevfedVjMkQa+efO6/AXX3Pgl7pjklj11d\nBWmdNhO8GDicBT5GAEbw0iShQbduUAeszaRYjdmNyOsgqSTUyR0AgJTh+oVRzmyrh9/P4BqgB9cc\nLBhZF9us84Hc4F29H0jclqVJgsLd5bvmd9rfB9DD711qPQX9PQzDPUT+bD1Ruknn0WnNSVWkGdTO\nNWuv0NYm5ecyA35DGJh4MiDQSnmy5lzpCtICWEtAsewZ8Ebs96niajl2U6l3AihuF/OufUhJOUjG\n6AZja4/BiWx6H5i+YpOoc24BUMsJoPba87chdsm1Vuy9iKVf1o6XP0OjxQYg8AIUKCys0vmsOXjG\nNkR9tggA40i3nHNZsyOJvBV2kwBduU0VcZECWLa32i4x8QO04Kk2kXOvqZoxX0Tdj+CqOe578Q3F\nNyX5KKX+d+fbzwL4T/TXHwHw20qpDMBrQoiXAXyPEOIOgIFS6rMAIIT4JID/GJR8PgLgH+jn/88A\n/rEQQlzlH76al8g+/wj+Tqx1xKi8NxpWzWAPGM03cdt0CkA8PFh3ADXDYh13X4Z65S6yzx8Rn2BR\nQOYFkeV2HUvgIq0nnLyuOuwuPOS34qguh5klnAJ2FsSggiqrHWNXjhEs5lCnVFm5i+va4gQ07KpP\ngVs52UJoxBObz9FsITScl2y1xO0+tUTahCclaMeceD2gueA2j0Mfg/Fwgd4EYEyzMU445bHdzTsL\nd/nGOVRaQcTnRGzVUj1q0GCyM4yXE6A5B87xMIqQE09vCDHYR9G4FgBqZfb0Br9pPsdhqp2igrrQ\n1Q5zyzRhkjkpfN2KTkAISM3FcXX4gv6eOSdUQT80NgobI8tIuohj/xmIrVvkBup+ZjrJBwhIJVov\n+HaWSQaMzefw5wNAX6eyNpfpyjFieVZLQqOw1IlnRBulScOdF1hXOecNY1N0NdLcHX29164v15gv\ny8BOv08iVkqs8c/ejhBCbAH4HQC3AdwB8ENKqbOWx/0AgF8G9TZ/XSn1cf3z1s6UEGIbtMb+mwB+\nQyn1s85rtXamLjvOb4WZz98BnSgAeB8oGXHc0z8r9NfNn/Nz7gKArqTOAWwDOL7sjxaZh9Ovx0hm\nJYI4Rzj04O+so1qUEFpyRnu8Hx2bxSvoBLSD7k2N5W7bcD0IOsDsCGo2NwKaZeEBWvhTAnSx8wXv\nOH8y69ocT0MA0hh+AVCYEkqHbyadeEQytsNWvcs0bTYNuDCLsyakAqglvLbw84IGtTIEhgfIVgu9\nWJDC8725h5OMU3lkKiCehzVbIdJ3bI254uOqhxcF10J6pLXp4ojmaDKhzQDrnHHS0OeTnSorLSzq\n75CGnB8GlicyuLault1wVW2GC3UX8dAazTVQX23RJFaa2cvymN6TVrVoJp7qOIXqlKSFp68JrxNA\ndIqa7YGSIZ0T17HzzhHKe1RF86ardkxhQIAO7RxbDnYsCpIfozcP1nk1NQg81/cnCKzdOImFntX5\nOek5JQ0NwBEgVZCu5IptgkQSQpBngOriviOu62xi3C7Fhs+MoOLrdh61awy6/ZZK6+P07oqPAvhD\npdTHhRAf1d//vPsAIYQP4FcAfD9oPf2cEOJTSqkvYkNnCkAK4L8G8Bf0Pzc2daY2xtuWfIQQnwFw\nveVXv6iU+n39mF8Eydr+s7frOBrH9NMAfhoADuIEMlohiFeQwQqiE9IuctQxOl6A1XEjhYN5zfGx\nFkGMsjpdW3BK5IAPQ9rz0wzhokCQVsS2PhhC7BFfBUCrmVqrzIn+uSXNhfW5g8M54jlPM/GI+Rkl\nHrPIs/lbYBZ51oC7KkqVG0dTgAAKzFlJ5Ao3uj62o/fTAjSnBajVI4gVmfW5ME6iDcKfgFNtsNEe\nC8AWiYVnY0JW4VkGMeoQnDatgB2rns0ClcYiWyZGABTJQKtGn+v5ijSGbjU1hiwDsiOoiGzXXX+b\nRK4MfJgBBAykaL5/bl0ZVCUcEEw8NXwUNlLztnTlzteBe66c6lfEQ6heSppuow485zPl1+LXEHs7\nRilaCQEJGLUPoJ4wC5VDhpQ0au/Ege9LXG73XgtHtDarFmtty1o0teVaREKV27KNo/VExHSEKKIW\ntq5mDR9I30fvsvgIgL+mv/5NAH+ERvIB8D0AXlZKvQoAQojf1s/74qbOlDaN+z+FEM+7LySE2Mfm\nztTGeNuSj1Lqr1/2eyHET4C8vr/PKc++DuCm87Ab+mdf1183f+4+5572Eh+CgAdtx/QJAJ8AgL+0\nM1SdYakrni4lgvfvQtzcB3btIajlmRH0xGSG1aIwch2mRad3d4zcciGsHBkW6B48h2TrFoKbXzW+\nIcw9qAW3czRLuxauwOOoU0s6pufvKCwYJWknTOI5fX0dxMARBhA6CXlo0YTTj0FMSs/lKsNZtv6+\nn+0X2I41l6qpAA6szYyWqwvE3TE5ucoQiB62AwJ4jqUXuULDtqUXrXM/llMLz45PEXQCWzFe2zL6\ncDWrCGGHzGKwD5Xcp+sgol21SOVaQmT4NYIYwd6LZg4YeQViXxjbgNjvA3Pqgmx6bwhiiGAfGOwD\n/QlZPuhq0L82h8/zv02hF06RjEmtu9NHENwyVZHPagWuE6pGzomtW1BhUms3uTOdmhFb4NOmJvCB\nwJ3rFWjtV7FYKFc+rPKtKQuux5UbV2rAtUQt8QBr17ipEHWVKFwOXG9oiOXunOutxEpZVZDHiB0h\nxJ86339Cr1+PE3tKKe0bgQcA2liypmOk4x6A7215nNuZ2hTvw+bO1Mb4ZqHdfgDAfwng31FKuVP/\nTwH4LSHEL4EABx8A8CfaJ3wqhPgroLLuPwV5jPNzfhzAH4My9L+8qtcIAJ6nEO0TW17e6EPc3qM+\nd7PvD+h5z5yMt05TrBYlysJDBNCFKwm5RF7xskYUjH1hqqHz/CHmMiTtrLZDLFK6KYcDukHTDIJN\nvJoyOq6FcjOcOU8z8Zghtk48lw3Q+e8aWZ62BKQTXbaa1lBKiVzhdj/BSO1CnR6SfUJzdjNMa06b\nF5o3UirtYRTsGxkVA4t2GPWlylE14OKsy2eSUB7Ta6TnlqQ6ncMfaDM3TjwOEpBfB7BDcKNG3Wzp\n6VDOLFBo1FmydQulnyORZ4YPVQMRNEO3oESwX/tx0enSe+kvga2UHufOsRoSMUK3cEU8RBH4OJmf\noRcsqG21dYt4La4yB5MvdZXcvDLZW6ctZDiugSaYKHxlOBsuTjyz6hTzYnJ5tQMYbs7aMbnXl3td\nXyah07Qgb/DgJuVD3DnfDFx4G+NYKfXdm355WWfJ/UYjgr+hsdXb3Zn6Zs18/jGACMC/ENR2+KxS\n6u8ppV4SQvwugC+C3vTPaKQbAPx92IHWP4ct6f5HAP9UgxNOQWi5q0N68LdiyOd3TNtLsJ5Vk5Nz\nPgVSQsetFgXKwkORelZ2RCaYl2c4XARYlh624wrZaqUZ2w3IT5Xhoni5thOmw4mofeG2nIaD9c2j\nm3DClo/P2fEuVxeYFzTYZWhqUFQ1r57aTCUv2pMcsDkBaTmidHmIkzQ2LP69ZA/xxQzq7ufWZyUs\n7wNAdcjErUBhKsdeEKFSJVUJuorhhJNpq4QHS38tydN5JAM/k4SCCEEwokpqeUaJOZpAMDLQcWdl\nCLqrSzbJSXD02f5ddIMResMDSh4yBB7dJXTUo1OoBxMzRwk6980sLB7sIPYnhtwq3JlWMxzdMq7A\nlqsLzMuJeW9R3EHcvQ2xpaAG9yGa8zq+LrQCwXl2F/cXIRJJ5oQIr1ECcuzZlVHCPkR6obAdj+vO\np7Oj9WPVQTw4mhvNyzNMshl6muv2OEmINx8X5QlO0jN9rCvt94PGZ3uJ1loj8axd127wNc5AHb6P\nGPWo+Xsn6at46SzE50++9TTeLussCSGOhBD7Sqn7uiXWRujb1GXi1/gJrHemNsVlnamN8c1Cuz1/\nye8+BuBjLT//U6wPuaCUSgH8rTd7DEIKSjw3rxs0z6w6hYxDxP6BnfUEsWmvmBkBcgTxSs8LIqju\nGJOLl7EsE2SVh8M5CU52JDs1EndhUQpMMmlK74NujoPOHONIoRuM0Pe3bFuiV+e0CHeHxtpUzu9N\nODveeX5s5HpuaKuAoPGRi6hFtddpydQeGwbwsLAJKG5vhZB2WgTAtoY4YRp7Bg4ZWvtoPSPhFku2\nWpgkkq0WVvUhD3A4D2rSOZyIYm1bUSI3SagUIWItk4OFRi8Fjz9E5gQHOPYay6ndYTcFKFvEXmtA\nFLfNugHGW6Awi7ldkGeI/QtkcoGRdCr03S2IQde4ztLMom7/cNAltexYEgLTXAVBbOYr7C4a+9r5\ntJJUIR8/tNqBzQhilDpBPloWOFywmsOZVujuWLKuU61wJau6Y5wXRybhL0qBRFpSLM/JXKKy2Ry2\nVT+XxWUivJx4BvuYVac4mZ/hlWmESSaRVu86PTbuBn1c///7LY/5HIAPCCGeBSWKHwHwo8ClnanW\n0EluU2dqY3wroN2+OeEJOy/RC6CRgVc5giCGgG6z7N6E6A0hdh8iuH4Kb+sRvcSLz0A88xcxKWhn\nuB1XOJwTlJIgxuTWCKCWeEjh2B6K8e1xCHJi6xZUcmarnOYi1XDvtC8WkuGZuaGpQihXFUqVQ4V9\nGqA6r2durSIlGf1muPDqTmAJ7DxrUgqx7OFGb4nIW0F61PsXMiEip/N4ActFElu3sPRLlLo1yDyX\nZnBbR3qhllkptZSOwigsa9VPUwusFm5Vqwm9jGwTQWzsAHxfmtcY6cM3pNfz163CgG7tiCgCro+s\nDP/eDm1oBvuYlw91lUaqDZHfoeopaRAXHajxrDzBPL2LB0sf9y4SDViAOaZhsAf14Mv1hTfSQ/KI\niLMqTFAV05q69ThSiLwOQesfUbtflXmNpFuucgzDazbxHB6Sed9sDvFsw9I7HlLFaqpF+kxOUlLG\n6MgM+50Zev8/e+8aI0mWnYd9N+LGK99Z1VU1Veye7uHMblPmUrJBmpL/yaBFEAsbS0A2RUiwbICw\nYNgL+YdhizIh2oBJYA0bNgRbMEDLhCjDAkXIMETAFAhQAn/YMK0lRa/JXe1rlj3TvdVT3fXIR2Vm\nvDKvf5x77iMysrpnt3d2h9UHGExXVT4iIiPvd8853/m+yGZ+ko3vdORGlw9GpcKCTmLO2VV5aLtu\nXvB9xjFb0DnsCq4WaEWDYr3E0yXdP6Okxg8MX80yuQF99z+C+ByAXxNC/AyA9wD8FAAIIU5AlOpP\naybbZwH8Johq/ctKqS/q57dWpvRrPAJReGIhxE8C+HHNkNtVmdoZtxd8nBAyI2FL7TbJch1RlEJU\neoeWAbg3gBg+g2Q1gbd/APNgiXpdtspmMACxVwsDz6Im4zHWHUvCDg3/rc6N6CFAJRHcpPYMeGrQ\nAKh2Xl84MiY2zOBrNvYXLt3grlBBRinUV/+5/VsbEaHlGoZCeqUS87pJsk2HzQbA8ITEOp1D5AWm\nOS/lBlsguNmO/f12rFW97RPTmP1QMt7yXfJOQw9mbikMOCVQ4SpMaFvu1eYak2JuAKTYUEawTmrP\nXI96V6RYUG9KnUHEXpYMrJGGglS3Lx5B/dEfWbYdX19NsxfpUBMw7KZhP12bTY6afxnqMfWjRV5A\nVTmivfsYxkc0a+UCz+OnqN+fIryzpPe7//32PDsj5C0MT45lLfDujOSFjjuUCbn+PQC2lDYOMspO\nttQTguRmxhxnQc0eaJQSiSKWOjNsOdYk8Xqkz1cVlrXNkkbJR4MYryqUUhcAfqzl96cAPu38/Bsg\nWnTzcTdVph7s+H1rZeqmuLXgIwJhy1dRqkUkFYBrc1VkGENomwKzW5MZDSPWJfJeH2tn10fWARZs\nAJghy+ct1QHWHUvDPu2mVzOoqPR2htxgF0pBuGrPHM5juS/SpizshnJ2n0yHnZZP8GSxxtvDPvp/\n8s9AfeX3ffq1G7p8YbIyra/GAOCZoLk2D5ztbK4xXb2LbmTLOE36sWuO1gxWSeZ/A36mcyMzitl2\nLqg65Rszze7I+XhzR88vjcKA6ERQxh1TA1AsgcEhVJxhofstV0WAq4IEWldpgFVNjqaA42hrbBUE\nJkXmbVSofAsSC81rqPe+AfXojNhab4yMhQAAw9JiaZ9VHZGdQ7BBV8914fQU629Q9s4qG6wSEUWp\nBzzVVy9RvT9HeJkj6UTUHzl+02Q9vEmg745wNNkoVjWVoS/yEHd7K9zthqYcCljfIve+aXNwlSL2\n5XPaoq06wESKbACRakHYSaMcrLOeChUW1cSMCzT15F7Hq41bCz4mWDi0MUTHA5lNsULEGWpFKX1R\nX7Uu8u7NyhlPt3Glk5AJCSEZaNVOWUCXhFi0lNV7uYHufjntl9iaiblGaWxyZlwjdWmJY1Fd4eli\ngXdnCZ4sJFb1Ap/a66L/qX8FeP//I+mWG4gIbpiSF5dIqiu7iGtqNPUyyGlTBksrHrqcQNVPadBQ\ni6yy/plRA9DaYPWmRIp2zbi24F2zWl3tlmJBg/bMJToGq8JnUBmySayb1i0KB6zr5pZZSatMYlLa\nn1c1gRODjdtjWFRAVyq8PSRJGlXPoQoiv4hOhHC2IDXmKUngcEmVxTSPO/RGd3tDGtCsL2jglvt2\nLCd1PaUFms9dv8f6fIW6ChAsa6KnHy7IpmDvPvK1VUngjBS1NcpzB40XdYBMhkiCCgcZ0NWePC8i\nJRgre1ZQYOdSZ0PjBVcNtJwUi+iygjWS92imp6UMx/fZKK4x+vDM7hfGRn1kZbePRdxe8IkjiLvH\nRhomDfsYJbYEwCWqpu9L03qAbAfCna6USbhB0hgi70hixGVyo8tjVApTwJZFA1NPrVimtR5u0oFd\nOwQONk5jw7NmdOUYd3sSmbxCJhN8YiiI6bS4ol20IR/4Fsqi36VBxL37pHBcz5x+S+KpQrD9g7qe\nQvaGuNM/wv5orCnHcyimg1c5FGbU+K3aQYh7MgxCL4ok6BhRUTNV3wzOcLQagPEOwsj+vZ9DHawg\nNM1a6rIbZxompAXg/fQegMemP9UW9PuN/ncA5AQ2vEilIQHXu9MEo/gM3zd4E/KttyDdYUiHpaXi\njHpGmuWYhgJ/YpwQmQWgYdx7x5CzhR0o1fYBYnBMBnq4T6aF36/JLk/mCHkOTn9n3KyHP3ciexAA\nJTGTQQiE9tM13upXhlijLt+jisLefa/fxeHNFPFGQKvBA/BVPDhc4HGGXL2IUj3TFNusXoNaFh2h\njmgwuW1m7XW82rjd4KOH6Ti6coxFbSWQGID4365gJpVKrOXALql0nvLnIDaPTyVd1BPI+AgRyAF1\ntbk27C5mILG3SSaJilyAgJIXYAYoN1gy391dtmVNadjHURYjDZ9hGN+jLIH7S64LqjuMqGdjVmGN\norb2ArzYq9W5kXNBXjogdgn0iT1lluMWVQdjEbADhKQgEC7Wu8k4SdCxWRXvmDmaDDUGoAwWdHTM\ngyW1X5MEUvSB0T7SezSvY463pR8nRYxhfIgfHD8z3kjtEaAj11jWG5DVwPYjljXwe8+7WNVP8M7R\n90O6JSVDE5+hLs49UE5lz2fGRSnE8Sdt2fH4TYj+EbEjNY19mB4iO/4kkCQI0wThiRYuvXsMcfQQ\nVRRuadO5AJSGCvlaIcMGoxgYxQEOsoiMG5cLqMsvQH39ET3x3tTcSzyw7RkJcvbZNifGmShrIgJG\nDNgFsq1Nl3NPA6DXjXKo1RX6A56xeg1A3+m4veCjWWHer0SMrhybvgnQDjqTMjJZDvd2eMEg22IK\nzm7cYNZS8/f5eg5EfdQaeJhie7qIsKzpddloaxS7cwt2UWO/HcACD89rtF4CJ3uSQYJhfLjFKBL9\nrjWu452+pqQySLphpvdnz8z8C1OzWa1BwUq57ByWTahUdxMIgaqWrT2uLeBpi13yLGYBAib1Mzxd\nLJwBWtIFy+QFDdHKwy37BQBGu85c12Di3UMcxSZw7gWi5idhgI4MWkHoS1cZgCd4MDrQz58hX50a\ncOMyK2CBR82emowaAP3/HvWUmVq8yMnM7yKP8fbgDPvpGP2jhwQG2uHXbNZalNEBv9fGAqoyiLGf\nSpPtqKfvQ737GNVXqWQnP5hAPLgE7k4o+8K4HXQagGOUzbX6tMl6HMJO8/PYCheAdGlYzZ6iNzzR\npAiij7+q2Ch8HGnb37G4veAT2FMXTiOTGU8MQK5KM4OOS5kG7P8PU+rxjJLaOFfeFG6mwlnWWtUe\n8Dy6phv2WR7gMA3Qkbt94HmuaJwob6jRRIOcAGwDkGg2dd1dot6hur0oDi4FmqFELUe0Pl8aMVRS\nh/A1xUQaksxNJ6KeSZpAzGDVufl4YXsyQnu1uJkQZ0FcYrR9JIda7f7/pqhyqDjDtDrDo/kKf3CR\nef2YRUX//pE7G/zQ/nsEQp3D1sFRKWIgALpyRMoNstaupXRPUd/PghDNuCgs6w2S0LIkO8439d1Z\ngmJDpcqLPMSqTs3jxkmET+2tCDw2HW2f8Mz4/IiMsmsusS00uJ4uY5wuJJ7llMW/PZjiuFtjdPQQ\n6E8aVutFKykAIHM3l81mjBAv39N2Ih+g+uolVu8SiCfLCvxK4qCAOoDv3+TotAEtSussxsuqHk7W\n0waQHCJJtkVieQZpcYW0S8oNB9nylQLQ67Bxe8EHDuhwyaVe0c5LT2y7njTcQHUp0xyHKWUmDDgv\nYsc0nSpdoU90DpEEHfSiCUbxCqMkwunCNdcClrX0MiwbVObw5iK0irBgejXvEFtUpQEabow6I4gq\n9YZPRf8IqjvGaj1HrUtdTROxCBFJ3V9P9fBlvCWKGmoVZRbHFC7ouGU99iVyyjAeKUCfhxSxASFP\n4r8JBPw6N1FynX/z/EkSbMzC35XAolbY1099Z1jhbjekuRt2AC0KiDf/ZOvu+yYWIoMQnRS2QAjw\ns2XOnjpSoSPXIO9FGHWJLK9BIsTbYdQidNZ63O1inFxjP13jIg/xg2M968Muss49w2DaBKA20VET\nVU73z3ICzBeQd5eItT6ivNu3Yr7jI5q10c/xgvXX+Bzc3yeJFf/UzFQlhLexApzSKBsC5sX2feCc\nL0BrQLHZVv5+Hd9+3F7w2dT+ztjxAJHxmKbqYUtKbrbRkf6g6Em3xtsDKyjacD0A4Gc5TeJAtpZQ\nH3wZ6noKJAmyvftIu/eQhBcYJxN0pMLXp/4iflUEWwDEc0P0+k7THySQuss2moMb+jmIZi4HdxDp\nEtRqc22GQQFs727LFVAtrOkaAKQJqWJjh3LyLvM7NxogogBDE3dLKQxCnlcMYBczN5qT8Q3CgMkK\ngxgHGXBSVubzZ+LAKK5xtzek7OKDL5PdBguLJgnE0UOzCAK+yR71Etqz10xuWBTDAyHv704waDFt\nfxi/iWhpLQOMDpqmE+/67FPZw4M+cLdbYj9528+AnWslotQAkLlkLiMNjvpAI8TRQ+2o20XKm5LD\nPUNiMM+pVzuP0/QfeYhUl4E5VL2CqNJtAGqeS1NwlEFIZ0+1KlGsySKE+7rfbmwUsRdfB8UtBp/1\ndhMamvGk/IZzG5mgKynbudurtK3v2DDjUk0WaAaDDuCYhmkjN2PwNegCBzPg+E30+0dI0z5SeYVM\nrvDuNDF9gGc5APgAxJPhDGqG6sznhsaSF2ceVXtRT8zcRYHl1vyFOQ/XubLKrUcL6+A5IToRQl5o\n2OzsnQe0EDUXGDbsc4N3qFyCk3ErzbaZxbZGUz288TtenCvHeqJGaejKAIwmX1e+ATk7h5o9Jm21\ns3PUXyf6rtTHJo4eAoCZubmuCnMvFZvAy3b8YVkNKNhQaS5u9g3tz65GIJcat8IpSQHt5Si+Z0by\n0DDMOKgiYMMAEP/sMtLqkogQ1Y7eS/+IvmONUq73WVYtG4a2c+LzagaXzxwAAhwPobJuNSR0VQ7y\neq61/WJ8bXp7l8nvZNzeq7pZ2y9qs/abjSEj+nIwhboZJ90aJ50Kx92ulV5ZnCOSGbLOISpNXHDZ\nWF62E/RsA/bxB6i/fm7cKaNPkrsmDs4gD+5hNDjGg/4zJAHP4wS4yNlDNTBkBPM+XGevt9WIDQB5\npYUCxWbpLI68PaP/s/Ych+klNSmwRYOFBBCYarabONgDjt8E9h/gvHiMOi+9LBAB+R6p2VN/GLSs\nPWqtyX4aJdNmcKbXVIFQ9cqX8nevR5Q6588SO5aqziU9NUbt/18AACAASURBVDulHoYjKlq9rw3a\nOhFC9oLZf9C4tjAEEQYg3jTw+7E+HYUPNPrMPCYjuZ5eQc3etU9zF2cZWy01IQBFALR1TrVDe2+E\nGQNwFnZjItekQQMm2zLv7YJLNgbeHJvjdHs0UtBgt1hiu/zmfkb6dbc+97rc6g8qITyKtun1lBXd\nX31HisfJeialxNenEd6/fk0S+E7E7QUfpVopvhxMJeWFgheOJKTFoI3J9qGiZZeuljXQibasvJu9\nGW5+d9cMQHQ8d7shunL/ZvXfRjDwtGVqHJwB9eS+ZwbnOX7uCi6TvPPAzJKw4CVNxBeemKgUMbLB\nMS2Gu167Lmlg1PkZgD0WXYbxrBicaAMcj5oLXVZy2zBBsq0t1qRrN6PKIcoVwkCiFyXoRfxa7RP9\n/LnxvVerEt0IrVJDJnNmWvuuGSbAl2wqV4gARNGeBveFZQPuGtx8mWiWMnc8xr3OlIHt9v0x5Tfu\n1TXBLEohqvTGDYj3ei7rsal0DZjsUAqB/eQeZHAGKiO+GlXr10Omftxe8Fm3NGa4cRlZV9JVHW2V\n3Wjmxu5W602BKOqZUgPbKLsN5p3T+GVNU+ZOo0h0Imq+94YQkia0J8Ucp8sExTpAV1LZbz9RpvR3\ntxtiGFvPqAoVJE91A+bLysZrAJDXFyjW1kKASz7uLtzdXd8IOu6ClSZArssZZe33dZYT9Dt7OO7W\nrdIqadinjUFnRIvPUGdUzWHOJuA0j+cFANSk2QO2h2RKNQ4AcTbpRW8IcY/O1/0ihSdD8obSC2fa\n6XsAY3pk/HLm2GllMhI/Ue9G5lYrsQLYOfXvnb+bXTavnbvY3/DaLNNkshSWUmoBiTbH1gjR7vNr\nfq4OWca8vxAAS0WxBJZz7Iadty6QRT0Cl4SILcpx690Vw+gID4dzsqJ4Ha88bjH4bMhNdOCn3Fzz\nXasaV4XYKrnxrA1lPfZvSgjSgYOV5mELgExuzNwDoHe4+eLmnWIs6UvUGWFRPjGMO+757KcKB6nN\neIbxEQFERAKhfBzo0PnVm8JIrrizS27IIEYvsOVBznTU4tw6kLrltTaygMsmczPLKLUlkSUw7B6Z\nAV5zTeCTCEQ2pvdtKncD/qLZpN+mzvS7jLcAqOp0MS0eoytHvryLW1ICthrr/sXSm4mevQsizlrv\nvWGn9usVoipFFPWcTMMx19vFtuLrqhdxC0jO9WbCDAOxm304Q6jNrETNz4Arp7fWFI9t2rG3HF+F\nCvW6oBIssyNXV62gw1baXujPT+jHeSw5PlY+L75OVd7a4zEgpJSnluCqYigh2sknzahyT04rDftI\ns5cwx3sdHzpuL/hsNqRplW9Te5lmy2KPxTow5TaW8QdsNuPqwNWqNL0e8p6RKDYbpKFuYus5CB5W\nVEVhdbY42J46HWK1ucbzVYWL3Ge7HabASbciyRJ5SMSF+RmQDRDpGQ7AJxIALABJ0cbAY5tnUa7I\n9lrTh7emygGaxUkLO2HuLpC8gLQsrqpeQSyArM0fxo2I9OC8BRbYngHRx2UGDwEAU4DdGZwFa5VK\nTPPH+KN5hOPOGfbT0g7iNvoLhlqMHUOKHAk5oppeg6twrV9XrWjw1tiWuzbYTZ08ls3R96Vq6XUA\nLygzOSBAkjkUan5melX8XgDaHXE5GhsMzuz5XpdBYixImo9jx9k07HusOOMI6wwQe1lVcz6LZ3nq\n0lN6d8PNovj4eKOVhn0C8JcsKTKBxRznxyiEEHsg6+sHAB4B+Cml1FXL434CwN8EWSr8baXU5/Tv\n/0sAnwHl/c8A/LtKqVMhxD6AfwDgXwbwd5RSn3Ve67cBHMPQHfHjSqkbU8bbCz5K+RRLxzfHLbld\nFbz1peFRGgTcoCllwzYM9aYwjpyTMsZFHiKTQqsPlEZK/8aFI42NvTFnPYBlOXUkHctxp4QMSBVb\n1af2iyozoNM12nBkKBea8iFnczyX5AqPGuBZXVETedd0OWuLAaCFfmgX+bq0X/Jm2USzoVS9glji\nZpo1QNRc3lW3DR/q41Luz4kejDXXg2r5q7DG2eoMT5cxvj6NcJGH+NQeWRwMo4bNfUuZ56YGOwOQ\n91gdiif1HeBRE0tEabNKVwBEWVuAd8BBNYHYjQatmoEiijQTbjnx2F5MBlFO9iOa4OlcQ84oPGWL\nDYwFiTksnRlZANA2JYjomNsWdHcOyz03c2xTILEisC5xxgOehsgu/VeQkWKUtjsAFwV9pjIDVlc2\n07+ebmeG32JsFLCsPhLyws8C+MdKqc8JIX5W//zX3AcIIUIAfwvAnwPwBMDnhRC/rr15/mul1N/Q\nj/urAH4ewL8PGhz7GyDrhDb7hL+krRVeKm4v+AhhywtlDTy/BAYFkA6RdvqapUa73UVjwtz2eujG\nZgO0ek03PNsvs6rvog4wKSROuhWOO3qxG57QYWjzWQlApCHkm0OIe8fGeuC6KrCs7cLD4HeiF6zr\nqoAMzjDk/k6Uap2uKy0LE7XOKTCQkXOlluTZMbVurhE08LDSde4wixKn3OMCxEzPnAy6ngwKvWHW\nvsi74ZbX3JJLG1lEi2W6ygi8EFdRiGl+CoAGMZe1wEmnwijpIxSSxF0bpS1e0NysR9Urk8F4jrJA\nu1yPCw7DAVGMkwRIHUp6M/toDto6x+S99g3B9Gg2yTPXuTOi+9wFa+f6cRYuhoMbCRVJ0Nke7OXz\njawMkltaNQDUGW0NCzOwmdIZb86KggAbDhgDREbJBsCKCBWm9BlRibNCZZQvjFljfmWvd9OtNy8A\nTG1ZjkGnrMm76eMVnwHwZ/W/fwXAb6MBPgB+FMDXlVLfAAAhxK/q531JKeWecBd6IVRKLQD8n0KI\nnX4/HyZuL/iE4XapYbaA6p0h6jzUrpk2O0lC6vWQU6cut3EpSzPFWGl5Uko8uaas6aIgOZZ8DTzP\nyf75pFvgrf672B/cQ6QBQyQJxBsz7c1yD1Wni0V5tkV24H6Ty7SbFFQm7KYj1GqJi8UVni5jXOSJ\n0Z7jsmEzaCg1MXYLW/I6TpjsoqwsI4+zx+nMLvpVvl1eKgoqJbmSOU4JaWdUuZ8lMgAldlfMx8XH\npIqChhC556OdXd2S49sDEmjlYJfXXcoPXuns+aVZkMTB3naZzQ23P8b/P0gguNfYNNrj/zd7G81s\n53pqn/8C8KaMhAgton9kNgxsKAcAyEvU70+h8jUtCmmiddM0MDbo0jJIgA084DEMRK0UIqKUZt8c\nW4x6U6BGgbQ7NteaWW+mh+Qef25BUunrKcqaNjMa6BRm9rrlU0DGiLKxB0JmA8H3dlu5UQOQBzp5\n6WWpH2HcEUK4WcQvKaV+6SWfe6SU4g/3AwBHLY/5PgCPnZ+fAPjT/IMQ4hdBdthTAP/qS77vrwgh\nKgD/G4BfUOqmWvVtBp/AX2DMYhJLoH+EMJGetAoHKwhwuE17N+O5KgK8vxB4tgIm1xJxssazCLjI\nCISWtcDbg/dJCiW6DxWlEFdnwPgIGJ4g126kLO3BoGPLZAmuq8J77+vqTANf5vnDAMBhuq2I4IaR\n42neL0lid8g5ZTLr86UxUwuhS0TaRZOzHTWdmccCQFhWULmzcPCi6bDxtjKNJvCYg9UDk272M1uQ\nbtyyQnhoy18iGxu2oBtsNeGG8W9ywqv9M/CcnWN9OrWqDWVtzdzccDO/uPBBigVaW+eMGtEcvtVu\nquZ1uSzXYANuDRXzOfWPoKocYrgw9/36dIr6yTU2mtESdSKvFO0Bj+5tbgEPl6oiKpOKKoPojDxJ\nHg4vI2pYg2S8LFU5bWD4XLlECADP9WaGgSdNQOskXVtVlxDpkDKwuA+UK+9eEklCr9Mswc0WXnbP\n9/qrCKUEyuKl1RLOlVI/suuPQojfAvBGy59+zn9PpYQQL+RZNEMp9XMAfk4I8dcBfBbAf/6Cp/wl\npdQ3hRB9EPj82wD+7k1PuL3go8Ps5vUNrtIEmJ+h33mIg2yJ0bIGILGfrnHcKdGLEjvxH/iWBgw8\nLND4bAV88DxFvqIbLs3W+ADAYFTgoiAK92rwHMfdLkZ794F0CNW1w6m8U2eSA0uomKFMwABQ871d\nAcyupMxrUQc4SP0siPs9Jm7MekqoJWU9TA1Xy8oaquXS7hgdkOLHGqACyAU+yin7ifzJe0NrbvYG\n3GwgG9ghVJ31mEWCd8vj1DiKNsGmqdoA2LJQE4A8ssB0hvXpFJvLHGpZgZcSARAAcdlxOvN6UV4f\nZXBorBCY9m4yg/Xl1vuncZ+IF+yomhe2FJQm272hthJd43eifwR1oEujkznUskI53aDKJYLzFYK9\nJcLBjDK0QdwKil6prYW2zcxGViN3AYgHOZsRCglEPWBemtKgKQXyg1wQgs5emAgTS7i9IbA6Q/O+\njiX9vk2wVGc7m2W1JYb7vRJKqX9t19+EEGdCiGOl1FMhxDGINNCMbwK45/x8V/+uGf8ryGr7RvBR\nSn1T/38uhPh7oLLea/BpjbCxA3F5/6enUADuHD3En9p/gutqgVHSRxKMvQFOYvrEZnqd/+tIYqPl\na2A5KpBm9F5xskYnUuhK4M2uwn66xkEWoSutjLwoU3IrDWLDkMvkhlSPsTGzMdxMXdUBTpe0A58U\n0oBNV1oBTNdFlYRJuZS3Rr5WkAFNuwPYHhZkB09dbnthDLrg0dcQMI6bgbFQSKwYJDfGASoPAcZf\nSQlBMyS4YVanM6LjSxMSp1xW9D5cx3/6PrCc4M7RQ6iGlNDLhFHo5lma4QCirBGelDbrcW2sXfbe\nkK6dmIHOVVPnRf/IKES7u3/An3Ux80BKEeuwSXBolo3KWltfFNszOm0sL91XEQcFZaSdCPEwgIxq\nhHf6CO906Lx6Q4hsbNiTvOKbLJlf181QG6w8Pu5mH6htM2As5Z3ymHDlmTiYMNHWlzJZdWMgdUl+\nTfSY3EpBlbW5jorfM40RzhYIOpHJ3j9G8esA/h0An9P//4ctj/k8gE8IId4Cgc5PA/iLACCE+IRS\n6mv6cZ8B8OWb3kwIIQGMlFLnQogIwL8O4LdedJC3F3yEMLsfw/SJI9vDOH9mAGgYV/6QoZml6GOt\naqRhiZXDQKbMIsCbXU1YqGp0IyANCXgONE36E0Nh5nPU/EwDUIlo7z41dIMSSVAZlYVJSaXAMajH\nxFRu930PUtvj4ZkkAFvCpMWaVLppWJbYS6aM4obpqWyzkwSrUqex56iJnt4xzxYIB84Ovd+l0lNn\nZGdQnKBSTW4GQFWc0fxG6SyczgIs0iHUmAkPCWUhfCwc0xnU9PPA8ZuItMNlFNww3MivXa7IBuD8\nGdR8QUOjAHCwB3GwR7bVbKrnOGfyc1Fpy+eezgY6I0/DTCi1pUQhkXh0ZFRXNttxg7OdllDzBUQ6\nBcYtA5nNc8zGUOMSAjAZ3OYyJ6Xpe8fAyQnE3n3MgyVS+LMuHvU8SiEiUqVAOkQziCq/uw8E2Dmv\nqFp7/ktmILQtZgsffGK5dX/xpqPeFJCdLqQYQ7CCRme6ZVJndN76XfqsyxrBw/a3/7Cx2Qjkq49k\nyf0cgF8TQvwMgPcA/BQACCFOQJTqTyulaiHEZwH8Jujj/2Wl1Bf5+UKIhyAe43sgphv0azwC1S1i\nIcRPAvhx/Zjf1MATgoDnf3rRQd5e8AlCulF5EQGs2GBR0IKmASjqHwFYbPUfoujYgEQmC0wa61hH\nZzicjXQkjNePOxhqdtfTGR1TOkTaHaPYLJHJAkXpm49dFdYDxh2CdYkITKMeJX3UGzo+V5j0eQ4A\nUveSSshAf0FDXQZj0VXOepzwbBLiiHbIw4FVJs7GUNmVBSHAUMfbQAeAuQas2+Y6zK7CmkQz3fIR\nD4SmQ6iDGEie0Wfm1vDLGursnDK255fAvWMDFjxX0pyylyIme+/5GWXAZ+em4WwACCAL8aOHxu58\nXT8zJdgk7CDt9BHxxL8Gn2a0zhC5wMX3hGvml+j/4sKbuTLl47ykv/fsQKab9bkR8RyVBvAQQHhn\nARzu0cKrgefJ9RQH2dJT0DCA6J6Xe758XExL39EH8q4B947c12haXvPr8mfijkukdI+5mwGeM1qr\nGsVmabQVZaeLqDOCkrGlzbuD0W1EkI9JKKUuAPxYy+9PAXza+fk3QCW15uP+/A2v/WDHn374wx7n\n7QWfMKIvi2bPqLzYHvYDCIBcZhHgTJ9nxnTKbf4DlHkUayrBuV4/40RpVWQtRrq6oi+yZlCJsiby\nQZRqaZttzTXOhJoUau4Nee+hM5kkvEQSTPHuLDEsPEAhCUNkUprsx5v4d0UYWyLoRMCobxaqVVhT\nzyKMkQ5PaOeZUSNapCSP4/Y5okr3jfTEvXp+STvd6D3jmnnNEkBhiTTqm+e45UEhM6iBtormXotW\nmeYmengnRfzJCcQbTz0Qgi7t8ZS9WFxRxvP8EurxU1RfvcRGG565mVu9d4KL/BuOpXpg7M5H8RV6\n0RJJ2KFrEY9bh1Q9oz/WJ3NAx7AFudw56BLQ8w7f7Su5s0OpBn29EWhmGRy80RAAAVCuSREHexBH\nDw3wfOkqw0lZ4RPDMwNAvBETlS3pGaUB53zMwq4BeKsP5ArUAu3zP43NIcrK9GHCvKQSZyypRKj7\npqQwYg0h26IbjZAO7iDKxqby0CxXiv6RtxF6Ha8ubi/4iMDs+oCz9rmHXdHSwO1FibG3bkrysAjp\nFvCwzAkzbKBZd0UBVDmyvfuQHRI4bFowF5sAJ53KZDq9KEESdo3YJJYTqOW5GUjs7T/AcbcGQMrY\nz/LAyPOM4hoySJAEnZsn+d3L14moz3KwBwwOobpjFNUZni4WGCcKhaTFNx2eeJTa2jEx60ZjCyZt\n71GukJrSpj4vtD/eA6Dnlzf3p3Z8zq7/0c4YHALDE0yLx/hgFRrVc1cJY5UGGMUVxskE3YgcTLfK\nma8ieFFubhDy0jtHHrrkYA8p5Fe+rcgdun4M/OtqprNruqd5WDMLelsyNa6cTRoTXdoTfwV2yuO8\n6BytfC5ay78AKPPWhodutgPYEYhm8PBrxLpvlV8i5Xm5yXVbH/7Dx2YDQz56HbcYfNaqQtXpIopS\nYlw1tciA3W6XXK7ojnFdX2CtasggxjgpAdTIZKBBwhp9uQv8LuAxkRdQX38E3CsgD+5hf3gP+XqO\nbmNq25XEyYKeFoucW92wxiI73H8AdM9A0j6J8SJKZd/I6rBqszsPglwP+uUFxEDvNsuKsh4tfgql\n6DjkHB+sJIAVkmCBcWKJNi54Mmh2ozEifi+eKenb8k5UrTGKDvUCuRuoAD2Lsqdp67GEjKknpZYV\n5JtDMi472AMO7qEe3NkequUsFKDdP4AojqAmS4gHR8DxmxCDYyhQaW0UXyEJAv15k+toRyrDiuzK\nkVMubAGfJrkDoEVwcKgzMir7GjUJltwxIquTrc94s6wQjkAlOf3aMkhQr52B0OUCan7zgiqUQleO\ncbdbYlWTjNMwPrTCr25ojTYupe2cFWuR6THGgPrXiq9BNrAMuh4gWGBWz+CEh5pFeLBHJdC9+6ii\nEHUDeOj8fR8tDmNHMXnP9n6MPuAQMh63siJfx6uJW3tlq80G0/KMFgi9oLzQIoAZNLqRycDDkcoe\nxrhGvq6dRYk8W9zFSE3eM8BzU6jHT6kUUpfI0iHQ2TNDc9yfSMM+MD2Fev4l0usyMzm2RIE4oi+3\njDEcnqDOHgMocJBFSMK+zSpKv6fFxl9YzaiJzcN3WrhTMLWYzz/soxdNMCkJJIpNgA9WwJPr7YV3\nP10DINZTEnaQ7d23Q6euxtfqCpjbst3LhOgfEQClCcLRJTCZk3MqlwdTiUfTJ3jQP/DLjKvGJPvB\nHjWgRwvrtqmjJ/exTmr0olJnpbUpu5nPei3ps9aZctM0rRleTzEbAHdgrzv3e7jH0pJBGEowZ31G\ncaDr3yt6XonPcZfEkRQxhvERPjE8Q1ceWoJElbdbVbAWXnlDCc15D9Njc97TqxnIjMYP6pUFI35/\n/p5qmw7Te2vYT5geT8Pmmx1vm7017veqwWrLVPJ1vNq4teCzqgN8barwVv8Z6qhEb3jiCx5yOCU2\nbmRWqJA3gAfQHiuyBxmUSENakACJcaJogeXsxAGem3oqAKgPUtZQA/K4j9IhNUqFAKanwIxcUNWj\nM9RP5jtfJ4L9Yu8P7wF4jCTsWOVqxxPGXehFNgbYipmViHmH6Oq5aTXgrhxhFJ8ZFt670wRfntI7\ns4xPV5INOEncLHCQlYAE+fg4ul5qfgacP6NFwWEyvQwQMRFBJAktsL0hxN59TMQMj6ZT/M5ZhmJz\ngbcHJCwqlNru7QFUzmEyRSOSoGPkW/gzl0HiE0mevk9ZyKBL2Z3TDK9VSX2PXRsebe+B5UT3b2hW\nyAiLRinN9sztJoZnYswiWq8gxZgYfhePTG8NzzT4TGdWpWHHNe3KkUf9bg0GWLal2KFd6Jra1Ws7\nVyV2fZ5RCgEHBBq6b6pLQ8SultuWWzCXPKscqK7s8a1mRkbHVeNQAMRqRqaS4YcsE94Qm43A6qNh\nu30s4tZeiWVN9GNSGiC9tW40hoxP7K6oTdYFdk7EzMY0w4zRFEaOJw37dPOvZh9aqFBNZ5pOPLGi\nilFKsx96IamfzLE+3/GF70gqHR3VlMUMjqkZ3hzm5C+0M/hp6M6dkd0pRjnMNLmjMiyU8rKfP7hI\n8LvnAo/e7yLN1kizGqNeTV5EqUJHMtuugAyY6g3b/D1/5qkvu6WZl5FnNGW4egUMTzCpzvBovsLv\nnCX4vecBgARJMMU7Q4fI4LKn9IIvZNbOVtMSMwDMZ87XFdWVEfFUZt5nQtcWI0v/ZXYhL6paeNW+\nCZXhtpQQzL+nelq/ZeMxnRFY87wSb3omc6s8EUeanm1nY8z140xml63ErniB7hyi1CjBsyipyUga\nunpbZIlQX/dIW4U0gIfBx6izN+zVPYV0HlJ2GZ3sbsrPCW/tEvkdj1t7ZTcKeJYD44RKYyO3veMu\nBO5OPCqBfIrU8Ulpzk+0pf5UlpmTe2Q2ANKpb03AsUPI0eze9a6f2TyRM6UulxVE2t7MFJ0I4sGR\nLTttrlGslyigWWRMC+YddpTaMkY1s19kFnzUkvxiuABOTrZsi7tyhDeyZ1gNKyzqCMCCBl9bZp2O\nOyVGSZ9IGGwLwaGHOpXRhRvYBXIXrRfYKgmJbAwFMgd7e3CBJJiiKzP8yMEKD/oHtDOOIktj5qFM\nFwReJICqY1FRz6jf2TODl4L9aHSJaLW5RrFZbm9euOznAkDDDNALbY7G9hyApsHreTXKtM6opMy9\nrEEXmM4QuDNaznm7184lEQDwsxQGzAZYAAC6YypZOSrgDOB0X11ireqtfooBCp1B8WvKICGgduai\nTL8uoPkoV0R0C3j4+gE+eYEzR0AbIDYGV6MUtfrYDZh+bOJWg48bXBs28wZNP5HGv9Xzxx5dl29u\nGST0hYUt3V0VAjIgGnOkB/uAM2qY8uu1lN9EktBiwTpgura9qM6Q19cYpofI9GyNSBKI0bl9sksb\nTxOIt94ydOhis/TYP8V6SV/atINaLbGuZ2YXma8VjrKOPf/VDOr5JdbfeI7wzsLIyrgAJKMEqezh\nuDPXzD9p5pzc4VcGnmF0ZGdr3IhSohfnjZJbZ4T5+hJ9toLm0DtaBbRnCqBezYN+DOA5HvQPiBDg\nvh9gylscrBC9C3zcXfdVIQBMsFY1uoM7iGRGz9d9wrku19YbR1WC7zdWAm8qBDgDrBxCKWL4RamZ\nhQk6LaSG2QJIJh6ZRgwHRqJGDAd0j90ArEYZwiEtSBED7vyQalGOCAEZdQF0yWrEmYUCYDIqCdtL\n8oaIo9QHGeFnZQDsnJYDQlvA4wKQHmNAlVu1A0xpk5MWFoz5O71ebon7vo5XE7cWfJQSyNf0hc7k\nZht43KzHmYD2lJpHl5SROCAkGzMBk1IikxuT/ch431K8nUanSBLa4bv9Bs529KzBvL7Aoprgj+YR\nlnWMtwdnVpgUsAOdwNaQnDh6iPn6EuuNtfbO1wpY84JRAJibmRUAWNW0mI2SpfYMWgHnz7D+xnPU\nT0gPTOrrI+7qch0AGY+RBB30otJYP1j3V2hvI4VuNCYjN7cJzsOUbFDXG5IpnMMwnFZnJBSa6gyD\nd/VNXbEdAJSGfbwzbFFzaICOCRbprLazDyvZQ8DDQ8DZ2iqNp+EJVus5iurMc5D1Bj/r0sq9LCfE\neNPHXqHyZW2g5Yf43NLEl6FxNh6qKCCeX/qOvYOuvadZ5BXwMi4362ENNiPr5AiwuufQlvG3/Ztj\np7U8Z1SaRce25lsKI5wlgQZmlRBUxmwDnmbwfFNUktROTPp7qiisi3DLOX07odRHpnDwsYhbeyU2\nG38naTxP3JuWd6KOSrNaVrZefmdJ2ctsAaXnXXi3VmBpZkAAWpBksKQZC+1nYpIvB4AA0M2vpWrc\nbOfpYoHTZYyvTSUuCmGESe/2hugfPYTKSEW9TSl5rksdbkYDwBuQvMhDY8HgxnFnjq4cQ9Yl1HPq\nLxVPS8RaLkECZgFTg0OjT5eEHYyTCYDKM+Bj6mtP7lPGo3tXRll8OKC6O5fZNPCw/fXzVYV3Zxne\nHkxxt+cAUGOhYbWEtmhT8BbZ2M96gW3yCWB2/PWmMNc0XysUG5r7WSFAsdlgVVeok2dYBNtOsp4Z\nYZVbkzeA7jndS1NxZvoabv9FCi32mU/JyO4GGRrTcwKMAoSRIHJ3+Y2oN4WXJXM/pUaJdVA7jyu9\n/7vnyfbvmSQpJzcOghKh7qk0Kw4GWDUAedff6d+432L3Od7jm+HQvJvfQwEQmMvYZJu8GXsdrzZu\nLfhEcoM3uwp3e2QoZprE0AOLkeMfD9iasKNwawUPpamX2x0j2SFMColVzfM+trEuu6RzpdgegIFO\n02ndbKdYL/WCm+Ar0wDvXwtMrumjK9YZgCmOu2RQ54tn0gJR7wAeXhgYdJ7n1oKBxUi7kgBqUV9h\nlA6B4QDhXop4WSO8kyG806Hd86DrNeUjRIChMU+21VEKewAAIABJREFUdMzqTYnr+sL2Rg5yu5C4\npUbHIG9anuHJYo2LPEKxJtAs1rqc2fyAeYFyJF2apStjXmYOujFzcpPbbONcWFTWDhgHgISWQqqc\nVxVm2BigHmHWGRGIDCyL0J0j47IoYEtf5AoKm62wDE1LCBY25V5GUzrGLfPpn5kQ4N4vAJDCZ5Px\njFvb9Sg2dG9R2Yr6kVxy5WoADYAWiIIPP4S7047C7Ue5PSf9N+shBOp11iu//5MkZECoytaM7XW8\nmviugo8Q4j8G8N8AOFBKnevf/XUAPwOaKPyrSqnf1L//YQB/B0AG0iP6j7RXRQKS7v5hABcA/oJS\n6tGL3jsOgZNujVFMjU/RnHFJhxYYcAaRS9PXMG19R9cMGfUkrnVp7INViCfXER5dA0CAByajoHKM\nkV4ZnlihQ6cxu9pcmzLNdVXgdEmyOPlaYFlR+v5sVSMNgSRMkEmf7fStDMe56tfNHk1eX2OejNB7\n+wcgiwLyTSrliIM94PhNswh6KtVRCoR9A3zNKNZLFOslkm4HveG/CLGnJ+IdKjKD6KI818BDVz8J\nN5pJ6JQ5m7t3bnhHJJ6JboumXNNDyNllC5lZ2X5nYeZwF+diExqlA9forxkMPPz51KrEfH2JdO+E\nNAS1sOq8vkBRPN7qkXifa5QCKz5mrVHIM0FwFK9dxe3GfFDbeTHZhO3gm+fETX0AXvktdJhhmSyA\nmizfgY3pm9jh6wD5ujaK6qaM2AyH1ONlsQ0igUt8aKODq3q1lQUbtqEmpDR7Qy+rfv6yoTb4MH4+\nf+zjuwY+Qoh7IEXU953f/Qsgae8fBHAC4LeEEJ9USq0B/I8A/j0A/w8IfH4CwD8CAdWVUuodIcRP\nA/ivAPyFF71/HNCgYy9KiAZdLLak+4XMqPSh+zOcopsvyahvdvwiGxsWGQPPV6YBvnxFX7p8rbCs\nI2PfnMkr9KLEiB2mnT6kGKNSJRa6Mctf/GIjMSmsR1BZhMhXIZaVwEUOPJEBMpng7cHc+PPUzg4V\nwFbWA1DvZQVaWNxymyuCyqrYgCYm9EZIP/kngIMzk51shbPrjKIUXTk2LMCbQEjGeiErn3jHDQAf\nrEJPy67p5npjVNo3qLSCpU25GQ+EmgDkZEBbDDDAZD2TQhrhVmCDzPl2cdkxlT0kQccwuPg48vUc\nObG/sVi966hB0HGRega8BR7QWboGHlHWvseNLt+yjUNbtKl7M/C4GUyGjbm32PXWDUMa8IKzb4km\nAK1qGE3Bpuhpc9DYPVbv8wE80KlVCShs9/Ia9HXTy2Il9yiFqDKy6IhyC8aba33/vQaM70R8NzOf\n/w7Afwrfa+IzAH5VKVUA+CMhxNcB/CjLeCulfgcAhBB/F8BPgsDnMwD+C/38fwDgfxBCiBdauAZK\nS95ktPjUNGTJDogmGv0Z7999Kg8ZHajyHM9XFZ5cJ3iyoPLYs6dMp2XKJpW6SO9tjSRY6Kn4pdGg\nYkfUVU1fmIs8xPMcXtYDEAgtoppEQqf0u/10jSSoME7803/Z8gGbzXF5ZBTTapqvFVKUWNQTyL0T\nRC3S+bsiQgQp95Gv56ZU4zbe+fWfLpUpW1nQo4WkqZfXkQppKAxL0aUbA9gmi8BuHFSc+btap4+y\ntcDxNH9LX4TPg7OepXaO7UgC9FUdIIk3ngmgSwOWYYzr+sK8HmfMTPTg86ZrUWOcOBuKDWypKkq1\nrfjCZjt6KJnvzXrTLq4JbNtKMPDQRoWu+6oOkIaK+nXa9XbnwKmrGoECxUYP8zgAxK+Zr2uksrYD\ntw1fILdEBjhGg85n0UYJ3zW8y8Ot3MvK13NIuW/HCKCrHo33/TiFEGIPwN8H8ADAIwA/pZS6annc\nTwD4myB0/dtKqc81/u5VpoQQfw5k1xADKAH8J0qpf6If21qZuuk4vyvgI4T4DIBvKqW+IPw6/PcB\n+B3n5yf6d5X+d/P3/JzHAKA9KqYA9gE4vGPzvn8FwF8BgJN7e5bmW65s2u2m8ZppFDUBiBvDLGYY\nZ1hUZxo0Yr0j392kbO7YaSdYIZM202kKVlJJTAED4BHIoG7Uq3GYAfuJMr2ZVa2QxBvka4VeYBlF\nzaynGexBdNNxckzLMyRJx2qFuY6WzWBVhChFGlsfF57JYLB9uoxN74mOZeMx5PjYGITcYxNKUXbC\nCgXuEC9/VnkBDHOzuchaekAfNljRYhTPjYkgQNeSgZvMAkeW/gsYogMPcS7qibkGp4vIA/+TTmVK\ndc25IKONxmKobCcxHPgzRfXMKDvvZJg1QgYxUpQANkANzU602dNNArQMTuuAvK44w+5IhY60+nyj\nuNZSRI7COzMLb6B+mw1Cy+xVrUqPuu36IanVDKJ/RD020OdnFT6ujAK3AoztA20YXpGN9gbYvFwb\n8duNnwXwj5VSnxNC/Kz++a+5DxBChAD+FoA/B1pPPy+E+HWl1Jf037cqU6A19d9QSp0KIT4F8gLi\ndXhXZWpnfMfA5wUe4/8Z6MQ+0lBK/RKAXwKAf+mHv18x8AAOycD0eSiYFeXNYbwgOlLhT+1X6MoI\nXUk78jd7Cne7G2PH7bGdTAjwl33VAIKOLoV1pUIaKlzkCvupwmHqWzY0rba5Jp/jGmkoPJbb6TLy\ndqJsA8H/cYZGYqk+EK1VbTxSkqADGSWIou3SDomdlmQmVuWIOiPIMN4CoV5U4rizMv0FLvFwT2dS\nzPF0GXtlQN6FG+WIpkirC0JswDYooHo5HY8eFN4Kd7DYZV8BnoAmqxvsp2Ok4cRkO2xr0Y1G6Id6\nFilo6UPo3TWdP4wqeiY3ho7OYp5N11MAJlsQ6dAytorClIHbwJWzzZcBIRnE6AVALyLlBvd9W3sr\nbHHRck2b908SbHDc7W4BT5OpJhrfxTYatfuZGEM+VijXdiUASOKoyoF8arQSjUvstdUuxKDY8tT6\nmMVnAPxZ/e9fAfDbaIAPyOb660qpbwCAEOJX9fO+pP++VZlSSv2+8/wvAsh0z30PuytTO+M7Bj67\nPMaFED8E4C0AnPXcBfDPhBA/it2+4t/U/27+Hs5znmg71yGIeHBjhCLySQY67W6dDXmRXIiO5jDa\nO8MKHUmlkZNu5SxKtvHdnCOQQYlmqcKPAA96wGGqPHM63kVyacezYRYCdVSa6XsAW8DDwQAEsNsp\n/6UGsPHYThzFZmlAyBvaXE6AmVa1jlICd73os6UyYMs+Xf0lN0OMsBTcbneMXkRsN/e4ZZBAXZ8D\n11MyjuNoWirkJQ0RFgWJtaZTqN6MGHVsbteg6boeM16vz5nlkoKAtBuN8AYmyNd1Q7HhK7SwaW25\nJmHBDSqVEtBzVo7pKbD6JtJsgHpwxysX5us5EPb9zDzKzcyZb8vt2wq4GmhutP2ujbxiREHbAChK\nzbC1DGJjiMhU61ZPKwYeV+IJoNdq3As3bgoAm8mwTxbfFzxHNyigkgkwP9vWdisrMtPrnd3oqfU9\nHkdKqaf63x8AOGp5jKkY6XgC4E8DN1am3PjzAP6ZUqoQQnwfdlemdsZHXnZTSv0BgEP+WfdzfkTX\nFH8dwN8TQvy3IMLBJwD8U6XUWggxE0L8GVBa95cB/Pf6Jdiv/P8G8G8C+CcvqjXSgWyXlHY1Oluf\n7gg3AtssKg4XdLh0wiWYZq26ViWgd5rUrJUAghaLbmDkZDvUyO5vgQ4bdQkAaadPw4Jr6idNCmle\nC9jeme4CIBYHbYumFbfKp3ZwMi2oLxGlemAzMwtHpK95BKkXlrlZjJRejOTgEPvDe0jCC1zkV1jV\nAWSQ0YR7XVLWM7FSKJulDz4kJ1MRCLFFAZfiVhqE+HN0B431z4CdG3I1z+pN4QFQNwL64R7U7CnU\n88dQj58SRX/Up4Xu4B6xG7GtCCCDGAcZSJh0uYD64P+FevLUqHLLkxNERw+x2lw7emaascWUYZ25\nKyGcARb7+jcBkPtvVw2az8+9T+uNIwraMvzZHLbmTM77Diyu/IFuLpvqUBkN9npzPo3PpintBGgl\ndD207DnRlhXNQjnD3GzEh5Lm98zgdJJARSnS/QdYBA0b828xhALi1UsPrd4RQvyu8/Mv6coNvdbN\nlSUTmhH8ciZd9LodvKAyJYT4QRCx69uqXn1Pzfkopb4ohPg1UOpXA/gPNdMNAP4D2IbWP4JN6f5n\nAP+LJidcgthy31q0AM9Ob5JGdOUYB1m5laK7DKc07NOu7PqUeg/9I5MBGJFFAAiAURIjDa9pWl4D\ng7vjZ4+gJoPKK004O0QpxnpxKQyBoSsDQ6cG2OYAYN8c7ju5HjUsnMlsLW7cck8pFBJSqxZ4wpqN\n6+x9G5pDne6AL5fOohQiGyON+thPqTnflWN6j6szqLNzM/zLHj5ucB7pHodZuIb6mFZXW+y2rc/e\nGTT1RDc3/Hn3gYVe/GYLYLbA+nyJsKy0dtwzrUZxrD8XKh0mQQe1Kq3iw/PH9Pxnl/R8ACKWUNkA\n6fAEUy2xxN/gNOz7GVwjmsBjhl0bmax7HwH6/leKSCP6PmUZGwY+vi5uNiKi1NhV1JsSvSjSWYRW\nmW4CD19X5/M2f7tpQ9jMSvXvjAuvBhXRieznP5nDuCU0gEfla7rehwVElUMo5ZUcP8I4V0r9yK4/\n7qosAYAQ4kwIcayUeiqEOAbwrOVhu6pMb2NHZUop9YEQ4i6A/x3AX1ZKveu81q7K1M74roNP0xNc\nKfWLAH6x5XG/C+BTLb/PAfxbH/6NN+2g0rjRlRBWKJG1tBKiXYu9+0bkE6Ada7elPuyBDteXwaWF\nsVfXbvoDHUuXJk1/c/siAP09FFK3i0iAUbIatf6WzesLTIo53p0lOF1ILGo715NJm0XZYxaQQegv\nGFUOFDmAGqqeI8rGSOMj4xyZytrZ0ToLQMv19bJM93OQGc1XuWZigMPaokyjG42MbYF6fgk1WWJ9\nmRvBTNHQOQvvdEhwM42tMRsrKLilN8DbaSt3fkmTUNxeCi/SvDCbUm5nBMQzYNAlou6gS4QA3Y+p\nsN3EZuDB88e0CMcSiCPSbOPj1sOPeX2NfK0gg9KWxXigMjo2r+nK/zSVLdpmdwwxos32W4MQa6nx\n71DlXumM56qizgi1iM1ck+ey6zrGut85R3HBWK835nw88k/L5yLSIVQvh8gLqLyAfFM/OCbbd1fC\nSo0ATOYI73Qc5ZKO1Xf7eAZXgz6n//8PWx7zeQCfEEK8BQKKnwbwF5VSX8TuytQIwP8B4GeVUv8X\nP0aD3K7K1M74roPP91zs2GkxCKE7htijW580t3QDV8QQ5YpKR83nuqDjNMUFABzfXOrrSloU8/Wc\nKKkb8o1x93pmR6vHEer1NkX0Ir/ygIeDmVlseAfAkBX64R7U2VeA6nFrI19pVlWWjaFiaopH1Zp2\ntMttl01PQ8xlm8WZ1zvw/Ft0rDbXgFOm6sl98qc5f2YsAtbnOVSnRrDnX8/w+w9oGNjVjWPAceZE\ntsIB7zZhTw6jvixi0NSnPsc7h1qwUoPdnUNaGOMMeX3hCWVmQY/O56lLLgItloA97s4Ii/qZFjAV\nukSrj8PNJJyylws8rg175vQTGRyaw9Zb4ZQdt4BnactTSsYQFTEcAdhyLAMPZzs8f+RS2VltwRk2\nNtc3zqj0WVlWKj8mr2mWrNsZI4ruG0NB9fzS10wE6F5gSaujBGo6QxhH1PMZdGkw15HYeRURbBSS\nly+7fTvxOQC/JoT4GQDvAfgpABBCnIAo1Z/WzODPghhrIYBf1sBzU3wWwDsAfl4I8fP6dz+ulHqG\n3ZWpnXGrwadNPqXNobHZGG6Vd2dxzLZw9eHy0utNcGMTUei9j2ne6y90pF1M8/XcK6G06WrZ47R6\nYk3g4UFSLt+NE7UFOur0C9h85X1slpVRTPYyikEX4mAGpQcZSSZmsu1gmRcAa4np8hn3LUzmsCW/\nY/sLTbtrk10tJ1Dzhcl6VnOJqNogvMwNAIUnQ2uW5qhisyMsNtf03i1VcT4GGSSQ2M0Oa6MdC5mR\navKBNt/T82DojMzALZ9XFvSgLt+zxnOx/VqKvjah63eBbKCNDK9xqpl/44TUMohuXhowcLNpq7Yt\njI4fAIz0KbHfFPdgdgmyAvBZaAwgDHiNLJfLYWnc951D3f5O1NjsOU7BgP/d8wgUzt95bievr3FV\nCBxkJTnJsjtuktjeoxvudR4OiJCSk8Cokcvaftb3fCilLgD8WMvvTwF82vn5N0C06Jte64Hz718A\n8As7Htdambopbi/47OAkuDIc7q6Lp9EX1QRXhUAmNzjKjiCDhL60zx8b47PmLqutqQkAsnMJ9LtQ\nUQq5/8B4nBhv+eun1uOlXiHKxoiivVbLYHdo0y2tTEqJZS1wuvA/6q7u9dCw6wapdBhaT/8p1Nfe\nQ/WHZ1i9u0CVB4jSDWS0QdCREB2JcC9FeIca+KKsyVfItaEoGiZdgBUI1QO53PCWQWyUHgBbeuTS\nUhoKdKOR6TUJptFOZ17WUxUxqiJAfL5CsJdS+eTeG8Dxmx7oLOpnZu4llb2dw4SuIgOXHz0gfEEv\nUMgManBIn6GWX6pQ6V36NcJIGnKCcRjVVgeuRI5IEpopy0gp4qoQRjPwuFOiy/sBBgOjbRZirWpP\n9BSAIwMk8Ua2RiikJm6szKA1ZLyb/em8lxlBqPLtTDdyhEHdx+oKgAmtWu4Cjwc6LTI3Neh3LuhM\nyohmxTYV3sgch2KZQXUc0Gszc4wlWaazjUlz3OJ1vPK4veDTFk0XSR35em5Ah3ePqBsDbbxIuME7\nq4J8QlBSBrHmZngc0SJT5RCLKyQpNXsN/VQPvTWnuXk71gQcXlwmZWQWGIAYazwA6Q5CuhRtj06b\nJORrkoaQEZVmmsBj+iosMRRZIzJXpt6IWTr6d1IIAzqApfJaVpX1xik2rIY80RblTuluOADmC4R3\nlggvc0TzGlG6QXinS8Dz9j0Cnr37usdC170rx1abTL+eu8BwD8uNtaqxqK9MXwTA7sygOV3PJb4q\nJx5gRM/vyX0iJ7jhiIN6gqCdEVScoSjOzedn5qF41olBv6U/3gQegJQzRjEpDCghtrXs2s6xIW0j\nlrC+OEP44rhOz+aFxasdwANsZ8WArynH4apgsK8SAPS6+xYA+bNpMOtMpNpYT8a0EV0AaYsm4Ov4\n9uM1+HA0S0WgG9sHHgoekONFSHXHVpUY2PbSSXWvJ00gJnNIZmON+taKIJ8i69y3NXQGHoD+72io\nucdUbKjR07a4mOMNt2nlLlvOlUxBtKbp+HuFuTmifA2RhrSgs1NmGlM5i60fGg17FmUVQ70g6ol7\ngMpUXTn2ylocrkbYOCkN248fU28KRFEPoiKLbFIA7yIZdRDunUN0Iurx3DuGOP4kVJf08tyQIoa8\nPtcLLGePdieeGcfN+ZZQRbFhbxt7nO7OPI39vklbGTeq1uTrtHBU1MdHRP3mshsvgtxk7x9h7kjx\ncMZKIJ4A+WLrfdzgAVj336s6wLuzBCedBdA9Q7czhhT0OTIIbZec/ZkX2elCijF9tk7mpWJWhS4g\neRi20jp0u6Ixm2TeozlPVOVGgb7X3cda1RjjGsVm7YwFWBNHKWL6XCJtodB0qG05Dg4GoFcRYqMQ\nF+sXP/CWxO0FH7eR6M5zSGvWVa+LLeABaEiuKXViDOI4mhlUkkBMZ/SlzguIuLSeKjrU7Kl/PIDd\nSQLmy1msl9pQzupuvShcZhPL1vCivmVnzIshAJmXtgmbJtZdlW2hd9B7BcZANiYghaUWczB1t1Wm\nxdEGa5suZ8kjnmFS996BGA4gmcl0cgJx9FD3Ry5MuY7fV33wZeD0FMpd5N1z0CVOGe+bLMgtcRab\npVkk+fecrRVyiW40RoR2bTFzfRoZj0iHUHcObebUaL6rOMO6IofZTCoUG9o8JLoUqGpnwNaAgH9/\nAfTZuxkCAxCwwEHWPnjqRrPH6GWwgYRMY7Kerpf22qiS9NPMNd7OOhik2/qpHgmCy3e6HC0AdDt0\nD47ibRWI64psTOhYExrIrTTVvy63s1RzjDZe1lrjdXy4uL3g0wz3BtSL/KImoUcAZjr7IKN5hWYp\nQHXHtrTQVN2VmaGWijShevcQtiTF4YKg28DV/1dCIK/neL6qcLrIHAVlG+7cDmBBh2Vp+Gc36wGc\nnbyzAGN8BHHP8TPS5RQukdxIReUde3S8/TfWe9vxPLZiMJdl4zedJRIqPzLzCSMgG5tjw1A7h+p+\nAJfromoN9f7vQ33tPdRf11kSU7AZuAZdvcBZDTgmJ7gg1PRHIk2+EElAi/gwPvIBiAdV3eFVwDK7\nAMpudYbbpBC7AqQA3Y9cchNK0WLaaPhLEeseotXD27VReXeWoNhURuh2V1i2HCs9rwGszPfDfa5n\nHqhNFFGvNNgv9PyX7a+YHuvGqly0ugtXuSEQKABRdN+ohqzqhWf+RoKodh6KRUcFHONAGW9XPlyp\nn9fxHYlbDT5bA4U6uK9Csw+UczPocKmt2YQUShna6BYtl+VPZGwJBC8b3Bx9TkoYveEJDrIlTspq\nq68D2F4AqVtvWhcDQH+5b9jlmvr/sR6ScDK51hkd/r8uubhEjbbh152h/9YEIHe41b32Ll0b+w/o\nPRuyMoCW2a8WWr+Lej9qWUEtKwLBXGeYeeGXTVvCBZ2mIR8BfwHgjBhX2DG8al6sNJbfbhZpyS4V\nam11/u0YmzE4JPEGo3jbndMFj10A1VzU3WAtwklptemYVcwmimnY380g0xs+lwUIoH3Itzk75mR5\nmdygKP1jIwIOAVCtSiDsQ7qU7SqnDaIjp7T1+q8ghFIfRuHgj33cXvAJtPsodH1b735EZnsEXTnG\n3R5dIpfptGsIj2OrlKTp0oZ+C7SWVwBs3/ilc7M+/jowe4Y7Rw+R7C219H3ukQ2aopzNklqbJ73b\nTOcBVfeL2Vw0Vb0Czs7aTz5KIfbuG/IAAF+Kpa3M0Xi++afjhuoCz5bqRCMD45JeGvYtVbvUbpX3\n3qFy4oAWK2/+h0GnQcl2vYiamQ6rQBTrAMsaSHRC4PViHIChP2bblGYNOPl6jnp92foZcbDHzgcr\nACBWV39wbEpJxuKjOsOkmLeCyXbmm5lSsqtaAVj2pDsXNLqhOrcFTJx9ABh2j6x1QVF4tg+L+gp5\nfY06KK1GoRasNfciZymcPfePoLpj5PUF8voaT5fxzsyt3pRGEsm7H3UYuSx+D8Ma/NgOm35Px60F\nHwUF1bL7oRvNTp+bqWyAFrAPG42F1gCQppby70zpYe4v6sopvYkkIb2q6efRu/cO+tkdqCwzxAim\nam8t1Ng2DWuWkQDbyzDP19cHs8Z5s/RLM/QirnTpi8OUUliK5UUAxNctSg0ANfXqbrrGgJ2Gp0/O\nIQBkY+CtHwKG79lj2TFn4vZ7mPYN2MXftb3g4F6aoS+zsnKHFDLMceghSgAGdHjR35WRuq6prrHe\naH0FpJQVC6Ww2lwbb6liQ19xzmwAFvbse/eKGQCtV8iyMao4tPNIQZN9dnNfqBdZI0QOzj5CIdFz\n7o2m7QONMRRkMhfQDFMtYsgogYy10giTclrcg6mfRRbm7jl715GlrHYAENA69vU6XnHcXvBRaz2w\n6SyyoGa2Wej0l3HXjXjjDAQa9X2nts8Oqea5TWkQfo288GYSVO70X770BRrcHA4gOyP0+0d2UXfE\nOVmYE9kAQmZUzopSREG0NS/ker64Za6ISxJ1CTx9H+rxB1askYdOY/1/R75EDk9QozCllFqV2y6T\nbrRdRwYgB3S2+ib6+nrReAzTfvl9xNHDnYfhAo9rrMagA6AVeLzDadKfMaHsh034Gr0ky14MMIrn\nRqHcnI5T5rvIQzO3taoDrNIAwBXWCW0+3Nfi40tiv2fpSiap63MakOY+ynAAOThEf3BsWX/OeTVL\nn+1D2EutTeiSYjam+e8BZT0x1PpJKVFsNrpkXHizYDwD535f2T34qhC4yEMz/7SfYicAmfuxKY7q\nlJJNmbStH/QtBikcvBpvoD8OcWvBZ4PN1k4fgFnotvxFOJwyWVPWnRd/r3bspO27Si1s/wuQHhba\negO5/gKUlck6VF6QR008g+LdNbBNWNC/U/q1RUWZlowz9LTDaLFZmoFOwCnzbHT/ZX5GDLHHT1F9\n9RKbZYVQqwiITmQVEAACxc7IZF2sPcdEgV1Eg53h9Ilagad5rVsyI9egzAUX97M3c0YN4OH5LoAW\ns2JDumjLmrIP14IcYF08XXLjgcpYk0ZAtGlmU7rAY2wuegBQGB8du9AXhiLNShUdGWBZbzApJQCy\nUWfgaQYDjxEvdSWfHAUAUdbAdAZ1Z4aofwTZ3bd/M5syYteJwfH2hiKAZ6cwKaUBAbdvxde7KXrq\nBjvo8uvm67n3mbnA15EKk8Jmn7a06MtG8fOaAATgdRb0EcbtBR+1QV5fQwbkuFirEmnYN4sj7Xyc\nL0SzN6Nja44jSr0b2G3EezpU6znWNX3hXdpqV44RZWPPNXVLnLMZZU2GWYMbHnfD4p6GfaQh+cd4\nPi2cRV2+C/XkKdSjM9RP5lifr7BZ1iTimdryj+hEEEd3SMOsf6TVBCZ4sljjjWyCYr2kXXfUh4zb\nB/da/WEcDTBT+89bhgSbemHOuXNfIV/PsVidAoD32UsRQ4axbxQX0mPGaPq5rCGDGKO40DRlC0Ad\nqUzGouoVecVMZ76ZHeC5qaZhH8O4wEE2AbAx9GlXay2LDqlkFS0xigtk2ifKHRQ2z5NLUyZMAjqu\ncaI84MG7X/YApzXOn+k+0spkAi5gAYB6e5tGX28K0yNjsIS0PSMZxOQgqm1FAOqvDuPCU7pobgw8\n64Y1zctE0R56ch9dSRuo4858q+fp9h+942wBIOMOy6GzoNfx6uPWgk+1Dlp3VWnYN/4yXgbSonzw\nUtEZaR2zJda6ru2ypNzI5Ap3u1qXihvI0I1Z/rKnthQnhgPv+bTDltsUboe9xf0l1fBbEUpBzZ5C\nNnx0UBRQzy+x/tITbC5zrM9XKKcbVLlEuKyNwUVQAAAKAUlEQVQQOuCDwz2asdm7j1VYY5qf4otX\nMU4XCZ4Y/6EpxgmpFTTD2Bo3BgpVvbJioxrERWdEemhuMEi7I1gyRj24Q83s/NobzH0jo88+DB2N\nL8erRyLRgq72WN0+SRLOAVxpC3DAnUiVgso1ar6grDUvoUaAmAHAmXFTBYBIl0Oz+K4959UVUF/Q\n56ABtd8/Qhr3IYMrZJJKYQw6bhktjY9IiWGzNI3+VPYIeC4eAe99A/Xvv0ubhze2RVxdzTOcPyPP\nI76+swXZV5xO9eWVwFt+/4pVKtz+1N2eBZ4k6FgvH9A9GYEy7AwDSjUqq54OwJA2+PqY0L3TTGbI\nOodGiLdNEqepXMHZfSsAuWW4VxRig49KWPRjEbcWfGoFPF3G2nqaShwuE4ZnAXhI8lsJYvA8M43U\nYhPgIo8xKSQe6c101/kEDlIAKPBG9gyIYQGoLoFkAkxnVn+qEYq9b3iH3QZC0mn4u8GiqM8vbZbF\n/aW8xPp06gHPcipRFwGy8xzhXkqL2KgDcfcY4ugh5utLXKyu8IeXGb5wGeLRTODBQGA/CXC3G+rp\nfFp43Jp8JjfUOHcAyJvvcI57tblG1j+yBI0qt+DrnG89uINvLt7XYO/LDiXBBgeZ7QHwexoAAmWF\nnsAoDz3mC0SdPSAF0pDYjKeLQD9Oz95oZW81IT8ZTOZQaWGp3UNdSmx+Jo6lM3+uYjiAOphADg4x\nHJ6Y7KAn90nrbnFOWQkAZANk2RgyGiMUEmtVkyvqxSOor/5zrL/0BIvPX0BGG0RvziHv9i0INe8Z\ngEpw2ulzfTpF/WSO4mmpJZe0T85bP2REU4v1EtdVYfpTbllSBrEWUv2C+Z2X6+6yQQd85icHk1yS\nBJifQTpEHg7OXDzlCh1tAMQ/GwB6Pe/zHYlbCz7lRuB0QYvRSacC19g5ZBhrJpzNEF560jlKPcbR\n6ZIA53kOXBQCj2YCs0mCNKsRJ1Q+6EQKFxmwrBOshhXe6jvCiOXKyNUYTSr9RTSgw0oEbBedJlaK\nXx8T/593p+yHg6fvkyfOB7SIui6g1mDLAk8+D1EVAVZz0noWnQjiE/chjh5iUj/D08UCX7rq4vfO\nBb74jS7Onnbx7HiBw+MlLgoCIVbV5oFYS4+98gHIHSx0Bi4X1QSIDy0AVblvWucAzx9eZrgqAs9K\ngt4zQiYLjBJriMbXiEtCnAWZ5vzq1KhHI5+iv3cfAHDcucKyFvY8uOc2W9D1XFY00AqQxAxvEhrR\n/DyNKd5sQYxHnRz1udS1uLKMuuns/2/v3kLsqu44jn9/nUmTOjUxmpDEROqFKigWtBoEpWi1mqai\nVSz64IP4IF6olQoSzYuPXh6UaiEWCbXU1ktUFEuMlxYK4gUviZfEyxhtnBibTKVxkMEY/fuw1mT2\nmZ6TmcxM987e5/eBTfZZ+5wz65+9Z/5n77XPf6XjYvZOYu4uZsyaQ2/fIenT/s5P4F+b+XrjAF+u\n38FnA+m4PnBomL7BYWYc/RU9h85Jx0vx2IKUQD/9L7sHhvhqyxDDQ70MDabjauEB25l1QKpRqKOW\nsjt2tSSekeP+0L7vsPB7oq93bqrkkfvabqqOtD6BQf6ROniFIqx7PnwUbp2PkbNl8phqT5r+Y+Rm\nhrEJaM8U4G3GgWz6aCIzTjeRpB2kuS7KMA8YHPdZ9dLEmMBx1UmZMf0gIuZP5Q0kPUXq80QMRsSy\nqfy8/V3XJp8ySXplb1Pi1lETYwLHVSdNjKmbjF+R0szMbJo5+ZiZWemcfMrxh6o78H/QxJjAcdVJ\nE2PqGh7zMTOz0vnMx8zMSufkY2ZmpXPymSaSrpcUkuYV2m6U1C/pXUnnFNp/LOnNvO13UipwJWmm\npAdz+0uSDi8/kj19vF3SO5LekPSYpIMK22obVyeSluV4+iWtqLo/45F0mKR/SNoo6W1Jv8ntB0t6\nRtL7+d+5hdfs036riqQeSa9LejI/rn1M1kZEeJniAhwGrCN9aXVebjsW2ADMBI4APgB68raXgVNI\nhXPXAj/P7VcDq/L6JcCDFcZ0NtCb128Fbm1CXB1i7clxHAl8N8d3bNX9GqfPi4AT8/qBwHt539wG\nrMjtK6ay3yqM7bfAX4An8+Pax+Tlfxef+UyPO4AbaC1TdT7wQER8GREfAv3AUkmLgNkR8WKk35I/\nAb8svOa+vL4GOLOqT2wR8XTEnpnmXgRyYZd6x9XBUqA/IjZHxC7gAVKf91sRsS0iXsvrQ8AmYDGt\n/9f30boP9nW/lU7SEuAXwL2F5lrHZO05+UyRpPOBrRGxYcymxcDHhccDuW1xXh/b3vKa/Id/J3AI\n1buc9OkRmhXXiE4x1UK+jHkC8BKwICK25U2fAgvy+mT2WxXuJH2QK84CV/eYrI2uLSy6LyQ9Cyxs\ns2klcBPpElXt7C2uiHg8P2clsBu4v8y+2cRI+j7wCHBdRHxePKGMiJBUm+9SSDoX2B4Rr0o6vd1z\n6haTdebkMwERcVa7dknHk641b8i/9EuA1yQtBbaSxoJGLMltWxm9hFVsp/CaAUm9wBzgP9MXSatO\ncY2QdBlwLnBmvnxR7OOI/S6uSegU035N0gxS4rk/Ih7Nzf+WtCgituXLT9tz+2T2W9lOBc6TtByY\nBcyW9GfqHZN1UvWgU5MW4CNGbzg4jtbB0M10HgxdntuvoXVg/qEKY1kGbATmj2mvdVwdYu3NcRzB\n6A0Hx1Xdr3H6LNJYxp1j2m+ndXD+tsnut4rjO53RGw4aEZOXMfu46g40aSkmn/x4JekOnHcp3G0D\nnAS8lbfdzWiliVnAw6SB05eBIyuMpZ90PX19XlY1Ia69xLucdMfYB6TLjpX3aZz+nka6weWNwj5a\nThpLew54H3gWOHiy+63i+IrJpxExeWldXF7HzMxK57vdzMysdE4+ZmZWOicfMzMrnZOPmZmVzsnH\nzMxK5+RjjSTpWkmbJE17ZQZJv8qVpL+RdNJ0v79ZN3CFA2uqq4GzIqJY4wtJvTFaMHWy3gIuBO6Z\n4vuYdS0nH2scSatI0yOslbSaVM7nqNy2RdKlwC2kLzLOBH4fEffkStt3AT8jfcF2F7A6ItYU3z8i\nNuWfU05AZg3k5GONExFXSloGnBERg5JuJs39clpEDEu6AtgZESdLmgk8L+lpUmXoY/JzF5DKC62u\nJgqzZnPysW7xREQM5/WzgR9Juig/ngP8EPgJ8NeI+Br4RNLfK+inWVdw8rFu8UVhXcCvI2Jd8Qm5\nmrKZlcB3u1k3WgdclackQNLRkvqAfwIXS+rJpfvPqLKTZk3mMx/rRvcCh5PmXhKwgzTN8mPAT0lj\nPVuAF9q9WNIFpBsT5gN/k7Q+Is4pod9mjeGq1mYdSPojqaz/mvGea2b7xpfdzMysdD7zMTOz0vnM\nx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdN8CmkvbM1neOKkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us try some more window functions." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25,window = 'hamming',scale='biased')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'hamming'" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu4fVdZ3/t5123/8iMJYIIRgxaoadXa2lIkrW0Fi9hA\nxdRqLeKV6kPpI7b29CLW46Xa9oSjT4+0ojRFBKotUioaa1TQ53DRiicBKQqKplwk4WawkIRk770u\n7/ljzDHnmGOOMeeYa8619m18n+f3/Naa97X23t/v+37fd4whqkpGRkZGxsXC5KQfICMjIyNj/8jk\nn5GRkXEBkck/IyMj4wIik39GRkbGBUQm/4yMjIwLiEz+GRkZGRcQmfwzziVE5DNF5AERmZ7gM/yi\niHzjlud+n4j85NjPlJFhkcn/AkBEDkTkx0Xk/SJyv4i8XUSe7ux/iohsCrJ8QETuFpFXi8gXtFzz\nsSKiIjLztr9cRP7VLj9PClT1D1X1SlVdn+AzPF1VX3FS98/IaEMm/4uBGfAB4MnAw4H/E3i1iDzW\nOeaDqnolcBXwl4DfA94sIk/d76NmZGTsA5n8LwBU9ZOq+n2q+j5V3ajqfwfeC/zFwLGqqner6vcA\nLwVeOOTeIvJfReTDIvIJEXmTiPwZZ9/LReRHC3vkARH5dRH5NBH5YRH53yLyeyLyF5zj3yci/0xE\n3iEinyyymeuK8+8XkV8RkUcWx9YyExF5g4j8QHGP+0XkdSJyrXPtbygyo4+JyHcX9/qSwOd5nIh8\nXEQmxfv/KCIfdfb/JxH5duee31K8/iYR+TUR+aHis73Xy74eJyJvLJ7t9cC13n2/XETeWdz7DSLy\nOcX254jIzzvH/YGI/Ffn/QdE5M9v8aPLOOfI5H8BISLXAX8KeGfHoT8DPEFEHjbgdr8I3AB8KvA2\n4Ke8/V+NyUSuBY6A3yiOuxZ4DfBvveO/Enha8fzPLK7/L4BHYX6f/2HLszwbeE7xLAvgnwKIyOcC\nPwp8LfBoTHZ0fegCqvpe4D7AitIXAQ9YMsZkV2+M3P9G4N3FZ/u/gR8XESn2/WfgrcW+HwDKWoGI\n/CngvwDfXnzO24GfF5FFca+/JiITEfn04nP95eK8xwNXAu9o+U4yLigy+V8wiMgcQ8CvUNXf6zj8\ng4AAj2g55t4iGv24iHwcQ7AlVPVlqnq/qh4B3wd8vog83Dnktar6VlU9BF4LHKrqKwuv/qepSNbi\n36vqR1T1HuDNwG+q6m855/vHu/gJVf19VX0IeDVgI+KvAn5eVX9NVY+B7wHaJr16I/BkEfm04v1r\nivePA64G/mfkvPer6n8sPtsrMEJznYh8JvAFwHer6pGqvgn4eee8vwv8gqq+XlWXwA8BVwBfqKrv\nAe4vPssXAb8MfFBEPhsjRG9W1U3LZ8m4oJh1H5JxXlBYFf8JOAaen3DK9RgS/HjLMdeq6sq5x8ud\n11PgXwN/BxOxWhK6FvhE8fojzrUeCry/0rtf3+NdfNh5/aBz7KdjaiIAqOqDIvKxluu8Efhy4G7g\nTcAbgK8HDmkn2/L+xT0onuFa4H+r6iedY98PfIbzfO93zt2IyAeospM3Ak8BPqt4/XEM8f9l4llI\nxgVHjvwvCAp74ceB64CvLCLILnwF8DaPlPrg2cDNwJdgrJTH2sfZ8nq7woeAx9g3InIFcE3L8W8E\n/hqGcN8I/BrwV2i3fLru/0jPXvtM5/UHgT/hPJ9ghOEe53meUjzTG4t/Tx7wPBkXAJn8Lw5+DPgc\n4JmF7RGEGFwvIt8LfAvGT98WV2F8/I8Bl4F/M+Bau8RrgGeKyBcWPvr30SJQqvoHmCzj64A3qup9\nmAzkK9mCbFX1/cCdwL8UkYWI/FVMPcPi1cDfFJGnFrbdP8F8r/+j2P9G4IuBK1T1bowddhNGwH6r\n7/NkXAxk8r8AEJE/Afx9jC/8Yan6+b/WOezTReQB4AHgDuDPAk9R1dcNuPUrMXbFPcC7gLcMuNbO\noKrvBL4NeBUmCn8A+CiGYGN4I/AxVf2A814wxept8GxMQfiPge/FfHf2+d6NEZp/D9yLEYZnFvUJ\nVPX3i2d+c/H+PuA9wK+f5DiHjNMNyYu5ZGTUISJXYnzzG4runoyMc4cc+WdkACLyTBG5XPjuPwT8\nNvC+k32qjIzdIZN/RobBzZjC6gcx4xKepTktzjjHyLZPRkZGxgVEjvwzMjIyTgFE5CYRebeI3CUi\nLwjsf6SIvLaY3uT/E5HPc/b9IxH5nWIKkG9Put95ivwvHVylD7v8qPEuuKdudJXT1vYeh+zr9+X8\n/FpmnFL88cffe6+qDiKMPyvX6AOkDJmB93H/L6vqTaF9xYDI38dMXXI3puPua1T1Xc4xPwg8oKr/\nshjB/WJVfWohAq8CnoQZwPlLwPNU9a625zlXI3wfdvlRPOOLv3+Ua63n+0mKlosTm25+MObHu+8i\nnC7zzAQZu8FPvvbr3999VDseYMn3TZ+UdOw3rX/12pbdTwLuKqbrQERehalDvcs55nOBWwBU9feK\nyQuvw4zf+U1VfbA4943A38bMHxVFtn1OEGeZ+ME8/64/w3o+2ZsQZ2ScIK7HmWIEE/37kwv+Twyp\nIyJPwoz6fgzwO5jJ/a4RkcvAM6imBoniXEX+Y2HXZHPWSd+H+3l2lQ3Yn0nOBDJOE0RgNk+0bddc\nKyJ3OltuVdVbe9zuFuBFIvJ2TCvybwFrVf1dEXkh8Drgk8Dbgc4/xEz+e8Z5I34f9vPtUgSyAGSc\nUdyrqk+M7LuHerT+GKq5m4By5PZzoJzf6b2Ykdyo6o9j5u5CRP4NJnNoRSZ/D7uM+s878bvYZTbg\n/oyyEGScJGQCBweJkf9h6947gBuKacHvAZ6FNz26iDwCeLCY1uNbgDcVgoCIfKqqfrSYHvxvY1bj\na0Umfwe7Iv59kf5qy+ef7ZhA9yEEWQQyzjJUdSUiz8esxzAFXqaq7xSR5xX7X4Ip7L5CRBSzENM3\nO5f4byJyDbAEvlVV26ZhBzL5lzhLxL8tyW97vTHFYVdCkEUg4yQgIumefwdU9XbMKm3utpc4r38D\ns4Jd6Ny/1vd+mfzZDfGPTfpjE/6Qe48lBruoD2QRyMhIw4Un/9NK/CdJ9l0IPdsQQdhFNpDrAhkZ\n7bjQ5D828Q8l/dNM+F0YSxB2KQRZBDLGhggcHJzNv9sLS/6nifh3RfrLg/4/3vnRqvugRAy1i8YW\ngpwNZGRUuHDkf95IfxuCH3K9IeLgft5thSBnAxmnCROBRWqr5ynDhSH/0+LtDyH8sYl+7GfoIwzb\nCkHOBjIyxsHJs8kecBqIfxvSPw1k3weh500RhG3toV1lA5CFICMNIjAfqdVz3zhb7NIDp6Vvvy/p\nDyX8XQ8o60u0/ufpKwYpQrCrInEWgIzzjPNF/nK6pmfoQ/x9Sf+kpopou28K8fYVA/sdnkQ2kOsC\nGV2QibDI3T7nG33INpX0zwrhpyL0fF0k7H4HbUJwktlAFoGM84hM/h3YRbSfSvr7Lihvgy4i7iMI\nqVnBtkIwhghkAchw0WtK51OGUZgiYe1JEZF/V+x/h4g8oetcEflBEfm94vjXFjPa7RV9o/0u4l0e\nzDqJ3y6QknJve0/3374ReobO78H5jG2f035fbd9Zn8/e57uNIS8uk3FeMDjyL9aefDHO2pMicpu7\n9iTwdOCG4t+NwI8BN3ac+3rgO4vZ7l4IfCfwHUOfNxVj2zwppD/Gfba57rZoi6T7jPhNsWhS7KE+\n9YGh2UDOAjLAjvA9m5H/GLZPytqTNwOvVLNa/FtE5BEi8mjgsbFzVfV1zvlvAb5qhGdNQiph7oP0\nk+sHJ1APiN0zRqgpLZ19hGAMW2iICGQByDjLGIP8Q2tP3phwzPWJ5wL8PeCnQzcXkecCzwW4fLlt\nfeQ0jEX8Q0g/1cLog11YFTHiSxWFLjHwr+OfP2Y2sG2BOBeDM84qTn3BV0S+C1gBPxXaX6yBeSvA\nNZ/yeB1yr30Q/7akn/Js+/aiu+7nE2JX8bePGPQVgl1nAzkLuJgYs+ArIjcBL8Is5vJSVb3F2/9w\n4CeBz8Rw9w+p6k8U+/4xZnUvxazv+xxVbV07bAzy71x7suWYedu5IvJNwJcBTy0so53hJIl/W9JP\nJfvlwe4toflRkyhDz9clCDEx2IUQjJ0N5CwgY1sk1k6/FWOJP1NEHgW8W0R+CngU8A+Bz1XVh0Tk\n1ZhlIF/eds8xyL9z7UngNuD5had/I/AJVf2QiPxR7NxCBf858GRVfXCE5wxirMLumKQ/hPCHEP1m\nFr72ZJVQQI3c1xcF//nbxKCvEIQIuq0+sKsCcc4CLhAEpvNRftYptVMFrioWb78S+GOMKwKGy68Q\nkSVwGfhg1w0Hk3/i2pO3A88A7gIepFiBPnZucekfAQ6A15vPyltU9XlDn9fFSRF/X9JvI/wuso8R\neh/0vYYrFl2i0CYGfYUgJRvYlyWUBSAjgGtF5E7n/a2FbQ1p9c8fwQTSHwSuAv6uqm6Ae0Tkh4A/\nBB4CXuc1zAQxiuefsPakYlKWpHOL7Z81xrONgW2Iv0+035f0Y4SaStKLg3EXUQc4PqqeKSWD8D9D\nlxjE7KG+QjC2JdQmAtkGOv8Qgeks2ZG+V1WfOOB2fwN4O/DXgT+JCYzfjAmcbwYeB3wc+K8i8nWq\n+pNtFzv1Bd9dYQyPvw/x94n2Q6S/DeH3JfmU412STz3XnhN6VisIKWLQlRV0CcE22cAYdYGcBWQk\nIKV2+hzgliKYvktE3gt8NvAngPeq6h8BiMjPAF+IKQ5HceHIf9dWTyrxDyH9GOF3kfcYEX+fa1jS\nD50TE4Q2MegSgpA1tC8RaLs+ZAE4rxCB6WKUXpSU2ukfAk8F3iwi1wF/GngPIMBfEpHLGNvnqcCd\ndOBCkf9pIP6xST9Gxl0kPZvthohWq+oZY89wfDSNCkKKGMSEIDUb6LKEdiUCWQAyYkisnf4A8HIR\n+W0M4X+Hqt4L3CsirwHehikA/xZF+3sbLgz5nxXi90k/lfBjRJtC8mPVAI6Ppp33W60mUeL3t/ti\nMJYQdGUDbXWBocXhXAc4ZxBlNh+nCz2hdvpB4Esj534v8L197nchyH+sqQ/GJP4u0ocm8fvkGCLR\nGPmmEvx8i7a15XKSdI+YOIQEwReDWFbQRwhSsoG+ltC2mUDOAjJOGheC/PsgWpjdI/H3Jf0QocaI\nuC+5t/n1fa65XMYjfv/5fTEICQFU35OfEfjF4pgIQDMb6CsCQ+ygLABnHyIwSe/2OVU41+S/8yUX\nBxL/2KQfItcYMQ+xevqee3w0DT5HSBBSrCP/eN8a6soGUiyhfYlAtoEyTgrnlvzHJP5Q1L9L4h9K\n+j7RtpH1bC9Ry/ZC44tBrGZgj40JQWo2sG8RyFlAxknhXJL/mNMbnyTxt5H+NoQfI/pdDPqqI/bz\nGHbfPkKwdPa52cBJi4CfBWQBOFswE7udzZ/ZuSP/k1j6cFviT432U0m/KRZNsh/SFTQ+Qj+r7QTB\nFYK2YrGfDcQsoW1EYOhgsWwDZewT54r8VfpPrTrU7hmb+Mcm/T4dQQeL3RDOwWLD0XGqwPqCUCfx\nvgVrVwjaRADqltA2IjB0nEDOAs4gcsH3/CHV7mnbvwvij5G+H+XHrmURIvpL47llTQTulyYK7kMN\nqx2cJRHIApCxa1xo8h/b7nExNvGnkH5bjcAn+xDR73ItmPkEQjx26YoNh85jtwnC4sBvM91uXEHt\nGEdc2uoC+xaBLABnAyLKbJzpHfaOC03+MQy1e7Yl/j7Rfoz0+xB+iOwvJf5GLJxzjxO56RJwGF5t\n0bt4/TPEs4P+WUGsNpBSF9iVCKQIgL1/RsZYuLDkPzTqd5FSZB5K/KFoP4X0XcL3P3KI6BcdX8ul\naTPK8UXlcB2vvSwWTbHwRaGRJSTVIra3h8YSAX/aiDGKwrkOcLohAtPA38RZwIUl/xi2ifpdtLV0\nQjrxp0b7fUnfJ3yf7EPkHrpOG+YTc40YT12aNgWiIQoRMfBtojDsh48fGLKEukTArQmEWkT3lQVk\nAcgYA5n8B6Kv3WPRNjlbG/GHov0u0ncJv4vsYwS/TTHYPccn7JBAuKLgi0HIMnKFIGwPDS8WuyJg\nawKxcQJjWEFdWUC2gU4ZBCYHJ/0Q2+FCkn8fy6dP1B9CyO4JEXgf4g9F+5ZoY1G+S/ou4TesoADJ\nd1lBKbDXaFg+07owzCdaRfl+hlB8HlcIahaRZw/NZhtniunubMAiNtFclwik1AOGWkHZBsoYCxeS\n/GNoW4s3eHxC1G/R1m+/DfGHov22SD9G+D7ZNzODxmMPgr2eS/i+MLiCEBODWmbQkhE0MY4IbFsP\nGMsKyjZQxlBcOPIfUugdEvVb+CQ+hPi3JX2X0BctQgBwEKkBWNsmBctNswBs9fHIiexd0l9MusXA\nrGdRCUGwmyhSLK63jbYLgRWBWk2gEJGQCAyxgvpmAVkAThgTQXoGjTGIyE3AizARyktV9RZv/z8D\nvrZ4OwM+B3hU8e+nnUMfD3yPqv5w2/0uHPn3QVsXzzZRf8i2iR27LfH7pB+K8mOE7xN9jOBjghCD\ne/yRV+g1ZC7OsdUxXWKQIgTWFrLZQHttIK0u0CYCQ7uC+o4NyHWA8wERmQIvBp4G3A3cISK3qeq7\n7DGq+oPADxbHPxP4x6r6x8AfA3/euc49wGu77pnJv0Bfy6cLNupvmzTNj/p3RfxtpH9QywzqpJ4q\nBn3gXsOSvr2PJf2qGCy1DCEkBm1CUP52J2YD24pA33rAkCwAwgJiz89ZwJ4hIOO0jT8JuEtV3wMg\nIq8CbgbeFTn+a4D/Etj+VOB/qer7u254och/15ZPKOq36LJ7+hC/X9QdQvouGfcRAhezBFFYBa2f\nOOnb/e4+KwZ+ZhATAlsjiGUDY4mARWo9ILUgPCQLyAJwKnGtiLgLq9+qqnat3euBDzj77gZuDF2k\nWKj9JuD5gd3PIiwKDVwo8u+DbSwfi5SoP4Q+xN832o+RfozwfbL3Cf5g2o9cfF08Wlffm732qoX0\n3e31bfWswBcCsM/dzAZ8S6iJpgjYBWjsOIGUeoA/PmCbgnCfLCALwP4gIkjqsHi4V1WfOMJtnwn8\nemH5uM+yAL4c+M6Ui2TyHwljRP0uYlYPtBN/X9KPEf6str1OIgcj2D8HE/OZjzy/H4wwuILgZghV\nBqCN+oGbFVjEsoGQJdRHBGLoawWNlQVkATjzuAf4DOf9Y4ptIcSi+6cDb1PVj6TcMJM/4/v9fdA2\niCvk8fcl/j6kHyJ8n+jjReB0knGj/mANYLIuRcEXhJVD/CEhmE+Ug6l0ZgO+JZQuAsOsoF1lAbE6\nQvnkWQR2A5GxPP87gBtE5HEY0n8W8Ozm7eThwJOBrwtcI1YHCCKTfwJifn+K5ZPS2mkR6gYKDd4a\ng/hDUX6I8OctGQDAVOyDpf8BXPZ+69Za3Nch+ob/XwiCie7rmYEVAvd4v0bgFoubReJ0EahaRNOz\nAKisoNQsYEhHUM4Czh5UdSUizwd+GRNlvExV3ykizyv2v6Q49CuA16nqJ93zReRhmE6hv596z0z+\nPTHmEpGhOXtCg7hcn7+L+EM2T0wEYqQfI/yK6GE6Cf/qTKJLNlbYeMRZmiobQ2ZWHNa6aQjCciM1\ny+hgCrOJeS6bFcwnUssIqhpBMxuwn7evCKTUAyx8Kyg2NqCrI6jP6OAsAHvCBGSkkZCqejtwu7ft\nJd77lwMvD5z7SeCaPvfL5B9AX4Jv8/tdpET90O7zm+3dxN8W7XeRvt1uyL6ITh2yDxH8dDKPfu7G\nsdSPXW9MPDyZmOtacZhSFwQrBtY2csXAzQrs5/aLw6GOoT4iEO4O6t8ZFBsbEBscNpYNlAUgw0Um\n/xHRZfmEEIr6Xfh2T1/iD0X7aaRfEb5L9j7Jt0X6U4n/eq21IixL+mCI34rDerOsCYI9aiqr4hqV\nGPhC4NcI/GzAfN5+IuC2iDYHi4WtoFhXUKgW0GdcwDY2UK4D7AAiyHw8N2CfyOR/Qoit4mXhR/1u\nr37I/4d24nej/b6k7xJ+TQg8ch8j+p8Wv5JrXXnEXxcEKwbrzaqRFcwnysFEGzUCtz6wdF7bArH9\nPrfPBKosIHW94VgtYOwsINtAGT4y+W+JULE3BV2E4Hv9IbvHvG4Wd7cl/i7SL987ZJ+aAbQJgiV8\naI/+fUFw909YRoVgvp7UsgGoRMB+B64llCICzOpzCMXqAbPZitWq3nY6JAvoUwzOApCRgkz+e0K4\nlz9s+fijeP2ov5YVOF090E38oWi/jfRDhL+tDeTDJXxwvf6Y7VNth7oYmHvb7GHtCME6mA3MJpOG\nJQTtIuC2iDKjkQWkWkEuti0GZwE4JRBBEmt+pw2Z/Aeiq9gb8vFjlk9jzV0v6m/6/9V7v32zi/jd\naL8t0g9ZPjEbSFSpRtQW2HQs2usUkqdOu6iKJNg+8zIz8LMCNyOYyiqaDbgFYlcEzLbYrKPKNlaQ\ni9ji8qnF4G3rAHk8QIbFKOSfMBWpFPufATwIfJOqvq3tXBH5O8D3YaYtfZKqunNinAj6dAH1ndrB\nou/8+m6kDyER2NT69tuI37d3atsChF8je5/kV8cdn9TCO262MNcubzYrRcEKQt32KZ6PdVAIrFiE\nsgGgVQT8wnB40ZmmFRTvCgrXAsaygXId4AQwAUZs/94nBpN/ylSkmGHHNxT/bgR+DLix49zfAf42\n8B+GPuM+0Ub67h99W5dPc3WtejTtR/3QFAHb1eN6/Jb4XZsnZPHUtnnZQEn4Ltm7RB+K9LuEoCB8\nAI6d8yczSnGYLUpBsM/vi0FICNqzgbgI2O/MFQE7TqDLCopPHJc+QjjFBsp1gIwhGCPyT5mK9Gbg\nlaqqwFtE5BEi8mjgsbFzVfV3i20jPOLuEVq4pQ/aLB9oev1QEX7I7nEHZ7nEbxEi/obt40T+hvSp\nyN0SekwEAF0ddXxqe17zOJkd4BJ/KQqOIMhsUWYGISFwrSE/G2BCqwjYmoD9/pYbcWyhej3AtYIa\ncwb17AjyVw9rs4FyHeDkIRfc80+ZijR0zPWJ555bdFlDobVzQ1E/VHZPbX6eiTaI31o9vs0Tsngm\nTMOkHyD8GtFvE/1bFFmAumRfXDsoCEUWIMV508msJgR126eeDbj7UkTAwi8Ku9uXm+2yADs6GNJt\noG3qAFkAMizOfMFXRJ4LPBfg8sOuPeGnCSPV/w+Rum/5WPg2T31fvcBr4RJ/uS1A/LVoPxTptxG+\nT/JdBV8fLbaPLwilGNSE4LgmBJPJJfMYrBvZQNkptCEqArCpdQf5ReGYFRTLAuodQemjg1MFAJp1\ngKECALkQHIWMt4zjvjHGU6dMRRo7Zp5wbiuKxRBuBfiUa/5k61zDs+Vm0IIuY6BLCEKPF7J8LELW\nT31/3ee38K0eiBC/b++sjivSb7OA3O0u1gliMLXPGqglOIKg5f3dzKA41hWCwhqaTC4Fs4E2EbDd\nQbDBnbwuZgXV98fbQr0PjG8D+WMCLI6Z1uoA5RU6CsHbCgDkFcLOK8Yg/5SpSG8Dnl94+jcCn1DV\nD4nIHyWcu3PMj1ZJ0zrPj9ejTuwG7VM/+IhZPuW1nCLv3PP9gZrd43v8dnvN5nEtHjfaj5G+S/Yu\nyR9Xg7nS4By/mNevZ4XBi/bLzMDNCtxjioKxzQZ8svdFgIn5XLY7aL6elOMEQlaQQXsW0N4RFC8G\nN2ygjjrAmALgnpsFIAABZhc08k+civR2TJvnXZhWz+e0nQsgIl8B/HvMyvS/ICJvV9W/MfR5U7AL\nku8DfzoHH26037Wuro36feK3aBC/7+13kb59HSN7n/hXiS2ws2nz/MWcUhgWnhi4mYEVAtca8rKB\nFBGw3UFsVoWQhusBNvqPZQHRwWGJYwJcpNQBYoVgvxU0C8DFxiiS1TUVadHl862p5xbbX0vCCvQZ\n9Q6f1FW2SiFwrJ4SXcTvi8B6VZG0S9Y+0ffJAPxjF/PqerOp2W/FYDE3zzAtsgBHCFxryM8G+ohA\nrB4QX8egngU0OoK2tIHs676F4FgnUBaAgRCpstMzhrOZrwzArnz/yWozuN3TR6zY2wW/pz9k9/iE\nX/P4He++JP62aP94WZG1S/jFNl1vKQLuH9VD5hoynTbvZd/b4xeeEBQRv26cbGBGqwgY2wdQoiIQ\nsoJSsoA+NlBMAMqv8gQFAHIheEx0DZYtjnkK8MOYeum9qvrkYvsjgJcCn4f5Jft7qvobbfc7V+Rf\n+tV7xPxonTyffwx+j3/t+jusTzfsHtezt4XdEPG3kb5P+NvaPqFjZ1MUh+gfWldiYDMDNytwMwIn\n4q+JgCMQvghMqLIAlEoQinqAawV1ZQF19LGB2usAFm4heJtW0G0EAMhZwEhIGSxbEPyPAjep6h+K\nyKc6l3gR8Euq+lXFQu6Xu+55rsh/CFKLvhbT5WbrmT37wp3BMxVdUX+jwGtREHyN+F2bx7d4HNKv\nRfgtmYDZ3qMF1BbU3Ai/uK7a2sDayQzsfvf4QDaglvTNxZNEYNsswI4L6LKBDtd+MDBltZKS6FvH\nAwzsBOorAJA7gRCp6lPDkDJY9tnAz6jqHwKo6keLYx8OfBHwTcX2YxrzpjRx7sg/pVjb1/rpc7y7\nbuvYcKdudv8Pd/n0UAuX5PsSvxvph/z+UgQcKylAMK0oji/7qe21ZrNG1K8s40LgZwMhEbBEPAPx\nWkTNd8XoWYArAOFBYfFC8NidQDEBiCHXAXrhWhFx5yi7tWhVh7QBr38KmIvIG4CrgBep6iuBxwF/\nBPyEiHw+8FbgH/nr/Po4d+Q/Fsbs+NmlIOwFfYjfJf0I4euRXwNI+G4W0/K8cjj90coIwmpVCYF9\nBkcISmvIFQGWVTbgioC1g2ytYLZAJjMmMmU+uZScBRj0E4DGLKEJdYDa15jYCbSNAISif4sLLQD9\nCr73quoTB9xtBvxF4KnAFcBviMhbiu1PAL5NVX9TRF4EvAD47q6LnTvsslVzF9c+Op60+v5jIWj5\ndEX9rscPceIPRPqW8Gtk7xB9QwTa4BC/2mvUBMHJDqwYFFG/zqb1GoGtDQCpIhCzgo7XD0WyAHrZ\nQP4soX3swV+BAAAgAElEQVQEoG8nUBaAU4mUwbJ3Ax8rIvpPisibgM8H3gzcraq/WRz3Ggz5t+Jc\nkj90k3TIyunr+7chFu3vOwsI9fZvBVvcLYi/VtB1/fUQ6ReE4pK9LpvfgTaXxCohxeg2e57Mp01B\nKMRADqYmK3AzglA24IrAgrAd5IrA4nKZBVjCX0yvCGYBxnIdbgOZZzNTQlSdPqdfAOCCdAKJmN+l\n4UgZLPtzwI+IyAzzG3sj8P+o6odF5AMi8qdV9d2YzOBddODckv9FhztXfxSpUX8K8a8s4a+ipO8S\nvkv0mkAS9hgpiMWeL5em6HJdEwOOp44QFBlBKBtwRaCsCRQ3dLx/XdXXFwhlAWwOa7WAxXQx2Abq\n2wl0mgQAcidQH6QMllXV3xWRXwLegYkoXqqqv1Nc4tuAnyo6fd5DMZC2Deea/IdaNO75oUzBdvzY\nds9Qr/9qNWmdwqFr/y4Q7PLpCz/ip0n8PulbwvbJXg/r5NIGPTT/SzHntS43yHwSFINmRuBkA9Ah\nAglW0OJylQVArRaw3Bx22kB1MegWgK5OIMgCsHeMOMira7Bs8f4HgR8MnPt2oFc94VyTfxe2HfC1\nragsl5NaoW5XFpA7b39jX8uC6kBa1O96/FBaPTHi90nfJftQ1B/rBnJnT9RlMaf/fFITBFcMZDkt\nMwI5mKIwTAQWl6ssYAYcP1jLAirCB8qsIG4DXTnfMJ8IDyzt9u06gbIAZGyDc0/+fYl6DN9/LFI/\nXAvumrhtk7qlIGoDuZZPHxR2T0n8js3jRvs+6buE7xL9pmvtF+fYyYE9vxIFXR6XYlAJQZERFEJg\ns4GgCAC6APE7pJ2FxtpqAfMEG+jBlf151ltD/UJwhZRFYnYnAC6yAAQgjNXnv3ece/IfiiHWkSsC\nviCsVlJbytHFYeE1+wO7TAAtnZO59UIb4bdF/T7xF7DE70b7PulbwnfJfr32o952rB80/0+nWorC\n5KASA18IgEY2wHHADtomC4CyFjCZzhs2kNsNdHmWVge4mmYnUPuI4KYAuNhWAFJmA20TABfnVgDO\nKC4E+bcReB/rJ8X3T0EsM7A10K7HWW4kOn9/DJ12jwu/vTMFRTRdK+pGiD9G+qvjpgBsVtW2SUAs\nVwizhdm+frASg5AQuNmA7R4SCGcCIRGAeBZw6SooxCBkA7XVAe5bxn5v+haCm6OBga0zAIvU6aBD\n8M89d51AeWK384UU6ycmKNsUfaF/r//ROp4BrHXTMHhsIbL+YIER4CnWjxP1h+BaPRAmfkv6LuG7\nRA+wWnoq6Awgnrm1k5WUwmDFICgERT0AHBGwdhCVwdagXNcK8rMAMB1Bh/dHbSDz4SjrAHBYGxV8\n9dxMEU3QlhsmALC9BdRnPYBU+8ciZwEnjwtD/kOi/66unxBi0X2o6Av9FnUpr1UsKDIb0wYKIVbo\nhdLr9+0eMB6/Ljc1m8cnfZfwfbL3xaD2SKtiGgObDRTCMJtvSjHwhWDCqlMEkqwgiwVw/GDcBiq6\ngezIYFsHMO+XsDmqTwsxXzObTPikL3p7EAAfKQLgI9X+scgCcLK4MOQP/fz7PoXfNutnW9+/D1Yb\nwXec1ptVM9LvvFAgE+gzC2cBa/e0EX+I9OvbEmsAS2E2r77D49XUCMIyIARrrWUDrgiAVxPwReDy\nFeaYBciDh/VawBXFzQsbyO8G8usA5ajg4n2zE4i9C8ASkqaD3rYDKCYcZ14Asu1z9rFN22cf68dH\nV0eQLfoWrnRnp8/ResLBZOS20di8+16Hjxv1uz6/RYz4fdL3CX8dqAGEsD4WpotKAMoVgD0hWOHU\nCI6aImALwxZ1K+ihWhbQeLLFCg4uw6o4J1AHYDIvRwW700IspgvOkwDEcG4F4IziwpH/tt07Q60f\n1/f3rR+7Hyj/eP3L12c+CPv9R5v69g1rpsyj78s57ncAG/W7xV3X348Rv0v46xbbx8d6JUyLLMoV\ng6pDchIVgUkxlLcsDC9nQStocrXz+R46bNpAPBiuAxTvfQFwO4HCraD7FQAguB6ARaoA9LV/4AwL\ngEj1Mz9jOJtPPRAxAfBJfR/WT2xbF6zf74vA0rOA/EJvsPBr4YuBu3Ri+bB9F2Ovd/RsVhIk/hjp\nrxvk13KfJUwLUbViUApBYQ8FRWCtTIssoDavgwMBNvcdNcYG1GwgaK8DeAJQnxCOshV0VwIA1OYC\nAqLrAQwdA9DX/oEzLABnFBeS/LdFSDSGWD8w3PcPtX0erSdcdn6yJuKP/KiLJQ7HQMjysbB2j0v8\nfrRvSd8l/NWy33ezWgqzuSXHuhAApQhYS8iKAIuiVdS3gpwsYHLlot4RVJC+Xr5U7wa60llEyRWA\nQhDCI4IZLADHZUBg710XgNB00O56AMCoLaAXQgBETNB0BpHJvwOx6H8M6wdoRPxHx5Pqj9bz/SG8\nopcdEVqL+L12z7WuSsvHiMF4q5A1unwcy2e9lkb/foz4Y6R/dLSdOPpCUBMBbKBsMoHNamPqAwtq\nVpCbBWw4jttAbh3ggQebhWAcunZaQccUgEVRu7b6e2lKLwEABreA+rhQFtAZw4Ul/1Trp8+1hlo/\n0N3yeVzubvr+ftHX7/hxLR8VceyIBawKc37ETMBFW9um7+1b4vdJv28WUEdVTA1lAismzIhnAZOr\n6tFdzQYqtpV1gCsuVQdeQdn501cADqb1IvBqE/oOzbbDNVya1u0fnz/N71wlANW2bgGwGKsA3CUa\nZ0cApPibOXs4m089ElKLv27036fwa62fWPQPlvTXW1k/Id//aFPPAjasyxGm9n1Z9HWIXmYHqPX7\nZ4tqhK9dEL0FMp+2zsVvsVpOaiJQ8/mXk2C07xP+8VEKITR/JkdHysGBO5NmXQRmVN1BoSxgA6UN\nNLnKXKHKxw5rMbjCKALQ6AKaW/Ku43AtTjdY3P+3TQXmd605CtjuD40B2EUB+PwIwNnE+SL/kcY6\nbTvbJ/Rb2D2l6ydk/UB9krelExGWKxy2+P61om9Kx0+xClb5us/i6wG4LZ2+3QNN4vcJf9mSAczn\n4h3fvLYvAlB1CFkryM0CfBvICIFfBzisjwdgNwJwFOjyevgCPnHckJ9oAdiP+u221A6gMQvAXTj1\n00Fkz//0oA/5wnatnymF39Ac/10DviC96yc2yZtr/ax1A471E/X9bQbgWj7TGbX5FEbG+lhqdo9v\n9fjE30b4LprHhYXAFQG3SwioCYAdJDZbK/NIHaBeCH5oawGYOl1A6/WqFICpTGpTQYTmAro0HacF\nFPp3AFl0RfIhpJ5zEbIAEbkJeBEmvXupqt7i7X8KZjWv9xabfkZVv7/Y9z7gfkxKt0pZK/jckT/0\nF4AQUts+hxZ+/X0+lhu4FNxj97tRf0GgAevHkn7U9y8/kJMJLOal5SPTYglEMG2OiQN7+iCV+I8T\nC8CLA/HOtd956Oc1wc8CNpb4bRaAqQNMr44UgotZ33oLwGQWHAfgjgR2p4KoTQmBKfgfTGtyUqB/\nCyj07wDatf1zESAiU+DFwNMwa/XeISK3qaq/HOObVfXLIpf5YlW9N/We55L8oZ8AbFP8bYv+21b4\n8qN/IDjXDwCLDZemzdG+Lty6st/1c7Q2RDGFckDRlFnY958tihkuV/UMwO31d17Lwaw2lbNZQWv8\nyKyN+I9a/P+Dg0nt2LoQxERgQj1TIGwD3WcKwZPyiAL3H9NLADar1nEAU5mVawKY2o2ZDM4IfiUA\ny437HcVbQMvvJtIBZL6n3RaAt7V/4LRG/6MVfJ8E3KWq7wEQkVcBN5OwFu+2OLfkD+MIQO2YHUf/\n2xR+3YU/rAV0tDYkZt+vA9ZPJQaTerTviIHBsl70dV7b1bHKhdTLydLSu4V8vz/m86eSfvwYW8w0\nIlDVBvz72/bQsA3k1gHgeDsBcOeCseMAZosymXDnAnIng7OzgV45X8NyihWA5mjvqgMIqhZQdznI\n8vZOBxCMVwBuQ+i4C2L/XCsidzrvb1XVW4vX1wMfcPbdjVmg3ccXisg7MIu8/1NVfWexXYFfEZE1\n8B+c60ZxrskfhltAbfbPrqJ/SCv8+j3//iyfy2Kd2MuzetdP0PoprAdWR2Hrp6XoKwfT2jz+Mp+g\nXatyJWBZCkGY+FNbP2dzcc7zfxfSsoBRBeCBB5sDwQ7vr80FZAXA/tzQYiW2CbBZOYQfHwNQtQV3\ndwDBOAVgi120f1qcKgGQSTWFRzfuTfHiW/A24DNV9QEReQbws8ANxb6/qqr3iMinAq8Xkd9T1Te1\nXWy8kT7nAEN8x9RU1rV13D88u2+1krr103atjYnijtZS8/5XGymif4O1Vs9m55ff2FWmoJa2lr/I\nbipbRKq1eWxm9bjBeN7O+x5LYaaSeBfxHx1pcEDYaqlOQXnD0dGG4yPl+EgdgdnUis6rpbJeTkw3\n0rEZlGZHKG9WZuDaei1sjmDzwHE1i+lhsaCNnfDuaFVf/cy+fuBB0067Oqa2bnLxv6gyYcqEKdPJ\nnKmYgrB5P+NgajK7g0IEDqZq3hf/gwkOLk3NiN9LUzXvZ/a9sX9msw2Lg3rGOZ9vakLgvrYBjB3H\nYgMrGwS5gZIbGPkZ87bddBZDa3qnEPcAn+G8f0yxrYSq3qeqDxSvbwfmInJt8f6e4v+PAq/F2Eit\nOPeRP+wv+rfH7Sv692f6rDz/ZuF3vVkVNs+cta7KLKDs+rG2g9v1E7J+rGVxvKzWzi1E0/f9JwfA\nkZlOufX7nUuvAVwx4g+9Boqunuo8mwn4dYH6uroWaRmAHGxwi8A6XwfHAeh67S0MQ0H4VAXgoh7g\nt4DGOoC2KQBbZy7V/7fv29YAsOizBnDjmLNW/B2v1fMO4AYReRyG9J8FPLt+K/k04COqqiLyJMwP\n/WMi8jBgoqr3F6+/FPj+rhteCPKHdAEYsmZvKlK8/5S2T3+mTzDEX9UBTNtnV+FXRRCX8K31Y8XA\nsX7kGNP141o/i2mr7z9baEGLm4I4XWx6Td4WQtf0D3a/KwK+AFQF4Q2Lg4knMAkCcF+9C2hz/zET\nFqUAyEFFeuVcQOXC3w9W00FPZjUbzm0BHVIA9sfg2T8Ff3tsABgMt398DO3+OVX2z0Co6kpEng/8\nMkaFX6aq7xSR5xX7XwJ8FfAPRGQFPAQ8qxCC64DXipShw39W1V/quueFIf+hOIno3+/8AcaP/gsf\n2Y3+ZXaAWuK3o32diL/s+pkZojKLnhQ1hMO6COyiJbT2eR3idwm7mtOneezBgZtpVJ7/UAGYHNXH\nAdg6iPmOnPxnNjWzgbozpk6Pox1Affz/1WbaKACnjgCG+AAwu21f7Z9nBjLe9A6FlXO7t+0lzusf\nAX4kcN57gM/ve78LRf5nLfpP6fyJzfM/avQ/nRVTFTuFXxu1rla1rh+7MLoeFncvrB8WcJwwP3+X\nBRSb8M0/J3QNKwi+CFQFYfd3o78A2KUi7R51f9cWlRDYdtlgB1AR8bsdQDKZlctBFo/GxhkQ5s4B\n5I8AXm4ksBDQsP5/aG//LI8fMPr3Ikb/+8aFIn8Y5v+f1ugfqs6frkFfSdH/8Soe/a/MAia6IBj9\nl9HupYIAna6fasDUBJwpHszo2oK8OiycvvUBF5boLewoX98GAmoZQP25mgJgh0ys1+ItDlMdJ8fr\nahTwzBk5bYvonv9viLnKBmQyMy3lxc8qxf9f1hb3qT53F1eGJoCDcPuni5Ma/XuyOLvTO4xSMheR\nm0Tk3SJyl4i8ILBfROTfFfvfISJP6DpXRD5FRF4vIn9Q/P/IMZ41FbFfurYUNXSO3WajEzdCinX+\nLJeTsvMnFaHOn6O11Dp/jtaTsvNnvVk2On/UprCTWfULPVuY99OZIf/ZtIpSnddyMIWFWflKLk0L\n28d0/UwOTFTsYjZXpgutTbHsYnEwYR6wboYiJhxuN5AtAi+XWusCil+z2QEE1DuAnCUvWa3KsRK6\ndrqAjpe1jh9dHdW6gWznz4QpU5kZIcAMDJuK+b4PJsrBdMNsUu/+cdd86Or+cbE4WJ/67p9z2Pmz\nFwz+1pxhyU8HPhf4GhH5XO+wp2P6UW8Angv8WMK5LwB+VVVvAH61eD8KUtPElKgj1r3Q5WO63RKu\nCPjRlG39XK0mHB1POFybyO1wZQlfzPu1O91zJQLW/jna2PcT1ptVSfxrXZUtnxvWRgAKwpfZQeVn\nzhY1AZCpKwKzsvNHDqZl26dcmpUiYC6h5QIq5n+trb0Lxorx/fpFUai1UXkIIY8/hnrrZ9g6cruA\nrAD0aQHVo1V9IfulKwArIwBF+6eu11UrqG3/hML/P2q0fwK92z/BEPy27Z/m57AuxWFxsC5FoGvR\noiHEnmq/npgAuAFT179ThjG+sXJYsqoeA3ZYsoubgVeqwVuAR4jIozvOvRl4RfH6FcDfGuFZSwzx\nCX1idwVg2+jfEryFjf59hATAhRv9W+K30b+1f9a6Yb1ZldH/Wlfhvv/ZwgiAjf6hIvzF3AhAIPoH\nkqJ/i+lMmc43AdIPR//2ONu9sy1iAmDHE7jjAKp93QIAsDmiFACg6v+H9v5/KwBe3z8bs01UHcL3\n/i/tH8ro3xK/FQFXALpgBcBG/xZuduBmAbHo38Uue/8z+mGMbzs0LPn6xGPazr1OVT9UvP4wcF3o\n5iLyXBG5U0TuPDq6b7tP0IJdDvyy0b9v//iZgBv9h+BH/24R2IqAXQhk6dhALuFbIfCjf/OghQ3k\nRf9A9boj+rf7uqL/2Vxao/9dwa81uAPKrP2TilHtH4jaP0DQ/rHRvxWCMewfOLnBX6c++j+jOH25\nSABFL2swbCzmsLgV4JpHPr5XJXBI989pL/66c/6A7f+vipVrNX3iZQuhUp/zx073sDEtirqimgJi\nUWQ6KzNgqSz+YvrZ7fAiKaceNn3/bufPCmozRhvvv97zbwTAPPNyqYUATDg62pSF34MDKYl7SDE4\nBjsGwCK1+4dC0NRp/5T5oiqIL6ZV+6dt+bxial4v5tViOvY756AQg4Wxf2RaK/7asQBrVmXR92gj\n5VQfUP1OhLp//MnfwI3wdzv4KwWnufirstvAZFcYQyo7hyW3HNN27kcKa4ji/4+O8KyjYhf2D5xc\n8df9f9virxzMgsVfG/279o8f/bv2j2/puPaP9f5D9k8f7z+GkIAMjf6BMvoHqugfSsunEf1DtPgL\n9Cr+QrMG4CIU/TeO8ewfu63xXZ2g/ZOj/3SMEfl3DksGbgOeX0xTeiPwCVX9kIj8Ucu5twHfCNxS\n/P9zIzxrA/vo/e+z3COYPyg3qrKwC76U6FjtC0x7p58FHJVR3oSpVC2Dk8m0Nu3DRKZVr7lt/Syy\nAXP/as4ftd1ukYFftvXTDvzqGvVbj0smHB9tSgE4PlIODsbPAKoFXuz7+ghgi51E/3YUtY3+7TaA\nxawa/OX1/q9ZllF/tPd/TY3wh/b+Q/fUzzGcv95/LZsnzhoGk3/isOTbgWcAdwEPAs9pO7e49C3A\nq0Xkm4H3A1899FljOAu9/0BwW9fI3+3sn3VJImPbP7Bq2D9mxaywsFZkPCkj78WB1ATAPXaXFhCY\nzp9FS9eRi9WxlHP/TIv58mwBWOZTE/1TTILneP/l1A9+7/9iZiL/QgzcqR/WLEsbaLNZl8Xf5WZa\n2UDF74Lb++83DLQhde1fGD71Qwyn2f45axjF808YlqzAt6aeW2z/GPDUMZ5vLIy95KMvABAf+bss\nvfDtRv5C+rw/9n+TBVwyA4zsXDOAWjJyR/6CEYCiECzFvD+KP+PnDFluzEAoRwDMADAXhrDcydh8\n/98KgBWyUAZgt4fgW0RDuofcJSndgV8WNvqXYpBur+jfIfzS+y/EYIIX/evaqQUcOyO+m9E/+NOC\np039YOGSfdvUD+U9A1M/uDiLC78oWnXJnTGciYLvPrCr4m/bcT5S7B934rcSCfaPmfqhn/1jswHX\n/qnm/Keyf668bKYoBlgXf+yXrzBz2ZsHLOa4L56kmPfHFYDNKsX+gZgA+BYQ0BCBNmxD/O6o36k/\nI+vSm/en+HnooRUBO7J3XS29dmxmT21E/1fMqpk/7cRvVgym88HRPzQneIuhT/Rv0UbEed3fk0Mm\n/5Fwmrt/wBTxll5Hx2zSbv+4Uz9MpvOiM8Xx/xfugiRx/988bPWssqz8fysA7tQPsQzAtYBcn90X\nACAoAjH4xD9G0djH5ggmhecPzgR4B9Oy8CuzWXvnTyD6D3r/PaN/oPfEbxZjRP+7nPhtHwJwYT3/\n84Shxd+xVv2C5vS5XfbP0fEkKAD2D99wTfXHPp9o0ftviHRe2D+mj7ywfbbx/wF58LDu/1MUgO3+\n+ZqKXYwAzNbdBWBfAEJFYKCWBUCT3P0pnmNoG1HszxNksT4WZvO42BjP3xGBozVify9W1eypul4j\nzKuuHxv9s0BXR72i//LznNLofxtk7384MvlviX11/4R6qqFp/4QG5UBoEq9qsJdzx2JKACsAR3Zz\n2P8vIv6a/39wGVPLpyoAX64WLZ9cDZv7DGlNWLC5/xhXAOZFmJneAYTzvjsLcNFG+qlR/9DsQJeb\nuPUDlf9vB9OtV6bV1vr/UOv7t8o6nczNpG9Q1APqff/gTPjnNQNsE/3bTPQ0T/u8y+hfNXv+5wan\nbdUvf2CNb/9s0/7Z5f+bAnAV8dv/l5tD5qECsL2fLQDbuzgFYKh3AG0vABCrAzS3URMBF7HI3cJG\n/f7I4pROn9VSmtM9X9HMBvRwXRbDa9YP1Au/tuXTKfxWbZ/HZeG3ivZnoBRWkM0YKATezPkPdQvo\ncN1PzGz032fWz7HRJ/o/C/6/iNwEvAjzB/1SVb0lctwXAL+BWczlNc72KXAncI+qflnX/TL5B3Ba\n7B/f/wfzB7Zt+6dFyP+HKcztH1JCAXhxGY4frBeAwWxzBQDQhw7L13DYKQDTqXL00KQhANOFsj4W\nUrOA+nYD2xoaI37X6nGJPzTHUJ8i8XotZdHXhS6r8RBAsvVjjj2uWT9go31z/HQyZ7MxP1Nb+AXK\nQV9hz798MtqWfNzW+x87+j9pAVDUTI0+EM4kl0/DTHNzh4jcpqrvChz3QuB1gcv8I+B3gatT7pnJ\nP4JdDv6y57gisQ//vz73f2A4f6QAbNaQvVTy6nxyqT4A7NJV6OH93gAwqhZQ+gnAhBUHbAxhHiub\nlTCZVZOmGYQEAPxagAu3LtCFtrmEtrV8/KKvRc33h7rd08P66VP4Bdfzb1pALmJLPkIVfKR6/yHs\nczWvU5wBlJNcAhQDYm8G3uUd923AfwO+wN0oIo8B/ibwr4H/I+WGmfxbsKvBX23H+Rjq/y83cIk6\nqoE99T94twDMcsqV84EdQE4L6DYC4A8E67KBjo7UGQ9ATQSquYGK76ClAygW8YcsH18I/Cmqk+H6\n/uDZPWHrBw7q26hH+7UsoKXwa7bZn0Z34ded88cf9dsW/adg19H/CeNaEbnTeX9rMTcZhCe5vNE9\nWUSuB74C+GI88gd+GPjnwFWpD5PJvwMpAjDU/tnG/3fn/5nPNw0BMAduuDQ1Uz+3+f/ldco6QLMD\nCIzfbwTgsDysFAB79R4CIAerWhFYl2s7XIsUAfBtoOZUD+7PzRFETwhC8DOHRct8Qn6P/2xezVzq\nQwIBwLbQ1ZHJviDZ+hmj8Ht03Px7mM83TiYaRsqo3y6MkSWMG/33mt7hXlV94oCb/TDwHaq6EWcy\nORH5MuCjqvpWEXlK6sUy+SdgiAA0jttx//+2BWBodgBZhFpAxxAAqHcBAUyuAp1P0OXGNng2BIA5\nDRtoOlsXo2yd53ZG+8aEoA1+pO8Tvxv1x1Ykm8yUWZENTA7a72fmQ3L+JG3R17620X/I94fOrh+L\ng4nitN6fisJvqvcfQ18hOYUTwKVMkPlE4FUF8V8LPENEVpgM4ctF5BmYRP9qEflJVf26thtm8k/E\nthZQl63TtwB8TNP/9wvAY3UAtbWARscAkCgA6+oPdXK1nf6gGgUMMLlqgc4nyMGGyZEpBK/XZrUs\nNwuYzZVVuSZwrCOo/rn6oG320Ol8UxJ/m+UTW8imF+xoXwj6/uBbPTM2Wswk63T9QNj6gWbh17eA\nLk3ZSdtnH+yzRtCFEad36JwgU1UfZ1+LyMuB/66qPwv8LPCdxfanAP+0i/ghk38vdAnANvZP23Hu\nPbsKwEM7gAyaLZP3LadcPV8TEoDj9UMsplcUAjBPEwB3HiBnHEBJQYs1crxmUwpBex2AuZ1Kofi+\nalaQ/UzDESN+H9by2RZ6tKraPXE6fkLo6ftDvevHvA9bPxaXpnXrJ8a5foQ/ZuF3V9H/aULiBJmj\nIpN/T+xCANrsH/+esQJwWwdQWR9ImgK6SQJ9BKBmAc0WpgtocdmMC/DbQK0AzKbw4GF5ngKTKxfo\n3Cx9aG2grixgMdPSCvJFYDqntlBMCF0jf2s2T0H8btTvjuy1axX0RWdNwHb8dCDm+4Pp8jnyWn27\nRKANs5lGC78uuqZ8cHF2iHy8KZ27Jsj0tn9TZPsbgDek3C+T/xYYOhDMoo8AmOO7C8CLg3VNAChs\nolQB+MSx8PAAt6QLgNcF5LaBQhGtFiOBZ9NqKggwI4Nny1ohuI5wFsBCy5bQuAhAlxB0tXC6kb5v\n9Vji9wu9s4UmWz61fv9ExIq+Prp8/3J7YtdPW8+/i7aov0/h9Rx2/pw4MvlviTYBSI3+284b0gEU\nEwDoHgMA8eivSwCmMivf+wLA6rgaCexOBQHIag3TaaMQrEer0gZqywI2R5RW0GK2boiArQm4QlAV\niPvBLeyGiL98fqfQC6bYKwfFesbFusZgprt2F74filjR17yfsV5XdZWY72/R1vWzj57/bYl8nwKg\nCutNtyV1GpHJfwDGEADf/99mBHCfKaCtPVT+8UYE4OpA3A3tAhDsArJ2j50Kwr4/uAzTY9PB4heC\nAzZQVxYwQSsriLoI2KOhXhyuZwVp8Iu6PvH7dk9b1C/NYbXNY6bDRMEt+pr3zd/XIZaPxbbWz3kp\n/NbmVUAAACAASURBVJ5FZPIfiG0soG0KwH1aQFPGANi0vZhkMnkUMIQFYMO6Ng7Avi+ngiiio/IO\ndmoIaBaCAzZQVxagxQIxrgi4dpAtDMPwX3rX23dJv3aMY/e4UX8vLCKF3oHwi77Vdg1M+9GNrqi+\n7zw/Qwu/sM/oX8u1sM8aMvmPAOtb+iLQ1vvftwDsbu9qAQ2NAWhdBAYaAnDf0owEbssAjG1AbSCY\nGf0bmArCzgZaLEaiUIwe9grBs2nQBmrLAsy6uE0RsHYQC2V1LGU24ArBoiDvTQ8LyI3sLenXtgWI\nv3zWS9b6mdYsHzmYVsct5tWUDj6m/f9k/Y4fCBd97XZI6/e3AYQbbEB9wNfQyd66SDxH/9sjk/+I\nCGUBfeb+GVMAoN4C2pYBdFlAi3W4CGzbKJcbqU0F4c8FNGHK1G8FtZ1AbiF4Wu/zr9lAHVmAgVkm\n0YrA9ICyJjC9osoGakJQfvmVILTBj/B90gdj9dgBXZbQfa8/foOWP8kdZQIhuI6U5dbFhCTfv4vg\n/eke+lg/py3636gUa2KfPWTyHxl9bKBQAThFAPx77UMAPnEsXJq6/fMW4bmAlptDNsUEY9W00PNw\nIdipC3AFtbns27IADqZNK+hwXWUCxbwW0wNTPLbZgCsEUCy0jqkTQHsW4LdvukVdN9qHJvGXz+9F\n/UmIEL/MOoYNtyDW8ePD/NppZzbQ5vuHRMFv+XTRJ6LP0f92yOS/A/gC0Mf+8ZE6BiB1ENgQATCY\nsNwoV9Yi4EoA5hPl8mzlED6s16tmJ5Az4rRhA7ntoAVCWQDuIvEUSyI6mYArAva1LwTgiIGFJwoW\ns8gIXp/0oe7xW+J37Z7aZ7OWz2xWWT6LuSn2tllAPeD3+lscTKv5/Ycg1dLZhfWzq3PPOzL57whD\nBKCtA6hTAKA2CGw3AmDm0JlP1BGCanTwgyvlYHpcdZY4nUC1QrBbB3BtINsOaruB/CwgYgXZpSJd\nEZBL09IGkksEhcA8YiUG5c8wsACLD5/wy9dOtF+JQEX8Qa8/FZOZGeg1aZ6nEo7Od7nalOvrW6RM\n9BbC2NbPrqGE1sY4G8jkv0OcRQEAek0GZzBx5oavplVwO4H8QrCtA0RtIDcL8FtCbUeQjYpDIrCY\nGjvoyKyW5VtCrhAApRhYaAK5+KQdivTLfa7VA027py3qX8zNv+msfXRvQAx2jYPILJ8uQuIQa/l0\nMZb1k6P/MDL57xhDRgMPFQCgdw1gNtskDQQzqEc8n1xOWG2Eo4k2O4GcOsB6vWqOCHYIv5EF+C2h\nNgs4XlZtoaGicFET4HjdzAYKIQBqYlB+Mmdf7RNHfpY1T9+J9KttdeK3rxt2zzaYtIvCWNMPpGIX\nSzieVgJXJdg1dRaQyX8PcAWgr//fVwCq8+JF4Npxo2YALqpOoFAdwI4ItllBrRsoJQsIWUEQrAlw\nMI1mA0BQDMpP56+EE4Ef5VfbHZsH4sRvEYr6LazVU/wvs4POeX7GWGIwhkvT7oVfuoq+2yJk/eTo\nvx8y+e8J7liAXQpATWhaxgG0DQTrMxeQQZsANOsADRvI7wbysoDeIuDZQUAzGwCkIIOQGFhoF7t5\nx0OA8KG0eWoev0v8rt3jw1o+PbBhneTzb9umOJ+EZ/j0O35C6BKBXRH1Lq67Yfvv8KSRyX/PKK2Z\nHQsA0DkQzPdhDbozgOONsJjAcqPMJ2Yw2GJtWkHNNi3/N/DrAE0bqC0LKKeGsALkWkFXzJoiYO0g\nRwRYzMtsQA5mpRCU6+ce1xdS1yPbMdQvUg0Rvt1eI32oWz0u8ce8fj/qh9o2FUkm/eVGzqxdkTEO\nMvmfAPYhALX7JAiAPxncbKbB9QCWx0Xf95Z1AGsDhbuB2C4LgGIkb1MEuKLIBuxC6MV2mc1KIYCq\nwFuSvv259IkUPbKvXgdIH5rE72UBnRF/wtTOPta62Vukmtrxk1r0HSNyHz36VynWvj57yOR/QnAF\nAEieBXQsAbBonw0UUqeDqKPbBgp1A8WygGQRWB03MgFWxWIoviUERgigVQxqi6pTiUP5SSPTMNc6\ngVpIH4gTf3n+Fl7/ZslaV2UmYP4fx/+/NCvWhfbQZue0dfxsi76+f3neKfX/ReQm4EWYP7qXquot\n3v6bgR/A/BGtgG9X1V8TkUvAmzAr+8yA16jq93bdL5P/CSKlELwrAWhbEN4iuCQkdNYB2mygUBbg\nF4ObWQDVuABr+yxaRGC2qNcE3GwA6kLgZgSWcK0YQFU0LpDUk+9P0dBG+va9u88e79s9PiKWz667\ne0LEf1FhPP/hkb+ITIEXA08D7gbuEJHbVPVdzmG/Ctymqioifw54NfDZwBHw11X1ARGZA78mIr+o\nqm9pu2cm/xNGSiF4nwLgLwlpkNYJdLiu6gAVtisGJ2UBMRGwSxq6hWGICgE4awpbMYC6ILg4Dnjq\noeP81s0Q6dvj7GvX6vGJ3436A8R/nrDr6Dx1vq094knAXar6HgAReRVwM1CSv6o+4Bz/MIqIS1UV\nsPvmxb/OEYqZ/E8JuuoAQwQASFoPoLxXz8Fgtg5wqacNtNpMo7WA3iIwIyACVCLgW0Iha6ioEQBV\nZgBNsk/px/fEoEH47nX8aB+6iT+Ayt4JWz7W77fF3qN1UY9Zy5kZpZoiCqd4rp9rReRO5/2tqnpr\n8fp64APOvruBG/0LiMhXAP8X8KnA33S2T4G3Ap8FvFhVf7PrYTL5nyLsSgDc7W0C0N2HvV0doLsb\nKFQLaFpB3SJwHM4EWDQtIWiSuxPxl4umO4JgUWYJAURbNS086ydI+tBN/Duwe6wIpNgYIW4de2BX\nCk56qgfVXtM73KuqTxx2P30t8FoR+SKM//8lxfY18OdF5BHF/s9T1d9pu1Ym/1OGlE4gH7sQgFgh\nuE8dINUGOlpLa0eQS/ZuPWCziYgAi1phGHCEgLoQ2IxgvapnBVC3gKAsEJfC0IWI7VN7HSJ9+754\n3SjwOsTvIxT1b4PDtRHtsbHNQK9THMmPiXuAz3DeP6bYFoSqvklEHi8i16rqvc72j4vI/wvcBOyO\n/EXkU4CfBh4LvA/4alX934HjglXs2Pkicg3wGuALgJer6vOHPOdZQ5sAxGYBHSIAQHA6iPhYAOiq\nAxwSt4EOvSzgoLbUYTMLWK/jVlBQBFQru6cg+jIbWB1V+6AiW9cagkoMoMoMXPIO+f7l9xAQB3eb\n274ZIv3ifdnLH4n4Ac/aWQZH9LZZPl0wAh7f1xf7yg72JRjKOAVf4A7gBhF5HIb0nwU82z1ARD4L\n+F9FwfcJmO6ej4nIo4BlQfxXYIrGL+y64dDI/wXAr6rqLSLyguL9d3gP3FbFjp1/CHw38HnFvwsH\nv9/ZFYExBQDCg8EsQoXgrjrA4bpYDCSSBVQDYut/NDbiD2cBxgpas0oTAabQYgnBgScEi7oQWBJ2\nBQGMKECY4GMIkT3UvXtPBGrRvmcBxYjfIuT1x+BaPW32RcrKXhnbQ1VXIvJ84Jcxf1QvU9V3isjz\niv0vAb4S+AYRWQIPAX+3EIJHA68ouHYCvFpV/3vXPYeS/83AU4rXrwDegEf+tFexg+er6icx7Uqf\nNfD5zjxiWcC2AgD07gRqR6AOAElZQKgW4CJcEK7qAZbsXRFYs6zbROJMHAdVNkBRIIZ6RmCPKbaX\n2+z2WH/9ylmFLHaMX6gNEX5gu0/81srxib/N7vGj/hiO1hKN6EM2kD+jZ9fUDucNquMVy1X1duB2\nb9tLnNcvJBDRq+o7gL/Q935Dyf86Vf1Q8frDwHWBY9qq2CnnX3iMKQDueakC0D0iGFptIEiuBViS\nDxWEjzbSHCHsicCEaaMwvGYZzgZY1DMCKLMCKOoEUIkB7jEeFh1/Sr4gOEKQQvpAMvFbuHaPj64u\nn+NN2Nbp0+O/zXz+GftDJ/mLyK8AnxbY9V3umyL96F79IoJtzxeR5wLPBXjYFddse/tTj10KAMRb\nQYHoiODy2i020BHVQt+1OXmiWUD9c7hW0Gxiq72w3EyjImALw1YE7CpWfjYABIUAqNUJrBgA9QzB\nh19HCKCx7GLIBgqQPtQna2sj/pDd0+b1t3X5hGxzf1u8LnT+MdYgr5NAJ/mr6pfE9onIR0Tk0ar6\nocJ3+mjgsLYqdsr5Xc93K3ArwDWPfPzW4nMW0CYAQFIbKJBUB7AY2wby5wYKZQF+QdjC7wqCpgi4\nNYHpZM5G10FLyGYDDSGASgygTuRWECwaGUDHerot0X9IBFzSB2p2Tirxu3aPi1jUH+ryOVxLYFv7\nR/WxS4E46XbPs4qhts9twDcCtxT//1zgmLYqdsr5GQ76FoLtH0WfQrC9z9g2kJ8FhGoBZbEYux3H\n6jHHtItAsztozbJhCQFhISisIaDeNWQ+ZfHsdpzAgD+fSOHXJ3wgGu272ypRaBK/hTuoq9oWjvpT\nLB/X73cDg5Po9w9hHx0/qtt1PZ0GDCX/W4BXi8g3A+8HvhpARD4d09L5jFgVu+384hrvA64GFiLy\nt4Av9ea5uNA4qUIw9G0HhZRagJ0m+tK0EgHfCuoSgXpNoBKB6WRWs302ug4KARTkD0ExAEcQXKRO\nmJaw5q4f2YcifX97F/GH7J4Y4bsR/nLT7PLpy6WnRQgymhhE/qr6MeCpge0fBJ7hvG9UsdvOL/Y9\ndsizXQTsuw4ABNtBfWyTBZgHAGsFXZrG6wExEbA1AVcEgIYlBESFwGYBm01dDKASBH+7Kw594Hfk\n+O2a7rYQ6dfftxO/hW/3pET9bZaPK/wXrdMHjOe/i8Fw+0Ae4XvGMYYAQFodoI8NVF6/VgyGrnEB\nvhW03BCoB5jXbSJwtDbrBx9MNGgJxYQATKEYqIkBUBOEapXk4lNN0gUgtNhKyOaBNNI3x1VdPa7H\n70b8LvH7dk9X1J9q+ZTnt3T62OOHTOecMRyZ/M8BhgoAbF8HAFqzgCYCLaHQagW5ImCJPyYC7mt3\nnEAzG4gLQRn9O1mBhRUEqBO+FYa+CAmBT/jucSHSh2a0b7e1Eb+FS/z+iF5fELoQEgIbEGQL6HQh\nk/85QawQ3CYA0F4IBpJtoJQsoEKVBdhjoW4FuV1BrghAvSgcEgH/9WozjWYD0BQCWyMArwYAZXbg\niwJQ1g9S4U/FkGYDNUnffl6o2zxdxO8P6Kq/Dkf9fSyfVLKfH20nnKcBF7ngm3HKEMoCYq2gkF4H\ncPfFbCBozwLCtQDoLAhDsB4QEgFDbqZF1H8dygZiQgC0ikEw+tftWcDPAOpRf8W+baTvbne7erqI\n3x3QlRL1D7F8UuFO23wBJnU7EWTyP4fYRx2gdp9BWQD4VpCdS6itHmBFwLWDjjcUGYKUZA+Ur202\nEKoNuEIAtIoBYBaYp273THrZXwahWTf95RbrhN9N+vYz2+NCIuASv8WytH6qvv7Dlbu9Iv5Q1N8W\n6adkAX72mooTndKZ/h1QpwWZ/M8pthEA2M4Ggv5ZQBORLAA6isLgF4ZDIuASvysKQE0IoF0M7H4r\nCEC5EP2aJglNnfbOlDV0/UnYQoQPaaQfe+8Tv+vz+8RvEbJ72qJ+u88X/VzsPT3I5H+O0VYHgHQb\nyD93jCzAzhKabAVBLxEoxwlM6paQKwRA8L1fIwBKMQCCgmDObRKaKxJtqNoxq+/CH4HrEz40Sd+e\nFxOBLuK3sMQfs3vK+ydE/W04y34/wEbP7oynmfwvAHbRDQS7zAIA1qxWM2azwIwdERHwC8NQ1QV8\nIbDwMwL//aogej8zgIqMfVGofW+TwPM7iE2s1pyOoUn4Znud5EPbQsTve/yWwI43TeIfGvXb98kF\n4JZlGne5ru9FQyb/C4KxbSD/3D5ZQD9EWkOhuXYA1LqD/LpArEsoRvyWPO02oCEI5nyKfc3I3yfx\nFMRm4az216P8rm2haN8cZ993E3+oyLtt1B+yfGJ+/5Bi774Wc8mDvDJOPfpODAdpNpA9ty0LgGq1\nsC4rqLxX1wAxC0cE6hPHgWsJWfjZgHtcyBpy6wT+dqDct3Ii/1lHxB9DaHUtfwRuW5TvbnMj9lgf\nf8jjjxH/ajWJEn9X1B/CGJbPeZrQLbbiobP/azHrpQhwP/APVPV/ishnAK/ETImvmIXhX9R1v0z+\nFwyuAED6CmHQLwuw17b3M9dJWyzGF4EK3SJgYUXAt4Ri2YArBH6NAJqk7y496WYIFqFpfuvLVcaP\nc9Hw/SNC4G4PdfK0RfuQRvxDkFroPWu2zkb7rXEQQ8eKhxbvBZ5cLHX7dMxsxjdi8t5/oqpvE5Gr\ngLeKyOu75kLL5H8BUYvKd5QF2P2pWUA/pIuAeaDify8baLOFQjUCN9JvI/wQyUPc348hPL9+XAz6\nkL57XCrxjxn1u0ht8TxrwtATbSseAqCq/8M5/i2Y6fEpFsT6UPH6fhH5XcwiWpn8M8LYdqF4aGYB\nEO8IsvvaCsJDRMAWhn0LyY4Y9i2hqksIYkJQbatI0s8MIEz4LkF3FXxjiBaCWyZhayN9sy0c7bvH\njUX8LkI/1xTL57T7/dC7z/9aEbnTeX9rsR4JtK94GMI3A7/obxSRx2KWdPzNrofJ5H/B0SUAEM8C\nIG1cgL8vVhCGZj0gHf2ygRQhAIJiAH69oNlFZOGSdSwjiB3vIzSNQIjw7XO7z9Y4tqWjZ1virz1X\noMPH/oxd4nej/r6R/Rn0++9V1ScOvYiIfDGG/P+qt/1K4L8B366q93VdJ5N/RmsdAOJZAIxcEA60\nho4tArWppC0KDnGFoGobBbdYHBMDc475fxGxx4f2g4e6SroI3z8v1L/fFe2bbWHid9Fm9/Qd1OVH\n7n2E4YxOB9G24mEJEflzwEuBpxdT4tvtcwzx/5Sq/kzKDTP5ZwDtdQAYlgXY81OsIHOdfiLQHCgG\nvgi4E8hVJ5p7uCRedgtB+ddRF4JmZgD+tNPm/1AmsC1CUb/Pcb649CV96E/8Q+yeIVH/acGIE7u1\nrXgIgIh8JvAzwNer6u872wX4ceB3VfXfpt4wk39GDW02EIxfELb720TArQf0zQSOj3BIv35eOYcQ\n4YzAFYK6PdQuCOX5AWHYBrFANpRJhAjfv0abxQNNm8fd1kX8bXZPKlKi/jNo+bQituKhiDyv2P8S\n4HuAa4AfNXzPqrCR/grw9cBvi8jbi0v+i2IRrSgy+Wc00CUAMLwgDPF6AHR3BoVEINQiWo0VgM66\nQAFXCKJZAd2CUB5XZgL9i79dVlFjlS2PE7tIH9qjfXf7UOLfR9S/b8tno+FpL7ZBaMXDgvTt628B\nviVw3q9RDWhJRib/jCDaFoq3GMMKsuf7AuGPD4B0EeiGSzYJ5/o1Ahce2fqC4OK46OCJ1QSax3cf\nE+oxjxE+hEkf2m0eCBd3Y+dbpBC/j4sY9Z8UMvlntCI1C4DtrCB7fpcVZK5VFwEI1wS6p5B20U8I\nfHvIL/pCM0PwcVj8HxMJSB84FOLRVMKH7aJ9/zru9tBgrra2zrMc9QOgMngA3Ekhk39GJ1IEAMa3\nguz+qAgMmjguhIqI3Enl/GKxWyuAcL0gJAo+lmkTfrYiVGwMz74Zj9JDpA/bE38b2uyeHPXvF5n8\nM5LQ1Q5qsY0V5F4vRQQg3h0Us4T6ZQPlXZzX/cUl2Fa6A3SRvUUsyvf3DSX9Meyevjip9s6Nnt21\niTP5ZySjqx3UxS5FoPEsPUQgFfVCMdBYcev0/MHHRC28mHoa6fv7Uojf7+ppI/4uuydH/btHJv+M\n3ki1geDkRQDqltDwbMDidIlBTNxSFlbfhvT990OIf6jds03UP1qtQSX4HZ8FZPLP2AqpNpDFSYiA\nuWba/EHDhMAfT+Biv6IQI6I+hG+uE9/fZvPA+MTfhhMl/jOOTP4ZW6OPDWSxKxGwx6TUBaCfEMSn\nmO5GXBR2h9izhqZk6EP6ofdtXT19iT+GseyeTPp1ZPLPGIy+WQD0aw+FuAi419gmG4D+M4qGxCA8\nxUSodhBGH4FIfdbQ88TOH0L6MA7x79Lu2RXxbza54JtxwVEblDWCCISygNi1+1hC5tpVNgDUbCGo\n/zH7xeKQPRTLDGKCUPs8803jnn3Qdf22a6fMx9OX9OHiEP9ZRyb/jNHgCgCMKwLQbgeFrhETAejO\nBqCZEYS6hmK1gi6ryEb6KeSdii4B6dMV1EX60D/ah/NH/Koy6s9wn8jknzEq/CgbxhEBSKsJuNew\n1/HrAu5z2mf1hQDotIZiLaRdxeMhNYRUtN0/du/UqZi3ifYhnfjHQo7425HJP2Mn8LMA2I8I+Nfv\nKhDbZ7VIEQKIiwHEydXu3/d0AG1CE9u3LenDcOIfI+rfF/FrHuSVkdFESAAgTtQh9BUB9/pdaxOH\njmsTAnOvdDGAeiG3iyS27QrqN8V1/NjY1Mtjk37sWHOvs0P8Zx2Z/DN2ipAN5GJX4wRi127rEvKP\n9YXA3CtdDKCdbH2yHzOCTL1WH8KHdNKH/jbPWSR+zRO7ZWS0I5YFWIwpAtDPEnKv55NHyBqC/mJg\nYUUB9m8XdC2q0jb7ZmxenjGifXPvs0f8Y0NEbgJehBkZ+FJVvcXb/9nATwBPAL5LVX/I2fcy4MuA\nj6rq56XcL5N/xt7QJQDQXwRgu2zAv0fseilZAcTFwDxDfBqEGFyRSEHf1bKgneyhfSK2PtF+2/Fd\nA7hOO/GP5fmLyBR4MfA04G7gDhG5TVXf5Rz2x8A/BP5W4BIvB34EeGXqPQflKyLyKSLyehH5g+L/\nR0aOu0lE3i0id4nIC7rOF5GnichbReS3i///+pDnzDg9mC43raRiMT9el/+6MFtu4qRztCr/xe4R\nu15o6oHYOfZzhT7f/Ggd/NeGyWrT618XUu8f+wxdnz/2M2j7GZ514h8ZTwLuUtX3qOox8CrgZvcA\nVf2oqt5BfUkLu+9NGHFIxtDI/wXAr6rqLQWpvwD4DveADkWLnX8v8ExV/aCIfB5mXcvrBz5rxilC\nShZgMYYlBP2zAfea/nVj9pBFiDwb3U8dArAPpApxDG0Eva3N03Xd1HvsA7qRPpH/tSJyp/P+VlW9\ntXh9PfABZ9/dwI0jPGIUQ8n/ZuApxetXAG/AI38cRQMQEato74qdr6q/5Zz/TuAKETlQ1aOBz5tx\nitBVDPYxtiUE4wiBf17s/DaiTf0OtkUKyVt0EWoXMe+D9Lvuc0pxb7Hg+qnAUPK/TlU/VLz+MHBd\n4Jg2RUs5/yuBt8WIX0SeCzwX4GFXXNPv6TNOBfpkATBeqyikC4F/rxBJbSMIFn3IeWykkugQ0ocL\nT/xduAf4DOf9Y4ptO0Mn+YvIrwCfFtj1Xe4bVVUR0W0fJHS+iPwZ4IXAl7acdytwK8A1j3z81vfP\nOFn0FQCLsbIBiNtC/r1i9/PJK5h1tJBWyuC3odjFlMlDST/1Pqn32ytUtyq2B3AHcIOIPA5D+s8C\nnj3GhWPoJH9V/ZLYPhH5iIg8WlU/JCKPBj4aOKxN0aLni8hjgNcC36Cq/yvhs2SccfS1gVyMNXoY\n2rMB/35t90wRg9g1TxJj+e2pUzGfFX9/l1DVlYg8H1PfnAIvU9V3isjziv0vEZFPA+4ErgY2IvLt\nwOeq6n0i8l8wFvq1InI38L2q+uNt9xxq+9wGfCNwS/H/zwWOaVO04Pki8gjgF4AXqOqvD3zGjDOG\nbbMA2M4SgvGEoO2+MZLrEoVdou9iKKkEfK6jfQei4xXuVfV24HZv20uc1x/GBM+hc7+m7/2Gkv8t\nwKtF5JuB9wNfDSAin44ZpPCMmKK1nQ88H/gs4HtE5HuKbV+qqqHMIuMcYkgWYLFNNgBpQgDpYtD1\nDH0JuEssxlzMvA/p9ll05TwQ/1nHIPJX1Y8BTw1s/yDwDOd9Q9E6zv9XwL8a8mwZ5wNDsgCLPtkA\npAkBpGUFoWfo8ywhjEnuIfQl212R/jbPsm+I6okW64cgj/DNOPUYIwuw6JMNQHd9oLxuYlYQehYf\n+yj8dj1D0rlnlPTPKlmPjUz+GWcGuxABGDcbKK+/hRiEnu20oe96uqdlgfVdEb7o6f55tSGTf8aZ\nw5giANtnAxbbiAH0E4STwraLp29rTY1NpDnKj+P0//ZlZEQQmnJ5CPpmAxZ9s4LyfhFiPSlR2Jbo\nXZwW0of9EL+o7rwGsytk8s84F9hVNgD7EYLavTtIeKg4jEHyPoYQYI72TwaZ/DPOFcbOBqC/LWSx\njT2U9Dw7IO9tMTTqPevEnz3/jIxTiNOSDVjsSgz2jTFsjrNq85wnZPLPOPfYZTYA4/brn0ZBOKlB\nY6nIpL8dMvlnXCiMnQ3A9rZQCKdFEHZRxDyPxC8bPVU2XB9k8s+4kNilCMC4A7XaiHioMOyrU+U8\nEv9ZRyb/jAuNXYgA7E4IfJz2NsOzWgxNhejp/xnEkMk/I4Pd1AUs9iUEpwm7Jv0c9Q9HJv+MDA+7\nygbgYgjBRSJ+UT2z2c3pay3IyDgl2DXJzI/XZ5Y4Yjhvn2efEJGbROTdInKXiLwgsF9E5N8V+98h\nIk9IPTeEHPlnZLRgl1mAxZjdQieJfRD/aYr6AdBxnklEpsCLgadh1jm/Q0RuU9V3OYc9Hbih+Hcj\n8GPAjYnnNpAj/4yMBPz/7d3PaxxlHMfx94doVbzUtlptK6IgYvVSKNKDJ3+UEsQoInhpq55y8CyF\n+A/UXnsoOQiVCt6CASvRih4UKtZflOCPJlbRWislVGiL1dKvh3kCQ2Z2M9n2eSb7zPcFw87uPM/O\n89lNnszMPk925L9ryc4Ehu3oeRjbvAo9BsyZ2c9m9i/wLjC2pMwY8LYVjgNrw9ffNqlbkdWR/8KF\n0+ePTO3+NdHuNgDnE+0rpRxz5ZgJ8syVMtN91/sECxdOzxyZ2r2hYfFbJZ0o3Z80s8mwvhn4rbTt\nd4qj+7K6Mpsb1q3IqvM3sztT7UvSCTPbnmp/qeSYK8dMkGeuYctkZrvabsOgsur8nXNuSJ0B7i3d\n3xIea1Lm5gZ1K/yav3POte9L4EFJ90taA7wETC8pMw3sCaN+dgB/m9nZhnUr/Mh/cJPLFxlKc3qQ\nlQAAAsNJREFUOebKMRPkmSvHTMsys6uSXgNmgBHgLTOblTQeth8CjgKjwBxwGXilX93l9ikzixLG\nOefc6uWXfZxzroO883fOuQ7yzn8JSeskfSTpVLi9o0e52unUvepLelrSV5JOhtsnMsi0XtInki5K\nOpgoyw2fAt/09YkpUq4XJc1KuiapleGTkXIdkPRDKD8laW2qPFkxM19KC/AmsC+s7wP215QZAeaB\nB4A1wHfA1n71gW3AprD+KHAmg0y3A48D48DBBDl6trFUZhT4ABCwA/hi0HwJ359YuR4GHgI+Bban\nzBQ5107gprC+P/X7lcviR/5VY8DhsH4YeK6mTL/p1LX1zewbM/sjPD4L3CbplgjtrxMr0yUz+wz4\nJ1bDV9DGRYNMgW/y+sQUJZeZfW9mP6aLUREr14dmtvj1WccpxrW7FfLOv2qjFWNnAf4ENtaU6TXN\numn9F4CvzezKDWhvEykypdCvjcuVWc35YuVqW4pcr1KcObgV6uQ4f0nHgLtrNk2U75iZSRp4LGxd\nfUmPUJyq7hz0eeu0mSknuefLiaQJ4CrwTtttGUad7PzN7Kle2ySdk3SPmZ0Np59/1RTrNxW7Z31J\nW4ApYI+ZzV93kJK2MiUWawp82/mST+1PJFouSS8DzwBPmpn/sR6AX/apmgb2hvW9wHs1ZfpNp66t\nH0YkvE/xweLnkdreS5RMLYg1Bb7tfMmn9icSJZekXcDrwLNmdjlVmOy0/YnzaluA9cDHwCngGLAu\nPL4JOFoqNwr8RDEiYaJB/TeAS8C3peWuYc4Utv0CLAAXKa7Lbo2cpdJGitFG42FdFF9sMQ+cpDTK\nZZB8CX/uYuR6PrwnV4BzwEwmueYoPg9Y/D06lDpXDov/ewfnnOsgv+zjnHMd5J2/c851kHf+zjnX\nQd75O+dcB3nn75xzHeSdv3POdZB3/s4510H/A/yoxBpC7OwyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Hamming window')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULVld5/n5xeOcvJl5bwFVxbsUVFg00D4RmLYfPgZk\nNShMOyLgA5e2DiqDdKsI0iprWmahMtqOqMhI8WgVtBUVBUTBB7YjSmlry2NaEUEKKYqioO69mTfP\nicdv/tixI3bss3dEnJOZdQvyfNfKledExIm9I2LH/u7fW1SVLbbYYosttjgpJFe7A1tsscUWW3xq\nYUssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLF\nKETkpSLy/Ve7H2cZIvK1IvI7J3i+bxSR/3pS59tiCxdbYtkCEXm/iFwRkcsi8nEReYOI3GD3q+oz\nVPU/XqW+XfUJsOmDisiPe9uf2Gx/5Wn3QVV/QVUf67StIvJZp93uFltsgi2xbGHxFaq6D9wH+Ajw\nk1e5P5MhIumd0MzfAU8WkczZ9nTgb+6EtrfY4pMKW2LZogdVPQJ+BXio3SYirxSRH2o+XycivyUi\nnxCR20Xkj0Qkafa9X0SeJyLvbiSfV4jIjnOeJ4jIXza//X9F5LOdfTeIyOtE5KMi8jEReYmI/BPg\npcD/1EhTn3D68zMi8kYROQC+RET+QET+rXO+nqTTrPC/XUT+VkQuich/FJHPbPpxUUR+WURmA7fm\nFuCvgS9vzncP4J8Br3cPEpH/IiK3iMgdIvI2EXmYs+9aEfnNpr13iMgPBfr4jKaPnxCRnxIR8a9H\nRN7W/OSvmvvyNSHJzpVqmrZf37T9Z8Bnesc+RER+t3mm/0NEnjxwL7bYYhBbYtmiBxHZBb4GeHvk\nkO8CbgauB+4FfB/g5gX6Wszk+5nAg4H/0Jz384Abgf8NuBb4WeD1IjJvJI7fAj4APAC4H/BaVX0P\n8AzgT1R1X1Xv5rTzNOCFwHlgqqrsy4EvAB4NPAd4GfB1wA3Aw4Gnjvz+1cA3NJ+fAvwGsPCOeRPw\nIOCewF8Av+Ds+yngALg3Rtp5eqCNJwBfCHw28OSmzz2o6r9sPn5Oc19+aaTftu0jjET6Tc0fACKy\nB/wu8ItNv58C/LSIPDRwni22GMWWWLaw+PVGIrgDeAzwo5HjCszk9OmqWqjqH2k/4dxLVPWDqno7\nZuK3k/W3Aj+rqn+qqpWqvgozKT8aeCRwX+B7VPVAVY9UdYwsfkNV/1hV60bKmoIfUdWLqvou4J3A\n76jq+1T1DgwhfN7I738N+GIRuQZDMK/2D1DVG1X1kqougBcAnyMi1zTk+VXAD6rqoaq+G3hVoI0X\nqeonVPUfgN8HPnfitUXhtP0Dzf19p9f2E4D3q+orVLVU1f8G/Crw1cdte4uziS2xbGHxpEYi2AGe\nCfyhiNw7cNyPAu8FfkdE3iciz/X2f9D5/AEMYQB8OvBdjYrnEw2J3dDsvwH4gKqWa/T3g+OHrOAj\nzucrge/7Qz9W1SvAGzBS2LWq+sfufhFJReRFIvJ3InIReH+z6zqMhJd5/Q5dwy3O58OxPk1EqO0P\nOJ8/HXiU92y+FiNZbbHF2tgSyxY9NNLE64AK+OeB/ZdU9btU9TOArwT+vYh8mXPIDc7nTwP+sfn8\nQeCFqno3529XVV/T7Ps0zzDeNhnrqvf9ANh1vp/WpPhqjDrw5wP7ngY8EfifgWswaj0AAT4KlMD9\nnePde3Vc9K7fWxTYtv1nY/FB4A+9Z7Ovqt92gv3b4gxhSyxb9CAGTwTuDrwnsP8JIvJZjVH5DgwB\n1c4h3yEi92+M288HrP7//wGeISKPatrYE5HHi8h54M+ADwMvarbviMgXNb/7CHD/EcM6wF8C/0ZE\ndhuD9TdvdgdG8YcYVWHIa+48Rr33Mcwk/3/aHapaAa8DXtD08SF09ppN8BHgM5zvfwU8TEQ+t3GY\neMFA2w+lb9/5LeDBIvL1IpI3f1/YOE9sscXa2BLLFha/KSKXgYsY28jTG1uEjwcBbwEuA38C/LSq\n/r6z/xeB3wHeh3HR/SEAVb0J+BbgJcDHMeq0b2z2VcBXAJ8F/APGOeBrmvP9HvAu4BYRuW2g/z8O\nLDET7qvoG81PDGrw1saG5OPVGBXTh4B3s+oA8UyMJHML8J+B17Bq/J+KFwCvalRXT1bVvwH+D8yz\n+VtWHRqeiVGr3QK8EniFc02XgMdijPb/2Bzzw8B8w75tccYh20JfW5wUROT9wL9V1bdc7b58MkBE\nfhi4t6qGvMO22OKTFluJZYst7iQ0sSKf3agCH4lR1/3a1e7XFlucNELG0i222OJ0cB6j/rovRmX3\nf2FiYbbY4lMKW1XYFltsscUWJ4qtKmyLLbbY4pMMIvK4JvXOewOxZFbt+icishCR7/b23Sgit4rI\nO73tnysibxeTdummRl3r7v+0JoVQ73zB/p1VieXa687rDZ9+LapQqwmKUIVShVqhrIVKoVSoFKoa\n6lqoyoS6FupKQBVRkOYeSuRWqtj/0n0XQRJFBJJEEVESl+abkyXNb2s1P6xrUBXsY7OftTb98fsh\nA8/X9ifW3x68YyXR4G5xGg9t67XTNKTqXUezcejeutflXocK1In07m+e1+R5zTyBearMEiVPISEj\nkcR0oCqgauIz0wySDJIUpabSkqpWylpY1EJRw6KCskyom3FR14JWkNTj97u9v8332L2M3c+he2pu\nXXdfg9+dewxMGsPdNYS2SfgY5/pEuj67n8f63xvr3hj3+zw2JiQ171qSKElq/qcJpGL+suZ/Is17\nKUoqJgjpnX/5gdtU9frhuzOMfyrX6mWKSce+n0tvVtXHhfY1mRT+BuP2fjPwDuCpTTYHe8w9MYGv\nTwI+rqovdvb9S4xX56tV9eHO9t8BflxV3yQi/xp4jqp+sbP/VzBT5Z+65wvhzNpYbvj0a/ntP3o+\nldZcXKYUKiyqhIMi4XLzd7GAjx4JF5dwqYCDw4zDg4yDyzmHBznLRUp5YAZwvqhICxPOkS+rXlvF\nzCTfrXLDHMU8pc4SZvOK2bwiy2r29s2Am83Nb7Os/+KVpWlnuUgpisS0XZr/y4U5f1LW5Iuubduf\nIdg++SjmqwmD66x/rO2r/z3L6uB+MJN820ZzHUDvWpKyuY8D9xQg866vzBOKWUqVJxTzlGxPmc0r\nrr/XITfc+4gHnFc+43zNp51fcp/dhHmyx15+d9LFEXr5o3D4CXOi3bsh+9ej8z0W9QFH1WVuP7rM\nR67kfOBSzocO4e8uCh/96A7LRdqOh/JA2Lkcnjj8Zx+7P/52ey+Hjg/Bva/ud3esAO14GbrPLuxY\nDsEdS3b82HFu+59lNbN51RsHK20UXZ/d/o+NDXc8lPZ+N+NhsZezf2HZvmuzecXuXsnebsn5HC7M\n4PodZZbANTNlP6/Zz2v28opclIfe41vcTAUb4TIFL0gfOX4g8I3VW68b2P1I4L2q+j4AEXktJjC3\nJRZVvRW4VUQe7/9YVd8mIg8InFeBC83na+iCmxGRJwF/jwnEHcWZJRZVOCxhUXWk4mOWwPlcWdoV\n3m4o44gZ8KHpZOwldVEUCXles1ykzOZVSyQuwfik4mITUnGP8wnGnsslGPtSg5kw7CRlJw7b97Hr\n9GFJJdT+OvCJZpHlbb+OKihqKJpnWdVlpwjOZkZCsUhO7rXwJ9t1SAXMvbHk4t/vGGKkYjFEKllR\nt5OyjyFScc9T5Qn5oqKYGyJYsjou7Hg/LkLvmE8qxTw+LhfLhJ205uISdlI4n8MdS8EOjkUl7J1A\nP08Y96Ofnudm4FEncN5nA28WkRdjbsA/AxCRfeB7MRLSqBoMzjCx1GoGzeWye1nKuhOf56lyVAk7\nKVzIFWhUIFnN7l5HMHYFdvnibKKQOw53grYEEzvOXcVZTCUV/zch6SVEMNBNTj7B2M9ZVk8iGheh\na7EoZunKJFLmyQqZZM7kZie1okhYLBNMkgCaRURNTUVVF6SkSDZHs3hw/zxd/56uSyoxuOQCYQL3\nySNEKv4xEJZUhsjFwl5baKzZseSTi4vZvIqSS57X7QIky+qVRdQUuKRi7nsnNVnY+3FUmT5cLARQ\nzKUJiypl/wRJRQSyPP4+91BxnYjc5Gx5maq+7MQ6E8a3Af9OVX+1KZvwckx6ohdgVGSXJaI+93Gm\niSVGKhY7KSxryJNGepkB1NxxhZZc3JfATvQuwcQkgjH4k8eQCgxWV5+bYKivvgRhicYnmI4Q+5Nh\nCCHJawghcun1cVm1q2p7LQXuBCLGNlILlTb9poKkCTBvJBXJ5kaKCWCemkUGGGlyGYmbHyKVdYkF\nOqLwpZehY0Ok4ksr0Fcl2Xvok4srrQyNZft7n1xi2ERysWqw0ELD9rVPKp0aLoTFMoFZbfI2IMwS\nAGVZw1X0b7pNVR8R2fch+nnf7t9sOy6eDnxn8/m/AD/XfH4U8L+KyI8AdwNqETlS1ZfETnSGiUV6\nZLKozGerKrHfZ+24UooaZomQJzWXiposq41uvVVbddIL0COYoZcrBndimGJX8UklZuuJYV3yG+pz\nTD0WmhBD+vN1Ya/V/vev1Uy2/ftT1QXtQjpAJFaiqeqiVZUuKuGoGRtlKRRF0j6T+WJVZnWfe8h2\nsu5qPEbY/nmGSMWFfeb5smonZp9QhsaFL7n49sQpOCm1mNu+ixiRm/fWOb4hFyuxFI0jxlFATb4J\nJIH5fKLEMlwI4h3Ag0TkgRhCeQomAepx8Y/AvwL+APhSTGogVPVf2ANE5AXA5SFSgTNMLKXCx45W\nB2FRS0sqYKQWMARjpBdlJ4WdTLiU1sxnCw4OM7JMOTzI+tILYduLxdCqM3TsFFJZx67jYh0jvg/f\nqG/7C51KzMeQUdbvl0uYQ1JLvigp5uEhPSQ9qQhTXndDKmYcLJbdsxhS4UH//vgr5ymqHvf+Gftb\n+Hj/Pg+Nr2Ketvfaf/YhZ5Mh5Iuq95xCRvzB3w+QyroSrW0/5CATIpgQuVh73PmZed476V3Lc1ZV\nSxF5JvBmTOdvVNV3icgzmv0vbbJb34Qxxtci8mzgoap6UUReA3wxcJ2I3IypEfRyTC6/n2iyjB9h\naihthLNLLLVw21HSEse8GTwuqVjsuOPOIZhZYjzGds6X3NEM3MMDc0tblQXx1eIQQjrz45KKqypy\nESKVTSSsEMYmwSmSyjrk4sP1ShqFlVoaY35VL6i0pKZiUQlFLSxrOCrNdfnSSuqoknz4KjBXohsi\nl3XIYp1jfLhjwCeU0MLBIinrlqRWCMrzDJv6HHwHjynk7UpWPqmEsGrH9O7ZrOboSmPQn02UMkYg\nItNtLCNQ1TcCb/S2vdT5fAv9Eg3uccFKqU1xvS8YafcFU/p3dolF4WJBo0eFWUMoO974mvdWK90x\ns8SsZHZSa/SrWyOglV6gM2i7xsvQCxKbWPyVvf39aUkqPqH4k4rf95i0Yq87pgazE0VCvZHqawpO\nihyruqTQpJVYihoOD7LW5bwlRl/1GJjgXHfbokja+xQil6kEMeW40Jiz98e9/3a1Dy4prz4f22ad\nJT1ycc9r97sYs7uNYcXWN+DKv06bllw6r8xG9Zl17/UW03FmiWVZw4cOhJ2scyu22w1p+KTSl2os\nAeVJ5zXGkhWXZLv6cj2mXPdL9wUIkUso/uDOIJXYKtVunyqBxbySQlKKbyPyV9EhqcX1DLNqsDJP\n2t/aSXw+G+mv526sItRaGeM+xpOsaIIjj6qO6F1pBfpeacfBmDfXSvdHVHGx52lJwT/eEkpsYeCO\n5xC5HBe+6jdIjCMqu6lu2b4HZllmrZv/cpFyOClyYwsXZ5ZYqtoEPRaN19eyloYgXMgKuYBLOGYg\nXiw6cslLYLdsV0mHBxm7e8XK5DBFLRCLP4Cw95ed1KbEIcSC2WJ99PtiJxM/tsU/3lX5uNewScyN\nD5dcoFP12et03UwhrCuv6oI6qUi9WBbXcH9YGtWpNdwvlknrTOFKK67rc1r0J2x/Jexuh+nuwT7W\nVbH6CD/zsArJJZPQ97Fz99voEIptCsGXrFwX+dAYDknMITfnsEPJpC6tBRGYz6+al9mdijNLLHWV\ncHCYscjMatbMCYZcXHXYolollzxZVY+55NK0gPULK0tpVR9jOnUI69VjdohYRPpQHMIQqQwF7sXI\nxSJEMiGPpKmu0bHYmhB8jyZ7XTE9+6JKmKUVlXYSpmSN23E2M6Ti2Fdcw71dSVvpcSoxuhOdey9D\n6k6LqcQRizcKTe5Di5ohFVJZJqNkchLqx6kqwKnOBX6QqSWX47a/RRxnlliqSvjE7XN290rKsmKR\n1RgyMEFS503Q9orNxSWVPNHW2G+PC5GLGdjaIxiLKW6ibXsDKrBQoOBYkNsQqQxNPpuupIeklJib\n8BhcQ76b0sWqc+yE4j9HF1VdkCZO7EqSUeuSmopltaTQrGe4d+NvQvEUQ3C95cbSrQwhpnIaihuZ\n8nyH7BG2zy652M/+ImMMVmKITfC+Gix2vWPqW1dS9MnFPcZt199+UkSTCMymuht/kuNME8vB5Zyi\nSNjbLxqdaoFPLjvpqtTi2lrcgDmLC7nxGAPYSV3jX4pVzaxDMJuqO1xyiemjfVLZJHhvCkJSSmhC\njnlVrYMpq+ZFJezWJXVi7CgqgjSqMBWhqrr4lUVlcsdZw31ZCstF357gE/sQQouHIa+nKXaLUDqV\nqQuGITIJSVh2+2ms7E9TWgilx3H3hZxLgGB80hbDOLPEohVNcGOjn291rn1yARskaUikcIIq3ZgX\nd0W8k3bxLheLvt3FlV4sXPWY603lG0djGJrUhiSX45LKJoTnG+HHYNVhQ7+xRDQkORw5u0Iu5S6s\nwd7+t4G0Q90OpZfJF5WJ/Hc8Av2Jesj2NITB+zFBYun1fSBLQmyiH+q/m5VhKMYptn3MaL8uXOlq\nqoOMJZPjZLLwYTJtbyWWT2mIQnkgLBdG/dF/sfrkkjexKzPHGwxWJ6hYvMulxHifXWqkF5dgrFuy\nj5A+/qS8bkITz1QPmnXUNaP9mBiPEnq5Q2QzFiVuIuZHDPh2m4YSjnaYzSuKRlKNXYc14IfyqllM\nJZRNM1VPXSyEJlz3nVgnTcwQucRIzHdicDF1zLtt+c4jft9DbU/Nqr3FOM4wsWi7orx8ccb+hSVF\nkTgTfUcuNneQxZFHMBYhtZiNd7lU0AVUpn3feKtagU56sWilF05m9WaxaUJE2IxU/EhvNwWI//KO\nqcPsBDpF+vEnKqPOEgoVKjWeX3k6X/t6oCPoUB/sNfiT7MpxJ+AdB+NBjcfJT2YRsjmEJuNQjrDQ\nRO+fK5aN4Tjw7SmhtscIZR015xAkEWZbr7BPfbiJCm1+r929YoVc3NxBedJJJi65WLtL3xbjx7wY\n4lnWtDEvscC4kKHUIjahjhnA3eA3WFWBxfJXhSaUKcbU0L6p5BKDvyqfQi7r6u2rutOpu1Kpbdqv\nlWMRUodN8Xw7LmJS2pCKc2quspCHosXQhOxnN/aJLmTjsNuPY2dxpcNYW6H+Q98R46TI5KzizBKL\nW8DOlVzAkEtZCocHOVC0wXXLzEgvRW0M+24wZQyWaC44ko91bc7LTnpxE1r6UdkWNvfYcdVhrrrA\ntelM1T/HMFQc7CSlLRdTJ+bFMoG9acemSU5am1djnipZou2ioCOXVTWcOymVedLL9DuEddUt68Yj\nhVbtQ886hKHgVp9UQuTin8dXs21qc4p5wcXsO/44HCsYdpJYK23+JzmuOrE0ZTZvAj6kqk8QkXsA\nvwQ8AHg/8GRV/Xhz7POAb8a4Vj1LVd/cbP8C4JXAOUz+nO/UCTWX3RcAzKCz5AKdQb8sK9gt22BK\nZn2XZAjHu7hw1WQ25mWWGOnFEoyb0NJVj1lsspKzLrgxxFQFU3TpLsbcPteNzo6pw9aJbXExFnmf\nkELZpJRNd7ptdLaWNiFpc7/qLGmTjPrk4ZLLSSKUPXhKxgQ/sDG2b2iMjRUIs7DOIv6zGiO42DiL\nEXObmXmAXGIYct0fc9PfYhxXnVgw+f/fQ1cS87nAW1X1RSLy3Ob794rIQzHpoR8G3Bd4i4g8WFUr\n4GcwmTn/FEMsjwPeNKVxd0BZsd2SS6cuaFLpZzXXnDPV5phJL6YlJLW4+4taVsglT7pU/C3BNAkt\n3Rcuz2sOLuetrYUNJJaxyTgcfRxfpbqYkqww1qeh1XxMtXdSnjqpJEY6SfLe9oTUbKtMgS/zZ57l\nTvPG2MDLoUJsU2KJ3GNheFIbI5WpmPqsfYwRihtP5C8MQoZ1t22XVIYmffecLnGN1X3xryF2/hCO\n6/5uYSLvtxLLqUNE7g88Hngh8O+bzU/EpHQGeBWmNsD3Nttfq6oL4O9F5L3AI0Xk/cAFVX17c85X\nA09iIrFAnFzs6qqrZmdiXbrVb+dl5Me7WFJxpRifXGwCTJ9gbEJLVz1mM+kCFOW4egVWJ6nYixda\nSU4lFYsxY7EbRLeud9vU2JaWiMbSvCdKLn3pUlSh7nuCGZVYl9tj5qjBrDRrpZbY81hXrRIjmCmp\n7NcldogTSuj5hFRG7rtjyxYMEWooOHEqqfjf3YJioT7792gdUjkpMjmruNoSy38CngOcd7bdS1U/\n3Hy+BbhX8/l+wNud425uthXNZ3/7CkTkW2lqDMwv3DO6EvbLqfqxLlY11pwV0KCtZSgVjDXsX8hp\nU4Wcz433WJtzrIncPzzIyfOa3T2jeFkuZisSSFbU7fXEgiJhmqrEYmyigXghKx+bRmifBGy/bDZq\nizTJSEgblVcHUe1tz0XbZze7E7QkY0GtMEwiU13HLWILh1h2BJdQ8kWfjPNFGZyUfS/EUB/GJCIX\nvg1rStXTEKaWkdhiPVw1YhGRJwC3quqfi8gXh45RVRWRUVvJVDQ1o18GcP4+D1o5r+81BX0DN3Tp\ntbM2BQy4kovvbhyCnaQ6qaarWtm5NneR+zbn2OFB1qZdX5D3XkbXeBwy7q6rMlmHVEI1T8Zqsk/F\n0Is/JY7FT+kyT7X9A0gla9ReJZRLc1Bdto8xTTJstoT2HI3EetLR51OzJNi2Twsxj8PMW+X7pAJd\nhmlYLbgVgn//pqqnQg4S6xDCcQrbbYqTNN6LyOOAn8Ck8/g5VX2Rt/8hwCuAzweer6ovdvbdCNj5\n9+He7/534Dswg/4NqvocEXkM8CJghvFn/R5V/b2h/l1NieWLgK8UkX8N7AAXROTngY+IyH1U9cMi\nch/g1ub4WJ3nD9EvaDOp/rOKjA5EqxfuudnmNVC1HmM+uVhPMZdg+kkrzeRmt3XqMcgTaUhG2sDK\ni0u45lxHLi6GKlQeRw+/KakcZ7ILuRz7pLKOq3G/Boq9v2ZflijztG4lEmu419KovYRVz7DWxtKo\nMoeuNWYTCGGorvxqWpbh1CxDWMfl1sUUKaXt/zyjmKU9h5G1Cq0F2nS/w8mqqKYk7LwronF4+ing\nMRgNzTtE5PWq+m7nsNuBZ2HMAj5eCbwEeLV33i/BmBw+R1UXInLPZtdtwFeo6j+KyMMxlSuDWiGL\nq0Ysqvo84HkAjcTy3ar6dSLyo8DTMQz5dOA3mp+8HvhFEfkxjPH+QcCfqWolIhdF5NEY4/03AD85\n2r70B9YU419ZJhxctoZe1z23Ixfrimy/++qw/bxuXVjLur9/PzdSS54kQIKVXC4uzSq5LKsVe8sQ\nuWzy4oyRiq+OcUklFKntwl3hu1UHQ+QQc6n1Efq9my7f9s/GH+UNqawY7uuys7GUS5J0DzCkM0+N\nJBMMgPUM+FODPccIxV5HLDvz1DgUt5/rSldDUsqQs4GVHIt52vZ/ireZixCp2O/2fvlSyxQMvROn\nKQUCIJAOlGFeA48E3quq7wMQkddiCKElFlW9FbhVRB7v/1hV3yYiDwic99uAFzV2bHsOVPW/Oce8\nCzgnInN7XAhX28YSwouAXxaRbwY+ADwZoKnp/MuYm1cC39F4hAF8O5278ZuYYrgX6Q2qhaP7jwVz\n+cZ8gN0986LtpMZbbJl1aWCahgA7oWlLKkD730XW8zRLWrvATibspGVv8rZqMWsAtdewycprit0j\nRCp+ZcRQnIJFLPeZJYcxCSWGXrCl00fbh9m8ar255qkx3Lv2FfE90xuCSZOcVHOorrTPxQ2Q9fsw\nZYILEYovXXb3dtm7Dhdjk+AQsccm+lg8R76selJKyO7hSit9FdhytL9jWSVs21bNdrJEMi5tn2Zi\nzAFcJyI3Od9f1qjywUgLH3T23Qw86gTafDDwL0TkhZia99+tqu/wjvkq4C+GSAXuIsSiqn+A8f5C\nVT8GfFnkuBdiPMj87TcBD1/9RRyS6OpgajN7rBY06qrMrb6wu3sld1xpVFYlTWZj5WIrSsiKOszH\nPI29WLY9E/eSJzXz2VEv1sXWeekCzU7mJRnyPLL3xJ283f+xdnypBQjWS4+178ON5PfbAaO6bPuY\n9NWSK/YVa2Mpl60B3xyXME/rNkgSjHoty+rWIYGFmexC8Rzt9YzYvvzKjf69ba95ZNXrpwWC1XEb\ncqZwCX61zLI7VZS97a76yyWV/QtxYnT7Y93ofck7Cyw23O+uyi1mS4wRSffdaS/Sz5OSZEQgm002\nGd+mqo84kYanIwPuATwa+ELMAv8zbEygiDwM+GHgsVNOdCaRJNp6WY2pE6ZELbvkYuNcrM1lJ+1s\nKYtKViQVSyq5KIVKgGQSZglcLFzpZcEdV5KVaP2QimRKcNwUb62Y6ms2r6KTnS/BhNqLEchQOV2L\nUN32kM3H9dqbpxq2r7juxo0B3/cYM+q07rudoIu5MSCPuQm7fQ5NelPu69SJzn3uQymCbJ981aRN\nUeMTjUsyIVLJ9rQnbYXGnJ8Pz96PMXIZkvjGnBzcz2NS4JDkfRdAzN58XNwMvK4hkj8TkRq4Dvho\nExrya8A3qOrfjZ3ozBKLSHgCmrqiHyMXE49iJJVZ0rkXrxry6zamYp4qVPTIxarPLhcJO6m0gZVW\neinOGYIpS5NAc2+/6EkxIfhEM+WaQ6TiSgX+PXTT0rhtut994vDVeEMk6P4GuonR2lfcyXk+q9uy\nxOZ+1mGZdkNkAAAgAElEQVT7SiOxaLlAyiXpfIe0zkiTjFyqnj2sC5BMWjtLSB02ZdLzc7W5hLK6\nqvZXvBHnikBKILddVyUWii9yyz6HJAeLMKn01aN+Ua8xD7EpkmqIVKbcW39/DKdhbxGBJJJnbk28\nA3iQiDwQQyhPAZ52Auf9deBLgN8XkQdjvMBuE5G7AW8AnquqfzzlRGeYWDS4Ggzl6YpJNDFyOapq\nE4eSmRoey3oiqdCRCwBpDSTs50YNc7lImKfCHUtpbS9HVUMwdT8df6hape1zTF0Vk1pi9hR7v3zv\nK3eyc9sfK8nsexBN0XuHJJ++GqxfoC1LlFSSsH2laiSWRnLpSTVU7SJhx3lrQuqwobiT0GLGV3mF\n72kY/v6yDHusuYlNXUxRibnJNX2JwXcpjpGKva4x2NgxX3IJ2VVCpDJE1r3znYwR/apAVUsReSbG\nOysFbmxs0M9o9r9URO6NSZV1AahF5NnAQ1X1ooi8BhOEfp2I3Az8oKq+HLgRuFFE3olxK356E/Lx\nTOCzgB8QkR9ouvFYa9wP4cwSS5JsHofgrr6jE2UTQGkkCyu1CEUtlHWnDitUVqLALXJR8qyiUCFL\nklaVlicJRS0mDX/hZEwmXq2y82Y7HoYklamY8puTXDH66qsVuPYVC8eAb1K7ONJK0kXfuyt/l0iO\nG3sylO49ehmR9DJDUov7OaSKchGa2ENxKiH1V6j9IVibi6uiW+nPSBXUGKlcNYiS5ScTlqeqb8Sk\nr3K3vdT5fAv9MAz3uKdGti+Brwts/yHgh9bp35klFpveeMzY7MNP2DeFXJa1cUNe1sKiSllUwr67\nYkrrqL19nipztLW/WIK5XFiXZGnrvbQR+5FqlQeX80GpYZOa5TFs6kkzZRIIZVq2KpzFgEecdTUG\nz3DvoyEZK80YldmCuRe5P5tXPfWOb4Ceouv3r8ues8vyIKNSiz3OPQ8QlFZduGM/pBZzEZvYh1zO\nY+q8UB8seuNzbvoWI7sxQhlre4vTw9klFuhNujHpJWQE91d6Y+Ri0+QfVXBUKWAkjqK2BJOAoxaz\nsPYA8xkWVeIQjAmyzJOkIRlWqlXeccWeqZNexsjFR8iAPjRhhFbNMSPyOhgiqlC8zdD502T6sLfq\nMNehYifVNvrel1pgWEoJ37N4VUVrv7EIkcwQqUwh+JDNBQgSjItYcOzYs43ZiUKqW6BX2tnvt/95\nKqm45G2/W5yWmuwEbSx3eZxZYkmad3EKuUC42NVQTIA9N2Akl6VVxxhvsQu5YF2JQ+QyT5XdDNKk\nS+OfSsk8bVbmVcI8TZinaUNACXcszbnbei9JzaWiS2bpksvK/XDTw3iTidWduyqOKaQSmiRiGAuu\ntFinXoft91g4TOsRtmzWxufoqcYsuWSJjcDvXI6Xi04laqUWt/114UstvkrM3mN33NrfWYRIxd7T\nmBuySy72t2PxUK5NJXRue0y3X1e2GduPYl38153UpxCK7zxgERufPulssT7OLLG48F9SHyFS8dO9\nhAjGrWfvptwfVI015DJvDPd2UqsbUkglodI6EvdiVGO23ovJBAA0UfuQ9iZC/5ospqYgj2FdNdi6\nLp1Ti0C5iBZj820rG57PGvE3hSu1hMgFCBKMPd5iiMzXuc9j9seTUjGFbD1Dn4+DmEQUgj1uSzCb\n4cwSS61xFYINNrTbY6nF3Uh9X5KxE4WdHHb3SsrSrPpN7i83cWV/sOdZxaJK2M06QqmcGAtLLmAM\n/Fmijs2mI5dZAuebtHGLgYnPSitDifzWCqz0VsxjarfYfv+eun2FcLLEpKxbDyjrFVbUJUfOPFjV\nJa1gkc2QbI4mGcwcSS7rJMV6IODUv4ZQ3RF/hR7DmME+tpJ2J8uQlBL77rcd+hzLRuEfaxcrlmBd\n+1O3Xxopry8Z2fcwdG/G1LbHIZyx3/rXcFyYJJRng6jOLLGgElzp9SPYzffR/FnOZ1cV4hPM3n7R\nSEcVR7slIXKZp8rl0thE5mm1UiPEwkaDQ0Kh5n/e2F12UuMlVtRdOV0/11gMllxcqSU04cXOMZVM\nQr8Z2j5GKFNQ1MKiSoCaSkuquiBN5oZEshmkzesQIZWy7hYiRwNc444Xf9ExBle96kqWfoDpkNPJ\nOvfePUdsAWW/D6nGptpyXHKJYapkcVyJJlaeeWvwPz7OLLHUdXxl7UopIbWLO7HZSbhFMyF3q7BZ\nO0HYQbu3b6lolVzmqZE+CpXGjmISJg4hF21iXlzY3yjLzKjEDkbvyjhcnby5vjS4/6RWku79H6so\nOAT7yMpaqLSmpqKmQkWQJIMk6wil+a4i3aOZ0N/lIiVhdUJeF3Zx4q/s+6qwk1lJ+6Qytb9jLswx\nuOQCcRdp/3z+ue2Cb13i9uH/9iRUblFsjfef+lBHYplCKLFVcmi73VblTdBcma4QzHKxSi6zhNbD\nK2uqHM5TWrWXTzAhwpmnSlGbv1llpBWTI8useqe4rkI4+tmf6Cx8Mom9nENuti6GaqtDJAniBIJZ\nVLbuTcJOWlBJQZ1UpI6EMvUcMaxj9xlopL3/ZSk91drU1fRonMiImtGF7ctJSC0dNr9PrhYhRIQx\nL7LYuSySsiahbu/5VnrZHGeYWOITYmiVbDFWgCgKj2Cge/l3UkMuXZLD/svbReV3fensLMMrV5On\nTLmItOowNzEjsBJ/4afHgLgHXOje+at2GFcJ+ROEf++HSMXut+Ti6vjL0rp5C0eVCTBdVEJN1anD\nSDs7CyCZUY/VVFR1QVUXjQrN4KghF1etuMlKd6pKL6ZqDSFE/DHpcqqHnasWjZFLSP0Xc8cPuWi7\n8NXS9vMYAUJX/dXvyxD867fnOK405ENE10lC+UmNM0wsMkgoQHBiWwfub6xR3JY8ns2r1u3XVqOc\nJdLaRSxhlLWwl1fkoiyq1KvvkrCopFWbte16thYwaUisOixklHTJZcxQG5IwQmTiHzMFQzXPp9SP\nzxdVGyRp3VcXy4Rlk7/tcpFwjx2hqkvqpFGHpTuItbOA+Z9kVPWCSsvWzrKopLWtLJbdPXIN91Mx\ntGCxFRGhr2oNTZo+xghlXbuVX0/enXTtOXrXsahM+TtvUo6RS3vNAQeETrpP2zEWWuy5ffVd5kNE\nGHpOLlG152i+f7IUALsr4QwTSzyCewqhTJnkQnAN4tZz6fAgZz5btFmRP7YwrsiWXBaVsJcbF+Oi\n7FLA+IQCRoXmq2tcRy+rDgt5F62jQtjE5dcilJHYxaak4vbN9fIry4SjsuaoMgb8gyLlMKvJE0cd\nZu0s0NpXau3aX1QmoBVoydpdRYfsK0PXZhEaX26J6RjB2OuE8YWAj1h9eeiKZ1npr6fWpZNeQoTi\nfnYn5SkOB+52X0pxvRZ9yTVUaMx3Phkj/BC5uufYxE4Wggik6VZi+ZSG1jJqmPdf+kkr5gmSTQGt\n1GLVNQeHWZsCxqbct5JLnmgTpd/kGGtUYj6phDBLjAeTtbO43mExTFFZxaS6KcW6fEI5KXVjvuxy\nSrmqluUipahNBgSrCjNEsSBPdow6rHE7Blo1GNCow0oKbc5bw1FpJr+QGsyfnGLXOTa2bGVEiBMM\n9KWYoZV16LkNlQC2BBNr318cBKuAetKNvU+hlPkQJpT5omj7GuqnHXPu/fL7EEJsDNrzhbwjt5iO\nM0ssqE4mFBgnlXUmQ6uucaWWFgFymSXCNTNtAymt22uoAmVZdytr6FbX53OnrG7Thp8F2Y8ZWMc7\nK3Qf3AnptOBOgGCeoy8V+naWojbqw0qr1jsM63YMjeRSt/aVSmsWVdZThQ25VU+tfOlew9B1xQgG\nVu0fQ/Cf3ZTyv5tek48hm4o/5nwp5dxB0SeTRb/QmN0XKvwVQ0xqdq/bJZcTgZhhdhZwZonFTcs1\nZfJzU4eHMOSV5A74lX3OyreXAgZ6ZY6XtXAhN6SRt6lFDNx0/EUtXC6M7eWil71vJ1V2znVlju+I\npNm3KWD89B4npRIYg71X7mTiqzzcZ+GTi1XFWKlwuUh7dhYjsZjjq7qAFON27JzfEErZi2OxhG2b\nDk2Sm0zAY2MLwtUn18FUUrFtudJKrDqj3eYXCJvSP5+Q/bixfFGxc1CQOZKVSyih/k4p/AWrheL8\n/rsYChreIo4zSywW66hh7Mu2jr7fnfBiL2i3+hXakHAneeUsMZ5dRxVcyIWd1Br5nX7bNPy1qdey\nDHQxT8ykeKGVXkya/VAdF9OfZHCledoIlci18J+FJRdXHQbm3rp2FhfG7bghl4TWxrJqX0koa6s+\na9ofUCWuXEdg8hq6tpPEVNVX21eHwNx6Ky78Qmuh1PaxSR1W3aZ9Utm5XLTkly+rOKE0ZZFduP2N\nqQaH+n/aEvZZwZkmlk0H0dgKc6jWuQ93wjYTusnpBSYNC9RGYsk6gskT2EmbxJltU9IU/iJIKm0b\nDrnMEkNAR3mXrNISDAxnyL0zJkUISy8u3GdhyaWdvDFSi9t/a8C3ROHaUvyrtPYVa5Mxv+/UYWNB\nin59lnUmr5BRel2sSypu234Rrxj8NPuuam5qzEvMnmJJJVhkzCmP7PfXbXssdsqvnmnJ0X1GJ0Y2\niSDzk5lyReRxwE9gJoufU9UXefsfArwC+Hzg+ar6YmffjcATgFtV9eGBc38X8GLgelW9rdn2POCb\nMRPUs1T1zUP9O7PE0qsc2GCdyXLsxR8qT2vhr9w6l8uOXO64YgzuRc0KwbT9bn52sQgnW4wmYLQO\nApk9zi0UZpJo7u51+jQ/3sVHSDd/UhgimCmqJNeAD/1Ax0qbFXFjY3HjVyqtKTSjqKWXxmUsGHRd\ng29sPMVUYEPnH3LZds8bel7rkMpJIOT1FZNUWo+1ZnJ2VWBDpBKSuMc81O7K0ouIpMBPAY/B1Kl/\nh4i8XlXf7Rx2O/As4EmBU7wSeAnw6sC5bwAeC/yDs+2hmPLHDwPuC7xFRB6sqtEJ88wSSwhT1RNT\nJs+pk4CF6xFjkw2WpTTJKxMOMN40pn475E3ef1smt5NcVgnTJxb73ZzHpNm30gtL2kJhpl82TXvd\n2SuyPOiyuu59CWHsZR6TYMZgm58fw+3TjWGBiES3hit1CENleMfgS0fuuHZViK4txW3TJ5WpxfDs\nNbtuui4xratOLeZZj1yGSMUiVvxrnYJ+p0YoAnIy9ppHAu9V1fcBiMhrgScCLbE0ZYNvFZHH+z9W\n1beJyAMi5/5x4DnAbzjbngi8VlUXwN+LyHubPvxJrINbYvGw7oo7NlGGJoCheIOxDLg2cd/hQb9S\nnyUa6Oq97KQ6WINkFtxnpJfzM0wVSmqgaAnPNeyDkV4Wp2DQn7pS9AlmTGoJ1WWZSi7W0L+s42rG\nKfdhneuyiC1QYgGKU+Ea5/22QqRiP08lhxi5+HClFRetRDXPMGmPCJJKe/yEuvdtzZyBa7gLSSnX\nichNzveXqerLms/3Az7o7LsZeNRxGxSRJwIfUtW/EunZEO8HvN1r735D59oSy5oYqr3tYhMVQshT\nJlQX4vAga8hFW6IB8wIVdc35mTQGekM2R1UnpcySuLrMSi/WLXmnqUK5u1eu1KxpY0Qcgpnilhm6\nV/7vQnru6PkCq3EfK4WfEg26aodgSWUsRxiMSyntcSNGcxgnFP/7GMHEFkx+O7HJGcIuw6H4mFgw\n5dg7MSTFxUjFdy4YKlPsVi8dIpfTsh+KCLIzecq9TVUfcSodCUBEdoHvw6jBjo0tsUyETyhDL/sm\n8KWWmDum3edWc8zzuiUaY7Kusd5k1l0ZOlKxK/VFJUGScQ37bhVKa9g/PMha6aV9See0KrIx+JNh\nLKZgHenFjfVwVTnuPd3JwqSaSvg1GKvDEpqcxvo7lpl56jjzJ8fQPR1yFpjqweXCL2Hsw7YTC6Yc\nS0fjq6L7UkvcrdieL0YqrhpsKrncxfEh4Abn+/2bbcfBZwIPBKy0cn/gL0TkkZu0d2aJRWW6u2js\nZfdfjk0GayxjsLs/9hu3Vke/CJQhlzwBZibupV8/JFxXZJaYv2VtAiqPKihyE/dylBtp6A6HTFyC\naYlwPl2XPiU2ZqpNZigwzk+6aUo5mxQ5tkJnQgrlkfmc7rXb5mm8wuTU572uhAKrkl1oIh5rP+QG\nHGpj6sIolFsv5CjgX9tY9LrdZ+1BFpn3PRQPNtVJYop9yPWeOxWInJSN5R3Ag0TkgZgJ/inA045z\nQlX9a+Ce9ruIvB94hKreJiKvB35RRH4MY7x/EPBnQ+c7s8QC01bEYys7X82yjpHQYig9d+g8NpFl\n6HdlKU19+4JrmoDAS4Wxu7iwrsn+NnefSzKXCrhYCHnSJxi3/PK6q0E/8NJOhOvAfT4tyTjSiv2b\nz+qWOF2kSU6a5PhIk7zN7G5ISCO2qVWsY5gfIxQIL2CmInRPp0jbY/m8fNtIKM1KLLjQbdN3V3ad\nDVxHg6Eg4zGMpY25U0jlBKGqpYg8E3gzxn30RlV9l4g8o9n/UhG5N3ATcAGoReTZwENV9aKIvAb4\nYowd52bgB1X15QPtvUtEfhnjHFAC3zHkEQZnnFggTi5jUopv1HQxJoXAatbVoeNctJNEswr0E0fa\nWJiyTDiqamOIz6BfUKwPVz1m4c9vs8RIPkXeEYxVkbnqMYtYSVk/4+1JRvX7KjDXycFcp7a2pFy0\nrWeTkBr386Zap3VFT5OctF5498E4TISw7uQ05jk4RZIIqcT8e3kcG2BoLA8lhYRhV/yQp1mMXIAe\nwbgIeYJNhU8qLoaSWx4bCUjc938tqOobgTd6217qfL4Fo7IK/fapE87/AO/7C4EXTu3fmScW6JPL\nkHHe19n7hOKu2CGeHylUpCiWdiKWz6ztG/2sxKH0MEUN52fgk4trc/HTxPjIE2EnTTiqaAlmJxMu\npTXz2aKVXtyysv61u/fGRWhy2RQ+qVjbk32fjRrM/KVJ1qrCTAc7tVdC2u7LxZYh6A51r8OfoELe\nab4X1hCpDE2UU6SVIaKecm5/vE4hlCnqPr8d+zn2/H3VmMWQetS3U7oLC7fkuAs/yaW9rlMhlzOC\nLbE0iEkuQ/aUk8RxV+zuC7O7V7TpYbKshlkNy1VyGVPtuGSTJ8I81abCpU0ZY4z8F53Yl8OD3CnL\nnLZ2n4PLec/t885GnhB0wU4la9ReJVoa6UTqkjQ1qrA0yZinZXsfjEqxb5+rswQWqyv3KTiJzLmh\nxYtvzD+ug0koiBEmZvOOuC/7/R+Kgo8t+MYi7EMISSuWwHyJ5UQDfkWQ/JPWYWAtnFli0YDtfqr6\nKzaIQ5mBQ66Z68DVkYf6N6RO63J+VSax5ZKeQd/GZITmNksqe3kzYSZJm1U5T0yiy1kCFwsz0e5k\ntNLLYpn0UsNYoimKLqOz2b4q2QxVBtwU7vOyrsZBw32jCqNckqR7pJL1DPjzhlSs5JJldVSFOYR1\ngh1j1xHaF+pLjFDGioC5iI3boQSWoej92PvjSvZjkmto+9B76UstIbiBpO51uPu3WA9nllhg2Fh8\nnIks5D1zHMT6MlZB0H+hFlnNNedqI2E0ksssMW7HbobkPNG2sJgtKmZqwCTs53Ub9T9PBRuQeamg\nlV5saphONUhrh/H7OBUnURfDV29bw31rX7GqsLpEVM1+zaG6QtZU5bTXbklzHU/Ak1z9bpKmxD1m\n6Dwu/HIJg7EmA9c3NPn7bsyhJJEhrCOFhaRkf9Hmk8uWUDbHmSYWmO41MyatWIyRil+kaQybqjBs\n+7b8sU0PY3OPgZlol3V/wt3P63ZFn4tyYWb6u6gSclEKFbIkadViVnoBm2G5iX8pV3OP2X64dhi3\nr2MYIhf3Obn2FSu12bg062qcStLZUSypOBILdUkiZn8qCfO0u2dtXJBXbncdHEdaGUtTEtq+ibQT\nqxIaUvfZCTkkrYTenZjU6vd9SmzN2PW5nmAWvtoNOnJZNx3TZIggZ6Ro2JknFtjMzTWEIVKZcv6w\nHWc41UusH21kfPObvlG/YCetG+8uI7Xs5/26LrnEjfnziPRyx7IvvViCKWqbqRkgZbkInjaIocJW\nx0HapMg39pW6ta8AaLlA6FyO0yQjl6p3P9bR6R/XCDzkMGK3hcbGOn2cElE/ZqCfSipDfYBpKY5i\n54x5Iw7BDdANqSm3Ne/Xx1UjliaL5quBe2GsyS9T1Z8QkXsAvwQ8AHg/8GRV/Xjzm2DqZhH5AkzG\nznMYF7zvVA2kL+53YK3+upP10KD3SWWKqm2KC3OsTz5su7H69Xv7RRvnkic1lxKjEttJ7cvTxIKo\nNJxmti8qU3XRRZcWpW6KYCVt6pOV5JaY9DD2/rkSi49YwSUIl+adct1H4ZIeGyOYeHLNKqJTCHLq\nxHzcSPIxUnFh87K5UgqsZj3wr2EqfKllCsm0fRshlbGAUhcnTigJcErZv+9quJoSSwl8l6r+hYic\nB/5cRH4X+Ebgrar6IhF5LvBc4HtHUjf/DPAtwJ9iiOVxwJvGOrBu/MRQOouhF9OHTypDqoIpffLb\n9T/7k+3evkkueamdMGwApUsuqTHcN13ySWWe1iyqhKwxhruGfUja4Eqb3DJv4j/KsgKMt5jf97Gy\nx7HSvL1jnOu1xnXTzgCzWNuK425MuYR0J5ruBaZJkEPSyhi5xEjFd6F1j9+EXDb5jSWXIe+p43pO\nrqPSGwoy9s8xhuOQ4hYGV41YVPXDwIebz5dE5D2YjJlPxESFArwK+APge4mkbm5SD1xQ1bcDiMir\nMTUIRonFRUwdFgpkjOm2xwjFtmPhxlzAam4j6Dy7iqIf0R5amUWJjPhKnt3SeHS1hVYC5BKBtTtY\ngrGqMWt/caUX66K7cDypQjYKl1BirrsuwQT3A8zjHkHWIaFHGnUZ/jyC4+abmkouEF5shGwV6/Rr\nkzFsESsHPGWl7z732CJq02tyMcXrDYbDCU6KXGRrY7lz0dQG+DyMxHGvhnQAbsGoyiCeurloPvvb\nh9ts1Di+1BJ6ycei5Ke+jDFS8QnFkok/oF1ycV9G65cP8SSIbg1420aWKVlWcyk1SSu74Mk+uVhj\nvkXrKYaRZLp9hmAOCtf+krSFyZaZcM25GpOOX3oVKhNq0qLukclxUmwssi5NS1maksJH1WqW4iRG\nuCP7piBU6ySEELkMSSlTMEV6iY3jGPxSBbEMw34/Yghdk9tv314yRjBDi75NXLHH+r9FHFedWERk\nH/hV4NlNHpt2n6qqiAzbStZr61uBbwWY3f2ek33nYZVc7DaLdaQUIEgqbmr8qTaWdfIdFcDlizP2\nLyxbb7FuzxC5dN/naU2h0nqIuXDJp2xsLub3CedzAOWoFOazmt29siVII7mYc1kVSy/3VKTm+RBs\nPrXTnhjcibCYpSsR21PcV4cyGJ9U39aFb9B2Fyz+NQ29NzEVlU8qoWh8e9w6xvgphDIUNHoctfQo\n5ORKE9/VcVWvUkRyDKn8gqq+rtn8ERG5j6p+WETuA9zabI+lbv4Q/Zw40ZTOTaGclwHsf9qDRwnL\n96ffNMDRPZc7cEOkMnUyWdfzpVcH3nNFpt0zTC5ZoiyqpCUXH6GYF5dcjiq4YKr/ssgMuRRF0qTa\nmK1MvD5J5ovSVBWckOQxX1QssqTnGXeasM85ZnNYh1TWDfQbGgtD5OLvi+UZm5IheR241zFF7TsV\n6wZ4+vBJ5cQI5QzianqFCfBy4D2q+mPOrtcDTwde1Pz/DWf7SupmVa1E5KKIPBqjSvsG4CfH2zf/\nfakFju8NEvMu8e0prlpqKqG4Ls3rSCuhc4B5ibsMxXFyKWptY1wsuVhYQmndcStWyKWolQu59FRi\nZVmxt1+0fSrKdGVlHCKXIdjfnGRwm1GJhd18bf6zNrvABoQCw6Ri4ZZJ8LcNYR0bxVgSy3XisGKe\nlG6fgKCk7qt9Q7EoUwI7h+BqIWKkcqISrwDZVmI5bXwR8PXAX4vIXzbbvg9DKL8sIt8MfAB4Moym\nbv52OnfjNzHRcD8U8etjigfZ2GQxRipt4sgGbsXG/vb1Jk23Rka+qFaM+bt7xSi5FLX5bMmlPbcT\n7+LaWlbJBRZV2lOJ7e2WbT6x3b2CTyx2ehPxlLxb/jE2G25aNBLmfPQUa2Mn6z9LO3YK4nmtYL0M\nCkOYkqYkhJAUENo2VJXyuDFEfr9DknqIXKZgKBgZ4n0fIxWX+LaYhqvpFfZf8bP5dfiyyG+CqZtV\n9Sbg4eu0b003/orkuDppi+NKPTFSgb60MqlvDanYSc8lF/fFHSKXWWVtJrRSSOcVJqPBlHmiXLtj\nXI0NGk+xu/ejJT/BDvODghCstDJEOPmipJilJ5s80EEocad7D6fUV7E4zhjZNOJ/KrnAqip4EwxJ\nKyFScUtg+xka/POG+haydbrjHobrKp2q+ksEZqu1fz4VcaZDSk0tkW5wx/4spk4EUwywbkR850Is\n7Z9/rD1uaELZZDK15+z3wdhDjko4qoRLhYlJuWNp0rdcLhIOioRFlXC5TClUWFTCokq4uEy5XCYB\nw77JtbWf11zI4Xxu7C3nc7j73Rfs7pXs7Rfc7R5H6D0SjvZzilnKlb2cK3vmsy1ROxQbUswzyjyh\nypONMt8Owc1MAGEVTtePNFoHxf6FYBcN/t9xMGQoH9rm4qSDBWOkMrU/FjFSSYu6/RtCrJ27ujeY\niDxORP6HiLy3iffz9z9ERP5ERBYi8t3evhtF5FYReae3/atF5F0iUovII5ztuYi8SkT+WkTe0wSq\nD+JsKPwCEOlWaqFVih+UdRoG4ClR6MAkUvGT6G3iquvrtXfSuglyNJLL+dyQi1VvHRRJI6kkRu1V\nrQZSQie1GLheZk4Kek9yOSTniDy4As0X5eQ0KaMTJtUkp2JfInMXJPa52PT5J1FWGPqR55ukbHHH\n9VBGaf98sX5NDSgOeVD6/XHb81XArtTi/tYf/0OkEsO65ZjvihCRFPgp4DGY8Ip3iMjrVfXdzmG3\nA8/CxPT5eCXwEkzmExfvBP4N8LPe9q8G5qr6T0VkF3i3iLxGVd8f6+OZJRaLsZdzXUKJSSvuZ1dH\n7hjniaQAACAASURBVJKLuwKeogIYwvHKuJrJ8o4rAHWvjotLLiZti7aqsQV9l2NY9RQzmE4uRWTa\njxnxrRospoIaKmY2Fb46zE2fP5RjKqYSWjfeZKU/a8S8uBN0rP2p6uGhzBIxcrEekDFSCWGMhMdI\nZcyR407zAhOB7EQWqI8E3quq7zOnlddiAshbYlHVW4FbReTx/o9V9W1N7KC//T3N+VZ2AXsikmHs\n2Evg4lAHzyyxjIXH+PXb/cF9UskQIS65uO2dVnEs/4W15GallqOKlSJhllx2UsG6EndFwbp4lyGY\nY2uOqoTzuSGXojaOBC7KecLli7PW7uLW+whJZa4ks5Y6I7l6r0Js4hyrAhnyujqNyfG0JPYpCNlZ\n/PfQYkztNVRe/C6I60TkJuf7y5pwCTAB4B909t0MPOoU+/IrGOL6MLAL/DtVvX3oB2eWWMbguzeG\nBrNvDIR+8FUsEthVn8DmBaNCqb+HMMUFt4ttqdpklQvgqKo5n8MyE44qOJ+bQmFHVcJOagz6Ra0r\nBIOT9qWspZfmZVFJm7q/qJXzM0tURa8/s3nFgjxYo9wiRDIhw7FNplnVJVVSUtUFadYE19j/SQbZ\njJqKSktqKvO7Jh/asu4T/VTSjwULTjFEx8aYj3U9xjaVlsaM5K7UMpbHawgxyd0dC6mXrWFqTRWf\nmEOahKE+rI31jPe3qeojxg+7U/BIjJ/nfYG7A38kIm+xElMIW2KZAPtyxSa2GMHYl2oIIZI5bbj9\nDKnoDi7nFEXSZkK2fVxkNfNZ3ZCBMEtMqd48GScYl1Qs5qlRpc0qk6RyltAmq3TJxfZzuUhZZIZg\nqkUyGLvjB0geVSZ9f1EbJwNLGAAkGZLN0UZqkWwOSUZVLwy51CWFmtxny7rLlOw6XsA0z6mxIL4o\ncUYk5NCkHYp38ffF+jIlNiSW9dhui5FLey2OyrcsZVQdNmRfHEpaelwchxBPGbFg8dPC04DfVtUC\no177Y+ARwJZYQhhyZ4TOQwfiKyR3ReSvMEMTzRDZ+CQzhJB6wk+94e+z/bL9GII9t8mEnJFl2rzg\nFYvMFPAyRa9MWWJDJoZgrplpQzCy4knlI0+UnVR6mZAN+uRSFEkb/xMimBDcOJbFMuGoqllUtJmY\nq7qgTitUBMlmncSSzVARaq2o6oJKaxZVRlFLS1CdF11HXgn12ipSX0IZen7rntuXXoZIZWwBNIVU\nLHxy8WHfuXUn7VBQMPRJJWZbnBrM6ZPyiZKLCJKeiErxHcCDROSBGEJ5CmbyPy38A/ClwH8WkT3g\n0cB/GvrBmSaWGIa8T/wXairJhM4F4azDV3OV5KsDgCbFvd3flea1aWmuOVdzVHYEs6yFRZW2gZGw\n6qprjeg2BmbWSDNFrTBbJRe38qQlmMsXZ4QjXjpYV20X1jV6lhriqJPKFP6ydpYkaySVolGDJS0Z\n2cddljJpMo4ReEjltc7qe8hA7iK0UAmpd2MY6mesr/7kPhaoOkVqiWHoXh0n+0LoPbirQFVLEXkm\n8GZMYNiNTQD5M5r9LxWRewM3AReAWkSeDTy0ycf4GkwG+etE5GbgB1X15SLyv2CyllwPvEFE/lJV\nvxzjgfYKEXkXZuX3ClX970N9PLPEoiqDRkE/CNFXUfgZXmEaybjwJ4ehFBhTMGa8dOHrv9023VWb\nH0dhbR5AEzFfUpaGYOYzQzBHFRxV2kov1p5iycR+L2ppVFNWYrFlf5Wdc7CTCZfSmvlswcFh1rqh\nupKmSy5WNeZPbG2sTt04I2DIZdezs0jWzH7ZrJFUyvZY+we053DP76+iIS61WmxCKC5i5RximJoO\nBeJR7GOkYuFLLb6N0e2DTYljycWStutmH5JWNlF/xQz3oXu3aYaDKE4wQFJV34ipPeVue6nz+Rb6\nORTd454a2f5rwK8Ftl/GuBxPxpklFoh7XcVIJTQBhCYy99gYXOKZsvIc6vs6cNUTY3ag2GTlEo91\nkzbSi7LYKyjqmmUtrfQyS4yR/nLRBUqCsXfcsexIpe1jcysu5MosES4ugd2y9dRz4xyWi9RIfYv+\nM7Eo6NRVR2XZOAo0BnytqDF/JPOe8b7WZWtfseo5Q5idncgNLHVhn/1QepfQBO1nRo7BV+sMkcq6\nKq8QgnbFwKRu+2/fidj1+/aW7nvY/XkdUom9jzGMkfFpeWN+quPMEotqWOccM9QPEUVIepmCKTpz\nP7Atdp5N2/W92HyEXK1d2OwEbvr7siw52i1b6cUa+HdSkxrGuCmbidonlV4/k65I2E4Gl1Jj28my\nmsODnL39oosfKVeLf9nvZtXbr8myqEzmgJ20oJICzQRpVGEqAkprXyk0az3CwNhrVty0J66i/f1+\nehr7PUQw7iTtL0SGCGNdMolJWaGFVaj/PrnAarE53+PKryjqBwWHJMKpGMowfqfiDKV0OcPE0teR\nu4QCcf/4oYljXdF8Ux2w31dYTw0Gq55sQyqbshQSVqW3Kk8oypTyIGsLl5nVpZnwrfRiDfwXckMw\nQ2SyE5gDd1LlUkErvew46rHlwijCbAJL+wzcia0kWfEMs15qrkuxdTu29pUQ/L73JNtlFSWKGGI2\niqnSyxDW9VgLYUhaj12bTy5DfYu59PoqsPmiex6uhAfDKX5iWIdU7mo2lk8GnGFimRY/4E/Yx0mZ\nEoIrPYytpEIDfKq0ElNLhFylY+d1V+R28tg5KChmqTn3gZngyzJp6qwY6cU38LtuyhYhQoEuyv18\n3kkvyxpY9mu67F9Yclhmweu0UpXxYuu2rxuF75KK62psV9J+gbKpcLMI2Hoz7oTc3l+GS/+uE2Q5\nrV/jHmBTEJJaQoZx1/bi21XseXxSsZ/9OjghL8ipksqpEYlwUpH3d3mcXWKpZTTNNsRdeEMrsamT\nSm/S8CaKWEyCj5D785hKbkjn7yJGKhb2pQ6tWOcHBZeZ9bYZm0jF3m5JUTeT+8xE8dvuGJVZ/1yz\nJEQ4yqVCmkwAqzVdjjCqBveensuO2N0rW3VcnmhbbjkhJZXM1FwpjwBI0j3SJCfVnLRetGlpQpmN\nXWnF3Ls+SbiYWglzE1KJ9WtTTDHW28ncHwexSb53TCDWJuY846sZY+3FECKVoZo2VzPTwKcKziyx\noDp5tT8UH+JiijQTe9mmiubuywbrORS4x69Ua5xg7/HbgE5t464a5wcFh2XWTg4mFsbYKGyQpbno\nPrm4sKRijf3zVJocZeCSy9Fu2d6X3b2CQ7rMAfae7u0XZFnNhZk57zw1pJJKYggkaX5Tm3OJrkoy\noXgcG7viSivufdikpLKFTVsTI5WhPGOxBdPUGJh1bXabOBy0vw0EB29qMA9JKzFSce/fWPnjLcms\njzNLLG1uRI8wYit6f/tgBtVIHit/sh+TVlz4br9uH0JtresdM4SQtOK2E0NByiE5ZZmwu1c0k79x\nT6YhhBC5WFLZz+ueuuqaGavkkncqsRBm84rdvZJrztXspNpKLLkoaWIklYTUkEm5bH9nt6dJxjwt\ne/1wJ6F8UfWklbH8ZUPwJZxue3yc+KvrodokY4sH//iptsVgnzcYe74zzRRpJdp+gFRCVSHdbN6n\n7gG2Nd5/6kNUoykpYNywPibF+NLLUP6idQyJQ1HHvsF3THLZ1HkgpPZxYfuRFiYy/vLerJUobKoY\noCWXZSZcyM2k70oqIfRVY9p8r7k0MxGcq5l+ld29gvMzuHYO1+5U3GOn5MKsImFGKpmRWBaHaLkw\nsSx1SZrmpHX/9XDbthOf+xwyr/6HvffuZDhGMm6SzSpPjhXFH0JIehlTfY4tkvz9U3N1xRCTEEKk\nMoW0Y++XjYcaIpettLIZzjCxDNskphLMGKbUQA/FIYR8+cdIxf6fSi7RPs87o7Tts22zVfMsK2No\ndsglX5SmgqO38p4fFCyIrNQacpklfvqXfl4xG0hpgxNde8f99pSPLYSddMEdVxp13KybhK4/B/fb\nVa7bqdnPa/azmlk6I092yJMdUk1aNZiWC6RcQrrTa99t20dW1EGSDd37TTyZ1o1xGkoQOXZM7zwT\npO7YNlj/3XFd/n1pZaqkEjuvm2TSfvdzvYUSzx7XVtWDCKRnY8o9G1c5gikEMwVjUkzoRfMj70Pw\n7Spun4/zwo3BzZpcOYTikksIoUk2Keu2FDL0ExG2ajGkzTm2rE3MyzWNH0BoYnfJ5dq5NuRUs+ON\n6mvnyvU7Jn/Z3WYluxnkyQ6z9JyRVqrSqMHqrt/JQPkv67XkqsFCGCL047gTuwuRkOu5Dzdgcwyx\n6xlaIG1SAyV0DaeBsTgsiGcyH0sMukUcW2JxMCWZXQz2RZpq6PfhSy2+3tw11o+t4DaRWmIqF196\nce1HrbovtFr3t12Go/2cyxdn7F9YOun5G3hqMYvOptJH2IPM1Irxj7l+R7n7vFOB5ck5cpkbG4om\nUB6h5aKzsdT9vttULm5mYwjbuIIeUHkyugCI2VeOiymBvWMYU23ZbetK+bGA3JOUVqa26e87FVIR\n6bI7fIrjzBJLyPPHxTrR9P6LFCKXKS+bP+j9Veim+ZHgZIz5vkrMvvCuSsxV9fjkUi0SE8tgo+UL\n63LaPIvGHRlMSv6i7ojClU5cUvE/X3CIxdpp9vOaPUcFZj3BWmnFEkldRgt+uZH3NpdVRhmd9Oy9\ntgQfIpfjSi0hhGKwxsbMVPdddwyHbDTHURufhtQylCopljdtnSzOW8RxZokFpum7N03X4mPIWB56\nAWIDPOZx5iM0aZ2kp1isTb99l1y6QLmU5cKs3DoX084dGWqjDsvCHmMxuHnI3G3GrlK1cStWWjHq\nLmfiGKkiaSP3p8Dea3sfTlNlGVKDDU2IY30JBRyeJKZI5zF7T8hmFXp/3XowoQziLqYk3DwZyFWt\nVHpn4mxc5QjGXjSbnsLCH9xTB2DIgOonhJzi2TP2sscM+dAnF7c/Y66oU6tUDsFPDnn5oiGXzqha\nNEbWspct+cIMOg+wMFzXZJ9csqbomC+t+C7GIbhFvja5Xksu/naYnrrFHROxBQgMJ4tch9jWkaLW\nHRP+Imoo7cxUNZibQsZFO743GLdbSeV4OLPEohKeKIakAd9ovclqztdDhxJC2u2bwl0hh6SydSQX\nOwkMp38fDwQM3tfm2g9vN7nGfIJxsyUbL7GOMCzJWCnFj3nJHHJxpRVrlDf/m2MC5GJziB0XU1WX\nvjddj4QH6vl0v4+rwE5DWoqNz6HUQe51xNS+m2Yv7gWmTgwWdjHmjHAi2NpYzib8wRybMHsutyOD\nNkZCQ9LCFFIZiiOwffRVU6G+D6nohtxc1022GDvOXVUeln2CcbMlg01fr606zCeVvdx7fk0UbE9a\nselbYMVI38JRV7jVI4u6ycjcBKtmbEY8oVgXFyvOFyOR80O57Y5DKuvGo0wpFwCrUkusOuu6GEqK\n6cO9v24W5k8WiMjjgJ/AFPr6OVV9kbf/IcArgM8Hnq+qLx77rYh8DvBSYB94P/C1qnqx2ffZwM/S\nFA4DvlBVj2L9O7PEogJX9vLeqs63X9gVpG+IXeeFi+13Jwl/Al8MTOihFWu1mJ4VAIYT9bno6cFJ\nWTSqOrfevA3mG4p58FUrfvCo/W8TWh6WOXVmEkuala0dv4ZcbAQ9dAZ6V0KxhGL3u9JKmuTkyQ5S\nFUZSWZrASJaHHdEsD0nmeyZ4UhLmaW2i9Zu6Mrt7JfsXlhQHCVf2cuf61ssFVuZJb4yNJVKEMNkv\nHBWq7yLur/6nSqqhcTsWrBnaH88sER5btv+273ZsrevkMDlCf+Be31UhIimmquNjgJuBd4jI61X1\n3c5htwPPAp60xm9/DvhuVf1DEfkm4HuA7xeRDPh54OtV9a9E5FoYLt4aJRYRuQA8D1OF7E2q+ovO\nvp9W1W+fdBfuoqgTocqTSQP4pAZfPC3HsJ4/BqtOWGTGFcqfXMa801Yzv/ZzKrloU+KTtiPKdTN1\nSRqGExD6GHPXBYKV/KwtxVWBhUilzQkmmSEVVUMk5RJdHnQxLItDAHRngVRFQ0Jzclmyn9dcyBPO\nz+BjTXqQw3lfrWHHUEzS9V2Kp5DJ6phZfUbLRdqW/l0u0nZhYifqI/JJueDGMDVQc2hsh56jG8/i\n9x9WF04uNqrP4txr/x3IGvXo6dRqOTHj/SOB96rq+wBE5LXAE4GWWFT1VuBWEXn8Gr99MPC25rjf\nxZQ+/n7gscB/V9W/as79sbEODl3lK4C/BX4V+CYR+Srgaaq6AB49duK7OiSFxV7eWyW5iE3AMG3Q\nhdKBu4kRgWDuIoteAKHth1ezwv+9648fWk74E4tLKKGsryFYgnHJzJ7XTgChFfaUCGaXYEIpzvMm\nVgXCKV9CpAK0OcHyZMeowRoyaUlleWjcjg8byeicIZ18vkOa5FyYXeETy6xNObO3W7K3X3B4kLPI\nzBjictePIanAV8GsSySh5+Mmb4x5W+le0k6aMYy5/A6N+9VUOuGx7Y9rP6VKqP92rPlwx946CWWh\nn3/NlFVYrrR/lXGdiNzkfH+Zqr6s+Xw/4IPOvpuBR00879Bv34UhmV/HlCK+odn+YEBF5M3A9cBr\nVfVHhhoZIpbPVNWvaj7/uog8H/g9EfnKiRdwl4YIrarFTsShidfCnYCnZGENDVD/ZXNfsj7hjNcJ\nKUtpKyja1BQ211FXcKtTMYTVXH1CGSI4n9TaaOZ5t22R5YOrPj+Rpkt+VmoEe98HJjGnK53U0t1L\nV1IB2tT4aZIbFdjy0JBKI7Vw5QqUFVw+NEkCl4ewPCSd7ZLLnFQS9vKK/TzlfJ6wk0qT3LJJ10/K\n0X5OtTD1aUJYRyIZm6RDk7O7397jdeq1+6Tknqffv1W47fh9DL8HbkJP6R1vr8WO59A52n55UtrY\n4sWXTlwyseW1TxWSmFx003Cbqj7iNLsTwDcB/7eIfD/wesCKmxnwz4EvBA6Bt4rIn6vqW2MnGiKW\nuYgkqloDqOoLReRDGFFp/wQu4qoin1Vcf6/DXrCeX9WuPTbwkrh116fCvlD+6tPmtfLdaX2tkC/1\nH1WmTK5be90G7/nXZNGTAJzrcl/2sSzLtp3Q9lASSPd4S4T9cyUsF1n7+3PZEXv7nWfY7l7BdXs1\n9zynXDuHa2bGYJ8nyl5eM09N8GMroUhCmsw6m4rM2cnOk1Y1HH4CPfw4XLkIy8JIKcsCvXJkyAWQ\nWY5mH0WyGbvn7kalJffcuYNFVVLUuTHiX39ElimHB0WvjO6VRXjiaCWwzPw/FyCQ2ELD3schqSW0\nyAlJIEPk4T7TdaQXf1y7fYyNbQubpmex7Prvp1iJjTWL0HjyjzfjatkjPju+7GJxPqvbfsbywt1F\n8CE6aQKMueJDx/2tqv5/GLUXIvJgwKrRbgbepqq3NfveiHEK2IhYfhP4UuAtdoOqvlJEbgF+cuJF\n3GWxkyufcV+j+rDePsHj1pzsY7C/s3msZo5ap93nteWuzN3qhbavpt81y7rmqCydbWa/JR0Lf0Jy\nXyS/f377XR9MO0cT7NTuuezxfv+AHjEC7O4Vbd/yBO55zkTg23xfJpK+Ihf17CgdmbhSyjzZM5KK\nJZU7PgafuNSRyeEVdFGil8wCLQFkWaCAlEvOn7+eVDIecP4O5umCPJmRJwkfO7fg0nIRJHgXIUJw\nk2Su3LfImLPVN80xfan2qAqdr1wppbz6TPvPswiMs6H+hca127+Qycz9fTeWq+a7YINW/b7F+ueO\nIx/ugscnjzwhWtH0VHBy7sbvAB4kIg/EkMJTgKcd97cick9VvVVEEuA/YDzEwNhaniMiuxgp5l8B\nPz7USJRYVPU5ke2/DTxo4kXcZbGTwj+5mxn89uVzX6ShYDwfY6sbey63IqIfzBeLGrewAXpuapFF\nJVwuEuMC61xD0X42UezLenVCCZFaLG3KPNWNAgRd2HvU76edTGqWdclRufqi76SrhGKlE0MmWZBM\n7LZUE1gcGEI5uggfvx396O1w8TL1xQUsK+rLS/Soor60RHYyMiBZFoZc7rNEgL3968x5dz9OLgvm\n6YyPHaVcLLprsddh0b+fjoNBZAKzzy0PPAd/7LhjxYyJuPp0UcmKTcp9nu6z8cdyaOHk92/mLYxC\nY3sM/vi2393+xBZXULWE5BOpXQj5Y8rts3s/1y1XfTWgqqWIPBMz4afAjar6LhF5RrP/pSJyb+Am\nGvdgEXk28FBVvRj6bXPqp4rIdzSfX4exs6OqHxeRH8OQkgJvVNU3DPXxzLobz9Oah91jSekN5Knw\nJ/h4O91L5rvGztO6F2tht1lYGwGYeArTVhcFXqiwqBLKJqX85UYl0L2c5rd+2d/Yix96ubJA5cRN\nYftp+7io/n/23j3Yku2u7/v8+rH3mfOYe6/ulZCQBMhBmAhIUUiRKFdsbF6RIS5hjJFCindJlkER\nOLhAWBWilE0FAQaDobh1zSsCY0GwKauwZBlB4qQIAl0wLylgBAj0RLqvmTnnzN67Hyt/rF7dv157\nrX7sc2bmzj3nWzU1+/Te3f3r7tXru35vaSdFV7243zWyq/V178I229rPrDPeOeJTsUNYk0nbuGtt\nQ4jN6eNw+gQ8+jjm0SeoP/IE9WM3WzIxRU11vaSqBChYrkqydUVKkzlTlVCu2bv6cST5A6TJNZbp\nMfcuM06KpHct7vp6kWrqHup77U+iPkLPxbVU3hXrqs9qevyH5NHjfOhaQmMb2BrfYZnU+YyTIdmS\nz5epT0bDix89pnx5taznsYiKQs6vpIsx5q3AW71tD6rPH8GauSbt22z/AWx+S2ifn8aGHE/CBSYW\n+KQjqGrrbHUTdwz+Cxl7GfyXXr9YfR9ABiTtZAj9Uu1uwtSoTNkmAVZ1YbPD67JJ4ks4bkwBoZfS\nf7GHJgAtZyvPGV+IqlnJO1lD5Khl06R7dVGRSkKeLFufiSMQK1v32eanrLr8lLqEG49Y01dDKtWH\njqkeW2HWJcWpsDlNKIucTdPL5XBTsF9ct8cuS6gqq73UJYvDp5MuHyAhZT+71rsedy2h++rurQ99\nH3wMjZ1YWf96IOjBh/9MnDxaFn/cW3nGx4yWsW39rOC+c/K697C/rZNPyxK6Z/6Y96HHVN982r2H\nIVm1XJeYjgtLLKnk7Kf3QEpbumPopdxL+wP/qPlsB7/pEVNoQvYJRK+0/e/d3xr6BayprNx1QZWU\n1FTspQVHC0c09npCkwKEtaKYnPY328MkNFmE0L6YzX12srprCsnbf+khTw5ISFmkV7a1ErDKuTuP\ny0/RSY/OOX96E3NjQ31j02oollQSNjcTbl7rrrMuSw7Wj5EXFenaHkPKCrM5JT18OkdHT2eRXrHP\nwJQU9aq9HjdZ6XsYg55E3RiKPRP9PKbe/+CzcIg8EycPECxr449vf1KOydlbODXb9fjQ758b21qm\nmIxaTn/MxwjZv59aJo0kPc+EycuSLi1E5EuHvjfG/JvzE2d3jJU42Po9CQfpPW3NMH9Q+6jT/sqq\nfeGSMCGFBm3oBWwnx7qEtVchQb04aZJBtiAlhcRGHplMmsmsoE6rrZfxIN++Fv/lGZNTTwZjrQaC\naHY30snqJhFfXjdxaH8J2KZcPTKpSquVBO5TND/ldEV9fU19Y0N9vGF9M6Euhc3NlM3NhPVJyrXH\n3XPMqEuhLBKO1tdYrCrSdUVSNppLubGmsf37YHFPe21FvV3hIrZAcHDE5I+jITMfnP1ZaHn8ZwJs\nTeohhAhkdIw7NGM9BTXZpq2pyGT993JIRv07vQD0Sc2XM2Qp2LqvsbI/lxjEFI3l64G/AvxK8/ff\nAP5f4GPYteIdJ5aJJQ76KDdw/IhtgJst7NBqBnVvKnCDXk3mEFbhNfxBGySQumwLIJpy3W3z5XRy\nNPJJtoRsgWAJJ80WkCxbonHQL2Ns5RyUs5Wr6uTxCjW28gYQitWX5h47gnTyAj1ydLJsmbeG7pmG\n+16Riq+t1GvY3EypS+H0Wsr6VHj80YKT4yYaaV1z3/0Z5UaoS+GwOmF5Y0N2Y0N6ehNurpD7b2KO\nrsNiH5KMdO+ouzYHdw8dsgV68oT+4kBjSytz40Zd/9hz6N//7pm0tJIt7PhxsnnPBIZNQSFtpB0/\nVd3vyqmfWWiyVvdEsmX3Xrp3Ur+HabdQcXBy6jHkyzq4kPMWJw5T7+8knKOP5cmOKVeZY6MJPgwg\nIs8CftIY87W3VLJ5GC1xsIW6xDzxQUUc6lb46mqStS+mNBO8exlTPYCTrBugeiKE8IulOxa6z9XA\nCim1E5dx51KyS7ZsJ2/8l3HIHBOQs5Ux1FFxpMw8ROKTHDE2//uThyPH9nxuEvVlGpIhW4STHpW2\nYoqa9U1r+tqcJlx/HE6PSx57tGyJZd1UENhfp0BKWUjrdzHaNHa6sgmV+3uY40csybh7HpJxdHGQ\nbV+/u3a33U3WE56DRvtM9Nh259PPpPl+a0IPwZGHw9Dz0p9HxrhRMvVk9t7D4FhPlpHFWbW9KIkt\n4rxrucR8TIncfq4jlQZ/AXzCLZJnV4TKFDzb/5GIvEpEHhaRhz/2aFODY8rkWZf9lUts0I0Mxt4x\nQuf1X7hN0f0Lyeafxz/m2EsR+P3WCm0mqYyimWS2zuMmH3/SDMnkyzVDPjNQ4r8sDGURNzGZdYlZ\nVZh1ZUnLPRf3v5M9Ni7U514rZCd76Pr1fud1/0Ny+TLNnVhjv4+N19DYhv47EDhmVIOItJUObZ9N\nKkNEeIkgpmgsv9zUiPlXzd8vRyVN3k1oau08BPCiz/wkw+ED7Xc9883Aqg76anjIVJAu9+yunhlM\nYis4Jgx2T7NyK952myefQ8hGXtW2wCLptpxbMp6TWSAmr/ZxuXuZLvd6ZgsJkZvb5psW3Cp/v/Gz\n3Fcijz9GkqXIMkX2UpKP3SRbbDh+NMdqc32N7mn3Z+wfply9D/bvqUgyQ7YwJIcLkqMFydUl7O/B\n4T5kKVy5Yq+nMYtFrx+2NLfY9UPnnxBfe4yR7URsjXVP+wW2fI9Rk29orNel1UbVGNrSuq4EubqI\nQQAAIABJREFUDhYa41pG7/OQf7Q106V74fdwiPxvlSkMon2gnmoYJRZjzGtE5G8Df63Z9JAx5hdu\nrVizMb/EQbpArn5cf5u2fQderNpses77mGMzqcLRJok02wMvo8RWfP4EGpgAOhntS1CbSKCBOyRV\nK6Mvp5axZ5Omsc3v6sxsJtGt+1n172dCCpXnEBad6t2PnvPDVBOW5FfuQcwDTUTYKWaxj+zvIVf2\nkIMnSA6vI3snpOkpsCBbJCyXGYulVeAPDhMO7q1ZXKlZXLHEku8bkqMFcrSA/SvIlT1LLmnWmcCS\nDNk7oofAczMiNoqsuf6tqMSq72xOJG2vuyWbXZ6FR3ohUquNHX/6ufRk81FtB4DkiR3fegwFF1VD\n8g0t5ExlZa62x7ceQ1om6L+H7h0MiqHfS7h04O+AqZ6k3wJuGGPeISL7InJkjLlxKwWbidklDowY\nNuK9LM2AtZ/ZIhE/dySGrXBRRzRuYIeIR5oBncdj/0FNpE5WoyKLCIQl0w/LbI9j6kE5k2o7JBpQ\nnt/xUFoNPYmOyajlCd4HN/8Gch+043+RXiFZLlnsfSImySDNkEVOssjJFimSJ9y3PObah+05sube\nLw+qHqksr9Tb2soih+V+u9qXxUGntbQ3qL+y1mRSmHVvPAFbIetpkg0/k7mLX9MtWvS985+Jvp8h\n2aCfs7UVflwd9+R15Oi0ZL1g8Vfw/sID2Fp8tN/3NJVAWLQiqnbB4sZTNTx+z3SfozCz8ozuZkwJ\nN34l8CrgacB/gfVdPAh83q0VbTpiJQ6G9qlNxWl1Lfhd6OXqJ8IlrKv4resSyKrmbzfo18FEst6q\nzyOfoOye6j+UUGaTyWQrAW9dZVE5l+nNqHxzkSZ5737qe2nlcMlu3eSk5VmmN5XM40mquVQsU3uf\n0/IaaZKxn97D/n3PQfaOrPayyHumsXuXJxx/sCBxxRSv1GR5zWK/Jk0N6dWsr62kqSWXxGorki17\nWsuWJmDs5011s8132VSb3nhyz6SsRSXzVUDVJPT1n8nQ+BjCdrjz9pgJPRc93v1kVuiPeffcFmlT\nu81sL6jaCd5sk5yW0x/foQoUWk4Hm7zpxpHBlXbR4ymVJLhAPK+xf5ExRWP5RmzU1a8DGGP+SESe\ncUul2gGxMgUxlHXNY6vj4Hd+VjhkbTmSfimSMGKlUvS20Atp/16r38a1onAWctLLYo/VX9IIlR5x\npUP6MnSy6GzycXSrZHs/s6h8PrQ8QyU99Da/bMdBXnH/8mMUZs3RlQdIkwyTLZBG68iWGZKnHHKd\nJLMTXLawpi9ZNoSSJ6Qff0jytAPk6ACe8TQ4esBqKYpQKqmtOdKoPB2l7Rb1msrUXN+kHJeLthyM\nuxY3tvzaVeESJOfTStcRxtiY8Z+RLl0TGu/u3juit9/7lScs+omO2wTXVbYYHzt+lYnQuzcF/fF/\nPvfaYC5MJv8UYlkbYzbSrMKaNpVP/kptI1hXwp8fb4dShl50oC306Io8riL1hGyxQQlWLPaL9cFw\nnS6/KOWQrP7fftFHdw1hmcMyjr2IY/JBdwy/FtWYfKEioPr7fpXb7ln4hQbvWWQ8tsz4hMNjqrrg\nKH+Axb3PxiSZtXCkXcD4QW4XGrKXkRzlSJ4iRwur2dx3hNx/L9x/H+zfi+zfB3tXVeLnmqKyodsh\n0+lp2RQNbQjl8XXKtY1sjSlbMFR6RUKHipieB2IFKfXf8fsNbrz7ci7TrEf0Wm5dg66sO3PnELH5\nhSn9gpNue2g8j0EfK1ZU8xLTMYVY/qOI/CPgioh8AfAN2JL6dzXWtfCfr4Uv33/RV6WuGDytHD10\nA7NXDXarLL00v42X0F8k2y+RlhX6ZNdOCsrsPFbePyTjIunLFiJTv3x77Jjd/ZOd5NOkMlQmXZdG\nzxO4uhCevmdJ7TkHG2r+gqP8AfbufbZdHaWWYNIsQ5YpZl11ZHKw1+apyD1HcN/TYO8qsn8fZnnQ\n+Ey2NZNQDbd1lXBSJBwXCY+sEh5dw/VC2rG1quDkNGt7h7jrsPe4u5/+s4H42NCIVVrWz7RH8t6Y\n9++9g5bRL+9vt0mPcDoZ1Lm8BU+4Und8bEN//PjVo909C7V6iI272L0+Ky59LB1eh82+/z3g72HN\nTT96K4W6HVhV8AdPhAeM318j1DyrLJPB/t2x5mCh34b6dIRIyWFqT4pYo6QYQs2+/GuMTeY+Qv1G\nNCHHGkz530G/e2WsmZOWRXcE3D8oefSoZFWlrKslhdlQ7X2Eo/x+63fJlrbvyiLvkroaM5lc6YiF\nK5ZQ2L+XKk0o6hNW1XHQB+Ds/8flold5+rhI+OgKHl0LH7vZEcnpSdYbV/o6INyQze8Wqe9lqANp\nqAmXD3/s6OZs/nNwiMnmE7yPUK8eB5/Q/LE9Nq7HOrD619Wet7k+3U1SN1i7xHQMEktTKuVNxpj/\nAfgXt0ek24OiSHj/R7qQQ93pULf7deTiBmFS1m1/7UI59UJ93vWAjLWb1d+FOggOvSSxF78/aYcn\nYLcyDiEkm39cjaGWxhpj8unt+rNrOevue1rUxKyxN/OU68sFdZZweNW2nt183E1gjc0HXgAb0sQG\nbhwcPmBL42ObewHB/BRZHLSksipvUJg1Rb3aIhNIKYxwUqQtoRS1cG0jPLqGj94UHjlJuH5twclx\n3hCL/X95UpAWNVWeUGCvA7bHU+h+T3k2IbKCbcLod/ZMJx3fb3Ed607q7xc67hChjS0sNGKLotA1\n6bbG+n6fJ6kYc+ljAcAYU4nIJ4rIwhgzMQX37kBVCSfH4ZBen1CSsibBEko6pWXkuqJY2hWfG6RD\nLYL1KtV9VxQJeV6zieRnTXnZhtrL+v3ntVyhiX9oYgmZBf1WxSEZQ0TiXvDlukl0a+53vlET5MAz\nKF1PeeD4+oLFsuL0pGB135qitrb6kyJlU61ZJiWV1LYcyGLfEgqEkx4X+5g0p6pXbTXjbVKxcI5n\n7ViOmavc/WjJc7M9kRXtb92E2/cNxnq919l2u21f0w5P7NuE4p8j98a4W6j4WpfWAjROT+JTz9AC\nZKxlsob/29gY24K6ts168aTUWMaK7orIp2IbdX0W8HpjzPeO7SsiPwv85eZn9wJPGGM+U+33Cdgy\nWW/QxwthiinsT4BfFZG3ACduozHm+ybs+6RFXQunJ9vE4msnQxPcENzKs+225aEo9aRqJwr98kPc\nZKF/42T2r2EMscnINy+UAxOAPVc3yfmk5JPOkEbiiBv69zqbed8B9tTKf03OyXHOyWnG9Ssl1zZw\n39JG++2lK1uFwEV27TcarEp6bPNTskVbwdj3oYTCnjU6p7P0zJix5zR6rWpM6YWO269Y2ONWjmSX\nKRvSnpY6pMnq/7WG7p9Tj3GfZICG1PNBbT2E0Jjx71Vo/LpFXOx7f3EYu8/FIlWa43RT8hgMJtiG\nYC4mFt19DHgt8CVT9zXGvFz97p8Cfj7G9wFvmyLjFGL54+ZfAhyN/PauQV0Jx9e7SVEPxOW6mL1S\nDmFognDH1+TjyMatkvREMEQe/kuUTAiP9CcLLdMc6MnLvYAxLa2VryESLUda1O390mSSr8tZ9z3P\nE06PupIly5OC8qqd7Fal7QFf1MJxmXC0sESRZ/ciiwPM8rQRcDvp0aQ5RX1CZcrGWT9MKkOh1CHN\nMqHeuv+h8eNvCxGv21bmSX+SbAgmhClEH5PJ/aY3lpdpVMMKIWZydWNbyxPFwPf++5yp8eaI2CEr\naso8Id9U3XU9uTBadNcY81HgoyLyxXP3FRsC/OXA56ptXwL8KUq5GEKUWETkp4wxX4lVh4LtKu9m\nSG3Yf2K4DpA/0Q1hLunolx/6qyTWFUWZ9lZ/Pnn4arx++ae8CLHJYu51OPmDRLmMrMhHNJO8KRTp\nXv6517Z/Y02x7Ib28fUlp/euuVGsuVHAcZFwb5WwqTYsm0Zpqa7zFUh6tKYv66h3zvoxTUVjkcBR\nbtjUwmrfXt9mXfTMPqfZkuVJX0Nu71lAe9P3SeMKDakss+Ak6caWgyZ6e9zt5+Pgn8sdX//OjeUY\ngs/wpBsvPomEjhUjhdBvfNn9+5evy954GTvObcIDIvKw+vuhptYhhIvuvmTicafs+1eBvzDG/BGA\niBwC34bVcv7hlJMMaSwvFJGPB75ORN6EV9jAGPPYlBM8WRFqlFTlSW8Qu0EbG7yxARebnPXvQ8fU\nq38fdZZsObFDst8JUvFNLxAnFf+7MS1paOIYQ1bUFIu0dcK6CKU86VrTthioX2VEbIa401bqskly\nDPgnVBSYzr0AG+l3/9LmOe2ljlxS8rxug0VOl3nr14PtZz3lGZUzVtgxkyh0Y6pYpO04ccfWcmhy\nge33wn+GoXHqj5dimbbX7r+XoWOG4H7jyz5lHwf/2s6GWSVdHjHGvOicTjwX/z1d0WGANwDfb4w5\nlolFNIeI5UHgl4G/BPwmfWIxzfanDNxAn6P2+gNeD+DQBKBfUH+7Typ+JJA2D+iXbgzueFN/PxVT\nSUWvjCE8kbljuHtWLLN2NRn7rcNZV5OpRPrHqwrXTktx/05Lq6GUHnE4hEgFujwORy4claz2S+X0\nlvazixRbqwUFdGR51useIpQp8Mf40AScb6pBIvDHi5NtjFymwr9f50cUdwzzi+5O3LdJgP9S4IXq\nNy8BvkxEvhvr1K9FZGWM+aHYSaLEYoz5QeAHReRHjDF/f6LQdyWGVtr+xKiRlHU7+N3KDuyLFCMX\nDX+Ax0hFyzK2wgwdbwqmaita5tBkMUQq/jZnzItNGO4eDk5KO0yyy9SQi+mVFQkiW2BEGi3F/rM1\nvlJOipTjxozlE8hxIN9jL+1nht+/NCwSmyy6l1qCWW8SssxsEwxpFxk2YVwBw6adxtke33d7QvdX\n/04W6MbOmFxTx8sQuUB8vOjxP6ThTNFgfNI8D5xjSZfZRXdn7Pv5wB8YYz7Qym3MX3WfReQNwPEQ\nqcC0svkXglRiE+JQqOGGtCUX2B7MoUnAf7mctlIs08Hz+hFX5wF/kgi9QFNWd7fbuallmrOC12VH\n5qCmajPrbSZ92iY8OoQ0lxD6JUYMRW0zu69vYC+tWS7WnJxmZJlpQ3IXy4rj64uWXPYaP4zT6vSz\nu9Wr8dC9nkp2TnOJaecaQ4uokPbij8EhDSdEMj78MfZkQqzoroi8uvn+QRF5JvAwcBWrYXwzthPw\n9ZGCva+gbwbbCRejAXMARmTU/KQ/xyb1MS1iF5xX3HxoZTpkThiblIb8QjBMzruS4tCkNRaK7K7H\nT9KbUuOMJOs57Yt6xabacFxmbWmWj636ZLKquhplMFy2ZJF0pXqsPFZ7yUugce67qKqT45zDq5uW\nXNwzPD1atsEO/rOLOaTPI8ppV1OcTyqxhdTYWNnVJBaTCYZNqnfIxzJ8pEDRXWPMg+rzR7Bmrkn7\nqu++ZuS8b5gi34UlFphGKH7M/XlpDS4UVGsrIUKZOimHXrYqT0aja3zMcZZPmaB2IcmYf8UhRjTa\nZKN9P0mTpe9qWEGgsKDqoui6XRoRalM1WfZrrm86E9jHVtISi05+vJqbUc3IFfjsazmmyXGxuS7r\nrGb/wN4HFzm2WFZsSIP3PXbPtNlH+zqGzGFT/HEhv8WQxqvH1dB4h90WIjoqcRfimUIwl5iOC0ss\nLjo0Vr5BZ8E7lGXS02BuhXnKP6f7e+g8sRcptn0sagfipNELK44gRtS3QmsZQhsUoEqZwDap1FTW\nfe+1v7Vaiu2hclrCcZny6CrlQ6cJHzwVbmy2NZEbG+H+PdAlZ/zii67ar41Os07+RQLXC0tMNk6m\n5tpNW9Ln4LBvl1+Tt2HJGj65OK3F9yk4rSUfCQs/K/yV/pRFFHSLt5A1YIw0zqrN3EqCMSbckOyp\niAtLLIj0BrivoeiaSkWRBAnmLBNlSFvZZXUfCx0OkcUQocSIwo8qG/vdVMw1H8bIJRhlp0xAxTLl\nSmN+WHiaRC8aTEWBtW2UTdUzgT2xTnlk1WgrN+Hxx7tETGe22j8oWVUlT78irfaiz+33V+mgtZ+O\nXKDg9CSfTC7QJxhtEmuj7nTOFOPO/BhiWksowGPuWA+9X6Hcnika9phmHSKjs4S5X+IiEwvTzDSh\niq5TsaszfCqGMqLHVlxDpBKaZIbClsciwWJw0XQu+W9M5pBD1Z8AHGmXeUKVJ+1EFioj4pzyDpI1\nRLHYb7WVmorrm5THVhmPrlIeXcOjK0sq157oyKgrPVI0n9esSuHqApz2MjVwIE/6mgsUbba+Lu54\nzKJHLrtqdnC+5KK/A4LBKWdFm+Q4kVyGMBRNdr4wgy3Nn0q40MQSgl9uI1REUdcvCtVSGkNMW3GT\n35TKrRpz1fbYizhlYvFzaIZIJVZBeUhbGfOvOPgE7aLD3OrcfvbK4NRNS4TKmp9cfaKqLkiTZTB3\npapLCmPzUlaVrfe1qmwRRb/WnK6RdXKawX7JXtZvc3BVpYO5XBfXRK53HzxyWVU1WVa3tbdOjnP7\n9zJndZJSrbd9C6HoLYez5Gv5CDnzQ/lNML1isE4SheFafWNZ+DH/YwhPwvItdyUuLLHISGSQqwLr\nV+WNkcqUIpVTtRW9ug6RTIzI/NXqnFDhOavVWGWAEHxflM4o19rKXPhJlNpJ7LQVGNZKq7qkTiyB\nGBGk8bEYEaqqUDXBMtZNg7JNbfuoFEXSqzXnru2UvGdWvZHWgDQkYbGohL2035k0BE0ueWnDkZ32\nosORT8l7LRwG79uUjPVAAu5YDokml1ARzKnail91e0rRyPa3M7SXsei4W+F3qttW5099XFhi8RFa\nXTtyiZHKEGKT/JC2Egpt1ufXCBXVi8kQS2rchVRCGJs0hkjFIVppdiDRL/adu0YrV7VVsr2obR/1\nynV/lII6qWz5fLbzVspaWo3lxoY2cTGkra6znNOTnDy32sVysYYNgDRO/P6CJkQqOpnSkYtLptTa\nixs7i2XF6TLn+Poi6HeZUpZk6hiYmh8SIpVQcEys+vVWmf6JWvlQxWIfPrnMSY6+xDAuNLFMUcmH\nSGVIW5mSHOlk8KOWfILp9c9QWdhnsQeflVT8l24sD2GIVKBb8fpkMdd+7rQVd127BETo7OheocnG\nlHZ6Yjs/7h03iYretRyz6AeB7JewgaMF3ChcW7FhaH+MrXHWJVNualjlNTdcxntmyPO6NY2dri3p\nVet+FBhMf95DPrWpIb2hc8WeR6g8/nmWIQqZy0Kk0ifBy9DjXXFhiWViLTUg3hNiDDpKJhYd43fc\nc9CRaEPndRPyFMdtzO7tMHeFNnfSjk0UQ6VbYivtobprMfkWA5eXkEK5AiBd7pHWtobYMi3JEhce\nbPu3u+OGJti0qK1JrPGFOHPVOrOaxlEOm7ofMeYQcu67aDIn+6Y2thd8DnuZtOVgtPYSalQ399nq\nkiowb5IPja9dCF6b5OYsMKZoLTFSGerSeVYYpldouNtxYYllKmKd9Ka+aL7DdCjkUhOJIxo/1Bms\n1sK62qo+Gwr3dJhbLHIIMbmd7H6oaMgJ6yNWlsSfUCrvfvqRcf0IpG6SWC7U75KmVpgkpElOmuS2\n2nWTY5CQ2u0mZ5neZJnafV11ZNcH/VRpVz2z3rpqTWIOtgZYxTqruedK3UaM7aUdwbjM/fa+JnDP\nost3AdqcF5ex35aDOSrJsrr1vRRFEjWvji1YNut0K4dkTuFTjdi4mhqgEiuXNLjPSGUA/x0I5bKN\nNSO7xDAuLLGIDJsjdslRGateHPOr5HntlR3ZJhhfHvei+5PrEKn4+89ByFQX+12IXKZMSj6hTCnD\nPzbh6QliLzW9iTtNrFaSkFpSKW33bTGm3Z5KQi5d3sle1pkvfbn0s0/Kuufcz/OaspSWYA5cT5as\nc+zrR+dI5TCvGzOYNL8RDvMuosxd06oS8qTmxmLdq5a8WactyYTuTajpWEs89BdTu1TVhvNZ/Q85\n2ofyUIYixkKLvFBi9HnBGEb79jxVcGGJBcIORBjvlT0H80nFrW6lNzmHfBi+qWDMwRmzs49pK3PN\nA6EosKkIFSkcklFXmB7SCB2hLFPT/gNbNj9NclivMKVt/CZ1SZrmpHVGmmQs07LRDuwx3LPbWtUH\nJi/tJyuKpCWYzTplfVBwzxUbNeYc+87s5TQVP5nS1TkrakswyzSxWkth99XmsfUmaU1i7pytrIH8\nrFhliTn18M4arqvPCfSKvDrEItYcQj2V/N/GSMUf476J+hLTcGGJRftYYpFXcLbaYOeRvRvKQHY1\no9zL7pc2D2HOZO3OEft7LBxaw01KvoYVk3VK5dsQYqtpTdpu/smaRl/O5NVqLK7cRrkhSQ8Al51f\nskxNz9cRgiZ23a3RtZp2UYaOYBrJgdrKtpCWwNaVtCQSssu776xGI+ylCdeLzjzmHPxFXXOtGd/u\nPviLFk1+c3Oozgs+oTnoVsq+30dDP/tYaPRQ+PPtMH3VcBlufBGgXy79Us0p1zJWUmXXsi1Oa3Hy\nxCoAxExiGnMm6zH5/BdwzmQ0NQETphOK37sDOlu5Nmu4wpC6e6QjFTHGmsEaUxh1iRjT87Nkjeaw\nl8JyUbeapvN3tfejqLf9XE2raU0w+wcFZSmNH8ZqLrZ0fheCvExtmHOoGrPTYmyJGGm0sKQ1jzkH\n//XCmsiKut7SYrKsVH3p488mFgUZQig/JBTKH5rItcbk76e1mJBsoSCDkPYU86lc4nxxoYkF4uQy\nhDE781j0VUjlDv+uIxdfJdcmihC5xMq0hF7OKXWbhuUMmxRjBD0ne38sjNmHdtpDd99cZWPd5Mtp\nLFSlNYMpjYW6JJHOz7JM663IMHd9xTLthZwXi7RHMG3FZforcICDw6JPLkVfU8mTPrEsU9NqXPY3\nSbs9TwzHRdIWtlxVTZhybn0wrueLy4Oxzytt65BZstnO24Lz70AawlytwTeZgefz8mSO5dQMoa9d\nnhFN19GLgIuhlwWgnfchM88Uv0KoS92crOOzDFgnl3/sSmWdt3JF8gnGVmz+92Mvfuz70PUXy7T9\n537j9+cImeOma3wdeWdZ3ZqwnM/CEkbTlrghEqe1mHIN5cZqLJINdpoMyZNvqvbflZOCKycFeycF\ne8cFy5OC8kQ4vr7g9CTn5DinLIWyTLh2M2FV2lwXXTXZOe41qeRimqCCmoO8IksMB3nN/XsV9y0r\n7t+ruGdheMYe3L+Eo9zwjCuG+/fg6Vfgnis1B02YsqugPOXeTo3OcpP6VN+MHo/6ubl/oe/1Z3/8\nAL3xFQomuB0O+1sFEXmpiPyhiLxXRF4X+P5TReTXRGQtIv9wyr4i8gYR+aCI/Hbz74ua7V8gIr8p\nIr/X/P+5Y/JdeI1lDLs4oUP+jNCgPc/V0K7hoOcJrbH40WF3exZzHoki3KxTEppExaIO1jpzFYad\nBuPMRcf0S8LsH5Rt0uNeasvoL1MJVELehtNg9FrR+V9sqLJwvQBXOdmtPdattpm1Y9F34p83Yhq7\nH2J/XueOmWDd+NTlm2Lv6XnA+ljOrrGISAr8MPAFwAeAd4nIW4wx71E/ewx4LfAlM/f9fmPM93qn\nfAT4W8aYD4nIp2O7Tz57SMZLYvEQMgNoDNmZp4THOsQGcV+Wzv5dFElUJt8kpjH0UvnYypfxZHQv\n4Lac4Rdv6PrGJg0/Gi72e034Nn8kaWXqmdHm8PfMnhn5uhqvYxUgnOVJwWmZtYmMm3WT8b9fYotP\nuiKUCYe9BUgCafiClmnNMoUssaVo8kQ4LhLuWUCPXBbWNObye7LMsLFBcdNNwiPFH31MjbjSrSpC\nZmo9FobKwMTg+26myvskwouB9xpj/gRARN4MvAxoicUY81HgoyLyxXP39WGM+U/qz3cDV0RkaYxZ\nx/a5JJYJmDJgz5p46HIc9N+wPfBjL7wmlyEMZWGHyM6f4N3551RiDvlJpvpOhsrDaPRML8tuXxve\nmwDdPueV/ezLFiuo6Rz5scrNBSmn9CslTyGXpUcuLt9mXUlDPO7Z1I05LcEnF/d9WVaUpey0Oh/r\nA6ThV5oYmrzPW3PR2Io+886hC9DeITwgIg+rvx8yxjzUfH428H713QeAl0w87ti+/6OIfBXwMPAt\nxpjHvf3/DvBbQ6QCl8QCDGcga8TqJmlMiXzyV/56kDtCGZLrrBgjF5imveyCsVXgVCJxCD0TLas/\nURYznKfJQMVgbSJNG0d9jDh0lFjoN2lRsyIPkstetk0uvmnMEUrPHFYBSns5KRwx9cllk3WtkF3N\nMf8a58CRTCxwRedu+dDh0NBpLjHsoq3osR8M4w9c83mFIhsza/w9Yox50bmceDp+BPjH2AH3j4F/\nCnyd+1JEPg14I/CFYwe6JBaFkKodK2sxpyrq2Kqss22HSSVmBjvLak5fV4hkYtrLXPPArj1mHGIT\nRohQ0qLT2FyEk8Ysc9gA/HbEDtaPstna7ldD0OTSks4xVOtkm1zY1lyAliR8rcVhmRqobKa3+00X\nkWTJJdStEroimzoDv4Be5OHUasOhfkM+tKbu4CcHTwmHPiti79idyu0ZwAeB56q/n9NsO9O+xpi/\ncBtF5F8Av6j+fg7wC8BXGWP+eOwkd4RYROR7gL+FLSj+x8DXGmOeaL77duDrsWuu1xpj3t5sfyHw\nk8AV4K3ANxljjIgsgTcBLwQeBV5ujHnfmAzG9E1NY9n3DkMayVwHtW/r9e2+/mpt1wE+1tvcvZhT\nGnXtQi4wP/luq2z6QGBCL5co4mdZnWOrcb9YZJUnlHnS1mubAkcu2nSUFjWrk5RymVAUCacnWa+n\nS54Yrm0suXQhyI2/pWo+N1hXslU+JEuMMqclyiS4TS4AJ8cdyWlycXLPaTA3tOrXC6r2fI1f0X3W\ni77Ywi8Wwu5jSGN33+nAk/PytZxjEcp3Ac8XkedhSeEVwFecdV8ReZYx5sPN7/428PvN9nuBfwe8\nzhjzq1NOcqc0ll8Cvt0YU4rIG4FvB75NRF6AvdBPAz4eeIeIfIoxpsKqaa8Efh1LLC/dnPY1AAAg\nAElEQVQF3oYloceNMZ8sIq/AqmovHxPAmDCp+AN3qJzFFCLRgzLkCHfnyvM6SihD2srYak6/bGOO\n/alVcKe+bHOTKWMReDFSCXVMrPJky89ij3uOzKJQZ4lNgGxyV4YQjBjz/BP5umq1LdfTBQpbByyx\nmsteah3ynd9Ik0tzLI9UlmnNukq2yKXraDlOLiEC8BErYQTTneEhUvGrBMQIZVeE3vEp79edQDNv\nvgYbnZUCP26MebeIvLr5/kEReSbWT3IVqEXkm4EXGGOuh/ZtDv3dIvKZ2MHwPuDvNdtfA3wy8B0i\n8h3Nti9sAgSCuCPEYoz5D+rPdwJf1nx+GfDmxjH0pyLyXuDFIvI+4Kox5p0AIvImbBjd25p93tDs\n//PAD4mIGGNGYzRjTYZi2CW5cAqm+Hh20VZ09z2NqrX3b/c598klRiIxX4xD3OwxTC5TJoxYtQP3\nXbFMz2WlWQ/049DHdgmSc7UVjUwltjrZiyJpc1xuFHXb5tiFIR8XCUVtOt9JxCyWi2lNYj655Eln\nXhsjl816sVMvoKk+Cn9hpUnlLISix7Pb343zEKHs0mZgCoyRWT6+4WOZt2IX2Hrbg+rzR7Bmrkn7\nNtu/MvL7fwL8kznyPRl8LF8H/Gzz+dlYonH4QLOtaD77290+74eWya8B92Njr6MwJuzPCE3yUwjl\nrHH/QyGQQ+G8Q2HRfja4g87OHzOTzZF7KqZ05Yz5UNrvPULR2kK1TlhnSbvyD2GINEIIVaXVARfn\n0Ss9K+q2n4t+rllmgiYx297YkkrM5+Lyb+LkkrTHsNgmFzfRuxI2Bd2zCBV5nFvCKEQoQJRURitf\nDERl6kz9WHRhsUy3TGKXmIdbRiwi8g7gmYGvXm+M+bfNb16PtVH8y1slhyfTq4BXASyf9oxRQon5\nHmLmLff3kAYSiqxyk99UQhmSOdbVcmpI6JzAAy3HnJdvij9rKOFTX8uY+elWontuC7W+D2PM/zL0\n3elJxmJZsapq8pLWJGZhtRbAK/3STPxGWlLxv3OEZLUW+7eFYVUKy4UNQ3YlXxw2pKwOcxtwMCB3\nnxzrniam4RMK9EllqpYSI5TQOxnSVvxja3I5D5xXguTdgFtGLMaYzx/6XkS+BvjvgM9TZqtYxMIH\n6at1OgrC7fMBEcmAe7BO/JBMDwEPARx+wqcYmB+yOEQqU6DPF8oN8SfdqVFVfjMtN/nO6Xe+C6k4\nhPJdxpIpx17Ys1YTmCJ/TWWDinXZFvW5Mp3ZyhWhdM2+9Hl0y2iHUPn2IYLxe9BAl4vT3qv9smcS\n29SwqPoOfRuOnDSf66C2lYshzyqOS/cM+pn7beTbfslmncbJxR1Pab4hDd8991Covf8bt30XUvEJ\nxf88xX8aMhFfYh7uVFTYS4FvBT7HGHOqvnoL8DMi8n1Y5/3zgd8wxlQicl1EPhvrvP8q4J+rfb4a\n+DWsr+ZXpvhXTC1bKvZUjE1Y/gppKDdEb9/Fj6LP4/eTd6v5KeTiY1f1v5+TEydM3xkbwxC5TNFW\ndjZjZIvBr0NmHk0uLjR3Lvzulw621D2sN0lrElskUNSuA6UzjaH8LjCUSGkRJpdVZU1iRQ37B7ZQ\nZohcoN8zJRRZqOHCd6f0QJpCKuFe9f3z6WPOdcafp7/FmHio+lMNd8rH8kPYuJ1fEtsY5Z3GmFc3\nkQ0/hy0vUALf2ESEAXwDXbjx25p/AD8G/FTj6H8MG1U2CXNDFccmqalRT/7xxhzhY8dKyrpHKpnn\ni3ARS36bZBhf6e2CoWTKMfNjCLM6FwbMfLHrabURRyIjZOKw17w1oZIkbrINmcY02cSqUIfgZ6Cv\nqho2tD1cwLTay6pKuGfhm8Y6cgkmU3rkUtTC1dwed1N3/pYQuQCwnFY9YcxMrHFWUgk986mRlJc4\nO+5UVNgnD3z3ncB3BrY/DHx6YPsK+Ls7CAGEB+1ZHdoaU1+40N9j+7lV3RCpuP/b0u2BDo27rMjG\nZI3lwIQ+325o01BVF6SkSLZsvRaSLdvv7P8l51EIPJZgOwX2flVAE5DQ1Pi6voFNtq29rKu00Vri\nmksrl7ofrv/LXmoTKK/mnb8lRC42HHrONWwjKeu2kOcYYsnIc0Oax6DNYeeVgFlzfkm6T3Y8GaLC\n7gjEhAtK6hfejxCBfqltXzuJaStDA1M7B0PJkmMmpBCp+BFTxSLdMoUNkcoQaYRMFg5DyZRnIZIQ\n+U912us8llVlnafrKqGqS+qkOW6SWW3F+Vaaz7XZtNFj66pLKBxLthx63nP9RtvVICpOT3LKsmor\nEy8XdeP7Ea4uwGoaYB370jjoDWUtHOQVVLCumoWGsffjpEi2QmEXidWKrraKnCUXJ5OuhtyXcfr9\nmILYAm8uqczNhbn0teyOC0ssEA9fHVtNjsXlj/kPtEakI898k0FsxT/kGxrKhtbJa+6cY9cxhxhC\nhBTa70wkMyPbW4cbu0ftJs/K1FR1QZ1WGBHEkQtAkmFEwFitpTLdfe71SSlcP/lwBFMMU8nFHwMn\nx3lbAsgVLXU+i3VWs1zUFDVsarGaRkVj0nKO/RpIe43CTorUZunXfkKlYVXZpmZFbWuKQdcoDLoA\nhl6GfsCkNWbKmouQ2fYsmsrQs7gkl91wYYlFnCnMc3RruDyP2MCa4pQeerGGCMYnl9hxtbYSmnRj\nocWx3JwhjURjbpXksePFMKUd7hhcxnhRW42lrO0qfZFWllySitTTWGqa76hYV7YEvZ58z2rKm9NW\nQUdS9c2J3bXZbqNOi6lZlVp7sT4TX3sBgqTi4Nok54k1iS0SW2ofaKovq+tRIcShMaoxlKA7hl19\ngbFFmf9uhlorn1efo0vn/QWAmDCpuM+tT2KgA2QMMVKJZcH7BOOTiz7u1CQxfQ2uPa5OXothTsG/\noUKW55FYNveF1uY+V9bFEf+qsu15wTTmMGG/LqmS0vpZkmXrWwGnqWzbvIq6035uJ3SEndOOdE6I\nLf+SsX9Q2tyTZuJ32gv4YclOkxvOq1j0Hqsttb+pgQ09cnF1zRx2Id5Qhnzs+56MapwNLfb8Yw9V\ndjiPhNeLjAtLLBplnrSEonuUa4xVaIXhlylU10pDa0ehrN+hY8e0En0tPqnM0U5g3E4+JSxzjg0+\naPNW98w9s1gYtQ7Z1eddVXYytQ5rQ03VZeErUximarSWsiUindxWlhI0g51ldaudxaHEPL/Srq/J\nLJYV155YcHBYsFmnrA8K7rlitZdVBXup1V4WSV9L0YmVYO/PuuraI2+RC8LRAtjoDpTbvVxCuT36\nOiFOFn4v+6EK3NoEO5QnNbQw89/PW0EuhjuzKLkTuCSWBppcYHppiliIsZ+wqOFMV64irg+fXELH\nHLoGN9mGtBQ/JHNsZTmUnXzWLplTCGXIBLYVkOD5kDTWmwQOPJOM8p0Yka4cowi1UdfZ1HhyWo+b\ncM+TVGA7EmksJ8RtC5nMOse61V6K2jr3+wRjj+HyXxxC5poouVBz7SZbvVxa+TxymVpvz13r1MVK\nbCyH3p+pY+xSc9kdl8SiEDIZaVLR2squsfA6ektrSS4kuK3BFCgOGYLrj+HKmOtrcMeJRc+MxfSP\nmQx8G/mUBmJD1zNkNpzjP4phU3fhnuvKylnVBZUUNppYZ9zXhXLcJ71jrDfxMh+xCMOp8MllM9Bs\nrJXJ02wdwRRF0movi2WYYPKkuyeLgLh+i4AOllzyhLb0C1iT2BaWWsZp5Dv3/fIXMbEF2Zhp2sd5\nkkttnDn2qY9LYlEIldQIYarvwJ+QQyHBfrn1tvTHuqIgvmIL9rf3zF4wHJIZSxib+iKOBTfEMKQF\nhV72Oa1vfYQmJ2fSWldJO3HWNA58+gUqbZixDTV2E3BZJm1EWCiXyMk4ZeIaG28+WccWGM6Jr7sj\nOo3q4LBoTXfOnFvUtkbYXmYd81qMTpOx/3dZ+v6kqNobN/4Wv/uj0+j9d2aoVNGUhMoQ5iRZzgkG\nOUvgyEXFJbEEEJso/R4qbhvEQ4x1MUgduZWvS4pltlV5ONba1bc5Ozl1V7/Qfg6hSLMQfC1l6KVy\nq7lQMlms/euc1WMoHyeEocl51wCCypRbFZBXVT+HJUQqWu4pJDgUhRRK0But7Iud3DUZXXtiyf5B\n0QtT1iYyF0HWJVh22Es7Il5V/QQ/+1vD3hXYy4S9tGyJxD13R2itfJFWw5pgdrUGTOnjcydJwnCZ\nIPmUh5Hpq1/fOeivtsZCjEOkEsOYTD7BaHJpjzFQt2nIaR8KD43ljYzJ6RPMVEKZkqcyRCRTtCe3\nAo9lovvwQ40hHojQ62/vLRpiiJlbNMFM9d+0++Am9UXPlKtbYYN1vt9zpe5l8HeVk/vQk+JeaonG\niW0jz4Q8sdrQqtFg1ptk6z3RDcP8vvZT6+VNDfh4qmobTb3FH8A26/pRY8x3ed9/KvATwGdhK8p/\n79i+IvKPsf2tauCjwNcYYz7UfBfs7BvDhSWWEMbMEm5iDkWehJIWQzkm+bpUpq+w1hJzQGvoCXvO\nxBOKNPMJxS9LP7eApcZUs9cYoWgz3xiiYalJZ+aZSip+mfOinhdKO1V7GbLln8WMw7qiKNOWYPoL\nI2H/oOTaTZqSLUAGNwphLx2t49qXUeW6bGo4wmp3R7klGoDVfhkgmr5fRJvOxgJXdrkvU8fZrUBt\nzqdFtoikwA8DX4DtTfUuEXmLMeY96mePAa/FNkScuu/3GGP+5+Z3rwW+A3j1SGffIC6JhXlO1rGk\nRdgusxImlXG44AH//P5vNLlMWbH7L2ysKrKDDjJw0MEGU3wtuxIKbJNK6Dz+JOPft3biPAOmProQ\nGU8hmPNcXfvHKqAXCOCy+MFl0BfYApT94pYOISe+01oc8qQLXS5quNok5DuH9aaGVUM0q6qLqLSm\nOSHPa06O89FirjEz7ZyqDNFjT9Qy7zBeDLzXGPMnACLyZqym0RJL0zb4oyLyxVP3NcZcV787oBsA\nwc6+2IryQVwSywjGypTMIRXYDmuGrpZXKCLNx3lWZo0VsIxFYPmhzDCsXQ2ZJoY6QJ5FQ9IIBSzY\nmlqGXAypJKRJTprkJKRQrhoh94LHyxO2fBAxxDS9Of6XqRibUPNN1S4AfO0F+qHJzgmvTWN7qekI\np4EjGp9wdGSZM50dNeVlippWo8lLWx7m2k3360570SVi9HiPNbFziC3a5oyn0HM5r6iwmXksD4jI\nw+rvh5p+UqC65jb4APCSiccd3FdEvhPbluQa8DfUPqHOvlFcWGIx0pk4/BDRUPHJKcmDsR7zvk+l\nnZyX2SipjCVI+s72oVyIkFlqKqn05A5USJ6CqSvy2KTsa0dTzH/O7LOX0pp3bNl4Q5pkllBCskrW\n/taHC0HXDb5C1zZkRrwVBBND7BxuTGnTGNCrO5YnlmCu5n1yseHK3bEWCW25fg1nSlwkrjyM6RGM\ny4OxsOQSKg8TwxQLQEjjnoo7mMfyiDHmRbf7pMaY1wOvb3wqrwH+l12Oc2GJJQZ/8hoqW+I7pGMR\nYCH4pLI6zBWhbCdkhjQVnyi07PYc4aKIeuWnZbyVpDKEsckhZJ6Yk4zoiiXmiSUKXYQRICFta8e5\nv7v/S7LEtKXk9zI7Eed53Xsm/gQUylWaem23AzqQIzR5uwKXLnIMutIwPhypHAYSJF2TSVeT7NpG\negRjQ5j75NLrmOnBf8fmYOxZ+M/hSZwcGeu0e577/kvgrVhimX2+C00sOkxXI+Y3GJukYTwCrFja\nW+5IZXWQR7UUnZA5ZnN259dhx778MT/HWAHLUCb/XMz1q4xpLbFz+LK5e+l20eVLElJSyUiT3Nop\n6u5ZpUkOlXXy23+mdf4vF3XvWYW0Ft/kOWTqu53aC2yXjFksq7aviq495kKF9w+s/8WRixb/am7J\n+jCvOcxrsub+ll4UXd6UkckT4bhIWg3GJVpCVzVZl4fxzWAwceE2cC+nBKSEoizPinMsQvku4Pki\n8jzsBP8K4CvOuq+IPN8Y80fN714G/EHzOdjZd+gkF5pYoE8uYyvj2AAL2XxdJrwjErcNdsvwD1W3\nnYKhyJmQvL6c7u+pzcFCeTbQv8/6XDHMMVvETGzunrn7upfSdk90/pUWdQmlLd0rxpCQkid7FPXa\n9odPTGtOcyVQ/GdSeSV6Qv40mGeaGVo16/sJ8UTSUBUGjVBelg5NLkuhLEtW+yWrUnjGFUsuC0XW\neWJaUgF6n5dpTZbYH58UCcvUcFwkKuKuIZemsKVL6nTyzB3zYwQdKgXkcCsI5bxhjClF5DXA27H2\nwx9vuu++uvn+QRF5JvAwcBWoReSbgRcYY66H9m0O/V0i8pexq4g/A9zxhjr7BnFhicXIdoJhKKR1\nbHANfe8Xt4S+03t9kDeEYic0fyJ08MkF7GSgI8JgezXvy+a3xh0qXulkndtt0vfpuP1i53ZlaCC8\nkpxinvDb/YLSVPKaLKvZy9REKNa/AvQc96ZcAyB1SZrmpHVGnixZpuvWL5MntoyJ7oVi/5dW3ika\nmb7O2MQ2hthvp+Q0haCrJvvIMmPvY1qzqmyXyU09VPLFYpnWlpizqu1UWTZdKm1ukDtARy77B7ZT\npXt2i6UNmW5NvDtqdiEijxEw7NZZdQi1aWrWnQOMMW/Fmqr0tgfV549gTVaT9m22/52B8wU7+8Zw\nYYmFxnnvk8uY/yDkDI8RlEMoXFZrKSFCCRb08yLUQuQyJPuQBjEkq77usfBnDT/XBqYRjC+Tw9ik\n674Plq+JmMJa/0pddqawckOSHtiIMZOzn623/CyLZdVOfO45MNHvE7rOs66U9X3ddWJ04zlUn0wn\nNW5qG93kk0pZy5amkovpElKx0XiFEbIkUeYyj1zaTpXWJGa1lkVbzHJoUTQVUwnlvFodXzRcXGJh\nOwckRCpDL6fb3+3jZ8BDeND6WopeXcegv3PmCqfJOBnHqsj6yZRDq//t4pXhF2ysW6SWxSdAh7GJ\nYhcnqiZrl8PSmcJM379SNWawxhRGXbbmsISUNMk4zCpO8oRFYv0DB/slpyeZmvhSimUaNcs5+Jqr\nvr6p4y7k6xuaFHWQwVB0oc7a98nF1htLWFU1ednlqIAts1/U0qto4AjFT0Rdprb+Wi6OgFz0XYIl\nFUsuq6pm/6BsNXXty4JuzMzNXYlpwL6ZMGaaPhOMTK4scLfjwhKLJKYdrMBW34gpTYX0pB6bNPXx\n/IivGKnEyogPEY+WZUgGX3vQGCuxP4SxGmTQn6yGSOYs0Tj2PluCsBqFncD2UtOb+Pz8FWcGAyzB\nKHNYQsoyLVmmRoUtS1sq3j3HMXNYyBwKcQ0jNg7GGrXp/2OTYixJ1sEnFzvBW3PYUd6ZwxaJJYsQ\nnC8rtN0RzEGur7Ejl1Uprb9FX9tmnbLO8jO3KRjSyP17d6m1zMfFJRbxSIL+AJ6yQtcImQ90vaxd\nB6ebGKeWGx9zdPpaVuh7mN9LfMrveiHTy07W9YhMtw2NKcyUa8Qzhy1TGw+7bEhlzLcQ0sCmEMrY\nfRz6PkYmul9LqFRKbIJ2ZfsXy6rRzLoWz84ctqltKLH1PfVNYesqCZKL+9vXZtaVbaFsYdjLBOgI\n31VL9gkGptUJ8xcssZYSPqEMLejmoDZnb2l9t+ACE4uJ9lcZenljK0D/hdUry5Bfwu+JMgZX9mJX\ngpoyoHclFYcpJgNdwDNGNHPgm4V2kt35V5QpzDeHQRfpNEehmhKdNYVMQvdG7ze2utbkMhWhBZE2\nhy0SrbVYc5j1myTk2fj9T8USz7qyhNTlwTgZnc9l3YREZ71y/DoPRy9OgKBZGsLmxpiv0xHKpcYy\nHxeYWMIDZmxyvJ2DzEUeQWeKCJGLX7zPbYtBay0x88uc6/QJWkOv9nRGtY50831GU+GbImPQ2kXm\nOe/bxMhyY30t7rMyh1F1q2zr/J/XrCnmZ3OYqu2FoCfDoZW1X65e3+upVQy0OWwvrdnUtmBlRwD2\nHId5bSPAKoCI1tJE5VXVhmVqKIwvu08uXUn+GMHoxUmoJbJDTEvR97BP2vMKckZhpBcE8VTGBSaW\n7VaqU17wuWrx0ESpK826nIHOnGG2Jh+fXGJ+lykEM7RiDq2E/eP7303xFfnE4SYHvX2sAKFvc3fb\nuuupJmlOvVIuTlPZNNPRsrTmsOZr6+TPeqabPHFtFPqRSzH/kG92mbKo8e9DzMS1y8o6NC7G8l20\nXE5rIbMmsesFaHIBOMgrloES/LqUjtZaSOtG4wlrLqu85kZRRwmmV3Xc8+fFghp8Ytbvn//7S0zH\nhSUWB78fxN2EuSv888RcUgltd8Q4l1xuG8pNtCDlHMQCIs4TZz1uSGsJHdMualw+RjMpJ1Zr2fa3\nuOivsNbiIxedZBkzi3XFK/cPwjXo/b5DY2bHS+I4f1x4YoFuQvQJJrQ9RkJdE6Nka1to8te+Fa25\ndKjACwjw1ejQcf3zuy6HCeFVvF/aIySbjyFS8V9S34ygr8Enxl2I0ndEO2ezk6kspS2jsa6kzZ3w\nu0NaAZoY2iRDsiU0rYpDcH1ZhuSNlZeJYRcynaJB63HoQqNDcg/lv/i/d10oaWqJHTVl9lcVrKqk\nDUEua+Egr1hXOhx505LMaQnrqju21QqTpp6b+5e0/pwbqnilKwETu2Zfa59jfnTjNMvMuS3e6vrS\neX8hEXtJh7SaUDmMoeZfvX0jlXW7InxVa/oagz9gNakM2c+dLdonmClBBUOkErNL6+1+f/T+77a1\nllC7Ati+v8534zSh9SZpJiF7bhvmqshlgEAcqrpkXYVfl6FJGqaFEQ8dL7QACZvSmjpdgfESGr9D\nfikf26TXLXzWWQ3UvRbHm1pYVynrSlpSccU/Ncn4jdRyMZB22sphXjclYxL20oS91HCjMbvlJW2Z\n/xhC43goFNsnIdfK+RLzcEksZ4BPKrE+LbGJPZSI5vbtXoZtR33vGIG2rj6pTClX7xNMjFyGouK6\n30x7Ee3vOl+RbxKLIUQqOrmPZTi0dlV1E1lVF5Da9gkCYXJJMqp6TWW6yctvUewjRihTzC2x6x4j\n+aHvNut0lql3zLfShyUXK3fRJqJusm3tJW+ivlx2fmFqlSTZYZmabsg3+S6uzpjFtmlMk0vXvCzc\niXKq2UsTzHk53I2Ru9bsPheXxLIjfNNXTEuJdbtr0VQgdgQzNfzYl2WIVMayk0M9aIbIBeIx/rus\n7uaQSUgL9O/xOssbWerGHJawqbfvf1UX2tesLmIxagY7pyq1QFwTc5iqQY4d97z8Vm6M6YCT05Oc\nsqxYZzX3XNnWXq7m1jTmNBBHMC5LH1CmMmN9NU35F4CD3jjrk0tRW60p5HPRgSy7XuulD2Y+Liyx\nhFYPY478KWYv6GspU8vFO+1lbJL1w3f9yUOTyt5JMdizolTVeKeSizPHuG1ucnF/69XdEMm437Xh\noepahvxUQ4SSb2zuQlLWrdbSaxpVW41jXUlrBqupbOhrkkHafx2MCLWpqKmojF1ta9NNr37Wuqtm\nEGq05psZNaaQaswf567Pv/daU4ktPELwI6h82UPmSV0F2fleDpTvxWouhqu5NY8d5jVF7fJWEmjI\nxZnI3D0ujLCuIhUwEtoKy0cLcD1dssxwcFhwcpyP5u5MJdrz0jLMZYLkUx/6IbsBONS5LmbvHzLL\nhMrpD030mlz8cw7J6Mxw5YmwXBfB1shb5/JaDYcanI1pLuMvyfa5Y6Y87Vj2f+uCD2L9ZPQ1up4s\nvvN2VSpzSbMKbk1cTjtx/zuicVdRF6yrrsz7qpK2Sq0LNXZywja5AFsE42PI3xELsHB/hya+2H0d\nIhUf/jP3TUruuh3ZaYJx+15rNJhNLRS14Si35jHXbTJELhAnlWVqKGqrqdiFgv2cJ3DPFVu88vQk\n5+CwCC4E/evTCAfRXGIXXGBi2V5tauzqOI6RSjZTc4Hu5XUaQgiaVPxWw/mm6jUa071hdO8Z93ms\nTlenlfRfwDmrMH8SDK2mYR6Z6HtbLGzY7LqZjLWcfR9LSZ1UVHVBmiyRbIlpyMRFhNXY7wFFKrS9\n3LW8m3Xai7zTXTzd9QzB98P5Dea0FqHv/5Bfxv3Wv69j8DWtkCkopHXp/CadF6J7uawqOMo75z70\nycUhpqmATVJdV9JqLWCsX6ek8fMUTeOy7aoBIfmnmCLPA+ayCOXFwNREPH+whcwxGrH2qaGukk5z\n0AiRy5CcmlSunBS98/SPvU0yTmvR5GK/39ZaNLRMU5uQxbRAbZ7RZDKFSHz45jB7HsHtYk1hSaut\nBCPDskXPce9+U9TSkoo2s+nr8sl5aqHEoQALRzK+1qLha2gxsg7JNVafberCIWQys4siqz2sDwqK\num58Ls5MaiPHQm2NfVhtRdrPq6qr2WaP5xaLllx8InEO/ZC1Ycp1PZkgIi8FfgAbmvejxpjv8r7/\nVOAngM8CXm+M+d6xfUXkacDPAp8EvA/4cmPM4yKSAz/aHCsD3mSM+d+G5LuwxDJm74xpJWMTRcj8\n5UNrDiHk6yoaMQZ9c0iIVPx2yKHzh7pEwniJ+jGSGUJIC9STnh/BNkYmQxWEQ+f0D9GLDEuyHrn0\n/Ct1SWGUKazcDt6AbW117F4OdfP0CSqktTj4xD7kTxkbv1N6uAy16AYoypTN2t5LRzJdEcsNrs0x\nbVZ+d07nwNeld4At/1bbGye1fpbrhSUXm6wJLsHSRR4CnBzn+JgTcn1WnJePRURS4IeBLwA+ALxL\nRN5ijHmP+tljwGuBL5mx7+uAXzbGfJeIvK75+9uAvwssjTGfISL7wHtE5F8ZY94Xk/GOEouIfAvw\nvcDTjTGPNNu+Hfh67Gh4rTHm7c32FwI/CVzBdj/7JmOMEZEl8CbghcCjwMuHLtjB1DJo7w6ZNaZA\nN/tyzavcpOiXU/cn93b7SEkNveLSPpUQek2lGkIrFmmwL8gQ/BXxFPPAFHNiKNBhqnbiw11LyM/i\nJ0muq4S91JJLnVSWwp1fxfOvVKZmXWUUtTXlOJGGTKJOjhC5+NpJ7NnF9vfvfyVlD0wAABmgSURB\nVMx/MIVUpvaAcRg6Xu+6vGhHF6FnTVQFjlycY3/VmL6sz6Q5vkcux54Z1ZGQ01Q2tV/LrW8WG/Kh\nxq7pSYoXA+81xvwJgIi8GdujviUWY8xHgY+KyBfP2PdlwF9vfve/A/8XllgMcCAiGXb+3QDXhwS8\nY8QiIs8FvhD4c7XtBcArgE8DPh54h4h8StNf+UeAVwK/jiWWlwJvw5LQ48aYTxaRVwBvBF4+KoAx\n0dXKrRxcPrnMneAd/Ekj5FPpnXdAS3GY04Fw7sorZk7UWspcQplDimCd7tA5iG20V+fAl2zZfu77\nV7puh04sHdXm+1c0NDmEzF0hUtH+L+gHA4yResjME82jmkkqPRknRj3qgJS+xmDJxd4ap70kbTM2\n2CaWLRl63+tWBn1yKUubb6MjKt390QVZfUzJ/5qDocVsAA+IyMPq74eMMQ81n58NvF999wHgJROP\nO7TvxxljPtx8/gjwcc3nn8eSzoeBfeAfGGMeGzrJndRYvh/4VuDfqm0vA95sjFkDfyoi7wVeLCLv\nA64aY94JICJvwqp4b2v2eUOz/88DPyQiYowZHJVipvVwcNil+VRIa3Hbdz1HyHQU8t2055qgpZyl\nsVZMPh9jYcIwTzs5qzzrStivS0hoHfidsNv+FZdBDp3242sK7ln49zc2puZ2P9SYYsYdTM49R1IZ\ne34FcHx9weHVTWsSK8uEazdtJNf1DThy2dSwqFxNsM6f4pOMztzX311FmjbU4QTK0xP7PvjpAu66\nzptMzoBHjDEvulMnb6xB7sa+GGtB+njgPuD/EZF3OK0nhDtCLCLyMuCDxpjfEelltT4beKf6+wPN\ntqL57G93+7wfwBhTisg14H7gkcB5XwW8CmB59RmTTBLavBLqSx56cf2e7n4/dx3mG2r+FKqCOyWy\np1hm5Ouy58PRWsqYHyXWq2IMoUluLFoOdjd57YL1JoGDujFldWOupgo68N12W8qlI5RV1c+/2RW7\nkEoox8RhKMBkCKHnPGVxoBc0WUDj1EiLmtVhvhWlZ/0fKmO/tqSwlxryxJq2FgmNk16iBOOXhdlL\n6UKRFx25dL2AXB2w5rx02r8zZZ+F9G8DPgg8V/39nGbbWff9CxF5ljHmwyLyLOCjzfavAP69MabA\nmtd+FXgRcPuJRUTeATwz8NXrgX+ENYPdVjSq5EMAR896voERJ3tgIvYjaEIRNbqnvO7n7s41l1Qc\npmSoaw3FnSvWuTCEs1bhHXLsDgU2+Fqd2zaGGCG5AAiWKqej7kKFCyNUptp24GM/62rvhZHRUi4w\nT/PbpV+7g+/v8jHUVRHGG40NjbO5ZmKtwfW0g7wGuox9V8wyT2CTWYIpakswnYkr/Az0s3FEs0jg\nKIc2FBnwo8V6pjFSCvoNws6dXAbM7zPxLuD5IvI8LCm8Ajv5n3XftwBfDXxX87+zJv058LnAT4nI\nAfDZwD8bOsktIxZjzOeHtovIZwDPA5y28hzgt0TkxcTZ9IPNZ387ap8PNM6le7BO/EGImUcqc1rm\n6hLkjlz0MTVipOIQq3kUklVDk1foGmIr36HeLHNX6aEclKF7PoVIQvsMaTs6UmrVvNTWrNWdq+fA\nV9uc496v++KSI6dCjwGNKeQylLjqY0r0V2yc+c95aLzpa5mqaepIR5fU6SdU7h9Y7SVEMEete0ba\nsOM8MVHCd2TkyEWX3HdVkf3KELeFXM4BjWXmNcDbsSHDP26MebeIvLr5/kEReSbwMHAVqEXkm4EX\nGGOuh/ZtDv1dwM+JyNcDfwZ8ebP9h4GfEJF3Y2/kTxhjfndIxttuCjPG/B7wDPd34z95kTHmERF5\nC/AzIvJ9WHve84HfMMZUInJdRD4b67z/KuCfN4dwLPtrwJcBvzLmXwEQY0ZXyFWebBGKPyHHzVJ9\nctHQZjXfUa6bEDn4lX61w1FPWr0IsAChTC2KOLWXio8hPwrMf0mnOOdDPiwtQ4E2I5a9Gl/rKmGR\nqg2NKSxYUn9HuGcQc+D72uwQfHJxiJkdfUwhFff3GLn4OVpz4I7pN7kD2npjPsGAUS2hpZfT4sM3\njzlyWbiS+xt6pjF93cfXFy25wNk0Sx8xv+4uMMa8FRvEpLc9qD5/hP5ifHDfZvujwOcFth9jQ44n\n40mVx9Kw7s9hQ99K4BubiDCAb6ALN35b8w/gx7Aq2nuxsduvOIsMWlOZEh011Bo31vJ1CqmESkv4\n5g99fPcChOQPnSN03BB0j3p/n1C4bSxT3sk4hJDjG+ImplhYt65/pmXXSZIuL+IIW9qlqgvSQN6Q\nLeWyW3DDeQZF+JhrUgmRSqxytdaQ3f/nle/heuaEcO2JBQeHRVtvzBW0tHm9NqnyettzuHPsx6Bb\nUh/lNorsRiEcLSAvrfaCamJ8cpxzeHXTkgucf2TYRcEdJxZjzCd5f38n8J2B3z0MfHpg+4qZbOrg\nr/BhmFCGamUNhS1OgfapxHrIh/IVQia62DXEJpQhxJIfx7KXd3khNakMmSBDZkYHHRgxBj0ppUkO\ngcZRy7Rumk91ciwX9aR76Ad8zLknmmT1cXTocQxD3w+NgbEmdWNRU0MLB13RwT+HD13Q0jn37e5d\nxJdz7Gu/S6jHy97WKQxFTae9ME4u5wUx5sIQ1R0nljsFo6LRfLPRVAe2v2rfhVzqLNkye+njR8+r\nIlmc5jKmCQ0d8zww2iJAYcpq3ncy6+t1GDqX/u6sPTVCORVDNdy0DDEfi0bI5BIjl10wN6RY47yz\n03WnT33/tu9nvxz/qqo5ymlLwujIMYu4aczluSySLpHSkdXtJJeLggtLLDBOKFOK7+1KLqG2tUPd\nAWG7dIc+lyOXqT6bIYyVaPFXs1MnnqkTo76Gnl/HM6EkZR11ssbMaqH5PZXmNSg39rjpAWmSk5qc\ntF63/UL2UhsKG5vA5uaxTEHoeFO0Fo0p41pjTpLlXMSSPUNFLbXvxdY/C/d76UeO9T+7EOXO0d8n\nmM6xbxMp3QLkVpDLWMDQUwkXlljqRFqTUezF8ydgv2mQLrq3S16DmziHSCWULewfw1/JTyGVoXDV\nmF8l9nsIaytTtRIfsTyeLVNkE8UzZg7rTZDNZleLKmnIKonY/R202WzbvNJHjNQcdjWPzTWJwXxN\nZc6iYSgib8wc6Ue3aZ+OX9H79CRrnr39+9pNWvPY0UInRHZwGfx5YiJ+mO1M/VWTSOmixUJFRi8x\nDReWWEwimKclZNgidWP+DZ3cdatKX98qM1VwUh54Wcb8KvpzzBwXwthEOESIu5K32zfLupVt3nQu\nXKa11UySHDEGajuxiDEkpCSkpEnGMh0u6gnbK/oxcgkhVkvOYZfQ96mYkg8TChkfC/eOYSxC0ff3\nhJqJrbMaXRbGaS8wTv6hfBeruZRt2f/Tk4w8r4PFK3dBKBL1qYoLSyxJatg/2FZyB/0aKkwyllsy\nJ5cglAS59dsduteFyt37q0GNWJ8KH3Mn9l1W1DGtcSyXR8MlhTqN9Eq2YbGs2MusCeQwt02lFumi\nJRDqsjWFUZcxaxewXdKlnYCbENxSmed2IRcfoQTdoXDjGHSUV+xe+guGKSYwn1xiQTFafhjOmWqP\nNUAw+wdlryzMJuvK8fuOfSAYnuwIKE+60vs3mlyXLLNFM2+lX/KpiotLLIlpmxGNQbd/9cklBr3K\nGzMJuRXSWTFmHtHkEvpO/z8F/oQWO/cUc0yMUPyouDmaiybwLKubciF2tbpMrVaSStZGhJlyDdjp\nKE1y0jprTGTbGovLjdEVpnXHzqmRaUOO/TFCcRjKrfJzXobIxN9/KHTcxxTNJeY7m1sp2xEMbJeF\ncWHJm1aU+ApB57v4fV1cOPJysZ6dEBvDpY/lAiDNau65dxONFtouP2EJZmhii5kOQgmRIfgkN6XM\n99yIHd8sNmRTP0sk0Rwy8f8OkYr7PGaG1NqKm8Dy3Cbc7TWEkjWmMGcGS0ihXLWmMMoNSXrQHnOp\nOhuuvLpUWltx0OSyi9YSKyE0FK3oB5Bo+Yb62IeuBeKkMqdyQqgk0lgIv4+QU18vjg4OC68UP7iC\nln62fgy+2cz1ddnUOt/lEnNwYYklSawpLFTltCxl0Lmt4RNNyB7tTywhp/15Y6j7Y8xX4ncVHOvD\nvgt5uHPOWbHmed0jWf+e+xqhM4G5e7xYVo1vpfOvpNKYsUh7/hV7cfaz1WS25VlvbDkSVy5fayu6\nCKjfnTOGsaKgQ76nqdqbe5ZjlSMGe6zMwNQ6eKHxH+p+qeGPn25B1pGLbfjVJxcHTTJOa7ERf120\n2FFubMHSfHsxcYlxXFhiyRJrm11VNetN4pm20laTGTO9uME/1rAK4trKVDOYv1oPrTB1r/WhulL6\nGCGz3VDr2iFCmXItY6Sio4IWy6qdxB1C97yVdaHNLRuyrGb/oGwd98vUkIshTbLRSLAp2CUMd4p5\ndKwgqY+pJsI5PYhuJakMLahCZmZf7g0d6eiqxfsHJeuspqhrjha2kdhRbibluwAtwQBcza0/bVOP\nVoiaBKnNaHfXpwouLLHkCdy/B9c3rjCdDWHs7KnD5OJ6Z4dIZchcEHPaT/H1QHgVF2qJq+tKxRAj\nwl0S8aZqIFr2od/5Iadu29Dk6SY0p61kWd2UCKlbx70LP+37VxrHvXPeT8DcMie+1hIjF98PMSX/\n6Kxm0jmkMlY7ayqpTB0jMbhrO76+aI+l/S5lWbHaL7cSKmP5LhDu+3KYh53+lxjGhSWWTOxKZi+F\n64V11hU1sNAvVLrlg7GJWn1SaX89s4/D0KptLBos5s9xnzW56N9pjDVqmpIzMZR0p6/PrUDnBCno\nCDZNKkOTeudb2bQT2XLRd9xPgQzUMR3y8+heOD7GTGIhUomNEbfY8ZNmHaYWpgxhrqYyFBYdI5Wp\nCykIE02rmdMlzupy+K5i8vqg6CVUhvJdwEYKhogFpo+ZMYi59X2Hniy4sMSSCjxjD64XTXE6Xfl0\nhFx8+J0cbxeG/DmaXDSG2gCH5PdX1UNlYsbMGzA/B8j//Vg2uNZW8rxuk92c4x7Ydtz7bYWV5mI1\nmpvjcu5QZj2ktYQ0lSkh8EM+wamkMpVQpviLxkhlFz8RhBdSBTREsmCztuX3/YrJB02/F629QD9K\nUCdTZon2w1wMMjhPXFhiScRwmNd0vTa6yqdsYB3ZL2QCc6TiJuhQ+fq5SW06Ei0GnZSoG4o5xPqt\n+5OfCxXV+/c+T6g9NlSNGfql0ofIJWYq0yZAfzV+5sJ+5caGGnsO/EQ6WbJ20pF2gqyzpC334e7p\nrhWcQ+Njahi6vqeObHTVbf/YMaKJlfafCz9XZUxTmeofimnn7Xnpay9+x0j2S7twbEKS91LrQ1mm\n/RbHPqkcnlOAjRhzYcKNb00K+V2ANLHEcpjXXM2to+4oN40d3vpb/BdbD/5Qz/mzIEYg+kV08rhJ\nDbqX+Kwl2h0ZTmlh7BAKD9b/Qr91v58SDadzRWKJe6P5FUrb9FvYbv9405FMA+uL6e7DXmpYLup2\n1d0+h0UazF0J9omJjBc/v2MKQiSvt4Wi94pl2v4LYZexVOXJVljxkKaVZabXaGuXPK58U5Fv7DuY\nFvZ9TMqa8kQ4vr7g9CTn5Nj+Oz3JODnNbHvp0pq/V4FTalI5zCoOs/pJqbGIyEtF5A9F5L0i8rrA\n9yIiP9h8/7si8lnqu28Skd8XkXc3DcDc9s8UkXeKyG+LyMNN80X33X8lIr/W7PN7IrI3JN+F1VhS\ngYNm0l6mhuMiwcW/d1Ej4dW1ToqL+SdgfPUayoIPQRfic1gsuwrHfjmV2IoOpuchTG1ENlY4U8Nf\nmfraS2zVGgqJPsuqel0lHPhVOmovWqfckC73oKIp61I3xQybIoYNeW7W/Ql6Fxv6UEFS6C8uYgsQ\nvxqEbxqL9Q2K+eDmaC9+3o1friVmArNym60gmTwfrxqtoce009JDvhdLZrYMDNhQ4k3d11bAaim5\nWA11P4M0WUyWZRDmfPq7iEiK7er4BcAHgHeJyFuMMe9RP/ub2EaJzwdeAvwI8BIR+XTglcCLsfrb\nvxeRXzTGvBf4buB/Nca8TUS+qPn7rzedeX8a+EpjzO+IyP0wXJvzwmosgl2RHOR2wjjMa+5ZGK7m\ndlW6l1n7q11dd4POmcDuhE8Fts0jvuYC26vHOZhiAouRSp7X0X8Oc1amvqZyHqQShCOVqrT/FMm0\nlY8jaE1izb0q86T95zCFbEIh3KF7Fbqn7XkiiaVjGgzEQ+HHxlEsmXMo+CDLjJfLsq25nFWDydcV\ny5Oi1V4265TTk4zTk9zmIdXbWov1tfikcj5h6eeMFwPvNcb8iTFmA7wZeJn3m5cBbzIW7wTuFZFn\nAf8l8OvGmFNjTAn8R+BLm30MtpUx2BbvH2o+fyHwu8aY3wHbaVI1YAziwmosv//bf/bIC572yj+7\nTad7AHjkNp3rduGpeE1weV13E27nNX3iWQ/w2BN/+vaf/oWvfGDiz/dE5GH190PGmIeaz88G3q++\n+wBWK9EI/ebZwO8D39loHTeBLwLceb4ZeLuIfC9W6fgrzfZPAYyIvB14OvBmY8x3Dwl/YYnFGPP0\n23UuEXnYGPOi23W+24Gn4jXB5XXdTbjbrskY89IngQz/n4i8EfgPwAnw23T1Jf4+8A+MMf9aRL4c\n2/b987E88d8A/zVwCvyyiPymMeaXY+e5sKawS1ziEpe4S/FB4Lnq7+c02yb9xhjzY8aYFxpj/hrw\nOPCfm998NfBvms//B9bkBlbb+b+NMY8YY06BtwJtMEAIl8RyiUtc4hJ3F94FPF9EniciC+AVwFu8\n37wF+KomOuyzgWvGmA8DiMgzmv8/Aetf+Zlmnw8Bn9N8/lzgj5rPbwc+Q0T2G0f+5wA6UGALF9YU\ndpvx0PhP7jo8Fa8JLq/rbsJT8ZpGYYwpReQ12Ak/BX7cGPNuEXl18/2DWK3ii4D3Ys1XX6sO8a9V\nZNc3GmOeaLa/EviBhjxWwKua4z0uIt+HJTQDvNUY8++GZBQzULriEpe4xCUucYm5uDSFXeISl7jE\nJc4Vl8RyiUtc4hKXOFdcEss5QUS+RUSMiDygtn17U1LhD0Xkv1XbX9iURXhvU3ZBmu1LEfnZZvuv\ni8gn3f4raWX8HhH5g6YcxC+IyL3qu7v2umIYK5HxZIOIPFdE/k8ReU9TZuObmu1PE5FfEpE/av6/\nT+0z67ndKYhIKiL/SUR+sfn7rr+mCwdjzOW/M/7DhvW9Hfgz4IFm2wuA3wGWwPOAPwbS5rvfAD4b\nWwDgbcDfbLZ/A/Bg8/kVwM/ewWv6QiBrPr8ReONT4boi15o21/GXgEVzfS+403KNyPws4LOaz0fY\nkNEXYMtwvK7Z/rqzPLc7eG3/EzZS6Rebv+/6a7po/y41lvPB9wPfSr/Zw8uwGaprY8yfYqMz/v/2\n7iVEjioK4/j/g0gCSgJKGINZ+EBdBAUhujFIYqKGMfgAxY0LcSE+UFw7G5eim4AKCYRgxCDIiCiI\nJEQXghgXhijCICQiwRiNuogiAVGPi3OHrh6mM52esmuq+vtBQfWdqp57pug5XfdWnbqtlFVYGxFH\nIz8BbwIPVPY5UNZnge1NfdOKiMORJR8AjpLXwUPL4xpgmBIZK0pEnImIY2X9D2COvLO6+rc+QP8x\nuNjjNnaSNgL3Avsqza2OaRI5sSyTpPuB01Hq6FQMKqlwVVlf2N63T/mnfg644n/o9sV6nPzWB92K\na96gmFqhDC3eAnwBTEW5XwH4CZgq66MctybsJr+kVYuMtT2mieP7WIYg6Qhw5SI/mgFeIIeNWudC\ncUXE+2WbGeBv4OA4+2bDkXQZ8C7wfET8Xj0RjIiQ1Jr7CSTtAs5GxJeSti62TdtimlROLEOIiB2L\ntUu6iRzb/ap8oDcCx5TPMRhUUuE0vWGlajuVfX4oNymtA36rL5J+g+KaJ+kxYBewvQwpVPs4b8XF\nNYJhSmSsOJIuIZPKwYiYL8Xxs6QNEXGmDAmdLe2jHLdxux24T1myfQ2wVtJbtDumydT0JE+XFuB7\nepP3m+ifWPyOwROL06X9Gfonud9pMJadZNmG9QvaWx3XgFhXlTiuoTd5v6npfi3RZ5FzB7sXtL9C\n/0T3y6Met4bj20pv8r4TMU3S0ngHurRUE0t5PUNeqfItlatSgM1k+eqTwGv0KiCsIYu/nSgfjGsb\njOUEOX59vCx7uhDXBeKdJq+sOkkOBTbepyX6u4W8WOTryjGaJueuPibrPB0BLh/1uDUcXzWxdCKm\nSVpc0sXMzGrlq8LMzKxWTixmZlYrJxYzM6uVE4uZmdXKicXMzGrlxGKdJOk5SXOSaq8YIOnhUlH4\nX0mb635/s7bznffWVU8DOyKiWjMKSauiV1xzVN+Qzwrfu8z3MeskJxbrHEl7yBL4H0naT5aQua60\nnZL0KPASeRPeauD1iNhbKi6/CtxF3hz6F/k88dnq+0fEXPk94wnIrGWcWKxzIuJJSTuBbRHxq6QX\nyWd3bImI85KeAM5FxK2SVgOfSTpMVgi+sWw7RZa02d9MFGbt5cRik+KDiDhf1u8Gbpb0UHm9Drge\nuAN4OyL+AX6U9EkD/TRrPScWmxR/VtYFPBsRh6oblKq6ZrZMvirMJtEh4KlSdh5JN0i6FPgUeKQ8\nc30DsK3JTpq1lc9YbBLtA64mn50j4Bfy0bXvAXeScyungM8X21nSg+Qk/3rgQ0nHI+KeMfTbrBVc\n3dhsAElvkKXbZ5fa1sx6PBRmZma18hmLmZnVymcsZmZWKycWMzOrlROLmZnVyonFzMxq5cRiZma1\n+g+lRR1J5URuGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQLdtd3/f59erdvWf2npnzPrrSvUIYRCoYUmWbEiRO\nyjgubAyyRVIJBuIyUGCiABUnxjGPPKzYUFGBY+yyMILwtsNDRbmC4ohAQYxNHMsgiGMb8QcCS7r3\ncnWe98zM3jO7e3f3yh/r0Wut7j0z596je66Z/Tt1avazH6t7r+/6/X7f3/cnWmu2trWtbW1rW3st\nLXvaB7C1rW1ta1u7fLYFn61tbWtb29prblvw2drWtra1rb3mtgWfrW1ta1vb2mtuW/DZ2ta2trWt\nvea2BZ+tbW1rW9vaa25b8NnaJ81E5L0i8t8/7eN4PZqIfL6IvPC0j2NrW3tatgWfrb1iE5GPisip\niCxE5GUR+T9E5Dn3vtb6nVrrv/aUju2rROT/fhr7To6hteNzJCL/XETe/jSPaWtbe73YFny29mrt\nT2mt58AzwB3gbz/l47mwiYh6DXbzT+34XAF+EHifiFx9Dfa7ta29rm0LPlt7Iqa1XgE/DXyme01E\nfkREvt0+viEi/0BEHonIQxH5ZRHJ7HsfFZFvFZEPWw/qh0VkGmzn7dZreCQi/4+I/DvBe8+JyN8X\nkXsi8kBE3iMi/zbwXuDftV7Ho+B4vldEPiAiS+CPisgvicjXBtuLPCYR0SLy9SLyWyJyLCJ/TUQ+\nzR7HkYi8T0SKC4xPB/wQsAN8WrD9bxKRuyLykoh8dfD6F4vI/2v38byIvCt4byoif8+e7yMR+VUR\nuW3fOxCRH7Tbe1FEvv01Atmtbe2xbAs+W3siJiK7wJ8BPrjhI98EvADcBG4D3waE2k7/GfAnMBPz\nZwD/nd3uH8BM2v85cB34PuD9IlLaSfUfAB8D3gK8CfhJrfVvAu/Eeh1a6yvBfr4C+A5gD7hoWO5P\nAH8I+DzgLwPfD/xZ4Dngs4AvP28DIpIDXwssgN+yL78BOLDH/TXA9wRe0RL4cxiP6YuB/0JEvsS+\n95X2e8/ZMXkncGrf+xGgAT4d+APAH7f73drWXle2BZ+tvVr736xncQh8AfBdGz63xoTmPkVrvdZa\n/7KOhQXfo7V+Xmv9EAMObkL/OuD7tNb/TGvdaq1/FKgwQPA24I3Af6O1XmqtV1rr8wDlZ7TW/0Rr\n3Vlv7SL2nVrrI631bwD/Cvh5rfXvaK0PgZ/FTPKb7PPs+HzCntN/ZL/nxuSv2vH4AAaY/i0ArfUv\naa3/pT3OfwH8BPBHgu9dBz7djsmvaa2PrPfzRcB/ZcfjLvDdwJdd8Dy3trXXzLbgs7VXa19iPYsp\n8I3APxKRN4x87ruAjwA/LyK/IyLfkrz/fPD4YxhQAfgU4JtseOmRncifs+8/B3xMa908xvE+f/5H\nBnYneHw68nx+xnc/qLW+orW+obX+PK31LwTvPUiO/cRtS0Q+V0T+oQ0nHmK8mxv2c38X+DngJ0Xk\nd0XkO0VkghmrCfBSMFbfB9x6/FPe2tY+ubYFn609EbMr8L8PtMC/P/L+sdb6m7TWvw/408BfFJE/\nFnzkueDxm4HftY+fB77DTuDu/67W+ifse2+2Ia3BLjcdavJ8CewGz8eA82nYjwPvB57TWh9gclgC\nYD2l/1Fr/ZnAvwe8HROiex7jFd4Ixmpfa/37n84pbG1rm20LPlt7IibG3gFcBX5z5P23i8ini4hg\nQnQt0AUf+QYReVZErgH/LfBT9vX/BXin9QRERGY2Gb8H/ArwEvBu+/pURP6w/d4d4NkLkAH+OfAf\ni8iuiHw6JvfyerA94KHWeiUib8PkqgAQkT8qIp9tc15HmDBcp7V+Cfh54H8WkX0RySw54o+M7mFr\nW3uKtgWfrb1a+99FZIGZBL8D+EqbG0ntrcAvYPIa/xT4O1rrfxi8/+OYifN3gN8Gvh1Aa/0h4M8D\n7wFexoTuvsq+1wJ/CpNc/ziG0PBn7Pb+L+A3gE+IyP0zjv+7gRoDVj8K/K8XP/VPqn098FdF5Bj4\nH4D3Be+9AcMsPMIA/T/ChOLAeEAF8GHMeP00Jte2ta29rky2zeS29rRNRD4KfG2SD9na1rb2e9i2\nns/Wtra1rW3tNbct+Gxta1vb2tZec9uG3ba2ta1tbWuvuW09n61tbWtb29prbmP1EZfCbtw40G95\nS1LSoTvQGl8KorV5LTTJQMQ9MY8lQ9OhdUdHR6c71p3QuP/abFFr6DS02nxtkoESmAioTJOLNq9l\nE0QD7Rq6FpoW2hbaDl236MYepwiiBJQgKgOVgVIwySEvIMvpdEOrG1/c0mnxp5KJRgDBviaC+weC\nYUVL/344Pnb/IJCp6PzRGvMP2k5IRtDs2+yOTLQbyQtZeKwZGUYezh5j9xi1pu7ahufjLpAe+S8S\n/1dZ/9jdB5nqtz02Xu51t4+uM//bDr02j3WHed5B1wm6FTYFJyTT5BONlAopcygmMJmAmqAzoe3W\nrDuo2ozOj7nZWCaQiybPNJkoMlEImT3mztx32h5fp80XMtX/l4xOt4Cm0y3rDhot1K2YobD7yuw1\nLjKNkgmZKHOd2jWsG2gadN2gq5ZuDV0jdHbYzCFo2s4Mb54LKocs12SZRnJBJgqZZOaen+Tm2FRu\nf6f973JwF4mMn294nQL7tX/14n2t9c2L32BD+2y5rhesL/TZj3L8c1rrL3w1+3u926UFn7e85Q18\n6Ff+TvxiW5u/TQ1NjW4r83jMclM+Iqo0j/MCnZfU3Sl1d8Jpc8xJ03BvNeHeaU7VmkmzaoVVazZx\na6djv2jN/0nL3mTKfHKdsm7Qhy9BtYB6jb5zHxYnUK9p7y7p7p3SVQ1ZmSN7BdmVkmy/hPkucvUA\nnnkTMrsOs2tUesVi/YA2KKRvtfkBKJmgkvpMlZnXimwXJTk5uRmXcExWC/OaKvy5S7kH5ZwGA3at\nXtv/DW03/MGpbNI/Do7Bfb7dIFqgJB8/xuVD9PJBfw2dueuXj5T7NDXUybG55/XajP3a/KWYIJOJ\nmeDnu+ZvXpgxmM77+yDYp79/mrofQ7td6jV6eQKLE/TxKd1hRXdYQd3RHla0Rw2rpaJaKpq1kE/i\nCTEvOtREM//UnMmnXyV7yy3kuWeQa5+Cnl/ncH2HOydLXlhOeH6RM1VQKrONUml/392cNuzk++yo\nfYpsB2nM9fXX2d6DFBOYXTPXeTr397q7l06bI+6vau6tzLXcL1rKTPvH88k19tQ1c52qY7PdR4/Q\nd+6jHxzRfOQR9fNLlo9ymjqjWQttLWYMqo6yzJhdbZhdaZjOWvJbJerGLur2LvLMdXPfX79l7vu8\n8PdieIzm/pmgZBKfqzuek2V/rolln/FtHxu9IR/DFqx5l3rbhT77Ve0v3jj/U/9m26UFHwAtgoSr\nHFUMJ69NtloYwGlqaAuoDBCV0zlFfp0i22UnP2E3P+bm9JSqzag6B0AZperYn7Ts5jmF2qXIdiiy\nHfLlkZlEq4UHnHCCzA5K9KolKzKkzGPgme2aidFNgm1Nke9QqJ1kMt/xgBCCANjJ3YJSTm6OIwTi\n9EdqJ2FtxyMv98jzAhDI5+Y9uahfY4DRAPjpALQc6KQTiF6+BMuH8OhR/+EQRJy5SWVkchmYPTep\n1zAJzrWYwO5sCLzQj3teQFMbH02VaI5HdyH1BF1MkHKNTFtk1aJpUAclALtlQ150NHUfHc+Ljnyi\nyUpzL+TP7pG98Spy+wYcvIFmts/CAs9vH5XcPc14VMOVAkA8AAEeHPzxuN9CXiCA9rriCyjn/nxR\nPZArMWO5k+9ze/eUUh1TKu2vkbtm8/w6rI6HC7piguztkN2syKuGvbKiq6BZm3umqTPataAmmt1r\nLdlBibqxb0Bnb8ec97UDOHiDuQ7JIjC0UeBxCxZ3T7v/81229sm1Sw0+MAJAgYkqTbgq/LG4VSz0\nfytAFWgWUB0j5d4AhIDIC1DZ1AOOkomZRI/uoZcPzT4s8OjlSTSBOsDRK4VM8yHw7M4G51Fku3b/\nwUSc7UTPW934id0dE00VezsOEBcn6PXaeAIQTcy6eGhecxOxKuLnqeWF8Rrs4xzIyz2KbMeDkLNx\n4HnggUe/fDjwXAB01fRhqQSAvDcTDdgkfhz+t6tqf9wjE3J4bgaE9tC5HcN0P2sLcmWDTE3YzgFQ\nVykKKvLKuMpZaa6/TBXZXmEm4t93E3nuGbj5HBy8kcPqBe6van77qOSoNsBztBamSjN9zMYKokp0\nXgPz+DoF18MtapRM2FET1DT3z90iRskEWR33XiD4vzIxAKxuzcyiqjTfL4Cu6hdMzstXt3eR6/v9\n/e68nekcVGE87wsAj14+6D14Bzzhfb04ie+XJ2CSQTm94EJs+cR2+7q1Sw8+MAJASfjEWxg+ceaB\nwd4txcR4QwEIleqaX/2HIS/RGqoFurpnv7M4E3icSWlmkQHwFJN4EmxqRBUU2Y59Yce/ZY5jxz5u\n/GtFtmM8ntWxCUeE3s7ixIeKqNdo9+NcEk/mztJJPDUHWG7ydp4EkJdzyNzxrYeT2RjwPDxE2wlL\nVy161aBtjFOmBqzd+Dkw0g4AOAOIwhCb83QS0Bl4d3lprq8qIK+RlfUkQgAqJgPvx5mmISOHA5BV\nawCnzKHIyA5KsoOyX/k74Fnf4cWTNS8seuCpO1g1cGRvoytF7P04zyU+9uD+D7w53VY247ZA8oJc\nFQPPuch2zHm3tUl0Nitg1d9L4eLNja8FYHV7ly5ASAdkQBxWdous2TUDPA509MqHe0NzoBPd1ynw\nBCFWTZKDfIIAtLXetuBjzQNQGHpz4QcYAlEICuFqu5iYv7uz/ia223Ere1RhvIowtu4sL6Aw25N6\nMqqOKZgVcAQ8zlrz49Z24pCmRkKvwz4OL3yubHxFphYMA9B59KgHHfcjrUyCWMoGKYNzLiZoNxbF\nBNaBx1aPhLxe4Y9atDZjtlrE4RJrumo3f7ccX/574Em9oxQYHfCoOJyYTnjOlEwQlxdKAahYD72f\nUqGnLXqlfHiVvd7jlVIhezv9tb/9LLL/DMfNAx5Vx9w7LalaAzBTZfKLU4NZXClgv+goVRcB0MBS\nT79aGO+eQJVVDe8pZ6NbTkEHzH27OEHYNb+VYoLaC+4f+zfKte1dNWM5Ajqhl2zGPo+Bx93bKfBY\nk0nwe0s93q09cbu04KPpRldIgJksYDPZIM0nJJOfMeMJ6aY2IQHweSFIktGp7c6gqM0Pb3Ficg6A\nLuL9DoCnXpv9FhP7Yy88CAHmb9V/PA2jDPI6Dw/7pLgFnKE34UAoj5O1yXh4L8kCkkwm/WeCySsl\nLjgLvR6fO2iTBL49Rr+t6fjt7YDbT2wwTiQIxk1U6UM7qZfj7iNHtHDH615TkpO77bXBBbD7dAsc\nz6Es17BfRl7cAHTs6l8OnuGkO+a0OeZorajaPj90ULitat6wMwSeUhkOXEo6AUy4tTo2nuXChrDG\nFlzhuYSP0/xaGnZ1z6/Y0OR8N/4dpaFOVfjwms5LGr2m1Svq7iQJZ0/s+I8Az/JBf3+nv9kwxxdc\nm40h1VdgmQhFecHqlm3Y7feuaa1HGVVKJsYLCm+4cMJwYDHGigJYr80q3//46p4ZBiYvZHMB/fZH\nACgv4h9sve5/GBaMRpOi7kflvBEHRm6bEB9Lun8XXnv5EBYndEcV3SNz/rpqTBwHIrZdD0IKqnGW\nmveQ7LFoMMB67WBwzlrEL59TppI0Vb96tStXHy45y+OZ5jElOVxRhxONS6xDzGAr52d6Oq1u/ERo\nciH9+0W2a+jzeYE0No+ShJ7c6j8EcLFrFnGfmdjjnO9CaVb/jcqom1NOmoaqHa7QDwrjAYVMt3Mt\nBB63AAnud318OjrWzqscgHs6xs5UcD+W9GMSepojbNK2PRolpITmgaftYPUw9uZtfseNfWQh6Lnc\nniOUbO2J2qUFH9AbQyUQhEvATBhpniel4rrXi0m/ivVJywQEKjYn4FNzBIIiAL2RPNBGynBom9he\n4cSyPIGHhx509HFNV/XeDtCvyMsWqRqyvcLnJZy3oVcxCPUeUr+y1PNdA6i7+B+5zsueop1Qwh1D\nabB6dV5PsE+f35nm/nUPPPPdfiIPJ5rpPGauJfmcsftljFbeEq/C6+4k9n7cWia5B4TdfmGRXic3\neQfHqad7nDYPqFvLpmzHk9ml0vZ/Fzzv7NgmU0AKPMEiRK8aQwk/rtGrtidyhOdgc1NpCYD3Kly+\nxoYiU0tJHFrE0qUr6vUjT8M/q1zAM0fbLqZSp/lUbDg4XMSF3o67H8qzegVe3CSDsrw48/P3ul1a\n8NFo6u50PORgzQNQXhg69aYwHIxP9mdZGA4b7DgO+fjPNzXktZmswxqVx913aCnwuBDbqkFXzUbg\nibfRmZWr+8xq3Ptxq+V0wgL8hOMmcWeOaJCTYzofcPZ1CI4hBCApVezxOA/CejuufiUMq/lw2hnF\nqy7XMDYptq35XqEMc0+pfZ/7o0rOI10YjIWtXJ2Nq2Fpj6hbV8eizvRuXLjNAU+ZmceGCm28BBYP\nTGjq+GUPPN39Be2dJd1xbYDH0qAN/VsxnTVkcfTWFLQWmclblQpx4eKJ88r7SMAY2PgxbRfGo7Tn\nGIJr1Sp7Xg2lMoSUQu1E9UqjjLYxc6CYejs2xHfWInVrr9wuLfi4Svk09BbH7E/NTT3dM0l7R70G\nv+J2dSA+HwPxqhriFWxKQU5fT6jHgFm5hUDlwhM+tJY8Tm1Tkj/NWXkvojWAU3cR8EAMHCEDy3k9\nGxP6YcgLDGvp2gHsXfUFsWGBqjM/MTZBfUhe4Oi/JmRlP1vG9NrBGLh8yViYzY31GV5OaCnomLBX\nRmlDXI6hF56HtzDXdxEP1QGknai1CG3XeKAOJ2Xn0YS5n9QM8HTeayiyHWR1jD56KWIOtneXNC8c\n09ytWC0V7Tq3h5/5Opx2LZSz1hfBZtjfU2nuHT1tfchVr+3vZdFfJz2NmWUu2qBkcuY1CL04JRN2\n8j2KbJdSpiYneE5+R1zzWuf5Bt5YWi+0BZ9Pjl1a8AGJ6hSA0cdKzI1X5DuI/aHovIB8YVZwIQg5\nS1kyY3HuhIEW5RcSgBIsAKXbaOo4wX8WK2fTeynNNPV6qiBkFVgEPGUe5VSkzAceUpRrcXTZc4AH\nTFhoUIflcmaq8A2wxdGm3TmNnH9ESQ+p027s7bheBHhOG5N3qFqhajOO1hOO6oxSaW5OG/aLdgBA\novXZwDN2jRK2Hcp5h+vA6zHTt/Fu3FQeS8pEXo/1gpynkLedUdS4ew/98qFRHPj4Ec0Lx5w8VCwf\nlbS10Kx7QGtqCz72LxaAugrc2sncSyPejzv3vDZhsQSAVF4OFoVpSLEvZM2j8/D5nWqECTm2CNsQ\nZnOeJZx/P1zURLg44eAS2KUFHxGJGEnARlmXVplJsVA75LNrPQA19QCELgw6aVI7oe+aG94cS17O\nbbV8barlQw8gBSDYDDQbvB69Xvex8MTr6Wx+IqOP7w+BRw09m7F9O8/j2oGv0dDTvd6LSCbrqNg1\ntXBsd832xXl/rs42XRCcBTwXtLo7oW5N8etRrSzDTMxjq0RQtcKzGFmZzRs6Z0LbcJzO6zHjNbxX\nNxEKHPDsT1o/cbu8iD58CR7cRd+5b8Jszx9TP7/k8G7B8lHOy/cMkNUjIdf5gaJZF8yuNMYDKjqy\nqqGrFFkxHFe9Xpt7w5FhdhkAkKjCs9XSc3Tn54DHSQNFYbaQVBCQgYTd+DcwEnYNvZ2tx/PJtUsL\nPun0mMbsIVxtBfUDmQWgamHAIC+s1E5tQGgMcGAcdCDKM9TdKeiRlVa2Y4ouWYznnjaBznn1CSlj\nL/B6Ntko8DhK8xjFNjgWuXoAV654ppaeDllEptB1ty9WDMNtrio+VJ4YC2OOUYIT2u5YsajLN6Tm\nPORQs+9onVvAUYGSgPuGGY+bnXBzukbJnskttlYtwk2OwdikYzXweBKvJ2R6mQnZSYe6cFS8yTIz\nem7hpL2rSwM8d15AP/8S7QuPaF44ZvVizeHdkuXLOb/7fE1ddRtX7MVKU5YZ1TKQAKpaOIwXDOLo\n4mVuC3vXPd1+vmvGppxDO1Jk3K3ZzWNdv4jN5nJViSSVZ6CmLNGQvJHkd8ZkeZ6UZbIlHIR2acFH\ntLYSLnGFPxCIgLofVMMAgMo55DXSFP1EqAJQ2FDXEOVzbFzZTCbDkBP0CXc/CacilWN2EdCx3w3Z\net7rCSwr8d7PJuDJ9sthqNGar6OZ7xrgcR5P3mepnTSL83w2gc7AUsr62Hlu+t4FvR13b8TAY0Dn\n3mnOYS08quHuqblnrpSxdpphXu3a6vqHZqGyibHoLMkRjnlnKjOEBucp7uZQqvj+9cfhPB01i5hg\n+sHH4KUX0Xfu03zkAc0Lxyxf0iwfFTz8RMaDuwZ4gFEAKkuhmArTWUs563rPx15aJ5aaHdeGERl4\nzjJdGDC6vo/UBxYQzGJCNzXS1OS50QpUk7h2xyuDLF9EB+obEeCMjWfo/YbsxiDMtkkdYWtP3i4t\n+KA7cnJamaCkp8emwGPEQDPGAEjlpW0+sGe9oJHwkLWxnE5KKx5LUm9U372onTVBhyCUUJUdiQDi\nkBuBoGkUanP05bG4ukvoBnIoo4dq5U+AcxltokrjRThr69iTC/+mx3MBCxckJsfTA8+905x7p7n3\ndh5V/WRfZE412iiWF2qnZ5K563cW+LjQ4RngqOw9O1Akt8+LxElR2aQHnVAB/KUX0c+/5PM7y5c0\nR3cn3PtdOD5qqKuOqrIMumTFXpbC/EBxcE1Tzjrywv6fDMN+3WEVLWoiqaDDCnXL1Ht5KnZTG1Ap\n50hTUzpKdrMyUlQutPbwsGdpBt67K8YNLcr3OeCxi6BN3k5UpPo6MxH5QuBvAQr4Aa31u5P3xb7/\nRcAJ8FVa61+37/0Q8Hbgrtb6s0a2/U3AXwduaq3vB6+/Gfgw8C6t9V9/tefw+hvV18q6FqoFhc05\nqKxB6QaXZwEDPAaETEijVGvaLqeVnLoDJY0hIqgCWGzuSTNCJHAhnrROxIGPBx6bpI4UEcL8Emye\nVMP9hknukbDEuNeT+7S1E7McyLyk9OXweMLwUSCJkioE9Bp34+rP/nOJIkNkqSeYAtAFJvWU5u0V\nttvTAfB84tQIdo6xyl1+pchMIlycIkMAPOEK3Y9GxF60hIqm7jP4gRnF6LEi6Tz6jPvrGW1OD+8T\n943H8/Ej1r/9Msd3cg7vltx5oaGqtAce5/lARmEPYwx41BjoRLRs835edEAL1OQTTX7L1AypqoHr\nlrjji1ItCFVOISSQe7Iisq7+yNUdAWQHFerW2hcwR+xTG/JlOjcFutbb6QlGDsB3+4VfkwjCvkKT\n7DEUDs7ajogCvgf4AuAF4FdF5P1a6w8HH/uTwFvt/88Fvtf+BfgR4D3Aj41s+zngjwMfH9n13wB+\n9lWfgLVLDT56+QABinInyfVkHngMm0mxX7TWKzLej8oaisyUuBTZDmLDcGdaQihIgce9HuU8Qj2q\nQFUaGDLcxkBoU5uIkHCQej2BOQAaBZ7Q2wn/J/mKMWmaVq/jlg3V8dnhNawqQhi2dIAcyuyE55ae\nrxsflytKiR7B/OnUCjYBz91Tq5sW5FamudNPc31yrpOT99fPAmQqGOt2G4EQmPMK67wwTDD/sdTD\n8WCTR8+lqdDHv2sU0wMqtfN4DPAUG4GnWpmcUl2ZyXN+oJjtiQ+zqYkmbPVQL8S3Qghp2f5yBkA1\nW9eUFjhU1ZLd6MHHA9G8jlU37i9MAbRV3Ehr0ZwKhwIDQO6+dHVSll152h6NkjYi4Fmdvyh6CvY2\n4CNa698BEJGfBN6B8UqcvQP4Ma21Bj4oIldE5Bmt9Uta638sIm/ZsO3vBv4y8DPhiyLyJcC/5gkK\n/1xe8Fk3JvyQF+R5QZHt0ioXWmtwyduqNcV7Ye+TVjco+joED0DnaECFCe1Qit7VNETAE/YbCdg7\n0cTlalzOolmPeDwhw81JpRglgLgIVFsvMCt64Ikq1l3NTAg6Y+0G/MDVfoLNIZY9CdXCA9pzdA7Q\nK01URGrbYdX62FjIWK3VBnOMtrB+x4VhnWCn41hMc5gq7YU7n5s3PDurmU+usaP2YWEZWMcvD1TB\nx3Jk0bWyHqvOrZp0UyO5zYWoKXokFxHR0h1LMBRhtYuX7sioV7RHDU1deOq0MxNmy6irjnJqQKco\nM/b2x4EHbA+eNRHwVMuM1VKRF9bzmXQ9PRsoZxmFBRG9auJFkX0si1308gT94Mjnkdp7sYjoqIUe\neQA8ldWEq9tEiDTrldOdeK1ePoAHd8/f15O3GyLyoeD592utv98+fhPwfPDeC/ReDWd85k3AS5t2\nKCLvAF7UWv9/EkQnRGQOfDPG0/pLj3keG+2pg491IT+EOem3i8g14KeAtwAfBb5Ua/2y/ey3Al+D\n8dv/S631z9nX/xDGldwBPgD8BYv4m61tTczYFo+Ws2u0mVuN9gDkOjK62ogxOQ8gyteM9Qc6r6Ha\nxkZX4aSVyMlImaMdEIQbcxNb+Dep56EeanRJ0vDFPfc1PKmw5VmAo2LQicx5Oq76vEk8F6dmkoK5\nAx73HddbyI6NPjaTSRgO3GRhbc8wBBoSUMICTlMrc9vO+c7zmSqjobZftDw7W3Ol3OvDbeE1dP2G\n7PWjahBH+HNFmGFLiqYPvUXekVMs33h2xIDtck12rPTxKd2jivbQFI82a6EKvB0XGipKqG0+ywHP\n3oGinDWWZDCkkqfAc/hQqO2ippgKpaXhOTCqlsqQFA4a00yvavrzcvnIeu29nfb+Cd1hxclDs53d\na+1QMaPIDAPTEQx2Z55dWXennFpliI2yPGFezFLQn4SJmDG4oN3XWn/OE9nxBUxEdoFvw4TcUnsX\n8N1a64WcM489jj118AH+AvCbwL59/i3AL2qt3y0i32Kff7OIfCbwZcDvB94I/IKIfIbWusXEM/88\n8M8w4POFnBOb1HWDvnPfFCeqAskLdqb7/n0la0plajlC4LmIndWgbszCMEnUpyZUlg7p0FZdWqYt\nGeB00kjqpdLyAAAgAElEQVQnLxjW82wAnjGLQCcs0gw1xhLhxz582Ycz8jD019S9N5e0lfZguTiB\nYm1qQFIQS/W5Au/NCaBmVdt7aM5CzbQRC0Og7rkz14EWeiXoK4UJuznQ2S9MDc2NadEXboZSNSPX\n0NhpBEDe3FgkwB15fmMe3FjoMgAeFmbydl5Pu84jTyQ1B0QOeKa2mHQsx+OAx7X/Xh5rFoctx0et\n30ZdaoqpUFVQlpnPCXWHFdleEd2T7rFemdbxrr348lFuFBdqoV0LsysNaj9g0pWGgenuV9l/xujg\ntUecNkeJDJLN8aidXsap6j0e/fxLdPefTM7nCdqLwHPB82fta4/7mdA+DfhUwHk9zwK/LiJvw3hV\n/4mIfCdwBehEZKW1fs+rOYmnCj4i8izwxcB3AH/RvvwO4PPt4x8Ffgnj8r0D+EmtdQX8axH5CPA2\nEfkosK+1/qDd5o8BX8J5ibGmo7u/ICvu+6JRyQt/E9ZiQjj7xbBHyEXsPACKAMd9zjW6GmmQlrYz\n0JVZKQJGsNMyhfweAyAKQWc4+Q3N1e0MQmxhE69AgsR7DbYivD9Hm4PIrGfm4udOpj8FRnfcXuxx\n6RUMRpvsBarbumrojms/NnrVkDnhy1T9+5zanrPUkp2VSnNzpwed/aI1BIN8n1KmfWvvxGsNE+S9\np9kDkOtr48YlzflEYLSZXBlb4CV2RzZsdVj5ib9ZZ9SrLmC39d5PWZqQmwOekFKdT/Sg3XUIPA/u\nNhwftRwftpRToaq0315ZCnWpmc4MgHQVdMe1bRMfEAhsTsd5O9XSFL4uj82d3qwLmjpjtl5TXrei\nplPVL5Jm12B2jYUVYHXAY/K3DXuTPNa3Wx33RbdB7dOTMCMs+kQUDn4VeKuIfCoGUL4M+IrkM+8H\nvtHmgz4XONRabwy5aa3/JXDLH6uZVz/Hst3+g+D1dwGLVws88PQ9n7+JSW6F1Ya3g0H6BHDbPn4T\n8MHgcy6GubaP09cHJiJfB3wdwHP7U7pHFdn+CVxd+5W4yvf6fEw2QdmbNaJAB4VuUZ8ZxkNuoYWa\nVRHwuFX9hgZpoYVFoHrVbNRTG615OMMi0BnTQnOgE1aCW7aQ+2Gb83I/6H51mZ/XI2mTbchZhUrL\n5v2un9DrUFdswy2en8E4zCYmp9flKLEMyEkb0e+rNotAx90TO2rf0MVH6nnS4l1zvOf8BE+WRIrm\n4VhsqK2KPKKz6sHOMcdqK8uMvNCoQntKdTG3ORz0gFAAUK/i30G10p4tF1oo2eMsZV1CX2sW7qte\naWZ7yb5tp1eZmboymV2n0itOm+MAdMTq8HW0uqGQnViM9PhlL6ra3Ttl9eJj3rOfZNNaNyLyjcDP\nYXgVP6S1/g0Read9/72YCNAXAR/BUK2/2n1fRH4Cs8C/ISIvAH9Fa/2Dr+1ZPEXwERHHM/81Efn8\nsc9orbWIXDx+dY7ZhN33A/zBW/taW+0yr8vW1IjWG6U93KS6yc4CHveeDmR9vFng8Q3SYNRLSSeq\ngbrAY1gKWH0dT1CzE6weB1XgIyvJqs16SRlbcO/UAXLJe4+jLfBdPO259pIrxPkkiMJzAw06N1EF\ndUle6DRQsvb/VXE2ZTswB0JKDCjt2iFyiwcHOl4GCPp+Q2mraCv/I2HOx437WO+b8HoGVfsQFwZ7\nnbxwX6G5MXTH4PT3popi3gAOmHJg4nM+Jj9jQKecNeQTTTlrmc5a1H7ua3W6qkGtWoqqoV6IISBM\nNJDbbUjk7bhtz/aEfNKxf6ti91pLfmuGem6PzDbRM55+3801B3ataoLb/mzPhNxmV43Xo27uoG7P\nkOv7XsKJck7dPhxc21DfLioCdq0kXnpAe2dJ/fyS5csXl196rUxr/QEMwISvvTd4rIFv2PDdL7/A\n9t+y4fV3Pc5xnmVP0/P5w8CfFpEvAqbAvoj8PeCOowSKyDOAo5psimG+aB+nr59pWhs3X1etSfSe\nsSJPSQZjXo/vW79xI1bhQGtPPvDfCanGjo57Qa/FF3pexDbprrn3UvHNoDBU56VJ1K4feUHLo9pM\n9lWXB2ywzkrcx8ekRYwyeF5AU/Sr+eC4vKW5jLR+px5vHJe5CnovdBocQ6q3d8HulEpylBof39F7\nYPVws3fnQKVeG6HNsEZqkxfjwnbhuQf5uqxeG4UAd83cWIVjWM5hvvbAl1V9TUxBRQhATW2Yafmk\nQxU96DhvJzsofb8ewLf5pu6QsqKoGu8dlTNFWU6YH9j2B2VmwKvoPGGhvK7In72Kur2L7O0YMF2e\nIIsTdNBSHMz13WXp2XXAAHiyG3Ozjb2rSLkXCdamyg+hqrdXwratJNo7J7T3Tlk+yjm8+3gLu00m\n0hMttvYUwUdr/a3AtwJYz+cvaa3/rIh8F/CVwLvtX8c3fz/w4yLyNzCEg7cCv6K1bkXkSEQ+D0M4\n+HPA3z5v/10nJjTj6J31Gt1WSFuj8hIlja8ij8JwZwHP2KTjJoGgS+Mg1Bb+T+pV0kk29H4GIZuL\neD9hPiEsBk3zOoH+2kkAOq7mpWoL6+2kUDaxemYNdKCU6+ppKGKibCdPT2lLbBOAn+X1YADHUcO9\n12PPzU/uSbFvWlTqLL3GmyxedFTjxcBjNkZTd8cXfi+hZmub+9CrFn1cQ5GhVw2qXsNy10y6KYC5\neqtgP27BktUdumzJKyMK2qyF0oqyTmdtVL+j9nPUQdmHtSwZJcxFKlv4JmVFPmm8F1QtMxOym7SR\n96QOdslu7qBuzYy3bb04p1AutQFMfXyKTHO6RxU5IGUPmKPAc+3A1JWVc1q9ou2GwGMIRDlFtjsa\nbmvvn7B8SXN4t+TB3VcWttza2fa0cz5j9m7gfSLyNcDHgC8FsDHN92EKqRrgGyzTDeDr6anWP8sF\nqnB15xLT7bkx8VTQcCPwjDWIi3rQMHzPTVgQT7xnHNNod87HDLv5z6d5nUB6pFEZp82DRNOs4KhW\no8DTNzNTgAlTOdWGVq/7Tp7tyFhYqrafvKtFP0ZpjdI5LL3oHMOxCZv0bbCN13jMXB3NORp0EQMx\nPJ6xolxVQx3XBHX3F76LKHVHa8NPIRU+Kybo5QlSHPREhVSY1IOPTcpT4IKvUwvc7dqEzqazlqzE\nf3ZQZGzvOynXEIXKGhv2rNk9rKwHZLziHnRmfadTBxhO+6+cw+4Cce3clycmXGkLqztMkqO0bItR\n4HG9j9w1zSaU6nQQ7vbSRycPogLu7pEhZVRLU//k2Hqv1kRMndPWjL0uwEdr/UsYVhta6wfAH9vw\nue/AMOPS1z8EDDSKzrJMYUIIVwJGlypj5eCRVTHYBDp5LPYJxnOCjaKiYVtm0boXG8VWubtwlF0Z\na0A2KEz7CSDNF8AAuPR6QxFqGmZz0iOuEK9dcNoc83LV+X41Dnge2Xk2LA1atQKEuSTjPfopOdtB\nucZ8q8VQdgiQlav4n/eTuXOS7HlIeY7q9kHZT46TGIDGGrJB3EQwAh53jdPaJeifB1RyyYuecegm\n/NTLDLcVFuK6Ylvo2XGumn+snfmqjag6HuRsbitU7g7rhDTmKumqoZsqKDLUQYc6rHz9mEzLgRho\nOK4uL+i8UZnjw3ou5JntFWS2A6qUCehYJmXY28m3B3fjY/NkLE7QmLJv6AEIsMdknjmgopgY9ipQ\nzK+bazsy03mvx4W8g9+NlLkNH+ptD55Pkr0uwOdpWDYBdWO3XzHNrhm9JxorNNh3qTQTUSDjTh55\nO95zscWAkoJPADoQTHR5GenC6an9fABKGy0FnCCfkIKQ73PjbJJ8xwIP03kwBqGKcw88h0lNiJsL\nHQj55mq1a3N8ahiD3Zo6O/WhjmJ+ffS0ZBoCUHi+a+TqgRlfQMo12k06CSEjBOXIuwgWAf0CY+hh\nRsCzWthFxZ7/rrOocNhfS3v9yz1zP5RJ/6VA3TwSRnVmadG+ot8WVoYUez9WY7m+tFWA61dji6m1\nKsz9MJnAeo3aO0HdMhRwl8cJPSqzHxV52GHI0BNF6jXMzEInK07I9kuzTQtCgPFQHOi4RY9rsREQ\nWvxiLLRg4SFTha6y6BgjJuDixANuWr8XmpIcmlWUZw3HV9l8197+OJt0a6/OLi34SJ6Rv3nf95iR\ncs8IDQbA46yX3bDtDVbHA9CJ/qo6WtWnoBN6VEomXhdOVhaAVgvzowyVC1LPJQ3feFZTsHIOQWfM\nKxoJtem8pLYV4CdNw73VEHhGmLCRzplrruaszDpKtfKhj1pOKdSOP/9wLHzH2BSA7Hk5APJJ+3o9\n7JyaJvKduWLYxOsJ9+/+e0FXq+ulOUaaXqNuzBpXWKsyVL6HaI1M58PQqwOp5cMYgMIQoy0GdRX9\nY9Yz5tQAZEPgaWjMQmdmatm09cikXpsyg8UJ2bU1WSj7k1oKPK4RW9KV1bSVn4yAUKKQYcNj4X1n\nWoucxm3r3flga6DqNTJtfY3bYEyc92OV350H5AAo/A2a6MWINiAGgPPCiJ/uHTyZaVIE1JZw4O3S\ngg+TzPyAgh/BKPAkXo8Lw0TAE8b6nRZXMtGk9SRm2xOjjO104abzHoDG8gfpRDrWrM71FMrtcaWg\nEwJSCDzlXiAvbzt1rvMLAY+z/j3z2d770bC2ShEOiLrTKKEf1gUNACjJpcnVA+MdFH0eyHt3Y8Dj\nwlDBOG3qUul1vZygq9edK0y3zRUDAAqvbW/2/FQOahp8tgG9MuNimxJG+7FFtK4YtDusqBe9hxWK\ncmYhYzzwYFPgMcdmPXg3sZd7/X7nCwMas4BVl5rbftD904NPU0OJOX4XNg5BaG6ByYFOQGjxx2jb\nGrhxLNQO+XTee0Hz2pAP6jUZDIRwQ1kevTwxj4uJ8VzBh8NdvZnKJtBUfY5xJJ+YW8LFdERGaGuv\n3i4t+MgkR27fMJRMm1yvm9NBK+0LKRqEK8CE4uo6lIZ5JAduhXUOTHsGW4g5ndsGdcdEjLANbbgh\nbjWg8zBHEeQQwmMMacdBQy3X16RuT32XTqfs7SzO8QyHYgyAjCQNlErsXx0DkdIoOzk6iwBoTC18\nvmsnuLUBIRh6eaF36LwBVXhw9UN70Wsc/N1UoBrbabT99L5SKjct0pu6l82xltZhpX1yPBnA/XdF\nlTZ8hSp8CDld7CiVo+bXjVe2WqCdd7a7GBb1QqxG4aSPwOQoQ5Zn4LVBXI+U1lqF9+94Td0EqPpW\nFIFSRHvXyO10VTNobgigbq1jpQj3WwjHVwXAGdRCZftGYSErc9R+S7l+gsAjerTf0WW1Sws+FBO4\n/Sxy8AxV1rGo74zTblOl28DrMQQFM/G7RnJh+wDTHTHOH7l6A9+LPjNJ+SLbBSFqUBcB0AawSckN\nPXlhA+07fD0ANBOKWvtwW9XFk990Q9g7BSD33IThhKkSSmXOt2pNHVDVCvsFhK2fd5M78Vx2XHjO\n1uvxSfWwf0uyyq70ygtLutCfHw4bAnQ1SeYa0At5OrKCDRH1i4pmsGjpt5n3mfKRfY2ez2wX6jXq\nduupy9DnYnwjtoMS9ewVs4i6dRPZf8a3C6i7Y6884YDWEyksc3OeX088zGJ43yxOhtJH9vXIi65j\n7cDInEc6mfTtQDwgLJBy7ruFtnptRFlDjcNAaqq9u6R54ZjmrpEHyidVzMorjTp7DpHHo8G06G6C\npo7hudrFjAZUMUHdmpHdXaJuVpQXUdDe2mPb5QWfvECufQrH7UNO6156YzdPi0nzMycKZ2MCm0bI\n8NjL8kNfkFmqjv3Jit28oVA71N2JDe31RAQBNrbm3kQZTiePtJ9PAkApw6/uTqlaFbQQ32wOkDYB\nkHvcg5D2LSqOatgvoMyGK0sjZ5T3INCUwwS0s2AC9P7ZBYDnpDHtM1IA8ubyMnbf4aLCN5lLFhUQ\nt7AulTbnopvN+wmvTXjt3Cr8pqEuQz/BesHX6/sGeK7f8izFk+7YH1fdWQ92Xdjj6Siz2nubgAGg\nvLb6hrUB+sCTca03nGnnTYRdXc7RDJRSQdX0OcxiAvmiBwQMMaDId2h1fi7wrF6sWb5cWPAxoTFT\nk1STTyryW2YRkIMBPHfMTYHO6548El7rojYABD6ca0Bojbp9URG9rT2OXVrw0SrnUXO3X+m3yqoX\nNx6AnNcDdqXanHET2ji4C7O5Sc7RlPv23G5ycpO7mQTNitRpozWbG9SdVZlvm49FbCEny58CkPtr\nvZ66NR07q1a8irM7VjdRjVufCzrbC3IghPX8LBgpoVQ94PhTCbq6Ds4pPI9kwvZ/AwFUJ6XvQoqu\nZslRwZ0M0KjZfbscW8iGdEoPbqxcE0KAMjOenhm/8BoHeS4bWgKG57E2k2Z2YLxcDziWyefZYref\n9cXATrU5BB2XszPH0bcGKZXm5vRl2rJhXl4zE0Fb9N5PGEJLFSaspYK3Tgg0BEtz7BYwLWU66q3E\n3JA52EMwE9J5wHN4t2D5ck5VdV4CyCgymLDWbF0ztftVBIuSovb7G3jTeeGDDGKZe+58s2tPpshU\nMiJ1hstulxZ8Wr3mtDkyzKx1mttoIg/oTAsUksMw22lzxL1VzlFtul/CcFVsXnMClacUQA2+Q2oo\nyJn2A0rFToGomZ1AnEdw740oCIQ5C++hDZQLeuuPfURQMvhtrYL3605H/W9SLVTTFjo+Hx96C8/J\nPRkDHjcxbgCeuFi2p4IXmBzTxqLSEZac8XjWEei4e8iFGP14+UUNXvVhozdtz0Mmtsp/D1RYW7NB\nhcIBz/1VHYHOYR3WZAlTZQs+lbt+hs13ML1tck8Erb5t75/2zsngMEPFaRiKgcpUkdmbQVeZ6dWz\nakx9EUR6ipRzc6+60OZqMQCe7t4pzd2K5csF1VJxfNiaTqsHYBZyrt09vkVDt1cY8A7qf3wIsLRI\nk/4eUgV0RkontvZE7NKCT9NpCw7KTyAmH5FRZZpSrWm7nFZyv7pVKidX834lFYBOq1c+HNMDj2m9\nXLUy8ArGhKjjVbGdoOxEGAqTmvcT4Bmrwk8naIjyPL7Blg0PGi9NcVRnQQtxOcfzGc8H1Z3p8Oms\nyIaN11yHWCd14ixijUkfhqQECdUkSmLWoV2tRq2SrQBq7w2YcQu704ZU+kijL6HQiyp6BYSsQWmr\neJ3YpkVGqXqar7lXemIF7jzy2gBLU5uq/lDBOgSdoCvn6fpOtNgxZJGMRzXcXQmrBq6U/bUIr5cb\ne9E6bjr38iH6wZHROLtvCQRBrVGXBAFCtel8osmqBl26+isDRK42J6uaXky2mMC8BwRN3/U1bAHR\n3F3adg0Zy2PtVQcK2+I7L0YWS3VHd1ih9mLJqgiENoWyx4qAX6WJMNoH6bLapQWfdSe8sBjeVFUr\nVMpMukoan0R2ORlfpW8FQlMm22lz5JliDtjOoieDicWn9S6bLBQmdc8vbEG4TVTpGW6nzZEvJnVg\neZbn0x/3Zg/IeW/OUuBxfXDCc98IQIF5ILLhSBnRiDP1Wsf+3MK8R3z8XUT3Hmj0pcA9ovtXqnXk\n5aTAY55nlFlrc4qmX1DrGXC5rcG5HodKS+LVuWNCWmaiIxWcNkccr1fcWxlv595pzqMajtbwqBIf\nDp3mvd/owKfvzDuJGvU5WZ/2zgnNC8dUD1p7WAY82nXuH6eWFx0VGDFS6xU5IHKECb1qex0MR8t2\nIARe3LO7v6C9s6S9d0q9EKqlGuk9BHso2ycnQxVt3x/I9rzSx6d9KBMMacJTxxmCjqstcgSTaZIj\n2toTsUsNPsNJM6NU5ofmVqptl7u3+hqEzLjmLvTS6iZSejZhPPHAExZgpuZoyGPkhmgVHoafLABd\nCHhGpH7cBOYT8Lam596pqetJLfR+zvOCQnMA5LyeyONRXdAhdrxVhQP1MO/m6lVQWfLZ3gM5bR4F\nRbLFmd5br+WWjwKPZza6sQtabjjvp1SGHRh60G7c/Bgmua2+Vbc9t7w01wUM8KRmiSxVd0rdPvTe\n3L1Vzr3TMgqxHa2FR5W5744XblzXvGFXKDId3Y9e1Xl51OubPTyk+fgR7f0Tqgcty5cnNGuhrYVm\nndHUpu024HMuAPmk8yKiTZ31RIB1R16ZkFtHTQa0d07IqtaQESz4uFCcfvnQt/rubMfVaplHXo/z\nfOpKqCuhqmTU+3F5KQk8SF2vDRAt7XUNASgs0M0LqqzjdH1n9N55miYiXwj8LYzS0A9ord+dvC/2\n/S/C9PP5Kq31r9v3fghwLW0+K/jONeCngLcAHwW+VGv9sohMgB8A/iAGM35Ma/0/vdpzuLTgU3fw\nsYVwpXA5iOHk5LwfwIWTITNeEBCBjpl4lA9bhV5P6PmkIY/wb2hhyM3srB4A0ONaKGFiwj4mAW8m\nsNyHasJjDMem/xsmTR0IjHtKZ3k8pdJRI7ZNVnendsIOi38n0fOQ7pyKoB7VGaUKgU+zP2nZzXMv\nLun7ucBQuQKbp2hMmNXXy4gjScSht7C9RPiaCee2BkCZ2OMOzsl61BDn+Dytu1lEIcR7qzIKsR2t\n4RMn4kGnrhR1lVFVyl6Ltb8e7joUak5ObkJurp3A3SX6uKa5W/lJPwQd53kALGiD/j/KAlHwYwno\n9BzFANQ9wmgr2k6ump6+7Vp961U73nHVNqsrSk1RaYqVNkA4ER9+7Q4rS71ujPeDkWUyX7Sg7KSm\nrhQDmZ9F84DT2oSjn4SJ6CdCOBARBXwP8AWY5pm/KiLv11p/OPjYn8Qo/78V08n0e+1fMCLM7wF+\nLNn0twC/qLV+t4h8i33+zcB/CpRa688WkV3gwyLyE1rrj76a87i04CPggWe/MKtw99flAmAk/NNB\nSxy7j0Mtna1hcZNQNtA/iybCTEfJ9vNk/B/bAi2xqBmcTcC/XHU+TzBkp+Ena3duIRCZ83aTC4AM\nPDw/2Rem66cBHnPOpmX55nMNvZm0hsZ7DkF9Te95DiWBSuW8WXMMV8uMnXyPHbVvgGf50EvpnNka\n44xjTHNkoRcUfsaF3sbqf/x2E9FTt9AxwJoHod1sEGZz3k5RtuZ/1bE3X3OlhP0J3N7R3NxpzBio\nfcMsWz70BIO0zTZg1ZjDxL55vZja8R1hnbmJtl2b0GM+MYw4322WhsjNs8oUupgYdtxegVQN+aSx\n6tgte3XuQ2511VGWwt6+itp8h3mV5u7SMOh82/LK6sEZyR9Hr/ahTuthngZ50Hur1900+TbgI1rr\n3wGwrbLfgVH8d/YOjIeigQ+KyBXXJ01r/Y9F5C0j230HpsMpwI9ixJ6/GbP2molIjukcUANHr/Yk\nXnej+lrZJIvDQPtFG4EOOPDofL1GamPA436cpprfAFE5koAOQ0/uh5zmerRI709sELQceEDKyu7k\ntVmpu4k0qFFxxYe9aGicmwpBMqTnhsdtLLMgpH3IKTT3udDb2c3zAeU4PPfRce7G8z/m8ynwqAHw\nuON2ALgReFwbh9BC5QpVQ17T2pCf27chZ/TnvinMV3VJ6O0MAAplmHqvbu1rsNKw7so+rkbCpvO9\nmisF7E80Vwq4udNwc7pmPrlF3naG2uwS/LZtg64amjpeSeSTjnwCeZHZHAuEjefMZ4ar+6bO+tsQ\no8vWAVlRDNvAW2KFOwttO6XOXMuHWrh+y9wrVaU98MyuNn7fedFF0kPtYWVYdscYNYRVT4RQeycw\nixluoeisqcs7P/95ETMtFS4csbghIh8Knn+/7cQM8Cbg+eC9F+i9Gs74zJuAl87Y522ttXv/E8Bt\n+/inMcD0ErAL/Nda62F72Me0Sws+SvowkCn4bP1qPp5IegqnLxq8QNFpP/kYcAlXwH5SD5heqQfg\n95PU9aSU6425nxH5f1ej4mtBrHbb2I/roOg9lv6Y7ThYkC6z1ta1hGL3Q4B1IS4lRdQXaczScNpF\n7DzgMR5cx37RcnPasJNfGweek+XmneQLK1I59/t0gAB9vuci7EDz/eZMAArlepx352qwwn2tjAgC\nq2Zc7qgoWg52Oq6UmjfsOOBp2JtMo1yPz7McVnQjbLZoKCwIOQ8HNtevrJaKthbz2bXQrIUs8H6A\nuP2FK/TEdGntNdxOPQABXL81oao6ZntCOWsGze9C01VDc7fpJXiOaxOOOzYtGZifIPNdE67LC6+F\nlyq0v8Z2X2v9OU9jx2DacIuIG8i3AS2miedV4JdF5Bec5/VK7dKCT56Z0IMDHSfvoaSxDKYehHow\ncpPreDV7/5k4NOFIDOHnnNdzESA7z84EIAtCA+AJtNsgbo0QAk+vwzYMvZmJFqpMW4Zg0Eo76z2m\nMK9TZLsefNKcjfm79u+5xLzKJgPv5yyPp2rj8N9+0flJdyffN8DTdrBKgGeR1LOExZBFPRqOC4ty\n09fH84g9qWUTAIWg456f5fWEVteKwi0Yio6pgisl3Joa4Hl2tubGtGA+ub7Z67EbbS1YpBaG1VTg\n6eQT7UN1rfvrSAr28qmJJq+sKnXa5twVB2PqgPR8l3jajwFoOsO3+A6BJyvx4BlRwKsGjhqykp4G\nfueEfG/HqHubk6Ptjm3302zj4uwp24vAc8HzZ+1rj/uZ1O640JyIPAPcta9/BfB/aq3XwF0R+SfA\n5wBb8HklVirhzUFBmfM86vbUvr8GOl9AaCrWXS2QRLmQeLsu4doDUMR6SialtLLfvNaLbKaeziYL\nAWjsO2kLARMCMgBstNZ6plYYhgzBxgBlP0s6PbYQjEP6rsqMErhXBPdU5hWw6m++vCB321U9rTVs\nRZEqggORwkBo+4VbJPTn8oYdYSe/ZuRkVscGdFYLAzwPD88f4KTeI/RMzLi5sZLgsY7Au2f3xdTy\nUaZfksva5PWACblNc5i2UBWtBx0DPJo3z4bAU8oUvXypr6lxVmTGOzjq22D7IUgAx73ntNUAOGqA\njnatDBBZooJjxLUjYAaBHl8gdeN6+DiVB+cpObHPiFEXeF5d1YNOU2dUS2Xen7X+mF3TvDFTMmEn\n3+fG9AgYyf+9UpNEifyV268CbxWRT8UAypdhACK09wPfaPNBnwscBiG1TfZ+4Csx3aS/EvgZ+/rH\ngYbgJVcAACAASURBVP8Q+LsiMgM+D/ibr/YkLi34KMlNsnXENk1qzjay09hcnzJmbhXs3Hz3/X5b\nzQCYxvaZ2iYQiujBWefDZi7k3mvOhaSAWbSNsfyLO8YiY+Dh5ORmgm8e9PL1sLm9eCqUqkpyIJ/O\nQe35njlhon+/iIUfw0l/f9KyN5myk++zm+3B6riXb0mlY0ILvR7besK3Fg/04YxMjzuOPux4FuiE\nY9YTTR7/p+hCbs6ulAAWeHKT4/mUubbAU3OlNHmuUqaeZOD127ASPqsWZRvAqXunTI9qP5E7r8KE\nr4qBqoEzk+OxXo+nZWeUs+SDRWaS/2HjPy8ke9KTD0rTw8cBYzFvaGqNmrTD/FIAOu1afNivWtrF\nzawlR58LAiEAlWp1/sV4DU1r3YjINwI/h6Fa/5DW+jdE5J32/fcCH8DQrD+CoVp/tfu+iPwEhlhw\nQ0ReAP6K1voHMaDzPhH5GuBjwJfar3wP8MMi8hsYrtYPa63/xas9j0sLPtJ1lF0Gqhj3FLQLv/Wv\npcwlYHRC8V5TNx4rTgsPfT1RFHpZD0JTY/u9aEFqSFVWkrNfnPqwmTefm5lGXos7HsAXR246pqjv\n0eoo6YkTNx7baMHE72HeTv65JU6khAXTI8ioZYd5pkLFE65ePohX+5t61zhznTaDRnutbjYKsKaM\nyRB4UoB5HOBxpIYw5FZ3sYQRGACaKs2tKdza6Ty5IAUevXwAjx4lraNV0MXU6Mip47ovFk3aF3T3\nTmmDRne6akw9kA3XNevMUrNNNGBa9zRot/1svxx2m63oX7Mad1IaTyWrO3TZMp01oyHBMOTnKOLL\nY+0JEk2dMbu6NgA0ok7hrofTFtzJ90c901dkmWz0th7XtNYfwABM+Np7g8ca+IYN3/3yDa8/AP7Y\nyOsLDN36idqlBR+aGn33twbNt4psB9fMqm6hr1kY2lhlfjjJmwmoz/2ksWOXrHfeT1QewfmeT3oc\nY5YqIijJaTHA5sJmcUO3vnFeqHOmA8n7UMU5agjnWk+fPIhzKa7AzxURri/uHYqrw5ifoKtF1Pwu\nL+feezXBupUH0ELtUWS2hqftTIhp+dAcz8NDU8UPHmj8fkILgcdrxPUCrKHXA/3iJPV2ovsjmcjG\nGH+Aj9qmFPM05Jba/iQgFtg813xyjSLbHQIwJOCTGw/DPZ/mcKUks0n/SNzUvV9ktEHLgdTr6WuC\nepDOSgNk2ZVyvOOsC70VE6Se9K0ybPtsmSqyqiFHRwAUejvVUtHUwvGhKUgtS2F+oDggAybMrq4p\nSm016uy96RZJQQGzU5rf2pO3yws+bWdX4q7T4R6wgOmenTAsgKiYrRbnP8bNvDe+qhoz5/14C/Cu\nZX3mhAUjsjAQ9//BVNB7xQFlQovpynsAOoGKt2nvUJBjaNKtDgDH7X/1YJjAD/u8wGi/l6gFdnhe\nZd57PusDU6U+X0Nrmq9JU5NP58zz65zKkT8fDzo25KerY6+S7PvTJO3E9XrdA1AxiYAnbLQXUp4H\n7L8IcIbe2ZidRzhJ8z0QK4g7/TynIuFqeG5ObR1PHgBPtYjbdo94fSG4eLsx78fFgQWQzU/859v7\nJ7RHzUaSwsCKLKZY12tD4k3aWl9koZJ6O6uloqo6FoeNl+CpKs0caNYZJR1NnVEwguBNjcr3kuuy\noR3G1l6VXV7w0drc4K4zZWtaX4esMafdNeb9hCv/YQGkZSYFSsepDUJe0fdjj6ft1hFQhIwx09Y7\naMUMPnQRNp2TKUYhOtvpJV2C0J3bn+lrH0xQ4TbbUGAzAKim7id4Czqu62TUbCzo9+Jk+CEAH5fA\nSPrXgAlsaydGac30g6kQVbI7u+YZixHoNLUBQws8gM8lmH0lno9r87yhHYMLx5g2Cf2ixHhbM3+N\nvGbaGbYppJo2p0tDbjBUoZiqOMy2N5la9YZdMy6rYzume0ZBenfWK2gvTnzLa682XcTHHgEzRG2n\ndWWu5WqpvNcDpgbIFKEaBQRlyQEpuPn9niyN1xPeQ4u+8LU7NHI7rrV4mtdxIbbF4dqDTmqmWNZQ\nw6XMLdXa5pzsAi6StYLxouNXYiL+ft7aFnyMe6/qyFN4nOTv2ATSr1TjCSM0U1PUM+JM6C0mG6TH\n4oDH51Sa437irxYxUKiibz+dF8gKmM7Jbb4k3Has5jxOKU5f81XhTW3COJY1FoFOADiuXiPs+9JV\nPQC1R41vDhayp8LulOp20+/b7T8v0OUc2orcaqNFoNPUhs12Rm7Hh32cavQZwBNeP0eZLrIdP9HH\nvXrGyR8xxTylkMfvjbHc0vnr9o5h9IV0cuf9KZkgFnj8tXMiprZo1oPQWBfSDea8R70y19J4PXmi\nbt0x27P0+9IoHORFh0yLGIBsO/SwO2oIPOb+ab1KtRMZTUGnXnVe8+0sc0w9dVAa8AlzjG2FuGJj\n17X4SYHP1iK7vOBzjo3J5l+keDDtDxQWqI0RFsLvbSpiDRlkfTLfhlAcXThkbrlkrUvi+g6OWOHE\neU99Bu+9bGSgpeZAx4Ge673iwmwXABwny9+srVpxXUSsKienkk8aoO9O6UbTy/EX6x6EVnbSaOvR\nXFNkKfBcO+jzSY5csAF4oAcXpw3nw3x+xRxPWmFDuhzTpdV4zblvc+0sLCp195KrXwrNeTuueNaF\n2Vz41OjVHfvxCU3KPd/63UjL1MPQbThuIR07XFisWjpLNAi9Hmf5pKMsjfTNWAGoM722Xq2tOQo9\nq+5RZbXmlh54li/nnsbt8jqh0nVZCkWZKG6UGaowFHK1b+V70hBjU5tmc+73kI7JqzDJLGlja8Bl\nBh/n+dRro+nktJ1egfVdSvuiVAc88YQxFJx0dhYVN5rc0hoV+2P1eQybpI0k490p55WdBGvTliBR\ncfb5ABvK8jbSF8iH2dxkEa1SHwd0suBxH64pZ21Ux7FrRSK7qUKVtiPm1YPhxUi6cI7lDGQyCYgM\ntjmb9XZS/Tsn5GmuSXx9wrCWWRAkwqTueOwYSlP2Wnt5L1JaWMX0ujtJansc8Lj7RnsVDhBTJF10\no2G2MA+o26q/pqF683RuO90GvZHCRUhJHH4aycPowHvdlOuZzlpUoVGTEYqza6cQPPdeVdV44GkT\nj6cPsTVe5+34qPWCo/VUKEpNWZpjckCUT7Q5noNZTHgIzY1Btdi8eNnaq7bLCz4i/QTtrLFhCDVO\nbxnP3VjA6XoACoHnsJaBanZIx+31zgoK5VQW4lxMlMPYBDrhD2SMuTVmToLHN0tLZoYNHlDYdMyv\niIsJcGoT0MrndmSqjLowOe15jY3cbicxOLv4fL//BpkzIA0AxnvJa2BppFrCsUnyGBGxwDZni3s0\nbabiDoFnMRQmjfIGNgza2j4xrnNnOR/S5jMoSOuXusH95zyeItvxobaoE6vtTRM1P3QhWRsGjHoj\nNUa/LvKI3MKjqEfbabu8XD4xEjerQJMg9HLKWcvutZbsoETd2EXd3kX2dmISw3w3yRGa+6WrGhOW\nrZUvGjXA047mdspp7PUUZcb1Wzmzq42hWd8qyW7ukN2YmwWMW4DY+6BfhG07mH4ybQs+wQSr2wrB\nTQbmh29i8EPRzBBszF/xf89qItcrO/fSM0bdeRJI/EwiNYBR0EkS+i5pL+XaFOal1NWgOdZg8nkM\n2yhHU0zMZAImf1DmsF/64+runfbJVvuamujeMZjEdFygr153k1jIea3X6GIdn2d4vntOWnxELLTf\nQe/xlPORolxTe6WC/NvGEGiad7PH2NvSdii1IORAwXqhrk2DNwtAV0tXb5ZBcqr7RRvld3LyuA0H\n9GActGOvu1NfLKxk4tt6OyASW1OpYXOrcmsyVagbu+hVS7luvaJ0KLnjcnjq5h7q9szU9riW4OEC\nMNm+aYVgCAbOO66Wmadwh8BTlBlFaUobijKLPJ43PldwcGvNwa2a4rkZ6rk9Azy3bxjQ2btqwq12\n8SWqBFWi88L87vLY63/FJhLfw5fcLi/4qMxMBunk29SQxx5AJDSaMNjSkNtRnQ1AZ9BWoGhxLQUi\n+RmXe2HVJ82d+x+CzuIkYo4BPtQl05asMOylaKUfhFu0SMTWOxeAXGO1M3TQxhhkADKHjCP0qjVN\nxJLByYuOJqmXSQUrs5KIJaSr1vRlcYlqN2mNqSXk1zafl20cFnaqHCOQeAUHu0iIC2kXDGqaYPjX\nj01tV9RzEzq0RBDXojsyy0fZzYmo+M5D2skPEgKKBT9biBsMqG31blh0Ifj052QYliovTVvvpvYC\nn2ZginHPZ2rJIDd3KDklt9ppzlNVByUUmfF4bs160HEMszPM5ZO6CtvF1JALXI4nNQM4mc/3lKVw\n+9mcg1sVsytNDzxvvGo8nmsH/eIDhnkxgFkZh1G39sTs8oLPBTXTnKXstTGP56yoUtjPJmRH+fi8\ny+WMxZsD0OmOKrpH5/wYbNw8Cre4v7atgmnQ1od7PAC1I6u8kPUT1O8MbBM9F0MUaAGpGrKqgeDr\n+UT39NyACuu8no1V4c77CfMG4QTivL3p3J9HZLZ3i7ONahJjxbdjwBOMi8+LuHFa206d811DkgDj\nBU2JmIiDnnwZtvFcX2vSyxltCPu1VeTNha3ew2Z0YEJ7ofetpKHId+z9sOgBKLzlRrwfMEDj2IlO\nCSG7UsaejgMdt/BLE/rFBJauA+mQwr08NvkdRy5wHg64vI7xfPb2FTffCLOrNXu3G/Jn98jfvI9c\n3zfAc+vmmcDjX2tqk597EiZPTuHg94Jd3pEQ6VeHmxqFdeuAcRTTXccK/tJ22XEHzzbSGdtR+zHo\nrBZDlhYMErCPbWk/ehHabtikzYf6Ui+otXF/t/pL82SBRSGwwAtyr2dBTYiRbOkFWE2yum9Epmxi\n2Hk9WZn39GtXIBVWxxeTYXjRTr7ey8t7Dye1sHfOK7ZXoODgzU7AyoKhUcqYRGKqYe2QB52TBz3r\n0S0cAm8v7FhrJIHEN6MDs6jan6zY1Y1dELnW5ztIOQcW5tqrAohbTgwn0gK1V5jrdVCaMOx8t8/n\nzHf9dXGTfkRyaOsemIPt50VHtTTHW5YZC1scOgQe2NtXzA8U197QMbvSMHtGyJ+9Sv7mfbh2YIDn\nyhVk/xmYneEVO3vMsPTWLm6XGHyymPkTTFheRqU75d6qsLLqYw28Nm9+rHX0QOAyBZ1Eb8xPYpZJ\nBr3+lmMYpUVrrmjOrzJVEXUxPUv41OeBwryB/fFJU/qEuZ8gxsDGjWn4o7UAlLnjDzTDHANuVsV1\nPtlBSVZOfYw8OyiRaaIFFv4PaNIup2V67gzrpVI7Twy27dYoldvPmiLTwaQ0BjzniZaOLHpED1mP\nfVFw3i8S0vsHYtHWkmih4dto2IVU2qOmajv2iyMwTguttkQXy9LTeR23O7DnJ64TaHJ+/v7bnQ0k\nrLQIjV6Tk5uaGkdycMSX2QnsnZBVLeq4pqiWwJpylqEeafIiZ36sqFd6tJNqOWt9fie7uYN69orJ\n7zhvJ6DSn2eP21tqaxe3Sw8+HnRsSMr0vTnhtDni3so0W7t3mg8Apx4p2XG5RFdxvhF4nL6WC62F\nBILURqiepg3w8LmUCtnb6X/4eWFCTgHwhJ5OaGF90Wh/oLxA2OtzAEVc0GpOfD5kzIFJ3LoEezEh\nL3O6o8prhjkAKsySOyowTc8tYkeFhaHTXnW61aug0Zu7Nruj5z1mfSfL2EMMRVbdxMzjpANSEkhq\nnnVo3nP1QO64B+FZR3BIczGz2PM5bY5Hex5B3/rbKXIrCSbkbMeEAp3SdDNsdwCJ+kEKONM5jcps\n6K+G9qHPPRVqh/n0OtJUyMoRHAqzjeUuWb2m26vIqoaybCmqxntB+cTmlDyxofW1YcVc92G2Z64b\n4Ll622v0Vd0pbXs0Cj5ndc191ZYNF4uX2S4x+Egf7w3CM653+1GtuHeac+805xOnPdisWsE1Vwwx\nYBpQqQ3wdB54TPFfADxHLw1laCyJwB9eQi0eHH6wc6/HVQThDesNSLnn8zyPY5sa1Em511fHQx/W\nSxhj4XclLwwAqcKE4CYTsnng5Q0Ye0mTMfc3DbO53IFdzbp2B9BL1IR2EQAKhWGhL/hUTILwVx63\nOHdjdpFwW0ICGQPrMO8mtijVFYsOuq6OkACoFjC7bjal10G79L7L66PaLZIEopZtLVfLU+9x5ZJ4\nP9bzlbD1tLsWjjVmPYuqO+W0ffT/s/f+wbZkV3nYt3r36T7317lv3ps3o0EjJEKEE6BSsZGRK3Ec\nbCwKVJVMYqpkQgrzQ2VCYIqknIolrApJla2qyS8S2SHIY4WAsDGQAoehLKIKoogrdoQFSogjcBkZ\nI2vEzLzf7/46p/t0984fa6+91969+9zz5t03M9J7q+rVve/ce87p7ttnf3ut9a3vQ9uw/UQ6lnB1\nzsO7++VllPN9UFc5yaQWtHcG265RXGr4vqgHDI1BXfPgsVE07rIaUO1zb9Ac7oIOKgaeJx8Hnv4y\n0OIp2P0raIYl2u4mz1RlbFOmTONSpusbIYjomwF8CPzH+4i19rnk5+R+/m6wpcJ3WWs/vem5RPSz\nAP6Qe4lLAO5Ya/9VInoX2G6hAhsc/afW2l+933N4eMEH5BvOUp6R2vjtZnBZj8HLS+DaMvR39Ne5\n6/EIDswNcKkKzpkBeFjOHic3g5S9Ah4ZzrznM9CgI4vzXgAeAQZLpGhL05GqK3gA0rt0mf2QYUkH\nOpwxHo9ew9AM1fzADVXWfBjVjPXEgKi3tWkxH4EOkAUeUSPYZEVRFdtlQNG1yZXeXm0kxnRRpKQI\nrSaRMB83ssW61hMMJOMZm9Dx17nvZbIjrVYut8VOUGdIsx+Aj0Ea93uXg2Nucx3H6xWO1ryJO2rH\n53vUGlydn6Kfr3lzVh8wwWF14me0isWZ1wEsqgKoB9DcYM9lyxpwfK/pigOeK0+ADp9CU5VYrl/x\ngBMIQyZyoY1YrW8891IfRGTAHjvvAvAigE8R0QvW2t9Wv/YtAN7u/r0TwI8BeOem51pr/6x6j/8W\ngLgs3gDwb1lr/4CIvhbsI/Tm+z2P1w18iOgtAD4K4Enw0vi8tfZDRHQZwM8CeBuA3wfwHmvtbfec\nHwLwXjBx6gettR93j38dgJ8AU4I+BuA/cn4Wmw4gKkUJ8PAHZuZ3iOyZEj9VymoAA8/cWCxmAXiE\nXKCBx7tnOi+ZHGXarrpRSQ0YZ0HScB8BzyxZnAFm67g5kk1Clvr7nMy/pmNHLDoPPEtF4V0qJe6l\nt6go9y5zFnR6MwwvTlGT26AyPcoo0qn46FjjUkqQLdKGfePnamUBf0+o3bH2eDFU5m3L05jSjtM9\nELmOQFbGJdcXlHsHcCoP51CWgeCwy35HPPwMxJbpERvT/WPxWFcOrA/C/EvtjlVlOlw1OFKgU+P6\nssQddVq66lQb4957CTM4SaB6H3T4VLBRAGAclX44avgzIsoZQMyoc9eYHjv0wNPVcyy7W1h2Rw50\nzMYZvQea5RSU/Xy/ivh6AJ+11v4eADi30mcAaPB5BsBH3Tr4SSK65Kyx33bec13W9B6weymstf+3\net3PANghotpae18c9Ncz8+kA/CfW2k8T0QGA3ySi/x3AdwH4hLX2OSJ6P4D3A3gfEX012C72awB8\nGYBfIaKvstb2YFT/8wB+HQw+3wzglze+OxUj4GmHpWMCsaTJnXZs1gWEbGdurJey18Bzdd5hUfWo\nzB6qYpf9ZJQcjaZNA2FGR77fdIOOSlIp8ERXWERTWw8esogC06KWOUXm7DyQYs+lbLG+V4A2rNGb\nNVODXRZkT2+6LMoNgVYJEInAZK6Bn6pSOBl8AR4Bz96us3p82ro8vRYp8GjwMumUZ+rKmomI6SWk\nCE3/nopUMDaZ85J7pwACwWQiguUDAxDvXYRq3XvFDelN6nmmSOEc4BJceSWcs8t2lt1NLLtjvLy0\nOGorXF+Wvrx3tCb/WdGM0MAgJVSFo/+bBUgASLJr8Aak2A9qHlGJ1pWZfa/z4LEAPC4b9kzVjNJ8\njsW6jY7j6xhvBvB59f8XwdnNeb/z5i2f+28AeMVa+7uZ9/5WAJ++X+ABXkfwcX7iL7nvj4nod8AX\n5hmwxSsA/CSAXwPwPvf4z7iT/mdE9FkAX09Evw9gYa39JAAQ0UcB/Ds4B3wsZDcczz7IP+8Uqdot\ncYmNsx1htaVDpEKnrmnOml8KeOzNo0gDbVPc01yAFhOV8+wblk0BUDpCRS7EJI2lY/IvPwIg10vy\nZZqkyS/hf266kAUtnmLJIJkiB9xxn2aJF5HfjkRGj88Us2h6P+3foIhtMFLQkR5PXJ4ZvPFeeLEx\n4JCzJZDvo2zHVN4ET8q9I+l+OVetaJHOed04Yb2zRsgaHcwTa7abkJJrcj2A1mvCyaK6qHr3lUEn\nHnzejbOenOCs0sCTjOfF0wrXlzNcWxYedO40wN1lgcOdwbusOl6JX+yP1ga7Zefnz4Tm7WeMqlmQ\nSZJ/+jons0O0dwVdPff3tNidbzMcrnthF80NIKLYw2hzPE5Ev6H+/7y19vmLPaLJ+PcA/O30QSL6\nGgD/JYBvuog3eUP0fIjobQD+MDhzedIBEwC8DC7LAQxMn1RPEyRfu+/Tx88NZgIdeeCRPk9uYHQq\n20nVC0TSfscsvI+KPb0ZqNQnZ+cCj1crqI2vawPIa5OlWU+uBKNUjVPLBgHf3nY461jKRUpvqdac\n9HMEgKZmhtIPNgDnf7PMZkEwdehpSD8hY/rGpn9J1K33YPEmgG4wUxMOtDSOnIt89ddiiF1a0xCq\nM3seqQHTRHBzcq7FKQ/I4KdXFFAgtAl47PEyEtoMltclCn99doGzU9j6GKXzOFpUTMLADFGPoy74\nvq2KnUg2yJcVlTBpRIyQUqsqs714WuPFk5nvkd5pgaYt0LYGJ0cznNQD7h60HoQAi1Uf7hHdZ9Jz\nRgTHlkxUpj0Ypde4rNgKw7HZQjXDZO9N0V9c9cDRGrjTUFRKl83l6xA3rLXvmPjZFwC8Rf3/affY\nNr8z2/RcIioB/BkAX6dfjIieBvB3APw5a+0/3f40puN1Bx8i2gfw8wD+Y2vtESnlAWutJaIL+8sT\n0fcC+F4A+PIvf8LZJsyAhHJZG4u54RtyXo5BBxgDT20s6iLYJhsqQV3Di0nfZnfzm4KbrEkJTgOR\n/l2oRXlKZkZF+JCHnSGXJAwW6FGbUJaKxCr7FtoqgMoKtZmji4zvShiSBXxA0xdexw7AyJUVUIOG\nx7djNWpl0SD9LVvNnFqAW+Bd9kRlhbreVxbka2ecNy4lpiU3+Z7vBe1z1GG3BAxVXkOt7AdgdWvs\nYSTXHgAkA8kAT4fOk1s0+SHb3s5YQmgraWAiMz45A9oXYbsWu1feClM/jf3ZWXS+ch3S6zIpTKpm\ndETxe9kd43Yz4MVT7u3881Pg5TP+3ByfxH/nqubdHGcVFk/Mg/ld2mfyhoYCOBp45FhKR3xISpmS\njcmmKi2v8de413NYWcBbQcSby6s7HZ7ee8PN+nwKwNuJ6CvAwPFtAL49+Z0XADzrejrvBHDXWvsS\nEV0/57l/GsA/ttb6DT0RXQLwdwG831r79y/qJF5X8CGiGRh4/pa19hfcw68Q0VPuQj0F4Jp7fArJ\nv+C+Tx8fhUtbnweAd/yRr7SVW5z6Yo3arByY8NT93BAuVYCmiQnRQFSqPegY60sX0ufhermSy0n7\nF1tGmiGxrplbePTj8n9vkOfq5bJjVTvu3q5xsr7lQedozQuFWD0IKFfF7mgh8DpXXpX5AGW9DzhR\n1N71lASERJNsSsvOnt7knb4mYijq+XCX34/mPajuWNPNgZAmPli3SFZep02AR8vSjPtYvU2UBFS/\nuSJ+ri9DCWlkkyV3GsI4TMgtWcZcushuiKwvjMgNue/RfgG2b1FffivqeotpfmCjMClnO0s/O8TA\nM8PnT0pcW3HWsOo549Gxv1ijqnqX9XBG4QewZ71zgY2tzyNJp6lrkkgp6cgpVQQ7inEcVhZz5RJ7\nWFk8vb/G03stdsrFFhdui7ggeR1rbUdEz4JZZwbAj1trP0NE3+d+/mFw7/vdAD4Lplp/96bnqpf/\nNoxLbs8C+BcB/DAR/bB77JustddwH/F6st0IwP8E4HestT+ifvQCgO8E88q/E8Avqsd/moh+BEw4\neDuAf2it7YnoiIj+GLhs9+cA/LVzD6DvQKtjVPUO2mKJ2nD2E5qy7JlyqQpNUm2NkAJPbYZ81iPl\nE33uDjy26fnYFbs4RsKaKiMaAZC8l8jiAP6rLLAn61u43QwedHSwr1Dpd6E4uRkDjrYLcHMZBKCs\n92HMIuiIUYm2DwQA8SVKRTm1Wre9fTeintuVAh93DTQIWThJH2e/bIFIh6sEEpr4uEdqyvGcTdbS\n4uRmAJ7UsTUNeUzeu973mebW81YTgEbzktlebcsDuWljwqkP0IwJG7h2nW2z6wzBQVPmdVltQphU\nylgygH19mQeeNlFPCMADLGbsvCquq8II9RsdbX+emrmdp7GmepBpbAIe/TtP7vDXp/dbvGmHsD97\nkufz3mBhrf0YGGD0Yx9W31sAP7Dtc9XPvivz2F8B8Ffu43Cz8XpmPv86gO8A8I+I6P9xj/0lMOj8\nHBG9F8DnwJQ/OGT/OTAlsAPwA47pBgDfj0C1/mWcx3QDgKGHPb2JsnwKO2aBflhjMWtxvedLEtgu\nsR+PZEcp8ITd267vCeisZ0qpYJTZJM2mbfTcoo/UbD0uvanFQ4Dn+io9zxCyC/UAqneemh7tVA4s\nAOpa0HwfVbnjswlDMz9FHtk6ixCmLl05J1TJduyqZzl9d/5FO3C5SYFQAYQMyPW6/F8tN7yZhsuW\nxFq8HaA2EK78pH2Ujm974LE3j7baxVJ9wBmnom17YgOF65S1bJ4EIFd62/D+nqDRrtlG3I9sJOH6\nhlbKhKaKhEkBRMBzpznG9RWz2a4tiwh4Vj0i4KkcqaGuGHiemFsPPNIjlUpBTfP4WvfJZwcY5QWs\nyAAAIABJREFUyzptKfhZFxYyRiebSym9pff/ourx9F6LS/UBD782K9i7OdLXq4iCtqLFPyzxerLd\n/k9k+scuvnHiOR8E8MHM478B4Gvv6QCGwOQx9dw/vM0OKfzu4J8DwGc92XC9im0ASEIDj036PZwN\nnfPnU0Ombc87VgGe60t+rs7gpGe1Vch5lC0DyRygjhdznU2I5FAEPN5ds00sk8V+u98KdG3TAS/d\nBA7OgNMzZwzGzLkRpMrQrVwXgBdZ5y4q1uKAU2eQ49TAk8zYpH+TKGQxL6so48kpL8gxBRWBNryG\n7vfUZTDpU+8rxBQ0HegAQTFCH4tQkc+LxHpDO7oer1e4vppxf+ekwNGaRxGi23Cf39vPwTmijgCP\ngM6bdgg75WXsmEXoox29xOXMVFQXCastvW6JaK7OfPjzDLdhDE8T5pvfTDpjx4PZHPuzN6MeCthb\nX4A9vQW8fOP86/Yo7jled8LB6xbD4HdXZn4AU8xQmxWwNv6G1aFpqjqk3BbNRkjdXMoal5w0u5OW\n0dRRGRqVMpMWDQUQdH2qYiQ/Y1dh4DQntEmm9kKpYfhv5hl9fJ4FarNBXUGYRjqiLO4U2AUDEADC\nwSibABADjyzouhfmnCs3liLbATZDFbfNCeh4yaCwn19gvWNl6ab03bkFssZJKNlNqAp4RQoHklna\nrGK5UX3ADfDupmcUArGCdktLVGaHF2EZwnXNfTQnXpRVQK9YALY2sHMBofgYRIA2jiUDF5AHIJX1\nTFmJC/C8eDLDK0vJdMImTYg5qy4eRwB4A8JzcD2u7nSunHU5DF+f3uRy5ss3Yo1DzXSUDFcrKygL\n8FzIRpCZlnEfqi561PPB29dXhvt6O2YBOrnJQHjtOuztuxj+4Hb+DR7FfcXDDT5np7B7jaPpTl+K\n1CoBgM8UpEcifRIdZGpYXTvfR7yYtGtQtfbOn7Y2vscxChmOQGbHnU7SC+jNmRK7dLRTGaAVKnm6\ndjKQZkoZsiinnvYyDKqGLS2OQThw518l2UTCXErKkSKjslXWk5YnVx2o6RmE5DG1gyhOzmLL5LIK\nfSuxt+54FfPlLz3gmSmdMgCpv4NWE3csLGEUip0BADS9swcwgdreW7bDrmqe8vczUPU+UN3ie8Zd\nc0Js5Jeeb66UW1yqUeBuDEB6LszEIrQpo01KbQI8OWHdubGYG0SsUOmVXt3pIuDZLQ6C3NTNa7C3\n78K+dHPy/qd5iaJdA2tniyDHv0VIqS18L+XVyvciPRDe+Cew6nj6V87Q38hf73sOelR20/Hwgo+1\nvKgcnAB7LQzNfAouiwOw2TZBgmck1E2lmTmRkRurDXiPm3YdNa4JzOoCxosrgDEAaUSUhUR70Ze1\nmzw/UjNMRbasKCXE+MS4pGFzfQilQhDiBOzQeRyVswAEBlOTYQDeo1eRgK9cI//c69MS+cOdBubJ\nJet+neyyi2WilGDLAKJZMz8vgNqPafB6wj7NetwcWaojVg+EureoTYfeHqEvkhkoDULlLd75n5w5\nosU6ynLkmKJr4hBi8MZsHQwwBiAZgFUyOZIty/ybBh4dOruJZKcScs4IeERg99p12FduYLhxgv7z\nx+g9uzGxCqlL2Kvq+CdkhfJOtDM3PjCL5r0MzZTK/D+BlZ7eKzfQXztF9+IxumsNTu88vMvkg4yH\n96oO0+NDGoTkM+D7IiZWq+aGaWimjyKlg8pUfqlKcSdnsG43S3WwGQAQGu6bmtt60FQpTGuF7pwf\n0XyilHhupACkQw20AoiAeGRHnPS/soC7ITzotAMvsMrjKH0tA2CYG5j6jEs4adZmVMlNjjlDEsmC\npIC+An/sXfbX//qqzIJ+03OJtx4IWAN10Tpn0WVQGhA5IjnG6rab/D/z/Z2gdtBH1wRAuC714H9O\n7ZqJKcp2w29WFPDIhkWkcgRc5NIunLK0Bh35nPD3gZjDw9eXRwK79vZdBp5XTtFdO8XQAEU9Vjgf\nAK/pRmkGKioeZR2L2ppSUa53orkmz2I8Db0me/sucOvuCHhOb1/QMvko84ni4QWfc0LmeGQyWgPP\n1fnaa2DJDAjApaUOHWAKmPIAZC0otQk2gSEGnDCDR8gIAM+xIOz8CtXzkaC6jNwi/Y5blXuEodTb\nNZqhjPSrZJqbQSjVtBJ69Iz9XPYuu8XuOBjJ7e8G4MmUbrRHkthUM3H9gF8H4NdyRmRCES8uubLX\nSqjoPcxBtbmx766PXfXojzrvfDqiIFcFZyoJUMsgpTSuvamZiQFISqXkgMseL72umL/+ly5x1nn4\nFBq78gSPo7bMqj6Eey0M4Wpn0ZEckbkV5GaE7n1y5lk7ct4MNryAF1XFStAHFYpLyf2iRE7t/CDQ\n5J2Dr47UoTcceww2uccWs94N6e4GBuXx7cBwXHXZOp7+mxfq+CPxXNWno66J2JYSoswh4AO4MrD4\nain1keGo8WxLdtd9FA8qHoFPEizCOKi6fPgQyWxCVez4ifdoIrxvYfwwocx6FICZh99zzVECuJxV\nuTJcO4N1C3pUfmt4sUoN1rxxnO5jCKPLVBBDtVQ0MZjiSe3e4k5LuFTJ7rzA1fmKT8eVgGoPQBKn\nsZyPsm/was3KTRRgBhwZNy1v2oiJJa9dVK60tXAgJDv6DBFBZzZSVurWLoOo47mooi7ZGXVRh2sl\ndgxCyZbj7yq3cB+7qX4l6eJkf0TWJSsaWh+wvUN3Z0TwAMJUvbczMABQBPBxfy8eWo5LcbVWBQdG\nfaDi0PWhfDmwDlJN8xLF4/uj+0Wy5EijLxnQTLPjMIwdjyDwV/d4EUYSZLarpjns6Ute51AWe7vq\nMTQdhgbsZgt2s5UwhzVvuGoz3jzoUAruOgPqraLO64Hp05sRi1Hki4bjlu+n1qBrx5uFR3Ex8fCC\nT3H+wBnH4LOgVLeNrOXekZqBSZWfZTeZypiUe5cBKUO1cfbDBASnYpDYZRfug4hqlgUemSsRnbIA\nPCHraQfgjntrNhNjEOIsaIamJzy9x7tvlAAKjAFIymsmAR1lzKdpr4Y6r9cFnARXVNMCl5GAG4cM\nzEqmEVtPmKjcNDTwC0V5xL0BmhsUdem8XpIsRTxolBOrJQKc1hopPTFPQKhbBq2z01C2k+xh74rX\nPDtxEv6a4JH66OiqIP9pBZxKNP3Az1FZkPwdqvlB0DvL9IEkc/bhgHx0vygPnhxFORd6xk2ESYGg\nms2/o6SUXLYhbD6sHMvRDRTb4yX3qVTJNA1zWEdZ28gyxIXtmzFr0UUJeLWRSDVBDzefnHHGc9z6\n++nCg2gsjvsQx8MLPpngxqTQMgcIPTNMYl8OA3Eq2wEQT/4bfp7UzkWoUwtbMrX2Cmc/u3sMOEn2\nAwTQ0dlO1NyWur3q9chAoA6d9ehp9JWzIebsB07scebPGzhGbzrAJABk2lG2o435UitqQwJCJbO5\nyjaU87DPAKQXlXYN7KnvnQGdVnMG4qynd2WSbk0ohJDhVACKRT0CHuukePxxiqSZE/z0QCSlU1m8\n6v1IXiin8Czq6E1feOFKbcEujrjzkkugEqvejkqhPFN97MtwO/NF6AMBKnucNphLS7P+uGWjkABP\nbawjQ0i5OXwvWY38no5IJ06JlZK1QfHDa/bxTNdUyY3mxgOP+PVEnlVGjQGUVQCgnC9SKtXjWIxC\nJJFyW5RFP4oHGg8v+CTNP9ml1Wbt517kw38wmwdhSdGeAngRMlUsZWMqQOjNbj4CALNtlFp0bzuU\nZs6LYNeGQUDswlZrX8svHKt05Fuiey16gFKF7vcACDYRSgZFT6Q3VQ9gwNxY1EuZkWjhDdo0AJVN\n6O0owcmxxQKDRGV2vJgmih0uw83hX2sydM/FARDVa7U14CibBt3Mekvl4rBGcVDBPLnHC9flQ/73\n2JNBct9bboeFV2wYDHWhR+BKhihbLsuZNpy/Ax5p1Le9s+ZYc6lNpPoFYAR0UjdRiVVHLgsN9tZS\nhnusDhsKNue7EogICL43o911yoTcuxLmerwaeBe9dj+UWFQiOZUvpU1Fyijji6wkctznrnBZ2eDP\nFLxpqMso4yke3483XJ5leRJR5gEExmIakSzU+HfEFbhoB9i6R9l0bn8xXBwQPSIcRPEIfLzVgPvA\n+J16yYrDeg6ga7xsju0bZwcQyjYAwlyNn+0wWRpzNFckH0iZ13HDqHa9DlptKegAvuTjp7wB7juZ\naaUF6fWcHFdoXT+pqgf188FlP6FBXps1+qFES2ehBNecRNmOnK82YQvPH9DbIyfdL9e3Q1XuMAB1\n1ajkJufi1YsdFV16HAUALGoUhzWGuw2KgwrlMS8qxUGF4rCGeWIvOFtePgQO3wRaMBmgdX8j/1YK\nJIVAErI2d71TN1ffX1v7Rv1Z16EZBHhMlPGkwJP/+3BmKlKxUoZzR8n2CO5Pa8oFb17kWrVjK/K0\nN+eBR56jTAajKIAKwGM1W20AiEBn01ycBh7Z1AFDmHvb3wVOmbRSVDMUixrDUQNy5JLisPZkmkid\nIR0gjqR3BFxiWSkfGnQyQ6xAkC0yhzVobrB7t0F78igDelDxCHxUxB424cNT05wblauTWH9rdQLs\nBbVgr4Glhgp5tiOoCIxmgsqKPzBlFZhvgCvDqdJTyiwDJjOecD4zSC3Jl906znqOj8IxNI0jV9QF\nDvbXvgoSN8nDQm1MCTM/cAtumIIP8yxlJFsfVL+XCtz5g1+VO56IEAGQpmybFsCJYscFJQOq1jCO\nUCADisVhzfM8e26e5+AxnmHZv4IzRSXOyyiJFl3Gx8jaeEGLJF061WOL+zy6zJbLeFJi3qp31gQ1\nl+E4x9MfVQYgQ7PQA+paYD/Z0Sf6fhHwqJDsJ41AVY4FYs+LsVXDDEATjknAZMb3t7iUFo+vQ/9T\nCB36vtdxkgx++p+r0mOVXI+MVh7NXEZdr1m0dtXDokOBEjgEKjQoZ9vPoD2K7ePhBh8g+jCGnZqa\nA+jbKNvxoodAUFGWspNbgHkRIr8Q1UWPpifvhpktWZgq/rAoEIpopbL4KUXiKLylNIduBkvJrW0N\n2iaU3CrVPG7awmU/1tsOixKC2EvLOWjLaXaLDGZ8KfiEBjovZnrnLH2gCAqEku5ng5ioIACEmRv4\nrAIpwRy476WxfukS93f2rjgG2k1fCj1aB4AE9JBtWGyF3S7HaoliAHJZTzucbcx6zi21Rcy3EEwK\n8VxAjABIjr3eB3VtPAwMRPeHJ1ekEWU/cRlaypF6Q6Z/7l8i6RfFr5NZYtJMHxjPjmkdNyF/yO9I\nz0iXGDWw6GxPf5WYEmytA0XfgmnqRV36wdf7jkdltygegY/TJCv3rgAmNU5TcjAbIggwLr1opLdm\nGMirXkvwTloJQxonKImM7L1QTjd4lwBhkZYFfFNNvm3yVr513aOuxiVCsZIWb562X8IU3NPx9uNr\nFpzMMbvmhvzjgUasMimZKdKy/652r3ss+nFZQPzCpTNEIRXsXYGdH6AZllh2d9D2S28lwSw0UTbm\nDtKiGoBZjAze/gH5BUgyHp31aDdcsWKfAh4dORmnHABJxmbIuaGaMsxjyX2gVb2nsmMliyQMMdHk\nS/tg9xKSKWZDtPUmNPii3ml03K7PKsDjDPx0thwB0b0u8tWMhVnFqsTNS1l0MIdbKKS/xkFE3wzg\nQ+B22Uestc8lPyf383eD/Xy+y1r76U3PJaK/DOAZcBvumnvOH7if/SsA/jqAhfv5H7XWru7nHB5e\n8JGQWvDqhOnP4vmiPpgSZGrYeXgsnZGQCOrWS+cMGj4iIqXfDkAvZZOuOb/xnoscKJo6zB0lIRIo\n+wctjo9m3l2ydl/3F2sWgJyF5wvwNIPxUjBCnujt2jfXhVIszC5gekevQ0zVvJMoELILReTw7C45\n57SkIuEyUQEeTQTg7IyB56g10byKDA9rYzPR+5r0k1ElOCF3aO08PU+Vs2XX10giB0Crjn1wVj1Q\nSyl0INeL4aHdHbNAOd8H5TYwuVidxNcsAaIAQuWktbh+LGfeFoUpGCCbE8DUTBXPRe5xJULrJZmk\n7KbKcpECNjANQjojygwQe/HYee8Hni8kLshSgYgMgB8F8C4ALwL4FBG9YK39bfVr3wL2PHs72Mn0\nxwC885zn/tfW2v/MvccPAvhhAN/nrLX/JoDvsNb+FhFdAbCZl79FPLzgo+d8vCDm+UGmBmRX6ZQE\npj6cPIQafyjTIb52QNi55pg42j00eTwXYd5BSh6tnzifG5a/r6sBB4s12qZAVQ8ehA7210qRePza\nzUARCDV9AJ6j1uBuS7ijZeBcEiVSPgJk+loYzPxOWb5G5S0NQDhwWVA1nY2W1UijLABPXBKUELmk\nHPDY05uh/9RXSUbRpmLJ0XU4WucJBlqORq6PjhwAScn0EGEQlQtvMQBNZRykjfQy9xigsialy7ep\nvBYed2rd2iqi0D93mRABRjZb8jfMDIqO7ncRoVWWFkFZ3LnbKrVru15HHk/bgJCXuRKh331EQPQG\ni68H8Flr7e8BgLPKfgbsdSbxDICPOlO5TxLRJecM/bap51prj9Tz9xASy28C8P9aa38LAKy1Ny/i\nJB5e8JFQH0SL48kSxaiMIUyvxJ3SFLPoQ2ioHO0K296VS4oOhtzCSzNU5Y6fLQHgF17qqvhDqReP\nXJ2/bycbw3MHQlXd878qlNouVUGZGAh9kLEkzOB6G8UIeALgBCivCp1JEaAOrR/WrrG9dtcqA0Dq\nWvjrYdR5JyXJzhTMZkuAJ/SjSHm5pBboO2Opf1m8yorZWjLfo7ygpM+TK7c1beGvcQo895IByftw\nec+iNoGNuOwYgOImP9z3PLekASha4JP7yZatUyY/OTcLSoFHZtr6YQ0U4f/8M0dhNyVKs+9LypbC\nvULWgsRUTo4tMWS0x8uR+jVFRIOkD5QCTyrNI7G/G0g+7TrqJ74O8TgR/Yb6//PW2ufd928G8Hn1\nsxfB2Y2O3O+8+bznEtEHwW7QdwH8SffwVwGwRPRxAFcB/Iy19r96NSel4xH4pDG1o9YyLGqK3//Y\nM6PGu6QcAPW2Awagx9qDkNagAuBN2fzAKTYsGvoxtyhWZgeLaomjtXET6QYAs6hwyMfuVYjdnSCl\nuUUVJtVZZDUAkOjdZRfcCSO+Vc/FYglNwNDXJAtAQMwyA5K5qrCAiV31OOPR5IKgtuwdNYtMxiMy\nML4JHt7elo3vk7CMEZfb7rSh3CbnnQu53qIapAU7t4lGZZIMpAxAQg7QpI6q4KygNFWwiUgt0ZMQ\nLT9tjyHlUUAN5iIGHv3VJ7nF+G/b64xqiD9HnsEnCui63ObtN8YXa2Qpn1MTSIFHf5VSrlKZh4iw\nXkTcG+HghrX2HRfzxtuHtfYDAD5ARD8E4FkA/zkYJ/44gD8K7h99goh+01r7ift5r0fgoxlk8n8X\nqe5XpFdmMdoF6t6F/kDp39P0XpF5l4lJ/oAGKR75wJbRvMKGvpBSWyjrfVTFLnbKDlfnx6iN9DgM\n5qbI7qrF9Ouw0lbhMsmuiQhhIRfx1bmRXk/IcjQQrXrgqA3WxQxEHXbLQGDQ7DINQADiPpa6Hhp0\nooVxkD6cvt7WMe9sRAHXWn1e+FIsFXRvoV2PsixPNhjI9b/4vO8042HequqBhNBxHvVanEBlUzDS\nUitiKRt/iXIKztqmulE9n3RnXynyS5Rh1v5vIzEGHn3fO6Dpw+wcZ1Cdp9qnmzK+B5QvlvZ9ArhE\nVq/Hyh9OcipL0Rb9QWAMOrq3K2Ve9z5525A3RHwBwFvU/592j23zO7MtngsAfwvAx8Dg8yKAv2et\nvQEARPQxAH8EwCPwuZCQUor7PvpqKlarRudBB8hTTDmDCR+o3vKQngiVNgP5wcu6t1hULuOR8kRG\nx9AUM56w79qxv04mbN+A+tYp/K5xMFujNktvflebAnNTZnfah5VV1tpDRNUOoba04IXwsAKAuOeT\nqrWtegBtgdrJDwkA1WaNCkCLMb3Zv5LOgrYMzkZlQDKUEHW5Tfd5yn7gjGd14pWOfRM7pbwDgKnQ\n9rcc8aJ2ZIsAPMcnM88srOo+qEkoAJoiIuiMVEqhaTlUwmupKfkmAR6vQZgCj56TSRfX/V14b6ay\n8QO1cv01DRuIPw9HSjGDj7NT/18Dw9ID4rkzQ7rkJuHApHAMNA86qQJCov7hP9vuXEbvUSsJHtPG\nthoXRY8m2jiXdw/xKQBvJ6KvAAPHtwH49uR3XgDwrOvpvBPAXWvtS0R0feq5RPR2a+3vuuc/A+Af\nu+8/DuAvEtEu+GP6bwL47+73JB5e8JEbQUnqR7MzKsvpM4zCXMlNdpu6/JCWfYJml6P2QsQY3etF\npTiplbud66ZGe1o6cSKnVbGD3r32Y3Xn5IM4C9LlM4ngW2QjDa84BCE5ZROq8twEfbhcyOPRAuUM\n1fQAqnKPiHoXUwB0riBmYb2Rm5aKCX2eXb6+q1thcdbOpe2a7c9VeAFX23kdN1YnAO4uCz9LBcAr\nSUSRobRH7p/Kilo7g2rmJN83g7tO5SjbyVqXC/A48BFwjc4NcJqBzAK1c6G8xwtnnN2vx4Z5Q5xe\n171kbYExmYJQUJ9uxyU3f+1mQUA1BZ5Ll/xnWovddhn7dUMzL5sEJLR+zQZ8g4W1tiOiZ8GgYAD8\nuLX2M0T0fe7nHwZnLe8G8Flwqey7Nz3XvfRzRPSHwB/szwGQ17tNRD8CBj0L4GPW2r97v+fx8IKP\nhPJySUtrIhWjI2UTpXIj/H+eYentejR4qZvd8v9F1cc0ZlWK49eZcfYjx9snIJSKmyr2XlnvexYU\ni40uEbIBLeNP/jHJCtL5JDknrX13BGBRAUctf0VGgj4Fo7tt0C2rTTC0Y1HXdMAzvt4agHSjOg1T\ncLmHrzNGGVxtBt/nqYodYHXMC3Q/0WMQqaNd+HtG5ro4myUcrWPgEdBpfPYzjGasUiJCDnTkX6oq\nzX8jy+fgvKVi0FFKzgnwyJxMLiyCRxB2EbKBUixD4sxeA8+0Uy7/HQB487zFLGS9k1lQruQls1xi\nbZHxJ8J831cs2uF4JLQLiITWrpOjmkX6fYHW/8YEIWvtx8AAox/7sPreAviBbZ/rHv/WDe/3N8F0\n6wuLhxd8iOKUPNEpC19z9eoANIEmHBqqAMLwZRuzrLyLqCFvZwDoPkicBXEvaM3Zj6j4ps1izQbC\nGcuslBVs14K6FuV8HzA7nlFWmzWDXdFHCgZSDkwXNS0zI9HbDlWxxm7Z4axbYzErcLQ2qE2B68tx\nSW+UDTkAkoW0MSJDxDpyfWr8lfsTJmUgIXakGwIGtRCiUTaSOpKQ3XTL0isRa8pZi8NU6N2ipktu\nWqiVwabwc1T8WGAYRrbT5SbAGYMOmxkufGnNq3GsjmD7Jp6JEvuAW3fHWUTuukrPZIsQHT8BnqMJ\n/xvZcHHw7xwBWKAHsPQA1Ns1bLETbBFEBSElD8xmzErTSt17VyKF8ba/5VVHsvJB7n6RkQjdXw3G\nh/vnDplvHzQmzjzE8RCDTzFKyzU913+o+iJ4lwzwAKQjXZRFUl9siEXZODd8qbMOWYDHAKQasClD\nyUnDy9Q3zWZ+RwiRXOkblHtXPOsJABbV0i0I4aUbV4oyNPMeLJV+78y5slL1ErtlKOk1feEzoFQx\nP5r9MUp6x8kQjf5M2i8pF0qZOY3KMJkhZdUBehB4gsygHWa1qGtZRU6xmu2n/e6qenwuAjyHO4PP\ncrYBHG9r4HpUO+VjPFQqgHN6FJhh+lppIU0lSZONqTkYXZbWIqq28/qFUlbOzVBJMGMy/L032bf3\ndo1S5rWm/vaqpyOZTmcKnu1qriudQULTV7g6X4feWHKvaEUGS+Q9uSLn3Udx4fHwgk9R+tS8sSu0\nwxmW3bEjBxReHFN2dVfnAQykRBCVHxTrJ0z9M/AI/TaNVQ8/q8GUWe0jFACIF/wEgHS2o3xJLBDm\nFaQ00bNzaL14KrDqbBcAzsVuWcBQFdtHnKh5srIKN0xZoTRzGMOlCwEhseF+8aTCahkWooj55unF\nLBlzdSen+u2a55lelj4e0SYja2GJRkORppjpudbw+oVWXFavJ1G1QUdOrqVYTpe1V8WWHf9UVHWP\ntjGo6p6HeB3AXKrHoMP09tiKWoNOZQ6wYxYsdHt6Ky6naWaef3M175Lpm0wf9HTmI2W22CU3lJN1\n+VaHZNUxAMnjfTRwDOwE0KsTxYbE9lxApx2WWLZHuLFqHRjWo1L31XmHRdXH/VqErD6nQ0emziuu\nv5q4OMLBl0Q8xOBjoin4ZXeE66sS4uSpb1yJxYypwbnFTD6UvBMUCZfCTbrHTXQd4fV5cDA2smMA\nEjpvSSUvOJmJbz2JTe0adn8XEOFFKRuZGvXeZcC44U5NzXWA6l1apQciQqoZOjrVByjLCmW97+vm\nZpjh6vzIXbsZVkvywppA7OI5XxHmjvhQG+uHT+VYvBryVNkjeZxcv86fkwBRjkG4wRJAn6MH8GrG\nm5X5vp8l4o3KLCqn5kIDz6WaQXcxG4NOlPEo7xyhgocZpM+F4VetdSabET1seQ9MrVFpK+mHWiI1\nYiCbNJr8vEhsynJ0hIFjHlcgVxL3z9a92Tpkn8v2CMfrFa6vZnjxZJ6VeJK/09WBnEli/J46dPYD\nYCvlk0dx7/HQgo+F9a6TfONWflofCBYEHKX/cLH+V3id2LvGTEq4SEyVV3Lh+y7Fjt/tYnUC3LkT\nZzvKYpp0HS09Zy29o2aRZLGX9yLlc+8zj9wgogxa9tyI5rp52FXyokNROWrqPGXYM7IpFwDcEJHy\nBHihKE211YrhZf912S23MxUvHOn12BX6Ye2JGVd3COz+ajFX2aQmD2wLNnI9+Niq2E8qHX5V90DU\nmL9HevCk+VwS2rcoGBUWClwGJp0A0blI5EAoYuulPTjDJU5PtHF9Wenn9LbDneYY11czXF/u4Nqy\nwD8/Hd9vUt70s26+vFyqDPiC6NSPYuuYBB8iWgD4IfAQ0i9ba39a/ex/tNZ+/2twfK+I27NYAAAg\nAElEQVRpyM5t06S5yJmksw6yC5Rg62FAtt3xnEZc0w+PxTteKX/tmAVwcpMXnuPbwXfe2f+OQjdp\nE5Vn3i2exTpcEObPjqe5RrbDOqTUBSgW1PalBM3qemJucVhZXN3pcHXeYX+mbMo3ZV4qbNmONdeA\nRBImnUvJqy6TqWMFCXlP0SDT9hvOeHBRrRWQzGISgdpgpLNTsSMoASAPNtlZnQR47O27QX0hjQQ4\nfL8qF1O9npqzPE3Gad1mTfopOuQ8dVlA09oBRJ8PeTwmf5TjUigQjT/ontOyO3Js0lBlyAHPE3OL\nJ3f4PosULRyZRlPTAdVnFOv0czZAWwcVj8puKjZlPv8zgN8F8PMAvoeIvhXAt1trGwB/7LU4uAcd\nchOn5l/bPhfAZJYjH8RFxXRieSxX0wfCB1Tozbrh7xee49vArbuwt+9G2U42ZPd6+ZCBpz4IDVnH\nANJkAqbpzljVO816NNtLg5HYSXeVk1/ZLpGel6yc/eSOxdP7a1ydr33GU/YDsLoVVAb8kOFpOAYJ\n9UFmN88mAiGRhNGhgWfyeNPp92TBCDM1wqZbu4b2gEVVbiyfmWIeLXRppDNjZC0D8elNT5W2t+8y\nc21T6PmXy4cbFblz5z+iKwsZR5kkjgRanR1FmvXIRk2728rvhYW/HIFAWv4Kxn3rYFfeGlxflkHI\nVWniCfBcqpSU0iwQamKn1SQ08DRvTLr1F3tsWi2+UvG+/1ci+gCAXyWif/s1OK4HHpTUZXSzdFNI\njVuztORxeR0J7+mTyKKkygH6w6pnNnwGkCw8w40T2FXwHhlFNeOsR1FQ7fwAbX/kWUpHrcFjdRct\npJRza03LOTrKMB2+TQjozA3L+HDGs8al+gD75WWUzSqwtpqgMpCeW/h+zcSAvmKPGGe7oP+KAkBp\npjqKUilI9M14sR4B0Iwtwd1GvzZrXDWdB5vdsswucrFflLxY0KeLRGX1nE7D5VYBHsl4dZmV6vh+\n0PcA5qFxn2aJQKwZKFYh4lMlPS5xf01N+NJMzhCfT+jdCaWZN3u1WfvPUFr6mix/KeM+0ey7vqo8\nrf9oHYRcdWYt99mi4uOUjV0KPLmsx9+LF0W1Jspe+4c1NoFPTUSFtXYAAGvtB4noCwD+HrKuZ1+8\nIcARNcMzpRMgP6zINGGeol9oV1Av5TJEmQ1/1bTPwn8Ipe8SZQCnt/yMBto17KobCSt6EyylcYXd\nPZ59qPcjsU2hoArDJ3zop72MNoYCICkTLWYtjtoCc1N4ZherZvO5X93p8PReGwOP2BfoYcjUo2WL\nyAHQmAmn6jM5KwsJnQWpQUtDTouu2Il05XZKNbyo3XDXLdCdhRkcf2x1IHBk9Mai8qf2mnH1pdwm\nhGTwUlmIa/DJZT2UgGGHDv3Q+cVe5qeYIemULYpeAW0VzYQBGUpzEUpmVcF/V3kOz9rM8jNd7u8n\nxyHkAl36qwrX2+mZSbiYAU/uSC9x7NW0EXhWJ/EmKN0APYoLiU3g80sA/hSAX5EHrLU/QUQvA/hr\nD/rAHnRYtQRI7TnV1dL1+kXVq0Yl36xCPBDK8ihz8mWIMIeS2xXy16S+r/sdura/vwuSXa8HHCey\nWJfA5UO2kb7yBGc8+1d41+rKbezkaTztdcTCcw1eP2B33oR3xs7bFDM8VncQv6m5KUfX8uq8w065\niIFHMbj8BL4oDACBubdtMz0yAqz8dfbHObXY5V6nrJwCQgOqD1DX+7AOeIQG74Vgvf26yuSS4/HX\nLt0JJ30mAnhWq6xCKe1gB5QQTHzWo0ttAjx7lyN5GZGLitiOZa1+vg4Zjxq0lmu2W0JZwlcjAJkK\n3X/r1aYn9Bqb0F+bKAsK0SNICxV4YsfisCLcbdl07007zqNJldp0KXv6ACeA540nLPolEZPgY639\nixOP/29gd7wvueCbWn8/ljLJ1YiDdP34NXMgE39Vjc6uAc5ujm9+vfOqZigWNawo+brHRovO4VPe\nyVOaxEwl18KPymHVrpkl1rcMQLLYpqF3yMIAUzRcfU0W1RJXXVYpDK8wKHkZ++UV0MnNUXbnZW00\ni2t/d1omPxM26f/k5oE2DrCmgCGLopIuIj33BKBEEQOO9Kymopcy4YEHcN/nUArLhAMGIDe/Zds1\nioU6N6Xe7O8BRzBBve/n2NLQ92IsmbOOgCdH0GDAKT14iGo2OudHlorzIpBAgB1fAi1Rxn1Gudau\n3zQ65mIGDFokt/czQ7UpcFhx9eHqThf0+1Qpe+oa+JKz/tul9+B9x6M5Hx0PLdVah6a9pv8XjTMN\nPCmg5CIHMunPQn050eDq29DvSG58ms1g93dBlZKYF20rzWqr51h2N9H2S08l3yqi+QY1Y5Frvmey\nHjnXHrxgXZ2vfU9AJGGqYpd3u8Lgc9IvwuDT5+xnl3AWAMid91ahjzsBoNHvAHnX2NzvdTfH6shA\nTJJI/34phblac0lJeQMBGBvp+eOvIgCKnDiF0abuAW0jHnnmqCFpLQmlZZQ08OgwVEaZzsiqQZiJ\ncm80sTWJ0Kb9Rqc7icuL8nsr5IdM3XGyDmJsL8EGe7EuoRgEbsrIvPiqHIMe2pUZqkdx4fHQgw+D\nQufT+JSpJGW20BjNM5Xics6ELpnfZcc7vaiuv+nGzwwP+p2uUGP3rnhW27I7dmW28fF6H5gpQUe3\n+/Z2x0Ydqwu/qEzuUPn7x2r4RUArJ3gm0a27YVgWAXD4+9Db8oB7D/0fH5K5KAAa/Tz3nE2vJYut\n/t2TMHfjZ3AkJDvR2mnSb6rhm+qA2qCI1Evtsh+nvADdC1P6Zt5GPMl6taSNicpoLiNXslE8xxN+\nR4z/dL/Ez4OtbkWEGH2eXqi3lGuvstGpvlbfAl3FStp8QUcApD+zEnXBQ8qaWahBEhh7BwEIowVa\n9Vu7pq4vMvN5FDoeYvDhD6K+IXPAw/TYGHTGytYTWQ2Q19pS30c7bdndArGZlYuo5KRIBV5UUUos\n/YkCHjOSPAnN171A557qfSTA4t1Uu1Y19k9A9b77oCstNxFrQABkT+dOr4d+D1dOtE0X9zRSg7D9\n3dgWQ64hEiPAzPmM7BlydhVTFhb6NWUHL7+rJW3S7zXwyD+VJQiVOM1GSH5nvs/vVa150wGM1ZzL\nKs54bKcYamGuTINOGqaYBdmZoURVYJzt6L7k8e2tFuitmF7p37Ksxq7BxQy7pfPXUqGrE7ky27hc\nnhktSIzrsL63gd2N8UheJ4pzwYeI/symn1trf+HiDufVBxF9M4APATAAPmKtfW7T71s7KAFRkfcf\nA4+mZQJ5oPHHYC1Py6e74fR7OYYUeLqWd3kyuFnNYv/41KM+p+TrNOpuN0My9JqKUx6E8lcOKHOR\nGT6NAKisYMp6DECAXxSiIVZ9XqcYfcgpyfSi0pLb5XvJFbmG+nrqSOy25XuaAlf5e+ivOjYtIl4V\n22Wwe/HjqGYxYDhCAFPh19H9JteOygrU1bBpGcq9ji9z1fujUlmg/Mel423mskR6xt8rku1I1nrn\nzrmvAWQ2A37T0IJEOdrdF6LZFntqpa7BpSf6RP1Td14CPJvOMTtQnXzeCLuweOOV3c5b74iI3M/f\nDfbz+S5r7ac3PZeILgP4WQBvA/D7AN5jrb3tfvZDAN4LoAfwg9baj9/vOWyT+bwXwL8G4Ffd//8k\ngH8A4Dp47XndwYeIDIAfBfAusOXrp4joBWvtb089x8L6XSEgZagx8AhlFojBxgONDg06uczmvEgX\nT23rC4QsRBZdN4+RKnJPAc/VeefPy6sibwM8amEYDaAipjYTMAYgYJz1JEGzGeei6S4zdahMJu9H\n1yaJ1PMn589EOntR5+JtCTLN8+z/5Tjktao2zmBTd829K9GmQfosfN8lbyUZgcw0VYoVVipbEDWI\nqSPNCs6Tk8mVkalrgtOrLrOdp7KQXj8px2nw10CkQWdQ1ui6XFjMoK++log6b4jYn5vc+zrryZwH\nYUxUeFVBxeR9ek8vs9169y1gYtjbwU6mPwbgnec89/0APmGtfY6I3u/+/z4i+mqw4+nXAPgyAL9C\nRF9lrd1yJD8f24DPDMBXW2tfcif+FICfsNZ+9/288QXH1wP4rLX29wDAWcc+A2AafOzgPqBqkc4A\nj9SLR2CzbTntvLJNLvSHVC1+0e5R61ypheus60YOkotZ0E2L+i7puaSK0SrGdfn4vM4DoGghyAAY\ngKQZn890ZPJevJfUi46voxyYnGZS85fylgcgHTJwmnlJXT6aHEjtWr+gRkAhwJnZNJx1cnxMEKhM\nUKAwxQxUCw1eRSKBI0w1fY7yNZawmQaf7PyLHnbWZJjzSlIbgGe0EXB0bwGdVBJpdJzFeFZnCniy\nVQp9H6s5KgCje/ENFtusd88A+KgzlfskEV1ya/fbNjz3GQDf4J7/kwB+DcD73OM/49Rt/hkRfdYd\nw/91PyexDfi8RYDHxSsAvvx+3vQBxJsBfF79/0Uw2kdBRN8L4HsB4M1vuTyay/FyH0puP08YUJFr\nnOrHJVJmVAaARjXxsgrqAcmHtrcd+sR/iIdHFZW6sFjMMv2drmGW0dS5JN+PCBGAUsq+wBq21qRL\nm+gKdNphiba7OXr6eUSQTQoHnnqdKcNtigiI9A/0xqHGOFN1RnT9sFbeM+yLw5sFtqYwBQ+zeit1\n/fobziUFoBR4tmFqAgkFWcpsmvqfW6z9C2U2TQnw6A2BdhvNgs0EoGxdEvcv7u5tfV6KKPIGAZ7H\nieg31P+ft9Y+777fZr3L/c6bz3nuk2qtfxnAk+q1Ppl5rfuKbcDnE0T0cQB/2/3/z0INnn4xhfvj\nPQ8AX/uH32ZTbSov95FrjudCA48eJkyzoglKcgQ2E7/jIwEeIP8B1QoMaRZX05zPRyR0tg09syKL\njXxI+wRI3QKjBxX5WN31lDIRDmCFMSb9LVnUVBN9VJ7qbrJEUL8cNc21yywwXoQlpkAoZZhF579F\nyY265DG9l1CgI1TmYMYWrNYXVaxwProXZROgNwc4BuHAZ5wA92hkmFOuy6sGHs1mU6oTAMaup/K3\ny2R5ve0Apwi+UepowzHlHs+ySzdVKfRGURTCFbttROW/QADaZP2exA1r7Tsu7I3vMay1loguzMoo\nF+eCj7X2WSL6dwH8CffQ89bav/MgD+pVxBcAvEX9/2n32NZxbtYzFV0bi2AC49qx/L9O9LUypQj/\n8+S9p4BHz2+I1A8APFYXY3pzczLWq9oEeBpM07KEfJ8BHlloZJHVUSmLZAKAvToMsyoixabylIhU\nenXxXoGOJziUGxe4YI8+BqhcH2iKwJA+NtVj6t2g5xTobIoRUSNTsswBUHpOm6Rv0ohUNnIW3HIf\npAxMTaRIiDAplXubmblciXBrdikwyuazYw0JrdoCTBaR+/GNx1DbZr2b+p3Zhue+QkRPWWtfciW6\na/fwfvcc21KtPw3g2Fr7K0S0S0QH1to3kr/spwC8nYi+AnxRvg3At296gl7bwxBpJuuZ6tnobEfq\n4LmGpW82t4HFpv+pjIZ38+M6NoA88GTmFsIw586YoZQ6X1azQO1OF9N0t5gCj3x1vVgBUwEe3YeS\nY+VzKLl5rsJnQe5a64VrmS0tlr48pYcNAQRFfwVC4Rqm9ufj67exD5Qw5rJZ1ZD+jfjrFOik2XfT\nx6Z6WZCY0qJzs1ibPI3OY7iRtWGTcnor6u+MgEdHNQMuXfIK6nrTILNGfH5B2bo2K+yWbuOQ+XtN\nZWoR4GzJLs32LFN7cX2P7yGmw19AMMnpQmaGtlnvXgDwrOvpvBPAXQcq1zc89wUA3wngOff1F9Xj\nP01EPwImHLwdwD+835PYhmr958F9kssAvhJc6/swgG+83ze/qLDWdkT0LICPg+mDP26t/cym5/SW\nZeHHniJbZD1StkosjO3p2bT8S7vm5nOp3BgTAUfeDcZU2/Maw+L82A8lDHV+EHA0j5H2a3ILiHzI\n0g9zqmydq/P7ctvKn4sQIDiWbmHn6xwt7GXFJSsBZ7dwaYUGXqSNl/JvesIRDFipix1fhRyS203r\nXbc/XTdYOZUlpX0gDTqpHE38Nd7ha9AU0Mn74Qz+K7O2yrHIrG74V7Mg8VtWkVkglJ3ElH9RNmRh\nXrlMfgp40kVagEeVSEVP8KzrcLTmv0WkiD0Qmn7AolrCOJZfOtYw0t/rW0wJ4J6rTiHAIxtFnfFo\nNQphKLrrGomyvgFiar0jou9zP/8wgI+BadafBVOtv3vTc91LPwfg54jovQA+B+A97jmfIaKfA5MS\nOgA/cL9MN2C7zOcHwMyGX3cH8rtE9MT9vvFFh7X2Y+ALvlUYspGCgV60Dc3GNGoJXWZzi0BkZa0l\nVKSBDkRZAh+AU1rGLFokgEAX9WKL4D9UaeYuSyrd76vMqAjPDTpbKjvbxCzbNB8jj8kAZaK3BhMa\n6U1SWjpqDY7WM7eohsyut2WcWUh5y723ZE+8IehQmyVqo9XCw9CsDAHnJFQ0+Iiqt3ZwnYpRdpDR\nhQNCNsffB+DRoMPZjfHU91QShr+PNQQPZvNgm60liFLL7GrGs1DpLJL6GwoQtsOZLzFus7FJw2+q\n3FdbqXtAAU9nCr9pCHqC4/fRM2ciTpqdO+tcgWUTi3RKiUJHWjqW3pUGIZFyqtZhNusNGrn1zoGO\nfG/Ba/dWz3WP38REUmGt/SCAD97HIY9iG/BprLUtuV0fEZVAloH6RRVEGAGP7LqmBCejGri2MT45\nQ3/tFHbVg+YGxWEdTeR7GrLIqGSiKnY8qHixRUUMkGyJysqXrUq3SPKOfMeXTDaCDpBVT5AGMb9w\nspgJbRjg45fXTJQVRM4l3eUvKnj/oHZYRotfxDDzjqWx/Is2veNrhWiYMFKS1mHU7e0lVta+xCOv\nL8cSPTW9DyYAyL/mPUTOVFD0yEbAc/TSyDZdHGy9+sOT4I1N10KrZGtglExUlxXZ9nza2E7Crtej\njJ5mMy9iK7JOTTFg2d3x98DRmq3pAURECj1zFtmEdw3QHsdAk7JHcyW2qUgZpqlsVQI6wYreEQ/S\nDeN9h82Weh/W2AZ8/g8i+ksAdojoXQC+H2y38EUdBVkPPFqdd6rcFkmJKNAZbpxguNOgv3EWwOdu\ng+KwdiDkFvm9Xb7Z62kAkkE+dGNigLeL7sbT/B7Y5Dg1M02XEmSXLP+X1xFmkpQD1SKWnWOR960P\n2KTOlViW3RGur8b9jKOWFxye3yh9libnDMCDkFbHlp9VqkKl+wCT1gWZuaiyrGDKxaj5vVUIEG8A\nIGA7EBJSiCzGaQawUy6wWxzA3v0D2LsvAy/fiCzTxcuJpYdKlHUZmv4mUPPlOnrgcdleDznG5UiC\nZgRCU5I54pArm4+9y2jsCifrm17E9qgtfHmUzzMI9y5mGRamLg+nmyZd/k3LflPHB7Bwq/xfW3XI\n903nAccq/21bm1hZ5FE8kNgGfN4PVjn4RwD+A3C69pEHeVCvRRQgDzznycykw3X29Ay4dRf9tVMM\ndxsMxy26aw26NaGcdTCrHmgH2FWP4lKN4vFZ9sMyAjrxE0nVrQEPHDaadM/sCnONVGCsKaaEHz3w\n6MzHvS5NleEATwhYdkfZRScsPCxqWRfWZz8ywa9pwBK5LGTkAro6Gl+nREnAKkUIqg9Ac6AqOQPS\nFgM6Exu9z8TcFmWYbZtCzAb5egTr9FTGabc44GxHgOeVGxiOGgx3Gt6htwOGpvMbHZobGCm/7e65\nvs++v7ZBoTq/mLKx247LvNcjMoj3U5LsR8psyiFX7oEbq9a7i8rfXjwPa2O8c61kd9l+VkrnT75m\nSQ+pLFM7i7P7VOj15Mw7wUag4w7WznsGnwsGIGsvjHDwJREbwcdJMXzUWvvvA/gbr80hvTZBVERl\nm2x0iZXuBPAAQFEDSO4rmpvI5hhAUCdIhS3FuldTaUdzNWsApwE4UkKAql/7Y5Bd8SbgURPy0fEn\nC1HK8moj4JlFiw4Q+hre1Kvq/bDreJGPyZOl/qqui93UNHbnTU8+PvbazWSbaRlqMiZKPMIqY+JC\nbJSmSSBTZoNpv6OmOTPMnLeRvR3uMwGdjbFNKUodh6EOBu6YrVN/lgwECPfKOcBzsr6F282A66sS\nL57MkJjs4rCa6Gelcj0TjMpIWToFhf3d85UWqvzmb2O88VQNvuRiI/hYa3sieisRVdba7e7sL5Ig\nkAeeiFGjp5+1v8cG4JEoZxZF7UDnoALNS1BdsrOomLylmmQSeniwa8dlMyDeyYnY4TZliDQco8wf\nS73PNsXDeIeckiH098EraOZr+zq8ptxOF3Tl3D8uLx7HgJsunrq+nwwCanaSLp8A3NKh1l1zF7Zv\nmFGXmYHR5zXaiHRt3HfTmZAv71XZbE2DUG877/4pETETJQM4egm4dh329l0u6V5fng86QPz371p3\nTKXP5vQ5jpStheGZjhbI8C9imSMhmLTDEsvuyLHZZiMG39wER9Gr887Nnrn+joCc0LkT4IkynExv\nRjIWA/BxuYiGXtOMaDZjHyT92Hy8BFJtAvA+igcW25Tdfg/A3yeiF8DawwAAa+2PPLCjeg1CMp9o\n0ZgCHiljuXQ9BzxUlyjAdfiiLrn3s6h5AZSp7/l+yDh05LKeTBYDICqD6P+nvZ0s5Vs+UMkQoJ64\nP48J5g/Z0aivr2bZIclF1UcMrqrYCTveXH0/zfLSjKZdwx4v/cIz3HWsJ6VeOjQdirqEXXUwT7uG\nsQBQQvbwfZAinu0Rlp08R9N3UyqvPuscAAExCMWP870XZQCnt4A7d2Bv34W9eYT+lVP0dxv0Rx1v\natx9BcB/3Sa0t9L4+MrAkJReo/9hxfeu0LrVfSMEk+P1KrLtkJBsR+6Bx+oCO+VB+PvrUvbE31sA\nR/dlfGlMAbIHoJwqgc72k8+SXXUR+ARb+nhZ3MoKYqt4VHbTsQ34/FP3rwBw8GAP5/WJqPyV67m4\nEshw44QXhOvL8WuoRYEOKhSHNbtO7gWNMm057QcZtYuivKfKeiZBRu36+aswddhe27qd6qjXo2T8\nJdtJJ++3DVl0hFwghmV+0ckxuPTC0yUgqxcf1RCWfsdw3Ppme3uSP85y1qB018S0Tirl8iETPdyu\nnokPrgGvACiKKeFYFVpMFQgAFCjNAXRy9GbfaJfrEQHPGfrrSzQ3ezSnJczMoqx6lLMxEE1FYLTx\nOfZDyOx62zmm2S5koDprm16rPuCclSc6UzjPqCMcrctRj++JHWeZXg1K1PYyK6n3QwDaNJvNgI4m\nWADIlh9pXjKBcX+XyRcp8NxDSNbjPzcXqV34KKKYBB8i+ilr7XcAuGOt/dBreEyvUSSL19TU+EQI\n28j/X5hudYniUg062Akuo3uXI0UDYSBN9hk2NFz1V5spx9imD8fVrgMTSgDQ+f/w9Pkyox6Qm7qn\naC4FCE3zRaXnb4rIwlj6GbLoIDOzMrXwDHebsOi4BWe422BogNVpWHTLRAutWxPMqg/PFcpsJlIt\nuFHvJ6OjFr9Zqxw3OaRPpgEoDf9Y32KqzJr+bfs1Taq82ONl0MYrb8F2LahrQfN91GbuB5FhYvq1\nt9UQAJyi5mfeWEDVW5EYwqLqHZOv9xlvsHIQ1RAHcFuWiVPgSX+GA0caWLjsJFdyKyvul4pvVCZG\npoUPIOwjqnUUmzKfryOiLwPwPUT0USSrtbX21gM9sgceCdPMBIZXFNUMeNPjoGqGopqNCASy0DPz\nqPSlNnryce7xKLO3Zliid8KSMmxZGkUcEDqvZuqIk2I7/ppz/PTHnCMYRAC4ikoATU8R8KQZkPxf\nLypp8AJTjV0vT29ND0omC24KOgDQ3218ttO53lK/JpiZRdcWIwDyWWhdhka527mL4KlWUMaAfPYj\n98M5XkdpBiR07M3qFDMAzdhUr5qBDnZgnmTGZNWcAuhDP1FlPIX/+/fAzSPXnwGw74gZzTGoPkA5\n30dp5nJxPHGEy30vjZmVuahm/HumRjnfx45ZuPNgBQNh8+kNiPYQyr6eCm8VMerJqPva4UshXh11\n6UcaoiqDHimQz7XIQAGw1QwF7saApUBLbxqlSvAoLj42gc+HAXwCwL8A4DcRf76se/yLNpj2GEoi\nvvRWVoCebRFguHzIdNZqFl00PUzqb/5k4rsdlui7k2jewhQywc8ulYjbCeeH+vCOClC676P1qRTT\nTrA3KAyL5tZ02U2Ah7OaWFFaz0r5+ZvTo5EUf1pWAzAuryg6MQD0Rx26dQw88nUjACngpfqAZV/6\nI/QDZ3mivDAFOrZv8hmx7q/hBMB+AKAt5oEAeKHQ0eOzGS+Oixr2aocSANWNP6dC9yOU45xteuAl\ntplgUcwzYH8XtjkBmv1o9smb5WmlDr0RmGjYo2T2JwGo9y4DRv7uS+yWzktKqYYA7ufaqltvgtJz\nBwOD/77JK7hQXQYgOlRVBq2ord9PYhceoD3QpZ8TEUd1wGPnB4/6NA8oJsHHWvtXAfxVIvoxa+1/\n+Boe02sUdrIsQqbmnSMQg9D+brB2RjI7I7vrBHTabhnNWcjiLoKKPCyp3lMyIcluZjNesNPsR0e6\nSMgHSnaBsgBvaJxy3X5cbgMQEQfYGygM5o4GPk+PYt07LcMvWU8TCANpliOgI8A0NBgBTxcx64KS\nqAYgmodNgahk66ynGUo0g8ECPQx1PvsBVA9Ql8OA6VKRE/SEZsMBEQD549pGKd0dd3FYw656+L1/\nYm/qM1/dOL91lxld1SwoM+8HZp5/d1ONy5+njkHpLM2pTUCoagGceKCt9y7DGL4PWLlijdok4rjK\nR8gft6nDDFYaa/d77RpUm2gOxz/fVRmoNqCDneD95Gjgo40jEIOQbCTl+ujqQEaR+6LAx8JuTeh5\nGGIbS4UvQeAJCrOij2ZoFmcQeo5G/u++klgsqYVNhjQ16ASpGcL4Uncw5D6o5QJUtpPZz0YAytSn\ncySDcc/p/A9BNKejgEdr4EWSPilRI5GE0Wy1qSxHgw4wBp40dNYj3xd1Geiy+2fA/NwAACAASURB\nVLvZrIczH4umsD77kX/olX6fFpycilJUKJqQ/QBRBjSKqVKeKrVSvUZxqYadG3990pBeoyzStukZ\nQysn6yQAgrPkXjmNQUcYnfq101IU4OanAgCVe5e9dFELwKg+WpTxpDGlmoFdWDnWphtRoT3oSMVh\nf5dHGTQNXFTn9RO1XJQ/DwT2aRmsyL3/0KtRw3gUW8e2lgpfciHNv3Y48xIjpqy5YVy2oBVg58g3\nmx0DSHZIok6tMx1R8k1nH4BAQxYV7agEU1bgT8ZJoLkilNb8B2qiKeqBJ619S/QtTFnzbh9c/qsA\n75zZmAxtOgM8Xn+uS2jiQJwtSEhfR4DHUdU18OgoagagcsYN7a4tYGZ2BEA62ymrgX+/Krg3srcb\nZT1C9NDq0drHqSp2XQP+FoOoAKjWNruoZrTLcMnUXjpJ5GCoZeBANUOx4KSM5mUAGN2EVyFANAAo\nFmBgAaalYhKmoUz9h3Dlvtrwfbg+5NdyczUWAJUVzPzAs+oiAsewjgDIKyiIQsdEMADxPU/12ue2\nEeikpW7llSX3YZTpmzpIRWnavVQE3OfY25u4jEeMCy8k7CPCgY6HF3zsELthaqHFsgb26/HQHRAt\n5j4tV5bIve1wuxnc0F3hfEuGSM24LjY3oz0Aleq9ZXo/t5Dox1Lg0eUNt/vjZricN9NwBYDG1uI2\n0uHyJTad7chrA2FGSR+XJxSE7Ebosrm5DYlCpNkQA5AeWuH/B+Axi9I3oH0p1FTOQTS8R20Gb6ch\njDxRGNDkCMkKRK0821/TkdnR+wZ/mgF5U70DtalwC6cDDrRrFMAYGIT5VRXRtbNNhwJOnwyu74MJ\nqw/FNLTHy2iORr8ewCU+03TAlXWQntlvYZ3YrZTfgPFCLTI/hkpW9ihZo3CUD5YVn3+75rLYbAZ7\neoYiQ52ONlkKeGzfTJaX/ePa1jvx1GI9vM4Dz6My2YOLhxd8EE/qMwFg7T9Ahmb8gSp5tCme8Hcy\n9c7SuR/Wfkam6QscrU0irFhElgBMUy5CmScXaVO2SqR09PeZnk8EPJkFcTRQ6QBIMiL+HT62jcCT\nap/lJH/gVAhkcXO6dxI54NFR1AGA/MGqKKsB1b7lBVLYTwIW9UFYWFREumrun5eWSYBHN+KtzE7p\n0Krf0UUeyxNFAKR+7gHIhOtHADBz2YsH6+RatePpUbvqMaBBcejsATCeSUI18304e7xkGruT8QEw\n2hx4hl3To3h8HSjsZcUMuL3L6M9Rx5bPjWQ/BHBGUmYULgRkqlnsk5Uw07CbeB8I+zAFoJxtiKtY\nwHlq8TEKFT22xvhiCiK6DOBnAbwNwO8DeI+19nbm974ZwIfAc7ofsdY+t+n5RPT1AJ6XpwP4L8TV\nmogqAP8DgG8Af1A/YK39+U3H+dCCDyDzK1yOkVq1KWLzszRSo7CzrmOQGfh3pZ8gQ3erHjiswqxM\nmH1QTdhNVF7Z1cmiVKpFXoOOBqJNtr++JFGNz68ADMJrevDZFnj6DEC6/2ezngR0hiZkO0A8aV6g\nQwnL4q3V4Ps7moJsDmuWNZKSmwPwEfAYBrKs6oIiScjCzLNThhfLk7M4C9LsMIkN138EQOr3GYCO\nEWW9AkLtGoDLTtQ1zAVDc8UCmXU4d/2u/jXbtQcePcSb9tzme0yBN+59CynpnZ3Cmpuc/dTzSb8k\nPUMl2Y8+Fn9sZcX3et9y9VmyICDPwstk9iMA0hs5leXocYN0c/kgMp4LdDI9L94P4BPW2ueI6P3u\n/+/Tv+B0O38UwLsAvAjgU0T0grX2tzc8//8D8A5nSPcUgN8iol+y1nYAPgDgmrX2q4ioAJuPboyH\nFnx6P9Mi0vbuJuzHO38gNg7TVsDNYML3DnAks+GIGWO6xyCEh9LMR3XwdOdmy6S8ZZIFP13wprIe\ntbvMimK6c5wsC2oihvb9SXetSSmQ6i7LXNJRTJPx/M+r2rqFMQBPcVgzyeCg4h26lB0d0cIb0zkW\nFis5r8fAo2yjPfNrUyQzVN6SAvDXP6d8HZXhTBXM9OAAqHTEjV2EjHfNIERND1r1wPGGDUvCiksn\n/XXmpgc47aqfpLWvTg126879nhrqVH9nz3Iby/zxa6mFtzRVOHdw7wgmljOC67/6a5D68wDKA0o9\nnmY5qrSmJaRSYz35vh3OvCLEF2k8A85AAOAnAfwaEvABG4R+1lr7ewDg7LafAbuVZp9vrdUfijni\n/cz3APiXAMBaOwC4cd5BPrzgYwnXV2VoPPcyqR36M/Hvx8AjEUvl6+cNqA2ink+w7A7lNrnRq/lB\nbF+gP1B9y6KYKYMnOsCY4gsgZuhpMFMZi5jTaRDS5wsEEO7Q8aIx3+fjAQII1k777NTNHstit85Q\nw11QXW4suW36mc54irpkkoEY+e0pna+uhann6lwYZFEkApeaYKCAJ9X5GjW6d/ciem5n3KJtV/x1\nWENTj+UYAJUFaQBKB45H1yweMB2FI1sUl2oeeJbhy1x4EkiPoenQ3OzRtcYDjgBQtybM93oMjdPP\ny73WBnWQIOmj7gP3MTJlDZQ1X4caoOaEQajM9FvTY2/XTNLYxWYZHGVXH9/XY8tu+X7ZHynvo4sJ\ni81zdEk8TkS/of7/vLX2+cnfjuNJa+1L7vuXATyZ+Z03A/i8+v+LAN553vOJ6J0AfhzAWwF8h8uC\nLrkf/2Ui+gawHNuz1tpXNh3kQws+3UB+0JB7Ms5REkCaDQH5m0aMwfT3tbGJHE3QuNJZjw6mc65R\nmeDYKYsXAFTlTmDh5UAo13MoEwBKwjbHESAR3EJwTngASt8HALlhS5zeiplbjjZM8x64GzfOzwOg\nXESlubkJ7LZ5yXMfyU4/Z69taBYDjzYJBMaT9rlhYg08e5fRocOyPwIQyrP8fusk8wrZZRaA+jHn\nXoZPgSVTq5sxBAhQjoBHbAd0KBKIzF01pyW6tkAnQ7xtuOdXMKj3+ki6yJNfJHs5R9WBr8vaZxzS\nd5S/CQCY+QGocwrkGoSak/AibpMQ4nQEQD4LLQMTVUc0i6Qt67sWZb2PqtjlYxvu3an2guKGtfYd\nUz8kol8B8KbMjz6g/2OttUT0qp2n0+dba38dwNcQ0b8M4CeJ6JfBOPI0gH9grf0LRPQXAPw3AL5j\n02s/tODTW+DassDcBOBhAGGNKtGs2iYk+9EAFP3chIxqimTQ2zWW/Tp5LDRBDc0YhADOZKZAKNdY\nRaLI7HaU7I3j3FFdA1iARcqCuejQRUAVlVP2rqhjct5Da1XyqctRyejVAJA8j2d61E5fl8JUjGwz\nugngyWRpEfDI8G4CPKLyPEXL5cHcdaD1KyXtCICEfq0HjpNjobkrvenHvbBtOQYeAR8lZSTgbFcs\n2NqeEFanxgNOtw7g1rWEOXp0bYGq6Tb+rXIWHLnIzZp5xqkpURoeN/D9oK4KahNqk+CN4wAuz2nK\ntfOoavujTImtHIGO9DKpa72CwxJHwHBBVOsLDGvtn576GRG9QkRPWWtfcr2Za5lf+wKAt6j/P+0e\nA4Bzn2+t/R0iOgHwtWAFnDMAv+B+/L+ADUg3xkMLPmsL3GnZc2RuCABhbtjemAFoQD0QFrP4Qz4G\nlt5lOq7EVvDvh1KciC/mIyUwxD9ztemCsyLJjkr1Zwsfznac5aRli5QYIH0JjCV6RKE5XSACIHbq\nMVXKKBdsNCYPtGuV/bhmdV2iTxfPDQA0RUTwWY+Y9qUlJp2V5Vxqz9Nt06E1vwR4nKGathHPzXVx\ndh3T+vlrDECA633k+mgTIdP+fF3cHEwKPPV+6J2kIJSJFHgkckO+ErZvQH3r+z25e8e/jrrn41i6\neasd9DTjUnTX8Mxd2cY0/qmQ7HFioNorcvQDvJ9UouZtAVDfOvp4eW42t20Mdiza+4DiBQDfCeA5\n9/UXM7/zKQBvJ6KvAIPOtwH49k3Pd7/7eVdqeyu4x/P7Ljv6JXCf6FcBfCO4d7QxHlrwsZZZpe3A\nVr8MQvBAkkYw4ErNuYJJ2G453RsKjy29mrLObJqecLTmNw5gxf9/rO7GKtjpcOd5C5U2ZvO7Xzfc\nKOWyvuEsyNlpSxlFZh6il1NDm/4xt5jslAumOHctS7sggJsB0MvXLUtwU8AjWc+o3La/y8oCigAw\nKm+Bh4RHDLCZuzaOwettyGUxP3iMe15OQmnZ3cSyO3azXWwjLpm0RD0QgOBoaooOVRHuFT/w62bM\naA5QV8UMsIqtsm01Q1GdxSrMQH7w0oEkyoozPB0iwTPn7LGcNW6gFzBV7zOgcsZgZCqLeo8V00d9\nMBW6rKhDM8j0fR+e5+7tAeiTBT8rvtrOgt2IZD5aHscZJBrMXAltHVQ5dLk1OkjptwWi1hcj1RoM\nGj9HRO8F8DkA7wEAJxT9EWvtux2APAvg4+CP449baz+z6fkA/jiA9xPRGlwW+n5rrRAL3gfgp4jo\nvwdwHcB3n3eQDy34rAfgTkPgTSN/6FY9IuARgoCET9dVz0ZTkwGgH2R3GwOLBH/PswXMliM0fcXg\n48Uuw/vWZuBFfii9jMnIfC7NaNLQszepgKS4QHa8W7SAIhPk+0W9XWPZHWWzHzNwLb+u92MKLbYH\nICBPNkiBJ8p6tEDkSME7KW8B+QHPNITmDPB1UirHZ8Mxlu2RcnJlG3EAURmX/+8UwdEDWKICS9EA\n8WItZSfp8UVZLeABaORZg4zOYCL7ZAFebNVr8TXl7LGogXqvB5xdhQBRtyaYqsd8j5W1Rx5CW1gj\naJUA+TxwBuA2W2YAfyYwcnv1MSHCGomBmirosimWYVXsoLdlbB9xeitPk594r4sIa0NF5EGGtfYm\nOPtIH/8DAO9W//8YgI/dw/N/CsBPTbzn5wD8iXs5zocWfPqBcKcFmKbBH/NVD8z7mIINjEFnUyre\nK7MuMe8yxPNAOtiIrfDDqEdtwcdTxT2o2pBzApUFfmc8ZwPk1ZeBeNhT63gBwFpN7FctRPDK4hjk\nfAND+S2A6bI7GhnPNb1x12bp6bZ1vQ9K+lIagAZXNpP5Eh0pCGWBZ0PWoxW8ZYDQA5DKfrjXNQFA\nUsEThp9TOT7pbuJkfQvXVyWuL2sctQavLAlH7rIuZv8/e+8fI1l2nYd999337quqrqrumdme3eWu\nSCoUFUiWAyUiKP3jRIDimCYSUBYkilYC24liIbYEG/llUfY/DGIBK0eRo1iGbEIWLAVyKMKAIiam\noFiyhfwj2iQEJRapIKYkcrnL2fnRM93V1V31ft78ce6599z7XnX3LGe5K/UcYNDVNV1Vr17Vu989\n53zn+xQOjAqgYzpfjmMA4rkyyajiQWc61hy5A3DoOh5ABcZnX0bEMZliHGd562jh5Wwmd95Msrzm\nmeNMa3eWDlH2IzyJdE5SO3JYk+WmAPqeVI7sAzig7pXP9mnuro2+66M2J+n71iayL0kjsvY4fQQ8\nPBk+n8+gHEg7G4rHMVh8GlePaws+fadwdDRBtaixP+1xUCqYLGQb/NNkU6/MCwR65i5lAp6XARBM\nvHq6qMYUEFZ1htc2wKpROK6AgxJYFsCBUdg3xJpbGe1UsAunqRYu9oEFNTC8PWLYBiBIr7jbfrBR\n9htE9iOBJwimIqpjU2npFMjp/ecTkQH5bAOAKaDLwFjqMQQgIKY6S+Dh33dlPUqXO2v+0fvioduk\nBCctCACQdXTWY9PcxXF1ilfOStzf5DipFe5tKYs+dqfswACr0joQghcx9eeos1iaEXHXfkNKC3yc\n2RS569couFkvzujOz+JykwBcWXbiuZbpZEnP4Ugmno3owETvl8hXZwD6UYJkXlhHvLhaz0LqooVB\nbCUGsIfOt0z4MVkTsvxdwe9dZHm7gCe1Kcf6HPbRSXiepgjEBVPQpqOtgXKCrm++Wn2aaxfXF3xE\n+kv9HosDA6JFmx6HkwaLYuKN0QYMmZHgVD+YxcWLiwSeVa2jhWvbASebDBPdQ1Y2DqctDictjF7S\nwlStg/ZYktVI0Inst3c1mC+bzne3eQGXwHN/m+/YERY4nDgAAsgtc+9mAKADhP4FKAMipeLci40C\nGEzwR6DDu2+Z9Yjmutq75ZWJ2UIh0J3b8DnKeai29tnegKaujWezHVenuL+lEhtnO8fV8Dxsu1B0\nnGjlSC3wZBZPSEnIKCzw6pU2smnSB3IKCPLY5YCrAyKea5GqzB6A3GupG6RSkDlx1/x2i0yUQXtR\nEc1KkIKEyzYHVgRCTUICD5XZ9GDDxfuMfQ/Ovc8US72B7p03lCyhtjVlf3LwVLjzpsGK66lN+UCp\n/BKx2CdVKuuBp0Am4tqCDwCYskNpekxyyjb2zdC3ZqqXAXAcRTdWoIa/zVTlLgGezrbCKZR2fSc1\n7ZS3ToJn2wGlU2g2GQEiH4vJghX1QOqf5zWaJgYj9/MiWqzacdH5hUyodafAwztYGaW2WNUAUDiW\n4Kl7PzOUezehcgObyqqIBnrvUNduO+iFIwqIspukE0uFY99g37sJtf+8F3xl6nOYK8kjfxmv38dA\nlMfZXtCEo0V8066wanKf8Wy7GHjSdggAyGRu66j9VdeL7FpkRJoo+4eTtC8U94H8/Iv8rNIpflZm\nTliUHoA4s3Pfgdyd377MvdI4J33eMl722GRomWluxes2g+9L1YUMkQk+9N7D03H2s+lWmOe3CFxY\niTopOfvyoouI1bhdB+WKhydUchaeUkCQGfKMT1O8YT2fpxHHtQWfLLMwpqNsp7B4dmp9lnGjzDDN\nF37B977zaa+lQijPtKE8Y/Ip6pHhNC41cH+HS20yJjl8BnY45WNxWc/5UXwhAXFWIy4q6ZsDxJRc\nDlW6x0ptRrHrt0qh7jY+e5ALyb1NvIMLTEHpiNqisw8xzVtAOxUHuJ23DgwubqDr0rmb7sO/h6B9\nH6b7fSlOUood8FRZj7o98se9qjVWjUGpeyyLbWR2xrRezoag+T0Ru5AUjjnrO410+7YdfX7pOeDP\nMA0GIdpoEAgBAXykdxIAHE6oLwTQZqTuqXGuuAzHM8iux+P1ykS2IwVvpdp0lAExoBUFtGO/qeMq\nsrwYMAsZ9JNSJ31fzv3r0rnX7rxlfpOVVld5TAGgOTnyWKLj3agVpvkyVkG4iB7PZJx0huvRSShB\nV23kkqqMqABcgUDxesNa9bR/JOLago9ScL0ei+emLstw/6b5fgCe7TpmlcnGfm4IgLShOYTcQG0B\ntWf87pqbp1WnPaONgSeVOptoAsJ9YwflNsUsnfOzaAcHILqYUqM2DnsK0aR3GUapoWS1QpRyOHvg\nrEcuJPc2md+98nHzgnJgVNTjoJ08mbhN8yUtfE4J2fKOXdCIlQBStcB4eUT+vLkPLG4I6vMx6m4T\nUZ9Z4shLHWU9Sr3FLG+950xKIkkl9cmfqfDl0lWDwecHBOCZaDtoj0gACudOOdCSoE2xLFowaERE\nBEeA4M9MZjudbVy2x987JtCE5wLgPwfpD6VMgcwUyJbn6FcV+uMKWUC+qMc2VnajY2gj4Lm/yf1m\nywmaD8+ZyH6qTqHStEhrFZQJ5GejdaJMkMxu+TLb+VnYqCXAI3UGeRNmsbsa8DSefFxb8JmaHl+/\nb/H2eY8X5zUOJy3mxc1Q3lrdp+ZsCjjpzugiBWmE2ZdS91iazi0GObadxTL5nk80/PE8N1WY5u54\nqi3syR3g9BHs3QfAwxPv7yKzmxRwohhpFPvJfcAvIkqXQDl3wHOOutv4kiG/j4nOPODIUhPf5gVU\nNpcPJ07rzDahD8RlOJkFySyuaXbW5r3SwOIG1P7zaMsJ1u1DHFenDiRDqeekJvIGHb9TsBgpkUlh\nyZhG3qLUFoeTxvUmckx0jtuT8d7fmOko30dzZQFg6t5i1YRS66QLpdkqs7upxyJ2zaH45+lpdo0p\n+7xUT9OB4HkzLIU6xeuLsh4yxCvRuTJn2KhkO4FH9sTo3KiR7KdB7c/lUGWeS6cmn3oQstVp2Cg+\nThaT9D9tV3kprDJ7WoZ7I+L6go8Gvulmgxf3ahyUC8zzm7TIn92HZSto+QUe+yI/xi6JdOM6f7vU\n+eD/S93jxb0Gz0xMrLicAE937yx2sxQeLDsFJxH3TfTtPfKyv7EPHBwMNMoYeDhro2PscTjlFeTi\nrw7X95cGvg9UdTVulFxKmgUx1XJBi0a5Dv0szoKK5LxLsJzPKAMo56j7UweU3NQOPamJlrM3Nurp\nRf0fYSHhWXKOdc+U+VI3WBYdlqbHqh5vHsvSnIwdTtgBeKLjZJdVI47RZWetU712Gx8pDFv3gNHk\nUUXMQ6mwHkdnm/ApjthhSCmf0azHlTuxd9NnyZ1tUPW5yLji98kANBG9Lj4vpfO+WtXwG54y67E0\nq/EZu3TcQW4WL1Fx2BnicWy6yKXQrzQeU1j0j3xcW/CZ5D2+fr/HvLiNWbaAXd2BPXltOIjJMQY0\n/P87hDY5JPNtWXQRw0kOky6LDgflIrhqro/8XILMeNh7BRg6gdqyC5TkHaFv70E9+wwtHgcHYXjS\nMcS4UZ/O8nAcTnlmI15cgtVEeAxN/I/3gdjC3IOQLMW1OxYQCT4OMJkUEUpjWXQMYTGn7GWW55jm\ni50sxoHNhFOjoIHiKUzWYJa3OG+HAqAA3NBp5odOOUPcBT4cEfhkFrM891brfjrfAY/tqkiRguex\neIFne3QqtbGuYFxWBBI686iunQ7MQknwuLlP35u9W9FmhYA32IukIQGIg8/LxH9/tBfoZWbgsiDg\n5/koADEdmzeLSdbjWZ/p+3K25APyBIcDMfKyOh3/m6fxFcW1BR+TaRxO3gm1PoJdfRa4dz92rhw8\nIAyheT8UTtWFH0saOiu8R1BQvO5xOGmF2KhbYPQylP3O7nh/GXv3AbCmOnx39wzd/U1k+AXAKxFj\n3cHM2xiERK9Hv3hA2Y7rlfDwZERNdj0DAL5sk8bhtBVOrUGWiAEpVXVI+0DL4hSzPEenBQjNb0FN\n5gS423WsRyZnWgA/+CmzHkljl0GzJL3PeKb5whvkDcQlgchmghfKaJedkc7edOTqIbmlDR5VDZam\nJwByzfZQorS+9DbMevpB1jMKPC7zsQCRD3JnZ52XvsJaA9A2yPrw8aEPfZModllfOHZhxCxkbTsn\n3Omz5B1ZjwTfMQACWGtRReQV2a+jjFO+lyAW6kkGV9B/U6Umg8CUGVI3RH6pmzA0W04itfmn8eTi\n2oJPhgw4+gLso7s+q7hqWCQAdEnfBwiLF+u/lbqLBlh5d0vAcxT8ZR7SXEL/YI3u7hn609obfqXB\n7p59Rc6fAAAps//MfAg8bgEB4P1O+GJj07VU143jUdW55nCwkpBlnphWq/xMBy9OZDMRQMgLpy6f\nB0o3n4F1DDjSoyjJeqquGKiKU68tntua6iUN6ybUedYQk9kES7MMI16Q0nN0o9wA4FQnR9kpTFwp\njs6J9cBzYILZoATJYF8+Ajwd9yId2cWpk6uJUyYXWQFLPgEYUM39+x9TEUBQpGDBUt9nc7NUgejQ\nJtkmfQ+qTo32BznS+5gNR48Jgr9V10eluBtlADfaPCRZj1TzGGG5pcaGTDSwbA/u+kdkr/BkwKe3\nT+d8ZLwp4KOU+h8A/EegzdnvAfhPrbXH7v9+BCTH3QH4K9baX3X3fwuAfwi66j8J4K86NdUSwM8D\n+BYARwC+11r7hUsPoq2AL/0B7N0H3irZbtsgST8WYgfuv6SyCe5mLljShRq8w11YOnMS2VRvHwaK\n6MMT2EcnEfC09yrvNJmbePvIv7PJGqs+62f3YuC58WzQwBIT4bTDvvpXYpqvcLR9hBUQLfrVCKuL\n7lcRMFwauSHNOfm7VB5wWY88xzw/Q7dpQT+ctLFldlsB24ejNhMABtlE5F8EDDX0tEHuzluYDQKW\nZuXfNwNu2dHAKSuq7xsbTfnLsqDJZsR0HAMeVjhgxQIHQmy5kZdzGlBVBWpFtPzUUkC1VZgbk72e\ngujv1tCireagrOfGPnDrdpCxUcrPEWmVo9QNyk7qIfZYGgB1Nig7XlaG3AVW9LlyVkgbNqQW6Anw\n8PUNJGxQCL9hYTeOoqHzqw1QrjGdLHcf6NN43fFmZT7/FMCPOGXVHwPwIwB+WCn1jSBp7z8G4G0A\nfk0p9fXW2g7ATwP4iwD+BQh83gfgV0BA9cha+3VKqQ8B+DEA33vpEdQN7JfuoF9V5GlyUgF1D7Uw\nsNuWHDF39U12CRJeIcYGHU02DdPY4iKyZ5Tx9MfU4+lPCHiqM74qRwDIyaCoiUa2MAQ8b7sRgIf7\nOyNSJKqtwhdCqmaPhNIlFns3oacFSn3XKR6M7+ouXkjsOODltJO3eR0sBiTwTKhMKJle8ZR8WMi5\nnFmqSRCWvGSQcMxmQmYIPkviSUw+tpzIIgBZYZR667Xd2H6DgDrovvmsJykLRsDDLC4GCikOWzdg\nhXLb1pS1AcjLedKgD3RyZS2VdlNlZxEMQgAo45HAk5ejLLtS907Fm78LBEChLBsP5Y7N/XCMfW9Y\n7Jeywmmc9aQZz/o8olanJJ1eAJAttR8yTbMfdYXKxlXi6ZxPHG8K+Fhr/0/x66cAfLe7/QEAH7PW\nVgD+QCn1eQDvVUp9AcDSWvspAFBK/TyA7wSBzwcAfMQ9/h8D+CmllLJ2hwYOR92gu3fmQYenulXV\nInPT9WrS7c6C0rjAQwQYBx2f7bh+gwcel/HYoxX64wrdg3P0JxXqNWU87DbJysMMQN5a2gFP/vYl\n1K0lkQskscDN8XAw8EVDtO732DESIfMDgMUNzG69A7p8EVrdxWsbdoXtPUOOKbZyIZGKz9H52eWb\nIlURxPF3Pc+zhBIKs9mWpvPZDpczsX0YZkD4fUWCkvEiE5ntAcN5LwCWS4Fu4JhLX0ZP0ekGM0sK\n5gBEeTK43crjpb7f9OrAA8QbIQYh9/motoZyQ8/+cxbGadJOfWefZD7zqtFexkaz7NLQlpqzn5hl\nt5txJyH+Ior6EuF7wz0wrYpB1jMGPP1xNQAdJur0CJuQbF8MnHLfZ7sGP3sDdgAAIABJREFU9BXX\ngLdIKKVuAvhFAO8E8AUAH7TWPhr5u/cB+EmQytXPWGtfuujxSqn/GMB/K57i3wLw7wD4/0AGcu8C\nVaz+d2vthy87zrdCz+c/A71RgHzFPyX+7xV3X+Nup/fzY74EAC6TOgFwC8ADXBC26yPg6U8q9JVT\nW3ZfSL8juoA5BiBiu1mlvHiWtAgeAx5Pm5UT2ednfnHpT2jSXApudo1C26jgt9LQLjM3vS+3XQg8\nQnBykHFt12GB4wt5bJFG6HnZ3KC8+Q7Mi5s4tJQBlZoWVtYzA9KGOrG5eMFlRtdo7AKeEYAHMA48\nrpwZlWbS9+UzCHEc7AU0NmQ88ERCKH3lBtplL9TLWlE5KusceSOoG0h7dd7Na5X7Hb1/bUmFvoxG\nnDtpGacHF6l4pxntLrUAATpeMVpI+FzkcRP6PWP/N7YnVBcyAum7E9yAfdYjy4ZSbsoBT39SRQPX\nEnQi2amyp7+bdLHqR90A+e7s/y0cHwbw69bal5RSH3a//7D8A6WUBvB3AfxJ0Hr6aaXUJ6y1n9v1\neGvtLwD4Bff4Pw7gf7PW/rZSagbgx621/1wpZQD8ulLqT1trf+Wig3zDwOcij3FrLTvj/Q3QtvAX\n3qjjSI7pBwD8AAC8/dYesv0S/UmFDDlsSVpWnDWkQ3UAxn+ODGdKXS0/oe3q4iybz43kyDo5r+MF\nfkJMNb1fojsB8qpFW1jk/M/00IXFZK8jufv9EvqZGfSzM6jnbxHwcHNYlErYYgBAWEy362hhto27\niE/p+JXT3Bz0vPg5RDUhqBRnKLX2lFmvIuHKS1oZv9OX4W0PJvOdMjI8VyJnkaSTrCw3RQtsbgCc\nDz9Lvi0Voq8aqYtsWw/EZ5mxlcauAVBWtPZK1P4YL2Zi+kiPXwIQqFzo7akBctNw81USdLwnED9f\nV3taN8BjBHHzfhdDcvDeR0pwMpgFyGK/y6JzG4pZIOYkStWyf8ubSwAR8MgYuOGm6g3lPJRWv8Lo\nk/f8BsYHQK6iAPBzAH4DCfgAeC+Az1trfx8AlFIfc4/73BUf/2cBfAwArLXnAP65u10rpX4LZMt9\nYbxh4HORxzgAKKX+AoD/EMB3iBLZqxj3FX8V8ZuRfuP8mFeUUjlIGexoxzF9FMBHAeA973rGZvul\n5/tLxeTsoKT5hoVjuSQLVWRiJYYzz/tTvyCyjPyqoYuWZF1qlHqLUlvSO4PQ68KadtBObgam8OKZ\nFi304RR6v4c+qTBZ1b7sppc51KQM/R0mFjz3jJ/DYBp1J7zo/e56ux5kBJzx8O4RoL26KpuwI74k\neCBVzmsMy0vT0YzHW1I4NWf6JVZqZjo4zfbs7jfR8yc71zTLkTIx0ppALDqRqZsM+Ty8uIu1KpQT\nZWkwLkOtGo0lOmhFNOhN36DTTTwDxZ8TEOjn8v1EbzpWuvYW3QlxQgGwEwi1aBOAlL/XaTAd3QMQ\nKQ+wL1Gg3mcR0eKqi67s8UgyxrLoiK2YTVGqSTSKwN9Ze7q5MNuJ3ntSzfAbzfmMrh9pHviEej5f\nxXjWWnvH3X4NwLMjf+MrRi5eAfCtj/H47wWBVBRKqQMQmewnLzvIN4vt9j4Afw3Av+dQk+MTAP6R\nUuonQISDdwP4l9baTim1Ukp9G4hw8OcA/B3xmD8P4DdBvaN/dmm/hw7Cm2jZMohuSrXkC0GHd4fO\nR6SyW2xacrYko7gimjnhktPS9G6g9NQvUgxAqq2phzCfAWfnkSIBPQmgTQY1qZHDGXstDM3v3N4L\nF87tQw88rNEmwy+I21MqKXC9nMUX10Hbiy9iu+2Irg0E91Oui18QPB0e6MN7nuGXRko86GwDzTRw\nziaddlnQDyviha2IWV0A4mPUhhbv9PN1C24EOnLR6ZyXzkVusaJMp7p6MEvjy1EjWQHrr5WaZlc2\n7WlMP5dyRDwDtSukJYTrQfL5GABQboJKNitHJ8A7GiIDCsZxLgMV7+8y4Nn1f6wwz+Bzo8w8TR7r\neBSBN0ssBSTJBJJkMFY+94KppR4I1UaOuE8grL180FjEM0qpz4jfP+o2zwAurizFr2mtUuoxKKZx\njD1eKfWtAM6ttb+T3J8D+F8B/M+cUV0Ub1bP56dAX/N/qmhX9ilr7X9hrf2sUurjoNSvBfCDjukG\nAH8ZgWr9K+4fAPwDkHf45wE8BLHlLo9MBVAxRRCxlOACMc+T7pI569m7hSrrsW6O8GBb4/7WRJpi\nfnpb07zCqqbdHKkEnKIrGsyLWwRAkzlQnXrtLMsqw5ydgQ3UhKvnfkm9Hd6tcZnNyeRsWkoCfYPW\n3fb1crF75DKbb9Ke1kFeH8HbNZPnQwQ9v00UHFydPpt6b6Q047mof8DA6Utt3SbKdi7bUe/yXkqV\nEga+OED4yWXRq0jt7wCnMAcVhx+i9L2gYCnd2RVqtfGLbqQEwVnQ2DElWY8ss44BEBElTOSUeuGC\ny0DrAJYzIADONmSocLCLZi/PC++z/AZNZMvMWFRMMOBRBAaeVTUgDzHo8DA2z75FIGQyqnQspkG5\ngTchnPXssJN/g+OBtfY9u/7zosqSUuquUup5a+0dpdTzAO6N/NmuKhMAXPb4D4FAJo2PAvjX1tr/\nadexyXiz2G5fd8H//SiAHx25/zMAvmnk/i2A73nsg1Aq7ODl3YVYVNN+QFKeSYHnlTMyGWMhRalc\nPclZ6ZjmPGggUuHFvS2AI5pByZfkqNnWwPwcaBoo7rlIGZD9MPTnL5hkaHTTrbwiNQC/+LNumf/g\ntQFwFt5/mUdy8wDi7Gvs3CDMjiwLatLwQsODtCYLZTbPunIX9ZiaNN/mn3GZLVgbPP7cUNKfSYEn\nNSWTjqc8d/Q6/F4u3v0HVljVu0w5s6g6oHSEBVYF91mQP/5A+w4lsdL3+DhbjN4S063loir9jMRz\n+dsXgBE/v1S7kOW2VHaJWX7+LQiJKQAjJdo9ob14BDy6G5WHeVwiDfoujw9Ie2+o0s31zQXwsOqH\n8LT6QxZcDXrJ/fzlkb/5NIB3K6W+FgQ6HwLwfZc9XimVAfgggD8hn0wp9TdBLY///KoH+VZgu705\nkeeULchId/Mp84kbsI41dt6fYl3fxRfXCq+sJ/jiWnmPnm0HVHWGutYwpsP+tKfsJycl44lWWBqF\nVaNR6g2MnZLj5t4SuSuvKFYPTo+Hf3JdOnHu3FT3hdV1jmVB/QSmxmqVw+ZlsI52kiQKgD07990I\nO9GA6/lwL4wvVA96TL21W1IAHvHLGYCOpPjmxi+CVqlBAzs25Qsip2MxBkRWKcoWpA1GJ26nMbbQ\n8ufeCguCPCnlSeUFtnfoVti0p5GNdNoL4Ui16OhnWIy9KrjrBZV7N/3f+0cy/ZvtMNqjiHEZvSVV\n0LmRmWFCSvDnIw0uLwq6e91vsGryyPNIiqtG1WPBehzcJ1iQRu/5748HnrOHO4GH+6MZcq/s0Vca\nSnhaec1DJzmln52FcrUro6u9W5FVxZOKHo9VdvtK4iUAH1dKfT+AL4LAAkqpt4Eo1e93zOAfAvCr\nIJLvz1prP3vR4138uwC+JMtqSqkXQeW+/xfAb7lq1k9Za3/mooO8xuCjiYJ8UUo9QvNFyf2deziu\nTvHKmcEr6wIvnwFfOFU4XReoK426ylBVGnWlsVjWqJcNFvMGk45KcCaz2Hd6Z+RWugn183KKvHwH\n1fdnzultzDZ5MkerM7fQ3BMlKQ0gNOFZnr7rcyeS6Upwkk114N4nqLnONHMOP3Qr6+IJE8jrkAnl\nBj+vMiZjk/QVlM+E8oGlwS6JH454wR4hH+QmvNdUCPYqPQ73GIVFTD6Qg6/uuVLgoR5gDDrSSlr+\nJOsc5Zhe9D72jfVZ8sy26DSZ8w2CNd0c6EgXUy55pjEAoF2RgDIzJ1NBUWkcx+9pDHi4tAbw4GjQ\nOZSgo1URvKwSR9JdGY+0D8mMAQRvIrJgL3VcshZ9UmaF7qL0v5XDWnsE4DtG7v8ygPeL3z8JGti/\n0uPd//0GgG9L7nsFIzPZl8X1BR9dQC2f3/3/6e7XKz4/xKY9xWsbi1fWU7y8znBvq/DF4wx3Xt3D\n+tSgrjRaZ69cVB3WpwbzVY36cIv5osbW9JjkCic1UGqNlaHsR/e0aNc90KkCZv9tgXGUzFgQ1fgY\ndbVJSlHjiyjNkoTsp7NOVNPVti0AzF3Zho3d1iELUospAQ/76LCdQXKeBkOS50eDshDflppkUr9t\njL4LxEwqek8XL5peuVknmQ/fHul9RJH+vwAg3x8Rw8X82aTAI/XsZC8wDOBSeVbqmklX1GUNUaZt\nvGwPgIF8kyxZxqU+2sHzuiyBKAKgkezHdlVMwnAkhojZ2Qf/nlS1gN+T1K/jLKfUvafdDzLltgK2\nR6E3KZmYp+MZya6ZvAhwBKEoVf6QpcpQ9n0yZbf+8QgHf+Tj+oJPlhOjJQmmpaax6VZYNw/xqOpx\nf5vj/ibHF9cKL68VXr03wdH9Cc5ezTE7rVGggRF9k7PK4LgqUdcat57JMF82mOgGywKOhKBdaWwT\nzQJ1toF2JbbOVqjb48gaOVgUT6PdplQS4Ci1BuCeV2Y/TMvlHX1ugPMznwH5syEzHjn/4JraRhEt\nPWjUnYbB1bEmfFuDhkuGUjYs6MnKx6wdRsZqLZYAVggeQwA8yYHlejgLk06XkQX6V9JElgwo6STa\nSyfRMHvEqt4stCr7gdsOONlkbtNC2XJZdjBlD1N2vmRb9xbbji7XQ+cOGzf0XZbrmWbh0l4WwxUv\nUoRG+N5HWdBYyc31QIJ/T+sznqqLgccDqJ/VSee8CmFlLqwtGHRYy04OBrN229gEqwjf02FFbiBm\nsXJJmzN4V0pnE0UP4iPajE/jycS1BR+LfryRKK49/gLW/bnPdu5viFTAZbY7X57h6MEUeKXHwchu\nrC41mlJjtmwxX9QwZY/FvMFBGXaDALOe3G6rj/smAAazQ0zjPqlpQeMd9LKwYuccJFzke+Lsh0o8\nYc5IYTF0FpXaXu5CjQYPxSI+UExgJt2uafy6cWXF+YUApFUDrZ2njmpQ6s1AnkcSHCJlAykbxDpm\ng6FTDH8X7yv6nui4pFf3pxFJgs9xaK4HvbnIzbQldeuqDsBzujKoaw0gXvS3psdxRaXaySa+ZNO+\nUZoNxgrZqRL3kIjgB3z9m6+jkqIUzQ3PoX05jV1uQxnUDkDH6MUQcHiT0J7GckIs8cRZD2J1AmmL\nEN1OAQeIQSclEI0EA8+TynyeRhzXF3yspQb/DlkXvriYMcbZzpfWOV4+C2W2hw+m2Ht1C1N1KKoO\njeiT1KVGYzTsMoMxNcqyw3xRO3CwUS2cmtFy+SVNsFJvQp+gCbNDdzcKqyYu2QDxbhPYXZoK789l\nK+UcyGtHuS1hJ3NyFp27BTulnyb6cABiLbJqDRwf0+yQ/JtdbMIdAMS9Iz+r4mZntJL04fA1HgUe\nXsykxAwwzn4DPPBwRlP3ib6dP4fDRSnYplsvL8MbgIkeupvWdegP+vtc9sNR1Rm2useq4Xx092Ur\nP+9AU967ki3ARfNAY7qFqZo4WZT34nc7Cjr+8+lqoN0C2MZSQqmOndRsu4JXz5Xm9HYEg+EbATgW\n4z5G1zWuL/igH935pfReGhrN8cra4N4mi4Dn3qszHL66RuFWmaJuPfgw8JwvDWZli8WyxnzZoDQ9\nDsqoJzoavKNdNaFBzZnOvS3w2rmKGHUhGrx9bncqSbOMi+zJk130lBQFHOXWgxA31AXocKmJw+9a\ntyLj4caw9EkyBSWWfPE3RdylbA3pkYm7cm0AxSSEwg1dxrp58vMbBZ7KASiDjlzAuB/EPY0R4Nm0\nwclSfmcuW9BpfkeWB+mkbzvx2TnQqSsdfY5VpWHKeKWi3rpyFtT5KF256oINN2vcjR3nZYvrAIB0\nPDM0RgJhsAFwMehUQiwVCD+lbp704bkC8HjQEQocg43OGOhEg8T1ILNlev/TePJxbcGntx027alj\nAeUR8HC2wxP09zc5Xl5neHmt8KWHBe68soezV3McPghy9EVNX9Ci6nC2NDhfmPFymwlZjyxPAEkJ\npVdRo3pVZ3htA9zbUJnt6Ggy2DEDgDEd7uket6eB/RWX9oRIqVg8KANyFsU6g84XUNbS4CsQNdQ7\nuwXsSJmNfYhYZ+to5eV5qPbOlFi3iMxn5J3CIp8zEGBgCECBhk0glAaDULS4cb9J9i6kGjRAlOlU\nzVopPydVdxs8qnr/mchLhuSSuGEeSqTsXEt/Y73eXNX12HaZAw/nZFp2qKsMRmQ6puywWDa+51Mm\nthkrd+gs3BqcP1nKKPYw2inamsTYZkwCUFxqC3+zNI1T8uhRaoyW14JK98PxDQHHY4IOAKL/c0lt\nbzbIeAa3LwgqBbreKJpL6f2PE6Rw8NRSgePagk+mNOYFEQ7kxSmpo6tG4/4mx70NMdrurjMc3Z/g\n+EEZAU/j+jpRtrNssWcqv5DcurXFgQEOSotlQe6VaROWF4+YmhsDz9019QiO7k+SjAe49Uzcc0r7\nPQAtUlq16LrWa3LprPD9lKCCEICIoo0m5QOFug7ZDpfZnPMqe6gAcT1+ELwrTUs9YmFSAKANcuTI\nVT5skHNJTS5uUn16tke/pwuS0HLzs1IdbT6ChE9qy937zysdogWAOts41fAGs7xNFvUcjsiOie6x\n7WhTAoQsdjFvovJpGFBOmHA6fMZSEeBGmWGa3/QmhRyXZTtSeWIwk5Ubn4WabEbW5+x42+e4UYb3\nKQeaYxJBkvG45901tKuKAjbyLKKfktEmsx1PIODPVv7kkEDGFhR/uBwT/sjEtQafy8omPJdxXAPH\nFTyNeizOFgbnS4O8tDhYEOgwa2m+qC8FHr97Vq2zDI77BjLqKi21UcZjyh6l6d1iFS9MgOsr9cR6\nA4BSuwuRlbcjh9VG3BdfwAOvGS6ziWxHijlSgzi5wpk9lzZ905mbdNLeRTQ4OuZDlO6YTZLhjAwN\nE5V+5bXjxgzySt37rEKCji/1AcjLBWVpGaub51gauTEgADKOocd9gG3XA+hdZhRKsww4sR+SsKfY\n4WEUGcclLM60bLlzCBiOau3o8NKgzmdC7jn8TNHIYPHAwE9Sui8AoFGrC4jMOGWu7QIdYAg8HC1p\n2ynMBw8hj6KnZbc3Iq4t+ChktGAkYbIZNqAaP4PPqlE42WR+0S8kjdqV1+wyG4AOl02enfceeFJf\nG8lG4uHKpVk5AkIMMNuOGtRVpXG+yjFbuovddFgsa5iyGyUzpLFqtJdviaN3qtuSbdfCZFKsMw/A\nc3Y0sPvuj6nMlsqa8DCgLJHAiAVjh42B7SoS9UyD7xrz2Rkr1azPCfU5EuCp7Nb3d1LtODnAejhp\n/eI+6GEwm24yR7l3C9aVvGp17gB9A/LaAkqdYd+VVTm2XchSh4OZserBGOhEM1bWUp3HLfAKoXzJ\nKhcc0tAw8vqR4J7XNN+ENVRuYPIpOsugM7I5EUA22t9JgwFIGuONhQSXugmzZ4km44WRmvHxXqet\nAUeiIRp4G5VQv9LoLTA2E3td49qCD/qWduzJbpiEEnNUfYOqy3zWw4s+R11qnC8MMdnKDvPFxtfp\nAfha/YGhsgmXTFitl0sk0hyL+05d1mBZbL3oJJD53XHtVBOKqkNdaQI4BjtD4MOvxQZcadCiyrfj\nHbEv4RROYdntZqfaOa92/RB47j4IrrDAKKXHbrtQekvprlJJQpfjQ6ljv+8CnGThsk0DhRnRvqVP\nzQ7gub8tonNTdQqHkxZLQ34yU03go+Qsk3RHna9ht2uovVsoJ3NovfQyLTfKjcs4i9GS6FhI2jL9\ndLI7bDOQgk47BA+vxIAAQoBjKLaJi60kAIhzTVJMNBOmAK84LjPj1C01mq1Kg8usYxmQJ6UkIJSU\nTXfSpne95hioSZ8ja90mUDL5Xrco9NO4IK4v+HQNlROAnTx/ynoo46Dsgr6QD6spTsopZssWxtQu\n6+ijpvEbEdtuWHIzhjOtYWM6fi+Zf0+pUgDfD8SMpbKzuFEy/TSPDbzu3fdltu7uuVfAznZMmIcD\nTjIeIJIO2qWG4EPSpVNWVNPEDCcXkTK5AB47WRC5xJXaHlU9Vk14PC86oY+yj6le0nk4/TKsBJ2R\nbMs6SZ98Mod22VKdbWD0BrN8g87WA8DZ5UskMx7OSo1exmoS9VDCKJy3CqiCpJFifTbOSrhkCYwv\n0KYYeP5wv23XYPZojJXYxjTlXKiiwK6l/8KMJ32dXSU37vts10R0cb2tPFtgqpfo8ubSXtlV46uo\n7faHIq4v+DQtcPIa7P5zAYDaGjpfuJp2fAGWpgcW4cu8PjWYL+qoxCaDAeIYPQ4QnBonXmbFAu56\n6fpG1M0bPzXOhAOaileoalqYjOlwXpaYla3PeiBe4+W18hPxKcDwYjfmGjkYUDRdvOCeHQEnrwGv\nPfBltu7uGXph9d1tO+j9pL+TOEVGYMBCnzosaqMlmktAh056A1s31EtKYz4LOm5iml0CD7mKxgDO\n2YWfH0oELr3rq3t9IGbqMa9NTehiyx0DrNNkijfn74AcUh2Zquc+i7RiL9WEzgtLGMmshSNl8vH/\nV4jLlRJAd7HE8jqmpbsY9JQEcYQnk0aP6TJ18EtYbpTRvs7nTl/HWY9DWGowtzF/Qn4+TyOO6ws+\ndQO89oAWrBvPUj1bfMlId4otEMJiPXcAlIKOMWE1Z+Dhn1vdY9sp32Dm4MFS1lzj4bbONqj63Mmy\nOMmSZPOVlzZ6TXkboDmgIBEadMNYCUGyp/j/D0xQRCgz60tMA+C5+wDtyyvY0xrdSejx9BWQlaQk\nnCWMJO8UeVmMzX7I/3NDhynoyMzDpmrgUhJIlNok8KSR0oW9l8zJnVBubMb7S9Y0UFyCy50SttBH\ny3ODPDco9c1o0d6lJcZSOBFzrKlhqztDkgUQACPfnVFEIC5s0/3j+Rzyc85nlCE44zmaAxMgcwkA\njYYssabHxsdxCQDtfKyMHeXYscfZ6pQcheVzvQ4LjadxeVxb8LF1B3v3AXnmALA3AJXfuvAxpelR\n1Rnmixp1qaMFPy15SQDamh7bNmQmpfQ7yazTLBvOWbBWFgFGfCwMeheV3HgQFUAkXMkZFBMhmFW1\n7YAlqMRzo8wC8JzcAR7dhb37APbOEdqXV+juUw+DQadt3BLTAAYVsE8ukWnWc6XGcAo8u7Id+XvV\nwlYdDRuuz2FlI1rqd00C8PAsV/QZO0l/2cAv1QRYH8Gu7hCd/O4DbzM+Fgqg168b6jMBNECLQM+X\n+nASlAB3UUqZH85wtivYrqLsJVUBkCDoz+95fK7TvpiYpWELakDooS2mAYjW7rkucFAdqGOP6efJ\nLKKtPWsxeiQv/i4LU0DYaCQxmv28HtASxxSdW84In0A8ppPpH/m4tuADa9GvKmRz9wWbrQHhWc/N\n+onOcFCGzIOymCHYjAVbKwDAZL/BtlM4rq0zkwulN6k60PVNJERJgBEuL5ltLZYX78i2HfDaeZgf\nkVYPALBO5o/4fS+LDtP8Bko1gT0j4MHDE+DhCbq75+jub4agA6CtM+TuvNhtB7BF8UUzPleNS4CH\ngwBILBZcbnN2563OUHdr1N3GMdnC51i60uOAzXb2MAAPzzGtRnbsLlTpjq3gMtZIj4MXudwQmOQm\nyo7S3bbXphspk6VlPzQFVF0MacoyO+RzKKwJ7GBl3JDDL0Aaf3XjB4GvPBujTfwz/T9m40kQSgz7\nBu9P3h4xhHxssPDlRvdZcWbNQ67rcXmlt2oopW4C+EUA7wTwBQAftNY+Gvm79wH4SZBBx89Ya19y\n938PgI8A+AYA73VGnvyYHwHw/SDa5l+x1v6qu//PAvjroHLLlwH8J9baBxcd5/UFH6Xi3bi7ODj7\noMZ7j2ensVQNAwELQ6YxutCvuCzWg+VRSs00bnriG2UL9FRyoSHTsKhPWBdM9J1Og6o+6koTOXze\n+KzGZ16JtxDfP1/EB28yYuIdTltiUGUz2v2dvBYx2roH5+hWbQQ6HLkAZOVod9IxcpTlJn2KXk/w\nzlhmIanluXazQ9oAaH0Jy885RedhOgSes6MIeHZlPABisz0WYx0RK90VbF8QlaNGduN+YQSGi23d\nwJqCQKgoor/xoANc+l58mZSzR5lB5mYn0eCyDGgwILyrz8fHLRf/EQq9nc/i7GdXVj0GxmOvlWSE\nlyloXzV6G6oOb3B8GMCvW2tfUkp92P3+w/IPlFIawN8F8CcBvALg00qpT1hrPwfgdwB8F4C/nzzm\nG0GOp38MwNsA/JpS6utByf5PAvhGa+0DpdTfAvBDIADbGdcXfDLXiyjEQpibqN7O+lgHhk7TtgOW\nhXU/AUBFAJQCz+nKYH1qAhnhmS1oiJAeC2ELcN4StZnKceHimWiSU5nkwKQDYHrUZYeyDF/iunIz\nSJE4ZchwUt0wDp4LOiitG3ylgVejly7r+aKf4enunaG/T6WZtlGozjR0YSPAAYC8sIPezmjJjYEn\n3wE+bPrGpbcrlFKk1bj/XMeeG9TAT+8dDI0y8DjJoJBpdbDbdpDR7QSex7RviBh/TApgdXDhaeP/\nPgEQef4tEOjKCVhxqXLcgjp8ZpF5oCtdsuHa4xrUXYkZ14UyqwRZfp8SDFTZhjKnfI7LpHVGBlf9\n67nPendG+JaPDwD4dnf75wD8BhLwAfBeAJ9nR1Kl1Mfc4z5nrf1dd9/Y837MWlsB+AOl1Ofd83wG\ntKDtKaWOQNX7z192kNcWfJTOQiN6tidq8LSYalWgzGgQ9Pa0R9Up7AMJW4y4TAxAda2xXhU+yzh+\nUGK2qnG+NACcmoIDIMwomymdnw8ALNH5rIfZbgBlJTL7qkyH+RJYr+KLR2Y4fDw8CzQWPBe0LHj+\nqCdml14Sm+vR3TA8elKhO6nQV0B1prE908gLi65RKPeGz5+Jktto1iNlbSCcQGX9nwHoCg1oVeZh\nEY4YWjG4Se0uFleVU/4mm7pZpofxLBPvhGWJTwDQhRnP64mREpue2t/8AAAgAElEQVQ0UvMzVRhK\nF1HpsaXy346eDwNPeC8j35EUePZuRcATVBIeD4Ci4A1GOtwqsw9xrAyUfLzZQQlgMwSgXdRref8F\n/S9bdeiPKyovn74phINnlFKfEb9/1Fr70Ss+9llr7R13+zUAz478zQsAviR+fwXAt17yvC8A+FTy\nmBestb+plPpLAP4VgDMA/xrAD152kNcWfKDUeFnGbv2fcOYDjLhodgoAU5pZAYEGUdenhhQIVjUO\nHmxQ1B1OMIUxbjF6ZouJ7h37LbhyruTzex8YYtvVfRCj3LpsY74cL6ulTqoNFJpSE0POqS4slg32\np73Peg6nLQ4nDYyeB3bb+hz2aEUXfN3DVi22ZxptnaGr+TJ3x+sAKCvjktvOrCe1r5ZABMQAlJuL\ns54Rza9o0WUQ6OIJ9rGfZIQXZzxpz4F3w1xSvLTUNgZCY1YOfP8uSwHRn/HkgDKPgEMl0hbR3nUE\neEazHrFhwHwGLG4E11rhYgowE6/1TDwZKQClzL4gvzPCaIx6et0AdHgT0B8TAHGfzYKceH1mk5Z3\n+TX4u5ECuzs3EnieVOZjrRqtQOyIB9ba9+z6T6XUrwF4buS//kb8mtYqpd7QKVmlVAHgLwH4twH8\nPoC/A+BHAPzNix53fcEn12She3BAF9beTbRwFtNuzmKW52AdtDCkaV2jGqi63NOVTwBf+mIFAgCR\nvw9AhAFe9CPFAyeTErx7tBcaLbXGRBNZAVA4gCM+mB6V6Yh5V/Woq45Kba5JzBkQS/7w65uyw2Le\n4LmZxdv3CHiWxlGLsxlQ16H04Q88gypz5KajkpuxyF3ZTRdOi2xOJbdsYZDtl8j2y2C/zQvzbC8q\n3wAYLUtFANTVl5fd0gUHCM3+tva21+wRFOjLYX6GX4skferwHPz88xkUzpHtA3biwPaZ+fD9XVZO\nlPePAZB87RHgGermhVKbBMUoknOnSk0Z0ggZRJU6vCd3fai9WwMX0zHAiZ4nyXwkHTsykJPnJj3v\nl4Tf4PDvY4oH5VCzzb+G/F6ZYPGRHZQEbAB6vCmZz4Vhrf33d/2fUuquUup5a+0dpdTzAO6N/Nmr\nAL5G/P6iu++i2PWYb3bH9Hvu9T8O6jNdGNcXfEwBPPsi1N4ttOUEnd36HZ3s+8xyakxzaazSoSTG\nBmHp9WvKDuduMahrUrqeLZ2nz6LGQUmlrmen1mUcLW6UmTP9IiVk6v8EECIbbFZDBo4rN3+UgNAc\nw4tWyvLzuvTczOL2xGU809b1emimBe3RoPGryhx6v4SpzgA0Uc+HQUfvl1ALg+ygDNnAjX3g5n5w\nQBUinv48R9nmJLwol2G0KJmYIvQw0hLKrtp+vvZqA8hr6LwcmNH5RbQVOmRiAVRFQYyvvRnR83mg\ndG9G70+CaipgKpvpLtPbOd/C/ySTjXfkDnhsRZkonQPaFNmqvdoclYho0Za3F9Poc1PlAjYvBxbT\nO5/3gnLbmMhpVHIDRoGHQVJNclfulDbZ+XjmyQaIu+aJTB2+N00AIeVKxtmypOznZDez8XHC9mqn\nMPETjk8A+PMAXnI/f3nkbz4N4N1Kqa8FAciHAHzfFZ73HymlfgJEOHg3gH8JKut9o1Lq0Fp7H0Ri\n+N3LDvL6gk9uoG6+A5Xdous3voYtp8tDLyBIxledQpVZB0IKJzX9TWn6yPwrLy0aaDQVWSzcXpxj\nvmzw7LzH7YkdAM80JyVkZFO3K99EIMQx0WSvcFBSuW+Suxke3QPTXvyd++nk+GWYjDQ2b0+DDD9l\nPaQNxhcql5vogu8AkyG/vQfgDHnh6v3LHGqiB9mOurFPi8Ct21GvoOo3qLuHqLuNn9qX5xpZACDV\nliL7MWHuoxaSK+lgJTCU2GmdfMoEUK3x2U947SIsmKmiM7PDiuT5WUU56Ye0OhtmA3lJz5+H5/bU\n4oEMTj3IeHgB9MAjg7zQ6VgdAKVlorRtHPXHkvthivDZufdlJwtsutXALnwsRoGHsxmX4UYAlJbc\nrjDQObDLlpJNBwdBQknYfyvM6Tsgz3dniF5dkyyTHdm8KFNALy53gX2LxUsAPq6U+n4AXwTwQQBQ\nSr0NRKl+v7W2VUr9EIBfBTGfftZa+1n3d38GVDo7BPBPlFK/ba39U9baz7qs5nOgktAPWms7AF9W\nSv13AP4vpVTjXvMvXHaQ1xZ8bJbhtHsYAY6UmScV4rAjZml8rQIrbVVroSI9zuJhQ7nFssHhfhMz\ny4y0OZ4FPxhn7y1BCGhdBpQByHFcAyazqHseXmVjsdj3ZZe6tbd0iFS1i1isUwTvNC1aAhhX3snK\nHGphoJ+dxSW2m/vA3k2/eNX9BnV75O0KVrV2Ctp2UPrSOifvGJetWCYeiJ2qHzy8LPvh9+GlYWqf\n/fj3Jso/kRCmOAeRbpwAHS5J+cygW7v3IoHVfZfcayo53wIM2W2y15OQC+i4evQOPLIyHwWgxwlp\nO+2zh8UNAtRy7o31UtkftjTfGam6Asso4YJznsTFVHAdvnMSMBOrd99fcpsP61Tr0brv1K6SrlR6\n+EMU1tojAN8xcv+XAbxf/P5JAJ8c+btfAvBLO577RwH86Mj9fw/A33uc47y24NP1jbdHTp0ZZfDv\nJiPfEgKrHMAGhxO+MAoAFttbW+dMGZMAbh1u8cLtLd4+t3huGkpdLM8/ddRmViNmufq6h7eMXhoa\n7CGnSlK6jje4tOMc8/HhkBkUkymkvfNVQpU5/XXZD0tsDDq8cO3dJDWB5i7qbuOsCjRWdenAhzKv\nUvdOWYCyobrfANkUeTkH2ofhxfOwUwVChmPHynCvJy7bdZtitIRY2S3q9gib9tR/l6Q3EhD6IxKI\nyCV0HQPQE4wxMoEMCToeeEwR+qATVvwmR1eZLQLwklBvZFCWJqnVYm4MiMttezcHVHCuamjVwuRT\nKO02NJUDIP5OcekNiJmZUgD3Kwxr4YfOn8Y1Bp+mB17buKn+zFGdE300Xijk751tUAMwAJZmg6pX\nOJyyBKHFsWmw7RovY1PXGof7zeXAw/pcIDUVnZcEeLYg18hs6l+PoxReM0CwzJbS+6XTkyMduUDf\nZv02ICgs1OocyGYo958PgphFMbAzZkbQKMuLS1AOeNbNER5s6wh0+BiWhggc5a4yuNw5cx+FB9oF\nTVali4MkHYims1yYLmyY5wbAHJg76ZaiCQtRPlTFlnYMVafd5+CyaecYO4bvOfJxlWdRRlJwnT5H\nDrBbDbvtkLlM57IshwFIjZxkW7X+3KXK39zn6brVaGWAY8x6O7zBcRkED9AOgMmltnYZiWPVcXYL\nIBub2eHjZtIQf+/KOaxSrnc7ks1wZi/JDbM9ei6APmsgHsPYRVh4Gl9RXFvwqboM9zf5wCtlaZoB\n4KTBWRAALIut+J88cqfcdj22bY/bU4t3zK1nlY0BjzTc8irIwrYYcBlQwew75eVgvDldFrKdUM5S\n7rFEmmDCRJoVkaCp62tlBcqb74DlRWCdTNO7hnsKOqwYbee3vHbag22NV84KrGqNk1p5fTnK0ILG\nXZl1g1JVcIzj0ysASDaLBx+QoFhz+S7dESeGagCGTDS3KPnXme353XVqx0DAk7nNAXGkIgWFJMHU\nzgp8VJVZ9rZMAbUgyR4qqWnYSQe7dWXQERpwynbblQF5QJIL+mzP06pHF29wxpMTKCXvaddj5GPp\np8tGsilUOQfymsAmj0twnjbNkapXOBq4ZON1fWpdjuFnnYb8rAG/0VDL52HnF2s+XjX6XkWeYNc9\nri34bHvgS+sc+yYuUZW6p7kFFFEjOl4Yc+/eOLPUj+EoddjZbztSQ5DkgtSQDNKQjGvggLd5yMs5\noNwApJ4C2KDq4nJVqXtnw11E0vvyuOt+A+NsnZm5JwGIsx8G1VblyJeUAWFP7BTbmphedTMAHV7c\nN90K6+YhXttYvLIu8fI6c75IQZooWH3H9hLpuR6Uo/w80HqcxpzO1/As0WQezagQAInZnrHgHS9b\ncF8CPCyVxEhDVugChAQAdVbYkztdNx+CNq4wg3UCocowG6uBdVRpf54umUXxGZBo1tuqC9ptO6SI\nPBEnUTNgAJJxERlBgkFQ7+YSpevxTeaiJzN3fb5ioLYtP2NJZtmZ7bjgmaKdPabZHrwOXzmH2n8e\nbTnBurm78zmfxuuPaws+m0bh/3mo8NwMWBYKz065HKUxy+mCYHAA4M23ctcw9T72uoUEBACivCVK\nXA7ggr99HjOsuBwABNl6IKIGa8W6cz3KXnkFZtlfkKATAybtUrVtsTTNQM0ZoMWj7jYw2jF5syny\n5fNRqSLyjRnJKGoBPL93UuKLa4WX12qg5jvpWFkh3vtHC9pFPZi0FMKkBCAGHQYrtpDueefdxtnP\nrtcq595ELQWeTbuK5rLCILIWG5okC3J30aLuFt2x15bsPcwCuYJByTSjIHRZjMkC+f6GyHr4XEU+\nQzvkdK4OOu7cuzIe9ffOKbNXrgwHkL2JuwYA7N5QuHIql9kkDTy9DrQqIB1Wd1pNcIl2/3lUWY91\nfRcPtm+9OZ8/CnFtwad3qgSsNOB7IZn1X9Zo+louEI6FZSYLf3FJQkC6FrAvT6k1Sr2B7t0FnE2R\n86IG+EFI38x2bJ10l039E42l6Vzjnhh4BkCHBjor3M40vvDrbhPKb73CqilogXR/RnJCW8zcrrbO\nNt5aINeuNNIaOs4SEaOIL372x7m/KVB1auCoLeeMUtafVrTI1D3tdM1k4fsBO6VqmBKdC7mZBHSA\nMF1vsqknh3kNt1TexX3G/vmFAR1lTudefZxLbWzUxyVNKotST24JIAWgTuUB4Mt5GKplRl6JiHno\ns03Xk7CG2HCRcd0lBIM0uGfn+1nC78gv5n2D87ZFIGy3vkTdWbJZ556WL8eNGOPJchuHti2MnqLu\nz520EYZEjAmicujYhoLVFoZl29C3VW01pFr7P47nstTeLbQ6w6Y99mXjJxFEOHhaduO4vuDTk9TF\ntpOS+rRbZYFJ34tJw31/FYDphJaWLmtQ6q1QKQhfspOaRES5ya/VJjyXniLfuwmVG9jqNCoRtWix\nEfTk+9scq9r4pj0DUKktlkWHUm/d+9gM6Mtcbqv6PGr6U3koFO7D89UERPkGRpOZGrOFPG1ZAE8o\nz7SeFCGzHT935IRMl0WYM/KAL+Z+aBfb+PPLkTITmbKrMI97NheIeZqM2ITRbnhXCCUCmQ3IBTao\nX2T+syd1CnggImYkAZBcoFMAYuCJ6NdlHQERg5EFHhuAdmrRlfEAMG8k6n6DqqPNiievdLJkSxsf\n9JtBVsSfFYMyAFR9WHKof0nED862TeY+V+4DbV0ZWoIOMFChB3bQ2/0mcr3b7ZUjly63p+T31Bjc\n31zbZfINjWt7Vns/bcylLOv/eRZUuwq+9iNhcwOVGxg9RacbzGyLqguMM/bjAcg+O5S6iDrdZQ06\n3ZBhWTmn0p6XMDn1FNdHVY9VY7CqM9+4P67JeZSVFvgnZzJlxj0sAqRVQ5baqzoTi2QMEkQEyJzk\nT+ZsJTosi1N0ReN9bnh3KllFPAdCg7gmGYyln2xcd2CCrBD7JmkVD34CtLBsutXgPl64qXxZQGu3\nyDyGerR3BL1CKGGtLPsVvCiHrEe5jQb83BdnPwA8AGnVRv0fCUA8iKogyoptHQgp+dr3JXy2tD4H\nqtDT2Ukw2AU8rN02IeDhLDtsWJgpGUCn6l3fMLPi/hSQ9YBlSf8XdBKXRYcbZVzu9UQE0QcCMJrJ\nchmVQ266/Gd8leFVUUJmCaFVrXF/k+O1zcUPvWo8prbbH/m4tuBj+8C559mYZeEcLLMZVFtFDLSd\nWlO6RL53EyabodMEKrwgyVkc6WDKjemlEd/qjIb2Orv1u87TZotVo3F/U0Sgs2oUSOvTqRxoFYFP\nxOBzryUN6qqOnoePja21jyuQ9E8NTHSOAwOUOndkiRo3yoeY5gtSvQY8q4iBR5IZ+LyaLAYdf65d\nhsV25btCDjdyn4bfD2dl1J+bDUgWQJi49/21VEuMy3a8KxblvUj01JEVpPYfHUfmzy2z+fjzpnOg\nogFkAqCW3GtHAEi73lkUekLAVJFMkD9uRwW3tev/uHovg0wKQqrUQyka1+fhUhNveCjjUVSeFZ8p\nZ/T8mXGJuezj3p3c4KTgM4zOXwtGh/MRz0NReNDZQSyIs50APFHWIx1yRwgztevn3d+WuLfJcG9z\nBRuIp/HYcW3BR+cWN5/Z4rlZkLohmRtHf94+DMrCO58kXBS8KIWLTVpg8x41ePjwhb0sqMfS6VAv\nD9lOgfubHPc2mQed4wo42dCKdVz33oV02ykcGAK8dNYHQOSMelzTcR1Xgfpc1RnWpwYni9oJnwKr\nxmJZ8AwTQDtbKkOabJZkPK1/vUOXzRCVnRZlySrk46NSIZWljGeBhaa0p36LnXLV5z6rol0zAVBn\nG68Q4afn5cIjQkl9tXRHzD0eke3IkhsHf35yceVzycG26ZL5XPXKzzV1diQDQlCL5r9hcDWTBWXH\n2zUxwsR8CuujS0UAplJ7e/ExkVenQtHqbDTjWdXaDwRzcKYtg0uN/twwEaNOh6FDMNOxGlEHiUDk\ngthJoR4jychIerjpBkNWBp7GGxNvKvgopf5rAD8O4JAtVy+waf0WAP8QZIzzSQB/1cmFlwB+HsC3\nADgC8L3W2i9c9tp50eMdB30Q15w0MNrt6pn+LGVmdk0558arYVNfxnjAuLcFXjvnL3AAoKrLsTR9\n1LdZFqeY5bknFHC2c3ejcG8bQGd9anDqfHwWywbVoqZ5opKo3UDYbdOiRysbL4xMeebnG7PXBmoA\nPQ5K5ckYvNhy2YuZRRJ4KOOg28uiQ5lZ3NcWS6MQypq9/38ZQaI/NKa5f8KlGyCUbCSbbKzE4hcc\nMbzLYGK/AvdU2e+Ru/sUeDgoexSgm2R6nW3RdbGsUypjM2DH5YZ0yVrjh265B8R07Jgth1g6R4qg\nsgpFeywILXGJ9qoRl9YuznYYkEMftHBsTcFO8ycpaMOxLlyQnxrRY9sFWCmrlJ87kV3SqvDf14nG\nQDj49QZVW56W3TjeNPBRSn0NgP8AwMvivlGbVide99MA/iKAfwECn/cB+BUQUD2y1n6dUupDAH4M\nwPde9vpGW9yekFHc4aT1JmpRjVhM9dODkklr4X5ad0QISIHn/gk9ZjtvgBn5/ywLYNtlmOjMg1Bg\nSVG2s6pJQPTlNT0Hm9StT00wi3OgUS8bbOcNtoaERqkcR4cZ7L9Due64Bk7XBdlvr4rIBwggVe6t\n6WkeR9PfL03oFZmMaNsSeDjiElqPF/dI3SAdgAXSxUqh6rbidy2M9RR2leYYeDhbjUDn/Cw4kKaq\nB/Iz3OW5Awx2xIDo94yUlLhpzrp6UYnRZYS7orMt6jZuMGhVeHacNySUxwZQD+jmPoHMnvj/dCAz\nAR3q7zwU6gwZVk0R9QVDZIPsB8AowMj7JCinOoPxbJ0REkROwTq1XHDacBKA0hjNesfo1V7zzwwf\nDwwA6Gk8+XgzM5+/DeCvIZb7HrVpVUp9AcDSWvspAFBK/TyA7wSBzwcQvML/MYCfUkopay/O1/MM\n4+W21jHcugvAxy1aLEGyae7itNnilfUUL68z3NsqvHZOC/zRfVJopoV960pj1pdjGIRWdSApnNQK\nL5/RcxwdTXB0f4L1qYFa9SiqDnvumM4WBnWtvYZctahRmt5nPQxEQCixyeyJQed8laOoOpiqwUO5\nwM0bAJT9EFU80MUNxuc7eEHobBMa7Zo1wLJEPSIuqwFwgBMyijAQG/ez+L4BM1GAjrREjjTMIs8X\n5/nTXQJCSEqrvRossmO0cklkYbYYL7DpDI1kSUo22SwPGZfOinFVBICyGo7USI37Gg50mNCyaVdU\nWmuKqC8IjAHLUBljrATHIQktcgHn88LvM3yOs/Fym8xcBQCNxi7gSZ9LRuvm6lo6V/z5lLpx5eGn\n5bc3It4U8FFKfQDAq9ba/zvxCX8BIzatIEraKyP382O+BABOJvwEwC0AD0Ze9wcA/AAAHL7tFl6c\nN3jH3GJe3KRyW0oySCOVc8mNb9De3xYu46GS1kRzd4RCWlnLnTHAO8NABGDwOjqa4M6re2juKygQ\n8BR1B8NGdabD+crAmA6njhRWlx1OETx8uNm97QgM16sCpyuD9alBWykUVYdZVWPvtEZRdTgGsC4N\nSud4ChOyFVkiAUKZaDyuIEPv17EgTZMCD5e0JlphaehBkhwy1cvgvProbmxF4OyQASATjO3gCcsf\nyOVzHKEcGJsLkjgqIHVmIpNAp0RB/S3r+1JATIOXM0MUWViY3cCzB+7cEN0/BUomyKWA4wYnx0CH\nqfd8rk/qeKFNhWrHRGvJWDEtz7nzUmc4MMPnYpmpVPEjIgo8yUizHr+pPPPsQf5elOUcXb7Ec9OH\nqLoWVfek5nyUdxh+Gm8g+Fxi8/rXQSW3r2o4D/SPAsA3fPM7LQOPyaZ+CC2oDJhot5zuJL3PSXPX\nDVWWVGIQycDhPn3BjemwP+3x3Mx6E7ldQVkLWTSYssN8UeNhNUVbkRV2UXVoTIem1LDLDAeLCotl\n7R1KOTyl04EHl9kql+20lcJsVcdgVmp6DViYskdpgs22p107C4gxUc6LFI5TSRUAVLrrWj8TI4Nf\nj5rdIfNh/yGZrdqzO8Cju7B3H0Sgw1bIADG/9G1XkxoTquTYMcgIO8z0QhbW43Dagwz/xKyUsKzQ\naoJdQcDCMk0SdEhSiVUx+PzlTviTTrobSEWYDdo1iCkFUFdNmPeSIC9jWDYcaggG0JEZEQMzPWEp\n+nRyLo0+w31vJ6IeE3RSm+5LY8Si2w/YgkYqGIBMOcU0X+DFvYd/6IgHSqmbAH4RwDsBfAHAB621\nj0b+7n0AfhLEgvoZa+1L7v7vAVWTvgHAe621n0ke93aQp89HrLU/nvzfJwD8G9bab7rsON8w8Nll\n86qU+uMAvhYAZz0vAvgtpdR7sdum9VV3O70f4jGvKKVyAPsg4sGFUWbwwJMjj4fQOGaigJ6qI+/d\nxLo98oNou5rOh/sNJhq4PbXCwK3z5Qo5gAcQ+HBmZAzZX5uyg3ELTF1p1O7ini/qCHiM6aI5gui2\n6++sTw3OVzlmK8p20mhKjRuLc5iyIwWCIrb6DvJAQ8VvjrEFwWbTyKcoPC53Jbo+zI6IUg4N7WYe\neA4nDWZ5Hijf6yPg5DXYuw9g7xzFpmvC9wYgCnL2TBHM4UaAJ7rNkjyi38NB/bmYdnw4bf0xs/SR\nyaZBiiklEojQKscsB2gItXCDl9OIQu7PpVJe7imihnPqI2ew+lMnexRYbLKvw2y0sb5M2HAEHUF+\n76Fs1iHYygcg4t956JrOS+/t4rUq/GdI119QIIiYhpfElQBoJOuxZ+funIFKs+K7YAHkuYHJZpjm\nLV7cGxk0fx2heoviMaSQvoL4MIBft9a+pJT6sPv9h6NjUUoD+Lsg19FXAHxaKfUJa+3nAPwOgO8C\n8Pd3PP9PgFoeUSilvguM4leIr3rZzVr7rwDc5t9dP+c91toHDjUHNq3W2k4ptVJKfRuIcPDnQE57\nQLCM/U0A3w3gn13W7wGATOkAPImqtA82MAMC8DjZdmIInbqSRYaTOpaS4Z7LRIdsZ2k6b1nNCyz3\nOFY17xaVt+Zmd1QjrB74tikZmALwlIayFbZyAAIA1VWGutIeeA4ebNAkMvt1qZGXFmXZYTEfGt+V\n2vqdeFSX72oAF9NZVW5QOh2uzoZ+h85aaCfOygOLHGF4tvfnjYHHZDOo7Sns6g7wGgFP+/IK/Wnt\nRTZt1aJnJ253H1GOETfmxfDi4yx8fIwyeHFl0OFz1dnGu9SOyc8ATJ4Ixn6R/I8YruTsh0POvhAD\n8VTcbnxZj7Md/s7uYugBw7IhZzuckTEgdpZ7Us0IEAUQ4tIjGRfu+U0MX39ykNbm1IOL5qwuiAiA\nUq08KY/l+n/eIgRJCVaqt+sS5d5NdFmDRbF70/AWjQ8A+HZ3++cA/AYS8AHwXgCft9b+PgAopT7m\nHvc5a+3vuvsGT6yU+k4AfwDgLLl/DuC/ArU1Pn6Vg3xLzflcYNMKAH8ZgWr9KwjI+w8A/C+OnPAQ\nxJa7NJTSQ+AZS/n5iy8UjdnZkcoXtGOSmmWyp8MXMS+ei2IC7SwSTNag1LQwLAsSp6TFjD8WBSAY\n1KUhQWdXMCOO+zyc8cxOKzS1RmNyD0Inz0xx+5lzN/8E3J4AL84bYfV90/dY0MZgPaqZJcEHCwBr\nqHIekRIA+OZukKPJBsQC6bhqspkrt30ROD6GfXSC/qTywMOltr4C2oYuoIwzoZNq3BaZy1SpEKlQ\ndU4zF+n/xFlBCjxcLpMEAwYjJhDw//P/+UUZiP1ncrYAJxtxX8rsW5+dpYDDs1GyxCatLdLg7+xY\nmU26znLw++L3JDcMEoTiz28EeGTVoQ09GPruYABANlkY+fedWZC0BJE/IQCIs5+OgFDlZiDv9FWM\nZ5RSstz1Udc2uEo8a629426/BuDZkb/xvXIXrwD41oue1AHMD4Oypf8m+e//HsD/COD8isf45oOP\ntfadye8/inGb1s8AGNQRrbVbAN/zuK+roGLttouotk5skO0CNi2BD81DEA34xXmD0tkKj/UnjJ4N\nJvF5XsZkZJVNCzDL2mQ4MDmWBXDPNACawfT8ZSHnd5gtx6W2piTgASjjOXlmitsvnOP5F87wb97q\n8PY9Ap53LasLvYeuVKPPDZVTmK20w2SMS28xo2rYeDfZlMptZw/Dbnbb+Ywn23d21duOQMfdpxaG\n/k/28NgsLBd9lB2hs8L3qMrORnpnfMyx7QDZNqTMNv67C7XIRs6hjNgaoh0M5cr5KAYdznZ4YBmg\nzBwYkmDi0lq4vVvZejw7YBAaBZ505iY3g+/TLpHY3QoHTheOhUmdXJGvYJgCkPbrkv2YRltDtZWz\nMvnKQ9nHKrs9sNa+Z+dzXdxT9+FmIR+jMXZhfATA37bWrlLxgBIAABhpSURBVGVWpJT6ZgDvstb+\nl0qpd171yd508HnTou/GRUNlCC+YVmdedkPuKmUcTlu/S+cdsNHz0FD1Mwg0z5LnBlovxcBcACGi\nNFssjcaBCSUSLu3xoGgKRFxyk8Dz8MEUatVjJno8nPHUpcbZCxN8zQuneP5t53jnwuLte8C79mvH\nBHwWs2zhQOdO8B26ihgnEMogufg5Ejygyos5wGoAQXiUFy8vfVQ3sE3jnFWHtG810VATjazMoRYG\n+tkZ1PO3xoctk2NOs540pP14Or8kY8zHJrxfvi2GZFHFoqh6/LhYjSCVHCLWZBbNSMneDqtbsKeS\njGjwk4Enu3jdSkF1rDkf9BKDlTj3eDiULmHl92OXJYZtRskf8ni8QR3WUFgIxfN17JEEJLR795m4\noVObV1BbIN+7eeE5eDNiV08dAJRSd5VSz1tr7yilngdwb+TPdvXXL4pvBfDdSqm/BeAAQK+U2oIE\nAd7jWig5gNtKqd+w1n77RU92fcHH7i5V8QUgVX6l9Ejo1cTT9mlNe6qXUNtToD2H7R7RxSUX7ckc\neblAXi7Qoh2A0LKosTIaSxOosIHYQL0kltxJQWgMeIzYdTWlxtnCAC9meMcLK7xwm6SG3r20noK+\nb55F2WfUV9mug9xQOv8EJAyyEYfRtgb0MOPRKkcnxF2ZNUXupqKUpfdgshly5MRuq9Yh67lgN5m5\nbEff3qNBzERMM5XRuSykW2cKOikJg2MMdGSZjZiWR770JOnR4YEx8MjBUBbw5JDZjvzOpLJKQKw2\nzu9FDn/K9zf2fsZ+HzsnXC6NmKVpiA1KCjwt2gh0xkgg/HqsC5dLZWzXRwIb8tXJAO5Y8Hf2AnHh\nxwllgaL+qhAOuA/+kvv5yyN/82kA71ZKfS0IdD4E4PsuelJr7Z/g20qpjwBYW2t/yt310+7+dwL4\nPy4DHuC6g8+YvhPgs53UpybVvJKsJtqZL8K8wvYU9vgLsPzFHRMordawezVUWyOfzKHzpWeE0U/q\nCS2LDiszHL6kmQyqWDMAcdYzlvHUgmBwvjDYe6HF8y+ucLjf4O1zsvp+136F56aKgKduYU/uxKCz\nPidjs3Tm6cztIoF4J8l/p8Mgn9Jm586VQ5beuA/izf3amgZJJQjWvc9+2EZaPzNDdlCSirMEHhbT\n5DLbY8rs0PR7Eykv7KKZyzLVuOKykHJy3xXb1k7NuY5ASNKlWfuPY6gWkfm5HZk1bxNW5rZTWBYs\nyySHP+Ny4q4YsgCHQBxkc/LYTXQsdgDPGOiMfYfYxyoyqJsIBXAANNszonYhf7qwXTUc6n3rx0sA\nPq6U+n4AXwTwQQBQSr0NRKl+v5uJ/CEAvwqiWv+stfaz7u/+DIjQdQjgnyilftta+6ee9EFeX/CR\nIemq0tPEEQtSxWYGHDk4KBvhWB+FaXupD7cjbBcWZb5gTUYKa3RkG5QdZQWS3stKBnVPt7ddYMMt\nXJ/0IaY4KalmnZeuvl92uLGo8PwLZ3jHQY+37zmZoWmL56YK8+ImZTyp0oMrc401bQEHg8WOXSRC\n/T7MzQzlecZiVDxSKhaUJJ+typzKbC7boT7PDjHNKwJP2sgfip0SAI31Qsaspr10jJBx8iUnzT2x\nhPINELvSZd+Pqh73t/kFygIxhToCHne6ub/DPZ8wANoPqNW7zkv8muFYQn9o+P45lC7juSQZDnAH\nhI8EdCQBRH6PYvLGLgDCcAPFt+X5b2s8qYbJVyustUcAvmPk/i8DeL/4/ZMgqbL0734JwC9d8hof\n2XH/FzDSmx+L6ws+KhvK50eT4BuvXsDunzJG2TtdT/piZ0ex+deuGFn45AImAWhpNm7gUhp6BdCZ\n5GRNzUOlxnSejn26Mn4AlenZt25tfX/ncNo6cdU29HjOHoah27FS25jskBe3HNHAc/bMkTXBjgVd\nBkuvDBrxuaFsxr1WDpBdAEDZzjNzAp3CDRE6w7Qo4xmLpN8DYPQ42RYDQOQEuzQbr8fGjrLp58pz\nZREbsFyQUjUTXET2zexKkvnPnUvsbsFPOXOWAs8uhttEh+HYy4CHX+OiYDBm5e7a3efVuVsnZ5Ne\nA/L89xeDTipPxMdVavqsWO2cZoqWQwASakTpMaQA9CRC9TYqfV/3uL7g48LvukbKbLzYSOBh5g/T\naX2Zra0IdGRDfp2wDi+TcXFMsDEA0rZFqVvnm8IipNI7JwCRpF7Pl4hmgfanvR96fcfcetCRVGqv\n6t2F2Ygo60kBNf29SHaU5TzKevyichXgSctZ6UIwn0HhGcAUyB34RJkOZ0g8o/UYJTbp35MCj9RA\nkz0RsskQfj0gnyaOi9xTVbmgLFhYqDO78rT5/9s71xhJrquO/09XdVfPzms9u8tm8Vp5CZASBQkI\nFhIRSkhIjIkIQSD4wIcoHxBJlIBAQgZ/4SNJPhDxkBwUWQQRSMAQgRIFhwASEspDIcQhxCReJ2Cv\ns4/xrHd6Z6a7q7vr8OHce+veW1Uzs69ud/f5Sa3prp7pubequk7d8/ifAbYHnUozwLokB19Tze/V\nFNNNyyw3We2wcyXXfV71/zQZwKKyGpwUIkbrWqSbrrh+yrQYkHElddy9f4TRsfJE2YSRJWNMuGe+\np6b5oN81OM6si13wyl1neY0PUWW1M4kMjwR0Q8MjUimpay2dIpWL9f5O6GaLVwtH+JZdoNUo9gII\nXHBCH8AYPZQdMkvXm/xGoMBrik67myOczMqCVzE+hWslsd7uunTqoImeN5eK4TlkRcedUeknj2pn\nglVPYyZZGDdo7NliLyBrJ2QFZF1+1uicWK1qnMX4GVZea2Y7tvhc8HvcNCk6Dycto8QQ1sG4mMfA\npKv7MUZDs+Fpu3bOYeIJhcccza42H+tyK+t6ioohOyzeExsem/AghcK2wJSDWi6LNUAJpa5Hki+/\nVOdWk/fC37X7wo7HHpssYWTOCA2QJf3yShe3LIepUbPnwJ3WlPMgxrQUDuaC5TU+gLiCXNvqfhDf\nCe6kTJFdreHxa4WmwIk0he2Zk5leOWeidNo6jS5bOCh/V0rVWMPjVhj+l6/BwFjtNNcZs458JEYg\n6dSueqw7EwgvIEcFuCtYA9RpA1ub9UrOx7mT9WtI3J332DM8LbPiCWVpaj7I/Gw7A9QhUSxwtS2W\nKLXY/hwnLfTHOy6jbXvQNqriRSTFdPiU5KalrOG3iht2tSPqFaV6hE2cKWv+61c2vpoBEGYm+vgr\nM79xXkIp8uIgKLYFqisbP2EBQLmSDOqmQlFa+39l7PIP5Xoftq3vdNdd6YNr0x3Hd+6iIVKW2fi0\n0uO52YJstmp1dlBwmZiLXoZqzKfpomjucseeNApQk87q3QWeSK0iQPnlB1DbdM3NI1IitmoL1vBU\nVhf2IhmtevhG3+mnUTdBaxMVA+RqJ2ysxzQsy8c7UdZg3elX3jXLfihXSNxaAXXXgMkQwFq43wHA\nFhTaolE/a6oOz+3jLoKMILvR1cmMyv49TYYnUG1u+3JEkmJs3W2HZXpxmmFS9APXklXOlov5pLbG\nzCebELpe3KfTKle8ZXyncLJJZ7pj50ZuXGUaZFySwNJpyT7LkupNRHkeAllib5ZGRkrJGpawgaDd\n7o/BSg0BcPJE/lhsRqh8Z8XYxDEr6RfUdn9jG/Ml1A5adAOR2rmXFKHceZbW+DDYBXLD1U6UWNBk\nePav1bfntfiGCCgDycbojJOW+SIMMRnvuaC2+3OvVUHctM2tvlJ5b70hlBRnkvmvbYbeocQJBvlI\nZGx2hya1WS4wdQbIBvhp9RQOihulKkSeOCHWupiJSNZYAxRmkPmKzi44D1Q6lTaueCI9ND+obT/f\nNga0NyGxSsBRgfay7UDhibCmZbLEERX8olxw4M4Fq6bg99sWCRsvzlS50TCrEc8Ixe0MfMXtjolb\nWh06uy9iKudTaxS4Jq3Gm2RllsbRj8XIca0e2xhrCK3hLsezEowjJ3HhbXTM9zdSnKjDKk8AqDVA\nPncyzZqY0c6Pzu5cFpbX+PAE/XEvCCT7X5jDEguCjpmHEWUu+S6+fl7/v52UTG2jtlJ00n1xkzC1\nNMbPFIoL88qWxdFp4Gu2eaueydX9QEONPL+PM0BWot4YgGGrwF5+LZDxt1IvsX6bRbKuvDkUI0wo\nxYSl1TJZn70da12qbhTHcfMxRsd3+9Vns9n4Shncj1tm1zVI8/ve2Cy9WimZmMR3S8atG8wdfUuW\nW6L8UL4fXujtnikCI2RFQmVFVhijs17VWYNR37D70duHqXeeyIqxzCaz+1TGO4If2qgUZBcEjICN\n9rg2qaQirDoeyni8ccTabrKvJSYa7rv6rL34e0DMlXNFubssrfEpUASrHXuHGzf+qqvMPnQp7qsj\neG41qUy/5tw5UqfRwnAiF07/yykZR4UTrrQrL18bLrigjQ+qvVzscMzzNOmCPVXlJm2sWnIjYWOi\n2DyYYNIbS3Qjk9fcnZSrn04bWN0Cr51Cf3QFl/uMXt6p6IsB5LmCqveYG5hI1pghcJfUqRLE8j0N\nK528OKgYHHsM7Lkgr8NW0s64mBVFsM3caVs3VqCHV9dd047Lat65+Y3kTt/T/+u0wtVtdUWbu/G7\ncbsVW6kS4Stw+KuK2huqtCMN64BadWm7V5LuumRkFkAngTPqWVIEiu3+zZW4xiQxQb5rY1e2sJJs\nlOe3dWsP9iqxMTumbHULSWKTOlIk1K/sH6ChVszbl9YAHrYKul2m2FJhLlha48NceBd869K4ScMT\nu3WiOIMzOl7wuDdKsN3v1jbwsr54AK6Rmrj9fF2sFOl+r9qb3sSX2BZR2nHEcRFDk0Ckoy4VuJuA\nhy2J9QzHsvLpyGsp9GyDzp4G7jkL2jiH66MruHKwj4t7GXp5C9dzWTH0RuS0xfKibCneTSRe4ZI9\nWuziCfmkLxe3Aq5wEIhUjGtWOXauLtHBuFljEU4fJxbamgBmF/kGSX6WwXQnQ2Pig7EQa2NLZ7Of\neZwDwxtOaikefxNNq9oyfpm7fVlqDZYrZ7+BW2Ul7xtI+9ye+kFRticBZIhbhYQ1cqVQrL8KW0nX\nsZaeEmWQ4QtgK+e0d1CWLHiFxWxf2/3WXUMnPYW81Xf7wk9kCNzYgQs7rMWq9AfS1dBdY2mNT4xV\n3z2W4YljDAY/TVbcEGGqbC/PsN1PXavsmI02I0vKi2/WkniTdd90WitIhwPRWrPyMkDYHKu9C7wk\nB69uSRuDihpymcnlN3YL4hIWL+ZDWYrWpt1eAJtAK0sDJQG67xxw9jxo66W4MbmG68MbuLif4Zm9\nFnqjUlPMGtyT8snw6867k/KOfZjYWpaqAUpo7AxyE3F1vB/PqTU6NXEC3y102GrRZomtpJtBJqTf\np0Y+pMb1NsmBcccZoQoN7roEcs6laQeiFJ6Jazcpszc7rRFOpGOnN1hRz44Nov/cjjU+34coL8qr\nOZC0zP4ZG29CaHh2c8Jmp9oiw8ZT19pbONFaB+9+F7x/Tc7tvQPwC7vA3gGKnlnV2+xKX91idRe8\ntelUK7LuGtjIVNnjbldGddTdhN10h1TlllDj43HLrjaEsjy2XmhvdA3bgxQX91bQy1u43Je7/ssH\nwM5O1xV+AlIYOuiQiR0Yd4kN65hWAulwIFprV7fLhlg2C204Bg8nomM2GoHOjsDruRRWAkAW1VIU\nI1FPaN1E0gGkGyitd9BycjZpreHZGbyAp3sZntpN8a1dMTp+kzsAwNqoYoAGk+rqxyYfAGKAktbY\n1T75Ei6xkbAtK3wXm1+vU5ceXKkxOkYGmE8lBd/TbDs05jPO5aLur1aPUVfFtqbJy6RMs3Wkq9Kl\n116E/VYezvDUrcp8gxO3m4bX8dO2KBjsIVk7BZu5JgklSWB4rufiVvV14wLDwxn42v9VWqFPrhyA\nb+QYX90vpZOyNJBSSr5nFdg/AN1zAD55Ehiu1Roh/0bLZlDafVG7X++CAdI6n5ClNj5xMLLJ8ATU\nZSt56gjiZuvh+UGO7UGGi3ttXO4DV/vyJdzZ6WJnu4u9GyJ5s7aeIzPSN8PTA3TTAic7Zb2L9c2n\nk0IKWXeuujtCa3B4MJYMNADF9SESK7Bp5W6sAYKX0VX00QFcbOE4F1hfvoYHibSl/t57xNUWGZ6L\n+x08u5fimT3Cc1e7yE1m3NA0xctMg7zheo7NlQInMzFAg0l19eNnv8kkjeoDNfWWKVc7fgq97w6y\nbrOmLp1+F9K6fdO0GgpjcXlZeGypMyJBVuGu23aswl5jfJyMUKcNPrEHTIaBYrods6x2yhV8k/s2\n1vMLVKDtz05bmq6ZlgP5pG8KPUPD0xsRugnj7ApcTDUwPLuXxPA8ewm80wuMTr5H2H+hg7RTIGmP\nkXZypG1GsiHGhwcTOd/zESgfAWv74PUcMEoRWdpxRig+R+pe++fTkQ3qlNuCjtFxeiEhom2I4us0\nOA3g+Sn9r2mxiHMCdF7zxDTn9FJmPnM7H0BE/wgZ83F4npkfuJ3/92JnaY3PNCGiLx/WlXAeWcQ5\nATqveWIR57RMNJdJK4qiKMpdQo2PoiiKMnXU+EyHP531AO4CizgnQOc1TyzinJYGjfkoiqIoU0dX\nPoqiKMrUUeOjKIqiTB01PncIIvotImIiOu1t+x0iukBE3ySit3jbf4SI/su894dEUs1GRBkRfcJs\n/yIRvWz6M3Fj/CAR/Q8RfY2IPklEJ7335nZeTRDRA2Y+F4jooVmP5yiI6D4i+lci+gYR/TcR/brZ\nvkVE/0RET5mf93h/c1PHbVYQUUJE/0lEnzKv535OSg3MrI/bfAC4D8DjkKLV02bbqwA8Aeno83IA\nTwNIzHtfAvBjEF2ZzwD4abP93QAeMc9/GcAnZjinNwNIzfP3A3j/IsyrYa6JmccrAHTM/F4163Ed\nMeZzAH7YPF8H8C1zbD4A4CGz/aHbOW4znNtvAvhLAJ8yr+d+TvqoPnTlc2f4AwC/DQRdeN8G4OPM\nPGTm7wC4AOB+IjoHYIOZv8DyLflzAD/n/c1HzfPHALxxVndszPxZZqdB8gUA583zuZ5XA/cDuMDM\n32bmHMDHIWN+0cLMl5j5K+b5DQBPArgX4b7+KMJjcLPHbeoQ0XkAPwPgI97muZ6TUo8an9uEiN4G\n4DlmfiJ6614Az3qvL5pt95rn8fbgb8yFfxfAKcyed0LuHoHFmpelaU5zgXFj/hCALwI4y8yXzFuX\nAZw1z2/luM2CD0Fu5HyJ8Xmfk1LDUguLHhci+hyAl9S89TCA34W4qOaOw+bFzH9vfudhSHvIj01z\nbMrxIKI1AH8L4DeYuecvKJmZiWhuaimI6K0ArjLzfxDR6+t+Z97mpDSjxucYMPOb6rYT0WsgvuYn\nzJf+PICvENH9AJ6DxIIs582251C6sPzt8P7mIhGlADYB7Ny5mYQ0zctCRO8A8FYAbzTuC3+Mlhfd\nvG6Bpjm9qCGiNsTwfIyZ/85svkJE55j5knE/XTXbb+W4TZsfB/CzRPQggC6ADSL6C8z3nJQmZh10\nWqQHgP9FmXDwaoTB0G+jORj6oNn+HoSB+b+e4VweAPANAGei7XM9r4a5pmYeL0eZcPDqWY/riDET\nJJbxoWj7BxEG5z9wq8dtxvN7PcqEg4WYkz6iYzzrASzSwzc+5vXDkAycb8LLtgHwWgBfN+/9MUql\niS6Av4EETr8E4BUznMsFiD/9q+bxyCLM65D5PgjJGHsa4nac+ZiOGO/rIAkuX/OO0YOQWNo/A3gK\nwOcAbN3qcZvx/HzjsxBz0kf4UHkdRVEUZepotpuiKIoyddT4KIqiKFNHjY+iKIoyddT4KIqiKFNH\njY+iKIoyddT4KAsJEb2PiJ4kojuuzEBEv2iUpAsieu2d/nxFWQZU4UBZVN4N4E3M7Gt8gYhSLgVT\nb5WvA/h5AB++zc9RlKVFjY+ycBDRI5D2CJ8hokchcj6vNNueIaJfAfD7kELGDMCfMPOHjdL2HwH4\nKUiBbQ7gUWZ+zP98Zn7S/J/pTEhRFhA1PsrCwcy/RkQPAHgDMz9PRL8H6f3yOmbuE9GvAthl5h8l\nogzAvxPRZyHK0D9gfvcsRF7o0dnMQlEWGzU+yrLwD8zcN8/fDOAHiegXzOtNAN8H4CcA/BUzTwB8\nl4j+ZQbjVJSlQI2Psizse88JwHuZ+XH/F4yasqIoU0Cz3ZRl5HEA7zItCUBE309EqwD+DcAvEVFi\npPvfMMtBKsoioysfZRn5CICXQXovEYBtSJvlTwL4SUis5xkAn6/7YyJ6OyQx4QyATxPRV5n5LVMY\nt6IsDKpqrSgNENGfQWT9HzvqdxVFuTnU7aYoiqJMHV35KIqiKFNHVz6KoijK1FHjoyiKokwdNT6K\noijK1FHjoyiKokwdNT6KoijK1Pl/Hws37LeDaxgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Another Window demonstrated" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag = 25, window='triangular',scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'triangular'" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXmUJNdd5/v55VJV6uqqrla1WnK31m7JqIXxNkIy8ww2\nCHkkgREeNttgbI8ZjeYhBuY8FjEGGw7MjDzmvYd4NtboGGN77MEYsLAeCK/gBR7ySJZl2Vqsvd1q\nrS2pVd0lV1Yuv/dHRGRFRsZyY8uMzLyfc/JUZiyZEVlV39+9v+2KqmKxWCyW2aI27guwWCwWy+ix\n4m+xWCwziBV/i8VimUGs+FssFssMYsXfYrFYZhAr/haLxTKDWPG3jAQReYuI/OO4r6MsROQBEfm+\njOd+TER+q+hrsljisOI/o4jIvIj8iYgcFJFjInK7iFzq2/9qEemJyHH38YiIfFxEvjfmPc8UEfWd\nc1xEvp7h2n5HRD4Ss9///j0R+Y7v9c+m/bwiUNX9qvrP4/hsiyULVvxnlwZwCHgVsAP4LeDjInKm\n75hHVXU7sAS8ArgH+LKIXJTw3iuqut19vKToC/e993bg28Brfds+WvTnWSzTiBX/GUVV11X1d1T1\nYVXtqerfAA8B/yLkWFXVR1T1HcD7gXfl/XwRuVZEDonImoh8VUS+391+CfCfgJ/JMXM4QUTeKyKP\nuTOWd4tI03t/EblfRH5XRJ4RkYdE5Kci3udSEbnF9/rLIvJl3+tb3OtFRB4XkVe6z68RkY+KyJ+5\ns6o7ROSlvvMuEJGvu/s+AswFPvcXXTfS0yLyCRE52d3+LhF5t+8eWyLye+7rZRHZEJHtab8vy2xi\nxd8CgCswLwTuTDj0E8DLRWQx50feArwUOBH4n8BfiMiCqn4K+C/An+eYOfwu8GLge3CM2auBX/ft\nPxNHcE8B/i3wIRE5K+R9/gl4sSusC8DZwNkisiAiS+77/1PENbwO+ACwAnwe+ENwRBv4JPDf3Xv/\nO+DHvJNE5DLgt93z9wJHgP/h7v6iey8A3wc8AvyA+/qVwNdV9Xjkt2Kx+LDib8EdFX8U+JCq3pNw\n+KOA4IhaFEdE5Kj7+NWwA1T1I6r6tKp2VPX/BOaB78py/SH8LPBOVT2iqk8Avw+8ybe/A/yuqm6q\n6ueAzwE/GXKNa8AdOML6ChyDdYv7/JXAHap6LOIa/l5VP6uqXRzx9kb+3w9sqOofq2rbdVPdEbj2\n61X1DlXdwDFaPywipwD/iGOMlnBE/33AC13D9Coc42CxGNEY9wVYxouI1HDEaRO4yuCUvYACR2OO\n2aWqnYTP/VXgbcAe9/2WgV0m15zwvoIzoj/o23wQ57o9nnKF1b9/T8RbeqPt4+5zxRHaE4gX28d9\nz58HPHfMHpwRux//te4B/t57oapHRWQN2KuqXxWRb+AYkB8Afs39eaF7Tb8Xcz0WywB25D/DuEL5\nJ8DJwE+oatvgtNcBt6nqeo7P/X6cEe1PAztVdQV4DmdGAY7AZkKdNrWPA2f4Np8OHPa93uWOlv37\nH414S0/8f8B9/kUcoc060n4MODWw7XTf80fxXbuIrOAYRu/6vwhcDBwAbndf/wjOzGJqU2ktxWPF\nf7Z5H46IvFZVvxN1kDjsFZF3Ar+AE5DNwxKO6+UpoCEi78AROI8ngDPdWUkW/gx4p4isishu4O2A\nP3W0Cfy2iMyJyA/hiOlfRbzXl4GXAC8CvuY+DgAvI5vYfglYEJErRaQhIm/AiU/4r/3fisiLXAN1\nDY4LyZtJfBFnxnSb61L6AnAlcKeqPpfheiwzihX/GUVEzgD+Hc6I8fGIPPk9InIcx+VxC06A89Wq\n+pmcH/9p4FPAvTgujw2ctFOPv3B/Pi0it2V4/3cAd+EEr2/HCcr+N9/+h3GMz+M4Qdm3quqDYW+k\nqkfd9/qaqnZVtQd8Fbjb3ZcK18i+DvjfgWdxRu3/r2//3wD/FbgRZxZwCoPxii8DizhGBPf+er7X\nFosRYhdzscwSbmrme1T17HFfi8UyTuzI32KxWGYQK/4Wi8Uyg1i3j8ViscwgduRvsVgsFcBtPfIt\nt/3I1SH7d4rIDW67kP8lIi/y7ftlEfmmiNwpIr9i9HnTNPLfvnNJT9xzUuwxIrG7IynTSma9pnFR\n1p9ML+N5wevpKrS60N6s09kUmu0e9XbWd7dMK88cfeiIqsYLRgLfI6t6HJPyGHiYY59W1UvC9olI\nHSf77WKcIsBbgDeo6l2+Y94NHFfV3xWRc4H3qupFrhH4GHABTrHmp4ArVfX+uOuZqgrfE/ecxK/+\n+WCR40I9/fvMFaD0WT53Wtno5n+PzRTa7X3ew8eEQ48vcPjbS5xwqMWeB1NnZlqmmI/c8KaDyUfF\nc5w2v1O/wOjYt3Q/H1fBfgFwv5dyLCIfAy7HSTP2OA+n7gNVvUecFuon49SdfEVVn3fP/SLwrxlM\nbx5iqsQ/SJIA5xH5UYj7fL0as7JWN9/UxOS7SjIQUb+rMKPgfd6ZS0qztkGjoTw2v8jBuVVOPrTG\nwrrZSM1iGSF7Gax1eQSnbYefr+OI+pdF5AKcSvBTgW8C/1lEVoHvAJcBtyZ94NSKf5jgZBH7okS+\nKkKehazXnsZoxH3PcYYhzigs1GH/srI812LbYpuDjWUeba6w+9Aa24+2jK/NYolCBBpNw7/zLrtE\nxC/K16vq9Sk+7hrgWhG5HfgGTrV5V1XvFpF3AZ8B1nEK/xLn21Mp/n4hSSP4eYR+1OLerJXzee1e\ncQEIk+/ExEBkMQz+3/vebcpCvcv83FEOb1/k8PxOdh86xs4nMrcnsliycERVz4/Ydxg4zff6VAb7\nUXldZt8K/b5cDwEPuvv+BKdPFyLyXxhuHjjE1Im/qYBnEfoiBb4s8c5LEdeVxoAkfadJxiHq9xg0\nCqvz0FxRFurrzM13Oby4RHuuzu5Da8bXarEEkRrMzxv+vW/E7r0FOMddV+Iw8HrgjQOf5TT5e15V\nN3F6bH3JNQiIyG5VfVJETsdxDb0i6XKmTvz9hI36TUU/j9BXVdhHRZr7TzIUcb+HOMMQ/D1vdGG5\nCS8+MRAHWFzl1AeetdlAlrGiqh0RuQqn71Ud+ICq3ikiV7r7r8MJ7H5IRBSnb9XbfG/xV67Pvw38\noknfqakW/yBRwp9F6IsW+EmOCfhJGxxO+h7jjEPUdxZ2Dd7vfqMLB1acOMDcfJfDje0cbK6y58Gj\nNhBsSY2ImPv8E1DVm4CbAtuu8z3/Z5zV9sLO/f60nzdV4h+XL+8X/jRCm1fkp0XUTUlzvyaGIu77\njzIMYdfgfdZC3TEAe7cpC6e0Wdx2lIfnlzg4v2rjAJaZYqrE30+WzJ6sQl+GwE+i6yhtsDhvQDjq\nOwq7Du+zWl3pDwT6cYCzj3Foe5uHGis2DmCZGaZW/P2YjPpNxDavyE+ioKch7f2ZGIssPv+w6/A+\na76uA7MA8McBnuWx5UUeba5w8qE1GwewJCIC8/OT2SVnJsQ/iTCxqEIcwGMSXEdZCsHy+Pshnc/f\n+6x2T0JnAUNxgEUbB7BMN1Mp/qYuH7/4jDIOkPbzJoG095PX3w/ZfP7NmkbOAsLiAHvvf9YWhFki\nqQnMmaZ6VoypFH8/WQO9HlWKAwA0Kug66mQoDDP9fsrw+cfNAvZuc9534exjPNDscaixyurh4zYO\nYJk6pl78ozAZ9ScJfxECX0UxT0vWezAxGmX6/KNmAbsXYLmpNGvrbFvscHB+mU6zZhvDWYYQgWZB\nqZ6jZmbFP4mggGQV+rLEfb5enWBkq5st4GXy3cQZiDSGIWq0HzcLeNmqFwd4lsOL221jOMtUMXXi\n7/f3Z+3V4wmCqeAXIfBVEvO0ZL12E6OR9N1GGYfg7y5ptB+1ff+SslBv02isORXB220cwLKF1IQ5\nm+1TbfxiEOXyMQ0AZxH7MsV9vgKuo1Ymv7/ZdxJnJKJ+F0GjYDLaj9q+dxs0d3fZccJWHOCUh56z\nBWGWiWZmxL8o4oQ/r8BXQcSzkvXaTYxG0vcaZhyCv6dOitF+2PawOMB3Fps2DjDjpGrpXDEKEX8R\nuQS4Fqch0ftV9ZrAfnH3XwY8D7xFVW+LO9ddsuy1OMuSPQC81aRZUVkExSSL0Jcp7lUoIMvSDtr0\nO4kzElG/C79R8H5/HcPRfth2EF62qiw0nDjAwfllDs7ZxnCWySS3+LtrT74X39qTInKjf+1J4FLg\nHPdxIfA+4MKEcz8L/Kbb7e5dwG8CvxF3Lf7xX5ErbTUG3EHJ/+R5Rb4KQp6FrNdtVOkb895RhiH4\nu2p1azRqmnsWcGCHstxs02gc5bHFRQ42V+0CMTOKU+E7uyN/k7UnLwc+rM5q8TeLyIqIvAA4M+pc\nVf2M7/ybgZ/MeoF5/P1xwp9V5MurBK7G6DNt9o/p9xFZ1GVoGObrvb4BgHyzgL3bxBcHsAvEWCaP\nIsTfZO3JsGP2Gp4L8G+APw/7cBG5ArgCYHXPaprrzkWS8OfvBloNIc9CWdk/WSp+/b+nVk/611bE\nLGD3grBQd+IAdoEYy6RR+YCviLwd6AAfDdvvroF5PcBZL9pXmr/EL2hhwp9G7MsS9rpUK+Wsq+nu\n0+R7iTMQSe2f52vanwkUNQs4qe4sErPQ2OgHgu0CMbNDkQFfg9jpDuAjwOk42v0Hqvqn7r7/iLO6\nl+Ks7/tWVY1dO6wI8U9cezLmmGbcuSLyFuBHgYtcl9FIMU3pjBKdvCJfNTFPS5brTzIYWTJ/YGvU\n7hnusFkAbBmBtLOAAzvoxwEONpbtAjGWVBjGTn8RxyX+WhE5CfiWiHwUOAn4D8B5qvodEfk4zjKQ\nH4z7zCLEP3HtSeBG4CrXp38h8JyqPiYiT0Wd61rBXwdeparPp7mgqH4+efP7w2jGxATiKEPY67Vq\nTuS6vY7xsabfS5SRiMv8GRi1h8wCgL4rKMssYN8SNGtbC8XbBWJmAIF6s5AZnknsVIElN3tyO/AM\njlcEHC0/QUTawDbg0aQPzK0WhmtP3oST5nk/TqrnW+POdd/6PcA88FnnXrlZVa/Me7158bt8TIQ/\nj8hXVczTkuU+kgxG0vcaNA5+gTeZBWSNBZy2qCzUYalp4wCWIXaJyK2+19e7bmswi3++B2cg/Siw\nBPyMqvaAwyLyB8C3ge8AnwkkzIRSiLoYrD2pOFMWo3Pd7WcXcW1FkNV9kyRQRYp7jQJzW0ukR9fo\nONPvJspIBL/7rvYGBD5pFpAnFnDSgvbjAN5C8XaBmOlEBOoNY2/BEVU9P8fH/SvgduCHgP04A+Mv\n4wycLwfOAo4CfyEiP6eqH4l7s+kYWpZAmhYOYcbBE588Aj8pgp6GLPcUZzDivl+/YfB+H54RKHsW\nMF9XXnqiMldrsW2x7cQB7AIxlmhMYqdvBa5xB9P3i8hDwLnAGcBDqvoUgIh8AviXOMHhSGZe/MtY\n0MVU+IsU93qtWdh7jZJuL1kITb6nMAMR/P67vQ51qZU2CwgzDOet9Fhq6kAcwDaGmx5EoD5XSC6K\nSez028BFwJdF5GTgu4AHAQFeISLbcNw+FwG3ksDUiX/aYG8aknL7/a6GoPBkEfpJFfQ0pLnHOEMR\n9/16hqFea/QNABQ/C4gyDF4cYKHuxAEesgvEWAIYxk5/D/igiHwDR/B/Q1WPAEdE5C+B23ACwF/D\nTX+PY+rEv4rECVMRAj8t7qGkeIDJdxVmILzvp0e3b5TLmAXEuYFOWlDmToSlucGF4m1juAlHlEaz\nmCx0g9jpo8BrIs59J/DONJ9nxT+BpGBv0v4wYTYV/FGIel2K/xPoqnlqp5809xtlKKK+226vPWQE\nsswCgimhsCX2ScHgHXMMxwFsYzjLmLDiH0LexVnifP1Bccor8GWId16KuKYkA5L0vQWNg/e9e0bA\ndBbQH827s4AiCsP8cYCH55dsY7gJRgRq5tk+laJ6yjEmigr2RuEXfVPBL0PYxxlHMAnueqS59zBD\nEfYdO4LfTDULCLqBIHoWkCYYvBUHOMah7Qs8tGgXiLGMlpkW/1T9eFIEez3CBChK+LMI/aQFhPNc\nb5zhSPruPOOwNeJv9t+vyFlA2mDwSQsMxAEOzi/bgjDLyJg58c+a6VMmYeJVpLBXPSBsUvhl+n2E\nGQnv++1qZ8AAeMd725zPMZ8FFBEM9scB+gvF28ZwE4PT2G0yf08zIf5Z2ytnCfamLeryhCmN2Fdd\nzNNSZOFXXMC3Lo2+AfDeI84NBMTOAooKBntxgIV6m8VtW3EAWxBmKZOpEn/xdVat0gg/SpCihL8o\ncZ80t5CfpPhA2sKv/nfh2uukWUCYGwiInQVkDQZ777VvCZaaThzggaZtDDcR2IDv9JCU6VPUKlxh\nwm8iaKMS9KIMkGkvnyBFFH8F78E/0k87C8ibEmrqBvLiAP2F4hdtHMBSDlb8CyBvsDf2vVOKfdVc\nQqMwIqbFX8GAr2ksoIxgcJwbaMccvGwVlue2Foq3jeGqiYjSKKa9w8ix4k+yiyjvguwmmBSDFS3s\nMvr1cUJRv78ugrwFYP5RfVDki5gFpA0GJ7mBmjXlvBVhoe5bKN42hrMUiBX/MZCUmpilJqAqQp6F\nrNceZTTicvzdFwPb4mYBYSmhYcHgstxA3gIx3kLxtjFctRCBeoXii2mYWfEvY4H1sEyftG6bOOHP\nLfApVtSqBAmZUybfh2cgokb1cbOAqriBTlt01gn2Foq3jeEsRTCz4p9EWYus+4kzDMbCP0pB72xm\nO68xl+28tPcWYiz835uKDI3qw4xCFd1AuxaUl63W3IXij3Bwedk2hqsCArX5cV9ENmZK/MeZ/pnV\nXx8q+mlEMatgF0nR1xBlTOK+l1oDUe0bAGeb8yNsFpAnJTRLTYCJG2h7s8dLT5TBheLnVjn50JqN\nA1hSM1PinxdTV1FaoU91vF/gihTVqriETIrkTO/bbyTc+xP3/cucBWSpCUjjBvIvFP/w/BIHt9s4\ngCU9VvxzkmeB9qH3iosPpBH9qgh5FrJee5jRCH5PjTnn/QOzgOhRfbZgsElNQF430L4lZaFeY6l5\njAe3t3moYRvDjYWaIPPFyKiIXAJci7OYy/tV9ZrA/l8DftZ92QAOACe5jz/3HboPeIeq/mHc51nx\n95G3lbMJuTt1Rgn/pLmCshAXO0i6/1rDue+AAQCoyeiDwUW4gfZs67HcrLkLxTv1AN9ZbNo4wAQi\nInXgvcDFwCPALSJyo6re5R2jqu8G3u0e/1rgP6rqM8AzwEt973MYuCHpM6de/IuqyM1C1mrc1PEB\nT/hKFHXtlONSkEaKaFna+wu6fTwDAFt/+RGzgKq7gYJxAGeBmKc5uGgXiBkpAtIsZPZ/AXC/qj4I\nICIfAy4H7oo4/g3An4Vsvwh4QFUPJn3g1It/VTExDEapnYbCX5Z456WI64o0IENuH/dnxCzAJBic\ntjK4LDdQcGZgF4iZCHaJiH9h9etV1Vtrdy9wyLfvEeDCsDdxF2q/BLgqZPfrCTcKQ1jxTyCsureI\nbp6FEBD+XEJa9ThBzPdrct/SmB8S/IHXmAWD/UYh6AaCsEri0biB/HEArzHcIbtATOmICLJg/L9/\nRFXPL+BjXwv8k+vy8V/LHPBjwG+avIkV/zFj5OIJE2ZT4a9KHUDWXH+PLPfhMxjaaQ0bAADvbXME\ng4twA2UpCouKA8zVaizNuY3h7AIxk8Jh4DTf61PdbWFEje4vBW5T1SdMPnDmxX8Uuf+F9eRJ6/OO\nEsxxBHzL/EzDvH9vtcd+U4ioWUDKYHCamoA8RWGmcYBdCz12zEl/gZiD88t2gZiyECnK538LcI6I\nnIUj+q8H3jj8cbIDeBXwcyHvERUHCGXmxb8qpAoOm4yC8waBq+YGinOrmdyjT9hDZwEFB4PLcANl\niQMMNIazC8RUFlXtiMhVwKdxUj0/oKp3isiV7v7r3ENfB3xGVQd8eSKyiJMp9O9MP9OKf8GMtKVy\nlMsnTPirJuZpyen2CQq9951tzQJ858QEg01rAnAnlEW6gbLEAb5rh7LUhHtsY7hyqIEsFPM/r6o3\nATcFtl0XeP1B4IMh564Dq2k+z4r/CDHJ8c9lPLKK/qTm/fsJc/0E773v33d/Js0CCq4JSFMUVmQ6\nqBcH8BrDHV5c4fkHv2PjADOOFf9ppkiff3fMM4d6wp9q0j3FCHtyMNj9mdMNlKYozDQdNGgABs4J\nxAG2GsN1+gvE2IKwnIggzWotoGSKFf8cFNnaIUhp/fk9kRy3mKclz/XWQ/z5AWFPGwwuKhtoKzbQ\nKD0OYBvDWfxY8R8DY1lY3UT0NydcAOYivlfvnuvDQm40C8jhBkrqDZSmRXSRcYBmDebnjnJ4+6Jt\nDDejWPGvOkUEaoPCn0fkx2kgosTdI+7a5prO/Wc1AJDJDRRXFBaXDgrDK4VljQOE1QPsW+q5jeG2\nFoixBWEZEEHmrdtnagir4E3bI6jw0f0ogrJVH/kXcX3BuHAF3UBFxwHiAsG2MdzsUojTWkQuEZFv\nicj9InJ1yH4RkT9y998hIi9POldEfkpE7hSRnogUURI9HZSRsrnZHhTWTneyH1H36P/pzYI8oxrM\nlHJf99NoE44TVUSVGvW+sHtGIPi6Lo2+Kyjs2K1tDfd45990vr4VC/AEfb6m/ViAt69R034swF/E\n2PRt87Y7cYAeLzq1xYHveRo5t8bBc1fpFlO4NP3UgLm62aNi5B75m7QixSk7Psd9XAi8D7gw4dxv\nAv8a+O95rzEtrW5tJMs45krrzNrPJzh69l5HiWbS+eMkyg0Udy9zTecexuAGKiMd1DQOkLQ+gG0M\nN3sU4fYxaUV6OfBhVVXgZhFZEZEXAGdGnauqd7vbCrjEGSBiRBob6A0Kf5WE3YQ01zvXDDcKI3QD\neW0gsqSD5o0D2MZw5SAz7vM3aUUadsxew3Nz0e5Jan/9TGAo/No1nBFUFKm7/5jeaL/ThUZ963UR\nswCDFtFJ2UDjiAPYxnCzzcQHfEXkCuAKgF17UlU3WxIIFf6qzg4iXED+e5C4mHlRBgD6/1VJLaLz\npoPG1QOYrA9gG8MVgBS3jOOoKeKqTVqRRh3TNDg3FncxhOsB9n3PvtKG+GXOIMaS959AXzTziL1p\nHCGJhsG0Ouk655pot+vMBMJmAf3jgp/t/kx0A7k/Dd1AadJB4+IAUX2BTNYHiKsIto3hpp8ixN+k\nFemNwFWuT/9C4DlVfUxEnjI4t1RaXWEUbZ0nCe120weCy6TAa1BX3GWTsbmB0qSDZm0PnTUQHIwN\n7FuCpWZ3oDHc7kPHbBzAQ4DGjI78DVuR3gRcBtwPPA+8Ne5cABF5HfD/4KxM/7cicruq/qu812sJ\nwRX6odF+mOhW1e0Tht8VFBB57XZH4wbKURWcJw5QZCD4pAWYOxFfY7glGweYAgoxWUmtSN0sn180\nPdfdfgMGK9BbRkiS8HfG0C8obtSVUPE7EjdQxnRQkzhAXF+gIgPBzZqya0FtY7gwRJIrzyvKTFVy\neFNci0sad8pAEVgn/DEOoq4l7Nr8Mxq3sE273XA31wiKwiC6yKteaw4UhcUd62wzKwjz8BeEbW3T\n/vH+gjAPryDsxae02f/Co/2CsI3FyRS/qpFULOse82oRud0tgP2ib/uKiPyliNwjIneLyPclfd5k\nOqsiKKsR5tSR1nUTFH5AW5PVFXTA7If4+iPdQFMWB8jaGdS/bd8SNGtd2xiuQEyKZUVkBfhj4BJV\n/baI7Pa9xbXAp1T1J92F3LclfeZUif+kM9JVwEwJCH+Y6GurAkHhAMHCG211nJS8qBlKlBto6LjA\n6wbZDQBb6aBFxgHiCsLyBIL9205bhIU6tjGciFk2WjImxbJvBD6hqt8GUNUn3WN3AD8AvMXdvgkk\nNgOz4j9L5ErbHBTN1IK/WYKBiOmXEnd9Ak6sIETks2UDuSenjgOYpYOmjQNkCQRnyQQ6aQGWm9jG\ncObsEpFbfa+vd1PVwazg9YVAU0S+ACwB16rqh4GzgKeAPxWRlwBfBX45uM5vkKkV/ywpnJ2eDPhA\nk+hqr9AFXXp0qzP6T5teWYa4F/mZc3W01UXm684sYGBfdd1AafsCZQ0EZ80EAnjpidovCDu8uJ2D\nczNUEJYu4HtEVfM0qWwA/wK4CDgB+GcRudnd/nLgl1T1KyJyLXA18NtJbzaTmBZttXx+0oml7FW7\nXBGuovvHwxN7hS0DUJQbaEQGAJL7AhVZEWyaCdTuSb8gbHGbbQyXEZNi2UeAp90R/bqIfAl4CfBl\n4BFV/Yp73F/iiH8sMyv+ZdPttStZuVsEAyIfEH5tV8sAeOureqN+Nrv4TXnfAMS4gSLTQfuzgMCH\n+t07BdQD+CuA8waC4yqC8xgAwC0IY7Yaw4ls9Y/Kh0mx7CeB94hIA+ev7kLg/1bVx0XkkIh8l6p+\nC2dmcBcJzIT4z2xztywLwKSJC/iEP43o60ZxBkIW4v/xwq5LoO8GGtjmERD5gTiAh2lV8IjqAUwD\nwUVkAkX1BAoWhNnGcOaYFMuq6t0i8ingDpwese9X1W+6b/FLwEfdTJ8HcQtp45gJ8beMjyKFPs/7\ny0IdbXeRpuv7984nwQ0UjAN4swA/Y44DpAkEjyITaMccvGwVludmoDFcgUVeScWy7ut3A+8OOfd2\nIFU8YerEf6PrpKCVyagWe6kaaXL7PVHWCv6z9w2AiRvITwXjAGkDwWVmAvm3AZy3ov3GcAcby7Yx\nXMWYOvFPIiwLKHxbNoHPkrEzbfEBv/DrRlWKwRpIszY0U/AMQKgbqOg4QAUCwVkzgbIYgHZP2Lek\ngwVh09YYTigqz3/kzJz4W4olmOFjIvxlzwYkZP1Z51q2/tw9N1D/NaRKB80WB3CPi4sDlBgINskE\nSpsKamIATlvUQEHYio0DVICpFv+qt2uuUl5/kSt2xYn7KNxA0Z/RQRYaQ/srFQfof0b/kgdfZwwE\nm2YCpU0FDasFCNt20oIOFIQ9trw4HY3hJrix21SLf9HEZQ11e52+P9USjie64+gLJPOe6G+paZwb\naBriAFkygcpKBfWMglcQtm2x7cQB5lY5+dCajQOMgZlRqzDhDtuWtso3C9Pm4zchKPy9Edf+1IZE\n39wNNLDH2idSAAAgAElEQVStqDhARTOBklJB8xoAwC0IU+bn3IIw2xhuLMyM+FtykLNds1/4PdHv\njrq9dkupzXvGZ8unktoN5D8wTxygv79/KZXIBEpKBY2qBUhrAPYtab8g7ND29uQ2hrNun2pRdLpn\nXIuHNP19utrpj8JGQmMuW6FXCfhdPVHC39ksxiA05oZ/V92uQMvrod9JdAMZpYMOfGgBcYCQQPCo\nM4GSUkGjagGyGICTFtQtCLON4cbBVIp/EqbpnkVRpcBuVSlK+GPfaw7qdaXXinYDmaaD5o4DGAaC\nTSuCg62hs2YCJaWCJhkAGK4GjmoH0e4JO+Z0uCBskhrDiTi/wwlkMq86BXlEPS7Xf1YLvdJikt3T\n2RR6nXLdQLWGOkbB87sH3EAjjwN4VCAQnDYVNG0xWFw7CG/b/iX6BWGPLS7axnAjYKrEv2pSPEmB\nXanXC033NMUv/J12eauKNty/Dse1rkNuoJHEASoYCA4zAM53Ep0KWkYx2Hxd2btNaO7usuMEpzHc\n4fmd1S8IE3G++wlkqsQ/CdOMn7TvEaRybp56o/y2zhlIEv4iZwMdajSaPXod6XtMgm6gLHGAVPUA\nFQsE56kFKMsA7F4QFupKs+YUhB1eXLIFYSUxteKfJ+g7inRPSzRB0e+08xuBBo4BcJ73BtxAeeIA\nmesBAvuMA8EVqQWIKwbLawCWEV62qm5BmPLYvFMQdvKhtQrGAcT57ieQ8ubZU4aX3xyHlyZXKFX4\nw2qM7hr8wt9pSyHC772Xf5bR6zivO5tCt+s8vDRUbXW20lM3nOdOu4qtNQu05TwG2lq33DWOvRmA\nJ/Kdbv9537UW3Oc9YGsG4GVq9Xyvex03ENyKPsb3ut8SwhV2b2QffF2XRj8TLfrYhnvslmx4RsCb\nDXtZcfP1LQPR6G/bMpVNg20HdigvOrXF/hceRc6tcfDcVTYWJ8ONOglUQFnKx7yZW7bgcJ7lHD0X\nkRcf8F6rSP8fF9hK26w1tv7Rp4yg8AN0C8wCAr83ZdANlDsOYNIXyKWoQHBoJtCIagGyVgOnmQG0\nusL+JWWh3t0qCJuvWEHYBPv8p27kv1nwrNCbvhaNF1jLTJY/uAkpRum0he6m++gU8wDHkHhGpdcR\nOu1afxbQ2dyaBYBTgezVJnhN6rxZADgN7LxMoP4MYLO7taKZV9fQ6QyO8sEJBHe7ziwgZF//Z7fj\nPBJG9wOzAHdmQGdz4LWoIqrUqFOjTr3WpF5r9l/D4CwAzGYA3qAnagbg35d1BrB3G7x0VTn37GOc\ncWCNQ+eu8uRpy0wbInKJiHxLRO4XkaFlGEXk1SLynIjc7j7e4dv3sIh8w91+a/DcMGZi5O+nyFW9\nsqR7Fl3oJY35rX/+GaGbKSto+PfkDJSVTrtWfhxg4IMzBoIrkAmUthq4qBnAchNefKIOFIR1mrWK\nxgHSIyJ14L3AxThr9d4iIjeqanA5xi+r6o9GvM0PquoR08+cupG/H9NFpNoh/vxOjI8/7PgovBG+\nVzxTGlWIDYwAT/g7bU318M7rdrZmFV4cwJsFFBEHAIbiAM4F++IAnW50HCBsBuBc+OBoHuJnAL7t\neeIA8cdt/c2NYgawUIeXrSov3NPinAPPIufWeGT/zjHHAdyAr8kjnguA+1X1QVXdBD4GXF7mlU+1\n+I+T0sU+D3Hunwq7hrrtWl/MW610D88AdNu1WDdQ/7kbawgzAP61CkoJBAeMQ2gg2O/ecS7aeZ8p\nNwDgBIJffEqbM/atsf1Ah0f3rXB8ZZ4JYJeI3Op7XOHbtxc45Hv9iLstyL8UkTtE5O9E5Lt92xX4\nnIh8NfC+kczGcJFigr5xPX48xt7auUL9fIrEE36AVivQibUd/jtpNLdmaIPn1Ai6gRpNdYO/W+mg\n/nqAqL5AmQLBaSqC/VQgFTRrP6AsawLEuYX2boPm7i7zc8c43Fzk0OKYGsNJzfmuzTiiqqnW2Q1w\nG3C6qh4XkcuAvwbOcfe9UlUPi8hu4LMico+qfinuzaZy5F900NcEL/PBUjx+H78n4n6XThRB14//\n3KAbyEsrDaaDAsUHgjud2ECw9zy4b9ypoHHHOdsGU0HDZgD+VFBgoJ7GMwKmM4DdC24g+Kx1zjrn\nKM+cu32SA8GHgdN8r091t/VR1TVVPe4+vwloisgu9/Vh9+eTwA04bqRYplL8/YT5/cN89nF+/LIy\nfkrFZPYxoWuPhrHZ6iU+/O6iMAMA4fUAwFAcwHPlBOMAznPHAATjAIVkAnmPOAPgvtZOyzECFTIA\nQKEGYLkJB1aU807f4Ix9a7QOzHHw3FW6IUt5loKX6mnyiOcW4BwROUtE5oDXAzcOfpScIiLiPr8A\nR7+fFpFFEVlyty8CrwG+mfSBU+X20XiPTGpMKn3zZPwEc/sjc/3z5PZndQM16kNuB5lvjGUVriQ2\nW873346ZBTj0gBqNpvjcQDXfvi0G6gEi+gKlaQyXKxOoiJ5A/hsbY0O4LC2hk1xAC3U4a7syd6pv\nhbAJawynqh0RuQr4NFAHPqCqd4rIle7+64CfBP69iHSA7wCvV1UVkZOBG1y70AD+p6p+Kukzp0r8\nkyiysCtNymhQ1DNTwUIvx5cdHdyWZq3UdXs3W72+6G+2on8fc/PiHucYgGGcOEC9of1ZgD8OkLUg\nLKkzaGhLiNJTQRlbQ7gyDcDebYMFYSNpDCfFtXdwXTk3BbZd53v+HuA9Iec9CLwk7edNrfhv9mAu\n48wvb9DXo/QGb2lG9XHN3TwhmTCCwt9qxRkZ/x9Dj7n5rQDy/Ly4z4cDwTDcF8ikMZxpILi/D8x7\nApk0hTMxADDUOG4UDeHKNACr89BcURbO9lYIW7GN4SKYOvEPa+gWti1tsVca986oM35msdDLlK2A\ncI/5+ZpvduD9LoMjhBr1Zq+fDlqfUzptMS4IM+4M6u4dag0dlgmUqSkc5sVggWyhrAYAMGoIV7YB\nADh3ZVQFYTPe3sGgLFlE5I/c/XeIyMuTzhWRE0XksyJyn/tzZ9J1xA78DEhTvDXwud2tRa/HionB\nSZvHH3K8zMfPZmRUwbYE/KmhTrC3R6vVY7OlvhlDb+g4fz1AsCDMed/ogjCTQDAQHQgOywRyg7yR\nTeH82/LWAvjaQUD6IHD4saMNAi/UnVn/gZWqFYRVi9z/pb6y5EuB84A3iMh5gcMuxclHPQe4Anif\nwblXA59X1XOAz7uvY2m1atxzVPoZPmEpn94IIWmbR1GVviMl40hE6tOT/ePP7IEtYXeebxmAdltD\nDQAQWhDmrwiG5IIwKD4TyHve32fSFTRDMZi/HxCYGQDTjqCjMADgBIJfeFKnXxB28MBqsQVhns8/\nf4XvyCliiGZSlnw58GF1uBlYEZEXJJx7OfAh9/mHgB9PupB2q8bDDy1xz1HhWE4XdpxBMGnvHIU3\nPe66LRmD7R+Cr1VKMjAVruTNSzCn35/nv/W813cB+Q1A8LgiKoLBrCWEVx2cOxUUog2Arz1EmlqA\nsIZwkK8ldFoD4JHWAOzdprxkd5czzzrGC/atT21juLQUIf4mZclRx8Sde7KqPuY+fxw4OezDReQK\nr1xan3uW5+6f4957VrjrSJ2nNraEs4h8/ywERT0z3sghzag+62gjzDAk9PSXZvVmDXEFYB5xGUJ+\nPAPgvK//+da/kH/h+J4vBJOU7RSXLeVcZMq/HZPjC8gWC4p8FsIMQJCwVhBb55ttW246cYD9ZzgF\nYcf2nZD1kqeGajhnE1BVBUL/OlT1elU9X1XPP6G5xJ4Hj7L5oPDAvSvc+1SDh44PGwD/qN4T+zh3\nUKd/jK/S1N3WDuzz/P7+hV2iRvWpR/9+A+BNJV1j0C8xDxoJ3zHU3X2euM81twq93G1910/IPhoN\nJzUR1+8/5zy8GIA068iC97yGLDS2ns8759bmnQBpva405pRaw3k0mj3fc6U+5z4aSr3pjgKbwvy8\n9J/PzddoNoVmU5ibF+bnawPHNZrSb/EQPLfqGNdTxAm9wdKd40oUyLr+RR4W6nDmkrJvj1MQVhQq\nYvSoGkX8BhLLkmOOiTv3Cdc1hPvzSZOLWVhvc+oDz1K/v8N9d+/krm8vcPdR6fv/TQyAf/Sf1wB4\nRqAUA+C9NjUAjbloA9CoZzMAkGgAZKHRDwJ7BgDoGwDnEh0DsPXc2e43APVmry/inrjPuYLvNwDz\n87UhsQ8agzA282YMpCDYDtqIYK+fIhlRP6g0WXBx2XVhM4WwbcEsv4U67F10AsGzThHin1iW7L7+\neTfr5xXAc65LJ+7cG4E3u8/fDHzS9ILq7R57HjzK0oPf4aH7VrjnoUXuOSqsuYOkURoAYHQGoDEX\nbwC812EGAOINgG+fZwCcR7QBkIX6lugXYACAvgEABgyANwuYm/f21YYMxVQTZxjSCHvQ75+TsBYQ\nScTV0WQpyAzi1AMU1Q5A6dE1elSN3CFow7Lkm4DLgPuB54G3xp3rvvU1wMdF5G3AQeCn017b7kNr\nbDvW4nBnJ+12jef2rnPeri6rvmC/v6DLy/33tvlrAbxtXssHf96/V/i1db6zz7+8o5f7H9XKIXPL\nh2DVb2MOwZ3OxxzTZ47BgiFfvx/ZdFsNB/dttp0YQKfTnwVoq+sYAP/fRrvbnwVou+e6gbaSyvsL\npbS036rAqZX12inUIv5Ah6t0O211ZwH+0WJ40da40I1O3xUWyqbzHZaGV/2b4Zw8uf+m+HP/0+DP\n84/bNlcbT9PHqlJI/pFBWbICv2h6rrv9aeCivNe2/WiLM+5+mkdbK2y26nQ6x3nhSR23FNw5ZloN\nAOCs8xplADqbziwgzAB0HNGPNAAeIQaAzW5/FuA3AA4NRwSbNed5q+PMAlpOy4TGnOJcstBo9uhQ\nc5+76Zeb4s4CenTbtZARfZgBiGZu3okZOM8rGALzWj/48X5XU4JX3BWHv/CrCILuoKwomj+ZY0xU\nL/m0BBbW25xxz9M8sb7Mwc4ym6111na3OLAy3QaAzqZb/et+EQ3iDYBHiAEAp998cB8wYADAjcz7\nDEB/+0Z3S/QjDAAAc/75Qc/XWiHIYJVuq6WuMaix2er1RT2Opi9uMBWYGAavunfM+BeBjyLOMITN\nFMK2LdTNV/WbJWZC/GErDvBke5n71nbS6Ryl3dvg3BVl2f1fiWv8VoQBAPcPfiwGwHUDxRmAbmdY\nODpbo36p1xMNgLY6TrsC6BsAbXX7qaBRBgCc9gi9lhMHYM5Jnaw11DEA7Zr73Em1rLtxgm5H3Gyg\n4TYNDvHiMlXCn5YsbqAC8K//Ow1U0Z9vwsz95e8+tMYpDz3HwbuXeeDgIrc/LRx+fmt/XMA3KQjs\njVCigsAwnApaahDY93ogEOxl/gTPMU0FnWsO72s0jFNBvUBw2kwgLx200fSlgza2soGCgWCgHwz2\nHn5GIfxltsDuV/uGkaI2YFTpnmUGfU23ZW32OI3MzMjfz84n1mm2OjzZWmb9eJPWvjU2dvbYvzQ4\nsg8b7cfNAJxtzkg/agYA9N1AY50B9Le7X4o3I/DPAMJcCN4MoOsf9ftjAg0n4OzNAHyBYG8GEBUI\n1nbPMQARgWCTOEDYeMZf7JVG8EeRIaTtbnUK5Ap2B4W1fE4iLuhbtN+/CFQn1+c/s3Zw+9EWZ9zz\n9EBB2N3PyVAaaLsnqdJAnW2jmQF0e+18M4DgcXG1AFBIKqjM1/ti158BeLMA77k7e/AKwpzLdArA\ngMSCMH89gHO8pHr4Zw5egdnEYlDoNUROl4zX5iENaRdE8jDtzFtUgLdMkhpk+o77XhHpiMhPBrbX\nReRrIvI3Jp83kyN/j3q7xxn3PM2jmyvc19rJ86cfY2PPBvuXnThA1iCws62cGQDQN9nesf3X4opq\nX9jdGw1k/ITPAEJSQYMzANNUUI+EQLA3A8gcCE4dBzCj0ZSxir634PsA48jwybjYS9GYZAP5yZoy\nmgVF+wO0PPiaXF6M0+bmFhG5UVXvCjnuXcBnQt7ml4G7AaPGRTM78vez58GjnHjP8YGCsCc3nH1Z\nC8GcbdEzgKh2EHEzgJG1g/Be1xtuJlDIDMB9LfX6VhwgsM9LURyKA7jPpVmPrQj2t4SA5IKwqDhA\n2sfEjfYncCEej6xtHvIUe1XU72/SIBPgl4C/ItDxQEROBX4EeL/pB870yN+PFwfwCsI2zjpGe1nZ\nu62cGYB/n+kMAHKs/+sf3bu/9dS1AB7BbJ+kTCD3swYygfrbhn3eaeIA/oKw6DiApSrpnR4mGT/e\nIi+mmBZ7jZFdInKr7/X1qnq9+zysyeWF/pNFZC/wOuAHge8NvPcfAr8OLJlejBV/H15B2BPHl7m3\ntcL66cfZOKnD/iVNNADAwLYyDAAw3loA01TQkH15AsHehZkUhHm3UAaeW8kzMJb0ZKn8rTaa5n6O\nqOr5OT7sD4HfUNWe+BrFiciPAk+q6ldF5NWmb2bFP4DXGO6Jza2CsM09Lc7arkC0AQjbVqQBAEZb\nCwBDsYJMmUC+fZ4B8EhqCeGQPw7Q3cw/8qvP6XSI/thy+8vL+JmSYi+TBpnnAx9zhX8XcJmIdHBm\nCD8mIpcBC8CyiHxEVX8u7gOt+IcQVhB27BS3IKxgAwCEVgMHDQBQ3VTQQN+fAQOQ0BMI0lcEQ3xB\nGMT1BcqGX/i9rCNLsaQN7OahKL9/ge0d+k0ucUT/9cAbBz5L9SzvuYh8EPgbVf1r4K+B33S3vxr4\n1SThByv+sew+tEZzs+vOAOpsdNc5d0XZvZDeAAAD1cCeARg8PtoAAImZQOUZgMFYAVBYJlCaimD3\nxMz1AEWQVvj9Rq50Ot3h7zny2NHEAIpy84zSMIwDwwaZhWLFP4GdT6xzwvFNHm2t9AvC9u3ssX+J\nVAYAGGoHkcYAAGMuBkvRFdS0JxDZA8EO0XEAZ+9WHKAsvJoDoJ+JZKHf3dPs2OQeP2GYBnjLDfqm\n8vnHv1NCg8zA9rdEbP8C8AWTz7Pib4DXGO6R9k4e6KzQ2bfGZq/DgR2jMwBA5mpgwKwWwPfaqC10\nWCaQR8pAsEdhcYCAG6gsJl74C44BFJ3rnzbjx2KOFX9DvIKwJ9eXBwrCDqzAjrn8BgAotCMoMFQM\nlqstNJhlAmUMBJcRB4AtmxZHr5MsLnHunokVfh/aaW3VfmQgi3tnHA3eig76qjLyeyiK6XWilcTu\nQ2sDBWF3PCMcWo9fEzhsW9pVwUZWDBbyOrIpXNL6wLDV9sEtCIval1QQBuZLRAbbQiThtYqIe4TR\nmNPRC3+ZSzmC8QpeRSzeHofJgu5Jx5u2fphV7Mg/A/3GcOvLWwVhPdi3lG8GANEtocGsHQSUWQuQ\nIxA8pjgAEO6WKpma4SA6dVM304BuXjx3UESLhzxMV66/ZopXVAEr/hnZfrTFCetOHKBfENZ1CsL8\nlb/eaD9qW9EGAKhOINgjriLYo+A4AATcQCPEE/7+LMa3jrFlPFSs0rcS2L/GHAw0hlvfyWZrzS0I\nc+IAaVtCe26eqIZw3r7KFIMlBYJNKoILjgO4HzKcDjpigsKf7twJaEFZEnEpnabpnqMU+p7KxKag\nWvEvgD0PHuXZ9UXua/kLwuCkhWLXBPDvK7oWANJlAkEJgWDTegDSuYGSyLPgSlwefxbhn2bK6PqZ\nRegrXuk7Mqz4F4QXBzjY2cn68SYbZx3j3BU4bbE4AwDx1cCQrhbAPQEg/ywgzFCYVARD+jhAQl8g\n7wI8N5C2432yRRdiWdG3TAJW/Ask2BiutW+NYzt7nLfSK8QAQHG1AM6xIwwEQ2xBWJFxgDA30Ljx\n/P1b/v/Zce2YBHjjCr3y5PqX3dtfodT3LxMr/gXjbwz3QGeF5/eus9lrcWCHI95hBsDbnrcdBJjV\nAgDjiwOYFIQVGAfYcgONHyc9dXZE31JtqvFfMWX4G8MdbC3T6fgLwpxjyigGA6qZCjrmOEBVSBT+\nuZj9o17Fq+KYdvcsG1UmtgLZin+J9BvDrTuN4dpnrHPm0mAcYJS1AJA+EwhyBoKDx40gDuAxHAdw\nt48h2jeSEf+oagAMSdPfZxTYdM9BrPiXjL8xXLtd47m967R3ddm3VLwBgPhUUEjXFhoKCASPMA4A\n4W4gbQ+KfVVcL/2F7Gc4tTOOcYzk09IDm+ppiWagMdz6Cp3OWr8gDOJdQDBcDOZsKycV1D0o8thK\nxQH6x06mGwh8wh/n8plixtHfx+JgxX9EBBvDbbbWWNvd6scBoqqBoZhUUEjOBIIxBoLj4gBErA+Q\n0g1USZJEv2HwL2rjAUMkuXgKm/ypDMUeJoXJnK9MMF5juPvu3tlvDPfUhgxMb70/2rBtnYFtzq/P\nH3AKawrnEdcUzt8YLrgv7PVAU7iohm+NOaQx7zSGizsO4hvDua+lXneaw/WbwQUbxTWQee9R32oO\nF/UYF1W4hgnFc3sObpuOBm4icomIfEtE7heRq0P2Xy4id4jI7SJyq4i80t2+ICL/S0S+LiJ3isjv\nmnyeHfmPgbDGcE5BWHgqaNgMANKlgkJ8JhCk6wkEvkBwGXEAj6g4QBo3UCsiwFtB8e13MB3lCmCW\nzDg+//wjfxGpA+8FLgYeAW4RkRtV9S7fYZ8HblRVFZEXAx8HzgVawA+p6nERaQL/KCJ/p6o3x32m\n/QsbE8HGcP6CMJNaAEiXCgr5M4GA4iqCs/QF8pHWDTRJ9IU/weXTb5FtmQYuAO5X1QcBRORjwOVA\nX/xV9bjv+EXc/AZVVcDb13QfidMhK/5jxN8YLlgQNl/XkWUCgVkgeOxxgLj20B4J2UBZyNr7J9fo\n3S/8QSNoffypqFDW0C4RudX3+npVvd59vhc45Nv3CHBh8A1E5HXAfwV2Az/i214HvgqcDbxXVb+S\ndDFW/CtAvzHcmtMYbmPPBvuX4aSF9MVgkC4TCEoKBEO+egA/ed1AUXTMRH0kLpioUb4V+kqjmqq9\nwxFVPT/f5+kNwA0i8gPA7wE/7G7vAi8VkRV3/4tU9Ztx72XFvyL4G8NttuocO3V9IA5gmgoK6TKB\nIL4lBJhXBEOBcYA0bqCoqmD/LCAMk0yacRF2r0UWcQVWbcuzhGPRmLZunjIOA6f5Xp/qbgtFVb8k\nIvtEZJeqHvFtPyoi/wBcAsSKf65vWEROFJHPish97s+dEceFRrGjzheRVRH5BxE5LiLvyXONk4TX\nGO7I3Qvce88KX3+yzoPHxJfBI4VnAsUtDxm2RKS3z9veoxt6bKYlImOOM10mMjIbaNIeQQKZTan9\n/cHvNem4CSVp6caiM4OUrf/LpEcCtwDniMhZIjIHvB640X+AiJwt4vxjicjLgXngaRE5yR3xIyIn\n4ASN70n6wLzm9Wrg86p6Dk4kOiw9yYtiXwqcB7xBRM5LOH8D+G3gV3Ne38SxsN5m3zeeQu/p8cC9\nK9zxeJPbn6lxvO1b6zfBAATXB271JHJ9YCDUAMStEextz7VGcNp00MacYwDqjdh0UGBwreBGPf1j\nlKS5pjTC73039YyzmyQjYSkUVe0AVwGfBu4GPq6qd4rIlSJypXvYTwDfFJHbcTT1Z9xg7wuAfxCR\nO3CMyGdV9W+SPjPvb/hy4NXu8w8BXwB+I3BMXBQ79HxVXcdJVzo75/VNLF5juPtaO3n+dK8xXI1d\nC25QN2UmEKQLBEP82gBgHgeAsL5AJVQF+xjIBgoS5QbyqFiPnIEMpiThLzpGMOEzgbJRlcKCyap6\nE3BTYNt1vufvAt4Vct4dwMvSfl5e8T9ZVR9znz8OnBxyTFwU2+T8mSWsMdy5KzVOWiguEwjSB4Ih\nZRxg3NlA3UCe/wQGURNFv2oGy1J5EsVfRD4HnBKy6+3+F27hQWaHWtbzReQK4AqAxRNWs358ZQk2\nhts46xj7l2HfUjE9gWA4EAzRBWFQcj0AGbOBEprDFcGQEclBYTn6ozJk1g0USlFFXuMg8Teqqj8c\ntU9EnhCRF6jqYyLyAuDJkMPiotgm5ydd3/XA9QCrO/dNR513AH9juLvWT2R9n9MYzisIy9MTCIYr\ngiG6IAziO4NCinoAGBb2ktxAsSS5gVzGVlSVJPBe0HsE9OM4FSCsp7/FnLzm/EbgzcA17s9PhhzT\nj2LjiP7rgTemON9CeGO4zV6Ls7ZraBzAtCUEDFcEQ7aCMEiOA8AI0kEj1gigE9XmYfLcQMBwb6OK\nUaVe/mWhOrmLwecV/2uAj4vI24CDwE8DiMge4P2qepmqdkTEi2LXgQ+o6p1x57vv8TCwDMyJyI8D\nrwn0uZhJvDjAfS2nIOzYKRucu1Jjz7biAsHO+xQfB3DOz1YVDBmLwmBrZF+GXzzKoMRR5HVUVPgt\n1SeX+Kvq08BFIdsfBS7zvR6KYsed7+47M8+1TTNeQdij68usn91k46xjbHRr7FsaNACQrSIYiosD\nAOnXB4BhYS+4RXQkhi6gPqMKtKa5h2CaZwkZO0kLss8KPWAzfN35ymOjOBNKaGO4tgzEAbJWBA+e\nEx8HgHxuoNB00LKrguMEfhJH0mHXHCb8wXqLijKD1b1jwYr/BBPXGG57s2cUCIZ8cQAIrwcAMzeQ\nf1ZQWjZQN+B7LkPg08wYyjYwpiP+Alo79H+PlonDiv8UENYYruiCMOd9zOMAEL8+AGR0A2WdBaQl\naDCSGNWMwfResozuS5oRlOUiqkKmzywHfC0VIbwxXHXjACN1A0XR2Yzel7UtwrgpQsBHmNNv1+8d\nHxP6F24Jw2sM92hrhfXjTVr71mj3YN9SfEUwVCMO4J7YP78wN1CUwBQ90o0zJnGMwgcf1TgvjhTX\nNasBYAXaNuBrqQJeY7hH1504QKfjFITtXxpNHACypYP295VVFJaWLCPSUQdS095XGuHP8zmWicD+\nVqeUgcZw68dYKzgOsHVOuW4gyFEUBvF/4XEj9WkQvDBjlOO+TKp74wLA0xgc7ilsTGt7B8vkEtUY\nLlgQBunjAIPnlOcGMi4KA4ZXCvMZgbCRfFEj9azunjiKnkVMgzGzFIr9i5hywhrDHWvXcscBoGpu\noKtzMiIAABJUSURBVJhZAKQXvzRunyrkzWcU936aZwqX0Kz698NQbJGXpcIU0RgOyJQOCuHLRMII\n3EAQu4B73zCEMWUj5dhc/oyxgFgXT8q+Pp7b0E9FFl0fGSJyCXAtThuc96vqNYH9P4uzXooAx4B/\nr6pfF5HTgA/jtMRXnIXhr036vOn6C7dEkrYxHMTHASB7OiiU6AaC4WAwhLpm8hQ3xRqOkil0vd0o\n4S9xNlPmzGHUBqOnsFFAtqpvxcOLcdY8uUVEbgz0M3sIeJWqPisil+J0M74Q5y/+/1DV20RkCfiq\niHw2qReaFf8Zw98Y7vn1YxwzjAPAeNxA7satfVlqAiCdmBn48Ku04HkkJvecNNqvmBtoils/xK14\nCICq/n++42/GaY+PuyDWY+7zYyJyN84iWlb8LYN4BWFPri/34wAb3RqnLUbHAWD0biDIWRMAW7OA\nMEaV/19VRuDamvb4QMo8/10icqvv9fXueiQQv+JhGG8D/i64UUTOxFnS8StJF2PFf0YJbQy3sxcZ\nB4DRuoH621IGgyFkFgDho/lR5f+PiqLEPMQVlDfNM/z44e9yikf2AEdU9fy8byIiP4gj/q8MbN8O\n/BXwK6q6lvQ+VvxnGH9juLvXV3l+39pAYzgYjxvI2ZYxGBw2CwDz0XySy2fSA8Gm30PEfWYdyU9j\njn/BxK142EdEXgy8H7jUbYnvbW/iCP9HVfUTJh844X/JliLoN4ZrbTWG278cv1A85HcDwYiCwWGU\n5fIpI+c/SFluqYjvKmzUP0oxbyUEcce5hm6Bjd3iVjwEQEROBz4BvElV7/VtF+BPgLtV9f8y/UAr\n/hZgsDHc+vEmx846xrkrcNoiRumgkN4NBMNFYWDeItrduLUvLiU0SJoR/KTl/Acpuao3yCws31g0\nUSseisiV7v7rgHcAq8AfO3pPx3Uj/W/Am4BviMjt7lv+J3cRrUis+Fv6eI3hnji+3I8DtHd12bfE\nkNgH4wAwWjcQpJsFJBFqIDwm3dVjgMl35BlV/6g/rRso7PiwHP8ksrZzLnqW0FNobRYTpwhb8dAV\nfe/5LwC/EHLePxJf0hLK9P9VW1LhFYR5C8R0OmustTsc2KHM14tzA8HogsF+aoQvu5hlhBtrMMZM\nlvuJwv8dpnH35Mn0KTJff9aKxUyx4m8JxWsMd+faLp4/x1sgBnbMFeMGAkYSDPa2eZgKUpSR8FOk\nwI6LNAI9a03bjFCh05nMDCUr/pZIdh9aY9uxVn+BmPYZ65y5tBUHgOLcQP79UTUBkC4Y7D8+Cr9h\n8JM3P93EeBRFWbn0RQl62PtkWcQlTRroOIPAk4IVf0ss/gVi2u0az+1d78cBYDj3v0w3EKQLBgf3\nh5FG4KIMRRhVL27KK+xR95cn2Js3x38c7p2ewmZrdIa+SKz4WxLx4gBPrC/zwPrgAjEQ7gbybx+1\nGwgGZwFgJsZJo/UyXRtxhmUcLhVT4+W/tjKyfJLSPC3ZseJvMaLe7g0sELPZWmNtd2sgDgDFFIVB\nscHgoXspyNVTpGtnVAJf1IwkSfTDPqeoTB8/Y3fvqNDpTKaBsuJvSUWwMZyzQAyctODsz+IGgvJn\nAX5MhTbJzVN1105W0hiiMkb7Se6brGmelkGs+FtS018gZn1rgZj9y85C8WGj/aKDwZB+FhBF0DD4\nyTIaTxMXGBVFzyrSCH5RwV5L8Vjxt2TCv0DMva0V1k8/3l8gJir1s6hgMJBqFuAR5qYxFbI4IzHw\nflOQ8phnNJ+1JiAp2FtEwze/i6iglgz0ejbga5lB/I3h7lsfXCBmh9vlIG9NAMRXBkPyLMAjyU0T\n58PPI4imhqNoymqzYOLuCgp/FhdZ1mCvX+RtgVc0VvwtuQk2hjt2yoYbBwgX+zg3EJQzC/BTRMA3\nTbB3knrd5I1jpIsXFLf47bhEXlVot22Rl2WGCTaGC4sDQLIbCPKlhEJ4YZgfE4EaVbC3yIyhUQWg\n07q2Bl1B8YYwjYiPPdNnwrHibymMYGO4YBwAkmsCvO1FpIQCA0YgSKybp6TiryBVyhgqIl5hXB/g\nG/Wn8edXLdNHbZGXxeLgbwx3sLPMZmvdFwdINwvImxIKDBiBIEUUfjmfMflB3jRkMVj+EX9ad8+U\nr+41Nqz4W0qhXxC2Fh4HgPSVwZBtFgDx7oYww+AxzsKvUVLkDCTuuzYV/iIqe/0upLJcRGobu1ks\nw/gbw3lxAGeBmHiff1RlMGSbBfjxjIEfk7zzOAPhp0punLLIkqdvIvpZg7ZpRb6oNM+iEZFLgGtx\nFnN5v6peE9h/LvCnwMuBt6vqH/j2fQD4UeBJVX2RyedZ8beUir8xnH+h+P1LGuvzL3IW4CdOhMIM\nQ/+8DIJnajCqQJGFV2ncOln9/VUJ9hbl8xeROvBe4GLgEeAWEblRVe/yHfYM8B+AHw95iw8C7wE+\nbPqZuf46ReRE4M+BM4GHgZ9W1WdDjgu1aFHni8jFwDXAHLAJ/Jqq/n2ea7WMj4HGcJ0Vnt+7zuae\nFgd2kJj5U9QswE/QIHiYiFacgRh6vymtZM3fj2f4O4wa9c+Qv/8C4H5VfRBARD4GXA70xV9VnwSe\nFJEfCZ6sql8SkTPTfGDeb/Zq4POqeg7weff1AD6LdilwHvAGETkv4fwjwGtV9XuANwP/I+d1WsaM\n1xhu/u5NDj64zF3fXuBrTwtPbQwW5Hgi0OpKX/CjpvWDI0HnT7nVk/5MwP9+flrdWuwjjq72Uj8m\ngaLvx/T7DfsdTVInT+0Jm6260QPYJSK3+h5X+N5qL3DI9/oRd1tp5J2XXg682n3+IeALwG8Ejomz\naKHnq+rXfOffCZwgIvOq2sp5vZYx4zWGO7i+zGarzrFTncZwuxfiZwGmhWHO9uFZQBjeZwQxGW1G\nzR7CmBQDkIaq9N6PGhiMItibgSPuguuVIK/4n6yqj7nPHwdODjkmzKJdmOL8nwBuixJ+13peAbB4\nwmq6q7eMhX5juNYK68ebtPatsW9nj/1L5m6g4PakWEAYcQIUZRg8sohfGoMxaspwr2QR+KhRf1H+\n/qoGe4HDwGm+16e620ojUfxF5HPAKSG73u5/oaoqIplXtA47X0S+G3gX8JqY864HrgdY3bmvuitq\nWwbwN4Z7oLNCZ98am70OB3Y4+9MEg73tcbOAKLIYBj9JRsLPtPmv847e434vE/NdqVLrFGLUbwHO\nEZGzcET/9cAbi3jjKBLFX1V/OGqfiDwhIi9Q1cdE5AXAkyGHxVm0yPNF5FTgBuDnVfUBg3uxTBhe\nY7gn150FYp4//RgbezbYv6wskzzaN50FQPSoO4th8JNFANMYjFFSRn+cLP57v/BXraK3LFS1IyJX\nAZ/GSYz5gKreKSJXuvuvE5FTgFuBZaAnIr8CnKeqayLyZzgu9F0i8gjwTlX9k7jPzOv2uREnIHuN\n+/OTIcfEWbTQ80VkBfhb4GpV/aec12ipOF4c4KHWCputY24cQNm9kDzaN5kFQPxIMothGDg/pZhP\nU6fJvMHZuN9LmPCb+PVH6e8XhWarGF+Sqt4E3BTYdp3v+eM4g+ewc9+Q9vPyiv81wMdF5G3AQeCn\nAURkD05K52VRFi3ufOAq4GzgHSLyDnfba9xUJ8sU4jWGe3J9mXa7RmvvOuft6rJ3m9loP24W4NHI\nEOA18dNnEcC0BmOUlJFtk9aNU8aIv8L+/rGQS/xV9WngopDtjwKX+V4PWbSE838f+P0812aZPLYf\nbXHCuhsHcBeKX1vtcGCH2Wg/artHnKBkMQx+0gZzJymd0YS8PnoTsS+yT/9mQbF3UaXerm4gP47J\nKUG0zAQDC8S0drK5b42NTsuJAzTjR/sQbQQ8/MbATxbD4Cet+FU588ejjKBrlhF98Hc4VBdQnVTO\nicKKv6WS+BeI8RaKP3NJ2b0QLfQQbRw8ooQiyiiAmWCZGIjB65iQbJaU5HXXJAl50oh/1Pn9otDc\nnEx/khV/S2Xx4gCHOztpt2s854sDwLDQQ7QryCO6sCteKOKMA6QXvbTGYpyU4X9PK8x53Tx+f39R\nLp9Jx4q/pdL4F4g52Fqm0znO2mqHs7YrC3WGfPtRgV+PrIVdeY1DkGlPYcw76jYV+3Gv1yuqNKzP\n32Iph4X1Nqc+8CxPbC47C8XvW2Nj91YcAJJnAR5xIp2v4jed8KQ1FlWhaFdKpirgkGuwcYD0WPG3\nTAReY7gn28tDcYDlJomzAI84UchqGCB94dYsiVOeEbnJ95T0/mWmeFqfv8UyIrwFYoJxgNV5xwBA\neEDYI6trJ2mknkbgqlrhm5ai3SxZDGLaa7D+/i2s+FsmjrA4wJluHAAGjUAVff7TVOGbhnHEASzR\nWPG3TCT+OIC3ULwXB+gfUx8WgiyuHZORehrBmVR/fxxFCm5RcYBRVPRKT2m2JnPRHiv+lollIA7g\nLhTf7m304wAb3a1ZgEeWPP8q+vuLNCDjGimXGQsIE37r8hnEir9l4ukvENNZ7i8Uv39ZWZ0fFoGg\nMfAYhb+/SF9/1V0bRbm2stynyYi/qFmBKDbV02IZJ/3GcK1l7m2tsH76YBzAI+qfPsooQHH+/jyC\nOK4g8ajiE1O6QEulseJvmRr8jeH8cYC9i9oX97mIrgpZjIKHiXDlddNMepC4iJlKFpEPc/UUaSxE\n1aZ6WixVwL9AjJMJdIz2KU4cYKEeLgZRBgGShcLEOEA28atyYLhMt1MecU7y61d5liAilwDX4rS+\nf7+qXhPYL+7+y4Dngbeo6m0m54Zhxd8ylfgXil8/3uS5vevs29ljqalDgh0lGHFGwaMo4xBG1f36\neShChNMGcEsRfqWQls4iUgfeC1yMs875LSJyo6re5TvsUuAc93Eh8D7gQsNzh7Dib5la/HGAzVad\njhsHWJ0fTAeNIk5cTAwDpBOcPIaiKpQhsFmzdKo8yg/hAuB+VX0QQEQ+BlwO+AX8cuDDqqrAzSKy\n4i5/e6bBuUNMlfg/c/ShIx+54U0HR/Rxu4AjI/qsUTKN9zWN9wTTeV+jvKcz8r7BM0cf+vRHbnjT\nLsPDF0TkVt/r61X1evf5XuCQb98jOKN7P2HH7DU8d4ipEn9VPWlUnyUit6rq+aP6vFExjfc1jfcE\n03lfk3ZPqnrJuK8hK1Ml/haLxTKhHAZO870+1d1mckzT4NwhpnM5IYvFYpksbgHOEZGzRGQOeD1w\nY+CYG4GfF4dXAM+p6mOG5w5hR/7ZuT75kIlkGu9rGu8JpvO+pvGeElHVjohcBXwaJ13zA6p6p4hc\n6e6/DrgJJ83zfpxUz7fGnZv0meIEji0Wi8UyS1i3j8ViscwgVvwtFotlBrHiH0BEThSRz4rIfe7P\nnRHHXSIi3xKR+0Xk6qTzReRiEfmqiHzD/flDU3BPqyLyDyJyXETeM6J7Cb1G334RkT9y998hIi/P\nen+jpKT7+ikRuVNEeiIylvTJku7r3SJyj3v8DSKyMqr7mSpU1T58D+C/AVe7z68G3hVyTB14ANgH\nzAFfB86LOx94GbDHff4i4PAU3NMi8ErgSuA9I7iPyGv0HXMZ8HeAAK8AvpL1/kb4+ynrvg4A3wV8\nATh/lPdU8n29Bmi4z9816t/XtDzsyH+Yy4EPuc8/BPx4yDH9UmxV3QS8curI81X1a6r6qLv9TuAE\nEZkv4frDKOue1lX1H4GNsi48xTV69EvgVfVmwCuBT31/I6SU+1LVu1X1W6O7jSHKuq/PqKq3fNbN\nOHntlpRY8R/mZHVyZwEeB04OOSaqzNr0/J8AblPVVgHXa8Io7mkUxF1j0jFVvr+y7mvcjOK+/g3O\nzMGSkpnM8xeRzwGnhOx6u/+FqqqIZM6FDTtfRL4bZ6r6mqzvG8Y472mamPb7myZE5O1AB/jouK9l\nEplJ8VfVH47aJyJPiMgLVPUxd/r5ZMhhcaXYkeeLyKnADcDPq+oDuW/Ex7juacSUVQI/7vsbeWn/\niCjtvkTkLcCPAhepqjXWGbBun2FuBN7sPn8z8MmQY+LKqUPPdzMS/hYnsPhPJV17FKXc0xgoqwR+\n3Pc38tL+EVHKfYmzcMmvAz+mqs+P6mamjnFHnKv2AFaBzwP3AZ8DTnS37wFu8h13GXAvTkbC2w3O\n/y1gHbjd99g9yffk7nsYeAY4juOXPa/kexm6Rpxsoyvd54KzsMUDwDfwZblkub8R/t2VcV+vc38n\nLeAJ4NNTcl/348QDvP+j60Z9X9PwsO0dLBaLZQaxbh+LxWKZQaz4WywWywxixd9isVhmECv+FovF\nMoNY8bdYLJYZxIq/xWKxzCBW/C0Wi2UG+f8B+dVD8sNSwXQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Flat Top window')" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwbVtd3/n5zddaZ784nAsXkHsVFSwDtNFo0E66uo0G\npCIGoxUkGtGK0SZKKx00onYI3WIXRqNt+UKiiHRUNK22RLB8P6LtA0QsBEpFcpH3fZ3jft295mv0\nH2OOuX5zzDEfa599PQf2+lbt2mvNx5hjzjXm+I7fW4wxbLHFFltsscVFIbrVHdhiiy222OIjC1ti\n2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYtJiEi\nrxCRf3ur+3GZISJfIiK/fIHtfbmI/M5FtbfFFhpbYtkCEblHRB4SkWMRuS4irxeRu91+Y8zzjTHf\neov6dssnwKYPRkS+29v+7Gb7qx/uPhhjftwY8wx1bSMiT3y4r7vFFufBlli2cPg8Y8we8DjgQ8D3\n3uL+zIaIxH8Dl/lL4DkikqhtXwb8+d/AtbfY4sMKW2LZogNjzBnw/wBPdttE5NUi8rLm86NE5BdE\n5IaIPCgi/1VEombfPSLyTSLy9kby+VERWap2niUib2nO/f9E5JPUvrtF5GdF5D4ReUBEvk9E/hbw\nCuC/b6SpG6o/PygibxCRE+AfiMhvisi/VO11JJ1mhf/VIvIXInIkIt8qIh/f9ONQRH5aRLKRR/NB\n4K3A5zTtXQP+HvA6fZCI/GcR+aCI/LWI/LaIPEXtu0NE/ktzvTeKyMsCfXx+08cbIvL9IiL+/YjI\nbzen/EnzXL4oJNlpqaa59uuaa/8h8PHesZ8oIr/S/KZ/JiLPGXkWW2wxii2xbNGBiOwAXwT8/sAh\nLwLeCzwaeAzwzYDOC/Ql2Mn344FPAP63pt1PAV4F/M/AHcAPAa8TkUUjcfwC8G7gCcDjgdcaY94B\nPB/4PWPMnjHmqrrOFwPfBuwDc1VlnwN8KvAZwL8BXgn8c+Bu4KnAP5s4/zXA85rPzwV+Hlh5x/wi\n8CTgTuDNwI+rfd8PnACPxUo7Xxa4xrOAvwt8EvCcps8dGGP+x+bj326ey09N9Ntd+wwrkf6L5g8A\nEdkFfgX4iabfzwV+QESeHGhniy0msSWWLRz+30Yi+Gvg6cB3DBxXYCenjzHGFMaY/2q6Cee+zxjz\nHmPMg9iJ303WXwX8kDHmD4wxlTHmx7CT8mcATwM+CvgGY8yJMebMGDNFFj9vjPldY0zdSFlz8O+N\nMYfGmLcBfwr8sjHmXcaYv8YSwqdMnP9zwGeKyCOwBPMa/wBjzKuMMUfGmBXwUuBvi8gjGvL8QuDf\nGWNOjTFvB34scI2XG2NuGGP+CvgN4JNn3tsg1LVf0jzfP/Wu/SzgHmPMjxpjSmPMHwM/A/zTm732\nFpcTW2LZwuHzG4lgCbwA+C0ReWzguO8A3gn8soi8S0Re7O1/j/r8bixhAHwM8KJGxXOjIbG7m/13\nA+82xpQb9Pc904f08CH1+aHA972xk40xDwGvx0phdxhjflfvF5FYRF4uIn8pIofAPc2uR2ElvMTr\nd+gePqg+n071aSZC1363+vwxwKd7v82XYCWrLbbYGFti2aKDRpr4WaAC/ofA/iNjzIuMMR8H/GPg\nX4vIZ6tD7lafPxp4f/P5PcC3GWOuqr8dY8xPNvs+2jOMt5cc6qr3/QTYUd8frknxNVh14H8K7Pti\n4NnAPwQegVXrAQhwH1ACd6nj9bO6WXTu31sUuGv7v43De4Df8n6bPWPMv7rA/m1xibAlli06EItn\nA48E3hHY/ywReWJjVP5rLAHV6pCvEZG7GuP2twBO//8fgeeLyKc319gVkc8VkX3gD4EPAC9vti9F\n5O83530IuGvCsA7wFuALRGSnMVh/xfmewCR+C6sqDHnN7WPVew9gJ/n/0+0wxlTAzwIvbfr4iazt\nNefBh4CPU9//BHiKiHxy4zDx0pFrP5mufecXgE8QkS8VkbT5+7uN88QWW2yMLbFs4fBfROQYOMTa\nRr6ssUX4eBLwq8Ax8HvADxhjfkPt/wngl4F3YV10XwZgjHkT8JXA9wHXseq0L2/2VcDnAU8E/grr\nHPBFTXu/DrwN+KCI3D/S/+8GcuyE+2N0jeYXBmPxa40NycdrsCqm9wFvp+8A8QKsJPNB4P8GfpK+\n8X8uXgr8WKO6eo4x5s+B/wP72/wFfYeGF2DVah8EXg38qLqnI+AZWKP9+5tjvh1YnLNvW1xyyLbQ\n1xYXBRG5B/iXxphfvdV9+XCAiHw78FhjTMg7bIstPmyxlVi22OJvCE2syCc1qsCnYdV1P3er+7XF\nFheNkLF0iy22eHiwj1V/fRRWZfcfsLEwW2zxEYWtKmyLLbbYYosLxVYVtsUWW2yxxYXi0qrC7njU\nvrnro69RGaE2UBuhUv/LGgoDVSXtX10LpoKoNogBI7YtY9M5td8HEa0PEDGIrP9H0fq73b/+7GCM\nYIz9b79j+2T6+6g9SbS5trueDy24hvaHjgsdr9t39+S2+8e7/laVqHvp9t97BIjqgBFZP/NIOtcw\nRtbPIBKSpG7+DKnAIoZFXJPFEYmkUOZQNA5a6QKSlNIUrCrDQ2XUjoe6tv0sy4i6FnU9utd2UH3w\nf/Pe7zZybBT1n59+rnqbbreupdNPH/6Yace1ep5+2/59+uPUhz+u9bgY6pMb10Cw/1Pn6+fpumcE\nJKYzPgHi2CBi2n4lEcQCidj/IoZ3vvWe+40xjx690Qn8d3KHOaaYdew9HP2SMeaZN3O9W4lLSyx3\nffQ1fvrX/y0nZcRxYZPjFjUc5jHHhXBYwL1nwgNncP1GxvUHF5yepJwep6RHJXFRd9qr0ohiMZFk\nN1u/DUlaky0qksT+XywqktS2mWV15xiAfBVTFhF5boXMsohYrWK7vYzIV3G73Z6wftnTVWX71lzf\nXWe0q811Ndw19HV0W+5+3OdF00bovlwbeR5xcpySr2JOT9J1/wP34KPzvDPptOvOTVcVxX7CwdUV\nj3ncKY+8mvP4Xbhrx/AJV3M+/iDiEdljSI+uY+69BwB57BMpdvd5cPVe7jmK+fMbGe89FY5yuO8h\n4fQ45fQk4egwoyyjzrPp9F9B/97u+ejfTvfZ3YseHw4L9XnsuZ6eJJ3xMQR97XRVERf1eiyrZ6ox\ndI9D9+3uNzTWhxAa36ExN3SuHju2AxL8DRx29wqyrGZnr2A/M+xncOfScJDCXmr4go/70ndzkzim\n4KXx02Yd++XVrz3qZq93K3FpiaWspUMqAGkEi9hQ1kJew0FqKCphtVe0E3q+iikWcY9Y9PdBgslN\nh1yGkOcRWVZ3XmA3CQ8RyhTSVUWBnSymJoYkrUfb9fvVO795cVermMWioiyizmSgv4/2xT2r3EyT\ndm4o6ZKqmyg5Kin37GS7s1dwlBvyJayqiKI+ozYVZDuwvNLcQGa36a5EBhAWiSGfQcwaeoEwC/pe\nZsA9z6lFx9C5mlTSfN3Pgnijfrh2YP0OlLmMjvk5i5wkqYOLmrF+dM7fNWSLMkgoDifHKeWiIs8j\n8t2SfLcEhLPKkI9IfFuEcWmJpYYOqTgs4ppVJWSRsIzhjmUzSK9ZNUm+ijksFlRpFCSXKo16L9d5\n4CYJ/f28pOLQkgt0Jm0fbjLxX/qQNNTZnwuw7lO2qFpycffgVtebrHo7E9PAtf19/kR5epyxs1tw\nepxyluXcyOG4iFhVQlGfscgOYNFkRMl2qMxJQy4xy+aW0hicJkOTxZBEoFfrsCbcuRh7Ru7ZOujn\nvOkYcc/qyklBmlckRc1DuylAf7yEoIh8eVJQZHH7LtgOQbHfn2pCi47QfeareP2sByTa8MlhyU9L\nff4zXHWeV0lR2UXmRUAEknQmSW2wDrkdcXmJZcQg4qQWh/0MwLTkAnDIgkKt9IDOas8RTI9cZkot\n7eEDq9DT43TWas9XIbV9GlEzacmmJ1moVWkIRdYdUnpCcKtqRy4+ec6C/+y8ycX1zZHKlRPLBGe5\nIV/FdkVaQ14Lq0o4LmIOsoeok0cQLfZtI1FCXXbvcRnDYQHZQJfdBAh99eDgrXj7SvoqHD2RZotq\nUq2lVWxD7XRPMi2pLE8KslUJezZ7TpmuzynwxrFamGgST4qapKgp04g0ryiyRs2spLApiXYWcsPy\nuG+v8NV42aJiZ9ce56tmHRyZOHWsVbvl9p3bKzirtp6zm+LSEktVC8fNy7aIG2JwC6zKvjRupbqM\nDVlkV6yL5Iwsq9sX+PQk5axIIDeckQYncvCkl+YlywL6cg09GfikElKXhNooFvGFSFBJ2qjmMulN\nMmPt+ytmrbIBRu0AgxLTAHxSAdqJzU2EjtSyyLCI508YZxMrSG0DCEFLK9miYnevCB4/JC32jhsg\nGH+7G6d+ey0B5UKVRpRpRJVG5M2UUKYRRRZ3bHNBBMYDrJ+7P9G7Sd6R4LnIZWBx00pIAXvKkL3P\nbTs5Ttvn4kuD7M0zuE9BIlgsZi4q5xaCuE1xaYmlNPDAWcQyXhPJIjasKulIK8vY/mWRJZiDFA7S\nnJ29omfEzVexXbEHBn5QevGQZXVwFT+o2vCkn6GJrXddT7Xk9vt99F/09nvavZaeWMYmB61qWDQv\nryNnH6F2xuwyIVIBO0Ge7Vrpbv8gJ0lrDlL7my7imjQyxJIQEWNKK5H6r74jlaKCvLbXtwbytEso\nze8xNkk6UsmyujO5DWEj28wGbTgvuVNSCqzqKmkk7yKLKbKYs720tU9o+IuFkogiSyhyQ7Wyz6Id\nR81Y29krNlYFzoUjFF9S0c4CECYV987t7hUsFhVHh+tcp6vV+Rdilx2XlljyGu49c8QhZBEdQnHY\nbQZjEgnLWDirLMHsZ3BflnO0V7CzW7ZeOG6yKYgnpZd8Fd/8yxZSrQ3pnj2vNCeBuHP0ZODbBzrN\neyvgruRkeueE9PxDNoDQytpvY4hgfFIB2lX3wW7eTjhps1iwzho1saRQl1Dl9qR6uCzMqhTyPOLo\nMOt7c8GoqlOTyo5aBW+sBjonQsbrsowoi5QqjVq7ykO7aUsqO7tF7zdIkjooMTmCaa+X1rjxcN5x\nPmYjqrSqboRUOqpJT1Ipi6izbf8g79ldLgoiQracqf796wu77C3BpSWWsob3nQj7mfX+WsY0nmB2\nfxIZDrKqVY8tYutF5AjmILXSy71ncNQQzI0HF+2qp1ysVVZB6SULP3q3gnKT5qyBrdxUg6TiEYr/\nuSWYZlL0XUQ7z62MesSh7Qtz4LvoDkFfJ0QwDu75djyalCrGrrorsqxmkZhWAl3ENYvYEEls41ja\nDuZEsT1/VTV9re2iwpFJWUaUJwJ0f9/WG8rZlBqVj08qi6T5nfYKOE4hsGIeem4OoWfh/za+Cg66\nxut8FVvpmxSOyh6pOClPnzc0Jn1Du09kc8eIv2AYsyv5bvQhF+22f55btvvsrqf3O5smbCWX8+DS\nRt6XZcQDRwkPnMEDZ8K9Z8KN3Bpop/TpSWRaFdlBaqWX/cyws1uuVS5JsyrNJKwCawhg7KXRRsVg\nvMNAm4P9HjAqt9sVAQ2pYG5GwirLtfro9DhtVUrub1Mkad0+3467t6/fVxgyvo8hr+2YcGqwo8PM\nxjOtqrBUqn4Hn5xb0lb9uEiJZWjy9knFXzwkaU2xn/QklSStgxPy0PiY66wQIrnZ99X85pP2H33t\nGWrHWdfeYhYur8RSCvd96AqnewVHuyX7jd86GK5mVi1mV6uNB0sVtbYYB2t3sRNOEdO0AacnSevB\nk6S1VREEVGNtwFdSty+YllTGBnTPk+schvmQpNFZzSX15GpzSM01dOyaGPsBbH4AnF79jrULXbWI\n++6eSacNRRLuN61NBcmuPSDObBxLfda4Itvji8qqwU5PErsYaLyppvqhr+8MxABHODfotJVQdcCl\nhq96GnoOPjm3YzBZS07aWK6xs1vYAFUiskXZsU2E0AaEDvTLv3YIfvtDzirB4NMBQsnVedr7zBng\nXXxYSJ3qe2C69sYWf5tABNLkcsTEXFpiqWtpV88nxxWnewWrayvYW3uBJZHghDqfVJLIsESaicqw\n7wb6bmlX4AFX0hC5gH05jw6zjVUGGiF1TO86zQsVNOZqlYC3yl4ECGhOH3tGXi8ivtNfpc7TL/7Y\nClzvc/fciRxv2tNYlUJRGUsWDblUpoAosaQCECVUVdEQT8RZZSXZ0+O0nfDSVdVxpx2CL+E5cnHP\nWmcecJNozw15glT82I6SrhpuiFz8Z7mzW3Qm5LZJNeGG+jW0uNDX1pgirZCn4KYSbYhgdptAZz/4\nGML32PHC3GIjXFpioYTTB5PWprD27nmoOcBGWk/BSS1gSGMhq+gYZt0A9yUXF6y4UWTzTAzFpQT7\nP2If0RPAUHyEfzyMEYrpeG8BnYBS3dcpzyoH91wdMY2RSp5H7GAlkLPKRd4LlSmpqYgSWzCxpqKo\nV5yUESdFxGEhrdHejZNlYaVT31lASyxDaiE9eWlSOVWkE1oABJ9ru1NFvTfjKkQuGiHbwZB9Qp+j\n+zEUEe9nbxhK9eNP8H6fhty4/UwO7r8/ZnKPpNrxHIil8rUF2rX/IhAJZHPdjT/McWmJJaptgJWb\nCA5PtBpiTS7LuDEMqiSALv7BeZEt23fBHr+MDYeJNXq6CcK51DpyAToTn/a42RShvGWbQMc6jBk/\ndV/H8ja1JORF6oektZA6yT0fNzn6bfvXsV+8eIqBvGj5KiZPyjZAMq+tKqwyJVFkX4eiXlGZgqKO\nWzWYNtq7+3HuuWXgeY951Wm3a+durVOrFIvpBccQqbjnOUQurk9TBukp24fv0deTZtT4CI3t0LiZ\ntCkO/KYhkmnhbJlF2ra9f5B3DvEdZXxSGQsI3iKMS0ssLvBeT2ynDyYkSUaS1iySM0BatRiVtARS\n1kISmVZXD+t4lxu5VYulMWRRufZGct5iXkI98HJnld3o5HbSVy+lr1bTRBIXdeee2n0TEf/ak2dW\n7MREzEbHpbWZJEOBdCFiGYr5GXQoCKx8df9C551VYffyWdCxQ9rlVanFrMfYtDu5dfeNghPY0LMN\npTVxzyuUbDSUUmYxQi6OCHTgop/5YbQ/G2SW8D2wplLR+PcUshH2bDHNM3LHhu5bS2K+pHIzgcUa\nIpDOTenyYY5LSyw+3AR3epKSLSquZzXZtZx7YyGL1u7IQEs0fg6hLIKrTfqXs8q6Lh9m1h35gUZ6\nuf7A0h7rreq1fcPHkLrKH/DpqurlMGtXsDNejjmksu7ztHogmLKkgSaZELnMhZa2eilRmknOEbOb\nKFeljPY/kphYUtLIc91N60GiKLK454VWnginpJPS39x77J8cdi0PeW+FYlhC5DJkcA+RSq9frj8z\nyWUoIDh0T52vQ1JrgyC5uC6u+mSvCWXS83KLWbi0xGJEgokkXUT1YlHxQFoDJcvYxrvYXFFrV2ON\ng9Sqy9wq2NlelrFTj5Xc10gv1x9cBNUImlxCOnG3D+hl8oUueWwyWY+tqp2h159UdLbkKYQmVl+K\nmervHCmqJRfoTnI3YXtdxjaVj1Vndl8XJ604UgmhPBHKop/XracupJt+x91Pr72hRKADUkoIQ2qu\nMUlhrkNJSNoMBSyG3H/nSivt98ZbbiiIdsjg72d60E4IPVIZKB1wHkgkZIvLEeFxOe4yAKcK89VI\nNMkKjw4zDm9kPHCUcN9Dwn0PwVEOh4VwWNiYFwdHKovYsJvWJJFhrwmgvHNpa3/csTR81J7hkVdz\nHnltxf5B3okVAKxHT7Fh1uJM1n8K7r7SvEkQ6MVXwDqtB9AG8YWw8klwJFFiCP413D3rOJRN7UKT\nUM8k1L+iMeAXG6jDXI64JG08z5rUJ52UIiHkpiGYdbxOyAY12sZgp6Sd/JyNbNMYkyGPv16tmTG3\nW52MMjDWbhZDar2xRdEYIZRl1P61cVUnQnqksi6oSP7bDSLyTBH5MxF5p4i8OLD/E0Xk90RkJSJf\nr7bfLSK/ISJvF5G3icjXBc59kYgYEXlU8/3pIvJHIvLW5v9nTfXv0kossF4hasnFRcWXpdX7Ht7I\n2NktyZsBtp8ZG7OSCTdyG/NyVsFe885pt2Rn8F8iXM3Wkf0r5TXm21503YiN4E1O7r70NjvRNobn\nZrXnrhVyc+1dwpuA5kotFxUH8HAgjcYnQBsMa+uwnDbbskXF6WL96oyRQSeNz4RdqlfLREXvu+9j\nmPP7DXqqKTVQyJts6jecW89lzClgTFrx+6XPGYOOVwm5sa/tW5ZQNlEdb4qN0uaPtiMx8P3A04H3\nAm8UkdcZY96uDnsQ+Frg873TS+BFxpg3i8g+8Eci8ivuXBG5G3gG8FfqnPuBzzPGvF9Engr8EvD4\nsT7ecmJpHtKbgPcZY54lIteAnwKeANwDPMcYc7059puAr8BWK/haY8wvNds/FXg1cAV4A/B1xoSK\n6PYRmoTTo9KmuFBwonWe1m0g5H5mCwEN5RkD60G2iA1nVcRBal2YzyrTBmzlecQj7zhrA+R8hFaT\ng+qQifvyM76GJoy5qzNdb+M8q7qhOBQH7Y7tu66OujX3LhRWZbh8Ye39SNLmCIslIZKYLOrmDEvS\neh3TM5DV14df5dK14/4PJdT03a57xw2k6RnCkO2k54FF2GkgNFY2sUe467p4LRfnNZRgNeQQEHpW\noXHhb4f1sx4j55ux9f0N42nAO40x7wIQkdcCzwZaYjHG3AvcKyKfq080xnwA+EDz+UhE3oElCXfu\ndwP/Bvh5dc4fqybeBlwRkYUxZsUAboel5NcB71DfXwz8mjHmScCvNd8RkScDzwWeAjwT+IGGlAB+\nEPhK4EnN30a1okOrk/SobLIXpxwdZpw0mYxPTxKu38ja1C/OMyyUBsaSSs0irlvVWBapFDBNAkv3\n98g7ztg/yMM2iVBm45n3FUp9Mesac6AnuLau/IYv6IDE41Qq/oTgYhPafp8zJYxDJPPvuSXnTfXu\nM8tCa8l57So7fG+b9GMsoLElCDWuNhkLuh6Lr37tqP+aMeZcrmeRivuvnoc/BnyMqQQ78Goq3UZ4\nlIi8Sf19ldr3eOA96vt7mZAgQhCRJwCfAvxB8/3Z2AX+n4yc9oXAm8dIBW6xxCIidwGfC3wb8K+b\nzc8GPrP5/GPAbwLf2Gx/bXND/01E3gk8TUTuAQ6MMb/ftPkarPj3i5v0xTecwlpySdK6zXPV8Zy6\nmuPSwNy5XLshA20CS1frZVVFlLW0XmNFJZAZ8qRkVYqdrJQqQqeV19jUY8WRSyhGpXUEUBOOjla+\nGd3yHPWJ69fYxKmrXoZqlWxKKNaVXOXymlCFrY/zvi8qIA5PghAkyzES0JObrkQ6q4LjCNz40b+1\nllz0pB4KsJxqV7tJJ0U/u7TfXm88D6VsCRSi0xka/LHg2150zM6YR93fJKmIbFCPBe43xnzaw9cX\n2QN+BnihMeZQRHaAb8aqwYbOeQrw7WPHONxqVdj/hRW79tW2xzTiGsAHgcc0nx8P/L46zrF00Xz2\nt/fQsP5XAWSPuLO3f4hcikXceva4iXfhkcuyCZrciwgWkFrENSdF1HFJdhlzLdHAWVZylIvNdqsQ\nWp3NSeHSQtlWhjAU4TxGLg+HHnoUIyqRKfhSxjLuBr0CbT2WsTZ8z7DuAesM0eeFSxPTKe17jvZC\nKi+fXELuta2NYSD7tm5bu52nedV6ybkiYX6RLwgvZtZtuQuEq5tuYq/aBL7jyCbJLW8R3gfcrb7f\n1WybBRFJsaTy48aYn202fzzwscCfiIhr880i8jRjzAcbIeDngOcZY/5y6hq3jFhE5FnAvcaYPxKR\nzwwdY4wxInJh7iXGmFcCrwTYffwnBNsNkovT9+drT6PrDy5ZrRojfEMuZ5UliywSlnHEblq3+ahO\niqhVl/nxLmcVkEJeW4K6D5tKXb9sY6lXRouIqZfa10cHI5yb+wutLDX8l9FJOJuq0qZI4mZLO0M/\n7iGLaCtIdgp9NcdExNbmQpdoplKqBD/r40OaZ6+0r0NoUg49qzl51ebC9aGtvqkWVPp6636XwcJq\nPqnsbFKBMZCloUOyeOW11UJDZxcAhtVr0C4CRovgBdq5GUgE6eJCmnoj8CQR+VgsoTwX+OJZfbCs\n8SPAO4wx3+W2G2PeCtypjrsH+DRjzP0ichV4PfBiY8zvzrnOrZRY/j7wj0XkHwFL4EBE/hPwIRF5\nnDHmAyLyOODe5vghln5f89nfPo5Iueh6E8EguTSDOThBXM0pmqDJLHLeYhHLOOrZX3QczEG6ts/k\ntWlVLvfRfRn9iX3wZdMIGK47L1soIEwlMfTPC6nhfMN9iFx8dUwPnp7brwioj2v/DxU3G8sucDOp\n071T81U8SCAanXG0Cjsp+Cn//UlZqxWHyAUuNv3+8qQgLmrO9lK7oGr72/WeChVWc/131Sd99ZRD\nT1rxsg/oazhJrnWjHyGXUULR8MaKfX6mc85FSEQXDWNMKSIvwHpnxcCrjDFvE5HnN/tfISKPxTpF\nHQC1iLwQeDLwScCXAm8Vkbc0TX6zMeYNI5d8AfBE4CUi8pJm2zMaB4EgbhmxGGO+CfgmgEZi+Xpj\nzD8Xke8Avgx4efPfeSe8DvgJEfku4KOwRvo/NMZUInIoIp+BNUI9D/jejToTmLyGyAXCbpRg3YjP\nKuue6gjG1mxZH7OMbVVKbXtpCvexqoSDdK1Wu4+ijUzW6rBQIke33a8CGfKgcp+H1F8h8hzyuJqj\nYtOfz2O3ae0weiEwVpMm4DHlVJeu0JcrTdxWkJyJuXFGfqnkoSzIQxO0IxVXI97Zx0IpgXTfYDh/\n26ZI8wqO6brj52t7ip8jrU8qFTu7RadAWCglDND5PfW1koD9Y4pcYDrNzNwcdDfjFBJCFFCTnwcN\nEbzB2/YK9fmDdBfcDr/DjOy6xpgnqM8vA162Sf9utY0lhJcDPy0iXwG8G3gOQMPIP411iyuBrzHG\nuNHw1azdjX+RDQ33HagB6LuTtpUKvczESdJE0+cR+a7ND+YIZr9Rebk667tpzZ4a1Gmk8je1l0uw\n2ZJhkZz41rSrAAAgAElEQVRx/cbaDfn0JB1Ue4VKC7e35U0socnRl3r8bLXt5K5UCH5Udaj986hr\n/FKznT4NSJo+Wrde517dfE9DXdCliRuMxbiURdSu3oegPaV8uMnRTdqd4mT7SSupuEh1f4LbRO04\nmGPNcz+u0qhHcE5aSAIE6AjTV3/5pBLMIBAgF18lqD3MQvV2Ohiyv3lSbigzQciLUUf1X5Qq7DLh\ntiAWY8xvYr2/MMY8AHz2wHHfhvUg87e/CXjqJteMIjOp+/Unx9agqVZALgWMRllEsFeQt95HKjAx\nEhYx+O8FrLftpjV34gyjAle9TMmLdLBGhBPnp+Bqb7T9dXEZI26xra6/IVQ3+elUHZtClxNwCNUv\n99EhGAf1uwxlwHWqxnXNe1WauGqIoi5bKWYRG7LIkEX9GJQ5zgu9IFXo9bvwvMncc7XZGWyfsqwO\negsGn81U0GCgXHFJZFV1nmTlJvkyjUgaAgx5frX3l8lokO9gOhlvDPTa9gisvV57IwOL8M54MMGE\nnFPS3M1UTdUQgSS7HDnIbgtiuRUQMZMDppNRWLtFBtREHXLZK0hWMVBxFhnSqqsOC8GpxjQ0ufiZ\nkrXefZMV1ZgbccidF/qrY991eSz/k8ZYDqh2YmkJpZzsb6j/oQSM/n9d894lnKQuaeveNzXvnarM\nhXs5rzD7P117gQ3AlyCThvDdvYWei5uUXa1596xbO5VHMNCfrIdUTqFElMH+NtCS1BDcZH+2l3ZI\n0ZdgNfR2netrjFzcdYJ9nREjNJaMM9Sv1TnVtltYXFpiiWPTq8swhtUq7sVm+DpdRy4L5ZaaJ2Wb\nl2oZhyP0F3FNGtmVcV4LYL3JAD4qsun67w3UeXHpxoeion34ROAmp6GYE1/vPNaWm/CmMJpgMAW3\nqgwVhnLQk5FudywBoyM9SypKny9pI7GctpH31CXEXbfxZQxHTTsnzTVG1XKeGm9sQtPGbU0qO41a\ndZEYFk28k0/w+t7c99OTpP1t3Zj0r+9P7q7PbmL3szYMYYhUpjAquWRJ36FGqQo7GCGVkLordP+b\n9O9mIAJRspVYPqJh8/aMrHC81ffYRKxTYbgyw/sHeZui/SxyMSvW1rKqota2okkF1pPe2g4TcW1h\nV9iHKaRna+nl9Dht+wX96n6d/s+ULoYM7EPlZTWpjE0oLl25NkCHMEQq7tkP5YmaNZklXaLo2FDq\nEvJGNVrmxNkOYNVlzoPP5QtzaV06bsCew4CTPEITmT/u/HvTpLKvVSeJwWYzUps8MnX3GLJrDU2q\nfq0fIDi5azj7iiOVJJ3OuOC7LY/mDQtILz0VWIBUhmwn/r3fbp5eH2m4xMQy4c3U1MZ2n3UxIoex\nyWzlJp7jFPaKtmDYYTFuZ8lraTPu7jWG/uMiYhFb1+VlbLjR1Hl5IMk5Okmsp5Kqa5F75HezOuKL\n0jHr9uYQTHv8RHT+JtCG+ywyjSqs/xpEEhOJVYe51PkUE7anYl1S2C+qNYSh+3IFyqx34cybg6bW\nzHjbGqMr87Tbhp7odfDmeXLFOdtRktacHIdr1gRtb801HXxSmavq2uLhxSUmFiYLDYX2aaOpThvh\noLMFAzbZ5HHK+1Y1Z/tlm1esrJM2gFKnfvGRRoZHLiqKumYRR+ymEQdpxL1n1uvsvqjkgaP+z+iT\nS+je/KqA2g05ZOR0uAjd8xwvtYuaCPx2QlH3thONxNImo0yBuq2t4yb4odXulCeegz/ha0mzVbFB\na6ejkUKcKizkVqslFLfQ0L+t8wAb6tPU9nwVt0Sj08x0pJBADaHeM/Gk2yTg1jtod5kglKF7CI2j\ni8q/thHEkKRbVdhHPFpVQYBAxl7+9vyJlXy+invlXfOrOUepVYvduYzYS4VFbChqOm7IYEllt7lG\nUQtpZFqCSaKY5Qqsx9k4ufj3cTPYlFT85zam497ECWHIpjToWjswWbRR9146F5fhOI2q1i6zjKWT\n1mXMjddhjBx1OV7/PkCPwXlxFW2yxzzi5DjtLRjmSJ5Dx3QWKelmgYNa7ZqkNju4I+k8sSQ+lipH\nO8uEyNtX896sdHs7BkV+uOHSEotThfnkEiIUGJ/0xlbffpGsPI9YXVu1WZHvXMKBqtHgyGU3qdlL\nK64ktj8PlRWrKmoJZi+tWcQJWRQ1K+qS+x7q5hkbSmTpqkL60srUC6Xvc0qacBKRf752S/a9m0LY\n1CHAX5V39OwRKjjSDMapmHJF1KySs8i0NVlsXJFpC36FpMEpzysHf1yF1JZ6wTNnsvTH8JjbsZ6A\ntY0nJNXo/ectteCklEVi7YxOJXmU05ah8DNYjxGhlqh9e9+QJkK3Pzbm9GLwIiERJDeR/eHDCZeW\nWGA8/cNqYBUZamMMIfXS/R+6Qn41J69LzirhzqXhoIq4YzmsFrMeStb1NVfkYuHckmnzjLn7cQQQ\nIpeh9Ok3G7m9aTLLTTC0uv9wQWih0nEE2bAoWoh89G/rFgx+BgbtWagRIhX33/V9jqQetHEkpmcv\nWsZ2gZV5k/nUgmMKY2ruscVi1lz34SKXy4JLTSzupfON80MvvY9Q4aTQee5F06n3oZkIVOp9XR4n\njQyrKmIRNx5fldhklqrdRVw3KjQhr6XJZ2U65KL7MJSyfJ0DrJuE0o//0HDParWKKT0VhK+K8fX7\nWjU49uz8CaqXNNPD2CRQFlFr3zqr7PMsaqEyJTUVUbLAZPaZSbKg5nxE2Aadevc9d5wM9d2H//z8\nhVDI/jfUZmjcu/OGFlhD+b/G3pejJgYI5el2WFjb0elx2iOChRp/obicqYXFebQP+v28aAgXl9Ll\ndselJRZjpEcq/uCdGrhjxlBfEhpNa6LIZRk36om4pqilJZSilibGpQsXPX6tzZpq2zlUHmMQkM7K\naB29r5L/zanF4cMVbXJVAV2pZX0t97Lq1aD7PpTHzHct7hDKQJbjKcnIxRSVzfOsTUVlSqIogYZY\niBJLOKYir2WwOqiPUPLNIZVZ6DzfEL8uVz1M7GPXd/C91Jztb4iM/HOH2oRhW9cYjqjIG+nFkcoQ\ngvE2M6435/mE3gmtmny4COYy4BITy7hnFNx8ArrOJAidLLF+6eNO0TCse7FGiFQcXHS4IxerbhDY\nLTlqjKKleolaUvGyCrfp0lUtjk1UWJpQ/NXv5Ao64HrsS1lOsnJ9dnm1htBzXCgF0nVMkZVYCmpT\nQZJB1LSVZHabQqhCqN9Xv/SA6/NQnIU7z7+3YtFNcrqp2/hQxL1GiFR8O1tIIvedLzQh6fP1WGsJ\ndqHT/lSsoCUVLa2E0vS767mAz9C13PY58H+H9v5PpFcq4MKwTenykQ8nsThSOT1Je0QQyrnlF9jy\nPVZCNTr8LMlxUVOtog652IFcslaLJUA5mghRw5HL2hGgyTPWkEubZ+zE5hlLj8pgxtq4qCma7MZz\nSSVEyv5+X8c/5FjgEEomqOt/6Oy66xxV4f6uVnEbN3FW2apyeW0DVWuTU5kCohQWNijSSiyF3T5R\nvTtEDK6Mi4u70HV8gvfZqCE1yTvJcSqB59hvNEZEoZW660tnTI8EGeptLZkNlZVQOFWSNIS9Mtvr\nqwleByeH+jqEKfd5vdBaHhdtMk1HMLdjahcReSbwPdi0+T9sjHm5t/8TgR8F/g7wLcaY72y23w28\nBltA0QCvNMZ8T7PvnwIvBf4W8LQmByMi8nRscuAMyIFvMMb8+lj/LjGx0Ka8mLPK8cnBbdM+9n1i\n6kPX3nCR+rYf7qfwyWU8zkXDHWPrwMB+ZidSZxh1UotOoHgzZVmnbB4OelWpV8H+qnYwM20DP5dV\nkcWdbSH1WRtXlEckq5g8KVs7iy3CJo3Esqs6nIGxMS2FkhSLkfnFT6aZrqpZJXUd/NLEQJs7bejZ\n6ucaDDCcoc7xScXP3O2eqbYXOXWm29/9/Qw607AvUYz2ZUJD4K6lpW1dtnrM2K7VksHSzE17OsHm\nUHmM80LEXEhKFxGJge8Hno6tmPtGEXmdMebt6rAHga/FlmnXKIEXGWPeLCL7wB+JyK805/4p8AXA\nD3nn3A98njHm/SLyVGwdmGCVXodLSyxVJcOkMpFc8Kauq2pbwNqt0uUXK4uI1V7R2AIMZ1XCXmpY\nxFGT/mXdls8Jdl/dGvPPKsN+UzMlVwkN7YovhZWqbaFKy86Br5IYfF7exOjbHQbjMwba00QSymXl\nT7TuOs6usyqFo3ydWmdVRY3EkkC8Lk9Qm6pRh3nedKV0auRoOHIJVibU9+UtQvx08X7ixyFHhzle\nS3PsO5pUlicNoXoVU4dsPZpUnBRcpVFnwj8vfHWd0ypoadth6nqO4DS5tPfQEOLNLLL+hvE04J3G\nmHcBiMhrgWdjS4oA0BThuldEPlef2JR9/0Dz+UhE3oElibcbY97RtId3zh+rr28DrojIwhgzWMv7\n0hKLMRKeGNwL7CUX9At/uRfILzYUmhD9c/0J0UktLY5TVUHS2gQOUmvIX8QmKL2spZqIRWxalVhe\nQxHbWAEttfj98tOhj638gob0Iah9oZd+LqFouEnbn7yH1EYhqSVvHCN8zzDAkoy6/ZB9ZWgV3pLL\nzHu5lQiRSlLUbfVIRxD6dwstDNxk787vqCiH6qRs0kdl//DLIbucZW3NltVaNaqhpafQwsa9B7p2\nzpyyCA8jHiUib1LfX9mUVgdLBO9R+94LfPqmFxCRJwCfgi2QOBdfCLx5jFTgUhNLeHtvdRggi/Os\nbNwg7ahHFHoTlUoDc1jAQWq4mgnXFrCq4g7B7KW1ssXUrYoni4SD1HBWCVll66fkubWd7OwVnB6n\n7UrPr0YZQo9UBiZOX23Y3qunDtLbNsXQS9+mQ/FSjbjcbW1i0Mp0PMOGsKo2nxD9ujW9e1SLkJCK\ndRYC6qY5HoqhdhypXFGEojEmDWhS8c93pY21Q8OY55rfX3+sLY/tYsvZ2BypODLrVOrUZaBV7ST/\nWbm2HVlpyT1dVR1HlpvFVOJbD/cbYz7twi7e64vsAT8DvNAYczjznKcA3w48Y+rYS0ws/VVUUOWg\nJgW3wvfVWR2pZQKhKo9jL/6HHsw42isortDGYaxru1j1mJ386o6hv2zjWppo8yuwjA2LO8+4rmq6\nnJ6kFFlCkRuq1drLqiykE4ntk0p61K+eWOwnPTVQcOLchExmVosMeWO1TTT9XyxsPZt8FXOUlY2d\nxZ5TmfW0WVNRmYJVtW7PqhbpSmp+V73JsR1PI0WoCvolsCfhVUUcUomFxpXfdycB+FUuXVEv3Vfo\nT4zOXqfbKLK4k/nYHTeUmbrXx57dpyulAO3k30pHXlr9qYSVeltJZPt6vL5vZ8C/TfE+4G71/a5m\n2yyISIollR83xvzszHPuAn4OeJ4x5i+njr+0xBJCyKNrDHqVPySJBBEoHdxeNkQyjWrM2lzsajuv\nrUSyjCOSaG2DWVURJ0XEYbFW4bg6L/uZTaWRXct5QNlcnK3JX50NrRxDJXmLRdzWVNHSzLlfTm8i\nc7aLUYT2Z9LasZzUMnfVaOOHbBDfUQ5H+dqTcMp2MTcB5RyMjktPGggFY865plvxw7paoy41TFuk\nLHRfMWdZRpVGLE8KznbTwdLSg9f3VGuaUIBg1cqHdu0Ka4xMHIZcvnWyyyqNeGg3XZPK0ILgvIgg\nWlyIM8AbgSeJyMdiCeW5wBfPOVGsAeVHgHcYY75r5jlXgdcDLzbG/O6ccy4vsdTmpnTgWmrxCWZ0\nMh0hFd9jRXvfcJySpzX5rvUas+nUTZP7ytpgToqIs8pOhL3LttKMNNJLyeFu2UovLgZFr8j1hNRx\np/Wg65y3x5/XzjCwwtSGcYdZZN64pLqMuS5YNa9pJbrK9B9YZcomQDVqvcjyVUyeR734GugHIfpx\nO61XnPfb+6nhexOolsS8e9f3HfLA0hN0sIzvQDEtV60x9Lv6XmY6E3Gxn3iEUgafSXtrQxKV59Cg\n7TYOLXn59+RhbsZp13+Oyh6p3Gw820XDGFOKyAuw3lkx8CpjzNtE5PnN/leIyGOBNwEHQC0iLwSe\nDHwS8KXAW0XkLU2T32yMeYOI/BPge4FHA68XkbcYYz4HeAHwROAlIvKS5pxnNA4CQVxeYjknfEO8\nRs9TZaB8amhwD7lD+rABj2WTUFEal2LTVqgMGZqXnabsZHLHEtJYOtLLyXHaqZPiJmHbwTWpaCKd\nqnO+EcF4UspQjQ6/rSlVUkHc8b7TcRNWjdg9X0fdW+lPWmll7iTjT6hDv/mFYEgN6AXAApMqW6fG\nqtKo97uOBbe2+1Lwy0r7hehC0l5I7ZV40oquee9UtmviMEE7jUaIIDsp+ovxgNubhki3INBNwBjz\nBuAN3rZXqM8fxKrIfPwONp4h1ObPYdVd/vaXAS/bpH+XmliGJqTRlZCyIWiSGSSVGfW4oZuttXM5\n7wVx2QJc+nFLKDbzriMQJ50sA2PYbbP/myDK/TI4abS2lSLq3Kd70Z0KYihp5Sw7w4YYcumdIvsi\nSzpGfIex+KCisasc5WtpxanBtJPATQfQqZLA4DlQ6OemPrsYF4feb+Ct+rVhW6/IQzXm3cQ9t9Rw\nKOPxWN17d7weXyEpxY2zWNl7tO1jbAES2hYK9oRpl+xtIsrNcXmJJZKg9DEpXnvb3Ivp2tqUUBz0\nCzyW2kSnxnAEo9OR72c09pe1FOPDGf+vZtCSC6ZRs4Wj4ov9hPSoDHqN6ey5s+5VFaQKIeS903Ef\nDrj0DpFMaydI61ZiyTJbvMtl2o0l7VSRDFWUfLjgO4x07AXeWOuMpRT8zBCdyTL3xqk2SCt1rKsx\n75w33LXd8/IljhCmVFyhTMW9gnh+myq+qvIM9JtWrZxbyuBhhwgSeiE/AnFpiUXEdFaKvRXvXGJQ\n5Vud8dueMyya+66hY6s7/3yfZHQditVeAZgOuWi4Koh7TRW7dXJFQ1FJpy6GrpXSeo815HIeDBlP\ng154M6K2ByUhJcmEpBhnvHfvd9qUJwZ6xb7mptMZc/UN5U4bQmdxMjD+Zk+OASkoZFBvpQZl69F2\nFV08ayyVvQ501X2eyuOljee+rUmTS+kZ6GfVgFGLtcn6Qa5vnlpxK62cD5eWWKCvVvEnorl1ScbE\n7lYlNFDj3S9UpDG2QvTzc2XOdnBtxVllePQVe6yTWjSpuBiYwzxuPMuspAPAbsmqFJKAW60jFwKR\nz2MTp1ZZaHWEI6xeoOWEG63fLiiCUnFH+jfNFlVnMk3bZ2KPjYg7639LNiOTkYrJGXPGgJm2lKbf\nWvIKqXpCqqnBVb83WWtS2dkteuc6KdDZVTrXnUEuQ7nGQo4Oc/rrZ4PQqteQE4G+pruOI5SxcdTa\nNwcyZ1+UpCMCckE2ltsdl5ZYXNaCoM7eWwVvpOYJiN1DE0Go+p2PTgVKP1ngSdJOFjo9jVVplTz6\nirSeY656oiMVl26/VHVcWpteajhMGoJpJpTrD9qodE0uYy6ZY15TIf22e6n9TAahgMeQJNhRrymv\nJ91HpwZzCNa9h7Z6pIPWXoQ8wkLouc+yweo35C7rPbvZK/AGeqXfq0s/kE9Mj8s8j4LkMpVrLNT3\nUP/9/upUQ9BVg4WSw/r3MLRYAzpjwKlxNy2wtsU4Li2xOOhVeS89S4MxVYeGk0r0Kk3bCLSEMTY5\nuT7pwkShtBZ+CovDG64oy5lriUdfEW7kprGnQBIJNmNvzaqS1ousY8zHOq8UleEsK1u33B65eJgT\nVa0nRqdm89Nq+K60/uRwXm8qneUYmF1nxT2jfnBhdxLVnkahHGhaAtPjoqPWG/DY8guHjdUb2XSS\n7NTOKdb34l9Dj8tQFoaOxD8guQzlGxvtn46xyY1VP08U4HP9hMD4USWcO4lodXZj5RxxYd57lwiX\nnljGMJR7akz1FfKQCa1exxCqh772zupHIduTLMG45JCaXPYzK5UcpOu8Yy7mJVfv3JpcGsN2iqoD\nkwNdcunFuTC8KtcryqnV9hipTKGX782bqPM8YofxTMWh6pGh381Pcb9+9l33WeBcbqybZgeeA3/B\no7drVdbpSdqO27HaLaHI+KE8YyFi7N3bSDaCNK/gGM5IGaqZoqWPIQL2F2yujMTSe68uOrsx0dZ4\nf7kQCjwbUcXMlWBgYPUaypml2nbn6W2h3FyhaOQiS3rkku+WHKRwVrncYWFvMe0p5TzH8nodWJlF\na3LxVVjt/Y7YRaaeWcfOdRPuyT65BCWeK3bCHyugNgc+udhG14TS7veNwp7L7Ry37FE71obVDoez\nKgyrssYIxU8J4zDUVvAeAimV/OSoLbnspb1aSO6+psjF1wAsj/OOi3NS1G1Uf8gde4tpXFpi8ZNQ\n6hVSSCWmB7zvCuu7CmuppSOlBNJx6LoXobLIQ+nV3Yus1QSAtX3sd8mlLGwq/kVivb/S2EovzqgP\naxvMkN3BQuBaTpLWHN6w0foh47s2aPtk4htTe4ZTBe291IsoV8eE4E9S/oTmoumHMJaY0kfcFEjT\nrtihCddNhq7PIenWR4ioQ1LHJiW1g8jDhcZ0e0OEoiUV6CcyDa385yzM/Jx8Do5cdEyLrnMTIhd3\nH36+u2VRc+WkIM3tvWerEvas3niTMhKzICAX3eZtiktLLB144vdUAjs/mHHIUD+p6/ZWp6MTQtPH\nYhFTrfovXOvr3yaRtGlMrj+wZP8gtyqg3ZLVomI/s7YUZ7R35OKTyiI27DX3vYgjsihqCKiJrE5r\n9g/yTjoY+wzWdowpD51MbXMxFe576Lnq1b3fjl5Zdx6dsutkmW13P7MecllkbNxKXUJ+CkBUG9Jo\nQRadtOTr3JTdhFUWqU1cqDAnmaR/XzqeI7Rin/Jm0ven77cdS87tOOCQ0hlvyj15Tp4sTZpOqtDx\nJqG4mZDjgH6X2t8tbVz3m4WKTzC9WKpAxgZ9nSmi1QSSN1Oii/Jvn8cWG+HSEkvHK6xRQehqkA5z\nCcXHYDoS6EhCQ95OsJ5sWjQxMy6grXvB/kTgXqijw4z9g7ytUpknZWtjcJKKj0VsuGNZspusiWUR\nRyzjhGVsAJtr7OgkYWe35PQk6QVV+l5AoUlS21uclDWUhSCUGiUkNfpw+xw5LBLTesjtpRVptLSk\nUubNhXLiKCWNDLtpzX4WtzE+Gr7NrE3iqTNi66y7jUdTKBhWT/Sb2JWG7lmnKfHTCe3sFiwaotfl\nfk+PUy8Wq9++dgl2RcGgOzm3mY0hSCpDvyEME0xwcg+kSRoiLlhrE1rX/zTmrEg4a4z2ZRq1arBO\nduOLSkYpgiwux5R7Oe5yAGP67aEYAn/bVPvuvI7nTaA87dz4mHYCSv09Zh3sFkgi6ZMLuyV3NO/N\nWbW2rQAcZBV7ac3VrOIgazy1cvdilySR/bxfCEeprRfjnqFLOeMjNFn6K/ShyaE9PpDfKRRcGoq1\n2N0r2Nkt2W/sTQeplcauJBGxpFCewtlD9uD8lHRnh4OsYhHXZFFkC6cFyCWoqmsm304htSaafcjx\nYyifmL7GFEISm5+hwWUfCP0eO3tFMHjXRy8+xkM3ut+01x1zN14FrqttUGGY3piZu9hzfXKS9lmW\nceZsTL3SFrd3wbbbEZeaWDR89coQoYQ8moYCxvx2Njlm1Mg5sS+YRFL18/QkIVtUFJUhj6WRQCwO\nsopHLip2k7qZWG0t+KuLM6AijUxTAjnmoIDDtEswq1Laa+tkj+d5BmPxP/oYPw7Iv65WgWWRDQY9\nSG2esFhS0miBye+D0zNIYkx+Qrr3SNJo2RCszRidVaztQXtFp18+6bln0JWCTZAIfbvcpgF5obgU\n3zHATaT7B/lgzFSovbnBjOsTuoTi2hsjFX+bWxi0/R+wRU3F9gy9lwt1vJbY8lU8mj3jphEJsrwc\nU+7lsCTdBOashKbcZ/22po4JHZctqll/+ngdNJg3/vqrZsI7PU47NVvAqobSCLLIBlFGEhNL0vyl\nzerdtMfupaZd/beTdWLaa2fZ+ATWXvecL+8Q0QNtSprOdRLTUfvpdC4tynB7ztaySEz7XF37oyv8\nC4jgHhoTm6LTzxnqttn9zaT98xdmfr8XG/ahPbZ5BvpvCotFX5LVdj43RnybzIdDGhcReaaI/JmI\nvFNEXhzY/4ki8nsishKRr/f2vUpE7hWRP/W2f7KI/L6IvEVE3iQiT2u2P11E/khE3tr8/6yp/t0y\n+hSRu4HXAI/BypqvNMZ8j4hcA34KeAJwD/AcY8z15pxvAr4Cm2vja40xv9Rs/1Tg1cAVbCrprzNm\nqPhwGFPxJVMGwEkDoed2HFQNDbwsm0xIPfdmJ96rOIp8FberudVeQVHB2dKwXme4YyvgmFhSjosV\nx0XMg6uEY/Ws1hP1OrjyEINLhzKWaHIoXqe1D5TrYL0hR4jO8Z50pn+TnSZVzVlk2Ffnz/X+cl5k\nq3KdPv/oMGv3++lbtHu4c+ENjRHtDRja76fA8VGWUec5hfriPuvznUrU/Q66H/q/n/5/yPV9Cjow\neGo8h8bFEPzYmLGEmW7bYrH2QhxL5X/RkAvyChORGPh+4OnYevdvFJHXGWPerg57EPha4PMDTbwa\n+D7s/Kvx74H/3RjziyLyj5rvnwncD3yeMeb9IvJUbB2Yx4/18VbKZSXwImPMm0VkH/gjEfkV4MuB\nXzPGvLxh4hcD3ygiT8ZWSnsK8FHAr4rIJxhjKuAHga8E/gBLLM8EfnGqAyGX3rHcT/qc9iZmunlu\nEu/hsAmhDAWuOaRNChYdWHb9wQWnJwn51Zyz/bIpfhVxbdFEHNfCblWziFcNocQdUlk0KrRlW94h\nTC7QVU/5k5k/GZfF2oA0J0AwlIPN35bnEckqhszFr6zLEgNIssAkcfu5NGVTnji1JYwre06+6qbP\nD7pBB6pstvEhRcrOXjHoWj6Wn27Ocwi16aCDHh1Cv4NG7/68ezuPx9QckpmbRWAsI4F/P9kI6XyY\n4WnAO40x7wIQkdcCzwZaYmmKcN0rIp/rn2yM+W0ReUKgXYMtDAbwCOD9zfF/rI55G3BFRBbGmBUD\nuERQUAoAACAASURBVGXEYoz5APCB5vORiLwDy4LPxrIkwI8Bvwl8Y7P9tc3N/DcReSfwNBG5Bzgw\nxvw+gIi8BsvSo8Ti5JmhGJPQoB8ikWCG3v4Vu18nPE1unlS6sQUtXIQ+aW9Sz6/mTeljgJiimXzT\nKOL6Km6KYoUxJrn4Efo6jYZe/S6PrVeWTh3fpn8PpJD3V+Qa+nc9JbWqwqwmr7vqv8oUnXr3AEQJ\ntamoTUVRpz1p5eQ45fQk5fRYeVDktnyvdjn2XWQduZwepx01pW5jnQhyrWbTNgf/fkPSXDAgVwX7\ndo4ZSD/Tg7q/XrzKOZI2zpEQxo7xJdtQssuxNvzYltsQjxKRN6nvrzTGvLL5/HjgPWrfe4FPv4Br\nvhD4JRH5Tqz64u8FjvlC4M1jpAK3ifG+Yc9PwUocj2lIB+CDWFUZ2If5++q09zbbiuazv30SfvAh\nrIO52hd/zktLuGTvGPzrzCmoFMIUqegkfp1Kgqyll7KMODq0iQZX11atK3JZJ6yqmkVcD5KKTWpp\nWFXSkVyyyFaoPMqNNXQfp61LcjspD0RvO9fVzgS26sYXBSfBTgYFtarOkrWkUQpFZY/rVI+MEsi6\nrnarypYmzptEndZO1bS1ijvPWvd3EjqPlp/1gbXHXygNjlttd+J6QmmERjJGt90IjOWxcTxUf94v\nvDWGniS5inv2mNBEPyZNudiioTb8gMkhEpp7D+fGZild7jfGfNrD15kg/hXwvxpjfkZEngP8CPAP\n3U4ReQrw7cAzphq65cQiInvAzwAvNMYciqxXPsYYIyIX5usnIl8FfBVA9sg7hw8MrBxhQBURSHc+\nio7v/To9uW9o9lPCDyUdHEsEWKVRsDCXXyu9LCJ29gquP7C0G6/ZxchZZfjo3YhVtf5NFnH451jE\nhoOsYlVFLOOIwwJ0ETHtReVwepxCs+7REdy62qG+F03+PsYm+CI306vSuu9K7DJBE7iey9vm9zGE\n4NgISLXrwMQmX1tgXPiu1FqyCUptLl+aFzeljw3Gcs1AqHDY2OIoFAnvx7csFlUbcOswpgKcq1Xw\nSShEQPoZzomPuoV4H3C3+n5Xs+1m8WXA1zWf/zPww26HiNyFLVv8PGPMX041dEuJRURSLKn8uDHm\nZ5vNHxKRxxljPiAijwPubbYPPcz30a3tPPiQG1HylQD7H/MJJhTp7GfWdfAHdy/Z4QTWRLGeNOak\nzQfa7VPJAH3MiaB2OD22uv+T45QsqzlMctJYuPfMcJBKL4jSJ5hFXLOX2r9FHJFErtaLYdm4NN9H\n4T0LOM0T4qLup6Zx95BNT3TnkhoIlCXO++QH1ksui/oBrWNBe+dC3h0bDqFxGuzniGuwayd0nA7E\n9VOvaJWdDlbUBcnGVvluEg8Ru6sJo98BoJPN4SKg8/350osP38NvzPNwcwgkF2LfeSPwJBH5WOxc\n91zgiy+g3fcD/xPW/PBZwF8AiMhV4PXAi40xvzunoVvpFSZYUesdxpjvUrteh2XOlzf/f15t/wkR\n+S6s8f5JwB8aYyoRORSRz8Cq0p4HfO9F9vVmxGb/JfZXZ5pQxtpL0m4a8xCpdFLSzKiA6U9Wp8dp\nU3wrsf2KSpZxU7a4bqL0G3WXJhZLKDb2RRvEbaR+1MTJ2HYOk5yjk66HWrUKk0oIY5LhGKkMedzF\n0os0hbokkphIYtJI5VNbVK03VZLWPftPKJjON7yPEsTIJK3JJRQAqt1o9X4/e0NI7dRRqw0E7erA\n3DY+x+vvILF5k/jQO+DbnabIZUySCHnnOdXzlGfa3AXfrYIxphSRF2C9s2LgVcaYt4nI85v9rxCR\nxwJvwhrjaxF5IfDkRiv0k1g79qNE5L3AvzPG/AjWAep7RCTBZrD9quaSLwCeCLxERF7SbHtG4yAQ\nxK2UWP4+8KXAW0XkLc22b8YSyk+LyFcA7waeA9A8uJ/Gej6UwNc0HmEAX83a3fgXmeER5tDmqBpI\n1T3kWTLZ7khqCaD3Qk21WxYR5WJdiz4kqfgRw/7Kt20rUH8DsIbuJq3KesIo26zIWmpJImlzie2l\nFdcWZUs2aR6TRobjVgCI0HYX+/PZa+/sFhwWC+KiJilqlidFT6U0pGICgvYk8CQdT4rwi/jNqXG/\njOEI2kDL05N0VkoRBz9ocSiRZkiS1cfp8/zca6EJMCQthFyY/ch/P0iyZ8tJQZPo1PgNBV2G3oFF\nYto0QWDJxT2vOSSm4auHtV1ziFxCpHJhdpdIena888IY8wasB6ze9gr1+YN0NTn6uH82sP13gE8N\nbH8Z8LJN+ncrvcJ+h7ZkYQ+fPXDOtwHfFtj+JuCpm1xfxLCzu3b7bCOJH6Y0DnP89+e2Y5Mgnk9N\n0JtkBtQsbaxGbiWNohL2M2t3uZpBWUtHallVEYs4EFHdqJuSSFrVmE3BrwpulRGnuX3hSpXI0EFn\nDg6pKmOVDFFjjJDmwAWFLmNLRovEcAptUF0IfuxHCHNW2hpBD7LbAHNc5n2ESEVjVTau7oGsDXOv\nNxVro+vc3Ib2k48I3HLj/a2CyICoP5DGQfveu+PHEJpgpuJcQi+Nm0ycR5VTgU3ZhzaZhLR+3WUm\nXjXXSFYxR1Tkia3jst8Yl88quDOQuKGohZMyar3I7Nxe44IvnWptqSQXiyWnpHAc7mNIzTWU4Xno\n/to+Nj/dqorC7sYeXKLOLFq35XsWhQI7xzAUm+J+N21DG3MgccF+SVr3KiPq63Sk1EDg41Q/Q84B\nur9D582Fa0efF3JY0aQw2taAJA+3MLJeLk5iud1xaYklitaG0qGXBoajvuesdkLkEgpQKxf9pID+\nis256c6C8gJy/ZwKroP+C9fNNVY1Dlxr6QUMB8oN2dlXfNdkTS6L2HAn2u5SNhOhTYB4RhpUSWoS\nCZFMJxutf1+BxUKwFkvgpU9VKYFlvE6V4wzAc55rsE8j2QR6wbQbGLEHbTQD1wu55foI2XQ6k3eg\nIJ5+Lr4n1pjtwkkbbSLVUJ8nFmFBSWUDUjnvb7rFGpeWWKAbGzBlzINwUOQcchna3ls5BlZ/68SR\naa8PtgPd8ru6SJnWJ89ByCajV8FJWrfSi4VzjbUuyQeZI5E11p5XEWlU4zghiWTdxrW8Pf4Gy04t\njsEStXRT0o97wI2rNWtT2TiWAVhpxRLhIjFkWc0J07nfhqRb34U1ZGh2k/WY5OlikPSEHXJN1zYS\n6KaB8ftwLvWQGn9jVR2nsIlqzR07Kzh5A1KZo8o8NwRILseUeznuMgCR8YE2R9T2Y12mKgL6nkFT\nA70Ta+ClVh9Sh3UbMMEX3WHoZfddLPM8IsvqdqLL05rVouKsUnEqCBC3sR+aYOyq3wZZphGkUY0V\nLuz9nVVCftUWI/PdqP24CietJEUdLCYFfYJu1TneCrmoN6sUmcbQeEyzCBm0GR83PqGMxkiFFgse\nNqnHrqXWuX0eJQMvZqrt34gU02l7wNNKn7PSZDhgB9T96V6gn6mh14e5DgBbbIxLTCzrgagHXVCv\n63tR6RWaklymVBbtylFdb0qa8COsXX866q2xIE2vvLLvgRbyXgvV69Cqubbmyl6BtbcIZ5Uhr8XW\nLQFgTS5FLUH12EFWUdYJdy4tMa2awMwTnSpFu7c2cBUFqzSi2E96zhZjxu5FoiZsvTvJ1qowJb0U\ntU1xk9dCUa2Ny87e1T6Tkcl50zo+PuYG385NGz8FX43Vi58qIsgG6sHfRByPG5vtAkzdz85e0U2h\nM/O65yUU14eLi2G5XLi0xALdVVOer8Vw/4X0VRWdCPANX6SQvUOvJP1j5wzsToT1CLTh2b+Ow1AR\nKB+nJ4mVMHZL8t2SolpHjK+zJNeEKjNYicZwXMTspjUHVcRZZSiuANdWZFndj8BW1TNbEp0IzvNj\nPxzSOFw1c31iRm0qKlMAcVPC2dplXGoY35nDxxCh6H7Mmvj1+Br5fYdsI/o6c21tDjpSfjKn1k1W\nWdTuxi7Nzo5XWG2SXFRbg92c8z4pddiFJqzcGu8/8uFUYa3EkYWlltYdOZAyReMiXBf1gB6SHAbP\nnSmyay8fh01qZOjMxK3HURHB1RyQZhLWKfi7arFFXLfljvfSiqKGvVTafFxnVTf9i05N36J9N/vB\niKEMCVP3ZglEOpJKZQpqU7XZja3Usn4GME0qUwsDty84YQfsAiXDLrQOIWktZHwfNOZ7rrg6hf5g\nSqNzwKlXXZ8dqWQRcE5y2SRb+FBeMj2ut+7I58elJRaHoRdxKrmjw5ygKx9DUsuoA0Eg8nrIZXXo\nfD3huXb8Y8ZQFlErRegVrFNZrPYKz+7SJRcnqWhPK7vdpkw5SK1abRnbCP0ktcFpJ8fpZBJChyC5\n6OC8If6NEqsOc58pWFVCUdOmzXfZjX01mEaIVELedn7/On0eyb3lyCVdVetqh0k/c4M/rv2qjHMw\nlf5kjh1jasHTIxVoySVfrY9p2yuV0T6QAy2UrsbfPmSc96XQi5daBIkvh8fZpSUWY/qD3tkR/EJD\nQ2gD8zxyOS+GVGLQ7avu31xX1JBBW78wuvgR9CcJN7mXZdRmJi4Lu21nt7BSTKMac9H6dy6tO/Je\nKhxkFZZo1mlf8tpO3KvKSiuHhd2exnBHDFlUWnfwzKaZGUrxMRVfoaXO3Hu0q0qsAT/Zhbh5HZKM\nojpiVUVtdmNfDTYUPT8UZ+LD/w1Dtju9WPGv5zz/SNc2tyFPqVCOuTFo7yzfXT1oMFc2vKH2HHpE\nqdzZacglr7uBklpKbs8JZG2e+/6NxZht0s4Ww7i0xFLX0uZ90nADOBQz4pLvafjksglCK7yhAR0q\nYNSRqGYgNNlCd8U8JjW16hAnvTUrysOTjGTXpoPZ2S04PSm4em3FUQ6PvmJLFh8XCXupYRFHHDde\nY0UND54l3HtmScWPLdnP6EgvMJ4/qiwi0iOrOklZP9tTbA60JK3btPk3cjguojZIso6EaGFrS9aR\nUJUlJ2XESRFxVsFR3nX/HYrjcGhJ+CQdDEbsRoibjqv44GTpqcLGSMRdw79uaL/flvbO6pGK7wq+\nmnYwCL0bOrDTeRtqEnXbO1LyifSySjtbpybE0DsxV62lz71QddgFpnS53XGpicUvXwsjumQF55Xk\noMllDtwEMlStckzt4/rotm3qDukmxyHPtCE/fr1KT1cly5O1HSQuaqpVxOki6Rx3uluSX805SoXD\nzBKMzZQckUSG40I4LMKk4qClF7ATnUvv70+K6VG3X66+yzFwmtpiXzu7JWdZSV4Lq8pmCSjqlY2+\nz3YAKOoVRX1GUccNqayllaAazJ/sUeTDcNqcoUqTsB5LnQl5JEUJ9CVdPU7OOzkOxYn4amG/qJkP\nf+Hl+qTLCbcEo6QUvyCcf11dQA2Gn1eoDMbgvaqklVucD5eaWEJSySCpTHhdbZKuPS7qtbvsgHdT\niPD8/aN+/LrfPnKzzszrQRf/0vYYra5xCSMddIGus1XK4UmmpJeEo6s5+7ulIhib0uVGTqtm0miz\nCUf6ngT2y7Y/J8dpR2JbPphz5aToEIvG9cUO+a4t1JUtKvYzQ1kLRS1UpqCoz0ij1KrB6kMeKmuO\ni5TDwqpm2hieVbjIV2fF7v0WclR3JKipsdJOlkp6mVNjfqw0sb+YGFZJBeDF1Pj34GemDtXTgXGp\n3hGMVntptasrCOfDvUed5+X11b/2VHyO/3noXdkcF5Y2/7bH5SaWCdfF1j1X5dLapBBSCGOTylhi\nQxhWWww36L0QI9Hs0FdnhNQn6arqFOTq7GuqQD60m1KtIg6LBacnKUeHGY+844yj3bIlGD/DMPQJ\nZRmvc3QtY8NBCg/EsLjzjOuZsmm4+8orslW/YJebeE5PUvYP1lH+jtA6QZJlThTbQE+XMn/Q4O89\nF43Q7zynNICr9NmZLGFWnEZYZWU6ErJ/jh9bNTWunDrYl9p9DJGLxph67vQkbRcyy+OiX7VSZV1o\nr+kFknbGs5fx240DX2sxx/PudoCIPBP4HmyU8Q8bY17u7f9E4EeBvwN8izHmO9W+VwHPAu41xjxV\nbX8pNnX+fc2mbzbGvEFEno7NOp8BOfANxphfH+vfpSWWKYRUVC7F/ljFyKkSxbqeu86kHEqn0l53\nIqJ/ThoLHesyqA9XL5+7ro9iEbcSS2jieGjXqwPfGJevP7CkLJpJfbfkgH76euiSykFq/yeRlXAO\nC0sw6ZmQXVvbXW6wpFpF3Wuzntwf2k0pFjE7i7Lzuy5jGi+1JWm0hIeOAEh390mjJdcWJdcWMY++\nIhztFdZFdlH1JN250qr/vKaIpljEJLumTQwK8zwAQ+04jJVT8IN3W5LxSM1fXA2RzNhYb/vjxfos\nfAnZvxc/jc8UvNIGO7vFdJ2Vh8sMckE2FhGJge8Hno4txf5GEXmdMebt6rAHga8FPj/QxKuB7wNe\nE9j33ZqEGtwPfJ4x5v0i8lRsHZjR8u+Xl1jq4VVJSGXQemwpcgmtIt1LN0Yw+kXbNDJ7LPXHutP9\nOiEOoVrrY3VFtCosSW1xqyqNKNOoV6Peh3aJhXVMiot78cnFJxVr7LcpYlZVRBIJx4V1R76R2ruB\nh4Amx1jR/EYqjX67cs5knVMrMS1hZZEhkphYEkx+Yvu99yiW8R576QMcZBUHqfDoK5Dv2oSZ2aKi\nPEk2Un/66Ky0PYLRKlJXvtrBj78YJRqtQvPGWyijg8Ygybh2oZPTzXdsCUkLEHb7HXN/d+PNoUMo\nMyu3+i7gO7vrBYb77AJyP0zwNOCdxph3AYjIa4FnY2tVAdAU4bpXRD7XP9kY89si8oS5FzPG/LH6\n+jbgiogsjDGroXMuL7FAkByG9NCdXEuOXAhINioFiU8ufmXHuYF0vW67yWQDUtEqj1Z68e55TFLp\ntL/qrr5HVR5evjL98q72Ch59xXTI5WpmVU97qeEgq1T8C21+sbKWRj1lgJKysOP7/mIHHsxbQgFL\nelW6TmWjV6lW3WXIoitEtcHkp02fT0mTJVeSiL205s4lHBawv1va6pqB5zNYZEyhs4KnOxlr9WKV\n2t9nZ69oV9jQ9fjSiSW1w8kcFakbb34s1FBVSRiJcUrX1+xIMiPjC8Kk4qv18lXcjjcgYJM0wXvW\n13PX2T/IWyklSWv2m8DLVSkkK2t72z/Igw49twiPEpE3qe+vbEqrg5UW3qP2vRf49Au67v8iIs/D\nVp98kTHmurf/C4E3j5EKXGJiaVOFDUgeU5hMJRKyx4xIElPt9oK0RvTAU4GOjlzGjLm9c5RLslOH\nhQpr+at457GjyeX6g0ts5VO4jzW5OBvLMl6XPnZBlTb+JWokGBt8eecSbG0XpRZLl5RFxJmyJxX7\nCQe7K3b3Cnb2CrLISkeLuGYR10QSQ5nbP2hKEy+IJSWNqkaygSySnvpEE0ri3btvB5ib82sIYyla\negsHjYGKojoifyhJZSig0k+e2VmseO/TeSQVfR13L6NlESbygXWurd49HYjpftepTOc3hc1Sutxv\njPm0h6cjg/hB4FuxjP2twH8A/oXbKSJPAb4deMZUQ5eWWIC+580IxlYxoSy1HZVZu7NfJ8VBe8UM\noRu3MkAsnoQwFJ0f8kLrqL0m6sgMFdVy5OITjO+Vc3SYtZPafRTsZ6YtApZFNGn1o7aWiwtWbPsf\nGZYIH71LU9ulJFsct5OlzpxwsLvikXeccfXaqlWDObRVMOvS/gVQ1jbljA9fhaVVgpvaArTarlg0\nRdZmpOXXv8tgVL03Jvw22v7fRH0Z/3p+4lN/vE+RStu35v1pXfoHnuVYcC/o8hNuyrP1hVrX+KaQ\n3m0irUzhfcDd6vtdzbabgjHmQ+6ziPxH4BfU97uAnwOeZ4z5y6m2LjWxhDAWdawxtKrpHe+7ig7U\nSfEj4X10or11IsyhjMZs7ocfincIEZKTxqYcFRzWpYPXw81NiNcfXHQi9rtp+K36q6ijXnZkRwhl\nLdy5bIz6MSySU45Okk48RJLWLalkUajmfdpc23Uup86Sxg05bnOFHeVi2yyjcRtaqE5MQMJMV9Wk\nncapiNzEOZV1oZO/TaNxMdfu5O2uATXa3Dx1QXjBo6G2fFLR96j7N/WM5sZyrVZx+/zafG+ByP5O\n2xsUWZuFkbo/G+CNwJNE5GOxhPJc4ItvtlEReZwx5gPN138C/Gmz/SrweuDFxpjfndPWpSUWMcOq\nJJ9cfEyJyoP2jEDKDqCjdnAIxbH47pduAhtcEauV6txJQueHmloxj63E3WTgVvVVGnX6o3NQWcJ0\nbsA+ucRrqULBFhBbv/QHqfDEfSv1nC1LjvKGCJr7caSi1W0doavM+f/Ze/dY27azPuw35nPtvdbe\nd59zrq8N9xoC2C41lmjABVSpTUhqC4m40DoRjzYEHIU4cOvyBxC7LpdKNZIpKBIJNFe3YBARgUQt\nUEeYJhCqINGQ2ICU1CgtNhB8L5h773ncvfdaZ635Gv1jjG/Mb3xzjDnn2mefcx/7fNLRWXut+Rhz\nzDHGb3yv34dqmANjKF36csaUy6IQ7psQqHCf3FQoa0wTnCOxonGxfA7vOJYrsl3lAzaB2PiZ5B6j\n5xUWoLms3fmuGYYax/JhxIYqNk/X53nPbzcDUF5pWozWulFKPQkTnZUC+IjW+pNKqffa359WSr0B\nxk9yDKBTSn0XgLdqrU+VUj8L4M/D+HGeBfD9WuufAPA/K6X+I5jJ94cA/qa95ZMA3gTgKaXUU/a7\nd9oAgaBcWWAhiZnDYrusfe2vns2bAwybuDGiv8HgtpoK5YtwGQMXAF6Wf8g8FuISk+DiLSIzkvao\nnQ3zvXCthT+jH5HTg4sxjxnhfhf6v0z7UsgLKDxxqFF1wJ0cOC2As6JB1cGBiqTMT1R80TD5LYzd\nmO14KeQ6FBEXSnyVvo+QtuJ8VgUvQdDLmLYiNwH8fqEs9d5Mq11b6H3lVYutDdGWJuIx3+CoGZeN\n9bE5RAv9Xou5yM+SY2zsPsB4Ps2+zBajopKe6PQeRWv9MQAfE989zT5/FsZEFjr3myLf/9XI9x8C\n8KF92ndlgUUrNc1vxCg5SPalx4hRYoT8LZMDnBVX4otF6DkGoZ/CBCefIeTQlxUP55gF+IJZF6m/\ng3dFucK7wNu3FsYMUu9QnVTYLswCa2hgzDEx7YW6YNcafi8jRuupWx9QisT3szghx2pWWCp9OHZj\nyr4noZBrklDCXkwmTWA2/4dEcldxX8iYX2yszIM5ud8cyM1KWnduXI1FDcaKzvFnBfzFvmI0LsAw\nMMWNMwplHvNXhTY3XFPP/LnLrx+by/tE2D2UsFxhYAl8GeNiqtSocz9mwrqMgTlYgAtlJulZMwqM\nIcJMalOMvVWGafIw6Kn8mbEFTIIK3YNfs2K78cqGf56dVDg7avD4Uhs/CugdJE5r4bLKO6zyDmZY\n9+BSWa2HA0phw5hdQa/isLd/Jxk6vcWuHVa+5DIWZk0knb6PRc/yqwCWQqYxBIxcw7wsBztnkwiF\nj1PI81TCrCyZ7UWHcbGLfcFMUFL4GGjW/Xybax6UtDpNpbBBPprzE+vL+wIqCj2D9mtcrsZThiQZ\njwIb5KCw0GHptwjaaPdgHI7Zr8cWkPrIvrpLpp+QoDJmPgP8fpIL5hgXmhTOTExcY2enBTY3tqge\n26LqYGj48zC4rPK+gBgWDco0AQ1vUyPG/pT6/zvJCqA8tJ1wiLY+c6DCI8JKa8rZlH6CZGzxI9MT\nBxTyGUxRnlyEINUdG4kc5ImXPHycC723sSz9mMjQY7nBkQErIXJV3nZ+/oCPbUaaQLM2AQtz2u3O\neaip3LNcWWBRSiNbap/+HPGFkvibgCHzrFw0owMzsIuLTY6p8OC+wXFzG03KGB17TDioUHx/w0wu\ndD9JSMgDCsZAZcAGsFZYnBsSScAns6T77V5/F9sW+LxlDy6ldcCv8hbLrLM1X4C8or5rkCUpzuth\nH2eM4LLTLZBmUESbjxatblBbBuSYzN1Jcx+G973g0wpdL6TVkQz6cSTgIvQ+nJYhcq5634qeBSpc\na4nm0gQkZJqS89Fr0+AC8zZVtGGJXi9Q9uD+SAKkr5rs/nuSKwssIeELZYj0LsakOjusV5oIRnby\nU4lpJPtMZC4h/xEwkXUfELkLB/aLbDKgUjtm4mLX4O6qcI7x+jzFn+6Wxtn6+ruoWzKNGTNVnuwf\nEkvaSm7pXO6HjLH/AnDPN0bWOGa2HCMsHdNqYlrI5TH49veheUH1UjytYEa486gEIi25hOZyrJ8d\nqM7QrB/KPIkCi1LqGMAHYCILfllr/Q/Zb/+L1vo7HkD77qvw3VFsVwkwmzNGdk5zs/cnspK9Q/cI\nEpgCl7nRb2MOeh6tI30FnEYF8PspVv+Fh5NyZmK6LjnHKcR3s85wumxwVFunfpu48sG1pcAHgHWT\n4LxOcGtrhvciNQ54mRhZJBqpyg24dA10M8pSAcD3DXAtNiYxokl6tqg5bGRMxXx63ngRCy7XQujY\nQb7Vbli4brPOL8ZhB9+PM8Y2wY+P+mj2kJDZMSacd0y28dLDjJWCysrLveYrVMY0lp8E8HsA/ncA\n71FKvRvAN1uOmK96EI27n6K1ujio8AkfiPJ6kDLgMJsLLoCXHU3nxyaTl7QWmfS8r6RMmd9C4hiU\nK+1MYmfrDC8kw1wX187WgMpa9AOBCpnAeqoYmyDZVEBrcmkS7k+z9WJ2jXKlq6sJcLkI2/FF+42/\nf3/n378jfm1Jeso3EkTVcy9VUUMyB1T4sZOay8g8C4HKpHYYoLzhAQkPZX8ZA5Yv0lq/237+RaXU\nBwH8mlLqv3gA7br/0umBuizzEmihlIASoqIHMBtc9uHoAuLmqSifk20Tfz5aXLyaFQGACWkW/DMt\nWhdh9r0IuORVi3aXuBwSKtRlaFwUtq1G1Sk0XYZda64tQYWkB5V+0U1UajWWHdBaW3zXIFUZHPsh\nMFi8pS8uBAxyYeMy5bg3NxuOJxmhJTXMmI9CmnmI+sZdpw6DY400GhU5513OGd/BJMuY1iLnWutG\nsgAAIABJREFUIKNNCm0QZb4XlxDLeKi9l559fwVkDFhKpVSite4AQGv9A0qp5wD8OoDVA2nd/ZRE\noT7KBo49D0zsoMtEDQkSGSk1N6lSJh1y2YflOJQ1TJO0QTKgNe8Pms/oLNtzuKpR7VJsZSq1MPFl\nzuQydJzyRXEDk4hHOS+0q2zypH8XRxkOS8PyS8EEpzZJPrf8YtsWOG6TYH4Kd9QTqFwrW5yUwCJd\nIdcp9OY2wNmN8wXy5Nyeq3BkKfOPjivT7qM8GvJN37W74YI00HonF0/tgYnk2PLAgRZA+2qaOnH5\nI4erehDtx+niD1c1Nue5yboPyQzT3Ni4HhPOrMyfw0WtFTxUXQ/GKDn9yVfCyVBDWqEPKI1Xo4Vk\nuaoHNDr3LEpdFqXLK17GnvKfAPgLAH6VvtBa/5RS6rMA/t79btj9lqJo8ejrN6hOjInn7q50wFCU\nLQ6yKriwcqEBd7isJx3t/DreQs7YcmOgFAtnPlw2juuIt4ez01a7FHqZeOA45qCXEWFcOyNTUFMn\ng9oVoYUk1HcyrJP6brPMcZsKaAkW6EeWG8NMvGw8ehbJiAz0VSGl6QuAq+1yrWzxOYc1ltmjOEwf\nAc5fBDZ3gDum0BdONsjLazgpgRsLU4+lbhVw0rMoZ1mHTZ7jkAFnaHH0nj3rcAA/85xn0fOEPW6u\non7kUXqe1gwExwFdExjSxvN3kOUd1ue5eSZWxGwMHGK095L9eU6YObVffseZBnhbZHIln3+OqBWJ\ndy3uz+Rzm/dJjCfvYfjx/hIFFq3190a+/z8BvPm+tegBSZZ1eN3r73pkhcQwHBpsocTHQ1vToaoS\nt8MZhNYGgMObJJnd2bOxO9h1H5j70KJZ2UtSLQlqE10/tJuVO125MPE28mc/KvTgntUudc8un21M\nYlFtshZGaLE6XNUOUKiPTNngYRb90J9i/l/lHa6XDW4sGhxmj+AwewTYnkKfvwCcnkK/ZIFlcxv5\n6lHkyQKrvMJji8w9P+xzZ3nnlTme9fyBBWxznjvGXQ4IsXHI+8D1YWfeC/UnMFyw+XX4Nc4qM4aK\nonNmRiljmyvexiM2JuaUc+btB+LPMHZv+ZwxcI0BiRxTJNsWQNF47bt3UZdG6fJKl6uhlwUkT4HH\nTxpH10ELpiQsJCbc+qAJLuwAcIjxHAMJHi7cNZCsV7AdthzolKhH7ahbja3lwpIgA5iJt1z1xIp8\ntzpITmPnEKBwbi1+T7C+kO3k7ZPCj8tTQ+y4LRocLRvX/66trP8I3GS/jd0jBCqvP6it+esRHGYn\nSKpdbwLbbIGNqUaJ85eAkw0W+QrL7EVTdCwHAIU8BYqk8fov9K6lyPFE7Tw7qHB6UuH2naJ/N4GF\njz87Aao/HrQhyjzoxzTQj9HQdUw7NE4z0//7hq3zNh7nQx62/tnjEV6VDY4A7NiCGRPmt9lNcc8J\nhDeBof6U7eXtlHPtoewnVxZYDlLgPzwxhIXblmz2ZkDTLthMYHM8HUcLPE1mAG5Cc+GLH+eo4n9z\nehH+dxaZiA3jrQJke3QU/Diw8cUNq8ax9nIT0lHR98ExL2HPJro0OXGRk5GH+kqw5O3dto3j9fL7\nx+8Pfi2+WEowocz8a2WL62WDVV5ika5QpkvkdWs0lfMXgedvQd+8je5PjcaSnNwBHvlTHL7uzbix\neAmfu6wB5Diu4RFc1gdN8D2TyE0Cb2+WaDSdwmkN3KmAG4sKZxWChJl8PJrr0mc9eN9b8T75O+Pa\nHTcdHtXD8TNHxsZKqD9I+PimMU1tHbZ/bqRl3xdYmbnIxzb153E+nNuh9nK2hkvTWB76WF77cpB1\n+LOPbrFuTK2PujOhqlQGF/BDUk0Wdn9cKCO76VTQUUzXAuBd2/xNi772/ubHALD37gtO8fbQ77tW\noWETkYMfX3x5u+RzkB+CMtrloj5/osPllYzJeZ0M2k5tlH1m2scSDwMAXCTafW/IKTXyZIFF+ogB\nFJ0C6zumvv2tP4G+eQd4/ibaPzlH/QcvmetuG6Sbu8CbN3j0sTcjPznD561ewmmVYt2Y90DtDkno\nXYfec90pl3NzWhmGAA4sy7xjZZn78RLTAPjYABCoYeNfo7K5PzSOTqvUGz/0LkhCv/HxIsc0fyck\noXdG7a1YLhK1fSz4MNb/fEyHxlRf7npersyYxvVyiVLqawD8CEys/Y9rrT8sfv9imJSRLwPwQa31\nD7PfPgLgLwF4Xmv9Nvb9DwF4F4AKwKcBfJvW+o5S6h0APgygsL99j9b618baNwksSqn/aux3rfXP\nT13jQchUR0spkgxvXC3R6gadblF3hnSwTPtsbJc8Bziywk633sANDW5JkEgLOc/yNsWlzHcmtNX/\njh9HTLvUBmoz/57axNvDF/Y86RfqKWDJk4VtV+n6wFDIG6H7cqG2y99bHa7KyJ/nbtM54ORtpXfh\n9wu9m8y7NrWvf3eZa3ueLHxA2dwBtneh/+QF4MXbaJ49Q/X/3cGdz5rktZPzF1HsGmRVDWzv4pEn\n3opHDl6PRxc71N0W2/Ycdbf1+oT6kb/rfvz075j3lykkZq55WqUOaJZZ5/rgIEvsdXL3XLK/uYT6\nvtOte5+hd1V3Ozu2t6MUNuY5+/HFxxOfMyT+OO7bLdkOqB+p7TS++Xe8r8PtUuLv4bwkyh/+bmLX\nlePoUkRdjo9FKZUC+DEA74Cpd/9xpdRHtda/yw67BeB9AL4+cImfAvCjAH5afP8rAD5g6738IEyC\n/N8G8CKAd2mt/1gp9TaYOjCPj7Vxjsby1wH8JwAIob4awP8N4AWY7fDLDiwzO9qTRGs8oo+ArECX\nKG8w88WekuWIP0oO+JjIwRiaZC4Rr2tsgp5fxdCIvU9WAMkCyI4N+y6oHf3iMbdNsYkNAHlSmnZ1\njfE9NBVARa1oUiQLdnIIOLKhys8nlP3NcXLlW6/9HBBSlfXtIWkqM/KyItgX3jlNBdw9g757G9ht\ngO1d4M4Z9N0t9LMvov6Dl7D9o7u489kFXnyOHMALnNSnWJzVKDZb43+5fg1ZeYi8PMLh4hqwOHTt\nl31I48drg9z0Ws6oLleoux0eKWrU3RatNjk05tnz/n3wvqbrxfqe9TEAIC+G59D4Ko6A/AaQZKj1\nbnIBN/3cj7MpIAHgv7+m6vvENVmMK/teAXh9LCXUVjkH/Dmd++/GXr8/NzJ+dpvg/V9G+QoAn9Ja\n/z4AKKV+DsDXAXDrnS3C9bxS6mvlyVrrX1dK/ZnA9/+M/fmbAP6y/f532PefBHCglCptsnxQ5gBL\nDlN57E/sQ3wOgJ/SWn/bjHMflEx29EB2W+g/+jfA4gCqPESWFlDF0vzG6D20zcZWaYE8K/sJG9p5\n8MmCOjjxOW2Ibi2Y0Hl0PFUy5BUNi9z8SzKgPISyC1POKSLG7LddA+DuoA0DaSvo1oJKVWNQVZFq\nlhT58Df6u8iHx/O22b5TaYa8PEJeHJpFpbjuAZqu7gDVxqzJso/c9Q+hLIFkQveg90f9W22Ac+Og\n13e3wJ1TdLe3qP/gDu5+psadz5Z49tMdPvPvTf809QJdU+Kk2ULXLyA/q5G8/gg4PAAOFsDJkRk3\nWYEszYC0MFQd/P67s74fuYjxo4pDlMXS/F2YBR7VBqgboDqFbnbQdI1QH/B3EOp/+a5C77PIgeLQ\nPUtMHB2JN84CmxnbPjmHsNvY91sPxzb/n/WRSjNkrE1BSpSxTQwtcU0FmpO62Xnzmq5L40dXa/M7\nbUQClUUvJnv5WB5VSn2C/f2M1voZ+/lxAJ9hvz0L4CsvoYFc3gPgHwW+fzeA3x4DFWAesLyR1UEG\ngD8F8Hnz2/dAZFZHK6W+HcC3A8Dnfc4j5suuMYtPWgwmhFuY0swsuABUBjM4PBARIha/4EIeApXQ\nItG0QCa8oEyzoY2wysrIDnaiHWNtqmpzf5IsNd+NLVT8O34czXXqOzv5dbODSjIzEjvRH7Qg0S43\ndH17vG52oE1y7Dl12wIN67tta+rACwLGatehqVL/e/vcum2hqA/QL2CD+8t+pPa6nTtMH7QV0JXm\nWk3l9YMDR+oD6hd+TflZ/h16V43Y6bN+BBAFF+pXNWPV8OYQ4GvjJDS25ZgqMJxjaT9eSBzIUJ8k\nHEQCwjccvE1p4b0/95t7Vy9LaNiLWuu3vxw3tiwrDYCfEd9/CYAfBPDOqWvMAZZ/rpT6pwB+1v79\nDWBJk68msYj/DAC8/c9+oVZPvNUMRmFS4VxRfNB2aNEw/0bI9irNTNK27o6TZjD5md/b3p+bCLzP\nCKv0wND3EGsTmWA8E0C1GbaB7s1lDGRJnLnDbz+ZX+pui7a9iTTJkWcL5IvXIcEbhm3gIt5dw57b\nMzdWG/tv7T6nz99CmSdQi1vIih2yokBRGlPMY08AJ2/Y4eCNOYq3XId6wwnU0Qo4XACrQ6MlHV6D\nKw4WGj8OACIai+2DLlFodGN9Nlug2yLJU6TFIfLVNf99kMj+kL+FdvAxjY/ab5+FjyMpoXElhfsm\ngMA45//LdvD2Bsa5bFsjTGRjZjzeLu/9sGs33BTW6fAceGXIcwDeyP5+wn53z6KU+lYYx/5f1Fpr\n9v0TAH4BwLdorT89dZ1JYNFaP6mU+i8B/Gf2q2e01r9woVbfP9m7o7skwXnWAGjQtmdom+Hg4Qtw\n2zRRB36oXO4YHbu0SzvHZpYDWcImwaHnYCQHKwC07RlonoUmPLUTgAtKmCPct5EuciTqwDma+2vf\n9Z8lSyafGdC2/8y5vD+58z5PNI6L1rWjSA6QpGEna6vveteh55fBD4lKUSwOkB++zvgsOg2cvIjk\ncIFy8QdIjl5Ckp0jseB38oYKB29ZIf+CR4BHr0HdOAGOj40JsjwCFsfoirJ3endbtG3veDb3Ze/U\ntVc41hu4IABerZJHs7nxwZWqlPU94I0ZCKod028Nkjx3v/PxZ/w6d9E2Zw7ggfC75OPJ/D+s5BkL\nfklVhjTJkaQGNPn1h4EhGp3ems9tP1ZC/SjHhQyiIJFtovdD857Pbd7v+cECqToc9MXFRI8C9x7y\ncQBvVkp9Acw6940AvvleL2oDoL4XwJ/TWm/Y9ycAfgnA+7XWvzHnWnMNfr8N4Exr/atKqUOl1JHW\n+mzfht9H2bujq67Bc+vbEyGxO3ssD8vMsWvL4GIdKpc7xqpuju+QJ2Y3yUNRZQTXVNQXtZO+37W5\nbWsSnWyDp20VjosWedKiTGsss7UXbi3vYdq6GbR9+Izwor6G/WnYiCnfYGlLDK/yCstsizLtWPjp\nsB3mt9yGpg61yDxpscpfwjK7bZ9vgcPlIzj8wi8Fihz54R9B5QmK1SkAIPv8Y2R/5gR47IYBlUdu\nQB0YDaUrSmzbc2yr29i1a9dvsn2cwJK31z8G0fe0cqHGLYpkN7gGSSyUNzSuZSg7D2E/r1MbSn/o\nHcNl15bueXnocYg2pw8/7mx4824QBu5f24+0jI03/10DQD5aPpo/Rx9m7Pdpf23zLsxxNZbZDnly\nHpzXL6fYqK0nYaKzUgAf0Vp/Uin1Xvv700qpNwD4BIBjAJ1S6rtgfOWnSqmfBfDnYfw4zwL4fq31\nT8BEipUAfkUpBQC/qbV+L4AnAbwJwFNKqadsM95pAwSCMifc+G/A+CWuA/giGH/G0wD+4n7dcf8k\n1tFj59xtEvybmwfu77F4fUpKpIS+U1GRsE+sSveKeecJWTL5LcTECwzDKkPtPa39ttZskySz1mux\ngcrTxCa76UESmUxg2yfRk9oo+5KSTeu2v+ZRkeI4T3CcZ1jlJv+AL2b8GiQysU8uwsd5huMcJou+\naHGtvIUvOj7EI1/4dmBxgKzIoUqrZXz+Nagb14DHrgOrR6FWrxsAys1thls7YzrjuUTmf+WemSe0\nhtrJGRVITMJhEkziiyXrzaVQCbEk0HipOoWziieopoNjZUKtOY6FtafmPJlkLPOo+IaDJJR/IhOC\n+f+y32JsEEWSuO9ke+RYojEok1kvQzTGw+/3upbWHwPwMfHd0+zzZ2EsN6Fzvyny/Zsi338IwIf2\nad8cjeU7YaKu/pW9ye8ppR7b5yYPQkIdPSZ3W+BTZ2ZgFgnV9fCF0zrUdgIS9Qjn5vIpPfxr8Mx9\nKSF+sH5SKzs5ZcJjXKi9Z5U59qxSQQJLkhB9B3E+vZCoAaULLf7yecJUIQCgHNDKvpRUOsTZxnmn\njnPgxsJcRwKQbAMXSe9hKGpMlvhxDpwUGU6rFNfLU+QHCxyePA688S7Sc6v9nxybyK+DY6jDa6jz\nFJv6RWzbc9zZAXeqAjdtETEOIvR8YZYGI3xhDnFkGdqRAEtC4Py+n6clxhBgxon/LrgMCDMDHGTA\nkAdPPoO/cVJAoM4L76chfZF/jOw73sYhxY7yNj18jIbG45D25cHXWXq1yxxg2WmtK6saQSmVYRiV\n/6qTVgMvWFcBDRzirwKGE5/IEgE4wkogzFosJxtJbCEH4JEMAgQ6anLhGO7Uh4v1HP4neh5Opnm0\nbFC0wBmGfcGvGXqGfiIPd56yfUDfp2uYPt2sM5wtG5xaYkO++PLzAAwYdSUhYZZ3wPUdqDAYZbff\n2mW4Vm6BwxvA4sAACgB1tARWj0AdXEO3WDpQeeGuwq1dhvN6qJmE3gVJaFE8W2fB8UTvQPKF8T6g\nfthH+HWkFnq2zgZ9SkJtpHYCPsEjvS9AkELatleZdmMI8OcaidSaQxuHMYJK2e7NOnNjYoN4WYgy\n08G5EiKqvBzRs/KEXgsyB1j+hVLqv4dJinkHgO+AodR/VUvbKtw8M2yuNOhpoAEYDDZi3o3VFB+r\nmcFF1naQbMNTNPpjIinUQ/VagOnyw0Sx3tQJDi2JZag/Ys/BgZWzQ8co3jl1PABs1obCfX3e4lRQ\npHN6dGC8BIA8plo2qKwmdJoD53WKbXuOo/xRqMMTqEdumxOPjaaC1aPYNLewaV7CzW2GP72bDeh8\nYqDCtRUJqpvzHLdvlY6i3vWNrXmyWZvaKZzqXi6esc1CrHZIqBQCXWdqvMj+pDZL5u+ibB3QZHnn\nFvgB43eELVnee4xSP/Sssh303CHh7N58DG7Oc6/wF2ewfijzZQ6wvB8m+/7fAvibMOamH7+fjXoQ\n0rYKp4xRFoCbwCEgoYmf71oo9OVbXfEgKK+AEIBBqVNgOHmmiiRNFf6KTS4JgFGtRRSaypamDPDh\nskZTtt6kXp/ne4GrbDuvryH7YxarLmurVwkTwKAIFX8uVyHTLhLLBke14fu623TYtuc4PLwGfWjT\ntQ5PDKi0L2Hd3MafbHLc3qVRUJHC7fW1MPmd3ilwdlrg9E7pisxldYMDVsG0LlKcrgpXb16CZ2hj\nMNWPWd7hcFkP3osE61jtn/5GzG+2zrzxLt8pB5p9JVRTxt1XPL/8nfqNPo/Vyal2KZq1ctUnj6q7\npuhcnmBTmve07wYvJlrrSXaM14qMAoulSvlprfV/DeB/fTBNejDSNH2xKhqEayAKJovaLAK83Ky7\nlgUXKlFLC15T58O6J6yMal2mbnIC/S5KTowxmWMSGSw2opQrly1yNHW/k6aF6Oy08PqFFkW+uNPz\nGrNhPgqssj8APSj3y4WXmwXglfulKoG8PDA/v80TbGy4LfXxdtFgXSc4r1NjDituACuTNKsOr6FW\nLbaN8amc1z6ohADFd/KSCVPjFArHAF5ojInm7NQARn7WYLGukdlSumndodiZPr27KpBXLba7HJuj\nfKBheMLeJQA3TqVsVzlO69IDGGAI8mEQ8d8N9W+bJ8Cur8hIZiQaN7HNlJQpDTr67METtD22nzdj\nc5BAneTAvpPGVqH0SpM/lNkyCixa61Yp9flKqUJr/ZrTCUMDOgQq0fPZQuaVNObHRHZ7UyKdkKHf\n58pgx2XnXF1kwFkTrF/Py8Xu5OSeUVPdHS/MJ7xNTZ0gWtucN7ca9oMEFSleedoy9SpoOs2KR/sk\nmWFYsJ+5LdyE4cZBBehDpAGgTE34NGDrnVha+mrZoKltaeMyw2K9/+5135opQA+4ZOIJaZPObMiv\nz8on07im+eCV+bXHcK1Rjt+L1I3fG1SozZXux5QFPNdG9gypBXUud5e5m8tAD5qXIw99LFx+H8Bv\nKKU+CjjTJbTWf+e+teoBiNYY7KwAYe8ekbHdcn8xjdHa5uK4UAXK4OEiKi0mc+qO10cZagugEmCo\nX6iP9nUYT4FjbJHk7QiBSkhC/c/BxYFK0aHM/KqTrW7QoXW8UcgKtHptEwZNjoosR8DPX+Ydbiwa\nLLMeWMo0QZYYKnxTK0ThzPoeCLBp7Mx9RpI5/TaQwrSD7h0bO9UuHV6fgX9dpuObLTYuQ/PrIrJ3\naWC+WRHzjoNKSAYbxEsDlaslc4Dl0/ZfAuDo/jbnwUvQYSh2NlzqInULgQSVe1KZZ4ILB74GgVLI\nPEptxLHNpUGCGv2OtC78YeH1EQMht5hbbeXCGtaE1sLNXlxi2goXDjhTtn5Ostg1JhO76vrzZd4M\n5cSs8g7LzIALAORVijzRNjk2BWA0lrPCBBCsz1tvwXLPsQOqMjM2/iI1mlakPDZf/Pk4zavW6xe+\nSHJtZRBJJ97PwHwktJcxcJmSWKXQ0DHeJm+fRV6MKQkoEsz5XOagcln+lasmUWBRSv0DrfVfBXBH\na/0jD7BND0yiOyE7gPliyxeovYBkD/MX4IfuSqejNNHVSNEg8c5z15kBKlnWhRd8C1r8Or39PVJ6\n17Z3zLHMj6XvL2LaGdUSJ2SfhcJoLCl2rYqGEpPEikaZGiAGXBapxiLtWabv5Ats1zkW57Vz2gPG\nHLNd5ciW88dOaAe+T/+EwAsIAMwMCWktoWvz70IAM7AcTADMwBcV2LCQFksbRG72Au5xczghGg+d\n9wDw5UqpzwXwHqXUT0NkEGqtb93Xlt1n0Xo4OGO7tBpisM0xb/FjI+q4PI6HOc6WiKbTNMnkdRwI\nBExhpLV4QBExmXGR4BICFd4u+bu8Nt997wMo3rN4AQZMg0lNtUkiJtQ7E3iuuke9azWdimTPK0CO\nDcBWhUxdRn6ZmjLEJqNbI08bFOU5lqsat28usFnmDmDaPEF9lA0AMKZZD99bOto/dJ1YuG1MYhsA\nLzov5NdAGJRiuSUDkfNnBqjwv2mDNJjDwDSgsA3WQ9lPxoDlaQD/HMAXAvgt+MCi7fevGeEDM7Tz\n8QeucQRvzvO9wcUzW7BJSdE67pTAZJOLizufgUvsXC7DKCDtOTLbPBlMqqZOkO/CEUdztQACFZnN\nPSVBk6Pt01C0kpR816LapdjtUhzahMuC8ValKgeqTU+j3lRIGJ0J5aLQZwA2M1zb//1nOBcLqeHl\nMtPnOFd405Hx8TyXbVEUJt/j9q0FNoXx8Uz1J4HK4ny4+x3Tprl2EMojmuVDs/0+ag6LBHcEL3cB\nH1zoOHm9AYCysVwX2XxLwp4WhzG5TEqXV7pEgUVr/XcB/F2l1N/XWv+tB9imBy4hahagN9Xw3/hu\n+3BVuzh4oAeNKXVa5sCgUCjKZnD/UizA9HuDRHIceoEC3Gkay4GQZrXc5lHw9nFT271OMA4q0tex\nWeeDmihSnO2bhWaTbyi0wHEbutzBU+Y5L3/sCowBQNc4VuJdmziKFklLQ74TQKHpMuzaLkpYyDnf\nFlB44tCwExznFV5Y1cjyDrezRXCBH0RHjYBKcOyJRZ1fT4JKyMdXlO2o2XKQUyR+c2G7R/5yMye4\nZEpims/k5iqmiQTG+b34k66qzKHNf82DSmwQcrPN+EDtwcW/gP8dTTJPM7BtoPvEHMwyumZMdee5\nBCRjCYmxnBGnDUWkX+hFkqUwh4U0FW6DNwepIVhakQsmnSvBJRQ+mtUmmVX6ohZpzzydqhxobMVM\nwNThKDJHtR4iyyTTWJ7y50881msOMsQmTL8toPDYgkxjQGm1l9u3yqCviucP8ecMOp0nhF/b+2zH\nxFgACfU5D0EOCX8fXs6RHTNyPkl/IoEZgF7jF/NptjkNcU2GP7d3L/EclyNXJ9z4yhoQldIDUMmy\nzvt3uKxxdFzN21kVJvN+7zBFO8lCO3ku3Iwxy1RCn5tkPFGtUNheL7Bd5ri7zHF+UuLs+gLbVW5M\ngEttnMj2+QCziHEtQO5iJahwiT4jmQoFMNxrglrD2kr3JvZaYLyGjHHem88hssLn7mS4uQVubhX+\naK3wR2vgvFZY14mj0u8Zj33fjsl70TjOgccWGjcWwLWTCteu7wyVS8Q/VpfjPpSgsIVy4JxnGycO\n2GOS5Z0Z3yNjnNpZF6kLTCBQOVzVg7lGIn1wXlt4fgouEIY89jxcCt8C8UoUpdTXKKX+X6XUp5RS\n7w/8/sVKqX+plNoppb57zrlKqS+15/xbpdQ/UUod2+/foZT6Lfv9byml/sJU+2YXYH6tiVLDQcyl\nKFuPDDDEj8UlyztjzmGTzdsVsZBeEgonnZLgfWckFo7lkchABcpn8SlpfHtw6Bn4vWIitZWYzNoZ\nSocqc2CP5YPQwlmULfLUmMMGZiuquS4qZHL/CoHKnVslmjox/pGiw+GqNuHEHfDEocbCc0kOF0Bz\nb/qetB4FnFSu/4ntgNoPwJkMZaj1WN9NATNpSHM5vADhu4iMQ35ft1Gx2vnYeJA+OK4lmS+H0WEX\nSSjmWlHIzEd+pItEH4bksihdLCPKjwF4B0wZ9o8rpT6qtf5ddtgtAO8D8PV7nPvjAL5ba/0vlFLv\nAfA9AL4PwIsA3qW1/mOl1NtgypM8PtbGKwwsOggqpDkYZ7rxexwCjpwuBDBugEZAJSR8sGZZ5+4J\njBPt8evLBfYi4rUz78FEmgCzrDO+kMhCEgsciC0iU0ANjGgrAVPFGKjUZYqDrPKSI40pTHtVDr17\niwWAGHgJVG7fXDgfVlEaNuY7eYez6ztsW+DzlhrHeV+4iwsVwsoTAy598iVRvNt3kHcePxsAozla\ncJ9rouGh6dJnuG/SK4lnZh3xwzktXuQ6jWnnOwESA5OY+yGcy8Ul9nychWEMXF6h8hWM+gy3AAAg\nAElEQVQAPqW1/n0AUEr9HICvA+CAxRbhel4p9bV7nPsWAL9uj/sVGAD5Pq3177DzPwlDSFxqrSPG\n6ysNLGG7LNdSjpYNisTa01c1sl1PnR9aFOdoH5I4UWoFIQmF7A6cqTM0GCmxZMoxEkyZTxNqa4jp\nOXQtuh5FnO2TgR6i5aDgA0m1w6VITETYoHgTr7OeZABqj3CS6tsQqJzeKQc75/593EXdAo8vNR5b\nYOB3WeWmqmLdKVYJ0QQJPLawmsuRH8zh+VwYuJCk1pdEG5ZB2Db3UQU2VFJrkQEDc5zkY9oLD6Uf\nM+c2dYKybL355bS1UG5KwK84BZZzTduXkQzqy14+lkeVUp9gfz+jtX7Gfn4cwGfYb88C+MqZ1x07\n95MwIPOLAP4K/HLvJO8G8NtjoAJcYWAhShcuFIZJWcm7RgFZ2KYrI2vk77GJI7PWOSeXlBiN+Vzi\nSZpslyljoCJJCOl4+rzbpbOYbmX2uPs+QlJJyW5jgDJoK6NocZOdmcBMHfrERoWZPJbNeY71ee6R\nSMp7PVcfmff2+rsAGgBDzcX4W/r2SwADTFEyQAPXd4MsebfABqZ2KBCjLlKPUWHM7AUEotAw7tDn\nxwUlEOBB15ujIUjmB0BEYApwCbXtQhn0DFxeBnlRa/32B3zP98BEAn8fgI8C8PghlVJfAuAHAbxz\n6kJXGFjUvIQwCim2dStC1PGhyRFioR1EmFTaEUJKDShUewQQIFZp0IR1i+6u353GQioHEVkzZCqB\njl937No8CGGzzqO5QCHtZdSPMAUkjfGH3Mw7LNIGJ4XGeZ3ivN5hkW5RFsdAYeu9F4eoqtuWJ4zZ\n8ateW1vUjdOQuKbUnjW4ky/sGQZctguT73KcK6e90KOcVoZPrOqAO4Lm1YGLrYlDLNObdY6mToK7\n6VC/5VXrcpMQIcueZDgOsBcPjp/IX4mNiZD2H2IZD7EsO4DhofGh55vBBhAEuQtYAh6APAdfm3jC\nfndP52qt/x0saCil3gLAmdGUUk8A+AUA36K1/vTUTa4wsAwHOh/MRdmaCX1uZuJmnQ0KAvUnTrDz\nCkDxwnnh7yB5zRL6jbcP8LOuSYKL7m5oenPnM+E7PR7WzClfoiawQBiobG/IseqAmQEu52Hj/XQZ\nQgmSm3WG02WD57cK18sU18sUx8VddNkjSIolAKDWO3S6RdUpV7eeCsA1je37qsViXXu+MmrvWbnA\nHSwMJxctYB2wbY320jDAOq+VqzlvjvP78qgwIckvwPf5kL9L5vFkEfBN686UaaiTgbkolNs07EA/\nCdedOxNU3GXYOJNjfaw9U+aofNcOx7sQ7o8JMhnE5JKIKDV87fQe5OMA3qyU+gIYUPhGAN98r+cq\npR7TWj+vlEoA/A8wSfJQSp0A+CUA79da/8acm1xhYBlOkpA0bMHfrPNZ7MexbPAg/Xtgos8FlRgL\nMDclcbObZ5dnkyXUDyHWZ/mMs/Mmar88sh+ksB9l/phmMhW9U1lT3O07BY7zyoQGNwl27doU+7Ia\nS91t7b/C4wjjpI8H69rUT7HmqKo0UymrOyzOa2yR4/Yto7lUJxWOlg22C5NQeVIARaJc4mUMVFwf\npMDrDjROM1+lkYmledUGxxgBdrtLBgSjvG/GFnEvp0kCzB6Z9vx+JLGcHbr2gPR0RGIAJE1mXF4l\nDnsnWutGKfUkjHM9BfARrfUnlVLvtb8/rZR6A4BPADgG0CmlvgvAW7XWp6Fz7aW/SSn1nfbzzwP4\nSfv5SQBvAvCUUuop+907bYBAUK4ssKDTwQkh1enYjl0OYFmvQi76xFhLEgq/JKelc86LIllzQEV+\nVxepm5QxXifv+SMgQ8KTEmWBMg6Q/k5W2NcpLJv1PycHHJOxxUW+gzE5rc2/c5tz0ukWyIzGgkhI\nKD1nXZp3mZbj06fapQ5cmjrBblWjPjDay3GuPdCqIiWOj3MTxbZtgaNCoUgqnK1qHC4bRwVT7VJs\n1ylw7mssfFy4PJIZEj0uBBYzzEQhZouxTQu/Nh/rc8BlMuyaE6zOzNu5LOm08vKZ7kW01h+DqebL\nv3uaff4sjJlr1rn2+x8BMCAc1lp/CMCH9mnflQUWlaKfKJHJISlROKVKjJgyFK0T4rrKlhpF2Qxq\nm5NvR0bGuDYF7s3rjoRkwB81sZsMRQANnL05AFY8y9X5sGHJo0L3F5E39BxRcsCxdrN3OFgYGWVO\nlps+LhITcrzKOxxkCfJkAaJ0SYscebJAnrRY5RqLVKHMNIrCJM1WuxR3l+FnvLvMsb3ul7w+Oy2M\nGbVKgOs7bFtTn2VMFqmJXjPZ+ea709rQwJwWwFlhAIZCkjdljk1RYLvKHd0LD2Zo82Q0j4SiwiZ9\nDlxioCLC7kN0SNLHEWRVzg2vF9ULmgOMNJZinHFj19ibAPahROXqAosSVQytTO1ePL6u4AHDxZJE\nZh6TlnK4bHyaEhsoEIuaiSVbApEaMgJQonQWM0VOwJD/JHpt0QbOPsv7K5T7EBKnIYXeh1j4qA5J\nUbY4KoDjvM9lyZMSqE4BAPnidUhUimVWo0w1isT4Rnar2jnwT1d9BJn3jgUzccjEWS0bVMvG3D+w\nzi1So6k8tugrU9YdkCUpjnOF01rjTm4A5qjY4uZZg826xnppItY2RQFUGu1OVNHM4xUkgf69yqRM\navu+Y0WydU+FnscSMRvETXghCeX5eBuWgF+wKFscLutZUYsXFa2BOmLufK3JFQYWjcNl7Zu4Zspc\ngjvp0zATrXEDmGspR8s+n2XXKGSsTSGwiwGbm4ByNxkAFf536F4xPqepJLdotBxrwyAXh+dmiL6S\nQvfdWXPhgFuK7s3ul2Wd01YoSTJLNJZZhzw5RNJpR5ufdI+iSA5QphuUaYdFmlg+L+2AKVtqbIti\n0LZofoZdrG/fXKCpK2caOyq0jf4yskhNLstxDlxfNK6IWNUprPIO53WCZZ7gOE+wbTWe3wKLtMHp\nssHtorMbldr5A7frvk9JQx5rZ0xT5hrNXMZhyRHHx0vs/mNZ/nOFb7wG4dcBrYWDijPbFQ81l3uR\nKwwscYDYh3U1xojsJXOxnXcMVAo+VzMNgO0WqyScXBiJz5damLtswNY9J+t4DFBC93emD7vbzM8a\nrzyAzHqWiZ6G9aAe7KxD96KFUJpUOGDSLp1A4Tg3ZqbjorVZ8AtDPClo8029lt4UVSTmujzaK/Tc\nsm+5NE0yMI0BPbgc58bcRZqKAT5TN2bdJDa5sie1XKQJFqnGUW38LzdzQ8NPoclNaSIYuZa8XPlg\nPbVwy0x46tcxuQio8KJyoevNEU4BM4ehgNrJ5+RYG+9FNOIBGq81ubLAkojMa1rk5gzgkHmDy4At\nNXAuH7iUiElZ/hTaOkdm2cFDIBPZ6Y9eKrLABMEtxMQcKZw0V1sMHTdVT4S0FVrYSpvwSuzGjm6l\nawy40OdAl1Qz15pQGDsJRdt5zmtmGtu2pm1EYkmgQiYUcv4aq45p0GOg6DoFwPiSKByetA+5I49J\njE5okFeyRx9QaDG9gwsnLM4QbzwHGAqkiZXAbLfzefvGrAUPZVquLLCQOJ9JJPkvFAo5JrFJF/ze\n2zm2QKaxa9Rg8hbFBTiMIo5VuZPk4DJmxuE+FZlBv1fbQuASis5j/S61tdiCNybcaZ+nZvEu0w6J\nSg1tPnxqHfPdUGRlxKmkUBeaznKI5DncNGZEo0gUyjRBmXZYN4lN1vT7TYLLIjXgskhNaHJmtRcA\nAy0l9mzSDHZR5oa5Y0KyS8S0lrmbPkBQwDDhoMLvFWozaS6XGYqs8dDH8poXpXx78pxokEntZELm\ngMtFnKSezAj/lJFeUxn13uXtBOcLkFz4JxejPTOZpzKzQyL5rMgMRgSUZHp0JJTNxmgqAekLew3b\nM7b7JlBxJYcpIZaxYNNz7HYmMKB8bIs8NeCwSBOUaYJQhC0xM9ed3VknRB2jLXga7WWucFCZTFic\nkkAyJU+2HUuOpGNDv+0DLk4CvjtqgxS3FuSdMVPioa/lonJlgYWEFsWpxXAyU3dGXe7geYAHLhcG\nlZHKdzUovLlX/XnOjLvEBXenNCFjjt/LFE4tM2WLl8XTykxbynzt2I2ddA1koS8A4Ob5mIlSmk36\nfKO+KFdetYNk1ZBZ8HbRAScVFhZcsiTFcdF64GL8QsY8RizJZWroYYiXjDMlc9MYALdo8vbHKITc\nOaH3GqA7keWyo+fKS4lxyMGF9+8UuPCotpDvju41xs/nrsUA5qHsJ1cWWKjQ19RCPqmlXIBHyFO5\ny/bCYOItZIGcHD/MONzOOTt+wDeHjU3uYJDBVD25kT6ke8lFT7Y7RHoZKs1ctxjwZaUqPg2ktjC2\n0ISyxaV431kKEuof7n97IWksE7Mxie3anm4fGJpU8gS4sWhdWHKRKGcaI76xgQZQJUFQGQOCgR+C\ngUso1F2SoZKPiaL9QuMltkGZo63wUGnuyJ+SkDZFcll+Fn2JCZKvdLmywBKSUElYKXO5kfaljaAI\nsdCxocWML7ZBgIm1cawNgQAGnv0vOcRieQlj5ZW5uN1ooN/cs9l7yfcyFtEnF0ZyzO4aBeTalhke\n75tEpaPVJYnnLCQSVMbYBIjjCjAgQxxjRgw7MpBglZv/gQ51FzeP9ZG0KQhUSPs5zZqB1uX5jGb4\nqrjI6Mcpinl6Z2OBBEUx1BJC81KyUsTuF/Mdyk2Hy71iNXbut/b9WpYrCyxKDe2nsx3zEVAZ29mE\ntCOeU8BzO7w2sV0lPy9UOyO4m0R4xxWbNCFQkRLSBPh9iDmArieP5ZnYYyzRFzXNyWtkWYel3bFv\niwZH9reBI5VMYRFfS6hdoYVUaipTzAh0Tlp3HscYYHJUgCE7MtANzGNL28+9ia8HF0AhT4GzSuOM\nhbJneTfpM5rM24ptmkJ16jPKten7+F40gqnNYHBO2U3RnMCcywQY47y/lEu94uXKAsuFhfGEcVPT\nWGLhWK6I3N3HIlrGJJZLE7uONC+FRIKBnMDc5CBzAGIicxnI5DG2OITMbmOAR22SJIfUD0T8OCd0\nOFW5TZAM3Ks2xcncsYEVg7MIyN18kHKkaoFzYFMUg9whzo5sJLEVKHtQWeUtylTjtDINNuHUCWAj\nxgwtv9VeagAwZti1vSJpYWNVGaN9P1Lkq6kTl0dzdFw5polRX4mdK6E5M6B/mQEu8rzQHCDfWFPn\nk+17KOPyEFjuVWbQjkizlZwotCCXNtyYJKStzGpSwEz2cguBCm9PqG1jQRJTEz20wND5O+YE5hFe\nra7R6qEVXvpdQtQrMSLQukiH/GyABy5ci8mrFpl18mfWwX+K0jxT3qFaNrhx1GDbkgmvBxeqRpkn\n2qtSuWb9sMo1zmuFE0vBf1r32kuV99qckwi4zImcDHFxhfjJ5s6Xi/w+9zxPU2b1XqZqu1xUOo2H\nPpb7KUqpHwLwLgAVgE8D+Dat9R372wcA/HWY1PP3aa3/qf3+ywH8FIADGGbO/05rrZVSJYCfBvDl\nAG4C+Aat9R9OtUHrofMytOvhux2Z0Ttl/iIJEuyhz8IGgMNlgzObc0BcYdKxSufsc7/Qbm/MDCBD\nkKUte86E5ot56DeuTckExyA3mv1uLLQ3+MzErJyb36sqcX6WbUuTPLzAtdo3h9XyMLE7536UEKhI\nCYEK/U2VKTd57kdLLRuQaYtMYyFZN4ktYtb3JQ+z5tpLtWzQ1AmOjiur2fWRDTFNIcghNqLJE/MB\n0Pu7shlm57lz4KImUwk0nlmT5Vu9EjUXpdTXwDARpwB+XGv9YfH7F8PQ3n8ZgA9qrX94zrlKqf8W\nwHfCTIxf0lp/r1LqHQA+DKCAWbO/R2v9a2Pte7k0ll8B8AFbV+AHAXwAwN9WSr0VpvDMlwD4XAC/\nqpR6i9a6BfD3AfwNAP8KBli+BsAvw4DQba31m5RS3whTOvMbphpA9VjOTotZi3UoymQsJp5k0m/T\n9BrJ4bKJRupImR1owJhhef7E4DghoRyXkC+Eg8JYP1xW5nVTJ8H2eiIWfdnebdGY3JQOozXIW10j\nlII/1u9jtO771E5P6w7bdYpNKRM1G9St6k1jraH9rzvY8GM9ABXHLgBgAeUBDKBcYuZuVwfBffRv\nG1ZNEgKVUCLi2DuMbfgmQ/4DEhtnY2N1n1pD+4iJCrv3BEmlVArgxwC8A6Zm/ceVUh/VWv8uO+wW\ngPcB+Pq55yqlvhqm5v2Xaq13SqnH7GkvAniX1vqPlVJvg6nl8vhYG18WYNFa/zP2528C+Mv289cB\n+Dmt9Q7AHyilPgXgK5RSfwjgWGv9mwCglPppmA77ZXvO/2jP/98A/KhSSmmtR8N+2lZ5oBLajQH+\nAj6VoX5R4TTzPHEstoCNmSSkej+IUEIaqIfSd5U0AUj7tMw8lzJ3dxeKRupNEvvJ1ILtar0zPwuX\nTrdAkgHFMNt+H9NFlO4/IrEKmRlV09z5+SeAfYYTKvjVO+Y5AIbazMEFMAADGHCqD4AX0DM3U+lj\nJ4FclVERoCLHhKRPGTwfhlQ94faMjBVRLXXOnA1FtV1m5v0lylcA+JTW+vcBQCn1czDroAMWW4Tr\neaXU1+5x7t8C8GG7/tI1oLX+HXb+JwEcKKVKOi4krwQfy3sA/CP7+XEYoCF51n5X28/yezrnM4Cr\nrPYSgBswKBuVrlPB8MoxZ7Hk1hoDIbpWTOS5xEZL96Hz+e5e7v5i95OgQgl6vOgXIkOCzHxkY4+b\nmOhB1AAkQjTpwJAKRpo4uHbFr8/vGSqkFpKYOaoHF5NTENxBJuPTgr+DUTARod+ytAFVdmyEluP9\nXWn/HZBJaVW7ui7bVtsyyhmyhPws4UW398NomJIyCdwCfX3Xmx3Zgj7V51JLGwMVkvV57rFUcxkA\nSqTePbUnpCVKZnGaR7I9TjMfCT64LNEAmvmULo8qpT7B/n5Ga/2M/ezWPCvPAvjKmdcdO/ctAP5T\npdQPANgC+G6t9cfF+e8G8NtjoALcR2BRSv0qgDcEfvqg1vr/sMd8ECZY/2fuVztEm74dwLcDQHn9\nscHv0kTDJwbPBuYyFj0lbbixSRa6hjznXgoQhQqNRYucCWr7YBVLxtpMx3IZ81VJcJH35v4rfu2p\niR9c4O01DleGKflw2ZjPicm+N3kf7JpVbbQWFm5M1ClB2nzKtIyGdWsv89u1zxavAoB2Z37ni7aj\nfxE7f4q+q6oEOM8tYwNLggRsYmTfghDAlKlhTjafEyzSDItU2wCFu8hyUzyMirbVR5nr+xi4hNo7\npb1KzrcpkcA9Vemyfx96dLPIz4uNv5dBXtRav/0B3zMDcB3AVwH4jwH8Y6XUF5L1Ryn1JTCuhnfO\nudB9Ea31fz72u1LqWwH8JQB/kZmtngPwRnbYE/a75+CX2aTv+TnPKqUyAI/AOPFDbXoGwDMAcPT5\nbxndnsRyL0IAE5tAPNdk6j736iAcmKommF3dLtWujdxkwMEs1K5QjkzwOJGtT8eFzH3ezjFyXQqc\nkAXU+LOR0DPSIre01RapFguxG7tESAITm8uSqswSUTKQTyRtPj1T4/qLnntSctOPZKarhRZo3kN/\nXaoyyqXapTYnpQeXE0u/v4By2guXMu1wrWwHOS9Z0o+VMtvibNng9E7hnqfapV41R4+e5gKgIp+D\nC++/WOb8+ILvA8mcTZmkf+H3eAU672Pr5L2e+yyAn7fr8b9WSnUAHgXwglLqCQC/AOBbtNafnrrJ\nyxUV9jUAvhfAn9Nab9hPHwXwD5VSfwfGef9mAP9aa90qpU6VUl8F47z/FgB/j53z1wD8Sxhfza9N\n+VfmCuVokITqUpBwtd75YiYc7HMLZ5FcJPpFmpVimgjPuufVLWlySZoNaaLjzzP2zFPPEDL70efN\nOvfAxT2f0LLctez5R8eV0zSI3ZgkVTlSlUE3O6Ax5+rG1/KpjPEZtSXvHCVJqObIwMQXERld1X/f\nDK4bzB63C+EYuAC91rLKTa7L9bLBQUbviAAGAFILugpneV/KmbSXpjG1XfiG5bJBJSR80ZcbnzGJ\n5ZOFjrtIYM6+0mmTQ3UJ8nEAb1ZKfQEMKHwjgG++hHN/EcBXA/i/lFJvgYkCe1EpdQLglwC8X2v9\nG3Nu8nL5WH4UQAngV5RSAPCbWuv3aq0/qZT6xzCOpAbAd9qIMAD4DvThxr9s/wHATwD4B9bRfwum\no+5JQgsrzybnpItSOLljzHzGZQxU6P40qfjivhfIsB1wKJ+AX0s+O1HNEP16rP3S9wP4NDDyN/o9\ndD0OKLJfvMUtYrbj7aLnkNoK0eZjJF8hUSnypL//IgUqaw5rAos+LxI1BjLBhFbR9lDej3dOlbj7\njWkuK/t4q7zD9bLBKm+xyktTihnASXmOMm1QON9MgiJJ8HxC5r8tbhfm/fOxR5oWH1ehZ4tJbPxG\nA1bEO566zxQH2Rw+tFegpgLA+ZKfhInOSgF8xK6d77W/P62UegOATwA4BtAppb4LwFu11qehc+2l\nPwLgI0qp/wcmrPiv2ZSOJwG8CcBTSqmn7LHvJOd+SF6uqLA3jfz2AwB+IPD9JwC8LfD9FsBfudc2\nSQf0HBn1F/BrR8KF921XTIKUKJfoiLzMyJh9KPpDMrYghKhmQhFIc3eNoVDkEMNxLHz6vjM9V/3u\nWoJL1ZlqlIByGgtVL2x1jRyll6tTuUJi5v9FaqLnyPwnOdyAYdjwRUtPuOvd49i4bJkKod9XTAXJ\nS7qW1h+DSbvg3z3NPn8Wvvtg9Fz7fQXgvwl8/yEAH9qnfa+EqLCXRbRmyV2An+9hKR3m5mdI4dFd\nsYnEExXlhAyB1VhxK3qG/CzMcTWVSTwn+ZHyCih6jbPWhp5j7iIRuie/Viz8msgbiR041B4gsNgt\nGxwDuFMB53WCutui7nYoiyX0oeHoUsUSjW7Q6hrndY7TGjirgNOaJVpaTYSPD77IhpJux0rvhp57\nbNPCk0bd9fMOm6LD2arGUcEjxhJcL3tAXLYdTspzdLrFaZVi3WS4vUsdFQyXo4ISM4HNOsPRceWS\neun+9I/mzGVILMmX9/e+85JfV455GUb/SmGseLXKFQYWFQzLJaekBJgxFTyUFTykixDCQiDpvLk7\nvkFsv30Gytgm4dngY+ASy3jnIkGFns0jvhzh+5orEhhkf1N/jtHPc3t8MB9o2eCo6MONW10DWdHn\nsWQF6m6Lu02H8zrBaa2wbYGzdYbNOjNZ4eK6fMELLV5jYMePGzAgBBa5GM3PbpdiDaPJEMCcFQYQ\nty3QdBnqBZFvtqi7zGbpJwNQWaRw4czHObCz7dmsMz+gQizIwXFkIwiDbMZT82kibyp2jdD1YqkA\ngzB6NjcvU2u5RB/LK16uLLCg026Hv1jXyOoOi7Wp9Hd3mQ8Ahkj0pmzDwwU/wpQ7stsmCTl3ZXw/\nB8UDCywEKFndeTkRMXAZZOjb5+XCkzjp2XgOy9QCERO5WMh+GGh/tiIjPWuTJ+55ZRRcU9EuPXXh\nuk1taF3OKo11bahPrpVboLgBFIfm8OIQdXvTAc+2Bc4q5RbOndAYB880shseo9PhOSQkAx/TCMUJ\nfbdZ5zhc1tisM2yWDc5WtaWk0TBTvh+TN7fZaDY4hS4fFT4rMonkvpNaM881CUXuTWnJ5sEEkwKb\nM1PaSyxzP2Q25oXxxor1PZRpubLAojTcgkygUuwaVMhwYIGGFuUaKTbnPbhwiZZtZdxJKeOC4uKB\nV4RuxdsdRkDlYF07bcu77kgdEAACAPvz+fNykffmEzC0s5OBAcF7B76PaXHmnLDviGswMtdiixwb\nUd1rW1SW5VgZX0OSAWkGpAWQZGibxu7mFc6qsAksxqUVesbY5sHv0wZ16fd9KcxssaJc/L1sjnJ3\nn7NTE6pcnVQAGquFZLixsCY3ASo8ge+kQE96SQSWmQGOougDOihTPz9rBmM9s++isaSbHGCkNiY3\nE+aPftF3EY6Cjj+k3YYAJapNYZh4S5uwKfDbRzQeaiyvedEK2K5ytLsEi3WN7TJ3izHtgrerHCiU\nA5R98lUa2BwFyrg+D1N4uIHMwoJj6re3yDIyzLvLHE2eeBoLPcMw2a7PjXBAxa7l57rMl1jfxEJq\nQyzPXKTvxp1bKLR54mkqvJ48yVRmflDSIvi1pM0PMSiH+otHFPLfozvniHBQ4W0Y9CcSj74m1K7t\nUV88LCbcwWwi6AxpJ7EiF0mDs8ofI5t1PngHnFUgNBaBeFThZp334b+MtSAWWh5LSubfBUtJiCJl\nobH0UPaXKwssSJSXREgL0V0CmKPM5itU0ZBgntci6V7cpLOJcNtVPgAXolnhElukQuHLHtMykxig\njPmJ3LUCuS4h801I5ka68T4amCQC9m3nm7DH10f9sJV5LOb5/US+e5FQLRZgCAhjDt9JkGamnnzX\noi4y966lE38qTDbUroEZE42N+DL35c8Yet7jHB4rMlWk3Ba+2WuDPDge5YZqKjx8xzQy09pkcG5M\nQv4Uuv5gbmIE2JlGdFk+Fq376LvXulxZYHE178XOn2spVEIViC8OIXCRUpSGTDAELp4IFZ/nM8Ry\nYyS4xAAllGw3SHrEkE9pkPw4M/R4zmR0SWkXCGfm4BJabGKgS8fPEVp489SCa90XxQIweF/7iueb\nmCB2lNpKTPYBl0VqNBDSUCTQFImp5UK8Yus6QZEAp7W2/yvgqAcXot3n/Z5aQk0al9myZ0OQG7Y5\n70VueDiQkHYb65+QqU1qRfswUD+UuFxhYGF/WM2FFmQOKryE6qAWd+6HxI7t2GkAEw3Gwbr2HOuS\nfDF2rSlwiWVCy8nLqz2GdsH7ZlCHjg+xFkwyEgS0Fu8+e2Rhh8CFnj+miUxJWbb+Is3AJaS1xEyB\nMcc0HwO0UQkl9U0lXQ7C6I8yr93U1qNl45gF8lRZkNEsiVRjlXespK65ruk/63858jUX8htxzZEs\nACFQCY1JKZIVIvrcM0tg0DX7L5VvcsPLyhP2qpcrCyxTUlkThAQTLjLsM5SzEPxpmvgAACAASURB\nVBKpsXDeJXktqVXILHl3fMSURZNoYFKphnb70D1iC6OUkOkhxFobOnZfGbPPx6Qo21Gg7NBiSvcg\n5z2J2wwIcOFtjPWZs/dLH4KVpu5Nq3JnPgUqfYN7c2BtC1fx4nIE0jRejgoNFD2FDQmBCjn6qbwz\n0CdhcnCRlPd6meCwHAa+0LHUFj7XYsX3pKM+FB03JWPjmG/wYpubi0qHh87717yMsYlx+3ZMpuqm\nBEvkivwLipghOntgGBIc2q3KSeVMcSO1yvm1AH/n75z4a7u0Bsw7rkZHIIJMhjCHwrInizVxyvw9\nTEyToBK5Dp/gMsO+s2G1VWdCjeu2b7fLNZHRSiwHwnsujO98PZJF8dwUHTa3eucwgq4XiuKja56d\nFsa8VzLaoABbMtCXFjivlQcqJtfFOvgPAApjbup49ceQ7Hapt/GJgcoYiMjIr7naRkhzdBGPmJ5T\nDyUsVxZYgEB0CP+NaQxAuGYEP25M6Fiy31Ip2rpIR8ElFuHC2xVqw1RGssvnEKGzlHPDwSIUzspD\nSkMRNHMXQgkq1Eeha05FycWO38d/ozLDn6VhwKbuqBjWSPKfbHOgDMGYiczzM4UA/TwPRzNhP1NN\nKJScM0sQ91kIXI5zZUOzwzvuIjH1YF5nwaXqTDIpPXeIN01uiuh3+m3M+T62OaE2x8L3gxJIYOYb\nhjHWin1E60CJ69eoXGlgmSMhjeFCKjftcCsRLy/AJXR+jPJljPJjbNGVE5jnIFDbBgltAVAB+t1d\nNPFySkS+DzcJyiS4+yG148/qn6C1dC5AiqozCyqZwVx/7Rqvvdzp6wGjfe985xsiAR0LYrhIcEOW\ndy5BVJpeCVyiwBQAlykTDgeXbWtCkqvOcKvRxiUEMqHNx5z5JcEkOIZ2E8XX3PlGpOPeS5h8KHvJ\nlQUWrad3M3yAj1WGDLHVuvNqWngazwzGExhjOSfyWiGCxYsKgcrmPHcmOp7NTjKgSGcSyqYO7R6n\nqkICwyTSy8x+zvLOZd4Tff5RQTVZ4jbRXZsMFtQsM4SMY7kOcoHiO99ZWsYcAtGIJkTCk0ljibKS\n48sb1wFwCQU8+KHKVGzMhCQbM6IJSz6rlClOJuQifjdJkzSViEzimSxjv99HeehjuYoibOQ8SXGq\n3PA4VcRwp08L9yDJz0bOxLLLJfcUd5C6yTZjMfZMVZYihZcvHggDgrpMXVhmKJnSM+tcEsNyqM9l\nbo0E3VDOgqTPzxKNItFIVIpUDadCmXZ96K2lynemozqcs0ESDFtlZhXPIR+gF5kUpgkNfrLvlbch\nVJSL7i0B5uy0w7UbW1TLBtWyQd0qHBWAHJcSaI7z3u9SdSapktgNTNZ+5Uxksr281MIkW0Mgki5U\n/A3AQKt8rSQ/2ppWPwJDff/jWusPi9+/GMBPAvgymKq9Pzx1rlLqfwLwdTAY+DyAb9Va/7FS6h0A\nPgygAFAB+B6t9a+Nte/KAotSvCRtv/hvV7m3s5wkruMSqM1NWorcSY1pKWOmH5c0xuk81sozzVCO\nRyyx0T+vdbQ2lHPgCQcqUV4XCNv5pVknqK3QZ7FISK0ltssfBC5MaJQF01aOcxPNdFy0yBMdBBXv\n/KQHJccGwExNIYkuYMJmH1ssZ0ulB/4E7i8DwqASIpKU2fpNXRlf3KrGttV43QHLsRKa3mMLYJl3\nKNPOcaw1NviB8l7yVAFocBap7cMBJuhH2UPbuFBi7H3mBzMJkvd+HaVUCuDHALwDpurjx5VSH9Va\n/y477BaA9wH4+j3O/SGt9ffZ494H4CkA7wXwIoB3WZB5G0wtl8fH2nhlgcWJ9B2cw4ELEAlrlKDC\nIoRiQMJlKjN+yiwgHeqkcRysa9xdGnMDTyCUQQDSEZ8xbco55Sd4xkIcT7J9A+AQBIRzfQex43go\n6BgY83rxR4XGUWF213nS17SXQmWJC3Hr0vZltRsx1U2BhHQIX4Zmx64ZKp8Qym8ikRpTUymc1uVQ\ne+ka3FhQrRajhSxS05fLvMONhbnvKjfgcl4nyBLlzGLGVKYcJQyZxvhYCPpcJkBl8JxMUrthCmkz\nAO47mNwn+QoAn9Ja/z4AKKV+DkbTcMBii3A9r5T62rnnaq1P2XFLWBVVa/077PtPAjhQSpVaa7/U\nKpMrDywhdmAOLsFFmSRAYEcLc8YAhri7AASykOdV3wtR5QM+qHA/CQBnWhuYXCYmaZMnHmdSzI4/\nuphLk9gFJrBHdBloMy8jOxmKaxfURervtstUI1U5khAVSdInClLmPeWXBMPJSeaYAeeCScAfBURM\nbdZZHXJYh1gYAPTaFwvgaPPEOfjpmGvXt057ed2BtqYxq80lGmXaCX+VSaosU+OrIoBZpBp3cuBm\niqhpzHXRTpCe7mHG4uYxDi7edcSYvN9hxVqHC8VF5FGl1CfY389orZ+xnx8H8Bn227MAvnLmdUfP\nVUr9AEzp95dgyhRLeTeA3x4DFeAhsKAuUy9CixZ+wE/EC/Jb2YEpKVXIpDRFwkd100OswGPCF2wi\n0gTgNJbtMvcynQfn2wU5RGJ5d5mbftjDPCdlEOl0wV2hDAwYiPAz7LMw9KWJh5KqDIlKUSQNskTj\nqFA4rTUqaw7bWZONpAYBwtrVXotibLHL/Y3BPtcLJcwOxAZweJq2Bapql3pJlY7h2CZSNp2pbVN3\nfX/u2r4fqAR0mWpkiUKRGIA5qhVeSBrcPPOXIblJ4KHowISTPQLqQY1FsiSP8PS9DPKi1vrtD/qm\nWusPAvigUuoDAJ4E8P30m1LqSwD8IIB3Tl3nygMLMBx0tKBxbQJAGFyAIMCE7iG1FD5g55Q45sLB\nhU80CSpjYcchyhPO6ny/Q333kjEtIBDS65065xm6Broxm7AExpmfJ1uUqXHwF4nqtRbmxAcwABgJ\nLiEG6+DzCQlyoEmgjvWJ2xQMubmk8AgyoDeH0rxoapOxb4q9Wf/dUWO4wqCt1qJwXifIE0C6N/IE\nyJNegynTBKtc4bgmcGrwwt3eNHZ0XOH2rYV3jVBodzSUOMBY7LUnlHcU2cBMzaGXSZ4D8Eb29xP2\nu8s892dgyhd/PwAopZ4A8AsAvkVr/empmzwEFiFSWyEZKysrd5WcLl9GTx0ua4+7KyZzdt8hcKnL\ndN4Ola5hwaUuU7Q76feZAKY5jMcRX0rouwENvohekuAyWGACIb30/EVhosGkJCpFosQ77RqkKkeZ\ndjYyLDF+hazXWrg5LMg9ZYVMle4ZQ+AS0FJidDUuGlBozVL2GQPeebYOkQyiIMc6JdeeVUbrqFKj\nzS1SZbUUv73cj0WPnifAKjcAY7jHzHt5AXXvdwmwN4z6Su5VBEcd0IPK0XF1KbfQWl0WPczHAbxZ\nKfUFMKDwjQC++V7PVUq9WWv9e/a4rwPw7+z3JwB+CcD7tda/MecmVxZYlGI1LGSuBtNWvAzpEWJI\nKZ65SdR0WYoCWjEZI+Ubuxdv+yxNiAAxQpsfk7FgA5lZHmx3zaKVMB7JI7m1vObv/EVwLF8kZ/Pa\n8wk0FdD6C0iZauQJETQCRdv7WtYYPr/M9ucRd1zGTHyy7y+iMd7r+Vx6M3HmtJYs75DtUpxmja3P\nYsofE0ElAQmBiswVyhPTplXeokxTLNIMi1QjT4GbWYXbdwq3mJ/eKaNtG/OXSK1lljDTWFG2joj2\nlUbporVulFJPwkRnpQA+orX+pFLqvfb3p5VSbwDwCQDHADql1HcBeKvW+jR0rr30h5VS/wHM7uDf\nw0SEAcYk9iYATymlnrLfvdMGCATlCgOLdmGo1S51TKwcBEIiCxKFfnchwXaXzUOXaWGaGqwEKq6K\nYyC5DBhSgsh7kYQYBLKs89vLaPPlwjQnQ3qqPwbPyHbf4UJjekCCmeWdrxm6H3uTxj4mvFTlJgKs\na4DWRlM1FfJsgUSlKNPO+RLqFDiz51F0mBQeEUfPtFjXvYmRtXFKQvQ9PAouxB+3r4YC+MzbwQJq\nbE4QOWtTJzhbZyiSBpRESSYx40+ZGN8WbEwEWYfHnOaigJMe4JsmMXVeRkx+9AwDERYEfnyoD4xo\nz6qQ5d3sDd6UaH0xFoXwtfTHYExV/Lun2efPwpi5Zp1rv3935PgPAfjQPu27wsASWAhzDPwqQHhR\nJcf7HJnLECwnx+Gq7s03qxoZs3G7c8TCHbtXjC1AamKzTWgzQMWZoSLX8qLtBDtz6LwQXbq7Rj6f\nAkYm9iUqBZoNUG1swzZI8iOkKkee8EgyhTLT2LBzR82BhXLgFwotD3GqybaHNE46lx/LNdS5jAxy\nTFAgi1dF0baZv98d00JvnmWolj24wHFEJ8iTiIafaKfF5Imh5QeA4zbBttWoWw4uW9fW0KI8O7jE\n7cuGABXrRwKVV5rG8mqQKwssSaJxdFx5tVRkjXUgPOmDkz0SFRRj+SUJXasoOgcqx3ZCnEID6E0t\nxLs0tohMFTySn6WWItsmqdunotnmBiTwMslSS+HtGjs31oboeTLrvmuAym4WumYQGUZFsTCyn4ht\nGvpgCj+0XGodnBvOey9WIy0lmCK+EMqSDpP9wbSWWH4Vbyd/tybh0WToc3Axjnr/PgQqx0XsPQ01\nl92uHrxnmb90Lw720Li/H6CitRotw/FakisLLORjmSNyoR0w1e6pKo+BiwQV8gkcA9gmGmeYzsqX\n30mNRBbgou9jbaIQWykELmPVAEN9Q5NrChxDpWtl22YXEBuRBKmJCLPAopudFxlGsrD+hKlxMxgf\nwrRICxeBRYxantv3eRAE1wT5Ikhm04yRPsYARm6Y6G8OgkDYtFbt0sE1b98psHO+Q6vdpYmNCDPn\nL7POBkRoFzBRph3qTtn/gVWu4Gk/Flw268wz54Y2ghf1R5HwsUug8oqJinyVyZUFFpK54LJvOLAU\nuXCEdvzA/iDlziPH8Qi1ydSuLtQm6h+5Ww75iXhQwthzBMFGAEPI+Xyv7+CiUqZGYzmdb/10EtMO\ngf3YB6ZkbByPFYsba8+YeS14jfPcRHYBNis/ccAxRvZJsnLPkLpkynyrUFyvcDPvsBlJptxXYlr5\n/TR7XaaP5ZUuVx5YAAx2j1Lk4BsbHLzOSYxQb87gqvIOWDYgi4GkIJ88n93Xq+kxQvIXkjE6Fa6t\nLFf1bFCkc6td6rQXrnWQjJkeucxhyK2qBLtGGbbd1iT1VZYyf6x6ZN0p7FrFCBUZt9ZIzZA5O90o\nTX7kOUKazRzn8hxQ8a7H3isv0RADF686KQOXbauxbTPcWHS2vLFCniQoEo1Vbo4/r1Os2fPmCXBc\ntNi1CT43UVikwJ3c5rqUrRvLNF8pcXPOs5GEoiUloHCT1UOtZX95CCxWpB17H6EFQtY5maKC4XxR\nsUxu7qR2fEp72GmJEqNBEtQyQlLYRSTWF7T488WH26PHwIiub4ISWu/Yuf4sklBZ6GCeUdY5bYrY\ndreteQdUPVJlpXPrqqxEhxatHnJuTUloEdrH/l+JZ+JM1vI++47Vi+ZQ0HubMqk5Oc/x3K7D9qix\n9WwSHOcJlrkBmDLtHKhTPRwSYyqjUGWT61IkiReOfLbO+kRN0TchUI5GeE7Mhcv2h3SduqdSF68m\neQgsTMYGmlwsxyaZxzw8wi0WK5BFwlX/0CAPRsnIcGeiT7f0HHMBJrZL45oFLW6HyyaeJU7tsr9T\nlFuRAMi0qfthQ6lj9u6x55XO79izNbV9J0XjNI+6U2h13Rf5KsIh3cTSy+WyFojYdS4pkW70ejLo\nQfrMuP+mqoYaPTdbhq5vqFoabFuFxxYax5b12GTed4OQ5NwGVBjQ4QDTYVWllrfN0MAUVntp+MaL\nzTs+lrgvJvRco/12RZztly0PgWVPCeWDAOEdcwxUeCIgBxeeze3uNTOZkgsn71uci/MJYIjyfYLH\nax+GgDLT2DWqB5+ID4EYg4sE2NlrhCbwGPjJBY5rdPS/PL+pEwMo1qxlMsVbo7Uk/lRodYNOt25n\nDVxuWdmYpiZFRoBd2v0vEOQQO58W7hi4UE2XU8sqfZwb8+Jx4SdRUm4L/U/ajDlG2xLJffGxKu9w\nuDRapdzIhULPQ7kp9P8YgDwEl/3lygJLyJE25UyN1eQe9aMEGJCBcN0RKUXZYn2e7+VgpNK5pKmM\n0febh/JpRojReXCYAFRvYbLgR3U2pJZVFLxfW6OpWCFAcBqFuCcvZcvPoTZwEPVyFCw9h2zrrlFA\nTgtXbwpDVvQaiwAZrq1MsdOGAiD4whszM475vkJBGLFjvZ268PdNtTt0r6lrhTZYXGsoyxabdYaz\nZYMbR0Z72baklaQoU3pndqG3GkvdqQGR5bpObCExE0xRMK326LjC2WnhzWFeX4ZrNEXZomGReQ9K\ntL58TfSVKlcWWLi9kyb5lLmLT6qxARKjp+egMqD5mDCLzXFg81LD+a7FYl0P7iOFqMRdO4pscoHj\nxcZosh4dV0Efy26XuknM7tq3uU5cKKlnQrT32KzzYDKhLB8wbKyfaU1JfYeAc8QDwK415jAkeQ8o\nWYFOt2h1jbqzCy4zh8kdbCjib67wBS+mae1zXboG9emYiUheM7bIxjZUseu4xZsv5HaRP1vVqA/g\nCl5dLwG4cW/pYwSokGSWDBQwYfhHhQm/52HYnhk48FxT/fFQLkeuLLDM3T2EnKnAjMiuAFki4IPK\nYNFnfpCQhMBlsHiIAl50z7pIBwSDdZEO+LlqWYQKvoM0litz+9YiaqoJ7RLpf1oAN+vcgSIANHXY\n39FrgMYEMkkfX2nnE1quaudnAXpqd6O15EZrAYAkQ6trdLrFrs1RdT0Q8Z39YLc+ErQw5uPgWhfx\nX2XLeHju1Lgdi0wc00jMAX6gB/dPzDGfSXMkAEe+utuZKMBq2eBoabQXwICLeY0JgC4IKlxMoTFD\nsUPEoACcv2XwTOy56HseJfmgRGv1QO/3csoVBpZ5L3l8p4ywjyIAKlTrIpM1LwIypr2EwMXteG2p\nYV5XI6/aILmjZLAlaXeJu78XkTZS4jj2N0loV1hViVsACVSo0BQQrp8hzYgEjGOMt3U59L2YSCWr\nybSJ0ViyYyBlGku3xa5VqDmo2G6UABLTUN3vkXfpA0oz8L2NgcuUydbThNa+Py0YEMHbzph+50rM\n9EtyWpc4tMBOJY9N8qOy4d8Zri8aINJX5GcxYeLGHJanCscAsGyiJkoPsBnZLPkY+Qbm/2/v3INk\nuer7/vl1T8/uvbt3Wa5eyBIxwggnEk4lQZGpsuPCgIQs25HfyKkY23GZIkAcVxzbsqmi/IepEnYl\nJrYpywqmDH4hgq1CBVaEMUlcRSGBEMhYYMIVL0sIhJ67d1c7z5//OOf0nD5zuqdnd+7du7vnW7W1\nMz3T3ed095zvOb/H95ekWxaHI0wss2d+M80EQand8nuR2iFTNSG8ypK+6F8dYgO7G0DqSMUvMua/\n9tsQIh+My1WA639sJTJPfo4/+3WrFxdh5K9UpgpN0XxN/M+bVi51A0Zv5A1GWQfyyYolUH8vHfeh\n36bV4OtNQqZMNC5qL4LQAR0LRy9PEUbHeea1ojc018cjjONeUIjfprqiZLFQ8LAfbn+HyoRmc8g2\nxfS9sORizJkdVlxCbkTE0uUTdTO4cNkkYe6MoMhNftJGp8/x1QFPPVFVRHY6dE1VN8GSzRksVXyU\nfCz7ui4TkV8QERWR871tvyIip0TkcyLySm/7i0Xk0/az3xYRsduXROQ2u/0eEXle2/M7u+/26aIc\noP0/93kTqXSKqp5Q+doV//J+pCNLIsMiK6s2hqTSJKk+HGZsbxVsbnQng/JWESWVch97rkE3Z2el\nYFRk7KwW5s9uXxTCa1Fph3XOuwFvc6NbIZXYj97pVrm/nVXbfttu//O27WuLkQ7ojTJ6o2zijxlO\n/DWuTxXEpNu73mDVV8/UN/9Pz+mL+e9nIrKKil6HyPNaV9Ml/I345wif99h2v2jYk091eXwHHt0R\nHt2Bx3cyHt/JeGKnwxM7HTb6ORv9nCd2OpweVK/vWgHrXbhwWTlvWTlvGS44pqyf7PHsk71SpbhT\njI0gaM1zUnn23D1qWzp6nyAi19kx8pSI3BT5/J+KyEdFpCci/7XNviJyUkT+SkQ+b/8/226/RkQ+\nYcffT4jIy2a1b99WLCLyXEyJy694267AFJ65Evgm4EMi8kJVHQG/B/wscA9G8vk64E7gZ4AnVfUF\nInIjpnTmq+ZtT9ycUV+r3f9xxn7gbVcuUz++wFwRPbbnNG8ilUo5ZJg6dlkq4HR89VKHWbOuumgb\nP0qn9Nt4PiHfxOWLIVb65Mvrz0JZW2NYHZC9poUJenWoc9zXnTO63T0LNf63NpMLaFaLnk6orUbK\nhWURHCrPa+R7sUJ3Iak4+DVQ6lac5Wq4GFd0xlziqlOgXs6lcr/cZ25l0xtJmWc0WcGYRMoQfu2l\ncCITXaktmFxU5zMv1kFEcuBtwDWYmvUfF5E7VPUz3teeAH4O+IE59r0J+GtVvdkSzk3ALwOPAd+v\nql8VkRdharlc0tTG/TSF/RbwS8D7vG03AO9W1R7wRRE5BVwtIl8C1lT1bgAReRfmgt1p9/k1u/97\ngd8VEVHVxqeiLPTlEUr4sJXmA4iavWLKwL6cuTu2e2Drfmy1xYpqEDp7ff+Nb/LySwyb9k6EBV1b\n+72cHQpGvWzPFfoqUvwNWfjlKjB2zQNSmcpFqVtk1/i8YoKQIcIMe5d17+Rc+tauv2gzxqwCVLux\n+cf8Yb55E+LCkjAhl7qVSuUcNaTi0LbAVvl8nC74KgM2u5PCasu5KSDWzZT1LmVdHD+DvzfKGIxh\no2/0xRzBhHVdyvN5RfFakcu5iauBU6r6BQAReTdmHCyJxRbhelREvneOfW8AXmq/907g/wK/rKqf\n9PZ/ADgmIkt2nI5iX4hFRG4AHlbV+61Fy+ES4G7v/UN228C+Dre7ff4ByspqTwPnYVg2PO9rgNcA\nLJ28cPKBN0CH2MuD5qTI3TlCgqkcu4a4QhIIiTAWFPCMNXmFx6qFV5TKvY/NWNvI8LdGbKbbwixX\nm3sQWR3OgzEjso6xzftHCbPunUmvLclUHOXes3C2EA6es0od1G3bDcLn3Uf0WTpd0PcUGhyRFLnx\nwaxb0nElo324fJhlzCRgrZgml0p5hsKs2IvN6qTijJLLeC4T2/kicq/3/lZVvdW+Lsc8i4eAb295\n3KZ9L1LVR+zrrwEXRfb/YeC+JlKBM0gsIvIh4DmRj94I/CrGDHZWYW/MrQAnvvmFjXc4ZkIK4Zse\n6pLGypl7hGBixw5Jpe5HHpZULrdPmVOm65uEcAQYHi9WmtmtyGKJgHPB2fTtzHFUZNNFpiKIqRlU\nEGxz190VZuv3cvqddhpgftZ9bzi/GSNccYTPQq1D2aKttlusjtA8qH3GvJLLU/k2Xmj0LMRWn75p\nLRaO7gim31ErxGrUjruZWZ2AiRRzq5XyuDbXZb2LJRhKM5sLbfef422Ks0su7fGYql61XydXVRWR\nyo9JRK7EuBpmjt1njFhU9RWx7SLybcBlgFutXArcJyJXAw8Dz/W+fqnd9jDVMptuO94+D4lIB3gW\n8Phe2l4xB80wT80aYKfkTfyZdWSV4vZpqllfHs+3GQf+iV2jprRvWPNkL+q9QOV6+OTS6njzzPht\n/kK/Vy+qGUOZkb9LhPcznGyEfY+1e54IpbDcQHmM8LC9PEpCsQmSv0/YNtfmVoOw14+Yf8edo4lg\nlnNlY2AmSsu52MCKILLPwvlnylULyjcY0LHS+34NnOOrg3OZXOpQN07udd+vi8jFqvqIiFwMlDXt\nReRS4Hbg1ar64KyTnHVTmKp+GijtUNZ/cpWqPiYidwB/KiL/HeO8vxz4mKqORGRDRF6Ccd6/Gvgd\ne4g7gJ8EPgr8CPDhWf6VNqi18Q+mRRz9LN5YRu9UeGbgJ2gilbZZ2DEzUl2holCUrzxWxL7uS6qE\n5NIKDSTaZoD1kyn940XNiRG4/IXW4cFZp+Jz2RnFNcJKH0ODT6fuGaj4oCKhsHsZ1KomU3Ot2k40\nXNRZmBTsry7ccf18o2h7I9cldj3C53h7q4gSzIZ1xnczbF2cjE6kxkspETOSUv7lhF25b3SGZf8c\nwTgZGOcTmtmvPUB0tl+tJT4OXC4il2FI4Ubg3y1gXzeW3mz/vw9ARNaBDwA3qepH2pzknMpjUdUH\nROQ9GEfSEHi9jQgDeB3wh8AxjNP+Trv9D4A/so7+JzAXam64Bygsy+rgR7HEyMX/Tqlh5M3MfBOS\nP1DOIpVZtTZCE1Y1mirOrzG/ySyTi5vlxSTcfcxSJvBNfeG1aB3pZcml6fuhz6zfM1UPnWihX5PF\nyLcMyQKNsDBirN/PSumZvaDpGsYCKGKr4lbkHiHsNitNv31T5/FXK/2ayK9d5IL4hBjmPJWSQCvD\n0t/SzYw/BSgJZqI7NsnOX+/CU31DLkWOzXcZTt2DbQoGTJQo3H04F1cu1pf8Bkx0Vg68w46dr7Wf\n3yIizwHuxRSfHYvIzwNXqOpGbF976JuB94jIzwBfBn7Mbn8D8ALgTSLyJrvtWhsgEMW+E4uqPi94\n/2bgzZHv3Qu8KLJ9B/jR+c87HS5ZJZXqkr0pIbA2dyOwfbeWg5kXnvN9VqhqucvSdGEt90Nu8u20\nJpW9OqiD0OjKNbaO19g56sQ+dwZGA80V/Koj3cqxghlxtztm6BNiP27W3Ctc250Cgi8J02Sy8jEV\n5BCsvptKQocrlgrss5YPxuUquWyvG4DnvCbhOfyJ25SM0nqfwWjizO9mlKuTcv8g4GK9a1Yu3Qz6\n+YRgdrrDUv3BiLdWZYR8clkERDUaILQbqOpfYtIu/G23eK+/RtV90Liv3f448PLI9l8Hfn2e9u07\nsewXVIMoIm+VEiuL26Q+GzON1Q0AdaQy01nfoP80D+p8N25FVecEbjUIlYQSDNoRKZHKPhaheavO\nlAeeQ3lrevCKKUjvFi70Nd6I6dwURwRNaHPvQnKJnr6lz6gu1LiuKmSbOdXQCwAAE/VJREFUFZkL\ntphqrz+7935ffmmIEKHfLqY35pKC+/2M3skeOyNjElsrtFydOIHKfuTyL9vwZUcwFLAxEPrrfaNf\nZicLdf1KmA9HllgYT5OKixzyf3gOvvigeVG1rzeRS2U/t6897yy0rgXhVi3BMf121JWbbTtAlTPH\nutozsVVKQ0RdG8yOdqqSS5go2vFm1q6kQL+XMzhmCn65Yl+zsGTFDh3ZleUJImHO7lnYa+RcOaj5\nsiM15RVq4bVvVlvakgqY9sQG3djsvk4ipq49ddL3vrmsv94v67yc6DopfSorF5jkvvjv1wpDPi7f\npXfSRM4OhxnbS2ZIPBOEIrqYyc5BwJElljKQriscXx1MzeSgOsN29R4giE6aQS4+Zq1WQrQNN50c\nqJ6o5gkI8H/ws1YqvoiiQ2wgaduP0Bw5K+LOYKJAEJLKpMHNpq9KXZYA4WBVHj8W6efpccX6XKc/\nV5dQOKU+7Qsp0kxgfvvarKJ8v0YjbH9930o+GFfa6n9WBlA0leIOQtnDgA23r2tnr5ezvTpg0yol\nrxXTBOMnVIKJIFu1hxyOhbUCQE1wxsmenXSslNd4kSvfo4YjSywqtCIV33nuyOX46sBoXDE9YNb5\nXUJ7t/uOTyp14cUh/CidWIb7LLmZWQgHl5jJpDIAxET+akKpwzaVJi0XhOCtHn0i3DpdI6OP6/s0\ncQyDsPFOZ7LicJndRabkUpCJ7d+wT768QiY53Wxo8yKMmaW7NCprrVcv2HTJ6RjJhxONSl5LmN9k\nUTtzDsiiiVyg+TkIzauxCcYs7CnE3SLq0wxKa/vX1axejFJyb3VQiQADSimYWEiyc/ivFcLOsnnd\nt8mUTz6xbBQpBsaPN+otxicqqjPrIx0WHFliIYuTSmVQ7k6/PrHWry1P7GOWgz422EYl8e1xnH8l\n3CeMVouRSlNOjH/sWKLdUoQEorNLPzqtwafSmOldUPq4uksjVlYHk3uwOpgil1gGfBh2XfRNfky5\nAuqOWeqYWW3HlsMtsiUKWYLxkwBk5OTSoch2WMpN3sRyDpuY52DLHrtO1Rf/c6r3KQZfoSHUsppS\nb264tjM13FokUfrP0KzVi0+Ei3BwR0PjvUlLbOXjCrh1bOLrYGQc9Mu5WnNX/Fwugmw4Fi5cBlBY\nt5JHdiLjQp8H3aM7TO4WR/aKZZnWkopPKP6S3G0vI5UilQ1rJUcimJUI6RAjlXCQ8Fcv7tgxNJlE\n/BDTulXLLHJpOkcbs1ZIKqUD/3QxRS5t/AGDrlE/Pr40LO+xqbuurHVHrBYjcilgPESHxtYu4yG5\nFKV0yHKeUeTGz7JduWDxstNQXbXEBvwwjyM0q0VDXCu6bzX+uwjC6+5/PxYM0soEG/iWwvbOQzQx\nn2bYTv+4PrlMkeXKkCKfrFa6GaX5y2Ep11ISpjcSljGZ+o5cvuEmIEuT0g6LQPKxHAH4agVNpOL/\nHw4yut0x/X7GyuqgksHrEMtSNgeeVi0Oo8BiZq2YCco/V5PMSiy6rTyO7Ydrv5PfHw6KciXnt2s4\nyKZMYjFyiSGWg1EHV+K42x1zfHXAUsdev9VBhVzqBtOoScYzg52wA48xg5lBJpMchn0YWV2pYZ8s\nN/XYi2zaAQyT+xwWcqttQ821iK06mxS1YzlSYZti56n7rk/OsQlRv5fH2zgDbVYzdZO68nfgklr7\n1evhk4v7zpI1U3aXRmz2Jxn3y7lZlfi5Lkv5GHeL1rojNvp5KQMDSpHDZrfPpjV5z6PYkGBwhIll\nd/4HmAzK5fu63AJfT8lz9IfnbTJRQfsIqnn74yKkHKksnx4wKjK2MeQyK9Q3du7dhkGHqKy+MujZ\nbf51nzKDBQ5wP2z5xFqf4yvDkiS6WaSY1Gg4qSJp4X8nlG+PkYp7D9U8lLZoIue96IE1YSpiMQg+\nmOueRqLkwoAMHxVTa5AMHDr4fThycZ+738q2nXws50o/F3ZGylpRJZcY/Iiy5dzss9GdEEzCfDiy\nxJJ5D1mvZ7Ky3UPuHnD/x+VmabHwX9+cELO7x7J3w0Gi7eBTF/IbBg24kFj33dC8NVwalcW2HKmU\nemO2Trx/ffxz+ecP0YbcmkxYmxtdTqz12d7qmD6tDujZc29vdcrVir9SMieOmJAskR9f6ZeDmiGV\nyADT6UZLE/dGWVnzfrMvZc7DcEtYblMDJ0DoGG9jxpqHUJoiD5t0wCrh4kFp4qmVdF2EnVtpzVCa\nDs2/JYH1s7jSRI3kj3Pqb58wz8TxlUFZQGx7Zciz1/tsFsLGwBQD62amdktvJKWPxdVzcVgrJivU\nZetfO9FdkBr1AhMkz3UcaWIJTTv+a59cHByphA71mOorUNEdimG3K6Y4iRnH46zMe5+QQlI5tmVn\nZqdhhwKoZubvVcqkDuHgurnRNdfGmb8w177OBDYV9htE3flO+xjGOjKk4pUmHo0GZa0Ppxfmrvn2\nVjEV2gz1AqCxSMG6UPTQT+Zyq2JoMsHOMlf5pBwmqYZ1iHYl/rnHMgYx1IVkF5um9PLGYInjqwP6\ndqK4vdXhSUswOyNhrXDZ+lUy8dHJlNXMrHAMwWgliz+hHY40sTjdqHIZbaNATqxNajg4gomRCkwP\n8nV1XRaF4TDzyvma9vvx9hXpec/ZGw485azbI5V8MC7JZdTLGHQ7bG8VtVFNuyXG2LFqB0Jrhmjy\nq1QbNS3Js7JqlG272SSLPhYtJLYeS7XQlylNvDOaqB8MBxnLg3rp/brVSqtQdKr+t5VIbfq63KIm\nKZ0wsGKKVALF4rIfNcebWoV7ZF4e0y/JHPSrzvwbWgS6S6OpfB+/jX576MF2v1N5BjY3jKLx5nqf\n804My1otJlN/8hx0Mg2c+hkrxfSKZi/IxtDttSvZcNBxhIkFjns/2s2NbsVe2+vlrKwOKg96+MN2\n4a6tSGUOLamYs9wnsGJzWLHrd2oSuabkQIJBws26Oza5rdsb0qdTvh/YxLTYoB9LzKsz2dTVqonV\nVqmTL5llhvPDrcM8Gf8/1IegxuAqSDoz2PaWIfVjW4aQB92cYZHNNIH5mBmKHgy+MfNQKAgarpan\ndzCDcvT6tiSPthUXfeIMEzRnJemW+wTHc7k+DrHVi5+kOSoyBgjbS8bcayYEPfrrfXaWpZSCAVc8\nrOrULzJznNXC1HxJmA9HllgKgQuOmToNPvwBaOt0wcrqIEooMXNU3aAyODH/ZfbJJXq8zWGpa1RK\nloQDXEhmwQzStXd5a8COrTo56OaTCpQtMrYdjq8MKhL7bTE1yHpZ1mWz62a3EVOO2x4Nse1OlI19\nZJKbcOPepnk/Pr+Sx9LNlBNd2O6axM3t0wXPrBSV6w019z/Qo5sXYS5Vvz/x+/lyPC5pNyzWVhn8\na3Jgwhya6UZM/Fex4Igm+KtHn1RCS0Ar1IQ4NykW5IMxo17GU5ikR6c1NjgG5y2rt2IR6rqzOo/6\nRQNENYUbH3Z0MvNgAWx0jHM3luHtzB9QdZyHpAIYJ+OMZKrhIKs4bpvMSTPJJfix1xJKCO/zUL7C\nkUqbQaMc1CypzCU/42EetWffR9Rmv74XlNEf29oqxYRcMslNHsuwDz2bpTLsU+TLrHWfZrUweSzL\nuR28tzqlWCHUVBqt8y2E21sSTV2Ir7+i7XTGFUUIhzZJqxUFgDrUkMss1JFKxd80D7lEED6rodUg\nH4zZ2coZLhk/Xbc7ZqPTr5Q8Hlqzp1upOCzlY1bOUDTeXiAi1wH/AyN9/3ZVvTn4XOzn1wPbwE+p\n6n32s/8M/CwmJvt/qupb7fbbgG+1h1gHnlLVfyEi12Ak9btAH/hFVf1wU/uOLrEIZcatecDMbLbb\nHZclTGHWKmVayLIOlSAAbzCY2c4Gcilnmo7MWlQdjM1W3eBTIZWa8NDKsWpmoWE4dgwuBwcm5pK2\nzt62pOIrCVSu/7gqm59JDv1N2HnGfmGbYuUERbbMUm4SKh/NTYKkk5vZ2DKOfp9UQokWh3AgrsjL\nN+m7effKPQf+qsV/Ltz1dM7r8hpEklbrEiZnTQzallT2zxNOOnxSmWrHAgjGL3Pto+iNpkiX9T5+\nyeMVa/Zy5rDVYsRKZzwdlr5b6GLELUUkB94GXIOpWf9xEblDVT/jfe17MIUSL8fUtP894NtF5EUY\nUrkaQxL/W0Ter6qnVPVV3jn+G/C0ffsY8P2q+lW7/13AJU1tPLLEIqKseqVLzf+hrdVBZfVSF/kV\nDip7UbJtynYOZ6y1hGRF9fxjuv0dphIsAzmWtvVc3LHqZqHlOfrVkO2YYnTbpLtZ5QJi53eChcdX\nzL3dyZQT3ue5FOTSQftbsL0DgPa3KFbPJ5OcIhtVRA27XXufvRo4TZOK0O/m1/cIo6/aIiQXqEZ5\n+SviJp22cFubBEs3Cag1mxFfpbh21/nAfNJs7nzzBCRGLk7WBxtG3+mMy5VnNxtayR61YcjmOI5U\n1rqjiY7cuYOrgVOq+gUAEXk3cAOmQKLDDcC7bDXdu0Vk3ZYb/mfAPaq6bff9f8APAb/hdrSrnR8D\nXgagqp/0jvsAcExEllS1V9fAI0sspz79pcd+6Pk/8eWzdLrzMax/mHAY+wSpXwcJZ7NP37zXAzzx\n1Bfv+uPbf+L8ll9fFpF7vfe3quqt9vUlwD94nz2EWZX4iH3nEuDvgDeLyHnAMxhT2b3Bvv8G+Lqq\nfj7Srh8G7msiFTjCxKKqF5ytc4nIvap61dk639nAYewTpH4dJBy0PqnqdedAGz4rIm8BPghsAZ8C\nwuXpjwN/Fu4rIlcCbwGunXWeM5PxlpCQkJBwpvAw8Fzv/aV2W6vvqOofqOqLVfW7gCeB/+++JCId\njGnsNv9gInIpcDvwalV9cFYDE7EkJCQkHCx8HLhcRC4TkS5wI3BH8J07gFeLwUuAp1X1EQARudD+\n/ycYEvlTb79XAH+vqg+5DSKyDnwAuElVP9KmgUfWFHaWcevsrxw4HMY+QerXQcJh7NNMqOpQRN6A\nic7KgXeo6gMi8lr7+S3AX2L8J6cw4cY/7R3iz62PZQC8XlWf8j67kWkz2BuAFwBvEpE32W3Xquqj\ndW0UEzSQkJCQkJCwGCRTWEJCQkLCQpGIJSEhISFhoUjEsiCIyC+IiIrI+d62XxGRUyLyORF5pbf9\nxSLyafvZb9uEJERkSURus9vvEZHnnf2elG38TRH5exH5WxG53Trw3GcHtl91EJHrbH9OichN+92e\nWRCR54rI/xGRz4jIA1amAxE5KSJ/JSKft/+f7e0z133bL4hILiKfFJH32/cHvk9HDqqa/vb4hwnr\nuwv4MnC+3XYFcD+wBFwGPAjk9rOPAS/BpPvfCXyP3f464Bb7+kbgtn3s07VAx75+C/CWw9Cvmr7m\nth/Px+gh3Q9csd/tmtHmi4F/ZV+fwISMXoHJoL7Jbr9pL/dtH/v2XzCRSu+37w98n47aX1qxLAa/\nBfwSFfEwbgDerao9Vf0iJjrjaiursKaqd6v5BbwL+AFvn3fa1+8FXr5fMy1V/aCquuIRd2Pi4OGA\n96sGpUSGqvYBJ5FxzkJVH1ErKqiqm8BnMZnV/rV+J9V7MO99O+uw+RLfC7zd23yg+3QUkYhljxCR\nG4CHVfX+4KM6SYVL7Otwe2UfO6g/DZx3Bpo9L/4DZtYHh6tfDnV9OhCwpsV/CdwDXKQ2XwH4GnCR\nfb2b+7YfeCtmkuaLnB30Ph05pDyWFhCRDwHPiXz0RuBXaSFxcC6iqV+q+j77nTdipJ//5Gy2LaEd\nRGQV+HPg51V1w18IqqqKyIHJJxCR7wMeVdVPiMhLY985aH06qkjE0gKq+orYdhH5Noxt9377g74U\nuE9ErqZeUuFhJmYlfzvePg9ZaYVnAY8vridV1PXLQUR+Cvg+4OXWpOC30eGc69cu0EYi45yDiBQY\nUvkTVf0Lu/nrInKxqj5iTUIuiW039+1s4zuAfysi1wPLwJqI/DEHu09HE/vt5DlMf8CXmDjvr6Tq\nWPwC9Y7F6+3211N1cr9nH/tyHUaG+4Jg+4HuV01fO7YflzFx3l+53+2a0WbB+A7eGmz/TaqO7t/Y\n7X3b5/69lInz/lD06Sj97XsDDtOfTyz2/RsxkSqfw4tKAa7CyFc/CPwuEwWEZeB/YZyQHwOev499\nOYWxX3/K/t1yGPrV0N/rMZFVD2JMgfvephnt/U5MsMjfevfoeozv6q+BzwMfAk7u9r7tc/98YjkU\nfTpKf0nSJSEhISFhoUhRYQkJCQkJC0UiloSEhISEhSIRS0JCQkLCQpGIJSEhISFhoUjEkpCQkJCw\nUCRiSTiUEJGfE5HPisjCFQNE5EetovBYRK5a9PETEg46UuZ9wmHF64BXqFe7G0BEOjoR19wt/g5T\nK/z393ichIRDiUQsCYcOInILRgL/ThF5B0ZC5lvstq+IyL8HbsYk4S0Bb1PV37eKy78DXINJDu1j\n6om/1z++qn7WnufsdCgh4YAhEUvCoYOqvlZErgO+W1UfE5Ffw9Tu+E5VfUZEXgM8rar/WkSWgI+I\nyAcxCsHfar97EUbS5h3704uEhIOLRCwJRwV3qOoz9vW1wD8XkR+x758FXA58F/BnqjoCvioiH96H\ndiYkHHgkYkk4KtjyXgvwn1T1Lv8LVlU3ISFhj0hRYQlHEXcB/9HKziMiLxSRFeBvgFfZmusXA9+9\nn41MSDioSCuWhKOItwPPw9TOEeAbmNK1twMvw/hWvgJ8NLaziPwgxsl/AfABEfmUqr7yLLQ7IeFA\nIKkbJyTUQET+ECPd/t5Z301ISJggmcISEhISEhaKtGJJSEhISFgo0oolISEhIWGhSMSSkJCQkLBQ\nJGJJSEhISFgoErEkJCQkJCwUiVgSEhISEhaKfwTznfSwP1j3gQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_mag().show()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmwbVle1/n57bX23me8w5tuvcx6VVlVUIqiHTRQ0I0d\nSBgMYmGhHa207YDh0Ah0a0iLYA9BKxVRDdHShKhQrTTQiEjYqNVSBLYoTm1JFYgKFLRFmVlZmVlv\nvMO5Z9jj6j/WsNc+59w3VL7Kl/DO98WLe+85++xh7X3Wd/2m70+MMeywww477LDDa4nkSZ/ADjvs\nsMMOTx925LPDDjvssMNrjh357LDDDjvs8JpjRz477LDDDju85tiRzw477LDDDq85duSzww477LDD\na44d+ezwKYOIfLeI/I9P+jxejxCR3yoiH3/S57HDDk8KO/LZ4ZOGiDwvIksROReRYxH5MRG54d83\nxnyNMeYvPKFz+2oR+edP4thr59C48TkTkZ8TkXc+yXPaYYfXC3bks8OrxVcYYybAdeAm8Jee8Pk8\nNEREvQaH+ZdufA6Avw78iIgcvgbH3WGH1zV25LPDY4ExZgX8beA3+NdE5PtE5Fvd71dE5O+LyImI\n3BORfyYiiXvveRH5ZhH5RWdB/R8iMoj2805nNZyIyP8rIr85eu+GiPyoiNwWkbsi8l0i8hnAdwP/\nibM6TqLz+asi8n4RmQNfJCI/JSJ/NNpfz2ISESMiXysi/15EZiLyF0Tkbe48zkTkR0Qke4jxaYHv\nBYbA26L9f4OI3BKRV0TkD0ev/w4R+dfuGC+KyLdE7w1E5Afd9Z6IyAdF5Mi9ty8if93t7yUR+dbX\niGR32OGRsCOfHR4LRGQE/F7gAxds8g3Ax4GrwBHw54BY2+m/Ar4UOzG/Hfgf3H4/Cztp/9fAZeB7\ngPeJSO4m1b8PvAA8BzwL/LAx5sPA1+CsDmPMQXSc3we8G5gCD+uW+1Lgs4HPB74ReC/w+4EbwGcC\n/+WDdiAiGvijwDnw793LbwD23Xn/EeAvR1bRHPiDWIvpdwB/QkS+0r33h9znbrgx+Rpg6d77PqAG\nPg34LOBL3HF32OF1hR357PBq8XedZXEKfDHw7RdsV2Fdc282xlTGmH9m+sKC32WMedEYcw9LDn5C\n/+PA9xhj/pUxpjHGfD9QYIngHcAzwJ8xxsyNMStjzIMI5e8ZY/6FMaZ11trD4NuMMWfGmF8Afh74\nB8aYjxpjToEfx07yF+Hz3fh8wl3T73Kf82Py5914vB9LTL8OwBjzU8aYf+fO898CfxP4wuhzl4FP\nc2PyM8aYM2f9fDnwp9x43AK+A/iqh7zOHXZ4zbAjnx1eLb7SWRYD4OuBfyIib9iy3bcDHwH+gYh8\nVES+ae39F6PfX8CSCsCbgW9w7qUTN5HfcO/fAF4wxtSPcL4vPniTDdyMfl9u+Xtyn89+wBhzYIy5\nYoz5fGPMP4zeu7t27gu/LxH5PBH5x86deIq1bq647f5P4CeAHxaRl0Xk20QkxY5VCrwSjdX3ANce\n/ZJ32OFTix357PBY4FbgPwo0wG/Z8v7MGPMNxpi3Ar8T+NMi8tuiTW5Ev78JeNn9/iLwbjeB+/8j\nY8zfdO+9ybm0Ng550amu/T0HRtHf24jzSeCHgPcBN4wx+9gYlgA4S+l/Nsb8BuA/Bd6JddG9iLUK\nr0RjtWeM+Y1P5hJ22OFi7Mhnh8cCsXgXcAh8eMv77xSRTxMRwbroGqCNNvk6EXmjiFwC/nvgb7nX\n/3fga5wlICIydsH4KfDTwCvAe9zrAxH5Ave5m8AbHyIZ4OeA3y0iIxH5NGzs5fWAKXDPGLMSkXdg\nY1UAiMgXichvcjGvM6wbrjXGvAL8A+B/FZE9EUlccsQXbj3CDjs8QezIZ4dXi/9bRM6xk+C7gT/k\nYiPr+HTgH2LjGv8S+CvGmH8cvf9D2Inzo8CvAN8KYIz5EPDHgO8CjrGuu6927zXAV2CD6x/DJjT8\nXre/fwT8AvAJEblzn/P/DqDEktX3A3/j4S/9U4qvBf68iMyA/wn4kei9N2AzC8+wRP9PsK44sBZQ\nBvwidrz+NjbWtsMOryvIrpncDk8aIvI88EfX4iE77LDDr2HsLJ8ddthhhx1ec+zIZ4cddthhh9cc\nO7fbDjvssMMOrzl2ls8OO+ywww6vObbVRzwVuHJl3zz33BvAuGzfYAEa+7tp6ZWEeHksSSBRGLrt\nrfVo3L+W1hiaVmiN0Bi7l9aI33u3S0CJQcSuAhIxqMSQiCAkCAIIiQGaEsoK6hqzrO05ikCaIEpA\nKUgSyFLQOUagbCoWdULZghJIE0Mi7pgPGB9/7o0RlBhyZdBJgpIU2hraxo6FG4/WNLS02OzphMSd\nu82sBmNaWgzGtNSt3b+480gE93v/rEw0WsYIrRtL4z6bKVCSIm0LtRsfsOOilRuTFBJl72d8j7dC\noK2gaaCq7ViXTZcQnrh9J/Y8RbvxTlNQGa09O0SUPafW3q9wr5LE/hdlx82Poz9W3ULTQmMwrX0O\nTQOmFdrW/mxqaBtD09pd5gNBZy3JUCGDFPIM0gGNtBRNy6JOWLhTUIl9Duyz0D17SgzK3QMlikQU\nYgc6utcCibbPvoi7n/Z+t8ZQt0LdSnheJHrOErHHTlDR2NTQ1FBWmLLGrGraEppGwNhDNo09h9bd\nrjQVEg1KGxJtEK2QXNl7nWrQ2p2jjp4f//1cu9Pink//XW9raFv7v2m731t7L372+Xt3jDFXH/C1\nuS9+k1w251QPte3zzH7CGPNlr+Z4r3c8teTz3HNv4EM//VfsH01pf9Yl1CWmKezvYB9KgKyrQxSV\nw2BLUbvKMCIsmzOqdkXZLlnWFWdlX9exbIUsMeSqZZqCSjRKUtIkR0nq/tvXxBjMvRfg9stwvsAc\nn1L/0k3MqiHZz0kOcuRwApMRcrgPl68hhzcwOue8vssLszNemqfsZS3TtGEva8jc5DmroGgebPzu\nZQ2H+SFTdQlz9gosTuz46Mz+z0ZIPsUMpjSmsuddF2E8ARhMMDqnbJeU7YJVcx6uM00G4Xc7Pksa\nU9GahsYJADSmYllXFI1QNAm5ark2nLKXXoO7z8PtlzEvvuLuVQpZioxHcLgPo4MtV+WguzIgUTlm\neWzP+fZtzM07tK+cYlb2HGSgkYFCcg2jgR3zN15HDm9Qj/dYNmf2MZCUUTKF+T3M7CYs55agBpMw\nVugMVuf2eHdvYY5P4dY9TFHTnhSYosasGtrTArOqKc+hXCTMTzTFXHF+Zshz4eitBXufnpJ9zrPI\nW94IV5+hufQsd1Yf40O3B/zyacJ/mNn7fZjBQW54bgLPjKve85CpIWmSM9GXkdUsjIkpZvZ+6wwZ\nHsL4EjW1e8YLGmMn06atmVVwZ5UyTZveEPvnPFNDBmrSjc3yGF55CfPSTeqP3KF+4YzViVCXQl0l\nNKWwmiuaSlCpYXxYM9qvGTybo47G9tk/OkSOrtjnfnhox9h9DxtT0Zg6nGMMJSlZMrTPqb8Pq3OY\nLywhup8sVpjZEv1VP/DCA78oD8A5Fd+i3vFQ235185NXHrzVr248teQDYMStfFRmCchNRIJbG/uJ\nM+kPk2kKmG8hqLqEbMRofBnyqxRmxUAt2M/6X0aARFT4AniSoSmhKoEa6kW38elt+4Wo7Jco2R9g\n8tpOhtNhN9FmaSBJMYaJvsyNScNedhYmGCW6O7Y6p2yW3FldTEBXBi3jdI14Tk86KyNLYTzC6BPI\nRiidQbnAeOKpKrvteASjA/J8Sj6YMMkv967ZFMeB0Ebjyxi9R2MqytbqZVbtCpWmDLUloSwR0mSA\n1AWmXMD5AhZOqq1u7KRxvoD5Ajlc2PMESwIeOrP3LqyUI1y9alftYPebpXaF7cd6MoL9A+TwBkWm\nKR3xgCXKRTtjNL5kn6VsZidvTzrR8WV4iLkMkqUYQMoKdVjZayirQD7qtGCwqpmcFoGIdGYY/7oR\n6WceWeK5/hzsP8Nx8QK/dJJxc5mwaizxDFWfeN4yrVCJJkvGpMmALBmi0RARDzhCzkb2vAcTO6m3\nm2pGKtEc5JCrkqLpW7C5MoAlA7/oyP3YXLfXrrUl9eTm3N6LosGsKqCiLVqSPEEdjVFHl0iuTmA0\nsPfh6ArsXUPGl+33GDaIx5OPkpQL4b/jfuGSpXaxBw/0EuzwyeGpJR/v0tkgIAdRuSOg6EN1aSer\neEVfVfYhnVuykDTFXLoN00Py4SH5YIJJc3sMj6aMrKzz/mTtEU9SZbRyy1KS/dw6t/bz7ks4GcFw\nbCe4CHvptQ2iA0tOWTJkmZyhknNOijpYQX6lOtRT0mTAyOQ94jHHp3ayd19Ujk+RNLXnAHY8POl4\nQhgNkPEdjJu0yUYYP5bLud3WXac5vAWjA/T4MjqfUlOjJKUxVSAhgCwZwvwMlnPMfEF7WthrG3Q3\nTTwJ+UklTTsicsQZLDj/MZ3Z8zrcR8oKMxl1n3PjTDZC9q+zkIKmjRYK/hbHBBRbyW6C7C12hofd\nJOfHwS02kgP7u6obzGyJWTXo0xWDk4LkIEf/+iPkbW+Cy8/S7F3luHiBj5wKL801qwac0cZBDm8Y\nWuJ5dlwyTg/JklG3+p+fWSvHkXEgSp0huN9VFiZza5X2LQolKRO3QGjamrI1gYjK1pBRQwKrZgaK\njoAuOxc0oI7G9hko+gQnuYaDafesj0cwmCDTI8gtKfpxx7BBPA8Fndnvs382JiO3eLgPaT0CJLFu\n0ofC/LEc8nWNp5Z8gOAi6hGQhycCPxGVi450YsLxE2xZ2S9MrsNq2xyew+jAuqTWXXl+X34fkWWz\nMUHCFgJig3jIRj0CEwCVMVWX7GRXrKDuVuhaZ0wGl53L65zzasFQp2TJmIGa2olpNcPMHfEcn1ri\nOXGr48giMFnaXcvaqh0gOchhurJjc76w5+yvO/4cdONXLgIJKT2kMdYVWbrJXqPthOn3444Vu8nM\nqoHTIrjLzGjQEVHpx7iCNHIjhgHK4OgKMnfkNRx393MwZdGc3Xdy8wRkLc60vwCJnzEcASW692wI\ndJZjWVkirCoS/8yNBsiN68i1t1KP9zguX+Yjp8LL85SVG8qBhusanpsY3rpniWc/22Oo9oKlY+Z3\n7fPtFwHjkR37yKUaj4uSlEYqBmoS/o7dpvHEH7vm/MKnMfWFBMT5ont240k/Jn1/Po50YsKJxz6c\na3SP/Dko0fZ+eDe7R5puElD5CAS2w0PjKSYfOxHED+k6AQn0H0yPT/Zh9ESWaDvydWkf8Gh/EruF\nvGVRVnayBExZWfePVvYL6d8/PYFxaa0J6NwIftKIrap4m2LGSOWMxtcZ6xVKtJ2U5vcwzbGdhGbH\ncM8Rz+IBXQiyNJCIDFQggq2YjOB8gTDCsAifl7Fb2fqJxt0TP7lkibOwCms19ojrQefm0CP4NO2I\nJ7hfovHzsZrxZYzOg3vOT7oPWl2X7RIltSVz72pcnW9s563W8MxtWayIJyN/PZefxUwu99x+lwc1\nk9SusKvWxsjesldwYyJAGsbRiEvx8O7HdIvl7a1y97dWOVpn5GTd8+wteHfOSmddXDS91IuDdjG8\n2i4ikj4BsV/2j59oa335/amMmtrux6wuzB2JXWwxMYZ45MpZejHihYdHmtrFyQ6PHU8t+Rhjeisl\n6B5YWSegeOL2q6KYgLQK2wbCyKIJTWfBbxy+KzUuaeG8m4Rja8dnUenMTQp+RdhN1D2iKisoT2Gy\n9kWJt9kGnWF0BsWM3FloplzYydFbeLG1cx/IeNS7RgFk4Igo1yFm0oNz1Ym3hLLUuuVGB2Gyb0y1\nEWfIkiGmeLmf5XbReQ2UjY3FMRvvQouIJwSstyAmHQCpC3ISl0TRvb5tlW1/d181RzymmHWT6vr5\nute642VhEmZAZzW7OJKhC6BfGcx6SSQ+ueVo1L3mY2lZAjqfdDFOAF1uTsLlwv5nba6PXc9lnxRN\n/PzqjNHwEDO5xll1y51DTWuaTQJyxBvGxX+HAuk8bAsmizhxx479XWctO09GnIySaLvoiJKLgG6x\n9iqRiJDlD1ndsnO7/VqGoWwXvQmiMXX3sMYuuCaDMnoA1yc7v9p3Lqiwqo6DzG6V2COhdQKKV7Rp\n2nfZaRfoxxFQVfUncu+2m/fjDxuW1DoiwjPpyWa2Txy32fbZeEI/ugJV1ZvMkn3nv/eEehH8+9PD\nkFUVB45jKNE20cC5QE1sDfjrHmj38wHEM5h0MQ6XyQV9F44STZyvKHWBOX0l3N88n4TPbUN4pnxm\nlZ/82hqTlP04ne4vfDzseDpLI9OdlRZtn4jiINeBqFVIlNmMM1gCApLhJgHFiDLAgC4uFxOOtzqd\n61ly3Xs2yFKbdXj1GfZdnIy2e6Z6BOTjri5jzZ/rqyKd1axzry1OrHvxnuvnd6mC/SiD2n9noe8t\n2OGx46klH4OhNRe7amICkjrHJCVW/HgN3u2lVUdAnjxclpDR+Ya/v8uooyMg6FaLUWzBugNza6Hc\ntStHccfdOgl4lJU9hp/0nYXWI4J5f/uLYjbxZB6uIU5pvuRSmt3EF09m4ici1txdMbw/f3wZ3GTe\ntPVGvCC4rlb37LHiRAU/8fnj3o94huN+TCOfUJgVZbsIz4WPXShJ2UuvBgIxp6+E9GNTLqCYod0+\ntqVGbSWe5TzEmQxst4JiIvIuLm8VNYXdPlokeesnUSqKbViXUxyHaU0TXWMKsmYBeatgOe9im+eL\n8Fz4dHA/5mbVYFY1pvBWruqlpctAk+zfQ84XmGcXjKZH1OND5vVxOHdPQJkeBrJpWpfG7Z6B4G69\nD3qk48e8Kew1zY43Lfn5wsZ0Ll/rFiG5s343jdJXBUkgz3e5cx5PLfkIQiLdRHpRLYAoZ7VsCf30\nsO4y2+Y/juFccT0Cci4P7/6pVcKyvmvrRmK/uPsS9eAmhq0oq4utjm2f8ckTEcyqDgH8HgF54pke\nWuKoy57bzXir6SLLJw4iu1qgOMUaopoMY6JC0Qhr+w0Tnycen63mY2SeeBJtJ3Dt6kLaqkc8MaxV\nvHb+9RYX1YPg4zeeNMfdWwZHMtuwlgwhdbb12PEzfb/UYn99Zbuwk7ojIHwcxBOPm6jj+qNwvi6r\nYT2u50mo99pAWavYWSAaHc61732oWDZnocbLu1xVoqnaolcLd180Zd/a8eUBFzzv1CUyPcQMpr1n\nb4dPHZ5e8pHtvteqXdFIt9pWkpINpnYijSeA84V9rbr4YaZcgMoR76dfh87sZKPclyT49V1BpvsS\nAtTU6MEEmgKGaxltUXouF50TkQsunqyjyc9Wm592yQ2riy3DEMMBa63FtVBucvVWmSlqZDTo78DV\n/cTursbUNFHgHOjqT9ZJZzBBdIZJtLWs0hTtr8tltPWuN06r9ueYaWtBrEAGtgjSI57a4hR1o3Mb\niwrj0JHm0mW/rU+OWyfK4GJ1P32qt+rubZzsEtKdPXRGrRIas6JsFhtWfGsaKjpXVTyRl04yYJKO\n+gSwclbZ6jwQj7l53Ct6hT7ZWKLvTyPrVo8MFHI4sQuVyMKLxym2WLJkRNkuegsAW9tl/26loZFq\nY1y3Lg7KxUZdmmT73f073IerV63VPpg8enr2Dp80nl7yIQkPuUfV2i+7f+grihAozgZTRxQu8Jza\n+hZ87GV9RVVVoC2pSP0QVpAjIe+m81X+cXaQ0kPriisXMIw+H/8ep+hCP47kcVESQlWFJAPKamu2\nWrB64sSK6DoCyZYd8ZhVY10bfvvJyBYG7l0PQeSyXVC1RUjfBTuZ6KaF+jwEnbs37d/iEybStJ+w\nsX7Nw5hlHdoaamdxrEAPJii9112rD1I3LSb6phi3GInv1aq6xWl5RtEI14bToJros+E0dOn2W2Io\n1urdkukWrrdvZdUqCRbCg7CsZ8zcYYomofQZcNOlc8lVwNC6BF2Mx1s8zc05zc3NOqYwRgO98Xvf\n3ZZ393wy6l1DlgzDGIXYDJDnE0oW4dzK1nBWKvayBlgGRZBWmh55WuKPUqiLGcyOMb4OLc52PNy3\nvzgFDMmn1ur+FFo9Ijx8wsFTgKeWfGib8PB7AtqWVeXRmIpMDdGDyDd+6FxLPsi/za1Ul73VbA/r\nbhOXSuolaKq2oGyWZGrokiM02sUpepaGL1ZU+fY03XUkF9z2tra1JGDdeM7FshFL8b+vZ/Wto6xC\nbACieM/+VWTvOot2FtJvy2YZVuSegHIZ2BqjKLMrJiEjgqjMVbe7mNi2cX3YwLEnbp8+7IsugVhC\nCAhSQmVzxrw+5uai5fmZfZ5m1YIbk2VUB7M23j6hI0u7mief5uxrfdbO3UAoVjU6Z1nfpWqLzX3H\nh3HyTndWOkg8FY2E9Otp2vDMuCbFEq0pFz3iqT92SnNzQXHHno9O297+kzzpip39a/v5drfneNS3\nkJsS5WOhcUKAuwfDfC/EhM5KRdkKZ6UiVy25slaQJ6F4DBqTokV3skD3nNswPg+PSWR9553V463X\nHT61eHrJB4PUBUrZB3jVnPdcEn2JkBmNsm6LodpD+/gLdATEYtP6cZNmz32yJbXWT6hddlfVW9E2\npiL10U/l3BYXpKL20kofNVunLjH7pSUgV9QYB7uCrtmWrL4NRAkQpqi7ZIz9A6sM0M7C5OLH/axU\nDLUdw1EytZp2PkbS1k4FYNrLhDIioHNknHXxknrNdeWLb/2+ouu19VZ0CgN+ElwvKh6WISYTa9Qd\nF8e8NM/46NmAXzqx5/TrDxKKpuIt0xPG6QFK9qCebZwbZWUn5LKy7jdfb7O+nY8t1SVmMOW8vsuq\nOQ8yQ/EknIhyKcxLToqaWaW5vdRU7brkTUuuWtIktwoWd36lpzEXE4+X8ilrRaLt90OnLW3RogZd\nPDBoDfpnJHZ/Zqkdx8WJrUVzCRPBGowI1xQztM4YqC7+YtPHrWhtrpqNaw4u8mSIOX3Z3r9qLSEn\nSyGtOoUETzwh5tcluDyUJM8jIpFdwkGMp5d82v7kDoQJ0P7ePSRFY9jLFmFizJKRTQt1MQdwE1da\n9bOpsr6Pe2OS9n9HxFO2SyqXhqpEM9RTElFdRfr8Xrciz0bOXecmY9OpNoRU8UdY9ZtiZgPN0HOp\nBd/9thTa2IUXq0JMRjBfkBzkmJUT4jzcR6ZH1CphVXVFlirRDBOYpCljfUhe1pj5mo6jTw5wuHBy\nWCceh14B55qMkU86CH/Xzr0aT4wuE69WCWVzxqqxihAfPcv5lTPN87PNScVqp42sSoQP5I8ObOA9\ndkPGEj+hODjakbd28wllu7TB+DWLVolmoKYhs83qta04yJdcGawoGnEaawSdv8PsbXD3ecztX+6y\n2iKLpzktaeu+KG4MfW0YyKZHOnE9l1vIUFVdDG5irT7jEz/WUdtaqHx8ibE+5Gh0zF5dOvWNUdCi\n26aJaObPd0Q2PQwLqZ7QrC8ajgpX1xUR4mzBHT41eHrJxzgZfmUD4Y2x6tOzavPLVjSWjKZpzTQ9\noVIFjZowHOz1ExHW1Yv9pHa/jChHHD7GU7X9eoZEFFkyssRTnPcL5OhW7JJ3UiePavmYYtYFZ+OM\nIK0cebgMt3XiuSiDLtHWwvGyMHVjfewuqFu2S8pmGdWhWP//XnoNOb/brzz3ahAeLg172ZwxVHvE\n2KhY34Ke1Qj9+6OinzldzQnW1VW0S1b1Kct6xp1Vwp3VJvEc5Ib9rOXKoCJLptZ1WLzSP97+1Y60\nXZ1ReK8bkf55O4279bonS3BDBsoei6ZEqwEmGdrXzZSBsm5hbxmERczHP9gpVzjtuPakCMRTV9vj\nEzpt0deG6DfvdzGdOI1/HYuVFXoFu513OaanQaC1fwCXSl6cM8qnoGGgqp4WnTm7bdUXoHvOIwX1\ngMvXQkLK1u9lrJjgx3QtTX1HQJ8aPMXkY4OSyvnwrSR8uqHIC1aVt2gS979hL+sCsFk+RPtajdjS\n8V8AdR/igYcinlwGfeLxGlweKgcd+dBjrBNQPMGtu5jW90sX34nrZXo1M2v76x3n6tVOF+tw306g\nKqGqV5StYejmtrE+tG6205f7ahLr5+1UlctmGdSRs8RNFsX5fcnWsObydCve8L5scYd4dQVTUzpX\n10lRc2eVclYmfHyuNiyegwwuDxqmKQzU1Aqylot+Qair4+qlTm9zx8bXnk9s7UuUiWUtgYh45vdC\n/Y8AWmdWCsdr+y3PMctbmNkx5uYdGwtxhONTqJubi16SSV1215dog05b0jdN0W/eQ44O7Rtrxc69\n3xerIPgK/ToxXGsKOV/YdP04KSTESi0BGRGnM/g8xukMbs3uLKsug82Pry9cjggnHOZC4onkeB5X\nt2cRdLpzu3k8veTTtphihowvOR+54axMqFohTezD5t0UfUJSLltoyUFe0SgXB9q7bifAtfgNbD7Y\nMXzswPvpfRJET+a+OO+LP55H8SWd2evApgsHde64N5GDqLyzmLxLyRPP/IKMpiztikTXieeirDmf\nNqyxkwpEqaz2y1400rnZ2sTGHGbHXZGt349rDuYLKst2GUhAiSWgTmB00X1u80K691zcppdSuza/\n+NTkuC/TnZXm9jLnvFJ8YgmfWPQnkoG25DNNG4Z6aq/LV9RD3xU7vrx5irHbMv7pVucxNiwevzhx\nqgn2IqL6tLNbPWHY5ua8VyAKvo1BTVu01FVCW/evb5145ChqOeOfx9QlU7g+OO1J0SOfdaijMcnC\nCc4e7juXNdb6KWY2xsc5zO8G0olrj7aitCobnoDk8Aa1iq24WIB0S3uIuFDVGPu9fp1BRL4M+E6s\nGPhfM8a8Z+19ce9/OVab66uNMT8rIjeAHwCOsE/9e40x3+k+818A3wJ8BvAOY8yHov39ZuB7gD1s\n8O1zjXlE2Yk1PL3k07Q2GyafMh4fUrZLrg7r0KgsCwTUZfjEmlm5Mj2VXi06VEbHq2gv2XMRYrPe\n/wzE07SY0xc2SCeoX5dVmNiMj1VErRnWRVF7mXDbLKhtskHx7zHxBNWE7OLsOYDpoc1gyqdQl+RA\nnl9noGbW2jl7BXN2q0s/zlJbe7QtE7ApyUlQ6VXSxLrddLHCzH4liJ8CVuZnrSYmqANExLMuobOO\nbfUeuTI5zOQRAAAgAElEQVScu5cPcp+d1/1/ZlxxNEoY68PQ7iG0nyhPILOuWTNYXJjZFgiKTnZH\nqwyVeDeQtZRjqzhgmwvvIdyvMfGAJZqaxOnfirV6rg1RR+PQQ2q9xCAoIThrp7k5tz9P7fGTPOmn\nZueK9nRlE1kWK4xf6DDHS2+Y1CpJhFYeJzPa2+fUL9h7rd+837emYugsxBjjRn+P5EYrzjHHLz78\n9vdBkjyeVGsRUcBfBr4Y+DjwQRF5nzHmF6PNfjvw6e7/5wF/1f2sgW9wRDQFfkZE/h/32Z8HfjeW\nZOLjaeAHgT9gjPk3InIZHrIl633wxMnHDeSHgJeMMe8UkUvA3wKeA54Hfo8x5tht+83AHwEa4L81\nxvyEe/2zge/DrpneD/xJs613boy2tWmlg2P0YMJYH/LM6DZlW/cyiDziNOyyNQy17Tzq/dD4OAud\nMOlFhYbejDciwXVkdbYiv3zTWhmX09u9fkG9YlJ8okMa/N+9dOsYcer17Pjiam/orJ20wmQubhOT\njk9XjYP0kavRBuyjjrCZ7k+GxTmjusLMPhwKAMP1zb0czxp5RNBNy5QJ5t5LG6thn1UlR1c6Kyou\nKK2zvm4f24lHiU0WCASkcXEc/1jZfjkD1S1Q0sTYXjn62ka7h416q2zN0ozvxWQE08OgJi11HmrB\ntMpQas/VDuk+8VwUW4wJzi8iBnrDcvAWj0+p1mkLKSQ6IZvYthhhoi+r/mKorCwxnBa0pyvak4L6\n1pLFqaaY56jMMBg3JLpGp7Y5nM+Sa08KVK7t/rbJL5WVLXg9Pqd+4Yzm5pzzWwl1lXBweov07Zds\ny44Y0eLIJ2n4mqCHSaUWZ/GY4xfh9u37bvsE8A7gI8aYjwKIyA8D7wJi8nkX8ANuHvyAiByIyHVj\nzCvAKwDGmJmIfBh4FvhFY8yH3f7Wj/clwL81xvwb97m7j+Minjj5AH8S+DDWnAP4JuAnjTHvEZFv\ncn//WRH5DcBXAb8ReAb4hyLydmNMg2X1Pwb8Kyz5fBnw4/c9atPY4rPxCDO/y3D/GSq9InOWio+3\nhM2jFOgsEiANRW3rAX6VIcZsJZ3475iAGmP3Z1fzN23q68073cS0RbuN1ImJOgukU81eW+22dScS\n6Zq9Xaiz5uGUDsKE4MU4oZed5YnHuza0slJBnoR6qEvbsti3aVjXptMK0lM48pN0P8stZOXFje3c\narg9tV4A/SaXKn64b7Ob/PmyOTnHxNNZslV4z99nO3GdEy/4fAaZ/W+t5f1szzW5uxcSOExc8Luu\npbcNc9dDxjVMM0kZXGiicktCOrPFtxG2Ljy2KmsoSyKn3UtmVQdXW03Sq+nJJrZ+J9nvq1Sst5q2\nyQrW2lmdCKt5xvxYszoX0hyKcUI+bi0JVc6zMLC9ltrTgiRL7T6rLlPO98pqbs6pP3bG8hMN8+OU\nk5uaojA0pXBY3CF7+0FoRBee6UTbTLbmfGtc5yJ4tQdz/CK89DLm9r37bv8pwhUR+VD093uNMe91\nvz8LxObYx7FWTYxt2zyLIx4AEXkO+CzsvHk/vB0wIvITwFXgh40x3/Zwl3Exnij5iMgbgd8BvBv4\n0+7ldwG/1f3+/cBPAX/Wvf7DxpgC+A8i8hHgHSLyPLBnjPmA2+cPAF/JA8jHNMautI5PrVTLasYg\ns26O0NPGE4rOQE17yQEQya7URc/d1bvGbQkHkXJvTEBKUhtUjYjH3Dze/LzfN876ydIurrANkdsu\nFok0ceYaF4h+xplt24jHycvEro0sGZHpYV+VeZ0wIqFK+74TJM21db8cn1qfvTteiHnFFfjnC8zx\nuZ3w3Erbrqgb1FFB4muVLu2Ddn2UVBmSM2LcTw6n/3efgGy9jAnWcpoMOqvHdVjddq33ky5K9m33\nVRsDWdhsMNdh1NSWiKTekr6vs+09qHytUgTJbeq8WTWYoqEtWsqFnQ40BH2hJE9C/Y7/HNAtGBar\nQDjexbY41cxPNOf3FLOzhvm5JbLDy5rJnuqRUHNaWiHSXGNmS0SrQGZm1fSsqLM7GWe3Bty73fCJ\nl1eURUtZ5NTVgMPqjOGqQb/ZrWGd9WxEel1XY+27dVhXpmug6InnpZvUHzu98DOPAnm0Op87xpjP\neSwH3nouMgH+L+BPGWPOHrC5Bn4L8LnY+NFPisjPGGN+8tWcw5O2fP434Bshcm7DkTMNAT6BDYyB\nZe0PRNt5Jq/c7+uvb0BE/jjwxwHedGnUWRKONOIMl56WWF2GDJlOjuTxw8uCxMKTfpK60K8N3UTg\nu3GuY73nTbjuaALcRjrxzy2JAOvEs3INxfyXPVNDawXN721c10XN30xRd6RVl5CNumSCyHLz+wh6\nY07Msi1aEp+tVTfWwrt45B4adqHhn4+CLLHFj+vuWSWpXVzEitvRta4H+bfCKQaEc4/69wDWxerv\ngf/qxC5QttQzPSTqKkFn9nxj4rG1XmvPYN2sCY1a66muEuoycfszlEVLlieURUtVKFRqySeG3Y8j\nVE/ScdZdldC4zDu/T/97XSraWrrt3UJJVE7tYntNa1t4KxN9x9fQS15xi6Tm5pz6hQfNza85XgJu\nRH+/0b32UNuISIolnr9hjPnRhzjex4F/aoy54z7/fuA/Bn51ko+IvBO4ZYz5GRH5rdu2McYYEXlM\neY7gzNb3Anz2mw439rtumstaKq4PUm88uCrrTw5rdSOhTXe8fQRv/WwgSx9MOlphMl+0aPXkNrDe\n70ZH+/QxgFj1eVvG2XqxrAvcL5szVpUtuDwrFVcGLY3UJE4vLGzfOGvJJS2E0XCCo74Rn6RpUMkO\nwfM14olTa720S2xJJAe5fd23GY87lbpsxO5e+tbP2+MA8X1TkjLRl1k2ZxcmkSjRUK+6++P/jwbW\n3TXySgoR+a7VyHRZX86N5C2XnvXiEhfoCmgDBhOEqNZldY7hpo3dlbbRmznuXHaSK5LcqhhAG1QM\nvGjohUWkkxEyGqCmK5KDpZXW+dgZXTaZZlTYa9OpMN1TDCY29jMYNwzfoEj2Rzbj7erE3q/DfYxr\nta6mQ2sN5Rr7lBSozBDLvl57RrN/rWD4BmWTDw4nXU3Z+BLL5h5ls2RWwTStKbEZpdvutxIXQ1uc\n9Kzq81uPR49NEkgfT5uGDwKfLiJvwRLKVwG/b22b9wFf7+JBnwecGmNecVlwfx34sDHmLz7k8X4C\n+EYRGQEl8IXAd7zai3iSls8XAL9TRL4c259xT0R+ELjpA2Mich245ba/iMlfcr+vv35/tGwNuq93\novQEtK2pWQ96jYAi4vE/71cvsPGeJ4V8MzC8FbH1s+09f5zUdZmMjhOIx8UYemTjakz8NfhxaExB\nVZ0G0cpZpSmahL2sQSVWDihkAcZjNB65VNhR7xziZnK97Lk4VnVBZp4M1Jq+2KC/zzg2FUmpQLfg\n8Bbt1njAWiLJUO2FSvh1K9i6Yc86K89ZB5I1fdJ3E23v+mPSj7G+eIif2yM62aEtdSxGhGacoIoZ\njMsQd9rm9ku0QWMTDdR+5vryqE11C9+iwsvVjEcwWqCmK5fNdo+2bmhKoak0oMhzYTAxjA/rQDz6\nTXs2TuPHwrfmiC3caL/DwRz9sZk9vzSjqYRLzxZM35Sg37RHcn3fJppcvobsX6cwK6q2YFZ18jye\ngOwF9y2gnrvUWT2rlwpObw02xupJwhhTi8jXY0lBAd9rjPkFEfka9/53Y2PfXw58BOsq+8Pu418A\n/AHg34nIz7nX/pwx5v0i8ruAv4SN6/yYiPycMeZLjTHHIvIXsaRngPcbY37s1V7HEyMfY8w3A98M\n4Cyf/84Y8/tF5NuBPwS8x/38e+4j7wN+yA3CM9gUwp82xjQiciYin48NnP1B7AA+6AQ2XrpwMoEL\nBUehE7jsPtQnnt5290vCa8pNf70P+sN2EvKxBK8RxsUKxPE+PQLx7B8E8cz1WpiynYVki1ia35KO\ncsW39izPSkWW1LRJ012zy9gyiSPnbV1bBxNkeLipUhATT7mla6kbnyTuhuytngckVMRk462g+DWJ\nMhjtRo6EgNypCHRk3D07PZeXc51KXnXkMxnZyXb/oG9ZunR0M7vZHTN2VcbXv1hZSwo6AtJd7ZBf\nKMyrY8p2yZXLz0H7kV6WXfw8yUCji5KaxKZE56rvblsnHm8lu3shLgsy0crZJffwFpBKFWCJZ7Rf\nM3g2t+oIVydwMO3GwrVOZ3WOGRzD+BxxJJRoT4SK5IUzcI0dJ9da9JsOUDcOLPFcvdpJONWnzupR\nUZlER0BeEw6sWzW0lLjXZdbNbqfcfrnvInw9wBjzfizBxK99d/S7Ab5uy+f+OVtbHoIx5u8Af+eC\n934Qm2792PCkYz7b8B7gR0TkjwAvAL8HwDH7j2DTCWvg61ymG8DX0qVa/zgPynRz6MUXdEYsovko\ncZ3HVgEdn4uzSEy0WhYuIKBHRK+1tq8sj9R9fWJF6ZST4z4wRWMVkb0ahCcdL1yZK6s8nCkv0rjm\nemtr+5K30BzpML5EYVZkk8uukv2u3faC3kQb15TrjoDWkyS2utzsfrcRENDLYDTFrCNlj6ZEVLYR\n7xFjgktxW1+l3grfV907yaCyXaKyEfn4M6wywuKkS66IMr9CmwpHCnJ86hYLGZJfx4gE8VGvyKAO\nXubS4Q2bsHB8ujXmlOQJmhYZZH1320VN+dIoCcV5CGUyIoFNAspMn3i8leJbGowvYwZTFs0Z2XjP\n9q6KScjdT+0SHqYDq8SQvv2SJZ6rl4J2oLXUu+uz6fFtSA4Ba/lWUoTSBqmL0FLCzBe0JwXlOazm\nivn5q//OgU04UOljnit+FeN1QT7GmJ/CZrX5HPLfdsF278Zmxq2//iHgMx/poCKRK8FOSlVts1ri\nmoBtiAtDe2nWa263RyYlp1htkrKf3uxX+qNBJ1cDFxd+PiyytN9J1E+CjZf7KYK/3PeB8bC1LUlP\noh+gaFq7bbMkTazlpHRuWx+AFewsZnixzCDW2c6ssriqOs28+d1ucvPxEG8BRNaQh48bBatnrX/M\nOrYRUC+WU5c26+n0BHP5mp3YHrC/AsjHlzF1iRwuMGVF4s/Jp37vXbOTre/b1HbWXm8FfnrSyeA4\nwmlPVyFhQQaadDq0bi9vaTUl6DxMqrk6Y5o2KBlQqwQ9PYLDE9TRvY0Gcf7vkGSwLqm03g12ZNk+\nToU3I6u2kWSpbdWQn5LogmwC+s3WzRbUEby1s2ddZKvqlhXWTVYM1NQuRHRfvNeUFeqoI4PkIA/q\n2dBpwmmdsa+v2oJtde7udX+668ol0k51PFow6LRFZ+1OifpThNcF+TwRKOke2mzUddLcGojc/DsQ\nS1N2feLjNNgt/vd1bHXDeQthMIGJy3ba0gdta/rz/ZCWXeM7sJO27yy5JisPXcaad631Dp10dS2e\nfDyKRihboWwNWVuE7pMAajBFjLF9aeqyJxLqG/mBncR1bK3E1+YMKTl0K/g4FuSsRBm7xmWPgM7S\ndQdorPvLPP+C7Vrr+hzFBNSPgXVEViQp+aU3d2nwvmfP9DCszAuz2tq1dVuqfXNzHggnViJI8gR1\ndE4yGlj31GABTrZHSUojFZN0RJYsu8XUYAKXr8G1U6SMMgHjWrJoMvdYJx6ZHlGP+8KuAHp8yVpg\n4xFJlpLt5yQHp0iuOwvl6MqGtbNqzkNPpyZx38V4IdLWMKlsDVTdkHgC9moL4GJjrtjafQdHOmeY\n7YUus3GrEut20/0s0whJnqBTw2hyn6SfR4GAzl5/LrwnhaeXfBIJ1fqST3sNzYZxvNs0vcDkelFp\nTxEa7MOfjSwJxRnkF5DQNgIK1s+27puxG2lLQ7mt8BaZz4Sry57Kb+yOAkJrh2VdhUQCX8WfJYYr\ngxaVaJZ15XTuBGg5LRNyJSEGNNSVa4Lnx865YJQGNaAxK1bNbHsih7cCs1G/Qt+vgqdHdpLLTrp4\niG9JvU7MDwk/MYkxVl3ihecxL96yFfiLlSWgN3cEtI14PAqwBKQzmC42rLyqXZEmXSA7S4a2uHh+\nN3TfNDePQ0V/rLdWlwl1pdFpy94Lp2T7uV1I7Ntn0roDdSiS7ikzq8y6+46uXFzkuu11P6bDMXJ4\ngyLTzKt+5X9jKgZqwmT/mS5ZJU3Rvq+PTwYYHnYp+lFvIuvG7TqW+n0O8z10feisSVtAnOxXmIHq\nrFwPLy2VlPYmuMSZ0WCC0XtBS9GOi7d6Crt49OnxdJl++bhhsvf0TpOfSjy1oypK7Ap5MHESHOeu\n1bAA/U6JibOGesWnsbXjxTmrqjfhGWZdFlJTPhwBrWfNxfCuqvX4w4PqObzUjdcS859dywDz/YCq\ntqBpa85KxVmpKBphzwlm7mUNmRpZ95S26atFk3B35TtlJsH11rQ28cBP6hU2BdmvwmNrx2NrnKgm\nnHMclxKdWXJyEjvB7faI7kd/foEE5/fgtq1sr375Hu2pVX3WTnbIJBrZv34h8fjfCyDbf8bGE1xL\nhrI5D+7MRtUM1KSTU4q7b96651pYz1mdCHWpQ61LXVkC0lnL6NYSdXOOOlggyzlMuyJaXxaw0Wp7\nMLFtHVzhahhrD5/aHid3uExEObxBkbScVbd48XzTrTxNT7g8KNgbX7Vq7zpDLjnB2Mja8Sn6nVvX\nC/Za922uWqZ0Bd2TyWXwnU7HI6tgkW1T/PDfhU5OyrAAF7fLBxNydSl4OoLVAxvfI8kVOmvIxw9u\nVb7Do+OpJR+SxLkRRhid01abVcxK0jA5KEmRurCSJt7i8fCEEf9N5Au/IPstxjoBhU6pDoFwnKsq\nThFWetpZY9sITpfIyu2vxk5wVWXTmiM0pnZtre0Xfi9rQpxnmjYc5JosGQfyUJKSq8p1xLSTxqrp\nXG+zClSy3JCtWUdsVfrf4yw5tvRF2nDN+cwrL076EIiz9/x5aHSXEu77GRWNjQ+6oLvPBCzru719\necQaYl6zr4mELXGJV/7Zsm+s1Yi5NHsZaKuHZo+C/7BOG1RmbEr0QHdxmAvQncsQrTJk/3p0A7rO\nsLKaRc/deVDFCPVSq3PU2EoIXRl4RQv7WZVoBuqAib5s+zItjy2J+QVZW9vkDZ2RKZ8pWAEXB/Sz\nZNg15PNtvr1qduHavi9WXdfUbe0Z1hB3LTXJ0DZkdFaSX7z4uFd2a0k+fjxuNxGD3iUcBDzd5DMe\nhSpoYKPT40BNGKo9RzqzzsXm3UB+1Zhou5r0XpSoS6Kt/t/UhlpX1w3V8zoPfvgeATniib84F9ak\nrBNQvLIrFyFWIoDJRlaDzcnNhGpwNw7PjGy7iUk6Cpp3/ritNGHiiVG14lKujT1XOkHWGEPdP/94\n33Ywsu2WYFOicQkJvmVBJL4qsBnzce5FP34+xhBjkLrCzHyCXH0bVBUaUEfnNkh+4zpy7a3U4z3m\nLji+rVBxw9JYg5KUTI96yQ01NTqf2my0oysItoDDFDWDvLMQrZKDwaxqkv2c7DdfQ549gjc/Z91Z\na/Au1Ka1lvxKzoMgbnd820dcF6u+mkTcvmDUxb00N9ibXOu1rw5egfk9zPIjmLUUeTupL2A8wpQL\n9PCQ6fiS+6wtUi4aCfHEaQpDPWWsD61VGGsdum6rEHXZHSyR6RAT0s/7NVNejSPOdmxMxXl9t9cS\nxSQaGY5hPLKWbq45/NjrTuHg1wSeXvLRKvSYiZElwlBPuz4pqzXSiQOTcRfKyH3hXUOFWTGv7vYm\nOd+9c73/fC/jymWHeYsl1N2EAPcD0o+3EFBoGnf7tv0Cu86SMhzjO3turXNKNPt62Jto7Pm7mphE\nkyVtIG6PohFmleq1pAAJWXM2/bViqLtr30qmF8gF9RrrnXerYYjUvj0BrVlMZbvg7mrJNK61VcOe\nkCz5BLn2VnvW904tIRzesMRTH3Na+lV/3evIGiMRtbFIiFN7oe33Fcon3YLjklU00G+qaPf77kmv\neiHTIfKWN8LVZ/oqB9EEW7UFJ0XNrFLuPi2ZpktWyTl76bWepJQpbndk7jqcmuNz2pMCGRQkRAui\npmDqe1jVC0zhLJPTk06FwrvsAvmkToljgRmfQzFjtH8dFRYhC2wdTkQ8Pg5291avF1Fz0y00clcE\nO1DISdFp0GVppw3on4EtXUsBp1iR2uQGryN4PUOyFDUabCpmf5IQwSk07ABPM/kkSRRot5PWBvHM\n71nXQWw5rBc5RgQUr64W7Yx5fRzqLLqAvf1pJwE76bXiYg5SBYXroK7gyHG9B80DZeFjAqpLO6k4\n4mlfsXUeKkvta9kIGV+yH2u7WFdMjv5v6NxkWTKiagtytSRXhoHybreENGkCAWWJCe67uCDV7sMf\nb/NR3CjejRvk+dW5J5447VorDIuOgHwcQGWU7Yx5dcKdVUrRNFwZ+HYIedcaw2N8CbkGZnqMTI9C\nkP3uasmdlT0vGwerOgvQ3bt1qaZePcnsZTtRO308PZhgtLXAdT5B6hIzrcNEn4xcMkukt+dliDxB\nbtx+50I9rxa8NM+DAjdYC3+aNjC6FQhI6sKekyee2/dob58H0VCvIOEJCLDbewsp6uUDm/VovqzB\nOCKSsrIutLYmnx6h8qsoOWZZzxinB1GvppshAcMTT/2xM4o7NW0tJLommxSuLklhippk1ZD4tiCX\nr1mrd81rEGe++UXCVitoPLIuxx0eO55i8lH3b128ji3KwFROSy3rRDaNzjmv77oJLuGlue18CbjY\niJfgNxRN0yOhDbeTx5Y4zsZ2zcVJB9v6+5iiy+zxbsSqXV1IPPeDbykwSRugs3Z8QWrRbG4fw3fk\nvG/r4ph4/GIgvh+RyKVkzda4T411t80qOHPCl3tZ49ogjLbXZY0vBWLGrFCiN87/rFTBVeQFLD1i\n1YReSm9dgqbXY0iJ02obTGxwfWizu0L/JN/Swi14NjTdIpTtgmU9485Kc3dlew+B7T8EthgYStT4\n2FoYtSOLuAUErv5nVdMC7WmBOl1ZN+TcNchzGmh22/u7G+O0bhN6RB07V94R4/yQRNQm8bz4SnC1\nNTcXLD/RsJrbZ2UwbmiLhsS5ds2qgX0sCZ4vYHxuyacpgzKFbflrFzdn1a2em3ReH5Mmg84K0tmG\nd+SThQi9VhVPO55e8tE5i2FKVd8O+mQWLpFAQT6+1FcI9m63qDp/vUDTp47eWSXcWWmqVui+k1Zf\nytbFtORK2MsMKrGN6bxmmJ2koq6jddk1EktSGzh2CIkHOt8+eXpSGh3AVTsBJEBydWJrLq5eRQ5v\nMGvucVqe2RX8Q+ooxm66zJGq7fPXIV5xe9iJ2iYwDNReiD/0WhfHUK5eKgeJW4RnI5gurBbYeBRa\ngYc6H19AO75MkWnOypc5cQT17LgKxOM7x4YxvwC5GpClQzs56WNuLvpdbovGkllG54rz96dsF5BA\n7l1rXjvPLVg8xBibDr13HfKpvcZy0WU6Rp+pL7B+l80Z8+qElxeKl+cpn1h2nVZ9A7zUxVYeBBlo\niNpgNzcXNDcXqKM5yf4gFKf2PuPiMOuvhQWBE1U1LFzTQptBqPX1jnh8yvmLr9C+cIfm5pzqYzPX\nnE6zmndJAFaTrkW5mGtoC15VliT1SXAt9xZidcn+pTdzWt/u3Svb/8d2is32n0FWa5JPOzwWPLXk\nU5uCO6tbnJUKiKv3G8r2jCatadSE4eTyhoqBf4DjicDXD3Q+9rTnXgIcCfVrZsDHAUY2YFsXfTff\nGkRlQZW3c8FZP3aWDLdbDB6jA3h2hExGdlV49Spy9W0spGBenvDSPCNXLc+M6q0E5Ffw/mfVdi3c\nc9WylzXcXvYfqXXy8enak3TUzySMCfd+hbk6D8kRvtskw0PM6ADxtVZ+QeASPsp2yVnxcrTAwFlq\no0A8vZTbi8ZP226iIzUly4ZkyTG3lrNee/WzUgUCWnfBrZoZKMgGU5thFWWZbUU+sduFnlJZkOGp\nqtOeHFCsyBETz81lwkkpvGFoAvHY699S3AxbLcZ1IoGOhLYh2c+te859bqsye91YazXWLgT0+LIl\nntPbgXjqF05ZvVSwOM0o5gnFXHF+1nWU1WkLI5ugEeDdsK6FudFr7nO3UDFtzf6VtwUCAreoapzC\nR7JgmG8W0+7w6vHUkk9RCy/Nt09yRWMomiUHeRUm2kwNQ0qzOGsiCG82Zy5Fuea8WrjCzC7GEcMT\n0CT1BCRdvGE164rkmsjygV7BaqwpFscWynbZJ6D17qpgJ5nLz1qLYXrEQgrOytthsvLE+MyoRimX\n1bYle2ubyneWGPaytqf5FuPKoHLB5D0rnxIm/agZ39pkC5sp6nFDP5WlqHyAHl+yROTSoIt2yao5\npSyXwdqJcXkwJE3yXqFhPN6wxV3ZFKGbqAb2x1dJRorj4tgtYuDOyn6l9rKGYXTrYwLyvY7U2nVt\ntVxVFgi0iWqEvOSRj7fZ8bf76xMPrGo4KeHAPe5e4yxXBt+tFdoudulaNazDrGrKcygXlgAA8nGD\nzoy1PtZcSjEB9UgtaqonWllXouvGa6BHPNX/dy90L13NFatzoSgMi/OGojDkeYrONDqrrMUTqZv7\nwmMpq651/Fpyis/g27/yNmbNvVDjBtBQh6SNxwLBta3YAZ5i8lk2wkfPUvYzG4cBvxq0rjFIOClq\npukJKtFUySq01lbKDlvpJDu8+OayrsIk5CeEqu1qM9ZhBTiHvXjAulvAwzRFT4p2GwH5Wo6QTbW+\nP+gqz8eXKZKWeXUrTFbPn8NAdbKQVwYLJumDg6120jMUjbVsvMoBEEjoyqBydULWbbWRYBCvSuO6\nqcgK8tZlaxrK1jVzi+NTaQoUrEqbYehdn+fVgMuDhiuDilwZhjqNiEd3k/4FxN8rxgSbDo11YQ7H\ne7RZQ9HMuLNKOa8Suq9VxVD343ONqcHVUm24G5v+NQcrp10FxYmzUjGrUs7KhKqVXgzR4+5KcVom\nrBo4KYTjEgZaWDWGgwwmaevkkaInamOR0tkRnnTaWljNVbA+wApvDsa25mgwbki0IVnVmFxhXDsG\nexaZFx4AACAASURBVPOq4J6LY0PiG/6VVXcO91xr9NMVzWnJap5RV0JTdcQzO7P7mJ01DCYJq7ki\nG5a2keB+boltRGf9QFcf5LqkmlWN0soWDmcjJvvPcFy+3C8JaCvizrWvF4jIlwHfiTX4/pox5j1r\n74t7/8uxaYRfbYz5Wffe9wK+n9pnrn3uv8GqYTfAjxljvlFEvhgr+Jxhq3f/jDHmH73aa3hqyScR\nAvHsZf7LuJ4ubIkoVxVoO6mX7SLEZrIEGpMGF5RKU7Jk2VN/zpWiaLoAvMde1my6PugKU01T9OsU\nPGnA1jhQVyi5OZmGz7tMPJ+yvapPOSlqisZOjj4uUDRJcJ9lyZJMDcN+vKsndvP4Op5cWWWDLDFk\nrqVCrmxa9TTdTJLw56x9Vt+aMGtILW/9CnQVSAfo1RD5RInGVCG12CON7utQp8HVlyXDTrHiIpze\nthOYaznRg86CyxO6BIs0MeH4WdK539ax0TvK/R63a48tzCwRctVStkKuvIq4CceOr3c/84sem3h+\nkBneMIRJ2ri23waVRHVb9ZmNLfmEg6jZnQw0GTXteuYIoFMTrJ9s2KD2M+t2i1pv24l+87M9d5wX\n+M1Gtkh0vkAVNfqkYLCM748idrBN9xSDse0RpPYz20jQi6J6sVHnYltvz+1fsy66BWIMaZIDiws9\nF68GIiY06nt1+xEF/GXgi7FdRj8oIu8zxvxitNlvx7ad+XRsM7m/6n6C7QDwXcAPrO33i4B3Af+R\nMaYQkWvurTvAVxhjXhaRz8T2EXr21V7HU0s+WgyXB00IftsvpESNpywsgXRfnFAFbwwa7SZ+O/FZ\nHTNNZmqG2lpCfkKOU40BN0FLsAB8Rb+HxERzkW6bX4FHVlCYTO8jueMLD8t22Ut9PogO45WqZ1XD\nQdIPbFvLxRGey5DLqDey2vx1Xhm0awRW0ZjIGvDxkXzg3q9poh5CQI90tl5TRETx/dvLGoomCS4/\nb3ltJZ7Y4qpLSzz3uoJcLkd6eq7ot3SdMmNZmBhlaxgm90+N9+Sio8aFHkrSkIpPYuWMfFLHgybG\ngfL31Fo8nbvNLraU5MHq6qSiqn7auoMMNGoAw33ITktKV/WfaEM2IZBNsj/YiPE0N+eu4d+Wpmxa\ndX2XshHi9PD8aykwHpyRfWzGItXo1KBSRe5aK0wuNbZB3YFBHdmuqDIdhg65AWvE07VfrzurqzhH\npSlDnVI0sTv7dadq/Q7gI8aYjwK4bqXvwrab8XgX8AOur88HROTAN+k0xvxTEXluy37/BPAeY0wB\nYIy55X7+62ibXwCGIpL77T5ZPL3kk5ieG8a7YDJVh5bQQBDO9GKjStJucncyON76sGm13SrdPsj9\nXjjeurIdP2N3jJOL2TjRbJNInDstThUPBHRRG4dYibm1NSDLuiJeRa7Hhc/KxPXnqZikfQmc0H7a\n1SY11G4V3k2+IRah+haDV8z21735XqSZ1m4v4lSSolS6oVIwqzYni2nabKSzXzRWYRL2xHP7nrUG\ncIWL+7ZwUfJp6JRZtmbrBOWfnW2FqNuIKMS21k6r197DEVCu6t4zuvYJ99Omvh9k1sq37jYTMhOt\n+Oiwe56r7cSzDrWfMXRNWH3TuWR/YJvDadVr0e3rhDgltGvoJTD4tiHTQ2T/OrPmXk+YVNKUdDok\n2c9RHzsju1ORjxsGjvw64hlb4jmcbCZNrLna/E9wVtl8gThvQpbvsZJzclX1GiQ+AVwRkQ9Ff7/X\nGPNe9/uzwIvRex+ns2q4zzbPAq/c55hvB/4zEXk3sMI2+Pzg2jb/OfCzr5Z44CkmnzSxQWclOqzk\nwabETlKAhRPVTIJMTKKsBDv1alOEECIXWOcCqtoVjdSoxPr/PRFtxQUBdlGZDaZDr9YlVPLH223J\nyov37yv8rdUjzoVjXJKF3SxevXuZHO9+8/EajQbpVuYq0dBWveC3JeSOtGJ4colFPb2qeOzyKFtb\nmb+XNUGOJ0ssibTGHjcm987d5eN4bsJVoyAr0ykMRIgtHifuaY5PaW+f29gA2HRul77trZ5tahOx\nO9Vbzhk2gWPdZdmNx2ZSxLryRUACGbVTf2ZtvCT0WnJ7JlddbMha+TbeE1xuq7vW5eaVCRy2NZyT\n3KkrDHQgktCRNPSVsq0gzKqhubmguFOHZASzqgNZAZ2yvEt++cT8hGvDhvH4sBMmzVKU09lLXjiz\nrbRd4L5HPNNhv/+Vb2MeEU97WoTWFOEafcHrnm0ulyY5Q11xVrbMKuXieK8ej1jnc8cY8zmP5cAP\nDw1cAj4f+FxsU8+3OusJEfmNwP8CfMnjOthTiTTJ2UuvbryuJKVyHU39ytX71x+k2XU/BDfVfbBO\nOrHgpeSTvjvtfi0UvLApUfDcyfOUzTJch3XB1O4aVchU864Zm71mJ/2Bi3Ntg03EGNIkXfzFn/dA\nTXqW0vp4eCvHKodbl+UkXXc9Zf3MNCyZeVmUhrpHPDE6y1b3iWd1vrFtGNNIYDK4kLxats5s3ZBZ\nhXEc6pQrg04f0I9dID6nFQiWZC5qVLguw2NhP7dszrY+fxfFJuyxCe/5FHcb8xpbFY82wZy+jDm7\nBb5bqr/WurGqAUWNrCIJm6ClpoJ7KzTJg17hb3NzTnNaUi40jCBZ1YG8wNUDjUewd406HzAvX3bp\n/la6aJwf2lYKV0trdU5OSV1bb3XTdjL1xNNryR3L+5QV7UnRa5y3FVtSzI9GCSyarZmbTxgvATei\nv9/oXnvUbdbxceBHHdn8tIi0wBXgtoi8Edti+w8aY37l1Zy8x1NLPlRL9PwMxpd6k76S2k1UnYsM\nnO8eO3noeJKCnsUST6hxEsDWnjUPQDwZGRHQOTLOEG8FrdWKhK6hkTspXFnUr8fDZztlCYGEgN6E\n6S3DGI2prctwzYDzSsWebIJMUVMCbd9arM/QOrNjqabhGrcR9FbFA2Co9mjNce+1uPeQX+HHcR6p\nC1tH4uRtekkd4UJGcP1ZWw/lpGDkcN++5loKlO2id089AXm1Az+GsfXnUbXFRhKCl7jpIRqv4WBv\nI739rFQPjEfYmFsZSCdNBlYsN2paF7LBqoh8spRkNCA5mWFc59CNzqa+mDfup3Mv1l+bUy4VdZXA\nArJJt+qXgYKDqW19nU+D+GmuLlDT8G3lD6YoTyT7eZ94Yhkcb/UU1tqJEbv9giI4BJHhmOSPRgn3\nU91+JCS2Qd1jwAeBTxeRt2AJ5auA37e2zfuAr3fxoM8DTo0x93O5Afxd4IuAfywib8dmt90RkQPg\nx4BvMsb8i8dxAfA0k89iifnoz4cKf9v3fdM9BN2qMsQi1HTDRdaYyvXD6RPP44YRAdcRtHdsIrUD\nrwu3/jk3fwd3S/Q9GCadzpp3awVLwZiQ9uuxrc7Hj51Xa9BNi5m/0k9Z9ogTKRwJ+PqZbenmBjay\n//RgYq8l0UAdkif84rpzt20hnlVE4F7xOj5uomH/qhVeXc7t7/vXA/Fss0LsBF9viMfG98ajaotQ\nR+W3pZ71CCdO+RYgy0YhXla25gJLr5vgrwzqHumEvkGnL2O81p/PBFtvz+5/XrvkxEDTLjFgnXA8\nbt7B3LZ9iNqTgvKckJrNGNqitrU/ue6sntEB5BOa5t6GO3rD0s5SqFLkcIJyVsz/z967x1qWpfdB\nv7XX2o/zvqfuraqpKtd0z/SYxCY8ApZtCSGhoCDHQkxQIEosktiJEqzYvBREHkiJpcTCisBgJcaj\nwR4HI2KIMIIBjWNhEAogGWwsEzwexunp6ZqeruqqW7fuvee9H2sv/vjWtx777HO7urt6euJbn1S6\nt869556999ln/db3fb/v90tmuTeU62YvnPXY8uEe6MCCIBsPdtiLHARA3zxhjGmEED8MYp1JAJ8z\nxnxRCPGD9uefAfAFEM36dRDV+gf4+UKInwfwz4H6Sl8H8FeMMT8D4HMAPieE+E0QpfpPGGOMfa1P\nAfjLQoi/bP/Mv8CEhPcb1xZ82mWJ5le+DPmJp8D9C1IGnt0BZBIsaKF8CjlzalNHmVJ34f8wgSeM\nBt764GC20AGgWOxS7X+fIGaClSuY8iFNntvFntUcDoGss6HYLb3lQR3U4DlC3x2mxPKCFja+q3g3\nztbfxpI9BqOpHQJs9oZbeZ6HF13sVgQ8y3M3+Y6s9kDYpVID9NjwCGJ6h6yv7c44JEVEv26zRSC2\niEiC59F74QeYnbBnuYyBOuhDGQB5/goqQWDBJn99dH1PsBjGZnWLUwKdywsS6uwSC8JrbUOkKZXU\n2C/IOuiKfOL9egBnv9CertBelvSvEdFMUDNLkFqHUBxNSBg1n8AI8Xwl7SyFqFKY8RDJTU3HG/Wa\n4kFWdxw28xGldirY7vxyRedoleO1Kb8hn98PGsaYL4AAJnzsM8H3BjSv0/fcP3rg8QrAv9bz+F8D\n8Nc+yPH2xbUFH6OtUKITILwA8gnk+Phdnxu7VsYAEP7sg/SIDr1u9/WA/fLNoTJVN6sLTeGkSKlE\nVq5gylNSLA7CZHACmDTv5Ic8+asDnYs3aZFjtWnAT7WHYqBr/21ohWy6yuEA7XgxBNVvamAAmHIJ\npTKMsjl0XmNZa9ffOC7Ij2mYTGAWj+h4rGIzvwb9PURmZ2EWFs5FlcHcTXxNQwp6Hl2PQ8GeSW2i\n7bDpAECQdXWAxz2mK+pxtSTftKoTlNoPSE8z7bIdAp1Oj4tVJPoYbV1qdWozHHb7ZV25wFdKFGOy\nG7889QOcLERatmiqwK/ICrmGCtkAYLbnECpDkU2g0wb3RhvMsimm6S0ypFs+3j/mqqbyn5KWibih\ne2m9odLc6TPoty5IAfuJz9aToHzGfauwl8fBBn/h5+OFhBC9UkXXNa7tlRBKuJQdY/sBK8bR4hLP\nRfjFPNTU4riKUMD1bM/koh2rbhto0SDpzr0EGcqhBc85YCLoibjeyr4QIrPxQnoc77qlSG2m8iAu\njXF0aMJ95zk0Oczp6zCcVXTBpgNC4RAjWSA8R6T1XmnFlEvkmGCe3wXGD6HbGqM0cNNcfqm/vOTo\n07PoPMXouOP9soNu6yjj4QjJD06c9DmDCQjsHDuQU6jRcS+tHgAwuoGlfobz3TneWOQ426mgt0XA\nc3eoMVDTOHsNyBUin5BKs2WQRe/JyL9XXWFWB8bueFY0h8aZ5Moy5Wx/xZQ08JnVDZqajlGlNA8E\nAM3XFsSSs/0001TIJ7eRje+ikAvaMJzZDQxvRDokguj+4e83O7TLLYHOgwUBYM3Or2G/Sfm5I+5h\n2XPL8sHee/vCwOdlRHF9wSdN7FzAjHZ32dB5+7RGu5LW8yj/coQAxFkPK2bvDwS2ViGhhjTKDqju\nKwDUbWmnrn1EYpyAW2D6rBMARPNAXTq4MMYznlgmf7LviBkpLCBm4uWbDcz5G1Tz75qIcfACEcis\nHAqR99+WTqcrCzIV0ByUAjDP70KbhlhcZ2/CnD50xnlRhMc1GgKh47Ld1YcKA13QCYOJFaGkEfcP\nrxQNDaI1Glu9ILmdYNAWAJCRJcOufoSH6xJvLge4rHig1R6yNDgpGozSeZztNCtn9873gJA5MLnt\n1bIDqxDB1yXIdnqD+3DlkrJJCwZhfwUAsjHQ2ve9GOlo1988uERaSGC1gVhtYG6syVxudAyz/IrX\nYrP/TG1lchq9dw+5gdFd47IdAh2bbTUCDRJkeUAVt6y5yPG2qaDyMRB+vnRFVPQXECIREdvvusc1\nBh/LtrFZj5C5HcDsqeMH6tPvJRh4wsZwl0GXgbKfbrRGWz+WBNOMShFhGUAEYpymXMalmrCRD6tF\npjOIJrfnmvlshz1TrD0xlISYX5LECYNQADohcWEgp8DlQ5izt50QJABHyQ2Dqa5uuO8KAArpvO6x\n7EAJM5h3UgBUU9E5vf0Q5u3HaL52aZ04VTTgKApJf9MZ0HkKdTfT6Zu14XmdLBl6x9u1XaTKJYTM\nyZfH9t367p2wLNsaTarXNlxPrW2wrIGnuxQP1wV2Gs6iYwYGnhqzbOpIHqiW8X0BwCRV5P8j8gkw\nOt536bXX4iDwBNfdyfGsNzRL07VWKBSKI1JkyAY08MphSo3mwQJyp5E0GrD6bs7Q7lC2Y4EnvJe4\nr+M16PYX+LbxpvTCas6JySAiKhhdQuiKKgS7/Wv4Ml5sXFvwgUx8oxLo7Or3b7ZIhPFdgoGDF424\nMRxryHUn31k0k/XJTrcKT3cKn5wuMMumGKk5gQbbSO9WsbtqlgJYO/aO14MDeZqwJE9Tec8UCzzt\n6cpbNPMBdQBINCWUzKBsaQSnD8lu+fE5mgeXEWh0fV3Y+yVcOPpCFNrOlwQgVNXAxTIerJ0EoGiF\nV83yMZXZLOuqebBAtQKyMS1QPJEvdgoyV7b3AyAbwhQTVM1ZBDqhwjHrxwHwpmdQ5HjL7wcAVBsq\nb7EKhbVi6PNjCods+fWq1lgBUYlSZ1jVict2wlGVNDG4N6psf2sCVdoMr7shaSqy/uDjsVYTAGin\nryufOXfknESfD459DbYwdyXWXv02AiBRBO+Vfe91cA94FTobIfBY/bXw3uHv28sS+rJCUyeU4VT9\nn9NQTVrktBEJxVPRVLRZCzd0DLBXSFW9jPcf1xd8hHBOjIC98ZsK2Wjqyi25rCMPmG70gRSDR1+p\njYcPT4r2SsfQNClQyBq3jMbd4RIyUZim96ic9Oztg818AJ4K243OUKopJgRAgw3EnJwlk1ntnx+a\nseWT+Pm6okbz6UO6lKMhMBlA3qb6VTiQiCx1E+bR6/cJwQXR6wFT1cCTZzDDDURlezWTOQErg+P8\nvlvEJCjDkju9PyCZKz8gadlsh/pOVWuizYejkofAE2YOHE1FIMSuoxaEclnAWE+m0B4CAJB42vtJ\n0UbKDUwlZ0bfvVFtDfnGyEUBU9IYh8gnEJgQYPAsk30fTTHBVi9QN16lPVMDCFUBzF4rxhCD/dJr\neF6RIsJ4CLHZ+U1Ht6keEgw6g6YsQoph4TeDHfJDJI0TAFB7WaItuafUoupkPAw4bPeQzAZuKNWx\n5Pg+VxnQNjDrM4jRMb1f0r5/HfLN+46XhIMoru+VCOvxdvdmjgGlMj9PkTQuS6lag+yKcm2oQEya\nafT3J4G1NFNgB2oSAc5+U3PgFiTXT2Dmz+npPk02bMLXVh2ZAUh1xDCt382qOcN4fOysggVge1+B\n1tZgDoxu7Kk+h8DDry9u3vBFFUW1dMeYevwUeHweZTtXZj65dGDV+2Hd7GC4VJOmNCviXjuDuPka\nML8P3HwL6b2AbICYVYfxkCj2N15x/Zk+nyTAq2a/F+BxX1UG02HSiWJMmZCcOhBKbP8PAA0kCuna\nUbfspmbbVE49+/YwwUjNqfy5OvOLZJBtgdf9fIzS7LCrnzgCzCil6+aM9JgsMiYyhmO4hcHZ9noT\nXVeEw5+dCDcS3Z9HygQ8JBre25sd9ON1AD6+v8PA4/6WMlD2K4dKW8hZFouO9gEPR9vAlMtos4Ar\n7MpfxvuPl+DDUdXA2ROap5jfh04KVMkW4azPoWDgYaMvXhw4ctkGA39+2n6PNBCEsouXAmCWr8Oc\nPSHQseWx9nLnFIRdf8XuGp0IZprSopIpV/4xKseifoLLiuRaRvkcSt2HSRTRzVVGmcDoGEbl2OoF\nBmrqpu/N+syV2qKy5Xhoy1fBPA5TdGdHAF6H2FFPyOz03sIRvTWlvnKHaMoG5rJEUtV0jrdBACRz\n7/8jAxAK+xocTeVVlIN7gWjkCG2dSJft3YAnaNzvBRM50pTKX0nlSnJCZVD52IGQHxRWcW9PZWiy\nOQq5cPcZWZAPfBnWstpMoiCUHxkwxQSr5mzPiG6gLBBoW2ZiBW9e/AcVTAjsAfBwxcBfOBr+FB0W\nI//MvbddSvd8Rv1FZta1DV3HLAXWG7rXL4hB5yjcNRMJZGRip9KWragAkJqAvD0hUVLOduYzPyRb\njONz4PcRiAEn7/ze+43kQEZ/TeP6gg/H3uDjOUw2xGB2F3W7Qy6XPUw1H0481Apj9pXpDs5eILbM\ndjX37oJmRS7N+SqikSZ54sUdg6+unJgFfZ8O8JCL6wLaNBipOfLZHfrA2TmO0uxQNWfYWT/7Cca0\n8FhygTlfAeEuMkujRYQa2jfQoIGa3gGaCklVo310CfN47RaQvmAzsvCD6gUhm4jdJLNnBLR2hxox\nzFSOKmmh045dd+BE2y21USZqG9mBlQGLkvrh2x7g6ZZBu7M04yH9nu3HmWxoiSCVy4SU4L9/Tr0j\n7ukNRpDZEJPRMUxx7HTtlG59v4lLsbxbVxlpptVPItZlZe0yts2SpJMaAWwu/KwObN4+5j6iBYXd\nioZJQ/AJhztZ1JPlapxVQjz8GcV8RiDApUmAzhkg6vTlzpXXqK8jXV+nqROotEWbiQiEkjwhCwjO\nduZjDzq8KeJyJGeL3MPi/hXfw/kYm3Z/dOFlfPC4vuDT2p03fzCCDwVrPHGwfpYOyiKhdQKXMRh4\numBFvj2+xBYKW0aA0yd22fMBFoVCgiaWCMGBXRVbKdjd70GNuUANIWS0hT+nRa4HXTnT4YypmJCN\ndXMKgEqH+fw+8FqNpPkq8OCy9xB48RBFRr2ZXKGPOQcE5RveXbsJ9Zp6GnaXz5ItYdbJmdyelpo9\nz9Augma6eliOKrOSX51yW99QbVUTQIc08fBcdAmsy4jOLmROGVJYEgrOEeCh4dYDoO3BiLndyIyP\nsbabjac7FfWM6lZgkmoM1A5QMy+myscYDl+qDKiY+p1Gw8FhiDT1pdtAsmZPBDcsUfIckV3o2Qr9\nUHBprakEVNpGFt4MOiKXcW9nPgNu3vS9Lx4gBgCZ032tAKSe7Sdk7j4z6/ri4PG8jPcf1xt8uhIv\n7NcyuoGqXVqqM1kWLyppJ8gXqNQWUqRRCeMqq2zqF1AZRUEBu56SDe9a+3Sz5jPa3Wcp1GQJkV+Q\nCVaunFtkVHoLP/x2cLJst86LfpwOcVJsMU6HlPWIgspI23P6fQB5PnZ24QM5pUUhKFuJXCEyAivG\nEPkETV5gaxlj7hqIAkaf0/EcTSBvj5BbqRMg1tlKZoXP3oIBQFHVVNIJWE/JLHeKymIwhykmbpcf\n6oQx+DtRzdWZm3+JBiitd5IsJg50WhHP+BghIhuLyG8pHGDteOMYbGigtfKZTzeMLqkc5/oNx5TN\n8WM2I9X2fXR6cG3jezDWHgBT/3dLLZwcTx2YGr65zFC1G7w6aTC/8+0Q2ZDkkJhwEFLsHQvOqgh0\njt3dBzdvxoOpfeATnrPKAzAV5Kvjrq0nicjCEkh2DQDjXFUZcNxxWPmc5Cj3hJKbNyE+9m0uK26C\nGTUxor6Ovx+oHItibC3MyytJR+8phDg4w3Yd49peCdO01Le4feIfnB25WY+dXllgoQ9sbe0VFpXE\nSdEAKFG1PtNgNeWuFTeZdqV+Aj6kSQegEy4cUfMVoF0aT6Wn5G0STXiHwYDA80v5BEbl2NWxBuBx\nMdgHniUBBDP/VDF2PQ5PPbWAzYObDHLZEMbutMNIkyIiLIjR0LHiAOyxzxxRIQTRzsyHA6JhQaW+\n4REwuuFKimGwOjf3a8TqLDpXV/4CqAQmc4imRKao98PZT3yNaWbK9FFwu8DT6DgbCjOfcFFmBhng\nCAPutSw1uuqUf4Qxvtez2hAVvWwg5jE9mDMedqcNH//qIseiavC7j76Ckxsfh7I9MNN5HfBmqaPH\nB8TAI+b3nUJEV+W9G1kyAILHnaNq+Nq2lOzEQe2G5VDRNrJ+4I3Jx74NS/2MLm0kRUVKJbKYELFA\n5g7oG5lg11xiVW+wrK/tMvmhxvW9qnVL9e31hkoilnLLsx6U1choxqKQwKoGVnWC1JmVhcZhlB2F\nRmZA3Dw25dKLba42vn6+2blsxrCE/3zm2WoKZO1yO4XIUg9WfXI1ASBgdANbvdiTBEqTYh94nl36\ngbu2AXRpJV8CXbDwNfifpSovm3gS3AGutiVOLu0cTTwzLkv9DtWy7FwwS69tgNEKIjhnU9tSlnXA\n3LRLXFYLl6FyyEQhTfJAbuexE9bcU2m2ZAABQIwy97653o/7o3Y3H66T4SR+ZzYFAAR2MBm9d5Gi\nQjhLYp9rVAYxue2uWZm0LtuJQvus2Zxfur6YWG8gLJBp09j72G+UuGLJVdqzncL/cybwbfMHGKdD\np6gR6tTlo2MCW75mXHrje+DOPYjJbTR5QWVovep1pQXgstJx6oVP3fmEYf2U+F8YIlcHB5WTWUED\n5LdPIL7ln8Bp9TVclA2O8n4XXikaopuPMghdEdGmOUPVbrGo5ItzMk1eUq3DuNZXwvm3z1PXryiD\nVJudTC/2NrgJCgn3L5etc4ok51MdeboQrdo6oFYbBzzh7jhspAt+vK5d1oMGQGabpDcziHnlWEdO\negSghZTLYKzaYGoU0jN2wg+g6zmFu/O69uWHQwN2StLiH2SL6/qCfI+U155zpaEgxGhoqbxpBPxi\ndBwzi3gxairKTgo/VCuqmhwwB3PapdYrN5gJeF0+7rW5XXUgUuka607lgJiB7rXl/v5am5pKp0Dc\nC+HoEe00O71fbuGBRi5lhoSFYDCUd+CAV8nOkgFUuYNZvgU8eptYkPBDvPx3hDHQhjyG+nzUdtoD\n0KqW+PtnAxwXDSZpGRjPDZz1g8gntCnJAur6fAYc34KY3EaZKazr0wOOtAKlTu3/qYpwc1Dh7vAU\nAzXBSPXPFbH9AoC9HifzyLvKGcksh7h/B+LOt+FZ/QhffJbgbDfEcdFgmlU4KTbWYNCWVUXQQ5MJ\ntF0Dtk2NZZ29MCfTFxlCiO8B8BOgauRPG2N+rPNzYX/+vSBLhe83xvy6/dnnAPyLAJ4YY35P8Jwb\nAP5rAK8CeBPAHzbGnAshUgA/DeCfAmHGzxlj/oMPeg4fGfgIIe4D+DkQUdaAPMp/4tAFsM/5iwD+\nFMic/t80xvySffyfBvC3QLnBFwD8W2z9evD1cwlx/xaV3Y7vQUxp97xrVjjbbfF0l+Jsp6IPR1O+\nqwAAIABJREFUKEcf6HQdLCcpAIhgmDQFmsWeQi8vxEJJiM3OZwEsb2MbpAbwU9gKtPAVY8oI6hoY\nBT2j41tuSFA0JWmGRRYKtAg0pgamN6FGxzBDa3/ATVlLtW6stIwXJwkWbFvyavICu+bcKjpkllq+\nwEDRAGWWDZHnxKYz2RAYXdAxpx70u0Os4PMF4jJlWNLKalK2LsYo5BgnxTbS4iu1QJZ4VeNhMEgq\nuGzUYT+FCgBU8ydCCVGwN8iSISBIGSC8JrDXxAmVMpBYBYUIZPMJvWaoxzcANbzr2vUcAEDpFoU1\n23OeRM/ehrk8hXkr8AbLUiRHOcxO0T2gssB2Yx98uvc038vuz9k+mTME3FHZSgzmMLPKU6Yt8PA9\nsKo3LlNgVl2phVvA4xEEgywxuD3cItGSstOR7XMNjyBukv2DvNVj/xBcYxHoBgIAbt0AZjfJe6ne\notR+Voks4YXbHLE6+06v3Kasard4vGnxdJfj7bXq2Xx+tCGEkAB+EsDvB7mP/qoQ4vPGmN8Kfu0P\nAPhW+++7APyU/QrQWvk3QetvGH8BwP9sjPkxIcRfsP//8wD+VQC5MeYfE0IMAfyWEOLnjTFvfpDz\n+CgznwbAnzPG/LoQYgLg/xZC/E8Avh89F0AI8e0gx75/FMBdAL8shPhHjDEadGH/NID/EwQ+3wPg\nF6989SyFePUV+uCMptjqZ6jb0gHPw7WvDYcfVP7+EPBQ2c0OLAbAE+28mZVkiQXCilsa7nd0gMdF\n2Nx2BzQGChDF2TaFo+n03Qr56EbnytsFz+7sG5kQCE3vBKKaJXRDpZM0KTAopm4gFSrzBmvTO6ja\nJap26xYaILF2yC1OinMM1ApZMkCRTZAVr0KMltEgXxShVTjTzxl4+qT1LWljUEyh0xpVex55+ixr\nYAJaYLSpMZ7dJTAfdggHfF5WzZoZc7yYnhRLZHLgrgeSwT4AjYMFkt9bft8YdPKxVctukI2PIXbL\ngHGVAQUiDTYA3g12c+Z1606fRYQMAKRVlttyZDYk+n975R6M/r69l6dZi1y2dA9bLyAuzYYhJrc9\niA/mRDLRC2ybZSALJKI+U1/mVWqBqhXYNjWkKAnk1QBQOdnGT+8A8xVw026MuqoetnxpOvNV4vYJ\nxOwOqnYVnT9/TmXiVUW6BomreoO31xnOdhkerOi4L8oXY6MtEvGi5ny+E8Drxpg3AMC6lX4aQAg+\nnwZlKAbArwghjoQQd4wxj4wxf08I8WrP3/00yGQOAP5zAP8rCHwMgJEQgov/FYBFz/PfU3xk4GMt\nXR/Z75dCiC8BuIfDF+DTAP4rY0wJ4KtCiNcBfKcQ4k0AU2PMrwCAEOLnAPxBvBv45DnEzddQJi12\nzXmkxRYCDwdnOgAOZjtcZgMQyedIofyiWvu+gEE8ce+mrkPgYeotevS1wmCp/D5ZlLJD4eYBVjuH\nw7HUz2iup1Ob5wyGZf/d9Lstt9XtDtumRtXS7eTLLdL1YCbpEpN0iYGaWBC6uzdY+1wzTxzcvLc6\nXCKnGapxWiJL4nkrBiAWCx2N5lCBV49B6Me0Q9VusNMrq6+ncLpVqNrGlWtgf38gpzEATRBro/Hs\nyuiGM6LT+pnvhcgaWT6AsgoT7v0Nhx8bq7u2Pach6LceoX10icbS1UNKMYaFV5eQnkVW91hthxm9\nv59bS79OnRdSxIIMhUltT8qMj7G182AsoruoEgc6FxVwUflqQRh1kBkNVI2qjQdXtalpaPToBoY3\nXoF59oA2Itu1vwcAP9zMMbsJo3K09WVgDd/ulWL5H1+ni7LB22vKdt7ZEujsNLB9sbZcLyLuAXgr\n+P/X4bOaq37nHuyaeyBuB1bb74CqUgDw34DW30cAhgD+HWPMs57nv6f4puj5WBT+vaDM5dAFuAfg\nV4Kn8cWs7ffdx68OlWMjSuyaldvdPt0pnO38JaGbFRG5gAkG/aAjIvFJ9nlhenXofQKAACiUoRn5\ncguailhP9vtoMe5GB6gOSr0gBjBh+xpVu8W6OcfjTWt7JjH4nhQ1jnICsIGc0tCobcxqS2YIgz/w\ndStwWSU42ymMU41p1uKkIBDK5CBy2XSCjl3Q4ePvuJsa7vswMOkKUirXLJ/A9x3onDRyWQMK0HVD\nPbB237UyFHal0qvEZbCYnhS1A9Gq3UJKyghFY+dybF+Oy5YbvcCufhTNHHFoUxMAJUPkoxsQ5cqD\nTbjRqDYR8NS//QzbdzQSZZCX1C+UZQMxH0dUfeoPCYzTfTUJBhwmyPB9PFApRmpOwMPDtDuavTEI\nsjI7jMwZIvVHFBZVglUtHejstMBFacFHAYU0OMro/2mHGUrX3luUk5xQbTPPU0yPbmJo7pC8U7Wh\nPThHCPi2d8v3JX9us8TYXk+8MdSmxuNNi7fXOV5fSLyzETj/MEpt4rBdSE+cCCF+Lfj/Z40xn/0Q\njqo3rH02v0HfCWp13AUwB/C/CSF+mTOv9xsfOfgIIcYAfgHAv22MWYhgQr1zAV7Ea/0ZAH8GAD7+\n8VvRzypLpQ5r3+GHk/7vzbvCDIcjBB0n2pgMgFCXjfWwuE692tCumRfTbOMZZ+lF/4xE1zoBVjIf\nfme6R1kN/Vz4z8gE6+Ycl9XCnjtdh+5iVMgjL9df7iKPmOHohvsgZ8kSWWJQtcLV/WeZv2aTVNO1\n69g7Y9dRDAjP0V6bPW+XqiZzuSsiSwRK7W0s/LxP3vv7vOhlCTfet5ikGstaWtAhXT7XBylXMKuH\nxAIL1Y+ntwCZ+Z5RD/B0B49Rrki6qG9zwcPH4yFEsUIyy5Fd2vcgl74pzwSOYgyzPUdWLnH7+DVk\n8iEqbZ1n7f0akk7YqgNA8D4H2XJ3VsfaqW/1AjtNm7ennU3bUUaknIuKaB2FNCgkcJTRPXF3VGOS\nahzlClkyiSzHORsh8GzccUuRAkkGMbMAFB5fJ7JkAC1rHOU1Sk1/46RokSWjvd9lYgFniIUC7lig\n5GP+yf135cOOp8aY7zjws7cB3A/+/y32sff6O914zKU5IcQdADw38X0A/q4xpgbwRAjxfwD4DgD/\n8IKPZVH8AoD/0hjz39qHD12AQxfzbft99/G9sDuHzwLAd/zeT5phMqHyiaqRJW0nszFuwfEfWKag\nHr5sESMJygPP5UU8+8HB318sYVgSpytPAuzLlABeqqUrXslxaLhPZdikBuvqIS7KBoGQPe4ONWSi\nkCUjP5S5W8KsT/cWWVNQySkf3QCkPfdkhW1Tu0WbG8yTVOOkaDFQ03jxDskEvHgf0kjrzNCYrCbi\nQhBU0vKP0fvZuveRZXIyqyqtTb8DLTMU745INmkPdNYP9ma1Qm8gyBzZ+JhMAhNF+nCdjYoD4HJH\nwHN56suJ4SBq6DB6ew5p2V0kITPy4pyh1h5AQHb6Om6cvIYmbToGaYGSQHiflLHxnmO4cdnNAk8I\nrCHwTLMWiypBmmjkUqCQiVvECwkcFw1Oiga3hwmyZII0KaJNG4c2qdsoZLL0lGzmEV0xuIqmgjDG\nAdBJQQoFA+U3Z77M6k0j0ySxYOOP95PTGvdG32SMA+BXAXyrEOIToLXuj4AAIozPA/hh2w/6LgCX\nQUXpUHwewJ8A8GP2639vH/8agN8H4L8QQowAfDeA/+SDnsRHyXYTAH4GwJeMMT8e/OjQBfg8gL8t\nhPhxUPr3rQD+L2OMFkIshBDfDSrb/XEAf+NdD0DXMItHGM/uojUa02zhaLq8UPJwYrgj2/szByyu\nndjjhhg7e8ZYPWGW2ygtN85rSPpdbXfIjxeruia2VLighJtozniKMZZY4XwXN+ZzaTBOh65U6Acy\nX/f6Yt1m/3gDMyORzHx0DCmn9vyJIZbL2r0GSf97wzOzfhSDDtPFuwDLQ6ZXDW+696JxUkfu6Ql1\nZGTitfVyUQBNSaRBWaARyikahO+nFClSACM19+/p+oFvfofvKV8TEJPOWEXkQT4lQBReMBSAzYxj\n4DGPn3opnnD+KAgxGiK5M4MCUY6dblk4d9UJ8/QrNFfVVDCBURsAX+4NsxvWNeP7KCjrMvDs9NKZ\nHYZBhAVfemUQShODmwMCnlk2dWrtALy4bhAyScHq7lJs6X4Mfk/YgdAoeFMEKilLRZ/dEHQ4+jYc\nuS0J7jRwb9Tgk9MS83yOsfr43u++r2Ablw8YxphGCPHDAH4JRLX+nDHmi0KIH7Q//wyIePW9AF4H\nUa1/wB+G+HlQX/1ECPF1AH/FGPMzoDX37wgh/hSABwD+sH3KTwL4WSHEF0E71Z81xvz9D3oeH2Xm\n888A+GMA/l8hxG/Yx/4SDlwAe3H/DojR0QD4Ict0A4A/C0+1/kW8G9kAAOoG2FxA5NQA1ynNN+Sy\ntaWAUf8HJByEkxmM/TnfzC7b4R29zXjcImUzna5A5p4LZKc2nBzlwGTnG8pVGgMQYP/PCsqVX1B4\nxz26gaV+hnc2F3hjUeDeqHalxH2pnddh7OBptMCGr8dGbE0F01RQo2PIYhooOhAI8S7fZ1FnMXWa\nLS3qGlgHJIzQ26XqAR4l/c9lBt0uI+DhCEVdw4yLF1SlMgIh+EHcSHG8XMGs33Q+Sub8MrJ05vfT\nRZZCjIcwiYLKX0GaFEgCSRcuee0Bz5Nn9HcmRLkHD0B3NhxiPnMT/nvAMxjFBoMM3Cwaar1x2kvK\ncJycEatLWNKLYauBsJ+Yj/eAp+ohM9A9ldi5NzJSvDeqcJQrjNQtt7GhNbETTLCxX9m4EN3PX5ek\nwVlzYK0uZOYy3FDuCcDe/7k0O041/vHjEsfFANP0Faj1Aub8N/DNFsaYL4AAJnzsM8H3BsAPHXju\nHz3w+BmAf77n8RWIbv1C46Nku/3vAPbvXIq9C2Cf86MAfrTn8V8D8Hv2n3FFdJxJ+3ZC0WsIQYuR\nzPYmsVlCxJUNutPvoAXVdBZMUQS+NcHEdhd49qaiVxsiKryHXZQZH2NRP8GT7RJvLHJ8fS1RtwJ3\nRzXuDjXSJPfAU16h4suLPcvrMFCwL5DKkKkBtPHHzLv8vh1uBGps7MfnVafxzwJtNwDUl9h8FWK1\ngak2GM7vIytol8pZKknDrGDWSwDlvmFcUO5TDNZNBWAXzxmFwHOx7AedA9G9t9xGJSgdiTQlBYTg\n93pBmOPQe98hZzjvJ6uVJ3IV3XOikA64ojIvEPtAsR9QADzhQK87LNvzez9hlo+JyRYKkobzV91S\nmwUgAPEcXBCHhHSdn5ak0t4s07g9JILDPJ9jIm/APHsAc/ownqf6ICEEIvfUax4fOeHgIwsh3A2u\nTWlVqVPbp9A4KZZUxkkOuxjKNl4AtKn35z9mcAuCsJLzzjOl4szhwA46PNzJIL5xueHeV6YKP7yW\nEr3RC1xWCyxrhboVKCQwTplaOyHx0BB4EuWlbh4/jRdAq8gQScZs167XIVRF9szWxgCwGSHTzUMp\ne3suZr3x/a/u0GAHdPYMy95+TGWw+2vI2c2Inu1mQGY3r+4TwILMOtxB2+haCYQA2Bf2PRD5BA0a\nJ+gqhUJrtGvwbwSQ3bhH9PXJY7o/+t7DpgKwjgHogt4nJ8UUXMso27lYor0sqS80LOww6oS8kIAo\n23GvGbrXMug0pwHodK3h7WFbokrVknki9/tCf6tDmzxz/hbMG1+jTQ1n95z1jYY0XzY82gehMFMK\njPMaNKjapbM76fZpw8FrbegeLeQE0xTIqwbm9EvA2w/RvvE26i9/YFbxy+iJ6w0+2RBG5ajrSyun\n4z8sVavtXIf/sIQlnXCOhyMR0hqRBQDEiwc/t6kgxuu4jAREopkRISHYtUZR1aSUjE6TuQd4yqTF\nuj53ckEANVNp/oY02FS5c/Mc/oQIgATvoG2Y5RbtRYnkCBCbnd+xpymZ0mnakap8bGv3oJmeQ1I9\nfD7LbfQQZ4DdEmUY1HjXEFZWRswvvdxQo12ZKXnlBOKTHycmWk8YtpAG9gkPPRp87UXZI/cShFWg\nqNotznZbx5DM5ADaNE4vTpsaMk0xuPkpUg/QsbUCVEalua33MTDrDdpLArQEdpMzHtK9wNcy8H9q\nL0rIXQP5uz7mjy9LIe7f8U6eHYUH7u1UdvaLqeehjTcQaxtyBtTNfuqWhkl12wCdS2V0CTx6E+at\nR2j+v8fQjzfO/C0ETFKIqIjkEs6ydTYUpiAKfNVuUFsqvW6bqO/jNAdBmbHiz7CuYNZnMNazSn/5\nHdS//QwXb1/fZfLDjOt7VZPE+fZo06DUfpajblu3WyMbbIqq9Ys3DeRtnVhhGF0AQg5fwtElnDlX\n0GwX4Y41rNf3pekBOJmsdnYLof8KW2BzqeSibOzx06IwTnWU9ZiLN73SM8vNAPR1dkQAVBEAkbNk\ng/YCkLmiRTlNKftQGVkRg2qqwqoG7AWrJIT9iE5G0wc4hzIOs2uAixLi0SUZkF2UaC9LVCugbQSG\nr1wifXyO5JP3gFdepfeA34/NBR3Ls36fIQdmAfCYsnFCsBzOV4nVslWOXXVm1R6MJbJsIRPlqMTa\nNKhRom53SAcFpBh2Xr1FPr1DTMPTh3RPXCyhH6/deUs7CedgwLrd6sdr6MdrVCsgLzWSoxzitpVd\n+uTHvQJ1oEJtQPM1bCRIg7YSp1tKK7oDqww+WSS027p7jT9HpO/WYBD0Wky5BN5+APPVr6P+7WdY\nf3mD9blCPtpi+LUl1K2BG6I1Q1stYJJLSIoAfLZj6d8MOkxxl1YiKSoB62Cmil1azy9h3n6M+jcf\nY/uVNU7fLPDowQuaMn1BhIPfKXF9wQewJTdS3a06cvMAZULhLg/wLJ5c8tcaAwVnVMZApE0DCJBc\nuzGuJCAA3zPiGz8cqtyuHRCZrpwIcNhKAXBZDwPPpl26OYxSy73zy6VBIiRJ/7RekNIJbKrMWjJk\nwJz0vMyGShAslmnKBmJICzSTD1ypSFZ7O9OropvV7P38EPCwGnjZQD9ew5Qa+rJCtZXYrSV0JZAN\ntkiO1hDzS4gb58CxXeQD2Z6uTIuLoNy1B5Dcpyuol+J7KENs9QJnuy3OdkNbhqKMepI2mKSARnw+\nW1ApLZzFAQAtxxiOjmHskDJlgt5M0JQNRBZbN5hd42yn20ba/2vaENy/AzG/j3JI10CbEghUs8PZ\nndNtjqc76RQROMnjOZ2usgdcwZmu06KSqNvWDmULV3I0uiSihVXj1o/X2K0Vdmv6ucoMksvSWiQo\nJFbJPSzxGl3acpt13rXKFPtsR8R+Tk0JoIrny6w9uGHr7ssSm0uF3Upgufjmkzj4nRDXF3y0hlmf\nIc9fsaKU585wK5z1CYPLCpNUu4FDTuFZ6bg0fk6CgC0o1XF6LxP6/WIM0WQwWMK5YqZpVI5zX8fB\njjgQJXWU3E75xHup1E5DC/Dg+XRHKsa/6+gC7UBjass+AFzZJWyMm6YCxmTVzAZ2yVFOvSiuz1s3\n09CZkg28RJD9CAAmAzAgEKasqkZy1DGrAyJG31XlN4AyMnquhLo1QHJZIlEN2kZA3RpAfXxG/ZHJ\nnAQs+VjsYiUCkNmjtD+7hMlSJMPCZUB7x2l7FbhzD3p6E4vd11DqBGM7XAsgkOePFzRWfqZMu7EL\nemNnrgYwRQpx8zUYUKkt5dcOPZBsmCyFzFK3cMvLEvI2UbTF/TsQtz6JZjSFbuMyJ9OZtamRJVuX\nzXRbbHdHNT414yPZV3weJLDDof6Jk1QjkwNkyZAYj1XQPwuAVGUtpHUndd48hfQ6dtwPY3KBrABV\nkSYcLIstOCQGOzc8G0o6qQzQVplcZUBGeovJLIfIJYpRhWKsMJnKq0VpnjdeZj5RXF/waTSVW/IJ\nBqMp6rTESVFiWcuIvQOEJYXWzqscOZM1lCugWbhGfT46RpnFl3Wnl+5D4Ep0yQBK9giFdudG+jId\nroGHoBOGynobu6HE/U4Du22Cy2qIe6MSv/voKxgVRwCA1lySaJGNkZpTU7zyRAlpJ+qdTfFoCExv\nRaCjTe1qQVKkPQBkAXVcx7THYOFnBhaTNLgnxn0njvay9H2QWe6+FrYXr16Zkdrx7ROS/09aojsX\nATkklMUL+2Yyh5mcQyzPXf/HARUfI1tZDEbAzU/hvHzg9OWmWRtl0GS74Tc2nHVTpk0SPu5SBKQN\no3Jy5MyGSK5YxNh0MDmaILm5pPmx+RjitY8Dx/ecU28YTINHU2E8Pkbdlsgl9aoK6bXgPjEtcX8s\nMM/u2mP3mnkc2jRAAkzSBrlskCXGfm5IqNSUj7xIbHB/FyMNzfbYaduv3hBG21D202QRrZrDUdqZ\n7NJ3rZxdOWg8wfpLydsjFJclRusG89VLwPgw4vqCj9ZU3y3GTpJ/mvUz2zzoTEn2nSf+eVZl65lI\nptogn993AMTUVCYohMZkkS5Yx6xtbyCViQcI5PlDAUqODhDptonKbXVLYom8m6XvSdPuE9NlJK0D\nwJVKxsUxZTVcfmN67nwGzI6cNUIjE2izwz6neR+AoO33FiDc8hz2sCZzmq7vDHYKJZHAZzvc3wGA\nvPAW3QCJbyZ3ZmSfMb0FU0ywq58gEdKKpd4gAAqoxV1rheHoNWDwjEDIlmgiVhr3IIoxnlUPsW1q\nd0Y89+LBX7iybWg5cGl10ej6U2YVSt8ARPnH8av0mtyr6htazlLneeTccY/vRWKwaVLY99gO0C4f\nEyFGZRhlc1Tp1t0HRxkBz6uTDNP0JuTiFAAwzCcwxbFr8keRABkaK1E1oiY/69dt13vzY4kykJmh\nkpu1x3Z22JzlM+jyZ4WzH6ysuCxlQA5wdgunGH7Q1psHslVGm4hzsqdIZjmGqxLl+gX5+QgRZajX\nPa4v+LSGdrC7FbBbQQ6HVrE4/iBnifDSKm0Cc/kQZmEVfzrOmsxWM9kQWfEqtpbe/HSn7C6wJk0v\nK+lOxmR8PLaM1Bmm3GtqB4s9gCsZZOFulBc5l/VoEn3keGcLvLnKcZQBtwctxinLDbW4O7yAFCn5\n4TQVcCMgOTDwTO9Q3V2v9o4jti72ACQwoZJj29DfAfyCzqym0Q2asRotyXNodEGOpmkKNBrCDkya\nHZXXAMuAy2UkPyNun7hy28bK/3NvxQl78kFa0NnqBda7Cyxr4LhYYTScIx/dgFk8Aoa2ZBhIzpTt\nFjtN1svxPURN+Fx6Pxv/fgisakkqypXAUWYwThWVqZJ+VQ0A0NYCI3Ki7UYwlIrpLSd2qjWp4WtT\n+80UC4jWNUx2hqx4FZkcYJKWKGSKu6Ma98eCsuD1wn0GTLGBaCrkxRiZOsZWLyBFisTUkEZBiwYy\nqb3ALks0rTYR8NBmoUEx0sgGGslsYMtf6qByg5OV0qW1rqiomqArYPcsJhKwHUjie5l7oTIgrQjo\n8iWSoxzZZYnR0dW9yJfx/uL6go/wrKSrmuIksVN4Qy12IuVdZRZQpNOa6u/5BGW7xaI6xdOdiur8\nWQI37U8yM2d+5sXWnYk2C++0CfRmGdzU9w6dLFpaQSor1pgoAHEZkYFn18BJxpcNqXJ/bGiw0wk+\nNkisDhcx4rJkgAYNld/axpMbJrcjVh37o0SLpt04EsOLZi6kyqn53eTU/wE8ANnzY/FKANZ64I71\nE7qg6+H/NJJZiWRVQqUtktkgshoQ8xlw82bkerqsiSwCrNwxsu8RubLGluB8/I1QbtGHyjy1tzlD\nazS2zRJZIlC1xjG/AGJKhhECz05TZgGQvMuqlnhjkeOT0xIDtXOyP9rUjj4MUDl0MD72ZcOzJ1b2\nKJ7ZCRdb0ZQYIkejbJ9y50ViTUDv5teYZtreBzWkGFypa8jvOzP5GIRS5DRHZgxl6+XSqnT4Xp8p\nG1Lo3jX97194ToDXSpwDSBR9VhrLrOxuyDqfbyeuyzNCfP04+7Glt2RWIpmVyFZXWJm8jPcd1xh8\nhKcm52NU+pktlfhgWZaBnALh7pB1sWYWuAJpdzanW1QP8XSXOODJrIR9Jof9wONedER/zw5v8rS/\n27kP5v3lttDnJCeGHQNALls3jf48wd5FJ0WD42IQWRybYgLRVFSiUtke8Hh6a9i32CKTtHBpwQtT\ng0wNIApY0gUcvZsYdnlv38otkmlF/ZssRaIk0kJCFARULtu5ecNrlw2PXK+DSBgJSg17nARAUvpS\nqTt2OcBRQjbkrvciBLGsgkVNihSt0T6bQuMAiBxV9yf/uQTKwVYDAAHQly8KlHqNk2JfcUJ2Jvmd\nSeF6QxuWcPC0J6j53lGuZqAaHTuiTJYITDNtfXACxQM+9+5xYD/TBQJ5KmntJuwGRoyHwPgSarJE\nMlsR+BzlXrOOjRU7gMLKDc6sD3Dkg6tP/F3Ylww+WQpRSJf9vJBIXhIOwri+4JMktkk8hBECrdHO\n+AwI9cCsdTFrtVk6JgAaFh14iXYGnnOrFr2sU6zqxJawWueVonRLkvB98vkcg5H/cAIx8HDfJLQf\n4AYu1jDZEqKgAU8pUuSydn2HdwvyXAGOCxJXLWQMdNrU1CPpUFzZe4X6Gp62zhYN02xjvVRs3yuh\neahMDSCklUmR9nzysZMs6n/vlKdzz2e2BPgUKZcnw93yYISu8R1Rcf1AcZY0qEUJKdjxNH7dEHhc\n2NmYPmFZbWqnZE3hZ1/4NcOpf3oNz6YMS3NfviiwHNWOhOB6caARAeeQu137eSlWnZjtKwGw+R6q\njVeq5gzAZtNhaQ6AM5iL+k+hgG0EwspdPwYr1V1meAA7GwLFxjElk2HhMrcoy88nrh8FgLIeK3Fk\nYAkWMxroFk0n80kUgMozQQ+Es6qvGg8+kwHERekILC/jxcb1BR8haHGXVKuv2q1juk1SasJmydD5\nzbjMIuzJjDYOfMT8Ppq8wKI+dYN5fibIYJLCs30uH/QDT18jtLCHGwAPCWCmXljRgiJWG1pw7cyQ\nzIuoTJJLg1W97ygZxlFmcFJonBQ1RukRmYrpyg0halPT63cnydsmMG6LexoALI24wST11gJasNim\nIjkeu2s1QvQSFqJh1fBajWh2xYTMs9lRRAQIje+qNsxCEuRSA4hpx+zJxOUjfiw8lu4IkmA8AAAg\nAElEQVRxUh+viQBIt03kK1TaTIeHNWdZbMcOAIvKYBVkqr91nuL2QOK40G62BjBw2x6b9bBwqFCS\nSlQ2sxdy4mdawvsYgLH+P2Iwd6oMEWMsUcilL6PRtdhduZBHYry6AlDtv3/52G5gJhaEbKaz3rhM\nVYyO3QYnn9yGOX+LwPH8Eu0pZUkSiDXxbEktUrx+nmynqTzzDVZrT1Hm076ozOcl1TqK6w0+9qYk\noBlgkq7d/M5IzW2DdL+BTk8KPtzz+86Ou9JbTFI4imkuJe6NKgzU9PmPjXf2QMzQ6VnwukOSoo/5\n1AkaFvQdpUICu4DVNM082+1QhMDDZmk8yMrsLSY3cNCOvsZRDme256iwHDKLSoZ70Z3NCGyrxbfc\nsSc49mrMHf8ZnnsKg7If+/IB6DDNeU8QtU8g9TmDZ8Sm2f5Qcxh83S4q4J2N726VmstgzZ4yM9AR\npU3TOEu8InzTnq6lM91raWaHHT+1qb0AK4L+SZ+KRd/rBGaRWiaQagKRj0n8NRsCw8pZj7M+mzY1\n8vwGlQUPsfv6gs+ZvYsUgKohgNHEMt0LlXngzlKIXL3MfD6kuL7gkwhXghDFGIWc4PZw6z1n3AyP\n3QkN5sBgTlRbLoXNbkLM7mAjStSahkt5V8+DdtNMY5YR8LRGY9MuMZzdic3T+qK7W2PgQSD3f8hW\nu/N3vcQJObXudGKzH+OyoJ0mt8lZ5qfRw9cOg1Uh9o3bWjuzIpEGu3wqKXkKtyNcuPmLKi4hKprb\nCNUitGmg0UDmBS1++SSWLArOmRloYbbGZTwqDUosKmkHOYM5E1teY5tl0ZRAs/QAt5eZ5vb4anc9\nSE3C06gPlTpPCsoUn+5ikC21iCRsQiLCOG0jZ11tGrqfbrwC0zaUCTOtOiCmGJVDNKVvrAMA1l5K\nKZAaEk0GJcekzmFLpHxPt0ZjqxeWnn7s7o0GDYDGKQuEQp5S9S/cwhgo3aKR9v7JC8p+QQC1Dcp+\nWTKkz2Lb7LHk4vejBwCZIBT6XQUg1GW9CZkD8/ukIWf7hXLYL7v0UYYQ4nsA/ARILe+njTE/1vm5\nsD//XpB3xfcbY379qucKIX4EwJ8GcGr/zF+y1g38Nz8OsrT5EWPMf/hBz+H6gk8YuxXy0Q1iD7Fp\nlQUeTt+dDfVg7oYjxfQONlY5lyNqtsoUWafEVbc7lDJFVlj2UZ9PUE+EO0b+fVdaCGeCOtbSrFsX\n7vZDmRT/GAFRmpDXPS84bCXhF/EmWsy7wcSKbnbB2mbj1BIuQsfMAyDcBSD+qhNE10/oKv47wZAr\nL4hh1rOsJVY1l9vgiCAu07GgE7msdlhjUFmUETHT7e01LYDh+YeAAZCd8yidozUauVy45/DzuhnR\nxwbkAEpgaVxviNhvO5QiRT6/D9NUEPPKg05BrMuqOaNrHg7UujcsHtw05dKJwiIZoBshANEx7PZ+\nh98n/spgziGa0om4KpvhAHBf2fLbHWIygCkfXr1Zc8aLQZbXNpQpMUEoS4lN6kwXK+oZdWnXVqLK\nJIpK8y+qVPaCym5CCAkyePv9AL4O4FeFEJ83xvxW8Gt/AGS4+a0gJ9OfAvBdz/Hc//gKYPlxPI9X\n2nPGS/DhKWlNpbE94OEbWfodnMgnMMUES0uvDSMs29D/6WvVbtzvEjNsExmLQSb7zKAD4bIeINYl\nq6y1tP29ULeuGww+IQiR0nXryAkHZ0yCrKfPvA2gBb1uKcuijKe1ZmJzb6J2oBYfedr0ABAAtzMm\nTxbeZU/c8em2CaySfdazrBUWFQ10kqUEMboKOXbUYwc6PEwKABmRS0y1oZIeJpZwQK+zbZZ4uJF4\nuN6/ZqUWuDeiY7k9TDBSxxjIqTu+LKHnsrgtqwl4oz8/c8URZqZVuwGSIfL5fbofeDhWL8jq2tLf\nGYDQdQDlcPc6scbICbSBFrGCQWs01s15dJ/zexFGeP0H0t7bFnhYU436PoV7f3d66YZf6Twt4Scc\n5g5VP7r+Qww+TeWYqY4gVPlyGoGQZS8C8RAq/18dU0+qj1360cZ3AnjdGPMGAFir7E+DshKOTwP4\nOWsq9ytCiCMhxB0Arz7Hc/dCCPEHAXwVwPqq33svcb3Bp66pyZ0oYLeCKBDvrrisFUy+m2KCrV6g\nrmnILpTN6VoshMEfTFq0G5oHsfRj39iOfUe6H+YIlHiu511q+QCVf0K9OmpwCxR7QqNt39P3sh4+\nh0NBIppxapUlBlJkdH7Nhq5r1ew3rgNWFn8VKnPlG+7dsENq9/pxVsbBiyZnPeECz2VI0hwbOIfT\nCHhYUYGlXWwyYECK3VrU2OkVnu4SPFyneCfetFtwl6jaBpNUQ4rcZVdKZkiTAlWyxSTl6ylxUugr\ne2550K/TpnEDy2WWQuYFUd517fpxyxo4yinT4JKZY1tWwfsY2lADEAWcZhpvnnxGw2QR/x50I3wf\nKqsq7TZ1gao7k1fWzTlW9QYDtY1n4S4fkZrDahNZe3A41QD7N93fZ6FYJlcg3ti4UBmAgL3X+Zk4\nsEl6z2FJTs8ZJ0KIXwv+/1ljzGft9/cAvBX87Oug7CaMvt+59xzP/TeEEH8cwK8B+HPGmHMhxBjA\nnwdlS//u857Au8X1BR/d+nQcfjFxwY1tHjyzjWvAs3mi/oBl9hiV7tFvWf8qXAxoAaH5F/qbwz1t\nqvADHgVPtXMvIqPF0cBK77j+RAspUkxS2umGki4AcLZDVOKh8hyZgOm2Qd3u3DmGGl48z0PnZuxz\nhRPHZIFWJhwUOrGlrg0KuXXln4PR/bDvVpFBHUfIRvOlnQG2etE7I8SlPz7Xm4PG+hkRIKBZRDYX\nobJ4tHANQKDZVJBZ6owIS53gohKWzOHLm8cFXStiU25spjuBtqrjF2Xj9N7GaeuONQy6ntSnYgHS\nSUoaatLEH+PwXqP3x/cKKbt7Blye+id0F0RWDWi496bcdU56LKm5J9cKb5S3p/VmIysmvvSXKOd5\npA3NUvHXCHguT0nYlYFHSe+hpCRtDqyth9MLzIbAhM5tT7YpcN8N9fuiMYaglGvW+wPH34B4aoz5\njm/wa/4UgL8Kenv+KoD/CMCfBPAjoHLcSnTL/x8gri/4GBP0SaxMR7mM6r8in3hbgKDpTkyooPG/\nW9IN2jZWEiZmtrG/CM/BUCbiP5zOY8Tuhhsczirc7jzMeJjuDbjZJcgMMDtIoTDNNnaXT78+SfVB\nAKJeCFHOZbKNFhPX7wl8UsIeBQtkhpP7dP70e4tKYqDOIdNbTk0gCnY6Dd8m/uAHBnWhQ2oE/lax\neKCmvVpjWSJcdndciFhpOZzlsn0CnpuJds5Z6nsGjbWegD/PMApJVGqeHQOApzuFUi9xlBOAP93F\npITwd/vYcAxCzBycpA204LmadE/kk8PRpMsVzPIxzOOnsW12Xy9C5q78liUxiCRC7mXAXRX3MOq2\ndMeVFRPa6DUVaQEGdg40WzeMgMc8fhptFIEOq49jvSH1C5aeyoauVwegdzA2dGzl/mYY7p745oq3\nAdwP/v8t9rHn+Z300HONMY/5QSHEfwbgf7T//S4A/4oQ4q8DOALQCiF2xpi/+UFO4lqDj9sxhQ8D\ne7Xf0BoA8EwdNEuvUsDGaKMVFO6jsQC01QuX7ZRaRtYGBGDKLX5MCVXWGAvghq1dGHQVN8H5+AA3\nlIpi7OmvNrLEU4k5JmnrFmIGIFo8EywqYwGohhSlPQ4POn2DpF2tMq8fR6/nQK2sIcU5dM/gppQK\nCr5hHH3wA4M6pTJIFcySsEsqMxN7ykVSpNDWqgBoAxfX3JYCd74UFFhQOydUPkg3P8OEj6EjZ4Tg\nU0jSyDsu9oFgWUssa4Ms2S97hvpvsSxSTBoh113SIpzYDDrpyZr5OXSfDWDWbwKnp3RuANiqwJUV\nuR+iKkc+EIVnrRHlOu1k6M3e6/b1C7mno01NJWc1QRWw2gCrs9cmMfBYy/DIWJFnewLLDYR27iGR\nwg6q9obKXEXDWYjYZdGsz6jcd3nR/9z3GsF4xweMXwXwrUKIT4CA448A+L7O73wewA/bns53Abg0\nxjwSQpweeq4Q4o4xhs0j/mUAvwkAxph/1p+C+BEAqw8KPMA1Bx/KelJ74/r+T1SCCz1pQmYaN027\nastV7ZSyy6R1/YCuWV2WGEzS1mU92JzR3wt2+A2YMACrLdcZdg13q1xC4F2dJo8TbWr3Lnd3pUdJ\nDZbBOdsBF9ZGfJzCSvxLZAk1McJMh76+O/CEEZb0QuFN7nFFvisMQGEJLA37ERMSJ9X+d0JyiAAg\nRr5cxDtuVh0oNWV/3go9KLmxa6nNitm1FAAZmgUlnvD4S23VwhsCnqMMtrfWukyTNx6LSjrli5AJ\nx6ZsnBWHWWWWaORSuOdeVomjZOey2mNVSpGSXp0Vsy3khARENxfOMA2w9hONhrH3k8DQO9Puld8O\nEVB8H2jb0OtpNHumeO53LfNwb/NhZ6vM8iF9rp5dOldWAOTtE/ondbM1/kyw1w+TCKw4bf+x10CH\nualEIID6XuaKvkFhjGmEED8M4JdAdOnPGWO+KIT4QfvzzwD4Aohm/TqIav0DVz3X/um/LoT4J0Ef\nszcB/Osf5nlcX/BJEu+Jw30SlsW32Q4t/jtI7Ftlg1lDzIRhnSmW7FE5dvUTXJQNnu726bcAlVgG\ntoeS27/HWRcN2FFzHQlgksHVjc/QjqFtgO05kCgM8wlQzFAmrStDucVYKBwXDY7yGifFDsdF6hbL\no1whS0ZO1y3s+XD5DYDt/Wj7OwaLSuLNZQZUSVR2u6iAXCYAlF2EN95lMlFBGW0LqaYQfeKQXXLC\nIRHJYFCSykXB4mF9ZqrWuDJVNDjJni5rWH0vqzfHhmZAoByQB7JCBXYaOK+AQgnstHG27FlinOIF\nA8dFBRxliR0aba2KNV2PPmFS/jsnRYN7I2K/jdMh0mSEgbzjKeIATJq7siPPMeWigFk/cE140eXa\nh4t5lnoyDnw/VASzZt2Iy8r0GAMfp41d1mJr9J7PVdVukecTmGLjzAtFsfXq1gBCYzkRDIQ6PyUr\np+Tkn/SzPfYpbxq6BAptasrAOXsaVC8OfF5c5gM7f/OFzmOfCb43AH7oeZ9rH/9jz/G6P/Jej/VQ\nXF/wKXLgE5/aq/mWTA5oTt0iO1LzuMdjd91idAyMjikLKsa0EA6PgNldLOoneLKluY9VvV+7X1QJ\ncqkALIAMkGoONb0DIwQtHHrlmsZQ9No5fyBSq7rQbRTzMF3AhjTpBaAy5JPbkKOpY4nxhy0REtIQ\nCE3SLWQSmOXpFibwbUF+wwJyg76GPgDMsh1yucSXL4o9AHqwSlDIBLcHpH5wb1TRLrm1jXO3OAVg\n0PnH75fLRq0sDyka+1JkuEjubRyszwwAR6BQuRVMBZy5nQGQzGqYQnrH1mCA04yPsaseWqto/3qP\nNsCuEdhpOs9xSlkKg05fUI/Nfxy7wqShx9Ism2Ka3vK0ZX0KVBuiIwPA8Ah5PkGe+xkas/BagiJN\nAc4ghkW8kIcReubsVkCnT9el3IfySgCwrHnui4gdh6QFma3HUWYp8pPXYLIhxF5JMADIUJWeN46h\npXb1NQeIx8XAERoOqmfYYFuIwewujVV0ZqFexouJ6ws+6QA4ftXqum3QNqeRKnNY8rg9PAcU9gGI\nY3QDwoKPKSZY1E+sj0+Gs51ycxsc3GvxVgtU906TYo8VR86WNPtg1DSWvg+DvYU4gtkfOokLyJt3\nMbzxSmT1DVgpFVD/IwQds7mg/gAAY83r1GBOsyIyqKGHQ575TSRDCeACbyxyADJacBmELqvEzr9U\nmKRwAESZSAolCzrXbOjo7pwVslyOIxt0pV06/+9dbIKFUJua9MM6Q5iCWW4sdhlYhYvpHWz0Aqt6\ng2Wd2Z6ZB6DzytpWaIOjbL8U2Xc/8LH2C5MC43SIaXqT/HTe+Y3YcDB878cXMBYgle11RGaF1jLA\nfR9mEPxYGNWGRDt15VQdgICE0jbuXu0ONNP5GZRaY5p5PysGAc48GID4/EsA2ewu3QODxzFZoCs9\nZasUW71wgLOoJJa1xKIqsKqldWA9jxTarwptaqyaMwzyKZS681zPeRnvLa4t+DSmxtPygdsZUVkk\nQakz9+Hh3WzV1rg7PMUopYygdzFTObRMsG3OcFnR1DrPfTD4sGQ+gZovpxAILTBQHvwWlXS0Zarp\nryj7KcZUUgMiSjD3nLDaOJtpY43WAEB9agex2jin1Sb3lOWIKh6AjjmnmrspGydxb26cU2kjNLML\nZjagMkxuvgY5SpHLJ3hjkeOiim+zi0rgoiIHVR7APCnoenBJ0NkWWLq7y1CtknTXLjkEoG5p6N08\naCj72UCGQ5iDCrjBdt+1d4+1pmyl2WHdnDtaebfHBZBP0leXAvOM1MI5Cmn2fp8sC3xpKBQmHagU\n0/QW8qqBeecfoH3zAfDkmetFdUNMBsDRJcTcg9CeDFOPVXn0OAfT+asNIHOIEV3ncO6Ldf1osU+i\nLBAAVjWVnCOKOOCy3S4A+etXIxvZ9wRwmwp+fxtTU2m6OcW2WeLpLsHTncLZbuRKvTsNXJQCO50D\niAHo3e4LOobFu2ZKzx/iSkHW6xbX9kq0RuOtlcGiyl0dvm93SpIzyjaFL9AajZGaB/2Cxsmc8PdM\n6Q1tDHinm8tYxZhVignwvCVBSFCIKLe8yLOZ1hX1aLMLFpzw95rKTZWHHyzH7tkGZbtggfPCpcGQ\nc9+Qa1MBqZ/CLyQtBBdlvCjtNAF81VKPYyxTO7ujYsqrit0qefI+olkDbnFiOSA+v0Mlwm5Ure03\njY69BM3YnvN8FlmFs2PrNNP2vRIA5J5iBH/tKkrksrW2FbXtr02jQU03u5NQRpy3Cb0/lzRs2V6W\n+32bvjikIRiW2a6iWx+I8Jry/V61ZA/eNyB7Ymed2EdpmmnK7DqlOL4GnAVV7RY6sZ81vdqbH1rV\nGzzdKZxuczzdSby5IpPEvqD5NWtNIVgufp+I040XBz4vI4yD4COEmAL4iyAe+C8aY/528LP/1Bjz\nZ78Bx/ehhRTSijsmKDXpmnXLY7xoeMkZH12dM/93iWV0d0g3dJoorGqJcaod4JBwp4nq+LRQEyWa\nmGXa/g6pGKdJ7pvGp6e9oCPSFJjPCCSGBeS8pjkVAOLebTJfs55DbuI8jBB4rNMk5rX/PxuUMQAd\nmtZWGbQht9BVneCd7f6C8LGhwSvjFndHNU6KxjbP81hwtCM2anQJrEuIfILcilAeUpjuAhC/Zxxh\n7b/b9I5o7KFmWEBk4H8DRe81a9oVUvVuMLrBckNZMtmTqYmOBXaoeb1wU/4sL2N2uh+AlPTZTDF2\nNGNTWspyqFfWBZxwAJO/su+PNQ50NhpMq04UjnImGDBzzw/LZolwZTmORSVxUrTQbbNnjNeV7PHk\ngJjezaoV3HPryz4LBbw6NvjktManZgYjddOZQ6KpoEY33PRw3yZlrI4hVi9oyFQkL4xw8Dshrsp8\nfhbAPwDwCwD+pBDiDwH4PmNMCeC7vxEH92FGIhRm2RSlXgJIbakgNvcqJCxo0AfJ+dCYpjdlD420\nAODuUFumU7sHOF6bS+x9+DI0yBIglxqlFk6ME2uaTDfnlwQqw8I3Y4MQqW3GjgAzHtL/b5+Q59Bo\nikV9ilW9we3BPXvcKf3tbUe26cbMT4ePO6/DWVc4MR5Ea7TrAbwb8AwUyfdnyTACnkhbLwAEUy6J\nDdfV3Or0ekIAerfgRW5PV6+vCa/yaFFEQjv7XFZRNsv2HF3pGd69p0nRAzr7C7FoSlK0qAMNv+Ci\nhgAUUZHTlAgqliggVEb9wmrz7osgswuZ5GEb+TSn058pDFRK9guJsjJCXvpolNY4L8+DPifwdJe4\ncmt4vvzVKWN3mGp8/Virr9TCVy6CQwvvs/tj4YWDWb+vqWiswQJQdxM5TCYwZ2/ChGoQL+OFxVXg\n85ox5g/Z7/87IcS/D+B/EUL8S9+A4/rQQ7QtRmpupU+27gYGvKhjmhhMs9btajliwcr+kg7X608K\nnuXYpxUfDIuBbMtQyDGRAJaPSWbk8bnd9W6BSQeEOjtZloUPgefNZYXTbYGBeoJ5dhcAaHHjgdsQ\naG7M9ogMzjuoS3PlhVpm0DUZ6l1U1Hyf27Xu1YnB7QEtCOyQycZ9pP1VHi4VAX4AtakiajrJIVXu\n9d3595Tg+hbPPR09NhbrTsfbvymFQpoUSEwNaRS0aHCU1JikNEDJEjFit4wzKZXRTrvTv+iGN2Ir\nqdzGhnGrDUzZ7PV7HABlqaX7+6yntEoXkpUFZO6zIGC/HxTYmYd+SCHw9Dm4AjTcy15NrNqBugLU\nGLJIkSWnbu6N+5mTtIF0JVdPhXYlVevv5LX7GlR6G2n1Ab5kztnOvVGDk6KxYq4WeFjJYkODo0wj\nV/kY2t4fWTKk/tr5l6j3+fhp73v0Mj5YXAU+uRAiMca0AGCM+VEhxNsA/h6AbzqZ1/cchnTP0iTH\nJN1immlHiQ5LJty7ifxtcPUktysT2A/LWPoPVJ8AYzdSBAoFEhianFwcL2lAkIkECQqIvCZ9q6yO\nG8fB7BJUFgHPVxc53tlSOfHb5+eYprcCG254R1SAACVNI9sGt/tGj1CjpTnTdS0BpBhI2oV+bACb\n7dQuK0iTwi0KqJZxxtMhMnRfZ88YLBQlDcEC4YS+tfEO3g82taNhUzsr03XC5MHFQPGZZoh8SU+b\nGlKlfnd98SapYId+QIFIrZA5gQEfa4+umPv6HAKynPWINKX3PxvCFBNUDZWNsmRIMyxsgx76IYWv\nF2Q7DRqnjh2CdndeZg9wNiuY8rHvnakMw+kdq995iq8uUwcek7SFFMoxLSlaAP49EIAbmub3jyNN\njKtUhMBzb1Q5irWzSgmHl8P3VlVOFSOvGtroWeBpH70gPx8h9tRHrnNcBT7/A4DfB+CX+QFjzN8S\nQrwD4G982Af2oUdnx5klpPYMAF0ywCSNS27Jgensbm8hMbUDkr5ywlXhdn3lCub0S07aX8xnSKzc\nSDLLiTLLNODx0BuEcZ3eUlHXzSnOdlucbnPX2yIGEs01yWy4n8XYv4O2sQOHa3qt1YaApy/zGR45\nCf9XJlMACxxlhQOdo5zmiLJkSE3fcgVsz/YBp2tZzrt5gF7HLeiIQYg/3J3FWhSAkpkTJuX3kKfq\nQ5kep53XzQiqjVd8tkKnyr6Xhq2jmxLm8iGBzvK84yUTzKa01sxMHUcvYYTwdGaVk18R7OBwtgG7\nazqgKRRN/k8GNHw5HlK2GtDBd3rllB7SpACSAWnk2ZfZ80MK6Ozc39m/Pz3o8DUkq4w3ex3QAQDl\niubFMuATk1Ortq0wUsdU4nr2gK4bW2h3QhjTYZsuAdRWCsoAUDjKfMZD99rYeQ8ZIQAWNrWgw70s\nzkBdX3V57rT9zCEGw8v4QHFwFTTG/HsHHv+7IIOif7hDJKjarasf57LFNGvd91liXLks7MloW2bp\ngk8WiF0CrE49iPpD/PMr/XqcZMyCSmHL87jslaXArRtIhhuvydVRaYiGMVWOrV5YKqo/ZnYXJd+b\nBiqf0CwPEA/t2b6KuWTJp7UnI3QXVDtZXrXeevyVyRS5vHCg43a3dmccZTeAn1cKFKXRaJp0H3UA\nsutO2cAPWu5dVyIqsDCpNvuK5HvA0804bL+EgGAYqTDwVmZPconPgd8rLouxmK3KyBtIeQpzdNjG\nurc2c5hZRbNHVY3kyA6M8uQ/l17HQ+D/Z+9dYyzLrvOwb599Xvddt6uqS92t1gxJUYop/1AsRQry\nw1EgC1GEBLSFmFKUhyQTViSLcJD8iCgrP/ISME4QAXQsSKEVwZIRRyLsJCISGYxJQ0mQiDZpQ4FN\nKrI5Qw5nunu6q6vrcV/nvfNj7bVf99yqmpme4ZA9C2h0ve695557zv72Wutb3zeZQ8xu6R7NEg/X\nHabpGuNkCLDxoUs2YS8pR+PMzXbCwUzfxiKhBfviAdTFI3rfehZqK3SGMYinQAoM4gK5nOhM40Xg\nwT1yYh0dQ91aQ0yO/Iy3rSBk6hFlZLQxRIdMKlxU0XapbUneUUobEKp8QiDU0xNUF9a+YVeJ843H\n01M4+EaIZ5ZqDWHJBQQuzRYpYBBvZzP0tZ/9pNGAGuWN3SHGACBTszPm+v2l5RMuOVVr4OSRmbMB\nAOxNDNtMzGe04PeBjpaGNzvX5gR1V2qzMmvR7JKkWlUTyHADXwMPexcBIKvmCw1ASQVjxhVMmDcy\nYrUdE3dGh7YUtdJzRO6MEoOrOxi7LsyskioaRHuZ398Ktb3c0pb7M44eYVJPlJT/vi/jCV+Dy1WR\n87f8HJoKbUBnXdCcVBZb/TQG7rH+7FwhW/iSLwwA8/Ftmj8ar4DVEIIN1XS24wHP5AiNjFA05zgp\nNnhcpEbSaBDv6jdaIyIXdAAaAJbSPs4Dni6COn2RrteHjy0RZn5u6Onm/MjMNPkH8ZTum9UF1Okr\nUK8+gHrlEbqzEvJoRCB2dArs37EZvA6hlAEgOpYSabTRVQoiMeRyaoBHaakp4YiIAkCDBhL2fbH2\nHVb682taff310OjejTcdzyz4KCgPUGgKWzllNiolGBqu8rWgWCnZAI92PwXg9x7cCGvsYTQV7boe\nPoY6PYc6XaJ9SAw0ebQBlmsCHi6taB0rF3SgLRlcF8tNUwOIzXuc6QyPxTXpBXxfk0YPzK7qM/qb\nGCQ3IjO6mePKp+Ey4LUXSCPqF5nMoikBXgSKJXB6boGGgwFIWxh05yW688KAjyobREVLcjesOIAd\nsieXAPwuYdKtz+UywgMDUKMzvEBpwJRrFhsjTCqyGNFeAzEZUFmq1qrMSQKlF0bXGbVVtef1I8Uj\nzKa3yCpbZz8A/MxXqzerfGKGnVllY1lHWi2jxl626X1rLuiFfk0yqk3J2CuzLR4a4FEPT9GdlbRR\nqPR81HhNckSBRI1Qagt46j96oj/3ErHONgQANTukMlyQNWz5akUbPZQ78VltiwPQtKwAACAASURB\nVFM6z3EKzG6jVTVWzSmqbuMTEZjY4X6W75bc3rJ4ZsGHw6hKxwBg5T/SaIAkyrXB2/Y8j7v72zVr\n8rqDd9HjIVDXEOuC6vt5bLTFkCa2rBGADjuOch+HpU/KlifLWxzk7Gza4eZgQrbWcNhNcUpDlE5J\nki2pW1XTtHm5oPPFUifBohBKp8TcSOe/TxNanJLEApD+Gcu+RLoC2KGAyCWiWb7d4wrLfhy7wJ8l\nejjkjiyJn6MPgMLXaaoejT39/rIYQlsqiFz3abQ4qemXObp1Sgi0nc12pEiwlxGlOIl0f4zPFQ+J\nBsCD0Q1rmx0nmCQtxkmEadoZogdf2/xZAbyZsqMCzNZ0iTbM8OPrXpXH9Jny8ej3a0qBfK26njpu\n6GxbjIbAZEAZD6iXKSYD+vlg1As87jG5PdRWNMjlRJcRNXlBXx9CZlDQNid6U5ZGhd5AOp+pU9qN\n9rKnV3Z7isKi3whxJfgIIX74st8rpf6np3c4bzyEED8I4GMgmfBfU0q9cPkjfMCg3VzjAQ/viGKZ\nQ0UDZ1G3u0ATuy4qdxHjJqfMtrMft78wsjpicviYbuz5jMoY+dhmKI4gKmAHXzmSiBbaiVNS4Uwn\nl1NMZGDopnffAC18raiN06q1HlhgK9jKQNfj+TyZYxIJ0vG+nTMBLAA5JTdexJUup0U3gcihfxvA\n8dxaLwn3906GBked2ZXlMbpufAr77g5XYwywO3reOBRLbTiXQKUJokCJ2e/7JLbEqcuk4WcoRYJ5\nNqaGfPmASrLhgHEPHRwgkDkaboyFNzfgDa0d/rA0AEsdV1Rqc1mdLrlANKXtr80OrRDrcO0LsO4C\nHgCQKcTB+4DBHJjPIPceQL5HZ/d6Lg07pHXCSD0iiW8Wp3iuKRgSHsToZ5/O9qyO3+k54slg+2++\nxnHVeifIcvRjIFuFNYCfUEr9o8seK4S4AeC3ATwPslT4kFLqVP/u5wF8GFRU/4tKqU+92fdwnczn\nwwD+JQB/T3//rwD4fwAcg663rzn4CCEkgF8GeYy/CuBzQohPKqW+eNVjvUlyOYAUMXI5oRtMp+1M\nic2yMRptpnWtcBeFkNrphtvgdmM+ozkdAJjMfdDRQMHZTt97avWNaAEkNtlcfM2k1yVLbBEluoaa\n/OCG+xIyn8DtH9i+RY00G5BatcygUsc1FPB6P8Lt5zAJYjTcYvGZWZWraMg9GeIuYVILQJpaHZ4m\n1yemJ5ST3QkNlN5MFIOOS+rIxmZT48rHcGN/HO8DyxO7QemTVIqdxdn5mKRIcHtIZnOegkRB5y6O\nU8QyR2NUBAhwQrtsHgI2VOrCkkoAGADCvPYJB7EjArorRjcgRjfoMS7b7QrA4ffH13+qiSRb5yW1\nmxULptteQ8xCNHF4SPdfYDj5hkNEW4PQb+hprrfe/WsgYtj7QWZyvwLge6947EcBfEYp9YIQ4qP6\n+58TQnwAZDr3HQBuA/i0EOLblOqxzH0dcZ0VKAHwAXa4E0LcAvDXlVI/+WZe+CnH9wD4klLqJQDQ\n7n0fBHAl+LjBNxgZt1mXUsW9jaZCnI8h9bzBzmHRvp1eAEAC2KYX9wWDjiOs6WY6u3mtFJGQPuCU\nS6jymHatvIgGWQSXzEKGE4ArF3rRlEilzX6KdkllO0m764GcmjkTxa9bOOUkDi5lcabnvH+2CYiz\nMb0f9GRjfDwBWDdoTBnRfb8hAIGz07Di4jAJ6cGBqkI+JpuDdAEMCFwNwcAlaLi9MiFQtTbr2dok\nFAs6lq4xfjy94S2u/qaKMp4BMQ2LJxa49TUQa2CWUYJWxVsg5ClAMDEmjNmhUSD3CAIMPFdkquLG\ncwAIbBpVw5x8dX19NTOvBVitP3Yx1Vm9+7f0fwJ3psg71klqbOrfQXGd9e6DAH5T+/p8Vgixp9fu\n5y957AcBfJ9+/G8A+D0AP6d//lta3ebLQogv6WP4/TfzJq4DPncda1UAeAjgW97Mi74FcQfAK873\nr4LQ3gshxE8B+CkAuPsth71P5C2yLiik/afKTqKjfxjSHRzc1UdwI2CPMV1agUskBaBwOfh57ycJ\ngMexpnbmY1DahVrEKTKn1ChF7C9a6zNaBAejneclbJgf5Bt9PBtIOfWHU/MxkMOCkAs4xtSvQatK\nIy7ZqoY2C+kQaX7bVxLg88j/OxliX/+Oz5OQuuwYV4aVZbKgAKhD62UjKisH2+DK14WbNTnPw0DN\n8zQ7B5F3CIS6PS4ZT7YUHLxFtllYRqX5g0yz0fyyFGDLTVQF0JsWNzvQZcdegLnGYKzxr9J256w5\n6Ort2c1QT7ayI1z6vIlyaaj2nDF5ZAN3IPiKDPdtiAMhxOed7z+ulPq4/vo6613f39y54rFHzlr/\nGoAj57k+2/NcbyquAz6fEUJ8CsD/qL//ETiDp19PoT+8jwPAd37Xe1XR+qUDc9O3zpT9ak204qv6\nC2yr3fpzGybCdDtOIfqEIpzM5ioag9tX4eiCTJim9xMjpLg9LV+Z3aoCaB6m8UHI2Ibz3NGTcyol\nzWtgP7WlN6dn5AYbpVFmObD01zBC4OUJe+3oaoBD204MYmtmlmZ6cFJHWKoxsix6kds+l45Kdk8W\nZI5P99jCXgn/v2l1CSgExTD7Ug2qbomuPvd8pNKIsqBUDozUS6plcRQfAwuDpolfjm0qiKaElP5t\nzZmLmfB3y52xVgyPNfsv9hdboSsAyt2IuddPkOWY8+T+z+FtAnyBUmbXcYm4L/gzcjde11Es5yxN\nAEDzBHE+Nn1cw4hj4Ak2m4olnJ5SXFdrEMBjpdR3P7UXfp2hlFJCiKfEpOqPK8FHKfURIcSfAfAn\n9Y8+rpT6n9/Kg3oDcQ/AXef7b9Y/2xm8aAGX7KR21NfdpjDN91T2Au4aosNyc7utfOAJQMgtoW3a\nC4yFP9nNfRb3ou3buXeqxaZZYBBbkzdm8gl3cn9nic8BocbPhsxOmYHn9JxmINg6fP8mtG6KPr5m\na4GnDGxoNerOz+ziycHlKDaN0+Wool16oMNeR2nUYZqSD1Id0cCiPbH+u3N7Km5m0KkWrQiHKHsM\n6oIMyiVV9IFZ1a3JxjodQma5l7mxWSCbFtogC2qa1ndtyzmj2qdyoMsyZODhaCrEctwjlBn7myru\nYySJIxsUvOfz+zQ4enrul0Tdr3UGpbCjrxMATtvVJsurWp/yTbqHvgRVeI+6AOSGYem5JKBgs2VK\nzQVs6Xt1Qtd9sbSU+dR57ncmO+06692uv0kueexDIcQtpdQDXaJ79Dpe73XHdanW/wjAQin1aSHE\nUAgxUUrtLrS//fE5AO8XQrwHdFJ+FMCPXfaAuo3wcN2Rqi57zCun5KaHINVqDVElwKzSu6AbdBM5\nrBpvql37yJsmfKi8DGz1bKpug4vqGPfXEreHZ5imh0YS5KrgUsVZ2eBxkeDO6AKzlB5rZmyKpe0Z\n8HCndzJqX7IGMMrHCnpHeH5mhl674yVU0UAejaC4sT6LgQyGLgzA7GYzqawlxOmL1qiOBy6ZTABs\nlaPqrjALtWuwR9bSShuUNZgkC680w8ELmQs64aLcBx5bABQAT6h1Fgb/ru5KQ2F238eitgt4aNdR\ntizz1CCT2mRQasFLp6TXu9hrFQH2PNr6nc56FMs1aQFS8kuiz4Akgh4Ax/dpcPRsoct7eqDV1RAE\n9DUTZDsOWcBliTLoPC4iAL6qNTPq+s9nvQVA4bn2H1D5Gy5zDjQIcYvHBR6XWMDKGQ1s5vsmI5wt\nfBNxnfXukwA+ons63wvgXIPK8SWP/SSAHwfwgv7/d5yf/00hxC+BCAfvB/AP3uybuA7V+s+D+iQ3\nALwPVOv7VQDf/2Zf/GmFUqoRQnwEwKdA9MFfV0p94bLHlJ3AvVWCRd0ZzbFISMsC65ptAzYn6GaY\nEgupWhs5Ffem9AAoJAqAbppVc4r7qxL3VhleXUkcj1q8d3qMm4OCBD95tiOfeK/PC6YLPBdVhEzG\nGMQ0PDeMJtTn6bMm4PfGxxsCktuf2qyM3AgP3pGZWUzU2tEamPSrHQOg2SmR0HsplmYI06VXe7v4\nbGz6AFXHduK+U+Z5FWGWdkacsmxb21dylMP7AIdBMTQyC8MAUFv1As+WjxM/v6MM4FqyL2r6jJa1\ntRbfS2G8nqYpf6bC+OKUrUAaNahFCSkSNCImxmC5e1hZNCmETL0MgY5PS+uEJoRNZXs3ShlTQd5s\ntA9X9FnPMsp4hzkNybKSOjMDeZF2gbq1GdymWWBRA4ta4njDSw+52LLI7GWfBf1/dd/HlBfd92ci\nYJ1yad1Va8dQl9qrnT3Nr2XsWu+EED+tf/+rAH4XRLP+Eohq/ZOXPVY/9QsAPiGE+DCAlwF8SD/m\nC0KIT4BICQ2An32zTDfgepnPz4KYDX9fH8g/E0LcfLMv/LRDKfW7oBN+rdCD246/zoAorUoB2Rii\nqUhLC9DaWSTUCJD4oJQx1Ys3p9vSIlUNjGtgVFGtvC0hRvsQDgABdCON4jmem6xxkJ9hmiZ4z6TG\nND2kuY7z+yT3AUDM70Lm283kNBrg5gDYyzY4K0vs5wNMk0PEZQE0T+iP3CZxnBLQ9DHLwtkZ12do\nXNPjmpYm2KGFTcd6wj4datBYoO4Kb6EBWgziAiq/Sedx7giTjodmHsQQLISARIw0GqJTLSbJApls\njXzKopbG7mKStJimZM2QS5vxhcFqD4AdoHQ/B3do2FNm0AtUrzCp2n37tIpssFM0oG1I5xx/h3FC\nyMdGhRMNQL71RuZTnIsF1OoeXROn53Tu9v2+L4N32CvbtBcYZhN7XTP48ICqdmiVodZZSRuNCIDK\npTGhM5+dVtlwVS5C0OGBTi4x8sCzq2zunvddYaj+LFWlg6WsTLhqI7uiqTzxWiOHBACJBud33niP\nib71ToMOf61Aa/e1Hqt/foIdSYVS6hcB/OKbOOStuA74lEqpSvBQnhAxru6Fv+NDChjl6nEyRC4n\n/hwLlzdYvkYDD4eRFlmc2nLUeUkeO3NaqA0IDSpabLMJRDb2ZhNYSj6NhkjlKUbxIQktrl4Gzo+B\nJ1SeUrpGneYTVB3QCn8OI40G+KYhzYRwk9ujcpsDT6mk4L2ZgP4bhAKAGczwJOJzyMlAa3jNaMZj\ntI91t0DRLrGs17q0RJkKKSpcIBISkxvPQXUNPZe7cO1oUidRjlY2kFGNNGo8ELJuoCMSqNTWyGF/\njM4zlXS4wc3ZkQs8LA5rNN8KJ2t0hEmlnHo9nzDcQU1EMOaAVae84wfgqab3HU+MGFg9IXsCDTrq\n4WOo0yWpAHw7fADqcRs1ChWyxni8b1WdAYjB3D6mXRIVXisBALDyRrmEkcEOyQ6B/YILOm3XYFED\nofnGNw33LKjuAJWt6JFC8kqPfWxSnt0Jf87ZvKsnqEVsFbQPFmeET63voy4t1T5rcR3w+T+EEH8J\nwEAI8QMA/gLIbuHrOiJBZY5JAuRyjKyLgOKJKZEBoAwo62GklUsqTSxOKeN59ATNV8+NrlVUtIgO\ndUO+qqlgCVuG63tOKWLM09vEBNMNeXV6Djx6Qr0RfnycbrGZzExI25GGmltm6xPJdG+mYOakLwzl\nmBcsgMoToyGwfxNitI8y6lA0S5wUGyzqGBeVNHpiAHQ5kKT9h/O7UOHArDkR7rwRqzGMUXcFLeSq\nwSCmBdUzbWtKqBWxRM3zgoYoAUDGzja2c2wv+oBH75w9goYjTCriVHvL+Hp/u4KVAga6zJdGDXnY\n9Dh+egoCF8fWmkETPboH52gfrkwpLAM8AGK3UZdBR/2xGgDR1EejOZ2XmKWUFiYzlCIx58wtsQIg\n+Ru26J7PSHVas/9CujSDzqKWRlOOrgOFg/wmhrUAmjWoInR1eJ5DzjWtsLYZers9W2RMAeGAjwYe\n5ZTb0LT0fsuGYLKqgXfceM83VlwHfD4KUjn4xwD+fVC69mtv5UG9HRELsrkeJXtU4rp4YHe4erpa\nCYFNe+ErAjDwnB9vAU93XkKVVgU3mjmGawEASS3p7s4IqVIrPp+fmUavERaNpQGBeH7XGKBtDY4C\nuxltfdlFsHPlcMsfIteAUy4MO01UNcmQDOZoshxFc4plvcbjIvX6MnQqyG/lrKwgxRKQIGOxHSGU\nQoyYym+Chh5djT0AdmC17Wx5crOyApLBrIbIYczC6BzZgUT+1ws8wSS/ESYFPIM6Pib6vm9I07nV\nNAjtKvWphe8HxJlO8/IFuvMSm9darE4TZKMW0ewhkmEOMRhBzO+iaBfYNAun1yS1onULoAZioK0b\njNI5gA5Fc+6RIdKoAOKZuUa68xLVEshyuq4FqzQM98iortt4enQ+qUKaHhfpCnaYZ3cosz9+8fLr\nsi9cKjT3KN2SsenlxYbZ5v2OS209wMMK6gAgMk00YtXxvg3oGwilnhrh4BsiLgUfLcXwm0qpfxvA\nX3t7DuntiSxWmGe3SRKerQI49AXeykg3mUGDkax6cHwf6pUHZhd6pfJt6twg+vm9Ibhdw4NcX89j\n+xwP7kE1FbL5Xajy1A798fNct0QQqlHrnSuHa46XxgMCoFhL2kz0ORruAaMb2LRPtF9QjJOCdrqu\nCn2oSO/V9due985acfprqXe9ccA6UpuXodjvaLm2MjY3ZlSvZ48f2Cb8pcEMqV2q4+7xxekWDT4s\npxLgDMx8EdBPy/aAh4cde4CHr7MoVpApvbZwvDFUPkFVUp8vjQTSCMhka3ot9D+VLzkYLDgiIcEK\n50gTRLMM6XgFkUkS/ORsd3YLi+bEsAhd6viipmWFPLJgvh4le9asjRd/17J917lmoHHVpvXPxHxG\nfSvncwljK/vh59GkF1U2nm2CKhuI5RpIzmkzc/kRvhtvMC4FH6VUK4R4TgiRKqWuHlf+OgopUmTr\ndf9Coxe/GKlxThTFgsphD+5B3XuI9pUzk5WEIXJJi4JrfOZIdKi2JPfIEHj45hkNKdOoaip1pA6z\nCCCqcnhT8v+u8KYbAZFAjPa3bJIBS2PtVIsaBSIh7ZyJHOtBUpr9EaN9lKpA3ZVY1NAUaB942N6Y\nS5xMub6qKezNFun35y0CbpPYLZtokzkxp8yMAQjXYcte1aSO+m8X15Ssr2HOmQ0THvyfJx4lHtWa\n/t8BPCKTSMcNuqZFOmgRzdjfqH8RZxBa6EuEsiEg67bLXQNtAQ4AYnYLeH4NWdWG6SbuHAHPPQ8x\nv4sFlljVZx6bry8y2eFw0GE/H9Bzr54YszZiliEwBwzYlyHgOKAB0D0ijg6oRHadjZdj3eFmOxzm\nPK8LGiN4+Pjq57x2vJv5uHGdsttLAP5vIcQnAZjVVin1S2/ZUb0NIdrmWjvcWI6BprTA8+VXUf/T\nJ73ZDsnmS2tzzPVxlkBxFy9dzuk9hjgFRrSrMwuuN9hXQ736wPsezt8J3lH2aVJp4OGSCdfp+6b1\nzVNGzrR9PIAYpRBtBRVnKOpHqNqNpjv3T2+PkxZppJDKAXn9cOnSfb8cDADcXD89p8XGfe9a4p6b\n4QDMz0QWQ2q/G1HVJEzKczHZ2JS/PBVnZ/rf65fxsV1DJqbPFdOU8QBtYDf1MkxPL40VMrTfUVhq\nE5nNcKJZhhwlRJ4S41BfX30LGxMZJtgYAAJg5qQ4CKS0G6/O6MT8LnB3hQjaN0gDz1qUWFVnuL/e\nIQPkRBopbe42phJpuSCzttNzABo8QnNAvp41QLmZiiob45Gkihbxc/pzZ9V3LrHpe830/0qYoXG1\nWntGhTujqqGwhtDH+m483bgO+Lyo/0Wggss3RnSN1bfqkwjhLKStoE5fAV7+CtS9h6j/6ROs/miN\nphKIU0W7zyyi0hg0AHGZjGnILgjo5+21VAhjPrMcocCkTBWtKbmIzPkY08QuvONggDNwKO1zrDQv\n55Ri2oia+2baPhpAantuKikpLGqJuhNbJTYAZobFDJquXiZwAegcs+Q9YBdfZ8aEFxoylaP/u5KG\nE6PM33GLPIYqG8iS5rSEPo/Uz6sAGZn3yu6c4WDqVoSkCMB+Xq4Uj8vaaiofzGISJM2yMaSMrWae\nYbNphYwAeOqvLlBtJKK4QZx0kLPUlMCiPcffyClJhsw5+x4XBoAeFwky2eEgp898EE98hQgW5bz5\nXspG8rEBHh6IPt6QQSH9s8Oi7AbMLL40GlHWszyxFtW8odBKGWTNnhirDcVDnzqjdc0Fu/PSuwZk\n0SIynzV2EmcAWBC7AnhU2UDouSseyH03nm7svOuEEH9DKfXvAjhTSn3sbTymty8YYLQ1wM6/aSqo\nmmvDDZpKoKkjxGlL/6NDhMYBILmd9byecHpD0JLu7g6QSwVhycADoTDSIWU8rnKAZiUBFmxsf0Dq\nn9PA4zT1LZgHMjEeKgBwZ7RGJmPs55ZCzIsQzR49p50r/9/LlZnd91k2O4Gnqel1YvjqABH471vL\nWgpejxhZCjKqkVynHsdA4/aQALM52SWTv5VFOdE7z+L8bbg4do2A4/hszOnU6RJ4+BhIEsTx+zBK\n5gZ43NdpVY1cTjCIF7r8VyOTSo8ZjI3zJxonI+XXmltlFSkS7QmltoDHtaB3TegYAHnDxf0aWuCd\nbCfxs3tzLhwzNz4nDDzmHGmQ8o7bZVMG9yC74wJX3DdPMRRUb8/vWY3Lzvp3CSFuA/hzQojfREDU\nV0o9eUuP7K2OKLaeI1eEmBwBz9NgXQJgiidQZQuRpbYezhPgexNbAmB3yR5DLE/2BnAABwSG7s0y\nn20blIUKBRxx0Gty9dJAu3OW7Oc5lDagY3P9vuqolp9G9oaJhCTlhGKhvWDI+yiXG4yTpZFB8WwB\nygLq1S9YAA3DlfYJ7bX5M+CMcpYhKhpE55w52syHFyT6e+c8TOZmiHLVnGLTLHBRSQBEPwZAzLl8\nDKx6MlL3eAISw9aiJoQhNghMAFlZccqY3UqJgJBGQ8QitmWhODXZbqRfSuQxpH6v0WxI1xjglR7x\nyiNzXofzu0TlhM94jOMUcZwiTW5qILog2jurYJx9xQw0s29S+N5EAWRxioP8OaTRI5xXF1ufE4GO\nX36suxJVt0GWTaByMotTyzXEEL7BHv9bro0bLABTxhY5lbTdMqQ8GiE6HAN7EyKaTG96XkDm2Ef7\npoQtQKP9pkdqTpIuI/aZ/r0bTz0uA59fBfAZAO8F8A/hX1FK//zrN6Kr69Um4hRicgR1hxaFNKPS\njshiKnvwxcrT+gw6zqQ5AGMHANBsznB0A8JpvKu2tHpSIQCNYAzKlAs+YbjH4tpLO89F4ECWBOiA\n1kn7yjbS1FyYPs4ksY9LoyGViTanZoGKswniOEOaUCZk6N/rBbB+Fer8zD9GFzjNVHnSmyX07UpF\nLhHtZWgfrrdKJ13ZIdaLFC8eTAfftBealRfhcRGj6gQO8hpSlJBiA8gB4mxC/kAupXfLORRa88tn\nV7GkTK8ytp4f8wVOa1JW5p05l4H1ZiNKE4hcojvr70169s4PtUr43XrbVhzwqOexzDDJx8BmCbV5\n0ZY6NYFDjIa0kE/mXp/Sqp5XmOUzJHneKzXkbmbaTm9wVA24Cguso+babTPo4RiCySMc2pZcHsWI\n9jJzTuTRiDZ8Rwc06zS73ctOEzLVoJRR/y/cwPFrMTnIlXu6rIz3OoJsUd4dMuXYCT5Kqb8C4K8I\nIX5FKfUzb+MxvS2hBEi1YPXkauKBDjE5gnqOLlxjEOZKjGgGGU+Yd83xVmmLmUEH+QJtUmOcW0UC\noyAdApAryc9y+oE+l6GecqkvSbwFx3sfShkSQSdaKqN0JH8SAs+yjjBNBdJIUM+mi3xV6iSBis+A\ndAipX8fMKum+Dara9iZcUUo+h+7ivgtU+dgzWnx4N9w+XJkhyKaOECc6+2EQnsyhxvvYNCco2qUZ\nfFzqsh1pqDkU83xKC6SrgdfrHKpZi01qdtmu2rkHQHHqWSnw30UaiGJoOrBbbh0NIe7eAtIEcmLF\nXC8L9fDU0JdF4iymgSK14mtjs6LhVd1L7I4pC4xmGbBaQ8zX1rodMKVpEuZcYJhNgHwGlWSmhwgA\nrbDWFwABUN0VaKIBZZflgsCNRWXj1G7Y4tTLUEjYtvXeg0gTSN6UMPDMDiGmRP/mQV3zmYrEZqT5\neMunyZsJczy0rJbfu4SDtyKuY6nwDQc8AC0Ui/YJBiM9qLjarnV7oUFADOZQd2LDqAkBp6i+aqa7\nOYso28Sbtag7gcdFhzujM+znJUbpnDoPlwGQG7PUloP04ijSYLFx6tymGe00yRmA6Fw0SKMGZVCO\ndtlrqSTtO3V+30qTmF2r/qOu8abx1elSz0G1ukG+BLQsD9KEFkgXgMISog7OfqK9DGIyAKsryzSB\nyGMz8e/9/TA3U/jr9sIY27EA63nF5Tq+BSwDLRvdANoSWK8N0UMgoDLr60FhQYtZPtntkKqFSdkE\nkLMeluCJpRbUdG27m4o2GkcHQJIgGuZGwikEIUMPziU18psWisuvK9hz7Z3ntR221M/LDX1VNJCA\no9BRa9KMn5mqam1kh4bZBKVIvFkxrogaENLvVWQTqElj5GtCXbh4dstmL7tKtUM6ZwZ4bjyHRfsE\np+UpMfcc91YvGICCTZ0LNq1aoq5OULUbcx+/G08/3nmSrW9TCERUQgKg4oxuANNYDkpVZgerhx/1\nTlDFGdbtBdrWtr9c4CFpEbFFQR4nHe6MKuznA4ziOWUTpTUdM2BhrJwDYVAO1mkbwe9LcNkAIFkY\nNrlzQShOjex+EtHPJ9iAJuEpI5gkLapO4PawRS7HNASp6ao7YzAyIqSiaREVLVTW+MARRjCnJEa2\nzm52uGlCWnJ63kmdnmvWX0NluFmGuNzozyfeInpIkWCSNChben91JzBOOkxTK0xqBkOZrbZZUfZW\nsVLF0AJkoxWPHQBK8wlaFfv6cCxMGlfGRZOD2WUNGsoI2hKA3oWnQ/rMNS6JlIYdozShLMgpuTHR\nxZwnBh79vZdthpsUBqe8Ac6D51sXllwx9un89uvh1gxVOM+UyoHp/0EpanoG+wAAIABJREFUyqTK\nBZD6sk7Uj0yAQnvsJHQtqGr7tc170gOvaCuM4310qkUkpJ3P488h9NSSqbEAqboN4Bwzbw6oUiG1\nOO7TiO7dOR8nnmnw8Si22RjcfOYyCQBdKtG00GADVAXMICkSDOIJqu5iK4vgmKZk4WCAR+SkKcfD\nhfkYGNi7WciMQCj0JXEBkndwbhnBDc3mY5M4Qz4AtEaZLb9NksYIYHIM4qmlyoZace5CxDt3HpLl\nU8Zlt3BWKTw5VW2l+lO96+8BOlUTXZbnPQBaMF3KuxtGviaKMdVGYWUr9OBraywfWO4GhVYZWFpq\nu2DByVCtgo+pJACKs7FxjfXYbm1qf8/zNDpa1QAyJrO4prKLOfcCoxio7tP5WxeU4QSVIG7Gu4ST\nnaDj9IQEz0RxU1839k1oAAKrR4TPxe9f+ziF7sBSJEiizPenklTeUm3p91PaikqebhncVfoIS4nB\ncK1oSrIh0V+jWdjz2COTY4AnOF54SfHXH1gIIW4A+G0AzwP4CoAPKaW2rIOFED8I4GMg/sWvKaVe\nuOzxQojnAfwhgD/ST/FZpdRPB8/5SQDvVUr98auO89kFH+EjiRLCsYHeNsFyKZKtstkCB2utAcAg\n3qBsG5P5cExTynjGydACDzfv3Ul+V11aN6qNttplQqF9syhuNqdLeaZxjAmETL3SRIWNEcDkBZIV\nvy+jDpvXjmK7k4V+rV2ZkpvxAJYuGy6azIDi0GWiMMyQb769U7UCoo2WfbGy/rQzz6zETbkwWQ/3\nWiIAIpZ0bDdm/pPz7Fa5sIunK3sEeMKkNHA68BY+BiAZ+6N0QimSNarWBiiw0BleFmsWoLSlxrCv\n5vZ8GHTcgefAKkMV7TbJQ8/kKH4+bYQnqgTYd8gFqsamqT1K/hbwcMRk0x6GqQBwMIi678UhBYhR\n4PzrAj9gn6vUGZwGoH7giY2WIBNH+Hp5GqHUNrP0LYqPAviMUuoFIcRH9fc/5/6Blk77ZQA/AOBV\nAJ8TQnxSKfXFKx7/olLqO/teVAjxwzA7+KvjmQUfDm/eoscEi2XpAd8cbJJsMIgnniqyUAqIBqij\nApm8QCY71B15zxwOGhzkDWbp1Mr/83ChllMxi3CcArrx2cgIrSqsgyUPI7rhKifwxc3As2USB6Bq\nHOtk63rZChogdd0kTfNW39ToK7uF4Nfor0f6hnfnlDgCwHFnLtR4SBmGLqtQGerYNMe53OaxvQAN\nPHr3zgtWU0Fm5BfjZncA+efIyIp6ptEAKAs6v09IWaE7txlWnMXWuTVJ0Cdp4ylhu+df21gQRdsK\nnbokBRrY3Ww9Z5oNEE+OKHNdra2ChnnfPcATgg5/PmwRwrYJo8pmP7z5KXsWyHJJr8MbBF0GFMUS\nmByZe4Up7IOYzidtyjRYuZYloarFZSoSrv4bs+KYieYqhbjP4d4H+vVUuTAbTFaa4NK7GfhtSsg4\nMz8H+qWI3uHxQQDfp7/+DQC/hwB8QB5tX1JKvQQA2vH0gyDDuOs83gshxBjAfwQyHv3EdQ7ymQef\nLS/4oGns/tzXseogo42VJOkJblTWmkGWRgKRkHYxB+xO1Js38AfjTHkwC5g6/LewpAI7Ue8cSAhA\nUWx6QQLwFJ+rnhutVbWR4PeO1S3hpHbKXgH25tdkBFHVQOKrNFwWpsnPpUhulNeJXnjLrR26cCnW\nDumCqeVSJkgiogfzZ8e9CO4PqNUJESr4ObMYIg+ygXBwOPy6wfad5WYbTF4BEMsUMko8EHKDtd9U\nW/YO55p5JvfY+F9oEsgZtf6e9APt583SNX3BBoK7gll8RLARGMScbcY+6Jg3ps9Z61zHfV48HM51\nBoCym8BewR5s7Jxr+zMqYacoVeHZcntKE5pAwRuWGqU3MPs2xoEQ4vPO9x9XSn38mo89Ukqx/tZr\nAI56/uYOgFec718F2W1f9fj3CCH+AFT4/U+UUv+X/vl/AeC/wXU9MvAMg49SnXez90mscP1Xqhit\n8A3NWAuLswSizG4/R9lGRtuMZU+MQyY0aEyOiGbL7J/Rvrnx4rbzm6UagCD7LRPodwEQhcE7c4cu\nzLbLrjIzv69Nq+0LnEE9U0d32EqNjMhBtS31ze+Ln5pejS5lccnIC7ePsFprSrttcIjREGqvxmUt\nYHF4Azg89DITO/Ef6z5E7mes/JlUzvzJMLeurVrKxgwf8gLOJA6318bnvEdexwtzDaRbGxijdK0U\neTRdPPKzYzeqmno9GuB7WYNMued/MrXHVtkeGpczw8+lOwOiPafnBd2D6SmdZVJ5oqloNKAFg59K\nCCDOLCU9gxXcDc9fGOszK0S6ayPgvG8xvUWg0y3Mr7gXaIBnc0qD3/kacfY+tI5SxNMIBeXJVl0R\nj5VS373rl0KITwP4pp5f/YL3mkopIcQbFuYOHv8AwLcopU6EEN8F4H8RQnwHaObzfUqp/1D3ha4V\nzyz4tKpB0S7MImRLH/7NzTeQcafUIBQuFq1qaAfbNb07WJKbGSGNBlAXx7TzdRYjMSCfnGsNtPXc\n8H2/E7Fm9IR1dM3kYptg04vQzfDKMVvjXlfV6SFMBiB3QdVU86I5xyibg8RXnPIgA88ZzauwDYXI\nY8ijka9Rpym0HKrWzDlH1VuMhrtl7tMEODqwmVicWhaVDvqaDNtQBeQAt6yYJhCTAfV7JgNfq49B\nl8+5U7KFzA1weIupG8HPXADaclPdnFoLAqdEea1wAEfI/uyFS6Kko6c9bQr9mXgEjuDxHqXfSuwQ\ngcNl/W3r4AHb9xr9TWT6XkIp2kyFQrTrMyOsa+y8XdX31C1JTqDG+1i3vhrDFvDw7NpyDdyoodIH\nSGe3eysB74RQSv2pXb8TQjwUQtxSSj0QQtwC8Kjnz+4BuOt8/836ZwDQ+3ilVAltNauU+odCiBcB\nfBuAfwHAdwshvgLClJtCiN9TSn3fZe/hmQWfugPOqwuMkwa57HMWtSk52QxYczCpHSzd3gjAQ4aW\nTcXBGliRkDRTVK01RRf+bnh0Y9vfpnAYeEyI4H+OEV1v6PkFEad083KZgr3roQGor/9jFK6DMqQc\nIJ7eIrVm3ZPatE/MHM1+3mCaHSJuKsrmqjMqtS2pV9OdF+jOS7TnlREFNQDE5aLAJgEA1HBtadhp\n4tOeOfjxw70t1l9o3LfVlOZsMCxtDXNaADnrGdmeSQg63CcEnOsnSpDmEy/bdV/bLegImdJiyE1z\n7h9pMorSxIDe0IOYiu3bAxaip3OmjxmAmaPhYd1qCcRJZz4bUbZGyobICLXHqAttJjJJDq1ccoMH\nvkuv4d/XfKfzt/HPYZYjbia236lNHAGQCsJqbVU92FpBlxib0RSr+hFa5d/nDDzq4gFlUWzguC4M\ns09kE6TpEEV07R76paHU9tjFWxSfBPDjAF7Q//9Oz998DsD7hRDvAYHOjwL4scseL4Q4BPBEW+28\nF8D7AbyklPo8gF/Rf/M8gP/1KuABnmHwKdsIL11kOMhLHA1r5HLs7Tzpf1uqua4sBu+oJglQti3G\nSeTMkSTWlIbLVoAZsNu0F7RYcSmo7L/olRD9dXTAW1yqboO2vSAvntE+AZAenMRyrSV4rMq2W35z\nG65SWZ02gOjnUlsyFM25I1mTAthAilNMxzf13Aq/39YIfqqiQVNHSDMt8KhndVDVRhFhi0zACsOp\nVi8eD7f7Gvx/3y4/BJ5NwDztaXqLhBTCt8ptumnPqgV95BT3GuLGtgdC7ufPr+9+xiFb642EW2Zz\nwbilfpNanxGx4mxB/Z6yAxBZsVwNQKpst2aJPEadfp9pNECmNeN29UEBK0MUWnhwlh3ea7kc0xzU\n5pRAonYIKgAQS7ouqhpIayAnLbcyjbGqj3FSEJgxSSiXE5PxgB1we8kwRFb5OowXAHxCCPFhAC8D\n+BAAaK3OX1NK/ZBSqhFCfATAp0BU619XSn3hsscD+JMA/nMhRA1KdX/6zWh8PrPg0yoYOZlNUyON\n2ktvmF0R2iADpNvWygYH+QZV12jZ+gSr5hQyuYlsMIdy7A2qboOifoRNs0AqB6giZ7EK3DIB+Lvo\nne/P3titShDz8EJTURZyek71eyYE6J0xS8BwuBTy8Pm5Sc7zM1VHOnBeRpgmxm0yGuakdDDLEGtt\nPHnkmOyVDdBTUhLuoCmHISDUvjBpU+lMrqfE5AJPsfQXZPP10j4/v6b7NQObo2rBoLNpan3OxNZM\nGH0ewbR9U9njdDYNJM2pNeY4tKySAlG+JRMrwrkePk6XCBLQkQFAnT8wEkikmrBbbdn1EjLnZqT/\n1xmj1MxPHtal96zVG5xzbLLEbrM1ExSGFLFhhqonL9txBD2XpMpme6ZpMoeY30UZdbioqdo0SUja\nKpVDu4kqFnQdMLnEyboFS/7kY08e6+sllFInAL6/5+f3AfyQ8/3vAvjd1/H4vw3gb1/x2l8BcOWM\nD/AMg0+niIXGjDTW2uLy2hsBIiAQ7QRwkPtWBKvmFHJ0iBgxLV5ac4ylXw7yDSbJBrUsLQg5czie\n8diuOr6jNeaFLiuxQZvxqc/t48xALXRpou2ApiD5mJAZqGqdFdZII4FJ0lpShVKU5DkLokgTYD6D\n3NOab0E0L19otYJ8m4hwmTICv06YTTjngkOVC2NRjTTRbqfO3+R62JiBrq599pieYypVgaIle4JN\nU+Oiknhc0GdxZ1RpOjeIsOIY2F12w3G2msYDEsIESBUbsBldmgCjtfGY6R0k5cWTNzhxRhsWfp0V\n+epwmYmzz9cTxoWUFRyUJRm4mw8zPwd4EjZFu+w3v3MyRnckAeszX2cvTUzWYzQWZ3vW7K62ma2M\nYgwimjlKowG5Eq9ObEmbn497iamm0csUrdYDfBrRqXeletx4ZsGnVcB5FWGcdJoaans5VwEPZwbh\nPAy7WXIW1IkW42S4xR5bNaeIhETdlVjWazwuYhxvMjwuJE4KidujGpPEghBiWAAqdQNa9ynImx47\ngcjzD+kaZ36lRJQuSDhSP750gMfcpIuH+nUXVLrTC4jPFCRWYCZrr+TiiWUCtHiPQIA3n0Hde2gW\nE9ZnE3nsaMHp9xPOrQD9mQkHlxGDspYqF7SIae05jEmJAfs39XM5TWvdCxFJYi0eNMGCHVw3zUIL\nlcY43sR4dSWRS8qo74xqHOQdEVBEg60rynHb5KzHdzmNiQCCJWVBzCCMUysuy+8/DBd4tHHgUE6o\n9Fgs6Rw8fOx7JjmSHEacNQhVNMDMucaq2vSvRFshlQMjLsrRqhqx3M54lvUaF5U0JWk3QuBRi4e7\nNd64Dzjbgzh8HwFPszXMb2aOjJsqs+Xc4OthTOeuQYO6K98FjLconlnwUQooWuAy/3k3vNKT/nMu\nSfFwGmBZSzy0CWxnIBst+0F9kgwnRYzXNsBra4G9LMJ5leEgb3FnVGOars1rZyK3Q6mrtd3hxilQ\naSBqU4imQjy6YXTE0mgAtbgPnDyCOn5i3EGjWUYZwIwyhqpbkkSQnEIsT2yWAAADTZAY7UNqQ7ow\nmOXkRZiJxCkwjIGZ1it75YEBw2oJxCXr50moQnskcdbD5AP9VEbd2xPM9F+Ly5VkLLcmC+eVVkpe\n6nOoZ4mY/KH0+wVAYA3Y3XA+3rJmcD8/AHh+Qq6uVVfjICd2ZG/ZjYN7R7qEBzCgDwiA4kqrZ2ui\nQjoEcs3C6iu/snGgBp6ipc81Q2TVG/Q5uKzcdu3gHpbMe0g4jZG62HgCr6kpe0+Sxrieuj5QKBbb\nTE3vfWrgOTw0Gc/jgkptaSRMFs4qC3FZUMZzfnypJQmrJ7izS08jFPDUnusbIZ5Z8GkUcFYBe6nE\nou5w0NVoRd+QX+x9Td8PnHmdwr854hQiG3s9ICkSVC0t1u6garhwvXougVmLXCrMUoFFLXGQd3Yw\nlW2Itdgly+czacAYnTUV0JaQAIbZBOrsK8Dxfagvv2pk8wHdY1mtITYrqPMHGO8/DwAQyxPzXtyG\nPg/pUXPdOqG6swtVdYE2adDKMQbjfcvmctl6ANXwtW2AeuUBolmGdLyCyFMy58s08ISacIB9730l\nJ5bmH93QZIALtEpbVzQV1L5eC0/PaeGaWwOyRkb0ucICHMa6kT2j521khKJe4nER4SuLFA83EV7b\nCHDVKo9pU/NwE4GtRydJg72MvJxyOSG1Cn1OXEvzTbPQ9hbQHjgJIADJszAMQk0FxZgeqiw0lQGe\npVPSlYMYMp6TX1FyRiWmlNSyo7MFolmO6OEKcdH06uOJXPb+3ISzyehUS+KcwpaxW1V75WUOMisk\nLcFBuAcMiRLa1VfAodrfIOVyABiqDPNsjk61/vBwsYA6vwfFoLPLJgO2nKjSIbLsOeRyjIN8O5N6\nN958PLPg07YCZ6VAMSAwWNTAXlRfOVRmjNLKY19pwDwx1eplPoHUYMayLm7jkifBzyrgrBI41U/j\nbkQz2SGVVC7wNMc0ddktEzgHqF9AO11Wa+DBPagvv9o/H8LMt8Ha6GJxeGUzzfBq0GDTXuDRxu3Z\nhLu5NZb1GoP4FKPBnNwyvXPkTKZrQoJcF+b45NGI5moYeMKFYl1QyShNIFJHZ20yB/afx7q9QN0c\nk1yNBv26K5EPxhiMv5VmqvZPTYbQyEgzA2mxHORToqfz8zYV0bdHN7Bpn+Ck2ODeKsPLy8hkOxx7\nKT2KASiJYu2N1CKTC0ySBQbxBMkgB6BQVPexrNdmQ5LJBnsZMQx9+ZcegzpgO7Mcafq7AzyLWmKS\nLBAJiQnbRXDPpqqBowPIqka0WgOPnni2Da7skUuHF6F6QhCUNTSoaSwEVbvB4yLCorbAwxbcfdpp\nraoJdLMJbabilHqTgxGwWVHpFgBmh95w7yS7QV/rexTVGkqb5ZnMOSy3BRqDlOEPgWyCwWiKIn46\nVOt3w49nGnxOK8p+ZmmEso1MfR7Y7vuYHRTXi/ua2wAtqpIavGmsBzaFvdh5kbmoJJa1RNECRQOU\njcBykeBgzE6nZGnATVKsHaVlNmhrWqvJxTMODB5cI1+uoe49pLq+pjm7FsxmAdqsoNKT7Sl8Le0v\nZEa79OYEr63P8EdnOfbzVg/P+rRvbh+UbYOz8hg3BwWmyU1LDw9pzeMhcPOGvRgDnTIFZ7JfS/Oo\noiU7ce5ZDUbA4bficfly4KckUbYRJkmJabrGOFkaEKIeyxJd05oSC3/uaTBQK0b7WHcLrOozPC4S\nvLqSW8ATJgZFCzwuqAR3UUVm3muSrDBNaejxopJY1Km5NqZpC6DBXrYxhn8cIQB5159Dr3fp74ua\n/ItIYWOJNBoiG+1bszwnBAAcHSN65QHUw1O6PvLYqlGwara5NrYHrcmOYFtslN7nNmmErx1XwoYZ\nmgAQO8oQpu+VDs0A8xaTj/USq7U1NHRdU8Po0RgUTQuMhlDDPcSjG71zgG8kaM7n3f4RxzMLPk0T\n4fQsxWtphb2UTN+qTkFGdDFGzkIUtx1QnFiKLu+ieuXqK1KlBiBGVrJGisTYVbPaddHarKepI1Sl\nxKYFckkK2JMEprznKi3z4ivyxpSIzK3LU/A8Ee9kFP0norWDidXa7vZdCjJSveu/wGl5ipcucvzR\neYS9TYSjQdcLQlUnzMK3qNe4O34Z8/Q2DfaVAdNNZz+K/XxccUyQj46qtK/OYmNkYEQu6X2PhhCH\n78OT6j6+dC5Qtqkx7eObfZxQmXOaVjjIH2EQn3olQx7+Myw1wCg6oKlMue3+WuKliwT/35nApgXm\n+jTtZQq5pM/OzV7PKqBoIzB5L5dAJklsFvAZl+5xZLIG4u1BZgNADggx6FTtGp1qHeAhAsu5Ab4K\nabSg8pu7aLs07xvPAbOXIeYv06aFFbRdDbmA/MHlWDiEFQYdqirEvYsuZzyZpCvYt5mgKoSKSYQV\nAJUcme/Am6RQRdy1BNeKGt05HZfrgmuOn0kXemMG6Jbuag2xPjPZz7vx9OOZBZ8sa/GB2xX+uZnC\nt+8VuD3KkMsbhlXmKfE2y94F0/ufw1u0LTMul2OS7Y+WAGpkUiKTCrM0wvPjCK9tGpzNVvjOfYX3\nTEs8P0mRy73tA+/bvXHsqGPzTERIXxa5BGJpF/tQFcCZQVl3CzwuHuGliwx1J1C0XmdE1+07495K\nmZ11DE2jGsB9TJObyNxyniMoKY4Ott9fkgBYa1Oxcysq6oiIisP3YYEl7q9KvHThDwVaIJCoO1ve\nmSSNXvQo+GsZJYYmz5JCMqaML4kyvG8aI41WyGWOQm8UxklrshoAuL9KcOaUUfkfAA1Qu3e/mbSZ\ncRo1qEW5NTPEWTiDhj+wuQ2oTKx5XCSm/DbO98175OwPoBm14Wgf6nBNwH7vIVSx9GatvHkifc2w\nnw+XOinzlOZaCBU/KCKkUYuyFUijHpFfnf3ImK/DzGbPGax6gjvMHKd0XCvQtZ1LiIKO3etZxXK3\nWsRbFB185ZNnPZ5Z8BmlCt990OCPzQvMszkm8oZWFCj0AuzMRTDwMNV1PPQzH8cnRQzmRrGAGWHu\njm4Uz5FGBSbJAgd5g4uKbtA7I1qsv32vwM3BBEnkLKIy9Zr/vBB45mEcLgUZMDcYU3MFV9W0FbWY\nz2jWhRv1zi640ZTqVtUGeAByYn1+HGGWUtYzSVpdu6fGMVNoM6mQRArTlBb9s7KBFKdIx7ctDTqc\n7Hc9i/h3s5SymzSBWq0huQ+0NwH2b0LlE9TV/V4mEWcjmeyMc+lB3ljFCSeYaeVGOG0fCYnnJlMc\n5GdY1LSQuswqAJgkBb6ySB2r7u1jcTMfN8ZJt7MPYvTSdCYsGhoMZk0+XqwHcQ3AKkzv6VNNABRB\nRktzrC41mh1A1dlXTG/R2Ffk0hMVpRmpwy1WHTuAci5OmxLlLbqupXzZCmRSYVF3SKMO03RtSnC1\nLCFFbE3+4N9LaTygCkOj7SFYTXz/JsRsDzg/g5ivIU5dxqIFT1VTWVqkJBukckkVhcmAej752Aya\nvhtPP55d8IkV/sRhi2lyB1nVQB3/oRbbHMH1PAHgL5DpkL4PG64sNKkn39FzwZobJwKiRGKgWowT\nWtzbrkLVKRzkNy89bpEk1GgHds++uBEOZ/INGIJONjbqBm23MAZ6zGhj4OG4M2owTVuT8fAiDADT\nlHeztMC6C+myXiOJTjDIdClDy5fwIp+NbhhpezMHw2A0n1GjWc/eiPkMYjBHqU3/+ko7LvAc5HTM\n42RozOM4wpJP39duzLPbOMjtXJgrd5RMnmCanuKlC6LRu1lPmCWFizKdR/tcraqROIKePGRMJdI1\nXXeAMagD9GxXDG0b7p+TRS2RlTWkWHrkGgYesTwhkspS6/EVrS5LxbRx4Wtutgcxu2XIDazy0HbN\n1vgCmfcBFwEY1x2XRsnzlkBImhJuJjdb4M7HzOXINB5A5IAoYAGIfgHsp8CsomvGvU94E1fXQKJL\ndLE0IMQ9R1LKoEHTd+PpxzMLPnkscJA9B5zfh7p4RCq5Zwur4zUeQs32tqmsgF9ai6wPvdox/8LB\nNw6X9txSift9XxjmGUuqAB6wKNfmmKNHeNPQi4d71KzVoFN1C9RdYTIdW6+XuKh8YgU1zVsPdGTk\n7EjRgJaC/mFFllVxtbx44UrlAKPhHFk3JiWHtgSQ+o3mowRitabh0HyMqlvq47WLNIMOgC3gyeXY\n82EywMH6b3JigViXtFhpwpBOKk2/Zatr5/1N5neRDu5gED/CK8sSX77IDAAyw4sBhqRfOBOIdrpm\nmuFdfn1nOj80qDPHkSxQtq3JMDgeFwkyucY4GZrMYiCndgDTmwPS/ZCssSXaOdGbGxlh1Zx6n5+b\n9ZjrIaJrgUqKOqvphJcZ5hJY6sufM0MGaTpfHTK5wURfZjKKzfWzBUD2lemaGfaUrwG6lpIEgntE\ny7WtJGhhUR40fRqh1LtlNzeeWfCRKgIefBG4d99jg0Wz2jbwTV+nB4A0/dbNdqqG5mNCYUUrUKp3\nyJrSzAZtscz1MOT2EKJQyk55Hx8Te8dRe3ZDAdsAxM8zn3mgo/IJym5jmsStU2ILtaw4w6H/eRe6\n21ysxW6CA918NdruDICdeyISRoJJUuJo+AijeI7h6AYEZ0EcnGnmY7MzlV2CQZyYjAuAt3BxmS2X\nU7PIYnXRc3T2NWL+XPRGQTQlsHZIJ8ahdPt8q3KBNL+NNBpgkiywnzfOMXUauJVzrPS4MItM5cCI\nvGYiJ18ftlxnBte4pgHgOCVr9GyCLBuDDY8O8gWABlUntp7fDF+2HdTFMTHgWMYGsNRjV9lgTIu5\nGu9jVVulfla54I1HJttgoY1wkDe6FBjhoqKyLWdI/qxrhLK1YATYjJGvxYO80bNQ/vDulsqH28cM\nbEVUxJ5UCURFFQXA3kOqLb1s6914uvE1OatCiP8awL8BoALwIoCfVEqd6d/9PIAPA2gB/EWl1Kf0\nz78LwF8HXWm/C+A/0EZHGYDfBPBdAE4A/IgWt7s8yjXUH/wTw54CYJrygoUTgW06taZwkoFXqoUe\nU0hpTyXvll0QMmDUVgQk2jiOJVtCKRj+X5ULmsh+cg51/MQw3VTRWOZO05osiAHIgBCTCQLgCTO0\nNBpiIKdbNFn3fXgeLQDW3WJLHLJqN94gbdXZ2r8bUpfUBhGQRg0mSYtF3WIviwl4oomlzbLdQXh+\n8jGweoLBeB+tqnF7eGZei4EylQMk0cQDHU9YlBWqnTCaZXFqPxf21WHgYW24HvARMkOjs1i3xBYy\nAl3CA33fmizSdVmN2w5qZaX/sXS03aoaSFmhnIzQRFNR+VJqN9FoabJKV0HAgI62+HDVnVkMVg4f\nk/jrMIe4ewu49Twwu41Ne4FISHSq9dXftd8VfQ6W/JBJQheyoG8xSSIv43P7QGEfzD1fBDwdRske\nfaauBUWf8VyYtLj9xM3Knktn8FSlNWXWOc2+jbJ57/G83lDY7vE9y/G1gvS/C+Dntaz3Xwbw8wB+\nTgjxAZCvxHcAuA3g00KIb1NKtSC/iD8P4O+DwOcHAfwdEFCdKqUyb8BAAAAgAElEQVS+VQjxowD+\nMoAfueoA1LpE+8qZyXg4urMScrJDBsWdHahqasDGKZBNIOOJmebmsPL6miDQlKQmfPLIqhMMRmaI\nzrPCrtaWNnpKQpzdeYnuvDDHSxI5OVGuGYQAf0EMgAdZfwOVdbTcC8LK+vskAJ59GUxvIp0e4qI+\ntqcoAJ7jDT3j4aAB1fU7LcPjZIaSvt6XxAocRhM9JKhnqoBeC2lgSbT2fIyBnKJTLW4PSSUgjUbe\nImtAZ3FKQM5lyhszGk51fGkMJLQlNfWBbeAxxI7aP9/52AOzNBKmlNbXHzPnwOlpkKKFznbYSG19\nRtJAPLeypoxVrQvqUbCnTbqGmhEDLBvtQ0rdW5PwS4erewQ6DDju1D8PcKYJAY6+VsXN96IZTVE5\nxmyhvmECmH4hA5GbSaeR3XgAbE/fOOATeQw5Xqy51MvAM473KRstnvhUa6B/o1L72Zw3juDO+vDf\nVDVtOKIYcXwLX08hhLgB4LcBPA/gKwA+pJTakmkQQvwggI+B8uRfU0q9oH/+ZwH8pwD+GIDv0X49\n/JhdycG/BeAvgW6f+wD+HaXU48uO82sCPkqp/9359rMA/k399QcB/JZ2zPuyEOJLAL5HO+RNlVKf\nBQAhxG8C+NMg8Pkg6EQBwN8C8FeFEEKpXYY3+hiKBs1Xt0sv7CtjVHs5usYCD3vOaKVmFcWU/UTJ\nVt+GywJCKQKe4/ukJlzVwGoIMVpbENIDnR7oaNtpBh1VNI7VsRXhFHmLiIf9R3bx6OvvuJ4zrFyt\nzl/2xRZ5QDUUdHS+FkfnkHcqzPefx2l1H4AdouUZE5KZocXjQJefWMOrb4bFAM/qxGix7dThGtvz\nRcOAE7NwpxE5lZqdvS5VuUAezTLg9Bxifm5BCIBbNVSh0ZwGHnN9GF+kxPQAw0zKJV64DXT3fbus\nroGc0rGvHtA5cI9dD9lyti7yGNGMmJeKVS+qGphXUE2FeLRP0kJcvt3cg+Ln27H4bqlmHB5CTI5Q\nDodonY3LLv+rVvnGi65sVchea1WNgbJDvgC0xYnyQGiatlqElEqnwtV9czPjcMjazWjca5nNCsPQ\nluRqtTabS89F9esjPgrgM0qpF4QQH9Xf/5z7B0IICeCXAfwAgFcBfE4I8Uml1BcB/BMAPwzgvwse\n05scgC6ZjwH4gFLqsRDivwLwEdh1uTfeCcXMPwdCaQC4AwIjjlf1z2r9dfhzfswrAKAzqXMA+wAu\nRd2uAhZf7RCnClGsjJJvNMuo/MZ/yIsE19mXazthP1wDI5KmYeOpMPsxqtKrJ55CAU9SqyoAuc2K\nduZ6SI5FQFXRGtmTruzI8Ku0O7wIWhLsMLG7el2f94kF1m0zjQYktrh46GUEWOpms36fuyJqWnOD\nTqeHOK3uG826ZR0Z3bNcKpwUsaY5Qzf8WTYmuARbx8HT3ZX3RaCqLGXslWIMgPE51Ys3u3Z25wXk\nkWNKBhAAhf4tgb02L2IKjrgpsAU6LriGwOMCDp0HW9oU2j7bZL8OULhDtu7nbrJfwB5XnELp0qHJ\nnrhsx71DPo+wUjoYri1DbHYIMbuFtSiBHVYjro6hUEpvwmJUDneCASf0vvJ6jTpjIhX3xlgZkEIF\nk0Umugx5sg06AeCout4G1/C9wvGLMp+3c833mAy+0ejePoWDDwL4Pv31bwD4PQTgA+B7AHxJKfUS\nAAghfks/7otKqT/UP+t73q3kAMDnQbfQSAhxAmAK4EtXHeRbBj5CiE8D+KaeX/2CUoptWX8BtM/8\nH96q4wiO6acA/BQAfPMo94AnyiK9i8wg5mMqYQxG9gJ3bIzdaWgA3kApM8Y4WlUDDTAd3yQ1giO6\nSQSbVmkfEpaxAVZ2SA7+YFyETGtONkgzWBFOLfrICtBuOck1rHMzHgM87GvCWY4Gnp0Lft95lZmm\naDfazZQYZuOkw/t01efOqMLNAblIslNr00NMUKznBZCydJ9aNX8/GBlwJTvvC1IajxLq1cQpndOk\novOsPz+2ahB5TBpy46HJPj1b6LDfl+p+SJVYcoczKY/qDBhVQDZBPLpBC20UI5P++wwznTBzaGSE\nOB9bgdM5PCULXr5EHnvDttz3c4eGWX3AaKSNnHNqxFiJ7s5SS0zDF5MjKiPKFKl+1RB8Nlq4VYrG\nZj6dDyZb9huXBF9HZFVB74dIGo6wb1O8PuBxpHOuFa5zraN2/nUUR0qpB/rr1wAc9fyN2bTreBXA\n917xvL3JgVLq94UQPwPgH4NWrn8G4GevOsi3DHyUUn/qst8LIX4CwL8O4PudEtk9AHedP/tm/bN7\n+uvw5+5jXhVCxABmIOJB3zF9HMDHAeBP3JyqfE9pzSqJaC8jQcujOU3azzQ909318oXtAk+a0IKV\njVE0xzivtkt5bUQZR5oNML37nRDTm7ah7bBzVFv6C26agKb5YwKhGWVmtuxGxmvRLLOLj7OQisHc\nyOK4YZvYtpcQ3qjXCqalxjRl32e6dZA3OBpGGMWHppyESrP98jGaYNq/6jaQWU5MQKaXs45exMO1\nE6MIHeqzmfcYD4hcAZhSmDAOn+fU14slLbQ3ZhbIeKFh4JEpZWPn+l5OtBpDHyhWNVCdQ+VjiDhF\nmg1QRwUyeaHPu/Ca/iGTys0GGhkBoylZY6yeQA33SO5ltd4enOyLwPiOzuktOp98LszJCoalOVvm\naCvELOfT+B18LjW7KgvhBsyN7bK0BSr2t+LBa3N4kYKM7DlDo6/nPh3DS0CnL4vfMi28ecOQLczG\n5ilZaSuErL5L40AI8Xnn+4/r9QvA5Zt77zWJlHVpC+LNhhAiAfAzAP55AC8B+G9Bffz/8rLHfa3Y\nbj8I4D8G8C8rpdbOrz4J4G8KIX4JVFN8P4B/oJRqhRAXQoh/EUQ4+PdAb5Af8+MAfh/UO/p7V/V7\nAABSGMMykcWQd/eAvQkBz2Dk/61zQbP5lomU5gFKVeC8usDjYvuUUqO5QSbJB2Y02sNAHtKN5Byq\nKJfUn9BT2ErLg3jnzpG2F7mknbtrpTwamhsHoxtYd74skBSJ7vHofoLOdtRqbdSiw9e71PNFL1h1\ndx4MFircGVWYZ3PbHF6e+M3htkQ8vWUyoKrboO4KsiGPErIecMFHqy+wsnZd3e+lhpvzrgEIxdK6\ngbId9WrtEw7YA0eb5QG8C18AAhjeeA7q4oERtATW/otxKQvapygdIs7GdhjSlNscvxr4mYDouWwb\nNGiHQ2KvjfahhifATJfFeLEF/M+Nsx5tfLeq7ltaNQOym9UxOLPCxdZBVAh7KqotIWSGdLyPTWtf\ne9WcXprd9PVEXeDpu38y2UGKzDAtPVZb0Iczmbs+Jy6hqM+t1bu/GHj2b5rrYS1KrHQ/822Ox0qp\n7971y8s290KIh0KIW0qpB0KIWwAe9fzZro3+ZbHrMd+pj+lF/fqfAPWZLo2vVc/nr4LUmf6urit+\nVin100qpL+gD/yKoHPezmukGAH8Blmr9d/Q/APjvAfwNXX98AmqIXRkiiSCPRgQ+R3O66A4P+/84\nKLkBzi4qodS8aM9xb5XipLCikSGVln+WyQUO8lMz8Gga/9kYKBeU/aQahMJ6NOCXWRz1ZwBen6dU\nhXF1HMXUTM9EbhvZTDXd5RJ5nWB9sboxC8dB3uD2KMM0uaVLe/f9xj2XSQYVIDPI8b4BHioPkg15\nK2qk2QBSW3i3qkHRHBvhTBv264M8oJDzAGKcWpmkOYxSgsl2dBbG/j9cLmJLhjapMZ7dJgUAfnLu\nw+gBRXWqaefjc4jRIyCbIE2HGGhJfpc+vTXgCjhDrtbana2602iAPJ0gy54jQsZwD1ifQXA/y3vT\nCZVxRzewbE6wrNdIo431E5reoh4kf35eP3BpaemApfvrr01oF12Rj032wxYOmaxNludGp9oes7k6\ncPSNMU2tvBDRsp2SG+u5NZWXsRvyhJPthCruwHZ/x3x/8wZtPCdziMEcaryPRXOC0+IU91Y9gPzO\nDt6Qv6D//52ev/kcgPcLId4DApAfBfBj13jereQAVNb7gBDiUCl1DCIx/OFVB/m1Yrt96yW/+0UA\nv9jz888D+OM9Py8A/NnXfRAygry7B3F4w/ZHtCnVFosmyERYqJBrwo2M8GixwP3VEK9trIZXmNG7\nApN7aYb9vMFBfoKjYYRcjilDYLl7zVpSmlJr1AxCPxXXYloDoRjto4w6rJpTnJkb79QAED1fSiUk\nd8Buh9Ciuzv0siANeOwWymA7TVsrX9NcPszphu2BMGuq1k1rsl5mwcrHRYKTgo7JVQ0AgEUNTNAD\nQADZUQO006/WNpsyAp3FpSoTW8GAz/05FnDl8pV+D23XGHYb2wUw+BinVaWMUnWrCgM6bL52kC+w\nl22QyzEG2RQxNBMv1SVWDUIASAePNx/1Ge6tUk1TJlFRKWO68TXwlKowLqr8/s3wKZM2+jIiJ4p2\nqX2OUkcBgxQJUjlAqxrvc+WouxJVuyGwilxFg3BWK9dEkid0X4bU+8D3qW/TtjM449FrQJPlWNWP\n8GizQNlKc6292ejU6yq7vZl4AcAnhBAfBvAygA8BgBDiNohS/UOanPURAJ8CUa1/XSn1Bf13fwZU\nWToE8L8JIf5AKfWvXpIc3BdC/GcA/k8hRK1f8yeuOsh3AtvtaxJCCqvhxP2RbAy0FQQm1rKYZV0m\nc4ijJcRK19urGuIDH0B78Bzur1/GvVWG1zbbCsZuuBde+Dt3eFPMbgHZBGpyak2zAL82D9iF06H3\nusBzf1ViUSeYJC3ajsgQTaRtAmRG1O4pyK+ma4DFKdSLXzUzJLyYeueNG9zQhltxSgwnEeMg36Bs\nIyPaaUokgNe0dX/WZLmh7zIDzo0+MCCpGlfJwJ2jsfIulL0Q1R3Sqmd78yBRDMgKiCsjTcODtZGq\njcL1ON631uKcuenPRBwdACMqXZInzoFZxIr6WGdpHabpBdJIoJYlqsiW7QwjEjDZFlt0l22m1RBs\ndidFArVyKiTpkP7xdTG9qRfQY60uLRyb6oRsLTanJA2lB1KljCEFkVIM8Jw/sM6546GlovO1oMt6\nVXOCqt2YYdGyDf2LShzk3RYI/f/svWuMZVmWHvTts/fZ59xn3HhkRWVmlava3TO2GTCSPW7zA+GR\nBmzTArVBeDyyZMAesBCMQDLSPBghWQJLbbCwgbEwLWPZxsB4DIw8lns02G1bCMHADBYDnu42dLer\nuiszKzMiMiLu87w3P9Zee+/zuBFZVVn9cOSSUvHIG/eee+45+9trrW99X/fzPUkbAJWlVMe21Ka8\nk28dDJKGLDardWh4EzZO6f4c88Bwn3DgNlG8kZvYc5hMsauf47pYIq/pJj1Ov7Xq1x81jDEXAH5w\n4PePAXwm+PkLoJnJ7uN+DsDP7XnufcnBnwHwZz7Icd5Z8EEU+f6IHvvGrFRQcgpnWSx9qcHoMTAu\nII6t+Oe9T+F89zVbblMWeHyjlI3igCGjMYOezlMdlDXSKUQ6pdfsRGh14L5aJeptvcSmvMTTbeNU\njRNJXkXaUK9kqo6pFIXAJEtq4JAEU83Xv0GzTNizg+SSH5MtQFkLq1rraEI7+/D9dI/fZozdxrSO\nxiia7eDfAbAL8bBqwD5dtNqUUN1LPTADNHUOUWkIqX15BwDLtkgRe+AJBzP5XACUqfJGYf6ak5+5\nyHaOAUiOopwReFt1AJ3B3MQbDdbAQlM2WTcVpLKq1pyNhOw8q2Em5vexq5+3AIH7JjoaUcltdUmf\ndUNjBSqdQqo5nasQeJ6eU0mLe2SpvWYi5cgsZZOjaEgUNJzgLxuBdUmCokVT4STdYqSYVGH1DDv9\nutNx1AIdZgO6rGcf9VnH5PtUtj8XJ5Wz2RJJxAKRu655A8oVA5Mhq9dYFn53OItfDvh8CzOf74q4\n0+ATXnSVjJBV135IUY3ItEsFttK8WNuF/jx/F4+3EssisqZhAlnVvsB29vtR56JbdKoYRD7oH6aY\n33elGQ5+mJ+RyFHXa6dC7YGnbVI2UqW1Z9515ICosV6aDAdv/OO0wLz7DszZ834jG/DAE2RlRN+m\npjotGgpOWLSi3g79rWepwTTB3yvakQtBMi2mciAUZgYAgUxXtucm4KlNDDWkz8UAVMFlP0p2Ppi6\nICNBBh7edbO8TlctOZ1CzO9jWy9tbyrGhS3TJrJxGQE5lqKVLaxLaa8juI1MVgGvjw0eTCLQUDmI\nGr/bANi01RmUdo6rISC4w4sSn/U8v7afIc0rsS6cUroNPFbSScxG9P4eavc6JLqZoah3Lc+erl5b\nVnvTvJO0xCyu2kO2nbmnLv2cyrc5ZT1cchvqUbLau/3efZ2MScH6uVewdgO1dgMqRocklFpe2FL1\nK8fRjzvuLvjIyGU9Jp2hqJe0KIvYlWt0NHJGVrzQF80WTeUX+WWhWnbYWU2Ak1d0G1QlXcS5HWJN\nlMFooOQWLtbMuCqaHcrq2u0SuwOZXTXhcPfMCwDrYYXkh6LZupu7bDLsqpXrpfyGxRPMT96CjBSE\nJjdLFyGrLiz92fcQCmG6naq1HDdNRWUedezOp45G9Li6oNkNoGUP0AUhLUeQUQkdVeCFuEvq2Kce\n4BrVPLhZlrSYVgWgbPaTwe/sObq77O6UPOBAhxlSucksecI4x1oKL5i5ttfFtd24XBUCV3n72gnj\nIpN4OCmo5FavPR2/KgCt3CBxbjKUdWazHoGTlIwLj9MRRnLuzwMfvx3UpXEB+F5n6WdlTGb9bsoS\nwgrqcnkqlGpKpGmJgQKwbr1koEfW8BFmcRMQbdrMuJ4IL+CVvAO1h17m6S6AoAca2KOgKqi83tHG\n4w0ojQtUe605XkZ8QKr1P/Rxd8FHKYjDN2Es04oHL+kCrFBbY6xwkQ5dGlelxNkuxnkm8f4OeH8r\nBhcOFTcOcFJJ5bdUGrw+8gtnUe9QyJ0rexT1svd6YYReMAQ20v7cv2lmcd3ysAHa9N44SgEFyGgH\noERsS2YimcHcu0f1fsADDt/YwRxEbpWxmWSgoxEtGLtLL8Jq2XtmewWkU4xHhwDKtmK1DVElEKro\ngRAxozLUosLCaYbt10hrabtla9+v4eASjV2cyJqAmvD+CTVMKoCppYsz+4vdV+2iH0bdWLfQeIyH\nE1qcLzoU4ryOei6n7vNVbUBNFfDuOrLv5zFO5r8OkufE7BDxtl6irM5Qmwrrctsq6b45FZjHxOSs\nZAQ5XgBHliURzDcZyypUOHUDrQZApK3VyOkJPXZ+H7nJWhmpz+SEY3tO7WX2xoS0/U7SCgd6jok6\nhMqZSBO1LMHpBBYAcldia5U7Q1o1MDyvxEZwbHeiNAysagZfv2Xc03BL1H1M1CFO0rMOm/JVfBxx\nd8FHxg54OFI5Q1avXKZRNjlKK4vLas3LQuI8U7jIFK4K4P2dwJPt8G51CHSYBccS8QDV/UN1aKYc\n76oS55lq1Z+BLvh4f5TQNZQe19hGrweeoYijFJGQWCRr3/Rng7zDg/bQK9/YeuwWIQ4dkT+MYGmb\ni2dexy4og4g4hpk+8wy9kEmlNEnd19qDUDJ1ki0sX1SbEk1Uu88v7B20gMdmYK2yWZcpZbMfV34L\nTpURAsvAOiBSElAJdHTYkokZCikUjtMRcguw6zK6cVfdJaF0472NRCI1vu/oMQ6PSF2K553amxR/\nLS4ShUP9oPU8Yn6fmHKwRJDJEc1OVRdoTI1Jcgil3iTNQoA+8+mYpHaO3urpA7KVwlzXPTdZFlM9\nTkdI5RHG0Qzm+bsw11aMlmesZNKyPmjNg2VrolUPjQXEnWHf8PoMn/OmKEuijm8uMDp4gDouIaM1\nnm6HS7mv4uXEnQUfE8lBdec4SlvOhWystiykNVaLWtnOVd4ur6mgvHaogUVCQBHSr8nojIFHWNfP\nnS8zOUoxzQ117ZiHIqv98/Jzn6TVrcDDIUVsSyHKlzvYMhzwIMHDmOwH1AlHz70m7yHz9JLKNuHK\n2mn2OikTHQPYuDKWB6ECouOxw2VJlvWvReUy1RbwhLYMYTAghkDE5Tf7IwMPUW79Z0DeOEs8mCSY\nqMO+Pp0Nnmk5HZdIZGGvH9nLgujUUK7Bn2M3ODt6tCGU/L6jxy0ZmryOnQAnN8gXicI8fs2RLXiY\nt0JFjEelYVTiLLD5ujtOK0zUIZKjt0gRYXRFn7sDHg8+3eDXTqSxjDWNOEo8W3D1ZfLQOrNzRotz\niMkYxgrguhJZuFEIs51QvQBw4r7u+vmgwON036j0KNYXmE6P7edGc0svqwxHhINXlgocdxd8bF+n\nK3RYNFQ+4pmHq7zCqlRu0WDQeX8rUJURityvFDqpHeikClhoWsQX2jtr9h0affYjrWU102z59a6K\nF7tgKbNSeDApMYtra6A2vf0PbQzu4meHXgrIyvWwcV63Zu8GWLdXlPFcrdBc5URxve4/tUg2iBZr\nYDZqOchSrJ02W5gJsceOkhpSzlvClKyO4EttHT+gbv9mSCLHPqZChU15iWe7Fb6+JPYZgFap7K1p\ng7dn77dAiM7HriUwK0UMkpPzALguI2R11AEag0XS/qxT2d68ZLUHIEC7bIqP6XQU4e2ZsUO+96A2\nS5j6EkImJFlkB0qrJKWNTnXhhkPPs9hm0jvUSUm+SnOi/bds1jvAw9nPKAJGylorBCVYBQVz/ZhK\nrhZ42M5Enu6Awykx0Y5Kf711rB56IqHhZ8iCJLbHc6MW25DZYlHSzJvSlvmYO4sOcoPd/3Sv4sPH\nnQUfISI3aS6McZpVIQtsV5VYlTR1fZ4RE+n9rcBl4TMdndCVeTKtsUgIcHhBCb92gSe0oR6pGBN1\nCB2NqP8UXSKRhX2sRLqL8JWrmwEolW0G3VzXTpIEuNmiO/z/ogEQjaAS0ieDTOiGtIzAoiPXA8DZ\nFyB7DiyfAU/PvdMmn+/uZDkLoQ5lP6NJm0bcVEDlhTUBkFimMVBQ1sJ75D/Prtw+0Crp0EF39MyC\neSkjBDblJXbVqrfr9ZlrgweT0urWHRLwLkn/bWTN1roR0sTzun+dEIAMK0OFrwt4O+Y4MoijGscp\n/R0LuM7j1yDWHYnDIBNgIkfZkFvncRpjFlNp+UDPSQlBpNR/Udrpu8ko7qlVA0Ac1Cq5/Oo2JqwH\nx5n0ZotokcBkA8KuHHFnaDSOh8ig7XLwkONwN4bkiAaCS+9FY3qlxA8bxvjRi1dxl8EHEe2Oq7Z0\nCKsRl4EFYtmIwcYwQGW218cGb89Mjz7NwcDDsiFcB6fp7zEtXk0EszzDOJlBJw+go0skcolEKsSR\nQlZLvLPyN8GuRos1Rz0l6iXN4trZJLOGWG0p1mF0AYl7XGWTecq5LUFs66VjTgN+gXH2BWz8dnnt\nmURAoEMXqHMfJG0Bx9DqOOpckpy12M0+O8eGM0R8VpTU3kphSO/NKRoU7d+xtpkt1eRW4oc/Oypj\n1j1r7gM9d4u82T0ik0AAqAqMjt92ANSdZaLnFCgbf0LjyLgG/ZDbZVeyKZxzArwMzVzfw9gkQAA8\nPWtpeMO3MLQcYRInXouvWnuw5iFmqS0xR6E2faZai6XGoOMAfwzce+DKZIIVtLslNwWnLOKisDYh\nPLfDCuOBCGhrg7FPo84+V8u1lP8/Uk4FvG5IYYIGZl+OwsGraMedBR9uMAJolWOE0pD2omc22XUw\nx8PBLLZPzIi59nBCDdeuJTCA1qI1s0QDHQmM1IyYP5sleepcX8FMxpDz13Awv484SjFSl9BRaQEw\nwvtbes7LKw0sCgdATGZw5Tw5go7GtIjALsyOzdff9bHMSdF4z5myyZGJFTHiguByinOSZJdPNsAL\nd6x2W+++zkYQD0+B+w8Ha/M9RlpYLgtJAUPBjLYQeDqLZ+v7DuhwDyQrn7XOETO52MJZyxEm6pQ2\nDBfvUDnp6bnzyOGrZHz0FrbNCo2o3fPRjJK04BGSQ7xSA9BmLtKQaBtswvmmRaKQSmsrvVmC7K+G\nwwjRmyfrMwMDW2oOdnVNp3YYl+dwAo26kKUWvmYeZMtKA8cP2/5JNmMRMrEuufCf0R5KteiwLl84\nwownlJMKBraNEG6EIZzTehUvN+7uWW0qr1Ac3CxGacjEC4zyACkHZz+vjw1eHxu8NaXyy0laYaRi\n1E3ZmrlZlbKX7ciIejEzeQSzfAJz8cj1SIjSuoWpCowP7kPGr0FOLlE0BfI6QVYD7ywF1qsYOqkx\nmtauJHOgG9twhs96thZg0ykBkL3reTHkwVQmVfjhzQaJpEyJNcW4x5OItG/WFqg60zm1Q3wsxZMo\nUg1/8z5w/BA4eGAp7u1LULHxGZfMdpv25xaQArzNdzEMOPtiD+gwzT0suQACs7i2C/zM21tvnvsN\ng/3sqm9c8yGSLh8IgK6brPXyOjLI6zao+QyLIhzYnAXrLoNPIo0TpnXOnteP3DwVHQhnK22A5w1I\nJKT3V8pWMPmZs0h3wec1UpR1Zmj13VAFlOgB2vzeOH44eGwipEVz9tMFoLBkysDTzXT2ZT+AEwnu\n2Yfba4FEbnOcZxGWRYT3+7yaDxUNXs35hHF3waeub12k8joKSm60GCwSIK2IxbbQvhzyQcPXw/cc\nwx6bAHdsAdFhkVD2dZzW1qpauEFZxaWMTrCasJ9bUoEUCy2ORSNwklYOdLx98RM/rBlmOi1XT9kC\nIPHwFOA5kckxtlY9uns+pJpTw1gWlFHFcZ8aXWyJhMDnKVTK7lK3w7gBdOpm54ZZ4yiBNAoyjjFS\n9No6GnngyW2GFcrsDEWxBTbPkY5ndqH3ag3dweGu2nPTsZb25ylxf+f6MusLOleAGzrthT1HAmsk\nSiNJjuj3+Romf0xyPTfdDwoAPry6c0sSyspBDUZdQFQJfb5K02cagk63R/cioTRwGy4G711HI8hY\nIZ4tMdeXSAbKlq/io8fdBZ/S7qo73j3OldOUTimgS48kJhtlGkO2CQACpQH2nmyQSNpNj25jbrJm\nmtQo6ufWYCuh0l9FNO7ZvMBkRCQHAp4KDycFdETHurO9rL0wcB8AACAASURBVElyCCQpyeXXa8fi\na9N02z48nKmdpA0m8WEgNGkXqWDuYvDYGYQCd032mAHg5im6PShnIQ04WnerbBaCShd0wh1st3kd\nBAOPSWdYVxdoSp+tdcuLkZCQhm4Rt9Az8BR+yl5MxjBFiejAHvs49Yrf+coJd9J79GnMkH8PAF/2\nYf2zIZAWytLan3hacniublqYqwKoBmaf+Byy3QTHEJhbiSkRgMhgW76jP/ixRJg5hZkUf33R12WA\nlhoKClN1jJGc40BfvpTDbIyX23oVdxl86hrm6TnEKfxCZRc4XpzzOh5Mkxe6n/XQrI6XuSka4ejZ\n07jGXHN5JXjCPcKbfCxGCJv+KydcyjGdlTjUwOsjg5O0xsNJYct+PmPaVX5glvs5eS3cXEg3wub1\ncTpqESFuBZ1udEskTKFuiCIsshV0OkCJrXx/QLCT6VBJpbNgOj+XUN8r/FxZ+VtpVEmKZfF473wO\ngFZPo6XaMCQuat9fdGAlgiZjf5xKA5vnUOnUHveSylPFts/eCspliqnRSgMyOE/umgnsDsLzARCh\nwmY/bjEOS8tMDgn9cMLhzc22Q3sPji9Y3HlUQexb3G9a/MNr/8OCUlhiBFoZbfi8BJL2Wtrn/MpR\nFY6QIkC90gO1x+frVXykuLPgY6oGuFpRHZsByC5QtVkP6HL5pv5Ct2vvHF6hOGrNBS1qVny+gbIZ\nlq5i647a7FDUO5ztEic4yTEZ1Xh9bHA6avBwUtqexBRNVLusB4CT51+VsVNEYDYVe+FwcLbjiBB5\nRn2NcMI8NO0C3C5fxIHeWze4XMJRFTBYeZC4aRhQjwP3UHhdti7o8DFtszYlOwAgtnBYlmd4vMkx\n11tM43FLT6wbjsFV5R54svVwuW08bLds8hWZBIb9McsIbPky8Vcdw7BeXGCXwefORVgqC8Ej5n5H\nkAFwT2Z7RX0qLpeGn2VwDZqi9FbhDEIBldkI4TY6gwAULPwOpPYZDDsTvY9Y1gtKeizGW5sSMNRL\ndDbsXdp2UTqVAwDtHtZt5cjvwBBCHAH4ywDeBvAOgB8yxvTSN+so/Z+C/Hz+rDHmc/b3vxfAHwXw\nmwB82nqp8d/8ZgD/JciMpQHw20Clnb8C4JMg0cW/Zoz5jnUy/fZHY/zNt97S4qjHdAPYezEEnxB4\nUgk3s9MNzizWpReMzGoa/qReinCDeMODC3A3UVZf4zyL3IAjUblpaeXSX2yb1eFMj5ajAHTIDIsH\nEUMQW+gIp6MG05iICsySS+XMKxWsLt05Yqtts9o51QIBEAh0BUeB9oLaURJosdZuaA4LmcBotBeB\nbqM4kMp3P8f2/0dwGl+5VtiUZ9b0LMGqlDhJdzhOR4HuXfuWYOBBZmnHe7I/kgziRboNtI46HAKP\n/XvDjy3tuWst+Ot+qZGDQZjfbxhlSbt3zlQAv5CyPhoff3De2P0zOgCgJAy2EBjb8xm8J6mt62m7\nHBgCUMgYI/Cp+lTsbuyrBISfq44B7YdCWxR8oEOsKO3XisAHGB4yBdwaYCIF7Cp/fkMR048YxgzL\ncH0M8RMAvmiM+ZwQ4ifszz8ePkAIIQH8aZDr6HsAflkI8fPGmC8B+HsA/kUQyIR/owD8JQB/wBjz\nq0KIYxC1MgHwJ4wxf1sIoQF8UQjxzxpjfgE3xN0Fn0jQYsklko31R8nX0HoMHV1hrhukUvaAJ9Rl\no2yChT2NW+yf7qJA9y1CVhtkNWcfFeTkElCHSA7uk6fKqb3Qjw4gZqfYihy7coVV2S790TH4AcXz\njPS+gB0Wie/lsNunp4nDSQEB7C9EJmXTmMttgV1xlVlGYNnW1CpKp1ogMgXZGR5tLSu8OG7QL+Mw\na+1FmrlhL6PLgApfO6/aw6zOAoJ6PFn5DFIoLBKFe6PKlRf3yQ+FwOOynjIA4g7Y9txlw2MHXBbG\ngp37sp5QymgwGABvWhRjel23KHP2GIrDBn9v8sp/rqmE0HUbRDmrSKeDdG0A7dmrgI7t/tuK9upo\ntL9UFwKQta9ozY0VnXMVnC+jx0QJlwkEsztB7FLH+uS/VRKhSjsAIs/wNcuSPred5+/M+CyAH7Df\n/wUAfwcd8AHwaQBfNcZ8HQCEED9j/+5Lxpgv2991n/d3Avi/jTG/CjjTOgDYAvjb9neFEOLvAnjj\ntoO8s+DjnEy7C0VVQCYptBwhkQUW2ht6Hej2sGg4fMbfr8uoBTyXVxpFEeGrZYmrvMZVofDWNELR\nFHhz+owkTE4+STuugy0wXqCazLEpHjuqZze6Ft2PNgp5LXBvRH0qBr+rggBnqG/FM5/h3IiMaN7D\n2V/zzc87wG2G5jpHc53DZBWEdXiUp7a0NQQKvKuGXQRDAAp25gDaQ4I2evRdfsxNAMT/b7NZMTlu\n6dDpaIQH45WzgAD6JTevfFG0s4bndpZpm1F5ajFrZ3tTa1AYRpjZjSYk7T+1FPIbXGlbfx9+vyFa\nu1MZH4qyhJMnCs9hOgWmVFIzRVvziD/X6CCFmKG9wLNsjdSD8jp8rsL3GgJQOGjbpdi3SBjuYOzj\n1+0s02WKG3jw50zRvrYDIato3QI67vtMx35wNYwu6Gyznpvvhw1jhFNGeYE4EUL8SvDz540xn3/B\nvz01xjyx378P4HTgMQ8BfDP4+T0Av/2W5/1eAEYI8Ysgi+2fMcb8R+EDhBALAP88qJx3Y9xZ8HFO\npmFstjDjlVU5UJjFOxri01ELeFg8ca7rFgCtSz+QysDz5NEERS4xnRcoTjJc5SWuCoHrIkJel/jE\n7Ax1XGJ29BYxqdIZlsVj7KoSRTMkQNmWY+E4zyTOM+lKa1c5yQBtdhIqbpzA6VCwuRmX7gQbd4V2\nxVWN5jpH/XTjwceKXpFUDvxOslMGM3kFUdW+jzAdOz0uA9ysxdWd4XHgU7bLedZ3BkC7lxQMjoYx\nUvSaXYozECymIbMtLJlZEBZpBaEkzHTsF8HuNdUqNwaLYCghFNK/B96/m70JSndYW8JCWO7co1PX\ni9EEmNo+h3Wsba7oMzV5jeY6IxWK4PHOmsBmPaEuohswtUAd7pf3AdDQ91Kotpnfxp9vFxb0+Xtj\nrznXn9IxMLEgVBX+uEMA5vMVnrOQdLHNKMO/5nPybdHEOTfGfP++/xRC/E0Arw/810+FPxhjjBDi\nw82D9EMB+CdBfZ4tqLz2fxpjvmiPSQH47wD8Z5xR3fZkdzOiaHjX2FRAvkaqZ5jFKxyndQt0eBhQ\nRwLnWeT6OAw8LDzKwLM+jxHnNZ7nIxS5xGxeoCozZFUNgMpwv35+CSSA1mNk5TNnBMZzRl1dL8+y\nkw6AQkOyq1xgu45RFBFWS40kqbGdlRhPyx4Icc8ICEpuaBx7yhmKrXZ0I2YV6usCVRlB5QVEItFc\n0+IQ6XiwhwAAIimpj6C5kV32F9tw4bltaHFf7b4TTNwYAhn3soH+nVtM88D/xxIMQuBprjNfdtTB\nQhYyy7ry/w44x44AEVKQuUnu1QJssIMnZ16bbXs6n3tuZafntu8cKU3unUUJwzv9vKL3lTeIDhKf\nQU69zTwfZwgc1LsMMkT2ReIHsCK5HXAO6eOhX5Z7vsiyFYONT2/xD34WiQKqmoC4jIOynM+4Udvz\nHm5ibOYzpJbNPc3mOoPJapjvQEE2Y8w/ve//hBBPhRD3jTFPhBD3ATwbeNgjAG8GP79hf3dTvAfg\nfzbGnNvX+QKA3wLgi/b/Pw/g/zPG/KkXeQ93F3y69d4gzOYCSTXD4fgBgMctyRkgcjdMIneWUk0D\nmizBs6tJcHQ2L7BeapRaQSc1dFJjOisdU+1AN04ZwdF5QTdo0mwxi+uWKRgHe/cAbativkcWicEi\nKbCrgdPXsp5z6q3R3TEHC51IFaIkgkKDKKESgkiUt0wYp262R2hywATgSh2u9xMOCyrdM3ADAIEZ\nTbtXGM5+pmPqn9hFQ6SVfy0AODuDqQokh29CT49bCtjupQbKbeHUPq7P2vM8IGqPSCUtfKzGfXTg\nLa2dRpmm3ktZ+kyHy1f2/XYt0snMTbnPwdGpmaG2L3gh1TGEPqDflQMAz+HKbwcwVQ2RkNCryC2R\nZDai9zWakIWGU4DYtbKeMFgep5fFsW6iFSbtAk/4XI5V+EEYZiq4wLt9M84qASKuMDU7LkCbd/hr\nyD6XmI0gkhIilZQR3ma09IJhDFoq+B9j/DyAfwXA5+zXvzrwmF8G8D1CiE+AQOeHAfz+W573FwH8\nmBBiDKAA8DsA/EkAEEL8hwAOAPxrL3qQdxd8pOyXSDiaioYDARyOHyCrV4M751m8cyrFoX3wSJJt\n9nRW4ujezmU8RycZTqY13p4ZK8dfOFXkcTQDshWSZIra2SBs3aBqV2ySlRc4mAmX1aInww8A76yG\nez9DIpZ8DrqsMpEqiLyiksx1juggQbSgf2I2grh3RItwl4kG+F5I6LeSTmFU4nrXosp99iMpIxBK\nD2u2KU1MNgQNfIAWj/BzvbymnW2+gjq4D6lYFHPYmtz1eXgWxmYa4vSEyjWahDDFmggHLIrJjqZG\nCOd42jJF40wnANku8ADwtuLZuq2ZFzTd9/W7UNW0cw8ByP3NuL+gzw6J1g/i2opUwWQV5OmEPst7\n9yBmp8i1QlG1FbJDOw0jBEQyBbCmz6t3XH0igo5okxWqXztWIRM7eG4rUbeXvriUNh27TYBIZi5j\nM0K4jBbJjD4XRbRzABAYk1gpl+/GKZ2XoW7Jd358DsDPCiF+BMC7AH4IAIQQD0CU6s8YYyohxI+C\nAEUC+HPGmF+zj/sXAPznoL7OXxdC/F/GmN9ljLkUQvwnIOAyAL5gjPnrQog3QOW+rwD4u5ao8NPG\nmD9700HeXfCJFF2YfGN0b8wAgPT0NQB9FejG1JjrpdNvoz0xRaIMqqTG8UmGooiwOMrx9tzg9ZHB\nG5MaDwM5/nE086Zn+Yo8VOzrzeLKyd6sy1BsMuqBCQNQ6JbKzqanI4l31yRM2v07VjhgNpK7KAb8\nU6KDlOi4AAHPQeqBx8rn8PlrnVfe8QeLQS842+hmQZMj0vxiIdgQhOyCIxA0o4Mwmy1weQ2x3tKg\n7HgBNb9vbRh8uM+2DoDn6TmZnlmdNnF64v/g9ASYv+ayAraxBkgpQScjyHTmS2gddlf3/bf6Jvz6\nYZnt1uHI2pWohLIbK8eiG3vRzvBcAwTipycQsC6tVQ0sZvS72Sny8RjL8hl0NGptwLqg7QAoX7d+\n7wC4ziFAfTYGoBboMFjvLn3JjcMODg8CUNjzYuAJsssKlbMBkSKGTFL/ufDgqR0nEDxyET53+PUj\nhjECxQsYQ3701zEXAH5w4PePAXwm+PkLAL4w8LifA/Bze577L4Ho1uHv3sMegYub4u6Cj4whZqe+\nobwn3ICgnToPB9lIdXqHWVxjWUQtQsCuhnM1PVwULfXrk7RywDOSc9LmWj31cj8ywciWiRbJGnld\nuwHVMAvqVgNCwDlJS2vZQOnBRbbDcRrj8SZ2fakw8lo4SX8AASiHJTdp50ASGFt2iu5NHfCIwzeB\nydHwvIbUdiEgmZ/G1E7UEggWIIBmVOxizQZmOp3ZBSgow4W7bAtAAPwcje3P0G5+RZP7h1cwxRZi\ndtoCOVd+yy68NcTlNZqzNZrrjG4UZye9gLj3SeRRg6JZI8vfx64qXYl0FhOTzhmqyRHkANi6eZfa\nS+OYzYVTHzCX1zQIvdpRia8rVxQQO7i/ZrIKMlGUrU3HLTJDeARePdr+4vSElKKLkuj+h2+imsyx\nLB7jm2sDHW1wOo6cOeHQQK4DIH4/YeYH0GBxYAgISaMNrcftK7d1AMj1EkNW3sGCDA9tRl1Yvb6y\n8b1DKVTLLkQoTUzTLWVALYNBHQOzQ3rOV/HS486CT2NqVEkKlUz3Wy2/QEgR4yTdoWgqCwqUkaRK\nIKsMspr6O0PAM45mbeApSqC4gqkKoM4xm9+HFDEeTNZYl1voyDjZHvZ/Cc3p5prcS3U0QhwtOnX5\nMySSQDaREqmkAVMSIyWFBCmUBYPVjaoDIlXODC4EHjM9Jg+bgT1QqCvHCzWrZY/kvH8hWgCTiur1\nDE4t2f2uUdzhAc1qBNFqFt8yr/FC/Ybj1yBOPolV/Ryb/ApFY6wauHLMR1IWp7krNrjrxqBrbMjs\n23esVd3ucQTRe69F2X4vXaWD7vs8PKBy1/FD+iyrC9RNhWWhMdc16qZCE9GmYSh6cjsvQxmgU2Jk\nAOKNkCuzsifQ5Ig2OfUSpVUT52FXGUjxUN9JeQkjpR1JgW0a2C5+O2AM+Co+etxZ8KlNhU11Sbvv\n6TFEOh309wHQXogD+Q5nkxwpnKSlK1/ldYSFNm648/URcGIVp0PgMcsnvrzCk9Q6BrAFykfeVkGR\nLfFIrbGrSgdCOiKKdOgN5AYjywKotm6Q83D6AFI8A7AEy66EVhA6ImUDUeW0M52dElUVlEkIu5gR\nE4klEmbU4wmNvHrnucRlfunsGqiEmFjQLCBFDil2pGY9oE4jqhwqa5dyhEwIoCPVvoKrgvox0zEw\nIZquHKeulCROT2gna/sYupuNcL8BoOcBFVLZ/A6nJxCjQ1cyk5GCRuUo96Fn0yyGO6dkvtYGkxax\nwIZj9yntXt8UJZXRgHaJCYCxDfMuUDmmmgWflgVFVXhdN6Df94xjypSMgY7GaFSNk3RjNzbznvhq\nGD1AVZqYevb7IQkckUwBVUBkwdwqs+sma4jNlo4xfI+lvxbF6QllPLNTmOkxKlNaSwRPz9bRCIis\nUGyg1Se6tiAM2Nq/FpMjXkY0zbeMcPBdEXcWfLJa4LpYoo4rFNGWdt/z+5QFDTw+ZPAYIZznB8dI\nxThJ6SLN6wZ5LZBKokKT8Gd5K/CYkmYvBOyCcH0G01RIZqfQ6TGVCqIVRmrndnI6mngdtuUj6lWF\n5YuyJJ2wOsf84IE9WnJIDYGHzcTQBIvF4ZvU65gGNyYfJ6yL5OzQU4Y7UTYZvrne4J3VqNej4pLh\nw8nWZWcjNfeq1oBnezWVJylwuIFU9EtwStMiakGIS0k4uAdxcB9bkWOZP8Zc36Oyp41e1nN4QHTk\n6ZgWuflrQDr1mw4RAxGgUbWM4GYxzRE5Jewqh7JlxzBcE9y+116WwgC02Q6rIQRNeaYfU1kq8Z9X\nWcJZUDQV9TfYe4nnYw4P2q9rg0tUp+MIOprcSFffF71ekwWeymriuEwpnUJUmqw06hyA9n3Z7uYj\nnJ2ymwmTzlyZrevQ2gMdY/p+VF3JJnustal6z/cqXk7cWfDZVQJfvkzxcJLjdFz6HsSULIRdFsQR\nDCx2da04FolCIgu3y5/rBssiGgae5bOWdlSoKmywpXkFluWvCmC8QDI5hlSHiJsUZZN50Ll6F+bi\nmafiDpRsxJv0u/nBA1vzvoKW45aLZWvht+9ZHL4JMw6k96uCbv6iBA4WbmalO/me1Wu8syrw5csU\nX7nq1+EWiUEiJRKpoKMVYPXuEiZtMNuLral1DDOauGaykIllLGm4NT28mpWm3tFoQsc9XjjgOc+e\n4evLBL9+/gynI+/KaoZ6f6cn9H4P7gUT/lnvYexMmkgDLceIo9SbztnsU9leRO/aGcq0mao9HVMv\nhiMwUiOVgrI98+Oes4Yp7UxVVQAoPF17vYW5XBOLbGGzWQagjoo4L9jhAn6TGvi+cJs3rhoEmm9d\nuR3HmLPaf2afzBAAMTlGJSNrAkgeVeHxsWJHC3R4kzEAPO6c2aAy8WropT9wGCNaPlx3Pe4w+AB/\n71JiXUqsyhKfmJH9QC8LsmUDk68gMHMe9kVDpmONqSGFp+7qqAqUDxrMNZzwp45G1GAt2uWS1pBb\nl1lTlAA29sZNoCZHgO0jhOKf3JzeG+stMNtCVDktIJE3MfPMowB8ePBRJUA6a2ucOZfJ9qJAz7HD\nprrEV68FvnSZ4CtXAv/vOxOac9INdFI7IsbTXYQ4UtCRwYOJnb+RAfOP1aM754VVEdz8BkDH0/Ww\n0V6qRszvY9ussCzO8Gij8bUlZ1vPcKgf0I0wBAJKAyl6E/7dIB8lOw/GvbO6M3hZeakXvl649GZ4\nkLQbo4nTaetll1ab0HQ2GyarqREf9n2YhMGSMVlN5BEdW2p27DcTQUgRoxYfoewUEh3s+ePNG4Nw\n0dgBZ5W0pXBsoiv2qF4bIVyZjYGHn9ORPey9EjLqHPB0Pm8TqGXw65XVNVYvp+r2KjpxZ8GnaQTe\n3wostMFxKrAqgWMZ1K35gg91xqoLYr4BSJIZdHrsLvzIKeiWQOOvVla5nsU77KIlZskRPUdVWIkZ\nUg529ftQKoXlWtIpMW4mR8hN5hk8oTCppQNz9DSr7MxGJSNkJfWOgBI62qGUOYpo26rZ1zWVOlxG\nqEbUk6lzYEtDj5hQRgFZUJahEgdkszjH6UjiqohwdX+LRBmMLAU8VehRzlM5dZRzgBZ701QkA1OU\n7RkhnpexTCkAbWUBpy3m3TMr0A57ru/hEzOiRH9iVmIeP/DAy4t7IL9/o91DEGzBsSwinKR0jaRy\nhmR+n44zyJrZMVVHY5roV7rvtNktIw6Zw02K1iwMkLcHfq0qg9Cx00dzxnf8HDwkO2kz4zhqUzpX\n1UbUqAUPmO4n50ihABkBMnVSRQw6RXXhQIKZju5v0ClFuv/sfwYhVZ16anZg1Xg2W0tFO7w2aj0I\n9E7B27IEmZ25Kl9lKx9H3FnwMaZdCkqkcRcrTbmv+rtR3jEBMNsrVwqrJF38fEPVUfvCXhYSs7iG\njNaQIsZ4ckxAwRmQtqWPONCn0jHtei3rppIRimaFrF7jIqMboiVMqscQB1fDb9YSCHKtnG5cqEmX\nyB2A3V5X1jhN4SY6AVe+EQVN0BtQqYTmN4g1N9dbHKc13q4jXOXGWkD4GaRuH4wp52GI0aHPaoI5\noUpG2NXPMU2PIbKVb6YHi2bPttlGCEBzfc/L6QC062eDshcEnTDYvZZkl1Y4TivUcgqpY9QmR12t\nW/0D2qWP3PG6DUgYkaIBVj4PNtz7Da4XHhIF4HfvVgOuJ37K54np46yiHfQ1uTTGjrPMZmMQ+iDR\nmJo2avZ+KhoDKLjMhAZOg6HVfbYLfNz2/8MNk47G7hgdhb8rVYTApgPw5VlYodfAT4uPd1l88Gth\nKMwrwkEr7iz41FYGh5vgOhK2BKXaCr1hs7Pr73G0gSm2UKNDqMkRKqFa9fy8jtxg6HkWW3bXGlLF\ntCN25Ia115oCBrOdrLrGrlrh8Vbi8Sa1rDEvTDo9eLBfoFNpbEWOTfnM0ZyLhueGIrez60r5MBiN\n1CV0NPKlqfWW5k+K0pZrAGNnN6RK7M5TYBbXmMYR3p7J1uBrIg1O0gonaYNUzjGSc2Ie7S79ZLoN\nN2OhtGsqb8oLrEtqLM/T19oAhAHgkRoImv0MQI4GzQud0mAm4AeJrnstQHTrvM5xku5aFN8wIiEt\n621PWEVuoxK6JhO4GRqhNPWobKZslHQZT8tWoqoJgFj8FB3vIbYcDwkdtn/nSllN5SSmahDRZZAq\nHoTz0mm8uy/gB5opSsg4RjSg8fYiAAS0QYhALMh2BqoXAFwp0Gj7fwq0B2AppHQKJFPU9XOsSrSG\nu1/Fy4s7DT5k7ERzMnxDsbZXK+vZ9GXWARAzrShhDmguR83vQ0djZNEaADHeru1EMwl4KujIyslL\nIOHJ/UhRFsS1/WDGYF1dIKvXuMorPNpoPNqQO+pVLnBVkDDpw8kVXhvVSLVftNtN7Ryb6tIBD9lo\nR25BCNW4AS/Lw9WbWZxhonZQSIg5dXlNg48AARELaiYzV3rTcoS53mJVSrwBP4/EVOREGozUHDoa\ne4JHZstTIbvN6r5VqLCrLrApr3CeRTjPEjycUHlrkhzShRwKkXYovd0+jesFBAuc6yHdJGjavY6a\nyp3TZUEmgnFkcLYj88BVaVqCtP71BZqIyllK9unLPCxZyQi76sKztZRtzte25xavfeaT3HA7s0pD\nAEBO8ijMDrkvUxNduTYlViWQ1xLevZdKtuF7ab2UBRvKBGUry6a/D8/DzvZM7dzNiy5JnT4Ql/YG\ngadTjuXvWZYJFXx/UNF5ZQt7vldeRjRGvMp8griz4KN1g7fnpLF2kpZI5cIzvtww437lg1YE4oVF\ns7W7PVqI3rc2MqmUVg3b4CQlckMtpxilcy8dwxpgk2PkUYOsfIZdtcJ5FuHRJsF7G4l3VgLvXUsU\nuURWFwCUBZEVFslu7yF2gWdZkGI2gw4rYtOxolUmo4X1DDr9dZCayjSiqr0fkt05s2KAFLGbhH84\n2VrQNS06so6oBxAJCa2OCWxtyctRty3o1CbDprrEutziPFM42ymUDffSVoijFCqZuX4cy7kgJ0AR\ngGOaAX2ZpPBzBCzbiqfyw9mbPUFATlkufU8kk7IRyGtaiHkQ2KmiW+WJrF7RRiSdOvAUyQwmnWFX\nL5GVa1dKiqPElXaVpGvOWIFQsLmdO8E2kwgEdFu9RP7cQrHTDpuzaHbYVSVWJS8TvAi3gZTt4/35\n8GBMslA0csDK7OvSq6kXjYE2lc1+5j4L/VYEkyGYOWkVH4RMUL3E+Z5XMRzfVvARQvy7AP4EgHuB\nTPdPAvgRkJn1v22M+UX7+98K4M+DEuQvAPh3rFdFAuAvAvitAC4A/D5jzDu3vbZSDV4fGRynPBA4\npl1XZctsXAPfRwyA3T1OvOT81vZkqDQW4911hH+wcqIvyGplyzMVZvEOs3iHTK5pyv/ggdu9raoL\nZCVlO+xIyrps711LPD9PA8pmAdIFTPBwUga70+EFYR/wZBVJAnUVsFPJfwtoeYajo7eAt5lwMHYU\n5t7gbQBAGABx1lbL6jWyeo1JfIjRvU/RsfK8RnXmVKjpXGhnrhdHxhngSRG3JGrCMKwawOZiydRr\nioULXXcq3wJQa7YoKEdRE75E0Rgn/sqzTF3ZI874+HtSMfe3XlavUAiJ0fwefaLNDlnxGEW9cwv7\nSFEzvVWeYiJCHLDehgZSuxlO6CFktfZYxqi2ygBFmIVAowAAIABJREFUs8NVXmFVkmJ7uHEA+tlO\n56w7wd2wlEslbg9gnH2PVIlUTIeeyD9jtwx3i1YeODu8KdTQZw433/MqPt74toGPEOJNkC3rN4Lf\n/SMgae/vA/AAwN8UQnyvMaYG8F8A+NcB/O8g8PndAH4BBFSXxphPCSF+GMAfB/D7bnv9RAKnI8p6\nRspqjGVtqjI1Jm1tfAiAprY3k8wci+zptsHZjoDnnZXA02dUUsmr3FppS5SNwDSWToaFQSiOEpRN\nHuzwE6xLifd3pEr9+ELj4jzFeqk76TsBED1vg7muCSyicHcq3E60bPxCyVYMlwVcGTJcPPn7vI5Q\n1DtcizMc3PskjH7SUnLeFwxAYQ9gKDbVJbJ67aRQun2C80y3FjJe0KXoWGB3CSIVWxoUpNhQFRCT\no73H22PNBd9zE56DS26c9bCiBQm8Rq1SG6tRhEO9DGIANeQ31SVqU2Fdbt3zcuioQi0oQ6hN7H1v\nGFCmY5f9AJ2y2njhs0k3QxPQnptVi9VW1DusSrTKs4nk8+5nmcIIswSN/Qu3HzSOQPvLTtwgwrqv\nD8T/H258wscN2rW7XiDFEGkFQC9j/yhhXpXdWvHtzHz+JIAfQ9tr4rMga9YcwD8QQnwVwKeFEO8A\nmBtjfgkAhBB/EcDvAYHPZwH8Ufv3/z2AnxZCCGNuzt/jCC7riaO0I2zp69/kKWMjACBH/9VjmHSG\nTfkMF9muVR5750mKd79Gw3tFvgawRVYBWR1hoSPbH1DWqC7HXG+xLCTOs6Rlx32Vow08qwhxXmGd\nkFHcY3qF1vNO46a1494LPDWpXOcVWfwmqrbadO0dfNFQ9iOjHbYqxej4bVSmBOykOkfXaKw2JVI5\n9QttBHQ9dQBYBl5jFzw6/0NeRhzcQ3IGeFXm548YcIrSWzBPS2BSEC0daJmj+QO2u+VwRzxQbmNf\nIDpGyiQ5i2RLi/Dc9XX3UkcPzmq/4bkuljjPlHv/fA74c1xEJWJ0VB5y+zUuiLnGM1FW4ZlJK6yu\nwOc+pNK731lg7QIPA6GOCCy6mRuA1qwbIiCRFYpGIJECZdMg6/RNsho9gPUnuA9AHF0A6gJPyJoD\n0CqfiuC+5hKs2AtALwdwvh0hhDgC8JcBvA3gHQA/ZIy5HHjc7wbZXUuQ1cLn7O//Y5AVdgHgawD+\noDHmSghxDFpjfxuAP2+M+dHguTSAnwbwA6CT91PGmP/hpuP8toCPEOKzAB4ZY35VtHfNDwH8UvDz\ne/Z3pf2++3v+m28CgPWouAZwDOB84HX/MIA/DACnbxzjE7MSk3hBNN8w6wkXHZ4L4LAABB1T1jM5\nxrZe4rpY4tEmwXnmmV08VAnAfeVFPZVc9+YdvrQ3vMBFpnBVAO/vBJ5syQobAGZzupHW0Ci0wjQp\noJMa4yndeAwoaR255+YIgYd36Jz17Dob0G7ZyC8+BruqhBRrlE3m5FZCefxueCqtp+xGpoS0njos\nNHqeKdew54iDzK1bRkxkAx0J6vdA0VDqxbNhd0rAyhZRkLtl3pcF2rPg3RRzXaNohPVXipDVBgtN\nrL57IxKSncZjpHLammuh80a3H/dWHm00LjLpPruQFchyPd0QMiHpHM5+WHmiQ9En8kCFLgsNQCvD\n5NCRgY5ITT2vIweg03i8V+EgjiwwNsAsrgDUFsDIONE/jl63J7Kbrdr33gt8Hlyq7kVg6+3GIywQ\niWQGoezrZGuveWfB1wDQBw8sK3KJafySgKgxQPEt6Wn9BIAvGmM+J4T4Cfvzj4cPEEJIAH8awD8D\nWk9/WQjx88aYLwH4GwB+0q6nfxzAT9q/zwD8+wD+UfsvjJ8C8MwY871CiAjADeUFio8NfG7xGP/3\nQCW3b2kYYz4PsnrFb/4tb5lJvMBUHfdT+c5u1+lTccmFhQcjRX2AuuNhAuA3LgxSVUAntOF448Cr\nWx+npILAEZbHAIlpXCOrJRbaIKsEAFIF0GWE6azEel6gyCWOTjJMRjXuj4kcsNA0PzPXjV2c24t3\naByX1cSY8+U2QMVNq+fDABVaLXCtP9T5ammdhe9EKKi6AaoVVDKFlHObNcRuMFcaBRnH0BFZU6xK\n2TluuvF5hiY8Z1qOvGrE8hnM03NvMwC0LJiFtVomLTP6bzKgCwAo7BG8gCIzC4s+GNfQkcE0pp4e\nW1ocpyNM1OnexTrMEnUknDYgf3ZzXeNAzwdBp2h2kFJBMWOSS2osJeSAZ9cCnnDOZm/mEYSODGYx\nqZ7raOJ+P6Tz5j7/iK6JRJaYxfRZLIuox3hcJMoDT2hbXmvn/QOpHcC07tOA7SaMcRuccFTC2aWs\n7KafBVmLbb/fE2bLB1SmTPUMhdrhJP2u6/98FpSBAMBfAPB30AEfAJ8G8FVjzNcBQAjxM/bvvmSM\n+Z+Cx/0SgH8JAIwxGwD/ixDiUwOv+YcA/Eb7uAYDm/9ufGzgs89jXAjxjwH4BADOet4Aud99Gvt9\nxR/Z77u/R/A37wkhFMjKtSPM1g8lFM2XDAyh7Q3u/8R+B2WEQGNqV54I4+2pQSrpwg0tFU5Sv5MK\nmUJ+BypwoKlUsUjInXQkDZDUzicoUQaHGnh9TKBzoBvX7wnr1JwxrEqJdekB5SoXPU+fbnB9vut2\nOrSYdgGIgYdZfMLOpqhkaq2UlZtKr02JOEqgZY5FUgIQLSCTQrnsgM9RIg3iKKGsZ3MBPD2n2aPA\n1wbw/i+RNcBzjqcMQFXR74fcADw8iNwIIhzwDM9JWiGRBfI6wknawG1s1hdU8rEMtrDc2BUoJeNA\nn2FM1CGSJoJZXTgGZPucV4AAmaNZ+SVT5y8EPF36cxjhtaMjYf2I1F5h0a7mW9FYJWkF5HVldQ7R\nVvyWI3p/IvXAw0PXlfX+6QAQvenh2R02qKP/y/1AeLb2pVfAq8aH0RXMLUoYPUaSvIVUTjHXvYrV\ntyJOhBC/Evz8ebt5fpE4NcY8sd+/D2DIj9VVjGy8B+C3DzzuD4FKeHtDCGEdJPEfCCF+AFSq+1Fj\nzNOb/u5bXnYzxvw/AF7jn20/5/uNMedCiJ8H8N9aq9YHAL4HwP9hjKmFEEshxD8BIhz8yyCbV8D7\nlf9vIIT+W7f1e+h1ZXvA8LbHMx2TlXYBy4qh+v++HSTbKXRLMLxTCxcHHVVIZO3YUwttG9hBmX8B\nIKsMFgmBTlji4fkZIGQj8WLdgEq79JyXA+vrIumfi6wmNO8G3+jdxZQXIQc81jfG0ag7IER/R1N+\nOqrcc9Br+MszNTOkkmSFinoHGcXQ0ZjkeK7PYC6vUX3jugM8Prtk87EI1qYAoD7QaGLLcMFuO4yO\nBfTQOQAAKWMsIjp2BxoX78Bcn7khTxzcgzq4j0qyc2yfykvAdYiZPIJZPoFZPiNju8Nn0PPXIOb3\nkVth06LZOqkblwXVhQMevja7JI68li6LbGfdAaEgEk549jbQ4c+Kv9f2VqhN5cpvIejEUUL6iXUD\nVAHwcL9OkfyNy0wB348bch5W9H/u82ENwiEL8k3wBkKr9zBbXpQQ0zMgmWE0maOMX3zu66YQBojz\n+vYHUpwbY75/73PdXFlyYRnBH6rWJ4T4KRD/77+55aEKlBD8r8aYPyKE+CMgFvMfuO2PvmPCGPNr\nQoifBfAl0Jv+tyzTDQD+TXiq9S/YfwDwXwH4ry054TmILXdrCIiWdfHgIBpHjwHlf8+lk5O0war0\n7Cb/tQlA54iyrSoHDGDUvA1CooKMSjwYV9CRwXlmkMgI6a4PbKn02Q7PD3WBJ5ys11GDODIu6+E+\nEot8JspgkQCpfY5UwpXxGDi5BMQLTVhCA+DKHi3g2fHdviaHSestA+UXi7BkwoDTZSyFttcs6JqI\nFGb3iKymL9eon7Z3tKG5mkkkmusMIpXkj8P9oLjwn6nsEAxuyICGy07K2SiYjbXMeH5NSskAEF/B\nKA1lAYSZbu59R1YPrqhgLr9Gr28dVVnKCDKBtqZ9jamJMGD11moRQ0rlgIfp4G3giVxvEfCsQc6W\nZzEssI+cRlo3woxt6PNiQOQeUNJsW2QLdw8wSPC55tIX4O85/kxuqk6EfSIWc20qX0YLQab3t7UX\n+OUS7TazJdsV1OTI97K+g2JfZQkAhBBPhRD3jTFPhBD3ATwbeNi+KhM/x78K4J8D8IMvsJm/AKWT\n/6P9+a+AWMg3xrcdfIwxb3d+/mMA/tjA434F/SYXjDEZgN/7wV+48X7zt9X3bUlGoD2LkEcNNhWl\n5FqO8KmDEruqIGXjiG9K3Qad9YW74cTkGDIhyi1JrdDFLyOF0zFwkhY4zyJMY3qu0EI7JBQQI0oE\nZTs+Qr/4nmca55nE+zsqtxW5dCSIRBncH5PY58KWR6YxgeaDSYKJOvUDuNu1G7xU1iYAcuZmfBzw\n8E6Wb/hQWyzUDzMlYNr9D4BZS4HzZFM5QU6AFmmzfOIUvZur3IFNdGCZTIkHCHk6QbRIIA6n5EN0\ndOCHY5Ue9iTqkBF4FoY+1xiNqXsgxMdMZbYtMN1CrLctWj5RtvsL4Tx+jcp0q061godC7TGFGfNN\n9gbhOe0CTwg+HJyZsM3GPhJJv7fXVhVg5XeOkSpbLL8e8ABtNe1gFqlLie5FhzoOldDAMgCMCmBK\nwG/KAeBxzyGBqvYDujw8vef9ftgQxnyQzOejBFeDPme//tWBx/wygO8RQnwCBDo/DOD3A44F92MA\nfocx5tZJe5td/TVQn+lvAfhBUAJxY3zbwefbFqHSLQJdMKAnw8G0TMDv+opmh6xqEw1SOcVExf0d\nYbaCWT+mRme2drs701RQ6k1AkkVDibx9oUdwIEQSJ1HgBtruw3Rr+GEZMK8FHm0UvnJFwFNZRhn3\nju6PqT/FZIVZXON0HGEev45ku4W5fkSls3BnWpQwdoaEF2/FSg2d90m09M7pv8EXiSMEmzCkiKms\nVWyB59fANkNznaNY03vq5onqrQNE96bkZnp44KwDxOT4VmZVSOVlth5HyPYLjw3G0DkZHZL0klUT\nEKNDIJn23nccpeTzdP2YBGvDmI5tiXDsVCSKZuU8Zlgpga85zjrC56esR7aAp2xEh03YuJLYTezF\nMFqq0Z1eDIvM6miMxtQOeFTdeK8moK3WzcKmHZWLFpuNde6k38C4z6em8zqScygGIKUBfQmx3rYV\nS3hTFJrz2QFdMRnTZslmXGHW/V0SnwPws0KIHwHwLoAfAgAhxAMQpfozlsn2owB+EVSP/3PGmF+z\nf//TICXBv2H78r9kjPk37HO8A2AOQAshfg+A32kZcj8OqkD9KQBnAP7gbQd5d8EH5nYNLws84VxH\nuOvkkIJYO6puWvbVAEgLjRfi0DgOtrEZKaiD+6ijuDUrQbvPxC0CI5W1mu4MRCHo8PcMTCG1+p2V\nBx7OekLgYTLEXNc4SV/D2CQwT7+G5p13+w6PHNMxxOQaODygXb4e+4ynW/IAaFGRiVuA94ELAFeS\n4t19uNCP5Bzm+jFlPZstmuuc/lUCRSXbnnJvHSB664RA5/DAD1xOjm4cju0OxQ6BpO939HtUsO6c\ncOrTlPlw1sPvL5UzAtLn7wJnNLHFyso0vxO3lJYrVMjqNc4zgtjTcdkrfXUzRq9u4YHnuohwktox\ngMjYebdksMzm3+8ty0XYjwkIAIPAw/cEZ58cDDx2DitUzRgKVt7u+vnoaNwW741jZy1hyrLvm8Xn\nHfAq3y/6vl8whAFk9fHPDxljLkDZR/f3jwF8Jvj5C6CB/e7jhths/H9v7/n9uwD+qQ9ynHcXfLpl\nTB5Gg9X26uhc8cVd1Dsrmd/gOB154Mkzb/k8MOjYmjuxzU0D66+iNJL5fdRRiRjtXSzX0atohLhJ\noaOsx/wKhwHDIVKe5+ky29jQLcx4eObiUL8BtVnCPPv7MF/7BqqvPCVzskAxWaTWiO4ggxlvqR8x\n3VJGEZxLFx1rYvJJ2fZcJ1t/YuXsVyWVhg703PYgRpRJFlvPUsoqmKxCtlFQcQOT1xCJ9MDz5n0/\ncBlYMgBwi21rwQ42Gtw7YdO9MLqgM5QtiMkxYGVs+HriaF03Z489VZwVqHlYlL2MUgJtUsCw/RRZ\n4DitEMPbB0gr7loiR9EYK5HTBp6s9ixGzno+qEtpK+vp9k0tAYAzMZauckQARwJgKwP6HPYBz5Dc\nTfj58D2xLCRO0is0qgYkyJlYaVIqUVckORQq03eDS5wt8Pmuy3y+K+Lugk83ulpeLVn5DLtq5Upf\nYVADPgbNX+0JK/jYgruq9h4rVQFsnkNP5vTSzgAr981U2ScdsKAliTdGrQHSq4IWFlJUCJhsts+z\nSDzwPJyUOEkb6Gjib7S4rZTsvqb8VfrFkU3vbvLA4b5KMgX3oroLXSSkn7h3TXJyhC2aXaAVB1qs\n7OtHizWigwTpVYFIGYgkRvwbjiDefA3i9AQ4fhi8Nl30I+nPNdDWeatRtRY2YoxVtiyqHBDdlA3R\nD7ZRHqgpUC/EO9G6BTvs64Q/2wxIjA5RyQib4tKqIPiNR/c4+Nhr47PkcGMCsMJAhLxuWs/xQTXN\npIipFCatIrS7Xm2PjAc3hWg5mjq6c9ALHAKem45Hitjp0DHwsD2IF+8tvXgvv3YcA2w5z+c6/BrH\nrhxoNhfeT+lVvNS4u+AjRF9CvyMrXzcVyibDdbHs9VQWibKU6eAUsh+Ma5YWxKbStEMnt1HvWOrS\n+6aCqXNajKT2oAO4r1LNAFhTr6ZyN1ooEupmeAqf5aTB4fH3qTQtJttc19ByTDJDvAin1JiXp2FT\n2NfF2cK51bh3j1PemI3fx3jRknnR0diV3YZ2ljzAydTfrqCmqBKY44cQowlEHEMnCtGCFhT1qROI\nh6fOvXVISkflvFnobxqSZOqMRX35L2T0UVYxFKxk4DYQnd6Eew2RAlng2npgB2DtuUVMChpchjLT\nYyyLx7jKK+Q1nQsvnxS51xAd7yKOrqwSQF/XZYRESiQ5KVd8mBKTs2KPYkAr1CbvDV5LoaCYQNBU\nLQJF+M+VufdoAPJz0dc4ACgPwB6AfJap5QjKZqFmj7+Si3DmCwRALyNEY6C/NYSD74q4u+ATREt0\n0O7auCexq1Yd10+io6Zy3t412wUR4AxnAIRYFy7uNDsBb1w3IOcfLlu1qWwpReIik70SWzagh8ZZ\nT+jTE1KoRyq29f6RPweRAu7dc15GTiGZj5uznfGi93ouIuV8UsTk2AEPANeM7oYUMYpmCx2NUGBn\n50SE+78whEyA2SnMJ8YQ0zHU+Akd55v3gYN7Tvi0G2ZpadD8XvlY7c8CHoBCx84QgIC2RA1AvbZZ\nvHOSTYNlOC5TZe3FWSQzmOPXfObAfka2XLeuLnCR7VzmwmoBQ+elNhVlbE0VlGSjQNSTgqWYloUB\nECOR21vUqim6FgpD1P7ucemoglQjep9V4TOe0NLB9gL3RY/WbZUN6FpqHzcD0FwHfUU58ooQQN9K\n22Wh+/ter+LlxSvw6UbQk2DjMo5ENlZmZNRuNnf6R750Fwym8iKny2H6MQIfGo6wD2VfozZUXrjI\nZCvbGQKeUOByob2fCishzGIvdkme9zFlXfY8oKmoUc8RNsIZoG45l8xaqgbKhvt22a1zGw08VrZ3\npgIzmPtvUyamyDKcs6yiWRE7TqQ0A3L9hPorl9d9fxv73lgFIUmmQGQ9moLyD/eiGAhCBiIRNi7R\n6Lo1ExWCjtMbC60NYG3DA8057hEV1kSvKzHUNagD0DLOC+0eOLoABFBWRPI3alDaCGiXm0MX3Lbi\nM8+b8XGVbuyABmKD7CcAfSah8H3XZdv1QCeoDGirGlFEOySycsSKRJqAkEMARIPcYyTJlLYzrP3m\nQMdvQNzvbsjAPmh8wCHTf+jjDoOPGO5RSI2iWaExtd3J0c3F4o48/9BaVPLAA6j7KkoDsghKe4WT\n57kxwqZ9VcA8fxfjg/uAOsTp+BJFU2Iad5WqfYaTyMZRaeea5VK83hurLN/YTI2UJxEMRTHAVrP9\niW4Z5YMGAw8LkLrSTgiQ4WsqDdybuZ/DqE0JiLQlHgnAD38C/Sx0z1zhTaZ8ZKeg7EK9RB1XRCqA\n8tcIPz9gy5J2c2FdW0VATMjKZz1yyU3BJcGu6jYTC0J3Wr4+OINi4VCOIbHREPj4990eaF4zGHsQ\nm+sSUuSQYgep5qQWYj8j7vMQ8OxQNjlJF4myBUIfpulPx9Y4ABopyzKUBFrCGIiALOHu0Y8BeF5F\nP+4u+ERysCSTmwxlQ30AHY3wYEIXINNQW6AT9mZuCl4cnWNiWxrE2UUDfvCOd198A0QK5voJxskM\nevIAen7ZYoTxrpjBJZRJGYrQj4VKeQQkWo0gYLMJ2GPpgsxuA6zPBp6UMgijx/b90nviUspNCwjv\nbruWDADcpH3oNDsYXLKyi4lSmhY7zkztjtcARLsNszjAZyJWh41Lr0zh5aZ21xspzEDdqYiEL2WG\niunK2nRwSZU/+06mk9Vr7Ko+aIfMxrMd377h57NDVq+dJ9QQaHXlmCj7nbiNVfieu6XFfRG+TheQ\n6FztcGzdwkeWgcafSW4yFNZUsG4qN7sUBlPupYhbMkeOXBGUGPl4ullh+2/6z9VSPQd86+wVCH0s\ncWfBx6BxGllhdGdPGHR0NAqG6V4QdICePYNQ2u+qu9PZsJ4i+ar3NE7ufXcJma9wcPSWm7ifa8/M\nAtCiBXc12Pgrs7g4ysZnEw6AKqvmHYLP9RXMN58A26xHQHB9odkh0YsTPxdFCg599Wt/fMM3OO9+\n3fkPz+tQdDJGJ50v/WLH1FtXHh0YKt5ZR082V2Mxzn3Aw0Gg3ziH1f0+UWhN8BshyDbbAsdQhJkH\nZzO+H7l1mQ8DDx9neGzHaY2TlFSqpRi1r+9sBVRbJOkUVTwnCZ+ohu7MtHWjNpVTPg9BOoy8jnCR\n7bBI6FodJdQT4/O8q1YByO0GASgMaQe/i3pJIxBBiXGf/QYfKxvy0fuJe5p9PRDCDSzODxDCGMTF\nKyDjuLPg05i6ZeTFQ4y8gLvBOCgCnMJrULV2rUC/3NZdGLumZN3hVZM5uZVROt8PQO7gK5jzr9EC\npwI75FADq+RSApV7fB9h7l63OzDbA6AUEFlwE56dwTx6ivqbV6ifbiBSheggcV8BwIxTiKNLWtzB\nWdXuA8+QAAPzTkMlktuizoEcLao1pIaY3+8ZkXHsqovezv824GlnPQZSWImZzdLLKYX2DQHwVKiw\nqwh4rvIKSXvd7sU+K4RZXCGRZQt4uCS7z19I1Q1JJu0e+WHo0QRyvMBscoxKRS0SQPiZ8LkL56Lo\n/WfQ0cr1Sz1oRrjKK8xir+LA2U6oPUflv2EACoVn/et7SrmfXfIOsvS9B2HWvAvfk5DaU+Nt3F7o\nfBUfJe4w+DROosTrsMVgXSsHPPm6xz4LiQAAyJisa9M7FAHoFPWyla2EO38HQFgBRUBX7sjbAKAy\nV7d8NJAVGAuALIMjFUn6SEk3Mpda9sajxzBnz1F99Rz10y3q6wLyQMNkFaJF4r4KbYUa7TEQY5AU\nuzkbGNIkG8qGPjDt96ZsVBbUb+PF3gpzAn2R0CFBTo5wV9013QNIc2+ua2/3kK+IWccMqzrYLATH\nwsBDLK26Z2dQNDsk0mcUvMiysCxHXouWyGwijdPpo77l3KsqLM9oWHd16W0HihLQW2C6gSm2UKND\nKKsG4TcAGUx+BiETqMlRS528NhVqUULLkXPm5WMmUKE+DHAFGSlHqabMxCCRdet9hxpzQ8O8LN8z\ni1fI69qRPtgPiZ5XuGuP57S6Gw7HXJXtTeILVzheIETzLdN2+66IOww+AWW0IVYOopsXPGerMPB7\nAP0MiPs4DDjNDmV5PahQAHBZhP7UAVBVgNxs94STsLGLxw3DnuEAbTeo9DIO/FWsFl1VUMZz9hz1\nN6/QXOWorwtUZYRw7XXDp/eOyIzr4D62zQqX+SW+vkxcUzuRu1Yvagj4h8KJRtphRpFhf/bTef9C\nJo79tqufu912+NqAd+JkJQVEgGx20FGFWdz0nD9pzqqdYcx1Y3soY9q4FFuiq+vSZcBGj92GRSmN\nmZpimhxjopauRNntLxohsFNLHGgaqnw42VlqN+zCqt3xsxJH6NsTuqGSavY3be9uj8QRS0EdFI6B\nabgHaRUKjI4hHmiIjv4ag3co60OOvZF1RzWYxGSoJFVfNUIK5SsOu7XL3ociSWZIknuYqENM4iVO\nx2uQH5Ru3ctDKuRDAORnpeAt1V8iAL0KH3cWfGrTbkoWjcHoZlNHH0OLe5h5BIOFRbPDpnjsauFc\nErnIJr2nmMZUbugBENDuuwxprVnNOLHe+sHPoeO1A7TdeQonW5M/8cKgmy1JAzHwWA21qozQVIKy\nnYPESu5IiDdfA956G+LwTaywxmV2iS9fpvjqUlqLhthRvf2AJNNzd3aXXjm/o6FgEMI0cUZtLlxj\nOGgiywTVZI5NddaahC8aiQfjanA2hVXG+byQM2cFbdevA0vJPU4rXGQ7B0JxRAArBRENTP7YL/CO\n0t0BoRyOdDJWGlAHtrS4dZRsAwCRwjiZAZN7qFBhojyJw4GUZQFW8RyFJCO5kSJSykjNiHm3WRLw\nPLVGk0MaZ8E1hbMz4NAuvnw9bLbU8wNIM+3+b6LPBF6AdVeVTtZnXUoksnL9sGk8dnNQLVHSzAJN\nVfiND2si7jlWY6WHpB5jNjnGNDneOys0pCW4F4B4QLgu9m7mXsVHizsMPqJV4gCsiOSLApCNkK0U\ngg6BzRKb8gqPt7Q4rcsRnu4ivL8TeLIFRgH1NVXAQksACfI6xwOLHS0A4giAx/AQKHuQ6BgoS4jJ\nloQ0B3oMXCfnBT4RqVdUtotl+Lwh8DR5g6Zq7yJFqiBODyHefgvi5JNY1c/x/vYKf/9qhF99LvHV\nC4nJqMahBhZJhFRGrbmjkPL7cEILBEvpkNhqVz6G+lWj6XEbgDq9NZHMkGvllAFoF66xLOhD1pEh\ni+TIExvoNfslwBjtciCDVBwtsajXuMoLnGcLY/KZAAAINUlEQVSxK7mJKneq22azBcoYogiEK3XZ\n2lGbcIGrCj/cy5uKyZgM6UZPIccLAiLAgxQv2AD9/+QYxpIGnNKzBR7z3hOYb5LFizicWoFYy34c\nAiM2ZFsT6NRPN2iu6ZzHShJ43vskICNLHihduW1dkuTTNKbMiAa0p6QwUS09+7PYeqAuSn/9VTXM\naufknbwygnTnUkxIaskcXOH/b+9eQ+Q66ziOf3+7m53NZnNPiCGptikqtCioNQgWaW1tYyxWRdEX\nvhBfiFa8oCDRvPGlbV9YvEAqJVix2mq0KJWaWhUEsS1ak1ib1ia9mUvNBbKby2Z3s/v3xfPM7JnN\nbJK99Exm5veBQ848M3P2+ecw859znnP+D739VCpTxtYgFTotzHUENJwSo/q5qEtA88T3+dTr2OQz\nEcUq0NUJtdIXW+3jV5w5MSueepuaeKpJZ3Q8Xe56/OwwB0/3cvB0DydG4bUzqcDnkcP9nBzqTZWl\nK+P0Vsbp7Z1g+bJRzo535/P5UxJQdTbQ6nhTITnEyeHaDJ7q66GrOhsjnJeAQqqVnq/efBlDh6E6\nY2aj7Y6cqxXvrE7HcG40pcSupRW61i5FG96IVl/N4LmjHBk+yZ7j/ew6Lp470Mcr+5eyYvUwi5eM\nMrB4rJaIUsLtqqu8AKksyso+zitfVL0kvHYxQIwx0CgB5ekSzmiEoZFDvHRyAUOjFU6NdZ93STSM\nsSZ/7zYs8zP1BseRU7Uv/J7KYgb6VubEdYpK95nJU26j+YbSsSk/DKqFLRt9yVcnNSt88aZJzc5B\npSdNCbGoHwZOEMUirsWitaNjsCKN12jhcvrz6capiefcK0MAdJ0YoWvZKVi8cHL7hcrrtW0Wks7E\n4Agjx3J9vjWDdC8/lI7iVqwjzeqrPG17F4OjKfmsX5SSfW/3wlSV/MTLdQmnmNyqU6FPDJ6tm5lW\nfT3nFbhVX+57f19t3qTIU1jUboSujnVWBqBrIeOxoHYUNBH1yaD6Y6eagKC+7p/NH13CjNNtSdJR\n0lwXZVgFHCvpb5WlHWMCx9VKyozpTRGxei4bkPR7Up8vxbGI2DSXv3e569jkUyZJf7/QfOytqB1j\nAsfVStoxpk4ywxEOMzOzuXPyMTOz0jn5lONHze7A66AdYwLH1UraMaaO4TEfMzMrnY98zMysdE4+\nZmZWOiefeSLp65JC0qpC2zcl7ZP0vKRbC+3vkvSv/Nz3pHQ3m6SKpIdy+5OSriw/klof75b0nKQ9\nkh6WtKzwXMvGNR1Jm3I8+yRtaXZ/LkbSFZL+LOlZSf+W9JXcvkLSHyS9kP9dXnjPjPZbs0jqlvRP\nSY/kxy0fkzUQEV7muABXADtJN62uym3XALtJs/dcBewHuvNzTwHvIVVtfxT4YG6/A9iW1z8FPNTE\nmG4BevL6ncCd7RDXNLF25zg2kArD7QauaXa/LtLntcA78/pi4D9539wFbMntW+ay35oY29eAnwGP\n5MctH5OX8xcf+cyP7wLfoL4E2+3AgxExEhEvAfuAjZLWAksi4olIn5KfAB8pvOf+vL4DuKlZv9gi\n4rGI2jwPTwDr83pLxzWNjcC+iHgxIkaBB0l9vmxFxOGIeDqvnwT2Auuo/7++n/p9MNP9VjpJ64EP\nAfcVmls6JmvMyWeOJN0OHIyI3VOeWgf8t/D4QG5bl9entte9J3/xDwIrX4duz9RnSb8eob3iqpou\nppaQT2O+A3gSWBMRh/NTrwFr8vps9lsz3EP6ITdRaGv1mKyBji0sOhOSHgfe0OCprcC3SKeoWs6F\n4oqI3+TXbCXNZv9AmX2zSyNpAPgV8NWIGCoeUEZESGqZeykk3QYciYh/SLqh0WtaLSabnpPPJYiI\nmxu1S3ob6Vzz7vyhXw88LWkjcJA0FlS1PrcdZPIUVrGdwnsOSOoBlgLH5y+SetPFVSXpM8BtwE35\n9EWxj1WXXVyzMF1MlzVJC0iJ54GI+HVu/p+ktRFxOJ9+OpLbZ7PfyvZe4MOSNgN9wBJJP6W1Y7Lp\nNHvQqZ0W4GUmLzi4lvrB0BeZfjB0c27/IvUD879oYiybgGeB1VPaWzquaWLtyXFcxeQFB9c2u18X\n6bNIYxn3TGm/m/rB+btmu9+aHN8NTF5w0BYxeZmyj5vdgXZaisknP95KugLneQpX2wDXAc/k537A\nZKWJPuCXpIHTp4ANTYxlH+l8+q68bGuHuC4Q72bSFWP7Sacdm96ni/T3etIFLnsK+2gzaSztj8AL\nwOPAitnutybHV0w+bRGTl/rF5XXMzKx0vtrNzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj7W\nliR9WdJeSfNemUHSJ3Il6QlJ18339s06gSscWLu6A7g5Ioo1vpDUE5MFU2frGeBjwL1z3I5Zx3Ly\nsbYjaRtpeoRHJW0nlfO5Ore9KunTwHdINzJWgB9GxL250vb3gQ+QbrAdBbZHxI7i9iNib/475QRk\n1oacfKztRMTnJW0CboyIY5K+TZr75fqIGJb0OWAwIt4tqQL8VdJjpMrQb82vXUMqL7S9OVGYtTcn\nH+sUv42I4bx+C/B2SR/Pj5cCbwbeB/w8IsaBQ5L+1IR+mnUEJx/rFKcL6wK+FBE7iy/I1ZTNrAS+\n2s060U7gC3lKAiS9RdIi4C/AJyV159L9Nzazk2btzEc+1onuA64kzb0k4ChpmuWHgfeTxnpeBf7W\n6M2SPkq6MGE18DtJuyLi1hL6bdY2XNXabBqSfkwq67/jYq81s5nxaTczMyudj3zMzKx0PvIxM7PS\nOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyvd/wEF11Qp3r+cqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_phase().show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb.txt b/_sources/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb.txt new file mode 100644 index 000000000..a10ba20d7 --- /dev/null +++ b/_sources/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb.txt @@ -0,0 +1,1122 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation\n", + "\n", + "This Tutorial is intended to give a demostration of How to make a CrossCorrelation Object in Stingray Library." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve\n", + "from stingray.crosscorrelation import CrossCorrelation\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# 1. Create two light curves\n", + "\n", + "There are two ways to create a Lightcurve.
\n", + "1) Using an array of time stamps and an array of counts.
\n", + "2) From the Photon Arrival times.\n", + "\n", + "In this example, Lightcurve is created using arrays of time stamps and counts.\n", + "\n", + "Generate an array of relative timestamps that's 10 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset of pi/2 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 10. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "signal_2 = 300 * np.sin(2.*np.pi*freq*times + np.pi/2) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn noisy_1 and noisy_2 into Lightcurve objects. This way we have two Lightcurves to calculate CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGICAYAAAAnExYOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4LFV5Lv6unvZ89uEMiIBwGASEAKIiKjhg+MVMKsn1\n5iFyEwSMyVXJdUg0RjReImquGm+I8wAkGg03GEEc4uOAwGGUQUEEZD7AGfc5Z++zhx6qu9fvj1Vf\n11erV029u6qr+6z3efbTvXuqVVWrVr3rfb/vW0JKCQsLCwsLCwsLi+FGYdANsLCwsLCwsLCwWD0s\nqbOwsLCwsLCwGAFYUmdhYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsL\nixGAJXUWFhYWFhYWFiMAS+osLCwsLCwsLEYAltRZWFhYWFhYWIwALKmzsLCwsLCwsBgBWFJnYWFh\nYWFhYTECsKTOwsLCwsLCwmIEYEmdhYWFhYWFhcUIoDToBmSBDRs2yE2bNg26GRYWFhYWFhYWkbjr\nrrvmpJQbk35vvyB1mzZtwp133jnoZlhYWFhYWFhYREII8WQv37P2q4WFhYWFhYXFCMCSOgsLCwsL\nCwuLEYAldRYWFhYWFhYWIwBL6iwsLCwsLCwsRgCW1FlYWFhYWFhYjAAsqbOwsLCwsLCwGAFYUmdh\nYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsLixGAJXUWFhYWFhYWFiMA\nS+osLCwsMoSUg26BhYXFqMKSOgsLC4uMcM01wLp1wE9/OuiWWFhYjCIsqbOwsLDICDfeCMzPA7fe\nOuiWWFhYjCIsqbOwsLDICCsr6rHVGmw7LCwsRhOW1FlYWFhkhOVl9dhsDrYdFhYWowlL6iwsLCwy\nglXqLCws0oQldRYWFhYZgUidVeosLCzSgCV1FhYWFhnBKnUWaeCJJ4Dt2wfdCos8oDToBlhYWFjs\nL7BKnUW/0WgAp5wCHHgg8NBDg26NxaBhSZ2FhYVFRrCkzqLfWFpSZXLq9UG3xCIPsParhYWFRUaw\n9qtFv0F9yXEG2w6LfMCSOgsLC4uMYJU6i36D+lKzaZegs7CkzsLCwiIzWKXOot/gEwQ7WbCwpM7C\nwsIiA0hplTqL/oP3JWvBWlhSZ2FhYZEBGg2g3VbPrVJn0S9YUmfBYUmdhYWFRQYglQ6wSp1F/8An\nCJbUWVhSZ2FhYZEBaN1XwJI6i/7BKnUWHJbUWVhYWGQArtRZ+9WiX7CkzoLDkjoLCwuLDGDtV4s0\nYEmdBYcldRYWFhYZwCp1FmnAxtRZcFhSZ2FhYZEBrFJnkQasUmfBYUmdhYWFRQawSp1FGrCkzoLD\nkjoLCwuLDGCVOos0wPtSozG4dljkA5bUWVhYWGQAq9RZpAEbU2fBYUmdhYWFRQawSp1FGrD2qwWH\nJXUWFhYWGcCSOos0YEmdBYcldRYWFhYZwNqvFmnAkjoLDkvqLCyGFVbuGSrYZcIs0oAldRYcltRZ\nWAwjnnkG2LABeN/7Bt0Si5iwSp1FGrCJEhYcltRZWAwj7r8fWFgAbr550C2xiAkbU2eRBqxSZ8Fh\nSZ2FxTCCRu96fbDtsIgNq9RZpAFL6iw4LKmzsBhG0Ohtq40ODaxSZ5EGLKmz4LCkzsJiGGGVuqGD\nJXUWacDG1FlwWFJnYTGMsKRu6GDtV4s0YJU6Cw5L6tKElMAttwCLi4NuicWowdqv+YTjADfdBDQa\nnct/3z71llXqLNLA0JG6e+9V2fsWqcCSujSxeTNw+unAe9876JZYjBqsUpdPXHEF8IpXAJ//PG6/\nXV3+73qXessqdRZpYKhI3fw8cOqpwNlnD7olI4tMSZ0Q4lVCCGn4m9c+d4AQ4stCiDkhxLIQ4kdC\niBOzbGtfsHWrety2bbDtsBg9WFKXT7BrnsQIuvytUmeRBoYqpm5uTrkLTz896JaMLEoD2u5fAvgZ\n+78zxAkhBIDrAGwCcBGAvQDeB+B6IcTzpZTD0xto5LbTcot+w5K6fIKudcfpnCJ6ySp1FmlgqJQ6\namCtNth2jDAGReoekFLeFvDe6wCcDuDVUsrrAUAIcSuAxwG8B4oQDgdo5LYjuEW/wWPqpASEGGx7\nLBToDttshpI6q9RZ9AtDSersZDQ15DGm7nUAthKhAwAp5QKUevf6gbWqF9DV1m4Pth0WowcaHKW0\nDCFPIAbHSF2zqf54Toud51n0C0NJ6mo1NXZZ9B2DInX/JoRoCSF2CyG+LoQ4jL13AoBfGr5zP4DD\nhBDT2TSxD7D2q0Va4KO3nfXmB3TNa/YrqXRTU95r9p5m0Q8MJamTcggaO5zI2n5dAPBJADcA2Afg\nFAB/C+BWIcQpUsqdANYBeMLw3T3u4wEAlvQ3hRA/DdroC1/4wlU1umdYUmeRAn7yE2DqZgen0Qu2\nrEl+YLBfm00/qatWlXjfagGlQQXAhEFK4B//EXjxi4GXv3zQrbGIwFAlSuiT0UplcG0ZUWQ6pEgp\n7wFwD3vpBiHEjQDugEqK+ECW7UkdNqbOIgW84x3AH9/HSJ1V6vIDZr8S1261FJEDgIkJReQajRyT\nugceAP7qr4DTTgNuCwp9tsgLhkqp4xPQWg2YmRlcW0YUAx9SpJR3CyF+DeDF7kt7odQ4HevY+6bf\neVXQNl70ohcNxuiwMXUWKWBpCSjD2q+5RID9Si+XSkCx6H10bCz7JkZiedn/aJFrDBWps2EjqSOP\niRL3Q8XV6TgewBYpZZf1mltY+9UiBTiOJXW5RUCiBL1cKnnqXG6HBeswDBWGltTZsiapYOCkTgjx\nIgDHArjdfenbAA4RQrySfWYNgNe67w0PLKmzSAHNJlABszFsTF1+EFDShF4uFv1KXS5hx62hwlDH\n1Fn0HZnar0KIrwF4FCqujhIl3gfgGQCXuR/7NoBbAXxNCPHX8IoPCwD/J8v2rhp2cLRIAc2mVepy\ni4Diw1aps0gLVqmz4Mg6pu5+AH8M4B0AJgFsB/CfAP5OSjkHAFLKthDi9wF8AsBnAYxDkbwzpZRP\nZdze1YEGRRtTZ9FHWPs1xwjIfuVKHZE6q9RZ9AOW1FlwZGq/Sik/KqU8SUo5K6UsSymfI6V8i5Ry\nm/a5PVLKC6SU66SUk1LK35RS/iLLtvYFdnAcDO64Q62kftddg25JKtCVOllv4NxzgYsvHmCjLBQM\nMXW6Ukf2a26HBavU5Q9vextw0UXGt4aW1NnJaCoYeEzdSMOSusHgtNOAW24B/tf/GnRLUoFO6hZ2\n1fH1rwP//M8DbJSFQoyYOqvUWSRCowF89rPApz9tdH2GNqbOKnWpwJK6NGEHx8FiYmLQLUgFuv3a\nXlEz3qUlu0rBwGEoaaJnv9pECYtE4IsGG5KirFJnwWFJXZqwMXXZY/t27/lxxw2uHSmh3VZ/PlJX\nrXfes5PfASPAfuV16myihEUicFJnuMCHltTZwSoVWFKXJuyMN3ts3uw9H8HjTrvkI3V1b/a+NDxV\nHEcTMRIlrFJnkQic1BnULd6Pcl/dyCp1qcOSujRhB8fswUld7ke45KAx0ZcoUfMGR0vqBgxb0sSi\n37BKnUUCWFKXJoaN1PHBY1jBSd0IzgSpS/lIXXW0SN3KyhDHBtriw4NDjPGrVhvCaJgIpW5oEyVG\ncHzOAyypSxPDtPbrzTcDa9YAl10W/dm8YnkZuOce7/8RHDSMpK4xOvbrnj3AwQcDb3rToFvSI+wy\nYYPBpZcCa9cC994b+JGVFWDTJuDss7NrVl9glTqLBLCkLk0M0+B4992qnZwUDRsWFvwE2tqvQ4fH\nHlOncWhLDBqyX21Jkwxw113q4rjvvsCPPPMMsGMH8POfZ9iufsCSOosEsKQuTQzT4EhsILd3mhjQ\nj/N+otRhhEgd7V+1Oth29IwExYdze6kN02SUQBO4kI5Dw8Ew7RaARIkSQ0XqRnB8zgMsqUsTw0jq\ncj8qhGB/JXX10SF1dAqHltQlWCYst8MCDxsZluDGGKSOhKFhiIbxIUKpG9qYOqvUpQJL6tLEMMXU\njQKp04/zCJI6o/06QiVN6JIZ2vHeYL+6/wIYEqWONyy3zFMDkbqQjkPDwTAMxz5Ypc4iASypSxPD\nZGOMov06gjF1RqWuYZW63MBgvwLe/WsolDresNw2UkMCpW5YdqkDG1NnkQCW1KUJa79mC2u/BpK6\n224DHn88xYb1CVypGxbnzweD/Qp4p8ik1G3fDlx/fXZNjISm1N13H/DLXw6uOYHYskVl7QOJYuqs\nUjdAWKUudVhSlyYsqcsW+4H9aiJ1IqKkye7dwBlnAG94Q9qtWz34pTKUp89QfBjwkzpdqXvLW4BX\nvxr41a+ya2Yo2EloOy288pXAmWcOsD1BOOcc4OUvB7Zt8w5wiPozqkqdLqzmejJklbrUYUldmhjG\nmLpRsF8nJ9XjCNqvppg6br8uLnZ/Z/dudWj4srh5Be9+Q2nBRih1puLDzzyjHnfuzKaJkWAnoVlv\nYe9eYG4uh8PY1q2KwezaNdpK3fKy9zxCqQNyPi+3pC51WFKXJqxSly1otJ6YUI9DKfWEw6zUhduv\ndEqHgePyS2UoSR2Lo3UanmRCx96k1JEQk5v5FDsJzXrL9HI+QNd3vW5j6hhyPYRb+zV1WFKXJoYx\nUSLXI0IE6Djvd6Qu3H4dJlLHb1BDOZFnOyAd77kpUYI+mjtSxxrSarRML+cD1EEajVjZr6Na0mRo\nSd1QXuD5hyV1aYJfbXkfSUbJfh1hUqfGRIkyvPMkHKvU5QZsBzipo/uXKVEid6RuRJW6obVfEyRK\nAENE6kZwfM4DLKlLE8NI6nI9IkSAjvEIx9Q1m0AJ/lF8lOzXUVXq6NibSprkjtQNg1InpddBOKnb\njxMlqF/legi3Sl3qsKQuTQxLEU8pw0ndF74AfPWr2bapF9AxHh9Xj47TIXq33AL87d+GD3hSAv/7\nfwM/+lHK7VwFmk0tSQJAISapa7cz6oaf+hTwzW/29NWoRIlWC7j4YuCmm3psWz/RbALvfz+webP/\nNRcm+1VX6qQ0k7orrgC+/OW0Gh6BYSB1dPAAq9S554UMiqEhdVapSwWlQTdgpDEsRTyrVW+k00fu\nWg1461vViPEnf5J925KAT1krFS/WZnwcp5+u3nr2s4GLLjJ//b77gA99CHjhC4E778ykxYnhON2k\nTjTjxdQB6nDQ4J8K5uaAd70LOPRQ4L/9t8Rfj7Jff/Yz4NJLVXmygdd2u/lm4CMfUTMGakzAmk1B\nxYe5WMHzqi64QD0//3yPBGYGbr/mldTxA8dj6mIkSgBquCsMi6QRM6ZuYkJlvw8NqbNKXSoYlm49\nnBgWpY4zAX1EWFlRI+Dycv6nuNS+QkGROqDLc3zggeCvUzmQfftSaFufYFTqYsbUARlYsHRT5WUY\nEiDKfl3lz/cXe/eqxx07vNcSKnX8fk1f5f1vIMMGV+ryGlPHVR4ao4BYy4QB+R/KfIip1HGDIrew\nSl3qsKQuTQxLTF0YqeMz37wHZdFdp1gExsbUc23gCFtGiz7Kx9C8Ifekjs5BjxuKUuroMspFV6SD\nPTfnvcZ2oAgzqeNKnYnULSwYfy47sI3m1n7l5I0XZ0yg1A0NYsbUDZ39apW6VGBJXZoYRqXOZL+a\nnucRMUidqTgvgXYvFypQAEz2a4HZr47TTXgyJXVsQfvVfB0IjqkDckbqdu9WLEFK33XOz1NQSRPe\n13JD6thJaDujQ+r4UJDn4bgLIUqdlEMcU5f3+8mQwpK6NDGMpC5Mqcu7XG6yX0dYqWuUVZZvsRm+\njwMhdY1GT+sV8cvENObnktS128qK1eSfUoBSF2W/clI3ECI1DEodv655h4+R/QqMjlJnGvJyTer4\nhVuv53xNs+GEJXVpYlgSJeKSurzPrExKnXb3DyN1vJZprm5gDD5SV5kGABSdHJG6Vfb5KKUul/Yr\noCxYrdOYSJ2eKJFL+3UYsl9Xab/meTj2od0OdUvonBSLQLmsnuea1OmNy8WFPFqwpC5NRMTUPfoo\ncMopwLe+lWGbTIhrv/ZBqXvb29TC8qlM0Pi0tQf7lX80r4Vvuf1aL7ukLo9KXY8bi4qpy6VSByhS\npzEFOk9vwhX40r0vxjrsjqXUzc93v5Yq3vpW4JxzvItSI3VX4jx8GReGEqG771Zj2Y03ptTG664D\nXvAC4JFH1P/8YuUXda0WOLisJlHi4x8HXvGKAcxr9YvA3YnFReBlLwMuu0y9XCoNKanLu/szhLCk\nLk1E2K/f/S7w858D//7vGbbJhIyUOscBPvtZVcKMEgf7ij7F1AH5tWCbTaACxWga5SkAQKHlZzj6\nPmaacBZQ0iMuorJfc03qApS6P8Y38BsrP8NLcFs+lbqvfAW46ipvw2yj7Wod5+FfcSEuR7MRzIS+\n/301ln372ym18ZvfBO65B/jJT9T/vHPos5iATr4ape4971G1EVPbvyDoA5G7E3ffDdx6K3D55erl\noSN1QqjHvLs/QwhL6tJEBKl78kn1uHt3Ru0JAh8UWy3/TLePSt0zz/g303dwUhdQ0iROTB2Qb1JH\nCpBTHAcKBRRk25dpOcpK3TDar0TCS2gmjqlLndS1297BpKwNXpal5l0UrZXg65+GidTu0TxWEwhW\n6oBAmb0fJU1KWVd21bO23J2gw0G7PnSkblq5DFap6z8sqUsTEfFFW7aox127MmpPEHQWEBTYtMoR\nm/YXSGngiWG/xompA4aD1LVEubOfYwguazKwmLpRV+o4mQixXzmpS6rUpW6/8gNJHYevX8tIXbsa\nfAOmyyy1sAXqS7ShoJg6/b2Al3sldcRFMgN1EOo07k7oNQ2HjtTNzKhHq9T1HZbUpYmImDoiObzM\n1UAQxgJSInWp3JRD7FdSR8K2OwykjsfUNQseqSPiAAy3Uhe3pInj5CBxjh/oXbuGU6kz2ZgBSp2s\nRmeWZkbqVqnUJTmu/PqhAr+ZgTrIAQeoxwClbugSJYgdW1LXd1hSlyYi7FdO6gZ6gwpT6vpov6au\n1JnsV7fNcWbYw2a/NkW5s5+jotTFtV97/Pn+IiJRQid1ZTj5Kz5sKg2yCqUudfvVtCG9wweQul6V\nuoGu8EEdZN069ejuhN73h0Kpa7e9A2/t19RgSV1akNI/cmijQa0GbN+unjca4bZg6giLrB8mpc5k\nv7ob4qQuiEDrSt3y8oCzYPfu7eo3ubdfkyp1tZovbihoPkFxp/xwpLYve/bEm2VFxNRF2a+6Ukfn\nKVP7NUKp4zfdXCh1dNJ7sF/rdWAG+1CCk4icZXo+9L6nkzpNqSMMBamjhpVKnuQZ856ye3cOlPkh\ngSV1aUEfNbSp4dNP+98eqAUb134dJqUuwH4FglU4XbQ4+WRVpmEgg8kzz6iB/NWv9r0cZL+Ood4Z\nJ8M4eu6Uupe+FDj++M5dyqTUXXUVsGED8OEP+y+jVPblppvUxj7xiejPJlTqcmm/JlDq+POgn8mz\n/VqoLuNxHIHv4vcSKXWZlZi59VbV9y691HstQKkLI3W5iDc1gc5hueyRuhj3lOuvV4flk59MsW0j\nBEvq0oJ+1WmjMyc4QM5IXZBcskqljrJ9gQyVOnfQ4Ief3zQ5+O7t2KHqCD70UErlV6Jw/fXqUSv8\nFWS/VtAIDFPJtVL3y1+qi8G9AEwxde9+t3r8wAcyUOoeeECx+Pvvj/5swuzXMpz8lTQxKV6rUOoG\nYr/qHSGA1K2tbsN67MHJ+EUiUpeZUkd97557vNeog8zOqkfHAdrtrvnSUMTUcVJH43OMDnPnneox\nziVpYUldekhI6gaaAZuBUiflgGLq3AGfD+JBpI7v3rZt3nNORjPDQQd5z1lf8pE6+JW6KVW2Lh9r\nv+obNqHd9j7vkjrTMmF79nivpU7qeCZGFGIWH16NUjdo+1XU48XUZm6/ho1FAUShXVe/MY2lnu3X\nVEm2yX+nDjI15VO3htp+TajUkeBhcyriwZK6tBBB6nSikCulLmjR5VVcVfPz/s1knf2aVKnjpE4n\n4JmA+8WsMT77VZhJnT5ODsx+jdoYb1iIUkePxWIG9is1IIpNNRrqr1BQDVtY6PL1TfarrtTxMmR5\ntF/jKnWpJ0qElTTRYWCWUgJw1HmYwgraTvwDmxnJNnUA6lOTkz51y0Tqcr/2a49KHd0bbU5FPFhS\nlxb0q07T+4koTKo12fNB6qjKd1BdiVVcVToxyrpOXRxSF6TUDYTU8QPEGuArPiwqvpIm1JcGSuqS\nKHW8MQalTr83r1uXI6WO2NjMDLB+vXq+Y4fvI0TqKImFsl/DlLpms7sWeKqIUuoadfNnA34mNaVO\nt18TKnWNhnfdAIBcjp/enhmpC1PqJid96tZQZr9apS4TWFKXFvTROMB+ff7z1WMuSN2aNeoxhexX\nnRilrtRp9uvQKXX87hFI6vwlTYjUDdR+TcK6DKQurPjwAQdkQOqoAVF3RrpmpqdVFDcQSOqSFB/m\n5TN4c1JDhFLnI3UhN+CBFh/WYWhEreav5Zik3EBuSF2EUjdUpM4qdanBkrq0EDOm7gUvUI/Ucffs\nAa6+OuMMJhrg1q5Vj0H26yquKt1uzjr7lQulPJuNI4zUPfww8IMf9LGtUQggdT77VYupMyp1W7fi\npMeuAaBSeDNX6u69F7jhBv9nfvQjlYGSUKk74IAM7FdqQNTdm66ZmRmP1FGNIhdlOCighSJUo+PE\n1OkTjtSUOjoHCZQ6X3wdVBzwN7+pPp56okSSmDoDqavXNaVusTdSl6pyGmW/hsTU5SpRYvNmdd3r\nMCl1CUhdan1r3z7gP/5jwPWr+gdL6tJCBKmjkiannKIeqeN+5CPAf//vwLXXptw+Dp3UpbBMGF/3\nFchn9iu/T/DElSefBI45Bvjt31YZsZmAj8yMEXdlv0aRune9C++44Q/wEtwGYABK3cknA696FfD4\n4+q17duB3/ot4Nxz/Y1xD/jAlbq49itX6sh+3bnT95ESmj51SC8+HIfUpaIM0Tl44xtXpdR98IPA\nG96gJjupK3Vh2a86DO/Van5SJ5YWuz4ThMyVunrd20+y+Tmpq9Xya7+urABnnQWcfXb3e5zU0WAV\nNMNmSF2pu+wy4I/+CPi3f0tpA9nCkrq0EBJTJ6U3mG/apB6p4+qPqYMCeYRAJ9I+BftVrw2XtVKX\n1H7ltel4Kn2MMag/iGO/wrNfy3DMpM7tSM+CsgYHFlP34x+rR6oiunNnpP1arfrPydRUhokSUR2U\nyn9MTwMTE+q5ZunppC6O/ZqJUrdjhzoH27dHKnUFJ1ipI2GS/0yrldK1vUr7tV73269iOYf2K/9x\n2ig9rlnjG9PCEiUGWqducVEdbNMNjJO6k09Wz2+/PfTnmk2vpFRqSh1VNh/4ep39gSV1aSEkpo4u\nulIJeNaz1HNShqjfZzbbokFyfNw81euT/apfkKkrdT3E1AXt3kBW+4hhv3JSV0HDXNLEPZfjqHW/\nlwaCpLSf/Uw98kD3CPvVcfziV7udoVIX136dnvZuttrMpQyni9Tlwn4lQrqyEq3UOcFKHbVd/5lU\nbr5x7Fci1wExdVypQx5JHR93afZIG5+d9Sl1JlKnzWMHg7BJEb1WqQBnnKGe33JLaCfnC2yktl9x\nr/khgSV1aSHEfuU8isJxaJIQVyjoG6gxY2MeqUvBfqXNpJp2HzOmLo5SF4TMrvs42a8aqTMqde7v\nUAbmwIoP04w8gtTpx/epp7znrVZO7Vfq1IaSJrr9mlSpS6W/UduXlxMpdYWG/wKhtus/k4oFG8d+\npQK9hvd0pa6QgNRxdT6TOnVAt1K3dq0vucBUfHhoSF25DBxyCHDEEWqCYYq/c8HFs9SUOkvqLGIh\nhNRR5xwb81Z/2bPHb11k1r+oMRkpdTMz6jGPderi7F5mZFu3YtxGh5E6Y50693cyU+p4u7nEed99\nah+oAVTnjWBQ6oBuUpebOnUxlDqT/ZoLpY7a7jj+cxRlvzb8FwiFe62sZEDqwpYJIxCpi6HUDZ39\nypW6PNuvdJ5are71FTmpAzy1bvPmwJ/LhNTRoDLwDJP+wJK6tBASU6c7nmvXqrfn5wdov46NeRJC\nCjF1OqlLvU4dG+H0JYGSKHVU5YWQGdnWN+Sqddx+bQQodSb7NTOljrMQviZnuw3cdluwUmdIlAD8\npE63X1NRJHpR6ojU8UrCMNuvXKmr1fz7mzmpA/xr4Bns12IMpW7fPvNKIH1FHKWOLtYYJU1ySerC\nlLrZ2ciSJrlS6vTnQDepe/nL1WNMUmft13iwpK6f+Pu/B772NfU8hlJHEy9uwcYVClYFKYH3vQ/4\n1rfMSl2fig/fcANw0UVqE/RVGnezVOq8Qy/xYbwfpz55tfHrpt078UT//wOxX4EOqfMpdTKG/Zq2\nUnf11WpRVpqV8wOkL7R+001e49ptv0xVrQIrK10khrLEgRzbrzGVOr34sKkmXab2K+Bfg82k1DWZ\nUuf4LxDaXX1t5FSVurCYugj7lSt1hZUhJHURxYeHjtSRUnfTTWr8+OEPgXe8w/e9TJW6oJN7333A\n//yfA17LMz4sqesXnn5a5fj/1V+p/0MSJbj9CqhSDYAaHDNR6h5+GPjYx4CLLzbH1PVpmbCPfQz4\n9KfVmvSZKHUBpI6u2SPxGN6Pj+DtT72n66tSmnfvrLP8/w/EfgU6qYac1HGlLrCkSdpK3d/+LfDh\nD3txf0FKHaDSiHkD9AyUubnImLrc2a8zM7Fj6nSlTj88zWb3a5kqdcvLXXJosRmt1GVK6vqk1MUl\ndY7j/7lM6tQBisy1WupcCaEmDxGJErmyX/Xn/H+6zxx3nNqvbdvU/n74w8A//ZNKnnDBSZ3jdC3M\n1B9ETeQ+/Wng859XIsgQwJK6foHS9ChdJ2aiBOBPHsiE1NEotbTkV+qi7NeEU0AKMF5a8r6aakyd\nyX5lSt0BBSWNrG/t7Do9Qe1505uAu+4CXvMa9f/A7Ff3APaaKJGaUqdXnQ1T6rhka3p/bi4ypm6Y\nlLoyHEyVumPq6DIzKXX6PqVO6rhSByhix84hJ3VFx0zq9J/ou6LSbnvXdpyYuj4qdZkopwRdqaMO\nsmZNV+0k7F17AAAgAElEQVRNU/Hh3Cl1UaSOyCqg7jPUL1mH0quMpBpyEXRyqeTJQMogJIcldf0C\n9T7H6Q6WAXxTDF2p4wJZJvYr/Xi1Gp79SjXsCAlHa7oGeL2xzJW6RqPz8tqKugtNYxnbHvPP5ukw\n0PK3hNlZteoHVUsYmP3qNtBX0kTGKGniNjg1pY4OCB3kMKWOF1U1vc+UOuLkQ2W/ajF1JTQxXUlm\nv/JyR/Ra3xGk1NF7QUods1/bbW++l7pSZ8qoDst+7aNSN1BSR7Ni2q+I4sO5I3VR9ivgL0ND540d\n9ExIXZT9Su0ZkhUnLKnrF3jvW1hIpNRxUpeJUkc/ztmWKftVHzhXQeoyVeoCYuqmC56SsvW+3b6v\n0q7RohoEcnRMImaqCJASffZrnJi6tJU6ndTxduusJYFSRxN4vvJWLu3XiJImU5Vg+5X2lboqJ3V0\nLlOtUwd0y2xLS759L7XMSh0fCvSf6Pu9T1+8mMdK0IAChNqvulJXrOaQ1AVkvHdIXUTx4VyQuiT2\nK5CY1KUSVxc1kbOkbj+FTuoSxNRlTupoROA3WW6/ciWPI+FoQfe9Wi1jpU6zKogITAnvprv7If9o\nQbs2NeXdo2dmPFUlVeXEhBj2axJSl5pSpyt0JqWOBu5azd8AndTt2tXZbSJ1+qZyrdRp10cZDqbL\nwSVNCMRFTKQu00QJQJ0TdpBLPvvVe875a+r2q2mCo2deAaH2a5dS1yOpy7ROnU7qhiGmLon9CvjX\ngKXzxg66npswUKUutUyN/sKSun6B975VKHWZ2q/NpjfAmxIliNTRaNFH+zX17Fc2wtHLnNQtPOIf\nLTjRphsqjaWAOTE4VdCGiBAZ7NeG9NZ+raDR+ajjsBJRWvZr3wfFMKWOSBsdyAT2q4nU8dAqYMDL\nhJlIHcHtLCU0MVUOVuoIJlJH5zL1mDr9IGrqqk+pa3rXPyd1+k+kqtQBqg/RBctJ3bArdVGkLqT4\ncG6UupTsV14GqO+IiqmzSt1+iij7NWZMXaZKHeB12DD7ldJzQ0aLm29Wi97fcIO3CR5Dr9uvqdep\nM9ivnNStbDErdePj3hK4nNRlbr/ShjT5LUypK5cNs/XV2q+XXAK88IXBA5o+Cwkjdbr96pIL6UpX\nj9y6q3OuuKtGyFSp66X4MMGdrZXQxGTJHFP3JbwZ38PvAJDZkLqnngKe9zzgK18xB3zTta8tblxq\nc1JnVup09P3Gq1901P5SyTtQgBc7ESOmrpRHUhdlv5IK8KlP4WM/fCHG4e1nbhIlQuzXW25Q/1eb\nBqWOz/wNpO7gg9XjQGpTWqVuP0WfYuriCgWrAv9xinLmxYd1+5UGy5BO/cMfqkopP/iB+p/HjA9E\nqYsgdY2tflLHQwtNSt3A7FeSrAwxdfW2n9QZB/bV2q9XXw3cfTfw4IPh7QyzX7lSZ7Bfd4kDAQB3\n/Xhv5+d+8zc9m5L6TC7tV+7XE9wLuwwnUKk7B/+O38F/YS3msXGjej9V+/XWW9U5vPpqM6lbv149\naiyGK3WlAKVOR6qJEoCnJo6P+wk17cO+fV2rGXQpdbV4pI42VSiYm9JXBCl1NP6edprqGM0mjlq4\nG8fBuyaHwX69+XrVsKe2G5Q6voCwO7EgI0kIdK6RVHhVmP3aaHgbHUWlTghREUK8RAjxh0KIc4UQ\nrxFCbFpNA4QQ/yWEkEKID2uvHyCE+LIQYk4IsSyE+JEQ4sSg3xk4OKmbn49VfDhMqctsRkgz8zCl\njqSEkEJB9JN0XfL7hilRIvXsV1bShJo8CXYnmjMrdbmzX7W1v7rsV0bqjAP7aosPm8iaqZ0mhYv6\nT5BS55K6bU01Yh8gFjo/c+GFqg8tLqrapLSJzOxX3evVQaxmaiq2Usdj6kg1KsPBUUd5m05NqaNz\nMTdnJnVUAV1T6spt1n6m1GmJvj6kbr8S2Rkb8xPqAw5QB65W62KdXUpdTFJHh4rMioEqdS95iZqE\nn3YaAP94lnf7dedOYH5OncelhoHU8X7n7jf1selpf1hu3xGmzvNJzpCQulLUB4QQRQB/AODNAF4J\noAKAF36QQohnAHwDwJeklI/E3bgQ4o8BnGx4XQC4DsAmABcB2AvgfQCuF0I8X0r5tP6dgUNX6rgt\nAOQr+9VE6sJi6iYn1fsUE6XvG/tJuinx+waVvhIC5qWs+gWT/cpi6vggWJyfg5ReCROu1NEkf6BK\nXQ/2a5dSx4hJz0odHVMTu5Cy+33T54Ji6txOsguK1B08vdA5vsWid33wbNHMlDpAHWxdhSMQaaBr\ng8P9v4QmJop++7VQAEpFiYp7DstwcOSR3uZSI3V03HftMg8uAUodR6kVT6lL3X4NUuoqFUVOn3pK\njcc0IUL32q+lqhbPGQAax9auVeXKMkuUmJ/vJnWA2kd3Zpx7Usf2Z/Nm7/gv1w32K8+2cfebRziw\nxTT6jzB1nl8Po2C/CiHeAOBBAF8DUAdwMYD/D4qIHQPgJQDeCOBqKOL3gBDiS0KIZ0VtWAhxAIBP\nAXiX4e3XATgdwJ9IKb8hpfwv97UCgO7lAPKAHmLqdFLXaAzAfuVKXZD9Oj4eeVXpBd85qeOb4IWW\n+46gRImmYmlT8OSFWWfOeL0GKXUDK2mSwH7tGthZY1NR6vhrYbPdCKWOSN2atqfU8WQCsmEzJ3VB\nJ1tKj9VMTATarzqpK6EJIdQjIYjU9d1+7VGp4yjHJHWZ2a9jY2ZSBxiVeJ9SV1+OtTwBJ3WmpvQV\neumWHTvUcz4QAZ3O4Zuk+ktzDg4BMXWc1O2rGZQ6XuzQQOpYjkj/EWa/DqFSF2W/XgbgMwAOklK+\nXkr5SSnlT6SU90kpH5FS3iGlvEpK+S4p5TEAzgCwHsBbYmz7HwD8Ukr5DcN7rwOwVUp5Pb0gpVyA\nUu9eH2fHMoWUiWLqcmW/8pi6IPt1YsKfeh7yk3TP5omNfBOpxn3wOnWFQmd/2jW1MT4IbsAcnnzS\n+ypXT+mGymvW5cl+pZuTSaljrrOvsT0rdWGkzmS1mD43M6Mk0WbTPzBqpG6y6VfqCJzUZWa/AsGk\nznFUY8pl9Rdgv5bh+JU6oX672PZ+NzOljq7b5eXu+oGAR4ZClbp4iRKZ2a98lgiEkjpdqRNSxmpo\npqRO/3Faei8GqSuV/MN3KstpxUGA/cpJ3WLVQOpClLqZmYyUOtPJ5ZOcUVDqABwppfy/Usrg6RuD\nlPJ2KeUfAvh42OeEEGcA+FMAbwv4yAkAfml4/X4AhwkhDAUPBgidxC0soL6cw+LDTz+trvagmDpd\njqJBb2IiUtsPi6kLC9vrK3idOqAz4Mu6mdTRmAnEV+oyt181UndE4yGsgbophyl1jQb6o9SF2a/8\nYIQNjNwm42xfs18nnZwpdfq+7N2rCBG3XoHQmLrxgt9+BYASi1MbQwObNnmbS91+DUIflDrqqpnZ\nrwalrj5jIHXPPAOn1vIpdQBiLfuUCqlrNoGtW7tf1/czIakTwj9pfuaZDMcrgmFStLQEPHXXzk57\n91UN9muPSt3evd2VkRKDxjjDTWn+yRFT6qSUPV2eYd8TQlQAfAHAJ6SUDwV8bB1UHJ0OovMHGH73\np0F/CZufHHrZ64UF/NM/9lZ8ODX79fbbgec8Ry3AbrJfTcuEmezXgBGbftIUU8c3kapSx+1X2iCA\ndlXd0CZkMKkzlTThSt3A7Fe+9tc11+DexnE4Co8BAKrtsfCYurSVOpP9avrc2JjXf7gS5I7Ge7AO\nbQhMtpchHVfNMih1mdSpC7JfWy3gxBOBU0+NJnUsps5H6gxK3cEbHd8SdKnbr0GgmLoQUhel1IVU\nFFkdYma/1mUF//I9l9RR3dB77wUOPRR/cvc7fUodgESkjnhVX0j2294GHHoo8JB2+6P+RtlktPBx\nTFIHeIfjnnvUJv7yL/vQ3iQw2K+/uvpXeLr9bLwdnwEALKxE2K/VKuA4kTF1zSZwwgmdvJHeETAh\n3bUL+Ou3jBip4xBCHCOEeDH7f0II8VEhxHVCiLcn2OZ7AEwAuDTBd/INA6nbvSM4pi6OUtf3GRYN\nIA8/nDz7lSt1Me3XKKUu9UQJ2iAAWVVtnmCD4EbswpYnvbIHnGhfeCFw9tnAa1/r/XQe7Ff5oDqH\n23AQrsCb8DCeGzumbkLUOj+byJqhD5u+1ItSx60/txPUMI4FqBvXVEu9PzClLqh46vKykj5+/WtP\nGiDmFVLSZEz4Y+oAv1L3nIMcnwo8MKVu3Tr1GCJ7lKXn65lIHWWIpm6/cqWOHfs9SxU8XdOUuocf\nBgAcvPRQfpS6Bx9UITuPaDmF9OMnukUeaL8TkDo6HPfdpx7d3c8OhutH3H0XivDGj/nlCKUOABYW\nOl0xSKnbswfYtk0dzlXZzQFj11NPAVOtEUuU0PBpAG9g/18K4N0ADgbwKSFEkJXagRDiMADvB/AB\nAGNCiLVCCNJD6P8ilErXpcZBKXiAQcWTUr4q6C/uDvYMGkBYXAopDh3EUOrq9VAleHWgkZbLgUB8\n+zUiqCEOqeNjcOqJEkDnzihX1H5wpa4CBzsf9W5gnGi/7GXAt76lZrqEPNivtB9fwp/hAlyBZrsQ\nXtJEs197sr7jxtRFkTrqP4Z4rgYqHVI36ahBlJM64ugDTZTgLIZUoCClzu13JTQxLrzrhZQirtQd\ncqDT2b922xsb+r72a9QNicoWRREd90IJU+pSt195TB079stOBXPQSJ3bmHKzuiqlrq+kjsZVvQPT\nfp55pv/1mIkSgHc4iCNl5iwQDPZrad4veuxZZpMgk1IHAPPzkUoddYOY4ZHBCLjptlrALEZYqYPK\neL0ZAIQQBaiYuPdKKV8I4MOIlxxxJIBxqGzavewPAP7KfX4iVOzcCYbvHw9gi5QyXpGhrEADyNFH\nAwDkwgLQSh5Tx/tM38kDJ3W889KGTPYrT9ONqdSZ7Fd6L3WlTid1pNS5bZ5o++9Ei497g41OtHUM\n3H6t19FeUY2sQg2ErRYS2a89ZcclJXVB9itt3BCIz0ndtDszHliiRBxSt3Oneoxhv5qUumLLe+3g\njY7KiC35N8Mt2b4gTKkbG/M2GBWg5F4oebRfV5xyJz5T7nKvbXe/y61aR6mrwh14B03q9HPSA6mj\nLqjbr8SRMs+ENdivOqlbbpS9/mNKlACAhYXImDo+lMQ4lcEImJDuD6RuFsBu9/kpUEra1e7/P4Ui\nbFH4OYAzDX+AInpnAngEwLcBHCKEeCV9UQixBsBr3ffyBY3UYX7eV7YAQCyljveZvpMH2qiu1BFM\n9msCpS6spAnfRKpKnW6/dqqVq/0Yd5U66Tai9rQ32OhEW8fA7ddGA213P4jUtduIbb+OyRoqZUk/\nFR9xEyXo+SqVOiJ1ubNfw0hdiP3qK6Phjgmi6Z2XAw9wb3zu/tLhTi37lcADRsfHvQ32QanL1H5l\ng+hKVXSUuvYuv1JXaXlK3R4yfGIwAeK4tG99OR90LvSxlPrbSSd5drgQ3Qshu2PCJFY6fE8ndeSO\nDFSpc5+X9/lJnYMydhOTCLFfTUpdKqQuoKRJF6kbQft1BwCXteC3ADwqpXQjOTEN6CymG1LKeSnl\nT/U/9+0n3f+XoIjbrQC+JoQ4RwjxGvc1AeD/JGhzNiBSR6XhFxY6A7ik6rYxYur4QJmZ/Urgy4Tp\npC5GokSY/co3kalSxxeLBjBOSt1hhwFQs3k9fDCI1OXCfl1W+9EsqkaalDpfSRPWiQqQmKyoxvdN\nqeslUcLABjipm4W6GxXYyJSLOnW83VQ/LEb2Kyd1HfuPNXzjWj+pA/y1s1NT6p7FSokmIXUxlLq+\n3/vClDrq8JUKVlbg2a8aqRtrVzvnYi9F9vSQKJGJUlepAKef7m24oN2m3X43heWOa67H1A1MqTPY\nr5WFblLXCUMPkqQDlDqT/Qr0SamLsl9brQGw5ORIQuq+DeCjQohPQMXS/Qd770TATcnrA6SUbQC/\nD+CHAD4L4FsAWgDOZEQyP6AeesghwNgYRLOJGagpnqy4vdGg1GVqv3KlztQxuVKn2a8PPTWB3Uvs\nqpIS+MY3gMe8Ux6H1Oli4MMPA1dd1bVMYzSWl4Err+yW7HmdOtog2w+yX4VL6tZjDs884/tIru1X\nSvholj37VZbN9mujga5ONFPuoaxJv2Lqgg4sgDrGGKlb8BEcICd16sKUulLJf+NlpK7MSF1Rdqe2\nb5jtJnWVin+f+wKdaR14oPeck+6ogce9wGkJJz4JClLqvvc94M47E7aXI45SV6lgeZmRut1++7XS\nriVW6qRMidTRudA7MP14qQS8/OX+DXMw+5Xezk1MnSG0Z2zRT+pmsdAJSzWtTgTAR+pmx2o45d5/\nwUbsHKz9CgyFWpeE1P0NgO8AINWMZ6++DoqA9QQppZBSXqy9tkdKeYGUcp2UclJK+ZtSyl/0uo1U\nQT10w4bORbjedarbJXfqZIip0+3XgSt1AfbrP352Aj+5hRGkO+8E3vhG4J3v7GqvKaaOb4IH8r/9\n7cA556iqA4nw1a8C558PfPrT/tf1OnWaUjdGSt1zngNAnSMqQBxlv2au1BnsV+nuh1PySF2r6JE6\nIYLtVwCYLvdQ1iRpnboopc4Av1K34IunA/wlTQZWp44vdqqTOgCSk1b3eRmOf+1UMjNYw5+9ISNS\np6tCnNRxpS4KmlJHuWGAOfv1/vuB3/s9VQmmZ+iDIU/uYqRuZQXYDVWapbBnzpd5wpU6+kxY+Rba\nDyn9RkUmSl25DLzqVer5wQd3f5+RuoMOUi+RYqfbr3lQ6saW/KRuHms9pS5oXGCk7oSH/hOv+cab\n8Df4WDpKXVz7FRiKuLrItV8JUsplAH8W8N7L+taiYcQf/RFwzDHA8ccrUrdzJ9a5JfVMpC5IqRso\nqTNlv7pXyh5nGvvA2AIFRLA4iF6Uuu3b1fNOfEVc0Iigl5IJSJSgA96xX9070SRWOrXqopS6zGPq\nTMWH3Zi6VsWzX5uFCkrwVpkIJXWlfCp1olLBQiMnSl2SRAm2tqgsVyB4uAIUiSvxRAnZXVl87ZSZ\n1PV9EhFXqYv5O3Q4Nm5UNc0Bs/36/e/30FYd+kGggWP9+i771UEFC1iD2dY+ddc3KHVPYJP6DjU8\nANz+4+sPrwo8VZMzFCn9St2ppwL/8R/Ascd2/wYjdZdcAvzWbwG/+7vqLd1+zUP268SSEj0+/8c3\nYO3W+3HtDa/HK3X7VQcjdWsa6sMHYTvuTVOpi7JfgdEidUKIxwD8gUktE0L8BoBvSynjJEuMHs49\nV/0B3Upd2b2ZGdZ+DUuUyNx+NWW/ulfKEqZRAyNIdDdljQxbJoxvgit1dCEmvjnTvug3qqBEiWoV\nJTiqzlax2JnWjqPWIXVxlbqB2q/u/rbK3kDotIsoo6DqQLVaqFQUAzLZr1OlHpQ6GvBMhaB6iakz\nQIzFJ3X851NZMqgX+xXqOifbo1kaRwndMXUltNTNm58AJyOlTr9WNm70nidR6rRECa7UmezX225L\n2E4T9IuOztGGDV1KHaAs2FnsU5M+mtBJT6l7hELDefVxAzipo/Ox6nHZcbx4E94PuMtA49cb3gAj\nGKk76ijg5JO9t3KV/eoWxZxYUffCrYe/FNuPeQVaNyBYqZuZUTcPRuqoxuY0lnzXPBdaU7dfqV0j\nZr9uAhA03R4HcPiqWzMK0Ehdq9QdU6cTCCI6A1fqdPs1iNQZ1jKLY7/qm+iZ1NEB1O/qAYkShXoV\nE3D3f3Ky8/oEqrGVuoHbr/V6Rwlqlcc7u9hoKPuSPhOm1E0Ve1Dq+pX9GqLUoVLBPrdcpcl+HVid\nurjZr2CTNwBLTS/7lZcv6fy+qexD1vbrmjXeAMRLmkTBoNQRKL6rVvN4SyqkjsBJ3diYj9SpJ3Od\n/S5AYhpqwElK6mZm+nj9c8bLzwm3XqPASJ0+ARp4TJ0+KZqfR0G2MY9ZlCbK3Uvz6v2O/GRWp268\noI7TNJYGl/1K7RoCpS4JqQOAoJD2FwGItT7syENX6orB9muuYupC7NclTKPO7dcYSl1QTB23MSje\nuW9KXYj9OgU3JkojdXFj6gZmv46PK1YjJcSyOqhOaaKzi/U6vHPTaISTutUodf0qPmzaRLGC5VKw\nUkekTsqcZL9Sgg4ndSWvrMlC3SV1oolC01BgNoZSl7r9OjPjtT/i/ABAG24Wf4hSNznpz76em0Mn\nEUlP4EyEoIOwYUOX/Qp4awlzpQ5AJ3ntUbhVChIodcNG6oinDDymzmVvc9iAchnRpI6ystmKErRu\nta7UpZ0oIWt1TKAGByUvYHTYlTohxDuFEFuEEFugCN119D/72wXgMwD+K4sG5x4uqaOYupaB1A2k\n+HA/7VfDWmac1PGsMX6vGB9XZZdoM0FJYLH3Jab9KmpVr/o6I3Xcfs2tUseKzxUW1SjWLE+YlbpG\nw1/SRGvsZFKljqcl96v4sAHtUgUr5eBECSG8U8q7bqPRQ+Z0FOLYrwRG6jqKPIC9VS+mrovUNZuD\nVeqoxNL0tJ/UFYt+QqGdr2W4inFIogR3catV4Oabvfdosz2BjpfODDduDLRf1RM/qaOlqnbgWWiU\np9SsMiRZIhVSx8csfSFTAF0szYD2uEfq9GtFL5k48Dp1jNRVKgZSp08mSBFj9uuY9EhdkFIXVTM7\nFAErStB4u4BZSC3pLs+Imj89BuDH7p8AcCf7n/6+CeCdCEii2O/gkrqym+nWLMWPqUtLqfvc54At\nv45vv8qGg7/4C6A2F1+p00Mp6ILUQ3eA7oEnFsm49VbgvPNUVkVC+1XUNVLnNoTsVymBF2+9Bp/H\nn2O8ZB61U4up+8Uv1CKzZ50FXHKJ97qR1KkbULsSYL+6St0F+Ape+b334rJPakpdoZvUXXst8OY3\nB8SnmWLmOPqk1LVLFVQrwUodAN/+EnTlri+IY7+6cMqTuPBCVbKjWfRI0O4Vl9RJB8JE6tKIqavV\n1KLFP/hB8PuAd9PkpI4GIqaaVKWf1C3BLYAbotTx0MlaDdi82Xuv1VoFAaeLTi/CGxJTp57MGTt2\nAxXMz6qyRp/9m2617uc/B/7H/1DL/NJmucNw663qfT1PKxY4KTD0gzhKXWvMI3U6WdbnTjTxec97\ngK98pYf2JoU+YQlQ6u68E/jDPwSe2BGs1NE9pCJTtl/pIpPSd58mUjePtZDjbjuvvlplJv/TP61i\ng+kidFogpbwWwLUAIFTvuURK+XgG7RpekEzrojPYx1Dq+H2Dblj6TKwXXHwx8JI9VRwGxCo+XFtq\n4gtfAD5ZMJC6gJg6/pPVqrcv69erhZFpE0D3uBWL1H3uc6qUyVlnRSt1mv1aqNeMSt10qYblZRV/\n8sYnLsVv4E489NQFAE7r2nxq9uvllwPf+Y56/uMfAxdcoBad5YO8y4KLy8qvbpYnOqJFvQ6UNFJ3\nCT6IQ+7diu/j//o2NVHotl/PPls9vva1wOtfr7UtitQlSZQIUepk2U/qTH2+WOx2LgH1fwxxIz7i\n2K8u7n98Epdfrso1voSTukUqadJE2zGsGhBDqUusDG3erPrS008Dr3lN9/s06LzgBcB3v6sKpXOl\njh7dmIilRgX8dsuVOin91zdBr1H+4IP+JjSb8dzFLvD4Ur4iyfr1wBFHqOebNnXa1CkuvGeP0S5z\nUMb8msNw4NwD+N4XtuC17z+JqhwBAL74ReDf/s0rtaQnSrz2tWpuOT/vXbqx0Qf71SlPogz/2q8E\n/TJrt1WX+PjH1QT7wgsTtjcpdKXbLfdFSt2mTWr4XVxU62ufdsoE3su/T1nZi4seqWtlZL9S+93x\ndmLHEwCAnTgQR7gVB3DffcBNN/mzU3KGJJEOfw5gp+kNIcSUEKKXy3X0wKeuAFoFv/0qZXCduqBa\nlKtFrebFJZjs1xYK6i7ClDqBNibaKg5tBZMeqeN3VoP9CnghR1NTPodqdUodDYbLy9FKnW6/6kqd\n+/oB4+o3n3wSmKyryOKD1hhsNqRov+o3HfKsDEqdcKWOViXYfh0b8wb7NfAvyTWpKXW0MAIQIKTx\njNd+LRNmQKtYQW0snlKnK6V9jxmKs0yYi20LqnMvLanSMoS5fRV1TQEoNLTzGyOmbmysR6WOPwa9\nf+WVwEMPASecEKrU1RGs1DmOale57K+Ny2Nmde4KrELl1sv7ACrRo1JRpaQefhj44hc7p6hDQFdW\nusaItihCooD5NSqv7zBs8QrhuiDe+NBD6lG3X6kE03e/28O+9MF+bYoymiiigu6xXB9bAY/87N6d\ngrLd1Tiz/boLG1EuqwzpX/1KzV0BYH657Pfm3Q4lHadzPkutjBIlAN/xXP+AkppvxUvRJqWOFArt\nPp8nJCF1X3L/TPiC+2ehneymRupoPC+XPe4RNDnrl9XXbMLL/jQodU5hDHxVcek4mEAVBUi0xifR\nRtFHHMJi6gBv0Jue9sfBrkqp4+t5JUyU8Cl1U1Od12cr6pjcdx+wpq2szTUV800xNfuVfpAUh5tu\nUo8GUkfg9mu93h1TRwSeAsMJ48Kv1HF7zGiN9WK/9lDSRJYrqI9HK3VABqQugVK3dX6y85ZTYErd\nfBFN1wQpVJf9X0qo1MW+CRuuSR+IQKxdq4gQ4JEkrtS56PQpF1ypW2HzI33SxsmP3pRVkzpuv/Jx\n9uijgYmJTrtW4DZqZaVrjGgV1eCzZ0bZr4fjya6wOj0rXyd1J57ofdZU6ScUfbBfmy3h30cGkyBO\n+9NuR9ZbXj1C7FcinJs2eULX0rLw3ySI1NXVsZmaAkTdXb8XDto175ilptS52PiQGiA34wy0x9w2\nUubPiJC6M+FasQZ8G8Bvrr45IwDtZDtky7hXv2mN0aDruF+qkONoSp32w82S5gOzZc6a42og9ZE6\nGowMJU0AT6njCzEDq1Tq6EPVavCC2AGJEoUApW7GLcZ782bZSV0XDXPxs9TsVzpwr361eiSmZbBf\nCaExdRWJMXgzWw6q90SHjZM64zngg53p7hUWU6ezlDD7tVSGMzaNFgqYxjLGit0H2RRTF9ju1SAB\nqc+whr4AACAASURBVHt6j5nU7dpb6pA6UVXfq1KiUUBMHR8DeExd7P5mCInooNlU+1Uo+M+Lbr/G\nUepqtc7iGpOTfvEsitT1fO3o5X0A402V2uUjPLpS52Yp75lWpO4wbAkkdQQ9po4v8kBqXmxEKXVx\n7FcHPZE6oMc4wCSIyH4lED9fWoL/JuHWECVSNz0N33Eqrqj7Uq3mP3x9U+qo/Y6DDY+qejybcQba\n5XFvn4CRIXUHIsB+BbALwLMC3tu/oJO6gj+mTrdegXSVOgpQ7ih17XbXnbCTuec2RDSdDiFoTswA\nQH6UumrVO4hRSh2RuoY5UWKyoI7JnTdVO4ktQfZVavYr7dfpp6sDc++9agoaoNRVMY5SWQQqdeNF\nBwW38pBO6sKUOmNfi7Jfw2Lq6MSPuSpwgFLXRBGFchGVMYF9UAP6rNjX9TlT9ivfl74hgf365C6P\n1DUEs1/3FuHAvZZcUtdRuvTwh34lSoSROtNMEgi1XwOVuno9UKnT7de+K3Wc1PEMLBdG+1W7ntsF\ndV7mJjxSp69oYyJ1nGRzMsGvoViIiqmLY782h4TUGbJfCTMzrG0GpY4u7Olp+M5hua52ZkFb6KFv\nSh2dh3vuQbmxggdxLOaw0VPqCCNC6nYCODHgvRMBJF3saTSh26/Cb78mUer6QeroGuuQOqArLbtF\nsxB3QPGRurEQpS4hqeuLUteL/dowJ0rQMdn6IBshApYpSN1+nZkBXvQixcBvuSWQ1NUwjnIZgUod\nqXGAidR5MXVLS8A993jvRSp1SbNf6cTzArcEjTwUi6pP8PVfdeRRqXtsOyd13v7t3MOUOtfX7tyE\nY2a/Jp5EhNmvppkkYE6UoK+EKHUmUlcsqjanotRF2a8ujPardj23XKVu57hH6nSiE6bU6aePoiVi\nox/2awipM8XUZUrqIrJfCT6lLorUsXNYqqVM6qiTuid2M85QH6mMJqn7DoAPCCFO4i8KIU4E8H4A\n1/WzYUML7WTTDP4H32thxw5zPbQo+/Xd71bLyppKZUXBcYACWiqo1sWdN/l/qFXUlLpWs0MIGiZS\nF7KiBOCRupkZP3ntu1IX034t6kqd+3qlrU6Gj0QEKHWp26/lMvDyl6vnmzeHKHUTKJWCSR2pcYCB\n1Lm2bL2uKv0H8ZcOkiRKhCl1gNFiAVTbSyV1M5qHWlViraGOuR5TRz/H+86f/znw/OevYvkwraRB\nFKl7fAcjdYwE7at6pI7QUY/SqlOXlVIXQOroJ1JR6mLar3Fi6tpuTN2O8qFoQ+BgbMXeHQ3g7/5O\nxbXOzUWSulUpdbr9et11ys+98Ub1Wgr2K6/hpieF9B0R2a8EInWLizCODcIxK3WVhp/UUbJs3+1X\n98TeBDUmd4QPwoiQug9CrRpxlxDiFiHE/xNC3AzgbgALAC5Oo4FDh0oFtTHvpuW4M/hatY277zav\nXBCl1F17LfDAA8AjjyRvji+ezkWh7lfqHC2mrtjylDqnMsRKXcd+rRnt13JTHYc4pC51+7VcBp73\nPPWclrmgdSDZAathPJzUsXPdlSgBT6nT1zJftVKnZ7+GKXXkvcCv1D3prjR4dP3+rk3pSh39PG/3\nNdeosn96KY3Y0Pcxwn5dkurG2m4DKy1v/1oodghq5+t0E465okRfSV3QcilnnaXq1tFkIiSmbhHu\nOavVOmLT+Diwbh3wspcBv//76jU++cksUcJFLFLnKnXVZhmP4GgU0cbkw79QNSKfeAL48Y8jY+o4\nqXv88YSLDOj26w9/CGzbBvzoR+q1mParz2JmyJ396jLKBczGU+pcUldoOgBkl1I33lpCu+2RukMO\nYb/TK0yzWzfL9QGoMXkklTop5RyAUwF8FKoQ8fPdx0sBnOq+bwFgadw74XWX1BXR8o0xSWLqqMP2\nokD4Ml9d6P87Bb/9Wmh7pK5eDlHqYpA6U6LEqpW6qEQJzX4tBSh1hUYNhYJG6gZlv5bL3uBGU2va\nqKbU8czprpi6MKXOfa9a7S6MbtyvftqvvCNopI6UOrI6Tlnq9rR0kmNS6migj1j9KRj6PkYodR3y\nAGDJ8Yh3EyVsUVUhVRtR7sTYpVanzjDR6iBouZTXvQ7YulWxMiA0+3XRjXeUyys+jlgoKFHjqqvg\n249BJErEsV9JqWs0vP72ol9e6X1g/fqu1QlmZrzrrd3uJnH6BCkUOqmjRlPnHTX71d3fKiaMSl0X\nqZuY6ByDChpdSh3VqjORup6LW5vs1xV/LGwnmRBQFnFPBRezQaIV+aSU81LKD0opXyqlPEZK+TIp\n5YeklN1BMPsxFse8AcdxB0cidUmUOupfqyF1JqVOL1rZSeYgpU62OipPtRii1LGS/kHZr6ZEiVVn\nv9KBaLXMxEK3Xx0zqRPVKg45JEdKnU7qqGOE2K86qaMldQCP1C27NwB6z0TqjOegX4kS2j4E2a90\nkz1pX7enpZc50ZU6ng1HQmdihElLy/7SJFIIb+k8AIt1v1LnJ3UVz45Na0WJXpQ6wF8jjF2sjtCU\nuoJbamJ5pcvN5T9hInXUjfuaKLFKpa5e9/rbWU9d7m2q2uy6FoiA0L7RdqhgcaL+xtvTaHg/RsXx\nRin7tdnsDDQUC0wIzH6dmOjcICpoqPmfRupqNY/UrV+v9llXUBPBZL+6x5WOc7PMbmQ5VumAhKTO\nIh72VZhSp5G6pIkS7bZ3P0lNqSuy0dm9m1Bc07LQSF297h+dm0202/7rIsp+7VudOmoPIcB+LTqa\n/UqsqNXCEYc6sZS61GLqeOFCOkC6UpfAfqVyJoBH6ijIfcwl9/ohBDJW6qamOkyA26934YWoYhyb\nVn4FPSVRJ3W6UscDp/um1JnsV5dYOOVJAB6b2cdIXbdSV/GUurSzX5ModTrYOZIVLVGi2K3UmX7O\nROqoK6Rpv/KbeofwLC11bVQypY7ipcbZRKi+3H38gkjdc5+rHhP1tyilbpSyX2s1dX+AQAOVaKWu\nUPCVcOoodXX/mMZJ3eys9ltJERRHO6qkTgjxbSHEKXF/TAgxLoR4lxDiL1bftOHFQsk76RRAXUDb\np9TFtV/5NdtLpp/jRJO6BquxRYPKAVArLBAhMCp1ANBsdt14guzXvit1gJ+d6IkS7saLjSqmwIpr\nAZ2B5KhDaomUutTs10olkf0aWHy43R1T1yF1Mth+7UudOj5Ahil1bNkwrtQ5qOB2WqKNrwaPaKUu\nFVJH56bd9g6YG5ldL0z6PrpQ8zp1C8VOfCDQm1LXc/ZrUqWOg83AxJj/Il0hUrfSrdRxhJG6Vduv\nnNRpJU14f+4QHkOl3XbZU+oewdHYgQN979eWokkdTbKPPlo99pXUjZL96o5jNTEBQPh2jYbh5WVA\njrGJnxDdpC7EfuWkTrfNY0H3bIOUOm6/DjOpA/AEgNuEELcLIf5SCPECIYRvKiGEOFgIcbYQ4isA\ntgG4ECp5Yr/FPCN1NWmOqdso5oDt2wGE26+8o6ZlvzYK3bIhKXWLMiSmzm2kfh9JValbXPQTDE7C\naCm2QhEPPIDOIswl3X5ljTnioGqimLpU7dcgpS5B9isndZTtSqSO3uNKHW2yL9mv3P6mu4tJqatU\nOu9zpQ7wLDG9VkQmpC7IfuUHy7WOV4Sf1M2vhCt1PlI3qOzXKKWOk7px/2eXXVKHlZVQjmgidaF9\nLA5i2K+c21Rp1VrDRIQrdYDw+puL2mJ3MWid1FFzaGGORP1tFfarlCoJqFbrPfs1U6XO3XBdqA7A\nCWex6A3FpILJiQmVn5ClUmdS59nixnScndKIKHVSyr8EcDyAOwB8CMDPANSEEHuEENuEEFUATwH4\nTwAnAHgHgJOklHek2uqcY0+BK3XmmLp/uPElwEknAc1moOLuOP6O2i/7tQh3dQtXRfTFz7iDCil1\nC+0Ipc5xuu6FNEFOJaZOn30b7Nevfr2I448HrviGmyjRrAUqdUc8O55Sl0lJkxgxdbr92qXUye5O\nQpmLZYNSR+FtUUrdvr0RMXW0agGAjvTG265LtgalDvAsMb1WREEbqejn6PRzUtdzTF2Q/cqtV/cO\nstRW/egAd+34fY2YMXVpZ7+G1amLUurY+4VxTakreaQujCNmYr8Wi2q5M94+xm0kCqgXzPtKSh2d\ngk5/c0H26zHHKNFICI9L6hMLsl8T9bcgpY4UoxD79brrVIL8pZcyUqfFeubKfvUpdd18lU4nEaY9\n1QkcdRTgFDxSNzUpjTF1dBtYu1YrZJwUJnW+XgekhFMcQxtFXxsB5J7URRr4UspHAVwkhHg3gJcC\nOA3AwQDGoQoOPwjgRillr0PpyGF3wbMGam3VQcl+rdWAEhwctPQosARg716IjRtRKpmFAt5Re7Vf\ndaWOsIgZjKPuHwA1+3WhGW2/NgOmBtPT/ptxX5S6vXv9rxvs1y1Pq40+/ITyKQutFg6kxVDWrVOP\n7p3md8+s4pdHLgCPub8xSKWO7hp00g0xdbr9qit15Vb3ue4oda3uRIk1a4CdO6Nj6uZ2trBGf19X\n6uj/YtE7yaaSJhqp40rdrXgpWiigeOed6obnknD9hjrllU0D4Cd127ap42KyokIRZL/ywmzunYhu\nqgceqLokLwHSRAk72AI7EoX0s1/7oNS1xyc6s/zipKbUlVSihBi0/XrJJeo8aB1C4zaoFSYx1u6+\nFkipo8v8CpyPk3Avzn3OjRh76tEOqdu4EfjYx9SmqR/pfOuoo9TjqpQ6veEhSt3DD6vHBx8ETu0x\npm5hQXWR1JI3+Ul21UdKKNKvx5kZNfY0CuOYBLC3Og5HAvV2BWUoUrd2uumzSKexhMXFPip1uprb\nbHaOqVOeBNwhoRN3Dgw/qSNIKRsAbnD/LEIwh2D7tV4H1oAtg7SwAGzciHLZXAJgtUqdKaaOsIgZ\nbMScrxq+rtTtdaLt1zBSx0MWslLqGi014K+sQN1RlpbwHKi6Q50L0r0jrZuo4hUnznukblAxdXyN\nV33WrtmvXMnpInXt7k5CpK7UUu9x+zVMqauttDv5nRPlBPZrlFLH7Nc6xnwfX8QabFl7Mo6Yvwe4\n4w7gVa8CkIzUSanW3T7iiO4mhyLIfjWQuqp7U+0cP1YCpImSrxjxOuwOjqlzn/dNqaOsJT6bCmNh\nDK2yR+r0mLpq2d3RavJEib7Zr6US8IEPGD+iV5ypFSYxiz1dn5OaUrcPs7gQl+N3jj8fz37qUTRW\nVKOnp4H3vMf/Xf0cHeaKsVu2qD7Hs4ADoQez6ksjhCh1tI979/YeUwcote7Zz47R1l7AT7K7YbLD\ng5S6WkG9vyLVI1fq1k36x+NpLGFhIWX71SXaTnkSpIc0uFJnWKIuT7DZrylgl/RI3XKzO6bOZ/e5\nvdM0c0rLfiXQzb6O7pi6UFKn2UdBgzW3X/la4qtS6vSL0BBTV28yUkfkzd2fDqmjhvEADf33GIpF\nNWjryVKrhsl+JQTYr7xOnU7qik53+8l+LRmUOlqVx3QOd2z1jrVsxiB1PSp1nNQBwEMHunFOzIIN\nInW0H/q9sae4uij7lSt1bkwdWT9cqWvB39j12OO3XxPE1CVW6kxfCmNhDA2mRvCYujZEp16lWFnu\nWalbNakLkZdWtJDZqhbzSJAlv1JHqDqq4Y1ltS2ek0Hg52hsTJ37Aw5QvxV7pQad1OnOQ4x9XFnp\nPfsVSNmC5X3PnZxWXbKmE046xnXXniXyR2XAKmhg7YT/RKVO6lh2YqPk9SGnODz2qyV1KWBn2zvp\ni/XukiY+UucqT3FIXb/tV1pAnQJZAUAW/fbrXF3dtUKVuoAbD18mjBKbgB6UulYrmEnx0dn9jNNS\n3bqj1FFTixVvBKDXq1U/IwhhzqlYsGGkLsB+5Tf9ep0RikYDBSdYqSs2k8XUbXvGO+ZtE6nTS57w\npc3CEiUM9iu/GT18kBvnxJIldFLXmeUblDqgx7i6BErdivQrdbr9WqlArdZAP8Xt1wTZr4mVOv05\nEFup4zcuHlPXEqVOMHuhuoJ6Td2skyp1q7ZfYxAeiq4IJHWaUkdYdtwEiqqn1OngfZD2/XA3yTl2\nf9MnjXpDYuwjMCSkzkVVuiv4BCh19D7ZtA1G6mbH/MdrBov9JXUh9isndb5kQkvq9j9sb3onfV/N\nH1NXr2trW4YodVnYrwB89itVXKc27qrGiKkLGKy5UhdWwiWS1IVN8Q1KXZf96mJlcoPHLOlOo5O6\nkDV/UrFgOanTR2SD/UpKXVCihKn9HVLndGe/EimJVOqcGMuE8TqBuspYKnnHPkKpe+yg09WTW27p\nbCOuUkenNXWlLsR+baGoPsZIXWbZr/pzIL5Sx25chQmmPIoSRKnYSaxqLavOk7lSF8OapMSVzjJa\nUIWiO88DlLqVuvptZyWY1OnnCPBbsLGgK3VhG9EQh9SZ7Fe91EeqpM5wklcilDp6n5S6egipy8R+\nNZC6esEqdfsVvv51FX/x61+r/3c6B3TeW6qq0TnP9iuvjN9ySd2Eq+4RqWujiBYK3evkRNivQRUt\nOCL3K4z1GRIlTPYrAFSn2MUYZL+GNEbPgL32WuCG1UaYclJXKJjZb4KYOlP7dVIXV6nbuc0b8Nqt\nGHXqwpQ6IfyL/waUNAGApTUHA0ceqTr/vfeqtkeQOgq1PP549dgXUhcjUcJkvzZRCiZ1Me1XTo5+\n/nPgX/81ou1h9mtMpa7BlLrihF+pK5W8fZbL6niEKXWO072kW2ylrloFPvMZb/2tBPYrKXXLklln\nk7Od54FKnUvqmtX49ivgkbovfUndByIRRepSUOr4ZQlkr9StuGRN56t0jB/f7lfq6m22okQlZftV\nV+q4/Vq0St1+i6uuAj7+ceB+dx3ylbp3B5qruTdUtLC8nIzU9UupC7Jft+JgAMB8cb23zbLfAtyx\n7I1uHUWPNypCqVu/Xt3P13ub6K9SZ0iUCLJfjaSuB6WO6ge+4Q3AOedEtD0K+g2L33iTFh+u10OV\nOrJm4yp1O7d7A16kUqcnStDdlZ94Xog4RKkrFuEtMu/G1cVNlHj+89UjTbASIY79+iyV1UpFa032\na0epe+1r1WcLByW2X7lS99a3Aued52U/GhFHqYsgdVR6AvCTunYAqQtT6miTXLSNrdRdcw3w9rer\n9FMgkf3aUep8pI6VPynzOnUe5pdcpa4WT6mjrky16n7wA+Dcc9VSuqGgDhukyCUldSElTXhZP8Cb\nY2iLtfQXhpsBuQt6Igkd41sfUdfSHFQCQo2TurJ7vNwSNtNYwo4d6vxRaU/az34rdfWiptRRSSOt\nnE7esGpSJ4RYH/2p0QYRd5oB1evAqbgDv4vv4vEVdRMgpW5hoXelrl8rShAmP/RenI/L8aMNHjNZ\nPPoFvs/sk4zUEXngA0kIqZuaUvfAa67xKw2JY+ri2K9sxtVoMlLnU+pY1hK9vmePfyCKEVPnOGpg\nbDb7MEDqpI7H1QUsExaq1BlI3TkXqFFPOOpAx1Xqdm1fRaLEn/0ZcPnl6pHAkyYCSpp0dvsMfxFi\nnswphJ+TAx6pO+ss9XjHHT3YfXHs13PPBS6/HJ8uvRNAcKLE9DSAv/gL4MorcfazbluV/UrjimGB\nhK7f6XoOxC5pwmNrSxMlpcwDaBX8pE5Uo5U6zl0SkzraYco+SGC/0lyC6ggCQIOROslWlACUIAwA\nT25TjWyGxNSZ7NcLLgAuu8y7B+ixnV3QM5TCNqKBkzqaqIWROp170LHRM4X7BinNMXXuRFQHHeOv\nPPPbOA9X4l+P/BAAYNGt+ThdZnU33cnhNJY68Yuzs2osoH3u5f4Yl9Q12wXgO99Rf/oMM2eITeqE\nEH8mhPhr9v+JQoinAewUQtwphDgo5OsjDcpwprGoVgPuxKn4Pn63MzBSTF0cUkedNG379ZhXHIQr\ncb5vVrvrOH+FdR6b0iEPvFEB9uvEhNf3X/c64BS22BztK13UkRdj2AfooLAlwnwCCyNJtWmDUrdj\nh//3QpQ6br/S4K27aYlAS2uxNXd9pC7Afg2rU2fqJC89K5rUmfZhbkcEqdMTJbhSNzsLnH++twG+\nH5r9qit1pRL8Sp2UvnG0WAwmdUcfDRx7rHr97qTr2sSxXycngfPPx662uskQqaNz0IaAREH17UIB\nOO887Bg/PPEyYURiWXH78OskTvZrAqWuPF7qZPG2RQnFYrflF6bUmUhdbPuVdpiCwXqwX5daTGUx\nKHVUNejYY9XEc9+KanirFmy/mhIlpqaAiy7yVLDIfYwidTGVug6p0+Qp/nWd1JGKmRqpCwgApYmo\nDjrG88tl/CvOw7NecIj6v6o+PDvBJqkua57GUie0gg5h4kkDR4j96iN1TajySq98ZQ8byRZJlLqL\nAB87+EcA81CrSMwCuKSP7RoqcKVOSv/gSwNjEqWOF+tMY5kwAIAQKFXcmTi7Frce6VVYr6OCFitl\nWJfM5iMEKHWmQZFAFzgNwH1R6liQvk9gYSSpPsNIHd2R3KXavPz6eNmvfEYeFSYTCNPNKob9mlSp\nI39CNBooFtU4Rv0qSKlrt4G5ncx+TarUmRBTqSsWoXytDRvU+Xn00S5SRz+l26+zs13ObXxE2a/M\nz6KP6vZr211Fkff/YjF5TB3n+STGhN60+qDUcVJXmSh2xq4gpS4uqUucYETHmwiLHhQW8hVSb5bY\nRLU+3q3UEcpl1V/o/DTryexX/jtAjH2kA9MvUqdlQRQK3k/om0id1AUw2iiljnDSSepxfoWROhqP\n166FLBQwjjq2bXHoJQDe2JGqUtfvovMpIgmpOxxq9QgIIWYBvBLAe6SU/wzg7wC8pv/NGw5wUqdz\ngrikjt/UeLZYP+3XtmCnu1QylujYNXEYqm7A6hj8G+QZfh30QOroAo9N6uIodYzU+e7F7M7jI3V0\nkInUubFScbNfuRXW8yBpInUx7Fdep64r+9VESql4V6PR+XlOgnhTCDt3+suYyKi1X/VlwkwIIHVG\npU4Iz4LdvNlH6gqFYKVudtb3tWTQ20/7t6wtMcc+qtuvrYKZ1CWNqaPvAd4YEFup67GkyUrbe788\nwZQ6jdQVainbrzqpS6DUTU2p3eyoigBq491KHW/vGWd456fVI6mLRVzbbe/67Jf9aggko7YFKXX6\nIhZ9A+28JsvRRFRHEKmjmLo14w1f321Pqi+UHbUDqSh1jNTVCqNP6goA6AicAUAC+Kn7/1OAGzm8\nH6IfpI6PNXTv6Jf9SkpdtTTjvVEuG0nd0hJwD5hXytAvUpeKUrda+/VAt/v2oNSlRup6yX4NUerQ\naGBiXPlOZD8FKXVbtqiQgQ76odTFtF87XyfJ7aabApU6E6nTnNv40NM1TfYr/AWoOyEE7jmQhaLv\ndUD1myQxdbwKDH2FN8eIPhQfptISgF+pCyJ1qduvulIXs/jw2JhG6sYYgdLYRankV+pkXR3HmRl0\nwUS8CbH2kZ+HIIIdU6nrhMWsrHSpTdQ2nTcSyUtdqdP2jSaiOvRjfOKJ6pGupZmxhi90QE6pi2oa\nql/Q/vVVqWP2a63YrcwPA5KQuocB/J77/BwAt0gpqXscDBjWZNlPQKRu1y5vMKNO3GYxdVIqDpHE\nfu1nnbrOotwAUCoZq9YvLQE/x/ONv2UidR+9xMHOnd2fjaPUkVXSbgeEY1xxBfCnfxrubxqUOm6/\nynHvRtVYE2K/cqXOxASuvBIf23E+BNpdpK7nmW+E/dou9lCnztRJxsbUF6TE1Lh3oAsF/wSCY8sW\nNREhGJW6sOLDJiRJlAB8yRLFIvAmXIHLcT7KhZavIk2t5q31Oj6ulgd79rPVJOvBB81NMSJoXSuN\n1PFyfMSXSamj4t2h9mtCpY6QWKl75BGVok1p+VFKHSd1k36ljsfUFevJlLrE9itdULpSF6JicTFV\nV+oaxYmO+yANSt1JJwHFivrtxflkxYf57/CmGkHj2MREIMH+8r+UceON5q9zMiZRQL081f0Ga5tO\n6oISJdpt4MILga98JaTtcUDXDw8KRTylbmbGKw/jI3UsdEDMmEndqpS6EPu1uh8odZ8A8A4hxByA\nNwL4Z/bemQDu7WfDhglcqaM+SLMQrtQBKgQiLqnrd6LEctFP6kxV65eWgM/gbQCAa/E632+ZSN3t\ntzTx/e+r58ydCiV1Rx+tHp/3vJBZlpQqteyrXzUXg6P8eF2pY/YrADTL3o2sMcuyX+kgb9umHjdu\n7BAf4+jwD/+As+evxHF4EI6TjVI3vxgdUxen+DCXwtaMewd6YiL4+G/f7id1iFOnjrMdE445Rp23\no47q1IJ4GM8NVupOOUUdm4cfxris4oO4BOfjSjwPvzJWpKFBXgjg1FPVc+IzsRBUWI3S7dwMPL6b\n1Of3YB3mS+uxcpBa5f244/z747NfY8TU+Y6D/6NmmEjdF78IfPObwK9+pf6PUupa3vtcqZOaUldq\n9KbUpWm/8rBBXambWxrv1EATBqWuVAIOPVL9thMz+7WnmDoidePj5irBAO78RQlf+pL56/o406iY\nLdhjjlHt37TJ//mgmLqHHlKJ6h/9aEjb44CfJ3au4sTUHXaYOr5TU954Nl3x26+FaXVOp+C3X1el\n1IXZr2LESZ2U8usAXgHgowDOlFL+J3t7B4DL+ty2oYHJfg0idQCwNmKZsCD7dbXLhC2LePbrr3AC\nTph9Gn+E/9d5XQgzqSuhiX371HNeFymM1J1xhlKC/v7vQy5IXpTLpBKRb6gnSjD7FQActhCzM2uw\nX+l7hx3m3aVM7Nk9EWU46dqv7E7ZLLiva8uEhWa/mkhdudz5jZkx70CPjwffjJaWNPs1KqYujlL3\nuc8BTz2lUg7f/nZc+pYn8S38YbBSVy4Dhx4KADio9gQOhSpGOy1WfIkSFN/IlQkSXhMVWqV95LOq\nVkutbAEAL3uZb7c5qWtgDOed9hDW3XcDnngCePOb/fsTmP0qJdBqGUmdfhgTZ7/qa1dFKHX1hvDi\naaeYUlc0k7o4Sh2/v/dkv/IyGSGkjn9EV+qWnLHOagWmmDoAOPK56kkZ8YoP92S/0kEJUeocWmOt\nxQAAIABJREFUlI3jSbvdPc44Y2ZS9/3vA48+6ilzhCD7VU827hn8+mcHKyr7FfBUutlZjdQxy5oI\nOZ2jVJQ6x+nIviMfUyeEeAWAX0gpPyml1AXijwNIK/wy95idVX14cREdgkMd1kjqCoOxX/cJs1Kn\nkzoAqG84BA1We2tmxkzqynA6gwEndaaYFI7nPEcp9IGkjke500HloCs6xH4FgAarveWsYSUV9Rvc\n4Yd7A62JGLkjXxGtzGLqWsJsv4YqdaZOwqQwTurClLqlJV2pS1h82IRSCThElS2AEJibPExvHgBN\noXJH++fuuR1lqO1NiqpRqeOB4XrtyFig/eE1hX75S7WBww/vEEy+m1ydbsysh5iewuGH+wut+uzX\nRkP9gBC+u1EqSp2+rEZU9mvNq+o/NhkcU1d2Msp+pXouUQow/OdEV+qWmp5SZ4qpA4CjjlVPSkgx\nUSKG/eqgbIw2MQ1JToBSNzGhQoR1IhWk1NH2eirey8FJXQ9KHeAndZMlv1KHAFKXVvZrddSVOgDX\nAzg+4L1j3ff3Swjh3USeeUY9Tkyovs1j6ghrpLYsVb2eif1Ka70CCI2pA/wLAQD+i42jhKaR1IUp\ndRyBFyRbzD2U1IUkSgBA3V36aBHT/rsQT0gAopU6Ruqysl/bBlK3WqVuuuIndWFKnY/UtWNkv0Yl\nSmjg92qjUgd0Rvvj5jySPyFqofYr0COpM9mvNLmg7AuY7Vegu0sRfEoddRYuYcUkdYmVOp3URSl1\ndW/9TR5TJ12ljoLzidQlzX5NrNQBwN693g/pSxIwcD4RqtRVzErdEceo10to+opbmz4LBNuvofsY\nw35tohQ2p/TBGQ9fH0snUkGkjrZnyLlIhhD7NUqpO/xw9dhF6nhyifubFbcqQ9rZr/sDqQu+ooAx\nAKvpDkMPuonQcoXUB3WlrgQHk3JFjdikjy8sGO/rjUZ/7df5NlPqAuxXImgDJ3WrUOp8pM6tvTWH\nDf6bpInUBSl1bL3b1JU6duPtKHWa/Zp07dcgUsfvLSalLtJ+DSs+HAOmpWK7vu6SumN3eiR/qlD1\n2a99I3WmFehpckFJG/BzV07qgjiTL6aObuyVSiSp0w9jIqWu0fDiRaMa6KJW80hdoVJCW3gxdTxR\nYqy5HPhzfY2pAzxvPcR6BfznRCd1C/Xxzn6ZYuoAZTcDSgWanjbzx7BEiVj7GNN+NSl1pjGmGWC/\nEpIqdUHbiY0Q+7UXpW6iOACljmW/DiupCx19hRCbABzJXnqREEK/XU8AuABAL0tojwx0pY76oFP1\nk7o1cAnKmjXKL9qzxyV1XkUYuqcsLvoTMVdrv8634iVKAN3xGGvWJLNfV0Xqtm9XmXuEKKWOp89q\n9ivZLl2kjt+RhFC2YJBSx0Y9InVZ1KlrUUydIfuVksu6SJ1JJWOsqVelTiSJqVulUmeyXw/a5y3m\nOgGz/cpJnb7KS6IGcfuVSN3/z96Xx0tWVed+p+aqO3Xfvj3Q3dyGViZlngnghIBDRBBMMEoMoj4f\nOMT4jAMxaBKjEhVf4hCNitPPKRoTeY4YZRYkoMwCMvRA03Pfueba74991jlr77PPWKfq3tvc9fvd\nX92qOlW1zzl7r/3t71trbQNTR1JfJiO7oB9Tp8ivnKmjE02bqWs25epSz+IO2yas7o4XZLMS1AmX\nqXNAXbvH2a9+TF2AcTxRLAJTDNRN1YssUcLM1NE/ObR8fVdQTF3oOQrhOo1SSb141IEQE9Rxpo7u\nNUOjOpDyi6njvzczEx4642sB8mvJwNTx+cII6jJ1oM7Uij4zdXxhkHjXoHmwsCX16yELCwv771+g\nMnbCft4C7JTJZ6jpTB0Fodc0pm4ZWFQ39UqNqaPVP/kzsm7l130+oG7BMXW33qoeFATqHn1UBpCc\nZ2fqavIrVcnfhZXK/qHKDHzAAW49DMDL1DEv2M+YOgcI2BNAGxk0kVeYumaT3Zd6Xd0klYwxdQP5\n6DF1o3Hk114xdaTLMCtbNeRy8lTbbXf/3dTl14kJ+Tc6qqSzcjBqWXK8zszElF952QcN1NH/iZm6\nVsuVXo88UsYFAqFsF2fqkM3KmnsdL6grYw65nP/6gb6Lnqciv4a0nXe9Ugl4mm1vyJk6v0QJej0q\nqIstv158MfBdO/FMZ+pGR52OGkd+bZXthk5OAiecAKxdK/cmtU0HnhzU0e6EgOruuoqr8wF1NZQw\nZLh9dK9qNTOoK2YaQM3uZPMQU8dB3X7D1AH4CmSBYQvALyGB24PaMXUAjwghnrF16gCz/FooeGPq\nnHImAaCOJgfyZ9ms7HtJQF271sRy7EMHFrY1WUkPA6hrt4GHHpL/H3aY+j1+TF1PQJ0uG5lAHXko\nKkR27bXyMZtFk33X0wedhhWDh+L7Mxfi5X5MHQEHcrT6hdZAXS9j6kSx5KyaHPm1UgH++I/xw/8e\nBqqWQvIALFaSp6/lcmpKoH2hK3lVfg1i6saY/GpFAXUJmbooiRLcyqg6cU+zs26pwdTlV7Jjj1XA\nsn6aBOr81M1XvhJ47P48sA0qU2cAdbRFGP9+slhMHYG6o48GTj1V1q1YuzbgC+Tk+j1chIPXNrDi\nqKOcQsoE6qbtSa6COd9zXShMHZ+QJ6pF/AAX4ITVW1E/5mRje+mfseEmLrrI/BtdlTT57/+Wj8PD\nskPwPafHxpyOGoepaxOoe+wx4Le/9dTv0XEw1Tym2o76rixAl6CO+zN2sfxi6gCJdbdulYlzgHTr\nTxOosxpAPeM2XmPqaAroVZ26/RLUCSE2AdgEAJZlvRDA3UKIbhOf90vzY+r0mLokoG7FCrltU5KV\nSGViG7LoYCvWKfshIp/3JErce6/EBc96llrjiLL8/ORXGhepgTp9dAYxdbpp8uuewQ24/EUP44c/\nBM7zi6kj4LAAmLpOsQxqZsuyX7cs4Lrr8L/XAKhCYeoAoIoKmvky8rWqezNHRlwKi6GmgVzC7Fdd\npgBUh8gTJWIydYGJEuTtmVGMKIE6mh9TY+r0GVtjC3VCkph1P6bu8ssBrMoBr4bK1BF600AdWVfZ\nrwTqxscjFyCr14GP4b049O/fizcMy1g6QII6HlNXwZyvkpt6TF1Epi4oUWJftYTv4nIc/cHL8QJt\n3yMd1J15Wgtn/qP5N/j9iC2/0hubNkk08vGPu+9RZ0U8UNchUPfkk/Kx0XCrcGttpO5Wqch7Mzfn\n9tdeM3V+2a+AuxYnGxkBNtnzTAENONuW94qp0/0ai6lbrKAuTp26G5cAnb+FM3VSwXZA3bJlkeVX\nkkKTMHUjE7JW1WaMu8HagDGmjseE6w6hXPZn6siSgDqaHFIDdZr86lsRwQTq/BIlNFBXq6m7SKQJ\n6lo5VqdOW3PRNdKZOoDta8tBHRln6nIqU0cSol0uzbHpaTVRIhJTF6H0BLdITN3goCfAs2xVnfYD\nLrHLT3lwUH7n7GzwhiTGBumIRWML9dMMA3UA3Fk/JPvVF9wiZvYrB3URTd8iVtgnKHKq/BqXqYsl\nvzab6rnEBHXZLJS2AsBcp+h8hd41dfk1qJFdya/6WOdfwEBdHPm1rYM6QHFM/JLRz1Ff5d+XGlMX\nIL/6MXW6cflVgjpWVboXMXX7IVMXp05dwbKsqyzL+r1lWXOWZbW1v0V02ukbjUuetS47m4W2fZmz\naMdi6iiutitQNymdexCoow5LCadnnKH6HAo3CwN1tBsV0COmjkfwRmTqOKhTws34rKQzdSHy6969\nvm/HMwOo48WSdVDH98vWJ6fa0Er1hWEWP8mosHJWZero+wD1HuhMXSaO/JomUwd4gElZVJX2m+RX\nXmYoMlvnk72n/75+mjRRBiaX0j3m2a900s2m83Yipk7fZ09n6iKaZ4tYW35F1gvqwpg6Os3Y8quO\nwMkJxpBf9+zR9n61kyS44q23N0oju5Jf9bHOb3QMpo67QNrgXgF1DJXxn+gLqAuQX0MwuWMc1OWF\nuvcrZ+p4CHSvdpSYFYsT1EXzvtL+CTKm7icA/gMylm7JbFupzanE1AGSrcuigww6sUAdDTy+8T0P\ncI1iI1M+oE4raSKEmujH5UWaf8JAHTEu1WpKoG54WAI6Wq0ND7txY/PI1OkgoWegzlI9YRBT1xhy\nJwbk8673pvpexNRl3WFbZrHj9bqdKW2/5sl+FeknSvDD+Uc8RN+GDcDvfuc85fIrYJZfATlXbtsm\nQZ1BxfVvUDYrLwqdX6+Yupjyq++kpSMJDuoMiSZ+pjN1TgMSMHWUjBlbftUHU4JEiR07gBbyaCKH\nPFrOvryUXGNqrzFrDD7HImbxYdOuGD5MXRN5J5KB/x5dllWrXBcoBm2ER6saQEFlUZm6fsivSZi6\nTLMBtOwxwgKAC2h4hAggJaauWpVflM2i1nEbvb+CuosAXCWE+HCvGrOYjY1LAGoQehtZ5NHCc/EA\nTsKd8kUO6iYmkGcKE699RYdSskSrFerfFBud9mfqyMEJISuIbN8uwemhhwL33OMeWizK94/xianb\niMcwiwHk82tQLKYI6oaGVOl1eNitGeMD6oRWp25uTtkW1jVTooTO1G3eLCdeDdRRqBr/jUgmBHDH\nHcCuXXJ3AhOoy5rlV74lrRHUDbMOyEsmaMwAZ+r8VrpCeOvU9SJRgh9OuLPRCGfqSlDlV2JO+Y4S\ngDsmd+6UmPCoo0Ka5ocyNWBkSpQAYoI6Pss1m8iVvS9Hzn41gTraIqwbpi7nyq9xY+r481jya0JQ\nx/HEzp32V6GCEUwpTJ2v/BoB1AXF1AWeo97RgUD5FZBAa3BQ3pP77nPB1qpVMi8CADoDBifrw9TR\n/z1j6u65xx2IBvk1CVOnTApMfs2jqbj/VLNfab6pVNDuuOzJYgJ1cYoPDwL4da8asthtlRaAOzDg\ndjZKlvgtjscl+IZ8cXQ0lKkjGxz0T8wMs+UzEtRtwgYPqGMPyvaWluWVX/1KmgxjCr/DsfgFXoxc\nzo2r8yPSdAtl6pQfY899fmC25i+/Kg49k3E9nClRotMBTjxRZg6yOBUTUzcbdYO8m24CTjtNll85\n/njprQHFAdIOGADQFO4M2W5LsJXJyPPQGQdlX1tKc+PfbV/oUsYrv+orXTr9YpbJryamLsXiw6yJ\n3o/boKpu97+SUJk6MhNTBwBXXQUcdxzwzW9GbJB+ge3twcj00yRJjMeUekzXJbWYOrpd/JwSM3U7\nd8rfGR72jqEA05k6ywZ1Vj4+U8efx5JfdVDHgUKA8Vu30a6sSlnhzk4YQfJrBLonMVNnKl0UIL8C\nbjf58IeBk05y+64yz4SAuiCmjvssDuoS7f96//0yQ/zSS90fti9IO5NDG7nITN3oqM8OOUx+LaCh\nhNmmWqeOgzotD2yxWBym7joAz4MsbbJkmq1fLyePu+6STv51r3Oz2NtwvfNeLId4ycuw4uKLgRtu\nkC9Wq8ZECbIDDrDT9OckqIvKggHA2KybKLEKO903qC6TXfmC2CeqeqCDug99CLjj3gKIaCRbhZ0Y\nwgwOwpPI5YCPflSuJEOqJyjfDaQH6urNjFJz1TemDgA+8QnpBKnUOkfO1apk1ABwao6DupERKVNH\nZuoefdT8nN38RoaBOia/8ng6wDvhWyt9mDoNMZlAnX4PaF6oFNuAfW6hMXVdbhPG2+H5+Gtfi//5\n5sP4+d1jeD8+gpJQmToyP1B3xx3yUav4ENwgHn+goUe93e96l/ytc88N+G6dqigUXI2y2cThhwPv\nfrdcVJFFjqnT3yAgFHVlZRsPXwKAA9Znge3A+Mb4MXX8eVfyK42RNWsCP8YXCF/+sgRDN279GB79\nyaN4Gmud97ph6hLH1JlAXQSmDnBrsN91l3xUQJ1pIgiJqaOFR6ry6733ykc6T3bTW7kS0IiuLh15\nJHDxJQXg63D3SaYTsL/kzFOaOPMq9zN6GFGc8CTl++t1d9w/Q0DdvwD4mmVZHQA/BuCpSyeEeDyt\nhi1G++AH1ec8po7sdpyKZ//fb2DFWrjeUwN1ph2sElHMQmBszpVfl4NVM9aYOlq50e/ooG7dOuBV\nF3tB3RDk0q6COeSyAq97XZwRFUF+5cYnKZ8Jqy1Urx24H/hb3qI+50wdX76yunlcfj3ggJigjgMF\n/px537rF5FfG1PF4OsB7LsV10Zi6ouWVX/UJiRx7qdBxQF0vYup0pk7HoY6tWYMfv/IL+O3dP5Dt\n0hIlyPQuoce56pffY6b2G8CEjl1POUX+BZp+Uvm8AuosC7j66uCPRGbqiG4J1IO9xhMNAWBwWJ5g\nebA7pi6W/KrT3rSwCpGR+a1bvx74wheAa699LT70E/eYSIkSEUFdLPk1DNSxjqozddRniVCKA+pM\nxGBP5FeS+skUUFcGGt7r5WeWBbzj3QzU0bVjTN1Lz2oAL1U/k8+7idNRfwtAMKjT1qyLxeLIr78G\ncAiADwK4A8Cjhr8lY8Zj6sh2Y8yN/WGFgvgA1B0m35Y0lvw6MYFKewbTGMQElgXKr3qojykewzRa\nCNRlIFCy4ufOxGLqOMjz0bpaBlBnjKkzGb/IfPkaAOroNyKZH6jj8mvGLL+GMXXlAzWmjjpRF0xd\nucDlV0OdOt3TUSMTlDTh7TB9PJt1sxiLBvm1WPSyJ3qcayioMzGNdJMD2h3J9IO1vV9NlpipSwjq\ndKaOJ0pks1IWayODApoYKJgbk7r8ShYC6kyJ17ofNYE6Z+j1W34NSJQAvKCOTFmoJGDqepIoQUk5\nZOymN+xg0Thx4IpD4oGeAfeI3oodV0eTA12gZ5j8+gbIbcGWLKLpMXWABHUOo8BKelOn1GJMAciQ\nokSgbrPL0gGWJ/sVcP22Dup0pk79xzUCdQBQ6swB8FnC+xh9pXJeUeRXH6qgJVSvPTsbo3xaRKaO\n5NdegLoau378foUxdYMHRUuUoBpPdBg/RGfqVFAXElMHuDcxQUkT1kTjx7NZdwurokF+NRG3sUGd\nqaMY4ghiluOTpg/qfN6dUCKCuthMXWCNFa/pTJ2e/QpYqFoVDIoZDOWqALwztX6aiRMlRkeh1A4K\nyeI1gTod03Yrv/LPdi2/UmfP55XOq8uvep8dGXFJpcxw8pi6VJk6HdSxeFFK/IrFnnFQZ4ipMw2E\nQkGeU+y4Or02Jf1epYI2i53eL0GdEOIrPWzHfmkmpm4iO+Y6BIP8yuOnAXev+UTy62Y3SQJAIFPH\ny2cBPqDOEEjjBXWjnmOCLLH86hPUY2LqfGPqdOMDm3u6bducf6n4MNAFqKNSLQZQ5+xRCaDRicbU\nVSpAaX00+bVgeZk6fZWryK+2ZRAivwIuqOsBU5fJMFDX8cqvqYA6EzIwMHUxQwe93wmooM5nUCfO\nfu1SfvUraQJICXYQMxjOzgLwJmGkFlO3apUK6iIydfye6Kefpvwaq/hwEFNXqShB1GFMXaUi3WK9\nDlhD6TB1qYM6dtOb2QRMHa9Ibyg+3FOmjmwRM3Vx5Ncli2mmmLq5CptpDPKrXk1hzRpVWnrgAeCf\n/slbSg1CAJ/5jBqMv8lNkgCCQZ3O1BkTtZiXaGbk/15QF8/oK//wB+BjH7PZ7zCmzrTktq3VUbt0\nYEydbrykSYD8SkYkTmRQR4VUCSiYmDrLLL8GMXVjY1B1mYBECc7U6fLrY4/JRBc63VI+hKnzA3Ws\nA19/PfCXfymTAB5+2PzxqExdkPw6H0xdv+XXXsfUeUqaUANYTctZIcMeBrPmTp+a/Lp6tfp6jJg6\nMp2oDGTqYsqvsbYJCwN1JS8778fUDQy4qqs1aAhB0Zi6I/Ag3oWPo5xrOj8HpCi/CmGOqbMvCGXz\nJ2bqDMWH/Zg6oAumTm+gD6i7/XbgiiuA738/5u/00SK7JcuyvhxyiBBCXNZle/YrMzF1ykxjkF91\npk6vi3vllcDjj8u0/QsvZD/2y18Cb30rcNZZwC9+IV+zGaansA5APFCXybjBpyZQV8tUkO80UgN1\n//Zv8nHHDuCTfkzd6Ki8ZpStarBmx8vU+W2Q7jE/po4xBiZQV63KBV8oE0geeu1aiXB4IVrbqoI5\neENMHR3Kf2vlSrjbjtB5+DF1wl9+/ehHZbmp006zv4Yxddkgpo6KKBpA3etf74LErVuBb33L/bg+\nERMu5afi/H7Wy9SFya/r17u7oXBi1NdMoO5FL/Icloip01PaOW3kMxN1zdQllF9NTB0NjVk7WWI4\nY67jk1qdOp4RkMmEptNHkV8XFFO3YoV0TGvWOI9zO6ZQFbLR1arsjvoOiZWKvBRPPgmsWJ2TN8sH\nlWUywN/jb3Ehvo+r9x4G4BXpM3WTk946KGwSa2TcGoGRjSaFarX3TB2NeX2sDA4aQd1vfgN89rPy\nf2X+XUAWZ635Inhj6kYBDAGYsP8CzbKscwG8B8BzACwHsAvAbQA+KIR4kB23HHIHi/MBlCGTNN4p\nhLgvRnvn3UwxdW/7kBb7BChMXRioo0XRTladBIA7c956q7upsz1yZyCXdnFi6ug3/UBd1apgCBOo\nwPUIhVZyUEd2//0ASgGJEtdf70yQL1j1IPI7t+J7a96Kke2PyHM0gDq6zImZOmYc3IyPy4mDfI8+\nb3uMUIUu6XFQ1y6gAwsZCNSFN6bOJFGOjcGNzZmcNMfU2c/zwp+po32LqUJBKeeeaxZttNvaNeTx\nKHNzbiPtg9pttdi9XrRZB0ef/7y8/4cfDo9xUFfoeJk6vfAwIK/LDTfIye3UU12i1Nc4MnjsMeCh\nh4DnP99zWKKYurVr5QROF6RQcH9vATB1nY5X4uegbp1cF2LKllyHhBkhp8bUcVC3bl3kOnVhoG7B\nxNStXg387GfuVic//jH+/GVzaG6XF79aNdeMq1SAr35VCjLj45C0HfdV2ofWWDsAAayrPeZ8HkiR\nqdOlV0BB8pT4lYipo0YuX67uJZgmU+cnv65fbwR1CXbf67vFiak7yPS6ZVnPA/CvAF4b4WtGAdwF\n4LOQgG4cwHsB3G5Z1lFCiE2WZVmQNfEOAvA2APsAvA/AryzLOlYIsTVqm+fbTEzdhhOCmTpdfqX4\nYAcg2h3NwzrQC7UacPfdchazRyvJVnFi6vj/JlA3J7wIptSOWoXX+xtka9cC2OED6vJ54PTTnacP\n4QjsxBGodoogoqbVlkvxoSHp3+bmzOyW0fwSJZjpoK5SkYfOzaUD6uoNC1WUMYA5NA0xdb7yK/1D\noM4n+9UE6ug7iZCkqhLFvArq7N1zXCNPRwsIjanbuxdKzUB9wtAn4oMOkn8m4/JroR2NqQMk60hj\nZnoaXmDKjaO1jRvdKrY+h8WSXy1Lbqr8ve/J5/m8sk2YyRJnv9JkGIOp49KrU+eLgTqaxCYg0fNw\nJzqoSxxTRxaSJMF34eLXzCS/plV8uGv5FQDOPtv9/7jj8GvWtlrNzCxXKsCzny3/AEhQx6uha4Ns\nxJoEBLCqttn5PJAiU+cH6kh+tRLE1OkHk4PrJVOn39Dx8UUL6rqOqRNC3ATgGsg6dmHHfksI8W4h\nxPeEEDcKIb4O4FWQbN9F9mHnATgdwCX28T+1X8sA+Otu29tPM8XUKfJrhEQJnakj8wV1gLuJqz1a\nieGII7/y3zSBulnhZQHSYOrWroV/TJ12MA3g2ZbrvRs2U0cfjRVTpxcfNhjtdZvLSWxmcpK+FgHU\nNRoueOGJEqFMHf+HB2Fq8muu479NmNB4+GJOlV8Vh9npuKtcfQVtN07feUOfMOIwXib5NSymjn+W\nlPzAivkR0Voi+RWQoI4sQkxd4jp1ZDGYOk88HWAEdZP28mmwHR/UxZJfKc0TCJ1BqRtalgraFrT8\najB+f6tVf1CnGHVsilnQQZ291/hYtUegTo+nA5RJjOpuxmLqslmzg+tlTJ2hjpgJ1CXYfa/vllai\nxOMAjkv4WRJlaDicB2CbEOJXdIAQYhKSvXtl4hbOgzljmJe45vub8ESJnHA+0zWou+UW53sBH1Bn\n/0hSUDfT8dJSaYC6chn+2a+aU6TDphvuxWm2pTOgST5WnTrO1IXIr+vXy++LDOqEiMbU1d37Ve+4\nr0dm6ug8fGLqOKjTmTrdikx+zaCj+lLTPqkaU0egjmLew5i6IONMXb5dA4SIDOr4+4FxdRHRWiL5\nFQDOPNP9nw/0tOVXshigzhNPxxuQy2HZMjkck4C6RPJrpeJmBCRIkgDMdep6taNE4DnqWU4+lgjU\n0TUiilsbZMO2TL5iZpPy+SD5VV/cBRpRV3wrPYbka0mYOkCdGHrJ1PnJrxs2PHOZOsuycgD+AkBk\nWdSyrKxlWQXLsg4B8HkA2wFQCPVzAdxv+NgDAMYty4qxSdb8GvVLWi0BUD0DebxOBwWrqbxERp1H\nBz+BoO7WW2VntZdgUeTX+Exdb0BdqwU1uMdYW0UaDeCJOmPqbPm1UpEOvNVynVbkkiYBTB2BOrov\nkUFdtSobUyp5A8A0UOfcL0P2a2ymTpNfs21/pk63ohJT10Gjzrw9B0DUGK2kCYG6gw+Wj35MXVRQ\n10YOTeSQRUfZLxVICdRFRGuJ5FcAOPpo9//du3tXfJgsgfzqB+osS/Z5AnUDrR7LrzFAnd/iwFSn\nTt9CyvkMnStnoOFzLMxlB4EQ+TWEruKAhMuvPHEoFqjrdDAkZKbF8mkzU9duy9+l/b6FiJHND7go\n5/jj3dfYJFZFAqZO/0A/mDq9gQce6AF19boMic1mo2+DOR8WGdRZlvVLw98tALYB+DMAH4/xu3cA\nqAN4BMDRAF4khKDQ/1GA72flGKUgGlMfLcu6we8vRrtSNRroy4TpdGyzvShtfZQKU7dnD/D733vk\nV2ejZMAZdOTLYsfUwQvq8imAumYTKi3FPTO7MEIwpq7JQF0r6xxKDowkt8TFh5ll0cY5+Bn+5dGX\nADt2+II6IYA//3NZfgaAe39GRsyZkNT+BmPq2gli6ug8fJg6q9lwrnkYU5fPqZNbo8aec2SjgzqN\nqfMhEWLJmATInTp+tVospo5wdCRQ54PW3vEO4P3v70J+5d97113dya9vfSt2X/4BnHMWnw73AAAg\nAElEQVQO8OiD9uf1VUsCps5PfgVUUFdpTsqM+/PPd7fyMrQ5sfyaAqgzMXWAet+cz1iW++SGG4Bz\nzpFlBpixCi++O1M45ygEcNllwEc+0rX8ytcCsUDdzAwydm7j0NxOoFr1+CvO0JIwEkuCJVB3wgnu\na5ypQwpMHaXFx2DqrrsOeOlLvSEgHjMxdaOjwOCgZ2trSiQjlWahWhymLgPA0v6mAfwHgLOEEP8W\n47suAXAqJBicAnC9ZVkHxfj8ojCnkC/VBjOtnG3HO76qhlIJOOII+bmhIdlRSa3VQZ0nk49eIMf0\nyCM9lV95kVznKxs9AHX8mrGD+YCrg8uvGeej5MDISYUORJoE5+YC5ddLcS2OfvpnwPXXO7+hb1m5\nZQvw9a+z/Tw5qNO3ONOYuvtwFKooYVvhIOf1IKbOKVF34ony8bnPlSmkmYzsUPyDjQaOOkomFBLQ\n8WXqsmoZk0bVoEeYQJ3G1B14oJwzqUwDWVymDmA7blSrfZVf9+4F/vmf5RydWH4F5E7zgESHSZm6\nPXuAz3wGI1/8BK6/HrjtRvsNfcaPwdQZ5dfnPEc+HnYYABXUlRuTsi7mf/0X8JWvOB8Jkl9pw/VA\n46Du6KNlg44Ljuzxu23ZrAomTAlTSnvpyVe/KrPs//3fPecCmOuee+TXp58Gvvxl4JprIoG6dlsl\nCDlTd+ihMmfn0EMNX0GIj6R9jsj0SWLrVl9QVy67+DAyqGu37XIFkIl5ZPm803f+UDoSQP+Zui98\nAfjpT+W6I9D0HSUAZxGhM3WLIZ4OiJf9+oK0flQI8ZD97x2WZf0EwJOQWbBvgWTpTGwcBaMZaa+g\n9p144onzsr2ZZwCa6qvZM9PKwSq2bZMB/pYlS8xls65cEFl+XbNGLimqVY/82kHWKZcRR351+nsP\nmDrdQbZaUGNQfJg6Pg/yrbXqNlOXy7lzHE0koZMwebXZ2UCmLg/7x+fmfJk6+vjevXbGJTnYEKau\nXgcuwdcxjCmcmnX7S1CdOoepu/hi4MUvdl/YudNdFTCHeMst8vvo3vsydVmVqWvWQkAd3TeNqVu1\nSl7a6Wk5YRDAisN4OYwyLSaq1b7Kr3xzgzixgB573/uAN71JInFC/HFj6uwLS1J6u8ZAHZ+Ru02U\neOc7Jd1s96fxceBBG9SVahMuQ3fzzbK6NMygzrLcUobtdsh146Du61+XN2w0eJeaoMVBuexeXno/\nFNRRcTgtszMI1HnwOckDtVokUKfjFM7ULVsG3HefDyC+6ipZn5TuNb//emffvBkDBx0CwL3M5KcS\ngbr775fXasMG4Jhj3NdzOeDVrwZ27cJ1r5B9p98xdeRuQ6VkH1AnhAqyW63FEU8HLIAdJYQQEwD+\nAICStB+AjKvT7TkANgshkmxkMi/mWZ2YQB3LgKVyPIAcYPqG5dx8QR3fu4rJr/RdDlungTpTaEFs\n+bUXTB2/COxg7gQ5U0fZr5ypIwuNqeNeLQDUOWVNAkAdrYA7HdvBRJRf63UJviewXPFdkWLq9CdU\n4JR/sNFQpBb+lm4FjakzgroIMXVjY+YJoyumLqb8GgvUGRrEa+zF3A1NNcuKJCeZmuEcZl/YTKcN\nCx20CNTpIK7bRAnLUvrThg0uU1esT7o3mGJ4IccYj1vTFw6hMU80kAYG5AUOAXRAMMg2rQmN8is/\ngACZD6gzjReP/EodvV6PBOr0Pb2rVReYkMvQCX4A7j2qVLx0uAHUBcmvsUEdVVk480z1PpGjHRvz\n+K3I1iVTR6ceCupM8uuGDZ6wyv0W1FmWdZRlWd+zLGuXZVkt+/G7lmUdlbQBlmWtBnA4gMfsl34I\nYJ1lWc9nxwwDeIX93qKxOEydn9xHFhvUzc4qdepoMDugTis+TBZVfjWBumyv5dcITB2Vj8nnvU4w\nMlM3MxMov1JZkyBQx5307t2IFVNHxs9Rnxf8Eqp9LcAh+jN1AaAuRvarH6hLk6kzFR/m1q38ymNz\nCO93HVcTUX4lF6EzdQCQRxOdWvfyq5Gp02x83K1TV6gyULd3r4zhtU3PBeOPoaCO4hhCiz66FgTq\n+CWIzNT5gDq6H5HkV+rojUYipo7Lr2ELFgDSIXClAfB29k2bPOEinKmLHVNHVRbOOEM9NxaLEjGc\n0GtdMnWRQZ0PU9dWXZ8C6kLKJs67RRYQLMs6CcCNAKqQ4Go7gDWQYOvllmU9TwhxV8h3/ADA3QDu\nhYylOxTAOyHLmXzCPuyHkDtIfMOyrHfDLT5sAbha/86FbJ7ViWn2ZUxdkOmOZHpa25qqS6bO1Oa4\noC6XAqhTsl8TMHVU6JnLr2SRYuosS3pUH8+mgLrZWQc4+jF1gJz7DuNaSghTR8bjBvUVL6+3Fslh\nRljl6hZbftVAHalzYaAuDlPHQV2ZbXcblakL3FUiQH7loI7ubSL5lVtEUDc05BIwnQ6QYY0poKHK\nr9y6Zeo04zF1hdl9Kn15881OHFUu55U8IydLcPk1ogUtDugSZDKur/Rl6ugJdVKtBlss+ZV3dMN2\ngLqZ5FeySKAOUGMchocjMXX0O7GZOiFUpo7bPjdCatEwdfz3tN0kgP2XqfsIZKmRg4QQlwoh3ieE\nuBTAwfbrH4nwHbdDbv31VQA/AvBXkEDxWCHEIwAghOgA+GMA10PuPPEDAG0ALxRCbInR3nk3zxg2\ngbqITJ0+KIRwJ3bRasuRaFluUbC5OQiWKEGOKA6oC5JfTYkSuXp8UKfHiXTL1BGoM8mvoaCOr3Z9\n0qZSYepMVVENnwti6niMVySLyNRt2ABY6CCDNvKWxtTVbQfYaqnxc3pMXUz5NQ5Tl7r82my6nTAA\nZZpAXc+YuqZb3giQ/VhhgnSmrt69/BqFqVu71gV1pZ2b1aAjYm1gZur0U/Vl7Bio4xnuQRaFqeN9\n3Jep0+XXyUmlwySSX/n/CWPqYoE6/nv2FzyBg+TzzZuRz8vzaLXktaW+PFhsYnBAeJpOxocJALn5\n7LZtck7T9/VjK6f5YOo6HTcsUk9g85jJCa1dawR1iyVRIg6oOxXAR4QQSk12+/nHAJwW9gVCiI8J\nIU4QQiwTQlSEEIcJIf6XEOJJ7bi9Qog3CCFG7ePOEkLcE6OtC8I8g58AFze2VViQmZwtDfrXXyB7\nsBgacgc2Y+rauZI7HhIwdc6ADJNfE4A63YF0G1PH5dfYMXWAe/1YmQZufjF1uvPgGH3XLqgeOpdT\nL3QE+VVf8cYushmRqTvqSIHbcSpux6nI6aCuZke6H3OMuzqPkP3aK6aOJuxSKZwJMIK6qSnpoS+5\nRD6PyNTRUO0JU3fttZJlueUWpxn8/HRQV0DDBXUpZL8Ggbp83gV12ard4ekihIA6DkofeEAS1leb\ndBcCdeUyrrhC5n3pewbrFpYoQW0nC2XqCBEAMo1dezuS/Mqp9ASgLrb8CviCuvtgR0dtUgsQU+jw\nIKbxvf/ZgLfeIccBP31AdrcDDgAuv5y9eOut8vGMM7yOlYH9iHWXvcaDh/U0/RCmjhdQjiy/8nNY\nt84TY95sukwdbde7UC0OqAvLIJ2XDNOFbKefLmsy3nHZ52W5ife8x3tQQvkVcAf9A7fJf1oVFq81\nOwvL9tTtvAHURYipu/BC4NhjgRe+0H6BeUATqMskAHUvepH0C5Q8FSi/xmDqEsmvQCioW7uqjcM2\nukydn6wXyNQBauMiyK/6iveyy4CTTgI++9mQ8yGLyNQ9+4BZnIw7cRL+RylUDACteltmVj/4ILBj\nh3yRJ0oQsi2VUK/LeS2Xk6eszzc8uyxOnTrO1K1YIcukvfGN4Z83grp775XVRG+4QT6PKb92zdTR\noOb35I47nP2beUydEjOkMXWi0b38Sk0Iw4Hv/pC2ywsN3M0ucxfE1LVawJ13ysn2ppu0LxdCqbFx\n222ecD2jRUmU4O9Fjqmj87LtmGPkXsKvNexyvpCZun2rbCZtpywFSyXt7rtP/s5heBgr6k/jkL23\nO69zu+8+Caxvv529uG2bfDz0UPe1b35Tlp/5wAeU8wBiqenSyF+NjbkBxBGZOj7GI8uv2SzwlrfI\nSW/jRk+oHbGapZJ398qFZnHWmncAeL9lWb/gbJ1lWQMA3gMprS4Zs3XrZI1R4M32n8ESyK/Ll8uw\nBeq8uVn5T72yDHkaPXZcQw1FZPMZdyUZg6k7/3z555hlQRQKsBoNM1NXS1bS5OabgR/8AHjVq6LX\nqVOqr/skSug+NNIkTNHCNHGSVmHbn1zYBn7bkhvjzc05yoCu1uoxdUZQR0gwgvyqM3XLlwO/+U2E\n8yGjD+ppdlDv+ZqcAb1Qe2pt7wbePFGCJpNKxWFXyCfrQdh8gaxX+TeZiamzLNlvopix+DCdy+7d\n6q7wBnTAMX7qoI5fZ2pDo+E0o1wOZuocUKeDuBhMXdTYpyv/Ngt8fMgFPgccIPv05KTsz6OjofIr\n3QNfKdyu7ktdNWxiDoqpSyS/clmZ9feBAeC228xtCIypo8VOBFBH7oYzdWFJQI75gLrXf2Ac+Mus\npOAaDZxxRgH33ivJ1Y0bgTHI/lTJyUZQqBwZdTcFeNJv8DT617xG/hkOo6ZFNg7q9NdCmLpYoI4v\n5D73Oc/L+niIfC/m0eIwde+HLDWyybKsr1mW9THLsr4KWWPuSABX9qB9+78lkF+f9Sz5ODkpO1+x\nLntxrciYOntWraGkAJw4oM5kln2AKaYuUw0LYPA3ZaUbk6kzJUokiqkDvI5Rl8zbbXcWCQB1aTB1\nQTF1sS0iU7c6a9AZbWvVfUAd32IJACoVRXoFvJc17lZbJlAXx4xMHZ1LvS4n3n7Lr4Q4TPRso6HI\nrwpTxxBmHk2IZnpMXaSAdk4djY1BHwRh8qsvqNOyNahNUUFdVKYuVH7lZtqw3mC+2a/8/wigji5t\nKkwdLRqXLVPuEUVO3Hyz/B0CdQU0UC5LZpQvYgJBXQBaazZl185kYq0vpJlAXS+YOpP8CtUV8G4R\n+V7Mo0UGdUKI30DG1f0SwLmQSQ4vAfArAKcKIe7sSQv3d4spv1qWu5fmxISci5ZBDt7ZHAN1diR9\nFWUzqNN2lCALder2ASamzkrA1JE59fIabblap4ql5JWzWWXg+TF1QfJrFEbI46TWrFGfUwVVIB5T\nx4tOAb6gjp9XUPZrbIsYU0cOHoCHqWvV295JjoM6sgigLu5WW6ZEiThmBHX8XHbvnj/5tUumDv0G\ndZyuiAjq+KLNF9Rp2RpRmbq4MXWh8is3fRHjY2nJr9RPZ2YkGcpZ7lDzYeowMuLWRty9G2ecIf+9\n7TY5f9CYtxoNnHKK+x5ZUlBHBOXgYETfy60Lpo6HwsSSX5k9I0AdAAgh7hVCXCSEWC2EyNuPfyKE\nuC/800tmtJh16pYvd5NoJyftCv2Qg3fa8jJ1VZQVhaxbpi4I1GWqyUGdo3zUNUrKpJ/An6nzS5SI\nKvNFAnWMqWO+UrFI8ivZAmLqRjshoE6f5HhMHdliY+oASU1EzH5NrU5dyQBQozB1Wkyd1eyf/ApA\nndlWrnQBg03vpMXUxZVfo2a/hhYf5hYR1KXF1FG8lh3+hqGhiAlegDvIePYuIO8XA97r18u4uqkp\nGd+4ErucRhDg4xKsEdTRbwSAusTSK2AGdbTFkhDQ01OXmDrXAruLZVkZy7JeYVnWkQHHHGVZ1ivS\nb9ozxIKYunYbuPFGoFpV+jifoKanXVA3gfjyqz4xhYKGMKZu82bgnviJys7v6uiFJipttonL1EWe\ngP1AHSFCDdStWCH/pbAsslD5lVdGThBTF9siMnUjrXigrpPpL1PngLqYTN3QkLyF09NsPuDnEsDU\ntdtqCZnU6tTRSi1EfuVM3cQuNWiogAZyCGbqNm/2Br/rlpr8unUrjmr91nk7KKZuakoNX0vK1KWe\nKMEtJlPXbUwdXVq6LrFAhB646gPqADjg7frrGTvfaDjSLEtmdqTYuExdKqBu5Urz65ofix1Tt2+f\npCOfgUzdawF8C0BQOcJpAN+yLOs1AccsmZ8FMXXf+x7wghcAV1/tDIzVq9Wgb87U7WuzzeLtEaXL\nr7Ow37cnAN5h8/kIbJbdECptoNjcHPCylwGnnOLNiw8xpx06qAth6gqFaDF1iUHd+vXykS66Buoq\nFfk7FJZFlrb82i+mbrhmyAig9jQ6nkluy/ZgUEeg1w/UxWXqHAAfk6nLZNw5b3oaEoFHlF/37VMB\ne2ryawhTR65haMi9R1e/R63vkUdTSrCAb0kTGpLT0/A1AlBdg7pXvALffvIUjEFl7UzyqxBaSaMu\nY+qSJEoonzFRjE89FaFicnryq55ZGSswnwYZ+d4AUEfg7emnGahrNnHqKQKWJRP86FySyq+mXIrI\nRvOYHtPsE1cXm6m74gpZnuIue7+E/QjUhbnUSwBcq9eR4yaEeNKyrC8BeD0kAFyyOBaUKLF1q3x8\n/HGccorcC/wlL5H7KANeULer6d2Cipg66pgfwlV43v85GQU7eIJ32EgO/eqr8X8v/R0e3XWI81Ib\nGQhYyDWbstyFENITxMj9pkHpZPJFZOrOPhs4b7AEfEc+D5JfI5nupF7/ejkbDg0BH/qQJ6YOkP5y\n82a5oqWPK4zb5CyAffIcCOXElF+7ZuqcoEW7/cyJ8e+sVAOYuoY3pq7WzHmRWaWixNPwRwIWcQoP\n8+OSyq92szA1JW/bMkyqKGf3bl+kqUvrqcmvIUzdBRcADz0ky9fQ3LP3EbUxBTSQh1d+bWYKyNud\n/qmnZJu3b/efYFNh6nbsAB54AHnRxKF4BLuxMlB+BeT/jptgTJ0Q6TJ1JvmV1DzH+EGDgxIRbt8u\nkU9IcTIK7yBlMJsQ1FGhaTonqhgTydaulY9PPSUfIzB1gBpHO1xuYmiogKkpuUgdGXH7v5I432um\n7oor5A26+GL19bSYOqo/SP7smSK/AjgewM8jfM8vAJzYfXOegRYkv9KkOjmJXA74x38Envc8VX7l\noG5nzQvqKKaO/MktOBP48D8aY+qCCo869vKX46vrrwRgoWmvCaoou3IsURqhpbxVC5VffZi6gQHg\nzW8L3yasK6buE59wtkDSmTrA4y8BqHjoQNgO5MADXefRZZ262GZZ3r10vD+P8ow/qMtP7PZUi25B\ni6mzaWFWbgxA90ydqU5dXFNIcV1WC2Dq/OIlU8t+9WHqRkeBj38cOOII9x5l96mNyaPpgjrWpxpZ\nF+Dp+2GaLBVQ98ADTt8ah7y+QUydp02MqeNdNI1ECZP86jmev1AquZt8RsyAVUikhKCuUFBDIzn4\nCjXa6oBqBtKiZXjY46SOOMJdXyrJUfW6Z5ec3S6R5zLWEWi4rkDdoYcCn/ykGlMHpMfU0Rv0uB8x\ndWGgbghy79Uw22cfu2RxLUh+ZaCOmx+oe3rODOo4Uwf4Bw1HZYFoLmqZQB1ZaISqaqHyqw9Tl89D\nCQhPVX7NZtlsan+BDuqEMII6Ds5oglN2gu43U8c/7LPKBYDCtD+oG9r9hOcr29DkV/u8+J6SwPwn\nSvC2VKsIBnUhTF3q2a8+TB03pz5hJxpT18i4Y6JvoI7oRPiDOj07UWkTY+r46fcqUSIQ1JXLKkiK\nYIoEmzCmrlBQ81sSg7rpaYnAhobkCdM9sgPkLEuqj4AG6hoNzy45vP97YgZ7xdT5WVpMHZ0cPUYE\ndftDnbrdADaEHAMA4/axSxbXguRXcnIRQd1TM/7yK/mTXE6VHGLLr4BnH9kqyqh2CeqSMnWFAhSK\n0U9+TQTq+JLZBOo6HaDRCGXqHFDHNw2MEFPX6bhxvF0zdYCvQ6TvtCyNCdL65PBeG9QtX+681vQB\ndVGZun7Kr8r6idgXOhee/ao1St9cpF/Zr9zoHo0hgKnL5x32vGbJk+103K9MHdTRFk40ANh+Xjqo\nC5JfHWNMHce53cTUBZU08YA6flCpFBvUKRmwXNqn84oI6nh/O+KISD8tjeJ/t251M3voXhmc1Jln\nyn2eV4DFaTJQNzen7DaptDMKYouQIBvfYjJ1tZqWjENGnYpO6Bkkv94CGSsXZn9hH7tkcS2i/MrN\nD9Rtr42g1s4r3k2XX3W/kgTU6UxdDSVUrXRAndWKF1Pnx9TlcmqCaaKYOr5k5qCOp9PPzoYydRtg\n2Ak6hKkj4E0TlgJik1rIKnd4GLD4SWjecNk+G9SdcILzWiuEqfMDdUmZujTkV4Wpo3OZD/mVM3Wk\na9EN13b+cLLfEcDU5fPumLRBHZ/7UgN1RFesWCEHli6Rwe3zOlM3N6feOj+mjp9+WCRH0uLDvWLq\nPPKrfoDBTNf/kENi+C1A9qc1a2Q/fugh+VoAqDvjDFnjNAfmzzRQp/f9RgNqhgt3spotBKYO8Fn/\n6fPTM0h+/RSAsyzLusayLM9wtywrb1nWpwC8CMA1vWjgfm+6/PqHPwB/+7eyZ/owdX7ZrxNYht17\nLAUw6PJrL0BdFWVUMz2WX4OYOga++srUAb616uh2rlwZwtRlMs53t1oSR/EK7HSeiTfG5hbC1C0b\n7hh3Txc2wlwx8bh84fjjnfdaQkuU8JFfebWFL34R+O//ls9TZep++lPg05/2/Q6j/ErnEiNRIjX5\nlQo3czothKlzaorR6x6mTh5YE2oGKRAN1EWKq9WBggHU+cmveveamACuuQb4xS+QmKkLWiAEZb+G\ngjoKl4gI6kq5Fq7EP8C68zfmRscEdScmiVKnNt97r3wMAHXHHw+sL3pRWyioazRkPy0UAieNnoA6\nuob33SfnSftH/Jg6AKg98TTwN38jE17I9mNQF7jWFEL82rKsdwH4BIDXWpb1c4BoB2wAcDaAFQDe\nJYRY2vs1ieny6zXXyF3aN25UmTraZQEuqNu3T/bp5XbY4yRGsHs3sL5ScbhvXX5NA9Tp8mvdKkEU\nygCfZ5MydW0N1FFGl5baroCcYo9KmkQEdUHy6/r1wPiugJg6g/RaLHqLmabC1Jk2kAewapV8fM66\nSWBLG7p1snlkWw0sm5HZ2J3DjnBWg1a7FUt+3bEDeNOb3MPjMnUz0Mo2cHvb2+Si6FWvcvsNM2X9\nRBuSU3rh7t3e+EnbeI06IL50HGilkqSi6nX5+2ExdfZYb2dyyHZaCqjrZF1QN2eD37igLlL/on68\ncaPdqOUSKTFm109+1UHC7bcDX/sa8NznAve/ywV1acXUUTegPg7ESJSIydRd1Pgm/gEfAP74A+YD\nAi4uv/4bNwKPPw5cemmkn1VtfBy44w7g17+Wz8k58ZWnPZcUCsCLj90td3VnDeGgTt+Rq9FAZLTW\nU6buwx+WwO7gg4FLLzUydZSNXHr/XwHXfRv4r/+Sn+l0vIvC/Uh+DXWpQohPWZZ1N4D3ALgAcDb9\nrAK4AcBHhRA3+3x8ycJMj6vh1cBpudpqyU5oj7ahIdnRZmaAPbuFExOxG2PSaWpMXZD8mkaixOHH\nlZEdrAA3sYMSMnWWztQdcYSkdQ4/XDnej6nrOvuVZ3P5ya8+oI7HwtCtW7cOGP9tAFNnkF6LRdfH\n6HN8L5i6Aw+UNa6fLXYDL/B+rJMrINtqoNiUXnrWGnSyosqNCSC7wj3Yh6nTS6iRxWXqtoLFDelG\nY8ckfUFbP9GxBEz27HHTAbVGUVceHFS/umv5FZA3e3ZWjv/BwVCmjmrS1fODqNQnFPm1Zbnya7WT\njKmL5AOOPFJSa5QRnsnIa8cGwDJMYhiTyOVGlPbroO63dp3ivXvhK792A+pOP10SuCxiwF9+VdLA\nmfwaMft1FXYGHxCRqbvpJrn/6llnRfpZ1ajNP/mJfDz5ZPlYqchzqlblBbVl0795SwJQ14kWLNdT\npo7Ktjz+uPIyZ+pWrZKLyMzjj8oXqBaYKXRjP2LqIin2QoibhBAvh8xwXWP/DQshXr4E6Lo0namj\n0V2rqZ2PpYxZFisN9dgMimhgBgOooWwEdWnLr0T40AQyvKqMgZU9iqkDgBe9yMO8+DF1qdapS4Gp\nO3BdRy1pQhYA6goFbzxwL2PqAFkqZ21+l+d1QII6ACi2ZHDTZMO9LpXGRKSYukzGHH4Tl6nbhrXo\nWBkppejnQc+1eDQyRX6lGWf5cumpOx33BmqNoq6sO/TUmDrA7TAhTB0BuHq24jznoI6YutlOD5k6\nQCKOAw5wnzMJdjov9zE8EFs8i0ldfqXQr5kZ9CRRwrKAc89VFeLI8uvoqFvcMOji2bavsCr4gIig\nbt26hIAOcEEdOQyqMgwYJdjRTgL5dSEwdfvsohw2i0ov1+suiU+bAc08+zi1UaYOtR8xdXH3fu0I\nIXbaf16dZsnim54oQaO7Wg2IKHbZ9Jkn5ES8NyMHrA7qeiG/6kwdSiUvFZMQ1GV0+dXHFJDDtsLg\nTJ2JaAu1uIkSPqCOJqVDh7ejgCYm8itVkBhTfu0lU+eY7sFtEzn5ozkhG7Ov6l6XgaYZ1OnyK2AG\ndVHvC/ncNnKYXbZO6io6WxcC6hT5lc84NJgoWcGHqesJqNPLmoQwdQ6oy8mLyZm6JlxQN9PuMajT\njQZBsYjHRyUtNo7NofIrne7MDCBqyZi6pEk3ofKrZcWKq8tmQ7bjiRlTl8i4GpDPAyed5D43SQp6\navdCB3VOlXp7rNr3hV7eu1e+NTjoii5Nwe7rHXeYO9Qzjalbsh6anijBmTru2TSPTOOztlWOutkS\nA3Vs9uxF9qseU4dyuWtQ58ivJqbOYArIsSynUTymLpNxL29qMXU6IAph6g4pSqezLTeufo7ukY/8\nqtS8Qu+ZOgD+oC6v/ui+mntdhlr7ItWpA9xNyrnFnYgBYGbUJ9YpCVM3OOgN9I8I6lKRXxMydbWM\nl6lrCFd+nRMltFrzAOrGx7FnUAKhDdjkUQioi7GqOADkRNycST+mzmSRSprQ2I8RV1fOhGRk9xvU\nnXSS6sNMjsqA2hY0qNMvkMbUEUYdYdW9OlV2X26+OTaoo9tWqXS5qO6TLYG6+TY/+TWEqaPxSRuw\n14fkC7t2wcjU+cmv3cTUdaycew4pMXWeRAkf84Acu1FcfgXcZkUGdfw8TKBOB+zgfesAACAASURB\nVAxzc04o1p49bqw4HXagHTD+pF7uMSSmTpdfFwJTR7Znzr0ug60JY/ariakzWRJQN7vCMNEK4b1Y\nmjnrp6pWkkEHdVqjqKTGQmLqaplgpq6KMqrVeQB1GzZg36C8P5yp00HduLbGAYDmdPoxdSaLnCjB\nGxoB1JUs82LCsX6AOp6MpVcu3h9AnX4Nt2wBOh1P/+KgTlTZfbnllsTy62Jg6YAlUDf/FiS/RmDq\nqG5VZ9Qsv1JMXS+YunbGIL/yglSAHB3nny+zlQIsk5F/vDxDkHlAjsbU0XnxyiGRjAd/meRXA1OX\nz7thWRT6SKBmTV1OBo81xvHUUzJw+z/+A6ExddT+H/4QOO004NFH3fcSW0JQp9+L3TMlzEBeoyw6\nkWLq/CxuogQAzK4wbN/EI7pD5NfWdNVOiyvJC52QqZvPmLpZa8B5zpk6p6QJSpibU7+G7+SgW5pM\n3b4hL6jT5VcjqJuJFlP3+9/LcXTjjfJ50kLWoTF1vKERkiXKVnKmjo/9roziAAF/UPeOd8is0YMP\nBr77XfkaFcbUQN3p93wWP8M5KNulDUygbnpahj1/+ctyWL3mNcB73xtpJ7H4pl+gZhPYscN5mVRZ\nBdRxcuTXvzavbiLIr0ugbsmiGTl1KkDqlygRAuqya/xBXa+KD7ctJr8ed5x0DGefLV8jT/zEEzKV\n/HOfC/3eXC46qOsZUwe4S8uITB0Aha3jhw3MSc1xa3sNvv994LbbZJ02HHywdMDHuUG8PKaO2v/X\nfy3LPpD1lKmjqPVVWsC31jF2TpdxGb4EALhq9eciy6/veIfEzHxCT8LUzY0Z2BN+X0Lk1/akRiGc\ndpp70OGHe86XurK+RVBq2a9AbKZuRrhMHWXENlBQt+6b6yNTd+qpcvw/73mYHZIR6quxw7lGFLZI\nLm2DYZ+i1qx5m7BmU8XsP/qRHEff+Y79uYRMnWcsmeTXdevkI5XACTCdqetAi7HrB1NHPnj9epn9\nxI36+d69wJNPyr+5OTkwKD1YA3XnbP0SzsH1OGvZXW47NVB37bXAr34FXHaZvEzf/rbctpUSFnrK\n1AHApk2el8fG2DTI59G5OeCxx7zfsQTqliw1y2Rcx16rxZZfCdSV1gcnSvSi+HAnw+TXCy+Uo/iy\ny+RrNBPSZOVTZoJbPt8FU2c3isfUAf0DdXyXD4DtDFST5z2NIWdrzM2bIbdv2LIF+Na3nK8yya+6\n9Yyp63SAW2+V/7/whcpbmaLamJ1TJXwXf4oBzOAbA2/xgDp79zQAajHba66R14eqLADJmLrqSgOo\n4+cUIr96dKE3v1nORo8/Dtxzj4fWXYhM3UzHZeqIRalnyor82ldQd955cvy//vVoliQ1M4BZx7/8\n0R+ph5uYuvasmakD1LJi9H+3u5NEkl8JjRqKcutWgsrU7YMWONgPUAcAP/iB7Mt6h33Na4Dt2+V7\n/G/HDuDQQ52GkFAxN+fGOI+PTLrt1Cg4vu0kMbHNpnRvQI9j6gBg82bPy+PjbBrUOxMvQky2H8mv\naaw1l6xbK5Vkx9NBXQz5dXijdD79lF87WSa/AnL0co8AqKCOFVA2WRxQ52HqQuTXRKDOJL/GBHVZ\nG9TNYBB326Bu0yb7UmhxiCb5VbeeMXUPPijLBBx4IPDsZytvZUpqx9i2T6KjOQzIr9JAHatModxu\ny5KXljvHJExdKKgLkV/FtEEX4uU5NOspU8eZeiAyUzfVln2ngIYL6qxSoPxar8s/064RqYAKe9y0\ny/JxEDPOXHnCCfJUeVFu3dpz9jUolVDXasPOzcl1EOB+h76PcKoxddRZTHFoPlaC2u/2YAVWgFWu\n7heosyz/39KKuDvGfANn6qgawdoBA6iz7zcfz/wyETDqOVO3eTPyZ6ovjY+7VU+suiaLm1jXAKaO\n3losoG6JqVsIxpMlyLlHlF9p26Dlh7hMnSh75ddeJEq0M0x+JSOPQNHldD7ttu9kSxZHfvVj6vzk\n11h7KAYxdYaYOkAFdbyUXWbOBXW8JpeJNTHJr7r1jKm72S43ecYZnh/Jlc2gDrDBNe9EAwOh8XTc\nOSZi6laxmDoKookA6qjfWjPRdxon6S+b9ZZkSTVRIiZTN9lymTpiiGpWOVB+BfzZujRBRavkgjre\n/lNOcY8ZHfVefjFnXwMtUQJQ4+p0pi4uqItcfBgwlwHxMZ2p24MV6gH9AnVJzADqZmaAbEf2t9Ul\nf1DHx4VOgllWeFxtonZyMzB1Gza47co07M5ErKuJqVuSX5csVePJEhGZOuqfXH4dGJAfb+R6W6eO\n5iGhM3UAlGUeoM4qIRJsmkxdKvJrFKbOBq8c1NVdwgHWjAvq2C5KxmS6KPJrz5i6W26Rj2ee6fkR\nLr8Ky8L2PVptPS37NSzzNQlTx0G5GBqWX1KturJYDKaOgHYUUEcAwlTOoCfyK8/gJcAKA1PXlB27\njCoKaKIDC7VOIZCpA/oD6jhTx43H7Y+MeCdJUXUpXp+1EwB/UBe35mEk+TUGU1cUKqjbi1H1gEUG\n6nbuBHKQF5f2FzeBOl6L/eGH1a8dGIi5oA4zP6ZOe5nLr5mmfV8oVng/l1+XQN1CMF6rLsKOEoBX\nfsXYmPPadLu38iv5OwfUmZg6XX4FIoE6CvoOa0xYTF0q8mvCmDoOzmg7KmfPUtvCQF3f5dcApo4/\nF6Uydu9xNVWdqatlKsYkCW5JmDruczMZeEtNRIipo/YQqCNGKcioG5tAXU8TJbT/daZuwmbqhiGj\n0etWCY2mFRhTB/QH1HUqGqirVoF2W9ncYNkytx9QH/ArPgyooE6XX+PG1MWSX0dG5OvT0/5Kg72w\nKxrkV8W0DlStuiWQFiKoe/ppt78Ndhiom1aZbp7E8vvfq1+bqvTK2wnIZDMA2LQpMKYu27TvC0nP\nS0zdkvXcuPxKo3tmRt25QPPGlG0ZBdT1Kvu1kw2QXxOAul5kvxIFnxqo080A6nhMGRhTx81UIcG0\nTZhuASGJ4cb30uG2ZYv8W7ZM7qyu/zh73imUnKw2AJ6YugteW3ESQtJk6izLnYyzWXhLTcRg6nJ2\nnON3fjSIJ58M/t0gUJc6U9fpQKFz2TnpTN0c5DgbseTNqFllNBpQQN3sbDRQx5Pu0yiuKkpltJFB\nGTXZ/zduBF72Mpx2mnsPR0bcGEUnhLPunyhB0RxAn+RXR6tnezKakiV++lMZ7HfttR6mLgjUzc5K\nifBVr5LPFzyoa/kzdRzUUYgJWeqgjt+jo4+WjxpTl8vJLcIcUNfSmLrt273fux8xdUuJEgvBuGOn\n0U1RnmSaN65UgMFyG6NVOxB3dNTxPZNNVX4dHgae/3yprL3uderXJompO+UU4AUvANpHvg64Z5d8\nwhsG9Fx+9UxCl1yCrQ9O4pbHpMaTuE4dAPzZnwF/+IPcNJIsBqhTmDofUGdi6rhsqZ/+xRe7knti\nI4Sr3wcqgnfkkfJC6R2BNaaZk8hoxQo5xzWbgMhkneINU+2KU4IlTVAHyFvQ6dj3khIbaJuKGKCO\nklcmO4O4807goIP8f7PnoI4zdW1t58VGw7lnnjp1dp3A5dkpoAXUIEHdd/E6jGIvbsTzcdacdxFg\nAnUcFKUhleXyFmYwiBFMyVl++3ZgdhbDw8CVV8qna9bIRPlCQSZRPPwwYDWiMXXdgrpYTB0gQd32\n7VKC1fagxj33yE55993IC9nox079Myyf3oKfPXAu3olPuceyDrR1qwzTowXQQgR1zaYrvw5EBHWP\nPKJ+bU+Zuo0b5ePEBLIZAdhe6IAD5Nik88i1NaaON5gsgKn7kz8BHngAeNnLUjqHHtsSqFsIxh07\njW69UqjBG28cnUD2qQ6mcssxnM87oG5fQ90mbGxM+qKbbvL+dBKmbnhY1iUCLrD/mHUpvyZm6l79\naly3+9XYdbn68UTy6znnyD9uSZm6vSqoy2TkHGACdXTJBgbU+5LJAN/8Zpcsnd5IbtQYKh6mX3vW\nMWqWnOxWr5brjk4H6FhZ0NWZQ8VRN9KUX+lYSlrwxDrFkF/zLCO5GrJRQM/lV76g49IrEIupq0LG\noX0fF+H7uMhpu97moASdtABFLgcX1NH+vLZ8+Xd/56bevuEN8u+Tn5TPM41oMXV+2a89KT4MBMfV\n0Y/PzaHYkQ175KTXoXHWS7Hl/Ad8v5/8l772XUigDnD7W6UZDdTpeKmnTN2KFfJ5s2k3TPYtWu85\n9d2JqfPL/AUCQd2LXyz/Fostya8LwUxMHY0OcgQGb/ysEelkpgrS6ZDv2VtTmTq9YD63JKAu0LiU\n3On0TH41yUW8VENXoM5kIaCOpKQwpu7YY+V7QaBOBxCDgykAOiA6qAtg6uY6sq+uXOke1rbcTjSH\niqNu9IKpcx6DQF0IU1douPckbKOAvjJ1AaDOj6kbFvJeznXKRiAURX5NbTcD2wjUAXBBHeBb640m\n/kwzHlNnh+r1dpswIDgDlqEzYuoaGSkf1+E6JJHLKYN4sYA6YurKjWigTreeMnV82wjWQXRQl+vY\nnUkvqs4tQH5dbLYE6haCkWOfm1NjagC3I05OKtlwAHDQgHQyMyXpdEie2z0ne3MHFhoo9BfUZTIq\nSOXemQJsfawrpg4qqOsqUcJk+hfQc42pm5hwmYSBYguo1SAyGVQhEQVlAJrARBCoS8X8QB01huLU\nApi66ZY8j7Ex97AW3Gszhwp27JD/p1nShB+bySA1UBe2pWdfY+oSMHUD7Sn7eVmJOwOig7peMXUA\ngKeect/wySCl/p1temPqCAeZmDpAxqallihhKmkCBDN15IhmZ1Foy4bVraIB1OWNH6NQSlOx7r5a\nCFNXskFdvY5IoI4uX0+ZOh9Qt0ZuaIJKBbDQQUHYFzcI1AUwdYvNlkDdQjBy7DwCnWxoSL7fbns2\nQVxfkk6mWlGZul2z9qbqVhmAFRiLlSSmLtT4QIsRU9ctU8fb31WdOpPpo5sqoQbIr8vycpYVA4Og\neI/TTpMT1bZtXmdIk3Klok44qe2dGMbUEagLyH6dbLigzmHqhArqiKnzk195Ed/ETB11amJPYtSp\ny9XSAXWpFx+OwNRRdjgxdTRh1VDy3FY+/Cic0rT/a9qAIimoc2Kf2DZh1GVNTB0g14mpJUp0Kb8S\nU1eHl6lzksps42Of58fNO1NXr7NxK5CDRDelejym7phjlEPSbycQialzMpKLRW/1cG5LoG7JUrUg\nUFcq+U7GawvSydQGVVC3fcref1PI712hJWFxS52pA9SBljCm7oFH8sbLcdddcvODMKau5/JrAKij\nUx7JyvO1hlzP9qxnyfhGIdT5jn1V/5k6HdQFZL9O1mSfUpg6DdQRcIjC1MUB20r2a4KYOoepa6qg\nrloFfvITL0kO9FF+NTF1c3PAj38MTE0hnwcyaCMDIWvSQUXMVZSd6843daG+SBh4Xpk6nwK+tGih\n2Kd7H3GZuuX2Tlt+oG5mpo/yaxBTNzeHvM3UNSwJShtwL2jL8gd1HHzPO6hrNJDJyLFC0isAlGqT\nGMEEjr7n655NXXVQV6nILZSBFBekZBGYOl9QF5S+uiS/LlmqRo7dJE8Wi65no0w/29bkpZNpLVdB\n3ZZpuSKZxAgqFWXXMI8tVFD3z/+ax0c/qr5fr8ss3nPPDY+po/OixVnQNYhk+ugmB2HfMyNTl7NB\n3eCgA6wPOkjuxAV44+o4gOD3JXVQx+kaIWIxdXMwMHVMfuVgw4+p4/csZJMRxbqVX53d7ODux7tn\nD/Ce98jMti99yfuZvsmvJqbuW98CXv5y4MMfxtCQOzaayDulS8iqKDsJ89TnOVgg5UlPqgcWjvya\ntxMNznp5yWGtTaCOy68c1HWdKOEnvzpxLcGgjpjGmoGp0++XDuqoy6ZRUiaRaTUsKxWmmgAo1Kfw\nIVyFS67/c3nBy2XH4eprqLExuXgF3PuXejsBX1B35JHycXDQ3eVDcHLEZEtM3ZKlamFMHXHZd9yh\nvHXywdLJHPVCFdQ9MrUGez70aVyBzwTG0wF9AHUJ5dcm8p4t+qanpUS5davr2MOYunPPBT74QeB9\n70twHtz00b1ihbw309PA1JSRqRvOuDLFF78IfOELcn6gJCx9jug5U8ezOch275YXc/lyRpn4M3UE\n2kxM3SwqANxg8CjbA+lxYEHWbaJEoWDvPws1eeVrX5Pv//zn/u3refFhE1P3+OPO43HHAR++So6N\nlpVXWCBA3pcgUEd1WnV2GFgooE6gaMuXe2YKzvqVnwuZztT1pPhw1EQJLr9STB28MXVtjanj3XV6\nWt25ZF4sBNRZQuAU2PPPS18KfOUrTsCjztSNjQFvehPwN38DvPnNKbdTZ+oYLf3znwOf+hTwR38k\nX1q5Elg/JvtUK7vE1C1ZPy2MqaNS7LSVk22VOekklz1briT5PPfEy67AT/HS+Qd1CZm6JvLKihxQ\nV+iUSGeKqbMsdzCWSsBVVwFHHRX3JDTTR3c+7zJbW7ZIuSInT5cw00jGrbx+/vnS0QHecDCyvsqv\nlHSjJ0kAakfgFxNwEj44U0f7jVLwPlkUUBfSJRRTmLqhIXmRZmfVoCTAV36lfSh1UEf36+abPblI\nSpmZvidK7LVrUO7ejUwGeNfbbVDnw9TR4SZQRwV+TQk6PQV1HLUHgDqKFayjAIGMA+riMHWpxdRZ\nlnoxIsqvxNRVhWTqBDJo2mMjSH4lP5D6llpxzADquPwKAEfifvnP1VfL4m22mUDd6tXA3/89sG5d\nj9oJeJi6s88G3vEO923LAk4/QXaWuU4pWAv2YepSWbj12ZZA3UKwMKaOUiZpKycycjK20xm1txrc\nuxdOBmIYqOt5okQXoI6vyAF1hU6DzsTU9WQgmrJf2VZVluViJpqQnG2SNFTmN0f0XH4tleQFazbd\nmVGXXgEVvWSzRlC3cqV7WLMj39dBnZ/8yi0JqMtm4a30H4GpozbpoI5sxw7gscfU4+e1pAkDdQCc\n2bOV8TJ1YaBufFz2qZ074RlXPQV13AJAHcU+EbtFQEcHdUL0MKaObnC5rNYQigrq7JjAqnDr7DUt\neVGbmYLxYwDzF2knFcQxDdQNDKhMHQAMwgbo3FfADOp6ZnwQDg8b5VduJx8j+9VUoyQHLAd2/IIv\nya9LlqoFMXWlkgwSGBmRy+wtW9z3yPPZoyifl06w03E3CZgXpo5HanchvwaBOjJTTF1P4lL0JXQu\n59Z1s4GRDuqGrOSgridMHW8k0VMmUMc7QjarnDuXXx2mTphBXU/lV2oEIC9kRFBXLgNDMO/HC3jX\nTfNafJhQGo3zpiu/6kxdDaVAUFcuA+vXy/956Thg/kHdwIAb+0T9i1yFDuqaTTWhJUlMXaj8qq9G\neD/TqVwmv2ZbdkydcOvsNTPSKQXF1C1EUKfLr2Qz+WVukphtfQV11E6q0B4C6o5/juxX++bsyYFL\nsMSCAEvy65KlbEFMXbEoexYFCnAJVmPq+L+0sXIcUJdajSQaaLOzPZNfyUxMXc+CjfkIz+U8+4+S\nvyCWdEAsIlBHABVQfzyT8ZVfw5i6nsqv1AggNqhzGNQB98LSTndahMPCYeqEcGbPdghTx4EQB2za\nGsSxXoC6aRikLp/s10IBGMqrTB2ZDup0H9AT+VXvuJWKfK1e965CCNHU68h2Wmgjg3o75wF1rUUI\n6nT5FQB2lsY9r+mgruvtDIOMBiH5MT7XGOyQDfJGTNZLcqcbDup4FscSU7dkqVoYUwe4cXX/8A/A\n294mvVkAqKONlRdcTN03vgH8y78YPxZHfiUzycc9i4PwA3X2LEkMSRqgrifyK5CMqWPnXUMJpZJs\no87UUe00sijya1dMHc9KDIqp27QJ+Ku/Ap56CqWicEDdQc912/ue98hHAnXXXw984AMu6JyX4sPU\n4dtteb8YqDMxdXS4iakrFj3dFY89Brzzne7z+WLqAGC0ojJ1ZDqo031AqokSXH7VzW/QaoimjiKa\nLcu57p2cvKiNRQjqTEzdjmI4qOuL/KqDurk54Gc/k5kSjE3NNd3klVtvhTs4dCl2CdQtWaoWxtQB\nwNlny8cHHwQ+/Wngu9+Vx2ezyuqDavT87nfycUHF1E1NyXSot7/duGVQXPmVshnJRkflpaRrkLrx\ni6XF1AFepq7SMYM6vwoJfqxQqrWedFAXlihhYOrGxuR1pzbODssLvgUHKj8VxNRdfLF8vOSS6E1f\ns0Y2x2ECojJ1X/wicM01wFe/ipFSHTm0UUcBJ59RQKEAnHKK3NuxWJQbkk9PA+9+t1w/3XCD/Ip5\nYeq47d4dytSRERCamVFZOI1Yxj//s5wDv/IV95g07IADAkCdLl/atqxsZupodwBKojWBurhMHfkH\nj59YtUp2bNKp9fcAOJW1ybR7VkMJrZbbBds5W34V+weo2573B3XkWigppye2dq183LhRPvK55u1v\nl6uUu+5yj6+7ZWbuuYc1cmBAXXUuya9LlqqRY/dLlACAE08EbrwRuOAC+fx//kc+rlihdMhTTlG/\nKowK72tJkyefdL2yIQ0vrvyqT7JDQ8BvfiPrtfbEQpi6qKBuQcqvMRIlqP3UX/aOH4s/fPVWvBWf\nVn4qiKm79loJmK68MnrTv/1teX+dyZiXmggCdXSh9+zBaMFNkjjiCOn///M/1RDJLVuAJ56Q/9Mc\nrt8Ty0opUzGIqdPPwZ49OwamjoM6ChWanTWDOrrldI5PP+0ek4adcALwd5/QOi2lhvtQs8vLZqbu\nmGNk/3/iCdnOIPk16gR8xRWy73kWFGvXAnfeKesD6kbFJXlMM2Bm6ppuF+zk7VpuixDUmeTXbTl/\nUPfJT8op6qyzetZKiRjvuEM6EGooIJ0nyfs8MLbmMnUTE1AZPu6gtM4Tt08tJFsCdQvBqHP5lTQh\ne97zXMbu7rvlo4baKFGWbEHJr9wjG/Zniiu/mtp71FGu/03ddFBHP7R1K9BuO/6CSMhSOxjU8RCj\ndlteHsuS3aEv8mu1KmeUfF6lLULkV2o/gZxG08Kew/4IE1ArjQYxdaWSLCQdRypfvVoCBsf8mDq/\nDU8nJ52C0DMYxMiIzEEiNohAz333eddXOqhLTeIPKj7MjTN12TwEMsqeuxwMjYzIflSruQsFE6ij\nR+qHaY1/ywKeczLrtIWC2798JNiRksuocKtU5NZ6gJTG02DqikXZ94yxtyec4HYIbvrFI9NAXQ0l\nBdSJwuIFdSambmt2g+c1OpfRUTlFcfWkJ3byye68x2PqaNAaQJ2zjR4HdXxuXZJflyxV447d7z0y\nci733CMfNdR2wgnmupl+1ldQx80A6nT5VV+V6w6979XXdVBXLMoJoN0Gtm3z1LYst8ygTi+xBqjF\nR7m0afh4d8ZBHaVBrl+v0k4hiRLkT6m/NJvmeMcoiRJdWVT5lXbQMIA6bjS09AxYwAvqUnP2QcWH\nue3a5cyewt5HlLN1nKkrFt0+QwWJTYkS9EjkWapbVPFOOzISXBYEwLKSy6hw08t06j5herpPNcXo\n4ukKg3bP6iii1XK7o2Vf1HoAqCNmf6GBOhNTtyXjz9TNyxZnNNfs2uV2hFtucWX+uivre0Ddkvy6\nZD2zoLRT/T1yLuTdNNRWLMqFDNm8gzqfQrBR5FcdKOgOve9ORAd1gLKC10FC0QfU6SXWAFV6BfoE\n6kzSKxDI1HH51WHqGubM5CiJEl1ZVFBHTN3EhLPLhwnU0dDqK6hLIr/aoI7H1XFQVyi4fYYyYgsF\ndXu6qSnvlmF9AXU+GbDDBbP8WiioZTrTYOoSWUKmDiXpv+sdf1BHAk3q+6TGsYhM3WbhD+rmZYsz\ncpgUQwDIPkY1vZaYuiWbFwua/fyYOjIDaqOVLQBnz1E/62uiBLcITF21qsZVLyimjv4PAnV1d0cJ\n3XTiQgd1PZNfKftrYsIf1AXE1HH5ddEwdUx+Hcm6+776MXX33ef9KT0jOTUAwRMl9DRCbhzU5bxM\nHQdDfqBucFBKZPW6G5LLraegLmj/VABDBbbxOrNiUcYJ53JSnNClyoUG6vSYukwEUEe20Jg6HdS1\nkMVTHW8W2oIDdYC7Mlti6pZsXiyIqdNB3fCwWmvHAOpoZTsyEj7QMhk3BmJeQd2PfoS3f/EoPAey\nFgtNWHyujhJT11MLYepWYSfuxIm4DF+U7WvYTJ1hCa7PcfPC1JkyXwF1dsxkFIcXh6mbN1AXEFMX\nxNTRZTAlaJIsTpcmNWefzcov1bdK0I2BOpGLztQR4KGxEiQx9wzULVvm3qvLL5eZpOvWAd/8pnPI\nUF52oPIy19/ReqJSkWElnQ7wy1/K9+jrkiRKJDI/UBeS/ZqpSN9eay9wUEdzkEl+td/bivWoNrJ4\n4xuBt7zF/eiCBnWMqfMkSrB596BnZbFqFXDRRXIoLoG6JevOgpg6E+DjhWJ9QN0hhwAveUm0nz/t\nNOC441IsPkw7SvCaCnqqoO4c//RPsXrn/c5TAnV8ngvLfu25mUDd6tXycfdunNz+NU7EXfgLfAUD\nA8Cgz44SQDhT11f5dYMW/MyD+jSmThRKOPVU+X8YU9dz+ZXSPPftU4Fcp6NOthzUdWR83RSGfUGd\nyfT7kqqzp4EXVLTPAOr8Yuo4qOOvAcBhh8nH667z/kSqoI7vTD8yIuWDTEb6hF27gG3blCzTww+W\nKOiAg1wnxNtz7LHy8d575SMtipLUqUtkq1bJ+7Rnj3qfDPIr34o4W7Zj6hY6qNOYuhNPBAbydiOP\nOQad5aP4Oc7B7t3Al74EfP7zbpmZeQV1fPciwHU6jz8uH1lJk8lJyBOrVGQxf+agNm3JYNcu4Pvf\nl6EJS6BuybozHU1xAGSaGfnsY6hZMjgIPPywLAERxW6+WWbyp5a1RN6J7yjBt2QBZK0IzuJpHtkE\n6hYkU0d0VLWKNcsk6jxt3Wbs2gUUG8lBXV+yX/3kV8C9uFqixC9uLeP44+X/nKmje8O7bs+ZOtqj\ns1r1dg6nUFjbDVqanMSylrzgezIrPe0zlSfjPwW455wqgKAxHrS9Bgd1BMKp8QAAIABJREFUeSpo\n6w4AP/mVvwYAp58uH3kpL/2YVCyTcRsxMiIpkH37ZFbA//t/8nUmxdLG6+OHuufB3SKViaPcHg7q\n+iK/ZjJqUCKZIVGCu70cMXWdvLK92YIDdXwwC4GTTgL+/Zt2I1evxvQj2/G/8Hml3VSoe0EwdWTk\ny2ghx0qaTE0B4tDDZOjJlVc6HaytwaBabQnULVm3ZpJYyUz0GZ+EfTIh4gA0bd7u3njAiw7q8nlz\nzaejjlK+gkAdZ+cWVEydvk9kreY0MPv0UyjnW+4k3QVTZ1lev9WVRQV1PkxdflhlhADp1Ok+0eQL\n9AHUZTLuSl2P+ieqhJcJqtWwvLYNADBbGvOMkVLJJV4Bt4hqueyC1b4zdfTDLPsVXTB1eskjUzNS\nMw7qAOnXVq2SMgKgxtfZfqIw5DaCt4fGC6lsfQd1gFmCNTB13O1lyu7er3wNu+BAHY1zpj068ms+\nj8JAHoA6YBYFqLMvejtfQrttDzFqqO2721AHc7W6BOqWrFvTvSnXhcKYup7uyZLQTKCOMjYOPBA4\n6CD5P3eO2uiJIr/OK1NH/zOmzmlspyPlpQigjpIB/UDd4GDKdZ+obwUlSgDuxdVAHe+PJqaOg6Ke\ny6+ANyOAjPodOXfbxiYeAwBUB8zjhpRoy3K3W+bzRk9AXRBTR/QhY+qoEUExdXoYJ93Oo4/2z7JM\nfTzpoI7MVN7EHty5wZJzbU2gjtgucie8wHLPJ+AIoK6Ooi+o475swYE6wCPB8v5m6hsUtragQZ3d\nr+g+KO7AYepkx6HyhEugbsm6N332404wQUzdvBsHdeQgyAtv2GB2jtqEtmiYOg7qeGOfeMKL1JiF\nJUrQ16fu6KlvPf64nHlWrHDZLm50cXUal9FvdAiPqSPHmM326f6EgTqqUWfb6N4/yLeHzOOGuuba\ntS5TZwJ1qbJCOlPHZ9ADD5QIc98+9yLno2e/8tcAeV8IrALqgqFvoG7ZMtmvJiZcRGDfL6tUdA7n\n7dHdXKXidluqOTsvTJ0hUYK7PaskT2JRg7pcDtmsNyz63nuVLYkXBqgjFWhqSq4A7H6VrcjxoYA6\ne97tIIPhYdd3LcmvS9a9Bcmv+xtTNz7urYJKxzJbNDF1BvkVAPCQzOLFwIBxP6mo8mvPQB2ZX3ZA\nBKaOzwGEZ8kx9oWlA7xVdslqNXlxNaZueI8MoG6OBIO68XH3/74zdXqSAYUuUJVaA1PXzgfLr3zC\n5RIskeb0uVTND9RlMq4/IDBOHahUcg43MXVk5bL79YRBeg7qTH4rhKnLMqaOr/kWBahrufIrf5tM\nCOC22xYYqKNFaqcjx5N90bMVl6mbnLRBG2PqNmxwh+ESU7dk3Zs+WqLKr6VSygFXKZmpiBRNTHy2\njAnqFmT2qx9TR8XOTCwYwuVX6hKpO/pSSZ0t/UBdl0xd37olXSC9Dsnb3ibjtyjwx7ZcU96jzmgy\nUMexbmoWBOoGB11ad5uMB7QKXqYuN+jP1Om4nOpYrl6txkCmDupI56XaiNz0AUBjp1g0gjo9H4yD\nOrKFEFPXzJaU3JzsgLwvDRQWL1NnAHV0b+Yd1BWLKt08MuL2t8lJp1/lh+R9uO02ifuuvBJKTN34\nuOrKFzOo6/UwWLIolsnIEUODKUx+XbcOePObpUbU8432Elg2K0cIebFiEXjNa4D775ePxGLRdgqA\n4wW/hDdgCsPo2HEOQfLrgo2pA9yaEVRDQrO1a+UjlQUg5Y3m82OOAc4/HzjvvBTardt73ytz9wsF\nteAUNxNTl8spM6eJqTvkEODSS4FDD+1Bu02mz4SVikTIt94qgd711xs/9srLzKDugguAH/0IeNOb\npEx5/vnAK17hvt+X7Fcd1BFzb7NaBOocpi6XQ3koB7Atwfhl0cfJ6acDb3wjcPzxwH/+p/9xXdub\n3ywfX/hC73srV0o/QFQ1daBy2Si/6kXUSyVgubrVcO9BHSFL7rc0+VUUigArmp559YX49Wdux/en\nLsTLFiuosy8svx/PeQ7w29+qJSLnBdRRJhk50JER+ffUUxLU2ZRp3k7A+dGPJGD7zneAj54sX+sg\ng/Fxt2znYpdf+wrqLMu6CMDrAJwAYAzAZgD/AeAfhRDT7LjlAP4JwPkAygB+DeCdQghDrff9xIpF\nd3SEya+WJQsFLWQbHHRBTqEAnHQS8POfy+c24+DEOwnhTGhvwb+ixbP6DEwd4d++OxHTlgJ+8itl\n9vLtPZitXClv+d698tR1pq5YBH7wgxTbzu2DH5R/QcZ1RpKPtb5oYurKZeDLX06tpeGmz4RDQ/Ji\n0gU1bQ9hWXjxn4x6X4ckY6ibAt570Hf5dXDQfW5LyR6mrlxWLkM+Hwzqcjng3/5N/n/DDf7HdW3n\nny//TKbHH1AHKpUcooWvZysVF68Dsp/pkmzPJ2CeZESmoTNRKAFVtz3Z447GXx/9M9yn7VtrAnU+\npH7/jDoAaccB8uv69RLUVavzzNQBZlAHKExdwWbqqM7hk08Cu2dKGIPL1FF0w2Jn6votv/4fAG0A\n7wPwUgCfA/C/AVxvWVYGACzLsgBcB+AlAN4G4EIAeQC/siwroJLUIjc+YYYxdYvB+Kzil93LM5Q6\nHbTzRQXQAeaYOpL4FkRMnZ/8SuZTQ8KyXDVny5bAnIr5MVOdOq1GCV/Yc1DXVzOBOm6cVSEbHU3s\nrXsC6uiikWbHZ/ehIV9Q5zB1pZJzGYhYDQJ13Lir6et40kGdganT3QYHcfMK6nicpo7OSt6SLDxW\ny/djpT4wjWEWQ36lfIRabYGAOjId1NkAtTgsbwZ3B/c9ojJ1NAwXO1PXb1D3CiHEhUKIbwghbhBC\nfArA2wGcAuAF9jHnATgdwCVCiG8JIX5qv5YB8Nd9bm//jHuwMKZuMVgcUGczFO2SV38wya8E6hZE\nTB332Lo+bFlyuw4fI1C3adMCBHWmOnUaYuNMHYtz76/pIC5KvY4ukot6Ir/qoC6EqcsU/Zk6Uyzm\nogB1bFVgkl/5RwDZz/hzbTe73hj55elpGYjf6XhiOS02AMjtcbBApoM6v27bV4shvxKoWzBMHZkP\nU1da5nVMv31IjalbSpRIYEKIXYaX77Qf19mP5wHYJoT4FfvcJCR798retnAe7ZnM1BGoK3tBnUl+\npVpoC4qpq9W8TN3RR5uDxG3jcdcLDtSZYuo0xLYgmTq/wCSahfD/27v7KLnq+o7j7+8+b7IkbBKg\n4SEJJMiTkqOkEEEgYH0AA6YY09I2Fage6KHaWquW2nLsg9pabRTFh1aPLQekp7VSsNaCFBSx2IKo\nBRRbsBFpVYIJNAmUp/z6x+/+du7evTNz7+7OfZrP65w9s5md2f1N7sydz3y/9/e7zEuoK7P9GkLd\nVKVufHwqFNQ21HWZ/Rq/C8ys1BVS5QolUOd8sEvpodr4zNnhWSp1pR9PB7lmv4blE/fubeXa0gJQ\nhkpdWqi7855WqFu5sjkTJaow+/X06DI6ep7jgHtTbncfsMLMqvD0n3/xPVi32a910OldJf6iix1P\n99yCzqGuUpW6bhMloPPy/UxfISGEutKPqwnSZr92qNTFDokqVvLdMF7ljpunZYAKab92CXWDY4lK\nXaz9WrtQF2a/plTqkqEuPgM2GeoKe/ON77tSQl1Y5BZmVuriu4f4qYqhoqGuTfvVzM/Vg9YagcPD\nJc7Zi79eFi1KrdQtmJz+ZBoehnv+s9V+Xb68Oe3XUrv4ZnYI8AfAzc65u6KrlwDbU24eVhedBGYs\nvW5mX2r3d0444YQ5jbMQyUrdyIh/5pV+oMUsdarUjY76r6ee8nu6KNTtS6nUpbVfQxhq9/7dM1nb\nr4sX+x3Khg0df11tKnVtlqZIm/1a2UrdPIe6nrRfu1XqooPB0yp1tQ11Ke3XUIlvdyIKmNl+LWw3\nGZ9ZmbIDGlgwu/ZrJUNd4vxr4ceTk63xhs8hpbVeofVJeMECP5CUSt3Cpa3t8lM/BatXw/av+v3Z\n08MTDA1N35WHh65Ql0NUcbseeBa4sKxxVEZyqte119Y30EHnUAf+hffII/6FF0LdwolpdwmZD3xB\nL+wUL77Yv3a3bu3V4NtIC3XDw76a9dxzrTflD3zAD/y88zr+uvgxdUFlQl28Urd2LVxxRets8Imb\nJGe/Fiq5IFu7AVS5Upcsb7YLdZEZlbouoa7TERyVCXWx9ut55/lzvG7Zkn4X8Js5XrkrNNSB32+F\nlkHM8ES+iRJhRm8lQ12bSt2yZa3HFK/UlSa8PsKHzpRK3cIlre2yciVceSVcddWhXPutT3DMq/36\nS/GKauU6JzmUkhrMbBx/jNwRwOnOuYdjP96Fr8YlLYn9fAbn3IZ2f2/dunWu3c8qI75jHx3tGggq\nL37kb9q7xf77zwh1LtZ+XbrUr3wS9vXPPOOPSx4a8juVt5UxZSYt1Jn5vcHeva2zGqxdCy98Yddf\nF6/UhTesyoS6eKXOzC/m2+Ym8Updqe3XkZH2CabKoS4ZRDOGurTZr02o1C1cmP76rkSlLr6wbQg9\nCxdOVVGTi0BDevs13HXx4nqGuuQRA5UIdeHJHF96JqrU7XdAa7usWOF30e9/P8CvTF0fr6iGz+eV\nmMCSU+HH1JnZMPAZYB1wdsrac/fhj6tLOhZ4yDmXctbrBoi/GxY+A6AHslTqYHqoWzg91EFrR1ha\nJSgu7Zg6aG27cMqjjIMMBxs//HD64VSlypBeKlepKzDU9WTx4WAeKnXxCkOn3Um8o17obid58uMM\nB2WWPlECpgeG0KOLtWHTKnWd2q/h11Uy1LVpv8YrdZUOdbFK3X7LWtul3Ul04hXV8LgqsV1yKjTU\nRWvRXQOcCWxyzn0t5WY3AIeY2emx+y0Czol+1kzxN6M+DXXx+yRDXWmVoLi0Sh209tphUdKMgxwf\n96dpevZZ+J4/JWl1Ql18nbouN6lUqIu/duL9uXAgJtS/Ujfe/Zi6gYFWsKtkpW7hQr9fCAtFZzgo\nMxnqlsTWjy7sIP20iRJjY1P/eeF0VJCt/VrpUNemUnfAATM3UyVD3a5dU49h8QGtJ3e7UBevqKa8\nJdVG0ZW6K4HXAu8H9prZ+thXWFj4BvwZJK42s583s1dE1xnw3oLHWxxV6nApoS7s6ytXqUsLdWFu\nf45BhqwRP8amEnJU6irbfg0TpOLT9WDmiURz6OlEiaBLqBsa7z77Ndw1eV1SaaHObHoLNsMLPNl+\njW+D3btn3r4n0kLd8PDUNgqL3MLM9mvtKnUZ2q9BJUPdI4/4y9FRFi1upf5uoW7PHr+twpE1dVN0\nqDsrunwHPrjFv14P4JzbB2wEvgh8BLgOfxaKM5xzPyh4vMVpcqUu7fHE2xhRqLMOlbpKh7pkkskx\nyOQOpjKhLkelbu/e1vGOhc/tyRLq9tvPV4bC4KpWqcvZfh2OQt1zg+0rdeGuyeuS4hM4C9/txJc1\nydB+jWfx5M1KCXXxddyibTSyuP3s19pV6hLt1/B44u3XoNKhbmwsvommFe3jwmMKRwRMTFTz1Ord\nFL348CrnnLX5emfsdjudcxc555Y45xY4517qnPtWkWMtnCp12H6t+4TWSq3ar0GOQa5d2/p+2bIK\nhboclbowA66UbdOp/friF/tts3q13zuvWeMD3vLls/5zhbRfx8b8GA88sHXS05jRiWEmJ+HJpdGC\nyitXcsQR/tv4h4QsoW5oCA4/3C9TUfhMv/Ai/9GP/OXISMcPEUuX+q/DDmvdrMPa3r2RVqkL/4nD\nwwwuP2jqplnar8/zEy+ntl+pwvMwnEc1UakL63cffbT//48/r0oNdatW+cs1a/xleFKEHVP07zVr\n/HN89er0XxMefjzU1VGN18xomCZX6rKGukWtqUaVb7+mTZQAv7fLsYd7+9t99njySX8CisqsixSf\n/drlJmHfWcq26VSpO/JI+OY3Wzv5W2/1b1hzSM6FtF+HhuBf/9W38wcGUtuvd98NI0Pnw4+PhuOP\n5/hh/1Djb1hZQh3A7bf74kzhVdYwtTAsQNzlCTQ0BF//+vSn5P77tw5lLUS7St3118OjjzL68NKp\nm2aZKPHWt8KmTZkmy/de2OmGE6QmThN2+eV+UYYXvchfPT7eKuqVGurOPx+OOqr1CTm5fuD69QDc\ndJPfV7Vb3zTsxsPTUaFO5qbJlbpO7ddYqBtYVNP2a3xQ4+O5avYjI/AzPzMPY5tv8XXqutyk1G2T\nnOYZD3XLlk0/mj5lXbG8Cmm/Dg1NP61ZMoQOD0fFiQE4tLWwerzqC9lD3cEH5xnsPAoDDKWRDKXe\nZOtschK2b5/fYXXUrlIXlREnYgEzy2nCxsdh3breDjmz5IzkxGnCRkdbRzSAf1zhTI+lhrqBgen/\nieF0bmG2Q3Rmn4MOap1iMk3Yf4VMW9dQV4XThAn0d6UuOiBmYPHM9mv4dFub9mtdT+uWlKNSF5Ty\n0AcHW6En3n4dHOxJb66Q9muyZJYS6rLIGupKEwaYsVKXZjJtRdNeajdRIpK220seU+fcjLxUDcm1\nA1MeX1x8c1XqccD0GUCnnprpLsn5bgp1MjdNq9TFV23M2H4drGulLr7t6jhdKk2OY+qC0h56PL2E\n59rSpR2rjLNVyDp1/RrqZvGpoNRj6lKSWdpuL9l+jZ+CqlIH4rcLdW2e7PHNVdlQt2gRPP/5me6S\nfPop1MncVPoVMguzaL8OplTqkqGu8pW6poS6HLNfg0qFujnMcO2klEpdcgZD00JdCBGzeAKVFuoe\neyw19KTt9pLt1y4FsPIkQ12XcmItKnUnn5z5xZp8+tXxbBKgY+qqI7wZDQ9X7OPbLOVpv0YfYYf2\nn1mp+/GP4cQTc5+soTfaTZRoYvt1FpW60h56PL3EF9PqAbVf51HOiRJpKjH7NWP7NX7Kw8TdqmEO\n7dfKPcfCdsrYeoWZTz9V6mRuwjti5V4dsxSvLmRsvw4smmDDBjjttOkzlO68Ex580H9fmVDX9Pbr\nSSf5d8wOO8Xkvj6+vm+h4unlhS/0nwhe8Yqe/Kn16/1/S3Ts9fzo1n6d5aJgp53mX2YnnzyHsfXS\nPLRf3/IWn0Uuv3wex9VJ2DHt3j11XtH49hgZaf2z3TF1lQ11k5O+oLBrl6/S1bn9unGjnwG0ZUvm\nuzSl/apKXVWEPUBTQt3wsH9MTz2VHuriJ8bet89/PzHBLbd0/rVqvxZk3To/DaxD+9XM/zeELs28\nBp084qFuxQq/6GgPjqcDOOWUrv8t+XWr1A0M+NuEVJDxHfTss32Fu0f/FXM3D+3Xgw/2m7uw5sbg\noK8w7t7tww/M2F4TE/5H7dapq2yoGxrywW7nzlawg3q2Xy+91H/l0JRQV9WXe/9pWqUOOvd/Uma/\nMjGBGVNfaQGukpW6JrZfIVMaiG/aSoQ66HmKmfdf361SB9NbsDn2EZUNdNDabmFdjFm+uAs/WiXs\nu0IYTSSa5NOxNu1XaC1rsmNHvWe/zkLyPUehTuamaZU6aL0q0ip1IyP+FfTss/5raGjGY48v1hlU\nJtS1W3y4KZW6jJ54ovX9sceWNIjKHzzWhdn010i3UNeEd1CY+a5Zlw9EGUNd7dqvMP24usRpwpIq\n3X6dJYU6mT9NrtSlhTqYvpZQxhPtqf1aTSeeWGJVqNvzrA7iz5t+DXV1ee2E/VZYpTal/Qqtp+PQ\nkH9thM+vtQl1fVapg+mPSaFO5ibsAer8xpTUrYKSDHVtbN7c+j50akqRZaJEXaoN8+zEE0v843Wv\n1MH0502/hrq6vHbCfitM8OjSfjWb3oJtSqhTpa6aFOqqIuy0mxTqwkyxdp/A48vBd1gUKH4arXCu\nwVKoUtfWhg0l/vHwPKvza0eVuvq8dpLt18T2StvtxSdL1CbUdWm/qlJXTZr9WhVr18LWrT1biqEU\nb3qTD27tjqB/y1tg2zZ/XpZLLpnx4099yp+D/cIL4XnPgw9/2P/K0vTbRIkMPvpRf5L1TZtKHMSW\nLX4Qv/ALJQ5ijhTq6hPqQmoLs18T2+PSS/1VZ5zRum5iwndr9+6tUahT+7WWFOqqYmgIrrqq7FHM\nr40b/Vc7r32t/2rjggv8F/gdZHwnWQpNlJghJYsX78gj4bOfLXsUc6P2a30+EIVxP/aYv0xsj5e9\nzH+l3WXPnoqHujD7Ve3X2p5RQu1XkazUfpVeyVqpGxio+DolOYyOtj8zS5WFhNZmnbpOd6l8qFP7\ndUpdK3UN2TuIFKCfThMmxcoa6pry7gl+BkG8HFK3UNdlcd60u+zZ0zouuJKbUu3XKQp1Ik0Xgtzg\n4PTlV/q4/SrzJGv7tSnvnkH8nbMuH4iS7/Y5Q10tKnUZFh9uevtVoU6k6eKhLk7tV5mrfqzUwfR3\nzrq8dpLv9k1sv+7YAc8957/v0/Zr/DDWOlGoE8kqhLnkTk7tV5krVerq89ppcqVu0SL//Nu71/87\n2ZWIaWKlLuzKFy6s76GrNR22SAnahTq1X2WuVKmrz2unyaHOrFWtg46DbGKlLuzK69p6BYU6keyy\nVOrq8sYk1aJQV5/XTpPbr9Ba1gQ6PrYmhrrwmBTqRPpBlkpdXVpIUi3heWOW3vfph1BXl9dOkyt1\nkLlS18T2qyp1Iv2k3USJwcHWXq0u1QaplvC8aVcZ6YdQV5fXzhxC3e7dzQl1Ta7U1XXhYVCoE8mu\nXaUOWnuDurwxSbUo1NXntTOL9msICbWr1Kn9WjsKdSJZdQp1oW5flxaSVEt43vRzqKvLa0ftV0Dt\n16pSqBPJqlOoW7PGv/EedFCxY5Jm6FapO+IIf7zdqlWFDakQdazUjY21P2VgG7UNdX1WqVuzZvpl\nHXV/NoqI1ynUfeEL8Pjjfp0nkby6VepWrYIHHoDlywsbUiHqWKkz8+N+/HH/b1XqqvtYcjrjDLj/\nfli9uuyRzJ5CnUhW7SZKgA9zCnQyW90qdeCrdU0TDjYzg9HRcseSR5NDXXxJkw6DHB31m825Cj+W\nWTjqqLJHMDdqv4pk1alSJzIXWUJdE4W0MzbW9swFlRSvMPZp+9WsVa2r7GPpQwp1Ilkp1EmvdGu/\nNlU81NVJPNTNslI3MtKDcc2HjO1XUKirIoU6kawU6qRX+r1SV5dJEsE8hLrKBqGlS1vfdxlk2GyV\nfSx9SKFOJKtOx9SJzIVCXbnjyCtn+3VkxN/s6afhiSf8dZUNQgsWtJbQ6fLYFOqqR6FOJKvjj/cH\nq591VtkjkaY56ig45hh41avKHkmxjjwSjjsONm4seyT55KzUhQmzALt2Zb5beUILtssgzzkHjj22\n3rNFm6bPPhaKzMHSpfDgg2WPQppowQL49rfLHkXxxsfh3nvLHkV+OUNduMtjj9Uo1D30UNdBbttW\n0HgkM1XqRERE8sjZfo3fpRahLixr0m+HAzSAQp2IiEges6zUAezcmetu5cjYfpXqUagTERHJo+mV\nOoW62lKoExERySOcCQMyB59wl927c92tHCHUqf1aOwp1IiIiecyh/ZrzbuU48EB/WbdFoUWzX0VE\nRHKZQ/s1OOaYeRzPfNu0CW6/HS6+uOyRSE4KdSIiInnMsVJ32GGwYsU8j2k+HXggXHVV2aOQWVD7\nVUREJI85hrqXvGSexyMSUagTERHJY47t11NPnefxiEQU6kRERPKIJ7SM54JWpU6KoFAnIiKSR0ho\nw8P+xK4ZhEWHwZ/uVqQXNFFCREQkj8WL/XIfixZlvsuaNf5yYgIGVE6RHlGoExERyWNsDD7/eRgf\nz3yXzZvhmWdgw4beDUtEoU5ERCSvM8/MdfOhIdi6tUdjEYmoCCwiIiLSAAp1IiIiIg2gUCciIiLS\nAAp1IiIiIg2gUCciIiLSAIWHOjM71Mw+ZGZ3mNkTZubMbFXK7SbN7BNm9qiZ7TWzm83sBUWPV0RE\nRKQOyqjUrQG2ALuAr6TdwMwM+BzwSuCNwGuAYeBWMzu0oHGKiIiI1EYZoe4259xBzrmzgb9tc5tz\ngVOArc65a51z/xRdNwC8raBxioiIiNRG4aHOObcvw83OBf7HOXdr7H6P46t3r+7V2ERERETqqqoT\nJY4D7k25/j5ghZlNFDweERERkUqr6mnClgDbU67fGV1OAnviPzCzL7X7ZSeccMJ8jUtERESkkqpa\nqRMRERGRHKpaqduFr8YlLYn9fBrn3IZ2v8zMdpjZ9+dnaKmOii6/28O/Iflpu1STtks1abtUj7ZJ\nNRWxXVbO5k5VDXX3AS9Puf5Y4CHn3J6Un7XlnDtgXkbVRmj9dgqWUjxtl2rSdqkmbZfq0Tappipv\nl6q2X28ADjGz08MVZrYIOCf6mYiIiIjElFKpM7PN0bdhBsNZZrYD2OGc+zI+uN0BXG1mb8W3Wy8D\nDHhv0eMVERERqbqy2q/JRYc/El1+GdjgnNtnZhuB90U/G8OHvDOccz8obpgiIiIi9VBKqHPOWYbb\n7AQuir5EREREpIOqHlMnIiIiIjmYc67sMYiIiIjIHKlSJyIiItIACnUiIiIiDaBQJyIiItIACnVz\nYGaHmdlnzOxxM/tfM/usma0oe1z9zMw2m9nfm9kPzOxJM/uumb3HzPYre2wynZn9k5k5M/ujssfS\n78zsbDO7zcz2RPuyu8zszLLH1a/M7BQzu8nMHjGz3WZ2t5lpJYgCmdmhZvYhM7vDzJ6I9lWrUm43\naWafMLNHzWyvmd1sZi8ofsSeQt0smdkC4BbgaOB1wFbgSOBWM1tY5tj63G8Bz+EXqz4L+Cjwq8AX\nzUzP94ows/OBtWWPQ8DMLgauB74O/CzwWvxaogvKHFe/MrPjgZuBYeANwHnAncAnzexXyxxbn1kD\nbMGf/OAraTcwMwM+B7wSeCPwGvx2u9XMDi1onNPHpNmvs2Nmvw78GXCUc+6B6LrDgf8E3uac+7My\nx9evzOwA59yOxHW/DPwV8FLn3C3ljEwCM5sEvgO8Gfg08C7n3O+WO6r+FFUevgNc5pz7QLmjEQAz\nezf+w+mS+HnOzewOAOfci8saWz8xswHn3L7o+9cDfwEc7pzbHrt3nR5WAAAHWElEQVTNq4G/B850\nzt0aXbcY+C/gaufcm4oetyoXs3cu8LUQ6ACcc/8FfBV4dWmj6nPJQBe5M7o8pMixSFt/AtzrnLu2\n7IEIFwH7gI+VPRCZMgI8DTyRuP5x9J5dmBDoujgX+J8Q6KL7PY6v3pWSA/QEmb3jgHtTrr8POLbg\nsUhnp0eX3yl1FIKZvQT4ZeDSssciALwEuB/4eTN70MyeNbMHzEzbpzx/iT/P+RVmdrCZ7W9mbwBe\nCmwrdWSS1CkHrDCziYLHU9q5X5tgCb7XnrQTmCx4LNKGmR0C/AFws3PurrLH08/MbAT4OPA+59x3\nyx6PAHBw9PWnwO8AD+KPqfuwmQ055z5Y5uD6kXPuXjPbAFxH68PPM8Alzrm/Lm1gkmYJsD3l+p3R\n5SSwJ+XnPaNQJ40VfUq6HngWuLDk4Qi8DRgH3lX2QGTKALAfcIFz7rPRdbdEx9pdBijUFczMjgT+\nDl/tuQR4Et/K+5iZ/Z9z7poyxyfVplA3e7tIr8i1q+BJgcxsHH9cwxHA6c65h0seUl+Llvp5B/B6\nYNTMRmM/HjWz/YHdzrnnShlg//oJftb+FxPX3wS80syWO+d+WPyw+tq78ZW5c5xzT0fX/bOZLQU+\naGbXZjzeS3qvUw4IPy+Ujqmbvfvw/fSkY4FvFzwWiTGzYeAzwDrgbOfcPSUPSXy4HgOuxu/owhf4\nmX67gNLWdupj95U9AJnhBcC/xwJd8G/AUuDA4ockbXTKAQ/FZy8XRaFu9m4A1pvZEeGKqGVxSvQz\nKUG0Ft01wJnAJufc10oeknjfBM5I+QIf9M4AHki/q/TQddHlKxLXvxJ4WFW6UvwIOD46BjXuJOD/\naB2vJeW7ATjEzMJkPMxsEXAOJeUAtV9n7y+AXwOuN7PfBRzwh8AP8AeDSzmuxB/o/S5gr5mtj/3s\nYbVhy+Gcewz4UvJ6v3Yn33fOzfiZFOIfgVuBj5vZMuB7+NfPy9FxqGX5MH7x58+Z2Ufwx9SdC5wP\nbEup4EmPmNnm6NsTosuzzGwHsMM592V8cLsDuNrM3orvOFyGn7383qLHC1p8eE6i44S2AS/Db8R/\nBn4jvjihFMvMtgMr2/z4951z7yxuNNKNmTm0+HCposrCe4DN+OOD7gf+2Dn36VIH1sfM7Czg7fjW\n3hh+VvKfAx/XcafFifZPab7snNsQ3WYJ8D5gE35b3QH8pnPuW4UMMkGhTkRERKQBdEydiIiISAMo\n1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiNSSmbkMX9uj2/5l+L4qzOwK\nM/uHHLcfN7MfmtmWXo5LROpL69SJSC0lzhYC/pRX3wLeGbvuKefcN8xsNbDIOfeNosbXSTSe7wAn\nO+fuynG/NwOXAsc4557p1fhEpJ4U6kSkEaJK3O3OuV8qeyzdmNmHgPXOuZ/Oeb9J/LlBtzrn/qYn\ngxOR2lL7VUQaL9l+NbNVUXv2EjN7j5n9yMx2m9nVZrbAzNaY2Y1mtsfMHjCz16X8zrVmdoOZ7TKz\nJ83sq2Z2aoaxjAK/BHw6cf2EmX3IzB4ys6fM7BEzu9nMjg63cc7tAm4EXj+H/w4RaSiFOhHpZ5cB\nBwOvAy4Hfg74GL6V+3ngZ4F/Bz5lZseFO5nZi4B/AZYAbwBeA/wEuNnMTqCz9cD+wFcS128DtgC/\njz+f9MXAN6Pbxt0GnG5mY3keqIg031DZAxARKdGDzrlQhbsxqrRtxbc3rwYws7uAc/EnvL8vuu2f\nAg8BZzrnno5udyNwL/B7+JN7t7MecPiwGPdi4Brn3Cdj112Xcv9vACNACJYiIoAqdSLS376Q+Pf9\n0eWN4Yqo5fkIcBj4WajA6cDfAvvMbMjMhgADbgZO6/I3Dwb+N4TBmDuBC8zsd8xsnZkNtrn/jtjv\nERGZolAnIv1sV+LfT3e4PrQ7lwCD+IrcM4mvXwMmzazTvnUMeCrl+jcCHwcuwge8R8xsm5ktSNzu\nyehyvMPfEJE+pPariEg+jwH7gCuBq9Ju4Jzb1+H+P2HmcXI45/bgj/G7zMxW4tu9f4wPlG+P3XRJ\ndPlo7pGLSKMp1ImI5OCc22tmXwHWAnd3CXBp7gdGzOxQ59zDbf7G94H3m9kvAs9P/Pjw6PK7Of+u\niDScQp2ISH6/iZ+FeqOZfRL4IbAMP3lh0Dn32x3ue1t0eSIwFerM7A7gBuAeYA/+uL21wF8l7n8S\n8N/Oue/Nw+MQkQbRMXUiIjk55+4GfhrfSr0CuAn4IPACWqGt3X23A/8GnJP40W34JU2uwS+nshl4\ns3Pug4nbbQT+em6PQESaSGeUEBEpmJldgA+By51zT+S430n4ZUyOcc79R4+GJyI1pVAnIlKwaAmU\ne4BPOufel+N+1wG7nHMX9WxwIlJbar+KiBTMOfcscCGQp0o3jj/DxDt6NS4RqTdV6kREREQaQJU6\nERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpgP8Hd7IbZv/UczwAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Create a CrossCorrelation Object from two Light curves created above\n", + "\n", + "To create a CrossCorrelation Object from LightCurves, simply pass both Lightvurves created above into the CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr = CrossCorrelation(lc1, lc2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, Cross Correlation values are stored in attribute corr, which is called below. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 201.553125 , 1412.10121094, 2828.54304688, 3948.95050781,\n", + " 5370.02359375, 5750.04355469, 6222.50101563, 6664.92722656,\n", + " 5969.0503125 , 6770.80464844])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.03125" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cr.dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Plot Cross Correlation for Different lags\n", + "\n", + "To visulaize correlation for different values of time lags, simply call plot function on cs." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEKCAYAAADJvIhZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmUZFd9JvjdiBf7khG5VmbWXipJaEESKiTZgNmMYTjY\nGA8wcvdpwE0DPdD2zHDsGdztbmOf4Uzb3dhtjKGbrQ222xhju8E2yMbC7FpcEtpKsqzaqzKzcot9\ne+udP967L15mRsTb7o3KrHrfOXmU9TJDNyIy3v3d3/f7ft+PUEoRIUKECBEijAOxq/0EIkSIECHC\n9YMo6ESIECFChLEhCjoRIkSIEGFsiIJOhAgRIkQYG6KgEyFChAgRxoYo6ESIECFChLEhCjoRIkSI\nEGFsiIJOhAgRIkQYG65q0CGEfI4QskYIecZx7cOEkCVCyBPW1xsdP/tlQshpQsjzhJDXO67fTQh5\n2vrZxwghxLqeIoT8iXX9EULI4XG+vggRIkSIsBXSVV7/9wF8HMAXtl3/bUrpf3ZeIITcAuB+ALcC\nWADwd4SQGymlOoBPAngPgEcAfA3AGwB8HcC7AVQppTcQQu4H8BsA/rdRT2h6epoePnw45MuKECFC\nhOsLjz322AaldMbt965q0KGUfsdH9vFmAF+klMoAzhFCTgO4hxByHkCRUvowABBCvgDgp2EGnTcD\n+LD1+C8D+DghhNAR3j+HDx/GyZMnA7yaCBEiRLh+QQi54OX3dmtN5+cJIU9Z9FvZurYI4JLjdy5b\n1xat77df3/IYSqkGoA5gavtihJD3EkJOEkJOrq+v830lESJEiBDBxm4MOp8EcBTAnQBWAHxU9IKU\n0k9RSk9QSk/MzLhmhxEiRIgQISB2XdChlK5SSnVKqQHg0wDusX60BOCA41f3W9eWrO+3X9/yGEKI\nBGACwKa4Zx8hQoQIEUZh1wUdQsi8459vAcCUbV8FcL+lSDsC4DiARymlKwAahJD7LNXaOwB8xfGY\nd1rfvxXAN0fVcyJEiBAhglhcVSEBIeSPAbwKwDQh5DKAXwXwKkLInQAogPMA3gcAlNJThJAvAXgW\ngAbgA5ZyDQDeD1MJl4EpIPi6df2zAP7AEh1UYKrfIkSIECHCVQKJDv5bceLECRqp1yJEiBDBHwgh\nj1FKT7j93q6j1yJEiBAhwrWLKOhEiHCN4LELFTyzVL/aTyNChJGIgk6ECNcI/p8/exr/6W+ev9pP\nI0KEkbjaNjgRIkTgAFU3cH6jjVwquqUj7G5EmU6ECNcALmx2oBkUza56tZ9KhAgjEQWdCBGuAZxZ\nbwEAGr0o6ETY3YiCToQI1wDsoNPVMO42iNNrrbGvGWHvIgo6ESJcAziz1gYAKLoBWTPGtu7Tl+v4\n8d/6Nj71nbNjWzPC3kYUdCJEuAbAMh1gvBRbrasAAD724AtjWzPC3kYUdCJE2OOglOLMWgvlbAKA\nSbGNCz3VzKraio61Zm9s60bYu4iCToQIexzrTRlNWcNdB83RU+PMdDpKP8CdWm6Mbd0IexdR0IkQ\nYY/jtEWt3XmgBABojFE23VF0+/v1pjy2dSPsXURBJ0KEPY4z66aI4K6DVtDpjY9ea8v9taKgE8EL\noqATIcIex5m1FrLJOG6cKwAYb6bTtTKdTCI+9qCz1uzhUqUz1jUjhEcUdCJE2MN48lINf/74Zdy2\nMIGJjCkkaI4z01F0JOMxzJfSYw86v/6Xz+ID/+Pxsa4ZITyioBMhwh7Gp75zFlI8ho++/Q6kpBgS\ncTJWIUFX0ZBNxTGTT4096Kw2eliuRYq5vYYo6ESIsIex2ZZxbCaHA5NZEEJQTCfGSq+1FR3ZRBwz\nhRTWW+MNOrWOimpHgWFEbgh7CVHQiRCBE15YbeJffPYRbI5x8611VJSySfvfE5kENsa4flfRkU1J\nmC2Mn16rdVXoBo385vYYoqATIQIH6AbFT/yX7+C7L2zgsQvVsa1b76ooWbUcALj7UBk/OLMJZUxW\nOG1FQzZpZjotWdvStyMSlFLUO2awqbSVsawZgQ+ioBMhAgd86/k1MM/L1TGe+KsdBaVsP+i8/tZ9\naPY0PHJucyzrdxTdDjrA+GTTXVWHopuBNQo6ewtR0IkQgQO+8ewqcsk4AGC51h3Lmj1VR081ttBr\nLz8+jUwijr97dnUsz6Gr6MgmJewvZwAAZzfaY1m31ulTalHQ2VuIgk6ECCFhGBQP/uMaXnXTLA5O\nZscWdOqWYMCZ6aQTcdx5oIQnLtXG8hwYvXbrQhEA8Mzl+ljWjYLO3kUUdCJckzi91hqbAeXp9RbW\nmzJeddMMFkpp/PBiDb/1t89D1cXWVaodc7MtZZJbrt+2WMRzV5rC1wdYphNHIZ3A0ZkcnloaT9Cp\nOxR6m1HQ2VOIgk6Eaw4XNzv4qY9/D2/5vR+MRcm12TI3vcVyBgulDC5WOvjYN0/jey9sCF2XnfbL\njkwHAG5bnICiGXhhtTXoYVzRljVkkxIA4PbFCTwztqDTDzTVKOjsKURBJ8I1h1//q1OIEYLNtox/\n/QePQdZ09weFAJPsFtMJLExk7OsPPHNF6Los6EwMCDoA8Myy+ADQVc1MBzCDzkq9N5YMk732RJxE\n9NoeQxR0Ilxz+OHFGt704nn857fdgZMXqvjs984JXY9RPROZBDRHo+LfPnsFmkCKi532nUICADgy\nlUM6EcPzV5rC1gYARTOg6tQOOi85ZI5WOHlevGS8Zr3nh6ZyWIuMRvcUoqAT4ZpCS9aw2VZwaCqH\nN714AbOFFC5siDWFZA4AxUwCP3vPAfzYjTP4t2+8GdWOiiWBooLqEHotFjOdCZwO0CLAzD6d9Fo2\nGccjZ8XLtWsdFcl4DC89XMb3Tm/g49+MJpfuFVzVoEMI+RwhZI0Q8ozj2iQh5BuEkBes/5YdP/tl\nQshpQsjzhJDXO67fTQh52vrZxwghxLqeIoT8iXX9EULI4XG+vgjjx4VNU7J7aCoLwAwEdcG2MI2e\nBkKAQkrCoakcvvAv78GtCybFJdIbjG28mUR8x88yyTh6qlhasW01grJMJxGP4e5DZTx8tiJ0XcDM\n8iayCfzaT92Glxws4YFTYqnMCPxwtTOd3wfwhm3XPgTgQUrpcQAPWv8GIeQWAPcDuNV6zCcIIexu\n+ySA9wA4bn2x/+e7AVQppTcA+G0AvyHslUTYFbi4aWY1ByfNoDORSQi3SWl0VeRTEmIxYl9bKJm1\nHZHy6XpXQTGTgHXG2oK0FEdXcNBhtFY2JdnX7js6hedXm7ZbgCisNmRM5ZJISjHcPF+MjD/3EK5q\n0KGUfgfA9mPRmwF83vr+8wB+2nH9i5RSmVJ6DsBpAPcQQuYBFCmlD1NKKYAvbHsM+399GcBryaA7\nNMI1gwvWfBWW6UyMI9PpqvZYAYb5iTQAYKUuLug0exqKaWngz9LJOHqquHoSpRS/9Y1/QiEt4WXH\npuzr7H1fFSwmWKp2sb9srrVYyqDSVmy6L8LuxtXOdAZhjlK6Yn1/BcCc9f0igEuO37tsXVu0vt9+\nfctjKKUagDqAKUS4ZnFhs4PJXBKFtBkEimlJfKbTU1FMbw066UQck7kkluviNt+2rCGXGhJ0pJjQ\nTOfcRhvf+ad1vP9VN2Aqn7KvT1qiBiYjFwFKKS5XO7YLwqKVVYqsn0Xgh90YdGxYmYtw33JCyHsJ\nIScJISfX19dFLxdBIC5W2ja1BliZjmCqp95VUczs3PznJ9JYEbgRtmUdudTOeg5g1nRkgUHn1HID\nAPCK49Nbrk/mzaDDGldFoN5V0VZ0O+iMg8qMwA+7MeisWpQZrP+uWdeXABxw/N5+69qS9f3261se\nQwiRAEwA2CGtoZR+ilJ6glJ6YmZmhuNLub7R7Kk4eV58UdmJC5sdm+IBzKDTlDWhM1caXW0HvQYA\n8xMZobWGlqwhPzTTEVvTeW6lASlGcHwuv+W6nekI7J25XDWDSz/omFRmFHT2BnZj0PkqgHda378T\nwFcc1++3FGlHYAoGHrWouAYh5D6rXvOObY9h/6+3AvimlT1FEIzTa0287re+g7f+14fGZj6paAaW\na10ccmQ6xUwClAJNgfLhQfQaACyW0lgWWNNpK8PptYzgms5zKw0cm8kjJW3NtMo5K9MZQ9BZLJl/\n57liGjESBZ29gqstmf5jAA8BuIkQcpkQ8m4A/xHA6wghLwD4cevfoJSeAvAlAM8CeADAByil7Cj3\nfgCfgSkuOAPg69b1zwKYIoScBvBBWEq4CGJBKcW//YtnIGs6jk7n8Gt/dUpokyTDUq0LgwIHp3L2\ntaKVgYicpmnSazuDzr6JDJo9TVi/zMiaTkJsTee5lSZusUw+nUjEYyimJWEuAWvNHj7/g/MA+plO\nIh7DXDGNpUjBticw+BM7JlBKf3bIj1475Pc/AuAjA66fBHDbgOs9AG8L8xwj+MfDZyt49FwFH3nL\nbYgTgg/9+dNYqnVxyBEMRGB7jw4Am/aqd9Ut3CwvqLqBjqIPpNdmHTNmhgWHMBhJryXE9ek0eiqu\nNHq4aV9h4M8nc0lhQecz3z2Hh6zmU6e79mIpg6Wa2CZgwBwncf+nHsZ7f+wo3nj7vPD1rkXsRnot\nwh7H2Q3TaPI1N8/ioBUAlqriqY+Lla09OgBs2ktUptPsadY6Ozd/e7CZANNRTTfQUw3kklch6Fjv\n5eQ2+x0GkUGnZgkUPvvOE1v6kxZKYutnDEu1Lp64VMP7/+hxfOnkJfz0730/Us35RBR0InDHlXoP\nMQLM5FM4YPVSXB5D0Lmw2UE6EbMzDKCf6YiSTdcdFjjbIXKaZtvqSRmqXkvEoepUCK1p298MWXsy\nlxQmJGgrJmX72hfNbbm+UMpgpd4VKhgBts7x+b+//BSeuFTDU2OaXXStIAo6EbhjudbDXDENKR7D\nvgmzyHu5Kp76uFjp4OBkdssJmDkwi2oQrbTNgDKZ23nqnxUZdKw60XB6zby1exr/oNO2PdeGBx1R\nQoJhdazFUhqqToWPsmAmqx/72bvwshvMlr+NyOXaF6KgE4E7Vupd7LM68hPxGPYV07g8BgpivSlj\nrpjeco3RXo2umGJ+pW1RTQOCTjmbRDxGhAadoeo1y49NBMXWkZnn2uC1yxa9JkIo2h5Sx2K9OqI/\nZyzTefHiBH7/5+4BAGyOYWbTtYQo6FwH+JX/+TT+8snlsa13pd7bMldmfzk7Fnqt0lZ2bP75lIRE\nnGCjLWZjGJXpxGIE0/mkkPkyLZdMJ2UFHRHWMB1G7Q0JOlO5JBTdsDMinmjJ+uBMpzyeBlEWdErZ\nBBLxGMrZxFgGBV5LiILONYzf/sY/4ZPfOoM/fPgiPv3ds2NZk1KK5XrX9h4DzA1hHEKCQUGHECI0\n6LFMZyqXGvjzmUJKUKbDajqjMx0RA+yYu3RmCL1WtgQGFQFWOGams3PdcbkS1Lqq6ShuCVSm8yls\nNCN6zQ+uqmQ6glj8zoP9GSNPXa5jtdHbQT/xRq2joqcaNr0GmP0UX3miC1U3kIiLOefImo6WrGFq\nQMZxYDKLSxUxNaVKW0Y6ERu6Ac/kU0LUay1561iB7UjbmQ7/mk7HRcQwZVnhVDqKrV7khdaQmk4x\nnUAhJQlXsNU7CorpBOKWo/hUPhllOj4RZTrXER58bs39l0KCdeCzkycAHJ3JwaDA+Y22sHWZRHdy\nQMZxoJwRFnQ228rQLAcQmemMptfsmo6ITMetpsMyHQGU5qjepH0TaaGu3oCZ6Tj7g6bzqasSdC5V\nOji73hr7ujwQBZ1rFKpDKru/nMF0PoknLokfI8w22LlifyM+Pms2ET6/Km58MnM1HlRbOTiZRbWj\nCpFNV9sKyrmdcmkGc1NSuEt5O8poIQFTr4mo6XRd1GssCDPqkRdU3YCiGUNf82xRTIB3or5tjAX7\n+44bv/TlJ/ELX/zh2NflgSjoXKNwNkO+5GAZR2fyOLsuLtNgGJRx3DCbR4wA/7Qq7mTG1mXUjhOs\nWVREtmPWkYZnOqVsArpB0VL4qudaVk1nlCMBIEa91lZ0JOOxoVQpc5rmnem4KfZEUZlO1Dpbg85M\nIYWWrAmf0uqEqht44lINL6y2hPcliUAUdK5R1Kyg8wuvuQH//k234NhMHmcF0lsMdtBxdKunE3Ec\nmsrhBYGZTj/YDa7pAIKCTkcZWEdisG14OI9XaMsaYqSf0WyHXdMRIZlWtKGNoQCQS8aRjMe4N4iy\nOlZhWNCxqExRnr5X6j1U2gpKjs/2tBVgx0GxUUqh6gaeW2mgpxqQNWNPuiFEQecaBZN2vuRQGTOF\nFI7N5FBpK0LdfwFzjko8RlDYZgtz41xeLL3GMp0RQUeEgq3SUuwaxiCIckRgBfVhg3BZMJIFOE13\nFH2oXBowFYMiGkTdFHszhRR6qmEHJ57QdAP3/X8P4mKlg9K2TAcwx2eLxie+dQY3/crX8ddPr9jX\nxnGQ5I0o6FyjYJ3T7FR2dMY022S+aKJQaasoZxOIxbZuhjfvK+L8RlvYQLVKW0Y8RgaOGCimJSSl\nGHfqpafqaCv6QErPXjsjxhHBHFU9vJaUEZzpDFPrMZQF+K+1bHpt8NqzBVMxKaKu4wxkmtEP5Eem\nzXlC4yjqP/DMFRgU+G/fPmtne3tRTBAFnWsULNMpW0qbYzPmzXFmTezJqNoefPJ/+fFpGBT4/pkN\nIetWrHW3BzvAPHlP5ZLcRyiz6ZieMh3uQUfdkU06IbSmI+vIuQSdKQFBx02xx7KONQFBhxm7AsCR\n6b5b+oFyBkkphtNr4jd/QszP0y+85gb89597KQppaSx1Wt6Igs41CrtzOmNuiPvLWWQScZxargtd\nd1CDJgDcdaCEQlrCt58XMw58rSHbm84gTOX5b4KjFHMMEwIzHW9BRwS9pg2VSzOIyHRchQQCve5Y\n0PnwT96Cf/myI/Z1KR7D0ekcXhhD0FmudfHG2/fhgz9xE04cnsTR6RzORfRahN2CWkexOqfNGzQe\nI7j7UBmPnBM7PrrSGRx0pHgML79hGt87LSbTObvRxtHp4fN6JnMp7oVtlumMoteEBR1ZtbviByEe\nI8gk4kJk4h1FH0pxMYjIdNysf0QarDat9/GG2QKkbaq9G2bzeGFNXL0SMDPWjZaCeYe91FwxLVwi\nLgJR0LlGUbP6CZx0071HJvH8atOeSSICZt/K4E34wGRWiMpH1nRcrHRwbGZ40DHpNb5rs011FL2W\nT0mIx8jYMx0AmC+lhdjCdBQdGZdMp5RNoNHTuI5WcAs6E5kEEnEi1AFi0Ht+w2wel6tdIT1RDFfq\nptOCs+l6Kp/CpiBPQZGIgs4YYRjUbuoTjVpH3aKyAYB7jkyCUuBRQdmOYVBUO8rQ4V6ZRByyZnDv\nLbi42YFuUBybzQ/9HRGDxRi9NkoyTQhBMS1dlaCzWMoICTptWXOt6bDA0OFYU3Kj1wghmM6LaRC1\nA96A9/zGuQIoFdv8zP6OC6W+vdS0RRnre6xXJwo6Y0BP1fHouQq+8NB5vPw3/n4sjWS1roqJbZv/\nnQdLKGUT+ONHLwpZs9FTYdDhNQ7Wwc5bUXXGUvAwscQgTOWT6Cg619NotaMgRjBwVLUTE5kE6hxH\nK1BKLSHB6HX3lzNC+ji6iu5a02GBoc1RvtyUNSSlGJLS8G2rnE0KyeQbveGZzp0HSgCAH14U5/jB\n/o6Lzkwnl4RBIZS5EIEo6IwBv/+D83j7f3sIX3lyGZW2glPLDeFrrjV6O07gKSmO9/7YUfz98+t4\nUsC0w80RDZpAP+h0ONMQZywFz5ERNR32XvCkIzZHKOacMIMOv0xH1gyoOh1KMzEsTGSw0VK4HnIo\npWgr2lALHAb2c9ZbwwON7miZOGAeLkRMLW2xoJPauf5CKYN9xTQevyhugijrMXMa6U5bNayrYcMT\nBlHQGQO+aRlt/tD6UIo8EQHmSfSFtRZuXSju+Nnb7j4AAHhcwHNwU3OxOgBv7vv8RhtzxdRQ2sV8\nTswPjN8NWmkNFk1sR5Fz0GFKqqIbvWbNmOGZ7XQUHQYdTDM5YdNrHOnkZk9FMeOimsuKmVra7KmQ\nYmSoA8Tdh8p4/IK4+/rxi1Ucn80jJfWDPfO422tD5KKgIxj1rorHtm3wPxR4IgKAU8t16AbFi/eX\ndvyM9e2ImKTJhpUNG5/AGhY7Kt+1qx11pP8Z0A+EPE/Blc5w0YQTE5kE1z4dpqRyo9cWBcyYYS7O\nznlJg8DoN66ZTk9zfc0ianeA5W6dHu4AcdfBEpZqXSFCGUbPv/z49JbrtgXPHhuXHQUdwfj+6Q3o\nBkXSklkmpZjwTOfJy2Yvzh37J3b8TIrHkEuKkdIyK5DZIf0youi1Rk91PfWzG5TnYLFKe7TvGgNv\neq05or7ghJ3pcLT/WartVFENApNU88x0Gl33v/NkLolGT9viss4DbsIN9n6ICDonz1chawZesS3o\nTOWjTCfCAHzr+TUU0xJed+scAOC+o1NYrve4Skm346nLNcxPpDE7JOMocj55M6w1ekjGY1vmjTjB\nrFN402uNbXbzgyCiX6Y6pBF2OwrphF0T4IF+0Bn9mlnGydMXjAWwRZegY2c6HP/WJr02+jWzzLPK\nubje7GnID6jnMLBakwgG4R/OV0AIcO+RqS3XSxlzmBxvpw3RiIKOQFBK8e1/Wscrjs/gviOTyCbj\nuPfIJIC+C7QInN9o44YR8uFiOiEk01lrypgtpoZSEKIynWZPc92M2CbISzlny8M9BJ1cMg7FmgXD\nA316bfSpPxE3lV486czlWhfxGBmazTLYmQ5H9Vqjp7lnOpZis8p5lk9LHm07JKoJGDAbn/eXMztq\nlrGYaay613p1oqAjEM+tNLHakPHKm2bwz+49hG/90qvs2S4ieGeG9aZsmx8OQjEjCTmRrTZ6Izcj\nUZLpeld1VTUlpRikGOEm4W32NBgUW2zuhyGb4iug8EqvAeZ7zjOzXKp1sa+Y3tGVv3Nd87nxdHxu\nePg7s4F6vDfiZk8bOlIBgC1wEMEgnNto2cai2zGTT+GioKm4ohAFHYF44JkVxAjwqptmrNNh2j4Z\niwo6lFKst8yMYxhEZjrDRASAU73GbyPSdNPK3k3VZK4f55ZlNWVv2QbgyPA4ZRzsbzdIvrtj7USc\nazF/qdZ1pdYA2M2jvN5vWdMha4ZrRssUXfwzndE1HVGZDqUU5zc6Qy2eXn3zDB46s4nVRo/ruiIR\nBR1BoJTiL59awY8cm9qSdZTt9F9M0Kl2VKg6HZlxFDNigo5rppPgT6+xk7TbCRgAckmJW2HbzjZc\nemUA/j0rbG032TJgZlldzvSasyt+GKR4DCkphjbv99vlNbNMpyKipjNibSYR531frbdktGRtaA/a\nW+8+AIMCf/b4Za7risSuDTqEkPOEkKcJIU8QQk5a1yYJId8ghLxg/bfs+P1fJoScJoQ8Twh5veP6\n3db/5zQh5GNkWMGBM55baeLcRhtvevHCluvMHFJEAxvQly2PclwupvnTa11FR7OnDRUvAH0hAc+g\nw16Hm5AAMDd/XmuPskXZDjbwjFfAa/RUFCxPNzfwfM2UUlyp97Bvwj3TAUxXgg6nQMtoK1d6Lctf\npWgY1JXak+Ix5FP87Y7OuTQ+H5nO4ehMDk9fFusezxO7NuhYeDWl9E5K6Qnr3x8C8CCl9DiAB61/\ngxByC4D7AdwK4A0APkEIYV1UnwTwHgDHra83jOOJM8vxuw5u7ZVhyi5RmQ7znRpd00mg2VO5eqC5\n9egAQEqKgRC+6jV2k7vRLoAZ9HitzdRobq4AAOzRzrwynXrXXcXFkEnwCzptRYdmULvXyw3ZZJx7\npuNGoybiMRRSEmpdfvfXRkuGZlDX3iSzH4vvYY7tI6PcNorphJBpqaKw24POdrwZwOet7z8P4Kcd\n179IKZUppecAnAZwDyFkHkCRUvowNQenf8HxGKFgev2Z/NaMIyXFUUhJ4jIdl14ZwPyQGhTcNgTA\nvUcHMA0Zsxw3QaBPZ7ipmgDOm+AI1+Gd6zLlHJ+16x13iXh/7ThHStF7gAcsOpNXptPzlukAZvbJ\n0/Nt2XJ4nnfJ8AoCjF0vVTuQYmRkwMun+L5e0djNQYcC+DtCyGOEkPda1+YopWxA+BUAc9b3iwAu\nOR572bq2aH2//bpwrDfN8cmDbO/LuSSevFwTYkXDpiaOFBIwpQ3H3hEvmQ5gigl41hgaPjKdbFLi\nqCDz5goA9IvqPDOdYb1Q25FNSdyCPDvFe9n4zbX5BXm2tpf3O5+SuJ78VyxHh3mXWtaEgFrp5WoX\n86XRasFciq9YRDR2c9B5OaX0TgD/C4APEEJ+zPlDK3Phwg8RQt5LCDlJCDm5vs5nsuV6U8ZUbrAZ\nZDmXxA8v1vAzn/gBl7WcWGv2kE9JI12A+41s/G4QlunMjQh2AN8aA9A/AY+9puOLXuNb06l5aIa1\n107woxTtbMODUhAwMx1eJ3A/a+dS0pbx0mHBMp0Fl0xHRNP1UtVdLZhL8g2yorFrgw6ldMn67xqA\nvwBwD4BVizKD9d8169eXABxwPHy/dW3J+n779e1rfYpSeoJSemJmZobL899oyZjOD96AnQ1zvO06\n1pujxzYD/ayA5w2y1uwhKcVcN0PefSN+azo8hQSEwNVtGRCT6fij18ZbzBextp/MspDmuwlfqXeR\nTgx32mDg7bEHmJnO/nJ25O/kUvxUmePArgw6hJAcIaTAvgfwEwCeAfBVAO+0fu2dAL5iff9VAPcT\nQlKEkCMwBQOPWlRcgxByn6Vae4fjMUKx3hq++Vc7/Q/mGueBU9WOux+YnenwpNcaMmYLw90IGDLJ\nONfm0EZXQ4zAdagYwF8ynU8NN4B0gqcbAqXUDDq+6DXe2Ya3tfMpiRu91upZQT7h/nfOpySutkPL\n9R7mJzKuf+timq/HnqIZWG32sL/s5nMnRfQaB8wB+B4h5EkAjwL4a0rpAwD+I4DXEUJeAPDj1r9B\nKT0F4EsAngXwAIAPUErZX+H9AD4DU1xwBsDXx/ECNprDM53PvPMEfuIWsxy1wnnIVrXtzveL6J5e\na47u0WHgTa8xJZe3zZ/nydt9tgsDTzeEnmra6fih11Sdcsmo+zUdb/RaNhXnJiRoyTpyScl1dhHA\nv7C+UusEOoDWAAAgAElEQVS6KtcAM9NpKzo3X8WVeheUuvvc5VN8bZZEw9unZ8yglJ4FcMeA65sA\nXjvkMR8B8JEB108CuI33cxwFSik2WsrQTOfOAyX84utvwt8+u2rzxbxQ76p40fzOOTpOsM2yybHo\nudqQcXyE3xtDJiGh0uYXaCseTTcBM8uSNQO6QT31uIxCS1Y91XMYeAU8dpL2GnScvVETmXBnTHZI\n8UJxAVZNh1Om05Y128/NDfm0ZKsLeWCl3sOPHpt2/b0J6zBX76q2A3QYsMFtXug1wHyPkpK3e+Fq\nYrdmOnsaja4GRTdsO/1BYBMAeWc6tY7i2kfBZL486bXVRs9VuQawXhl+6262ZU/jBQC+TZpsvopX\n5Didvv0GnSzHwXmNnop0YvS46O1r91QzyIdFS9Y8B3mmXjO1RuGg6QZWGz1PLgy8J3kOGlE9CCzo\n7BUxQRR0BGC95cUVIIF8SsIKx0xH0Qy0Fd2VXrNn6nCi15gbgZuAATDn2qw2ZG5UwGZLsf223MBz\ntEKr530TBKxMh0NNp2bZu5QyHgMta0zlEGi9jIsWtbbfoEMpH+eLtaYMg7r36AD9njzWPhAWzJ9x\nujD6b83eF559dyIRBR0BYA2abpvw/ETansTIA6wLe8KD8zFP/zW7EdZD0Ln3yCS6qo6nLvOZnlpp\nK5gckVE6YXugcdiM3IZ6bYdpCTP+TIdNa+WV6XgVEQD9LItHXcek1zwGnTS/k789KdVDpsMsoNY5\niYOqbQUpKWb/DYeBt7efaHj6KxJCUgD+VwCHnY+hlP66mKe1t+E1LZ4vZbhmOnVLFVfysDEU0/ws\nO5i7wig6keHeI1MgBPjBmU2cODwZal3doKh0FEx7pNf683zCv+6mi+vwdmQScS7BLii9xuPU72VC\nqxO8M52DudG1DYa8g26ac/ldNyzXvPXoAP1DFy9FKqtXuolk8o6azl6A10znKzCtZjQAbcdXhAFg\nH9R9LoqX2UKK26kI6EuxvXSrFzMSt0yH+cgNcl/YjnIuiVvmi/jBmY3Q69Y6CiiFZyEBzw3YL73G\nq5ciuJCAQ6D1MCzPiRzHTMcPvcYOAzxk034yHbMpO84v0+konu6p3B4LOl7vmv2U0rEYZV4LWK51\nMVNIISWNToun8klsthRQSj1Jft3A+H4vH9RiOoFVTtwzy3S81lZunCvgH85X+K3rUSnEa3KpblB0\nVd0z3cPW5hHs/Iw1ABwTPHlkOl0Vh6eGG09uR5ZjpuOHXstxHCC3XOshl4x7GmEBmNkO70zHDflr\nVEjwA0LI7UKfyTWE5XoXCx4GXc3kU1B0g5uKrObjFFzk6IhrZzo5702DPG4QNhveq3qtLyQItzbL\nGnIjrIa2g5clTFfVkZJiniXf2QRPes1nHesqqQXZ7/GwwlmpdzFfcm8MZTDZCz6HuWpHRdnLOPQ9\nlul4DTovB/CYNavmKWs+zVMin9hexnKti0UvEss8k1jyORnV/dBraX702mZbQdKaJ+IFzAU4rKSV\njST2mun0T8DhNmBWlM94cEFgKOUSqHbU0K+5o2ierHcYeAVaIIhMnE+BW9Z0qDr1Tq9ZE1V5bMIr\n9Z6nxlAG7pmOh3u5Xzu7hoQEME03I3gApRTLtR5eddOs6+/aA91aCo5xsHyrdhRIMeLp5mTmhDyo\nvWpbQTnnzRUAMDMdVaeQNQNpD7Ymw8AkpV5rOv33O9ymwG5uP5v/dC4FRTOsscfe6yLb0VH0kWau\n28HcJ2qdcAcMzep4Z5mTF7DnGXbzZ0HLi9URwFe9tt6UceNcwfPvzxbS+O4L4euVmm6g3vWW6aSk\nOBJxPo4X44CnTIdSegFACcBPWl8l61qEbah1VHRV3RO9xjvTqVmW9142//5MnfCno822t4InQ4HT\nprDRUkAIPA8VY4Ve5ogdFIwu8hN0nAeMMOgquq8MKyXFUUxLoT9jrMfIz2tmmWXYz5jt6O0xWLND\nFw/HjZZPSnGmkEKzp6EXsieLUeVe7ytezcfjgKegQwj5PwD8EYBZ6+sPCSE/L/KJ7VWs2Dbo7ik5\nr5M3Q7WteFY18fRfq7Rl+7V4gV34DMm5N7qmFc2oWSNOEEIwW0iFbt7r02veNyNGATJKMCjMTMdf\ndjhdSGE95GeMveasRysa5++G7U+yR4N7XDspxZCSYqFrpZRStBTNs4gA6NcXww5p7NdJvd1X+4pp\nnN3YG4JirzWddwO4l1L6Hyil/wHAfTBHQEfYhnUfjZKT2SQIAdY52WZstr135/edpsMHnWpH9ZXp\n8FLbtGR/GwJg0h9roTMdf3QP0N+MwlqkdBXdtVlwO2byKWw0w63bCUApJuKmZU7YTIep3/yoBUvZ\nhF3jDIqOooNSf+vah4uQQZ61P0x6vK/uPTKJxy5UuY9KEQGvQYcAcH5ydOtahG1gGn0vQUeKx1DO\nJrnRa5W24jnj6M/U4aEi8+5/Bjjpj7Bcv3cZLcNsMXym0wkgJJi2N6OQm7/qT0gAmJlO2M8Yo24y\nPmo6gBmYw6rX+pmO97UnMgnboSP0uj7oNV40KqtXep0Qe+/RKXQUHU8v1UOtOw54DTr/HcAjhJAP\nE0I+DOBhAJ8V9qz2MFjQGTbWYDum80lu9Jofx2VGw1U74W4O1ZJ8e6UBAH6FXr9qKsDKdJpyKBUZ\nG7ftp6DP/i5h/9Z+hQSAmemEptcC1HTM3w8/68XPlFaGUiYZerZNM8C60zk+dVpGe3u9r+45Yrp7\nPHx2M9S644Cnd5NS+luEkG/BlE4DwM9RSn8o7FntYWy0ZOSScc8n8Ok8H1cC3aCeBrgxsMFQlyqd\nUOuyG9trsAOc9Fq4TcFPlzrDXDGFjqKHUpGxTdTPBpyUYlwK+n6FBIB5sGHF7aBqwSD0GmDKecNm\nOizL8pPVFjMJXK6G+2y3A2RYdqYTsqbTsCelet9H9hXTOLu+++s6IzMdQkjR+u8kgPMA/tD6umBd\ni7AN603Ztjj3goVSxvZqCwO/ljClbBLFtIQLm+FuTCbF9SpgAJyZTvgTsN+gM1sM748VpE8HMDeG\njZCbURAhwUwh/Om7q/jP7tjvh81o/Vr/ACYtFVYkE4TWyybjSCdiNj0WFI2uCkKAvI/3e24ijdUG\n3/lcIuBGr/0P67+PATjp+GL/jrAN603Ztjj3ggPlLFYbcmiJpd2z4mPtw9M5nN8MdzIKsiGw5r2w\n6rVAmU7BVBWGERPYp36fWcN0PhWaXguW6YSf8xIu0wn32a52VCTjMV9rmzUdPkHHT4ZFCMFULnwN\nrdEzRTJeJqUyzBVSez/oUErfZP33CKX0qOPrCKX06Hie4t7Cekv2JCJgYDTXcshsp+9/5p3mOjSV\nC53p1Nk4BR9BJ50wbVx40Gt+hQTTHE79HVUzR1B7lGozTOaSoQrMmm5A0f01aAKOoBMiuwvSEAvw\nsf+pdRRMeOw/YyhlEugoeqi5TexQ5KdPB+h7KoZBo6f6pn/3TaRD96CNA177dB70ci2CuZl5FREA\nwIFJ0679UjVc0KnY5pfeg87hqSyWat1QMkuW6ZR8SKYJMV0TwmQ6lFK0fY4XAPhIxbsBKC7A3LzC\nUE1BGjQBZ50hPL3mN8sy3bVDNkp2VM8NwAwT1u+HERMEodcA8+AXth+r0fXn6A0Ac8U06l01NGsi\nGm41nbRVu5kmhJQJIZPW12EAi+N4gnsJsqaj1lF9ZToHJvkU9Dd9WsIAwMHJLHSDYilEwAtS0wHM\nGznMHPuuqsPw2UMB9Jtiw8i1O4rum1oDzGDRDbEhBK0l8RhZ3afX/NZ04qFrOtWO4nlSKgP7PPII\nOn4/Y1P5FJdMx8/sIgD2uPjdTrG5ZTrvg1m/udn6L/v6CoCPi31qew/sg+Yn05krpJGIE1wOm+m0\nvI81YGBZVpi12U3t9wYJm+kEkdEC5jA1KUZCFZmD1FUAIB1yvEHQugprJu2FoJq6ij93a4Zy1pQu\nG0ZwiXrdsnfyg37QCb75t2QNiThBSvJHo5qZjhJKlt/o+pvSCpjKTAC4wnEwpAi41XR+h1J6BMAv\nOmo5Ryild1BKo6CzDeyEsW/Ce9CJxQgWSxlcCinv3GzLmMgkkPBRZ2ABKgzVVO+qKPiwomHIh6Sa\n2GP90muEEBTSUqhMp634ryUB5pgBRTOgB9yAg3i+AbA3zTCZTtunuzXDZC4J3aChMg6vw8yc4JLp\nWOpIv4a4xUwCimZADhHk/Y5DBxyZDsfBkCLgtU/ndwkhtwG4BUDacf0Lop7YXgQ7Yewrupt9OjE/\nkcFqyNPJ5aq3GT5O8PBfq3f8n8gAM0MJ05hqUx8+6R7ActgOEWg7AaxoACCTtDZ/VfedoQHBPN8A\n82CTlGLoaeGyLL/UGrC1b8VPAzEDpRTVjv9Mh9UYw7hrB3G8APpZf6OnBu6LMuk1/zUdAFjb4/Qa\nAIAQ8qsAftf6ejWA3wTwUwKf154EM/t0G1O9HZO5JCohnQEubLZxaNLbDHkGHkX1INQHYG78YbKN\nIBYlDIW0FJpeC3Lqz4SsrQSl1wCTYpPVcPRa0EwHQOC+lZ5qjlTwI1QB+plOmKDTDCDJB2CrzoJ+\nvg2DoiX7FxIU0xKS8Vhofz/R8MqJvBXAawFcoZT+HIA7AEwIe1Z7FKuNHpJSzLfSZjKXtF1lg8Aw\nKC5Vuzg05S/oZJNxxGMklP9avav6FhEA1hC5kNQH4L+mY64dLuCZg9T8r8uyo6sRdNKJWGghQbig\nE4zyqdoj2H1mOpkEpBgJJY33O9aAIaxYpSlroNR/nZQQgkwyzmVgn0h4DTpdSqkBQLNcCtYAHBD3\ntPYmVuo97CumfXPA5VwSta4amOu/0uhB0Qwc9Bl0CCGhJ4jWggYdi+IKWmwNKmcFzKATVjIdREjA\nNu2gCrYgnm8MmUQ8FL0W9DVP5cI1ptZ8TMN1IhYzx1hcCUE1Ba3d9TOdYJ8x9ji/9BpgfsZ4jCYX\nCa9B5yQhpATg0zDVa48DeEjYs9qjuNLo+abWAGAymwClZhNcELAGz0OTOd+PLaTD2YUEpdcKaXN6\naC8g5RPEj8u5dqhMR9V9jTVgYJt2UC+ycJlOnIOQwP97Xc6Zn42g9Bq7J/zSa4BpCxPGeSKIzRLQ\nF7cE/Ywx5oFlTH6QScbtfq7dCq+TQ99PKa1RSv8rgNcBeKdFs+0JEELeQAh5nhBymhDyIVHrXPE5\nT52BFViDFtYvVkwrG7/0GmB+sIMOu6KUBhYShK0nNQOq14D+qO4gYE2p2QCbUVh6jZ36g5yAU4l4\naMl0kGCXkuIopKTAQacaMNMBzHaEMJlOM0DzMRA+02mEzHTCHC7GgZHvKCHkJaN+Ril9nP9T4gtC\nSBzA78EMlpcB/AMh5KuU0md5rkMpNTOdov+gwyiISjvYh/RipQMpRgIFvGKITKer6lB0w3fjHtCf\n59Psqbbqxg/asoZ4zH8PBWAGqraiQ9MN31JvWTOg6jTQZhSWXltt9FBMS4ForkwiFqpTvSVrgZSC\ngGULEzTT6frvP2PYN5HG989sBFoXsNRrAV4z+2wErZWyfr+JAIE2m5BCu3qLhts7+tERP6MAXsPx\nuYjCPQBOU0rPAgAh5IsA3gyAa9CpdlQomhGIXgtLQaw3TesdvxsoYAadsxutQOvaJqO5YEICAKgH\nvDGD9lCYa1uGo7Lmm7ZpdIOfQlmmE5RzNzNpf7J4hnQiHvjzpWgG1lsy5gJ8tgFLnRlQSBDU8QIw\nJcTNnhZI+KEbFB1FD6SOzCclEBI80zln3Y+Hp/zT5ZlkPDBNPy6MfEcppa8e1xMRiEUAlxz/vgzg\nXt6LZBJxfOKfvwQvmi/6fmxYWWklYA8EYNFrATf+apvN0vHeDNtfNxy91pKD9bpsWbsbIOgENIEE\n+jWdoJnOlUYv8MafluKBM52VeheUAgfKwQLeZC4VeLZNta0gk4gH6ndhHfqrDRlHpv39vcIIVWIx\ngnwyOG19Zr2N+Yl0sAbkZBzLtd1Nr3nt08kSQn6FEPIp69/HCSFvEvvUxgdCyHsJIScJISfX19cD\n/T8yyTjeePs8jkz7P50w6iBoTafS9j68bTvCKLlYb1GwTIdt/EGDjho46BQczXt+YfPtAU7eYWs6\nV+o97Cv6D/CA+fkMGuyYTdL+sv+aIWDWY4I6A9S6/s0+GRjVHcQWJsgANyfC9KGdXW/h2Ew+0GMz\nIdRrv/nAP+LDXz0V6LF+4GdctQLgR61/LwH4f4U8I/5YwlZ5937rmg1K6acopScopSdmZmbG+uQA\nk/rIJYPTH+EyHdMCPojTNOstCsK3224IAW/MIKOq7bVDiBjYRuK3hwJwGG8G2PxV3aS49gWm12KB\nlYIsS9kfMNPJJIJnWbWOEki5BsDOCoMYYIZpPgaYQtL/54tSijPrbRyd8X94BcKZyj52oYrnVhqB\nHusHXoPOMUrpbwJQAYBS2gHgn0y/OvgHAMcJIUcIIUkA9wP46lV+TjtQDtEgGi7TCS7vrARwtu6v\nGzbT0QPRD0C4Qm+Ymg4TPQQ5ia43ZVCKQEIVwDzY9AKegC9VuogHFKoA4bKsWgALHIapELR1M0Tz\nMRBclr/elNGStcCZTi4ZXEjQ6AUf4e4HXoOOQgjJwBQPgBByDMDudpWzQCnVAPwbAH8D4DkAX6KU\nis8hfWKmkMJq0/+JTNUNNHpaoGwDcNY3/G/+1Y6CGAm2AacTcSTjscAURKtnGo0GwUQmuKS1add0\n/L/mWIwEPvVfCWAm60Q6RHPo5WoH8xPpQEIVAEhLZpYVpBE4iNknAwsYQT5jYem1QkDa+tyG2f5w\nOABND5gBvqcGM5U1na2DvV4/8LrCrwJ4AMABQsgfAXgZgHeJelK8QSn9GoCvXe3nMQqLpQyeWar7\nfhyrA036GN7mBAsYQTj3StvcEPyM1N2ydia4G0Jb1pFLBTNT7NNrATIdu6YT7OY0O8b9r7sa0EyW\nIS3Foeo0kEz8crUbmFoDzJEOgCk39ysIqHXUQNJhAJDiMeSS8UCHCx702uk1/39nNmI7KHPhlOX7\nDZjNACajQeD66SOmJvUfAfwMzEDzxwBOUEq/JfSZXWdYLGewXOv5njtiU1wBT4NMrh1ExFDtBK8l\nAeF6hFqyhnwq2A2St+m1IJmOiriVsQSB6Qzgv7bCNqNyANEG0He4DtIgut6SMVsIRq0BwQUUlNJQ\nQgIgeMYRxtvPXDdYTadfMwz6dzafr9+DjWFQNGUtUK3SL1xXoJRSQsjXKKW3A/hr4c/oOsX+UgaK\nVSz20ywZpq5iPo41pvoPOpW2EjjYAUAhE0zVZBgUbUVDPmCmE4+Z47KD0C6NrnljBukPAlih1/+6\n9liDEMEOAHoBTsAdJXhWuWVtn/ReU9agGzQwvQYEr62EkUyb65rqNUqpr88KOwgFkeQDsCfa+g3w\nbcU0Gd1NNZ3HCSEvFfpMrnMsWvSF3yme4YOONe8kgCFjta0GPnkDpnNwEOv5jqqD0uDUB2CNNwh0\nElVD3ZhBJa1sww46nyUtBZdr9xQ98LpA8Eyn1g7eGMoQNugEFasU0wlohn9vwWaIPjCgT6/5/Ywx\nqnkcNR2vQedeAA8RQs4QQp4ihDxNCHlK5BO73sB6IPw20VVDBp1iWkIiTgLZlFQ6SqDGUIapXAqb\nAazn+9RH8M3IHG8QpE9HC3VjZgIab/YUHYQgkO0P4Kyr+F+7qwbzXbPXTvSH1/lBGAschkLAv3NL\n1pBOxHxN4t26LhMx+Fu70VORTcYDizYyAYMOe57jyHS83j2vF/osImDRmvq5VPOX6TDL+KCyUkII\nyln/NiWGQVFtK4EaQxmmC0lstBTfFET/FBp8IwzqxNDsqSiECHaZgP1YPc1AWooHpvXSVrDye/JW\ndQOaQQPTeoCT2vO3NjP7DJNNFzMJXKr4d0NoBRzgxuBsQJ71QZeHLeZnAw4KtJ2td0PQsQwz/4ZS\nerPwZ3MdI5eSUMomfNNrV+o9zBRSgU9kADCVT/neCCsdBZpBMZMPnulM51JQdMMqYHr/sLdCOEwz\nFNKJQE2DzZ4WyM2bIZeUAm2CXUW3M4YgCGrBw07MPOg1v1Jx5iE2EcBQliEojRp0rAFDUIVkoxvM\n2ZohG3B8Rj/T2QX0GqVUB/A8IeSg8GdznWO24J9uWq53sRCwaY9hKuffBZjNKfFzituO6UKwepI9\nSyeg6zFg0orBhAThajq5VMCajhqurpIOuPGz3w8yS2f72r5rOizTCaVeC+aBFsbxgq0L+O8RasrB\nRoUwBD1chLF38guv72oZwClCyKMA2uwipfSnhDyr6xSlbNKmFLxiudbFjXOFUOtO5pK46PP0vWY1\nss4WwtV0AGCjJfvyrLO7xUNmOoFOwCFpl1xKsjM1P+iqejiKK6CQwFbNJcNnWX7Va1U70wlXu1M0\nA7KmIyV5f//CjHIAgs/UaXQ1TAXsuQOCCwnCChj8wOsK/17os4gAwJzrzqaAegGlFCv1Hl5542yo\ndU3reZ+ZTtPKdEL0b7Cby292F7ZbHDBrOkEkrZ2Aw8wYckkJbdn/uj3VQCoMxZUMVszvhJRqOx8b\nJNMppKXARXVga8aRynt/DbWOEmi0wKB1/aDZUwOZBjNk7T4dvzWdXUSvAQCl9NswG0QL1tdz1rUI\nHFHOJn01ada7KjqKjoVSeHqtJWu+lE3rLOgEdD0GYNeD1n3Sa2HlrIB5AmYzU7xC0cyieph1cykJ\nBvVfVJc1HZkQNR2m9PObZbEglQlx6k8lgjWm1kJY4DAE3fzXm3Koz3YxoNWS6X8W/L3OpySkEzFc\n3Gy7/7IDzZ6p1vOTDQaF19EGbwfwKIC3AXg7gEcIIW8V+cSuR5SyCdS6qmePquWaSXEtlIJblAB9\nCx0/2c6aNcUyTJ2hnAuW6Wy2ZMSImRkGRSGA0zQrzobJdFhDq+/NP2SvDNvIWj43X1bT4ZHp+DUc\nrXWDm30yMKWhn81f0QxUO2qoLD6XjCNG/AU7SqmpXgvxuY7HCO49MoXvnvY3MbURsv/MD7wenf4d\ngJdSSt9JKX0HzGmcEeXGGaVsEopmeD4FL1vy6rBBh2UcTBzgBWtNOZSIAAAS8RjK2QQ2fAad1Ubw\nSakMrNfGz6bQVlhRPQS9lgpmU9LTwgWdbIBNEAjvhAA4hAQ+qb1qRw081oDBObDPK9jncSZEvZIQ\n0/XCj9VSTw0+Ct2JVxyfxtn1tq+ev7CqOT/wetfGKKVrjn9v+nhsBI9gpzqvFNtK3Qo6IdVrzA3B\nT4/QWlMOJSJgmMqnfKvXrjR6gcaCO1EIMFqha2c64eg1IFimE2bjZ5ugX7qno4YXEiTiMUgxEkgy\nHUa5BgRr0uzXK8N9vpkVjlew5xi2V+YVx82ZYA+d2fT8mMu1LhYCzmryC6+fpAcIIX9DCHkXIeRd\nMD3YdrVr814Eo4u8WsNshnQjYAjihrDW7HEJOtP5ZIBMpxeK+gD6NFfbB+XTljlkOlbAYv8vrzCF\nBOHOeYV0Ak2fwa6nhK/pAJYTg++go4aiUAHHeAMfr5vVK8NkOoB/uXaDU6/M4WnzfvbTh3ap0sHB\nEP1nfjDy1RFCbgAwRyn9JULIzwB4ufWjhwD8kegnd72BUQk1j5lOo2vKd8PQTIApSS2kJV+NqZVW\nOAschql8Cs8t+5tWuNro4cThcqh1bZWPj82ozSXTsYKd380/pGQaCOZD1uVQ0wGAlM85QrpB0eiF\np9dY0PHzd+63A4Q72Pi1WmKHzTAScQBISXFkk3HPh9dmT0WlreDg5HiCjttu9V8ANACAUvrnlNIP\nUko/COAvrJ9F4AhGr9U8Uj6NnsrNinx/Oes56BgGRUfVA7s8OzGTT/nKdGRNR7WjYi7khmBnHD4y\nHVbfCGO/wzbBtt+aTsjmUMAMOn6FBDwk04BJz/lR7NW7KigNbu/EkA2Q0a41ZBCCUP0yQF+W73ld\nDm0IDKVMwnPP36WKed/vlqAzRyl9evtF69phIc/oOkbZznQ8Bp1uOKWLE/vLGc/0WtdyeQ4jHWaY\nyiXR6HmXazOxw1zImg7bjPwU9HkKCfxkOpRS9DSDQ6aTQFP2V9NhmU4YCx7Av9Epy/bDSqaTVj3J\nz995vSVjMpsMZS0F+G9AXrPosDBSbYaJbBL1rjfG5GLFlFfvlqBTGvGz8VSdriP4FRI0OE76M4NO\n15Ncu82hT4ZhKu9vng/jqf3MHBqEILUVvkIC7+uqOoVu0NAbfxB6jdF6QY1GGfyOy2an9LCZDiEE\n2WTc1995rSGHrucA5md0tdGDpnvL8NaaMqQYCTWjisHP2BDmRjKumo7bp/gkIeQ92y8SQv4VgMfE\nPKXrF+lEHOlEzPNgs2bIRjIn9pez6Ci6p5Q87IArJ6YtCmOj6S3oXGmwsc3hgk46EQMhPjMdLkIC\n/zWdsLN0GPIp//RaV9FtG5swSPvMdHha7edSkq/3e73FJ+jcMJuHqlNc8GgxtWoFu6Dj350oZROe\nD68XKx2UsomxOEwD7jY4/yeAvyCE/HP0g8wJAEkAbxH5xK5XLExkcHbdWzdxo6eG9l1jYJt/taO4\nquE6HGgmBpbpbHgcrbBh8d7TIfl2QohlSeN9I+xwyHSkeAwpKeYv6HBwegb8S3gB828dltYDzOde\n9+G20TcaDb92LiX5cp5Yb/RwbGYq9Lo3zOYBAKfXWjg2k3f9/bVmL3TvG8NEJun58Hqx0h0btQa4\nZDqU0lVK6Y8C+DUA562vX6OU/gil9Ir4p3f94cThMk5eqMAw3GkuNjqZB/pqLvebk2emwxpTWTBx\nAxNZhFX4AOaG5ifT6Sg6EnGCZMBBagz5lORLSMAK8DyEBIpu+LI76ql8Mp1swp+7Nq/XDJjZpdf3\nm1KK9ZbMpZh/bMb0UDu91vL0++ucet+APr3mhS6/uNnGgd0SdBgopX9PKf1d6+ubop/U9YyXHp5E\nraPiBZcPqmGEt8xwwpbyerg5+dZ0LCscjzUdHiaQDLmU5EvVxOvUb9I9PmpJnGTLQXzIwrpbM5h0\nj/8Vt7sAACAASURBVI9GXE6vGTAPVF4OU4D5+VJ1yoVeK6QT2FdM44zHoGP2n/EJOqWsOS7b7fOt\nGxSXq7so04kwftx7xEzrHzk3upu4rWgwKL9Jf/3CuvuGxMNw0143JSGTiHvOdOoc/LgYssm4r/6N\njqJxe81+HAl6nBRkQYJOR9G4ZDqTOdPM1ksGD/Cx32HIpeKe3+/1Fh83AoYbZvM4ve4edJjfW1iB\nDEPJGnxXdTnMrdS70AyKQ1HQuX5xYDKDQkpyreuwjYN5iIVFzkc/Q4dDv4oTU3nvQ+RqHcW+ocIi\nl/RHc7U5FdVzybivmk5fthwy02FO074yHYMLxTWZS0I3qOeAx8QTYV0YAFbT8bYuk+TzyHQAYH4i\n7elAxTvYsYOZW13HVq5FQef6BSEExYy7vr/ByaeJwU//CE96DTBvEK9FTx7OwwxZn1M8OyEHezFM\n5pK+/OZ6nIJOPoAPWVfRbMVdGPRpVG8ZbU/RQQiQClk/A0x6zSuNut4KP5zQCfNedr+nVjn26ABO\nd5PRf2s2On3X1XQijBde+imYay4vO/JsEHqNwwYMmKIAr0Gn3lG5iAiA/kA1rwg7wI1h0WrE9TrC\nol9UD3e7skZLP6PJ27IeSq3HwCyTvPZjdVUdaSl8fxBgZpZeaVTemU4xnUBL1lx7dezx7xwEDEA/\n03nfH5wcaeR7YbMDKUYwH7LZ2g+ioLMLYQYdl0yny2aac6LXfIy5bcsaMok44hz6CQDzxvTq9lzr\nqqG71BlM9Zo/IQGPoLO/nEVb0T037/GQagOwh/0xd3IvaCsaFxp10mfA66kGFyoTALKWYMRLPWm9\nKSOTiHNRZgL9+9OtpmT7vXHKdA5NZXH74gTaio7vvbA+9PeWal3sm0hzEeZ4RRR0diG89FPwptf8\n9I+0FZ1bPQfwnukYBjVrOhyFBP4yHQ1ZDpvRYsnfKIk+nRm+T6eQluzhf17QkXUuNCobFOhW2Gbg\npZoD+o7iXlyu16yJoTwyLKB/f7rN81lryIjHCKY4mOgCpunnl//3HwEAXKkPpzRX6r2xjTRg2HVB\nhxDyYULIEiHkCevrjY6f/TIh5DQh5HlCyOsd1+8mhDxt/exjxPrEEEJShJA/sa4/Qgg5PP5X5B9e\n6DXWmV8OOdbAiZzH/pG2zEfFxeClhgUALUuxx4tey1pNg15oLt2gWK7xkbTut+YXefW6Y5Y5PE7f\ni6WMZ2NXRTOg6Aafmk7OX6bTVXUuIgLAQR17+GybNUN+95Q9RM7l873W7GE6n+TGHgBm4JnKJe29\nYhCu1HuYDznu3i92XdCx8NuU0jutr68BACHkFgD3A7gVwBsAfIIQwu6GTwJ4D4Dj1tcbrOvvBlCl\nlN4A4LcB/MYYX0NgeKHXfnixhiPTOW4bMMAkxN7oNV71HAAopiX0VPemxbrtx8VLvRaHZlAoHryx\nzm200FV13LowEXrdftDxtvl3FA0xwkc+vFDK2BNn3dC1nSfC/63TCdNu32tNR+aY6bAM0etnm4d7\nOgNr3najj1cbfBpSt4P5vw2CYVBcqYcfiOgXuzXoDMKbAXyRUipTSs8BOA3gHkLIPIAipfRhah5Z\nvwDgpx2P+bz1/ZcBvJbwypsFgtFrw07glFI8fqGKuw6O8mP1j7zH/pGWrHHjvIF+5uJGQTAvqbCD\nvRj8uDA8s2TO/LltsRh63YlMAvmU9/lFLSvI8/joLpTSWPZY02GZAS8qdTKX9CUk4BV02N/Zy2e7\nLWtcgiyD90xHxhyneo4T+ybSuFIfHHQqHQWKbkT0moWfJ4Q8RQj5HCGETetaBHDJ8TuXrWuL1vfb\nr295DKVUA1AHEN5USTAKaQmaQYfOH7lY6WCzreDuQ+EGmW2H18J6R9Ht0QA84PXGrHFyHmbw48Jw\narmOpBTz5KHlBkKIL5qLJ525UMqg1lE91bJ4CRgYpnLe+7G6Svj5QQwsK/fy2eZ9oCp6PFCtN3uY\nGXOms2LV9q6LTIcQ8neEkGcGfL0ZJlV2FMCdAFYAfHQMz+e9hJCThJCT6+vDlR7jApNBD6PYnrhU\nAwDcdYBv0PFa02kJqOkA7o1sPH3XAEem42EzOrXcwM37CqFnrDCUc94Ve22ZX5BnIgYvCjZm1cMr\n0yllk56n4vY4NaUC/g4XHc4iGZteG3GgUnUDGy2FW2+QE/uKaWy2lYHUNfsMXBeZDqX0xymltw34\n+oplMqpTSg0AnwZwj/WwJQAHHP+b/da1Jev77de3PIYQIgGYALDDX4ZS+ilK6QlK6YmZmRmeLzUQ\n+h/UwTfJmbUWYgQ4Npvjuq7XvpVah98cH8Cp8Bm9CbNOel69SV6DHWAWXHk20OVTEpoelXM8T9/M\nZmWUoomBx3huJ/I+3J55GY0C/f6kdQ/OALwPVLmkhBgZ/dlmjcK85NJO7Jsw/5+sD8iJlfp1lOmM\nglWjYXgLgGes778K4H5LkXYEpmDgUUrpCoAGIeQ+q17zDgBfcTzmndb3bwXwTeq1I+8qouDSOX5u\ns4P95SxSEr8TGWB26LsZUTaseeqHOA58mvC4+besqZd5Ts7atqLKgztAS9ZQ4LgZ5X3MeOEp3GDv\ntRdXAlbr4rV2xkeTptkcymd7WixnEI8RXNwcrRZUdQOKZiDPsaYTixFrgujw183GtU/n+QcddsgY\nRLGt1HtIxIl9H4wL/N5dfvhNQsidACjMUQrvAwBK6SlCyJcAPAtAA/ABSinbId8P4PdhTjP9uvUF\nAJ8F8AeEkNMAKjDVb7sefXpt8Af13EYLR6b5ZjmAubm4eVSxG5enQSBroHOzC2nJpjVKlhPtwqxZ\nvBS3ecvE/QwWa8ka9pf5vN9e62eAI9PhRDflknF0PPTKAHwznUQ8hsVSxnWYGm97J4ZiRhqd6Vif\nPxGbP8tiBsmm15syZvJ8hsb5wa4LOpTSfzHiZx8B8JEB108CuG3A9R6At3F9gmNAYQQPTCnFufU2\nThya5L6uF8v9CyzoTPELen7otVxS4naTTNqZzmjaxbAs4nluRl6VgoC5+fOS8fYlvF6UXHwznWzK\n+4iBrspPSACYHfoXNkeb6PKcE+VEMT26D61i+dG5DU8Mgn02nboz6Gy0ZEwLqCO5YdfRaxFGZzrr\nTRltRReU6cShWBTDMJy3blye9Fo6EUdKirkHHVnluiGkJNPuxE1RxU78PPs3cikJsmZA9dAj1Obk\nCgA4agxe6DXOmU424f75AsyDFU8hAWC6KF9wodfsceQc/84As3kaHuQZvcvLjcCJiUwCKSk2kF5j\nmc64EQWdXYjiiJrO2Q1z0xcSdFLu/QwXNtuYKaS4UxClbMJ985d1bvUcBi+9I23bEYCfeIIFT6+u\n3ryCrV1j8CCesDdhXv0y1mvouogJZCso8erTAYDDUznUu+pI9RzPOVFOTOaSdt1mECptBVKMcPNR\ndIIQYvbqDBASbLRkIXUkN0RBZxcil5SQlGIDFScPPHMFiTjBrQvhmxS3gwWyF1abQ3/nwmZHyMCn\nG+cKeHa5MfJ3mpzrKoC3oNPi5H3mRN5DgAcATTcgawZnibrkyW6/o2hISTFuZpC2qaw6em0WlMK6\najtx0MrMR2U7HUUMvbZYzmCp1h3a7F1pK5jMJbn5vW3HXDGN1W30mmFQbLYVbm7afhAFnV2IWIzg\nRfNFPLNc33K92VPxpycv4SdfvIApAScUFshOjdj8L1U6QgY+3bG/hOdXmyNPwa2eylVBBgDTHgbI\ntQVw/V6ySnNt1ivD03bIY6bDaVIqQ9bO7kZnOmyAG89Mh/UnjfIhs4UEHNVrbG1ZM3txBmGjpQip\n5zDsK6Z3vO5qR4FuUEznx6tcA6Kgs2tx+2IRp5YaW+zYHz5bQVvR8faXHhjxyOCYKaQwnU/i2ZXB\nQUc3KFabshCDwDsOlKAbFM+u1If+Du9ucYBlOqOFBCJoF0YTutFrLQH1JLfCNkNH5jPKgYHRdG4K\nSXtUNce12aY+KqvlaazqhJvBa6Ut20pKETDptR4opegqOn5wZsOeVCrCBcENUdDZpbh9cQJNWcM5\nh+KGfWhvmA1vxTIIhBDcsjAxNNNZa/agGxTzAjqY79hvGmk+cWl40OFZUGeYzKVQaSsjnaZFqJpY\nEGm5nPpZUOLrByZ5U68pfI1dWYHerUGUjSDg2YfmJejwGiGxHYvl0aMsKm1FiIiAYa6YhqIZqHVU\nfPJbp/HPPv0I/urJFQCIMp0Ifdy+aJp5vvaj38Y3nl0FACxVu0gnYkKbuW5dKOKF1aY9ItkJNodl\nQUCmM1tMo5xN4Ox6a+jvNHuqLSfnhalcEqpOR7oDiKTXXDMdAWt7zXR42u8ATg+00a+ZNQnzfM3M\n5XpUI7AoIYE9P2mI195mWzy9BpjUIqvlfe775wDwm5DqB1HQ2aW4cS6P19w8CwD44cUqAPOktFDK\nCCs4AsCdB0rQDIpTyzszDubVJCLTAUy7kmGuBJRSIfQaozU2RlikiGgaZBtwy6WgL2LtYsZbTafZ\n4ytRZ1SdW03nlOXofdO+Are1AXcqtS1riMcIUpycEBgK6QQmMomBBq+ypqPZ04QeJFl7wwtrLfsw\nybLNqE8ngg0pHsPn3vVSHJjM4JL1YV2qde1Tkygw5+qT56s7fsZcaUUZBE5kh08Q7akGDMr/FMoC\n6KhpmiK4fpaxuQkJzlsSeUbR8EAxnUBb0aG59AhVOgrXzZAJCdwynScv17BYynA/hbu5XHcUHblk\nXMihznQV31nT+drTJs11iwA1KsPN+wrIJuN47HwF600ZKSmGN9+5gJ972WHuwhwv2HWOBBG24kA5\na39Yl6pdIVJpJ6bzKRyeyuKxCzuDznK9i2wyLqSfADDn5AxT+DQ5+64xsCLvqMFmLVlFjPCV8Hql\n104tN1DKJrDA0ZSR/f2aPW3k5NlqW+U7mTbprabz5OUa7jgQfljedkzmklgbkdGKyKQZDk1l8fy2\nVgRKKT724GncMl/Eq2+aFbIuYB5g7zxQwskLVcQIwX1Hp/A7998lbD03RJnOLseBchaXKl10FR2b\nbYWbB9co3H1oEo9frO4orq/UepifSAuj90rZJGrdwUHHdpjmvCnsm0iDEODyiKDTlnXkU3yGqDEk\n4jEkpZhrpnNquYFbF4pc17Zth0bUdWRNR0vWMMlxdLOXURKVtoJLlS5evJ/vgELAFI1UR2Q6tY5q\ne9PxxpHpHC5udrY4UNS7Ks5ttPGWuxaF+5+dOFTGcysNXKx0hIxQ8IMo6OxyHJjMYKMl44xVYBdN\nrwGmmGCjpdhUxDeeXcWfnryES9UOFgSuP5FJ2COpt0NEvwpgbv5zhfTQIi8g7gRccPFfU3UDz19p\nchmR7YSXwWJsYB7PTCcpxSDFyMjs7vSa+Tm/mXM9BzDrd5sjlIqbbVlYYf3oTB6aQbfUddj9NV0Q\nryC7+/AkDGoGuqshHnAiotd2OdgMl8989ywACKfXAOCYJck+s9bCdD6F93zhJAAgESd498uPClt3\nImNawOsGRXzbyc+m1wRs/ovlzEh6jbfDNIOb0/TptRYU3eD+N/cyWIxJi3mrqtym0zIqmefsIobJ\nXBKyZliD2nb+PTdashC3DaDv9nF2ve8QX7XfY/FB4K6DJRACUHp1FGtORJnOLgej0/7nE8t4zc2z\nOD7H/wS4HcdmrBtkY6srr6pT3HmAP+3BwMZQD1JWsWu8JdOAOcJ5WA8FwH+wF0MuJY3s02F+Xbyz\n236mMzzosA2xzJFeA8zXPEpIwDJOERm9W6/OZksR4vQB9O+pc457SuRIg+0ophO4ydo7Zq9CQ6gT\nUdDZ5XjRfAH3HJnE0ZkcPvi6G8ey5sJEBulEDGfWdvbMjCPo1AZshkt2jxD/zWixlMFKvbvF/cEJ\nsfTa8I2fUYo8O/MBbzN1KpYxJu9O+UwyjvaITGep1sV0PsXVYZrBHto3IOh0FA0dRRfmDFDKJlHO\nJnBmvR90WPDjSWGOwonDpjL1amc6Eb22y5FNSvjS+35krGvGYgRHpvM4u9HeUvjcV0wLHW1bypg3\nn+kEvNVFe6lqKufKWf6F3oVSGqpOsdGSMVvc+fqaPQ3zAl53LhUfqtYD+tJi3l5gXmbqCMt0ktLI\n6aGXq12u8nAn+pnOTgUbaxoV6bp8fK6AZx39b5UxZjoA8MobZ/En/3CJ61iSIIgynQgDcXQmhzPr\nLfvGuGmugH/9SnH1HMDs0wEGj62+XO1gUVBjLNtYB2VYgOWEwHGsAYNbTYfVPnjPd/EyU6fSNn9W\n4hzkS9nhsnjAzHT2Cwo6zGpmkCtBf2S0uABw35FJPL1Ut9/3SltBNhkXktUNwutumcPJf/c6e4T1\n1UIUdCIMxIv2FXBhs2Or5v6v1x3Hu152ROiaE5nhQWepJu4EbNN6Q5RzzZ4mpJaUT0kj7XdEZTpe\nZupUOwqKaQkJTmMNGI5O53Buoz1QQWYYFEtVcUFncsR4cpGD1Bh+5Ng0DAo8erZiPw/emaQbJgQw\nBX4RBZ0IA/ESy5ngb0+Zvm/jGPZUygzf/EWegLfSeluh6qbaiU1z5Ym8S6Zj13QEnITdZupUBPmB\nHZ3JoyVrWB/QpLnRkqHoBvYLkuXnknEkpdjgoGNRbiLdnl9yqISUFMP3z2wAsIw+r4Lh5tVGFHQi\nDMSdB0qIxwj+5tQVAOMJOizTqW7b/FuyhlpHxWJJDBc9SsDAmlJFuDCYSi59qICho2jIJOJCGgfd\nZuqsNnpClFxHhygjAdi0m6hCNyEEk9nBVjgbY8h0UlIcdx0s2W4fogL7bkcUdCIMRDYp4daFIlas\niYPjMAaU4jFM51O2xxtgzvD5Tw/8IwC+/mNOTIyQajeZE4KgTAcwRwgMgtlPIobvd3OavljpCCk4\n9/tVdgYd5kYxkRG3EQ+bFLvRkpFLxrkrBbfjJQfLeHa5gZ6qm0FnzPTabkAUdCIMxStvnLG/zwm+\nGRkOT2Vx3jFD6OGzm/j8QxeQTsRwm6DG2EJKQjxGBtJ6bGMWUtNxMf3sKDrXOTpOjJqp01N1rNR7\nODyVG/jzMGBy/HMbO+X47P3nLV5wYmrIpNhLlS7mx+D2cdfBMjSD4hf/9EmsNnpRphMhghPve+Ux\n+3uR4xScODSV2zLH/snLNQDAQx96LY7OiBteN5FJDPR9Exl03Ew/27LGdXKnE8V0As0hmc7Fivn+\ni8h0YjGCw1M5nNvY6bhsW+8IPP0PG29wdr2FGwR9vpxgfW5/9dQKThwu4/57Dgpfc7ch6tOJMBT5\nlIS/++ArBxbYReHwVBZ/9ngPPVVHOhHH05frODSVFd5AV8okBmY6jF4rCqHXRk8PNTMdQUHHshwa\nBDZOQUSmA5gNvmw2kxOslicy05nMJVFtb/07K5qBC5UO3nj7vLB1GWYKKdwyX8REJoE//Ff37rB7\nuh4QBZ0IIyFqNPYwHLI4/4uVDm6cK+DppTruEOiCwDBslo/IoOM2yK2jiLHfAczX05I1aLoBaZss\nmtGbooLOvok0nrxU23G93lWRTsSE9q1M5ZJoyRpkTbfHYV+stKEbFMdmxbze7fjKv3kZpBgZG3uw\n2xDRaxF2FZjh4vmNNqptBZerXdy+yH+2ynZMDMl0RHq+eanpiJBLA3013qC1z292UMomhPV0zBfT\n2GwrO0aiV9uKLV8XBWau6RQTnF4zg+yxMdBrgOlsfr0GnP+/vTsPrqs87zj+/WmxFtuSdyzLxsZL\nbLwQAsZATIJZAg7QkKSspSlpkjId0gLTdCiQTkjbZAJDhzBpFso2DQWaklBCCmUxQwOEOIADNl4x\nBoL3FduS0eIr6ekf5z3SkSwvUJ1zbN3nM3PH55577rnvkW09913O84AHHXeYib9dr9jUwKrNUdGr\n6XXpZ9Yesp85nbin09fF4yCxem1/czop93Sg9xtxtza0MjrFu9bjVEpbG7rPrexqLqQ6tAZ01pKJ\nK8VubWzhkdfWA6Q2Z+i6yyXoSLpY0nJJHZJm93jtRklrJL0p6dzE/hMlLQ2v/UDhq4KkCkn/Gfa/\nLGlC4j1XSnorPK7M6vrcR1dbXc5pk0fw4MtrWbGpAchmiG9I9YBea/k0thSoKi/t8zvzIbGQYH9L\nplvTm9OJf/H3ll27saWQynBiLC4R3nNeZ1fT3tSDzrS6KNPyyvBv61+ff4dnV27h/Fl1qVUNdd3l\n1dNZBnwReCG5U9J04DJgBjAf+LGk+H/dT4C/AKaEx/yw/6vATjObDHwfuDWcaxhwM3AyMAe4WdLQ\nFK/J9ZGrz5jEtsZW7nz+baoHlKaSbLOnZC2fpIaWQmrlueNfco37ndPpve5LX5gwYt9U+7E9remk\n/YnFAW9zQ0u3/buaCqkPr9UPqaK2qpzlG6Og8/rancweP5QfXXFCqp/ruuQSdMxspZm92ctLFwI/\nM7NWM3sXWAPMkVQH1JjZ7yxK2nQ/8PnEe34atn8BnBV6QecCC8zsfTPbCSygK1C5w9ipE4czpraS\nbY2tTBo5KJPx7zh7dc9sCFHetXS+fVccoJJme4fRXEhvTqeuppKKspLOlWpJjS1tqQwnxuKgE994\nHNvZVGDowHR7OpKYXlfDik0NFNo7WLaxgY+nUBrb7d/hNqdTD6xLPF8f9tWH7Z77u73HzNqA3cDw\nA5zLHeYkcfrUUUBX8au0xRkXemYg3tm0tzM9T1+TtN9M082FuDx3OkGn636Z7Hs6gyrKGFxZxuZE\n0DEzdjfvTTUbQWzGmBpWbWpg+cYG9rZ1ZLI60nVJLehIelbSsl4eF6b1mR+VpKskLZK0aNu2bXk3\nx9GVDSGrJdtdae+7T26v3dHE0SmVMIZoYvvZlVt5b0f3X/5xzZm0MhJAlJKmZ9AxMxpbCgxKoZRD\nUl1tZbc5nQ/2tlNot1TqJfU0s76W1rYOfr4o+k6aZmFCt6/Ugo6ZnW1mM3t5PHaAt20AxiWejw37\nNoTtnvu7vUdSGVAL7DjAuXpr611mNtvMZo8cObK3Q1zGPjVlBPOmjuTMaUdl8nkjB0ffsLclgk5L\noZ2NKaWDid128cfZvqeVe3/zbrf9cS2dtHo6EM3rrH2/ibZEob7Wtg4K7ZZqTwdgdG1Vt57OljC/\nk0Vi2RNDBvWfL1rP6JrK1LKXu94dbsNrvwIuCyvSjiFaMPCKmW0CGiSdEuZr/gx4LPGeeGXaRcBz\nYd7naeAcSUPDAoJzwj53BBhYUca//fkcpqeUb62nuKeTLDAWp+OZMCK9ns7x44YwZkjVPkko92TQ\n0zl6WDWFdmNrosxA182w6QaduprKbnM6aabe6Wns0CpGDa5gb3sHn5w8vKjvmclDXkumvyBpPXAq\n8ISkpwHMbDnwMLACeAr4upnFd5BdDdxDtLjgbeDJsP9eYLikNcDfADeEc70P/BPwanj8Y9jn3D5q\nq8opK1G34bV3U04HE6up2jcbQpwVIM1v4fGqvOScUhzs0lxIANFigm17WjvLoa8LQSfNocyYJE6a\nMAyAuZNGpP55rrtcFqab2aPAo/t57bvAd3vZvwiY2cv+FuDi/ZzrPuC+/1djXVEoKRHDBw3oLFvc\nvLed19dFdU/i5cVpqanct6Da6i17KFG6d8nHaXg+2NuVGSBOAppGee6kutpKzGBrYyv1Q6pYu6OJ\nirKS1Grp9DR38ggWrNjC3MkedLLmd0M5FwwfWNG5eu17T67k/oXvAaS2ei1WW1XOhp3db5Rcs7WR\no4dVp5qHLL7xtCnZ00kxA0NS5706u5ujoPN+tGAjq6GuS08ax+lTR3a2w2XncJvTcS43IwZXdPZ0\n4oSUV8+bdKC39InehtdWb9nD5FGDU/3crowIXT2dhs6idSnP6XRmJYjmdeKgk5XSElGfQf0cty8P\nOs4FIwYO6FxI0NDSxvnH1XH9/Gmpf25cxTNa/xKl2v/D9g/42FHpLhePq2Q2JdLwZDW81tXTaWHx\nul2sfb+JcRkGHZcfDzrOBXFPx8zYvLsl1aSXSbVV5RTajZZCNKl+72/epa3DUl+51zmnk6jnEy8k\nSLunU1NZRvWAUlZtbuSSOxfSXGjvnNx3/ZvP6TgX1A+porWtgzVb99BcaM8s6MSryBpaCjS2Frj1\nqVWcN2s0n52ZblGx6oreejrZzOlIYmZ9Lb98fQNtHcaDXzvZJ/WLhPd0nAumjo7mUJ5fHWWlOCqj\nSeZkmYF46fAls8elXlWyujwOOt17OpXlJalk1e7p3BmjaeswBg4o9V5OEfGg41ww9ajuQSeL7NbQ\ntTquobnAhlDnZUwGk9xlpSVUlJV0K63Q0FxILcFpT+fOiLJNnDppOAPK/FdRsfDhNeeCoQMHMGpw\nBS++tR0gw+G1EHRaCmwM9W2yCngDK8poSszpLNu4m8kZFTMbO7Sam86bxmzv5RQV/3rhXEI8xAYw\nqiabGxXjlDO7mwts2tXM4MqyzHob1QNKeWPDbn7y67dpbCmwYmMDJx2TXRC46tOTOOFoL3NVTLyn\n41zCcWNrefGt7dTVVlJRlt6NmUldw2ttbNjVkun9IwMHlLFk3S6WrNvFmCGVdBjM8Z6HS5EHHecS\nrjlrCmdMHZVZOhZIDK81F9i0uzmT+ZxYdSKL9eNvbKK0RHziaE/179LjQce5hIqy0sznGMpLSxhS\nXc66nU1s3NWcaX2XgYks1gvf3sH44dWplch2DnxOx7nDwuzxw3hh9XZ2NhWy7ekM6Orp7GltyzQV\njStOHnScOwycMnEYm0Mhs7hqahaSQQdgvAcdlzIPOs4dBk6ZOByIFjLMrK/N7HML7dbtuec/c2nz\nwVvnDgPH1tVw9rFHcfmccQc/uA81tHTPbj0+5YJ1znnQce4wUFoi7rlyduaf2xBKKowYFGXY9jkd\nlzYfXnOuiMVF4o6tizJae9BxafOejnNF7I7LjufJpZs5eeIwPjVle2eNHefS4kHHuSJWV1vFV047\nBoAZY7JbwOCKlw+vOeecy4wHHeecc5nxoOOccy4zHnScc85lxoOOc865zHjQcc45lxkPOs45/L4M\nVQAABt9JREFU5zLjQcc551xmZGYHP6qISNoGvJd3Oz6CEcD2vBuRMb/m4uDXfGQYb2YHrcvhQaef\nkLTIzLLPGJkjv+bi4Nfcv/jwmnPOucx40HHOOZcZDzr9x115NyAHfs3Fwa+5H/E5Heecc5nxno5z\nzrnMeNDphyR9Q5JJGpF3W9Im6TZJqyS9IelRSUPyblMaJM2X9KakNZJuyLs9aZM0TtL/Slohabmk\na/NuU1YklUp6XdLjebclDR50+hlJ44BzgLV5tyUjC4CZZnYcsBq4Mef29DlJpcCPgM8C04HLJU3P\nt1WpawO+YWbTgVOArxfBNceuBVbm3Yi0eNDpf74PXA8UxWSdmT1jZm3h6e+AsXm2JyVzgDVm9o6Z\n7QV+BlyYc5tSZWabzOy1sN1I9Eu4Pt9WpU/SWOB84J6825IWDzr9iKQLgQ1mtiTvtuTkK8CTeTci\nBfXAusTz9RTBL+CYpAnAJ4CX821JJu4g+tLYkXdD0lKWdwPchyPpWWB0Ly99E7iJaGitXznQNZvZ\nY+GYbxINyTyYZdtcuiQNAh4BrjOzhrzbkyZJFwBbzez3kubl3Z60eNA5wpjZ2b3tlzQLOAZYIgmi\nYabXJM0xs80ZNrHP7e+aY5K+DFwAnGX98x6ADcC4xPOxYV+/JqmcKOA8aGb/lXd7MjAX+Jyk84BK\noEbSA2b2pzm3q0/5fTr9lKQ/ALPN7EhLGvihSJoP3A6cbmbb8m5PGiSVES2SOIso2LwK/ImZLc+1\nYSlS9M3pp8D7ZnZd3u3JWujp/K2ZXZB3W/qaz+m4I90PgcHAAkmLJd2Zd4P6Wlgo8VfA00QT6g/3\n54ATzAW+BJwZ/l4Xhx6AO8J5T8c551xmvKfjnHMuMx50nHPOZcaDjnPOucx40HHOOZcZDzrOOecy\n40HH9WuShieW3G6WtCHx/LcpfN68rLIDK/KcpJosPu9gDnbtkkZKeirLNrnDj2ckcP2ame0AjgeQ\n9G1gj5n9c66N6jvnAUuOlPQwZrZN0iZJc83spbzb4/LhPR1XtCTtCX/Ok/S8pMckvSPpFklXSHpF\n0lJJk8JxIyU9IunV8Jj7IT7rW+E9yyTdFe64R9JJoRbQ4lAbaFnYPyN8/uLw+pReTnsFEOeeGyjp\nCUlLwmdcGvafGK7t95KellQX9k+W9Gw4/jVJk0LP6bbw/qWJc8yT9GtJv1BUu+jBRPvnh32vAV9M\nXO/piR7l65IGh5d+GdrtipWZ+cMfRfEAvk2UWiR+vif8OQ/YBdQBFUSpZv4hvHYtcEfYfgg4LWwf\nDazs5TPmAY/3sn9YYvvfgT8K28uAU8P2LcCysP0vwBVhewBQ1cs53wMGh+0/Bu5OvFYLlAO/BUaG\nfZcC94Xtl4EvhO1KoDqcYwFQChxFVJOpLlzTbqKcbyXAQuC08L51wBRAwMPxtQP/DcwN24OAsrBd\nDyzN+9+CP/J7eE/HucirFtVwaQXeBp4J+5cCE8L22cAPJS0GfkWUkHHQIZ7/DEkvS1oKnAnMUFTl\ndLCZLQzHPJQ4fiFwk6S/A8abWXMv5xxmUa2ZuJ2fkXSrpE+Z2W5gKjCTkCII+HtgbOh11JvZowBm\n1mJmTUSB5D/MrN3MtgDPAyeF879iZuvNrANYHH4m04B3zewtMzPggUTbXgJul3QNMMS6ah5tBcYc\n4s/M9UMedJyLtCa2OxLPO+ia+ywBTjGz48Oj3sz2HOzEkiqBHwMXmdks4G6iXsJ+mdlDwOeAZuB/\nJJ3Zy2FtkkrC8auBE4iCz3ckfYuo97E80d5ZZvZRS18kfz7tHGQ+2MxuAb4GVAEvSZoWXqoM1+SK\nlAcd5w7dM8Bfx08kHX+I74sDzPbQM7oIwMx2AY2STg6vX5Y490TgHTP7AdG8zXG9nPdNYGI4fgzQ\nZGYPALcRBaA3gZGSTg3HlEuaEXpH6yV9PuyvkFQNvAhcKqlU0kjg08ArB7iuVcCEeM4LuDzR/klm\nttTMbiXKih0HnY8RDSm6IuVBx7lDdw0wO0zsrwD+cj/HnSVpffwAjiXq3SwjyhT9auLYrwJ3h+Gv\ngURzJwCXAMvC/pnA/b18zhNE8y0As4BXwvE3A9+xqLT1RcCtkpYQDYt9Mhz/JeAaSW8QzfuMBh4F\n3gCWAM8B19sBajGZWQtwFfBEWEiwNfHydWFBwhtAga6KrmeEdrsi5VmmncuRpEHxEJ2kG4A6M7v2\nEN9bB9xvZp9Js419SdILwIVmtjPvtrh8+H06zuXrfEk3Ev1ffA/48qG+0cw2SbpbUo0dAffqhCG7\n2z3gFDfv6TjnnMuMz+k455zLjAcd55xzmfGg45xzLjMedJxzzmXGg45zzrnMeNBxzjmXmf8D2liS\nG9l3gP8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr.plot(labels = ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the Phase offset of pi/2 between two lightcurves created above, and freq=1 Hz, `time_shift` should be close to 0.25 sec. Small error is due to time resolution." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.26645768025078276" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modes of Correlation\n", + "\n", + "You can also specify an optional argument on modes of cross-correlation.
\n", + "There are three modes : 1) same 2) valid 3) full \n", + "\n", + "Visit following ink on more details on mode : https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.correlate.html\n", + "\n", + "Default mode is 'same' and it gives output equal to the size of larger lightcurve and is most common in astronomy. You can see mode of your CrossCorrelation by calling mode attribute on the object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'same'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points in corr and largest lightcurve are same in this mode." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating CrossCorrelation with full mode now using same data as above." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr1 = CrossCorrelation(lc1, lc2, mode = 'full') " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYZVddLvyus88+U9Wpoauq5+50utOZA+GmScI8CUQu\nCH4fSrgqPF4eUEH0+/S7XvHKo1fBR7z4oegVRfGDoDJFhSgkCgmQRDLQCYTMU3cnPdc8nHFP6/tj\n77X3PvusaVdXdw293ufJk6rdtWrvOlVnvev3/n6/90copTAwMDAwMMiDwmo/gIGBgYHB+oMhDwMD\nAwOD3DDkYWBgYGCQG4Y8DAwMDAxyw5CHgYGBgUFuGPIwMDAwMMgNQx4GBgYGBrlhyMPAwMDAIDdW\nhDwIIX9LCJkkhDySuva7hJDjhJAfRv+9KfVvHyKEPEMIeZIQ8sbU9WsIIQ9H//ZJQgiJrpcJIV+K\nrt9HCNmzEs9tYGBgYLA8FFfo+3wWwJ8DuClz/ROU0o+nLxBCLgdwI4ArAGwH8C1CyMWUUh/ApwC8\nF8B9AL4B4AYAtwJ4D4A5SulFhJAbAXwMwDtkDzQ+Pk737Nlzhj+WgYGBwfmFBx54YJpSOqH6uhUh\nD0rpnTmigbcC+CKltAvgMCHkGQDXEkKOABiilN4LAISQmwC8DSF5vBXA70brbwbw54QQQiXeKnv2\n7MHBgweX8dMYGBgYnL8ghDyn83VnO+fxQULIjyJZazS6tgPA0dTXHIuu7Yg+zl7vWUMp9QAsABjL\n3owQ8j5CyEFCyMGpqamV/UkMDAwMDGKcTfL4FIC9AK4GcBLAH5/FewEAKKWfppQeoJQemJhQRl0G\nBgYGBsvEWSMPSulpSqlPKQ0A/DWAa6N/Og5gV+pLd0bXjkcfZ6/3rCGEFAEMA5g5W89uYGBgYCDH\nWSMPQsi21Kc/CYBVYt0C4MaogupCAPsB3E8pPQlgkRByfVRl9S4AX0uteXf08dsB3CHLdxgYGBgY\nnF2sSMKcEPIFAK8GME4IOQbgdwC8mhByNQAK4AiAXwAASumjhJAvA3gMgAfgA1GlFQC8H2HlVhVh\novzW6PpnAHw+Sq7PIqzWMjAwMDBYJZCNeoA/cOAANdVWBgYGBvlACHmAUnpA9XWmw9zAwMDAIDcM\neRgYrDJueegE5lvOaj+GgUEuGPIwMFhFPDvVwK984Qf4bzf/aLUfxcAgFwx5GBisImabYcQx0+iu\n8pMYGOSDIQ8Dg1VEs+sBAAbKK2UzZ2BwbmDIw8BgFbHYicijZMjDYH3BkIeBwSpiLpKtamUr91pK\nKQ5NNVb6kQwMtGDIw8BgFcFyHhU7P3l8/eGTeO0ffxfffmJypR/LwEAJQx4GBquIuahE1/fzN+ue\nXgyT7Lc/cXpFn8nAQAeGPAwMVhEs8uh6vuIr+zFRLwMAnj5tpCuDcw9DHgYGqwgWeXS9IPdazw/X\nTJsyX4NVgCEPA4NVxExj+eThRuThBRvTn85gbcOQh4HBKoJFHs4yyMOJ8iTLWWtgcKYw5GFgsEqg\nlGKu6QJYXs6DyVbLJY8nTi2i7eS/r4EBYMjDwGDV8PDxBTgRAZyJbMW+Rx50XB83/Mld+OAXfpB7\nrYEBYMjDwGDV8G+PnoJVIHj5RePousshDxr9f3nkAQD3HjLTnA2WB0MeBgarhJbjo2ZbGBssLUu2\nYnKV4wXIO9StE5HVRh0GZ3D2YcjDwOAM8bHbnsCXvv987nUdN0DZtlApWmgtI/fgBSEBBDS/7MUi\nD1OoZbBcGDc2A4MzwFzTwae+8ywA4B0v3p1rbcf1US0VsGO0iqlGF23HR7Wkb1PiprrSW46fy+Kk\nE0U6FIY9DJYHE3kYGJwB7olyBsUCyb224/qoFC3smxgEpcCh6Xyd4ukqK2btrn9vJlvlWmZgEMOQ\nh4HBGeDZyXDD3zZSyb2244bRwr7NA+H3mmrmWp9OlM/lHGPLZCtDHgbLhSEPA4MzwKHpcMNfjrFh\nxw1QsQvYPlIFAJxe6ORa76XueTLn2pg8jGxlsEwY8jAwADC11MVTp5dyr3t+tgUAOLHQwcEjs7nW\ndrww8qiXi6jYBZxezEcArh+gFuVITs63893byFYGZwhDHgYGAN7xV/fgDZ+4M3fuIP31b//Le3Kt\n7bgBykULhBBsrlcwuZTP4NDxA2wZqqBkFXAyJ/Gw0uDAsIfBMmHIw+C8R8vxYvnpn39wPNfaM/GV\n6ro+Knb4FtxcL2NyKX/kUS4WsHW4gpPzy5WtDAyWB0MeBuc92FAlAPjHB4/lWpvtr2Cbsg7ablJe\nO1EvYypn5OH5FEWLYOtwBady5zyMbGVwZjDkYXDeY6EdmhMOV+3cszG6no+X7B2LP89DAJ1U5FEu\nFnJ7VDl+ANsqYPtwBScW8uY8EpK751ljUWKQHytCHoSQvyWETBJCHkld20QI+SYh5Ono/6Opf/sQ\nIeQZQsiThJA3pq5fQwh5OPq3TxJCSHS9TAj5UnT9PkLInpV4bgMDAJiPyly3DJVze0x13QCXbqvj\nL37mPwEAGjlyJh03QDWKPIpWIXfFlhuRx9bhKk4vdhDkaBdPR0w/PDqf674GBsDKRR6fBXBD5tpv\nAridUrofwO3R5yCEXA7gRgBXRGv+ghDCWmM/BeC9APZH/7Hv+R4Ac5TSiwB8AsDHVui5DQziyGPL\nUCW3zUfXC1CxLQyWQ7MG3YQ7pRQdz0e5GP7p2xaBm9MrpO0GKFkFbBuuwPUpppv6UU/T8VAqFmAV\nCJY6bq77GhgAK0QelNI7AWTrFN8K4HPRx58D8LbU9S9SSruU0sMAngFwLSFkG4AhSum9NHRruymz\nhn2vmwG8jkUlBgZnCkYem+uVXDkLP6BwoqT1QEQeupGHF1BQGspVAFAsFOL5HDpodj08dmIBl22r\nY6jKiEv/2RfbHoarNuqVIpY6+SrMDAyAs5vz2EIpPRl9fArAlujjHQCOpr7uWHRtR/Rx9nrPGkqp\nB2ABwBgMDFYA862IPIbK6OZwqGWVVuViOvLQ28BZd7gdkYdVILnGyT50dB6uT/Hy/ROx9JVnsNNi\nx8VQpRiRh4k8DPLjnCTMo0jirNd1EELeRwg5SAg5ODU1dbZvZ7BBsNB2MVBKCEA3cc16JcLII9zA\nG129jZgRT8kK34K2RXo6xlVgPSE7R6txxVbb1Y8gFtsu6hUb9bJtIg+DZeFsksfpSIpC9P/J6Ppx\nALtSX7czunY8+jh7vWcNIaQIYBhAX4kIpfTTlNIDlNIDExMTK/ijGKwHPH5yMXevBBBGHsNVO5aQ\ndPMe7OvKdiEmnoZm5OFkIo+iVYgt1nXAqrrGB8uolcJ7tx399YsdD0NGtjI4A5xN8rgFwLujj98N\n4Gup6zdGFVQXIkyM3x9JXIuEkOujfMa7MmvY93o7gDuomWJjkMLTp5fw4396Fz74D/nHqi60XQzX\nSihHJ3jdvAerzCoXrTjnoZswjyUvFnkUCFyfaktm040uSsUChirFRLbKka9ZimUrG4tGtjJYBlZk\nngch5AsAXg1gnBByDMDvAPhDAF8mhLwHwHMAfhoAKKWPEkK+DOAxAB6AD1BK2V/9+xFWblUB3Br9\nBwCfAfB5QsgzCBPzN67EcxtsHNz8QJguu+/wLLqpKiYdLLQdDFeLSeShWa7LZKuKXYBtFVAuFrTJ\ng83isIth3YdVCO8dUMDSKAWZWupiYrAMQgiqpXCtLnnMNh0cmmriugvHULJ8E3kYLAsrQh6U0ncK\n/ul1gq//KICPcq4fBHAl53oHwE+dyTMabGzc/cx0/PHkYhe7NtW01y60XewdH4xzB7llq4ioBstF\n7WorljAvWazPg8TXrYKa+KabDsYHSwCQ5DwcvXv/3b3PRR/RZSXMJxc7eNff3o8/ufFqXLp1KNda\ng40D02FusCEw03AwVAnPQnllmGzOQ1e2Yl/H1g3kIA8mW9kRabD/61ZcdV0/ltmSnIfec/vRPX7h\nlftQr9hodL1cs8wffH4eT5xawg1/chc+c/dh7XUGGwuGPAw2BBpdDztGw2hjsZ1PhllouxipnUHC\nPEUe2jkPFnmk+jwAaPd6uH4QV2olOQ/9tcUCwZ7xAdQrRQQUaOYo801PTfz9f31Me53BxoIhD4N1\nDz+gIXlE0/zyRB4d10fXCzBUtWP5ieUyVGAnfTZ3fLBs5Y48GAEUc0Yerk/jaIWRl27Ow/GCmLTq\nFRsAcklXndTrs29iQHudwcaCIQ+DdY9mpPWziXyLbf2NkEUKg9FAJkA/Yd6KNutaKcl55G0S7I88\ndMkj9LUCgEKBoGpb2jkPx0+TRyh55UmaM0feS7bUcxUmGGwsGPIwWDNoOR7e89nv49mpRq51jU4v\neeTZCNlpvWpbceK5pSnhdBxWbRWuyyVbxTmP3sjDzSFbsR4RIIx+ckUeVpY88kVrADA6YKOlSVgG\nGw8rUm1lYHCmcLwAV//Pb8LxA7QcH1943/Xaa5lUtG04v2yVlp6GqvkknDTxAGHksZS32iqOPPLL\nVowA2DPoNgmmZSv2M+fJEzHy2DRQwqGppvY6g40FE3kYrAk8P9uMk8h5T7Nssx+u2hgsF2OjQx2k\nCWA42kh117dj2So8g+WJPLp9kUf4f1+zyzyUrZLEdcUu6Dc3pmSr5VSosWffNFDSjtIMNh4MeRis\nCaQrRfPMxAASmapesTE6YGOu6WivZZtfrWRhoGTBKhBt8mBr09VWLcfXmqvBmgTZWrtAeq6r1wcx\n4YTPX9Qm3bRsNZDT0BEIIw9CQrJuOfnKfBnmWw4eOb6Qe53B2oEhD4M1gU4qSZ13pgbb+AbKFsYG\nypjJQR4seqiULBBCMFy1tcmDTQIsRBv/YGSO2NTYxPtzHvkS5mkCACLZKkfOg5FWzQ7JI0+013F9\nVIoWaqWwzDfv7wsAfuov78Gb/+zuZRGPwdqAIQ+DNYF0+edCK1+TXywf2UWMDZQw08hBHk5vxVQe\n8mg7fixZAUnuo6NRrSXOeejKVrRXtipZ2n0e6ZwHKzPOY+fecQNU7EL8mi1Hunp6MiyKyOPHZbC2\nYMjDYE2A6fU7R6tY6nrxyVwHSfRQwNhgCTM5JurFCfNo4x/KQR4tx4/XAcjVJ5LtMM/f55GU6gJA\nzbbi6i/lvVM5j1KxgGKBxGXHOjgy00TFtjBQyh+1AEmHOxD6bBmsTxjyMFgTYKf1l+4LZ3zNt/U3\nlU6KAMYGy5hpONpySCtTMTVUKWJRs9SXyVYMZZvZm6iJL7ZkZ7JV1OehU6pLKYUX0B7yqJYstDTn\neWQlr1rJ0o48Hj+5iLuensbJhQ5qTKbLkS8BgIt/+9b44/mcUabB2oEhD4M1ARZ5bBsOezXmmvkr\npiq2hYnBMryAap9oO5ku8YFSES3NhH3b9eN1QL7II2ttEntbaeQ8WFK9lOrzqCyzVBfIl2xPR2Wj\ntdCYMU/00PV8E3lsEBjyMFgTSMgj7NXIs6m0XR+2RWBbBVwwFvpbPTfb0lrbyshWtRzNdi3HixPO\nAOIoRCfyCG3jCwhH14RjaIFeSUeEeIRtKudRtS3tUt1QtkpIr1aytPMWQSqi2zQQksdcS/93lW3g\nzLPWYG3BkIfBmkAnOonvjMwNpxr58hasy/uCsdBr6bkZvea1puOFun8k41RySDhtN0BluZGHm1Q8\nAYl8pSNbsa9hUheQkJ6OXNdXqZXjZ2YR02d//sUYi8gjT3UbI4/f/s+XAUCusmqDtQVDHgZrAt3o\n1Lw3Mto7PtfWXttx/bjyZ9emKggBnpvRizzmmg42RfILECaedSOPjuOjaqelI31vrK4XxJbqQCJB\n6ZS9ZkfYAiEB+AHVmr/e7ZOt9CMPlugfHyxjNCKP2RzVbayhc2sUYeZx8zVYWzDkYbAmwCSXscES\nhqs2js/rbf5AlHuINuJy0UK5WNDeDOdabrwJAvlO8C3X6ynVzZfz8HsiD+YxpdMgGec8UrJVPItE\nI+/hZO5dLRW1q62cVK7GtgqoV4rLkq3GB8sgJF+JsMHagiEPgxVHx/W1tPveNQEICS3Kd45WcSxH\n5NFKyVYAYBcK2gaDcy0Hmwbs+PNKyQKlenmLthP03DeOPDSih64XZMiDeUypCwW8TKUWkJCHTuSR\nLtUFomgrR3c6kERK44PlXBIjizzqlSJqtn7EY7D2YMjDYEXx5KklXPrh2/ArX/xBrnWsa5kQgn0T\ng3j85KJ2uW0nU/VkF3OQR9OJq4aAcCMF9JrXOm6mzyNuEtTNeSRrB0oWCkTPEdjlkAfbzHV+bl6p\nru4m3s2Qx9ahCk4tdLTWAojLoIcqNmrlItqa5cVp5G0iNTg7MORhsKJ445/cCQD4+o9O5lrXdHwM\nRH0D1+3dhNOLXRye1kt6tzPNesUC0bb5mG05cdUQkJgcqkpXKaVop3ItAHJNIux6ftwXAgCEENQr\ntpajr+OFP1uaPHQT7p4fIKC9Zb55EuaOx/y8wp9720gFJ+f1o8TEh6yYi7QYHjo6jxf+3r/jX390\nItc6g5WHIQ+DFUMeN9ssJhc7mKiHSdRLttQBAEc1patsp7dtFbTkmyCg4Qjaaq9sBai1eMcP4Ae0\nJ+Kp5Ik8MrIVEG6oOpEHy6mUiknOQ5c8suNvgZwJ88z6bcMVnF7qasuUpxbaKBcLGKrYqC5Dtvre\nszMAgL++81CudQYrD0MeBisG3fJYHk4vdbBlqAwg2YR1LUqajhe7wwJh/4NO5OH4AShFT7mtrmzF\nEtMVmxN56FZbZabw1Su2ljV6I55+mJAeIw8WlYiQNWQEwoR529VzA86Oz902XIUfUExr5j2em2lh\n16YaCgWSq7Od4QfPz4XPoRlZGpw9GPIwWDFkZSZPM+8AAKcWutg6FEYeifyjt7E0u36GPPRyHmyT\nL2ca5gC12V8yy6M34rEKpMfkUXxvnxt56FijsOhkqJr8zCwKUUYeXn/kMRD9DDrPnfXkYlViunNM\nnp9tYfemsJcnT2c7AEwtdXHHE5MAgAXTXLjqMORhsGLI9lbo1vC7foCZZhdbYvKISl41XWKbXS+2\nQwdCe3OduRjdWL9P+1PpSU9s00vLZUB4IteJmJxMnwcA1DWHSSUVS/2Rh4o8YluUTMIc0POoYnIb\n64zPk+cBgOPzbewcDS1oqjlzHs/NNOEFFJdsqWPOJM1XHYY8DFYMRzKRh65dxlLHA6XAaC3cDMs5\nSl79gCWuM7KVhrV51l+KrQXUHlNpP600bItoEld/zkM3YmIjY9mpn60F1KW6vJxHNXrtdCSkbINh\n0tui97ta6nhxdVvehDnLqV0wVkPb9bX/vgzODgx5GKwYDs80cd2Fm/A/3hRaT+huDOwUzwggj2zF\nBi8NLke28voJgG3CKvJhfSBpV10g3JR1791HHsWCVq5mqeOCEGCw1E8eKuLiyVaxVKdRNuv4vaSX\n5HnUvyvWw8LG/Q6Ui9rz4oGEPPaMhy4EN91zRHutwcrDkIfBioBSimcnG9i3eRC7NoWyhG4ylJ0g\nWeVSntNsK54imGykxYLe6b/j8iIPdoKXr88Oc0qv1823ZBPmdoFoVYktdjwMlorxBEMgSWC7itcs\nm/AGktddh+yzPSKxzKfxu1rIkMe+iUHMtVxMLekl29l6Vlr9B994QmudwdmBIQ+DFcHpxS4WOx4u\n3VpPZBBtd9peZ9tSjqolVnk0kMp56J/+I/LoiTyixLNiM4zJw+KRh6ZsZfev1Ys8vB7JCgDsKGG+\nHNkqrjBblmylH3nMZ8jjiu1DAIBHT+jNMmfk8aYrt/V8H4PVwVknD0LIEULIw4SQHxJCDkbXNhFC\nvkkIeTr6/2jq6z9ECHmGEPIkIeSNqevXRN/nGULIJwnL2BmsOB45voB7D83kWvP05BIAYP/memoc\naz7yYPKJVSCwLaInWzHyKPVGHjqbMNvweJGHSrbilbyGn6ujhyAyMMzKVkWLaJFeo+tiMEMeJd0+\nD65sxRojdavElmfJwjb/kSi3xezzT8zrdagvtF0MlovYPVbD267e3lNtZnDuca4ij9dQSq+mlB6I\nPv9NALdTSvcDuD36HISQywHcCOAKADcA+AtCCPtL/RSA9wLYH/13wzl69vMKjhfgzX92N2789L3a\ncgKAeG74lqFyTB66OY9kjGyvvbnOhsRyHrVyb94iV+SR2kjZOFhd2aqfPApq6cjvLxFma3Vkq44b\n9FV5JX0e+ckjnmOuQfaNbm/Uk0dizMpWbK2ulcxC243XDlftuHDAYHWwWrLVWwF8Lvr4cwDelrr+\nRUppl1J6GMAzAK4lhGwDMEQpvZeGhkc3pdYYrCAOPjcbf/zij35Lex3bxAfKRVRL4Z+VrmzVzkQe\nQLih60QebO1AafkJ8/Qmrp074Ezz0713l5NrYd9LK2Ly/D7iSbyt5Ou7nJxHbKqoQQBLHa8n6kkq\n49S/qyx5xBKhJnkstl0Mpcmj42o1NhqcHZwL8qAAvkUIeYAQ8r7o2hZKKTM/OgVgS/TxDgBHU2uP\nRdd2RB9nrxusMO4/PKv+Ig7SBMCql+54/HSutdVMt7ZOzqOdSbYDYfTgaWwqSc4jv2zlcjbhcL06\nWR+TVibnESb6dWeB9JMWoN6IXb+fuPJUt4WRR5JrYCSm40LMGvsYAeSZYQKwyKMYfw9KgSXN5sTw\nPj7+7t7n8LzmrBcDOc4FebycUno1gB8H8AFCyCvT/xhFEityfCCEvI8QcpAQcnBqamolvuV5h0dP\nLOKizYPYXC/Hncc6YA1mtVIx1tC/+sMTWp5HLQ4BlG092SqbbAf0pCOAHwEU49OwouQ1HsjUm3rT\nkZ4SuaxfevICqnQTzk4hDNcuv8OcPYd25FFOy1b5Io+KXYgPF3ZB3wmYrWdRCyMgHQt7hs/f8xx+\n+6uP4C/vfFZ7jYEYZ508KKXHo/9PAvhnANcCOB1JUYj+Pxl9+XEAu1LLd0bXjkcfZ69n7/VpSukB\nSumBiYmJlf5Rzgs8P9PCnrEBvPPa3Wi5vrbFSMvxUC6G9hzpjVxnuFHHSYiHQVe2ypb5AtHpXyvy\n6Jet2Iam2khFOY9QelKRR3+inq0Nv7eauHjEw/5NtTZ9r/THOmS91HExVOGQh07kkdr8AaBQINrR\nVnY9azTMM+v+4JHQF+ueZ2e0rW8MxDir5EEIGSCE1NnHAN4A4BEAtwB4d/Rl7wbwtejjWwDcSAgp\nE0IuRJgYvz+SuBYJIddHVVbvSq0xWCFQSmPvodFaKAvoOuWmzQnTm6IOefCih5A8dAYyCSKPXKW6\nyfOyDU232oqf85Bv/rz+EiCUrQAdixFOg2Gcq9FsEuTMAlERgOMF6HpBT+RBCNH+Xc233L7y2lJR\nz84F6CWPzfXQRHMyR1HHw8fDkuDD00184ptPa68z4ONsRx5bANxNCHkIwP0Avk4pvQ3AHwJ4PSHk\naQA/Fn0OSumjAL4M4DEAtwH4AKWUHRHeD+BvECbRnwVw61l+9vMOU0tdtF0fF4zV4tGsuh5CLSeZ\nbVEoEFx34SYA0Oogbrs+SlHUwlAuWvlyHj3zPPQSzx1OqS7ASmZV1VZsFCwv56EpWwkqplTP3nX7\ncx5WgcDSOMXzSE+3NDp2882UCZeLBa2y7ND+vtRzTbcvpuP66LhBTB7MB21ySa/M1/ECnFhoxxY4\n33t2WmudgRhntVCaUnoIwAs512cAvE6w5qMAPsq5fhDAlSv9jAYJHju5CAC4eEs9ljfmNd1LW12/\np+LpA6+5CPcdvh8NDZfYtuP1lZ6W7YKWSWDbCU/h6W5ru6jXqd12fVgFwm300y155ZXqqnMefNKy\nLb1GP56dO1u/nHke4bNYyp+5EQ9y6o0ewvyUHnnsHK31XCtpRi1Za5PxwRIICZtTdXBqoQNKgQ+9\n6TJ858lJPPDcnNY6AzFMh7lBjEdPhORx+fahWJrQdcZtOl5PrwXrBdAZbpSdyAfkkK0yI2iBMG+h\nk6tpOT5qtoVsv2nJKqirrfwgPu1n12pHHiLpaRmyFVuvm6zPEqbOJs5mjaRlKwDaczmWOl5fY5/O\n6wUk8ilLlBetAsYHy5hc1Is8js2HFVY7R6rYNzGIyaWu9phjAz4MeRjEeH6mhYl6GcNVO44EdP2p\nWk5v5BGTh2bOoy/y0GwSzI6gBcKGwYCqZ0y0Hb+nMZGhaBFl7sD1gzhSyLuWN0cE0JOtKKVcR97w\n+6k3YuZNlSVMnQIFJlsNVbLkUdQ6ZPAOCbo5j2yPCACMVG3tnBzrYt82UsVAuQhK9ZtYGSaXOvjd\nWx7FaU3C2ugw5GEQo+Ek3cPsNK9rMdLsej0RAJtyp5Pz6HCiB91qqxZnLZNGjinG2PI2M0Av4e74\nQZ9kpbtW2OehIVu5PgWl/fmS+N4aCfOsZAWEr7eubJXNeYTW6hpVda6PSh9h6lVb8cijYlvaf59M\n9hqt2XFhh+4AK4bf/udH8NnvHcHv3vJornUbFYY8DGI0Oh7q0RurqjmOlaHpJGuBfLIVN/Kw9ZoE\nO5y1u6JhQ0dn5c1gvPsCkZSiKPXNussy5OvzyEhHGrKVKF+ie2/H97nkoSNbLXX7h1ABenM5KKXo\nuD63uXH55FHQak4E0pMfi/HgMJ1KQIappS6+FTW93vboKeXf1vkAQx4bGDONrnYNPRCexAay5KEZ\n2jc6vXPE8/hb8fIW2rKVyyGPaMzp0Tn5G7zt8COPUHpS5zxEm7CyWkpS5gvIZSvR2nC9ulBARHo6\nr3cceXByHi3FFELXpwgo+iIP3YS5KPLQH1XsoVggKBULsbyqMzmR4anTSwgo8OuvvxiU9k/NPB9h\nyGMD4h/uex6/+sUf4JqPfAsf/uoj2usa3aR7uJLTn6rZ9XvkjELULNjSrJjqz3loeltxiGdT1ECm\n0sNbjtfTmMigcxp2fSqQrfTLZctW73PryFaiqCV+bo0qMZFspXq9F+Nqq97XbKBUVA6S4g3eip95\nGQnz8Jkt7cgjXUrO/sbzRB7HIwn0kq11AHpy7EaHIY8Nhtmmg//x1YfxtR+eAAB88zE9fymglzxK\nVgEFopfz6Ho+HD/gn0g11suqrVQVMTziKUR9CyoNv+0GfcQDRBuaSrYSJMyZxYjMsI9VgmWtTbRk\nq+j1FEVqaaigAAAgAElEQVQ9OrkaLnnYGjmPrgfbIn3EVSurIw/R5EWdXAsQksdAyeoh7IpdQEcz\n8kgfFJaT8zg23wYhwP4tEXnkzJdsRBjy2GD45O1PI73fbh+paq9tdBPHVELCyEFHtmLhf9YLq1bW\nW99yOLKVbYFStVUHL/IA9GQYXn8JEG7ijmJTcjx+wpydrGWbGtvgi4VswlxNHuz14Pd5qBvuRLJV\nydLIeXTCeRrZSq2w2kq+mcYNmdzIQ10ym7U2ASLZSjPyaDp+XEoek4dGkp/h+FwbW+qVuMlQp39p\no8OQxwbD1354HG+4fAs++c4XAQibqXRAKe3JeQDhG+5v7j6sDO+bcedxJpFqF/WqcBwfVbu/axlQ\nG+7xIg9ArwS0Jch5VDT6FlzOMCcgNQ9csp5tltnIJR6sJNkQE+LhRT3qnEd2EiCDTkd/q+v3/H0w\n1EqhfCQzwRT6eWk0ZAK9duwMYcJc3/b/jGSr+RZ2jFaXtXajwpDHBsJCy8Vcy8WL92zCT7xwO669\ncJN2LXvXC+D6tE96AoA7npjkrEiwFCdSezfiqmYVTlhu2y9nsOeSoe36fTo6wE7SCuIRRC2DZUvZ\nt+AKSnXjQgGJjOP6AYoFwj3BA/ITceLmu7wyYWHOw9aoEhNIXmxTluXHEtkqE3lojgzmRR5hzkM/\nYc5eX9aoqNsjAgDH59vYMVJF0SqgaluGPGDIY0PhyEwTQDLec6hix0lOFeLogUMeI4pZ0elBUGno\nlHC6PoUf0L7Ete6EOlHFlI6G33UDLvEMlIpKPdz1+AnzeKSrJIHsBfy1bA67LOrxBJ5a7JpOzoMX\nMZWsgnIOuUjySsbYin9mUcK8XinGs81l4MtWBXQ0TRXDJlYrft56uYhJTWsTP6A4Od/BjqgEfLBS\nNAlzGPLYUGDkceH4AICwE1h33gHLW/DIQyeRyltbKxWV5ME2yuymEk+ok2xorh/AC6g4byHZSCkN\n54jzNsOBclF5shSewstq2crxgriyqmetrbaEkctWmk2CvFJdW53zcASd7bFUJ4m24sgjs37HSBWz\nTUcpb3LJo2jBD6hW5JKtrNs6XMHJBXkTKcPtj5+GF1DsjMijXi5q9S+l8ed3PI1vPymP4NcbDHls\nIByZboGQpM9hqGprn5BYA1g6erjxxeFoFVVFi6z+v63YFJLmrf5qK0AeefCmCMbrFU2GIoNAIPw5\nml1PWunlChLmNY3+GC/gb+DxLHHJa+ZKZCutaitZzkODPGTRlkxuEyXM2YZ8XOEGIEqYp7+3CEFA\nMbXUxXAtWb91uIJTC3o2I//04HEMVYp48wu2AwDqVRtzmoahQHi4+vi/P4Wf//++n6vvaq3DkMcG\nwnMzTWwbqsRvqu0jFSx2PNx7aEa5lkUe6Rr+97/6IgDqEaNNgVV3raTOHbATZz95qHX0eJYHhzxU\nkYfIUh1IvLFkm2nYJMiJHmIJRxI9CCSvUrGAklVQRB5Rsr3Az3noDIMSlfkqnYRVOQ/Jc4tKdZmV\njKyhs+v12rEzsOj0KweP8ZbFeHaqgcWOh6t3jsTXtg1XcHxejzwOTzdx3d6x+P57xwdwaKqptRYA\nHkw5+LKZIhsBhjzWKD55+9N405/ehSPT+n+kR2aauGBsIP78567fA0KA7z2jnl3Q4EQe7I2uOtkx\niac/51FUNgkycsjKViypKZPdeIOgGFSdy6JhToBeNY4wYR5XW0nWBnzZiq2XvWZJ5NG/vlTUa1Dk\nd5iHxCPrTxF11bNcjYz04pxHpsSYVQPONsW/58V2+HqkIwcAYK/An94uH+zENuwX7U7IY9/EIKYb\nXeXIAT+gODzTjKVgANi/ZRAnFzraUf2n7zwUf/wP9z2vtWY9wJDHGsX/+82n8NjJRbz649/BI5qn\nldOLXWwbrsSfV0sWRmslzGiM6mxwch5lTVkgJo9M0rteCd1WZSWcjACykcdwVd0lzhsEFT+7QoaR\nkUdiXyGpehImj9WncNen3LXhveVFBqLxt+yaqmei6/UPkgJSc8wl5CP6mVmZtUxuE1VbDWo07ImK\nOf7Pa8LJ1C+7aEy4FgBORvJUepbIpduGAABPnFqSrp1a6sLxglgKBoBLokZB1Vq2/u5npvF//9jF\neMsLt+PmB47hmMI2Z73AkMcaRFY+ePOf3a1cQynFdKOL8Wg8J8OmgZLWnGde3kI38gjLIK2+2Ras\nLl92QuONoAWAkeiUqUMePFt1lQwjGuYEpDuQJUlvn3LzDjp9Hp4vjjxqZXmRgUq2UtmTiPpidHJM\nonxJHHlIE+b8Po8BjSivKZA2a6Uirtg+pOxPObXQCccMpNZfvGUQAPD0ZEO6lr13JlL9UlfvCiOY\nBzUGSv37Y6cAAK+7bDN+5bWhDHzX0xtjiqEhjzWI/+tLPwAA/NeXXRhfk53egfDN1/WCvqbATQN6\nkQcvb5FYlKirrXjNY0wjZrIDD6KkN1s7LxmDG0ctgs1Q1ufh+GKbj5qO9CSo1Kpq9DyIJC8gjDxk\niWeRtQkQkkdXUWHW8QR9MRpNmaIGw6Q8WUIeglLdcrGAYoFIySOJTvv/xiq2pSzoOLnQ6YnIAWBz\nvQKrQHBKUXHFEuOjteR9NTZYxu5NNfxIQxH45weP49KtdVyxfQgXbR7EtuEK7nxqSrluPcCQxxrE\nQ0fDP8r/ct1u/PFPhVN8D0/LT0jTjfCPfHywN/IYGyjh/sOzyr4FFtqnN2JCiNbMhEbX55b4sqFB\n0uhBEHnYVgGD5aIWeXAT5srIQ5wwZxucbL3QVddSn+Bdn8ZWJLx768hWWWuT8N5hzkNUJeb4ASjt\n38CBVOShqFCTSXWyXE0nHoDVu54QgoGyvK+G5VIGyv3PrWPLfmqxja0Z8rAKBBODZZxakPd6sMhj\n00DvoWzbcAVTGn0iJxc6uGL7MAgJm0JfsX8c//HM9IaYYmjIYw2CEOBtV2/HRZsHccWOUJt95Pii\ndM10I/xDzpIHwz8+KK5I8fwAXzl4FBeM1XpmgQPhRqNy1m2mDBXTYLLVokS2Ss9ZyGK4amO+LY6a\n5DkPBXn4YnfakoaEI5okSAhRNuuFUQtftgot3WXPLSY92yqA0rAJkYeOw887AEl+S11hJu6qVyXM\nS5lZ8wyDir4aRkq8vxGdLvNTCx1sHar0Xd8yXFFOBYwjjwx5jNfLmGqoyWO+5cQSLABcuWMYix1P\ne/b6WoYhjzUGP6A4tdCJDQ33TQyiVCzg0RPyEHkm+kMey8hWv/pj+wHIq5YWOx6Wuh5+5rrdff9W\nKapPduEsj/4NKZGt8uc8gJB8pNVWgkot4MwS5ipfrSCgQkt2IPSYkhGA51Nu5ACEJ2KZRCmTrVTT\nHxPpSBwxqfJEPNJi9vuyhHnXDfoaBBkGdSMPrmwl97dyvADTDacv8gCArUNlnFKQB4s8si4LE4Nl\nTC/JCcDxAjQdv2ft3vEw13JoSq4krAcY8lhjeGayAS+gMXnYVgH7JgbxrKKufKrBEnu9kcclW+oo\nFohUCmEbNC9qqZTUmnJDEXnIZKtOnPTmyUfycltRpRZwZglzVfLYDcRrAebXJCYAxw+4yXYglKNk\na2WyVUXRoBi/1hxH3rijX5YnEuQ82HrZ7yqcIth/XyCUo6SRB0uY82QrxUwPFllkcx4AsGmgLJVF\nAWCmEUYOWZlxol7GUteTEhf7u09HHnsnwpLfQzlK8NcqDHmcRfw/X3ko1zwNAPi7e59D1bbwhiu2\nxNcm6uVYlhJheqkLQvq1WUJI2KwneXMyWWmo0u9hpePz1HT45KHTL7HYdlEuFrgW4+WivEtc2mF+\nBgnzWMIR3DuxRRcTgKzkNeww58tWtkXgBermRp5kpjIoZJus6PUCxIQZBBReQMXkofhddVyfG/EA\nzA5G/LtKLP85spUtjzBZZLGFI1vVK8W4v0mE04sdbKn3r2WFKVOS6GMhklzTbsBbhyqo2pZ2k6Ef\nUPzdvc/hv9/8I7z3poOYVERK5xKGPM4CFtoufvqv7sHNDxzDe286mGvtU6eXcMX2IWxO/cGOD5aU\nIfJ0o4vRWombiB1UvDlZNVTW8hoIT01zitNZdgQtQ1WjT4RnO8FQLlrS6qHYF4tDPCWrgIBCKB/J\nEubxRipY60qilvB7ysfYup5Ytipa8jG2IkdeQD36N5H5xH0eoo3YkfSXsPWqCYi83xMQkoJM8mo5\nHgjhP3fFlhs6zggKSYDwfdFxA2l+6vRiB5uH+teOaEyrTCKP5EBXKBBcOD6AQ4oCGIa/uesQfvur\nj+BLB4/im4+dxq2PnNJady5gyOMs4H/92xO4//Bs/Pl3c5TmHZ5uYk+qmxWI9NWGI63QmG50hbM7\nVNUsceRR5Tjq1kpYUHThpodIpVGKyjBlCff5ltsT1qcRnmblvQMVm5+EZSdk0YYm87aKE+aCe6s2\nUpXNuBvIZCsiTHgD8jJfVZmwTLaqKXy1ZONvAdbRr/pd8cmjaBEpYTa7Pmq2xSVMValuRxKdMise\n2WCn04tdbrKdRemyYhCWFN9U631f7p0YwDOK/hKG2x49hfHBEr76gZdh+3ClZ19ZbRjyWGE4XoB/\nevA4royqpADgywePaq1d6riYXOr2WCEA4anJ8QOpvfp0wxFWWtXK8klvLOfBk61GFZGH6wfoegEG\nOZICgCiRKt5IpZGHbUnzFi1BwxugLj11JJuhSsJJ8iUi6Uk+xtb1A9gcwgMi8lB4conuy6qRVDkP\nXu6BSYwit1hXQraAjmzFd+QF1D5kix0Xdc7fJhASIbP1599XXFShklX9gGKq0eVKXjr2OQePzKFc\nLODirYM916+7cBOOzbXx0NF54VogTNY/fGwBP31gF67eNYLr9o7hvsOza6bM15DHCmJqqYuf+PO7\n0XJ8fPC1+/HUR34cmwZKWqNYAcSnihftGum5zipFnj4ttkOYbnQxJiCPwbJmzoMnW1VtLHZc4Zuz\nKfC1YqiULLQlsy3m225sRZIFm2MuQtsVk0dJYbchS5irejVUG2mxIJetPEmlVlGHeESRh0K26khK\nm1VzvePqNJFUV5QTgKg5EVBHHrIDhsoFIYm2+p+bRR4iwmx0PPgB7SvTBfQaYH90bB4v3DnSl8/7\niat3AADuelquSPzVnc+CAvjJF4Vff+2FmzDd6OJJyT5wLrGuyIMQcgMh5ElCyDOEkN88l/c+OtvC\n5+85ImX9f3/sFJ44tYQdI1W8cv8ESsUCDlwwijufmpKeJhnuenoaFbuAa/aM9lx/zaWbUS8Xpb0a\nMw1HLFuVilLriMW2hwLpn0EOhLIVpWJtt8HpTE9DNQd9UZrzkEshbdfnWpOwtYAs8hAnzAkh0nvH\nkpdkI5XJVmHlkUS2UvSILF+24jvbAmpzQ1lpM6COPMLBW6LSZvnrJScPVXmyuLdlsBzNIxcQZsPh\nT8gE9CoJZ5sON18yXLWxc7SKp06Lpaub7jmCv/ruIewZq2F/5KX1uss2Y6Bk4f1//6BULjtXWDfk\nQQixAPxvAD8O4HIA7ySEXH4u7v2PDxzDK/7o2/jw1x7Fg8+LQ83HTixisFzEXb/xmviNvGO0Ci+g\n+LM7nlHe586np3D93rG+k8pguYiLt9ZxZJpvqNZxfTS6nlC2Ug03WuyE86F5mvLoQPgmEc0vEA2C\nYqgqmgznW448YS6rthJMEQTSOQ8FASxjM2TXRQQgMyiklApLm4HoFC6NPCi3xwNQzwORSTjlooWS\nVRCewlWvV0lV3CDJeajIgze/PHnuKPIQRHpS2YrlPAQVV7KoerBURIHIcx7zEtK7ZEsdT0kiCCZ1\n/5frLoivba5X8DtvuQKHppq4ew34Y60b8gBwLYBnKKWHKKUOgC8CeOvZutlTp5fwGzc/hD2/+XX8\n+lceiq//y0MnuNEHpRTfPzKLq3YM9yRw3/fKvQCAv7/veal0dGyuhUNTTbxi/wT333eMVHFC4MPD\nygWzPR4MIzVbekJabLvcfAcA1NnpTLCpqGSraslCW7AJs/nloqhF1TsgMvkD1F3isnke4Xpx9VCS\nPBZthkS61vWp8PWyFdVWSx0vPjFnUdOsthK9ZgMSeVMm8wHq4oa5ltNXRs5gW0Ta23JGkYcbOgFk\nTTsBtWwV/21z8nmFAkG9Im5iDQLa112exu6xmnQAVqPj4RX7x/HzL93Tc/1tL9qBUrGgZcp4trGe\nyGMHgHTm+Vh0bUWx1HHx4o9+C2/4xJ34MmfIzGe/dwR/+x9H+q4/fHwBT51u4C0v3N5zfdtwFTf/\n4ksw3ejin35wXHhfdpJ45f5x7r9vH6ni5HyHO28htiap89+cE/UyGl1PaPS32PG4lVZAqiJFFNrH\nVu78DalqW+gINrOuF3otyZLeshkTstOsKundVSS9ZZGHLNkefk+xxQjbkOoCwrQK8j6PxY4be4Zl\noS9bichDHKGqIw9xzsPzAyy03Z6S1TRsqyD9mc805yH6eeuKIoG4v0RA9EPVoljOdTwEFBgR5PNY\nkyFP0p1udHFkpoXr9471VRKWigW8aNcI7ubM6Dkx38Zv/fPDeO9NB/GHtz7Bve9Kgv+qrFMQQt4H\n4H0AsHt3v9WGDvyA4rWXbEatbOGSLXVsGijhRbtHMVEv4yf/4j/wg+fn8cnbn8ZPHdjZc1pnTpk3\nXLm173tec8EoRms2PvzVR/Cfr9rGPYE9dbqBWsnCRZsH+/4NCKcCOn6A6Wa3pwcESEwRxwb4kQeL\nSKaWurhgrP9XLos8BnVPZ5LIQ9RIlZgiinsHgHDjqhT6N4CO62Nznf8zx7KVpGKqZBW4Uh3Aoh4R\n6YnzJYBctlLJfLaiVHex7fbMluh5ZibhCEhPZIvOIPOYiglTGnnw77vQdkEpsElwCi9GrxeltO/3\n4foBWo4vrcgDZIcEMXkMKg9GfCt4huGqLayAXIgqFLMDrBjYe3hqqYvdY72/z28/Ec46f9XFfBXi\n9ZdvwUe+/ji+fPAofvrALgQBxe/962P45mOncXw+jGZqV/OfeSWxniKP4wB2pT7fGV2LQSn9NKX0\nAKX0wMQE/4VXYaRWwsfe/gL8zluuwI3X7sYbrtiKiWiD+qdfeilu+eWXYaHt4r2fOxif+FuOhy9+\n/yiu3DHEJQZCSFzu90t/9wD3vpNLHWwZqgg3M/Z9eXYKSeQhII96Qh48hKdZ/h85uy6aySEaBMUg\ny3m0JDX4gDrp3ZLkPJRNbxKrDbZeFbXIZCuRhs9IWES2xcjcUFTdttTxhBspIUSacO94PsoCc0Ig\nIg9RzkOZMBfLfCJzQQbWbc8jzVZ8+ue/1qxnRRR5tB1xZ3vVtlAgYkm25ciJfqgiloP/PpoYmPXE\nYmDvycml/o7xWx46gR0jVVy+bajv3wDgZ6+/AFuHKrj5gVAZeW62hc9+7wiOz7fx5hdsw7d+7VX4\n0xtfxF27klhP5PF9APsJIRcSQkoAbgRwy7l8AEIIXrBzBIPlIu47PItf/3KYC7n/8CyOzbXxy6/Z\nL1z7v97+QlyypY77Ds9y67snF7vxHxQPw5LqjtgUUfDmZKecSRF5tMWylaoWXivnIdLgY0t1/lrV\njIm26yuJRxh5+L6CPMT5FvY8MtlKtJHGspXg9WLavIh8FiRRIiBPuHcc8SkcYPmpM6m24q9lfUKj\nAtmKuSLwfuauL054h9flB4yOK+5sJ4RIoy3V3/aQJOdx8wOhwi5SEljEnHXX9QOK+w7N4oYrtwpJ\nvmJbeOMVW/DI8QXc/vhp3P54YoH0i6/aJ7znSmPdkAel1APwywD+DcDjAL5MKX10NZ6FbfLffWoK\nh6ebePxkWDVx7YWbhGuu2jmMv3n3AQDAW//3f/RVS0wudYQSDJBop/zIw0G9UhS+wWRRCyCPPAYV\nXbgtyawFICz/Fb05ZX0HgDpvIdsMVbKV64lHwbL1os1QVW0ls2RXlTbbklO45wdodMVED4QTBkX3\n7kjKZQG5jb3ankRMtnPN/oFKPc8ck0f/z9wVzAFhUJfqygmzXrGFFVNLMXnIZCv+WkqBd167C3sn\n+Bv5BWM1FAj6ejZOLrTh+IGSAF560Thajo/3fO4gPvL1xwEAP3Pdbly5Y1i6biWxbsgDACil36CU\nXkwp3Ucp/ehqPcdf/dw18cev+fh38LHbnsBIzRZWkzDsiJxyAeD2J5LTQtvxcWqx05fLSEMWeUw1\nusJKKyBdVdK/lmnKolJI2yqgYhekurBtEaGEU6/YaHQ9boWazI4dUM9QlzUJqmzVQ2db/smOrVda\nmwgb/cRNbw3FaZZ5Xvmc9WytMvIQ3LvjiV8vgEl1/NdL1RjJEua83zMro61ynJOBhDC5kYci4onJ\nQ/DcMkNGIDJH5ByMKKX48zuegRXZzfMgSpi3HR8zTafn/Z5FrVTE/s11PHysV4V4biYsx79gjJ/X\nYnjD5Vvw+2+7Ev/1ZReiZBVwzQWj+OhPXiVds9LYUAnzc4WLt9Txh//HVfjNf3o4vvaLr9qnXJcO\nQxdSUcBXHjiKjhvgjSkn3SySsaz9/RbTS92+OR5p1EqRtsshAKbBiyp4gLCZakkS2os2QiB8g/kB\nRcvx+74uccWVd0zzEsCOF8ALqLrPQ5EwF6FctGJTvSySyCN/34Iq2oo3Uk71EWvgE2nwAGAVCkLZ\nqq2QrWQVU/EmLok8KA2jh1KGlLtxol78egEi8pCvTaqt+M/ddgPF3zZftmq7PlqOj7e8cLswDzlU\nsdFxA3Q9v+f5WNJ6x6iYPIBQjfjOk5M9hQLMqv2CsQHZUhBC8HPXhz0gv/jqvcKo7mxiXUUeawk3\nXrsbX/3AywAAP3v9bi3yAIBfee1FAIBnU8NgHjuxiPHBEq7bOyZcV68UQQjfSyc0RRRHHkzb5VVM\nxb5WgsgDADYN2MJke6PrCZPl4XOLDeSSaiv+etkscdkgKECdMA/ncUtO4RrVVtKch6K/pCgoEbai\nyIMXPcRuvpKISTaIquMFQsIDzqw8WWZEqTJVLEaHKt7PHN9XUZEnik5nGl1hLhAI5UMeeTDbkZdI\n3pOsAODkfG/SmyXBeZ5Yabxg5zCmG048AhoAvn94FpvrZWznzB8RYXO9IpQTzyYMeZwBrt41gs+8\n+wB+602Xaa/5tTdcgncc2IVnp5rouD5OLrTxxe8fxW5B+SVDoUAwXLUxy4s8JKaIDPWKzScPySwP\nhgvHB4STz8LIQ7whxe6jHA8g5nklSnrHw404G4PMLRXQk62WnzAPUCDJppdFSTIMKp4EKLRkF0s4\nriLvwNYLE+auLyyLBhRSnUa1FcB3InYU1WlnQjyyyINSislFvrEhw0jV5ronyJymGV59yQQICauj\n0mDTB1XvyRfsDD3svn9kNn7e7z07g5fuGxNGO2sJRrY6Q7zuMrHUJMK2kQoaXQ+Xfvi2+NrOUTl5\nAMCu0Rqen+3tSnW8sAFLTR5Fbs5DNsuDYd/EIG5/fJLrq9Ts9stRabA3H+/ezG1XJOEkNuH9G5Js\niiCQnqonSpiLBzIBavIoFcU9IrJSXbaxW5JhUAC/VDeOWgTEA6gS5r40L1eSRR4aOY/016XRVUQP\nRUm0pSqLlpXqLrRdOH4grWLcPFTB5GK3r8dE5jTNsHO0hku21PHg873d3kzuVOVAr9oxjK1DFfzL\nQyfx1qt34O/vex7TjS5euo/fKLzWYCKPVUD2jfCqiyfwoTddqlx3wVgNz830TiCLTzmC7nKGuig8\n1zhh7RkfgBdQnJjvt1MQTRFM7iuWrZgcpSQPzsbAku2iMkyrQFAqFsSlp8rIQ2wH73iBcDMDws3Q\nCyg3eczIQxR5xLIVJ+eRJK3FpCdNmLu+8PUC5AlzHXsSgF8yGzdVSma+A4Kch6KxsVAgKFkFbsKc\nlcHKIo/N9TK6Xv+4A5nTdBqXbxvC4ycXe67NNMKpnqo8hFUgeMsLt+G7T01ivuXgD74RVk29XOAy\nsdZgyGMV8OKMa+6H33w5tg3Lk2sAsGdsAMfm2j1vMqavqiIPZc5DcsJiw3B4fSJNRc6DJSt5slVD\nUQopsxhn80lkUU/VtoRauDphLs95iDYzIDmF86QrJluJch523OfBIx61bCVLmHfcQCjzsecWTV90\n/QBEItXJckxdL/SXEvUtyBPmctkKALYMl3HbI6f6bGxizzdJ5BE362XGu8YRuSTZDgAXbRnE6cVu\nz8FspulgU63E9dPK4g1XbIXrU/zrj06i5fj4tddfjO2SKq21BCNbrQIO7NmEpz7y4zi10AEhENpN\nZLFnfAB+QHFsrh0PjDqiWdo3PljGD47O93VWL2gkzJmt9GnO/ORm10dNkvNgmzuPABodD7WSxR2d\nC6RdYjnkoSh5BeR28OoO80LkvdVvmdF15WvTJ+ns1yXSk2AYVPRa8GQrNjpXKltJZqCrylbTfTXZ\n34nKzkVW3aaK1GR9Hqp8CQC848AufPzfnwq771N2ICw/KJOP0g20zPocSN4Xom5+BjYlcLHtxhH4\nTENsApnFzqgiizX6veyi9RF1ACbyWDWUigXsHqtpEwcA7IkI4khKujrCSvs2yUv7brhyK+ZbLr73\nbG9z4mzLQckqcGd5MGxhb7DF/shDZi8OJLISTz4KHWLlm79obVNhWwEoOqZ9VbWVFZeeZtFVSF6y\nk7QfUFiCGeRAQiqyhLlUtiqIZau260s3YRkBdDXINvy6/tdbFanFjZHLyJcAwKbI0y37u2Zl7TL5\niB2MsjYhrKFWNMGQgR260rLsbNORls6nwRSDbz8ZeuOJLEnWIgx5rCOw2eaMMNjH24YrUjkCAC7f\nHv5RnsiUFc5GpyRZdcdIzUbJKuB05g1GKVX2eZQlrqdLXVfoLguEp/CSVZDLVhLJrCLx1XIiKUWE\nZJpg/3pXIXmxUzsveewGgTDqCNeqZStZ5FGU9Jh0FbKVXHo6A+KRjKBlzwyIku3ynAcgLumea4Yb\nusgWHUhsQrIHo8mlDkZrtpQwAX414XRTPNUzi6wEqXofryUY8lhHGBsooVaycDRVcXV4pok9ioYi\nIDQ2hPMAACAASURBVAndmQ8Ww2xTHWITQjA2WOprmutGjXqy6KFcLIAQfgnnUsdTnuyqJX7eQk+2\nKohzHr58Q2Okx9tIvUA8RhZIGf1xcx5USh4lSdTCZCvZvW1Bqa4f0NCdWJowFxNAs+sLbffTa3mv\nl6o4gf398BxqVdVWQLLhZg8Zcy0H9XJR+noNlouolay+fN7kUr97NQ8894bZpiPtLRHhD85xh/iZ\nwuQ81hEIIZiol2MXXSCMPG64cptybblooV4uYqbZSwAzmiH2UMXuK7dtKcpl2TNXihZ30ltIHvI/\nwaptcZsEVZ5agNqUUdScCMg30rBkWdaoJyYAz+/PJ/TcN7YY73/uJGEuvneYMBf3xchyHjIjypbj\noSaJ8mTDt8LIQ/x72rUp1P2PzvZPylT1lwDiqrz5loORAfnhhBCCzfUynzw4I2SzyMpWrh9gvuUK\nxyPw8NfvCj3vXn95/rL/1YQhj3WGicFyXEWy0HIx13Jx4bhe3mRssNRHHrNNR5lsB8JS3mzFlM7p\nHwg3LN4mvtRxsX1EfrqrlS3u/PVG10MxKtMUoWpbXDPIIKBRifHyJByHk1BOQ0oeAdWSy0Sklf7+\n3HsLLNlVTZWAPHpQ5baS10uQ85CQVq1UxPhgua8MnT13scCfBMggqsqba7lath2b6xWcXuiVZKcW\nO9g3Ie4uZxjKzLthDYebNHMewPojDQYjW60zjA8mkQdLnOvIVkAoXc02kxMWpRTTja7WKWmI4z6q\nGmzEUBGUzC51vHjMbZ77AkAryrXIcjWinEfL9UGpnPTYSZf33K4vz3nYMQGIZCud0z+PPOTWJuzf\neHIZi/xkspXs3i1HXlUni9S6nlwiBMJqwec5kYdWdCqoytORZAFg3+YBPHl6Ke7LoZRiqqErW7Gc\nR/g3enpBPhJ6I8GQxzrDRL2MqSx5jOuRx9hguSdvMdt00HL8uFxQhiGO/TQ7ZckSkkBEHpxNpe3K\nN6TkvrweEV9aIQaIR+DqREyMHLgeU748epA1vblBID1Fy07/cbWVIlnPM1WMpwguU7ZS9fNIcx6K\nUl0gLInlNbHKRtAyMDmN2d0wzCg83xiu2D6MhbaLY9FM8bmWC9en0hEJDKViAcNVO/anSt6T+lWU\n6xWGPNYZtg5XMN9ysdB28exUE4RA6YvFMDbQK1uxN4tOufBQpV+2YtUsqtNduchPXKvKP9l9lzhm\nkB3JICgGUamuTsRkS+w2eDYtPWsZ8XA2cV8hW0lzLYoub4DJVv2E11bY36fvzVsfuiIvL2rpKEp1\ngVDa5PlT6ZFHv2wVRtV6+bz90ewMtvGzsl1Zc2Eal26t4/GTi+h6Pj74hR8AUJfObwQY8lhnOHBB\n2J3+nScncdM9R7B3fEBqs53G2GAJc00n7sRl5KEbeSx13J4uXiaBqciDVzFFKdU6kfIiHkDdpwGI\nR+A2dchDYVBoS/sWFLKVYghVuJafLwHkspVVKAj6JeQuxOnn5v3Mja48YR7Pm+dJXl0fNZW0WeQX\nNyy0XaVFCE+2Wup6cPwA4xqSbLaRlZXt6kQeQFgG/8SpJXz7iam+Z9rIMOSxzvCi3aOo2hZ+55ZH\nMd9y8f5XX6S9dtNAGV5A48342FyoMWuRR8VGQJP+CgCYbcrHizJUiv3koWM7we672O4fJuUojA0B\nlmsJ+mwrGoo54oC8ZNb1aWwjwl1blBOPtFRXUfIKLK9Ul53ql0MelNIckQc/0pMVJwBhlRlv7aJO\n5MFJmDN5VuX5BqTJI/y7YJVXmxWW6gyXbRtCy/Hx374SjqX+x196ida69Q5DHusMpWIBF44PxFVE\nBzI+WTKMRyE8k66OzrUwUrOVvRZAYpyYzj/MtRwMVeR19ABfktAmj2oRjh/0baYq6QhITn/ZtVqy\nlZQ85PdmCXFRtZUscpBVWzE5aTmW7DqyVRwxZWSrrhfAD6iUbK0CQa1kcf3TWo4vjVqAM5Otipxp\nl6yoRKcYJCt7sWpG7cgj6gpf6nq4YvsQrrlAPI56I8GQxzrEr7/h4vhjHSt3hqRRMCSPY3NtragD\nSHfS9jZDjWpUs/CqreLOYYXkxrsvwPeNykJkb5KYKmpspBzpSVe2EpKHokPcKhA4Pr/Kq0AgTbgX\nBZbsqnGuQCrayhBX3FOjIIDRWimeV85AaVgWrVXcwJE2dcgDCEkiXQzCmmF1ch4xeXQT8hgoWcoS\ndIb9W5J54wJPyg0JQx7rEK+7bAvu+PVX4TPvPqDl3MnAnHuPz4dy1bG5NnaO6JFP3AyV2sSXOq7U\njTdeW7Exn9n841GuCgIQNYCF9iLLJI/YF0tWqiuTnqi04ilZy3fVlSXMgXAT5/d5yPMlAJskKLE2\nkVWJRc+dLRJgOSJZMyjA7yNqR2XRypyHbcELaE++pun48AKqRR6bBkqYSZWhTzf0BjIBSbVWnPNY\n6mgny4Ew3/OVXwylKp6TwkaFIY91ir0Tg7kHUe3eVINVIDg0FVaVnF7oYKvmuMs4AkjJEuEgKHVi\ncPtIFVNL3R5NW1e2Ep3iHV9uEQIAFUH9f9xtreX0utId5lRJ+OEIXP59ZaQFiL2tYslL6sjLf24W\nqan6eUZrpb6pfDpEDaQmAqZ+bl1nW4D1MKUjD72BTEAy+6UVlfpOLXVzkQcAXLw5dOS98dpdudat\nZxjyOI9QKhawa7SKQ9EI3KWup/0miXMeqQhCNb+cYUckjaVnPSeGd3LyEclHjkb5J4s8hMl6Sc+D\nijyW22HuBuqISRx5BNLIAQh/5uwJHtCMPAT5FkYAquhhbKDf/6wVG1jKf8/J5Mfkd7XQ0iePrPfa\ndKOLkZqtPdt7oGQlspVmg2AawzUbT/z+DXjvK/bmWreeYcjjPMP+LWFNOksojmvaKLDIYyFFHi1H\n7qjLsGOEyWWJoaPOBg6I5SNVox4glq06rg9C5FGPKHlMKY3uLU9a89YCYZ+HrNoKCEleJFstV6rT\n6U5PKsx6n1uXAEYzp38gRTyqhDlnnGwceSiaUAHWw9SNq/Jmmt1c5oS1UrEnYZ438gBCAlwPs8dX\nCoY8zjNcvWsEh6abuOWhEwD0NGEgcQ9N91w0FPPLGSaicsm0oaOjKVuVrHBT6ScPjYR5Kfx3nmxV\nlswgD+/LTx6zjVVWJixay9ZbEukIEM9P15GtKoIcEYtEZLJVMgGRn/NQ/a4Hy0W0Xb+nNFpX8kpc\njDnkoRV5lNFxg5gAphuO9t82EOZzWo4XRuQd/Yj8fIYhj/MMV+0YBgD80W1PAtAnj6IV2jCkCaCp\nUb8P8BvIdKy2gaRZL3sS10mYV4SRR6BsrLQFEY/OKFjRfQHNhHnR4lvBa8hWNY78Ez53uKFb0gZD\nggLhkYdetRUjgHTCnRGP0g0glhiTtYs5cx4A4shnWtOahKFWstDoevi3R08BOD+8qc4UhjzOM2St\nTHZoluoCwIXjA3Gy3Q9o6E2lkfPg+R6xqhRlwlxgE+Lo9HkIch4d15cmywFx3sJlo2AV5FEqFrid\n8WGfh+q5C30+TeGzaMhWosgjUCfMgfDnzr7WTLZS+ZDFzropAtCxzgcSwv3HB4/F13JFHgO90e2M\npjUJw7bhKu56ehq/+sUfAgAmNOzYz3cY8jjPsC1jgZ7ndLZ3IiEPXTkC4Ftu6FZbiXR4VzHMCRC7\nrXa8QDrXAkjGwWbzFmxjVXW3s874LFw/kHanA8BgxY674LP3VuVLqqLIw1cnzIHw9XYzxQkN3ciD\n02Wu2yNyWdRo9+iJxfjaUscFIeq1AOLJfbNNB44XYKHt5vrbvnr3SM/nJvJQw5DHeYa0THRxqrlJ\nB/smBnFqsYNG19PWwdP37C5LthKU6p5Bn0fH9ZWyFSHhrBBeriX9XCIMVYp8Ty4NM8h6pcjt1Pa0\n8jx88ogT5grysYuFvgbFluOhQOSDpAB+hBlHLQrZaqJexusu3Rz/XQHMObmIgkYvE4s8ZppOXC6c\nJ/J405XbcN2FSWe4zoyb8x1nbRgUIeR3AbwXAHML+y1K6Teif/sQgPcA8AH8CqX036Lr1wD4LIAq\ngG8A+FVKKSWElAHcBOAaADMA3kEpPXK2nn2jY9emKqq2hVt++eW51u2bCMnm0FQj3iB0bauB3shD\nVwvnGRT6AUVA1Ru4OOfhKzvb2b2zSe8lDV8sAKhXbS4B6NiqhMTDl620I48+2SqMWlTVQOHP3Bt5\nMLJVreVNQdTt8wCAwUoRjal0H5Gn1UcEJEQx3ejiRFTVl6fcdvdYDV/6hZfg8HQTVdvSsuw533G2\nJwl+glL68fQFQsjlAG4EcAWA7QC+RQi5mFLqA/gUQsK5DyF53ADgVoREM0cpvYgQciOAjwF4x1l+\n9g2Lu37jtctad9Hm0Gb62alGPL/gRZlwnwerQFAskJ5N5eRCB7ZFlOWUbKNNn2Z1RpMCyfz07EyP\nrhugolgLhKfwbOTB7LpVpBla2PdHHq5PNSKP/pG/4Vo18fDsyQG95kQgfL15UZ7qmYEk8ui4vZGH\nqiyaYaBc7I08NEvBgbDU1rYI/ui2J/Gul1wAIJRZ8+JCzdk4BqsjW70VwBcppV1K6WEAzwC4lhCy\nDcAQpfReGhZr3wTgbak1n4s+vhnA68j5VFC9RrB70wAqdgHfemwST55awo6Raqw1q5DtXTi10MaW\noYpSkihzykcTd1n5WkII15a946llq/D7F/pyHlOajqtCK3kNua1eLqLrBX0VZjrkIYq2wvG36rd7\niZMw1+nmB0SyVSg96bxd6+VeuU41gCoLJs3ddM9zKBaI9pwbg+XhbJPHBwkhPyKE/C0hhNm/7gBw\nNPU1x6JrO6KPs9d71lBKPQALANQDhg1WFKViATe+eDdufeQkJhe72JyjIiXbu3BioYPtw+pKL5vT\nMxFP1NM4zXLJw/WV+j0Abs6D2XWr+gB4w7MopdEcEnXOA0Bf9KGafw4kMmC2wkynzBeQRB5a5NEv\nW7UcT5nvYBiISJPdP49slcWe8QHt7nKD5eGMXl1CyLcIIY9w/nsrQglqL4CrAZwE8Mcr8Lyq53kf\nIeQgIeTg1NSUeoFBbuwYqSKgwPOzrVzVLNnI4/RiB1s0fLXsOPJIIoBYttLYHCq2hbbTuxnq9HkA\nYWSTPf1PLnZRK1lac9uzJnk6DYZAMhc7mzPJVSSQTZgr3HwZSsUCt7JNS7ay+yOPZtfXJg/2mjLp\nqtn1tar5ePhPGnKqwZnhjHIelNIf0/k6QshfA/jX6NPjANLuYTuja8ejj7PX02uOEUKKAIYRJs6z\nz/NpAJ8GgAMHDpxH5sjnDszj6vh8G6+8eFx7XbnYO+xntuFo2UfETYKp07DOPG4G3hTDcIKh3kk6\nO6BI10m4ZBXQXWal1mAUeWRneuvIVqLqNJ3mRCAkn2aXR1rqtbFslcl56PQCAQl5NLoeRmql0Mp9\nmeTxkn1GmDjbOGtxXZTDYPhJAI9EH98C4EZCSJkQciGA/QDup5SeBLBICLk+yme8C8DXUmveHX38\ndgB30OxoOYNzgvTGqTNoh6GUkq1cP8BS11NOIASSprZ0BMBO5DqbOE+20pGOgNDqo+1m9X+9taUo\n2Z7+M9VN9Ffs/tJmQE+2SqrTet8e4fhbNQEMVe0e/7Lwe+kmzHmylZ7zMtBPmqFspU8en3/Ptbhs\n2xA+8Jp9+IkX7lAvMDgjnM1qqz8ihFwNgAI4AuAXAIBS+igh5MsAHgPgAfhAVGkFAO9HUqp7a/Qf\nAHwGwOcJIc8AmEVYrWWwCkjPk8438yCRrdgUxNEB9eZfiCq10idplohWzbYGIvJw+iMPHT28Zlto\nO/2ncC3ysAqgtHfD1408eM12QJj3UXWnE0LCcts+WxU92WqkZuPRE73kodPN3/vcvTM5RjR+T0BS\nzssin3B8rf4W9Yr9E7j1Vye0v97gzHDWyINS+nOSf/sogI9yrh8EcCXnegfAT63oAxosC+nT/ptf\nsE3ylb1IRx7zURPXiEbkwdb2kEdbP/KolKy+klnd6KFasjC5lFmrKXnZqSqxbLmxTolx+usZXM2K\nKV7Sm/V5qDDCiTy0E+acnEer62G75swYRhRLHQ+eH6DjBrmqrQzOLUw5gkEusJwHAO0yXaA38phj\nkYeG1TbANsNEhkkiD/XGUrULPTkPSmlIABqbYbVk9fVLaMtWnNkYcZWYMvLo94hi63VyD9nXK1yr\n9tQCQh+pluP3RD25ZSu3V7bKm/Nodn00NT2xDFYPhjwMcoFVAm3TPE0ylFLJZ2YfoZPzAMLNML2Z\nsUhCN+fRTElPccWTbplvtsFQ8xTO66p3NEuMefbkQJi30Is8SF+vhm7CfKTWP7fF0bCCB5JKrzTh\nhjNf8uY83Fz2NwarA/ObMciF0ZqN/37DpXjTVVtzravZFk5Em8rh6dBccfuInqPvpgG7Z0rcYseF\nVSBaJaDjg2VMLYVDgggh2hs4EHZr82ansz4MGeLII7WJM9sP/ZxHf7Jeu1eDk2zXka2GI0JfaLmx\nvYfraTYYFguolawe4mk6vtKChmGwxMjDN+SxDmAiD4NcIITgl169DxeM5bNx2DxUjruzf/j8PC4Y\nq2nNlwZCjyLWnAeEOY+hil7X8tbhCjpuEOdJ8vSIcGUrzZzHGUUeHCNJQG8YFMDPebh+oJUwr5f7\ny4QdP4hzOCoMp3Imrh92yevmLViE0uh48f115sUYrA4MeRicE2yul7HQdtFxfTw9uYTLtg7lWjuV\nJo+Oq1VpBQBbIhuRU4uhJxXbzHU2w6ptwfEC+KnJeHlKddnXx2vZvZXDoFi/REJcfkBBNcwg2fd3\ng96chx/oleryZonrJsyBXvJgxKvbJFi0CqjYBcw0u7jjiUkAenbsBqsD85sxOCdgXlAnFzpY7Hha\nZboME0O90tNiW69RDwgjDyAkj0u21nNFHrXUYCWWzNXdSBNblWQT10+Y98tWbO1yZSvXp/FYXhlq\nnGFSIWHqWckNVW0sRAUR7Zg89LeZwbKNm+55Lv7cyFZrFybyMDgnYBHAOz99b67NHwhlK8cP4v6Q\nxY6nVWkFJONJ56LxpHlyHkkCOJFwup6fM/LoPcHr3FtGHrrJ+qxspZvor3JceXXlMqC31JcVKuSp\nmMrKVMu1JzE4+zDkYXBOcOX2UKY6tdhBVzPpzMDsz1neIw/5MBmGleuyDVwnb1GNTsx9Ek6OUt0u\nJ+ehkp4IIVFfTHLfrqe3FkDUVJl1A+5goq7OMfHmgeg2VQIZ2aqbP/LI9v6oRt8arB4MeRicE4wN\nlvH2a3bGG69uzgJIk0eYt1jU9JcCEM/tiMkjR+SRuNumksdegJKl3tCYzJPexNmmqvOzl4uFnj4P\nRmA6lUvZOeSuH2C64cTRnwy8SYS6fR5AL3kcmm4AyFfWvT01Jvlnr9+N8RwWOAbnFoY8DM4Zhip2\nfPLPFXlEm97kIos89GWrOPKI7pvkPNSbMHvG9FwO/SZBq+d+QPL8OvOxQ1PGfjPIqoYbcFa2YhHb\nVg3yyOY8KKVwNftLgLBPpO2GTYb3HprBUKUYzyfXwbbIpn+0ZuMjb7tKawStwerAkIfBOcNw6sSd\nL+eRyFaOF6Dt+mcsW+kQwFDGGj0IqNYkQACwo8gjTR5TjQ5Ga7b2VL60bNXOQR7ZUt1T0dRHncij\nUuzNebCpgDoOxkDyO15ouzg218beiUGtCYYMrPcnK7sZrD0Y8jA4ZxhORQt5ZkQPlIsYKFmYXOrg\nf/7LowD0ZS+rEBoFsk2QJbB1uq2z5MGkIK0+D441+uRiV9tMsmz3Ds/KJ1sReKnNdzYqFmBzvmUo\nFAgqKUsXVixQ0yAtIPm9LLZdtB39WR4MzAcra0dvsPZgShkMzhnSG76OhJLG5qEKnpls4K6np8PP\nczj6VopWKvLQtyeJZatIw3dyVjyF90tHHjnIo2j15jyi59cfn5s2kgyff1iTcNO2LHGvhmbVE0t4\nz7dctF1f+54Muq4DBqsPE3kYnDOkN5Jdm/JtEhP1Mp6fbcWfb82RhC3bSf6ASUGsi1uGwUzCPK7U\n0hxhC6BnIFSr66Ne1ttMs7JVrpxHRraKjSQ1o71aqRiTBiMt3QgiLVu1XX1rEoZtI/kOFQarBxN5\nGJwzXLF9GFftGMbrL9+iZS2SxuZ6Gfcfno0/z0MeFbsQd2sng6TUf/q2VUDVtuJZ4nkaDFnkkZ29\nrmvzkZ35Huc8NDbjokV6mhOZNYtukUKvbHUG5OH4WmSXhqmuWj8w5GFwzrB1uIJ/+eDLl7WWmfQx\n6FQsMVRsC53oFJ9nkBQQbrjZyGPZ9iR+AFszeVy2ew0G2Rz25STMFzsuaiVLy5IdYJFH+DOz/1dt\nzabMSLaaaTjLijxYddWBC0ZzrTM49zDkYbAusHkoIYurdgxrb4RAeIpnCfPFtoeSVdBKegO9zrp5\nekQSe5JM5KH53GGfx/Kqrap2r6Fj3o7+9OjepNFPN2EeFjecWGgvK/IAgMd+741aJo4GqwvzGzJY\nF0gnyP/nW6/ItbZiJwnzpY6LuqYjL1vbzpb5anZ5E5KxZPdpXMKrQnp4FpDkPCoa/lSjAyW0XT/1\nM+v3xQChNBYnzHPmPAgh2D5SxdHZNrpekDvyCO9V1G5KNFg9mN+QwbpAWrbK67Sa1vBDX6wcp/BS\nQjy6Y2SByGLE6iUAN4fNR7ZJsO34KBA94mJDttjQrcWOm6s0Oh15sBnueUhg+0gVh6Ya8fcy2Jgw\n5GGwLpCWrfL2DoSluky2crWS5QzpslVW/aR7Ki5lSmZ1J/IBrM8jkZ6ajodaSS9iYuN955rMoDBf\nv0UtNcektQxn3B2jVRyKBn4tJ/IwWB8w5GGwLpCWrfKSR71SRKProeP6+O5TU/kiD45spZsvKWWk\nJy/Qt/nIelsttNx4RKwKowOs1yKMPP7/9s41xq7quuO/NTN3HvYM47cZbIxxcEkcV1XAcRwEKS0I\nYysKEIXUVaVQhQZFfahRVUVQpCQq4gOt0keiJlXaoBCUllRJKSgNSnHaiE9ACDKvgPHwSINr/GA8\nNp7nnZnVD2efuWdu7p05+86cmWv7/5Ou5tyzz75n3X3mnnX2WmuvNVaezLU+JKUzM9uKjbYC2JBZ\nq6GZx7mLlIc4K8iuEYl5CoZk4drg8DhPvHocIPdCPUhupL/q88h3Q8wqj8kpZzJKecw0Ww2ORCiP\nYLYaCMpjtBznuF6WcbifHi1TarXcChNmKo/YayXOHqQ8xFmBmU0rkM6ceZZSertKnB6dmK4m+Pnd\n783dt6vUyuh4fLQVzAyZjSnmBMFhPjnFVKgIODg8zoqufGV7U7NVWv9ktDwVNWZdQWG6O4NDZVYt\nb49al5PNovuRX1uTu584u9BjgThr2P9nv8krb5+OXmCYPrG/fjyxw+fJ8ZRSy2yV2+fRVvF5xBRz\ngsoq9vHJKTpbWhkcKdOXM3VH6hxP80ONTsSZrbraW3FPAgQGhsenZzJ5uWxdNwD33rI9ylEvzi6k\nPMRZw9qeDtb2rI3ulyqP/mNnWLGslNt0BJWncIhXHqVMtFWaJTZPQkaopE8ZK0/RWWpNfB45fTWd\npRZaW4wzYXHjyHik8sjUMT85ND5djTEvq7s76L93T9RaHHH2oasrznlSc89rx8+wJmJlOqRrRBLz\nUUxiREhnHonSSGceMelJIInwcvcon4eZ0d2RBAm4O2MTU9NFsfKQrekxMDw+7YCPQYrj3EdXWJzz\n9Iab7pFTo6yOvBGmT+FjE1NRiREBOlpbGJ+YOWuJibaCxF8xNjHF5JSzPKKed3dHklYldbp3RkRL\npec5cmqE148PRY+ZOD+Yl/Iws1vN7CUzmzKzHVVtd5lZv5kdNLPdmf1XmtkLoe0rFgzYZtZhZt8N\n+58ys82ZPreZ2aHwum0+Movzj63ruklTSq2JiLQC6CpVytiORawwh6QgVKo0JoLjO2/f6RK4Y+Xp\nkN28fdP+Z8bKlZXpObIIp6QLMv9u/yEArr083lQozn3mO/N4Efg48ER2p5ltA/YB7wduBL5mZul/\n79eBzwBbw+vGsP924KS7Xwb8LXBf+KxVwBeBDwE7gS+ambKmidz0dJbYdlFSCnVN7MwjY8KJSU+S\nHleuNlvl7NvbVamLMRYKWHVE+C1Ss1VMHZCUtNbKz35xkhXLSvz2e9fn7ivOH+alPNz9ZXc/WKPp\nJuAhdx9z9zeAfmCnmfUBF7j7k+7uwLeBmzN9Hgjb3wOuC7OS3cDj7j7g7ieBx6koHCFysXn1coCG\nfB4QlMfkFKVWy11XO7vOo2K2ytd35fJKuO20uSxi5tEdsgGnK+tjQnXT1fzD45Nc1KviTKI2Rfk8\nNgC/zLx/K+zbELar98/o4+4TwClg9SyfJURu0pDRGL8BzIw8Gi1P5ioilZKt6Bc788jmp4qN8oIw\n8xidqJitYlaYl1qn14qosp+ox5y/JDPbD1xYo+lud39k4UVqHDO7A7gDYNOmTUssjWgmujuSm2da\nnyIvqdlqtDzJqZFyVFnVns4Sx06Pcmq4nAnVzWu2Smce41EJGSvnbuPdsYmoCoRZ1l/QycnhMhtU\n2U/UYc7/Rne/3t2313jNpjgOAxdn3m8M+w6H7er9M/qYWRvQC7wzy2fVkvUb7r7D3XesXSsnn6jw\nB9ds4ar3rOZ3Phj3UNGVMVsNRuSXAvjElRsYGp/kJ68ey8w88qeC7yq1zjRbNTDzGIqsx5GyPvg9\nNPMQ9SjKbPUosC9EUF1K4hh/2t2PAKfNbFfwZ3wKeCTTJ42k+gTw38Ev8iPgBjNbGRzlN4R9QuRm\n/QWd/MtndkXltYKMz2N8MkkREqE8+oK/YDTjbM+7zgOS2cepkXJ0WhSA7o4SI+VJ3hkaSz4rQm6o\nOM2lPEQ95rXC3MxuAb4KrAX+08wOuPtud3/JzP4N+DkwAfyRu6f5pf8Q+BbQBTwWXgDfBB40s35g\ngCRaC3cfMLN7gJ+G4/7S3SvFrIUokGy01eBw/hQhkF3oNzVdUjbG7NVRSnJjNRKq2x1Cff9vKeN+\nJgAACIFJREFUcDT6vADre6U8xOzMS3m4+8PAw3Xa7gXurbH/GWB7jf2jwK11Put+4P75yCpEI6Rm\nq9OjE7x+YogPv2d17r5paG125hGz4K4UQn3HGwjV7QmBAYcHh4F45XHZum7aW1vYvHpZVD9x/qDc\nVkLMQqo8/j4smIshTQkyVp5ipDxJW4tF1RJPo7Vi15dAZeZx+OQIpVaLdph/9Nf7+ODmlayODG0W\n5w9KTyLELKRmqxNnEt/Bnu19ufu2tSYJCscmphgYSnJE5V0jAtDeaonZqsFQXYDDgyP0dpWiMxG3\ntNi0z0aIWkh5CDEL2Qinvt5Ort4aV5+ioy0pJ/vO0Hh0jqi0HshYI9FWYebx6tEzUZUThciLlIcQ\ns2BWMfnELjCE5IY/PD7JwbffnQ5/zUuptYXyhDcUqtuTkXWDnN6iAKQ8hJiDNElhd0PKo5Wn3xjg\nfweGueUDcYkRSm1VPo8I5bE+U83vL/a+L+q8QuRBykOIOUjzYTWkPEotHDmVhMtuWbs8qu98fB5Z\nx/wlipgSBSDlIcQcpGVrG5t5tEyXg40tyZr6PBqJtsqyrF1BlWLh0X+VEHOQzjwa83lUQmRT81de\n0nUex8+M0ttViq7O9+DtOzl6eiyqjxB5kfIQYg7WTM884tZKwEwndyPK440TQ7w7Wm7I6X3NVuV3\nE8Uhs5UQc7BxZeIzaGTBXJobq72tJSqdO1SSKJ44M640IaLp0MxDiDn4vQ9tYvuGXrb1XRDdN515\n9DRg8souKNy4UspDNBdSHkLMQVtrC1de0ljl49RPEmuygkr1QaiYzoRoFmS2EqJAUnNTI872sYzy\niE1sKETRSHkIUSAXr2pceYxPTE5vK8WIaDakPIQokLSC38rIYkygmYdobqQ8hCiQ37p8Hbu2rOLO\nPfEpQtIiUAArlsnnIZoLOcyFKJAVy9p56I4PN9R3LGO20sxDNBuaeQjRpGT9JMvb4xcoClEkmnkI\n0aR8+ZO/wVd/3M+6ng7W9qiin2gupDyEaFLW9XRyz83bl1oMIWois5UQQohopDyEEEJEI+UhhBAi\nGikPIYQQ0Uh5CCGEiEbKQwghRDRSHkIIIaKR8hBCCBGNuftSy1AIZnYc+EWD3dcAJxZQnIWiWeWC\n5pVNcsUhueJoVrmgcdkucfe1cx10ziqP+WBmz7j7jqWWo5pmlQuaVzbJFYfkiqNZ5YLiZZPZSggh\nRDRSHkIIIaKR8qjNN5ZagDo0q1zQvLJJrjgkVxzNKhcULJt8HkIIIaLRzEMIIUQ0563yMLNbzewl\nM5sysx1VbXeZWb+ZHTSz3XX6rzKzx83sUPi7sgAZv2tmB8LrTTM7UOe4N83shXDcMwstR43zfcnM\nDmdk21vnuBvDGPab2Z1FyxXO+ddm9oqZPW9mD5vZijrHFT5mc31/S/hKaH/ezK4oQo4a573YzP7H\nzH4efgN/WuOYa83sVOYaf2GRZJv1uizFmJnZ5ZlxOGBmp83sc1XHLMp4mdn9ZnbMzF7M7Mt1L1rw\n36O7n5cv4H3A5cBPgB2Z/duA54AO4FLgNaC1Rv+/Au4M23cC9xUs75eBL9RpexNYs4hj9yXgz+c4\npjWM3RagPYzptkWQ7QagLWzfV++6FD1meb4/sBd4DDBgF/DUIl2/PuCKsN0DvFpDtmuBHyzW/1Te\n67JUY1Z1Xd8mWQux6OMFfAS4Angxs2/Oe1ERv8fzdubh7i+7+8EaTTcBD7n7mLu/AfQDO+sc90DY\nfgC4uRhJk6ct4JPAvxZ1jgLYCfS7++vuPg48RDJmheLu/+XuE+Htk8DGos9Zhzzf/ybg257wJLDC\nzPqKFszdj7j7s2H7XeBlYEPR510glmTMMlwHvObujS5Anhfu/gQwULU7z71owX+P563ymIUNwC8z\n79+i9g9rvbsfCdtvA+sLlOka4Ki7H6rT7sB+M/uZmd1RoBxZ/iSYDe6vM03OO45F8mmSp9RaFD1m\neb7/ko+RmW0GPgA8VaP5qnCNHzOz9y+SSHNdl6Ues33Uf4hbivGCfPeiBR+3c7qGuZntBy6s0XS3\nuz+yUOdxdzezhsLWcsr4u8w+67ja3Q+b2TrgcTN7JTyhNMxscgFfB+4h+aHfQ2JS+/R8zrdQsqVj\nZmZ3AxPAd+p8zIKP2dmGmXUD3wc+5+6nq5qfBTa5+5ng0/oPYOsiiNW018XM2oGPAXfVaF6q8ZrB\nfO5FsZzTysPdr2+g22Hg4sz7jWFfNUfNrM/dj4Rp87EiZDSzNuDjwJWzfMbh8PeYmT1MMkWd1w8u\n79iZ2T8BP6jRlHcco8kxZr8PfBS4zoPBt8ZnLPiYVZHn+xc2RnNhZiUSxfEdd//36vasMnH3H5rZ\n18xsjbsXmscpx3VZsjED9gDPuvvR6oalGq9AnnvRgo+bzFa/yqPAPjPrMLNLSZ4enq5z3G1h+zZg\nwWYyVVwPvOLub9VqNLPlZtaTbpM4jF+sdexCUWVjvqXO+X4KbDWzS8MT2z6SMSsUM7sR+DzwMXcf\nrnPMYoxZnu//KPCpEEG0CziVMT8URvChfRN42d3/ps4xF4bjMLOdJPeKdwqWK891WZIxC9S1ACzF\neGXIcy9a+N9j0dEBzfoiuem9BYwBR4EfZdruJolMOAjsyez/Z0JkFrAa+DFwCNgPrCpIzm8Bn63a\ndxHww7C9hSRy4jngJRLTTdFj9yDwAvB8+Afsq5YrvN9LEsnz2mLIFc7ZT2LbPRBe/7hUY1br+wOf\nTa8nScTQP4T2F8hE/RU8RleTmByfz4zT3irZ/jiMzXMkgQdXLYJcNa9Lk4zZchJl0JvZt+jjRaK8\njgDlcP+6vd69qOjfo1aYCyGEiEZmKyGEENFIeQghhIhGykMIIUQ0Uh5CCCGikfIQQggRjZSHEEKI\naKQ8hBBCRCPlIYQQIpr/B6D+zdfha8DnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr1.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'full'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Full mode does a full cross-correlation." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "639" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create CrossCorrelation Object by using Cross Correlation data. This can be useful in some cases when you have correlation data and want to calculate time shift for max. correlation. You need to specify time resolution for correlation(default value of 1.0 seconds is used otherwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cs = CrossCorrelation()\n", + "cs.corr = np.array([ 660, 1790, 3026, 4019, 5164, 6647, 8105, 7023, 6012, 5162])\n", + "time_shift, time_lags, n = cs.cal_timeshift(dt=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.83333333333333348" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSeglQCAECCAtoHRICAGUtaCyrgoiIiod\nQQQLrhXd1d11i667rhUQFQhKFUGwoYhtpaVRQhEIIpBICb2XJOf3x9ys84tIEpjJnUzO53nmmXfe\ne9+ZM0A4ee99i6gqxhhjTFGEuB2AMcaYkseShzHGmCKz5GGMMabILHkYY4wpMksexhhjisyShzHG\nmCKz5GGMMabILHkYY4wpMksexhhjiqyM2wH4S61atbRRo0Zuh2GMMSVKSkrKPlWNKOi8oE0ejRo1\nIjk52e0wjDGmRBGR7YU5zy5bGWOMKTJLHsYYY4rMkocxxpgis+RhjDGmyCx5GGOMKTJLHsYYY4rM\nkocxxpgi82vyEJGHRGS9iKwTkZkiUkFEwkVksYhscZ5reJ0/TkTSRWSTiFzvVR8jImnOsVdERPwZ\ntzGmYJ+k7WLDT0fcDsO4xG/JQ0SigAeAWFVtDYQC/YEngCWqGg0scV4jIi2d462AnsB4EQl13m4C\nMAKIdh49/RW3MaZgM1buYPT0VPpMWMonabvcDse4wN+XrcoAFUWkDFAJ+AnoBSQ4xxOA3k65FzBL\nVU+r6jYgHYgTkbpAmKquUFUFpnm1McYUs6++38sfF6yje/MIWtWrxujpqbz+VTqeH09TWvhteRJV\nzRSRfwE7gJPA56r6uYhEqmreryq7gUinHAWs8HqLDKfurFPOX2+MKWbrMg8zZkYql9apyoS7OhIa\nIjz+/lpe+GwT2/Yd5++3tKFcGbuVWhr487JVDTy9icZAPaCyiAzwPsfpSfjs1xURGSkiySKSnJWV\n5au3NcYAGQdPMHRqEjUqlWPykE5ULl+GCmVDeen29oztEc3clAwGvr2Sg8fPuB2qKQb+/BWhB7BN\nVbNU9SwwD+gK7HEuReE873XOzwQaeLWv79RlOuX89b+gqpNUNVZVYyMiClwU0hhTSIdPnmXolCRO\nnc1hytBORIZV+N8xEWFsj+a83L89q3Ycos+EZWzbd9zFaE1x8Gfy2AHEi0glZ3TUNcBGYCEw2Dln\nMLDAKS8E+otIeRFpjOfGeKJzieuIiMQ77zPIq40xxs/OZOcy6p0Uftx/nDcGxtA8suo5z+vVPooZ\nIzpz+ORZer++lOVb9xdzpKY4+S15qOpKYC6QCqQ5nzUJeA64VkS24OmdPOecvx6YA2wAFgFjVDXH\nebvRwFt4bqJvBT71V9zGmJ+pKo+/v5blP+znn33b0rVprfOeH9sonA9GdyOiankGTV7JnOSdxRSp\nKW4SrCMkYmNj1fbzMObi/PvzTbz6ZTqPXNec+66OLnS7wyfPMmZ6Kt+l72P0lU155LoWhITY9KyS\nQERSVDW2oPNsWIQx5pxmJ+3g1S/T6d+pAWOualakttUqlmXK0E7c2bkh47/eyn0zUzl5JqfghqbE\nsORhjPmFbzZn8eR8z1yOZ3u35kIWdSgbGsLferfmD7+7jE/X7ab/pOXsPXLKD9EaN1jyMMb8P+t/\nOszod1NoEVmV8Xd1pGzohf83ISLcfUUTJg2MZcveY/R+fSkbd9mSJsHAkocx5n9+OnSSYVOTCHMu\nO1Up75t5xNe2jGTOPV3IVeg7YRlffb+34EYmoFnyMMYAcOSUZy7HidO/nMvhC62jqvHBmG40qlWZ\n4QlJTF26zafvb4qXJQ9jDGeyc7n33RS2Zh1j4sAYLq0T5pfPqVOtAu+N6kKPyyL504cbeHrBOrJz\ncv3yWca/LHkYU8qpKuPmpbE0fT/P3dqWbs3OP5fjYlUqV4aJA2K4p3sTpi3fzvCEZI6eOuvXzzS+\nZ8nDmFLupS+28H5qBg/1aE7fmPoFN/CBkBBh3A2X8Y8+bViavo++E5aTcfBEsXy28Q1LHsaUYnOS\nd/Lyki30janPA9cUbS6HL9wR15CEYXH8dPgkvV9fSuqOg8Ueg7kwljyMKaX+uyWLJ+elcUV0Lf7R\np80FzeXwhW7NajF/dDcqlStD/0kr+HDNT67EYYrGkocxpdDGXUe4991UmtWuctFzOXyhWe0qfDCm\nG22jqnH/zFW89uUW21wqwFnyMKaU2XX4JEOnJFGlfBmmDO1E1Qpl3Q4JgPDK5Zg+ojO3dIjiX59v\n5uH31nA625Y0CVR+20nQGBN4jjpzOY6dzmbOPV2oW62i2yH9P+XLhPJiv3Y0rlWZFxdvJuPASSYO\njCG8cjm3QzP5WM/DmFLibE4uo6enkr73GOPv6kjLev6Zy3GxRIQHronmlTs6sDrjELeMX8rWrGNu\nh2XyseRhTCmgqjw1P43/btnH3/u0oXvzwN9p8+Z29Zg5Ip5jp7K55fWlLEvf53ZIxoslD2NKgVe/\nTGdOcgYPXBNNv9gGBTcIEDGX1OCDMd2IDKvAoMmJzE7a4XZIxmHJw5gg935KBi8u3kyfjlE81KPw\nGzoFigbhlXh/dFe6NK3J4++n8Y9PN5KbayOx3GbJw5ggtjR9H4+/v5auTWvyXJ+2rs3luFhhFcoy\nZUgnBsQ35I1vfuDe6SmcOJPtdlilmt+Sh4i0EJHVXo8jIjJWRMJFZLGIbHGea3i1GSci6SKySUSu\n96qPEZE059grUlJ/AowpRpt2H2XUOyk0jajCxIExlCtTsn9XLBMawrO9WvP0jS35fMMebn9jBXts\ncynX+O1fk6puUtX2qtoeiAFOAPOBJ4AlqhoNLHFeIyItgf5AK6AnMF5EQp23mwCMAKKdR09/xW1M\nMNhz5BRDpyRSqXwoU4Z2IixA5nJcLBFh2OWNeXNgLFuzPJtLrf/psNthlUrF9avINcBWVd0O9AIS\nnPoEoLdT7gXMUtXTqroNSAfiRKQuEKaqK9Qz5XSaVxtjTD7HTmczdEoSh0+eZfKQTtSrHlhzOXyh\nR8tI3hvVBYDbJi5n0brdLkdU+hRX8ugPzHTKkaq6yynvBiKdchSw06tNhlMX5ZTz1xtj8jmbk8uY\n6als2nOU1+/qSKt61dwOyW9a1avGgjHdiK5dhVHvpvDCZ9+TYzfSi43fk4eIlANuBt7Lf8zpSfjs\nb1tERopIsogkZ2Vl+eptjSkRVJU/frCObzZn8bferbmyRW23Q/K72mEVmH1PF26PbcDrX21l2NQk\nDp+wvUGKQ3H0PH4LpKrqHuf1HudSFM5z3mbGmYD3APT6Tl2mU85f/wuqOklVY1U1NiIi8CdBGeNL\n47/eyqykndx3VTP6xzV0O5xiU6FsKM/d2oa/3dKaZVv3cdNr37Fx1xG3wwp6xZE87uDnS1YAC4HB\nTnkwsMCrvr+IlBeRxnhujCc6l7iOiEi8M8pqkFcbYwzwwapMXvhsE7d0iOLh65q7HU6xExHu6nwJ\ns0Z24dTZHPqMX8ZCW9rdr/yaPESkMnAtMM+r+jngWhHZAvRwXqOq64E5wAZgETBGVfOW1BwNvIXn\nJvpW4FN/xm1MSbJs6z4enbuGLk1q8vytJXcuhy/EXFKDj+6/nFb1wnhg5ir+9vEG2yPdTyRY18yP\njY3V5ORkt8Mwxq827znKrROWUSesAnPv7Uq1isExJPdincnO5a8fb2Da8u10bVqTV+/oQM0q5d0O\nq0QQkRRVjS3ovJI9a8iYUmzvkVMMnZJEhbKeuRyWOH5WrkwIf+nVmn/d1o7k7Qe5+bWlpGXYfBBf\nsuRhTAl0/HQ2wxKSOHjiDFOGdKJ+jUpuhxSQ+sbU5/1RXQG4deIy3kveWUALU1iWPIwpYbJzcrlv\nRiobdx3l9Ts70joqeOdy+EKb+tVYeF83Yi+pwaNz1/L0gnWcybb7IBfLkocxJYiq8szC9Xy1KYtn\ne7XmqkuDfy6HL9SsUp5pw+IYcUVjpi3fzp1vrmDvUVsX62JY8jCmBHnrv9uYvnIHo37TlDs7l565\nHL5QJjSEp37Xklfu6MD6n45w4yvfkbL9oNthlViWPIwpIRat28XfP93I79rU5bHrW7gdTol1c7t6\nzBvdlQplQ+k/aTnTV24nWEed+pMlD2NKgNU7DzF29mraN6jOv/u1IySk9M7l8IXL6oax8L5udG1a\ni6fmr+OJ99M4dTan4Ibmfyx5GBPgdh44wd0JSURULc+bg2KpUDa04EamQNUrlWPykE7cd1UzZifv\n5PY3lvPToZNuh1ViWPIwJoAdPnmWYVOTOJOdy5QhnahlE918KjREeOT6FkwcEMPWrOPc9Op3rPhh\nv9thlQiWPIwJUHnLq2/bd5yJA2NoVruq2yEFrZ6t6/DBmK5Uq1SWu95ayeTvttl9kAJY8jAmAOUt\nr/5d+j7+0acNXZvWcjukoNesdlUWjOnG1ZfW5i8fbeCh2as5ecbug/waSx7GBKA3vv3hf8ur3xbb\noOAGxieqVijLGwNiePja5ixY8xO3TljGzgMn3A4rIFnyMCbAfJK2i+c+/Z6b2tXj99eWvuXV3RYS\nItx/TTSTh3Qi4+AJbnrtO77dbJvL5WfJw5gAkrrjIA/NXk3MJTV4oW9bG5Lroqta1GbhfZdTJ6wC\nQ6YkMv7rdLsP4sWShzEBYueBE4xISKZOtQpMGhhjQ3IDQKNalZk3uis3tKnLPxdtYsyMVI6dznY7\nrIBgycOYAHD4xFmGTEkkO1eZPKST7T0RQCqVK8Ord3TgyRsuZdG63dzy+lJ+yDrmdlius+RhjMvO\nZOdy7/QUdhw4wRsDY2gaUcXtkEw+IsLI7k15Z3hn9h07Ta/XlrJk4x63w3KVv7ehrS4ic0XkexHZ\nKCJdRCRcRBaLyBbnuYbX+eNEJF1ENonI9V71MSKS5hx7RUrzPpsmqKgqT81PY9nW/TzXpy3xTWq6\nHZI5j27NavHh/ZdzSa1KDE9I5j+LN5ObWzrvg/i75/EysEhVLwXaARuBJ4AlqhoNLHFeIyItgf5A\nK6AnMF5E8i76TgBGANHOo6ef4zamWIz/eivvpWTwwDXR3BpT3+1wTCHUr1GJuaO60qdjFC8v2cKI\nackcOXXW7bCKnd+Sh4hUA7oDbwOo6hlVPQT0AhKc0xKA3k65FzBLVU+r6jYgHYgTkbpAmKquUM9Q\nh2lebYwpsT5c8xMvfLaJXu3r8VCPaLfDMUVQoWwo/76tHX++uRXfbM6i12tL2bznqNthFSt/9jwa\nA1nAFBFZJSJviUhlIFJVdznn7AYinXIU4L1HZIZTF+WU89cbU2KlbD/Aw++toVOjGvyzb1vsSmzJ\nIyIM7tqIGSPiOXoqm96vL2XGyh2lZjivP5NHGaAjMEFVOwDHcS5R5XF6Ej77kxaRkSKSLCLJWVk2\nqccEpu37jzNiWgpR1SsyaWAs5cvYkNySLK5xOB/dfzntG1TnyflpDJqcSGYpWJ3Xn8kjA8hQ1ZXO\n67l4kske51IUzvNe53gm4L0OQ32nLtMp56//BVWdpKqxqhobERHhsy9ijK8cOnGGoVOTyFXPkNwa\nlcu5HZLxgTrVKvDu8M4827s1KdsPcv1/vmVmYnD3QvyWPFR1N7BTRPK2PLsG2AAsBAY7dYOBBU55\nIdBfRMqLSGM8N8YTnUtcR0Qk3hllNcirjTElxpnsXO55J4WMAyeZNDCWxrUqux2S8aGQEGFg/CV8\nNrY7betXY9y84O6F+Hu01f3AdBFZC7QH/g48B1wrIluAHs5rVHU9MAdPglkEjFHVvCUtRwNv4bmJ\nvhX41M9xG+NTqsoT89ayctsB/tm3LXGNw90OyfhJg/BKpaIXIsH2hfLExsZqcnKy22EYA8ArS7bw\n4uLNPNSjOQ/ayKpSY+eBEzw2dy3Lf9jPFdG1eO7WtkRVr+h2WOclIimqGlvQeTbD3Bg/W7A6kxcX\nb6ZPhygeuKaZ2+GYYtQgvBLT7+7Ms71a/a8XMitIeiGWPIzxo6QfD/Doe2vp3Dicf9zaxobklkIh\nIcLALo34bGx3WkeF8USQ3Aux5GGMn2zbd5yR05KpX6MibwyMsSG5pVyD8ErMuDs+aHohljyM8YOD\nx88wbGoSAJOHdKJ6JRuSa87dCxk8JYmfSmAvxJKHMT52OjuHe95JIfPgSd4cFEsjG5Jr8snrhfyl\nVyuSfzzA9f/5ltlJJasXYsnDGB9SVR6fu5bEHw/wwm1tiW1kQ3LNuYWECIO6NGLRg91pFRXG4++n\nMaQE9UIseRjjQy99sYUPVv/EI9c1p1d7W4LNFKxhzZ97IYnbSk4vxJKHMT7yfkoGLy/ZQt+Y+oy5\nyobkmsLL64V8NrY7Lev93AvZdThweyGWPIzxgRU/7OeJeWvp0qQmf7/FhuSaC9OwZiVmjojnzzd7\neiHXvfgtc5J2BmQvxJKHMRdpa9Yx7nknhQbhlZg4IIZyZezHyly4kBDPUu+Lxl5By3phPPb+2oDs\nhdi/cmMuwgFnSG6ZEGHqkDiqVSrrdkgmSFxSs/L/74X851vmJAdOL8SShzEX6NTZHEZOS2bX4VNM\nGhRLw5qV3A7JBBnvXshldcN4bO5ahk4NjF6IJQ9jLkBurvLo3LUkbz/Ii/3aEXNJDbdDMkHskpqV\nmTUinj/d1JKVPwRGL6RMYU4SkfLArUAj7zaq+hf/hGVMYPvPF5v5cM1PPNazBTe2red2OKYUCAkR\nhnRrzFWX1ubRuWt5bO5aPk3bxT/6tKVOtQrFH08hz1sA9AKy8Wwnm/cwptR5L3knr36Zzu2xDbj3\nN03dDseUMt69kBU/HODa/3zDey70Qgq1n4eIrFPV1sUQj8/Yfh7GH5al72PQ5EQ6Nwln6tA4yoba\nlV/jnu37j/Poe54VDa5qEeGTXoiv9/NYJiJtLioiY0q4LXuOMurdFBrVqsz4u2IscRjXXVKzMrNG\nxvPMTS1Z/sP+Yu2FFPZf/+VAiohsEpG1IpLmbC1rTKmweuchbp+0gnJlQpkypBPVKtqQXBMYQkKE\nod0as+jB7lxWJ4w/LljH7iOn/P65hbphDvz2Qt5cRH4EjgI5QLaqxopIODAbz833H4F+qnrQOX8c\nMNw5/wFV/cypjwGmAhWBT4AHNVAGO5ug99WmvYx+N5VaVcsxbVhnGoTbkFwTeBrV8vRCNu4+Qt1q\n/t/qtlA9D1XdDlQHbnIe1Z26wrhKVdt7XUN7AliiqtHAEuc1ItIS6A+0AnoC40Ukb/ecCcAIINp5\n9CzkZxtzUeamZHB3QjJNIirz/r1daWzLq5sAFhIitKpXrXg+qzAniciDwHSgtvN4V0Tuv8DP7AUk\nOOUEoLdX/SxVPa2q24B0IE5E6gJhqrrC6W1M82pjjF+oKhO+3soj760hvkk4s0bGU7tq8Q+HNCZQ\nFfay1XCgs6oeBxCR54HlwKsFtFPgCxHJAd5Q1UlApKruco7vBiKdchSwwqtthlN31innrzfGL3Jz\nlb98tIGpy37k5nb1+Ndt7Wy9KmPyKWzyEDz3IfLkOHUFuVxVM0WkNrBYRL73PqiqKiI+u3chIiOB\nkQANGzb01duaUuR0dg6/n7OGj9fuYvjljXnqhssICbEVco3Jr7DJYwqwUkTmO697A28X1EhVM53n\nvU7bOGCPiNRV1V3OJam9zumZQAOv5vWdukynnL/+XJ83CZgEnnkehfxuxgBw5NRZRk5LZsUPB3jq\nhssY0b2J2yEZE7AKe8P8RWAocMB5DFXVl87XRkQqi0jVvDJwHbAOWAgMdk4bjGf2Ok59fxEpLyKN\n8dwYT3QucR0RkXjxbJIwyKuNMT6x98gpbn9jBck/HuSl29tb4jCmAOfteYhImKoecYbX/ug88o6F\nq+qB8zSPBOY7m+KUAWao6iIRSQLmiMhwYDvQD0BV14vIHGADnmVQxqhq3qWy0fw8VPdT52GMT2zN\nOsagtxM5dOIMk4d0onvzCLdDMibgnXd5EhH5SFVvFJFteG5+/+8QnlsWAfvrmS1PYgpj1Y6DDJua\nRIgIU4fG0aZ+8QxzNCZQFXZ5kvP2PFT1Rue5sa8CMyZQfPn9HkZPTyUyrAIJQ+NoZHM4jCm0ws7z\nWFKYOmNKijnJOxkxLYXo2lWZO6qrJQ5jiqigex4VgEpALRGpwc/Dc8OwuRamBFJVxn+9lRc+28QV\n0bWYMCCGKuULO+jQGJOnoJ+ae4CxQD0ghZ+TxxHgNT/GZYzP5eQqf/5wPdOWb6d3+3r8s69N/jPm\nQhV0z+Nl4GURuV9VC5pNbkzAOnU2h4dmr+bTdbsZ2b0JT/S81Cb/GXMRCtVfV9VXRaQ10BKo4FU/\nzV+BGeMrh096Jv+t3HaAP/zuMu6+ImAHCRpTYhR2D/NngCvxJI9P8CzR/h2eRQqNCVi7D59iyJRE\ntmYd4+X+7enV3m7VGeMLhb1T2BdoB6xS1aEiEgm867+wjLl46XuPMnhyEodOnGHKkDguj67ldkjG\nBI3CJo+TqporItkiEoZnPaoGBTUyxi0p2w8yPCGJMiEhzL6nC62jbPKfMb5U2OSRLCLVgTfxjLo6\nhmdJdmMCzhcb9nDfzFTqhFVg2rDONKxpO/8Z42uFvWE+2ilOFJFFeDZnsj3MTcCZnbSDJ+evo1W9\nMCYP6UStKuXdDsmYoFTQJMGO5zumqqm+D8mYolNVXvsynX8v3kz35hFMuKsjlW3ynzF+U9BP17/P\nc0yBq30YizEXJCdXeXrBOqav3EGfDlE837ctZUNt8p8x/lTQJMGriisQYy7EqbM5PDhrFZ+t38Oo\n3zTl8Z4tcLYBMMb4UWHneVQCfg80VNWRIhINtFDVj/wanTHncfjEWUZMSybxxwM8fWNLhl1uiz8b\nU1wK27efApwBujqvM4G/+iUiYwph1+GT3PbGMlbtPMgrd3SwxGFMMSvsHcWmqnq7iNwBoKonxK4N\nGJds2XOUQZMTOXoqm4ShcXRtZpP/jCluhU0eZ0SkIs5ugiLSFDjtt6iM+RXJPx5geEIy5cqEMPue\neFrVs8l/xrihsJetngEWAQ1EZDqwBHisMA1FJFREVonIR87rcBFZLCJbnOcaXueOE5F0EdkkItd7\n1ceISJpz7BXr9ZROn6/fzV1vrSS8cjnm3dvVEocxLioweTj/UX8P9AGGADOBWFX9upCf8SCw0ev1\nE8ASVY3Gk4SecD6nJdAfaAX0BMaLSKjTZgIwAoh2Hj0L+dkmSMxYuYNR76ZwaZ2qzB3VhQbhNmvc\nGDcVmDxUVYFPVHW/qn6sqh+p6r7CvLmI1Ad+B7zlVd0LSHDKCUBvr/pZqnpaVbcB6UCciNTFM6N9\nhRPLNK82Jshl5+Ty90828uT8NLo3j2DmyHhq2qxxY1xX2HseqSLSSVWTivj+L+G5vFXVqy5SVXc5\n5d1ApFOOAlZ4nZfh1J11yvnrf0FERgIjARo2bFjEUE2gyTp6mvtmpLJy2wEGxDfkmZta2eQ/YwJE\nYZNHZ+AuEdkOHMezHa2qattfayAiNwJ7VTVFRK481zmqqiKiRYz5V6nqJGASQGxsrM/e1xS/lO0H\nGD09lcMnz/Jiv3b06Vjf7ZCMMV4KmzyuL/iUX+gG3CwiN+DZfTBMRN4F9ohIXVXd5VyS2uucn8n/\nX+a9vlOX6ZTz15sgpKokLPuRv368kXrVKzLv3jha1gtzOyxjTD6FuWEeCnymqtvzP87XTlXHqWp9\nVW2E50b4l6o6AFgIDHZOGwwscMoLgf4iUl5EGuO5MZ7oXOI6IiLxzs37QV5tTBA5cSabsbNX86cP\nN/Cb5hF8eN/lljiMCVAF9jxUNccZOttQVXf44DOfA+aIyHBgO9DP+Zz1IjIH2ABkA2NUNcdpMxqY\nClQEPnUeJohs23ecUe+ksHnvUR65rjmjr2xGSIiNyDYmUIlnAFMBJ4l8C3QAEvHc8wBAVW/2X2gX\nJzY2VpOTk90OwxTCZ+t388icNZQJFV7u34HuzSPcDsmYUktEUlQ1tqDzCnvP448XGY8xv5Cdk8u/\nF29mwtdbaVu/GuPv6kj9GjZ/w5iSoLA7CX4jIpFAJ6cqUVX3nq+NMeez79hpHpi5imVb93NHXEOe\nuaklFcqGFtzQGBMQCrskez/gBeBrPMN0XxWRR1V1rh9jM0Fq1Y6DjJ6eyv7jZ/hn37b0i21QcCNj\nTEAp7GWrp4BOeb0NEYkAvgAseZhCU1Wmr9zBnz9cT2RYBebd25XWUbY+lTElUWGTR0i+y1T7Kfyi\nisZw8kwOT32QxrzUTK5sEcFLt7eneqVybodljLlAhU0ei0TkMzyLIgLcDnzin5BMsNm+/zj3vJPC\npj1HGdsjmgeujrZhuMaUcOdNHiLSDM9aVI+KSB/gcufQcmC6v4MzJd+SjXsYO3s1ISJMHtKJq1rU\ndjskY4wPFNTzeAkYB6Cq84B5ACLSxjl2k1+jMyVWTq7y0hebefXLdFrVC2PigBhbRt2YIFJQ8ohU\n1bT8laqaJiKN/BKRKfEOHj/DA7NW8d8t+7gtpj7P9m5tw3CNCTIFJY/q5zlW0ZeBmOCwNuMQ976b\nStbR0/yjTxv6d2qAbfxoTPApaMRUsoiMyF8pIncDKf4JyZRUsxJ30HfCcgDeG9WFO+IaWuIwJkgV\n1PMYC8wXkbv4OVnEAuWAW/wZmCk5Tp3N4ekF65iTnMEV0bV4uX8HwivbMFxjgtl5k4eq7gG6ishV\nQGun+mNV/dLvkZkSYeeBE9w7PYV1mUe4/+pmjO3RnFAbhmtM0Cvs2lZfAV/5ORZTwny1aS9jZ60m\nV5W3BsXSo2VkwY2MMUGhsJMEjfmf3FzllS+38PKSLbSIrMrEATE0qlXZ7bCMMcXIkocpkkMnzvDQ\n7NV8tSmLPh2i+NstbahYzobhGlPaWPIwhbYu8zD3Tk9h9+FTPNu7NQM622gqY0orvy1uKCIVRCRR\nRNaIyHoR+bNTHy4ii0Vki/Ncw6vNOBFJd7a9vd6rPkZE0pxjr4j9j1Xs5iTv5NYJy8jOUWbf04WB\n8ZdY4jCmFPPnyringatVtR3QHugpIvHAE8ASVY0GljivEZGWQH+gFdATGC8ieddDJgAjgGjn0dOP\ncRsvp7NzGDcvjcfmriXmkhp8eP/ldGxYo+CGxpig5rfkoR7HnJdlnYcCvYAEpz4B6O2UewGzVPW0\nqm4D0oGPtJVpAAARiklEQVQ4EakLhKnqCvVsuD7Nq43xo6yjp+k3cTkzE3dw75VNmTYsjlpVyrsd\nljEmAPj1nofTc0gBmgGvq+pKEYlU1V3OKbuBvPGdUcAKr+YZTt1Zp5y/3vjR7sOnuPOtFew6dIqJ\nA2Lo2bqO2yEZYwKIX5OHquYA7UWkOp6Z6q3zHVcRUV99noiMBEYCNGzY0FdvW+pkHjrJnW+uYN/R\n0yQMiyOucbjbIRljAkyx7AaoqofwTDLsCexxLkXhPOftUJgJeG9mXd+py3TK+evP9TmTVDVWVWMj\nIiJ8+yVKiR37T9Bv4nIOHD/DO3d3tsRhjDknf462inB6HIhIReBa4HtgITDYOW0wsMApLwT6i0h5\nEWmM58Z4onOJ64iIxDujrAZ5tTE+9EPWMW6ftJzjZ7KZcXe83Rg3xvwqf162qgskOPc9QoA5qvqR\niCwH5ojIcGA70A9AVdeLyBxgA5ANjHEuewGMBqbiWQb+U+dhfGjLnqPc+dZKcnOVmSPiuaxumNsh\nGWMCmHgGMAWf2NhYTU5OdjuMEmHDT0cY8PZKQkOEGXd3JjqyqtshGWNcIiIpqhpb0Hk2w7yUW5tx\niIFvJ1KpXCgzRsTT2NaoMsYUgiWPUix1x0EGv51ItUplmTki3vYYN8YUWrGMtjKBJ3HbAQa+tZKa\nVcox+54uljiMMUViPY9SaGn6Pu5OSKZe9QrMGBFPZFgFt0MyxpQw1vMoZb7atJehU5NoGF6JWSO7\nWOIwxlwQ63mUIp+v3819M1YRHVmFd4Z3tn3GjTEXzJJHKfHx2l08OGsVraKqMW1oHNUqlXU7JGNM\nCWaXrUqBD1Zlcv/MVNo3qM67wy1xGGMunvU8gtycpJ08Pm8t8Y1r8tbgWCqXt79yY8zFs/9Jgti7\nK7bzhw/WcUV0LSYNjLW9xo0xPmPJI0i9/d02nv1oA9dcWpvX7+pIhbKWOIwxvmPJIwhN+Horzy/6\nnp6t6vDKHR0oV8ZubRljfMuSRxBRVV5Zks5/vtjMze3q8WK/dpQJtcRhjPE9Sx5BQlX51+ebeP2r\nrdzasT7/7NuW0BBxOyxjTJCy5BEEVJW/fbyRt77bxh1xDfhb7zaEWOIwxviRJY8SLjdXeWbhet5Z\nsZ0hXRvxzE0t8Wy4aIwx/mPJowTLzVWenJ/GrKSdjOzehHG/vdQShzGmWFjyKKGyc3J5bO5a5q3K\n5P6rm/H7a5tb4jDGFBu/DcURkQYi8pWIbBCR9SLyoFMfLiKLRWSL81zDq804EUkXkU0icr1XfYyI\npDnHXpFS/r/k2Zxcxs5ezbxVmTx8bXMevq6FJQ5jTLHy5zjObOBhVW0JxANjRKQl8ASwRFWjgSXO\na5xj/YFWQE9gvIjkzWybAIwAop1HTz/GHdBOZ+cwZnoqH63dxbjfXsr910S7HZIxphTyW/JQ1V2q\nmuqUjwIbgSigF5DgnJYA9HbKvYBZqnpaVbcB6UCciNQFwlR1haoqMM2rTaly6mwOo95J4fMNe/jT\nTS255zdN3Q7JGFNKFcsMMhFpBHQAVgKRqrrLObQbiHTKUcBOr2YZTl2UU85ff67PGSkiySKSnJWV\n5bP4A8HJMzncnZDM15uz+PstbRjSrbHbIRljSjG/Jw8RqQK8D4xV1SPex5yehPrqs1R1kqrGqmps\nRESEr97WdcdPZzNkSiLLtu7jhb7tuLNzQ7dDMsaUcn5NHiJSFk/imK6q85zqPc6lKJznvU59JtDA\nq3l9py7TKeevLxWOnDrLoMmJJG8/yH9ub0/fmPoFNzLGGD/z52grAd4GNqrqi16HFgKDnfJgYIFX\nfX8RKS8ijfHcGE90LnEdEZF45z0HebUJaodOnGHAWytZs/MQr93RgV7tz3m1zhhjip0/53l0AwYC\naSKy2ql7EngOmCMiw4HtQD8AVV0vInOADXhGao1R1Ryn3WhgKlAR+NR5BLX9x04z8O1E0vceY+KA\nGHq0jCy4kTHGFBPx3HYIPrGxsZqcnOx2GBdk1+GTDJ6cyPb9J5g0KJbfNA+e+zfGmMAmIimqGlvQ\neTbDPMBs2n2UIVMSOXoqmylDO9G1aS23QzLGmF+w5BFAlm/dz8h3kqlYNpQ593ShZb0wt0Myxphz\nsuQRIBau+YlH5qyhYc1KJAyLI6p6RbdDMsaYX2XJw2Wqylv/3cbfPtlIXKNw3hwUS7VKZd0Oyxhj\nzsuSh4tyc5VnP97AlKU/ckObOrzYrz0VyoYW3NAYY1xmycMlp87m8Ps5q/kkbTdDuzXij79rabv/\nGWNKDEseLjh84iwjpiWT+OMB/vC7y7j7iiZuh2SMMUViyaOYZR7yzOHYsf8Er9zRgZvb1XM7JGOM\nKTJLHsVow09HGDo1kRNnckgYFkeXpjXdDskYYy6IJY9isjR9H/e8k0KV8mV4b1QXLq1jcziMMSWX\nJY9i8MGqTB6du4YmtaowdVgn6lazORzGmJLNkocfqSoTv/mB5xd9T3yTcN4YGEu1ijaHwxhT8lny\n8JOcXOXPH65n2vLt3Ni2Lv/u147yZWwOhzEmOFjy8INTZ3N4cNYqPlu/hxFXNGbcby+zORzGmKBi\nycPHDh4/w93TkkndcZCnb2zJsMttr3FjTPCx5OFDOw+cYPCURDIOnuT1OztyQ5u6bodkjDF+YcnD\nR9ZlHmbo1CROn83h3eGdiWsc7nZIxhjjN/7cw3yyiOwVkXVedeEislhEtjjPNbyOjRORdBHZJCLX\ne9XHiEiac+wVZx/zgPLt5ixuf2M5ZUOE9+/taonDGBP0/JY88Ow53jNf3RPAElWNBpY4rxGRlkB/\noJXTZryI5A1NmgCMAKKdR/73dNXclAyGTU2iQXgl5o/pRnRkVbdDMsYYv/Nb8lDVb4ED+ap7AQlO\nOQHo7VU/S1VPq+o2IB2IE5G6QJiqrlDPZuvTvNq4SlV57cstPPLeGjo3CWfOqC5EhlVwOyxjjCkW\nxX3PI1JVdznl3UCkU44CVnidl+HUnXXK+etdlZ2Ty9ML1zNj5Q56t6/HP/u2o1wZf3bijDEmsLh2\nw1xVVUTUl+8pIiOBkQANGzb05Vv/z8kzOdw/M5UvNu5l1G+a8tj1LWwOhzGm1CnuX5f3OJeicJ73\nOvWZQAOv8+o7dZlOOX/9OanqJFWNVdXYiIgInwYOsP/Yae54cwVLvt/LX3q14onfXmqJwxhTKhV3\n8lgIDHbKg4EFXvX9RaS8iDTGc2M80bnEdURE4p1RVoO82hSr7fuP03ficjbuOsKEu2IY1KWRG2EY\nY0xA8NtlKxGZCVwJ1BKRDOAZ4DlgjogMB7YD/QBUdb2IzAE2ANnAGFXNcd5qNJ6RWxWBT51HsVqb\ncYhhU5PIzlWm392Z2EY2FNcYU7qJZxBT8ImNjdXk5OSLfp+vNu1lzPRUwiuXY+rQOJrVruKD6Iwx\nJjCJSIqqxhZ0ns0wP4/ZSTt4cv46Lq1TlSlDO1G7qg3FNcYYsORxTqrKy0u28NIXW7giuhYTBsRQ\npbz9URljTB77HzGf7Jxc/vDBOmYl7aRPxyiev7UtZUNtDocxxniz5OHlTHYu97yTzFebsrjvqmY8\nfF1zAnApLWOMcZ0lDy9lQ4UmEVW45rJIBsRf4nY4xhgTsCx5eBER/nhjS7fDMMaYgGcX840xxhSZ\nJQ9jjDFFZsnDGGNMkVnyMMYYU2SWPIwxxhSZJQ9jjDFFZsnDGGNMkVnyMMYYU2RBuyS7iGTh2TOk\nJKkF7HM7iGJm37l0sO9cclyiqgVuxRq0yaMkEpHkwqyjH0zsO5cO9p2Dj122MsYYU2SWPIwxxhSZ\nJY/AMsntAFxg37l0sO8cZOyehzHGmCKznocxxpgis+QRYETkBRH5XkTWish8Eanudkz+JiK3ich6\nEckVkaAdnQIgIj1FZJOIpIvIE27H428iMllE9orIOrdjKQ4i0kBEvhKRDc6/6QfdjslfLHkEnsVA\na1VtC2wGxrkcT3FYB/QBvnU7EH8SkVDgdeC3QEvgDhEJ9t3HpgI93Q6iGGUDD6tqSyAeGBOsf8eW\nPAKMqn6uqtnOyxVAfTfjKQ6qulFVN7kdRzGIA9JV9QdVPQPMAnq5HJNfqeq3wAG34yguqrpLVVOd\n8lFgIxDlblT+YckjsA0DPnU7COMzUcBOr9cZBOl/LAZEpBHQAVjpbiT+YXuYu0BEvgDqnOPQU6q6\nwDnnKTxd4OnFGZu/FOY7GxMsRKQK8D4wVlWPuB2PP1jycIGq9jjfcREZAtwIXKNBMpa6oO9cSmQC\nDbxe13fqTBARkbJ4Esd0VZ3ndjz+YpetAoyI9AQeA25W1RNux2N8KgmIFpHGIlIO6A8sdDkm40Mi\nIsDbwEZVfdHtePzJkkfgeQ2oCiwWkdUiMtHtgPxNRG4RkQygC/CxiHzmdkz+4AyEuA/4DM+N1Dmq\nut7dqPxLRGYCy4EWIpIhIsPdjsnPugEDgaudn9/VInKD20H5g80wN8YYU2TW8zDGGFNkljyMMcYU\nmSUPY4wxRWbJwxhjTJFZ8jDGGFNkljxMiSAiNb2GPu4WkUyv18v88HlXishHvn7fX/ksEZEvRSSs\nOD6vIAV9dxGJEJFFxRmTCTw2w9yUCKq6H2gPICJ/Ao6p6r9cDcp3bgDWlJRlLFQ1S0R2iUg3VV3q\ndjzGHdbzMCWeiBxznq8UkW9EZIGI/CAiz4nIXSKSKCJpItLUOS9CRN4XkSTn0a0In/W002adiExy\nZhQjIp2cPVhWO3uyrHPqWzmfv9o5Hn2Ot70LyFvTrLKIfCwia5zPuN2pj3G+W4qIfCYidZ36ZiLy\nhXN+qog0dXoyLzjt07ze40oR+VpE5opnz5jpXvH3dOpS8SyPn/d9f+PVw1slIlWdQx84cZvSSlXt\nYY8S9QD+BDzi9fqY83wlcAioC5THs27Un51jDwIvOeUZwOVOuSGepSTyf8aVwEfnqA/3Kr8D3OSU\n1wFdnPJzwDqn/Cpwl1MuB1Q8x3tuB6o65VuBN72OVQPKAsuACKfudmCyU14J3OKUKwCVnPdYDIQC\nkcAO58/kSuAwnjW1QvDM/L7cabcTiAYEmJP33YEPgW5OuQpQxilHAWlu/1uwh3sP63mYYJOknj0V\nTgNbgc+d+jSgkVPuAbwmIqvxrC0V5qyCWhhXichKEUkDrgZaiWe3x6qqutw5Z4bX+cuBJ0XkceAS\nVT15jvcMV8/eD3lxXisiz4vIFap6GGgBtMZZsgb4A1Df6QVEqep8AFU9pZ710C4HZqpqjqruAb4B\nOjnvn6iqGaqaC6x2/kwuBbap6hZVVeBdr9iWAi+KyANAdf15r5m9QL1C/pmZIGTJwwSb017lXK/X\nufx8jy8EiFfV9s4jSlWPFfTGIlIBGA/0VdU2wJt4fmv/Vao6A7gZOAl8IiJXn+O0bBEJcc7fDHTE\nk0T+KiJP4+kNrPeKt42qXldQvL/C+88nhwLue6rqc8DdQEVgqYhc6hyq4HwnU0pZ8jCl0efA/Xkv\nRKR9IdvlJYp9Tk+lL4CqHgKOikhn53h/r/duAvygqq/gua/R9hzvuwlo4pxfDzihqu8CL+BJJJuA\nCBHp4pxTVkRaOb2VDBHp7dSXF5FKwH+B20UkVEQigO5A4nm+1/dAo7x7QsAdXvE3VdU0VX0ez6rA\necmjOZ5LdaaUsuRhSqMHgFjnBvYGYNSvnHeNeFaCzRDPqr+X4eltrMOzMm6S17nDgTedy0qV8dxb\nAOgHrHPqWwPTzvE5H+O5HwHQBkh0zn8G+Kt6tqztCzwvImvwXG7q6pw/EHhARNbiuS9SB5gPrAXW\nAF8Cj6nq7l/7w1DVU8BIPCsap+K5JJVnrHPjfS1wlp93trzKiduUUraqrjE+ICJV8i59icgTQF1V\nfbCQbesC01T1Wn/G6Esi8i3QS1UPuh2LcYfN8zDGN34nIuPw/ExtB4YUtqGq7hKRN0UkTEvAXA/n\nUtiLljhKN+t5GGOMKTK752GMMabILHkYY4wpMksexhhjisyShzHGmCKz5GGMMabILHkYY4wpsv8D\nOmuZIAzOx4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Yet another Example with longer Lightcurve\n", + "\n", + "I will be using same lightcurves as in the example above but with much longer duration and shorter lags.
\n", + "Both Lightcurves are chosen to be more or less same with a certain phase shift to demonstrate Correlation in a better way.\n", + "\n", + "Again Generating two signals this time without poission noise so that time lag can be demonstrated. For noisy lightcurves, accurate calculation requires interpolation." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "exposure = 50. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 * dt # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*freq*times + np.pi/2) + 900 * dt # counts/s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting noisy signals into Lightcurves." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, signal_1)\n", + "lc2 = Lightcurve(times, signal_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAGICAYAAADLSrFdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnYZUV1Lv7WGb7v6wEQFHAWicarxAn0EpOoaG5EvYom\ncYjBkUSj16tx+DlFQUUIV41er2MMGpwRY4JCjAMqOCGoiFFRgiDIKFNDQ3d/wzl71++PPZzadapq\nrdq79jn7dNd6nn56+FbvU/WetVatWu+q2kJKiShRokSJEiVKlChRbNKb9wCiRIkSJUqUKFGidFti\nwhglSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4JSaM\nUaJEiRIlSpQoUZwSE8YoUaJEiRIlSpQoTokJY5QoUaJEiRIlShSnxIQxSpQoUaJEiRIlilNiwhgl\nSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4ZTDvASy6\n3OlOd5IHHXTQvIcRJUqUKFGiRIlCygUXXHCTlHJ/3/8XE8aGctBBB+FHP/rRvIcRJUqUKFGiRIlC\nihDiN3X+X6Sko0SJEiVKlChRojglJoxRokSJEiVKlChRnBITxihRokSJEiVKlChOiQljlChRokSJ\nEiVKFKfEhDFKlChRokSJEiWKU2LCGCVKlChRokSJEsUpMWGMEiVKlChRokSJ4pSFSBiFEEcKIb4p\nhPitEGJdCHG1EOJzQogHaHr7CiE+IoS4SQixUwjxdSHEAw3PWxFCvFMIcZ0QYlUI8X0hxKNmN6Mo\nUaJEiRIlSpTFkYVIGAHsB+ACAP8bwOMAvAHAIQDOE0LcCwCEEALAmQAeD+BlAP4cwBDA2UKIu2vP\n+yiAFwI4DsCTAFwH4KtCiIe0P5UoUaJEiRIlSpTFkoV404uU8lQAp6r/JoT4AYCLATwNwLsAHAXg\nDwE8Vkp5dq7zfQCXA3gtgJfn//ZgAH8J4Bgp5Sn5v30LwEUAjs+fEyVKlChRokSJEiWXRakwmuTm\n/Pdx/vtRAK4tkkUAkFJuR1Z1fIry/44CMAJwmqI3BvBZAEcKIZbbHHSUKFGiRIkSJcqiyUIljEKI\nvhBiSQhxXwAfBvBbTCqPhwD4ueG/XQTgnkKIrYre5VLKXQa9JQD3CT/yKFGiRIkSJUqUxZWFShgB\nnA9gHcAlAB6EjH6+If/ZfgBuMfyfbfnv+zL19tN/IIQ4x/ar5jxqybvfDeyzD3DBBW69008HtmzJ\nfnfJBRcAd7gD8K53ufWuvRa4612B//W/3Hrr68AhhwCPe5xbDwCe+ETg/vcHVlfden/7t8Cd7wxc\ndZVb733vA/beG/jBD9x6Z56ZYfP5z7v1fvITYN99gbe/3a13/fXA3e8OvPCFbr3RCHjQg4DHPAaQ\n0q171FHA/e4H7Nzp1nv1q4EDDwSuuMKt96EPAXvtBZx7rlvvy18Gtm4FTj3VrfeznwH77QeceKJb\n76abgHveE3j+89164zFw6KHAIx9JY/Pnfw7c977Abbe59V7/emD//YHLLnPrnXxyNudvf9utd9ZZ\nmd4nP+nW++UvgTveEXjLW9x627YBBx0EPPvZbr0kAR7+cOARjwDS1K37F38BHHwwcOutbr1jjwXu\ndCfgkkvceqecks357LPdet/8ZqZ3yiluvUsuyb6TN77Rrbd9ezaPZz7TrZemGS4Pf3iGk0ue/ewM\n75tvduu99a2Zbf/iF269T30qiyNnneXW+/a3M987+WS33mWXAQccALzudW69HTuA+9wn8wOXSJn5\n06GHZv7lkhe8IPPTG2906514YhYTf/Yzt96pp2bYfPnLbr1zz81i9gc/6Na74ooszr3qVW69nTuB\n3/3dLH66RMosDj/4wcDGhlv3RS/K4vtvf+vWe8c7srX0Jz9x633+8xk2Z57p1uusSCkX5heA+wM4\nHMCzkB2CuRrAQfnPLgHwWcP/+WsAEsA98r9/DcB5Br3/kes90vCzc2y/DjvsMDkryUxdymOOces9\n9KGZ3u/9nlvvJS+ZPNMln/gET+9nP5vobdtm11tbm+idf777mYXee9/L0zv6aLfe4Ydneve9r1vv\nla/kzflzn+PpXXzxRO/66+16GxsTve98x/3MQu+d73TrLS1lek9/ulvvUY/K9O5xD7fe617Hm/MZ\nZ0z00tSud9llE71rrrHrJclE7+tfd392oXfCCW69rVszvaOOcus97nGZ3oEHuvXe/GYeNl/5ykQv\nSex6v/nNRO+KK+x6aTrR+4//cH92oXfssW69O94x0zvySLfek5+c6d3hDm69k07iYfPNb070RiO7\n3rXXTvR+9Sv3Mwu900/n6b3udW69u90t0zviCLfe056W6W3a5NZ717t42Hz3uxO99XW73o03TvR+\n+Uv3Mwu9U0/l6b3iFW693/mdTO8Rj3DrHX10ptfrufXe/34eNuefP9Hbtcuud+utE72f/tT9zELv\nYx/j6b34xW69+98/0zv0ULde2wLgR7JGDrZQFUYp5S+llOfL7BDMHwPYCuD1+Y9vwaSKqMp+ys85\netv0H0gpj7D9qjuXJnLlle6f/+d/Zr//3ETQK0JV7QpRqzmunby6C7vhBrve9dfz9KRSbaIqSoVc\nfrn758Xu+Fe/cutdcw3v89Rqjmu3ysVG3eVTO/5Ctm93/7wY16WXuvWKqgplF9ddxxvXNsWTdukN\nIIpwsVGrQ9umvJQeg0l27Mh+p6ptF1+c/a7arkmonxdy002TP7tsm4uNagO3mPgTg1D2VeD9y1+6\n9QrsqMom155VPdczudgU3zFA+0oh1PdYxIeLLnLrFT5HMSlU5bMQdZ6u/8PFZm1t8ufbb+eN4dpr\n3T8vqvpUJbKI1VTlXLUBdU3QRf3OXLbGxWY0mvxZtSGXXH21++eFL1GVyK7KQiWMqkgpbwVwKSY9\nhxch60/U5QEArpRS7lD07i2E2GzQ28if2WlZJo7lFA4ohFtPDRYuUZ3KFXBVR+QGepceNxlThcJm\nfZ33HC42apAKMWeunhrAKMqpkJUV98+52HD1Qs+Zq8f97lSh7Ib7TFXPtbjNCxt1ERwO7XqqhMJG\nTZpcScK8sFHHFAobrq+o7Sfqd6RL6Dmr8csV21VbXlqy66kSym7Ucbn+T2hs1KSTm0xTMbYQCpuu\nysImjEKIAwH8NwBFl9IZAO4mhHi0orM3gCfnPyvkTGT3Mz5d0RsAeCaAr0kpmS4+W1Ed1rUQ2f6P\nSXrKt+/SVSsgruoFV49bDalTNfGZM1dcCRl3jG1iSFV2CgmFjVpldi2Iob/nOlhzK0qhsFEXNFdV\ndV4+pS583Kp9KGzUTY7rs+flU2rSRvUPFxIKG/V7cflzm77i0lP9nJsEh8Km6+uPuj5QvbSFcNfw\nrslC3MMohDgdwI8B/BTAbQB+F8ArkV2pUxzZOAPA9wF8SgjxGmTU8xsACADvKJ4lpbxQCHEagPcI\nIYbI7ml8CYB7Azh6JhOqIaqTUvQGV9Sd7NoasGmTWU/9PFcgbVPPRQmoTuranQPAYEDrANWFf3U1\na1xvMsZ5YagGJiqYDZjRQP9s2255XvbAfZ4qFC1WB5sdO7IGd0qviz6lShvY7NyZHRKg9LroU6q0\nhc3++/P0OM+bJYaqUNj0+5M/S2lnxLrgK7P2qa7KolQYzwPwVAAfB/AlAK8C8C0AD5FSXgIAUsoU\n2VtbzgLwQQCnA0gAPEZKqXdlvQDAKQBOyJ93DwCPl1L+uP2p1BPVKEMljHpS1PSzQ+vVGV8dOpJ6\nZugxzlJPpfK5lQFKFskeXHpqAh0qgHfdHrjj86mAcNmP3cWnfEStPrmYiq77ShvYqPHIFbfn9T2H\nxnp3kIWoMEop3w6AuOAEkFJuA3BM/sult4os6SQO6ndH2jBKbqLF/ezQeqHH5yPzGuO8MASmF37b\njr/rcwn9ucA07aRWR7owxtAYqlV4qn9Y35TY+ri6/j1z9Xw2GlymYnfxFZ/WKX2MNoZrXt/zPAsW\nXZVFqTDu8cLd7ehO6nLaru/kQ48PqAZ4F0Xb9Z18G7tfbjWy63Npo2rS5iKzyBj66Hb9e+bqcStj\nbXx21zFUNxpU60/Xv+fQWKtrT6Sko7QqdRwWcFcHuu6IofXSlN8L2vW5tJEUdX2MEZvu6c3zs7uu\nN8/P7opeiBaF3UVPTSzHY/4BmS5JTBgXRFRj41IMlG4dQ+d+dgi90OPTq2ZdHOO8MNQD2CzH2HWs\npQzfb7VoGHKZikX+nuuMb2PDvfB3YYzzwlBKd5WxC2OcF9bUM7sqMWFcEKmz26F0u04JtDm+UM9c\nNAxtC38b2CySPayv22kiPbDvTvbAeV6a2hf+8bja39n17zn0+Ex/L0TKboxxXhhSul0Y47ywpnS7\nKjFhXBCZZ1K0SHquhX9Px8a18O/p2AD2hT9iY9eN2Nh1dUaj63OZJTZJUo1FXZ/LrJPprkpMGBdE\n1MVMdzabHhDGYbt+So274+diI2U35tIGNjbdNqpoi6Tn0o3YRGxsei7diM2eh836up3F8ZlzVyUm\njAsiunFxK0XcxJLba9J1PZcuV29jo+r0XZ/zLLFJkupBqq7PeZbY6BRk1+c8S2zqfnbX9Vy6uys2\nScJvbdnTsHHp+sy5qxITxgWR0EYZHTZiU0cvbjTseqNRtR2i63OOGw27XpLwW1v2tI2GSzfG2Jgw\nRumA6P0wtutyQuvpul3Xc+lGbCI2Nj2X7u6KTZraT/iGnrP+713HBrAv6KGx0ZPTRcBmVr6i31Cw\nJ2DTZYkJ44KI/lop16lFjp7+767djvrMWepxL4ENjQ1XT//ZPDG0UUTc77kNbOZlN6qelPakaJ52\n0wWfcunu6T7l0l0En2oTQ5duaAz1Km8XfaqN77mrEhPGBRHduGy7E64e13j1u7Rcu6LQenWToqbY\ncPVMY7QJN4DXwTBEUsQN4D7YtGk3PknRrOzBZxPWBZ/S/5/r37vuU6ExdOnOC0Ndd15xyfXZbWPY\nRZ9qI3Z2VWLCuCBS1yibGq+eiIQOPj5BSg8yNr3Q2MwrmQ5RKepKUjSvZNr1zHn5lK47T59q+j2H\n1tN/Ni8MXbrzwlD/2TyT6Vn5yp7oU12WmDAuiMxr4e9KRcn0d9u/z6oa0nYyHaIaMq9AL2U1wY8V\nRvvPok/ZdeeZFM0qdrYdY+eZFM0rmQ6N4XjcvO3H53vuqsSEcUGk7Z6iptSBrhtaD2g+xnlhqOuG\noJLa/p6bYu2TTNeZcwjadV72oCfT0afsuqF9ZZ4+FRqb0Bi6ToZ3Zf3ZE+yhyxITxgWRruzwYjXE\nf3z6z/aECmNXqiauZ87LHvRkOvrURPQ2j9C+4joZvqdXGF26XVl/9oSKc5clJowLIl1Z+EMnRW0s\n/KGxmVcyvScGep8FITRFtLv4lOsQVNd9qm4y3YavzOp75ur5VKa7khTNK5luY/2Zpd93VWLCuCAS\nuoTPNd62adcQ1ZC2adcQASD0dTltf8+zwlrX9aGauSfDZ2UPXWllcOnurj4VApuuY9hGMj0vvw8d\nl3x6ptu2mxB+31WJCeOCSOgdXtvXGnD1XM3EbV8JMysM9Z/57GqbngzvOob6z+ZZKeqanv6zENh0\n3R5m4VNdi51t2E2dSmSIz54Xhm0fQHTptvH9dVViwrgg0hVKgLvDayMp6hp9xh2frttGj1no77nr\nlDSwuPbQpWR6UTHUdee58HcNQ/1newIlvTv5VJclJowLIl2hBELQJV2nfkKPr+6p2FmOcREp6a7Z\nQ6SkIyXd5uf62A03KdpdKOm6PuVzMjxS0jFhXBjpyg4v9O7X55ld28lzx1e398jns7u2k28jmd5d\n7GF3qoZ0qcI4r0NQXcNQ/9k8T4Z3LS756MYK47TEhHFBJLSD1e0hCX2azaU7rzG2Pb42kqJZjbHt\n8bWRTM/KHkKPz9TI3/T1mLuLT+k/a+Nk+KJiCCye389ro+HSnZffd1liwrggUhjb8nL174umtwhj\njNjMXm9pafJ3KilSdWc5xjpzafK8YlHt97NfAJ0Udf17DqWnJtNdt4cYR7qjtyhj7KrEhHFBpAiO\nmzdnv1M7N0qvMNZQz+PqLcIY2xrfpk2T/0edDF/079lXb2lpkhTZDkEV/75ly3zGyNULPb7BABgO\nwzyz6/bAHV+ROPd6kwW4a2OcF4ZqMl3EnK6NcRHWn3n5fZclJowLIrqDUbuYeekVAcrVTDzvMc5L\nbzjMFn+APhne9bm0gU2RFHFtrKtzCT0+H2y6/j3P0266PpdQemplmlt97epcQuupyXRX/b7LEhPG\nBRHdKKmEg9LTd6BNn6cGcC59Nq8xzgtDn4Sx699zG3Yza2wWRS8kNl23h+hT4cbXZZ+aF4ZqMt1V\nbLosMWFcECmMa2Wl+ve6eoXx+j6PersGFaTU5vSCSpr1GOeFISeAz3uM89KbBzZd0WvqUz6fvTv7\nVFfHOC8Mu+xTbcWlYk1JEnPbzyLEmy5LTBgXRHQHo6p3belRAWAwcAdwdYdXUEmzHuO8MKSwUemS\neX/PXcNG1VXbHmY5Rq6e7/ia+lSdMe6OPtXVMc4Lwy7Yzaz1lpayvlbA3BLVJjah4lKXJSaMCyKL\nQglQO7c6u9+uUz+hsDEl0139nmdtN6ZkuqtziZT07Ma3J1LSy8uAEJlPmJIinyraonzP81h/IiU9\nLTFhXBCZ96IVigZp02G7nkio/Z1dDWbzwnAeyfSiYOjT5tF1H/BJioAsIXJViiifanOMXbWHOnGk\n63azJ60/XZaYMC6IhO6T4Bq57+cOBu4AztVrc4zzwpCiz3ywmff3PC+74SQI854Lt7qiJkWufisu\nNj6N/F21B1Mi6GptoXzKp2d6UXyKsgeVdu2qryzC+jMvbLosMWFcEJl3bwi3P4NqQufqtTnGeWE4\nT2y6gKEpKVokbNqwB1dStKdjE2LOpsr0ovtUKGxM9zV21R72pPWnyxITxgWRPbGHpK0xdrXfqg26\nZN4YcpvQd4feo3n5yu7oU/PAZlF8itu+0eU2j66vP/Ns8+iyxIRxQWSRKAEu7bq70GdLS7wmdB+6\nZN7XqHTNHtrAZt5688Bm3vZQ52R4E2pxT/Sp0BjWGeOirz8+yXRobLosMWFcEJl3NaTo/7ElRdwm\ndK5enR3ePA9shDjMwn1enTHOs0E/hD10AZt52k3Exq4Xfaq5Xter9nV6X2ftU/HQS5TOiK9Rhtar\n0xsSItD7VE18e0jawCbU4jbry8/bDODzohbn5Std9ak6Y/TtRZun3TTBsM4YfX0qFIZ7ok91uc0j\ndOzssixEwiiEeJoQ4gtCiKuEEKtCiP8SQpwkhNhL09tXCPERIcRNQoidQoivCyEeaHjeihDinUKI\n6/LnfV8I8ajZzchfCuOigk9benX6ZlxN6KH0THOhKIE2sZnFnFVahWrk75LdhJoz1civV6ZnPWfu\n587ap1Rd3zkvgk81wbDOGOeFYRdi7Dx9ivsGl1ljEyredFkWImEE8P8BSAC8AcATAHwIwEsAnCWE\n6AGAEEIAOBPA4wG8DMCfAxgCOFsIcXfteR8F8EIAxwF4EoDrAHxVCPGQ9qdST+a9w/O5yiFE5bBO\nhXGe2HDnMksM68xlntiE2PEX/+bTyD+vasisfaXNyvSi+1SdMbap57pRoA27CU27tlFx9n2Dy6xj\n7J5QYRzMewBMebKU8kbl7+cIIbYB+DiAIwB8E8BRAP4QwGOllGcDgBDi+wAuB/BaAC/P/+3BAP4S\nwDFSylPyf/sWgIsAHJ8/p3My7x6SWZf626RL9kRsFv2S4S5gs7vYjVqZ3h2wKRKIJti0eSrW5/Bc\nrze5rLxI4nznsjv7ysZGpttFbGIPY0dESxYL+WH++93y348CcG2RLOb/bzuyquNTlP93FIARgNMU\nvTGAzwI4UgixHHDowaQLOzxur9C8G/nn0W81ywb9OtjMs4dxlvbQJjZt2k1XfSp0D2Mbh+dCxqU2\nKpE+dwjOy1dCJ9Pz7Gmd9/qzO1cYFyJhtMij899/mf9+CICfG/QuAnBPIcRWRe9yKeUug94SgPuE\nHmgIGY8yjqIIuFSfRGg96i0SJj3qIt0Qeqa52BxxFtjMYs5NsJmn3exp2FBvcNkTfarNucwCQ1XX\n1x4oDLvqK4Verzc/n+oqNqY2j6ZzNgaNjshCJoxCiLsho4+/LqX8Uf7P+wG4xaC+Lf99X6befobP\nO8f2q/YkuHLbbcBf/RVelH4IALE7+eQn8fhbT6X1vvQlPPGy9wGQbr3zzsMR3z8JS1h397lccgkO\nPeMt2Bfb3Dv0G27AQR89FvfCFW699XVsffdb8RBc6NaTEnj3u3HE6Cx6zp/6FB6/7dO03le+gsdf\n8l6Q2Pzwh3j09/4eK1h1j/HSS/Hg09+M/XCzG8ObbsI9Tj4W98av3c/b2MDmfzgeh+ICGpv/9//w\n2I2v0HP+zGfwhBs/Qet97Ws48uL3QCB1N6FfcAEe+e0TsQm73GP89a/xwH99M+6EG91627bhbv94\nLH4Hl7r1RiMsv/NteDh+QFeK3vc+/PHal+g5n3YannD9x2i9b3wDR170bvSQVL7nqUXhwgvxR2e/\nDZux0z3GK67AIZ87Dgfgerferbfizh86DvfFJW698RjDt5+Aw3Eejc0HP4g/WT2DnvO//AueeN1H\nab2zz8bjfvoPJTbWz/7pT/EH33gbtmCHW+/KK3H/U4/DnXGd26duuw0HvP843A8Xu5+XJOi//e/x\nB/gejc2HP4w/2fkFes7/9m94wtUn03rf+hb+x0/eiT7G7s/++c/x+187HnvhNrfeNdfgfp8+DnfB\ntW69HTtwx/e+GffHL9wYpinwf/4PHolv09icfDIed/u/0nP+4hfxxCv/kdb77nfxxxe8HQOM3GP8\nxS/w37/8VuyN7e4xXnst7vOJY3E3XO3W27UL+77nzTgEP3frpSnk29+BR+OcSjJtnMspp+DI7Z+j\n5/ze9wIvepG5/N4BWbiEMa8UfhHAGMAL5jyc9uUb3wD++Z/xJpwAIOtzAczOgOc+F//3t3+JvbHd\nvqtNU+AZz8CLf/FyPBQXune/f/M3eNK5f4dn4VT3Tv7v/g4P/4+34tV4l1vvPe/BwZ85Ae/Aa916\nn/kM9n3PW3AKXuDWO/dc4NWvxueTpwKQdmxuuAF4znPwjmuejf1ws33OUgLPeAZe+PO/xeE4v6I3\nlRS95CV4wnffiKPxafcYjz0Wh/378Xgd3u7We+97cdAnT8C78Gq33mmnYe93vRkfx/Pcej/6EfCK\nV+BzG0+BQGqf87ZtwNFH44SrnocDcL0dQymBZz0LL/jPV+KP8F30+46k6KUvxeO+/SY8Dx93j/Et\nb8FDzzgef4e/d+t94AO4x8dPwHvwCrfev/4rtr79OHwSz3Hr/eQnwMtfjlNXn4IeEjs227cDf/EX\neMtvXoC74hq3rxx9NJ594avxGJzt/uyXvxyPPec4/BU+6tY7/ng86Atvw5twglvvH/8Rd//nt+F9\neJlb74tfxOaTjsVn8JduvYsuAl76Unzq9qdggJF9zjt2AM98Jv7u13+Ne+I3bmye+1w868evwZH4\nqvuzX/EKHPHN4/A3+LBb78QTcci/vQ1vxlvdev/0T7jLR96GD+Clbr0vfQnLx78Rp+JZbr1LLgFe\n/GJ8bPufYgnr9jmvrQFPfzpee+mLcDAus/sUADz/+XjGD1+L/4kvuT/7Va/CI7/+ZrwEH3LrnXQS\n7v/5t+FtONat95GP4MAPH49/xIvdel/5CobHvQGn4ZluvcsuA170IvzTtqdhBat2bEYj4GlPwysv\neQnuh4vddnPMMfiz81+Pp+IL7s9+zWvwB197C16G97n13vEO3O9zJ+BEvNGtd8op2P9Dx+NkvNCt\n941voPeG1+HzeJpb78orgWOOwftvfCa2YId9zuMx8PrXAx/5CPCd7xgAmb8sVMIohNiErCfxYABH\nSimvVn58CyZVRFX2U37O0dum/0BKeYTtV515eMlTnwq5soK74jrs07vdvsu6+OLyjwfj13ajvOYa\nYFfGxv8OLnMnlj/9KQDgAfiFuzT/r9mu8sk4s5JImIIUADwD/+LW+9a3AAAPwX+69fI5b8Eu7KMk\nyVPj+6//Kv/oxOb664Hbby/1BoPsDS6AtuGTErjgAgDAg/BT9xg/+1kAwJ/idHdQ+fjHc70vuJ93\n7rkAgN/DRW69X2adGsvYwH7YZp+zgo3THrZty34hw8b52eefDwA4FD92633ykwCAp1P28OmsMvyk\nfFG16v0wa2u+Hy5hYTNAggNwg33Ov/pV+UcnNtu3Z7YD4N643P3Z3/0uAOBwnO9Ouk85BQDKzZr1\neZ/LqhZH4mtuvQsvBAAcjMvR70kSGwC4C66z+9Rll5W7qPvgUjs2O3cCV2dhmsTm7Kz9/A/xPbfe\nP/0TAOA5+KQ7Lp1+OgDgj/FN9/N+9jMAwD1xFQa91FnJKuRurg3EZZeVAeO++JUdw7U14IorAGT2\n5RzjWRmLcgTOcet94AMAgOfjY269f/93AMCj8B13XMrnfBf8Fsu9EWv9uSeutGNz+eXlPzrtZjQq\n/e+++JV7jP/xHwCAP8FZ7jm///0AgOfhE269r34VAPAInMeKI3fCzdjcW7OPT8HmIFxhn/NVVwGr\nq8Bd7gI8+tHooixMwiiEGAL4PICHAXiilPJnmspFyPoTdXkAgCullDsUvXsLITYb9DYAXBpu1AFE\nCGD/AwAAd+7faDfKq64q/3hn/Na+q9X0itOSU03oN99c/nETVsleIQBYx7Jbr+j6BdF7tLZW/nG5\nN2LN+S7KXIw7vFx8sLGOcfv28o9L2GBhs4GlMNjsmrTebhKOIFXTHqzBTMHwQFxvH+POneUfe0hn\ni43yvewldgTHhqN3AG6wj3F9vfxjgj4LmxGGYbBR/Hnf3nZ3NSSXINhcPdnT748b7WNUsilyzrmM\nMXDrKf/g1MuTfQDYv3fz7HzqmmvKP94RN9vHqNAbZIzNhbQvLjbXXlv+8cBe+PXHqnfddeUf74Bb\nWXNew4qLlHjHAAAgAElEQVRbT7Extk/1pJP+L+QuvevD+dTBB6OrshAJY37X4qcBPBbAU6WU5xnU\nzgBwNyHEo5X/tzeAJ+c/K+RMZPczPl3RGwB4JoCvSSnX0TFJ77Q/gKrDTu1Wb7ut/OOdcJN9V6vo\n6QG8oqs9z7rTUoKZnjxNfXYxKBDNxErSsV/eF0nN5cD+Tc5epkL2x42tYGMdYy4DjN0VJS42eQW0\n+GwONvvjxjJIzcNuKGyGGPHtRgng1Fy42HDnHBIbZ4KgCIlN8cUCGPRS9px940jrPqXY9b64pZZP\nTY2x+AGAJTFizfkAwcOGO2cfDK1zVjaJ+2A7C5slym6UuL1ZrNrjUovY+GBojZ3KJmwLdrrnXFQU\nQMRYJWHcW9zOs5veTSwMWTF2n33QVRnMewBM+QCyBO9EADuFEL+v/OzqnJo+A8D3AXxKCPEaZNTz\nGwAIAO8olKWUFwohTgPwnrxqeTmyS8DvDeDoWUzGV+TedwAA7CNusy8wSsDdC7fbg5SitxU7SscZ\nj7NfpU9pertsi9vqavnHFayxFkGgWPgFa4yDwYGk3l49R0VJe54vNlO6mt7NNr2NjfKP+sLv2v0O\nxRiDXNE5Z1cVTdHbxwMb6+63JjZWPaWcLSDd2Cg4LosNDAbL5Bi52PjYQ2i74VSUAH7FeTN2YTDY\nSo5x7xZ8ZWbYaNLvT9pGpvR27Cj/mMWRfckxtmE3M/MpTZx6UzF2E6nXpt0Uh+eK71LXG4fApny4\nLzZ7k3pcu2GtzXvtha7KQlQYkb3dBQDeiCwpVH/9NQBIKVNkb205C8AHAZyO7O0wj5FSXqU97wUA\nTgFwAoAvAbgHgMdLKX/c7jTqSbolWwScDqvsYrgOuxduZwUpXc9WGXA+DzAsbrwxspIi106wRjJd\nF5vawUxZ3LZIXvBRd78h9GaKjTpfrTIQwh7Y2OB2eyvDDLGp2KzSkkFuwmpg46NnrYbMy25UuhAJ\nuxof2m585qwnRTa9xthoJ2uddKoam+R844ixMhcaG/X+GwADkYSNN72A2HQ4YVyICqOU8iCm3jYA\nx+S/XHqrAF6V/+q8pJuzhHEvscNOvwRw2FqOqCSqzuelaeWZW9Lb0e9vYY+R0gvisNy5hMZQyqkA\n3u/fgT1Go16lwsjTC2I3dTHsSfT7dMU5s5s7scdo1FPGOFNsamC4FTsx6KUY93vkXDJs7kKOcW/B\nn7O1OqZ9z1yfGgX0qRWsY4gRxGBIfnbmU7wxhraHwcDyBhdNb3tTn1JaeQBgBavo9zezx0jqueyG\naw+W7zlJMt1iHLreTo+E0TjGtbVKwrhF7kC/vw85RqfdaBvPYOtPhxPGRakw7tFSJIxbxU72btra\ns9agckgH+h3oC0sflRbMtqT8iiBHr84iGBIbSm8T1jAUY3sfjjJoLjZqZYDCxrf6OktsBkiwLNfM\neuNxpe2BO2cfu5mnT1GLIABsSnaYnydllXZtERtOwmG8UaBFuwGKJJkeYxu+4mMPvhvKINgk/Dhi\n7b+zJEXzXH9C2U3oGMvBkIVNTBijNJF0U5Ew8ijpedGuALAp3cnSUx02CF0SYofXNjZjyxhrYtMG\nzcbpt2oDm82JZYxKQgR0A5uiUmTTmxk2O3dWOM7QPrWPBzYh5xwEm/X1Cn0d3G48WhmCt7bYqGYu\nNklSaQ8Kjc28YuwmrGGQX4Du0gMc2BjYnpljExPGKE0kyRPGvcDrbduCnSyHdfaOOfRcO7eVhJcw\nWhPLNK1UIzdLi572TG71tW1sXHPmYmOdsxbMuNhsEUw9BRtXv9U8sbHajaZbvEmF0tvqgQ3HB/jY\n7LKf+K65CWPbAxObLR4+FdIeljAq3+7h0gOq2LgwDI3NvOymB4nldLWZr2ibsOB2g52sjWcn48jq\namU32GaMjQljlFakSBiLgxOAwdiUHeMK1txvaFD0rHSJQY8TfJbkOvk8AFiGRW+qD2fNPmd1jK47\nCRW9ZaxXKIFKUqTpcbDZhDX7Rcj6nKVljFwM19YqwWxZWPRMY+RgqNlDZXGrgc0ASXn1iUsPyLDh\n6FntYTyuXLHBtxsehr6+wpnLMOX5Ct+nLHOWsuJXXGw2CZ4e1x64egCwnPLsYSnl+ZQ13ljGSOlx\nseHGTh9suHbj41Oc2Mn3lXXe8+a4/nD12L7CxHDZ9YagQm/rVnRVYsK4AJIMs5dPOh1bWyytOzzD\nomqldHJZwqg8kejSAxwBXNOzJk+aHnfOzqRIm/NgkDWhA/Y7vbjYAMBQbrD0lmyLYF1sbHr6XFzJ\ntGHO1Bi9sEkti0dH7MYXG+qzfbDhzpmrZ7WH0aiyM/LxqXlhM0z49tDIp9K08g9t2U1InwrtK9aN\nhmGMLLtpyafmsf4se/oAR8/aylDoFS+b7qDEhHEBpEgYVUc0vmYql+V8h2dsQnc4rC15ArIdma8j\nup7H1oNjzjUD+GBAz5mrB1QXtxBzXrHNmaun6W7iYtgCNsHtoSmGmm4b2HB9ir1ozQubOfqUuvCH\nwJDtU64YG8BuXElRaJ/iYrjiOnCmLB517IbChuMry9iwX0o/L1+R0ppMN8ZGeVFB1yQmjAsgSX5R\n8bKr1K8FMyEsQYp7x5uiBziCj0Ov1g5Pe561aiLl1Fw4yXSQaog2Rms1hIuNrheiimbBhtLjzDlI\npSg0Nly70cbo3GiExsZhN+7NWmCf4toDc4PKtYeifSOoPTDjUpCqvQUbH7uxjXGABH1pObDBraLV\nxDCI3bToU4CDqeDG4pq+YtVTXiZQzIUz501YQ6+XFXOmXscbE8YoIWScVxjZ5XGRGajvrtblYIMx\nzxEbJwhcxx6PqzQbN0EIkUy3TC0uNw30UlYCWiu0K3Ph5wbwxrSrD5XETaZrYDPE2H5Ss66vMPXa\noNkaY6ONcZDy2zeC6nEThDnR9QDfHhonRW3Qs5pPFS0/UzcKtLz+NE6mZ9ACAxC+EhPGKE0k6ecV\nRlujLjDliACzb8Z2YMMQzLg9JCH1uD1KPj0kAI3NMjbQF2lQbEJjaMVG3/3a9LRnFoGe+uweJPrp\naDHtJkkqZR4fbLh9VIPE4qddx8ZAswXHZjwnX2Hq+doDYDg8V9tuOhZHGmAjBP3uZx9s5hZjuXoh\n15+YMEZpIqYKI9UbAtC9IX2kFRqE26fH3SWH7lHi9jpyHJbzzEGy7o1NiDkvceccug9Uq746sRnz\nPpuLzbzshtt75NObWAcbbtWkVbsxVO19kqd52E2dCmMtbLSq/XLuK2olzfRMrwpji9i06lOaLjfG\ndsVugsSRkNjEQy9RmohaYeRSAkDYUn+bi2AtKilQMHM9sz/yx6YW5aTPmasX+jR1y3bjxGZWtH6D\njYa1lSGAPczSp3woyF4vbFIU3G64B86aYmPoWQP8+za5SVGIOMK2m6bUtV61Z2Lj07cZes7B442r\nPcg3xsYKY5QmMh7kFUbX1RDKWw0WIikKvfAvQlK0B2ITfHFrYaNBNqEjx0Za+jZ3U7tZkTx7WMII\nPZnMx25m1etosBuAGWMTXt/mvOwh+EbDB5uub8qb2o1WtWdhExPGKE1knFcYrZeNarvfwig5vRf9\nEa9Hw8dh59WH47P7DY0Nd87cRTA0NsYmdG33u4wNIE3ZgT4oNly90L1HTF/pQQIjXt8mG5vQvsLV\n495d6OErYoPXt8m1B64ed+EPbTcrnjF2Lj7lEWO5SRG3nxwIG2N9EstOrT91sIkJY5QmMupnFUZq\n95tu3gIgo0GoasjtyG6TpxxxVy97JuWIa/2Jnut560vZ51KVgdFKpkcFs2RT9rlq43alCT3Xkysr\nSNDDAAkwdtMgXGx29ray5rw24GG4Mcz0qEWQjc3mXE9amtDz3a8cDLCG5fL/usa4E1uCYrM6yO2B\nmHNhNyQ2y1t42Ch2Axh2/ErP2o58zlhzP3OH4M258Kkh02642LThU4C7GuKLDRlv+p4+RSz8G0s8\nnxpvmvgKx6eWGdX4ApvehnuMOwUvdrKxGfJ8qsSGSIrGK7k9EHaTbsmxYdgNO8YqPuUa42qf5yts\nbJZ5vlLYDbXRKNbmWGGM0rqYKoym+7zkyiasI3/Fy8aG85TaduwDoLrDM+nd3sv0VIc16e0cZnrq\nzs2kt7bE09vYlOulbr3xlkxvKc2SoqnLyouEcWkZa8ibidfcz7xN8LDZ0edhs4uLzYofNktMbPQq\nWqmrBCguNtsF0x5ybPqE3mqOzYCY8zoTm9FmHjbJVgKbPFmUS0tYxabs3wLZzc4BExumrxTYLAXC\nJi2wSS3YjMdAkkAKgR35wk9hczsXG6ZPldgQeqXdEHNmY7MXgY1StS9iLIlNz89uuNhQPlXGEUJv\nXGAjPXxKSnccybFRk+lZYNPa+kNgk27ZCykEhhgD47FTNyaMURpJUWEcpusltQgYkqLlFawXlaLV\nVWdySSaMud4OymFzvV3cYLZMOGz+vHIRtDlsrkcmRUUy7ZEwzhybXC9YMNOwWbItbj7Y5LpFUkQG\n+mLhp7AZEgt/gQ3TbrjJdMLEBjWwIe2GwkbbaFA+tc7EZkRhU9jN1skiCLg3Gt7JNPE972D6CplM\n63GESqaZ2CRb9s4+FyMgTad189cwyn6/rMaz7Ya5CWNjQ+ix7YaZTMvlTdjAcKp9o9RN03Ijdhsy\nHMU6gQ1VsMj1fJPpxnbDxcYUY9cthZ+YMEYJIUWF0bqrLRx2uIyNosJoclhl91tUBnqJQU955o7e\nXtlnpm69XQOe3vow0xsQeqNl3vPGm/LnyezQjxWbpWWMkL/E04SNons7smf2iM8Ojc3aUq4nedgM\nCL2kRWyouexsyW5IbFZ4euPNTGyWa9gN4VNcbFa52HDtZoVnN2lOQfaRAklixQY+diPyMS46NsNl\nbLjmrCz6XGx2cLHpe2JDzGV9mYnNJl7MTil7UKr2znVKeWaBDeVTu5jYrA15ehtMu1HXn0IvTQ0t\nUUMCmyTJfqlXMXRQYsK4ALLRyyuMMjO+qWsuFIdVHXFKLz9JnfWsZc/sjTec12ZMgtlGxSF0vdJh\nE/fzih6SfurW2yj7stx64yLQp1kwsmEjl1Ym2GwYnqmcNN8p8wWTwGZX0ZdFzHm1DGYUNvlciOcV\n/TUDCpuyL2sDkNKBzbIbG0W3TIoIbMqFn7KHPg/D9SFvzmUyTegly5uRQpRJUQhsik0YNRcTNu6k\nKBQ2PL1kaWXS2qLEkalkeoXwKUWXi82uHtOnFGxccalIGCmf4mKTDgl7UNgePjY8X1llYrOW9wVT\ncy6xoeymTKbDYINlvk/tZMbYXcx4szrk+VSx/pAxVrGboh0KmE4YU2r9KbBZWUHlQR2TmDAugIx6\nWYVxmLgrjKm6izH1MBocVoyZu9/UsHAoeqXDEjuyItBTu1Xf3e9Qjsx9M5Zk2rX7LQ6AkNXXYvdL\nVdv6vDmvMatoG0u85yXDTRhjolC7Mj0eZ5Gt18NOuTkbI1V9FbydfLnRIObMrQysc6uvwxX3nGtU\n7W+XzAqjARvXJoxrN5TexjJPLx2Y5zyVFFHYKLq+lWnKp1YVbFxxie1TXhVG2m5AxRtFl4vNDs8Y\ny62+ctmegZxgLaUhKWJiI1vAhl2ZZvoUFxvVbgD32syymw7T0UBMGBdCxrJfqYZMGVvRJ6Ht8Fh0\nCXE4ZodSUWLRJYTeWhHMErfehlIZcC78g5VJUmRqJq6RTBd61JzLpIjQKxb+HjGXAhtqzmUynVLY\n8OZcoZKojYYcsuYyoZJ42FD2sDrkYbOhVE1mgk1x/6ly0pxtN4GwWRvy7GFjmYkN01ckhY2hak/G\nEa5PMePIpAUmDDYp026kR4y9nRtjezxsVpl2s861G4XFUd9uM+UrTGx81p9JmwcTGyqOMO2mbA8i\nsFEZDSBMMafLEhPGBZAkAWt3kiytuPskauzwJr2ORABX6BK3w04oafcOL9ejKkUDXpLsk0w79RRd\nbh8oF5s1JjYbCgXJxoZbRSMWwUKvNyICeEFBksl0gQ2x4+dis1QDGyIp4lYG1mWODZkUbWXprXLt\npmzzoCrTYX0qXSL0ivthl5awJnnJdElBUpUiX2wIvZGBggSmq6oJt4pG+ZRStd8lN/lhQ8XY3Keo\nKu0aM46o2ADMKloTnzL02lNxpLjGi1qnCmzI9YfpU6P8aqK+TMyHoDyxiQljlMaSJGAlgj5G6bvD\nIxuymfTsZPfLPORABIDxgGgmNu3wCCrJ+wAIe/fLpJIobMrdL73ws6poXGwUu6FaGbgHQHZ5VwZa\nwIZrN+zqK+8ACOUrZWWaWvi51bblaT1Tg37KxIY8LFUDm7Iyza3ac7HhHo5JCWqRW2FsAZudvgdA\nuJVp4nnFfY096T4ElTDjCFmZVqv2ktcetJN5cGgXN44wGY3xgHcIiotNTBijNBZ2wsitKFE7vDq7\n3x5vJ1hWGNnVNmLh7zOrITWqaEa9GifNi8Mx7N0vSSXxKgPjPs8e2BsNqqKk6HIr02W1jTz5ycRm\niadXqzLt8im1+kr5Crf66utT5EnziZ6AtN5Zyq4wemxQudVX76o92QLDrDAONiFBj0yKxswYS1Zf\nG2HDZXvCVO3HveXKIShrUhTYp2pV7akYy6xEFnZDxaUxd/1hYhMTxiiNpZIwOozNp/fIN5iJprvf\n4t49bmWAW2FkJkUklaTcl+VMzk27XyrQ9/wqA1ZsijsJh7znjT0qjL5JkfWetaJnrXjLBVGJ9O3L\nouxGvbapJybvcC2TouI+PY9k2vcgGXk4hqq+lvd88uyB27M26meHoHqQQZIicuEvfGp5UoXhVqa5\nVXt6o0FUGIu7J/u8ClCrSRFlD4ErjNyqPRlj8/FxK9M+PdPrKW/9IbHR1h8u20NWGAOvPzFhjNJY\nkoToYcwX6bQ/ZAd6b7qEbOQndm55P9MqtzLA7CGpBHpih+fUK09J85PpNSrQa7tfOikiqiH5GNeL\n16KlI/R7WVJkohZDJ0UklVT0rNWqDFCtDLxK0UafOASVjzF4Mk1hkyT8qn0+xl2U3RQ+NeBhOOox\nkyKuT1F2o9hDeSuDqfe1TtU+FKORj3HU4/k9u5XBJymSRTLtHmOJDbefL1DVfkTZQz6+NpLpcv0h\neqZJbAqfCl1h7IVdf2LCGKWxVCqMroSxN2T1hsjB0O3YRRVtOFQWfovj5Lq7ioqSLdDneqv5e3St\njpjrrfeL61vG6IvUqpf0iCSZm0wr2LAqjMMhNlIi0NfFhtAbiSWMkF3uKpLxNLWoYMOxBx9sOHqZ\n3RB9WQU2gjg964nNGLwx+tgNr9/KBxuiaqJjQ+it5dhYF/4CG8HzezY2zDmTPlX8odfDqszuhyV9\nyhMb0m4Ez+8r2ITwqeFEzxhjpVSq9ptZc1ll+tRanxeLE8H3KdY6NWD61HBIb8p1RoPpU9YKo4YN\n5VNcX+HqYThElyUmjAsgZMKYv8E87Q14wczDYdeZSVEZzKiFX/D0soV/knQA2t1fhR4zKUqYC3+t\nZNq2+y0TRiY2PSY2zIWfnSB4YMO3m+KezzDYrOXYcJIilj0w9SoLfyhsqKpJTWw4dsPCxmOj4Z1M\nE9iQjIYeRwh78LEbVuzkbso9sCEr00AlmebajbX6WmzKQ/sU11e4eoo9WCvT+dpX3A87D7sJ6isx\nYYzSVJIE/gu/I7GU/YF7t5PrZX16RFKU6+4qHJbQKxzWGsxyvTEmYxRjw+W8uV4CIknmJtMFNr2B\n27EVbMpk2rZbLbChFv5cb00QQUrBhjPGRAzCbDRMdkNhQyVFOjYEhuRGw2A3FDZcu2H51MADm5Sg\n6z3tZrIIujGsYOOYS+LhKyy9Ad+n1lJHta0GNmQyXWAj+D7FwTBl+oqP3RSMBtceqLhUJkXjjbK1\npYlPpUwM0z7Pp6BgY0wYlWS67Cdnrj8UhhtiGSkEhJToI7Fjw4wjXJ/q8msBgZgwLoSQFUZl98vd\n4XF3OxPa1UKXaDs8imYjg1lBu6JGNYTAhqPnQ7uWixux49+R0yWhKMhRHdqVWzVpQi2aKowUlVTY\nTSBKeuRBLbLsxqNqwseGOACi0WwUhq1WXwlsQvsU2c+nU5AEhqslNiNzUlRhNDxpV25FKZBPrXFb\nGZiV6XUsI8lTAGNSZLKbALRrrao9gU1ZiWRjw4+x/WTDqsf1FW68iRXGKI2FmzCSDlvu8Hh6Ug1S\npuBT/KHfp08Mc4NZ/tlkUlTu8IjgU+zwmEGKpOuLnWBlcXMn06vFIYemu19uMq1gw6owUtiU1RAP\nur5IimZeYWTS9VQyrdgNr8LIe16lhzEQXT+pMI6dlSKuT5EbDU+fIul6FZuylYFXYbRiWFSKsFwe\ngurL8bQeN5k2YRPAp7zo+sA+RSZF3BjLTaZLpoLnUyQ2it1wN+8+60/5xi9TS1Shx1x/uMWcmDBG\naSyVhJEoe/N2v7xexyol4NgVDQbKIshc+KlKkeSNkaTZijkzqaQKzUbMuQhSFF2yK80b+Zm7XwpD\n7pxJ2rUM9LznkdgYqEVrMq1XGIlAv4o86U4T5yEoNu3KtRtmXzDZ5mGyG+J73sm0hw05LA9BFRdP\nk9g4K4w1sHH5VA1s2Au/RxwxYtOST5HYcO3Gh67XsSEwJLHx9ak6duPcaNTwKWZ7EMlwySodPtUS\nVdhDHbshvucuS0wYF0CShHetDpcS4NJnfocceI38EyrJo4rmGGPwRn7mjl893Whc0E10SaCkaMSt\nojFPN3Ib+b1ONzKT6bKRn1gEN+TkEJRrceO2MnAPS6UeJ4a9D5LZGvmLhZ/ZyJ9hQy/8oX3K5wCI\nd2WasIcd+bupKZ/KkuncbhzUItun6rTABDos5fQpRZfbyqBi0xtvlD/Wb1vwibFBT5CH8ikDNpz1\nhzPGUeD1J1YYozSWSoXRuYvhUQK1KEjXrmg4xGpCVE2KpEiuZM3EaepsJiYDuIku4dJs3EBP0CVc\nmq3AhmrkX0+H5RsVXAu/GuhdY+TSbONQrQxKMu2k6ysUJNGzpmDDqRSpyZMzKfKgZ719qomvFH/o\n97ErWbbrKXNZT4mkyJM+C+5TVC+agVoEdSo2Le6ypH2qvLbGcdsCmUyXVbQadL3Lp3x6phMimdb7\nyQnqmvQVbiuDKbF0YUj10CvUNdenyKp9kTBKn6o9PcZarVPE99xliQnjAsh4jIrxFuXxcidooQSm\n9BRKQHVsmx76Zop7Sk89MTwyjE8Z40Y6mArgFT2FEuCMUT8xbNNLBKFnOd1oe55OJVkxVLEZW7Ap\nEsF0MLXjN2Go0/UubFj2QGFTzLnHwxAKNsLxPJ2edWGj2oMRm3Lh542RtAcLlVQbm8qcp33FRE1x\nfUq1B5dPjZk+ZcPGRC1ysNZPU/N8xTA+pTJd9EyrGw3KbsRoY/rOUstJYBY2s/QprQVmSs/U5uHh\nU64xknqWmwdc6w/Lp/oePpXwfGWncptH8SYoGzacMYZefyIlHaWxsCuMdS5qJugSLpXEpUvIaogn\nRURWTWrQJSwqaViDSjLpKboVapHAhkW7tkklBcKGSyVVKowubGRgu2HaQ61WhkA+ZaIWbVU071aG\nEHbjQS2W1VfTnGtiw7IHD5/i2g0XG1+63lh9Vds80uIAovtkOBcbn3tfQ7Yy+GDjtAclmV5Ll1iH\noMgKo4mpCOArscIYpbEkCa+H0efEMOv0rA+VlO/wwKDPuNQii3ZlUkncqyHInrUadD2JjUKflck0\nQUkHoUFMtKvLHkJdo2Kikkx6im6lF81hN+w+PS4F6UHXc09Tc6/X4PbzqT7lurOUS7uyqUXudUwe\ntzIUrQyU3awnxZuOLP2+3DhiSqYDYMNtbfG5jsnZyqBgk6RicgjKlBR5xli2TzF9hUvXs09TV5Jp\nd5tHkoowrS2hfSomjFFCSaXCGOROwhonP4nT1OQOT6GkWRXGOqekuSc/ndcf8E6a63RJbWwUXZWu\nd/aiSd5nkxd8c7Hh2o1yKpaNTZFMe2DjatAn7aYM4Hy7YdkD06fgc/k5NylKeWMM7lNMe+D6lN7K\n4LKbbOFnbK5S3hjZPuVhN7yqPd8eilYGyqfU9cIVY0lsPH0qYcYb8oLvGuuPszKtYKhiM0jd6w83\nxoZcfyIlHUCEEHcXQrxPCPF9IcQuIYQUQhxk0NtXCPERIcRNQoidQoivCyEeaNBbEUK8UwhxnRBi\nNX/uo2YxlzpSSRid1Tbuws8/Tc1t1C0c1rnD6/UwTnusE53cwwvchuzg75z2wGaSFBkoIi2Z5jbo\nh8SGrAz4YuPRyL+R9N2HoAxVNNczgx16KQP9/LBJUsE+BBXUHrjvDg6NzdADm2TCugzkDLHh2k3g\nOFJpZegqNh7vnA5pN+T6Y8Gmiz4VK4xh5D4AngHgFgDfMSkIIQSAMwE8HsDLAPw5gCGAs4UQd9fU\nPwrghQCOA/AkANcB+KoQ4iGtjL6hqEbeaOG3NPxzK0WuBv2y6XhjYzop0hyWc6KTrJooSTJLj7mr\n5Z+K5b/ubJT2kaBnfs2UlkyrDfq2wwb8E3zM151x9UJVXxUqaZwIO9VsqUwHqRSx58y0B+YrJW3Y\nmBr5udUQtZXB9dlNfWrqkAP73lfuqVi+T6nYFBXnJtXXDaqH0TPesF+Tx/Up7q0Mg0HlkGSIGMuv\nvjIvP6/zCkGX3SivIm1cfTW0BzXChms3yhi7LIuSMH5bSnmglPKJAP7FonMUgD8E8Bwp5alSyq/k\n/9YD8NpCSQjxYAB/CeCVUsqTpZTfQJaMXgng+DYnUVfICqOy42/tkAOxKxqnvUkzsZ4UaYFer6IB\n0wumT7N6kGqIEsC9KwNEE7Nzx2/Rc41RP8HHqoZw7cG14+f2d3LtRrOHqaTIUplutOP3vCqEffl5\nqAqj2ovmqoZYKtPOpKjOgaBZ+pTHIQdupYisTBcLOtenuAdAQlXRDDcPeFXRXJR0qCqaieHiVhid\nG09uHCGqr1yfUrHh0vWhKozKGLssC5EwSilTWgtHAbhWSnm28v+2I6s6PkXTGwE4TdEbA/gsgCOF\nEN33WxsAACAASURBVMtBBh1QKgkjsYvh0iWsXkeP043OaohFj1rcuM3qoU8Mc0/wcZuYnbvapthw\nT34SwYyFjceJ4Tp2MxXAW8SGO2efw1KtYqPbjZZMc8a4wbUHpk/Veq8ykSAE8SmfynRLPsXdvLOx\nCeVTii5ZRZtFjCWSaRY2wyHG+SEfjMfT/b4WbIyV6TmvPzFhnJ0cAuDnhn+/CMA9hRBbFb3LpZS7\nDHpLyOjvTgm3wsilBFJmAy7ZyK9QAmnq2NXaqmgEfcZtVmcdcuA2J3MvNWdiQ1bRLHquMVaqJiGw\n4R4IYlbb2Njo1dcm2HhW29jYMN+r7HMgiNvI76wU1fCpEdOnSF/xPTjE9SmPAyBObLRkOkj11RMb\nn0N2LJ8aKElRYjgExcXGpzLNjSPc6mtobBS7ASaHoKwsDoWN8szgMZa5/nSdku726PxkPwBXGP59\nW/77vgB25Hq3OPT2038ghDjH9qGHHXaYzxhrSWVB4CaMBCVQ2ZE5dngcPQyyzyx0B9CuctCCGeeZ\n6ynvs0fg6Y3FEOOcKjfqKUlRUGzyBX1su+bCouca40jyxsjFJhFMPWrOBYYDrt0MwmGjLPwsDLnY\ngIc116ckE0PSbmr4FIlNaLvx9anBECkmNxpnSVFvMX2KaQ9sn8qTohEGGGKcz3mJnHMv1bDRkumw\nPqVhuNwyNkoyDWRzXsIox2bZ7FMb09gAWUtUT0zua9xIefawIYcYstcfnt93WXanCuNuK5UKI5c6\ncBlvj6dXoQQYDlvSIEQA5zyzQgkQAZw1Z8HTS7jYDJjYDIfZvbEBsalQSQGwGQXGRjLtZooi0he3\nRbIb5pzTwRBJ3us7SYroOS+yT7HjSH8ItVI01QvdAWy4c2Zjw/UpLcZObcoJbNI0v22hTWxC241H\nvFGxqW0PWjI9jxjb9YRxd6ow3oKsiqjLfsrPi9/v5dDbpv9ASnmE7UMf9rCHSdvPQknFyE2VQ6Xs\nXe5iHHqJ4OmlPZ5eRgkoO369b0bd4a3B/kyNLuF8dqUyQGIjaD119ztLbPRKkeOZlR1/AGwSpt2k\nHnZTJkVJkp+aF9PYDIdI08DYMO2G6yuVykAAbGSvWinKFv4lcs5On2Jiw7WHKb2BWW/MnHPC9KnC\nVxIxAOQopxaHJDbF4bm5+JReRfOMsQk7jgwVbAy0q2XOYjyCEFloTVOgXwMbtt2Ah2Fb648vNsUz\nkyT7NUR7PjVm6nWdkt6dKowXIetP1OUBAK6UUu5Q9O4thNhs0NsAcGl7Q6wnZMLYFgXpufsdC2KH\np135QO3wuNR1yJ1g5YoZompS6SmyXCVUYJMw6DMnNsrrrdYT3hjZu18PWp+LTZEUOeecB3pOZWA8\nRlB74OqNmfZAUk5KJbLQ58yZrL5SPqXNmUuzhawoVa5RIe1m8j27qmgmbMo7S7k+pc455fsUl7oO\nymj0+L7irKK16FOVK2YCsT3c9iAgs0cKG6c9KD7Frb76tE7tDhVGr4RRCLEkhPh9IcSfCSGOFkIc\nabpAe05yBoC7CSEeXfyDEGJvAE/Of1bImcjuZ3y6ojcA8EwAX5NSrs9muHxJEt5hCNIolSoaRy/t\nDw2VIoNekRSJhj1FWtWEM0YygHP1uEGq3P1mSRF1lVBJJQnLwm+rFDVJpk1VEwIbDtY+vUfAxB5s\nPa1kMs21B1tlusnCX2DD7D0iF37Fp5zY6JswDRsbtci1h5A+xU6SuT5FJdMWXxHJuHpnKdenlDGS\nC7+nr3B71thJERVjuXOuEWOD9b4q6w8LG6qVQYsj48Drz0x9akESRrL+KYToA/hTAH8N4NHIThIL\nRUUKIa4BcCqAk6WUrVTohBBPy/9YnDJ5ghDiRgA3Sim/hSwp/D6ATwkhXoOMen5DPtZ3lIOV8kIh\nxGkA3iOEGAK4HMBLANwbwNFtjL2pVHZFTWg2pYrG0svpszH6GCDJHXE4pSfz3W+x8Pfq0mfaDo8z\nRpKCVCpFY8CuZwr0jucVO/5EDDCQSU6DDOzY5HSJ9eoYas5cDJVnTtElSy5sGPbgQSWpc86w2WRP\ninK9KWpRxcbVymBLpn2opC02bHj2QGKj2Q1FNctB1aes1OJwiGTswEZaGvl97MbpUwEo6bJSpNiN\nCZvSbgaVVobimWma6Q584ogpKQqBDdceuK0M2kajdhxpI8aakqIA6w+JjSEWG7EpfIWLjUeM9Vt/\nFp+Sdo4uT9JOAnAPAF8F8CYAFwK4EcAqsr6/ewM4HFlS+SohxMcAvElKeX3gseoXdn8w//1bAI6Q\nUqZCiCcB+If8ZyvIEsjHSCmv0v7vCwCcCOAEAHcA8J8AHi+l/HHgMQcRbnk8OLXYK4LUMEuKYEkY\ntSpa30GfOefCpVW0OVf0Bi49QT6PS5+p1OKyXGdUivIKY1MqyYMumdr9bjLrtdHIX+gD9h1/2d8p\nhlnCqFGLogbNVhubhpQ0m1rsT3zKiY3qU3LyzPE40+2r9rDumLOWTM/lsJQvJU22tlQPORTPHI08\n7UFLpoMeCGqJkua0MszLV1qlpBNDL7RWfQ2GTZMY21Bv0SuM70VWnfuYlPJWi84PkF2C/SohxOEA\nXgfgRQDeFmyUAKSUgqGzDcAx+S+X3iqAV+W/Oi/6biePHVNvR9GDWa+n6ZkogdHIqpcUCWNvACQT\n+kzX02m2olI09bozw86t8tmOKpptjOvpEKmSJPeWzHqjSUuz+XlKMON87iSZtsy50BvoemYMyTlz\nMVSeqVdNbHr6RsNlD87nTSVF1R0/hY2ziqbOWR+jj92YNldcbBx6Os3GtRtrFU075FDbHmr4lM1u\npqrxFDaFTzHjDddu5EDDRlmAp+a8yzFnR2Xaig3XHgTfp8q2n/E4u9oForZPFbcyeNuDPkbHAcSm\nPsWNsUne9pOIPvoyQU8mAAadWn90ur52HNlNEsaDpZRr3IdJKc8H8GdCiJVmw4qiiu7YtvutalEC\njF0ttbjpVFLtPj0bXULsaiWbEpD251kCvZuuB92LpukVwWyqikbN2ae/RsGG13tUg1Zx9R7pdmOt\nMFYDvbOKVodmc/UeMXsd2fbApdkobEoKsqpX2x5q+hQLG6496BjaKkWCazdVur62PbToUz5tHhI9\nJOihjzTvhR5MYTiVFFlYnClsXPaw7vApWzLt8ilmryNpNwo2xe99btsPHD6ltzIQ1VerXo02D66v\ndJ2Sdh568UkWQ/y/KGYhy+PFLqYFSqDQBxxJkYVmm2rQb4GSDn23HJs+K6uvbhpEp0umGvQ7QJew\n709j02dM2lWlpF1zXgCaberwguXUfNnK4Gk3te2hIz4l0Ssv5bbdPcmlpEtseoHsxsOnRi3cZQlM\n4ogtxnIpaf3Giln6FNdXfE6Qq3OxYqPZjf1GAXMrw9ScKXvQkuk9iZJmn5IWQvyuEOK/K3/fJIQ4\nSQhxphDif7czvCgA2Ltf7qlYdrN6vmNLbRXGkmar7vAKahGg6TPjjp+qKLVxX2MRzJj37iV6NcR2\neKHAptdwzlwMlc8OfZflVBXNlhSJ6pytdqNXGOtiw9VTxhj6brkx8qRI5EmR5dT8VBXNRklrPlXb\nHnyw8bQHbhVtkhTl1XjLPXlFHEnLKprFp/Tq6wx9Khg2ljhie61dsdGgYnEwbOr4lIeveK0/TLuh\n2zyq9mWd8zx8SklWuyw+1+q8H8DTlL+fCODVAO4K4P8KIV4acmBRJhLMYU16nB0eVQ3pEzv+Ipjl\nFzU3viOsxg6PfR2GR7VNxYjCxkotcnfyWjDjNPL73FHJpWcrSZHlfbYJs8KoHwCpTRH5VEMU+qyV\nShHRopBQdlMsggMCG649cH1KGWMwbAqf0uZsw2as9kzDfnhOahWl1n1K+Wz2vXueLI4VmzIpqsZY\nOyXth02nfUrv97XEkfIaLxs2mk9xsBmP+dVXlk8xfWW3qTACeDCA7wGAEKIH4LkAXielPAzZaeMX\nhR9eFABshw1NCRSOVezgqIU/pZIibn+NJ10SpPpazLmoFCE7fWGjz4qFPCWCWfCkiOrL0pLpkAmC\nf1JEYaNVX9u2B1vvEWEP3GRanbsVG3YvWhXD2vZQg1pcD/3OaWhVNCvtytxoDJjxpoX+Tp82Dx+7\noWJsolVfSWxm5VPKZ7fxjvts7oQ9WBJLvSVKaofsZulTI6ZP7U4J4z4Abs7//FBkr+H7fP73cwAc\nHG5YUVQJlhTp9BkEjO+ztVDSJCVgo121YDZTusSTEtADuG3ObNqVSUnLwWDqdOOsKEguRVToWLGx\nLW4EJU1SRKHswZZMO+bMfWUcmz7T9KwHyTQMW7cHpc1jFLjNYyopstiD7lO2V/7tTm0epU8RlHSq\nbcJIbOZASXN9hR1vPCnp4ndbSxTbblqIsdzDMbsTJX09gPvkf34cgMuU+w23Avm2MUpwCeawtqSI\nSZ/ZqiEJVUUrkyK/ZvWQOzwuJVDokJUiT0qaqobo9zWGoCDZ2HArSlQVrVz4eXaj02yt20MNCpJ9\nJyG4lSImJc1s8whWKdKS6aCUNLf62vNjNLhV+5BtHj5vPfGq2vfd9mCLxfrrEFONnp0lJR38Na1M\nFkdvgbF9z2SbR8sM1+5ASfuks2cAOEkI8XsAng/gw8rPHgjg1wHHFUURn4Xfa3HrD4F0lO/clujK\nAEEJpESFUXpWTcq5cCsDJCWQmp+nzplZRRvri5ulUqT311gTxr7yvNQxZ9OudsjAhthojJS74Fw0\nG2vOTGy4VTQymVbnrN2719/cDBvfKhq3T6882GF5uw1ZfXXZgw2bjRo+5cKG2TOt+xRlN2VSRGDD\nbWUgsfGsTFsxtGHDoaSJAxt61V6Ms7v89LfblEkREYtrJ0WmyrSnr4wwLE/MTxiunn8ybYk3xWeP\nx44Y68LGszLtvSl3VRh3o4Tx9cjennIksuTxROVnRwE4K+C4oiiSGRVNNbNPfkotKbJWingU0RTt\nSlTRrP01tlI/V4+kBBI7hloyLW1JcoGNtghaG601WsVGb0i1ny81jdGRJK/UwFAZY2Y3fRLDqWTa\nVinS7YaoolH2MIUNlyKq26OkjNGnzUOdC0W76nYzdVGzRrO5fKrSyuDyldUaPqXoTV1GzL2TkNp4\nEtgUn92zUJAYaZeL+9qD/nrFunFJw8aZFFnmzE6K8s8uE0aNkrYyGk0paaIyzcUGEEh6A/TTcR5H\nlmr7FHf9IXumbZR0XQzVNg+mr3SdkmaPTkq5E8ALLT/7g2AjijIlSQL75dRSlla3nvCbjgE6SFUq\nkQ69yYJAUAJN6JJNZr3xmLfDy+iS1K6nU9J9XqWIoqRtgV6fyyR5stFik2DmnHON3W928rNH6m1I\nwh4KDIWmR7Uy9N1z8Tnk4MRmzMRQm3MdStpqN5p9qQmjlIAoEgnKV4oEQaXZpEGvBgXp41PlW0oc\nSRE3jth8JUmyXz2urxTJtAclPV6rUW0jfUUg6Q/RT0bTSVGhp9mDPZk2+8poZI4jnBg7diXJLfqU\nag/GhNFznWKvPz2e3QS7eUBJpkcJ0eah4Nhl8bmH8ddCiAdbfvZ7QohISbck7KpJKrz69IrgYmsm\n1isDtipawiz1myoDrJ4iQs95KpZbfVVoFWCyU7cfetGwsVRfuQs/m0riVgZ8GvmZ/TVTSZHt0AsT\nG371lYchm4L0PORQJkVJMn33JDcpKuxBS4oKahGoNuiz2zz6LfsUYTdFpQiwJ8lTjIbNp7RNmG2M\nU/GGSqabUtJcDKewoVmcsc5o2Chppq9MVe25c2nqUz5sj44Nuf74+ZR1/dFbGbhV1bYxBCqxqcvi\nc+jlIADLlp+tALhX49FEMQprh+d1wSqPWpycUisqRZaeooKCZFaKyN2vJ7VoDeDKDs+nkV+di3VX\nW2BI6JFJUbHwl7RKoN0v9bYCrffImRR5znlCJVWraICWFDGrISmVFHHnzNVT5lIkRcUY7JVDgj6z\n+JR1zkx7aN2nXL5SbK6oarxWcZ5qUdCwkbZEUI83tsRSS6ZD+xT3ihl1ztZeaFRjZ+0qmqfdsG9l\naOFNQlPYUD7V5yXT5PrT4/lebXuoiyGqul0Wn4QRQPEy3il5GIBbG44likVqVU2cDsujiMpDDn1L\nhZFLu9p2vwEoAdYimOv5VIqKxYYO4FVs9Lu/SmyoYNavVhrYu9W62GjJNCcp4vZ3ThIE9xgLbKgE\ngawwcufsU5m2VccIbEjalcJGr5oQelON/G37lDKXSYuCu4o2RS3a4oiFdtXHyI0jJDY1fYq/0ZjE\nkaY+xW1t4erpr3Nt3adMc2bH2OrG07b+ULHTd/1pbA8+PrUglLQznRVCvBLAK/O/SgBnCiE2NLVN\nAPYD8Nnww4sCZEaV+iYIZVIk6KTI0kxcOKzUkiJbMJPMKhqXLmFRAhv8YAYIpL0+emmSB/DhdDDT\nKGkuNsXdX1JmSWOfG+g1SrrxCb46GOZzS3sD9JLxNDZTtCtVRTPPJUmyX8OS1q9Js+kYisCUdHG6\no0ymc18ZFZWiTf4bDYvd2MaY6BsIK83Wgk+59LQ2D3XOtiqarsf1KdsYuT41dciubZ9S5qLTrtzN\nle1keOkrfU9fsehVsMn/vb9cY85cDB3Y2CjpqXhDYcikpNkHEH3tYQ+gpKn6568BfCP/8/MA/AjA\njZrOOoBfAPhI2KFFKSQzNt4uplZSxKRdi2BW3P0lPCkB7iEHL/psFXZKWnsekAfKDQc23IM+GjbF\nGMfjTLevB3pmf+fMKGkTNrakyEIl2atoZmz0zy571siKEoGhDExJT/kUTZ+RGw0LBcmmXZtWX0NR\n0sWElGSasgd+9VX7nilqse/2e6NPLRnmHIqSNlSmi8SMSqYbHywsfYrnexWfSuwYtklJS2aMLQsW\nZDLNw4byPam2eZhurOAmyTa9xFDMUXS7LM7RSSm/COCLACCyq9OPl1JePoNxRVFED1KVJvliF6Mv\n/GmSO+Jw6sqOcoeXO0axuOl6+g5PJOPy7q80nSRFpsqAaYypoRJpavg3NZe79KzYGBb+apVj09RV\nITrN1rNgM0W7WsZooqSNhxwMu1/j92zYrVrnvMHUU5NpVF+tpc5Zp9mKAD513Qp437OpMu3ExoZh\nYq8cNsbQaDcuX8l+F4kZQ5evmKpo0mZfekVJ1Vu2z8Xbp/Tx+WBjsYcpu5nyKfcYXRXGit0YKowh\n7MGKoSGZ1jflNruhfKq0GyLemA5LmfRMGw1fezBhmCj3ufZElhSlKaYuPwemmQqrTw2qlLR3LPZc\nf0q76Q9QXOPFsgdy/ZkUc6bW5gWhpH16GP8GwA2mHwghtgghuj3TBRbWLsaw8Nt6ivSFn02f1e23\n0isDTCqpcd+MgXYle4qm6DN3XxaFzZjZi5bqCULdKkcb2HBpVz0povr0dJqtbu8Rd86OjYbxefom\nzDTnuj7F7O/kVtsa97626FNlpcjWC83FxpZM2+JIvx2fUpOiSi+0AxvrFVR6Mm3p09MPgDTFpkiK\nKD22T+UYSvQg86xpIJKJnq3Nowk23HWK61OF3bTkU9lkDb6iJNNdrzD6JIwn579M8mFU3/wSJaD4\nUAKApafIRJdQ9zAWdMnATf3Y6Fldz1QpctElVAAgT0kbaVc3tVgu/Fq1zRrAB+65FH0wZC+aB10i\nJcMe6lLS4PSiVXf89sWNR0mT9lAEcFv/Vs05e/mUbRNm3Wi4KWkSGybNxr53r8ml5mpS5PApm6/o\njEbtpEjDJqlDSQdo81CTouzuSTs2OotDxVgrNnr1tSntSvWTh/YVk90QMVb3KbX6WjlYyPUVLl1f\n9+YBxvqTmrApftjroSxRdlR8RvcY5PS0Qc4A8MfNhxPFJN7VEMIoyx0eFcw8qyHWBd1Bs7H6soiq\nKreilM3ZkkwXu1rmwq9X22xjrH1K2oJh2azOfL1inco0tfBThxe42HAPgBTVV+9T0hYMjXqmpMhB\nu9rsgVr4SWy0yjSll+pVNOJ75r4a0Fop4voUYLUHOt64x8g9XU9i47IHpq8MMXLrcU9J2w69OChp\nFjY2n2Ju3uscnjNuPAP4lEjGyDrjqpQviU3N9cfbpxjrD0y+siB0NOCXMB4ACyWN7CDMgc2HE8Uk\nvsHMWPZWEsvij0Wgt5b6tYqSdXFjV5SI3W9Jzw7Ksbr0yAqjI5muJEWmZNpWRZtKLN1z0ek4azBj\nV5QIPe175t7fqY6RSqbZlSJb9bVcBHlzmbIHWzKdj79xpYi7CQOmsAG18HN9hVu1p6ommj003nhy\nfQqTMZKV6al4Q9Cuut3YkmlmRYmsopliJxFjp7Cxba4s2ABaUgRevCkZDcL32C9RqMNUEHYzWX8s\ndmPZvDdef5jxhjw4pGHDfb2iFRsFw66LT8J4A4AHWn72QAA3Nx9OFJPUraJVgpRrh0ecbqQqjNy+\nrKmmYwftmunz5uyFjSnQuzBsiA3ZU2Srhtiw8bxLTKIHmd/3Y6TPKHswJNMIZDcJt4LNxKbsy2Ji\nA6AM0kPhtgfjnA2N/GWliOrvtG2GPO2Giw35zmlXNYTyFcIeprCx3Fnalk+1EUe42ITyFd/e11Dx\nZk/GZh7rT9fFJ2H8dwDHCiEepP6jEOKBAN4I4MyQA4syEdYOj9tDYtCzXVfg67AgdoJcSmCKLuHQ\nZ8ykqAxSajLtoFVIbGxVLw0bsteRS0HqzeqcinORFBH0GUw7fkfQs1XRvClpyh6YtD5JJTWhz0yb\nMEMyPakoNaSkmTQb+xWC6junHXp1sDH6lKnNI8ewuLMUqFbRJj7lHiM7QWDagxzUp6TZdkMl00T1\nPLhPdYGSNvmUCRtijFOtU8T6Y73L0pZME/YQKWmzHIfsbS4XCCHOFUJ8TgjxPQA/BrAdwJvaGGAU\nTCVFlZ4iQ6kfpiBlKI9bd3i57kaaB/qhJYBPLQhuxxl70iXkCT51zkNDT5GJBhk6kqIKhmEoaZ2q\npChpCsMSGwLDyvfMpogcwcyAobVPr5gzRUlDsy+CgqSTJx6GJrupRZ85MBTjPFHL7ywtfYrChusr\nGs1G+lS/vk+R2Jh8SkmmR0nPPWfdHogxTmFjswemTxXfmfWuW6NPuSnpqTiSmJPpIsZS9kDGWM1X\nSNq16IEmElWytaWGT+lJN7X+UGMsWxlscUTzKcoOfWLsWG3zIDC0znl3pKSllDcBeDiAkwAIAA/J\nfz8RwMPzn0dpQZxByrHj5+7wbFW0YocHZoWR3ZAdeIfnhY0pKaqx+y0DKLPC6E1BBsTGmAg6sKEq\njHqfnk4t6hQkhY01mfalkhpUX9nYEG0exVyKO0t13ZEnNqF8yreR3wsbU4XRYYe2z2ZX0bh0fQew\nMVYYlWRav2KGHUdCx1huKwMHG6Y9GPt91ds8dBbHlkyjZhwhGA2uPaRFGsVhuAi76bp4pbRSyluR\nVRqPa2c4UUxSGttwCIxGeVK0bA9SriqagYIkT3QSDksmRRolYD3MUpMuUZ9pTRh35HqmqqqBVimD\nmQWbqaSITKaJ3S/3/jTP3iMWNuuFHtduJkmR6XWIU8l0oN4j9klzqopGHRBrkEzrVYk0zXQHto2G\nrYrWBZ/yxKbiKw6sqYWfrqoa5rxi0KN8ShjaPBImNlxfMcUbB4ZWpkJPimbkU+V3IXqAhJIU9azf\ns2Ru3tnJNFV9pVqndJ8K3N8JCMjhEGI0ynuhl/ziyG5KSUeZk+hUM1XqN1ZDjJSAIdAbeo9AUD/k\nCT6NPvM+FcuhiAoaxEKn6no2SkBPuos3dujUIpcimtAgYShp6XmCr4JNMLsJQ59xWxS4lDSJjeF7\n5mPjpqSnFn7KV7iUdKBT0gV2HEp6ylcoapHrU76+QuhxT0lzfar8YZqSp+bZsbho30hm5FPcFgXq\nbtNyg5rHhIGYtP2YDohRMdbhU8aNhqF1qqlPcds3uKekS+wACKKdh7XRWHRKWghxhhDiodyHCSFW\nhBCvEkK8uPnQogBKogL402fcCqMazIw7PCYlwKRnKT3fQy8VbLiVIoouUXrRSmpxPE2XUHPxrZqQ\nFGSf97m16DNTb6KrGkLOOTDtSvV3tkm7lpsrioJ0j9Gbrqcw1CuMhE+pP6TuniyxYfoKhQ01Rv3S\nfDY2gdo8+gNRPpM6NV8myUwanl1hbOhTU9XXhj5VXsreh7evsH0qIfSI3kTv9iAmJc31qX4f5o1n\njfWn60JVGK8AcJ4Q4nwhxMuFEIcKUXTLZiKEuKsQ4qlCiI8CuA7AXyE7CBMlgCj5GwTXKF07PAeV\nBADphknPvdMikyKtUkTdz8d9vZVpzsYdP0XXO3aClc8eGV5vRe74eXMhA3ix42dWadU5G+3GpEfQ\nJTqGlc8eOyrTVIWROvTS0xZLm56eFNkqRardLPHsYZIg8HyKpBaJOU8o6TD2YEqKKHsosCH1TCfD\nHRiS2LDpeq7d8Kpt1oXf4SskNqZNGNenVGy4PkXdyuAZY8mkiMviNMGG6VPsWBzo4FB5gEVNppn2\nsFtS0lLKlwN4AIAfAHgLgB8CWBNCbBNCXCeEWAVwFYB/A3AIgFcAeJCU8getjnoPksLQfIxSuHYx\nJvpMdYg1h95oZGzkJ6kkvTJA3tfIex5JCRjmLLQkmdzxc7EhqCRy90udEPWtFFUCuKPKQVHSXLvZ\nmOxsyvsafZvVCXqWamovkqdKUmR6SwlFLRrswWk3FCU9NryWk/IVMPWY1bZKUuSqopnsgbKbYQOf\nMvgKFxsqLk21MhA+ZY2xAXzKWEXziSPcfnLdVwh6lqyiGeyG6ytsbOr4lCvGcu3Gho3O4vj4lOnq\nMg+76bqQI5RSXgbgZUKIVwN4BIDDAdwVwAqyy7ovBvBtKeVv2hzonirGhJFIipxGaSr1546YJFlS\nNNT16lDShiZ0Ls1m3P32JABRL9DXoaSHhjGu2Z/XmJJm0iCFXn8gUHxp2ZyH1WR6MMzuuFOeSVJE\nTEpamMZYAxtve2BS0qU9jMd5AB+Sc+G2KNB2YxijK5lW5my6kzDUyc9ErxStreX2sImNjTq+S6RS\nqgAAIABJREFUOtSi0W6MbR5uStr3laVe1KJr4TdVimz2sKM651BtHnP3KRY2hK+Uh+x4dkNeORSY\nkq5lN+yDpm5sui7slFZKuQHgW/mvKDOSSsLIpEu4pf4yKVIdcb0GXeJJSXOppEpSJBIAg4peOiAc\n1kGzkY3Whjkb6XomtRiKZpuiz5IkrxQNK3rFc4SYUNI0RWRY3Bz2RWFDzYXfyM/D0JgUMWlX6mCH\n026ozZXBp7jUImVfZaWI0Cv6srzoMxddb2h56DFp/coYDW0e9KGXwLS+6lMI277BjsWmMdZo82DH\nYoqSRouU9C4zNkAWR3pT2ISlpElf4bZ51KCkqVjcdYmnpDsulYRR261Wdvwm2jUxVAYMeiqlIzfc\nesZqiIF2LZ5nekk8pWekQeT0XKRBz1gN4WJjqYaUY1zn0fW1sHHQbKpeYlj4TXMuX9cWChtqzgZs\nxJDAxlAZMM7ZQJ8Z7UYw7cbQytBn2gOJjWHOJp+i6FRfn1KrJk18ymQP3BaF3tjfp7jYUL5iikts\nuzFU0ShfKTdXTHsQJmwoXxm5K9ON4ggXG26MrSRF9X3FGGNNesl0m0cobIqDZGKQG9V4jJ6Q9bHx\nsJuuS0wYOy6mhNH2WqEpSoBLSauVonWDHkFJlxd8U9S15+lG667WFejJOXtSRA2xIQ852JJpDjYF\nRWToRauFjamK5sAwFDbCVOk2UUlMWp9qUWjVbrg+RczZ9y7LUD5VaWVgxhHRpIfR1MpA+AoXG+4d\nlVy7IStFro2GWkVj+kotn/K0h4qeoRe6jq+Uc2bq0b7CbPNgxhESm1yvN+ihyChNvdAp06fY/Z2x\nwhilqZgSRoo+E1z6jElJ672OQJUuKXduFH3GvXePSZ8Z6RIimXZSAgYKko2NZS5TybTeD6PTZ0wK\nkqKIyP4aB81mvDPOgGFjup5pD2Rflo2StmHDbWWoVIDy5JbwKWOfXg1K2rfNg6TZqH7fRq0M+f9R\n7ywd8XzKfCuDJwVJ+JQ1KbK1eTDmLEzJtIPWr4yR6SslNkSrTNWn/Oh6a1LkirHM9g3yRgFmjDUy\nXDO4zUOdc2VT7vCpPrX+EGtz1yUmjB2XSsJYJkWG3YmDWqT0Ko7ooha5OzxLk/BURcmilxioRVOj\ntZESoLAZOrChghRBu1aSaRtdYtv95smTMeGgqiGGwywuCpLEpsapRYqud1WmKXvgnm50UdKVKpqD\nSiIrjJRPuaqvlN2Y7IHSMyXThkqRyaeMdmNoZeDOuXJnqaFy2MinXNgQPkVVirg+JfuDyZ24roMd\nphir2oPhtgXTnE3VNgob7q0MxhhrYCq4dmNMprnYUHEksE9R61SzGEvEzjLGmrHpusSEseNirDCa\n3sRh2sVYyt7FfxGmHT+TBil7jwiKwbm4EXqDAYJT0lz6zLnwqxia9JTeo0T2yv8TAhtf2nUwmOiR\nlCGTkqawcW40lGR6I2Um0zk2Jnttgk0tu0nc1CLbp4hkh9vmUakUCZH9l970+2yLvizVp0xzNl3U\nzMWmjj0YfYr4nn3pejIpYt62oNpNedAnkK+EboHhtnlQdCrXV9RWBirGTr5nrt3UX6eM2DD1uHZD\n+ZQ5md5DKWkhxB1DDGTWIoS4hxDi80KI7UKI24QQ/yaEuOe8x6WLMWG00Ge6I1IngY3BbMP0vGla\nxalnpWcHLL1iJ0jRZ8Xut+Kwltfa6WO0YeNMpk0UEaFXPK9XBEcLfTbyxMaaTPvSbOoYDQ3ZKrXI\nxcZpD8qp2CKZpuZcYFMmRVIa6TMTNqY5m+zGdsJ38v3x5myqXrCxUdo8imSaiw1pD6ZKkcmnev7Y\nNLEHo08RlPQUNjZKmukrCdNuSEbDhQ1lD8sNfMpgDxQlPVLnbGJxPH2qqEyrL5ig1x/mnJv4lMtu\nCEqaazfWSqQjjtiw6bqwE0YhxAuFEK9R/v5AIcTVAG4QQvxICHHnVkbYggghNgP4JoD/BuB5AJ4D\n4L4AzhZCbJnn2HSpJIyuXQxFu5oqkS5HpHbJLj1rAGf2olGUgLOHxNwboo9RhMKG3V/jXgSLXS2V\nFHGxcZ2mprEZF8UqpKMAdqPoSebzKnZjqBSZk50GdhPaHtRqvGnOJh8wJdM1sDEu/F3ApoFedeNJ\nVNE8sWHbjeEaFXaMpWInM45Q2JBtP1osJn2KejVgrmesTDPjTZ31p04cIe9rdMWbButP+dYd0Gtz\n18WnwvgyAKvK398N4FZkb3fZB8DxAcfVtrwQwMEAniql/IKU8osAjgJwLwB/M9eRaVLZfDiMUg6G\nZX9NucNLiMTSRZ8ResbrMAjatawUDftlUlR5dZvWa0LRJabmZDKZXq5i03TOTfTqzHnMnDNZYWTa\ng2RiY+49qq9nsht1LmS/lYtmC4QN127a9CmT3RixMegZ7caAIdXTyraHBnNOR0l2mkYIfptH4Dgi\nDXYTCpvQMZbSY/tKg3jTJjZ14gh5OLMDdtN18UkY74XsrS4QQuwD4NEAXiulfB+ANwM4MvzwWpOj\nAJwnpby0+Acp5eUAvgfgKXMblUEqFUbHzq1KCVQp6Qq1GKgC1GT3G2zHb9jhUTv+nmkugefcKjYN\ndr/BK85zrDAaq2gGPbOv7D7YmOyGXXHmVk3InmneXIy+1wWfYlbjTdW2Xp0qWugYO0rLZHos+7Wx\nGTTApqs+5axMN6wwtoFN18UnYewBKG7o+iMAEsA5+d+vAnBAuGG1LocA+Lnh3y9C9u7szkglYTT1\nFJl2MblRivGopBa5VS/uKWnj8yiKyNDzYaqGmHZ4pp2b6QSfcferXtRsnMukjBtizo0rRSZsHBiS\nu18HNuoYe6Y+Kq49GK5RaWw3jgojd86u3tfqwk9VQ5hz4VacW/QpbjXEdKLT1KdHYdMzjNHUm8ie\nM7faZmvzcPgU1x5CVdF6JrvpgE8Zq2h1YmyRFJnWnw74lJpMF5Xp3qC4NZ7BcHn6lMkeSGwqNGK3\nxWeEvwLwP5H1/v0FgHOllMVLfu4KYFvgsbUp+wG4xfDv2wDsq/+jEOIc24MOO+ywcKMyiLnCaHBY\nw31ZheOMx5i8cokKZmqQ2sj+yG5W96UWV1cxqJMUmQK9o9HaRAmQSRHRhO5MupmBvrLjr5MUcRv0\nXdj0B1OnG8m5GLBhb0hq3S3HswfuRsOIDXEPI3XoxbUIGjFsy6dg3mhU7KbHXPi5hxeMc6lvD+zk\nyefwXAifMm00kjrYMPW41LUJm+ItJWmaJ0W9YDGW7VMENmyfamAPprjUH4hsjKNR7itLfnbD3Wi4\nfEptidoYlWvzc58L3HYbcMopwL5Tmcj8xSdh/AcAnxRCPA9ZUvV05WePAfDTkAOLkok5YTSUvQ27\nmKLkPh7XpEFW7XpGysl0EthAl1SqaIZSP5dabEIJUBSRiT6rzHnswKZF+qwJNiYapHpRM28ubGqR\nSVV2ARvyYIdhLmy76QAlXcGm39xuKL8PPWcj1kWlKEnyuydFc2xC065cur6Br5j0+gORjXE8NidF\nTNo1BDZFS5SoOZeK3qbsj03aPMoxjkZ5HKmHTYj1J0mqvvLlLwM33TQpyHZN2AmjlPIzQojfAPh9\nAD+UUn5b+fH1AL4YenAtyi0wVBJhqTxKKY+wPehhD3uYtP0shNzvfsB55wErKwD+wa/sTdIg7EpR\nfRrEREVUFn4mJW2sDDDps1rYUNTPuic2pt30OEVR3isuP6doEFNloM+kZ02tDKbdL1kpYtJiJqrS\nqGfAkKqiNaHh2XajtDIY59LksBQbQ0ulyJM+q1V95dL1Db5nrq/AVimqJEXDYL5C2g2Xkq5DIa80\nx7Cci54wBvApNu2a37YgZTZGUXMuxnWKaYeN1x+XPTSgpIsxJkkWY/umMXZQ2AmjEOJRAH4spfye\n4cfvBHBosFG1Lxch62PU5QEAfjHjsThlyxbg8MPzv5gclkFJA0QTOqXnokEqu2keXUKV+o27WuN9\netNzboSNGsxclHQdbCisU+GPjYM+M707mMTGlEyb5mwM4Iqeo5XB2ZelVIoqybShMk1iAzs2pnfA\nmnqKqFYGZ6Woia/YKkW9BDq1SC78Dp8y0fAmuzFio1zUbPQVijIcNsewHON4nM95aK8wmvr0uK0M\nJrtRkiJg8jpEvYrGjiMun+JS0iZs1tb4MTZwvCnGOB5bvmcuNq6+c9WnqLjEXH+a+JT5jkpi/THM\npasJo8+hl7NhPxByv/zniyJnAPh9IcTBxT8IIQ4C8If5z7opZcJoKo8bdjEmSse0wzOV8E0LehM9\nEyUACw1i2uGZ5mzsKfKj6yvYcCmiGthUFsH81W3WZNoTm0GL2Djn0kRPT4pyhWLHX74tZzCoJtNt\n2c3Yv5WhNWxs1ZCchqeSadPpZ2MVzWAPLmzU2xZkXn31amUI7FMmbKwLvyftavIVEzbq6xCbfM9N\n6Ppg2MwixjaJnZReIGzYrS1MbKi12TrGDopPwigcP1sGkDQcyyzlZABXAPiiEOIpQoijkFHqVwH4\n8DwH5pTSeA1lb4PxkhQRk5I26TlPBJaVIrMeRYPUOiXNpQSMO7z6NAgXGzUpKi7kDoWNiWo2YmO4\nl7MWNg3unqTmXCSMC2s3M8CmssCYKtOGOTfBRr3IXTbApkm8MfmeCZtkLFEoVJJpzzlzD3aY2jfU\nd05z7SF0LP7/2XvzcPmOom78U2dm7vJdspIEAoGwhZBAWBIwQUCIsioCLwHZwqYssiqLEUgEgUAU\n/EVeFA2yKdGoyCI7GiGyBTECAoGQH0ISggmB7Pku987S7x9nmZ6e7q7qM31mztxvf57nPnPvTN0z\n3Z9T1V1dVd3Hyg2jD7HHG658Q9pnqa3UsSlbn2fZgGgdRzhuXCUFLYQ3JV1E3e6kvXUCEe0wxNYB\nPAfAFVFb1iCUUruI6GQAZwP4AHJn+N8A/I5S6paFNs6HWdKuoSv+GnKVUzQcVjVFdaJotmJ12wrP\n9vQK6wqvTqTIslrFLNyU3z0cYoX6ALq1oq9WbqyrWhk34iiaq8/bhHJBK/51lhtbFG2CG3JH4216\nQ0UUTU8tRo9Mz6I3GOtDrcj0DBuC9M1z5ThSJ/rKRtH2uuVstmeLFJX9mDUybY8Uufvc74/7UnKj\nn4lbSx/0vgyEHPr0QXOmbRFG6xhr05tAboL6PGeb8j0OsQ439uyfnxvbOLKUDiPyx+a9DoAqft6B\nyUijKv4eAHhREw1sCkqpKwA8YdHtCEJVN+NOCWQZHAY7XsVMHaMykUqSycFyveq7h8PCEHvjAbzX\nm5aDMYAbq1pdbsJgy9QcTctNDPTF9RTLjaWN+uBjKUKvzc3GRuUUeeVMbow0iJMbT7E6WbjRD3y3\ncmPpMze5ibjRB3rtu8sBvHTgnNx4+pxlQLUT2GYrFg7L1OJoNC7Q1yd+GzeYQR+C9QYWpyjEpoS2\n4htHcodxHEXzcaNsbbToTSxuyj7Xsaly4udsih1jpdyI+6xxuOmTm76e15nudDBSJOqzbbzxpaSl\n3ADx9cFWC60vXLz6oD3HvXoiWQ1uOnXG2CVKSXMO4/uRH85NyM9ffBGmN4VsALhUKbVM5zAuJyqD\nFaYEuCianhIofp1YoXtTRA4l7/Vyp6hOalFahK7ccrYCfS5dYtuBGaUInemzjes66RL7hiBtkDJS\n0mUbCYJ0iXBD0Cwc2vpca7NUhPSZXqfHpl2F3Ig5ZPRBalM2fRhY9MaWqWBTi7aatcg2VUdvrOl6\njhtf2rUON0K9gbjPHg41p8g6Zmt2L7Up66YXjhtpStrgRm/fzPpQRKZtGS7p/KMG4w9tZR5WmxLO\nP9wYC82ZnnD4Wwivw6iUuhzA5QBARA9Fvkv65nk0LMEC32BmC3vbBinXLrUyiibc0alHOUROEbdL\nzbLCcw5SI0ufDadoNMonNz1SxE78zA4+W1+kct7JzSFnG6Qm0q5w64Ntd2PZxuFQcxg5boR9tslx\nejMxOAbqDctNKRfITb+vOUWR9EbMoXBHZx1ubH2W7pK2tXHYpE1NbRAj8TgSjZtAvQFQjbHRxhum\n7CevhfaUtoRyI+wzO//4FhqxbEqX22X0RXcYa+iNbVwS643lsHKpTU2cievbMbJAiDe9KKX+PTmL\nC0aZPrOtYoRF6HpBNpcSqAxsVShnSYNw9VZlqL9a4WVZ9Qgnm5wzMqClFitj23SnZ521Qt56GMuK\nX8qhhRs97crWHlWRos6UXCZMSdv6wslZI0XWPlvu8wx6w8n5ShkmuBHudrWlz1hupLbCnafHbRAz\n066uSGSgrdjSZzY5W1+sm+wi2VSnl6HcepwfJRTADSNnrUXj9EZqUyU3TO2rrY1sDaOlL3kttJwb\nbrzpNGhTiMyNeBxhOKylN1JupHpjm8NbCrHDSEQrRPQ6IrqEiHYT0dD4GfBXSZgJpVKWhg/5xG8q\nZZZpESBp6lpSd1FG0TinqFzhcZNgtXJjBnpbGt6XSrIMZhMpgTWLnJAbNtXMbV6oVvwFN1qeacKZ\nLuXqcONLn3ETv63PvvSZ7hRxaVduoDe4YSPTnFNk0wcpN7Pog+UoITE3XJrNtiGI40ZoK1K98aak\nuYVGDX2QjiPsxD8LN77Fex29Ye5zdG6E44itFjqW3ojHm8i2ws4/3EJjBr2xOtMtBVfDqOOtyGsY\nPw3gw8hrFxPmCS1y2O3m+limFq1h736/8h25dEkpFyt9NjUJRkolDQaoUtKuFJHODVzcWPo8kRJY\nscjZ+lxGlAYDdDtGoXWvh+Hu+tyUfXbKZZOpxcFgLOvjBkClDyw3tj6vTeuDtY1a+mylE5Y+k8qN\nBuNKdpszHZI+M/ss1RuXrXg5LK9ZI30mLWXQ9cGWri+5kejN1CKsBje63oi42djAShamD7FKGWzc\nzKw3nrIfGzfOneHFNaXcSEtgSg5ZvQlIu5r6wM4/Qm7mPf90hWMsWUqiaqXrW4oQh/EUAK9TSp3Z\nVGMSGBi1iYMBqkFlwBYd108JTKTZipoiLr0hTQl0qhWe/3qTK7yw9BmfWrSsfqXclOmz0ahIn3Wj\npV073OrXthNYmFoUp6T7slIGb/psWO6aN7jZa8hp3LDps5FMjo1MR+AmThp+nbWBrtSm9DKP4jnu\ntjKPOukzc8fwlNxaKWeJFNlSi9JxpMGUtO2IGTYyXYeb7ZNyPDf++xxqK+wYK+yzLlc6ReJShlgp\naWE5T6yUtJQb/bSFss+DOvNPSxFycPcOABc21ZAEAXyTG2ewvhWebZCyRYqAIlLkkLOF+rmUQDXx\n+69nnfht0RBbStoRffUO9FJu9FWt5dgTURrEJTcyOIzIjTfCaBvM9LPltFKGKhqy6W9j7fSZK1I0\nksmVC418cVUO4DIbYPXBFw0J0JtxLZpMb7gyDzE3AXojiqJxTnINbqQ2VTlPQ5nejPoOZ7qMFFme\n/BPNpnzR11lS0qzeyLjhoq8TdeLl/CPsczRuxDblH5eqhefQPy7ZUtI2buwlUZxNWThsKUIcxo8D\neHBTDUkQwBI5FBuizynSrkdcNIQ72qOKhjCh/iqKln/OTYK2oxysq1qdG1/UhEsJ2K7HtLHkhq3b\nBCNncMOtkikWN1b98kQGbClpRm+qPjv0geWm1IdSb4ZcZGA6fSbmhj15YJIbwLUTWGZT/Caoss9+\nmyq5yVzcGOmzJmzKaver03LO8aamrbAR55GMw8lnRAttpdIbGYfWyDTHYQ1bCR1jucj0ZF9kNiV9\nQpBVH3Ruilpobp5ijy5z6Y1rnuLGWJ8+CG1lGSKMXV6kwjsA/A0RjQB8CsDUuYtKqR/GaliCBTZl\n25Qqb7nakUUirYNKdej0Grsi6wo3vYw3djiuV27SsURDbIX81hU/U3RMvglBlxOmiKRpEI7Dkhtu\n4p94DrLnjEp2Q5CuDyuTHHLRNu4+B0cYXdyUA/jQiJq4uJlh0wtbrG4b6C02xbUxlBvWpoYyPayz\nkQw2vbHKFWlxvZQhZPOCz6Y23NxwHLKlDFoUrUotSksZSn0Q6o01+lo5RZ6yH6neBKZnpdG2si+D\nQe4IEuS2Umv+sZX9CG0q9qbL0WCEUqEHI4szbRlH+PHGMv+0FCEOY5mOfj3yp7/Y0OKubgF4DIw1\nxLIYt05K2jdIueS4iX9qAHdcjyxOkTRFxMmtTMq1LSVdK7U4kqVLxBxG1hupkyxNn3EpSFtqUcoN\nOwnO2aaCnSIhN4BWiya0KWlqceJUhvJJHJpTFDvVzMmVtiJ1iiYcxljc2NpoO3Q6dHHV62G4Z3Zu\nuHtSaxyZJSU9FbDo2jm0La5C9YZxGCeuZzngexZuttqml+cAUE01JEEATzjbqZRVEXpYCnLW9Nk4\n1M+kz0ZM+qysnSvkRoMRyrNvrCu8WVIC805Jc+lUM30mSUmruClpa/S1DSnpkUwPJ1KLA0+BvuU+\n254Va+PGma4XbhALTrtyKWmOG+M+N5mSnrCpbDpSFLt8Q5qS5tK9ZV/6fQc3M9iKqTcoqEG3K9s1\nb+hNFjkl7RyLffMPozcVN9xTcHxt1J4gVislbdlkJ01Js9xESElvqQijUur9DbYjQQKPgbGDWVvT\nZ2YUzTnxW1aC3ApvKE2zxU1Jcw7eVBQtUkp6NBwBKJxp/YDvCCkiZ+2RMH1WOzo2Y/psIrUoTUmL\n064WbixOkTh9Jo6+MvrARdGM+xxU5iHkxupMA+5IEZeS5kpghGUemdCmrJEi4cbCWnqjcZNv2FgX\nONPCVDPHjVGiII2+lr9PcePrMzPelGPi1GPyCtlyMwtbEhU4/wRHGBmb0vvs5KYI5pi2koXsLJkz\nWty0hCnMkpL2pQR0B5QJ4UtTROMoGjMJclGTymBlcuKUgMWZdq4Ey0OnhX2OlS5hC/RLp6j4vIPi\nQ5czbemzNCU98Sg40g6dLp/EwekNyfRhSm+kqUWXPhR9JoxAI48zzUVNPLYyNFNJ5uIqkt5M2QoX\nfW3SVoTjiNUpgh5xFo4j0vKNUJuSRIp8pQw2fRCmpKdSkKG2Ihw7O0J9CLWpOtwMOL0pHUbzMXmu\ngIV0/nH1WWhTVMemhjKbsupNSyGOMBLRexkRpZT6zRnbk+BDnZR0NdB7wuN9+fmK4hSRrW5mY1qu\nHKTYHZ3F91VnE0rSJb6UADeA10iflYOZOEXEpqTDVrU9LpVkiapK02wjM11Sps+KSBEXfZ1a8TtS\nP+IomjR9VvRZ9R3OtC3K4dslbYuimdwY6TOnPhjcSOXYlLTQpsb3WYEKAdujJ1m98USKpiZBM1Ik\njExztlLaFMdh+TnHYZ0oGtnkbOlZ28kDGjfsQsNlUzNmKijQpnQenfpgRNGGHIflPOVYaEjLediI\nc6k3pq24bGoQalPwl3lwQZ+WQuwwAjgZ0zWMBwHYCeCG4iehSVhX/LKJ37qKsTpF4xWe7SHs4gij\nkhnYlFPkMNjy7K9yVS1Z4ZXX5DY5WGuPiu8Yp4i67iiHMUjJB3pNzvJEGHYwM/rSnTWi5HGmpyZ+\nM33GtLEbmnYVOkXSFT9BxqHeZzbN5uLGcIpiF+izNsVxY9znKsIpKPPwRhgtE78zwsiNIz5bqaM3\nBjfylLTmTLsm/nLznDDCWJUHMZFpbuEpXUCIbYpzpm02UDpF0kwFswgbR6btNjXe/Sy1Kb/di0tb\nAm0qJ0U4/1RO8haKMCqljrS9T0QPBvCXAJ4WqU0JLngijKWzUxVPA94BvKqTmIiGjKNoqjNWDVtK\nQF/hjcZPZ/Omz6xyllWtTa7sc2/AyHmOK7BdLxeYTJ/ZuZlcyduc6a4lomTv8/SkZZOzpc+83MDf\nPttCw8qNVG+A6dSio41dT1TVpjcT3GxauLFM/D5uMsg4ZLmxRYo6Dm4sR3tYubFETaz6ILSpUm+q\nNC1jKza9mepzdaJABJsCvDZl44a3lTCbqja/MPpQOdOdDkaKvH2ObVNg7rOPmwmnyGJ7Vm4CbUp3\npofFASmsrTC10Jkx/zhtKtL84zuzdJIb4Tzlyeq5uVmeCOPMNYxKqS8AOBv5OY0JTcKTEuBXMQ6l\nLGTNYmJXuoStTQxd1ZaD1MhxPTOKBv/3Thgily4x5bhVbbnjtmMfLHrS8xW5uhlXFI1JEbHcWPrM\n7pK2yXm4cX23NKIkf/LC9MQfixtp9LWyFYdNsbVoNdNnwdFXJn1WR2+kNuWKvoo3+ki5kZ4oEJiS\ndnLjidpztdCcTUkjh+KNPpUjyEXRwmyqqpnudPgyD1tdsKcW2jVPhdqUs8+BNlXqTelg8ilpQWTa\nWFwN9gWHscAPAdwn0rUSXLApZWmIttojW9ExyQZwV7pEnD6TpqTrps8CUtLi+k44BimTm6IgO8uK\n6GvgQF9FGEf+vpTcVJEiLiUdwI01XRIy8U8tNJiUNDeAm9FXFzc1U9K9gJS015mexSmScjNjSjo0\nfRbNpnSnKFZKWphqDrWpbOTnkOXG50zr3FicIm6MFddCCxflUjlWb2awKWn5hpMb6RjrshVGHySn\nLRDJ9cHpTHsjke1PSc/sMBJRF8CzAFw5c2sS/NAcwW5XU8ossz4PFf3x8yqtm14wll3JJlNEroGe\nLdCfSkEyA3jA+VbdLibSZ65BKu+zw5k2rqe30ekUldyUp/2zq19moBcWq0/tzJuVG73PvtrXAL0x\nI85TZ8uZcq5NL2b0VXh0jLQInY0UWbixOtODAbqdSaeIi9qztsIV8rsi085JUGhTxX2W6I05ubki\nReWz5jmbktqKLe3qnfiFNsU559FsSuvzajbZRnEUzbXQkHIjfVRkUcLTFepDHZtycWPOP7PalPRE\ngakSmFn1oY5NuaKqLYS4hpGIPmd5ewXAUQAOBvCCWI1KcCBKZIBZ8Y8cylszJc2lN0LP/hKlpNc8\nzrQ0Pav1eSrCyDnTbBRNlvqpduZFT7uqqo3OHZ3lrnkhN5mLGzMywPSF1RupMz1DStqadrVtEGPS\nZ6atuM6WG0dD4tgUScs8ZkhJW/VhOBxvEJu1lMGV0XDZipLZVOkUOVOLM6Sk2T4bjiAJGFehAAAg\nAElEQVTLDdMX8SNGbWOs5fGKNCz0YV42BUzNP85xxGFTtbkx5h+n3mRGn/vN2dQUNy1ESIQxA0DG\nz80APgzgl5VSfxW/eQkT0Cf0jmcVY8gBY0OcCntLUwLmAM6kfkJ3dHIpyFAnmU0daOmzjFn9Tg1m\n5dNnSuspJ3SOG2mKyEgtindJW/psK8jOMC7AnHCmS6cI0+mzqfrOqdRif4Kbus60dNf8lDPdQEra\nGQ0xbIVNSY8m9cY8W05qU9KoarXbNbJN6X2eiL5auKkeV+lyprk0vGkr3HgjTKeWB7lLIkWicaQG\nN9Wi3GFT0hMmfNzomx+bGmNr2RTZx06pTQXPP0w5T+2ARUSbKtswVS7WQogjjEqphzTYjgQJ9FXM\ninD1W0WK/E6Rmd7gVr8d12BWDlLcQadVNCT/vMPVFEmdZMvOz8kVoyVS5BrApyID3CQoTBEVfXX2\n2eSQizAGLiCccmVftKOEKn0w9SYwamJL/dijbTJ9qM7lZDgsU0nSzVIZhiClpp3psi/6+YqMTY0X\nGoUzzWwkY88QNCPTjE1JnSIS6E23KPNwLq4c+uCqmTbHG9XpQhWHttl2u/LjjVwfOh2gyzlPnK1Y\nUotOfTCj8a60q8ENW5vIcVONN6XeyPRBMo6E2JTODZeGly40OH0YjzdMxNkcb3o9jPRHCGaB+tDv\no7NNziGwdSOMCYuGdBXjixQxm14y1wrPrA0Rr/CY1GLs1a+ZEjDltL6Yq9rQCKNr9ctHTWQcjg+L\nnTGqKpXT+jI18TMRRic3gfogjYZUtWjCczmDuXE50wiIhmBy0hJz49IHM6I0azSEsxVpZFrry9Q4\nIiyB0aP21o1kbPSVcaal9zlChHFqjDWcIjbCaHA4VcogiDBOONPmLulI+hAlMu2IxnM2JZ1/xFH7\neduUZdf8MkQYgxxGIronEf0TEf2MiAbF6z8S0T2bamCCBmkUTZOtGw1xnrTPrfCMyY1b1Y5TizOu\nfqVyWl/M9Jkz+qom2+iaBKfSIIxTxHHIPt1mjty4dpBLuQk9yF1SoE8Uoc81uDFtxVUXbPbZZVOx\n9SZan2fQGz4aP9kXzqbY8SZw93NsbqrINJHAmWaibYZNlZFps5RByk15L9gsTixudOepLPsJnX9m\nHEfEesNlKmJzo28Qy5i5uYUQp6SJ6H4A/h3AHgAfA3A1gFsDeAyAXyWiByul/quRVibkcEXRXAP4\n5mYxgK9VKyi2QL9c8btSi1yUw4iiSdNnHW6FF1hM7OWmdvrMz2GHK7yfcqaZdEnxfRN92TstJ+ZG\nqjfQVvyu6KsriuZIu05x44qGcBuCzBU/80jC2twIoq+VTTnLPIwoGpuu97eRjaJJ+6xz2MPEoea1\n9cbUh5HMpipuHM60dDPL+AiqGe+zLrdNqDeZko03XPTVoQ+ujAbLjSv6asplwuirVB+Msh9CljvT\ngNuZpsk+sw7jaBx9nShlkI4jZqYipk1JbGU4LPrcW6qUtNhhBPAWAN9BvsHl5vJNItoJ4Pzi84fH\nbV7CBEql3NzkJzdH+oxLCWRsukSW+hFH0crIgCu1OIeUNLviF6ZLOsZgJnaKmJRO9YzoXg/DXW65\nJlLSzonfjAyUEUZXKUNoSprTh/I+648I23T0uaut+OumKrW+TJUyuJwiY0IXc8PZVKwzBKsTBWTp\nM4lN9UI3vRgp6Smb4koUqkVYoE3NuunFcIpk3Ew6yS6bMqP2Lmea5aZaeDJyEDrTLg5dfS5qobvF\nU2DQ602eSYhxG83FlcumXM50VcpgRhi5TS/cSRR1bEoy/xTcEFaRqVEemS54arPDGJKSPhHAW3Rn\nEQCKv/8IwEkxG5ZgQUiKSJv4CaNcKeFe4ZmhflfqIDhFxJyM34rUYjlIMWnXDpd2DeQmeOJvdbqe\nib5ymxIaThFJI0UhelO2kdUb16aXUG6ENtVU+kykN6E2JU1Jz7oJKrZN6X2mfpjeBDrT0WwqcmmL\ndHEl4kaoD9KxWFqbGKo3scdYL4ctRIjDqGb8PGFW1DTYCTlzheeIHDrTJaPJSYtLCXRihfobSknr\nzvTEAd+aHMuNNH0mnfhjp5pD0mcOZ5rb0cnqTWBKmi1RiJ0+A/hIkSMNX3vil6YWjfRZNJsKtJWY\nKWlTH2rblJGSZs8sDUlJS8fYTMYNu0B1cONMSQvLN6b0pmmb0vvM6U1pK+aGILZOvODGUQITalPi\njMY8baqFCHEY/wPAa4oUdAUi2g7gNABfjdmwBAtCUovaxC9KQQpT0q7BzEwJRE+fhaSkpekzCJ1p\nc+J3paQNZ9rpFJl1m3VTP6HpM8idItaZdkWKHHrD1m2Wk5t013zs9BkEK37DmebSZ5XzpBib4tLw\nNaOv0dJnJjeMTQHhKWmnTQlT0tVzkIW75mdOSWttZMdYY1EuTUmzUTTheEPcmaXzsikfh4Y+OBca\n5gKVsSkuJT3eWDjnlDRy/nQOR+NDCFqLkBrG1wC4AMDlRPQJAFch3/TyaADbADwkduMSDKys5K+B\nKWlJeLw604tJs5lpEPdgZgzgTORQdN6Z73yrMn02HKKXDWVpEOnqt5Dh02eTHLoekyd2pgOjr6Lz\nFYWpRakzXS0gSqdIyI07+lrIxUqfSSNFIdzQAIBCR+UCLme6I0yzZUrGTRUpimVTIekzITdTEUbX\nOKLstuIaRzh9KCf+rotDqmdTWURuzFIG6eY5boyV2lS3jk1ZnggTtHmOBuiVyUfJGMuVeRjzD6c3\nbEnUYJCXRHHcNGBTyxhhFDuMSqmvEdGJAP4AwCMAHATgOgCfB/BGpdS3m2liQoWQsLc0wlgZbFgU\nrcOkS8ZHOUSKHEpX/MOhfFUrjL5W0RDljwyw3BhRtA6XBokVfS37UhWhx4tMSyNFZjREdY0VtVRv\nYkemtTbW0htfZNroMxdF42xFHClqYhNUUKZCc6YdaVfTprgNQSw3XJTWfMSbUG/QoK24NiCafa6t\nN5WzU8jV0Yfdbm7kNqVYDk1uuDGWs6mpXfOcrQwEcl2jz32LnCTDJR1vWoiQCCOUUt8CcEpDbUng\n0OnkkTSlplKLU+FsW0qg252WM1ICHSNSZF7PrJspV3hTcpVTNF5pTXy3Nkh1dUM05TSD9cqV372x\ngdXOgJfDdEG2S25qR6fr6BhHfY3Jte2YCxc35mo1lENzwF3NhPpAMg47jvTZlJzpTDvOlqt2LSpG\nHyxPm6jFodZG1lYc0VcXh676TpetOPtscBPNpjgOZ+Wm08FIkVXOPFFgihtj4udspTqey8VhNsmN\n1KYguM+sTTki0yPqWOXMlDQ3xtr0ZsKZLp2iYSSbsmwQ8+sNpuTsC43p8WH68auy+YdC5x/L8VxT\ncmsGNxuanLZrfqUzFNuKNxLZQniz5USUEdFjiOgeHpl7EtFj4jctwQpt4o+ZkjZTAuzOPMWk2aR1\neoGP4Iq5a7GLgX+FV/ZZmC4x02eudIltMJtLShoh+iDkUE3eZzYlXXLjir4Wcs7UojT1Uzt9xtdl\ndSEs85CWb6jJPrsekzflFM1qU4Hps6g2pWTjjTglLT1tIWTTi3TXvJQbNelMi8s8nHXBQluJpQ/a\nrvmJgEUkvcmd6SLCyJREdTm9sSwgRNzUtSntu1e4ubns8xKmpLnyyqcBOA/ALR6ZmwGcR0RPidaq\nBDccK37RIOUbwI3omKvouHpmK5MSYIuJG0yf1U4tulJJRp/ZlDQ30Jvc1E0tNpF2LQd6Tm/MqKqL\nG0eKyLVjeEpv6urDrNz4FmHSMg8zas+lzww58zF5VZ0et4s1pEBfmD4LSbtKOBTbStPlG2YbQzaI\n2aKqUm4ENmVme1x609jjMT1tnIiqzqI3mq10MP7Q6Uw3lZKe1aa0Nq7GKolqITiH8VQA71NKXeYS\nKD57D4BnxmtWghM2h5EZzCSRyHxyU1XEyFnI79jY4Yqi1Sq09hhs7BW/bEMQEykyBinn6rec+Gcp\nQp81UiTVB2kUzeDGGX01oqpOvamcIkYfQiLTwkiRODLN6U2pD8KNZFJuoumD4RTNlRtp9NVhU66N\nZE1EVcVZHGk0XmhTmTAyzY6x0rFTalPad4ecPSmdf0JsioswRpt/QvQmMKvX4/rcQnAO430B/Ivg\nOucDOGH25iSwkBqsNvFLIpEdNRiv8LLMecD3VDTEabBh6TNp2lXSF3H0NSh9pjnTTEqa2zEsPsqh\nifMVpTvDuUiRuYBg+pyZco6IUrlrkdUHLjJQI30m1QexTXGRIkf6zCUnPvYkwFbM+rtZ+yy2KUMf\nXDZl7gznnOngccS32BbaStM25cpomHqjOp6aQwk3IZspA06YkM4/Ijnh/BOako5pU+LjubZgSnon\ngOsF17m+kE1oGrY0CLPCk6akJWF0V/psKooWKyWty0VOn4WkpDOMR2KxM+1wimCmFuum2Wqcrxh7\nl7TpFLl2xbILDWmfG0yfSVPSoWUezonfwY3r5IEm0mfi8g2hXN2UtNMpGsjGm2gpae2a0W1FmJKe\nKvtxZirsemOeiduash/fIkxoU+ZpCy6bYktbWmBTbJ9bCM5h/DmAOwiuc/tCthEQ0cuJ6ONEdBUR\nKSJ6vUf2uUR0CRFtENH3iegFDrnHEdE3iGgvEV1ORKcTUYtvVQGpUgamz+Tp2cl0qjMywKUWG0yf\nRU9Jj4TpEiMN4q7TGyDLPH3WuOl2PXJaG9n0WWCKqKPkHGYYIoPyOtNmisgZRWsgfRaNm0CbyiNF\nqjqBgEtJz8xNg+mzlVjcGM40ZysVN2C4KXb4Rj17UprFEfa5K7SpjlAfSme66yplaDAlHX+8CbEp\nnhtzvHGWMizSpjj9aiE4h/FLkNUmPquQbQrPBXAogI/6hIjouQDOAfAhAI8E8EEA7ySi3zbkHlHI\n/CeARwF4O4DTAbw5estjI9AQpSmiTDFyjlWtO8JopBZdK7yQp01ksjaKi9A5bspJi+OmWv2WgxkT\nYYz51ABtkIoiJ13xS7mpJn6GG2mfa0RDekK9kepDR6gPHS4yXdoKl66XclPHpsQRxkjcVFE0WdrV\nLG0RR18j2BQ73thSi0w0Pgo31VgsHG+asClhn8VlHtIx1ph/OG6i2pTwCWLiCCPHTQvRZT7/UwBf\nIqKzAZymlNrUPySiHoC3AjgZwAObaSIA4Fil1IiIugBcEcMugDMBfEAp9dri7c8T0eEA3khE71aq\nrIDFWQC+pJR6nia3A8DpRHS2UurqBvsyG2xKyaz4pfVWErlxNMRfQ1KtyAaylRv73Rsb4nqrXgA3\n0miI5HqVMw0ZN90+U18TWKAfXKIQQ2+GMg6zUG6c3x1eb7UaUKAfk5tsKJQbBNqUMBoSs95K2mep\nTWWjfv7oSSiAiI1Ms/Wd0hrGwA1iQ/16u+1yOTfDaBxmRvSVy+LMbFMupygkOrbp63PGXi94/mH6\nbGa4ate+aucrio8SChhHtlSEUSl1IYBXAHgpgCuJ6FwiOrP4ORfAlQBeDOAVSqnGniWtVPFAWz9O\nAnAIgHON9z8A4GAUDi0RHQHg3g65HvKIY3thU0rfyg1MeFxb/com/mJVC/9gZhpi7ZSA1kb5zrwa\n56LN4hSVkQEjReSs0wvc0VlrAJ8xRcTqTagzzXEj1Yca6bOQZ0RLd4ZLd3RKrmdObnNxirQoWsx0\nvVQfpDZVctPjuOH0IYZT5MloSMt5pCnpypkG3M50rJR0nbIfqVMkTUlLy36MlDRfEjXjIkyTjX72\nMTf/tBBchBFKqT8loq8DOA3A4wGsFx/tQf5s6bOUUl9srIVyHFu8fsd4/+Li9RjkjzG0yimlfkRE\nuwu59iJ04hcX6MdNSZuh/topAb3P0rSruAh9tpT01NMFjJS0K81mTvz6Y/JsTtEsKSLb00ek6VRp\n+kykNwY3ztQi1+fOAtNnlU0JORzKOFxk+qyHPrJ5puulelNFGIXcSDeImZEiRm/6wkV5FWH0cSO0\nKTK5Mc8kNPTGHGPNcQmDATo9wRhrZnFi2JQaoIvOlNz0k3/kKemJyHRx7emFRlESVcOmrE+jKZ41\nL7WpCTkz+iq1qRaCdRgBQCn1BQBfIKIMwK2Kt69VqnjGUTtwUPFq7uq+zvjcJVe+d5D5JhFd4PrS\n448/Xt7CGLA5jL0ehnvyX4PD3loaRCRnrPi5CGMpV/tsOU02WhQtkBtx2jUwUmRyYz4mbxm4keqN\nGUWT6s3UNWnSKYrZ55AomjQNL+JmKIyiSSNFhVMk1RuKaStSvZFyI40w9vvo9AS2UjhF8W2FT0nH\n1huEcLMm46aZcUSWko7KjVEStZTzTwvBbXqZgFJqpJS6pvip5SwS0a8UO525nwvqXH/Lw6aUKyve\nNIg37F2ufoX1VjQaiNIl5oq/fs3auI21zleMkD7LODkjfVbKuo6YmYq++lLXAemzKLVotkgRM4AH\n1ekF6sPUY/K09Jn5zNbGuZHqjS2KJnKmHXoTYita+kzSRvFZg8IUZEgtWh2bEp9ROQs3Ur2xZXGY\nlHRMm6J+H1kmGEdCxtgsrj50OTlb9NWnD0Kbijr/BOqD1KY6WzEl3QC+AuDuArndgdctI4YHArhK\ne7+MGF5nkTNxoCZXQSn1ENeXnnDCCSqolbNCM9gVbFbv+QaziUika5BSzHN0y0lwYFzPkS4xa4q8\nKQE9UuQL9XPP+tVS0hNyZrG65hSJ+jySPWOYhgNkGKJT7IydSpe4IoxmetZ4kL2oz0JuJmoTez0U\nwS3/in8Wbsr7XKTPqsi0Y3ejS2+qs+XKNprRkCa48TjTIpsaytpHg0luvLayMpabKmUoZYv0mcim\n0AckfZZyI9QHktrUQKg3ZqRoHvqgLVB7wpS0yKaGQpsqbWXk4MZwpiV9iW5TUlsR6sPU/MNxEzje\n+K4ZYlNRuGkh5u4wKqV2A7ikgUuXtYrHYtJhLGsSv2uRu7AUIqIjAWzT5NqJwAhjV2mOpS8SOZTJ\n0UAmV54hWMoOOyuTcppTtNodiq65msm+e8KZnic3Q+OeOJ6HynJTyhZOkeS7pXJT3OydjZtMyE02\n6I+daVvtkc7NuoybtU5cfZiSczjTsbnJU4sKq4Wsr/ZV15tRN+emKmXQZKW2skJ9IKKtROem7POg\n4CZbccp1Oog6jqxQH31xnwesXGfUEDd9h6049Gb+YyxF44YCuNH1IQY3tcdYT4RRl5t4Sk9L0eKm\nBeNC5IeHP814/+nIo4ZfBgCl1BUA/tsh1wfw6WabOSOkEUYtDeJ1LG2RIq/ByuSmIkWuiR/Gys3T\nxolVrW+QgkyO5ca2+vW0j+XGFUWbhRtb9HUWbmxRtFm4KfVB40b5nGmDm9IpmuAmUB+kch2h3mSx\nbWowQI/yD1Wn43amF2lTkfUhC7GVTGHFFX11cKN6K5OlDCHcSPXGFomcRW9mHGOnnGlXFM3TFyk3\n0j5LxxuxTcWaf1wZLp/DKLQpMTdcn1uIRaSkg0FEJwA4EmMH9xgiOqX4/VNKqd1KqT4RnYH8oO6f\nIH++9ckAngPgJcYZkq8B8AkiOgfAeQDug/zg7re3+gxGYGLlpivb1OpES4PojuWUXDXQM3JaTZFE\nDv0+OitaNER7bFWFMn1GsjaaTrLruyeiHB45lptqkLLLTQ30fVk/0O+js03ADYwVv6eNLm6m0yCy\nNoq5EeoD9ftVBE1f4Fj1psNwY4uG1OCmtt449GFq1zwnp/V5vbMJDHg5lhut3ldqU1SHmw0HN9Jx\nRMgh+n2sdsp61g5GxRQg5WYi+irlppr4hbYSS2+k3Oh91pzpqdIWfbzJlKgvUm6kNpXrg5qS82Zx\nfDYVMv/oEUZzB7lR9mMLvgT3OXCeMm0lOYzx8GJMPnHmicUPANwRwGUAoJT6SyJSyM+OfBWAKwC8\nWCn1Tv1iSqlPFQ7n65A/peanyJ/ycmZzXYiEauUmjDCOZKnrzEynetJnIrl+H511z+pXk53Ytcik\nBKRpeFFEqUFulCBdIooUCfscUqIgixRF5qbfx1qnDwx5uYVxI+yzWG8CbGWt088dxgVwQ4vQm1Bu\nODkjUhSFG9XHoI7e7HL0WWgrIdxUznS3Ox21J8r/GA4naqF90VexrQjl8l3ziu+zkJupsh+frWQK\nPdeml1LWrIWe5/zDybUQS+EwKqWehdyxk8ieg/zxgJzchwF8eKaGLQKlYY82RQW4HTUQbY7Jhoyc\nli6RyJUpAXOFZxvAeyRrYxey75bKsdyUfR7J2keDAdZoE1B+OZObqZq1EG4C5VhutM0LUbjR9GG9\ns5k7jF253li50dKpc+WmnNyENhXMDfKNLHx6Nq5NdSLailhvuHFE6/Na5uHGcIqicBNqK0JuWL2p\nMcaWeuOMUHW7OTfZYIqbiY1kgTYVNsaOxnLm8W9a+YZ0jJVyUy40VM+yObOULTaIlde0biRraJ5i\nbaWF2Eo1jPsGtFWMt7DWFvaeZYWnpRa9UTQtJdDL8k0OyrbJQZONVmht2xnurTGTXS8L2OgzHsAl\nq19HXVYIN7Z0ibc2UViQzUWKpNxo+lBN/IzchFM0S6TIlk6dxVZsqcVZIkVan1czj5xxlJCXG1va\ndZZIkW2Hr7fGTMZhyOYFb4RRu6aeqZiJG6lNaZEi0TgiHWPr2JRtvNHaqPc5hk31hH3uRt7oQwE2\nxXJjGWOtG8kC9SHEprzXayGSw7hssIW9vasYeahf7BQVhuiNFGmToOpZNjlosk2kXUUrvAbSIFWf\nmUL+lc4QGRRUltmdaRs3viha5LRrrQHct+LXJn7rAD7lFHmcacskKNYbX9REmnaV6k3AQsMbRdNk\nWaco1Kbq7H72RdECuBGnpOs4Rb4IY+TyjVo25YswhqSkM49NabJSvTHr70TcRJh/mrCpihvGpnRb\niWFT4tM3uGOWWojkMC4bApVSGuoPOftL6hSxk6A0DRIoJ94ZHitdL+2z5hRtozw3w61+J/rM7MyL\nkj6z7VqUpl2F+mBdaGiyFTedzvTB8AY3kjZOcOONvgq5kabPAmzK60xrsrlTxEemQ9JnkjaGnLYg\n5UZqU+zEb9nh64swRkstho4jwtMWEGu8MbjxOtM2m5KONzHGWKHeIMSmhBFGKTdSfWDPV7SNNynC\nmNAIpCs8aSqpToTRV28V4hRZVm5lSqC81ESfFxVhrFGgz/V5B+WV8SGrX++KP/amlwYijNJoyLbi\nzP5RVx5RihFhFEdDpDbVQISxtKlRx7LJwdXnSNGQtkcY17JNfpNDIDexN88tKsIojaKJI4yRbUqa\nxdFPouA2FlZjcaQIYxM2lSKMCc1ipVDoOrUhzCAlKiYOGMC3Uz7xqw5vsKJUktQRjM2NUC5o4q/h\nFHl3N9bhhnGmg/UmklNU6Q0jJ53cxLVoAU7Romyq1BvJJCid+GWbFyLbVL9Jm/JscgDQk3IT2aZC\naqHHNh+HmzXaQLd4Go2vBEZcpyccY6XjiHk8lzdg4etzSIQxdP4JSNeL+pxqGBMah23161NKYSop\n5NBpaYqonPhHgrSrJJVU69BpGzeBKaJa3DB9Zp0iGzee3Y3RDuSehRsP1zo3nD6wznRg+kyqD2Ju\npPrQgE1JuZHqA3t4sLZrXlqi0Bw3Qr1xLVCrzQuRDmC2ceOzFSmHgwFWyTOOWJwiTh/WkUemh11H\nPXmNMg/RGCudf6R6w42xtgwXow9rtCHanBl7jGVtqoVIDuOyQRpFs+1ajLTCG69qmQgjirQrE2Hs\nYXyoc4wVnjgaIowMhESKVmlT1GdphFHvsy9dEjsaIo2qBhWhkywaUukNF2HUIgPlocWAvZRhWSKM\nnD5IbUocYYwdtRf2eSK1yG6eK7mJb1PRI0WRIozBtdAcN0poU1JbqfNY1UjzT6kPnA2UZT/OBWoh\nt660hQZT5hE8/0jHkRRhTGgE2gAuijAGPM82uG4m0gC+poq6rMyxycE2gM9SGxLIzUT6TDjQc4NU\nOYA7oyETEz+/Y7hWLVqMXYu1UovCAZxL10NWexTbKQqp9y3bx0WKpM60lBt9clO9FefZcrUO5I4x\n3vT7+ZmlLm7K8xUBbEPpFMlsKppTVCftKq3TkzpFXJ+FY+zYKfLLSTNXXamTLLWpoIVnYC00M8bW\nsakou+aX8EkvyWFcNkgdhNB0yVC+27Wc3Lg0iDR9tg5mMKuRZhNFXxeYPqvS9Yzc6qhIJWWOTQ5l\nn+ukZ6W7XSNxI02fVdww+pAXoXs2OYSmXWOn63VHUJg+k9rUMCBd7ztbTryDXKgPIanFclMC1+cd\nmXAcKSb+Iac3sZ4RXaOUQX6iQFhpi3SMleiN9ESBxtL1rN6EzT/cWMw606H6IN1BzvW5hUgO47Ih\nMIoWkloM3e0qTxExK7xROdD75UJSRKJoiDR9ViMlLV7VMnJrI5mcdMUfUqAv0i8utag5Reu0N++L\nNIom5GbIpJIaTS2y+iC0FeEGMSk3PSXb5NCR1kILo2O1bEU6jnD6IORG1wdfKUOt1GKsMVY4jlRO\nEac30nFEuvu5AW6i21RkvRGnpOtE41OEMaER2JQydmpx1gjjVNqVSUkXD1/lrhdyzEVwimiW1KKe\nPuMiRSY3XLp+JOMw9rN+Q9Ku4wFcVn/Hps+KPjujIYbeOCNKNqeISS02diRMLG6kejPMJ8FBx7HJ\nwbbQkKbPInGzwkXjA7nZNpLJrShmk0ON1GLsY5bYDWI1bYobR/TTFrylDA0cyC0uiSKZTW2TcjOU\njTchB7lHKftpIZLDuGxoLBrCPJs6y6o/5AP4Lbkct/od5nLDjIsMbAqPhNmUDWYD2fVoc7PalKOv\najPdegrZHbhlSs478TMD+Pqg4IZzGEf2vkxFTYayPmecPpR6s7k5XkBwZ09irA9TE5Emt03J9KZa\naHB6o/fZO4AL9UGoN9jcxErpTDN92S50BLcVtsL1eW0g47ArfSb9QGhTfTk3a+Iomqzet1pocAvU\ngTbeeJzpjsOmao8jfRmHuk1xkcPtFluxjUvlWMxlcVaGe5BBYUQZRpQLTJQy2J/2TnwAACAASURB\nVMaRGmOsOS7RplxvKmdayA3nCK6PxjblG5e6ajwPiOcfZoxNm14SmoU0GrK6CgDI+ht+pSzkaGMs\n55z4C1l94vfJbeMMtpBb45yiQq43lPWlM9jwDz4lN5uy62Fjgy9Cn+LGL8cO4FPc+OW6IyE3Un0Q\nyk1ww7Rxu5SboUwfSm4GjNwENx59EHMTojecMx1qU6NAm8oYboQ2lQltqgluKqeI6XO58OQ4XO3L\n9Ks7iGxTmzIOJ7hh+sw6RVPc+OVWB8zi3aY3vjFWyCE4vel2c691NKqOCGK54QIWBjecPqz2iwUJ\ndaAomz4Tt9SHGW0qa7FX1uKmJVjhiDCWKyNTeam/MbHacclhY6OKhqiORQ4A1tYAADtxM4B88PHJ\nbR8Wcpn/eusDRq5yGPdWdVnodqdli+t1BhsTzrRLjuWmkMsH8PGq1roKLSd+dfOUnK0vFTcMhyU3\nQ0auN7T3pWqjjRuf3mzW4Kbrb6POjXVwLOS2jWQcrvUZueJ63aFMHzKOm1JvOG50m8qm9cZqK0p2\nn7cJbarkZshw2HHozZRN9YU2JeWm38cabfi5KW1qxPTF4IbjsOKG4bDLcaMtykW2sslw2Olom1nG\nUVWv3oym9cHqFA1k+rC2KeNQOsa6uLE5014OiSrZ8fwj5EY8xvrHpVWL3kxEX7WAhUQfMoc+pAhj\nQjxII4yVUu4NX/ELV7XiaEikSNHKZiGX9QAi2Yo/djQk1opfGGEUr/gHeyac6VlX/LW44SKMgdEQ\nsd6ERNHmEWHUoiHbFhYNEXIj1IdMaFNspIgIWMl3bVelLVzEWcmiY2tcut6MMDLciCNFsSKMmuy4\ntEXGTSybGnPjb19HGmEMGEfY9GwoN8Ixli37KbnZjBuZJs6mWojkMC4bpDWMtpWbx7HUI4ycIZaR\nIm6Q0lf83oG+z8gVbVzZyOUGWf6IPNdqNRswfZZyU0xseaH1hp+bqSiaX27bIJAbZnJb2cgHs362\nwjrTEn1gucmycTSEq2k1IkWsgzBg+myu+LlShv4edDDCCPnmJJ8zHUVviKzReL8zLetLGQ3hFlcs\nN2WkyIiiNc6NJltxw9jU9lEz3LClDFyfbVE0xikScyMcY1luyqiq1KY2x2Os12GU6oN0vNG4YcdY\nROKmWnjKxliWG1umgllopE0vCc1CusNKuqrtdvPJfzisdvhyK7JycuNW8uNVbZwoWhlhZFMCdSKM\nNjktGrKDK7w3V/yc3HCc3oix4u9p3AAIrpuZKRpCgRHnSHpTpc84bjY0bjzOtDSKFsKNnj6TTG6c\nnDiKVuoDcXqzGx2MMETmd6YD6u+Co2hCbvhIkdCmNoVRtMGGf5ODNFJk4cZ5uHjZZ8juM7sJyojG\n82OsjENxnXgAN9XGQuY+75DOPyMhN8IxdiVAb6KNIy1DchiXDTWcIumqVrphY7uw8H5duHJbE65q\ne2WEkfxyIWnX0GgIt1rdLoyirQ1labGKGy5dv3fMjVJwFmRLoyFs2lXnRhgdqyb+SHqzIky79vaO\n9QvwONMNRIrKiZ+NxgvLN9aF0bFVod50N8YcAm5uQjZBiccbod6EboLi5FaE4013Y7zJAVk2s95M\nbCyccxZHqjfjsh8+wrgiiEyzY6x2XM4al8WpAhay+yzOcAkj03qGy8tNQIlCijAmNIsqDbJXlEpq\nJBoijjBKV/wyucopYuTMQusoUbTASBEbRZNGQ8qBnosUBXAjXfF7OdRkK2eai4aMZHqzJo4UFXIc\nNxtjDr2lDA1E0XYKbaXcBMXdPyk3K1Ju9o7lAKEz7bOpjQ2sYryZReYwyqLx7HjTl/V5ZUNmU929\nYznA40xLszh6TSvHzUjWF3mmQqg3G7Lv7e4tHEv4nWlRFicwU7FDGI0vS1tYmxJnKmR6k8/N+ROo\nfPXkKcKY0DzK2qON3WOlnGVjhyYrjaLF3swirZvpaVE0sVMUqdBaHEUTr2ql0RBZJFLMTcAmKCk3\n0hV/5RQJ6zZjRUPKya1PK95SBuK4KcoTqN/HGvKn1jgf3RbIzbo04tyX2Uo58fel3HDRV24c0Wpa\n2UeCmgtPYaSIr00M3TzHcLOn4JAYbjYYvdFkK6dIupmF1ZuwWmheb8Jsio3aB3Ajnn+E3EizOKuB\nNsVzk0em++QvgRHNzS1DchiXDaXDeMuNAIC9tOZVyjCn6CYAkok/l+MG5vV+cT22mLi4HucU7cnl\nuEkw27tbtMlBj4bE4mbbUCZXcsP1eXVD1ueulJuNveO6LNcO3ywDjUbVxM+nFgO5Ydoo5mavUG92\ny+RYp0iraWU3bNTlhtObTaFNCbnpFtz0mVIGNiWtye4PWV92jITcDGR9XhPqzUogNwPGYQxZlO/X\nEDdcX9aEetPbKxxvdo31BnBzw+6a12T3E9pKMDecY7kRNv9wi/LObhk3yWFMaB7lGWGFw7hJ+d++\naEg18a+tMQabX3PY88vtGOZyg+6632A3c7k+I7e6t+hLxy/X21PIZf72jZ3pdbszrUVDyokf6/7v\n3llys+KXG3Pjb+N6bG5253IbmV8u2533dxM9eypJk90f+TVHK4zejGTcbB8U3PT8ciU3g47/e1cq\nbvxyXSE3tLEHK+jnCw3WKZLZys6RTK7kps9ws1Zws8noTclNn7GV7q5pm8oyW/R1o4qqsuMIZPpQ\ncsPZyraBTG5to+gzYysr1Tjilyu52Zut5/3xOEVSbvaXcjOUyW3rC/Wm4oaxKSE3nV1jmwL8TlHF\nDTPG7ie0KekYW3LDzVOroXrDjTfF/LPhmpu1YA7LTcuQHMZlQxlhvPkGAB6l1GpDykGKG8zYAbw8\n5oIbwMsDUfvMIFUe5bB3etLyTm7kv16HM1hNtuRGrfqvKZ3cqomfGVRKp8g5+JRHCe1hJv5yASHk\nJrtZwI3UKSqPuQjUG04fysmNG5hXuAXELNzYFhqarNRhLCe3PsNNNbkJueH0geXGsKkNhhvadQs6\nGKGPrr0uS5MtueH0IXTin1lvpNxY9KYsZQAs0de9e8ZR+9VV7zXLRTnLjdCmWG4Mh5HTByk37Bhb\nOYyb1ZNZpAELTh8qm2Luc7Uol+oN0+dyUe4cRwxn2hnM6XaBTgc0GlUbTZ3ctAzJYVw2lIY4yAvQ\n9xZKORjX2E7JVgc6r6155cqayGHPL9dV+Yf9jl+uM5LJZaO8ff1MJrfByFHx4YaAm7LPoxWmzwWH\ngy7TZ1X0hZMTclPKbcbiphiVQrjh9EEqJ+ZGyfRBzM2w0AchN3shtykxN0yfS5sS65fQpqTcbJLQ\npgTciMcRoU0FjzfSPkttxSVXPge58Cb3YhUgijrGSvVhINUHTk7ITWVThTNdljJMZHHKh0xglG+O\n6Xaj2JSUG6neiLlpcP7B6qpdrmVIDuOyoTxou8Am5YpXrk5sSgkAI9DErjKXHDC5woshp6/wfHL6\nCs8rRzI5c/Xrkx12V+NyI+xzX9pnodyGlBsEcNOLqw9ibiLrjZOb8oB2TQ6QcdN2W9mYlZtOZyLk\nsTfEpiLrjZSbuemNlsUBxguNVnMzL70xZLcSN9L5Zy+t2U9lMGQ3sDJRHpQcxoR4MBzGDeRK6QuR\nA7nBDkf+1W8JbuVWglu5leBWbpUcs3IrscFEQ0pIIkVAXs83RGch3Ig5nJWb8ryzApLIdIlhZ2Ux\neiPsMxcdK+HkRouGAHK9AfhoSAkuqlrJxbapWbkxZEO4EevDgvSGixRVclggNwsaR5ZBbxY13oj1\nxkhdV3XBhuzeYg5PEcaE+LCsYqRKORwuaKBvwBCtckY0ZMMwRK8zHZub2AP4rNw4oiHcNfcELDRi\nT25SuZn1xpCVcjNAB0Pyp9kq2djczEtvDNkgZ7rrSLM1zE1sp2jvEjhFcxtHkjMtd6YDuBmNksOY\n0AQsE7/VIQImopGmU+RynoBJg/XJ6Ybok9MN0StHMrkNl5whWxoikNOWZW65tnPj7LNnkOK4AcKd\n6TZyI9abfZAbqd7sDbApQMLN6sRCI0aft4pNDZFNLDSWmRvv/ONxiry20lltdZ+dcmYWJ4Ab5zjS\nMiSHcRlhcQQBfhUjjaL1M1lkYG5RjhlW/FI5MTeLSjU3ECnSi9WlznSsPkvrqBaiN0pWb9UUN1J9\nkNaYibiR2oqSRYpKbqS1aIuKoklqWkPGG2dq0eQmctR+buOIpaY15hgbUh7URBZHWpsozeLMzE3L\nkBzGZYTuMKowpeQMoo8uhtSNWkwcvUBf6CTvCXSmRZObdrhrjD7H3swiXkCoSTmulCH2pgRp6mcR\n3OwpnOkyOs0504va+DWTU2REQ0JsCojvTIv6LJQTb/wKqGmVjiOjkZybtm8YDBk7pXIL4SZAb6Sp\n5rlx0zIkh3EZMRFh9GzHrzGAhwz00Vf8rhXZDNGQmNw0Uc83MzdmNETIzZ7I0deQer651VuZ0ZAA\nvQlxpqNG7aV1m7NGVWeIhuhOUYy6YOl9jp3RWNQ4stDIdAMR54XNP/Pa+FU3U5EijAmtwAwRRqus\np9bRJQd4BjNzJ7fLwKRyvd7ErO01RO2aXqeoRp+9tSbmcUeuATw2N1k24TRKa1r3+PQmAje+vjhr\nimpy4x3AjTaG6k1IXbCrjRtYwVBlwdzEkPMW3te0lc3ijOqpTXY1uBmBMKDefGxFKmfpSx1bcel2\nkK2QY6HRsE0tAzfOBUSEsdjL4Tznn5YhOYzLiIkVnuPJAgCwvj6W8xlsDTnAM0jVlHMaLNFUG50T\nuianO0VNcDNh2LH7bMh5NyU4uJkaeObIDacP1vRLTW68mxL0Ngb0uXSKfBw2wY24z66nTZh60wA3\nGxsyOT3N5uXGtTmmaZuCg0ND1ruAMPrSz5+nML3JroY+mPV8Um5i2FTTY6yrjSG20qeV6HrjrGnV\nbuZc55+WITmMywhtdXIzdrgdhJ07q1+9dRI15ABgE456PkPOWcshlXO0kZPbo+TXGwwic+Nyigw5\n5yBlciPsi7du09JniZxUbyQcAp7oRV1uGtCH0imat02J++zicPv2yWi8rxatpt6EcMPd5yZsyqkP\nq6sTtYneKLvexgXqTYhNzSTX6VidGK4voWOsUhZnugY3ZXlQzPnHeyTZjh389cy+xJh/WobkMC4j\nNMO+eSRzGG/GTtEALpfb4U6zGYa4u7PTPblp2JU55CxtlMjdpHZWK/55crMXq+jDkWaTcrO6OvFG\nbG5uxk7R5BabmwE67miIlJtud2LRdAttDW4AYE/HYc8mNy59MCa3XVJuVPu5ceqDVM6QlerNTUvA\nzZ6ujBvxOLKFuJHqTRPzT8j1rJvsWoYWNy3Bif32q3690aeUmlyplNYUjEV5JQYrkQM8BptlE5Nb\nE4boTC3WHKT0Ps/KIeAZpIhqTW76xD+V2jDauHev4HoB+iDmcOhIQRrcSPssnvhrOIwchzFt5RZs\nFy/CYjvJTUz8MbnZwAo24XjiUNN6E8DNImxqiAx7sG63KW18BeqNI7G5madNAZ5F2NraRGN0W5G0\ncep6htyNo3o2NVEX3DK03mEkoqOI6B1E9F0iuoWIriKijxHRvRzyzyWiS4hog4i+T0QvcMg9joi+\nQUR7iehyIjqdiFpcPaDhgAOqX2/BjiqKxil5qZRZZiil4Vg66yk8g5lLbogMe2ibyBD1wWxKzuL8\nctcLmfid9VbSAbwGhwCwO9sxOzfSAdxoo5ObBvXB5Hqijcbkpi80ouhDgDNdJxoycc3YHK6vT4Qe\ndmU73fV3jsnNx+FNNbhpwqZqcdjrTdR164swSRs5uRt93EhtagZbEcm5Tm8wFuVebmrYVB294cal\nmDa1C9swUI46UGNRrtuUJPgydT1DLopNtQytdxgBPBzAyQDeD+DXAbwQwCEAvkpEx+uCRPRcAOcA\n+BCARwL4IIB3EtFvG3KPKGT+E8CjALwdwOkA3txkR6Jh//2rX2/BDvHkFjva5pTbtq361XtIrXHN\nJlb80j6XclPOdGxutIltBEJfOY6isVyz7dHXmeU6ncnz75TnyKgtmFr0yhFNlHDspu1JbxzfHT36\nGhAp2te4CYmibRVupLbizf5JuWkZWt48AMDfA/hzpcpnUgBE9DkAlwF4GYBnFO91AZwJ4ANKqdcW\nop8nosMBvJGI3q2UKmJxOAvAl5RSz9PkdgA4nYjOVkpd3XivZoHmMIZMblK5VUHRsTdSZMTUSxnJ\nd0uKhG9SMrkmuNk+KzcaMii/XEu4ce78NOSyAG6cA6mmO86idsc1ObkbR/G5kRToR5EDJsiXLsIW\nzY10Qucizrdgh58b7Y2+cjx4wPLdUqeodXqjLR72YN3PjXGc1pa3qYkHUfT83OjRV8gXYdI+S51k\nJzctQ+sjjEqpn+vOYvHejQAuBXBb7e2TkEcezzUu8QEABwN4IAAQ0REA7u2Q6yGPOLYbWkr6Bhwg\nUsobsb/IYG/E/qKB3iunYYTML1dj1+INan/ZQB/Q5zrcuNIgN2E/ETdDjhttoJcOZteP9re3z9KX\nJrlxTW7lxO9sY/kB4OdGu6Z0xR+iN/pZgz65wcBRrC7lJuQA39JzB8ONNgmWbbTKOfSmNeOI7gQW\nE7+zjVK9qaEPreRGX1ih47cpbcUuXWhIubkB+4s2FurccDY11/lH42YwykRj51znn5ah9Q6jDUR0\nEIB7APie9vaxxet3DPGLi9djfHJKqR8B2K3JtRdahPGnOMytbLe6VfXr1bi1WM5pYJoDUx6pwxks\nFVE0icF6BzO9jeowt9whh0z0xdnnGnI/xWGiyc0cwGtzo62T+iPH81XNvvi4kepDbG6MbX/eFX/p\nfYGZ+LUJc0M5NkMYbfzf0a1Fcl6b8nAzEVjXuL4Gh4om/iBbEUbbdqt1kT5IuQnVB6szffDB1a8/\nx63ijyPCRdjNaoebQ60vV6nD3E5RTZtytvHAA6tfr8eBcbiROtPaQuM6dWB0fZh5/tHmPanDGM2m\ntCDNz9St5jf/tAxL6TACeAcAAvCn2nsHFa/XG7LXGZ+75Mr3DjLfJKILXD+1Wj8r7nSn6tf/xeHu\nldtd7jIh54ya3OY21a/mIDVVJFzAjKJNXfPudwcAfB93E8mZ0bYpuduOg8m7Ro4dgQBw5ztXv3r7\nLOVGG8ykkUMvhwBw73sDAC7GsX65u92t+tUrd8QR1a83Dj3HLEn7LJUzNl9521h4DNfiYD+Hv/AL\nAIDv4yj/9bQ2euXucIfq12uHB4iup9vUVPuk+mWkurxtLI7JMp3uKbn73x8A8CMc6ZfTxgev3JFH\nVr9eMzxYzI2zz9r3XoXbTIxLE860dizYbmzzt7FwEv4Xh/vljs/L2X/CyWn64DwwHADueMfq12tw\nqHtjoZQbjevyPpfOyYSs9tQmlpvC6fgxjvDb1H3uAwD4meGc+8YRLzfaff4pDgseR6bap90Tc3E1\ncU3tD5ab290OAPAj3NEvd9xxAIAbubFdm3/0xbtv/rkKt5l9jG0Z5u4wEtGvEJES/Fzg+P9XA3gq\ngBcrpX4w18a3BSeeCBxzDP6l92jc5AtnH3448KAH4X/Wj8W3cU+3HBHwrGfhuvXD8Rk80r/SetOb\nsGftAPwFftsvd8YZ6K/twBtxhl/uBS/AcH07XoE/8cs95jEYHXQw/gwv8svd977AUUfh8ysPx3U4\n2L/Ce+hDcdn60fhv3MvPzXOfixvWb4OP4zH+7z7rLOxZOwB/zrXxNa/BYHU7/hCv88v91m9huG0H\nXoU/9ss96lFQhxyCc/A8f93fcccBRx+NL6881L/iP/BA4OEPxxXrR+G/cLx/9fvCF+LG9VvjI3i8\nv41vfSv2ru2Pt+Nl/oH5tNMwWNuO1+EP/dd79rMx3LYDr8ab/XIPexjUYYfhvXi2n5tjjwXucQ/8\n5+oDcSVu59/R+ehH4yfrd8Z/4n5+bl76Uty0fig+iCeyerOxth/Oxu/65V71KgzWtuMMvNHP4TOe\ngeH2nTgDb/Bf7+SToW5zG/wNTp14osiU3NFHA/e6F76+dhIuw5HuPm/bBjz2sbh6/Y64ECf5uXnF\nK3Dz+iH4OzzV38Y3vxmbazvxNrzSL/fyl2Owth2vxZl+uac9DaOd++ENxbjk7PODHwzc9rb4e3oy\nBui5+3LXuwL3vS++tXY//AB3ccutrgKnnIKfrt8BX8SD3JvsAOC003DL+q3wAZzKjsWbazvxx/g9\nv9zLXobB2na8Gm/xyz35yRjttz/ejFf75X7xF4Hb3x4fyZ6ADd9h5Xe8I3D/++N7a/fB93E3t1y3\nCzz5yfjZ+hG4AA/xf/drX4td6wfjfXi2X+4Nb8Dm2k6chd/3y73kJRiub8dp+CO/PpxyCkb7H4C3\ncnr4C78AHHkkPtF9LHZju7vPRxwBPOABuHT9OHwXxyxNhHERzfsKgLsL5HabbxRH5LwZwOlKqfca\nH5cRwwMBXKW9X0YMr7PImThQk6uglHqIq5EnnHCCcn3WGLZvBy6+GE8/FMDP4F65EQFf+AKe+YAR\nNi/M/Er5vvfhFaMRrvobpubjta/F/zd6Nb7+Bxke4ZN7ylPw0ew38M9PznCKT+6kk/DtL92Etx+f\n4Tif3BFHYM9l1+Al+2VY98lt2wZccgmefrgCrobfEfzc5/DsXxph7xcYbt71LvzeaIQr38NEQU87\nDe9Qr8LXXp3hwb42PvGJ+Hj2BHzolAyP9cnd73743oU34m33ynCMT+7ww9G/4mq8YJ3Q5SJZ3/0u\nnnYHBfyY/H3+7Gfxm788wp7PMdz8+Z/j1cN34PJzGL15+cvxF+p3cOErM9zf18bHPx6f+Yeb8A+P\nzfBoJmryg4tuxFnHZLirT+6ww6Cu/F/8Zo8An9zqKvCtb+Gpd1HAD8m/4v/kJ/HcR45wy2cZbt7+\ndpwxOhs//DOGm5e+FO9SL8YXf4exgcc8Bv/24Zvwt4/O8DCf3HHH4fJv3oA33TXDkT65Qw4BXXkl\nnt0lQHlspdcDvvENPO1oBVzK6M1HP4rnP2aEmz6R+Xd+vu1t+MPRH+P/P5vh5oUvxHvxAlzwogxH\n+eQe9Sj8+8duwl8/PMNDfXLHHIOffPt6vO7IDLfzyR18MHDFFXjWOgGbHm66XeCii/D0eyqoixl9\n+OAH8cLHj3DDRxm5s87CmerN+N4fM9w873n4AP0Wzn9ehmf7bOphD8NXPn0T3vPQDA/0Xe+oo/DT\n716H194uw2E+uQMOAC67DKfuALDbw02nA3z1q3j6fRWG38zcmTAAOO88vORJI1z7wQz9vuOJMADw\npjfhLPUGfOfNDDfPfjbOwzPxmedkONUn99CH4mv/ehPOeWCGX/BxeOc747pLr8XvHZbhIN/19tsP\n+OEPceqBAG70cJNlwJe/jFPvN8LgIkYfWoS5N08ptRvAJaH/R0SnAngngD9RSp1pESlrFY/FpMNY\n1iR+1yJ3oXb9IwFs0+Raj1K5nIfFFuj0siC5wcCfdu2utFsOROj08mX7MnBTDor7EjfOFXpAX6Ry\nWTcDUT4JeQfmlnAzTw6RZej28kWnty9Lxk0MDktuNvZRbrhxpFvsV9xK3ESxKSk3kPe5LViKGkYi\nejyA9wF4t1LqlQ6xCwH8HMDTjPefjjxq+GUAUEpdAeC/HXJ9AJ+O1OzGYTqMrvqHULl+3/+YolJO\nNxzbNRclp8vG5oYdfBbUZz21xa1W58GNtC/z4LBOX7gBfB7cLLutJG5ml0s2Vb+Ni+KwTl84ubag\n5f4sQEQPBnAecifv/UR0ovbxhlLqGwCglOoT0RnID+r+CYDzkR/4/RwAL1FKbWr/9xoAnyCic4pr\n3wf5wd1vb/0ZjBrKE2n27MlfXYbYE652TLmpYnVDrt/3G5gu51u5Sa9XtkcpTxre0ZdYcnpfbMZd\nhxtfhFF6vVKWjRShWW6kfZ6nXCnb78v7Etum2s5NSF9ic7gvcpP0Zna5fYmbtqDlzQOQO32rAO6L\nIkqo4XIAR5Z/KKX+kogUgFcAeBWAK5Bvjnmn/k9KqU8R0SkAXgfgWQB+irw20pbqbi3qrtxiybEh\nfE2ujFhyct4UUfG+ZOJvqs/OxysaciHclL/7BikpN7rDGHvFP6szXWfFL+WQ40Y6MDcVNeHaKL3P\ndaIhEr2R9KUuhzHHkdhy3MS/TGOs1PaSTbmvF2NcCulLchgjQyn1egCvD5A/B/njATm5DwP4cO2G\ntQBNrfibiAyURwrGihTF7ssiufE5jOV7IavaeffZ5kzbShliR5xD9KZ8P3bkMJY+SO9zbA5D+tIU\nh4uMFEmdomUYR+YdRQvVh3lzE9um9AwXV/YT26bagqWoYUywY18bzOq0MXHTPrl9kZuNDc/OT+zb\n3LTZKdrXuGnCKdoq3NRpYyy5tiA5jEsMcyXvCvU3JceF8G2G6JOTFBMvus/SqImUm1hyddrYBr3h\nUkmL1pt5c9gGvZm3HLfJLnafywi47hS1mZvQPs9iU3XauCibatJW2jZ2tgXJYVxihNZ8xJbjQvjS\nmg/p9eq0sSk5yU7zGH0OSZ+FtjF2DWOI3khqhWJxWKeNbagDnSXNVtbYSjaINXWf63DtqwuOqQ9t\nGUcktlI601JbmcWmQtq4aJuKNXZKx6U6bdxqNYzJYVxipJRAe+Vi9VnqINRpY+waxhBuYu+alx4l\n1Fa9kd7nkAXEou9zW21Kl11U/XdoHWjMEysWVdPapD5wTvKy21RbkBzGJcaiB7MmHMbyma1tHcDn\nzc0y1RQtcuJve58TN7PLJW7ccvsiN6UzLdlkt+zctAXJYVxi1A31z/tQWW4lqB9Rwz2Evam+lAYb\n88gH6RENsWqK6qZLZuUwtH1crVAIN021cVEcxtSbRd/nRY03IdyE2n1bx6VkU+721dGbto2dbUFy\nGJcYdYuJY8ltbo6Py5EWq8+7jU3JhRSrz7qqlQ64TRehx2qftJA/ZmpxWThs8+HBdTmMJddmbhYt\nl2zK3b46etO2sbMtSA7jEmPRKQFdjquvaft5Z7Frmbhi9WXipon0WayNMcDtOQAAGp1JREFUPovu\nS+JmfnJNcLMsNYwxuWlr2nVReqOntNta9tMWJIdxibHoVW2syEAb2hh7AJcWq2/F6GusaMi+yE2d\n41Ha2pdl4KYpu5/3uMT1WXeKFvVY1bbqTRvamCKMCY2jVK5YO7Gakov51ICtJreIXYux5ULbxz0R\npgm9WRYOQ3Z+chvEFn2f520r+lFCsXbNL4vcIsbYRetDrA1BbWhjijAmNI66tSFtO+C7DW1clFyd\ns7/a1pem2lenpmjZOSwdHdcTYWyRomW/z4vQh60mtwhuFq0P0va1WW+kHLYFyWFcYpRKuXt3/sqt\nYhYlFxJFW1QbpSvBJriRHiXU9vscS053iqQpnbb2JbbcMrSxKTnu8Yp1rrkou4/dvmUYY9P8U1+u\nLUgO4xKjVK5S2VZW2inX74+jIW1t47zl9KOESqfIJWsOKm3rS+z2LUMbF9W+ZWhj0+3r9ex1wfP4\n7rbKbWzkm+yI+DTpVtMHrn1tnn9C7L4NSA7jEkOqbIuS0yNF5Uq5bW0s5Xbtmu/3NnHNrSK3DG1M\n3LRPrs415233i2pfk21su5ye7pVGptvWl7YgOYxLjFLZyrMQy7/bImf7jAvNL6ovrr+b+t4Q2ZKz\ntt7n2O1bhjYuqn3L0MY2jDdtbeOixqUm2th2fdhKNtUWJIdxiWE6X5xSluDC6LHkTNlul08lzbuN\ni+LQJss5066/Q787tlzs9oXILqqNi2qf7Zrz6ktdDhdpU22z+0W1b5bvXlabMk9hCLGpNtp9G5Ac\nxiWGqVyzKmVsOfMzSbok1nfXlZsXh+ZnvZ7bmW77fY7dPttn3G5E7ppbhcMQ2bbc50XZVMg1l1Uf\nQpyituhDmn/c76eUdEJjaMtALzXEkMFsXm1cFIembBOD2bJyaMqurCzOmZ4Xh9KIkvkZkdyZbpuD\nV9cpWuTE3zabMj9rYqGxrDZlyi7z/NMWJIdxidGWgX5fWOE1zY1PLnZ6I7Zc7DSb+VmMqEnbOazr\nFM3TpupyGNspksplWXxnum3jkikbw1a2ik0Bk21s4/wTUlLQBiSHcYnR9jocUzaGU9T2WqG63MQY\nzNpehxPiFEm52Sr1VmabpLYyT5uqy2GMybKOPoToTdv0IWRxVafPvh3D+7pN+WRTDWPC0qItq995\nRoraLle3pmhf4Mb8LHHj/ixx4/4sceP+LHHj/kwqJzl+J1Ybk8OYMDeYyjWvlEBdpygkijbrjuG6\ncotKn4WsftuW+mlixR97cms7h0C9iHNKSc8uB7RPH6TtM2WTTU2ijk3N05lOKemEuWEZ0ql10me9\n3uKO34lh2LHTZ2abuOeSctdsy5EwKSXtblOIrUjkfN+dUtLt04emU9LJptzXjMFNSkkntA6LWiWb\nn8WOMC4yXdL2aEjIjuF9LRrSxI7heUZD6tjKVtoxnCKM4e0zZecZYVwUh01nuNo4/7QFyWFcYixq\noDdlYxviMh8NYcouikPfNdsy8S+KQ9vfrvfnxaEpG3vib+OO4bqRon1BH8zFzyIXGvMaO9P8429j\nG5AcxiVG02lXn/LWSYvFTl37ZJtOOcXmJjaHvmsuikNTdlEcAvOzlbakFpuwqVnTcXWfxBFbLmTH\ncNv1oQlbmdfYmeafFGFMaBBphZcijC453zVThHF+tlL3fMXYEcZFRpTarg9ttClTdlEcdrvxS2C2\n0vwTu88pwpjQGEwldClbbDlTdlFyPtnYciGGva9xQyRfoe9r3JiybZfzySZuEjcuOZ/sVuXG50w3\n0ec2IDmMS4y1tcm/XasYqVy3K4+G6NdclJxvk0NsboiA1dXwNi5KzicbW86UbbucTzZxk7hxyflk\nEzeJG5ecTzakz21AchiXGOvrk3+7VidSOaJJWd9qpy1yrhVebG5maeMi5HzO9L7OjU82cZO4ccn5\nZBM3s/e515PXtLahz/Pkpi1IDuMSw1Q2PQJWR86UjSGnr6Dm+b3SPpsrvEW1cVEc+mRD9KYN91na\nvk5H7kzPU2/awCHgnrSkfTYn/rbrwzxtJcsmo0ht1wdp+3yyUm7MgMVWsqkY40gbkBzGJYapbKaS\nhsqZsjHk9M/m+b3SPpvvL6qNi+LQJ7uyMhnBbft9jt0+n2ynM+lYtf0+S+XW1tw7hqW2QrS4+9wk\n1+Y9d8ktso2L4tD8P9/7bb/PbZ1/2oDkMC4xpAa7uhp/4l8mOZ9syMTfhr7Mk5uQib8NfZknN01/\nd9vlFvndbZdb5HcvSm51dfaFRtNtXJRcrIVGG5AcxiWGrlwrK26DNSd+l2NpXjOGXB2HI3b7ssz9\nbOq2tHFRHIbItv0+x25frO/eihya/9f0dy8T1yGyW0UffO0z06xtbOOiOOx2J+em5DAmNAapMYTI\nbsWUwPq6e3NMm9q4iPb5FhptaeOiOCSS74Rs+32OLbfI724j193uZF1sG9u4KA4XWaLQdg7Nz5PD\nmNAYQhRtUaH5tqc0gfa3scnB0bf6rXvNZebQPOg3xkJjq3BocuFbaCyqjYviGphcXPgWGltFH5oI\nWLT9Pi9y/mkDksO4xAiZ+NtuOLHlpCf8N/HdbZfTJ3rfpN/Ed7ddLgRt70viZn5yJua50Gi7HDAZ\nfXWdUNDEd7ddDpCf79sGtN5hJKKdRPSPRPQDItpFRDcQ0deI6OkO+ecS0SVEtEFE3yeiFzjkHkdE\n3yCivUR0ORGdTkQeVW4fQiZ+qcE2mRKIUWsildMHbN/gDcgjA21Iq8TgMASxa1/bzmEI2n6fm0if\nSbFMKelF2tQy64MuF+s4mLbf57qZCim4uWrR8GwFaA1WAAwAvAXAZQBWAfwGgA8Q0SFKqbNLQSJ6\nLoBzCtnzAfwygHcSESml/kKTewSADwF4D4CXA7gPgDcD2AngtDn0ae5QSiYXewWlG9i2bfP73rpo\nY2QgNoch0BcX0o1D87zPsTkMgfQ8vbbbStPOtHSh0UZ9kC4mQ7BM+uCTkwYhgH1v/gkJWEi5aQNa\n7zAqpa4F8FTj7U8R0VEAngPgbAAgoi6AMwF8QCn12kLu80R0OIA3EtG7lVL94v2zAHxJKfU8TW4H\ngNOJ6Gyl1NVN9qkJ+CZzANjclF1HN6r992+33H77ueV07Cvc6APYzp1uOR37Cje6Qyd1GDlu+v3x\n775Joe3c6JO9NFLEZTRGo/HvvghL27nR72ssW5Eeat52bnTE4kZ3yrdvd8vti9y0Aa1PSXtwLfLI\nY4mTABwC4FxD7gMADgbwQAAgoiMA3Nsh1wPwqCYa2zT0ycsGaVhcN1LfYHbooePfDzxwfnJ6m6Th\n+1jc6A6qbzBbFDf6xD8cuuV0xOLmoIPGv/sc+UVxo+sK12epnJSbQw4Z/37AAW652H2Wfq8OKTe6\nQ2hDHW7mqQ+3utX4d+nCM5Y+6HK+MWxRtqLb8o4dbjkdsbjRHUbfomRR3OhOojSLE4ubNmBpHEbK\n0SWig4noeQAegSK6WODY4vU7xr9eXLwe45NTSv0IwG5NbqnAhbXrDGY+SA3s1rce/+6btA4+ePy7\ndJAaDHgZgOdGmmqSDvSHHTb+XcqNT07/TBoBisWNVB/0dvkGeik3UjldV7iVfAmpM81Byo0+sfj+\nR6oPUm7075UurjhupBxLudHvn28ClnIjldNtXqoPnJNcZxzxQR8vfWNibJvSF57ScYTjUNpnqX7p\n84Uv0iedf3RufHJ1Fp6x9KYNWBqHEcCLAPQB/BzAnwF4mVLqb7TPy3XR9cb/XWd87pIr3zvIfJOI\nLnD91OhHVDyvSKq/wLq1Z4zf/M3JVxce/OD89UEP8svd6U75661v7U/xHX74+HiS8n9s6HSAI4/M\nf7/73f3f/bCH5a+PYmLBL3rR5KsLz3jG5KsLD3hA/nrSSX65sh8HH+yPXtz61mNH6853dssRAXe9\na/77Pe/p/+5HPzp/fexj/XIve1n++ju/45d7alEM8pSn+OXud7/89YQT/HIlNwccMDnomzj00LED\nUfbdBiLgmGKJd+97+7+75OT//B+/3Ctfmb++6lV+uSc+cfLVhbJd97qXX67kZseOyQWZiVvdahzh\nPuoo/zWPOy5/Le+PC6eckr8+6Ul+uZITjpvHPW7y1YV73CN/PfZYv9wd7pC/rq3lY4oLBxwwdiB8\negMAxx+fv5Z27cKTn5y/Pu1pfjmpTf3ar+Wvv/qrfrmjj85fjzrK7/CX3KysAEcc4ZbbsWMcPeS4\nOfHE/JWbB049NX991rP8ci9+8eSrC494RP768If75cr23/GO/vrJI47Iuet2xzzZsLY2dho5m3rg\nA/PXk0/2yz3nOfkrN+c+//mTr62GUmquPwB+BYAS/Fxg/N8hAE4A8EgA7wQwBPB87fPXFP+3Zvxf\nt3j/jOLvpxZ/H21p25UA3mN5/wLXz/HHH68WiZ//XKl3vUupPXv8crt3K/VXf5XL+zAYKHXuuUr9\nz//w3/3P/6zU17/Oy11wgVKf/zwv981vKvWRj/Byl12m1F//tVLDoV/u2mtzbnbv9svt2aPUu9+t\n1DXX+OWGQ6X+9m+V+sEP+DZ+7GNKXXQRL/eFLyj1b//Gy33rW0p96EO83OWXK/X+9+f30Yfrr8+5\n2bXLL7d3r1LveY9SV1/tlxsOlTrvPKUuvZRv4yc+odTXvsbLfelLSv3rv/Jy3/62Uh/8oFKjkV/u\nyiuVeu97ler3/XI33JBzc8stfrmNjfx6V13llxuNlPr7v1fqkkv8ckop9alPKfXVr/JyX/mKUp/9\nLC938cVK/cM/8Nz85Cf5fea4ufHGnJubbvLLbW4q9b735df1YTTK2/fd7/rllFLqM5/J+83hq19V\n6tOf5uUuuSTXWY6bq67Kx4fNTb/czTfn3Nx4o19uczO30R//2C83GuV6/Z3v+OWUUupf/kWpL3+Z\nl/va15T65Cd5uUsvVerv/o7n5qc/zbnZ2PDL3XJLzs311/vl+v18bL/8cr/caJSPh9/6ll9OKaXO\nP1+pL36Rl7voIqU+/nFe7gc/yOdIjptrrsnn3L17/XK7duVy113Hf3csALhI1fDfSM15iw4RbQNw\ne4HobqXUFZ7rvB/AEwAcpJTqE9FvI3ckD1dKXaXJHQrgpwBerJT6cyJ6FIBPAXiAUupC45q7ALxT\nKcWsn8c44YQT1EUXXSQVT0hISEhISEhYGIjov5RSTD5oGnPfJa2U2g3gkgiXugjAMwEchjwyWNYq\nHgvgKk2urEn8bvGqy1UOIxEdCWCbJpeQkJCQkJCQkIDlqmE08UsAbgFwTfH3hcjrG81Kk6cjr2P8\nMgAUUcv/dsj1AXy6ofYmJCQkJCQkJCwlWn8OIxE9H8CJyA/ivhL5ETlPAnAKgN9XSm0CQJGWPgP5\nQd0/KeRPRn5W40tKuQKvAfAJIjoHwHnID+4+HcDb1RKewZiQkJCQkJCQ0CRa7zAC+DaAxwJ4G/Id\nzD8H8D0Av6aU+qQuqJT6SyJSAF4B4FUArkBeu/hOQ+5TRHQKgNcBeBbyGsc3Iz/4OyEhISEhISEh\nQcPcN71sNaRNLwkJCQkJCQnLgrqbXpa5hjEhISEhISEhIWEOSA5jQkJCQkJCQkKCF8lhTEhISEhI\nSEhI8CI5jAkJCQkJCQkJCV4khzEhISEhISEhIcGL5DAmJCQkJCQkJCR4kRzGhISEhISEhIQEL9I5\njDOCiH4G4PKGv+Zuxev3G/6eBDnSPWkn0n1pH9I9aSfSfWkf5nVP7qCUOiT0n5LDuAQgogsAQCn1\nkMW2JKFEuiftRLov7UO6J+1Eui/tQ9vvSUpJJyQkJCQkJCQkeJEcxoSEhISEhISEBC+Sw5iQkJCQ\nkJCQkOBFchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF2mXdEJCQkJCQkJCghcpwpiQkJCQkJCQkOBF\nchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF8lhbDGI6Agi+iciupGIbiKiDxPR7Rfdrn0FRHQ7InoH\nEV1IRLuJSBHRkRa5A4no3UT0cyLaRUTnE9E959/irQ8iOoWIPkpEPyaiPUT0fSJ6CxHtNOTSPZkT\niOgRRPQ5IrqaiDaI6Eoi+kciOsaQS/dkgSCizxRj2JuM99N9mROI6CHFPTB/bjDkWnlPksPYUhDR\nNgCfA3A0gGcCOBXAXQF8noi2L7Jt+xDuAuBJAK4H8EWbABERgI8DeCSAlwB4AoAe8vt0uzm1c1/C\nKwEMAbwawKMA/AWA3wbwr0SUAemeLAAHAfgvAC8G8HDk9+ZYAF8lojsA6Z4sGkT0FAD3sryf7sti\n8FIAJ2k/v1J+0Op7opRKPy38AfAy5BPjXbT37ghgAODli27fvvADINN+/y0ACsCRhsxji/cfqr23\nP4DrAPzfRfdhq/0AOMTy3jOKe3Byuift+AFwt+IevCLdk4XfiwMBXA3gKcU9eJP2Wbov870XDyn4\n/hWPTGvvSYowthe/DuCrSqkflG8opX4E4MvIFSqhYSilRgKxXwfwv0qpz2v/dyPyFWK6T5GhlPqZ\n5e3/LF5vW7yme7J4XFu8DorXdE8Whz8C8B2l1HmWz9J9aR9ae0+Sw9heHAvgO5b3LwZwjOX9hMXA\nd59uT0Q75tyefRG/VLx+r3hN92QBIKIOEa0Q0V0BnIM8qlU6KemeLABE9EDkEfgXOUTSfVkM/paI\nhkR0LRH9nbE3obX3JDmM7cVByGvnTFyHPMWQ0A747hOQ7lWjIKLbAngDgPOVUhcVb6d7shj8B4AN\nAJcCOA55icA1xWfpnswZRLSC3HF/m1Lq+w6xdF/mixsB/AnyEqeTAbwRef3ihUR0aCHT2nvSXdQX\nJyQkJMyCYqX9z8jTns9ecHMS8o15+wG4E/LNSf9KRA9USl220Fbtu/g9AOsAzlx0QxJyKKW+AeAb\n2lv/TkRfAPA15BtczlhIw4RIDmN7cT3sKwnX6iNhMfDdp/LzhMggonXkNT13AvBLSqkrtY/TPVkA\nlFJlScB/ENGnAVwG4PcBvADpnswVRYrztcgjWatEtKp9vEpEBwC4Gem+LBxKqa8T0aUA7l+81dp7\nklLS7cXFyGsZTBwD4LtzbkuCG777dIVS6pY5t2fLg4h6AP4JwAkAHq2U+rYhku7JgqGUugHAD5Af\nTQWkezJv3AnAGoBzkTsY5Q+QR3+vB3BPpPvSRrT2niSHsb34GIATiehO5RvFodG/WHyW0A58DMBt\niajceAEi2g/AY5DuU3QUZy3+LfL6n8cppb5qEUv3ZMEgosOQnyH7P8Vb6Z7MF98E8FDLD5A7kQ9F\n7tCn+7JgENEJyI+h+o/irdbeEyrO+EloGYrDuf8bwB4ApyM/l+mNAHYCOC6t/OYDIjql+PWXkafW\nXgjgZwB+ppT698KB+RKAIwC8CvnK/dXIi/7vpZT68fxbvXVBRH+B/D6cCeATxsdXKqWuTPdkviCi\njwD4OoBvAbgJwFEAfhfArQHcXyl1abon7QARKQBnKqVOL/5O92WOIKJzkS+ivoHcVu6DnO/dAO6r\nlPp5q+/Jog+yTD/uHwC3B/Ah5Ip1M4CPwjg4Ov00fg+U4+cCTeYgAO9FvottN4B/Q27YC2//VvtB\nXhfnuievT/dkIffkNORPermh4Pr7yHfnHmnIpXuy+Hs1cXB3ui9z5//VyBdWNwLoA/gxgHcBuM0y\n3JMUYUxISEhISEhISPAi1TAmJCQkJCQkJCR4kRzGhISEhISEhIQEL5LDmJCQkJCQkJCQ4EVyGBMS\nEhISEhISErxIDmNCQkJCQkJCQoIXyWFMSEhISEhISEjwIjmMCQkJCRYQkRL8XFbIvr/8vS0gov9L\nRObh5j75dSK6ioie1GS7EhISlhPpHMaEhIQEC4joROOtjyB/+tLrtfc2lFLfIKI7A9hPKfWNebXP\nh6I93wPwAKXURQH/97sAXgTg7kqpflPtS0hIWD4khzEhISFBgCKC+CWl1NMX3RYORPQOACcqpe4X\n+H8HArgawKlKqX9spHEJCQlLiZSSTkhISJgRZkqaiI4sUtYvIKK3ENHVRHQzEZ1LRNuI6C5E9Fki\nuoWIfkBEz7Rc815E9DEiup6I9hDRl4noQYK2rAJ4OoC/M97fQUTvIKIriGiDiK4hovOJ6OhSRil1\nPYDPAvitGehISEjYgkgOY0JCQkJzeDWAwwE8E8AfAPgNAH+JPL39SQCPR/5s2fcR0bHlPxHRfQF8\nBfkzZZ8L4AkArgVwPhEdz3zniQAOAPBF4/2zATwJwB8CeBiA5wP4ZiGr4wsAfomI1kI6mpCQsLXR\nXXQDEhISErYw/kcpVUYPP1tECE9FnvI9FwCI6CIAvw7gFAAXF7JvBXAFgJOVUpuF3GcBfAfAGQAe\n5/nOEwEo5I6ojpMA/L/27p01iiiMw/jzkhDUzmCjKGIpKGnUdPoFtLOziam10MbbF7BQJIKFRQqF\ngGARsJGIVSwEhVikiRaioAhRiUhUvJDX4uzqMm4mLLqwWZ8fLIc5O+/OmWb5c85cpjJzsqVvuk39\nE2AIaIZWSXKGUZK66G5le6HRzjQ7GsvAi8AOKHcrA4eA28BKRAxGxCAQwH3g4BrH3AZ8bAbNFo+B\nsYg4HxH7ImJglfq3Lb8jSYCBUZK6aamy/a2mv7kEPAwMUGYSv1c+J4DNEVH3370B+Nqm/yRwHRin\nhMfFiLgSEZsq+31ptBtrjiHpP+OStCT1lg/ACnANuNluh8xcqal/z5/XJZKZy5RrKs9FxE7KEvhF\nSlg907LrcKN91/HIJfUtA6Mk9ZDM/BQRD4ARYG6NcNjOAjAUEdsz89Uqx3gJXI6IY8Ceyte7Gu3T\nDo8rqY8ZGCWp95ym3K08ExGTwBtgC+VGlIHMPFtTO9toDwC/AmNEPATuAPPAMuU6yRHgRqV+FHid\nmc//wXlI6hNewyhJPSYz54D9lOXlq8A9YALYy+9AuFrtC+ARcKTy1SzlsTpTlEf6HAVOZeZEZb/D\nwK2/OwNJ/cY3vUhSn4mIMUrA3JqZnzuoG6U8Smd3Zj7r0vAkrUMGRknqM43H8MwDk5l5qYO6aWAp\nM8e7NjhJ65JL0pLUZzLzB3Ac6GR2cSPlzS8XujUuSeuXM4ySJEmq5QyjJEmSahkYJUmSVMvAKEmS\npFoGRkmSJNUyMEqSJKmWgVGSJEm1fgI4zeCrbh2lFgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, creating CrossCorrelation Object by passing lc1 and lc2 into the constructor." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done\n" + ] + } + ], + "source": [ + "cs = CrossCorrelation(lc1, lc2)\n", + "print('Done')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2.86241768e-05, 4.71238867e+06, 9.42481318e+06,\n", + " 1.41372717e+07, 1.88497623e+07, 2.35622831e+07,\n", + " 2.82748324e+07, 3.29874082e+07, 3.77000087e+07,\n", + " 4.24126319e+07, 4.71252762e+07, 5.18379395e+07,\n", + " 5.65506201e+07, 6.12633160e+07, 6.59760255e+07,\n", + " 7.06887466e+07, 7.54014775e+07, 8.01142163e+07,\n", + " 8.48269612e+07, 8.95397103e+07, 9.42524618e+07,\n", + " 9.89652137e+07, 1.03677964e+08, 1.08390712e+08,\n", + " 1.13103454e+08, 1.17816189e+08, 1.22528916e+08,\n", + " 1.27241631e+08, 1.31954335e+08, 1.36667023e+08,\n", + " 1.41379696e+08, 1.46092350e+08, 1.50804985e+08,\n", + " 1.55517598e+08, 1.60230186e+08, 1.64942750e+08,\n", + " 1.69655286e+08, 1.74367792e+08, 1.79080268e+08,\n", + " 1.83792710e+08, 1.88505118e+08, 1.93217489e+08,\n", + " 1.97929821e+08, 2.02642113e+08, 2.07354363e+08,\n", + " 2.12066568e+08, 2.16778727e+08, 2.21490839e+08,\n", + " 2.26202900e+08, 2.30914910e+08])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.corr[:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "9.9999999999766942e-05" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cs.dt" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAERCAYAAABsNEDqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2wbddRH/hbe59z33syEMPYcQgfY4a4SJGEUBkBKcJM\nQUIIJMyQSYDAZCaEIjgmwIRJJQyBIVRIQiBUppJgD8aZGGIDJmCw+TJy+DAYg8GWZFuWbBlkW7Il\ny5YsWZ/v456z95o/9u61un+r+55zJd17n553V7169667zj77Y+3u/vWvu1fKOWORRRZZZJFF9pXu\nrE9gkUUWWWSRp5cshmORRRZZZJFjyWI4FllkkUUWOZYshmORRRZZZJFjyWI4FllkkUUWOZYshmOR\nRRZZZJFjyTVrOFJKL00p3ZdSunWPuf9jSunmlNI2pfSV9LevSyn94fzv607ujBdZZJFFnh5yzRoO\nAD8G4Ev3nPs+AH8XwE/qwZTSJwD4HgCfB+BzAXxPSunjn7pTXGSRRRZ5+sk1azhyzq8H8KAeSyl9\nekrphpTSTSml304p/cl57p0551sAjHSYvwLgV3POD+acPwLgV7G/MVpkkUUWuSZlddYncMryEgAv\nyDn/YUrp8wD8vwD+4hHzPwnA+9Xvd89jiyyyyCIftfJRYzhSSh8D4PMB/ExKSYbPnd0ZLbLIIos8\nPeWjxnBgCss9lHP+7GN85h4AX6h+/2QAv/kUntMiiyyyyNNOrlmOgyXn/AiA96aUvgoA0iR/dsfH\nXgvgS1JKHz+T4l8yjy2yyCKLfNTKNWs4UkqvAPBGAJ+RUro7pfQNAP42gG9IKb0NwG0AvmKe+zkp\npbsBfBWAH0kp3QYAOecHAfwLAG+e/33vPLbIIoss8lEraWmrvsgiiyyyyHHkmkUciyyyyCKLnIxc\nk+T4s571rPzc5z73rE9jkUUWWeRpIzfddNOHc87P3mfuNWk4nvvc5+LGG28869NYZJFFFnnaSErp\nrn3nLqGqRRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiVn\najh2bbaUUvrClNLDKaW3zv/+2Wmf4yKLLLLIIlbOOh33xwC8EMDLjpjz2znnLz+d01lkkUUWWWSX\nnCni8DZbWmSRa1kOtyN+8vffh8Mt7xm2yCJPH3k6cByfn1K6JaX0KymlPxVNSik9P6V0Y0rpxvvv\nv/80z2+RRRp5/MoWr3jT+zCMthfcz9z0fnznq96OV9509xmd2SKLPHm52g3HzQA+Nef8WQB+CMCr\no4k555fknK/POV//7GfvVTW/yCInJi983R34pz/3drzhjg+b8QceOwQA3PPQRTM+jBk//nt34bEr\n21M7x0UWeaJyVRuOnPMjOefH5p9fA2CdUnrWGZ/WIosUuf/RK/jpN78f3GX67o9cAgA8+PgVM57g\ny+/c8WH836++FS/8jTtO4jQXWeQplavacKSU/lia93lNKX0upvN94GzPapFFqnzvL70D3/6zt+A9\nH37cjIuBGInKyOXv1oRc2gwAgD/40KN2fs54+e/dhfseufxUnfIiizxpOet03GazpZTSC1JKL5in\nfCWAW+eNl/4DgK/JywYii5yBvO+Bi/i5m1te4rYPPAwA+Mjjh2ZcFukVIsE3wzj/PbvjjEje/+Al\nfPerb8X3veadT/DMF1nkqZczTcfNOX/tjr+/EFO67iKLnKl880/ejLff8zC++DOfg487vy7j3QSI\ncfFwMPPFv7m8seMy78rGGpTHZ26j66zpeOTyBgDw5js/0pzTK2+6G5/z3I/Hf/vfPOPY17PIIk9G\nrupQ1SKLnLa8895H8Eu3fKAZf/s9E7IQcltE9HxrOKb/LwWGg8cfvzL93iffcPRkUB69vME//pm3\n4QU/fvOR17PIIichZ10AuMgiV5V89YvfiEevbPHX/swnIqWWyr54aLOeBHEwstjO5AaPS/0G13EI\n4mgNxDS+6tmgTOPvvPeR5hx//q334NOf/TH405/0R5q/LbLIUyEL4ljko1JuvPNB/Oo7PtSMPzor\ncFHMLJcIWYgw4hBu43CwBmKcociW6jtk/pbY9GI4yKA8fkTa7j/8qbfi77z0TeHfF1nkycpiOBb5\nqJSvfPEb8Y0vi3eJZKQgwiEmMQQbMhBS+LcdsjvezJ+Pw0hkO8/j40T1HnLeDxJZDwC/+o4P4fff\nsyQlLvLkZQlVLXJNy+vedR9WXcL/8LzjFYUygojGt4EhKMgiMBBsCMbRRyIyf6BkwghxPBogJQDF\nUN75/X8tnLPIIvvIgjgWuabl63/0zfjf/1MctmGFL8JcRjS/IogAWYyRgYiOM7rzuXVJbDg27vhR\n8oY//DB+zQnbLbJIJIvhWOSakF982wfw5juP3y8zQhYRlxEhi1bhz/O3exqaAInIfK5e4voQkSiE\nNZLh0fK//affx987Imy3yCIsi+FY5JqQb33FW/BVL37jsT8XGQgmtUU2W6uARaGHISlGHNlHHGOA\nUOTzY/aP05xfcN7Mzewjb3rvg3j1W+459ucWufZlMRyLPK3kJ37/Ltw611SIcBhHJPKydfOBSKGy\n5y+yCRT+4b4k+A7EwQhFDARfY2AfwvEnYji++kfeiG/7L2899ucWufZlMRyLPG3k8mbAd73qVvyt\nH7HIIlKKl7d1XGcraTShFfs2GNfShJ6iUFUUeooQyvxry33Y49Vx//wiI6qRFX+3SLRHCI/fcvdD\n+M+/e6c7d5GPDlkMxyJXneSc8cO/+W68+/7HzPgjlybi93EKL0XhJj2ujYse10pRh5VCw9Egi/mz\nNF8MRhSSakJYQfru8RFHnaeRlU4v1tegUVlEuPP9/fsvvwnf8wu34cr2+ChmkWtDFsOxyFUn9z58\nGT9ww+34P17xFjN+XCL7klGWVdNe3vjIQitdDj2V+WwIsh+qqqR5FMIKQlWjb4AYSHB6rjeur0ff\nO424NMkeEe4XN9ag3Pvw1KmX26/ccd9jeNHr7mhazC9y7cliOBY5M9kOI/7tf30XPvDQJTP+0MUJ\nWbyXWpWHtRWb3Z7yJghDaQWulW4UzmFyvBb6BQWAHHqK6juigsEAcUT8zWhQU4Q46ndHxlXLvjUt\n3/7Kt+EHX/uuYlgWuXZlMRyLnJnccs/D+KHfuAP/6pdty/CohuLSHgZCK06DLJTC13yBVpZjEKrK\nwXz9magSnJFFWOgXIJHo+Prz2qhsDWraHYbThiPKJIvbrNjncecD066GH37Mbl71gYcu4Qdfe3to\nmBZ5+sliOBY5cbl0OOD7XvNOPEAK5bG5yvkeQhziyXLEY59QlQ71aG//MAxJ+cpVh570fA4l1RBT\nxFnsR6YPQZpuSL4HhsAYkWBcG9EIlVkDvB/iiMb/zQ2340Wvezduufthd/4iTz9ZDMciJy433HYv\nXvL69+Clv/NeMx4hi3jcV1Q6Nm+I3wApWOXqE8WbiDQPQlVRttXeJPiO8TGTIYhQkxn3w3DaWJps\nszBRYHemlv5ufn4femRyGB66aDmRBx67gn/5S+84smHjIlenLIZjkadM7n/0Cv75L97WtL24dDgp\npA8/ahWH7EHBIgaCu5pHIZMhUPjaSd/soXQNxzFGyni/OotSOR5ViIehqiNCUgHxrY1NFJIahn0M\nzX7XLMKhLflIszcJsjv+sjfehf/vDe/FDbd+0D3+IlevLIZjkadMfupN78OP/s6d+K+32b5HUQZQ\nhCwk3ZZbiUd1BpGy1Mo/QhzxeBCqCkhtvsYyvmddRtRuXX+3/tmgo9EPMR3uYyz1/O1uA6SFn0dB\nHFcYiUz/8/OWTaq4k++jlzf417/yzoYrWeTqkcVwLHJsueuBx/G9v/iOJo//wTkU8REKSVycQxGM\nIMRAkH3AZTEcvV2eWvlpwnoMwjBaZ2ulaJVlNN8f5zoJ+bWps9iRDdXWZdTx6NoiEjwycmEYbg/S\n/ChjGY3XKnpGIj7ikPm8Ln7rD+7Hj/zWe/DyN97lfu8iZy+L4Vjk2PLvfu0P8dLfeS/eTmSnKCre\nOU9i2KwsLwa73kX9mbaB4gyV6B5e9saEeQKEkv1j6svZ20BEBX3BsULEEaQORwrfEP9Bhtnhdvc9\n0sKGQ/ZLb8N50/9RS3quH5HW8JymvRlG/PNfvA13PWDTtBc5fVkMxyKh3PaBh/F9r3lnUzNw36NT\nnr7UW4iI4r1EIYnH5tAFKwj5vUlB3aN2IcoAssrPNwRWWQ7ueMQn7POz/jyHsCKDoq9hCBBHlIK7\nDwm+T6LAcREHFz3KNrr7ti6R588hLDEwByurnm65+yH86O/ciX/xSzZ9e5HTl8VwLBLKd/7c2/GS\n17+nSZcVRfU4vfCibB6jGLfUX0T8QLvr3Yw4SLlG2U1xuAU7x62nX38eA+9+b8MhqIl0aGRQLH9R\nx6NwU0TkRzzIPgYiSlnet29XHyKO7I7Lc+ckCWkt0xFyfeTStI44O2scM/7VL7+jaX65yMnJYjgW\nwY13PogXve6OZlwMBpOUogCi0APn/YuhaQxEVDw3K8IolRUArgx+0V+k/K6YVFMflUQcQuTpRyEs\nfU6xQYkNhzm/AHFERiG6hn0MXoxc9gtViZqPOgXz8y/b5TaZZP76EkeF7/U9D13Cf/zt9+KfvPIW\n9zwXeeplMRyL4O+//Cb84Gvf1eTTywsf1U9E81kR7BqPq67j1NRQyQVxeo0ajEe/B7IYj6mM9TmF\nBoURR3B+kYHY5zz2MS7hfJ2+q+7pUVX08b7pwXOW8cCh4PUi2Vp8rx+eEcq777NNMQHgB197O373\njg8344s8OTlTw5FSemlK6b6U0q3B31NK6T+klO5IKd2SUvpzp32O15LccOu9ePFvvbsZf2BOh+S0\nSHmBeVe5gznbKUIcEbI47viYY+UfFehFiGAbGJrjGoVxD8U8/c0fl+/O+QjFbpAM3DnRZ0NOZA+u\nJJq/byPIITIQxRDY+SHiLAjVri/hQjj5QtJ6V70dv7wZ8KLXvRvf9BM3Y5GnVs4acfwYgC894u9f\nBuB587/nA/jhUzina1Ze8OM34/t/5faweykbCFFOUWVv6EEGoSf2IKNNkMLU0UErLZ8cj8I545Mw\nFqHSDRCK/ttR7dAjEjw0EGF21+7r2ctIBSG8fQyK/tu+SCRaF5FDEdX3CPfRk0GR5A1BJFpe8vp3\n47/ethQePlE5U8ORc349gKM2iv4KAC/Lk/wegGemlD7xdM7u6Ss//eb34+VvvDP8exR6YsMhdRS8\nUdIYhSR2kN1R6Ik9S62oNDcRIYjIWOyTvht56yHKCAwQ13dEXMY+RLs1BL63r2+lQVPHDE/F4a96\n/DBNd2/OatfzZ+MahKqCglFBHB0ZFEbQWr7vNbfj+S+/Kfz7IkfLWSOOXfJJAN6vfr97HmskpfT8\nlNKNKaUb77///lM5uatVvv1nb8F3//xt4d8jBMGGQ7Jk2BAUsjtAFlFWTeRxRntW8GciInsfxPGk\nCOQ9Ql5W8cOd0847ngK3BsI3qPsYzv2MiJ/KHHXf1Z/ntOttsC52GxQ2HIM7Lp/nup+HLvmG46gN\nqF7+e3fhFW96X/j3RSa52g3H3pJzfknO+fqc8/XPfvazz/p0TkVe8vp342dvuvvYn2MDIXKFkIU4\ncK3CPxpxtIpDFASHczCP+8dvf9bHjDgOf9yktQaKdq8QVoQY9jAC/B0xeR+MZ/9e7GMIo3BWOB6F\n1ILv0iirec47EafvUPA6ks+z4o/QXVRPchQS+e5X34p/+nNvD/++yCSrsz6BHXIPgE9Rv3/yPLYI\nJrgNAH/zv/9k9++bYcS6b32D0HDQi5aCgq74hT/ueE27HcdcQg37xOAjhRrF46M5oVe+T0gpqreY\nP9slJ+02Z6y6hO2Y9/L8I6MQhtXCIkZ1Dtq4Ru1KNKIJwoKDueZ6/Cj0yOvruIhjV93PUehOi7Tz\nP4686i1344MPX8E3feGnH/uz16Jc7YjjFwD8nTm76s8DeDjnfO9Zn9Rpyw/ccHvTQTTaAU7XUOiQ\nVLTBkZbIQ4vI7uiFb8aD0FbEU0TK6bhx/WOHsHL0vUfPP+g7V5Gv+85VZmLM9wlv7ZVGG87fHeYL\nw3B7oBj7zPTxYSQqANy5XgIDEYXCuNiS0Z43ngM0xQkk/+d/eRt+4Ibb3eN9NMpZp+O+AsAbAXxG\nSunulNI3pJRekFJ6wTzlNQDeA+AOAP8RwD84o1M9M9kOI374N9+NF/y4JfIeC4jCR5U3pX+2vYoC\nwxFkPV2JPMJj1mtEHiT/PIYKyVd+UUjquHH9XW0/Vl1yP7vuk4tWDvoOObcNGddz2igbiAPHoByb\ndwlCezbMFxnR3TUwkWGyjSCfXEgq4kp2hUib3mbqvuTgful7oTshcEJI/az97htuvRf/8pfe4c69\nluVMQ1U556/d8fcM4JtP6XTOVHLO+M5XvR1f/ll/HH/hTzyrjHuphEBtyyCflbCS9t6uBNkwETl4\n/JBU3m9+2NiPDURvjsOfOW4VtTFA0d7izmdT8hXwuu9chXqw6lyuZL3qgCvTsaTGYBhz6cHEXXfX\nfcLhsCenEnA2IeLYg4PZq75jD8TRtIYvoSTY8fkjLRI5Ok23MShBqIrPSQy2Hr+yreFc3frk0uGA\n6w5a9fjI5S0+4RkH5ff/62ffjocvbfCP/8pn4Py6b+Zfq3K1h6o+auS+R6/gFW96P77lJ22xUmw4\nqnek02sjA6H3bNi3CZ14V1HIoA09+VlS8sI326Ie00DslRkVxfj38ZoVUvC+92DVuefAIakyf1ZI\ncixpw15CVYw4Vk4IKxgfci5Zb/sU+oVhu33uV5T6vEdITX+m3ZvENxBDme87GpGDc1RRZbS7oR5/\n7Ep919g4ifAmZfJ+8nv6u3d8GN/+yreFNVNPd1kMxynL4XbEt/3UW3DL3Q+ZcSlW+shFf2GyaC9N\nL/5oXL/8UfHccRFHs11q9MLPCqJRKHuQrsclimND06Kvg75zQzgNgsg7DMSqs+cs81fJfF4OWQwB\nfaYgEVLg1QDZ57YrtMXGQrLkQo4neh4RWtmDE9Gf521xi0GJHI2owPQIB8TsIa/XfPCOaOdKIw5t\nOPRnI4PyCL2n3/Fzb8dP33g3PvjIZXf+010Ww3HK8p4PP4ZXv/UDDdHGHT9FHgkyQBhui0Re1iaY\nv09efpj1EozzCy8vcKRQ+Lz3K9wLMoOc9hiSxSSiQ0yeQTm36tzCu3MB4jhYWYMiH2USXCMUvv5x\n9ElzE9oigyKhF/b8PSQyKsMUheeOWwOzz8/e9fN4sy6CcY0s9LEMmt6j5sSg8o2eHxmU+g5yA0+R\nRwiJvO/BiwCABx6z7/Vb3/8QvunHbwqP83SRxXCckDx8cYNvfcVb8O77beO1+x+dOs2+/0HbqjxE\nFmGDObX4dUjKjEcch/+yHNJ3xQbCz6rapQiOCiXEIRAfHfF86TbhKcV137nfe7Dq3O9lLiMMVUWh\nLTU+nXd7fL5+jSwawyGIgzz8g1XfjI9HHKdPCV3D32j0tY/BPp6B1/UdEeKMxtt15K/bIUAW0dre\nBu+Ifnd05uFjxnD4iOPSoT/Oe9a86HV34Fdu/SBu/+Cj7vyniyyG44TkxrsexC++7QP4EWoqKIaD\nN6nZB1lEW4Qe92WJ4r36JdLvbBOqkhe7CTH4Iako7h6Fp46bJbUdR5zzeIA5PLPirCelLL2iuojL\nYOUqxigkxynEVI/jI4VjIY4xl2u2uwEGnMiMRFadb+TOsRHdEeY7+ufd2W/6b+H4Ed2Ro3Wxj4Gw\naz7gBzd+2CpCCpxwIo4M10zdMXfw5e2V333/Y/iGH3tzGHm42mQxHE9SPvDQJXzzT97cbHMp0JWh\nqngs0aY2LDGy2B16CkNSe3AfUZsJ/XtjIEJP0Sp5kSjt9qjqalGW1vtuiWigEshRGu3BqnPbeLCB\n0JxFZFAiMl1/fjgCcRgSnNJ3oxBTSevV2VlHzO+7hL5L1gANcq49vKr7nu7dNvL6A6Vu04Z9Q9CS\n6eN87Ucg1MCJCjv5GoPivzvxO+UbDn18RiJy2WxQ5N4zJ/LSN7wXv377ffidOx7A00EWw/Ek5TVv\nvxe/fMu9eNVbbEG7GAxGFrI42wZxvuGIuIxtYFBsB1k9HpDpo/9C7ROz5nPexXHoOfwzKycvTh95\n06MK23hedt8FdRYNskAddwrDopDUuoSk2EDMyGKk4wRZUjxf5vgFg/pe+KQ516WIEfUUe4M41Dh/\nrz43keNmv+nzPirbLg6H+Y6N/tnyeoM7R3McYTg3QC7aiERI5BI1FJVnw4bjofl33lXzvkcv4wUv\nvwl3f+Sie/yzksVw7Cl/8KFH8Q0/9mZ8hPrcSCosd+6U0BNn44nh4JxzTmH1xvdDFupl2UTzfa8p\nUvBRnv1xyU4AlDHln58Ow4SIg5RFFKrq0+xlO+dwwFlSyqB4ynVNoa1RGRp9Thyq4joWH3G0oS2Z\nE4WevOPoe8Ghp75L6LrUGJqUJiPnrQXmgWScjbHclxahxA5IjDiOZ4RChyd0WHzHyXIcvqGJjMXl\noDYqKiTkcdkm92HiRF79lntww20fxCufQE+6k5TFcOwpL3/jXfj12+/DG2g3sbKdJQEGUbbsQdSX\nxc6PFr/xdsxi3geJBJlHexiL6IUdx1z4j31DWEeRqJHCjwxEJX41H1ORRcNxHBHXZ8ShFX4c2hqb\n4xTEQSEp9vybUBWn3QbZU+d2cB+swLuuJcG3sxFddanhnPo0GZSI4N+LTFfGeB/uSt+XzZBN4keU\nMRU5M1GoKuREgp/DkFwQwrq89Z00LU0IKxiXZ851IkK6s/P26OUNvu6lb8K7zohkXwwHyU13PYhv\nfNmNDcQUUpvHxUPgdDxZbE1fnaAFdIwI9jAQAdy2L5HvWcXwPyDlg9YN+ru3Y47bbJCiFgPBisAL\nwwxjxrl1G5LaRiGpcWoo2HXt9wJzqxBHcZzjUJVSolr3jWq+nIc+TotEMI8n83nJPKpGUX9HHNo6\n6B1DM1/zqmvDbZ1nXLMY1+TWz0SZZOfWcRW9N5/H9X2ZPu+PRwh1H1QTrecwrXufd0Q9nAhx6HNg\nZCGf59CWtAe6TPpiU+bb8Tff+SB+6w/uP7P+WYvhIHnhb9yBX33Hh/DODz5ixmVRcdqs8AVsUGTh\ncaty2e2OeQBDzG38BRwRefuQ2nHWi2+M9mki2CKOCDWNOCepo/QCe4ZgyFnNJy/bIcHHcc6eojBM\njeu3iGMlSjSo+I7DNu01slGMQlLyWR6Xr4pCUj7ZrefDzO9SaywjjmMc5V7ExY0eYozSd4+qgfG4\njK6kUQfOT7A+owzD2Cnyf97sgUSi77Vhq4Bkp/dfDAkbgsdmx5P1iCAQNkAffHjOznS6X5+GLIaD\n5A8lXY64DHnZeXOYzbwI2YPY7EAc7bhvIPbJ6IjDXL4B2uzxou1DULYtJOJjHSskNRwxf+3F9Ues\nuq6Nuysk0lRRi1e+TwjL9KRCM39XoV+pHBfEsed8+Q6v0M9Wjtvn3zvXJqiscziIEsLaIyQlCODc\nmjPJRnXv6j3SBkUfR+qEzjlJDfGuh7vRRBiGNT9HSGT3zxvzPu522Fjhy2eYExHnj+cLEmGDIpwq\nRy5OSxbDQSIkFRfuyGLgQh/JjmLDIQu1GZ+Pc2U72oK+wEBEHtEmeEE2pBRE9jI00c96/hEx6+2Y\ncd5V7L6BOMqgFC+bi968tNsRbhhGK0VO93Xj+lF4Ril8L22YkYI2NHq8pvVajoMLAxuU5RT6bcdR\nGSzU+Rku3zOOPsehQ1jevTi37v1Q1ap379E5rsYf6nwvNOWiqUEVdNLzl/W1j1HYZ81HjlP43qnG\nniY9Pkj35aSXijj20xcSAufkG2mPwu/gacliOEjEu3uIQlIl1rj1kQVDzwhxRH1vbBptAM8Dwi4a\nDz+7j4GY5zPJKsc5R5lH45iRM8IQk4SkWBG483NgULKPOMYscf0WcUxEMXvTUPUdrSFYR2m3q4nj\nEIMfI47pcwdBCCtCHLVrrr1HLuLIrQGa5o+K72mRiJeavHLuRTEcR5DjnlfOBkKn++rOAVu1joDW\nIYmz59r1ctyU3f3CU3sgkT3CYhqJjGMu738UoeBxMTSXSL+IIYn2YT9pWQwHibQn3/fBllAVGxSF\nLLSE6bIhT+Ev1H0yozaO59fMj7JQSoihb4zANB7HuPm42hDwyxyR4HHRm69QOickVZRi36aOVq8c\nZj4QV4JHCv8cKXA2BIxE2BDUDKajEwhYgfdJ0l/JQKT22uSaV13XkOAFcThJEBHHcW7dHkfme3wa\nP89BHUePy8/nC/dlr60iDju+KnU/kWIPeL19HKoQofg8o+VEVCRh63Mi+jtaB3Qav8SIY/49aoFy\n0rIYDhJZkA3ZvfWhZA1VHS+EBVAO+R6GIOQsgkUbvzjt8SfF0R7n3Lpzjcv5de8e8zyR3RWJ7OA4\n6Lxr7LtVEB5SkEyiyKBwfLzvEvrUKt2UgPURISx9DzjENAbjsUGB+VyYphuEsDrH+I0zmuJr0xwH\nH6dPk3F1kUVgRLlgcAjG2aGoiQLVMdHjAOZkCsm2s89N1hcjC3cdBe/UJvhZ36+odckmeAcjx88Y\njoATAaq+iLKwLjYchx/yOi1ZDAeJPBB+gIeDbyBEeXL2RBlv0usihR8gjiB7KkIKu1IWV11yc+DP\nBy/8eUYcQzUQoxN6OE8eJCuIKITFoaeIE+lSG27ZjqPysq2S84nficvqnR5W03ECcpzIa1EoO8lx\nGj/orVEs8x3julUoi1u9r1wDMfohqfnerajlSDEoKRnnJcqGKllVDcchjkZPRoCf/3zNQz2+Hpdj\nsQMiP/stZ+L5kdGt5xcYggiJPAmuJDIoQHUcm/GA+7g4cxxRm/eTlsVwkFwKLHkUqpL02tbQVGUR\nG4XjeUTHQSI9GYitUvh2wY9l3OvbxPn6TWyavGn2IDkksVdW1RhXS6/6tuZgHIGua9unS1y/S162\nlbMVbBYv3je6bRotIQgOPUWhqpXtMcUFg2z8PC5DFH4bbpsSBVZ9agyNzOe4u/A9XvfhthhyLOd6\nVJqu8ECoOyfbAAAgAElEQVSldQk9f8198DVrjoOzlcRAcMV3mU9r2wuFbcZxRzflhCice7iHIdgH\nfTSbnc1/4551pUURza+hqgVxnLnknHFx4yOOkOPY+sgi5g58BLEJ5hz1s+TAezntF8gQ1BBT53qW\nHHoqhmbVuwjlHGW3cEhCPsOGhsNnu3a92xdxSDqum5rK7TTGPM1PPkLpovqOQl7L+PR/7TGVzf8h\nCU4hKW5d0qTjdgkpoQkZyb3gNF1BIp4RbZocZsnCaqvoSwKBuRfT/+fWQQiLDETDfbFDMTsavIZd\nBDFknHcyzOx8H7lwGPZ8+d5W4Z9b9S6CmAyKF57tjnD8IkeR9UWEOHyDEjm4pyWL4VByOIxlMXAL\ngUJSBaGqpmlhkCUVIYjBeFBRfNV+dt136JI1KJsSMurdbKtz1AVVjhnFrM83iKMaFH39EbKIiGLZ\nRvVYvad04Z4ZR0jwCuLg0FPXTZ+xGUwoHIrfJj2V4+r/I6XI8yNOpBYGWnI854kf6jxDkHWWlHVS\nutn4NRs8pdQYy5qF1Xr9JfznIdEAcewyEI1BWbfrYjtqxU7roswfabydvxn89HBJvuC95aewoCRT\ntO/O+XXvvpsXeFy/X9vsjh8SgjgMkIXcp8igLOT4VSCaEG9CT1t5sL5B4e0s98myiKAr/3zB85pG\nyRjyewOFCn/duQjlHCGUjXrh3dh34FmeJy6DFUdjaAIS/JxXuzBIKKndO2LledM6DOMo0dabHkMl\nPZ2rjcc3pHYTkvLTdJv5gjgChBKhoC6JUSzDcRhu1KEt7160bVYErfn1HX6abkOCD9ZxKOti4PUy\n39P5kHFo00MoY2AgRtcAbYYR6z5h3XWNYZLMMw9xXFjbd0He+WZ8h9PYpVaPRAZC7l8bwprGL2+H\nM9nXfDEcSvTDaVuIRIYj8hT2QRDWq/GJvxEXDpxMkmHEqu+mDCBX4XcuNGaOQ5PaXiy75TjYEFhF\nECEOvrbIQ5XPsLcO2HqNdj9tnxAWr9lFIg7HIeNAG3rqOw5VEYIofA+C8aORC7eGl2sRY8b1HW79\nRZ7CcE3tSvaLJKV4sqkoH3y0ZtO0nRAmrYuRjG7ds2XmSppsq9Ecx9YfjSr5ghCHkwZ+VFpvMYr0\nbq67rglJFcNx0JvIQkHl0fiaEgsChKJ3SWz26ZFQVaB3cm7/dhqyGA4lUc8n/TuHpEqb9DGbF0xD\n1H1QxnbMykBY7uOCB8MLrKZ02WHEqktY953bBuHciudXz88zcFIhLF5NDXmxIaAXvnAc8hJFSCSo\nUei6ua+SvQYvY0gjDj5Oqe/Q3vqsFNuwzZxtlVrFLuEcPR4ii4bshpnPhX67Qlv12sqpEoKw476B\nGFV/LjTjjFBq3UfM94zZyRgL026twm8cCjpOQRBDNd5jRohE3TRdTZoTil/J+iInqu+dd2eoyMLL\nmLrQ8IPTz9cdrKweEIRysApD0IwstspwaGShz+MsMqsWw6EkIrUABRmbbIjAQDg8gswRBcHZF9fN\ni593K3OLnmblt+7bNMqjQgzn135BX4s47AvcptcerQgixBFl1TAi8JoQmt5TmV541xDU43DoSRBK\nSwgDfVPxPYeLkkUiley2BX1RCIsRChuIyKBUA1Gff2mf3rXdcUthoDEQUNesEQrc6vqa1kuFfowg\n8q51Ich1P46jRbSj+R5ej/LZKE131QdG1DMQ42xQ6J2q58qJItWgHJJTJ+MuJ3LQhU4qRy7k95yt\ncxXVmZyWnKnhSCl9aUrpXSmlO1JK3+H8/QtTSg+nlN46//tnJ3k+Ud99QJNXR3AZxhsZi8fJi1MQ\nBPMg592QlE5BtN7L5DV14HTcdd+5xXBAm3arxz2EwtktQzAeIYtQoTSxb4He2XrTHINOTmuR7Pdn\n0uQ4k93RfMm2stc8FmNsxpuWIzB/jyrEo/oOPo7o96Lw9yK7J7TWGJrZKHqciIc4hlHuKSlpeW5s\nFIP02i3ND7kvSV+nkGfMlVkjFxUGrvvpXnCxbekoQOHcVTdxH4zKuzQlBHhK/sJB36B+ALjuoCf9\nMI+vV65Bue6gb/RL1AU7CoWflpyZ4Ugp9QBeBODLAHwmgK9NKX2mM/W3c86fPf/73pM8J3kwXCQH\nHM1xiPLbkBcgoSdebNcdrMqcMj76JPhmzFj1TthmUBkgxInU9tlOSGrdNXHjadznPjiUcNzQE4cw\nmOPgKmr2stv6i67ZxU4XvbUIwt+8KGqr3nXTdwMqVDUrUUEcJX5PCp+9Yw5hNdlZDrIw35vruFb4\nkpHWBdfQd2gNSq7hmebeuQ0fR7cYsn1uovAtZyHPueE4Aodi7/ESwrKcwnknyUJCm8wDDiVUxe/C\nXCfEBmV+B9er5GZFsjO2CQxBmX/AiSjV0GzH3PB3zxA9srXffcGJUJyWnCXi+FwAd+Sc35NzPgTw\nUwC+4gzPhx64fRnlWXohrOsCA+FxE9thdLmM7TAqJEKwOgg99cJlGCTiGxSp++CCLmtQ2vHqEVLo\nYccLr7kffRwOz3BWlVaWfpVzmzE0jr5XLgilI8UhYZ6pt1UZrl48k+N58jjLOJHgXN/BdRxMjtc6\nDpi/8za3sj6kKJERSjF+DvHvXZvHfejiSa+ivO9gw4V0L9ihYCTCCv+42XYNEonSt9ctl7GdDYTX\ncmYKVTHiqJmK9l0QHoh2gFTvgpeOO6H41hm7bt27WZeiF+Rv4zih7+vOTY7mlaEm7BwOo6t3TkvO\n0nB8EoD3q9/vnsdYPj+ldEtK6VdSSn8qOlhK6fkppRtTSjfef//9T+iEZFF8zLkVGQFZCFOanpBU\nknN+nRdKUg+WuQzPQGiEwqEngc98TmsHiYg3NRkUJ37b0X7a6kXdi+OgF3jDBqUJYVlPNPYs7fdG\nnVx7J2Noq4lfuobOMUA6zGMyg5RB0edYQmccwiqhJ4sUasHY0Wm6LpeRqvGTU+Md/RokEvBATXfc\nWeGrW1TDc7SO6nFsJXhNWbX3olaIWwehNQRkIBqOo75r3rjf2+oIA9FFXIakstt7VDMV2/nrPjVc\nxrpPOOB3LUAcjETknsqcZ8yRiBLdUEhEf16+44IzflpytZPjNwP41JzzZwH4IQCvjibmnF+Sc74+\n53z9s5/97Cf0ZWLpryPDcdg82Gz+F4+Ae/KzByGfcQ3KWA0Kp92u+y6Az7N3RLDXC9tM6buzlxUU\nDLKCABzPbyQFERiUiBzn9N1VL4VYVqGUuowGZcFpyIe6/an2pnNAjo817XbMtU16qRxnEpzSdHXo\nqUto5of7ccy3PWp+WMhuMkw97ejH3AeHNmrdRxk2iKMpGCwJBzDjUoE+XZO9d32ALBrEMfj3gkOh\nG15fYT2QhzjGQoKzs9T3TueAoYZ/GRG43Mc4zvO7Zj0WMt3JorxwRKhKk916vr4X1dBM+kWHpDbD\n2Bia05SzNBz3APgU9fsnz2NFcs6P5Jwfm39+DYB1SulZJ3VC2iMwD2nLD9byHVGoqhoIuwg97sOQ\n4OztFAPRIgg2BIOEqoLipqamQYWqZJ4cx46P5u9xhfDRoQpWitweQ3vfmuCvpHnX9p6aDYRXc+C2\nWyevWf6k75E+R2nvUedbg9J3PmcRk+P+/Nq0sH4vUOs4GOn0nWRPWcQxzYej5CRRAGa+IBGzSdWM\nvpqEgDFIIOBkh8Gea+xQ2FBVi0TteG0h0l7bmsN249SupX0XarID84Al24oQxKqTpphWeUfIBQAu\nrFdhqEpfk/zPemRbHFbLZUikw3NMT0vO0nC8GcDzUkqfllI6APA1AH5BT0gp/bE0b5CRUvpcTOf7\nwEmdkBgI5jjk5wZKqvxuPS/nPCEIxyM4ivs4WM0ZIE2oqpvgsJMBwntIS+FWU8Q0Z1vxJkUbfoGL\nt1ORCOC88PQCR4WBNd7PHuR0/IKOCOn0HXnZ8ylLVpWJxw9VETTkeLKGCWgVvq4EjwzBSiEODmEJ\n4mjapzdZUnacjWiXbIV4vRcw49W4eoV+dQ9x75p5N0SdhaUNiijLjg3EWPd3N9fMKcV8L4IkixaV\nWUeDHYp1nwxClTkespzehW5eF05iiZN5WOuH7LiEhVvkMoWqjKOpnC6N4rVjCqjivqJ3LLLQEZDp\n86N7HK4tOw1Znfo3zpJz3qaUvgXAawH0AF6ac74tpfSC+e8vBvCVAL4ppbQFcAnA1+QTrK+XF+oZ\nBys3z/q6c/aBNw9QxW9zrp4C13G4CKUghTZF0O+fMy3aMbOhkdCW91II4rAEnxia6TxGXECvPEIb\nSpDvCj3IHU3u2IMsWU+ShUOIo/HK+xY1jVlnHrVKlHtSCYKoIaY63+Uyihff1nFEZDoQh6SaOo75\n+yupbedLUWLDiSSf1GYyXV8zumrIyjXMWVgN4lAoqxqzKWxTwnYqxJRSRVNtOjZxHxTa5Fb1UZdl\n6Y6sHZOcJyPachmV++K6jOu6Dut+tIZgHLF2jK44Jn0T2lKGhuYDMKFn7cgVh3Jr34UWcYjDOo1f\nKfNj7uO05MwMB1DCT6+hsRern18I4IWndT5CfF04mBSneJQxx+F7BLIQopDUBScdd0IQsvgt3K7p\ntXaRP2O9wpizaXRm5lPW1lrgOb1E8nIBuvGeNQTsQe7KqmJPsfE4B40sUqNoeH8No0S7ZAugVAqy\nSU0dKjnOmyMJWpPf5Tu65CCOI0JSnTpOvebpexoSXJHa/jgsOV7CeZ3xpnU4r8kYU8bMu+Yxt913\ni8HKE1pOM0Jb9ckxENXY870TpDP9PjtRlKY7NAiV07StY9KsCyLBJaQkDgUnQax6py5jNhCHe6L1\njToO84a1e4M9DmDR+rq3hYFA1SO60tyOWz0i84RPKfM1VDwludrJ8VMV8QCikBRDQ/YI2KBUj8Mu\n2qgAUMhrrkCXEBNzHJL1Etd9kAEib618r6v8rOcXh6RsPJbTaxvEIchCcRw6BMAZRlwb4VeU1zBP\n05PKqVGQZomsFKXNRulVpZSiJs21Yvfm8xaxzFlweK5wGRKqEgSkQlUaicjxSw8r1xBQJ4BBbxGr\nkIXymvV3Mg9UDcRoUJZOarDZVvO93uFQhBXlAaKVDDMm0z3nSjISe3VPAW0g2k2qhE/kosfKcTiG\nqecCQ58T3bIeCSIXHKripJkm2+qjrI7jqpMSqmIEIQaCxg8bTyGKQU6/55xD0lwMBBNtNbfcLlrh\nPtptTjVhp49f03F13LVkyXRtgV5KuuK3KgjAS5eMFAR5nA6X0etUUwpJFSU6KGXJseax8j1N2m3v\ntEnPwn3AntPgKz8mikel2IVD0efOHAeT4yXttjEQfkiKa1RqqMreixq2ma6Nw3alTqQOz1lY8Pmb\npHkdef7V8On5JZsr2flRhlmELGIOrXJimrOQz4liN9csThSHecdcKspb9C3vFIe82uJJ/U7pLKko\nw1BnVQFHOKbl2iJD4yOU05TFcCg5LAbCIohDerDy+3aHZ3GBoKRWrh21VhYDsaY46qakDrZxV+E+\n9MuyUQiCuQwTnlEvsBB/+pqEfO93xKyjkFRVotP3y94hHrLQHIccr0tWQQwBQuEq6ibt1iPHxViS\nURSDwsqPEYeer+s+2ni8XzneJdtjSpPjroHoLH/DoSpZLjZ9N26rzuS4DreN5FCU8WLkauorX7Mo\ndT3eIAhCZY1BGSpai9K0NWouad2CRAKHgkNMbvh3qJyIl/reku81fRew739KrVHUbdj1OOuRkqAy\nO5wX2IgG3Oppyl4cR0rpHIC/CeC5+jMn3QLktCVMu92y5bcP9jpKo2VDw6Gt1YwsZCFJep2MN/HY\n3jMEc5gkt3uIX1j3LZcxiLKshmDVKy/bSbv0Cr10u3U9Htd9KE9RGT/jZasXUsf1ddqtrqLWSlQu\nMa77sG3SRaFqElwjiHMrzffIOIyBaEJYTqgqeZlHhCy8EJZXx8FFjPY4bSFhWPQ4ow2Tjpstx6Wf\nz8Gqpt3qdNkIZa1mL96MN963fRfikJQlnbe0Xnjd9X3bn6siyM41BNN6tO+OVxulw7kW6VZORJ/L\nZpzaszOKl3vBrUI2NM4FgIUTHSmEdYbpuPuS4z8P4GEANwG4cnKnc7ais6qA9sFySKpNl/M9AllQ\nMn/aRCaBeQMhr7n1hxQZeaGtcTY6df6I/tzKXeQWWdTv9hSHwPYyHpGagUEpWTLKU9TptVpBaFKz\nkuZwlSWH7XQII0IW+poPZo9+UkDzvOL51/Yeerwo16IsUf7v3fGokHD6OyOCJoRF3IdkhnFtBHMZ\n+h416Ev4mAzDD3HtChc9shEte5c7yKJzDEpJu+3ZobCOBoewuKutNShVsZf5hCC0M9aENgPOYlMS\nVNp+XtNxPNQ/nY/8LueqnbGyS+j82QsHfqJIlFV1gdqptNzq1Ws4Pjnn/KUneiZXgUR51qUlwDlG\nEBTConQ5JsG3xXBYZGGQiArbyLGkKOmx7baOz4t/yGi8qXUvpHmrIGSR6zTKlVr8jDia1uBNuqRP\ngnvIQnt+ukbBhB7KeGeVpYzPjffqJksox9fjgFKWjAhGCQsRYV+MaJs6LFXd+lxkC9riZavQkw1h\noRwfQPmMhyA6R1lyexQd8tJbvnIrEplXtqBNCXkOF0r2lN67nJ+b5TLqWvWQqN4TRR9HelvtCmHx\n8y+9oUi5NhxHM+47Gpe3tc+TGJR1N7aFhE6693aY0BejfkEuJZVdJcdI2rA+R93zSn6X+YAKbXPW\nJiGOhuO4isnx300p/ZkTPZOrQLgQJyLBrwQkeIGSlC7HyrJmYgi0rUiE4XPxjhwEUVINHXjOFeWa\nE9HnKtWvLbKg8chA7PIgSwy6I2UpSMF2u424DA7PNIhjVqLaIxxHuEpuKEoO5jtbr1mOk+eaiTY1\n2WQYDaOan9AR+d6S476BaLgPev5Rhpk2KDoFmfmB6RrquXnp2PUe+dxHDWHVe6e9bJ3WLWEncy9o\nHXn1PS7iIK5BxouzRIap77wQ01gcBOYHxVlq2rD3sn7VtZXEFequMOTiHPI9Wql3sDEQ1B27FOFG\nWZtPgzqOLwDwd1NK78UUqkoA8txD6poRUaKymHmfcc6GYrKL4TNvZynHWdM+GlW5SjpuC7ebtgkz\nrB4T7TxYYHVd5JKO6mXDlLiu41nqcUYiHMvmmHUTVimpwALnUa5ZhxhEgXDLcMuJ1BeeEYcNw4xE\naisD0bVV0WXPCkIW9ZphjlOQRUnTlc9N55Nm4+FlSXUB4vCUZRmfjy/3Sq6Ba2+k/qJJOBBLJvem\n62uabmrXha1pQblm39CMrkGZyHe062X+v9mLvBg56SVlUTwbAl3f4TkaHvqujUDHhh9cd22FuCSW\n6GaWHRJ0tpV+LpqU1+eyGUas5y4Q8ru+hjbSMY035Hgw/zRlX8PxZSd6FleJFB4g8gg47ZYQSmMg\nVnOrkLJw5sW8so3U5HOFHCfva935LURW/dQmggsGVyrEJHH97TDiGTP3oY89GZTOzZ4yHIdCR8wb\nyPfKNXvZMG1Bn+ImjBKdroNRllWibUycx3W21YqU3BSnrwhCe/KGNNehJ4ezKMhiNijchl3OixFB\nQ44rZKH33dCGRhO/3IbdQxxeIWHfJYhdHZUhsHUZ1qFwM8w8ByTDGBTtUHhcmVzLem5yycYvRByd\nRRYtr8MhrM44LIDwgz6KFwdHumCnlBTqr+tl3U/zz6/ru6bT8SXdV48XZ6xBKBZZsF64sLZh4SiJ\n5zRlr1BVzvkuAM8E8D/N/545j11TcrgdS5tkQBsIa+G5XiPqalnIbuJEattzUcbVO5JFO80XD3Iy\nKE2oaobJLfGnFT4RdhTX17ueyTx3vowP2VcQFA6JsmFajoPn+55lQwi74ZxaoyK3JMoYktCWvobS\nzJCM6FE9rMw4hXMAGEQwsMJXJLse50LCVWBQmpCXvkdOvF/6fOm5oiy9azONHefvLtl5zTWP7nop\nZHpnjXH0/EU5HrWONNcg72Idt+soKtwrISnOYOyqYtdr26JybRTb9aI7UdvjSJdd65hKGUCjX0bR\nL9T2Zx4/t+rRd+2mc6chexmOlNI/BPATAP7o/O/HU0rfepIndhYifZ7WFG4pLUfO+SEpLtzRiEMv\n/mJQKL2WDUp5KQz3wS2j6yL0+vPwIpeCQeY4dI66vuajsq1cg0IIohoa9QIHCMIlhGm+JkE1spBb\norOexmwNUEuO1y67erz0tmqyoeJmhhqJDOYedeX7tWECVPv0xviB7gXMNbuV410yMfcy36T71uM0\n1fIjIQ66F40DQoZgUE5O37UJBHU9UkhKhWej56ydIhPC6luOQ5yoZnzOYNRIVGqjGHEMQ22KqM9V\nwsLNNY82sUQrfI1QKp84dettdsMsHMeqfB5QyGJN5Pg8ftB3JrR9mrJvqOobAHxezvlxAEgp/QCA\nN2LaI+OaEd1BFogrNeVBH5YH6xfoSMiIjyPEGSOUsm0lvVzsTcniX3cJQ4JZ/A03obOnPENAXpM2\nBJZYrshl3XduOiagM4BovD+asI0MB9d3TF6z4ocUOa6vQZSl9pqt8YOjIPyCvrIFbd8aFG10TQhr\nVqA6ZCRKt4yTQZFqdr4XXBi4JaXr3SMzXxlRET4nL8QU1a6s120IU5BFcSi0cfXQmkJHXn0PNzOM\nyO7K61huYjPqe1Q5Do1EOfVdQlhuyrqTWFLQuowrQ7CeN4TicYs4bEj6Atd9NQXGhKb6FjWdluxr\nOBKAQf0+zGPXlGyGceIf5gfL6bhNnvX8wM+ve1MJbg2EA597u4/GdlTzFQm+UfO1oZG13ncdMBPo\nujndpNg7c4zNOM7Ku82GsjHr6h3pgi6NRCKOo0tOBpB5gVtFIEqxSceltFttgIT4B8ibVp6/zjzy\nEIRLjnO8X4dzVLZVQyDz+HwcAKYz7zDCjPvEf2REu0bpHkWyd2niM0Z1L5gc1y1KmvRaRhzm+Vcv\nW4eejnJMWo5jWkeSQNCS3ZbX0SEsb7004yqbT3Mc8m6KYbIkuDV+OnklQt/mHaGU5ZYfrPt96HPh\nLKla6DcbFHJMZXz9NDAcPwrg91NKr5p//+sA/tPJnNLZyaFkPaz4wZJHQKQ5V5vWkNRsCEZ7nDUh\nCO1BrtTLsqX5g7P4O4k9j7V1c9+l4u1oJbR2FIR02eXMEEEoHhKxHIcKec0vnAkxkGfJ7dPLzm0b\nItM763Ear7xrja5Rfjmb3lZ8DRKecdNrPe94tE0RNQch4Z+UbChM5hryeq77kOvwQk8dIZTpGDBI\nxGSSBa1I9L3Q4TxNjpsWJW64rTWitV4DZZ6+RzWcY0NbYrPYGAMwCSE6JGU4scGuo0ubYT4Oc2I2\nzLvqfb5HwmfCiQHVWeK6DOYmNB+nE1E2yrhKjywzf7AtSmoYeXpnD/g48z08NyecMJm+Fgf0ag1V\n5Zz/n5TSb2JKywWAr885v+XEzuqMpHAcvfXKw6wqZSAO+jZ8UrZqDchu9jhKqMqd71Sa9wmDeuEl\n08PlLAabPaX7Z3ne0c5xx/vulbJswm0paJ8uoYRxKMeRe6Fbi2jyfYrrT89MZwzp+H1VioCXjrvq\najy+hjEovZaRiNNmQ8aYpNbkOFeUy/l65HXf1ZbxNQurs9yHNijuuN3mVofzoBR4CYU5yixKCNgK\nyhKjq67BOBQZZjwlq9h5vQzKAZIxt6CvFOixoQmQ6+xEaQQ0ze+w6uo7IGuEs6fk75qn0byO4ROV\noVnr+eqahccEKNuq04WE5DiuOqx1JEJnYXbd1ZeOm1L6uJzzIymlTwBw5/xP/vYJOecHT/b0Tle2\nQ8Z6VR+gDlWtOifbqlj+OV5K3MdBLzvutfPXfSr7aFSlKNlWLTmuxzUMT6iL6fy6r4u8Sa+18Vsd\ny9ZeEyMLr6J8NSsmE2KYjzOdV9u9VDzCJqwyK5QmJJVsKIFTWTllmb3soix7G1bh7VhlnK+Nx1kZ\nT+dUaz449FQNhFWucoxOFfo14RnnHunCQGNQUg3bMSdSr7meo8gwZKN0XcThpumOJhFBG2Oz8ZN6\nPhp9cQhLvt8PSfkFfeu+NQQN96HekV4hXe3UrZSDmFJW460CjxNLaqGfjixo501HItZ9zWC0410x\nrlx4LO/ztnFYJ6L9aiTHfxLAl2PqUaXPLs2//3cndF5nIoeEODgvu2ktsCVugr3jeXFKJbnhProO\n22Frxgsh6MJzf/OaJB7kDLnFq/G8HRu/1cpy/zitIA4ARGqOBc2w5yexbI/j4E2KNILQaZSsXMdc\n9yEHarxfrqGEc1Ta7dYgkTaE1So/OSeqB1GhJFECHHoqypLqKayX3RpFk75bjByM922MaxiGqc9N\nI5QEFc6jMKK55nFGqB7KmsM/8txl/LxDmg/KQPRdUska/nqJSHAOYfG9WEsvKScddyLBWyetIo7R\nII52F8Na96HP5Shy/BnnVo0zVkJeZf6oxlO5Dk7Hlx5zOrQFTIXEXN91WnKk4cg5f/n8/6edzumc\nrUhlZzEcsqHKXN/BHoHO3DhQ9RraQFgSvBqUdZ8KyWUWSO81cJO028k4aG8qoRq3raM42KthZVlJ\n81ZBnF/3rQc5pyYCaF5g60F6hkYVsYmC6CVOb+F5jd/XWHkZV+fqKUsdvzfkuDI0fe+Q44IsvDBc\nQqsUVYhDh1s04rDkuB0v4ZwgG4p7TzXZVh3ccX0No7pHEoKR58kbS+ljSOaZx/eYehB9zcoBsanM\nar3kdr2YddRkjHnI0josMu69a5JMUdY7efHynQLGPKeL+3M12VZMpo82bKcdUI3utSGQMR252Awj\nulRTk7m4cUr3PxtyfN86jl/fZ+zpLhyq0g9WCPO1yhWfHvhsUMz4/GAlo4NikxVxECfCi19BUl2U\n5MHtYVQGRcFn88LrxazTax1ksRl9xKFj0/raIo5DsnPKOPE0qy4oVuvsC69Tk/U5mfmqytkjx818\nLwzDxWrmmjtwdpZGEF3SoS0cQY4LErHpu3KubqEfV4gbI4pmnNNfOeQl58gorr0XTpt0qnUxiDah\nCfDO27IAACAASURBVGFJ+E+eNa9H+f7diMNmVUXcF6+jdWc3O9NciTYE5p1STpftsksIgrkJ9f5r\nMl0jFB250N23JZnlQHOfM0KR6+O6slWXsF51xQE9TdnFcZwHcB2AZ6WUPh41BffjAHzSCZ/bqctm\nGPEx5yvE1ByH9ggOVSW45ymUrIeVZFtxVpUtYuIsLC99Vys/7ZXpc+cW0zIu/3v1HUKatyEs6rdj\nMkbmF763XEbJqtIx5cEqCLl3pScVcRkVKdiQhA2rqPi9g0RMxlAHgyxc5FK4A8sP2Epw7X2jjjuZ\nQdLSBCDSXM3na9PGmLOtIsQhhiDy1uXY1bgC8goPo+J7jrjmFY+T920RSlcyzDzEyQairheNykYT\n2ry0cQyKete04+CFcyT5QlKTN4M+Ti3Q08hRcx8eotX9s7STpgt6bUNR++7UsK1C8UqP6FC18KpR\nCOvgagxVAfj7AL4NwB/HxHOIpnoEwAtP8LzORA4Hynoo3EQuYweG7K7elPEUTCW4IsEVl6HnGy/I\nQFUxNJF31CGleoyKOPyUUk12c0phnX80x8EepIdEOjM+2ri+8srlGF7BYNe1x5dj6HPaukhkNLUu\nLjnuIA6+F23lOMrv8jlNdoehKnXNvZ6vx5N3j+y1MffRd3aTKt5JUOaOajwFtS76+Qt3JIbA3iOb\nKKCzsHxkQc9fpWPXcUuC995xmpR163QxCV4Qhya7x1GNd+i7utYliidO3XQuowkve+E8fjfrNbTO\nmHRvkOuozVJzQSHrvrNJOb04JjYFvZMQ1hmFqnZxHP8ewL9PKX1rzvmaqhL3ZApJpaIkdHbDWj1A\nMSiHKoSlPQWd9bDuOzx2eSbByUBwCKvua0weZK8XYV3ME7ytXlNd5BahCNzW7RSMQenb8JyMi3dk\n4fn0nZwuG2VVRQolpbZgsG5exG3YWyWnlaVBHDkXJa6bEBoPsrfptWYL2tQqRVG6WoFLmu70/YjJ\ncTOOcr4l7VaNMyciY6ERlWtQ2VNmfMxG+WlyXHfZ1ZxFMbpuooBFHDUzjAyE41Csus7lONhArMtx\nvP1bbLZV4TjknaJ3h8NwGonoNd8XR4OdNGWwKOQ5FU+26fu15xU7Y1WPHGgDsa2Ri6nl0NGG5lAh\nlPWqw6VLujb7dGTfOo4fSin9aQCfCeC8Gn/ZSZ3YWYgOPZm0WHqwOiSlwzM1xjl5rimJR5DLcYBp\n0bhkV1+5kpxz+X69yDeD9bLLuWskopGFUpaWy7CoySVBFakZchwhskAznxVBDfN4bbL9vHzedChC\nIlWJwiAO7zhjzkZZspfNrUK8e2FaixDiCOs4vPTdhBZxcIW4RhbKEbCdglXYTl1zRRyjaVGiOQsd\n7/fSdFedj0SjeyTvDhsUN023WV82K7DWg9j1Imu75T5s4Z5GInrDrlGtRd17amucuohntO8Ut/3h\nwkD5nOkLVxCHJccPTLZVPf5BiYCcTZPDffcc/x4AX4jJcLwGU5v1NwC4pgwHh6Q2Ko3WjCuYvF6p\nUNVWednOQjAtRzrVBZfG5RgDGRTAek1T7nf1sEwFugO3e5VDbklthWjk2mavSY43KJh8bm66pklt\nzWXYvHzrNUXkKJOgovxK2wxCIoAd5/CMVEhPBC/qPXUQijaumsvQaKcrhkBXjlcSnJFCVYrUnl3m\nJ3/+kVvKEipjZOHxPVttIDqFOJRB0cpvGGtluhfOK/t3yPhQz9XNkhqn1uMyziHSOl+tFzE0vW9Q\n+q4tAKwch+XQmNerxnXaARCY3mNZIxJeBuZ3yhiaNkS66vy6DG//9SlrUwyUre8yDqhK6zWGRjum\nEgG5mrOqAHwlgL8E4IM5568H8GcB/JEn++UppS9NKb0rpXRHSuk7nL+nlNJ/mP9+S0rpzz3Z7zxK\nmpCUSq+zoSqfNK87AOrxNttqUuyqC67mMhTs1em4sgg3g427rnaMm8Xfec0J/Rz1YfBJzSb0oMYL\naa5gdZs9ow2K56Gi3iM5J1PlbDN3TAjLCc9octymptputzojiWPWJh5vwnOk/HS9hlNRLq1O3Pnq\n+JxtJZzCmOfaFY+baMJzOmznGxRtdPW+G16SRdM1N9H4UI0fd7W1DsIYjPuIw3AlqTpjHJISRDBm\nS4JPWXu1QE+38fFCWMxlVHSvs6TqcaK6jGkPHeIT1TulHccJWdTQk60faw2EdnDXK7tJ1WnJvobj\nUs55BLBNKX0cgPsAfMqT+eKUUg/gRZjQy2cC+NqU0mfStC8D8Lz53/MB/PCT+c5d0oSqhtYQcCW4\neBtcf1HmdxZ6yjF0Z069kVNN7RuJK2m9nb7TnmI2sNp6R9WLL4YmyFHXxrJ6NT6X0b7w1YhGWTUS\nErLjncmqAWxBnyVyrSdnlGLfjnfJJgTo8I/udqtj2Zx2q69ZIwLJwuJ7wYkCXIEu5yWKvrmnlECg\nuYYxW+7DGsX2OWtkoVOQbeYZZaoJ4ujasN12rH27dPaURhwdhaqi+p6I+6rjNrS5UutFIxegchzN\nczb3QjsUttmgdkD0uA5JaYRaG5M62VOEOEx9h2MgJLQFYE4dbh1T3bpII5epHuzqRRw3ppSeCeA/\nYsquuhlTW/UnI58L4I6c83tyzocAfgrAV9CcrwDwsjzJ7wF4ZkrpE5/k94ZiLHlve8NUErwzhXs1\nVJXMQtAIRafXdWletKaOI0IKKh3XkOPVAFUkYpWfrlr14LYQwvJCNoqAFHvMcTgIYs/5ZbzfgTjU\nNUgVtYyPFM7h8VXXmT0iPGJZKxpvu1RNdq8aQzDN4bTbkBz3yPRRh8I0JzKWMQ8pcC1KMTSdRRAe\n4hgiJDIwV0ZINFT4fkpxHJKM03R9xJGLY+BxHMzT1TXf0TtVkYJFHA6CGKPwLxkgxYnI/1wnIs9i\nra5BZ1WttN7Z1mvT/JBO35U9g9YKifz0m9+P7371rTgN2ctw5Jz/Qc75oZzziwH8ZQBfN4esnox8\nEoD3q9/vRlsbss8cAEBK6fkppRtTSjfef//9T+iEPu1Zz8BzPu4cAMw9YFpoqCvEDyk2abIeFBIp\nHsRoY5YMq6dUwGogTGir8xezMRBD+1JsFaye4ro1FCbef1m0lBZpuAllRP3K8dF94ZtwjoqJC0Kx\nNQo626oiBZ1tpSu7TX6/E2LoiBw3nWiNl61DWCjnKMfTIaZi5IIWIsb7PkJZejsG6p5U3CwRILJb\nIwLTQkTxNApZ2MJA3wCN6jiMOHSaLj+3hoNw1pEZH2Luq6yXno9j73XOuUnTneaOFmW7qFz3pPLr\nNUzCSd/ReH1npW+bRkfrrnPqNeo1c5JN5T4S9IZwuhWJDnnLuaxX1QDd/L6P4LW3fRCnIbsKAENO\nIaX053LONz/1p/TEJOf8EgAvAYDrr7/+CQX9fvFbv6D8vOpsiEnHGjWUPFCGwGQ9rBSZXrKqbEEP\nIHHXlsjbjDZ11HIfVYlmVKNkKtA7PV/BbfUS6dRE+b+S3Vbh786qqtdsQxVwFYruYaSRiM626kWB\nawOhQk8cvzdKbn6OpleV8srZm9Zhm5qCPJo0Xbk2FykkW69RkEVSKCs4zpC5dYm6dwqhyFyNssw1\nKOJXz9fK1SPHLffhK9EJxdV7Wp9bhCwqsuyc9dUgDp1tZxyQ+TiaHwg8fw9xrHrtgDAPWJ2unPU1\nt6nvenwgwzQdb8rCLP3i+nbNaz3CG7yZ5Bs97tV9UEj90HFwT1p2ZVX92yP+lgH8xSfx3ffA8iSf\nPI8dd86JiOE49INadbg4501vh4xza51tpbMkNCStpJnmDeQYuudVyZ4aLGehi5i0oRHQOAz0sqis\nKk8R2GKoFj5vdWigt4pdvxTa47xgPMia3RJzInV8zJX4LeMKTZneVk5dBu+nXdFUVRyj8iCZQ9GI\nQ47HNQ18DRHiMDsAdglXtmo81XG9x4VGFn5LkzYkxQkBmhPRqaZm4ycvHbfT3IefQGC9b98QmBDW\nfN/C0FbOOOel6Q4+QplQnIzXdSEGKCVG5TqNtkXrE89YnS6dGq57WHnV+NtBh7ZmQzC/O9rQyLjX\ndYFrTsy4ys46v9Ycqsd98Pi8wE5YdhUAftEJfvebATwvpfRpmIzB1wD4X2nOLwD4lpTSTwH4PAAP\n55zvPcFzKrJeEcehQlVb9aCecW66hfzAa0jKbvCkQ1iALM5a9xGS4+plEUOjF4kOSfHLYuK3oiwH\n7a3V9EebRusjDo+8PCrEYDzI4pXb0JYcQ3uWLqmplGKEOLZjLr2ceYe+XUVytf6Cj1+Px3uOT/Nt\n00JNjrs1LTo8lzUqgxvC8pCFNn7jqHteQV1b231XxrmhpNwjzxiPdO/kfybN67ifPaXXRe1IawsD\nQ46D7sV2nGqdNBfXPM/O5w0NWhsycqffnRoiNVyJk3xhQtKDzbbS16w7VwOWm9iMPoLYDiNWs35Z\n0zul0/114eHqKkEcAICU0nUA/hGAT805Pz+l9DwAn5Fz/qUn+sU5521K6VsAvBZAD+ClOefbUkov\nmP/+Ykw1I38VwB0ALgL4+if6fccVTXZvthUCRmlx7BEcqAdbM5g0VFUIQnsibojJpuPqkMSU7NZ6\nhFbROF7TaOO98v9mtJXmMq69JtPtVHlNu8lR1RIi1+/VCt8gEUXwcmM/me9lz8iWqHI/hRy3leZV\nAfKmRvI5TbLXVFMbqqrn6pPdelyHpHTdxzQfZdyQ7Aqh1OdZx3RISocwTUKACsOUAkDNZVAhoQ6R\nmvUi6y6p56lQk3E0tDJT43WnRx+JDgqVcysSPR+YFL4JeRbOwqJpy3HM42QgOkGWHdVAqZCUvheb\nwaKv9ZwlWbY8EMQxc5zaCZTP1Z532c5XjqbWO3IubZZnLlzp1RKqEvlRTNlUnz//fg+AnwHwhA0H\nAOScX4PJOOixF6ufM4BvfjLf8UTFGoixZE/pvGkNDTWXoS3/qpsarAmnoBcCILBXp/XWxa/JcV2U\npMdLyxGCybX61XIZuoWIVhDy90GT5l37AhvE0Sdc2Q7NeJglY7KnWsQh5DUriJG9YycMw2EVMRya\nHJ8MhOYBqgLSVdQAyiZVHHowNSdZG0u1/ekRISzhgZpKc3V8N31X3aOq8P0GjuaaR2sUTahKQl49\nh7yqQZE9wXWarkFHQ+toTKFHZfy04zDWMK/lyhTH5SKO0ayjae5oDEqUdms5Di99tzY5XPedKeiL\nOJE2zGsRh8mG0iFVRY4/fqXux1OypPqAW+11wXANYWmu9DRDVfuap0/POf8bABsAyDlfRG14eE2K\nbless6TWXfK75nZ2hy79wGWubFbP4yaP20kFlH06pnG7OAtnMVCoqq8Kghd536WCdOTc5XOeN6U5\nC9nTXI4jx96MflaVhucmC2ewyrVc8+iNj0ZZVgVhwzC6LsNuKYtyfMMDaO9bHUdfm1aigK3L0HUc\nXVcrrnUWFu/0Vw0ByrmE5Hhu0ZfwMV1CcQIAygxLFomY7CkdqlIhL0OOZ7su5JyY45D1Io5GRJpH\n6btynE4hWnZAhLi2hqYihek4VUnLuBu2VYZANydsDI16d/RxeJ1O86vDJ2Fne49SCakBMBEHs1dO\nMYqdMRA241FHLjpzPOFj5JpOWvY1HIcppQuYI8cppU8HcOXEzuoqEOYy9H4cZmOWvn3gnCUB1NDQ\nuqMHPr+QqwaJ1JCUVpaT97Ij1VCFGDYmrluN36CIP1u4Z8l0GY8UgTe+Tx0H74YHzJ6/Yzgkri+I\nyVY5t0qxzQyq5Hj1vlFqV9jQyP9Djkhzrdhh5sv3eJlEuo5DG5SGHM9TokB0LzhVGmiz7aJqea0U\nveysUSldvgY2ooIsGLnqcNuWrs2uC+V0eQjVPH9bkCpz7XyNCKa0bsNljNkgV43KB6XYqzOmQk+m\nxkr3sKpIZQpV1VDY9LnOfK910hSX4WRVyQZy8v013d+m9U7nOhq9c9Kyb6jqewDcAOBTUko/AeAv\nAPi7J3VSV4NwUzHvATJprquxdSuSaWwKPUnISxsI63HoRTt9b0oaVqu6jz4hz8BvM3Koqn1Z1koR\n6Ji1RiKuN8WKoK+KwCKIdj57kKIUvRBDUQSJFMfcToNDFbqmoe+t911CVUyOq8JAoIaetMdZznXM\nJhQGxE0LOzYohjR3QlJ0T5vwXKbUZPU8TTfdVK9Zk+NaifK+HtM4jDLT3vTIiGO+Ng+JMM8kfw+z\nrXR2nlkXso5GXHdQe6HJXA6FATXzkO+dZCoy96Gf80plVU1GtB5Dd7s1dSLqOI1z1SVrUJSR0xXo\nkiloQt5kFG3rks4cR+7RgeiRvhq/jbp3Jy07vyVNbNrtAP4GgD+PKUT1D3POHz7hcztTEQQh7Sjc\nrIfRkuOay6iL1j7YFSGOjSx+QhyCIHSB4TRft0HoioIcaNyH1fWcjLdOLzy/FMxZ7EIivVn8tupa\n5nLsG6hZTL3yXIGKsrSSno7tF7Hp3j06VDWae4HyHYYcN/UXdv8OuQarpFvlN4xqPPmJApx225Hy\nKyEpHpd75BgUw/eo8Jx+zm5/LuIyts616fAPG9eWNKfsKZnfx1lSEUIt1+YagnHHfJu+q8luk5o+\nVOQo3RhSmkNVhey23XH1FgnT/938jlfDJH/3nDcOedteVdUZWysDUcLCSi8cFD1ik2xOWnYajpxz\nTim9Juf8ZwD88imc01Uh6znrocYm5welPYWt3WgFaCHjulMPdrBNy8r80eE+5kwM5j6YsB0dTkSy\nZ4oXNNrFXGLWAxuIjkJb9VwvbYamclj3mNJIpMmSUYpD5rInasdtGEYyiXi+Jop11ouMybiOibuG\nYGyJX8l68hCH5gHcZoZRCCtbhW9IcDKKcm3a0AA19KS76co1m5CUukfu5lXDWPkeMhDjyOvChqR0\n2G6rSHZ9nJo9FfWqGs26M7UO5FBIhmEUtmvQ/UwUN+uLyW5VJ5TpOUuGYU3HrR0FpnVK4d8+GUem\neaccgyKkec5VH6y7VAoJbQeK2tuOWyNNY6PJtjpp2fdbbk4pfc6JnslVJrLTn1j/UiGuIONm1KEq\nHWvUoS27+PVCAKoXVLgPell0dkYZ19lWTs65NkKG+1Dejs70sK0fRseg2JCEz3GM7riXXisvPGcM\nDfM5yQtqveyx8b51KMEYDgqfFMQRKj+bpit/Z2J5+p94Ayeu35DjOrSlrsHbSbCQ2mM283XYzmSe\neVxGOiIduyAONA5CRRB0zTNnxUZ0chC843RFGRtHo+E4fOTK1ywKWfMDQG0VEpHmPTlj1lnyO07X\n0JDNkhJ+LXpHVvM7taF3rcynNN1V0S+c1lsjF9rR1L3tbLaVzQC7KgoAlXwegL+dUroLwOOYwlU5\n5/xZJ3ZmZyzS5FD6UulWAdv5pTDkuIK9OvSk6zUOh4wLB+wp5KZyFEBZtJp8k+Po3HLxrW17hLr4\nOaUQqCGDslFUb1/gSnaSQeHjdD4JagjhsY3fy3es1/X4QPWadeUwUMMwfBwTnknWcIjoFiUczgEU\nsigGRaVRjo6h6Ww4T/Mx+pq1IahIhFuOYB63mWdyjzRC0WE7L/OsMZZOcSP3qmoSAig816tr4D1R\nAHFMxuYeyb2Qx8BZUnJeGk3pdcTOklyD7Oths6F8jsNNIBgtaa5RvIBU/S7od8c2G/SctM4aII0s\nnPkHfYfDrZ7fGgLetmHMNdxaj6OMn0IoJy37Go6/cqJncRXKqp+aGZZW6CtrCK5spxdGcxzATHaP\ntnBnGpesqhY+2+6YYmgCAll5FpMHNJ2vZG3puX3HWVLKoAQIgkNhchyLUDSyCEISJgXVvsCy+Buy\nczZOkVJsuJLZ0KQEs+WrMRwdhxhaJWfGVeiJM5KAWjnukuaCICgkZZslynnBjJ9b2WuW7CZGaxJ6\n0plN5h4lm6bL5LhOx5VQFSv2JlEgMceBci80Elmpe6STLzSy8ByNFd+j4ixZR6MNeY42TZcyDJuQ\n1zga0lw7MrJGmndh4LBtsu19VKjq8sYnxy0SsZlk1TG17/9h4SzI0RzHZkdSQEc6rhLDMe+b8dqc\n8588hfO5akT2BBYCix/UpcPB/F5CVWM2UHJtPALFWawsgqgGpRogjzTnFMTSgVMrdvXd2zGuy9Cw\nHdBetv/Cc7ZVizgq95Fz9VLrC2+5Bh+J6HoQhRTUfLNPx6izsOp8EQkxSBiGDYTUZRRyXIeqlNLV\nYbLD7dhwJfuQ4CYkZbKw4JLgtg07XbMznwsPy7iuXRHDpIohm7RbRiJ9opTlqvzG3KbvrvheB4iD\nDdaUbdcqfAnbsAMia7JdR2NjmACUd0S3/ZDxLpFTJKEkeqcK4mhCUh22w1YV59b3VqNBjSy2Jt3X\n6pfLm0m/HPTtNegQeYtQZgt4wrLTPOWcBwDvSil96imcz1UjEpJijkMe7MWNGA7r7Wy2QoLb+aLA\nK2mukYgXqsouab4V8l1B0r5LpreVMQQOUpBxr6DLRxx28fscR5z+6GVVechiO+Smb5M5DqfpjkQg\nK34gDMOwIUjWQHDhnla65d5FSlGR4F0wzqGncTai8r4zCc48kJDmuh6kXHOARNwtZQfv2jrTTbdB\nHOWaUc7JXV8RUZyY+3KSIAaP4+BkCstl6JBqOc7YFuEOo814lDoeL8NQdugbGCkEGYlS0Mcp7tIm\nfTM483Uxbxmf9cvsmK7IQEjnCE6akTDZVYM4Zvl4ALellN6EieMAAOSc/+cTOaurQNZz+tvljUUW\n8qAuHW5pvMLhw6HNtppCWDZmqcc/Zt7HuxB/RJpzDrlOu6sFfX5lL6dRMoLgNNpmfueHHiQbppKg\nvnfMRO6kVEbDDwDVC9bHB6pyLQVmutBvaMnRIefS5FAbFe0dR8Q/E7YDKcteEAoZIM1ZaC/Y7jXi\nJApE9y5bI9p4zb2dL6iJ7/VAz19CMl64re/mBIWgGJIziSRRpJmfiAdSz1OjLy/bbutcm5DLTHZH\n2Vay5r3x9t3pZqdkOh/p5dXzO2LQukYQikzXKL7JYGwjFzmj0S/yPRdn/VI5zun/w8GGyE1Sjsry\nPGnZ13B894mexVUo9QEO5vfII+C6DJ2dAcwxS0N2z/NH2yqAM0Bq22brcfSEOAwBZ5RfS9j1wnE0\nsNoeZ02Lv0EcTKY3nuJ4pEHpe//F9jzO7ahCUuoeRYhDRHdg3SqlaKqfHSXXERLRIanJu0f5ffpc\nTevMuT0+YJGIaemeHYMiSESdD+DUceiCvrE9Pve20nuNiDetDW/YfkUhFG10L22CAsCsEYpdL42j\nkWhd7EAcPa0vdt6ENG95xtF/d4bRJA4AtXttm21lW4uYa3OzqjqfHxQHdGP1ixgCCYWXnUc7P0Ru\nkMh4lVWO55x/K6X0HACSkvumnPN9J3daZy/NA6QH9fgVjkFO41e2I8bcIhRR+OuVt5hVFpZKNdSk\nuYHVFMuUDpzifSWltDyksO5siiAjkYbj6JLxpjhmXRRE4yn6hVsNEmlCDDbDSDKAQgPEiGPMpZFa\n9fzbnf7KNWS4ytJL35W02zZ99wil69RraKTgpSaPc5prM39kA4RybH2PNELRva0AMX4o7d51K3nP\nQZBr072tyrWNPoobhuBeuMcnxEFJE5xJpkNS054V9jjSHVevazn+MNp3R4xZp97ZMu4YCEYiZmMm\nHZ7T5LjDlaxDQ0AGhQqGL1GI3JDpw+ml4+5lnlJKXw3gTQC+CsBXA/j9lNJXnuSJnbXIA7jYhKTk\nAdL4yi4EnaYH1KIkbi2is6Ts+BTOkZcEEC/Iwnn5TE1BtPN1T6q1eiFNw7cgtBVl2/BLcbQiGF2D\nsnWUKHMf1dDAhh7YQy3xfqjvZW+3Mwq/yTxzkMjgHEe61zbkeAcyKBUpuHUcITcxz80TqqlkfR2P\nEgK0MdaIQytjOTdjROn5D861mXRcCtswac7hP8txjI2jobPtPIUfORot92ENijeu15H8TRCBHpfa\nlQbF0z0yztWgN2WrhsCS6b4h4LT7i4fWQAjyeLyEsCzKktTeqy0d97sAfI6gjJTSswH8GoBXntSJ\nnbWIIeAHGIaqOmtQDsjQtPUdlstoCwPt4pe/Sb2GXiBa4a/M4pcXta3XmFIHj/YImePgGPekgKDa\ntltPkRU7hx48pOCFZ7aEOFhZyrjOnkoJ8796LKMUlTKT7zX3QqqinQwjlxynEFanjFklx22XXaDu\nCd6EpGYjVI195Xt03y42KDqkVu5prr2t5Jy146ANr1ev0QfKUsJ5TJq3aM2ul4G+V2fbeVlVNZOQ\n+MTiRBFCEYPijOtUeUDI7oyMTCi+ouwutZlnTfZU35V3XD4//Z12BiSHsugXSvdnJNJkc65onJDI\nScu+5qmj0NQDx/js01LkhRULzw/q4iGFqhqDYg1NkyWlYLjJkiihKglJOVzGMLoGRb8s03f73Efr\nTWmOw0tB7Ezu+rqzykk2pGk5DouCOkIK9fgw85smh4REdHim8RSVgTD3qIvTcYcRPiHszC/1HVEh\noVeBPmpyXM5zvgbmLBRSGJSytJ1/x8bQsLfe8EbJOhSy94m+n0LwVuNaz9UYAsU1WUfD58r6cny7\nXrzQk8dxxIjDonLTS2po07pLz7MGcYwhEtmMdle9khBAGYna0Ezj1ejacJ41EIUc73z9woZD9vCo\nWVi+oTlp2Rdx3JBSei2AV8y//y3QBkzXmkhzsYtXLMfBD4oXAj9wTRTrZmY1/3pCBLJwps12tDel\nvaDaBmXlGJQNGZTiWVLoSTgOXvwyv4w3cLv1voGJ1zHjir/JWSkUygzj+VKsuDeXQbUL8hnpjtuR\nsvQQx6rcC4fLyHo7VmVQvFCVFAbSuFHseY9mhoQUSpquNpbZqfsY/ToONij1XrSFoWxEdS2CJngZ\ncXBISvbXYIQq53yFHA2dbRfWZQz+VsNuWvd8TmXTrK42LfRQ/DBmZHW95ZrH0ewwKMfSiEOHDHVd\nhlbsGvXrjEegdTTr+LZ8Xv8fGRSOgJy0HGk4Ukp/AsBzcs7/JKX0NwB8wfynNwL4iZM+ubOUUTPz\nkQAAIABJREFUXZa/hZhMdlnEcWUz2mZmOgVxYM6iq00OzWKuip25DE7TnOb7OediIDZkUEIDQd43\noybZBZARR0EiCrkALcdRFQEIiZDhUCSuGXeMZZdgxiUdl1uGi4FovOkGQVRlOR6BUDzyHUAxNk0d\nhxg/Gud4vEYiXt1Hk9YbjMtnJAtr+h3lmnVrGbnPXQdjFC3H1ZLmklXFWVi8Xvq+KnZgCucaR2Mn\n4qCMRJk/h3OvI6QgBsWEquYMwz63vGHlDey7KcfpUn1esnOfl46rnbeCLIJQuLRLZ73TcBykXy6R\noTlp2WWe/h2ARwAg5/xzOed/lHP+RwBeNf/tmpVqIHY8KKV0p/kWiURpd01WlQOTvewpjxyviIMM\njWSAzMdPKsTgE3xdaCCsAbJx9xZx+EhEK4JRh2HK+Gji9Ls4EZ/UrHUWNvRgw3NVwbabHQEOJ8Ik\nOCOLztZ3uKgpSLvlNuxANXIeZ+GhsoIs1PmkVJEOh2GkNqZLMFl4GmVx9TNzIhKGEV6n1NmQQeFz\nbUKbPY07adrbMRsS396LFtFuRwd9UwhLzmEYfQOxGW1ab51vuRX5bjm+PhfZ14d5xsKJUvINIxGu\n14giIDz/pGXXtzwn5/x2HpzHnnsiZ3SViDwQsfA1xCTjNs+aDUoESV3SnBeh8vBZKQ5jWzmu4TAb\nFO4gKuekFYH1jtotZZkEbz3ItqXJND40xwFUSMKr48jepkb2GuRSmB8o10AhL/mMKMvp9/p8NAmu\nmxPqNhvMD3F4RjxaPr7mdXT4rK3jqOcv4/uF7eq9G8lA6KaFbtgut9lWGnFYHsjbJbHWTOhxLpKL\n1kvraAx0HOsgsKHZSpjXMSicKKLDbWvnHdmS01VS1gc/zMc8oxjRDSOLvjp1ctzpGo6OaDCCiOvH\n5nHKzjpp2WU4nnnE3y48lSdytcmaLfyKLD+n6ZKBOMdZEoQ4So+p0bYokWNuqNJcPrsZfYPCue5y\nHDEQ7DXxpjbyv1UENmTApGZ54Td+VpWMxw352vHt0PIAUrgnv5siNte4ojEoFU3VewCg7BXuNvzL\nXtjOb8/epYSca/hHz5drMOMKWTBSKONR7YopeqzzWclJ40X2pgsqG9tsq+keURaerAsieJvaFUIi\nNeTlGwg2KJc3bZPO6d5J7ynmDY9OCODQk2cI9DvSoHipveJ3x01999/z0jW3IJGjkcKaHNM2Kcc3\nKKdNju/6lhtTSt/IgymlvwfgppM5patDShZDgDgaElzGmxYl0/+XNy15pTM3mqKkofWapCe/zsKS\nY/K+HoB4U5ZYlHHT4VM8f+I4OC2SSc2Q4xDSfIhDDxpZ7IplM+Io1yAGgrxsz6CUDZgkHq+8Wt1O\no+MwTFQ53iCUauRknv6cNMv0DIEJ26lKcIuy5vFdabfGWKqQVOM1O2itkN0wx2YSXNeW2Kwqe04b\nJsFlHW34Xsj6IsTR23vH66IofEZfxYlqOQ4OPZV3hHlDFWLiBBUJYdlQFb3nXVLHaUOkrBdCQ9AJ\nx+Hrnb6bkmnYkT1p2ZVV9W0AXpVS+tuohuJ6AAcA/peTPLGzlpr+5lv+Ujm+Otryc++ZA1qEV7YT\nad4SdnNIamUX+eAs/nWfcGUztl5WV+OxbJhsW/XOzI9IcFnku7gMUV6sICp5yaEna1CqZ9nVcfaa\nxUA4WVXDCOTkxPUd7qPrfL6nT7BKVHn4o6NcS/x+aDvOAjXM19RxlMpxOZ/pf04I0FzG6CCOYnR7\ne4/qPVXXnPxsq1WfcGWrs6EqahKko5+LbHbUrJcg2644GlQMJ9d+JUAc7XHqutBdc4XXka4Ia1oX\nPiqXzrzk1CknakXzN9vWMdHZlrLlAVDfdzYQcszQAS1lAFa/PO4YiFXfNdlZJy1HGo6c84cAfH5K\n6YsA/Ol5+Jdzzr9x4md2xhJxHGGoSuZfOTqExaEnrjSXYxWYzIvWQSJT3H1wUg1rDrnLcRRlpo9T\nq18jA8HEf4tErAfJioA9SK4QjpQoe9Mu4ugmg5K7FBgIkJctBLL8XhWyVpa1/oLSbuVcxcsuyKKe\njzuukUVu03HLvhvsTR+ByrZ0j/QmVd7z97OtvGyoroS89HcK99WS5vNz3rKBYIdC7tH0wyGHc4Lk\nC9PPjRBBQRbOmq+GwDpj2yEjJad4drAdrYGaEr+ld1M+e2kzWK6EuQlVMKjHGxJ8RwGgvuaDvmta\nI5207Nur6nUAXvdUfWlK6RMA/BdMBPudAL465/wRZ96dAB4FMADY5pyvf6rOYZcwx8EtQR5vPIX5\nwW4sEpG6jHociywubtoHrkNPDIdL6xK9mDtNjlt4vikZI/yyjAWJlGyr4IWvBsIu2hp62IVELIKQ\n47i1COpcm3YavVWKJSTFBiUDuQlhtd66nJuEi6bjyvygtUhv27PrJoeAgyzIoDStRUabpts0cPS4\nDzdUhebaalqsvUd633R/vkVNxYg64Ta3uj7x84f5ew3bWc6CQ1WlTojCP726pw0SVSjb5TickNTj\n2y26lHBurd+pmsrepMoLcqFxYFLsHNoC2tYipRfexnIWbFB4O4fHHQOx7tOpI47TMU+tfAeAX885\nPw/Ar8+/R/JFOefPPk2jAVhoeNB3Rbm2WQ9Hk13ADCWdlgDrPtUsLHqBa5PDdvwoIo+PM3EZgVfm\nhCqAOCTF5GWTVUWG5rBRHDDjjFDYC5ZTq3nz7TV4XIZvUKqnaA1HEIYJUpaP2hnQXjN73/58Dp9Z\nLqMqz13puBGv4yELCduNznxJRGjWkUZlGnGMQEuai4GQdUTjDfdhkUi8vqwzxhwHIArfOiDyHVvH\noMj4hubr/m+aK5n26ZidLspsBCYDYZw61cOuS4pb20GOc0TjYOXrnelY3alzHGdlOL4CwH+ef/7P\nAP76GZ1HKGLRH7+ytcq+Y46jo3HbhGz6W8LlIFTlVXyWnlSq0lzGa6ohw2ep+7DzuW07YElwLjAE\ndpPguzgOHteEM+AoV8Vx6P0VTPZUbj1LjzQXJcfet2RPTQQyzHGi0JNXAFjmEzneorXWO/bu0XZs\n27ADwkGMDeIQI9eitTaTTBP5HMLi9i5yziXkpe9dCWG1z81rUdLUZexYR7vTdCXLy6L1Q+pMMM2R\nym6vtUicpss1UzXkNVK4uHMTTnTbc6svqoHgdkAyX9+zNu3WIhTROxyqemzWO+dW17bheE7O+d75\n5w8CeE4wLwP4tZTSTSml5x91wJTS81NKN6aUbrz//vuf9AnqkNTBSnsQ1iOQBypeEIeqps90uLhp\nPYJ119X5zksxZpBin8jIQ1rkETyX8Ta0JSmInG1lQ09tSIqQBSmCqI6D2680LSf6qizHsW0VIt1x\nm8ygoQ23lMZ7Hq/jZmd1bg8rNigaEeSMukteRI6Two/IcW7bzf28WLnWynGLyvxrqzyQJc3hZluJ\nQdHb+sp36/Raru/hnmclOWJH+rZGENN84gHK/LZGoe9Sw5XIHAlh2XdEIRE3NZ0RR1d6WEWdqD20\nHnEc03hraC5S9lTcscLXO/K3ajh6nIbs26vq2JJS+jUAf8z503fpX3LOOaV5w99WviDnfE9K6Y8C\n+NWU0u0559d7E3POLwHwEgC4/vrro+PtLbpd8TMvrMt4W9lpvRE3VNUF40eQ4yUsRONloyhGFoPX\noqSr3XRdg5IbLwtwQk+MIChm3aZX+goi8iA18asLugDxmoNYtoc4Zo8THVwvW2dtTceHH5JSYR45\nD/13RhDVQPh1HM34jjTdqXK8RSKcypxSqllSGY7hGBvSXLeiYQMxOkhE6kG4nUpFWT6CCOt+omyr\naB2RowFgzgBr0XpxosjRWPe1eJaPMxm+1kBsxmx255yO0ynD5BgIRhyz03mZDIduObLqkkGQKbX7\nAMn4446+WPVd0RcHp4Q4Tsxw5Jy/OPpbSulDKaVPzDnfm1L6RADuplA553vm/+9LKb0KwOcCcA3H\nUy0HzqKYfq6LOSX7oq77DhevOMhCGQiDRBTEZEPz8KWN+T7AvhQNZ3EE3N6otu0yPl2D9Y4qlzGY\na9Pj+lyjF1tvagU4SIQ8SE0gj6T8CpfBCl8pdv1CSqsQfX5ynHHM81azqPO7Gs5JiTc7ius1GFlw\nSKpzrk3PqwaIW5oI4rDddE2zRAd9CandGI7ckual6DHTcVSleU/rSCMODp9Fxi9CHFFrkSbbjrPz\n6JyYc5PPFAdkD45D3p32ODos3DpvXigMmJCFVt4HBSkQ9yHzD7cNob3uu3KP5H1OKWGtsqc8owVc\n+6GqXwDwdfPPXwfg53lCSukZKaWPlZ8BfAmAW0/rBPXD1A9jeoDT39aKNJfPcAFgGad0vGm8a5oi\nynxW0jJ/M3oV5Z16KZxxRha98oIcxHF5M7jEXxNiIoPSKg5LjnJ31MhDZT5mdAyENhwe8csKovSe\nyi2vw9XbfHwgVvgt4ogMhG9QOIHAkOPKWBqDkgkRpFpbYlBWCuo15rAdh6R0yNO7F7LPScTr8DVf\noXE2BG22na1YbxGtNgSd+470XSoOiGcgGieqr6nJK3LeJMzrZTZyKCwKSWkkYpHxjDiITAfQ1J+I\nHPRdrePoWuMEXPuG4/sB/OWU0h8C+OL5d6SU/nhKSdq1PwfAG1JKb8O0++Av55xvOK0TjCw6UBc6\n50yv+2kDev7bugs8hS417dlljkearzuf4JN0XL3D4HTMuk+H5x1d3rQGSMaP5D6CF343EvHHpXCL\n0zSB6gU31e9JKTnjTasd3Yzyq0pUHb54ol5Gkm4twnUWUV1G42XvXd9h711V+PP5zKcm2VYdP2eX\nm1D1GgE53vJJXsqy4tAcpcbIkh2H2vwQ9h6xoSEkWtbptuU4JsRhHRb5rsigCIJgVL4ZJMXdIgtg\ndqLIQEgtlcdxXCZOtKbXbi1XOs/P2dEjqr2RdkzXfSr6RacOax3xtOc4jpKc8wMA/pIz/gEAf3X+\n+T0A/uwpn1oRvVg4brjuEy5t7BzAegrrlV1UohQPaLzs3KUXW6fGyUupnIX1vmSLWOYyxjwp5I9V\ncVqNFPhlBKYX1UMiuxTEcWPWbMxqPUgZDpGFKHzdrkOOsxlGYOTjV3JcG+nqrfuEsNeGHahedmmW\n2BOyaMI5bZddPV9ud7Qtrs4wGynDTMJtnOygq+JlX275LiHHPe7La+znFWFy6Kk+/86Mt44GJ1/4\nCEUcCl5H8tkrFM6ZvsMPYUm9RtsqxN+PQ9bUpc0ATseVa/jY8y332SKO6efHrgz4uPOWK9HnoIW3\nXhCxIbDWCAHWoJyknBXiuOrFhqTIQFBRjsgqQCleloX8LHFjTvm75IWquoTL8rJw3NUpANReExOC\nMs4KApheVM+zZA8vzJJij5MUChsaYFKoHuKoNQTtBjxj4AXH9R2i/GCPH6Sgjtkjtae/s1IsXEaE\nOIK2LKx0dbW8nHe5tiQZZi2XUch0M94WDMr9jdJxo82xPD4pQpayBHdyHNE6ojUfGwgb8pKfvb5w\nsi64G8Oq6wrisHylrHlKx11pg9LOZ6fuIEAcXjirfiaZ7+J5B31HxL9vUE5SFsNxhJSQVPAAm9ik\n46UDdgGwIfDm9F1qCET5OXopJEvKvtg1lMTxW8AJVRnE0Y6HIamNfeGjvHwOVbCH741HRWx6i1j2\ngqM9KLgyvRx/8MMzgFPxLdl2hbPg+dSihI4TkuNsdGm+fBdnW8kcX7F3rtHVYbvGuHp7nKRqXF1H\no6nvkdCmbyAuh0i0JcH70EBUZNEYlGB9HQaGKQphTefqo+/Hr/ghKT4fnV57QO84z+Fj6XUKVKPA\nqEKn7GqDcpKyGI4jhDtWlvE53BQZlCY26Xj708++EfFaFkxzOndT+tIGgYg/brzG38UhqV692B5B\nJy+w/KlpRdIogiBU4ZKdKQxh7WoNviIl5zVFLPUdY5tJFB0faPcgafdZt4hjZx0HIY7GoDASaVKT\n///2rjRIsqpKfyez9uqN3umNhu6GhoZma1q72ZpVaEUEEcUVN9QZRUOdkWVG0XDCbYIwxiVGGAl3\nDWccBAVFUEdH3FCHpRFRwEFWQRwUUKprOfPj3Zt577n3ZL7srqqsyjpfREW9PO/me/e9fO9+96w3\n9n34Y2Y1C0pL1fs+58x2NY0jQxBaIAJQ/M7VSlq6pr7SX54gZH6PFiWVn2hUAt+HeI6G8wQkS577\nvjWqdisnXWF58x7t/W1gYfAgomRtnno7N74olg7px/DtJ8u/ARhxNIQnhoEe8UMpzvF69idl5fI7\nuZlJeHwgnTV551jONzE0kiYGAo4gMmG3Q8NxyGKNCIZHRR2e+PjJAJHMLCu144Tn812WYZe+jTyO\nlw+7DOFcAqCsGaTb6eulx2XUlo8YamS/Dxd4AkIiiNsnGeI1QmmcDxLWhYqOk4v0yoTR5ggldHZr\nWlxFEFC2EnFwL0KyDxP9pObi5YA+oVA1jkSzSE2b4fMiyazmHBfRUzl5PRk2X7SwaJO+p0/JfA2F\nIEKfpj5e5Cegfd1i3OnyBKFMWCcpogow4mgI/4P0yx/Q/7CSUPwMQvlh5bY2M4k0DkUdlg4+wNtX\n04dfFl4LfRxx+0pNHsfA1+W5aCs586tW4wEijEWPneDxsXK+j8hsJ2fBPnehVGRQ3a6vDbpScwGK\nwVJqLkDO9IRIXtc4Ynli71c0DukTia5N8+vkcl0y/huviWRDk2uRaulEY2cmeS53jzRTpRZ2HZpO\nw+P6NjkfR3eVAs0lvhfacXJyf0/TsuqN37WdI2PCVBX3rX7ekEQEcfjrV4ijV4w7PTVCidt7TWOy\nQnEBI46G8A9Df09XVt4nCUKUDai1V+yZucFctsnlUyTbIlu8fsy6up1rI4lAmh6k/OmR0aw2NCRe\nSG3g8NuajyPn16kGpgotATAZXLP2+Hq5jjwBpeU3gEJTkJoOkHFqSxOWN88IIkhMVbL4odREJCly\nPs9Chu+G9yi95opqtmukcQwJ06amcdTvUTzDlyZP/3zWfV+ZsNuAIDQfh/QXaBOQnH8wp6FLuW4x\nUKwEoVzxbwJ1IpEDvj+flA+4cUiapGa7aC1pGZlIGHE0QDONo1/8UDWi6ZZyZfCPknia+zs0DUV7\n4GX4opQ/PZKuhgZ4TSRv2pJmoeI4SgLgcN70IAddv50jCM1pHtUeUmblVUGWtZBVMegyw1VHjWfl\ngDPP5ExYo3I2Xam1L74f34uyiYGJc1xoOyOZyLOCUNIih6FfR+a0aITi+ySd4/7acrb8IRG1F5qk\nwoRBzVQlfV+ybI7m48hFHsZO8/xz1J255qK9QiIZc25y/Oi9zr+PCUFUFJOUoll4YpDO8Vm9BXEM\n9k5edoURRwP4HyrxcSgEof3goRNMZprnt/MPc7k2zX0o/gVMcheEL0O2f1oUcNN8HEkynHghtegZ\nGccPFIOO5jSvm1VS4pDObj+Ijon8jlAjiGbfQfRU3t4vNQW49nGUVM3er/o+NFNVWjYlJt2auJYh\nLsnSBxDI8ul+rfA0AbD4P5QkgDbRLEbHkvMW90i7d419H3pUVfo7S3kRVZXTXBSNQJmY5XyCUt6r\nmqryE8LEVKVZLrxcjC+eICQBzXIaR/hbTjSMOBrAE4PULFTnlapx+AckfxwgVj9V01Y0C8rPmnIz\nyGI7T0DxbK3Y1sMu8wOBNA3UEreUjF8tX0MWy6vLldm3EqabS1arlaTPJMkBGYLQCEXWpFKioSSJ\npiYpRO2lXPpE/HY2uz4kS0H4uUquzTSOoUyeCOB//7wmqvk4coOu5vuQ63X77Wweh2K29RpkIVfe\nnRLmKW1b1pqrbYeEEi4IpZBUuE/VOMR4MdDrxqPuvKlqtyu7tgAjjgbwD7rUOPzMQfvBpVOrppJK\n01bw0PZFJQSUWVATh13YB3l87Zg5XwaQ95sUoYnpS/e0GzgibaqSj3qpVipq9FQ22op0QvH5GvI6\nteKHhUM4f807R8ays++dowrRKLPmdKW/WK7md0iiUaKq6ppOTVxcWyaMtkhizAQKUECi1cw1qxOE\nvO8ruUc1jVMvognUn9X6RCPNswiJQJsgyQWYctua1iArMGTbtxjQEo4LkX9E1Sw0E1YsH3Q+jjBj\nHahrIpMJI44G8Iv1zB/sieRzXZn15AdXfSLKA6JoHOEDGRGKSgTN5bJSaLa98qLJSqmyjXSa+n1D\nGSIIZ5CJj2NYM201DtOVIaJZx28F0CrIAm6wzDh+d0rzjDQxCZNUUm49yRCvxMdRCCjrB9Ky60Nt\nKhNhlmoc+RpW9YW28hUFknsU/P65Zyq5d8IkFexClXSTVO24JbRpdfBv8d3RtZW86UmrUBv7MZUJ\npYye6qKs3DvH5UTWj0fh/ZxoGHE0gP/h5vTHDO9VQ8n8g+4HTQnCPQhK4k53ldSHvFeZvfRqNtsS\ns6/YkdcqMaWzrzGx4JTfpzvBlYV5lHUXmjvTw/PW1wTPRhKNprNywJlnMv6nnULuSW14dCwpww40\n10RkSXLpHCeSBR/jgbqmfYlBtwhBzvsB0sizMBw3JKbifyOTpKataaYqzcchNdTw99RMUqp2XGKQ\n1/0a1FQevoOaCStqHxBHpUK1z2H9uvD7kiD8uyRN5IPOVCWzww9duQf2WTiINx2/FpOFthQ5nC54\nzVF74+5HnsTG5XMjuR9swqJlQJ1gkhlENe8rkRnVNXmocSizl95SmoiiVivtq0p7fdaXP47cJ4+l\nObs1X4amoeRm3xVnwuKMeQZAWp8pmB33B/e0mcYx1CTaSiYMJiVKFOe4387di+geVeNrbpzrkiFR\nzqzrEYRvywrF/l5oJqw5fRkyHh6rTbLCvg2NjGZzGobEcX1f5feLvjYnFH27jFk4TwSaxhH2QYbL\n9nVXMTQyllgi/Heks9sTxBwxMfUahw/t9pg70I3vvH0bJhNGHA1wzL6LcOMFxydyuTKehycSmSE6\nS5HLvAePuNqlonEoznRNrr04GqG0rOaLa2h0rHr2uySUzJolCqEUpq28M7WIFsoT286R2K4fJvTN\n6q3fu1BTyJlONHlS4VUrUVKbfaeRQZUKZZ3jFaJ6LSxBNFJz8fJ6hngZjUPRIIJoO82ElfMhaBFp\nOQ1V9UEo2q4W8qoHfjSfXEVRUiWip8L3OdSeZLis3zUo8sH8syEnlP4dlr6Lbfstwoo9+vHSZ+6F\ndsOIYxdw5mHLcd3tD+O49YsjuTddhQ8pUCcU7zPx8A+8VD21hzY8bp8SuaG1z+VlNNpW80HE7J4I\nzs+gaxy5mTmQzhrHONOmEjrNBaFkBku/zCkjHnQiDUIpLRIvr5ofFEOi0QglvLZWneOA9GWIe6EU\ngsxFJFUryiJYCqGEGkHumncqUVXS9+GvfTRTDia3DdSfT6Jyz6fu42g++dEmS1omePhOadpHCKlB\n+CNJgvD3XmoW/vvyHi2b148fvCOdyLYDRhy7gAOXz81rIu5hk+HUXl33azZ79AQvS+44gP7Ah5pF\nVX3482q16vtQTQT5F81/lmudh+0qlNaYyp9Pl+fi9TXzTJdrz+K8YQSQanfPOcdH80mSkoC0UiR1\nuViPI3Ga5wlC5rTkyFIzbVUrQSmSrBN8LCGg2rWVIJTI/JcxbRXf1eTxc1Rb16SB5qpt62V88hMn\nTYuJtfW8PKwiIUsL5dqHGOwVpip3zXOFD/W0g5fhe79+FCfsH09MpxKMOMYRx6xbhL0WDOAlz4hV\nST+jkJqF94lIm2X4YMsQVw9NfY7V7eZytVSCNqhnfBnDYgEpoH6tjUwSmiZTZtbYpWko3lFM6awc\nKLKctbyMXJHD4ZGxKKghIo7MbFoO4NL3UY/CQu288hoqFBRFDM9B+eV1wwACec2+DlM8Q0etTzkt\nqzAl5QmlLNnntisVKpIVOX2Oulp8XppF+sljjZfGMRCYjge68wSRaBzeJNUdD7feaiCJ48Dlc/HN\ntxyTPfZUgRHHOGLl/AF87++OS+Tex1EVqoV/YGTijnSue+g+jtBprvlE8rMyzcGnD9hp9BQQDyjh\ndxKThHLcVrWS3CBfbBf9k+azWgmRRhpHbrBUalUNj3LiZ/DysJ1KKI2c44rGEZbfKBNAEPuHamJV\n42j2++eithq1l9u+3VhGQ/Xfb6RxqAEeJSIDY+d1CSe48o4MBFqDVhtqQPgmfJmY2SKY5rVH74N7\n//gXHCiCb6YD8rqWYVyxcfk8rFs8C289ad9IXiMOwRzS5ukRE0QZjUMxbZXQUHpESKEfv7ToqbID\nQauDTauEEg2QURhtsWNYIQKZLV33cYg6TMGAH/tW4NprpipFE1FMTHIdEH+OVjLKK0RBqZNU4xhj\n6NFJmXwNKS/zm2nPS+rjIKV9eD1B+/B6lGvQ6r9pZl6dUOrtw2NKn4WHJIglc/oAAAtn9UbyrWsX\n4jtv25bkiU0HGHFMAuYOdOP6tx6LrWsXxnIlkXBOf14RDGc4+kuhhQjmzVBae7UEtDIj1NZNripy\nud0qoegkogwoislPiwwqQxA5W34tuU0MkNL34fM1tOippr4P0T5HNHF7BPK836HMb1DGKa21L/YV\nn3VCyT93PV0Vtc5b9C5oPotQ3p1/BrWlXUN52AeNOGSY/kXP3h8Hr5yHvRYMZNtPR5ipqo1YOX8A\nB6+YizdsWxPJpc3TI0xE1NYc1pKVdIJoHtbrvzM8ygmhNNMsdk3jCPvaWvSMpnG0avJqZtffOTIW\nhUuGPgstxDXpa4PoKZVQsqatdMGp9JpDskC+TYtO7VYDHcJ9idydQ9Zz8uTfW80/d/I70TPcnX92\nymgWXUqkYoiB7vzwucdArEEct99iHLff1HV07wqMONqIvu4qrnrjUYlcM1VJFdgjHMBUjUOZZZXX\nOApfRpKL0sT0IOXaoBInoilEUMpUlb+enEM8PU763THOt9dKjw8rGor0ffg+5argVpTyGz5iDEjN\nM5pzvN4/RO2zbTJRZbK9vt2c4MPPUrPQTFheO5YRTP46e4Um0qqpStMsQjKapb13Qv52C5XrAAAX\nP0lEQVS+Mw/C1299cFqanlqFEccUxLyBbhy9biGes3HPSF6GUMLs1HBb9XF059VwOcvyL2SicVQV\nudZes4WX0j6af1ebTXcpA2TOgZ6eqy73A6pWQXinssaJFkarFjNUNJHwu3V5sTZJwzZKMT9V4yiR\nma3KG4Tdqk7wWvkd+bwUn9MJiybPPyNhwEmZGlNhsp5WRHCesAycs3kVztm8Ktu202DEMQVBRPjs\nq5+RyLUojvDBDtuEMyJtNqXFnGsvZEIE5OX5yr+lj6OYjyqK+SSX3AfIAbK5xhE7yjXzTPPZtD/O\nyBijvzvtWy5KKvJBKBqEdl80sixFriERliAFLUAh2hbO9AqlUVjhOVJNpJL0Ifws6zx5opEh7vK4\nHuF7EbbRJl3hceUk6j2nb8DN9z2enHsmoS3OcSJ6ARHdTkRjRLSpQbtTiOhOIrqLiC6YzD5ORRAR\nzjx0OS7avj6Sh/bYWGvIax+NFpepfbc7P7DnfB/ymKE8nUEq7YN+x87O5oNZl+IE14mg+YCqnSsi\nKWU7H76r5WtkEv1Ij57K9qlFLUDTOMppgM2JPOyHHMj9/Ss9oajm22vHl0saeGir42l+wxDhOwUA\nL9+yGpeefUi27UxBuzSOHQDOBPAJrQERVQF8DMBJAO4HcBMRXc3Mv5ycLk5NXPrCXXtgw5lVI5OU\nR9kX2w8emmlLW09ZWw0NiGeXrUbu7BYRiFDWmrzEjL6ZSal5GG0sH6vV89p101CpAAL13jW/R1pE\nlv88PMpqfbayps36c5fXaOWqd7N6FeLoUfwUihwA3rBtTc3XZIjRFuJg5juAlMkFNgO4i5nvcW2/\nBOB0ADOaODScd8w+yUsaQrPTyoqdHvIF9oOkNvNLB4Lis9Q4/IueRM8EA0/kIwg1kciRn2+jmp5K\nmGSi8uxK1eAyxJQjl2xxwkq4SFF+oG7dSd38uxopqhqHVuZciWYqPhfBFNKprT4vlJ9o1DVUTaOJ\nxLUKshKy3IdHI3PTO05Zr+6b6ZjKPo7lAO4LPt8PIDX8OxDReQDOA4BVq2aGgyrERdv3b7i/SyEV\nLVJLM2FpmkJ5DSVvwtLMHlrYZTiOaOGYrSYV5mpPFW3q5yrjE5EVAqqVIhqKqKTZSzEHaW1arwUW\nHFOtjtz8vBqpA/VkPRlGq/q+apqI4itLnrtK0gdA1yw0UxUAvHzLXrUkPUM5TBhxENENAJZmdl3M\nzFeN9/mY+TIAlwHApk2bJnP53SmNC09djwce/6u6Xws1lC9abVncFqOnykbJhLZvrT5X+J1wwAtn\ntZrtv4wTuFTOSInZemK2IcIoOEso9evRSKH5OVp3asd9q7VXyLLMuZKJQLWJxqlqFuU015qpStxr\nTbNotLzqe04/UN1nyGPCiIOZT9zNQzwAYGXweYWTGVrA645d03C/lmw4W7xo2szPFwBMfBmqZqHN\nIPMmLC3RMRzwtFUMexSnuRqdFJqqFEJpSBBOs0gcwhUAo+kgN24ah5q4h2x7de1uxTxXxs9U2meh\naKjaxKRZFJ6Ua5pFX3cVZx62HJtXz8/uN7SGqWyqugnAOiLaGwVhvAjAi9vbpc7Bh87aiB/d/Zga\njis1ET82SVOAn+FpL3aioajx+vmZaFTkTqvw25UfRLWFfEK56hyPtIy0n3K7aOc0i4xc9ll+P9Qs\nYp9NIC9RETbSFBSiDdtEgQglnOyyhllNrkTJqRqn+J19uKym0UpfnC/rIeu8aaZXADM+Emo80a5w\n3DOI6H4AWwBcQ0TXOfkyIroWAJh5BMAbAVwH4A4AX2bm29vR307ECzatzEZo+RdyXn+c/epfUEko\nPrFK92XkB1Fdnh845Hc0TSSeQTcnjjImnDKRR0Wf3P9YXK9b1cBUJRfIysl1s5KiKUT5La2Rq1Y1\nWQvAUMOuG2R8h/BObdne14OScTS+rMdOsSTB0jl9OOmAJbjsZYdn+2kYH7QrqupKAFdm5A8C2B58\nvhbAtZPYtRmPS88+BP/+8/uweHZcydNP7DRbsUxO1GzcTX0iDWbluklKIwjFxKLII00ksvHXt7WI\nJyDULPLXlpqq8tuao10lmhKmt7j8Rn67DLmWDZrQoqG85iAnDv75kcfx2dk+Ks1jD1fWY+nc2KlN\nRLj85WpqmGGcMJVNVYY24MQDluDEA5Ykcu8LkT6ROqHEck8wCaE08X2ky+jmtYwyg5w6+JVo32qh\nxfBzks3sBnatfbVCar0lTVPQiE3TPjRS7FFyZiKNQ9FQQkg5uydD0yA0U5U0Sc2tEUesWayaP4AT\n1i/G3xzX2IdnmBgYcRhK4aLt6/Gx796NtYtnRXJ2NiwZzeKJo1/4RLwmktjEfQmJxJyTH6ha1SBU\nJ7BaxiMkmnDwRrZ9eG45tsoS6/Vj5U1YakHGyMdRhtiCvirf1ciyR2mvmao0TUQSijdR9VSr2Xay\nvT/ufFFxtq+7ik+ee0T2nIaJhxGHoRQO32s+rjg3jUjxznLthZf2fp/ZqzmQ01l5vj/lNI4Sdv1q\nXl6JBt36B6Jg+VO1wmveUaz5OCQ3qpnqJfIpNFNarGUF11bJX7N2L7R1tqVJqltxgnvIicYY+zXZ\n43aHrdoDR69b2DQ60DC5MOIw7BZed+waPPLEELauWRDJ/QAwJqJevCYiE2384CzGDV3jUAfF1ggl\nNsM094kAxWC7c3QsXWe9RhDyGhqbqkqvs62apOpy1ZehkGhoqmpVEwmh+bJk1J7mK/MmKmnm22Ow\nJ1vw09BeGHEYdgtrF8/Cp1+1OZH7AX9Q+Dhm9fnlcmPq8O0koagaR7X5gF8qHFeZZWtO+dp3RssX\n3vNfl3Lv10iisETBw9rxFZKLIsy68oSiEYEWtaWVGy9rkvK/o9Qs/O8u1+U+49DluPHux3D2ppUw\nTH0YcRgmBGccuhw/+e1jOGvTikjuTVWjQhXxYb5jglDKaBya2aZMyY14Vl7OIVyLnlI0jkSD0Mxw\nlJ43bCed5qWSIZUcle4SJqmQjENNRDtvCK3mmcz78ZqGjJ5bPKcPn8lMQAxTE0YchgnB0rl9+NQr\n04HAD2bzhLPTDyiSOAaUASkkBXUFOHUN6d0zVfmBVA74tex3pUCk1CxqPg7FOS6JpqtFbaqqaCLx\nOtvavdB8GXn5gKJZyEzu1x+7Bn98ahhb1yzMHscwPWDEYZhUPHPNApy4/xK88fi1kdxn/I7FUZdq\nLS05qObksUkqP3Bqs29SCCU8R5JzQk3kZSsFK2tWlCnjrvl74igsKPLmxKE5x2VV2mJi8FQSvr3P\noln4t1dYnsV0hxGHYVIxp687O3D4PJCFIvFQKyGhDWBqOfAS+RoyvDbXJmwnNY66JqI4wVuUa4Qi\nUSbpsUczYSkZ4hpxaAmg0pf1rtMOwGXfvwdrFg9m2xumN4w4DFMCey8cxGkHL8Nrj947ks/uzRdh\nnKMQSrTOdBDRU1EdywjkmuNX8WWULJui+j5qmovSvkH5lVx72aZMDkioHYWH71eWKZYJnfMHe/DH\np3YmpseNK+bhoy8+LHsMw/SHEYdhSqCnq4KPnHNoIvemKmnymN2XJ5RwZq37LHYvK1od8JWseK1k\neEUhGv9Ri9qSCOWav0dzgodLrYbflRqEh9Q4PnrOofjarQ9i4ayebHtDZ8KIwzClscdAN87ZvAqn\nbdwzkmsmLG2J3HAQDSOAGjnB6/J4APettAFfmrx21YSl+VYkf2jL/2omrPD6pQZRa1OSOLauXYit\na83RPdNgxGGY0iAivO/MgxK5Fv6p2eDDwTUcFBs5wTV5bT1wzVSVLIvq25czSWmaSC3BUDBHn3Iv\n+jRtIoiAKhs9ddnLDscvfve4upKkYWbBiMMwLUFEeMO2NThk5bxIrg1sEXGUGGijYwqTlA8ZLh1t\npcqL/9p62pqPg4STXM2hUEk03z6EPMfJG5bi5A25BT0NMxFGHIZpi3ecsr502zKahTYAy/Y+00Rz\ndpfVILSSI/6zRijSVKURnuanaIQPnrURjz25s+XvGWYWjDgMHYcLT12PRSKsN4ScTXvIXAQPae9n\nReNoShBae7kcb3clf5xaiRJpqtIKCbb+elvJD0MZGHEYOg67WklV0zikfGTME4cSbaU6u/P5INKE\n5TUIyW+1UiTSVKU5uJXrAYB3P3eDSjgGQzMYcRhmDD74/I0YGhlV9/f15AdSaQoadsuVygHbj+fS\n9FTP44gHfF8SRWoifkCX9bx8u6S94rOQlWZDvGLranWfwdAMRhyGGYOzj2hshtGcxilBFAOyJBQ/\n0Kdl2PMmqfoyqtJUpRSCrNXzaty/EBecuh6rF1j2tmF8YcRhmPH415cejnsfe0rdL00+nhik3K+L\nLQmlzw3smkkqIQ5PYMIk5ZMeJaFoOS1AUVTQYBhvGHEYZjxOOTAfZtrfXcVfh0cxfzDOivYahCQI\n7zSXhOKJQEZb+axtacLqdaYqaWnyZVbk+tsDPV04/4R12LJPvJiWwTBRMOIwGBRcce4R+PE9jyUE\n4U1VMuva+zb6ha/Ef5bOaE8wWkKfjJ7yGsf6pbOTvr71pH2bXI3BMH4w4jAYFGxZswBb1qSz+CVz\nevHoE0OJJuIJIDFteUKRmogjEhk9VYuqEuddPLsXrz5qb5xx6PKWrsNgGG8YcRgMLeIDz9+Iq29+\nEEvn9EVy7/vQnOxSc6mbrmKK8KskysKOlQrhH59zwK5222AYN7SFOIjoBQAuAbA/gM3M/DOl3f8C\neALAKIARZrYVYAxtx4Zlc7Fh2dxEvsBpINriU0niofOJSPHGFfPwyiNX45Vb4xLzBsNUQbs0jh0A\nzgTwiRJtj2PmP0xwfwyG3cZbT9oP8wd7cfCKec0bA+h3mepzRIn47moF7zptw7j3z2AYL7SFOJj5\nDkAv/WAwTEesWjCAd56WmpLmOJPTbFECZPtBS7HjgT8li1cZDFMdU93HwQBuIKJRAJ9g5su0hkR0\nHoDzAGDVqlWT1D2DoTledeRqPDU0gu1iTZGBni5c8lzTLAzTDxNGHER0A4BcgPzFzHxVycMcxcwP\nENFiANcT0a+Y+fu5ho5ULgOATZs2ca6NwdAOzBvoMae2oaMwYcTBzCeOwzEecP8fIaIrAWwGkCUO\ng8FgMEwOpmx5TCIaJKLZfhvAySic6gaDwWBoI9pCHER0BhHdD2ALgGuI6DonX0ZE17pmSwD8gIhu\nAfBTANcw8zfb0V+DwWAw1NGuqKorAVyZkT8IYLvbvgfAwZPcNYPBYDA0wZQ1VRkMBoNhasKIw2Aw\nGAwtwYjDYDAYDC3BiMNgMBgMLYH84jOdBCJ6FMC97e5Hi1gIYKbV5LJrnhmwa54e2IuZF5Vp2JHE\nMR1BRD+badV/7ZpnBuyaOw9mqjIYDAZDSzDiMBgMBkNLMOKYOlAr/3Yw7JpnBuyaOwzm4zAYDAZD\nSzCNw2AwGAwtwYjDYDAYDC3BiKPNIKIPEdGviOhWIrqSiOYF+y4koruI6E4ielY7+zmeIKIXENHt\nRDRGRJvEvk695lPcNd1FRBe0uz8TBSK6gogeIaIdgWw+EV1PRL9x//doZx/HE0S0koi+S0S/dM/0\nm528Y68ZMOKYCrgewIHMvBHArwFcCABEdACAFwHYAOAUAB8nomrbejm+2AHgTIhFuTr1mt01fAzA\nqQAOAHCOu9ZOxKdQ/HYhLgDwbWZeB+Db7nOnYATA25j5AADPBPC37rft5Gs24mg3mPlbzDziPv4Y\nwAq3fTqALzHzEDP/FsBdKFZAnPZg5juY+c7Mrk695s0A7mLme5h5J4AvobjWjoNb2vmPQnw6gE+7\n7U8DeN6kdmoCwcwPMfMv3PYTAO4AsBwdfM2AEcdUw6sAfMNtLwdwX7DvfifrZHTqNXfqdZXFEmZ+\nyG0/jGKRto4DEa0GcCiAn6DDr7ktCznNNBDRDQCWZnZdzMxXuTYXo1B7Pz+ZfZsolLlmw8wDMzMR\ndVwOABHNAvAVAG9h5j8TUW1fJ16zEcckgJlPbLSfiM4F8BwAJ3A9seYBACuDZiucbFqg2TUrmNbX\n3ACdel1l8Xsi2pOZHyKiPQE80u4OjSeIqBsFaXyemf/TiTv6ms1U1WYQ0SkA/h7Ac5n5L8GuqwG8\niIh6iWhvAOtQrL3eyejUa74JwDoi2puIelAEAFzd5j5NJq4G8Aq3/QoAHaNxUqFafBLAHcx8abCr\nY68ZsMzxtoOI7gLQC+AxJ/oxM7/e7bsYhd9jBIUK/I38UaYXiOgMAB8BsAjA4wBuZuZnuX2des3b\nAXwYQBXAFcz8T23u0oSAiL4IYBuKsuK/B/AuAF8F8GUAq1Asd3A2M0sH+rQEER0F4L8B3AZgzIkv\nQuHn6MhrBow4DAaDwdAizFRlMBgMhpZgxGEwGAyGlmDEYTAYDIaWYMRhMBgMhpZgxGEwGAyGlmDE\nYZjyIKIFRHSz+3uYiB4IPv9wAs63jYi+Pt7HVc5FRPQdIpozGedrhmbXTkSLiOibk9knw9SDZY4b\npjyY+TEAhwAAEV0C4Elm/ue2dmr8sB3ALcz853Z3pAyY+VEieoiIjmTmG9vdH0N7YBqHYVqDiJ50\n/7cR0feI6CoiuoeI3k9ELyGinxLRbUS0xrVbRERfIaKb3N+RLZzrne47O4joMpc1DCI6wq2ncrNb\nX2WHk29w57/Z7V+XOexL4LKKiWiQiK4holvcOV7o5Ie7a/s5EV3nSliAiNYS0Q2u/S+IaI3TYD7k\nvn9bcIxtRPRfRPQfVKz/8vmg/6c42S9QlLv313tsoNn9DxHNdru+6vptmKlgZvuzv2nzB+ASAG8P\nPj/p/m9DkYW+J4pM/AcAvNvtezOAD7vtLwA4ym2vQlEqQp5jG4CvZ+Tzg+3PAjjNbe8AsMVtvx/A\nDrf9EQAvcds9APozx7wXwGy3/XwAlwf75gLoBvBDAIuc7IUoMs+BIjv5DLfdB2DAHeN6FBnqSwD8\nzt2TbQD+hKJOVgXAjwAc5b53H4ryLoQi2/nr7phfA3Ck254FoMttLwdwW7ufBftr359pHIZOwk1c\nrI8wBOBuAN9y8tsArHbbJwL4KBHdjKKe0BxX2bQMjiOinxDRbQCOB7CBihUbZzPzj1ybLwTtfwTg\nIiJ6B4C9mPmvmWPO52IdB9/Pk4joA0R0NDP/CcB+AA4EcL3r8z8AWOFm/8uZ+UoAYOanuah1dhSA\nLzLzKDP/HsD3ABzhjv9TZr6fmccA3OzuyXoAv2Xm3zAzA/hc0LcbAVxKROcDmMf1dWMeAbCs5D0z\ndCCMOAydhKFgeyz4PIa6P68C4JnMfIj7W87MTzY7MBH1Afg4gLOY+SAAl6OYratg5i8AeC6AvwK4\nloiOzzQbIaKKa/9rAIehIJD3EtE7UWgBtwf9PYiZT27WXwXh/RlFEx8nM78fwGsA9AO4kYjWu119\n7poMMxRGHIaZhm8BeJP/QESHlPyeJ4k/OA3lLABg5scBPEFEz3D7XxQcex8A9zDzv6DwY2zMHPdO\nAPu49ssA/IWZPwfgQyhI5E4Ai4hoi2vTTUQbnJZyPxE9z8l7iWgARcG9FxJRlYgWATgGjSsM/wrA\nau8DAnBO0P81zHwbM38ARYVfTxz7ojDPGWYojDgMMw3nA9jknNW/BPB6pd0JRHS//wOwPwotYweA\n61AMpB6vBnC5MyUNovAlAMDZAHY4+YEAPpM5zzUo/A8AcBCAn7r27wLwXi6Wmj0LwAeI6BYUJqat\nrv3LAJxPRLei8IMsBXAlgFsB3ALgOwD+npkf1m4GMz8N4DwA1zjneLhuxFuck/1WAMOor055nOu3\nYYbCquMaDLsJIprlzV1EdAGAPZn5zSW/uyeAzzDzSRPZx/EEEX0fwOnM/H/t7ouhPbA8DoNh9/Fs\nIroQxft0L4Bzy36RixXiLieiOTwNcjmc+etSI42ZDdM4DAaDwdASzMdhMBgMhpZgxGEwGAyGlmDE\nYTAYDIaWYMRhMBgMhpZgxGEwGAyGlvD/O0gluv+Hnr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2495504991004161" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_shift` is very close to 0.25 sec, in this case." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has also separate class for AutoCorrelation. AutoCorrealtion is similar to crosscorrelation but involves only One Lightcurve.i.e. Correlation of Lightcurve with itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "AutoCorrelation is part of `stingray.crosscorrelation` module. Following line imports AutoCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.crosscorrelation import AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create `AutoCorrelation` object, simply pass lightcurve into AutoCorrelation Constructor.
Using same Lighrcurve created above to demonstrate `AutoCorrelation`." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = lc1" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac = AutoCorrelation(lc)\n", + "ac.n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.12500000e+10, 1.12499978e+10, 1.12499911e+10,\n", + " 1.12499800e+10, 1.12499645e+10, 1.12499445e+10,\n", + " 1.12499201e+10, 1.12498912e+10, 1.12498579e+10,\n", + " 1.12498201e+10])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-25. , -24.9999, -24.9998, ..., 24.9998, 24.9999, 25. ])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_Shift` for `AutoCorrelation` is always zero. Since signals are maximally correlated at zero lag." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "5.0000099997734535e-05" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuwbdlVHjbmXHuf++jW02oLLJRq5ACOwstVMjaYJA7B\nWDYVk2DjCk4RSKAUDHaCDamYGGIcUiXjYBdxCQwKCAISQgEjYWGBQEi8hITUrQfqltRS69Xdklrq\nVqvVj3vvOXuvufJjrTHnGN8YY+911Oee7nPvmlW37jnzrL32es1vfvMb3xgrDcNAS1va0pa2tGun\n5cf7AJa2tKUtbWkn2xZgX9rSlra0a6wtwL60pS1taddYW4B9aUtb2tKusbYA+9KWtrSlXWNtAfal\nLW1pS7vG2uMG7Cmll6SUPplSum3Gtv9pSultKaVtSulvw9++NaX0/unft169I17a0pa2tLPRHk/G\n/nNE9PyZ295FRN9GRL8oO1NKTyeif0pEf5GIvoKI/mlK6Wknd4hLW9rSlnb22uMG7MMw/D4RPSD7\nUkp/NqX0mymlW1NKf5BS+nPTth8ehuFPiKjAbv4aEf32MAwPDMPwaSL6bZo/WSxtaUtb2jXZVo/3\nAUB7MRF95zAM708p/UUi+gki+pod2z+LiO4Wv98z9S1taUtb2nXbnjDAnlK6kYi+ioh+OaXE3ece\nvyNa2tKWtrSz2Z4wwE6jLPTgMAxffozPfJSI/or4/fOI6HdP8JiWtrSlLe3MtSeM3XEYhoeI6EMp\npW8iIkpj+7I9H3stEX1dSulpU9D066a+pS1taUu7btvjaXd8ORG9iYi+KKV0T0rp24novyWib08p\nvZOIbieib5i2/QsppXuI6JuI6KdSSrcTEQ3D8AAR/TARvXX6939MfUtb2tKWdt22tJTtXdrSlra0\na6s9YaSYpS1taUtb2sm0xyV4+oxnPGO4+eabH4+vXtrSlra0M9tuvfXW+4dhuGnfdo8LsN988810\nyy23PB5fvbSlLW1pZ7allD4yZ7tFilna0pa2tGusLcC+tKUtbWnXWFuAfWlLW9rSrrG2APvSlra0\npV1jbQH2pS1taUu7xtoC7Etb2tKWdo21BdiXtrSlLe0aawuwL21pU3vw0hH9yq330FJmY2lnvS3A\nvrSlTe2Fr3kvfd8vv5Pe8/GHH+9DWdrSHlNbgH1p11372IOX6VVv/6jpf8+9DxER0Wcub1T/paMt\nvfTNH6FNj29mXNrSnphtAfalXXfte17xDvqeV7yDPv3okernN3dd2fSq/2ff+GH6gVfdRr/97k+c\n2jEubWmPpS3AvrRrtt35yUfoNe/6uOl/590PEhHRfY8cqn5+IeOlIw3sH7r/USIieviKZvJH20I/\n98YP0WXYfmlLe7zbAuxLu2bb3/1/3kzf9bK3UV90MLTLI4RHgHwZGPu0OaES8+t/8jH6oVe/m37+\nTR8+icNd2tJOrC3AvrQz3/7kngfpdY5M8smHR0aOmjm3CMBt//gH1Nh5v/d8+rLqL2Wgn3vjh+jB\nS1rqWdrSTqstwL60M9/+5oveSN/x83EZ6EtHW/U7Sy7I2JnXHwKws/aOEk2qf9ff97a7Pk0/9Op3\n04/85h17j31pS7sabQH2pZ2Z9kd33k9/8P77wr9H/nMEcAZqZOYs2Wx63M8w7UdPENtpe8D1ut8P\nfPIRc3y/8KYP00cfvExLW9rVbI8Z2FNKz04pvSGl9O6U0u0ppf/5JA5saUvD9nd/+o/pW37mLeHf\nr2x8OyICeJkmAHS/bCdA34Lkcjjt9wgAnyeMBJS9TiSA+Pc+dIV+8Ndup//1V/4kPIelLe0k2kkw\n9i0Rfe8wDM8lor9ERN+dUnruCex3addpe+3t99ItH37g2J9DAK/9wNiZaW8BqCtjh2DrlW0/ba8B\n/9L0fdsC/dP3ZQD2hy6PjP+d9zxojvHlb7mL7rh3SYxa2sm0xwzswzB8fBiGt00/P0xE7yGiZz3W\n/S7t+m3/4y/cSn/7J9907M+hls7tylYDbwNw6B9YitH9vBLA/kuH4/ddPtL9j07HkYHJP3K4cfuP\ntoW+/1ffRd/9i29zj39pSztuO1GNPaV0MxH9eSL6Y+dvL0gp3ZJSuuW++2KddGnXT/uVW++h2z76\nmWN/bq6Wzg2ZNn8eGXspvhTDkg0y+cNtBPjM2BHYx/4OqPxDkz/+TtDkiYj+3Ts/Rrd+5NOmf2lL\n29VODNhTSjcS0b8lou8ZhuEh/PswDC8ehuF5wzA876ab9r5ke2nXeNv2hb7vl99J3/gTf6T6o7R9\n6UWXWroE+aPgs7jPyL7YGLsGcJ4ANgHzj6QYdMs8csVn8g8FdsxhGOh/evnb6W/9mz9y/760pUXt\nRIA9pbSmEdRfNgzDr57EPpd27bSffeOHDBt9dAI/BGO0FHKT+rmUXA4F2Fo3i9+fc3L7myvGB/wt\nMPZwIpiAHlcELNF0MOoeuuJLSNH5EI1xiN9737LyXZrfTsIVk4joZ4joPcMw/KvHfkhLu5ba/Y8c\n0j979bvp7730VtUfZn3O6JeAJ50tUkIpAoSRUbMSgpJL2RNUxUmoRBNBwOR5O8yEfSQA9igYTDTG\nIb71JbFDaGnXdzsJxv6XiehbiOhrUkrvmP79jRPY79LOUCtloBe9/v3Go83Zme83jN0HM8nGpcwi\nAVwC6ZFg7BJ4e/HZzVYDaaI9UgwAchl87Z3x30wEAZPniQCBHScAbmjHnNPecMcn6dXv/NixP7e0\na6utHusOhmH4Q7I5Gku7ztp7732YfvS33kdvu+tBesm3/YXaz4FEbHPqtGzLQOvOJhNtIgAXQCrB\nM3S/oLRS7H7kvmy/Hzzdx+Thaw3Qc/tsiov99z/7ViIi+i+/7M8c+7NLu3baknm6tGO1w21PP/ra\nO+h+qIzIzPyjUDclZuZzJJcGjJIVhwAu2HsZ/H6i2P0SMvM9QI39kU9+W4HdnziwRVLM4fb4gP/W\nDz9AL3/LXcf+3NLOZluAfWnHam947330ojfcST/+hjtV/+XNCOADaZCKWGcE+FJOkRKKAmqlpbfP\nSkmjVxr7PKkkYuYl8Lfzr7j/ytgDSQfdmscFdqnJR5/FyembfvJN9P2/+q7ltX/XSVuAfWlue+jK\nhl74G+8xNcgZwO9/RFcu5CQdxI0IwK8EgC+xUGnmAsAiLV2m/Ef7GYahHuNxJRTje48miD0TAYJx\nH4CtvEbyM48KeSsC/0tB/8OH+n7c9tHP0E/93gfcbZd2dtsC7Etz28v/+C76qd/7oHmFHAYiuXHQ\nE//KGjtr5dyQ5bZ+aV8UUoxk4DOkGLmfcPsgeIpSSQkmgj6QdCqTDyaCuVLMpUCWkhNV5AqKVkoY\n8/jOl95KL/yN99YkqaVdG20B9uu83fuZK/TC17zHODA+fWkc6OixrgAO4MTMEeujsB6MhbIkmMmf\nJehJYIykGC25+Ex+GzD8yNYY9SOzjiSaEkg6vF+E8ehaKFlKyk/BOWwVq9/vOiJqteTvf1jHTO78\n5CP0f732veGks7QndluA/Tpv//fvvI9+6vc/SG+FolsM0AjgvMRH9YDZZZf1I8Vgg/uJmHN/XClG\n9UdSjN9vtPHBB/B9gG8TlAIphvdv3Dj7Jy35HTqQHASMg+SmKGiN/f/s1bfTj7/hA/ThTz3qbr+0\nJ3ZbgP06aXd+8mH6F7/5XpW4Q0T0iYdGpoYMj7dC8AuX+BXYdX9luzt0ZQ1mAUs9pvtlDmOPAByv\n0T4JBX3okbtG+tjlRBcBu/y+o+icA7kqKs0wF9g5HwGZ/EcfvEz/4jff+1l57Jd2em0B9uuk/eCr\nbqef+N0P0IeAgUUvcOaBi4DPgTvMwmTgiVjtLu+21sDbNpFffRtIF9FEEG0vtxmGoR6jcdFUAJ8Z\nPA3K/4ae+zle/BlMvhc/Y8DY249sGOTm78Ag7E//wQfpJ373A/RHH7jf3c/SnhhtAfZrrL3trk/T\nj73ufab/IxOgf/pR/z2cCODMzA/BA85a+pEpiMUvo/DlB2whaB2TjUYMPNTwA8CXGGyDpz6Tb371\neeV/50xC0TkfHfNa6FVNOwa8b9wwqMqTLfZ//MErRKSdOUREn7m0of/9125b3vP6BGkLsF9j7btf\n9jb6sde9nz5zSbscOHj5CAA4xzQfgYFai3QBEDCQRFY+0y9YZCQ/HIVSjA/ISpYIQDsE/CHYPvhZ\n/h751XE1wv3DEO83CnpG5xZKNHM0eXFN51bA5H0hk+d9oRTzy7feTT//po/Qr9x6j7v/pZ1uW4D9\njLY/eP999DN/+CHT//HPjIzqAWBODcD1QGUAwGzGy0H1RQabkLFj/ywJZYYUEzlnIgY+42cF8sGk\nI39Hxh4FQ/UxBcAb9M+pd6OCp9sZTH6G9o73bb2aXuB9iMA+7gufo09PzxvGYC4dbemfvPJd9LHl\nPa+n2hZgP6Ptv3vJW+iHf/3dBmy4YcVABnZcWu+VVqB/n+Mj0pvxM3Em6f7t5wB4OKHMkGsQqGPt\nPdheHZPcfv+5RauIo753t4+uRczkA2CH/tXkbsL7uZ6i4xiT4RrzKL39wfvvp5f98V30k0sS1Km2\nBdif4O2Vb7+HfuFNHzb9PH4eCTI7kVFtA2bOA/24AI4vdq6lbYOXURAB6wzkhygRKQKwOSuCOZLL\nLLcMau/scsHt1THt99BHqw59rORuE2nv8ppG90A2vM9MBBDwOdh+CFIMfwfGZHi/904rSXl8P/Cq\nd9H7PrG85/VqtAXYn+DtH77infSDv3Z7+PeoljcGQ5vk4gNvpLEaoO653x/Yu4Knc1jkHHkkBr/P\nfvsI/OUxRTVndtkXJWNXTP6YWr+cICLrZ3RNo4lAtugtU3j/+bgPgxekoBTDz+cKMo8/eP8j9NI3\n30UvfM173ONZ2mNrC7A/QdrPvfFD9G93BJ6i4k3IzLnZAewDLzNHA8gBUDcm7+vKR9uiQS5Ipok0\n89i1EgDnHGnlmPJLJK3slFzEn0rE2INzeywT1Rx7ZCRvyTa38Jm8z7JxRisSBy5VgJnHD07B/Q/e\nr+23wzDQj772Drr1IzphbmnHawuwP0HaD7363fS9v/zO8O84YLg9HDB2lFwiBhYtoSuT3/oDfpfk\nEmnaYSmAAJwiKWKORBFNFiWQXCK3jPzbriSr404qUWwgunZzvPva/RJNBP5zFN3/6D5bYPdjNQ9d\nnp5P4CVsi1xDRtunHj2iF73hTnrBz+s3bi3teG0B9lNuP/a699Fv3nbvrG2lPzqq/RH5ku0S2u/f\n1pdF+Awcl9yh9n5M1hkC7BypZBZ7t8eM/VGQU24vq0HuKgUQH7fY/pgBXXXOweR3pJh5+65QYw8s\npIaZ9/59riu8ANiRUPDv2M+MfQXFhdgn/ykn3+Jf/dYd9Pr3fsL0L822x/wGpaXNb8Mw0I+97v1E\nRPThf/71tT9Kz5aD8NHDnv7UjXabSDOdbUesDEwfQ12KH3M/c38O5YcZVsYI5I4bPPUY/iqnWfKO\n2W8YD/ABds5xh+AfSld+PoDcp2TmUUKT/EwYJIfnbl8QHlcE/MxjQHrXy0X+9evHdwDIsbM0vy2M\n/Sq0YRjo//z1d9ObP/gp1R/V6eC3DxEBixKDM3rg5UCS2jYOpG0wIPtAWtmnvUfOEfld2B8D0vFY\negR4keTiAXhKPtCuu+wec5eTOef4PNs2kd1xTvA0Dqr6gdE5Gv5cf3u0MtvumdjnSjpRrCZ6ziPJ\nkYjoJ3/vAzvjU9djW4D9KrSHD7f003/4Ifr7v/h21f/gZb/mtXQSyEw/VfsjyEiUS9yImcm/RS6X\nyH8evSYuqqey6+dZ9sWIUc8AxXCCcNj0QZf1fgYG9uRKKQddpmHYodeHmvnxgqehPTKSk+Zo+DPc\nRZaZ71vhzQuqbgKCEL0mMCoytwvY//lvvHdnfOp6bAuwP4a26Qv9b698F9320c+o/k9NbxfC94JG\ndTTkALuyiWxqvd8feMDnDry4v5h9EgnGjv0znCCPxY54bMlFSCseAz9YZXc/B6vO3Z5fFIKSC5s9\n5sQSwoDujJVGH8gsUeA5zAeIiobNzGOIpJXG2NEGu3uCwOeI39CFLbL14udle+mbP+JmZ18PbQH2\nx9DueuAS/eIf30X/5FW3qf4HHj10t8fCSdyiWh6y/zAIhkVBskhCwWBodb+Y0rN2n/L3Xd7tOZr5\nY7EvegC+7pLL8BHAa3+XXUA96JKrlx+ssntM7OqIj5vc/tD9EgQ3owqYx7d1+iuCHu9/AOx7GftM\neyTvFx1I/IpFbPiKRm6R3ZeI6AdedRv98K+/O/z7tdwWYJ/RHr6yoe962a30fsiSe2CK3N8FpXCr\nxQvaNtA3twFzivo34UTgbz8MQwPkwP2CAB4x9jnsOpRcZgRG9+nzOfkSzbrL7iSyBgDvg+35Mq5X\n2U0qOugssJeB6NzUj0DNbo9toIfPyoYNLZ775Zo5tsno2OTvUawGa9DzMR1ugokgJBTI2Oe9q5Wb\nBPa5L+p+1ds/Sj/62jtmbXtW2wLsM9o77/4MveZd99aoPDeWXNCLGyaBzJBQ5FI2TBEPAH8Okzcv\nheCBihpr7wP+HJ041JsDNjrL0y2Ys3cMB6usrkvE2KUU47lrDrrs6tzrlQPgZaj9eA4HtZ9a/wxf\neiS/zJKrwnyA40lj8veo30wEwfNyXAkwcohFJgEp0UQ16FEe+p5XvINe9IY7Z08EZ7EtwC7aJx++\nQt/x/95C93z6kurnZSC+Teahy74XFx96bnKAaeCd0R8w80M1QUQ/+8Ahf0fAP65fPQLk47o2Rnlj\nvJ6eJn0ArpUmoWTXEmiCpMzMQXJpwdNMZWjAgIwdZaCDgLEf1IlAg2pl/oHnfo6/P9LPI0kn8vRH\nK6thGMRzgc9LMZ+Vx4eSXitBga4rX3uXwdMoCC2feSnRyPiU3iYouwGB2te/9xP0gyCrntW2ALto\nr739E/S693yCXvHWu1U/v9gZ612wXh15erFJ54lkEZtIipnBwCPtfU42p/wdB3B9/+dJMnaod9JN\nEyIy0wqWDvDEQc/snqfpFwDu2h2ZaQ92e/k7nwOXt52jvZdCgskHzBwA2ZeA9oN/H0zyc+IZ8pab\n+9/7RCCW+nwAjzR5ydg3wXWRz7z+uX1Wgnm0CsCXznznL7yNfuHNH6llEM5yuy6B/YP3PUJ/76W3\nVo2cG1eswxmea013wMz76aE0y8/gRcJzAHmWxh68mCJiYFFa/7hdcA4B4M/J+oxWCwiwDbTa/svQ\n5A15bmUYHSir7GvmO5m8M9GcCwC/aeb6urjB0yEOnvqTUxFMXu4nCs4WOuf0z5Jr5rD98Of92nvU\nj5p5lMEspR55fPL53ATPcyRXSn1fau9XQPfnhnklPMmwxMrtLR96gP7hK95hrL9P5HZdAvsvvfVu\n+o3b7qXfeY9OT+YbnaFgEc/4CNj7Ao/jZ3xAPgr6DyPGfsw6K3MyNUsR7/mcqbEjUMl+z/pXhCyB\nx3fgAHhfBupSGm2KAE5dStRlcL9IzVwB3vj/egV2R2bmAeAzA+dDkj52+flSxlIDHoD38twUu262\nSWTs5wKJxpsI+LNRIFkep/050tv398u/hSu/KEhqVrU+mKtkqigOtfHHlxw7l458xi6POwrUPgT5\nJv/yt+6gV779o/SRBy652z8R2zUN7O+4+0H6rpfdqm4yUfOX4zKwvgVmM+8tQ9wPz3gIyGo5ufEH\nkgJ2ORFENcuPyeSilyibgSqkGBlk2mVTPOeA0LYfXNYpA4zI6rucKAOA98NAOSdadQlAaPx/DUFP\n5ZZxmGwk3aDkIreX21WGv3IkF7EaQYdNdM4ugA/+5CdlqTC2EU34M/qj/ci/2f7ARTVth8ld8nwO\ng1WqAvwAwCN5M5JuHg0AXzZcsb/j7geJiMwK/133fIa+62W3hnWcHs92TQP7i17/fnrNu+6l2z/2\nkOrnhwFvIL9dCJdo/FAZ6xd7cTHVfAaAHwVLzmMHSWe883KOEyIKntrtYg3c04P7APD7aPsJ2Fc5\nGafJKifqUtIp+wJ4vYJbGFSN7JFyeyK7YqkJSgX7/XPwgqfbEkk3YuKA+xkx9pR4MrPn1kFSFm8T\nlVHAn3fWpq9SjM/Mo6AqnkMUP4qsvJr8+AxcJ/eJiUAAuAThiLE/cuhr7Pge4X/ze3fSa951L71z\nAv4nUrsmgP2P7ryfvvsX32aWgfX9nzDTslSOSy5mCDiTV50QtLpNfcj1wxxJK5vgYVMPbdAfsauN\nGiyBXKNeEB1tYwdkV73YPmjh8Z1bd+b4dgG4x+T7YaDsSC5bIcV4cQVjUxSsNgqeajY9/r8GCaUA\nY+djivr5uyNnjy/dBNr7NJnlZO9Vuxb2Hh4EgH8OAs/H/Xn83XfFzJIl52TMhnGl/SQnYuxXRL/c\nJ74Fyts/UZvsPwN48YmHxpU/lgr5yKcepW/72bfQfQ/7iYqn0c4csHuOkx957R307//k43T3py+7\n2yKA801HZs4gicGWCvhbn8njyyXCQM+MhzMKJIVByBkvWohZur8fTmhygbccn4FHgccQzDoLWqWM\nUgz2S5+5y+QD98sIcsXsB88BmTm6hVz3yyAAH6Svc4H2fhAEYbtsJ7l+aKsaTw8Pvf7mWozb2/34\npED+zRABrjm0Y+UXrwL9sbDp7bESwUoxWB3L75LjWe5TMnZVfwmDrfy+YJgIeJJAwP//brmbfveO\n++g17/o4YTutAOyZAvZ//Tvvp29+8ZtNPy+FPgW1Wc6tRgaJF35TpZVIcsF+n7HHWvr+YGjEXjbR\nwx+UGtiU/eC/L7kFmRz/eM4Dp12M3ZEfRu29c7eP9lODpw6YuYCfGJzsNTVBUlGCoAyxXx2BHYG6\n+eF994tvdxxCu+O5te+H73K2k1nvX4tw0uL+dQf9JLbfP+HLv1lmPv4+DDu0+x2Bd25zgqrRWIgM\nCXIFLrePfO9I4PglIcjw+V4ivnxyYvKYAHX/I4f0n//L36U77r3673k9U8De5US3fOTT5kKyGwP7\neTlsmHmVXPxIvekvPuDPcrMEwdBN8JD3wTZzAmD7tjm3yjARRAyvTNt35vi2woJnkm8890u/I2AY\neLRdZl5Gt9JuwCe1H+/cegBk/lNl4Ctd7KsAk6+MfVfwtJBY7bRjkk6g8FrAfevyaPF0zzlZuaqd\nM6n98LEWdTzTfV53alLkY/AkHT7NXYlrcyTBOFjrA3VEfjbRxDHjZwn40mCBBI4/gRJNhC8sYWIM\n760feoDufuAy3fnJR+hqtzMF7M966gUissycB+mDENzg+x9p5tjfmDwGSYed/URowZrDOoIHOwDq\nOSDfWGpyB9G5II3+3KpTgI8sVTNkchn4NpBoImeHlBlwclo5oNWXMurNaHcskyaf0C0jQM7LYIXJ\nCROR8D2nCMhRUJX3FWWeRolLXgIUr168a9TlRF2X3EDn6NH3r4Ubh+iQsTPg+5IOBmHrOQerF/w+\nuS/cZo7dMay5FOwnMiTIsSllGbNiL0Hsra7kfYkGE53unjLa/5MvfAZd7XYiwJ5SeklK6ZMppaua\nj/uUC2sissycXecY5W43RAMyX3hb4GjqD/YTbU8Ey8Aonf+YS9HojTjRoJBA7U0Q59edK/WcX+ta\n4xIgvO9j0FKvWQskl9AtU3zW2TNQG9CiQFduIBcFSaN+IulX9wG8wPY99B+n6mPZAX7rLpsgaRFa\nOt7nVU60yn4dHHP/Rb8HrgjgkUSH/Sw11JiMJyfNWGlGjFqzcX8lGyc0+SvlaD9XFLALKbEMFT8i\nIoj9bKnEypMPXd5STkRPOnf1X1x3Uoz954jo+Se0r7A9+cJ4QRDYeeyYCz+9iNkEPUPGvru/L0P8\nIEXLxkAPDLNEZ2jv8X7G/vPr7PbvGsDyOHox4OXvwzAmNLnZkH0JGH4w4IWE4gUMEbRGicZa+aQs\ngd/L5+adMyYQxcHT8XP7gqcV8IveD97ntSPd9ANV+QmJQLSqycm6ZaqEsqNQWuiWcZ5HOxHw86Un\ncEkoxuPWJMRzV4Ur2VLo4kG3dxt5LWp/OAajn30pNfp5rnTL0ozXf/FgRQkSIK9GOxFgH4bh94no\ngZPY165247mRsWNd84EiQD7eTMsPxpXArz7+vJ9FhNuH4LxfV+8dVrNCt4Ri7DqAWfudwYJMe4vg\nFAC+/o4A8Pcw9lVO4BwZwduA1h5Zwl6L8X98I1IP52b96j6AHwQ+dpwg+Bg8AC9laBmmMJmveJKD\nSYvjCsh2G2Mvans+Jh0AnSb2zgd8BPC9QVggAvz/+YCxtyC8D8iSzGz6gS5ME0f0boJoTG2ccxv7\n/f1sgnEqcUGqACGOAHFswK77L2+2dGGatK52OzWNPaX0gpTSLSmlW+67777Pah/84FwBm9LeoOfM\nmZYfBnyxb5RAFLLoYwJ4qKtzcLPzl8TnweUgl9aeBHR+HSytAaiRgfHAiyYC/uxxsioZqHNGbbxU\nxu4HSbGOetuP+walqNgXaNr7JBfsj+IQGGzFVYp/LTgwbBn1qhtlJiNXOQHjvoyJS8bWOP2Iz4XW\n3v3+aCKQv++S7jb9UBk+xpL4GqGEgisC/FmvmsXPgVFhltSj3DI+sEe16Y0UM0kw2D8y9msM2Idh\nePEwDM8bhuF5N91002e1D77hcoZUP0dSzMyZlrV39OJGqc3Hf3h2s/pVTm4QE5kTTyjn19ll+CMz\nj5i8PU60NUrtXZ5DY/5eNqRk7PocfIuf8GIHQI22u1FysTp0rhmpGhSrDdIpiYBVGSXD1/0+gO/z\nvZ8Lztm7FjWrNiezomqBYT1BrLKTrDXtx1w7QRB8oM5mP0Rsj/QIhV7tNMZupRhZyAyfyUooYOx4\nzH/TDzWxcI4fXjtn/IkgKrin5JqtD/jy88eRYng1crXbmXLF8IMjazZLqxEGT/clFkXZc/hi5zAr\nLwri7EimaG/WcQYeuFYq8JoBNi2to2BYyLSyGnRSopHbWcauB3BLf5/B2HeUFPB96TJIqmWGMSPV\nMvDG/EltP0o6iYaheYpRiuFrgMFTtDUahg/MP9wejnXtMPnttErpnEnI698Kxo4M3yvHoFdyOjBI\ntDtIKoOhT3BBAAAgAElEQVTqyNg3sMKLmHnr1wDr2Wk3vWTsmiB4E0ekn8+RN0M3TpQzYgqZ+ZJu\nBXbAncvXImM/icYzuVwSSZA37pc9fnXMAuPf+zLAm3+Cpd8MwEcPuPfwb8qYgo46sQ6G2skC+3ux\nvZd5en7dUXEHqgYhBPAK+Mjwp/4WVPWX0G4AkIt6gX4sQc4DrS7j/ttEEGVtymOKgDfqb1UfwQaJ\nJQV6vf2+EgGYqZqnSQillcrMe30tVs45b0tQAVMAsp6MRb/z3Jmgunju5DUy2yMzD5xD5x3GrjV5\nDbY8djAjNfpe+dn6s+zfBmA+I/A6nvf4O8bkojyZR4+2dPHg6jtiiE7O7vhyInoTEX1RSumelNK3\nn8R+sR10mVKKrUmWmfsAzhf+CG6UuolBanOU5oyzvOuK6H3WwSC07jJ5ToDza5+Zn19H0krM5OXv\nlfkDo+phoPLvPTD8SK5AhrTK2bU1smyAejCzUXyhhMvwhVvGXNMkgD1g2ngOofsFJwjcDwZPA7uj\nx7RbMNT60usqBRk7A7hJaLKrHRkMj1aKURBe/o6JaxtBhIhIAK/+7nMuIPvau9TkcSK44DL/Ud5K\nyfaPx4qkaH/wNNTwEUdYug2AHW3Tl4/6Uwuensj0MQzDN5/Efva1lBJdWHdhirANkkYAXtT/2E80\n3mi2m+4KgK67RJt+oI0B8ExHfTHLPdSt+XvXTuq4ZOaeVn9+3al3PkoN1JdugGkBA0e9GTVQBHBM\n7ol0ZQYhw6iTXaWUMlCXyOrKpUkrCHKrnCmnZN78kz3GDlp6lWJEqQG5HQZPm3Qz/v0A6qvvYuxV\nA08RgFvA91YpNaiak3mz1qrLLmNPydamnyPdjb8XIurU8yWvafQc8c/nnf5NKfSUyeU2a1XbN00e\ng57rLtM6wxiZbuCFg06Nf3msnutmzM6OGLuvCMyVaC5vFikmbOfXnS7qs9U3mVsp7b2NUZF/I8U4\noMo/uxF8sTzEoNeFA8tSNv3I5F3LXseM3Q4w43LohUTjBb322Bqt+0WfGzKzKDAYAz6C0xQY7vX9\n4brrCNRcH0XGsOVEgCCXE1nwE/52dQ77XC6Rjx1KBETaewuqasAfhjEd3y2LMF2jnNHfzpOT4xBK\ngfbu7J8nFM91Q9TyG2ocIgDqfa4Y1NJb4pLW5Pk7znvuKhk8BZmxMnZnlTISLGe1C2OBj+HCQefm\npFw46Fx3zcFKj035HfKaDoNw6QGTP9w02ehqt7MH7KusgqRR4Z9NIJPI3/FGMfCa/ZZSgRqB9IKz\nzNz08iG0kksH7pdNP7JO+xKJ0d+8CiSaOMN0j62x9wdqKK0E/Sg/YOCxnXM2dsRt8QN9ZQK5kXXq\na5c96aZe09gGOe637T8nav1BwhEGQ6uPPdo+ukY8EUz93ktEeDIzmaSFyyv4cQtvkltN1wLBj1cE\nPjP3g+SYWBZN7Ohj32C/G2z3GbjU0o09MpBc1tMYweJgXU5GZuJjvrj2nWMXAgvxDTARlNJe6ReV\nF/Zwh5+Xq93OHLCPM2cgjWztDcSfiaREA+V2ldVKyzIXHP1w0w8+4Afe3U0/LpXXRhttCSobeAhX\nXTJJNnIgRRmD3sN8HphTlVBCH7sGLQPg0++7si1Hbdy3HXLAEF00jcmT2r6brH9eEo/H2PMEivJc\ne8Pk2/ZE7YXlGDzFejfRKoUfg1X2mbyXbVuma5STYwlNjqdfEAS8/36AuWn4Uc16dQ5BLEXaIIms\nxs7b4yQXumUgT6L2Oxo7O8rGlR9ci2mMmLGTxzduebVizh90Lim8sO7cvJWLB6tZxHGnJr8Ae9ww\nwMg34YbgRhHZN7GUwS/eNKYzj8K6jpgPIs1ZPjz+8lDqhBhsXXnsggE8I+uYAo85+zVeVliGtUk0\namltgHrafo+PfZ8NEpeiTd7QS3Fm7J48YLItK3u1/atuejUe+NW9kgImeCqAOov+NpmNnztAacWc\nG6l+9Lfz/jo4N8nYPSlmNTF2IzPlRDnjcxqVGiju6mVb2monqvqpzwGei3oOOlZTBn3OuMLztfrp\nmAKXy1ZINHb1Mq1qYJyvnf5tGar27gVPLwIDl3ErL6iKq+CwvDCvCA70BMGfYdy52u1MAvuRY1O6\nADMqgzlquxsxA4+/j/tibaxq41FABxjSBaeuhUyLNkA9sQsvqGaDp2UEM3Q5SH97wNiJrK6MA8xs\nH0grEUtFVluPtQYkx+Ny66sXoQcbCYUsky9cH8WvFdMkFwYh0v0CqPlaj9uT+ntka0TJJSrny/9z\n0hROip13DnxujkTD2rg7meG1G2g6t5ixI+ATeRM4BNtrTIqfu90STX1eYKWIx4S1iMZ9Frd/U0qd\n2A3gcz+Qri4nWq80w+fPXlyv3GDrxYPO7GfsXyntnX/uYAUhGX5ftG16Yew72hqkGL6QN5zzZ1oT\nDOEbe6DrUXC/J7lsA8BXWjo8bFVvxBs7BQaR4a+6XB028ljrEhq2H1PH9aQV+cz3aenWFaMBvO1n\nGvCdz/AwY5S3X3VWcmE92NPM8wROKLlEBbGYBfN2RMIG6QRPef9qe8PMg/69TH78fzUxbXTR+LXm\nOa7g2yMjTb7LGVY1ZcoN8MoxjM+dTDiymvk0FgRxGL/Pl1zw/iP5QX+7thO3aqD8DJeii8x58QZv\nxd7lPPYXvf8xNwS3n1a1u4KnxeILumt4m4tr3E/DI7ndMAx1FXEa7cwBO4JZW/roGXgjZmAvRRiZ\ntlxCyd95mwr4kIbsMfNNPwL1CMg2eLrK2WSnskTjglbA8FddVhY/y7SnATwdAzItXEJbKQZBjtR+\ncCLAYGgFszSeQxQ8RW3cY6l9IZ+xFx0klcfk9Vc3TuiWAYYflQ6Itp/+jqUAau2abC2bLD9FWbUm\nwDywJRR0677ZKdV++mniSHryqxIaVroM7r+RVvY8Lwj4NpNUb89jYj2NHSwOxhKdLXk8aezgZlnl\nTAdoPOjH4Pm5FTrQWMb0CeLFAy178mcvnvOBHRUB/n+RYoJmZ+xphjzoIDrN/SvalBYkrTMtALi0\nQcnPE2nJRQNsofOe9s5sAQB5I4KhKKGwLxlZhKe9Nr3RBsO6CfDlueGAjJj5PiZfJ4Kg6iPWV5dg\nhglKUfCUAR+ZPLtlXElHBUMFsEsmL45Jau9YUgBT/lvmabB9UAQMz4GvXc52kuMAM7pf6rXAa9T7\nE0Gt3w4vWhlry2TqnMCwd42QIGz2ALhh/sFEIGXPEdghVtOL58UxGKzZEuw989laf+u1AKbdVsd2\nJX/ByJuCIDo2yBsOVlQGMTn1Gl/4M1sxaZ1GO5PALpdEcqmkC/y0GXVQF37qX/OMOn6mMnkI6LCt\nKXTFONlwzBZwGdhPSzFk5ry0tiVmm8aOLMLV5GGg4hJ6LzMf/AGJbomongq+8IKlIS+TNAqetjci\nWe11xUlc6ChxMkx5wNt+8ieCIWDyAPimP0erF1LnzI8HO3v4msoAsxc8dS2hPBHsCKqaHIAAwN2y\nC3D/Cz4XMyWaSGOXHnMiQUAY2LtRWrGT2RQ8V2RplDeNjNkzuYIx2IsVIeyfyLpiqkSz9hUBJIIV\nd6CfzRirBdj9tu6yDmJIZg4+ViIJ4Pzw6BtiNPYDLa1UJu8FT6VEAw/DKngIeYChZXM9uRlQJ/T2\nsy2Fugr40v1S6vbj7wjUu1+QsC9IKksWyN9RivHkB8nAZLKODQA2L7Zmo1T1Zg+0GJBl0JOlG9k/\nZrYGwVaHyfNtRSlGMvOULPhFUsyYiCQAf9r/eEwaqGVcAdkou6WspMMTh2WvfC1kkJSlHnlus4Oq\nuH31pWuWeh7666S4SsqX3qQYn7SsOyvFtOApMvZSrcVR3MqzTZ9b+4rAxUl757GGAI5ZqDewFDOd\nA//9YJFi/HawCjT2czjT+gCOwY0qxcASqgK+CKrI7YjGm3bB0eTrw4ZpzsWXaHjgrVGT74Xd0Tyc\nuc7+vCvL2H0GZlwxQemAaCJoE4ceqKjvSvlBsle5vQkk9i24afVm64fvhyZvyH1L58i4nWbmpoaM\nCbaO++eBbOWq8e9otZSAL8+N2Ws31c2JGL52v0jfO4n+XdeobT8M+lrwcyHzEqRDCOUndLnI+ity\ne1ltVF8j/Rzh5LfOkx0RiIMnM1aXixs8tf526WPHCo3jqhlI1zQ2144VmWjEBbnybxLNSm1XceTc\nIsUcq0Ua+0XwsfOM2gBcP5wXQIrZQj8uD5srRjN2LkzmsoXOC55aiWYrHjYv4QRfTs3LSevFbmyX\nf+f98LWT/fu0dKOlCgYuAVYGDCVjb8k6ug5KZbUAivwdXro8a+k8cSjQmuyReKyetDKCorN9ZfJU\nt5N/j0oHoO1QxRuc1Qszdr79bSKwmvl2YtQ+Y3fkhEBaqftx4gddJ62f+v7E0h1IK4EN0hCHun1R\n16i6cdhFFciMPpOfasWYzFPJ5AHwuyk7F8byynXXoOTiE0GZ9EgkGPsixcxrWE9FXshNL4KkzNjX\nGJ0OmHm9gXrZaKWY8Xe2ZnFiEUox62yZ+WaSXDB4KgNA2mdc3Id5U4piYFozzQ5j1xJNFNxChm/t\njgKQBVBLJi819pqsA+nsEaut16JztPdBT2Z6lZJdjV0mItWkrCB4WoOwDsMnEu4XYKn1HERMhs9Z\nul9w8kP2isFTLoVcVzsgP3kOIVkcDK8FryzksUhZQh6LYeBGY9/nYw/6IZiPvvSmsXsW32YMwAxT\n7znaMFBnJ3iarWNNGhtc2zRkbTcpZjX9rokj4gv/v7higjYGT50LHyyVqp+09y88fx5v1AYeNtTY\nlTULmPm2Z33PWq1WHlD3jY349kgnU7GTjH0aSMDk5SvteOLgz8u/H3S7a8VgwgnWCEdduTHC8XgZ\nVBDMXCmG5YTALYNstNaWQWZeJZdpvwjgTkkBD/ysv53U/3ysYekAmMxWUxYugiK+RIRPvTmK9HPh\nJSJtYTKT95PB0lyLZFc1oW3WrORA0gNNnp/9qOYQAyx+LwfhXUadbUniancEssTBU5RWfDm01FWQ\nNluMOSPn1760YoOkWqLBwnoHC2P327mVlWKyvPAA1JHGfhGWSvgG9i1sfx72I3ViLD27qctAz7XC\nEX8HwM3D3DR2Y4+UjF0ArKexy1evyX6+jJEvvS25p+MM5AcJWrJfptfLdHYGuyh4ytu7bhkELdDM\nKzOfJggjxQxacrFSDDL5cbvoDUqZg6HBqoZvG587M3OUehCoVWmCzr4dqlZ9BIeQei7EMalrJ54X\nbyU3An5jl3aF5wfPMdFJAngnAJnHVC1Y5kx+WBBNxgO8ev/G7tiLqo9IHLJdEYyTX662VkkE19OY\n5d/l37HUiI3hLVLMrIaJCEfMjqEqo4lOg5Zuo9m6vwH+1I+MHaxZaGvkh9bWjtYyBlHz1tpyq83u\n6NkpWTNtrygrmskHgN+L7Yn2v0EJg6S4iuDv4RdeVFli0Nub4CmsXkoZ3TJ1/w7gY5JNVPullPF4\neJVSUJYAAJfvTpXHyN+Tky7SFU5yfI1SUtvXUgMgSxlNHuyRzV0zg7H3IEuJ7/ZiMk1jt/efwZKo\nTQRxTGb83/jSpeTirFIawOqx2Z4vzcy5tLWVXBzZc9Le3doynY1nsHzK9tWGF6VKNLK/4YXGlyMg\njhVfhOPnNNoZBHbQs7djrfQDuPC4VMKo9Xno3wYzsLRBySAp96+BmbMveVV96Rj05IcNWYc3ETQm\nXwbN8thFw7/j9rKf2YgH+ETOK/C4P0hEwmCoZmbZDOwu2D60BDp1U/icTYbpoPult36UPUidc1+a\nzo3nFmWq5jS+5EWyyApOVesm3Z91cFP2S+0dg6c4cYRyFTP2oou9sbtGnpvUoeV3NgC3z8u4EiGz\nHyIifNl0RBCM5LJHYzfPF1iLWzkOK28aTV66YnC121lDAsundfUijnXdScaOK39f6m0S8IQ72ybd\nnkY7k8Auy+22lGK48KCZ8yv06oxqJBdgHdDfLFgWtKStUaYO+8zceRFC708Eox4oBt4gHzbLzOUE\nwdeGt+e0ft6O/0/JVmWUwJ6SHajMCiuTE44Pj5mj3mzYLgL+xJz9ErYYxGya/Pg7tXMWDLwdU6ng\nqvdDLvjxxDEeV1DsK1tmXuUn73npPF1ZlwjA5C4X2Ou5UT3WlWDsSASsFDfVpq/+9sacJWPH+7nv\nJef7Jna0NRr5CcgSGxWqtGLIT3bqscsaMpqx8zWSZInlU8SRo17jC8YPLiKAV9OG1uQbLizA7jZM\nc+a6LFWKQQCHhKNQikH3CzxsXFAItfd1zsor2wpfBcHTSTPF6pHIgvkYmJkRgR7sMHPjiukbSHju\nh9gVMQ1IWELXgZq0g6c5RPzAIAZD5ZLbc8ugnVKec4ZjlS+5lt9ZX7FnGD5p94v4bs/HzlIPn4eZ\n5DB4KgPGzkRQGbs4TiKq1R3t6sXx7u9YmcnJbCv25QWeOZuX98OPZBn8iWCfi6reN5D6sA4SljZ2\nnxe5OhLOJJzkVK0YRZYKrQMm7wE1rwiq5CL65TUK3S9bjQs3nAO74yLF7G6odR1NUszaAXwiMjVe\nTH/kV3e09JVgC5E1qzF8K9EwkK49xu48hNWmCAOssQ47wFbuAPYnCPl6OtyeqNkU8YUaXaezJBnM\n+Fi9GuQegLdkGsvwctaVCFEDl5/ZNfnVc4t871LGkD520OSJSAOvWF3o4Ol4MYzMhNcUHUKwkmuT\nq61lX8/NuFmKe/9lwFD3EwB4UfuJYzI6U1kycCmhbGACRwBHsmQnCCQCebI7+vKmBvxhGrPjBCFX\n+HJVI7+DkwrH34vqx0CysVNXGyRINLz9IsXsbrhUqjN2Bo09DJIiM9eaOfrVq5aek3KzSGYuI/Ko\nE2IBpVW3w+WCNWR61Mbbdyj7GgA4PoSy5ozsjzRWHfR0NHOjN2sww2sRSS4cPJXsW+6HyAKvYeZD\ny8KU25dhUPuJZAlVgkBMHErDZ8aek8vAPYdQdfZgUDX7gI8OoV5daz+JCyW6AkCtQMtZ7dRgu5es\nJQF/ZkwmZ1I1XuR9lkweJRovDjGOHT3WeJyroKcwDGBJkXVuuKCeeTEWNuKYpEOouuv6MQkRAX8D\nAI6TWWXsixQzr6HkwlFuTxsjii88+kx5+/b6OIexO2ykJiJBsJXlIWTBOwM3OcgwdGxnkoG1GhzM\n2KxrQQ/4Brzukhv96gDgRjNnxt7tHqhesk72WG1OqhIhJ+uEzNyxNeK5SaBW1j/F5H2fPAOiBOR6\nP801orqtt30sP2V9TWWmamolAlrRMLEaEV5pryBarfoIk5mxQcJE4DH/LGyQJhhabY1+vyn2NUkf\nnotGFsTT0h2Qop7rtFvJpctOpVOQJeW1k5KuijcI6QZrS6HUuy8BcpFigoYa2NGW/aeBFFNLBOgL\nHNVjb7qc1sb45lophpeHgzqudYesQwOBx9gxoLPtW9IEkR14qLHKuhnyO1misYzd339fxqSMlmHq\nrEaSjStwgDYEdgNaO6QbAdR6PwTH6js+mIHXIKkE8OwFT8f+lHRRLx08tQwcJRctV9lzxmCo9rfb\n1UsHKyomq+M1IrXvvpAqERBN7NI37j1HfRlqfEXun1d4NgjbJvyVel6Exp6Teu6IdhEB311Vy3RM\nn5fyJhYBq+8XrnjRgHfVWavwBgB/KwFfaO9bIIJenkxO0uuvJZqFsQetzqjiQh44UgxXUuRl4xFc\nYGTySlrpbKAPg6QK8OUysyZfABtR/U7yRSSVBP388Mt+lmiQmbft/WDb1K33L+QH6TQhsuAkg56K\ngQfuFwyeYpBMMe1hUP2ojZeBXNZpGTjVz3lMnqUbIgySNj1erth0kNS3bEoJRfnbs5VuOHiKiU5c\nW4b7dOKSZpcmJtOLa5GzLSkQEAEEcJxEk/HiU70+0X2WMqPW0jOh1IPXDmvIYGJUW+3KMdWCp/JY\n2FFmZMxg5c9Z4SuHyRPZImBH034OOk00+dgWYA+ar7E3xi6XXBwtV/3TBcbaD9KmKN0sTVrRD5UE\nfKmlN+mm+Yzl9yJLUfW4nSJdCoTqA138h5P3EzJ2f1ma6kCaAEKwVNmvXCvBUlk6OJT8kOxEgIFE\nDDASTVa3CTgy9LdrZEsKIIDLpByt4ZO61kSkgXfaP38/lg7IiaUSfc41Wcuzfia7SsH3xUq5qkoo\nQ7sWclVTxMTLpQnkdUZJTz5f/NpC7M+JwueFv18ydl7h6clPnxuCYpvY/ZiMJw3KZEAdeNalAHoj\nxbTxLONKEhfYVy/33aRerb03Zm5t1lxmRPULHDmNdgaBnW1H0wXeaq+39p86MzC8Gg+1cWbmzaak\nAR+DrSzR2Ap1XAvaOgdW2Uo0a8WcxLJRWK3kwPBAq2nsgd6MAxtkBumh9gZw5EvGQCKWDugiicYE\nT0nth78Tq0rKY+FJ0TJ2mAhAWqnul3otSGnpUutWwVPBwHMiw16xCFjoEMKJAJKy8JrytpK92uBp\ny0jFayQBXxKBnBypb5IfspG9Sn2GMBjKxyKrKW7wnOE5WsPqeF+wFUmRlDcNkBYA5ArUEYBr774c\nt7G/XeCLvHaOnXKRYvY07wJ7F37D0Wy8sdP/51Zj8g1mjNVSnxgMZSmm1/vBgkLKBtk5y8luN8jJ\nffRFB7H0UtlZZtaldXb3EzH58fx0ZmAFObnklkxrRmBQgplktZKZ5zTaGke9tKjtiUawksk6fnne\nBsqyTg3HAsbtqf4fB0+pfr/UutW1YIY/IMPn/fsAbmQpnvxE8FTGGzCAzddfrl5s8DS2fsprgRq7\nmfAL6ecInjs+Lj25Ov1y7ADD52vhSS5IEPqix6D0mHO/qWvT4yq1rQp0XEmTIlzht9IEdqypiUO4\nX+TxHG315HRaRcBWp/ItJ9hM1LqMAI6JSzzTHsBSbDMlLqSky+3Kao0HbpA0qSCpAnxHJ1xPUozZ\nT27JF8MwQKITZLcVHcRSQN350o03ULelQFKO1N4laFnAj/Rjl6UimIl+BALZz30ym1OyUZmsYxh4\niTJS2WNOqp+llchFw8elGDsDeCJg7Mzwg8xTp9RADbYO+rng5Chk7DgJ1YnACW7WlZnxt0NJYgF+\nUns3NkjvWgtmLvfPQNnNYNobHAso3Uz3H2XSVR7HrCdvDtTq2uigqpZQ2P1i4gqVyTuumOwTR197\nb/giV+YM/IsUE7Rmd5wekj1SzKrDpVWp+5DldiXwekHSdce1nR2GnxMZiSbrCL7OSG0DLAI5/n8t\nlod6qRzJEtajGzE2Tu7g89Ys2OkvQ9NSO4exY1BNBlW9CSJrb7UMwtX+Hl0xbftWYdG+9q29FxTA\nD7R3fJUefw/652t/MBF4qxRZakCClvuiDcHAS/HPuS9tklOMXcRGfCnOf2VijU+Y1Q4EVaUOLQDc\nY+xucDPrICkGPfE5Gt1VWVXqlNein0gR2iaJxmde7h+JIBf7wtUxMnOppWtJt01OnvbOWj2R9vTL\nipan0c4gsNughC/FDFNiAd6ooW4rL/y2HwNAlV06TFv51QXgK4lGBU9t4aO1YNTbMpjaMnwO0q/c\ntvc1dtQ6DTMrzfeck2VyREQqhVtp7Np2xv05OQy8wyV0A17/dXA6MIhZm9yv67II8IMVBPfzd+ga\nMpppG1miSGaugTfLfjlBJL+f+3TZBQB86EcGjoFn3hZZ7dhPtTKmx8z5OUJHUS0pwNuDXJFzmmoF\nFbUf/n7lAa9MPpbo8JWMvLpkAlLgWshYExEpIFXxhk7Lj1vnmkppVQO+YOyCmW8B2DHOVQE/O0w+\nN+JY823KMNVeWoDdbZ7GfuDNqFsIYqgbxTNqEm84GdlxSjry3qLZuqCQHGBqgpDBU7G9dALwjd/K\ngSoe2r60hzNyvyjdTw3g9rChxs7HhUyOzwO12vF4NSjKge1p5l4/D2Cf1UoGTrV/5VwLrZkPeuIA\n1snauFf1sROg5fnVkWnzd646HTzlCVdJN+I+y1WKlpms9U8z8MENnuI5y+JdWA1SXgtcyTWXk101\n8f/1WqTkTuxdTmostGvX5Mp2/9FCHGnslpnL/cj4wbYfDOkiGsdrI1GOO6XAS2oEEVw5AM4MvAG4\nxpGa6wESMNGop9eJYMKj02pnVmNHLX1tbgjXXR5ZqtbGWGYQbpa+XXj1EE7/M/s3maedLiWKbKHp\nikVtTzSCwEY85J0D+NLxgUtfy8yneu+osfdNWtFSCYkBqfVdOVB9f7vjP67MzC6to7opKkgKfnje\nFgtljcc+GD1b7ru+As/T0h2/uin2JZJ+cgBySqLBIGkaE4hkQFKe267Vi5LowKPPhE8CeCnkPi+R\nRLMFpu1JgAeTHVjLUkUzdmC7RKRzOup9IxfAmWlb6UYHW+UqWEoubT+ZiNokoycOZOZlkjdxMuPS\nJA6+ZPsCDg6e8rWQ9utOMHauMstk7LTamQP2A/OGE+1jb9UdteQimbMCcKUfNlbr+9i1dMP9srKc\nSmjKo7+dZRWiibE7eqBKpihFaXLocqkvF4CHEJlZ5H5RQTIB7K59LWvLXsTkeVvJXnFp7QZVOwlm\nkxQDrDMCP2V3c8BJylgKwKdtpV/dZJiqSY5av0gs8pxDSvdXrFPITOLayUlRxgmiVc30I9znIvbT\ndNwtPBcmGNr773mVEp1ayfWgpctrLVYvSvbInNAUA7jP2P3tJSmS1k8WH8axI8aUYOyy/K8xHrCj\nrLpiGlB77hp+wQ8RKbMFJzSN359Jx/wWxh429JlarWu6wNtSHTHrLteZ80gw9gPhctn0pTprZN0J\nFZEXwdaNejhFpF4Avnx4MHGJ+5vFS1uqpPbaiQHMn9OgGGnsgkXwwOs001IMbOymfnLRjMelE0hW\nYrUTJSIZ33vS1Rojpl2zOYGlesFWZPK4etn1RqQ6mSVd72Zv8BSYttuP+3cmMy/zFAO6ejJrCUfT\n5upalMFf4WEFTMtS/bopOOErglB97BlesddY6uEm0ORh9coTr2eD9I0HbUxtSlFSDEPmRgK+kGhR\n3odqjxgAACAASURBVJTxLN6fSiySqxG5UhDkil/uI/NeJIlS+LItp8rYz57GDple/HCuvZlWSSt+\ncKO+nFY5RHQVR2YdMvkC36DkJTRJptWYuXbwyKBqpCtL7b1auTyNPbSvIWOXQO0w9l5vr4KtjkNk\nTMenysxQV1ZMGwODATOXgIyVEXnfCJbyO2vwFNioklayCJKWxswxS1YxfDERdEG/mwMwtH27madw\njXRtGar3BUsW8Hc26YbUcydfN2jeDgUOIRlIrIAMtkYp6fmuGC3dMZh1nX7u5Dm3fqr98tqpzFNn\nxSbdb1J7V5OZAXwrV7Kdcvy94ct6Cnpq91sjObLq60YweYUv5XSlmBP5ppTS81NKd6SU7kwp/eOT\n2GfUjL2o16Vt29IHpBiZWLBqrEPfEDkDN8Ze7UvZySQF7T1KmtgINqIAXDyE8s1Hcv9qoE4AEblf\nVp3vfpFL6Aioa8bo4C+5ObOx9Rez/6jUgAQVV2YIbI1yAEugliCnmTnVapCqCJgEs+pmgaJh3J+T\nmSD4+7UUQ6a/L6XtP+t+Iqp5CW6lS2c1shLPRRn08yKDp+3tQzoL18vaVc/LRFrkteDEJT4ulyB0\nUrorLhGIGDtq7HKlwOcmJcNGcvTrHTEI265FI1fSbKH9821MKbLUtf2P/xf1bMtqsFJyOVJaeuvn\n+3LUn27w9DEDe0qpI6IfJ6K/TkTPJaJvTik997HuN2oHnWbsm9ISAqKljwTkoylNn2h6MXb1saIN\n0mf40vdKxBH5rECOSC+he8Ei1llOQsA6HHah9lN0sNXLMG0DKbuALINVcgCjTU0CuCxM1al+qvvv\nBBDsZOwFAoOSgdftG+uUzFzZHQfhokk+89eTH5lrZFYd3A+Si8vAJeAHTF7HM9qxSlkqWqWowLMo\nEaCuaceTVivHMMs5JFZ42Xle1ESt7n9R185j7BhI9CQdVV7DMSrwG5T4GkkpRtoU1QQhbZCQLY79\n/JJrPha5asbyvOyiGf+uY28qH0bksTRZKtORIw2fRjuJb/oKIrpzGIYPDsNwRES/RETfcAL7dZtM\nOOqnZaYCalWnvS0nZSLSgQPgHOghImDgMtgqt9fLQ3xotV5XQD8Uup/DOiSTR3Yhg61ehunKAaGQ\nsUu3DDCz7IJTAdASjD21fk97jwKDcvUiS9VKZoZFw8btyZ0I+r5oTX4iScoG6WjpRZwDJhBp90vb\nn5RoeCXFshSRP8lxhinvw61oWUB+EhN7715TwdgxPuFMcp59MYuArmTmRmMPGLi3YosYewsk28ky\np5YARwQJR/Ic+qInCBF701Zh268nAr069gLPkvzI2Jsigk7w9OCMSzHPIqK7xe/3TH1XpUkpBium\nrTpd+a1d+KSCpEpy2fo3SrEOxfy15MIDbxh0MBSTJrxEJLlslA/bRrER+bBJ94PQ6ouO+BNp5oQD\nzBuoOMDc/oEEEOzOwkQnEH9uV/BUBVsl+AVgpiaCun1jrzkJmaGeg67W6JUOwAQifW6lnkeTaAAU\nWVfOnpae98pSKKFEtenrNR2g6mO219QLMOsM46zIjLTsRSUoIo29BUl1opvMzpRp966kJ45VvlBe\njX/F5KVE054L1S8mCFd7z3ps8jPciKPOb6nEMSf1Qg25vSf1nkY7tSkkpfSClNItKaVb7rvvvs96\nPzLTq3nDm6bVXsBRNFCLDDDPBqkZvvbQcsBGMv+NfDiFpaq9WUkGNzHN2T6E8h2mfcRS1DJTuxkk\nEBCB+0U8nJrJy2p9GCTzBnAJmLzenvuU5ML9M4KnObfJWnu0MVO1MXZZE0Yy+XrOAqh9m6JwxSQ9\nmanMU0fSwXIJ3opAero9mSm+Fj4Dx/iEJhR2P9KyF03gcjKTzh6fsUsn2I7iYAL8ogmiDFye2T5H\n4wpPW47rtXBWtX3RgC9ruUiJRk1+wrFWJV0gY+P/0tYo3HUrrQhIonnkbH8a7SS+6aNE9Gzx++dN\nfaoNw/DiYRieNwzD82666abP+sv4Qd+IpZhi5kKKYc+7qtmw1UEPlazReexF9uvsOSkBEWlpRS33\n5OpCLK23huHb7VG6aROEL9HIGi8R8CrbpKsTy4kgK9bpM3ntluA+DULtHLBoGJ+zx+TlpKjZqA48\nVtCSoCjOzQ+egq3R86sXWfUR68A38JPecL0ioLqfnKiyVHPfAgllTn+Bc3ZXBF1uspRYUemJWgBv\nZ+8zJrpt1f13ti+Djk+piaCRK95W2SYFacEXxBNxgpI0KgjJRZCr9gIebTmW39smAhlLK3ZMKXcd\nJigN9bianVrXljpNH/tJAPtbiegLUkqfn1I6IKL/hoj+3QnsN2wc9MQbgkV3pLcWX8xBpOUKuWyU\npQZk8ASZvPT0Eunl3qgfB4GeCmbai6uTdTzpRi8nZS1w2c/HNKeWh9IPxcDey8wlqxVghiDEYMZ/\nR8lFBk/lOSjQGixoGUlH7F9OHPw9XmBQSSVDcG6wvZfQpHRlpcmTu73KtpWTViC5qMnS0eS3Ra/Y\nJEGQE4F8XqbuQForOyZ8y8C1XCElQD9TlatHynvE51yvtRg7arWrckDaGFFBUuVAa/ZFWd9JyaF1\nItDPfCsAaImgLk0ig6p+ouNpM/bHnKA0DMM2pfT3iei1RNQR0UuGYbj9MR/ZjsYXEm+IBGSZ8rtW\nF1j7T2WUm19zpas+ClfMtPzk2uEyKk6kkyZ0LRehpQuJRgOy1Mz9xKVenDMyJ1mjRPbz90gNVLpl\nPKaFtkZXouk0Y0OmxWAjv5ePRckMTvBUvjWoF44PCX6G7UpQHPS1YNAapgQf9ao7cc7S7livhbRB\ngv9c9strJwur8fd6MkNf9teE0f2FigBcFZ/orXQjJ0UMhkrw479791kTgeJnmAbPkc5U1S/gkBME\n7xttk9yvy24wA5djIVEabL8BfGV4sL53xAUp9fD/RwGOXDra2v6VzkjlMXIa7UQyT4dheA0RveYk\n9jWnHQCwqxtSSwqU6ldfr1o2XKSlG/+p44qRgRucmXnbbdFVImu/1MZVkNQGW3tgEZ3DRpA5yf3w\n/1GJAMXYeaBGrDaBdCP2o0AOGLvVTKluK1+xF7HUBlqF+qFNYnN0aDlB8OdQz+bPuUXAgnOWjB29\n/h4zb6sR7RyS9W7ceANMTnKSy8nrj90vZsJP+lp47hc9sYuqn7DCUwxcjAW1fWefu763kxyvLnLQ\nz/uQsqesvyRXFbpENks0entJKJCZs/ul5p4o94uQeoUE3MaOYPI5KcbO0vBptNObQk6wsZvFXSox\nKwCm7ZXVlAB+tC16gmAtrYg0ehGIURqbsE6NwVbs1wEaCeDugOw1CHmarBwwm96CFg/UlnkobI2O\n710vucVSHO1rIsDIyR1ak5eTkC4aJvt52wjMtJZuGZuSYiaZISX0w7dj9Zi88at78sMOf3vnMHZ9\nTamdW9Hy1ngOOk4gJy0pJ8lJ7njXzmfmKBniOSuNPZHuh9UIETJzUTqg2OJz7SUYzgqvaDm0nUN7\n5sMx4hoSdO0Xb0zp0gQCLzyJptMxNmmnxqJh4zloReDMMfbTbijFoJbOGuK+zFOpB0rGrn3sRWlv\nRDQBaVHgyvtWVSJFerKUXOTDKa1cciLYOA+zq6VPbMVq7MkMCiI7gOW18wZ2tERv2ZAMilT3T9T0\nY8te/eCpDbbKfqr7kFJMBSd538Qkisxc2iC5X5cUEP2D6HcAvxRSqxQ3OJvFOTtMfhtM7BiHaLEX\nzdiV5CKvnVgFlcFei15ZRS1j11p6s+yhxh4x87a9lVbGSU5ajrVmjs+XllB0kFSOkYGlGLQQVwDX\nwVMZnMXJj2tFSW1/7M+tvrqQXA463wa5Xvm+99NoZ5Kxc4Yp+tgZ8OuSSwC4Su11mDxmjDEb1VJM\nA2qlE0pLVdFyxdiv3TIyIi+tXLLEqHzPo6cHGo29YH+Gfsk62kDNglFHGrtaoovlKu9DendRA0f2\nqtjiLCdIA7+cG4iz1CO/kzVwyeT5f81qqf7vSTEqMBg4Pkw/2xp7C+AMWjJQOZ4DhYAsZSadiBRI\nLgGTR2a+mo7VIwJFMGr5fPGEiP16lSIdJZK9tpUf72NTHClmus/eRCDlTfW88DiHuFVzoIkaL0Hw\ndCMmDpXQWHSFVf4744IsJqhicmqSy0KTP93qjmcS2FlLl1FxIhL+01J/J7JLJa7iGGaSZfkQthuo\nZIa+uNvroKp1y+CAVFauyiKaH77L+k02RkvPrLH7jL1HkFMMvADTsswcGbuUK4gYhMgMVP5uOdEQ\nacZutPHBAzkSmrxMRPLlJ9TqW7+WPfiaKAaupBWy/Vl7vXVQler5mWs0nXPrp9Y/SOeQmLQcl4t6\nmxRs35h/rklZMqgaXyNNBKZupaXHjN3GcOT7fJHJ87a9lCthEsLniDNGUaKRSXydIEVSlsRYmqoG\nWR1Cckxp+yKudvn9Dbz/A9Evy3PzsYz+9jZ2Fsa+p7HkIhMOZL8ESyItuXAtcyJm/l5QtQGytCmp\n13JBIgJvr4KqQnvnOhvjG5qm/l4nLklW0x5O7UuPgl49LCdrPwxs7QTxNValH8vtB524wuembG3S\nsqlskNTOzdkPgpBk5o11krI1Shsk70u+gKOl/FsJiP+uGXs7Vu1Xp7Z/cS3kagTfViSPC2UpzLa1\n7NWPQ5iENk+Wmo51VYHaPi+9s32XfU1eEYFe2xS9uEKbhDTDV3WTXAAfVFAVA8Mr3E+BZEAxpnAy\nY1ecDJ7yd0hy1dx12ViRuf9I+eEZwDXuSEm34s7yBqX9bbzApS5ztBQjiv1wffXpxvIyUy+hhN6M\n7pcpgGLdLyzFaNbBN1c+OOP2GvA1Yxee22Bg8/+9eAg78bBFGrtcfvoaO9THkcxMPJy1CFRvE5FK\nIfUmJlUTZpBBVa2lovtBMnZZrZEDwLxvXc6X9DXq0gSiU39q942PR20fBEOltBIm3/R6cmoSjZa9\n5LXo4Dnqi2by6u1Q8pwFY58ItZKl+iInLSGhCMlF19f3ts/+aifMPNVOEPtsg7QCJAfjULjCkzkg\nkoypiUBMQsxQeZVNRGacWwaeXLtjZfhFE0d+H4PZ/4QvyPzZzDEMeuV/Gu1MAvvB5GbhG8KSCwcx\njmBm5iCGnVHFhVfaewNk9So9ZXfUtkkioTdj8LTo5aS0R8plo3zIpT2SPyOXmdKForV3ZPLI2HMd\n2EUCcsDAcGldGWEnB3AxoMUBvRpgTBqEOpAr0IJXmXkUVFVA3b5Dn/PYn5PW5NGvLqUh/rt8C5SS\nXCZkVf52KaHMYOyYrGV05V5MTllLd9OPWpaSREBc122vy//y/7OC7d5kVrS01srt+kzbY+aNgVvA\njzR2STRkFrYcz2XwVjX8HdnEJ7i/LzLRERk+TAQTULOlGu3RqBQc1HdHDGcy8/TU23pa+hhtjGdU\nB8C9pRj60q0UU4DJC6Du7fLQ+NuVdKML8BNZ+5pk/r6bxdfYdS2a3Uy+aqyDP7D5eHGSKwMpBq7f\nfBT7ktEGiWDmyQ+yRICs/aKKeg2WdVb3C0o0cM6SjSp75F7G3nR6dc5C999C1ib3K3lLOIR6sXrR\nhc/K1CdXR7qejt6/lVB0PR09mcnXEPI56MJq7RmW56y1d/m8wNjhZx6AusqYMzV2thDjSpFlTJY3\nx/8xwAyaOUq3PHbMRACuGGbsGSWXhiNHQhrGFftRX9RYOI12JoF9hTOqkCUwEWH8P1XQ1f2SUVst\nfRM8hJy8gA6Rlj3nSDFF2ynH7cUx5SyCpM5D5QSAiDzNdLdbBicCXKITWU83n5sEoTogAbSQmTHD\nlMxcZ2dqJs99nhQjJzklV6H7BcFs0t573D7r7cN67I5zSPnblSRC/ipliOUnJAI8mVXQAqfReP31\n+z+Z4etrVMw572LmpZDTL7OtA4dQP6jni6hN7HLlx+eMdd3bucX2yMaOGxnbiP0QMdPWDjT+X2nm\n8hoJu6N0xW2K3Y9x3YHkgmSM/375qCeixuBPo51JYOcghlsELLzwUqLR7GKzHZQvVWnpva4JQdTS\nlkMt3TD8QdngtFtmtHLxoF9P0gc+VBbAJWO3QdXILdPlVANYdnvBzDo98MZB72ipvV4qI+B7iUtR\n8FQyZwZHFTyVmaTAXts1aoFMCaSlCB+7ZK+DfiEI90spxguS6rK9+hzkfuq1c2IsPYKlAnBxvjIg\nLa4FrhSIcJXSVhjtfu62wSIR6BJOKPK5sxY/SQRUPAtWZm6dpd7PPMUEKL4W275VXq3n4Kx213my\nRxcfkE0Vx6z3YzJSDY6MY4c97uusCSKXG1iJY73a7UwC+8HKDwy2GVVr76sdTJ6I6Mp2nFFlhhlR\ne8ORZeY6oKMrxel63EQcbHWY/PSQr8USDQFcauyeW6Zt77hiertE5yW0GcBZp4KjZjou08kdYJLV\ntsqCxQ2SMiB77LUvQ53kZLVGdLkwo0ZAZrkK/e0srVhNHgpxgbuGv98Ntg4O2NQ4RFbf02yN/irF\naPWTtGKkHnmsXbPBoj2yHatYmQmrpbZHilWNy+S1pCdrxZTBxg9QG7cSndbSo2ArVn3EVTa/gEMy\n9rqSE6tgIoexqzESSbpyTLXv9qWY8f8rm75+XvZfOurV/k+jncngqbnA6sLbxCX2m7YLr5n5Zbjw\nUqKRQVXFIopTUmDS2cwEMT3kRoqZtpcPJ1ukIv+xSRGfAjeGUXW7g2E+w28uB09aCfXjwQa9tj3I\nDGrJHQdPm82S6vci8Oa8Q1oZrJzAoGVBjgPJVPdb9x/42Me+wfjea/8gy/wKx4fDzE0gUa2CnElU\nuGKwtIP/vMhroSdwdMvUlZ9jj42eFz4m77lgYPTuv9TMZekAd7IUVmH1vWBsGPfFQVK9Cl5ljDdJ\nWdIGPVeTDdq3TccEkQG8q9trYGccOo12JoGdHSKelub6VeECo16H/TWIudVBVR08tSUFqiaPVq4J\nqD1dUa4I+BzkQ4glhk3En/sLDuxcl6tE+iGXVi4MqqFbRmugpF7MQdSWxIaBD9rWOMe77RXQQpbK\nn5GMvX0HuF/Ed8igqpRW1Is5KiBjRirpYwKHEMoD7jkM+loT2dWLDJ7KV+xJLX2A76yrEXP/NWPf\nB9RIHKq00kE8A+yr4wRuwSxi7KiZ6+fLJwKejMVkSY2d3NxvchXcYmwWL+QYkQmH2rHWcERlpMJY\nuLzpYXufUJ5GO7NSzFGva0UQNbsjLpX4ocALX4Mbm63bz8X8V7Affni8pAkVPAXphvfLUfzmrmkP\nZ9NA/USRpplCkLT32UiUoBIxsJobEAzI1k/1WqjEJbG9eok2eK5lYJNoArlAS40CgGEw1JFoVNEo\nlGgQFAN/u3qBhaOlW8mF1LVzpZsoeFqEpAcTCp6b9wYtjL3guXkau9sPE4R5Xrb+88Julkhaaftn\n8sOTYuCimq4Nlwjo6/41Y8c6TuO5gd1RxBs2vZ3M+E1pMseEiF0xjeHX6o4rWPnnpP7eiOMC7Dtb\nywzTwYpVzlSGNkPWUgMr/wLzjbx8ZGdyIhKzv3442WqJAxI1+VrjBdjLeKyNCcmZfGQddhnIHtp9\n/mMr3XjB1mKYPP+dgb2D1QjvS8oYqt8BZLlEV1a+wQJEZeypDeCc0K/e9uVZ+TAwKDNS1VuG5H48\n5p9TyPyJhLMHgqelBJmngXNoi9cOMkmlBMRuqWYJpXafnXPjVYo3yemJPddjVc+LuG/eCo//P5zi\nU/i8tGcegbq4DJw19ponIS3ERQO4jB9JAOdVyqa3Y01JKEIGwgxW7tfmDD3+mSDWSSsgjk0p2Kr9\nnEY7k8DOUowpArZioIYLXLX0rdreLKGEVk/UHlr0n9floRPZlyxCB08tgPe99vryd8iJIBmbGg4w\n0NjFAONKl/IYUcZAgOW69Vhu1zBwyVJFP2aG5jpQ28CW706VLFjaIOuxQhYm98vkGyWtuJILBFsj\nxg7BU/S3G2cHrF74M76V09oga0KTEzwtAuT4u+VqJyV9bn5gsK381IpNTYpi/86KINTYOwb2gLFP\nTNjGlfRqRI0psdptTqBixkiNpSFZ6lJ9x4HR3icZMyc9+bkSTc7gEGrkikjgy0rjhQ2ejv/X4Oni\nY9/d1izFgOQSLX1WcIFrpipPBMENaUFVDeCs43v12FVGam5Mvi8FrFmNXaJO2Bfr0cWIv2XsvnSD\nQTW5UsDtiQRjdxi1XEKj+8VnozbwzBY8BEtm4Cs4Z1UiAMAprLsOJQXY1rhPlsCXXHsMn6gBctS/\nwmtUJRcrM4SOkkGzVMmo1XOxwyFUhjgj2Ssp4BEErsfv7YdIMHaQH3dp7F5QdTwHLXsQ2eeu3R82\nKggAzw3APbK0EbIqUTNhoERTbY3GHsl4MRLEgwBf8H2uGMM7jXYmgR3foIRaOi99DgDwcQllmTww\nfMPkgXXUh7AxdimtjCVXW/qzlWJ0zRkiwbTQo5tB65TWrEADVf5joSsOA7XVDlgwD+EaSQD3QAgT\nUXSSjZUxcD9yIpBJPEQkSgS0LEz+TFQiQEsuvB/aLbkAM8cMVlf3H+xkVoHXSDR+ILlKNM7qZQyq\n1kvRGLv4Xv7uSIqTMRbUzK1bCkoTiOeid54j/tyVDTJ2raUjwzc5HWrs2DyJcVJBBp784Gm1KQKw\nTyv8HgCfk/6sRIPve9DnfAkI3wEwdpRurmwWjX1WW3cjOB1u+1qnmagtjfDCr4CBr1f+THsQbO8l\nX+g3KwnGXlBa4bex6IezpS0X8xBiXXf+bvUC7z0MvL2Aw/rYiYTkYhgYa+wa8Dnxxwy8QQ8wzBi1\nAzXQoZnhCdCq6e8DyA/JZ+AS/PDcJJOXstGu4ClKNBnO2Z2cis3O5X7GoMZqtR9eMXbnWqBDRJ/b\nvBgLWzltcF7HJ1bQj55u/r8+L8C0x6J7dvsaDOX9S4YfAL6NT+XJ7ogAztcImXlLOEJJx5NoapZ3\nvRZ+kDRy3a2A4TeNfQH2nU0CMi7FuF9uZ5ZEsFRqTN7vtyUIBiW5dPVhtgNvnSfXgvNwNk+vZh11\nuQoTAT/88jvNEjooHYAAiwOSBx67HJCN8kCNEosw+YalFfR6j+8w9aUe6d3mv42slhzAL/UtRxjo\nM4CMwVMp0RTymfzQXqKNwc0yfcYLqkomj7bGWtOmTn569YKVMb1rYVY1yKhrxuhul4sXVC+DJQJ8\nLkfbICaz1Ss8/hzqzSvxHCmNnfuBzHSKLOkCWl1ONUFJj5EsSFeC/vHlGDKtf3wRxqCSB7m/L04M\nD/DlAADcBFUN4LdjutrtTAK7XPrIi8XBU54hz3Xd2I9+9ZW+8IbJZ32jUDM/2hYqg50IWHKRDxsv\nibG6G2fD9UUX4OcIvpR6xv6Tc8UQ2QEZ2R3b9pGtDROUGtNyg61FW/80+PlxhRHMarcKJBKRzobc\nydj9YCtq8hXMON6QqG5P5NTHUZ57Z/ILfO+RWwatn/Ja4IoQg6E5iX6XgQc2yNyeR7k9jy+MvUQE\noXm3/e0ZMP3nwst41tINEbtZxv3g5FcrryrC197fIAGcM9j7Xk8ENSMdJyfU0tEtc+QTwcuLxj6v\nyZkQl1ZERI8eagBf1Zl2q35HzQxtjVcgGLKqE4qt45ISV4PUr8BivW4Eag/wLZjVCQIeWqlPV1mC\nXTQOIOultQ7cHRnGPg1UGJC5DmAIkgEIyZdaENliT03G0MHTem6DTuIhanZEvHb8hiO05lWQg1VN\nzVQ1JQUQ8En9jz5mnWGqGT6fs/T0qwqYbvKVlqWUX1344fkYOJDsMfbILeMFhr2SAru0eiIbe0EX\nlYzhEFniIF9SowFcSC5OpjK/k9SQpX4wTF5KK672jv25BU9RPiWS8QME6m3Q708Ejy4+9nlNArtm\nuyyh6OApLonOrfz+SHtvtiafyY/fnUw1SCIB1KVUZsnb88DTTL5ZrbyH2Va0g6V1ECSVtjYiy8Cb\nfU2nRctVityPfaGGHqhjso7dDwZPiZp+XIqVH5rUU7una1qEhNL6scyv3I8bbBUMHz36fO1Crz8G\nSQPtHX3vfLzmzUq5+dXl+2X5OziQrBi7dMvAROBr5kFMhic/x0VF5DFzDeA44dsVHsuYXAp7IhpG\nY9cEBIOwRDK4WYKxFks0aINk2zSumolGxq5ieBiTQ7wAs8UBAv5id9zdGvBu1Q1h++Kjh/4NsUEP\n7tfBDeuK0aCFMzb/zCzVMnanEl1u/R6YWRbRNHa5H1Otj8HMBEkx6KUBfB+Tb/362vGxImNn2cAu\nxckAezcxc5nQNO6rATtOBCp4CnVTjL890Js5eGqBffyeDQJ4MMmF8QbJzIPJD7X0EKj5/osaNfzd\nKG+N3+EncaHLZZ90h5KLcVGFBMEPwmOmKmrsMsO0HpMjS/GqVo81KcVo8sP96IrZOAxfMvA1jHGi\nBuCVOAIuGKmXieZKsJOr3M4ksPMFffSoN8EQogb4vCytEg1kgKHvHZeNVjMDxi6/Wzwk9iEsJlI/\nArWuA8/b80Oo99M0dgy2eq/9agNyAnDwjZsldAoGKrofEqm/V3aJoNVH1SCLkVxGsCFfZnDAbwVy\ngpJcipRcNDM370jtfL2Z/84BQ2TsbRWU1d9LoKUzOHmTH65SqrTiWD8ZwG225Qj4qL2HZRQCYJf2\nSJTuIiLAz0U2z5cfVLVB++ka9XpSlMe0LVozr/XSzWQ2OcqMFMMlAixjr/72rMcm0Vj1FccaEdGl\nQ40ja0Eoifb720+jnUlgb1r6VgG71NjPdfZGRZILA3VbWmnGjiyCSxAoViCSHdDWuJmWhyjdeEAt\n33xkSg1A7RoiwbQgLdr4jA3g2/rdYz8O4PF7joCBoX3NVn2EKpFKV9YDkl0uUp+W51ZwwIuknJRI\n2SDlm5XMS64dxu752w2AwzmgvIXMPHqhRuRv93zpGDyv/QOp7auEIrJ5eXvpBEJm7sVetHTnr1LQ\n5XIIsmRkg0RC4b50xlh/k6uZV/mxR8mlyZXeGMTV9KpLtNnyuxXk/htjl98rCaVUBDCGhxmp0HJW\nPgAAIABJREFUqL2fRjujwM4z5LZebKK21Ll0tFVsumnpkDEG9iWb6KRnYKLxZmLRMO6/Ag8t0fiQ\ntNIBenWBJQh4P9WLi6zWtU2yrVGXKkWgxoCO0dI7PYDbwEbGrsHpCNirYuaiGmTTj4uRExicpKTD\n3+HJUjn7Xu+IjVbvtueW8Vwxhpm3/YzXCLV6ms4Z3+c69QfauyczdfJazJBc5CrFMHax/1aaIuuS\nAsi0A6kkYtoRgF8JGDv38/MiC+IVZyXHBgN3VVtsEp/n9eeM1I3xt2dT6I9IEz4vqHr5qKcDoQhI\nwJe/V5xafOzzGl+gR4CxM0A+etQbnZvIArgtQZBge52RSjSyBW8GXuckGD4CdRCphxIE4zm0ZAoj\nuRSr1Y/MjOjIcdEQWW20DsgN9u9mWkcwQXRmItDfW5k5Mm2oLUPUwEkm8fAxVMYOS24ES7k9+tub\nrREAOY0stb59CALDPGmhj92wWhk8dVwxXpC0bh9JMaY/K6BW19SdILK7IsiJCYIu9hbd/9qPrpga\nw9Eyg9HkgURdAbcMfwa1d/6sN7HXVa2RN30AX3XTGNl6GrvjQJMAvrKA/+iRJpQrQTSJHNPGoTZt\nnEY708B+CS58u5A6qFp96Ue9ejkw1kuWbyVKKXC/dNkkLnH/lSP70NaHx9HSfc281VHHpIw6gJ1J\n63DbA/PfsyTe+kvicCIAxm6Z3KQ3y0QkB7QwqMr7bPKDvkbF0dijoCqz3VaVUe8/KhFQ7ZGGsUf9\nvnd7ZxKXk2HKjiJXS8egao4nAs/r3aVWpsEjCCYLd7pWhyA/1v49KzmzItzo2E5X+/V++Biq773z\nz806xIqRN7nUANogpSyJLjr2w6+BvBFZ192BAGpPEXj0cEurnEzm8SMM+Auw727yrSvn1AWebshG\nAz7//CgCvnDXjJ+XNze7dZTXXaLLVXLRkwdq9URaA3dZB+qBAvyMdDNp9Qh+RONDiy6asR+XxG0i\nkJ/ft7TGAdwCjP7S3WWXOVUPuGWp4/2U8SUlJyjmb+u18DEVR3KpwdOZkktl5mjxzPqcMasWJwJV\nqrh4Wbh29aIm8DmMPbfAMG4fOkoGwdjhubCJSADg+1wxzMwhtlPBdWvJUpeTCfLzZ/pSJlJkyZIv\nb1obpIyZKc1clAjAYCvRiAseMx/NGfp4xn6NOyklWnepXiO5r6vdziawS9Du7Mw5DLq/MvZNr7dn\njf3QPmzrLlUGjrM8lv/ln7E0wdgvkiBc94ujjU4RfHQ/tIfWspHDTW988mN/EPQKmblmbAhmVqKx\nOnRKFIBNwNgzlwgAZi6YdiRX6IAhvJhDHKu0QaLkgn51/r/2wyolysKMfO9Y9VH27wqe4mTGhdV8\noLYM3712Im7Bv8tzw7LN0X3G5wX7EcBNMD/rcYuEgn8+2nLNGXuNUN7k5wvHjlyxuyv5DdgaA6CW\nNmh01xCNZAZZuYzbLW9Q2tPkTVBSjLM8Imoz8KYf1DY5Ty6XQFq55EoxgpkD4CNL4c9eqW8vd9gI\nRvYF+HlM3itZQDQCNU4QY3+ggcLS1/QjgENma11ab228oSXT+GV4pQ2yXovJl45BVS49a1iq5wEX\n2jsfB5GXecrnTNO5oeTC/X7macTMjUQjVi+qDopg8lENehsk58S14k4Etmhc3jGJ2ozULJ4j/j55\nLlEJCgRqDJ5iUB1Xfvw3rwKilGhwbG4qk9er6VoHPlssuLLxY2/I2KUrxpNiNv3gau94nPJ6nKYM\nQ3RWgV0Y/RWwZ7//AG6+bAyY499AcnGlmNzeuJQTbK+DJ0Tjg33oBFX5JdSeBctbQtcEJccSRmQ1\ndvSf80dWewZq9Gq8QxyoIMUYB8fgxA8kYzeJSMVMBDmn+uo93yGCTM5n7GxrNIBvJBcfwCMbpHUg\n6WunXpwxDApEeVWDgUEJvBIwcrZvaOLv8iQdnhS9yZVovM+eDl3vZ9b9sSvGr4B6CGSG3S9XvFWt\nAHCURLxg6zr78mZ7J6k1KhCxy8WRbo961xXzKEgunvVxPB4fa4gaDp1m4JTorAK7M4tif3RDcEbl\n33NCFplFgFEz5MvgV639G8tepVvG9bGD3VHWr9A6ZEtQ8vTAw61lZkRTobSsa4iM/cFANYwdNVa9\nPU4E/PNmO5gldKuyCEEy5ezIqr++gKPT+6nWvzn+9gwZphFQR9o7MvngWpj9CC3dSiuywJl/LfTq\npZWa8OQqzx7pvXRC3mfveTncajKT9z0XUI8da5Djd2BhLexfG8D3nGZMiuxq1ysRsBYSiocFPEZa\nP0/INIuZ88qfyAI4X6dzq45Os51NYA+kmOjCy5uGM2qL5vv95mcJ1KClezUhxonAsg62NW6AOTX9\nEANDbYCtYf9EttKlZFrI/Md+/6UjKN3wV+1LOFFgkxMd9b6tzatBL4On8ja0VYqVaNh/jt/r1nWf\nbI1eFibRjuBpKMWAJh8x/9yAHQPGVR7y5CqwTbbtHcbeCcbe4X7IuKiiFV6ceRww805v367RuL/G\nwPUzjAlK3B8DvpMb0smJQE9+fEwesRsGO2aJHL+6I+OM37V75Y/bEzV1YZFiZrRQigmYPEencXv5\nGQR8LzjCP0/4YLV09yHMLuuovnTDwP0AkGRUHoCjK0YOvDWwHe6Xx4RLaMvYoxRxOyBXOZnaMvyZ\nOPmmhK+D8yQaL1mnAr4TbCWS2bMakKvGntv+5fbI5E0RsDpBRCsCLQ3xZ0vItHUJgnpunlyVpMau\nr3UtuOUQgcNtccnLvkQkm9msiUBKSQM1MvatI8V0OZwI9jN/S+yOttbfjtsQtXGKwVC5zbkZMTwi\n+bpNH0fOlBSTUvqmlNLtKaWSUnreSR3UvqYLfwXAHiyJzIxaZ1p/Bsa/xauCXAc8PiQe4LN9Eb3b\nq9zADJelRCOAR0toj+Ff2fQG/Mbtd2cYGskFBnxK42v/sDQBb9MAglQ/OkSINBuNAom+19uy4LGE\nsQ/s+4t66fgBAjJaPPncbP323cy/nlsht1YMa/LeqsYGSUWwVTzC47V2Cq5JYHcnv/F5kZmqREJa\nCbR0JCFef8TMVwLwMfkOJxSiKc7lyJs64zv4OXLRBTgSrvwRXyLiyFLM+gwBOxHdRkTfSES/fwLH\nMrvJiy21qy6nuhS0M2cA4GxHMlLM8ZZjnoecj6np0Jo54TsSx37hZnAYu2EXwjd8nAEc+tiBIUXB\nM/7upjfrc4sYe3WIwLXjgmgemO2qIeOxYM/fTjSjcmUI+NO16DRQY0mBqOoj7qedQzGSi7pGZjIL\nkr64ZjlIK1xbCL3hfEzehL/rOSKyjB1XcvxzqyGjV4ue3TFm4DmUaOqqWR1rxNL9MatxxAfwCOSj\nFT7iS5ViTtHqSPQYgX0YhvcMw3DHSR3M3CYv0g0HOijBF/hi0B9p6fZG7QftaPkWTQSRVo8lC4im\nLDnnAcNAjwRqXBHw9i5j3/hghkwrCqoSjYCGlkD+bi9FnIOhXiCxd2yQDGYeS+XXuBnr32Qh9HRl\nllwwuNk0cz4vn2lHTJ6v9VEQhEUmL48VVyPVu4/n3ElZSgN4lJFaBjLuKmlrRNlr7O8Na+bt1bXY\nNeF3uVp8O/UM72Dse7X3YBzNMExE23vJSuN+/JW/JI6RCeMAgqQX1yuzn9Nop/ZtKaUXpJRuSSnd\nct999z2mfcnZ9eK5lfobX+Dza32B+SZiPxbsqdvnxvBT2v9gRAzfS//n7QePdXQM7NqCFWmjfNxx\nkDRi7EW9wHdvIoqz6ljlbFwRRCNARgkn+KYc7i+FfKD2QC6L2uQAisNAtMHgKZxb5GZBAEdAjpK1\n+JJsYFLkQ/MYO78FCie56t13ANzLSJUBZi8mc9QXA6JEU0Kb87xETD4Ktkf2xUPHYBBJK132c0lU\n8FROEOGqOVhZq58FmAcMfKcvPdTSx89cBHy58fyITzccaJy62m0vsKeUXpdSus359w3H+aJhGF48\nDMPzhmF43k033fTZHzHpwWwZ+/i3C2ufsV9Y443yAR+LF9X9BA+G5y3H7aNtvJ9NULUyeawJ4/fL\nAawDUuPPtrYMDmCtN0dyAgN+BwMs2n5bBvX2+tavq0FyfxnILWTFVkHv2h1toYTt9GOUYWoBnNQ5\n8++2omUwEYhAYk7+qmb03NuKhuzdj5xAptJlAPhyAtf9bXXhyRiHW1sWmmhcQUoisE9jr4x9jsbe\n+Ss8qb17xzRuExGtGYxd7Edq4Fpy0YSPxzPiC+8XlYIbJuJ5w7nTBfa93zYMw9eexoF8tu0izITM\nrmNghxtSgxv+BIEzMy45cT/yu3CbSLqJ9hMx7ZXDUmZr7F1ytzcv1BDgl1OQYSqYmQZeq+Hz+aAO\nzd8xBk8tYx8BP5v9VEeJIzNsDGi1fpR6iJxVShD03KfJY3CW/+ZNcrvkqvZqRH1ufT+oOuD8WQ/w\n5SSnYzjj/8bHnhpBiBi7B4pRUS+2lkbB0JDYgCbvrWpDySXYT6Sr69IkbfxHduq2354uAICfnyYG\n7L9xAnRm7qfVTlf4uQrthnP6QvItxAtcmXzQfz5w0ZwHhh9Fyec9bAGrDz8bLA8dph191kg0cqA6\ngO8PvOwOYB0Yhu2d/eTsB1WllQ/lisjZ4ZX/lQCbPSmmx4mD6vby81ibnr8j0t4xHR/PwZViZHzC\nsbvGjN2px+7U6d/H2A/h7UBye09jRzstZ896wVMv6D9u4xMe1OG9nzWhCIiQE6vCbeR4Pm4+jPwd\nV/hPOrcmIsvYnzQB+o2nzNgfE7CnlP7rlNI9RPSVRPTvU0qvPZnDmt+efH6tfucbhBc+uiFx/3hz\nMWMsSiue0x89hJ4kIo9h7Pd1+2iy8Aat/BmZf01QcXzDUjNHphVJLn5QNblAoPRmh/lFZXuNJi8Y\nuHduqB9HpQNMIhIEW2OG7/jVo2uU/BrkWTh7fO++c408Tb4y9kCiC3zsR1vfjXUIQXveF7tTjgvg\nsRS5X3IJ7cdq7PhjUI5nmQ9zLgB2BGreLa78mZFfAAXhXIBHV7s9pmlkGIZXEtErT+hYjtU4gPaM\nJ51T/TwIkcmzxhVpY8jMI8bO/QddNi9/aPv0AXmO0yZcTmb/AfbYGO7HW2V4OjdRzNiPHGklJ9+v\nPEo0Ntgqt8fkmwjMdr1copSmf+M5eMFTI8UIJs/7lf0I1EaKMf3BSyScVU0WsgQy88rYnUlucPYT\nlfOt18KZzMZ+//5LPTjq579tev2GJjzPeY6y/WMEs7Pd7cV+JJBGtkaJBVFtKQRqfp4vHPjBU8SX\nBP+fVjuzUswLv/FL6Es/7yn0OU8+r/q5HshTLx6ofp55jfY+PSRzXTSVyRvA9x9atSQMZZz5Gjvu\nJ3II7GPsuP9mCQyCpI5ffdU1jR0TlNp+SG3vgVzT0m0Z3p1WPvRuCwDHhKaxfyDR3QA/KAK2175o\nGL5m/ryNm6AUMXaxPTL5BuD6GSnFvi9UTkLefT7cgK1R2B2j2Itl7Gww0P2RPBjLhv6zPc+XHgRD\nA1+6HLdSlsU66nWbYPxjP7+s5ek3aAXhv/rzz6JnPfUC/Y0v+Vw6zXa6ws8Jtr/zvGfT33nes00/\nA/jTAdj5wUV7ZJVuQHLhWRv797lo8G9dINF0wQN5XH0+BO1oP8FSlzVTLtyFDKwxbVKf95KvtESj\nGbuvNzf3Cx6rW0BLMGoveIpgJkHODZ7uqa+OkktYaiAIhoa1xqvGntX2frB1BPCByMhMbratYub+\nKmVWsD0gAvJvBvCDeFDE5OdJNP7PcqwpySVwuUgpRhovopR/lGL4GUPTBpsvbjyngf05N91Ib/zH\nX+Pu+2q2M8vYo/a//LUvoufcdAN9wTNvVP1ci/tpF/WFZ43eSC4hMx9/t1XcxMOmSgmLh2rtP+To\n3W3HELGXzx7wI/CXn+9goIaSU46BOspIjECLXyuHssFOjzaCkGLmEbD7DF9+PgLq6lfnySzwq2Pg\n1gX8qL+L4xackeoHhufVFopiLLJQVsSyu5nPS7N77nh25qxegwQiuT2+E8HtD/YjWXdUfRHNFvyy\nlqcBM/+Or/58+rM33UDPu/lp7n5Ou51Zxh6153/x59Lzv9guexiInwTB1idfWE3/636ekQ0zzxFj\nb4M8SmKKlofeW1qIdmjyoSsmcgvsB3/+HV/su+szYxle/zuOE1TNKQVWwVbyVoGZCG6iPk00Aixm\nDBIxSyW7n+2e4Klh8rpKJNcaPwTA520wCMv7uuJYRbsUy1VjDRmfvRoJRSUczYixqGMLgvmQ01EZ\nOybxTP24ffwc7g90ngsyQzUzl4xdMHlJrpzngih2raDkwrjwNFAEvuzZT6Xf+d6/4u7j8WjXHGOP\n2rd/9XPo859xA335s5+q+vmhQqB+8nk/FTgqnN9egRUzefmgzgH8OW6ZectbIYdMkgtuT2QZq78v\nn/F7GrjXjx5w3idWXhy3z7Vaow9mANSBzCCB2pN0DsOgqv9ijsjlsnEYu2LmnT6maPUSFVbzgqRa\nftKyFxGZiQADsnjO2L+LCPDfIiKw6zmK3p0gJwO5ivYmaiJbK6r179feZbt4zmfsT4UV/j/6q19I\n/+GfvpG+8JlPcrd/orRrjrFH7Ss+/+n0hu/7K6a/LrOTfgiZwWN/lGiAy/XaH7ALzSICTd55UTdR\nHFSaA/78+wZe8CE/P5exx4wv/tkFuQDwK2OPtPQeg6fj/0ZLF+CHgU2iMXjq2SYrUBvGvtuXvgr6\nZwF+0N/l5CbryKB3NJlHoB1tPydoT9Se1Uhjj6Q+IlJB7Ege1Ixdulx8oA6LegX7lA0Z+43nVvTI\n4ZaefoNm5l/73GfS1z73me4+nkjtumHsUfubX/5n6DnPuIGe/8Wfo/o5sSDB9izl8ODmFvlU57CI\ng0iTVyxlv0QTsZqIOZmBNw2MDgA/ZHnR4Ax+ZmeHPb7AjZOaj937XnS/SDcL7p+3d4OqyPBBS8fg\nqcuok+9+2VUB0w2qRtKN/Lmz5zwMCMj1x1nMfE5uROSKQe2dn58o2GrqLwVMPmbsfv8qkGLkPiPJ\nBa2cP/K3vpS+4uan0+c+5YK7/RO9XTeMPWpf+Mwn0esdJs8PDILikyvgA5OfHgzWX7lJENYBnf26\nn9YJ9wN4FEiyL9jNRFRiwJ/J2CMd3wtcmv0kvR8/uWfcv7EvTudztC3u5HKEPnYRVJWrJlk6IHKO\nyONmGevI0dJ1Vq1mpmGCkhdX6IKStE7CldkmWk3tWEF5+4w+i0SgAnUgP1rtnWVMTPoZ+3OK2XjM\nwPcHT+U2TwpW3H8KmPnXf+nn0td/6elaFE+yXfeMPWpf+Zxn0Bf86Rvpf/jLn6/6K5MHKs8SDdfI\n4CZBNWIpSqKJ7JHHZP4Sm6N6N/O10TbJpRmSS6S9ezLIeKwRUI3/Y0BXZ5Laa7ELqHXi0rT/qdIl\n7t/VzMNAb+BXz37AWMUbQoCd0R/KLBT0758UZD8XMsN++Xv0fGEp7C7YvjrQVp16vs4HxCaKW0k2\nLn+W+0Qp9Ye/4T+mr3vuM089M/Rqt+uesUftc55ynn77H/1npp+lGGQvTwqWeNHSb1YAKLBHzmHs\n/IoyfCm23NdsiWbP9kTkMmTcJg68tn16Wjrun7cf67SLzwalA6KSAjJI6gYknVVExMwjv/ou777H\n/Oew68hRMufnVdjvfxd/BuMZcjtbT4WB2mfyYT9YiyXYSnCO9HYZ6ET7ctte93/LV95M3/KVN7vb\nnuW2APsx23/0uU+mL3nWU+j7//qfU/03Bkwe7ZXcpD/23CyN3X+wV4HeyJ/ZliFmVGZJ7AN4DR7C\nyc0JvoUJUcHSP3ZkWMcH9vP+vRdzEMWAb14obmrFkPqbHzxNtDkKqju6hdJaMPTYsolaybVj8+rj\nmH6x/RqkJK+/fncfT/j2+cpuf/T6uAjwIwcLW5SJKGT4CZ7V7/2rX0iffPjQ3d+12BZgP2a78dyK\nXv0Pvtr0M4Dj8jPS9CSTnxPBnxPxt1p6osOg3zvWaAm9z9ZGRMamiPvEnz03C342OyydaB7b974X\nJRppFTy/Xpn+0SdPRn66vHFKBwTMvFMAHkxsx5RZMCC977NztPdoEpV/2xUM9baPAB8Bm+uxDFrF\nDOURLPw3p/2D/+ILjv2Zs9wWYD+h9h88/SL9pec8nb7tq25W/XOAXQaZLgZMXkkusj/5/fIzpr8y\np7kDchrA0B97ou0+8VhjsLHfi9tEoBh9Fx8nZm2q4GmQqYryg8Q2m0DkHXf0c3SeAYAH53bcEhTz\n8h78FVsUDI1WfhFBwOApF+zD+FTM2GNg/7avutkUALwe2wLsJ9S6nOiXXvCVpj9iF5H2HjF5CbZy\nYOQA8PmYiLwBlt1+Bs//v71zjbGrquL4f93HzMBM22nL9N0ZWmkH26G0MNCiECgUWh5SXpICtgUU\nQkKiFQNSa6JCMCFEIlE0qRUlBkETRfhCQiEm4IeK9RFFkVJBsQYLRYgIaJnO8sM9+95z1tnrnj2d\n6dy5567fl7mzz77n7n0f/7POWmuvrVn4mmUWf634eYLbA9wyIYIfEnj0jVlu2OH6Dw0zOsp+KxUY\nefZPULBZiVXUW/2b1e4rQSAf109rrH/BVwVc+Lnd8+V53GrOISnsisUud02L8+WLl6rHWgkT9iNM\nZ3sJ5w/Mwln9Pal2rb+jI/YF7gwoWCR/YM6FoLlcQgVc6x/iKgizUmPtmghlZM7I/pqIqsHZRLt/\nPJV+2QHHoNfQBFkR/IJqpWfHJ7THWtaVJuDt8vui3fm5dtHfCbL8frl2abFPUSxzIsJlJ83FwJwp\n3uOGCfu48O1PnJxq03Ytj4t2V0zMtcUa9c7pShhrwaqRBlXr+eRD0iB1Ucy25HW/crY/X/VnBzyO\nC23lvPHH8deotev5+tlWvfa+6Jkz8PZP3hH43ViyVG2BKiUI1OBmWf/8k/39lrkzWoR+Vyuuirca\ns6ckS3LHuffK5eoxw4S9oWxc1YfeaUcn2kgRlXo1oh3yB+Yq0WmWttYuN/AtZfTXLHw5piCLPcg/\nnf3ckKCib5OOeo+BmggTpYOqtfMGuEdC5hbklsm+g9AqI/oWrh08NJwS5IIq4BnfI2EgOAGXlrmz\n2KUPv7O9hAuXzcZ5TbCEf6Jhwt5A7rxk4LCepwVkUyVGo99PaHpZluCXlWCrDKrGRaWcCABn+95D\n/PZqfnuAu0b37Scvos56VQOJsj3A4g9LR/RfeHwFvurOLXFxjbUrtYiqr3fI43JR7vA0y1zLuuqK\ngprSveWCodJAAID7rz4p1WZkY8I+AdmyZlHKqomjFSKTmwK4c4zcx+7/AY/U8o+fE4CawRP/PeuW\nbHqclXb/xULzz2spl7LYW7FAGBZ13ePP19pTj2PdtAuJ9h6VlbsddWNndfs4f4BZfm6sGAJa0NNd\nJLTPX2anuCCpXOux4JhOnLHoGNxwxkIYY4MJ+wRky5rFdY+HVqhzC2mkJV8NqgamR2q34llZEUCd\njRMCqlKG5X3D20dbJJV0h6TnkuzHqXb32lpOd/rxyGIABU2Qldo/iYtlgIDXC5JqMRn3fWsr+vcm\nkAaFW9Mh3zuXACDPXy4W8INProQxdpiwNxF3rF+Kl994Vz0ut/1zu0ZJy+mQ4nvXLfb6t+LyFtoJ\nVYF0AdOsTk2cEnVwAvzZui8dSp8wy7y6GUegKyZ5p6EEN4NW3tbOE/98Ckp7iI9dxlKqrrvAGi/u\n9WSGl/u+yQqoy3u78ZEPTceta/thHFlM2JuITRk1LeQ+r+VipWSs3J+xasmnshyiW+7AdEcnZtqF\nQFpsmiWfdDP4BVwTrbLmihmh+yVlgVP9OaQs+eh/orA0ysT4lKX9WqlabfNzrYRtqMVeLFTKJMug\np35hr7TLYL7bJ1ju/9nVXsIPb1gF48hjwp4D7tuwHM/sOZByuZQLhINI5sADNYtdWvhZP+DUAiXF\nx1qoipzf2pXPCak1r66SVFw36qKfgAyUeD8tSKpdCOoFVUM2v1AvfprLRbPYE3c7tceUOE9awA/C\nH8QE0i4X9x7Li9yZ/T04+/gZuOrU9Gbzxvhgwp4D1i+fi/XL56bap3a24d2D72NaV9qSB9KC7wT9\nKNFeKPgFvJYt478QiN97IpCoiVObZrErZRRKipipqYWxMfhK+NbG5He5ZAVP6wVVNZ9+UImExHuh\nuLFKSn/xudXa/WPVfO8yhuN879KgmDm5Aw9ce4r3NY3xwYQ9x9x16Ql45LlXMWtycqGH+0HLfR6d\nBZayzDKCpJrrJrVqs+i3zAsBQq25XNqKfuFsC7DYNes9PqZQS746Z8WSrzsHJX6glWfWLXl/+WdN\n2LWFblLA3d4xMhvrmpW92LP/HZx9/AzveYzGYcKeY85c3IMzF/ek2l3esFyyrWU5OEGXF4KC4odW\nrdcAv7fqitFcLkqtcc1X7wsMHhr2pTWmn1uZg789666mWCA1/z6581W2xa5mFJX8F4XQlcou3VEG\nQ93uQlLwF/Z0WTbLBMWEvQX57JrFKBUIH541OdFeCwAmRctZajLNMiuLRuYry515aq9b66O6YhQx\nKykWe4jvHagI7CFwWpCrgWH/RSvtY0fd/qnMocTc/HcR5QCLPVFqIt4eL/ks/UwRUqg1l8st5y5G\nsUBYOif5fTEmLv5P3Mg1J87vxo7Np6R8o064jxZZDl3KUnBnFafdEoXory5mvv7xc8rna64bNT1S\ntYJloDfdJz5WNXgauFirasnL3YcCKlGWlTTI+HsRz3gqKxdF+Tk7pGXeM6kdQPpObmDuFHxn02Aq\nu8qYuNgnZVS57qPHYt9b76d8pk54pLC70gZi/+6qBV4v3dHXH9AXKOkWe3amSfxCkLKolZTNqmWu\nVDTUUj99dwSAJ8BcrN3VaDVntItZ/FzxVEOt6qdWn1wGz+++fBkefu5VzOk+ytvfaB5M2I0qfdM7\nsWPzYKrdiZu05JywD4mFKFpddyn0jqTwKsHTAN97IUTwFYtaFWRl8dVISxtr56m33aAoILHJAAAI\nlUlEQVTmQorfjcStcc2XfnTZ/zOP7xEKAKsWTseqhdO9fY3mwoTdyGTd0ll4ds8buHplb6LdBWGH\nhMneVS3PmmzXtjorKYtvNItdC4Zqtcbj15OyEuhNu2j87ZqPXXO51PLe5XnSc5HnTVT6VNIgNbdM\nHOmK2bFpEL/Ye0D9PIzmx4TdyKRnUju2b0pb8u7Wf8bk9kS722w4VZ5VcQmE5HdraZCayyVu4ZJy\nnvjzdRdNoOum6nKRF47K31RhLXdAuLG0OERJuetILDgKzH5Zs2Qm1lgp3Fxjwm4cNifO68aFy2an\nipa57QA/OCTrbisWpWbJF/2WaZCPXcndli4XzTeuWexZaY1py9y5pZLnd1b00HDSjaXFIWSqaQj3\nbViOVw7otYWM/GLCbhw2ne0lb71sJ+xyE5GQ7QDjFJQMETWnO9HfL5Cp7BRVkCt/Q33vWqVL10+e\n37lBZHVmLYNF2zu3Hr7VyEZrYMJujDlzujtw+UnzsPG0vkS7mp2hCHs8yyMueNomFVree5zgYOgI\ns2U0V4wTcFldX/NvT1Lei3r+8LsuHcAHQ8PqcaP1GJWwE9E9AD4G4CCAvwC4jpnfHouBGc1LqVjA\n1648MdXuBFzb5FjrDyRFXitVmxyD4qsOFGo1j13zyWdY5oeEy0VzP2mbqNTjmpV92Z2MlmK0FvtO\nAFuZeYiI7gawFcDnRz8sI49M7ijjU6cvSOXJa9kccQs/EQAt+C35OCMtfCUFvKQIvrba1q30lO1O\nwIeEz0Ubt1z1GefWtf2Y061v8GwYjlEJOzM/Gft3F4ArRjccI+988aIlqTY1m0MR5/gyejXwqmaX\nKBa+kqaouW5k/6PatCBppV2OpkPZBUsLMAPAzauPU48ZRpyx9LFfD+BH2kEiuhHAjQDQ29urdTNa\nlFvX9mPRjK5Em6xZ42vXhF2ziKWLxuXap4KkGUHVlIBH45DFxFy7nIsTfEmhQPj02cdhRd9U73HD\nCCFT2InoKQCzPIe2MfNjUZ9tAIYAPKSdh5m3A9gOAIODg/pOzUZLcrjWqLaMXhN8eRfghD20eFfN\nJ+8PkkrT3LXLS5Rb3DWtsw2SW86zreOM0ZEp7My8pt5xIroWwEUAzmFmE2xjTLnzkgF01cnh1hb0\naFkkHcKSd99YzRWj5b1LV4p2h1Cz2JPtPV3tuOGMBbjghNne5xnGaBhtVsw6ALcBOJOZ3xubIRlG\njY2rDi/jQxV2IciuHIL08zshltvH1XaZEsKekeXSLfajJSJsuzAdbzCMsWC0PvZvAmgHsDPyIe5i\n5ptGPSrDyOC+Dcvxzn+H1OOqBS3anStGCrOz5DvEht9O2KULqFrLXrxe/8xJ2HxaHzZmbERuGGPJ\naLNiLExvNISsVZVabrwUapc9Iy185+GR7W7lqlwx6nz3qV2pigV8Zf1A3bEaxlhjK0+NXPG9607B\n3v3/UTNqZAlb56OXWSrOApeWvOsv89JXHz8Dm07rs5REY0Jgwm7kitX9M7C6P7258vTONrz57kFM\n60r6up2AS9+7C5K2CwvfBXJ7xHk6ykXcYZa5MUEwYTdagh2bB/HsSwdSKzudXR+6gvWKk+dj31vv\n42IrsGVMYEzYjZZgRe9UrOhNL/qZMakDf33zvVQ++dQoi2WSqN0yrbPNLHNjwmPCbrQ0X73sBDz6\n232YPzVZYnjLuYswqaOEUxdMa9DIDOPwoUasKRocHOTdu3eP++sahmE0M0T0a2ZOb2cm8K/HNgzD\nMJoWE3bDMIycYcJuGIaRM0zYDcMwcoYJu2EYRs4wYTcMw8gZJuyGYRg5w4TdMAwjZzRkgRIRvQHg\nb+P+wqPnGAAHGj2IcaTV5gvYnFuFZp1zHzP3ZHVqiLA3K0S0O2TVV15otfkCNudWIe9zNleMYRhG\nzjBhNwzDyBkm7CNje6MHMM602nwBm3OrkOs5m4/dMAwjZ5jFbhiGkTNM2A3DMHKGCXsGRHQPEf2Z\niH5PRI8SUXfs2FYi2ktELxLR2kaOcywhoo8T0R+JaJiIBsWxXM4ZAIhoXTSvvUR0e6PHcyQgogeI\n6HUiej7WNo2IdhLRS9Hf9B6CTQoRzSeinxPRn6Lv9Gei9tzOGTBhD2EngAFmXgZgD4CtAEBESwBs\nALAUwDoA3yIi/47IzcfzAC4D8Ey8Mc9zjuZxP4DzASwBcFU037zxfVQ+uzi3A3iamRcBeDr6Py8M\nAfgcMy8BsArAzdHnmuc5m7BnwcxPMvNQ9O8uAPOix+sBPMLM/2PmVwDsBXBqI8Y41jDzC8z8oudQ\nbueMyjz2MvPLzHwQwCOozDdXMPMzAP4lmtcDeDB6/CCAS8Z1UEcQZn6NmX8TPX4HwAsA5iLHcwZM\n2EfK9QCeiB7PBfD32LF9UVueyfOc8zy3LGYy82vR438CmNnIwRwpiOhYACsA/BI5n3Op0QOYCBDR\nUwBmeQ5tY+bHoj7bULmte2g8x3akCJmz0XowMxNR7nKgiagLwE8AbGHmfxNR9Vge52zCDoCZ19Q7\nTkTXArgIwDlcS/z/B4D5sW7zoramIGvOCk095wzyPLcs9hPRbGZ+jYhmA3i90QMaS4iojIqoP8TM\nP42acz1nc8VkQETrANwG4GJmfi926HEAG4ionYgWAFgE4LlGjHEcyfOcfwVgEREtIKI2VILEjzd4\nTOPF4wA2R483A8jNHRtVTPPvAniBme+NHcrtnAFbeZoJEe0F0A7gzahpFzPfFB3bhorffQiVW7wn\n/GdpLojoUgDfANAD4G0Av2PmtdGxXM4ZAIjoAgBfB1AE8AAz39XgIY05RPQwgLNQKVu7H8CXAPwM\nwI8B9KJSTvtKZpYB1qaEiE4H8CyAPwAYjpq/gIqfPZdzBkzYDcMwcoe5YgzDMHKGCbthGEbOMGE3\nDMPIGSbshmEYOcOE3TAMI2eYsBuGYeQME3bDMIyc8X8krMmsAi63ZAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another example is demonstrated using a `Lightcurve` with Poisson Noise." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from stingray.crosscorrelation import AutoCorrelation\n", + "dt = 0.001 # seconds\n", + "exposure = 20. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "lc = Lightcurve(times, noisy_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AutoCorrelation` also supports `{full,same,valid}` modes similar to `CrossCorrelation`" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "ac = AutoCorrelation(lc, mode = 'full')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.00487599, -0.00485198, -0.99992797, ..., -0.99992797,\n", + " -0.00485198, -0.00487599])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-19.999, -19.998, -19.997, ..., 19.997, 19.998, 19.999])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOW9x/HPL4ngAigIIoIaEFzAnRQ3XHHB0BZt1Ut7\nq3jrXrWLtr3gigKK9aq33roUq3WpG3WpVAQE9w01gLIjAWKBsgmWRSUQ8tw/5szknPOcmYQkMLF8\n369XXpx5njkzz0zOnO95lgnmnENERCSsIN8NEBGRpkfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiKco3w2or7Zt27ri4uJ8N0NE5Ftl8uTJXzjn2tV2v29tOBQXF1NWVpbv\nZoiIfKuY2ed1uZ+GlURExKNwEBERj8JBREQ8CgcREfEoHERExKNwEBERj8JBREQ8CgeRRrRpczWj\nyhZRXa3/fle+3b61X4ITaYoeemcBvxs3Fxyc9529890ckXpTz0GkEa1evxGANd9synNLRBpG4SAi\nIp5aw8HM9jazN8xslpnNNLNfBOVtzGyCmc0L/m0d2mewmZWb2VwzOyNU3tPMpgd195qZBeXNzezZ\noPxDMytu/JcqIiJ1VZeeQxVwrXOuO3A0cKWZdQcGAa8557oBrwW3CeoGAD2AvsD9ZlYYPNYDwCVA\nt+Cnb1B+EfClc64rcA9wRyO8NhERqadaw8E5t9Q5NyXYXgfMBjoC/YHHgrs9BpwVbPcHnnHOVTrn\nFgLlQC8z6wC0cs5Ncs454PHYPunHeg7ok+5ViIjItrdFcw7BcM8RwIdAe+fc0qBqGdA+2O4ILArt\ntjgo6xhsx8sj+zjnqoA1wO5b0jYREWk8dQ4HM2sBPA/80jm3NlwX9AS2+sJuM7vUzMrMrGzlypVb\n++lERLZbdQoHM9uBVDA86Zx7ISheHgwVEfy7IihfAoQXeHcKypYE2/HyyD5mVgTsCqyKt8M5N9I5\nV+KcK2nXrtb/yEhEROqpLquVDHgYmO2cuztUNRoYGGwPBF4KlQ8IViB1JjXx/FEwBLXWzI4OHvOC\n2D7pxzoHeD3ojYiISB7U5RvSxwHnA9PN7JOg7DpgBDDKzC4CPgfOA3DOzTSzUcAsUiudrnTObQ72\n+xnwKLATMDb4gVT4PGFm5cBqUqudREQkT2oNB+fcu0C2lUN9suwzHBieUF4GHJxQvgE4t7a2iIjI\ntqFvSIuIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWD\niIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuKpNRzM7BEzW2FmM0JlQ8xsiZl9EvyUhuoGm1m5mc01szNC5T3N\nbHpQd6+ZWVDe3MyeDco/NLPixn2JIiKyperSc3gU6JtQfo9z7vDg5xUAM+sODAB6BPvcb2aFwf0f\nAC4BugU/6ce8CPjSOdcVuAe4o56vRUREGkmt4eCcextYXcfH6w8845yrdM4tBMqBXmbWAWjlnJvk\nnHPA48BZoX0eC7afA/qkexUiIpIfDZlzuNrMpgXDTq2Dso7AotB9FgdlHYPteHlkH+dcFbAG2L0B\n7RIRkQaqbzg8AHQBDgeWAnc1WotyMLNLzazMzMpWrly5LZ5SRGS7VK9wcM4td85tds5VAw8BvYKq\nJcDeobt2CsqWBNvx8sg+ZlYE7AqsyvK8I51zJc65knbt2tWn6SIiUgf1CodgDiHtbCC9kmk0MCBY\ngdSZ1MTzR865pcBaMzs6mE+4AHgptM/AYPsc4PVgXkJERPKkqLY7mNnTwElAWzNbDNwMnGRmhwMO\nqAAuA3DOzTSzUcAsoAq40jm3OXion5Fa+bQTMDb4AXgYeMLMyklNfA9ojBcmIiL1V2s4OOd+lFD8\ncI77DweGJ5SXAQcnlG8Azq2tHSIisu3oG9IiIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4ag0HM3vEzFaY2YxQWRsz\nm2Bm84J/W4fqBptZuZnNNbMzQuU9zWx6UHevmVlQ3tzMng3KPzSz4sZ9iSIisqXq0nN4FOgbKxsE\nvOac6wa8FtzGzLoDA4AewT73m1lhsM8DwCVAt+An/ZgXAV8657oC9wB31PfFiIhI46g1HJxzbwOr\nY8X9gceC7ceAs0LlzzjnKp1zC4FyoJeZdQBaOecmOecc8Hhsn/RjPQf0SfcqREQkP+o759DeObc0\n2F4GtA+2OwKLQvdbHJR1DLbj5ZF9nHNVwBpg93q2S0REGkGDJ6SDnoBrhLbUyswuNbMyMytbuXLl\ntnhKEZHtUn3DYXkwVETw74qgfAmwd+h+nYKyJcF2vDyyj5kVAbsCq5Ke1Dk30jlX4pwradeuXT2b\nLiIitalvOIwGBgbbA4GXQuUDghVInUlNPH8UDEGtNbOjg/mEC2L7pB/rHOD1oDciIiJ5UlTbHczs\naeAkoK2ZLQZuBkYAo8zsIuBz4DwA59xMMxsFzAKqgCudc5uDh/oZqZVPOwFjgx+Ah4EnzKyc1MT3\ngEZ5ZSIiUm+1hoNz7kdZqvpkuf9wYHhCeRlwcEL5BuDc2tohIiLbjr4hLSIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiI\niKdB4WBmFWY23cw+MbOyoKyNmU0ws3nBv61D9x9sZuVmNtfMzgiV9wwep9zM7jUza0i7RESkYRqj\n53Cyc+5w51xJcHsQ8JpzrhvwWnAbM+sODAB6AH2B+82sMNjnAeASoFvw07cR2iUiIvW0NYaV+gOP\nBduPAWeFyp9xzlU65xYC5UAvM+sAtHLOTXLOOeDx0D4iIpIHDQ0HB0w0s8lmdmlQ1t45tzTYXga0\nD7Y7AotC+y4OyjoG2/FyERHJk6IG7t/bObfEzPYAJpjZnHClc86ZmWvgc2QEAXQpwD777NNYDysi\nIjEN6jk455YE/64AXgR6AcuDoSKCf1cEd18C7B3avVNQtiTYjpcnPd9I51yJc66kXbt2DWm6iIjk\nUO9wMLNdzKxlehs4HZgBjAYGBncbCLwUbI8GBphZczPrTGri+aNgCGqtmR0drFK6ILSPiIjkQUOG\nldoDLwarTouAp5xz48zsY2CUmV0EfA6cB+Ccm2lmo4BZQBVwpXNuc/BYPwMeBXYCxgY/IiKSJ/UO\nB+fcAuCwhPJVQJ8s+wwHhieUlwEH17ctIiLSuPQNaRER8SgcRETEo3AQERGPwkFERDwKBxER8Sgc\nRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwK\nBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGP\nwkFERDwKB5FGVFlVDcDGzdV5bolIwygcRGK+3ljFl19tTKz7a9kiigeN4fnJixPrn5j0OQB3jp+b\nWD/y7fkUDxrD+JnLEutXra9kw6bN9Wi1SONSOMi30toNm3j6o3/w+aqvEuvPf/hD/lq2KLFuY1U1\nRw6dwGVPlOGc8+q73zSeI4ZOYNTH/v6/eW4aANf+9VNWrN2wRW1etPprbntlDgCXPTHZq7/vjXJ6\nDpvIgTeO8+qqqx3nPfgBhw4Zz+Zqv80Aj39QwaWPlyXWzV+5nic//JxvNip4pG4UDpI3X1VWsWp9\nZeIJetPmaooHjWHcjOQr7EOHvMrgF6Zz4p1venWrv9rIO/O+4DfPTWNTwvDO/jeMZfVXGxk/czmr\nYz2E9ZVVme3fPj8tZ/t73fZa5Pbrc5ZHbk/5x5eR28f/7o2cjxfubVRWRU/i5SvX81HFatZuqGK/\n617x9t2waTM3vTSTV2ctT+x59LnrLa5/cQYH3eQHD8C4Gcs49e63qE4IHuccK9dVKli2MwoHqdWP\nH5rEW5+t9Mq/2biZ7wyfmPUEPnfZOsZOX+qdgNN63DyensMm8r0/vOvVnXLXmwBc/pfJvD//iy1q\n75FDJ2S2u10/NlL3r6+jbZnyj39Fbh988/jI7WxX6Ul++mj0qv0H979f533jIXbkrRMit//83sLI\n7XgAhHsb4ddfF+NmLOXyv0ymfMV6zn/kQ6++9x1v8J3hE7MGy6r1lbw87Z/8Y9XXifUvTFnMcSNe\nTwzqMdOWcvFjyb0dyS+Fw3ZgxdoNTI1dxdZVn7ve5P35qxj4yEde3YtTl7ByXSWX/2UyS/71TaSu\nfMV6zvjft7niySkcOXQCS9dE63uETjQzlqyN1H2xvpJFq2vu/+OHoiesr0JX9wBrvtlU59dz68uz\nIrf/7/V5Oe8fbne8J9BQ85avy2zPXhp9D76KXaU//VF0iOvP71VkfdyvY/vGf/fxXsnlf5mS2X6v\nfBXrNkTfz/Dvtv9970Xqpi9eQ89hE7nqqamccOcbLFsTHWorX7Gea0Z9ypJ/fcOHC1Z7bb3yqSlM\nnL2cyxOG2eqirGI1q9ZX1mtfyU3h8G+ganM1f3pngfehT+t122ucneUqdtDz0ygeNIbiQWOoil3Z\nra+sYv7K5DF9gOtenJ7ZPm7E65G6WbGT3QtTlkRux09+4bY/8cHnWZ8TUj2OsB8/NCmzHX8NACvW\n1Zyw4u2YtnhNZjtpeGve8vWZ7aSeQF3nHeavXO+VPRua03j6o3/U6XHS7hg3J7Nd8YX/OwoPD8V/\n9wfckNwDSGrX1xujQfzpomhP69H3KyK3K2JzQKfe/VZm+ycP+72StHEzl3m9ocqqzZlj897X/BB3\nznHOgx/Qc9jExMf8qrKKR95dmDhUJrVTOGxDX1VWeVe9aVWbqznghrF8XOFfXa35elPWE/jGqmq6\nXj+WYWNmJ37oiweNSdyG1FDGM6ETwcFDoifd+BBL+LnjJ424nz89NXI7PJ6e9GHt+7/vZLZ/n3Ai\nyBZ8ADP/WRNEh9/qD6n0/8N7XlmSd8v94av/evTjnPu89Mk/6/TYfe56yyv707s1Q0XxnsGWOOl/\n3vTKzr6/bq95fcLxOGzM7Mx2PIghGqLPT4mu2howclLi/ZLKcg2NQTTE7p7wmfd4nQfXzL38+q+f\nes/V4+bx3PryLLpc94o3PLhhU03wrPna73m+MWcFR9z6atZgWbdhU62fgW+7JhMOZtbXzOaaWbmZ\nDcp3e+rj5Wn/5LH3K7Jevfa4eTw9bh7PjCVrInVvfbaSrtePpbKqmnMf/MC7Ejzs1lcz211jY+jH\nxq7Yz7jn7cx2fHgAYHnoSjc+Hr9hU027kz7Y4ec+7e63vfoL/+wPPSV5NmEV0cKEq9+wXMMoYUkn\nu6Vrcl/dr1yXGpZYt2HLP+yfr87d7oZIn5jKV6yr5Z6+Txevqf1OwHUvTM9Zn3AYMGHWcr8wQfjk\nnXZ16KIhaVVWLuEhwc+WR9+T5yYvZmNVzfEbvxCKD4uGnzv8+QKYs2wt//Xox3z59Sa6XPcKi1ZH\n51LembeSQ4a8SvebxicGRGXVZoa9PKvO71NT1STCwcwKgfuAM4HuwI/MrHt+WxXlnOOaZz9JvNqo\nrnac8j9vctVTU7l59EzvBL5szQZ6Da9Z2fLd/4tOwMYP3PCV4LkP+kMZi7+sOVi/iI23zl2+LnNi\nP2RI9KAHOCpYYRMfG05Lf8Cejw2/xMXnGADenJuatM72HYH00MngWk5ISUaMTQ2jZPt+QfjEsKXS\n8wpjpi/d4n3/Min1msIniQuO2TeznRSydfXi1NTv4OOK+s91ZFsM8M/g9zf607r1fMKeCn6PQ0bP\n3OJ9X56W+z3+aGGq55w0XPfn9yoyr+f0e/yLk7OC+ZCkq/1wrzA+NAbw5twVme1wLxaiq8ycc5z/\ncM3ntftN470e0AE3jONP7y7kksfLuPKpKZFjYNX6ysw55Hfj5jTo+NjamkQ4AL2AcufcAufcRuAZ\noP/WfMLKqs2s3bCJDZs2s7Gqmo1V1ZlfWvrn4XcX8uVXGxn18SI6D36FF6bWnDAPu/VVlq75hg2b\nNtPluldYELvyTV+5rK+s4ujbo0sew/XpVTlxI9+eDySfGHrfkTpY73ujPHHf0nv91T9xSW2C1DJP\nSO6mQ+7hnbQ7X03+AlhtoRBfkZPk2iztumtC8nOGhQPxshO6ZLa/Hww7jQmduL5/2F6Z7bpMeHa/\nqWb45brSgzLbl2T53kFY+Mr08hP3y2ynX2v4fevdte0WtevaUZ8kll+TpTxs+JhZieXpi4D4fENa\nXRY/JPVqAc774weAv0w4LTyHEZee5+qSsNQX4KVPUp/f+KQ6wIV/Tg0f3vbKbK8O4J4JnwHJvaED\nbxxH1eZqnHNej2XMtKV0HvwKVZurmbd8XWR+5P4359N58CuMnb6UFes2ZL4gGf6p2pw6N23YlDpf\nJY1KbC1F2+yZcusIhMcaFgNHbY0nGlW2iN8+l3v9etrQl2cx9OXkDwjAMbe/nrUO/K5t3AE3jM38\nuYW4216Zw/TYKp6wJyZ9nvVbuLOXruWdef7S07S/1+NqMe2AG8bxyIUlOe/z1Ic1k6sP/qQnl/+l\nZiVK/ITWdY8WlK9ITdbe8vdZbMnc4VUnd+UPQUD+8a0F/Ob0A3LePxw+F/XuzB/fXpD1vnedd1jm\nqvofq7+OXHn+51H78OSH2SeQd9yhMLM9cfYK7/sBPfZqlZkneWfeyshqq0FnHsiDb83P+thDzzqY\nk4Oe5eIvv2H3Fs0zdSfs3463Q0uOq6sdb8ytuf1fxxVnhucmJawcCvvb1CU89E7N+/XzU7py7+s1\nFyPx1/S7cw7NfK7Ovv99FtxWmvWxy1esz3mSz2X1Vxv5Q44VZrP+mf0z84tnPsk5xDjy7fmMzHJM\n/P61eYlzYWnx0YItqb/iySlZ67Lt95szDuDKk7vmfM6Gaio9hzoxs0vNrMzMylauzH7yy6UpfZEn\nWzCk5TqJ3/i3GZHb15y2f+R2uOsLUHrInpntq2OTxff+6IjI7XiovfvfJ0dux9fzh4VX0QCccuAe\nkdu/GhW98h/3i+Mjt8NhfON3oyOL8e77tadHX/PU0HBBx9124nuhq/9fPftJJAz2aLVj1tcAsENh\nzUfjvjfK+cUzNVfaw846mF7FbXLuHxbubV14bDFjfl7zmn/z12lc9dTUpN0SdW67S2a7/33vRX5X\nh3XaNXLfxV9Gh/5u7Bd9P+PDf+cfXTMc9stnoz2La2LBe0Ps+Du3Z6fI7dJ7o0MzYfFg+GDwKZHb\n8eNvyPei7f6fVz+raUe/gyJ18ecdfOaBkdvp4ckk6W+vfxvs3Kyw9js1UFMJhyXA3qHbnYKyCOfc\nSOdciXOupF27dvV6ooHHFlMxoh9zh/Vl1GXHROo6t92FucP6MndY38R9R191HAtvL6V4950T6/90\nQQmzb03eF2DWrWdkrbvr3MOoGNEva/2C20p5b9ApWet/3qdbzue9/z97Zq3//mF70W2PFlnrO7VO\nfr3pdt3zH4dlbj/wZvSqt6jAIrfDV7bThpxOUWH2Q/DkA9qxU+gqPLxkFcAs+tjnPvhBZvuJi3px\n17k17Xpxau45lLVZhjkgdfUff96bQies+Bfr4r5YX1P/s5P3i9Qtq2UpbHhOKfx6kvzq1P15/opj\nM7dPuDP6jeyC2O/iiNCX5UoP2ZOzj+yY8/GfuKhXZju+Sin+u5izrGbC+OGBJcwbfmbWx+2w605Z\n6/ofvhcXHtc5a/3Fx3fh4+tPzVp/2Yn7Za37+PpTc7arYkQ/+h3aIbGu1Y5FTLnxtKz7zh3Wl/v/\n88jEunN6dmLh7aU8d/kxXl1RgbHgtlLmDO3LgXu2jNSN+Xlv5g7rS8WIflx4bHHW524sTSUcPga6\nmVlnM2sGDABGb80nbF5USK/ObagY0S/z88avT6J5USHNiwqpGNGP8b88AYC2LZoz69YzOLTTbpgZ\nb/z6JKYNOT3yeOXDz+TU7u3ZqVlhYggsuK2UnZsVUZ7lYPxhcOWVLZgKCoyOuyV/iG75fg8gFV5J\ndm6WffTwot6pD95fEw5UgGcvPRqAH/XaO7G+oMA4+4hOiXXXlR5IQYEx8ZoTEutb7bhD1nYBdGnX\ngknX9cncDn+b+b4fJ3/wwvs2K8p9eKdfG6T+HEfaQxfkHjYDOKhDq8x2ePnsHi1Twzw7FNacLMNX\nyu1Cw0DZhF9bSWiM+sxQ7y9JQYHRc9/WiXVdgh5HvIeZdvd5h3PkPsn7ph3fLfmCbMYtqeP9rMP3\nSqzvc1D7SE8s7MmLU6PHD/4k+eLlznNyByJAu5bJ7+mbvz4JSAVMtv2ytSv9Oc12nE258TTa7NIs\n8fO88PZSmhcVUnpIB+YMjX6eZ9xyBneecyhmRklxG2bccgaHBj2+t35zEuW3lVJQYOy4QyHjfnlC\n5PzUY69daV6UuliKh/HW0CTCwTlXBVwFjAdmA6Occ1u+FKKRHbBnSypG9KPshlMjJ1gzo9WOO0R+\nceEr4J2bFTE9FB4Lby/NXLUVFRZQdkP0Sic8Ppv+5YeFexSTBvfx6gcGVxGHdtrNq3vwJzUHdzzQ\nAP67b6rbvdvOzbw6gKO67A7UhEjYR9f7bQm75PjUpG/XPVrmvN95JcnhArDrTskBkh4m++i63G1I\nkn5P0q8t7rTu7Wt9jMKC5A/n48HVdbaAyfWhPmKf1O+vNEsIpI/Bkw/Y8l7z6Kt7A3D1Kcnj1OF5\nkriJ15yY87FbNE+165bvH5zzfi9d6V+8dGuf6rH2PTj5NacDfuYt/gVX+MQ79Cz/uYuDQPz9gCO8\nuvDnM6nHHv48x3sXn9x0Wqa+qLAgUj9naN/I73jHHQoj54kWzYsi9S2aFzH6qt5UjOjHvrvXDBk2\nBU0iHACcc6845/Z3zu3nnBue7/Y0VMtQeMRPCG1bNKdiRD8u7t2Zpy45yuvufzbsTEae35P+h+/l\nHbh77rojvTrXjHcvvD068ffOb6PzA30PrukWJ12ph6+u4yeB239wSGY76QS/R8uacfv92vkHdl2v\nbtIhEvbjo/bJuU/6sWubO0hy0gF71H4n4I/n+1ezLZvnXsOxYxDuLWvpFSX5v2Dup7b37Z7/ONwr\na7Vj7nalT+BJj92pdU2PNB1QYW1bJF84xO26s/+aw8F/2N7+Y4ePoctOjB4H4WGbXRLe93CghedL\nAG+oKXwBdlHvzt7vZ+HtpVx2Qheev+JYPhsWDYMdCgt46uKjGHrWwVSM6OddSO1QWJD5rOcK2W+b\nJhMO26MbvtudY/dr65U3Kyrg9B57Jl7xAIy67JiswbN3m5r5gaRexs2hsfLw+DSkVg6FDfhOdCgp\n13DL6Kt6R27/foB/Agt7/oqaYaxu7f3gOXH/mqvjof175HysuPDwW9J4dF0/wH0O9EPk71f3Trhn\njfTVarbhnbSnLvYX4+Wa2wlL6uWFh99a1BJgceGhm/NK/OHD8POF5x0AfhCbp4hP1Cdd0ac9ExrW\nAxjUNzp53GaX6Ot8IDSGn3R8vXZtzcVNfKipoMAyn5n4QgdIhebg0oPouW/rxOHIY7u29QLo353C\n4d9Q+kOw567+VfWFxxYz9cbTmHjNiYknsN2DD+T7g07xgic83PLqr6LzCLs0L4r0Hg6LDXHFezg9\n98292uf00HOdGhvm+d0PD82578OhpbbZxqPT4osLWoauwJMmy4tDq4XiJ8bahCcoj+3qXxTk0mOv\nVjnrw8OeIxN6PGFXnBSdpD0ktMrpPxLCISw+73D3edGT9PWh1UOndW/vDZO+8LOaC5KjY8N6ZsYr\nwUqu/dv7CyTOPKQDE351Ap/efDr9D/ff+/3atcgc+9JwCoftjJnRepdmXi8hbfKNp1Exoh97ZZn8\nTn/49k+42n/t2pN4eGAJo686LnISTT9vSRBG8aAA+Huo5zH71ui4bXw1y3mxHk18+OfAPXOfSMOe\nja1Ye+TC79R539pCKq70kOSVL0nCc0VQ+wR82DH7RU+68QUBvzw1urIt3NMoKLDIcE56UjcsPURz\nZsI8wWF778bzVxzDExf1SuxpHrlP65wn8O57taJiRD9e/VXyPEe39i2zzkNJ41I4SKPqc1D7xIlx\nSJ2I5w7rmzjufUinXTMnjZ0S1nDfeU72E/EZPWpOUjclDBmEg2dqbPlh+9icRXw1UXgY5aTYRHC8\nZ3F9aXTNfa7lxXHxE3i8XfGwfT+0rDn+PQEzi4zfx+eLwlfzSV9obLNLs8zvIv68kAqQOUP7Zg2s\nnvu2ybqySb49mso3pGU7UFhgFBbUb8Lu3JK9Ob5bO1pkmXgt2bc1J+7fjp8mrKo6pNOuFBUYV5/S\njda7ZJ9c/elxnb2TYbiH9OdaehWXnBCdUL3mtP0T/9R02vzbSjP/q1txbKXKEfu0pv/he2X9q697\n7bYTF/fuzPNTFid+T2DwmQfhXPT/jAibNuR0NmzcXK8Jfaj7vI18e1lT/sNPuZSUlLiyMv0PUtJw\na77ZRIElrzDatLk689drk4ZCJi1Ylfkz1Un16W/7TrzmxMShvHR9tmGWtRs2YdRv9ZNIEjOb7Jyr\n9cs8CgceVBE4AAAEqUlEQVSRBhpVtohdmhUlfpv2hSmLKSosiPwhP5F8qms4aFhJpIGSln+m/eDI\n7F/wE2nKNCEtIiIehYOIiHgUDiIi4lE4iIiIR+EgIiIehYOIiHgUDiIi4lE4iIiI51v7DWkzWwl8\nXs/d2wJfNGJzGovatWXUri3XVNumdm2ZhrRrX+dcrX8Z8VsbDg1hZmV1+fr4tqZ2bRm1a8s11bap\nXVtmW7RLw0oiIuJROIiIiGd7DYeR+W5AFmrXllG7tlxTbZvatWW2eru2yzkHERHJbXvtOYiISA7b\nVTiY2Z1mNsfMppnZi2a2W6husJmVm9lcMztjG7frXDObaWbVZlYSKi82s2/M7JPg58Gm0K6gLm/v\nV6wdQ8xsSeg9Ks1XW4L29A3ek3IzG5TPtoSZWYWZTQ/eo7z9L1lm9oiZrTCzGaGyNmY2wczmBf+2\nbiLtyvuxZWZ7m9kbZjYr+Cz+Iijf+u+Zc267+QFOB4qC7TuAO4Lt7sCnQHOgMzAfKNyG7ToIOAB4\nEygJlRcDM/L4fmVrV17fr1gbhwC/zvexFbSlMHgvugDNgveoe77bFbStAmjbBNpxAnBk+LgGfgcM\nCrYHpT+XTaBdeT+2gA7AkcF2S+Cz4PO31d+z7arn4Jx71TlXFdycBKT/m67+wDPOuUrn3EKgHOi1\nDds12zk3d1s9X13laFde368mrBdQ7pxb4JzbCDxD6r2SgHPubWB1rLg/8Fiw/Rhw1jZtFFnblXfO\nuaXOuSnB9jpgNtCRbfCebVfhEPNTYGyw3RFYFKpbHJQ1BZ2DLu1bZnZ8vhsTaGrv19XBUOEj+RiS\nCGlq70uYAyaa2WQzuzTfjYlp75xbGmwvA9rnszExTeXYwsyKgSOAD9kG79m/3f8hbWYTgT0Tqq53\nzr0U3Od6oAp4sim1K8FSYB/n3Coz6wn8zcx6OOfW5rld21SuNgIPAENJnfyGAneRCn6J6u2cW2Jm\newATzGxOcLXcpDjnnJk1lSWUTebYMrMWwPPAL51za80sU7e13rN/u3Bwzp2aq97MLgS+C/RxwYAd\nsAQI/y/xnYKybdauLPtUApXB9mQzmw/sDzTahGJ92sU2eL/C6tpGM3sIeHlrtaMOtun7siWcc0uC\nf1eY2YukhsCaSjgsN7MOzrmlZtYBWJHvBgE455ant/N5bJnZDqSC4Unn3AtB8VZ/z7arYSUz6wv8\nFvi+c+7rUNVoYICZNTezzkA34KN8tDHMzNqZWWGw3YVUuxbkt1VAE3q/gg9G2tnAjGz33QY+BrqZ\nWWczawYMIPVe5ZWZ7WJmLdPbpBZm5PN9ihsNDAy2BwJNpcea92PLUl2Eh4HZzrm7Q1Vb/z3L50x8\nHmb+y0mNCX8S/DwYqrue1EqTucCZ27hdZ5Man64ElgPjg/IfAjODtk4BvtcU2pXv9yvWxieA6cC0\n4APTIc/HWCmpFSXzSQ3N5a0toTZ1IbVy6tPgeMpbu4CnSQ2XbgqOrYuA3YHXgHnARKBNE2lX3o8t\noDepYa1pofNW6bZ4z/QNaRER8WxXw0oiIlI3CgcREfEoHERExKNwEBERj8JBREQ8CgcREfEoHERE\nxKNwEBERz/8Dbm/uLf2AoOgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb.txt b/_sources/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..1d84d7b80 --- /dev/null +++ b/_sources/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb.txt @@ -0,0 +1,1057 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve, Crossspectrum, AveragedCrossspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create two light curves\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The first is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. The second is a sine wave with amplitude = 200 cts/s, frequency = 2 Hz, phase offset = pi/4 radians, and mean = 900 cts/s. We then add Poisson noise to the light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*times/0.5 + np.pi/4) + 900 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy_1` and `noisy_2` into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we're plotting them to see what they look like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAGBCAYAAADfUj3ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADl1UlEQVR4nOy9d7gjR5ku/paydPKZ6DweRzDG2Bgw2QFs7oIxcQNhyRcuC7vknC6L8Q8WFi5hl7zLAktckjFgY2xMcDbB4Oyxx57xeOLJyi3V74+qr7u6Vd3qlrolnTn1Ps95pNOSuqu7q756+/1CMc45DAwMDAwMDAwMRh+pYTfAwMDAwMDAwMAgHAxxMzAwMDAwMDBYJTDEzcDAwMDAwMBglcAQNwMDAwMDAwODVQJD3AwMDAwMDAwMVgkMcTMwMDAwMDAwWCXIDLsBg8D69ev5li1bht0MAwMDAwMDA4OuuOmmm/ZzzjfoPlsTxG3Lli248cYbh90MAwMDAwMDA4OuYIzd5/eZcZUaGBgYGBgYGKwSGOJmYGBgYGBgYLBKYIibgYGBgYGBgcEqgSFuBgYGBgYGBgarBIa4GRgYGBgYGBisEhjiZmBgYGBgYGCwSmCIm4GBgYGBgYHBKoEhbgYGBgYGBgYGqwSGuBkYGBgYGBgYrBIY4mZgYGBgYGBgsEpgiJuBgYGBgYGBwSqBIW4GBgYGBgYGqxqcR9u+mmGIm4GBgYGBgcGqRbUKHHcc8OpXu7cvLQFbtgD/9E9DaVZiyAy7AQYGBgYGBgYGvWL7dmDbNqDddm+/7Tbg/vuBX/5yKM1KDEZxMzAwMDAwMFi1aLXEa73u3r60JF6bzcG2J2kY4mZgYGBgYGCwamFZ4tUQNwMDAwMDAwODEYdR3AwMDAwMDAwMVgmM4mZgYGBgYGBgsEpAiluz6U5QMMTNwCAsPvpR4HWvG3YrDAwMDAzWAEhxA4BGw3lviJuBQVh85CPAZz8LzM0NuyUGBgYGBgc5SHED3O5SQ9xiAmPsTMYY1/wteL43wxj7EmNsP2OszBi7nDF28qDba9AD6PHnYBstBgYGBgYjB1VxU4nb4qJ4PdimomEW4P1HADco/9uXnjHGAFwMYAuA1wOYB/BOAFcyxh7BOd85wHYaRAU9/qijycDAwMDAIAF0U9xaLbH0FWODbVdSGCZxu41zfq3PZ88E8HgAZ3POrwQAxtg1AO4F8DYI0mcwqqBRpI4mAwMDAwODBOCnuBFxA4TqlssNrk1JYlRj3J4JYBeRNgDgnC9CqHAXDK1VBuFgiJuBgYGBwYDQTXEDDi536TCJ2zcYYy3G2AHG2H8zxo5UPjsJwF80v7kFwJGMsfHBNNGgJ1A+tnGVGhgYGBgkjLCK28GCYbhKFwF8HMBVAJYAnArgXQCuYYydyjnfC2AWwHbNbylNcQbAivoBY+xXfgd85CMf2XejDSLAKG4GBgYGBgPCWlPcBk7cOOd/APAHZdNVjLFfA7geInbtPYNuk0GMUKsfGuJmYGBgYJAwdIob54a4JQrO+e8ZY3cCeJTcNA+hqnkxq3zu3ceZfvs//fTTeb9tNAgJlbgZV6mBgYGBQcLQEbdq1a0dHEzEbdSSE4hg3QIR5+bFQwHczzlf0XxmMApQR4pR3AwMDAwMEobOVaqqbYAhbrGDMXY6gBMg3KUA8GMAhzHGnqx8ZxLA+fIzg1GFIW4GBgYGBgOETnE7mInbwF2ljLFvQNRj+z2ABYjkhHcCeADAp+TXfgzgGgBfZ4y9FU4BXgbgowNuskEUGFepgYGBgcEAsdYUt2HEuP0FwN9BrIhQArAbwPcBvJ9zvh8AOOdtxtgzAHwMwL8BKEAQubM45zuG0GaDsDCKm4GBgYHBAKFT3Gi5K4Ihbn2Ac34RgItCfG8OwMvln8FqgSFuBgYGBgYDhDrV1Gri1au4NRqDa0/SGIkYN4ODCOoIMq5SAwMDA4OEsdZi3AxxM4gXpo6bgYGBgcEAsdZi3AxxM4gXRnEzMDAwMBggjOJmYNAPTIybgYGBgcEAYRQ3A4N+YFylBgYGBgYDhFHcDAz6gXGVGhgYGBgMEEZxMzDoB8ZVamBgo9U6uCaM1QIqCWEwOFjW8Pp6kOI2MSFeD6ZxaIibQbwwrlIDAxuPexzwiEe4h4VBsvjJT8Rk/e1vD7slawuPfzxw6qnD6etBitu6deLVEDcDAz8YV6mBAQBR8PP664FbbwWWl4fdmrWD3/9emJ4bbxx2S9YO2m3R12+5BVhZGfzxgxQ3Q9wMDLrBuEoNDAAA8/POe2+8jUFyoEmcJnCD5FGtOu+H0dd1ihsteWWIm4FBNxjiZmAAAJibc94b4jY40ARt4twGh0rFeT+Mvm4UNwODfqAGOBhXqcEahlHchgND3AaPYRM3r+LGuSFuBgbhYRQ3AwMARnEbFgxxGzyGTdy8ilu9LvpBLgeMj4vthrgZGPjBEDcDAwCGuA0LNIkb4jY4jBpxozZMTgLZrHhviJuBgR9GxFXabgPPfS7wgQ8MrQkGI4T/9/+A884bbMC6cZUOB0ZxGzyGTdy8rlJD3AwMomBEFLedO4Hvfx/4/OeH1gSDEcKXvwxcdhnw5z8P7piq4kYZbgbJgyZok1U6OJTLznujuCUPQ9wM4sWIEDcy2iY/wgAQNdWAwaowRnEbDoyrdPBQFbdhPKQYxc3AoB+MSAFemqgPpsFq0DuoH6j1ppKGiXEbDoyrdPAYtqvUKG4GBv1gRJa8MsTNQMUwiJtR3IYDQ9wGj2ETN6O4GRj0gxFR3Iyr1ECFUdzWDoyrdPAYNnHzU9ympgxxMzDojhGJcTOKm4EKQ9zWDkxywuAxbOLmVdwozs4obgYGYTAirlIy2pybcnLDxF/+ArztbcMnLsNwnxlX6XDgd6937ADe8hbggQeSPf7NNwMvexnwwhcCb3yjO+PyYMWwiZuquHEOHDgg3h+sxC0z7AYYHGRQWFK9bCE/pGaQ4gaIAZtOD6khaxyf+ATwla8Ap54K/N3fDa8dg1bcODeK27Dg5yr90peAj39cLIH0zncmd/yPfQz42tec/x//eOB5z0vueKOAYRM378P5vn3i9WAlbkZxM4gXygiy6sNX3AAT5zZMkNowbNVh0MRtZcU9mRjiNjiorlLOne1EpJPui3SvSyXxurKS7PFGAcMmbl4bb4ibgUEE8JbjKuXW8GPcgINrwK420H1Q78egwblj2AdF3Igk0DqJhrgNDup4Vx/g6B4k3Repj61f39mGgxXDJm5GcTMw6AOthjOC2o3h13EDDq4Bu9owCsRNfRofNHE76ijxurTkDv80SA7qeFfdpRSwnrQ9oD42PS1e1yJxU5XOQcAobgYGfaBRc4jbMBU34yodDYwCcfObyJMEJSZs2ACMjYmJbNju4rUCb2kIAilBhrjFD5W4tdvu/wcBo7gZGPQBa0SIm1HcRgOjRtwGrbjNzIjJAzDu0kHBj6gP2lU6NSVe1xpxAwa/7JX34ZzaoxK3YdqguGGIm0GsaNYdf1C7OfwCvMDaIm71OvCjHwHLy8NuicBaJW6kuM3OGuI2aHQjbknbAzrmWlXcgMH3dVLcikX3dqO4GRiEQLOmrpwwGorbWnKVfvObwLOeBfzrvw67JQJrlbiR4maI2+ChjvdhKm5ribhRGEChIF4H3dfpno+NubdPTgK5nHhviJuBgQ8sNTlhRIjbwTRgu2HvXvG6e/dw20Gga79WiZtxlQ4ew1bcvMRtLSy9RYrb5s3idViKG5VgAUTtzmLRKG4GBl1hKa5SGFfpwEEEaVQmi1FYemyYyQlGcRs8dPe72XQIlUlOiB/DJm6kuFH5HUCMO8YMcTMw6Aq16C4fgbVKgbXlKh1V4mYUN0PcBgVdVqka85lkX+TcGXt03w1xSx401aiuUrr+hrgZGHSBa7WEESkHcjAN2G6gSWlUJotRIG7qsU1ywsEPneKmXvsk7QGNu1zOCZQflbGYFDgfPnEjsq66Sg1xMzAICauhrpxgCvAOGkZx64RR3NYWuhG3JPsi9a9iEcjLhZoPduLWaIjabbmceFABRiM5gcqxGOJmYNAF6soJA1PclpY6mMpadZWScTLEzcGolAMZZG2rhYWDq26VL6jSqgJdVumgFLdhErdGY/D10wBHbSuVhveQoktOMIqbgUFIuIjbIGLcGg3g+OOBs85ybV7rrlJD3BwMIzlhmIrb8jKwZQvwjGcM5nhDw8UXAxs3Ap/7nL2Jc7fZWUvE7QUvAI48EtixYzDHI4wCcdMpboa4GRiEhJu4DUDq2r8f2LMHuPVW12bjKh1uOwijRtwGobi128DKing/MeG4bAY1me3aJZSXG24YzPGGhttvd7+ic6yvFVfp0hLwwx+K14svTv54KkaBuBnFzcCgD1hNpRzIIFylPjn+RnEbbjsAoX7Qk/AoEbekF8CmYxSLopbUoCczutYLCwd5fBV1LuUGe8c6nf+gFDcad4WCU4x2EPfgiisc8nLppckfT4WOuA1rySujuBkY9ID2oBU3H+K2VmPcRimrVL0lo1LHjfPkSSSpbVRTatDETT3fPXsGc8yhgAa2MsC9Y32tKG6XXea8v+KKwY43lbgNWl0mBClu6bR4bbfF38EAQ9wMYsXAY9zIUlqWS0oxrtLhtgNw34NRUdyA5N2ltPzPsIibeq0PauJG9kVha2FcpQdjjBsRt1JJPDhce23yxyQM21WqxjXqiNvBWITXEDeDWNG2nEcaNgjipjIUxYAbV+lw2wGMLnFL+toMW3FTr/WoLH2WCDSKm9+9Vl13B5vitm2b+JuZAV7+crFtkO7SYRM3UtFSKcc9DThtAQxxMzAIRKvpkDU2SFcp4BqVa9VVOkrlQEaVuCWtuBFxo3gbo7glhB5dpQeb4kZq21OeAvzVX7m3DQKkMA+LuNE9T6edaw4Y4mZgEBpthbihPUBXKeAalaOiuO3eDTzsYcC///tgjjcyitt3v4t1T3gIjscdANYmcSPFbWJCvC4tJZ8YAQxPcTtwADjtNOCLXxzQAUO4SoeZnDBo4nbuucCTniQK4d54o7gfg4CquFFfX1x093XOgQsuECVL4gZ1g0ymO3FbWAAe+Ujgwx+Ovx2DhCFuBrGi7VLchkfcRiXG7frrgVtuAb73vcEcj8673R6y0njxxchuux1PxlWudg0Dw45xy+XEX6s1mHinYSluv/kN8Ic/ABddNBiCGsVVejAnJ2zfLl5PPVWovI98pLj+f/5zssclqMQtnwcOOUT09Vtucb6zZw/w4x8D3/xm/KHPURS3668Hfv974DvfibcNg4Yhbgaxot1UY9yG5ypVjeUwCYzuiT9JqJPSUFU3edGLEPdnLRE3r+IGDDZQfVjEjSbwe+8VMVeJQ1MOZC26Sul8cjnxeuyx4vXuu5M9LkElbgDw1KeKV9Vdq7aFxkdciKK4kQo5qBVUkoIhbgaxglsDdpWq7GQEFbc1S9zkRR9DWf13mE2xMajkBLWmFAVND+KeDMtVSkojMKAYqx4VN08CeqxQiRuRBctKtgwFnT4d75hjxOtAyDM6idu554pXNUFCbUvctjCK4maIm4GBBipxY0OMcTPEbTQUtxKEVV/ritsgiduw6rjRBA4MKKuxx3Iguu/FBZW4MTYY1Y3OZVSIGyluv/61cz2SJG5GcTMw6BNqOZBU27hKDXFbe8TNG+MGrA3FTSVuAykC26PipvteXFCJGzBY4pbJiFdylQ6LuG3cKOLtajUR9+htyyAUN8bc489L3IaevNUnDHEziBVGcXODDHalMhgCOYwF1bWQDVmLxG2UXKVLS4NTF1TiNpAisAHlQFTC1GqJ9jDmZD0m1R/VrFJvO5JCkKt0EEkiXuIGOO5ScpkPWnGbnBT3m2AUN4NVg5/+FHjtawdLXLTE7XOfAy68MJkDaogb56NTDkSdqJeXkz+eOiENddkrj+LWbg9mIQ0dBkHcPvc54EMfEu+DXKVx35P3vAf46lfd27ykZFDuUprAafJ89auBZz7TUV1iR4CrlAharebcj4kJp20Ho+JG5GT9enGui4uDKQlC991+UPnkJ/GKhY8BSI64cQ684x3Af/+3c/u9xE2Fl7i1Wqu7ppshbgcxPvQhUT9skMuftFsaV+nb3y5mmCSYiyY5watsjYLiBgzGXToyrlKP4gYMT3UbBHF7xzuA974XmJ8PziqN857s3i2eh971Lvf2YRO3Cy4Qr7fdBlx8MfCJTyR0wABXqUrcaNxNTjqZl0n1xVFwlTI22Dg3l+LWbgNveQuO/cLbMFls4s9/Fv1g/37n+3HYwfvvBz7yETHmiL+n08Bhh4nrQO5igpe4AatbdTPE7SAGDZaFhQEeVJFVUly+pxGShPXSKG5eozwKMW7AGiNuHsUNGD5xo4ktietCcW0HDgwuxo26vre8gvc6DyrOjSbw//W/gBtuAD74Qff22BFQDoSuvZe4JV1BfxQUN2CIxK1SAVotMM5x7hPEB5/7nPv7cdhBup7lsltx27ABuPVW4Pvfd3/fEDeDVYO5OfGqrtOXOLyuUs4dy5KEtdQQN6+RNIrbEDCCxI3cJ3EbbMtyJo+5ucHFuNH19J7PsBW3Ugk4/XTg8Y8X/ydGWgJcpX7E7WBU3LwxbsBgExRcxE15ijjvieIDrys/DjtI5VXqdXdyAgAcdxwwPe3+vrpyAmE1JygY4naQot0WbhtgsOvGqYpbum25WdOAiJvXKK8V4tZquetFjZqrdFj3wes+i5u4qfdYJW5JK27q85AaP+gtyDpoxY2C1BMnLT24SpNW3PySE5Ici15FGXAUt0EU4fUjbmc9RnxAwgFd+ziEBOrvlHwCuM/fC5XUEoziZjByWF52JvFBEjeuxLgx3hoKcfNOFKPiKk1a+fQSVqO4CSStuKnX2S/GLYnkBD91lbYffrh4HYbiBgyHuNFbIm71+sHtKm1JpwZjjuIEDNFVqhC3rZsrOOII53snnSRe45iPVOLmVdx0MMTNYFWA3KTA8BS3DLeSr8uhSU5Yq4qb97xHKasUWBvEbW5ucDFuar9Wz4muM02agyZu5CIepuJWKgky02w6noeD0VWqc5MCgyVu1N9LJbiWz2DVCs47z/neqaeK1ziJW7vtXFujuBn0hf237cNvXvYVVOeG1zPIWAHOQLn9drHIb1LgXKpsKpSZ6vfXNeNfCmfUXKWcA1/7mm0xB0ncBr20UyBGMKuUiFvc10W9x6ripsa4JeEyU69nEHFTXaXf+15yi48PXHHziXEbxzLOuvfL2JwXRnDvXvHZwai46RITAKG25nLi3qtLkQHAH/8I/OAH8bXBT3FDpWLXcwOA004Tr3ESN/X4QYobEXYVhrgZuPCXl/4Lnvifr8BN7/jO0NqgU9xe8xrgBS8AbrklmWPW60AKnkX5lNHxxtc18YxnxFwVZNRcpddcA/z93wNvfnNHWwatuBlXqcCgFbdBx7gBeuJ25JHilRS3bduA5z8feMUr4muDiqG5Sj1ZpS/HV/Cy374Sr4FIZ9y1S3w2NXXwKW66+DZAkBhS3bz2/iUvAZ7zHOe69Au678UiOojbOecIUjk2BjzsYWJz3MSNiGlUxc0kJxi4kJkXdTj47r1Da4OOuO3cKV7VmjpxolYD0vAobkotgNpKE81mzPL9qCluNEvK1zVL3FyKmyjfPmzillRygnqd9+8X+2fMmbyB4bpKSXHbvl28qrYhToxCjFuzCWzAPgDAurRQ3G6/XXx21FHDS04YtKsUAJ74RPF6+eXu7fvE5YnFhc65099yObiJW7mM2Vng5z8HLrkEWLdObB6G4mZcpTGDMfZzxhhnjH3Is32GMfYlxth+xliZMXY5Y+zkYbUzClJNMUpTtaQKGHWHzlVKBjspI6IlbsroyEJYy6SJ21DLgdDjn3xds8RNzigZtOz7PmziNgjFjR6OxsaAlGJdkywH4t0vbd+wQRCHlRXRHYnAJTX+R8VVWoS4wYW0uPGkOB177NpxlQLOslOXXureTm2Mk0Cl05I4qX5Z2SHOPht48pOd8Tcqipshbj2CMfZ3AE7RbGcALgbwNACvB/BcAFkAVzLGDh9oI3tAuims6DCJm1dxa7edGjZJTehhiVusKeoByQm0Vt1AXaX0xClf13pyAjD89UoHSdzuv1+8qvFtQDJZpd0Ut3we2LRJvN+zx1FYkroPo6K4FSBuSD4ltlOM2zHHJOsq5Xx0XKUAcM454uHh6qvd4SlxEjeX2gZ0uEpVJEXcjOI2QDDGZgB8AsCbNB8/E8DjAbyYc/5NzvnP5bYUgLcNrpW9IW0Jw5Gujw5xW1x0FhxOirhpY9yUwTsoxY2MCcUYDVRxGyHiNgquUsAhbsOu45ZUcoK6vx07xKsa3wYkr7hphgFyOTdxI8UtCdLSbAr+lMk4k6RKWhJZ7NynHAgpbvm0s71YBA45JFnFjcZ6LueorcNU3Kangcc8RlyTX/1KbFPXcR40caNQhaWl/vuDiXEbHj4C4C+cc12e4zMB7OKcX0kbOOeLECrcBQNqX8/IjABx87pK1f8HqrgpB8tBjPLYiJv6iAt0uEpJ9TDEbQgYQcVtEAV4vQ8NhCSySrspbtkssHmzeL97t6O4JUEiXCUhJMh9xnlCqreP4mYTt5RzgbZuFQp8koqbV20DhhvjBnS6S9X+F0ddSbWvAdC6SgmZjOgfnHdmukaFUdyGAMbYEwD8PYB/8PnKSQD+otl+C4AjGWPjms9GBqNA3LyKm/r/sF2lsRE3n2A2MiY0iQzUVUoWqVoFWq0hlgPhmN5zh3sphQTRagF33qk8SSuNGYO4JsMmboNwlRI25+Zc0d/DSE4Io7jdd188a4l63aSERIkLzd5UhRZu4pZLOQOfloBKQnGzLOCOO5x7QPcaCD7/RqN/WxjkKgVg11GjMkxqPxm04gaIzN44jq0St8zunRjHsnMNduzoYIaGuPUJxlgOwOcBfIxzfofP12YBzGu2E/2Y0ez3V35/sTQ8AjItMUozjdFQ3KpVdwZRkskJYVylO3bENIl7R55HcRuqqxQAKpWhKW5/je/gIz86EfjUp5I9qMSHPwyccALws5/JDSOouA2SuH3xlscCJ59sX4dhJCfkcnrFrdUSf7t3C0LzN3/Tf1uGQtzUJzL5XnWV5hTFjUpjJKG4feADwIknAhdfLP4Pq7j90z+J6//HP/Z+7CBXKQA86lGCLN11l0icGTZxozHYr9pHxG0KC3j3V4/DxThfKG7794uL+uxnu75viFv/eBuAIoALh3DsgSDbElY00xwNxQ0QT9aEYSlu4/kmtmwRIhCVJuj7gCo8ittQXaXy/bCWvDoWMgPk3nuTPagEJZxs2wZxg5Uglsn0cIkbHXeQxO3Q6jZRd0E++Q8jOcFPcaPv3H+/IDpxdJFRIW5qckKOOZ8TcUtCcSNbRnFkYYnbnXeKV9U2R0U3V2kmI8qgAE6pGsIwiVtcitsheBC5Vg3HYJtQ3EgV8HRq9fpQ/OFqJm4B4XzxgzF2JIB3A3glgDxjLK98nGeMTQNYhlDbOlQ1CCUO0KhxnPMz/Y57+umnJxEa6wsibtkhKm5E3NJp0clVopQkcZsJIG6HbWjimGNEW7ZtA44/vs8D+ihuo0rcVlbEvQiKxegHqhEda5TdGxMG3YpaDR0XfLZQAcrDV9zUhcdpfcc44B1PaVhI0woi8qQHmZygU9x27XLqd9F3qG/GMT66EbdEbI7qL1OIGylu2dRgiBvt6y8yuCcscSNT0Wp1fhb12EGB+WQHKxX39+IgbmoiDIDAGDcgPuJGESBE0ouoCrtKA8Fzg1Xitn69yDQ2yQnhsRVAAcDXIcgX/QHAW+T7kyFi2U7S/P6hAO7nnK9oPhsZ5NqSuA1RcSNXKS00PQjFrVtW6SHrm7YBjaUkSBdXKRmsocS4yffUFiJrKwn2XJqwJyaUFQsGxJaoT9Xr6LjgM/nRcJUWi+I+tNvxTtzeSTmPzmyFYce43XKLO9yxXnfaEsd9GRXFzeUqxWBcpXQfqNCvrvCy7vzJVMRB3PwUN8C5J+Xywae40VgroCZIqU+nVq8PPcysZsVt0MTtjwDO0vwBgsydBeBuAD8GcBhj7Mn0Q8bYJIDz5WcjDZu4WcMhbo2GGKTpNHDYYWLboBS3IFfpIeubdpBwLAkKI6648WVHcVu/XrwmGeemugQHTdyCFLfp3GgQt2zWmVTjNNre8eQibrIDDGOtUlVx8463QStug3SV2oqbdJWm0467MEnFjZoTNjkhDsWtm6sUcO5JpXLwErciqkineCjFjR5mVjNxG6irlHO+AOBX3u2i3i7u45z/Sv7/YwDXAPg6Y+ytEErcOwEwAB8dTGt7R57LGIshKW6kts3OOlk8quI2rJUTNs40weWTbyzEzSfGbSTKgQBoLa6AczFxzMyIOKM1Qdw8ihsRt2HXcSPitrIi2ktjo18EErcBKW6aOtTI5fzPUSVuq1Zx6+YqlYqbutRVEoqbV9GP6irtxyMQxlWqEjeVVB5MxC2Ntij/QoYoQHE7GIjb0Je80oFz3gbwDAC/APBvAH4AoAXgLM75jmG2LQxyXHSmnOVfrMayxKBLoloDxbfNzDgDRc0qHYTi1qRnAmXwbphxu0qbzT4LMYZU3MgwJlIE1AvFcDUXxPt8Pt6q4X5Qsydt4haBLfVzfYKI22RmbShudtFVjeI2DFdpNivc5iqRUJuVhOLmXTHCS1xiHYM+rlKKe8pIxe2YY5wDJ6m4EQYa49Zwn5cOg1DcwtRxA5IjboAk7GtEcRsJ4sY5Z5zz93i2zXHOX845n+Wclzjn53DO/zSsNoaGZSELYTDyLb3i9uUvi8Gdy4mFd2ktvbhAxG121hkoKpIkbhTj1oB8BFNGx/rJJrZuFe9vv12c/1ln9WHMI5QDqdeBk04CXvnKHo8VForhai2K9/l8fPWLgtBPjNsllwh3rndB6rAIcpVOrBHiRm7JIMUtTuUpjKuUMWei8v52EK5S9bzvuktco3/7t/6PB8BN3ORJqIpbhovPn577BbBxI3DppSND3CzL2dYzcXvnO/GUV27BNOaHTtyGrbgBQIGHI24bN4pXk5xg4EAZobl2XTsqL7nEsTkLC8B118XbBHKVqoqbiiSTE0hx0xG38UITExPAc57jSPtXXdXHZBYhxm37duC224Af/rDHY4WFYrisxcEqbv24Sn/8Y0H4f/vb3o4dlJwwkRod4rZhg3ivlsboF3TuhxwiXkcpOQFwCKUKVXEblKv0uutENt8VV/R/PAD6GLcGR0kSt5nxJg4/HHjG1K9FLYzf/nZkXKWqMNUzcfv5z1Hafz8egttCEze1/8VO3Fot9wGGobjR8S3LpQgYxc0gGF7LrOkdNGk87GG+X+kLw1TcvMSNqysncDHT/M//iEmHFLGejai3VHnAyglkQw4cSDDWqtVyGau2JG6FwmCJWy+KG8Uc9nptghS3MTY6xO2YOGMsJWhS1hK3BF2lOsWN885MwzCKW78uzDDEjb4TW5a3JsZNZUiTJQs7dgDHHNG0vz8IxS1McoIqTPVM3KqUPdsIHeOmzjXVav/XwVUOxLuO1QBWTlDHWp7X9Iv2whA3gy5olT2WWdN5Kd5syxbxGjeR0sW4qRjEygk2cSs7o4NZbivR99MvXTgq0BVQDkS1KXv39ni8bvDc6/bS6lHcYiVunpl5mMSNc8fIq8QtlnI0EtQNDz1UvOoUt6TXKqX9qqSN6tR1I25A/2QqCnGLhTR5ijzTCaQbmolbSftMshwIIYziFgtxkzc9i2ZPrlKgf3vkUtzopIidDdNVqjYOhrgZdEFzxTNCNZ2XFLejjxavcXcgXVapikEqbu2ycv5NPXHr2ZDThSNr4FHcCgWnfppqKOJ0k7ngeeLkK06M27AUNx5ihqIq+kAyxK04xCWv6HzSaUFkklDcAombnLHVvt5PMLoKnau0I+YIblcpTVqqq9S7r14wcMXNuxP5P6vXOr+jELek1ipVMTBXqaK4jRRxo9pH1WpH9l3cS165FLd2NZTiRjFuhrgZ2GguBytuKytiU7GYXAcaKVdpWT+QgBgUNx/iRkYyl3Ni6VQDpWbYxgpPdV2+PBzFrVhUiFu9+8Xdvt2xr71MaK2Wc2ydq7TIh0/cyHAnSdyCYtwYiz9BQecq7ahkD7fidsQRzm/rnc3sGQNX3LxsR7KnVD1AcWu1+n9Y1GBoilufrlIgIeKmpjJ7Dpik4pZvV92Tm4a4lUpOiI5JTjCw0Y24EWnYtCmZDDdgeMkJqqu0ySRxqwyeuNH+8nlnwKpPeIMibih3Erck1ytVjWgU4qaSmF4mNHVS0iluhfbw6rh5iZtaADqu0hRhiBsQP3ELUtx0leIZcwpyH6yKW6ZZ7fyORnFLwlVKrulhELdekhOA+IhbNgtHRhwfdx9UQeLErYurdGoquXl3kDDELWZYK8HEjdx0mzcn14H8FDdSsGnw/td/AS96UXwTqppVajHKKu3uKk2KuOVyeuI2KFcpW3GI22yhgm/gBVj49qV43OOAn/0s/sPbakuWKzFu3W9uv8RN7b/1urOTNsRMRmVxhqm4UV+j8IHlZZFoGAdoUtaWA1Fm7LgTFHSKm85VSorb+vVO3KdXcVv1xE2egCvGbcCuUopZ3rr9CuDZzwb27fONbeybuFmWfeCRc5WOCnHTKG6Tk+J9KuW6hKsOhrjFjG7ETae4xa2AEUmZmnITN1IE6Hgf/zjwjW8AN90Uz3FdBXhTYuZwxZzETdzoROgk5Y50rtKBKm4ysI5VnBi30xcuxwvwTbx35W245poYa1kpsF2lqTpSEHJSmBi3OImbqrgtQySN5KzhEzcy3EnEuVE3HBsTtQI3TgUrbnGNd11ygo64nXiisDWnnuoec3G6SumZZdiu0mEmJ5x5png9/Q9fFHWHLrkkuRg3pRN1c5Wqi8wPhLiNjfkSt6kpYR4XFvpTnnXELduq+SpuRx0l2vjQhwobsNpVt0jEjTGWY4ydwRh7DmPshYyx8xhjWxJq26pEWMVt0ybHkMfdedQq5jriRgNmedndpn6hEjdS3FK1AbhKPVmlOlfpQJITyHBJiSNVdRS3LRvFTTkFN2MzHkxksXmbuPFK58YAqBmWcRK3JYjOl22ODnED4s8spTm0UACuvRa46P16xS3uzNKwitu6dSKO8Uc/chOpg0pxI1epFZCckHA5kA9/GNixQyHuc3PJuUqVQdeL4kZxXv0SN5eiHUJxy2SAI48UYQr33tv7caMqbps2iQSsb31L/H/QEzfGWJox9jzG2M8BLAL4HYDvAfgagJ8B2MYYu58x9hHG2LHJNnf00aoGZ5WS2pOkq1Q1okGKG42zOImbHeMmFTftE7BE3/EmIZIThhLjJn1m6YpD3NTZ+im4PFHiRjFlro0BiF1xkztZhEhpzjRGk7jFrbgVCmLOGssMXnELIm6ASIQqFJJT3MIQN1KZYiFNYWLcBqy45fPA4YcrO5+ft8+/0XDHVA6buJH7PFbFLUSMGxDP+KNkKpfiZnmSEzw3edMmp/8nUVdxkAgkboyx5wG4HcDXAdQBvAfAUwGcAuB4AGcAeAEEkXs2gNsYY19kjGkqB60NtCIoboMgbmNjTtAslSvwEre4iIzbVZrv/EJSihvVPAmZnJB4jJu0iumaQtyUWfI8XDowxY01gy9uuw3cc4/zfy+Tqmr8dIpbulZ2tW+QGDRxA+DLiJJMTmg03Nm9XuJG8CNuB43iFjI5IYkYN7uP0U2Ym0Mq5YRrqP0/TuKWRTNyVmkixC2E4gbEM/50iluu5a+4eXGwK26fAvBZAJs55xdwzj/OOb+Cc/5nzvndnPPrOeff5py/iXN+PIAnAFgH4H8n3fBRRbsSLsZtUIpbKuV4EmmwNpvij44bF5FRkxNaKc3MMeA6bkMrB2ITNyfGTWU3T8UvUFlpe3/dN2zFreUE0HQjbrt29T+B+yUn2MStPlqKm5pZGgfo1hJJcV3QASUn0H67EbeDxlXqE+OWbQUQt4RdpR3ETab369ylfce49ai4Ud9LlLgFxLgByRG37BoibgE8HQCwlXMe2sxwzq8D8BzGWKHrlw9SdCNuquJGxjVuudZrRCcnxQBdt05MHrWak3kKxKu4kavUSocnbrElJ4R0lc7Pi+/kNaJgX/C4SrN1vat0E/biqMWbATwi1sPrXKWpllyzj2RXD7zGs1/i1mgA7YaFFJzkhFSjjhRaaDTS0XfeJ5JW3Dh3+puWuA3IVUr71dVxU5G0q5QC4QmJJSf4KG5Za3iuUlv1UhQ3QFyDctl9vftW3DzJCSPhKg2puMXx4BQ1OcGL1U7cAhW3KKQtjt8dDODV8FmlSSQntNudrhviNbOzzrYDB5zf9Ku4XXkl8KY3iXPrRXEbRB23hQX3TxNZ9ooM17p1QCqFjFVHGlYHcQOAJ5QvjeeYy8vAv/wLsHOnE2vT8hjLgJmSjCcVZu2VuB2B+/FmfAxjWIFVkwt+I4sKEwa8iOpQ6rjlbr4Rr8G/I5txAowOO0z0jT17OkvvRYVliTGXySgT9xAUtxfjv9C+4lfaOm4AgC9/Gbj66p4Ut3Yb+PSngT/9yf873RS3Wm0w5UCyanJCuy3+EnSV0spbjDmrtNg7D1Dc1H7X0/XwKG5RXaVU/H3QddyABBW35gAUt3vuAV79auArX4n4w3gROquUMXY8Y+zRyv9FxthFjLGLGWOvS6Z5qw9E3BqQFkLpuJwnX8eN9lUsCjcp4BTdPOIIx4ioNaz6Vdxe/nLgE58Alpc50lJxa6U0j4ADyirttnICkFCcm2q4ZNrWGMou4sYf+lAAwOnt6+J56v/2t4G3vQ34+McdwuolbgEHuu8+8XrcceK1V+L2ZnwcH8Nb8Vz8D5oVsRNB3IQEU0JlKK7SLR99Lf4dr8Vx1m32tlRKZLYBIguwH3TEt6kbAde1jzurlO7VZrYH/4WXYOqtr9K7SrdvB175SuAf/qEnxe2mm4B//EfgzW/Wf657WCQMuhxIrlXt3K5ZOSGuvqhTdHWKGzA8V2kuJ/p8o9ERzdF3QfBeFLetW8XrPff0XnyYfleAM5i6JSeo6Pkh6uabgS98AfjudyP+MF5EKQfyGQDPU/6/EMCbARwK4BOMsX+Is2GrFbwmRuccZsX/ylqdy8uio9CyG0kQN92T7+c/L8oKnXyy02HjJG40+D/0f2XcFmPgac0j4AisnEBGNJE4N9VwSeI2jhUXcWPSjVpAzVuvtzeQdLhvn2NErfDEjUrCUHHmXpMTJiGY8TQW0KyKSdRCBrWU6IjDIm65PWIRVmofgVx6/ZIoLWEZsKv0qHEhn6cW5vTEjeT1xcWekhNIrd63T/85DcNSqdMjP+jkhEDiloDi1uEmBUIRt0FmlTLmzAfUFYYZ4zY+Lo7faAAPPNDbcXWKW8YagOJGMiHJhkNCFOJ2CkQpEDDGUgD+HsDbOeePBPAhrOGEBBVcWmUibu1lZ3ZW1TZgcMTt6KOBCy4Q73Wu0nK5P5cRDd5/er0kbuk0eEoTzzTElRPIzh99tHhNRHELIm5ktaU6mEUznsxSsrxLSz0RNyKPMzPitVfFLQvxwzzqsKrivYUM6ukhErdWC7lFwTYK6Zj7nkRHYgLQ1VUa91qlG0riJrJ6TU/cFKnLz1UadB3oM79J3s9NCgyBuLWDiVvca5V2ZJQCzgVbWADa7aETN8C5N17FLdY6biFdpUD/7tKhuUqpwRSoNyREIW5TAGi6PxXADEQZEAD4FYCt8TVrFcND3FTFTY1vA5JZOSHIiAJ6xU1tWy+wJ4u0HE3pdCjFre86bprkBDVYXHWVEoi4Ja64SUnHq7gNgrhlmuGJG7Vhelq89krcMhAzWB51WHUnxq0+TMVt/34wWfApn3ZP9HERN+prw1TcNhTFTUzVq2jURSyfH3HrRXGLg7gtLTm1t5JylXIui7CqoBR6+Z241yoNdJW228DSUjLELcLKCUDnvRlmcgKQEHGrL7sJfRLJCatQcdsDgGjmuQC2cc4pQmQcwCpd9SteMDmg5iEkDJW4eRU3NeYlrgWvwxI3VXFT2xYVnCvGKyVHUyqlROoqSDrGzbJgNcWFzGREM7xPohRfkWiM29iYb4xb7MSNfMAKccs2ohO3OBW3Vs1xldYzQyRuCjvPp9wn5lfRPiq6ukoHkJywviBuIuMcVkVs1BK3RqOn5AT63uKi3k6FIW4yTh9Acopbu+2OebK/l2A5kEDiBriK8CYV45ZFM7TiRog7OSEqces3s1Rbx6284P6ScZUCAH4M4CLG2McgYtvU6LyTAdyj/dUaA63NaStuFX/FLZWKP2BZ5Q46xK24kf3MZADGFVdpBOLWkxHl3J2JIY9XL1uufXsN2sAUN58YN5W4xRLjplHcsj0obkm4SpvIojFM4qawcy9xi9tVOkzFbTbnPAG0y2JMRFXcwrhKWy39RBdE3OicvcSt7wdVDXFrNkX2sgsexS3u5ATV/tlQd+6z7NWgXaXqfJDLCScFY2K+6DVBAOgtxg1ISHErz7u/FHdyQrMpEn0AZyIZEqIQt3cA+AmA8yBI3IXKZ88E8IsY27VqwRru5ARUKqhWgZ/8BPj1r8UmIm5A/HFu3RQ3XVYp0LsC5Rq4LcdViqSTE2gNmWxWHE9arkZZEgh5ngNV3MIQN7k9h0a8rtLFRcdVGkFx6znGrV4HrrkGaLVQq7ldpa26o7ipxK3ZjE9ZXlgQ2Y4dmJtzPlDYeS7lnujjUtza9+/E8bgjFHGL8yFNVbpncs4TAK8EELdGoydXqfo9nUITRnHzluPphywA0JYD0RK3gOSEeh24+ur+FECt4qZezADiNo5lnI4b0LJ6GBQRyoEA7ntTLArSRhEmlKDUC3zLgagr22vQ73rBWsVtec79pbgVt/vvFwc+/HBnB0NCaOLGOS9zzl/FOT+Zc/5yzp11dTjnj+OcvyOZJq4usIZbcUOlgg99CDj/fCeDmJaeAgZP3Pxcpb0qUP7ELWFXKc1+dAGl5VyecxO3kYlxG0ByAl1eWqnARoAB6znG7aMfBR73OOD739e4Sp3khKYkbpMpYdRjcZNBlFI6/XTg1ls9H7zkJeKDO+7wELdkFLeT3vBU3IjTMZFRBvAAkhPoOqbTwARzOhKVI3IRCTU5IcftNkRV3AA9caP5Ooi4UXybt/09QxPjZlldFLdWyxXF8clPAo9/PPC1r/XejDCuUq+602iI330Sb8ANeDSO2ntD9AP3mJwAOCaTiFs/7tJeFTdyld51V28kXptVmrSrdETcpEC0Om73MMZO8fnsYYwx4yoFkPIQN1at2LWiTj8deNWrgOcpRVXiTlCImpxA8XaxKG5knQcR4+b1UUnLdd1vxTFOPdW1GYBo0rp14n0sbkovQtRxS4y4KRJKB3FLwlVKefwPPNBB3NoNJznByooOXpILr8floqLD33+/5wNyZfzhD25XKdP3vX5JVH7/TkxgBevTiptmAK5SNZtvXCVuQYob53YCUbXqJk/9KG6kphH5V+G3OknfMWZhXaUexQ1wbAIVFO61JAWgKQeiSqEAMDdn2xyyuWQmjoTovDMrPRQTjLByAjAA4payxD8U/0MH9DG069cL8rayAtzQA2/VETfmlfPjTk5YjcQNwBYAPsMQBQBH9d2agwBpDXGjMfaWt4jafbOzzvfjXj0hquJGfTB2xU2n3cdJ3LzrDEnL9etfimOce65rMwBxTUjBj524WZYwpoyJizzoGDcAhYZ4nxoEcaN73Wx2ZJWqrtJ2Vtyf8XStW1Migebtjgd6OqFt21ydOuvjKu23PbQW7GRGacgAkhNUF9U4D0nc4JRF8brHwmSVAvpJnpbPoz6kwo+49a24+RC3wOQED3GjB+p+SGRHORDvzubnOx6OqYsSyUxbPTw99OkqBeIhbnS6Be4p5tdFcQMcG33ZZdGPSxqBStx8G6fBWiJuAODnjD8dwEJ/TTk4kG66s0pV4uatKg4Mz1VKwcLUB+OPcdMobp5ZMgnidvVVYrCed57YrBq0UimUPekNqtrG2ODLgQAoNCVxqw0gxk1ZwLtDcas7yQmtrOhwpUERNzqhbdtCKW59tYdzpFpivxNpH+KWsOKWzQJFrjwBVIOJGyVpeCfrflylZEvUB1L7eEkpbt1cpbRsjMdVCjjXJg7i5rvAPGFuzo5ppueIJIhbFMXNuxRiHIqbvVoLHSiEoSUbfWkPq/+1WkAalr1ST2DjNOjJ00UBeUOu4QZ0WWSeMfZGAG+U/3IAFzPGvFejCGAWwLfib97qQ9pyE7dUrYJalQNgI0XcCNQH+1Xcslk4xjSVAjIOcWuDIQXeYSH7qqnkQ9wWDzRx+OHAiSe6jwGIa5LPC17VaIjJv9uTamioxE159UtOiIW41euuizeJJZHdKztBFQUUUfO9wKpI6Fk1rDsU4lar6V2lFjJo50SHG0sNQXFTUhmzHuIWS3JCq2W7ZwZN3NQHplLL6Uis1oW4SfMdRXHr5iolxS0KcUtKcbOJ28SEqF/SbDrf9Shu5CKNg7h1LDBPmJ/H5jPE26QUtyyawLBdpVZ04nbmmeK6XXedcLfrXO1+aLUcta2BLHLQ3MSAG9uTp2sVKW73APil/GMAblT+p7//gSB3r0qumasHNAiXMYEGsmDtNto10bt1RmxYWaUEVXHrJePPVTm77ZQDUbNKy5D+yVbLdZAkFLcsmjj3XGfpHS9xU1X8OFescCUmKK92jFsSyQkeizuJJXFNZSdYwLT4wOcCq1yTJh5al7srAhQ33nCSE4i4lWImbvSM4JoX1HoVd9/tUtyyLIECvMrEMMa6u0rjzCpVlZ6CQtxo590UNy9x60dxC3KVZjKdy2ABA4hxo3GoXmxaXSHn3kWsrtIQihuNu1FxlfazXmkHcaNYlBDEbXJS5De1WsAVV0Q7rkrcyhhDU6dBxekq5VwsrgqMBHELvN2c8x8B+BEAMDH6Psg5v3cA7Vq1yEjFrYYCKighh0XZefOBitugkxMImzaJsVYuC2NOgzks/FylTFHc6shjPF0Fa7XEYJKWs686bgHEjSR4oNNVSq/lsrhWpDT1DSWjinOADSLGrQtxm8cMDsFu+yY1Gu4JXeWajIlLSJ4lP6XERkCMW7vpJCcQcSuweJMTtIqbekF37XIxBu8TeSzJCUrHHU+FV9zUj9Xogl4OncsBBcshbql6sOKWQ8PbdO3/KnSKm9qXglyljIm+5LVvsStu3nIgk5NCUlM7iEdxU37aM+i3xXQDQK5zZ3NzvjFuFI/XE3HzJCe0hq24NT2pxSFjUs49V5TJuuwy4DnPCXnQZhMtK2MTtzryyMBCFp4n4TiTE3bvFucyOxtNGkwIUWLcXg1gr+4DxtgYY6xL11kb8BI3QMS5AfoYt2ElJxBowV+gtzi3MMkJTWTBM50ly+NU3Nppsf8cmjjnHOdrXsVNfY01zk1av1p6DLOzwNe+P4AYN8+jspe4LUrFzao2cckl4l5/85vO99XsfcC5VqEmsiDFrem4SnledLhiQq5SF/n1MmFF3c16iFssyQnKj8egHDtkcgLnwCMfKUpS9HrobBbINyO4SlP6mxs2OWFxUWTyrlsHvPWtYluQ4gboHwKSKgdiJyfQE5lqWD0xboR+idvr8Gn86Kop4MYbta5SVXHj3Bl3JUkyM63BxrglQdzsot9eI1suB7pyKEHhF2GrwFYqwDHH4B03PMdF3KrQ1FWLU3EbITcpEI24fVH+6fB5+bfmkW1FI27DjnEbH3cMbi8D2K8ciKq4NZBLnLjV2mL/xxzZtNPvAT1x61Ibsjdcfz0A4E4cj4UF4MobuituiblKJYGpZKfE60IDv/mNuPSqgfSG5UWKOaSZt9HoIG5oOMkJPCfuT5GJ8497cW/XPQy4oEm7Skt+rtKAGLflZVGS4rrroocpqK5SW+2Ao7i5JnKF0Ga5/oSjuEpvuEFc6iuvFNuCFDdAT9xic5VSEoJlodng7hg3wG1YE1DcLAs4A9ci364Bf/yjc7HIsM/NYXxc/FutinvuKG7DcZUmkZxgF/2mA2Wz4q/dDuxcD3mIeA0dY3333cCOHXjo3G/9iRtd+ziTE+jphOTTISMKcTsL0m2qwY8BnOPz2ZoCEbe6Qtwoy28UiVuIWomBCOMqbSCnlXPiJG7Vptj/lsP0CRBAwoqbzGn/YVX4ae96UIlxS1vi2qRS9g1Io43ycphgsgB0cZVWC9MABHEjw6hWKveG5UVS3BRXqXflBG45ihudbxEDSE4IIm4+iltfrlLlZEpUj7zddl/AAOKm3r6oCpQ67nJ157zTjfgVN6+rlPoSvQYlJwAJKW60A7qolgWr0kAKHE2WdbaHcJX20yddJUhqSiIQTfDz82DM+XfPHsGjU2ghL93W6VWquHGuLPnlJW6AY1iCxmXUtWNlpytZS/7EjU4szuSEbhPrgBGFuG2Ej6sUwD4Am3w+WzvgHNm26EyZsbxN3Kgg6igStxDrAQfCl7hlnUfAQRC3iiRuR2x2D1a/GDcgRuJWqQC/+Q04Y/i3O58CADhQV1ylXKkHwxi4TNyor/QpO3Qhbo3itGjeYsN2g6trA/ZF3AJcpbQDlbgVBkHcAoIGMz4xbnEpbgUibq4BIRsqlegg4hZV9VEVt4xC3KgAuB9x8xJYQhTFjfoSuf56cZXGVg5EIW5Uw66RKjgDfwCuUi1xm50VbSiXgXrdFY6ysuKuN7daXaVqHySvkutA5NoIIG50m0ITedn5cryBSYiGdxC3qSl3AzWIPO+uYuK2F2IxeR1OBnDA57O1A0vUlWkig9JE2iFu8mkkKKt0UMkJ3jbEStwCXKUsFzNxowsmT2ilriduA1HcrroKaDSweOzp2GMJP+0KFFcpFYmUkwyXjYqbuE1hEcWMzC5IpdAeE22oLzmK265djrFKKsYNSnLCQIkbnVCq06xleQLJCcrJFNsV9w4LhY4O7s0qjYO45XJAphZecUu39DegF8Wt2RT9qVaTZUlC2hwgGcWttULEregwgoSTE1xxdSpxy+cdJqsU4d2zp5O4ZXshbhFXTlAXmac5h/hNr8TNZft1Ew89EQY8UNFQDZ3NrvhUN2AfAEHcalAUCWKkcSYnrGLi9hMA72WMPVzdyBg7GcC7AVwcZ8NWJWpOfNvYGGzilq2LjjtqyQne1Ul6ITKuApQBrlKmYQVx1nFbromdHbZxCMRNukmvmzrX3qQSN3Kfe5fnio24bdwIQChu9pqZpRIyJRn/t9RwJZ5QVrtfjFsU4sYbTdTrblcpWo6rlBXFOeeo5tIgiNtxx9mbFgvi2lD7CLEkJygXKu8lbvl8Bzv0ZpWqE2bUdthB4RmOdM2ZGDPNYOLGrKaWSEVR3NR4pNtvF68zM/qyH8CAiFuziXZFPhyki05n1hC3RBU3lVGT71hJUNi9W4w7dWmufhW3LJpDWTkhNHELUNwomx0I2ScUQ6YSt6iu0rVE3N4HsTrCTYyxqxlj32GM/Q7A7wEsAnhPAu1bXVCI2/i4Qtys7orbMIgblYEYiKs0bsXNQ9wWq2L/h24YgqtUlv7+6m4R33bWWQ5xG0MZrJ4wcTviCACSuKWdDpAdExe4vtzAXiXIgdylccS4teQqCarixizVVSruD7mLB0LcTnYcA3MlcW0yPopbbK5SqhyvKsEedpiEq3QsXQNTpIpuxA2NhuszamKUJa/Uh4DbbhOvfvFt6jF07e8ZQa7STFHvKm23RThLzOVAtIpbNusobkpJEFLcXMSt3S9xs5BNB8tVo0rcgIjuUuWpYaOM3PIlbnEmJ6xW4sY53w/gUQAugijG+wj5eiGAR8nP1zY8ihsVni2hglxO68Hpi7h997vA+ee7CsRHJm7qd0PXFbvwQuD5zwfabT1x87hKrZRecYurjluzCSxVxP43ziSkuFWrwNOehsanP4/zzgO+SPnVO3YAt92G9tg4vrvzDExOAi94AdBEDk1kRP0wsoxyBiO3cbPS7KnosQ2539/cpyduuXFxgRf3N1zVEyhBIY4Yt7aWuDmu0pRU3Ii4/Z//A5xxRn8LeyuH18e4bdgAHHYYAGB/8XAAncQt7uQEuwCpTnELQdx6VdwmU+5JMWt5iBvn7ovUdCtuYVbM8HOVAsCttwLTmMfXHjgb+O//1v6ejrcZD+JKnIkL8MP4FDfauULcmmkfVykAtFqxEzc7FEJdySRAcfMSt2xU4kb1MBlDA079yg78v/8nJohmM5GsUteqObqJJ+TC0JHsTkyKWzYrRItms7OyjBarlbgBAOd8gXP+Ps75Yznnx3POH8c5/wDnvI/aywcRPMSNVJdJLGndpEB/xO0LXwB+8hN3ba5+iFtoIvNv/wZ873vA9u36GLd0GqmsQ9xaqWyiyQn33QdfAxYbcfvjH4FLL0XjM1/AZZcBX/qS3C5Z0PyWU2Ehi8c8xllui+4/9stnGnnxicSm2s3+iIO0uH/cL8iJl7jlJ+QyYPvc18SruPUT49auNcHQttcMzMJCSsZRWcggNynOeTInxsbevaL8xY9/HP40Aw6vV9zGx4XsOTaGbVOnARDrGqqIW3HTEjcPO8xkxHFpgYc4FLcJ5iZuGctTDsQ7MzWbLsWNbEBYV+niYqfi9kT8Bo9cuhL4yle0v6fL8GRchTNxFV6JL8VXDkSjuDUzBecCeA2rZcXqKvWNccvlnCCyxUWX4nbrrW7ilmuFlX3gHAcALxRQh7i4mbbmBn7+82KCuO22g1JxI+JWQ0GfnBDQqRmLOPeuZuJm0AV1Jz15fNxZr3QG876V6PtJTqA5QoZYAXD6lxqMqkIlbhFWJ3GDGlup+LtKc46PspVKNqv07rtlILxn/0CMrlK531RFGCF7sMvGV7m4kYcd5tRotInbAZm343GV9l3LTRbg3QmHuNkV/EslFCbEBV4+INpIMUhE3PqKcZP3ut1odsaPybpiTWQxc4g4540TNdx3H/CWt7jb0Cu0S16pTPSrXwUefBB7c1JxayebnGAXIA1Q3ABXvHpfxI12Oc7cagbFednkxNvJPa5SuvdhFbdm022rbrsNdnafn7JCto9WbdiEPYkkJ9CgbGYCFDfLGoyrNJdzBTWS4vaHPwC33ALMFJXkhKiKGxmfYlGEoQBgTY0RpRtVr2uJG9375eWQiQEeuJY77IO4xaG4aZMTuuzwoCVujLEfM8ZODbszxliBMfYmxthr+m/aKoRHcZuDkMpnMO+ruPWTnEA24oorRB9VvSLFov43KoHsWXEjSx5A3NKq4pbJaf2icRG3bdv8iZtqpHsmqsp+U1Uf4ibXnNm0SdRsKpUGQNzkzK8SN3vNzFIJhUlxga2qaCOFfsUS46a4Sr0qJy3BZCGDdYc5/sEjjwROP93dhl4gQ5UABChuqRQwMYGGLMyc9nGVxqW4ZYKIm8J8FO9ZX65SOvS4Z5mfjiWvvJ3cx1UaVnHzYs8ekc0MwHeCtlelk/0kFuKmiXEj+2tli/6KW6s1mHIguZxLcSXFbedO8XrGw/twldI5FRzipr1JtK3R0BK3dFoMFXU1hygYuOJmWY73Av25SoGDmLgB2A7gWsbYdYyxf2SMncYYc+WvMMYOZYw9izH2ZQAPAngFRMLC2oMnOYGI2yzmEnGVUr9cXgauvdbximSz6HiqJMTiKvUjbmo5EIW4tdPJKm5hiVscilvaS9zk9kpTnMzmzULZ2rrViXH0ukpV4tbXeqVdiFtxSrSJlI7HPlZ8tH27sIFxEDfe0BC3ljgpCxmsP9ydSklqZD/ETTXw2hg3OiEAjbYwV2merKvULkCqc5VqFLe5uXhcpUTc2tKUkwsuCcXNL2vUVtx8Jmi72yvErdnoJ7gTgYqblR2c4hboKlWCGklxIzz6ZIW48d6IW7tQdOxeF+KmPsgXNRyn71Vz+ohxC03c9u1zLTHSlbh1GdyRvF2ribhxzv8RwEMBXA/gAwBuAFBjjM0xxh5kjFUB7ADwfQAnAXgDgIdzzq9PstEjC4/iprpKkyBuar+87DJnfAT1rb5dpe22K8DIT3FLKVml7cxoErdIpEmesyi9wDsUt3LDUdwAQVD8YtziVtx2YzNaSKGEKibaUv0olVCadhO3LVuEK9eyxHqTfcW40b3WuEoLLbFjns5iepO7eBkRt3vuib7ME8FL3Oz9eJkogDopbh5XadzJCVripungquKmLjXba3JCqS3OuVJaDyAEceshOYGOpS4lJxOZAYR3lToJLA2klhb8DxgGmnIgNChbGZ8CvPJ3dG1kFZ34khO85UAU4jY25uqWOPVEJcatR8WNd1PcqC/W6+qiLa45IFHiFrer1LMuVr+KWyRvV5jJdYDoGuPGOd/GOX89gM0AzgbwLgD/BbH81b8CeCmAoznnZ3DOv8o5D5OjcXDCx1WalOKmjtVLLw33UNC34qbOdJWKbx23dE5R3HyIW1x13AYa49ZuIY+685Qmt1MBYHKJuIgbuUrtGSxe4raIKSxBGKtZSxq3UgljM27itnmzW/HyClSRsnxJcWt2Km4lLnY8tS6DVMmdSjkzI8hLuRxhfUL9oQF4lkL0MlE4a9h6iVvcilu61j05AXCIW1yKG13r5nRI4uajuIVxla5f72w75RTnfTfFzUvcACCzf7f2u6GhcZWSm9jKBbtK6SMin/0Qt1bdQpYeXNSs0mwW3jRieqjbsgXYPNWH4ib3184VHOKmOwlFcQMcuzcwxS1uV6nHYORkf6ojjzqLlpwAHNyuUhuc8wbn/CrO+Uc552/gnL+Gc/5uzvnXOOf3JdnI1YJWVQzAGgooFh3FrYO43XYb8K53AUtLoeTaP/wBePe7Fft/ww3Ae94DXhcd8zG4Fuff8D7suFf0/KjELdKi6x7i5lcORM0q5dnuxC2y+iLb0c7mcc89g3OVAsI9Va3KNsvty3VhQMk4H3us4ir1xrjJmTMu4raESYe41eWEqCFumza5iVtcS155iRsZ1Kn1WTdDkq50tQ3Ut6Oon14DL1ccw71/7lTcGi3pKm3rXaVxKW4pHXGLkJwQlUCefOWn8Gx831bcmGRV5LYb//zHgJ/+VKu4qcQtSjmQDRucbQ9XyrDbxK1a1dZWcJITFLV9PgRrL5eB97/fqRitQlMOhNWk4pYL5yo9XEQY9EXceE3pQAGuUsB5qDv3XDi1HQHkenSV8nyA4sa5S3EDkiNuvuVA4lbcKDHBU1erjrxY5oygKm6cAxddBPzylx27WxPEzaA7WisyODaVRzbrTk5wZZV+/OOiM118cSi59sILgQ9/GPj5z+WGf/5n4MIL8Zjly8Xuiu/Be/HPuOc/rgIwWMXNtxyIklXa9iFu6bT4A0LW0tG0Y6WZR60GpPMJEzeFLYxjBZxLwyUvwFLNrbg94hHhXKU9x7g1GkCthhZLCzeBNFZba7eIz2dm7AK8dmzRJkEoATdx63fJK6+rlDC7MSMCozxLBhBxu/tu4E1vEn378stDHNNzaEKlArzzncDe7Z0xbrSiRtLJCSyIuMWtuO3Ygadc/E/4Il6FoiRuucMEqyqiiqNxD4rvfSvwutd1dZVGUdxU4nbkkQ4JtYkboGXgdLxSNiJx+9SngA9+EPjXf+38LCDGjecDFDfLwiGHiLcPe5h47as0ifrE3YW4nXSS+PfZz3a3q1fi1goibq2W8zQsPzv8cMF51Hi7VRXjRorbUUe5NteRRz3t4yq99VYhkrz97R27M8TNAABgSeLWTBeQzXoUt7wiKVFwy/JyqM6zvCxe7aKlcpStb4gNR2XE64Hb9gII7luZjPPA0lOMWxjFzVPHzZUt4bGSPbusqPQKk0VtfYhb3K5SQKyGAMh7Rq7SRs5VLP2xjwXOfXaCMW6yU5TTkwAYpo4U7oFj77lMfP6kJ9nH8XOVxrFyArM6FTfCzAZ58X2I25/+BPzud+J9lFABHXHbu1fJsJQn1G4DO3aLkypmki0HYi+yPYjkhLvuAgCswxzWrdwPACge6RA3qiiPBx7oVDsiJieowo3qKt20ySEAvRC3/HwIV6lckcRexV6FxlXaWhbHTk2OBxbgfe1rxa5fI2sfJEbcPK7yj3xE9PenPQ2xELd2LoC4qf/L99/5DnD11fERN205ELUOVURXaWjF7fjjXZuF4uaTnEDV6WkSVXDQJicYREOr7CZuDeRRRgkZtDCdUTovDdp6PRRxI8Npl7CRG9Y1d7teF+4VnbRb3yJbF7viprpKFcUNPoqb/Tv0TtyakrjxjD7WIylXKSDvmWx4E1ls2uTOvDviIQkSN2lpV1LSSE2IV9ZoiIv65CfbF5eI24YNbrUrjrVKg4jbus1yh57V1akNX/uac6wo5SF0xG1+XiFucvLYtQuoNEU/zHiySuNX3GqCKUZITujZVUpLXwDYvPdP4vgbnBi3Wcw7O921q6PNUcqB0LXOZIDpaWe7L3HTdGg6nkqeC0tdFLflZYfV6waJrgDvkvheZmY8MDmhUBDuSuIYfRG3enjFbXoaeNzj0NGunhW3IOKm2mn5/ogjgMc8xv212BQ3XfB+RFdpaMVNR9z8FDc6tuYJLVJygiFuBy9s4pYp2J2R3KXrmPLU2CNxs2MzpSFYb+1BDnUUawviuHvEMYZG3BRXaSavKG755IhbnbnJUBjiFimmj+BH3OR2Im4ueA+kSU7o2VUqVdsVJo3U1KTz2ROeII6tELf168Vh445xY5a/q3TdJo/iJvstuWuVkkyRJk+vgV9ZEaIMKaF0QkHZxnEkJ9ByXzaq1dDJCQcO9KG4KbVUNu0WxI3ksCKq2JhRbM2997p/G1FxU8f3pNLFNm92wgJCEzdFcSsudFHcfvUr50aHJG6sLL6Xnx0PdJUSIvV3HzDVHnYhbi4o7bKzUsOC6tXlAsqBaBQ3HSiOf1UkJ5Bycdxxrs0u4saY2/8fQNx6cpX6VbYfMAxxixEtWbXcSncSt1koxlSpaK2Obb8A/Q7FTf5+Q2s3NsF5cp3m0YjboFylLJcccatxNxkKcpXSQO03xo0IQq3mHK+BnD2R2VDz/4FEFDdKSkipxO2888SrQtyIVM7MiL9KRTQ9nXbuQS+u0lTLX3Fbf4jcoWcCI/Kooh/Fbfdu8czgdZWGIW71eu9lSVpVT6etVEInJzzwgLtafaT+rxC3QnVBvJmeRiuVQQoch6QVNcsb2B+xHIh6OipxUxW3KRbOVVpMOwcpLXdR3MhNCoQjbs2mXRw7PzvmDHxv8GzsxE0hZfW6bzmQDijbMmhFC/JVyp5EUdx0iEVxy/pUfo97rdIAxa2ZLjjHV3dILtJ+iJtliZNNpeB66hki+iZujLF13b+1NtCWWaWtrEPc1FpuNhTFLZXqXlPKT3HbiD04BM6TKx1jkIqbK85BLQeSdxgTS1BxI+JGC7f7KW6FghPbl6Sr1IUBELdFLixvekaZVc89V7wqxE0llaR4URPJvduL4hZE3DYcolfcDjmkc2WPKMTNO8ft3Alk0EQBdbTBwPPieEHEjRJjOO8hMYbaUfOct5e4BShu27e7f9qr4mZjbAytrLiohzPFPUqKm8LQopQD0SluExNiDEVV3Aou4tZFcVPX8dNN/JoYN1FjEShtHHdL7brfwd3feyXvrOHjKtWUA3HByxaiBFsqhYZ9y4GEVNziIG5jaXl+qpEFBqq4NTNFdxso643iyfshbvSFUsm/CvWAEZq4McZexRh7q/L/yYyxnQD2MsZuZIx59YY1B1on0NK4Sqdaelcp0N3X7qe4bcZuHJZxnlxJ1YtK3KgDl8shDJhGcTsOd2LDtmtdKyeoddwQoLj1XMvNj7h5dkT7V69JrMRtyIrbQlsSt1lpgTdtcmo1aBQ3wK14qU3slbj5uUr9iButLKHZXSh4v/vAA44KuoJx7D8gjOvdd4vVG/wO0G+CQofiVi6HVty8XCQ0cePcFeNmY3wcXA7kw/CAs52IGwWoeVylxaKY5/wIrE5xo760aROQRQMFrhCTkMRtbCVAcbv3XpGAQSTAs89GA9i9s7McSK4uvje2adwttatQ+kEq5RyiV/KeVombzPQG0LFWaQfiJm5BilsI4qYWgw4Lm7gpq7W40I243XQTcMst4ZITmk0RX5BKAUceiZZCXVzEjSYzWzmRgkkAceuanDBi8W1ANMXt9QDU3vavABYgVkuYAvDB2Fq1SsGrVBgxbxtHUtwmW3rFDejO/FXFjXM4BR2xB4eloytuNFjp6T+TEXZGzSDzhYa4/QgX4LHvfLIzSDwFeFOF5BS3ajtYcSPboQZW0/V2Vd3vBk85ECCE4uaNh4izHIi0tHMtcTOzh24U288915mNFOJGNauAGIibMsun2/6K26bDPa5Spe+ceKJ4pb7YD3HbudNN3EiQClLcgP4TFDpi3CK4Sr0I3YZ9+4CVFbSZx3SPjyM1Jjr2oariRrMSBTN5XKX5fPDDk6q4UVYp9aUjjvCobYB2kqZ7rMa4jZf3+K9s/tvfileK5Pfs81vfAm68rjPGLd8U3xvfHI64Af27S1MNz6xPrjk1qzQhxa2ZCZlVmrCrtAQfYkP2b2Wl09DW6yKB6mlPC5ecQAGx69cDmYwdIgJI4jY2Lf4hQ29PwHJOarU6DhA6OWEEiZtP79biKAC3AwBjbArAkwE8i3P+U8bYAQAXJdC+1YWKjD3IFjsUt4mmv+IWlrjVamKATckNk1jGVuYEH4dV3P7lX0RauFpEs1QSA7FScdd6820MYBO3I3E/Us2GqMkAiOSEgtO1whC3yIaTVqno4irdvBn47GfdZCWdFja1Xhd/gedL6FIOZOCKmzRIc3wG2SyQfsmLgAN7gVe9yvmOvLizE0287nXOZvVaqNwy9CSmTLgp3vYNrp6eleRCM4FdeKFYcP7BB0W5rn6JG5FpIm5nnCGI21QAces3QaHVjbhpXKWZjHA1eqsThO7/kpXeP/VwHLpwi1PUdmwM2QlhSE6afsD9iA34Km7ELyk8y+vCVonb4x4HfOhDwFOfKraddRbw/jcsAZ9UfqB5EnnqU4H/+3+BR1zfBKS5Srct0YfXaSJt6OIcd5wgcZ597tkDbIDbVcotC0W5ikRx/RjwYHdXKSD6vN+5hwFrePo+MaAIyQmAKOQb2gkn99cMUtwG6Sr1U9wyGcfQ1mruC7y8bCvUoVylnhT4ZUxiBgsAgFe/Po+pZx4N3PJJpzifPQEr82697iL0oV2lI0jcoihuKQBksZ8AgAP4lfx/B4CN8TVrdYLb9XU6XaUu4qYkJwDdJVuVK+3ZzV1ffBi/2X4flrg94QnA297mdteHdh96iFurbmGMnrjI4HpcpelCcnXcKi0xOaZ86rgBwGtf68TrEyK7SzWu0loN0WLc4lzyiogbZsW5jI8D73sf7OqiynEm8w3X2pJ9K24eC1vsYAlAA1mwlOxgmgnshBOAd7zD6fv9ukrpnpQxhrvvFvZ6YQHIl5JzlfJa9OQEwFG6VYTu/5K47Ro7DvfiaGf7+Lh9nccWdnX+LoTiprvv6umk02KVi0c/WmzLZIDXv6S74lYsiq45PeY5gN+aZ3QxJibEQdWgf9lO2z2vKG7UB9hEeMWt5wdHiXQzQHELmZwAAK1KD4pbOlo5EB3iqOPmq7gB/u5SYkuWhVy65dqfFvR9aTBUxe25L8jjKU8B8E//BJxzjtjoVdyAjuuwVojbXQCeLt//LYCrOec07R0KqGmTaxOMiFveUdzIVTrW6N9VCgB7drojaU+y/mS/D+sq1aEn4lYuI1NVpAManAN0lYYhbjpEJm5+rlKlHEiH4hbCVdozcZNPkvOY8b/fPhfXm5xA6JW42YZbQTulTJwBE1jo4pv+h9cqbuQuPWzLEF2lPllHOuIWVXHbVTwG2+Bh4EGGJEBxC+sq1cI74wd1aO9J2kG7PgfN550OqqhujYZC3HI5gDGwdttx244HJCfE7Crtmbh57hEltoWCTdwKfZcDiUNxK/ZD3AAUU+LcAx/ePMRtAVPOZ65liSS8MW7AmiVuHwPwBsbYfgAvAPBp5bOzANys/dVagkwNb+U7XaWlmuS1rZZjJeSADvK1e+PO9u90G4FDWzvt90XUUEC1p1IzvSpuuZoy4sloeVyl6WLyxC1dSJi4hUhO6CWrtOcYN6/ipoPPxVWzOnsibh53Uz/ELXTxTQXe7zYanTFuFL9/xNburtKeFbe6RnGjcwxQ3HRxbqGJgzyxHflj/YmbDkTcPFmlajO7KW5aRCFu8jpUINvZTXHLZt1xUnDaaRO3TMZm/xOQ9mc8QHHTuEppn72gg7hFdJXWpWLWC3Grh1XcEiZuJR6CuHkNnXJNCky0NazixrlbceuXuB3UyQmc8/8G8CSIWLazOOffVz7eA+BTMbdt1YEWOeaFTuJWqMkOpLKzEIqbd8wdeCC4l81gfnCKW6WCfF1D3Lyu0riJm71QKFBuih0MkripMW4WZRZmsrY3ykaSMW59KG5qVmdPMW5hFLe0oniEUNz6IW6Av+J25Fb/A/StuDXEhaqmlM5E46NQCOUqjZxVLU9sR86juJVKwcQthuQELbwzftCTiOxYOyD99n6Km1pjSDPxN5tAWsa4NblD3FLgsJjMtBpQckLGCiBuQXWepLFfxDSAXhW3/pMTqErM0lL0kih0iEI7gNhoiDeAvhS3VisEcQvhKl3NyQlRyoE8CcCfOOcf55z/2vPxvwDoVTtY9bAs4JprgPaKJG4aV2mhIhW3iMTNO+bmH9QTNy79dLOY6+xf7bYI+AlAaCKjTr6VCgoNveKWLTjELVMKSdwqlXBlrJUn8lpDdOFhuUrry+J4pelcZ4mfJF2lYRS3dFpkmLbbHUoDxbkl5Sp1TZwBE1jcxK2WGsOePcC114rtRx2bXHICpOJWzkyL/4NcpdWqWPD61luxccLp4xSb73vNm033mKPkhKxC3IpFca9V4lYowPUk0SU5wa8NdDpdiVuYml3yADsh01K7KW4qcVP2q7pK55fSrr5Wz3qWAfHCh7h5+4A63xM471w21ddVGrKO20JKzA+BxM1rv+X+6qn+67hls6LbtNtAZbGpXdPTDzZxC6O4BRA3UtwCbQBdw0IhHHHzS05Q0IurdGkJ+POflXXDh4QortIrATzU57MT5OdrEi96kci4WtnvPBV4Fbd8WXYgdRD3Qtx2awZ4LgcmJRQtcXvFK0R65c6dnb+V6FVx8yNuagHeIOJmG846B049VaS6dnv0UyZHepsp9kbcQrsqfVyljRVhvcZmNBNFNouOWZK2Q5TpCFU7TwdpkAKJG9A1zi0OV6kuOQGZ4ShuqSlxQpdcIrYffXyCrlK5z0pWEiS/5IR6HTjtNOCkk4CTTsIHfngKRG6XU2JDO7dalsjiOPNM0UkWF0Xmdj6PB3AY7obnJqrp0bOz7tXEfRS3QiGc4tbVVXrooeI1BHHrqrh1IW6qq3T/QsZF3Bo5+f0+FLfPfU5cvp/+1P3TT35SEO0rrnC2pS1P56HB7C0H4h3kciwssWkAXYjba14j7uV994n/yVWa6j85AXDcpelnPE1I8aHWgFL6Rise4hbWVdpB3HRlAXRPIzEQN6rG8PKXd/lNwohC3IKylfMAWgGfH9R44hPFa7sse0Chc+WEXNnfVRr0sOodc0t7NU9vmzbZ/pennDaPM87wfP6nP4kd3Xqr7zn0StxKjQXnfzXGTVmrNDuW850daHy1yjXgzjtFDM+DD4ZrQz5vc4FhuEprNcCS1fNLkz5P+Coz8ihuxXQTnIe2k26EcZUCvsTtxS8W5Rye9zxnW6+K23hKXkRlsiyMR0tO6IW4qQon3ZOHPWYcJ50EPOQhwF/9FfD4J8l+2G531A3r11XKpau0kvMhbnSABx4Abr/dPtkN83fZJVQCFbfFRVGM9rrrxO+vukpsP+00NKwU7sAJOPC0FwJveIPYripuMzNwZcv4KG4BtbHp6/b3tPAStxCu0j2QhNLPC6AeVONqazQcV6mXuFmFLopbiBi3v/xFvHrN5Y03itdbbnG2ZVo+oSu5nFBBs1lB2rwXVw765ZToO4HE7eabxUnfcYf4XxqterrUdzkQwLl16Vv/LOql7dsX+H3vbgthiJu3X2jWao3VVaq7/70SN2p7qTQyXtPAOm6MsS0A1BrnpzPGPIE7KAJ4OYD7wxyQMXYegLdDqHczAPYBuBrABzjntyrfOwLAJwA8FYI0Xg7gDZzzUMcZJKjURAFyECuK2xIm0UIKmcqyGLwa4hYUIOolbsv7gonb+143B0x4PqfeptP/JUIvvO5p0Exzr9I4J8ZNdZW6iJuPq9TFWrdtc6xJUBsU4pYpDSc5gTILc+M+M9v4uCPXe4hbKdsEWuLUIxmCeh2oVNBOpbHcngj+rc91f8Qj3MpBwFc74bGw09kKUIc4VzkZq8kpcRM3mnsnJ52K73RPTnn8OP7yHvXbTBzEssSfwkD6VdyYnLmquWmxwU9xIwZwyimiby8soIQK6igEK27qjbjsMrGaAACcdx4a3wM4UnjgI1/HOqrHqBK3AMVNXZtWXX6xL1dpBMXtANa5f+uFTnHzxLjZitu821XaLkpD5lXcqJ5YCMWN3vu5T9X+kg0iboDo++Tupm3ttr2TlZQw/rwW0AlpziBjJV+rLIC4hUxOAETYxB/+oLQhpA2lrwUqbn4xbootIOLWs+IWFOOmIobkhFEhbt0Ut5dAEKZfQGj7n5b/X65svxjA+QA+EvKYswBuAvA6AOcCeCeAkwBcyxg7CgAYYyUAVwA4UbbhxQCOA3AlY6yHnMlkccwxwNFHOy4jVnKIG0fKVt2wsNAzcbOXpTog4xumNjhf2rzZiXjWkTPqbd4ADQU9KW4A1lmKu0MpB6Iqbpli9zpufEV5ItOtxahrg0Lcsj26SvuNcaNaXoWJHhS3jGhr5Dg3eY8bpRkArCfFTYdeidtEVvZpXaYDkJjipi56bi8wr0up9jmxfhU32l+t0MVVSmPy2GPtjkdxgYGKm7rx0kudhdfPPdf+yCUseImbqrgRcWs07PP2eO77c5VS/cCkiJuPq3TffMZ9EcZ8XKU+BQN1XYO+4iX0ZD5dxM2bnEBQiRvg7vtKvFYjJQsI90DcaqlSuHIgXZ5MKGwi1YxG3OzbZA0gxi2IuOnUtTgVtxEkbt1WTvhPiCK7DIJI/QMAr7+tDuBOznmoOm6c828C+Ka6jTF2PcSqDM8D8HEAr4JQ+k7gnN8tv3MzRC25V0MstzUyYEysNFT8fCdxA4Q7az0OiJHfI3E74gjhSazMiUFf2bgF+UUpaW/a5NQY0JGzEIpbr8RtQ2t352fpNDJZhhZSSKMt1KhGF+K2rAxs3VqMujaoxG1Iihu5y/ITPpKESiRiJm7V0izQTa1Lgrh53E2TaXkRVZKa0Shumgmkl6w+HXGbYCvi0dKbyUsHqVZ9i6/2rLg1xTWtFabFBj9XKeGYY8T6jHCIGylu2vNX79nll4svTU8Dj3qUK/HShtdVqipudLEUxY2aN7KKWzbrm5xArtI9B9yuUjbh4yqlPhjCVRpJcWt3IW66xByFhDQa4vNA4kZGTkPc4nCVikQljgzF64V8komLuOV4H8kJ+bx+4fcQxK2XrNJVQdw45/cBuA8AGGNnAfg95zx82kl4HJCvdOueCeBaIm2yLfcyxn4H4AKMGHEDhLuUiFtqzE3cKEEBc3Pa5IQwxG16WnwvvSR+XxvfgCoKKKLmVtyCiFsCitsmrgkwTqXAmFjgO42GIG7LwcSNlT2u0jBtiCE5ofcYN45qlQHNCIqbR+KgRbcj13KT97FakDUCh6y42TFuukwHIHDNxrgUt5lsGWhAT9x8qvz2nVVqyRp+xS6KG+GYYzoUt9CuUnp/zjlAJuPiNjb8FLdSycXOYlXcyFcdIcatK3FTWWmXOm5759zELTXZv+JG70Mpbi3xT3tsHCnVhoVR3IpFWFYI4uajuFUQ0lXa5cnkmGPgXm84ouKWbcYT49aTq9SvY0ZwlUYibgfst0NFlDpuV8VJ2hhjacZYjjF2HIDPA9gNR4k7CcBfND+7Bf6ZrUPF2U9sIoMWLKSRLWb0xG1+Xqu4kRcjiLjl8+IB2u7kmaIT5Ksqbl5Vrd12jhmCuHUlEZ7Ovxka4pYWbtIWxGtuvHuMW6/ErVfFLXRMH0Ex+ClwFFEVx5bHK3ZLTshk7OviJW6RFTd5H8s5cc+HTdxKKY2rVKe4JUjcprODd5UySdyafsRNp7j16iolnHuu6yMXcVOz61TFTSVuSnKCl7jFkpwwgBg3tRzI7n3uGLfMtE+MWw/ETe0XnOsVt5xU3PjUtPt4tGNd31dISDMliVs1INBKJW6KPa/yQmyKm2u94cjETd4b3dgLUcct10NywiKtnOBH3JJwlY6NjYziFqWOW44x9n7G2O2MsQpjrOX5i2B6AQDXQbpZATwcwNmcc4p0nwWg8+vNARQw1tG+X/n9RWxXT5jKi4FXRdGVqQU4maX9uEqJuFECRDOdx27IJ2qv4vbpT4sFSZeX3QbDz1X6wQ/i7//9DBRRER3zfe8DHv94fOBdDTzxiZ5x3ANxy094iNtLXwo8+9kA5w5xq3hi3DgHXvAC4P/8n8CLQqeXGxuc4gYId2m1CjC5vTTdxVWqTqoBxO3ee8U6yd/6VkBb5H1czg1JcfNbOaGbqzQO4vaZz+BZ//cRmMUBTE0B/4RPYj/W4Ynln3e2gRDw0PDPeA/+6qInhIhQ7kRKqq3NsWmxoZviFhDjFqi4qa4gSdy0hCpIcVOugZ+rdG4OOP104KKLnN2EdpVu2CAyHTzriurOZxFTsJAWtrAbW+wS4+Z1leZmfVyldG1CuEqpLx5/909FCZebb8bysvNTHXGzs3btDwIUN5oDCgVY6S6Km5p2rq7MUSzCaqf867hFSE447DBgIhuCuL3mNcDTn25nZ9vErdGDq1S5Hrn2ABW3cll08pkZ5A5dh7fho2g2O7qFGyPoKo1SDuRfALwXIs7skwA+6Pn754jHfjGAMyCWz1oC8AuZxbo6ITtWDUU84Qk+xK2P5IR8Xthih7gVcBnOFaUIHv1oh7gdOAB86EPA734nqpCqzMRPcfvqV7F5+3V4BP4ovv4f/wFcfTWu+6878NvfegQwD3HbiL3ogCRut294Iu7Kn4TpLdPOBVlcBL76VeCHPwSWluzNqYoysOfmgN/8BvjmN4EvfCHwotD4T62fFRdpzx6R0t4FsRE3S1iv0lQXxU1D3HKpTuL2i1+IcgM//GFAW+R9XE4no7h1/ap3kXmuIW5JJSd885tYv/NPeCyuwcQE8EJ8A+swhwxaggU97GGdv/E5SD4PvBhfw6H3/E6k1UUEa4n7Z43Jp/877xSDeHxclKT3Fkw75BCbyD/iuAoe+1jnkgUqbiefLM7raU8DtmxxfRToKj3xRBEc+6QnuW7usceKpjzpSe59XH21CMH78ped3YROTpia8neLec6niSzK6QCj16UciLpywq69GXCFuOVnFYVbhbIYvYogxe3h234gMoJ/+UvfOq453gdxUxQ3X3dms+mUsalUXCSi2UTfKycAwlwfd2QI4vaNb4jidtu3uw6R7oW49VEOpN0GtmMLdqaPcmpxeeGnuN18s+jkCwtgc3N4IftvAF2e20aQuHVLTlDxPADv55xfGMeBOee3ybfXMcZ+BmA7gHcAeA2E2qZT1vyUOHDOz/Q71umnn95LidNokB1r/ZFFbHiUu96i/XTgNVKtFtBqYXIyrf0YcBO3bNYhbo1UAe/HB7H35e/HZ45KO1/805+cEVAuu5mJn+ImC2Fuwh5UytyuaE61hbSKWy4HNBpIw10bC4B48gZw+u5L0LbaYvkrGkh33ul8b2kJOVkDK131DOx/+zfxSvW3Usozhkrc5DXLTxXEIL78cvH3t3+rP1eJfrJKARHnVq0CqVYXxS2AuOVTnTFuVJM08OlT3sfFdATFLYQS2aur1F7yZhCuUjmD0tJusxD/v/dpN+Cff/Rw/ZN2gOJGv8e2bcBjHxuyEQIpSdqt8WmxgeoPnn22mA3VtmzdKvqwvFkf/UAF+FtnhYdA4jY+Lh7EFHRV3GZmxO/uvVccl0r1NJuYnAR27HA897SPHTvE6333ifuRyURQ3CYnxfGWlkSH9hIZ5XyayKKcmsRUa158n2RH3cl1cZXOL6dh8QzlViI91UVxi0DcirS+dLXqS9zyUnFj08oqFYw5F1eXmKOQEFLcfMmVZ6WanohbiIe2Y4+sA/SA7mcAqC3btgFbt9pfy9T7i3HLtqMnJ9RQxFlHbsNd3/DRnvyIG12/I44AduzABFsGpKjpu8b3CBK3KIrbOIBrkmgE53wBwN0AlQLHLRBxbl48FJ1ZraMB2RGZNBCMOX3HRdy8DvV6PZTiVigI22MrbjKN3K6XRoqb2vtXVrorbsp3NmM3Uovz9sCluAvXgKIG6VbKJkijxVLMWbOULobanqUle0LoIG7/8z/Oez83gKK4FQqw3Ui47DL/tkn0qri15JAhxS3dEkZxYrYHxY11Km60ClAgeaLiuywEcYuwGGavrtJcS/bpbopbHEteyXOfxRyyWYd4NQ8/2p9d+JxYId3EBJUR6ZbJrAGR9taEZ5FaKuyotofWGJM3K1WruGqoBbpKNZNQKMUNEGNRNUbyh8Qr1H0QcbMs4P773e3SKm6WJQYQY2LW67bslULcltMBgb0RXKUWMqg01XIg/ce40VdKCnHTLXnJOZCHhrjlco57W5eYo7o7uxE3db7QEDffciARkhMA4JjDuihuVAcRsF0woRS3MDFuPLqrFABYJq3PKAX8XaV0/WRM5hQWvc3pxConbhdDLDIfOxhjmyBqthHn/zGAMxhjW5XvbAHwePnZ6EGJWyCQUahm+idu+bybuNUlcbP7p+4J16u46YibsuzMJuxBYXGP85k0MFrFLQRxc0H3BKQQt0zd80SmGtgA4qZeH5u4XXpp13WkeiVuS6lpAApxa4vtYzNdYtzUmc9e8qpH4iZnEXLB+z4pAgNJTrDLAfjFuAVklUYqB6JEiM9gHtlUyza8hc3T/r/zYYdTbWU27pYQowGR9vaE59jUD9V77iFu1PECz9+HuLVa4lKowg6AzuQEFQH9wEvcAIfHBiYnkIo3OemQNyAccWMhXKUhyoFYyKBcV/qamgykoodyIGMN2T9qNa3i1mo5bj6m2l/1YnVxlfZD3CwrPsVtyyFdiJvaPtk5bOJW689VGkpx0xA33TTj7LSL4ibjP8fbSxAVAgL2NYLELYqr9NMA/osx1gbwUwAdLIBzfk+3nTDGfgDg9wBuhohtOx7AGyFKgXxcfu2LEAV6f8QYew9EhaZ/BrADIgN19KB0LAL1nVpuUpzd0pJ74WcAqNcxsUG8XVpyDLLyMQCHuJGhaDAPcctkhAFVDaFXcatWhQFRDbyy0PNm7Ma+JYfIUfxGZOKW0jwPdCVucmBv2WLHUNgIq7id8HCRwbFrl4hNOUkn2gr06ipdYtOYwRzGUEatBmR574pbVkPcQrlK5Syyvz0a5UDscgBJJyeUy3bjZjGHpdYiUuBYwBRm1gdYcZ8Tm7QUE9YDcSPFzTWmt251KpqqEzht83S8XhQ3XzKlU9wIpLy124JxKLMe7UddX5wuR6CrVHWTAsExbsqyT6GJW4hyIC2ksVzTELcYXKXjjWDFrdlUVsvphbgpyQmhiZuy/FKgq1Tdn2V1hpt4cNTmLsRNbb9HcUuFIW7ePqHsL9NDcgLQhbh1U9xmZoBcDrlGA3nUUasVOr9PGEHiFkVxuwZi9YIPQGSE3qX5C4NrATwLwFcBXALgTQCuAvAIzvmdAMA5LwM4GyLj9GsAvgHgXojM06jFEwYDRf4muIgb4Ku4pdPCPnHe+WCiErdCQVHcIAa8q396yZSXuAGdcW4exW287BA5bdBoQopblojbKad0fs87oulae4kbVUIGurpLe1XcFpg4b1LcMlxs74e4qTYtiqt0X2s0iFtaxnolvnKCInvMYB4TTWe91qDumBRxI7WVTyrEjfofkJji5utBVYmb9wER8I131A1NuhyBrlI/4qZT3ORsy1MpcKSw7Bf3q7YvRIybhQyWKiEUtx5cpSpx0yluvsStW99XSUhGXFjW6M1VGkpx0/3vwREbIyhuHuLGVoviVqu5rh/120ksrTrFLQpxezmAl8m/l/v8dQXn/COc80dyzqc55yXO+Qmc81dzzrd7vnc/5/y5nPNJzvkE5/xZ3u+MFAIUt3peMVLeyatLZqmfq7TmVdwA5ylbHSzdiJtHcZusOETOjqeT4/hb3wIOPNgjcdM9ASnELUfE7eEP7/xeWMUNcOKLaHkgH5SKHB/GO/G4Xd8L/J63DQtsGoAkbhVuuzvHZ3yIW0A5kEyvipu8h/usIdVx88udD6O4XXcd8OpXO2uaRiFuSt+dxRzGmuL/Ocx2CEwu0Il5E0wayljYuxfvf9My+Pf+B/jwh0M0Bsi0xTVNjSvlNlTipl4DH+LmvT0f+xjwuc/J3/SquE1PBz88+dRSVKFV3BoNUZ7n/PPFH5XqIeNFfX3fPuCNbwSuUUKiPefim7DlPUHNxG812khBhEK0kcKBBeU6+8W4RXSVZtFAqS3JYhjiNuWJcfMet5ur1I+4Kb9rlwNcpc0m8OMfA296k2stVBtdxv/maec4VjVYcWvesQ3nP4PTEEaqGiLGbf9+0Wc++1nxv0rcWiEUN09yAhCBuNG9oXIg1NY+iFtgeMoAENpVyjn/zwTbsfoRQNwaxWDFDRB96MEHxVcOO6zj484YN2iI28kni3Tn5z9flPTwxrgBnXFuHsVtsuYQOS9xe/e7gcfP10X5TIW4LaenMNFadPYZxVUqJ9xsQw6ohz7UKebJubgofsStUOgkbk99qni96qpOt7CC2QN34Z34/7Bt1/EQCdNdQMSNTwMQxC1tP/Wnkcn4PAPRhH3UUc42edMybTdxK5ed92EUt92N0VDcbIRR3C66CPjRj4AnPxl4wQv6UtyW6+L/OcziuOMCfuezcoKtqEhc8ok78P4vvAysvAz8zd84906HVgspLjKqc8U0cMIJwkV/9tnOdxgT2WuVinP/AxS3SgV461sFV3nNa9CVuHUMqU2bhKE4/nh9m30SVUIrbr/8pcIqFZAbmEjWv/+7IOi33OIo35TwlMkCdWAxLHGj66UQt3ZTzNytVAZoM9RaGsWNAgBplo/oKp1Rixf4uEotC5jo5irVLXmleGdsxS2Eq7S8t4IJhTl0KG5vfztw++3Ai18c7DrVgBIEAGB5rtlZ0kEhbtlGBTdeshsWDsHMNAdWFDLkxdgYsHEjsHcv8JOfiAfq177WdV6ZVkTFTb4N7SqdnRVlqFRXaVjixrnzm2JxVSpuBkEISE5oFsIRN/qK5uMO4lblBdcxAACf+Ywwlk9+svhfp7h5iZtHcZttdCpuNKCqVaXCtkLcFnKb3PuM4CqlzbmmNMzT08D114s/Gh0+xI3n8p0xOBs3AqeeKgzNb37TeUyJQ0qCaJasLk9bBHkR5rg47wlWtl2dTeaTmAAAp50G/PGPwKc+5WyTJ53mbuKm3Ap/8qQE6O+uj8bKCTbyeYck6ZIT6nXgLhlREYfiJhWzR507gxNOCPidz4mV6m71+YX4BlJlGei1b19wW+S+6sghl2eC1Pzxj50uymuuEXWj6D4EEDfqB3Z/9CFummdEgelp8eD2k5/o2xzRVcq5R3Gje/f0pwt158c/Bi65xCndQ6TpuuvEK31fcy6LvPcYt3ZDdJZUNo2rrgIe/TgNcQPcfTCiq9RF3HySE5oN7tjDHhW3KK7S1kqAq7Raddj20lJkV6lK7JpdFDcAOAbb8IMfAH+4pgZmWeI8ddJtKgXccIPoK/m884SixrhFJW5RFTcqN9MLcavXZfpwHkinR4a4hVbcGGNf6fIVzjl/RZ/tWb0IUNysUvzEraZT3CYmxJP/X+RqYRFj3Eqo4simE+vjVdyaTT1xW8nNAO28a5H5DnSJcSsQcRsbcyRHPyYhj0NGL5fziHznnisKql52maPAeZCpieONYwX33iuEvkDINhxoi/Oeza8gV5N1vJiPm5Tgjdsj4tZ2x7iFIm5Uwn1sDItVcfEGXsfNz1WayQgDvrKid5VWq8A9Mn9JdnQfL6YeHsWtJBW36aOD/KT+B7HLPUi8FP+pPZYWSqB9Pg/xwKCDKp8Dga5SGqp21mhU4gb4q23qfgJcpTMzYiwdOCBMg8stS8TgyU8Wbi8vvKtW3H+/2EEu10nc2iGJGy1D02za++JNeR8zGVFE+MgscLWmDdmsY5MiKm6HqLl31SrmNNU8mlULabTRRAZZVW2OkJxgE7dmd+LGqh5X6R6lHMjevc5vVlYiu0rV77dCELfj2DY861lPAPZ44hx1OPJI8Tc9LYycZx5Mh3GV9pOcEIK4+Rbg9TC1USFuURS3swGc5fl7LoCXQiQbnBVz21YXApITbOK2uNgXcSsUHOJU45rkBIL6lOrN5glQ3ADg4fxP9nvv4r9+xK2WnXT35G7EjSZ1NcbNku3U1QLzIW5NGR/S4Q0NE+cmn+DHUMa2u0PUZ5ZtmJOu0unMiq24tVJdiJsX8rwoK5HEBIVD+xsxun+zs+GMSBJ13PxYVjbbuQAmIO53KiUYCY0T2dF9vJh6KH13FnMO8QrMTPA/SLEqfn9fVrhEZ7DgfOhXrJqgEDff4rQ6eBYF9rpKCZaFDrJD0JiacPBRX9Xdb9rkeIi3bfO4Som4kWvUC2/gT7stqvkCHeey0FZsohdeX7Anzq3VkDO3Tt3tVgQ6ZIzbrIe46VylrbIMW2EFtxFKSHFL1wMUNxUrK5FdpS7iVutO3E7IKOoeEEzcCJN6AWOkFTfl+5w702nksRczQhM3zvkWzvnRnr8pAGdCLBD/3KQauSoQoLilSgXxT6PhGCoyRn26SrWThpqJRR2PjJhfcsIGUZNkCk4DOhS3BkdBR9zyHuLWLcaNynQoxK1orbjbrv7Gj7gxH+L2uMeJ9vz5z041ey/kCEyB477bQ/hKpVVZwDQAYDKlErcoMzd8iVsoxU3ePz4z0xnfp0MEV2locS4McVMnTcY6G+khblFdpVlYmFqQVWIDMxPg24/yFbG/69und/6mm+Imr2cDud6IW4DiZje1F8UtCCEUt82b3cTN5Sql4m5+sX+6dWKJ7MljMnmw+VZIxQ3ocJfaihvN3H7ETRdn2WOMm7aOmyRujVTBnXYbhbhlxeepEMkJeSskcSuXO70fURS3epesUgDHMtkXohA3cid7BIxMU1N2SoXqs8/noytuZB96IW5KMkOjIZ5Fslm9A2mQ6DvGjXP+awCfgKjztnYRQNwKReZ0bJqdKZhVdkjq02GJW6UdgriprlIK+FctEOeOzKMpw+GNcaOR1U5nhFuW2pgLobipxvW008Sr6iptKa5Sgp9aRMQt5UPc8nngLCkA/+IXnW0BXDEzD9wRosKMPHcqejvOyshBFmDNxK+4+dpZef/aU05igl/xcACRiBuV+uK8y6LLQa5SneIGdN4k+QDTa3ICAEztl6QgLHHzrlVaEfu7tvWozt9EUNx81/HUwUPc1Guu1lELUtz6Jm5dFDcS1FyKW6Ylls8CRK06HVTiRi5iInt2iQ9xsHk/V2mrJWZHtbqw8iDabgOs7bhKXa+0LiBB/dyno/nFuEVR3BqpiIqbLjnBx1XarijZl2iCL8gHf29WqQpVcSM7HUFxawcobq0ZoV5t5fEpbmmri+KmlH9CKhWf4iYn3bCK26i4SYH4khPuAXBqTPtanQhITsjn0ZW4+Sluap/ti7gdfrh4VSe/5WVxgFJJ+xStKm6cAyk5wNrZvKv3NgohiBtjjvE8VXaVxUUnZrvtr7j9/romrr7a2UzXrOGnuAHuVRR0UIjbnm1u4vaDHwC33aZsUIqHEnGbgKO4tdO9KW7M6iHGTc4gzYkQiQlAJOKmNC1YdYuquAGRFbf77gP++7+d9bUBdBC3SSJuPbpKc2VxLf+AU+2lzMpThwAA9t0xh0su0ezrppuAn/88NsUNcK656jUMo7gFKq06qJLqD+QC6p7dq4rb3Xc783lp/gFxzps26ZU1wF1D7WUvE++9ils2i1QKWITPk6paw42eSGi/Cwtofe2/sR77xb68xM3bLtqezTrvg1ylc3PAf/4nMo2Ki7jxatVVsoeuSbviQ9zUC6rLKlUXTM+Kz1M+xM1acjOK6s4D4o1U3NpIg3s9HDriFkFxa+sUNzkRNY4V3pItLXlfqdNGIW4LC672pLoRN8+TyrBcpQcVcWOMZSDi3Hb23ZrVjCDFrQCn01KHJYlNDoiortJyK4C4qa4F6m30BKw+OpLEs3mzvQSICpW4qcu7tDIa4qYqZX4VuqemhAH1KG4Mbf1C5fICvuftTTz96cok7iFuWsXjKU8Rr57FuW0olnjfvc77e+4BnvMc4BVqmo08MGcMyxCGcIyv2Iobj6qbe9hRpSKub6gYN5nt2BwPUQoEcC5OqNTZBImb9yZ1IW5vfSvwwhcCv/2tslH23TbEhD42J9do6tFVml2WZVWwGXdB1BO589S/BQBcc8kczj9fk1z6/OcDz3iGHQzer+IGOGOY6mLZTU1KcbvtNtHJX/pS1/EB/xi30oNyog4qkbJJZpc/8YmOgu8hbshmkckE1HHTFakjQvbRjyL70hfiXfiw+N9L3LwxdnS+KnELUtw++UngZS/DC2tfdrlKac1mmv+bTbkARUVR/qMobtSpxsfBc8HErbHoHre1BwRpJdcdAPCsZxJQkxNiJm61Q49GFQXMtg+IB/9eFDc1kQJAutklOcHT4WkeGHRywigRtyhZpVdoNucglqxaB+A1cTVqVSIgOcFF3AghFbfO5AS34qblDLoYN53iRhLPpk2O0VWgukrVYpOtdA+KGyAklGrVaYssB1JEVRTULBa1q1/zZhMLC6JM1uGHI5ziJmP2fNdNVJI2Fh4o26sA7Zd20RUap0w65YaYHIqo2Ipb5IAHUtyaTZRKTkH0UIqbzMqsbj4aQAgjQtehW3kLd9NCEbc2mF0I1f5xWFdpF+JG62bS/QBg99250uFYX9lh11Hrqrj5nFRmyVl54UX4Oo7CfXjBERmcik8gV5m3K6/QJQTnomGtluiMEIpbMYriRuRCo7ipxC3R5ARyecpXP8Vt2zbndhZ3dUlMAIAzzwS+9CVRy45ORkPcsllgqRGBuNE1++lPAQAPgZTDvTFuYRS3IOImCcWJrVtQgmI3JHFYt040lxJcSXFrpiO4SqtV2O6DRz8a7S+Lt76K27KbuLX3OsSNXOs8mwPqCvMol/tzlTb8iZuVKWIfNuBI7BCpx70QN09CXK+KW8AKXu5Orca4ETzEbdsqU9xCEzcIdc6bfrcM4PsAvsU5/1VcjVqVCKu4EXyImzfJyqu4ZaXqVWkFZJWqmWtEXIgshVDc2qk0Uu2WK6tUzSi1PIpbszQVjriR+5LaIBW3cTKSPk/MRJC2bXMTtxoCiJvORaFCIXSF1gp27BDLpNLXXfOJUjy00hDnWWhXbMUN3ifebqDr025jYqyNSiWFcjkkcZMT4fImMbt2NSJEyD3G0g+hiJu0nDUUUIJi8dQYt5CuUr9yIPR84XoSpvp1Y8dgfUVZEb2XGDfOkVkW+5vHDHbjENyE0/FXKVH7b0ouh+XqPisrzj4OCJdVE1lMrzbFjfrCgQOAZSGXc+7Vpk3CFJRK4mO6nfkdXRITAOHaJKmaBtA99wiJJA7FTX52KARpdhEz9Xve881mnTEX5CqVqv/RfJsrdozVqgA4ZmcZdu0S363XHSWuGSXG7be/Fe9PPRXYuBHtrDD4vsRtxS0FZeblA1ip5Fw670NSn4obD1Dcmqk85jEjiNv8fDzErZvi5snC6qscCP14bMxuzxQWu7tKx8ZGirhFySo9k3N+lufvf3HOX7PmSRsQG3EL6ypdsQJcpem007tIsiBXaQjFrbpOkDzVVeoibh7FzSqFyCpVQcZkaQm5LHeIm4/hVYkbAPui1Hk8xG0cKx1L/CwtCYEFgD1Z83QGFTjEjdrFchEVN8bsc5sZdxIUQrlKZUMX14UkbkTI1Z0HIIriVoWHOfQR4+Y9HnF7F3GjFSNKHvLQjbjpDrKyAmZZKKNkr0ICODGMU1w0wNV91IcehbgNK8atZ8WN+gLnwL59HYobYw4/o/PP3h/CVapiclJIlbWaUCeVEh+ZDFDGGDhj4uFSJVO6ZSE8dmETpKstbIxbLtdVcWs0YN+TY7DNFePGOEcODczMuM2KrbhlCmL/FJMXRNwo5laWLCJXKQXoe9FacTOKUrmTuLG8xlVK19FTvcAXKnHTKW7k5UgVMAc53ubmYiVuJsYtPMzKCXEhIDmhg7gx1iFhx0rcAEe9ongCNcaNggR8FLelGbE8j+oqbTQU4pZyE7fWWEhXKSGTEd/nHLlmGWOQbssuxI0S1GzFLYi4qYHYrgh3CQ9xo32ry9nYpEFV3CRxy7cU4uY1nGEgz22qJPaxe7ewETQZazM7ObeJ2/zsEBW3MMTNz1VKrrYAVynnGsXNssRvGMPuwhb3MbtdBN1JzTtqm4oDXExKNHG75jv1oUc+EEVOTqBq0Y2GfdJDU9wAYPfujqxSoJOfpe+LSNzU727b1uEqBRj4hDR6ajptkOLmhddV6lXso7pK5cx8JO7HJrjHSxFVzM66iRspbla64C55E7TkFS0BJr0PFJ+WthrKk6KDVtnNKHItGa6SL6FcFoe17Q+d/+Ki2Fc67XSSKIqbbvCT4pYuOGOmV8WN5iR5vaiGXSLELZNxz7Vrkbgxxk5mjH2PMbaPMWbJ1+8wxk5OqoGrBhprSuPXlVVK3/EM6NiJGxk7GiRTU6IDt9uOofRR3OYn3MTNq7g1UyLtvsXEyIlM3JQTzteXelbcqu0A4sZYcEalEuM2hnKH4gYo90JD3HKW4ypN5Xso6uMhbnT8zZsDyNPevaLdMzNYTIdMTlBj3AJrfLiaFdpV6kKQq5S2n3yy6B+1GtBoaOfTlRWnqTZxI1YzM4OFzHrny7OzXeqhKCelHoTi5eBW6/a35MoYmAPAQylukZITGHNumrQZOsUtTDmQyFmlOuK2Z4/LhtACEG5+xsHuiY+40T1vj2uMXlCMmxfdFDedq9TDDly1C+XMnEELWyHi/yhjs4BaJ3GrUeiIvBE64qYqbrt2idqSY2Oi1iSAVCaFBq1+oLFTvKJnFGUu+tDEhFMbDw9/uHiVfRO5nNPgCMQNATFudRaj4ia9TlTDLmxyQiRX6fi4+6YdJMkJoYkbY+xRAK6DWCHhJwD+Rb6eDeBaxtgjE2nhakGU5IRCoSfils+2kZdkYakeEOMGOEaM2lUqOUHcpByoitvYGOpZYSD3jW0RzfQhbo1UHmAMzazowe2J3olbtrrUEeN24IBsYhfiRoqb78QZ5C4NcJUehp0ooNpB3NrpLOrIow2GbKtuX59UIT7itmlTAHmSsmD10GPwxz+KTV2NSDYLrF8vCLsa6c+52J/nKd97bN7muO+KbeBt5Xv9Km6TjtJCXnXOHWFUFbZsg0obZ2awmFJUsm5uUkDvKp1zEhNULDaKaOcLyKGJEirxK26A73qlYV2lfScnqFl9iuK2bp1zKJWfbUofAFtaEvdtvUKauyFQcQPaYxqjp5YDIZAtGx9Hc72S/R53ORDv8oAAWuvFA20RVdtVmoaF1vYd4HbAvoe4qfdLJW5UU/LMM+1xkk4DdQTYKUncGmk3S19piz40OQnnWlEmL/VTWjLMb98qQipuvsTNu0avDjTuad6Rv2EhXaW1VNH1UBdKcVOJW7UqzpMxsW2NKG4XAfgLgC2c85dxzt/JOX8ZgKPl9ouSaOCqgUZxo/5SKiEWxS1lCdJWRw5Ly0Jl6ErcCKWSM8mRcqAqbgAqsobVg/ktADqzSm3iJrM561lxDD4xFS3GDbBPOFNxiBsfG0e7LezPaacJhQtwu0o5RzjFDYhE3GgJzdTe3bgHW/FdPN+ZSJUYN4ChlhLnOgXxhXSktEIJaVgmi+Lcbr9dbA4kbpLd/eiWY/DP/yzb7uNFcoHUVDXO7T//EzjuOODLX9Y1yz72r//6MzjqnGNxzZu+63wpiLhRP/B2TNp+zDGuzq6W9yPDratSb/fZ2VkspBSy1i2jVHdSyv68ilulAliTjrvUj7jx/ULVsJDtEBe7wmf1hIG5SlWGuGePPX7UikAqcbOXN9q6tbu6qYJ2cs89WsWtRcRNbY9OcaP+ctZZaGw83NmuxrABrqLgdCz7NYKrlLCCMbTGBblQidub8XGc8NQjcci1PxDnIYvodlXcfvlL8Z6StBCCuEnCVC6sc21eshTiRsfwErd8vjfFLYC41VgMrlLydkjFjVFB9S7JCZf8soinPjUkcaNrMjHh3A/6IVUtX8XELYrJOQPAiznny+pGzvkyY+wjAL4aa8tWGzTW9OUvF337/PMB/CKYuCnx+mKBaeb6WHydBg8K9njpGuNG0CluJKnLp+g/nf9e3P0fv8b9E48Rx/TJKiXi9rPT34c9V92GzMYjgGpvihtbXsJ0pgxYQKs0jkYNeOAB8ZUGssjDIW6Li6Lp6+ruzNo4iBtdz/wD9yCHJk7Bn3CXRnEDgHq6hFK7bBO3TLF3xY2IGz2Mn3aaU3rOj7jdjWOxebNYOcxVb84PmzcDt9zidpGRZEeM1d0s59h33gkAqP75budLcvLTukpf+Upxbf/qr9yfveY1YqfPfS7w2c+KbUqcm2WJv1zO7ZHUKW7zexWyFUZxC+EqpdULKhWgOTaD3L5dmME86vUjnN8oDeP794Ohh3VqgVCKWyIrJ+iMxe7dOOUUUS9X4ROuqh9HZnYBdQBHHNHx80CQOre4qCVulk5x0xG3v/5rMSje/nY0/uE9sC0b2ZnnPAe44QbgJS9xH19V3HxcpUHEbR4zWJ8TF7mIKiYmhEk5Db8HABx+4w8BwF62yrY3fsSNqnqffrr9cTfiJjJagWpxHWbKD9jbF5sKcXvDW0VRaLqB9ATQo+LGghQ3nu/fVUqgBL2QMW7LVgF33x2SuD30ocCrXgU86UmOwmZXk5bjr1gET6dRbNXQLDcA3SoUBwFx67YSd4iVug9iaAJPHv1o4Nvflv+oUrKGuOVy4qe1mtgVdQ4/4qZLvnIhSHGjSVBZsBwA9pz393jVf/w9XlsT8R1+rtI6E+d4xfGvwRevAj6fA8B6I25YWsJ0ZkUQt/yYy75UGm7iBgjuEgtx88S40VfYsjBEm7AHNy1yAKyTuHkUt0ypd8VtPC/2Tbb2vPOAz31OvPcjbttwDP72b4FPfCLksXQJCqS+eYvSeohbui6sFRUbFf8Iy6lV3M44A/jWtzrb8MQnij/AvWah/FmtplfcOojb7CwW9ikqWxjFTecqlSRskc0AXJSZ2bFD2Ona2CzGEKy4kavUirpOLTB8xU3Fnj3IZICvfMW9+cgjHUJ9SMqtzIeGep4aV2mrFJK4bdggakACqE8rbaD7unWrYmjR+XmPrtI5zGJGkrIiqiiVhEmh4rypttiXTdy6KW4UD6HImd2IW6ou3YTj6wAl0mGhoRC3v/kb8eddpi2fD79yiou4ab5rl2AqYA5ybomquHndqeQqbTQAcFiWj5orO3wVRVdFj8BpJpUCvvAF538dcWMM7fEppBfnkCovQ5Sj9UAlbvvdPx8morhKrwPwLsaYS49mjI0BeDuAa+Ns2KpDN2vaxVWqfkW1Y37EjRDKVZrJCAulukpbLecRXz750PHnK2L/vsRNxpa5bGxUV6myOOt0RqhfVmHcFSS60nBcpXQ627bBcR9Y8SludFwibjk0UXtQGkIqOJsSxr+eEec6jQXRvj4Ut4mCQyZmZsTDeDdX6TYcEy0gXlcShEhcV+ImCC6VPgAQ7CoNA09HD3KV2v2BJqWZGbd7M4ripolxoyQPWn6zUgFqRR9XqTIxphYXADhkPhL6jHHrOzlBhU+ZmEwGOErkKOEQpsTCRoEPcbN5dEmz7FWXJ9LatCbGzQ99ukrnMQNLKm4F1FAqiWvuWscUXYgbDdSlJdF/xsacDBB4iJsmQj7VEDe7OeGQilYqg4WyVOxVvuT1svSYnEBL8bkg21bliqt0bq63Ja8IpZJ9A3JodE1OqKKIWi0kcfNCNZjKXEWZzenykvcXAhrFzS9XZpCIQtzeBeAkAPcxxv6LMfYRxthXAWwH8DAA706gfasH3SKGuyQnqF+JnbhRT5vxDDjOBYGSI4COf6DsJm7eGDcqfOtL3KIobouLmEgJctDMe4hbzSFuj5SpL9u2wb4oPStunPsSt9SKc/FbD7hVqbZ0izXSbsUtVehdcVOJ21OeIi5d7MStD8UtIxW3drWTuGldpWHgQ9zomIGu0tlZLPJJe23Rfl2lK1kxJo4WC1GgUgHKebFNuErR8RsVrajr1AK+xE1t3sBcpQFlYkgYsktjxKS4OcQtpOKmoDKhtCFM2SF5zK7ErcG1ipuVdVylY2PCpHiJWzsXgrgRjjnGFSfYTXHLNMXNtqacft7MjelzAnI5d1+J4ipVDG8Qcau0+8gq9cYgKgJGHnW02/rKTSpxIxEBiIe4YcqJtdZiRF2lUQrwXg8R53YFgPMAvAnA0wBcCeAMzvkNibRwtSAGxW3K8wBqWaIjp1LS7miIm6/IoT4WUE9TFTdFwfA2cf9KsOJW66a4RXSVTqYFiWrk3MRtWSFuj3qU2Hb3Xdy+ZqS4Rc4qrdddFsJF3NQnL48qRfFMjaxbcQutNKnwuEoBJ0RFS9yWloB9+9DIFPEgDhmY4pZpSmulELdWQ5YDYUpfT6XCKa1Ab4qbQtyarRQWMC3+79NVupztVNxWso7ipisArCIOxU3HURLJKo2guAEOcdvI+1TcymWtq7RZ6IG4TUZQ3HQxbj6uUlqQuZ3JYh9EbN48ZmBlHOLmdZUSWkHEjeKrCJ5yKt2Jm7jZ7WlHcaunS/58SX1g79VV2gombrbitnu32K+aTR4ENVkCcM2DY+mAODeFuAFOlEscxI0d7MQNADjnN3POn8c538Q5z8rXv+ac/zmpBq4KUGS1Kpd4EcFVurAgRCH6yFaUaMUAOKnkvp1XHcDU01TFzRPfph5//7JUslAHwDuJWztm4sYEcatnx1wT5VLVIW4Uz7v9bktcnFQKlYYwzJEVN8/6pWMQa5VaFpBRiFtqr5ywpDVpSVdpMxMfcRvLhSRuUm07MLUVHKn+FLdazQmo6kLcspK4MWUtxOqKtK6FYucPw8BL3NIiPJaMtqq4dWSVzsyg1VKyQft0lZbz4veq4rac8VHcvDFEAFqZ+BQ3FYmunACIe5BKievg46OiBIUN7WQUt4ZC3OyqNF2IW3lcE+PmhwiuUorlbBdKuBvixOcwi6aHuBWyLczIcc+lckarH2iTEwC3gfKs9dqNuGVb4mbzdQ5xq6VCEjfVVRohOSEVVnEjezI5GT7b2MfzNJ7VEDfqFB7BIk7ilpLELd9Y0qt9q5G4McZSjLHzGWMPC/jOyYyx8+Nv2ipCmKCTCMTtqU8VYRC33CL+t/ucpwMH1o/SETc1OSGAuC0up1CXGTY5NDpcpVWpuLlKLvVYDgRLSxiXxK2RHXfZF4rjUInbzm2O79izhF0nQhK3CXn8Wk3UlSNkDoRU3CIX8kIHcTvxRBEQrnykJW57J8QTe1+Km1rHqwtxy1mdxK22LKxrejwG4vaZz+D6Bw/HVmwLrbhZllJ/LUo5EHVWkCSsnOt0lVLcW2ByggTvR3GTM1BUxS2W5IT1651YK7U/KCBxaL0Vb4wbNYOI2/z2RRx6qKhQQ9/77o9y+OY3O3e5Mt6j4taFuNEDSrtQwjaIE5/HTAdxm2ELAIB6aRoPHiqMEvcqbn41DIHIiltOErfUeoe4VRBA3FRPS4+KWypAcSu38ljCJNophTWFcZPqvqvMg6W0pySIZQGPehTwohd1KG5EoOJU3HyL8K5G4gbgRQC+CdCaRFosA/gmY+zvYmvVakMYS1oqOYTGh7g9/enOONu/H7j8cvE+duLm4ypVS5KQMSmg1qG4VVvxKm7jsnvVMm5X6YP7HXJDlQhW9jtsrW/iJn9IxK1edxO3woI7DoyIWzMnjON6uUB0P4rbI05qYutW4E1vcj5yVXMnSNJ1oHC42vRw8CpuAYuieolbnoibsgh2rSzcTZkJpRFRipmpxO2738Xm1i48EjcFE7edO8Xr5s2wLOCHeBaah2+B7UMPgo4JS7Jy2rnrcdJJYs3vdFp8ZV8rAnHLxJecoCKRGDd1P7Oz+vp+Cp7wBOFCTkxxo4Lf91ewe7dcDUoalflKDp/8ZOcul0sRYtxCrJxAX8k0ZPZ0voTv4znYhUNwBc5GM+2EjZRKjpu0VpzBNY99E7bjKNy39Syxk6c9TaQnn3GGux1hiZuXXDWbSPMWLKSRWecEs1V4D4pbFOLW1hA3O664AIChUZp2PouBuI1lPIrbnj3ATTeJbGFpr5MgbmotN039ZUfeK5XUt0NHGOL2H5zze/2+wDnfDuDLAF7i952DHmGCTpSCf37JCa96lfj3rW8V/993n3j1I26BfEEX49bFVZrJiJ9x7hxDR9wqMbtKx7gcmGk3cXtgrwzgzzftuNtcy0nt6Zm40QiUExGtlVqrAbmaQ9yKy3LCIlcpEzOOJRW3rbOSuPWhuG2cbmDbNnHvPR+5OZW8X0uZWdephcKGDeKhYf9+cS5qQHo34tYW1zvddG5MvSLX2JyMQXGTq0HkUde6Sms1uNZoxbHHwrKAi/Au7Prtvc6SXkHwxrhxbhO39312E/7yF9F9qQs/WNO4SptN95qaEu1eXKU0NrvFuPlkWPacVaoeaGbGUdB8EhTWrQO2/WkFuWZFHMwbXN4NmYw4ZrvtPCypyQmSFLVWpF2rwT7nBnK44YZOrlxOT6JKMb69KG4+MW65prABrVwJP8BzcBh24TqcgXrKrbhNt0WDasVZ/PHEv8XR2I7lzceJnbz0paKmzIknutsRNsbNS65oxQAUkJt27Otyu4cYtyiu0gDFjZZabIwrIQr9EDfZiYspD3Ej425ZwB13AEgmxo3aM4VFPXFbpYrbaQAuC7GfywGc3vVbByvCPgJTp1U6rG5AkT29/37xmqji5okRoiaqxM3rKq1YbuKWzcJNFCO6SktE3FLuGLfFqtudOD4OlOCMHlfGrQ7dFDcibtxxlebrDnGbWPEobky0x8rJ60lxYn0obrr4oiDiRqsGRCJu6bRwjXEu1iyNoLgVJHHLWDU75KRRFtY1P90ncduzR6zfCMclD2gUt337BGmamrJdpUAEkc97UvPz4v3kpGvM0jDZUdYobspaqa4D93Lvo8a4eQZ6LMkJIRQ312ebN0dbNYFA57roqNO2qzQliZssNVOtwkXcOHe8DoSmxbAHst0JuEqtvHtWbqTdxG2qLexmpTDjJ4h2oqAQTU8R40xGnCuATjtFJThQRH5GIW5WBMWtB1dpWqe4ybYsN8W5WBNKiEISrlL1WsiYIS9xC5sLBaB3xW2VErcJAJ0RuZ2Yl99dm+iFuAUEjZI99VPc6Aktlhg3T4yQjrh1KG4xu0pLLUGcKim34taEm7iNjbmJW9+u0g0bAMZQ4hWk0EKtBhTqTjGtyZo7xs0i4kbGnfY7COImifaCXKczEnED3HFuERQ3Im4F1GyD2aiKya80W+j8YRjQvafVG+Cu49RB3NTCpYz1TtzohyoZUUBd+L4ljeJGDzrr1rlqMPBsMskJiZcDCaG4uT6L6iYlaIibrbilRCduV2UIhkLcaOxf5pENGg1gN2S7o7hKuxA3iuW0H8okiCyUUBXLW1pOUouded2tH5KB2rKl48thFLcqiijMOu1atEr+5dPUB+gekxPCELfWVAyKm+J5KnmzStWJQBqeJJITDlbith/AUSH2cyRcdZ3XGML6LkISN7KnHcRNqV4N9EDcxsdFby+XnckrhOLmJW4rVrzErdAWI7HM3MSNnkRLWb3iFpq4eaNOibhNTtrtLqEiiFvTUdxmG+6sUiJuLc9TeT+u0qiK2zx6UNwAd5xbWMWt1ZKZxaIf0FN+oyrcTaV1CnPoJcZNaQe5SptNd+5IvY6OivORiZvXVepDRqgL3z2nUdzUBx1l8uExKG5RkhM4H1yMm+uzqIkJhBCKGyNlyaO4AYK42RmnEJekJ8WtSzkQm7hl3WN72RIXeSJTBWPARFPW/8s5ym9oxc3jJgVEs3wVN4W4Fdc57Vppl+zbEks5EKo7JZHhAa7SpiTbKnELs8A8wUdxI1epbY40mQIDj3GjiS+dBnK5VUXcfotwsWsvld9dm0hIcaOOEpurlDGHqNEalT7EjZ4C1QnVz1Way8FtHCO6SguWmKnLzJ1VSk/dxUyfxM0vxm1szL5OYyijVgOKCnFb19orDJqtuImJoO0lbgNU3OZ4n4rbnj3hFTdl5WWVuFk1MWNNbOzTVaqAXKXeihsuxU2WUujbVdpFcbt3XkxE01hEsyYnejUmVGk/G4SrVPkCdeVcLqKriH5EmJ0duuJGS+elGv7EbccO4Pbbnd1FIm4RFDeK5Wx6iNuSVJjGM2IsjDdFB13J9OAq9ZQCATzEzUOuWit6xa2Ckp2rE0tygsc+dihunDuKW0Psj0/H6yr1jXFTkEiMmySdWuJG9k8uSr+aiNsnAZzDGPsEY6yDJjDGsoyxTwI4G0DYlRMPPoQNOumSnEDw2sieiJsuOQFwXKM0GYZwlZ67+6s449tvtEnTSjMPzj3EjTHnOFEUt/l5jNfFYvcrfEzrKtUStzDJCWocIediofPPfc6RdMbHbUM3jhXU60DJWpLHziCDFnDggEPcMADFbW4Ob/j9i/FYXK1V3A7wPhW33btDK27NRceS5VG3iVurX+KmeUKnBwTVIwloXKVwjHtow+11lXZR3NpIY14W+M2sLIiNaha2Ovn0cu9DKG6qq/Tfv+Rc254TEwD3PZqZGZriZmeVSsWNEl+qVdjn3EDObu4FFwBnnw1cf73HVdprjNtf/gI897nAnXeCMdGPyK40Pa7Sxbro42Mp0caxupMkFJq40WD1Udz8XKW1BXGzG6kCUuNu4kbCYcdQ6iU5QX7G5ZNAh+JmydqZmYxdO5PP9ugq9VmzuySv78CJW5Di5mFqq4a4cc6vAfBmAP8IYCdj7OuMsQvl39cB7ATwOgBv5pxfm3xzRxRhFbeHPlS8Hn98IHFbt87dKWNT3ABHYdu3z/2/hI64vfqB9+HUqz6Js3AlAFHHzbKcsWW374QTxLqncu3TQORywpBxjhRvYwcOx3KrpCVuhXQMMW733AN8/vPAe9/rS9xqlTZKLZE5eC9EYa/Gjj32ZNKUrtJ2MUHF7QtfwJPu+zpej09ridv+do+K25Yt4vXPfw5U3FTvcm3OsWQuxU2unDC9WbnwvbhKFZDiRsLWoYc67aDM09hcpV0UNwA4IBecLqzICBA/xS2XnOLWboj2XvjRrLcWaXQ3qfdAs7Nd67gBSERxo2aQjclDn1X6rGeJ7911F3DllcBXviKuyx/xCPEBFd/zAylcxxzjdpV+/evA978PfOtb1CSHuGXcY3uuKolbWtj4kiRui5lZ2+x3HYvHyaxTb5kQBLtKa/PiujTTRVfnrMB5r5p50VBPjFsYVykRtzGxsw7iphhae03ndTFllcqLV2DhXaWxEjd5vcaxEkjcWi1NQfwhoqvYzjn/JICzANwA4NkA3in/ng3gRgBncc7/X4JtHH2EJW7vfS+wfTtwzjnuAaUGcUC4QJR1iJMhboQQitu0JRSx9RCvdYjitx3r5V15JXDnneF79o03Ar/7Hb7wkt/h4bgZtUZKS9zy6RiySoms7d8PPPAA7B0qA9daLCMFjmWM4wEcBgCo3LPbiXGDJABxEDdtsTbY0dglVJyPOLcVn/1Wj8Tt7LPF6y9+Eai4Ubcpl4H6XNneTsStVoN9PcbXKY2Icg3GxjoyFL3E7ZBDxGutBvB+Y9y8JLmL4gY47rixFfldH+IWh+LWzVW60sjavKfn+DagMzlBzTL3Q4KKG7lK7fqQHlfp3/2dEMfe/37x/eVl8fEP8Gz8+1vvAd74xuBjv+hFwL33Aq94hVtxo7bIV5W4NXyIW4mJC1+siWu1yGb8EvM78dGPinY89rEdHwUpbnWpuDWzRdcNJ+JGIcsu9LJyAn0mf5tFd+KWXheDq1TxPHW4SjXtjS05wVukGML+BBE3j9d06Ahl+jjnvwbwa8ZYCpALuQEHOOetgJ+tHYT1X6RSwFFHOe+zWWGcG42OmXjzZuDBB8V7v6zSwLmyWBQ9jHO9q5TQRXGbxBJKvOz6Th15LC+L5mQyymkrClYoTE8Dj3sc9l0JLMjTIw5bLAJNWQ4kz2KIcVNH5c03i1dPjFtrXjDRJUzaE3f9/j2AjPkgItkuJOQqXVkBfitCRYuoOh9VKqKPFItYahZdpxYaJ54oShHs2OHe7kPcVlaAxkKn4rZ3L5CBsK6pXMbpw1GIG9U0pAkUjquUqm6sWyd2mW8ug+3dK074sMPAuRNH3bOrNITiRu64yYr8ro+rNJVPPjmhiSz27BHDpS/i5lXcVOLGuX5Giktxoxp4iuKmFvkGOolbsQicdJJQ3ADRJ8UlYahsOhroNoEy5ijNquJG/U4+eQYRtwMVD3GryCSh1KyuFKYe6bTTDs1HfoobETcrUxTzRaEA1Go2cdPypV6SE+i4ktBk0HL3Bx1x23CQKG7KIvdBxG2U3KRA9LVK25zzvfLPkDZCr9bUL+sRbjvZU1YpY86ThZ/ilst19EQvcTsED3bsuo687WmNskydH9RQNLIhW7Y4RCkXN3H7s1xa1+MqbS84xG0uJybu5gOKq5Rn7WO7EJer9Kqr7P9dxE0hDV1VRj8w5iyGqsJD3KjLlMvuGLcialha5Ni92yFuyGSU0vMRXKVAh7GnciDqZFgoAFshk2i2bgVSKTu2J52O0O/6UNwmq8GKW1KuUssCmOUQN+KasSpuVE+yXnclorgQl+JGUBQ3VdUHRBO4Ug6EzlF9mPApbdcdjDnZHHQvNcStni7Z2wDgQFm0sQhxffIVMRbnMatbfCYygpITGovimG1aUotircISt4jJCayQR1NqObyh2AUlJobeZjbGm5xAxC1MjBudSizETXakborbqiZuBj7oNfAkREkQ9WuRXKWAM4j9iNvMTMfs580q9SNu6vrC/YKIV63mXMqjjnKIG0n3fcW4qaOSHtk8rlIy5EuYREUuZs13dbpKuddVGpfiphStchE3hTT0TNwAN3Fbv77z+HBPktaS25KV5xvYswdIQ7InlbhFJa+ejuNNTpiZEff1GPTpJlW/HCHGjRS36Vqw4sbyySQnNBscTJ4sKW5AjMkJZAeIdejcpZzHp7gpbbBdpS7FjQs1teoobnSOLhW40XkqoUEHpnMNIG7U7L3LwqYXuDA2ubIYi3N8JrziFoAgV2lzSdzsVl7OK2GIm99apSFcpSyft22uVdUQt0LByWreFK/iRu7yIOJG8x7BEDeD/tCv4tYlszRW4qY+HmosTljFjeKZkyJuquJGxE1V3NrFEppNwTt9jbgfcSN4FDeVuNWm5aS+x1HcGkkrbpdear/VErd+FDcAeMpTHKJOFdwDiJuquAFAZb7uVtxkfSPX+YQFdRwlxkSNcSPF7Vj0mZigto3qVVHnVQNJoVfcphvBilscrlLdpWvV6WEhDYDZXDOW5IR83tmBWpTbCwpqVEIKIkMzVuw6bq00rFQWKXB7jLdqblcp4I677FlxA5xOQ+eqiXEj4kbHnKvJ0AQubHx2mZKEElDcPPOAJZcC41GIWy8rJyhGhWxufaXZ8TlXXKW5zTETNz9XqRyjzXQe3ENXjKvUoD8kQNxUMeCwyl3Au94lgvkRo+IWgrgdil0AgLlxZ6mWuImbK5NRo7ileSdxo0KZhUKAyywCcRtDGWzZIW6t9WLiTu/frZQoEO1hYwkobvfdZ6/JBziFjwG4lifri7jNzjqLsh9+uHj1GHSVuLWW3destlDDnj0+rtJeidsJJwBwiFtu+514PT6FdVOWS3F7cOxYfOYzTnN7Im7Npijv0mqJ2dZzEdVhslgQA3AdFWH2I26FeBS3Z+JHOA8/dy6jEt8GoENx68tVqirt6vrFXvSrtgGdM10u58oTUBdxB4C2hriRiBSb4hbgKq1J4kbHJPdcvl0FqlWkm3XUkMcDc0VYlvheTyRSQqe43XEH8B//AVjL4mbzQo/ELZ+PlpyQz9tFxhvlTsWN5wvgXFyvVBzJCUr7Cn6K20knifakOiXmuBU3csTYMMTtIEev/ouQittfXfNe4KKLRMYmgH3YACCEwSD2p+5MfTzUPCr6Ebe7Nz8R23EUmsjgANYlrrgddRSQKQgjQosej487C8JTEHHgJe9G3BQlYRwrYCsOcWObxZNedn6vbU2abWH4O4hbHIobuUklsdIpbnymT+IGAM94hnil0jQBMW464rZrl4+rNGqMG9X7OO00AI6r9IIb3oNP4Z9w7P2/RD4PHAWxfMgXfnE0Xv964Fe/6uFwqqs0gIyoRrk2JT5f15LfV8vnKJ0+Xejh3hMjqVQAzpFHHd/BX+M7+GtMTYrsnHbdTdxiiXGjBzV1vcygzFK5jmzP8W1AoOJmWZ2ZpXTeOsWtrxg3wJnpKQNGR9yYnrjlWlVl9ZIZ7N4jiG8/ahs1yau4vfWtwMtfDtz2e8/NlvfBjr/s5ioNq7gpMWxBxK2dlSS7IL6LDRvEP1EuwvS0OJ/160XMocdV2rFW6SMeAaTTWCps7NjVWlbcIlpbAy0uuAA47DDgiU+M9ruQittYQz4hvvKV2HH0k/Cbd4vjdDVen/0s8PvfAw9/uLOti+JGpT28rtLl3Cxegp9hE/ZgPza4khP6hbdOLu33376YBV4MsKYT48aoCHBbjKBAmxFGcVNi3FLLwnWyhEnkN04DADKVpQ5XaaLE7YILgBtu0CYntKfEyWYyPVTNJ7z97aK+1dlnAx/5SKCrlJc7idv9tZgUtwsvFGVxJieB//xPW3Er1sW5TpYfRKEArJMlaO5dEQ8rRGB6dpUGBNurRrm5bjOwB9jQ2i0m+AMHREfdtMlVRLQnxS2dFpNXVag4RauCPBrIo4ENk3XsP1DoIG6xKG5HHgn8+MfuCv5BrlIqw7J1aw8HkwiIcWs2gRp3Z5ZyRXHTxbiFLnqrAx2Y0pJ1xC3VnbjNYRb7ZXm/fuLbAH1yAlUT2H2vuNmpkrwQn/0s7v7O73HzO4U9D+Uq9YYJ6AyHRnFrVjqJW0slbgDwk5+IJ7wogkU+D/zsZ45t7hbjdsQRwE9/io/9fxsgy4jaGGSMW98PzDHDELc4cPbZTp2sKAipuOVa0lq/+MWoHfIk8HeLf7sar61bO41uSFcpyffjUuFazszidjwEt+MhAJCY4kbErVAAHvU4N7kZHwe4NLBLVkzETVXcpCGvpCdRWC9OLFftJG6pMc+s2a+r1LKAyy8X/z/rWcB73qNV3JoTPa6a4G3r3/2d0+cCiFvbQ9yayzVse8AT49YrcTvkEOCFLwR++UsAjuKWkVX0S9U5FApivVAAeLAmbjSJJT27SkMqbti0CbgV2Mj3OAWAZWZr34obIC50tQqsrKDYcq7zoeNLuA2FZFylAHD++e7/g5ITPPXzekIAcbMsoMrF4N88VcPORYDXO12lFA6hJr/2RdwIS0sA58hmmU3cqinB2Ii40QNsxqq5FDdCHMTN6yql+pgUV2fbm61bwZ6/VVRRRUhXKWNizDca4k9HslTilsoBLb3i1spIkk27ePSjo5yqgyc/2d1GADnuQ9wKBeDcc3HHpzp30zNxUweP7BNZWKiW23A5IRXi5lolaARgXKXDREjFLWc51lrtcz11ooiuUsJSxm2hknaVFgroUKXUGLfFppgQAg1nxBi3lHSVVjKTyG+QxK2+ZFuTuiRumULGffH7VdxuvFEwkmOPBR4iiHEBdVgNqQwQcRvvsfhut+MrBaDVeCJ4iFt1vob77ovJVUpQnngtC8i0RAcoVOeFFwaCUOysiBtNxC2S0VYlnpCK29j6IhYxiRyaaN9wk9hISpXS6TPFPogbAKys2Gv1AsCmouiDVI7Bz1UaW/X2MIpbP8RNdd0B7uSEBlC2xIlsPVQqbvXOciCMOZeL+GVfrlIC50C57FLcqh5XaQsZNJFBijtJLXNwjE4SrlIibqRCpsYdo68eT7u2u9dVqr76uUsV4tZK+btKLam4xao6eYhbR3KC7Oi6pkfyOlCjczm3rWIMraz4rLHiOYiGuI2K4maI2zARQNxmZhQxo5UQcdOwnokJ8eolbvSUSbaPiJvWeESELjkhn0cgcZuv96i4qaO9VHK5StNlYTGr2UmMzebRQBbZdsNedaHRkk9nWegNZBSo50Zu0nPPFbXK0mJ/vCb7hZytGuMxKG6EVMq5Fi2nJKMa4+Z1le7ZIVSxfCoGVylBySptNoFMS5xzoTKHYr6NaSwAAHYsTwNwaqf2rLgRA+qiuE1MAHtlLBH/7e/ERiIw/SYnAC6GnLecqOjNJT1x27PHtdZ374qbF0HJCUTcNIujh0aA4rZvH1CVdmbdmIyjksSNZ3KuoWpnec7Zu4kOXadZWkI268TOUuC/OrzJXUorrqjELUnFjWrHpRXiNjXl5JVoH5ozmQ43ZNcEBQ1xc7lK5edWxuMqjQNhFDfom96T4qYLUsuKMWxVPMSNshUUV6lR3AwCBxRjztySbcZI3HI5xyppWE8uJwt0e4gbLW5OxC7pOm46xU2t4zZX61FxO/548VosipGvuEozVWExa7lJTE4xLEGe3AG51FdblifJwm0A+lXcqAyIrLNm5eRNJnlFzlb1sRiJm7cNErQSBudAa8VN3LJSDculY3CVEmQnJlepfYyVOcymF5ECR6M0heWKsNI9uUpVkhoQcK/e0vFxYG9afudqf+KWLfWpuJXLyDcdxW1DXk/cmk3B3/t2lXrhl5zAeccasT0hIDlh507HzoxnZckJSdy8hDgWxS2AuHkVN9Xj6CVuqqu0X8Utk3ErbpblmCoibtkJ52an087Dsq/tpcb3oLi1U/513OwM4ASJW0dygvxc1/S4iBuXn1llzzxsXKUGWnR5EiLilrYcNqMOmp47ERlrH9YzOdlJ3Pa33cSNJpBhuUoPVHskbiefDHtnyusYysjXxKRZz0+KFZkgLaSMRE6EuN19N3DddcKCn3UWAKAliRuryYssZ6taUcwSsRlOn4Xu6dK0PcSNXDc5neIWk6s01xbHyKzM2/Ft1aJzk3tS3ACnnbROrUZxU1WW8XHgQFqWhLlHEJideUlgSiW0pOlMF3schIqrNNdwiNtsRvRBddUEwp49CRI3r+I2Nycu9vi4yB7sFQGK2z33KLG0GTnw5QzpLWxM94aIW0/PCbqZ3kPcyjxAcZOkP27FTU1OoJXBMhmVuLkHPB0zNHEjO3jJJcAtt3R+XyVu6QDilkqOuGWHqbjlfBS3EU5OMMRtmFAZiwZUMSGjKG6pVOeDVGSQIabq+R7MzHQSt71NQRqIuBHiziqlAdKNuO0r9+gqPeUUd8PlCa3DARSaDnGbmoKjuMlJrdFWXKWazKRIoN9fe61wVT72sXabbOJWdytuRGCSVNwAZdKSrgIufTNE3DIshpUTCEpWmWUBeVmhPrM0ZxO3laxzk3smbipbAEIpbgey7u887XXHCjcWY3abVDdWJKiu0mYncfMqboDw8sZO3PxcpWp8Wz9r2mmIG7V9717HzoylpQ2UfdFLiImLkFc/blepl7i5SsOQLbz3XgDxx7iprlLq34ceCqwriZtdnHXfbDLfvscmSc675OGrXw2ceqoT50JQXaVE3FQSYxM3T3JCHCDi1g4mbn0rbtSBvBMY0J24jY2NnOJmskqHCRpgymLbKt75TpHBn/2S21oXi6Ij99yJPvhB4MorgUc+UvvxRRcB89/OA992tu1puhU3QpJZpTpXKaSB3bvSo+L2qEcB7363Q+COPRZWYQzH1e7Gvqa4D43CJA4/HLjD4yqttWJU3M45B/jf/1vMxpkM8OY32x+1bcVNGi85qVbyMSYnAF0VNyavWa04g2JlziZuaR5jjJtHcSPillqYw/RhQl5ZTDs3uSdXqdq+HTvEAKI6dgpcyQljwHxuE2ToEyykcUf9KOzeLfr8p7f8Kyp37cT/2tCj5KIobtlG1d48nZIBTs1gxS325ASvqzSO+DZAS9zOOw945SsFf1h/UwF4wCFurBnsKiXE6SotZFt2AVjKctW6Sq+/HgDwx9QjAZk3FKviVq/b8W2Tk8BDx8rAbcDDHuNO8PjAB0RYrG9S54c+BPz2t04f/9CHgK9+VayFvLAgin2rq4YoT8s8QHFrJKm4taMnJ0QibiefDLzlLe6MVglWEG1oV7u7SkdFcTPEbZgISsWHEGEe+5g28FlVhhLzzuJi73Mlnv508eeDZz8bwLqCm7g1RFu9BjRR4kYjs90G2m1kMin7yfi+fT0qbmNjwpAp31k67UzMXn0JNnBRnK5ZnMSmTcDv05NAC3a0sK+rtJdZZHwc+PzntR/RotKpelVIDIuLAGOoZKdcp9U3uhC3VF1cs8b4rJ64xRHjpiQn1OuOqscW5jHd7iy/0DdxA4Tx1sw+XsXt3ryjuN2PI2Eha0+sF8/8Pa4HcEGvD09KjFu27rikJ+DvKt29e4DJCXHEtwFa4jY1BXzxi/L/FxWAbzjELWWJGTJTCiZucSpuJSbYsJUvoWkJdVHrKm21gOlp/Ll+OqQXM/bkBJW4TS6Kp4b0lPvkn/Y08eeL8893l3159rPF31OfKsoOee+16irNiAvbqnUSt3oquazSbopb367SVAr4l3/RfyTd8rRqhw2Nq3RUFDfjKh0mglLxCWoHli4LMtqJdiJlYlvBGBar4mBJKG6+WaXqQqTNJtBsIgsLFtK4Z4fYHllx08Q4lB93ruv/ZmkKjAF83H1y9ZaPq7RnBq1HWy5xk25UHaYyNYW6JSzVoIhbpiGuWZOyWaUqwdrxlwPJo47ychs5uWYlm5/HlCWUzn1WDDFu6g/OPVf7FS9xWyo6cXDbIAgMTax9x7woilum7rhKJ9ryBBXFjZqeSIzb9LR4XVx0ZRfHUgoE6L6ur7QzpZR8KGhJ4uYps+KtKhJLORAAWFzEGBP93MqW7KGgJW4AcM45ohyQRNzlQFTiRtnsPa8T64WfUKB0Zq4jbvLzOpJT3CibPDHFLQCkuKVbdbcpNMkJBlpEJW4SgyZuc5i1+3ASxC2bFRzNssTckUop86xKLmQjKihhx05BYkMTNyW124v6mee5/m+VxEmmZ90np3WVMhafBZGgRaVT9Wp865Tq0CXGLWfJCW1SXOQCalg3y8GsGBU3xVVaXVAeqznHupXtAIDdDecmE3HpS3E77zztV1QyND4OLJUcxe1uCJchTax9G3Ilxi1Td8qBjLU6FbfDDhOfJRLjlk4L8sa5O2RjwMStmBL3PtMWF9Yvxs1vN6Ggdhoas0tLNnFr5kq24uNL3M47zzX+4k5OSJS4+c033YibnINqLEFXacujuHmMXd+KWxD8Vk8wyQkGWnRxlQLQWmoaOIMibvOYSZS4MeY2Bq6F432IG/GwwCfedFr8ce7MuBriljrxeNyHI+W+i/bTfn59COKWwE2gRaXTzaprcfNBETeaJ8gt3ZpyiNtxx8jgHsYEw44xOaG24E7S2bAg3HUPVDtvcs/E7bDD7CLHXqRSTj8cGwNWxvwVt76Jm6q4VR3FrdTsJG5Hiq6ZjOIG6N2lccW4UfV+grefyPtfZDUAHDkuLmxuzP292IkbZX4tLdn9XFXc1OvrStQ691zX+Is7OUFL3LxyY6/wc4urhiWIuPEEiJvc2TAVtzDEzShuBg7CKG4aSz0QxU2xTnOYtZf3U4kbY/HZFC9xs6EhbmU4B+36xEvnQddYQ9wKRYZLIVSYJUzaPxk7xE3cqpaGuMXsJgUU4taoOe2emRkYcZssif9pQmvPOMTt2KMVN6m6j15dpek02iyFNNqwFsuuj2bmBXnYVeu8yT27Ss87LzBLkm7r+DhQmRiAq7RcRlohbvmGP3FTFbdYJ09vgkK5LBbMzGaBww/vb9+MORc1ne689vJE8qjZS6lZSCNfcs/KsSQnqDP9EUeIV4W4NRTils06x7AVtxNOAI46yr7nntXPeoKfq3R63BKdjLH4WLpfIoqquMnxTGvlqlWf7XVlE1Dc0oriZllAuyqOyfMxxbiFaEPHQvMjnJxgiNsw0aPiRm8T4AwOPIobQTWgk5P9VQrwOVxX4kbVzXO5EDaNRhpZZA1xy+eByyDinpYxYf9k8vAQMW5JsGd6Cm1Wcc9Nom/cdWBAxO0738Gn/mMCf4VL7AkNCnE77mglo1TdRx+dsS3XQLRnLYmp/YK4qf2P0LPi5hPfRqDbOjYGpIp5zGMaQLKKW0ohbrmqP3F78MEEkhOAzgdIWfYCRx8dz+wY9JAj+3oBNeTQuU4pQbNyVnSonYYIqULcmh7iRuPMJm6y79D2mZmIyy5p4CJuzSaWFkV21rqCfIgZH4/PyIZwlUIlbs97HvCwhzl1JJOMcZO1SqtVkQxL6vvzX1xAu624UBUMw1VqFDeDnhW3v/1bUY7njDMSbJsnxo2gKm5xuEkJKhlxEZMA4jY7G8KmeVmOxuoUCsDP8L9wKc7FF/Eq+yezW4ajuNG9zjSr2PmXBQDA9sUBEbef/xzZVh1PxS/sCY3NCuJ06GwNFzxdiW8DgAsuAB7+cLt4cC9oZYQ1ZCtu4paVyRFq/yNENtove5nIqgvIpgaAv/97cSrHHiuu85fxCty88RzcClFagYgbverKQoWCEuOWrjlKY6rcSdy2bBGVg3bvdsrQJeIqpQdIWf7GVTKiH4QhbryGrExM0RG32MuBKMRtPCX6WT3lxLipitsPMn8tSie99rUA3MStX4h+zNCQ2cPleUFeZ3Mxx7cBoZITXMTt0kuBW28VpUUAVNoJZJVOTACMIV9fQhoW7rkHuOsubmeXX/G7vItMq0Q5UcWNc2UJi+LIuUpNOZBhQiVunOtZiCY54RWvEH+JYsDErRfFLZThVK1MqaS9xvk8UMEYngax9NRr5U/WHT184oYlMZMsticHQ9xkbNNJuAUpcNSQR3pSkIwXPKcOnORR3LqUlgkDLolb2kPcCLEobm96k/jrggsvdN7n88Bb8TFc8lCgJWuWLi2JZ6laLaTi6wdFcWP0cAYgJa9BquUQt1JJlP37/vedHJtEFTe1dE4cCEHccrzuUty8z1exx7ipxG1a1itM6RW3a8efAtx4o/1T+8Guz8QEwCEfTZZDjjdRXWwAyDvELa57AIRS3Bhd2HrdibGTcxARt1gVt0wGWL8ebN8+rMd+7Ny5GVk0kQJHExksljMuu9duO90zCcWNxpdr3k2lTHKCgYJiUfSERsNR1rxIJBo5BJRHC3XiHCXiFspweombBpmM26bTT9IznuQEazCuUlYS9zprVcGWxUQ+Zw2WuD0cNwMQ19pecqdWc0pG9BrTpkErK90lFX0hap3iFuPhfUHXed8+Z9vSkivRt3cvlkLc7AkSDnFjCnHL5zs9vIkmJwySuFEdv7bjKm0iG+gqzWR6vO7qTK8Qt4m0Y1doKGQyztD2Xob4FTegwcROKwviGkxnFVdpXAiTnJAT9yi30ukFKrcSIG6AvfzcZuzGzp1O2aE68mi3HXU7n3cfO27i5lLcPOWjRk1xM8Rt2OjmLh0WcVNSPdWJU7UjtPBDHBgmcfMe0/6J5wRrsgBvJoNEFTcibhmrZrsPDwyCuFWr9lqemyAkpgpKyI4rhfYsj+IWA3hWPvFW9YrbKBG3xUWHuPU1cRMbKJcdGQ2wiXpKcZXmcgkTN2/QekDNw55A5xqguGXbwTFuqt3pecj5KG5UDqQCvavUexmSUNwozq22KAb5VDoBV2mI5AQmiVuhfKDj54kRN7n83CbswdycU4S7LsuPkOc+l0uIuClFwLsRN6O4GQj4DSbCsIgbYPfSoSpuZD0bjXhcpSGOb//Ec4JUDJUxJKu4jTmKW0bGPO2vD4C4UQCVgg7FzfLEuMWAtlTcxnkncWsga99vFYMgbtQn9u93ti0tuSq09A4fxY3VasiigXTbTdyOPho47rjOtsUCP1dpXMQthKs02xo+cStzvavUj7jFqbhRSZDakrgGEyxB4uYVCZSq5ylJ3IqVTuJWaSWQVQq4FDfAIW60xBY1N593275+E0Ns6JITPGPAJCcYuOEnXxOGSdw0ituqc5WqOwuYiLTJEZ4TtJBxJo0EFbdUScb9tKrISBVqb20AxI1qdymooITcZLKuUlLcptDpKhV9j7maG/PhfUHXmUrhAAkTN3mCE1h2xbhRO6hucDYbc81nP1fpIImbFZ649Tx50kXLZJzEi6UlFNtC8Vxu6V2lg1Tc6ktikI8jgRi3Ukncg1rNHZqjKm55cY9K1f0dP1+xklfcAIe4NT3ELWnFzbhKDcKjm6tUk5wwMAyQuPWSVToMxa2DuCUwklNSccu1qsjVBHHbU510LwcWB0IQtypKyIxrFLcEiNukXKdzubjB/kxVezc7CxkMlLipUGPc+lJciIksLzuuUqk8TGEJWSXei7oYuUtjf4ZL2lUagrhlPMTNa+5U/tK34jY56cg3loWxurC9yy23q7Sb4pYEcWusiGtQ4gnEuDGm9/AoxI0Ut7GaVNyOPtr+2nIzgaxSwFdxa2YGRNwiKG7GVWogMMqu0lNOQTk7ZdewSqXczVgVils/xK1YBFesg4u4nXii+OLDHhaiEdGQlsQt364iXxdkZoFP2l0kaeJmTTkXtpYuORenXk/EVcpz4oSIuC2NH2p/pj40HOpsHipxi0Vxo4FUq4mM8mLRZoKzmSW7NIaquJ11FnDUUcDpp/dxXB1ovVJaF3cIxC3dqievuKnEDbBjWKfvuA4AsItv1hbg9V6GU04RHOjUU3tsh6ZJ5Col4lZsJ+AqBfQeHkUcSEnFbbwuidtppwGPfzxw1FHY115HX4sXkriR4kbJCZaHuA00OYEyIuT1X9OKG2PseYyx/2GM3ccYqzLG7mCMXcQYm/B8b4Yx9iXG2H7GWJkxdjlj7ORBtnVgGGVX6f/8D97wnB1YgjBw2ax74Kw64hbgdtASN8ZcJ+lylR5+uFiD6POfD9GIaEiPyxi3dg0FWUl/CZPYu9fTvn7hJW53iyWmqo9/iv2VukrcElLc4FHcyhOH2B+pxO0QZ/PqV9xSKXd/HB+3+9pM2k3caLIYHwduuw34xS/6OK4OaqIEMFjiRpXzG+HruPWsuNFMT2Navo7/6XcAgF+lnxLKVfqmNwlzfeaZPbZD06QGFwdrVQVpyTcTIm46oYBc9RMTSBeku74hidvUFPDLXwJ3341yQyYuJOQq9SpuVJh7UK5Sl+Kmpo7DKG5vAdAC8C4ATwPw7wD+D4BfMMZSAMAYYwAulp+/HsBzAWQBXMkY63P9lRHEKCtumYy94DowesQtcVcpAKacpEtxA4RRiy1C1gERt0K7ipLlEDfKbkxacWs/5Tz7K410yTlgUjFuebfiVpl2pDVylSq8Ju7D+0J3nRsNsYIBEIOrTJ2Ux8a6EjdAmIHYu5wabwcMRXFLNYPLgeRynYt1RIZXcVM61J04DrfXjw7lKgUckbJfEPmowSEPExNAqiJJdJwxbkBnaA7nDmEfG7MVt7HWsthGbuVMJrmoHY/iRsStlRus4uYibh5ZfdQUt0EX4D2fc64k1+MqxtgcgK8COBPAFQCeCeDxAM7mnF8JAIyxawDcC+BtAP5xoC1OGqOsuMFtJFVjBgyBuEkDMzBXKeCvuCWI9JiMJeFVjLdEwP4ipsCSJG6WBWzfLo5/nqO4NbMDUNxy7uSE5uQ6sX/LshW3yf+/vTOPkqws8/TzRkbkVpWZtS8UVEFRQgvSgpSAaEuBrIqoPSo6oiCDLUxrj3ocHdTjKA0y2u1GK7Yztva0ijDt0ujpRnCFbgekGRURFAXZSmSxdqqKzMrMb/747s24cTMyKrMq7v2+zPg958SJiBvLfe/+u+/2DTbqnFDCDSZW0/5XFc6f77226es0dNfVPFRaGDEIt5FccUJOHKTjIm/b1sZQaebYvonTeeqpeiFKq1BpO8l73HoYbhxgvqhQaeoo2L3bi7feXujqmvC4TZBZR6nXqejihKGep2EYXE64dXc3HpOFFidkxoiG+IRbqR63nGhL+ffkeVXyfA7waCrakt9tw3vhXlashQGIuTiBxgtkOuRIuvPOpeKE7NcaVnWykHuoAlaOcEs8bgPsoM/tZowKu+ifaEvRtl0hu24fecSLsgMOoO+wg9hGstxTCbd2ljV2N4ZKra934rhIPW554dbWqsopyAum1Mvy0EP+eb89blOFSm3blB63QkiPi127GlvTlyjc7Omn6atMneMG9e1fhMftRs5g506m1Q6kndTbgdS9PoUKt/z1Jjefal9u5WZ6WRZ2KVqyBFepsJQ/UGUPK4b8jNIB5gvv49bM46ZQ6V45KXn+ZfJ8JPCLJt+7G1htZm3ekwMTc6iUxpNkegGZGIR9tuW47YfHbdwyoyYUTbKtlyVNcLczCFj7m0CmCzMyUq8oXbeOrqrxgPmClNHunHArIFRKLlRq/XXhlvW45bvnF01+Pa9Kbi3bJtymCJUOWcket0qlUbwFEG4MDzO/e3rCbb/bgeSFW7XKrd0bGB+ve1Za5bi1kzTsPZwJlQ4NUbzHbQrh1pUXbpmTfNur2lO6utizwFeSL+VJlg40CrcgxQnyuE2Nma0CLgO+65xLB4NbBDRTMalLqqmfxcx+ONWj7Ya3k1kWKoX6wRNauE0rz6RdodJaLftULE2FW51CQqVJYQKHesH2cHcT4ZatKm2jcrKcx63S1ztxXDxVa+5xK1u49ffXhVrqlWlLqDT7egrhVsrFIhsuDSHcnn6aebVAHrfnP7+xzxFeFJQh3NJ5pe1AJkKlmbyztpJ3FOTmU20RKi0y+DO6qN4SZMmAd29Zr4oTpiKYcEs8Z9cDo8AbQ9kRnFnkcUtfH3CAPwdm+2rtLzMRbuM9/Rx00DQv3m0Sbl19NczqDdcLJdnWNbxIKkW4bdzoX69ZA8Bv+p7t5z3/gMbRK9Jbz3bGKpMT9AA+IbrS3zvRP+rRbv8cWrgNDk6+USkqVDrIHBNuqasySUJvIFP4MlhNBnunt+npLl1d+7w+0qa7q1f75+QmhZe/fFLVqlm9ijk1vyiywi26UGmyT+7a5S9RZu03CWB0aT3PbfE8rxCtv/zihLQLSLY4YWysmEDD/hDEDDPrw+esrQVOcs5tzHy8heZetUWZzyfhnNsw1fzWr1/v9s3SEoh1rNKEfI4bwNe/Dk88AYsXt28+MxFuV32uH5tuL6s2CbdqT5Xbbquf8wsld0tbinBLb6eT5b1u1Tv43tbnMLDuRfyFmZ/p8HD9ot5Oj1uPP3FW8Idp1/xeuPwTcP753Pn6E2FnnMJtvysLp/C4DbCdXZnWGKUKt+zYqe0Sbhs2wLe/Dc997uTP0pU8PMzK+T45/QmWNfXq7LfH7c1vhsMP9w3xAC65BI46Cl70IuZ/rv61dN965zvh+OPh1FMn/1U76eqqh0p7GKZrEHiwpOKEvHDrby7cbrnFnybWr2+/ExBgbEnd47ao35+LKkmFSnoJLGPkhLTlUjZUmnrYu7uT4Q4joHThZmY14KvAeuA059xdua/cDZw+6YdwBPCwc+6pJp/NXtLkz61bvazP743pBTUij9vatf7RTmYi3J55bD/80TT/eB+KExqEUbp9ajWOO26a89xfctu6FOGW87JUB/u5gRfzuvS60dvrhVt6oi9AuKVU+3tg6VI4/XR6k1UROsctL9wGB9tgwxQ5bgNuO3vw54Exq5VSiDGxcovwuFUq9fG68mRuClY7nzz4OMuLCZX29cFZZzW+P+00oPnIDPPnN369KPIet/6AHrfaFB63m27yb09vdmVuA25pvSXIgl7v3kqr61MKqyrNeNwee8wX2VomVBpbmBTKb8BbAb4MnAK83Dl3W5OvfRNYZWYnZX43CLw0+Wxu0dVVv3XfNnmsxonbjUBVpc2EWxHMpKp0RheUNue4lUIEwi29XkyYkq6g9ETfRjWR5rKkVAfqGyObTxnS4zY01FBg15bhjqb0uLl6qLS0/a7IUOneSDbyqjEv3B5jRTHFCS1oS4PffSTrcZsIlRaV45bPqc7NpzaFx+3GG/3bqfT3/jK+rN6Ed6jHOyvywq3oUGlfZZjdu+GpHa7B4xZbYQKUn+P2aeBVwEeBnWZ2QuaRZg99E7gV+JKZvcbMzkimGfCRku0th1YFChGGSotgJh63IMKtzOSGSmXiDhzCCLf0ejGxXvLCrY3ro5L3uM2fLNyGhuIKle53YQJMmeM2fyygcNu5s74vFBETa0aykVeOeOG2qWt504tyak4Rq6TsfStL0+KEoj1uU4RKm/Vx27gR7rnHf+WEE9przgSZJrwDNS/csucBmBwqbVsj6uRAT4tjHn9wt8/l7e2Fvj553IDU8fxevDjLPi4CcM6NA2cD3wGuBr6BH23hZOfcIyXbWw6tChQiLE4oghkJt5lcUGajxw14ulLf3lF53NI79HYKt77GBeqewuMWU6i07R63TKh03nhduLlqycJtx476vlDWOSdZ0cuHHwZga2/zqqe57HErrTghm+M2Pj5pPtadW/iBgYkh1k4+uUCvU2bYq3k1r5Rq8xvPC1mPW6XSxnyzZKH6q164bb4v7lEToOQcN+fcwdP83mbgwuQx92lVoCDh5p9HRvYtbDxLhdtwpQ/Gk5EE+gZhd/2zOSfcehvPiN2D9Y2R7Rk45zxuU4RK52U8bpMupEWRquJNm3yST09POV2OYWLfqo37K+T2vibVp7Qhx60FzXLcyiJfnLCgf8Qfk9lmcu2iWvWtT3bs8APv5kOymfm5efOwrq7Cw6QAtqLucZtXeQYAtcGpPW5tHfYtOdD7Kl4wbnsg7h5uEEcDXpGv9MkSuDghmlBpmv8308Ea91e4paWzZYWNEkYqdYMqQ+V73NJdciKvq8Act0nCbaC+gKlYWrw4LuFWSI5bsrIHRreEC5WmZXVl5bdBw8E3TDcj/Quafi3dJ4toRxGTx21BLSOmiihjzDoK8p69zMKPzRtkbIwJj1tRhQkAPWu8x20Vj1Ib89e8nhbCra33FIki6zWv0HY8HHcPNwjUDkTkyHYtz6PiBP/8u9/55yVL9v2Pp1lV2nBndcwx8KEP+SadJTLSVRfq1UWD8Jh/Xam0UbS0EG4XX+yvGeedl3w3XUElhEp7hur7+gc+AMce6ztKpL1/2zz7KSk1x23ePH/xXLiQni1bOBDfIak0j1t64X4yGZUwkHB7nOX09TcXK+ee608DFxYQhwmd45YtTlizuKAwacrChX74j70It52VQX79E/+1Qw6BdeuKMQdg/sFL2NMzj6HhbfD73wON5wHwx2N6TBYh3HrwCu3pRxUqFdMh9abt3t043bngY5VGEypNG8TOtOvvDD1u6XisE5jBpZfObJ5tICvcupfWyxnbeteXnon27JnUu2v1arjiisx3iyxOaBEqPfZY/0hnWan41JyyxyotxeMGvinsHXdwMD5Rv/RQaWCP21QVpeDX+eWXF2NCyFBptdpYnLB6UcHCLZtT3UK4PblnqKENSKE9zMyoHbYW7roL7r4bgO6hkjxuyYFeIxm54/HE45bcncXocVOoNAamEm7ZweHaGtSfPtEIt0eSupRm3ddbMUPhFsvBmRVu/SvqiqGt9s2kYrfIUGnO42Z9zW9Ssl3bQ3vcChVuGUr3uAUWblP1cCuaWEKlC/pH6B0tSbht3jw5xy2z8Bu3D3LDDf51kWHSCdJ9P/G4dfU3jqCRLU4owuNWHfMKbXxT/B43CbcYmEq4BS5MgIhy3NILyv543Fqsx9iE255q3daepYMTJ43gwq2AUOmkM2IL73KZwq2rq3Fc8sKLE2CScKv0dIBwy+zUj7EiSHAhllDp4nnDxfVwS8nmVLfwuG3aM8iPfuTtO+WUYkxpIB+L7elp2C5Fe9y6xrxCsy0qThDTIRUUqYctJXBhAkTkcUvZV49brdZyAWITbqNd9ZVQXTQ4IRo6Qri1WMj0WlbWxTU1pZAGvPkcN5h08erIHLcO9rgN9Y8U1wokZZrFCWkbouOPb8PwbtMhd9NCb285wi05/1RGvUKr7oi/OEHCLQbSvXEqj1ug/DaIULjtq8dtLxei2ITbnlr96lVbXLBw27Fj7y0gCgyVTlqoSDxu0NiOpK+vvtiledzyDVGLIhWO7R6ndDpMM8etSGJpBzLUW4JwyzZ8T7d3C+FWSpgUmgq37HYpLFSanExsdBRjnN5dCpWK6aBQ6d6rSlNm6nFLj/S9hB3SrwXUyA2MVhuFW+rtKUS4pa1WWl2s0xWTfrcgj9sYrctmyxZu2QbAZvVwadtz3NJ1nxduZXvc8vaUQWQet5AjJwx0D5fnccuGSpvkuO1IhFuR/dsamIHHra3bKB0vF1g0b4QF442h0hg9bqoqjYGIhVtZHrdqFd76Vn8MNdxN7a/Hbc0aePWr4eijW37tiCPgnHPg1FNn9vdFMZrxuPUumV+sx206wu3ww/3z44/754KE20ill74W5Wt/9mf+5H388e2bfSve8hb4+c/9bgTwtrfBvffCQQe14c/7+uCSS/wCpcVHK1cy0tVLd9LLqvQct5RAwm3l0Ss4+7wW3y2IWEKl82ojxee4TTNUevxpg7zxQHjuc4sxYxKrV/vzStr3Jyfcenr8cXjuuXs9nc+c7m4YHuagZcMsfKAxVBqjx03CLQYk3AC46qq9GAAz97hVKnDddXv9Wq0G118/s78uktFuv823M8D8wUp44ZaPl7RTuGUWaqTSS6u9/bzzMr3lSuA972l8//73t3kGV1/d+L5SYdOCQ1m5ybdEqPZ1lnC76rrlcFh5s04JLdzSUGlfpQSPWzZU2kK4nfYfBjntzcWY0JRqFQ4+GO67z7/v6WnQrt3d/nR+7bUFzLunB3bsYNXSERY9oFCpmA4RFyeUFSqdkv31uM1Sxmv+YradwexoSO0N5abrNo0FtLpYH3qo78KZ0s4kk8wZcbQronhEIDYvrIeMSvO45b07gapKZ3xj1iZC57ilHrfqeInFCZs2TS5Kyh7X2TLqssiGS5uESgsj+fOVi0dYiPq4iemg4oTpGdDb68fZ6wDGJjxug9nxx4vxuKW0ulibNXrdCvK47emKJMkwIFsX1S9eXWUVJ8TgcevtDSMWCJ/jlnrcGCmxOCFtat7fXw/Vm9XPC5EJt0KFUyLcVi3cxUK24swmysjlcRPNUah0arJHy4oVBbfvjofxnrpwy3rcggk3aMxSLijHbbQq4bZtSf3iVVqotK+v8dgqc2zeVLgtXx7s+M7u+iE9bgyX0Mct9bilKRJ5gRiLcGvSx60wkhPrmj7fx/DpnqEJ76M8bqI5Em7TMyBQGCUEUQq3U06ph1IKCpWOSbixbZnv5TZKF909JQmZ7LAUEMbjFjANoqurfpoNKtzK8LjNn9944xWTcEv7GCYJbfl2IIWRnIMOrPpBoXfU6mXj8riJ5kQs3KLKceuQ/DZoFG59fZEIt6EhOOEE/7qgUOlYTcJtx1LvddhDrdy7/OxVMoRwC3xjVnarmZSGUOlwCcUJZo2NCPOevRg8bsk+UbbHbbnzwu3hpxaxYoWvHZJwE82JuDhBHrcwPHHgc9hJP7d3/wlmvv1FX19dN7WFmQo3gAsu8GewdtbjZ86I47WI4hGB2LXsYO7hmdzK88q9WITyuB1zjN+5SxlXaWqaFFaWwgknQK0/43F7zIsHFi8ubqbZRoR5gXjiibB2LaxaVdz8p+IZz/CP5z1vkmllFCcc0vMoAH9wi3n8cfjiF+MMlaodSAyoOGF6BnSQx23T6mNYwFaWLKrxEXwvpW3b2rwN9kW4XXQRnH9+ew3JnBHHu+Vxq/ZWOYq7ALiyE4Tbc55TwM49c0IJtw9+EN73X3pgMV4l3H+//yDfkLadZD1ueeH2T/8EY2Plux7BC6h77pkolii7OGFgy8MAHHPWCrjB9yiO0eMm4RYDCpVOTYd63Go1GKVWbJuCfRFuRRjS1cUYFboYZ7xHwq1ahXF8DmFHhEohuGiD8sfBzVKbl6iCtDBhYACWLCluhq08bmZhVkJKZt75Pm6FkR5oD3vhNu8Qf63ZsiVOj5tCpTEQsXCTxy0M6WIXlebSMJOUsi/WGUYryVlZwq1hs3REqDQSQnncms503bpiK2yzwq3MCuIZUlpj5PRAS4Rbz2ov3DZvrgu3mDxuEm4xkIZCh4dhfLw+XcKtoz1uULBwq1Tq/Zsg6MV6T8XfzrpYBosNSHaXL/UuX8INCHSeq1QaZ1xkmBRah0ojIjWtu7vgTjHpgZb0tqsdtIK+Pj/61pYtdRtiQcItBswaxVuKihMk3Io+p2bXbwQeN5Nwa4hSyeNWHkGFGzRu7KKFW6tQaUSkphV+A5Ou+3Sc1OXLJ1ZRWiuiUKmYTLMChQiKE6LKcevAUGnhUYzs+g0YMkk9btYb0dkxEMFCpSFz3CIgZI4b0KgMyvS4RRwqTU0r/DjIz2DFiknCTR43MZlmeW47dvjngHdEXV11F3UQ4dbX508yBx0U9Z1huznwQP+cHR60ECLxuKVnxXlL5HFTqDQM6bGWHnulI4/bJJYt85eAwrdJ/kBbvnxC2z7+uH+OSbipqjQWmgm3dI8JHCKs1XxJdBDhVq3CHXdEUXVWJqedBrffDs96VsEzikS4LV7RDdth1VoJNxUnhOHtb4cNG2D9+kAGZDd2OoJAUcwS4TYwAD/96cSwocWRXffVKixaNLGK0uhpTKFSCbdYiFi4VateuAW741i7NtCMw2Hme7cVTiTCrdKXhEr7JNyyobogHrdKJS73Qkl0d/tG18FIN3Z3d/HNb2dJcQLA4YeXMJPsgbZsGVQqDdoW4jokFCqNhfzoCc5FI9zSa3uHOb06g0iE28RZUcUJ4XPc+vuDDfbe0aQb+5BD2jsWcDNmSTuQ0sgeaEkudVbbQlweNwm3WMgXJ2zd6t1cg4NBq0pBwm1OE4twS8+KMZ0dAxE8VNqBYdIoSPf9ovPbYFZ53Eohe6AljhJ53MTeyYdK01KWCCop09CNhNscJBbhJo/bBMFDpRJuYUiPAQm38skeaIlwy3vcJNzEZPLCLZIwKcjjNqeRcIuO4B43hc7CUKZw6+6ub28Jt6ah0rzHLaZggIRbLETscUsregYHw9ohCiAW4bZgQeNzBxOsHUg6Nmb+iiXKId33n/nMcua3cqV/Xry4nPnFTBOPW8yhUlWVxkLEHrfPfhZ+85viC51EAGIRbh/8IJxwApx6ajgbIiGYx+2oo+Azn4HjjitxpmKCK6+EU04p7xj4/Ofht7+FAw4oZ34xM8uKEyTcYiENEaVVpRF53E480T/EHCRVCaFbQBx2mH+IcENemcHFF5c4Q9HAEUf4R1m84AX+IVScIPaRiD1uYg6TCje1gIiGYKFSITqV7IE2hcdNwk1MJuIcNzGHyQo3EQXBQqVCdCpNPG5DQ433sjEV50m4xYI8biIEEm7RESxUKkSnknrcarUJV1ulUve6dXfHFZCQcIsFedxECCTcoiPdJF1dxTfQF0JQv0NavrxBoaXCLbaUBQm3WMgWJ4yPwxNP+PfLloWzScx9JNyiI71IqKWdECWRHmw5R0laoBCb51tVpbGQ9bht3gyjo17uxyb1xdwiFW5quhoN8+fDu96l9lpClMZxx8FrXwt/+qcNk7Oh0piQcIuFrHBTfpsoC3ncouTDHw5tgRAdRE8PXHPNpMmpxy02/4lCpbGQFW7KbxNlIeEmhBBNiTVUKuEWC/K4iRBIuAkhRFNUnCBaky1OSIWbPG6iaCTchBCiKfK4idY0C5XK4yaKRsJNCCGaIuEmWtMsVCqPmygaCTchhGiKQqWiNVnh9tBD/vWqVeHsEZ3BSSf5XoEbNoS2RAghouL44/1l+IwzQlvSiNqBxEJWuN1/v3+9bl04e0RncPrpPjQf03guQggRAStWwCOPxHd6lHCLhbQ4Yds2L96qVVi9OqxNojOI7awkhBCREOPpUcItFlKP265d/nnNmsbRpoUQQgjR8SjHLRbyAxMeemgYO4QQQggRLRJusVCpNJauSLgJIYQQIoeEW0yk4VJQYYIQQgghJiHhFhPZcKk8bkIIIYTIIeEWE1mPm4SbEEIIIXJIuMVEVritXRvODiGEEEJEiYRbTKTCbeVKDUEkhBBCiElIuMVEKtxUmCCEEEKIJki4xURanKD8NiGEEEI0QcItJlKPm4SbEEIIIZog4RYTS5f65yOPDGuHEEIIIaJEg2HGxGWXwQtfCC99aWhLhBBCCBEhpXvczOxAM/sbM7vVzHaZmTOzg5t8r9fM/srMfm9mu5Pvv7Bse0tl1So4/3wNLi+EEEKIpoQIla4DXg1sAf61xff+DngT8H7gbOD3wI1mdnTRBgohhBBCxEgI184tzrnlAGZ2EXB6/gtm9mzgPwIXOue+kEy7GbgbuAw4pzxzhRBCCCHioHSPm3NufBpfOwfYA1yX+d0ocC1whpn1FGSeEEIIIUS0xFpVeiTwgHNuV2763UA3PtwqhBBCCNFRxJoFvwifA5dnc+bzBszsh1P92bHHHtseq4QQQgghAhKrx00IIYQQQuSI1eO2BVjTZHrqaduc/8A5t2GqP1u/fr1rj1lCCCGEEOGI1eN2N3CImfXnph8BjAD3lW+SEEIIIURYYhVu3wJqwKvSCWZWBc4FbnLODYcyTAghhBAiFEFCpWb2yuRlWjVwlpk9CTzpnLvZOfdTM7sO+ISZ1YAHgEuAQ4DXlW+xEEIIIUR4QuW4/WPu/dXJ883AhuT1G4ErgMuBBcCdwJnOuZ+UYJ8QQgghRHQEEW7OOZvGd3YD70geQgghhBAdjzk39wsukzDsQwXO4vDk+d4C5xEzWn5PJy5/Jy87aPk7efk7edlBy1/08q9xzi1t9kFHCLeiSZv/tmpJMpfR8nfu8nfysoOWv5OXv5OXHbT8IZc/1qpSIYQQQgiRQ8JNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswSVFUqhBBCCDFLkMdNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLjtB2Z2kJl91cy2mdl2M/u6ma0ObVdZmNmBZvY3Znarme0yM2dmB4e2qwzM7JVm9jUze8jMdpvZvWZ2pZkNhLatDMzsDDP7vpk9ZmbDZrbRzP6PmR0R2rYQmNm3k/3/8tC2FI2ZbUiWNf/YGtq2sjCzF5vZLWb2VHLuv8PMTgltV9GY2Q+n2PbOzL4d2r4yMLPnm9lNZvaEme0ws5+Y2YVl2hBkkPm5gJn1A98HhoHzAQdcDvzAzP7YObczpH0lsQ54NfD/gH8FTg9rTqm8E3gYeA+wETgG+ABwspmd6JwbD2hbGSzCb/ergSeB1cB/A24zs6Occ0WODRwVZvZa4Nmh7QjAXwD/nnk/GsqQMjGzNwOfSh5/iXeAHA30BzSrLP4zMJib9jzgY8A3yzenXMzsj4HvArcBbwJ2Aa8E/s7MepxznynDDgm3fedNwFrgcOfcfQBm9nPgN8Cb8TvyXOcW59xyADO7iM4Sbi91zj2ZeX+zmW0G/jewAS/q5yzOua8AX8lOM7PbgV/hT2QfDWFX2ZjZQuDjwNuBawKbUza/dM7dFtqIMkkiCp8A/qtz7hOZj24MYU/ZOOfuyU8zszcBI8C15VtUOq8BuvDn/6eSad9JBN0bgFKEm0Kl+845wG2paANwzj0A/Ah4WTCrSqQDvEpTkhNtKan3YVWZtkTEpuS5IzwvCR8GfpEIWTH3uRAYB/42tCExkESeXgV8yzm3ObQ9JdAN7AF256Zvo0Q9JeG27xwJ/KLJ9LuBjszzEZyUPP8yqBUlYmZdZtZtZs8APgs8Rs4TN1cxsxfg77L/PLQtgfiymY2Z2SYzu6ZD8ntfgPcqv8bM7jezUTO7z8w6dR94BTCAjzR0An+fPF9lZgeY2YLE4/givOe9FBQq3XcWAVuaTN8MLCzZFhEYM1sFXAZ81zl3R2h7SuTHwLHJ6/uAU5xzTwS0pxTMrBsvVP/aOXdvaHtKZhs+FH4zsB2f3/ke4FYzO2aOb/8Dksdf4Zf5frzH6VNmVnXOfTKkcQF4A/AEcENoQ8rAOfcLM9sAfAOf7wfeA3exc660ULGEmxD7iZnNB67HhwjfGNicsnk9Pll5Lb5g4ztm9gLn3INBrSqedwF9wBWhDSkb59xPgZ9mJt1sZrcAt+MLFt4XxLByqOA9TBc4576eTPt+kvt2qZld5TpkOCIzOwA4Ffikc64j0iOSyMLX8JG1i/Eh05cBf2tmTzvnvlyGHRJu+84WmnvWpvLEiTmImfUB38ILl5OccxsDm1Qqzrk0LPxjM7sBeBBfXXpxMKMKJgkJvhe4COgxs57Mxz1mtgDY4ZwbC2FfCJxzPzGzXwPPDW1LwWwCngF8Jzf9JuBMYCXwaNlGBeI8vJDtlDApwIfwHraznXN7kmnfM7PFwCfN7Ctl5H4rx23fuRuf55bnCGBS5Y2Ye5hZDfgqsB54sXPursAmBcU5txUfLl0X2JSiWQv0Al/C36SlD/Bexy3AUWFMC85c9zbdvZfPO6lg63zgTufcnaENKZGj8Mu8Jzf9dmAxsKwMIyTc9p1vAieY2dp0QuIufz4d0M+m0zGzCvBl4BTg5Z3WFqEZZrYc+CN83s9c5mfAyU0e4MXcyXgB2zGY2XrgcPwFbC7zjeT5jNz0M4GNzrnHSrYnCMn2PoLO8raBL746OslxzXI88DQ+x71wFCrdd/4X8BbgejN7H/5O8y+BR/BJyx2Bmb0yeZkmqJ9lZk8CTzrnbg5kVhl8Gp+UfAWw08xOyHy2ca6HTM3sG8BPgJ/jE9QPw/cyG2WO93BLPIs/zE83M4CHnHOTPptLmNmXgQfw238rvjjhUuB3wFXhLCuFfwF+AHzWzJYAv8WfB06ns/Jb34A/1kvJ6YqITwH/CHzLzK7G57idA7wW+LhzbqQMI6xD8igLIcl1+ThwGmDA94C3dUBi9gRmNtUOdLNzbkOZtpSJmT0IrJni4w865z5QnjXlY2bvxo+acSi+t9EjeDFzZSft/1mSY+EK59xcTs7HzC7FX6jW4EcLeAxfVfjfnXO/D2lbGZjZIHAlvtH0Qnx7kP/hnOuIBsxJisij+D6mLw1tT9mY2VnAu/GpUr34CMP/BD5bVl6rhJsQQgghxCxBOW5CCCGEELMECTchhBBCiFmChJsQQgghxCxBwk0IIYQQYpYg4SaEEEIIMUuQcBNCCCGEmCVIuAkhZiVm5qbxeNDMDk5eXxDa5hQzW2VmO5MO9NP9zdvM7K5k1A4hRIeiPm5CiFlJbrQK8MMR3Ql8IDNtGD928DHA/c65J8uxrjVm9nlgmXPu7Bn8pg8/YsGlzrkvFGacECJqJNyEEHOCZDSLf3POnRfallYkY7o+ArzCOffPM/ztR4CXOOeOLMQ4IUT0yOUuhJjTNAuVmtnfm9lGM1tvZv/XzHab2b1m9pLk83ckYdbtZna9mS3N/WfVzC41s1+Z2bCZPWpmHzWz3mmYdAGwA7gx959nJLZsM7OnEnven/vttcARZnbiPqwKIcQcQMJNCNGpDAL/AHwOeAXwBPA1M/socDLw58Dbktefzv32S8D7gGuAl+DHrvxPTG/Q7TOBW51zo+kEM1sLfBMfCj0XP3D1x4B5ud/+DC/6zpzeIgoh5hrV0AYIIUQgBoCLnXO3AJjZo/gcubOBI9IBo83sWcBbzazLOTdmZn+CF1fnO+f+Ifmv75rZZuBLZna0c+5nzWZoZgYcD3w899FzgG7gEufc9mTa9/O/d86Nm9mdQD6/TwjRIcjjJoToVHamoi3hV8nzd1PRlpleBVYm788ERoCvJiHTqplVgZuSz1/YYp4LgD4gXyTxM2APcK2ZvdLMlrX4jyeBA1p8LoSYw0i4CSE6la3ZN865keTlltz30ulp/toyvHdsJ15spY8nks8Xt5hn+h/DuXnfB5yBPyd/EXjMzG4zs5Oa/MduvPgTQnQgCpUKIcTM2AQ8DfzJFJ8/upffAizMf+Cc+wHwAzPrAZ4PXAb8s5kd7Jz7Q+ari4A/5H8vhOgMJNyEEGJmfBt4NzDknPveTH7onBsxsweAtS2+Mwx838zmA9cDh9Ao1A4Bbp+x1UKIOYGEmxBCzADn3A/N7Cv4HLeP4UXUOHAw8GLg3c65X7f4i1uA47ITzOxifG7cv+B7vC0BLsV7736R+d4C4DDgr9u0OEKIWYaEmxBCzJzzgLcCFwLvxeesPYjvzfb4Xn57HfCGJAT6YDLtTuAsfFuRZcBm4N+A1znndmd++xJ8zt032rIUQohZh0ZOEEKIEknGGv0N8AXn3OUz/O0NwB+cc68vxDghRPRIuAkhRMmY2evwDXYPcc7tmuZvjgZ+DByZVKEKIToQhUqFEKJ8rgFW4fPi7pnmb1YAF0i0CdHZyOMmhBBCCDFLUANeIYQQQohZgoSbEEIIIcQsQcJNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswS/j+3tENHiYAiLgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `Crossspectrum` class to create a `Crossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'frac'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "cs = Crossspectrum.from_lightcurve(lc1, lc2)\n", + "print(cs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Crossspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Crossspectrum(lc1, lc2, norm=\"leahy\")\n", + "```\n", + "However, we recommend using the specific method for input light curve objects used above, for clarity. Equivalently, one can initialize a `Crossspectrum` object:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(events1, events2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s, are created internally.\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(times1, times2, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Crossspectrum.from_lc_iter(lc_iterable1, lc_iterable2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the cross power. The cross power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[-3264.54599394-1077.46450232j 1066.6390401 -2783.16358879j\n", + " 3275.00416926 +196.64355198j -8345.12445869-6661.52326503j\n", + " 5916.3705245 +3602.05210672j]\n" + ] + } + ], + "source": [ + "print(cs.freq[0:5])\n", + "print(cs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the negative Fourier frequencies (and their associated cross powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"Size of positive Fourier frequencies: %d\" % len(cs.freq))\n", + "print(\"Number of data points per segment: %d\" % cs.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Crossspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of cross spectra averaged together. For a `Crossspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can compute the amplitude of the cross spectrum, and plot it as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtEElEQVR4nO2debgcVbW+33VO5oSEBAgzhBhmkIDgRVEIg6CIICKOKE4IjhfUq6KoKIgT4oxXUfx5FfVeEA2KCCIkIIKCGlDmIRCmkEAmyJyc/ftj97bq1KnqruquHs/3Pk8/1d1V3b27u2rXV99ae21zziGEEEIIMVzoa3cDhBBCCCFaicSPEEIIIYYVEj9CCCGEGFZI/AghhBBiWCHxI4QQQohhxYh2N6ATMLN/AFsAD7S7LUIIIYRomBnAYufcvmkrJX48W0yaNGnbmTNnbtvuhgghhBCiMebNm8fy5csz10v8eB6YOXPmtnPmzGl3O4QQQgjRILNmzWLu3LmZ0Rzl/AghhBBiWNH14sfMRpnZ183sfjP7p5ld0e42CSGEEKJz6YWw13nAKGBX59yAmW3V7gYJIYQQonNpufNjZtuZ2bfM7GYzW2VmzsymZWy7vZldZmbLzWyFmV1uZjvE1o8D3g183Dk3AOCcW9iSLyKEEEKIrqQdYa8ZwOuApcCNWRtVhM11wG7AycBbgJ2B681sfOy9lgIfN7NbzewmMzummY0XQgghRHfTjrDXDc65LQHM7F3AkRnbnQJMx4ezHqhsfwdwP3AqcAG+/TsADzjnPmFmuwE3mNmBzrmHmvw9hBBCCNGFtNz5CeGpHBwL3BKET+W184GbgOMqTy0AHPDTyvp7gNuB/UprsBBCCCF6ik5OeN4TmJ3y/J3AiQDOuafN7Grg5cAVZrY1sDfwz7Q3NLM5GZ81s9HGCiGEEKI76GTxMwWfz5NkCTA59vg9wA/N7PN4F+jDzrl7W9A+IYQQQnQhnSx+cuGcexg4POe2s9KerzhCh5TWKCGEEEJ0LJ0sfpYy2OEJZDlChUiEwGY2+n5CCCGE6A46ucLznfi8nyR7AHe1uC0igXPtboEQQghRH50sfq4ADjSz6eGJSjHEgyrrGsI5NyvcgHmNvt9wYu1a2H13eNvb2t0SIYQQojhtCXuZ2Wsrd19QWb7CzBYDi51zcyvPXQS8H5htZmfhk5nPAR4FvtfK9orBPPYY3HsvrFzZ7pYIIYQQxWlXzs+liccXVpZzgVkAzrmVZnYY8DXgJ4ABfwROd84912gDlPNTP+vW+eX69e1thxBCCFEPbRE/zjnLud0C4IQmN0cUROJHCCFEN9PJo72aSnzYu4a6FyOInw0b2tsOIYQQoh46OeFZdChyfoQQQnQzw9b5Uc5P/Uj8CCGE6Gbk/IjCxMNeqvcjhBCi2xi2zo9yfuoniB+AjRthxLDdi4QQQnQjcn5EYeLiR0nPQgghug2JH1GYuPhR3o8QQohuY9gGLJTwXD8SP0IIIboZOT+iMGvXRvcV9hJCCNFtDFvnRwnP9SPnRwghRDcj50cURuJHCCFENyPxIwqj0V5CCCG6GYkfURg5P0IIIbqZYZvzo9Fe9SPnRwghRDcj50cURs6PEEKIbmbYOj8a7VU/Ej9CCCG6GTk/ojAKewkhhOhmJH5EYeT8CCGE6GYkfkRhJH6EEEJ0MxI/ojAKewkhhOhmJH5EYeT8CCGE6GaG7Wgv1fmpHzk/Qgghuhk5P6Iwcn6EEEJ0M8PW+VGdn/qR+BFCCNHNyPkRhVHYSwghRDcj8SMKI+dHCCFENyPxIwoj8SOEEKKbkfgRhVm7NrqvsJcQQohuQ+JHFEbOjxBCiG5G4kcURgnPQgghuplhO9RdRQ7rR86PEEKIbkbOjyiMxI8QQohuZtg6PypyWD8KewkhhOhm5PyIwsj5EUII0c1I/IhCbNwIAwPRY4kfIYQQ3YbEjyhE3PUBhb2EEEJ0HxI/ohBJ8SPnRwghRLch8SMKIedHCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotuR+BGFUNhLCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotsZttNbaGLT+lDYSwghRLcj50cUQs6PEEKIbmfYOj+a2LQ+1q71y5EjvfCR8yOEEKLbkPMjChGcn3Hj/FLOjxBCiG4jt/gxs33N7HIze9rMNpjZfpXnzzOzlzeviaKTCOJn/Hi/lPgRQgjRbeQSP2b2EuBmYDfgZ4nXDQCnld800YkkxY/CXkIIIbqNvM7PF4GrgT2BDyXW/R3Yr8xGic5FYS8hhBDdTt6E5/2A1zjnnJm5xLqngS3KbZboVBT2EkII0e3kdX7WAOMy1m0NLC+nOaLTUdhLCCFEt5NX/PwJON3M+mPPBQfoncB1pbZKdCwKewkhhOh28oa9PgXcBNwOXIYXPieb2QXAC4ADmtM80Wko7CWEEKLbyeX8OOduBw4GngI+CRjw/srqQ5xz9zaneaLTUNhLCCFEt5O7wrNz7u/A4WY2BpgCLHPOrWpay0RHIudHCCFEt1N4egvn3BrgiSa0RXQBcn6EEEJ0O5nix8w+XeB9nHPunBLaIzocJTwLIYTodqo5P2cnHjt8rk+SMOpL4mcYoLCXEEKIbicz4dk51xduwF7AfODjwDRgbGV5ZuX5PZveUtERBPEzdiyYgXMwMNDeNgkhhBBFyJvz823gB865L8eeWwB8ycz6gO8Ah5fduDyY2RxgR6JCi5c75z7XjrYMB4L4GTUKRozwzs/69TB6dHvbJYQQQuQlb5HD/wBuy1h3K3BgOc2pmzOcczMrNwmfJhIXPyNH+vsKfQkhhOgm8oqf5cDLMtYdSYHpLcxsOzP7lpndbGarzMyZ2bSMbbc3s8vMbLmZrTCzy81sh7yfJconTfxoxJcQQohuIq/4uRj4iJl9x8xmmdnuleWF+Fnef1DgM2cArwOWAjdmbWRm4/DTZuwGnAy8BdgZuN7Mxic2/6KZ/bMilHYt0BZRkGTYC+T8CCGE6C7y5vx8Gj+q63TgtMpzBqwEzmPoyLBq3OCc2xLAzN6Fd47SOAWYDuzqnHugsv0dwP3AqcAFle3e6pxbYGYGvB24xsymO+c2FmiTyMnatX4p50cIIUS3knd6iwHn3KeA7YFZwBuBQ4DtnHOfds7lHu9TYNtjgVuC8Km8dj5+jrHjYs8tqCydc+5iYAI+AVo0ATk/Qgghup1CFZ6dc8uoEqoqmT2B2SnP3wmcCFCZamOCc+7pyuOjgY3Ao2lvWBkZlsbMBts6bFDCsxBCiG4nl/gxs4NrbeOcu6Hx5gxiCj4vKMkSYHLl/kTgKjMbBQxUtj/GOafTcZNQwrMQQohuJ6/zM4eoknMW/Y01pTjOuUXACwpsPyvt+YojdEg5reptFPYSQgjR7eQVP4emPLcZcAxeNLy/tBZFLCVyeOJkOUKFSITAZjb6fsMFhb2EEEJ0O7nEj3Nubsaqy83sa8CrgKtKa5XnTtKnzdgDuKvkzxI5UdhLCCFEt5O3zk81rsTX7SmbK4ADzWx6eKJSDPGgyrqGcM7NCjdgXqPvN1xQ2EsIIUS3U2i0Vwa74pONc2Nmr63cDfk6rzCzxcDimMt0ET6cNtvMzsLnHJ2DH8n1vYZbLepCzo8QQohuJ+9or7emPD0KP9v7O4HLC37upYnHF1aWc/F1hHDOrTSzw4CvAT/BF1X8I3C6c+65gp83BOX81EcQP6NHy/kRQgjRneR1fv5fxvNrgf8F/rPIhzrnLOd2C4ATiry3aC5KeBZCCNHt5BU/O6U8t8Y591SZjWkl8WHvGuqeH4W9hBBCdDt5xY8DnkwrHmhmI4BtwjQToncZGIiEzogRCnsJIYToTvKO9poP7Juxbp/KetHjBJEzahSYKewlhBCiO8nr/FTL0RlJwdFenYASnosTD3mBwl5CCCG6k0zxY2ab4qspB7aN19ypMBY4GVhYftNEp5EUPwp7CSGE6EaqOT//CXwGn+/jgMsytrPKdl2FEp6LI+dHCCFEL1BN/PwaeBgvbi4GzgUeTGyzFrjLOXdHMxonOgs5P0IIIXqBTPHjnLsduB3AzBxwpXPu6VY1THQea9f6ZdL5kfgRQgjRTeSd2PTHzW5Iq1HCc3EU9hJCCNELVEt4vg54r3Punsr9ajjn3OHlNk10Ggp7CSGE6AWqOT/x4e19+KTnPNt2BUp4Lk6W8yPxI4QQopuolvNzaOz+rJa0RnQ0CnsJIYToBfJWeBZCYS8hhBA9QbWcn4OLvJFz7obGmyM6GTk/QggheoFqOT9zqJ7nE7DKdv1lNKhVaLRXceT8CCGE6AWqiZ9Dq6wTw5AgfkaP9kslPAshhOhGqiU8z21lQ1qNRnsVR2EvIYQQvUDeWd0BMLOJwF7AtsDjwD+dc882o2Gi81DYSwghRC+QW/yY2aeBDwMTiOr6PGtmX3HOnduMxonOQnV+hBBC9AK5xI+ZfRb4FPAD4BfAU8CWwBuBz5rZCOfc2c1qpOgMFPYSQgjRC+R1fk4Bvuqc+6/Yc3cC15nZcuDdwNklt010GAp7CSGE6AXyip9JwNUZ634PvKec5rQODXUvjpwfIYQQvUDeCs9/AQ7IWHdAZb3oceT8CCGE6AXyOj8fBH5lZhuAS4lyfl4HvAM4zsz+LaSccwNlN7RsNNS9OEp4FkII0QvkFT93VJZfrNziGPDP2GNX4H1FF6GwlxBCiF4gr0j5HPmmuhA9jMJeQggheoFc4kfD2AXA2rV+qbCXEEKIbiZvwrMQCnsJIYToCYpUeN4deC2wPTAmsdo5504us2Gi81DYSwghRC+Qt8LzW4GL8Xk/i4B1iU2UDzQM0GgvIYQQvUBe5+dTwGzgnc65Zc1rTutQkcPiZDk/CnsJIYToJvKKn62A03pF+Ij6kPMjhBCiF8ib8HwTsHszG9JqnHOzwg2Y1+bmdAVKeBZCCNEL5HV+3g9cbmbPANcAS5MbdENVZ9EYQfyMHu2XSngWQgjRjeQVP48B/wB+mrFeVZ2HAQp7CSGE6AXyCpaLgNcDvwbuYehoLzEMUNhLCCFEL5BX/BwH/Jdz7hvNbIzobFTnRwghRC+QN+F5JXBXMxsiOh+FvYQQQvQCecXPj4A3NbMhovNR2EsIIUQvkDfs9QjwRjP7A/B70kd7XVxmw0TnkRQ//f1+uXEjOAdm7WmXEEKIzmPDBnjDG+Dww+E972l3awaTV/x8t7LcETg8Zb3DT38hepik+DHzeT8bNvhbcIKEEGI4snYtDAzA2LHtbklncMcd8Mtfwl13da/42amprRBdQVL8QCR+1q+X+BFCDF8GBmDvvb0TfuutMGVKu1vUfpYs8ctVq9rbjjRyiR/n3CPNbojofNLEz8iRsGaNkp6FEMOb1avh/vv9/fe9D37+8/a2pxNYtswvV69uazNSyZvw3HOY2ZxwQxOb1sS5SPzEHR4lPQshxGB34xe/8LfhztJKdnDXOj8AZnYk8B5gV2BMcr1zbnqJ7RIdRnB2RoyAvphkVq0fIYQYeoJ/73vhpS+FbbdtT3s6ga53fszsaOAqYBywG77K8wJge2AAmNusBjYLTWxajLSQF6jWjxBCQHSC33lnOPpo73q8853eNe9l7rwT9tkHrrpq6Lrg/Gzc2HnniLxhr08B3wGOrjw+qyIa9gT68cJI9DC1xI/CXkKI4UxwfsaPhx/8wCc8X301/PjH7W1Xs7nmGj+q67LLhq4Lzg90nvuTV/zsBvwG7/L8exJT59x9wNl4cSR6mCzxo7CXEEJEJ/exY2HrreEzn/GPr722fW1qBc8955dhZFecpbGKgN0qfgaADc45BywGdoitewJ4XtkNE52FnB8hhMgmOD/jxvnl9EoWbJoo6CWC+HnmmaHresH5uReYVrl/G3C6mW1tZlsAHwYeLr9popPoBOdn2bKoHUII0UkkxU+o89Pr4ufZZ/2y25yfvKO9LgF2r9z/DHAt8Fjl8UY071fPE0TH6NGDn29VwvOKFbDjjnDAAb1vIwshuo942AuGj/jpVucnb5HD78Tu/83M9gZejh/9da1zTjO+9zjtDnstWOAF0I03+s8akbtIgxBCNJ+k87PZZn45XMTPkiVD53jsBednEM65x4AflNwW0cG0O+wVrNV162D+fD+cVAghOoWk8zN5sl8uXeqnvujr0ZLCQfysWwcrV8KECf6xc53t/PTo3zF8efZZ+NGPYPnyct+33XV+wgEGcM89zf0sIYQoStL5GTECJk70wqfs/riTiPfNcZdr9erBOZoSP6KpfPe78I53wLe+Ve77tjvsFZwfgLvvbu5nCSFEUZLiB4ZH3k9c/MTzfuKuD0j8iCZzVyX76qGHyn3fTgl7gZwfIUTnkQx7QZT3k5YM3OncdtvgfjeLLOcnnu8DnTe/l8RPj/Hgg3755JPlvq+cn+aiOklCdDe95PzcdpsfWfvBD9beNt43VxM/cn5EUwmOT6vET6ucn2TOT6fNl+McXHhhfa7UBz4AW24JixeX3y4hRGvoJfHzwAN+ef/9tbdV2Eu0ndWr4Ykn/P1WOz+tDHstWwZPPdXczyvKtdfC+97n862Kcv31vnO8887y2yWEaA3Vwl7dJn6CcEm6N0k2bIA1a6LH3eT8ZA51N7P5+Hm88uCcc5rios08/HB0f9EiL0iCOGmUTgp7gXdYttqquZ9ZhPvu88tbboGnn4bNN8//2tBJ9PKIECF6nWrOT7fl/OQVPytXDn7cTc5PtTo/c8kvftqOmb0duBg43jn36zY3py2EfJ/AU0/BdtuV897NCnstXuyLYtUSC8FaHTnSf9bdd8OsWfV9ZjOYP98vnfMzOb/5zflfG66WJH6E6F7SnJ9uDXsF4VKr3fGQV3L7IJxGj4a1a7tI/Djn3tbCdjSEmU0DTgFuaXNT2kpyhNeTTzZf/KSFve65x4ual760+nsODMC++3rxs2DB4MqgSYLz8/znw9/+1nkjvuKu21VX5Rc/a9ZEtrHEjxDdSy/l/IS+KIiWuKCLkxQ/ac7P1lv7/rHTxE/Lc37MbDsz+5aZ3Wxmq8zMVcRL2rbbm9llZrbczFaY2eVmtkNimz58tekPAGub/w06lzTxUxZFwl5veIN3Ze69t/p7Ll0Kjz8Ojz3mD7JqBPFzwAF+2WkjvuLi5/e/h40b870ubitL/AjRvaSJn1YMdf/DH+CGG8p9z3jIqlroK4/zs802ftnV4sfM9jGz15nZW5O3Am8zA3gdsBS4scpnjQOuA3YDTgbeAuwMXG9m42Obfgi4yTn3tyLfpRcJ4idcbZQpfoI4yRP2euQR7+pcfnn191y0KLpfqwZEOMiC+OlU52fKFN/R3XprvtdJ/AjRG5QZ9lqxIl///dxz8KpXwVFH5avJk5e84id8ZprIizs/0KXix8w2NbObgL8DPwf+X+X2o9gtLzc457Z0zh0NXFplu1OA6cCrnXO/ds7NBo4FdgROrbRrL+AE4NwCn9+R/M//+Llgbrut/vcI4ufFL/bLMPKrDPI6P/FS7r/6VfX3jA/tTibOJYmHvUaNgkcfHXrV0S6efdYf9GPGwBvf6J/73e/yvTbeKUr8CNG9lBn2OuII2HXX2n3cgw/6C9M1a7zjXBZFnZ8dd/TLXnR+zgM2Aw4GDDgeOAy4BHgIeGHeD3TODeTc9FjgFufcA7HXzgduAo6rPPVSYBpwv5k9DBwIfN/M3p+3PZ3ClVf6He7HP67v9c5F4uegg/yyFWGvpPPz3HNRDZ5bb/UhrSzizk9e8bPpptGkprXCaq3ikUf8cscd4eij/f2rrsr3Wjk/w5tTT4XXv77z6lZ1CitWwMUXd8exUdZQd+fg9tt9nxf6lizig1xmz87/GbWI/97V2h7Ezw47RNuGfbknnB/gKLwACgnFjznn5jjn3gpcC/xnE9q2J/CvlOfvBPYAcM591zm3tXNumnNuWqV973bOfTvtDc1sTtoNmNmE9hdi4UK/vP76+l+/erU/2Hbd1T/XypyfIH6SwxurHZD1iJ9NNoHddvP3OyXvJ4S8pk3zuU5jxngHL08tolriZ84c2Gcfn+QteouBAbjoIvi//xt63AjPd74D73wnfDu1R+8s0pyf5MzueVi2LOpv431kGg88EN2/8sry6q0VdX422wzGj/cRgNBX94rzszXwkHNuI7AG2CS27nLglWU3DJiCzwtKsgSY3ITPaytB/Nx5Z30F/ILr87znRTtbOxKekyfwaqGvImGvcJBtsgnsvru/3yl5P3HxM24cHHqof5zHhq4V9rr8crjjDvjFLxptZTksWeJHsl19dbtb0v0sWxZdJXfbaKBWEepnzZvX1mbkIk381DOzezgXQO1zQdz5WbasvMTnouJnwoShNY3Ce4TzUbfO7bUQ2LRy/xHgRbF1M8psUCM452ZVq/FTWT/kBsxrVRuziAuVetyfIH6mT49sxmaIn9GjBz+fDHuFHX6PPaC/3zsXWR17XucnVBHt6/OWcic7PwCveIVf5gl91XJ+wm/XKdWfv/pV+NnP4MtfbndLup/4cdEu8fPMM17M/ulP7fn8WoSwT6cc61msX+9HePb3Dy0sWzTvJy548jo/M2f6ZRmhr3XrBrs0ecVPPMS3caMPWZr5qXuge52fP+HzaQB+AnzGzL5nZt8BvgI04zpwKekOT5Yj1LWsXDk4U78e8ROuAKZPjyofL1yYf8h1GvE8hLxhr3ACDyGgjRvht79Nf/+84if8NhMm+IOpk50fiMTP1VfXrnxdS/yE9Xfd1UgLy2H1avje9/z9+NB+UR/xk2G7KgDPnu3F7Ne+1p7Pr8WCBX55332dMfnvunVw3nlDR3OmuT6BosPd485PLfET+v0PfcgvZ89uPH8s2Q/V4/yE95g0yYfDoHvFz2eJBM5XgO/gQ11vBK7A19gpmzvxeT9J9gAaPhV0Us5PUPqhyN911xV/j7jzM2qUP+AGBuqfLPPWW71d+8lP+sd5w17B+dl0Uzj+eH8/K/SVV/zEQ14Q5TTdf39ndIhJ8TNjBuyyi/8tzj+/ugDN6/w88kj7R7f97GdRB75gQWPCWnSG8/P443756KPt+fxqDAxE7Vq/fmgds3bw/e/7PvFTnxr8fDixp4mfZjk/a9f647CvD173On/Ru2CBT5ZuhGT+WbV2xy9M485P6Nc23TRKAO9K8eOce9A5d2Pl/nrn3Iedc9s556Y4597knGvGdcsVwIFmNj08USmGeFBlXc8QlP5++3nB8cAD0RVPXuLiBxrP+zn/fH+yPe88f7Wfd7RXXPEfVxmTd/XV6fHevDk/8WRn8FcSO+zQOR1iUvyAH8UDcOaZ8JKXwD//mf7aeMeycuVQMRcXR+10f5yDb3wjerxhQ/mT59bDwAC85jVw+untbklxOkH8hP+w2qjMdrFoUdTvQPtDXxs3Rg7Z008PXhf6t7RKyEXFT96cn4cf9sfljjv6dIRXvco/32joKyl+6nF+wntMntzF4sfMRpnZEjM7tqwPNbPXmtlrgRdUnnpF5blDYptdBDwMzDaz4yqfPxt4FPheo23opJyfsLNvtx0cfLC/Hw99rVwJn/ucz7e48kpvdSavuuMJz9BY3s/ixYPdmve9D/7yF38/72ivTTf13+eAA/xOn5YgW0/YKxDyfv6VNh6whcRr/ITYNngb+vLLvQi95RYvbNNGrCQ7lhUrBj+Od5jNFD8PPVR9xNGcOV7AbblllF/QCaGve+/1++qPilQa6xDiYZB2hb1C/7Bw4WCh0QkkLwDbLX5+/euon00WFMwT9irb+Qn5PqHPDxebv/51vs/JIlzAhvzOPOJnk0160Plxzq0DNuBHeZXFpZXbaZXHF1Yefzb2uSvxtYTuw+cZXQLMBw5zzjUcAOiksFcQP1ttBYcd5u/Hxc9HPgKf+YxfHnOMD6tstVUU7121yndiI0fCttv65xoRPz/+sRczr3wlfPzjXmiFxMMs5yc52mvSJL8Moa/kAblhw+AOv9pIgGTYC6K8nxNPhBe+ED72MfjrX2t+tdKJuz7JucmOP94Llve+13/fj3xk6HDXZMcSD305N3h9s5Ke77zT/56vfW32NsH1ec97fEgPOkP8hFFAnXbizkMnOT/OdYaTFycpftqd43f++dH95EVKWo2fQNGZ3fPm/IT+f0ZlyNHhh3tXfN682vWBqhEugoKTXdT5WbJksPMzerTvG0NSeKeQN+fn10CVrrEYzjnLuM1KbLfAOXeCc26ic24T59yrnXMPl9WOTiFN/Fx3ne+QbrgB/vu/vbA59VS/g2++ubddzzvPbxtmFJ82zY82gEj8FK3y7JyvPQLw7nfD5z8PJ5wQrS/i/IBvLwyNQydt4yJhr9C2l77Ux7tvvdWPPjrooKHvW4snn4Q3val2Neos0kJecSZN8rVKpkzxMfpkBxhOemFW+7j4ee65wWGwZomfr3/di4e5c9Ovzh56CK64wv/3p50WfddGOtiyCPtVO8XPnDk+9JC3qnegk8QPdF7oK4ifffbxy3Y6P3/+s3dwQx+UFD/VnJ9mhb2Szs+YMfDyl/v7VzSQGBL68J128suio72eeWaw82Pm2wad5f7kFT9X4UNTl5nZSWZ2uJkdFr81s5HNoBPDXlttBXvv7XeiRx/1J7tTTvHrPvEJL4KuvRZuvtmf9H/yE79dMt8H6s/5ueEGP7Jim218teK+Pj/1xgtf6HficEAEsur8BOcnnCiTV3HJROyiYa899vBtXbrU19OZPt23Ia2DfPRRn6iYNnnqFVfAz3/u80Y+8pHiRcJqiZ9AfAReIO7shN813qmGdX2Vo7QZYa+nn4af/tTf37AB/vGPodt8+9u+rW94gw97he/aCc5PED8DA+25qnTOhzgXLIguGpLrv/51f8wmafdoL+cG74+dlvQc+oyjjvLLu+9uXyXs4Pp84AO+H1y1avD+1qyE55Urs/vGpPMD0cVmI3WRks5PvGpzkjzOD3Rm6Cuv+PklsC3wGuB/gD/gKzvHl6JO4uKnr88PEQcf0rnvPh+SOPPMaPsZM3x2//r1Pg8oTfzUG/b6/vf98h3viEJa48b5OiCPPDL4QIPsOj/B+dliC6/6ly4dHCdP2rlFnZ/AhAm+c3xhZYKVtATos87yrlnakPu40/LVr/rOo8hvVlT8xN971Sr/u40ZA1OnDm1P6Cx33dW7LvWM+Hr8cT89wOte5wXWJZcMXn/RRb6GUiDkdgU2boymXPngB/0yzOPTCeIn3smnidtmc9VVkWC84YahYc1rroEzzvC3JO12fpYsGeyYdarz84IX+AvCZ58td77CvDzwgA/bjxrlxU/oh+L9WbWE5yJD3QcGIvET+oSsEbtB/ATnB9Id5KKE1269te+b1q/PTkvI4/xAd4ufw4BDU26HxZaiTuLiB6LQ1z33+KuMH/xgaHHBIIYuuig6YcUPgnrEzzPPwC9/6T/zne8cvG7kSNh++6GvyarzE5wfs2jel7j7E8RPCNMVGeqeRvju8YqngZAUnWYhh/d+1au823XjjT5JO+8MyY04P6GDmDw5+r3inVZYv8UW0fD+vO6Pcz4/bLvt/H956aW+raecEr3H+vVw4YX+fsj3SeZNzZvnT5I77eRPQtA5Ya9Fiwb/nq0OfTkH58amVF6yZOj/84fKZWGasIifDOsRP41+32Tf0GniJz5nXsjxa0fo62tf8//1SSf543jiRP983KUtK+wVCgROmRL1t2n91saN6Re9QWzkmS7lmWfgu98dGsKLX8DGp+dII+7K96TzU5nHa261W7MbWjadmvAMkfgBP9IqzNIe5/nP9wnJq1b5sA007vz85Cf+6vmoo2qfzAPV6vwEgviJnyzD1Uw4wOt1fgJZ4sc5Xw8o/j5p7z1rFvz97/43fPxxPzdXHvKKn/B/xE/WoTOcMiVd/MTX71mpeJVX/Dz5pB8ZOGKEF3bf+Y6fcX71ah++WrPG5zk99pgfOXfWWf51SecnJN6HKTsgcn4eeST/fEXNIJlHVlQM3HGHdzjrTfSdM8eHs6ZMiUbaJKcXCOJn0aKhoYNGwl5XXulPOD/7WbHXxckjfq67LrtMQ7MJF0s77NDequ7BMX5/ZbrsNOcnT8JzHvET+octt4ycn7Sk58ce8xcvW28dFRGEYuLn61/3gzGSIyXDaydNqi1+8jo/QRR2nfgxs4fMbJ+MdXuZWQdUW+lO4nH3MFR611294NlrryipOY1PfGLw4yzxkzdOHnIWQp5RHqrV+QmEk2Wa8xNyXYrm/CQJ3z0Z9lq0KHp9NfEzYYL//YPDUmuusUAznZ/QWU6eHImfvEnPQWjus4/Pa3rve329phkz/Mnsox+NRnB94AP+/ceN88nzcZs9FNyMC/Lx4729vm7d4O9ThOeeg3339d97883977PLLum5MVkk8xqKhr2++U3f8dcrIILrc8YZPj8OfNJ44KmnvMACf3wkTyDxk2GRiS/Bh6HXr/ciqF6C+AnHZzLn58kn4cgj4ZBDWj+r+qpVPh9t5Eh/XLbT+Ql9RLiIK+r8FBnqHr8QriZ+QrJzMg2hiPgJfWUYMBPI6/xs3OjFjJn/3vFt430XRKKwk+b3yhv2mgaMzlg3BtixlNa0kE5JeF6yxHdikyZFO4gZ3HSTv7Kt5na8+MVRXSAYLH7GjvU77/r1+a4q58/3rsLkyVGxrDzUGu0F6c5POKCDaGhW2Cu4PlBd/MQLKNZqT2DFCv//xXN2skjL+ckb9poyxSd4Q3Hxs2PsyNxkE+8SjhwJ3/qWH8EyaRK89a1exO6/v98uhL7Wr/dhQBjs/EDjoa/bbvPiZcUKv38+9ZT/r046KX9eU6POT+j86/kOf/6zF4YTJ3pHIByHN9wQXWz88Y+DXxMPXwwMRP/v+PH+NUUERhCojdS5CvviAQf4ZdL5ueMOf4JbutTvL60kCLHtt/d5kO2c0ibp6hQVP0Vmdg/7yJZbRhfDaeInLd8Hiomf8P8nHcCwH266aXXXKvSRYdqhkSOjSVzDMdULOT8AWf7B/sCyxpsyPEmGvOL05fh3gvuz1VZDxUGR0FfoqA89dOjEfNWI1/lZu9aHU0aMGGz/xsMkgXqcn2riZ5ttfF7U4sWDRU5c/KSdVJPCKrhLecRP+D5pNX6SpDk/zQx7BZdtx8Rlyf77+/IFgXe9K/rOIWk8iJ/bbvO/z667RqMHA42O+ArtO+EE/5899pgvnvjQQ75mUx4aFT/hireeUU7hN/zAB3wHv+uuXgAvXBhdlYeQVyAuflas8CeJiRMj4Vwk9BVKOtxzT/ERioHQL+y3n99/n3xy8HvFXZYLLhiaG9JM4iEvaJ/z41w0ICAM1y4a9ioys3ua85OW85Pl/IR+ZNmy2o5/SB5Pnh/yOj/xkFcgiKVwbHVlzo+ZnWFmC8xsAV74/CY8jt0W4+f5+n2rGtxrVBM/eTjySJ/PcfHFQ9cVET9p4Y08xJ2f+BVDXAykJTyHK9eywl59fdF7xd2f++4b+j5p7510fvK4D3lDXpCe85PX+Zk82V/hFRnxleb8BD78YXj1q/37hhFcAP/xH34Z8n6q7RONjvgK+8KMGT7ste22flTZyJE+CTvpmiRZs8afCPv6YOed/XNFwl4bNkSip56pZH73O3+VH6bVMIvcn7lz/YkniJ9wgopfwQehM2VK8QrAEB0/69ZFJ8KihH5hhx18/5MsdBiEdn9/c90f54b+d0nxs8MO/vdeuDCfq1EWQfiMHh1djBZ1fiB/3k/c+akW9spyfkaN8m3YuLH2BVwt8VMr5ydN/IR9OVyIdKvz8xDwx8rNgNtij8Ptl8AZQIEskc6gUxKew8kwnByLYubzOcJM4nHyih/nohNdqBORl3jCc1q+D+RzfopWeE4jdATxvJ+8Ya9wABcJe4UTf7L2URqN5PxMmeKvHkM+Up6r3/Bbh5NHnL4+P6pv0aLB64P4+etf/T6RluwcaDTslTy5gU/i/8xn/P13vKO603DXXb6D32WXqIMt4vw8+mhUp6Wo8xMKYh53XDS0GAaHvu691yfOT50KRxzhn49fwYf/drPNiteBgcF5WfWGvkK/sPXWflQgDA59hf3sox/1ywsuyD8KsghnnOFHNMYvWpL7R19fsf2/LNIcnTTxU63OD+Qf7h6/GK4W9spyfmCw+5PFc89F/2UznJ9AVzo/zrnZzrm3O+feDvwY+EB4HLud5pz7pnOug9KYuotGnZ9q5C10eNddvmPeeuuog8lLPOE57vzE2W47L9KeeCKy1Yvk/OQJe0F63k/RnJ8iYa8izs/kyV4oLlsWdQDxnJ7QoWY5P1As6bma8wP+ZBL+u8B22/n9cOlS/xk33eSfD3Wn4pQV9kqKs499zOegLFjgiwdmEUJe++wTVR0vIn7iAnnx4mKd8uWX+2WYuiUQFz/B9Tn88OjYThM/U6YUn/4ABlcyL0P8hFGXQfw4Fzk/73ufr56+ZEn6/HSNcvXV/jj85S+j59LCtu0Y8ZUmforW+YHizk+1sJdz2c4PRP1vtRBb/JywcmX0XTZu9PfNfJ9UTfykOfJB5IF3y0KosKvET4JTgdRZRsxsvJkVyBLpDDol4bmZ4ifvFBchxHD44bVzV5LEw15xuzTOqFG+LQMD/mp47Vp/1TRihH/ezNvLWRV684S9YKj4GRgYHBJIEz9JV6lZYa++vuhKLnRm8RERtZwfyC9+nKstftIwi9yfb3zD/yd77+2vypOkuXlFyBI/I0ZE4a+LL84eYhtGesXFT5GwV3KES94aNwsX+hFpo0cPdVv32sufeB55JApDv+xlQ/93GPzfFg17JUeOlen8BBds8WLfnk028RdRwZH76leLF9qsxsBA9F/Ec6TSnMt25P3kdX7KCnvlGer+1FNesEyZEomTOHmSnpMXxOFx+E6bbOL7rGrtruX8xNvWzeLnosotje9Rwizrw5VWiJ9azk+9+T6QHvZKOj8wOO8nWPZTp/oDLHQYWaGvvM5Pcrj7E08Mfs+yR3sVET8wNO+nSM4PRCO+aiU9L1/uv9f48UNt6FqEpOf/+R+/zNon4jk/RacccC5b/IA/ye2yy2ARlyQ4PzNnRgVAizg/SfGTN+9n9mzfriOPHCrG+/v9fHMQibMjjqgtfoo6P8nt6hE/zz7r9/ExY/y+lwx7BYGxxx5eFB9xhB9d+swzvmRCklWr/Hx7ReeUevLJSLTeeGN0ckzbPzpZ/FRLeIbi4merraKLjqefHnxhWM31gXziJ3lBHM4RydG69eb8xN8Dulv8HArMzlh3BVAwU0QE2i1+NmzwxdqgPvETD3tlOT8w2CkIVzLh4A7iJ0twFM35CZ1DCHmFhNik+Nm4cegVW5GwV3w4bh6SeT9Fcn4gv/MTv2ou6uQF5ycIiax9YuJE3641a6rPPJ3GkiX+991kk/R9BaKTXlo+jnONh72C+AniPW/eTwh5veY16evjpSd23dXvG2lX8PGE56I5P/HBAv393t0selKJuz5mQ8NeQWAEwWEW5f784AdDBe/FF/s6YZ/+dLF2xMOPa9f6+kUDA+nHVjuGuxcNezWS87Nxoxc6Zr5vHDnS7xsDA4P3jeSEpknaKX560fmZSkbYC1gMbFlOc4Yf7c75+cc//An3ec8rFiIJpI32SjuhxZ2fcBIIJ4VqbkuaQMkiJB4/8ohvTxA/++3nl0nxEz94w0iOvGGvgYGoI4snvVYjWesnLm7iHerGjV6UrljhO8Lwe+Yd8VVPyCuw//6RYOrrG3wyT1Jv6Cuez5ElztJGCAYefdR30ptv7k/ejYS9gtOVx/lZtsy7pP392bWw4r/Xy17ml9Wcn802Kx72Cvk+223nhf3AQHFBEBc/4b0gEh3BXQyCA3whxy239J8VrwTuXDQn4H33FSvWmCxK+oc/+P5h3Tr/u8SrF++8s//t588fPB9dI2zY4Odf+8AH/PxdScpKeM4jcBcv9r/d5ptHF5VpeT9pE5rGKRL2CsdfeJx07/OIn/hFaS86P4uAvTPW7Q20YU7ixui00V7Ndn6yQhMh36ce1wcGh73SChwG4ifKeNgLqoufNIGSxZgxfsj0xo2+Ew/iZ++9fae5du3gOiZp4bS8Ya9ly3xHtemm+esiVXN++vsHC6D4bxm+94gR2dV44zQifiZNihJL99sv/b8M1Jv0XC3kFQhX/GmiJISUZs70nXcjYa9DDvHLPM7Pb3/r9/NDDhncycfZd99oH0oTP+E4bCTsFY6fLbbweUZQPPQVTnbhAqla2CswciS85S3+fry0xl//Gk2BsXp1sTnCgvgJjuMf/pC9f4wa5S9wkrl89fDww17wbLutn87n29+Gj3xk6HbVnJ+0nJ9Gwl7xYe6BtBFfoXxHGc5PONaTzk+44CrL+ena6S2A3wKfMrPnx580s72BTwK/Kbthw4H16/1VXF9ffvegCBMm+Nvq1dmZ//UOcQ+kjfaqFvYq6vzkDXkF4qGv0Enssku6VZ323uFAruX8hKvvIv9bPOfHuaGT/8VDX8mQVyBtSHKSRsQPRCeitCHuceqt9ZNH/FRzfuIhLyju/Kxa5U80I0dG3zWP8xOGuCdHecUZOdIXHj366Ej8TJjgT4qrV0f7VZr4KRr2KkP8hH1ym22iQocbNgwNewXe/na//MUvohN+cH0C996bvx1B/Lz1rf7iZd68aF69tP0jHN/JnK2ivOc9XvAsWhSJ+LTSCtWcn7LDXmkXwmkh01CENDjaSYo4P2Gy4jxhr+QF9HDJ+fk0vorz38zsz2b2f2Z2E/B3YDlwVpPa1zQ6YbRXXASE2c3LJpws00ITIcYOtU90WeR1fuJTXCRzfqqJn7zJzoG4+Inn/KSJn0acn3rET9z5CeGtCROi3zCInxUrhiY7B7bd1i8ffzz7c7KqO+flzDPhbW+rPtQc6q/1U0T8pDkyYb6spPjJ6/wEsbbjjtF3qOX8rFoFV13l77/61dW3/cQn/Jxb8elqkuGLRkZ7hX2vTPEzapR3GQYGohpFo0cPTebfYw8vGMPQ9BUrvBCCyEWrR/zsuWeULB4m2kzbf7Pm8CtK+P6XXRbtT2kDLlqZ8FxN/IT9ZtEiL/zGj49yAJMUcX6CgMoKe40e7QXdhg1DLwjTRuHWyvnpurm9nHNPAwcAX8AXPJxZWX4eOKCyXhQk7HDNCHkFwpVbWpLsLbf4g3bvvWvPTZVFmc5P2oGRd5h7IIif++8fHBuvJn7i790K8fPkk0Mn/oPynZ9q4qIau+ziT0C19stmhr2qOT/h5Br27aJhr+Aa7LTT4M+pNmrtmmv8sfLCF0b/QRGSeT9pCc9Fw16bb16e+IHoe4Uh57vumn5RFtyfMCnsqlW+FtQxx/jn41XVaxFEzPTpkVOWx/lJzuFXlHDsP//5g0ebJveBomGvRnJ+8oS9Qq7VAQdkXzDnKXIYxE8t5weyQ1/DxfnBObfMOfdp59yLnHO7OOde7Jw72zlXpZSSqEYz830C1UYINTLEPZBW5yfN+Zk0yV8xrVoVWep5wl5FnZ9wZThnjj8ZbrONPzjzOj/NDHvFnZ80Zycufmo5P80Me+WlmWGvbbf1jsnjj/urzkA83yOM4isa9oqLn0mT/H++cmX1k8XsyljXrFFetUiexOLiNn6lnlXrKk487DVjhhd/CxYUm3srTfyEPKsgfuL5PnHe8AYforr+evjSl/xz7353VCA1r/OzapU/FkaN8sdpED+BtP2jLOcnfuz39/vfMG2ajbxhrzISnvOEvW65xS8PPDD7fWoVOQzVnUePjv7jrJwfKCZ+4lMb9cpoLwDMbHMzO8bMTjazKZXnxphZofcRnnaLn3AgBbu5HuITm1Yb6g7RyTIkrDYz5+fvf/fLcILMm/PTqrBXo85PVthrzRp/BTlixNDJSMsmHvYqUusnT1hu1Cj/ew0MDB6t+PjjvgOdOjX6vYqGveLiJz7Mu1reT3BW6j1W4s5PfOhymLpk003zz+weFz/9/dEJLE/l70A15yeUvkjm+wQmTfIT0oIXvptt5vOgioqfIGCmTfPf4/nPH1xQs1XiB7JrjaWJnzFj/H+2dq3f55zLn/BcbWb3NOcnKX6C8xNy1dKoFfaKJ7tPmeIvYJcu9X1Ho85Pf3/02p5wfszzFeAxfF2fi4FpldWz8UnPoiCNzuuVhyzx45wf5g6R9VkPfX3RaKTQoWeNEAqdWbi6KpLzUzTsFagmftKcn/iohGpX4fWIn7Fj/Ylj/frIto+LmzzOT62wV8hd2W675uWRBTbd1Ld55cr8IZt163zn29dXW5ylhb6StZugsbBX/HOq5f2E14STb1Hi4ufZZ/0JcJNNIue0SOgrnvMD9YW+qomfcCLPEj/g514LnHyyFwQ77eRFwYIF+U5y8ZAX+H0izIMG6eIn/Gfz5xcbUh9nwwZ/oo8XWC0ifswG9ydpk58myTOze9rFcHy/2bgxSnYuQ/xsvfXgyvMLF6YXqi0ifiDal3vF+TkTeD/wOeA/8Pk+gd8Ax5TcrqbTCUPdW+H87LKLPwk++ODgHe+JJ/wV5OTJjYdHQgcerkhrOT+BZoS94vNkQT7xEz9481SchvrED0T/dQj9FXV+aiU8N5rvU5SitX4ee8wL7223HTq3WJK84qeRsBfUdn6efdaLkjFjBl+VFyGeuJr23xYZ8RXP+YHi4mfNGn8iGzFicI5GMpepmviZNcv3LSNGwCmVaa1HjvRCxrnBc+plkRQ/EIW+Ro5M/60nTvTfe82awZMEFyF+0g4hmiLiJ7QDfKixVrJzoNZ/HJ/aIhB3fu6+2++LO+xQ/YK5lvgJ+T7h4iNeEiXN+clqd5Yrv+uu/neN/6/dLH7eBXzOOXcefoRXnAeAjIoDohqtED+jR0dTBcQLoYWwUKiV0ghB/IQroFpVe8EfDEH0lBn2Mhvs/uyyy+DX13J+arUn0Kj4CUXkauX8JMXP1Kn+hLN4cfrJvlX5PoHw+37qU/kKz+XJ9wmkiZJq4qdZzk/Yftq0+o+V+BV8PNk5kHfEl3ONOz/xfifuVMSrKff3D/6Nk/T1+ZzBv/0tqhUDxUJfaeLnqKO8EHnBC7JdlEZDX2kXPUXFTzzpOW8R1vAfZ7U7PqlpIC5+QsirWr4PDE54TgtHJ12/NPFTb84PwCWX+LpP8ZGC3Sx+tgVuyVi3Dhifsa5j6YSh7q0QP5Ae+gohr6xaEUWIX8GPH599RR8/IU+dOvSqq4ywFwwWP0XDXvHPaob4CR1NcH6ywl5pOUHgT0rVJqxttfj5zGf8b3DVVXDssbWHshYRP2mipNGw19Kl/vcdPz7678JJP0v8hITuIJbqIZ7wXM35qRX2Wr7ch2022ST63kXFT1rICwY7P897XvT+WWy7rc/TidOo+NlmG1/HKSSYpxGO70bFT1q4u6jz8+yztZOdAy9/uV9+9rNDRcn69f6/7+8f7MZtsol3HFeujArSVgt5gd9+zBj/nmlio6jzU1T8bLrp0GH43Sx+Hgf2yli3D9BgyanhSSeIn333bfz94xWOq1UEjp/w4omNZYa9IOoc4y5Q3oTneHuqjfhq1PkJJ9qiYS+onvfTavGz115+1M/UqX6U0DHHVBeNRWoQpYW9wjDqesNe4YQZkp2zPidO0imqh7jzE5/aIpA37BVPdg5sv73fhxctyhcKyhI/8RysaiGvajQqfsCPYKtWeiNsnxzuvno13Hpr7c+tJn6S+26esFetZOfARz/q/7ebbvI1kuLEa5/Fc/XiNaJCnalazg9UD31VEz9Fcn6KXJh2s/i5FPi0mR0Ue86Z2S7Ah4FflN6yHuHPf84eCdNO8RPCXmWIn7jTkxXygqHOT6DMsBdEneP22/srIIgO0E4JewWKDnWH6nk/RZyVsthrL5g713ei118Pxx2XnYxaj/MTXrNxY3TCjM9rVCTslSZkajk/zRI/9YS9kvk+4E+QB1V65uRJNY0s8TN6dNTOZoufgYH6f9essNcnPuHrMF19dfXXl+H81BP2mjgRzjnH3//oRweL9WrngtBXLlvmLzTz9NnVav1khb2eeCJ/2KvInIvxbbpR/JwN3APcAIRUtkuBf1Yef7H0lvUA55zjO6Xzzx+67rnn/Ml17NhiJ/Z6SIqfZ57xJ5SxY6POqhHyOj9bbTV0wj4o3/kJVvzMmdFzeROe44+zxM+GDb4jMKv+fdNIdm61wl6d7vwEdtvNC6CpU709H5/7KU4jOT8LFgyu3RQoEvZKO+HGf8+0EX7xnJ962XRTv++vWBFdedcT9kpzfsCPuIKoOnI1ssQPRL9FVo2fWsTFT7XyBwsX+hyxzTcfPEAhD1ni53e/88twYZdFu8JeAO98p++P58+Hb34zej5tmHsg/tw++9R2mKA+5+f++70oHTducJ+e5kqG32n8+NpzLkJ0Ebp27eALo7PPhs99rnqNrWaRt8LzamAW8Dbgz8C1wK3Au4GXOecKTCk4fAjl9z/+8ah2RiBe3bnRhONa7Lyz35nnz/cn9BDy2mefcoZDxw+Uas5Pf390QksTP2VUeAYfE7/qKvjv/46eqyfhOSvsFRcmRX+/5AmnTOcnTOgKrXV+AjvvDN/4hr//sY9F7licIqPRttjCC5ulS/1/kZbvA8XCXmniZ+xY/1kbNgyePbvaa4rS1xft82n5XnnDXslk58CrX+1PeH/7WzTJaBbVxM8JJ3gBVG/h0y228O1YsSL9twwE4ZI1OWc10sTP4sVRSLTWxKplip8iYS/wAvirX/X3zz03ErN5nB/IF/KC6oUOk5Pahv0gDIhJXtClOT9Z+T5ZmEUCKD4w4utf93mDeYp7lk2RCs8bnXM/cc6d5Jw70jn3Rufcj51zG2q/enhy7LF+nqSBAXj966OT1dKlcOqp/n69dUOKMHJkNOLr7rvLzfeBwWGvWk5IOOk1M+fHzCcXxjv3enJ+spyfekNekC/stXChP5GPHp3eoWY5P2FSyqlT83XEzeD1r/eT5C5Z4gVQHOeKOT9mg5Oe0/J9oPGwV7w9ybwf58pJeIboCj5N/DQS9gJ/YnnjG/39pPuzZo2/+ArisJr4OfNM/xsEgV0Us3yhr6x8nzxsu63v0xYujITHn/8cra81T1u7wl6Bo47y/dOKFT5Mt8ce8F//5delOT9x8VMr2TmQ5fw895z/3NGjo23CfhD6tWaIHxg6v9eaNV6cjRiRfpHXbIpWeJ5hZm8ys/8yszeamYa41+Ccc3zhrkWL4MQTfQf+4hf73IittoquAppNPPRV5kgvyO/8QGSnxzu9snN+0ihztFezxU84wU2enO4KZjk/7cj3SWIGF17oBcnFF/vkzsCSJb7jmzix9n4SiIuSLOennrBX8qSblfezZInfTyZObLyDDie28D3SEp7rDXtBNOfWT38a/RYDA7768qGH+rDd5z8f/QZZtWIadaKD+Kk2x1cj4qe/PwpBhu8S389aIX7Swl5FLjjOP98fIw8/7MXwkiX+ex188NBt44KoqPOTFD9x1yf8z1tuOfg/Tx6b1cRPkX45mfQcn+MxT+isbPJWeB5jZhcDdwM/Bb4EXALcY2Y/MLMagyI7j1YVOezv95P/bb893HyzFyH33OOXf/lLFBprNnHxU2ayM+TP+QEf373sMu+KBcqs8JxFkZyfWmGvRsTP5psPDpXFf69k7kNavg9kOz/tyvdJsssuketz2ml+yC3UN9t8XJQ0GvYaGMh2cbKcnzJq/ATCSSzMVdaI85Mmfvbf3yefL17sZ5UH+PKX4fe/921fuBDOOisKbzSrsnyo/VTN+Qkjtep1vpPD3ePip56wV1bovUjYK6/zA9F54JZbfImC+fP9f//KVw7dNjg/m22WP0xYS/zE//sRIwbvT9Wcn5Cv04jzE37TVg34ySKv3jofeDPwGWAGsElleTbwFuArzWhcr7DFFnDppV4kbNjgq5jedFNrr9CD+PnLX/wV2YgRUX2QRsk72gv8yf+EE4bWBoLywl5plFnksBHxEy8nP2nSYCHU3z+4M8kSPyFW/+STg2PlnSJ+wIdPpk/3HfvZZ/vn6nGm0pyfcHIN5A17hXDi5psP7bSznJ8y8n0CyeHb9SQ8Z+X8gBc48RnX//QnL3YAfvtbX4og1JrZZpv6q1XXotlhr/jrHnrIh09uu81///5+/xtVG1VUdtirSMJznJ128mGsPff04jor8Tv000cemV+AZ4mfZLJzIC6GkuJn5Eh/vAwMRL9dPRelSfFTLcm7FdQoMP9v3gB8tlLhOfAQ8Hnz/8YZwAdLbltTqRQ3BLwLBBzSzM/7j//wV2D//Ce8972D3ZJWEMTPjTf6PIY996xdxCwvRZyfNNoR9ooP1QyfH2hm2Av8lc4TT6SHUSZNir5zVphl9Gh/8lu82FvHoePqJPEzdqxPOH/5y+G88wbXL6lH/Dz4oBciyQrekD/s9ZOf+GXaMO5azk8Z4ifZycfFT5gNO8zsnpVIn5XzEzjpJO+6/e53Pvl540Y/rProo/36I47wgmH06NrTi9RLK8XPgw/677lunRcJzz3n3b3HHsuuUF122KtIwnM97LOPnwy6yGjDPGGvOFtv7YtLxl8bZ/Jk/9suXTq4j+pm8ZPX+RkN/DVj3V+AUeU0p7c57DD4z/9svfABXxdl1Kho+GlZIS8o5vykES8wFh8eOzAQHWRJgVKUuPhxLhI2EyYMjTc3M+wFkc2b5uzEr/6ynB+I8n7iFv8dd/hlvAZOO3nZy+CHP/T3zzgjGn1Xj/i54QZ/Io/XbgrkCXstWOBDrhC5IXFa4fxUEz/x2bCrDfutFvYC7y698pX+t3riCZ9feO65g7eZPr3+hOY8zJjhhdxDD6UL0lWrvAs3cmT97Yg7PyHkddBBtSf+hfYnPNfDPvsU61trOT/JkGf8cdrnJPN+yhQ/nR72uhY4MmPdkcB15TRHNIsRIwbX9ClT/BRJeM56/ciRXuzET2BBoIwb1/iQ/FGj/G3jRm+TV7Ntmxn2gqijyXJ+AtUSbEMnH5Ken3vOz/jc1xcVvOsE3va2aPh7mM+siPgJoiSczNKu5vOEvU4/3Z+kTjzRhw+SZDk/IUeokRo/gbj4mTAhancgT+irWtgrEGZcnzwZfv7z1l9sjR3r3cd4Uco48Tyqeo/rLPFTq2AllD/UvZ6E52aTVeSwmvMTyHJ+oFzxkzaRayvJK34uAF5nZt8xs1lmtntleSHwOuB8M5sebs1rrmiEeI5PWSO9oPGwF6QLjrJCXoG4+1Mtl6gVYS+oLX6KOD9//rPPJ9tvv/oEaDP54AejyrZQn/gJpImfWmGv3/0OfvUrv49dcEH6NqEA56JFg/PCmuX8pP23tWr9rF7t98lRo6ofE696FVx0kZ94tF0j/6qFvhoNeUH0fzz0UDTM/cUvLlf8rF8fhSCTAjIt7NVM56cojTg/aX14SMgPr69H/CSrPHdL2GsusAPwHuCPwL8qy9Mqz8/FV3oON9GBhLwfs3JHmTUa9oJ08VNWsnMgr/hpdtgrdNBpB329zs/11/vloYfW16Zm88lP+pFHr31t/lol4P+L+JDwas5PWthr9Wr4wAf8/c9+dvDknXH6+33NFfC5eVB9dFg9xBOe08RPrRFf8XyfaomvZvCudw2ucN5qglOWNgVLcB+y/os8TJzof4e1a/3xuOWWXkyVGfaq5uiUkfDcTBpJeE7rw1/0Ir8MU4f0Qs5P3pS3tze1FaIlBPEzY0a5U2qU6fzEO5+yhrkH4uKnmqtUy/kJYYl6xc8b3+gdhpNOGrquXuen08WPWVTIrSg77BD95smRXlA97PWVr3h3YK+9vANVjeOP9y7Cr37lw2PVRofVQxAtzlV3frLCXrXyfTqJINzT8pfCc43WTXre86ILkYMO8r9tmc5PXvET+olOCntlVXiuN+x17LH++L3ySu8wl1Hnp905P7nEj3Pux81uiGg+Rx7py+Aff3y579tozg90pvPTrLDXxInwqU+lr6vH+Xn2WT/Ut78fXvKS+trUyWy/fVSYs2jY67LL/PL882vnvhx/fNTBr1tXzpxecUaM8PvM4sX1hb3y5Pt0CtWSt0PeSL0XSoHp033pDojy3FolfkaP9re1a6P/q9Odn5Urh1Z3DtQSP7vs4kOZ997rc6zKGOreLTk/QzCzPczsBDPbpvbWohMYN85f1b71reW+bwh79ffXPyqrlTk/zz2XL+E5Ley1bp3vQPr7m5NbU4/zc+ONPjdh//2bP0luOwh5K3196eGnamGv8B/mGQH3vOfB3nv7//e668oNeQVCRx8P5QWKhL06nXACjVcFDoQTchniJ5AUP80Oe8VfHxyMThI/Y8b442Lt2mgurRCC3HrroWHTuPuS9b+EwrSzZzce9mr31BaQv8Lzt83sv2OPXwPcjp/Z/S4zO6BJ7RNdQLiinjSp/iq41ZyfZoS96k14joe8mjEhbV7xE3d+Oj3k1ShB/EybNnSEFET734YNg2eMhuIjcV7zGr+8/PJyk50DQfz0etirmvNTVtgriJ8xY6LRq5tv7veRMJVKkrVrfSLziBGD65zFy20Eau07Iek5iJ9OCnuZDf0PQimM3XYbuv3YsZGoThPmAMcd55dXXNGY87NqVTS1xZZbtmdqC8jv/LwCP5t74LPAb4F98PV/PlNyu0QXEZyfRq7kOjHsleb8hNBDVgfRKHnDXhMn+o5n1Srv5kHvip8QdoqXaohjFomiMJVGIFz15j0xhZDw7NnRFAxlip+Q9FxN/IR9LEk3hb3y5Pw06vyEhO5DD43+/76+6MIgLfQVP+7jFy/1OD9B/HRi2AuGip9aczpedBF861vZ+9eBB3qB9OCD0RRJ9To/7U52hvziZ2vgYQAz2w7YE/iCc+6fwDcBOT/DmLjzUy+tHupe7b2r5fw0mu9Ti/hvWOvkEDr5Bx/0/0En1fcpk2OOgY98JCpSmEZW6CucwJKFEbN4/vO92Fm0yAsgKC/nB3zhxwkT0v+rkIQaRuQk6UbnJy3sVVbOz377wdy5Q2exrxb6yrroaSTsFegk5weyxU9WjbdXvxre//7s9+vv98ciRPtiveKn3fk+kF/8rALC1zwEWAHcVnn8HH6uLzFMCeKnWc5PM8Neae89apR3szZsGJpE2yrxM3Fi7ekH4tVxX/jCxqtgdypjx/pRW/vvn71N2oiveNHMvOLHLHJ/wkm6TOfn7W/3J6MwdDhOrWTdbsz5aWbYC/ws6MkTaF7nJ86oUd41Wr8+cg/zOj+BTnN+koUOa4mfPMQnpIbGnZ92jfSC/OLn78D7zGwv4H3AH5xzIbq+E/BkMxrXTFo1q/twIJyky3Z+2hX2MssOfbVK/FTL9wnE66T0asgrL2kjvkLIa8yYYvlZydGQZc+VllXVOJ7Hlcxdgu5yfloR9sqimojMOu7jx3wQPUWdn04TP3EBunChv02c2JiYf9nLBudKDYew1yeBA/FJzrsCsXqtvJrseb/EMKAM5yct4bBdFZ4hO/TVbPGz226+AOWJJ9beNu78DHfxkxb2qnfagRe9KOqUt9kmv2vUKCHpdP366OQQp5tyfuKuQ3y+PufKC3tlUU/YC4aGvoo6P50c9gquz8yZjSUYT5jgJ8cN1Fvnp2vEj3PuVnwl5xcCOznn7oit/j5dmPDsnJsVbsC8Njenqykz56cTihzGP7PV4mfsWD+D85e/XHvb4BSMGpUeRhlOpIW9iiY7B/r7o5EtZYa88lDNtegm52fUKC8mNm4c7J6uWeP/o1Gjmicq6wl7QWPix2ywI9IJxAsdlhHyCsRDX0Xcrvj0Ft2U84NzbqVz7m/OuRWJ5690zt1XftNEtxAs7kZmim5X2CtLWLUr7FWEULvmJS/pvKvOVpMW9iqa7Bzn7W/34dxDDmm8bUXIEj8bNvhRRWb5QqKdQFreTzzfpxmlIqC+sBcUFz/x9xg7tnnfp17iv38YnVXGnI7HHOMvEKZOLTYxbafl/OSd3kKITE45xXfIJ5xQ/3t0Us5PVnugs8TPEUf44anDPeQF5Ya9wA/rfeqp1k8Sm3XiDvvdlCn1z4TeaiZP9iPXli2LvlezQ17QnrBXp+X7QHrYqwznZ5tt/BxfRY+ruPgJ02600/mR+BENM3Giv1JuhDSxEYrMNeIoxSkiftoV9ipCmMBSpIe9GhE/0B6HJUv8hJpDZQ67bzbVnJ9mip/NNvNu37Jl3rmNu7vDUfw88oif32706PQCh/Vw+OHFX9OtQ92FaCpJ8bNqlT9oR4zw0w6UQT3OTyeHvUREtbBXN4UEs8TP/ff7ZdrcZp1KWq2fMoe5Z2GWnffTzLBXpxF+/z/9yS/33rv2/HbNJPxGy5Z552fkyPZNbQESP6JDSIqf+ypZZDvvXN4B2w0Jz6I+yg57tYteEj9pw91b4fxAduhrODk/IWQbvnMZIa9GCL9jmGNs6tT2TW0BEj+iQ0iKn7vv9suybFqIOrzly6PPySoMmBaGW7XK30aNKm8EmiiHMkd7tZNa4meXXVrbnkZIC3u1IucH5PzA0N+4U8RPqGHVzpAX5J/Y9Dgze3vs8Y5mdrOZPWtml5mZTgWiIZJi4557/LJM8ZN0c8aPz77ySAt7NXtSU1E/ZY/2ahfbbuv3rSef9CO8At3o/LQr5weyRWQ1x7fXnJ9OFT+BrhA/wFlAvLrEBcB2+Bo/BwNnl9ssMdzIcn523728z+jvH9xJVRtFlhb2Usirc+mVsNfIkX7478BANMeXc90tflqd8wMKe8Fg8dPX5+etayfJ37Gdw9whv/h5HnAHgJmNBY4GPuSc+zDwCeD4Kq8VoiatcH5gcKdXTfykhb2aPaO7qJ9mjPZqF0nXYuFCvx9OmdI9NX4gPeenVWGvLOdnOIW9xo2Lph7abbf2C7S+vug4he5xfsYAlV2BF+OHyF9TeXwvsE3J7RLDjHjHs3FjlPDcTPFTLW8nLewl56dz6ZXRXjD0xN2Nrg+0N+zVSM5PuOApIn7aLSzSMIt+53aHvALx37JbxM/DwEsq948D/uacq5QpYiqwPO1FQuQlVEhds8bXpFi71uc/lFXgMJDX+VHYq7volbAXDA3ZdLv4SQt79YLzM2JE9JpOFD/QeeIn/jt1S9jre8DZZnYb8F7gh7F1LwLuKrthYnhhFh0Yf/ubX5bt+kBjYa8wt5LCXp1HrVndu4lecX6qDXVvds7P5Mn+GH722cGfX038JOcXzCOew/t0qsAO88C94AXtbUeg65wf59w3gLcBNwPvcM5dFFu9CfCj8psmhhuh8wnip8xk50BR8RMPez3yiF/usEP57RKN0cs5P90qfto51N0sqob98MN+6Vy5zg9ESc+d6vx86Utw7rlw8MHtbomnk8RP7uktnHOXAJekPH9qqS0qiJn9L7A7sBFYD5zpnPtjO9sk6iMIjttu88t2Oj9pYa8wxUBZFadFefRi2KsXxU+rwl7gxc+dd3rxM3Om3x8GBrwTOCLlzNeI+OnUfeylL/W3TiH+O7U77JVL/JjZLsCmzrm/Vh6PBT4N7AVc7Zz7dvOaWJNTnXPLKu3aF/ijmW3unBtoY5tEHQTxE2YgbrbzkyfhOS5+HnjAL8Ns6qJz6NWE54GB7hU/QRgsX+4HMfT1tV78QOT81JrSph7xE96rU52fTiP8lu2e2gLy5/x8G3ht7PHngQ/jR3l9zczel/cDzWw7M/tWpUjiKjNzZjYtY9vtK0UUl5vZCjO73MwGBR2C8KnQ4jmYRZkEwbFihV92Qs5PCHs9+6yf5Xv06Ggkiegcesn52WorX5Pqqaf85L5r1vipAFo9w3yj9PdHbV6xwh9DAwP+2GrFHFOtED+dHvbqNMJvOXVq+wvF5hU/+wA3AZhZH/BW4GPOuRcA5wLvLvCZM4DXAUuBG7M2MrNxwHXAbsDJwFuAnYHrzWx8YtuvmdlDwC+BE+T6dCfxqSYmToStty7/M+oNez30kF9On97e+WhEOr0yvQV40bBNpXjInDl+2W2uTyAe+mql6wONiZ+BgUhIV0uYD5+hC6J8hGOx3fk+kF/8TAIqxf3ZF5gMXFZ5PAeYXuAzb3DObemcOxq4tMp2p1Te99XOuV8752YDxwI7AoPyjJxzZzjnpgNvBr5sZqOGvJvoeOLiZ7fdmnNlUO9orxDyUr5PZ9Ir01sEQujruuv8UuKnOI2In/hIwWr90Dnn+P/oyCMbbe3wIIifduf7QH7x8xTesQE4EnjQORcqKEwANqS+KoUCrsyxwC3OuQdir52Pd6COy3jv3+OF2d552yM6h6T4aQZ5c37iBc8GBpTv0+n0UtgLekf8hLyOpUtbN8w90Ij4ybvvTJwIhx4qNzgvneT85B3tdQXwBTPbCz/k/XuxdXsDD5XcLoA9gdkpz98JnAj/TrzeqiKKMLMXAZtltcfM5mR81swG2ypKIB43b0ayM+R3fvr7/YG6erW/hZFeEj+dSS8NdYdI/Cxc6JfdKn7izk9//+Dnms1mm/kLquXL/ec3Q/yIYnSj+Pk4foqLo/BC6LzYumOJprookyn4vKAkS/DuDsBY4GdmtgnefVqJz/lJe53ocFrt/NSqHj1+vO8EV66U89Pp9NJoL4jET0Dipzih1k8Y7i7x036CG7fnnm1tBpBT/DjnVuJzcNLWvbjUFhXAObcEX2E67/az0p6vOEKHlNMqUS9x8dNu5wd8WOzpp/2IL+X8dDa9GvYKdKvoThM/rRziXET8hP1k1apoxFc37judzOmnw6xZsN9+7W5JgSKHAGY2BS82puAdmJsrAqQZLCVyeOJkOUKiywniZ8QIP6qqGeTN+Ym355ln/DxL/f2w447NaZdojGqjvbo54Rn8qMda+2qnEs/5abXzA4PzfmqJn74+v6+sWRNVopb4KZeRI+GAA9rdCk9u8WNm5+Jr+4yOPb3WzM53zn2q9Jb53J40c2wPSphLLJH/M7PR9xONE8TGjBnNqwNSNOwF8M9/+tL406a1pj6JKE4vh726NeQF7Q17wWDxE6o6Vzvux43z4ueZytjmbtx3RD5y5aib2enAJ4CfAofip5M4tPL4E2b2wSa07QrgQDP7twdQKYZ4UGWd6DHC1W2z8n2geNgL4Pbb/bJbQw/DgV4Le22xRfSdekX8tHqoOxRzfiDK+5H46X3yOj+nAd9wzp0Re+5eYK6ZPYef6f2beT/UzEK16DDX7CvMbDGw2Dk3t/LcRcD7gdlmdhbggHOARxk82qwu4vk/yvnpDF7+cjjqKHhf7nrhxYl3fOPHZ28XXx/Ej/J9Opdk2CtvkbpOpa/PF8576KHuFj/xsFdwXlqd8wNe/ARhI/EjIL/4mQZcmbHuSuA9BT83WdzwwspyLjALfJK1mR0GfA34CWDAH4HTnXPPIXqO7beH3/++uZ8xbhwcf7zv1IINn0VS/Mj56VySYa+8Reo6mR139OJn113b3ZL66aSwVwgl5ilu+vTTfinx07vkFT/P4CcxvTZl3Z5E1Z9z4ZzL1R055xYAJxR577wo52d4YgaXX55v2xD2Cna9xE/nkgx7dXPIK/DpT8Mee3hHtFtpt/iJ1/p5tFKWV86PgPzi51fAOWb2DPBz59wGMxuBLzb4OeDHzWqgEO0iGRaT+OlckmGvbh7pFZg1y9+6mXYPdY/X+rn7bv+cxI+A/NNbnAnMw4uc1Wb2FLAauAS4HZ8M3VU452aFG/67CTGIuPgxg512al9bRHWSYa9ecH56gXjOTxg+3krnB6LQV9g3JH4E5C9y+KyZHQy8EngpUZ2fucBVzjnXvCYK0R7itVW22667XYRepxfDXr3A+PHe8QlFA838fFitJIifgMSPgBzipzJD+i3Ax51zvwV+2/RWtQDl/IhaxJ0fhbw6m2TYS+KnMzDzTk8QExMntn4S0HrEjxKee5+au6Fzbh2wEwVmbheiF5D46R4U9upc4jk+rcz3CSTFT7USF0H8qMJz75NXg/8BOLKZDWk1yvkRtYiHvVTjp7MJlbfXrvXVuHsh4blXiOf4tDrfBwaLnwkTqjtPQfyERA6Jn94l72ivbwE/rYzw+jXwJL7o4L9xzj1UbtOEaC9yfrqH/n5/27gRNmyQ89NJdJL4qVXVPYifgPaf3iWv+AlVlz8EnJGxTY2ScUJ0F3HnR+Kn8xk92ifWrlsn8dNJxAVPO8JeodbPypUSPyIir/h5e1Nb0QaU8CxqEXd+FPbqfEaN8uJn7VqJn04iLnja4fzEa/1I/IhA3qHuKmIohh3B+dlyy8EukOhM4iO+JH46h3aHvSASP7WOY4mf4UOm+DGzPnxdn/nOuX9lbLM3MM0595smta9paGJTUYtdd4WTToIDD2x3S0Qe4iO+JH46h04RPyDnR0RUc35Owk84uneVbZ4Ffm5mpzjnfl5qy4RoM3198JOftLsVIi/xQoca7dU5tHuoO0j8iKFUG+p+EvAj59z8rA2ccw8DPwROLrldQghRCIW9OpNOcH6OOMILryOOqL5dsgaQ9p/epZrzsx9+iHstrgXeXE5zhBCiPhT26kw6QfzMnOmrTJtV307Oz/ChmvjZBFia4z2WVrbtKjTaS4jeIh72kvjpHDpB/EBt4QMSP8OJamGvp4Edc7zHDpVthRCibSjs1Zl0Qs5PXiR+hg/VxM+fyJfL87bKtl2FprcQordIC3sp4bn9dIrzkweJn+FDNfHzdeBwM/taZWb3QZjZSDP7OnAY8LXmNE8IIfKRNtpLJ6/2063iZ8QIfxO9SeZf65y72cw+DHwVeLOZXQM8Ulm9I/AyYDPgw865W5reUiGEqILCXp3JmDHw0pf6OdeqzajeCcTFj/ad3qaqrnXOfd3M/g58DDgeCLvDamAO8EXn3I1NbaEQQuRAo706l7mV2SHzJB23k5EjvduzYYP2nV6npqnnnLsBuKFS8XnzytPPOOc2NrVlQghRAI326lw6XfTEGTcOVqzQvtPr5I5oOucGgEVNbEtL0VB3IXoLhb1EGUj8DA+qJTwLIUTXEA97aXoLUS8h70fip7cZtrnsmthUiN5CYS9RBhI/wwM5P0KInkBhL1EGEj/DA4kfIURPoNFeogwkfoYHEj9CiJ4gOD9r1vjQFyjnRxQn1CKS+OltJH6EED1BED/Ll/vl6NHdNcRadAZyfoYHEj9CiJ4ghL1WrPBLnbxEPUj8DA8kfoQQPUHS+dHJS9SDxM/wQOJHCNETBPGzbJlf6uQl6kHiZ3gwbOv8qMKzEL1FCHvJ+RGNsPXWg5eiNxm24kcI0VvI+RFlcNppMH06HHVUu1simsmwFT+q8CxEb5HM+dEwd1EP48fD8ce3uxWi2SjnRwjRE2i0lxAiLxI/QoieIDg/AwN+KfEjhMhC4kcI0RME8ROQ+BFCZCHxI4ToCULYKyDxI4TIQuJHCNETJJ0fJTwLIbKQ+BFC9AQKewkh8iLxI4ToCRT2EkLkReJHCNETyPkRQuRF4kcI0RPI+RFC5EXiRwjRE8j5EULkZdhOb6GJTYXoLTTaSwiRFzk/QoieQGEvIURehq3zo4lNhegt+vvBDJzzjyV+hBBZyPkRQvQEZoNDXxI/QogsJH6EED1DPPQl8SOEyELiRwjRM8SdHyU8CyGykPgRQvQMCnsJIfIg8SOE6BkU9hJC5EHiRwjRM8j5EULkQeJHCNEzSPwIIfIg8SOE6BkU9hJC5EHiRwjRM8Sdn2TFZyGECEj8CCF6hiB+Ro+GPvVuQogM1D0IIXqG4PYo5CWEqIbEjxCiZwjOj8SPEKIaEj9CiJ5B4kcIkYeuFz9mNtnMfmtm95nZ7WZ2jZnNaHe7hBCtJ4S9NLWFEKIaXS9+AAd83Tm3i3NuH+C3wA/a3CYhRBuQ8yOEyENbxI+ZbWdm3zKzm81slZk5M5uWse32ZnaZmS03sxVmdrmZ7RDWO+eWOeeujb3kz0DqewkhehuJHyFEHtrl/MwAXgcsBW7M2sjMxgHXAbsBJwNvAXYGrjez8RkvOx2YXWZjhRDdgUZ7CSHyMKJNn3uDc25LADN7F3BkxnanANOBXZ1zD1S2vwO4HzgVuCC+sZl9prL9u5vUbiFEByPnRwiRh7Y4P865gZybHgvcEoRP5bXzgZuA4+IbmtlZwNHAK5xzq8pqqxCie5D4EULkoV3OT172JD2EdSdwYnhQcXyOBo50zi3PejMzm5Oxamb9TRRCdAoa7SWEyEOni58p+LygJEuAyQBmtidwNvAgMNfMADY45/ZvURuFEB2CnB8hRB46XfzUxDl3J2A5t52V9nzFETqkvFYJIdrB5pv75dSp7W2HEKKz6XTxs5SKw5MgyxESQgxj3vxm7/686lXtbokQopPpdPFzJz7vJ8kewF2NvHEi/2dmI+8lhOgMxo2Dk09udyuEEJ1Op1d4vgI40MymhycqxRAPqqwTQgghhChE25wfM3tt5e4LKstXmNliYLFzbm7luYuA9wOzK0PZHXAO8CjwvUY+P57/o5wfIYQQYvjQzrDXpYnHF1aWc4FZAM65lWZ2GPA14Cf4xOY/Aqc7555rUTuFEEII0UO0Tfw45/KO0FoAnFD25yvnRwghhBiedHrOjxBCCCFEqXT6aK+moZwfIYQQYngi50cIIYQQw4ph6/wo50cIIYQYnsj5EUIIIcSwYtg6P8r5EUIIIYYncn6EEEIIMaww51y729B2zOyxSZMmbTtz5sx2N0UIIYQQDTJv3jyWL1/+uHNuu7T1Ej+Amf0D2AJ4oIS3m1lZzivhvTqZmZXlvDa2oRXMrCzntbENrWBmZTmvjW1oBTMry3ltbEMrmFlZzmtjG1rBzMpyXhvb0ApmVpbz2tiGVjCzspxXwnvNwE+XtW/aSomfkgmjyOI5Rb2Ivmdvoe/ZW+h79hb6nuWjnB8hhBBCDCskfoQQQggxrJD4EUIIIcSwQuJHCCGEEMMKiR8hhBBCDCs02ksIIYQQwwo5P0IIIYQYVkj8CCGEEGJYIfEjhBBCiGGFxE9JmNn2ZnaZmS03sxVmdrmZ7dDudpWJmb3WzH5pZo+Y2Wozu9fMvmBmm7S7bc3GzH5vZs7Mzm13W8rGzI42sxvM7LnKvnubmR3W7naViZkdZGbXmNkiM3vWzP5uZu9od7vqxcy2M7NvmdnNZraqsm9OS9lujJl9xcyerByzN5vZwW1ocl3k+Z5mtr+Zfd/M7qlss8DMLjGzndrU7MLk/T8Tr/l4Zbs/taiZDVPke5rZ7mZ2qZk9HTvf/GdZbZH4KQEzGwdcB+wGnAy8BdgZuN7MxrezbSXzEWAj8Ang5cB3gfcAfzCznt2XzOyNwD7tbkczMLNTgdnA34DjgROBS4Fx7WxXmZjZ84FrgZHAKcBrgFuBH5rZe9rZtgaYAbwOWArcWGW7H+K/86eBY4AngavNbGazG1gSeb7nG4A9gW8CrwA+DuwH3GZm27eikSWQ9/8EwMymA2cBi5rcrrLJ9T3NbH/gL8Bo4F3A0cBXgf7SWuKc063BG/CfeFEwI/bcTsAG4EPtbl+J33OLlOfeCjjgsHa3r0nfeTKwEHhj5Xue2+42lfjdpgGrgdPb3ZYmf8/zgHXAhMTzNwM3t7t9dX6nvtj9d1X2zWmJbfapPP/22HMjgHuBK9r9HUr8nmn90o7AAPC5dn+Hsr5nYvurge8Bc4A/tbv9Jf+ffcBdwK+a2ZaevVpvMccCtzjn/j0rvHNuPnATcFzbWlUyzrnFKU/fWllu28q2tJAvAf9yzv283Q1pAu/AnyD+u90NaTKjgPV4oRdnOV3qfjvnBnJsdiz+e/9v7HUbgF8AR5nZ6CY1rzTyfM+0fsk59wiwmC7pl3L+nwCY2ZvwztaZzWtRc8j5PWcBuwMXNLMtXXngdyB7Av9Kef5OYI8Wt6XVHFJZ3t3WVjQBM3sJ3tl6X7vb0iReAtwDvMHMHjSzDWb2gJn12vf9f5XlN81sGzPb1MxOAQ4Hvta+ZjWdPYH5zrlViefvxAvCGa1vUmsws92BqfRYv2Rmk/H77Eedc0va3Z4m8ZLKcoyZ3WJm6yu5et80s7FlfYjETzlMwccwkyzBh016EjPbFvgccK1z7rZ2t6dMzGwU3lY+3zl3b7vb0yS2weemfQX4InAk8Afg22UmFrYb59y/8FeTxwGP44/V7wCnOed+0camNZtq/VJY33OY2Qi8m7kYn/PUS3wFuI9I0Pci21SW/wtcA7wM+DI+TPazsj5kRFlvJIYXZjYBnyi7AXh7m5vTDD4KjAU+3+6GNJE+YBPgbc65yyvPXVcZfXGmmX3TVYLw3YyZ7Qz8Eu94nIYPfx0H/LeZrXHOXdLO9onS+TbwYuCVzrk08deVmNlL8U70fr1wXFYhmDI/dc59unJ/jpn1A180s92dcw07enJ+ymEp6Q5P1pVXV1OxHn8DTAeOcs491uYmlUqlRMEngU8Boythkk0rq8Pj8kYdtI9nKss/JJ6/BtgS2Lq1zWka5+FzX45xzv3WOfdH59wHgf8DvtHDIxWr9UsQOUA9g5l9EXg38A7n3DXtbk/JfA/vZD0W65NGAP2Vxx2fw5WTav0SwL5lfEivHvSt5k58fD3JHvis9Z7BzEYClwH7A0c75/7Z5iY1g+nAGOCn+BNIuIEf7r8U2Ls9TSuVO2usz52E2eHsDdzunFufeP6vwGb43JBe5E5gp0opjjh74Ee/PTD0Jd2LmX0S+BjwQefcT9rdniawO965jPdJBwEHVu53a9mGJC3plyR+yuEK4MBK7QUAKqGDgyrreoLKFfIlwGHAq51zt7S5Sc1iHnBoyg28IDqU3jhx/KqyPCrx/MuBx5xzC1vcnmaxEJhZyeOK8x/AGnrQAanwG3xtoxPDE5V8mNcD1zjn1rarYWVjZh8EzgU+6Zz7drvb0yTS+qTb8YNtDsVflPYCVwFrSe+XAErJL1XOTzlcBLwfmG1mZ+FrF5wDPIq3KnuF7+A70s8DK83swNi6x3ol/OWcW4avnzEIMwN4xDk3ZF2X8jvgeuB7ZrY58BD+/z2S3srj+ja+cONvzOxCfM7PsfjaTV9zzq1rZ+PqxcxeW7n7gsryFWa2GFjsnJvrnPuHmf0v8PWKYzsf7w7sBLy59S2uj1rf08zeAHwd+D0+Zy3eL61wznWF+57j/5yT8pplwIhu6pNyfM9nzOwLwKfMbAW+gPD++EKdP46XlGmIdhc96pUbsAM+qXIF8Czwa6oUqerGG/AwXtil3c5ud/ta8P17qshh5TtNxIvap/ChkDuAN7W7XU34nq/AC9rFleNzHvBeoL/dbWvgO2Udi3Ni24zF10tZiHe5/gLManfby/ye+JFPNX+LTr/V8x3osiKHeb8nYMCH8A77OuAR/MjikWW1wyofJIQQQggxLFDOjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIMcwxs7eZmcu4HdHu9vUKZvYCM1tlZtvGnptjZn/K2P5dlf9gWoHPeLWZPVWZeFgIkYHEjxAicCLwosTtr21tUW/xFeBi59zjTfyM2cCTwH818TOE6Ho0vYUQIjDP5Swdb2ajXQ/NDdVszOwF+PmXPtDMz3HOOTP7PnCOmX3BObemmZ8nRLci50cIUZVYWOxgM7u0Mp/QXyrrRpjZmWZ2j5mtNbMnzOyrZjYm8R7TzezKSthnsZl9w8xOTYZ1Ko/PTrx2WuX5tyWeP8TM/mhmz5rZSjO72sz2Smwzx8z+ZGZHmNnfK5//LzM7PuV77mNmvzKzZ8xstZnda2ZnVtZ9qxJOGpl4zSaVz/9ijZ/xXcAdzrlaM1ZnYmZnVwlPvi226f8BmwKvqfezhOh1JH6EEIH+ipgJt/7E+kvwk2O+Fvh45bmfAmcBPwNeCXwBeGdlWwAqs6n/AdgXeB/wNvzkmmfV21AzeyXwR+A54CTgTcAmwI1mtn1i8+cB38DPcfUafFjoUjObEXu/FwI3V7Y9o/JdLgC2q2zyXWAqkBRNbwLGU3sC45cDN1b5PiOSN4b2zz9gaFjyl8BG4L6wkXPuaeBuolmwhRAJFPYSQgTuSTy+CXhJ7PFlzrmPhgdm9lLg9cDJzrn/qTx9rZktAX5qZjOdc/OAk4HpwIucc7dUXnsV8M8G2voNYK5z7rhYe67Hz0z/YeD02LabAwc75+6vbPd3vAB6HXBeZZvzgWeAA51zqyrPXRfewDl3l5nNBU7FOyuBU4FrnHPzsxpqZlsC04DbMzY5CFhf5buGNjwGPBZ73xPxYu5059yfE5v/AzgQIUQqEj9CiMDxxE6u+NnP4/wq8fjl+BmXL6s4FYFrKsuD8bOnvwh4NAgfAOfcgJn9H3B20Uaa2c54h+a8xOeuwrs3Bydecn8QPpXPXmRmi4AdKu83Di9AvhITPmlcCPzCzHZ2zt1vZgfg3axa4aVtKsvFGetvx4fFkhxHhjtmZvsDPwYudM59M2WTxbHPFUIkkPgRQgT+VSPh+cnE46nAKGBlxvabVZZbA0+lrE97Lg9TK8sfVm5JFiQeL0nZZi0Q8pIm40NMj6VsF+dXwEK82/MR4DTgCeA3NV4XPicrQfw559xtySfNbGbaxma2HXAFMAf4z4z3XB37XCFEAokfIUReXOLxM8Aa4KUZ2z9RWT4J7JmyfsuU59biBVWczRKPn6kszwSuTXmPdRntyWIpMABsW20j59x6M/sB8F4z+zLwBuCrzrkNNd4/tHdywXYNwczG48XW08DrnXMbMzadEvtcIUQCJTwLIerl93h3YZJz7raUWxA/NwPbm9m/c1DMrA+fc5PkEWCvxHOvTDy+F3gY2DPjc+8o8iUqoa4/ASeZ2dgam38PP5LqUmA0cFGOj3gYLxKnF2lXEjMzfIL51sAxzrlkWDLOTvjfSQiRgpwfIURdOOfmmNnP8Tk/F+ALIg7gk3uPBj7mnLsPn5vyceByM/sEsAgfMpqY8ra/AM4ys08Ct+BdpTcmPteZ2fuA2ZWRZP+Hd0K2BF4MLHDOXVDw63wEmAvcbGZfxYfApgMznXP/rs3jnHvczK7A50f9xjn3aK03ds6tM7O/AC8s2KYkHwNejQ91bWNm8ZyeB51zi+HfIumF+BwlIUQKcn6EEI1wEj5p+bX46sKXAe8H7qeS0+OcWwe8DJ/8fCFeDM0Hzk15vy8A3668x6+B3YG3JDdyzv0On9g8Hj8E/Grgy8BWeKepEM65W/FJz48C3wJ+h6+SnJYHdGllWWt4e5z/BQ6rhK3qZbfK8hv47xi/xd2xF+NDbL9o4LOE6GnMuWQYXwghmk+lMN+PgJ2ccw+3tzX5MbNL8EJpunNuIOdrJuKF1Hudcz9tcvu+C+zlnMvKxRJi2KOwlxBC5KCSszQTX9voQ3mFD4BzboWZfQn4qJld4pp01WlmW+HrKqnAoRBVkPgRQoh83IyvKP1j6sunuQDoxycsP1Fj23qZBnzYOXdDk95fiJ5AYS8hhBBCDCuU8CyEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFf8fCwEpuI7VzCYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cs_amplitude = np.abs(cs.power) # The mod square of the real and imaginary components\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(cs.freq, cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the cross spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together multiple segments of data.\n", + "# Averaged cross spectrum example\n", + "You could use two long `Lightcurve`s and have `AveragedCrossspectrum` chop them into specified segments, or give two lists of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here. Remember to check the Lightcurve tutorial notebook for fancier ways of making light curves.\n", + "## 1. Create two long light curves.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and two signals in count rate units, with the same properties as the previous example. We then add Poisson noise and turn them into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGBCAYAAAD2eQAbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADtf0lEQVR4nOxdd5gkRd1+a9Kmu73bS9xxcBxRsgiI8qlkSQoSRVRUVAyAigiogIIiAoKIImYFCSIZRJQkGckg4cgc4Q64u720extmdma6vj+qq7uquqq7etLu3db7PPvsTE+H6uoKb7+/UIRSCgcHBwcHBwcHh/GDzGgXwMHBwcHBwcHBobVwBNDBwcHBwcHBYZzBEUAHBwcHBwcHh3EGRwAdHBwcHBwcHMYZHAF0cHBwcHBwcBhncATQwcHBwcHBwWGcITfaBWgFpk2bRufOnTvaxXBwcHBwcHBwSMQTTzyxlFI6vZnXGBcEcO7cuXj88cdHuxgODg4ODg4ODokghLzZ7Gs4E7CDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDOMCoEkBCyLyHkPkLIACGknxDyOCFkN+H3HkLInwghSwkhg4SQOwkhW41GWR0cHBwcHBwc1jS0nAASQr4K4CYATwA4EMChAK4B0On/TgDcDGBvAN8AcDCAPIC7CSHrtLq8Dg4ODg4ODg5rGnKtvBghZC6ACwCcSCm9QPjpNuHz/gA+BGA3Sund/nEPAXgdwEkAvtmKsjo4ODg4ODg4rKlotQL4RQAegN/F7LM/gHc4+QMASmkfmCr4ieYWz8HBwcHBwcFhzUerCeCHAbwI4FOEkNcIIRVCyKuEkGOEfbYA8Jzm2HkA5hBCJrSioA4ODg4ODg4OaypaagIGsLb/dy6AkwG8BuYD+GtCSI5S+ksAUwC8oTl2uf+/B8CA+iMh5B7TRbfbbru6Cu3g4ODg4ODgsCah1QQwA2AigC9QSq/3t93l+wZ+nxDyqxaXx8HBwcHBwcFh3KHVBHAZgI0B3KFsvx0s6ncWgBVgKp+KKf7/FboTU0p3MV10++23p2kL6uDg4ODg4OCwpqLVPoDzEn73/H220Py2OYC3KKUR86+Dg4ODg4ODg4M9Wk0Ab/D/76Vs3xvAQkrpIgD/ADCbELIz/5EQ0g1gP/83BwcHBwcHBweHOtBqE/C/ANwN4PeEkGkA5oMFgewJ4Eh/n38AeAjA5YSQE8FMvt8HQAD8rMXldXBwcHBwcHBY49BSAkgppYSQAwCcBeBHYL5+LwL4DKX0b/4+HiHk4wDOA/AbAO1ghHBXSumCVpbXwcHBwcHBwWFNBKF0zY+P2H777enjjz8+2sVwcHBwcHBwcEgEIeQJSun2zbxGy9cCdnBwcHBwcHBwGF04Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODikwvLlwH77AbfcMtolcXBwcHCoFY4AOjg4pMLppwP//Cfw8Y+PdkkcHBwcHGqFI4AODg6psHz5aJfAwcHBwaFeOALo4OCQCpSOdgkcHBwcHOqFI4AODg6p4Aigg4ODw+oPRwAdHBxSwRFAh9Udw8PMl/XZZ0e7JA4OowdHAB0cHFLBEUCH1R3nngv86EfA1luPdkkcHEYPjgA6ODikgiOADqs7XnxxtEvg4DD6cATQwcHBwWFcgZDRLoGDw+jDEUAHB4dUcAqgw+oORwAdHBwBdHAYt6AU+Pe/gXffTX/cmgheH++8M9olcWg2HAF0cBgFAkgI2YUQQjV/K5X9egghfyKELCWEDBJC7iSEbNXq8jo4rKn45z+BffcFNtoo3XFrKgH8179YfWy44WiXxMHBwaH5yI3itb8J4DHhe4V/IIQQADcDmAvgGwBWAPg+gLsJIdtQShe2sJwODmsk/vtf9n9oaHTLMVbw4IPsf7E4uuVwaD6cAujgMLoE8AVK6cOG3/YH8CEAu1FK7wYAQshDAF4HcBIYeXRwcKgDmRr1/zVVAfS80S6BQ6vgCKCDw9j1AdwfwDuc/AEApbQPTBX8xKiVysFhDUI2W9txayoBXFPvyyEKRwAdHEaXAF5BCKkSQpYRQv5GCJkj/LYFgOc0x8wDMIcQMqE1RXRoODzPedmPETgFUMaael8OUTgCaIfly52LyJqM0TAB9wH4OYB7AfQDeB+AkwE8RAh5H6V0CYApAN7QHLvc/98DYED8gRByj+mC2223Xd2FdmgQPv1p4KqrgFtvBfbaa7RLM65RqwK4psIRwPEDRwCTMTAATJ0KdHQ4ErimouUKIKX0KUrpCZTSmyml91JKLwCwN4C14Hz71nxcdRX7//vfj245HJwJWIHzAXRwCDF/Pvs/PDy65XBoHkYzCCQApfRJQsjLAN7vb1oBpvKpmCL8rp5jF9P5t99++zV0ylqNsaayiNUIjgDKWFPvyyEKpwAmw/WHNR9jLQiEN7l5YH6AKjYH8BaldEDzm8PqBCe3jDqcD6CMNfW+HKJwBDAZrj+s+RgTBJAQsj2A9wB41N/0DwCzCSE7C/t0A9jP/63laGVnGBcdb1zc5NjGaBHAsfro3TvJ+IEjgMmop5+O1T7uIGM0VgK5ghDyE0LIQYSQ3Qgh3wFwK4C3AfzK3+0fAB4CcDkh5FOEkL38bQTAz1pd5rvvBmbNAm6/vfnXeuABdq2bb27+tUYVboQYdYyGCfg//2ldX0oL1yTHDxwBTEat/aFUArbaCjjmmMaWx6HxGA0fwOcAHA62wkcngEUArgdwGqV0KQBQSj1CyMcBnAfgNwDawQjhrpTSBa0u8J57ApUKC1pt9iRx8MHAkiXA/vuv4RPSGn1zqwdEBZBS+0mxnke3555MaWtFX0qLsVYeh+bBEcDm4b77gHnz2N9FF412aRzi0HICSCk9C8BZFvstB/BF/2/cYNwMTM7eNuoQCU+lAuTzo1eWsQBHAB0cQtTaH1x6qdUHY8IH0CHEuOk8jgCOOiqV8PPIiP1xaypRWlPvyyGKcfOiXQdq7Q+5MZFbxMEGjgBaoJWDxbghgG62HXVUq+FnRwDX3PtyiMIRwGQ4BXDNhyOAYwyt7Dzz5wMf/zjwyCOtu2YAN9uOOpwCKKPV97VoEfOJ/MhHgGeeae21m4mVK4EDDgD++c/ajr/vPmC//YCFCxtZKhnjhgBefjnwyU+yyIyUaIQC+PGPA/ffH7//JZcAn/oUUC7Xdj2H2uHEWgusqQrg5z/Poo5vuWUUJvU1lUWsRnAEUEarvRL++U/gjjvY5yuvBLbeurXXbxbOPBO46Sb2V0tb2dlP/pXLATfc0NiycYwbAnjEEez/PvsARx6Z6tBGKIC33JI8v/BiHXAAI4IOrYNTAMcYWuk/sWhR664VwZrKIlYjOBOwjFbf15Il4ee+vtZeu5lYurQx51m2rDHn0WHcEECO1WA9twG3vEPL4QjgGEMrFcBRHQRdEMioo1YFcE1Fqwlgb2/4ub+/tdduJhpVj80cC8cdAayhMmt9juKLpcPYhiOAYwytJIC1rgTREKypMtJqBHGgTuMitKY+ula/k4gEcE1SABvVPpppDRl3BLCGyhT7Q5pnWms/GnfPZAzAEUALrKk+gI0ggHfcAfz61zUcmGJEef114PTTmXO5Q+PQSh9AzwPOPrv2yWHBAtYGGmVe1KGelQ/OOCN9IIdoAm6lAvjUU8xPr1lO9+ONAF5xBfD3vzfufE1BCwmgUwBXH7ggkDGGVvoANoIA7rkn+7/TTimd2FOMKB/+MPDOOyxq+dJL05XPwYxW+gD+/e/A97+f/jiOvfcGnn8eeOKJ5i2TWCtxufBC4Ic/ZH9pzjFaJuBtt2X/e3qAo49u/PkbpaSuDgSwrw/47GfZ5zEdwFBDZYrjg+fZzxfOu2f1gVMALeAUwGSkVmZSjBLvvMP+P/FEyms4xKKVPoDz59d3/PPPs/8PPVR/WUyoVfF49dXarjdaCiBHvc/EhPGkAL7wQvh5TLtGOAXQQQNHAMcYVjcFsOZz1TBaOh+RxmJ1TAPTzMlFrI8012lvT38tSkffB7BZS/+tDgSwUZg3L/w8polPAxRAWzgFcPWBI4BjDKurAtgKAujQWLTSBNyox72mEMC+PuaDx0lYf3/ru0SzCFajCMDqEAUsEkCx/YwJ1Fkg8TmmeaZjmgg7SBg3BPCee4C33hrtUiSj1kFvaIglXk2T7qmRippTAFc/OAVQhhgUkeY6bW3pr8XVv3XXBQoFdu0aFmuoC81WALswwLJd1+hfsDqYgFtJAOfPT15VQ0KxGH6uoXAd8+dhWzC/m1ZEAa8u+M9/WFBaWlQqLCn2WIr4HxcEcHgY2HVXYL31ajt+dfABPOoolkn9tNPsj2mkApi6jpwCOOqoVQEcTYxFBbAWAsh9ZqdOBbq72edW+wE2mwBehcPYmm6nnlrTeVYHAvjyy+HnZitfG27Igu1eecXyAPGNoobCfeTrW+IJbI92DDsF0MfDDwN77AHMmZP+2PPPZ0vj7bVX48tVK8YNAVxdIJKyNBzpb39j/6+6yv6YUVUA1/TXxNUAIuFZXfIAjkUCWIsJmKuNbW3ApEnsc6uVgWYRLN4+PoZ/sQ9XX13TeVYHArhqVfi5VSZgHhCViDoJIMdErGqJArg6aAJPPln7sXxt7EceaUxZGoFxQQDr7eytVADFzlOLKjN3rv2+o+oDWMMo4UzAjcXquBTcWCSAogJoWzf8/NnsmqsA1otWBYHUU946rax1XzMWDSKAWVSdAuijnjmzUGhcORqFcUEAVyfUosqI+62zjv216iWAdYl4zgdw1NFKH8BGkYJmkk/RB7DWydy2z44rAlhjx20mARTLWI9iJVqXxjQBrKNwGXhNiwKuNdXMaKGewKRm9bd6MC4I4OqkAIr91Lajv/RS+DlN56uXAIplTT2Itqi3VypyvrVa0NvbvFUTRhNjPgikvx8YHATQmj6oKoDlsl3bERUPv7iJ4P0lkwkJYKtNwGORAIp12cxnXmuEq4hKRT62VQTQ2l1DowAuWpReocui2rQ8gGKd1VN/S5a0pv7raZNOARwlrE7KUS0KoJiM1HYCAuqvl9WBAO65J7DWWnIdpcH8+cCMGcDOOze2XGMBYzoNTKXCnOMmTADQmvRIKgHceWfWdt58M/44sR6HhuyuNVoKoPgcWpYGJsVA0yCrZSLEeqj1Oqpv+ZhWAKtVPPIIMGsWcOCB6a6X1gScZt9GEMDnn2f9dLfdajs+DcSmnHZMqyVYrNkYFwRwdYI4GNkSQHHiSEMAG6kAph5EW+QDePfd7P9116U/FgCuv579b+YKFKOFVq4Ekhqidz1aQwDVNDD8mT/wQPxxYj3a9j+RAPKJoRXPQLxGs97BVgefukYogGOeACqVyZfRTLuUYr0+gHF9txEE8IYb2P9UKXJqhNh/0gaXOhPwKGFNVwDFztlKAihOmGNVAeSodZBftqyx5RhLGNMKoNJpW60Aiqbf2bPjj6vHBJzNhvfWCud5kRM063r1mIBbpQCK40Gt11GJ2JgjgEplplJ8hYdYrwk47rqNMgG3CmLd26r9HM4EPAYw1iOUaiGAtZiggFFWAB0BHHWMeR9A4YKNjFg3QayPZ5+VLh+LWgggPyaTCfthKzIjiWNKs663upmA11gFUKnMVAqUUEF5lOsyAa9JBFB85mnEFmBsEsBUXiCEkAKAbQGsDaADwFIAL1FK32h80ZqDcjm9mjBaQSBjXQFsNQGs5znUOsjzhL1rIsZ0GhhFoslmm58TRGzPzzwjXT4W9foAtlIBbAUBbJQC2CoT8LhQACuVdAqgUEE5VOoyATsCyDAWCWAiBSCEZAkhhxBCbgXQB+BBANcCuAzAvwG8Rgh5ixByDiFko+YWtzaIA1IrfZ1uuQVYe23gwQftj6klCrgWBQIY5SjgFucBPOMMYIcdWJ7En//c/rjVQQFcuRLYeOOEVWDuuovZMv/zn2BT4svGk0+yYxQHytEhgPaH9vWx+vjhD9NdUnRpSEMAa/EBFE3AH3z5UizEbPz+G89im22aO0a1QmFT28f815MDaTjE8l1xBfDe98aPg4sWpe/TahnPP5+tEvX22+nOoSqArbIutdoEnEOlrkTQzfYBbCXGlQmYEHIIgBcBXA6gBOBUAB8F8F4AmwD4IIBPgxHCAwG8QAj5IyFkrWYWuh7UMrjWSjw+/nHg3XeBgw6yP6aVCmC9ymata6cCGJWkT489xiaiE06wP2Z1IIB/+hPw6qvAj38cs9MeewDvvMP++0g0AR9xBDvmkEOkzeKja9pjVPJrpCGAl17K6uOMM9Jd0mQCTnpXqdcEfMSdn8dsvIPv4Ww8/XRy0Ek9GA0TcLlC8NOf2h2rjnnPPAPccYd5//POS9+n1TKeeSZbJ/6ss9KdY7QUwFrTwKQyAQsVlNYE3OogkFZOJWuaApj0TvArAD8DcAmldKVhn0cBXAXgeELIBwB8F8BXAKQcfpsHsYG0esF19fpJaIQPIKV25G5NTwPTiEusDiZgq2g0TWWI7SZNnkM1eatNO0r9LMTCVaup1OpaczaK7Vkk/s02AXO8g7UBNNflpBUEUAUFsSbwOnVrxQrz/rXWle7e077Erm4+gLk0BERRAMdyGphWoh4CKPaBSqV1K93EIakIG1BKbZsbKKWPADiIEFLD6pitwZhLd6GgXgXQ89hxNuuTruk+gI0YUFYHBdCKABISqXOxfrSkyVDhtWTvrytNUEoTcK3P3UQcm2EC5ufsqoY5nF7H+gBaRwBbFgUM+/WSdWPeypXm/WutK10ZxzIBFLuDtelRSQOT66ztgmlNwGo9xtWL8p435iFWaVoCKD7DYjFIcTqqiKUAachfI45rFkbLB7AW1KsAAvYNc3VLA5N2sE+bp0kH/jy6uuo/V7NQ630mKoCGBiIeZ/vcU0+OdZiAa52ITcc1wwTMz7nuqueDbRSsgTeTAIoTWKuCQDxkrJPg6sa8VimAaeujlSbgmjI9xPgAJg6/DVQA4+qlEQpgK4M0xbE2rQ+g+AytVdwmw5oCEEI2IYTsIHzvIIScRQi5mRBybHOK13iMjAD/+hfzy4tbeolS4GtfA375y9YuJVevAgjURgAvuQT47GfTdcJWJ4JOi3o7mUiKJk+u71w2OPFE4Cc/SX+ctQKooBEKYNMIoCINjCYBbKYJeJ3+ecG2DFhlNmtCe+UVYK+9omXQglLgqKOAiy5KfR21TVAQtLUB3/wmcO658ceOJgEcywqgWLbbb2fzUiKEyrzztmq6RQYa6AMYV6+N9gFstmdRLQrgKacAp54q10MjxIlGII0V+tcA/gfm8wcAZwI4FsCzAH5BCKGU0vSjRQugKoAf+xj7vPHGwDnn6I+ZNw/4/e/ZZ75UU61IM0iJjURZDMHqGMB+EhIJ4JFHsv+HHAIccIDd8a32AWy1Aiianpr9lrlyJXNoB9hgkQa1EsBEBdBw0+Jxto+xLgVwNSKAixbZXSsggCtbRwA///kUqv2jj7LoIgA45phU11HbBAXBwoXAn//Mvp94ovnYtASwVitGI0zArVQA1Wd13HHAt76VcJBQmc/+r4J5W4c/DQ8nmOUbGAXcbAVQNSM307curQ9gpYIgAOpYQSZb7RRAsMjfBwGAEJIB8DkA36WUbgfgJ2CBH2Meogk4zr9LHIhGSwHs7bU7phEKIEca0tSKKOBGLStVC0Qi3Wz/lHrOXyvRXZ0UwDQTfa11afIBTLpH8d7mzTPvpzvn2itDE3AWzW1k776rL4MWdUTL6fqsrS9tq3wAV2cF0BpCZWZRlcazxLGxgXkAm60AinN6s1280pqAxfYstuOxogCmIYCTAPBu/D4APWDpXwDgHgAbNK5YjYXJBzCuUY/W8nG1EMBafQB191ir0tKsPID1OAnX28nEemy2xbqeRcabRgDHkQ8gpY1RAJ9/3q5O+DFrr4gqgM1CpxIEEHtfday9pzMBx6l4InQEMI48jkcfQGsoBFDs44ljRgNXAqlWzWPa6kYA05qAxf3FPrA6EsDFAHii5z0BvEYpXeB/nwBgzAZx1xIEIg4so7USiLgeaRxqVQB1nTqNfN6KKGBx0Eo7QKxOBFCsjnpNUVo00ATcEgVQMQHX2i5ruZyKtD6ANkmPq1WgG33oGVwYbGu2CVgNZIp9dnVEiOkIYJyKJ0LXluNehBtpAk7bx1cnBTCHilS+xLGxgVHAyukkNIIAii8NzU7zltYELJZHJICrown4HwDOIoScB+A7AK4RftsKwPxGFqxZEB9IXKNu5NqjhLBVQf7yl/j9PE/uKL29bBGGK66IP65WBVDXKdPcdysUwHoIYL2dLDUBfPJJ4OyzgwcyOAj86EfAyy8nH6oIXqkgDko//jHL3RyBwir+/nd5vyQCeOaZYd+x9gF86imWXbdSST+BtTgIRHf//JppTMCAnRnY84DN8by0zZYA9vcDp58OzE8ace+/H7jgguAhqQpg7H2JFU4pXn6ZJda2GVvUZ52GAOom8LgX4bFkAm6mm0gaUhVAGABVBTBxbEwRBbx4MRt3uP+rbl9Tn1ydFcDf/CZ59RgTARwrCmAad8nvAWgHsBcYGTxT+G1/ADH52kcXJgWwlQTw4x9nn/femy0Pp4PayZcsCRdhOPhgs9Ou2uFsg0B0HTVNEt1W+ACK10ib4LfeTibWoxUB3G479n/aNODLX8YJJwC/+x3w178mT9bi+ctl+7xpajlPOw248UbGRU2oVoHDD5e3JZmATz2VPbJTT02hAG67Lfu/1lqoVL4Ys6MGCiOu9cWknmM6O1kglq0COGkSyyyQSMz8YzZQ3pltCeCxxwKXXQbccAPw9NMxO+60E/v/3vcCu+6azgQs9s9yGVtvXUCpxOrjZz+LL5+uLushgCtXsrLqXgJqHafXBBPwyEjCOCFMdllUpfGwkQrgkUcC//43y67x8MP6slYq0KYCWt0IoFpvv/1tfOaGNUYBpJQOUkqPopRuRSn9IqV0SPjt/yil32tOERsLWwLYLDNMXGSv2gHEtwvbZJpA7elj0hyrlqlZUcD1DBAtVwA5XnsNAHD99ezr668nHyI+w3pN3U89pdlJaNC689uYgPnyaKl9AN98s6VRwOK91BOlzAmTLQHkiV1tXlSqVeZbJcLWB/Ba3/NaXK84FguYp456j7HPTryJUikYF7RtS4FOAYxLuSXC1GdNL7VjIRE0b5utJoCJY7VwUOogkBQ+gI/6eUEeeYT95/vuuKO2KBJWVwLI3/WTfFvHugKYJg/gfELIew2/bUkIGbMm4FoUQNPxtcB2kOIdoLOT+eKJnTRucFI752gQQOcDKMCfEbjpykalqMcEnNYHsFYCyJ9x6pVAurpamgdQrA9b1VhXvo6OaFHijuVqjM01PS8a9csJYFKd8nbNy2d1MUTNt7H3ZUhIatMP1LrkCa5tYOqzJtPzaJqAeTvjxL8VaWDWWYcZGIB0BDCHSl0KYNxznzpVf9l99w3zp9oEWNVqQh8NE/BRR7H/SS4RJv/E1U4BBDAXgCmfezuA9eouTQtgSwDrUWRqBb9OPg9Mn67/TQd1XdFWEcC6TMBrog8gh8L4NrCIj2+UD6ANaiWA/LjUCmAtBDDGBJxEkGohgLr9uAJouxIIN3HZ3Gu1yiZWEZwQxvUl8d7XXTf5OgCMBDD2vhwBTAQv68SJ7H8rFMBsNmxnieObUKB6FMAkE/CUKfJ3XrfZbBhUuCYogJUK+8tkQmKb5G5lmk9XOwXQh6kZbA9gZX1FaR7ExnvDDfrtKhQLVF2wHaT4dXK5dASQl5UrArUuIQcADzwAvPSS3fGtMAGPlg/gggXMr4UjrQK4dGn4VX2WOiRG5Kro7QVuuw0vv0SxeHGKsiEFAVSI7Ky+F/HCZY9LUZlNI4Ax0kBSfxSfu+11dfvxqFlbEzBXAG0JoEkBjKtT0S3Ednk1XkB1srI2AQtsoRYCmAYmYmJFAJcvB2691aqQcVHAd91lCKRSwMuahgAuWwbcc/lC0HvuTd5ZgEgAeTu78cYE38oYE7BpbBwYYL585VJYh0kmYK4AroVFwH/+E1w2k0k2j69OBJA/7/b2cGxIUgBN7Xm1IICEkG8TQt4ihLwFRv5u5t+Fv14AFwG4tZYCEEJuJYRQQshPlO09hJA/EUKWEkIGCSF3EkK2quUaIv71r/CzLQGs980urQlYRwDjJiH+G1csbJUvXae+8kpg003tjm+FCbieAaKeTjZnDovc5kirAIqRvzaEPHV722EHYO+9ceqm1yTvC0iNUPesbBTA396zGTb73PvRg+XBNmO9iDfR1qa9p9gmoLyBqUEycRCfeyMUwLQEsF4TcFxbE1/O+vuTryOecHU2AZuUFukd5UMfAvbZJzndAsxBIPfeC+y+O/Ce9ySXlY+znAzY9NsddwR2OWJdkF13sXOo9KFTAL/1LXa7iQfB3gR86KFspaxfXmAfBcwVwNewIbDHHtjg9f8EZV2TFECRAPKxIY0JWMRqQQDBUrv8x/8jAB4XvvO/6wB8G8BRaS9OCDkcbIURdTsBcDOAvQF8A8DBAPIA7iaErJP2OqaJplUmYNu1CkUCqK49a2MCTqsA1pvbrtUKYK0m4O22Y74z9SCtAig6vdsQ8tTt7Y03AAD74N/x+2lQqwLIIUavGh+jyE6qVe01YwlIHQSwFhOwLjiL9yfbNDBpTcC1EECxWm0DK1QCyB/raJmA47p+XQrgiy+y/7cmaxGmIJDbb2efBwYSTxG0Ld5ObJ77K68IX2JDuKNlA2QCCLCo28SDYG8C5lV38032UcCTJrH/XWAXmLvwAQCtUwBblQeQP+983l4BNJXHNlNHsxGbBoZSehOAmwCAcTL8mFJqEdOYDEJID4BfgJHHvyk/7w/gQwB2o5Te7e//EIDXAZwE4JtprlVLEEcjE//aOrqKBFBdf9jGBMzfSlpFAFP7AIoPogYfwFpNwAcdxDrsccelO15EWgIoDgw2b3tpCI6IdljKvQlBINo3ZwMBnBosCBRTL5YE0JjgWWHEzVYAdWparQpgMwmgOHH397MulWhhUAjg+eezvlCLAmgzliYRQM8zLzSS1gdQ20QtIoZMCqDtknVAbcRfQoocNiYCaHUQWFsTn3ealUCSFMBIm/B3FhXANcEEzOsgkwkJYK0+gLa5epuNND6AXwWgTclJCOkihORTXvscAM9RSq/U/LY/gHc4+QMASmkfmCr4iZTXMcJWARRRC2myNe+JBJC/Vdkcp5qAG0EA0w70VvVSw3IXjVAA29tTREwakNYEnMrhGvZtREUHLG0JDYgC5phiYwIWGVWl0lAFMKl+xPq2rUudmtZMAlirCVicuD3PUkmosiTAlYrsQ5YmDYx4zSQk3X/TFEAOC2JlCgJZvjy63YRanruEFKHt9RJANeCokWlgIml/PHZsJrNmmYDFZ1CvCXisKIBpCOAf/T8dfu//WYEQ8mEAnwNwjGGXLQA8p9k+D8AcQsgE22sB5gEnrlGbfqslIMQ2oGQ0FMAZWAxdbE+ScrJ4cdQHcOlS+0ndq8g7Ll6sf04qyUxDxMR0GWkSK+tAaQoluQYFsFaXA2sFUEAtBHC68O4nEkCe/T8CkVFVq9p2EdtWFNk8VgGkFGIkTKMUwFpNwInXHBxEbnhVQAC9DCMCwXfD9VatihIUKz9AzwvaY1eX5QonDTQBe8o0Y0twRaSaMC0IYNiXadC2+/sDzworqM897dwwNEywbJn9CwPAbq1WBVBEIxNBmwhgNlu7Cdg0H+hQLwG0vZZIAOs1Aa+OCuCu8M3BGvwDwO42JyGEFMDI4nmUUlO86RQAuhSLfPjr0Zz3HtOfTblUNJIANtsEXKsP4J6LLsVizMRPcGrkt7iO9OtfAzNnslXPOJ55hgWu7LlnzAWFSh0eqOLVV9nnSy9l5zv55Ogh6mSapv75INcIBRBIQQAzmdXKBEwIu7dI3QrHLMFawWeRAH7wg2xViggaqQAmmYBPOYU1IL8go2UCtjYFdnfjzAu7g0TQXpYZT7gCaCLL3d3AiSfK2638ABUCyPnRaJqATUhrAtYihQJ4Dr6LJVgLh+NveOYZ4LHH7C9TrwL4xaMymDYN+MAH7K8lKrjWByE9AeQkDkg2AavtaOVytnOtCuBf/8q682mnxZeRox4CeOWV7FqnnJK8r44AjicT8AwYTMAAegFhhojHSQA6IC8l11TUGwRisz0OtRDANCbgWhXAoxayHnYKfhr5La4jfetb7L+oRlx9Nft/110xFxRGkSyquMYPYOUdXSSUHOoEnoYc8c7Z2Sm/NTcyd1gAsTEpBLBUSp44a1UAOzCM92rTs5uhnj/vO29E6tYwkU7DUun7D36g2amJJuBIOc86i/3/0Y8A1BYE0jITMKXBvU0AizSgOZkApsnPmVYB7Oy0VADrSAMTUYRSEMC0JmDtuVIQwJNwLgDglBqmo3p9ALkyGrdsI0cjfABFJBEXQu3TwKjPe8liewVQN+7x+eCMM+LLyFEPAfzhD9l/PoTEQWcCHhqqrT2PFRNwmrWAlwDYCsDdmt+2AgTPcAMIIXMAnALgywDaCCFiU24jhEwGsApM/YuofGDKIKBRBymlu5iuO2vW9trp1zYNjAhbAijuJzZKGx/AbLY+BdA2DUyGmm8mriPVHDyiEEBOIOPOp07gaQZZ3sn42xpHrSu7WE+Ynhfp4MVivApZqw9gO4q44gpgyy3tj9ERwJERzRrEBqY8Q3kP1JITxQSsu6fY+0xjAlYwWiZgqzQwQufk/puqApimf1kRwGpV6gutjgJWEdf/0iqA2vE4lQm4dqjPvVYCaING+wAmEpAUiaDVZzA8HBLANAog36dQSCibgnoIYJp0LOIzyGTYcy8W2TnUOYZjTVIA/wngB4SQrcWNfm6+U8ACNJKwAdiqIZeDkTj+BwAn+J+3AvP120Jz/OYA3qKUWgTph6hFATQNdLaDs9gQbZd0a7UPIIlZe7QpzrSSY3ElWBsxrk7qIYCi2UtFvcE8ESgsX+3gSaS8VhNwG0rBc49FjAnYqAAaCOB09Erfte2tiSbguDZAqVyeeoJAuHrRUBOw0BA6/bQZNgqgqQytNgE3Ig1MIxUT3bkoqS0IRIRNfEa9JuA0+REbrQAmERBRAUwyAau/8XZcaxoY6/vzUQ8BTLNalPgMADs/wDWJAP4QbLWPJwgh/yWEXE0IeRDAkwD6AI0jWRT/A/MlVP8ARgp3BfAqmE/hbELIzvxAQkg3gP383xqCZpqATQvS2yR0blUUcK0KYM1QRooVy5IVD/W+05Aj0eylcpl6g3kiECusWo108KQ3zXqCQJpGAA1KSmoC2Ko8gJRGBvS0CqCo0jaFAAoNoQuskVALBdDU9sZaEAilrfUB1J1rqFQ/AVTXt9WhUSZgG7SaAIo+gGlNwLwd15oGJq0CWE8ewDQEUAzEAez8ANcYAkgpXQrg/QDOAksKvY3//0wA7/d/TzrHSkrpPeqf//Ob/vcBMJL3EIDLCSGfIoTs5W8jAH5mf3v8uum2A+HD3gQv4U3MwedxCQBg/fUhLYVlgolA2aaBURXAuElo9sp5eBNzsOMbLJ2iNQFstQKojCL/uLGKQw9NZwLebLNkMvX882wlD+7QrVMAkyb1s8jJmIfNMQFhhmBTOe+/H9h2S6HCvvc9HPfvvSBGV6dRAI1t5M03gblzgd/9LtjUgWE7AihAvfe0CqBqAtbemyhNff/7+MPCfaBGm6+/PqQl84yFtCWA8+cjv+2W6EQ4uu6yC5uI5syJiVhGSKTEtpJIlDwP2GknnPvWYQAslSChsjgB9BIUwDPPBDbaSN7Gn/lxx7GVe2KJ4KmnYtOzPh8cZ6UAGtLAJJlOtYqcZSJoSlP4AFIK7L03jvzj/+E1bIBv4/zgpxUr6zcB25CQ2hTA8MK1EkA1CGTOHOCFF2IOQnoTsKoAphFLCOpLA9NKE7DY3k49lfUlXVJ4oH4FcAs8hzcxB4fjb2PGBzDVWsA+gfshpXRHSukmlNL/o5Se7ufoaxgopR6AjwO4A8BvANwAoApgV0rpgsZdx/wbf9gfwf2YgwXY21/pbtUq4KKLks9tmqSaYQL+ytPHYA4W4PCbPwNg9VEAs6ji2mvTmYBXrADuuSf+Mscfz9by5ejqYss7bbZZuC2JAH6PnoXN8QJOnnNF4pqw++0HLH1XrrD3Lr4d62Bh8D2JtFoRwFNPZSTw618PNrWjGBC4WBgUwK99LT0B7IbMNrQESbnhXYZvjeQsrFaBP/zBUN5aFEAAuRfn4ZO4OnKqBQviV97ifFUk04lEacUK4P77sc+qq9GFATsfQKFeAhNwns14pjQwp54aJcpr+SF3/f1sebjrrou5JoA591wKgCmczVQAw8PCwZUoxN90jnI5miSa12lkwhweBm67DesufAgb4HWcj++EPzVAAbSxENSiAIpKnFovNuXRpYFZsAA44YSYg5BeAUyTCJpdJtxfVACbbQKmVO5vaectsV7PPDO+L6kE0CYXoDgXn4cTMAcL8Dd8ZvVTAJsJSimhlJ6qbFtOKf0ipXQKpbSTUro7pdR+7RzpXOx/bIoSBbzBTwKbGcTJy8aBuJUEUC1OIwhgU5bUUSqOD0px19LVo1o3KlT/nc5ONpHMm2e3cLv4jL731RUBQTINgpQCBURHns3xfPA5jQnYSCA0hW5HMXVUMz/N7rsDv/1tegLYBovGoSmrbsIz+usrNvE0QTJimhrTKVVwBU0kgIkmYOGHzfF8ahOwyQfQhnxwAshhmxqkrS19EAgtpieAcUTHdA5eNeIz4H1dqwAaULWY1kxl2Gkn/xwWzyBt+p9KBUHqHyBKyuLAy2syAWt9FhvoA5gkloj3xcfCViiA6phVq3Ah9h/TC7VJAbQ1ARcRXmRwsDGBSPUitqcQQv5BCHmf7ckIIe2EkOMJIV+rv2iNh9qwbEzAXO0Q863ZrOBTrwmYExWb46pKMPfqYgLmg5JJcgf0952keKkmUd5RCbHz6xKvSfr7EifMbFZPirbAvOB6DTEBaxpsG0aQqaZbI4+fn9djWh/AHKrIJE1emptQzVDitSNQFEDx1pP8+iZjpXZ7wwmgUJAtMC+1CThNEIgKlQBG3AAMg1t7e3oTsDcUljlpXNARQHWcMd2fuHIPx4QJ7H+EsMQUvkrTm4A5SZ0yJfH0AdIqgKWS3AfSEMAkH0DtC0CMCTiNAmjjAygSQD4WtkIBVNtjrfOW6PtrIqC1mIDFcX8lJkvnSru0aTOQ1FPeAPAwIeQRQsg3CSHbEkIktkEIWZsQcgAh5M8A3gXwJbDAkDED3pbVB2vj2MoJoKgA2igu9SqA6twbSxzlR9L0NDA1w0AA46Crx6SOo6ZbSTWpQ6nrvmQCmMvpFcAtMC9wJm9WEAgAZAYsIgE0JmD+dp5WAQQsVEDNQxInCQ7j236NJmAA6NHmkI9/5joTcKKpVCjI5ni+dhNwAwhgJMWQ4SRtbelNwN5w+KyTxhYdAVT7uenFW1y5h6MWAuhZEEDTvff0JJ4+gJoGJumYYtGsANoGGtVKANPmAVRXAkmaK8Xxj48NrVAAG0UAxfozEdB6TcAiAUw6rlWI7SmU0m+CpV55FMDpAB4DUCSELCeEvEsIGQawAMD1YGlbjgOwNaX00WYWOi34gJPmzSLOBGyjANZLAE2/ac/ZbAXwT38CjjwSqFbrMw03iAAmESRxAunokJ8X77z77w+8/LJ83JtvAgceCPz3v8LG3/0O3xhmcUdxCqDJBDxtGvucRgF87TXggAOAR9VeZJg5M8d+XbtdQqsJYD0K4FVXAZ/9rHSuNARwBpbgMnwWh+Nv0va0CmCiUibc4xaYV7MJGA0ggBFoT0IlE7BtGhiRACb1//YfnIjv4uyGK4ARwhJTyVVkcdJJMcl9KxWc9uoR+AwuDzbxQBV+vbi6ef55Nk7wMtkGgZRKZgKYRFxE8qEjSNq5rWJWGxNNkCnyAHqePP5xa1mtUcCpFMASxW/wdRyDX7PvNRLA3ap34Bocgh4sT60A2pqA+xCm9iDwcNZZwDHH6J9DaUVrokQSE0FTSl8D8A1CyHcA7AjgAwDWBsvntwzAiwDuo5S+2cyCNgJpTMCqAtgoE7BNwANvYBtuyMgAkEQAZQeQhgeBHHUU+3/ggejfcX+7k+tQAwFctiy6LYkAiJO4ahrjdfvww8DBBwPPPhv+9tWvArfdBtx4o+xX+cPB7+I0nJRaAdwcz2PqFAqApAoC+fGP2f+bb7ZTIsg116ATgxiCIRspUBsBjGnoTSWAn/qU/F1RAJPa9yfBlpj5LK7Alfg0OjoY7zLVZbnMzpnJyOVJYwJeBwvxZso8gEEamHx6Ajhjhvw9ck1NobOooq0tl9oH0CtaEsDFi9H12/NwNoDfIfQCast5EB99kg+g+ALH+2+k/8R0jMEhgnPZAh/4/vc1O9xwA/Zdfjn2FQggB5/U4+pmr72AhWF8VyoTsEgARWI8MhKfKF4kH7qypVUAq1V2TRPZUlcCGapRAaxlJRBRAPG8+PnWe/J/+DpYVoSLcGwqgUIc7y5dxAIEFmIdABfor6WkgeHPK25sN5WnBytw7rnMPHT00cAWStbjob7W2IfTpIEZoZTeSyn9GaX0OErp1yilp1BKLxvr5I8TPXWySeMD2CgTcNwgwUkX75TPPQd89KPJx1Va5QO4YIFd3jETlApfd1Yyu5k3L7otjQnYRAAB4O235d+S0vukVQAnoR+bdLKZIkkB1M1nkesp9deLacHnDts1gdEYBTBxDWJLE7AVFAKYNoUCDyQwcQb+bDo65H3SmICzqNopQToFMCEKWAdVAYxcU3OSPMr2JmDh3qitAjgQ5ucXCcdGG3p45x1g9mz/fIZxV6cA8rYZeXZxPoAVL363mAaUFPEPyOQPaIwPYBoFUFe2tD6AQEI/ShkFbPIBTGMC5qskivsmrrW7TF4TIg0B1Pme92BFIlnl/cemH4nlEecIMZWW7npD/Sn9gGrEmIgCbhUaFQRig1pMwHwQ4OVsbwfWXpt9TqMAVip2k0hqArhsmd3KAyYohVp/TnMIoPhcVQ4jEkD1tzAHnL5hpCWAALAFYTeQRgE0QmmwqzARywozAQCdGbl9RtrZGFUArRyhFRNwWt8ZHlBl6nv82bS3y8VONJUaCKDtUnAFf9LkaWDqMQHbKIA5VGoyAYtRwLFji3Bvkg8grWLWrOToY50CaCQQcSbgUriztq3ERJHZrv/MQUg4XrfKBKwrm1Y9NCiANsELaaOAa1UA1e3Vqrwtqa8XB+XKSJPYWTeXlZG3JoA2/UgkgOKzF5Pp6yK4HQFsIOoJAtH5ANr4GdRiAlYJIJDsQwHICiB/G7V5E8rWQADrUgCVCp80IX6UHR5mJnC1gyQNtOIErO4rnkvlN3xgNJmmayGA6w82jwCOoIBKlj3wjoz8wONISDN8ACPlbyQBbKECKJYn0QQs3GMGXmofwACKCbiWNDBpCGDaIBCqDCbGsUX4QUoD45OJeghg5Jg4BXAkgQDGRBnYKIAicjm7MRqIJ4BJ47VoftRdR2vKNRBAvspULLlKqQDqCGBaBZB/T0MAS0PyidMogLq5LA0BtAkoNBFAUQHU+fyrxLZZGBcEcEJpOT6OmyMvfnEPLk4BTGpk5TJwxhnA2ngbp+AnmILQkS2NCRhI7kAAa7Qc/NiLL44vo4gqMpG0M9p7rJMALn5XHkW62uMb+YsvApPpcpzX8xOsjbfxEdyHo3ERZt/2F1z3lduiQRI+ymVgBhbjFPwEOw/+CzjvvOCBigRQIpblMj694BxsiWeNZM40CE6jvfgxfqj9bXYfI4C1mIAj0BJAJju1E3sCuMUtPwOBFyGAaRyoVQJo46SvI4A213zjtWpdCmASARSJh1jsZpuAAzTDB1BzkhwqUhoYWxMwhsPG+1HcjnuP+JP+GOHexMmOE0D+PrF0KUu6q7pg6EzAxvEvLgp4JKwM7ctCjAIo+gAm5WnbDo/jBHousoTd3/Ll7L5ef12/f1wUcBoFUNe+tO9qBhOwDQFUfQDTmID/Dw/h1zgGU56+O7UCWKnITS/uZe+ee4Drr0lPAG+/HfjLX9IRwAceAH75S/ZZJYBrv3IvS6iqgTjui/OKqADqDC3Dq1qjACYGgawJmDH0Om7G/ji1IPdom2TAsg8gc+hPamRXXgncdx/wFD6GbfA0tsMTOAg3SOfVoVYFUDQBcwJ4zDHAHnsAm2wSX1aALUn0pS8BF1wQLYuEZctic/Yl4agvedJCzhM65MpQB7HXXwf+gK/gkKXXYa/81dis7Eds/IFFIpE/Uu0gXS4Df8XnsTduY6tUnwhggw2Agw4ym4B/+1scMe97OALfw2RDGhHTIHjG4q/gvXhG+9u0/vkA0kUBcyQt8TaCAio5dhOqAhh5fsLN7nDdd/FlTEY29xUAMQpgzAyoI4A8glJ/Mr0PoI0C+NeLq/C6w++NJoAi8fjYx4AHHwS23z6dCTgDL7UJOEANBFCqa10ZNYXmPoBpTcDigHc79gKuAxbd+xHM3Pk98jHCg5Hah6IAHnkk82++6irgGaHb8KoRX4Br8gFMUgBjsM02rKtwfzRtgmUfj+P9QAV49fapAL6IZ55h93PRRcA770T3b5QP4A47mH83bdQpgHHkSlwLOK0JGACOwW8weOHdyO31vLl8iM5rxaK9ArjrrsBeihXLhgDutRf7f+GF0d/KyGvL+pGPhJ9VE/Bhv92FfdhhB2C77aTjxOcqjn9TBVFI19+HB5wC2HAU8vYE0POADKqYCOZkmgENGnlSI3v3XfZ/G7CFS3bEQ8FvzTYBr1wZbn/xxfhycpBcFmefzQavHXeUyyJh2bK68gM+/7xc/6oCqA625TLwYTwAACH5s0C5DHwQD8sblyyJXEN683rppeCjOpjxlQVME/PWww/rfwCQ80aCMsXByq9HowB6OTZbqoQsyZz7UdwR1IWRAMYwEfV6kYG6gQqgaoJqlg9gRwdbUuuGG5hKkCYKmEXYss+tUABVEctWAazJBFyJVkDldc2KnMKDEfsQ8djxvL899xz7/6zSpdUE5eLnND6AXjmBAGoaXS4H3HknsOWWdqY9ET1P3Cl95+O/ikb5AO6xB3DLLfJYZksACQn7Q6wCKBCrJBOwmgYmOG5oVeL8pZZ76dJ0JmDVXSeNCfitt6Lb4kzAwTUVBTDAkiWRfXm9tbfLz14cC3XPrjiwmvgAEkKmNqIgrUAHSXCUF+B5wETIchc3Ayc1Mv6GFVxHUOhsTMBpCWBZIIDiJP7885qdNcjmM2hrA7baCth5Z7ksEpYtqysPoBp0ohJAVQr3vGiAiw3KZWAZlGbpZ2Q2moCFL3wwW5JnETjZhIl5MDspss3z84plaSUoUxx057YigHm9D2DShLIJXg7aFm9vo0EAbRTALOrzAUwTBJLPsxyMPT0WREnxAbQKBtApgIX0BDCmKAwNDALRPaTqSo0pQHgwEgFUTMAmqD5WQI0mYIEAatuK5n7aChS7784+W5nIBbS//ZrVfklpYOIg1g0hwL77AjNnRn/XHoSw7+Xz5gTG4vBCq+lWAtERQFIZSW0CXrJEfjzNJIA6a5YNAeTtI0IANbZcXm+FglxHYrl1dTvmfAAJIUcRQk4Uvm9FCFkIYAkh5HFCyMyYw8cEgrQLPpJMwOqi9zwQJMmcpzYskcQ0RQGkepKki6DVQmi4/NrNUABVAthZkG9K7T/VKjNPp0W5DCzHFHmjzwKMJmDBE5d31HJG9KymZgKY645s4+s+1kMAk0zAJbSFBFB5uUlSAEUCWIsJWI2KjwzUDTQBZ1GV2l1aBZC3aZsgEBFpo4CtggG0CmD6NDAqmpkGhp9cVIWqKzQOVCYTsCebgE1oFAGk5bAytG1F0+jE3pFWAWyrkQDWqgByiM88UlZKlUAOtkMuZ05gLFaLV00XBazr25lyKdGHnW/nfa+3V76vpJc9mQDSVFHAtRJA1QQcQPOGIxLANKvAjEUF8BsAxNHrfAArwVb/mATgxw0rVZPQSeXRIEkB5BHAHDYK4NNPAw89JG8TTbR1E8D+fpat2N/wyCPA8j69K6c1ARRGFW7G0g5IfX2NJYBt8SZgz6uNAG7y9t1RtcnviWLEldSBNQSwQgrBTqoKJWIwF1UAh8FGtKzHymEaVFauZOZGHRFKWt91BAV4bZZBIMrg1IEicll2vkaYgBsWBKKZaXKopDILqdBO6MUicOutQLEoKYCJx4lQfACN9cjR28uyeysgKRTAHfFfrI/5wK23YoJgobBVADurqzDp4duQTTDriScsFyvoRh/2Fzx46dKl0WOMJmA7ArjWC/dgPbyBHd66FvvjJmRRqc0ELJisbU3AYv/gz/2WW+Kj94tgg2Vu5TKYUkeJ0BFAAg974A54S5fHHisRwEcfBebPl+rEFCVdFcZPHvhlSgMjtlsC2QewJgWwnKwAdhaXY0/chlkz2fWWLElnAlYVVdPcPDzMujv/fWs8je63X/B/De+1LhNwjALY1mZWAHXjS2lw7BHA9cBW/QAhZBKAnQGcRCm9EMBpAPZqfPEaiw5Pbk21KoCmRlYqMSfiG25QzmWpAPLzxhLAffcF9t4buOACvPUW8MEPAsWqngDa+gBK5k+dAiiECFeGameARBkkVQLYEAXwzjtx2r274X34n7w9KQpYIICc3JSzoVySgWdOX5GdGN3mE8CM39FNpGC33ZhT8h/+EP0tktxVKcAICqAF3weQpDMBA8Dk4iIAjSGAQg5ghlpNwJqKSr2OqXq8jsh961vAPvsARx9tVADT+gAmKoAf/SiweHF0u0IATdfbCK/gv/gQ5mNDYJ99cCMOCH6z9QHc5icHY+Nv7I0Tca61Cfjdt8q4DXvhRhwYbMv0Rv2dTCZgfqFYAvjf/2L/X+yKN7A+vnLHobgJB2A/3GxWK2MVwAQCqOuMwvsRv+ZhhwFf+Yq5yOLarmJaDxOKxWgQyGdwBe7AntjhWx+MPZbf/5SBt4APfADYcMN4BTAggFlU/PmHt1GTCdhEADswXBMBzFRGEvvE6f/7BG7D3vhy9i8AogqgiQAGqd0UUmWam7/yFdbdjz8eKKCEp7ENfnPP5gCi41IjCSB/LqoCKF5TV7el4TFmAvb35UX9MBhtvsf/vgDADM0xYwod1J4Ael6UACYpgLqXYqA+H8DIG9SDD7L/N9wQLBNHhdHrgXur+PGP2XHDw5Y+ERoCKB0nqDJesXYCGFEAc/K5dD6AqQngPffot/s90RgEolMAM6ECGEcAeS4+EQEB9OJNwE89xf4/rIkjiQzqCqsbQQHwCWB7UhCIBh2UTdi1EMAJOfl6EXNKrQRQw1x165jag+qJ3B//yP5ffLE2/xxg4QsmrbXqJRPAp5/WbiaWQSCbQ3bq3R136YrCYFAAex67AwBwMK6zNgHnUMEH8Yj0c2a5ZtkcgwLILxTrA/j445FNs/Bu8OwUi2YsASReQhoYSxMwAFweXS0ugPgS1IEYqdCHTgHcG7cCACa880rssfx211nxbGSb+lncwAgga5g5X1E1+fxKSdCFsXoqlqOwahlMMJmASbWKQjb+BXjrPhbkd8iy3wOI+gCa+lIwV1oSQP4cL744XIIRYC/o4rPLolq7CTjBBzCNCXhkDCqArwD4mP/5UwD+Synl3WttAPEa9hhAhyePBkkm4LQKoCYIiF0npQ+gLg9gXO4nsbN+6P0j+MEPmBM7oM91FEGSD6AwU1SKtTfMSBBIVnbYUN+oalIAEzJwGwmgJgikmrUjgAXNqhiBD2ACAYxDEjkaQSFoLGmjgIHwPmvxAdxiI/l6kXamueH3bRHdFnlcughNhTimIYA5VPR9SLg3Xf45oHYFMO2ztjUBU0Sf4fe+y+7D1geQo4h2axOwjrjnlmsGu3p8ADWZjNtRRDZr8MWMmaXFydXeBCwcbxl3Jt6jzTKHcT6ASeD33lkJO5qtAlhVFEBTfzcpgAAwaaHZn8ikAAJAW6asvZaK2UOMAKsKoOkxB9YySwIolUkh7qI/s+puokNLTMBDY08BPA/AcYSQpQA+DUDMorMrYEiENobQXk1nAlZ9AJMIoGkt2UYEgcQdJw0k/kl47jPj0m3i5D5KBLAzK1dkQxTAhDX40iiA1YydD2CBRhuErQIYh0j71BBA0u4rgDWYgNtIAgGMYQgq6Y0QQE3n4gExIpqtAOZRTiRyJgUwlQ8g8SRzZZpAjnoIYHeRETFbBZBjGB3WJmAdASz0pVAAbUzAGgLYhhIIMTyHmMInEkCdAlgnAdTVkQodAdQ9Ux2CYIlyawigOlZPesecUsKUBgYAOrLxabCGMswhsbO0EkDUBzANAcyhgnI5vu9RKqu1XRisWQFMSwDTmIBHhsaYAkgp/RuAnQCcBWBXSun1ws+LAfyqwWVrOFQCaBpDykNlDL+zIp0JuFrFytf0MnmsCbhSAVawxMOFgeXIomIXBUyIVgHkK5VzAmhUAMUeKVSElgAKv3ulGpgMNOUE0OETwKlYCgJP6wMYnwZGo1AlKICTq8uCaEbpesIXPiBUswUrH8A4AkhMQSBLlyayBBsFMCCASBcFLJa7JgKo3HPkRUMzik4pLw58Io3ltCCAaXwAc6hYE0CTAsirYdkypUpEBZBWQUjYX7XuIOuvr70+abOLAta9DM1awSZmWx9AjhLarBVAnbrV1pfCB1AwAfeAjXHREzaHANZiAo4lqsuWIRN41oUV2JaxI4DiM8jAiyeAy5cD1Sp6e0UCGHa0aiUc/9KYgE1zCqsWimnojSiAPe/UqAD6L5mmYXlh24bB5ywquPdeOctGGgLYka9Kv6mY5q++IY6VKgHUKYCqIYS3j6aagMeaDyAhZCcAT1NKf04pvU/5+VwAqTxzRgNtFTsF8LUp2+PHv56CDSGH98emgdl3X3zy6GnYCFFfjlgFcIcdgClTgP/+F3/951Tcir2t08DwOV2aILfcErjttkQCSEtCjxRO3kwFUB1UOkgJO+ARLMV0XInDUyuAKqEEEK8A/u9/uP6+aYHzvHQ9oQ448VdNwKY5R0cAuQlYqwA++ywwfTrwiU/oT2i6FR0B7GDXSTIBDw431gRc8OROYGMC/tYrx+JW7C1tszEBN1UBJMQqDcwTTwDTpgEHHyzsINwjf6ng/XWttTQJgacoqYmCQtauAK613LDSguZmVRNwrAJY1qsVHO2r4hVAnQl4dvkNLMdU3INdoscaCOCkSekJoFjehpqAX3gBmDYN/8K+kf42sT35xVi3FJyRAM6fD0ydire3+ChmzAB+8Qu2uasYelrNWTu8T1OUdAW5YP7hBNDU3ysV4FT8BL2Ygc9Cdn7siVEATT6AANCeiVcAK8Iypny+ffPNyG1EoCOAPKhQRwCPwy/Qixk4qvKbiAIoEsIsqpG6VL+LCiDRzUECbPIA6ppyeXiMKYAA7gawueG39/i/j2kUqnZ5ADctMWv2Pvi3tD1WAbz9dgDAQbg+8lNsGhgeBfCtbwEA9sB/UucBjBCh730vSEZtQwBJkgIozEjVUm0Nk62sIpeznZTwFbDw18NwtdYHMA5aH5o4BfDSSwEA+4Ol4pAIoDBCBQQwZ+cDmPeiDYIWYgjglVey///8p/6E0SIxKPdWQhtyXXZRwLp2kKd1mIBpehMwAHwUd+KUU8LvkWtqOhef0HM59tJTKtnnaLv68gQCmMlYpYG55BL2+cYbhR2kIJBqUEYOHq+l218qQpsdAdS1986RPv2pExTAYXTU5wNY1gQ9JASB7NzP+t2HoVYMtOrJZhuU8M1vGghgPT6AKYJAJFx1FQBgL9weUdwntCePi/PnpyCAfkOb/RKbVn0jESYMh8rrzdeGfcWcBiaLom9m3W7TIXzzm/Em4DP8Nc0/g78BABb7sZ35otmZXFQAq5kcLsUReAvrAghdU0wEMEfDdrL7VtGXCtNj5i9tEgH088rq5udf4HgAwPmVb0oEsBNDiQqgWnaRAEp9Q9OhbEzAqwsBjHNWaANSeLSOEgoj9nkAAaDHXxOWh9En+QAC+rd0qyhg4aS2BJBvixDABQsSfQClaF7h5JE8gEr4Xa0EcHg4Ws42UpJUQV0ewLjougy8qEhl6q2azmkigNz3s5oNl02w8QH8Ev4Ubpvkm4CrGgIYWeJDDxsfwMJEuyAQvmC9iLoIoJfeBMzxk58A//634ZoxCmA2G6awsDUD775T7QpgYsJkJQ8gIC9jFnnMvAB//rNcBN8EnJQGRqey8Gdo4wNYaxCINskv1Tg6JqSBaaMxWXo15T1g7xK6ugzR2PX4AGraGCHmcUgHtb9N6EgeF+fNq90HkKNrKCRJW25cCppSnAl46gZsMvjX3/vxta/Z+QAG23yFLlM1359IAP+39/fweVwaWEAKCSZgvlQmAPzgW1GSaXrMfLqUAjoKZgWQ50PMoRoxAScFgZimlEwmmQDy8udyZhOwrh+Wi62hU/oEcj4IIXMBbCBs2p4QMkHZrQPAFwFoVtYbWyiU7YNAAGCSrwT1YjpmYZFVImjVzAlYBoGkJYCEBA0zogwsW5ZoApYIYJwCqLROOlKbD+DQkIYAekWpvnQ+gOqbtgjusCuti6qONPm870xYjZg0pYFeqGBOAL2cnQ9gvsrKOIQwc3Pb5A6gN1QApecXSfCnR5I6JhJANQ2MWg2NJoCq6mmrAAbH5/XljCOAmQxLYjs4yP4mTowvIy9HEgFMSgNTrRpSmEhRwB5AKbLZcMcIAeR1wjPx8iJYBoFo11s1EUDNScT0FxSkLhNwsI9ouk1QAGMJoK69+O29HhOwrQ+gCCMBFMaPiAm4Lf6cxSLw2mtAgVQC1+V6CSBKJXPbFgggnSBPBnEEsIJssGoI4GcagJxaR4VoAuYvM/y4dhJvAs4LCmB7KapWpPIBjCGARbSjy18JTDUBi/OzLghE/V6LApjPpzMB1+NqlQaxBBDA58GSPFP/70LISiD1v1cAHNOMAjYS+bJ9GhgRi7EWZmGRWQHU+EppHZ3jrim+PWerAPfbqEUBBNAzoQwgbzYBF4Wb0PgABveoFLhWBXBwMFrOAi1J23Q+gHEKYBZVlMsJBLBQYKOvhgBKk7pGAfRsTcBVVlmDCCf29h4eBFJVT187AdQogG3dXAGMDwLREsB6fADjTMCauo5c23TNmDQwmYwmiW3SW1w5WQFsxEogAABKUa2GjSpi1TQQQFsTsI4A5j17BXA6WRaQjwJG6jIBA4glgDofwLQKIJdmW2IC1qwEEgeVAHa1xbfDF19k1TBzWhlYGi2nLboGheCbYtGOAHb7/kC+TB8XBLICPZjOC4j0CmCmnU0gJX+VFL7dpADmBQWwoDEzN4MAiqJCJ4aCewTSm4ClZxhDAOMUQK0JuEUKYJIJ+BKwFC+7gxG9Y/3v/G83AP8HYCal9I/NK2ZjkCtZKICap7EYawGIMQELUSGT0Icn8T78GscG29iDp7gDe+ALd35WX7jloXNvRzVcViGOAPKGqSOA65VfBWBpAhYm7AgBVBq1N1I7AVTV0Vy1hBwxE8AkBTADL3kliZiFYJN8AG0JYM6LEsDOKYxNaE3AEtMwEyUbAtg+ySeAtAYF0KtBAfTJS6wCmETKSiXzmtMWCiDQWAIomYCffRaYMwfYZx9svt8GuBO745JX/i8g8hLUa1er0tJh2oh/AJggG1FUAnj++YFLMHDZZZiP9bExXtYrgP4z7O8Htt4aoX+l5tnNyC0LPhcwoq+P884DNtkEWLQo2JQ3EUD1BgW2xX3JxLK0SgGsOQ/gYYcBe+2FbCZ5Wbe0BPB5P4Zi9oz6TMCdgzUogBPtFMBKhRFAEZwcxSmAYhqYrN+WuQIYrKtu4QNYNwHMs511QZrcJA2kTwNTqwlYzbSmpqwxHAZgjCiAlNI3AbwJAISQXQE8SSnVLKG8ekAlgNoxRNN6ejEdADC5vQQUWeOjVFCQhNnvIFyPTfGStBRZHmWsjXewB/4DFuikSS8vKIDtI/1gyytrVgLhiDMBA5jmv8VZRQEDrBVms8HcFKzsYDABf/7zbK3Ms88Gvvxl5dw0ajLTKYAolZDLUfAXI7UjeFWKTgsFUIJOAQSSTcAJCmCcD2BeQwA33LIDuJUH2FCUy0KFCA2vC4MYhOpVwZDoA5jpQH6iPgpYXZlD95JQkwm4sxMYHESuGuMDmETKVq1CPt+mv2YCAeRm1YBo1UsA1SCQm24CFiwAFixAG4Dd8TowBKyz7H8AtoucW4LnScNH5N5MJmAlDQwA/OpXwC9/CeBzn8P6AM7H8fgX9o0Un798XHMNG7qefRY480z9zU7PhC+ZRgXwxBM1Gw1Qb1CbHiEsy2iYgCNLFAJaNpKBB1x9NQBg4harAHRHjxPGD/XFtDOBAPIVAJllJrymkQBKCmwZFeQxHUtQKAk3ZEkAVX+gOBOwiQCmVQBtCaBoAs4N2puAdUEgcQogT8sFRNPAiGOjjQLIhYOICVh5CLx/ZTLsL40CWKvQkhZp8gDeuzqTPwDIFi0UQM0gtgxTAQDHHVMOFDlpnhJYlpo7EDDnSDKhrRh2hFoVwAkdVbVoEiJLuvkXmOEv6BesaqK0Tlpm+335y2yf7ZQ5EdBb/3Q+gCiVkM/G5LLSkIEn8T70YhoAQ9LOFAqgRFI1PoA0b+kDqCGAha58cGyknMIIpSYbj7uVCAHsmBTkAVQTM6ur0mgJoJeQB1D3IH0brEoApXaWlPW6r69mEzC3OAZV2GgFcJ4p35lmolYLr1zAlgCqCqAOWVT1CmDVYGLTNNZpJFQA21BKlaxaC5soAg5KUUhrAo4jgJYmYO34pyln20g4teWy6RXACQVhcteYkIMk/0K+wFgTsCBdct/NLaC0TUsCSCbLJuA4AtjnCw9BuVP6AJoIoMkEXBAIIFnVH8kGlKQAbrSu4EMYkweQm6SBqAKopoFplA9gXQSwHNM2Gog0eQALhJDTCCEvEkKGCCFV5a81lLUOZEoWaWCGo4rTUp9wkEo5OgEBkvzRpUmHaLNMkIi2Ujhqxa0EwsuvG0gmdLLWZ60A+heYMoURoxUr/AFCadTcB7BQgJSkVYRuYtEqgMUiCrlwm3pcdiT6LMrIB067WhNwnAIYV06NCZjm06WBEYNAxIyrPEO9roy6FwYOSoVie16kwXoTusOl4BQTsLoqDaGatCCKCdiGRAQm4KowaGbZe1NwfBIp6++v2QTMrefWBDApCARKImgTAdRFgTSIAKpBIDpQkAjpAMJnaEoDImIKZAXQ1gfaiDQE0PPQ7sWsl9skE7DWBUbTxjqF/HoFi6TO6rNoy4XH6JoKv2SeWJqANQRQXQsapZJ5vWqRAE6SFcA4H0C1PIECmEAAAxNwh0wAucJnahrSi6swLnAkmoBJ1ARs8gEM9mtQGpgkE7BIAAmxNwFTCiBGcW0kkoJARJwLFujxbwDXA5rRaIwjMxwlZ56n+IIpCqAHEsriIyNoa2N9U2pkAsuaZFAAJf83nY1U3L8YJYBpFcCudjYAGH0AVQLoXyCbZQlve3vZygczC3oFkHdUXdZ8EwGMREhzE7DhOFKMThgjKATJoa1MwJzdeF5E0ZLmEJ0JON+WTAArFWRpFR6INMggl2N/pVJNBDCfZ0Uql/0BRzOCehMnAW3s+EQFkEYnTJUAWpuAEZoeAWZhWrGCmZ2nToUVAcx3G66pGb1FAthwBTCTCRXAfAV46SX9eXT9Vb22Ul9GH8DOTnl7PpkAAnpLQrZqkFY0z24KZB9AGwWwiLZIhHkA8eFRGr/+oOfVrADWkwamVGJ/krKk6UuFSjjWFEjyC7tKAEU/yUolOsQHCqCiAokBCBIEl6BOP3ihVgUwM9neB7BL8fcMFUB9ffMsYSEBVHwAaUwewGpVWk0F/f1SHk1eJh10PoBxCmCcCbieIJA4AsifSSbDfLDFe41TAEdGagsQqgVp8gAeAuA0Sul+lNKTKaU/Uv+aVchGQUcAIw1MUQD70R00ZpTLUQUCiFlvjSGPsjy484ZiiJTMD9mZgLe+4Uc4DadrJ47OdoMCeMEF8I47Hr84W68AAmyRCsAnEeos4feGSc89CBx8MNqWvRO5tm5iMZmAczEm4Gw5OmGICqCWAKob+Gin8QE0EcCAlBUsfAD9hlBCm5TwG/nQBBxHAE0mYF7s4LnrJtduQQFUVuaoRQFMFQQimIAnyRamsNDq6zxHShNwMwngUJHgjTfY5+4lrxpJTKEyhL/hcOyDf0nnlmCrALa1BblFAVgRwH3xbzmwwkfWM5Auzc1O9qIK4HFHj+DF9x8BXHut9jTSS42K2MVoo+VRc0caz8XhO1v/aOnR+Ap+X5MPIBD1h01yUTAqgDFpYHJUPqd0iVWr8MmrD8aD+D988KFfBJttTcC3Ym9siWdDAsgnBVMU8NtvAwcdxLYji+wUswn4/POBE04Iv6vWqiQFkF+XE9tcp6wA8iAPbbdSNy5fjouGjsRnBB/5RAIoWD6+/9hB+DDuR7EI/O53wNFHh49MXFFKHHN1QSBq06qVAIoKoFqvcQRQXTKwmUijAE4A8FCzCtIK6AhgZBxRCOBKTA7fEMrlwAldyi9lktl85FGWO3u1ylqPYSDKDVsogJ6H999yOt4P4GZ8PHKOyRPZ9d5R+dm3v40MgAGsLW8XLsAJYG8vgJlKEIivAK5/xIcBANPy0wD8Xi1aBCYCWMiaTcCZkl4BFE3AkXUby2XZiBETBCIdW6sPoD8SFdEur1usmIClayUogOutB6xcyT4HTUTzWksmdQPtbHZLUgDjCGAhfL+REeMDKBKPSGQuP1F7u37kT2kCbqYPYLlCAoIw8S3zeqe7PHk+3ovrcDj+jiByWxMEolxahpAVtoh2TODuIpYKoA5GBVBzs5OqMgEcGgIGfnspNsXlwKGXa583I4CG8U28wSS/T89DW5wJ2JQG5okn8OmVv8WnATxX/Wr4m/Dc38bauBhH4lScCSBKrPr6mFUjQJxSiRoJoDJhl8vC+8/dd2Orl6+PnM7WBLwh5uMf2D/cd7PNWLRPqYSsHz8mVd+xxwbrqVWRRbbHrACedhoLlDn1VD0B5EQuiQC2kRGAAjnFBFyIMwGrz+Hee3E47sXhuARXgGXLSCaA4TmmDS/A/dgJfy1RfP3rbNsXvwhsv718XzMQDo6dGMLczbvAres6BbBeH8BsVg524dcxHIZSaWwqgDcD2KlZBWkmFmTmAgDIcDQraKSBKSbgXkwPFcCRkSCgSnqrTFAACxiRGwq/qIkADlkQQGHDZKyMnGPaFA8TJjAioFuYfhqUjcIIIgWCGIJAOLIakqYjSqWSKQgk3GarAMaagFMEgZgUwDbfrGDlAxinANbgA3jccWzJ0YhCpiNGUycFjEjNy2ejAGZrUQD9ncXzRfxUeds05Tvs7x8zCqA4AU+IIYBdRU0nqlUBzOUkp3TeRmsZ9JNMwPfhI/gjWJj+hGpI5LjpLC4IqZTtMJsoAfkGE0hVognYpAAK47FOAby95zBshFfxA5yBD+N+ANF6tFmnWkTewp1djQJW876qCiAAWfX1yym5xYg3qGSwXhvvhOZOLrmbTMBvvx2eUmMCFgTEIEqau5uoBHDd9eMVwGCtW98XL9fJ9uftm79kWimAGpiEXt4sVGIFyO/KXM8RTcVrYXHwuQuD+MiOcmBOM3wAx6oCmIYAXgjgcELIDwkh2xNCNlD/mlXIetFPWAfIDKU3AfdiuqQAapdYszABRxRA7cUZsgMWBFBolToCSLwqNt+cfeY5qERMhGIXMSmASqMmlbKkNlXXXjdybpM7T5IJ2EYBTDIBR4JbYhRAEwGUjm0xAZw9m0Wj2hDA/JSJRgK4apX8LpPVqEs8gjQVAfTrU/QpjKQqEkydWjSAAAb3lmR6rFRi3Sg4ASQEaHvFTACJTg2t1Qcwl8OISAANCmBCLm0AQLZiMKv69bISk4M8puIKD3xC9GKmgHK2Q27TkR3SKYC6NbMDmAigEGWmI4BL8rNRRAcAgtewIYBw8pzKkjdEh+ckBVDwATRlClCD/dRcidIlfDXvKbxP2icDTyYGYh0qCQxXYnK478SJ7L+JAAqO2R4RooAVBVBIPYtqlV1eJR5Z36RrSgMTKIA8qbxqAvaSFUAvJhdikgKYRAA54ghgVjDf15UGJoYAZj17Algsjk0C+BCAjQGcDuARAK9o/sYkOGEgNiZgRQFcghkSAZwk9yWGBBNwWgVQPJ8NAeRrFkvwPGyxBfuoC2yMmB6FC0gKoJoHsFLBJng5+E40xELHG4rFMAhkmPsVFYvICQogrcoH6hRA1QScSgFMSQCr2XQ+gJIJmAeBQENUY3wA+eDCn3scAZw4OWskgICgAhqYBCcPqdLAaAhgpI2KJmAd+vrGjAmYE6CJEwHyguZNKYCmLtIogDwIiRAWeGJBAG2CNJIUwCqyWhLHJ8SqokqJGMm2xyuAYt0nqTnVanoTcBwB9K9dpuG9iS+GQDiORYbnFAqgRACFe1RfoGN9AH0170lsK+2TRVWeF2wJIE/WaiKAQp1RIuQBVHwAl4UxQahU2J+qVHnZ+ETQ/Lo8ujnflZ4A8iwbOiQRwFwCAeRDWBwBzNHwIo1cCUQkgGoAV9xawGPVBPxFAEf6f180/I1JeJTdJhkaihAWGwVQZwKWCKCFApiKAPLz3X8/Zt74O305kwhgNVQAAwIoTOgRBZD35Msuw7ZLbgXgE4iIR2xFikbLGiKrVYgKYJAupVSSIgwzVeUtyZAGJlUUsJEAUrlONc+iSNusfQCTFEBTHsBu9GN7PIZv4QIANCCANkEgkyYhYERTyotxHr6DjfFyMD+ccQbCe9cgWx0BBgYw+7KzMRevp1IARRNwZBLyCz1sCiBQFEDpsSQogBsvfwTH4kKUilS6lhGWJuApE8vmCGDoTei976bwARTUP0DOS2YigEm3BgCZSrwPoIeMlgByHzZRAVx23BnSPsuHG6sAFrwaTMCCmlWthA3ltZfDKNfgd4UAckvGd7/LcnvbltXoAyi0zZ/iFOmnLJWPkS7hkzmeTzY4JgUBXIGekEQIBFAbIS0QQC9jTgS9Qpg2uAKoEkCa4eMfDS5y773AN7/J4oYiCqBCALMxJmBurVmJyaCRfGLsWScSQE0QlE4BFH02ZyD0j/kIHkD22f8F3+PyAO6LW3A4/laTCVh9QRCPWy2CQCillzSxHE0FBZuMOlBEO4oYFvK1qZVPh4uSIK0qgFoTsDbdfIgsPPkNgF/UNBBxB8OddsIcANtjO5Qq75f3EY7laxxK8Dy85z3s42uv+duElh0hjZUKS1f/uc9hPwAAZSYClQRUK9gYbwRfTal1VIgEMAjJL5UkczLrzOHEmClHe7JqAo4MEGrvF6OAK/KbXrUqqBuakaZE05mA44JATArgRKzCY9gBAPAyNkE2u69U7DgFcMIEAJMnA/k8usoD+A7Ox1Qswy83ugT/+x/wxz8CP/gBsO5aeikpUx0BTjoJs377WzyIX2H3shIxZGkCjiiA/oeFS9qwse7C/f3IZpm6wnMdBukfdKZunmQ2A3zjig8CAK54fhMAezWMAG7SsYBV9rrrKmyBIZLCCMAzT5Sxu7ihWsXs2aELVr0EsFwWe4MeWQ0BpBQgggKoU/F0CuDUX8pRxkW0a03EHggjBGkJYDWGAAoPZ3CtDdC1eD7rW0IbZISB1chfL67ixwCWLAvLv812OeCJcPJci1m+8eKLwOGHAw884O9Yqwk45rgN10s2AQ+iC8VJM9Dex4IQsqiaTcCKD2CtJmBJAVR8AMXubSKAyGRQRo6ZuCsVoFDA0Uczt6ILLwTefZftVghMwHIaGO5momse1aEScmB9gUycGEa+gflYFtGRTAA1Crg4BfDnF7cYA3n8seBznAJ4ix9seUl5PwATU6WBUQlgkg/gWFQAV2vwVRpU342IG8+grDptsMN0HPvtMExSqwAmDX5QnIb5RU2tW9k+E4sSlwUDAHzta8B+jL6hWg0iloNdhXKKSWH5/qqtZGQEkdaZqZYlCb1uAiiYLlU/Cb6ObjUTvqckmYBJSZlkxDyAws6MAAr7aZ7hMOlMJoC+y0AJbaBid8pmJQIoCZDCsxMHptl4O6IABsXStJV8Hmxwv/NO3DydCfATMICLLgr3WbUKRltitjICPMQC+9fGuzX7AJqCQErUYD70R2ht9LHm9Z3nQRNzTnb1viFdy4iERNCcAM7qWMk2TJ0a3QlRBbBU0kyWnofHH0fgeqGNMs/l4HlKepU6FECiIYCeh0QF0MYHcBiKArjrrqA3/xO3YS92bCk+CGTl3G1Auc3e85C3UAAfwQ548LyHwnMK56VF4WXRn3hLHivfGWcA194gK4DrrRee/sEHw8+01iCQmOO22KSMm24K4zN0JuAhdOK+Xz3NxmmkUwBXYWKgsgUE0JQGRlIAc7LfBKXB2CKiUtH7AAIkbAP+MxJ4WmRJtmxHAY8+Cnzxq74CWDHnAeSrUZVRiCRH5/N0EgHUpUESr6UzAXM8jA9EtpmCQHJCX+dkLo0PYFoT8JjzASSE/CXh78/NLGg9oNSeANIhmQBuvvN07H9wuFSC1gfQIqW+mGsoUQFUtlOQ6CV0PePQQ8PBwfPMvlnQEECevVQthtI6c6hgrUwooZNiVH1MRQAFx3DVn4kTwHJHd1imOBNwpeKvvStANAELk0ke5UQT8CC6rH0AtfnS/AfQnq3IlzAQwEF0BWN3xAdQ08aCcX6nnfDQ1I8H5Vx3XWCrrYTjDQQwUx2RzpvOBzBqAlbbmdF8WIrxPdSt0qAhgNWyp1zUAEsfwBntfofu7o7uhGgQyNKlmkG6WsXMmawb+pcOIRDAalVQAAkJHnajTMCVCqx9AJMIoKQebrIJyMc/hmqGbSsPG8iLj8lf+xRIj59Ev1q1MgFfg0NRnTojbBwCERIJIJ9A+cvgoYcCPdNCAtjWBvBL+0WPLasIGx9AjlKG9XtSrWD//UPSqTMBD6ILdK2ZwMEHB+UU2xBfZ108JiiTT0CouCC2jQKYyYYvo5QClYqWAHIDiU4BVAmg6CUVBGPw4woFvP/9wNpzfQJoWqoQQHXYJ4AkSgB5nzf1AU48dUFQRY3WoiOA1+KQyDaTAij6zPP2YWsCzmZDcYO7xSSZgFulAKbJA7gbop7QUwBMBLDS/xuToDT0O+tUzKU6E7CIcs8MIB/m/dIqgH6LGUIHOqF3dJYIYJIPoNICPWRifQAD8EUHAaBaNZrmAI0JWBMkYSKAM0hIANMogNyMFpClUklSBSL+HP7DKbd3o32QEVZRAYwQQM0yfhIBFHbOo5yoAA7QLskHUMvzBROwhEwmJIC5ClAVcoMJo6EYwU1BzD6AmpFQdJupklBtzGQUchWnAMYRwDoVwLKlAihNDpqZgr+0iZNx4A/WIBPw1ILfofkbngLVd7i3V68AAgZiy8uZzcLzhPaSzUovGdAcEgcdASyXgTZBAYwzAccRwCLa5TL5xMPL5AEPqAyXw1avG4+EZOioVqXlAyPwy1tBjh3S1sbOaUkAMxlIQVc9PaGrHABsLPoiJJiA0xBAj8hvP9o2LRDAtjYANBy/xDZUHvQNp54XCUbkfcDL5pEVFL3EIBDfhw9tbayMpRLyGgZoNgELCqB/EbFoIQH0b5ifuyATwDgFcIS01a4AakzAtgRwFSZGtpkUQJEA1qIA8mjlYXSgA8XVLw0MpXQupXR95W8SgF0ALAJwcLMK2QiICmAPlmNX3AWA4skn5f1UBbA8ebrUq7U+gP4TfBezItetTmOhaHvgzsj+aq8IIgP7+oA77gi2e8hg/nzmohdAN4hls2HnFxTAoIEJ14sQ1YgCSNnuSuvMoywl0iSa1DrWCmCxKK0oEZHzOQFUFEBjIuinnope2JYAakaaQWphAjYRQGGh5DZfAdQFdMxGmLOrC4NmE3CcAggETtRZVEXuKalBKjL1EEBhADOlgWmUAtiOErowgA8NhX2iXG4sAZyW8zu0pQK4ZIlmsvQvwO/r0UeByy4DFi0SyqkqgEKf1fkAJoGUWX1tjaexsR+db6MA5lBFJi4RMTQmYD+qm0eGlofjTcDI58MX0mKR+Q3ycov3+uKLQd+tIsvaLo8gTyCAvHyZDIJ6zKOCnh7ZVCmSwWoxQQEUnqtIAFcsid5jR9Uvn/98pTY9fz7w5JMSASwUII0p4kQ/3O9fdyhqVeGEiObykknXSgEEpGO0JuAyxZxX7sRU1TJEQgXw7TcruP12vQIYECw+3vJxohISQNWgEJiAM4XI8ohGAjgygqEbb8fD1y3EZ3A5sqVoXYkEsFwGQKk1AYy4BvllELM1zHrpHuDdd1MRwA3fZQ6ofO5TTcCVCpvy334buP+ad7Ez7o2UrRmo2weQUnofgF+A5QlMBCFkL0LIXYSQRYSQEiFkISHkakLI5sp+6xJCriWE9BFC+gkh1xNC5tRaTpEAPoodcBd2x0G4HocfroSNqwrgpGlSr9aagP1WqiOA/NhjcVFkf3WED6JjH34Y2HPPYDt/Sz/qKLFgNSiAcTMKdwLxEUjhGgVwGhVMwJrk2qY0MLooYHFN2TzK0iDBk4+WOy1NwB/9aPTCdZiA19rA3gSsJYD+A2iLMQGLBLATQ8GAnuQD+DrmSutm0kx6BTBTLknnTWMC1iWCVtuZmKJDQpwCWNSrRNfgUPzprbBPVA0EMJJTzJIA9mQFE/B222lKINeFjQJ4113A5z4HHHmkcHEdARQIgQgrBbBcwgSswtPYBi/jPeFxCT6AACu/LriFowglDUxAANn5KkMJQSAiAVQC5YJ79Ty2ssV997FzigogIJtC/bZBaTjxSgqgQHx6JnlBGhixeH19QGkgngCKkzongAsXAg/dFz2umO2ULiC16Q03ZG3JX5VjCJ3sd+FlTbxWcVUyAfRyhXQEMBslgOp6uwAw6Z9X4Mt/14yfJFQAt39fBXvtJf8c5uMLTcDi9Uh5JPqC6IOvR19JYwI+5RR0HrgXFmJdXI4jtEFQIkHlIkZG085NBDBJAfy/33wWWGediAl48bt6AjidLsEnHjgRAFtaFogGgZxzDpvy11kHOOfy2fggHomUrRloVBDIfEDJcmnGFABPADgWwJ4Avg9gCwAPE0LWAwBCSCeAuwBsCuDzAI4Ay0F4NyGkS3fSJHDS0YVBbAQWFrsb7mK/if3Nbz0P4wP4Iv7MXh2F2TTOBCwRwEMOAR55RL8eqiEIZAid0X0B7LYbG4V4xBUvSwSZjFYBjCOAwYSpEKQgclWZNQsYwRRvafC9LgWwVEI7CQlgZIF6bhYSFECjCdjz9CqEQQG0CQI56riuZAXQv+YICvjEJ4TtAgFsz5kJ4DQsCz5bKYDvex9u3Ox72BV3ywpgRlYApeNNaWC8xpiATWlgyiYF0J/IuSojraojJicTsA9ulb4HJmA1955q7tQFgQjElhPAiVQggDfcAMycKZ1GpwDywT9Q7v0LqBPs4sWIBIE0igCS8gjmClH5gEz6TQogoMlPqiCiAPqTNPUVwMpwCgKoEPtgAuQLMfuoIisTQIE4cgWwUomagAOS4X+fOrmKL3xB8YUF892MiwgF9EEgr7wSPe5/eC+u3+i7CAoFg6rtZ+IPFMAkAuifq1iYiPvxYQAhAcy05SEuSJ+UBgaqAlgsahXAyXdcE90ISD6AurYSMQErCiBGRoxLTXrDggJoMAFHhq5LLpHPsc++kTJFCKAuLwyAw74eDfiyMQGzC3sRBfCN+XoCuG71jWDbqfgJAGCtqbIP4KWXhsfpyGqzUDcBJITkAHwBwEKb/SmlV1JKT6SUXkspvZdSehmAg8B8CblX5lEANgBwAKX0RkrpTQD2B7AegK9qT5yAIZ83ij6AxO9IUtSQrwD+GV/Cxfgi62C1mIDPPx/YYQeQgsHjVr0wQpVSxSEH0+juutlBmEySfAA5+jAp/E0xkerUoxlYIq0qUQsBFH0ASUkmgFKH93wCqCiAWgLo35uXy6NXTCwqpoFRFMAkAtgxTfYB1BJArnYhj7PPFrYLdtiIAmgYkEQCaHx2M2fiii3OwpuYq5iA0yuAuaQgkJil4MQ3WFNZRxJ8ALVqurqGnQGmIJAIAdQpgMI98zbZXvI79KRJLBXMeefJ51GigEUFMCBzigLIUalAIoDVqtAHYgiglQm4Uoks66gqgJE68Zl3G0o1EUAv5xPAknCs7uUrlwvJiPI7bz/es/Ok7RXkWHvSKIBkpBScSusDiNAkPHVSBe3tTFkRL5/N0MiqHSp0JuBKJUoAj8f5WFWYEu4AAwH0v+gIoHitQJn0n91wvhsn4WcAwnkr21GQyJxWART6bSAGJpiAM0OGVGaCAqhrK5El2RQfQIyMBJvUJkJFBdDSBEyV5PKZc38GfOEL2jIFx+t8N0Hw2WMnR7bbKIAcKgEcHtSngZnmMZepf2NvPIgPAQDaslWcdppfFs/uZa8ZsA4CIYTcpdlcALAJgKkAvlZHOfhrP6+G/QE8TCl9le9AKX2dEPIggE8AOD/tBYZJF0DlKOCRHFOipPbhvz5wlSqTQW0KoD9YkopmFE8yASvgjSxxQqhBAexHN3qwUquQ6cjD2vBzxc2cyZybBu0JIDc3lZFHlWSRpVXpDT+PsnQsjwIWCeAICoEJWPIB9D/QbA7VipKPjxcqjQ9gLicpGDYEUIxSFRXAQrYqX8LghN6FwWQTcC6nppRjt+c7o3MCaOMDSMojERMwX6yCnVRznF9Am7WAk0zA2r60ZEl0fw1MQSBWBFBoB5xItI0oUcCKjCfeL6WyD2AR7ZiE/ogPIIeOADZEASwUgJERzMSi6HEmBTCbZQRwYCBRASyiXT7Wn6SpTwCraRRA5Xd+r/Q5mQDGKYC83YjpSiQfQISEsKdbfhb88pViqE6biKAuCKRajZr8i2hHldePzgSsQGcCFk3wKgH0SDbIpxcEQuUtfADFcY7nNEwigIOrohsBewWQplcAuaLLFMAO6TcTAawWOmTS0t0d6asRBVDzMAaz3Ziosc6ZEkHr1szOZOQXYZUA8uFzqsdeansxPcy7Wa2KWo3Vy14zkEYBzAAgyt8qANcD2J1S+sc0FyaEZAkhBULIxgB+DxZIcqX/8xYAntMcNg/A5prtieAKoEgAq1nWKXSRpIGzZhaJPoDlkkYB9AdLolsmLqUC2Da4HHmMYKSUIA0nKYAGAhjspPORUzT4gADOnQsAIAMD6NBEVovrTPb1AYW+XmzsrxboIYNyRjabAYICWCoB8+YhX2HPwmvvDAbNJAWQZrJyQuaYIJBYH0BukkjyARRMwCYCGOcDKKITQ2gbXgmUy2YTsE8gADUIJIyAtFUAMTISeb7SV50PICcrtIoe32HclAam7NkRwKCLUGqtAA4PeuxNPyUBXLUKGBkKj+GTWltJIYDqLCnUhecBDz1Qxbq+0SOtAmgdBTxieG4cftuehXelzaLZP+ID2NUVLh+Ikdh0E5E0MLxP+O26f1kZr73mV01SEIjyXIPrKutURnwANQQwTgHk36dMYr+rhKw8GPZXE3RER6cASgqpqgCORPtOkgm49x2/s/vtSFRvg3nLhgDq0kwJZuPIohsAMkMmAkiCOjURQAIvXGeaTzq84gXCqQ6x5F02l1Q1JmCTD+AwVdJtdXdDvSFbAqhzhmykAhgQQN9nfglmhO1lZARdIywTx/Ll+gQWrUCaKOBdKKW7Kn/7UEq/Rim9p4ZrPwKgBOBlAFsD2I1Syl//pwC69c2wHECPZjsIIfeY/gCgmAl9ADnK2agJmOvH3EQTZwKmFPjFL4AnH2WNgC+6DiDspCs0t2HwARwmegVw1klH4BVsDK9sHqyDwgoKoGliFhEQwLQK4KxZwWj3LmZhElZimm95PeYYlk/3jjuYS9f2k1/BXS/MxKk4kxUNmaDuRQQ+gB/+MLDllvjsc98H4Dsy+4Q60QScyckTniEIJIcKKA3n9UhyWG6SSGEClghge3tqAjgXb2D/Y9cFPvlJswKYzcYSwBwqICSeAI7wSV1DAKWixSiAHXQYyzEVp+IMowKY2gTc1xdpo9ElohgWLKAstYfSh3oxXd5RIIArV7L54gPbyu0cACZUBRMwEJ0chLo4+fsUJ7/0ueB7YM41+ADWqgAmRavqCSCNKIASievsDI5LrQAGBJCd79K/lLHRRsAvf4lkBfDTn5Z+Cgjgiy9I2wMTsCYKWFQAzT6ArLxrz9CbZMtDYX81QRcEUixGCWAR7agQOV9TkL6pGK3XJBPweWeX8e9/QyDv4bMLCFahENaNyQQsEcCoAii8mwbImgggSVYAg3vI54WlN6IEUBpbbr0VU847GQBQifEBVMnYUFWZNyZOjBLAoZB8GwlgblL0TQ0pfADB3AnEOikNyWMpHzKmVRmtkRTAVavwnTOnYAO8ht/8hvmmjgZGcyWQIwB8EMCnAfQDuIMQMrdZFxvJswYm5r/L5NjtS2OXEtWpKoCFAtvGE2cef3w4GPViOm5a91i2+CTvCDoVxaAAlgt6BRAA1sNbdgQwpQ9gnAKoIw9B3rru7qCTT0I/ztv//iDq7i7fWeD884HHHgM2xYuS3yAFYZ1eQUAAH39c2k5yuWCA2PNjBXROCCdMVSGj2Zy1AigcFp3AeD1amoADBfAXvwA+9Slg551DE3DGjgB+BPcjXxwAnnnGnAhaUADlKGBzEAitygUPCIuGAErV4N/w09g63JaRh4wz8ENjGpgRL4dv4peobrSJdIzRBKxT/3hicwUZeFi4ULhodzeeW3dvnI7T5R2FIBC+wts7b8km4H33Beb2xJuAxXWqn3u6GqyH/frU7dC+jk86LRXAwUETAaQQo411JAIAsP32wDXXBJN68FIGwS0iTgG0JIDGIJAcJyXs2HnzoCeAog+ggoDsKhaSwATMCYGYy2Uk2QTcMYFd79OHyQpgYAJeJVt4tGUTnjXvHkNDdgogv54UIONjCJ3skfmFnTLZw4wpYf3nUWY+i/5Fq4IJONwpH76krFyZSACD4AxxNRBE26iRAGbifQBLJU0KGEBSHLUm4J/8JPhYzrRFfAAP309PAEtEIIATJ0q+1hxi3Zt8AIdy3VoCaFIAdSbgbLkoB/EM6RXAKVU2rs3cagb+fLHcH/bDzZHzthKpCCAhZCs/NUsvIaTi/7+aELJV2gtTSl+glD5CKb0SwO4AJgD4nv/zCuiVPpMyyBVK7R8AeB1sQBH9Zdoy/tugxmGXv3mpPoBApC9JKQn+sNWFkKMBNDD4AJayegWQozqSQAANeQBNCmAJhZAMaNLA6CJIJ/E3oY4O6e38y7u/rnID5P2ANWkZPLBJia8mIO2v+uWJ9+VPCAcdlsdOu4RkRyUdXsaOAHbmyuFhnheJ8gxgGQUcKIDHHQdceaU0MHECmOQDGORmHBoyJ4LOZsWPATxDGphKRQiY8GFNAP06kXJYqg8Z8WlgLsQ3UfrrVfIBJgLo+/+NTAtdKYiBAAa+U/yihx6K8/f4d6wCyCGqLnlSwS23ANnBeBOwuExhZbgcnGP9ey7BnPXlWVidV6pVSASwv18hgIQE0fiiT5hRAbzzTpZlwG/b6wjxd8FLkckHMCUBjKiHwg3yOjBNspICqCBQAJUxKTABc5IjRIXzZR7jTMAdXex7e15+Frx41X42ZpncbYAw/RQQdo/BQYMPIJHf1AKX46JcH2XkUEZBUgDXnlHFlIkyAdxkE5jVW34B/qa9ZImeAApBZoFvXgIBzA0n+wBuvkl0cJYUQB0BFKKOpUe9wQbBx2o2qgBuPldPACXLEe+rSgfnK4wE1/Qf/pBA+tMQwEpFrwDmSoN2BLDCxrVv/3Q6Dj1cJqvSXAUgutZGc2FNAAkh7wcz2+4K4J8AzvX/7waWwkWXPMsKlNKVAF4FsJG/aR6YH6CKzQE8X9M1OlkDE9+W20iYpDJAJYYAVioApUYCWEFO62AbgYEAjiQQQFpO8ApPmQdwCJ1ylnedj5zJf6xDeYN+/nktAWxrU1ZBga9KkGhFRdLAcAgmYHF1AZMJ2EgAhUmKk/9qFYKKp/OOTvABNJmAgdQm4ACDg6l9AMU6EV+Ky2WgUpIHbjENj40CKK0WoZnQTWlgRnwfwCxRKs5fkzTiA+grgP0T1g73TSCAQZ/IZjEyovcBVM1d4qAdEBFeCIMCmBMSlosEUFrtwkYBzGajBBCQAps4pLV2RSiO9iIBDF6KLH0AazIB6whgkglYgYkABomg+XMQnIlJjAk4uIzij6D2I28VIxamgDtAJoD8sQ0OpvMBVMk7J5wiAdSNueutB+nZRdpzoQBM919yenuRIawfSGOTYskBIEUOA3LzJjC/ABMhCrhnYrStGBVAPj8MD+tNwLNnh7eEkQgBzBT1PoAjWWHeMRBAkXyLBHCFoCkNNcAEnB+RCWBpWE8Ae3wFEDNmRMqqpmhq1QogHGkUwLPAAjPmUkqPpJR+n1J6JID1/e1n1VoIQshaYDn/XvM3/QPABwkhGwj7zAXwIf+39NfoYh1e9Jdpy2gIoODUD/jPS3SaKJcjBFAcjKwIIJ8plZZWypnfSgEkm4BFBVAggCYz5yC6QrKkmIBNCmAAJRwf8+ZFxvpCgZ1WSwDjTMAqcqECGNjgoZiATQRQTAMj3D9X5UQCqPULsvQBHEEhau1KaQIOMDiIfE5J/ZPCB1A1AavBBJICqAZRJBFAIDKpm1wNSp5vKiRCGxJmg4gPoK8ALskKwVQJBLDKU5HkckYCGKcA5ih7qQsKYfABFJecqhbL4UAtkhxLH8C+PiUNDPQE0KgA2hBASx/Aznx6EzDJs21WBNAQyhzcp/J7oADyyV1QADPlZB9A1R9BNT9yAhirAFble/E8MwEM6la5nvrshtAZumiLBFC4/6BdVsN705qA29pY/VQqyA2sFA9hEAmgl6wATo5bxVVQACdPiD5LyTdSPKlAALUmYOHLnPJrERMwX2JUbT5Sovd2uQ8F+6gE0L/nlZgcbB/Om4NA1CnP6ANYGpII29CAPg1MT8UngNOnJxJA1VrWbKQhgB8EcBalVNKK/e/nANjR5iSEkBsIIT8ghHyCELIrIeSrAO4FSwHzc3+3PwJ4A8BN/n77A7gJwAKwiOHUIBNYhxcJYCeGcQ92xvpnfincT2cCBqSRhPel6nMv4FVsiM3wIgDBgTkJBgWwnK/TBCwqgBYm4EF0xSqAsRGkqgI4b17wNhqcI0ex6Un74fdKhiAPGVQNCmCQ3kOA6AMoTrhWCqAhDUx7Njp5aQmgzgT8/e8D227LRj/VBCzC7+wSAbRJ+uR5+Omls/EJ3GidBob7ANoQwEB90iiAm2wiKHL+DUeWC9MQwMvwWRzwu72CBecBZvYiRIluFSYikw/gm2VBATQszcYJRHWEXeuZ53O45hrNM7z8cnTef5u0KbKCR0dHSDQMJmBxnWqvJCiAop9bXBoYQcG1VQCrJUM74dfzx6Q2gZi8io0w/frfg1aSfQDbUMKEjhoIYJusAJoc7ZHLRVYACW4hRgE0mYCvuaKEv/+dXcrkA2h6FiMjAH7wA+x4wocAxBPAwx79Dk72A9YA4C8938ERv95BCiAE/IA0gwlYNEPy6wUCWQwBVM33WgUQCFTA3Ipe8XaFm2Xg69bGEcDp6IURggI4qSss69U4FP/AfigVabwPoGACNq34M62yKKoA+gRQJWPatGrKpFu1UACH83oTcEQBvPlm/PCvG2AX3BPZd+KNl+GcwGsNGBr0Qpf/v/8d2+0+CcNox6yRt9i2GTOYmCSMn6oJuA36HLHNQhoCmGSctjVePwzgAAB/BXALgOPBCOA2lNKXAYBSOghmWn4ZwGUArgDwOliksCFjZTzKU1iE7nQhaeoGw89hZ9yHWf/6S7ijYgIOCLvQinlfmnLK17Ah5oeH6kzAF14YKUug5Kkm4Hy8AoiqhQlYowCagkD6MElWAC2igAO0twOnnx76o6xYEcmg30WGMP3hf0YOLbQRrLWO3gfQqxgiTz/6UXatbbaJNwETOxNwgURNwNoVE3QE8Oyz2dql//qXlQk4L/oAJql/PiYNvosbcWC4SkYdaWB0CuBwfqLvICiPsKUS8Pe/85P65iV1mFDeYrNZ4LO4Auu/fDtbzNK/x6A/bLstsOmmLBJUcA6PmID9m11SFtx/ExRAvprAbfew5xz1qQE6Hrhd+h4hgFzK32WXcKJUJpW8sGRhpViRTcDKcgxJQSA6AsgD0qQ1QjUm4PmbCGtxafKYzcIibHL+1+BVQxLxIjbFAqwDmskAe+wRJILeaHo/Nt3IPKaU0Kb1AeTJ7QMSJrxEjYg+Wvl8IgFUJ/SIAiiMP20o4fDDE0zACgGU1Cch8CCOAALAmTg1+Pzl/vOxwdLH0KWku5o0ieBLX5UHWS5klYfk+1qMtfQEUOd2w03ANKNXAIFg3M0uWyLeLoNEAKNpYMTTAMBEGPz/AEkBDAkgxaG4Fvvhn8DAgN4HMEkBFPKeXLjeeVECOMjajfquLC39xtmWMh6JSq045orPvJxrD/xvRXAfwIDI7b8/pq96Xbs6R/dFitHT80Je+69/ITfYj3YIYwu/R6G86pwzlgngIwBOJoRII7K/NNt3wYhdIiil51BKt6OUTqaUdlJK30Mp/Sql9A1lv7copQdTSrsppRMppQeo+6TBqnWj6QM7PKFD+z2IKCbgYGARZlQ+R2DE4L8i4thjWV4UAYN9egWwUohXAONydrEdsqkUwF5MlxVAizyAATo6gNNOY8mg/Qmlk8im3q6sXs4+6isZtHfrTcA6lZPksiyyetEitkqDYJZVyW3VMghE8gEMFKuUPoCUmvMAAqEJmAgKIK9jg2+UiiAwNsEE7ClpYMRnrxLAKrJYNMWcTjNo3yYTsDLg5jPCM1u5MrjHEtpYOQoFthzWFVdISkTEBOzf4xAV1GW+XpyCQAEclKM6JbXyl79k+5bkdqn1s3nwwTB8HYj6AAoKYLVo8AG0TATd1ycQQN5G2sM2zaESwBvxCVz3pX+HG3TLTPqg5VAB7MckrIc3cfctw8A3vhGQh4tO70VXwUwAq8jK9emTiEzBHARStiSAwX1qgkAkH0ABfHKMNQErg54pB12cD6AtVqwANniPbALmxR7uk1/05mELKwVQHHONQSBAoABmlycogDx4SVEAxeYdO68IUcDdnZXI/nTVgN4EnBQE4jOlI3Apnu3ZKUIAsYoNCp4naxCZquYFWhmPRBIljrkimeZrp0eCveABoEbdIw4ZeGH8jXB/u//fsDy2rKYE8GSwwIw3CSGXEkLOIYT8FcxUuyWAU5pQvoYhs9b00HnWR3clNC8EUosuCASQcgHytu158luBMQhE2di/In0aGMCCACoKoOgOQ2n0ekswI1YB9DzoFTkgfMMjJPis+i90ZvQEkGQzWvm9gJHAdCWBj1b8bS3GBFxVFUDDUnCN9gGMVwCr4a68DAZioyJYGENQAHUmYL4SSBbVSB5ANQrYQwZLpm0hbasKQ0FQNJ0JmNIIeW2jwnPu7ZUG3OAx82cXZwL2b2zY00T6KQiCQIbkvJ0S/EklMyK3w4gCCDCTo6gGqGlgBAXAKxl8AP36SvIB1CmAulyAKgEsI49sTihjwNSj4P2I9wWKDPJdsvmQ9C7RrnsbnANE9nvz6ydTkH0Ay2WE/UB00s/njRluTQpgxAQsgE+ONZuABSQpgAALjoj9nSBCOAMC2C/f1zxsET4usb3EmIAryMJDFlRsl4oJOEkBzFqYgOMCD4igAHICKPaf7GBfchCI78+sW3FrCJ3skSk+gKSvL+rDDiBbEQgSrxelw4ltVhxzgz6HMGuCzmdLFwhiA4kA+h9WYSIquXZ5bFkdCSCl9FEwP8C7AOwFZrrdG8DdAD5IKX2sKSVsELq7AWwhT3qTRkJzMJ+FSJIJWFAAqUIAtQqgeKyPVSv81qU6QLfFv5UmRggpPoDK13gFUAkC6fB95FTyEEAMAvE/t1N5sFe/S+XUqBd5lOGNRO+R5BSzXqwJWFEtxAFaGEm4AliTD2BQMGJFACUfQF7HnXYKhLUCSORcXXEmYA8Z9M6Q+0IWXjDhBdVkaQKWnrNAAEtoi/J8DQEMTMB+XQ6JBDAmDyAA0CF27bbJGgXQn4QyRbkdagmgGtQUE81FR9L5AHoewnadhgAqfSHSxmIUQG4CFp9dsDt32+jtjR1TPGQigQ9A1AdQMgHnBAIY4xDNlkHzQJROFTEBC+AvmDWbgAWwALj46S82OIJDSdjJi11cFSWAqRVAyspH88JzVkzAmaUJJmCLIJBYYYGEK4FMaGdllaLoB/r1JuBsll2EUnTmhRcFDl8hG0YHq0LVp7y/P2rBQnoTsFEB5MdYpoKxgY4AltAWnReEiGuimJbHLAEEAErpM5TSQyila1FK8/7/T1JKn21WARuFSZMQIYATdQSwbG8CVgmBrQIYEEBlVPIK5uSkAHA9Dor9XY0CxuAgLqefwT74F6p33g0ceaS0u7Q0zaWXAqeEIm57zn/D5ilEVLVB7LCCArgpXsDVOBSb4KUgb1cElBoVQG2ks4EABlHAN9/Mki8DoVO2sq+0QjhCH8Cuv1yIl/f6BoBkH8DTTweefjr86YorYGUC/vzTx+M9eFEmgG1tKGsCYby8PKnrFEA9AQxJMaAogIpZ3UMGy2bKfQEIJ/SgqixNwJICuGSJXgEMdg7TUZhMwMOe0NYSTMCerwB29mgUQJ/UERsFUJ2AYshLtWTwATz4YODJJ5HPA8fj5/gp2Eo2G+A1ZA47NDivLgpYRwCp4mJSQc6aAC5aKBMkaXduCVmyBMQzz3QURDshZdo0PoD+M+9dpZiADcjA05LPSBoYAaICqBLAQGAxmYBL8mA9hE6tv6iI2OAIDuV6vE2XVlmYgJcvl8iAzgQMhIm3pRviKu7SXhyAG/BXegRbW1dRFbOqCdjv3LYKoOgD2FmIKoDfumt/HM5XcFXbo9//ujLsBUznA1hEO6sOtb8pBPD445k7fdbCBGzyAUw0AfuNqB4FcOFC4LDDgJVLYgigwNZV8j2mCCAhJEMI2Y8QsmXMPlsRQvZrfNEai+5uADvtJG2THDt9GUKNAg7almACrlcBHOjTm4BpoS124tkGTxt/AxBRAHHBBTic/g3/wsdQ2Hu3yO69mI7Zc/37evRR6TeukAUmYJUAahTADgzjDnwUh+JaXI+DQIoGBbBYTEUAiVonggl4aAjA/vsD81kwTlUlcQkEcNqPv4lN5t8KgL2N/qnnRLbDySdHrgXITeja60mQdb6MvDENDABcg0PZSyEngPm8lAz7RbwHKzAZA+/ZTjrFwBLfT1UwIepWAqkqCmCcD+BFOAbbf95MAAOrnUAAl/VsyLbtsou1AjiCQrQ5C0pEVxcbcwcHZV9Mnj4GgJEABgMnn0gII3BvYj22XXBNUBVA7YSXggBmaRl50QTM64NSYLvtkM8DP8cJ+D7OxhQsw2U4Qjpvfz/wOtZnQRnrr8+2W5qApcnEYB4HgKuvCoNAOCIEsLcXxDOrP0/jvZhQiE642RgFUFphI4YAqsugcUQSQQsQfQBFE7DUHIUlyIDQz19dr3wQXdEXGwUzsCT2dwByjliEj6Q0YBEEop5Kyb1aoT4BFF8K+UmmTAEAkL6VuAEH4QhcDvrnv0Rs3c8f6L/U16EAcgLI3QXE5za5uBjfwK8ROSkQ9KkpHaz/ScudDYe+u9ksgJkz5WP7+5HLsvn1nXfYAks/+hGQFXxx8Z3vsP9JJmB/7B9BAY+Dja9Prf2xaJn9eSyHijpdWCEDD0cfDVx9NfD8UzEEUJj31bofa2lgPgvgSkCJf5exCsCVhJDDG1aqJqC7G8Chh2IrPIPvQrNSh2ICtlEAqa0CqDRQUxAIaSvETjyJUBVA3dJaAn528Qwc8Hn9JMKTFwfqkfp2p1MA6TDWwdsAgHWxIJ4AatQLMwE0m4DVW4wogPwBKj2aE1wRvZiOC2adA7z2GvD1r0vX4hNzoFb5oBYmYIDVx9AQQiKXz6MimJw/jAewGV5Aeao8EJKlvWw+SFgJRF2wXWcCfqFjW4y8OB/nvflJbLHn7AiBMBFACoLfHv0csHAhsOGGUR9AT3jOSQqgEI2YyYQW3lWrEPSHUlV4hlOnQofJfkQi5aYkf5H4y2+cCCxezF7ouALYYBMwz2tJObuICYqhIFLyeU4A38RcPPL3N4BLLmHblRcNIKoARl4yNt3UWEZ+niQTcEbJLHD12fNx3V8HMAvvYNMPT8eB++oIoNkHsF4CGPgApggC0ZLiIHye3beawkXKgWpAKgVQMQFzAjiwwdbowXIAJOxXMQRQzL3KTcBSPfLPmsgKb2Vf0PcG0IXDtn8N2152PPtRiQIWp5lYH8BsqADydq3tP4BRAdx0Luujz4tLOBRD393ABLxkCQsi6+gAPA/dWfbM+IJTAwOhAnjPD/4DfPaz7IckE7B/gkF04UN4EOvirTAITqwIf2LPoio2H2tk4OGll/xb94mclgAKpkO17seUAghGAC+mlL5u2sGPzP0zgM83sFwNR3c3AELwHLbCk9g2ukNAAMO8bkCSCTgaBGKjAA72+4O8qjMX6iSAYhCI5+nXIRaw1pbTkZ2sJ4Dtqg+ghQIovr0U0W42AQ8PayeHPMraIBATAczAixDACsnJfmAGBTBPKsgob19LMIM52W+wQSTgJGNyCC8lm4AB5gwsEcBcDlUS3tcyTMVizATtkJ3Tp9ElbDGEJBNwJkwDA8jzA1dxvUwOhfesjzlzwO5PcYngA2dQVaIPYHt7mL1fHXA9iyAQDkWJ4EJPX19YNxIBnDYNOgRJabkzuR85vN56YARn4sTgxURth1YEMKYfdnI1ie+jPPj8SEg2CKgccJDNBj6PbRutG06aOhOwsvJP5CVDeX5SGfha1ylNwL0T1kcp14VFmIV11pFXQAluod0cBSwF4yT4AOqIRzCGJgSBJBJAYY3hfF54Zj5sCKCVAmgwAZeH/NQjPbOx0s8/9+qr/jFJCqDfwbkCaEsAKTKS/+3aH94AJBMNvlJPGWsCTlAAJRhEgk3XY3103jzhN1UBBFi7nDQpqMTJmX5xV5RKIQEcmiO8/CQRwCH27AfRhRG0YSHW1SdhyIVWFGWJaitkEKaB4W01MHEbMKZNwAC2BXB7wj4AcCeA7esvTvMgjieR3EoAI4DVauCUHEkvYGkCtvEBHOo3KIDt8SbgRChLwSVixgyjGSlQAE0E0KAAchTRHkm/EcBAAE1RwBECKKglS5Qx2tYEnCflyKTQi+nR6k8ggFylSVIABzCBvYjyZ57LKQSdDdS0Qw4OmY5edo8JQSCqCVinAFK1gAqBkBRASoPyURD53lQfQFUB9CcZGwIoRQL791isJCuAfHURohBA6fnxNmqjACr5wOL6YaAAct8s1ST++gvB5yyqGIBgxvYVQEDhOIrSDERNwBEfwBgCOAEs/YqoAAZdmJPqZcuQLcsTTrEI2cWgZCaAujyAtgpgBp7RBJzJ+IVVjrdSACOOpXoF0NYHMCkS2GQCLg/6liRqziwQOZXBBAydCVhRHgH/WZsCsAwEMJOxTwPDCaCRMBpMwBuvy8ZeiQAKQSCR6vArkRNAcejO+QQw26EEnAiI+AAKCmDkEE3kfw6VsPmo40IMxL7L26pWARQw1gngRAArLM6zwt93zELkOWI4eIC+vtAEhQL4hKxTALlYoDMB2yiAw6tiTMBWa8kZIJqAbRIZ8TcuDYI8edwka2MCVhTAF56KUQANJmBtHsC8ntTlUBWXCgWgCeSI8QFUJ4UlmBEdjDSmORHcBKxVAIWTrcJENg4JJmCiNiAAXqesAM7AEpx2WpjWw7gSCOFElUZyQAYkntgRwGIREXIq1Ytyo5ICeP/9wH//CyDZBxD33ovDixcDYP49fct8AlgV5Qk9EeOR1fDVPR45LJUzMAEXhXGc4iT8THtOCRYEUJpFxcs+GyZEyMCTFUCBAErvXroXDTVNlPqSwf0HNTgSlwAwKID5PNDTA3geNpp3k3Tc8DDk9qVJXJ7rYPc9BctxIn6GaUNvNdQETAjYxKu8nIpRwEYfwEhuIVYMKxOwUt4ZWJKceYG3k/nzgfvuC1xWK0VOADVig4ERGE3AhRgFULAiiQQw0vd4v+vtBX72M8yqLADAmoFtGpjg5TKlCXjW5GFMmMDeDQM/QCEIJNLV/GfYk2EynEQA/YTsmXbhWqpLikCidnrlz8C/We5MsR8Gh2jSs2RRDZtPCkEmAw/tGMYJOBcb+ava2hLAiejHSTgHG+FV885NQBIBXApwr+pYzPH3HbPg48Iuu8QogJp0IBEFUDQBKxZWioyVD2BxUB8EkmlvgAlYVAATTMDo6EhUAL0UJmBRCSqiPUjSG4GqAPqjprUC6D+UiV1RAmUkgEpC2gKiBFCrAEaUGaVOhaXgIi+LiglYIoC5nJYAqvU8Fctw7bXA8t54BZBStvQaAKBalRXAskEB3F4W7fmbc6AAAvB80ihNsuobd1V5zosWAbBQAHfZBae89kVsjJdx3XXAfXf5BFQ0Aa+1FnTgagT37xv0YhTA4eGgyO/HY3g/HteeU76Ambxw5ZjwfVQfwOfDYK0sqtLEQ7O5wLyURACphgDGEXEdtD6AAHNz0KBYVAjgXv7KI1tvHeyTa2eV/AE8ip/hu7jizQ+B+q4QEQLI3QYUxAWBBDAQQCsTsEIAdSbgq/FJ+eIf/aj0dQqWG8mOt8VW7IPY4HbeGdks8z4I3CmEgKbAZdPw3AoYkU3AnsYEzB+izgcwkzW7X/B+d+utwHe/i58+tgcA5jIRpwASQQHMoYKOjvQmYFIcxiabsE2vveb/pjMBc/iixCQim4CBMK2NRACVeY7X/eaYh2P/92XgmWcAyMm/k0zAQfNJIchk4OEHOAPn4qRgWxIB5KT6pzgZ5+B7ONvPHNAqJI0gD8DOt+8L/r5jErMFf/cbbgB+eq49AYwogAYTMJ98bRTAYIRVfAAbQgAtfADvbtsbeOIJ9sVEALkCyBW5GkzAxogmlQD6kQDWPoD+Q+nuiu5bgcEHUDGJ50kllQLIJ2Zxgs7AC0zAFR0BFJ7vCArMFUUwAas5oAAgo0Rl8sGsXIz3AQQEtUchgB5/hupI9KEPAddfH7SBnXcUFEAeAOITQGlsVwlPVf+cY/MACq/1U8BkXFHVeW/mWeDuu4FZs7Tn5gQwU5KDQKTuI6xGwIs8FULy9zjY+AByZVqp18yy0DFVJYDFKnt+kyYpdapTADVBIJHJ5NVXcfaHbsaz0Cdq0CqAgJ/DKIpKRSGA3/kOC2sUVjLIdsgPdVZlIbwROXiO7ZgFHn9cSwLj0sAEUFaH4EuWWZmABScukwn4O/g5cNVVwAsvANddBxxxhLRPDpVIGZ/G1jgE18C7068PDUHo7g5JUslXs7fZBvjPf/wdDGZFkw8gadPkAUzwATQSQB+z+l/GtdcCe+4ZrwBSRQF8+WXggp+lUwBRLAaPMuj2QhCIyQQcJYA0WPeauyEAiFi7+Jg5TdGkEk3AggIYNJ+UBHBHPCRts1UAd+/4r/V1GokkAngBgN0JIb8ghERYEyEkTwi5AGzd3l80vniNwcyZ4XOcPBnYe38NAezrgy5fUHwUcDiB84HLxgcwmMGVN/xsez6Vz0EE4lJwMT6Aj3TuytZnBSxMwH7nMnVu4bOYD66EttBUpkI1AfujgykKmK88EMDvqCYCqNtXRV5jArbxAZSSoKIaPMNqVtOmVoTeE20oRRTADNWQXWXbhrN9c0Y5PE5nAgaEe69U9CuBqCMRIcCBBwamxP33EXwAlRyAUhNWTcC+Avjy9P+Tttv4AALhCxev2zLyeKVtSybXGxAogKV0CiAnb9fjQIzoEn9zpDEBK20ssyIkmRl4kg/gUImdV1mUyCoIJOIDCAAbboiXNv64MaUJyYbbpWfxnvdo1dUIAczngUMPlXwxiW6QK8nBc2xHwgbfww6L7G6lACoEcBLYrKyagG0UQJ0JuIgO4JOfZNLcQQdFxmldoMoQOnEdDkFupu9HqbaT4WF0dwtqusfGhS9+EVh77cjtSoj4AHrsxqT6josCJhYKoICDD/azGMUpgERWANdZB9j1IwbCqM5dQv/jlx8ZQdDIPJLRp8/yn2E3ZAIYPvMscm1iBJyeAKquXloTsAidApjSBKy2F1sC2D3NvKpPMxF7d5TShwgh3wHwcwCfIYTcDuBN/+f1AHwUwFQA36GUWq0FPCagS6BagwlYJICVWhRAlQAWsslm2zioCqABwTI4gFEB5BOsMQ+gRgFUTcBGAqjmAazRBDxBZwKmWdmzJ8bfRjULLcEMrG8ggLyjtmUq4HN0DpVgwBVz+gUQHBQ7MBzxAdQFlmSUqMwCYeenCUEggKCeCARQ9AGkGYPTu9+2O7KCCZi3H39Qj1MAOQEcyPdI20dQQKdaLUo6Cr4fIESVKumUBsgETKCyCT/nt8/siE8AqzEK4PAwcl0UAAmIwCC6UDCZsoDYFzHeroOJWWljZHlIANtzVQxVQtPTUJHtayKA0mSsLl8B/ftMZyei/mw+qBBpHrklNfIZGgKoQUWTwDxUwjUHGZbbMvkABlBWy+GEQDUB1+oDGIEyTusUwIj7kHpvvb3o7p4T+tNW2DkN79ny5RUfQK0CGBcEQokUgKXtCwqy2eQ0MGqKKV27BAC89Zb8PQjCKooxlIH6Vy10ACUSbR7cBAzZB5ATu8i9GQigamHRmoA1QSD1+ACqZNrWBOzlR4cAJjqRUEovALArgMcAHAjg+/7fgQAeB7ArpfSXTSxj45GCAEYUwNtuC7iQmCsoiJSy8AGEp1cA8wVSPwG08AH0skIhE0zAgSInEECaycj3xAmgoACmMgH7BDCPMjwdAczrTcATO6L7lk0mYA7/fk0+gJEJVvEB5CukAH7n9Z+hblIUFcAODGPCsjeBRx4BAHhZOxMwN3nAr5eVA2YTcDD53n47cqSKTfASlj/wPN592xAEwuE/C576RwwC0SqAyoVzvgl4IBclgMYgkMGw7vnzElUdmQBG48t4Ima+EshAVaMA8iTNnhf4tPJnLk4GsXkaNAhNwHoFEMtCAthRqErPudjHystT8all2AEsIfuHcT+6Vi2SdolEY/vo6jITQM/0zIFo8mvIq5OlIoBcCdeVQ3OiuCjgAIoCyAggrckErL7sSb6KhnLqSGoiAXzrLexauSNsZ2VWVzE5uwNETMC8LuOCQAQHuXffoXjzFXsFEEgmgFAUQABmAvjKK/J34QVMys/tl7mS0wRuAUFlTaSMhb18yyvYEs+mJoBqRK3WBCwiGxLdoPnYZNPghyuKcTWbB0XGKg3MaBFAK3pLKb0PwH2EkAwAnphrGaUaG9bqAB0BNJiAg4fHB6O//AVzTvg6gO0xPBQ1AdsogEHyVSXCjnTZrQ8bCwsFUFpaqEvzJowwyjJQACWTb4f85mQIAokogOuuCyxYAGy1lfwMBAUQWgKoN+tO0BDACs3Jwr/a+2bPBvr7kcdIhAD2ozs6JyqmufZcBZyTZVENlg6sZDRtau7c4GM7irj28bng8QceyWkVwMoc2Tk/71+sb1kFswAcd0IWPEhWbWvB5HvYYdj4S+fiJZwILAU+fvHN+BQAZA1kwH8WnACKCiD3AYwzAecr7Dmv0iiARhOwQI6D1UsEAig2j0fbPoL9h6+WTpMLfAB99VFHAAFGcgYG0JUZRi/ykgIYniyd321SHkCRAHZP8JAbCieF8kp2rEkBvAyfQwYe/oovRLyq4wigyQRc6MjCKHRqCKCoAJomru4pmvryTcBpFEBTHsAAythUQBntKKJc7pDUYrlwdgqgLQFMVADVueQTn8BZy5djlW/2H6wUpGLFQTUBe35QYawJWAhu+92vy3geI7gD9gQwl0swAQuJoLNUTwCfxZbYCs8BG28sH5ykAObZ75F2Nnky+0eZBeXXt7MIkrlg6YgjvsU1EECtAshfhFEMm4/kqpILVwDSQDUBe/k2oBofqxXUfT2+/3UgOYxMAKXUo5Qu8f9WT/IH6DvD4GC8AvjtbwfbZr/N3tLFN/tYBVDZSDgB9E2E92xxDL6O38CbMi21AjgMRdq3UQBFAmgwdfGl0gL/MdEZf0TJVWQwAUcUwPvuA046ia1+kI+SUJMJOGMwAXe0RwlUmSb4APr+bp3egDQpfBpX4AtfIOJyyP7FZQLIlSSAERa+cozWBPyDHwT+T2pS2Womr1UAV33uGOD73w/WbeYKIE8eXkEuGH+NCiCAdf5zSfCZP4dsLkEBzAiJoIVVQICEIJAKO/+qrAUB5GY9wTzOB0HRB1A87pSe3+IJJXk725eiw7+3gYrGBAyE65Fm/TWDESaFDRCzpq4OST6AomowY2pVmmCr/azNRRRAYZb4Ev5svHZaBbBnagYXXghcc43mR+GlbuFme2BLPGtlAt56O7MCWNb5VdZqAta8nHajHyMlGgQOrUAPFi8Wd4gSQDEI5K2uzXA0LsImO04LgzIM5dQRwMj95XLAH/4Qfvfb9UQ/D+PQiMEEfNVVwK9/zfIfnXgiAE0aGJ5XtqAxAWsIYB5lKf+c1Pc69eKCqABejUNxfv4k4Oc/D3cQooCDdiwEt+2Pm7A3bkXfUScAv/+9fHKNAjgyglABzBv6rB+hPmf4JSlZPx9DkxRAXgfq/COq/tqXG39u2BivBM2HCiINKegmd+BdsNWbVBNwNcd4ho0JuFCWXVzwgQ+YD2ogUhHANQa6AX9oKCCA2iCQzTYDzjsPADBt8bzI4WkUwMAE7Gcxvm3jY/E7fD3tPAQAKBGFANrkAcwmv23kuQLom4BpNoclYLIFUVcw8Tt6ZyUcdD1kogrg3LnAOecwx3CDAqgNAjGYgNvz0X1HkgjgRhsBALqq/QEZuBDH4o0dP42LL45kRon6AAoEMItqQAAlszrHpEnABRcAAKYo6TQrBgUQbW3AT3/KInQB5CkbgLhPpjhBqgOLSABzxXBA4QNiNh9PALnZX0oDY2MCLvt+eJkJUgfQEkA+qQsLgwarl5h8AAtTcALOk6+JijDZFTAwxMqpVQABdBJWRq0JOGXuzYgJOGaEL2RlAugNsOtHFEBBadC9GHCk9QEsoIxjjwUOOUTzo6AAPnHYuZiHLa0IoHYiLBsUOcOJrEzAGtLSjX5kh1ahHSUMohNDqi+fxgQsKoD/nnkkfoujccYZwG67KSfXBIEkmoAB4KijgOOOi24HMDhiMAF/8pPAMccAP/xhkGpHNQEHa8vrFEBepzEEUKp2g6Unmw373ztYGz/uPCcYIwEWWcyfSeCf7D/rm7A/bsb+eAezkfvFucA668gnF4JAdASwnDMogH5+0jmr5gWR30AY1dsIE7C2y/rX3QLzWPOhVLLS5dqi7Xg5enAyfsrOqSqAFgQwmFeKytIjn/mM+aAGYnwSQKFDLYIfCTc4KOV045Aap99AprwbJYBpFMDABOyvY7Y8y2aDWgjgCFHUzLQ+gAZwB3la9c0RJIvXsKF+Z7+jTxwJTV9ZVM1BIIDRB1CrAKoE0H8o7TmND6AtAaz0S+ZAowKv+AAGZhD4CmCcCRjQmtkAtmJJRjPRB+KRr1LzwYz7RgaDcSYq3ookIDsUDpz8OWQL8SbgNhJVAG2igDkBLKFdul+tDyCf1JfJbQUI3Q5UE3A2GzVx5lAN3vCLaA+aukkB7MywfbUm4JQEMFEBFJDPKo7h/rJUEQVQNBujHzrUYgLu8WLS3ggKII+0r1SUlUB00NUXD4ay9AGsRwFs62fjZi9UFo3EPIAD1Lc26LprLSZgjgijZ1hVsjAB+/VpMgHH5gEUfABzqEhr0NoogLlcqEIFiqPQyCpeqACqwYt8nuzsNPDLBBNwxUQAN9wQaGvDOt4CrIOFwWaRAEr3pvjp1WwCFghgfz87LxHnUE2778Jg0PdUAmijAAZj37DS5w0m+0ZjfBJA4YksBHtroQODWLQgasaQJtnN2QLSk95mBFBnAtYOmsrGDKpY9k4J6OsDzWbxRh8znbW1IbUJOEIAxcTHyuoXASwmvDypYBJWBopcxcvgdRhWHvAnkokjsqpjDAJRy+DnASxgJJL6AojxASwtiyzVVPZsFcA+OwKomIC7lXvMxCmAgDH6TquUQHCvKfDIWB4EEpIjQN/OxHOKBDAwAScogB2rmCIt+QDCIg+gv/btMDokAqjNA8hnCoHwBGYQojcBZ7NRYpFFJSBioj9XZDLxyzOTvgvAYAJOSQBn4235uJgRPp+RFUAybPABFEzik7FSe65agkAmV2MIoPCseB+zUQC1P6RUACVyJfQRKk5JAqsY8J/XZPShY4C10xV5lUX7xxDCXuh9YiCagJtGACOM3i93ySIIRCCApRIwPBBjAlZ9AMXT1GgC5u0zUN6FTuTRTCIBNHDfRBMwd1/SJt/3s2bvh5uDzdPBiH+tCqDWBBxHANVVcDR13oYRiQCK1/T8rAs2JuB80RHAUcG7YL5tZHgIn/1kGEKvxbrrAhMnoq1/KaahVyKAafIA5lDB1rMZkViRnYbb7xQm2bQEMGPwAbztNuDii7XHSEEgBuz+5p+xEj3Y5IazAQBlmsUz2Fq/M1cASykUQEMeQF3UlckEPPvWP+MiHCP9NFjKafcN4PuXdJb7JXOgDQE8Dafj/uHQRpxHGZlqjA8gABQKoBo/SymSUihjsCsngFQmgJE1qn1QqpiHK6G6wglgrmBQqvz2Oe0HX8f78aiSB5CIu0B38bz/9lpEuzSZpzUB5wQTsNg8ZsyIEpwcDQlg0Z9IxCD4AH55/r54V2yMlxuiAO6Ax/xC+I0mVgGUCWB/dUJwTyaYCCCgn0ziTMAkE5NXVCCAmbYUBDBGAeyHhulo6kcyAZsmO4EALgPLQzg504/OAUYEKj0a5pHJRFRA0QS8yoshgBZ5ALU+joDxgQ5X88jljO+B0nXzKOOll4ATjk/hAyieRiCARbRH+6xYCO7aktUogMLzqlQ1CmAlfFEDYgigKQ+gTwBfXmBQAIFAbDkLJwebjCbgSLCQngCK68RrSdnGG4Pmclgfr6O0cjhKADU3uhw9EgEU1Xvij6HJCiBFfkgxAcc2mMZh3BPAFegJ3kSCTPN+wz72WOXFiZCgo/dghTaKzcYHMItq4NC6cCQcOCKD0sRo+gsVgxllwLVIaZHNKCTz+usjS0NNKK8EALQNMt+1lf0Z/ArfxP3d+wJ/VpzU/Y4+oaRXAJejB28ep+QJb0AeQAD4On4n/dS7MiYNzMSJwDQWxN5R6ZfUoCQCmEUVp+NH0k98gKkgKyXclQtPQDSduSwqJYTgJz8BPvc5lp8XQNAYCpRdgyomYN1jNqmKnCjlEkzAAHA0fpOcBkY1AfsEUFUAYwmgEAW83XvZvXHzuuoD+Ne/AttuH1UAefviCqC26QvlOWb6NQ3xAYwcF6sAyibg49suAhAzaQKYZDABA/p71CmAP8fxuB0fxfXrfTt6AIdoAk6jAGrqi/vCXo+DcAMOwJsnXRT+qDnR1ElVbLN5AgEUBl+RAHYNsrFz6qYzcMghwPnnK8fxBXn9VEOSCdhj57RVAFUz9az1Crj0Us2xO+8M7L57ZPMICpg4MSG/v0AAgdDa4CHDivSZz7ClRPbYA9hxR21Z+fFGBRCQiZL/o2gCDtayF9pzNUYB5NunTDHclx/NixUrZAXQ7/srwX7X9tuvfjWyyUgAv/xlYN992bImCAlgnAVKe81CAZg8mbnmCC5hAPBA50dZUB/HLbcAu+6KvXFrMEZmUVUIYMV8LV4Of57kbmFPYFs8mNsZ2HVX80ENxLgngCsxOZgMenxH/TLy+MIXgAsv1BzgD1ZtKAUNDQjNwbYKIJezRT+WyKAUCVOLol/JvWazPih39g9w4IHAgw/GHtO7NINhdOL3+93C0tqL8CeSCQYFcD/cjBWfP04+JoUPYFZ1vo3pURElRNy3uzsg1Z1lSxNwZC3gEPz+tEt0STtq0m2IvoqZDE45hRGdiALor31JFAVQV16TChQogG2GQgonewUba1cCiTMB54bZi9MwOqQdAyd2ERpT1I9+4A+UVG8C3mAD4KLfymXP0qgJWPsMhZn3Wxesj43Xrl8BjBwXpwAKJmDv71fjiRXsRct/D0kFkwm4s1P2AfwGfoUT8HPshdsx1DHVfEJRASzUSQBHwrWAD8INWP6po8MfNSfaessqfvh9fxwyqR0CYVkOxjImoQ9dw2zsrE6ZjmuukRI0MPA25hNA0QTcX2Xn1HJOCxPw/gcX1BXjGCZNAu68E/jTn6TNZeRN1tcQCgEUcxzm82Bk4KmngDvuCEUBCxNwbN/LhS+SkesJ7blq4QNoNG9zVXTJEpkA+sGPfO7Tdp+ddwa++U1pk9EHsLOTEbIvfxmAWQEUofUBBIJ6qY5UUB1m51mI2Th6w9tllXebbYC77sJj2CHoexMwgJzo7uGTuiQTME94vQTTsT2ewAGT74k3ETQQ454A9mFSMBlw08sICuaHJhBA8e0wWCrMwgdQJIBLoCiAognYIjdQMat431oogDzFi4SEUWrJMnbeLbfU/OhPJGJQQwaepNBEyK3BBJxWAVQRuxRcdze7bns7srQaPIM0PoAiOAGJbS+AdraRTEm6g/36yXETcLV2BZA/h7xJAVwSpqhZhW5p+ThqYQLO+f6Gw7Rd+Y3EqxD8dNwELCiAkfaiXDNLK1IQCGDoLsrqBG3V+n0AI8dZ+gAODGfheUwYqSXgy3Sp9naZ/EvBQHHDgSEIpBYfwKz/EsDdZ6RyavYvZL3Q4dWCAHIFcILXj4k+AaxMMUyS/DhBAVQJoLb+FTKgzVWY1FaU30dQMAXgRo4xEkCL6wBqZLydAiiagHU+gFUargSSmgBymbu3VyaAvfLcZ3JVV2VyPl5ryS0QBrP5dVALASRCMuihFaFLWFsb9ME4CF++VNcNHjWdZALmqqHWfaLJcARQQwC16xNy8KTHCgFMowCKJuCIApiSAIpLPQGwUgDbiaZjJIxSi3vZeX0/WeWE0QFcVACLaI8OuAYTcBofQB1iCSBPEeGPWLPAAgNsfQBVWCuApWh9jygKYASKAohqsg9gEgE0KoAvvxx87Mr5E0jR3gTMJ/8h2hH5LZKNSNPOciTqAxjpRxoCaKUAzp8ffi6V0FZpoAnYwgcwJ5iA+wbYfnHm3ziYFMC2thoJoKAAcpXdZiUQnbMlj5bkpEC6rpYACheyMAFzBXCC14+JRTZ2VqcYKlIhgJICWIkxASvprbSRyknMXfm9jHxqAsjHmrQEMJUJWKMABv1ONAFbKIDGZe54QxcUwFIJEQVQXUAkgKKCGU3AHNxtxkIBNPYLYT3gYn+4MESEAAqfTQSQ+OnebAlgHyzWC2wwxj0BXInJWgJoowDqTMA2PoCH4+84BWcCSDAB2xBAtaA2CqBQbtvjYgmgxsQpEkCtApgmDUzB3gScqAACwYjFCaCNAvhtXBD5yZoAimsG+pCilS0UQO4jEhcFbDIB83LmTQRQyKTLCWBxyJ+EaLIJuLCYpWoYpu2RexGyVDBolOYMja4EEpm8lPO2D6/AnfgoK2ucAijii1/ErGXzAIyOArhyFau3eqw7uqbf1iabgOshgDYrgQAw1hknBUkK4Gfv/hIz2/Eb0EGjAE5EP7qLTAnyploQwKeewo+u3Bib4iUAwMpyjAKoIYARBTCJACr1koYAroe38Dw2C6LMAx9AHTQPJ++vlAIYCKDGBKxNAyMGgXiCD+BllzEztJKRwKgAcj+HZcvQ5qfs0imACxfqDoZRAdT6FgOpCGCSCTiHCob70hHALTFPOpWNCTiLamACdgpgK3HMMSjNWAfX4FCtCdg4+PmD1fqzalcAAWAamL+cyPpjSZIGA+gCzaRTAN/FTDy2wWH6H/fZx3gcVy/WXVfzo4EA8oa9ChPjTcBiEIhGAcyq0atpCKBYH9x/xh+xpvtvlMPoSDXQcogm4NjJUrN2ZqmawwG4AaVcFwvCUeG3s0AB9Go3Ac8BM4Pmpvdof8cllwQfJ+bZBDI0EJMH0HCz87MbR37z096F0MyGfP1jcSWQJBNw9/I3g893YTd2vO72//pXbVkH0YV5x/2Rtb1f/Uq7D044Qb+dI6UPYKwCeNppxnO8jrlYhim4GEdqu/c66wATJ9VnAuZ9zMoEDGjHJhbYRKLXNZ3oppvY/+23R2WDjfGPwsE46SThd6Gt8MmxE0PoGPEjJnmQgQpOdIaGgCOPxIy+V4OflpdifAA335xFYW22GQBgnVn1E8ARFKx9AAFgM7yI4/BLAOw5GrOBEBKp10QfQAsFMJeD9PA+uCPB/Enbhsf985/2JuBcjkWIUIqJZZbmSOcDeM45huOVN6Wp/uovA5hgDuKAGAQSEsDTIfcv4zQpEMDSqpAAtrdDrm+NCViFUQH89a/Dy6ESqNObbtuFzk7g7383lK0JGL8E8Ne/xjP/eBP9mBSYg9IogH+8sKglgDY+gCLElDNpTcCD6ALUxd5jRvyFW+6N2XgbI10GInDLLcB112l/qtCMbsxh0JiAOzCMyehDBVksx5R4ctvZCQ8EWXiBM7mIiA9ggglYigIW3/AUAsgRSwBjrmWtAGowVM7jJhyAM07sD6LXJPgVlvVkBdBkAhZ/U/E+PAUAyG2tk28B7L8/W30EwMQCGzQH+n0fQKpZCk5zs/+HB7GKToj8FiGAmpcF4lWRy4UmMBsTMMdfcCTOx3cAGNrm5z4HfOc7kc2D6MLyg77MVozYbjvtuXHuuXjyooekTcdDWCYrJQFc0R+jAJ5+ejS63se38EtMRy+WYrq2nWWzwB57N8YEbJUI2vCjdglNZd+Kro12diL3yov4+PC1MhkQCAtXebOoIltlbTTXlaAcDg5G3C+W+QRQm589nweefx648UYAwOSuCr7+5ZQ+gHWYgFVUkY0/Vjlu47kxaWAAYxBIXCLoCd0ZPLh8szCl2JIl9iZgIGjsk0r+Mm6CAtiL6TjnHGCXXQzHGnwllpHp+qhqhQB+6gD2MnsU/oAf4XRpV20eQMBIANvaIHcmMVeiQKPeQbhkqpEAHnMMU1MhW8pmbdCBVau0weRNw/glgAhNYql8AH0CmCnLJmDut2GrAHKIg2bkbc+GAKYwAVeybaBxZgVCjG+4VWRRKBjSGWhG07XAzIpLMQ0UmXgCWCgEK2mQksYjWL2nBAVQIoAi+GiqIYDGUzaJAA6X2UOYOCk+NUuORwHXoQDyN2e9/d4HT+WTZxPIqlXsRaRqqQCuQA8qFUQU6YgJOJOJmoGrVeRzNIigszEBczyBkLwZ27WmfQ6hk723JDy4fKdcEMlPh18w5hy5TLg6wPJ+tr/RB5CnL1FQRHuQINnUTom4eoOYENxWAUyTBxDQjmniy6xJAdTmWM3ngUwmWo1COwn8PFFB3ieA2U4LAihN1ARFtKOzM+aRZTLhMdUafADrMAGr8JBJRQALJCEIRHygXhi0GBcEAuL7na69Nvve22uvAAJBY5/gB+6ICuASzIivToOvxLKswYdCWT2p4NeFmCieI60CGJmbhYlQJICiGTcTlwaGB+GICyZ0dKSeR+rF+CaAfgepJQoYxaIc8p3CB1CESAAjCmCiCXhCKhNwJduWfNqYwcjYWTUKIPev4zJ/pAMpyU2rWT96cESTPFqt1DQmYBF8glVeWetVABOjgDUYGknwn+FBIP5kxwcTUxoYNRG0FnEE0H9A3AdwsF/2AUwigP3oRrUaEkaOiAIIRAlgpRL4CLHs+STRBMwxD+E9GZ+hxo7mIWtapU9Crk2+ruSnwyslZt1tawUQMEbilxCW39jOxMjNWhTAhpiAkxVALQE0XUijAOZQQc7zFcAJhuhhMQ2MUAHFTCcAkkzIBAIoLv0IoOkmYBFpFcACSQgCER9KJSQncWlggmOElC7WPoDCcV1DjPR5wyWgvx9VksVKTI5vYwZpkS+dGoGiABa8sC5UWCmAAyPB8XGrdIkEUGzfsVHAQrRxsGBCi5I/i3AEECkVQP6QhEW4gfQ+gBxig8nlkN4EnEIBLPsEMK1pB0gggNls5B4n+H4N3NE3clqDApgpagigek9pooBFGBTAItpr8gHkb261KIDGReI5FBMwockKINGsLczxDmYBPQbTPxAhgEsW+T6AOhOwgQAODwPPvZDgAwhE/QAHBnBJ6XAAwIgfHGNrAq6VAAJ2461KAFdBSM7OC6kED0jHk5AALutLiAI2zPZNI4DCQ+VJwp96KrCA1kUApesKX4wKoA4GAsiTo+cnJCiAQ0PSTfBl4KwJ4FtvYZc/K0n/mhgFrCKRAKb1ARQbj6/iqWlg1ETQAUESInpTmYD947oGmQL4lSdYgueBdmYZihUjDNmzl+cMb1BKGphc1UwAkxTALKp4e36MAihAJIDSS5A/HscRQFUBbDUcAQQiPoBWCqCBAKb1ARQbTGThj1oIYAwTKWcsCGDMYBQ79hlmU64ARvqyqgD6S6lldQpgShOwMek+H02Vim66D+AXvgAAWN45O9jEl6wzDp6cAFZ9H0Av2QdQXHFCxeIJG8UUEEG77siyQfPmf9ingQGYGr14MdC7XC7YMcdorqXOamedhU+UrwUQEtxIW9NccwUmY6kQRW9LAN/EHAB2422+Qz6pVgGMI4BCGphVg6xujDzcggAaV5QQU3fYEkChwnT7NcMErJuMjSxAaAQ1EcDBQS0BTFTk4iqtGXkAtWsYsr4XW1blWolpYDQKYC4nB4EUCoiYgAGEEb1LlwYrZFiZgKey6O32oeVYC4uw+0IWlLVw8la6W4igr2duZNuKnJ0CSEYsCCDPIn7UUey/oABedZmSB3DOHO1lpQj8TB7nTvoJAOA03+9QOzcIRDNQAB0BbC1UBbBbWAouyQdQTe0R6wOYEATy0EPAokV2PoDHtYdLnw0g6nQfqwBmLNJl1KIAAsbGO2Pz6VimW49eUQBDE7DGBzCFCbiKbCQuJgAfiZUR2ZhYFIglgHx5qRLa4gngn/4EvPIKHt3oM8GmgaKdCTjnE0DxLd1ULN3ShBxbfzhhWUFOAP0ckfOeDaOACTErOiFIsD/HK69Av2qCOqsJeSD4/dkogIuxVtIuDELHGupeC1vhWQANUAB5o7FUAEc8di7jpGdhAjaiFgVQKIiu/TcjCCSVAkgIIxy9vfjTxeHEzEmOFQEUKoC/6FsrgDqkNAEPoyP5eprjgPQm4JywPGIaE7AYBNLVBb0JuK2Nva1Wq4EPnxUB5En+y4PYgqdJyeVw/k436m4hgr+d/BzWxVtYiPDleWUhXgEMfPNLFibgL3+ZDVS/+11QNsB/0YASBTxxIvDuuyxwTIA45m37wQJ+P/VkbIyX8WP8EIAzAY9ZqASQwyYKWFUAOZKWo1JRRh5rrQWsxeeyBB/Atye8J/g8iC7QFOZRrgA23AcQMBJAOn2Gfq1IEwEs1W8CNlY39wEURlW2DjSpiwAmpoHJZoGNNgLNhxXIFUDj4MmdhL0yACq9pQPafNmxBDA7IUH2CAigP4EUQwJo64/H9+fYyCQ6xsxqfFKxIYDiKjqAnQK4avqGWOWreFYKYLuFCVj3MHiZBAJYrprVWwBWCqARrSaAaUzAtfoAAkxBmjYNa80OJ+ZgZRsTATT4AFoTwLjypDQB86CTRDSEACYogOJDEUzA4tgSIYDiYMrNwO+8E+wP2BHAvEgAjzwymHOTcndmJnZhIdaVXD36CnYKIF9iJFYBJIQNVHyDgQAGj3XmzMgNi2Nerj2PfIHgVWwM/lLsTMBjFCYCaJMHMJUPYAwiOc8SfADFdXGZCdjePGplAjb8GJuTCjC+vQxPMHRWJalmI03AmRQEMDGJcMy1RAJo5QMo3POqYoL/TCYjrRAgvqUDetEpzgScOOsJCc6BUNGmuuXcYm7WlBPLtixpTMBiEnXAjgBWC2E7tXnhVgmgNJlw4mdpAi57+gCeABYE0OCHXrcJuBEEUHKANyiAqUzAmsIUMIKCH5lbmGAgY6IPoJBWimcHaKUJ2FoB1FR2oglYOSbnyWlgYn0A4xRAcT/xMw8E8QkgJ/yG4HUG/wby5aGQAG6xRZAa1TarzkKsExa9YKgUgwLIx3gRSb60KgEUVsuMQBrz8vlIvVubgJ0C2FrUpQCmMQHHQHq7UKEphGiSSusDOEJq9wGsVQEcnmix7EEmEyiAy99pQBSwSQLkI7EuvUSdCqAVASyEdds/bPH27Ff4t/DLiAlYxzniFMDEWcgffOa88h98BpcHLzSezlE7wQSfCAsC2FAFUBhYK/mwndo8M9UHULo/PovZKoBebQqgbgKLoAkKYNqVQGpWAFMQQD5ZllBAod3wAEUTsL8cHBD2j1aagItotyOAGmafVgHM0pQ+gJRiyuO342CwRPQV5NjQmKQAvv46AMOqLyq4AlgarIsAii97xmOUNDBWJmAVfjs7Bhfhw3gAAGuzr75q2B/KmFCIrlKivZZANJ0COEpQg0A4rKKAFQLIJ8zYQVODiAJ4yCHsv2FVjmxbDiN+x7sPO6XyAeQEMLbTxSiAtQSBzHnfVP3+ymujl2Mnf3c+G+CpOPCo92SUQdggdl/nXuzL5pvLP3KbpGQCrp0A8jRA9gQwrMBVQ+yCkcAfzf7n4iSs5a8d3WwFEAAuxxGYizcApDcB34k9AABvF+aarzVzpvGnNCbgWhTASi7dINvWKV9XGux5kmHxYcyeLe0v+QBWExTAjg7tfVoFgdRCAAWn9kb4ANoogPUSQL5qQglt5nsTTcCtJoDK78PosDMBa14iUpuAvQQCuNNO8nfPw6bf2it6PZ0PIACsv750uEj4jfBvIFcaxOZ4nm2rgQDeESz7GOOv7f+QRwUdbV4sAUyKAt4fN+NzuMy/ZrsxWbW6DCPy+cg9JZmAXRDIKIE/KDVR5DBiEjLGmIBzMeIT/vc/4K678KedLpU2RwjgL34BXHkl+wOARx8FttwyLHN7FhvhVVy4y3W4EQek8o8rZi38LhqsAO7wkRhH7fvuAx5/HABQ6GIn553BywiFVCtVye4vooIc/jLlROCqq4B772Ubn32WrWE5d254bR/1mICD4iQFgfggggJYonm0tyfMJ5ofa1YAk2Yhxb7PF15PawL+DY7GsdOvQv7xh83X+sEP2HJIG2wQ+YkPppFLaK558Fem4amnwu82BLCcTWdmKXTEEEBuXhQn70cfZW3Pj/zOkqgJODbp+AMPAD//ObyZ4YoCTTMBz54N3Hkn8MwzY9cHUNlHJIBGGBRA/hzGpAKoIYBpE0FnqJwIOlKtn/40cM014XdlicrAB1CXBgYATj1V2v+UH+bw7LMx5QPCIJCFr2EKVmBlpgeYOdMu1yTC6r4Lu+MA3IAtMC92IYOS3756ukbqUgBFTJw7TV6iUMCrrwJn/rR2Arj1FlXsu5uvADoTcGuRzbL2rZpYYleGMJiAOQE04r3vBXbdFc9udKC0OWIC7uwEPvWp0Dns/e+X3txy7TkswBzcO/UgACSVAjicsSCADY4CFklPBB/5SLAMV0c3248TwEiCaxFFTaSwjwpyoLk88MlPhqkLttwS2GOPcKcGmYA5bBVAIlRgBbn4/FmGQpkUQErrNAErBJBPJB40KzQohJwK91VFDjO/+UnM2GotGDF9OssP86lPRX7iKy/09ys/aNr1Fh+ZIuW2tiKA+ZRv2cpJpbd9TgDFh7H22qztcWfyNAogAHzwg8DxxwNbbx2W2UZpMSiAidxq992BrbZqOAFslg8gJ4DcmqGF6AMoJKLkz6GpPoBCXyihAJpE4jgMCmAaH8CsoABWMm1RMSKTYRYmXiATATQpgFOnAt/6VvD1vdvnRW1CD/8GCq++AAB4Obc5QEhqBRAAbs4cgPnYMLZd8heMSR0jdkEgKjQn33zn6UZuts46wK67CycrFFL5AHZ3VDCl3SmAo4Z8PqoAFtGeWgHMwLMax7Lt8k5VEmNuDg4SBvT2nHz5FArgMGGdsZV5AK3e7gF09rCTc38Imo05LoEAJl4yjQLYQAKYaQvrtoJcvP8foM2i3DQfQIUA8pyYHjLqPBGRoUhHhzTZWE14gHai5f47K1cm74ueHum5JfZZhKmQrJGNUQB5xWjt8T7Z0/gA2nQJOam3OYuArpzWCqCARgeBNCQRtKYwnACWbQjgwIDUh1rtA8jnFav+oGlDaU3AmWo5GD+9fEz98AerrNMYEE6TDyAgZzG3eW7KDbyYYW9stRDAyZOTj5EIYB0mYBGVKQl+7JnaFUBUq+FzcApg66EjgE1RAH2IJABIUMg4hMJwkxS/PMmmVwBr8QGsVQG0jYrJd7KT74T7AQBlWhsBrCKbigDyZx9rlktAYhoYfqq0BFDJN8WPA/RxB43yAQTSEUB0dkp1Xg8B5ApGhADqnsOUKdL8ZDSPCvc2ktIHMJYA6nwAleNEE/BIUhoYASRmeTktajEBC9D1GSGA1uqAhucB1Fyvg+e5iyPyXDZ74w2pUVgTQELMvjwpCCB/ubSa1zXPO60JuG3xAkwCk86r+ZiL8uchmMcBgwlY7XfiOoY1EECezsWWAIrDEreY2CiAG2fnB/enC6JKYwKuTjFksuDIyAqgVVymSACL4yQIhBByCCHkOkLIm4SQYULIS4SQswghE5X9egghfyKELCWEDBJC7iSEbNWMMhUK0QZipQAqkzMBteoPJJtBRRigxdxwRojpGhQFcMWkufK+MYRliNTuA1izAmgbFq2cnOfJ08K4lpYlEW+wD6C1CbgtvMcy8vr8iCI0kwKf3COkDAkEMKUP4JTMSgDMBzCWCADABz5QGwHUVDpXANddV/lB9xz4AvU+jJxJuLeOnpRv2UoZJQLIneI1voy8QeRINSAepWpOd8pUML40CPUjLodoSwAbsRKIjQ+g1gScwgcwuFYmRuEyVNL/sA0ACxMwYK64JAIoHMfro1ZhJ9EEHDO2WimAihVLGwRSrwKo3MBzHgvMS+sDCNgRwLJPAH/7xt7Ctmg50yiA1anpFEB1bI4zAY83BfAEAFUAJwPYG8BvAXwdwB2EsPUbCCEEwM3+798AcDCAPIC7CSHr6E5aD2pWAJVABFsF0PPkBsnz38VCowDyvvv41l8ETj6ZOY8r+6qwIoCjpACq+8WmEzn4YOaQvN56kZ8y8JKfwyj5AKoK4OmnJx+jgvugNSsNDMdHt18ZXC9WAfzOd4A//lFa3sxqggWMJuB99wW+9z3lB3EiyueBX/4y8vyNBFC4ty2378App4TxQYloa5Ne2L52dBZnHvIkBo45Cfjud9nGb3+bfX7ssfA4IcrPOghEhCJn7r03cN55wMYbG/YXTurVoACq+/1/e2cebkdR5v/Pe5eEm5AVQTACCSJgoixDxhEYlmQUkAASQRGCAQF/iAgqghrD+PBDGBaBER03FoERXBEEZBDEENzQmSiLRkRRggKjJLKIBHKz1PxR3bl1+vZS3ae7z/Z+nuc+59w+XV3V1dXV337fqrfOP5/08V0ZLuAG3eDcXLFxIlMDjMYXcF2aABw/Hi68sGHTUws/xEl8cePPefPbSI44X1M3H+CSS2JeZjzJ6wJ2Cdd2Tk0XYwEc5QJOswD6PPAiJ/CHtbYyqnIBv3wbm2D8mmfshgsvJG4IRR4LYJrBARglAKMvzGlhYFi3rqUWwCbeRQtxiDFmpfP/PSLyNHAtsB+wBDgU2AuYa4y5G0BE7gUeBT4MnFZmgQYHc04CSVDpvhZAY2xHGboy1oqHBdApTBiXLBSAMjgA5503sm+aBTAId1N0JZDUfrpZARh54K1La5p9ffCJT8DKlfDFLzb+5CMA22AM4Gt3GWDPPbPTjMZ2ZlEXsDHluoCnT34WsNd9lAXQvVYXXwzY50IQH7bJMYBrueyyjPA4Rx4Jp43uBnwsgH3jhzj3Y57lAxDhpYEJbLruWQA+89k+YLfgL2BoCC64oDFdjAt4zTr/MYDR++GII+CEE1L2dxtgfz9hU/AVgK5gGxiIEeBRMiyADTgn3Di2McBHAEYtgP0ZaT7sCPS+PtZfcDErgwAMTQnALAugw/iJ/Zx+uvfuo8h0AafEn0yJlJVtAUyaBQxNjwH8i9mc9eubE4Bp98/YCZF2ccop8JHR++WxAPZNylhGM+ICjvaXmS7gsDK63QUcEX8h4WtzGEDrUODJUPwF6Z7DWgXfUnaZCk8CieAlPBhtAVwnOS2A4xoF4Kg8U3r8F5qwAGa6gJM6cV9/VxBcNCRVAIbE3DBellin1wktEnUIwP6hkQocO8HfkhBH6RbAaAUEg/AMkvac2Yj7XGhGAEITLrOkcrpts8DB1wz6npBD0CDKsgBmti/noO4M+rxxSb3ygsw4gEn7hgHzGyggANdlCUAYaZQbNmwMCAD1CcBCle+Q6QKOTOJwiRk+PELWGEBfC6DXrMfGOniWyQwPFxOAPi7gUdcnQVRlrQTScMixGZOwMiyAmS7g0ALYAy7gOPYNPh8KPmcBv4rZbzmwjYikLTyTm8Iu4Ah5LIDNCMAwMG04uW1UOVN67xeMhwBMOPFMF3DSoGlfC+Dvftfwr9eKEjE3jK8Qd/eHeuIA9jkzwMdNaM74HveG31QcwOj1CwRgrMsuJnP3ueDtAk6odB89EIeXACzwlj08pkCXE+MCbsYCmEcAut+LaBCvNAUtgLFWap8HXxEBGMb9xBY3tCBVOgbQpZnBntg+MPVapAjAlFCpI9cuNNkHZK4FDI3jK1OWQIwtUxAWZ3i4ujGADQmGhhJvnDwu4Mz+qMgYwLAAzz8/ota73QIYRUSmAecAdxljlgWbpwLPxOz+dPA5JeY3RGRp0l9aGQYHRw9M9goEDfZmCHxVq3iZ1/2+fn1zAjC6NFUuC6DxCAMjErtDpgBMwlcARu6yohbAtYxeizGNTAGY6kux+FoABxwBOJRDAP4PszP3mTTJtsFEvM1yATkFYJkWwKIC0McFXOQte92YAhbAGBdwnjAwrRSAXhbAmJ18BGBZFsD1Ax7XcdddG/4NX1LqGgPYrAUwc13tmDBRXoR1+d73NmzeaHFMcwG7/6eqzNGEYcheeqm6MYANCVIudB4XcOZzL+ICjlZLqgBctao3LYCBJe9mYB3wrlaVwzYm4UVnHGDq2ptuZzVzJtx9Nz8a2Jd53ObVN2zY0GjdSg14HBJjAQwZ1V5TLYAeYwATdhi1Yokvvh3mt77V8K+XAHSW3Vo9djI3cDg/ZO9cAjB8OCemyZwC6x8GxnUBj5voUcgbb2TVznOYx21czXH8G4sSd73oIrjw9Tfy19fuC5dfPnqHMgVgDK4FsO0EYII48mXtJgUsgMF9OHH8aAugVxEiJ5NptXLu+1pcwDEW/2FsENxF0WZahQt4wCPN+efDnDnwjW8AdtjowQc3xNhOJlJxwwzy3//0vnxWvSYF4JFHZaRPEIBnclF6uoRzWMeAfadOXM4q4OKL4a1vtUHLczDcbxvxihXFBOCBB8LcubBwoWeClJvGVwAezg35BGBeF7BL0Y6vCeqeBAKAiAxhx/RtB+xrjHnc+fkZ4q18U53fR2GM2S8pv9mzZyeaccIGuIaxGydmvMQmydZt9yLNmgW77878yUtZtQr+0aM2jWkcCJ11rwGxYwBjfkrYMMLwuozxbiEJ43sKCUDfDnOvvayKCdbc8XIBO8tALH3DIt52z4dzZQkeFkBPAehlARxyXMCTPITx/Pn8fNx8Vh4Ix3N16q5bbglX/ux1wFJ4+OHRO3j7ZQOC8zZxQYjLsgAmVHpmO0uwynqFzvNSN5HjDhW3AG6x2YgAfGltDgtghMxVY+q2AMawlkGuuQYWLIj84AayjxumUEAAbvARgJttBkuWbPz3lFPsnxeRivsIF7L5oR/k9Z7J446Rl3csyEgf4wL+7NYXcPGfzkxPlzLOe9S1j7vXPvQh+5eT9UPj4XlYvrxYHMCtt4bvfz8jE08LoI8L+FO8nxs5nAuqEIBxBfASA+VSuwVQRAaBG4DZwEHGmF9GdlkOzBqVEGYCfzTG/D3mt8KEDdC1dJi40Bchrpk2ECDhtfS1AObGaSybjM+wAKZ0Or7jLuJOZA1jiwnAPJ2gU7deAnDmTCefkeuXJ8tQjNchAPvH5bQAppUrjThXQsHxJUUsgM2EgYHi/WA7CsBxm2xgIBCAq4eLTwLJDBruHFQGWiMAN9AX316dCxrGeWygiAs4Lc5dGUTyG8Nw/nuxSQGYmT7GArh+wuTs4yY8qGK9Lh5DYHyRTe19tHz5yLMojwXQy5lUogs4HNKQ1wUc1Q6pYWBaTN2BoPuA64G5wGHGmLgV428BponIvk66icAhwW+lktSovC2AjFxL31nArlWldAtgSu/te9OVZgEcHMz3NHdEipcL2HkqTnn+jxu/l+oC9hjn4isABx0L4KaT/QpZqJ+IE3sFVZXvGMBwfA7kGCdfcifoJQCL1MO44rOA3Y7EZM04d8krAKNhYEZ/9aaoC3iQtZnnFq713EARC2DVAjBScWNZk78um5wEknkhYiyAZkrsEPlGUlzAoyhksYhncNKIAAxFUlYVub971b/blpq0ABYSgIODfmMAm20bJVF3KT4LvA04D3hBRNxBBI8HruBbgHuB60TkTKzLdxE2AFrG4Ib8JImhRAtgigD0nQWc2wXstKCh8Y2tqS4LYCEBmNeU4FiuvASgw+TnR0YRtMIFnBZ3dWO5HAE4frLf2MhC/USJs8l8XcB5hxgCpXeCVVkAmVB8FnAYH9ANJu1VhEgdt50LOEEAZlp0iloA+/rYgNAX9J0b0pY6K4NIxXWKBbBvanEBGOt1KdECuMnLRgvArPbitdSjS4ljAMOwRpWMAexFCyDw5uBzMVbkuX8nAhhjNgAHA98DPgfchA1rOscY86eyC5TbAjgwAHvuCXvssXEpqjwWwI9+tDlX/9C4xsSj2lHKwcM3k0osgCefzLpNJ/HJfifqZt6HrSNcvsY7+PvgZDjppPQ0X/gCTJjAj/cdGXnu1VFfeilrxk5gMTaIduL9OH++HUuUwjBj/JYzdVzAvhbA6LlcdZXtkL7ylZREURfw4Yd75cUZZ4wyNW3oG+Taa7OT7ryz9cjPn++XFdBQ6Q9uPpfVDHEiV+Q4QCOp8QqPPdZOGpozJ/dxt53VhAAMCB+u/f2e9/9ll/FS3xDv4fNAPhdwLWFgYki1AM6dy9+m7cTJfJ4XiDyYPZWVO7nFjKnPAjjMIJ/n5Pz1kidB3E2Wlf7WW63IuflmOOoo2G47Drv4n5kyhfRVhhKOe9wJFbmAP/1pmDSJsZ+5BBF4/PHAECJ+VbTffnZVmoxu2LKpc6+mvJUmGkpLcAF/+9vpyykDo0/8+OMzMqmGWi2Axpjpnvs9DRwf/FVKbgugCPzwhw0LhuexAG6/PZhtBVaMHC4T5yaMPttT+84bb2T4059nzNLvATlWnEmwAKa+qG+1FQPPPc2H6IP+YBmmJgTgKl7Ge474K9d9IeMYJ50E7343T10wsp/X8+SDH+TKgffz0GkZbrnJk+Gpp2Dq1MToqmsY62UBGxw3Uq8TphRzAR9wgPX8pFate/2WLoV9903ctYFPftIunTQwsLHNHXT4EBKddRfzUBgchF/+MufLjXNyD03Zi11Xfg9DH1fmOIRLqgXwmmvsDgUsgGOnNOECDggFoLcVafZs5r/x73z3TnucPLOAmx0DWIkAvOsubv+a4aGj+5jA82yQgdziYr0M0B9MItlQowCcwPMMM7ZaC+DChdaosMMOI9uy2upBB9k4cn19cMghYAxb9/WxalVG0oRhLRdeXJEF8NRT4ZRTGOjrY7PNbOQT8A8QsWSJLYbXrRszG01k9GkkLqkYIwDzxgE86CDrOPKOt3viifGRG2qgHQJBt5TcAhDsBXeedHksgNC4MmFea2BUvKXmOThI37oRe3Q4ZCRTABYdA9jX13iTNuECXk8/g2M90/f1NdxPvtdh4mRP0Ri53lGGGVOZAIyWa3AwZ7XmHcPT19fQQGQoxtWW8FDIqKbRuFYWGbNxjFwmRWcBF53dsGnzFsBwSEMeTbD6JUfUZdWruxJI/0ijKeJlL+oCTnWTirBugz2woa+QsNjQ5xy86pAZTn2GQqByF3D07d4nfXixRDZ+z7x+kRVANhJ3gmWNAQwK5eoz7+el5Lh1Y2ajxVVjovhssPyOSd83JGIBjOYZ6010d5g0qSUzgEEFYDEBGCG8/nlihIbkve65+oj+fvrWjrzteQvAsmYBN2EBzFx6LkIRAeiOq8pMU4IAHLPpyAlNmOrXWKLXN3cb81nHLYrbQKqMTu++bZvmlsaDUserN1JkgGOCCziPiEhZ6CE9vxaFgRnDcGr7jO1Tc3SADQKwagugQ/hiUqkLGEbf3FWNE0sKIB2XX4ljACH/UsJNZRDct9H2nNrkYiyAeV6+YmPoxrV7t1BFXjBLQgVg3jGAMeS1ALo3VaUWwP5+ZO2IBTB88csMOF7WLOAmLYBVC0B3XFUz8xGGGeMV+sS1AE6a6te5x1kAc1FEALoNJK6xlPVQiLGyNEORU/WiiABMcAHneabnEoAluoCrmgWcaQnJwNRpAYx5m8jdR+RNEL25iyrxLJIaVlx5SxaAeZcSbiqD4L6NNrGddkpJHzMJJJOICzhKpjFJBWDrSGqEeQaz5xkDGCXvGMCoAMyyAMr73gfA1Ry3UQAWHQOY+/za3AJYpgD00QhjJ4yc0NhN/JR/9Pp6lzM8Oa9lDyLUZQGMcbcUIZwn9IEPNFmeJPbe236+/OX+adrEAliZC9hh+Yx5AHyZd7L11sn77bOP/WzYJ0dmxj2ZqpfNihE+3lr1LW+xnyeckC/PaIdXlQUwyQUcl1/JZvVWWACjp5U6QSbGAphJjAvYJVMAFgqhUA7tEYymhcQ1wkcegVe9yv8YuS2Aec1+RSeB9PfDccfxD6fuxQMvvGpj1pnCKuaghSw0bW4BLOoC3omH+A2v2fi/rwDsG+hj5a/+Qt9gPz4T2uLK5d1pPvEEPPMMbLWVZwIHt5HFCcCyrAJFOtsYPvc5+OAHG8fPl8o228Bjj9mJQL5EnjphOJ3KBKCb9cBIWy3BeBmPcz/s8KubWHbzCj7zT6/mla9MTrLDDnYZsM03B8Jy5RA5fWNGKs9U+WICsW3c+9p985v2RBNnGiTQahdw3IWv0AJYSSi8jDGADz3kbwEsJACLWADzrtJUIioAY65xHvEHBSyAdbmAg1H5j4/bgQ2O+zczz5iDbqA/v4utSQtgHi9P5RZAp9J+S6PS8BWAAJvP2iJ7Jwe3XL5hEwDrVijqWnAbWZWWlpJcwH19sOOOZRQohW22ybd/5EKFAZArcwEnZF2ZAHQYHDfI7KP8xM622xbPbHCTkZtBqrYAxli+vK/d4GB+8Remc6nbBRxHp40BdGPFBG3ErcZU8QfqAu41ymiEuS2ADnldwAMDid6exIJlGXRGkdDx5PYGNKFu63YB53kwG2xQ2hDfMYBFyBhfXA1ZLuAKxgCuMcVdwG1J5B4KAyDn6SPCsE15qUUAljVrMceNNzA0UnmrTRtbAIvS35+4okup5OnIO20MoFtngdDNVY095gJWAViiAPQ+ltN5FulH3WeyT6wh15Lm9eKcUKjcArBFLmDfG96tl8xJP5E6cQek+8YBLIJ7fWtbPagFk0CGS5gF3FbErCQRszmVXBZA55q4eRR5Mal1kYIcfYQ4N8Bjf2njMYDN4D5E2mG1iE6zALoEYx1rFYAxJ5X5bGmhC1gFYHC9buAI++Wgg3IfI7z+RWYBH3povv2hUQCmNu5p04BGoeNlAUwQgHld482EQRBMLgHYrFCaMCHf/usGRio1jws4L24VVj3xcSNZFsBwUkSeMXFxOBfqtf9gL/brXtfcIduGBBdwnrb59rfbz6OPLp51ZRbANwSreFa93q2Lc2LbzarfAliVR7YBV0BUleGBB/rvu/32pWa95ZYj3yt/oQ0mwBUVgGW5gHfZJSP9jBl++VSAjgEMrtcH+XdO/M996TtkXu5jNDML+MIL86dxjTKxN9EDD8Cf/7xxul0ZAvA737HL8eQibwfm5DvI2spdwAD33Wcj07tvplllA/j7lq9m7B/vA+ybYlUvce65vOxl1eQxiqwxAyecYGfQhEKwKM5FO/wdg1z/FnjTmzzSlWyVqIRI2w/XsM3zMLriCvuCGE4q9aVZAehVxiOPtOe4xx75M8idWYBzM7z16PrHANaC2+lVZQH86lfhttvgmGPs/+997+ilyB56yM6G3HXXUrPebruR73lCreXiD3+An/98o9DN9Rgq0QX86KOwbBkcfHBCuvvvt6tMpU2dr5ieF4Dh9VrNeOSYBY3LdHjSzCxgL0GW1wK4884N4T/KcAHPy6+LmxonVJcA9O7fogJw2o5sFgjADfTXYgHMFKllkTUJpL/fCoBmcU5ucNwgR+dZR7jdSXh452mbEyfCggWeOzt9hPs8KjJZ1nsMYGiibIaCAnBwYsUWwBhqWayhDhfw5Mm2YYUCcO+9YffdG/fZaSePGRP5cfv03/++9MNbZsxosKrlqsYiE9MSLIDTp9u/RDJNg9WjLuDgevX3F7/Bm5kFXGT/TAtghLJcwLlpwoUxhuFaBGBRVr+i0TVSxxjAlgjAmlYCyR9lvM0pQQAWZXgk9nutK4EUIk9mbuW1IAxMLdThAo5SWQT1eMKJukVnueelchew+7ysbaB2OagADO63Zq5bM7OAi+A9CSSgrEkguekmARipk9XTGsM81CEAt8gXQaY4WZNAyqIlU5xrIqHtVzau3xEsa9ak7OdBRwjAFoSBqYU6XMBRKvPFxlNZvM4EKncBJ6TvBFQAligAvZ9hoenXd2WBYDJHiDvezKePyB0GJioAi3ZETTxJ/spmlccBzEXgK35qyMaDW7NTo/m+KoNEy13ANa0EkksAdsIYwLotgCUIwLBss2aVUB5fOsgCWIsL2O306hKAtXUslje+sdbs6hWAHebJ6Cy5WgEtsQBecYWdUnvyyX77H3kkLF++cYS8O66gFhdwUSFXoMd84kt3cOXxP+ZO9ucD7WQBvOYauOgintzrFM78Gex+/C589cpP8u1fbD0q/zJxq762SSDqAm6ehAZRxzO9aPzA+++HL30Jzjqr1OKkU7RCqra0tOolY/p0OwEDqjfF3nEH/OhH8OY3V5tPhMWL7WIkhx9eT35FXcALTxjD3JM80119tb3xqn4xKRkVgCUIwPA+9TZibLEFXHqpfwb9/XDeeRv/dd/QfRp30y7gGi2Aa+fsz9nsD+TTBJULwC23hEsvZVdg16Dj+sHrz+Abv6ggLwf3UrhB7itFXcDNk9D26/AQFRWAs2bBJZeUW5ZM8vQtrquyanNcqyyAs2bB7bfb71W/Ley/v/2rmbFj4eKL68uvqAD8yFmDMN0z3XHH5cikfVAXcCtcwE3iCsBaLIBFO6IC6VzR11YCMIa6A7g3G3bPm3Z3AXcCdVsASxwDWCt5XhIzl1QokVaNAcz7dq9kUlQAdp1XIgYVgB04CaR2C2BRV0SBdK4OUAHYSG0CsBUWwG7rbFs4C7ioBbAl5Okj6pys0EoLYEits3G6l8ICsNteSmPo+RZWhgAM09bVXl75ypHvbsiHJFo2CaRAj9lJArC2WbkBXT0GMM/Nk3fZllZQtwvYuck7SgDmadR1WgBjBGAt7yivec3Id7UAlkKuoTM9JgB1DGAJAvDoo+GJJ2Du3HLKlIWIHRK4bJnfjD13EnGtk0AKpCvDBVxXv3n88XDLLdUPZl60yLavV786e99ScCu+yk4wrwXwppvgssvgE5+orkxlUbcL+LDDbLT2Aw7gpdMqyqNMliyBs8+Gq67yT9MiF/CFF8JPf9r8wjdebLopnH46PPts/S6GLuXyy+HYYz0nN/WYC1gFYAkCcN68gitlNMHHPua/78yZI9/bfRJIJ1kAh4bsRLqq+bd/qz6PRKr0e+UdA3jYYfavE0i4ZyqrzsFBu14jQCAA2zok2Zw59i8PLbIAfvjD9WULtGAmTnczfTrcc4/nzt08LjkGdQE7K4F0K66VsNCQrhoFYFELfCsEoNIk3exuSWj7dUYXqTpWcu202AWs9ADufdsDDxIVgCVYANsd1wX8/PMeCVroAnazzmMtUQHYgfTgJJA6J5d2nQBs8SQQpQdwr3sts35aiwrAHhCAbjt+4omcCaAlK4HEFSMNFYAdSDe7W9pAAOZZSacj6IUwMEpr6THh3/MCcMcd7WzOWgb4tpCLLoKJE+GUUzx2bqEFEGC//exCKZEV8FJxRZ8KwCY54AA7O3PhwmrzGRiAnXeG3XbrvrftSNs/k4uAenTFl79s9ee111afV62oBVCpmle8ArbfHvbZp9UlqYWef1ROnQpPPtndYwABzjzTTi7zOs8WWwCXLLH9b57kagEskQkT4M9/rv6mEIH77us+8QeNdffb33LxDnYKdx264phj4KijurBP0zGAStX098PDD3dnnxSDPirpwo4yAe/zbLEFUCT//acCsGTquim6NditW39O7KW6PItd2aepBVCpg27tk2LonTNV/GlhIOiiqABU2gr3IeJMcNGhZU2gFkBFKRUVgMpo2mQSSB5UACptRcIMZ9UVTbB+fX156YVSegAVgMpo3vnOxv9PPTVf+vnz7eeJJ5ZTHg9UACptRYIAVAtgEyxebD8//vHq8/roR+3nGWdUn5eitAh9VCqjOeQQOxB2m21gxQo7VToP3/gG/P73+dM1gQpApa1QAVg+55wDCxbU068sXmzXeKyxD1OUutFHpRLPDjvYz512yp92YKD2jrMVawErSiKuC9FpkCoAm6CvD17zmnryEqkvL0VpEeoCVroCtQAqbYU7Xs0ZU6sCUFGUdkEFoNIVqABU2oqECQs6t0BRlHZBBaDSFagAVNqKKVNiN6sFUFGUdkEflUpXoAJQaSs23xzuvNMuNeSgAlBRlHZBH5VKV6ACUGk73vSmUZtUACqK0i6oC1jpClQAKp2ACkBFUdoFFYBKV6ACUOkEVAAqitIu1C4AReSVIvIZEblXRFaLiBGR6TH7bSIinxSR/xWRF4P996m7vEpn4K46p3EAlXZj3Dj7qaHlFEVpF1phK9keeDvwc+CHwP4J+10FzAPOBP4AnALcISJ7GGPur6GcSgchApdfbqNvqABU2o1ly+CLX4Szzmp1SRRFUSxiag5MJSJ9xpgNwfcTgSuAGcaYFc4+uwD3A8cbY64Otg0Ay4GHjTGH5slz9uzZZtmyZeWcgKIoiqIoSoWIyM+NMbOrzKN2F3Ao/jI4FFgLfN1Jtw74GnCAiIytqHiKoiiKoihdT7tOApkFPGqMWR3ZvhwYg3UjK4qiKIqiKAVo1/mSU4FnYrY/7fzegIgsTTrY7rvvXk6pFEVRFEVRuoB2tQAqiqIoiqIoFdGuFsBngG1jtoeWv6ejPxhj9ks62OzZs3UJdkVRFEVRlIB2tQAuB2aIyLjI9pnAMPBI/UVSFEVRFEXpDtpVAN4KDAJvCzcEYWCOBO40xqxpVcEURVEURVE6nZa4gEXkiOBrODvjzSKyElhpjLnHGHOfiHwd+JSIDAKPAicDM4AF9ZdYURRFURSle2jVGMBvRv7/XPB5D7Bf8P1dwHnAucBk4AHgQGPML2oon6IoiqIoStfSEgFojBGPfV4ETg/+FEVRFEVRlJJo1zGAiqIoiqIoSkWoAFQURVEURekxVAAqiqIoiqL0GCoAFUVRFEVRegwVgIqiKIqiKD2GCkBFURRFUZQeQwWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMFYCKoiiKoig9hgpARVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQYKgAVRVEURVF6DBWAiqIoiqIoPYYKQEVRFEVRlB5DBaCiKIqiKEqPMdDqAlSNiCwF1orIg60uS5uxY/D5cEtL0X5ovYxG6yQerZd4tF7i0XoZjdZJPDsCO1edSdcLwICfGGP2a3Uh2olAGKP10ojWy2i0TuLReolH6yUerZfRaJ3EE9ZL1agLWFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMMca0ugyKoiiKoihKjagFUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMTpWAIrI1iJyg4g8JyJ/E5EbRWQbz7SbiMgnReR/ReRFEblXRPapusxVIyJHiMi3ROSx4LweFpHzRWSCR1qT8LdrDUWvFBHZL+HcnvVI25VtBWy0+ZTr/t2MtF3RXkTklSLymeC6rg7OYXrMfk21AxF5t4j8RkTWBPfle0o9kZLxqRcRmS0ilwfntVpE/igi14vIDM88ktrfB6o4pzLI0V6auj86qb14tpWzU+rkJY88Oqqt+D6LRWSKiFwpIqtE5AURuUtEXueZR5+ILBKRFSLykog8ICKH5ylnRy4FJyLjgCXAGuBYwADnAneLyM7GmBcyDnEVMA84E/gDcApwh4jsYYy5v7KCV88ZwB+BjwGPA7sBZwNzRGRPY8yGjPTXAF+MbPttyWVsJacB/+P8v84jTbe2FYD3AhMj2/YALgVu8Uh/DZ3fXrYH3g78HPghsH/CfoXbgYi8G1tP5wN3Af8CfE5ExBjz+TJOogJ86uUdwCzg08ByYBrwr8AyEdnVGPMnj3weBE6KbFtRsMx14NteoOD90YHtxadOrgSiL5Xjg20+fQ10VlvJfBaLiAC3AtOBU4FngEVYHbOrMebxjDw+EeSzGFv37wC+KSIHG2P+y6uUxpiO+wPeD6wHtne2zcA+0E/PSLsLVjC+y9k2gF2M+pZWn1uT9bJ5zLaFwfnOzUhrgHNbfQ4V1ct+wfm9MWe6rm0rKed8FfbFamovtBegz/l+YnBe08tqB8F+TwHXRrZ/CVgFDLa6Dpqol7j+ZltgA3CORx5LgR+1+lzLrpfgt0L3Rye2F986iUn3zmDfed3WVnyexcBbgv/nOPtMAp4GPp1x/C2Cfvr/R7Z/H3jQt5yd6gI+FPipMeaRcIMx5lHgx9hKzUq7Fvi6k3Yd8DXgABEZW35x68EYszJmc2jxmlZnWbqErm0rcQSW9bcBtxpjnm51eerAZFvFobl2sAewOXBdZPuXgc2Af85V4JrwqZe4/sYY8xiwki7tbzzbSzN0XHtpok6OBf4C3FFicdoCz2fxocCTxpi7nXTPYa2CWTrmAGAMo9vJdcDrfIdhdKoAnAX8Kmb7cmCmR9pHjTGrY9KOwZqzu4l9g8+HPPY9ORhzslpElojI3lUWrAVcLyLrReSvIvIVyR4z2mttZT4wAbjWc/9uby8hzbSDWcFntL9aHnxm9VcdhYi8Bmud8OlvAHYTO457rYg8KCInVFi8uilyf/REexGRrYE5wPXBy5QPnd5Wos/iNB2zjYhsmnKsWVgL4COR7bnaSUeOAQSmYv3lUZ4GpjSRNvy9KxCRacA5wF3GmGUZu18HfAd4EuvGORNYIiJvMsYsrbSg1fMccAlwD/A37HiMjwH3ishuxpinEtL1TFsJWIh1P93usW83t5cozbSD8Ldo+q5rQyIyAHwBawG8yiPJD4DrsePiJmPb35UispUx5tyqylkTRe+PXmkvx2ANUL4vmx3dVhKexVOJH8MYXuspwN8TDjkVeNYEft+YtF7tpFMFoJJB8PZwM3Zc5Luy9jfGvNP594cicjP27eRc2tDtkAdjzH3Afc6me0TkB8B/YyeGnNWSgrURIvIK4I3AZT5v5N3cXpTC/AewJ3ZMV5xgbsAY8/HIpptF5CZgsYh8yhiT9PBre/T+yGQhcJ8x5kGfnTu5reR9FtdJp7qAnyHe0pf0pu6bFkYUdMciIkPYcQTbAQeY7NlEozDGPA/cBvxjycVrC4wxv8C+TaadX9e3FYe8b+QNdHl7aaYdhP1RNH1XtSERuQD4f8Dxxpg7mzjUV4FNAK9QGJ1Cjvuj69uLiLwe2ImCfY1D27eVjGdxVr+SpmWeASYHM4nj0nq1k04VgMsZGSvhMhP4tUfaGcGA92jaYUb71DsKERkEbgBmAwcZY37Z5CG7fbHotPPr6rYS4VjgAWPMA00epxvbSzPtIByTE+2vwjE6Wf1V2yMii4GPAKcZY75c0mG7sR1B9nl1fXvB9jVrga+UdLy2bCsez+I0HfPHDKvmcmAs8KqYtODZTjpVAN4CvEFEtgs3iA08uRfZMYVuBQaxsx3DtAPAkcCdxpg1pZe2JkSkDztOYi5wmDHmp00cayJwMNZN2nWIyGxgR9LPr2vbiktQFzNp4o28y9tLM+3gXmz4jgWR7cdg39J/XG5R60VETsO6NRcbY/6jhEMuAF4Emn1xbSty3B/d3l7GYOPV3Z4wUzYPbdtWPJ/FtwDTRGRfJ91E4BCydcx3sSI6rp38KoiKkkmnjgG8AngfdhzAWdg3gE8Af8IJvCki2wK/x8akOgfseDAR+TrwqUChPwqcjI0jGK3MTuOz2IfUecALIvIG57fHjTGPx9WJiJyBFUN3MzJo+QxgSzq/ThCR67HX+RfAs9hJIIuAJ7BBbHuxrbgsxI5PuT76Qy+0FxE5Ivi6e/D5ZhFZCaw0xtyTpx2IyCPAY8aYfwEwxqwVkX/FBvJ9AhvYdy5wPHCqMWa46vMrSla9iMg7gE9hH0ZLIv3N34wxv3aO1VAvwYzYjwI3YgfCT8Jahg4FPmqyg/m3DI968b4/uqW9ZNWJs+vBWDdl4stml7SVzGcxVuTdC1wnImcyEghagIvcg4nIOmxsyBMAjDFPicilwCIReR77bDsS21YO9S6lb8DAdvsDtgG+hZ3V+TzwbUYHKp2OFYdnR7YPYVc7+DPwEvAzYL9Wn1MJdbIiON+4v7OT6gT7xvFj7JvnWuCvQeN8favPqaR6WYSNIv9ccH5/Ai4HturVtuKc3yB21uatCb93fXtJuWeW5m0HwT24NGb7Sdgxp2uA3wHvbfV5N1sv2JUuMusurl6woXNux76ErcHOdvwJcFSrz7uEevG+P7qlveRoBzcH9TEm5Vgd31bweBYH+03FBvl+GliNDeS8S0L9XhPZ1o+dwPhYUC8PAkfkKacEB1IURVEURVF6hE4dA6goiqIoiqIURAWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVF6UhExHj8rRCR6cH341pd5hARmSYiLwSrsPim+YCI/DJYZUBRFKUpNA6goigdSSS6PsBNwAPA2c62Ndh1MXcDfm+aX36qFETkS8AWxpiDc6QZwq5CssgYc3VlhVMUpSdQAagoSlcgIiuAHxljjml1WdIQkZdjV6OZb4y5LWfai4B5xpi4ReQVRVG8UVeCoihdTZwLWESuEZHHRWS2iPxERF4UkYdFZF7w++mB+/hvInKziGweOeaAiCwSkd+IyBoReVJELhGRTTyKdBx2+co7Isc8ICjLcyLy96A8H4+k/RowU0T2LFAViqIoG1EBqChKrzIR+E/gSmA+8BTwLRG5BJgDnAJ8IPj+2Uja67DrcH4FmAecD5wAXO+R74HAvcaYdeEGEdkOu17so9hF3Q/Frj08PpL2fqx4PNDvFBVFUeIZaHUBFEVRWsQE4D3GmB8AiMiT2DGEBwMzjTHrg+2vBU4VkX5jzHoR2Rsr0o41xvxncKy7RORp4DoR2dUYc39chiIiwD8B/x756R+AMcDJxpi/BduWRNMbYzaIyANAdPyjoihKLtQCqChKr/JCKP4CfhN83hWKP2f7ALBV8P+BwDBwQ+AKHhCRAeDO4Pd9UvKcDAwB0cko9wNrga+JyBEiskXKMVYCr0j5XVEUJRMVgIqi9CrPuv8YY4aDr89E9gu3h+P7tsBa617Airbw76ng981S8gyPsSaS9yPAAdg++cvAn0XkpyKyb8wxXsSKSEVRlMKoC1hRFCUffwVeAvZO+P3JjLQAU6I/GGPuBu4WkbHAXsA5wG0iMt0Ys8rZdSqwKppeURQlDyoAFUVR8vFd4CPAJGPM9/MkNMYMi8ijwHYp+6wBlojIpsDNwAwaBd8M4L9zl1pRFMVBBaCiKEoOjDFLReSr2DGAl2LF2AZgOnAQ8BFjzG9TDvED4PXuBhF5D3bs4H9hYwS+DFiEtSb+ytlvMrADcHFJp6MoSo+iAlBRFCU/xwCnAscDi7Fj+lZgY/v9JSPt14GFgWt3RbDtAeDN2HAyWwBPAz8CFhhjXnTSzsOOSbyplLNQFKVn0ZVAFEVRaiRYy/d3wNXGmHNzpr0dWGWMeWclhVMUpWdQAagoilIzIrIAG+h5hjFmtWeaXYGfAbOCWcOKoiiFURewoihK/XwFmIYdN/hrzzRbAsep+FMUpQzUAqgoiqIoitJjaCBoRVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQY/wdKnEeDz+k3vgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000 # counts/s\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900 # counts/s\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt) # counts\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt) # counts\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both light curves to the `AveragedCrossspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 12346.54it/s]\n" + ] + } + ], + "source": [ + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that also the `AveragedCrossspectrum` object could have been initialized using different input types:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " events1, events2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " (note, again, the necessity of the bin time)\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " times1, times2, dt=bin_time, segment_size=segment_size, \n", + " gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from iterables of light curves\n", + " ```\n", + " ps = AveragedCrossspectrum.from_lc_iter(\n", + " lc_iterable1, lc_iterable2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again we can print the first five Fourier frequencies and first five cross spectral values, as well as the number of segments." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[291.76338464-640.48290689j 182.72485752 -35.81942269j\n", + " 293.42490539+276.16187738j 771.98935476-595.89062793j\n", + " 361.32859119-101.50371039j]\n", + "\n", + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(avg_cs.freq[0:5])\n", + "print(avg_cs.power[0:5])\n", + "print(\"\\nNumber of segments: %d\" % avg_cs.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If `m` is less than 50 and you try to compute the coherence, a warning will pop up letting you know that your number of segments is significantly low, so the error on `coherence` might not follow the expected (Gaussian) statistical distributions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:00, 7645.47it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "40\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "test_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 40.)\n", + "print(test_cs.m)\n", + "coh, err = test_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "An `AveragedCrossspectrum` object has the following properties, same as `Crossspectrum` :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the averaged cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution (in Hz).\n", + "4. `m` : The number of cross spectra averaged together, equal to the number of whole segments in a light curve.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the amplitude of the averaged cross spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmCElEQVR4nO2debgcVbW+35WTmYR5DmEIILNGQERABJyRy6A4oYgigwMi6nVGRVFwxFlExKtXuKIoCCoqyhAEwR+oTEEmGUIYkpBAQkLIdPbvj9Xbqq5T3ae6T/Xp6Xuf5zzVXV2ne1d31a6vvrX22hZCQAghhBCiXxjT7gYIIYQQQowmEj9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8xtt0N6ATM7J/ARsB97W6LEEIIIUbMdsCCEMLz816U+HE2WmeddabNnDlzWrsbIoQQQoiRccstt7B48eKar0v8OPfNnDlz2jXXXNPudgghhBBihBxwwAHMmjWrZjRHOT9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF/R9eLHzMab2TfM7F4zu93MLmt3m4QQQgjRufTCaK8zgPHADiGEQTPbtN0NEkIIIUTnMurOj5ltYWbfNrMbzOwZMwtmtnWNbaeb2S/NbLGZLTGzi81sy9Trk4ETgI+FEAYBQgiPj8qOCCGEEKIraUfYazvgDcCTwF9qbVQRNlcBOwLHAEcD2wNXm9laqfd6EviYmd1kZteb2SGtbLwQQgghupt2hL2uDSFsAmBmxwGvqLHd8cAMPJx1X2X724B7gROBs/D2bwncF0L4hJntCFxrZnuHEO5v8X4IIYQQogsZdecnhqcKcChwYxQ+lf99ALgeOKyyag4QgPMrr98F3ArsXlqDhRBCCNFTdPJor12AO3LWzwZ2BgghPAH8EXgVgJltBuwG3D5KbRRCCCFEl9HJo73Wx/N5siwC1ks9fzdwnpl9AXeBPhRCuDvvDc3smhqfNbP5ZvYnIYBZu1shhBBCNE4ni59ChBAeBF7a7nb0EytXwvOeBy98Ifz4x+1ujRBCCNEYnSx+nqTa4YnUcoSGJYRwQN76iiP0kmbesx+ZOxfuuguWLm13S4QQQojG6WTxMxvP+8myM3DnSN88EwKbOdL36ydWr/blmjXtbYcQQgjRDJ2c8HwZsLeZzYgrKsUQ9628JtpEFD9xKYQQQnQTbXF+zOzIysM9KstXm9kCYEEIYVZl3bnAScClZnYqnsx8OvAwcM5I25AOgSns1RgSP0IIIbqZdoW9Lso8/15lOQs4ACCEsMzMDgK+DvwUMOBK4JQQwoizTRT2ah6FvYQQQnQzbRE/IYRCg6RDCHOA17W4OaJB5PwIIYToZjo54bmlKOzVPHJ+hBBCdDOdnPAsOhQ5P0IIIbqZvnV+lPPTPGnnR5WehRBCdBtyfkTDpB2fwaLT1AohhBAdQt86P8r5aZ60+Fm9GgYG2tcWIYQQolHk/IiGSYsfJT0LIYToNiR+RMNknR8hhBCim+jbsJcSnptH4kcIIUQ3I+dHNIzCXkIIIbqZvnV+lPDcPHJ+hBBCdDNyfkTDSPwIIYToZiR+RMMo7CWEEKKb6duwlxKem0fOjxBCiG5Gzo9oGDk/Qgghupm+dX6U8Nw8cn6EEEJ0M3J+RMOsWpU8lvgRQgjRbUj8iIZR2EsIIUQ3I/EjGkZhLyGEEN2MxI9oGDk/Qgghupm+TXjWUPfmkfMjhBCim5HzIxpG4kcIIUQ307fOj4a6N4/CXkIIIboZOT+iYeT8CCGE6GYkfkTDSPwIIYToZiR+RMMo7CWEEKKbkfgRDSPnRwghRDcj8SMaRs6PEEKIbqZvR3upzk/zyPkRQgjRzcj5EQ0j8SOEEKKb6VvnR3V+mkdhLyGEEN2MnB/RMHJ+hBBCdDMSP6JhJH6EEEJ0MxI/omEU9hJCCNHNSPyIhpHzI4QQopuR+BENI+dHCCFENyPxIxpGzo8QQohuRuJHNIzEjxBCiG5G4kc0jMJeQgghuhmJH9Ewcn6EEEJ0M31b4VlzezWPnB8hhBDdjJwf0TByfoQQQnQzfev8aG6v5lm1Knks8SOEEKLbkPMjGkZhLyGEEN2MxI9oGIW9hBBCdDOFxY+ZPd/MLjazJ8xstZntXll/hpm9qnVNFJ2GxI8QQohuppD4MbP9gBuAHYH/y/zfIPCu8psmOhWFvYQQQnQzRZ2fLwJ/BHYBPph57R/A7mU2SnQ2cn6EEEJ0M0VHe+0OvDaEEMwsZF57Atio3GaJTkbOjxBCiG6mqPPzLDC5xmubAYvLaY7oBuT8CCGE6GaKip/rgFPMbCC1LjpA7wSuKrVVomMJodrtkfgRQgjRbRQNe30KuB64FfglLnyOMbOzgD2AF7SmeaLTyIa5FPYSQgjRbRRyfkIItwL7A/OATwIGnFR5+SUhhLtb0zzRaWSdHjk/Qgghuo3C01uEEP4BvNTMJgLrA0+FEJ5pWctER5IVO3J+hBBCdBsNz+0VQngWeLQFbRFdgJwfIYQQ3U5N8WNmn27gfUII4fQS2tMwlUlJtyIZcXZxCOFz7WhLPyDxI4QQotup5/yclnke8FyfLHHUV1vET4UPhBB+3cbP7xsU9hJCCNHt1Ex4DiGMiX/ArsADwMeArYFJleXHK+t3KfqBZraFmX3bzG4ws2fMLJjZ1jW2nW5mvzSzxWa2pDK32JZFP0uUj5wfIYQQ3U7ROj/fAX4YQvhyCGFOCGFFZfkl4Dzguw185nbAG4Angb/U2sjMJuP1g3YEjgGOBrYHrjaztTKbf9HMbq8IpR0aaItoEIkfIYQQ3U5R8fNC4OYar90E7N3AZ14bQtgkhHAwcFGd7Y4HZgCHhxB+HUK4FDgUz+85MbXd20IIOwLPBS4HrsgUYxQlorCXEEKIbqeo+FkMvLzGa6+ggektQgiDBTc9FLgxhHBf6n8fwIstHpZaN6eyDCGEHwFTcIEkWoCcHyGEEN1O0aHuPwI+bmZTcLdmHrAJHr46ATijBW3bBbg0Z/1s4PUAlZpDU0IIT1SeHwysAR7Oe8PKyLA8Zo6wrX2DnB8hhBDdTlHx82l8VNcpwLsq6wxYhguf08puGF5I8cmc9YuA9SqP1wZ+b2bjgcHK9oeEEFa1oD2CRPyMHeuP5fwIIYToNgqJn0qo6lNm9jVgN3wm98eA20IIbZvRPYQwH59brOj2B+StrzhCLymnVb1NFDsTJkj8CCGE6E4aqvAcQniKOiO0SuZJEocnTS1HqCEyIbCZI32/fiGKnYkTYdkyhb2EEEJ0H4XEj5ntP9w2IYRrR96cKmaTXz9oZ+DOkj9LFCQtftLPhRBCiG6hqPNzDUkl51qUPbz8MuCrZjYjhHA/QKUY4r54scURkQ6BKexVnHTYC+T8CCGE6D6Kip8Dc9ZtAByCi4aTGvlQMzuy8jDm67zazBYAC0IIsyrrzq2876Vmdiouvk7HR3Kd08jn1WjDNamnM0f6fv2CnB8hhBDdTtGE51k1XrrYzL4O/Bfw+wY+N1vc8HuV5SzggMpnLjOzg4CvAz/FR5ddCZwSQljawGeJEsk6PxI/Qgghuo2GEp5r8DvgQuA9Rf8hhJA3QWrednOA1zXZruHe+4D4WGGv4qyqFBGIzo/CXkIIIbqNohWe67EDXmNH9AEKewkhhOh2io72elvO6vH4bO/vBC4us1GjgXJ+mkPiRwghRLdTNOz14xrrVwA/B95fSmtEx5MVPwp7CSGE6DaKip9tctY9G0KYV2ZjRhPl/DSHnB8hhBDdTlHxE4DH8ubMMrOxwOZxdnXR20SxM368LwcHIQSwQinsQgghRPspmvD8APD8Gq89r/K66AOi+Bk3DgYqZS0V+hJCCNFNFHV+6t3Xj6MLR3sp4bk50rO6Dwy48Fm92p8LIYQQ3UDNS5aZrYtPIhqZZmYzMptNAo4BHi+/aaITSYufsWNh5Uo5P0IIIbqLevfr7wc+g+f7BOCXNbazynZdhRKemyMrftLrhBBCiG6gnvj5NfAgLm5+BHwe+HdmmxXAnSGE21rRONF5ZMNe6XVCCCFEN1BT/IQQbgVuBTCzAPwuhPDEaDVMdCZ5zo/CXkIIIbqJohOb/qTVDRltlPDcHHJ+hBBCdDv1Ep6vAt4TQrir8rgeIYTw0nKbJjoROT9CCCG6nXrOT3p4+xg86bnItl2BEp6bQwnPQgghup16OT8Hph4fMCqtER2Pwl5CCCG6naIVnoUAFPYSQgjR/dTL+dm/kTcKIVw78uaITkdhLyGEEN1OvZyfa6if5xOxynYDZTRIdDZ5YS85P0IIIbqJeuLnwDqvdT0a6t4ccn6EEEJ0O/USnmeNZkNEd6CEZyGEEN1OQ3Nxm9nawK7ANOAR4PYQwtOtaFir0VD35lDCsxBCiG6nsPgxs08DHwKmkNT1edrMvhJC+HwrGic6D4W9hBBCdDuFxI+ZfRb4FPBD4EJgHrAJ8Gbgs2Y2NoRwWqsaKToHhb2EEEJ0O0Wdn+OBr4UQPpxaNxu4yswWAycAp5XcNtGBKOwlhBCi2yla5HAd4I81XvtD5XXRByjsJYQQotspKn7+BrygxmsvqLwu+oAodMaNU50fIYQQ3UnRsNfJwCVmthq4iCTn5w3AscBhZvYfIRVCGCy7oWWjOj/NsWqVL+X8CCGE6FaKip/bKssvVv7SGHB76nlo4H1Fl6GEZyGEEN1OUZHyOYpNddE1qM5PcyjhWQghRLdTSPxoGLuIKOFZCCFEt1M04VkIQBObCiGE6H4aqfC8E3AkMB2YmHk5hBCOKbNhojOR8yOEEKLbKVrh+W3Aj/C8n/nAyswmPZUPJGqjhGchhBDdTlHn51PApcA7QwhPta45otNRwrMQQohup6j42RR4l4SPUNhLCCFEt1M04fl6YKdWNkR0Bwp7CSGE6HaKOj8nAReb2ULgCuDJ7AbdUNVZjByFvYQQQnQ7RcXPXOCfwPk1XldV5z5BYS8hhBDdTlHBci7wRuDXwF0MHe3VdWhur+ZQnR8hhBDdTlHxcxjw4RDCN1vZGNH5yPkRQgjR7RQVP8uAO1vZkNFGc3s1hxKehRBCdDtFR3v9D3BUKxsiugMlPAshhOh2ijo/DwFvNrM/AX8gf7TXj8psmOhMFPYSQgjR7RQVP2dXllsBL815PeDTX4geRwnPQgghup2i4meblrZCdAWDgxACmMGYMXJ+hBBCdCeFxE8I4aFWN0R0PmnXB5TwLIQQojspmvAsxBDxo4RnIYQQ3Ujhqsxm9grg3cAOwMTs6yGEGSW2S3QgtcSPnB8hhBDdRCHnx8wOBn4PTAZ2xKs8zwGmA4PArFY1UHQOCnsJIYToBYqGvT4FfBc4uPL81EqRwF2AAVwYiR4nipxx43ypsJcQQohupKj42RH4De7y/GcS0xDCPcBpuDgSPY7CXkIIIXqBouJnEFgdQgjAAmDL1GuPAtuW3TDRedQKe8n5EUII0U0UFT93A1tXHt8MnGJmm5nZRsCHgAfLb5roNFat8qWcHyGEEN1MUfFzAbBT5fFn8FyfucDjwEHAp8tvWmOY2TvMLJjZ4e1uS6+ihGchhBC9QNEih99NPf67me0GvAof/fXnEEJbZ3w3s62B44Eb29mOXkd1foQQQvQCTRU5DCHMDSH8MITwrUaFj5ltYWbfNrMbzOyZiluzdY1tp5vZL81ssZktMbOLzWzLzDZjgB8C7wNWNLM/ohhKeBZCCNELtKPC83bAG/CZ4f9SayMzmwxchY80OwY4GtgeuNrM1kpt+kHg+hDC31vWYgEo7CWEEKI3KFzhuUSuDSFsAmBmxwGvqLHd8cAMYIcQwn2V7W8D7gVOBM4ys12B1wH7t7zVQmEvIYQQPcGoOz8hhMGCmx4K3BiFT+V/HwCuBw6rrHoxPgrtXjN7ENgb+IGZnVRag8V/UNhLCCFEL9AO56couwCX5qyfDbweIIRwNnB2fMHMrgG+EUL4dd4bVl7PY2bzzewfVOdHCCFEL9DJs7qvj+cFZVkErDfKbRHI+RFCCNEbdLLz0zCV+cYafr3iCL2k/Bb1Fkp4FkII0QvUFD9m9gA+j1cRQgih7CkuniTf4anlCDVEJgQ2c6Tv1w8o4VkIIUQvUM/5mUVx8dMKZuN5P1l2BtpaVLFfUdhLCCFEL1BT/IQQ3j6K7cjjMuCrZjYjhHA//KeS877Ax0b65ukQmMJexVDCsxBCiF6gLTk/ZnZk5eEeleWrzWwBsCCEMKuy7lzgJOBSMzsVd6FOBx4GzhnN9gpHzo8QQoheoCHxY2bPA3YAJmZfCyH8bwNvdVHm+fcqy1nAAZX3W2ZmBwFfB34KGHAlcEoIYWkj7c5DOT+No4RnIYQQvUAh8WNm6wK/w4sIggsRqM4JKix+Qgg2/FYQQpiDV3AWHYASnoUQQvQCRev8nAFsgE8jYcARwEHABcD9wF4taV0LCSEcEP+AW9rcnK5AYS8hhBC9QNGw1yuBzwI3Vp7PrUwkeo2ZnQ28H3hbC9rXMhT2ahyFvYQQQvQCRZ2fzYD7QwhrgGeBqanXLgZeU3bDROehsJcQQoheoKj4eRxYt/L4IeBFqde2K7NBo4XCXo2jsJcQQoheoGjY6zo82fm3+Mirz1Rq7qwGjsFr8ogeR3V+hBBC9AJFxc9ngc0rj7+CJz+/EZiMC5/3ld800WnI+RFCCNELFBI/IYR/A/+uPF4FfKjy17Uo4blxosgZN86XSngWQgjRjQyb82Nm481skZkdOhoNEp1L1vkZUzl6QoDBwfa0SQghhGiUYZ2fEMJKM1uNj/LqGTS3V+NkxY+ZP1692vN+xhRNnxdCCCHaSNHL1a+BI4fbSPQ2WfEDSnoWQgjRfRRNeP498C0z+yUuhB6jemoLQghXlds00WnkiZ+xY2HFCuX9CCGE6B6Kip9fVZavrfxFAj7dRQAGSmxXy1HCc+OsWuXLrPgBiR8hhBDdQ1HxcxAZp0f0Hwp7CSGE6AWKDnW/psXtGHWU8Nw4tcJe6deEEEKITqdQwrOZ3W9mz6vx2q5mdn+5zRKdSD3nR+JHCCFEt1B0tNfWwIQar00EtiqlNaKjqef8KOwlhBCiW2ikMkutnJ89gadG3hTR6SjsJYQQoheomfNjZh8APlB5GoDfmNnKzGaTgPWBC1vTPNFJKOFZCCFEL1Av4fl+4MrK42OAm4EFmW1WAHcCPyy/aa1FQ90bR86PEEKIXqCm+AkhXApcCmBmAJ8LITwwSu0SHYgSnoUQQvQCRev8nAiMy3vBzNYCVlZme+8aNNS9cZTwLIQQohcoKn7OxcXPUTmvnQOsBI4tq1GiM1HYSwghRC9QdLTXgVRCYDlcBry0nOaITkYJz0IIIXqBouJnY2B+jdcWAJuU0xzRycj5EUII0QsUFT/zgd1qvLYbsLCc5ohORuJHCCFEL1BU/PwW+JSZPTe90sx2Az4J/KbshonOQ2EvIYQQvUDRhOdPAy8H/m5mNwFzgWnAXsADwKmtaZ7oJOT8CCGE6AUKOT8hhCeAFwBnAoYXBTTgC8ALKq93FWZ2TfxDRQ4LoTo/QggheoGizg8hhKdwB+jTLWuN6GhU50cIIUQvUFj8AJjZhsDewAbAb0IIi8xsIl7kcLAVDWwVKnLYOAp7CSGE6AUKhb3M+Qqe63MZ8CNg68rLl+JJz6LHiQJnXKrWtxKehRBCdBtFR3t9HDgJ+BzwQjzfJ/Ib4JCS2yU6EDk/QggheoGiYa/j8IlNzzSzgcxr9wHbltss0YlI/AghhOgFijo/04Aba7y2ElirnOaITkZ1foQQQvQCRcXPI8CuNV57Hl7rR/Q4cn6EEEL0AkXFz0XAp81s39S6YGbPAT4EXFh6y0THoTo/QggheoGi4uc04C7gWuDeyrqLgNsrz79YestEx6E6P0IIIXqBQgnPIYTlZnYAcBTwSjzJeSFwOnBBCEH3/X3AqlW+VNhLCCFEN9NIhec1wE8rf6IPUcKzEEKIXqDRCs/b4ZOZTsMLHv6/EMK/W9GwVlOp6hyZ2aZmdA2Dg/4HMCYVLJXzI4QQotsoJH4qU1h8DzgaSNf5WWNmPwHeG0JY0YL2iQ4hOjtjx4KlSlwq4VkIIUS3UdT5+SrwFuAz+MiuecAmwJvxiU6fAU5uRQNbheb2aoy8kFf6ucJeQgghuoWi4udNwGdDCGek1t0PfMHcBvgAXSZ+RGMMJ37k/AghhOgWig51nwD8vxqv/Q0YX05zRKdSS/wo4VkIIUS3UVT8/Bl4RY3XXgFcVU5zRKci50cIIUSvUDTsdRbwUzNbCy9uGHN+3gAcDLzVzGbEjUMI95fdUNFeJH6EEEL0CkXFz6zK8t3Au1LrLfN6JDvzu+hyFPYSQgjRKxQVP+9oaStExyPnRwghRK9QdHqLn7S6IaKzGc75kfgRQgjRLRRNeB6Cme1sZq8zs83LbJDoTFTnRwghRK9QSPyY2XfM7Pup568FbsWTn+80sxe0qH2iQ1DYSwghRK9Q1Pl5NfDX1PPPAr8FnofX//lMye0SHYYSnoUQQvQKRcXPZsCDAGa2BbALcGYI4XbgW4Ccnx5Hzo8QQoheoaj4eQaYUnn8EmAJcHPl+VJgasntKoyZ/dzMbjOzf5rZ/zOzl7arLb2MxI8QQoheoehQ938A7zWzOcB7gT+FEAYrr20DPNaKxhXkxBDCUwBm9nzgSjPbMNU+UQJR3IwbV71eYS8hhBDdRlHn55PA3niS8w7A6anXDqf2vF9DMLMtzOzbZnaDmT1jZsHMtq6x7XQz+6WZLTazJWZ2sZltmd4mCp8K6xRth2gMOT9CiE5m/nw4/3wY1G2vKEDROj83VUTHjsC9IYQlqZd/ANzbwGduh0+L8XfgL9SYM8zMJuNzhq0AjgEC8HngajN7bghhWWrbrwOH4eLndXJ9ykcJz0KITubUU+Hcc138vO1t7W6N6HQK1/kJISwLIfw9I3wIIfwuhHBPA595bQhhkxDCwfhQ+VocD8wADg8h/DqEcClwKLAVcGKmDR8IIcwA3gJ82cw0y3zJyPkRQnQy//ynL6+9tr3tEN1B00UOm6UBV+ZQ4MYQwn2p/30AuB53efLe+w/AesBuI22nqKabxc/gICxe3O5WCCFaRQhw113++G9/a29bRHcw6uKnAXYB7shZPxvYGcDMJpnZNvEFM3sRsAGQO6u8mV2T9wfMLLvxjRICLFjQ7lbUppvDXmecARtsoDtCIXqVRx6BpUv98ezZ8PTT7W2P6Hw6WfysDzyZs34R7u4ATAL+z8zuMLNbgK/iOT95/9fRfOlLsPHG8Oc/t7sl+XSz8/PrX7s4++53290SIUQriK4P+I3kTTeN7P2WL89f/+yzcOyx8Pvfj+z9G2HlSvj850e+T1keeQQ++1l44on815cu9e+yV+lk8TMsIYRFIYQXhRB2DSHMDCHsG0K4qs72B+T9AbeMWqNr8Je/+PKvf62/Xbvo1olNV66E22/3x5ddpvCXSFi8GH7xi852LUUx0uIHRhb6uvBCmDIFLr546GtXXAH/8z/wxS82//6NcvbZ8KlPwSGHwKJF5b3vd74Dp50G55039LW773a3/MMfLu/zOo1OFj9Pkjg8aWo5Qg3RaWGv+yqZTQ880N521KJbJzadPdsFEPhd269+1d72iM7h9NPhjW+Ec85pd0vESIni5/nP9+VIxM/VV3ueYJ4LH/vp+fObf/9GWLkSvva15DM/+MHy3vvxx32Zd8258Ub/7KtqWgndT9GJTQ8zs3eknm9VqdPzdKUOz5R6/98ks/G8nyw7A3e24PPaxpo1yQHYreKnU52fv//dl1MqR+j557evLaKz+H+V6mRXXNHedoiRE8XP29/uy7/9rfmQzYMP+vK++4a+FtfVChWVzc9+Bg8/DFtvDRMmwE9+Ut7xGl2kOXOGvhbX3Xdf74a+ijo/pwIbpZ6fBWyB1/jZHzit3GYBcBmwt5nNiCsqxRD3rbw2Ijop7PXww7BqlT/uVPET29dtCc9R/Jxyince11zj37fob0KAOyrDKa69dvQK4y1aBN//PqxYMTqf1y/861++POQQWH99dzWaPc/riZ9//9uXixa1vs8bHPRcUPDw1Gmn+eMTT0ySu0dCEfHz9NOjJ/RGm6LiZ1vgNvARVsDBwAdDCB8CPgEc0ciHmtmRZnYksEdl1asr616S2uxcfDLVSyvO06HApcDDQE8Z1fGEApg7NxEanUS3Oz8HHQSHHuoXvZ/9rJz3DqFzRV8/ce21cOutjf3P44/Dk5Xg+ZNPJnlhrebkk+Hd7/a8ElEOS5bAo4/CxImw1Vaw116+/sYbG3+vwUF46CF//NBDScg8EvvqwcHk+GkVv/mNi7rp0+HNb4YPfcjDeg8+6AUdR0oUP3kiMS2I8kRgL1BU/EwEYv77Pnhl6Gi+3Q1s3uDnXlT5e1fl+fcqzz8bN6hUcD4IuAf4KXAB8ABwUAhhxLq3k3J+0gfX4GBnOhPdKH5WrYLbbvPHu+8ORx/tj3/603Ks3COOgJ12GtpBtoIVK7zTu/76zjw+2sVTT8HLXw4HH9zYb3pHpojGNdeU2ap8li/3kYeg37BM7r7bl895jjvRL3yhP28m72fevMSVGxxMXCDw/iT9vIgj8sADzd0ghQBnnumPP/QhGD/e51U87zzfx299a+gx3ChR/CxZMnQgSBSAIPHzILBf5fFhwN9DCPHr2hhoaAxNCMFq/B2Q2W5OCOF1IYS1QwhTQwiHhxAebOSzuoG08wOdGfrqxjo/s2d7R7bddrDOOvDKV/oIhjvuSERRsyxd6qPH7r3X7zrLJgTvvI87DjbZxO9qt9kG9tsPZswoz73qdu67z8Xno482Zs/HC8e66/py1qzSmzaE3/8ellUm5Wm1azDaDA76cOzrrx/Z+6xZ4y7Hl79c/H9ivs+OO/py77192Yz4SYsb8PM7MmdOdT83XF22M8/0c/WMMxpvx7XXevs32MD7gMjzn+83XSHAP/7R+PtGQoCFC5PnaacnhOrn2etTr1BU/JwDnGZmNwPvAdKD415EFyYgd1LOTzy41lrLl90kfjrZ+Ykhr9139+X48T66B0ae+PzPfyZOQxnx98jKlT609XnP8078vPN8lMfAAGyxBey2m3/Xb3mLb9fvpM+V6AAUIYqfY4/15axZrc/7+fnPk8dlDlkukxCaKwfxpz/5cOz//u+Rff6//uUhwW98o/j/RPGz006+jGGvv/+9dgrB00/n3wBlxU/a9ciKgHpi+5JL4BOf8MfNODRR/J18cnJdiGy4oS+XLaNpli2r/m7STuTChdV1jvra+QkhfBN4O3ADcGwI4dzUy1OB/ym/ad3PtdfCJz/pHUM94sH1kkrGUzeJn06u8xPFzx57JOti6OuCC0bmVt18c/K4jGqyIXiMf9dd4T3v8RyUDTd0y/uOO9zBevhh77C/+EXf/j3vgS98oXdHYxRhpOLn0ENdVC5a5E5hq1i2DH772+R5pzo/J50EG21U7XgUIZ5r9+fW1i9OFB9LltTdrIqY7Bydn/XXh+2399IWtRzeY4/1G4zsbx4/f9IkX6Yv/FkRUEv83Hpr0s9A47/1qlXJMPv3vGfo61EMjeSmKyu+005PfGzmy353fgghXBBCeF8I4X8z608MIfy0/Ka1ltHI+bnuOrc861VtDiE5uF72Ml9m7z46gW6s85Mnfl74Qg+DPfbY8KK0HmnxM1Ln5/774RWv8AvxvffCDjv43e8jj8BXvwq77JKITICPftRr05h54mMjd8m9RjPiZ3Awuejtumty09HKvJ/LL4dnnvHwJXSu8/OXv/jFt9Fk4Vtu8eX8+b6fzRL7vmXLivcp2bAXDJ/3E4+bG27I//wXv9iXec7PuHG+zAt7zZ/v5/GyZYnj3Kj4ueced4BnzEhcnjSxbEdev7N8OXz72+4YX3997eOsiPiJNZP62vkxs+eY2V6p55PM7Ewz+42ZndS65nU3m2ziy3nzam8zb56fKOutl5ws3eT8dGrYa9WqZARQ/F7BBUOsBfI/I/AryxQ/xx3nAnnddV3I3H67h+fGj6/9PyecAD/4gT++4IKRfX43k3Ya7rmn2P889JCfc5tu6jkVBxzg61uZ9/OLX/gyhl070fkJIel7Gr3bj+IHqpNlGyV941fkvFq1Krk4P+c5yfrh8n5iyCgbkoqfH29E88RPFAV5zs+b3+zi4YUvTPqXRn/r2G8973n5r0fxkxf2uugiD5Udd5znB26wAey889BQZlb8pMNeUfy88IXugD3xRG9Wxi/q/HwHODL1/AvAh/BRXl83s/eW3bBWMxo5P5tu6stYSTOPeEJtt50ntEJ3iZ+8hOcvf9k7gXa6QXfe6aGiGTNcWKZ529tcBP3618Pfgf/rX0PF6+LF1RfakYifwcGk2N5tt8H735/cWQ7H617nyzvv7EznbTRoxvmJF7xdd/VldH5mzWpNCHHpUvjd7/zxCSf4shPFz6JFybHciPh5+ulqkTAS5zotnIqEvh54wAXQVlvB5MnJ+uGcn1riJx5PBx3kfUR8f0j2Mb531vl56imviDxxouf8bLaZr2/U5Yuhuuc+N//1emGveK3Zfnt3vMeP9z4suuCRmOwcE/7Tzk/8DbbaCrbd1h/3YuirqPh5HnA9gJmNAd4GfDSEsAfweeCE1jSvu4nip57zE0+obbeFadP8wvf447Un1msXjTg/X/uah23Sd4OjTV7IKzJ9ug+PXrmy/qipefP8Lu+Vr6y+KGZHWYwk5ye6EJtt5u1qhPXW82Nm+fLOFMwj4X3vgze9qb4YSddkAe+giziQWfGz3Xaw+eZ+h3tnC4Zu/O53/hvts09yQevEsFdatDRysbvtturfaSTiJ/2/RcRPXsgLku/57rvzbwzyxE/6eNphBz8f16zxdSEkLmN0lbLOzyOP+HKrrfx8jjddTz3VWDL9SJyfKIje8hZ3pw87zJ9nr0Hx+IufkRf22nJLPzegN0NfRcXPOkAcGPd8fM6tX1aeXwPMyPmfjmY0cn5i2KuI87Pttu6ibLmlP++0vJ+i4mf16uSOaKR1KOpx881+B/byl/vd9JlnVuds1BM/kIS+fvzj2p9x113uHt16a/W+pENeMDLnJ3shbpT4f638rkeb+fN90sWf/9xzs2rx6KMuYDfe2C9Uq1YVE4HZ79ys2v0pmzjK641v9Lv2ceNcDD37bHmf8fjjIxduzYqf7E1OWeKnyE1FdqRXZPz4xCHJy0GK5+y8eUl/9fjjfjxtuKELjPSF/7HH/DfbcMPEDaklfqZN8+XYsTB1qgunRhK4o/hpxvmJ66JAqpV6EcVP/IxHHklEosRPNfOAytfAK4B/hxBilHAK0GEZH53Bxhv7csGC2mGJdNgLfA4XKN6BrF4Nhx/u4ZK8u+SvfMUv9CMdxls07PXEE0k7WnlBvuACDxf9+c9w7rk+rPTAA+Goo9zSHU78HH641/65+eba7YydGVRPiBrFTxSqIxE/sbLwaIifp57qjpFhaRFbbwLJKHS22cbv1KFY6CtPcMa8n7KTnhct8mRnMw9TmiWOQJmhr8MOc5cyb6qCoqT7nPnzix/XUfy84AW+bDbnZ9myakFRRDBkR3qlqSUSVq+uLkwak9/j/sc+OH3hTzv0MQk5G/aK/cXmqZK/9X7r//1f+Otfq9ctWOBCa8qUJA0iSxHnp6j4mTbNr1OrViXbpMWPwl4+l9aZZvZVPNfnotRruwEjHOA4+oxGzs/48T7scs2a6oJSadInFTSe93PbbXDppV7xMyZVRq64Aj7yEZ8Mb6R3hUWdn/RJVuSCfNll8Ic/NN6emKD34Q+7S3DyyR7z/9nPfHRU7JDTyc5pJk3yvCSonfg8d27y+Je/TB5H8XPggb5sp/Oz226+HG56ht//3jvir361uc+pxZVXusVeZud49dXJ47LFz6pViVuw887J+rTzU1a9nxUr4MgjfXnggYkjsP76vixL/DzxhN8IrFw5Mucqe8NVdNj6P//pyyOOyH+fomRF00jCXlBbJGSfx3OwnvhJO/QbVWa5HM75gUT8ZMOc998Pxxzjgjh9vMV8n912gzE1rs71nJ/olk2d6svhxM/66yfh9jlz/Fh9/HG/qd1sMzk/AB8Dfgu8EhdC6ZqVh5JMdSEyDJf3k3V+8sTPqlV+gc+7o0oLjPe9Lzkhn34ajj8+eW2kVYiLOj9FxU8IXqPmsMPgv/6rfmgwjyhMDj0U3vte+OY3vePYf/+kRP022yQXmjxi6Ov88/OLoaWdn9mz/cK6aJF3XBMnJsXUioifP/wh31UYrbDXuZXKXF/6Urn5ZF/9Kvzf/3kIcqTVfSNXXZU8rpcv14z4iRWht946uUCAjxTacksXW1de2VSzqwgB3vlOF3Kbbgo/+lHyWq0LYrOk3YOsk9AI8eIfE+6LCNpVq6prJqXfp9nPjwwX9gqhvvipJRKy4mc45+fee6v76alT/Ttatqz6XIp9bFr81BK6sf96/PFEPEIifmrl+0D9oe6NOj8bbJA42A8/nLRr2jTv6/te/IQQloUQjg8h7BZCOLYy71Z8bZ8Qwsdb18Tupl7ez1NPuSM0eXIikvLEzznnuLD52MeGvkfseAYG3DI95RR//tGPVlvg9XInihDFT3Yk0pgxbuWH4Hcw6ZNs7lzfxywh+L7EyflWr66fe5NHdH7SScLbbusXm298w0/+N7yh/nvstZfnCsyf785IltgRxIvVr36VhNOe//xkpMRwnfRjj/ls0wcfXN1Z1nIhGmGnnfz7v+ee2jOFP/NM4q4tXOhipSyiIF+40EfIjHTajUcfrR5JV7bzU0tsmiU3C9/7Xv5n/fjHxV2hT37SQ7NrreUJz1ttlbxWtvNz3XXJ42zdmkaIF/84mikrfu64w3/jdM7b3Xcnoyp33NH7h3nzmhPYWfEznPMzf773L+uum6QYpGmV82OWhL7S7k895yf7W6f/7/LLk8fDJTtDOWGvGIlYf/1E/MyZk1wz4vE6fbr/po8+OrL6TZ1I4SKHAGa2vpm9xsyOrizr3FcLqD/cPZ5QM2Yk1TTzxE+8oMQh0WliuOPMMz2Uc8EFLizOPtsP2le9yl/PEz/XX++2a5EZsWs5P+l1q1cPPcmyFVQHB71q6Ze/7P934om+/oc/LJ6PsmqV749ZdXwdXIy9//3eKX7xi/Xfx8yHvYOH37LEziwOT/7Vr5KOf88969+BpbnkEnfGli+vvjO/917flxkzkvdqlMmTvUNevbp2nZsrrvDPnjDBn3/jG+Xk/oSQiJ+3v90dlaOOGv57j6xePTQXLh3ygvriJ4ZlZsxIxM9wtX7SxQ2zHHecnzOXXVZ947BqFbzmNfCOd/ikuMNx3nl+Pg4MeLg0G3ot2/lJO263397c6MMQkov/S1/qy6z4Ofts/33SU1jE8PLMmdUDNprJ+8k6T8OJn3jjsMMOSf+Zptb5GUVDDF/dcUf1/kfxE1MRHnggEdVxXV7oqxHxk84XSt94DZfsDOUmPGfDXvF3i7/jwEByTRpp9e5Oo7D4MbPPA48AvwF+Ulk+Ymant6htLWW0ZnWvV+gwWonxDgOGJjw//HBywbz//qEnUbxrOfxwOL3yS3zpS7489VSvHAz54uc734GLL/ZiWLEOSS3qiZ906Cu7n9lwzJlnwve/7xfiSy6B737XO4t//7t4suljj3lntemmtWvipCsi1yNemPIs/tiZveMd3pn84x9J7s+eeyZhk+HEz8UXJ4/TIZ2Rhrwiw4W+4kziH/uYf2d33DFUZDTDokV+N7j22h7W+frX/SL08Y8nBRhrsXChnxsx7yoS2xXFTFHnZ/p0D0U+/nj9i2a973zTTZMcjHPOSdafc06SWPvd79Z+70g8/7773eTmI02Zzs/y5XDTTf69P+c53vabbmr8fWKNn7XX9mMbhp4T8X1nzUou0jFkEwv/RcegmdBXvPDGENZwIi6vuGGa4cJe223nv8VTT7mzkRU/kyd735QumBr76ryk50YSntOi6cYb/fmqVUluZszly6Oe81Mr52f+/OobnrT4SYe90snOkZGGvmIh306jaIXnU4BPAOcDBwI7VZbnA58ws5Nb1cBup4jzE+8mwA/WSZP84FyyZGgSc3pY6VNPeWhm0iS/+z3llCQP5bnP9YtdLLSVl/MTQ0dLl3q8/tvfrr0fjTo/MYyTvSBHF+v88z0UNDCQTC75wx/W/vy8djdaFyePWgnma9YkgnGbbTwvCZIaP0Wdn4ULq0VdK8VPXtLz6tU+Zxj4UOs4V1AZU2KkO0ozP/6i6HnPe/JDiZEbb/Rj/KKLqt2w+P286U2+rCV+Vqzwi82YMX4cjBnjhd2gfuhruO/8vZVyreee65+xaBF85jO+btw4FwD1xEW6Vkx6fqc0ZTo/N9/sF83ddvN6VNBc6Cte+LfZJumP0nf6K1ZU9z3f+pYv084PJMJhJM5PvPAP5/zk3TymGS7stdZayXFw223Vxf0i8b0HB337GF7LOj9xtJRZ0udDInSzv3VaNIXg7uzddyfTWqTz0bLEYo7Llg0Nw2adn0mT/L1WrkxSEELIFz/psFda/DQ74mv1ap/sdrPNkv6zkyjq/LwL+GYl72dWCOHuyvJ44Fv4TO9dxWjN6l4v4Tmb7Ax+8sQO5IEHvFggJBf6dIG92JHvvLOLiIEBFxfHHecXlfHjE/GT5/zEnJZjj/WT6OSTPVchjyLOT1r8ROs8fUF+5BEPO6y1VpIcCZ4YauZhpSIXhDLFT7xwP/xwddLzvHkugDbe2L/HWE0ZvP077JB0MPXuUC+7zN/nRS/y7+mmm5LtyxI/8WKR5/xce61/pzvs4PlBJ57o+/Pb3448iTHvYnHccV52YM0aeP3rq5M500QnBRLH8qGH/Jhfd93EsawlfubM8U485iRA7byfwUF/n5tu8lDjwECybZZ99/UbhwUL/Hj83Of8+zvoIM+7g/ycoEi6Vky64nCaMp2fmO+z775+jMHIxM/WW7sAMvPfI573t93m50e86F9wgX9HtcRPM85P/J8Y8hmp+BnO+UmLnz//ubrGTyT93jHfB4Y6P/Pm+fG4ySbVbvRwzk/M7fn974slO4ML/XhsZfNwsuIHhkYfli93MTtxor9POuxVlvMzZ46PcPz85/17ufrqzqtFVlT8bA3UCoz8rvK6yKFewnN2mHskuhFXXul3dlOm+JBuyBc/6YvnjBl+1xqt4FriZ3AwsWm/+113Ysw8XyOv+FoR5ycd9oriJ8bTIZlI9MADq+et2morv9itWFEspyKKtjLEz4QJbm0PDlbnecTP2GILX7761UmHs/vufgEt4vzEkNfb3+51UNas8ckjYXTCXpdc4ss4DHnjjT0vJ4T6Tl8R8jpK8A7vqKP8IvOa11TPGxSJ+Rrgydg33ZSEvPbfPzlua432Soe8Inni51Of8rvfTTZxV3Rw0B2iOMFoFrPE/fnc5/zcGDPGQ3rvfrevv/DC2qUrsgmjeZTp/MR8n/32qxY/jeZ0xe9z6639u5k2zc/5uD8x3/DVr/bE/RUr4NOf9n3YYIMkz6VZ8fPMMy5Qx41LfsfRdH5++1tfZmvrZMVPJJvwnJfvA8Pn/MScwz/8IblRqJfvE4nCLr1vIRQTP+lkZ0jSBxYsSM6dPPFT1Pn5859dDF93nYcAY0mQn/yk2P+PFkXFz0KgVhe9C0n1Z5GhiPNTS/ycdZYvDz3U7+wgX/zUiw+nxU+6Q5w3zzu3DTf0zu4tb/EDNd4lZ2k07LXHHl5EcOHCZN0VlYII8a4+zXHH+TImPi9d6i7WuecO7cjjxTQKk5Eyo1KfPB36ynZmkyd7xw9J4cThcn6WLPF9NvMh/Qcd5Ouvuso7+/vu8++ulgtRlO23987rgQeq2xJCku8TxQ94Qjh4ns5ILsC1xI+Zv/dLXuLH3Ve+MvR/o/iJI4tOPz0RPwcdlIQXsrkKkSLi569/dSG2cqV39M99rl+4v/a1+vt11FGe+3L33X5MH3ec/+9223lo6dlna9eGyiaM5lFWkcPBwWrxE6dVWLSo+CSvkWy+SzwnYh8VQ30veEFy/MS8qOc/P3FEmhU/6e+tyCjKEMp1fuL3FdsfSb93+nE27JWX7wPDOz8vfrEfw0884TegMLzzA/k3XitW+M3VhAnV7lNW/KRDXuDiPval9cJeRZyf1au9ftGTT/q5dsstfg6C718nTYBdVPxcApxeGeU1FsDMxprZm4HPAb+q+999TC3nZ/lyP2HGjh3aUcYOPZ5Qb3yjF+4bN8475HjAF6kOPHWqnyjLl1fPzJt1Nuq1FYqFvVatSu5oNt64OhwzOJg4Py9/+dD3OPRQ71DuuMNPmuhQnHBC4pREygx7QX7eT973c9pp3s6TTvLn6c417wJ9+eV+4d1vP/9u4x3Q1Vd72CcEd+jqzd5ehHHjkiTRdDHLm2/2/Zg2LUliBb8re+lLvd1xX5ohL+wVmTAhCaFmJ1WERPycc447M7/5TeJSHXigf7drreUdet5FcDjxMziYlH049VQX4bfe6on9Bx9cf7+mTElqQE2dmoTlIHGFzj47f9h7EeenrLDXnXd6Hsf06Un4ttnQV62RTlnxs9defv7uuGNyzMeQV/r/mxU/W23lwhPqOz+xAvV669Wu5VXE+dlll+rX6omfPOcn9ne1nJ/hcn422ii5qYr9bhHnJ2/f4nmSHTk6nPiB6r50nXWS3wD8Oxkzxn+jdGXsPH73O88vfc5z/JzeaCM/Jrff3vcvXgM6gaLi5+N4XsxPgOVmNg9YDlwA3IonQ3cVozXaa6ONvFN64olq1RuTCbfeeqigSJ+A66zjd5sTJrjICcE78RCKh03yQl95AqKeSxVryNRzfmKezHrr+QU9HY659Vb/DqZPz3c6xo/3OwZwC3j5ct93GDoUv8ywF+SLn7zObNddvZp27ATHjfPfZc2a/FBhnBIj5gvts4/v5z//6bk48T3LIC/0FV2fww4bWi32+99PKmLHvLJGqeX8ROId7G23VQuFBQtcjKy9tnf0sdzB0097CCXuS9r9yRJ/q+hQQHJc3Xuv32XedJMf+x/9aOP79uEPu2j9/vera8gcfLBfoO+/H/74x6H/V08QRsoKe6XzfSKtED9PP+1ifdw4/03NPD8wkhY/m2/u/cHjjzc2d1n686OjWk/8DOf6wPBD3ddaywVA2q3Jip+04Ek/ruX8FA17xf/bcMNqMV5vWos0ea5WXsgLiomf9DmcPZ8nTPB12YmE84hu4AknJH2OWdK3d1Loq2iRw6eB/fFqzmfhVZ7PAg4BXhJCGGawb/8ydqwf4CFUZ/hHaz6OUEmTPvgPPzypzxKHZf/jH965LFrkJ1fWas2SJ37qOT954idegPKKiUXxEzuA+D7pC3I65JVXkwP8InXssT5U+MEH3WmBoVNzlB32yqtjkff95FGrg12+PCleFkNOkyf7xSmEJGm2XsiyEbIjvtasSfKN0iGvyHbbeR4LeC5Lupr1okUetx+uoN9wIZ6NN/Zjb+nS6u82XZXXzIVGPMYPOCDpNOuJn/h+6XNlnXX82Fu+PAnNnHFGczWUttjCHcejjqpePzAA73qXP85LfB5OEEJzzk8IHkqMghaqQ16RZsRPvRo399/vzl0ILnzi73T00cnNSXr+vIGB6gTaoqQ/P7oO9cJeeYNFsuTlxaSfx9fTNyBZ8TN1avJbpqtIZ52fvOrOkC9+YmXoiRO9DQcemHyvz31u7Wkt0uQ5P42Knw02SLapJ34gOR7qhVMfeshvXNM3spGjj/Zz/de/zi982w6G/ZrNbLyZ/QN4eQjhtyGEj1ZGfX00hHB5CN0wVeJQRmu0F+Q7KnG0S3Y2Yqju0N/4xuRxWvykQ161xESkUfGTF/aKJ3d8rzQx7FVU/NRiww29QNxHPuJ3znG4fFr8rFzp3+OYMfltaYaizk8etfJ+rrjC83r23LO6M4mhr3jnWpbzkw0xvutdLjI23jiZtyrL8cd7QvJTT3kto8cf9/IIW23loY10uCfLs8/67zAwUF98R1cgPUw6OyXB5psnQ/APOyzZLoqfPDGeF/aCxP156ik/X2JCaZnE0gx/+tPQIo2NOj9Fe88zzvBRkUcc4TlIy5cnzk9a/Oyxhzs0d9xRfCbxhQv9IrrOOkm+Tdr5icnOceJS8Avs737nAxSyU0tkQ18huLt3wgm19zdP/IyG8wP1xQ94RfQLL6zuK4smPEeBuHhxcqxEwbThht53T56cTKxbJOSVbnszzk824RmqXfS8Yze2q16Zh/PO89/3da9Lvp/Illt637dixdDyLe1iWPETQlgJbINmbm+aPFERLwB54me99fwObrfd4GUvS9anxU8jI4XixSld66eRsNczz3hHNGFC0nGnic5PfP+4vzGefvvt3lGbJaPAihDFz+zZSaf56KP+ONrrZZCX8DxS5yeOHnnta6vXx6TnSNlhr9tv91yXH/7Qc2l+8YvahSDNfLsNNvAL+RZbuOsW9+UrX6k91Dz9/dQrKBnFTzp0mTcT91e+4jlKb31rsq6W8/P0096BT5xYXVMFqkOqX/96sbvoRtl4Y7/IrVgxNLelSMLz+PF+8Vqzpti8cBdc4HlLZn4Onneei5wHH3ShkD6GJk70BOQQ4G9/K7Y/WdcHqhOeo/iJNcQi++5b/XtFsuLn2mu9/tO551aL4DRp0Thxop/bK1bUzjGpNVI2Ta2E5/g8vp7O+8m78O+7b/VNKCQX94ULq0fOZm8EBgYSARQdjyiYYugMPPdu3XWHfk4t8vqdbIHDyEjDXpAI7PRUKmlWr/bjEpKK+FnyQl/pmkOjTdGu4U9AnXt2UY96zk/ehHzglvY//1l94YqW6OzZyTQLRcImIw17xf/bbLN8l6mW87Phhr7vzzzjndiee1ZbrcMxbZp37gsXJndLZYe8wPdrwgT/jJi8XNT5qVXrJ/5/9vfZay8XJeDLIvH9Imy1lXfm8+b5EPbx491iruX6RDbdNJn0dM0aT+j+29/cEVq2zB2HPIpc5KG+85MW/gMDfkFPH1/p6rRp0sOys8djrDT8utf5kPlWEduerle0eLH/TZo09M43S9G8n1mzEqfpG9/w32a77ZLPjfWj0jQa+soTP+uv7xftpUs9BArVzk89suLnm99MXquVX5Zug1lyAa8V+mrE+Ska9tpww2TdcIwf733TmjUuaur1F9kwZ9r5iRxyiL8eHaDhyAvptSrnB5K8shtvzJ8EOp3oXKvPee1rvd1//SsceaRfD9Zbz0XgcInUraCo+Pk28GYz+6qZ7Wdm25rZjPRfKxvZ7WSrPKdnI85zfsA7gGynNnmyb79mTTIXVRHnYKRhr3ohL6id85NtX72QVx5mQ0NfZY/0AheU6bL8Tz7pYYW1165faRVqOz95HQy4yIp3UbE4ZRmMGZPcwY4d69NwFP2+jzjC785vv90Tuvfay0WPmY9qyktyLDKqCZKk53phr1rUcn5qhbzAhcKFF7Y+sTKet+mQbPo7GS4UXSTv5667POdv5UrPYTr5ZP8+b745SaI/5JCh/7fPPr688cZhdwPIFz9miauyeLEf58P9XpG0+HnwQT+mIhdeODSXbPly73PGjk2ck+FCX0XET5Gh7uCi+53vTHIMixKdm/vv98+YNCkJG6bJ5v3kOT+NktfvFBE/2erOkXR/mid+NtnEhc2yZflzQcbK7iecUPvYT082HSeJXrzYf4e8GQhaTVHxMwuYDnyw8vge4N7Mn6hBVlTMnesH0YYbNuaEQBL6iidwM+InbdOmxU+tsFf8v1q5HbXCXlDtfDQqfmCo+Cl7pFcknfdT1PWB2jk/saPLCxPG0F+Reh6NcNhhLpAvuKDxcvIvfnH1sfTc5/q8WytX5l8UiiT2gl+cJk/2323hQr/QPfigHzP1QhbQnPiZMMFDB0Xv4Jslz/kp+p1AMefnE59wV+Hww6trE62zjldwnzMnGXqfJg6iSCex1yM9tUWa9O+zxx7FhXpa/HznO97fvOUt3tfMmTNUlMXvbfr0pC+pJ34WLfLza8qU/AEYkaLOz8CAh3/zvst6ROcmVmaeNi3/wp8VP3nOT6M04vxMmeLn4LPPupOWl/CczveqdUMTb9qypUceesgrVOclOmf50pc8xP2Tn7gDNH++C6C8XKtWUzRr4h0tbUWPkxUVw7k+9dh996QK8rRp+RfXLNn5vebPd+tygw2SEAzUDnsN5/xkw17pPIx4QV1rLdh77+HbmqWW81Nm2AuqR3zFDrjIZzTq/IBPk7ByZfnJuJ/4hI+cqpXj0yif+5znDP3v//r7xt8Cioe9BgZcSN14o98xbrCB331uu+3w7ayV8Jw3zH20id9FWvwUSXaOFHF+4jH/uc8NFR5mtW8AYp9QdFRNnvMD1eInm+9Tj7j/99yT7MMpp3j/8dWvuvsT3SnI/97qDXdPuz71HLbhEp6bGQWYJoqX6ITUulkaLeenVs4PeN/+wAN+LtXqm773Pe9fa/V7++3nIw6vuw4+8IFk/Y9/7Of0a187vKDbaCP47/+uv81oUUj8hBA6aHR+95F1fuqN9BqO6PxA8WTZ6NhEB6eWe7Leen5BWrzY7xLiFABFnZ/Y2aadnwMO8Pd505uaK+Y3GmEvqE56jndVRZyfvJyfEOo7P5Mn+7QLraAs4QN+8Tv+eA99nXpq9ez0RcNe4A7XjTd66Ct+p0VCKLWcnzjMuax8qWZIh71CSObCgnKcn8HB2o7McMQ7+DLFT9F8H/DfeGAgGVW0zz6e32Hm4ucXv/Bk9Cjo8j6/3nD3IiEvKD7UvVmieIkh3Vr9Y7bQYRnOTyND3aFa/OSN9gJ3euuRTnqOx3wIfnMESW5at1Az7GVmY8zsv8ys5iXWzHYzsw6cr3V4RqvIIQx1foZLdq5HuqBYUfGzzjouQJYu9b9a7olZvvtTNOcnkhY/M2a46Dv77GJtzdKOsFfRkV5Q+w5szRrvXEdavbndxLmxLrmkOvenkQt9esRX0XwfqC1+Zs/2ZTM3D2Wx0UZ+8Xj66eT8aEQQDuf8PP64j3bKTrRZhLXX9nN5yZKhQ/GzhJA4adl2p521RsTP2LHV52esubT77i5Y5s3zRO5IPfEznPNTj1qzn5clftrp/DQy1B2q+/V6rnQ9ttvOz8n585Pf4Prr3S2fNm3oSNZOp17Oz1uBnwHL6mzzNPCzyjQXogZZ52ckYa+1105i+kUL5JlV5/3Uu7jniZ/0aK88spZ8Ng6/zjrNOxLTpyejmBYubH3Yq4ycn9i5FAlJdjqbbZaU3//d73w5OJj8Do2In1tuaezYj3VQFi5MqqMvXeoXy/Hjh7/4tZJ0Mn68mSnT+amX1zQcY8Yk4iE9pU0eTzzhozHXXXdosu6OO/p7TZtWTNCliUJm2rSkyKaZO8CQjPoKIfn+0uKnaNirHgMDSVg/Pft52c5P/I6Lip/01BbN0kjCMyT9+oMPuqs/fnwiDoti5rmBkAx5j67PW99a3uCN0WI48fM/IYQHam0QQngQOA8YJs2p8xjNIocbbOAHxqJFnusxEucH3F7cZpvGEojTeT/13JO8EV9Fw16QuExlMWZMcqG85Ra/6xg7dmh9l5FSpvMTO7lG76w6lTiiKIqfBQvclVh//WKuxG67ecd5553JXXKRY39gYGgxuegA7rBDuSG+ZsgmPTfi/Aw3uWmtUFRRiub91PuczTf3elWXXTb86LUs8bs56aTq3ymKn1/9yqchOeSQpGp1usBfGWEvyA8Ple38RBp1flqV8Fwr5weSY3WDDRr/TaE66Xn58qRgYSuKibaaeuJnd+CKAu/xZ2DPcprTmwwMJCr/nnvcxZg0qdgdYh4f+5hbjY1UOE7n/dRzT/JGfBVNeIbqkFdZxDvsOCne5puXf5ex3nre4S5dOryNnSYv56eXnB9InJ84G30jDgd4R7399u7exM636Ez22aTnGPIqqzjkSEjn/axc6edJdEqGY7iw10icH0hcnOGm0IjT7NQSbK9+dXWeYVE+8xkf0ZNNbt1lF//tFi3y7+/yy/2G6Yc/TGo0QTlhLxgaHorz8JlVD/ZohqxzU+t3r5Xz06qE53rOTzz/mr0xS+f9XHaZu1577lk9GKJbqCd+pgJFZp95srKtqEMUFddc48sddmhN9dlaNBr2is7P8uV+9zhuXO1h+Wnnp5XiJ04kWXbIC7wzjDkO0elqRPz0svOz6abewT37rM9I34jDEUnnqm26aX49lDyyeT+xsnl2Nu52kA57zZ2bVB4v4ki1MuwFxZOeL7rIl8MVw2yUTTZxNyCvCnt0f9as8bov//qX19lJU0v8LFni4mHixGI3f1nnJ4a/Jk9uzvlIk3Vuajnjaedn9Wr/zc1G1j80MtQdyhM/M2f6Z997b1J+oRtdH6gvfp4AinRvW1a2FXXIip/RTtbMEz/1wl7xTnu46s4weuInjqooO9k5kr7QjB9fzJbOEz+95vxAEvr67W8bq2cTSYufRsK9WfHTic7Pv/7VuCAczvlpdqRXpEjYa8ECd14GBoYf6VMm73+/u9eXXw4//3m+iKlV4TmO9Nt228YmAI3nZ1khL2hO/KSTjUfiXjeb8zPSG7OxY5OSJTfd5M+jmO026h0+11Esl+ftlW1FHeLBF0c5tEv8PPJIIn7ynI1s2Gu4ZGcYvbBXZDTEz+abF+tc8xKee835AZ/uAjzvp9GwF1SLn0aO/ewUF53k/MRk/PnzfSoaKP6dFHV+ms35KeL8XHihOxGvfGX5OXT1mDIFzjwzCafmUcv5aSTkBUMdkjLFTzpstdFGtUd2psVPGcPcof5Q93o5P5GR9E0x6Rm8XxhJ+K6d1OvevwG81My+bmZDflYzG2dm3wAOAr7emub1DrFzicluzSY7N0sUL7fe6gUO118/P9s/G/aK+T71Zu5utfOz9dbVSdStCHtBtfgp+hn9kPMDnvexySaeL3b55b6ukbBXupp1s85PnEOpzDnRRoJZsi9/+IMvy3B+Vq9uLrSYpkjOTxyp04lhi7LETyudn3XWSfq+eiHytNAtY5g75A91L5LzE2l0ZoE0Me8HOvPYKUpN8RNCuAH4EHAyMNfMzjezL1T+zgfmAicBHwohFJxFpn/JHnyj7fxE8RJHy9RyT+qFvWrRaudnYKD6gjkazk+RfB/oj5wfcBfs4IP9cbwANeL8bLZZ0uE3I37mzauu79Mpw2qjKxkd3aJiZZ11XDwtXjy0Fs/cub5u882bHzk5nPPzr3/5HGFrr+2T2XYatYa6N+v8tEL8mCUOTr3+Yu21/fxZujTpT0fq/KQdrRD8cb2w19pr+9QvkZH0TS98oQu6adMSR7gbqWvshxC+ARwI3AQcAXy88ncEcDNwYAjhmy1uY0+QtpXHjElq9YwWUbzEE6WWs5ENe3WC8wPVoa9WiZ90UbdGnZ9ez/mBoZNoNiJ+zHxizv32S2aILkLa+emkfJ9IvIlZscKXRb+TMWNqC5SRDnOH4XN+4hQ5r3/9yEc9tYJaQ92bdX5aEfaCRMTU6x/Tv/W9lVkwR+r8DAy4MA7BB6WEUF/8pAvYwsjEz5Qp8I9/wN/+Vi2ouo1hsxpCCNeGEF6Dj+jatPK3dgjhNSGEv9T/bxHJVj0e7YNmgw2qR6HUurivu67Hrpcs8ZOqiPMz2uKnVWGv9MWmqPPTLzk/AC9/eXIMjR/f+G996qleH6SRC09a/HRSvk8k6+A2Eqaqlfcz0pFeUN/5GRxMxE+nhi1qhb3SCc9FyDo/cVm2+Bmuv4i/dRQ/I3V+oPrG69ln/XedODF/hB2UJ37A+8qifWSnUniwdQhhMIQwv/I3TNF0kSXt/Ix2vg+48k+3oZZ7YlYdauiEsBck4mfcuNZ9xqRJyXdUVGClO9foqjVbPr7TmToV9t/fH0+fPjqlGtIJz9H56STxk03Gb8QNq5X3U6b4ycv5ueYaD61tvXV1/kYnkRf2StdSatSZbZXzE4/P4doTxc899/iyjCThdOirXr5PpEzx0wsUndW956jM6RWZ2erPSx947ZqTaPPNi00Psemm3jnOm9c5Ya+YMDtjRmsvurvs4snez3lOse3HjvW7rWefdads8uT6k5p2O4ccAlde2XyBzkZJOz/Ll/vjTgp7zZjhLtjKlf575420qUUt52ekw9zT753n/KSnJBjNWmONkB7qHifRfOQRfzxtWvHq3rUSnkc6o3vk5JO9LYcfXn+7KDbKFD/pfYs3XkXFz0gSnnuFvhU/o02cMX3VqvaJn7R7U0/8pEd8NRL2mjKl8fliijJjhtcEafUon/POg9tuqx6dNBxTprj4WbrU979XnR+At78dbrjBl6PBWmu5I7d8uf9NmTJ6wqsIY8d6/t7s2Y2PzBrO+RlJzk+tsFcIPkktwNFHN//+rWb8+KE3Fc2UWGjlUHfwGev32Wf47bJTXJQZ9konPcv5KU7fip/KnF7Af1ygkmucVjNmjB98c+e2J+wF1QKmXtJwPEnmzPEL+dix9U/WGPZqlesTecMbWvv+4BewRi9iU6f6ENalS72Te/ppv1ONeQu9xLrruggdLWIYNl74dtll5JV5y2annVz8NCrKRiPnJyusFi/2UNJaaxV3N9vF1KkufpYscfHTzPD/Vg51b4SsC1xm2Gvp0mTW+nrOo8RPNR1qevYm73sf/Nd/wR57tOfz0+KnXrJazHuJFZU33bS+PR6dn1aLn04lXesn3mmvt17nhhS6jRj6gs7K94nENjXq1ORNbrpihYeaBwZGNqqxVtgrjuIczaKGzZId8dVMZfFWOz9FyYqfshOe6430isT+edy40d//TqRvnZ928JGP+F+7iOJnvfXqH/zxJIlVa+vl+8DoOT+dSroT6uV8n3aRFj+dlO8TOe44DxG/972N/V92wkvwC3wILnxqjdopwuTJ/v/Ll7ugiqNLo/jphnM1O+Irun/d6PxknZayE55jragi4mf99TvPPW0HEj99RBQxw91RxpMkDi0ebgLB2El3w91kK0h3sFEIylYuj/SFuhOdny22gO9/v/H/y3N+ysj3Ab+4rbuuh2MXL64ewQndKX6acX46Rfykb4YmTSonNzK9b6tXV6/LI9YxG+mx1StI/PQR++zjcyy99a31t4siZtUqXw4nfmLHOtqFGzuFdK2fGHuX81Mene78NEtewnMZ+T6RKH6efLI7xU92uHszzk8nhr3KmgsrvW9R/NTL+dlyS/jTnyR+IhI/fcS66yahrHpkO8bhwl7HH+9Fxw48sOmmdTXpnJ9nn/XHcn7KI1641113eCHeTeQlPJcxzD37/um8n24SP+mcnxB6x/kpI98Hqvct3qgON4T/ZS8r57N7AYkfMYRsxzjcBWfixGTep34kb4oLOT/lEcXPrrv2Vq5CPeenjLvzvOHu3Sh+lixxB2v5ct+nRkZR9rLzkx7qvnJl9ToxPBI/Yghxiot4Qg3n/PQ7afETvzM5P+Xx0pf6fGDveU+7W1Iuec5P2WEvqBZX3SR+0mGvZlwf6BznJ90flB32Wro0Kfoo8VMciR8xhDgJXqwG3UuhhlaQzvmJnaucn/LYdFO47rp2t6J8Wp3z00thr2byfWDo7Oed4Py0IuwVxU8jFcb7HVUiEbmkO0eJn/qkO6Feru4symXyZD92li/3astz5sCCBe66lnHO9VLYq1nnJzv7ebvEz5QpyUjQViQ8F6nzI6qR+BG5xBFfAwPlnay9SjrhWXV+RFHM4Dvf8Yvz+ecnw/i32qqcAplZ8ROC1yOC7hA/6bBXs84PVN+ctEv8mCV9QiucnyITm4pqJH5ELrFz3GST6lnbxVDk/IhmOeYYuP12OOCA5O69rPnrsjk/cTTipEndcZFMh72adX4g3yFpR4Xj2CfI+ekMul78mNl6ZvZbM7vHzG41syvMbLt2t6vbieJHyc7Dk875kfMjGmW77eDKK+EHP/BCdG96Uznvm835SU9t0Q2j5vLCXiNxfpYs8dAXtG4C5npEN72sPjVvegvl/BSnFxKeA/CNEMKfAczsZOCHwAHtbFS3E09U5fsMj5wfMVLGjPF6WccfX957ZsNe3ZTvA9Xip5kZ3SPRIVmwwJeTJ7dn3r2zzoLrr4e99irn/dLOTxSzcn6K0xbnx8y2MLNvm9kNZvaMmQUz27rGttPN7JdmttjMlpjZxWb2n1MghPBUFD4V/grkvpcozr77uj2uoljDk875ieJHzo9oN90ufqKLMW+eC5dx45qbQieen/Pn+7Jdk3rusQecfHJ5rlujE5uKatrl/GwHvAH4O/AX4BV5G5nZZOAqYAVwDO7yfB642syeG0JYlvNvpwCXtqDNfcXuu/ucQHEIpahNunNdudInkZw0qb1tEiI7d1i3iZ/o/MSQ1/TpzTk2UezE/e+VGc3ziqtK/BSnXeLn2hDCJgBmdhw1xA9wPDAD2CGEcF9l+9uAe4ETgbPSG5vZZyrbn9CidvcVEj7FiB3Oo4/6cr31uiOnQvQ23e78ZCs5N5PvA8n52WviJ1vDKL1ODE9bwl4hhMGCmx4K3BiFT+V/HwCuBw5Lb2hmpwIHA68OITxTVluFGI5oz8cOSPk+ohNIi58Quk/8ZF2MZvJ90u/T7rBX2Ywd6y7z4KD/vpMm+TpRjE7/qnYhP4Q1G3h9fFJxfA4GXhFCWFzrzczsmhovzWy+iaLfyXamyvcRnUAMvy5fDs88033iZ8wYFy4xrNOs89OrYS/wfVmxwh8r5NUYnT7UfX3gyZz1i4D1AMxsF+A0YANglpndYmY3j1oLRd8zMFCd4yPnR3QKafen28QPVIe+5PwMJS14JH4ao9Odn2EJIcwGCmVYhBAOyFtfcYReUl6rRL8RpykAOT+ic1h3XXjsMRc/3VTdOZKuWyPnZyjpfZH4aYxOFz9PUnF4MtRyhAqTCYHNHMl7CTF1alJHRM6P6BTk/PRuwjNUCx4VOGyMTg97zcbzfrLsDNw5ym0RoibpTkjOj+gU4rE4d67n/UyYMHQUVSeTbuv06c29RxQ7K1dWP+8FFPZqnk4XP5cBe5vZjLiiUgxx38prTRNCOCD+AbeM5L2ESHc8cn5EpxCdn7vu8mW3TG0RiW7Gxhs3XzsrKwp6Sfwo7NU8bQt7mdmRlYd7VJavNrMFwIIQwqzKunOBk4BLK0PZA3A68DBwzmi2V4h6yPkRnUgUP3ff7ctuCnlB4vw0G/KC3hY/cn6ap505Pxdlnn+vspxFZV6uEMIyMzsI+DrwUzyx+UrglBDCUkaAcn5EmaTj7XJ+RKcQhXi3i59mk51hqNjpJfGT3hfl/DRG28RPCKHoCK05wOta3BwhRoScH9GJyPkZ6oj0kkMi56d5On20V8tID3vXUHcxUpTzIzqRKH6WVWZB7Dbxc8QRcPXV8OY3N/8e/eL8SPw0Rt+KHyHKRM6P6ESi+Il0m/jZc0/4619H9h7K+RF59K34Uc6PKJN0vF3iR3QK2WOx28RPGfSy86M6P83T6UPdhegKYic0daomFxSdQ7c7P2XQy+JHYa/m6dtuWjk/okxix6N8H9FJSPzAuHFe3DFOANpL4kdhr+aR8yNECcSORyEv0Uko7OWkBU8viR85P83Tt86Pcn5EmcQ77A03bGszhKgiPT3E+PFDnaB+YcoUWLTIH/eS+FHOT/P0rfgRokwOOABOPhlep4pUooMYO9Yvik8/7VNEdNPUFmUi50dk6Vvxo5wfUSYTJsA3v9nuVggxlHXXdfGz6abtbkn7SAuDyZPb146yUc5P8yjnRwghepiY99Ov+T6QOCQTJ8LAQHvbUiZyfppH4kcIIXqYmOfTz+InCoNeCnlBteDptX1rNX0b9hJCiH5A4qd3xc/aa3su19SpveVojQZ9K3402ksI0Q8o7JWInl4TPwMDcNttKqzaDPrKhBCihzn6aHjoITj00Ha3pH1E56cX82L6WdSOhL4VPxrtJYToB176Uv/rZ3rV+RHNo4RnIYQQPU2v5vyI5pH4EUII0dPI+RFZJH6EEEL0NLHAo/JjRKRvc3402ksIIfqDww6DH/8YXvWqdrdEdAp9K36EEEL0BxMmwDHHtLsVopPoW/Gj0V5CCCFEf6KcHyGEEEL0FRI/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL6ib4e6q8ihEEII0Z/I+RFCCCFEX9G3zo+KHAohhBD9iZwfIYQQQvQVFkJodxvajpnNXWeddabNnDmz3U0RQgghxAi55ZZbWLx48SMhhC3yXpf4Aczsn8BGwH0lvN3MyvKWEt6rk5lZWd7SxjaMBjMry1va2IbRYGZleUsb2zAazKwsb2ljG0aDmZXlLW1sw2gws7K8pY1tGA1mVpa3tLENo8HMyvKWEt5rO2BBCOH5eS9K/JRMHEWWzinqRbSfvYX2s7fQfvYW2s/yUc6PEEIIIfoKiR8hhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq/QaC8hhBBC9BVyfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8h8VMSZjbdzH5pZovNbImZXWxmW7a7XWViZkea2a/M7CEzW25md5vZmWY2td1tazVm9gczC2b2+Xa3pWzM7GAzu9bMllaO3ZvN7KB2t6tMzGxfM7vCzOab2dNm9g8zO7bd7WoWM9vCzL5tZjeY2TOVY3PrnO0mmtlXzOyxyjl7g5nt34YmN0WR/TSzPc3sB2Z2V2WbOWZ2gZlt06ZmN0zR3zPzPx+rbHfdKDVzxDSyn2a2k5ldZGZPpK437y+rLRI/JWBmk4GrgB2BY4Cjge2Bq81srXa2rWT+G1gDfAJ4FXA28G7gT2bWs8eSmb0ZeF6729EKzOxE4FLg78ARwOuBi4DJ7WxXmZjZc4E/A+OA44HXAjcB55nZu9vZthGwHfAG4EngL3W2Ow/f508DhwCPAX80s5mtbmBJFNnPNwG7AN8CXg18DNgduNnMpo9GI0ug6O8JgJnNAE4F5re4XWVTaD/NbE/gb8AE4DjgYOBrwEBpLQkh6G+Ef8D7cVGwXWrdNsBq4IPtbl+J+7lRzrq3AQE4qN3ta9E+rwc8Dry5sp+fb3ebSty3rYHlwCntbkuL9/MMYCUwJbP+BuCGdrevyX0ak3p8XOXY3DqzzfMq69+RWjcWuBu4rN37UOJ+5vVLWwGDwOfavQ9l7Wdm+z8C5wDXANe1u/0l/55jgDuBS1rZlp69Wx9lDgVuDCH8Z1b4EMIDwPXAYW1rVcmEEBbkrL6pspw2mm0ZRb4E3BFC+Fm7G9ICjsUvEN9vd0NazHhgFS700iymS93vEMJggc0Oxff756n/Ww1cCLzSzCa0qHmlUWQ/8/qlEMJDwAK6pF8q+HsCYGZH4c7Wx1vXotZQcD8PAHYCzmplW7ryxO9AdgHuyFk/G9h5lNsy2ryksvxXW1vRAsxsP9zZem+729Ii9gPuAt5kZv82s9Vmdp+Z9dr+/riy/JaZbW5m65rZ8cBLga+3r1ktZxfggRDCM5n1s3FBuN3oN2l0MLOdgI3psX7JzNbDj9mPhBAWtbs9LWK/ynKimd1oZqsquXrfMrNJZX2IxE85rI/HMLMswsMmPYmZTQM+B/w5hHBzu9tTJmY2HreVvxpCuLvd7WkRm+O5aV8Bvgi8AvgT8J0yEwvbTQjhDvxu8jDgEfxc/S7wrhDChW1sWqup1y/F13sOMxuLu5kL8JynXuIrwD0kgr4X2byy/DlwBfBy4Mt4mOz/yvqQsWW9kegvzGwKnii7GnhHm5vTCj4CTAK+0O6GtJAxwFTg7SGEiyvrrqqMvvi4mX0rVILw3YyZbQ/8Cnc83oWHvw4Dvm9mz4YQLmhn+0TpfAfYB3hNCCFP/HUlZvZi3InevRfOyzpEU+b8EMKnK4+vMbMB4ItmtlMIYcSOnpyfcniSfIen1p1XV1OxHn8DzABeGUKY2+YmlUqlRMEngU8BEyphknUrL8fn5Y06aB8LK8s/ZdZfAWwCbDa6zWkZZ+C5L4eEEH4bQrgyhHAy8Avgmz08UrFevwSJA9QzmNkXgROAY0MIV7S7PSVzDu5kzU31SWOBgcrzjs/hKki9fgng+WV8SK+e9KPNbDy+nmVnPGu9ZzCzccAvgT2Bg0MIt7e5Sa1gBjAROB+/gMQ/8OH+TwK7tadppTJ7mNcLJ2F2OLsBt4YQVmXW/z9gAzw3pBeZDWxTKcWRZmd89Nt9Q/+lezGzTwIfBU4OIfy03e1pATvhzmW6T9oX2LvyuFvLNmQZlX5J4qccLgP2rtReAKASOti38lpPULlDvgA4CDg8hHBjm5vUKm4BDsz5AxdEB9IbF45LKstXZta/CpgbQnh8lNvTKh4HZlbyuNK8EHiWHnRAKvwGr230+riikg/zRuCKEMKKdjWsbMzsZODzwCdDCN9pd3taRF6fdCs+2OZA/Ka0F/g9sIL8fgmglPxS5fyUw7nAScClZnYqXrvgdOBh3KrsFb6Ld6RfAJaZ2d6p1+b2SvgrhPAUXj+jCjMDeCiEMOS1LuVy4GrgHDPbELgf/31fQW/lcX0HL9z4GzP7Hp7zcyheu+nrIYSV7Wxcs5jZkZWHe1SWrzazBcCCEMKsEMI/zeznwDcqju0DuDuwDfCW0W9xcwy3n2b2JuAbwB/wnLV0v7QkhNAV7nuB3/OanP95ChjbTX1Sgf1caGZnAp8ysyV4AeE98UKdP0mXlBkR7S561Ct/wJZ4UuUS4Gng19QpUtWNf8CDuLDL+zut3e0bhf3vqSKHlX1aGxe18/BQyG3AUe1uVwv289W4oF1QOT9vAd4DDLS7bSPYp1rn4jWpbSbh9VIex12uvwEHtLvtZe4nPvJp2O+i0/+a2Qe6rMhh0f0EDPgg7rCvBB7CRxaPK6sdVvkgIYQQQoi+QDk/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL5C4kcIIYQQfYXEjxB9jpm93cxCjb+Xtbt9vYKZ7WFmz5jZtNS6a8zsuhrbH1f5DbZu4DMON7N5lYmHhRA1kPgRQkReD7wo8/f/2tqi3uIrwI9CCI+08DMuBR4DPtzCzxCi69H0FkKIyC2hYOl4M5sQemhuqFZjZnvg8y+9r5WfE0IIZvYD4HQzOzOE8GwrP0+IbkXOjxCiLqmw2P5mdlFlPqG/VV4ba2YfN7O7zGyFmT1qZl8zs4mZ95hhZr+rhH0WmNk3zezEbFin8vy0zP9uXVn/9sz6l5jZlWb2tJktM7M/mtmumW2uMbPrzOxlZvaPyuffYWZH5Ozn88zsEjNbaGbLzexuM/t45bVvV8JJ4zL/M7Xy+V8c5ms8DrgthDDcjNU1MbPT6oQn357a9BfAusBrm/0sIXodiR8hRGSgImbi30Dm9QvwyTGPBD5WWXc+cCrwf8BrgDOBd1a2BaAym/qfgOcD7wXejk+ueWqzDTWz1wBXAkuBtwJHAVOBv5jZ9Mzm2wLfxOe4ei0eFrrIzLZLvd9ewA2VbT9Q2ZezgC0qm5wNbAxkRdNRwFoMP4Hxq4C/1Nmfsdk/hvbPP2RoWPJXwBrgnrhRCOEJ4F8ks2ALITIo7CWEiNyVeX49sF/q+S9DCB+JT8zsxcAbgWNCCP9bWf1nM1sEnG9mM0MItwDHADOAF4UQbqz87++B20fQ1m8Cs0IIh6XaczU+M/2HgFNS224I7B9CuLey3T9wAfQG4IzKNl8FFgJ7hxCeqay7Kr5BCOFOM5sFnIg7K5ETgStCCA/UaqiZbQJsDdxaY5N9gVV19jW2YS4wN/W+r8fF3CkhhL9mNv8nsDdCiFwkfoQQkSNIXVzx2c/TXJJ5/ip8xuVfVpyKyBWV5f747OkvAh6OwgcghDBoZr8ATmu0kWa2Pe7QnJH53Gdw92b/zL/cG4VP5bPnm9l8YMvK+03GBchXUsInj+8BF5rZ9iGEe83sBbibNVx4afPKckGN12/Fw2JZDqOGO2ZmewI/Ab4XQvhWziYLUp8rhMgg8SOEiNwxTMLzY5nnGwPjgWU1tt+gstwMmJfzet66ImxcWZ5X+csyJ/N8Uc42K4CYl7QeHmKam7NdmkuAx3G357+BdwGPAr8Z5v/i59RKEF8aQrg5u9LMZuZtbGZbAJcB1wDvr/Gey1OfK4TIIPEjhChKyDxfCDwLvLjG9o9Wlo8Bu+S8vknOuhW4oEqzQeb5wsry48Cfc95jZY321OJJYBCYVm+jEMIqM/sh8B4z+zLwJuBrIYTVw7x/bO96DbZrCGa2Fi62ngDeGEJYU2PT9VOfK4TIoIRnIUSz/AF3F9YJIdyc8xfFzw3AdDP7Tw6KmY3Bc26yPATsmln3mszzu4EHgV1qfO5tjexEJdR1HfBWM5s0zObn4COpLgImAOcW+IgHcZE4o5F2ZTEzwxPMNwMOCSFkw5JptsG/JyFEDnJ+hBBNEUK4xsx+huf8nIUXRBzEk3sPBj4aQrgHz035GHCxmX0CmI+HjNbOedsLgVPN7JPAjbir9ObM5wYzey9waWUk2S9wJ2QTYB9gTgjhrAZ357+BWcANZvY1PAQ2A5gZQvhPbZ4QwiNmdhmeH/WbEMLDw71xCGGlmf0N2KvBNmX5KHA4Hura3MzSOT3/DiEsgP+IpL3wHCUhRA5yfoQQI+GteNLykXh14V8CJwH3UsnpCSGsBF6OJz9/DxdDDwCfz3m/M4HvVN7j18BOwNHZjUIIl+OJzWvhQ8D/CHwZ2BR3mhoihHATnvT8MPBt4HK8SnJeHtBFleVww9vT/Bw4qBK2apYdK8tv4vuY/ku7Y/vgIbYLR/BZQvQ0FkI2jC+EEK2nUpjvf4BtQggPtrc1xTGzC3ChNCOEMFjwf9bGhdR7Qgjnt7h9ZwO7hhBq5WIJ0fco7CWEEAWo5CzNxGsbfbCo8AEIISwxsy8BHzGzC0KL7jrNbFO8rpIKHApRB4kfIYQoxg14Remf0Fw+zVnAAJ6w/Ogw2zbL1sCHQgjXtuj9hegJFPYSQgghRF+hhGchhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq+Q+BFCCCFEXyHxI4QQQoi+4v8DNs9Nqa0jVhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "avg_cs_amplitude = np.abs(avg_cs.power)\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_cs.freq, avg_cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Crossspectrum` or `AveragedCrossspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the cross spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / \\sqrt(meanrate_1\\times meanrate_2)$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*. This is the default.\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times \\sqrt(meanrate_1\\times meanrate_2)$. See *insert citation*.\n", + "* `none`: No normalization applied. \n", + "\n", + "Note that these normalizations and the Poisson noise levels apply to the \"cross power\", not the cross-spectral amplitude." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 15141.07it/s]\n", + "200it [00:00, 12807.43it/s]\n", + "200it [00:00, 13023.36it/s]\n" + ] + } + ], + "source": [ + "avg_cs_leahy = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='leahy')\n", + "avg_cs_frac = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='frac')\n", + "avg_cs_abs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='abs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot the three normalized averaged cross spectra." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAANYCAYAAACRv3nwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC6JUlEQVR4nOzdd5xcVf3/8dc7nXSSQBqEhF6CLBBESiCU8EVARBRBRIkKgvjlK4qFACKoNEUUQZT6Cx0EaWpApASpAoGQhJJQUiC9kd42+/n9ce4sk8nM7szu3Jl7dz/Px2Mes3Pvufd+pux85px77jkyM5xzzrmkaVPtAJxzzrl8PEE555xLJE9QzjnnEskTlHPOuUTyBOWccy6RPEE555xLJE9QzkUkjZJkkrav0PEGR8c7rRLHcy5tPEE555xLJE9QzrlmkdSx2jG4lskTlHMlkvRdSW9KWiNpoaRbJPXKKfO/kl6StFjSJ5JelnR0gV22lfRLSXOisn+XtFXWvv4u6Y08cQyRVCfpzAZiHRE1Ix4r6boo3oWS7pTUM6ds96jMbElrJU2R9ENJyrO/4yXdJGkBMC9aN07S85KOlDRB0mpJb0jaV1I7SZdFz3GxpDGSuhT1grtWyxOUcyWQdAXwJ+BJ4FjgJ8CRwGOS2mYVHQzcDJwAnAi8BvxD0pF5djsa2B74NvADYD/gzqz1fwZqJH02Z7vvAiuBu4oI/RrAgJOBS4AvR8syz6sN8E/gW8DvgC8AjwNXA5fm2d+1gIBvAKOylm8P/Ba4gvDcOwKPRs+hf1T2l8DXgV8UEbdrzczMb37zmxmEL08Dti+wfjCwAbgoZ/kB0XbHFdiuDdAOeAJ4JGd/BozLKf/jaPmArO0/AG7JKtMemAv8pZHnNCLa1205y68D1gCKHh8TlRuVU+5mYC3QJ2d/D+U51jhgPbBt1rJjo/JP5pR9EJhW7ffcb8m+eQ3KueKNJCSLu6Imq3aS2gH/BZYDB2UKStpb0j8kzQNqCV/cI4Gd8ux3bM7jSdH9IAAzqwNuAE6S1CNadxzQN1pejH/mOUbHaB9EsdcBd+eUuxPoQKjVZXuowHGmmtmHWY/fje7/lVPuXWCr7OZD53J5gnKueFtG9+8TEk72rRvQG0DS1sBTQC/gbGB/YB9Ck1mnPPtdnPN4bXSfXfYWoC2hSQ3gTOAVM9vk3FQBjR2jF7DYzNbllJubtT7bnALHWZLzeF0Dy9sRnpNzebWrdgDOpcii6P4INv3CzV5/JNAD+KqZfZxZKalzUw9sZosk/RU4Q9K/gEOAcl4/tRjoJalDTpLql7V+o5DKeGzn8vIalHPF+zehGWyQmb2W5zYtKpdJROszG0rakXCuqjmuB4YSzgstBe5t5v6yPUv4PjghZ/nXCbWdl8p4LOeK4jUo5zZ1pKS5OcuWmtm/JV0JXCdpJ8KX+hpga8L5pZvN7BlCD79a4HZJvyP0XrsEmEkzfhSa2ctRd/ODgGvNbFVT95XHY8DzwF8kbQG8BRxFqKVdbmYLy3isvCS9D8wws8PiPpZLB09Qzm3q2jzL3gKGmtn5kt4Bvh/dDPiIcM7pPQAze0vS1wndqR8l9MA7j9D0N6KZsd0P7EnxnSOKYmZ10XValwE/I5xPmw78CPhDOY/VAD8n5TaS6WLqnEsBSS8AdWY2vNqxOBc3r0E5l3DRUEJ7AYcTegR+sboROVcZnqCcS77+wIvAJ8BlZvZodcNxrjK8ic8551wieQ0qj6in1BaECzKdc87FZ3tggZntmbvCE1RE0rish7v26NGjQ01NzcBqxeOcc63BhAkTWLp0ad51nqDyW11TU9Nh3Lhx1Y7DOedatBEjRvDss8/mba3yBBUxsxGZv6Pa1MFVC8Y555wPdeSccy6ZPEE555xLJE9QzjnnEskTlHPOuUTyThKRnG7mNVUKwznnXMRrUM455xLJE1TEzEZkbsCEKodTdsuXL+czn/kMV1xxRbVDcc65oniCaiUmTpzIpEmTePjhh6sdinPOFcUTVCuxfv36xgs551yCeIJqJWpra6sdgnPOlcQTVCvhNSjnXNp4gmolPEE559KmRSYoSVtLGifpbUkTJZ1Q7ZiqzZv4nHNp01Iv1K0FzjGzCZL6AeMljTWzldUOrFq8BuWcS5sWmaDMbA4wJ/p7rqSFQC/AE5RzzqVEIpv4JB0k6VFJsySZpFF5ypwlaZqkNZLGSxpeYF97A23N7KO4404yb+JzzqVNIhMU0BWYDPwAWJ27UtKJwDXAZcCewIvAY5IG5ZTrBdwOfDfugJPOa1DOubRJZBOfmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkfbdQQeBq4wsxfzHSdngNhsNU0MPbE8QTnn0iapNaiCJHUA9gaeyFn1BLB/VEbAGOBpM7ujogEmlDfxOefSJnUJCugDtAXm5SyfB/SL/j4AOBE4TtKE6LZ77o5yBoht0bwG5ZxLm0Q28TWXmT1POpNvbDxBOefSJo1f4guBDUDfnOV9gbmVDycdvInPOZc2qUtQZrYOGA+MzFk1ktCbz+XhNSjnXNoksolPUldg++hhG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJNBa9BOefSJpEJChgGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFPCa1DOubRJZIIys3GAGilzPXB9GY85IvN3dH3UweXadxJ4gnLOpU0iE1Q15Fy0W1OlMGLjTXzOubRJXScJ1zReg3LOpY3XoCLexOecc8lSdIKS1ANYY2ZrY4ynaryJzznnkqWoJj5J7YBFwBHxhuPi4jUo51zaFFWDMrNaSfMIIzi0SN7E55xzyVJKJ4k7gdPiCsTFy5v4nHNpU0onienAyZJeBR4hTKlu2QXM7NbyhVZZLf0clNegnHNpU0qC+lN0P5AwH1MuA1KboFo6T1DOubQpJUENiS2KBGjp56C8ic85lzZFJygf5y7dvAblnEubki/UlfQZ4CCgN3CDmc2VtD0wz8yWlztAVx6eoJxzaVPKhbodCT35jicM5GrA3wmTBP4GmAqcF0OMrgy8ic85lzaldDO/FDgc+AZh9trs0cYfA/6njHFVnKRxmRvei88556qulCa+rwEXmtndktrmrJsGDC5bVK7sPEE559KmlATVG3inwLo2QMfmh1M93ovPOeeSpZQmvmnAfgXWfRaY0vxwXFy8BuWcS5tSEtTtwHmSvg60j5aZpEOAH+IX6SaaJyjnXNqUkqB+A/wTuANYEi17HngSeNzMri1zbK6MvInPOZc2pVyouwE4SdKfCD32tiRMwfG4mT0bU3yuTLwG5ZxLm5Iv1DWz54DnYoilqlr6YLFeg3LOpU3RTXyS7pP0XUk7xhmQi4fXoJxzaVNKDWor4FqgnaQ5wDOZm5lNiyO4Smrp3cw9QTnn0qaUc1AHSOoCDAcOBUYAJwFtJM0Enjaz78QSpWs2b+JzzqVNKb34MLOVZva4mf3UzD5LqGU8DWwDjIohPlcGGzZswMwaL+iccwlSUieJaNTyQ/i0BrUl8DZwHSFRuQTy5j3nXBqVMpr5TMJsuu8Tzj2dQ2jWWxBPaK5cvHnPOZdGpTTxDQDWEMbjext425NTOngNyjmXRqUkqF6EEc2nAd8BJkiaF3U/PzNp3c8lPSRpiaQHqh1LtXmCcs6lUdEJysyWmdmjZvZDM9uDcP7p+4TE9SdCrSpJrgG+We0gksCb+JxzadSUKd+3JnSSOCS6bQ1sAMaXN7TmMbNxkkZUO44k8BqUcy6NShlJ4kZJ7wPTgVuA3YH7gWOAXmb2uXIFJekgSY9KmiXJJI3KU+YsSdMkrZE0XtLwch2/pfEE5ZxLo1JqUJ8jjGb+DDDOzD6JJaKgKzCZMMXH7bkrJZ1IaMI7izCi+lnAY5J2NbOZMcaVSt7E55xLo1JGkvhMnIHkHGssMBZA0pg8RX4EjDGzm6LHZ0s6EvgeMLrY4+QMEJutpth9pIHXoJxzadSUc1BDCSNI9AIWE2pTb5U7sAaO3wHYG7gqZ9UTwP6ViiNNPEE559KolAt12wFjCF3NlbXKJN0NjIrmjIpbH6AtMC9n+Tzg8MwDSU8CewBdJH0MnGBmL2VvkGeA2BbJm/icc2lUSg3qF8BXgYuAO4G5QD/glGjdh9F9IpjZ4Y2Xah28BuWcS6NSEtQpwK/N7NKsZTOASyW1Bb5FZRLUQkK39r45y/sSkqbL4QnKOZdGpQ519GKBdS9G62NnZusI11yNzFk1ksLxtWrexOecS6NSalCzgQOAJ/Os2z9aXxaSugLbRw/bAIMk1QCLo27kVwN3SHoFeAE4k5Ag/1KuGFoSr0E559KolAR1F3CBpLro7zmEc1AnARcAV5YxrmGE660yLolutxE6Y9wnqTdwIdCfcM3UUWY2o4wxtBieoJxzaVRKgroY2JaQKC7OWi7gHuCX5QrKzMaxcU/BfGWuB64v4zFHZP5uaVO+exOfcy6NSrlQtxY4WdKlhC/vzQnXQf2nktdBxSWnm3lNlcKIhdegnHNpVPKFulEySn1Cak08QTnn0qjUKd/bEqaw2I8wu+4sQs+5Oyp0kW5svInPOeeSpZTRzLch1JxuAY4kzAd1JHArMDla7xLIa1DOuTQqpQZ1HdAdONDM6q83knQAYdqNa4Fjyxte5bTkc1Beg3LOpVEpF+oeCozOTk4AZvYCcH603iWQ16Ccc2lUSg1qBTC/wLr5wKrmh1M9LfkcVHaCMrMqRuKcc8UrpQZ1J2HEhnzOIM/Egi4ZvInPOZdGpdSg3gdOkDQJ+Btheou+wFeAboQZbb+dKWxmt5Yz0Li15HNQ3sTnnEujUhLUn6L7rYDd8qzPHtXBCL37XAJ4gnLOpVEpCWpIbFEkQEs+B+VNfM65NCplqCMfiDWlvAblnEujUjpJ1FNwq6RB5Q7IlZ8nKOdcGpU8Fl+kDXAq4eLdmeULp3pacicJb+JzzqVRk2pQkQanw3DJ4TUo51waNbUG1eK05E4SnqCcc2nU1BpUHWF224VljMXFxJv4nHNp1KQalIXxcr5V5lhcTLwG5ZxLo1Km29hf0jFZj3tJukfSJElXRXNFuQTyBOWcS6NSmviuAPbOenwVcBQwFfgeYURzl0DexOecS6NSEtQuwGsAktoTxuD7oZl9GbgAOLn84VWOpHGZGy2sm7nXoJxzaVRKguoKLIv+/izQBfhH9Ph1wC/aTShPUM65NColQc0C9oj+/jww2cwy80NtTguYDypzAyZUOZyy8iY+51waldKL7x7gMkkjCOeefpG1bi/gvfKF5crJa1DOuTQqJUFdDKwBPkfoMHF11ro9gPvLF5YrJ09Qzrk0KmU08w3ApQXWHVeugFz5eROfcy6NSrkOqk/u6OWSzpB0bfb1US55vAblnEujUjpJ3Aqcl3kg6efAnwndyx+RdGKZY3Nl4jUo51walZKghgFPZT0+E7jMzHoTpoP/UTkDc+XjNSjnXBqVkqB6AfMAJA0F+hEGjAV4GNiprJE1g6RjJE2R9J6k06odT7V5gnLOpVEpvfgWAVtFfx8KzDazTNfy9jRvbqmykdSO0MPwEGApMF7SQ2a2qLqRVY838Tnn0qiUBPUkcLGkPsC5hFpTxs7AjDLG1RyfBd4ys1kAkh4DjiBcx9UqeQ3KOZdGpdR6fgp8BFwOfABckrXu68Dz5QhI0kGSHpU0S5JJGpWnzFmSpklaI2m8pOFZqwcQRr3ImAUMLEdsaeUJyjmXRqVcBzUPGFlg9eGEi3jLoSswGbg9um0k6i14DXAWISmeBTwmaVczm1nKgaKBYfOpKWU/SedNfM65NCr5vJGC3SQNj+5lZsvMbF05AjKzsWZ2vpk9QJi5N9ePgDFmdpOZvWNmZwNzCFN+AMxm4xrTwGhZq+U1KOdcGpWUoKIecXOAicC46H62pO+UP7S8x+9AmJPqiZxVTwD7R3+/AgyVNFBSV8LAtv/Kt7+cAWJbLE9Qzrk0KrqJT9LXgRsJ10LdCcwldDX/OnCjpFVmFndHhD5AW6Lu7lnmEZoZMbNaSecCzxAS8G9acw8+8CY+51w6ldKL76fAXWb2jZzlt0m6A/gZCekpZ2aPAo9WO44k2LBhA2ZW7TCcc65kpTTx7USoOeVzJ5W5UHchsAHom7O8L6FG53J4855zLq1KSVDL+fRC3VxbRetjFXXEGM+mvQlHAi82c98tcsJCb95zzqVVKU18jxEmLJxqZs9lFkraD/h1tL7Zoo4N20cP2wCDJNUAi6Nu5FcDd0h6BXiBMCbgAOAvzTzuuKyHNc3ZV5J4Dco5l1alnoP6HDBO0ixCb75+hNrT+9H6chhG6OCQcUl0uw0YZWb3SeoNXAj0J1wzdZSZJWUki0TxBOWcS6tSLtSdG9Vkvg0MJwweOx14lnBd0qpyBGRm4wA1UuZ64PpyHK+l8yY+51xaFZWgouuP7gN+b2bXAdfFGpUrG69BOefSqqhOElHnhMOLLZ9GLbWThCco51xalZJwXiCcg3Ip4k18zrm0KqWTxLnAw5JWEKbamANsdAWomeUbOy8VvBefc84lSyk1qEnAdoSRxGcA64D1WbeyDBbryssTlHMurUqpQf2SnBpTS5I9YGxUmzq4asGUkTfxOefSqpRu5hfHGIeLSaYG1bZtWzZs2FDlaJxzrniljGbeHuhgZivzrOsCrDOz1LYntdRzUJkaVPv27T1BOedSpZQmvlui8ifnWXcD4RzUt8sRlCufTA2qXbtS3mrnnKu+UjpJjAAeKbDuUeCwZkdTRS39Oqj27dtXORLnnCtNKQlqS2B+gXUL2HQKDJcA2U18zjmXJqUkqPnA7gXW7Q606llrk8qb+JxzaVXKt9Y/gJ9LGmdmEzMLJe0OXAA8VO7gKqmldpLwJj7nXFqVkqAuIkwMOF7Sq8DHwEDgs8A0wvQXLmG8ic85l1ZFN/GZ2UJgH+BywnQYNdH9pcA+0frUaumdJLyJzzmXNiWNTm5mn5jZRWa2n5ntaGb7m9nFZrY0rgBd83gTn3Mtw3//+19+/etft6rrGVvs9Bku8CY+5+K3cuVKZsyId1Lv888/n5///Oe8+uqrsR4nSTxBtXDexOdc/E466SS22247Zs+eHdsxFi4MZ1HWrl0b2zGSxhNUC+dNfM7F76WXXmLDhg3MmTMntmMsX748tn0nlSeoCqutrWX06NG89NJLFTsetO4a1IYNG3jnnXcwa7GD8bsqWrRoEYsWxX8Z6LJly2I/RtJ4gopIGpe5EeN1UGPHjuWKK67gJz/5SVyH2IjXoODyyy9n11135aijjuLjjz+udjhNNmvWLM4777xYm5Fc6d57772KHMcTVAMkfTcatdw1w9SpUwGYOHEidXXxT0DsCQpmzpwJwOOPP87QoUN59NFHqxxR09x2221ceeWVXHPNNdUOxWXJ/E/Hae3ata1y8tFSalB/BmZL+pOkz8QVULVU6jqo999/HwjtyXH3+gFv4svWv39/li5dyplnnlntUJokc3L8jTfeqHIkLlslElRrrD1BaQlqO+B64HjgDUkvSTpVUqd4QmuZspsDJk6c2EDJ8mioBrVmzRo+//nP85e//CX2OJLgF7/4BZ06dWLOnDmsWLGi2uE02YQJE/x8WoJ4gopPKSNJTDez0cDWwEnAKuBWYJak30vaJaYYW5RMDQqqn6AmTZrE448/zh/+8IeyHKuuro7TTz+dO++8syz7KzdJbLPNNgAVqb3GZcGCBcydO7faYbhIJRJUa+zBB03oJGFmtWZ2v5kdBuwETAL+D5gs6VlJR5c7yJZizZo1fPTRR/WPK5GgGmriy/wKnzlzZll+kY8dO5abb76Zb3zjG3nXP/bYYxxxxBE89NBDVasBDB48GIDp06fHdoyf/vSnXHHFFbHtH0ItylWfmVWkk4TXoEogqZuks4C/AQcRztlcQBh89lFJvyxbhC3ItGnTMLP6ZFHtGlTG6tWr6y8CbI7GfuXdfvvt/Pvf/+b444/n4IMPZvLkyc0+ZqniTlBLlizht7/9LT//+c9j7QTz5ptvNnnb2tpa1q1bV8ZoWoaVK1du9AOyGLNnz2bVqlUxRfQpT1BFkDRM0k3AbOB3hMS0n5ntbWZXmNkBwMXA98sdaEuQad4bPnw47dq147333ov9w11sL75KNHllvrAl8dxzz3HqqafGfsxccSeozPUwtbW1LF68OJZjQPNqUEOGDGHzzTdvVWO6FePLX/4y2223XUk/1irRvAfexNcoSa8D/wUOAX4JDDSzU83svzlF/w1sXr4Qm07SQ5KWSHqg2rHApwlq1113Zeedd8bMeOutt5g9ezYHHHAAN998c9mPWWwvvkqekxk9ejRAVToqZM5BxZWgspNSnKMKNKcG9fHHH7Nq1apW+6u8kHfeeYf169czb968orepVIJqre9VKTWoj4FjgB3M7LdmVujn4evAkGZHVh7XAN+sdhAZmbbq7bffns98JvTUnzhxIpdeeikvvvgit956a97tbrzxRnbffXfOOOMM/v73v5d0PUSSalAZHTt2rNixcsVdg8pOUHF2ZJgyZQorV66Mbf+t0dKlpU/K4AkqXqX04jvWzB6zRs5um9k6M0tEFykzGwckpm6cqUHtsMMO9Qnq8ccf55ZbbgEK/+K+8847mTx5MjfeeCPHHnssZ5xxRtHHTGKCitMTTzzBQQcdVHDEiJaSoMysKufwWqq6uromJQFPUPEquZOEpH6SPivpoNxbCfs4SNKjkmZJMkmj8pQ5S9I0SWskjZc0vNRYkyaToLJrUA888ED9BZhz585tsHfbIYccAsAHH3xQ9DFzm/gK7T9fgnr33Xf54Q9/yDe/+U2OP/74VIzA8NOf/pTnnnuOxx9/PO/6vn370rFjRxYuXBhLE2OlEhQ0r5kvbaZPn87f//53Pv7441h6gK5YsaJJ+820isTdKtBaz0EVPbyApIHAHcDB+VYDBrQtcnddgcnA7dEt91gnEprnzgKej+4fk7Srmc2MykwoEP8RZlbUYGXRuHv51BSzfSnWrVvHjBkzaNOmDYMHD6Zr164brW/bti1r1qxh6dKl9OzZM+8+DjnkEJ555pmSjtucGtQvfvEL/vrXv9Y/njlzJscee2xJx6+kiRMn1n9pF/qyadOmDdtssw1Tp05lxowZ7LbbbhutNzMkNTmGSiSo7t27s2zZslbV1fzYY49l0qRJAAwYMICbb76Zz3/+82Xbf1NqKLW1tfU/FrfddlveeeedssWTy2tQjfszsDvwU+DzwKFZt0Oi+6KY2VgzO9/MHgDy9cX9ETDGzG4ys3fM7GxgDvC9rH3UmNnQPLdEjqQ5ffp06urqGDRoEB07dmTAgAH06tULgGOOOYZtt90WKP+XWnM6SWR6GH7pS1/aaF9JdccddxRVLtPMl/2cZ8yYwVe/+lW6d+/Oiy++2OQYlixZUv93XAkqU/tuLTWotWvXMnnyZCTRs2dPZs+evdEPp3Joyvmn6dOnU1tby6BBg9hss83KGk8uT1CNGw78yMx+Z2ZPmNmzubdyBCSpA7A38ETOqieA/ctxjIyc8fdild28B6Gr9WGHHUb79u256KKL6N+/P1D+nl+Zrt1t2zZcuV2yZEnBZoQ999yzrDHFoba2tugRLHLPQ1111VXsvPPO3H///axYsYLXX3+9yXFUoga1xx57AKGreWvoKJG5fnDw4MH8/ve/BwrXkJuqKQlqypQpQDinHLfW2sRXSoJaDcyPK5AsfQhNhbl9PecB/UrZkaQngfuBoyR9LGm/8oRYukxbdfaHecyYMXzwwQfss88+9OsXnlo1h7DJjPqdRk899VTRr112gpo0aRI/+clPWLNmDb179252HJVIUFtssQX77rsvq1at4sYbb4zlGEmS++MuDk1JUJkL7YcOHVrucDaRtBrU6tWrNxq2LS6lJKibgPxj2CSUmR1uZluYWWcz28rMKjNLIGxyEWS+f7LOnTuz9dZbA8RWgypFWnry3XLLLZuci8s07xVz/ij7Wqi7774bgNNPP52TTjqp5Fiee+65jc4FVaqTxAUXXADAb3/7W9asWRPbcZIgc55nu+22i+0YTUlQmSbWTI22nFatWrXREEpJS1CjR49mxx13ZNy4cbEep8EEJenbmRvhOqj9JT0l6cfZ67LKlMNCYAPQN2d5XyDxI2SaGV/72tfYYostNvqyyr4GKp8k1KDSkKDeeecdTjvtNA499NNTnqtWreLBBx8E2Gh5IZka1LRp07jnnnsAOOWUU0qOZc2aNRxxxBEbnazPfs8XL15c30Oz3I455hhqamqYM2dOwevnWoqk1qDiTFDf/va32Wmnneq/Nxpr4lu4cCFDhgzh17/+ddljySczov6YMWNiPU5jNaibs243AIMJHSJ+k7PuZkINq9nMbB0wHhiZs2ok0PSz140ftyzzQUli/vz5LFmyhH/9619AOD/y8ssvA7D77rvn3S6ToLwG1bD58zdtZV64cCGrV69m4MCBDBnS+DXimQQ1fvx4ZsyYwVZbbcWBBx5Ycixr165lzZo1zJ07t/4LJJOgMr0m88VbDpK48MILAbjiiitaxNh6hZ5DEhPU6tWrmTp1Km3btmXXXXctezyZ7vSZa90aq0GNHz+e6dOn13/nxC0zHNQjjzwS62evsQQ1pITbtsUeVFJXSTWSaqIYBkWPB0VFrgZGSTpN0i6SrgEGALFNXFTOKd+PPjoM6D527FgAXnrpJZYuXcpOO+1U8As008TnNaima9OmuBbrfv360aFDh/oT7SeddFLR2xYyZ84czKw+QWXONcb5fn7pS19i11135aOPPuK+++6L7TiV8PTTT9OxY0euvPLKTdYlMUFNnjyZuro6dt55Zzp1im9KvMznqrEaVHbv0UrIJKhPPvmEp556KrbjNPhfaWYzSrmVcNxhwBvRbTPgkujvX0bHvQ84B7iQUJs5EDgqKSNUNOaoo44CwvQSGzZsqE9UmeX5eA2qcjLXQmWcfPLJzd7nrFmzWLFiBbW1tXTu3Lm+lhZngmrTpg1f+cpXACoy5UOcfvaznwFw3nnnbbS8tra2vrdl5lKMOJR6jifO5r1sc+bMYdWqVY2OjF/JBGVmGw2oe//998d2rOb9bGwiMxtnZspzG5VV5nozG2xmHaPR0v8Tc0xlm/J9p512Ytttt2XRokW88sorRSWoatagttxyS6D1JCj4tJlv5513pqamptn7mz17dn3tqVevXhU7p9jY5QNpN3PmTGpraxk4cGCs1xqVWoOqZIIqJnlWMkEtXbqUDRs21Lc6PPzwwyWND1qKUqfbOCIaIfxtSR/m3mKJsELK2cQnqb6Z74YbbmDixIl06dKF4cMLj9bUp08f2rZty6JFiyp+PmHgwIG0adOGOXPmtIhzGcXYcccdgVB7as7IERnVSlAtXSWa9yD9CeqTTz6JNY5smdrTNttsw6677sqSJUtia+YrZbqNo4DHgM7AzsC7wEzCFPB1QFku1G0pMgnqtttuA+Cwww5rcLyuNm3a0Ldv6LhYynD/5dC+fXsGDhyImZU8YVtanX/++fz+97/nJz/5SVn2N2vWLE9QMUhigjKz+mugiklQdXV13HXXXU0aoHj27NlFXaRbyRpUJkH16dOHE044AQhjisahlBrUz4E/AZl2qguj5rDdCBfWPlbe0CqrnE18AAcffDCdO3euf9xQ815GNc9DZc7JFNvMV1tby8knn5zaLs4DBgzgnHPOKdsJbq9BxaOpCWrVqlVcdtllRY82XkqCmjFjBkuXLmXLLbesf58bcscdd3DKKacU1cM0VxKb+PIlqIcffjiWCTBLSVA7A38n1JaMaKBWM5tKmEX35+UOrpLK2cQH0KlTJw477LD6x8UMbFnN81A9evQAKHqG30cffZR77rmH73znO3GGlRqeoOLR1AT1y1/+kgsuuIBddtmlqPKlJKhSm/deffXVoveda/78+UXNzFytBLXbbrtx00038frrr8dyPrSUBFUH1EbzQS0ABmWtmw3Ed5l3SmWa+YYOHcqgQYMaKZ2MnnzFag1jwJXCm/jikRlFotQElUkijfV+y4gzQTWHmRU1vU41zkH16dMHgNNOO62o77emKHq6DWAK4UJdgNeAcyS9ANQC5wLTyxpZhWUPGBvVovJNK1KSU045hddee62+GtyYJFwL5Zpm9uzZLFq0CNg0QTV3Co/Wqq6uriLDHJlZYhMUfDoobUOqVYOKWykJ6i4gU1/+BfAkYfgjCEMTNf9ikhamS5cu3HRT8QNspKkG5Ta2bt26+uaoXr160bVrVzp37syqVatYsWIF3bp1q3KE6TNr1izWrl3LlltuGevrt3r16pLOn7z77rtAZQaJzT5eQyqZoDI/xBKVoMzsT1l/j5e0O2FeqM2AJ83s7Rjiq5icyQtrqhGDNwulW2ZYml69eiGJfv368eGHHzJ37lxPUE2QxB58EGrLAFtttVUc4WyisY4edXV1TRpLsKkqWYNq8oW6ZvZxNKHgH9OenJIiCSOau6b78MNwKWBmIspif3DU1dXx7rvvxjKVeRwqFWdm+pfMRdVxKeXLffXq1XzyySe0b9++LNOzFCNTYylk2bJlFf3sJDZBKThW0lWS/p+kbaLlB0saEE+IlVHubuZN4TWodMt8SZSaoM477zx22WUXfvWrX8UbYBl88YtfZM899yy680FzZGZwjnOsOygtQWV+PPbv3z8x5xWb2rw3fvx4Lr744pJHgUjkOShJmwNjgX2B5UBX4FpgBnA6sBj4vxhibDX8xHrLkJugGqsR//a3vwXgyiuv5KKLLoo3uGZ69NFHAfjoo482Gs8wzUpJUJnmvQEDkvN7vKkJatiwYQBsvvnm/OAHP9hkfaHvoEyCqkQNspQa1G8Jo0YcAPQGsiN/Ejgs30aueJ07d6Z79+6sW7eu4qMTu/LJJKguXboAtPgJBdOuqTWopGjud0WmaTrb8uXL2XHHHesnxszYsGHDRpdTxK2UBPVF4IJoVtrcBs/MkEepVe4LdZvKz0OlW4cOHTYaQcQlX1pqUIUGy43jGqi7776b999/n8suu2yTY9XV1dGzZ8/6Oc/iVEqC6grMKrCuExvXqFwTZarNxVw97pIn04PPpUdTalDVSFDdu3fPu7ylXgMFpSWoKcARBdYdDExqfjjVk4ROElD8pHsumSrR7OHKqyk1qGo08RW6VKElJ6hSLtS9HrhO0lLg7mhZT0nfAv4X+G65g3MuDTbbbDPWrFmDmXmCSqFSJiv0GlRCE5SZ3ShpW8Lst7+MFv+bMEbfb8zsrhjicy7x2rdvT/fu3Zk3b54nqBRKcg2qY8eOrF27Fkn1nW5yVXMcvriVUoPCzM6T9GdgJLAlsAj4t5mlerJC55prwIABnqBSKsmdJPr378/06dPp2rVrweb/ljrMETRhJAkzm2FmN5vZZWZ2g5l9KOlwSRPjCNC5NBg4cCDg56DSqNgEVY1RJDI1tULNe9Cym/jKdUa+B2HiQpciaRlaJw0yv6g333zzKkfiSlVsgqrGKBKZz1VDCcqb+FqBJAwW69LrpJNO4rXXXuMLX/hCtUNxJcokqHbt2tUPr5RPNS7SzRyrocGGvQblXBFK/VXZkmpwhxxyCOPHj6/YHEGufDIJKjOrdCHVuEj3M5/5DAA77bRTwTLVSFCVauL0GlQkjgkLXX5+IatLkuwE1dDI4dWoQe2yyy588MEHDBw4kP/5n//ZZL2ZtegaVIMJKupWXox+ZYjFOecqau3ataxbt4527do1Omp6tYY52nbbwl/Dq1atarBZstwSlaCA99l03L18VGQ555xLjOzaU2M1+2qOIlFIJWtPtbW1LFmyBEkV6wzUWIL6VkWicM65Kij2/BNUdxSJQiqZoLJHMW/btm1FjtlggjKz2yoShXPOVUF2glq3bl2DZVvSXFBNUekOEuC9+JxzVVDJa3ca0pQaVJKa+DKvYzHxN9fatWsBKjqdTItNUJK2juZ3elvSREknVDsm5xw89NBDbL755px33nnVDqXoBLV69WqWLFlS0VEkipGpQbXUC8RbbIICaoFzzGxXwjQhf5CUf7RF51zF/PKXYazpK6+8ssqRhKnrofFmu7lz5wLQr1+/RE2Jk0lQPXv2rG4gMUnOK11mZjbHzCZEf88FFgI+UJpzrt77778PwPbbb99guSSefwKvQcVC0kGSHpU0S5JJGpWnzFmSpklaI2m8pOHNON7eQFsz+6g5cTvnWpZMgtpuu+0aLLdgwQIAttxyy9hjKkXmHJQnqPLqCkwGfgCszl0p6UTgGuAyYE/gReAxSYOyykyQNDnPbUDOvnoBt+MTKjrncnzwwQdA4zWozLBccXSvvueee/jqV79a3wmhFC29BlWVoY7MbCwwFkDSmDxFfgSMMbObosdnSzoS+B4wOtpHTWPHkdQReBi4wsxezLN+XIFNG923cy7damtrmTZtGtDwaA1xO/nkkwE47LDDOOOMM0ra1s9BVZikDsDewBM5q54A9i9hPwLGAE+b2R1lC9A51yLMnDmT2tpaBg4cyGabbVbtcFi+fHnJ26xYsQKArl27ljucREhcggL6AG2BeTnL51HamH8HACcCx0XNgRMk7Z5dwMxGZG7NCdg5lz7FNu+lQZJ6FpZTix3N3MyeJ5kJ2DmXAMX24HPVk8Qv8IXABqBvzvK+wNzKh+Oca4mK7cHnqidxCcrM1gHjgZE5q0YSevM551yztaQmvpaqKk18kroCmU9FG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJ1zrVAXoNKvmqdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSJ1zLU5dXV19DcoTVHJV6zqocYRJDhsqcz1wfUUCwqd8d641mTNnDmvWrGGLLbaoyEjgrmlabC++UuVctFtTpTCccxXgzXvpkLhOEs45FzfvYp4OXoOKeBOfc62H9+BLB09QEW/ic6718Ca+dPAmPudcq+M9+NLBa1ARb+JzrvVYtWoV0HJHAW8pvAblnHMukbwGFfFzUM45lyxeg3LOOZdIXoOK+Dko55xLFq9BOeecSyRPUM455xLJE5RzzrlE8nNQEe/F55xzySIzq3YMiZCToPYeOHBg12qM0/XGG2+wbNkyampq6qcBmDBhAkuXLmXw4MFMnz6dHj16UFNTU9T+Jk6cyJIlS+q37dq1K3vvvTcAy5Yt44033qBbt260b9+exYsXM3ToUHr37g3ApEmTWLx4cf22Xbp0YdiwYQDMmzePd999F4CDDw79SebPn88777yz0bJsb7/9NgsWLKjfX6dOndh3331Len0++eQT3nzzzY2OsXbtWl5++WU6duzI5ptvzty5c9lxxx3p378/AFOnTmXOnDkbLcvnvffeY/bs2Wy//fYMHDiw0Vhqa2t54YUXaNu2LQceeOAm6z/88EM++ugjhgwZwqBBgwru59lnnwWgTZs2DB8+vGC56dOnM2PGDLbZZhsGDx4MwIwZM5g+fTqDBg1iyJAhjcacfbwDDjiAdu1K+42a2XbfffelU6dOJW2b8dprr7Fy5Urg0/dw/PjxrFixYqNlc+bMYerUqfTr14+ddtoJgLlz5zJlyhT69u3LzjvvXPAYmc999v6yvfLKK6xevZp99tmHzp07A/Dqq6+yatUqhg0bRpcuXTYqv3DhQt566y169+7N0KFDN9lfJv699tqLbt26bbQu87kqFEvmNd12223ZeuutgYa/B/bYY4/6C4xzvxu6d+/OnnvuWfB1yXfcgQMHbjIm4ezZs3nvvfc2innFihWMHz9+o++Bcnj//feZNWvWBDPbJHBPUHlI+gNNq0VltplQplCqpSa6n1DFGMqhJrqfUMUYyqEmup9QxRjKoSa6n1DFGMqhJrqfUMUYyqEmup9QxRgyJpjZObkLPUGVUaYWlt1lPY38eSSLP49k8edROd5JwjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5Lz7nnHOJ5DUo55xzieQJyjnnXCJ5gnLOOZdInqCcc84lkieoEkk6S9I0SWskjZdUeHTPUP7gqNwaSR9KOrNSsRaIZ7SkVyUtk7RA0t8lbTr65cbbDJZkeW5HViruPDFdnCeeuY1ss7ukZyWtljRL0kWSVKmYC8Q0vcBr+88GtslXvqKfK0kHSXo0eh1N0qic9Yreo9nR6z1O0m5F7PfLkt6WtDa6/1JsT4KGn4ek9pKulDRR0kpJcyTdLanwyL9huxEF3qPCo9vG+Dyi9WPyxPNyEfut6veXJ6gSSDoRuAa4DNgTeBF4rNAHVtIQYGxUbk/gcuBaSV+uTMR5jQCuB/YHDgVqgScl9Spi2yOB/lm3p2OKsVhT2Die3QsVlNQd+DcwD9gH+AHwE+BH8YfZoH3Y+DnsBRjw10a2Oz1nu9tijDGfrsBkwuu4Os/6nwLnAmcTnuN84N+SuuUpC4Ck/YD7gLsIA5neBdwvqbQh70vT0PPoTHg/Lo3uvwhsDTwuqZhh4Hdj4/fovTLFnE9j7wfAkznxHNXQDhPx/WVmfivyBvwXuCln2XvA5QXKXwm8l7PsZuClaj+XrHi6AhuALzRQZjDhS3NYtePNiuliYHIJ5b8HLAM2y1p2ITCL6HKLJNyAC4BPsuPMU8aAr1Q71qx4VgCjsh4LmANckLVsM2A5cEYD+7kP+HfOsieBe6rxPAqU2TV6/XdvoMyIqEyfJLwf0bIxwD9K3E/Vv7+8BlUkSR2AvYEnclY9QaiN5LNfnvL/AoZJal/eCJusG6EmvaSIsg9Kmi/pBUlfiTmuYmwbNSFNk3SvpG0bKLsf8JyZZf+6/BcwgJCAqy5qbvwOcGdOnPlcI2lh1Fx7pqQk/S8PAfqR9dmPns9/KPy/AoX/XxraptK6R/fF/L+8FjULPiXpkDiDKtKB0f/vVEk3SdqykfJV//5K0oc66foAbQlNRNnmEf4Z8+lXoHy7aH9JcA1hPpiXGiizAvgx8FVCs8BTwH2STok9usL+C4wiNDueTnitX5TUu0D5Qu9FZl0SjCR8ud/USLmLgBOBw4F7gd8B58cbWkkyr2cp/yuZ7UrdpmKiH6m/A/5uZh83UHQOocb+ZeB4QlP0U2rkfHXMHge+CRxGaHr9LPC0pI4NbFP17y+f8r0Vk3Q1cCBwoJltKFTOzBYS/jEzXpPUh3Ce4c54oywY02PZj6MTvh8CpwJXVyOmMjgdeNXM3myokJn9KuvhBEltCU2Dv44zuNYsOud0J9ATOLahsmY2hZCUMl6SNJhwzvO5mEJskJndm/VwkqTxwAzgaODBasRUDK9BFW8h4VxN35zlfYFCvcfmFihfG+2vaiT9HvgacKiZfdiEXfwX2KG8UTWdma0A3qJwTIXei8y6qoqaW75I47WnfP4LdJeU+/yqJfN6lvK/ktmu1G1iFyWne4DPAIeZ2aIm7CZp/y+zgY9pOKaqf395giqSma0DxhOaYbKNJPRyyeelAuVfM7P15Y2weJKu4dPk9G4Td1NDaMpIBEmdgJ0pHNNLwPCoXMZIYDYwPd7oijIKWEv4IixVDbCG0LkiCaYRvtzqP/vR6z6cwv8rUPj/paFtYhWda7mPkJwOMbOmJssakvX/0gcYSMMxVf/7qxq9TNJ6I7T7rwNOA3YhnL9ZAWwTrb8duD2r/BBgJfCHqPxp0fZfruJz+BOhN9uhhDbmzK1rVpnLgaeyHp8KnBw9h50I56PWAT+s4vO4Cjg4eo33Bf4RPa/Me5H7HHoQvjTvBYYSzg0sA85NwOdKwFRyeohG6/4XeDfr8RcITYFDge2iz9RS4JoKx9yV8KVbA6winBerAQZF638WxXV8FOu9hB8D3bL28RRZPWAJnSFqgfMIPzZGA+uBfavxPAinQB4m9PTcK+f/Jbs3aO7//TnAcYTayW7RZ9GA46v0PLpG/y/7EToEjSAkn49z3o/EfX9V7APdUm7AWYRf3GsJNaqDstaNA8bllD8YeD0qPw04s8rxW4HbxVllxgDTsx6fCrwdfViXAa8Bp1T5eWS+8NZFXyB/A3Yt9ByiZbsTepKtIfxy/AUJ6GIOHBK9B5/Ns+5iwLIeHwm8QeiyvRKYRLj2pV2FYx5R4HM0JlqvKPY50ev9LDA0Zx/TM+Wzln0FeDd6X98hxi/1xp4Hn15eke82KmsfG/3fE87Nvke4Hmkx4bzTUVV8HpsRet/Nj17XGdHyrXP2sdHziJZV9fvLp9twzjmXSH4OyjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5gnLOOZdInqBciyZpVIHJ40zS4dWOr6WQtLekVZIGZi0bJ+n5AuVPi96DwSUc4zhJ8yR1LUPILgU8QbnW4gTClfTZt1eqGlHL8lvgVjObFeMxHiFc+PuTGI/hEsRHM3etxQQze7+YgpI6mtnauANqKSTtTRgN4+w4j2NmJulG4FeSLjezNXEez1Wf16Bcq5bVBHiQpPslfUIYeRpJ7SSNlvSupLXR5Ii/yxlwFknbSvpn1MS1QNI1ks7IbcKKHl+cs+3gaPmonOUHRxPdLZe0UtK/JA3NKTNO0vOSDpf0enT8yZK+lOd57iHpIUmLJK2WNEXS6GjdtVHTWfucbbpFx7+ikZfxNGCimb3VSLmCJF3cQFPsqKyifyVMeXF8U4/l0sMTlGst2kYJJ3Nrm7P+LsJYY18hDFYKYf6fC4G7CfPmXE6Y8fauzEbRJHb/BvYEvk8YlXxItF2TSDqaMJDqCuAUwkC93YDnJG2dU3w7wqDFVxO+tOcA90vaPmt/nyUMDrod8MPouVwNbBUV+TOwJZCb2E4GugA3NBLykTQwz1HO694umr4i97vnZjZtgv0bYYqbqZlCFuYmeyc6pmvpKjnwn9/8VukbIWHkG0Tz+Zz1v8/Zbni0/Js5y78eLa+JHp8ePf5cVpk2hLmpDBictXyjQXmjZYPZdPDR98kaiT1a1p0wB88fspaNI4z2vUPWsi0JX+rnZy37D/AR0LmB12lcnmO+DjzeyOvbN4r/9AL7LDTYauY2uMB+TwDqgP/Ls+4OYGq1P1t+i//m56Bca/ElwvQCGctz1j+U8/hIwsjPD0S/+DOeiO4PAiYQful/ZGYvZwqYWZ2kvxJG8y6JpB0INZ3Lco67ilALOihnk/fM7L2sY8+XNJ8wzQKSOgMHAL81s1UNHPp64F5JO5jZe5L2IdQKG2tKGxDdLyiw/k1CE2CuL1KglilpGHAbcL2Z/TFPkQVZx3UtmCco11pMtoY7SeRO3LYl0IEwpUU+vaP7/sC8POvzLSvGltH9LdEt18ycx4vzlFkLZM6TbU6o0X2cp1y2hwjzZZ1BmO/rTMJ0Jn9vZLvMcQp1KllhZq/lLpRUk6+wpK2ARwm1rx8U2OfqrOO6FswTlHNB7rwziwjzGA0vUH52dD+HMCldrnzTr68lJL1svXMeZ6YTHw08mWcf6wrEU8gSQlPZwIYKmdl6STcDZ0n6DXAS8Dszq21k/5l4Ny8xrk1I6kJIiAuBE81sQ4GivbKO61ow7yThXH6PE36l9zCz1/LcMgnqJWBrSZ/LbCipDfDVPPucQZhdNtvROY+nECby263AcSeW8iSiZr3ngVMkbdZI8RsIPeTuBzoCNxVxiOmERL5tKXHlkiRCp5T+wDFmltsEm20I4XVyLZzXoJzLw8zGSbqHcA7qasJFvXWETg1HAT8zs6mEcyXnAQ9KOp8wa+mZhE4Nue4FLpR0AfAyoXb2tZzjmqTvA49EPQT/SqhR9CVMiT7TzK4u8en8mDCj7UuSfkdo7tuW0NGj/tolM5sl6VHC+bq/m9lHje3YzNZJ+i/w2RJjyvUzwjTpPwAGSMo+x/SBmS2A+kT2WcI5M9fCeQ3KucJOIXR0+AphFIMHgP8lTOc9D8IXNDCS0GHiekLCmgb8Os/+Lgeui/bxMLAL8I3cQmY2ltAZoguh+/W/gN8A/Qg1tpKY2auEjhIfAdcCYwmjMeQ7L3V/dN9Y1/Js9wGHRk10TbVzdH8N4Tlm37JrmfsTmhPvbcaxXEr4lO/OxSC6uPT/AUPMbHp1oymepLsIyWxbM6srcpvuhGR3lpndGXN8fwaGmlmhc4OuBfEmPucc0Tm0GuBE4EfFJicAM1sm6Urgp5Lusph+9UrqB5yKX6TbaniCcs5BaEpbQXT9URO2vxpoS+jkMLuRsk01GDjXzP4T0/5dwngTn3POuUTyThLOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE1UpJGiXJCtwOr1AMPSVdLGmvPOvGSRpXiTgakvU6Da52LK5h0ft0cbXjcOXjg8W6E9h0XqC3K3TsnsAvouO/nrPurArF4JxLKE9QboKZvV9MQUkdzWxt3AEBmFmlkmRsKvl6pZmktoSBq2urHUs5+PtePt7E5/LKato6SNL9kj4B/hut20fSA5I+lrRa0hRJl0naLM9+viTpBUkrJC2T9IqkY6Mms2lRsZuymhdHRdtt0sQnaSdJD0n6JDruy5KOzClzcbSfHST9MzruDEkXSWqTVa6TpN9LmhyVmSvp75J2pgmieJ+X9AVJb0haC5wlaUQUz3GSbpC0OIr/D5LaRq/l85JWSnpL0v/k7HcfSf+WtCh6zh9KanQ6jGK2k3SYpNclrZH0gaQzJI2RND2rTCb+ETnbbtL0KekkSU9LWhC9pm9IOjVPbCbpUknnSZoGrAN2j9YdLOkpScuj1+RfkobmbN9W0q8lzZG0Knrtd2vsNcmJ+3OS7oo+k7Ml/VFSp5yy/SXdLmmhpLWSJko6pcD+8v2fTJd0p6RvRP8jqyU9F302u0Sfh0WS5kn6nSSvMOTwF8S1zfnHMDPbkPX4LuAewrTnmXKDCFOcjwGWA7sBFwHbAidlNpR0NvBHwvTmpxLmG9qLMK/Pv4DjgQcJU6E/Gm32Qb4gJQ0Ano+O97/AUuD7wD8lHWNmj+Vs8hBhRtvfA18ALiFMef7/ovUdgW6EqdnnAL0IzYovSdrFzObmi6MRO0bP91fAh8DiaL8Af4ie64mE6dwvJMyfdDjwW2BWtOxBSduY2UJJXQmv0yvAqOi5DyZMe15QMdtJ2oUw9ftrhPesI2F6+65A9vtfim2BB4ArgLroed4saTMz+0tO2VGE1+jHwEpgtqSjgUeAfwKZRPAz4DlJnzGzj6JlFwPnE+agegIYxqefn2LdQfhcHw/sF+1zCaHJGYXp658lTC9/PuGzcwpwh6TOZnZjzv7y/Z8QvQbbRc+jA+Fz8Lfoub9PeO0zn4cPaNpcXC2XmfmtFd4IXxCW5/Z8zvrfN7IfEf4hTyF8KfWOlncnfDE+2MC2g6NjnJZn3ThgXNbjq4BaYPusZW2BKcDrWcsujvb5rZz9TQKeaCCWtkDnKOYf5nmdBjfyOoyLnn9NzvIR0fa35ix/PVp+YNayz0TLTo0eD4sef6bE97bR7QhfqAuBLlnLtibUZqbniX9Egc9P3teF0DrTDrgJeDNnnREmNdwsZ/n7wFM5y7pHcf4herw54YfOX3LK/Sza78VFfu4vyVn+D2Bq1uP/LfC8nwTmA20b+z8BphN+pPTIWvZ/Ufmb83weninlfW4NN2/ic18C9sm6fSdn/UO5G0jqLulKSR8Aa4H1hF+kAnaIiu1P+DWe+0uzqQ4CXras82UWanr3ADWSuueU/2fO48mEml/28/iqpP9GzTK1hF/yXYGdmhjjdDObUGBdbg3vXWClmT2fswxCogB4D/gEuEHSKZK2Joekdtm3Yrcj1BrGmtnKzAILNZQXCj67RkRNV/dImkX4TKwHTiP/6/m4ma3O3pZQ07gr5/msIsz2e1BUdHegC/DXnP3dW2K4uZ+PSWz8+TgImGVm43LK3QlsAeyas3yT/5PIS2a2NOtx5j3+V065d/n0fXcRT1Buspm9lnWbkrN+Tp5t/h9wJqE5ayQhsX0/Wpdpx+8d3ef2EGyqXgVimUtIjJvnLF+c83htVmxI+gJwH/AOcDKwL+F5LMguV6J88WUsyXm8jpBE6pnZuujPTtHjpcAhhNrG9cBMhXNmX46ew2A+TQTrgfWSBje2XaQ/MC9PnPmWNSpqVvw3sAdwHjCc8HreSmg+zJX7Wm0Z3d+S+5yAY/j089S/QJylxp3v85EdZ0Oft8z6bIXe+3zve6HlTf3ctVh+Dso1xrIfRCeSv0hoSrkma/nuOdstjO4HEmovzbUY6Jdneb8oxtx/+MacBLxvZqMyCyS1Z9MvnlJY40VK3GGokX05qk0MA0YDf5W0BzCVkASyzW5sOzObTPhC7ZvnkLnL1kT3HXKW9855vB+wDTA8u1bYwIn/3NdqUXQ/mtCMlivzxZ5JBH2Bt7LW53suzbGY/DW/flnrs5X9vXdeg3Kl60g4X7M+Z/monMcvEs4VfLeBfWW64m7S+y+PZ4HP5fQaa0vodPCGmS0rYh/ZOhOa9bJ9g/DcEsfMas3sZeDnhP/bXcxsXU7t97WsWljB7aJVLwFHRZ0BAIiaAg/IOfSM6H5ozvKjcx53ju7rPxeSNif8mCnGFMI5m93yPKfXzGxiVG4ioSn2qznbn0R5PQtsJSn39TiZcA4q9ZdBpIHXoFxJzGyppJeBcyXNIdSUvk2oKWWXWy5pNHCtpL8RTsovB2qANWZ2LaFZZhFwkqTMF880M1vEpn5PSIL/lvQLYBmh192ObPplWYzHgeMk/Z5wgnwYcDY5zW7VJOkYQoJ/mNAlvwvhJPtyQoJpzna/Jlyk/YSk3xJqSBeT01RmZnMkPQuMlrSQ8OV8CqHHXrYXCe/Jn6L3pwuhZ9pCoEdjz9XMTNL3gUckdSCcY1pIqBntD8w0s6vN7JPoPbtA0nJCL758506bawzwA0KvygsITdVfJzRpn2Eb93SNhaRa4DYzK/dzSw2vQbmm+BowHvgT4R95LuGfeSNmdh3hS3ArQoL6G6Eb7rRofR3hJPrmhGadVwldwjdhZrOBAwnNOn8mdGfuBRxtZo834TncBFxKqIH9HTgqOvbShjaqsPeA1YTaz2OEc3+1wEgza+jcXqPbmdk7hOfcmXAu7grgGuCpPPs7BXiZcM5xDDCTkODqmdkCQoebtoT35nLgZkKngqKY2VhC54Qu0bb/An5DaFbLTsgXA5cRaryPAkdQ4HPTVFHnkYMJCfAKQvf3PYBv2KZdzOPSloTW6CtFZt506pwLJI0hdK0eXOVQnPMalHPOuWTyBOWccy6RvInPOedcInkvvjwkvUG4WryoUb6dc8412fbAAjPbM3eFJ6iINh45e9cePXp0qKmpGViovHPOueabMGECS5fm7zzrCSq/1TU1NR3GjRtX7Ticc65FGzFiBM8++2ze1ipPUBEzG5H5O6pNHVy1YJxzznkvPuecc8nkCco551wieYJyzjmXSJ6gnHPOJZJ3kojkdDOvqVIYzjnnIl6DaiXMjOuuu47XX3+92qE451xRvAYVaendzCdOnMjZZ5/NIYccwtNPP13tcJxzrlFeg2olMldqr1q1qsqROOdccTxBtRK1tbmzmzvnXLJ5gmol1q9fX+0QnHOuJJ6gWglPUM65tPEE1Up4E59zLm08QbUSXoNyzqVNi05Qkh6StETSA9WOpdo8QTnn0qZFJyjgGuCb1Q4iCbyJzzmXNi06QZnZOGB5teNIAq9BOefSpioJStJBkh6VNEuSSRqVp8xZkqZJWiNpvKThVQi1xfAE5ZxLm2oNddQVmAzcHt02IulEQvPcWcDz0f1jknY1s5lRmQnkj/8IM5tdTBA5A8Rmqylm+zTxJj7nXNpUJUGZ2VhgLICkMXmK/AgYY2Y3RY/PlnQk8D1gdLSPmvgjbTm8BuWcS5vEDRYrqQOwN3BVzqongP3Leaw8A8S2WJ6gnHNpk8ROEn2AtsC8nOXzgH6l7EjSk8D9wFGSPpa0X3lCTB9v4nPOpU3ialDlZGaHVzuGpPAalHMubZJYg1oIbAD65izvC8ytfDgtgyco51zaJC5Bmdk6YDwwMmfVSODFGI87InMDJsR1nGrxJj7nXNpUpYlPUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZwIDgL/EGNO4rIc1cR2nWrwG5ZxLm2qdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFsIT1DOubSp1nVQ4wA1UuZ64PqKBNQKeBOfcy5tEncOysXDa1DOubRp0d3MS5Hnot2DqxZMDDxBOefSxmtQrYQ38Tnn0sZrUBHvxeecc8niNahWwhOUcy5tvAYVaennoLyJzzmXNl6DaiW8BuWcSxuvQUVa+jkor0E559LGa1CthNegnHNp4zWoSEs/B+UJyjmXNl6DaiW8ic85lzaNJihJ7SV9UdKQSgTk4uE1KOdc2jTaxGdm6yX9FTgSmBZ/SNXR0jtJeIJyzqVNsU18HwJbxhmIi5c38Tnn0qbYBPUb4AJJW8QZTDW19Bl1vQblnEubYnvxHQr0AqZJehmYA1jWejOzU8sdnCsfT1DOubQpNkEdCKwHFgDbRbdstskWLlG8ic85lzZFJSgz8x58Kec1KOdc2vh1UK2EJyjnXNoUnaAkdZH0f5IekPSMpB2i5SdJ2jm+EF05eBOfcy5timrik7Q1MA7YCngXGAp0i1YfAhwOnBZDfBXj10E551yyFFuD+h2wFtgR2BtQ1rpngeFljsuVmSco51zaFNuLbyTwXTObIaltzrpZwMDyhlV5LXmw2Lq6Ourq6qodhnPOlaTYGlQHYHmBdT0AP8GRYH7+yTmXRsUmqInAlwus+zwwvjzhuDh4855zLo2KbeL7LfCAJIC7o2W7Svoi8B3g2Bhic2XiNSjnXBoVe6Hug5LOAq4Avh0tvp3Q7Pe/ZvZ4TPG5MvAalHMujYqeUdfM/iLpDmA/wsjmi4AXzazQuSmXEJ6gnHNpVNKU72a2EngypljKKrp26w5CMq0FfmVm91c3qurwJj7nXBoVe6HuXOCZzM3M3os1qvKoBc4xswmS+gHjJY2Nkmyr4jUo51waFVuDuoUwYsR1QFtJs/k0YT1tZjNiiq/JzGwOYVoQzGyupIWEKUNaXYLyGpRzLo2K6mZuZheY2f7A5sAXgHuAXYEbgQ8lfVDKQSUdJOlRSbMkmaRRecqcJWmapDWSxktq8mgVkvYG2prZR03dR5p5Dco5l0ZNOQc1VtKHwAzgeELNapsSj9sVmEzoCXh77kpJJwLXAGcBz0f3j0na1cxmRmUmFIj/CDObnbWvXtExTs9znHEF4qsp/qkknyco51waFXsOalvCrLqHRLe+wDuEJr4/RfdFM7OxwNho32PyFPkRMMbMbooeny3pSOB7wOhoHzVFxN0ReBi4wsxeLCXGlsSb+JxzaVRsDep9YBWhae9HhI4S8+IISFIHwoC0V+WsegLYv4T9CBhDOEd2R74yecbfa5G8BuWcS6Nihzp6A+hEaNL7KvBVSbvGFFMfoC2QmwDnAf1K2M8BwInAcZImRLfdyxRjqniCcs6lUbEjSewtqSdhhO9DCedz/iBpAWGeqKeymuMSwcyex2cMBryJzzmXTkV/gZvZJ2b2iJn9wMw+AxwITCLUqP5SxpgWAhsI57my9QXmlvE4rYbXoJxzaVR0Lz5JWxE6SGQ6S2wN1AGvUmIniYaY2TpJ4wlzUGWP/DAS+Fu5jpPnuCMyf7e0+aA8QTnn0qjYXnzvAdtGD98kJIpngGebMhafpK7A9tHDNsAgSTXA4qgb+dXAHZJeAV4AzgQGUN6aWm5M47Ie1sR1nGrwJj7nXBoVW4N6jJCQxpnZkjIcdxgb17ouiW63AaPM7D5JvYELgf6Ea6aOSuKIFWngNSjnXBoV20ni/8p5UDMbB6iRMtcD15fzuI0cb0Tmb2/ic8656ivlHFRnwlxQBxPGtFtMqAX9PzNbHU94leNNfM45lyxF9eKLRgN/HfgjoXmuc3R/HfC6pNwedy5BvAblnEujYruZ/4YwUOxwMxtiZvuZ2RBCV/OewJUxxVcxZjYicwMmVDmcsvIE5ZxLo2Kb+D4P/MzMXsheaGYvSrqQMBV8qnkTn3POJUuxNaiuwOwC6z6O1ruEyq5BmVkVI3HOueIVm6CmAN8osO4U4N3yhFM93sTnnHPJUmwT31XA7VFniLsJM9X2A04CDqdw8nIJ4E18zrk0KvY6qDujbua/BG7OWjUPONPM7o4juEpqyeegvAblnEujoq+DMrMbJd0M7MSn10FNMbO6uIJz5eEJyjmXRqVO+V5HmEm3xWnJI0l4E59zLo2Knm5D0g6SbpM0VdLK6H6MpO0b39pVk9egnHNpVOxo5iOAscBq4J+Ec099gS8AJ0o60syejSlG10xeg3LOpVGxTXy/I0z7/j9mtiKzUFI34Ilo/bDyh1c53knCOeeSpdgmvl2BK7OTE0A0F9SVwG7lDsyVjyco51waFVuD+hjoUGBdB2BWecKpHu8k4ZxzyVJsDepK4BJJA7IXShoI/AK4rNyBufLxGpRzLo2KrUEdDHQHPpT0Mp92kvhc9PeIqCMFgJnZqWWO0zWDJyjnXBoVm6AOBGoJQxxtE92IHgMMzyrro5EmjDfxOefSqNihjobEHYiLj9egnHNpVPSFui69PEE559KopKGOACS1Ad4HvmBmb5U/pOpoyddBeROfcy6NmlKDEjAY6FjeUFxcvAblnEujkmtQLVVLvg7KE5RzLo38HFQr4E18zrk0KjlBmdkG4FvAtPKH4+LgNSjnXBo1qQZlZreZ2RJJvcsdkCs/T1DOuTQqKkFJOl3ST7Ie7y7pY2C+pNck9YstQtds3sTnnEujYmtQZxPmgsq4GvgEOAfoAfyyrFG5svIalHMujYrtxbcN8C6ApB6EHm7HmdlYSYuAy2OKr0kk9QSeJDy/dsA1ZnZTVYOqIk9Qzrk0KjZBtQHqor8PJIy3Ny56/BGwZXnDarblwEFmtkpSF2CypAfNbFG1A6sGb+JzzqVRsU187wFHR3+fBLxoZquixwOAxeUOrDnMbENWfB0JFxeriiFVldegnHNpVGyCugo4R9JC4GTg2qx1hwATiz2gpIMkPSppliSTNCpPmbMkTZO0RtJ4ScPz7Kqx4/SU9CZhssXfmtnCUvfRUniCcs6lUbGjmd8taSawL/Cqmf0na/U84NESjtkVmAzcHt02IulE4BrgLOD56P4xSbua2cyozIQCsR9hZrOjmD8B9pDUF3hQ0gNmNi/nWOMKxFhTwvNJPG/ic86lUdFDHZnZ84SEkbv8F6Uc0MzGAmMBJI3JU+RHwJisTg1nSzoS+B4wOtpHTQnHmxfVpIYDD5QSa0vhNSjnXBoVex3U/pKOyXrcW9I9kiZJukpS23IEI6kDsDfwRM6qJ4D9S9hPX0ndor97AAcBU3LLmdmIzK3JQaeA16Ccc2lU7DmoKwiJI+O3wFHAVELN5vwyxdMHaEtoNsw2DyjlYuBtgOeimtNzwLVmNqk8IaaLmbFhw4Zqh+GccyUrtolvF+BKAEntga8A55jZrZLOAc4AfhVLhE1gZq9Q4nmkljqauTfvOefSqtgE1RVYFv39WaAL8I/o8evAoDLFsxDYAPTNWd4XmFumY+TVUics9OY951xaFdvENwvYI/r788BkM5sfPd4cWJV3qxKZ2TpgPDAyZ9VI4MVyHKO18RqUcy6tiq1B3QNcJmkE4dxTds+9vQgX8hZFUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZxIuBv5Lscdwn/IE5ZxLq2IT1MXAGuBzhA4Tv89atwdwfwnHHAY8k/X4kuh2GzDKzO6LpvG4EOhPuGbqKDObUcIxXMSb+JxzaVXshbobgEsLrDuulAOa2TgaGXbIzK4Hri9lv83lnSSccy5Zir5QF0DSUMIXdy/C+HvjzOytOAKrtJbaScITlHMurYpKUJLaAWOAr7Fx7cck3U1omvOLbRLIm/icc2lVbC++XwBfBS4ChgCbRfcXASdG96mWM6rEhCqHUzZeg3LOpVWxTXynAL82s+zzUDOAS6Nhjr7Fxj37Useb+JxzLlmKrUENoPB1SC9G610CeROfcy6tik1Qs4EDCqzbP1qfai29iU9qtfM1OudSqtgmvruACyTVRX/PIQzeehJwAdE4fS55Mgmqffv2rFu3rsrROOdc8Uq5UHdbwgW1F2ctF2GUiV+WNaoqaKnnoDJNfO3atfME5ZxLlWIv1K0FTpZ0KWFupcx1UP9pKddBtVTZNSjnnEuTRhNUNIngXMK1To8CLTIhtfSRJDxBOefSptFOEtEI47WEsfhcymQ38TnnXJoU24vvYcIkhS5lvAblnEurYn9WPwb8UdIDhGQ1B7DsAmb2dHlDc+XgCco5l1bFJqi/RffHR7cMI/TkM6BtGeOquNbQi88559Kk2G+tQ2KNwsXGa1DOtQzr169n4cKF9O/fv9qhVEyx3cyfjTuQamupvfgyNShPUM6l2+mnn84dd9zB+++/z5AhQ6odTkUU1UlC0o6S8n5hSzpI0g7lDcuVS6YG5U18zsXnz3/+M8cccwxr166N7RhvvfUWdXV1zJw5M7ZjJE2xvfj+AHyhwLpj2HgKeJcg3sTnXPyuuuoq/vnPf/LWW/FdJrps2bLY9p1UxSaoYcB/Cqz7D7BPecJpHd5//31WrlxZkWN5E59z8Vq7di3Tp08HwMwaLtwMnqAK60bhC3XXAz3KE07LN3HiRHbaaSfOPvvsihzPm/jgqaee4qCDDuKhhx6qdijNYmZMmzYt1i9BV7oPP/yQurq62I+zfPny2I+RNMUmqA+BwwqsOxSYXpZoqkjSuMyNGLuZv/zyy9TV1fHUU0/FdYiNeBMf/PWvf+W5557j+OOP55RTTmHx4sXVDqlJxowZw7bbbsstt9xS7VBclqlTp8Z+jA0bNlSs1SVJik1QtwM/lPR9SR0BJHWU9H3gHOC2mOJrcd5//30AZs6cySeffBL78byJb+Nml7vuuovjjz++gdLJlWlGqtSPG1ecSiSo1lh7guIT1FXAo8C1wEpJ84GV0eNHaQHzQVVqwsJMggKYNGlSXIep11gT30MPPcR7770XexxJ8OMf/xiA559/PtUzDb/55pvVDsFlqcT/jyeoBpjZBjP7CnA48FvCcEe/AQ41sxPMLP4G2BYiO0FNnDgx9uM11MQ3ZcoUjj/+eL7zne+U7XivvPIKs2cnc4LlHXbYgQEDBrBhwwZmzZpV7XCabMqUKaxataraYbhIJWpQrbGDBBRfgwLCeHtmNtrMvmtm55vZuJjiapHq6uoqnqAaauJbunQpAO+++25ZjvX222+z7777MnDgwLzrFy5cyAMPPMDq1avLcrymGDx4MAAzZsyI7RhvvvkmU6ZMiW3/dXV1TJ48Obb9u9J4gopPSQnKNc+cOXM2+nKuZA2qoV58CxYsKMsv8saani644AJOOOEEdtppJ+68886K9HzKlUlQmfM55bZmzRoOOOAADj300Fj2n+HNfMmwfPly5syZU5HjtEaeoCooU3vaYYcw8MakSZNi/5IuthdfJa5Oz3QK+eijj/jGN77Bt771rdiPmSvuBLVgwQJWrlzJ7NmzWbFiRSzHAJgwYUKTt73uuuu44ooryhdMC/HHP/6R4447rqTzk5U6f+s1KBe7TIL63Oc+x4ABA1i5ciXTpk2jrq6O22+/PZYPe7G9+OJs8sp15JFHAqHLfaXFnaCWLFlS//e8efNiOQY0rwZ19tlnM3r06Fb7q7yQ6667jkceeaSkJrtKNO+BJ6gWSVJnSTMkXVXtWODTBLX99tvzmc98BgjNfLfeeiunnnoqP/rRj/JuN2XKFK677jreeOONki/SLPZC3UomqP32269ix8q1zTbbAPElqOxrrObOnRvLMSAkqObWvtPckzEOmRp+Kf9jlUpQrfXHRItOUMAFQOV/pheQL0G9/vrrXH755UC4Ij2fH//4x5x99tnstddebLXVVtx7771FH7PYJr5KJqg4ffLJJ9x55531zztX3DWoSiWoFStWFPy8uKbJdBoqhTfxxavY0cz7SBqUs+wMSddKOiae0JonGmF9Z8JswImQ+TBnJ6hrr722/oum0Bda5h+na9euzJ49mxtuuKHoY+Y28RX6dZjvHJSZ8c477/D888/z+OOPb9R8lVRnnnkm3/jGN3jkkUfyrh80KHyMP/roo1hqEJVKUOAdJcppzZo1rFu3ruTtvIkvXsXWoG4Fzss8kPRz4M/AycAjkk4s9oDR9ByPSpolySSNylPmLEnTJK2RNF7S8GL3n+UqYHQTtouFmW3USSKToLJ/tS1evLjB4fp/+tOfApTUtNOcJr7Ro0ez6667Mnz4cD7/+c/z9a9/vejjVsOSJUt4+OGH6//Op1OnTvTv35/a2tpYrteqRIJq0yb82zano0TanH322QwYMICjjjqKSy65hPnz55d1/01JAGZWn6C22mqrssaTy5v4GjYMyB5f5UzgMjPrDfwJyH/yJL+uwGTgB8AmF8REye4a4DJgT+BF4LHsGpykCZIm57kNiNZ/EZhqZpX5eVOEefPmsXLlSnr16sXmm2/OTjvtVF+rGTRoEP369asvV07NaeLLTB2w9dZbAyT2AtyM+++/v6j5eAo18z355JOce+65LFiwoMkxVCJB7bTTTkDrqUGZGbfeeitz5szhscce4+KLL+ZXv/pVWY/RlOa9hQsX8sknn9C9e3e22GKLssaTy2tQDesFzAOQNBTox6fj7z0M7FTsAc1sbHSR7wNAvqrAj4AxZnaTmb1jZmcDc4DvZe2jxsyG5rllvkE/B5wkaTqhJnW6pItyD5Q9QGzcg8Vmn38C6NChA7vtthsA5513Xv0vsHJfU7FhwwYA2rZt22C5WbNmFWzyOv3008saU1xuv/32osrlJqgPPviA4447jpEjR3L11Vc3a9TzSiSompoaAN54441Y9p80c+fOZdWqVfTs2ZNzzjkHKH+NoikJKlN72nHHHZFU1nhyeYJq2CIgU4c9FJhtZpmzg+1L2E+DJHUA9gaeyFn1BLB/sfuJRrvY2swGAz8GbjKzX5YjxqbKTVAQrrv41a9+xWmnnVZfg4rrS62xf6C0D//zwQcf8MILLxRVNjtBLVmyhH333Xejc1ZNOReRUYkEtf3229O7d28+/vhjnn322ViOkSSZ/50dd9yRPfbYI5ZjNCVBZVoYdt5553KHswlv4mvYk8DFkv4XOJdQa8rYGShXF7A+QFui2lqWeYRaW1nlDBAbq3wJavjw4Vx44YW0b9+e/v37A+WvQZUiLT35li5dukkvvTvvvLPo7bOHO3rwwQdZtGgRe+21F1/+8pdLjiW300klElTbtm35v//7P4CyN3UlUb7/nXJrSoLKNLHGlTSzJa0G9eCDDzJy5MjYOwIVm6B+CnwEXA58AFySte7rwPNljqtszGyMmf24gsfjiSee4Cc/+Ul98xpsOopErrhrUMVIQ4L65JNP6Nmz50ZfVmbGHXfcAXx6nVNDsmtQd999NwDf//7369+DYtXV1bHPPvvwhS98oX5ZdoKaN29ebCOFnH322XTr1o2nnnqKl156KZZjJEVrTFA333wzhx12WP1oJI0lqLq6Oi6//HL++9//lj2WfG688UaefPJJbrzxxliPU+xo5vPMbKSZdTOzQ81sYdbqwwkdHsphIbAB6JuzvC9QvW/uEkji+9//PlddddVGIyVkPsyFEpTXoIqTeR2zu8XPnj2bDz74gJ49exY1Bl4miU2YMIFnnnmGDh06NGmOqOXLlzN+/Hj++c9/1p+/y05Q69evj61r/uabb14/K/Ovf/3rWI6RFElMUHV1dfVjacaRoG677Taefvrp+mbrxhLUSy+9xPnnn8+FF15Y9ljyWbgwpID7778/1uM0+9yRmS0zs6Y32m+8r3XAeGBkzqqRhN58qXD00UcD8M9//hOAadOm8e6779K9e3f22muvvNt4DarpMjXVbt26NdoZBD69Fmrx4sWYGUcffTQ9e/Zs8vHNrP59yySoAQMGAPG+n+eccw6dO3dm7NixjB8/PrbjVMKCBQs488wz8/ZM/OCDDwDYbrvtYjt+qQlq+vTpLF++nH79+rHllluWPZ5M03HmB2tj56Ay3e7XrFlT9ljyySSoyZMnl202hHyKTlCSjpR0i6QnJP0n51b0mVpJXSXVSKqJjj8oepzpRn41MErSaZJ2kXQNMAD4SwnPq6qOOuooAMaOHQvAY4+Fa4VHjhxZsLu316AqZ7PNNtuoOe9rX/tas/c5e/Zs1q5dy8qVK2nbtm19TTnOBLXFFltw6qmnAp/+GEqrs88+mxtuuKG+h2JG9vWDSapBVer805w5c1i7dm2jl09U+iL6TIICeOCBB2I7TrEjSfwUGAscA3QhNMNl30ppaB8GvBHdNiOcz3oD+CWAmd1HmEb+QsLMtgcCR5lZar49Dz74YLp06cKbb77Jxx9/XJ+oMokrn2rWoDbbbDOgMiOaJ0XmPFTXrl055pjmD4Yye/bs+i+JXr161f/giPv9zHxu0j6uXqaWlGvRokUsXbqUbt26xXqtUamdECqZoIrpwVfJBLV69WpWrlxZ/zjOZr5ia1D/C9wADDCzA8zskNxbsQc0s3Fmpjy3UVllrjezwWbW0cz2NrP/lPa0SlfOKd87duzI4YcfDoTeLk8//TTw6Sje+WQnqFIHhG2uzDmZmTNnVvzY1ZJJUMcff3x9gm6OWbNm1Tfv9erVKxFNti1Bdu0pzmuNklyDSlqCWrRoEQB9+vShR48eTJw4MbYhn4pNUN2B+81sQ6MlU6rcF+pmzkNdeumlrF69mj333LP+vEQ+nTp1omfPnqxfv36jE+2V0L17d3r27Mnq1aubNYpCmpx88snssssunHvuuWXZ3+zZs/MmqGo22bYElWjeg/gTVFNruLNnzy6qdpcZib0SMs17/fv359hjjwXia+YrNkH9izA6gyvS5z//eeDTk5cNNe9lVPNLLVOLKuU81DPPPJPa81Zf+MIXePvtt+vHRGyuQgnKa1DNk2n6a0qCWrBgQdEtAqUkqGXLljFt2jQ6duxYP+xUQ6ZOnUr79u2b9GNozpw5RSWoStagMgmqT58+nHDCCUB8zXylNPEdJWm0pL0lbZt7iyW6CipnEx+EwSOzf11lElZDKnXeoqFjFzsW4IQJEzj00EPrm8paO2/ii0emBlVqD77HH3+cLbfcktNOO62o8qUkqEz38t12263RQZghjBgDcPXVVxd9jIykJ6gjjjiCYcOGcfTRR2903We5NP7qBgYsBy4FCl100Xj/3gSLmvYyasqxz6OPPpo333yTzTffnH333bfR8tWsQRXTPTvbpEmTYooknbwGFY+mNvFdc801ANx6663ccsstjZYvJUFVcgSJNWvW8NFHHzVarloJqmPHjrz66quxHavYBDWGMBbe74F3gbJc99TSfe1rX+N3v/sd3/zmN4v6pVXNGpRrHk9Q8UjiOahKJigIM2o3phrnoPr06RP7sYpNUIcA3zezMTHGUlXZ4/FFtamDm7vPoUOHsmjRIjp16lRUeT+xnl5LliypH2y3V69e9OnThzZt2rBo0SLWrVtHhw4dqhxh+ixdupSFCxey2Wab1f94i8P69etZvXqTmX8KyrQeJClBVasGFbdiz0EtYNMBXF0RunTpUnTzmdeg0m3y5MlASFBt27atH2Gg3JPrtRbZI0hkJmmMQ6nXQGWuF9x228qcem8sQZlZ1bqZx63Yd/2PwFmS4vuUOK9BpVxm+oVevXoByRi+Ks2a2kGiVKU0723YsKG+I1Gpgws3Ve7EmrlWr17drCliSpXEJr7NgaHA25L+DeSmazOzX5Q1sgqLo5NEqbwGlW6ZZqJSE9Srr77Kueeey7XXXluxZqOm+tvf/saiRYv47ne/G/uxMheoZl7PuJSSoBYsWMCGDRvo06dPxZptGxsRv6nnn2pra5k3bx4DBw4sabskJqgLsv7eMc96A1KdoJLAa1AtQ6kJ6qCDDmLNmjUcffTRfPzxx7HH1xxf+cpXAPjSl74U+zTnGXHPVltKgsr8bzZ00X2lNbV574gjjuCZZ57hhRdeYP/9i54Ptj5B9e7du0nHLUWx0220aeSW6i7mUP7roJqiV69etG/fnqVLl5Z00tYlSyZBZf6BGxsZJDMCdaUH/GyOVatWVTuEsiklQc2ePRsg1k4bpWrq5+aZZ54B4L777ttknZlx1VVXbTJLtZklq5OEpA6SHpJ0UOzRtHKS/LxFykmiR48eALGe2Hfl05QEVY0aVKHOVnH8sHnsscf4yU9+woEHHrjR8lWrVrFmzRo6depE586dy37cXI3+B0VzNB1eTFnXfH37hrkaix3RwSVLz549S77o2VVXU5r4qlGD6t69e97lcVwDVeji4OzaU9xNr1D8OagXCGPxjYsvlOpKQicJoP6aqfXr11crBNcMcZ/Qd+WXlhpU9+7d89aWWuo1UFB8gjoXeFjSCuBhYA6hY0Q9MytlTijnWoy2bdvWj0PmCSp9SrkOKok1KE9QkBl47ZrolstK2FcixTGShGsdunTpQl1dHStWrPAElUJJrkFJqh+RvVu3bnnLeIIKs922jpnsnGuCgQMHMmXKFE9QKZTkc1BbbLEF8+fPp1OnTrRv3z5vmZY6Dh8UmaDM7OKY43Au1QYMGOAJKqWKTVAbNmyo711bqVEk+vfvz/z58ws270H1ZtOtBO+Z14q1lundKyFzNb4nqPQpNkEtXLiwfhSJjh07xhxVkGlKLNS8By27ic8TlHNlsPvuuwOw4475BlpxSVZsgqrGRbqZYyWlBpXIJr7WICndzNOs1OsiWlIN7oc//CGHHnooe+21V7VDcSXKJKhu3brVj/+XTzW6mG+99dZAqJnX1tbmLdPqz0E5V06VuMCv0tq3b8+wYcOqHYZrgkyC6tGjR4MJqhpdzEeMGMHatWs5+uijufDCC/OWqUYNqhLj8IEnqHrezdy51mfDhg2sWLECaPg8D1SnBtWuXTsuv/zyguvXr1/PypUrKxaPn4NyzrkKydSYunXr1ujYidW8SLeQStaesgeKrVQNyhOUc67Vym7ea0w1hzkqpJLnn5YvX8769evp0qULm222WUWO6QnKOddqlZKgWnsNqtLNe+AJyjnXiqW9BpVJUJlBpuNUymtVLp6gnHMVNXv2bE466SReeeWVaodS9JduNUaRKEYmQW2++eYVO2Yl5znzBOWcq6gzzjiD++67j3333bfaoTB//nyg8ZP+mVEkevfuXbFRJIqROQdVyQRVSS02QUmaLmmipAmSnql2PM654OOPP652CPU++OADALbddtsGyyVxqnf4tAbVs2fP6gYSk5Z+HdT+Zrai2kE455Ipk6C23377BsslsYMEVKeJr5JabA3KOeca8/777wONJ6i1a9cCYe6vcps1axZPPvlkk7b1Jr4yk3SQpEclzZJkkkblKXOWpGmS1kgaL2l4Ew5lwLOSXpX09WYH7pxrUcysPkFtt912VYtjq622YuTIkTz77LMlb+tNfOXXFZgM3B7dNiLpRMKsvWcBz0f3j0na1cxmRmUmkD/2I8xsdvT3gWY2S1J/4ElJk8xsYs6xxhWIsabUJ+WcS5fFixezdOlSunXrxhZbbFHtcHj11Vc5+ODSRljL1KA8QZWJmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkf7qCniOLOi+zmSxgJ7ARMb3so511pkN++ldQDjDRs2ABScbTftEnUOSlIHYG/giZxVTwD7l7CfLpK6RX93BQ4F3sotZ2YjMrcmB+2cS6UkNO+5hiWtF18foC0wL2f5PODwEvbTF3go+lXUFrjJzF4tS4TOuRah2B58rnqSlqDKwsw+BPaodhzOueQqtgefq55ENfEBC4ENhBpQtr7A3MqH45xrqbyJL/kSlaDMbB0wHhiZs2ok8GLMx84+HzUhzmM556rPm/iSr+JNfFGnhcwnog0wSFINsDjqRn41cIekV4AXgDOBAcBfYo5rXNbDmjiP5ZyrrmXLljF//nw6deqUqNHJ3caqcQ5qGJA9Nt4l0e02YJSZ3SepN3Ah0J9wzdRRZjaj4pE651qk7DH4Kjk6tytNNa6DGgc0eNGBmV0PXF+RgJxzrY4376WD/3RwzrU63oMvHVpkN/OmyL5YNzofVdqYI8651PAefOngNSjnXKvjNah08BpUxHvxOdd6zJsXBqsZOHBglSNxDfEalHOu1fIefMnmNaiIn4Nyzrlk8Z8PzjnnEslrUBE/B+Wcc8niNSjnnHOJ5DWoiJ+Dcs65ZPEalHPOuUTyBOWccy6RZGbVjiFxJH3co0ePgTU1NRU/9htvvMGyZcuoqamhR48eAEyYMIGlS5cyePBgpk+fTo8ePSg2tokTJ7JkyZL6bbt27cree+8NhCkH3njjDbp160b79u1ZvHgxQ4cOpXfv3gBMmjSJxYsX12/bpUsXhg0bBoQLHd99910ADj44tIbOnz+fd955Z6Nl2d5++20WLFhQv79OnTqx7777lvT6fPLJJ7z55psbHWPt2rW8/PLLdOzYkc0335y5c+ey44470r9/fwCmTp3KnDlzNlqWz3vvvcfs2bPZfvvti7qAs7a2lhdeeIG2bdty4IEHbrL+ww8/5KOPPmLIkCEMGjSo4H6effZZIFyTM3z48ILlpk+fzowZM9hmm20YPHgwADNmzGD69OkMGjSIIUOGNBpz9vEOOOAA2rUrrZU/s+2+++5Lp06dSto247XXXmPlypXAp+/h+PHjWbFixUbL5syZw9SpU+nXrx877bQTAHPnzmXKlCn07duXnXfeueAxMp/77P1le+WVV1i9ejX77LMPnTt3BuDVV19l1apVDBs2jC5dumxUfuHChbz11lv07t2boUOHbrK/TPx77bUX3bp122hd5nNVKJbMa7rtttuy9dZbAw1/D+yxxx707Nlzo2WZ/6nu3buz5557Fnxd8h134MCBm4yoMXv2bN57772NYl6xYgXjx4/f6HugHKLnMMvMtspd5wkqD0lvAFsA75e4aU10P6Gc8VRBTXQ/oYoxlENNdD+hijGUQ010P6GKMZRDTXQ/oYoxlENNdD+hijGUQ010P6GKMUCYH3CBmW2SWT1BlVGmq3p2h4s08ueRLP48ksWfR+X4OSjnnHOJ5AnKOedcInmCcs45l0ieoJxzziWSJyjnnHOJ5L34nHPOJZLXoJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0ieoEok6SxJ0yStkTReUuHRPUP5g6NyayR9KOnMSsVaIJ7Rkl6VtEzSAkl/l7Tp6JcbbzNYkuW5HVmpuPPEdHGeeOY2ss3ukp6VtFrSLEkXSVKlYi4Q0/QCr+0/G9gmX/mKfq4kHSTp0eh1NEmjctYreo9mR6/3OEm7FbHfL0t6W9La6P5LsT0JGn4ektpLulLSREkrJc2RdLekwiP/hu1GFHiPCo9uG+PziNaPyRPPy0Xst6rfX56gSiDpROAa4DJgT+BF4LFCH1hJQ4CxUbk9gcuBayV9uTIR5zUCuB7YHzgUqAWelNSriG2PBPpn3Z6OKcZiTWHjeHYvVFBSd+DfwDxgH+AHwE+AH8UfZoP2YePnsBdgwF8b2e70nO1uizHGfLoCkwmv4+o8638KnAucTXiO84F/S+qWpywAkvYD7gPuIgxkehdwv6TShrwvTUPPozPh/bg0uv8isDXwuKRihoHfjY3fo/fKFHM+jb0fAE/mxHNUQztMxPeXmfmtyBvwX+CmnGXvAZcXKH8l8F7OspuBl6r9XLLi6QpsAL7QQJnBhC/NYdWONyumi4HJJZT/HrAM2Cxr2YXALKLLLZJwAy4APsmOM08ZA75S7Viz4lkBjMp6LGAOcEHWss2A5cAZDeznPuDfOcueBO6pxvMoUGbX6PXfvYEyI6IyfZLwfkTLxgD/KHE/Vf/+8hpUkSR1APYGnshZ9QShNpLPfnnK/wsYJql9eSNssm6EmvSSIso+KGm+pBckfSXmuIqxbdSENE3SvZK2baDsfsBzZpb96/JfwABCAq66qLnxO8CdOXHmc42khVFz7ZmSkvS/PAToR9ZnP3o+/6Hw/woU/n9paJtK6x7dF/P/8lrULPiUpEPiDKpIB0b/v1Ml3SRpy0bKV/37K0kf6qTrA7QlNBFlm0f4Z8ynX4Hy7aL9JcE1hPlgXmqgzArgx8BXCc0CTwH3STol9ugK+y8witDseDrhtX5RUu8C5Qu9F5l1STCS8OV+UyPlLgJOBA4H7gV+B5wfb2glybyepfyvZLYrdZuKiX6k/g74u5l93EDROYQa+5eB4wlN0U+pkfPVMXsc+CZwGKHp9bPA05I6NrBN1b+/SptO07Uokq4GDgQONLMNhcqZ2ULCP2bGa5L6EM4z3BlvlAVjeiz7cXTC90PgVODqasRUBqcDr5rZmw0VMrNfZT2cIKktoWnw13EG15pF55zuBHoCxzZU1symEJJSxkuSBhPOeT4XU4gNMrN7sx5OkjQemAEcDTxYjZiK4TWo4i0knKvpm7O8L1Co99jcAuVro/1VjaTfA18DDjWzD5uwi/8CO5Q3qqYzsxXAWxSOqdB7kVlXVVFzyxdpvPaUz3+B7pJyn1+1ZF7PUv5XMtuVuk3souR0D/AZ4DAzW9SE3STt/2U28DENx1T17y9PUEUys3XAeEIzTLaRhF4u+bxUoPxrZra+vBEWT9I1fJqc3m3ibmoITRmJIKkTsDOFY3oJGB6VyxgJzAamxxtdUUYBawlfhKWqAdYQOlckwTTCl1v9Zz963YdT+H8FCv+/NLRNrKJzLfcRktMhZtbUZFlDsv5f+gADaTim6n9/VaOXSVpvhHb/dcBpwC6E8zcrgG2i9bcDt2eVHwKsBP4QlT8t2v7LVXwOfyL0ZjuU0MacuXXNKnM58FTW41OBk6PnsBPhfNQ64IdVfB5XAQdHr/G+wD+i55V5L3KfQw/Cl+a9wFDCuYFlwLkJ+FwJmEpOD9Fo3f8C72Y9/gKhKXAosF30mVoKXFPhmLsSvnRrgFWE82I1wKBo/c+iuI6PYr2X8GOgW9Y+niKrByyhM0QtcB7hx8ZoYD2wbzWeB+EUyMOEnp575fy/ZPcGzf2/Pwc4jlA72S36LBpwfJWeR9fo/2U/QoegEYTk83HO+5G476+KfaBbyg04i/CLey2hRnVQ1rpxwLic8gcDr0flpwFnVjl+K3C7OKvMGGB61uNTgbejD+sy4DXglCo/j8wX3rroC+RvwK6FnkO0bHdCT7I1hF+OvyABXcyBQ6L34LN51l0MWNbjI4E3CF22VwKTCNe+tKtwzCMKfI7GROsVxT4ner2fBYbm7GN6pnzWsq8A70bv6zvE+KXe2PPg08sr8t1GZe1jo/97wrnZ9wjXIy0mnHc6qorPYzNC77v50es6I1q+dc4+Nnoe0bKqfn/5dBvOOecSyc9BOeecSyRPUM455xLJE5RzzrlE8gTlnHMukTxBOeecSyRPUM455xLJE5Rr0SSNKjB5nEk6vNrxtRSS9pa0StLArGXjJD1foPxp0XswuIRjHCdpnqSuZQjZpYAnKNdanEC4kj779kpVI2pZfgvcamazYjzGI4QLf38S4zFcgvho5q61mGBm7xdTUFJHM1sbd0AthaS9CaNhnB3ncczMJN0I/ErS5Wa2Js7juerzGpRr1bKaAA+SdL+kTwgjTyOpnaTRkt6VtDaaHPF3OQPOImlbSf+MmrgWSLpG0hm5TVjR44tzth0cLR+Vs/zgaKK75ZJWSvqXpKE5ZcZJel7S4ZJej44/WdKX8jzPPSQ9JGmRpNWSpkgaHa27Nmo6a5+zTbfo+Fc08jKeBkw0s7caKVeQpIsbaIodlVX0r4QpL45v6rFceniCcq1F2yjhZG5tc9bfRRhr7CuEwUohzP9zIXA3Yd6cywkz3t6V2SiaxO7fwJ7A9wmjkg+JtmsSSUcTBlJdAZxCGKi3G/CcpK1zim9HGLT4asKX9hzgfknbZ+3vs4TBQbcDfhg9l6uBraIifwa2BHIT28lAF+CGRkI+kgbmOcp53dtF01fkfvfczKZNsH8jTHEzNVPIwtxk70THdC1dJQf+85vfKn0jJIx8g2g+n7P+9znbDY+WfzNn+dej5TXR49Ojx5/LKtOGMDeVAYOzlm80KG+0bDCbDj76PlkjsUfLuhPm4PlD1rJxhNG+d8hatiXhS/38rGX/AT4COjfwOo3Lc8zXgccbeX37RvGfXmCfhQZbzdwGF9jvCUAd8H951t0BTK32Z8tv8d/8HJRrLb5EmF4gY3nO+odyHh9JGPn5gegXf8YT0f1BwATCL/2PzOzlTAEzq5P0V8Jo3iWRtAOhpnNZznFXEWpBB+Vs8p6ZvZd17PmS5hOmWUBSZ+AA4LdmtqqBQ18P3CtpBzN7T9I+hFphY01pA6L7BQXWv0loAsz1RQrUMiUNA24DrjezP+YpsiDruK4F8wTlWovJ1nAnidyJ27YEOhCmtMind3TfH5iXZ32+ZcXYMrq/JbrlmpnzeHGeMmuBzHmyzQk1uo/zlMv2EGG+rDMI832dSZjO5O+NbJc5TqFOJSvM7LXchZJq8hWWtBXwKKH29YMC+1yddVzXgnmCci7InXdmEWEeo+EFys+O7ucQJqXLlW/69bWEpJetd87jzHTio4En8+xjXYF4CllCaCob2FAhM1sv6WbgLEm/AU4CfmdmtY3sPxPv5iXGtQlJXQgJcSFwopltKFC0V9ZxXQvmnSScy+9xwq/0Hmb2Wp5bJkG9BGwt6XOZDSW1Ab6aZ58zCLPLZjs65/EUwkR+uxU47sRSnkTUrPc8cIqkzRopfgOhh9z9QEfgpiIOMZ2QyLctJa5ckkTolNIfOMbMcptgsw0hvE6uhfMalHN5mNk4SfcQzkFdTbiot47QqeEo4GdmNpVwruQ84EFJ5xNmLT2T0Kkh173AhZIuAF4m1M6+lnNck/R94JGoh+BfCTWKvoQp0Wea2dUlPp0fE2a0fUnS7wjNfdsSOnrUX7tkZrMkPUo4X/d3M/uosR2b2TpJ/wU+W2JMuX5GmCb9B8AASdnnmD4wswVQn8g+Szhn5lo4r0E5V9gphI4OXyGMYvAA8L+E6bznQfiCBkYSOkxcT0hY04Bf59nf5cB10T4eBnYBvpFbyMzGEjpDdCF0v/4X8BugH6HGVhIze5XQUeIj4FpgLGE0hnznpe6P7hvrWp7tPuDQqImuqXaO7q8hPMfsW3Ytc39Cc+K9zTiWSwmf8t25GEQXl/4/YIiZTa9uNMWTdBchmW1rZnVFbtOdkOzOMrM7Y47vz8BQMyt0btC1IN7E55wjOodWA5wI/KjY5ARgZsskXQn8VNJdFtOvXkn9gFPxi3RbDU9QzjkITWkriK4/asL2VwNtCZ0cZjdStqkGA+ea2X9i2r9LGG/ic845l0jeScI551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gXF6SbpJkkn5fYP3F0fqKjOcoaUR0vBFN2PY4ST8qf1SumjKfwWrH4eLjCcptIpp5NTMj7MmVSkIxOg7wBOVcyniCcvkcR5gRdiywJT69QVEkdax2DGnRkl4rBR2qHUdL5AnK5XMqsAQYBayOHheyi6RnJK2SNEfSLyXVf64kdZV0raSZktZKmi/pSUk7Z5XpLuk6SbOjMlMk/TCa3rsgSdMljcmz3CRdHP09Jop/YLTcJE3PKruFpL9ImhUd+11J323sBcpqcjw+ag5dQDTLrqRxkp6XdKSkCZJWS3pD0r6S2km6LHqtFksakz0TbbT+V5I+kLRG0sJoXwc2Ek+j20nqLOl6SYskrZD0qKQDo+cxKqvcOEnjGnu9o9fuBklTo/f/I0l3SxqYs12mOXiopH9JWkGYyj4T05WSpklaF91fkP0ZisrtKem56LnNkvRzoMHPR07cd0o6SdI7klZKei3fayrpFElvZr2Gd0jqX2B/35b0LrAOOFrSqOh57i/pr5KWS5onaXS03ZHR52ClpFcl7V1M/K1Z2ptuXJlJGgAcDtxkZgskPQwcL2lzM1uSZ5OHgVsJ05n/D/BzoI4wVTrA74FjgfMJU6X3JszY2jM6Xhvgn8BewEXAJMIU31cDW0TbNcevov3sE8UBsDY6dnfgeWCzKN5p0XP4s6SOZnZtEfu/FniMMHV7p6zl2wO/BS4lzLP0G+DR6NaOkPx3icrMB34abfcz4IfABYRp5LsDw4BejcRRzHY3ECYkvAR4lTBV/d1FPMdCegFrgNHAAmAAcC7wgqSdzWxNTvlHgFuAK4E6habjfwG7Et6nScDnCJ+hXtG+kNQHeBqYS/ixsZYwZf2gEmIdDuwU7XtNdLx/SBpsZp9Ex/ku4TW6L3pOA4DLgH0l7WVmK7L2dwhhgsdLCO/f9OgYEObUuh24ETgBuExST+AoNv48PCxpOzNbV8LzaF3MzG9+q78RvigN2C96/D/R4zNzyl0cLT8vZ/lNwHKgZ/R4MnB1A8c7JtrPqJzlNxO+iPpEj0dE5UZklZkOjMmzTwMuzno8Bvg4T7nMl9UOeZ7DQqBdA3Fn4nkoz7pxwHrCtOmZZcdG5Z/MKfsgMC3r8T+AB5vwvjW4HeHLeUOe9+vPua9/FP+4PPvI+3pnrW8LbB3t70t5Pis/yCn/jWj5QTnLLyDUSraMHl8aPd46q0yX6D2yIl6b6YQWgc2zlg2Ljn1yVuzzgGdytj0wKvd/OftbBfTLKTsqKntR1rJ2hAS2HhiS5/NwcKnvdWu6eROfy3Uq8J6ZvRQ9fpIwQ2qhZr6/5jy+F+gKDI0evwqMknS+pGGS2uaUP4hQ48r9JX8n0AHYr/SnULQjgf8C06ImsnZZv+p7E37ZN+ahAsunmtmHWY/fje7/lVPuXWArqb4581XgKEmXRs1vG53bkNQmO9asprAGtwP2JTTp53u/mkzS96ImsRVALTAzWrVTnuK5r9WRwAzgxZzX/wmgPaE2BeEz8LKZfZTZ0MxWAn8vIdSXbOMWgEnRfaYWthPhfOtd2RuZ2fNRjAfn7O9lM5tb4FiPZW1fC7xP+DxMyyqT+TxsXfQzaIU8Qbl6koYRvpQflNQzapboRviV/zlJO+bZbF6Bx5nzEGcTmk2+TfgSnS/p95I6R+t7AYtt02aOuVnr47IlIUGuz7ndH63vXcQ+5hRYntscuq6B5e0Iv+AhNCn9gvAL+zlgkaT/FzVzQWhOzY711iK3y5xHKfR+lUzS2YTp4Z8Ejgc+y6dJpVOeTXJfqy2Bbdj09X8lWp95/fsXiLOU2BdnPzCztTlxZj5n+d7PuWz6OSz0vkP+97jQ5yHf6+Qifg7KZcvUkn4W3XJ9E7gwZ1lf4MOcxwCzACy0248GRkvaBvgKcAXhH/RnhC+OXpI65CSpftH9Rl8sOdYQaln1JBWTVDIWEZpfflBg/ZQi9lHW63DMbD3hHM2VkvoRmkCvBjoTzh9dDFyXtcnCIrfLfKEWer+yrSGcw8qV+yV9EvCUmZ2bWSBpSENPL+fxIsJ5v6/mKQuhKQ1C7PnizLesqTKfs3551vUDxucs8+uvKsBrUA6AqEnoa4Qmr0Py3CYA38hqisrI/XI5iXASeFLOcsxshpn9LlqXaQJ8lvA5PCGn+NcJSewlCpuRtZ+Mo/OUW0voCJHrcWBnYKaZvZbntryBY8fOzOaa2c2EGsrQaNn0nBinF7Md4X2tI//7lWsGsGN2M6Gkgwi16WydCTWebN8q6skFjxOauFYUeP0XRuVeItTg65vDFHo+fqGEYzVmCqFGttHrIWl/Qi1vXBmP5YrkNSiXcTShSeVcMxuXu1LSDYQT6iOAZ7JWnR6dB3mV0KHiNEIHhaXRdi8Req5NIiSug4E9CD2dILTXPw/8RdIWwFuE3k6nAZdnfUnlcy9wq8JoF/+I9jsqT7m3CbW07wGvAWvMbBKhh+GJwHPRPqYQTr7vDAw3sy82cOxYSHoEeBN4ndAstCfhXM0NzdnOzKZIuhv4Zdb7dQThtc51L/Bdwms7BhhCuNB5aU65x4GfSTqf0Cx3KKGGXKy7CAntKUm/i+LvAGxHaKo8zsxWEd6ns4AnFC4fyPTiW13CsRpkZhskXQTcIOlOwjnQgYQOGu/xaVNqbKLjXwRsZ2Yz4j5eGniCchmnEnrf3V9g/T2EJqNT2ThBfZHQ1frnhC+wXxO68Gb8h/Cr/TzC5+1D4Idm9kcAM6uTdDThHMrPCElyOuEL8Q+NxHwb4Rf4d4AzCOdevkQ4KZ3tZsK5kcsI3dtnAIPNbGn0C/mi6NgDgU8IiepvjRw7Lv8h1Ca/T6ihzCR0Sb60DNudQfiR8GNCIngaOJnwA6GemT0j6cyo3JeBN4BT2PQ1+SXh9fwh4VzKs4QfKR9SBDNbL+l/CJ+N7xIS4UrgA8KlB+uicgslHQZcQ3jPFwF/IXyeLirmWEXGc6OkVYTk9wjhtRoL/DTqlBG3NoRzkUVd39UayMybUp1rrSQNJpwH+paZjaluNM5tzM9BOeecSyRPUM455xLJm/icc84lkneSyEPSG4Tx23JPtjvnnCuv7YEFZrZn7gpPUPlt0aNHj4E1NTUDGy/qnHOuqSZMmMDSpblXMASeoPJ7v6amZuC4ceOqHYdzzrVoI0aM4Nlnn83bWuWdJJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0jeSSIiaVzWw5oqheGccy7iNSjnnHOJ5DWoiJmNyPwd1aZyp3hOvaVLl9KtWzfatPHfJc655PNvqlZizpw59OvXj+985zvVDsU554riCaqV+OCDD1izZg3vvPNOtUNxzrmieIJqJdavz52Z2znnks0TVCtRW1tb7RCcc64knqBaCa9BOefSpsX24pM0HVgG1AFLzOyQ6kZUXZ6gnHNp02ITVGR/M1tR7SCSwJv4nHNp4018rYTXoJxzaZPIBCXpIEmPSpolySSNylPmLEnTJK2RNF7S8JwiBjwr6VVJX69I4AnmCco5lzZJbeLrCkwGbo9uG5F0InANcBbwfHT/mKRdzWxmVOxAM5slqT/wpKRJZjYxZz/jChy/pizPIkG8ic85lzaJrEGZ2VgzO9/MHiB0csj1I2CMmd1kZu+Y2dnAHOB7WfuYFd3PAcYCe1Ug9MTyGpRzLm0SmaAaIqkDsDfwRM6qJ4D9ozJdJHWL/u4KHAq8lbsvMxuRucUadAJ4Dco5lzZlaeKT1ANYY2Zry7G/RvQB2gLzcpbPAw6P/u4LPCSJqOxNZvZqBWJLLK9BOefSptkJSlI7YBHwJeDvzY6oDMzsQ2CPErcZkfm7JY5m7gnKOZc2zU5QZlYraR6woQzxFGNhdKy+Ocv7AnObutOWPmGhN/E559KmXOeg7gROK9O+GmRm64DxwMicVSOBFysRQxp5Dco5lzbl6mY+HThZ0qvAI4QedZZdwMxuLXZnUceG7aOHbYBBkmqAxVE38quBOyS9ArwAnAkMAP7SvKfRcnmCcs6lTbkS1J+i+4GEHna5DCg6QQHDgGeyHl8S3W4DRpnZfZJ6AxcC/QnXTB1lZjNKDby18CY+51zalCtBDSnTfgAws3GAGilzPXB9GY85IvO3d5JwzrnqK0uCagk1l5beScITlHMubco61JGkzwAHAb2BG8xsrqTtgXlmtrycx3Kl8SY+51zalOtC3Y6EnnzHE5rmjHBN1FzgN8BU4LxyHCsu3sTnnHPJUq5u5pcSRnH4BuF6pOzzR48B/1Om48RG0rjMDW/ic865qitXE9/XgAvN7G5JbXPWTQMGl+k4rom8ic85lzblSlC9gXcKrGsDdCzTcWLjTXzOOZcs5WrimwbsV2DdZ4EpZTqOayJPUM65tClXDep24HxJ04G/RctM0iHAD4GLy3Sc2LT0bubexOecS5ty1aB+A/wTuANYEi17HngSeNzMri3TcVwTeQ3KOZc25bpQdwNwkqQ/EXrsbUmYguNxM3u2HMeIm5+Dcs65ZCnrhbpm9hzwXDn36crDm/icc2lTliY+SfdJ+q6kHcuxP1d+XoNyzqVNuWpQWwHXAu0kzSGMRP4M8IyZTSvTMVwzeIJyzqVNuc5BHSCpCzAcOBQYAZwEtJE0E3jazL5TjmPFxXvxOedcspSrFx9mttLMHjezn5rZZwmdDJ4GtgFGles4rmm8BuWcS5uydZKIRi0/hE9rUFsCbwPXERJVonkvPuecS5ZyjWY+kzCb7vuEc0/nEJr1FpRj/675vInPOZc25WriGwCsIYzH9zbwtienZPEalHMubcqVoHoRRjSfBnwHmCBpXtT9/Ezvfl59XoNyzqVNuXrxLQMejW5I6k04H3UG8CfCBIZlvSjYlcZrUM65tCn3lO9bEzpJHBLdtgY2AOPLeZw4tPRu5p6gnHNpU65OEjcSEtMQQm3pTeB+Qu+958xseTmO45rOm/icc2lTrhrU5wijmT8DjDOzT8q034rxbubOOZcs5ToH9Zly7MfFxxOUcy5tyn0Oaiih5tELWEyoTb1VzmO40pmZN/E551KnXOeg2gFjCF3NlbXKJN0NjIrmjHJVsGGDv/TOufQp13VQvwC+ClxE6CixWXR/EXBidO+qxJv3nHNpVK4mvlOAX5vZpVnLZgCXSmoLfIuQxFwVePOecy6NyjnU0YsF1r0Yra8oSZ0lzZB0VaWPnTReg3LOpVG5EtRs4IAC6/aP1lfaBcDLVThu4niCcs6lUbma+O4CLpBUF/09B+hHmLTwAuDKMh2nKJJ2AHYG/g4MreSxk8ib+JxzaVSuGtTFwAPAJcB7wArC1BuXRst/WeyOJB0k6VFJsySZpFF5ypwlaZqkNZLGSxqeU+QqYHTTnkrL4zUo51walSVBmVmtmZ0M7A6cTei197/A7mb2dTMr5Sd8V2Ay8ANgde5KSScC1wCXAXsSznE9JmlQtP6LwFQzm9qMp9SieIJyzqVRWS/UjS7KbdaFuWY2FhgLIGlMniI/AsaY2U3R47MlHQl8j1Br+hxwkqQTCMmuvaRlZrZJLS5ngNhsNc15DknjTXzOuTQq55TvbYFvAvsRZtedRajd3FGui3QldQD2JjThZXuC0BkDMxtN1LwXNQ8OzZecWhOvQTnn0qgsTXyStiHUnG4BjgS2jO5vBSZH68uhD9AWmJezfB6hU0ZJzGxE5laG2BLLE5RzLo3KVYO6DugOHGhm9ddDSTqAMO3GtcCxZTpW0cxsTKWPmUTexOecS6Ny9eI7FBidnZwAzOwF4PxofTksJEyA2DdneV9gbpmO0eJ4Dco5l0blSlArgPkF1s0HVpXjIGa2jjA778icVSMpPJJFq+cJyjmXRuVq4rsTOBN4LM+6M4Dbi92RpK7A9tHDNsAgSTXAYjObCVwN3CHpFeCF6LgDgL80OfoWzpv4nHNpVK4E9T5wgqRJwN8InRb6Al8BuhGuU/p2prCZ3drAvoYRZubNuCS63UaYtuM+Sb2BC4H+hGumjjKzGWV6Li2O16Ccc2lUrgT1p+h+K2C3POuvz/rbCL378jKzcWw8p1S+Mtfn7LPZWvKU716Dcs6lUbkS1JAy7adqci7aralSGLHwGpRzLo3KkqC8eS3ZPEE559KoXL346im4NTM2XlrkXLQ7ocrhlJU38Tnn0qisY/FF2gCnEi7enRnD/mPhTXzOOZcsZa9BRRrs5OAqyxOUcy6N4qhBpZL34nPOuWSJowZVR7hmaWEM+3ZN4DUo51walb0GZWYGfKvc+3VNl52gwtvjnHPJV5YEJWl/oJeZ/SN63Itw8e5Q4F/Az8o1J1RcWnInCW/ic86lUbma+K4gTCSYcRVwFDCVMNPt+WU6jmsCb+Jz/7+9M4+Pqr4W+PckshpAFmVfRbEKGgG1dQGty6P6bGuxpUp94qu+Wqy1tbVatX1Qq7aPp5bqE7u7YAW1iktdUdPiUioUUFEhAglbCDsJgQBJzvvjd2+cDDPJzOTe2XK+n8/9zMz9/e49585yz5zzO7/zM4xcJCgD9RlgEYCItMPV4Pu+qk4EbgEuDUhOaOTzPCgzUIZh5CJBGagioMp7fjJwKPC89/pfQE5N2s03LMRnGEYuEpSB2gCc4D3/AvCBqvrrQ3UnoPWgjNQwD8owjFwkqCy+x4A7RORM3NjTf0e0jQZKA5ITGvmcJGEGyjCMXCQoAzUNqAU+i0uYuDui7QTgiYDkGClgIT7DMHKRoKqZ1wO3x2n7chAywiafK0mYB2UYRi4SyBiUiPSKrl4uIt8SkXtF5N+DkGGkjhkowzBykaCSJP4I3OS/EJGfALNw6eXPiMikgOQYKWAhPsMwcpGgDNRY4LWI11cDd6hqT1xFiesDkmOkgHlQhmHkIkEZqB5AJYCIjAT64ArGAswDRgQkx0gBM1CGYeQiQWXxbQMGeM8/D2xUVT+1vB3hrTsVGPmcZm4hPsMwcpGgDNR8YJqI9AJ+gPOafI4BygOSY6SAeVCGYeQiQXk2PwLWAXcCq4DpEW2TgTcDkhMa+VyLzzwowzBykaDmQVUC58ZpPgc3idfIEOZBGYaRiwS6YKGICHAsLmliO/ChqlY1f5QRNmagDMPIRQJLXhCRK4EK4D2gxHvcKCLfDEqGkRoW4jMMIxcJakXdycBvcXOhZgObcKnmk4HfisgeVX0sCFlG8pgHZRhGLhJUiO9HwKOqelnU/odE5BHgRlzFcyMDmIEyDCMXCSrENwLnOcViNjZRN6NYiM8wjFwkKANVzacTdaMZ4LWnDRE5TEQWichSEflARK5Kp/xswzwowzBykaBCfC/iFixcqaoL/J0i8jng5157OqkGxqnqHhE5FPhARJ5S1W1p1iMrMANlGEYuEuQY1GeBEhHZgMvm64Pznj7x2tOGtz6Vv8x8B0C8rU1iIT7DMHKRQEJ8qroJV7/uOuAdoAr4B3AtcKI3kTdhRGSciDwrIhtEREVkSow+U0VkjYjUishiETkjqv0wEVkGrAdmqOrWlC4uDzAPyjCMXKTVHpSItAfmAveo6n3Afa3WCoqAD4CHvS1a5iRgJjAVV0ZpKvCiiByrqmsBVHUncIKI9AaeEpEnow1lVIHYSIoDuIaswQyUYRi5SKs9KFXdjytnFNikX1V9QVVvVtUngYYYXa4HHlTV36nqR6p6LS6s+O0Y56oElgFnRLe1FSzEZxhGLhKUUXkLNwYVOp7HNgZ4JarpFeBUr09vEeniPe8GjANWRJ8rqkBs3mIelGEYuUhQSRI/AOaJyG7cUhsVgEZ2UNVYnlAq9AIK8RZIjKAS58kBDMZVsPCTI+5V1fcDkp9zmIEyDCMXCcpA+Tf/md4WjQYoq0VU9Z/k2ThSqqiqhfgMw8hJgjIaPyPKYwqRrUA90Dtqf29cDUAjgvr6+kyrYBiGkRJBrQc1LYjzJChrv4gsxq0/9URE07nAX9KlR65g4T3DMHKVoKqZtwPaq2pNjLZDgf2qmvCdUkSKgOHeywJgkIgUA9u9NPK7gUdE5J+4BI2rgX7AA626kDzEwnuGYeQqQYX4/uCd69IYbb8B9gP/mcT5xgJvRLye7m0PAVNUda6I9ARuBfri5kydr6rlKegOuIw+/7k3P2p8qufKJsyDMgwjVwnKQJ0J3BCn7VlgRjInU9USWihNpKr3A/cnc97miJq0WxzUeTONGSjDMHKVoOZBHQFsjtO2hYMTGow0YSE+wzBylaAM1GZgVJy2UUDWVxGPmrS7NMPqBIZ5UIZh5CpBGajngZ+IyPGRO0VkFHAL8FxAcowkMQNlGEauEtQY1E9xad6LReRdXAXx/sDJwBpcMkNWk69jUBbiMwwjVwlquY2twEnAnbjkhmLv8XbgpLa81EWmMQ/KMIxcJbDyQ97yFj/1tpwjX9PMzYMyDCNXCWyJDCM7MQ/KMIxcJW0FXLOdfB2D8g3UIYccYt6UYRg5hXlQeY5vlNq1a5dhTQzDMJLDPCiPfB2DivSgDMMwcgnzoPIc30CZB2UYRq4RqIESkQIRGSki470q5kaG8UN85kEZhpFrBGagROQa3IKBy4DXgRHe/nki8t2g5ISFiJT4G3mYJGEelGEYuUYgBkpErsIt9T4PmETTSuQLgIlByDGSxwyUYRi5SlBxn+uBu1T1RhEpjGr7mPhLcWQN+ZokYSE+wzBylaBCfEOBl+O01QCHBSTHSBLzoAzDyFWCMlBbgSFx2kYAGwKSYySJGSjDyA/mzJnDRRddxJ49ezKtStoIcrmNn4rIsIh9KiK9gO/jxqaMDGAhPsMIn08++YRnn302VBn33nsv8+bNY9GiRaHKySaCMlC3AvuAD4D5gAK/Bj4C6oGfBSTHSBLzoAwjfC6//HK+9KUv8cknn4Qmo6qqCgBVDU1GthHI32pV3SoiY4HvAf8GrPLOfR9wj6pWBSEnTPK9Fp8ZKMMIB1Vl2bJlAOzatSs0Ob6BaksENg9KVatV9TZVPV1Vj1bVz6nq9FwwTulk165dnHfeeTz66KNpkWchPti2bRuzZ8+muro606oYeUhFRQU1NTWhyzEDlSIislpETojTNlJEVgchJ0xU9Ux/A5aGJeell17i1Vdf5a677gpLRBPMg4Jf/OIXXHbZZRx//PGUlJRkWp2UWbZsGeeeey5Lly7NtCpGBCtXrgxdhqq2yT9YQXlQQ4AOcdo6AoMDkpPzlJaWArB8+fK0LH9hBurTsEtZWRlnnXUWM2bMyLBGqTFv3jzmz5/P73//+0yrYkSQDgO1d+9e6uvrQ5eTbQRZiy/eyN1YYGeAcnIafxB1//79aflitxTia2hoCF2HbOGUU04B4LbbbsvJgWb/s/LHO4zswP/TGSZtMbwHrTBQIvJ9EVkrImtxxuk5/3XEtgX4P+CloBTOdSKzfN57773Q5TXnQe3YsYN+/fpx3XXXha5HNnDFFVfQpUsXqqur2bFjR6bVSZlly5a1qT8W2U46/mi2xfAetM6DWg285m0CLIp47W9/wc2Duqp1auYP2WSgSktLqays5LnnngtEVm1tLaNHj+bWW28N5HxBIyIMGTIEcOG+XKW6upo1a9ZkWg3DIx0GyjyoJFHVZ1T1ClW9AngIuNZ/HbFdraq/VtW2M/W5Gaqrq6msrGx8nQ4DlUgW37p16wKJbz/zzDMsWbKE22+/PWb7rFmz6NGjB7fcckvG/hGGbaAaGho455xz+PrXvx7K+X0szJcd1NXVsWrVqtDlmIFqBZ4xsr90LeB/kYuKioDMe1A+dXV1VFRUtFpWS2GnkpISduzYwR133MHw4cN5+umnWy0zWcI2UNu2beO1117j8ccfDzUJpjWZfOvWrUvLTTXXWLFiBS+88EJSx5SXlzf+xsKkrRqoQCbHiMhPW+iiqnpbELISQUQGAo8ARwB1wG2q+kS65MfDH0wdP348b7zxBuvWrWPHjh10796d/fv30759+8Bl+jfJlrL41q5dy4ABAwKXH4vDDz+czZs385Of/ISLLrooLTJ9fANVXl4eyvm3b98OuLTgLVu20Ldv31DktMaDGjRoEAD79u0L5TuXq1x++eUsXLiQtWvXMnDgwISOSUd4D2wMqrVMa2b7b+8xndQB31PVY4HzgF9lwwq//vjTiBEjGDlyJADvv/8+7733Hocffjg/+tGP4h67b9++lGT6/+5amqgb1g07Ft/5zncA0vLPM5qwPSjfQAFs2rQpFBnQOg/KJx2TS3OJ9evXA8l5K+nI4IO260EFFeIriN6AXsAUXH2+4UHISUKfClVd6j3fhKu23iOdOsTCN1BHHXUUxx9/PODCfNOmTaOqqoo33ngj5nE33HADHTt2ZOzYsUybNi2pcFyi86DSaaDCprkU8nwxUGvXrm0iy2g9qZQpSpcHZQYqYFR1u6o+DDyISzVPGBEZJyLPisgGEVERmRKjz1QRWSMitSKyWETOiHOuMUChqq5L4TICxTdQw4cPbzRQjz32WONYTDzDs3DhQgAWL17M9OnTufrqqxOWGR3ii3fzzhcD9cADD9ClS5e4HkakgQpjLlS6DBSkZwyzrVBfX8/u3buTPs5CfOESmoGKYBkwLsljinCe13XA3uhGEZmEW2L+DuBE4G3gRREZFNWvB/Aw8F+xhIhISayNkIrFxjJQb7/9dmN7ZWVls4kGkydPBmDnzp0Jy2xNiG/+/PmMGzeO4447jsGDB6etPFOqNDQ0cOedd1JTU8O7774bs0/37t0pKiqiqqoqqfcxUdJpoNpSyaOSkhKmTZvGvHnz2LhxY+DnT9VD8Q2Un/gUFuZBhce/A1uSOUBVX1DVm1X1SSDWHft64EFV/Z2qfqSq1wIVwLf9DiLSAbcO1S9U9e0Y50grNTU1bNy4kXbt2jFw4EBGjRrV2NauXTs6depEXV0d27Zti3uOESNGJC23NSG+++67jwULFvDhhx+ydu1aHnnkkaTlp5O///3vrF27ttk+zc2FOnDgQKv/EafDQB1xxBFA20o1v+yyy5g+fToXXXQR/fv3Z9asWYGePxUDsHfvXtauXUthYSFDhw4NVJ9ozEC1AhH5Y4xttogsxXlBfwhCjierPTAGeCWq6RXgVK+P4EKLr6tq3LtqVIHYUFm92tXLHTZsGIWFhfTo0YP+/fsDLnvI/4IHfVNLtJp5eXn5QSEvf27UNddcE6hOYfHwww8n1C+WgXrxxRcZNWoUI0aM4JlnnklZh0gDFUTqfiyKi4uBtuNB7d69m/Xr19OuXbvGa/fD3kGRyvjTqlWrUFWGDRsWeq1LC/G1js8DZ0VtY4BNwDeB2DM3U6MXUAhURu2vBPp4z08DJgFfFpGl3jaKDOJn+xx11FGN+yZPnszAgQO55ZZbGtORg76p+UanoKD5j7qmpibuoHvv3r0D1SkM9uzZwxNPJDaTINJANTQ0cMkll3D++eezYsUKwM0TSpV0eFCjRo1CRFi+fHmTid/5ij9n68gjjwytLFcqBsr/vhx99NFBq3MQ5kG1AlUdoqpDo7bPqOoEVX1Q01yZU1Xf9LIJiyO299OpQzSR408+v/zlLykvL2fIkCH06eNsa9jjFs2Ry4kSzzzzTMKD3JEGasGCBcyZM4eioiKOOeaYVuuRDgPVpUsXvvjFL3LgwIGsHxcMgli/naBJxUD5IdbIcH1YZJuB2rBhA0888UToRZfTMQYVNFtxy8hH/63vjfPYMo6qHrT0c7wfmYtG0migwgoLJUJL4zfZgKoydepUHnjggSb7/fBehw7xVn35lEgD9ec//xmAa6+9lrPPPjtpfWbNmsXcuXMbX6crScKvd3j//fc3O26ZD/geVLYaqBNOiLkUXqtYtWoVjz/+eKMBSCTEV1lZmZYlfABuuukmvva1rzFnzpxQ5bSmmvm4ZLagFFbV/cBi4NyopnNx2XypnjeQBQtVlRNOOIGjjjqqyQ3fDwfE+5H5IT7zoJpn0aJFzJo1i29/uzEfhl27dvHKK6/Qrl07vvCFL7R4Dt9AlZaWNoYFL7300qR1qamp4ZprruHKK69svJFEGqjq6urQJsOOHTuWCRMmUFNTw69+9atQZGQL/p+7I488MjQZ2Wagvvvd7zJp0iT+9a9/AS17UGVlZfTv358rr7wycF1i4RcrzloDBZQAbySw+f0SRkSKRKRYRIo9HQd5r/008ruBKSJypYh8RkRmAv2AB+KcMhGZgaSZi0ijEfLretXU1LBw4UJEhNGjR8c8Lhs8qFwwUHv2HFx3eNeuXTQ0NNCnTx969erV4jl8A/XRRx+xY8cORo0a1VjZIxnq6upQVXbv3t2Ysu4bqEMPdYVLwhwj8r2oX//616GkzKcTVWXJkiXs37//oLZsDPHt3LmT8vJyOnbs2GRcOWh9fO+xJQO1fPly6uvr01ZjcevWrQC8/PLLoYYfW2OgzsIlR7S0+f2SYSywxNs6AdO95z8DUNW5wPeAW3HezunA+aqaFXfYCy64APjUQL3xxhvs27ePk046icMPPzzmMeZBpY8ePXo0mbeSivcUzYYNG2hoaGhcZ8ofzwrz8zzttNM466yzqKqqyvopAC0xa9YsRo8ezaRJkw5qy0YD5U+SHjlyZIsZsq2hoqKChoaGFsdX0/0HxTdQ+/bt4/nnnw9NTmuW2/hbMluS5y5RVYmxTYnoc7+XnNFBVceo6t9TvRbvfIGE+IDGMNNrr71GbW1to6E6//zz4x6TSQ/Kz/BrKwZKRBg8eHDj6yCWxti4cSO7du1CVenatWtj4d2w/3CMHz8egC1bkppqmHX86U9/Atyy9pHU1tayfv16CgsLm3xmQZOsFxBmeC+SioqKhJJ/0rkAZ319fZNQdqLZs6kQaJKEiPQQkQtE5DLvMeP17xIlyEoS/fr148QTT2TPnj2UlJQkZKAy6UH169cPaDsGCj4N85166qmNz1vDxo0bG3+0PXr0SFtWpp9kk6+sWbMGVWXIkCGhzjVK1oNKp4FKxHim00Dt2LEDVW1MSHrxxRdDm6cVmIESkZ8DG4BncQsYPgdsEJG0LbORTfhhvhkzZlBeXs7hhx/OmDFj4vY/7LDD6NChA1VVVTHHWcKkT58+tG/fnq1bt7aZCtf+WOAVV1wRyPk2bNiQEQOV76QjQQKy10Bt3Lgx6wyUH94bNGgQp512WqhhvqAqSXwPuBmYjRtv+gxu7Gk2cLOIfDcIOWESZIgPPvWWXn/9dQAmTJjQ7GRZEcnYTa2goKBx/ZtkUs3TPL0tUG666SYWLFjAN7/5zUDOlykPKt9Jx/gTJGeg6urq+OCDDwAaa2o2R21tLddffz1vvfVW0npVVFQk5J2kcwzKN1C9evXiq1/9KgBPPvlkKLKC8qCuBmaq6lXemNMK7/Eq4NfA1IDkhEbQxWJPPvnkJhllzYX3fDI5DuUvYpdoFYWamhpGjBjBD3/4wzDVCo3OnTtz+umnBxYiMwMVDqkaqM2bNzNx4kRKSkoS6p+MgSotLaW2tpbBgwdz2GGHtdh/5syZ3HPPPZx++ukJy/DJxhBfpIGaOHEiAEuWLGksjRYkQRmoIcBf47T91WtvUxQWFjJhwgTAeSjnnXdei8dkchyqc+fOADHTfGPx1FNPUVpa2iYqGSSCGahwSNVA3XDDDTz11FOcddZZCfVPxkAlG95rbemsRBJgMmWgBgwYwKJFiygtLaWwsDBwWUEZqG1AvIkkx3ntWU3QIT6ACy+8EHAD8T16tJwvkg1zoYzUsDGocEi1isTmzZuT6h+mgWotiazamykDBTBmzJhQjBNAUAn8TwO3icg24DFVrRORQ4Cv4uYuPRSQnJzi4osvZtasWQn/i7ObWu6yadOmxn+6PXr0aCywu2nTJlQ177PtwuDAgQOUlZUhIqEuZ9HQ0JBUmnm6DdTHH3/cYp9MjUGFTVAG6sfACThD9EcR2Y5bYr0QeBOXQJHVeGNPPsVBnLOgoCCp1W/DqmhuhE99fX1jOasePXrQqVMnunXrxq5du9ixY0dCHrTRlPLycurr6xk4cCAdO3YMTU5NTU1SCT9+2PHYY48NS6UmJLJGWTo9KL/2Y84YKFWt9urtXQCcgTNO24G/AS+mu5p5rmIeVG7z/vuuYL5vjPr06cOuXbvYtGmTGagUyMYMPlVtXNHXnz8YNi0ZqLq6urSuF5VODyqweVDqeF5Vb/Sy+W70VsbNCeMUxhhUspgHldv4n1ukgYKW/3Ds2rWL2bNnJ7xcSCaprq5OW/V03xD4UyDCIhkD5RcA7ty5M127dg1Rq0/J1jJHOWOgRORoETk54nVHEblTRJ4Tke8EIaMtYB5UfpCsgZo8eTKXXXZZUuHgTNG1a1d69erF3r17Q5fl/7cNs9YdJGeg/D8hffv2zZpxxVQN1FNPPcWFF16YdJkn30D17NkzJbnJEJQHdR9wccTrO4Af4CqM3yMiubFmeIbxB9YrKytDmVNgpAffQEV+ns3x17+6GRpPP/10uIoFSLJZctlMMgYq3eG9REh1/GnixIk8//zzzJgxI2b75s2bOXDgwEH7c86DwiVIvAUgIgXAfwA3quoY4OfAfwUkJzSCnqibCu3bt6dnz540NDQ0fgmM3KN79+7Ap4snxvqRG9lDKh5UPhgon1ge1OrVq+ndu/dBywMdOHCAnTt3UlBQkNAk5dYSlIHqxqdznU4EugN+7YsSYFhAcvIeG4fKbTp37hxqxpkRPKl4UP7vNJ1ELhETSRgZfK+++ipAY0knn8i5fmHNfYokKANVCfipNucBq1TVnz5dBKRnHeJWkA1JEgDdunUDElvi2cg+LFsv98gVD6pLly4x9+frHCgIzkA9C9wpIv+LG3uKXCBkFLA6IDl5T7YMvBqpYQYq90gmSSCTHlS8rMFMVpEIm6DSY24COgL/hjNWt0e0fRF4JSA5hpF1FBUVsXfvXurr681A5SC5kiRhBipFVLUGuCpO26lByDCMbKWgoIC+ffuyfv16M1A5SKpp5umgqKiI3bt3U1BQQKdOnWL2yWcDFfSKul1F5FQR+ar3GDtoahh5Rv/+/QEL8eUi2exB+Yawa9euccP/6RyDSmeZIwh2Rd2fAuuABcBc73G9iNwalAwjWHKkyEdO4N+wzEDlHokaKL+KRKdOndJWRcL/XjUnL589qEBCfCIyHfgJ8HtgDi6rrzdwCTBdRA5R1WlByAqLMIrFGm2HAQMGAOn74RrBkaiBivSe0pXM5HtQ8TL4wAxUIlwF3KWqN0TsWw68LiK7cBN1pwUky8hSkv3R5pMHN3XqVGpra7nkkksyrYqRJL6B6tChA/v27YvbL93jT5Gy2qoHFeRE3ZfjtL3ktWc12TIPqi2Qj6n0xxxzDL/97W8bPSkjd/ANlD8HMR6ZyOD77Gc/S69evTjnnHPi9snEPKh01OGD4DyohcBJwPwYbSd57YZhGFmFqjYaqK5duzZbYzATc6D69etHZWUlBQUFnHnmmQe1NzQ05PVE3ZQNlFdzz+e7wNMiUoebpOuPQX0N+E/gS61R0jAMIwz8+WsdOnRorJ0Yj0xVkSgoiB/oqq6upqGhIW265IyBwpUvihxEEOAX3kbU/vdaKcswDCNwEg3vQX5VMk+Fffv2UV1dTWFhYULvVxC0xmj8jKYGyjAMI6dIxkBlIkmiJTI1Bypd48gpG6hsTxs3DMNoiUgD1dIijNnsQRUUFIQe6vMNVLoSJCDgShKxEJHxIvLHsOXEkPu0iOwQkSdb7m0YRrqor6/n9ddfp6amJtOq5LwH5RuodKzNVFfnFqVo37596LJ8QjFQIjJcRH4mImuAN3DJEulmJm7hRMMwsogZM2Zw9tln8+UvfznTqjTe4FsyUNXV1ezevZtOnTqlbfwlEXz9/UUy840gSx11E5H/EpG3gBXALcAO4Nu4pd/TiqqWALaokmFkGXPnzgVg/vxYs1LSS1lZGQCDBg1qtl+k95RN8/j8MSgzUDEQkQIROV9E5gIVwAPAYOD/vC7fU9XfqGriC664844TkWdFZIOIqIhMidFnqoisEZFaEVksIme05loMw2h7rFq1CoDhw4c32y8bx58gvSG+TNCaeVB3AZcCRwC1wNPAQ7jJul2B77RCryLgA+Bhb4uWPQkXwpsKvOk9vigix6rq2iSuoSROU3GS+hqGkYN88sknQMsGyjcEYRUDVtWUPDML8cXn+zjj9AIwSFUnq+orqtpAK9PPVfUFVb1ZVZ8EYqWmXA88qKq/U9WPVPVanAf37dbINQyjbeEbqCOPPDKh/s1Nmk2VadOmMWzYsJTmNJmBis8fcGM8FwArROQ+ETk5GLXiIyLtgTEcvErvK0BSiyNG1d8zDKMNUVtby/r16yksLGTw4MEZ02P69OmUlZXxhz/8IeljbQwqDqp6FdAHmAwsAr4FvCMiHwE3Et4k3l5AIa6cUiSVnj4AiMh8XNml80VkvYh8LiR9DMPIQdasWYOqMnjwYNq1a5dpdVLCn7sVb7XdXKdV5YdUtRZ4DHhMRPoCl+FSu2/yuvxCRO4HnvT6pg1VjV/+N3b/M/3n3tjU+IBVMgwji0h0/CkXyKbMwiAJLKCqqhWq+j+qOhI4GZfJdxQuyaEiKDnAVqAeV4w2kt7AplRPKiIl/oYlSRhG3pNoBp+ROUKZqKuqi7zEhX7ARKAkwHPvBxYD50Y1nQu8HZQcwzDym2QTJIz0E2qFcVU9gEs/fzqZ40SkCPD/1hQAg0SkGNjupZHfDTwiIv8E3gKuxhnDBwJS3TCMPCefQnz5SrYugTEWVyLJZ7q3PQRMUdW5ItITuBXoi5szdb6qlqddU8MwchIL8WU/WWmgvDJFzY76qer9wP0ByjzTf25JEoaR3xw4cKCxzNHQoUMzq4wRl6w0UJkgqqpEcYbUMAwjDaxdu5a6ujoGDBiQtyna+UDoy20YhmFkGxbeyw3Mg/KwEJ9htB0sgy83MAPlYSE+w2g7WAZfbmAhPsMw2hwW4ssNzIPysBCfYbQd1qxZA1gGX7ZjHpRhGG2OAwcOANC5c+cMa2I0h3lQHjYGZRiGkV2YB2UYhmFkJeZBedgYlGEYRnZhHpRhGIaRlZiBMgzDMLISC/F5WJKEYRhGdmEelGEYhpGViKpmWoesQ0TWd+vWrX9xcXHaZS9ZsoSqqiqKi4vp1q0bAEuXLmXXrl0MGTKEsrIyunXrRqK6vffee+zYsaPx2KKiIsaMGQNAVVUVS5YsoUuXLrRr147t27czcuRIevbsCcD777/P9u3bG4899NBDGTt2LACVlZV8/PHHAIwf7/JJNm/ezEcffdRkXyQffvghW7ZsaTxfx44dOeWUU5J6f3bu3MmyZcuayNi3bx//+Mc/6NChA927d2fTpk0cffTR9O3bF4CVK1dSUVHRZF8sSktL2bhxI8OHD6d///4t6lJXV8dbb71FYWEhp59++kHtq1evZt26dQwdOpRBgwbFPc/f/vY3AAoKCjjjjDPi9isrK6O8vJzBgwczZMgQAMrLyykrK2PQoEEJTzr15Z122mkcckhyQRT/2FNOOYWOHTsmdazPokWLqKmpAT79DBcvXszu3bub7KuoqGDlypX06dOHESNGALBp0yZWrFhB7969OeaYY+LK8L/3keeL5J///Cd79+7lpJNOapwL9e6777Jnzx7Gjh3LoYce2qT/1q1bWb58OT179mTkyJEHnc/Xf/To0XTp0qVJm/+9iqeL/54OGzaMgQMHAs3fB0444QQOO+ywJvv831TXrl058cQT474vseT279//oIoaGzdupLS0tInOu3fvZvHixU3uA0HgXcMGVR0Q3WYGKgYisgQ4HPgkyUOLvcelQeqTAYq9x6UZ1CEIir3HpRnUIQiKvcelGdQhCIq9x6UZ1CEIir3HpRnUIQiKvcelGdQB3OrpW1T1IMtqBipA/HGsyJT1XMSuI7uw68gu7DrSh41BGYZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGVWBafYRiGkZWYB2UYhmFkJWagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGKklEZKqIrBGRWhFZLCLxy0+7/uO9frUislpErk6XrnH0+bGIvCsiVSKyRUSeE5GDyzM3PWaIiGiMbUK69I6h07QY+mxq4ZhRIvI3EdkrIhtE5KciIunSOY5OZXHe2782c0ys/mn9XonIOBF51nsfVUSmRLWL9xlt9N7vEhE5LoHzThSRD0Vkn/d4UWgXQfPXISLtROSXIvKeiNSISIWI/FlE4pemd8edGeczil9+PcTr8NofjKHPPxI4b0bvX2agkkBEJgEzgTuAE4G3gRfjfWFFZCjwgtfvROBO4F4RmZgejWNyJnA/cCrweaAOmC8iPRI4dgLQN2J7PSQdE2UFTfUZFa+jiHQFXgUqgZOA64AbgOvDV7NZTqLpNYwGFHi8heOuijruoRB1jEUR8AHufdwbo/1HwA+Aa3HXuBl4VUS6xOgLgIh8DpgLPIqrtP0o8ISIJLcmS3I0dx2dcZ/H7d7jl4CBwEsiksg6JcfR9DMqDUjnWLT0eQDMj9Ln/OZOmBX3L1W1LcENWAj8LmpfKXBnnP6/BEqj9v0eeCfT1xKhTxFQD1zYTJ8huJvm2EzrG6HTNOCDJPp/G6gCOkXsuxXYgDcfMBs24BZgZ6SeMfoocHGmdY3QZzcwJeK1ABXALRH7OgHVwLeaOc9c4NWoffOBxzJxHXH6HOu9/6Oa6XOm16dXNnwe3r4HgeeTPE/G71/mQSWIiLQHxgCvRDW9gvNGYvG5GP1fBsaKSLtgNUyZLjhPekcCfZ8Skc0i8paIXByyXokwzAshrRGROSIyrJm+nwMWqGrkv8uXgX44A5xxvHDjN4HZUXrGYqaIbPXCtVeLSDb9locCfYj47nvX83fi/1Yg/u+luWPSTVfvMZHfyyIvLPiaiJwVplIJcrr3+10pIr8TkSNa6J/x+1c2famznV5AIS5EFEkl7scYiz5x+h/inS8bmIlbsOydZvrsBn4IfA0XFngNmCsi3whdu/gsBKbgwo5X4d7rt0WkZ5z+8T4Lvy0bOBd3c/9dC/1+CkwCzgHmAHcBN4erWlL472cyvxX/uGSPSRven9S7gOdUdX0zXStwHvtE4Cu4UPRr0sJ4dci8BPwHcDYu9Hoy8LqIdGjmmIzfv5Jb79nIK0TkbuB04HRVrY/XT1W34n6YPotEpBdunGF2uFrG1enFyNfegO9q4HLg7kzoFABXAe+q6rLmOqnqbREvl4pIIS40+PMwlWvLeGNOs4HDgC8211dVV+CMks87IjIEN+a5ICQVm0VV50S8fF9EFgPlwAXAU5nQKRHMg0qcrbixmt5R+3sD8bLHNsXpX+edL2OIyD3AJcDnVXV1CqdYCBwVrFapo6q7geXE1yneZ+G3ZRQv3PIlWvaeYrEQ6Coi0deXKfz3M5nfin9csseEjmecHgOOB85W1W0pnCbbfi8bgfU0r1PG719moBJEVfcDi3FhmEjOxWW5xOKdOP0XqeqBYDVMHBGZyafG6eMUT1OMC2VkBSLSETiG+Dq9A5zh9fM5F9gIlIWrXUJMAfbhboTJUgzU4pIrsoE1uJtb43ffe9/PIP5vBeL/Xpo7JlS8sZa5OON0lqqmaiyLya7fSy+gP83rlPn7VyayTHJ1w8X99wNXAp/Bjd/sBgZ77Q8DD0f0HwrUAL/y+l/pHT8xg9fwf7hsts/jYsz+VhTR507gtYjXlwOXetcwAjcetR/4fgav43+B8d57fArwvHdd/mcRfQ3dcDfNOcBI3NhAFfCDLPheCbCSqAxRr+07wMcRry/EhQJHAkd636ldwMw061yEu+kWA3tw42LFwCCv/UZPr694us7B/RnoEnGO14jIgMUlQ9QBN+H+bPwYOACckonrwA2BzMNleo6O+r1EZoNG/+6/B3wZ550c530XFfhKhq6jyPu9fA6XEHQmzvisj/o8su7+lbYvdL5swFTcP+59OI9qXERbCVAS1X888C+v/xrg6gzrr3G2aRF9HgTKIl5fDnzofVmrgEXANzJ8Hf4Nb793A/kLcGy8a/D2jcJlktXi/jn+N1mQYg6c5X0GJ8domwZoxOsJwBJcynYN8D5u7sshadb5zDjfowe9dvF0r/De778BI6POUeb3j9h3MfCx97l+RIg39Zaug0+nV8TapkSco8nvHjc2W4qbj7QdN+50fgavoxMu+26z976We/sHRp2jyXV4+zJ6/7L1oAzDMIysxMagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGyjAMw8hKzEAZhmEYWYkZKCOvEZEpcRaPUxE5J9P65QsiMkZE9ohI/4h9JSLyZpz+V3qfwZAkZHxZRCpFpCgAlY0cwAyU0Vb4Km4mfeT2z4xqlF/MAP6oqhtClPEMbuLvDSHKMLIIq2ZutBWWquoniXQUkQ6qui9shfIFERmDq4ZxbZhyVFVF5LfAbSJyp6rWhinPyDzmQRltmogQ4DgReUJEduIqTyMih4jIj0XkYxHZ5y2OeFdUwVlEZJiI/NULcW0RkZki8q3oEJb3elrUsUO8/VOi9o/3FrqrFpEaEXlZREZG9SkRkTdF5BwR+Zcn/wMRuSjGdZ4gIk+LyDYR2SsiK0Tkx17bvV7orF3UMV08+b9o4W28EnhPVZe30C8uIjKtmVDslIiuj+OWvPhKqrKM3MEMlNFWKPQMjr8VRrU/iqs1djGuWCm49X9uBf6MWzfnTtyKt4/6B3mL2L0KnAhcg6tKPtQ7LiVE5AJcIdXdwDdwhXq7AAtEZGBU9yNxRYvvxt20K4AnRGR4xPlOxhUHPRL4vnctdwMDvC6zgCOAaMN2KXAo8JsWVJ5AM+scRb3vh3jLV0Tfe37PwSHYv+CWuFnpd1K3NtlHnkwj30ln4T/bbEv3hjMYsYpovhnVfk/UcWd4+/8jav9kb3+x9/oq7/VnI/oU4NamUmBIxP4mRXm9fUM4uPjoJ0RUYvf2dcWtwfOriH0luGrfR0XsOwJ3U785Yt/fgXVA52bep5IYMv8FvNTC+9vb0/+qOOeMV2zV34bEOe9XgQbguzHaHgFWZvq7ZVv4m41BGW2Fi3DLC/hUR7U/HfV6Aq7y85PeP36fV7zHccBS3D/9dar6D7+DqjaIyOO4at5JISJH4TydO6Lk7sF5QeOiDilV1dII2ZtFZDNumQVEpDNwGjBDVfc0I/p+YI6IHKWqpSJyEs4rbCmU1s973BKnfRkuBBjNl4jjZYrIWOAh4H5V/XWMLlsi5Bp5jBkoo63wgTafJBG9cNsRQHvckhax6Ok99gUqY7TH2pcIR3iPf/C2aNZGvd4eo88+wB8n647z6NbH6BfJ07j1sr6FW+/ratxyJs+1cJwvJ15SyW5VXRS9U0SKY3UWkQHAszjv67o459wbIdfIY8xAGYYjet2Zbbh1jM6I03+j91iBW5QumljLr+/DGb1Ieka99pcT/zEwP8Y59sfRJx47cKGy/s11UtUDIvJ7YKqI/A/wdeAuVa1r4fy+vt2T1OsgRORQnEHcCkxS1fo4XXtEyDXyGEuSMIzYvIT7l95NVRfF2HwD9Q4wUEQ+6x8oIgXA12Kcsxy3umwkF0S9XoFbyO+4OHLfS+YivLDem8A3RKRTC91/g8uQewLoAPwuARFlOEM+LBm9ohERwSWl9AX+XVWjQ7CRDMW9T0aeYx6UYcRAVUtE5DHcGNTduEm9DbikhvOBG1V1JW6s5CbgKRG5Gbdq6dW4pIZo5gC3isgtwD9w3tklUXJVRK4BnvEyBB/HeRS9cUuir1XVu5O8nB/iVrR9R0TuwoX7huESPRrnLqnqBhF5Fjde95yqrmvpxKq6X0QWAicnqVM0N+KWSb8O6CcikWNMq1R1CzQaspNxY2ZGnmMelGHE5xu4RIeLcVUMngS+g1vOuxLcDRo4F5cwcT/OYK0Bfh7jfHcC93nnmAd8BrgsupOqvoBLhjgUl379MvA/QB+cx5YUqvouLlFiHXAv8AKuGkOscaknvMeWUssjmQt83gvRpcox3uNM3DVGbpFe5qm4cOKcVsgycgRb8t0wQsCbXPonYKiqlmVWm8QRkUdxxmyYqjYkeExXnLGbqqqzQ9ZvFjBSVeONDRp5hIX4DMPAG0MrBiYB1ydqnABUtUpEfgn8SEQe1ZD+9YpIH+BybJJum8EMlGEY4EJpu/HmH6Vw/N1AIS7JYWMLfVNlCPADVf17SOc3sgwL8RmGYRhZiSVJGIZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGV/D/npk71V02pGgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_cs_leahy.freq, avg_cs_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Leahy cross-power\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_cs_frac.freq, avg_cs_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"rms cross-power\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_cs_abs.freq, avg_cs_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Absolute cross-power\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a cross spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized cross spectrum.\n", + "## 1. We can linearly re-bin a cross spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_cs.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_cs = Crossspectrum.rebin(avg_cs, 0.25, method='mean')\n", + "lin_rb_cs = avg_cs.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_cs.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a cross spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`.\n", + "\n", + "Logarithmic rebinning only keeps the real part of the cross spectum." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_cs, log_rb_freq, binning = Crossspectrum.rebin_log(avg_cs, f=0.02)\n", + "log_rb_cs = avg_cs.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that like `rebin`, `rebin_log` returns a `Crossspectrum` or `AveragedCrossspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_cs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Time lags / phase lags\n", + "## 1. Frequency-dependent lags\n", + "The lag-frequency spectrum shows the time lag between two light curves (usually non-overlapping broad energy bands) as a function of Fourier frequency.\n", + "See [*Uttley et al. 2014, A&ARev, 22, 72* section 2.2.1.](http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014A%26ARv..22...72U&link_type=EJOURNAL)\n", + "\n", + "In `AveragedCrossspectrum`, the second light curve is what is considered the reference in Uttley et al. and in most other spectral timing literature." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "30it [00:00, 264.86it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAF9CAYAAACZN6k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADXRUlEQVR4nOy9d5glR3U2/tbkmZ3ZnKRd7a5Wq1UOoAVERgIswAbjjxxtsI0BG/wDY5tgbD6CZYwJBgMGPptgkkgGhG1kgUAI0EpaSSiHlVarzTlMzvX74/SZrntvh6ru6q7q3X6fZ547c+fevmdqqk+99Z5QQkqJGjVq1KhRo0aNGjXaXBtQo0aNGjVq1KhRww/UxLBGjRo1atSoUaMGgJoY1qhRo0aNGjVq1AhQE8MaNWrUqFGjRo0aAGpiWKNGjRo1atSoUSNATQxr1KhRo0aNGjVqAAA6XBvgI5YuXSrXrVvn2owaNWrUqFGjRo1U3HrrrYeklMtsXKsmhhFYt24dtmzZ4tqMGjVq1KhRo0aNVAghHrV1rTqUXKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRoCaGNaoUaNGjRo1atQAUBPDGjVq1KhRo0aNGgFqYlijRo0aNWrUqFEDQE0Ma9SoUaNGjRo1agSoiWGNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJoYnKW69FXjwQddWnDwYHQVe+1rgG99wbcnJhZkZQErXVmTD9LRrC04+zMy4tiAbBgerOc9nZ11bkB1TU64tKA41McyBT30KWLsWuPtu15aY4SMfATZtAs46C9i507U1+rjnHkAI+vrFL1xbY4bPfx74j/8AXvlK15aYYWYGOP98GvOvf921NWa47jqgowNoawMmJlxbY4a//EugsxN4z3tcW2KGt76V5sp551WL2B49SnZ3dADPfKZra8xw9dXAggU0z++917U1+njwQaC9vZr+/HOfA7q7gd/6LWB83LU19lETw4z4/OfJCe7YAVxwAbB/v2uL9PFXfxV+/8IXOjPDGOefH37/9Ke7syMLVMf3hS+4s8MU3/seEXIAeNWrqrNLlhJ49avDn9/wBne2mGL/fuCf/om+//u/B/bscWuPLnbsoM0yQATlox91a48J1E3PddfR31IVfPaz4fcf/rA7O0zxz/8cfv/0p1dnngM0X6QErr0W+IM/cG2NfdTEMCOaF/fXvtaNHabYtq3x59tuc2OHDdxxh2sL9PDLXwLf/37487e/7cwUY3z3u40/V2Xh+fnPgb17w5+/8pXqqOOveEXjz9/7nhs7TPGDHzT+/MlPVie8+ZOfNP7c/Lf4iuFh4IYbwp+/8hV3tpjiM59p/PmTn3RjhykOHmwc86uuolShEwk1McyAffuALVvo+2XL6PH++93ZYwImJW3Kf74KuYYjI63PvfnN5duRBf/1X7RAXnQR/XzddcCBA25t0sHEBNkOAJdfTo/f+pY7e0zwZ3/W+tyuXeXbYYo9e4Cf/Yy+5zHn/4Hv+Nu/pcczzgBOPZX+ljvvdGuTDoaHw43bE55Aj81E0Vd897tk/5o14XMHD7qzRxdHjoTf85r005+6scUUH/84+fPLLgPmz6fnfvxjtzbZRk0MM+Dmm+nxkkvC/MLjx93ZYwImtB/9aEhqb7/dnT262Lo1/J7D37/+tRNTjPHoo/T4trcBT3oS5e195ztubdLBr35Fi87KlRTSBIC77qpGOHloiB4/9rEwZ6wKiuFvfhN+//nP0+PPflYNReLYMXocHQWe8xz6/n/+x5k52lBt5JDyr35VjcIIDmO+/e3AwoX0vTqHfAUT7zPPpLnS1kbRq8lJt3bp4Lrr6PEv/gJ4/evp+4cfdmdPEaiJYQb8/Of0uHIlsHQpJSwfP16NBHd2GpdfDhw+TN+//OXOzNEGO5JXvQr44hfD5x96yI09upicDG0/7zzg2c+m76+6yp1NurjvPnp83vOAxz8+fN535U1KUvUB4I1vDFWgKqRNsGryjneQ8rZpE/mVqmyCACpue+5z6ftrrnFriw44h/ZP/gQ4/XRSOw8f9j8KpCqDz3wm8LrX0fdVUDtf9jJ63LoV6O8HTjuNiDhvon3F7GwoBj3hCcC559L3mze7s6kIOCeGQogfCyGkEOKDTc8vEkL8PyHEISHEiBDiJ0KICzSv2SaEeJcQYrsQYlwIcYcQ4kW2bObE5CuuoJ0Oy/i+h0127iQi1dcHnHMO8M53hr/zvU0DF28873nhzhhozZn0DXfdRQ58wwZSmLu66PkqVOHxwnjOOVQ5yKFN323fs4dUzUWLgN7ekBiy0u8zHnmEHjdtosdzzqFH39VONd/3JS8JNxIPPODGHhPcdBM9PvnJNM+f9CT6+ZZb3NmkA54rp55KhXlPeQr9fNdd7mzSRU8PPTJBXL+eHn3357ffTmlNp51GotBjHkPP+263KZwSQyHEKwBcFPG8AHA1gOcAeAuAFwHoBPAzIcRqjUt/AMD7APwLgOcC2Azg20KI59mwmycBO7+nPpUefXcknMT+3OdSK4wPfQgYGKDnfM95Y2XwrLPokSV83xd7zt+88EJadNgRAhSm9RmsGDI54fCg7/OcE8P5/uTHW27xfwPEism6dfS4ciU97t7txBxtfPOb4fddXURW2tupAMj3SMqvfkWPvPHZuJEet293Yo42WBVncnLhhfTou0ABhPP7b/6GHpkY+q7Sci7hb/82Pa5YQY9V6kqiA2fEUAixCMDHAbw94tcvAPBkAK+RUn5DSvnj4Lk2AH8V8Xr1ussBvAPAP0gp/0lK+TMp5Z8A+BmAf8hrt5RhPgFP5sc9jh45adxXsNz9PIUe8w3q88Q+cIBISmdn6LSZpPgeYmPFhAntGWcAZ59N3/u8y5yaAm68kb6/+GJ6PPNMemSlwldwusSll9LjypWk6g8Ph2TXR4yPh2GqtWvpkUm574s9p0ZwPmdHB7BqFX3vc+rB8eOUjzpvHpFZIPSJvoc1edPJEav16ykatHt3mCbkK3ijw3OEVX3fi9tYuefWaStWUD/DvXuBQ4fc2WUbLhXDDwO4W0oZdRbECwDskVLOUS0p5XGQivi7Kde9AkAXgK82Pf9VABcIIU7PbjI1Qh0cJEeydCk9x8TQ54UeCHNSViuaKzsVn0M+fDOee26ocPLu2PcdZjMxBIgcAn4nLO/cSUUEq1eHzpt3x//9334XoDAR4QUeCFXDW28t3Rxt3HUX5aSuXh2ONecw+TxXgDBF4g//MHyOya3PPQHZttNOI0UfCOeNWvDmI669lh6f+ER6bGujnrqA3+Hkhx8OyTinBfFG3+eNGxAKKHx/dnVRCgIAXH+9G5uKgBNiKIR4CoDXAvjTmJecByDqPJF7AKwRQvQnXP48ABMAmssSghRjnGtgaguYiGzYEDoSDveofdN8BBNDJrRAqAZxAraP4ManvKMHyHkLQbt6nyvZeFfPSidQDWLIqiCr4kDj3+BzaJM3EqedFj7HaqfPJIVbeJx9ditJ8T2sOTZGj2qREm86fVbe2DZ1rjz2sTT+mzf7fXoL+w91zHnD7HOPV1b0n/70cJ6vWkUq89Gjfp8kwvNFFVc4lF+Ftm+6KJ0YCiG6AHwOwD9JKeN0qsUAjkY8z92PFiV8xGIAx6Rsaa16RPl9lF1vEEJsEUJsOZjQCIoVB54MABGW/n4ihj6TQ14wWQECwgnus91s2ymnhM91d/tfySZl6Cyqphiy+n26oq8vWQIsX07f+5x6EOW8qxDW5JyxJUvC55Yvp0T9I0fCFjy+YXY2vEfVzVsVFEMmUOcqcsGSJbTZn5721y+qlfeqX+ReqT6nHvB8UDedbW3h3+HrmE9Nhf58w4bw+aqkHpjAhWL4VwB6AXzIwWfHQkr5eSnlJinlpmXc4C8CLNGrxLCjI5Twfd01HDtGu7G+vnBxB8IF02cFiM//VB0g4D/B2rOH8tqWLgUWK9sR3+0GohVDIKyW9ZUY7thBDrq/vzGUzCTRZ2LIRRCcVwiQosJqp69h8EOHGqvAGawY+twmiPu68rxmsILoazX4tm1UHbt0aZheA4Rzx+c2XkwM1abcQOjffT0a76GHaMxPP70x6lYVVd8EpRJDIcQaAO8B8F4A3UKIhUKIhcGv+ed2kFoYpQry8hqlJkL53cKgsjnqvUeQAzypT2/KVOSffZ0cvNCffnoo3wPhDt/XmxEI20lwMQGDd22+OsGoMDIQki2fiWGUYgj4X4XHc+Hii0lVZjAx9HkDxIpDM0nhxHxf82nZd6iRCCAMcfpcIMb+WlX0gWoQQ4AECdWfM2E5kmuVKxZxxND3zRsHElVVHKiJoQ2sB9ADKgQ5qnwBVEl8FMAFoHzA8yLefy6AHVLKpEYf9wDoBnBGxHsB4N5MlgeIm9Q8OXyt2GRH0qwAsQN85BF/zzXl0IKqpAD+S/hMUpqJIZPzRx/1t4gjTjH0PZTMC3nVFh0gJK2rmxpy+R5iY7ubF8wLL6SWNQcP+tuyJiocC/hPDJuLIBgcmfC5QjZuDeXUA1/9OVd6q2oh0Gi3r2uoKcomhr8BcFnEF0Bk8TJQ0cgPAawSQjyd3yiEmA/g+cHvkvBjAFMAXtX0/KtBVdCZqZuU0YntgP8kRVUMVSxfTkfjDQ76uWhKGS6IXOTD8H3M2Tk3O++eHlJXZmb8zb+Kmy++5+qxetVMrpYto3ZHhw+HhRK+gcc0jhgyifENcYphe7vfpHZmJuzfqqbXAOH/wFdiyHOlmdAuW0b+Zd8+P0UKKcMNMxMqhu/EkO+/5rkyMECEfHzc/37AuiiVGEopj0kpf978Ffz60eDnYRD5uxHAV4UQLxdCXBE8JwD8o3pNIcS0EOLflM84AOBjAN4lhHi7EOIZQojPArgcwLvy2H/8OOWM9fVRPo0K33eYcYohEN6QPobZjh6lquOBAWpvoMJ3Cf9ooIWrJ7UwfM4zHBoilaenp5WM+z7PoyrYAUpu9zltYniY/Et3d2M+KuB/14O4MVef83HMDx2iwpklS8J2Owzf5zmnFXBPVEZ3N/C0p9H3PlYm79pF+e7LlrWSWl6HfG37xmS8eQME+L8WmcL5kXhRkFLOAvgdANcC+AyA/wQwA+AyKWXzrdoefKl4D4APAvhzANeAmmW/VEr5ozx2qWGq5gxG3x1J84kKKnwuQOFdb9TNyLt6HxcdIJkYshLn4+6YTzY57zwiVCp4nvuuGEaRFJ/DyWoYudm3sN2+LpjNzYpV8HM+3qOsADVvfoDqzPPmyBUQbv59tJ03N1FrKJNcX3Npk+b5iUYMO1wbAABSyuZCEUgpjwB4ffBl+t4ZEDH8YOs7siMujKw+t3MnyeUtpS+OEdVOgsHP+UgMederVoEzuHj8wAE/x5zDxFFj7nOSOC86zbmRgP8bICZPSRsJHxdMXlCifAufsnDffRT+bG/eBjsGN4KOGnOffYsOMfR1nifZzn4xoeuaM7Ddzek1QJhzuGePn/48LpcWOPGIoZeKoa9Qu+Q3Y/58+hob83Oxj+oFyPBZMeScjahFp7eX2pJMTVGOpG/gMHEUweJUBFYVfQLb1BzSBIjQdnbSa3zL1ZudDdtJceN2FT7P87jQIEDzfPFi+vt89C3cjoarp1X4HEpOIlennEIEfP9+Pwtn4opPgDAHzkdiyHZHjXlfH/nzyUn//LmUwM030/fNRZBATQxPasRVPDJ83WUmJVkDfod72LnFtZbkv8e3pN/Z2eT5wk2MfXTeTAyb82iBxlw93wjW8DDN9YEBWmSa4bNiyCSlufCEoarjPmF8nBbxzs5k3+LbXAGSiWF7O4VkpfQvtDk9TX5DiGi/6OtcAZLXIfV532wfHAyPwm0uyAP8T2syRU0MDZAUSlaf940YHjxIRGXp0tYka8Bv563rSHwjWAcP0s538eJoksLOxcfiE97Vx5FxX+fLsWP0uGBB9O99JoZRx1Wq8DU8yPYsXx4d+vNZMUxSrwB/j1E8dIgI65IlRMib4etcAapLDONa1TD4eZ/bBJmgJoYG0CWGvi08STtjwN+FHkhXDH3dHSelHQB+V4InpR0A/rasYaUzjhhWeZ77ugFichW30Ps85ml+kVV938L3aXb7OleA6hJDJnzqcZUqfCbjWVATQwPE9Rlj8OTg3YUv0F3ofdzVVzWUHNfbjeGr3UByZS/g7yk/fH/G2V0FxTBtA+TbwpO20PusGKYRLM6x9Y0Ypimdvs4VIH0j4atfTJsrPOa1YngSgm+0qIRfIHQkvhHDtEk9fz6FO4eH/Uv6rfqCGTdXFi6kM7YHB/1Lbk/bSHDOpG8EK+4YP8Ypp1C4c98+ytPyCSfqPF+wwF/foksMffXncWO+ZAnN88OH/ZvnafPFV2KY5hMXLaL866NH/T3NygQ1MdTE1BQ1oG1ri+5LB/i7w0yb1EL4GfKRsrqKYVLVINCYOO7TYq+eNBM3X3y0G4g/xo/R2Un/j9lZv470U0/AqVrxSZoCJIS/qmFVQ8lpvqWjg2yX0j8FSzeU7NP9CaT7xLa2cL74tpHIgpoYaoKdA+8MouCrI0lzgICfeSkjI1T12NvbeuoJw0e7gXQHqP7Op8X+8GHaBC1YQOMeBV9JCs/zuPA94OeY799PhUrLllG7jihUeZ77uOmcmCB1p6Mjui0T4O+5w2mqm/o7nwjWzEw4lnFFHD7aDaQTQ+DEKkCpiaEmeBcQl3wKVFcxBPzMkWAHuGxZfLNTX0mKjvP2laQA1dtEAKToA/HFJ4CfYx53prYKX1VaHWLoo2Koqm5xG33uP8p9Gn2B6hfjwPevT+drHz4cVlN3xBytwWuUbydC6cxzX+/RLKiJoSbSytUBf3eYaaEHIPy7fJrUaWFkwM+FHkgPsam/88l2nrtJY+6rA6w6MUzadPoaYtPZAPlIDNPy9ICQGPpEroDGFkFx8FF50/GJ3Jj+jjuIRPoCnbWIc68feqh4e4pGTQw1oeO8fbwZgVDBTCK1PiqGOjejryTFRDH0yfa0UA8QJrcfOeJXcnvViWHSmPOis327nwtmku0+dj3QUYD6+0lNHBnxa55XVTHU8YlcrDQ5SQVLvkBnw3zWWfToY29aU9TEUBO6oeTOTlqgfDoujG2Py6UBqqsYqsRwdrZ4m3Sho9L6GAbXmeft7TSXpPQr0bqqeZ06xHDBAvry7chNnXuU/y6f5oqO6iYEdWwAwk2HD6iqYqhzfwJ+FnHobIDYbh+POTVFTQw1oRNKFiLcqXFen2tIGS4kScTQR+VNx5F0dVGV+MxMePKFa0xP03xRK9WiUFWSAvg3X9KOCWNUecx9WzDVqtck2/loxaoRWiD8u3yZL1JWXzFMI4a+5epPTxPZEyJ5DeXf1cTwJIJOKBkIk2d9IYajoyTL9/bGV5kCflZU6RTNAP4pb+pcaW+Pf52PJEVnAwT4FwY/cIAWzWXL4hPbgWqPuW/EcHSUugb09EQf+8jwbaEH9MgVEPbE5B6ZrjE8TBXVfX3xnRoAPxVDnRxDwL95fuQI+ZZFi5J9i48boKyoiaEmdEJsQEhifNmp6aiFgH8KEBCOYRox9G2xNyVXvtgNhNWAcaeHMHybLzotmQA/x1x30+nbgqmqhXFdAwA/lRRdxZAJli8bZl1Cy3b7sg4B5qFkXwiWTn4h4Oc8z4qaGGpClxj6FkrWJYY+K4a6i70vJEV3zH2zGwiPuTvjjOTX+abSVnUTAVQ3lKxrt4+KoS4x5EImX3IMdckV+0yfFEOd4hPAvxNndPILgVoxPCmhK4P7dkOaEsODB/2petRVgXwjKaYqLYdBfQA747QF0zfF0HQT4dOYV50Yps0VdcH0pUCsqsTQJDdSCPof+XJEW1WLT7gxe1oUpVYMT0LoNP4F/JscuiRl3jzKFRofp9whH6C78PimAqmn5CRh3jzK+xwbo5YYPkCngh3wjxjqVIEDNOZ9fTTPfWmHUXVimGZ3Zye1fpmdBYaGirdLBzqVvYB/xFCXXHV0+BcFqmrxCZ8Jf9ppya9bsIDI+PHjVAxZZdTEUANS6jVEBfyb1LrEUAi/WtbMzobkOo1g+UZSTMbcJ1I7NUULd3t7ci9AwL8wuO6YA/41iz7RiSHg34ZZN1fPN2KoqxgC/o15VYtPdAWKtjbqkAH40yEjK2piqIGhIVIY+vrizzJlVJUYAn4RrGPHiJAvWJBcCQb4Ra4AfcUQ8ItgqXYnFRMA/oXvdTcRgF9jPjZGCj2raknwdcHUIYb8f/HB9pERGvfu7vQxPxGIoQ9r0cgIzfPubmBgIPm1vs1zE9/CtvviF7OiJoYaUMNUaQumTzcjYEYMfboh2e60Yh/Ar4Ue0FeXAb8IVlU3EUA2YujDmKsV7Gm+xaf7E9BPyldf44NfVMlV2pj7RgxN/KJPiqFaeFK1NdTEt6xbR4+PPFKYOaWgJoYa0C2CAPyb1Lo5Y4BfJxSY2O0TuQLCo7/4KLAk+ERSTgRiqGM7E3YfxtxEdfO1jYcJMfQh381EdeN72Jc+hib3qE9Vsrr5hYB/GyCTMV+9mh596UqSFTUx1IBuYjvgHzHMohj64LyzKIY+LPSAfmK7+hofbOe8GJOQyeHDfiRaV1UxzEIMfVkwTwZiePbZ9Lhtmx9V7Cb+3Ke1KAsx9MFuwMy38Gt8UGnzoCaGGjAhKWryqQ+tGUxs92nhMVEMq0xSfHKCTAx5Diehs5NeJ6UfidYmY+6Twqzb3Fp9jQ/3J1BdYmjiE7u6qJJ9dtaPKvaqEkPdwhOgkVz5sIaa+Bb2nTUxPAnA+SU6C2ZHB+WlSOlHXkpVcwx1G4oDNOZLltCY+2C7SVjTpyo2E2II+LU7NnHePi2YJurVvHlEVMbG6Ms1qk4Mde5PwK971MS3+HR/6p4GBYRr6OysX2NeK4Y1GsCTM62FB8OnhcfECfqUY2jqvH0JD6rOTIdg+bjoVI0YcpsdIYD589Nfz3b7MOYmxFAIf06FkDKb2ulDTmpViaGUZh0PfLk/AbM0FcCfNXR6GhgcpHtPZ/33aczzoHRiKIS4QghxnRBinxBiQgixSwjxLSHEucprfi6EkDFfP9b4jLj3XpzFZhPFEPAr6TdLsrJrBwiYKYaAP47k+HFy4PPnUz/ANPiy6ADVVQxVu9s0PJovdgNmuVeAP6o+N/EdGKAWJGnwacyrSgxHR4HJSTqIoLc3/fW++ETA3Lf4Ms+z+hbXcyUvUjrEFYLFAG4F8BkABwGsAfBOAJuFEBdIKR8F8GYAzXv/JwL4GIAfan7OlwB8rum5B7MYXFXFkENOXV3UgzENvjhAwNx5+9KawSTsAPg15qa7el/yaUzCa4A/dgNmiiHgz4JpEkYG/Lk/geoSQ1O7fSLjJwIx1IFPY54HpRNDKeU3AHxDfU4IcTOA+wG8GMBHpZT3Nr9PCPHHACYBfFPzo3ZLKTfnNBeA+eTwhRiqC2Za7yjArwXTVDH05YY8EYhh1Zyg6Zj7Yjdw8hBDn8a8JoblwzRNxZc1tKo+MS98yTFkNzcd9UshRB+AlwC4WkpZ+lThUHLVFMOqOkAguxN0PeZZiaEPjiSrE3Q9X7ISQ9d2A+Zqpy/EMOvGzfX9CWRXmF3Pl6xRFB/GvKqKYdY0Mh/8eR44I4ZCiHYhRJcQ4kxQyHcfmpREBb8HYADAlw0+4k1BDuNokNP41Ky2VlUxNGn5AjQumK57dlVVMcxDxl2PeVWLT0yJYV8fVT6OjQETE8XZpQPT8L0vC2bWDdDx4+5bkFR1w2xKaNX707VvqSoxNE0j82nM88ClYngTgAlQ3t+FAC6XUsbVlL4WwAEA/6N57a+C8hSfBeANAJYAuE4I8Yy4Nwgh3iCE2CKE2HKwqXTOdNfgCzE0dYA9PZRIPjlJZ0O7hKkT9GXMTRdMzv+cmaHzRF3ClKRUlRgK4Y/tVV0wTTcRHR1UkOVDGy+Tyl7AH2Jo6s9V3+K6B2NVxRXTtb+7mwqDpqfd+/M8cEkMXwPgUgCvBDAI4FohxLrmFwkhTgURvK9JKSNDzc2QUr5GSnmVlPIGKeVXATwFwB4AH0x4z+ellJuklJuWNSX8VLX4xNSRAH6ENqWkFgGAXvsRwJ/woClJAfxZeKqaT2O60KuvdTnm09O0YAsB9PfrvceXhuhZ5rkPflFKc9t9aRGUxZ/7co9WdQNkuvYD/ox5HjgjhlLK+6SUNwXFKM8E0A+qTm7Gq0F2moSRmz9rCMB/AXic6XtnZsx6pAF+OED183XDsYAfC+bICIWbOOSnA1/IVR4y7tJ29QSTLGETlzBVlwE/bFdzl3VaYQD+LJhZiKEPYz4yQj69r48UNR2sXEmPrs+/zbIB8mEtGh+nlI2uLr02O4AfdgPmiiHgxzzPCy+KT6SUxwA8BGBDxK9/H8AdUso7bHyU6RtYuRoY0HfevrRmqCpJ4ZtRl4gDIZlxTQyrqhgODREZnzePjrvTgS8OMM+Y+0AMTRYdX4ihadqB+lqXY24aAgdCYsjHurlCVRVDVS3U6Y4B+DfPTRRDX0htHnhBDIUQKwCcDeDhpuc3ATgXOdTC4DrzAfwOgJtN32sqgQP+TIyqhpKZjJvcjGpyu0tUlYxnmec+LDrq51eNpGQZc18WzKqGkvMQWtebzhOBGOrCl3lu2pEECG334fjHrCi9j6EQ4j8B3AbgTlBu4UYAbwO1qvlo08tfGzz/tZhrrQWRyfdLKd8fPPcOAGcB+Bkor3AtgHcAWAngVab2ZtnV++AA1c+vGknJohj6YDeQT72q2oLpCxmviWH5qOqYZ1EMffMtJv7ch7WoyuJKFtt9Olo2K1ycfLIZwEsB/AWALgA7AfwcwJVSyu38IiFEJ4BXAPhxQrWyANCORuXzAVB7m98DsABEPn8F4A+llJkVwyzJp0eOUO6WrnxuG3l2mC6dYB7F0LXzzjLmp5xCjy5zmLI4QCbufAygq3mexXYfSG2eMNXRoxT6101vsY2qEsMsGyCe54ODbsc8T5GVD2Nucn9y3u3gIJ2FrpveYht5FMOaGBpASvlhAB/WeN0UgMTzAAIiKZqeuxrA1TlMbEAWxbCnh77Gx6lXms5xdEXgZFIM+/vJkYyMuHUkWRbMU0+lxz177NujiyzOu6srnOejo5Sf6AJZ7lEfclKz2N3RQbYfP062m9zbNlH1ULLJmLe3U4750BB9mZAEm6hqukcWu9vaaL4cOkTzZcWKIixLRx5Vv8qhZC9yDH1Gll094EeunmmDa8APu02PCQNIrfJBBcpCxvm1LklKlhAbEN4XPihvVVUMTcfch/YpVVUMs85zHzbMWSIpVSXjgB+2n6yKYU0MU5BlV6++3qUjqWooed8+euRqQF24HvOpKepL19ZGCoMuqkqugNB2XrTKxuxsdXNSs46564VnaoqUeVbSdOEDMcwSSgbc36NqY3CTee7TmFdtngPZ1n9+rSufaAM1MUxBXsXQ1cIzMUHOu6PDzHm7thsIHQEn8erCte2qAzTJQ3Jtt/rZpgummmfoAkNDtGgODOj3vATcL/RAdRfMLO1HAD8UoKxj7voeHR2l/os9Pfr9F4FqE0PX80Ul4ybrv5qTWlXUxDAFWSe16xtSrWAzcd4+hJJNTz1huHbeVVUjgPyKoSvbq7pxUz/b1HafiKEJXPtEoLrEMAtBAfzoqZs3TcUVwVKboZvkrNfE8CRAVUPJWcLIgHu7AVKBAHNi6LqgoMr5S1UlhlkXTNdzBcjvW1wtPFkJrU/EMOt8cTXPs+QXAo0dMlyhqmkqWedKTQxPAuR1JFUjhj7kGKqnzZjAdUFBlRXDqhafZB1z13MFyL5g8n3hauHJq175UExQtc1blvxCwC8ynjVNxfU8N50rru22gZoYpiDr5GCnyepX2TgZFUPXYXAb5EoaH9poB3lJrSsneDKqtEwMXfmWrMSQjxUdHqYCFhfIqzBXTRlX5/nsrE2L9JF1nrvOX64VwxqxqOrkyEoMVaXTlSM52RTDjg7qATg7S4umC1TdeZuOeU8P5Q1NTFAfRhfI61tcE0PTudLW5j4iUdWc1KyhZPYtUlLOnAvk9S1VUwznzaO8fi4YqiJqYpiCvHKyqwUzKzHs7KRm0S5JStWLT7I0wPXF9qqGkk3t9qHvZVbf4jqUbGOeu1L1T7ZQsvoe1/OlasQw6zwXwv3mLS9qYpiCqiuGpkoK4N4J8s2UVTGs2q5efU/VCFZV7Vbf42K+ZO2/CFQ3lAy4XTCzth9RX+96E5FnzF2sRVJWlxhWdcxtoCaGCVAnddWIYdadsfoeFwsmN89tazM/Ys11onVWQgu4HfOZmewkxfWCmYcYurQ9a/9F4MQghi784ugoMD0N9Paa9QIE6k1nVoyPA5OTQHc3pW+YwPUamse3uLY9L2pimICxMXIkfPaxCVxPjKzhWMBtuEftv2h6WL0vzjvLmLt03uqi095u9t4qE0OX86XKi06eTadL2/MQWtddJqoaSj4R5nnVNkA2UBPDBOTJpXE9MfKQFJcJ4lnOd2ZUmRjWJCUbbCiGLsc8i2+pco6hS9ttbCLqULIZTlbf4tr2vKiJYQKqujNWP7dqJIUVw5MpNxJwq7xVNRwLVHexz+NbXLcIqipJydraSH2P601n1ULJVSZXeea5681bXtTEMAF5dsZVdt4uQ8lZ248A/jjvqpHxk50YVnXMq+hbXBaf7N9PjytWmL/Xda/RkzGUXGXf4prU5kVNDBNwsiqGLkPJeXb1/f2Ulzgy4qaBblVzDPOotFV23j6EkrPYzX3SRkYoB7psVNUvMjFcvtz8vT09VEAxOemm72VVVdo887ynhwqzJiZo3MtGVcfcBmpimABbk3piwqZVeqi6epWFpLjuTVf1Mc8yz3t73c5zGwpz1UJsbW1ulbeq5hjy/znLXAHcbiROxlCy2g+waqS2JoYnMPI4QNeT+mQkKer7XNh+MuYYupzneXoBAm7nSh41AnDXQD9PL0DAbaudPPcn4DaEb0O9culbspLxqlax18TwBEaekAngbnJMTVGrnfZ2oK/P/P0+5BhWjRjOzoYLT3+/+furTMZdkdrhYSIq/f3mbXYAf1oEZYErkqL2AuzuNn+/D5vlvMTQZbFSVdNUqraGArViWCMGeRRDwN3kUNVCIczf77JRdF5H4opg8fGBVSQpeee5K9vzEHHAD8Uwy0Kvvq/sMc+7ifBBMazamKsbfdOm/4DbnPE8kSvA3QZoaoo2QW1t2fxLTQxPYFRVMazqzah+ZlaS4mqx58/LO+YuSUoVFUMguwLkkhhW9R6tMjGsqmKYd6PvMgKUd567WkPVMHKWMa+J4QkMW0pK1YihD7v6rM7ble2HDtHjsmXZ3u+ymCCvelVVxdCHYoKqqVd5iaHLBdNWjmHZY573/nSpGOYdc1fz3FYOcE0MT0CcrIqhD3lAVbP94EF6XLo02/tdVmvmVWldjXmViwlqxdCGNWbIG0p2vdHPG0WpFUN9VDWNzBZqYpiAqu6O8+52XJIUWztMV2OetfqO/14uqCgTVVUM84aSVZJS9pjbIoa1kqKPvKHkqqpXalum2VkrJmmj6v68amu/LdTEMAFV3TXkXXS4B+PkZPm96aoaBs/rALmCXEpqXFwm8i48VQ0luxzzqqq0ee3m/5WLDdDJGkru6KBxVzsnlAVbeZ1VE1dqYngCw9auwWWychaovemqRrCqGtZU3+vKeVeVGOYZc9cEq2qKoVp9nwUdHdTqxgUZtxVKduXPs96fgHt/XtVQct6UicFBN0co5kXpxFAIcYUQ4johxD4hxIQQYpcQ4ltCiHOV1zxDCCEjvo5pfkaPEOIjQoi9QogxIcSNQoinmdp6siqGgBuSImX+HWZVFUP1va52x1VbMPMqhoCbMbcxz11tOm2MuQu/KGX1FUMbxLBqG+aqhu87OtxFI2ygw8FnLgZwK4DPADgIYA2AdwLYLIS4QEr5qPLatwK4RflZ92TQfwPw2wD+EsA2AH8K4BohxBOllL/RucD0NP1Ds/YxAtwTw6o5kvFxGvfu7mzNc4HqOkDAza6ezyHt7KQUgixwnQeUNa8TcDPmo6PAzAwpZ52d2a7hKsSWVzEE6B7Zv7/8MZ+dDY9wzALX8zzPRt/FPJ+epv6LbW3ZDloAqqsYAmT76CjZnud+cYHSiaGU8hsAvqE+J4S4GcD9AF4M4KPKr+6TUm42ub4Q4iIArwTweinlF4PnrgdwD4D3A3iBznXUm7Eto67qOj/ChmJYpu1VDsdW1fa8/br4veq1yoIt5w2UO89tKPquFkxbxBAod57buD+rHEp27c+z+hbXZDyvuLJvH9l+6ql27CoLvuQYHg4edRXBJLwAwBSAq/gJKeU0gG8CuEIIoaVFVVm+t7nwlOm8q7xgVp0Y5hnzKhNDF2NuY567zjGsWl5n3tA9UIeSTWFzzKuqGALVLEBxRgyFEO1CiC4hxJkAPgdgH5qURABfE0LMCCEOCyG+LoRYo3Hp8wA8IqUcbXr+HgBdADbo2Jf38G/gxCCGtWKoBxtO0KXzzrPoVJkY1oqhGaquGFaRjNsMJbvw51WzG6guGbcFFzmGjJsAXBJ8/xCAy6WUB4Kfj4NCytcDGATwGADvBnCjEOIxyuuisBhAVCvPI8rvWyCEeAOANwDAmjVrKj0xbIYeqqak1IqhGWzO8yoSQxchtiqTcZsFP1ULJdf+3Ax5izeBavuWKhNDl6Hk1wC4FJQPOAjgWiHEOgCQUt4upXyHlPJqKeX1UspPAHgOgBWgghTrkFJ+Xkq5SUq5admyZZWeGFXfYVbReVe1KvlkDyXXKRNmsKEYVjWsyQUUY2NUPFQWqipS5D0mFHC/hlZtzG3BGTGUUt4npbwpKEZ5JoB+UHVy3OtvA/AggMelXPoogKgAMCuFRyJ+14IqT4yqtquxYXdvLxULjY8DU1N27NJBVauSbakRQlAVf9UWzKqS8e5uqmienKS5Xhaq6ltshDXVDhVltiCp6kafieGSJdmv0dtLjejHx2mul4UqC0M24EXxiZTyGCicrJP/l9Yu8h4ApwshmgvkzwUwGXxOKmxMjL4+mtRjY+WSlKoqEjbIlavm3FVVO22Qq7Y2tyHZqs1zG3YL4SYxv+rEMM/9CTSe3FIWbIoULkLJefL01Xle1RSbmhhmhBBiBYCzATyc8JpNAM4CcHPK5a4G0AngJcp7OwC8DMD/Sim1DnmzMTFUklI1513VcI/6/qpV97okhnnsBsoPJ9toWAxUN5Ssvr9qG4kq+xYmhlVU9dVrlQFbY172fJHSbn5kFYlh6cUnQoj/BHAbgDtBuYUbAbwN1Krmo8FrvgbgkeB1x0DFJ+8CsBvAJ5VrrQWRyfdLKd8PUH6iEOIqAJ8QQnQG13kTgNMBvErXThsOEKDJcfQoTY48kroupqZIoeRzYLPCZSjZxpgD5ZGUkRFqZNrdXT3FsKpjbqNhMVBdpRMon4xPT9O4CwHMm5f9OlUNJQOh7WUphuopOVXbdNoacxe+ZWaGGv5nPWgBqImhKTYDeCmAvwC1j9kJ4OcArpRSbg9eczeAVwB4C4A+UCub7wH4OynlIeVaAkA7WpXP1wH4EIAPAlgI4A4AzwnyFLVQ1d2O6kSyNhXl96vXKwO2yHjZC+bBg/S4fHm+MXcRGqyqYlhl1a2qvkVd6G34FhebzqqFkoeHaQPU15dvA1TPc33YFIWAmhhqQUr5YQAfTnnNlQCu1LjWdhA5bH5+DMDbg69MsJWT4pIY5kFVw7FAmBdaFkk5GjRHypNLA1RbMSyb1NpWgMqc5zaaRAPlKym2FkzXp3DkQdnE0LaiX0WV1tUGqGprv014kWPoI3JPjslJ4N3vxjMmrgFQMWI4M4NlB+9FP4aqR1K2bsVjp24CEOaJFA1bjmTx8A4MYLDUti9W5ouUWDh/FkD5imGuMT90CKd/7YMYwGD1CiFuuAHPOvptALI0263Mlde/Hs94/XrMw3D1SMqb34xP3vR4LMOB0my3QsanpnDadz+BjXigeorhxAQWD0w1XK9oWLk/Z2bwlPc9C/+Av66J4YmE3I7kAx8ArrwSH9zyHPw+vlQdYjg0BHR04OwXnYchzMcVe/7dmm1pyK0Y3n03sHEjPnDtpfgU/qw0kpLbkUxPAwsXYsMz12IQCzB7rDxPknue//VfA21t+PpV7fgGXl6dUPLsLLBsGZZ/6r0YxAKIY1E98YtB7vny7/8OPO1peOsvX4r34gPVISnHjgFf/CJ69j6CYQyg6+h+W6alIjdJeeITgc9+FhuO3IJ/xp+Xphjm9olHjgBdXVj292/DAzjbyTzPbPvOncD69fiPq7rwazwRQ0dtnJibjtz3565dQEcHFt32U/w1/hFTR0ssYbeEmhjGINfkGB8HPvjBuR+/hNdhfN8xK3alIbfq9k//1PDjRw7/IWVAl4BcC8/MDHDBBXM//hk+jeW//r4Vu9KQ25H8+Z83SG13H8jREdYQuQjW1BTwkY/M/fhyXIWOh+63Y1gKco/5e9/b8OMHDr8pn0EGyGX7/v3AH/7h3I/vx99h6c3/bcewFOQm43//9w0/Xr7/6/kMMkCuMb/rLmDz5rkfX4Fvon17bAMNq8jtz5sqHv/u6P+Xyx4T5CLjDz8MrFkD7NkDAHgiNmP19V+zZ1wCcvuW005r+PHGuwfKC19ZQk0MY5Brcnz/+y1PXfL1zOmORsi9w/zUp1qeknffk90gA+Rygh/6UMtTL/n67+UzSBO5HclnPtPwYzcmMX13OQQrl/P+whdaNg2r7vpxfqM0kGvMpQS+9KWGp148fRVmjxzLa5YWctn+uc+1PLVxSzkEK7di+D//0/Dj/xn8cmkd0XOpV9/6VstTK3/zPxEvtA9beZ2M3539Hqanytno5xpzZZPPWLLtlnwGacJWalAD7r3X4sWKR00MY5Brcnz84/T4x3+MOy96DQDglG2/smNYCnLt6m+/Payk2L8fX2t7NQBg+pqf2jEuBblI7Z13zn17/6W/Hz4/odW2MhdyzZVvfzv8XrG17Ypn5zNKE7nmy1e+Qo+f/zx+8bukNP/2T95WSjf3XGN+882kRCxY0KDUTv/FX9kxLgW5bL8/2DCsXIlrX0FpHhff87VSVP1cc2XHDkr1ADD56F4AwAWzd0D+6Z9Zsi4ZuTZAd91Fj1ddhf9+0b8BAJ77X28pZcxz+cQtW8Lvr7sOh8RSDGAYk5/4TPx7LCLXmI+N0eM//zN+8Xu0nl5666dL2Ujkuj8VZXniuHIk0R135DOqZBgRQyFElxDiUiHE/xFCvEoIcQWfb3yiIfOknp6mhQcA/uzP8MtXfgazEFh8bFspC2Yu5/1f/0WPz342sHw5bux7Fv381f+wYlsaMu+ODx8Gvvtd+v6aa3Drn3wh/N2DD1qxLQm5HMmNN9LjaacBXV24q/OxAIC2PbvsGJcAtUease2jo6Gze/7zcfy8J4e/27bNin1JyLXofPaz9PiylwHz5+PbPbR5k/eUs6u3svBccw0OPuF3wud37sxtVxpyqVe//CU9/vZvo2vNyrmnxef+Nb9hGsisXo2PA1dfTd+vWYP9j31u+LtbilewckVRfvADevyDPwAuuww39PwWAKDrY6kNP3IjVwP66WlqUAoAv//72P+0l4S/+9GPrNiXhFz35w9/SI8vfjG653djDD3085vfbMW2spBKDIUQ7UKIFwshfgzgOIBfAfgOgP8A8D8AHhZC7BBCfFgIoXOknfeQksSbtrZwfmqDydXppwMXXojeZf3YhvVon50Gflx8mC0XMfzJT+jxTZRvdcPi3wUAdNxzR+E7tYkJKuTu6KDGokZQHfRTnoJ5CzvxfZDtc7v9ApHLkezYQY9Brt7XVigpBwUfyDoxQT64uztDI9dvfIMWzTPOAFaswPjFl+JhrKff3XSTdVubkXnMp6aAL3+Zvn/ZywAAn19B+YZtu4onV1KGrU649Yk2Dh4EHnmEukufdx66Vi3DfyMgKopSURRy+RbeAD3pSQCAPxj4rh2jNJCLpFx/PRUqrVoFPOYx6FxzSvi727Tb4mZGLjLOvu+KKwAAP1j+xwCA9v17LFiWjPFx8i1dXRl8y1VXkWK4cSOwYAE61q4Kf7d3r1U7o5DLn996Kz3+n/8DAPjQvL9PeLG/SCSGQogXA7gfwFcBTAD4GwDPBnAR6MSSSwG8EkQUfw/AfUKILwRH3FUWzIEGBjI0cmX5/rd/GwA50f8AKRK46io7BiYgs/OWkpwgADzucQAAsWghDmIpxPR0SGAKguoAjcecE3uf9CSgrw8DA8BNeAI9x7v9AmGFGK5ZAwC4cbWyOy5Yecu10G/fTo8vfSkgBAYGgE/hLfTcd4tf9DOPuTqPA5IyuHgdptGOjn07SQktECMjdKv19tLpREZgNWLTJqC9vXGel0DGc5GUX/+aHp/4RPpx6QswxW10Cx5zlaR0dRm+mQnt7/0e0N2NBQuA9yAoLOR7oEDkCiXfE+SGn3ceAOCRZY/HDNog29qBAwfsGBiDXPmFr6YUJqxfP3eNv8P76LkbbshtWxoy+xYpw2jh058OALhq+VtxHMEglCBS2EKaYvhJAJ8GsFJK+btSyo9KKa+TUt4lpXxISnmzlPIqKeXbpZQbATwFwBIAbyja8CIxSy3Zsk3qX/yCHp/97LlrbMal9NzXvhZevCBkXuz/7d/C71etmrvGrxCECK+7Lr9xCci16Py//0ePQcJyfz/wA1YMOYRVIDI7kqEh4L776PuAGPYt7MJVeCk9d801dgyMQa5w7EMP0eMGChLMnw9ciyAvsoRE69zE8MlPnpOme+d34h6cByEl8LOf2TMyArk2EddeS48veAGAJt/is2I4PExpB+3tc5vOvvkduAtBgUHB8zwXSWEi8ixKq1mwANiOdfRcCQt95lDy2BhV9nZ0AGedBQDoWtiH/8Fz0TYzXfiG2UoPwzcQjZg/H/gW+8T//d98hmkg8z16220kUixcCJxCynL/gnZ8Fy+i3/+0nFx9G0gjhuullJ+QUh7TuZiU8iYp5f8B8JHUF3sMVTE0xq4gN+zsswHQpL4Vl7T+viBkdt7f+U74fSDZDQwoxPA3v8ltWxJyqVecR3jxxQCIGN6Ps3G8bSGNd8H5V5kdyX//Ny2aj388cOqpAOjv/wmC3M6CE5ZzjTnPh4suAkB/+8M4A7MQFO4sOJ8285jzmJ5zztxT8+cDV+P59EPBG6BcagQvioEaMTAA3IzH03O33kq5GAUi83y5+mpyqo95zFz8fGAA+E8EXQMK3rzlIuMPPECP558PgNb860HjjxtuKHyjn3nDfP31NGfOPXdOJh0YUNYin6MR/Mc+4xlz17gfZ2Nc9ACHDhXe6TrzfGFF/+Uvn1tD588H7gD5yLm5VAEkEkMp5XjS722/zxfwvZ4pf4lJyOrVAGhiHMZS/KYnCPkUfENmntQrg4Tw971v7qn584EHQLvNOYWoIGR2gIOD4Zj/MeXQDAwAEm24tYvCVnPhoIKQecyZXD3jGQ2OZCvOpOd9dd4jI+TkOjrmFsyBAWACPdjdvoZIQMFFP5nHfOtWegzs5mtswSb64Z5iWzNltvvYMeoY0NcHXHLJ3DWOYREe6jiLEkaVyvwikPkeZTIepNcANOd2I8gdK/j+zKxeDQ8Du3cTsVq3DgD97buxCgfaVtI/s+DQZuZQMue6v/CFc08NDCj+vGD1KvM8n5mhf5gQcxONHgR2tK2j1zz6qCUro5HZ9kOH6PHcc+eeavDn7HsqAO2qZCHERiHE45Wfe4UQVwohrhZClNNzoCRkVgwfeIDI4fr15MAROtGdCJpe3n67HSNjkHlS80L+tKfNPTUwADyEoJ6oYGKYmaQwuXrMY+aStjip/2b5+MbXFITMoSpWpx772LmnFiwAtnERR0mbCGO7776b1IhzzpnLLOdr3NwWhDYLXjAzz3Me0yB/ia9xDygPq2himPlcbc5dUuyeG3NRTjg58z36cNAMeuPGuado8xYkE994Y6GtX3Lfnxs2zPkWJinXtlFBx1wqSEHIHEpmux4/t2RjYAD4LwTk/PbbKfGyIGSeK7t20VxYvpyqP5VrPCJPp298FVeOHKFHpan4CU8MAfwLgBcrP38IwF8AOBXAx4UQf2rTMJfITAybkn2BcFIfmQq+4Z1cQci8O2ZiGOSjAGT7NqyHFIISrQsMD2Z2JFwFFuQuASExfGiS8vawe3c+41KQ2ZHwgqmQcVZSptu7gH37Cq1MzjzmvOg0qW4AcN10EGb7+c9z2ZaGzIt9BDHkeT7V0UMLU4GnFGQmhqwGXnbZ3FM85r+aDqIRBRPDzOoV914844y5pwYGgF8gnPdF3qO5KpIBYFl4EtH8+SRm3TMdkFy+hwtC5nuUw5ZN/nwQCzA4fxWlHRSYYpN5zHmuKKkeXKh192zwXMEpNtw1wNj24JSW5vmyHesw29ZO4z1ejWCqCTG8CNSqBkKINgCvBfDXUspLAHwQFS84UWGTGM6bR47kRzPPoSd8zI84fJi++vvnkmb5GhPowfGB1bS7LFDtzNzCgx2JQlK4+nCnDEJVPhLDoSEa856eMIwPciSzaMfR/oDUFhg2ybyJ4DEP8mgBoLOTxMOb5abG1xSETLbPzISVpKefPvf0wACN+cElwcJTYPEMc86FCw3fyIu4Qmi5tdONMiCGvEkqCJnI+NGjpDD39gIXXjj3NJHxM3B0SRCRKFB5yzzP2W+8ONRD2trCfFoAfqpXw8O0wensnAuBq9c4PD+Y+488YsXGKGQmtBG+RQi6zi0INv8FV+BnGnMpw2KkJmFoGp04vmgdvaaEHq82YEIMFwA4HHz/GACLQG1qAODnANZHvKeSyJxjyAuKMjF4Uv8ST6EnfHQkvLvcuLGhVwzf1A+sDoohmo60soncoUFFjQCIYM7lMPlIDNkpr1vXMOZ8jf3zynPeNoghX+cQltIPLI0VhExjfvPNpJSccspcqod6jd0Liw8nZw4N8gYhqF5nzJ8PPIhAvdq+vdCQbKb5wnavX9/QFJav8fCaQAEtMDE/s7rMZLzpeLaGdA8fFUOO/px5Ju0eAvCYH+gr3rfkVgybfEt/v1IIecMNpaQeGNm+Zw/5vMWLG8QV/r8dXFCtcLIJMdwPcMIZfgvAw1JK1qL7ARSXsFAyWDHMHGJTkk/5OvuwErM9vaQSFaQaZm7kGhF2AMK//64lz6BvCiwosJkzxtfZgTWQbW10Mx4+HPHm/JidDaO98+YZvJHtVpQrIBzzvV3r6JsCe6VlXjCZOEXMl6MIYqQ7dhQaks00Xzgcq4Tu1WtsnxcQw+DotiKQye6ZmTBnM2Kej6Af04uWUphq/347hjZhepou39bWwKnT0VSMx5ib533FK2+ZfQt3kDjttIanFy5sUgwLIikzMxl9S4w/579/T3e1FEOAbN+F0zC9YDH9Qwua51JmTJlgtfCCCyLFlT39Jy4x/CGAK4UQ/wTKLVQOecUFAKqhkWogk2I4OxvuHs88s+FXNDkEplYEDqagljWjo2RGdzdFEbTBhSVNdvPfv3c26FdeYFPUTM57aooUCSEaQiYA7TCHMB9jZz+GPGxBioQaAm8zuZvYKccQw50dnu7qjx2j+dLT07IBGhgABqF404JCmxMT9K/v6DA8VYHHMvL+BLZ2B+kIBSqGmcZ83z5SIxYsmGsPxODrTJyyjr4paCOh2m3UgJ6JYRO5Yrt3dgUEq0DlLXPaAUcaVq1q+BVvgKb7F9DAcDWqZWT2LSnEcM63+EjGmRg22c4pRuOnFOsXR0bIv/T2Gm6AVGKoYG7Mu09cYvhOAD8CcAWIJH5I+d0LAFxr0S6nyJRjuGsXzaiVK1veyAvP2NJg11zQDZn5ZuSbrEmNmNvtzAY5cAWefpLJ9p076Z+1alXLOXrsSMZWBI6koFy9zOHYFGI4F6ryjaTwQn/66S27D24TdORxdCbrXDK2ZWQmKdwvT0n14OsAwP3txYeSc435hg0tfzDPl9Gla+mbEoihETi9pinVg6/zaHvxIdlMyvi+feRbli9v2X2QbxEYWRn8TQXlR2ZW9CMKCYFwzLeJ4lXaTIrhsWM07j09LSkTbPvIsmJJLQeWli41fCM3xt+0qeHpuYrqjoAYFtzdwxa0iaGUckRK+cdSyguklK+XUo4qv3uSlPKdxZhYPjIRQ3ZsTQ4QCPOJDq8PWgfw8VCWkbtSs4mk8N9/98w5VM3x4IOFVclmqgSLCSOr1xlaVGwRR24yHjPmvxZBPs3mzYWFqjLZzipK0JBbBc+7o6cGylsJxNAITLCUCnb1OtumAlVr//7CGhfnIoZNqpt6ncHF6+gb34ghN+V+6lMbnua58pAsPiSbafPGClCTugyEm87jy4PczoJOy8ndekxpDwSEY/7gTPEqbe6UpiaJdG7MlxSrGGYuDuPNQXDkI2MuGiGDLLwTTTEUQmwTQlwU87vzhRAnTCg5EzGMUd2AcHLsPyUYvoIqNm2TlLmFfqQrDKcUvNgbVSUnkPE5R7IwUFIqQgznHMnoKvojjh0rLD8yFzFsCq+p1zk+79TG11pG5qrBvXvpeyU5XL3OseEO+gdIWVgesG1iONcOa/46+qYgYphJAZIytEfp1QmEf/++sQWUsD82VljeWKYNMy/gTaFBQEmxWRv0j/RtzGOIIdv9yPgpFCs9dChMqLOMTLYzMWzKLwRC248sLFZhzpwDHJOPOufPp9ZR7svOnTTXPYdJKHkdgLiMnh4Aa3Nb4wky5RiqVaZN4MlxoDf4XUH9ozLtjEdGKHews7NFBWK7BwcR/s6nxV5DMTwyEEzLgsLgmR0Jbw5iiOHQsAgde0G7zEy2swNMIIYHFgZ2/+pX2Y1LQKZF5/BhSkxcuLAleahhnnODwX378poZCdvEkKMR+9m3+KQYHjtGYz4w0FCRrF5naAjhPVCQCpTJdt5ERMxz3nQemhf4Fp82bvv30xsXLWpotKxeZ3BIhD7TJ4IVkxsJhGO+d1GxBWKZ7D5wgKqzli1rmedz4spQRzjPK9CyxoQYAkCc1r8JwLF8pviDXIph00IPKIphe0CuClbdjBZMldAG3f0Zc45kEKGD9IkY8s54w4aWX7EjOdDroWL4q1/RJFu5sqXTMds9OAjIM4tNWM5kOzvkiDHn6zy0LAin+JRLy/dck1qoXmdoCGH+YUGk1jYx5Omzp+Aq9swLJgCsWNHyq7kNUAnEMNOGmTeSCcTwcFvQyLigTUQmu9lXNLUeU68zNISQGPqkdsa0HgPCMd/TF/idgv25UeSKN8tNlfdA06az4HluE4nEUAjxNiHEDiHEDhApvJp/Vr4OAvg0gB+XYXAZYMUwE8FKCCXvQ1DEsW9fIccRZXLenAybsNAPDQFyVTDpC1I7cxHDiB3mXGuGDiXHsIAcplw9DIND4lVw02Ipgel1xSYsZ7Kdz1hVjtpizCnjM0soJ/XYMSqVt4xMGyCet01J7UDTPH9CEB70iYwnEEPOhXoUygbIl3nOoeHly1t+1bDp5AWzYFJrm6Ts6g5+t3VroWNuZDeTlIh5znYPDwNyRbAWFRy+N5ov/P+PiLrN9XeVy0nAOHiQij0tw3YU5YQkhqAWND8NvgSALcrP/PVdAG8D8MfFmVkuMimGCWHNhly95cuJeRbQ+iXTpOZQQgQx7OwkkjI7C0yuCX5fUC9D4+KT2dnYNjuAEmKbXEShw+HhQvLGcuXpRSz06rXmqtg5rGUZxraPjVHblM7Olspe9TpDwyJMPShAHc+lAEUsmHxSzswMMLW22LPBM9mukWN4cHyAQofj44XMl0xKCi+Aysk+jAb1iv8unzad7BcT0lT2yRX0Q0F5wJnmCt9vEcVhHR0U6ZQSmFoaKOc+bToTom4874ZG28P5VMA8z1QEmaAY8slno6PAzNpiN0A2kUgMpZQ/kFK+Tkr5OgBfBvAW/ln5eqOU8pNqlXLVYUwMR0dJBezqSqzWbMjVK3DBzKSkrI1OEeVrjZwWJAQX1A/Q2JEcO0anWMyfH7laMTE8PijCG7YAUmu7gAMI/5zRgeIcIJDBdt7MLF8e2ScmMvWggHmeacyZGMaQ8bnQ5vKACPiS7zY5Sb6lrS3St/B1hocRni9bQP5VpjGPOMecwb1Wp6aAqZXFEkNjgjU6SnM9xp/PKW8jItxQF5Crl0kxjCmwYvC1hi8I0j1uvjmbcSng5hXaG4mDB0m97O9PzF8eHkahaU25FMMIYsgnnwFK67QTQDFU8ScAImUuIcQ8IYRJS2WvwaFk7UnN/+i1a1vy9IAmYujbpOZQQkQeEBDafmxp4AALyBtTT1Voyt2NBzeVVQ4sV8HEcHAQYW+pAtoEFUkMB+cFzr2AHKbJSfoyahKdkDMGNOWNFVislGnBTFAMAUXB6gnCngU0LZ6eJtFVCIOTLPbsIYnnlFMajjdjqOHBOZJSQKFVrnkeoQAJoSz2i8tpKaU9X9TjByM6S8+pV0MIyUAB8zyXYhhDDOcq8BcHG6AC7Gbf0t5u4Ft4zDdsSB9z/tsKVMZtEUNA8YtLT8ziky8EX1H4XPCVCiHEFUKI64QQ+4QQE0KIXUKIbwkhzlVe82IhxHeFEI8KIcaEEA8IIa4UQmj9u4QQMubrYp33A0RQIvxwNBLyC4EmklKgYpgrQTwiD0i91tH2oOPn4cPW82nUMJV2w+KDB+kxhhjyzXj8OMJQcwHhniKJ4fHe4hTDTE2iUzYRDeHBCoWS1Wsd7wgqOQsghupJFtpjnhBG5msBwZivVHKYLSNXwU/MPJ8jKcs3Eou47z7rfVInJjJsgDjUFxNFaSDjvm30b7mFHlk9bsLcmM9TFH3L/lw9xk97nqdsOht8CxPDAtdQo5QJ/t+nEMMjS5Q0lQLPerYBE2J4GYAfxPzuhwCeqXmdxQBuBfBnoDOX3wXgPACbhRB8J74DwAyAdwN4DoDPAngTgGuFELo2fwnAE5u+tGOJtvILgfLavhRBDOdsnwrOCJqaCj/IEjLZnUIM50LJxxG2bfCFGGoumEe7AidZQMNl28UE6rWGhlBKKLkIxfD47AAxiNFRP+Z5Sgi8IcS2QpkvlpFrnkeEYwHFt8z20983M2Od1GbaALF6FVEEwdcCyiOG2vNcynC+ROQAA8o8n55HTnJiwrpfNA4jA6G4kqJ0NnQOuOmmTPYloUjF8BgWUc/OkZHCin5swYQYLkdMKBnAQQDRVL8JUspvSCn/Ukr5HSnl9VLK/wDwfwAMAHhx8LLnSylfKqX8WvCaTwB4K4AnAHiGpr27pZSbm7608yCNJgY7kpQ8vcFBhM6mADk5U46hpmLYYLvlHKZMCb8mxJCdTQE5TMbOe3qaFj8hYp3gnAo02U2OZGbGuvO23X5EvZZ3GyD13NsU511kjzfbFclAk3pVAjHUXuwnJogYChFLDBvmy1IlImERmTYRKf68LMXQWBlX865jDvqN3LxZtl1VxrVxxx302NQIndFgN6uhPhSfSJlYlQw0rf8bFNXQY5gQwwMALoj53QUA8tzR/N5pAJBSHox4TaCRI3r0LSOTGpGS2H78OMKu7gWcfmK88OzaRYv9wECqYjg0BODCC+kHy6Q204LJ4xezq28ghtzOxofiE1b/li9vOWuY0RAe5Dll2fYiFMOGuVKgYmi8Adq7N+wbGRNPbFh4CnLeudrs6BBDn0LJDzxAm6Azz2w5x5zRMF9Y1bccws/VOD/GtzTcnz4phnyvRVSBMyLvUcu2q6FkbfCcTdu4qU3ojx7NZF8SjOfL4cO0CVq4MJYJRwpDBeXT2oIJMfwRgPcKIS5UnxRCXADgPQCuNvlgIUS7EKJLCHEmKD9xH4BvJLzl6cGj7onlbwpyGEeDnManmthnc1ffMDGYpDzwgPvwIMv3558fm1DZsKtnde5gFG/Pjlz9F2NyaRqIISsWPoTYEs4aZjQs9ryDvvPOTPbFoUjFsCHHkHfTFmFsOyt/Mfeneq2G5r+WnXcRoeSyFUNtksI2xKgoQNOYF6QYZspHvfdeekzJ0yuaGBrbnpKiol6ryELITIqhZhHk4CAoigIUkgecSVwBYgkt0GR7gcVKNmFCDP8WdLrJrUKIXwcFI78CcBuA4wD+xvCzbwIwAcr7uxDA5VLKuKrnVQDeD+AnUsotGtf+KoA3A3gWgDcAWALgOiHEM+LeIIR4gxBiixBiC2A/3CME3TAz8xeR4jI6an3RNJ7UvEvT2GE2hHsK2tXbTPhVHeDsgkWU3H7smPWmqJmJoYbzHh5GGM6y7EiKqGBvWHTWrqV2H9u3hyfTW4Kx7ZyQf8klsS9pUFJ4A+SDenXPPfQYcX4s0KheyeXB/2XfvsIKxLRtT+kaoF5rcBCFK4ZGKi0TrLQK9mZiWNCYa9tu4FvKUAxtEsOWTWd7O9lt+dzhwolhQRsg29AmhlLKQwAeB+BKULPri4PHDwF4XPB7E7wGwKUAXglgEFRYsq75RUKIflDRyzSA12na+hop5VVSyhuklF8F8BQAewB8MOE9n5dSbpJSbgIM85d4UsfkjLW1hbL66CgKW+yNQ2wGxLBhwfRBMUxxgp2dlGYjJTA82haGPy03Fi+CGDaoQLzZcL2JkDLMA4o4DQKgiGFHB9UnTaCbQrJqQrwlGM9zDjklqLSRJMV1XufsbLjpjBlztTn3xLzFpKYMDrpXO5lcxSz0QJNvKXjTqW339DRw5Ajt5JvOGmb09dGvx8aA6XkL6ImREesN9I0VQ41oRBnE0HijL2UqMWTfMjEBTKKLiJiU1lNVjG3PSgwLUDttwuisZCnlMSnl30opnyil3CilfJKU8n1SyuOmHyylvE9KeZOU8hugiuZ+AO9UXyOE6AWFqNcDuEJKmWl1lFIOAfgvELHVglGOwcwMOeSEfggNiz3HOV1XPfLNmEAMywglGyf8Tk2R7UJokdqGMFuFiGFDnzTLhTPGdg8N0Vzv64vsSwc09qYbGoI/ZFzjDZHtMFyTq6NHiagsWBCbpwc0NVw+/3z6wXLhjDEZ55YvMXMFKIeMG5Mr/vzFiyN70gI0z3nMR0ZF4QSriGhEkcTweMAGeJlLxdAQNbLt64tlZC2+hcPJlvMMjdeilMIT4CQghkVBSnkMwEMA5s5lCxpmfwfAJgDPk1LeZeOjdF9oMxwLNBHDhpliD8aOhMlGjNIJNO3qeaG3nMOUKQQuJZG9mAIOoGnMfbHdVDHk3b/lCrxcaQcJfT8aFvuCiKExSTElhhy2dV3wk9IxgNGQelDA8XJSZrA94dxbRmSOoetQskYIHCieYM3OZsjVM8gxLJIYcuYIn+OdihS1kFF0AUqmeZ6S0gScgMRQCPFDIcRjdC8mhOgRQrxdCPFGEyOEECsAnA3g4eDnNgBfA3A5gBdKKTebXC/i+vMB/A4A7fN/iiKGQ0NoKlO2A7WRa4K40Ahe+DZujH1JZAsS1ySFPz8hZAIUn5ifqXmuaY6hL6qbhroMNDVzL0ClzXRKjoZs1LAB4o2SL2OesmA2zHMmNBaVt7ExIip8jJ0WmJjG5OkBTWPOr7tPt7ZQD8aKYUobLEbRBItJ4bx5scJlK1KOwwPKOYXLWDHkNTRlnjesReyHLB4vNz5OwT+jeZ5VMbTsW2wj7WyP7aDG078BEbVfArhTSjnNLxBCnArg8QCeD+pHuAcJuYBCiP8EFazcCcot3AjgbaAcwo8GL/s0gJeA8hdHhBCXKpfYxSHloCH2wwDeL6V8f/DcOwCcBeBngS1rQQ2zVwJ4VcrfOwebeXpAjApk8TDtTI1cU5KsgaZJrR5FJKXBByUjc/5SggMEYoihxRsy05ibKoZLltDFDx8mVqR9HE8yMiuGKc6bVYJjx1AIqc005hq2Nyw6AwNhk+uREcO+G/EoSjFs2HRyiO3IEWP74pCpPyorOWxPBBrG/KKL6IcHHyQWGnEsWhYYK4ZMDHkBj0HRxDBT0UxK1wAgItWjo4N8y9iYwU4rGUwMjdvsJPhE9XpDQwAuvhj4+tfDCnILKCLXXb1ewwZoxw5iodqsv1wk3n1SyrcCOBektL0P1EtwXAhxRAixVwgxBmAngO+BTi/5/wBcKKVMUuY2A3ghgC+D8v7eDuB6ABdLKTl289zg8T0Abmz6+iPlWgJAe9Pf8UBg8ycBXAvgYwAeAfAUKeUNSX+vikJDydyyxmKftEzFBCl96YCmm3HePPqAiQmrlabGCb+GiuHICAoJJRflSBoW+vb2QsIPRVSwAyExPH4chYy5MUmRMswVTNhINDhvIQontVrQWOjV6w0NIQyxWVQMM81zZgcJ8cQGu3t76bVc/GEJRVRTq9crihgaK52a/rzB7ra2Qo6uLCoC1LCR4HvCYr57pu4YKaf7AE1jPm8eza3JSa9Vw1T5QUr5MIC3CCH+AnSs3BMAnAqgB9SY+n4Av5BSamVqSyk/DODDKa9Zp3mt7SByqD53NQx7KkbBeFKnqFcN4UFeXF2SlMFBInjz5iUqIg03I0A3wAMP0A3Bi1BOFNELECg+lJypCGJ4OFwEY9BgN0CO/uBBciQpxEwXRYU1G/pH+kCudu+mr0WLYit71evN1YMtW0bh0IMHEwsoTGC82Gss9Or1hoYQngt+l42UbOW6MLB7dlaLwTdsOgHyoceOkU9NUex0YTzmPFdTPr9h81ZAio3xmI+MkOrX05PIbFrm+apVpF7t3p14f5ggcwQoxZ8X3SHDuPBkfJwcXWenljLe4FsOHqSvFN7gCibtaiaD4+n+UUr5/0kp3yilfI+U8j90SWGVUKhiWCBJMW5Aq5nw2+C8AbdOMOXcW4Z3xFAltBoFHA3EEHBLsAzneYNKa9HuzORq7drEsE3LPPdhzDkHOGWeNyw8nC9ssb2RsUp7992kYK1alTjmLZtOnlsF+BZt21MaijMa7lGuqHYZvlfVZQ3f0kAMgULC4LaJYdEdMjJvlpcvT0x9aNhE8OuBQo70swUvqpJ9hLFiaJIgXkC+W+adsaYaMee8CySGxo1cEyrBgFAILaqIo4iKZCBGMQTc2q65kWgY8wLzOo0XTNN5zq93ufAwMeQWNDFoWOwLaPuSuemvid1AeF9YrKjO3KnBhIwX0DolF0lJQMuY+xBKNlQMGzoeuLw/NTfLLWN+7rn0aPk0K5uoiWEMtCcH9wvjY7Ri0LDYL13aWFBgAZnzOjRD4ENDwQl+/HqXjoRvyCzFJxbPkc3sADWJYcsO06XamUUZ94HQGhLDhnCP+n4LyJzvZmL7wACFtkZGKNRlAcZ2a5altqi03CbogQeM7EuC8YZZ07dEEkOXJCXrPC8wV892MWGD7apiaOnEmdKIIavRlvsB20RNDGOgpUjMzoYqEJ9mEoOGxb6jg3b2UlqbHMZKiuakbm8PVaCREfiRT5OlRRDL/QcPUoNsCyhadRsZCci4DzmpWULJ/f2U8zQ6qsif+ZA5xJayYPb20vSYmAimh2tFQkrtQoiGea6e2GFJNTT2LRqFJ0CESssbpgqk2DQs9qecQj593z5rR7QV5Vt6esinT07SlxebN81WWA2KYW8vOcrJSWv9gI2LTzR9YsuYF9TH2CZqYhgDrUk9OEgOfGAgtY1IS3jQcs5bUYqhes0GCd9VhezEBOXytLfHHlnFaMgD6uiwrhoaj7lmj7T29vA4v9FRhI7HldqpcWQVo2GeF1DdW5SSIkRMcrurMDgrfj09NBkS0KJIWK5iN1bdONcuhRj29tJcnyPjBZyXbDRfpqfpHhXCrCq5oyMUBiy1ICtynre0rFHfbwHG/vzYMRrDlGLGWFXf0ubNuPhEk9C2jHlDs1c/URPDGGhNDoMW7y0FBZbzrzKHTDSqXBsWTNfOW02yTul1VnQ+TWZimOK81WsODcE6MVQ7/Gvtjo8epZV7/vzUXmdF50cWtWCq1yzi1BbjUxX4/uK0kwS0+BYmhpYVQ9u5tC0LZgH5kUZ+8dAh+kctWZLa4bgl3YNTibZty2RnM4rKMVSvWQQxNJ7n/LnLlpn7c8vEsKgoinrNhpZSHp9+kpsYCiGSZZuKQuv0EHZgGsTQO8VQM5dGvWbDgmmp6pHlde3TQzQbLQPlEUPj5rkpagRQLDE0PslCUy0EmopP1PdY3gDZDiUDMQumpUVnYoIEqa4u+kqFSgxT0DLPLW/ejOc5+4aU4jCgybdYJobqKTkpoishg2+Zm+eWT8sx9uec656S0qReswhiyKeHaM9zA9/SMs8t36OZ11BT27kt0NatRvbFYWoK+PWvrVxqDtrEUAjxx0KIv1R+vkAIsQvAASHEFiGEnQZrHqC9XfNUBT6+iRtWJ6AsYqjtvDmUbKAYDg6CKg3b2qjjvIVcPfVm1BpzTfmer6l+hu38yMzqlQYxbBhzy8SwyJ3xiaAYFhFKzlx4YrqJAKwrhsbRCANiGBmNKEDp1PItGTbLRZNx7TFnpTLheFNGLDG0UMRRVG6kes2WwhlXESBubZSijKvXHBpCWHyyZ4+VMT94EHjyk3NfpgEmiuFbAKiZtR8DcAx02skCAO+3ZpVjaJ9Sw5M6pecVcGIohkNDICl10SKa0BZOPylNvgesV1QXlWOoXnOOpAhB75+ZMbazGUXujBuKTwDrFdVFKoaxDXRdLJiaR7Op12wJsbnyLRkUw7kQmxDkVyx0ayiqIlm9ZlFkPPMGyNQvzptH6SFjY1YKxDKnHaS0qlGv2VLFfs892vYlwbj4hNtJaQhDDbb39dGHTE6GhVo5MDceFmFCDNeCTjmBEGIBgKcD+Csp5acA/B2AK+yb5wbaxNAgxzC2BYmLHMOZGfpctTggAS1FVJwjYaGha6nEsEI5hg1j3tlJC8/srBVFoqiqQcAzxVBKI5W2Iaw5bx458IkJK54380KfhRha7jVqFI3go77a241UoMFBhMc/WurWUGQUpeiCH6P5MjlJecDt7YkncDBaqtgtihRF5aOq12xp++IikjI5SW/QHPPYMLgFv+iaGLYBmA2+fwoACeDnwc87AaSvdhVBSoFxiDzE0KViePAgkYylS7WSzFryaSw2dHVCDC11+TeyfXycBrCzU2ularHdYji5DMXQC2I4OEgOnEleCspw3qWoV5aJodGmUy2C0Nhht/QydElS8uQvFxgGT4UaiUgp4FCv6cWY5yGGLotP1LVfI08hdsxPAGK4FcBvB9+/HMCvpZSjwc+nArB3HpBjaCuGvDvU2DGwA/Qix9BgZwxELPb891ZNMbRcCJHZeWs4khaV1iUxzKMYuiw+MQgjq9csIrndeMwztJMqWjE0WjA1fKJ6zSJIinHaQYZ57oViaDjPvdp0VpUYsiiiIQqp16yKYqirjQHAPwH4DyHE7wNYBOAlyu8uA+Dv+S6G0EiNIWge5QM0hUwAt4qhAbkCPCWGWXb1Lh2JQUhTvaYXzttgzFuqkl0qhgahe/WaLfOlQoqhlIBwmUubccFs2QC5UK8yFCp50SLIoFWNes0iFUPtPD0DYjhvHu2px8YoBbXDpT83KA5Tr3nCEUMp5deFEI8CuBTALVLKXyi/3g/gB7aNcwWttimAEcHiZq7j41TM28kTintnaZXNxcMo3GOgRgBNJ58AITH0PN+N27FMTVGqWHdzQUHOMS+SpMQqhhZUoCJVWj5BZHw8cN4FFZ8UqaQUcV5ykWPe1dU4z3tUcjUzYxACiYaR8sbEMKVZMSM2lOxSGdfYAPX10TyfIykuq5LV3q4a8CqUbLABEoII59AQEfKFKhm3MM9LVWktEsMi+mSbtKt5GoA7pJQfbSKFAPARACMRbzuxYbBraGnm2tNDT0xNWa1M0nLeeRVDi4pEkeqVet25ajA+RqnsggKDimT1ml44b4MFs2WeqyE2ixXVRYSSi1QMjStk86id3d2U8zYzU/7mzZAYehVKNiBYTFKAwC8uXUoM/eBBq75FS3mzNc9dbIA0j09kNNje2Um2z86W7xfzRoA8VwxNcgx/BuDcmN+dFfz+5MH0NDlBIbLvji3dkDMzdHSaEKG6lwjDRaeFGHKs3UIRR+YCDj5WKAVFOUHj00MMiaE3OYZqhWiWXL3OzvBc8JxhNuN5XtUcw9nZcKw0qpLV67Zs3nIqzHxcnXYDes4xNCSGRaTYGI359DSNuXrWdAoafEtHR9i4OOfpJ5OTNObt7ZoHLRhs3ICIueKKGPLpBtp/aEJlcs4DF6Q0PBLPI8XQNTFMirt1A8gvB1QJR4/SbFq0SLuMucUJWroheUL392tGR3nR0XSALcSQ80EsnH5i5EjUxVIzDBybq5dT7RwZoX9/b6/mv7+qiiH3lBsYMHbeLSHZnE5QtVvr3++h89Ye85kZ2vxoHU1TXGsmVXXTGvO8oWSLOYZGKi2nlyxdauzPWzadObs1lD7PXRFDlYll9ee8huUc89FR2o/19Bj6cw98SxGh5MQhEEKsA7BeeWqTEKJZH+kF8HoAO+ya5jkMjqxixCqGOSeHcZiKCZZm5WBL02ImhmUrhjzmmoRWve7cmK9ZA2zeHHatz4giE9uBCMXQVe6VIaEFImxfvpxOCbJIDLWQN8fQVfGJYWK7et0W35JTpc1cTZ03383iPDdKO9C0G4ioTLbU39V4zPNuOl0p48YLV4TtHDnKmY5VZON8oJyNvk2kcePfBzWvlsHXp9CoHMrg52kAf2rfPI+RgRgWraRoT+q8imEBPZiMFswMY95yQ+Z0gqU7bw4N7t6du3CmyCRr9botC09OJ1gWMXS+YBqcesJosZ03fWUTQ4NODUDMJgIof8wNK3vV69ru1mA85oZ+sQzFUGst4oiT5lwBImxvmUDZYJgB4WU0wibSiOGXQE2sBYDrQOTv3qbXTAB4UEp5wvQx1IINxdASwTJ2JBmJ4dy9t3AhhbiGhqgsr7dX19QWZAol51EMLTWiLZoYtvi7JUvowwYHae4ZqEnNcKIYAtaU8aJ29UUp+uo1tWy3sQGyTFK0x9yg/QgQYbdarDQ7q9WwOQ6ZKtgNFMPYMbcYStZCXmKo+kRLY641X3bupMc1a7Sv32K7JZXW4KwKQl5iuHgxjfORI0GbEr2UkSiUTgyllI8CeBQAhBCXAbhNSlmAGRWEh4phUcSwZcHko/R27ybiYHBjN6N0xZD/5qqFe4SgROt776Uwm8fEMFalrWoo2UJ7o9JDyZaIoXG0z1AxbBnzri4KDx4/Tqu1ZrpLFIxIrWEBB1A8GS+NGHZ2EsE6epRsN/CvzTAihjxOeTb6ljpkMDHUrGnMTwz5+McDB+j/p9k6LgpO29VIKa+vSaECG4qhZSVFy5HMzBjr5pFqvQtSa1ipqV7XeYgtb44h4GbhyRBK9kIxVFu1ZF0we3row6anw3smI0oPJbtQxtUxN1TGG1QPS6HNskLJTokhn+Xd3p69UwNgbcz5HtUyxVimSyiyypnvbrSJsOFbAOtrqE2Y9DHsEkL8nRDifiHEqBBipulr2r55HsNDxVC7Aa2UdDNqVt+pSdazfFq22qA7B0ovPnGxYLLzNmizo465lMGTLkJVNhRDFzmGhw/TwC1ZYjzPR0Yi5nmZGyBe5PLkXrkIJR87RgPHqSYaKIOklJZL66L4JEenhsFBxbdYHvMimqEDEWuopUJIHnOt1mNHjtDALV6cqYJ9bswtHaPoIsdQxUdAOYb/A+B7oNzCkxc5FEPbPbuKztNrb6cbZniYvubPR8xW3xxGtnOysmZjbvW6LcTQ0s2o5QBVBUjTeXd0UD/u0VEiKv39cKNIGLZlAIpTDItWOtvaIub58uXAww/TOJx1lrHNDCPbDcOxQHHHVhqRqww+kY85Gx0NThDpgHXF0Civ02C+tFQlu9i4ZRjzri7qSTkxQSnifX2w3iGjaGI4N+ZMDHOGkovsYQjQPqllzC2JFKW3q2nCiwH8nZTyQ/bNqCBs5Lu5UlIAI2II0I0+PEyTcP58RKxE2WBk+8MP0+OGDdrXbxlzbohaZruaDKobX3t0lD7LGTE07PCvXreolAkjMm7gvAGyvWGeu1AM2fYM+W5zt6MLZTyDT+STcgYHg2POFsJNKDmHP28ZcxdRFMO8wPnzaXgHB5uIYZmKoXEpcEKxUpnzPAMx5Gtz8MgWMVQPWrAJk/KjfgA32jehorChGC5ZQp7xyJFcx4UZ3Yw5iKH6WTaIoTqpjRbMPIrh8uW0dTtyRGnMaA4ju7knWwZiqH6WDWI4Oxv+2UYntuRRDF0Un+Rw3upn2WifMjvb2IQ+FRl8S6x6VaYynpGkxLZPyTFfZmbCea51So6Njb6lQogyiGERLWsmJuggE1bHUpFBMWwJVM2fTzLz8DAZkBFG96ct32KBGE5MkNLe1ZX5EpEwIYZXA3ha3g8UQlwhhLhOCLFPCDEhhNglhPiWEOLcptedJoT4jhDiuBBiUAjxPSGEVvmrEKJHCPERIcReIcSYEOLG4Kxne7DhSDo66KaQMlf4IVOStSFJ4Rtyro9oy0pkjrExg27z6pFqeXIM1SOvchAsozG/8056PDfuRMloFBEeVBdLra4UNnIMBwZopRgZyUXGjTZAGZROoBi103jMbahXixbRBw4N5fItRYeS1WvbzBtTQ4NFj3nDXGlvp3tmclL7Os0oSzFUP8sGMTQ+JSfDhjmyQ4YFglV0FEW9tk1iaNzCSxMmxPBTAF4hhPhbIcQmIcT65i/N6ywGcCuAPwPwWwDeBeA8AJuFEGsBQAjRB+qbeDaoyfZrAJwJ4GdCCJ39378B+GMAfwvgdwDsBXCNEOJiTRvTYUMxVN+fY2dvNKn5HM/1uv8uQqwjyXEWq5Hdo6O0PerpCXR4PUQmt1sgWJkUw7VrjT6jCMXQyG71nOQ8fQy5vRGQi2BVdcE0sls9J9mgVUvLPk2IsI1UDoLlZMwtHLlpZPfUFO14DSp71Ws3tCDhaEZZfjFDQZ56bZvHsxqTFFZWNXteAhF2A1YIViZF3wPF0Lg7hiZMcgw5jPw+0GkoUWhPu4iU8hsAvqE+J4S4GcD9oDzGj4JI3XoAZ0kpHwpecyeArQD+BMDH4q4vhLgIwCsBvF5K+cXguesB3APg/QBekGZjKiYnaWbmdSQAOdEHH8xFDI0SZ1kxNEhsV689ZzuTnBy5emXkRkaOedk3ZIZcGqAYxdDY7ulp8vRasaHGa7e0N9q5k4jh6adrX0tFmfPFZuGM8ZgbVvaq127I7LBQIOYklMzvzzHPM6fXGDR3jvQtq1YREd+zx3gjyCi6UEm9dlGKYSpGRoiMd3cbbYAixZWy/XlOMn6iEcPXg47AKwI8Mtzy5gUANjMpBAAp5SNCiF8B+F0kEMPgvVMArlLeOy2E+CaAdwohuqWU+SqqMzqSohVDrd1OhrwOIMGRlDWpbRLDsgkWj7lBvy712jbbYZRRNBPJRyzkGZaRS1tEvlsZ4djIzI7IyW+GTLbnJeNlp3pk6BsJxPhzC228MnVqMFDdgAjby1bG1RNyDBrHx4orgJW1qKgcYPXaVQglaxNDKeWXbH6wEKIdpDCuBfAPAPYhVBLPA/CDiLfdA+AlKZc+D8AjUsrRiPd2AdgQfJ8dGRotAymTuizFMKN61WI7k5wcjX9PGmKYUzF0FkrOmGRdVEN0I9sznKoAJDShL2vBzKm6NSiGFoihk1CyhSb0ZdrtNDUoQwW7em2biqFRODZDr04gRTEsaw21dY96rBhmPxQxP25CcM4ygAsBXC6l5FVjMYCojOkjANJW16T38u9bIIR4gxBiixBiy8G0m8NWyES9hueKYcsNWbZ6dSKEkjMqhs5CyTna7KifBcAKMTRSr2zNl4rkRracZw6EN62FwjajUHLeMVfnucwWpCqjtVFLQR5QPjHMkI8KJOTSHjqUecwzEUNDpVOdK3NmWvTnWrbbEoY8JobaiqEQ4t9TXiKllH9o8NmvATAflEv4DgDXCiGeIqXcbnANa5BSfh7A5wFg06ZNyXdGRufd20uR5/FxpZlr2YqhrbDmihX0B+zbR4UhBgUhjDKIoZqnN3fcbdk3ZEYy3qIYzp9PE2hoKPPB62UQw95eSr8dH1fMtNCz04ik8OfkrZBV78/ZWaPUEUbZqtvcPOcCs4cein1fGozIeI7ekepnoasr7DQ+NJQpTla2Mj435q6IYd7wfXc3PTk0RBtZQ18FGLbB4jE3VDo7Osi/jI0pjf8tpB6UqRg2pAYJQevDHCEwgw9VyZcDuKzp60UA/gDAC4OftSGlvE9KeVNQjPJMUJ/Edwa/PopoZTBODVSR9F4gVA6zI+PE4GauQESitYVQVak5hl1dwLp15BEffdToWowyEn7ZkczOEn8F4M55ZxzzOefd1hZeI2MIv4xFJ3Kel6m8TUyQItHeDqxebfQZLXZ3dtKYz85mXnjKKODo7qavqSmlnRtXJZdVIWszJzVnODnTcXiGdnd2OvYtfIa3EPn9OZA7bYLJlVbfyIy+BYiIXpUZSZHSnjLe3h7+3zKq+s5DyVLKdVLK05u+FgB4Big/8EVZjZBSHgPwECj/D6AcwPMiXnougHtTLncPgNODljfN750MPicfMjpvIIEYlqEYDg3R3WRwZi8j0pHkTLQug6So12+R8Mtw3sPDtLXt6THe1vG/qCE8mNMJljXmto/FM2oSvX8/OfAVK4xV1UiSktP2MhRDICK0mdO3TE+T6tvWphEQmJgIOzXkjUYA1ua5Uc9LQ8VQvb6tMTdq+q9Gf9rbjT4nsXAmIzE0Ugwz5gADCTmpFohhqu0jIzTX+/qMo2RFpDU5J4ZxkFL+AsDHQX0OM0EIsQLUs/Dh4KkfArhU7Y0ohFgH4MnB75JwNYBOKEUqQogOAC8D8L+5K5IBr4ghKwTt7RodRR54gB7POcc4JFaEI3FGDHNWsU1PUyhDa8HkkObKlUbVd0BKcnsZJMXmmPPOuCEhSx8qKUydujbtBsqd5xaIYWQYPANUu1OnrqoW2vAtOcODZYSSgZjTrIDMY85N/7u7NfY0OchVEfO8LMWwJZKSkxhOTtI62tGhsYZmVAuBYoih86rkFGwD8BidFwoh/hPAbQDuBDAIYCOAt4Fa1Xw0eNkXQA2wfyCE+BtQm5wPANgJ4HPKtdaCyOT7pZTvBwAp5e1CiKsAfEII0QngEQBvAnA6gFfl+zMDeEQM1QUz1Xnzh2bIHzmhFENLC6bWmOeYK6wYNnApbqDLTbMN4UwxzFnFXvZcsVlRXUbKBGCfGGbKLzQMx6rXjyzKyzjmZeRGAglj7vlmOVIZL1MxtGl7zrSDsvy5802nAXITw0CN+wMAum3qNwN4KYC/ALWP2Qng5wCu5MITKeWIEOJykBL5HwAEgJ8C+P+klGpDBgFqedO8RX0dgA8B+CCAhQDuAPAcKeVtRn9cHHJMjpaCgpzO2+hmNCoba0Si8/bcCdoOJTsjV0B4HqvnxLBlzJnlZiSGZfQwBDxw3hY2ErYVwyIre4GYMT/tNHrM2EC/rFBySxP6im2WbUaAMimGhtXUgH3F0KjwJGNFsnr9hnnOxTcZi/KcE0MhxHURT3eBFL8lAN6ocx0p5YcBfFjjdTuQkrcYEMkWji+lHAPw9uDLPmzuGjg/ZHCQNG3D07CNbkajU+Ub4XzBtB3WFCI82cOwGqwsBeiEUgyXLKF5fvgwJa719Bhdr4wehsCJkWM4N+YLFuTyLWUUngAxGyBuY8InexiirHs0sqVUWxvl/2XoHJCJpOQgV5H+POM8LzvHMJIYzpWH68OoeNO2YpjTt/hQldwGImHq1xCA7wF4ppTyC3ZN8xg2J4cQuXLejG5GC8TQZjNXZ8SwvT3XLtOpYpjzLFZnikRHB6lAUmZSgZwqhmUSwxyKREshRE7fUkZlr3r9yNyrjNWa2rZLmbnPKBChGLa15VINMxHaHGQ8csxzKm9lVSXP2d7bS1+Tk0p5uD7K2ridkIqhlPIZdj+6wrA9OZYupYlx6FAYKtREppvRsCIZiHEkZRHD6Wla7YTI5LxjF57Dh8l2wxCSUZgqhwOMVAzLCiWr7VkyKBKxytv27ZlISpVDbEbz/OjRTO1HgIRipYy+xWkouayq5KEhmuv9/Zn6gkYeRbhsGY35gQOZx7wsktIwVyL/EfrQFinGx4nAdXbmSmtq6dawezfNF0PhwyjDqijF0DNi6PLkk2qCO2tyE1ZDJObqZSBYRorhw0HR9xlnGH9Oc6NoAOXl0/DisGiRcVsG9fqRY14BksJrF4DyFMNjx+hD58/PtGBGOu8cFXiZxjxniG1unpelGB49Sh+6eHGmeR5JDHMk5jsNJZfVlimHWqhev+EowhzzJdOY5yQpc/M8cjenD22RQr0/DcO+QErfy6IjQEUVn5RRIGYAI2IohLhACPEdIcRBIcR08PgtIcQFds3yGGqoJ8OkjnQkOYihkWLIjspwFwvQOtXXR06EyWhpimGOfBTA/pmmZRHDjg76v0oZkdxedN+rHAs9YN95lxVK7uyk9MfZWdoDAihPMcyx6AAxCnOOxd5o0bFQkDc8rGyALDW4Tp0vGRv+M1pCyUCuPOCyQsnd3aRtcK/Khg8tWjHMcX8CCYohkIsYGimGGWyPnOdlFogZQJsYCiEeBzrf+DIAPwLwkeDxcgCbhRCX2DXNU+R03k4VwxyhQSDihiybGGa02/bB62URQ8B+l3/tBTMnMfRCMcy58Mzdo2UphkX4lsh/hB7KGvO2tnBjO0ewyupjmFMxjCSGvPHOUDhTlnqlfkZDISSQOa9TW6QoYqNvgRgWeTIRQOJKyzwvM0/fACaK4ZUA7gawTkr5Oinlu6SUrwP1B7w7+P2JjyKJYQZFwkgxtESw5mwfGCCJZWREkVf0oT2pbS/0QCVCyUCECtTfT1Iid+A3RFnEsCjFsExi2FBRLQTZPT1tfL2yiGHkghn5pB7KyqVVPyOSpMzJK3owOiUn49nxjEjfwsQwQ7pHmcSwZcxz2A0Y+BbbcwXIpTBnikbYGnN1szwX09fD5GR4uIVhk4dUmBDDS0G9Bht05uDnDwN4ok3DvIVniqERMcwZNkmsqDa0fXqauI0QGs67CMUwBxkvq8oUiLBdiHAcDHf2ExNh15JUR2JpnttWDMsgKZFV7EuWkOM2tF09mUh7zG1ugPhaGea5CzI+Z3tHB+2KpDQ+LWdkhN42b55GqmZOnxjZnvPUU+mxaMUwR46h+hlz9+j8+VTdOzxsHE6WMgMxtBW5Uq/lsWKofsac7T09tABOTRmPuWp3hqy2RJgQwzQ6a0Z3qwrPiCFfR6vQ2FIo2UYvQ6NJbSn0ELlgVk0xBDI7QaOdsWeKofaYz8yEq3TGxd5mL0PV7tR5bsnuyH6Au3cbX097zFXC7EHemNH9mTOUHOlGcuQBZ6pgtxUBEiIzqR0dpVuvt1ejVs1TxVBrnufcvNnMdy8qjAyYEcObALxbCNFghhBiHoC/Bp1ocuLDM2LIhCF1sR8fp3BvZ2emPoaAXRUok3xvc4dZRih5bIy+uroyj7nNfBrtuQJ4l2NoVEwgJS30ho3LGUVsgMogKZF2WyCGqWM+OEhEZd48jcNmo5G42Be5YOZUDCOndI4ijky5kRkq2NXPiDxZyTCcbORbcm70I+1mQpuhR6pRa6OpKVL4MsZubfYDLqoiGTA7Eu/doKPrHhVC/AjAXgArATwPQB+AZ9g2zkt4RgwzVd9l1J1tKm9GxJB3rxmqqdXPsFWVnCmXJuOYO1MMc1Q8qp9ha1dfVgW7+hk2ehmWSQxtK4baC09OBUj9jNI3nWorrAzgf1XD/ZmDGGrbnjP6A9jNvWa7tSJXOTf6kb5lwwZ6fOQR4+tpz/Ocaz9QjGJouyIZMGtwfbMQ4lIAfwvgCgCLARwB8DMAH5BS3mXfPA+Rc3LENkRVr20A546kDOfNixovcoZwRsYtLJiJFdVFEkNLztuG3ep1yiApNjdARq0wilAMWUnJ0EDXuDjMwoJpg6SU1X8RiPHnFSGGNue5kWJou1MDEP7/iswxzBlGVj/DxlpUZCjZKNYipbwTwIvtm1EheKoYpu7UWDH0bIdp5Ehyqle229WU4Uj4/2qjabHRrr6IcI8FxbAMMm5zA+RcMVSLrAzPkS1zzBNJSpELZk5lPLIvbUWIYREqrZFimHG+NPcDbGtDOTmGnimGRYaSE3MMhRBtQojnCyHOT3jNBUKI59s3zVMUQQz7+ihnYWzM+KxHbUfCOSMZjqxiJDqSjJPaKNxjoWhmriMAh9SPHTNuQeJCvYoMJZcRYss45j09lOLHLRUA0KrR3k4efXLS6HpltTZSP6NqxHDePJrSXAgAgHL+5s+nOd5QOpsOF2NuIw84U5FVRn/e10fEZGxMcSORx0TpQZuMn8SKYVtbRP/IhQtDfz43+fVgHAHyhBgWGUpOKz55NYBvABhJeM0QgG8IIV5hzSqfkZMYdnfTgsltLADkavuiPak5Kfe004yur8JZjmFOJ9jVReM+Pa20W2xvLz5Xz8KCGakYluG8c465EDHtjSow5jaVFCNiuGsXPWbcvEWOOZC5vZGLDZCNTWeZiqHabmuOpHR0UHnu7GxxG31PU4NSFUMpwxNhMo45EHGPtreHG6qMGyDtCJBnxNBFVfKrAXxRShmb0Sml3A7g3wD8vkW7/ISFcvVY551xcmgv9rwz5uOaMsBmKFnb7ulperEQmnGKaNjM7SirSbT6GQ2KYdE5hrOzuas11c/Ju/CoRwJqH7fliZJiVMG+Ywd1Dchwljkj8h7l/6EBMZydLe+IM8BujmGm9iM5FnubeYbatnsWStb250eOEHHr788VvbLZDqvMUHJVqpLTiOFjAfyvxnV+AmBTfnM8B5820ddHXxlh87xkF0qKjTwgbbvV3m5tJt2VGhFZ3ZthzI1OVbBADIvIMUx1JIOD9IfyyTYZYWvh4YbFfX0anTmqGkpWw1QZ248AMYpEBmKozvHU265olbaoENvgYO72I0CMP+cb14CkTEzQV0eHhjkWqu+dRID4uitX5urKbKuN18yMwQbIomJos/jERSh5AICONzkavPbEhoWJAdjbNRg5Es9CbGXujIEY5S3DmLPzHxjQWDC5GbKFnXGkYpiRpGgrnTnmivo5eXf1mQqViiKGRTVbtrDQAzFjzsQww5iX0cQdSAmxFUXGc+YXMiLny9q19Lh9u/Z1MjX990wxTA3qGN3M8bDVEN1oA1SHkudwCMBajeusCV57YsMSMYxMhchwRFvZjqSIcE+qI7FEDCOVtww3pNGCyf/LHMTQZo6htk/m1iYZ+0YybC08ZZ40o36ODZVW3UgkwkIIXP2cvIphmUcQAsVEI7RDgzkUffVzGmznXG6DRtFl5l2rn1OqYmiJGNrqk5rpOLwq5tIaIo0Y/hJ6uYN/ELz2xIYlYhjJR3KQlDJaBAAxDpArTYeGjCpNXRHDvIqhkV9jxbCoHMOinLcFpVP9nLwLjyv1qkV1y1D1aKwYWlLGbRFDowKOohbMw4eNqnuNlfEiFMOifUtRxSeq6jY7q30tbcXQqAIuHrY2b5l8i23FUJ3nBmNuiWNHIo0YfgLAM4UQHxdCdDX/UgjRKYT4BIDLAXzcvnmewRIxjFwby3IktomhWmlqcEMaJSsDuYog1M+xpRiWcawcEKMY9vVRmfX4uFHVo/Zib6HwRP2cvE2ujXb1Rc1zrnqUshiCZYHQqp9jK3zvlIz39VF17+RkUwJfMrTH3JJi2FKVDGTyLUZkvKhQcmcn/TNmZ5t2o8kos4IdSIleZYy6pcJi8UmD3Z2d5OhnZ40qqp0phlLKGwH8BYC3AtglhPiqEOJDwddXAewC8GcA/kJKeeKflWyJGNpSr7TJlXrIvW1HAuRSgbR39TnVK1tjru1IZmet7DDnzaPcl9FRypMHQGS8yDG3RAxtKYauQsktBaVF2l6kYpjD7rJDyS2+JUOqSplVpurn5A2DexFKBnKNeRktX9TPiTz9pIgxt9CRRP2c2Hle1EbCEKllnlLKTwC4DMAtAH4PwLuCr98DsAXAZVLKf7Zvmoco0pEUqV6NjlKVSk+PlWrqhkbRQC5Hkhp6sBzWtBVK1jrkfmaGPrirRWzXhhAOCJYlldZWjqH2PB8bo6+uLmLUGWFzA1Q2MbRVUa1t98QElXV2dOSKacUumDkIVqpvsaDoA/aac5fdTqqIeV5Gk2jA3nnm2vP8+HEr/twmMSwylKx1JJ6U8hcAfiGEaAPA/9HDUkr9ZJsTAUUSwyJ3O5YqHru76Z7g0yzmKqGLXOwtEUPbxSfaO+Ociw5/1rFj5JvmeEOFFMO8Y54pHJujFYZ6asvkpLIOFEmwLIfYbJFxo6KZHGPOPH5khNbfuY49FVKvStvoc/7fggU0UTOiu5uimHzYQnd38IsMZNw4fF9EKDkDMSx7rrBv4Y4ic2NeNcVQhZRyVkp5IPg6uUghUF1HYqniEbAXNtFOVrZQwAE4yDG0SAxtVSa7yjG0Nc/LIlexTegzjLlxLq1nimEZ/VEBSpeI7AdYpG+xpBiWvuncupUeczRCB+zOc2NiWDXF0BKhjY0AVZkYnvQoKydFswJPO2RiyXkDdsImalPR1IifZcWwtKpki2NuozLZqDG3p4phmWNuo4jD6GANy30MS9tEFDDP8/qW4eHGo+piYXmjH3l/FuFb2Ceeeqr2teNgw59L6U4Zj+zXaVDAUXbUTf2sPMRwepoyxITIlTUTi5oYmqDI3U53N/1iejoiASEaZZ6rybCR72bUVNRyjmHD0GZoteNiwbRx+omLMU8kVwatGYzH3KIynodgjY5S4bhWaq/lPoaxzbkNN51lznMb0Qh1rqTOc0vtamJbBHF7o+lpresYnUykfnAOJPpzzTGfmKA/sbNTCY3Gocjik8jdfzLKzgFWPyvPhlntj5ojgyMWpRJDIcSLhRDfFUI8KoQYE0I8IIS4UggxoLzmS0IIGfN1v8ZnbI957wtz/wFFKobqdTUnh3aYymPnnYoiFUMhjHfHLsl4HsXQaC3hBtcrVmhdOw6Rzruzk9q+qAn0KTAO3xe1qzccc1V4LaMBPRAz5l1dtCMw2HS6UGltKIZGbfIspXtE+pb2dvpfGrQ30h5zizHExHSPInxLkcUn8+bRuI+NaW/0XUaA8hDDIsPIQPmK4TsAzAB4N4DnAPgsgDcBuDYobAGADwB4YtPXK4Lf/VDzc66JuMb1uSy3VK4OaLQJ0JwcLmRwG45Ee1KPjZHswgtbDtiqBnNBDG3kGBq1ZbBcrdkyzw1zgbTny65d9Lh6tdZ1k2Aj90o71UNKa/do7JjzxmrnTq3rZDrjOSdsqFfaYz45SUyO+1PmQOm+xeIhuTZO4tCeK9PTRJKFKKYVlhDhaU07dmhdp+yjWQE7HTKKrEgGNKuSLeL5Ukp1NbheCHEEwJcBPAPAdVLKhwE8rL5JCPHs4Nsva37OIet9FS2VqwMaiqHmgumy+CQPScl0fmxOvTw2ypBx4amaYqg95kND5MD7+zUO4E5G7IK5bBkl0B84AJx9dup1tJ03kx4+jiwHbBJDo3ZSvb1GdjYjdswf+1hg2zbg9tuB889PvY6LlAkbviVTFCU15pwMW612jLsGaB15lQwb89yoqE1K8olzZefZEDvmZ51FG8SHHgI2bEi9jnGeflHpWEWJKxlRqmLYRAoZtwSPqxLe+loAt0op77FvlSYshZEBe6FkFzK4DfVK+/zYAsiVrV298xxDJj8PPaR1jbLbMqifFateGSqGqbazSrBmjdZ1k2CjiMO4IrkoRR8I0wI0E/ONG9BbnC82Uia0K5It2B276SzKn1vseGCj+MSFupzahN72PLd4j9oohDyhiGEMnh483hf1SyHEkwFsgL5aCADPF0KMCiEmhBCbfcovBOznGGqfN1zUpC4q9FBAwu/QUFPNQ8Yb0rlieM459Lhtm1ZBQdntJNTPilQMgTB/NAXatu/bR48cTsqBUkPJZWyAOFyquWBqj7mltAMgZdOpWQmu7RMt9xkF8p/aUvaJLYCd8H3ZLV8ASicUgsT2htoew3nuMgKUJ8ew6FCyU2IohFgF4P0AfiKl3BLzstcCmALwDc3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMErJsHgz9vZS9GJ8XDnmTL12UYqhhUkded/xdY8epXB7ClwQw/Z2io5Kme9MU29yDDnsyH0LUuBCMWxuoDsHQ2KobTv/Yy14y0hSa9iuxsX92ddHvmVsLN+CWfZ5w0DKptN2+N6iYtjbS/5lfLyp5qFof16USKGOucGms0y7Y3swFkUMC4gANcxzrlA7elSriv2EVQyFEP0AfgBgGsDrYl7TA+ClAH4kpdS6u6SUb5FSfkVKeYOU8jsAngk6uu/KlPd9Xkq5SUq5aVmUk7O4YNpqcumNYtjRQTeklFo3pAtiCNiR8L3JMQSMnKALxVB13qWEqrQbNaYjclc/bx7lF/PReylwEUoufcEsOpQ8MED+ZWSkaXcRDReKoRB2mly7TPdosLu3l3YYk5NNu+houFAMgZg1lOe5ZssaF5u3yDE3rGI/IYmhEKIXpOytB3CFlHJXzEtfAGAhzMLIDQhOaPk2gNVCiOwxJos3I2DnWDwX7Wpi1xeD8IMrYliahD87C+zZQ9+vXGlkYxQiFx3AaLF30fJF/bysxFC7ea6UBl3T0xHb3shAwXIRSgZixpznisaio6rqqRy7gFByy5gb9Ox0QWjVz8ta3as2oC+TYKWmNRmMeZmbTiCll2FRimFRZFy9tsZ8OeFCyUKITgDfAbAJwPOklHclvPz3ARwC8N+WPl6vu2sUypjUBhNjYoI2dJ2dKcWjU1M0qVUHmwOpidYajsRFw2Igv2LIY97RkdLIdf9+euGyZRqdjdNhQzF0oUYA+ftejo7Sotnbm3Is7ORk2GU3Z9cAIIGMZyCGZaoR6ue1NFwGtIih9piPjREZ7+y0skLZGHMXiiGQv1hpZIQIObfii8XMTDnRiCI2+hbJlfp5WZVxPq84dQ2dnKR/bHu7lUpwG8VKJ5RiGPQq/BqAywG8MKmljBBiBShP8OtSyqm412l8ZgeAlwHYIaXcl/U6pSyYBhNDdYCJnVx27iQvv2oV3QE5kaoYGhDDVDXCM8VQzaVJHHMeHMuENo9i6CKUDORXDI0XnZz90RixztsgP9KYpBQ55gYhNmMFaNkyK8cvpLaU8lgxzLvp1Lb72DHy5wsXWvXnpWz0y4hG8P2vkQes7c/ViJuFeW5DMSyaGJbdx/DTAF4C4EMARoQQlyq/29UUUn4VgHYkhJGFENMAviyl/MPg51cA+F2QwrgTwAoAfwrgsQibZGeDZ4qhtiPhUywsnKsJ2HHeVc0xNG5Aa+muTVUMNVQgF60wgPyKoTZJsViRDCTMc76Pdu9OvYbxPZrzpBlGYu6VwSbCVTg2j2+pqmLoKhwbKyQb3KOuxjyvuOIijAzYUQxPtAbXzw0e3xN8qfi/AN6n/Pz7AO6WUt6WcL324IvxCIDlAD4CYDGAEVDhyXOklNdkNxvlKIZcmXTkCIUMEmIKLgpPgIT1pYjdjmeKoStiqCqGUiqbVgP1yrj9iGeKYeqYWzo6kRFLUph47ksPPmjnABdke6RiaJB2UGZFMqCh0hqQlLJTJvJWVLsiKan+XMN27TTTMsQVg1OVjOdKkUoncPIqhlLKdQavvUjjNaLp582gMLV9lDGpOzqIHB45Qlu4hM9yUR0LnICKYX8/5aSNjtJXQk6g9oKpHSvXQ3c3mTg5SS0x5g7HWBX0hN+1K/a9DFc5hpHzfP58muvDw5Tkk5CwaXSqAlDePNcIVWkXn1hWDCMrwdWk/NnZxNM+jJtEWyKGqWFNg81b2ban5nWmbPRdFYfZKCbUdhllEkObG/0y7AaKiaRkhNM+hpWC5Rsyb5NrY8XQouomBE3MhpaFRRBDVmWKdN5CaO+OXZx6wojMM2QiobE71ra9jMXeoLrX9QaoxXkb9DI0DiUXqRh2dNA/Xy3zjoFXeXrq9W2pQOq590Vv9LmNV0q6hyuSohLDhpaFBoqh9p6sjKhbXx9VknBhVAJcjbmNULL2+p8RNTHUgdqfz1Jye6qcnOIEjXukWVow29ry541pEcOxMVowOzqs5UfGhgc1b0htzmQ5NAjE2K42Fk+B1vS1XPEI5FckXKnL/f3EX4eHmzZABsRQ6x6dnQ0nVpHEENAOJ7vKGevrI1FtbKypUXQGFSjR9sFB6tZg4TxwRl6FWTtlwjJJ6ekhwX5ysqk1p+0cw+lp8lNtbeE8zInYjb5mONlFc2uAxryjI6yKnkMRynhG1MRQB0NDtDr091upBAMSjgvTnByueqQBMeuLwQ5Ty5Hw379iRe4D1xmxKpCm7Xv30mNqfUMBxDDSdoMKPP5fJfrkI0fCQ+4T+5ToI7Y+xlAx1A4lW9q4qRugrKefaN2jhw8TOVy82JpvSSWGttQry+qy2ig6skDMlmJomVypnxerMNtSxguwPfEoQlv+XG3JZMmf5426uRpz9YCLrPnutWLoA3gRsLToADGVg4BxKDl1UlvOvQLyJ1prrSdaTMYMeRVDngap/sEzxXB2VnM4C1h08hYruTibmpE4z1OI4cyMZpNoy+QKSCApmsVK2ouO5VCy+pmRxDDFt2j3di1zzDXni6uqZCAfSeF5LkTKPLesLgMa89y2Yli0X8xADE+YBteVhGU1AjgBFUNNYsg1Hl1dKY6kAGKYqhimjLn2wRq88Fp0gnkUw+FhIof9/SlCYAHOO2/fS1ehZCCGpGgqhqrdCXUeheSjxi6YnJPKOY0xcNXaCEgh4wZ514nt5gpU3Vo2nRVQDPO02lHtTpznZaq0msRQe4mxXF8AxLgRzXVIewOUAzUx1EEBxDBvAqqr4hP1MyOJ4aFDiQevqwKmVpNojxTD0VF6TD3MxHLOGBBju1r1mDDm2kNZgAKUtx2G9oJZ4D2aJZRsvHErgBi2RCNsE0PPFEOXdudVDHn6pt6jZW0kbK9DBRDDvKFk9kkubI/k3QsWUJh9cLApybYR2hugHKiJoQ4KWHRio4CaidbGMrhF2yMrTXt6SEqbnk6setR2JJaLfdTPzNomQFsxLCBUFWk7j/nUVMQfFcJ4Z1ymYuhp8QkQQ1L6+kjuHhtrytZvhKtqaiAhGqFJDI1DyQXMl4Yxb25vFANXRTNA/qPltJeYspS3vj6qShkfD3fEEXBJDPMqhmy7CzIeub9sa9NSaosOIwM1MdTDI4/QI/eNs4DYKKDtnVqBrVOyhAeNiaFHiqEWMZSyUEWixfaVK+kxoeHyiaAYln2uNhAz5uqZ4wm5ncb3ZwF2FxpKLqCCHYgh45rtjbQXzAKVzqxpKtr74LKKT9Q2Xgm2e6kYFhVK9kTtLLoiGaiJoR6YGG7caO2SsWuLzYqqmRma/UIUrxgCdh2JdmxFH3mdt1YxAbfCmDdP6USdH7G22ySGHiqGWrbPzrrJG0sIDxorhmXkGGrmjWkRLK5gX7TIWjU1kG/Tqb1gelgIoeXuuOWLZX+e5yhCLxVDQzKeOOYcjWlrs8rE8hDDoiuSgZoY6oFvDIuORFUMIxuL2lAMOfds4UJrLQLUz8zivF2qV2qftKkp5ReaY64V7ikgvAZoqJ0JY64dpipozDs6KCI1Pq78QlMx1LKdT5ZYtIjCvJZQCjEsUzE0rJBNtL2geR475rGH+obwQTE8frzJn2umBmkphuzPFy2y1k4KyBdJcVnBXkrxiXp/JlbXmMEGMaxDya5RQMikq4tEJbWtBQC77WoKCCMDCYqhzR1mAQUceftHaTmSghfMLCqQy5CJEDHzxWbuVQFV4EA+YuiyOEzNMWwgKYaKYaLtBbRkUj8zlhgmNOd2qRjysZVTUzFNizUVw8R5XsD9CZTkzwsY854e2uhzle4cDHMMtfrpWh7zWjE8EVAQwYrMM9SsTNJygjy5LC466mcWmmNY0GIfuTtWb8a81b0FOEAgX7jHWKW1bHuehuhaSkrBJCXLsXguQ8mdnZTFMDvbVDeg2TpF6x4tWzHk8UlY7F0qhurnmp7dq/YZTRxz7rBv6UxtRp5eoy5DyepGv4Fg2dzoF9DDEMhHDAuohW1BTQx1UEC4B0hItE6ZHFJqJuU//DA9rluXx8wWlJJjWIBiqH5uSwVeby9tPWPO15yaol+1tZXfsBiormKofm7DwrNwIQ3m8eNNcf0Q2gtmQcQwloxrECxtklKQb4kkKWpi8+xs5PtmZ92GkmNJyumn0+NDD8W+17iAowxSq96fMWM+NEQ+PfVgrZ076fG003LbqiJPr1GXxBCIIVgc9j16NNa3TE7Spqm9PaWYsIAehkA+YlhAkKEFNTHUQQG7eiB7L0N2JPPmpaSa7NhBj+vX57KzGTYUw1SSUqZiCKSOuWp3Yu+ogtWILO0wXBafqJ/bMF/a2lKVNw6FDgykzPOyw5r8v02o7nXZxxCIOf2uo4MMUs9+b8LwsKZvKYgYxkaMV6+mx4QiK60DqiYn6R/a3m61sA2IIeOdnfQ5s7Ox+ZHaClDBxDBLIaRrYhg55hptX7T9uSvF0EbOeA7UxDANk5P032tvt57tmZUYau+Mtc9wM0OenBQtBaigKlP1c00r2VyHYwtXDPlImu5ujUaNZshamaw9z8smhmecQY8J6pXLPoZAQq2G5oLpoochkEBSNML3WgummhZksZgA0KiSjQmDazdg2LWLHi22TVM/tzDFcGyMwi2px12ZI+uYGze3trxxy1NRXRNDH6D+Fyy3Gc9LDLUbc5YRpgLs7TCPHCFyaLkVBpBdMXRNDPPkGBolti9bZn2eZ114tBfMgohhbK9RDfVKK5R89CgtmH191hfMwolhwWPeMlc0qpJdFnAACf48Jc/QeKNfVvjeIBqROF9U1c2yb8nay9A4clVGeo36OTUx9BwFFZ4A2Ymh8fFJZRFDWzvMgsgVkJAeliLhG7d8KYgYDg01pSpphB6MqqkLWDCzOkHtMS+IpMQOrcaYa4WSWXE888zyyDj3vWT1qQlVVgy1xNcCfUvs5o0/i+dpE7TneUHlqLFkXGOeG/nzAnxL7FrEviBFMUxdQ7dvp0fLefp5+hjXOYY+gFUBy4sOkBCStbXDLMgJxvYDtJVjWNBCr16yxUfbUgwLytPjJGkpm9ob2QolF2Q3kLDweK4YquZFtn3RUFISFUO2+5RTspoYi1iB7cwz6TEmDK6dG1lCVXLDBkjjtBnXimEsGef/L1cVN0HbtxREDNWccdP2Ri5bvgDZFUPtUPKePfRoOa8zz8lntWLoA7iAY80a65cuPJRckPNO7QeYN8ewwF194cSwwN1xZJ6h6mFiqh69VwxtqbSWiWF3N/VKm55uOhaZK6qPHaNfRoBtTww0FDjPY4khK4YpRVauiGFHBy32aucFAPZyDF2M+amn0uPu3ZHv057nWtU15ujqos1+lp66Whv9AolhqmIYo9Jqh5ILKg7r7aVxn5ho8i39/fSLkZHYs9hrYugDeGKxQ7WI2Opez9UrIOaGnDePVlMuZIiAy+a56udWrfgEiAlVdXXRSqr2GVGg3X6kwLlS1eITIGbM29sTtvyNTyeGewpcMFNzDFOIYeJcKbA4DIiZL7295FvGxyMXzMlJWkvb21NaeLkc85SqZJe+JXLMuR3AyEjTsUUhjHIMC0jHiuxjCNhTDAtKx1JPNWyYFmq7uogNs5Q1MfQD2quTOQrNMZyYoLuFW1RYRiQxFCJcnCNaebjukaZ+rmn/KC1iyNV3nZ2FnFeUpeEyt3yZPz/lVMSq5hhOTtILVbJmEVk2EuoR5a6U8ViSkqLSGhWHLVxo9QhCRuyCmVCAol0j6GLMY3OGCFpLzNQUvVBt82QRTKYbFMMUkjI9Te5OiJTaqYIqe4HGU34aYEMxnJ4Ob2TLrY2AbJu34WEyq6+P9klFoSaGadDezpmj0HY16s7YcmI7kJBozV35I4gh90jr73fTlw7IXlFtfBxemWOekAtk3PS3TGKYsqs3rqa23H4EyHZGtTpXEsm4x4qhK0ILJMyXhA2QtopSwpi3mBf7BxGM5nkBbXaAsENVAzHkzwMi57m6yU80qaBegPzZqi1z0KxKTpznqvNMvJGzIXXzFnGPlqEWAjUxTEeB/4msjUVdntnLyEIMteX7EhTDQolhAQ4Q0OhlmOBIvAtTqZ+VhxgWuIkANI5oixhz7arBqiqGBfuW2GIlztXbtq3lPcb5qGWScZ4IeSpkCx5zJoYtBz/xOEUob9p5egUqhjy0jz7a9IsUxdAoBF5Q+W9qNXhNDD2GdnKZOWJTTypAUmKdYAIxdH1OMlAwMSwwTw9IIONcGBWxYLo+Dk/97BYHmNJSQovUlkQMTeaLNjF0oRimNP71gRjGbpjPO48eH3ig5T3GY14mGee+lzEtglwXzQBhKLiFGJ51Fj3+5jct79He6PNaUIDtl1xCj/fc0/QLG30MC8yNVD+7JoZVRIH/idieen19VA7JOWtN8IGkxHaPYGKYsMPU7jZfgO2x7Q345j94MLLSVIukFOy8Y0kKn8TRsm32o1ApVTFM2dW7VAyzhJKNFcMyieGiRWFFdcQ5sj6Q8VglhX1LxJj7oBjG+sRTTqEx37+fcmKb4AMxZL/YMuZMDPk4PgXa/vyRR+iRz7u2CHbbkeeZt7XRzRgxz7VsL1gxzBIxLKOHIVATw3RwH6OCc1IaOo2oSb9Zw4MlhXtaJnVC8YnrczWBxmTlhp5d3d20s5+ZSSRYWiSlbMUwYXesTQz5/1XAmPf2Uj3O+HhTcePAQFjF3pLc5MeYZwnf+6BexS466jmyEbZrpYOVpBi25OpppEwkzhUp3ai0HR0UBpcyXE8UGEWACiLj3Kavhf8lhGS11iEpw/6NrJxaRH8/TemRkab9fHt74hrqupoaqEPJcxBCvFgI8V0hxKNCiDEhxANCiCuFEAPKa9YJIWTM10KNz2gTQrxLCLFdCDEuhLhDCPGiTAYPDZH839MDrF+f6RJJ4KMjZ2fNqmS1FsySQsktzjtBMdR2JAXmpHR301dLbzogbEmUUlAQCyaUBfS8BBJISl5iODhI/8ienkIWHrWor4HUChGqCA8/3PI+H9SrLGRcixiqVaYFePmBAVobR0cjRKoE27XWwoKJYZZTIfi1iWM+OEjjPm8e7VYsQ+1N19Kti5tcR2yYjXJpCxpz5mwtrRYT0j20WvyNjtKA9PRQJMwy2toS7lENkSLRt7BPWrs2j4mxqEPJId4BYAbAuwE8B8BnAbwJwLVCiGZbrgTwxKavZvoUhQ8AeB+AfwHwXACbAXxbCPE8Y2v5Zli5spCqJCC8qUw6oPsQSs6iGGotOsePk2rHalIBiLU9NgNbc8w5h8hyl3xGHsUw0ZHw6T6rVhVSTQ0kOEF2uk35V1L6EUqOLT5JyKXVIobqzVBAlalKxk2KfrT2ZK6iERrhe+0K9gIghDmpHRsj3tTVlcJVXZHxBMVQixgW1CBaRZZ7VCt6xcfhbdiQx7xY+EwMk5qGFIHnSylVb3S9EOIIgC8DeAaA65TfbZNSbja5uBBiOYh8/oOU8p+Cp38mhNgA4B8A/LeRtQUqV4zFi0loOny4KQUjZnLMzNDGVz19JBIlORITxVArTFXSmO/bRzfZqlXKL5gYNm33JyfJgbe3p2x6C+x5CWRTDLVUN+1z0LLDlKSMjdG48+kjsXClGGosmK6aWzMWLaJ77siRpuGJGXO1/6JWNKKgMY/1LTxWWVW3gqMoQOhbjhxp8i0x/lzdcLrqvwgkjHlCHrBWCl7BeXoAjd2jj+oTQykNcwzLLuA82XIMm0gh45bgcVXE70xxBYAuAF9tev6rAC4QQphlv5bkSICEG7JpcqgnEyQKDQXbHrt5z6sYFng2NSM2DM6sr0kx1G6eWzDBKizHkPMYEo+MyAdTYmh86klBC2bs0OYlhgUv9Ornx6pATX/U0aO0aC5cqNlntGzFcP162p09/HDLSRzGPS8LQqw/j8mPNC6aKXvM1XWo6chNrXnuoWI4MkKboL4+yn2ORcEszGfF0Ifik6cHj/c1PX+lEGJaCHFcCPFDIcQFGtc6D8AEgOYT4rmY/Vwjy5ikFHDIPSM1lJx3weSbwzJiu15waCyiGkyLGHIFWwE5nQzTULL2zVjQIfeMWMVwwQLycMPDLQumdo4h4BUxNO6/WNBGgm99zp+fg0oMG6qY/FEMUzedTWOuLda7Cmv29NBnzs62/FFGZLyEMdcNg2v7c1dj3tVFN+HMTMsvtThfCYph7NGyMcTQuAjSZbuaJt9yUhBDIcQqAO8H8BMp5Zbg6QkAnwPwJwAuA4WGLwDwayHEOSmXXAzgmJRNowkcUX4fZ8sbhBBbhBBbDvJNyMSwgHOSGbEta2IkfO0Fs+AQW2xDfLUarGnhMUpsL3DMY4khF43cfXfD01o34+xsmCdXkO2xiqFaxR6zkdDq11Wgt4mtks2rGBZMsPj2adm89/TQP4SLSBRURjFs8i1akbOCz0kGUo6hjjy7rQKKYYwK5EMDeiBlzFPmi9YGqMAxT1UM866hBYkrsetQXx8lnE5MZBcpcsIZMRRC9AP4AYBpAK/j56WUe6WUb5RSfk9KeYOU8gsAngZAAnhPUfZIKT8vpdwkpdy0jCdxicSw5Ybkz2za7WhNjKkpumBB52oCjWcOt9DwlBsy0aSC8/TUz2+5Ic8/nx537Ig0KdGR7N1LiXHLlhXSDB1IUAyBVIKlVU1dUPWd+vmxTa6b5rmW3ePjRBAKOpta/fzI08xiFsyqKoZaG7djx0g9mj+/lOKwpuhl2Ik5DzF0MeZ5QsnT04WHZNUxb/HnMSKFlkkFpx0ACUdRxyiGWsv6+Dgtbp2dhUWAEn1LzEZCq8jKApwQQyFEL4CrAawHcIWUMrolfAAp5U4AvwTwuJRLHwWwUIiWTDB20VH7oXi4JIY8qdmGAMZJ1gVVU3d20sZmdjaiiJcXzCy2a7fTz47Y3XGM6mbUTqLAuRKrGAL5iCHHSRuy5e0iVjHkY86a+rtpjbkqcRVUTa2OeQtJiVl4fFMMrYaSCw7dA+RbYtt4pRBDb8c8pfgk1bdISRdPTP7Mju5u8ufT0xEtRfNsgAqOXAHmoWR2NYkZYgWfew+k+JaYowi15rkFlE4MhRCdAL4DYBOA50kp7zJ4e/Nephn3AOgGcEbT85xbeK/BZ5VCDGNDsjGTWmvB5DL7Ahd6IEHCZ+WJ7QigZXsJW6LUROumhDIfTiYAKAWyq4uEyZY+aSm5ei5bvqifH0sMmzYRPhz7CNA6PDBA63ILSYlYMNX0N1/Uq9gCsZjQoGsFCEhQ9XlCKARrbIwEntSWLy4Vw5gcQ62wJh9HxxGNgpDagixLKLlEYqjbx5CJIbueSJRgt+pbWqJAvHYrbbxmZws9obcBZTe4bgPwNQCXA3ihbjsaIcQaAE8BcHPKS38MYArAq5qefzWAu6WUjxgZ7ItiqGj7WhNj61Z6PCctJTMfYm/IdevoUQnJak9qJmUucgw3bKDw+8MPN3QF9uGQe4A2rjEZBpFV7Lz7b2sLhZZIlOAEYxd69QZQ5rnWgllC/pJqQ2wYXFkwh4Zorg8MpFQ88r3horAtZhOhFRosYZ4DCao+5wErvkW7a4BLxTBPKJntLqhxPsOkin1sjL66usKavUgUeE4yIzaUrNqtSHJaimFJG6DY008ijqJh39Lfn+JbLKBsxfDTAF4C4KMARoQQlypfqwFACPFRIcTHhRAvFUJcJoR4I4AbAMwC+JB6saBq+d/4ZynlAQAfA/AuIcTbhRDPEEJ8FkRE32VsrUti2N9Pd9zERMN2wijEVvCkZim8ZbcTkbHPR9DNn58S3WZiWOCCGesAe3vpl9zQDY2vc53YDsRmGEQu9mr1XWJrI5eKYU8PjfvUVENOglaIrQQFSLVBJ1Sl3eHioaBxwsaNec2LRaxiqN4AMzNzT/uijKs2xBaIxRDDRPA8d5ljePhwA0nRmucl5F2rl2+xPWIDpM7zRDLO/6eCmv4DCaHkri76o2ZmGm4Cfp3rlAkgYdMZQQzLyi8EyieGzw0e3wPgxqavPwp+dw9IHfwcgP8FnWLyKwBPkFI+0HS99uBLxXsAfBDAnwO4BsCTAbxUSvkjI0uHh+mLqw8LQmwoGQgJqcICjMKxBScixCqGEbl62s6biWGizp8PiRV4EXeq0dFsBS+YEVOi8XOVMdcOO7gkhkDkasomaTnvgolhbH5kyoIZi5mZUqrvYxXD9nb6o9ROv/DjzF5G7OaNiaFynrlW3pV6TnGBviWWGHZ10ToyM9Mw5lq+paT4YeyYRxSfaM3z2dmQ2BRY2MbzPKKNa2QhpFZ3rpI3QC3rP59RqISSy8ovBMpvcL1OSilivt4XvObfpZSPk1IuklJ2SilXSilfGUEKEbzvD5qem5FSflBKuVZK2S2lvFBK+R1jY1kFWLmysORTIMGRAJGKhBbBKmkGpRJDRTHUcoBjY+QEu7oKtT2RpET8UVob9hJC4EDCKU8RZFy7srfg6jsghYxHrEi8hiemybLqxqkLBcEklKx9HJ6UtKIVVEwApGw6I+REHxXDlvnCpE7JA9ZSUo4epbk+MFBov85Efx7hF40Uw4KJYRbFMHHjNjwcxj67uqzZ2YyE49YjHSbnCifqPSVsloGEPqkRZ2uX1aoG8KPBtZ8oIYwMNN6MLZVJEfIQ+xStbvMFz6DYBu0R+W5ak1olVwWS8URiGFGAYmR7gSFwQONYPMV5G+dGlrAB0lUM1X1ZLLi46YzmWjO7iCWGWUPJJS06saFkIFQktm2be0prvvDfWlBvN0bsfIlIstW6P7V2GvmRSAwjpC2jTg2uFMOIHEOtwhN2UgVG3IDwX7p/f0LrNGW+aJlV0gYopilD5NqvVRxmCTUxjENJxLCrizaws7MRi33EpNZqOffNb9JjwYph7KlgWUPJJZGrxJ5dTDKU7aeW2llCCBwIxY6WCtmIrafW/qCEIwiBRiFWSWsjRCyYRhWyrvKAsiqGJdrd1kZjPj3d9MuzzqJHVl2hqV452DA3ICGKkjjmu3fTY8H3J+dQDw21HPwUnub0QBj80vIt2h2Z8yFrjmEsCj4JitHdTen409N6a6hWKJmZWsEboJiTbxNFoZoYukRJDhDQaHKtTA6er7zhb4FSTVv0pI4lhpyRfOTIHAvwiRiqPbtaejDymCkyixbBKsn2WGKobj0DtstzJXEK84JZsJLS3p6QJM6TOchHktIvYshTQkn3afyF6YJZkhrR1qbRJihCGU/kHyX5xVj1ihtrj4zMNdzTuj9LUgyFSBjzM8+kRyU/0qjIquCNfmLnAPbnAdvVCiXfcQc9FlxNrdoR25rJNJTMR7NynLogxNrNPSuPHZs75lTrZCJLqIlhHHwghk27ndFRSsPjHVIk1K3HYx5j1c5mxDTEpwm9aBGt8IGX8YkYqna0jHmTPCSlRlhzepoWeyEKJymxleD9/fTLiYm5P0pLxGS2E7vTsAfdStPhYVp/+vqo9isWJREsLhzmLlBzWLiQ5vrx43PO2yfFULWjZeHheyzwc9r9F0tWDFvmihAtflHLt5S0AQL0T7OamaH7WIgUksIFHAUTrNgxV485DdYXrVAyE+CLLrJmYxxM+gGnKoazs2GaSsH5y7F2t7W12F4rhj6gpGICQF8x1DrogRfL888vNGcMSFAMgXCxDmw3ct4Fh3tUO2Ib6Aa/OH6cuBZ3D4oEJ7csX15oMQEQ27OVwIteoI5o7TBLJIaxigTnRQTEUEst5KKZjo7CQ2w85i33p7oRCO4734hh7MLTlHqgddLd2BjdEJ2dhecvJ+ZHZiGGJVQkM3RPs1IPeYptJzUzUxqp1TovuWmeJ96jJUpcqcQwuOdmZsIoUWxv1/37KfK2dGlKA9j8iM3TB1o2ErVi6ANKVAx1dztaO4YSF52InOQQTDQCp6alRvDOuMCeV4xYksLON8i90sq1L1HpjE1WVn8ZjLnWgumhYqhFDNW2KQVvgLQ6BwT3XeWIYTCRtNpwltSpAUhZMGOIoVaOoQ+KYRMxTD2VaGaGBqSgs6kZifO8SQUwOg+8BIkr5mCZlrmidriKJeN8fxacigWkdA7gezSYu3XxiQ9gYljCYp9FMYxFSeE1IEUxbGrQybUciUUzJRLDmNPvgHOD0xMDg30jhrHtDYBw0Wsi44nO2wExTDvNwqej2YCUBZPv0WAcfSOGsbY3qctaChD7xBIWzETf0qSkaG06fSKGTYQ2UfAu0e6Yo+IJTf8QrVByiUwm5mCZFmJofE5ywYi1G2jx5yX18wdQE8N4+JZjKKXZIfclLZhtbQ05ySGaGnQy5+PCvEiUSFI4D7wlb4z/GceOAVLqbR5LJIYrVpBYc+BAxJjHLDy+KIaxYfDly6k8/9AhYHRUbz3hExVKIFcqoW2pYucExKDSVIsYllTxCKQk5be10USanNRb6EtqVQM0kpSWNl4nQihZSj3FsKSiGaBR/G6Z57xZf/BBABUKJbNP3LsXmJ7Wy7su6RQroLEJfcs8b1pDa8XQB5ToBGMndW8vJaBMTQGHD+vdZyWqEW1tCSGfpkPAtRyJVvM6O2DH0EJSuroor2RmBhgamvt94nCWSAw7OmgM1crdOTSFNVMXTClLVSQimvkT2trChWfHDj0HuGULPW7aZNPESPT2UhHM5CQVgDWA1c6mcE8swZISuP9++p5bxhSIWN/S0dGwaBopnSX4RD7NTC2KmQPP1WBzkBpKnp6mG109bLxAsB0tPrG/nyqqxsaA4WG9E/q4nVAJlb19fWRi0ymshPPPp8dgJ601X9i3lEiwWuZ5Tw85nulp4NFH9Vx1ieJKZyfl9c7ORhwU0ZSOVSuGrjE9TV+LFhWe1wGkhKoUOdk3xRBICPkooSqtiseREVp1u7sLPZmAkZjDxKxx2zbvQslAQj5N0z8jlRgeOUJFHAsWlDLmTZGRRvCY79unRwz5H1dC2gGQsNgr1b1abXaOH6dVt7/frZICNNyjvoXA1Y9p8S2K3C+lhm/Zv59W3uXLaSUuGLHpHmpF9b59emIg9zxkYlYwYk9W4sEdHGyY57HzZXiYiHtXV0qYyA4S5zn7iD179PY2Ja+hseFkZSc9OUm1dmrbryJRE8MocIyuhN0lkEIMlcmhtWNwRAxb8lIUFnD8OPnl+fMT/HJJJ3AwEokhO+H77/culAzo9ew6eDDkH7GOpMQwMpBCDJV8Wi1iWGZcBZEtCwmK6jY0RPvJefMS9pOqQlviPI/M1VNYgBYx1JLP7SGWGPKYHzyI4WEa895ezTEvAYl5wMo818p3439MSf48lhgqHeqHhmg/OW9eSqcGgP64gjs1AAmbZaDhHjVKUynJL8barkTdVLtLcBs1MYyEI2KYeHTV7t16HXR82dUrFbJaqlvJhJY/JjLRmm/IvXv11sIS85eABFLLA7xz55xvO+OMhOq7kokhj6EV581jXtI8j+g1T1AUQy27SyYpTdGoRihsl+9frVQP175FSczS2pOVmKcHpHQOUCpNtdxGScebMlKJ4bFjejVIjlS3SH+uMHWte7SkHoYMHcXw8CHZ8NqiURPDKPD5USURQ61wz65devUwJVZrqh/T4ry5p9/hwzi0c2zuqVio7UdKQKJiqDgSH0PJsfPl7LMpUWjrVozspAXFl8ITIOFoOaCBYGmNeZAEX0aeHpBADPn+3LlTz3mXPOaxeZ1AA/O67z76lmtpIlFi1wAgQaVl2eTwYezbTo3FE2+9EvujqrZEKoZMNpR8t0R/zn6xZGW8hRjyH7Vrl14q+J130mNJ5CqxdZrp5k3r3Fl7aOocFWJggMJs4+M49gjlBZWRXwjUxDAaJSuGiW0CFM+eyj9mZ0t33rG7eqWgYOhesilxoeeVq+Q8vUOHIirwlC1/aih5drbUohkggdR2d885s6nttBgmnqjgEzFUCgpSFQk1abWkDVBTwXeIgQH6h4yPY3gr3aA+KYYrV9KtuG9fRBW7knrAi1LsOj45Cdx9N31fQs4YkOBburpoEzQzg9FbidEmcr6Sx1wt+G4Zc4UYsr9PnOdcfMJnuBeMxM4BfX3A0aM4tI2qJBLdHfcnK/j0LYYaAWrx5yaK4fR0aSfNMJo6uzUi8M1jW8lX14qhS5RMDJcsoaTSY8cajzoGMDcxpBJKjuVO+/dTSdnSpQnJH3aR2G8sICmTWx9teG0kOPZZ0s3Y00P5d1NTERV4yhYuNXp26BA5k8WLSylUAhJ29cDc4jezk1Z6n4hhfz/lmI6MRJxRzQufUvATe/sNDZH3HxgoJX8JaDm0ohGB7RP30mKYyFVLJimdnRpV7Hv3pkf+du2icT/ttNJTDyJ9S3CG7fhWWk19CiV3dIS2t8wXVqG2b08P7hw4QBXMixeXU3GABN8ixBypHb+XzhHWUjpL2rj19ob+vKW61yRNZfdu6khxyiml+XO2JWnDPP4Q+eqSKElNDCPB7Kwk9aqtLSEkG0yM2R27MDZGfC+2gLRkCRxIkfADkicf1SCGDmyPVWqDhW925y4MD5NAEeuXSw4jA42tuVoQSCejD9FimLiGl5xkLUTI/1gImUMwfnLfPhw61NgKqQVanYHtIjaUDMwpaFNbtwPw52xqBs/doaGmXwQL/ewj23HsGI15bOoBO6ayViakEEPeAO0goq2lGJYUSlY/quUeDcZcbt+e3sKL788SfWLipjMg47MPaxDDEnt1MmLXIvYte/fOqXKxU4HtLvH+5M17i0Ch2DHzKPmNspaZmhhGgYlhSeFYIOGGbNKZE29GTpot0ZHEElrFjo7dRPoSbXdIaltsb0jMknNNpSPByVklhXqAhpSZVgQeb3YXObjAl0ej5CRrILS9JQwe/DPkgYMAJJYtIxU9EkyuSiQpicQw+KNmdhML8CmsCSQsPDxng7DfkiUJhUolF56oHxXpW4J7tH2fxoJZsmIIJOSNzW2Wd0BKGvNY0bvkKAqgRww7dj7S8NpIcK/Os8+2Z1wKYgsK54jhPoyN0X4ydqNf4olnDB1iKPZobIAsoiaGUWBiWOINyQsP86M5LFoE9PWhfWQI83E8eb7ym0tc6HVCyX0HycElOhIHxDDWCc6fD8yfj7bxMSzC0eS1kHNpSnSAiSQl8Bx9x2lFinWAMzNOFAkW+VrOS543D+jtRdv4GOZhJHmuPEILU1m5bkDKghmMecd+GvNE/sGktkSSwhGGloVn2TJg3jy0HT+GhTiaHPUrufIe0FMMew75qRjyWLaE7xcsADo70TY6gh6MJY+5p8Swb3+KYihl6JxKVN5i274FSZ9thw6iA1PJa2iJJ54x2EcntavrPkR+oyaGLsE5hiU670suocfbb2/6hRBzjmENdiRPageKYaLzDuxeeJxIX+xiPzFBC6Z6AkYJiK16BOZuyNOwM5mk8KJTogPUCSUPDNFCHpt2EBwRhRUrKEGnJMQSQyHmVtNlOKhHDBPlULtIXDCDm7L7aIpiODFBUqmahFYC2PaWymQh5sj1GXg4ueLRITFMGvN5Q/vUH1sxMkJJZ93dKU0a7YIX+xYy3jTPK0UMg8biaw7dBiCBO42O0lzv6aGClZIQSwzb2+fGfAX2J3M+rVJxu2DhnhstNCDgIAPH61CyH3jsY0tLPgXCf3jkrkGXGDpQ3ebPpxy84WHKk25AYMey0RRiuG0bVeCtW1fqmCcuPAHRW41detXUJW4iFi6kYRoaiijiCBbuhaMpxNBBGFn9uJYNEDD3DzkNO5P9sgNiuHAhzfOhoYh5HtyUA8MpxFDtaBwbJ7cP7ugTufAEq9J6bEsmKVqHzNrFwoXEoQcHqaFyA4IJcsrYNnqM84tqGLmMzsABODzYUggBzP1DNmGLVwV5APmLnh7idsPDTb98whPInFEKE8feoxzLLau3SgCeA+weGhD4503YkuzPHSiGa9YQf963L6IAJViHFo/VoWQ/kNjQyz4SW3kEq+npeEQvx7DExV6IhKTfQP1bObMLbZiJn9TsAEsmKYmKYaCkXIC7kp23g5wx9cjXFlIbDPLScSKssVXJDtRlALj4Ynrkf3kDAtn88bjZO8VQnedxPd6WTOxVf2yFg02E+nGRCnMwzzfgIe8Uw0Tfct55kL292CC3YnnXsfiiGa5yKtm3sD18mzUgaOFyJrZ6pxgKkdCHMfijBuRxcO51JLYRWS/bt1x0ET3ec0/ELy+7DADwONySvIY6IIZtbWFWTEsqWUAMT5nZpQqfxdtUzsdUEGX9BwIwMYxUDINZsx7b4hcdKZ0ohkBCAUpvL2aWLkcnpnHuwr3xUQVeMEsMIwMpYZPHPx4AcD7u1tvVl2x7rPNetQqyowMrpvegF6PxZjlSDBObuQdEbyX2eacYAgkFBcEvVmMnlswbj5/nDtIOgJSGyxdeCICUlET+oXV+m33Epqp0d2NqGZHU85YdiBcD+azhkhqhMwJxDb/5TcQvA/+8DtuTfUvJ/fQYsU3ROzshe3vRgRmcumA0PrjDedcbNhRlYiTY7sh5HrDGM/Bwcm7kHXfQ9yVv3nj9b1GYFy/GbHcPFuI4zlg+FF8cZhk1MYxDyeSKJ3XLjgFo2NXH+uXDh0n/nz+/1DYeQENT/BaMLadxvGRp1B8WoOSm3IzYXmPA3P8/McdwaIhyxnp6St1hAgkFKB0dmF1H4cGL+h6KV1IcEcPEM02DgT4Fe+PHfGqKJpqSe1sW2CW03KMLFmBi/dnowQSevvCO+Atw/LxkYpiYkxoUTa3BjniXNzMT/tElKoZAcg7z2AD98uxFUTu7ABw/LzkCxP/iyDZewUCvxaPx/nxsjP7ozs7SfUvSaTnT8yh5cuPSKAUjABPDEjs1AClHEQZry2rsir/9jh6ljX5fH6WSlQiO7LREDIXAxDIy+LGLomLkxaAmhnEoecFk8WP79ojO7RdcAAC4BLfGO5KtW+mxxEpNBtseldtxbD45wfMHEoghLzolE0O2OzL3KrDlNOyM39XzH7xuXUKfj2KQVJk8dCotgk9a+mC8kuKggh1IOBcUmFu8z8M98Wvhjh2Uj7p6NSX9lQjmoVGbt+GVlJi/sT9qVQpw6630+JSnWLYsGYntjYJfnoK98b7lgQdoxVq9unSSkkQMh3pp93B6f1QuSABmwyWT8cSTOAIffSa2smDbCrXfZcm+JYkYjqwkFfCSeffHX8ARMVSV8ZYxDxTAVdgdLwbyH7xuXWmN8xlcrNRSlAfg0NpNAIAnd95Umj01MYxDyTvj+fOpY8fYWEQl28aNmEAXVmEPVs4fjb4Ah0xKbJvCSCKG+3uJGG7s2h5/Aba95F392rWUbH3gQHwvw9XYhWVLZqMvwLk0JYc0geTw4IGFNI4X90Ux3gCOFMNFi0jsO3aMhKgGBKGnxIIfR2FkIFQMo/Ijjw4Qa7yw7a74C3AoueR5rqZMtIx58MsV2I8Vy2LmOdu9YUOpBRxAw+EsLTjSQaxxbXeCYph6pmUxSDyJY+NGzKANZ+BhrDml+cy8AI5SVNSPjDqi7dBSWl/O7dwafwFHxHBggMZ8bCxizAM2eCr2YPWpMfPcQfN5Bg8VL4Uq9vWSr1vTlTDPLaMmhnEoOZdGiHgpfGKqDTtAC8/SkRjlzVEuDdBw/GcLtrfTYr9uOsGROLJdiJBHb202r7cXh8VSdGEKK9tiFAlHuTRAsmL4aBcRj42IIYazs+E/q+RwbHt7eERbS27nkiWYhcBSHMbKpdPRF3BIxmNDyQAeWkJJZWdO3Rd/AQeFSgAJq0uW0L+9JbTZ3Y0jYjE6MIOVHVEyLkIy7oCksG+J2nTubacFfM3s9vgLOAqBA/Fq5wS6cRDL0AaJFW1RsWY4KTxhJCmGO7tI7Txdbot+s5Sln++sIm7DLHv7cBiL0Y1JnNoeQ7CYCTsghrxXjCpW2jVJE2l1R1QuSICWY43yoVRiKIR4sRDiu0KIR4UQY0KIB4QQVwohBpTXPFMI8VUhxMPBax4WQnxWCKHV+EsIsV0IISO+XmhkbMkhEyB+Uu/bBzwKWpXadvpHDJNCVfdMkz2nDEZshQDSzo8cIbnUwZizkNAc2hwfB7ZLcspLDsaETdgBOiSGUUrKfTPkZVaPx5DxvXtJyggaHJeNoB1ay+54cqYdu0BOecn2W6Pf7FAxTAolbx+m5MmlIip5EuS4h4YoHzU28bM4xN2j4+PATkljvuj49ug3c0J+bNyzOPCt1XKEIoD72s4DAKw+HlWGCgq97N5NY16yMg6E92jzRv/BB4F9oF927o9gX0B4c5Sc6w4kE8MtR4K+l+Lh6DcfOkTzfP78hLP+ikNcgdiRI8BDoMnUtydiMgHhmDvw57GFbQBunzofALBuf0woeWzMerFs2YrhOwDMAHg3gOcA+CyANwG4VgjBtrwRwBIAHwxecyWAFwDYLITo1/ycawA8senrem0rOzrImZQMFhKab0iVGEb3P0CoXvGqWyKS1KstQ0QMF+6PIYbqKRYlh6mAsBiimRjefTdwI54IAOjccmP0mx0SQ04lvT+Cs94+QsRw6ZEYxZAdoIMdPQCccw493tckru3fD/wCTwMAtN0Xs9h7EEp+9NHWHKatR2gRXDAVowCpaqGDec4Lz//+b+PzmzcDD4Du0batMfcol9YGbVbKRNOpfQ24bZIWzCX77o5+M8/zM88stW8kg7los8veuxe4C5Q3Ppd32owf/5gen/70IkxLRBIxvGeaQizL9t4Z/WY1jOxwnjdvmPfuBR5EIMu1hIcC3HsvPZ57bjHGJYDn+V13tfqW649RRfX8gzFk/JZbqKG4RZSbYQk8X0qpes7rhRBHAHwZwDMAXAfgzRGveRBE7F4K4N81PueQlHJzZisd7NKAcHI074737gW2Yx39EEcMHRxvxlBzmKRs9Ae37zsFgxjA/MEjFMdq3tk4DA0C8cTwgQfCHebcot4Mh6Hks86ite6RR8gnqK0jbtt7CoYxD/2Dh2ir3Hziw52BU3egAAEhqW3O1XvwQeARBPMgsjwfIRN2MF8WLaIcpuFhypFUhb/NRzZiGu1YuONO6g7Q3LOGw1Qlh5EZXKfTTLAefRR4FEE+RdQuQ23hwY3iSsTatVR7sWNH6zy/9dgZGEc3eg/sIHWwuWmnwygKEJ97fegQcC8C8rEtIiQ7MxM24yu5UAmgEHhHB7nr8fFGjeT2yfMwgj7M27Mt2p87yi9kJBHDrQhEk8hqQ4Rjft55xRiXgHXraPoeOUJBNHbZUgK37VhKYz50jJInm885/fWvrdtTqmLYRPgYtwSPq3RfUzhKbvfC4DyD5nnbMKmjnPfgIK1Uvb2ld5sHKBrZ30+OWy23n54G9uwVuD9p4XGoAAHxxPDBB4HdPN2i9P3JSVpV29qchKk6OynlS21fCRBpuedeEc6XqN3xXUGBRFDtXjbiGovfe6+yAYpKKjt4kEhKV5cT24WIzjOUErhzx0Jsw3qI2dlo23/xC3p0RMZf/3p6bJ7Ke/ci+f48fpyO1xkYcOJburpozKVs3RPv2tuO+xDIz1FdjR0W5AHxxHD//pR5vmcPOc+VK0s9rpLR3h7uX5r3xPsOdeBukFIbWSnhKTHcvRvJPnFwkCTSnh4na1FcY/FDh4DhEYGdbQkRwzixKAd8KD5hrTwha1vrNSqeL4QYFUJMCCE2G+cXOsKZMRuaRx4B7kSwoNwZIeHzzXjaaU7keyA6tLl3LyW8b++JiR0Czokhb3ibG9E++CCwB0HCepRi+NBD9MetXVt62xRG1MKzcycJDnv6g10Gqz0qPCGGzaGqe+9FuND//Oetb2SHfuGFzjZvUXmGhw8TIX+0PVgMo1QgXkQvvbRYA2PA4cHmqZxKDL//fXq0nNxuAhbk1fV8dJTW8nvbApKSRAw9UwwfekhRxqMWdUeFYSqiwsmHD9Nmbnd7QFKiSK3DPD0gJFfN3O/BB5VQcpRiyGvT2Wc7STsAolOyeIh3DgQq5s03t74x8uiufHBKDIUQqwC8H8BPpJRbYl4zAOATIFL4fY3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMLIrafHYqKRAqHkGt99Ok3qms5tmSnM/G5aSg9M6XIDTj9QzcDl6dmBJsNhzDoeK2+hAdle7+ic/mR6jiOE2rA9/2Tzm/IfyGW8OELXwsFO5byUdAYVrr21808wMJVACzoghp/A0r+X33ANsxqWY6eqhydM85g5zOhlRiuFNQU74kYXBfIlKiGMyXnKrGkacArRnT5hjiK1bW3OVoshiyWDXoLoPXvh3zA+IIY8vQ8pwE+2IGMblGG7dmqIYMklxEIlgRBFDngp7V15M32yOyNb6+tfp0ZEyzifO/PSnJLoyfvazJmKo/hIIJ5Sj+xOIJoa8xzywKlhgo6qwotbVnHBGDINCkh8AmAbwupjXdAD4BiiE/HIpZUwPixBSyrdIKb8ipbxBSvkdAM8EsAVUxJL0vs9LKTdJKTctK/k4PMbixVTINTwcTg4piZfMoAPTZwdO8Fe/anwjzx4HuREM5keqQMX8Y+i0gAk0K4YjI8CWLbRDe9KTCrcxCmeeSYLfoUOkQgA05lQ5eAqmH/t4Chtvadq3MKF1kJDPYJVWXVuYsBzeEChTzexr2zaqYlu1qjX3sCSsW0f/8j17KIcJoDG/5x5Aog2zpwfEr3mx5zF36LyjehneEiS6dJ4V/EOanffRo7Sqdnc7ydMDSKXt6CBxgec5ANxwAzCKeRjfcD5VqvMfw5icpMcPfrA8Y5twfuD27lZqTH7yE3psvyjY3DTPlZ07Sb2aN8+ZXzztNMo02b075NvMV/djBWZ7+4Jy2ab58j//Q4/B+b4uwMRQ7WXIxHBsQ0D6mv25Gs3if1rJ2LiR7tGxscb92c6dwDAGMH3a6TSnm21n9u4ocgWEHZXUjQT79rY1Ef8QgCbWAw9YVzmdEEMhRC9I2VsP4AopZUv9U1Cl/GUAzwLwQillTBlUMqSUMwC+DWC1EKLc5oQZwJtbdoKPPEKkZdEioOu5z6Inm3dqjsOxQOh71fuNzVz61JhQ8gMPkIK1cSPlMDlAW1vYno0X+337iJwvWQJ0nBf8Q5p39lxN6JAYRimGHMlZcGHAYJrjtbyAOtrRA+TDWAxhpfbAAVojFywAOs4Nciq++MXGN/LC88QnlmFmJJgYqtFi3sR1XhRsgJpLf1lSvOQSZ2kHHR1h2heLI0NDlO/W0wN0Xx5I580bIE54ctDDkMG+Rd3j8B5h9XMDYnjnnY1hFmYFF1/cWghUEtQ8YPYtBw/SmC9cKCCeHfjzX/6y8Y18EzvaLAPhvztKMezaFPiOX/6SGBhDVQUcjTkQ3qPMoYaGaBq3tQFtlwT++gc/aHyTB2soiytqoTr7md6NwT+Ec5UZ/He0dK7Ph9KJoRCiE8B3AGwC8DwpZdxRAf8K4GUgpfCnlj6++aAc78CTg9dvTil46lMBcV6w8DTnSPCO02HogcODd98d+mdeMFc+aT2tPjt3Nurk3JLBQXsAFexIeC1hB7hxo/JLldROTISLvaOcMSBUDNVIAk+NNRcuJJY1NNQY92Ry5SiMzHjqU+mRzeH5ft55gOD4vrp1np2leBDgrLIXiA6D8zo+t9Bv3dr4T2G7+e9yBA7Jsr3qWihOX0c//Ou/Nr6J57mDNlgMddPJ6x9zkI2Xr6Z808OHG33LT4Mlw+FCD4T3KPsWzlJauRIQl1xCPzSHApmMl3zIggq+xT796dCfs5mrn7SGdhlTU407JP7+ne8sz9AINJ/c8pvfkPt4zGOAtudeQU+qJHZ8HPj3oNmJw3n+uMfRo5pGyPfowovX0Te7d9MOmhHXvSEnym5w3QbgawAuB6mAkS1lhBAfBfBHAF4npfx+zs/sABHMHVLKqNNCvQJzO96psSM59VSEITQ17+fGG2lV7elxutifeioVLR49Gs5VPtlixantIYFSd2q86Pzu75ZnaATYzpe8hB6ZpJx/PsI+YupO7Y47yJmce66TSk3GxReT0HrPPaFPZtvPOluEoSiOuwHA9UE7T0chTUZzDlNDR5TnPpd+UMMmqkruMCmf2wQ99BCJJRMTdAsKATzp6Z0kEwHAP/xD+CYupHnWs0q3VwVHI770JXrk/eTppyMkUCq5uv32cGVyGL5fuJCIytgYmTMzE9p+1tki9HtqKPMrX6FHR2lBDCbjLMTy8C5bhpDxqsRwxw5yogMDThpEM5jQAhQ9AZra/LH8zGFvwHnrMQYTQ7aX3cj69QiVl+98J3yDmmDuUKU96yz6t+/eHe4NeKO/8onKmKq7Um4z8I//aNWWshXDTwN4CYCPAhgRQlyqfK0GACHEXwN4O4AvAtja9JqGGnghxLQQ4t+Un18hhPimEOK1QojLhBAvB/AzAI8F8Ncl/Y25wP73xqCn8lvfSo/794McSUcHrf58GCRP8FWrnMr3QlCkDCAp/NixMNyzciWA3/kd+kElKayZc8awIzD346hIQ5u/xz2OFvtbbw29+r8FU85RHg2jpyfk2w88QP5t61Z6fuNGhMVIrHZKGZKU3/qtkq1tBA/dDTfQI/u6Cy9EWLa8Z08oV3zqU/R49tmtfbxKRE8PiQqzs7Q/27WLyOGaNUHKJveF4dVIynAj5zDtAAh9C89vJisXXgjgRS+iH44fJ/UNAL797fDNDkkKEM6Xe+6hoZ2YIEFtYAAhMVTzDLnK5hWvKNXOZjzzmfTIAuYXvkCPF1+MUH7++c/DZFuOUFxwAcU+HeGxjw2/37aNyOH27eQKzzgD4T3IxSbj46Ey7jgawbcZ+xZeS88+G42Fa3wD8A3x8pc7OdiC0dYGbNpE399yC+0Rdu6koT7zTABvehP98pvfpEcpgauvpu8t59GWPfMCKQDvAXBj09cfNb3m9RGveW/T9dqDL8YjAJYD+AiA/wWFoycAPEdK+U2bf0hR4PSp5mjxmjUgL/iEJ9CWmRd4Zl+qQuEIPKm3bAGuuip8fvlyhMTwuutoQl93Xei8HVaZAsDHPhZ+v2dP0wlgCxZQCHB2ljyMlMDnP08vUJs2OgJXsu3fH9YkveQlwYLJu/rvfY/s/sQnwjc6VDoB4PLL6fHmm6lAkNMJTzsNxLBOPZVWI15R2Rn+8z+XbmszeN27++4wG2KON735zfTIscPbb6fq6tWrnY/5y19Oj/v2URSwIRuiQznr4F3voscrg3q9D32oNBvjwOve3XcrYWQWMfkf8pd/STfwP/8z3a9A6JQcgTduW7bQNPjhD+nn17wGJBGddhoV4X3xi405kg4LTxg8p6+6CvjqV+n7c84JRPFXvpKeOHCA7L7mGmIxGzaEMVFHYJ3hppsoP5+1iKc9DY0Fdz/7GakBf/In9LNjQguEQ3fLLWFE/vGPD2pL3vhGeuIzn6Ex37uX/Ex/P/DsZ9s1REpZfzV9XXLJJdIVZmak7OqSEpDy1lvpEZBybCx4wXvfGz45ORl+v2uXM5sZ//mfZMpjHyvl294WmiallHJ2Nnzii18Mv+/rc2hxiGc9i8z5938PTTtyJPjllVfSE898ppR33x2+4Ne/dmqzlFL+zd+QKW98o5Rvfzt9/4EPBL88elTK9nZ68r3vlfKKK+j7nh6XJs+hrY3MeetbwyH95S+DX/7t39ITL3yhlA8+GL7gwAGnNktJ4wtI+frXh2bNzfOZGSm7u+mJm2+Wct06+v5FL3JqM2PtWjLn3ntDu/fuDX65cmX45O7d4ffXX+/SZClleF+ec46Ul19O3//RHwW/vOmm0Fa+CRr+KW5xySVkyqc/TY8rVyq/fOUr6cnHPEbKr389tHtqypm9jD/6o9Ccl7+cHl/zmuCX4+NSLllCT955p5Qvexl9/+d/7tJkKWXjsviud4Xf79sXvOBf/zV88k//NPz+0CGndksp5Xe+Q6asXx+a9c53Br9U19DPfEbK5zyHvhdCSiklgC3SEgdyTsJ8/HJJDKWU8nnPa/Rt7e3KL2+7rfGX/DU768xextGjrWZde63yAma86tc//qMrcxug8u2WNeXoUSkHBhp/+cpXujK1AXfe2Wr3//6v8oIXv7j1BT/9qTN7VfC6on7NrYe7dnk7z1VSxV8f+5jyggsvbH3B17/uzF4VTKr467TTlF/+5jfRY+4B1E1yy5DOzkrZ39/6grvucmozgzkTfz3vecov1Y0mfy1f7sxWFZs3t5rWsEd4xStaX/DlLzuzV4W62WyZxvv2eTvPd+xoNWvHDuUFHR2tL7jiCimlrIlh0V+uiSErb/z17Gc3vaB5Yjz96Q6sjEbiOr5lS+sLJiac2ariv/6r0az3vKfpBe94R+MLrrnGiZ1RWLUqYcyPHGkd84MHndmq4vrrG83q7W16wbOf3fiCxzzGiZ1RSFxTVNkZkPKMM5zYGIXvfrfRtKVLm17Q/IfNyRVuoYolACmfMzPKC/7yLxtf8PjHuzK1BRdd1GjaX/2V8suxsdYx94RcSdlq2siI8su77mp9weSkM1tV/PKXjWY1bNykbLXbk42+lFKuWBGa1RJo2Lmz1fbjx6WUsiaGRX+5JoYzM1I+7Wn039m4MSKq8P3vN04MDyRwxic+EZrVsDNmcCwLIDXLEwwONg5pwy5NShpjz3aXjHe/OzRr/fqIF6h2f/azpduXBFXBevDBpl8ePNho+/33O7ExCv/3/yZMh5kZIib8yy9+0YWJsVDtvvHGpl/ed1/4y5e/3AuFlqFmFLz97U2/PH688Q/7l39xYmMUmoXY225resG3vtX4ggbG6xbf/nZo1h/+YcQLVLvnzSvdvjg0bySOHm16wTe/2fgCTzbLUjZGulsIrZRSrl4dvuBtb5t7uiaGBX+5JoZS0sRO3Hxt2UL5ES0z3i2mpkhc+/CHY9aU6Wkpf/jDpninH7jvPil/9CMpjx2LecHmzVJ+5SteLZZSUrrPa15Dm97IOXPddXSrf/KTpduWG7t3U6LQvfe6tqQF3/ymlIsWSbl9e8QvZ2eJsf/7v5duVxpmZ6X8u7+T8uMfj3nB+99PiZSezXMpaQqff76SL6bi4EHaaXzqU6XblYZbb5XyiU+U8qGHYl7wsY+RIu5Brngz1q8nFWsuz13FwYOk7J93npRbt5ZuWxJ+9CMpzzxTyhtuiHnBe98r5WWXSXn4cKl2pWFmhvKXn/tcEixasHevlG95C93EyibCJjEUdL0aKjZt2iS3NJ8AUKNGlTE4SKXKQri2pEaNGjVqWIYQ4lYppZUy/I70l9SoUaPymD/ftQU1atSoUaMCcNdBs0aNGjVq1KhRo4ZXqIlhjRo1atSoUaNGDQA1MaxRo0aNGjVq1KgRoCaGNWrUqFGjRo0aNQDUxLBGjRo1atSoUaNGgJoY1qhRo0aNGjVq1ABQE8MaNWrUqFGjRo0aAWpiWKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRgAhpXRtg3cQQgwBeMC1HZ5hKYBDro3wEPW4RKMel2jU49KKekyiUY9LNOpxicZZUsoBGxfqsHGRExAPSCk3uTbCJwghttRj0op6XKJRj0s06nFpRT0m0ajHJRr1uERDCLHF1rXqUHKNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJobR+LxrAzxEPSbRqMclGvW4RKMel1bUYxKNelyiUY9LNKyNS118UqNGjRo1atSoUQNArRjWqFGjRo0aNWrUCHDSEEMhxGlCiO8IIY4LIQaFEN8TQqzRfG+PEOIjQoi9QogxIcSNQoinFW1zGcg5LjLm6+KCzS4UQojVQohPBf/n0eBvWqf53jYhxLuEENuFEONCiDuEEC8q2ORSkHNctsfMlRcWa3WxEEK8WAjxXSHEo4FveEAIcaUQIrVtxAnuV/KMywnpVwBACHGFEOI6IcQ+IcSEEGKXEOJbQohzNd67SAjx/4QQh4QQI0KInwghLijD7qKRdVyEEOsS5svCkswvDUKIHwd/2wc1XpvZv5wUxFAI0QfgOgBnA/h9AK8BcCaAnwkh5mlc4t8A/DGAvwXwOwD2Arim6o7KwrgAwJcAPLHp60HrxpaLDQBeCuAogBsM3/sBAO8D8C8AngtgM4BvCyGeZ9NAR8gzLgBwDVrnyvXWrHODdwCYAfBuAM8B8FkAbwJwrRAizb+ekH4lQJ5xAU5MvwIAiwHcCuDPAPwWgHcBOA/AZiHE2rg3CSEEgKtBY/kWAC8C0Any1auLNroEZBoXBVeidb4MFWOqGwghXgHgIoO3ZPcvUsoT/gvAn4Oc1AbludMBTAN4e8p7LwIgAbxOea4D1AD7h67/NlfjErxWAvig67+jgHFpU77/o+DvXKfxvuUAJgD836bnfwrgTtd/l6txCV6/HcBXXf8NBYzJsojnXhuMzeUJ7zth/UqecQled0L6lYS/96zgb/6LhNf8bvCay5TnFgA4AuCTrv8Gh+OyLnjNH7m2t+CxWARgH4BX6Nwfef3LSaEYAngBgM1Syof4CSnlIwB+Bbrh0t47BeAq5b3TAL4J4AohRLd9c0tDnnE5YSGlnM341isAdAH4atPzXwVwgRDi9FyGOUaOcTlhIaU8GPH0LcHjqoS3nsh+Jc+4nIw4HDxOJ7zmBQD2SCl/xk9IKY+DVMQT1VfrjMvJgg8DuFtK+Q3N1+fyLycLMTwPwN0Rz98DIC234zwAj0gpRyPe2wUKr1UVecaF8aYgJ2Q0yBF5qj3zKofzQIrhQ03P3xM86o7piYrnB/NkQgixuer5hQl4evB4X8JrTmS/EgedcWGc0H5FCNEuhOgSQpwJ4HMgNShp0U/y1WuEEP0FmFk6MowL40ohxLSgXPkfnii5lwAghHgKSG3/U4O35fIvJwsxXAzKi2rGEZBEm/W9/PuqIs+4AKSEvRnAswC8AcASANcJIZ5hyb6qYTGAYzLQ7RWcCHMlL64G5UZdAeBVAMYB/KcQ4tVOrbIMIcQqAO8H8BMpZdIRVSeyX2mBwbgAJ4dfuQm0iXwQwIWg8PqBhNenzRcdf10FmI7LBIhA/gmAy0C5rRcA+LUQ4pyCbS0cQogu0N/3T1LKBwzemsu/1Gcl18gMKeVrlB9vEEL8ALSr/SCAp7ix6v9v735jpLrKOI5/f7JKN0XEqtRKrbAmNaEm1gYrsSJFX4AFq00wbYRWrCbSGJKmL0RCbYipqTFCX5nGqG1TW8RIg2BQrEhJxdr2FYhF/FNZ2wZpS7srFuhi4fHFOdNOL7Ozszu7e3dmfp/khp0799w55+HOyTP3nnuuTUQRsar6taQtpBtz7uDsS+8tKZ+12Uq69PWlkqszYQw3Lh3Sr1wPTAV6SMnMbyV9PCJ6S61V+YYVl4j4N7CyatXvJe0gnRlbC7T6D8+vA93At8fzQzvljGEftX9RDZZVN1oWXs/AW1EzcTlLRPwX2A58pMl6tao+YFq+g7BaOxwroyoiTgM/By6UdEHZ9WmWpG7SWdEeYGFEPDtEkXbuV14zgricpR37lYj4S0Q8nseMfQqYAnyjTpGhjpdh99cT0QjiUmsfzwB7aPHjRWnauLXAN4HJkqZVTcFTeT1pkOJN9S+dkhg+SbrmXjQbONBA2Vl5apdi2VOcPZ6slTQTl3o69XE6TwKTgfcX1lfGFjYT03bW0seLpDcDm4E5wFURsb+BYu3crwAjjks9LX2cDCYi+kn/3/XGfdXrq5+OiJfHoGqlajAudXcxerUpRQ9wDumKSl/VAulsah/psnktTfUvnZIYbgPmSuqprFCamPeK/F49vyTNF/X5qrJdwLXAQxExMOq1HT/NxOUskqaS5kt6YrQq2GJ2kO4EW1ZYv5x0R9mh8a/SxFT1HXo6Io6UXZ+RynPyPQB8EvhcRDzWYNF27leaiUutfbV1vyLpfNJcsk/V2WwbMENS5QaeSlw+wwj66lbQYFxqlbuINOSg1Y+XvaRxk8UFUrK4gMETvOb6l7Ln5xmPBTg3B3A/6db+q4F9wD+BKVXbvY80Dua2QvlNpOz8K6TT25tJg+cvK7ttZcWF9Ivlh8AXgCtJE2TvJ/0amVd220YhNkvzchfpl+dN+fX8qm1eBX5cKPedfGzckuNyF3AGWFJ2m8qKC2nurU2kO+sWANeRJsgO4Lqy29RkPCpxuB2YW1guzNt0VL/STFw6oF/ZQro0+Nn8XfgqcBDoBy7O28zPcbmhqtybgEeBZ/L3ZyGwm3RJ8L1lt6vEuKwH7iRNvL+ANN7wX7ncB8pu1xjF6g3zGI5F/1J6I8cxmBcBDwLHSDOi/4LC5Ly8PlnmusL6bmAD6db5V0h3Tl1ZdpvKjAvpl+ofgKOks2Qvkn65Xl52m0YpLjHIsruwzb2FcpOAW3PnNAD8CVhadnvKjAspGdgFPJePlX5gJ2nMWeltajIevXVisi5v04n9yoji0gH9ymrSEz76gROkCYd/UN3nkhLiAFYUyp4H3E1KBk+QJs7/UNltKjMuwI2k+TH78vFyBNhImyaFuc3FxHDU+xflHZiZmZlZh+uUMYZmZmZmNgQnhmZmZmYGODE0MzMzs8yJoZmZmZkBTgzNzMzMLHNiaGZmZmaAE0MzMzMzy5wYmllHkBQNLL2SZua/V5Rd5wpJMyQdlzRnGGVulrQ/P57OzKwhnuDazDqCpLmFVVtIj4BcV7VuADgAfBh4KiJeGJ/a1SfpbmB6RCwZRplu4BCwJiLuGbPKmVlbcWJoZh1JUi+wJyKWl12XeiSdT3pG7jURsX2YZb8LLI6IS8akcmbWdnyJwcysSq1LyZLulfSspDmSHpV0UtJfJS3O79+SL0Mfk7RV0rsK++yStEbSQUkDkg5LWi/pnAaqtIL0HPPfFPa5MNflP5JezvW5rVB2EzBb0sdGEAoz60BODM3MGjMVuA/4EXAN8DzwoKT1wALga8DN+e/vF8reD9wKbAQWA3cAXwYeaOBzFwF/jIhXKysk9QDbSJeKrwWuBjYA5xbK7iUllYsaa6KZdbqusitgZtYi3gqsjIhHACQdJo1RXALMjojTef0HgVWSJkXEaUnzSMnbFyPivryvnZJeAu6XdGlE7K31gZIEfBS4s/DWZcBbgJsi4lhet6tYPiLOSNoHFMdXmpnV5DOGZmaNOV5JCrOD+d+dlaSwan0XcEF+vQg4BWzOl5S7JHUBD+X3P1HnM6cB3UDxJpi9wP+ATZKWSppeZx8vAO+p876Z2WucGJqZNaa/+kVEnMp/9hW2q6yvjB+cTjq7d5yUzFWW5/P776jzmZV9DBQ++x/AQlIf/hPgiKTHJM2vsY+TpOTSzGxIvpRsZja2XgReAeYN8v7hIcoCvL34RkQ8DDwsaTJwBfAtYLukmRFxtGrT84CjxfJmZrU4MTQzG1s7gNXA2yLid8MpGBGnJB0CeupsMwDskjQF2ArM4o2J4CzgiWHX2sw6khNDM7MxFBG7Jf2UNMZwAylJOwPMBK4CVkfE3+rs4hHg8uoVklaSxib+ijTH4TuBNaSzj3+u2m4acDHwvVFqjpm1OSeGZmZjbzmwCrgRWEsaM9hLmpvwuSHK/gy4IV8i7s3r9gGfJk17Mx14CdgDLIuIk1VlF5PGPG4ZlVaYWdvzk0/MzCaw/KzjvwP3RMTtwyz7a+BoRFw/JpUzs7bjxNDMbIKTtIw0gfWsiDjRYJlLgceBS/JdzGZmQ/KlZDOziW8jMIM0LvFAg2XeDaxwUmhmw+EzhmZmZmYGeIJrMzMzM8ucGJqZmZkZ4MTQzMzMzDInhmZmZmYGODE0MzMzs+z/pRDBkgvuIPwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFlCAYAAAA+gTZIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgQElEQVR4nO3de5RU5Znv8d8zEExiMpqox5lwEYzEiDrxgkjiOYl6YmxMJiTGcUATo2EguMJEnYwGTdaEzJilmdHjeEdUxJgIMoqE0Y5tFpFgRlTaWwQJixZRGoiNoxEFBJp+zh9v1dSu6trVVV39VvXl+1lrr6797ttTb+/a9eu9d1WbuwsAAADx/Fm9CwAAAOjvCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQ2eB6F1DKgQce6CNHjqx3GQAAAF165pln3nD3g4pN69WBa+TIkWpubq53GQAAAF0ys1fTpnFJEQAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwJ7tIdd0gvvFDvSgAAQH/Sq/95da01NUlTp4bH7vWtBQAA9B+c4UpYt67eFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACR1SxwmdkYM1toZrea2Vm12i4AAEC9VRW4zGyumbWZ2aqC9gYzW2tmLWY2M9M8QdKN7n6hpPOq2W4s7vWuAAAA9EfVnuGaJ6kh2WBmgyTdrBCwxkiabGZjJN0jaZKZ/ZukA6rcLgAAQJ9RVeBy9+WS3ixoHiepxd3Xu/tuSQskTXT3Nnf/jqSZkt6oZrsAAAB9yeAI6xwqaWNivFXSiWY2UtIVkvaV9G9pC5vZNEnTJGnEiBERygMAAKitGIGrKHffoEyQ6mK+OZLmSNLYsWNrelcV/9oHAADEEONTipskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS+KZ5AAAQA4ELAAAgMgIXAABAZAQuAACAyAhcCe71rgAAAPRHBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMCVwDfNAwCAGAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcCXwr30AAEAMBK4E93pXAAAA+iMCFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAEQ2uFYbMrP/I+nczDbHuPtnarVtAACAeqrqDJeZzTWzNjNbVdDeYGZrzazFzGZKkrs/7u7TJT0k6e5qtgsAANCXVHtJcZ6khmSDmQ2SdLOkCZLGSJpsZmMSs5wj6d4qtwsAANBnVBW43H25pDcLmsdJanH39e6+W9ICSRMlycxGSHrb3d+pZrux8E3zAAAghhg3zQ+VtDEx3pppk6Qpku4qtbCZTTOzZjNr3rp1a4TyAAAAaqumn1J09x+5+xNdzDPH3ce6+9iDDjqoVqUBAABEEyNwbZI0PDE+LNMGAAAwIMUIXCsljTazUWY2RNIkSUsibAcAAKBPqPZrIeZLWiHpcDNrNbMp7t4uaYakJklrJC1099XVlwoAANA3VfXFp+4+OaW9UVJjNesGAADoL/jXPgAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgJXglm9KwAAAP0RgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS3OtdAQAA6I8IXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwJXAN80DAIAYCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkdUscJnZyWb2uJnNNrOTa7XdSvBN8wAAIIaqApeZzTWzNjNbVdDeYGZrzazFzGZmml3Su5LeL6m1mu0CAAD0JdWe4ZonqSHZYGaDJN0saYKkMZImm9kYSY+7+wRJ35f04yq3CwAA0GdUFbjcfbmkNwuax0lqcff17r5b0gJJE929IzP9LUn7pK3TzKaZWbOZNW/durWa8irmXtPNAQCAASLGPVxDJW1MjLdKGmpmZ5rZbZLukXRT2sLuPsfdx7r72IMOOihCeQAAALU1uFYbcvdFkhbVansAAAC9RYwzXJskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgSuBf+0DAABiIHABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgSvBrN4VAACA/ojABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4Epwr3cFAACgPyJwJRC4AABADASuBAIXAACIgcCVQOACAAAx1CxwmdkRZjbbzO43swtrtd1KELgAAEAMVQUuM5trZm1mtqqgvcHM1ppZi5nNlCR3X+Pu0yWdLemkarYbC4ELAADEUO0ZrnmSGpINZjZI0s2SJkgaI2mymY3JTPuypIclNVa53Sg6OupdAQAA6I+qClzuvlzSmwXN4yS1uPt6d98taYGkiZn5l7j7BEnnpq3TzKaZWbOZNW/durWa8irGGS4AABDD4AjrHCppY2K8VdKJZnaypDMl7aMSZ7jcfY6kOZI0duzYmkYgznABAIAYYgSuotx9maRltdped3CGCwAAxBDjU4qbJA1PjA/LtPV6BC4AABBDjMC1UtJoMxtlZkMkTZK0JMJ2ehyXFAEAQAzVfi3EfEkrJB1uZq1mNsXd2yXNkNQkaY2khe6+uvpSAQAA+qaq7uFy98kp7Y3qpV/9AAAAUGv8ax8AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuBK4Hu4AABADAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAkPPJB7vH17/eoAAAD9C4Er4cknc49ffbV+dQAAgP6FwJViz556VwAAAPoLAleK9vZ6VwAAAPoLAlcKznABAICeQuBK+N73co85wwUAAHoKgSvBPfd41qy6lVG2zZulXbvqXQUAAOgKgSth797c46VLpU2b6ldLV1papKFDpaOOqncl6CuWLpVWr653FUB8L7/cdz9p7i7deKP01FP1rqTnNDVJU6dygoDAlXD99fnjW7bUp45yLF0afra01LeOemtqkhYvLj2Pu/T66zUpp9d67TXp85/vOqA/9ZT0k5/k//GB8mzYIL39dtxtrFolvftu3G1UatGizsfOnrJ3r3TiidL555e/zJ490mGHSSNHxqkptkcflb77XWn8+PKXeestyUyaNCleXdVoaJDuuEO65Zbi09va4oSxF18M4bu3qFngMrNDzexOM7u/Vtus1ksvlZ7+85+n70C15p5/SbQcO3ZIHR3h8fbtYfkdO3q+ts2bpUsvDW/6pezZU/mHFRoapK9+Vdq5M32eyy+X/uIvpKuuqmzdHR09GzzcpWefld55p/vreP758t9wN2wIB2JJam0tb5nx46Uf/lCaPbs71dVGJfv5jh3SH/4Qr5asLVukUaOkj3ykZ9Z30UXS5Mn5z/W3v5WOPlo67rie2cYll0hDhkhPP118erl/pHzta9LFF0v/9V/p8+zaFd5Ub7qp69s13nsvvE7cpTVrQn13311eLdnlu2PPnhB20r70uqmpe/vSe+9Vdk9wsTNzu3eXfl7jxoWf992XPk8t/+h8+WVp4cLwO0we07du7Tzv5s3SwQdLo0f3zLaXL5fuuSccJ//qr0L47jXcvduDpLmS2iStKmhvkLRWUoukmQXT7i93/ccff7zXUi625IZy5v/Tnyrbzj/8g/tPftL9Ot3dZ8/Obb+jw338ePczzgjTtm93X706f/7XXnP/5Cfd58wJ41u3hmVPOsl93br85/y3f+ve2Bjm+4//cJ861X3nTvcLLnBfuLDyWk86Kaz3yCPT5+nocP/wh9332y99enOz+zvvuL/5Zq49W/Nbb6Wvu9zfZ6HRo90PPTRsO83Che6HHOL++9+XXldHh/t//meo4fDD3V94wf2NNyqr59e/Dst/4hOdpzU25teQ/f1K7k1N7nfdld8Hf/d37qecEn6vScm++s1vKquvFpYtc//Qh8J+WY4xY8Jz+e1vc22/+pX7hg3V1bFrl/tll7k/8oj7tde6z5vXvX0sTXZdmzfn2i67rOe2sWNH8dfFa6+5//u/u++zT2i/4YbOy+7a5b5lS+daJfc77wxtHR3ub7+dm2f48Pz5Xn/d/dln3a+/vvPr6+STwzzXXOP+N39T+XPetq3rZVpb3ceOdb/vvlzbFVeEZb74Rff33suff82a7vX9rl1hmY99rPj0wtefu/ttt+W2tWdPaNtvP3cz9/b24uvp6hh35ZXpv89KdXSE5+Xu3tLivmlTej2NjeF3nB3/+7/vPO/993eu/dxz3c8+u/yatmzJ7UfZdS1d2rOvyXJJava0zJQ2oZxB0mclHZcMXJIGSXpZ0qGShkh6QdKYxPReGbiyO2ThcPbZ4RfnHl4cjz8edvqFC/MPHklPP+3+rW8Vf0Nta8stlzxolXLNNe4zZuS3JQNX4UEp+yazbFkYnzat8wvyvvty47NmpYfNYu3FDhKlfOADXb+J793b+cWxfbv7N77hfsIJ7gcemF/DRRe5v/tubvzhh0NQ/N3vOq87udzzz3cdjgqXK3aQ27zZ/cwzc/OccEL6enbuLN6P73uf+yuvuC9eHA5gLS2l67n44uIHkJaWXPuzz7qPGOF++eXFtym5P/VU7vH06bn1JA+MkvuECfnb2brV/d57Q63ZN4KkBQvcjzoqPKfvf9/95ptz0zZuDK+l5ubSz3H79vDa2rat+PQDDsjvg02bwrY2biw+f3beyy4L49nQW+lB+Jln3FesyI1fd116//aE7LpefTXXdumlnbfR3Oz+s591Xj7tjTlr+/b8mp980v3RRzs/l3337bzskUeGaQsWhDe55PyHHRbm+eY3w/hdd+VCR3LYuDH3OBueC98wC4cVK8Jx4oYbwmvhRz9yP//88EdYUjmB67zz8udZtqzz9rKBcfFi96uv7rzOe+5xv+qq8PjBB93/8R9zz6Gtzf1zn3P/+tfzl/vFL9wfeCA8XrAgtM+enV/bv/5reh9s2xaGo48O71lZhfvfrl3hWFDYp8V+n7/7XQhCO3ak91fSOeeEdf3hD+n9nKxnypTSr49igSs7ng12Sc8+G34nWQ88EOb99rfdH3sst+z8+T37mixXtMAV1q2RBYHr05KaEuOXS7o8MV4ycEmaJqlZUvOIESMid02QDC9pw7x57qeeGh5feWXY4bPTHn00vBFlZdvPOqvztjZvruzgfPvtuXnXraus5uwBoNgbQvaAKOUfyAvnK9Y+d244wHzpS+GNZ8eO3EHvrrvCG/ppp4WDYltbfuAqfM7t7SEE3XRTbnpzc3hRfeELpZ/fJZek1+1e+gB+663hTNGsWeGs32uv5ZZ75ZVw5iI776c/HZ5TR0d4o8r+BZ4cSv1tcPzxXf+uksPatfn989BDIbwnn2/Wzp35B/XuDC++WLyfTj89/y/Ho47Kn37hhWH64sWhzmz7pz6Vezx1aniTOe20XNshh7gvWtS5nzo6wh8qkvuXv5xr37PH/YMfdJ80KX/7n/987vEHP5i/rm3b8s8UnHNO5+C7eLH7D37gvnx5CJOXXOI+c2YI0k88EcLc7t354WDSpLDuZPgtHP74R/clS0qHnvb28Dpav7749Oy6hg7NtRULXNnxa67JrTfbdsQR7g0N+W+kO3aEEDdiRHn7xr775p+pKtxPCkO6FP4o7Wq9yT79538Ob7rDhnX+HZc7JGss52zU6NG5ed54I329RxzRua2wH9avzz3+1a/yn1tySJ5VfOKJ/Gn/9E9hna+/Xvp5vvNO/rHSPRyvkvM0NeVC8a235tdaLHBlpxX+Ue8eXt/btxeff/r09H4u9RymTg0/P/GJcKa/0sCVnXb77SH0feYzubYzzsg9njMnf727dxfdFXpcrQPXWZLuSIx/Q9JNkg6QNDtz9uvyctZdqzNclb64ky/W5DB9ev6lBSn8ktvbw5voscd2Xuaznw1nxNzDG86pp7p/7Wvhr449e/LnnT07XE5bvry8Og85pHi7u/vgwV0vn9Y3J5xQvP2HPyyvruwZuXXrioeXcoe05/fEEyFsVrKu/fcPB5eDD06fJ3sQKzYcd1zor0ceCWeu9t3X/bnnQpCr9Hkde2w4a7V7t/stt4S2ww7LD1zZEPSDH3S//5LDhg3p08aPzz8D2VND0rJl6cE87exz4bB2bXjdnHtu/oG3p4eZM0sHrrTn6B7ejAtDxe2356Z3dIQzOMnp//Iv4Y+b7JkFKZwdefDBztv6+c8713DddSE8J9+YKh2uvz6cnT799J7pw3JCWSXDjBnFw4q7+6pV4TL+L3/Z/WN+cli3Lpzdyo4Xnh0rfA/IDl3txzt35oePYsO777rfeGP+8ys1//jx+Wf8kn+Y7NoV3n+K7a979uTvSyedFI4RW7YU307WFVfkB8Jyhgsu6Lye7PjXvx76c+/e0F5Yr+Q+alT526r2VoJy9IrA1Z11xw5czz+f+4s61pA8U1JquOQS9+9+N78tec9GTw6FlxPShsIDen8fGhqqWz55Ojs7HHpo99d3yinuX/lK+vQTTwwH1Fr0zbhxPb/O5CX3j3608/RFi8K9K9n7iboarr22vvtPsWHt2lw4+9jH0ucr1Q/lDu6lL0f1puH976/Ndr74xfzbEc47L9w/25PbuPXW/PHPfa5769m+vevAtXJluISeHe/OMWvWLPePf9z9r/+6+D6UvO2l3ME93BdXbV9mrzQUth92WM+8H82aFTVSZGrvRZcUKxliB66efNH1paHYXwkM1Q8zZ/b8OgvP+hQOgwbV/3lXMzQ1DezXYnb43veq74e2tnB5rt7PZaANPRX0N2/uOnCdf37c5+Le+Z7fcoZHHgm3JvREDd29rFzOUO/ANbjyzzV2aaWk0WY2StImSZMknRNhO+im5cvrXUH/dPXVPb/OUl93IfX978s6/XTpz/+83lXU37XXhq8uqcaJJ0r7798j5aACyX8JV43bbgtf+1HKvHk9s600P/2pNGdO5cs1NPRcDQsW9Ny6CrnHW3c5qvoeLjObL2mFpMPNrNXMprh7u6QZkpokrZG00N35fmsARW3bVu8KeodLL61u+VdekZ57rmdqQe39+Mflf19eLDNn1nf7se3eXd/tV3WGy90np7Q3SmqsZt0AAAwkF19c7wr6t3pfEeBf+wAAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAOj3+vTXQgAAAKBrBC4AANDvcYYLAACgnyNwAQCAfs+svtsncAEAgH7v5Zfru30CFwAA6PcWLarv9glcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgspoFLjM71MzuNLP7a7VNAACA3qCswGVmc82szcxWFbQ3mNlaM2sxs5ml1uHu6919SjXFAgAA9EWDy5xvnqSbJP0s22BmgyTdLOk0Sa2SVprZEkmDJF1VsPy33L2t6moBAAD6oLICl7svN7ORBc3jJLW4+3pJMrMFkia6+1WSvtSjVQIAAPRh1dzDNVTSxsR4a6atKDM7wMxmSzrWzC4vMd80M2s2s+atW7dWUR4AAEDvUO4lxaq5+39Lml7GfHMkzZGksWPHeuy6AAAAYqvmDNcmScMT48MybQAAAEioJnCtlDTazEaZ2RBJkyQt6ZmyAAAA+o9yvxZivqQVkg43s1Yzm+Lu7ZJmSGqStEbSQndfHa9UAACAvqncTylOTmlvlNTYoxUBAAD0M/xrHwAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDIaha4zOwIM5ttZveb2YW12i4AAEC9lRW4zGyumbWZ2aqC9gYzW2tmLWY2s9Q63H2Nu0+XdLakk7pfMgAAQN9S7hmueZIakg1mNkjSzZImSBojabKZjTGzo83soYLhf2WW+bKkhyU19tgzAAAA6OUGlzOTuy83s5EFzeMktbj7ekkyswWSJrr7VZK+lLKeJZKWmNnDku7tdtUAAAB9SFmBK8VQSRsT462STkyb2cxOlnSmpH1U4gyXmU2TNE2SRowYUUV5AAAAvUM1gasi7r5M0rIy5psjaY4kjR071uNWBQAAEF81n1LcJGl4YnxYpg0AAAAJ1QSulZJGm9koMxsiaZKkJT1TFgAAQP9R7tdCzJe0QtLhZtZqZlPcvV3SDElNktZIWujuq+OVCgAA0DeV+ynFySntjeIrHgAAAEriX/sAAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIzNy93jWkMrOtkl6NvJkDJb0ReRv9DX3WPfRb5eizytFn3UO/VY4+6+wQdz+o2IReHbhqwcya3X1svevoS+iz7qHfKkefVY4+6x76rXL0WWW4pAgAABAZgQsAACAyApc0p94F9EH0WffQb5WjzypHn3UP/VY5+qwCA/4eLgAAgNg4wwUAABDZgA5cZtZgZmvNrMXMZta7nt7KzDaY2Ytm9ryZNWfaPmpmvzazdZmfH6l3nfVkZnPNrM3MViXaivaRBTdk9rvfm9lx9au8vlL6bZaZbcrsb8+b2RmJaZdn+m2tmZ1en6rry8yGm9ljZvaSma02s4sy7exvKUr0GftaCjN7v5k9bWYvZPrsx5n2UWb2VKZv7jOzIZn2fTLjLZnpI+v6BHqhARu4zGyQpJslTZA0RtJkMxtT36p6tVPc/ZjER4BnSlrq7qMlLc2MD2TzJDUUtKX10QRJozPDNEm31qjG3mieOvebJF2X2d+OcfdGScq8PidJOjKzzC2Z1/FA0y7pe+4+RtJ4Sd/J9A37W7q0PpPY19LsknSqu39K0jGSGsxsvKSfKvTZYZLekjQlM/8USW9l2q/LzIeEARu4JI2T1OLu6919t6QFkibWuaa+ZKKkuzOP75b0lfqVUn/uvlzSmwXNaX00UdLPPHhS0v5m9pc1KbSXSem3NBMlLXD3Xe7+iqQWhdfxgOLuW9z92czjdyStkTRU7G+pSvRZmgG/r2X2l3czo+/LDC7pVEn3Z9oL97Ps/ne/pP9rZlabavuGgRy4hkramBhvVekX4EDmkh41s2fMbFqm7WB335J5/EdJB9entF4trY/Y97o2I3P5a27icjX9ViBz2eZYSU+J/a0sBX0msa+lMrNBZva8pDZJv5b0sqQ/uXt7ZpZkv/xPn2Wmvy3pgJoW3MsN5MCF8v1vdz9O4dLEd8zss8mJHj7qysddS6CPKnKrpI8rXMbYIunaulbTS5nZhyQ9IOlid9+WnMb+VlyRPmNfK8Hd97r7MZKGKZzh+2R9K+rbBnLg2iRpeGJ8WKYNBdx9U+Znm6QHFV54r2cvS2R+ttWvwl4rrY/Y90pw99czB/oOSbcrdymHfssws/cpBIdfuPuiTDP7WwnF+ox9rTzu/idJj0n6tMIl6cGZScl++Z8+y0zfT9J/17bS3m0gB66VkkZnPnExROEGySV1rqnXMbN9zezD2ceSviBplUJffTMz2zcl/bI+FfZqaX20RNJ5mU+PjZf0duJS0IBXcH/RVxX2Nyn026TMp6FGKdwE/nSt66u3zH0xd0pa4+7/LzGJ/S1FWp+xr6Uzs4PMbP/M4w9IOk3h3rfHJJ2Vma1wP8vuf2dJ+o3zRZ95Bnc9S//k7u1mNkNSk6RBkua6++o6l9UbHSzpwcy9j4Ml3evuj5jZSkkLzWyKpFclnV3HGuvOzOZLOlnSgWbWKulHkq5W8T5qlHSGwo24OyRdUPOCe4mUfjvZzI5RuCS2QdK3JcndV5vZQkkvKXzq7DvuvrcOZdfbSZK+IenFzP01knSF2N9KSeuzyexrqf5S0t2ZT2f+maSF7v6Qmb0kaYGZXSnpOYUgq8zPe8ysReGDMJPqUXRvxjfNAwAARDaQLykCAADUBIELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiOz/AwFTp6Fc5kCRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.0015231682473469295763529 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "frequency = 3.\n", + "phase_lag = np.pi / 3\n", + "\n", + "# long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 100 * np.sin(2.*np.pi*long_times*5 + np.pi/6) + 1000\n", + "# long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 80 * np.sin(2.*np.pi*long_times*5) + 900\n", + "\n", + "long_signal_1 = (300 * np.sin(2.*np.pi*long_times*frequency) + 1000) * dt\n", + "long_signal_2 = (200 * np.sin(2.*np.pi*long_times*frequency - phase_lag) + 900) * dt\n", + "\n", + "long_lc1 = Lightcurve(long_times, np.random.normal(long_signal_1, 0.03))\n", + "long_lc2 = Lightcurve(long_times, np.random.normal(long_signal_2, 0.03))\n", + "\n", + "# Note: the second light curve is what we use as a reference.\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc2, long_lc1, 53.)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,4)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "plt.show()\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(avg_cs.freq, avg_cs.power, lw=2, color='blue')\n", + "plt.semilogy()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `time_lag` method returns an `np.ndarray` with the time lag in seconds per positive Fourier frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "freq_lags, freq_lags_err = avg_cs.time_lag()\n", + "freq_plags, freq_plags_err = avg_cs.phase_lag()\n", + "\n", + "# Expected time lag, given the input time lag\n", + "time_lag = phase_lag / (2. * np.pi * avg_cs.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And this is a plot of the lag-frequency spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFPCAYAAADtO6y7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTqklEQVR4nO3de5wbdbn48c+z993udksvtJTKtghyLV1ELkWhRa0HUY8iKuJygKMCinJTj+IP1KKgeEPrUYSiHoRW6AG8C0e80IJQwFYqQrnTFkovtNt2u9u97z6/PybpZrMzyUwySSbJ83698koymXznO5NJ5sn3KqqKMcYYY0y+VBQ6A8YYY4wpLxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5FVRBB8icpGIrBORXhFZLSInpVj3/SJyn4hsE5FOEXlURP7dZb0zRGStiPTF7k/P7V4YY4wxBoog+BCRM4FFwNeBo4GHgXtF5ACPt8wD/gq8K7b+PcCvEgMWEZkLLAOWAq2x+ztF5Pgc7YYxxhhjYiTqI5yKyKPAE6p6fsKy54G7VPWLPtN4DHhQVT8be74MmKiqCxLW+TOwTVXPCnUHjDHGGDNKVaEzkIqI1ADHAN9Jeuk+4MQASTUBOxOezwX+O2mdPwKfdsnDco80D8IJgC4LkA9jjDGmaInI9wGyvfZFOvgAJgOVwNak5VuBt/tJQEQ+BcwAbktYPM0jzWkB8jYFOE9EWgO8xxhjjClmrUAXcFk2iUQ9+MiKiJwBfBs4U1U3ZJKGqs73SHtjc3Pz/q2trfOyyGLoVqyAeVnmKIw0THBrN+0G4PDp4wuck/yw8yy9UjpG2e5LKR2LfMjV8VqzZg0dHR1d2aYT9eBjOzAETE1aPhXYkuqNIvIB4FbgHFX9XdLLWzJJM8kLra2t+y9fvjzAW3JPBLLNUhhpmODOvGklAMsunFvgnOSHnWfpldIxynZfSulY5EOujtf8+fNZsWLFC9mmE+neLqraD6wGFiS9tACn14srEfkQTjXLeap6l8sqK4OmaYwxxphwRL3kA+B64LZYj5WHgE8A04EbAUTkVgBVPSf2/MM4gcfngAdEJN6Oo19Vd8QeL4q9dgXwa+B04BTgLfnYIWOMMaacRT74UNVlIjIJuArYD3gSOC2hDUfyeB+fwNmv78ducSuA+bE0H44FKdcAXwVexGkX8mhu9sIYY4wxcZEPPgBU9QbgBo/X5qd6niLNuwC3KhljjDE5NjAwwMaNG+nt7fW1/r33wtNP5zhTJSSM41VXV8eMGTOorq4OJ1MJiiL4MMYYU1o2btxIU1MTM2fORETSrr9nDxx2WB4yViKyPV6qSnt7Oxs3bmTWrFnhZSwm0g1OjTHGFK+FC71f6+3tZdKkSb4CD5N/IsKkSZN8l0wFZcGHMcaYnLj66tSvW+ARbbn8fCz4KIBU/waMMcbkR2NjY+hprl+/nl/84he+Xlu1ahWXXHJJ6HlYuHAht92WPCtJtFjwUQDp/g0YY4wpTkGCjze96U384Ac/yFfWIsWCjxJgJSnGGJO55cuXM3/+fD7wgQ9w6KGH0tbWRnzG95kzZ/L5z3+e2bNnc9xxx/HCC87gnueddx533TXSYTJeinLFFVfw4IMP0trayve+971R20l+bfny5bz73e8GnNKKc889l5NOOomWlhZ++ctf7t3uqaeeysDAAACrV69m3rx5HHPMMfzbv/0bmzdvTrlvN998M8ceeyxz5szhjDPOoLu7G4AXX3yRE044gdmzZ3PVVVflpBQoFevtUgKuvtoCEGNM8Zp5xR/8rRhwcIT1173L97qPP/44Tz31FNOnT+fNb34zDz30EG95izPuZHNzM//617+49dZbueyyy/j973/vmc51113Hd77zHdd1kl9Lnp7jxRdf5P7772ft2rXMnTuXu+++m29961ucfvrp/OEPf+Bd73oXF198Mb/5zW+YMmUKy5Yt48orr+RnP/uZZ37e//73c/755wNw1VVX8dOf/pSLL76YSy+9lEsvvZSzzjqLG2+80fdxCouVfBQBCyyMMSa3jjvuOGbMmEFFRQWtra2sX79+72tnnXXW3vuVK1fmLA/vfOc7qa6uZvbs2QwNDXHqqacCMHv2bNavX8+zzz7Lk08+yYIFC2htbeWaa65h48aNKdN88sknOemkk5g9ezZLly7lqaeeAmDlypV88IMfBOAjH/lIzvbJi5V8FIFiLtlYuLB4826MyQ8/JRSrVsGb3pS7PNTW1u59XFlZyeDg4N7nib0+4o+rqqoYHh4GYHh4mP7+/tDyUFFRQXV19d5tVVRUMDg4iKpyxBFHBAqAzjvvPH79618zZ84cbrnlljGlLYViJR8mp6xxrTGm2C1btmzv/dy5zqzTM2fOZPXq1QD89re/3dsmo6mpic7OTtd0Ur3mxyGHHMK2bdv2Bh8DAwN7SzK8dHZ2st9++zEwMMDSpUv3Lj/hhBO4++67AbjjjjsyzlOmLPgoIlaCYIzJJfuNcbdz506OOuooFi1atLcR6fnnn8+KFSuYM2cOK1euZNy4cQAcddRRVFZWMmfOnDENTlO95kdNTQ133XUXX/jCF5gzZw6tra08/HDqydi/9rWvcfzxx/PmN7+ZQw89dO/y73//+1x//fUcddRRvPDCCzQ3NwfOTzYk3qLXBCMiy+fNmzcvkyIsEQhy2OPre70vcXnQtMPIX77SKnVn3uT8m1l24dwC5yQ/7NxIL9/HKOztpfptevrppzkswPjfua528TJz5kxWrVrF5MmT87/xLKQ7Xt3d3dTX1yMi3HHHHdx+++385je/GbNe8uc0f/58VqxYscLvPGperM2HMcYYU2ZWr17Npz/9aVSVCRMmpOwxkwsWfOSRNb40xpjiktjrpZScdNJJ/POf/yzY9q3NRx5Z40tjjDHGgg9jjDEFYm0Ooy2Xn48FH8YYY/Kurq6O9vZ2C0AiSlVpb2+nrq4uJ+lbmw+TFWvHYozJxIwZM9i4cSPbtm3ztf727fD00znOVAkJ43jV1dUxY8aMcDKUxIIPk5ViHn3VGFM41dXVzJo1y/f6hx9uXbODiPrxsmoXY4wxxuSVBR/GGGOMySsLPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMUXGepiZYmfBhzHGFBmbqsEUOws+jDHGGJNXFnwYY4wxJq8s+DDGGGNMXlnwYYwxxpi8suDDFBVr5W+MMcXPgg9TVKyVvzHGFD8LPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5JUFH8YYY4zJKws+SsTSpTBzpvN45kznuTHGGBNFVYXOgAnHBRdAd7fzeMMG5zlAW1vh8mSMMca4sZKPEhEPPBKfX3llYfJijDHGpGLBRwl7+eVC58AYY4wZqyiCDxG5SETWiUiviKwWkZNSrLufiPxCRJ4RkSERucVlnfNERF1udTndkTw74IBC58AYY4wZK/LBh4icCSwCvg4cDTwM3CsiXpfWWmA7cB3waIqku4H9Em+q2htWvvOtoWHs82uvLUxejDHGmFQiH3wAnwFuUdWbVfVpVb0Y2Ax80m1lVV2vqpeo6i3AjhTpqqpuSbyFn/X8WbwYWlqcxy0tznNrbGqMMSaKIt3bRURqgGOA7yS9dB9wYpbJ14vIBqASWAN8SVUfd8nDco/3t2a5/VC1tTk3EVi/vtC5McYYY7xFveRjMk5wsDVp+VZgWhbpPgt8FHgvcBbQCzwkIgdnkaYxxhhjfIh0yUeuqOpKYGX8uYg8jFP6cTFwSdK6893SiJWIzMtVHo0xxphSFfWSj+3AEDA1aflUILQ2Gqo6BKwCrOTDGGOMybFIBx+q2g+sBhYkvbQAp9dLKEREgKNwGrIaY4wxJoeKodrleuA2EXkMeAj4BDAduBFARG4FUNVz4m8QkdbYw/HAcOx5v6qujb3+FeAR4PnYOpfgBB+uPWiMMcYYE57IBx+qukxEJgFX4YzH8SRwmqpuiK3iNt5Hcq+V9wAbgJmx5xOAxTiNVjti65+sqo+FmvkcW7p0ZAj1mTNtXA9jjDHFIfLBB4Cq3gDc4PHafJdlkia9y4HLQ8lcgSxd6j2ZnDHGGBNlkW7zYbxdeaX7ZHLGGGNM1FnwUaRs0jhjjDHFyoKPImWTxhljjClWFnwUqWuvdZ9MzhhjjIk6Cz6KxMyZI/dLlzrzuLhNJmeMMcZEXVH0dilnS5c69xs2jNzHe7W4TSZ39tl5z6IxxhgTiJV8RFx8HI9E3d3uy6Nk4cJC58AYY0xUWfARcV69WqLe2+XqqwudA2OMMVFlwUfEefVqyUVvl6VLx7YtMaZUWGmcMdFhwUeeBb24uw2Z3tAQ/lDq8RFTk9uWWABiSoWVxhkTHRZ85MHSpTB5svM46MW9rc25T+7VEl8eFq8RU7NpW2KlKMYYY9xYb5ccS56DJVH84u4nkFi/fnSvlrCF2bYkXQ8dY4wx5c1KPnLMrUQhUVQajobZtqRYe+gYY4zJDws+cixdcBGVYdK9RkzNpG1JLnroWGNYY4wpHRZ85Fiq4CIXDUcz5TViaibVJGH30LHGsMYYU1os+MgxtxIFgEmTctNwNIjkrodtbSNtStavzzxvYffQyUVjWGOMMYVjwUeOuZUoAGzfXvjGl7nqeujVQ+f55zNLr1gHWjPGGOPOgo88SC5RKBfJpSiZBjv5HGjNGGNM7lnwYSIvzMawxkSdjcRqyoEFHybywmwMa0zU2UisphxY8GGKQliNYY0pNVZSYoqRBR/GGFPE0pWUWHBiosiCD2OMKWFWjWOiyIIPY4wxxuSVBR8GsKJZY8Lg53tk3zVjLPgwMVY0a0z2/HyP7LtmjAUfxhhjjMkzCz5MRmyWWWOMMZmqKnQGTPGJzzIbn+wtPsss2Pgbxhhj0vNV8iEitSIyX0SuEJEfiMjNIvINETlPRA7MdSbLVXLpQlTYLLPGGGOykbLkQ0QOAi4D2oBmYBjoAHqAiUAdoCKyGrgBuFVVh3OZ4XLhVroQX17o0gWbZdYYY0w2PEs+RORHwFrgWOCrsfs6VZ2kqjNUtQHYD3g/sAa4HnhKRI7Pea7LgFvpQnx5oYU9y6x1PTTGmPKSqtplOnCcqh6vqt9T1dWqOpi4gqpuVdXfqOoFOIHIj4E5Ocxv2Yhy6ULYs8xa10NjjCkvntUuqnp6kIRUtQ/4QdY5MoBTihCvakleXmjxap8rr3Ty2NLiBB6Frg4yxhhTHKyrbUS5lS7El0eBzTJrjDEmU357u7xXRP4z4XmLiKwUkU4RuUtEGnOXxfLU1gaLFzulCjBybxd5Y/yLSnuiqOTDmKjwW/JxFTAl4fn1wAxgMXAysDDcbBkYW7pgjAkmKu2JwsqHDe7nnwV8mcnXcfMbfLweeAJAROqB04DPqOpngf8HBGofYtKzL44xJlG8+328LVji4H5mrKgEnsUg8XqTr+PmN/iowxnbA+BEnIaq98WeP4vTM8aEKNMT4CtfCTcfxcwCOFNKvAb3MyZbhQjU/AYf64G3xB6/F1itqh2x5/viDDxmIsAuuCPsn48pJVHoZm9MWPwGHzcBC0VkFXAR8NOE1+biDEZmMmDBgjHGjyh0szcmLL6CD1VdBJwHrAQ+qqo3J7zcBPxP+FkrD+Xw79wayRmTPa/B/Uqd/X6UJt+z2qrqUmDMx66qF4aaI1NybAZcY7KXPLjfpEnO8+5u56JcigP92QzapSvV3C51mSSY6fvSpHmRiKwTkV4RWS0iJ6VYdz8R+YWIPCMiQyJyi8d6Z4jIWhHpi91bj50csRlwTSGV0j/nxO73PT3Q3u48jl+Ui3nf3NgM2qUrVbXLehG5XEQm+ElIRE4Ukd8C/xVKzkbSPRNYBHwdOBp4GLhXRLxqQGuB7cB1wKMeac4FluGU5LTG7u+0SfGyl/xD78Uaz5l8ceueWgoX6WK9KAdp5xblOa5MdlIFHxcBFwKbReRXIvIZEXmbiBwlIoeIyAki8hER+b6IvAAsBzbjDDwWps8At6jqzar6tKpeHNvOJ91WVtX1qnqJqt4C7PBI8zLgflW9NpbmtbH8XxZy3suK2zgEXrwaz1kDXBO2Yr1IZ6IYLspB2rmFPYO2iQ7P4ENVfwkcAZyNU5pwDfAn4HGc3i0PAUtwut7eBRyqqheq6tawMiciNcAxjIwpEncfzngjmZrrkuYf3dIUkeVuN5wSE5PArYgUQGT081Qz4JZDA1xTeMVwkc5EqV2Uw55B20RHyganqjoE3A3cHQsEWnEGFKsD2oFnVPWVHOZvMlAJJAc0W4G3Z5HuNI80p2WRZtnz+kFXdeamsRlwTVSUwkW6oWF0sF+KF2WbQbt0Bent0g88lsO8RJKqzndbHiv9mJfXzETcAQe4V7W0tDiN5ERsjhqTf6V6kV68uDwuym1tzs1+P0qL30HGCmU7MARMTVo+FdiSRbpbcpBm2XMrIo0vN6ZQkmeHXry4NC7SyRNP+tkna1NlvOS7V1ikg49YactqYEHSSwtwer1kamUO0ix7bW1jf+jjy43xK+wLZCYX6VJlbaqMl3z3Cot08BFzPXCeiHxcRA4TkUU47U5uBBCRW0Xk1sQ3iEiriLQC44GJseeHJ6yyCHiriFwhIoeKyBeBU4Dv52F/QhelyeSSf+iNCapULpBWymCKSb57hflu81EoqrpMRCYBVwH7AU8Cp6lqvHWBW9Oxx5OevwfYAMyMpfmwiHwYpwfPV4EXgTNV1XVckKizHzljoufqq+27aYpbLnuFRT74AFDVG4AbPF6b77JMXFZNXucunC7CxhhjjEmSy15hxVDtYowxxhS1qJeC5Xs8FV/Bh4j8LMXtJyLy3dhop6HP6xJlxdqmoZTmujDGmGIQ9bZM+e4V5rfa5RSgGZgADOJ0gZ0ce/+u2DqXAy+KyCmqujHcbEZTquHDoyrVLJHGGGPKU77HU/Fb7fIRoAM4A6hT1fgopx8EduM06DwutuwbOcinCYnXLJFRllhcGaWePcaEyUokTTnxG3x8D/imqv5KVYcBVHVYVe8Gvgl8T1VX4QQeyeNnmAgpxjktEosro15vWi7scxgt28DBbVJGK5E0pcxv8DEHpzuqmxeBI2OP1wL7ZJsp4y6Mf/2lMKeFG7sY5lfU66/zKYzAoRhLJE35WboUHnkEYF7WU4v4DT62AB/weO2DjEzSNh7YmW2mjLswLrBes0QWO7sYmkIJI3AoxhLJqLLqq9yIB9l9feGk5zf4WAScLyK/E5FzReSdsfvfAx/DqZYBOImxA3yZCHEbAn3x4sLmyZhiFkbgUKolkvnmVQplAUj23ILsbPgKPlT1+8AFONUv/wP8IXZ/FHC+qv4gtuqPgPPCy57JBZvrwpSKKFS3pQoc/P7zLtUSyXzzKoXKdpjwKJxnhRZ26ZzvQcZU9SdAS+x2Qvyxqv40YZ31qrrVIwljjAmVV3VbPovevWZzBv/tP6xEMhxeF8hsL5xWrRt+6VygEU7V8YqqPha713CzU1wmv++9/O+qV9jeFVIlmDERFsa/v3z8g8x3z5HkwCGZ36JqK5HMntcF0qq1spcqyM6EBIkfRGQOcAjOeB6jqOqtY99RukRkecsXfj/PeQxzZkzgbYfuy9sOm8ph+zUhMnZ6GRFQHblPXOa1bqp1st8H920E2V66/Iexr37yk+n7ouTMm1YCsOzCuQXOibswzsmg50OQ9OJmzvQeADDX54PL137MttPtX9i/D5muGwa3bYdx7nhJHkQRnAtmtqN1hnFc8v17lOn3KNX7li6Fj31sPn19oLo87RxqqfgdXn2CiDwE/AO4HbgldvufhFvZaf/jn5h/yBSqKytY88ouvvun5zjtBw/y5uv+ylW//hf3P/MavQNDhc6mYfQ/bqu/LaxcV4lYz5Hy5VV9ZaVI4WhrgxNOAFixItu0fJV8iMgNwFtxerY8CJyOM+LpR4G5wIdVdXW2mSkmIrIc5s1TXU53/yB/e347f33mNf7yzGts6xyphqmtquC4WROZ94YpXHT6FPq2NVJRIVby4SMf6baRbp0w9i+fyqXko6Eh9T/TYi/5cNu/7m4r+chHyUc26+c6rVIo+QCYP38+K1asWOE2o3wQftt8/BvwdeCR2PONqrpcVc8B/gxcmk0mil1DTRXvOGIa151xFI9+8W389tNv5pK3HcyR+4+nb3CYB5/fzjV/eJrpH3+AE6/7KxNPfYI/PLGZju6BQmfdmLzLRW+ERIXuOWINR00xy9cUFn4nltsPeElVh0SkF2hKeO2XwB2h56xIVVQIR82YwFEzJvCZBW9gW2cff3thGw88t50Hn9/G5o5emua8wqd+8QoVAtPOnsD3/jSFeYdMYc6MCVRWZFWNZkxRCnOSxngJypVXOum2tDgBydlnh7eNdNtPnqArl9u2+Y5MmPJVLe03+NiCM6MtwAacqpblsecHhZul0jKlqZbTj57B6UfPYHhYWbt5N28+Yxvv/Og2Vm/YSe3+u1j0l10s+svzNNVVccKBkzjx9ZOonjwZ1UbXhqvGFJOFC/PfzibfAUAhWRsmU4z8Vrv8DWdsD4DbgK+IyE0i8iPg28Afc5G5UlNRIRy5fzO7Hz2IOy6Yy+Nffgev3fUmzpnbwsxJDXT2DvKntVu5+ndrmf6xBzj22j9z8e2P0zjnZTa076HMezabCMiksWjyGAk2mFb+2ZDjJmr8lnxcDUyPPf42MAk4E2gAfgtcHH7WSl9jbRU9L07lq++dCsDGnd08/GI7K19s584HtrOdPn73z01MOnUT874N+0+o58TXT+LEgyYx98DJTGse0+M50qx4uPgldmNMHD8jSG+CxYsLVyXiVyFKa3IpjM8tlVI7Xib3Ao3zYUYk9nYJ/l4/rdmVF17bw8MvbOcz32pn/6Pb2ZXUQPWAiQ0cO3Mix83ah+NmTWLmpIZA1TT57u0SNB/ptgHOP7jkC5lbrwnr7ZI9r1OrpWWkasPrfek+h7DPv3TbzjbdoNsLu3dK0H1x4/a5hdUTxe17efbZ1tulGHq7pBNWbxe/JR8m74TXT2nk9VMaOefXM9l6t/L0lt08/EI7D724nVXrd/Lyjm5e3tHN3f/YCMDkxlonEJk5kWNnTeTQaeML3oA1l6UdyQMK5eIfnUmv1MfVCOtfffyCDE7VR2KgXAi5+txSfS+NifMs+RCRLwdIR1X1a+FkqTjkvuQj9TqDQ8M8s6WTx9bt4LF1O/j7+h207+kftU5TXRVvatmHY2dN5LiZE5k9o5naqsq02wiz5CNoGkFKPrzGc4j/o7OSj3CVa8lHGO/zM75JkG1HueQj3TgrVvKRH8Vc8rEwQDoKlFXwkY0wSgOqKis4cv9mjty/mY++ZRaqykvb9ziByLodPLZ+Bxt39nD/s9u4/9ltgDPgWevrJvDGln04+nUTqGjYB6jNPjMhyORfYa4mkTLe3C6g115buPwUE6/xTfJR+pHPz82+f8YPz94uqloR4FbplY4ZKxcNs0ScapqzjjuA689s5W9feCsPX/FWFn24lbbjD+DgfRvpGxzm0XU7+PHyF7ngttW87uI/c9K3/sqldzxO0xvX8cTGXQwMDYefOR/cJgJL1yLfJpHKj8SeEvX1MGmS8zjsoavLsUdGvi7U+RxyPOzvX64asloD2cKyBqcZyqbaZXQ6+Rtefceefv6xYSf/eHknj7+8i4ee2UVFzei5Z2qrKuhY18ylbftw9AETeOMB+7DveO9eNfkoFvZKK90kUlbtkj2vY5w4XHg6fqta/FZLeKUdZNuZ5jno+5YsGWl46SZd1Uc+qjUzTdfrfenOmUyrT8Kudkl8PV27Hqt2GRFWtYsFHxkqxuBjzDYqhnlqYxf/eHknl31tJ0edsouXtu8Zs97+E+ppPWACc2Y0M3v/CRy5/3ia6qp95z9tPjyCDxEYHrbeLoUUxjwpfoMPN0HakwTZdqZ5Dvq+5IAqUT7bfOQz+IBwe7vkI/jI1XEJO41cba8QwYffQcZMKdIKDp8+nrNPaKH9nlb++rn5PP6lBWy981gufutBvOWgyTTWVvHqrh7+8MRmvn7PM5x18yMcdfV9vO27y7l82RqajlnHqvU76OkPf/ZeP8W3bW0jF6f16+H558uz+N6P+D+7IMXNha6/L/T2s9Hc7B14lPpsq8nfy1LdTz/s98idlXxkqCRKPnz8Ix0aVl54rYvHX97Jv17t4F+vdvD05t0MDI3OUIXAG6Y2MXv/Zo6a0czHz5jA7pebRvWuSZUPtyL3c8+Fe+5xL9Xw2he3tOKvJf8DC1u2XTJzXfKRyT9IK/nI/H0VFd7vyzbP+Sj5CHI+B/kdK6eSj3RVw7kU9ZIPCz4yVC7Bh5u+wSGe3dLJExs7uPTqDo47tYPntnYyNDz6TdWVwhumNnHE9PEcvt94jti/mUOnNe2tsknMR2LdeEsLnHYa/Pzn/r+0iT9QqQRtrxBEtp9TFIMPa/OR+fsyDdyiEnyEcfGKQvDhFUTlI/hINxxALlnwUaLKOfhwS6Onf4i1m3fzr427eOLVDu64r4PaKV2u6cyc1MDh08dzxPRmDt9vPAuOHc/A7lpEZG96Qb+0foOPOAs+/L8vVf19Mrcfer/BR3IA6qe7dZSDj0wDNws+3NMI+335CD68Sr9EnPZsuVRSwYeIHAWcjDO3y02qukVEDgK2qmpnNhkpNhZ8pF5XBDp7B1m7aTdrN3Xw1KbdrN28m+e2do6psgGY3FjDYfuN5/e3NfPzReP5wNvGM7CjAbRiTLpuX9p8Bx+JF9lUjV6DiGrwkfz+5Mde66R7Xy7PP7fXM61GyCY/QQK3INu24CP791nJR2br5jX4EJFaYAnwfkAABY5V1X+IyC+B51T1imwyUmws+Ei9rtfy/sFhXniti7Wbd/PUpg7WbtrNyqd3U1E3OGZdHaygf3sjA9uaGNjeRP+2JqbWjmfdWqeUxG17Iql7GOxNO8X++blIxbcXZp1uqQUfiRfe+Ngg7e3uF2GvtLPtApnLfQ2yvbADAAs+sn9fPoIPa/PhzW9vl2uBtwP/AUzFCUDi7gX+LZtMmPJRU+X0sHnydzM4aPcRPPqNubyy6B3wu1P4yAHHsOuhg3n7YfsyoboeqRqmdtpuGme/yj6nPMPUD/0d3vsXWr/6Jz5040q+9OsnWfLIBlat34HUjEy6lzigUnJJiJ/p25OngE/lyiu9R66MguQLd75a3cd/dOP/+trbnRsEm+sjyGdhjB/57H3S1pbfAd6Kid+Sj1eBr6vqj0SkEhgA3hQr+Xg7cKeq7pPjvEaKlXykXtfPPwm3BoaJ9eE/vXWAr/2gk/bBTiYd2MnMozvZOdxJR8+Aa5rTm+t44R9NXP7RJg6d1sSZpzax+DuNLPxSZcbF3unWCbNONxclH4klNMnT1gf9BxbkH3mqxpaJsq2CsZKPYHkq95KPMNrhZCpXv+NhbK8QJR9+Z7WdBDzt8VoFUZkgxBQVtxKDRB87p5qPnTMRkYl0rnGWqSqvdfbxzJZOnt2ym2e2dPLc1k6eWN/Fpo5eGl7fy00rnLlspv8nXL0WXndRPd2PNXHBRxupntJIzfRGOnoaaa4f3esmHbcqgAMOcL/Ijh8fKOmccyuJyeXcIsU8PkcqYc1wawrDq6SyXBVypmW/wcc6YC7wV5fXjgOeDS1HpiSEMXmeGxFh6vg6po6vY94bpowsr1Be2LqHo97SyTU/7OTZLZ387oFO6qZ088qOHhoO6mHxA68BsN9/wJyrobGqltkHNHLQvqNvTiwtY7Z99dVjLzzXXuv+T6qjY+R5oS9YS5d6l0JkGiSk+3y9grJi53YOmMIK8v0q1aA4iPjxSi4FSqwOzUcA4rfa5YvA/wM+AdwNdAPHABOAu4CFqvrfuctm9Fi1S3Z5S26LkSg5vSDVIMn70TcwzIb2PbSe3EXDtC5o7qJ6UhdVE7uoqHavFxnureKNB48EI7Mmj+PAyeN4w/4N6GDlmDwFaViZSq6qXVI1wA3S6j7I5+BWvJ0ouag7KtUu8R/msPNj1S7pq0/SjccR9Fi4fZZhjL2SqahUu6SrGk33mxBWtYvf4KMSWAp8COjD+WvYA9QBd6hq2TWfKeXgI4yRDf28L12bjyDb8Ao+Eh+PplQ197D/YV1c+c0uXnitixe2OfdebUp0GCbW1rPz5UZ2vzqO8TKO884Yx8c+NI7pE+qpqpS0o6u2tY0EKy+/7JQQxJeHGXwkBkRe/Lb5cPsR95JpUBaV4MPPeWTBh//8BAk+0i3P9FhYmw/35Zm2V8tr8DGSKTkJp2fLvkA78H+quiKbDBSrUg4+0kkMTrIJPtwGlXIrJchN8DGyPP5Fcy6Wyivb+nndEV285+xOJs/aw7rtzm39tm7Eo39YTWUFPdsa6Ns+joEd4xjcOY6BHY0M7BjHcHcNIHuHjE8euRWci/NB//4cLce3Zx18nHEG/N//pa/LXrLEX/FqkAZ/buv4uZAHvdj7HVslm+DD7/npZ3sWfEQj+IDsx17JVNSCj6Io+TBjlXPwEUbeglxschl8xL9ofvrjS+UwVRO6qZ64h+qJXVTts4fqiXuom7IH6vs88zbcV8XgrgYGdjUwuKuBwZ0NDO4a5zzeXcfIQGoay5MEbvi1cCEcfHD60o7k/U5OI5Nib7d1vZZl+jh5UDe/YydkE3z4LZnzsz0LPqITfKTKW9A0goha8BF0DJL4d7BQJR8C7IdT3TKKqr6UTUaKjQUf2eUtyMXGzzb81NWnmjvEz7+AVKUnu3sGOfL4PWzrcwKSeGBSPbHLdQC1OB0SBnfX7w1KBmJByVAsWDlgetWY6poNG6CyEoaGRldnBPks3Eo9Mv3xT5dGGMFH4rIg/9iyCT68WPDhPz8WfISbRhjbS1weZHTm+PvyGnyIyCTgR8DpePSQUdX005eWEAs+sstbkIuNn22kK0oVST13SKr6z9tuS12ikKr0BJSKugGq9ummasIep+RkQjdVE7qdZU29KfdrsKt2byCyt9Skw7kNdbn3ykmlpcXZjzB//NOlEXbwEaSu2oIPCz4s+Ei/PMh3O6zgw29X258CpwA/BJ4B+rPZqDFhStVlLFFbm3MTGfsP2atr6MSJqXttVFc7QUw8fRgJVJwvqzDcW0P/5hr6N08Y836pGqKqORaM7A1K9jgBSnMPVY19VDX2UTtj55j36mAFg7vrGNzdwGBHPYMd9Qx1xB+PDk7ipT7r16e+sMYVuntwKl6f1QEH5D8vxpjM+A0+TgEuVdVbcpgXTyJyEfBfOFU+TwGXqeqDKdafB1wPHAFsAr6lqjcmvL4Q+ErS27aq6rSQs27yIIyBg7zG60iVVrwUIbGYMh7g+G2DoYOVDLQ3MdDeNPZFUSobe53Skn32jAQnzT1Uje+hsrGP6ondVE90z6AOCYMd9VT3N/Cmw+r582/q+dXj9dTu38Dmjnr2baqjssI9EnEbzyJXY7cE5fVZxYPARNnk2avNhzEme36Djx3A1lxmxIuInAksAi4C/ha7v1dEDlfVMUPGiMgs4B7gZ8DZwFuAG0Rkm6renbDqs8D8hOdDudmD0haFC1I2AwfF/+Enl1rEq2X+4z+835uqFCF+4W5rc+99Eu/5cs89iaUkSYmoMNRZz1BnPX2vTBqzDakaonJ8j1Ny0twTu40NTqCbVTthwslw+TKYdjbM/QZUVwr7NdczfUId05vrmXBSHUseqWf/CfVUT67jJ7fWc82XqwDZO/ph2NxGWHRbnsjrs/JqJBdUfHv19c4tuXtwKlH4PpjyFeUSy2R+23x8BpgHvE/z3D1GRB4FnlDV8xOWPQ/cpapfdFn/m8D7VfXghGU/AY5Q1bmx5wuBD6jqkVnka7mfNh+ZzsqZrj4yjJMs7PrdMLadSZsPPwMH+Wlf4Ja3dGn7PRZeY3skvn7BJb1073Bm7M30+Mbz09ICX/naEBdc1sOfHu5m484eLr6ih7YLnMcbd/awvcu7h07ccF8Vg511DO2uh5463n1KPaeeXMf0CfXs1+zc11VXpmy4lurYe5UuuJUyBGkkmwmv+W+8BkMLIox2F5l2cbc2H+XT5iPT9kKFaPPhu7eLiHwHeBfwZyC5AlpVNfSYX0RqcEZTPUtV70xY/iPgSFWd5/KeB4B/qeqnEpZ9EPgF0KCqA7Hg4/PALpxB0x4F/l+QHjt+g49cfTFyGQAEeV/Y284k+PAzcFC67Xn9sKdKO17tkq6VuF/xQcb+vXFuUruRkXXiz916uwQZvAugp3+ITR09bN7Vy6ZdPVxweQ8XXtbLpo4e/vpID5VNvVTUpC8QbKisoWNzHQMd9QzudgKVyr46PntRPWefUcvMqXWuI8P6aXuSKIzeLKkEDWKDCCMACOP7GuTPkAUf/rfhhwUfo/mqdhGR04BP4YxseojLKsrYNhRhmAxUMrbKZyvwdo/3TMMJkJLXr4qltxkn2DgPp/HsvsBVwMMicoSqtie+0QkyXLX62YEoK5UiYq9i+HRF5Im85uxwS/u00+DHPx65UIU9J0K83QikLjFJvJAkPn7+eX/bqa+p5PVTGnnkvkauvBI6NsCyjc42lvwEQKmoHXSqdsY7wUhVcw/nfqKHTR29bO7oYUtHL91D/VTv20/1vrtHpX/zS3Dzt6Hlc9D61Wqmja9j3w/W8fm7apk2vo7GOXUMdTm3wc66vYOxecn1vBzlMO9HsRTJm9Lnt9rlGeA1nADkGVV1H386ZCIyHXgVmKeqDyQs/zLQpqpjAiEReQ5YoqpfTVh2MrACmK6qm13e0wi8BFynqtcnvbbcI3utMK+5mEs+Mk0vaiUfftL1KtlItz2392U6MmA6uZrbJdVxTFWy4yZ5H4eHlZrmPicwGd9DZVMPVeN7nYClsZcDj+hjY3svUpn+A9QhcQKRrlonKOmM3WLLpo2vY+3qOhpqRv4zWclHsG2HmU8/24hyyUeQaiwr+ShQyQdwAHCJqv4rm41lYDtOQ9CpScunAls83rPFY/3BWHpjqGqXiDwFHOzy2ny398SCkjHVPiaaMv3H51Yi4vUPOYr/nBNLt9xKulL1FEr+QXLrUVJRIcyYVMeGDXVjuhK3tMBDt4GI8trufrbu7uW4eb3cvLSXrbv7uPb6Xmon9EJ9L5WNvVQ2DOxtOOvl8C9DU20VU8bXMqWxlsn/XstXf1fHlKZapjTVsm/C/T4NNVR49OZx41ZaVogeLmGVSBZyuvQgCpVPKwUqLL/Bx+PA9FxmxI2q9ovIamABcGfCSwtwZtd1sxJnMLREC4BVXiU2IlIHHArcn12OTTkopnEmEn9g3X5sU3YDTvi3mapdS/qur7I3OOh5sZm2452ln31H0sBvs4b47Jf6+K8v93LpFb0s+20vuwd6GT+1l96KPt4wp5ctu3vp7Bukc9sgL23bw7jD4GcPuee/skKY3FjDvk11owKT0UGK81pddSVtbU7wkdyWJ0j1XRjCuCgWerp0v6Kez2LqPVJs/Fa7HAP8HLhQVT2+6rkR62p7G04X24eATwAfw+m9skFEbgVQ1XNi688CngRuBm4C3gzcgNNo9e7YOt8Bfge8jNPm40vAycBsVU3xczwqX8uLvcFppukVY7VLunWCFHUHnRPBr1xUu6Tjt9FnuuOfqrdLuiovP4/j96pKVcMAz6zvY1tnH+94bx/f+3Ef27r6eG13b+zeeb6r23/tcLw0Ze3qWj7w7lp+8bNavnZlLZMba/jPs2p5+P5aJo2roWVqLcMDwQdzDvt8TpdGplWD+a528TutQS6qXYLk36pdwq928Rt8vAKMBxqBPTi9RBKpqrZkk5E0278Ip3fKfjiBxeXxNiDxNhmJByI2yNj3GBlk7JtJg4zdgRNsTAa2AY8AX1LVtQHytNyCj3C2F7Xgw8/FMsicCH4VKvjwU7UQ1rmRbfCRat1kfYNDbO/qZ1vn2MBkW2cfr3X2sb3Tedw/lGIO8STjaiqZ1FjLpMYaJo2rZUqTcz+psYZJjU7AMrnRCVYmNNRQWSF5Dz4ynS49aD7TfQ/SfZZ+8mnBR3rp5rZKl48oBx+3AClXVNX/zCYjxabcgo9Mxxjws72oBR9B0gvzcyhU8JFY9eGlGIMPv1SVjp4BtnX2cdTxfdz+qz7O/UQvVyzsZ3tnP0vu7OO4k/tp7+rj1fZ+pMp/oFIhMHFcLZtequGUE50gZclPavnaVTVMbqxh4rhaJo6rZp8G57WmuqpR7VSiXPLhayZoK/kIlI9s0y654MOMVW7BR9g/+MUYfLjV/5ZC8JF4LDKZRt4rPT/bi0Lw4ZY/7+0pHT2DtHc5wcj2rj62d/U7z/f00d7Vz7auPtq7+mjf0x+o6gecdir7NDjByD7jarj//2o4/5waJjbU8NWrarh1sbP8ziU1XHF5NZPG1VJfM7YaKNOqwbADnHSfZZAAxoKP9GkXU/Dht8GpMWmVUuMstxb4pbJvqSxenN14KWGI9vgzwvi6asbXVTNr8ri0aw8MDbNjTz+vO7iPPz/oBCjnXtjPF692ApWde/pp39PPzu5+duzpp7N3kO1d/WzvcubuHHcI/OJRJ62Jb4PLlo2k/ftvOvd11RVMjAUrE2O3fZpq+PDXavjLPTVs21jDlPE1XHJhDQveU03fYDW1VdlPQh5Gr68gQ+UXk2L5LSxkPj1LPkTkHOAPqtoee5ySqt4aduairJhKPvycYGGUfIRRQlGIko/k3g3g/19jmF/efJZ8uNXV+x0ZNZUwSj7c1o9OyUdm2/ObRv/gMLu6+9kRC0YWvLufG3/Wz449A1x9XT9tH3MClh2xgKV9Tz/9g/6rgeIaaiqZUF/NhIYaJjRUx241/Pj71Xzza87j886qZvl9NezTUE1zQzUT6muoqarYm0YYJR9ex8htefLrfttdFaLkIx+l1W5ph13y6/a+nFe7iMgwcIKqPhZ7nIqqavahdBHJNvgI0lAr2+L+bL58bq/nO/gIcoEPkk+vuTzik4kly3YQsXTyFXwEHY4+3fHPdLAmCz6yf5+q0t0/NCoYSQxOduzp56e39TP/3wZo39NHR88Au7oHGBzO7KCNq6ncG7D0dlTz1JoaBrqqGe6pZqi3hqqhai76eA3ve6cT0Bwyq4be3dVUV1aEGnwEqVay4MM7H1ENPlqATbG5UFrSJeS3i2qpyCb4CNpQy2+62awbpeAjmzlTguQz1YiWXmmn6imQrXwFH2GP5BnkwuqnJ5Fb2hZ8hLNtcAKWrr5BdnU7gciunv7Y434u/uwAn/1/A+zs7mfJ/w5w0tucxx3dA+zqGWAow6ClsbaKXa9Vc+QhVax5rJr3nFpNc71zG19XTXN9FZ++sJrf3FnN+PrRrzXUVqA6usdQkAa1UQk+clnFUWrBx0vA6ar6z2w2UKqyCT6CFlf6TTebdaMQfCxdCv/5nzCQ0EYv6PgZQfLp1c3PS6mUfKTa73xeIMMOPsKc6Tl5G6MGQ8tRUBzm+7zSyGZ7qkpn3yAd3U5AsisWkOzq7ueSzw3wmSucx/Flu7oHeP7lAarH9ZNhzOJsd7CCKROq2LyhmmNbnaDknl9XM9xbxXBvNcN91aPu//5QPKCpprGuiqrK9LNE5yP4yKVSCz72Vrtks4FSlU3wEaRve5B0s1k3CsFHGHOmhFHyMWkS9PSEP4hYOuVQ8hH0fUGCjzB+8L2259YLKPF8CHu22HRtcjLZp6DrhvEbIwJDQ07QMnm/AR5/aoBjTxzgV38YoKNngN09g8597wA//skA73r/ALt7Yq/1Oq9l0qZl1PZ7qnjdtFhJSn0VTXXVNNVVMT5231hbxecureYXP6+iqc55fXzsfvqUKob6KqmoGAlgwmhDF7ZcBh/J52J9/XyeecaCj4Kxko/MtpPqRzXTgZES+Wl/kFjS4tbmY/Fi53G+W+AXus3HqafC3bFJCyz4GJ2um0y/r+nW9dMmJ4hCBx9+L3TJy/f+VmwcouWgATZtH2DlaicwuffPg/xs6QBDMkBFnXOrHjfAoUcNUD/eCVradw/QOzzobwdSqBAY6KnigGlOsLLm79W8a8FIoNJUV0XjqKClitPeXs2aVQmv11QFmmcoqFwFH27nYkXFfIaHn39a9dXDs8pzmuDjeFX9ezYbKFXW5iN4Gul+VMOeLdbvly9VG5N8/oMpdG+XxP0Ou5Fvpu874wxYvTr8Xjnp8uQn+Mi0pDLdun5KpoIoxuDD7bcCnOqv+Hma6hze+/4epaJmkIq6ARomDPDZLw5w3JudUpWu3kE6ewfp7B3gez8a5MyzB+jsHWR3bFln7yBbdwxQUR1OQ6/G2njAMhKUNNVV01hbRWNtJY211YyrrXSe11UxrrYq9trIbVxt1ageR8nHLuzgw/1cnA/096k+XJf50UgffPwfHjPBJlFVPTebjBSbfPZ2CZJupuvmI/hI96Ma9pwpufg3lkuFHmQsjDTCvNAF7ZWTq+BjwgTo6Bi7bq5KPvy0yQmiGIOPbBuUBv0jkypP/YPD1DUOsm7jILt7B3jT3EF+e+/A3sCls3fQmeww/rh3kD/eP8Dso0eCmz39Q2MTz1BNZUUsOHEClsbaSh74SxUfPL2K22+r4rJPOYHKV66s4qYfxoOYkeCm9fBqtmysZFxtFfU1YxvzJnI/F+cDoLo8q6KcdMHHFqDPRzqqqgdmk5Fik89xPjJJN+i6+Qg+/PyohjlnigUf6UU5+AjaNiVXwUfYJZXZBOnZNnYNsm4hg48gVbBu6QWtwk2Xp6DHJXmdoWGlq9cJXjp7B+nqGx247OlzSmK64o/7Rj/e0ze0d1mmPY7c6JCwT1MV2zdXceQho0tbxtVW8r9Lq9jVXoX2VzHcXxm7v5qe55/KuuQj3Qin77M2HyYsXlPRJ2prc24iuetZ8pWvjB3B1ERPqpEy46PO5kO+R+G89lr3KgeI3pTzueL1W3HAAfl5f9gqK4Tm2GBt2VBV+gaH6ewd5PY7B/nS1YP06SAVNYNIjXPfdt4gbzhiiGuuG+T8Tw7S1e8ENus3DrLh1UEGZZCq+kEq6wYZqlR2dQ9Q1TzAM1tcNngITBiz8H1s+OY9L2W1I/GdcbsBw8BxXq+X+w1YDvM0HadQKPjrXsuXLFFtaXFeb2lxnmeTB7/pJaYRNM+J22pocNaL3+LPg6blR6pjmJwPcN/3MPLh14dufFg/dOPD+dughn+cv/IV98fp3ueWj/h56XVLPnfC3Jeg53iQ77mffCZ+L91uLS3p0wiyvUzzmW5dt/T8rJvtd9Trt8bP75vb8qDHJR+/G17nR/zcSHc8GxpUqRzU9q4+rWreo0+92qGPrWvXvz69VX+75lW9/dENevMDL+pHv/uctvz7Wp34jie05cx/6KxzvqfAcs32Gur5ggUfqQ9cAYKPoF+odNsIkl4YwUd8m8nBTr6Dj3Rf2rDz4VexBR/pAtdsL8heF6Dkm9/t+RGV4CNxXbebSLA0Mlm3kMGH6tjzK+ix9/PHymudVNuOSvAhkvrcSMxDqkDWb37j68ybN8+Cj0LeChF8BLlo+tlGphfhbIIPv+nlMvhI96VNlO7fe5gKEXxkun9+AtcwLsjpSgDKNfgo9ZIPt+VhHPtEXufwJz+ZutQlKsFHkJIPr9+8QgYfY/vsjFTHVKi194iUMGaRzCa9pUtH2kfMnOk8L0Ze9b5uy4thZspsZLp/V145tk1Cd/dIO5qwtLXldlTZYtDQMPZ5vtq75FO+ZzP2OocXL3ZvbxP2uZ2ta68de27ElycrVFuXVDyDDxM9QS6auUjvggtGGnHFG74VYwAS5Etr3IUdCPvhdhEuB4sXO41cwbn30/W8GIPmfOfZ61wd8ugVm8tzOxNtbaPPjcrY1K5XXjn2d9ntN6/Q3x8LPoqI1wmU6UUzaHr5+KebD8lf2pYWeP/7S7v3QNjCDoT9cLsIl4PE0p/16/2dp1dfncsclQavc7XSY372KJYetLWN/F7Hg6bEHlGJ60Xu+5NtvU253ijD3i7p2kkUS5uPsLcTlkK0+chUvtp8pFu3WNp8JLatyXcbjGJp85EubWvz4S5dY9JUeYtkmw8TTZn8C8plelH8NxCX7zrkcuL1T8pKj9wVYzVIqfM6h2+4Yezy+PpR5Kc6KIrnnwUfxrdia/gWxS9cKQk7EDbGr7C+217ncPLyKPPzBzCK1XAWfBjf7J+uiZpCl26VSg+wYhPFi2mhuP0BLHRjUj8s+DC+2T9dEzW5Kt3yE9TE53wJ2gOs0AGTKS3x3+FINSb1wYIPU7SsWsXkip9zK9OxTuy8LV2FLAkrtj+GFnyYomVFryYsmVw0CjHWiYmuTEvCypUFH8aYgitkVUSmF41CjHVioitfo/6WCgs+TNas0Z3JViGrIjK9aIQ96F+xseqj0awkLBgLPkxWrKjRFLtMLxrlPtaJVXuOZiVhwVjwYbJiRY2m2GVz0bAeYCYuHyVhXqVNidWWxVISbcGHyUquihqtO2LxKPbPqtyrT4pd2OdfptVJ+SgJ8yptSsyzW0l0FFnwYbKSq6JGq08uHsX+WZV79UmxC/v8y6Y6KQolYW4l0VFkwUeWolqklS/2r9GUgihcNEy0FUt1RrGw4CNL5d62wf41GlP87MKanjWsD5cFH1myblT2r9HkV7G3MYkarx5rZrRiaVjvVhIdhrC/dxZ8ZCnK3ajs34wphFyfd8XexiRqvHqsRVHUftMy/fOZeA6HfT67lUSHIex8WvCRpai2bbDxN0wh2HmXO34nuwtrmPgoitq5lemfz8RGrWGPl1IsJdEWfGQpqh+sjb9hCiFX551VtaT/55lp9UmUS2+TFfI3zRrWh8uCjxyIQrGwDfVrCiFX510UvlOQuyAojP3LtPrEq8daEIUMDnP5m5a4X6XcsL4Qn58FHzkQhWGHbahff+wfdbhK/bzLVRAUxm9Gphfh5B5rkyZBfb3z2G/VTSGDw1yeW4n7VSzVGZkoxOdnwUeJKqbxNwoZAETlH3WpKKbzrtRkcxFOvLD29EB7u/M4Cu0qEpX6uVVOv0cWfBSpdBfsYhp/o5y+cKWumM67UhNG9QlEu61YqZ9bUSg1zxcLPiLGb2t1PxfsKBcTWnVH6YryeZcrUTifvQK/MESlrVg5nlulyoKPCCmnbopW2mFKSVTO51xdnEulzY6JDgs+IsS6xxpjCq3U21WYaCiK4ENELhKRdSLSKyKrReSkNOvPi63XKyIvicgnsk0zH6x7rDGm0Eq9XYWJhsgHHyJyJrAI+DpwNPAwcK+IuBYEisgs4J7YekcD3wD+W0TOyDTNfCn1borGmOjwqioqtXYVUWiPY8aKfPABfAa4RVVvVtWnVfViYDPwSY/1PwFsUtWLY+vfDPwc+FwWaeaFdVM0prwUcq6SQvSsKMS+RqU9jkmiqpG9ATXAIPDBpOU/AlZ4vOcB4EdJyz4IDADVQdMElnvcdsE8Pf/88zVu1apVCiho7H7041WrVu1d9/zzz3dZF4WztLr6VQXVlhbVJUuSXx99u+mmm/amedNNN3ms56SR6I1vfKPrOkDG+zR2X0Zub3zjG0dtP/t9cvKRep9Gbu775H5z/5xyv09Tz/qGTj3rGyW0TyPvd9+nselnt0/u+Q2yT4lZTX3upfs++dmnsxS6Yvl2bnV1g7pkSRj7NPr76r5P7u8bSdP7WMXzlv5zcl53fseSb12xY5Bun1T971Omn5Pu/ZzieU51PNN/n9TnPo08dvYj3T6l+y0fna77Pn3FdX2/vxGNjY0KLNcsr+9RL/mYDFQCW5OWbwWmebxnmsf6VbH0Mkkzj25n9uz3AKVR5JkbZwHrgGjMbGkKa+lSuP32b8SercM5P4rB14Fxo5b09laWXAPze+/dh3PPdXtlHM4xMOFZ6GOdaAwmIk4wFk0iMh14FZinqg8kLP8y0Kaqh7i85zlgiap+NWHZycAKYDogQdP0yNtymDdPdbnLa7F4Mumxezrur6d7XxB+0gqSz3zk2Uu8O3Jir6CGhtJoFHfmTSsBWHbh3ALnJByZnvtBeJ0Pp54Kd98dPL18nMNxFRXe36Ph4ezyk+n3NYzfruR1Ghq855hJ3Nd02wmSt6DSpR1025n+nob5ncnVb/b8+fNZsWLFClWdH+ydo0W95GM7MARMTVo+Fdji8Z4tHusPxtLLJE0TEdYd2STyOh9++cvC5CeIcmlgnmpyuyjtayHb35SjSAcfqtoPrAYWJL20AKeHipuVHuuvUtWBDNM0EWHdkU2iYv7cy72Bud99zVdvlUwGePRqzGo9bNKLdPARcz1wnoh8XEQOE5FFONUnNwKIyK0icmvC+jcC+4vI92Prfxw4D/iO3zRNdJXLv0XjTzF/7lGZB6cQvUEqK/3va77yl0mJqlePIethk17kgw9VXQZcBlwFrAHeApymqrEYlQNit/j664DTgJNj618JXKKqdwdI06RQyKi+3P8tmtHCmkytUKIwpkauu9y6fR4//3lxtNEq5pK1qIt88AGgqjeo6kxVrVXVYxIbiqrq/OSGL6q6QlXfGFt/lqqOKdFIlaZJrZBRfVT+LZpoyOVkaiYcyZ8PZP99zdcfoGIuWYu6ogg+jEkUhX+LJjrsfIiW5D8nyZ9PLrYRBitRDWL6vtmmYMGHMcaY0BRi5NQwWIlqEC0HZptCVRjZMAashbcxpni1tTk3kfBKaEpXTW22KVjJhwmNtfA2xphy0N+XbQoWfBhjTAnIV/Bvg3EVv+w/ww0vZZsHCz6MMaYEJLa1yFUVaHw4+6CDcZnoCOcz3PRatvmw4MMYYwos7GAhV6UgNr1BdqJQahSVz9CCD2NMTlgDZP+Kpb1U1Kc3yPQ45uNc9SpxyLeofIYWfBhjcqJYLqjGv6hPb5BpN98g52qmgYpXiUO+ReUztODDGGOMLza9QeZBdVRKh6LyGVrwYYwxZSS53UEQNr1B5qJSOhSVz9CCD2OMKRNu7Q7iy/0qp+Hsw2wgGqVJEKPwGVrwYYwxZcKt3UF8uRkt7G7FNgniaBZ8GGNMmYhKT4dikIsuqV4lDlHogptvFnwYY0yZiEpPh2KQz0CtHAdus+DDGFMyyvEfZBBu7Q7iy4tZLj73MAI1vz1jojDoV75Z8JEl+4EzJjqy/QdZ6gOjubU7iC8vVrka8j2MLqmpxh1JDJjclHpVmAUfWfI60aP0D6zUf1CNicv2H2Q5DIyW3O6g2OVquPBcd0lNDJjcJJawROl6EhYLPkLgdqJHqQ6vHH5QjfFS6v8gy10u22bksktqqtFNE0tYSnUyPws+QpJ8omcSiVuQYEz4rDFlaSu1RrTJJSxRmQgubBZ8hMTPiZ4uEs90XgJjjCMKw0ab/IrKcOFhSS5hKdXu0RZ8hMDviV6skbgxxSIKw0ab/IrKcOFB+R3ttNRKduIs+MiS14leSpG4McUiCsNGm/wL83P300A/jAagfkc7LbWSnTgLPrLkdaIXYyRujDHlLl3bu7AagPoNmIq1ZCcdCz5yxP6B5Z51ITbG5FshGoAW6nqSy04QFnyYomW9g4wx+VaqDUDd5LIThAUfBWb/3o0xpniUagPQfLPgo8Ds37sx5cu+/8WnVBuA5psFH8YYUyD5GNunnEpX87GvfhqAluJw6GGrKnQGjDHG5E45la7ka1/b2pybyNj5ceK9YeKNUuO9YeLvMw4r+TDGGGNCUqrDoYfNgg9jjDEmJOXUGyYbFnyYlKzu0hhj/LPeMP5Y8GE8lepUzsaUUzsIk1/WG8YfCz6MJ6u7NKXKZpA2uVKqw6GHzXq7GE9Wd2mMMcGl6g1jHFbyYTxZ3aUxpaucxv8w0WPBh/FkdZfGlC5r92IKyYIP48nqLo0xJnxW6mTBh0mjUFM5G2PKV6mXypT6/vlhwYcxxpiU8n2xtN5Ipc+CD2NMSbCi7NyxYMCEzYIPY0xJSPx3boFINNjnYLxEOvgQkVoR+W8R2S4ie0TktyIyw8f7LhKRdSLSKyKrReSkpNeXi4gm3e7I3Z4YY/LJ6tRzz09gYZ+D8RLp4AP4PnAGcBZwEjAe+L2IVHq9QUTOBBYBXweOBh4G7hWR5NEp/gfYL+F2YdiZN8aYUmWBhclGZIMPEWkGPgb8l6r+SVX/AfwHcBTw9hRv/Qxwi6rerKpPq+rFwGbgk0nrdavqloRbRy72wxhjyoFNQhmecgjsojy8+jFANXBffIGqviIiTwMnAn9MfoOI1MTe952kl+6LvSfRh0Xkw8BW4F7galXtdElzuUf+5sIa5s+f7/pi4mKPVUJ9XxjSbS/f+Sk3azftBmD+7eMLnJP8KeQ5FZXzOdvv3datsG6d87iuDmbNgqlTM8+Dn8dueXjuORgedp5v2ADnnAPXXDM6L/E0/Bx7t3WieL6E8buZfJxXrIDlyzNPzyvdTNJLfn3NmjUAB/nPhTtR1WzTyAkR+QhwK1CtCZkUkb8Cz6vqmGoSEZkOvArMU9UHEpZ/GWhT1UNizy8ANgCbgCOAb8TSfIdLmss9svgWYAhYmdEOlpfW2P2aAuahGLTG7tcUMA/FojV2v6aAeYiA6fvC6w+BioRS7OFhePFZ2PQaeTtOc0+Amtqxy/v7YOUjud12KFpj92sKmIccmL4vtBzofDb9fbDhpdh5kY25QL+qNmWTSN5LPkTkGiDdvKin5DIPqro44em/ROQl4FEReWOseidx3fluacSDEq/XzQg7Vv7YcfLPjpU/dpz8sePkX4o/5IEUotrl+8CSNOu8DJwAVAKTgW0Jr00FHvR433ac0ojkQsepwJYU21sVe9/BwD9SrGeMMcaYLOU9+FDV7ThBQkoishoYABYAv4gtmwEchtODxS3t/tj7FgB3Jry0ALg7xeZm4wQ6m33sgjHGGGOyENkGp6raISI/Bb4lIq8B7cD1wBPAn+PricgzwA9V9YexRdcDt4nIY8BDwCeA6cCNsfVfD7QB9+AEQYcD3wUej61vjDHGmByKbPARcxkwCCwD6oG/AOeo6lDCOofgVM0AoKrLRGQScBXO+B1PAqep6obYKv3A24BLgUbgFeAPOL1dEtM1xhhjTA5EOvhQ1T7g4tjNax1xWXYDcIPH+q8A88LKozHGGGOCiWxXW2OMMcaUpsiOcGqMMcaY0mTBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPlyIyBdF5O8isltEtonI70TkSB/vmy0iK0SkR0ReFZEvi8iY3jilJJNjJSIzRURdbqfmK9/5JiKfEpEnYsdpt4isFJF3pXlPOZ5PgY5TOZ5LbmLfQxWRH6ZZr+zOqWR+jlW5nlcistBln1ONDp7xORXprrYFNB+nq+7fAQG+CvxZRA5X1R1ubxCR8cCfgAeAY4FDgf8B9uAMYlaq5hPwWCU4FfhnwvN06xezjcAXgOdxgv5zgV+LyDGq+kTyymV8PgU6TgnK6VwaRUROAC7AGYAx1Xrlek7t5fdYJSjH8+pZnN/1OM/xr7I6p1TVbmluOIORDQHvSbHOJ4HdQH3CsqtwZtmVQu9DxI7VTECBNxU6vwU+VjuACz1es/PJ33Eq63MJaAZexJmMcznOaM9e65b1ORXwWJXleQUsBJ4MsH7G55RVu/jThPMvbGeKdeYCD6pqT8KyP+IM7T4zd1mLHD/HKu6XIvKaiDwkIh/Icb4iQ0QqReTDOIGa6zxF2Pnk9zjFleW5BCwG7lLV+32sW+7nVJBjFVeO59WBIrJJRNaJyB0icmCKdTM+pyz48GcRsAZYmWKdacDWpGVbE14rF36OVRfwOeBDwGk4w+YvE5Gzc567AorVjXYBfThzDZ2uqv/yWL1sz6eAx6kszyUAETkfOAjnn6Yf5XxOBT1W5XpePQqch1PddD7OefFwbMoSNxmfU9bmIw0RuR54C/AWtblfUvJ7rNSZ2TixPnCViEwGPg8syW0uC+pZoBWn+PcDwM9FZL6qPlnQXEWP7+NUrueSiBwCfB3nuzZQ6PxEWSbHqlzPK1W9N/G5iDwCvITT9ur6MLdlJR8piMj3gLOAt6rqS2lW3wJMTVo2NeG1khbwWLl5FDg43FxFi6r2q+oLqrpaVb+IU0J0ucfqZXs+BTxObkr+XMIp7p4MPCUigyIyiDNn1UWx57Uu7ynXcyqTY+WmHM6rUVS1C3gK7/3O+Jyy4MODiCxi5GL6jI+3rAROEpG6hGULgE3A+vBzGB0ZHCs3rcDm0DJVHCoArx++sj2fXKQ6Tm5aKf1z6dfAbJx9jd9WAXfEHve7vKdcz6lfE/xYuWml9M+rUWLnyqF473fm51ShW9dG8Qb8CKcF71tx6q3it8aEdb4B/CXheTNOpHcHcCTw/lgany30/kTwWJ0LfAQ4DDgEp261H7i80PuTw+N0HXASTiOs2bFjMgy8086nrI5T2Z1LKY7dchJ6cNg5ldWxKsvzCvgOTqnQLOB44Pexc6Ql7HPK2ny4uyh2/5ek5VfjdEUC2A94ffwFVe0QkQU4F+NVOL09vkvI9WQRFPhYxVwFtOB0y30O+KiqlmxdKk5AtiR234EzzsA7VfWPsdftfHIEOk4x5XYu+WXnlH92XjlmALfjVFNtAx4BTlDVDbHXQzunJBa9GGOMMcbkhbX5MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPowpESJynoiox+3thc5fqRCRY0SkW0T2T1i2XET+5rH+x2OfwcwA23ifiGwVkcYQsmxM5FjwYUzp+SDOfBaJt8cKmqPS8m3gZ6r6ag638RucIa3/K4fbMKZgbIRTY0rPGlV9wc+KIlKrqn25zlCpEJFjgFOAi3O5HVVVEVkMfE1EvqGqvbncnjH5ZiUfxpSJhGqZk0XkThHZhTNTJyJSJSJfFJFnRKRPRDaJyHeTJoxCRA4UkT/Eqh22icgiEbkwuVoh9nxh0ntnxpafl7R8noj8RUQ6RWSPiPxRRI5MWme5iPxNRN4uIv+Ibf9JETndZT/niMivRKRdRHpE5FkR+WLstf+OVWdUJ72nKbb969Icxo8DT6jqU2nW8yQiC1NUj52XsOr/AhNw5sswpqRY8GFM6amMBRPxW2XS60uBdcAHgCtiy5bgzGXxC+BdOBNIfSy2LgAiUgP8CTga+BRwHs4EVFdlmlEReRfOvEBdwNk4k3k1AQ+KyOuSVn89sAhn3oj341RL3CkiByWkdxzOTJuvBy6P7cv1OHNWAPwY2BdIDlo+AowDbkqT5VOBB1PsT1XyjbG/sz9hbLXY3YzMIQKAqm4Hno5t05iSYtUuxpSeZ5KePwS8JeH5Xar6+fgTETkJOBM4V1VvjS3+s4jsAJaISKuqrsGZ6fNAYK6qPhJ7773Av7LI6yJghaq+NyE/9wMvAZ8FLktYdzJwsqo+H1vvHzgByIeAr8fW+Q7QjjMZVnds2V/jCajqWhFZAVyIU7IQdyFwn6qu88qoiEzFmW33nx6rvBkYSLGv8TxsBDYmpPtBnGDqMlV9OGn1x4ET0qVpTLGx4MOY0nM6CRc3oDPp9V8lPT8VZ7rwu2L/1OPui92fDKzB+Yf+SjzwAFDVYRH5X0ZmMPZNRA7GKaH4etJ2u3FKL05Oesvz8cAjtu3XROQ14IBYeg04AcC3EwIPNzcAd4jIwar6vIgci1Oak656Y3rsfpvH6//EqZZJ9l48SodE5E3Az4EbVPUHLqtsS9iuMSXDgg9jSs+TaRqcbk56vi9QA+zxWH9S7H4/YKvL627L/Ng3dv/T2C3Zy0nPd7is0wfE26Xsg1PFsdFlvUS/ArbglHZ8DvgEsAn4XZr3xbfj1UC3S1VXJS8UkVa3lUVkBvBbYDlwqUeaPQnbNaZkWPBhTPnRpOftQC9wksf6m2L3m4EjXF6f6rKsDyegSTQp6Xl77P6LwJ9d0uj3yI+XncAwsH+qlVR1QER+AlwkIt8CPgx8V1UH06Qfz+8+AfM1hoiMwwl2tgNnquqQx6oTE7ZrTMmwBqfGmP/D+XfdrKqrXG7x4GMl8DoR2dsGQUQqcNpcJNsAHJm07F1Jz58F1gNHeGz3iSA7Eatq+RtwtojUp1n9JpyeJHcCtcDNPjaxHidIOzBIvpKJiOA08N0PeLeqJleLJZqFc5yMKSlW8mFMmVPV5SJyO06bj+txBiQbxmlceRrwBVV9DqdtwhXAL0Xk/wGv4VRZjHdJ9g7gKhG5EngEp1TlrKTtqoh8CvhNrCfN/+KUBEwFTgReVtXrA+7O54AVwEoR+S5OFcyBQKuq7h2bQ1VfFZHf4rSP+Z2qvpIuYVXtF5FHgeMC5inZF4D34VS1TBeRxDYdL6rqNtgbpByH00bFmJJiJR/GGHC6uS7E6X77G+Au4NPA88TadKhqP7AAp/HpDTjByDrgGpf0vgH8MJbGr4HDgP9IXklV78FpWDoOpwvqH4FvAdNwSloCUdW/4zQ6fQX4b+AenFFC3dqB3Bm7T9e9NtEy4K2xapNMHRq7X4Szj4m3xNKhE3GqeO7IYlvGRJKoJlf/GmOMf7GBsf4HmKWq6wubG/9EZClOoHKgqg77fM94nEDmIlVdkuP8/Rg4UlW92uIYU7Ss2sUYU1ZibVZaccY2+YzfwANAVXeLyDeBz4vIUs3RvzcRmYYzrooNMGZKkgUfxphysxJnRNWfk1l7iuuBSpwGo5vSrJupmcBnVfWBHKVvTEFZtYsxxhhj8soanBpjjDEmryz4MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuTV/wcRU2RR5ajQbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_lags, yerr=freq_lags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Time lag (s)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([-0.05, 0.2])\n", + "plt.plot(avg_cs.freq, time_lag, label=\"Input time lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFJCAYAAAAVJ240AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA990lEQVR4nO3deZwcdZ3/8dcn4YgxgRXQkMBOBlQwQmAggmBCZlZFEVjFFWRxcM3P1YAIC4uugkFJwCAKIsEVIXggEgRFdMWFJXhM8AggAeRQ5DAJd4DIFQOEkM/vj6rOdDpVPdU91V1Hv5+PRz+6u85v1dR0fep7mrsjIiIiEmdE1gkQERGRfFOwICIiInUpWBAREZG6FCyIiIhIXQoWREREpK5Nsk5Au5jZbcBrgfuzTouIiEgbvAF40t33GO6GOiZYAF675ZZbbtfT07NdkoUXLYLe3o0/R7nxRnjppeh5UetVtjfUdpOs1+w2AFasgKVLg7RvvjnssAPcc0/9bTe670bS1+ixZO1Pjz4HwJsnbJFxSqItWgQjRsC6dYPTRoyAnXaCcePqrxf1N476PJzrr5F9N7LdNK65Ro5vqH2n8X/e7L6TrDfUtoY6R42mp5FroNFtJ91HEu34PUrjPNfb9pZb3s6zzz6bSlqtU/pZMLOB3t7e3oGBgYTLQ+XUVH+OMmJE/Pyo6ZXtDbXdJOs1u40FC2DmTFi9enDe6NHB93rbbnTfjaSv0WPJ2uEXLgbgiqP2zTgl0cyip0+cCMuW1V8v6m8c9bnZ66/RfTey3TSuuUaOb6h9p/F/3uy+k6w31LaGOkeNpqeRa6DRbSfdRxLt+D1K4zzX23Zvbx+LFi1a5O59w02r6iykoKsr6xQ0btasDQMF2Pi7lNODD2adAhEpGgULKZg7N3gqr1b7PW90w+hcRQxuRSRbChZS0N8P8+cH2bsQvM+fn22ahqIbRmeICmLnzs0mLSJSXKqzELt868pOVWdh+MvmQRHqLFx6aVDktHx5EMTOnRsEt0OtpzoLnVdnYautXmbJkod58cUX118vwAafq0VNb3a9JPOTbDvpPpJIYxuN7KPZ81wxatQott9+ezbddFMg/ToLndQaQqpUbhi1N5Ijj8w2XZKu/v7gZVa/UmMzursH35MEIZJvs2c/zNixY+nu7ubvfzcmTQqm//3vrP9cLWp69bRG1ksyP8m2k+4jiTS20cg+mj3PAO7OypUrefjhh9lhhx1aklYVQ3Sw/v7BG8iyZfqxl2QWLAjely8ffJ85c3C6FNMb3vAiW2+9NRbXjEZyy8zYeuutefHFF1u2DwULGTr11KxTINK4WbM2nrZ6dfR0KY4RI1CgUGCt/tspWMjQ7NlZp0CkcXEtadTCRoZrzJgxqW9z2bJlXHbZZQ2vN316+mmJ093dzTPPPNW2/TVDwYKINCSuJY1a2EgeNRssyIYULIhIQ6KaXqpJpqRpYGCAvr4+Dj30UN70pjfR399PpeVed3c35533GSZPnszee+/N/fcHw/3MmDGDK6+8cv02KrkUJ510Er/5zW/o6enha1/72kb7mT59OgcddBA777wzRx99NOuq+kefNWsWu+++O/vssw8rVqwA4Oqrr+atb30re+yxB+985zvXT1+0aBE9PT309PSwxx578PzzzwNw1llnsddee7HbbrtxaoKy50MOOYQpU6awyy67ML+qDf63v/1tdtppJ/bee2+++MWPc+yxxzZ8XodDrSFEpCH9/UGrmYkTG2uS2SjV6cnOoVf+L1xZNeHKmAWjptdZb9mZByVOw2233cbdd9/NhAkTmDp1Kn/84+/Ya69pAIwZsyV33nknl1xyCSeccAI///nPY7dz5plncvbZZ8cuc/PNN/OnP/2JiRMncsABB3DVVVdx6KGH8sILf2efffZh7ty5fOYzn+Giiy7ilFNOYdq0adx4442YGd/61rf4yle+wle/+lXOPvtsvvGNbzB16lRWrVrFqFGjWLhwIffddx8333wz7s573/tebrjhBqZPnx6b3u985ztstdVWvPDCC+y1116ce+4HePTRlzj99NO59dZbGTt2LHvv/Xa23373xOcyDcpZkJaK+sFXXY1yaHVLGl0nnW3vvfdm++23Z8SIEfT09PDoo8vWz3vXu44A4IgjjmDx4sXD3s+OO+7IyJEjOeKII/jtb38LwKabbsbBBx8MwJQpU1gWXvAPP/ww7373u5k8eTJnnXUWd999NwBTp07lxBNP5LzzzuOZZ55hk002YeHChSxcuJA99tiDPffck3vuuYf77ruvbnrOO++89bkZDz30EA89FAQbvb29bLXVVmy66aa84x2HDeuYm6GcBUnd7NmDP/RRP/hz5uhGIJJnVx56EG95S/D5lltY/7la1PTqaXHrJbX55puv/zxy5EheeWXt+u/VNf8rnzfZZJP1RQjr1q1jzZo1ifZT24pgcHubrv88cuRI1q4N9n/cccdx4okn8t73vpeBgQFmhz9mJ510EgcddBDXXHMNU6dO5brrrsPdOfnkkznqqKMSpWVgYIBf/OIXLF68mNGjR9PX18eaNa1rDtkI5SxI6ubMyToFIlJm119/BQBXXHEF++4b9KDa3d3NkiVLALjhhp/x8ssvAzB27Nj19Qei3HzzzSxdupR169ZxxRVXMG3atLr7fvbZZ9luu+0A+N73vrd++gMPPMDkyZP57Gc/y1577cU999zDu9/9br7zne+watUqAB555BGeeOKJutt+zWtew+jRo7nnnnu48cYbAdhrr71YtGgRTz/9NGvXruVXv/px3TS2goKFFOgpWUSkfZ5//ml222035s2bt77S4sc//nEWLVrE7rvvzp13LubVr341ALvtthsjR45k991336iCIwQ34mOPPZZJkyaxww478P73v7/uvmfPns1hhx3GlClT2GabbdZPP/fcc9l1113Zbbfd2HTTTXnPe97Du971Lj70oQ+x7777MnnyZA499NC6gcsBBxzA2rVrmTRpEieddBL77LMPANtttx2f+9zn2HvvvZk6dSoTJnSz5ZZbNnzehsXdO+IFDPT29npSEP25kWXj1htqe0Ptp5G0Jdl3I+lP4/jSPi9Z+eAFv/cPXvD7rJMRq9nrJMn1EHUtNrrtZuYnWa/ZY42anmRbjfzPNJKmNPadZL2Ka6/90/rPf/iDR36uFjW92fWSzK9Mnzhxol9//ZNNbaPWr3/9az/ooIOGtY3haOR8Pf/88+7u/vLLL/u0aQf7VVddtdGyf/rT4N8Q3Ht7ex0Y8BTuocpZEBERybnZs2fT09PDrrvuynbb7cAhhxzS1v2rgqOIiBTGsmXLuOWWdLbV19dHX19fOhtrsbPPPnv951tuCQaHayflLIhIaak+kUg6FCyISGmpZU5y69axvpdEKZ5W/+0ULIiUzIIF0N0dfO7u1tDRksz9949i5cqVChgKyN1ZuXIlo0aNatk+VGdBpEQWLICZM4MhoyHojnnmzGzTJMUwe/b2/PM/P8yTTz7JU0/Bn/8cTK/+XC1qerPrJZmfZNtJ95FEGttoZB/NnueKUaNGsf3227cmoShYECmVWbMGA4WK2u8iUZ5+elN22GEHAN78ZqhkMFR/rhY1vdn1ksxPsu2k+0gijW00so9mz3O7tL0Ywsymm9nPzOwRM3Mzm9HAum80s+fNbFULkyhSWA8+mHUKRKSMsqizMAa4CzgeeCHpSma2GXA5cEOL0pWIale3l853Y7q6sk6BiJRR24MFd7/G3T/n7lcC64ZcYdCXgTuAH7UmZcmodnV7VIIEne/GzJ0Lo0dvOK32u4hIowrRGsLMDgIOBo5LsOxA1AvoaXEyJUUKEprT3w/z58PEicH3iROD7+2gXCCR8sp9sGBmE4CLgCPdXXUVRIbQ3w/LlgWfly0LvreDAjxppVNPzToF6ShqUJ37YAH4PvBNd78pycLu3hf1Am5vZSJFRKR1inqTrVXUoLoIwcLbgVPNbK2ZrQW+Dbw6/K4W5CJNKsuPr4i0XhGChckE9Q0qry8QtKLoIePKjiLt0KqbelGfcCoU7Ii0Txb9LIwxsx4z6wn33xV+7wrnf8nMfllZ3t3vqn4BjwDrwu9Ptzv9Iu1QfSMs+k29VXReRNoni5yFtwC3ha9XAXPCz6eF88cDr88gXSK5oRuhiORJ27t7dvcBIHYkbnefMcT6FwMXp5kmERERiVeEOgsiIiKSIQULIiJSeKrw2loKFjJQls5FRETyQvV8WkvBQgYUAUseLVgA3d3B5222CV4QTFuwIKtUiUgetL2Co4jkz4IFMHMmrF4dfF+5cnDe8uXBPBHpXMpZKIDqJ77Ku0iaZs0aDBSi1JsnIuWnYCHnKk98y5cH3yvvyhaWND34YNYpEJE8U7CQc3FPfLNmtT8tUl5dXVmnQETqybqum4KFnIt74tOToKRp7lwYPTp+fr15ItJ6Wbf2ULCQc3FPfHoSlDT198P8+TBxYvB9662DFwTT5s/PLm1J1dbtKXpRnZpYS54oWMi5uCe+uXPbnxYpt/5+WLYs+PzUU8ELgmn9/VmlKrnauj1Fb8GRdbazSDUFCzlX+8RXeS/Cj7dIO9XW7VELDpH0KFgogOonvsq7iIhIuyhYEBERkboULIhIKdTW7cm6BYfqHEiZKFgQyQndXIantm5P1i04sm7qJpImBQsiOaGby/DU1u1RJWBJQkF6MgoWRDqA2uyLRFOQnoyCBZEO0O6nJz2tiZSLggXpWLqhtU5RntaU49K4svWUKckoWJCOVZQbWhnk9QajgLExUaPgzpyZn7+ntI6CBWmbvN4w8qos50s3mPKIGgV39WqNgtsJFCy0kLI4B+mG0biynC/dYMpDo+B2LgULLaQszkG6YTSuLOdLN5jy0Ci4navtwYKZTTezn5nZI2bmZjZjiOX7zOx/zOwxM1ttZneY2UfblFxJiW4Y6RjqfOUxQNUNpjyiRsEdPVqj4HaCLHIWxgB3AccDLyRY/m3AncChwK7AN4H5ZvahlqVQgHSLUXTDSMdQ5yuPlTZ1gymPqFFw589XB1idoO3Bgrtf4+6fc/crgXUJlj/D3U9x99+5+1/d/ZvAVcAHWp7YDpfmU6puGI0ry/nSDaZc1FNmZ9ok6wQ0aQvg4agZZjYQs05PqxIjQ6v8oMyaFVTWmzgxuPHphybe/PnlOV/9/cHLrP4w66oULJJPhQsWzOxg4B3A1KzTIo1JesOQQCeerzzWuRCRggULZjYVuAz4D3e/OWoZd++LWXcA6G1Z4kSkIyk3pJz0d91QYZpOmtk04FrgC2G9BZFEivS0WpaOmDpJka4vSU5/1w0VIlgws+kEgcJsdz834+SUWruj6Xb8Q+axhUCcqI6YJJ6CK5H2yKKfhTFm1mNmPeH+u8LvXeH8L5nZL6uW7yMIFC4ALjOzbcPXa9ud9k7Q7mg6ixt5nm8wUR0xxdGTj4IrkXbJImfhLcBt4etVwJzw82nh/PHA66uWnwGMBj4NPFb1+kN7kitlUqZup4uUY9IqjQRXeZfnIFYki34WBtzdIl4zwvkz3L27avkZMct3x+wiVqfUKC+adv5IqttpyaMyBbFSToWos5CWyj+iDE/aN/d2ZiXnsdvp6uKEqI6YpPzaFcQq90Ka1VHBgqQj7SegdmYl57Hb6erihKieDiVeWYKrdgSxyr2Q4VCwIA1rVzZ+5QloKI1U9Mt7t9PqSrcxZQmu2hHEqghOhkPBgqSiFdn4lSegoZ58GqnoFzdOwX33NZdGyVZZgqt2BLF5LIKT9FUXNd14I8CE16WxXQULkorhPAENlXWc9pNP1A2m3S0L1OxRqrVjsK08FsFJumqLml56CeD1O6exbQUL0rC0n4CqfySjlPHJpzY4UaUzaXUuSd6L4GT4ooqaYEQq9/lEGzGz7cxshpldYGY/M7PrzewHZjbbzP7JzBR0dJC0n4CqfySjtPvJp51P/ZXAYDitQbLOpVAN+2LQUOHl18oHK3P3+JlmvcB/Ae8GRhIMC/0k8AKwFdBF0GHSY8BFwDnu/lzrktu8YCCp3l73gYTLQ+XUxH0eatm0VbY9nP0Nlf5G1o9bb6jt1Tu3o0dvHBlfemn9H7RG9pc0HUnOx+EXLgbgiqP2HXrhmH13d8c36U16nps9juGcl+p91/7NKt+buTYa0Ug6m932cP6/0thGM/trdh+NnsNmfwubvS6b3ffs2fUD6lb+Zg+1v0bOV5JlN/496QPAfcCGm+7YHAEz+1+Cbpb/DnwQeJ27d7n7FHef5u5vBrYAeoDzgcOAB8zs3cNNlHSu2icfKM+TT9QPViufBNo1zkeZelGU8umknk6jippg3bo0tl2v+OBeYEd3P9zdf+LuT9Uu4O7r3P0Od5/r7rsA/w5smUbCpDPVlts2K+us+ShRP1qtLGJpxTmoLXIQkfyoLWrafHOAB/6SxrZjgwV3/093f7yRjbn7z9z9h8NPlhRRnsqu8/I0MdQNO6pyWZ47Fqrt1EdE8qX6gWuffQAefSKN7apioqRCvcNFGypoqRSxFKVjoagiBqspDc1zsCPZydPDhDRuk7gZZvZvjWzI3S8ZfnKkqOr1DleGOgdDVZJqxoIFG/chUXkiOPLIdPfVSu5BkLN8efA+d26x0i+tV3mYqPxGVLf6KcPvQyeIDRaAi2u+V+peWsQ0AAULHayovcNV37C7u+PbnM+Zk36wUPvjWUlP0X48J04MghyzYgY7rdauiqZ5VvaHiU5Qrxhih6rXfgTNJi8kaIsxKXyfDzwETGtlIiX/ito7XL0RL2uDg0o2qlnYROmmrRveX3VWbFSWft776Y8qYlCnPvXlsbJtuxX1YUIG1avguLzyIuhr4XJ3P8bdb3D3v4TvnwB+CHymXQmWfCpq73Bxzf66u4PchOqb+4c/vGFgccuC1zccMFQHJ1Hy/uNZ5qat0jpFfZiQQUkrOL4DuD5m3sJwvnSwsvUOV7mhf/Sjg59rO0F5Zc1IbvruGyMra1UHGdtsE7xg6D4I8v7jmVbTVuksRX2YkEFJg4WXgLfEzNsLWJNOcqTIijYC4JYJegRZM+SVbRu1/KhtGbJyZfBKIurHM+0yb9VKl3Yr28NEJ6rb3fP6hczOBz4KfB74EbACGEfQs+NpwLfd/ZMtTOewmdnAxM/+vDfrdIiIiLTL8i8fvMjd+4a7nXqtIap9ChgLfAk4s2q6A5eF80VERKSEEgUL7v4C8GEzOx14KzCeYPCom9z93hamL1XLv3wWSQeSqqaBpKKXbcVAUs0MwhN3TJdeGrQuqG7/H5ftGTeIVSPHtuWW8MwzG3dSFKe6T4Jm/q7V5yhu+7X1CkaMiP+bVXqQb/bv08qBnaIUZSCpZvfdyv110kBSaewvTa0cSKp2vd7ePtLqaLWhHhzd/V53/767fyV8L0ygIJ2n0R4l58+HrSMaN1RuxhMnwve/HwQhtZW1zODZZ2GTTTZcJ0pl3VbX64hqWaFa6SLSjIa7ezaz15lZV+2rFYkTGY64TmDi9PfDmDEbT69E8JWbe6Wy1uitXgR8gyj/lVcG16kEDFtvPRiEtLM756gAQLXSRaQZiYIFMxthZmeY2UqC4oelEa9EzGy6mf3MzB4xMzezGQnWmWxmi8zshXC9L5glzewVGTRUPwZJ+zno74eDz7iN0Vu9FJsdWJn+1FPBC1qXm5A0AFCtdBFpRtKchROATwJfJeju+QzgiwRBwgPAxxvY5xjgLuB44IWhFjazLQj6eFhB0EzzeIJOok5sYJ8yTFn0QteK5n1DZbfHzY9rZrn6b5sPL0EpaSQAKFoTVxHJXtJg4f8RNJH8cvj9J+5+KkG3z48AiYsh3P0ad/+cu18JrEuwSj8wGviIu98Vrvdl4ETlLrRPO4d8rgQGwx3Bspns9rgho7/xjZh9bPVSY4lqEQUAItJKSYOFHYFb3P0VYC3wKgB3fxk4l6APhlbZF/hN2CKj4jpgAtBdu7CZDUS9gJ4WplFSFFWvYKj6BlGayW6PGzI6br3J73swdkhmDdUsImWRNFh4FhgVfn4U2Llq3ibAVmkmqsa2BEUQ1VZUzZM2aVevf2kNOhP1tJ20OCXpU/rEt67cICgZOTKc3saKjCJlUPaeRYt+fEmDhduAN4efrwPmmNkRZnYYQUdNt7Yicc1w976oF3B7xkkrrLhigVZJ2ryvmX++VhSnVIISd1i7NphWCTI0PLHI0Gq7SG+26DGv4o6vSJIGC+cClYZopwKPAwuAK4BNgWNTT9mgxwm6lq42rmqetFhcsUCrxNUbqJ5elB+XuJyM6iAibwFF3tIj5TdrVuNNnYsk7viKJFGw4O7Xu/uF4efHgb2BnQjqAezk7ne0LIWwGNjPzEZVTdufoDhkWQv3K6F2D5ucpN5A2j8uad6849avnl4dRDTa0qQ2RyVtWbR8kc6WVtFjXpXhOIYMFsxsMzP7iZlNr0zzwP3ufkdYyTExMxtjZj1m1hPuvyv83hXO/5KZ/bJqlcsIcjUuNrNdzexfgJOAczzJKFgybFn17lev3kDaPy5RN+9mg4a4m20aN+GoHJXKdJGiKnvPomU4jiGDBXdfA7wzybIJvYWgDsRtBK0q5oSfTwvnjwdeX7X/ZwlyEiYAtwDfIOjv4ZyU0iNDiCsWyFI7flzy+IQdlaNSmS5SVGXvWTTu+OppdQ5io5IGAL8D9kljh+4+4O4W8ZoRzp/h7t0169zp7tPdfZS7j3f3OcpVaJ+4YoEslf3HJS5Xo+zZtdKZyt6zaNzxxcljDmLSYOFTwL+b2bFmtr2ZjQy7gF7/amUis1b2Cl9Jjy9Pnf6U/cclLlej7Nm10rnK3rFYI8eXxxzEpDf5OwmKBuYBy4E1wMtVrzUtSV1O5DE7Ok3tPr60gq+of76it2UeypQp0dmXq1aV71ilOMr+f9duecxB3CThcqcByvaXVLQqOKlk3VUi8qK1ZU4SRF11VTBE9vHHw8qVg9NXrizWsUp5FP3/Lo+6ugaLHmqnZyVRsODus1ucDpFhK3pb5qRBVH9/cKzVwQIU61ilPIr+f5dHc+duGIBVT89KqesaSGfppEp+nXSskm+6FtMXVSerMj0rscGCmZ1Y0xHSkMxsTzM7YPjJEmlcJ1Xy66RjlXzTtdgatXWyslYvZ+HDwFIzO9PMdo9byMxeY2YfNrOFwG+BLdJOpORfHiqBNtOWuajy0vdF2VsKydA66f+uk9ULFvYEPgu8B7jNzJ4xs9+Y2VVm9gMz+z8zuxd4CrgQeAR4s7v/sPXJlrxpdICmVtSebrQtc5Hlpe+LPASJkq1O+r/rZJakbyMzeytwAPBWgp4URwErgXuAG4D/cfdnWpfM4TOzAejtdR8Y5naC0QXjpkXNT0tl28PZX7PpG2rfjaSptvY0BE8iq1dvvI3qbc2eHX1zauRvkubf5/ALFwNwxVH7prPBBKKOpdnjS7JsI+cxjWujEa3cX9S5HU6amtl3K/eXxv9Ms7+FQ6Wz0euy2fQ3sr80NXueG/1bm0Fvbx+LFi1aFI68PCxJW0PcBNw03J2JQPO1p+fM0ZOsDF9c0Cki8dQaQtpOtaclS40WmYmIgoWOkLenqCxqT6uHORGR5ilYKLgktdHz9iSVRu3pRgOg2kFZZs5UwCDpUTAqZadgoeDylmuQRBq1pxsNgKLqSGhYZ0lD1AiB6u5YykbBgmQiDyPMqe6EpEHdHUsnULAgpdJITot6npM0KOiUTpAoWDCzrjqv7c1sbKsTKpJEXPFEVB2JLAdl6XRFLD6Lo6BTOkHSnIVlwNKY13LgGTO7z8w+3opEigzHqadG15HIclCWomhVd86trnTbzgqH6u5YOkGiTpmAo4HPAc8APwZWANsCHwC2BM4HpgMXmNnL7n5x6ikVaVLlKba/P+jVLA+DshRFUXMAqnsIra5w2IoAsbLNWbOCfU2cGAQQRx6Z/r5EspI0Z2En4BZ373H30919vruf5u67A0uAbd39YOAy4PhWJVY6hwYoak6S81bUAKAR7W79kocKu51ATVSzkzRYOBL4Vsy8bwGVf40fATsPN1EinXBDa4Uk5y1v/W60iyoiFltcE1UFDO2RNFgYC2wTM++1wJjw83PAK8NNlIhI2lQRsdjimqgef7xyG9ohabCwCDjDzKZUTzSztwBzgV+Hk94IKH4XkUyp9Uv5xOUMrVypDrHaIWmw8EngZeBmM1tqZjeZ2VKCkShfAo4LlxsDfCP9ZIqIJKPWL+WUNGeoCB1iFbHuRaJgwd2XAm8CPgH8ClgZvh8NTArn4+5fc/fzh9qemR0TBh0vmtkSM9tviOU/ZGa3m9lqM3vczC41s22TpF1EOsvs2apw2A7troQc1US1qIrYPXjSppO4+8vA/PDVNDM7HJgHHAP8Nny/1sze7O4bZTSZ2VTg+8CngZ8C4wiaai4A3jGctIiISHPaXQk5qonqqlVBMUTRFLF78Cy6ez4RuNjdL3L3P7v7ccBjBLkWUfYFHg5zLZa6+43A14G3tim9paImiSJSVLU5RvPmlbNDrDy2BkscLJjZu8zsJ2b2JzP7a83rgYTb2AyYAiysmbUQeFvMar8DxpvZP1tgG+BfgWti9jEQ9QJ6kqSx7PJ4EQ5XJwRARSjj7IS/g+RLGiPY5lEemzcnHRviQOBaYDRB3YV7CFo9/COwDrgh4f62AUYS9ABZrdIj5EbcfTFBcLAAWAM8CRjwkYT7lJIrYwBUrShDIJf975BUEQK7Mili/ZQi5oYkzVn4PEErhwPD76e4ex+wC8HN/9r0kxYwszcTFDucTpArcQBBYHFh1PLu3hf1Am5vVRpFWklDIBeLOg6SoRQxNyRpsPAm4GqCXAQnrBjp7vcCswmCiSSeIui0aVzN9HHA4zHrnAzc7O5nufsd7n4dQaXID5vZ9gn3K1JY6nmwWNrd1bQUTxFzQ5IGC+uAte7uBMUA1S1eHwVen2Qj7r6GYCyJ/Wtm7Q/8Pma10WzcK2TlexYVNEXaSj0PFp8CPim6pDfbvwDd4edbgBPMbLyZvRb4FMEQ1kmdA8wws4+Z2SQzmwdMAC4AMLNLzOySquWvBt5nZp8wsx3DppTnAbdGNbUUgXJVttMQyMWngE+KLmmwsACYFH4+laCuwsMERQdvB76QdIfufgVwAnAKQT2CacCB7h6W8tFFVc5FONz1icCxwF3AlcC9wPuS7lM6T5kq25W1xndZqatpKaOkPTh+w90/E35eAkwGjgL+E+hx9ysb2am7n+/u3e6+ubtPcfcbquZVKiRWL/91d9/F3Ue7+3h373f3hxvZp0iRFaWMUy0B1NW0lFPiHhyrhTfquCGrRaQN8lbUUmniWangl9cmnq3W3x+8zAYDPJGiUwVB6Sh5u8EOR6WoJS/HpCaeIuUVm7NgZpVmkkm4uzeVSyHSTmWqy1CRl2NSjX+R8qp3gz+N5MGCiHS4rq7BzoikMbNn5yfoE4kSGyy4++w2pkMSyEt2s0iUuXM3rLMAQUsAFUUMbc4cBQuSb6qz0CZp/BDoxySeauFnT008RcpLwUKb5HEUsbKIG2hJAUP7FaWJp4g0RsGCFF5cLXz1xy8ikg4FC1IoUcUNcbXwVTtfRCQdChakUKKKG7baKnpZ9ccvkg+qb1V8ChakUOI6/VF//CL5pTpbxZc4WDCzPczsKjN7yszWmtme4fQzzOyA1iVRpL6//U398Q9XK5781EJFpDwSBQtmNg1YDLwJuKxmvXXA0eknTSSZri7Vwm9Gdb8drXjyiyoyEpFiSpqzcCZwHcHQ1CfWzLsV2DPNRInEUXFDelpdjqxxIkTKI2mwsCfwTXd3Nu4C+ingtammSoYtywpFrexpUsUNIiLtlzRYeBEYHTNvPPBsOsnJVplq7GZZoaiV51HFDSIi7Zc0WPgtcIKZjayaVslh+HfgV6mmKiOqsSuSnqgiIxEppqTBwucJiiL+GH524CNm9mtgH0C32YIpUy6K5JPGiRApj0TBgrv/EZgOrABmAQYcG87udfe/tCZ50irKRZFWU5GRSHnEDlFdy91vBd5hZqOArYBn3F31m0WkdDQcvMiGGu7B0d1fdPdHgVFmNsXMNm9BukREMqNiOpENJe2U6RQz+1LV9+nAMuBm4D4ze2Nrkid5pqcvEZHOkDRn4Ujgr1Xfv0xQ2fEQgnoMp6ebLCkCPX2JiHSGpMHCdsB9AGb2WmBv4PPufjVB7477tSZ5UnbKnWjMcM6XxmoQkWYlDRZeATYLP08n6KTpd+H3JwkqPCZmZseY2VIze9HMlphZ3WDDzDYzs9PCdV4yswfN7D8a2ae0xnBvQMqdaEyz52vBguixGhQwiEgSSYOFu4EjzWwM8FFgkbu/HM77R+CJpDs0s8OBecAZwB7A74FrzayrzmqXAwcAM4GdgcOAO5Lus2iKcgPVDag4Zs2KHqth1qxs0iMixZI0WDgN+CBBt87vIKizUHEgwWBSSZ0IXOzuF7n7n939OOAx4BNRC5vZu8J9Huju17v7Mne/yd0HYpYfiHoBPQ2kMVNF6QNBN6DiePDBxqaLlJ2K5RqTtFOm64BJBAHDLu6+qGr2DWwYPMQys82AKcDCmlkLgbfFrHYI8AfgRDN72MzuM7PzwlwOyZBuQMXRFZNvFzddpMyUK9q4xP0suPtSd/+xuz9QM/1Cd78x4Wa2AUYStKCotgLYNmadHYFpwO7ABwh6jjwAuDgmnX1RL+D2hGmUhHQDKo65czW8t0iFckUbl7gHRwAzew3wRmBU7Tx3vyGtRNUYQTAWxYfc/dkwHccC15nZOHevDTykTebODaLx6n+6tG9Aai2RjkpXy7NmBU9REycGfyd1wSydSLmijUsULIRdPH+HoBjCYhYbGTO92lMELSvG1UwfBzwes85jwCOVQCH05/C9i41zKaRN2nEDKkplzyLo7w9eZoNjNoh0oq6uwSKI2ukSrZFRJ/uAjzA4iNTHCIaufgA4OMlG3H0NsATYv2bW/gStIqL8DphQU0dhp/A94s8taaqtBFRLgwWJSNGoWK5xSYOFDxC0iLg8/H6Tu3/X3XsJenI8oIF9ngPMMLOPmdkkM5sHTAAuADCzS8zskqrlLwNWAt81s13MbCpB08sr3T1xk01pXFQloMp0kU6gYrBy6u+PHkJdDzvxkgYLXcDd7v4K8DLw6qp53wEOT7pDd78COAE4haDS4TSCZpGVXIKu8FVZfhXwTmBLglYRPwQWEfT3IC0UVQmoMl2kE6gYrLyyyhUtagCatILjSqBSDPAQQcuE34TftwFe1chO3f184PyYeX0R0/4CvKuRfWSlqBdCFFUCEhFJV1ED0KQ5CzcS9LYI8GPgdDM72cz+CziLoO6CUNwLIUpemkaq85TyaFUwXaYgXSSPkgYLXwbuCT9/EfgVQR2GLxOMRhnZ+6IUW1QloMr0donrPCWObhr51qpgukxBupRHma7LpD043uLuV4Wfn3f3DxAUS/yDu7/N3ZUxXUJRlYAq09slrvOUOGX655R0KYdK2q0oXfcnkbgHx1ru/pK7P5dmYiR/aisBtZvqR0ga1L2vyPAk7sHRzLYgGDSqi417cHR3Pz3NhIlAfOcpIo2o171vpzSXmz1bOW/SvKQ9OE4Frgb+IWYRBxQsSOriupSuVxQhUkste4IscQUL0qykxRDnAsuAvYBR7j6i5pWkq+dCU3lnNuI6TxFpRF5a9ogUVdJgYRJwirsvCbts7igq78yWupSW4VL3viLDkzRYeBDYvJUJyTMNZypSbOreV2R4kgYLc4CTwkqOHUflnSLFpxyq8lEdjPaJreBYM5gTBMNILzWzxcDfaua5u38k7cTlhYYzFRHJH1XabJ96rSGmE7RyqHDgOWCXiGU9YlppxNXIV3lndtRTo4hI+8QGC+7e3cZ05Folu3LWrCCHYeLEIFBQNmZ29DQhImWwYMFg/bfu7vw+hCbtZ2EbYJW7v9ji9ORWf3/wMsumJ0MRESmf6lzroca+yVJsBUczG2lms83saWAF8JyZ/djM/qFtqRMRkVJREeKGGhn7Jkv1chaOBr4ADAB/AHYE3k9Qb+H/tTxlIiJSOipCLKZ6TSc/Dlzk7m9398+6+2HAJ4EjzWyz9iRPqqkXSRERyUK9YGFH4Ec1064ARgITW5YiiaReJEUCCpqlTKJ6Fs2jesHCGIIih2rPh+9jW5MciaNeJEUUNEv5FGXsm6F6cNzOzHasvAhyGzaaHs6TFuqEXiRV8ak4svpbKWiWsilKz6JDNZ28Mmb6TyOmlX7kySx1Qi+SqvhUHFn9rTohaBbJo3rBglo85Ih6kRTpjKBZJI9iiyHc/XuNvNqZ6CJJqzJWM6PmqSKYlI2GmhbJRtJRJ1NlZseY2VIze9HMlpjZfgnXm2Zma83srlanMQ1pV8ZqtGxLFcGkbDTUtEgyadcranuwYGaHA/OAM4A9gN8D15pZ3YxEM3sNcAnwy5YnMiVZV8ZSRTApo6JUCBPJUtr1irLIWTgRuNjdL3L3P7v7ccBjwCeGWO/bwPeAxa1OYFryWBlLFcFERKRRiQaSSkvY8+MU4OyaWQuBt9VZ7xhgHPBF4PND7GMgZlZP0nSmJY+VsVQRTEREGtXunIVtCJpYrqiZvgLYNmoFM5sMnAoc6e6vtDZ56cq6MpYqgomISBoyqeCYlJltTtDF9KfdfWmSddy9L+oF3N7CpEbKujKWKoKJiEga2loMATwFvEJQpFBtHPB4xPLjgUnAd83su+G0EYCZ2VrgQHdf2KrEpqG/P3iZDVbK6oR9i4hIebQ1Z8Hd1wBLgP1rZu1P0Cqi1iPAZIL6BpXXBcD94eeodUREpMOpn5l0ZVEMcQ4ww8w+ZmaTzGweMIEgCMDMLjGzSwDc/WV3v6v6BTwBvBR+X5VB+kVEJOfS7GdGXdFnECy4+xXACcApBPUIphEUJ1TaDXSFLykR/bOJSDul2c/MnDnDT0/RZVLB0d3Pd/dud9/c3ae4+w1V8yoVEuPWne3uu7YloZIa/bOJSNaG289MJz/05Lo1hIikT0OBS6cabj8znfzQo2BBpMN08tORdA71M5MuBQsiIlI66mcmXe3uZ0FERKTl1M9MupSzICIiInUpWBAREZG6FCyIiBSMeieUdlOdBRGRAlmwIOiNsNLpUKV3QpFWUs6CiEiBzJoV3TuhSCspWBARKZDh9kIo0gwFCyLSUuoxMl3D7YVQii+L/ykFCyLSUuoxMl1z50b3TphHqojZGln8TylYEBEpkP7+6N4J8yjNYaKHohys1lKw0GFaFenrH1VkQ638n+jvH+yVcNmy/HZjnOYw0UNRDlZrqelkB6nX5Gq4Pzb6RxXZkP4noqmCZjEpZ6GDxDW5alWkLyJSSxU0i0nBQgeJi+gV6YtIK2iY6PJQsNBB4iJ6RfoinaVddYw0THR5KFjoIHFNrhTpi3SWdtWnKEpFTBmagoUOEtfkSv/AIiJSj4KFDqNIX2T40noyV6dFxdVprV0ULIiINGjOnOFvo9KUubbTIimGNK6BIlGwICKpy0snXXlJRxSNHilFomBBpIO1Khs8L1m0eUlHFDVZliLJJFgws2PMbKmZvWhmS8xsvzrL/ouZLTSzJ83seTO7ycze2870ipRRXDa4ys3bQ02WpUjaHiyY2eHAPOAMYA/g98C1Zhb3r9ML/Ao4KFz+GuAn9QIMERmaevTMVpFGjxTJImfhROBid7/I3f/s7scBjwGfiFrY3Y939zPd/WZ3v9/d5wBLgEPal2SR8lGPntkq0uiRIm0dSMrMNgOmAGfXzFoIvK2BTY0Fno7Zx0DMOj0NbF+k9Lq6BosgaqdLe/T3By+zwSbNRx6ZaZJEIrU7Z2EbYCSwomb6CmDbJBsws08C2wPfTzdpIp1FPXqKSFKFag1hZh8AzgI+5O4Rz0Tg7n1RL+D2NiZVJPfUo2c5qGMnaYe2FkMATwGvAONqpo8DHq+3opkdClwC/Ju7X92a5Il0lqhscCmWmTMHK6pWd+ykoE/S1NacBXdfQ1A5cf+aWfsTtIqIZGYfJCh2mOHuV7YuhSIixaIWLdIO7c5ZADgH+L6Z3Qz8DjgamABcAGBmlwC4+7+F3/+VIFD4NHCDmVXqNqxx97+1Oe0iIrmnFi2StrbXWXD3K4ATgFMI6hFMAw6sqoPQFb4qjiYIas4laGJZeV3VlgS3kcoeRSQNatEiacsiZwF3Px84P2ZeX73vZVXpTU9lj/Hy3M+/SFZGj96wKEItWqQVCtUaoszUm97Q8tzPv0hW1KJF2iGTnAXZmHrTE5FmqEWLtINyFnIiroxRZY8i6VJxlkjjFCzkhHrTE2kPFWeJNE7BQk6oNz0REckrBQvk50mjv3+wzHHZsnwGCsrCFRHpPAoWgDlzsk5BceQlsBIRkfZRsCAiIiJ1KVgQERGRuhQsiIiISF0KFiQRVWwUEelcChbapOg3W1VsFBHpXAoW2kQ3WxERKSoFCyIikhtFz4UtKwULIiI510k5k510rEWiYEFEJOfUcZxkTcHCMCxYAN3dwefu7uC7iIhI2WySdQKKasECmDkTVq8Ovi9fHnyHfI7pICIi0izlLDRp1qzBQKFi9epguoiISJkoWGjSgw82Nl1ERKSoFCw0qaursekiIiJFpWChSXPnwujRG04bPTqYLiIiUiYKFprU3w/z58PEicH3iROD76rcKCIiZZNJsGBmx5jZUjN70cyWmNl+QyzfGy73opn91cyOblda6+nvh2XLgs/LlilQEBGRcmp7sGBmhwPzgDOAPYDfA9eaWWRpv5ntAFwTLrcH8CXg62b2gfakWEREJBt56f46i5yFE4GL3f0id/+zux8HPAZ8Imb5o4FH3f24cPmLgO8Bn25TekVERDKRl+6v29opk5ltBkwBzq6ZtRB4W8xq+4bzq10HfMTMNnX3l2v2MRC/ndvp6+sD4LHHHuPee+8NZ/VitqjqHXp7e9evuGTJElatWlWzbGD8+PHATvT1wfPPP8+tt94as3vYc889GTt2LAD33nsvjz32WMySvYTJBGDRokUbza+kYaeddgrTEHdMg5+rjwnY4DiqjR8/np122glo5zENij+miK3G/p021IpjGjX+DYwdM5a+H2xRgmMKrpExY8YwZcqU9VM3PKYNr/3hHBNMibz+Gjmm6muq3t+p/jFtKPkxbXg9D/6dejc6rmTHFKy35557AmPp66s9pg23W31MfX2VY9p437XHtPPOyY9p7Nhmjmnj3534Y9pQI3+n6rRGH9OG6agsG/3/FCxb/++04T0i6TE18lteu+zGf8sk96cNbbbZZgBviElcQ8zd09hOsp2ZTQAeAXrd/Yaq6V8A+t1954h17gUudffTqqZNBxYBE9z9sZrlB2J2Pw14BVg83OMouZ7w/fYM01AUPeH77RmmoQh6wvfbM0xDUfSE77dnmIYi6Anfb88wDUWwL7DG3ccOd0Ol6+7Z3fuipleCiLj5EtB5Sk7nKhmdp+R0rpLReUqmzsNzw9pdZ+Epgqf7cTXTxwGPx6zzeMzya8PtiYiISAu1NVhw9zXAEmD/mln7E7R2iLI4ZvlbausriIiISPqyaA1xDjDDzD5mZpPMbB4wAbgAwMwuMbNLqpa/ANjOzM4Nl/8YMIONK0mKiIhIC7S9zoK7X2FmWwOnAOOBu4AD3X15uEhXzfJLzexA4GsEzSsfBf7D3X/cxmSLiIh0rEwqOLr7+cD5MfP6IqYtAvZscbJEREQkQlubToqIiEjxaCApERERqUvBgoiIiNSlYEFERETqUrAgIiIidZUiWDCzk83sD2b2nJk9aWZXm9muCdabbGaLzOwFM3vEzL5gZtaONGehmfNkZt1m5hGvA9qV7iyY2SfN7I7wXD1nZovN7KAh1umo6wkaP0+dej3VCv8X3cz+e4jlOu6aqpbkPHXqNWVmsyOOOa4n5Mo6TV9PZRkboo+gKeYfAANOA35hZm92979FrWBmWwDXAzcAewFvAr4L/B34ahvSnIU+GjxPVQ4A/lj1fajli+5h4LPAfQRB9UeAn5rZFHe/o3bhDr2eoMHzVKXTrqf1zGwfYCZQ7/x08jUFJD9PVTrxmvoLwe96xStxCw77enL30r2AMeFJ++c6y3wCeA54VdW0UwhGxbSsjyFH56kbcOAtWac36xfBj89RMfM6/npKeJ46+noCtgQeAP4JGAD+u86yHXtNNXieOvKaAmYDdzWw/LCup1IUQ0QYS/CU83SdZfYFfuPuL1RNu46g6+nu1iUtV5Kcp4qrzOwJM/udmR3a4nTlipmNNLN/JQiu4sYw6fjrKeF5qujU62k+cKW7/zrBsp18TTVynio68Zra0cweNbOlZna5me1YZ9lhXU9lDRbmEYxzvrjOMtsCK2qmraia1wmSnKdVwKeBDwIHAr8ErjCzI1ueuoyF5XurgJcIxih5v7vfGbN4x15PDZ6nTr6ePg68geBpLomOvKaaOE+dek3dRDBO0gHAxwmuid+HwylEGdb1VJY6C+uZ2TnANGCau8eW33S6pOfJ3Z9iw/KsW8xsG+AzwKWtTWXm/gL0EGSJHgp8z8z63P2uTFOVP4nPU6deT2a2M3AGwf+bRsuN0cx56tRryt2vrf5uZjcCfyWoN3RO2vsrVc6CmX0NOAJ4u7v/dYjFHwfG1UwbVzWvtBo8T1FuAt6Ybqryx93XuPv97r7E3U8myIX5z5jFO/Z6avA8RemE62lfYBvgbjNba2ZrgV7gmPD75hHrdOI11cx5itIJ19QG3H0VcDfxxz2s66k0wYIFQ11XboD3JFhlMbCfmY2qmrY/waiWy9JPYT40cZ6i9ACPpZao4hgBxP1YdeT1FKPeeYrSQ/mvp58CkwmOtfK6Bbg8/LwmYp1OvKZ+SuPnKUoP5b+mNhBeJ28i/riHdz1lXaMzpVqh3yCo5fl2grKXymtM1TJfAn5Z9X1LgmjqcmBX4F/CbXwq6+PJ2Xn6CPAhYBKwM0HZ4BrgP7M+nhafqzOB/Qgq/kwOz8s64D26noZ1njryeoo5dwNU1fLXNdX0eerIawo4myDXZQfgrcDPw+tjYiuup7LUWTgmfP9lzfQ5BM1LAMYDr6/McPdnzWx/ghvoLQQtAr5KC8p6cqTh8xQ6BZhI0MzyXuCj7l7assDQtgTlndsCzxK09X6Pu18Xztf1FGjoPIU68XpKQtdUMrqmAtsDPyAotnkSuBHYx92Xh/NTvZ40RLWIiIjUVZo6CyIiItIaChZERESkLgULIiIiUpeCBREREalLwYKIiIjUpWBBRERE6lKwIJIBM5thZh7zemfW6SsLM5tiZqvNbLuqaQNm9tuY5T8W/g26G9jHIWa2wszGpJBkkVxSsCCSrcMI+sOvft2caYrK5SzgO+7+SAv38T8EXez+Vwv3IZKpsvTgKFJUt7v7/UkWNLPN3f2lVieoLMxsCvBPwHGt3I+7u5nNB043sy+5+4ut3J9IFpSzIJJDVcUU083sR2b2DMFIepjZJmZ2spndY2YvmdmjZvbVmgFiMLMdzex/w2z4J81snpkdVZvNHn6fXbNudzh9Rs30XjP7pZk9b2Z/N7PrzGzXmmUGzOy3ZvZOM7s13P9dZvb+iOPc3cx+YmYrzewFM/uLmZ0czvt6mL2/ac06Y8P9nznEafwYcIe73z3EcrHMbHad4qIZVYv+EPgHgv72RUpHwYJItkaGN//Ka2TN/AXAUuBQ4KRw2qUEfeFfBhxEMGDMv4fLAmBmmwHXA3sAnwRmEAw4c0qzCTWzgwjGFVkFHEkweM9Y4Ddm9o81i78emEfQ7/y/EGTT/8jM3lC1vb0JRsJ7PcGQ1geFy28fLvJN4HVAbZDxIeDVwIVDJPkA4Dd1jmeT2hcb/yZ+i42LiX7M4BgEALj7U8Cfw32KlI6KIUSyVTtM+O+AaVXfr3T3z1S+mNl+wOHAR9z9knDyL8zsb8ClZtbj7rcTjMS3I7Cvu98YrnstcOcw0joPWOTu76tKz6+BvwKfAk6oWnYbYLq73xcudytBwPBB4IxwmbOBlQSD36wOp/2qsgF3/5OZLQKOInhyrzgKWOjuS+MSambjCEbC/GPMIlOBl+scayUNDwMPV233MILg5wR3/33N4rcB+wy1TZEiUrAgkq33U3UzAp6vmf+Tmu8HEAy/e2X4JFyxMHyfDtxO8AT8UCVQAHD3dWb2QwZHGE3MzN5IkANwRs1+VxPkDkyvWeW+SqAQ7vsJM3sC6Aq3N5rghn1WVaAQ5XzgcjN7o7vfZ2Z7EeSWDJXdPyF8fzJm/h8JiilqvY+Y3BczewvwPeB8dz8vYpEnq/YrUioKFkSyddcQFRwfq/n+OmAz4O8xy28dvo8HVkTMj5qWxOvC92+Hr1oP1nz/W8QyLwGVehWvIcjyfzhiuWo/AR4nyE34NHA08Chw9RDrVfYTVyF0lbvfUjvRzHqiFjaz7YGfAQPA8THbfKFqvyKlomBBJN9qx5BfCbwI7Bez/KPh+2PALhHzx0VMe4kgAKm2dc33leH7ycAvIraxJiY9cZ4G1gHb1VvI3V82s28Bx5jZV4B/Bb7q7muH2H4lva9pMF0bMbNXEwQnTwGHu/srMYtuVbVfkVJRBUeRYvk/gqfXLd39lohXJVhYDPyjma0vQzezEQR1BmotB3atmXZQzfe/AMuAXWL2e0cjBxEWPfwWONLMXjXE4hcStDT4EbA5cFGCXSwjCKp2bCRdtczMCCqUjgcOdvfaYqJqOxCcJ5HSUc6CSIG4+4CZ/YCgzsI5BB04rSOozHcg8Fl3v5egbP0k4Coz+xzwBEEW/hYRm70cOMXMZgE3EuRaHFGzXzezTwL/E7a0+CHBk/Y44G3Ag+5+ToOH82lgEbDYzL5KUCSxI9Dj7uv7RnD3R8zsZwT1O65294eG2rC7rzGzm4C9G0xTrc8ChxAUPUwws+o6CQ+4+5OwPqjYm6COhUjpKGdBpHiOJKikeChB74FXAscC9xHWSXD3NcD+BJUdzycIHpYCX4zY3peA/w638VNgEvDh2oXc/RqCioyvJmhSeB3wFWBbgpyMhrj7HwgqOT4EfB24hqAXxKh6DD8K34dqLlntCuDtYTFCs94Uvs8jOMbqV3Xuy9sIijwuH8a+RHLL3GuLREWkrMKOhL4L7ODuy7JNTXJmtoAgsNjR3dclXGcLgsDjGHe/tMXp+yawq7vH1SURKTQVQ4hIboV1LnoI+pY4MWmgAODuz5nZl4HPmNkCb9GTkZltS9CvhTpkktJSsCAiebaYoMfI79FcfYBzgJEEFRQfHWLZZnUDn3L3G1q0fZHMqRhCRERE6lIFRxEREalLwYKIiIjUpWBBRERE6lKwICIiInUpWBAREZG6FCyIiIhIXf8ff2PCRPKbFt0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_plags, yerr=freq_plags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Phase lag (rad)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([0, np.pi/ 2])\n", + "plt.axhline(phase_lag, label=\"Input phase lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Energy-dependent lags\n", + "\n", + "The lag vs energy spectrum can be calculated using the `LagEnergySpectrum` from `stingray.varenergy`. Refer to the Spectral Timing documentation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Coherence\n", + "Coherence is a Fourier-frequency-dependent measure of the linear correlation between time series measured simultaneously in two energy channels. \n", + "See *Vaughan and Nowak 1997, ApJ, 474, L43* and *Uttley et al. 2014, A&ARev, 22, 72* section 2.1.3. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 14681.05it/s]\n" + ] + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900\n", + "\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt)\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt)\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `coherence` method returns two `np.ndarray`s, of the coherence and uncertainty." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "coh, err_coh = avg_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The coherence and uncertainty have the same length as the positive Fourier frequencies." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "print(len(coh) == len(avg_cs.freq))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "And we can plot the coherence vs the frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFJCAYAAADtx5XDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtJ0lEQVR4nO3deZgcZbn+8e+dDWSLmEggQNgEZdNBEUGBRCDqARcUPAgqcPlT2QQVOEfA5SBwWA4QiEBAUdkEQTiHTUEQMWHfCZuskrCGkLCTPTPP74+3mu7pdE9Pz3RPz0zdn+vqq6ur3qp6qten36cWRQRmZmaWL0NaHYCZmZn1PScAZmZmOeQEwMzMLIecAJiZmeWQEwAzM7McGtbqAPqKpAeBDwLPtDoWMzOzPvAhYE5EbFFpYm4SAOCDI0eOXLOtrW3NVgdiZmbWbNOnT+ett96qOj1PCcAzbW1ta06dOrXVcZiZmTXdhAkTmDZtWtVeb+8DYGZmlkNOAMzMzHKozxMASdtLukbSS5JC0r7dmGdzSdMkLcjm+4Uk9UG4ZmZmg1IregBWAh4FfggsqNVY0irA34DZwCez+f4DOLSJMZqZmQ1qfb4TYERcB1wHIOn8bszyTWAFYJ+IWAA8KukjwKGSJoWvZmRmZla3gXAUwDbArdmPf8ENwLHAusCM0saSplZZTlsTYjMzMxuQBsJOgKuTuv9LzS6ZZmZmZnUaCD0AdYmICZXGZz0D4/s0GDMzs35qIPQAvAKMKRs3pmSamZmZ1WkgJAB3AttJWr5k3ETgZWBmSyIaBB55BL7zHZg1q9WRmJlZK7TiPAArSWqT1Jatf1z2eFw2/QRJfy+Z5RJgPnC+pM0kfQ04AvARAL3w0Y/CeefBlVe2OhIzM2uFVvQAbAk8mN3eB/wyGz4mm74GsEGhcUS8RfrHPxa4DzgLOBWY1HchDz777ZfuFy1qbRxmZtYarTgPwFSg6ln8ImLfCuMeAbZvXlT5097e+d7MzPJlIOwDYE2wdGnnezMzyxcnADnlHgAzs3xzApBTTgDMzPLNCUBOuQRgZpZvTgByyj0AZmb55gQgp5wAmJnlmxOAnHIJwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUewDMzPLNCUBOOQEwM8s3JwA55RKAmVm+OQHIKfcAmJnlmxOAnHICYGaWb04AcsolADOzfHMCkFPuATAzyzcnADnlBMDMLN+cAOSUSwBmZvnmBCCn3ANgZpZvTgByygmAmVm+OQHIKZcAzMzyzQlATrkHwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUEwAzs3xzApBTLgGYmeWbE4Cccg+AmVm+OQHIKScAZmb55gQgp1wCMDPLNycAORQBHR1p2D0AZmb55AQghwo//uAEwMwsr5wA5FBpt79LAGZm+eQEIIdK//W7B8DMLJ+cAOSQEwAzM3MCkEMuAZiZmROAHHIPgJmZOQHIIfcAmJmZE4Accg+AmZk5AcghJwBmZtaSBEDSgZJmSFoo6X5J29Vov5ek6ZLmS3pF0h8krd5X8Q42LgGYmVmfJwCS9gAmA8cDWwB3ANdLGlel/WeAi4ALgE2BXYFNgIv7It7ByD0AZmbWih6AQ4HzI+LciHg8Ig4GZgEHVGm/DfBiRJwWETMi4i7gDOBTfRTvoFP6o196XQAzM8uPYX25MkkjgE8Ap5RNuhH4dJXZbgeOl/Ql4M/AKOAbwHVV1jG1ynLa6gx30Crv9m9vhyHeG8TMLFf6+mt/NDAUmF02fjZQsaYfEXeSfvAvBhYDcwAB+zQvzMGtvNvfZQAzs/zp0x6AnpC0CanL/1jgBmAN4GTg18De5e0jYkKV5UwFxjcrzoHECYCZmfV1AjAXaAfGlI0fA7xSZZ4jgXsi4uTs8cOS5gG3SjoqIl5sTqiDV3kJwEcCmJnlT5+WACJiMXA/MLFs0kTS0QCVrEBKGkoVHrty3QPuATAzs1aUACYBF0m6h7SD3/7AWOAcAEkXAkREoXv/WuBcSQdQLAGcDjwQEc/3beiDg3sAzMyszxOAiLhM0ijgZ6Qf80eBnSPiuazJuLL250taGfgBcCrwFnAz8JO+i3pwcQ+AmZm1ZCfAiJgCTKkybUKFcWeQdgS0BnACYGZmrqHnkEsAZmbmBCCH3ANgZmZOAHLICYCZmTkByCGXAMzMzAlADrkHwMzMnADkkBMAMzNzApBDLgGYmZkTgBxyD4CZmTkByCEnAGZm5gQgh1wCMDMzJwA55B4AMzNzApBD7gEwMzMnADnkHgAzM3MCkENOAMzMzAlADrkEYGZmTgByyD0AZmbmBCCHnACYmZkTgBxyCcDMzJwA5JB7AMzMzAlADjkBMDMzJwA55BKAmZk5Acgh9wCYmZkTgBxyAmBmZk4AcsglADMzcwKQQ4V//MOHd35sZmb54QQghwr/+JdbrvNjMzPLDycAOVT4x19IANwDYGaWP04Acqjwgz9iROfHZmaWH04AcsglADMzcwKQQy4BmJlZ3QmApCGSNpM0XtKKzQjKmssJgJmZ1ZUASDoIeAV4CLgZ+HA2/ipJhzQ+PGsGlwDMzKzbCYCk7wGTgauAPQCVTL4V2K2hkVnTeCdAMzOrpwfgUODUiPg+cGXZtCfIegOs/3MJwMzM6kkA1gNuqDJtHvD+XkdjfcIlADMzqycBmAusW2Xah4GXeh2N9QmXAMzMrJ4E4M/ALyStXzIuJI0GfkzaN8AGAJcAzMysngTgZ8Ai4FHgJiCAXwGPA+3AMQ2PzprCJQAzM+t2AhARc4EtgROA4cC/gGHAmcA2EfFWUyK0hnMJwMzM6joPQES8ExHHRsS2EbFRRGwTEb+MiLfrWY6kAyXNkLRQ0v2StqvRfoSkY7J5Fkl63ucd6Dn3AJiZ2bDuNpS0EbBGREyrMG17YFZEPN2N5exBOp/AgcBt2f31kjaJiOerzHYpsBbwfeBpYAzwvu7Gbp15HwAzM+t2AgCcDvwTWCYBAL4IbJLd13IocH5EnJs9PljSF4ADgCPLG0v6HLAjsEFWhgCYWUfcVsYlADMzqycB2BI4p8q0W4B9ai1A0gjgE8ApZZNuBD5dZbZdgXuBQyXtDSwArgeOioh3K6xjapXltNWKLy9cAjAzs3oSgJWBhVWmLQFGdmMZo4GhwOyy8bOBnarMsz6wLekIhN1IJxw6AxgL7N6NdVoZlwDMzKyeBOBZUlf8jRWm7UDzuuWHkA453KtwpIGkHwA3SBoTEZ2SiYiYUGkhWc/A+CbFOKA4ATAzs3qOArgQ+LGkgyQtByBpuewKgT8CLujGMuaSzhkwpmz8GNJVBiuZBbxUdpjh49n9uG7GbiVcAjAzs3oSgFOAa0jd7/MkvUq6BsAZ2fiTai0gIhYD9wMTyyZNBO6oMtvtwFhJK5WM2yi7f67b0dt7vBOgmZl1uwQQEe3A7pJ2IP1gjyL9o78xIqbWsc5JwEWS7iH9uO9PquefAyDpwmx9e2ftLwF+Dpwn6WjSPgCTgSsi4tU61msZlwDMzKyefQAAiIibgZt7usKIuEzSKNKphdcgnVp454go/JsfV9b+XUk7kXoa7gXeIF134IiexpB3LgGYmVndCQCApNWA5cvHd3Ein/J2U4ApVaZNqDDuSeBz9UVp1bgEYGZm9ZwJcBVS1/sewHJVmg1tRFDWXOU9AE4AzMzyp54egLNIx+H/DniEdFy+DUDl+wC4BGBmlj/1JABfAP4jIs5qVjDWN1wCMDOzuq4GCDzZlCisT3knQDMzqycBuBT4UrMCsb7jwwDNzKyeEsCNwOmSVgauA14vb5AdImj9WIRLAGZmVl8CcHV2vx6wb8n4AJTd+yiAfq6jI91LMHx4GnYJwMwsf+pJAD7btCiszxT+7Q8dmm6l48zMLD/qORXwtGYGYn2j8GM/bFi6lY4zM7P8qPtMgJJGA1uTrgVwbUS8Lml5YHFEdDQ6QGusQnd/aQ+ASwBmZvnT7aMAlJwMvEi6+t/vgXWzyVcDP214dNZwLgGYmRnUdxjgkcAPgGOAT5F2/Cu4FvhiA+OyJnEJwMzMoL4SwHeBYyLiBEnle/s/A2zQuLCsWVwCMDMzqK8HYE3grirTFgMr9j4cazaXAMzMDOpLAF4CNqsy7WPAjN6HY81W+LdfWgJwD4CZWf7UkwBcDvxC0mdKxoWkjYDDSKcKtn7OPQBmZgb1JQBHA08AtwBPZ+MuJ10a+GngxIZGZk3hBMDMzKC+EwEtkDQB2Av4PGnHv9eAY4GLI8IdyQNAaQmgkAB0dKRrBEjV5zMzs8GlWwmApBHAZcBpEXERcFFTo7KmKe0BkGDIkJQAtLcX9wkwM7PBr1slgIhYDOzU3fbWf5WeBwBcBjAzy6t6ftBvJ50C2Aaw0vMAgI8EMDPLq3o6fQ8DrpL0LnAVMIt0CeD3+FoA/V9pCaD03j0AZmb5Uk8PwCOks/1NBp4jnfxnScltccOjs4YrLwH4dMBmZvlUTw/AMZT947eBp7wE4NMBm5nlUz2HAR7dxDisj7gEYGZm0MO9+iWtJGkdScMbHZA1l0sAZmYGdSYAkr4o6QHgLeBZYPNs/G8l7dWE+KzBXAIwMzOoIwGQtCtwNTAX+AlQet64GcA+DY3MmsIlADMzg/p6AP4LOC8iPgecXjbtUapfKdD6kdJTAZfeuwfAzCxf6kkANiadDhiWPRrgDWBUQyKypnIPgJmZQX0JwNvA6CrT1gXm9DoaazqfCtjMzKC+BOBvwJGS3l8yLiQtB/wAuL6RgVlz+FTAZmYG9Z0I6KfAPcCTwHWkMsARwEeBkcCujQ7OGs8lADMzgzp6ACJiJvBx4M/ARKAd2B64C/hURLzcjACtsVwCMDMzqK8HgIh4Efh/TYrF+oBLAGZmBj08E6ANXC4BmJkZ1NkDIGk8sCcwDli+bHJExI6NCsyawyUAMzODOhIASfsBZwOvA08Bi8qbNDAuaxKXAMzMDOrrATgMuAT4TkQsblI81mQuAZiZGdS3D8CapFMB9/rHX9KBkmZIWijpfknbdXO+bSUtlfRob2PIK18N0MzMoL4E4H5g/d6uUNIewGTgeGAL4A7geknjasy3KnAh8PfexpBnvhqgmZlBfQnAIcCPJG3fy3UeCpwfEedGxOMRcTAwCzigxny/Ay4A7uzl+nPNJQAzM4Ma+wBIeoHOF/4ZCfxD0nzSBYBKRUSsU2N5I4BPAKeUTboR+HQX8x0IjAGOA35eYx1Tq0xq62q+vPDVAM3MDGrvBPh3lr3yX2+MBoYCs8vGzwZ2qjSDpM1JlyLeOiLaJR9s0BvuATAzM6iRAETEvn0UR0XZhYYuAw6PiBndmSciJlRZ1lRgfMOCG6B8HgAzM4M6TwTUAHNJ1xAYUzZ+DPBKhfZrABsD50k6Lxs3BJCkpcDOEXFjs4IdjHweADMzgzpPBSxpc0lXSJqTHY43R9Kfsm76mrJDCO8nXUyo1ETS0QDlXgI2J9XvC7dzgGey4UrzWBdcAjAzM6jvTICfBKYBC4BrSP/YVwe+BOwiafuIuL8bi5oEXCTpHuB2YH9gLOmHHUkXAkTE3hGxBOh0zL+kV4FFEeFzAfSASwBmZgb1lQBOIP0Y7xgR7xRGSloZuCmb/rlaC4mIyySNAn5G6uJ/lNSV/1zWpMvzAVjvuARgZmZQXwKwNfDt0h9/gIh4R9JJpGP0uyUipgBTqkybUGPeo4Gju7su68wlADMzg/r2Aah1OGAjDxe0JnEJwMzMoL4E4G7gqKzL/z2SVgR+AtzVyMCsOVwCMDMzqK8EcBQwFXhO0p9Jp+9dHdgZWBEfYz8guARgZmZQRwIQEfdI2hr4BfB54APA68A/gGMj4pHmhGiNVO1UwE4AzMzypda1AIYAuwAzIuLRiHgY2L2szebAuoATgAGgWg+ASwBmZvlSax+AbwF/BOZ10eYd4I+S9mxYVNY0LgGYmRl0LwE4r6vz8EfETNKlevdpYFzWJL4aoJmZQe0E4OOkS/XWchOwZe/DsWZzD4CZmUHtBGBl4I1uLOeNrK31cz4PgJmZQe0EYC6wTjeWMy5ra/2czwNgZmZQOwG4je7V9vfN2lo/5xKAmZlB7QTgdGBHSadJGlE+UdJwSacDOwCnNT48azSXAMzMDGqcByAi7pR0GHAq8E1JNwKFq/atA0wERgGHRYRPBTwAuARgZmbQjTMBRsTpkh4gne//q8D7skkLSKcGPjEibm1ahNZQLgGYmRl081TAEXELcEt2ZsDR2ejXIsI/GwOMSwBmZgb1XQyIiOgAXm1SLNYHXAIwMzOo73LANgi4BGBmZuAEIHd8NUAzMwMnALnjqwGamRk4AcgdlwDMzAycAOSOrwZoZmbgBCB33ANgZmbgBCB3fB4AMzMDJwC54/MAmJkZOAHIHZcAzMwMnADkjksAZmYGTgByxyUAMzMDJwC54xKAmZmBE4DccQnAzMzACUDuuARgZmbgBCB3XAIwMzNwApA7PhWwmZmBE4Bc6egoDg/JXnn3AJiZ5ZMTgBwp3wEQnACYmeWVE4AcKd8BEFwCMDPLKycAOVK+A2DpsHsAzMzyxQlAjrgEYGZmBU4AcsQlADMzK3ACkCMuAZiZWUFLEgBJB0qaIWmhpPslbddF269JulHSHEnvSLpb0pf7Mt7BwiUAMzMr6PMEQNIewGTgeGAL4A7geknjqswyHrgZ2CVrfx1wZVdJg1XmEoCZmRUMq92k4Q4Fzo+Ic7PHB0v6AnAAcGR544j4YdmoX0raBdgVuLWZgQ42LgGYmVlBnyYAkkYAnwBOKZt0I/DpOha1MvBGlXVMrTJPWx3LH5RcAjAzs4K+LgGMBoYCs8vGzwZW784CJB0ErAVc1NjQBr9KJYDSBCCi72MyM7PWaEUJoMck7QacDOwREc9VahMRE6rMO5W0P0FuVSoBDBkCUvrx7+joPM3MzAavvu4BmAu0A2PKxo8BXulqRkm7k/717x0R1zYnvMGt/EqABd4R0Mwsf/o0AYiIxcD9wMSySRNJRwNUJOnfST/++0bEFc2LcHCr1ANQ+tj7AZiZ5UcrSgCTgIsk3QPcDuwPjAXOAZB0IUBE7J09/gbpx/9w4BZJhX0FFkfE630c+4BWaSdAcAJgZpZHfZ4ARMRlkkYBPwPWAB4Fdi6p6ZefD2B/UpynZ7eCacCEZsY62FTaCRBcAjAzy6OW7AQYEVOAKVWmTejqsfWcSwBmZlbgawHkiEsAZmZW4AQgR1wCMDOzAicAOeISgJmZFTgByBGXAMzMrMAJQI64BGBmZgVOAHLEJQAzMytwApAj1U4F7ATAzCx/nADkSLUeAJcAzMzyxwlAjrgEYGZmBU4AcqRWCcA9AGZm+eEEIEdqlQDcA2Bmlh9OAHLE5wEwM7MCJwA54vMAmJlZgROAHPFOgGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAHPHVAM3MrMAJQI74aoBmZlbgBCBHvBOgmZkVOAHIkWo7AfpqgGZm+eMEIEd8NUAzMytwApAjLgGYmVmBE4Ac8XkAzMyswAlAjvg8AGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAAUpKt3rUuhqgewDMzPLDCUCO+FTAZvXrSbJtNhA4AcgR7wRoZmYFTgAGuDvv7H5bXw3Q+spg/Nf88sutjsCssZwA9AP1flk+8EBxeO+9Yf787s3nEkDPdOf1GYw/eJX0t+1sdjz/+ldx+DvfgYjmrcv63/trsHMC0I889VTtNh0dcOCBxcfPPANHHdW95beiBOAPdGP15+ezENuECcVxTz/dvPU1+8d4yRL45jeLj2+4AX772/qX059fs/5k1qxWR9A9g+n1bEkCIOlASTMkLZR0v6TtarQfn7VbKOlZSfv3VazN9PbbcMABxcfbbAO33db1PL//Pdx9d/HxsGEweTJMm1Z7fT05D0Bv3uxvvFEcLu21qEdh/T0tT/Qm/rlzYbfdio9//vPKy3v44eLwf/83LF7cs/XVcsstxeE77mjOOroyfXpx+E9/Kg5HwCWXFB+Xvhe33hpuvbV7y6/ntXrzTdhzz+LjuXO7N189jj2282cN4NBDYebM7i+jNKmu9dnuz3rzOZo3r/r8hfGf+hSMHVscf/bZKQFrdCy91dFRHD7kEDjuuGI8PUlII1qcUEREn96APYAlwPeAjYEzgHeBcVXarwfMy9ptnM23BNitzvVOHT9+fDTSwoURt98ekV7GiLPPjrjvvohFi6rP09ER8fjjxXnKb8stF3HZZant229HPPVUxIsvRrS3R8ydGzFqVOf2//Vf6X699SIuvTRi8uTitOuvj5gxI2LWrBRXYfwdd3SO6bzz0vi9906PFy2KuO22iJ//vDjPfvtFXHxxxD//GfHQQ2kZ110XccYZEQcfXGx3ySURzz+fnovSWIcMiTjooIjXX++87qVLI2bOLLa7/faI6dNTTDvsUBy/5poRxxyTlv3QQxEXXlic9ve/p+W++mrEX/9aHP+xjxWHJ0xI8S9YkJ7Ha64pTrvuuohXXukc11/+EjFmTPXX6Xe/i3j33Yjf/CZi+eU7T9t887Qd8+en17vwur/9dsQLL0Q8/HDELbcU2591VnH4wAOLw8cdF3HrrRGzZ0d8//vLxrDnnun9sWRJ59iXLImYM6fr92G5RYsiXnstPY9vvhnxzjvpPVd4jU48MWL48M7r/+53I555JuLLX+48/swzKz9nDz+8bKxvvJHeM3vsUWw3ZUra5vnzI+66qzj+pptSjLfeGjFuXOdlr712alvu2WeLbW64Ib1mhefooYeK0+bMKc4zf37Etdem96xUbLP77ul+hx2Kz03htZ07N+KxxyLuvTfigQfSe3jKlIj11+8c5667RjzxRJqvvT29J0qf61JLl6bnZ+bM9Ll7++3itHffTZ/3wnInTYp48MHKyynV0RExb17Ev/4V8Y9/dH5un3kmre+JJyJuvrk47XOf6/z5nj+/+vLb29Nn9KabOn+nlT6H06en76Xy93T556hwO/zw4vC//Vvn9/+ZZ0bceWf6vP3tb8Vphff+okWdt+XXv06v0bx5xc9m4bmeNSvi/vsjrrgi4qSTivOcf36K+fLLIzbbrPp3wtprF4d/9KPi8OTJKbann4548smIRx9NMf34xxHrrlts9+Uvp++9uXO7fg3rMX78+ACmRlT5Xaw2oVk34G7g3LJxTwMnVGl/EvB02bjfAndWaT+1yu3NRiUAixdXfxOU3lZdtTi86aYRW20Vsdpqndt88pPF4dIv//Lb+95X/EHaYYfim3fRos4/dN25Pfhg5+0p/TEdMqS+ZXX3NnRocfhDH0q39dePGDGiOeurdlthha6njxzZ+fF22xWHv/OdztMqfWFtsEH17e7trfQHuPRLVYoYPTqtu/Q9BxHvf3/Ehz+ckpKNNy6OX2edrrejdP7y92z5+iFilVWKwxHF4YMOWna+jTaKWGut3j8fW2657POz887pi/QrX4nYcMPKz+Fmm6XPU/m0NddMt9JxRxxR/Jy8+mrEBz9YnLbyyo1973Wn3dixEZ/5TNdtSj9TK6zQ+T1dmtD09LbKKuk7aKedIiZOTMl1V99BldZZ/rm46qqU1BQel3+O6r0NGxaxySYRK61Uvc3QoZ3ft/XeJk2KOPLI3j+flW5vvNGQn6r+lQAAI4ClwNfLxp8FTKsyzy3AWWXjvp71Agyv0L7pCUBE8YXadNPi8Le+lb5sa724q69eHC79R9TREXHyycVplb6kIPUglCrtUShNIiZMKA6XfkDL/yU88kjl9ZT+sz/xxOLwZptFfOpTxcennFIc/vzni8OXX15MVB5+uPrzscYaxeFttikOn3tucfimmyK++tXi4912Kw5vtVVxeNtti8Ol/x7PPjvi4x8vPt5++8rDpbeTTkr/DCq97qVxXnRRcfq8ecXx5T+SpV/an/lMcXj//YvDv/pV59ey9P312GPF9cyYURxf/gXbmy/5kSOr/7Bdd11x/aX/nnfeOfVsVNLRUWy33nqVlzthQsRppxUf77JLcbh0+7feujh8xBGd/+Udckj17SkMlycMpT8yK65YHB42rDhc3otS2nNUbT1tbcXhyy4rDr/0UsT3vlff67HKKp3/WZbeSp+Pffap/7Uu/ayUfgY22KBz4nvllcXh0j8s1W6rrdb5/T17dnH4hz8sDn/728XhcosWFaeVfvdcfXVx+OyzOz8XO+5Y+TNQ+h7aa6/qcY8eXTnOr3+9ODxlyrIxFx6X9rKeempxuLSnozQpPeyw1NPa1bJ7q1YCoIjoYfGgfpLGAi8B4yPilpLxvwC+GREfrjDPU8AfIuKYknHbA9OAsRHRrV1HJE0dP378+KlTp/ZyK5LHHks1q1VXXXbawoWwaFGqWy9ZAgsWwLvvptvo0fChD3Vd83nrrXS/yirFdm+9lXb4W3VVWH/9hmxCJ4V4l1su7SPQm5pUROX5I+D551ONvPC2GzsWVlqp98tub0/jh9TYq+Xll2HUqLSdpTo6Uq2yvT09DyuskG5deeopWHFFWHPN6m2WLEnLXXFFGD686+VVs3gxjBhRffrSpakG/vbb8IEPpPfI0KFpm15/HV59NbUZNizdhg5NtyFD0uORI9O2lj+vS5em992bb8Jaay37nC1cCE8+CR/9aH21+5dfTq/5yiunW/lOqVCsG5e/BkuXpvfqiisuO8/06fDCC2m7OzpgjTVgyy07L//NN1PMG26YnquC9nZ49tn0vIwbVzmmgo6O9JosWpTuV14Zll++e9sP6XugoyM9B4X3a0dHOppn6dL0Phk+PMVQ+n5ub4fnnktHJmy4Iay77rLLXrSoOBxR/A5aujTFuMIKy+4DVK+nnkpxFH6uhg0rvu9GjUrPR1fefDPFM3p07+Loyrx58MQTsNpqsPbaldssXpye84ULU/xdfcb6Unt771+jggkTJjBt2rRpETGh0nQnAGZmZoNQrQSgr48CmAu0A2PKxo8BXqkyzytV2i/NlmdmZmZ16tMEICIWA/cDE8smTQSqHdh0Z5X290VElQNFzMzMrCutOA/AJGBfSd+VtLGkycBY4BwASRdKurCk/TnAmpJOz9p/F9gXOKWvAzczMxssutjVpTki4jJJo4CfAWsAjwI7R8RzWZNxZe1nSNoZOA04AHgZOCQi/rcPwzYzMxtU+jwBAIiIKcCUKtMmVBg3Dfh4k8MyMzPLDV8LwMzMLIecAJiZmeWQEwAzM7MccgJgZmaWQ316JsBWkvTiyJEj12xra2t1KGZmZk03ffp03nrrrZciYq1K0/OUADwIfBB4pheLacvup/c2nn6gLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqUtu5/ei2V8CJgTEVtUmpibBKARJE2FyocqDjSDaVtgcG3PYNoW8Pb0Z4NpW2BwbU9fbIv3ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5ZATADMzsxzyUQBmZmY55B4AMzOzHHICYGZmlkNOAMzMzHLICYCZmVkOOQHoJkkHSpohaaGk+yVt1+qYekLSkZLulfS2pDmSrpW0WavjaoRs20LSma2OpackrSHpguy1WSjpn5LGtzqunpA0VNKxJZ+bGZKOkzSs1bHVIml7SddIeil7T+1bNl2Sjpb0sqQFkqZK2rRF4dbU1fZIGi7pJEkPS5onaZakSySNa2HIVdV6bcra/jprc3gfhliX7myPpI0k/Z+kNyXNl/SApI17u24nAN0gaQ9gMnA8sAVwB3B9f/2A1DABmAJ8GtgBWArcJOkDrQyqtyRtDXwfeLjVsfSUpPcDtwMCdgE2Bg4GXm1hWL3xE+Ag4BDgI8APs8dHtjKobloJeJQU84IK0/8TOIz0+nyS9Br9TdLKfRZhfbranhWAjwP/nd1/BVgb+Gs/TdZqvTYASNod2Ap4uY/i6qkut0fSeqTvhRmk7+zNgJ8B7/Z6zRHhW40bcDdwbtm4p4ETWh1bA7ZtJaAd+FKrY+nFNowE/gV8FpgKnNnqmHq4HccDt7c6jgZuz5+BC8rGXQD8udWx1bkd7wL7ljwWMAv4acm49wHvAPu1Ot56t6dKm02AADZvdbw92RZgHeAlUhI9Ezi81bH2dHuAS4CLm7E+9wDUIGkE8AngxrJJN5L+RQ90K5N6gt5odSC98Bvgioj4R6sD6aVdgbslXSbpVUnTJf1AklodWA/dBnxW0kcAJG1C+gdzXUuj6r31gNUp+U6IiAXALQyO7wSAVbL7Afe9kPVa/BE4LiIeb3U8vSFpCPAl4J+S/pqVBu/NeqV7zQlAbaOBocDssvGzSV8CA91k0vWm72xxHD0i6Xuka17/rNWxNMD6wIHAs8DnSa/NiaRu84HoJOAi0pfXEuAxUo/AlNaG1WuFz/2g/E7I/vScClwbES+2Op4e+CUwNyLObnUgDbAaqZf2KFLCOZGU3FwsaZfeLrw/1nesj0iaBGwLbBsR7a2Op16SPkzqNt82Ipa0Op4GGALcFxGFGvmDkjYkJQADccfGPYC9gb1IP/5twGRJMyLid60MzCrL/j3/AXg/8OXWRlM/SROAfUnvtcGg8Cf96oiYlA1Pl7Ql8APgL41YuFU3l1QjH1M2fgzwSt+H0xiSTgP2BHaIiGdbHU8PbUPqoXlM0lJJS4HxwIHZ4+VaG17dZgH/LBv3ODAQdzYFOBk4JSIujYhHIuIiYBIDYyfArhQ+94PtO6HQdf5RYMeIeK3FIfXEBGANYFbJd8I6wEmSBmJvxlzSjtpN+V5wAlBDRCwG7id1vZSaSDoaYMCRNJnij/8TrY6nF64CNidl+4XbfcCl2fDilkTVc7cDHy4btxHwXAtiaYQVSMlzqXYG/vfODNIP/XvfCZKWB7Zj4H4nDAcuI/34fzYiBmoiM4W0DW0lt5eB04AdWxVUT2W/P/fSpO8FlwC6ZxJwkaR7SF/S+wNjgXNaGlUPSDoL+DZph7M3JBVqlu9GRO8PK+lDEfEm8GbpOEnzgNcj4tFWxNRLpwF3SPop6ct4C9IhdEe1NKqeuxY4QtIMUglgC+BQ4MKWRtUNklYi7VsCKWEZJ6mN9N56XtLpwFGSngCeonhY1iUtCLemrraH9AN5Oelwxi8BUfK98Fa2g2O/Ueu1oeyw2Wz/k1ci4sk+DbSburE9/wP8SdKtwM2ko52+QfoO751WH/YwUG6knbNmAotIPQLbtzqmHm5HVLkd3erYGrR9UxmghwFm8e8CPAQsJP2wHEJ21c6BdiMdYXI66Z/KAtLOjccDy7c6tm7EPqHK5+T8bLqAo0llm4XANGCzVsfdk+0B1u3ie2HfVsde72tTof1M+vFhgN3ZHtJ+DU9ln6OHgT0bsW5fDtjMzCyHBnotzszMzHrACYCZmVkOOQEwMzPLIScAZmZmOeQEwMzMLIecAJiZmeWQEwCzFpC0r6Soctup1fENFpI+IWm+pDVLxk2VdFuV9t/NXoN161jHrpJmZyd0MRswnACYtdbXSdc0KL3d09KIBpeTgd9HxEtNXMfVpBMC/UcT12HWcD4VsFlrTY+IZ7rTUNJyEbGo2QENFpI+QTpt6sHNXE9EhKTfAMdKOiEiFjZzfWaN4h4As36opESwvaTLJb0J3J1NGybpSElPSFok6WVJp2YXpCldxvqS/pJ1gc+RNFnSfuVd3Nnjo8vmXTcbv2/Z+PGS/i7pHUnzJN0gabOyNlMl3SZpJ0kPZOt/VNJXK2znxyRdKek1SQskPSnpyGzaGVnX+vCyeVbO1n9ijafxu8DDEfFYjXZVSTq6i1LNviVN/0S6hO7Xerous77mBMCstYZmP+iF29Cy6ReTrj63O3BENu4PpIvPXEK6dsAJwP/L2gIgaQTwN9IFeA4inUt8vWy+HpG0C/B30kVvvgXsRTrf/62S1i5rvgEwmXQhra+Rusgvl/ShkuVtBdyZtf1xti2TgLWyJmcDqwHlicNewIrAr2uE/AXg1i62Z1j5jWW/E3/LsiWa/yVd1fCpQqOImEu6ROsXasRk1m+4BGDWWuWXY74d2Lbk8RUR8Z+FB5K2A/YA9omIwlX1bpL0OvAHSW0RMR3YB1gf2CYi7srmvR54pBexTgamRcRXSuL5B+kiP4cBPyppO5p0wayns3YPkJKAfyddEAjgFOA1YOuImJ+Nu7mwgIj4p6RpwH6kf9gF+wE3RsSMaoFKGkO6yM1DVZp8BljSxbYWYngReO868pK+TkpofhQR5Zf+fRDYutYyzfoLJwBmrfVVSn5ggHfKpl9Z9vgLwGLgiuwfa8GN2f32wHTSP9UXCj/+ABHRIelPpKvY1UXShqR/6seXrXc+6V/89mWzPF348c/W/aqkV4Fx2fJWIP0In1zy41/JFOBSSRtGxNOSPknq1ajV1T42u59TZfpDpBJBua9QpZdE0pbABcCUiPhVhSZzStZr1u85ATBrrUdr7AQ4q+zxasAIYF6V9qOy+zWA2RWmVxrXHatl97/LbuWeL3v8eoU2i4DCfgqrkrrbX6zQrtSVwCukf/2HA/uTrl9/bY35CuupttPkuxFxX/nI7Drsy5C0FnAN6XLTP6yyzAUl6zXr95wAmPVv5dfrfo10/fntqrR/ObufBWxaYfqYCuMWkZKKUqPKHr+W3R8J3FRhGYurxFPNG0AHsGZXjSJiiaTfAgdK+h/gG8CpEbG0xvIL8a5aZ1zLkLQiKeGYC+wREe1Vmn6gZL1m/Z53AjQbWP5K+pc5MiLuq3ArJAB3AmtLeq8mLWkIqQZf7jlgs7Jxu5Q9fhKYCWxaZb0P17MRWbf/bcC3JL2vRvNfk/awvxxYDji3G6uYSUqU1q8nrnKSRNrpcg3gixFRXqIptR7peTIbENwDYDaARMRUSX8k7QMwiXTSoA7SDm87Az+JiKdIteojgP+TdBTwKqn7fJUKi70U+JmknwJ3kXoX9ixbb0g6CLg6O8LgT6R/xGOATwPPR8SkOjfncGAacKekU0nlgPWBtoh479j9iHhJ0jWk/SWujYgXai04IhZLuhvYqs6Yyv0E2JXU7T9WUmmN/18RMQfeSxS2Iu2zYDYguAfAbOD5FmlHvt1JZ6G7AvgB8DRZjT8iFgMTSTsETiElBDOA4yos7wTgzGwZVwEbA98ubxQR15F29luRdHjcDcD/AKuTehzqEhH3knYEfAE4A7iOdDa9SvsFXJ7d1zr0r9RlwA5ZF35PfSS7n0zaxtJbaS/Jp0nlhkt7sS6zPqWI8hKjmQ1W2clrzgPWi4iZrY2m+yRdTEoW1o+Ijm7OswopmTgwIv7Q5PjOBjaLiGr7Zpj1Oy4BmFm/le3D0EY698Gh3f3xB4iItyWdBPynpIujSf92JK1OOu+CTwJkA4oTADPrz+4knXnwAnpWX58EDCXtxPdyjbY9tS5wWETc0qTlmzWFSwBmZmY55J0AzczMcsgJgJmZWQ45ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5dD/B87GMaNM5oqsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "# ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, coh, yerr=err_coh, lw=2, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Coherence\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb.txt b/_sources/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb.txt new file mode 100644 index 000000000..8b75c0359 --- /dev/null +++ b/_sources/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb.txt @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we will analyze a NuSTAR data of the black hole X-ray binary H1743-322 with Stingray. Here we assume that the user has already reduced the data with the official pipeline and ran `barycorr` or other tools to refer the event times to the solar system barycenter." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from stingray.powerspectrum import AveragedPowerspectrum, DynamicalPowerspectrum\n", + "from stingray.crossspectrum import AveragedCrossspectrum\n", + "from stingray.events import EventList\n", + "from stingray.lightcurve import Lightcurve\n", + "from stingray.gti import create_gti_from_condition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quicklook NuSTAR data with Stingray" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us load the data from two event lists corresponding to the two detectors onboard NuSTAR. `fmt='hea'` indicates event data produced by HEAsoft tools or compatible (e.g. XMM-Newton)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "evA = EventList.read('nustar_A_src.evt', 'hea')\n", + "evB = EventList.read('nustar_B_src.evt', 'hea')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the sake of a quicklook, let us join the two event lists" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "all_ev = evA.join(evB)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us calculate the light curve and plot it. \n", + "\n", + "In red, we show the bad time intervals, when the satellite was not acquiring valid data due to Earth occultation, SAA passages, or other issues." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "lc = all_ev.to_lc(100)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5000.0, 6500.0)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGoCAYAAABSXLPLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACkC0lEQVR4nO39efxkRXX/j79O9/s9C+sMq+wDiiCibCPihiB+EJcETTTiEtF88iUaNSafREVjXGN+xiVR4xajuMQFN1AUREbFBQRk37cBBhi2GRgYmIWZeb+7fn/0vd13qapbe9/u93k+HjPv7tv31qlbt5ZzT506RUIIMAzDMAzDMAwjpzPqDDAMwzAMwzBMm2GFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyGqVFnQMdOO+0klixZMups4G/uuQdP2LwZAHD/vHn47z32UJ77zjvvxKNTU4Pzm3j2I4/gRYcdJpWlk/erK6/E7xYtMpKhy3PTvVXzo2OnzZvx9gMO0J6jkmcj5+iHH8ajU1N4xdOfbnR+nj4APGvtWtyxcKHRNS9aswbPPuIIYxlVeab3c/Bjj+FVFveS84Nrr8U+mzfj7B12MDp/6dq1+JNDD7WWA9jdj2u52choaoeh5By7Zg2OcawDP7j2Wly3zTZG5+63YQNOfupTneT8/vLL8UvDOgC4ld2vrrwSm4hwyfbbG52/x6ZNuGf+fCd5Ns+HhMB98+cb9ZlFzr/iCpy+665Gcu6fNw9HPPooTnnKU2r5a5J18eWX4+eGz8ak/1XJ+80VV+D8xYuN5OjqWtO9nXvVVbjIsA6Y1GmVvEsuvxznGJbb0Q8/jOMOP9zoXJ38Jo5fswbPSTAeuPYFtv3n8x9+GK89+OCoco5dswbzAOdxdBRcfvnlDwohdpb9Rm0OK7d06VJx2WWXjTobwBvfCOSK+4oVwNe/rj53yRLgmGOG5zfxoQ8BxWdQlKWTRwR84ANmMnR5brq3an50fOlLwP33689RybOR86EP9e+/1zM7P08fAH74Q+Cf/slcjmv7sLmff/s3wLADKjFvHrBli3k9+MhHgNlZezmA/fNxKTcbGU3tMJQcnzowbx7w3veanfvJTwLr1rnJsekLALeyIwK6XeB97zM7/1vfAl7/ejd5Ns/nxz8GDj3UrM8sQgScfLKZnBUrgNNPBx5/vJ6/Jlm+/XSM8UBX15ruLZScJnk2clL106nkuPYFtv3nt74FzMzElfOhD/X/tljPrEJElwshlsp+Y5cMhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDUYKMxEtIqIfEtFNRHQjET2r8Ns/EpEgop2y70REnyWi5UR0DREdXjj3ZCK6Nft3cvjbYRiGYRiGYZiwTBme9xkA5wohXklE8wBsBQBEtBeA4wHcVTj3xQD2z/49E8AXATyTiHYA8AEASwEIAJcT0VlCiIeD3AnDMAzDMAzDRKDRwkxE2wM4GsBXAUAIsVkI8Uj2838CeBf6CnDOiQC+KfpcDGAREe0G4EUAlgkh1mRK8jIAJwS7E4ZhGIZhGIaJgIlLxr4AVgP4GhFdSURfIaKtiehEAPcIIa6unL8HgLsL31dmx1THSxDRKUR0GRFdtnr1apt7YRiGYRiGYZjgmCjMUwAOB/BFIcRhANYD+CCA9wJ4f+gMCSG+LIRYKoRYuvPOO4dOnmEYhmEYhmGsMFGYVwJYKYS4JPv+Q/QV6H0BXE1EKwDsCeAKInoCgHsA7FW4fs/smOo4wzAMwzAMw7SWRoVZCHE/gLuJ6IDs0HEArhBC7CKEWCKEWIK+Un14du5ZAN6QRcs4CsBaIcR9AH4B4HgiWkxEi9FfLPiLCPfEMAzDMAzDMMEwjZLxdgDfziJk3A7gTZpzzwHwEgDLAWzIzxVCrCGijwC4NDvvw0KINU65ZhiGYRiGYZhEGCnMQoir0A8Hp/p9SeGzAPBWxXmnATjNKocMwzAMwzAMM0J4pz+GYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0WCkMBPRIiL6IRHdREQ3EtGziOgT2fdriOhMIlpUOP89RLSciG4mohcVjp+QHVtORKdGuB+GYRiGYRiGCYqphfkzAM4VQhwI4BAANwJYBuBgIcTTAdwC4D0AQEQHATgJwFMBnADgC0TUJaIugM8DeDGAgwC8JjuXYRiGYRiGYVpLo8JMRNsDOBrAVwFACLFZCPGIEOI8IcRMdtrFAPbMPp8I4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3MZhmEYhmEYprWYWJj3BbAawNeI6Eoi+goRbV05568A/Dz7vAeAuwu/rcyOqY6XIKJTiOgyIrps9erVhrfBMAzDMAzDMHEwUZinABwO4ItCiMMArAcw8D8mon8GMAPg2yEyJIT4shBiqRBi6c477xwiSYZhGIZhGIZxxkRhXglgpRDikuz7D9FXoEFEbwTwMgCvE0KI7Pd7AOxVuH7P7JjqOMMwDMMwDMO0lkaFWQhxP4C7ieiA7NBxAG4gohMAvAvAnwohNhQuOQvASUQ0n4j2BbA/gD8CuBTA/kS0LxHNQ39h4FkB74VhGIZhGIZhgjNleN7bAXw7U3RvB/Am9BXg+QCWEREAXCyEeLMQ4noi+j6AG9B31XirEGIWAIjobQB+AaAL4DQhxPVB74ZhGIZhGIZhAmOkMAshrgKwtHL4SZrzPwrgo5Lj5wA4xyJ/DMMwDMMwDDNSeKc/hmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAyThEc2bMbqxzaNOhvWTI06AwzDMAzDMMzc4NAPLwMArPjYS0ecEzvYwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwTHJmZnv48E9vwKpHHx91VhphhZlhGGaO8vqvXIJ/+fF1o84GwzBzlAtvewinXXgH3nPGtaPOSiOsMDMMw8xRLlj+IP734jtHnQ2GYeYoPSEAADM9MeKcNGOkMBPRIiL6IRHdREQ3EtGziGgHIlpGRLdmfxdn5xIRfZaIlhPRNUR0eCGdk7PzbyWik2Pd1KSxeaaHLbO9UWeDYRiGYRgmOO1Xl80tzJ8BcK4Q4kAAhwC4EcCpAH4lhNgfwK+y7wDwYgD7Z/9OAfBFACCiHQB8AMAzARwJ4AO5ks3oefL7fo4X/efvRp0NhmEYhmGYYNCoM2BBo8JMRNsDOBrAVwFACLFZCPEIgBMBfCM77RsAXp59PhHAN0WfiwEsIqLdALwIwDIhxBohxMMAlgE4IeC9TDS3P7h+1FlgGIZhGIYJxjhYlnNMLMz7AlgN4GtEdCURfYWItgawqxDivuyc+wHsmn3eA8DdhetXZsdUx0sQ0SlEdBkRXbZ69Wq7u2EYhmEYhmGYwJgozFMADgfwRSHEYQDWY+h+AQAQQggEelEQQnxZCLFUCLF05513DpEkwzAMwzAM0zImyiUDfUvwSiHEJdn3H6KvQD+QuVog+7sq+/0eAHsVrt8zO6Y6zjAMwzAMw8xRhGi/c0ajwiyEuB/A3UR0QHboOAA3ADgLQB7p4mQAP8k+nwXgDVm0jKMArM1cN34B4HgiWpwt9js+O8YwDOPFlXc9jCWnno3L73w4mczP/upWfOm3tyWTxzAMM2kQjY+NecrwvLcD+DYRzQNwO4A3oa9sf5+I/i+AOwH8RXbuOQBeAmA5gA3ZuRBCrCGijwC4NDvvw0KINUHugmGYOc1vb1k9+HvEPmmC7/zHslsAAG9+/hOTyGMYhpk0xsGynGOkMAshrgKwVPLTcZJzBYC3KtI5DcBpFvljmLHgOR/7NfbeYSt895SjRp2VOckY9bnBuPKuhzHbE9KOmWEYhgmLqYWZYRgN9zyyEfc8snHU2ZjzjM/knj+v+MIfAAArRpsNhmEYZ8bJJYO3xmYYZuyZgwZmZ4QQeN+Pr8X1964ddVaYFnDnQxzjn2FMYIWZYZiJYRTGinsf2Yjf3Lyq+cSW8PiWHr518V1449cubT6ZMebc6+7Dw+s3jzobVvzultV4/id+g59cxQGrGKYJVpgZhhl/NE7MKx/egD/c9mA00S/+zO9Z+ZzjrH5sE978rSvwN/97+aizYsXN9z8GALh2Jc82MEwTrDAzDDMxkMSL+QWf+i1e+z+XSM4Ow9qNW6KlzYwHW2Z7AIC7H94w4py4wS5NzCj4f9+7atRZsIIVZoZhJprNM70kcn5+7X2YmU0jizEjj899b6IFueMWrWWM1lsxE8gZV94zVgu1WWFmGA8eXr8Z+77n7FFnY87TBj3lLd++Al/+/e2jzgZT4NuX3AUAuGB5PJccYPwVz3FT9BlmFLDCzDAeXLXyER5sWsSoFZdVj24abQaYkdAb8z5AtOKV049bHnhsZDtv/vTqe3H+TeOz8JdxgxVmhmHGnra8tHRGrbFbYJLTWx94DHevGU+/3JTMzvYrYCrF87t/vAtX3f2IdzqmMXCX3fAAnvHRX7ZarT7xcxfiYz+/Cb0RvL28/btX4k1f54W/kw5vXMIwHoyPejQ3GPXzmOqOOgfmmKgV/+c/fwdgAjZHiaxDzSZ+Y3vPGdcCAFZ87KVJ5H3wrOux+rF2z55s3DILoB3uWYw9bTF66GALM8N4ME67FE0ybZlSHicL81wg1dOY7fFiz7bQG6Hm9fUL78AdD/JGMDaMU5fJCjPDMFG5ZuUj2Lh5NomsUXe+U53x6f3HJ6ftZ9yDo4yDdc+U//rVrSML9fjBn96AV33pDyORzcSHFWaG8YCVDj2PbNiMP/3chfiHyPE22zLgd8ZIYW5JkU0EM2NqYR6f2mrOZ3+9HB/4yXUjk//o4zMjkx2Ch9Ztwu2r1406G62EFWaGYaKR+xWGWKDki0igVcfUl5/38V9j6b/+0judtrivpCT2Pc9mC83a8uIWmhRtJySj3Exo3F9Cjv74+XjBp3476my0ElaYGcaDUbsAjAttUNJSLJ6P6ZJx95qNeHCd/8KrvBjmWtX91sV3Bik/GbNjGlduUvuvmRE+j3Ev0/WJ3OeqtGGMaIIVZoZhopFvVd0GA1WKxUBj4ZLRgmeRmjse3ID3/fg6vPXbV0RJf2BhjpJ6PPLaOm4W5CZS7e4pgxf+2nHmFfeMOgvGsMLMMB7QnLPT2ZF67NBFLQmpMKsUjC4Plq0kV6Ae3rA5SvrjamE2ZdzubqQW5pFJHk/OuJIVZoaZE7B+ZEbs4csk/ZBGNNV43B0DC3NeDuOmBPmQT/fGesEdR4V5y2wPH/zpDUbnjpsBembcw5YwrYQVZoZhojGc8h1pNgCEVWpUURHGYzo2X6DWgocSmfxx5Lca6/GM0qLpytWFhbjjl3s9W2ZH6cM8Dn0A4wIrzAzjAXeNDQwKKO4AZqL7hXTJUEURS7HT3xPfew4++Yubna/PS2EO6MsDYr8cpN7pj9EzyjB/PCa48/UL78CSU89u7QwBK8wMw0QjtY+3zrgT0gioUpBSWJhnewKfO3+5dzqj3BEtNYPIIJGez+xsurByoZR/m1TGIYJBkVFamFljdkMI4JPn3QIA2LBlNJE6mmCFeYx4fMss1m4YXXxJRgJ3jloE0ikSTYS0MqrcO8bChzn7O4ZeBM4MXDIipZ/SwhxKVDGdpjTb0H5t2DJCC2X7e4D209b6xgrzGPEX/30RDvnweaPOBlOAo2Q0kGiBmYkFLKSC2FMpzOPgv5g/k7aOSgHJ22duTY/1eEL4x69+7HF89YI7Gs+LMTMwbhbkJkaqMI9DH5AQAeCDZ12PVY893nhuXnRtXUTLCvMYcc3KtaPOAsNYkbrb073AhFQ0VBbFcRorbYoj9HNcu3FLa/0UXQix6O+3t6zGR37WHLWipbpEq5jJXDL+eMcafPOiFcHSfWTDZuz7nrNxwa0PKs9J1Qf0emJsZpy//ocVeN+ZzduV50XX1r6BFWaG0bBm/WY8+Z9/jktXrJH+nlpB+srvb8cLPvWbtEI9EKmsmckX/cnTGgddZuiSUc7tuk0z+NBPr8e6TTNR5fd6Aod86Dy854xro8opMvRhjpO+qj5EkTWCmYFxqNdFNmcK11/890V4/0+uD5bu9fc+CiGAz2vWEKQaEj617GYc8uHz8PD6OLHFQ/fZJvU2t85vaelbISvMLeDxLbMjnUJi1Fx+58PYPNvDf//2tlFnBQDwr2ffiNtXrx91NowZ+DAnkqdTiEL2/0qLYjv7+QryZ/KTq+7B1y5cgU8vuyWq9Nw6n3LDgqEPcxx1Zlgf4leAcD7MovA5jcxUzERa9Jcv6tX5rKdyyTjn2vsBpNuMJ7aeIkTBJWOUizY1sMLcAg78l3Px4s/8ftTZCMIltz+Ex1u6wtWFfA2XSj8aoxn4kZBqoDUR42KZEwCe9/Ff17baVfnYjUPkiaHVv3x8120XAAC++8e7sOLBeC9loygiEdmHedItzONGrLBy+aJe3fNONSakDpXoq6c0ZXfTzOygX90ywrCAOlhhbgnLV60bdRa8men18OovX4z3/bjZV2lcyC0KPEi5kTrmr26wctVp7l6zEavXbaqkNXkuGd0shvT6zbM45pO/ibbwJpcbc8A/6csX4YwrVg6+5/cSS5nJLcwp6jn3Rc3ECivXzTQmvYU5iugasUMlynTWmHrKFXc9gsce77uDxZoh8IUVZiYYeR9yywOPjTYjAaEmC/MYrfISQiS1hOUyi39Hic+9V/OvUiZbcJvNKCzMpvcYOBtRuPj2Nfh/37968H2g4MSKw5zQIhbjsTQnOQ4VOz4DA4rOwpx4TIglLfSLmU1qbXVRZYWZYTTkHaRK4RsjfRk9Abz2KxcnlTmY/o8uxySsnI/CbJbWOIXnqua1qvPFsmTGtpDK6kIvsoV5YMEOIODqux/BCZ/+HdYrFl/GePkcixe9FmDkw5wqM5EZ5e6Vbd1qfmrUGWAmj0nqfJtcMlLd6+9uWY15U/7vtxffLo/2MSkk2+lPYQBpaT9fYuiSUT5ereOx6nYuN1b6xXTz+jATUKGVEdIl41/PvgE33f8Yrrr7ETxH8nuoOmaTzCT16T7kbURnAE3mkhF30iT4bKTNi17KGRsbWGFmGA2DRX+K9pvK1eANp/2xJnccLBlFJWzLbA+3PrAOB+2+XXA5Jo8hpIVZ6a4QqT7ECB1VLY8mBToUsduMzMo/2LgkksyQZdXkfxvnuejTZH25T172+kV/aXrm2LNZo9w8ZKRbm2tglwwPTvnmZVhy6tmjzkbrGKdp6SZyfzTVPY3qTsfBkgkU9EcB/P/OuQkv+ezvo0Zg0A1WPopazX1BkdbXLlwRxU/8mE/+JniaTT7M8VwyoiSrTX/oMhFWmZnt9fDVC+4YRFEJcWtNCxR50d/oyC3LqRf9Hfep3+D4//zt4PuqRx/Hg4/1X6JjVYeRumSwwjx5nHfDA6POAhOZpkV/o+pTxmXQLObyirseBgA8FMFaalIaPopatbhVPna3P7geP74qfHzhtRvD7eilenGoW5iDiaxkoH7oX358XTDjgyzbuaITWpe56f7H8JGf3YDvXXY3gDDtssl/c0ya/kSSv8ykDit32+r1uOWBYYSKI//tV9iYhW+N9mLbAzZunsVdD23A1y+8wzs9q0V/LXXJYIWZCc59jzyO/++bl2HD5rg7hhW5cPmDuOn+R4Onm3d+KiXj7jUbgsvMWf3YJvxEoXyNjcKcR8koHFv58IZaXONQ6H2YfSzMZTZodsO7e81GZzkpUJVC1aIUy3VC9hz+9+I7g6UvCsrMYCOEbAAObf3bktXjfIviEJaxpm2Bi+XnE/Peamv0MelvYpOXve6lJnWUjFgvtrNC4G3fuQJHf+J8fPCnzVu2N2FThdjCzMwZHlq/GctueADLElrgX/eVS3DCp+Nt/iLrlDZsnsG7fnRNNJl//Y1L8Y7Tr8JDlRjAwPhYmQYeGWLo1PCO068Kvi2ykQ+zh45eVfIe3qC2+K567HF3QSOk7pIRR06ol72H1m2SRpKQWpjzBVKh7X+VGajNAcJh3ZrHulVktfhc/rEQOs+Hxp3+gkgZX/L+K1eU22SwiPZi2xO4YPmDUdJuoq2L/lhhZqLRGaeYawrywUnWQa7TWBlDcM8jfcVLtviiTR22DlVYud/fujqKvAuXP4g7H5L7SPst+itf+8hGtVvJ6sfqLzjjQH0RYKRFf4XP9699HP/0Azel738vvlP6rGXZHkyhR+qS8ja6eaYX3RpbdAf4zc2rospi+ly6ou9OdtN9/VlMfRzmePmQhkyMZWHuCWw9P1xcCCuXDLYwMy6M81TYBOjLg/KXdUqppo3Wb65Pu47Lor9SN1moy7Gyf/7Nq/H8T/xG+puPAlg1HD6isTDH8NEOiaoYRhGH+QNnXYcfXj7ckS9Ef9eT1K54O/3V4/JuiuRulBPjsYzxMJOEex/pu1ndlbngFZ93tc7GHPfkY0GYh3fcp36D95wxnDHtCYGt5nWDpG1LrK3NfeGwcgGY7YnBHvPMkFThdWIyjBlb75Ri+eFWOVYSIWHsLMxRBnmB1Y9twi7bLTCKzOLzklG18uvCvI0yHJMZqkV/VR/mSNIL6VaLarYnvAclUWiWuaxBWLlIXZKoKMwLpuMpGqHafrHNjHtkoxM/f2HU9AfxvDMjyaykjg3OjTjuPbpxC7apWH1PPeNabNg0g2Wead+2ej1uWz2csekJga3njUZFZAvzBBNzG0dZtfG1wqx69HF88KzrGxeX+BLbwnzRbQ9h1aNyf9ETP3cB3numv5/sIO6mpMxHuX2naOcLeI2BD3NlSF792CZv14Wv/P4OHPlvv8Jtq9c1nww/RaN67SOaqBXt7OqHqIrBdDfDkPJr23EHkFlSBDUuVSEpKv6hXqRVilfxXlItMGv7+/nVdz+i/T3UTK3Mh7macsxH8ujj9X7n6rsfGfq9OyIrn9kesNX80ViY22p0YIU5AFGn4CT1xrftv/fMa/H1P6zA7yM79Mfuyl/zPxfjTz53gfS3q1euxXcuuctbxjBQff23+G/B6vRjKQBfu/AOPPPffhksPV02P3jW9V5p5/XXNFKJz6BZLW9dBJhxdaNq2sgkhhyZhdmXkkKO3CKYu2SE7ZXy1Ir53jTjHrmiicvvfBiv/8olNfmxGdc6neOb/eFz7mV/i3U4XdlsmYkjS+bqMdsLa2G2qUOxjXmusMIcgNSWRt8Gunk2lj9fmRTWjwcejbvASmehCrEi3pVYnfSHfnpDkDJ97PEt+PBPbxiEvZJl10c5um/tRvzulv7CQdNUQrpk6PzX265bqLJXLZ8UYeWqMppiEJtQtDDnyQ2iZCTQMGMaUO54cB3uXTueUViAvvX9Iz+7YRCGLxXe/WVWcbZI4jBX04652D3WmCNzMRulD/NYu2QQ0QoiupaIriKiy7JjhxLRxfkxIjoyO05E9FkiWk5E1xDR4YV0TiaiW7N/J8e5pfQkd8nwTDNv7LGjWEzCor+8M5T1t7F9mHV9fPTd0jwFfO7Xy3HahXfg9Ev7Vn4Bia+fR/24sDg7IkzDyoWzMOsUu3H1B63HYY4jR+vDHGCg7Ml8mAc7/Xkn38imLW79QtX6HT2vJdeYyLIyfnbNvfjqBXfgkA+fh/sTKv6+/eXAwpz7MJde+srn3vHgevzhtjizt6Esr5tne+j1xGAMk22MFDpKhg1tXfRnY2E+VghxqBBiafb94wA+JIQ4FMD7s+8A8GIA+2f/TgHwRQAgoh0AfADAMwEcCeADRLTY+w5agM80SfOV9TN835bz62MvVIyZetEytVEynRQKXVi50ArznQ+txxd/c5vRubGnSH19SXOFcmBta4EO6WdhLn/XKcwt7esbSbU1dtllokwYC3Pxsyilm2IhsqtLRpsNDKFqQnGm5vyEIfF863L+aHJFrvioZGl/5pe3AujvbhrSmh6ifQDA9fesRU8I/PjK/sZYD2+oW5hvfuAxTAXUEYQAvnPJXbhm5SON57bVwuzz+iAAbJd93h7AvdnnEwF8U/R734uJaBER7QbgGADLhBBrAICIlgE4AcB3PfLQCjbPxlPYZPiOY7OJrC2pFqQ85f3nRkt7YGGW/BbaV/Hk0/6IFQ9twCuP2BM7bztfe26IxVHa9HsCPgv98362aNWNZXk1TTekD/PMbA/TXZJ27O3s6oeow8ql92GuLfoL4sNct/4ltTA7vki3OqpQoLpQHBNS3q13d5lHyZDUT1naU13Cltke/uwLf8DSfRbjhw4iN83MYv5UuRMO5ZJRvQ/ZrMi7fngN/uywPYLIywmxEH+UmFqYBYDziOhyIjolO/b3AD5BRHcD+CSA92TH9wBwd+Haldkx1fESRHRK5uJx2erVcTY3CM3mQI7437vUbJGab+PPr+9GHj0mIdLeMA5zfAvzhsxSbmINie2S4WvJyN19cn0yppuCaXvwuaWqMjnTE5jujusSEHlBVMsnxcYlVXe2EFOxxfTze4j9glnEWWGu9Jcm3edjm2aCuASmKp1RDQm+/U/+MpOvXSgq/rJ2cvP96/Cp824BAFx371preWddfS8OeN+5WL7qsdLxULH/83FteqoeR7zIGZkFOjW+LoGxMO3xnyuEOBx9d4u3EtHRAN4C4B+EEHsB+AcAXw2RISHEl4UQS4UQS3feeecQSUYnlA/zu39Uf/uS1WPfxp9q8GjzFKMpwzjM9d9CL8DIlUwjhTlyh+LrS5oPKHk+hcTPOHX98Nq4RGJhnjcl7z7bHlFAlbt6HOY491GUc/Hta0q/xbcwB46SIUlu0xbHmSfHrP37z29yuq7kutJQ7KFqQrG8UrZ/bx/mLK/5WF92yaif/+C6TfjSb/vudVMd+xfrX1x/PwDghvuqCnMvSN+fv5fmeUuhoNroLS3Vl80UZiHEPdnfVQDORN8H+WQAZ2Sn/CA7BgD3ANircPme2THV8bEnfZQM3+vTWF1aPcVoSD6Ay5Qt18U9KgZuDAOrrJrnffz8qJ2cr6Uvv5eiAhQrwH9fGVeXRT7Y+dR3WfgzlYW55fqyknoc5lhy1AmH8NEsJpF/HPowx8f1Rdp1vuLmBx5rPmmEfOq8m/Ef590MoKIwJxwfQs2WDPqzQtabXiynug73mSVZnaVdvW4T9nvvOfbpVcjLI/dRTqGg2jyCti6cbmyjRLQ1EW2bfwZwPIDr0PdZfn522gsA3Jp9PgvAG7JoGUcBWCuEuA/ALwAcT0SLs8V+x2fHxp6Y0RJk1cbX8jNYyBZZz3/vmddiyalnxxUSGV2UjE2BX5SqVtkmYnYqvpa+oUuG2gc8FE1p52OOlw9zpTy2zArMUynMLe3sc5Q+zCNY9FcleBzm3DhQ8GFecurZUZ+Q6z24Wr9dox2ZPN6H1m3C3Ws2eLWd//r1cnz218udrw+B70ZPAwuzoQ9zERcLc96HvO07V5YMcqEii+QpTmV9WEqXJRPaamE2WfS3K4Azs8Y8BeA7QohziWgdgM8Q0RSAx9GPiAEA5wB4CYDlADYAeBMACCHWENFHAFyanffhfAHguELUbyyp4/H6Vqa88wsduqXa5u4b43ihOdo4zIFflPJ+NRc1yql92cBgQ3XRX8x7EcJMRfWp7lUlqG9hlisqLRt7jImxiYiJnCIhfDRlO/3d88hGAGkszKm3rXddK2KyNfaR//arbAOLMPF4S1blgA9jh63nYY9FC3HtPXJ/YX8f5j6zhlEyiqj6CRX9cG/DNO8qbMwUqknm/XKet7b5DLfVra1RYRZC3A7gEMnxCwAcITkuALxVkdZpAE6zz2Y7mer0V8mntjD7mkd02z0zZbQW5sBRMvLBpA1v+6F8mFPcS6OFOXuz/dz5y3Hf2o34SwcZ1fvY0lP7MLe9XRlbmAN3a9fdsxYv+68L8JGXH6w8J7SFuXpPKSL3/MP3rsaTd90WT919e6vrXLMW08KcP48oPsyV33o9gbd/5wr87TFPxFMt0+0JoQ2T6h+HWb7ob92mmZJCK8MmfOvaDVswtWUWv7zxgcGxYtjUjZodRm3In33uVpZiK2orl4yWdqHjusx75HziFzcNQkqdduEd8d7QJMn6Dsi5QTzUittJRhWHecWD6/Hxc28OKmvo9zv6QL7+PsyZwlwYcGu1LaDuomsSuZir7n4E//ITt+24c4vHN/6wAktOPRvrHp9R+zA7SRg91T4s9MvO72/tb+aw7IYHlOcEiZKh2VQiFfm92lBtDqZZd30JaNuL3dqNW3D2NffhnT+4xvraXq9JYfbWmAEUfOGz76/60kV4xRf+oL3UJpbxeolCvKGgMG8ItOdAD3HbugwTK/+TdtkGQPvqZg4rzI58/vzhBhMX374GZ119r+bssPhWpapfH6NGZY3/l59cJz3fZyppqGQ6J+HE3333ShzxkWWlY751I9cldRZ6ArBh8wyWnHo2Tv+jWUhFGU1FHsKomD+TfOX7qsc2KS3M7deY6xk85hPn41PLbikdC90/5AOmro2EkFlMotpuQ88KqXC5j6ria6o0uLtkqL5Izg1UFUpxmCv3uzGLLtIUg16GEHpLbrCNSyqd8433Pdp47ZRF+ElZPtdvGirRoRRmUVnMnsIlw+RdeNk/HA0A+MJvbsN1CveaUcIKcyAe2xRmqqROvSKH2ukv1dR/W/2RTBjGYS4fVy748rhVGlgx+j1LqlI76+p78dD68k5PvtEKqGJhBuT14Ob7+yv8v3XJnR7S5Hnt9QTuXrMhyGr8WYniP64WZln+VjxUn1YexaK/MDv9DdOoJrduUxw3qipBXjYMk3B1yShtje2WgjWk+AwMw/Ht4qAw94TQW3ID3aBLtBUbC7Os2pQtzGH0jGq41BS6gImM4kvUravaF/2FFeaWI43D7Fm38848lYV5nA3Zw46lfBPKGLwesqpuDKMkWJSMhnTuzBS1fXbc2lmWEPLpvq9ccDue9/HzgyzKHSxeLMhRvTS1dTrRllguW7qp2dA+zNUWuT60YUOhCzlZmCvfTVNwCMKQpW+ex1CRX3S6/eNZmM6dnBTmJguzdZIlBqEpHeJ524SVk1l6i24awVwyKjOnVbk7bj0viJwitm3C+UUwIqwwjyG+FtvBW2UixexdP7wGj0j2qo9FSIu2yqUg1IKvjZtnsXmmh1/e8EDBwhz3uXzxN7dJjxfLzd/C3P/bVMfynaT22WErZ1kqCZeteNg5zSqyejCuUTJM8xdL8S9OzT7/yTuXFJ3gcZgryQVXmBW4uWSUv5uWv7MP8wiWShQt8tVs52E6t5lvEryrTNOivz//ot7PuIk83/m6JZsxxiasXCqXjKqFuVpdbRYqmsu0axMpFujawgpzy5FVMd8hJZ8aCa2YqawQP7piJf6j4h8Zk5DjvGrRXyiXjNXrNgEAvnrBHfWFcpEUr38/V74zWHGQ9114OFjAqFFeiAgX3dZfHLW1wyBZRFZWSh9jB2TRAtSzDC3XmA0JpTBvnpnF+Tetkqbb7VBpyjqIL2Uh/eo9rEulMDuVXVlBME3COUpGSVaaOqvb6c/HgCOE3vUhDyvoTGVBtk1ebcLKydrcY48XFeZQLhnlGbPq/ajczQD3umLbn0TQ2b1hhTkUCc1KwXyYWzD1H4OQ/lhKH+ZAylKuIEx1afBGnTJ6yVcvuGPwufgC5ZuHfBDX7sAHN4tNFdWlIRVmuYVZMcsw+iAnWkxLOlT/cMHyB/Gmr186sJQVy7BDVCrHIBbmwudqam22MFeRpSDzmXZe9GfR5oIt+tP85uMq2GRh9mW46G/YD1x+p9k2Ejb5ktX/xx7fMvi8MdSiv4ErRv97VafQ5dm1LlQ94/bbSe+Gxy4ZE8yWhEqOb+eVN5KUCnPKqh9yKjlXaGsWZpXCbCk6T3e625FuJx2bj/zshlpegHCL/q5ZqV7pXJTgI05IXlPWbtiCaVfnTgmzPeCnV9+LB7MZAUA9y9B+zAo7VDt6eP2W0veyhbns4xkipGIx29VbSNW0YrlkyPqdEBbmkOcWqc4Y6LbGzp+9S73rL/qL3x5nCuPBn3/xIqNrdNbaKrL498VZkXtD7fRXmTmt1ledtd613lTbdtOLRBstzH7zoMyAxyOFK5JVzlADWVKFWdGpr3x4A9Zu3GIdqF5HSAtf1dcrJ5zC3P871aHBwBd6B0YV37/s7tL3Yn3wVZhNrFdbChv++FRpIerXH/Lh8zTnC+sXuJ4QePt3rywdU0bJaL0Ts9lpoWY6htO+dfFTnU5J0QnjwzxMI/aTUNWjEIv+ZJmXTe87B8mwKSfHgtxS68vUmR0qo/ZyegLoxLQwV/pmmzz6W5jDz4rkz14A+I9lt+Czv7q19Ls+z26VoaaUN7xIsA/zBJOv8PVBWkclddM7BrvGkimEwG9uXuXmS+hwydEfPx8v/ewF9hdqCGphztJat2kGh39kGR7NpsfmB4qQoLMwx1a83vXD8gYBxbHN19InK4fbH1xX+l6MXuHzzEThfxNcLVhVpqfkHXrbPZ1Msxd60d/QrWWYbqfiwxwmSoaQfk6Jy0uviYVZdjchdvprKibXSDO6mddqtmcc3bPys23Ct9kycMnI3UasFv3ZKMz1cg610E+GEKKmLANxIo7ctnp96XtTubBLxgSTx5D0wbSC+I4BupBfP77qHrzxa5fiu5e6byRhg2pRnQ8hfZiL+VqzfvMgmLrq7ddWcv5i0u3QYASJESXDZBAqdta+1kXZ+FodPLcUTvKRJoSwahMuY7+srczrdqXntj2snGn23vytK4LKnZVYELtUHpxDWLV1G5ekwk2/bF70JzvmqlY0lUyIl43Pn7+89F2nIw2UUcf+L6YPc05eJCZl86z9dgQAzJ+W9xMyZPU/ykLVbKxZr4hLrguFF6pFjaNLBivMgXg8pcLsWWWHEQzq6dy9pr+a+P5AvlI5Tbe2KYCFPkdEcMnIyf3uVAOx7QCdP4OpLtUtzFYp+VOsD76WPpNy2FxyyfCwMAu7cne5N9k1Kgvzqsc24cq7HraWMenkz+iqux8ZHOt0qBRHOIQ7UrEujGoBZhBfbMPzQliYZYR4b6+GsNRNs+e76LnKrVosL7n9IbeEJNSt/83X/N1x+2PvHbbCtKdLRqjIGEXyHP3jD66W/t7V1alAL6FN0UPYwjzBbAygMMvqh0w59u3Icl8vmRKQd1qhF1CodsTK3zJDlF9OLAtzSYbiIbj6ME93OiXL/91rNgT1XTPJVtWHuZf9c8HkupKF2eOR9SwtzC5WR9klKrccAHjFF/zivsZkVPZvWZ2Y6lBpcN4c2MI8qhB/Lhbmag8pdcmQHHPtqpt8vWNb56vKc64sur48V32YX/3li90yZoBJ2XQ7hG6HrMZr2biSW4E/c9Kh5gl5ostyqAnQJgtzC/VlVphDEcKH2XRKyXeqLB+gZNM/+YClsp5p86X5TVX5d8h2FAphoQf6ZRNyMWM9dnD/72xPYL5k4Z/tsymGlStamJ/38fOt86rFIFs/vfrewefZnsB+7z0HJ/2P26Bj8ghC+TDP9oT3oNR4jcyHOXKUjA2bZ/D585cPXmJDYRoOKzSyMuwWFrsC5VkHU6ptrvh9VP7ks72efT9d6SOlLhmyyyJFyQi9KLzvOjVMs5prX5eMJp9Yn3GzWsYmSXU7/fHCpm+TnZmHQtxqXjtiNISqFU1GuTZamNvxBMaYw/dehIfWbw7SucgqiPzN30/OQOmTNOTc6ucSkiuEH7cvPRF2oU8tLBKATTOz+O/f3S6NlOETVo5i+jAbnPNv5ww3NMnz8Mc73JQra5cMJynZtSK+JVHWvptWefvy7z+/Cd+46E4s8dg2vE3I9P4OUckyuMkh2pBAWfkq1b0RKcw/vupe/Piqe3EHfEJqyizM9bNixWEObWDuiar1X54f1+6vyeA00xNWm4gUcbmKqP8yaFWOknNzhTnkokavlALVi6Ytw9uoMLOF2ZOpTgfzup0g01fS+iFJ9j+W3ewlJ8+qzM9u4JLh0LHoVlKrUgu9in22J/DAo5uaTzRE1nl//cIVAOTWMNcoGQ+u24Q16/vbh4fwf/TF16ppUg7FRYA+7cfWJcNF0ibJs5bNMIRitifwjYvujC4nJTKXjG7VJcPBwlx9oCkX/cUc0k0VxxCKhawfDl12ff/0ghtIoHUgOU0K5RaPPs2liLvUnzW0szBLXDKyKBmdDmGPRQvtMyLDo8r0AmnMWj9p8KK/iUSgv8NQCAuzaf0459r7veQMg5XXf9sycBEI7MOsuLnQxtSeEPiTz4ULU1ft7IhI629tezv5M/jZNfdh+ap+2DWZhfnlh+5umXI1X3Y587Vy21qYbbJXHWhnK1O9BilYnNtno2ThzfzpeN1n0bI/PSkKs8Ilo9g3OCnMFUSh7hYlRhmAA6ZZLR55lAyBvzxqn9KmOa4Kc1MbDaEwP33P7QefZ3vlF1vV/YbyYa6yZSb+dMNfHrXP4HMnszCHevGY6hB+8rbn4Ogn7+ydVlON0WU51KL6pmrLcZgnECEQrFGkmj3M5egszPMcp65U/M/v78CKB9fXjof2k4vhd1fk7jUbtG/GrhbmItKIDL4vMJUkm6wt/hbm5nO2OPowV0/tCbu249JU10tioc6fMg8XZUtoJbINSH2YK1PWTj7MladfmvYvJB7bhSY0spdcgf5LxjYLht6U7huXlNOtEqIrLT7PmcpaA+WC6kgWZtdY0oB60XqVQ/ZaNPjc6fSVPhuxulvvEGGnbebjGfssBgC89pl7mycckHDub2xhnnPkHVisXfOizChmacqsiPk0eYxtRq+QhNoabmYQRsY5194XJqGMahH94w+u1g8klvchs6bIFmP6DvbVFG99YJ30vByfwQUwi5Kx2TFKRnVKUAi7RX8udW2DJBaqarfHEGwsKOgufr1tROWSURyAfesdUK4fRZE24b1Gg1rxL55RXUgWL6ycf6dcVJhnZ8ub2NcszPD1Yda3xxQuGcXTOplLRii3w9xHO7ek+yTbZL3VKcWhVJ2mMo25c6MrrDB70hMCnQ4hxC6ysurh08hV5FmVDWC5vBhB4KVh8xzKTUCtl76zsnudL7JB44wrV2rOt0tfVm9ksWhD72J1w32Pan/3tWraumT4KLzv/8n1pQgfMVgnCfBfnBa/7H0vDCpvfcEFJGSM8lEie8adTgALc3XGoeiSMc4WZkWYjOpCMpee4VsX31mOwSt1/3BIuELR93+2stZA1Ue4KpgxfZhNKersw7ByNj7MagYKs2rTrMj++qHlNNXbFurLrDDb8uC6TVhy6tmD70L0d6tyiVdrUvF+ddMD1umaypVZmHPrZozFMrKGHssyHwpZ9u58aIPyfNvpKlm9ke2+5LIIs0j1cTYFwy8NdA7PyNYlw6bcfOumy9Wy8ir6MO+0zfy6HMd89noC7/zB8MUvyk5fI0DlklEkhPtJse4VZbpGSEiFSXUR6CsS++y4VemYLZ/+ZX075CpBLMyz5X6kFPtZkXysnf7SWJiHJ/Y3b7WLw6x7mvn9Dd/7RjN2hlINqmV6aMGdpf97+9orK8yW3L2mrCz5uGTctWbDSKr8wMIsEZ53KrM9gfNvXhUsPrKKtm8jfN4NdgssbauB7P7XSxSk0DF/m+prUXFZ57CBikl7KEbJWPf4jPF0/CiqjNyHOewzWbN+M/7x+1fjd7euLi0s/cBZ1weVMyrULhlDZNFImqimWorDXEguRhzbkEN69T6kfaMQ6BDha298hv68BqrrV86+9r7ay0oIS+LmmR4WZltDVw00ZfcMuRuNDU0Ks0vdyjF9zkUdL3fJ8FmfUWSqYmGuu7SYY7Lo72dvf670t1BjdtUv/MdvfU7pO4eVmwBqjTLrwFwWKlTfeFO8US1fta5gIS3n+fp71+JXN60C0LcMvOlrl+J3t6yOmp8268sCwO2r6wsVtddYL/qrH5MpZ74uGVULrsxPukhxcHGKjWtZDj+4fCXOuuoew7Sts1O53j4BWYzx0ArzZSvW4EdXrAzuVtQWZC9R3Q6VnoePUpOjWli2zfzx2nZA4ZEBIsKOhRkNl/Ygm1385Y3l2cxQi/62mtdXmGdnqy4Z8mvihZXzuSF12vvtvDX+5JB6FKM8SkaoMS5XIJUvBiE1Zqit6qGG7EYf5vbpy6ww21KtrD3RP+biklF9w0rhg/TC//htQV75txsLfq1bsoHLdDrYJO+yN8a2W5htCXE7MgtzaB/mJmtuUXHZ4lC3Q25PXmUULhmy6dx53bBRMvL72ih5YZoEVGHlirgs+tNZZotKejGyRCup+mIr/Iqrk00u7UH2wlztYkK5ZCycl1uYe6U0VVtzu4ptsjCvfFjtSueDEMPxr2j06u9i6b/TX07ulqeyMNtgMprE9pVuVpjbpzGzwmxJVXEZxGF2qEQtrA8D8oErZKWVJRVTsRoFtrcjK12ZwtzpkNcbdzVfzRbmodLmEmLORse2XWA6ihojU+RCR8nIy6yo5LXRyuKKrE70euW5j80uEUGqU9MKH+Zto1iYwz0gnWvJ8Bwx6JOftMs2AFxdMurXVGc4ffdPEkJgticGLhkrHlqvjMNcemaRfJjf9p0rserRx53S1tETwzpczAENfJgt7kdzav7cn/OkHQEALztkt8qlYU3MqrE/XJQMfR7aqB+xwmyJLHRNhxwtzCOuELp2PJi+CphHWSzLCdOXrV8AZHVAZtXvEAWNXNK0AKYaP9UWGyvEPEv/bF8Lh8v1ssVovgsxqzyyYQuAch2SxXo+8AnbBpWbCpkitKHi6uK26K+cbk+IwctMsV/e2kNhFkLg0hVu28Q7y1QczxWNM//22QDcFBhZJJ6qghQq3m6e7l99/bKKJVmevqtl26R/3OA8e6POU0+Iwc/FIhxamENIGRrrnrTLtljxsZfi2U/cyTxhB5SeH8miZLRPY2aF2ZJqoxSZS4aThTnqxqrN6DrEXKEKWUH09X8yNOcQ21o/lG2RXaRDYTuQJoW56JLRZI2WYWMlso1e4GvhcOnvZYqcStF/1wkHWKc/2xN475nXAigPSDIr9gFjqjDLFKGNm2dLTd/JJUPiyjA/ezbFuuLjkrFlVuBVX7pIoiyE7LfKaVVl5d/zIWjbBdPYZdv5TgqMrA2FcPWQkbtkVNMsbTCjic9sionbmusd6a7r9Yb5L0fJIAdjmvrcqu7hYz8xWfSnsgCnsjCzwjwB1P28+g/WJWLNqOuD3sLcv6E2hnZpM34LS/rIfO0o63xdqT5rXT6JKj7MkV0y5lnumJcq3mgRmcKsilzi8pyKFr/8ZeMzJx0qXVgYOmJKKlQRYcouGWF8mPPtxIsvbj4uGXmdq74IxlOX1VEQivWrr5CFka9yyfCd2Xr5of0FcS98yi6lmyy14wAuGSbtzvklQHOZKMSXrkfJsIzDrDm1+hyqz8vq1gweqdrCbCHHIwttdEcbz563RQgh0O24xWGuVvjUyqkux7lCFTJHo2wAQginZ2TKS5/e9ydzscZWeVyyUUUeBD8UsinZnIXT3VI4QReXDNNBgsh+QaNvCbtcL41corCMuzylcmSH/t8OkdTCHCuecDUOamhMXDJCDMZCDK3/xXro6pLx6MYtg8+1thBRY1Yp0J2SUhbOEqxyyXjHcfs7pZfnaqrbwaF7LcKmmV7Jkly2MKNw3O1+TFykXMcArYVZDPNczEGH+mtPQg07sv4/5piqXPQXzFVH/3sbjXWsMFsia8u2u/moSO2baGZhDilRnVhsm+HyVetwxpUrnZ7Ty56+W+M5xx+0KwBgi6W5xzQ7/SD4VkmX5VRKWGdh3mpeWWF2cTMxHZimO51WWhJMUFl6nZ6Tol+RyQg5VXniocNwWM964o44ar8dgqVdRaYwb9w8O7A0ur4QyizMAx/mAGHlirHYq7MtMS3M1b5q4JJRKCf7jTHUVOXl6W41zy8aTLfTf/HbPNNTKskyubbI2sXSfRaXvsdYZN5TWJhzH2abGTHdmXKFeXgssIF55Iv+2jgusMJsieyt3zUOc7EhHfiEbbFgOmyYqkb5Bj7MbXzLc+GubMMZl/7S5Lnkik2snQtTLvpbOK9bCm3m4mZiWgxTXUo/sxLoEal8mEMptKl9+LpEePcJB2L7hdNR0pfVo+I9VjcxMaZqmRViYIUvVvMQYeVCzCCZYuKSsfqxTfjRFSuDKO6zlXsTWSNe6Kgw52XVJcK8bgdbZnuVyBhyv2VXlyupQlkNA+vovtJkYR7+Xn6Z6QR8oanuigm4R+opJiXboERA/eKfyiWOfZgngqoPmxjEYb7xvkft3iYLp86b6qRf9qazMM9kU0yGddYk7y2s/0aYbFCRK8w+26/q6BBJO0xT6mHl1PncanqqtNOc06I/w3Yw1aHk9SLUlGLoKBlVuh35suCQ5VV8TN0O4bC9F+N37zw2nIAC1ZfJk56xF/7tzw4ePA2f+l2kJ4btsdgfbxdAYbadQfLBxCXDZZGkiqq7SZ7yQkdDzmDheG5hntXFYR5+drUCt82H2SkOs86HWdLfFMcm117t4D22lx5XFWc4C7P+d1aYJwDZiuwuER54dBNe/Jnf4+ENW+QXytIqVPHqjlcp0PswZxbmkHFGRxhDzkeyyVt8btGKZYHqUFhrv85qvKDikuGiJJg+66luZ2xfpFS+16E6etXavsVbzQuSPlAezHMLHUUaFa69Z23p+zteuD922XbBoE+dcuwDqy9AAsOXmaLytfO28+FLtX0HdclQuGAMZWUuGZEaTPWFJq8bLi4Zxbx3qD8bs3mmZ7RBibtLRvOxGBtlicL/5QWZLi4z6pNlL5SlsJNWcprrUPSNSwp5+NifPa3+ewvHBVaYLam/9Qt0OjSwyNkE3i82JEK4qWIZM7M9LDn17NIxXcXfHMGHOeKau6jIYuFWyafndYvpfOh0SKlAmVAtep0lvEvlaAXVqVoTWctueACLtmqe2p/q+EX/cCHYKm9FvkPdTodIOq5tv3AabznmiUFkFItioDAHSbmZ6nOXWdBMkPXJuYX5kYIBY+dtFjilX6T2QhyxT6u5ZAysmHGeULXvyr8unGdvma/Wq+mpTv8lXRVWLoBLhkm5uLrM6WalekJg7x22BgAsLvR5/SgZcX2Y5087umRUvv/6H5+Pr73xGaVj6kV/YSiW6UlH7l37vepO0wZYYfZEoPrmZ/6Qi+2IiIJNFcvYJAnXZGJhDllndW/3IZSYp+y2Xen7vjttXRDgnq7KJaO4GDAPYxUirJyMDhG2chi4BlRdMjQDBxGVfnd5CdgyK7Db9gsbz+vQqKORhyfU/eh81l0XsNUoVIM8zVQvtvnd5f2e8/bvEsVyWrLBlKtyUaQ62xKyz66mVF/01//r2yerFLhayLzsvAUOfrK9koWZBhbmcjQYeT5crcAyBS/vXfK6FcPC3OsJvPvFB+C0Ny7F0iXDRbMuYeV01UnWHxTXUVi9aFSS2m/nbfDkStABZVg5hw7iiTtvXTvWlN0W6susMNtSfchdIuc3oWIFj21hliWtj5KR+TCbDv8GeY+1IC6nusK/tKjEI12VS8a/vvzgwefcohXPJYO8FmPVo2ToleDifbi+BJg0i/sffXxsLcwqQllGuoqXiQ6F8/su1otXHL4HADOf/RDkFsH8eTgv+qsghMD0lD6igCtRF/0pLMrDn/sHQi7+LSLzYZ7u0sAYYEPVN37eFPXDyikaX/Gw6zih8/fvDhRmp6S1CNGfhXzBgbuWjnc79ov+tBZmmUtGgJfAnOILqxBCvXGJQ9rn/v3RtWNNz5l9mCeBSoP/8huWOk+VF1MiijuQy95ydeLyKflYC4xiULVQhRKnUiCKilHuw3zXmg2O2/vq6RCMXBxM0SnMhPJiopgbCQwEJiVuRQx1OyrFu0N+awuK1+Zt8vOvPRzbLejXrwXTXXzp9Uc4p29K9fZcF/3V1pVAHvIviIW5GlYuYFWquZZUvwdwydg805PONgISH+aewFSnY711PVC1MGMYJaOSvvxaa3EA9IsF87Ehv8efX3sflpx6dmmthg7dc1ZZkPNQoKHi/8v6g6K7oI0UWQ0y3UnQxWVG1h6bLO8t1JdZYbal+Ijf+aIDsO9OWzt39L2ShTmuS4bMD9XIhzlkHiJbmKcqjbJ8e+6ylQpz4bnng8q/n3sT3vnDq51lqZjudrDIy8JcRmU13mb+FPbfddvKuW4vAKYbniS3MMcW4HI/kktUlsQDd9su2HSlapo/xAK5JmoW5i45Ppy6K8GUxCVj4XQX137weCzZcSsXIQCa6/S5f/8877jFOar+2efZX3vPWmU/LLu3DrlFgyl6ruQb8NRdMoafy1tjm1eC4hgqu6+8b+lWXDK+/ocVAMqb0riiqhKUhQK1ipJhKTvkbFDV4BQ7DnOzS0b7NGZWmC0pPuPBIpkQlpHIFmbbUD0x4jDH8B8rUrWEhHoBUS36K/YvxTfoX9+4KojcUh6mO1jkEx2h6sNcUYLzsnv/yw6qdZwuO/0BwCZD602IGnbaG5canxvdJSPgor9i+3vWfjviwlNfgKP229Fvm/TSbmuZ61XV2pvAgbAqQqbkmlB8nLmyJdsNcbrbwbYLpr3iMevCMQLAgU/YDk/dfTvtOaaoFv35PHvdY52V3BuRfPOcJqrRV6YHcZiLbnJmvtQ6iufKXuxfcOAuOOkZe+Gjr+hHYcgVedsuQHf+Cw/aVfmbdRxmy84ppMJctzCromSEkZc/O1V1ZoV5jPjSb2/DU99/rvacvH4571BVqHiEuJYv2bSQTp7tTn8meY+tqFR9jcsrr93TVU3lFht0yc8vQjufP9X19GEus7lgYT5ot+1KO75V63OTkqDCtF1Yd4ySZ2mTRmwLc6hljNXyExDYY1F/IWU4H+accoLFl6ZU41YIJT3v5qqzTUV8nk91Zqb47c3P94tcUnfJqMrqf/cpJl07qb4Y599kCyibKPa3eRzmmZ6oxGGWn2+jYBYVZpmiPX+6g4/9+dOx+6J+hJSB4Wjg3mIoSJGnf//zp+FTrzpEeRmRZRxm4zP7FMc837WF1RdWVXjJUGHlekLgm391JH77T8dKf2/jor9AS60nj4/9/Cbp8XJ8yfJ0jy3VtGK6LEithBpxw41LwtXaGNuSFqlZmCXiXO5G5cNXLJqiRSvGm/GC6Q62DbDxQk5RCa5mt/rd1cJsunNliOKyK/Ow9XC37cvhykJ19NVFf8Vpbt92edBu2+GFT9kFN9z3WJZe+ffSDnyRNOa8WuX94FSHsMmhrslCkskszCGoR4wZCj/1xQf6JV7psKpF0RsoeR4WZk3lrI8/AgRIF1A20RMCeevvFKzUm7YMy0+9ANDNwixbkJnX4/xvrrzazj6qzt990UJtnP4OkZ2xxrL6m4Q8NaWoLwuhcckIJK8ngKOfvLPy9zbuMswWZg+qjdGWYsWzfRO1RaaMG22N7SDrnS86QHo8ukuGpuPykWxiYS4q1THa+fyprt/W6VWXjEJ9qMXDrXx3jQywwHCRVYiO0aoNBqyGF7/nOJz3D+UV4MHiMFeKr7qQyocXPmUX/L/jD0BeGNXkpiK/AAL1/iCEnLxa6xaq+YgxicPs082d/Kx91Olk331eYHT1pvZiLACQfMFWEyWXDKKB60BxwWHpRad0rbmcohFG9mLfrSrM2TnDy/zqXNOzsN7pz1J+WB/mclohF/25pNNGC7NRaRPRCiK6loiuIqLLCsffTkQ3EdH1RPTxwvH3ENFyIrqZiF5UOH5Cdmw5EZ0a9lbSIPNhdg4fWlz057rexRBplAyNwM0ecZjf+Owlijyorwlx79WOPVTDVr3FFzvLouwY7XzBdMdLYa6+HBUjedSsi5WH7rodsLGF2Sn1MjazxiHb2RO2X4BtF5RdZUK6ZBSfTXmRsCeVBXdVZbX4PZahJ4/7nN/VVNd/t9O8jGJtW16LkhEwbYHyy6PKJcPneegUPJlRheDmklFMqtMZ9gWPPb6lcM7wpOJzd/VhnpX0U6qwcqLyuytNL/vWcZgrvPRpu2l/LxpzfNfsVMf62D7Mf37Eng35aZ/GbNMSjhVCHCqEWAoARHQsgBMBHCKEeCqAT2bHDwJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bqup+v5WfbMA9ygCeVpn/91z+1EyNDXRdzpe9vatVZhn3Bf9qS6pl2XYV4SaD3OkdHPKLhlFC3N4f9q+hTmcNaE4tVzNbbWjcrUwm04XOq71KqdhU+ZxJzqCKZhV5aYn6Xt8US36K26MEmPgWvGxl9ZeqJxd2wqf8/txsYqaYOKe5Fq9agZlRUI+j0NXb6prFXIF3sUlQ1QszE/ZrR9555rC9uiqcrJRMItjiizyz3Bhfv/77MDCbOmSoTi9qc7abo1dPPWNz16Cz7/ucO35IV0yquNWTH11uwVTeEnDy8C4K8xV3gLgY0KITQAghMhDA5wI4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3NbTa3xFget7Hmq4lo2kTfa3bZf2GhhLu4q58J1hY5qID+SS0bRwvbBPxm+E6l2rspz44tu0V+Mnf6KHUxpkZS7KCULpjtY4NE5Vm+/NLjUrIvlc119mF/ZYEEYiA9QYjbKVmR92c3FRJKpqnJT3ejIh/x6laWtGFbORzc3UUzyU5x3+iuFJOv/1SnMPmUX08IMUX4O1bILIUtVxFMdkrZzIrfoJdWXu6fuvj26HcI1K9cWzik8t8K1rovX9lxc31lUFVYuFE1V1nZr7OINmezmWZxJCekrLSBGrrC2UF82VpgFgPOI6HIiOiU79mQAzyOiS4jot0SUb0S+B4C7C9euzI6pjpcgolOI6DIiumz16tU29xIFmVtXTm4BKi5ksEq7ko6+wvvVnnecflXtmE5eblV0CilbuOaNz9l38Lm29Wpg1WVeZRq2FNvTJ10DP7HiPafyYba6p8rJxYG/aSrOJUrGCU99Ak44+AmN5735+U8M4qtml0ZclTnU49dZmF0rWU0Jy75WX1qKLyChrNnKPA2iP7jt9FeOsJC5ZMTaDc/Ah9mHYtuTrMED4LlpjaLeTHXVi85dFlBWt8ZeMN3FooXTAxndDikNGi6Lw085ej8c/9R6fzNwyagt+rOjNO5btA37xfx9RfVdJxyAt73gSY1nh16Qu7iwOZbSJSOoRDWjVthlmCrMzxVCHI6+O8Vbieho9CNs7ADgKADvBPB9CrB6RwjxZSHEUiHE0p13Vq+gTEXNKopyRwCUd0WzWnuU+w92+h1ZfUquKMs8XWP5mt82ecRhVl2SOqxcqKAjJtNe5XIK/7D6PszuE0J1C7PGJSNAHGZTH9K/ft6+Qd4wZJ3r5157GJ63/06147b18K+fu2/zScW8ZI/Jt/p1O1RSjkIu+suLa5CiJr1UA5ermLJLRv+v1iXD436qUTJkz9jV1Uyg/BiiuGSoFOZORxpWjuA2BlTjMAMohcXsUtkFUeZWY0J+6mF7LZL+Xt0rYba26M9Y0uDTVgXDRVPb6G9cYi/lb495ktEaENe2qcrSf//lMJ59zFZvUqfGdtGfEOKe7O8qAGei716xEsAZos8f0TeY7gTgHgB7FS7fMzumOt5qtC4Z2RPdNGO2QUOVvMPoD4yoteLStFahgoXbSUr9m30c5uJ0sfyialmGjqI3r1uxwAZy+bBdiRyjoc+f6gb1VytayqqdV80lw8GH2dSHdKpDgSzM9URe+JRd8fcvfHLtuO3d2PrWhlr0V31xKbaXUDLyPkiW2k7b9DfK8XLJMMoDsjxYhuCSCFGFlfvjPx/nkHAd1Q6ZQchcMl6VuTLVF/35o7JIdjtyS2iITblymdsXrJc1RbL0DO3lqbJZdcmopm16d8XrFhbGXxMLr8sLQJF3n3AgXnFYbTIeQLlthjBIxZ4ptWEsLcxEtDURbZt/BnA8gOsA/BjAsdnxJwOYB+BBAGcBOImI5hPRvgD2B/BHAJcC2J+I9iWieegvDDwr+B0FRuuSkZWeq0tGnlaH+kqDqYXZdhpGbfFQtzDVVK0JquxVp9pCDz31qcMwLhm2C4jiuGRILMw2lotK2ZfDypXPrYWVs4iSkS8WNd60pBNG9ZPJ6xDhiH0W44dvfpZX2qYuCQunu1i01XS0RX8hZ5yqpS4bnPLoH14Dl0UdDVFuKgvzLtsukJxtT909KZySCQgQET6RbYQRIyy/yh2578NcuTfhbmUsRXTJEilZmCtbRst2nzRheJ08p3k7yf8OLMzGEuoU+5qmRx2iTr/lmCfiP199qPS3ct/kX2FK86Tsw1zDRBPYFcAFRHQ1+orv2UKIcwGcBmA/IroO/QV8J2fW5usBfB/ADQDOBfBWIcSsEGIGwNsA/ALAjQC+n53baup+t0PygcR30V++BW7d/aMgq9AwbBcuqE43Sca20u6+/QLzcDSer8Snn3JU6XvIRX9F5SSWP6QNnQ75xWHWUFSeBEQ9rJyFVe2n19wLwPylrksUxJIgSyK/jaVLdij/YFkXZPci8+u85oPH49J/fmGwgabvqjX8LlNCbKneuipKBjCMzONzPyZF/ZTd+ltJu8aUlU3nx1r0VzOgSG4wlEtGDB821bOUWZgF3OtZMSmZSwaR/PaI7MLKDfy6GyzM+d/hTn+WY2jxs+TeQmH7xENbYfP6oS8et3r5p4fsjjc9ZwkAswXho1bYZTQuwxRC3A7gEMnxzQBer7jmowA+Kjl+DoBz7LM5Omqdn8RNYrOjwpz3C7lLRlVUOe5qUamxQ7WIwiQd2yHsdUftoxyQdCH6XNrgUfvtWPpei8Nsn+SAnhjee9dy0YudzXSYy+/89TPxjYtW4BfXPyA9U7WBip0UCZXs+iz6u++RjQDMQy12O/YKs+xeZGmEWrRSHBP/5vn7YfFW83DsAbvUzsvrX6huXrfoz3cwGfgwa2aScoU5dPjHKp977WG4/t5H8b1L74bAOq+0hgpznMFWVRIXvPvYIOnTQMFTy4qhSHQ7pHC9cpMl82FeVFCYhQBueeCx0negb5xwcslQHK+7ZJQtzC5lKVvHNCpKLhkB0ot5O599zWEA+hub+UR8GiW8018DusgOQwuzqw9zno78jbsU89nDV6mqqA7TCWhiLg3m8lOqirurZV5FdaGZalGJCcXnbusC49rpPG3P7bH7onJopM+cdCiu/1B/759YFmagnOeq0cTG4jPYAtfw2XY7FETDlFl61ItPze5nMANUSPs9L34K3vz8J+KAJ2yrvC7UIFq9p2rkAScUfYwsuTys1frNM26yMOwvVbt/An3Xj6P229G6GuTnl9p5rnhF2ulPFuptt+0XYM/FW5WOOaWNYd5kM47hndiGNEUoyS2DpghJXd1mMGMBrNs0gz/c9hA2bu6PnUUF1uYFrUnxHW4ullmYww45CB3u2/bltNg3udvMh6RQ/7eaNxU98k4sWGFuQDcFlzeWvztuf6e0BwtuiADIomQMPz/vyTtj63ld7LLtfOtwbD6+cLb1mqjeed344ROk+bhrzYbB5xBDQc3n0yOtoj+f/aIvNzpEWFhRiqe7HWydKS5ecZgbphF3276vqC/eal5NGdvioDA/vsXsJbJLoRb91Y+pBlHTuxm+0KZ4Yarnqh6HuSDDRUSBgbKZyZWll/swP+64RqPKLoXYziqs9IV8+rhwKFcyQ24Z3JiNUAmJYVqyGcfhbICfDBlEMlc/MajLrz1ybysxRXfovBrL4jlXX8Z1lnUX8vznogdh5WyFFM4XAtg236UyxjuMxQMu9U0B8tJGN4g2wQpzA7o3vryyHveUXZ3SLg5DfQtzWVbeuN9x3P54/pN3xvUfPgGvOGwPewuzh0tGCB+thfO66FDd0u0S31eHTsGwpdiR2/owu3Y6RYU5nw7fd6etB79Pd8k5Qsrpl941+Fx7pgJ42wuehC+87nD8n4N2rYeVs3hOthbmTiV0misxpkZ7WQuxbQMuTUZWVbvZ2oacf/g/w4gfRd3DpppXz83LTVZnfXcXrQr83bsa3BZsX85l4jJ5ISPKyNIfHqiXncxdx5SBgqex+MbQaTokcYUQ7sq5zCUjd5ORv7wLdT4MaHLJyP8O4zC722MFgHPe8Ty87pl7Y0mhfza6ODChDbV5etosx/XQajWsMDdQj+wQzn+paeeu/NddthtaZmTxmptQKsyVwzLFJdgCJskUY+gITdXn4eN7mUeRePmhu2und2W4FlmnM/RTfvXSvXDJe48bLIjqp0u4IbPW26J7ARAQmO528JKn7QaSWHxtFv3l2+hW3ZSOO1CtRKTfGtvwfhwtzKFsjt0OYa9s97Lz/+kY/Okhuw9+q/rv25Lf0idedQhOftY+OHLfHWrnvOqIfhTQw/Ze5CUrl2fiUmTTZGWlbGJh9nk6slBv1erxtmOfhN83vRwo0h7UNanFt85bj32itRwZHYm8souIXXqykKi6hZi56C6RlTKrcykqys5nH6txmC16jZLMvXbYCh99xdMaIyjZGgNsh6zgi/4q+f3OXz8Trz/KbnZhkmGFuQHVbkuAv/VVVDqV+hRcZuEqNAqZJboJYwtzxNmYjiSAu882pXlWv/6mZwyO6VwybMss71hlu0c15s1VYSbCvKwD3jLbw67bhQmFVaVab6tFU/191iKsXD7tWrUw76K5l9RbY5vSGyjMdteFGsM6RPjkXxyCL7zu8NJMA9B3ofn7F7q5ghXZY9FCfOjEg6Xld9Du22HFx16K/Xbaxjn9gY9p9owP33sRXug4I6eUUai/+TPzWSBrKiun+rw7HSptLW5D0SVD6T5RaC/HH2TfP8noGzR0smwVv7qFWWd4GPoiu80Mqtrc0CUjtzDn+bNLv3h+01jypdcfgY+8/GA7AXnalucXFWarmSaNa06RZz9pp4G7HmMQJWOuU4vsUPjsOzCWfBJlb/gSC5fMt60J1Yx6teGHGOdVyo/MgjHbE8qA+aYcU5j+rFkqPSzY+YpxF19IVwWwQ4TpTN7m0KtTCtQtzGWqswo2O/3lg6OpD3NfnvGp2jSestt2uPG+RxvPNfZhdnbJCGdh3m7BNF7ytN2kv8fYIll+rrOYWhpn/O1z1Oc4+2QMn+jQwqy2ZocNkyeCbSIDYFBQshm5mDPh0vEH7s9ebmFuTqzTsZtBHfrg69POm3A+nvuUZdO1Jxzs8xIjrGpTuW+KU0PYrXkIW5gb0HVa3hbmQmpE9eo+UJgrgdJDuWSkpEtUe/noCTGwqMbIok+SswYDrwqbDqYaCSUvj80z8Z5Zt/JmUX1xKlrqd9l2vnGIuH7aucJsfk0It59uh/DzdzwPXz15aeO5xh4Zg+leSx92q7PVxFhIbuu7CYR6kQ7PwPtVYv2rxmQPhSzKaIjnVN1xUWdpLVbHkLMZMstpMT82lCK6ZI/C2CXDpetTWZizv92BhTl3ybDzyfCZrbTB3iXD/VoZsucc9IVwzGGFuQFtlAzP3qq61W1t0d/AwlU+b7ZnN+ypw8oZXByob5BN+fV6IujUafF+XvK0J/iFlcstzA75c60VRDQY6GNamKuWnmrZ5J3wy56+G560yzZWW2Nvn0VW+OLrDze+JuTW2CF9+oaDuN11obLQpKinsvz4hWGLJ0dWPnkfE2uzoZoPs5Dnw8ctK/8b28zx1N2H6yM6RNB5XtneTmnRX3ZPsmeSl+fAUkwEm97aVO+tbVwCs+ukMh2uiUXoqBZ5OYXcVXSSYIW5gbq7QNEq7OvDXNKY1Rbmig+zLaoZ9Wrn73M3TZ2IbMpvVsQJ/7THooXYffuF5TxZ9nJ5WDknlwyPejHwYQ4co7pIk1JZjJzQ7ZCVS0ZeiZ66+/a2l1jzmiP3GqZR8VXUYb7mTxinWSSE0n5QYbGnCicpLv6hASxMpkXiYr0rW/+a5Xn1c1I/X3+q+SaoZwap9Nld+vf/ZrhlvDSsXOFlwLZPk0XC0Fr9B2Odqw+zWZ+mMh41UprFcL40OMVZbhc5CyoGIVkxpt6c5S+WNu8COCpYYW6gFqhe0hEUsalatbiqNWt2NmCXFGb7ymsaJSOEyUqVRLdT98nr9UTQ8E/FQac6pWltYe6VXTL+6jn7Gl/rU4r5tGVMC3Oe9hOyhXjVMaSoIE53O6WY1I049NquHfJR++04sFrlViyzWR+zTLrGYQ6hQf37nz/dPxENNrfkZWE29DHtn2OH7PzBQulCHf7GXx1pmXKAjFiS18hBUhLFMcSUe9FIksd3B+QzgKH8fPP+RBaHuYqrZV35CLIfhi4ZWf48lF6blzrbtmN7764uzAJ9XeKiU48rHZdHyqpfG5OPv/IQrPjYSyNLcYMV5gZ0nYjvVEXZh9ks7qaLSNWiunpYuXjIw8qJoBbmref3ldul+yyWygPMG/vMQGHu50+3U1kNj4IcuGREtDA/uG4TAGD3RVnkiko5Fev1lHLLXDkqZ6G/ft6+QcKTVRlYlvOpbEV1+uCfHIS/ef5+ACwW/eUuGSOwMJsk4SPGxjIZctFfDGQvxsVn8MxKyLygeRHy5u5q+a3WZ905PnzmpENL3zsduSJYtHi7kt9LdSdWYPi88r/djutOf0156P8dhJUbuIDYSoqrMNoq8r6z3Iu3nldJL7yMSYIV5gZqymbhq+/2jlULs0lH4eaSoVCYDZq+yyIhGURUi9bR64mgi3N23GY+zvm75+Fjf/50qYuLDb2KpcrKIuchN1f6F2o2KDncU/HMq8O+WbiwmoW5cLN9C7N/Hdht+wU4UxMhwQWi4cYeeVtUKRpvfM6+eM+Ln2IVtipfQ2AdVs7u9D6JHCPdxKQbMK3yJ8mWzKc1rF97ZcaxGDvZJ92SD2+/zqmjB/m56AHAztuUw96pDAwDhdnjFvNZn3mFxTgfz2dQKhZf60Xtg+ctz2B+vN9XDJ/f8FbNbszHvc8Ou8SLM2ohsiXbuITV5SGsMDegjZIRsCOWbQk6nKYrdJAO1Vel8NRdMqyTNqYrsWD0IvgwH7T7dlgw3e2XU4AexGXA8HkjP3zvxXjvSw7Ex/7sacpzzvjb5+DAJ2zrLCPnkL36fsbVOl60KnU7ZLXTn3Jlf6TKlaead/RN1mC7DU7srwHclAsX7yifepbMJcOiDdp7vuQXyBS9YWIhFy2ZxGF2S7ic1pTkRTWU8UIGEUk3khoonB7tN5/1KVmYFcnZ7vRnYynuEA0W/VmXpId7n6MYI0o7fgaJ3lHXmNnAPITjMCvILVH1Ojg84L3TX0me/A0/z4vssykqhSeGvqxKo0P1eMuzvV60LWz7lopw02g2z9qnHIkIpxzdvHuXj7L0pucswdoNW7DVvH7z10WCmeqS1U5/KmJ1ujWXjMbFPzYuGbmFmXDJe4/D+k0zRtcN8uBRbG0K5RSkXzCsAC4Kdsm/VDIrUH2J8ilbmVHDxO/TNN08rXndjtItK0Zb6pBM4QqjGg6jZAy1u+otFJ+bi+JnUiTdwixnNYxfE8UcbTM/otpkeevF/u78m1fhlQcbug6qDBuSAkm96K/NsMLcQG1r7JJLRjg5hPpgIZ9etE9bOaWeaBoYUISVE8OwbbZKTBO18vR8+7Yp9hT9i4/V7KRn7I0DnrAtzrxyJQD5NDPQv4/pjt2iP5dS9nkyVWWlycJMFnO+RR9mm10XXR/NKUfvh/vWPo6fXn0vtl0Qt2tOXZ9NkgjxkiCPLBTSJaN6IGx7z9Oa7lI9/nnE/lq1UUoIl4z8WcybUidS3HMg5G0W863y07bh/S87CC84cJfmEx2xtjAnGGxYXx7CLhkK8jqic8koVtZPvuqQ2u+NVByFzALVO7hkGFoIY7eL6pSiy6I/2Z284Vn74NVL9yods/aFa8CmY2p7J1a1yurCV011bXdibJ4lCcmrn9F/7nl0kaYXiQ7V66GK/CzrtQqO9zrdJXz8z5+O751yFPbaYatmMS6uHw6NwssiW3E1iI2RPB8XE8iUyvA3N2+qo9wwKEZR9jeWqhwUYWTJomTkZVatj7YblwzONXXJcNzpLz//r567L5ZUtqlvvDbiRieuY41NjnjR3xC2MCugzCejFrdR4dvzyiP2xDnX3mclo6wv1yvlsHP2q7Bqlwz1y4AtTX2CrM31F/1ZumRI5Hz4xIPr8iobwfh2WW3rM0Io5dVQSzkll4yOnUuGiw+zz4Dy/pcdhHedcMBg8ahJjGnjOMwDlwy7PLk+mw4RFs7r4pn77eh0vQ2pfJgHaRieF8pPN9ZLq2kcZl/p0121wlySE+g2iVRbY1MwOUUfZp3rnptLRnMGu8VZTleN2ZLYw0asTUUqtjwmgxVmBUMLc/l4yS+28pt9Jz1MoLiCt/qzrw/zFp+d/izR5k+imE1btvi+z6BZPsJO7ZWl3vSREwAAP3rLs3HDvWu158aA4H5/ee6mBgqzOqWpbsdu0Z9KZqQi6XRo4IsNBF70l6dpu+jP6uyyr7SdnDRDWaoBM0QdsQ8XZpt+nRiyprsdbJ6tK7B9eeEFytaYAB7PXtKnzJNujS1Kp7v226oiKbkzdgizmRldyE7QksZ/0Xpr7MAas/Tlr3IwoSdn62CXjAZ0LhlVpP2BhupbnFLZKH12ccno4eA96juHqeQdstci/M8bltZ2AfJB1hEKCIcdpNx8mEM38gXTfcv4Efssxl8+a0lNdmxCDJrDbVDV50x1SfnCZYPFe5QXzT7M5lbMvO3blrXrIJZycY1dHGYPlwzYlaHLS3ypnUt8mKt4lbLGzzck/UV/s9LffMeDWiLo+/dKX5wHPsxucr70+iMGn6e6RZeM8nl5PenHYTZPv2kOtpjvqU4hSoblor9U2M6wpOgzeNHfELYwK8jrSNUlQ9eYbUPiVN071D7MVDrPlpmewNbz6o+6vtirz/xuB//noF2DWrCqLhKD45YijIvX97XYQ4tL0b+EkNFtsDATUebb6DCCSdIq8r1TjsK2C6bN0zWkSVclwGnRnw22j6Y3UPLsrnPyYR6Rfcgkr2EszOHSMhMoj8Ps+0I7b6qDjVvkCnMMVHGYc1zvprhpzFSnPo5VJfZ3+rPvb1TlfcQ+iwefu4VNmBIOB1EFxXLJKMLq8hBWmBVQZvO10RVsLUvFpGUdhUy0a5SMrSQbYdTSj9gr1PTXmn+omXDTF5I8WSHsrdildCTX7rl4YcM15un7ulU4XZtdnNdX3Ra8oV5oqsnsv+u22KGyy1QIGn2YLVbhi0SK7CCkVorRLyP5Irw04gYVMNZOefVZsrD3lqc13SU8+ni6sHIkiWIUatFfTnGTqqoxptjWQsVhfueLDii97BY3YbKeyUikMduKYQtzWtglo4FaWLnC52o98tnIpL/oQvFb6bOTWUlqJVN2Gh7tQ7u4S3IsVmMcWDAidHQXvPsFWpkpCOGSkVt8qr6LTdOcelTW6sr34hUBn5GJD7OxwuyoyFo/GwMlTyrHToozQeq1qUuGp5joPsyJnJinJXGYo22aAnn846LLXAg5CwwWeLuGlTPxve12qLY1tik+9TKmrh2vng9zzfryEFaYVeQuGTrzWwWbkFVAtSHV3TlkIZLcpmH7/H/P21cjX3FtoNau8ikeKBem0+SGJ+aKe352CgNB/miShJULcHX+gqf0C3epa5WkfvLW5+Bvnr9fTYn0KyJdG2xSmLWXl6XkLhmRFdmULhkupNtExV+O6+6MxulXZwEVVlhf6dNTHWxWhZWLcGuyOPnA8D5C1IHtFg4ntKvdfv63Y7nqT+eCU81zP+KP+QLmEMRuo+6GE7UbXjgZkwe7ZCgoTukX0bVl6ynV2tS3mXXODcI/v/QgzJ/q4nPnL8/k6+8tZDuhimXPdbrb2CVjYGHOJk0Tum6m6F5CPJuBS4Z/UgOqaR2y1yIcstei2nkhBmBZCs3+xi4uGXEtzMUFT7FxisMcIFumSVjt9Ce73kBeiLjSpfQiPLb5icPKdUi+liFPP0gd0CVSdMlw0ZgNnmkxprxtO0g1fNjmK8lYk0DGuMAWZgV5265ttlSo0LsvKvuy2nfEhWkP1BvLYHqxkG7QXauCpdTcyVVzPdwK1VK5sPVhtkrdDwo5ujTJ8ujG8vBOTYv+ohKpiJrqk51/ee6SYZsHu/OHM0m2lmwfFzDza30elc4CWJPjbm8YHnMM0ecjM4ak6W4HW2YUBpQIEqU+zBFkvfRpu5XXgIj8T+5K4xglwyCb3U5nEFO+rT7MtoJcq7mNlJqMEQwXbYEtzAryjkKmTByxz2L86C3P9pZR9YdW1sNChXU1QskalmybV1+0RgSJT0Z+P7Z+pU3UF7Sla+VJ3sgdhbzs6bth7x37u8h1Bz7M5XO8dqaynAGofvYl5Hb1zhZmy4fjOtuSCq/nk78MJLZTRVv0VzNqyGcGfOv09FTdfSBEhBNV05b7MA8J9fQ+/7rDAQBnXX2vVFbXYo1BERMf5qlCHGZ70owftlJitatiPnjR3xBWmBuQdSLBBraiS4Yk7JpshbmbaLkDf70DrnpVu3PaG5eWLfCVF4KaD7Mhtrpc/sIzvMwsAZ/uMUlYOcfr/uzwPQafm3yYXTpj03IrprzN/HDdkM/C2yp53bEOK2dtKXWzivrcqs2lYeIwm1/hw6DPjDR3WuszhQiitFSboGzR34Diy6aj7Op10rByovDcAlj/y/LlF3Q6ti/sQ8t0lec+aafS96kuFaJk2NWzlC4Zdm0zrHyTF4+5DCvMDdTcyAJ1kIC5hbkch9m1g5TIj9gLvODAXevyJfJiR8nwTsfhXBfRC6fttgh3vb+igaWr8GH2qRbGizILN7Boq3DxmPN7CvFSW1qIZIHrs0kbZcXi3BDyIsjR+TBHs4pJLMxh13r0/87TLfoLJ26AbNFf2cLsOO4oLqseLz63EMPSio+9tHZsyiMOsw8xx9nAa/4UMlhjzmGFWUFeR2Q7/cVapWwSrMBXdvFyxU7cUag2OudFf6by8igZAx85f/7rNYfhgCds23iei4J1Y7bVtimuCkExTGKeRrWO75nNDBzwhG2wduMWu7Kz9DEHgO0XhlOY83oWYgGdcxxmR5eMFMOS0+CdcLz0VS5MdnDzcsmQHIuycYlk0V/MBYdEqkV/cR9+VaK1D7NF25nqdNwX/TnWy9jll8LV6ZgDdi59n8MuzLzoT0VeDWWdiEpZ8V20YrL4yrV5WEZvi0LR+uga49Z4a+zB/YbTmP/kkN3x5F2bFeYkLhnOFuZhQUx1qXYMAJ79pJ1wxt8+G3/93P3slT/D84r5X7Qw3AYmuaIcYqASji4Zzn7UkaNxlK61OtfHJSNLwyCJEIv+cjpEeP/LDsKrl+5ll6glQsRp79PdDnqi3jaBOEqYymAzmDULPvVfNaBkbS3i7EzfJaPqF94urH2YHcvLRs52C6bxxmcvcRM0YbCFWQEprG9BO8iiDzOhVottBhutGEXrqB7OXwS2znYFDNkxUyUf1RjTpg3Y1kc2ZQCIQZCMBG/9rjKK42/+vGVldPjei53SN6WY/+1DumSQiUuGoR/7wMJsqcg6+5W2k7Yv+pPHdwf+6rn7Ss/3CytnbkDxYegulaYDawwrF1jesMjKMgd9kqHMwfM2OLvbKfgwW5ZrsmHEcsAKXffyerf1vLJq+KbnLMGvb1qFu9ZsCCpv3GALcwOyRbXhKmlhMZ4sPqxksHFtuHkaZZeMcmr5VsWfeNUhjlI08kneF0QLK1dRxFMNPH3hCUQ4yii6ZMQIK+diYQ6pnOfW3UMlsZ8Bu0fj6g/r6mZk+0x9qlnqsHKmidjURKkPs+NLjimy0J+pXTxJ8dmFA7IZM+miPxQU5sA3WU1t0NYcG4+RhbnTGfowt820nJHKwqxiz8UL8d6XHIivnLy0dHyfHbfG7951LHbaZn5YgWMGW5gV5PWwvjV2uA6ytuhPIiv/bXAsckM/fO9FTo2iKV/1Kbj8eByGPszpesa+TNFaSyFQLo/cGqvakt1RgNFpxTr9pF22wfP23wnbB3DNmD/VxZl/+2w8cZdtvNMaxPS1NCtY9w8JrLBDUfYPO0R/Z5JEmGgT9T4zJDKjRgwXiVRK+Nl/91wIAKf+6NqacShFzzlYY5L9tY1yY5PHqdLW2HakHEdsCG/5J5xy9BM1vwcWOGawwqwit1AmWhkn8cioZkWeH9P0JRVdvoikothay1G3KKkPs7WF2daHOSEJOxPXQXq2oB3niuBILMyVwlpgESWkKbuHBbJYu1qYbSuCyF6yrC3MHvXNLkpGuoodSjGJEYd563ld6UJplVHURU5e1jJ3KdlMhK8CM5VtYiSLw1yMCBXPJaOMq/+/STl0u4Qt2VtBSv3X5iXVeqe/wo3vOMetvylgl4wGZKF2tAOoRYUvNg6Zy8Lge9HCbJ68/JpC3m135/NB7ZJhl469ZcDyggBYDWKO+XN9NsVFi1PZ6BS0jCxdZnxIZe2wFeO8uZDbZdEJ4sNskEiI5zl8yfFPK2fhdBedDmUhz6qzgHGeW56mrDkF2Va+koQsrFzxvPBtTe6UYW8IyK4zKJPpgoU5lSnFcbLJPP22dhoTCivMCgYuGdJVyvprXJB1xsN0C0quq4JlYGGO1fkX06/KjrVxySBdz37RpUNKsTOSrYjdtl8AADh4j+0Hx0ZrYfa5ut3kdc/0bkbiw+xxrQ0Dt7JU8hz7FSOUL/2JXDIiNo9ORxFCNZ7IgQzA3fe8unhcR9fDh7mtPdNo9OW2lkZ8WGFWoIySgXAdZNnyq/YlTeuP13iWE6r4mvbxcg1dMgZnp/Rhzv4m6MVcSq16TVdRx1NQVWiSdvyRb9f6Xhx9mF2UQpdHHeLZmGbV99HEbO9SHVbaZ6rPN5dl6lISpuWQwsKcCwvtlkPDDrr4xzus3FuOeSL2V6xfmOrUw8q1Tvez3Oov9aYic92gzT7MDdQGGLv6bAyBlI235MPsk34Fmb9g6TwnHzyz466L/qyjZIzCJSNFWLkAHeUwSoZ3UgP8LMzxSTG+WFvJ8g8pC8XKiTm8C4D0HG8pyPrnOAXZf+mXzTjGszCXZuUiandSH2YUnomzm5H8QlVyrm0nl/PuEw7Eu084UHruVJekM8ZWgiJj7ZLhczFjDVuYJVx3z1qs3bhF+ptAuA6y2EER1TtEWf13WhSjuKR+OHaLkyz660hGBqMU9Oh8AGMRz99PIitAGqbWfas613DuS572BACT7Xvnem+2l6X24fZeP2FyvmeDFUBjQbr23yS1aYhA27CXU9a5lFHpPH/ZgDysXHWNTUhUO7/6PJsmpjqELY5bY7dVF3Wd7W5r1I+2wxZmCW/+1uWDz/WKFSfuJkFuzQYCKehU+lNKv/Q10iBcXfTn6rdp68M8qR1DiCphojBbP5+G3z/96sPwwT/ZnHwqMSXjcGs2WQyy6M9AYpjdGeMZ6pUuGSorqsP9UK2fTtN/NS36S4X1InCLmcqpbnFr7HaqzGOx6G8yh1Qj2MIsYc/FCwefZXUjZBih4rV1fVnU0nXxN1VdIXVZM73Ykur9OS/yMMyQpeE6KGmUQX8ZKRYnVpk31cEu2y1ILjcl1s/f8cU41dNLtTV2CGKvWZCGlYswimpdymIYbEix018kkdVZi/y52a9pMafow5xy5iPgBN3IGQdjQEyMmjoRrSCia4noKiK6rPLbPxKRIKKdsu9ERJ8louVEdA0RHV4492QiujX7d3LYWwnHnou3GnyWhXoL5SNXTJog94/r/1aW74LcOqJPzOUu1Qtg5D9EU2xHsKBtGEPV/Bpnn/REFmZb2t7hp8DaLz9xJAkguQuzMSFmhJr6Z9fbIVkko0g+07KXWWnc/IDydHH5g+/0V1vUUpbnnZ6EbofS7/QXue3suI3/Zk+MOTbvxscKIQ4VQgz2TCSivQAcD+CuwnkvBrB/9u8UAF/Mzt0BwAcAPBPAkQA+QESL/bIfB52FOahFoeIjpvDISBclI6IsoDwYDnZRiyRwkOoI1niMh33ZflctxgzXOm19mUuUDOsrwtS1uLMuxX4lXh8mc5vrr2lRn+8sS2NICBKHufK9I7Ewi8J5sXuKXLJ9XP7hsr8mprodzPQEhBAtdtWzy9du2y/E+f90DJ657w6R8lOnrSWXAl/V7z8BvAvlMjwRwDdFn4sBLCKi3QC8CMAyIcQaIcTDAJYBOMFTfhS0O+bEsjDL3vAH3/092kwHrHgrzFUKejx5gH/jtimPlPpnCFmdGBbm4CmGJ3YeXf2+k8RhtvApHsjxqiZ2pe37bEz0IOdFmYo+LEoc5oZ8DD+HkS1b9FeVFZJquoOtsR37JNNFf0B/b4V2ejC7Wb733WlrTHfTeNem3PWzjZiWsgBwHhFdTkSnAAARnQjgHiHE1ZVz9wBwd+H7yuyY6ngJIjqFiC4jostWr15tmL2wLJgaFkv1TTTswjhRe4MvWWHz3wryfF+MdWn5JN2Ur6p1ZujD7CFUK4+M8hVWZp+QYdrUshy1MglbzTPflrpRTGstN31syi2k+5NeUH5dusHIziXDw4fZYlFWCOVMxIr7CQCoGzVEpEXgeaLJPAdki/4qM6BB5Q3657JQ65cPm/pVvsRJDjO3MY2S8VwhxD1EtAuAZUR0E4D3ou+OERQhxJcBfBkAli5dOpJqumBar0CoGrXtgGcatqfkw+zYcqU+zDJ/PE/rhfKKahihpvM9GVqY01ehFBJDDWD/+epDcOheo/eMcrmfVAqmvauE3enOFmaH2x9FewASz77ESpcAWWgh5XjgkZGORruLcX/yOMxi0Masx7amE6oWZskCdxs5NluvCwHrTjqZhXnC5EwaRhZmIcQ92d9VAM4E8HwA+wK4mohWANgTwBVE9AQA9wDYq3D5ntkx1fHWMb9kYa7+KqJ0WIM3btlvhc7Azeolv0i+yMMlfZdcZD7MnWIvFo6hxT5oslo+/7r++taF0/Gnx0I9p1cctif23WnrMIkxY0Mq/XX4Ymwo0aG9Fi8xCSvneu+2Psw+SDeaUuQpBLKwcsXZVOd7tLzO2f/f5JyB1d7ltdF9IEmnBLMaHJvGkZ2ItiaibfPP6FuVLxVC7CKEWCKEWIK+e8XhQoj7AZwF4A1ZtIyjAKwVQtwH4BcAjieixdliv+OzY61jvsbCLBDHjWDQT5TqfLgGIOuHTJTJUDnoDzblxTmA+xRco7xAPsw2HHPALnjyrtsksXy2NY4xd9ku5NY1u2c6Tv6EJrcW4n76LhIR12FILb4RfJg1M2Qx7k+26A+IaK3P/uYSXX2Yhxue2F1j6zrmvHbIYdbZpcytq4Sru9n4dDlRMHHJ2BXAmVkjnQLwHSHEuZrzzwHwEgDLAWwA8CYAEEKsIaKPALg0O+/DQog1rhmPScmHuWoXFeE6rNKiP9nvEv8sFx9R0ytEYQoOCNs4aos8sr+dwVt/WFQ+crGxHzzDudjEwiaHLXdhbiWu28T70NaBL82iP1crZj2snBDqnf58FGnplRFnBPNF50KUZ1DjLfqTJ+xuYTZ3yQAc6lmifo2txO2mUWEWQtwO4JCGc5YUPgsAb1WcdxqA0+yymJ6ihTmq24LEh1nuklG4xHMhUrFjkSmTMUMyFYm96C8XOAoFLkWnl8rCbC+FO3xX0vgwpyX9or94KC3MEZqizJDg6udbRFU+Tetywi/6KzM0oNilY1MmxYXgtuNCsnaTTDFnXOCd/iQsmC5amOvo3madp24kPhky/7+QK3xjNBqdIpfSZ9o7WY8pqxRKeksNhGxhhvsCKdvrfOpAaneOZBZtEV6WboFy30UvihNzWbjkJ6/kK3mWLSVJ2pRdXfQsKLq5tNuS29bevU+bSy42rDBLmD+ltjBrp+A83HGl10r8s5wtzBIB6rjP4anukpVbt+P5Gw6tCX7p2F+TokNp65R622lzuSXJW+LRzmZjCcDfhUoYLMr2KeZal6lz0bP0q3W5NNSLT774urqEJr+10C9YdRe9yiJwUyx8mAfvIC3W+FqcNQBtV+XjwwqzhAUNUQ7CDWzD5iGLGyxrPL7re8t+XPoFJSEbR3/RX/147J3+UlsSpBvQxJATXwSTCFcfZq+mk9DiC9gpNF7iYr/0R54lq25FnWpWbpimkB6PFYe5KtVVjE1YuYfWbcbjW3pW6XvVq7ZrwYwxrDBLKFmYJcHQ4uz0pz4vRGcle7sOunFJw9XqRX8eQg3kpbYmxFnCKJFjWSlSFUObrTdtJ4WF2eXxhOx/mvBe9IfmtuHnA1zPYYw+rCNRYJvWt/jJkxlsinGY41DtL2wNKDb1Jb+Xr1xwu5UMe0kFmbYGc+4/Ww0rzBJKPswSt4VOqFIrLvqrHxp8Ky/U8xO507bzZOJr+dCdo0PXQch3+oujYo4irFxRbnQ5acRY4/XSNUcHC1u3hZzgURhGjGvbKdWbqBbmevr9qBKqBXOesuriAqQsp6OQ59yfNTyHmkXbcxG4yWVD9xJ70nVN7e4E2xrONBWmO/3NKYoW5iq5ChsCFwuzs49flsZrnrE3tp43hYtvfwi/vHGVVlbIxlENyRRixbeOocUkfQdkI9I5e63ttxwtMRY31O4hxQELt4VxY/AqkOjmom1VjWxBr+R4lLj8svYQseJLDRdFg45ruDdL927XdUCT0nYmrm+bMNjCLKEYPF2mcIVa9Fe6Vrazk6T1+DaoTofw8sP2yBZXJGyelNaHOae6e1VsVINqcDkt1ZhTFne6QdLS8hvRSuZ3QeHSxBqGsUuGZwUy2/jBcWEZqDYemLiAuGAaZjQ2A5/q4Anr5RlTeDaNIiv+4a2EfaVbDSvMCi5497HS4/0OMry8+HGYqfK9jlAcD0HN1aPikhFcniRMXwpkg2oUOW3t88eg0x6DLBrhVAUcbt7n5cxmJ7YQikzIGcAqspdhIdT35mVAkQwIQeptUyIKebH6m1p0EGt92Xymsq1dZhHnCceUA8KkdKAOsMKsYNftFgCQ+TCLYEqeVK+SdFjlOMzhaqt8BbbfvemulrkaRlv0l8txXNjoWs7pLMzpsHIxiZeNILRx0EzttgCkLwfTW/Pt30xe+n1mAGLPklHlr+4cwONeqPo9vB+2Vr7S79vR9cPknLReLgUZ7esV25ej8YAVZgUq+2RYK+wwdV2nG2SVeq2DbG40ITvL2oKZgeUpnjWoIMY9HYfzk4SVS6XxtNaUPXlY1zWHZ9PGwTvH/v4lB818Mpzox5KviIPGRc9nUaZ2xjGCC0hDPkLLDBU1aVA+LbUw28psb+tkAFaYlejjYAayMJfSzI4VBMris7ooY9ItsGWuA/HGGuWiv3gWZvXzi4pkUI0ippW20rkb6cIHG7eFUKSSNZgyT1RfI+rL8nSFiKTAqpzmYiNKn9o6EzHAwoc53xSl1TYAjw7U6kruqJ1ghVnB0MJcWeSh8VlzXUzSdGVR3pN22cZOhiJ9lYU5SGgng3SHSkJsC3NqH+ZEclrb6XNH7IrtM/WpAjaygtQ1U5cMzwgzJmtMfG5HvujPI0EFsjjMOWWXjDDCVXHrSxtZBbzP2gyuyA0oji4ZLbUw2zIOQZPmcg/PCrMCbZi3KGHlqHZMFp/1FYftgemuv3yZ64C0Idi2Dk3Byf3/7OSYZkflw5yCubzoby53pjn2RjI3K6xLHUj9fKx2MQxQp2Ms+itO+0uNDCp/XI9syBTYqLsYWh73lhd4ltasfrW00xwj5noRssLcgFbJC4hpHGYiwtP22N47/f42r/Lu3yRPLvLli/4iW5gTawhtDXWWDNaY3UnpkpG4/pgqSDbVR+XD3CTJK+yfxMgQx62sbkAZ/ELVsyJRtTYHTFrtw2w7S5tHyWi+jgZ/W9p3Mq2HFWYFMosv0OSS4SFPdtDGOuNASJeMJqo+02LQ0eV5Ca1p5c/PMUyGh9SJWvRniXtYpKDZGCusrLAFnMqsxS80IRQZ0U8oCv1Ff/X+JMZLf+qomDKFM4S7ie3lrov+TC4bLmC0k+ELuwtPDqwwNyHZGztKWDmFgh6KWhxmkgmrSw+Vn2AWBUt56S3MkkE1hpzoEiaTNm9akDSsnI0Pcwh5AdIwIfaiv7obm3pnQZd85GnJ+sWhcuh+h019k95jOhwql7mOo7nezIc5fdtva3fDhg03WGHWIA1UDwTsQ4apy3x5Bx0kVZVduwyo/O70Dhn1byborhCSL9EU5iipmslNoaTH3iHRFbamuGNtYXao5cl9mLO/xtXVJQqQ5eXOsX4pbtSkUprZ30aXDB/3EkWaQ+JuMy49HkdcSaaTjJb3ay7PqZ0jSLthhVmDqkKplBVr96uSLPXFQSw8NR9mRbi5iK1ISF4GooWV04QFtEvIVq6nvJbJsaflI4sF7pvXuL3QtveZemAR9ivE/QsRUcmrhsbM3cpiyJL6Z0cQlMuzPB5NomvbMalfbiIYZgArzA3UpuAiTfnJfHmDxWeVWUUkh6Ouwq7FJzZfrOEkbyAlvQKXxIcZaVRT26eTsrRTjXvRB1gLpbLIOA38pnlN4s7kapVVWJjVBhT3B2R6aWw3g/h1TBT+dzCgWDgxj1N7YdoJK8waVP6oMXyYdSmG6BTlFuY4sqTyK99z2fEszGU5qahaoZpw9yVrZ+/PLhn2DMLKJXykqeqPTVsIkSOBuEpkyf0jYh82nCErGFDCiykKrMmIa0BBTR7g5y7TeE6Wdlv7zpQ4jztz3JGDFWYNtos8vGRJOhDVQBrC6qd6GfD1j9NeI+n8XRd5NNGRDABJULyIMC2ipc8nlQprS4j+Lu69lWfl4vndlhMO6UpT2zCkIqOcD395tTSVxxOtMXF8+bCJkpGfNLdVPsYHVpg1yBb9AZFcMiDRmANLUH+LLBr1soxtYc5vsJdYe03mKpFKEBMdYTXqD/Ga8ne+0g7be/NtriabBvkonOV1GHq3MhcxQz9bs6uDK8+VdSapjbH28sxd+0alKLfRdY7HDjdYYdZQfbsexg4O00GW6qxGg43VaclXfMeRJbPW9+XFsQQPLDTJw8ohSWfU1qkxn1ufvD7c7o5SPNNRzX6kWvTXlxWHWk8VMdJPbBe9WpoGa/BsXtCaqplyDLVd9Dfw/29mFK4Ybe2n/Zi8ntoUVpgbiKpUFhLXWXxDNPRaEkrrec3b2Ch92w4yf/mIF4dZN6kZD1sfZmc5be2HHTWy1t6PA663YlsGPkXWVsuhb8sRBsJChZWLGd1k4FJWKpB4/Yq0TIS/wtdkXFK5otjLMThHKmTuKn8uTFI/7QIrzDqoErUi+xts0V/hs7yDHGQjOCTTmAN0XroOVlaWkT0ynC1q7ovxHC+0lZNGjDU8/LjT1meaykrWdmuctVuZx+0M+xF91KToL2fR/MHL313HVquwcgMf5nbXM6a9sMKsgYDyDJzF9I+1LEkH2XyuRfqSNKqWUCE7MRAql4zoO/35puNQILw1NmPDKF7OUikNcV+M0zYCAlWiVojB8fCyNL9FuG1ZmqNoyz4h/2KlPS5w3xsfVpg1qBb9hYrsUExbHiWj/FtIlD7F1QOBWmFtOjOyf3Y+iI3ChznNor+W9v7ca9szaAt2z3QcdvqzvTeTRXveeChlqaJWDNaAN/q6hRVbNaLEmwGUu/5ZW5gtqsswrJyViLEg5Xgwl7t4Vpg1qBb9Kc+3rbOF5FQ+ZMrfLJHGYba8RktjK6qUZaWDDD1ODuMwj8CHOYHM1H2+6T2NQ2fatjyOJg5zGjk29+YaISEVVSPD0CVD76drJSNLS6c4prRoR9tYSpFsCguziwivxcwTFGd0At81rGCFuQFZZY/hw2wTh9lHzkCeQrHz7SB1l8vWr3Qsa6Bp3zPwYbZL3ptUFmbbnsu1z26jNcZn/Gnj/eTYZs3PJSONHFt5To/W8iLn26HybqUxZ8lk/VfMfkV+DyK6ghRKl2yrX3Jb+5vJUeHTwgqzhpSromtCivkIkGy1Q5ErdvE6yH5ZxltAWReYyRlBz5BmVrmdPXFKa0pbF1ja5itJv5LLGlVYORMLoH2qDjlxp29hjmdAKcnSWZhLi/7Cyq4q6MlmIhqs9Zorjc9srRvbuDGHtW1WmDUQ5KuigzW7Ylg5SWMe/Fp1pwhgXlT6MFeSDtU2ah5rTSvMveVlrh6pp20Tdcrc908QqobegE8VSOeSMTnU+0b9DKDXxjKJ27d04ywR0Yc5kEuGjZU/P6V47qR4S6TyZprrLx2sMGsgoqiRHUouGZoTYvgwy3qY6q3ayG1STGMMKkbyRmFhTiCjrd3WhIw/SUlpYU6O5ctAmggzgfpvx8WaJuSGBOlC6cJ5rrMZNQz6Z8vleNpfVWOL69hqchWHlWN8YYVZQ80qGnFxzmDxmywfMX3kKj4nvqJ018u2lY0WVm4gxxHXN3AgyajfWuXKudzaekPpSOnDnOqVy+plwPGGUr2kqWblQsyS1Q0O6h4sTNtvTiREudpKsS3LYf1qvpD7GMYXVpgbKG220WBRsG2QskV/0g7SKlU5Bgbm7HgsBZakZRnNJSNQ9A3b4rBe9DdhCiZbmF3IX8StVWYHSaN5Qslqq8HtueaFSN6HqdqiU7x8Kv9N+TJgc9xbXuX+bBRfaXpWMtO2gXb2ie65auf9pIEVZh2k8PMNlX4h7aHFV/pzKDEFeXWLduxV2KPZuGS0oaeiyWmnvoy53Z32sX5xDr02woDkPrJGFsBAsgKlI0tXPksWXpa+X3R1k3AgmkEjjDgXH+Zewi4qaTNLsth8bsMKs4bYC9XkFua6wNpg42S5oMp3xXkG57hQWzBT7egCN3aZD2AKqlaomHLaSNsX0bS02AC4zWZYk/z5tLxCWKCKmhQlSkYuQ6Kgx0A1I5d6JsvZh9nkhSw7pdf2TsqBYL7sjBZWmDX0F/0VQ6G5Tp0aSctkDBGlXyKhcp1zxDQOc2wf5vxGUneOySzM2V/u+MafYTtPp5ykkuRiPY8dmtA57J/CrUy5YM46Z4VrNReXwsoF6j/l9hoR7QVTtRNr3M1rwrjpxWKSNjiZVFhh1qBqvOGm4Iph5WqHGvPhg2mS4cLKVV8+suORp/xSd0HJYgNHHVjc4S7fAYtp5SKplN4QSpnRlHmLrf8AlC56cSzMoyqM8g3G9mE2Pa7CSl0ezDpyL8W4wQpzAyWraIOW5xpDElC84Q9+8+u2dJE3dKHkgnaW1cVwA/eWumU9kLiSnJRM0sYlbV1cOEmMYvhO5dIzCut5E86L/lAdD4Q2vRBxmKOuoZHIS4XK3dG6zCwaTz7WzPbsRDAF2tOMRwIrzBpU0+txOixJqoopPxf5NTdohUnbteNs6rdqHaSnvCYGPnnpbcxp4jC3tOOaKONNcv932/PtK8GoHo/ZoqyWVuoMqmrMGZ0Io6h8TYvkPNuEFRUglMXXF+tFfw5pp3bTSyVukrretsIKs4ZaGKHsb4yNSwaL1KT5CChId1qAlq0d9CTm+uhxmEeg9NiUo2v22qpaeL2gWF+ayMoe3Vcit1TaXejlI+txrRUJ2l+qNq4OjRmuNGnwt27Q8A29VpKjSKK6hibWS4xqhjPempYRGRmSCW3riDBZsMKsoWphHkzBxfApNjcwu6VfSSVUWB9j+SS3vMb2kfOOwxz5fFfaamGeuDeABNiExhoFPtlyqQ6x9V/nWL+Vy2xn1VxkNfWZoeqMVDEW1QWG5uk197thZzhNmOQoGaloaReVDCOFmYhWENG1RHQVEV2WHfsEEd1ERNcQ0ZlEtKhw/nuIaDkR3UxELyocPyE7tpyITg1+N4GJveiv7MOcr+CtN+YY/oYmq5RDyu2/fKTrqGRxpmXfg8tVLAwKL2eud11utHnaP0lYuQDXxpLX2iot6lbl7BuAOFbRmJZWUwT8n4m5q4dbWdq5ZPTTZoWZ3TdcsbEwHyuEOFQIsTT7vgzAwUKIpwO4BcB7AICIDgJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bquRLfpT7uzkk7r04nDVuu7DHCzpPg1ZVVlnVL7UajFm541qRXSbFbIUcEfcbtLrCg7uJim9eiwgUowHEWccpWtoYsqr/xJemC4fthc4ODGzvsy44uySIYQ4Twgxk329GMCe2ecTAZwuhNgkhLgDwHIAR2b/lgshbhdCbAZwenZuiyFpoPpQHVax3crURlUM01jGhyA+a4YuzAanB2EUfWOajUuii2AS4RpJYuIszPGz4SVHGRpTZUDxeT6SY/IF6OPZEQxynd2Ta5QMm752uOjPSsRYYF3XfMog4ZqotmGqMAsA5xHR5UR0iuT3vwLw8+zzHgDuLvy2MjumOl6CiE4hosuI6LLVq1cbZi8O/UpY15iDTYcXDcyaNEOIM02iJitQna/6g8cmlA+zi9xbHliH2V7c2EXW2y9HygcTjpRKrE398cnXJI2ZVQtz8bgvKtc4uZEhYkXRuOiFRDXexfVhrrs9TlD1TMJcdwU0VZifK4Q4HH13ircS0dH5D0T0zwBmAHw7RIaEEF8WQiwVQizdeeedQyTpTF13zP2s4svqy8t/8xNo3ClE7D1UW0bH2mBEtso8BdesXAsAuDb7G4s53m+1Gtd47PYLTF2cwEajIrSqvrb5BSArKGNXtVCL/lQKbJjklSSNkpH9ZR9mxhUjhVkIcU/2dxWAM9F3rwARvRHAywC8Tgxf2+4BsFfh8j2zY6rjrSaVS4auowhiYTZIw2eRh+uK8ehhixL3jQ+t3wQAWLdppuHMHLcMptY/eIiJj3Xb8wrD4HGtBTYv/a1SqiWoIv1ornCXlX8ojT/+UZpU+VcZbKJZmBXHbY1RNv37KMaElldpxpJGhZmItiaibfPPAI4HcB0RnQDgXQD+VAixoXDJWQBOIqL5RLQvgP0B/BHApQD2J6J9iWge+gsDzwp7O2GpRTxoWPRXOMVJFlCZLgrVsKW+b8qcNF2qRddBjMQlw/F61+tyT4zYU1eplIu2KzFutEv9FwW1clKxCkkWLxte9D300uRuuPFSpPRNThIiuUEjqkvGIEpGPBmjxfzGfGaaRjVL1QamDM7ZFcCZWQOeAvAdIcS5RLQcwHwAy7LfLhZCvFkIcT0RfR/ADei7arxVCDELAET0NgC/ANAFcJoQ4vrgdxSQWqD6/LiiUVsvWGgKkqGQ59KJuShwQTuv6stHZFRh86zTsSyEmUxjjuG2U2RcF/uMmja/AKT1YU6DjbtJKv9I17aj8mGOgfOaE1d5CgNDPAuz3DBjv+jPQqbEKDUptH3B7KTQqDALIW4HcIjk+JM013wUwEclx88BcI5lHkdGPaZuPiUWqtrUNWapPO9qarGSOHEHGYvhzolpO8fcejEpFuaUmD6pVM80Wc1x9GF2EuVwUyHyNQn11Xbhss895y56ycLKmbjMJKih1hJsnof9JYwH/ahbkwXv9Kehtugva2nBNi4pyYrswxz4PGv5aifmPoF7seGuTmHTNaUNGw+MEy6llcwtJfL5rtY1H9q92j1uo3W99bTPR3LQyrXOnxAKj23IPfuNS+w1Zl70x7jCCnMDEhfmKG/asn4iVLvWJRM8OoWmw1NNhcUZh3ILTSgrvaX02C4ZrVZ4GBdSrvlLRQr/7JTqT+zZjZqRRnZOjJ1fA7kZxspHkLRlPsyJKs+kuIHM9WGHFWYNRCRVWoP5p0p8mOVxNwNQ9YOWKeiV4yEbB6Fyb5H7j1E37NgW5phTl0xaYu4YpyJ18xh1ewyBtUuGjyxF/xyftDGKcxnD2dt4FWUUPsyTUO+dmcAxhxXmBkqL/gIPbCWXDEmiqqnaFG/hwdNVLPqLF4c5S3dkLhlm57lmL/aiQlcmxJAyEtq6kDOEldFs0Z+3GJi0KHeXmXT1e6g41gUW8x/KAiztL0XENS0jqOqjHhNiMqcV84SwwqyBKmbRmNOLOgUoyKIbk1R8epKGS7U+2u5S1WkOwjKNpndkl4z20rbxMkR8XVu4+thB2f/RZgCraUoXgcdD6ZIRzYAifyFw3fTHRib7MDOusMKsodZ4Yy76k3SQI5mqLbpkuISv0/yWUnmtWROszUp+eY3ukpFa4ZmQMWaS9ESXl6YJeYxeuC/6s5vO92mjsr5XFtbUVYRp3Um9cUnMWZbhQnBuBa60dRYsFawwNxC1aZUarmYKLsSUqGESsZqDbjoz5iIW7zjMzvJb5sPccjmThPWzH4kPc/uerG2ekvthp5SlcVWL8+zyGbnEeG5cYhWHOb9mjuvLqXy4J7GYWWHWQKColUtqYVaeUT/XRc4gDY0FIwaqoP+xDL80qgEgI3rD4jn1iSFpWDmXOMyJq5ppG0/dtlP6MJuGlYspL2Yc3fp453pz9hb/Sd3pb66/CKSAFWYNtjs7+U3B1QlZ/02zVh+0zXLR7G6RdtStrohOHxVgMizMTDpGYcFsE+niarsJqu78GkNOXgaDaxs2LgleZrpFfxaymkeDMBm3UxIzI0rKKBmJWnXKGaO5rJezwqyBkNKiELHCO96DS5Z015T8s4vX2IsxZlSNO/6iv7jpp4YXMaZ5pskXwSYRl+aeRmFhLuuv8YTLq57wbpfq+M5VSfGJFZEpFG3NV5G53k2zwqwh6c5O2d9qWJ9g6ZsEyQgnTiFf7Z8dPKyc2iU8CcYLQ11fZtjG7E7LRibX7PjUgEmYcXFfX5D2OidZhr/F7AdiumQUZaS6Pr8Xl0V/7O7AAKwwNxKrnVSnhdQ+ZLHC+sgyFXdVtHrRXwR5Iw8r164oGRPV33vcTCst2fmiv5RqrIUoXmA6JJWL3iDKTiJNTdkuUkXJSHCbw7By8WW1Ge/bn8Plxwqzhr6Sl6Z22IQhcwv3ZhhGqHJeqLtPraeMekV063b6m0CSKXKWgqwXsiaMwzwOlrK2ZjH2IvCSLKlLxiAjHigWkvsk6YJEoNMLo00c5vyScWgElrTTDjB55cwKsw5VZAeto65Z0qrTan6+ARqCa8V1EW1eNHEbU3XAsVdiwsiPRRs7yD6T10mmIumivxa+cjnXacXaiOByKuNBSL2rmpQuyk/x2Tm7l1jmIzbxY2QUF4I7CvOgVb1iqzIzXrDCrEHhdqs5330ZsdJFwjxFLcZxmKNNwcmtM4Q4nXJu4fWOw+yYtdhbV7dR4WHccLUctvelaTJRjQchvRkG7VoxHsRC6RIYcTwYCGnIhx77qCUpNy7hNjpZsMKsIaa/o/pNvhiZMn7Druej4QRHbEP0ecvL/o5qV6foCi13xJPDCHyY5/ZAbnfzxTjZqXoT3Qt3nDUfkoMBDTYqeUnHhEzmXN/pL9lCywksZlaYG0jlhxO7AzHp+GrKs0XPbBuFudZnBQ+TESfZttBW/13GndaWtUfG7KIYtLUA+tiuafExuAwWLY9YuUu9NXZMJn7jkgQyWrloOiGsMGvQRXbwpaqI20zrRauzAaJk6AY9WVlS3ycjOMMpP1cv5jQ4hxSb4x2XD7EHFtcIJml9mNMSU14q/SflLJmuvGKUparfbmvkFrfk2/ESEgMeDtLACrOGqIHqq75bg8Zcy0UYeUYtyj9QvVq8foV5aEt+24PU+zJp/WMyi3kiOVbku1EmGPXa3B6S7fTnsVBulFtjyxegh5Vb7KNrRp2AcgZ1PZOXxjra/zupFmYmPqwwa7DeCtWjR5F2kCNo2DXXiYBpq9KKYzHJZLbbwOwMWxQmB9cq6mP94xkKe/o+zNGmHEsMFi0r8hEc1QxnQpeM2DVyqKOzxsy4wQqzhpjbd1bT6qgsoqEMzAYZaVwAqKOhcJLHYR6RD+BJz9griRzWdyaPJM/UoTmkrmrRXWYSX2clQydEGmXIcgGjonBVqcS+Z1H7EI9hlIz4smq0SEf3eemb68MOK8wNSP1uo0iSRcnwl6VSGGPt7KTv8GXi0pRmqob+1mOflERO2xdIMeYM6yhHyWglRaPCCBWfkH2Z6vnXDTaxXPSiJGskM6URJaTRiRk9rDA3EM2F2TAOcyiM4zBHU2DVIZlihknyjsPcUsWUFZ74JBtXE77VjcXuW6ZZHMHKRZs6Ec2dIUp/mbYwqxuzDHa7jPhQ6yYpG9rdbnz2gIhFu0vMDVaYNfQXqiWSlX8ouUhMTpXrL6AsW8+jyqt0yJMG+6CmKwPbQdx10LfegttnzYT7pdGwfp6Ojdt90V/7Si1UE0h+ZyO0MPcSjkOtxuEZzPVhhxVmDbYql01dqoeVU0gL1iE2J1Tb2SngS6vSRy5WA5zwBR5t7bcms7Tj0vZ1qSHaaLKBNmIFbIuy0EbFfVTYde+ZD3MvSlaYOQArzBpSdpCxFl3Yjh8xb1kdJSO81LYMbrFIfX8Towi3sl6kCyuXM0nto77hkv788P2NPL3gId+MJduTflG25FgimXN9pz/GHVaYG0gdd7MoT7mi2aF3q14iTSGydUZXlqHLuRZWbsJIZWVK6/oxoQ+rgbyOtjRIRjKs73+ilH75k5H2X1GiyoVNtKnflbkgxmaCqoucNjfuCYEVZg0pd3bqKBQT70ZueQPFbITsYHQxTGMuYpkkP/Aik2QhBCbvflxIG1auzQU+mW3WhPypxF4ErkKn6LrUT2UwphE0+FxmSgtzsttMtOZvrvfTrDBrIOh3p4tBLGmm9Tx2mLdU1CzMc7yhM5OHT5W2GfjSzWYkEZNOTqy+tGjUCHQzo1KEygaNuJnIU+ed/tIwibO7rDBrUFmYY4ZBKxKivtmkEcIaq+vAQzQg0yR0O2WFlMMwVVyDPaRQTLlejz8haom6rsXbDluXbgrlinf6Y3xhhVmDbWfhtzW2LEqkCKadq5OpRuvQ/uyRgcqdidJPwQm2wIMt00wi2rDIODQuzS+2PuNz76NUtqIu+guUjrE8mUCK2wYGoUYnVF9OHTZ+LsIKcwMjjcMs5B1ZEAuDyresdE643ouqGnNDPkKRckGVC3O582H6TOoAXsTEet7WNpqT0oCiTzfKqr+JZ5KjZNg8Pp/bn+shDVlh1kHq3ekiiAIQ0Yc5uvlKn3Od+Bh5m+uLExg5ba4W1nU2yIwWMz7EH43SGYjqLnPJZj0SyRm1TCY8rDBrIKSbgpO9uYXxYfYIk+GA7uqUESuG02/cVU0ak/dE428LXJVlQ7rFeJMYKtGOPGu6ulCeBQwkN/GrZDXfKdq0j4XZNX82dW1s+rU5PKaywqwhqU9hZAuzKXUX5jA56r98qH8Pfd+yuNbMZJEsYlMqt6EJ9GFOTcrm3tQ3hi7jmH1Zi98hgjEIK8c7/TkzF+qJDlaYNdj7rFm8TVY6P1XczdhxmPN8yCyxYeMwqxatxLFtVJdQzvF2HoAE08HRJbSbJPblMSjkMchiiVHuktdma7kJKevjMNTouNWw8WQS90BghbkBk533QjBQG2v7vErOdegjjXb6c0wbMNnZKfWU32SviLYtzbaXw3gP+34MXurm+NbYbczTpKHqBuph3mQGFPsHpLomWjQmXV5aMosbAzvXj0ksgTSwwqxBtTtdzDjMo67KvoqtrmzKnXD1Tg3v3PC0oYXZsURH/SCYOYf9mr9EPr9JpHiQsK3aiAr9AhQyXrcqazV7TaxIHyOoVbnMSYySwaSBFWYNTX63oWXFTV8vIfYGLdpNYGK+gPiGYR5tcBEmBi0r89H4MI92kZf0HNs0nXLiXs4xn4+dIh5e/qhdO3LDRsxcDBf9RRSipGWdjiOtf3mODCvMGohcFC63hkGhNLwKxqlFHrQbXz4C9ycDl4y4YpgxY9SKgY4UeZuk+j+JGzXkLzKj9ItOKi9hXLmhD3NcOczkwgqzBlsrjE97l/UfITHtEKP1WZoMRO0nR2G+Y+Y09lUt/Qg+l5vDpLmyjOOzjD3e6YTO9UV/c/z2vWCFuYFUDvI2nV6I/jGWNct0MErRaFVuIAzTJtxjvKYRlkwhcxQ0V9p43EXn8WWU5EmedSq3xEn0YU75zmRaehNYzGYKMxGtIKJriegqIrosO7YDES0joluzv4uz40REnyWi5UR0DREdXkjn5Oz8W4no5Di3FBAnlwxXUXIXgnDpu1wTrhmqQvpE9VlD+7fGZpg5o/EZYlocc7VNx1x0Psm0ZWH9WDMXKooGGwvzsUKIQ4UQS7PvpwL4lRBifwC/yr4DwIsB7J/9OwXAF4G+gg3gAwCeCeBIAB/Iley2QkjXuCiSrb8tb3mpt8bO063NELSkPBgmJ+1mG+2l5YZsB0ETJSYowzyn3P21T280q/6YCcBHTTsRwDeyz98A8PLC8W+KPhcDWEREuwF4EYBlQog1QoiHASwDcIKH/OiQg8bsPL3qm0BT+oZhhGx/N5bfYEGPcdudhDMEVbhLdiBRoXEc0pYbilr8eJL3JxJ5abZ6issorL0dSWz+yfJnnqR7aSdkUmGI6A4AD6P/RP5bCPFlInpECLEo+50APCyEWEREPwPwMSHEBdlvvwLwbgDHAFgghPjX7Pi/ANgohPhkRdYp6FumAeAAADd73+V4sROAB0ediQmHyzg+XMbx4TKOD5dxfLiM48NlbM4+QoidZT9MGSbwXCHEPUS0C4BlRHRT8UchhCCiIK83QogvA/hyiLTGESK6rOD2wkSAyzg+XMbx4TKOD5dxfLiM48NlHAYjlwwhxD3Z31UAzkTfB/mBzNUC2d9V2en3ANircPme2THVcYZhGIZhGIZpLY0KMxFtTUTb5p8BHA/gOgBnAcgjXZwM4CfZ57MAvCGLlnEUgLVCiPsA/ALA8US0OFvsd3x2jGEYhmEYhmFai4lLxq4AzswiGUwB+I4Q4lwiuhTA94no/wK4E8BfZOefA+AlAJYD2ADgTQAghFhDRB8BcGl23oeFEGuC3cnkMGfdURLCZRwfLuP4cBnHh8s4PlzG8eEyDoDRoj+GYRiGYRiGmavwTn8MwzAMwzAMo4EVZoZhGIZhGIbRwApzYIjoNCJaRUTXNZz3DCKaIaJXFo79OxFdl/17deH4t4no5uz4aUQ0nR1XbkM+ySQu49dlZXstEf2BiA6Jd2ftIWUZ69KaZFKXMREdQ0RXEdH1RPTbOHfVLhL3FdsT0U+J6OqsjN8U787aQ6Qy/mpWjtcQ0Q+JaJvs+Hwi+l425l1CREui3ViLSFzG/4+IbsiO/4qI9ol3Z2OGEIL/BfwH4GgAhwO4TnNOF8Cv0V8g+crs2EvR3/1wCsDW6C+O3C777SXob8VEAL4L4C2F4z/Pjh8F4JJR3/8ElvGzASzOPr+Yyzh8GavSmvR/ievxIgA3ANg7+77LqO9/Asv4vQD+Pfu8M4A1AOaNugzGtIy3K1z7HwBOzT7/LYAvZZ9PAvC9Ud//BJbxsQC2yj6/Za6Usck/tjAHRgjxO/Q7Sh1vB/AjDGNXA8BBAH4nhJgRQqwHcA2yrcOFEOeIDAB/RD+GNaDehnyiSVnGQog/iP5W7gBwMYZlP9EkrseqtCaaxGX8WgBnCCHuys6bE+WcuIwFgG2JiABsk8mdCXYzLSVSGT8KDHYRXojhvs8nAvhG9vmHAI7LzploUpaxEOJ8IcSG7Po5M+aZwApzYohoDwCvAPDFyk9XAziBiLYiop3Qf8vbq3LtNIC/BHBudmgPAHcXTlmZHZvTBC7jIv8XfYv+nCdkGWvSmtMErsdPBrCYiH5DRJcT0Rvi5n48CFzGnwPwFAD3ArgWwDuEEL2I2R8LXMuYiL4G4H4ABwL4r+zwYMwTQswAWAtgx6g3MAYELuMiPOYVMN0amwnHpwG8WwjRK74YCyHOI6JnAPgDgNUALgIwW7n2C+i/Lf4+UV7HlU8jcBkT0bHodx7PjZjvceLTCFfG0rSYoGU8BeAIAMehb026iIguFkLcEvcWWs+nEa6MXwTgKgAvAPBEAMuI6Pe5JW8O82k4lLEQ4k1E1EVfkXs1gK+lzPSY8WkELmMiej2ApQCen+IGxoJR+oNM6j8AS6DwNQJwB4AV2b916E+fvFxy3ncAvKTw/QMAfgygUzj23wBeU/h+M4DdRn3/k1TG2fGnA7gNwJNHfd+TWMamaU3iv4RlfCqADxW+fxXAq0Z9/xNWxmcDeF7h+68BHDnq+x/XMi4cPxrAz7LPvwDwrOzzFIAHke0nMen/UpVx9v2FAG7EHFnrYPqPLcyJEULsm38moq+jX0l/nL3lLRJCPERET0dfSTsvO++v0bdeHCfKU3xnAXgbEZ0O4JkYbkM+pwlZxkS0N4AzAPylYGvcgJBlrEorxX20mcB9xU8AfI6IpgDMQ7+/+M80d9JeApfxXehb8H9PRLsCOADA7WnupL3YlnHmU/tEIcTy7POfArgpS+IsACejbyl9JYBfi0zDm8uELGMiOgx9Y9wJYo6sdTCFFebAENF3ARwDYCciWom+JWIaAIQQX9JcOo1+RwsAjwJ4vej7aAHAl9Dffvyi7PczhBAfhmIb8kkncRm/H30fuS9kx2eEEEtD31PbSFzGc5KUZSyEuJGIzkV/0U8PwFeEENoQVZNA4nr8EQBfJ6Jr0Y+g8W4hxIPBb6plhC5jIuoA+AYRbYd+OV6NfrQGoD8z8r9EtBz9RXAnhb+j9pG4jD+B/qLVH2TX3SWE+NPgNzWG8NbYDMMwDMMwDKOBo2QwDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDDO2ENFpRLSKiBqj/xDR3kR0PhFdSUTXENFLTGSwwswwDMMwDMOMM18HcILhue8D8H0hxGHohyb8gslFrDAzDMMwDMMwY4sQ4nfox+YeQERPJKJziehyIvo9ER2Ynw5gu+zz9gDuNZHBG5cwDMMwDMMwk8aXAbxZCHErET0TfUvyCwB8EP0dD98OYGv0twJvhBVmhmEYhmEYZmIgom0APBvDHQsBYH729zUAvi6E+BQRPQv93SMPrmx1X4MVZoZhGIZhGGaS6AB4RAhxqOS3/4vM31kIcRERLQCwE4BVTQkyDMMwDMMwzEQghHgUwB1E9CoAoD6HZD/fBeC47PhTACwAsLopTRJCRMouwzAMwzAMw8SFiL4L4Bj0LcUPAPgAgF8D+CKA3QBMAzhdCPFhIjoIwP8A2Ab9BYDvEkKc1yiDFWaGYRiGYRiGUcMuGQzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyG/z+p7ZdY2+FbMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 7))\n", + "plt.plot(lc.time, lc.counts)\n", + "bad_time_intervals = list(zip(lc.gti[:-1, 1], lc.gti[1:, 0]))\n", + "for b in bad_time_intervals:\n", + " plt.axvspan(b[0], b[1], color='r', alpha=0.5, zorder=10)\n", + "\n", + "plt.ylim([5000, 6500])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The light curve shows some long-term variability. Let us look at the colors. First of all, let us check that the events contain the energy of each photon. This should be the case, because NuSTAR data, together with XMM and NICER, are very well understood by Stingray and the calibration is done straight away." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 6.24 , 3.4 , 14.4800005, ..., 9.64 , 8.76 ,\n", + " 4.2 ], dtype=float32)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other missions might have all_ev.energy set to None. In which case, one needs to use all_ev.pi and express the energy through the PI channels (See the HENDRICS documentation for more advanced calibration using the rmf files)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we notice that some GTIs do not catch all bad intervals (see how the light curve drops close to GTI borders). We make a more aggressive GTI filtering now:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "new_gti = create_gti_from_condition(lc.time, lc.counts > 5200)\n", + "all_ev.gti = new_gti\n", + "evA.gti = new_gti\n", + "evB.gti = new_gti\n", + "lc.gti = new_gti" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3qklEQVR4nO2dfbgdVXnof+852YSTaHNCPfLIgUi0SBQxCZwCiqWCLaBeIIUKWPsU0F6ut+AVrje3oVoJqIV7U4vYWltKsVpRwmcaiyXgBbWlBkg8iSFASuQr2WgJTYKVHMhJ8t4/9uyTOfvMx5rZM3tm9n5/z5Mn+8yej7VmZq93rfdTVBXDMAzDSENf0Q0wDMMwqosJEcMwDCM1JkQMwzCM1JgQMQzDMFJjQsQwDMNIzbSiG5AHr3vd6/Twww8vuhmGYRiVYu3atS+q6lCSY7pSiBx++OGsWbOm6GYYhmFUChF5Nukxps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBS05XeWYaRlBWjdZat2sTzO8c4ZHCAxacdyaKFw0U3yzBKT64rEREZFJHbReQJEXlcRN4pIp8VkR+LyDoRuVdEDvH2FRH5kohs9r4/xneeC0TkSe/fBXm22eg9VozWueLODdR3jqFAfecYV9y5gRWj9aKbZhilJ2911vXAPao6D5gPPA4sU9V3qOoC4B+Bz3j7vg84wvt3MfAVABE5CLgSOB44DrhSRGbn3G6jh1i2ahNj43snbRsb38uyVZsKapFhVIfchIiIzAJOAv4WQFV3q+pOVf25b7eZQLOgyVnA17XBamBQRN4AnAbcp6rbVXUHcB9wel7tNnqP53eOJdpuGMZ+8lyJzAW2AV8VkVERuVFEZgKIyOdFZAvwYfavRIaBLb7jt3rbwrZPQkQuFpE1IrJm27Zt2ffG6FoOGRxItN0wjP3kKUSmAccAX1HVhcDLwBIAVf2Uqh4G3AxcmsXFVPUGVR1R1ZGhoUSpX4weZ/FpRzJQ65+0baDWz+LTjiyoRYZRHfIUIluBrar6kPf37TSEip+bgXO8z3XgMN93h3rbwrYbRiYsWjjMNWcfzfDgAAIMDw5wzdlHm3eWYTiQm4uvqv5MRLaIyJGqugl4L/CYiByhqk96u50FPOF9XglcKiK30DCiv6SqPxWRVcCf+IzppwJX5NVuozdZtHDYhIZhpCDvOJGPAzeLyAHAU8BFwI0iciSwD3gW+Ji373eA9wObgV3evqjqdhH5LPCIt9/Vqro953YbhmEYDoiqxu9VMUZGRtRSwRuGYSRDRNaq6kiSYyztiWEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqrJ6I0TVYTRDD6DwmRIyuoFkTpJnSvVkTBDBBYhg5YuosoyuwmiCGUQwmRIyuwGqCGEYxmBAxugKrCWIYxWBCxOgKrCaIYRSDGdaNrqBpPDfvLMPoLCZEjK7BaoIYRucxIWIYXYTFyhidxoSIYXQJFitjFIEJEcMoCe2uIqJiZUyIGHlhQqRHMbVHuchiFWGxMkYRmItvD9IcsOo7x1D2D1grRutFN61nySLi3mJljCIwIdKDWIqQ8pHFKsJiZYwiMCHSg5jao3xksYpYtHCYa84+muHBAQQYHhzgmrOPNjWlkSu52kREZBC4EXg7oMBHgLOBM4DdwE+Ai1R1p7f/FcBHgb3A/1DVVd7204HrgX7gRlW9Ns92dzuHDA5QDxAYpvYojsWnHTnJJgLpVhEWK2N0mrxXItcD96jqPGA+8DhwH/B2VX0H8G/AFQAi8jbgfOAo4HTgL0WkX0T6gS8D7wPeBnzI29dISZnVHitG65x47f3MXXI3J157f8/YaWwVYVSV3FYiIjILOAm4EEBVd9NYfdzr22018Nve57OAW1T1VeBpEdkMHOd9t1lVn/LOe4u372N5tb3bKWuKkLLFOXTag81WEUYVyVOdNRfYBnxVROYDa4FPqOrLvn0+Aiz3Pg/TECpNtnrbALa0bD++9WIicjFwMcCcOXOyaH9XU8YBq0xxDmUTaIZRVvJUZ00DjgG+oqoLgZeBJc0vReRTwB7g5iwupqo3qOqIqo4MDQ1lcUqjw5TJ4G8ebIbhRp5CZCuwVVUf8v6+nYZQQUQuBP4L8GFVVe/7OnCY7/hDvW1h240uo0xxDmUSaIZRZnITIqr6M2CLiDStte8FHvM8rf43cKaq7vIdshI4X0Smi8hc4AjgYeAR4AgRmSsiB9Awvq/Mq91GcZTJ4F8mgWYYZSbvtCcfB272Bv+ngItoCIXpwH0iArBaVT+mqhtF5FYaBvM9wCWquhdARC4FVtFw8b1JVTfm3G6jAMpk8M/K5dYwuh3Zr03qHkZGRnTNmjVFN8NwoMw5vMrcNsPIAxFZq6ojSY6xBIxGYZTdAypPDzYTUEa3YGlPjMLoVQ8oS4BpdBO2EjEyJ2qW7f8uTJHa7R5QZYqHMYx2MSFiZEqUigqYYqwOIsgDqpvUP93kPtxNz8VIhwkRI1PiVFRxAiTIAyoP20mRg1+3JMAsu03L6AxmEzEyJWqWHTXTjko6mLXtpGibRJniYdqhrDatXk3iWRS2EjEyJW6WHfTd8OAADy45JfScWat/irZJlCkeph3KqJaz1VHnMSFiZEpckF6aAD5X9Y+riqoMg18ZE2AmpYxquaInCL2ICREjU1xm2Uln4C7R40lmoGUc/MBdCGZlz3H1ogu7Rhmj+sswQeg1LGLdSE0njdNx1zrx2vudVWWtAgcag1+RRaBc2/TpFRu4efVzk9yjB2r9nHPsMA88sc35WURdD4JXjEH3p2zeWUneA2MqaSLWTYgYqSjbQDx3yd2BcScCPH3tB6Zsr+Lgt2K0zuXL14X2s1WwRD2LqOtBOttVGSjbe1k1LO2J0Taug2vZdM9JVVRls0m4qGGWrdoUGqDZuj3uWaRR+1RBJdQtTgtVwoSIMUESu0KaQSjP2X/W+vlO2ydchGDSQTxq/zRedEXbjFwp2wSh27E4EWOCJH7/Sett5B2bsWjhMNecfTTDgwORMScuuLY1yz65xI4kHcSj9o+6XrfEsRidwVYixgRhM9f6zjFOvPb+SbPtpDP/Tqi/spqBurY1yz65qGFOnjfEN1Y/N+XYI14/k607Xkm0CsvDi87oTUyIGBOEqTiE/eqN5mz7mrOP5pqzj3YeaKrkeuna1qz7FCcEH3hiW+D2Xbv3JXoWLtczlZDhigkRY4Kg1UWr1w/sn20/uOQU54GmrLEZQbi2Ne8+tdpbgq4FDaGV1aBfNq81o/yYTcSYIMiukFW69irp2V3bmmefVozWWXz7+kn2ljCyFFqtNp7Ll6/j0ys2xB5r9C62EjEm0TqjDYsnSDpwVcn10rWtrfvNGqghApcvX8eyVZva6t9V397I+N74GK4sBXGQjUeBm1c/x8gbDyrlszKKx4INjUgseMuNrO/T4UvuDv1ueHAgF0EcFrDZvGbZAw2N9rFgQyNzkq4g8tSpl1lf38ngy7wG8zi7i2EEYULEiMXVaJtnGu6yp/jO2lNrcKDGzrHxwO15sfi0I0PTqpTRAcIoB7ka1kVkUERuF5EnRORxEXmniHxQRDaKyD4RGWnZ/woR2Swim0TkNN/2071tm0VkSZ5tNtKTZ5GishZAapI0+BKiiyctPfMoan0yaf9an7D0zKOyaXAAixYO8+ET5iAt28vqAGGUg7y9s64H7lHVecB84HHgUeBs4Af+HUXkbcD5wFHA6cBfiki/iPQDXwbeB7wN+JC3r1EyXGbjaavOlT3OJKmnVly0+6KFwyz74PxJnnLLPjg/91XX5xYdzXXnLcgk8t/oDXJTZ4nILOAk4EIAVd0N7AZ2et+3HnIWcIuqvgo8LSKbgeO87zar6lPecbd4+z6WV9uNdMTFTbSjksoqJiNLu0rruZKkY3exoRQV8GeBhkYS8rSJzAW2AV8VkfnAWuATqvpyyP7DwGrf31u9bQBbWrYf33qwiFwMXAwwZ86c9lpupCIuFUo7xucsEixmaVcJOtcda+vOs/ayr6yadNqZIU8hXyZHjG4iT3XWNOAY4CuquhB4GcjNnqGqN6jqiKqODA0N5XUZI4K4JIjteP5kkWAxTIgtXbkxsYqtXRtNGhtKp8k7aWae1+t023uZPFciW4GtqvqQ9/ftRAuROnCY7+9DvW1EbDdKRpgqZMVoPTCFCrgPnO2qWcKE1c6x8QlPqOZgs+bZ7ZGqqXZXEifPGwqsUFgmA3ana8Zkeb2y1bvpZnITIqr6MxHZIiJHquom4L1E2zFWAt8UkT8DDgGOAB6mkb7pCBGZS0N4nA/8Tl7tNvIhqqDSrt17mLvk7txVDlFxEH7GxvdOGuCD1F7t2GhWjNa5Y2190v0Q4Jxj27dFZKnCicvqnPWzylLF1w3qwqqo4/L2zvo4cLOI/BhYAPyJiPyWiGwF3gncLSKrAFR1I3ArDUFzD3CJqu5V1T3ApcAqGt5dt3r7Gm2Q1ksqLVE/3h27xjuicgjyoAojLOlk1LlcVxJh6UW+sfq5tp5F1iqcKIGYx7PKUsWXtct1HkQ9ryqp43IVIqq6zrNTvENVF6nqDlW9S1UPVdXpqnqwqp7m2//zqvpmVT1SVf/Jt/07qvoW77vP59nmXqCIF9R1IMgz9iPIrjJ7hnvwnl8QtmOjiRKo7TyLrGNp4oRu1s/KRTC7DvRZu1znQdTzKntclB+LWO9BitAXB3lXhZGHyqFVNXDdeQtYtHCYFaP10CjtVloFYVobTZxaLe2zyKO+CTTel06kQ4lLsZPEuy5pup4ifhPdUufehEiXE6RXLUJfHPSjfvnVPYGpPbLwUPL3e3BGjV+8sofxfQ1R0Tr4XLZ8Xez5sjR6uwjUNM/CxU6TVM/eFJRZZXOOI0owJx3okwj5In4T3VLn3uqJdDFhS/TBEBVO3i/oooXDPLjkFJ6+9gM8uOQUlp55VC71OFr7vWPX+IQAaeJXDQyH9LtfJJeobb8qLIw0zyJOhfPpFRu4fPm6VCqbMtSDyXOgL8Llulvq3JsQ6WLCZm6qlOIFzSL2I4igfgfRHHzCfrBfOHf+hMDLWqXRFKi/e0JwYOzJ89LFOk2ftv8nPXtGbeJ+rhitT3EpBnc9e17PKgl5DvRFDNpR97QM99sVU2d1MWEztJfGxrnuvAWlcB/0qxyaqpbLl69rq02uM9Pm4FNkwaywuulh28MIqmfyyvi+ic9RLtau96vodChZZC0Io6h3oOh7mgUmRLqYKJ1rHi9vO37tWaYkcYkHaR18WgeR5uw877iNrFQ0YavOT966PtZxQGR/EayBWh8H1vrZuWs8k4E0y1iHvAf6Mg3oZS994MeESBeT58ytlXZf+iy9Y06eN8Q3Vj83ZftArY9XxvcFDj5p2x8XLBZ3zqwSS4YJnb0OlUv95qKx8X2MeSuYdgeuPAbCMg30eVKliHuziXQxSfWq7QRbtevXnqXRNEwVdNDM6aE2jjTtj4stcDlnVrr4vAzA7cQmVCnWoWxUJeIebCXSFUTNhtupSnj58nWseXY7n1t0dOzx7b70Wc3I07YlzTFxs0WXc2alokkShyO4p4BpbW8SXO9pVdJ7dJIsfw95YyuRipNVpG1YKo6bVz/ndK52PWey9I5J05Y0x8QNkq7nbHpqXXfeAgAuX74u8UqwddXZP7VeD9BYjTZXY1EuxlHtdcWl/ytG6yy+bf2k93fxbetLmd4jL4I0AObia3SMrFQGYQOieteIo92XPkr1FqZmC9uepi1pjokbJJOcM4vJgD8O5wvnzg+9dvO+uaxEotobp/oM6r+wP4HjitE6S1dunBLDM75PWboy+/R4nc6N5dqmoOcOmIuv0RmyUhlEqTdc631Ae2qZINVbmHF2zbPbuWNtPdJomzQyO+kxcY4LSc6ZtSE17NpApNrLxTvL1WAelDbFnxk5KlNAUCaDdiirt1PUc88jPikPRB28N6rGyMiIrlmzpuhmdISwGeXw4AAPLjkFCI4hGKj1T5rZROWQ8p8rC5LowF1nzE2ybmscWenz5y65O/DeC/D0tR9ou51NXN6XPM6x8Op72bErmWB4xrHfLs8gi37nQaeeuysislZVR5IcYyuRiuPixutaz3vNs9tzL5SUdEaY1Kjbae+VrFxOO2VIzcLrJ805kgoQ1+zKru9TVG2UIqmSAT0Ms4lUHBc3Xtcf/ecWHc115y3IVQ+b1IaT9MeU1Y+v0/rzThlSs0gdkneeqf4+4cozjnLa1/V9CmubQKG2kSoZ0MOwlUgXEDcbTjLbSTOzTqLSSTqLTeK6mtWPrwj9eZbR2FHPI4sA1DTnGByoOds5ksxsXd+nxacdGaiubTqOFGV7KDLlTlYkFiIiMhs4TFV/nEN7jBzIM3I96YCbdPne+iPrEwmMwu4XyWzVlFe0cNDg3rxeVgNI3PPIygEi6TmWnnkUi29bP8UTK4jxfep8r13fp0ULw1P+Fx3AV/UofCchIiLfA8709l8LvCAiD6rq/8yxbUZG5DnbSTLgrhits2v3ninniBNorUka45wE2iWPaOGgwX3xbetBYHxvcJ2TNMQ9j6wcAZImzgyzuYXheq+TTJCGu8D+UEZcVyKzVPXnIvL7wNdV9UqvbrpREfKa7SRxMQ5SSw0O1Fh65lHObevE8j9sdjtroMaJ196f6rpBg3vQrLzdFU+UAfnTKzbEukUnJclK9IEntjkJEHAf2JO8D53MJddLuAqRaSLyBuBc4FM5tseoGK7qhLAaHzOnT0s8gGUlEMNm5WF2mP/0VWJMOgBn4f3kQlS8T1Q9kaxXPp+8dT2XLV9Hv6d+DFsFBJF0YHd9H7rB/hBFUeljXIXIVcAq4F9U9REReRPwZH7NMrIkz5fLdXZXZEK5MFtE1Aw6SPWyN6Q6YtC9bL3mrASG5aYAbp6jvnNs0mAc9fyiHBHarSeS5Nim3ar5f33nGBLShsGBGjOnT+vI4Fd1+0MYRQZTugqRn6rqO5p/qOpTIvJncQeJyCBwI/B2Gu/PR4BNwHLgcOAZ4FxV3SEiAlwPvB/YBVyoqj/yznMB8GnvtJ9T1a85trvnyfvlcp3d5eEP7yIcw/p/YK0v0nbgqnrxD6L+Qd8/YNZ3jlHrF2p9MkmFVeuTSTYRmJyaxN9u/2Ac9fya21zqxjdpFVoug3lz3yShykH7DtT6E6kzu4ksJ3dFpo53ilgXkR+p6jFx2wKO+xrwz6p6o4gcAMwA/gjYrqrXisgSYLaq/qGIvB/4OA0hcjxwvaoeLyIHAWuAERrv4VrgWFXdEXbdXopYj6MskbphBvFzjm0M2El/SK4G9qQR781I4bBI4lZmz6gx44BpkTPt1n1dvLPi2h30/PyDUpgXW2sbm/cMpqZDCXNYCLNvuTI4UOOlsWyKXlWVrB1Esop8zzxiXUTeCbwLGBIRvyfWLwH9wUdNHDsLOAm4EEBVdwO7ReQs4D3ebl8Dvgf8IXAWDaO9AqtFZNCzw7wHuE9Vt3vnvQ84HfiWayd7lRWj9bbyYWVJ84dx1bc3TkQvC8ryh7dMzM6TrJLCZl5LV26cNCgnjUhuzspdjq31C794Zc9Ef+KEzs5d44x+5tSJv6NmonHPJ85xIUiARAnthVff6zyTjaph3x8ivPzMnD6NdVeeGrlPt5P1yqHIyPc4ddYBwGu8/V7r2/5z4Ldjjp0LbAO+KiLzaawgPgEcrKo/9fb5GXCw93kY2OI7fqu3LWx7TxO3FG4OKmEU5dbor/u9y/e5iesPKWyQ3Tk2Psn4Hbc68OO35YRVR5x5QD+7du/lkMEBXvYZ2l1oTYHeqma7bPk6rvr2Rq4846hYIebquNAvwj7VyFn/itF6aFqSoPscJeB+aWAav3hlT2Q8SF4TmCrVJcnaRlik51mkEFHV7wPfF5G/U9VnU5z7GODjqvqQiFwPLGk5v4pIJhkgReRi4GKAOXPmZHHK0uJi54iaLRbl1hjVJj8uPyTXVYYyVYUTRKvB+h/X/zRwv1p/H09fezrQUCG4UuuX2Hxm0MgxdcWdGzjn2OFJ7ritnDxvCJhshwlin2qsOiMq1X+QW3PUvd+xa5xav0RGqOcxgSlrlt4wsl45FOl55pphYLqI3CAi94rI/c1/McdsBbaq6kPe37fTECr/7qmp8P5/wfu+DhzmO/5Qb1vY9kmo6g2qOqKqI0NDQ47dqiYu+YKiBuKi6hIkqXIYR1DOoTCagiSMpn3Bf0/CBkD/9iQ/+JkHTHZljroXY+N7eeCJbVxz9tGhxaUeeGLbpFoUYbi0MaotL+/eM6XWxcnzhiLv/fheZeb0aXzxvAUdywtVtVK8eeTMWrRwfz2ZTqaRdxUitwGjNDykFvv+haKqPwO2iEjzrrwXeAxYCVzgbbsA+Afv80rg96TBCcBLntprFXCqiMz2Uq6c6m3rWVyWwmGDx/DgQGEzM5cBzfWHFJR4Mizza79I6EqknR9uEkH20tj4pKSOfSHCocnzO8dYtHCYfSH2hed3jsWu7FwLSs0aCL5v0uI5Bo2B+Rurn2NsfG+ogIOGwFm2ahPnHDvckcJKVapJDm6JU6uCq4vvHlX9Sorzfxy42fPMegq4iIbgulVEPgo8SyOAEeA7NDyzNtNw8b0IQFW3i8hngUe8/a5uGtl7FZelcBmjc+OSKSbNf9W6hJ81UKPWL1NcZqMG2rDrzZ5RC7QT+AVVkAph1+49gccNzqjFGr79xBn4myuDMPpFOOdYtyJfQe7Hcfet2YcoVWF95xh3rK07PdN27RlVTKneLTErriuRb4vIH4jIG0TkoOa/uINUdZ2nYnqHqi5S1R2q+h+q+l5VPUJVf6MpELTBJar6ZlU9WlXX+M5zk6r+ivfvqyn72jW4LIXLONNptimMfaqJ2tdaWnTn2DhoY6Bv9vmcY4dDVVn9IqH1zK884yhq/ZOPrPVPTVHeqkK48oyjAp+NKs4usf5nmWS142evKnesrU/q14rROp+8df3U9Ct7ldccOG3Ku+JSgz3O1uSiUsqiNHARKdXLWG63CFxXIk31k1+FpcCbsm2O4YKrEa2MM51FC4dDDcFJZ41h+ahmHDCN0c+cOjFohg10UQF8aQ2VYcddniD4zy/s/edL6q7cmnjxijs3hK6AWt2Pm7QTD9IkTqWUNIln0DPptGG5aob8PHESIqo6N++GGMkoo4BwJStVW5QePG7QbCVo0Ep7j4OOcxUC/rVP64CZhrp3L+LsJ4cMDgQO0NecfTSfvHW9830MO3cUcc+x2abBGbVJ7sNBae479ZsoMkK8bDips0Tk94L+5d04ozokWdpnpWqLqrDn6k7sJ08jrKtaqlkkKUjFE6aWGx4ciFQ9xXlwDdT6OXneUKBKCeBDxx8WemwcLpODsOfYtCM127Rj1/iU+JOiPLCqZsjPE1d11q/6Ph9Iw9PqR8DXM2+RUTmyXNq3zoZPnjcUGGG9YrTOy6+G1yaJyh0VZgzO0wgbpG6JyiYQJATDck8FJZT00/SkiirmlYeLrGua/7CVqasdqYiBu4qG/Lxwyp015aBGYsVbVPX0zFuUAZY7q7Mkzc8VlUcrKsAubr/ZM2pceUZj0HrzFd8JVcEM1PrYs0+neHGlWQ2141UUdd+e92bfUbQO0itG65HCs9Xjyt/nqNxL4B71Dw3B9IVz5yd2kgiyI7lct9N54KAzxdGKIPPcWRG8TCOtiVEiOpn2wX+tKBfPIMJmvd96aEus7j1qvxm+gL6o84yN76PWJ8yeUWPnrvSJAFeM1ieVfJ2oVojbCizKNuRiQ2mtxRLltNB0TW5eq1UARc2sw9yWITyhYxY1YlzuQVFu691emyQJruVxv83+d6UfeCtwa16NMpLTSW8R1yyuYcFocTUo4gjbz3/euCJIfi+utCxduXGKjn58n7J05cZMiiTF3eOgJIxB5YebiSL9bX11z+S8ZWEC7eR5Qyx/eAut1PqFZb89P7L97RLUplq/MPOAaaXIAlxl55YscV2J/Knv8x7gWVXdmkN7jJRk6S0StqKJy9PUSthgHzbrdckAG7VfXLBlK+3q0l1So8QRNhC5uPZGJXRsMlDr45U9+2i9Xa3vRphAW7ZqU2AyRX8al7wGUpvtVwNXF9/vi8jB7DewP5lfk4w0ZOUtEraiWfPs9lh7RSvDLYOc31UzKELa1SZyzJxZ/OtPtk9Ro7QGW0L8IBwnMKO2501TwITp310SOr4yvs+5omGQQAuLb3kpgaBsh7jZfpUy93YrrkWpzgWW0aj9IcCvAYtV9fZcW5eSXjSsZ1V8Kuw8rquEJn7deNAgGKaWiPPOOnne0BRBI8CHT5jD5xYFR8MnMeQn3R7E7Bm1RGoy1wqNfiGsyqR752qE9uOSJj6qOFZQqd5O2+W60bhdJGkM665CZD3wm6r6gvf3EPBdVZ2fqqU504tCJKsflGtFvzAEpgweWVZXjDpXU/0SNIAFDW5hq5Qod9g4Qdq0Fbje86TPLWz/A2t9ocZvF9JWMYybLOQ5qJelamfWFLm6ytM7q68pQDz+A/e8W0YHyEp/3I69IuzHm2VgVtisuKl2C3MsSKKqCeunS/+T3vOktqyw/adP65uiIkxC2DXj1IL+4zodxd2NAX9VTKfiKkTuEZFV7C9Jex6NrLtGicjCWyTMSydOlRPlaplVYNaK0Xpk1tikA1i7Bn4/aWe/SQfCsO0vjY0zGJJ5OE1bksRtNI/r9KDejQF/VUynErmaEJFfEZETVXUx8NfAO7x/PwRu6ED7jA4TlpLkc4uOnrR9cKA2KVtulMoiqwyry1ZtSqxqixrAwtp1wptmT0kxEl39I/1AGZW6Jen2nY4CJKwvzXOHZdUNqzvSJ8KK0XriNrdLEZl786aKq6u4lcgXgSsAVPVO4E4AETna++6MHNtmFESU22nahISQXNXWOhtOmsUWprrBtrbhnGOHJ4IX+0U4Zs4sfvTcS5OElUt53SQDpb8dYTVQwgbCdgMUBXjXmw/iR8+9FOrtFTYbPrDWF1hnZK9qaEnfPAf1bnQBruLqKtKwLiKPqOqvhny3QVXDi0MUSC8a1ruNICNt3GAeFT0d5iGGMsmOEHaNKBVXEuNxYDv6hNccOM05ej7K/dglCLSpngzKSQbhzhUCXHfegtCsvnHODUY8RXuc5WFYH4z4rryi0ag8YQkIwwb5uIExsPbI3qlniqo9EjQLn3lAP5//LfcfeFwNlDiiPHdca480a7iH2XCiZsOLFg6HOiQ0S/qa0EhPFVdXcUJkjYj8V1X9G/9GEfl9YG1+zTJ6nTAdsLI/pUlzddAvMjEwhv3g2tUpD3sxKjevfm6SoHFxhnLJM+bSPhfPneYgHhXfEXS9JCq2KqpcqkTVBHGcm+5lwEUi8j0R+YL37/vAR4FP5N46o2cJG5CaXlDPXPsBvnDufAZq/VMqFAbVMkkywLUanpsD6ANPbJsiBOLSpbcaqcNwaV+SdO1x9UuCUqb4ywyP79VJ92H6tP1DRVYGbSsv2x1EChFV/XdVfRdwFfCM9+8qVX2nqv4s/+YZVSHrAcFloMpyUPVzYK0v0PMsjeeMS3Es1wE4yfWbXnbN7L1R1wtro1/o7RwbnxDQWRQVy6KuelJMaOWDa+6sB4AHcm6LUVHyCJBy0Q0nHVT954taFYyN7wOE685bMOl6adQ4UQImKLo/yuaR9Pr+3Ftp7mMr/niFdnNadToeIugdXXz7epau3FiKjMBVJm09EcOYIK8BIW6gSjuoQnROKAhuf5BNJG4VEdbGoODEOGGctjZ92vsYRLu2G4g2/OcVDxHmWNHMuFyFyPCykmvqEhF5RkQ2iMg6EVnjbZsvIj/0tn9bRH7Jt/8VIrJZRDaJyGm+7ad72zaLyJI822wkx2VFkIcqoR3dvIt6q7X9d6yth9pEwvqTpI1hwviy5es48dr7AZzUSC732r/Prt17qPXFhVM2aMd2s3Tlxth673kZ512EU1H12qtOJ1YiJ6vqi76/bwT+l5de/iPAYuCPReRtwPnAUcAhwHdF5C3eMV8GfhPYCjwiIitV9bEOtN1wIGpFsGK0ztKVGyfV2Gh31tfqSXRgrS9xhcKk9TqibBtR/WlVo80aqCHSyNu1bNWmSe2NGujqO8e4bPm62LrlLmqb1kzIO3aNU+sXBmp9niovmHZtN3F1VvIMTHRdbZU5MrysFJFE8S3AD7zP9wHneJ/PolG3/VVVfRrYDBzn/dusqk+p6m7gFm9foySEzbZPnjfEFXduCBw80s76gjyJXhnfx3XnLeDBJackEkqLFg7z4JJT+OJ5C2JXC3GDS1R/mte57rwFvPxqo9Rs05i8+Lb1EysFl1m438AdRJTapnnNm1c/F7jPQTOn88XzFkysdGbPqDE44Jbaxk+a1UQa43wSXB0rzE05OXmvRBS4V0QU+GtVvQHYSEMIrAA+CBzm7TsMrPYdu9XbBrClZfvxrRcSkYuBiwHmzJmTXQ96iLQpqFtn9c24jbia6WlmfXnYX1yM+C4z2bj+xJXTdanGCNH9dbmnUbEqeSXxjKITqdtbn/HgjNqUksFVz7tVFHkLkXeral1EXg/cJyJPAB8BviQifwysBHZncSFPQN0AjbQnWZyzl2jXw6q5j/8ccZlw08z6XD2ykgrEuMHTZWCM609UOd0Tr71/YnCbPq0vVvUTdh/S5hiD/YkU2xUirpHz0NmBu/UZZ1W3o9erK+YqRFS17v3/gojcBRynqn8KnArg2Tw+4O1eZ/+qBOBQbxsR242MyGKG7xIT0STt4OHikZWny/FlISk/gMj+xDkSNPu0Y9c4A7V+fveEOZGp98MElusqICh9TDORIrTvoeQSOZ+m/kqWZLHqqmL9j6zJzSYiIjNF5LXNzzQEx6PeqgQR6QM+DfyVd8hK4HwRmS4ic4EjgIeBR4AjRGSuiBxAw/i+Mq929ypZpKBOsm9a/XfWQYhJWLRweFLdeD+zZ9Rijd2ujI3v5e4f/9Q5WLC1jX4PrtlePXs/tb6GET3s2ll6KIU9ry/6bFhVDgLM612rEnmuRA4G7hKR5nW+qar3iMgnROQSb587ga8CqOpGEbkVeAzYA1yiqnsBRORSYBXQD9ykqhtzbHdPEjbDD6shkeQcrQx7ifyiCFMRZB2EGHWtIMJiNa4846jQ8+3avcd5hdakWVxq9DOntq2aa/Vme3n3HnZFeGFl6aEU97yqPpOvYv2PrHGqsV41LBV8claM1ll82/opht8kNcNdUpG7pLVuNx12ktrbaa4VNai7pmN3IQ+Dc1yQZV7XTdqeqtRJr3r7W0mTCt7qpBtAY9b3mgOnLkzH96rz0jwop9LvnjAncY6ldlUEWQT4ffLW9aFqlabL7tPXfmCKW3ESu1Acecxm487ZaQ+lqs/ky1RdsSi1oKU9MSYIK69a3znm7LWThbGy3YElSU2GsHOmNTJnOfjlEbMQpXLsF+GcYzubhrzqaeXLUv+jSLWgCRFjgqgBppN66iwGFldhFtXnKO+0MJVW2PkGB2rMnD5two1XldAIcshvNhvlvbVXlTvW1hl540EdGwTT5gMrE2Wo/9HphJZ+TIgYE0QNMJ16IcPaUcSgCsEri6hZX1jbo1KVAIy88aCOzGbjYjg6+Zxb29OrcRZZUKRa0ISIMcGihcOseXY731j9XOD3ndJTd3JgaZ4zrG540OonatbXNKYmbXsnZ7PNa4XVUnfN1JvV8ynDTL7qFKkWNCHSBST9QUft/8AT20KPmzVQmxRZ7VfJZD3Id3pQBSJXP0lK3FZlUAwbePpEmLvk7tDnmkb/3utR3XlTpFrQhEjFSfqDjts/ahb68u49E+k4dviM8FXz7Q8iavXj6rZbFmOw64AdpsprLTcMk59rUv171WNBqkCRakFz8a04Sd1h4/YPGwj7pOHuG0bVo3SjBt4sS9zmTdKysweGRK438T/Xpgtp0oJSFtXdGaJcz/PEhEjFSWpQi9se5ve+zyEmtSq+/a3EDbxxJW7zTmOeBNcBu9nnHSFu3X6e91y80xaUqnosiBGNqbMqTlKDWtz+Yctil4ysrdesih48Tj2TpMRt0bgO2EmCIg8ZHIjdP2olVnQsSFXew6piK5GKkzRi1mX/oGVxXFGf1nMkVasUSdrVWRnUV61ETR78uK4ChEb/o/aPW4kVef+q9B5WFRMiFSco1UjUD3rRwmHOOXaY/kZiTOco5aDssFFV76qkB48beJPe4yJxHbBdVgECfPiEOROrsSCaq7G4hJBF3b8qvYdVxdRZXUASl9IVo3XuWFuf8MBJEqWc5DpV0oO7uEdWxW3X1UsnqM+1fmHmAdMC3bbbdSEt6v5V6T2sKiZEeoxOpUcoWg+ehDJETXc6eC9pn8twj9JQpfewqpgQ6TE6NTOrWk6kIlcaRcVRJO1zVVZjfqr2HlYREyI+esGLo1Mzs6rOXIsgyeqwF97RLLH3MH9MiHj0SlRt1jOzqEGtijPXInBdHfbKO5o19h7miwkRjyJTKXeSLGdmWQ9qvTrLdl0d9so7GkevvidlxYSIRy95cWQ1M8tyUCvrLLsTA5br6rCX3tEwyvqe9DIWJ+LhGqRl7CfLQa2M/vydClRzjaOwd7Sc70mvY0LEo0pRyWUhy0GtHYGUV23psg1YZX9HO1Hj21Zj5cPUWR55e3F0ox43SyN9Wq+xPNUbnRqwXPtQZk+jTqmZLO6jfOQqRETkGeA/gb3AHlUdEZEFwF8BBwJ7gD9Q1YdFRIDrgfcDu4ALVfVH3nkuAD7tnfZzqvq1PNqblxdHt+px2x3U/IJ11kCNWr9MSjfvIpDyNDZ3asBK0oe072jek5hOGf0t7qN8dGIlcrKqvuj7+/8CV6nqP4nI+72/3wO8DzjC+3c88BXgeBE5CLgSGAEUWCsiK1V1Rwfangnd7FXTzqDmHwx2jo1T6xNmz6ixc5d7tcQ8VwsnzxsKLBV88ryhts/tJ+8VTycmMZ1atZV5NdarFKHOUuCXvM+zgOe9z2cBX1dVBVaLyKCIvIGGgLlPVbcDiMh9wOnAtzra6jYwPe5UggTr+D5lxgHTGP3Mqc7nyXO1EFYqOKqEcBryXvF0YhLTSTWTxX2Ui7wN6wrcKyJrReRib9tlwDIR2QL8KXCFt30Y2OI7dqu3LWz7JETkYhFZIyJrtm3L9kfeLuZVM5WsBGuexuZOpojJ02DeiX4E9UHIftVmlI+8hci7VfUYGqqqS0TkJOC/A5er6mHA5cDfZnEhVb1BVUdUdWRoqFwvbtm9aoogK8GaZ5rxTgn/vFOld6IfzRID4tumwB1r61a7o8vJVZ2lqnXv/xdE5C7gOOAC4BPeLrcBN3qf68BhvsMP9bbVaai0/Nu/l1ujc8D0uFPJ0kCal3qjk0bcPFU0nerHA09so7WKcrfY/oxwchMiIjIT6FPV//Q+nwpcTcMG8us0BMEpwJPeISuBS0XkFhqG9ZdU9acisgr4ExGZ7e13KvtVYJXB9LiTqYJgrUIbXehUP8z215vkuRI5GLir4bnLNOCbqnqPiPwCuF5EpgGvAE1byXdouPdupuHiexGAqm4Xkc8Cj3j7Xd00shvVpgqCtQptdKET/bAYjt4kNyGiqk8B8wO2/wtwbMB2BS4JOddNwE1Zt9GoJt0YuNkNWAxHb2IR60al6NbAzW6gW9R/RjJMiBiVopsDN4sg61Vdt6j/DHdMiOSEqVzyoV3jrT2X/diqzsgCy+KbA51KId6LhBlpFWIzx5bxuXQi820YZctSbFQTEyI5YD/O/AgK3GwSJxTK9lyKFmrmklsMRU4c8sCESA7Yj7NBHj8Wf3R3EFFCoWzPpWihZul4Ok/RE4c8MCGSA/bjzPfHsmjhMA8uOWVSig0/YUKhbM+laKFm6Xg6T9EThzwwIZID9uPszI8lqVAo23MpWqjlnbPLmErRE4c8MO+sHDB/+c5ljk0S3Fa251KG4Dxzye0s3RjVb0IkJ3r9x9mJH0saoVCm51I2oWbkTxkmDlkjjWwj3cXIyIiuWbOm6Gb0NK0xCND4sZi6xOh1yhyrJCJrVXUkyTG2EjFywWbZhhFMmVbDWWBCxIgl7cyp234shmFMxYSIEYmlxjAMIwpz8TUi6Ua/dsMwssNWIl1MFga8bvRrNwwjO2wl0qVkFTFedECcYRjlxoRIl5KVGqpsUd6GYZQLU2d1KVmpocxV1zCMKEyIdClZRoybq65hGGGYOqtLMTWUYRidIFchIiLPiMgGEVknImu8bcu9v9d536/z7X+FiGwWkU0icppv++nets0isiTPNncLlqHVMIxO0Al11smq+mLzD1U9r/lZRL4AvOR9fhtwPnAUcAjwXRF5i7frl4HfBLYCj4jISlV9rANtrzSmhjIMI28Ks4mIiADnAqd4m84CblHVV4GnRWQzcJz33WZVfco77hZvXxMihmEYBZO3TUSBe0VkrYhc3PLdrwH/rqpPen8PA1t832/1toVtn4SIXCwia0RkzbZt2zLrgGEYhhFO3kLk3ap6DPA+4BIROcn33YeAb2V1IVW9QVVHVHVkaGgoq9MahmEYEeQqRFS17v3/AnAXnnpKRKYBZwPLfbvXgcN8fx/qbQvbbhiGYRRMbkJERGaKyGubn4FTgUe9r38DeEJVt/oOWQmcLyLTRWQucATwMPAIcISIzBWRA2gY31fm1W7DMAzDnTwN6wcDdzXs50wDvqmq93jfnU+LKktVN4rIrTQM5nuAS1R1L4CIXAqsAvqBm1R1Y47tNgzDMByx8riGYRgGkK48rkWsG4ZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqTIgYhmEYqbF6IoZRAlaM1q3wl1FJTIgYRsGsGK1zxZ0bJsoZ13eOccWdGwBMkBilx9RZhlEwy1ZtmhAgTcbG97Js1aaCWmQY7pgQMYyCCat7H7bdMMqECRHDKJiwuvdh2w2jTJgQMYyCWXzakQzU+idtG6j1s/i0IwtqkWG4Y4Z1wyiYpvHcvLOMKmJCxDBKwKKFwyY0jEpi6izDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAzDSI0JEcMwDCM1XVkeV0S2Ac926HKvA17s0LXKgvW5++m1/oL1GeCNqjqU5ARdKUQ6iYisSVqTuOpYn7ufXusvWJ/TYuoswzAMIzUmRAzDMIzUmBBpnxuKbkABWJ+7n17rL1ifU2E2EcMwDCM1thIxDMMwUmNCxDAMw0iNCZEQROQmEXlBRB6N2Oc9IrJORDaKyPd9208XkU0isllElnSmxe3TZp+fEZEN3ndrOtPi9onrs4gs9vq0TkQeFZG9InKQ913lnnOb/e3WZzxLRL4tIuu99/oi33cXiMiT3r8LOtfq9mizz3t978DK2Iupqv0L+AecBBwDPBry/SDwGDDH+/v13v/9wE+ANwEHAOuBtxXdnzz77H1+Bnhd0X3Ius8t+54B3F/l55y2v938jIE/Av6P93kI2O4904OAp7z/Z3ufZxfdnzz77P39iyTXspVICKr6Axo3NozfAe5U1ee8/V/wth8HbFbVp1R1N3ALcFaujc2INvpcWRz67OdDwLe8z5V8zm30t7I49FmB14qIAK/x9t0DnAbcp6rbVXUHcB9wet7tzYI2+pwYEyLpeQswW0S+JyJrReT3vO3DwBbfflu9bd1AWJ+h8VLe622/uKD25YaIzKAxgNzhberm5xzUX+jeZ/wXwFuB54ENwCdUdR/d/YzD+gxwoIisEZHVIrIo7kRW2TA904BjgfcCA8APRWR1sU3KncA+q+q/Ae9W1bqIvB64T0Se8GZD3cIZwIOq6jqLrzpB/e3WZ3wasA44BXgzjb79c6Etyp/APqvqz2nkz6qLyJuA+0Vkg6r+JOxEthJJz1Zglaq+rKovAj8A5gN14DDffod627qBsD6jqnXv/xeAu2ioe7qJ85ms2unm5wxT+9vNz/giGmpaVdXNwNPAPLr7GYf12f+cnwK+ByyMOpEJkfT8A/BuEZnmLf2PBx4HHgGOEJG5InIAjR9jvIdDNQjss4jMFJHXAojITOBUINTDq2qIyCzg12n0v0nXPueg/nb5M36OxuoaETkYOJKGEX0VcKqIzBaR2TT6vKqwVmZLYJ+9vk73tr8OOJGGM00ops4KQUS+BbwHeJ2IbAWuBGoAqvpXqvq4iNwD/BjYB9yoqo96x15K42XrB25S1Y0FdCExafvsLXvvatjomAZ8U1XvKaIPSYnrs7fbbwH3qurLzeNUdU8Vn3Pa/gIH073P+LPA34nIBkCAP/RW2ojIZ2lMGACuroo6M22fReRdwF+LyD4ai4xrVTVSiFjaE8MwDCM1ps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAIQkV+0/H2hiPxFm+d8xvO9N4yuwYSIYeSAiFgMltETmBAxjISIyBki8pCIjIrId72IX0RkqYj8vYg8CPy9iPyyiNzr1Wu4kUZQFyJyuIg8LiJ/4313r4gMeN+9WUTu8ZIc/rOIzPO2f1Aa9T3Wi8gPvG1HicjDXt2HH4vIEcXcEaOXsWBDwwhARPbSyG7a5CBgpape6qXA2KmqKiK/D7xVVT8pIktpJC58t6qOiciXgBdV9WoR+QDwjzRqN7wG2AyMqOo6EbnVO/c3ROT/AR9T1SdF5HjgGlU9xYssPt1LjDeoqjtF5M+B1ap6s5d6pV9VxzpzhwyjgS25DSOYMVVd0PxDRC4ERrw/DwWWi8gbaBQvetp33ErfQH4ScDaAqt4tIjt8+z2tquu8z2uBw0XkNcC7gNu89CIA073/H6SRpuJW4E5v2w+BT4nIoTSS6T2ZvruGkQ5TZxlGcv4c+AtVPRr4b8CBvu9eDj5kCq/6Pu+lMaHro7HCWeD791YAVf0Y8GkaWWXXisgvq+o3gTOBMeA7InJKW70yjBSYEDGM5Mxif0rwqLrbP6BRDRIReR+NEquheLUcnhaRD3rHiIjM9z6/WVUfUtXPANuAw7zEl0+p6pdoZNx9Rxt9MoxUmBAxjOQspaFyWgu8GLHfVcBJIrKRhlrrOYdzfxj4qIisBzayv+TuMhHZICKPAv9Ko6b7ucCjIrIOeDvw9RR9MYy2MMO6YRiGkRpbiRiGYRipMSFiGIZhpMaEiGEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkZr/D6KEpiMUE7OOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "hard = (all_ev.energy > 10) & (all_ev.energy < 79)\n", + "soft = (all_ev.energy > 3) & (all_ev.energy < 5)\n", + "\n", + "hard_ev = all_ev.apply_mask(hard)\n", + "soft_ev = all_ev.apply_mask(soft)\n", + "\n", + "hard_lc = hard_ev.to_lc(200)\n", + "soft_lc = soft_ev.to_lc(200)\n", + "\n", + "hard_lc.apply_gtis()\n", + "soft_lc.apply_gtis()\n", + "\n", + "hardness_ratio = hard_lc.counts / soft_lc.counts\n", + "intensity = hard_lc.counts + soft_lc.counts\n", + "\n", + "plt.figure()\n", + "plt.scatter(hardness_ratio, intensity)\n", + "plt.xlabel(\"Hardness\")\n", + "plt.ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Despite some light curve variability, the hardness ratio seems pretty stable during the observation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now look at the power density spectrum. Notice that we are using a sampling time of 0.001 s, meaning that we will investigate the power spectrum up to 500 Hz" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:01, 177.96it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(all_ev, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power (Leahy)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAGtCAYAAAC4HmhdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABUSElEQVR4nO3dd3hUVf4G8PdMS++FFkLoRQTpTVBUUETsDcu6lnVdt1nWXfytbVdX2V3L2nZd1FVXXV0XVFQQRJEmIE06hJpASAgJIT2Zycyc3x9TMpNMTWZyb27ez/PwOLlz5+bgkOTN95z7PUJKCSIiIiJSjk7pARARERF1dQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUZlB6AO2RmZkp8/LylB4GERERUVBbt24tl1Jm+XquUweyvLw8bNmyRelhEBEREQUlhCj09xynLImIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECuuUgUwIMUcIsaCqqkrpoRARERG1W6cMZFLKz6WUd6ekpCg9FCIiIqJ265SBjIiIiEhLGMiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgYyIiIhIYQxkRERERApjICPqAk5WNSJv3hJsKahQeihEROQDAxlRF/D1vlIAwP+2FCk8EiIi8oWBjKgLOFVjBgBkJ8coPBIiIvKFgYyoCyiraQQApMWbFB4JERH5wkBG1AWcqnZUyKx2u8IjISIiXxjIiLoA15SluYmBjIhIjRjIiLqAijoLAMBsZSAjIlIjBjKiLqCmsQkAYLbaFB4JERH5wkBGpHF2u0SN2QqAFTIiIrViICPSuDqLFVI6HlsYyIiIVImBjEjjqhut7seskBERqRMDGZHGVTc0uR9zDRkRkToxkBFpnFcgY9sLIiJVYiAj0rCTVY0or3W0vDDqBacsiYhUyqD0AIgoeiY+8437cWZiDKcsiYhUihUyoi4iKymGFTIiIpViICPqIjITY9j2gohIpRjIiDRKupqPAeiflYDEGAMrZEREKsVARqRRdmcee2DGIHz9wHmIMehgbuIaMiIiNWIgI9Ioq91RDdPrBIQQiDHqWCEjIlIpBjIijbI5S2QGnQAAxBj0DGRERCrFQEakUVZnINM7A5nJoGPbCyIilWIgI9Ioq80RyIx6x5e5Sa9Dk03CbpeBXkZERApgICPSKM81ZICjUz8A2CQDGRGR2jCQEWlUyzVkep3O6zgREakHAxmRRrmmLF0VMlcwszKQERGpDgMZkUa5K2R6V4XMOWVpYyAjIlIbBjIijWq+y9LxZe4KZq61ZUREpB4MZEQa1XoNmfA6TkRE6sFARqRRrkqYO5AJriEjIlIrBjIijXIt6m+1hoyBjIhIdRjIiDTK3xoyBjIiIvVhICPSKH99yDhlSUSkPgxkRBrVslO/gVOWRESqxUBGpFH+7rJk2wsiIvVhICPSqOY1ZKyQERGpHQMZkUa5OvIb9Y4vcz23TiIiUi0GMiKNalkhY9sLIiL16pSBTAgxRwixoKqqSumhEKlWq8awrgoZ97IkIlKdThnIpJSfSynvTklJUXooRKpla7WGzPHlbpcMZEREatMpAxkRBefu1K/jGjIiIrVjICPSKHeFTN/yLku2vSAiUhsGMiKNsvrrQ8Y1ZEREqsNARqRRthaL+rmXJRGRejGQEWlUc4XMubk415AREakWAxmRRrVcQ6YTrJAREakVAxmRRjXZvNeQuSplrJAREakPAxmRRrnWkLk79TsrZXYGMiIi1WEgI9Io99ZJwrvtBStkRETqw0BGpFE2u4ROALpWe1myDxkRkdowkBFplNUuYdA3f4mzQkZEpF4MZEQaZbNLdwgDPCtkDGRERGrDQEakUVabdIcwgHdZEhGpGQMZkUbZ7HavCpkzj7FCRkSkQgxkRBrVZJfQ6zzXkDkrZNzLkohIdRjIiDTKZvNeQ+Z6aJMMZEREasNARqRRVrv3GjIhBAw6wbYXREQqxEBGpFE2ux1GvfA6ptcJLuonIlIhBjIijWpZIQMAs9WOf64+gh3HK5UZFBER+cRARqRRTTY7jHrfX+KLthV18GiIiCgQBjIijaq32BBv0vt8Li3e1MGjISKiQBjIiDSqzmxFQozB53Np8cYOHg0REQXCQEakUXVmGxJMvgNZUiwDGRGRmjCQEWlUncWK+BjfU5Z29iIjIlIVBjIijaozW/1WyBjIiIjUhYGMSKPqLDa/a8hs7A1LRKQqDGREGtRks8NitSOhxV2WM4Z1A8Dtk4iI1IaBjEiD6s02AEB8iwrZ/KvPBgDY2a2fiEhVGMiINKjOYgUAJLZY1G/QOb7kbQxkRESqwkBGpEF1Zkcgi2+xqN+ZxxjIiIhUhoGMSIPqLI4py4QWFTLX3pZcQ0ZEpC4MZEQa5KqQtWx7oRPOQMYKGRGRqjCQEWmQO5C1WNTvqpBxUT8RkbowkBFpUL1zyrLl5uJ6wSlLIiI1YiAj0iDXXZYtK2Q6VsiIiFSJgYxIg8xNjlb8MYbWX+IGnWCFjIhIZRjIiDTI4twbyeQjkOl0AlZWyIiIVIWBjEiDLFZnINO3/hLXC8EpSyIilWEgI9Igi9UOnQAMvgKZTnBzcSIilWEgI9Igi83uc7oSAHQCsHMNGRGRqjCQEWmQxWr3OV0JuCpkDGRERGrCQEakQWarHSaD3udzet5lSUSkOgxkRBpksdp9trwAHNsncVE/EZG6MJARaVCTzQ6jXvh8zsC2F0REqsNARqRBFmuARf06VsiIiNSGgYxIgwLdZck1ZERE6sNARqRBAe+yFLzLkohIbRjIiDQo6JQlK2RERKrCQEakQWZbgLYXrJAREakOAxmRBgWastRx6yQiItVhICPSIIvV5rcPmUEnYLMzkRERqQkDGZEGBdzLUidg44wlEZGqMJARaVDguyzBPmRERCrDQEakQU02GbgPGQMZEZGqMJARaVDAtheCjWGJiNSGgYxIgwIFMj23TiIiUh0GMiKNkVLCYrPD6G8NGbdOIiJSHQYyIo2xOJuM+Wt7wTVkRETqw0BGpDEWqyOQcS9LIqLOg4GMSGPcgSxQHzIGMiIiVWEgI9IY15Sl30X9gpuLExGpDQMZkcYEnbJkhYyISHUYyIg0prHJEchijXqfz+t0AsxjRETqwkBGpDGna80AgPQEk8/n9QKskBERqQwDGZHGlNdZAABZSX4CmU7HQEZEpDIMZEQaU17jqJBlJMT4fF6vY4WMiEhtGMiINKa81gyDTiAlzujzeXbqJyJSHwYyIo0przUjI9EEnU74fF4nuJclEZHaMJARaczpWovf6UqAFTIiIjViICPSmPJaMzKT/AcyHbdOIiJSHQYyIo0pr7UgM9H3HZYAYNQLNNnskKySERGpBgMZkcZUNTQhNc5/IOuZGofGJjvKay0dOCoiIgqEgYxIQ6SUqLNYkRDju0s/AAzMTgIAHDxV01HDIiKiIBjIiDSksckOKYF4k8HvOQOyEwEAh0/VdtSwiIgoCNUEMiFEPyHEm0KIhUqPhaizqrdYASBghaxbcgwSTHocKa/rqGEREVEQUQ1kQoh/CSFOCSF2tzh+iRAiXwhxSAgxDwCklEeklHdGczxEWldvsQEIXCETQiAhxoDGJltHDYuIiIKIdoXsbQCXeB4QQugBvApgFoBhAOYKIYZFeRxEXUKdq0Jm8l8hAwCjXocmG++yJCJSi6gGMinlGgAVLQ6PB3DIWRGzAPgQwBXRHAdRV1FndlbIYvxXyIDm1hdERKQOSqwh6wXguMfHRQB6CSEyhBCvARglhHjY34uFEHcLIbYIIbaUlZVFe6xEnUp9iBUyg14HKytkRESqEfjX6A4kpTwN4J4QzlsAYAEAjB07lj9RiDy4K2QB1pABgEEnYGGFjIhINZSokJ0A0Nvj4xznMSJqJ1eFLD5Ihcxk0MHKQEZEpBpKBLLNAAYKIfoKIUwAbgTwmQLjINKcOtddlgHaXgCOCpmV+1kSEalGtNtefABgA4DBQogiIcSdUkorgF8AWA5gH4CPpJR7ojkOoq6i3uxaQxZsUb8OFisrZEREahHVNWRSyrl+ji8FsDSan5uoK3JVyOKMwdteNLAPGRGRaqimUz8RtV+DxYp4kx46nQh4noFtL4iIVIWBjEhD6iy2oHdYAmwMS0SkNgxkRBpSb7YG3MfShY1hiYjUhYGMSEPCqZCx7QURkXowkBFpSL3FGrRLPwAYdJyyJCJSEwYyIg2pM9sQF0IgMxk4ZUlEpCadMpAJIeYIIRZUVVUpPRQiVXFUyIJPWRp0OjaGJSJSkU4ZyKSUn0sp705JSVF6KESqUme2Be3SDzjbXrAxLBGRanTKQEZEvoVaITPpdWiyM5AREakFAxmRhtRbwqiQcVE/EZFqMJARaYTVZofZag+pQmbU62CzS9i5joyISBUYyIg0ot65N2V8CHdZGvWOL31OWxIRqQMDGZFG1JsdgSwhJpS7LB17XVo5bUlEpAoMZEQaUWexAgizQsZeZEREqsBARqQR7gpZSGvIHBUyLuwnIlIHBjIijWhLhczKNWRERKrAQEakEfWuQBbKGjLXlKWVFTIiIjUI+J1bCDEJwC0ApgLoAaABwG4ASwC8J6Xk3kVEKlHnnrIMpULmnLJkhYyISBX8VsiEEF8CuAvAcgCXwBHIhgF4BEAsgMVCiMs7YpBEFFw4FTIu6iciUpdA37lvlVKWtzhWC2Cb889zQojMqI2MiMJSbwm9QuZqe8EpSyIidfBbIXOFMSHEL4UQaYHO6WhCiDlCiAVVVZwxJXJxBbL4EO6yTIx1nFNjborqmIiIKDShLOrvBmCzEOIjIcQlQggR7UEFI6X8XEp5d0pKitJDIVKNOrMVRr2AyRD8yzo1zgQAqKpnICMiUoOg37mllI8AGAjgTQA/BnBQCPG0EKJ/lMdGRGGot9hCqo4BQFqCEQBQ2cBARkSkBiG1vZBSSgAnnX+sANIALBRC/CWKYyOiMNSZrSGtHwOaK2SVrJAREalC0F+nhRC/BvAjAOUA3gDwkJSySQihA3AQwG+jO0QiCkW9xYa4EANZrFEHk0GHynpLlEdFREShCGV+Ix3A1VLKQs+DUkq7EOKy6AyLiMJVZ7GGtLE4AAghkBpnZIWMiEglgn73llI+LoTQCyF6ep4vpTwmpdwX1dERUcjqzbaQtk1ySYs3obKBFTIiIjUIZcryFwCeAFAKwNVFUgIYEb1hEVG46ixWdE+ODfn8lHhWyIiI1CKU+Y37AAyWUp6O8liIqB3qLbaQuvS7ZCXF4IfCMzheUY+UeCOSY41RHB0REQUSyl2WxwGwAyuRytVbQr/LEgCm9M9EcVUjpv7lW8x+aW0UR0ZERMH4/XVaCPGA8+ERAKuEEEsAmF3PSymfj/LYiCgMjjVkoVfIpg5s3vnseEVDNIZEREQhCvTdO8n532POPybnHyJSGSml8y7L0Ctk2ckxURwRERGFw28gk1L+oSMHQkRtZ7baYZeh7WPpEmMIPbwREVF0hXKXZRYczV/PAuC+hUtKeUEUx0VEYagzWwEgrApZSza7hF6n+Fa1RERdUiiL+t8HsB9AXwB/AFAAYHMUx0REYaq32AAAcca2B7KKOvYkIyJSSiiBLENK+SaAJinlainlHQAUrY4JIeYIIRZUVfHmTyLA0YMMQMid+n05XWcOfhIREUVFKIHM1TmyRAgxWwgxCo7tlBQjpfxcSnl3SkqKksMgUoTFasep6kavY3VmR4UsnE79LZmb7MFPIiKiqAglkD0lhEgB8CCA38Cxwfj9UR0VEfn1+092YfzT38BstbmP1UegQtZkYyAjIlJKKHtZfuF8WAVgenSHQ9Q5ldWYYbXb0SMlLuqf66u9pQCAqvomZCc7KmKbC85ACKBXanifXycAu3Q8tlgZyIiIlBK0QiaEGCSE+EYIsdv58QghxCPRHxpR5zFv0U786oMfOuRzxRgcX7ZnnPtQWqx2/Of7Y5g+OBs9wwxkQjTfVWlmhYyISDGhTFm+DuBhONeSSSl3ArgxmoMi6mz2n6zBiTMd0+0+1nknZeHpOpTVmLH9eCXKa824fmzvsK/l+ZomVsiIiBQTSiCLl1JuanHMGo3BEKlNY5MNS3eVQEoZ8JziqgacrrMEPC9SYo2OL9u7392KcX/6GhuPnIYQwKR+GWFf68krzsLCeyYBACyskBERKSaUQFYuhOgPQAKAEOJaACVRHRWRSizaVoR739+GVQfKAABWmx0fbyvyWgB/vKIeUjq65ddZmhfaV9RZUNPY1Oqa7RXbotfYxiOnMaxHMlLijWFfy6DXISPRsYUSF/UTESknlED2cwD/BDBECHECwH0A7onmoIjUYvPRCgDAoq1Fjv9uK8IDH+3Al7tPus85Wl7nflxR29xc9Uf/+h6Pfrq7zZ/7aHkd7vvwBzQ22byOx7bY8mjH8UqM7ZPW5s9jcq5J46J+IiLlBA1kUsojUsqLAGQBGCKlPBfAVVEfGZEKbC44A8BxZ2NVQxPeXl8IANh09LT7nMLT9e7H5c7mqrVmK/YUV+NAaa37OYvVjiNlzR97OnSqBrVm75UAq/JP4dPtxcg/WRNwjHUWG7KS2r5RuEnvDGS26E+3EhGRb6FUyAAAUso6KaXrJ8MDURoPkWqcqGzAicoGXD2qFyxWO/7w2R7sK6lGjEGHzUfPuM87erp1hWxfSTWkBIrONIe1RduKcPHf1rTaoshqs+PyV77DgtWHvY6XVjvC3XGPawBAo9W7YgYAKXHhT1e6uAMZK2RERIoJOZC1wB2ISfO2FDimK+84ty8GZCfi4x9OICXOiLum9kV+aQ0q6x3BqqC8zl2hcm0/tKvIsa1XdaMVVQ2OdWTHK+rRZJPYf7LacW6tGZ/vKEZJVSPqLTavahoAdzf+ohZ3bzZYWgey5PYEMueUJdeQEREpp62BjHMbFDG7T1R5VZLUYnNBBRJjDBjSPQnXjM4BANwwrjemDcwCAGxxTmcWlNe513Cddla/dp9o3mfV9XdzVcYOOKcg/72hEL/84AdsO+a4TmFFPaw2uztwnapxVsgqvP/fNDRFNpAZ9Y7fr1ghIyJSjt9AJoSoEUJU+/hTA6BnB46RNO6e97bimaX7lR5GK1sKzmBUbioMeh1uGNcbV43qhbvO7YuRvVNh0uuwuaDC2fKiEUO6JyPOqMdp55TlrhNV6JbsqJodr3BUuFxh7cApRyVsb4mjUrYq33EHZ+HpOjy6eDcuen41KuosKHVWyI63qJC1XOQPAMmxbQ9kBr0OOsFARkSkJL+BTEqZJKVM9vEnSUrZ9g3ziDw02ewormxAfmnghesdraq+CfmlNRiflw4ASE8w4YUbzkF2cixijXqMyEnBpoIK94L+vMx4ZCSaUFFnQb3FisNltbjkrO4AWlfIDjr/rq6pyzXOlhr1FhuW7jqJE5UNePCj7e4KWVHLCpmPKcuUuPZ9SZoMOk5ZEhEpKFCFLDHYi0M5hyiQ0upG2KVj2k9NgWDrsQpICYx1BrKWxvVNx66iKizd5WjJl5eRgIwEE8przdhXUg27BKYMyERijMG9BswVyPJP1qCmsalV5QwAqhqa0D05Ft/ml6GqoQkGnUDRmQbYnRtOSinR0GTDhUOycfe0fu7XtWfKEgCMeh3MrJARESkm0BqyxUKI54QQ04QQCa6DQoh+Qog7hRDLAVwS/SGSlpVUOablrHbp1T4iWlbln8Kq/FNBz9tScAYGncA5vVN9Pj99cDZsUuLFbw5CJ4C8zARkJMagos7iXtB/dk4KctLi3BWy07VmmAw6VDdasfZgOQDH5t4AkJnY3LbiznP7uh+f1SsFFpsdJ53TlxabHXYJjO6Thtsm57nPa8+UJeDYH1NNgZiIqKsJNGV5IYBvAPwUwB4hRJUQ4jSA9wB0B3CblHJhxwyTtKq4snl91KFTvnt0RYqUEv/38S78eVl+0HP3FFdjYLckxJn0Pp8f3zcdm39/Ed65YzzeuWM8UuKMSE9wTFnuLq5GZqIJ3ZNjkZMWj6IzDWiy2VHdaMXo3FQAwOLtJwAAE53bHU3slw6dAPQ6gRvG90a88/O6pj2/2FkMAGi0OEJTnFGPpFjHNGWMQdeqe3+4jHod15ARESko4F2WUsqlUsqbpZR5UsoUKWWGlHKylPJPUsqTgV4bTUKIOUKIBVVVVcFPJlU74RHIDvtpmhop+aU1KK5qxLHTdUH3nNxbUo1hPZIDnpOZGIPzBmVhqvOuy4xEE07XWrD7RBWG90qBEAI5aXE4XlGPM85pycn9M2HQCazYW4rkWIP7tf0yE9ArLQ6DuyUhOdaIMc67Ns8fnIWJ/dLx1ncFaLLZ3XdYxpn0SDA5All7pysBriEjIlJaW9teKEpK+bmU8u6UlBSlh0LtVFLZiNR4I3qkxEa9QrZyv2Oqss5iQ3mtxe95ZTVmlNWYMbRHUljXz0gwwWKzI7+0Bmf3cvzb7J0ejzqLDYecYbN/ViIW/GgMuiXHYmK/DAzIdizDzEmLxwMzBuH+GYMAAJP6Z0CvE+iREou543NRUtWI/SU1zYHMqIdeJ5AYY0BybPvvsTHpdVHbXHzx9hP4/Se7onJtIiKt4N2SpKjiygb0SIlDZqIp6oHs2/2noNcJ2OwSxyrq/G43tM/ZjmJYz8AVspYyEhzXkxI4q6cjkOWmxwMAthU6eo2lJ5gwqX8G1v0uG3YpUWe2YurATEzqn4HeznMB4I4pfTG5fyZS403omRoHAKiot0DvXHTmmqJMjDG0q0u/SzSnLH/94XYAwJ+uOjsq1yci0oJOWSEj7SiuakSv1Fj0z0rE4bJa992EkVZV34SthWfca7IKyv3fQOAOZEGmLFtKTzS5H5+d4whkrlC3xrmIP8N5jl4nYNTrkBpvwrt3TvAKY4AjcLluKEiLdwSuynqL15QlACTHRSaQmQyOuyyDTeWGo7LewsoYEVGIAgYyIYReCKG+jp2kGcWVDeiZGoeB3RJRb7GhxHk3YaStPlgGuwRundQHOuFowurP3pJq9EyJRWq8ye85vmQkOM5PTzChZ0osAKBnSizSE0xeFbJwucZRWd/kbgob56yQPXzpUPzigoFhX7Mlk0GHtQfLMeyx5e2+lstb3xXg/e+PRex6RERaFmxRvw1AvhAit4PGQ11Indmxz2OPlDgMyHKspYrWtOW3+08hPcGEcXnp6JESh8IK/xWyvcXVYU9XAkCGs3WFa0E/AAghcHavFFjtEkIAaWGGPABIdVbAztRb3E1hY42OL93pg7PdNwC0R+80R4WuockGW4SqlAkx7bvzk4ioKwllyjINjrYX3wghPnP9ifbASPtKqhx3WPZMjXUvbj8YhY79NrvEqvxTOG9QFvQ6gbzMeBT46XnW2GTDkfI6DA1zuhJwVMiM+ta9y1wL/FPjjO41YOEw6HVIijWgsr7Ja1F/JA3u3tzj2fW+tFd7e6MREXUloSzqfzTqo6Au6USlY3qyZ2ocMhJjkBZvjErri+3HK3GmvgnTh2QDAHLTE7Bsd4nPcw+U1sBml2GvHwMc674W3jMZ/bO9N7BwrSdry3SlS2q8ESVVDfj3hir354qkHilx7sevrT6Me88f4L6ZoK1attGw2yV0bQikRERdQdAKmZRyNYACAEbn480AtkV5XNQFuJrCun7wD8hODHnKsrHJhkc/3R1wLZjLt/tPQSeAaQMzAQB5GfE4U9+EqoYmAI7tm574bA9KqxvdC/rbUiEDgJG9U5EY4/17zghnIHPdhdkWafEmLN9Tis0FZxBr1LlvDoiUWcO7Y+54x8qE9zYew4/+tand12xs8g5k1ijdsEFEpAVBA5kQ4icAFgL4p/NQLwCfRnFM1EWUVDZAJ4BuzvYT4QSyL3aW4N2NhXjru4KA5y3bfRIL1h7BlAGZ7sXxfTIcO4Edc05bfrT5ON5eX4Cr/74ey3afRIJJ725XEQndk2ORlRTjt81GKDxvMNjx+EzEmyLbscag1+GJy4e5P66o89+nLVSuGxBcXlt9uN3XJCLSqlDWkP0cwBQA1QAgpTwIIDuag6Ku4URlI7olx8Kgd/wz7J+ViDP1TThdaw762nc3FgIAlu4q8bsI/cNNx3Dv+1sxrEcyXrxxlPt4nwxH2CpwVtfWHz6NnLQ4WGx2fJtfhqE9kiM6tSaEwGu3jMYDMwe1+Rqu1heDuiUixhCdxfKe141Es9nnVhzw+vj5Fh8TEVGzUAKZWUrp/nVZCGEAwLkHajdXywsX18L+YFWynUWV2HG8EhP6puNUjRmbCypanfPa6sOY9/EuTB2Yhf/8ZILX+i1XIDtWUY/GJhu2HjuDWcO74+OfTcao3FRcMrx7JP56Xsb0SUf/rMTgJ/rhutOyb2ZCpIYUUHu3Y9p9gtuaERGFI5RAtloI8X8A4oQQMwD8D8Dn0R0WdQUlVX4CWZCF/e9tLES8SY+X5o5CrFGHJTu9F+gXnanHX5btx6zh3fHGbWNbTe/FmwzISopBQXkdthWegcVqx+T+meidHo9P7p2Cu6b2i9DfMHJcASmSU6mBtLfZ7GUvr4vQSIiIuoZQAtk8AGUAdgH4KYClAB6J5qBI++x2ieKqRncDVQDomRKHOKM+YIWsqr4Ji7cX48pRvdAtORYXDumGL3eXwOpxR9+/NxRCCIFHLhsGo973P/G8jHgUVtRj/eHT0OsExvVNj9xfLgpqzVYAQHo7bgwIB1tWEBF1rFAC2XQA70kpr5NSXiulfF1Gcn8V6nQi8fafrrPAYrV7Vch0OoH+2QkBA9n/th6H2WrHLRP6AABmj+iB8loLvj/qmLasM1vx4aZjuGR4d/QK0LYhNz0BhafrsP5wOUbmpLS6M1JtXMGyZ2pskDPb56Kh3ZyfLzJr6O46t29ErkNEpHWhBLIfAdghhNgohPirEGKOEKL9rcGpU9paeAaTnlnpt49XqFzNR3ukeAeMgdlJOOwnkNntEu9/fwxj+qS5O+lPH5yNeJMeXzinLT/eVoTqRivumJIX8PPnZcSjtNqMHUVVmNw/s11/l47wywsGYN6sIbhsRM+ofp5Xbx6F1HgjmtrRosIzsI/vm46HLh4ciaEREWlaKH3IbpNSDgJwNYDjAF6FYwqTupgjZbW4653NOFndiEcX70FNY1Obr9WyB5nLgOxEFFc1os45Redp/eHTOFpeh1sn9nEfizPpcdHQbli2uwQWqx1vrS/AyJwUjM4N/DtDH+fieJtdYnL/jDb/PTpKUqwR95zXv02d/sMRY9Cje3Ismqx2LNpahLx5S9zTpaGqbmg+32qX7psoiIjIv1D6kN0ihPgnHL3ILgLwCoCp0R6YGny+oxiPfrobR6LQPb6zKasx47a3NkEnBF6aOwrltWa8sOJgm69X7OzS33Ja0XUnoq+O/e9uLEB6ggmzzva+C3L2iB44U9+E+V/ux5GyOtxxbl/3XpL+9HEujjcZdBgdgb0gtcRk0OGrvaV48H87ADga54bD86aMcwdmwsDu/EREQYWycOZvAA4DeA3At1LKgmgOSE0KT9fhv5uP473vC3HhkG6489y+mNgvPegPe62pM1txx9ubUV5jwYd3T8TI3qnYeOQ03tlQgOvG5rSpq31xZQNijTqkxnsvHvdsfTEiJ9V9vOhMPVbsLcVPz+vfqg/XeYOykBhjwL++O4puyTGYNbxH0M+f52wOOyY3LeLbEHV2LQNUuEsGb3N2+f/q/mlIjjWiurG5Yial7HJfP0REoQhlyjITwB0AYgH8SQixSQjxbtRHpgK/uGAg1s2bjl9eMBDbjp3B3Nc34rKX1+HjbUWwWO3BL6ABVpsdv/jPNuwprsIrN43CSOfG2b+9eDCSYw14bPHuNi3yL3a2vGj5w7lPRjwMOtFqYf9zXx2AQa/DLR7TlS6xRj1mDHMsRv/RpDyYDMGXRqbEGzF1YCauGZMT9ti1ruW0aMuO+8GYrY7z+zmnhc94dP3n7klERL6FMmWZDCAXQB8AeQBSAHSNNAIgOykWD8wYhPXzLsAzV58Ns9WOBz7agXP/vBKvfnsIlfXt32JGraSUeOTT3fg2vwxPXXk2LnTegQc4tvKZN2sINhecwcfbToR97eLKRvRMaX0XpFGvQ16m952W249X4pMfTuCuc/v6vXPy1kl9MCo31b0fYyjevXMCrmUga6VlaKq3hBfI+mclYuawbu4dGFwhHoDfXRWIiLq6UO6yXAdgDoCdAG6QUg6WUt4W3WEF5rzTc0FVVcd1A4816jF3fC6+um8a3r59HAZ3T8Jfl+dj0jMr8cinuzS5zuylbw7hw83H8csLBuCmCa2DznVjemNUbiqe+XKfe6PuUDm69Ptu4TAgq3lPSyklnvxiLzITY3Dv9AF+rzc6Nw2f3DvFqyM/tU3LTcDrLeEt6rfY7DB6VCkn9svAry4cCICBjIjIn1CmLEdIKe8F8BmAyqiPKARSys+llHenpKR0+OfW6QTOH5yNd++cgGX3TcWckT3w0eYiXPDcatz1zmasP1wekT5dSvtoy3G88PUBXDM6Bw/M8L0Ho04n8OQVw1FRZ8HzX+WHfG2L1Y6yWnOrOyxdBmQnorCiHharHV/sLMHWwjN46OJBqu8VphU2u3cBPNwpyyabHTEtGvImxjjW6dk08LVBRBQNoUxZDhdC/ABgD4C9QoitQojh0R+a+g3pnoy/XDsS3827AL+6cCC2HavETa9/j9kvKb/OzGy1Yf2hchworUGTLbxxrMo/hYc/3oWpAzMx/5qzAy7CHt4rBbdO7IN3NxaGvH9haXUjpITPKUvAEchsdon8kzWY/+V+DOuRjGvH9A7r70BtZ7V5h6alu05izsvrvHZDCKTJKlvtkKBz/htihYyIyLdQSg4LADwgpfwWAIQQ5zuPTY7esDqXrKQYPDBjEO49vz8+/eEE3lx3FA98tAPzv9yP2ybn4abxuUjroKm0w2W1+HDTMSzcWoQz9Y5pRKNeoH9WIgZ3T8Lg7kkY0j0Jg7sno2dKbKuwtftEFe59fxsGd0vCP24Z43frIU8PzByMJbtK8Oji3Vh0z2TogrQ5OOGnB5mL607LRxbvxonKBvz1uhFR779FzVqGps92FAMAKuotyE4KvlOAY8rS+/1y3blpZyAjIvIplECW4ApjACClXCWESIjimDqtWKMeN47PxQ3jemPNwXK8sfYI/ro8Hy+vPIhrRufgjnP7uvtsRVJjkw1f7i7BB5uOY9PRChh0AjOGdcNVo3qhzmLF/pM1yD9Zg81HK7B4e7H7dUmxBgzu1hzSeqXF4bcLdyEt3oS3bx8X8hRhSpwRD88aigf/twMLtxbh+nGBq1nNTWF9/3Dvl+X457XjeCVmDuvWKTrpa4m/Kla92QYkBX99k9UOk967lYgrULdcn0ZERA6h/MQ9IoR4FICr1cUtAI5Eb0idnxAC5w3KwnmDspB/sgb/WncU/9tahPe/P4YLh2Tjzql9MalfRrv7MR0orcEHm47h420nUNXQhD4Z8fjdJUNw7ZgcZCX53oS6qqEJB0prnCGtGvkna/DZjmK8/71j4XZKnBEf3j0B2cnh7Zl49ehe+HDzMcxfth8zz+qG1Hj/FcGSKkej0R5+pizjTQbkpMWhtLoR/3fp0LDGQe3nWuf15BVn4dHFe9zHy2rNyMsM/ruYrwqZq2paVmP2+2+TiKgrCyWQ3QHgDwA+BiABrHUeoxAM7p6EP187Ar+5eDDe21iI9zYW4qbXv8fQHsm469y+mDOyZ0h9s1waLDZ8sbMYH24+jq2FZ2DUC1x8VnfcND4XE/tlBJ0uTIkzYlxeOsblpbuPSSlRUtWI/NIaDMxORE5a+FvdCCHwxyuG47KX1+Gvy/Pxp6vO9nvuicoGpCeYEGfy35D17mn9oBMipABAkeVaQzYqNw1GvUCT8+PrXtuART+bhIq6Jnfft5aklLDY7DC1mOrWO3/5uOrv3yH/qVlRHD0RUefkN5AJIWIB3ANgAIBdAB6UUrZ988IuLispBvfPGISfnd8fi7efwBtrj+LB/+3A/GX7cdukPrh5Qp+A68z2Flfjw83H8MkPJ1DTaEW/zAT8/tKhuHp0L2Qktq/iIIRAz9Q4v2u6QjW0RzJum5SHt9YfxY8m5WFwd9/zW8WVDa02FW/pR5Py2jUWajur8y7LOJMesUY9mmzNbS+u+ccGAMCah6ZjzcGyVo16bXYJKdEqkLkmKs1dpKEyEVG4AlXI3gHQBEdFbBaAoQDu64AxaVqsUY8bxuXi+rG9sfZgOd5YdxTPfnUAr3x7CFePzsEdU/q6F7XXma34Ymcx/rPpOHYcr4TJoMOlw7tj7vhcjO+rzi2cfnXhALz/fSHe3ViAp670XSUrqWxELjecVi3XzZSxRj2SY42oaWzdh+y6f65HabUZ147J8dp6au7rGwHAqw8ZAK87fQ+W1mBgtxAWoxERdSGBAtkwKeXZACCEeBPApo4ZUtcghMC0QVmYNigLB0od68wWbi3Cf74/hguGZKNbciw+31GMWrMVA7MT8dhlw3D16F4B12apQWq8CZeN6IlPtp3AvFlDfd4YUFzZgEn9MxQYHYXC1Ycs1qBDWoLRfVesp1M1Zue53ov0NxecAdB6P0zPFjDXvrYBOx6fGdExExF1doECmXt6UkppVWM1RisGdUvC/Gua15m9u6EQtWYrLhvRE3PH98aYPmmqrIb5c/PEXCzaVoTF20/g5gneU1rVjU2oMVuDTlmSctISTDhT3wSTQYfUON+/ALj6u/q7a7K6RVXNc6qyzhxe538ioq4gUCAbKYSodj4WAOKcHwsAUkqZHPXRdTGZiTG476JBuPf8AbBL6TUV1JmM6p2KYT2S8d7GY7hpfK5XmCypdNxh2d71ahQ9/75jPNYeLEdSrDHouf6axZa0qKp5VsjYrZ+IqDW/t/dJKfVSymTnnyQppcHjMcNYFJkMuk4bxgDHdOzNE3Oxr6Qa249Xej1XHKQpLCkvJy3evUl7g3PbpOmDs3ye61kh++3CHe7HQ3t4f4uweAQ35jEiotZC77dAFIYrzumFBJMe72085nW8uCpwU1hSlwaLI5D1Tvd9E4bnYv2PthQBAOaOz8WPJ+d5nafkNmJERJ0BAxlFRWKMAVeO6oUvdhajst7iPl5c2QC9ToS0BQ8pz1Xp6uWnotly30sA6J+V0Kof3kw/fcuIiMiBgYyi5uYJfWC22rFo2wn3seLKRnRPjuXelJ3EU1cOx8J7JqGPnzYlrp5lnnw1Op7QLwOZ7eyXR0SkZQxkFDXDeiZjdG4q3v++ENK5cKi4soHTlZ1InEmPsXnpfjeZ93WXZWe6I5iISC0YyCiqbp7QB0fK6rDhyGkAjjVkXNDf+Rj8BLIFq1tva2vzc+elUc+gRkTkDwMZRdXsET2QEmfE+98fg90ucbKq0e+m4qRe/sLUxz+caHXMX28yTlkSEfnHQEZRFWvU47oxOVi++yT2naxGk02iF6csOx1/U5YAUFrd6NXepGX3fpehPbhdEhGRPwxkFHVzJ+TCapf429cHAbAHWWcUKJDd9c4WXPnqd+6P/VXInrj8LABA73S+/0RELTGQUdT1z0rE5P4ZWLG3FAA4ZdkJtdyb0lP+yRqvjy8cmu3zvHiTAdeNyYHNR6sMIqKujoGMOoTnnpb+elqRevlqZeHi2YV/fF46hnT3v5GHQa+DhYGMiKgVBjLqEDPP6oaspBjEm/RIjgu0hSqpkWeFrF9Wgt/zdEG+o5j0wmfvMiKiro6BjDqEUa/DQzMH48ZxuexT1Ql5riGbNby73/OCNfw16HU+u/sTEXV1LFVQh7l+XG+lh0Bt5BnIHpgxGH0zE/Gb/+1odZ4uSNg26AXMVhuklAzmREQeOmWFTAgxRwixoKqqSumhEHUJnn3I9DqBcXlpPs8LFsjqzFY02SR++u5WWP00kCUi6oo6ZSCTUn4upbw7JSVF6aEQdQktO/X769wfbMqyos6x0fxXe0vxzobCyAyOiEgDOmUgI6KOFWt0fKv41YUDAfhvgxGsQuapprGp/QMjItIIriEjoqBiDHocefpSuPKWK3ZlJprQJyMBWwvPAACCFMjQ2NQ8TckGwUREzVghI6KQ6HTCvRDfNTU5qFsSFv1ssvuc0urGgNdobLK5H+u5qJ+IyI0VMiIKW0ZiDN66fRxG53ov7tcFKZF5BjL2IyMiasYKGRG1yfTB2UiJM3od87ONpdtvZg52P/7dol1YlX8qGkMjIup0GMiIqN1evPEcAIA9SCKbPCATWx+5yP3xgjVHojksIqJOg4GMiNotxrnXpS1YiQyAwWN/JW40T0TkwDVkRNRurk7+dhk8kOk9msyuPViGvHlLMHd8LirqzPjnrWOjNkYiIjVjICOidjOEEcg8e5idqjEDAD7YdCw6AyMi6iQ4ZUlE7ebaWimEGcug3fyJiLoiBjIiajf3lGUIiSxQ/zEZQoWNiEiLGMiIqN1cgcwWQqAK1KvMbGVvMiLqmhjIiKjdXOvCQrnLMpB6iy34SUREGsRARkTtZnK2vWjvjGOd2RqB0RARdT4MZETUbpGqkHHKkoi6KgYyImq3cNaQBfLV3pMAgIG/X4q8eUuwq6iq3WMjIuoMGMiIqN1cgay9d0n+ZVk+7HaJJpvjOnNeWcdQRkRdAgMZEbWbQR+ZKUsAmPHCaq+Pj56ua/c1iYjUjoGMiNrNqHN16g/t/JfnjsLin0/x+dzhMu8AZtLz2xQRaR+3TiKidnPtFx5KY1gAmDOyZ8jXNhnY2Z+ItI+/ehJRu8Ua9QCAmybmRvzaRlbIiKgLYIWMiNrNqNfh4J9meW0cHslre9p0tAKjc1PdG5oTEWkBv6MRUUQY9TqIAPtUttW6g+UoKHesK9t27Ayu/+cG/O3rgxH/PERESmIgIyJVe+XbQzj/2VUAgFPVZgDA0t0lCo6IiCjyGMiIqFPYUlCB4xX1AIAjZWyFQUTawkBGRIr567UjQj732tc24E9L90VxNEREymEgIyLFXDmqV5tfW2e24qzHlmHl/tIIjoiISBkMZESkGH07bgK44tXvUGex4dnlByI4IiIiZTCQEZFidDqBJ68c3qbXHjpVCwCIwo2dREQdjoGMiBSVGONoKmsytO3bEQMZEWkBAxkRqUJb96wUYCIjos6vUwYyIcQcIcSCqqoqpYdCRBHCChkRdWWdMpBJKT+XUt6dkpKi9FCIqJ2kcz9yzwrZQxcPDvn1zGNEpAWdMpARkfbEGJu/HYVV9WKJjIg0gIGMiFTBs0IWzrowAeCRT3fhjbVHojAqIqKOwUBGRIoa0ycNAHDDuN7uY+EUvYQA3tt4DE8tYRd/Iuq8GMiISFF9MhJQMH82pg/Jdh/ThRPIojAmIqKOxkBGRKpg8EhhqfGmkF+37Vilz+PFlQ2oqm9q77CIiDoEAxkRqYLeI5BdOzoHf7j8rLCvsf9kNfLmLcGhUzWYPH8lpv5lZSSHSEQUNQxkRKQKBp3j21Gv1DjodALTBmWFfY3F24sBAMv3ODYcr260Rm6ARERRxEBGRKrQLTkGPz2vH96+fRwAIC3eCAC4/6JBIV/jH6sOR2VsRETRZlB6AEREACCEwMOzhro/To03Ye8fL0acUY8Xvj4Q5rV8Hz9TZ0FaQujr04iIOgorZESkWvEmA4QQWHjPpLAqZTofiWzZ7hKMenIFNhdURHKIREQRwUBGRKo3Ni8dv75oYMjn+yqQfX/UEcQ+2HQsQqMios5u5f5S5M1bghOVDUoPhYGMiDqPCzx6lQXyzJf7Wx1zdf//eNuJiI6JiDqv/24+DgDYVVSp7EDAQEZEncjrPxrb5teu2HcygiMhIoosBjIi6jT04bTwb+F4hfJTEkSkjKqGJtz2r004Vd3odVxKhQbkAwMZEXVal43oEdJ5Uk3fdYmowy3cWoTVB8rwj9X+WuMovwkbAxkRdSomg+Pb1kc/nYS/XjsypNc8+YX3xuMfbTmOvHlLUF5rjvj4iCh8ZqsNteboN3Ju+buZmn5VYyAjok5l6a+m4s/XnI3xfdMRZ9IHPf8X/9mGf3131OvYh847LQtP10VljETkLW/eErz67SG/z1/56noMf3y5++Onl+7Dst2OdZ/PLs9H3rwlAa9vt0sUnq7Dy98cxKr8U62e91f/cgU0f70LOxIbwxJRpzIgOxEDshNDPv+LnSV+n+NMJlHH+evyfPx8+gAcLqvFqWozJvXPcD+3r6QagGOtV1lNIxasOQIAKJg/G684g9ye4ir0yUjA8MeX44UbRuKqUTk4dKoWFz2/GrdMzMV7G71b2jwyeyjumtovpLGpII8xkBFR1yOcvw5LAFPmr8Tc8b3xiwtC73NGRG134XOrvT5+/64J7sczX1iN0urmpQQ/HDvjfjz7pXXol5kAALj/vzuQkxaP617bAACtwhgAvLDigDuQuSpgb68vwIMzB8FuBx5auANf7yuNzF8qAhjIiKjL8fxt+ERlA5796gADGZFCvthZ7H7sGcYA4Kq/r/f6+Eh58zIDVxjzp85i83n87Ce+anVMqGDOkmvIiKjLcX3v9ZyytNrsvBuTKArO1FkCPp9/sibqYwgWt37y7y1RH0MwDGRE1OW4uvbbPQLYgN9/idve2qzUkIg0yWK1Y9STK9wf3/VO6+Cz7Vhl1D7/vpJqrNhbipdW+r+hQC04ZUlEXY+PChkArDlQhkOnajAgO6njx0SkMQvWHEb3lDivYx29ZmvWi2tDPldKqejUJStkRKQ5X90/LeDzm5wbjc99fWOr505UNrY6RkTeKuosWH+oPOA5Ty/dj1998EMHjajzY4WMiDRnULe2V7js9sDryJpsdtilRIzBfw+0WrMVCSa9KhYKE0XaG2uP4KkljmbLh5++1GtLs5KqBry88hCM7djmTCl2CegVHDYrZESkKRsfvrBdr7d5BDK7XXrddg8A059dhcGPLPP7+uMV9Rj++HK8u7GwXeMgUitXGAOAl745iI1HTiNv3hK8ue4oJj2zEv/5/hje2dD5/v1/teekop+fgYyINKNfZgK6p8S26xo2j4Vlb6w7gqv+vh7rDzdPzRSdCbxJeYGz+/9Xe9TT34i6ptO1ZkyZvxIHSsO/i/FkVSMe/GgHzFbfrSNcXvzmIG5c4Jj6f/KLvW0ap1p0xNZNgTCQEVGntv2xGVj1m/MBAFMGZLb7ep5TlvtLHD/IioOsK5NSYmvhmYDnEHW0lftP4URlA/65+khI55+ps+Dlbw7Cbpd4/LPdWLStCP9YdRjFlQ3YXFCBr/eWBt3CqDNTeokB15ARUaeWGm9CarwJ3827ANlJMe7j6+ddgMnzV4Z9PauPNWTBvk1/tOU4frdoF/5x82gkxvLbKqnLom1FWH3gFCb3z8RLc0f5Pe//PtmFL3efRK3FiuXOCu/fvj6Iv319sKOG2qWxQkZEmtArNQ5GffO3tJ6pcQHO9s/upzlsk82OF1YcaHX83D+vxO8W7QIAHKuodx+XYJNZUpZnxae81oLPdhSjzmzFoVO+pzBdU3ahVtS0RunG0AxkREQePt9Rgp1FlY7O/R7HF24twovfNFcKzFYbKuosXmvKbFLCYrUDAMprAncnJ1LC7W9txkXPrwEANDbZ8M76Avc0fVffqMLs/NpVCmvrREQevt5Xiq/3lWLu+Fz3MSGAhhb74t3+1masP3za69hfluW7H+e3YSE1UST5mmrfVFDhfvzC1wfwz9VHkBpvxBXn9PJbHe4q/re1CLdM7KPY52eFjIg06+xeKW1+7QebjgWcwmgZxkKx8chpHPeY1gzVst0lId0BVllvCXnaZW9xddA9BgHgSFktPttRHPQ8iqxPfihC3rwlyJu3BLtPVPk9rz13BlbVNwEAfv3hduTNW9Kmf9NawilLIqIoMbSzy2NNo+OH3QMf7cCJysDtLkJx44KNmPqXb8N6zYHSGtzz3jb8btHOgOcdOlWLc/64Au99f8zreGW9BRe/sAaHy2q9jl/60lpc/uq6oJ9/xgtr2G1dAf9aV+B+vHBrkc+wsGhrEYY/vhwr95fiw03HWj0f7KZB9i1WFwYyItKstHhTu17/zf5T7sdvrjsa9uvz5i1B//9bisr60NeTfbOvFIXOXmYAUOesgATrf3a03PGaVR5jdlzvFPJLa/DEZ3taveZ4hfc11x4sw2/+t8PrmC3IzgUUfW+vL8CHm4+3Or4y3/Fe3/H2Fsz7eBcam7yn1V2/UFDnwEBGRJr17HUj8dtLBis6Bptd4pw/rsDra5rvXLs0wIbHd76zBef9dRVeWRm41cC/NxTgoMc6NddONeW1ZnzjsYGzzvldfu3BwPsOAsCtb27Cwq1FQc/r6hasOeyeRtxTXIWxT63A6Vqz1zlLd5XgH6sOex07XFaLvHlL8G2L0OxLy+rVxiPBpxNbFtEe9xHCyb9ahQMsAxkRaVZ6ggn3nj9A6WEAAP60tHm7mb0l1bDbJfYWV2P94XL31jOeYejZrxwtNvzVpx5bvAczXliDk1WNyJu3BP90Br4dRVW4850tqLc4frjofMxLXffa+gj9rTqelBLPfZXfagq2Iz29dD8ue9kx3Tv7pXUor7VgXYuNtu99fxv+vGw/th+vBAC8+PVBXPjcagDAkl0lAa//xtoj2Fnkf92YP5UNFuw/WY1PfzgRtIHrnW9vxgebWlfdurIj5XXBT4oi3mVJRJo3OjcV245VKj0ML+99X4jHFntXMFpOF3ryjFXvbihwP574zDcAgE1HK7zOt9oljp2ux+c7Wv/w31zQvKvAuoPluOXN73H/RYPcxx78aAcWbStCwfzZofxVAjp2uh4GvWhzX7iWymrMeHnlISzaWoT17dy3tCNc+ep3KJg/Gy983dzDrqqhCe9uLMStPu7oa7DYvPaK9OVEZQO6J7feIuyi51ajzhJ4qyOXb0Ko0lHHYiAjIs1beM9k1FqsGPHEV0oPxa2sxhz8JABX/711NevRxcGnoqQELnt5LaqDTMO49h/0DAyLtrWetqy3WFHbaEW2jyDgz4HSGsx8wdHzKhLhDgBcS9osNuXXtvmberz8lcA3S6zYW4oVe0sxOjcVZ/VMwanqRmwuOIN4kx63v7054GvXHizDrW9uwo8n57VqaxFqGCN1YiAjIs3T6QSSY41KD8NLtG9we/Hrgz7DmKVF88tA/dI8F/Rf+ep3OFBaG1awWrE38husu3plldeGFmgjQUqJV789hMtH9kJuRrz7uGd48uyKH+p04wsrDuCR2cNw/rOrAAD9shL8nrv7RBUq6iy49c1NABwL/UlbGMiIiBSwOoRF9i1bHUgp0RRiZehf37W+K/Sd9QVhrb36bMcJ9+MDpd6vW7S1CBab3auBbns9vXQf8k/W4J07xvs9JxJ3fS7efgJp8SZMG5QV0vml1WY8+9UBx5/rRvo8x/VeFZ0Jvc/c1/tO4et9zVW2I2X+1zAdLqvD6CdXhHxt6nwYyIiIFLDDudg7kL4PL3U/3n680uvjtnj8sz1IMOlDPv/+//pf0/agc73b3PG5mLdoJw6eqsUFQ7Lx8+m+b6KoamjCh5uO4e5p/VDV0IQ1B8tx+cieXucsWBN8D8WthWeCntPSFzuL8e3+Mjw4cxB6psbh1x9uBwAcfvpSmK02HDpVixE5qQAc78s7Gwrw7LUjodMJSCnd6/QA/+v8fv3hdrz1XQEuG9Gj1XMHuGsDhYCBjIi6tEvO6o4pAzLw6fbiNv2w72zau85oX0k1hvZI9jrm6pG1tfCM30D22OLdWLy92DHteboOWwvPYFTvVPROj/d5/s6iSvxpyT7cPa0fLhzaDQBgtdlx2mN3gdO1jspVvEmPRy8b5vX67w6VY+X+U5g9ogd+8R9HY9uWNyr87esDOFBag+V7SrH9sRlIjTfh9rc3o6LOgsn9MzEiJyWsqcHtxyvdd1V68rUOkKglBjIi6tJeu3UMAODWSXlBWwWQY0cAz0D2ZYsWDj/59xaszi/DgT/Nwn88dg1YvN2x/ZLnDQMHSmv8BrLLX/kOAPD90QoUzJ+N2S+txZ7iatw0oXmKdMxTX7sfT+yXgV9+sA3bHp2BeJMBN7/xPYDWDX09p2xfXnkISbGOH4PPfpWPSf0y3VOPrkrYOb1TA/3vCEl7tjeiroN9yIiInPpk+A4H5N/P3t/m9fGKvaWw2OwwW21Bt5u6850t2HasdVWyprGp1bE9xdUA4BXyPP3k31vQ2GTHZS+vCxiAluz0DpCubvbvbTyGn/9nG87Ue39uXxUvomjolIFMCDFHCLGgqir8xnlERCNyfG86vvqh6R08ks7n0cW7Q+o0P/iRZSFd7+q/r8ey3SfxnUdjVVcrjrY4UlaH4Y8v9/v88ysO+H2OSEmdMpBJKT+XUt6dkuL7myoRkS/JzumpxT+fovBIOq/K+qagvbLCdc97W91TjEDrhfvLdgfubE+kBVxDRkRdxpJfTUX+yRqvnlGkPodbtH+4571tfs4kipwYg7I1KgYyIuoyeqfH+11ETkSkpE45ZUlEFC0r7p/m97lchjkizdIpXDlnICMi8jCwW5Lf5wJ1kCciag8GMiKiEPXNTEBKnLr2xCSiyLh+bI6in5+BjIgogIvPcnSJn9gvHQAwLi9NyeEQUZTEhrGtWDQwkBERBXDVqBy8dstovHnbOADAc9edo+yAiCgqBLiGjIiow/VOjwvxTIlLhvdAQozjpvSUeCPeuWM8Vj54XvQGR0RdDtteEFGXtPLB82F37lvY0gs3jMQjn+xGncUGX6ecNygryqMjoq6GFTIi6pKMeh1iDL7XjFw1KgdTBzpCl+/IRkQUWQxkREQ+uFoS+SmiERFFFAMZEZEP7kDGGhkRdQAGMiIiH1x3XEWyQtYrNdQbCYiooym9xS0DGRGRL+4KmX/PXz/S73MF82e3OhancJ8jIvJP4TzGQEZE5ItBF/zb89Wjc7DriZkhXW/bozMU/4ZPRP7FGtkYlohIdR6ZPQxzx+e6O/X7kxRrbFUN2/bojFbnpSeY8Lcbz4nkEIkogvplJSj6+RnIiIh8yEqKwTNXn+23NUZLY/s0b6mUnmDyes4V2M7qmdLm8UwdmIlHZg9t8+uJKDB26ici0oAP7p7YrtfHGAJ/O373zgm4a2o/9Mts/i1+9oge7fqcRKQe7NRPRBQBRr0Oi342CdlJsW16ff5Ts7C1sALX/GNDwPNc61wenDEIN0/sgyU7S9r0+YhIXVghIyKKkDF90tE7PT4i15o1vLvP467tni4c2q3V1GhLvVLjcO2YnIiMh4iii4GMiEg1HGtYRuWmYmxeuvvobZP6uB+7Apnex12gN03I9fr4k59Pxj3n9Y/GQImibu1vp3fo5zPquYaMiIhaMDl/ONwxpS+euPws9/EeKY7msnE+btH3XF8GANlJsex9Rqq264mZ+PjeyT6fC1RtzkqKQWJMZFddnZObGtHrhYuBjIhIQZ7dwVPijACAQdlJuG5sb9wxpS/unzEQwuOkF288By/NHYXcjNY/rHztKtArNQ53nds34uMmioSkWCNG56Z5HUuMMWB4r2SvYz+f3lzpHdMnDe/cPh67/3BxZAej8C5pXNRPRKSA8X3TseloBZbfNw2bjlYAAAZkJ+I/P5mA0blpiDXq8dicYa1elxpvwuUje/q8pq9pTACYNigLb6w7GrnBE4Xhtkl98M6GwpDOzX/qEq9WM+/fNQEZiSYM6Z6MV789DABY9LPmitqOx2ZizivrcKyi3uf17pjSFzqBkP79ZyXFhDTGaGGFjIgoSvpkxCPPRyXrgiHZeOvH4/D1A9MwqFsSbpnYvEZscv/MsDqGr3loOh6YMQg/Pa8fbpqQi0N/mtXqnIQYx/Um9kvHF788F1eP6tX6HE5tUgR5Nke+f8Ygn+e89eNxrY617Ps3ZUAmhnRPbnWeS0q8EanxRr/P//S8fpg3a0iw4QKAVyVaCayQERFFyeqHWi9K3v/kJTDoBAx6HQZkJ7X7c+RmxONXFw4MeM7o3DT85doRuPTsHkiMMeD5G87B9CHZ+OUHP2DrIxeh1mzFpS+ubfdYiADgiTnDHDtT3HAOlu0+idR4E/54xVl4bPEeZCaaUF5rAQBMH5Lt9Tpfv7x4evWm0ahubAp5HOvnXYBuyW1rQ6MEBjIiog7UEfvl/XhyHnafqHJ/LITA9WN7e50zZ2RPzHFOfWYkBp6quWZ0DhZtK4r8QEmTRvZOBQBcOaoXrnRWY3unOcLW8F4pWJVf1uo1+5+8BLogFapQGyF/8JOJGN83vdUU/uBuSbhral88tHBnSNfpaAxkREQa43lXZqgCTdc8d/1Ir0DWKzUOJyob2jS2PhnxKDzte70PaUMoU3+Zid499CLxi8pVo3rhL9eOgFHfejXWhocvQHKsEesPnwYAdEuOgVGvw9zxuRjaIwnVDdZ2f/72YiAjIqKwfPPgeRjy6LKwX7fziZlIMBnQ//+WRmFUpBa+4tiUAZm4ZnQO7p8xEGU1ZvRKi4vY55vUPwM7i6rw4MxBPsMY0NwuZrSztcWLN47CxH4ZERtDJHBRPxERhcWzmvHQxYNbPS+E4+62hfdM8rpZIDnW2OqH9U+msiWH1vgqkJkMOjx3/UjkpMVjVG5am7cY8+W3Fw/BmoemIyct+C4ZGYkxKJg/W3VhDGAgIyIi+K5qhOLn0we4H6/6zfkYn5eOlQ+ej8fmDMPYvHT84YrhXue3bPUUb+JEjZr96oIBwU9qIS0+8JZekabXCZ99+TobBjIiIsKLc8/BKI9O5RnOfTL/dsM5Xud9+5vzW7120c8mYe743uiTEY+P7pmEvh47Blw7JgcXetxN51pn/csLBuDuaf3ci74psg481br9SVvExxgCto24ZWIuDB6L5//147ER28+1q+GvJkREhAuGdMMFQ7ohb94SAMBWjz5Snvq22J4JcGyqPqZPuo+zHRb8aCyabHYAjgXfBfNnu5/zdXPA1kcuwoYjpzGpXwbGPPV10LH3z0rA4bK6oOd1FQeemgWTITL1lhnDumHF3lL3x+Pz0lHZYMGB0lr3sdun5OH1tY7GqyNyUiPyebsiVsiIiCgk14/NadPr9Drh9y66nimxXjsPPH/9SGQkxuCyET2DtuMAgH1/vAQv3jgK2T66rKfGG/H4nGFBm96O7J2K/KcuCfq5lHCrR9NgT3++5myfx0fkpAQMY3PH9/b7XEsF82ejf1aiezr77mn98NE9k/D89ee4zxncPRkPzxqKrY9chA9+MhGZIbxn5BsDGRERBXX46Uvx52tGRPy6Qgg8fbXvcBGKOJMew3ulYNPvL2q14fqn907B7VP6Ys8f/YetOKMer986plWH+GAeDrH7e3vMGdkTyXG+J7JuGJeLT+6djGX3TcXWRy5yH7f72tAUwEtzR+HAU7Pw6wsdXfPH5/muaH768ykAAKPe/6pCz0X7t0zIhU4nkJEYg0n91bdQvjNhICMioqD0OhG1rWUSY4Kvnnnm6rMxOcwf+Hk+plcBRyd5l31PXoLsELu5Xz26eb3bT8/rH+BMb8vumxryuZ7+cs0IjPWYCnZV+lxVrlG5aRjSPRkZiTHugJjlp0I1Pi8dJoMO3VNisey+qXj3rvHY/PuL8MjsoTj6zKVY/dD52PHYTIzMScF1Y3Lw/l0T3a8d08ex+XfLwDW0R7Li2w1pCQMZERG1iWvhfyS4bh6Y4KcdwdzxuXjlptEBryFb3cPpW7oztMwc1s3vOd88eJ7XWjcAXlN14RjSPRnzrz4b/717Ip69bqT7+D3OUNcvM8G9a4KnOJPea3uhlb85H+cOyMS8S4a2Oven5/XHc9eNxAstbsIAgD9cfha6pzSHziHdkxFj0CMrKQZ3Te0HIQT6ZCQgJd4IIQT+et1IjO/bHATH5qVj7x8vxvTBjrH0yXAE3XvPDz2UUnBc1E9ERG5JMQbMPKt70PPW/W46kmL8b+ocLs9tdjwt+tlk7D9ZDQBI9wiAk/tnuLuuu8y7ZAie+HwvAMf2OZ4K5s+GlBJSAt8dLgfg2DXA09rfTsfJ6kaMyEnxO4W54v5pKK5qDPNvB9w4PhcAMAHA4u0ncO6ATOQ670Yc1C0Jj84eCqPOMX3rr+lut+RYvHfXBL+f45oxvtf43TY5L+zxtuTZniQxxtAqrFL7MZAREZHbrj9cHNJ5oTThjIQxfdLcU2YA3JtT/+2Gc5DWokL34yl93YHM13omIQSEAM4dkIm/3zwaFw713ty6d3p8q5YN3zx4Hi5+YQ2udYadgd2SMLCb703hf3fJEPx52X4AwPL7puHppfswvFdyq/PevdMRqvYUO/YbHZuXhuzkWDzvo7oFAG/dPg5bCip8PkfawUBGRESdjhDC7zY5obz20rND26i6f1YiDj19acBz5o7vjQ82Hcc1Y3rh0x9O4OrRvTC4exLeuWN8wNed1TMFa387HTktthG6YEg2Vu4/5f54+uBs93RhOPplJqDeYgv7daQMBjIiIuo0fn3RIDz66W6/dx8CgdeGRZKr/9kfLh+OO8/th+ykWCy/f1pY1/DVRPXN28bCHtpyuIBW+mjiS+olpJ9bZDuDsWPHyi1btig9DCIiUolasxWxBh0MbayehaO81owDpTWY3D8z6p+LtEEIsVVKOdbXc6yQERGRZoTSQiNSMhNj2AiVIoZtL4iIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECmMgIyIiIlIYAxkRERGRwhjIiIiIiBTGQEZERESkMAYyIiIiIoUxkBEREREpjIGMiIiISGEMZEREREQKYyAjIiIiUpiQUio9hjYTQpQBKGzDS1MAVEXh/GDn+Xs+nOO+jmUCKA9hfJEW7v/HSF0jlNe09b3w91yo7xHfi/DPCfe98HdcS+9FW67D71O+daWvDb4XbX9NR32fGiilTPF5FSlll/sDYEE0zg92nr/nwznu59iWzvD/MVLXCOU1bX0vwvn/7us434vovxehvked+b1oy3X4fSp670dn+drge6Ge9yKc98P1p6tOWX4epfODnefv+XCOhzv2aIrEWNpyjVBe09b3wt9z4b53Ha0rvRf+jmvpvWjLdfh9yreu9LXB96Ltr1H8+1SnnrIkByHEFinlWKXHQXwv1ITvhbrw/VAPvhfq1FUrZFqzQOkBkBvfC/Xge6EufD/Ug++FCrFCRkRERKQwVsiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgUzjhBBXCiFeF0L8VwgxU+nxdGVCiH5CiDeFEAuVHktXJIRIEEK84/x6uFnp8XRl/FpQF/6cUAcGMhUTQvxLCHFKCLG7xfFLhBD5QohDQoh5ga4hpfxUSvkTAPcAuCGa49WyCL0XR6SUd0Z3pF1LmO/L1QAWOr8eLu/wwWpcOO8FvxaiL8z3gz8nVICBTN3eBnCJ5wEhhB7AqwBmARgGYK4QYpgQ4mwhxBct/mR7vPQR5+uobd5G5N4Lipy3EeL7AiAHwHHnabYOHGNX8TZCfy8o+t5G+O8Hf04oyKD0AMg/KeUaIURei8PjARySUh4BACHEhwCukFI+A+CyltcQQggA8wF8KaXcFuUha1Yk3guKvHDeFwBFcISy7eAvoxEX5nuxt4OH1+WE834IIfaBPycUx29KnU8vNP+WDzh+yPQKcP4vAVwE4FohxD3RHFgXFNZ7IYTIEEK8BmCUEOLhaA+uC/P3vnwM4BohxD+grv39tMzne8GvBcX4+9rgzwkVYIVM46SULwF4SelxECClPA3HGg1SgJSyDsDtSo+D+LWgNvw5oQ6skHU+JwD09vg4x3mMOh7fC3Xi+6IefC/Uhe+HijGQdT6bAQwUQvQVQpgA3AjgM4XH1FXxvVAnvi/qwfdCXfh+qBgDmYoJIT4AsAHAYCFEkRDiTimlFcAvACwHsA/AR1LKPUqOsyvge6FOfF/Ug++FuvD96HyElFLpMRARERF1aayQERERESmMgYyIiIhIYQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxq2TiKhTEULYAOzyOHSllLJAoeEQEUUE+5ARUacihKiVUib6eU7A8X3N3sHDIiJqF05ZElGnJoTIE0LkCyH+DWA3gN5CiIeEEJuFEDuFEH/wOPf3QogDQoh1QogPhBC/cR5fJYQY63ycKYQocD7WCyH+6nGtnzqPn+98zUIhxH4hxPvOMAghxDghxHohxA4hxCYhRJIQYo0Q4hyPcawTQozsqP9HRKR+nLIkos4mTgix3fn4KID7AQwEcJuUcqMQYqbz4/EABIDPhBDTANTBsXffOXB879sGYGuQz3UngCop5TghRAyA74QQXzmfGwXgLADFAL4DMEUIsQnAfwHcIKXcLIRIBtAA4E0APwZwnxBiEIBYKeWO9v1vICItYSAjos6mQUp5jusDIUQegEIp5UbnoZnOPz84P06EI6AlAfhESlnvfF0omyrPBDBCCHGt8+MU57UsADZJKYuc19oOIA9AFYASKeVmAJBSVjuf/x+AR4UQDwG4A8DbYf6diUjjGMiISAvqPB4LAM9IKf/peYIQ4r4Ar7eieQlHbItr/VJKubzFtc4HYPY4ZEOA76dSynohxAoAVwC4HsCYAGMhoi6Ia8iISGuWA7hDCJEIAEKIXkKIbABrAFwphIgTQiQBmOPxmgI0h6RrW1zrZ0IIo/Nag4QQCQE+dz6AHkKIcc7zk4QQrqD2BoCXAGyWUp5p19+QiDSHFTIi0hQp5VdCiKEANjjX2dcCuEVKuU0I8V8AOwCcArDZ42XPAvhICHE3gCUex9+AYypym3PRfhmAKwN8bosQ4gYALwsh4uBYP3YRgFop5VYhRDWAtyLzNyUiLWHbCyLqkoQQT8ARlJ7toM/XE8AqAEPYloOIWuKUJRFRlAkhfgTgewC/ZxgjIl9YISMiIiJSGCtkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxkBGREREpLD/B60i90GDljRkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Power (Leahy)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nice Quasi-periodic oscillations there! Note that at high frequencies the white noise level increases. This is not real variability, but an effect of **dead time**. The easiest way to get a flat periodogram at high frequencies is using the **cospectrum** instead of the power density spectrum. For this, we use separately the events from the two detectors. The cospectrum calculation is slightly slower than the power spectrum.\n", + "\n", + "For an accurate way to correct the power density spectrum from dead time, see the documentation of `stingray.deadtime` and the Frequency Amplitude Difference (FAD) correction." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:03, 78.00it/s]\n" + ] + } + ], + "source": [ + "cs = AveragedCrossspectrum.from_events(evA, evB, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGfCAYAAACQtOy5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABA/0lEQVR4nO3deXicVd3/8c+Z7GvbtGm6Ny3daUtLFwqlRaBAWWRHlkdEQQEVt0dRQNTHB0UE9VGRn4iCKCCLIKDsW9lLS0pL931P0yZNmq3ZZjm/PyYzzTZJJpl0Tpv367q4krln5p6T3Mzk0+/53uc21loBAACg8zzxHgAAAMCRhgAFAAAQJQIUAABAlAhQAAAAUSJAAQAARCnxcL7YgAEDbH5+/uF8SQAAgC5ZtmzZfmttblv3HdYAlZ+fr4KCgsP5kgAAAF1ijNkR6T6m8AAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKBCjAQQ2+gEbf+qL+WbAr3kMBALSBAAU46EBNgwJWuufVDfEeCgCgDQQowEH13oAkKSWJtygAuIhPZ8BB9T6/JCklMSHOIwEAtIUABTio3hesQCUn8BYFABfx6Qw4qKahsQLFFB4AOIlPZ8BBtd5ggEplCg8AnESAAhxU2+CTJCUn8hYFABfx6Qw4KDyFR4ACACfx6Qw4KDSFl5LEFB4AuIgABTiotrECxVl4AOAmPp0BB4Wm8OiBAgA38ekMOCg0hecxcR4IAKBNBCjAQaEpvIC1cR4JAKAtBCjAQTWNyxj4AwQoAHARAQpwUG3jxYT9gTgPBADQJgIU4KDQQppM4QGAmwhQgINCFxNmCg8A3ESAAhzU0BigqEABgJsIUICDvH4CFAC4jAAFOMjrDwYnpvAAwE0dBihjzEPGmGJjzOom2+4xxqw3xqw0xjxrjOnbo6MEeplQBYqz8ADATZ2pQD0saWGLba9LmmytnSppo6RbYzwuoFdrYAoPAJzWYYCy1r4rqazFttestb7Gmx9JGtYDYwN6rUMVKAIUALgoFj1Q10p6OdKdxpjrjTEFxpiCkpKSGLwccPTz+oLBiQoUALipWwHKGPNDST5Jj0V6jLX2AWvtTGvtzNzc3O68HNBrcBYeALgtsatPNMZ8UdJ5kk63lk95IJYamMIDAKd1KUAZYxZK+r6kU6y1NbEdEoBwBYqz8ADASZ1ZxuBxSYsljTfG7DbGXCfpD5KyJL1ujFlhjLm/h8cJ9CrhdaAo7gKAkzqsQFlrr2xj84M9MBYACk7bhabumMIDADexEjngGG+T1TNpIgcANxGgAMc0DVBUoADATQQowDGh/idJIj8BgJsIUIBjmk3hkaAAwEkEKMAxDb4mU3j0QAGAkwhQgGN8TapOVKAAwE0EKMAxoSm85AQPFSgAcFSXL+UCIPa++ugylR5skCSlJHo4Cw8AHEWAAhzy8uq94e9TkhJEAQoA3MQUHuAoKlAA4C4CFOCo1CR6oADAVQQowFGpSQmchQcAjiJAAY5KTUqgAgUAjiJAAY5KTaIHCgBcRYACHJWayBQeALiKAAU4KjUpgYsJA4CjCFCAQ9KTE8LfpyXTAwUArmIhTcAh2alJOiY3U9eenK9N+6qZwgMAR1GBAhxiZXXskGxdNH2YEjyGChQAOIoABTgkYCVjjCTJY4yslSwhCgCcQ4ACHGKtlSeYn5TQ+A1LGQCAewhQgEOCFajg9+EARQUKAJxDgAIcErBWnsYEFQpS5CcAcA8BCnCItQoHqATDFB4AuIoABTgkYC1TeABwBCBAAQ5pWoEKfWUtKABwDwEKcEjAWjUWoDgLDwAcRoACHGKt5GkMTh6m8ADAWQQowCHNeqAavyE/AYB7CFCAQ5r3QAW3MYUHAO4hQAEOadoD5aEHCgCcRYACHGLVeh2oAHN4AOAcAhTgkECTa+F5Gt+d5CcAcA8BCnCEtVbWSqblOlAkKABwDgEKcEQoJ4XOwguhBQoA3EOAAhwRykktVyI/dA8AwBUEKMARoam6cA9UeAovXiMCAERCgAIcEQpQpsU6UPRAAYB7CFCAI1r2QIW+BgLxGQ8AIDICFOCIUIAKTd2FKlGWHigAcA4BCnBEpB4oZvAAwD0EKMARhwIUPVAA4DoCFOCIlmfbhXugyE8A4JwOA5Qx5iFjTLExZnWTbTnGmNeNMZsav/br2WECRz/bogIV7oGiAgUAzulMBephSQtbbLtF0pvW2rGS3my8DaAbDjWRh76yDhQAuKrDAGWtfVdSWYvNF0j6W+P3f5N0YWyHBfQ+4R4oT/MeKCpQAOCervZA5Vlrixq/3yspL9IDjTHXG2MKjDEFJSUlXXw54OgXCK8D1fJiwvEaEQAgkm43kdvgP48jfsRbax+w1s601s7Mzc3t7ssBR61QpSl0BbzQV87CAwD3dDVA7TPGDJakxq/FsRsS0Du1vJiwYR0oAHBWVwPUvyVd0/j9NZKej81wgN6r9UKawa/0QAGAezqzjMHjkhZLGm+M2W2MuU7SXZLOMMZskrSg8TaAbgi0uJRLqJmcHigAcE9iRw+w1l4Z4a7TYzwWoFcLhLvIm32hBwoAHMRK5IBjWl9MGADgGgIU4IhIPVBUoADAPQQowBGteqC4lAsAOIsABTgiVGkKXUQ4fDHhQJwGBACIiAAFOMJGWImc+hMAuIcABTjCtuiBMvRAAYCzCFCAI+iBAoAjBwEKcESg5bXwwhWo+IwHABAZAQpwRKQeKKbwAMA9BCjAEZGvhRenAQEAIiJAAY6wLXqgDBUoAHAWAQpwRMt1oA41kcdrRACASAhQgCMOTeE1VqBabAcAuIMABTgiFJOoQAGA+whQgCNsywoUC2kCgLMIUIAjWi2k6aECBQCuIkABjggEWlxMOLSdBAUAziFAAY6I2AMVn+EAANpBgAIc0fIsPA89UADgLAIU4IjIC2nGa0QAgEgIUIAjWi6kacKXciFBAYBrCFCAIw5VoEJfOQsPAFxFgAIccagCRQ8UALiOAAU4gh4oADhyEKAAR4QrUI23PfRAAYCzCFCAIyJXoAhQAOAaAhTgiJZn4R2qQMVpQACAiAhQgCNaXQuPHigAcBYBCnCEjbAOFFN4AOAeAhTgiJYVKKPQOlAEKABwDQEKcIRV6Fp4avaV/AQA7iFAAY4IVaAMPVAA4DwCFOCI0FSdhx4oAHAeAQpwRMtLuRhDDxQAuIoABTii5cWEQ98TnwDAPQQowBEtz8ILfc8UHgC4hwAFOKLlSuRSKEDFaUAAgIgIUIAjbIseqOANmsgBwEUEKMARkXqgaIICAPcQoABH0AMFAEcOAhTgCHqgAODIQYACHBHugdKhBGXogQIAJxGgAEeEYpKneQ8518IDAAd1K0AZY75jjFljjFltjHncGJMaq4EBvU0gELqUS5MeKI9hJXIAcFCXA5QxZqikb0qaaa2dLClB0hWxGhjQ20RuIo/TgAAAEXV3Ci9RUpoxJlFSuqQ93R8S0DuFe51aLGNADxQAuKfLAcpaWyjpV5J2SiqSVGGtfa3l44wx1xtjCowxBSUlJV0fKdBLNO2BkqhAAYCLujOF10/SBZJGSRoiKcMY8/mWj7PWPmCtnWmtnZmbm9v1kQJHuVClqfkUnsRKmgDgnu5M4S2QtM1aW2Kt9Ur6l6STYjMsoPeJ2AMViNOAAAARdSdA7ZQ0xxiTboIX7zpd0rrYDAvofdpeSJMeKABwUXd6oJZIelrSJ5JWNe7rgRiNC+h1wj3kTdeB4iw8AHBSYneebK39iaSfxGgsQK9m2+iBMkay9EABgHNYiRxwRKQeKGbwAMA9BCjAEYfOwju0jR4oAHATAQpwRCDcA9V0Co8eKABwEQEKcIW1zRrIpWAPFBUoAHAPAQpwRMA273+SGm+TnwDAOQQowBEBa1tcxoUeKABwFQEKcETASkatK1AEKABwDwEKcIRV6x4oSXp1zT4VV9Yd/gEBACIiQAGOsG30QBWW10qSvvbYJ/EYEgAgAgIU4Ah/oHUPVE2DX5JUXe+Lw4gAAJEQoABHNPgCSk5s/pb0Ny4ClZKUEI8hAQAiIEABjmgrQIWkRtgOAIgPPpUBR9T7/BEDVFoyFSgAcAkBCnBEgz+glMS2g1IaU3gA4BQCFOCIBl9AyQkRKlAEKABwCgEKcER9Oz1QNJEDgFsIUIAj2msipwIFAG4hQAGOCPZARTgLL4m3KgC4hE9lwBHt9UC1dYkXAED8EKAAR7TXA+UPHObBAADaRYACHNHgizyFZ609zKMBALSHAAU4or0m8gABCgCcQoACHNHgbx2gzpyUJ0kKkJ8AwCkEKMARwSby5ssVPPCFmcpKTaQCBQCOIUABjog0hecxRuQnAHALAQpwgLW2zSk8SfIYeqAAwDUEKMAB9b7gOgVtnYXnMYYABQCOIUABDmjwRw5QxhiayAHAMQQowAENjRWoiFN4JCgAcAoBCnBAOEC1cSkXpvAAwD0EKMAB7VWgEjxM4QGAawhQgANCPVBtBSjDWXgA4BwCFOCAjqbwyE8A4BYCFOCA+o6ayElQAOAUAhTggHqfX5KUkpjQ6j4PyxgAgHMIUIADDjWRm1b30QMFAO4hQAEO8PqDASkpYg8UAQoAXEKAAhzgazwLL1KA8jOHBwBOIUABDvAGQhWo1lN4HtaBAgDnEKAAB4QqUImets/CYwoPANxCgAIc4GvsgUpsqwLFWXgA4BwCFOAAb6C9HijOwgMA1xCgAAeEK1CetpYxoAIFAK7pVoAyxvQ1xjxtjFlvjFlnjDkxVgMDehNvqAcqQgWKHigAcEtiN5//O0mvWGsvNcYkS0qPwZiAXsfX3ll4xjCFBwCO6XKAMsb0kTRf0hclyVrbIKkhNsMCepf2z8IzamyRAgA4ojtTeKMklUj6qzFmuTHmL8aYjJYPMsZcb4wpMMYUlJSUdOPlgKPXoZXI276Ui58KFAA4pTsBKlHS8ZL+aK2dLumgpFtaPsha+4C1dqa1dmZubm43Xg44enn9ASV4jIxpHaASPFzKBQBc050AtVvSbmvtksbbTysYqABEyRewbVafJNaBAgAXdTlAWWv3StpljBnfuOl0SWtjMiqgl/H6A0pqo/9JCk7h0UQOAG7p7ll435D0WOMZeFslfan7QwJ6H5/ftrkKuUQFCgBc1K0AZa1dIWlmbIYC9F6+QKDNNaAk1oECABexEjngAK/fKqmNVcgl1oECABcRoAAH+PyRK1CGdaAAwDkEKMAB3kB7PVA0kQOAawhQgAN87ZyFxxQeALiHAAU4oL2z8BI8nIUHAK4hQAEOaGi3B4opPABwDQEKcIDPb5XczjpQ5CcAcAsBCnCALxBQYsQeKCpQAOAaAhTgAG+HK5EToADAJQQowAG+QEBJrAMFAEcMAhTgAJ/fKjHiSuRcygUAXEOAAhzg9UeuQHmMkZ8ABQBOIUABDvC1txK5R6wDBQCOIUABDghO4UWuQDGFBwBuIUABDghO4bV3Ft5hHhAAoF0EKMABXn+AiwkDwBGEAAU4oL0pvOAyBgQoAHAJAQpwgDcQUHJiez1Qh3lAAIB2EaAAB3S0DhRTeADgFgIUEGfW2sZlDCJUoDw0kQOAawhQQJz5GtNRUoQKlDFiIU0AcAwBCogzrz94obukdnugCFAA4BICFBBn1fU+SVJGSmKb9yewDhQAOIcABcRZdV0wQGVFCFA0kQOAewhQQJyFKlCZEQKUaVzGgGk8AHAHAQqIs1AFKjM1UgUq2FxOfgIAdxCggDirDE3hRQxQwa9M4wGAOwhQQJyFpvCyUpLavN/TmKBoJAcAdxCggDirrvNKijyFZ6hAAYBzCFBAnB1axiChzftDPVAEKABwBwEKiLOqep+SEz1KSYwUoIJfmcIDAHcQoIA4q67zRVwDSqICBQAuIkABcVZd74vY/yQ1WcYgcLhGBADoCAEKiLPqOl/ERTSlQ1N4vgAJCgBcQYAC4qyqvv0AlZOZIknaX91wuIYEAOgAAQqIs44qUEP7pkmSCstrDteQAAAdIEABcVbn9Sstue0z8CRpWL/GAHWg9nANCQDQAQIUEGe1Xr/SkiIHqNzMFCUneLS7nAAFAK4gQAFxVtPgV3o7FSiPx2hw31TtpgIFAM4gQAFxVuv1K7WdACVJfdOTVdV40WEAQPwRoIA48gesGnyBdqfwJCnJY+Tzs4wBALiCAAXEUZ3XL0kdB6gEj7wEKABwBgEKiKOahmCAaq8HSpISE4y8fi7lAgCu6HaAMsYkGGOWG2NeiMWAgN4kVIFK7UQFipXIAcAdsahAfUvSuhjsB+h1akNTeB1UoJISjLw+KlAA4IpuBShjzDBJ50r6S2yGA/QunZ/C88hLBQoAnNHdCtRvJX1fUsRPdmPM9caYAmNMQUlJSTdfDji61DZ0cgrPY+SjBwoAnNHlAGWMOU9SsbV2WXuPs9Y+YK2daa2dmZub29WXA45KnIUHAEem7lSg5ko63xizXdITkk4zxjwak1EBvcShKbzIFxOWGqfwqEABgDO6HKCstbdaa4dZa/MlXSHpLWvt52M2MqAXqO1kBSo5wVCBAgCHsA4UEEehAJWa3P5bMTHBw0rkAOCQ9ucNOsla+7akt2OxL6A3qWvoXAUqMcHIG2AKDwBcQQUKiKOaTgaoZJrIAcApBCggjmq9fiUneJSY0MEUnscja4MXHwYAxB8BCoij2gafUpM6fhsmJhhJogoFAI4gQAFxdLDBr4yUjlsRkxsrVAQoAHADAQqIo4P1vk4FqFAFitXIAcANBCggjqo7HaAaK1BcDw8AnECAAuKopsGvzJT2z8CTggtpSmI1cgBwBAEKiKOD9T5ldHAZFyl4Fp4kFtMEAEcQoIA46uwUXlIiTeQA4BICFBBHwSbyjqfwkjxM4QGASwhQQBwdrO/cMgahJnLOwgMANxCggDhp8AXU4A8osxM9UEmNTeQNTOEBgBMIUECc1DT4JEnpnemBSqCJHABcQoAC4qS6PhigOrOMQWJjD5SPa+EBgBMIUECcHKz3S1JUZ+ExhQcAbiBAAXESqkB1KkB5aCIHAJcQoIA4CfVAZXaqAtXYRO6jAgUALiBAAXFysLEClZ7ccQ9UVmqSJKm63tujYwIAdA4BCoiT6sYeqM5UoLJTg4+prPX16JgAAJ1DgALipLI2WE3KbqwutScjOVEeI1XWUYECABcQoIA4CYWhrNSOK1Aej1FWalI4dAEA4osABcRJRa1XmSmJ4cu0dKRPWpIq63xaXVih9Xsre3h0AID2dPxPXwA9orLWF+5t6ozstERV1Hp13r3vS5K233VuTw0NANABKlBAnFTWeZWd1nH/U0g2U3gA4AwCFBAnlbVdCFA0kQOAEwhQQJxU1HrVJ4oA1SctSeU1BCgAcAEBCoiTqjpfp5YwCJkwOEvFVfXh216uiwcAcUOAAuIkOIXX+Sbya07Mb7ZqOf1QABA/BCggDvwBq6p6X1RTeB6PaRagyglQABA3BCggDqrqOr8KeVMpiYcCVAUBCgDihgAF9LDaBr/+8+meZttC17SL5iw8SUpJOvSWraChHADihgCFo4rXH9CjH+1QbYM/3kMJe3l1kb7x+HJtKakOb9teelCSNCg7Nap9Na1A1Xrd+RkBoLchQOGo8tqafbr9udV68uOdXXjuXj29bHfMx1R2sEGStL/JGXQfby9Tgsdo2oi+Ue0rtUkFqt5HgAKAeCFA4ajy2tq9kqR/t5gy64x7Xt2g3725MdZDCp8td6CmIbxtybYyTR6SrcyU6K6m1LRnqs7LMgYAEC8EKBw1vP6A3lpfrLSkBH2ys1y7ymoiPvaNtfv0q1c3hG8XV9ZpU3G19pTXhddXstZqZ2nkfXRWqNn79bXFeuDdLdpTXqsVO8s1e1RO1Pu6+9Kpumj6UElSPVN4ABA3BCgcNZZsLVNVnU/fXzheUuQqlLVWd768Tn98Z4safMGwtHhrqaTg8gJF5XWSpA+3lGr+PYu0Zk9Fq31s2lelfZV1nRpXZV2wYfyZT3br7lc26Bcvr5fHI33hxPyofj5JystO1c8vmixJqvdRgQKAeCFAIWp1Xr9TTdohr63dq9Qkj66YNUIzR/bTv1e0HaAKdhzQ1pKD8gesdjQ2c3+4uTR8/46y4LZQ0/f7m/ZLCp5N948lOxUIWH3p4Y91xwtrm+3X5w/oyY93tlohvOlyA76A1Zvr9umcyYM1PCe9Sz9nckLwbcsUHgDEDwEKUfvm48v1lb8XxHsYzVhr9frafZo/NldpyQk6f9oQbdhXpSseWKxZP39D33h8uVYXBitJTyzdJWOCz9tUHAxJH27drylD+0iSdjZO/RVVBCtMS7eVSZKeW1Go255dpbc3Fmv3gVqtLaqUJH20tVQX3veBXl69Vz94ZpVeXbO32dhartdU0+DXoD7RnX3XVGKCR4keQxM5AMQRAQpRsdbqo62l+mDLfpVW13f8hMNkdWGliirqdMakPEnSuVMGa1B2qsprvDphVI4WrS/Wefe+rysf+EgvrtqjC6cNlTHS5uJq7Sqr0a6yWl00faiSEzzhALU3FKC2l8kfsPp0V7kkhStb2/cfVJ3Xr0c/2qEVu8rDZ/At2VrWbGxtXXJlYFZKt37e1KQEpvAAII6iOwUIvd7OsppwT89b64t12czhcR5R0LubSiRJp00YKEnqn5mij247PXx/ZZ1XTy7dpYc+2KZ6X0DXzh2lgh1l2lRcrcVbgtN3J48doGFL0sKN40UVtZKCF/1dv7dSn+4OVrBeW7tPkhSw0rqiSi1aXyxJeq9xDEu2HZoOlNpeMTw3q+sVKElKSfSojiZyAIgbAhSisqpxGiwpwejNde4EqOU7yzU6N0P9M9uu7GSnJukr80fri3PzVXigVvkDMjQmN1Obi6vlMdKAzBSNHZipETnpzSpQM0f2U8GOA3p7Q4k27quSFJyCC3nog+062Hg7YIPbNu6rVml1fXgsbQWogdndq0ClJHqoQAFAHDGFh6isKqxQUoLRhdOG6r1NJU704VhrtWLXAU0f3q/DxyYleJQ/IEOSNGZgpraWVOvDLaU66Zj+MsYEA1Rpjay1Kqqo0/Ej++nYIdm6b9Fm+QNWo3ODzx09IEOJHqMXVu5Rv/QkzRs7QJJ04uj+kqS3NwSrUXVef5tBhyk8ADiyEaAQldWFFRo/KEtnTxmkgw1+fdSi3yfWdpXVaPnOA+0+ZveBWu2vboh6Ve+xA7NU7wuopKpeJx0TDD4jctJVVe/T9tIa1fsCystO1a1nTwxXna6YFay4TRySrVEDMmSt9O0F4zR9ePC1PzdrmPL7p+upgl2SglOHTSUlBLvXB3ZzCi+5B6fw/vPpHs27+y35QyU1AEArXQ5QxpjhxphFxpi1xpg1xphvxXJgcI+1VqsLKzVlaB+ddMwApSZ59Oa6fT32el5/QNc+/LGueWipfP7I1ZYVjc3doRDTWccMzAx/f9IxwQrSiMalBZY29jEN7pOqk8cO0IKJeRqRkx7usRqTm6mZ+TmaNDhbV50wQieM7h+8NMvwfrps5nAt2VambfsPhhvI77jgWP31i7M0ZmCWslISlZacoO5I6cEK1A+eWaldZbWqafD1yP4B4GjQnQqUT9J3rbWTJM2R9HVjzKTYDAsu2lVWq4paryYP7aPUpATNG5urN9cVy9qeqVQ89P42bSquVmWdL9x71ZblO8uVkujR+EFZUe1/TGOAGto3TcNz0iQdClWvrQkGw9ByA3+4arqe+/pcHZObqZvPGq9LZwzTzy+crOdvmqukBI/mjhmgZbcv0KgBGTrr2EGN4zoQ7n8anpOuUycMVG5WinK72f8kSamJHm3cW9Wla/5F4g9Y/eGtTeFqGxUoAIisywHKWltkrf2k8fsqSeskDY3VwOCe1Y0rcofWS1owcaAKy2u1rqgq5q9VVFGr3725SSeMypExhxazbMuKXQc0dVgfJSVE979zn7QkjR6QodMmDJRpXBhq9IAMjRmYqTcbz6wb3BigUpMSlJORLGOMvn7qGA3PSZfHY5q9Zt/0ZEnSsH7BMLb7QK32VQaXeuifEQxN3zp9rH58Xvf/nZGSlKC9lXX6wTOrVFhe2+39SVLB9jL96rVD1wL0+glQABBJTHqgjDH5kqZLWtLGfdcbYwqMMQUlJSWxeDnEyarCCiV6jMblBSs9pzZOZ/XENN4dL6xVwFr96rLjdOyQbL23+VCAqvcF116qqPWqwRfQ6j2Vmhbl9F3Iv752kn547sTwbWOMLjhuiCTJY6TcCGf1tSc1KUEDs1K0+0CNlmwtVXpyQrg6NmNkP31m/MAujbWplMRDb90H39umkqrur8m1rEWvWcsV1QEAh3Q7QBljMiU9I+nb1trKlvdbax+w1s601s7Mzc3t7sshjlYXVmhcXpZSk4L9OwOzUnXc8L56o7FaEytvrd+nl1bt1U2NlZ65YwZo+c4DOlgf7Ml5etlu3f7can310WVaVViuBl9A0zpxBl5b+qYnh3+ekPOnBQNUblaKEqOsaoUM65em3Qdq9cGWUs3Kz1FyYmzP12g6vfbQB9t0zu/f6/Y+735lQ7Pba/e0ejsDABp161PdGJOkYHh6zFr7r9gMCS6y1mpVYUV4+i5kwYSB+nRXuYqrOr6w7q6ymg6XPXh+RaFufPQTjR2Yqa/MHy1JmjcmV16/1dJtZbLW6h9LdqpvepI+3FKqbz6+QpI0Pcoz8Nozsn+GZozsp/z+GV3ex7B+6fpk5wFtLq4On+EXS7Pyc9Q/I1mexkvSxKIC1dKX/17QbvM+APRm3TkLz0h6UNI6a+1vYjckuGj3gVqV13g1eVjzAHX6xOClUxa1U4XaUlKtrz/2iebdvUhX/XmJKmpaLyxprdVv39iobz2xQtOG9dWTN5yolMRgZWhmfj8lJ3r03qb9Wrm7Qmv2VOq7Z4zTVz9zjArLazUwKyXcqxQrf7p6hu69cnqXnz88Jy18sd95Y2Nfef3qZ47Rsh+dEW6E764Zd7ze5vYGAhQAtKk7K5HPlXS1pFXGmBWN226z1r7U7VHBOaEL8basQE0cnKUhfVL1xrpiXT5rRLP79lbU6XdvbtRTBbuVkujRFbOG61+fFOryBxbr79fNDq+FVFRRq//59xq9umafLjl+mO68eHI4PEnBnqLZ+Tl6f3OJDtb7lJaUoAumD1VmcqJKq+uVl50abgKPlQFd6H1qali/4HIIqUkeTRwc3dmB0QhN5aV3Y1mEqjqvSg82SAo21jddOb3BF1BjbzwAoIkuByhr7fuSYvtXq5s27avSkm1lWjh5ULf/AKK5UAP5hBZLBRhjdPrEPP1z2S7Vef2NK2T79ed3t+oPjat3Xz1npG46bYwGZKbo3KmDdcMjy3TZ/Yv10Bdn6bU1+3TvW5vkD1jdds4EfWXe6DbD0MljB+iul9drR2mNLpw2VNmpSZKkuy897rD8/NHKyQimjtmj+sc83DX1k88eqy88tFTDGwNbV2zfXxP+fs7oHL265tBJAQ2sdg4AbTqqroX32tp9uufVDfrx86t14jH9de6UITrr2LyI10c72h042KA31xfrw837NXfMAF18/NAu/zFfVVihsU0ayJs6feJAPfLRDn24Zb88xuh//r1G20trdM6UQbr17IkannPoj/u8sbl69Msn6Et//Vin//odSdKCiXn6yWcnNXtcSyePCS50We8L6KoTRkR8nCvmjhmgi6cP1c0Lx/fo68wfl6szJ+VpZ1nw8jPriqo0aUh2VPtYuj24mvy4vEz99PzJzQMUU3gA0KajKkB97TPH6PSJA/XiyiK9sLJItz27Sj96frVOOqa/zpkyWGcdOyhcGTha7Sqr0etr9+m1tXu1dFuZAlbKTEnUv5YX6t+f7tGdF0/R0L5pUe0zuAJ5hc6YlNfm/XNG91d6coK+//RK7a9u0OgBGfr7tbM1f1zbvT/Hj+inp244Uf/3+kZdPmt4eDmE9kwanK2cjGQNyk7V1BZ9WC7KTEnUby6fdlheKy05QbVevx5fuku3PbtKj335BM1tDJydsWJXuYbnpOm175wiSfrnjSfqsvsXS6ICBQCRHFUByhijCYOyNWFQtv77jHFaV1SlF1ft0Ysri3Trv1bp9ueCYeq8qYN15qRB6udImGrwBfTy6iI980mhrLXqn5Gs/pkpGpCZov6ZyRqQmdz4fYr6ZzQ/7d5aq/V7q/Tqmr16bc0+rS0Knno+Pi9LXz91jM6cNEiThmTr0Y926JevrNeZv3lHt54zUVfNHiGPp3PVqMLyWh2o8bbqfwpJTUrQmZPy9Mqavbr5rPH68rxRzXqY2jJ+UJbuv3pGJ39Dksdj9MDVM9QnLalHp8SORGlJCdpXWacPtwTXytpRWqO5Yzr//Jp6n/qkJTXbXwgVKABo21EVoJoyxmjSkGxNGpKt7505Xmv2VOqlVUV6cVWRfvDMKv3w2dWaO2aAzp0yWGcemxdeRfpw2ldZp8eW7NQ/luzU/up6jchJV05GsraXHtT+qgbVRrhYbFZKovpnBkNWcVWddpXVyhhpxoh+uu2cCTpz0iDlD2h+Cv41J+XrtAkDdcu/Vur251brhZV79MtLpmpkJ07VDzWQT44QoCTprkum6qcXTG72hzjWZubn9Ni+j2SpSQmq8wb0wsoiSVK0+bLW628WmpquMUUFCgDadtQGqKaMMZo8tI8mD+2jm88KhqkXVhbpxVV79P1nVuq2Z41OHtsYpiYNUp/0ngsB1loV7Dighz/crldX75XfWp06fqC+cOJIzR+b26wqVNPgU2l1g/ZX12t/dYNKq+tVerBBJVXBr6XV9cFK02fG6PSJecrNar/Xa3hOuh697gQ9VbBLP3thnc767bv63pnj9aW5o5TQTjVqVWGFEjxGEwdH7q1JTUposz8KPa/lhYk/2XFAjy3Zob9fe0KnpqxrvX5lphz6KKhrEtxZjRwA2tYrAlRTTcPUDxaO16rCCr24qkgvrizSzU+v1G0JqzRvbK7OnTJYCyblxayiUtvg1/MrCvW3xTu0rqhS2amJ+tLcfH1+zsiIVaD05ESl5yS221wdLWOMLp81QvPH5er2Z1frZy+u04urivTH/5oRvnBuS6sLKzV2YCYByVFJLcLvP5ftliS9uKpIV88Z2eHzaxv8GtgkfM8Y2U8TBmVp/d4q1VOBAoA29boA1ZQxRlOH9dXUYX11y8IJWrn7UJh6a32xkhKM5o/N1blTg2EqdOp8NHaW1uiRj7brqYLdqqj1asKgLP3i4im6cNrQVpWDw2lwnzT95ZqZen7FHv3w2VW64dFlevL6Oa1CUqiB/LRONHojPqrr257qXba9rMMA9eD727R+b1Wz5SkSEzy68+Ipuvj/fUiAAoAIenWAasoYo+OG99Vxw/vq1rMnaMWu8mDP1Moivbm+WMkJHs0fl6vzpg7W6RMHKqudMBUIWL23eb/+/uF2vbWhWB5jtHDyIF1zYr5m5fdzpgnaGKMLpw9ValKCbnx0mX7y/BrddcmUZuMrqqhT6cEGTTkCznzrrarrgwtffuv0sXp62W4VltdKkp5bsUc/PHdSu1O7d7ywVlLracDkxmsA3vDIMm382dk9MWwAOKIRoNpgjNH0Ef00fUQ/3Xr2RK3YXa4XVxbppVVFemPdPiUnenRKOEzlhftHKuu8embZbj2yeIe27j+oAZnJ+sapY3TVCSMjTo+5YOHkQbrp1DH6w6LNmjq8j/7rhENVi1WdaCBHfFU3XmR5zMBMnTEpTw9/uD1839sbinWgpkFnTx6s376xSb+4eEqbFzZuedZkqBLZ4Avoy38r0F+umdlzPwAAHIEIUB3weIyOH9FPx4/opx+eM1HLdx3Qiyv36qVVRXp9bTBMnTo+VzkZKXp+RaFqGvw6fkRf/e6KaVo4eVCHp/O74jtnjNOqwgr9z7/XaMKgbM0Y2U9S8Aw8j5EmDopucUYcPt86fZx2ltXolPG5yslIbhagbn56pSTp7Q0l+nBLqS6aPlQnj229RtT20oPNbo8ZmCmPkQJWemPdvlaPB4DerssXE+6NPB6jGSNz9OPPTtKHt5ymp288UVfNHqHlO8v1zCe7dc6UwfrPTSfrX1+bqwumDT1iwpMkJXiMfn/FdA3uk6avPrpMxZV1khpXIB+YFdd+LbRv/KAsvfCNecpOTdLcMQP0+Ffm6O5LpjZ7zL7G4/n5B5fIWttqHye3sfDmyT1wEWQAOFpQgeoij8doZn6OZubn6MfnTVKDP3DEn6XWJz1JD3xhhi6670N97bFP9I+vzNHqwgqdMo4G8iPJicf0V1Zq87d2UUVd+PuKWq/6pifrnY0lkqSvzBul604e1Wo/TYOWtdaZ3j0AcAEVqBjweMwRH55CJgzK1i8vnaqCHQf0rSeWa391g6YMZfruSJOR0jxA1TQcOlNvX2W99lbU6ZqHlkoK9vy1FY4CTQKU19+6agUAvRkVKLRy/nFDtLqwQg+8u1WSOAPvCJSREjnQry2q0Hee/DR8OzRd21LTVcjrff42m88BoLfiExFt+v5Z4zV3TH8lJ3raXYEcbspIjvxvo/c27W92+9ghbQfk0yYcung0l3QBgOYIUGhTYoJHf/nCLL3wjZOV3s4fY7gprZ0p5X99Utjsdlv9T5J0w/zRuu2cCZKk+xZtid3gAOAoQIBCRGnJCRqXl9XxA+GcptdUvP/zx+umU8e0+bhRAzKaPbblPkILxj70wbbYDxIAjmAEKOAodd3Jo3TvldO1cPJgfeP0tgNUSgd9TdV1vvD3720qObS93qfNxdWxGSgAHIGYmwGOUj86b1L4+9ClWVoqO9jQ7j6q6rzh769+cKmuO3mUzpkySL96daMWby3VljvPUUKEChYAHM2oQAG9QKQ1nIqr6tt93injmy+m+eD723TJHxdr8dZSScE1pQCgNyJAAb3EQ1+cqXdvPlXHDeujU8d3bpXxGSNztP2ucyPeX1rdfgADgKMVAQroJU6bkKcR/dP1/E0n66fnT47JPks7mAIEgKMVAQrohfqkJcVkP6XVwQC1t6JO+be8qA827+/gGQBwdCBAAb1QZmpszh954uOd+s3rGzXnF29Kkm5/bnVM9gsAriNAAb1QtGfO/fi8ScpIbr0453ub9uv3b24K3962/6BW7a7o9vgAwHUEKKCXun7+aN3/+Rmdeuy1J4/SZTOHd+qxL64q0uV/Wqx/FuzqzvAAwGnG2sN3lfWZM2fagoKCw/Z6AGJnV1mNbnp8uT7dVd7p51xz4kgN6pOmr37mGEnS0m1lGp2boQGZKT00SgCIHWPMMmvtzLbuYyFNAJ0yPCddz399rvJvebHTz/nb4h2SpD3ltTpjUp6+8NBSjRmYqTf++5SeGiYAHBYEKAA97pGPduiRj4JhanNxtarrfUr0GKW2c9FjAHAZPVAAovJ/lx/X7X1M/smruuAPH8haq2eW7VZ1va/jJwGAQwhQAKIyc2ROq23trVYeyYZ9VVq244C++89P9dN/r5G1VoezJxMAuoMABSAqKYnBj438/und3lfoWnr7q+v1mV+9HV5PKmR1YYXe3VjS7dcBgFgjQAGIysDsVP3i4il6/Po5zbbPH9e56+s15fUHK06LNpRoR2mN9lXWa9mOMn26q1ybi6t03r3v6wsPLVVtg1+/fGW96rz+mPwMANBdNJEDiNqVs0e02vb3a2dLkv7z6R594/HlndrPsh1lrbZd8sfFkqQ//tfx4W1/fm+r/vj2FvVNS9INpxzTlSEDQEyxDhSALntl9V6NzcvUMbmZzbYHAlbltV4t/O27Kq6q19Ifnq7nlhdq+c5yvbx6b9Sv883Txuj3b22WJD1x/Rx5jFH+gHTlZqbImOhWVQcQX6sLK/S9f36qZ756kjJS3K7jtLcOFFN4ALps4eRBrcKTJHk8RjkZyXrl2/P15y/M1MCsVF0//xjdevbELr1OKDxJ0hUPfKTP/WmxZv/8zfC193aW1qiqzquqOq+ufnCJCstro9r/c8sLo34O0BU+f0CrC4/cyx35/IFWZ80u3lIa3mat1TUPLdVb6/dF3MfPX1yn9Xur9PaGQ/2Nr67Zq11lNZKCFydvOV2/Yld5+PdmrXViOp8ABaDH5GQk64xJeeHbI2LQeN7UY0t26puPL9f8exbpsvsX66VVRXpv037Nveut8GMqarz6cMt++QNWb63fJ2utAgGr0up6SVKDL6BvP7mi2XN62iuri6Ja0R1Hj9+8vlHn3fu+1u+t7NHX2VNeGw4kbVm2o0xvrtundUWHxlHn9au2IRhM/uffa7R0W+sp9u/981NN/smrqqj1qs7r10dbS3Xlnz/St59YIUkKWOmdjSW69uEC1fsOhZxAwKq8pkGl1fVavLVUkvT1f3yiB9/fpvxbXtQNjyzTvLsX6fRfB08muf6RZc1e98L7PtB5976v6nqf/vjOFk340SvaE+d/9DCFB+CwentDsb741497ZN8TBmVp/d4qSdKi731GowZk6Lx739Pqwkr1z0hW6cEG/eSzk7RmT6WeXrZbkrT+joWa8KNXJAWXYwgErK5/ZJmuPTlf97+zVVV1Xv3swsk6dkgfVdZ5tWRrWbNQWFheqyF9UsNTiYGAVcBaJSZE/vdpaDX3754xTmdPGawxA5tX8d5ct0/V9T5dMG1o1L+DsoMNentDsS4+fljUzz3aFFfW6aVVRfri3FEx3/fH28s0c2S/8HEvLK/Vl/9WoL9fO1u5WZEvVXT1g0v03qb9+tu1s3VKGydebNpXpRH907V8Z7lOGJUT3n+d16+7X9mg75wxVpV1Pvn8AVXV+TR5aJ9mz1+/t1KD+6TpuJ++Ft6WmZKol745T/PvWaR/3niiBvdJ1cm/XBS+Py87Rf/4yhyd/ut3JEnvff9Uzbs7eP9TN5wof8DqxGP6q8EX0LjbX474syV6jK4+caT++sH28LYzJ+XptbX7lJORrLKDDRGfG8kVs4Zra8lBLd3eOsz94arpOm/qkKj3GY32pvAIUAAOuz++vUW/fGW9huekKcEY3XL2RN346LKOnxilT350ho6/4/Vm2z573BD959M94dtN+6te/tY8DcpO1fQWz5GkOy44Vk98vEtr9gTDWHZaku676nid8/v3NHtUjn5+4WSNzcvSNQ8t1TsbS8JrY+0oPajtpTWaPqKvkhM82l9d3+yPV1KC0XfOGKfr540Oh65QwLr7kqn6xcvr9MT1J2rxlv2qrPPpm6ePbTW22ga//vupFfrxZyfpO0+u0Edbg39s7r1yuj57XPf/wHj9Af31g2364kmjlJwY/cTFY0t2aF9FnYqr6nXXJVMlSaXV9Zrxszf0wjdObhUCWnqqYJeyUhJ19pTBHb5WbYNfxkiVdV5d+/DHWl1Yqbe+e4oGZKXou099ql9cPEXJiR5lpybpvkWbdc+rG/T+D05V2cEGfbC5VFtKqjUuL1NXzB6hLcXVmj6iX7P91zT4NOnHr0oK/j+RnZaksycPbhYsLpw2RN9eME6VdV71S0/WS6uKdP380Xrw/W16aVWRPtlZLkn68xdmalZ+P82+8001+AL63Mxheqpgd3g/91w6VZfNHK7t+w/q5dV79ctX1mvO6Jzw8ZWkP109Qzc8Evv3zpFgaN80fXDLaT36GgQoAM7bX12vW55ZqTfWFcdsn135V++CiXl6Y13k/o2mEj1GvsChz9AxAzO1ubg6/NqXzRimP727tdOvvf2uc8N/1COZMrSPbjtnor795HL97wWT9b//WRvu37po+lA9u7ww/NjjhvfVc187SdYG+9JW7i7X+X/4QJL08Q8XqE9akhb+9l3defEUVdZ6tXJ3hb531njtKqtRwFrtKK3RnNH99ffF2/WzF9dJkgZkJuvjHy4IV0Y+3VWu8YOylJqUoL8v3q5B2alaMDFPL6wq0jcfX67fXTFN32qc3gn9jPsq63TCnc3X/JoytI/+94JjWwUW6VCgvP/zx0syuvHRZXru63M1bXhfScGm5PPufT/8+LzsFO2rrA/f/tzMYXpnY0mzbfdeOb3ds0UzUxJVXe/TuzefqvsWbdab64u1v7o+4uNx+KUmebT+jrN79DUIUACOCL99Y6N++8ameA/jqJKRnKCDDX5dP3+0HogizDU1d0x/fbC5NHz7nkun6n//s1ZVjY3D/TOS9bdrZzcLMZF878xx+tVrGyPef/clU/X9Z1ZKkhZMHKiR/TP04PvbIj5+SJ9U7amo6+yPgqNIcqJHG39GgAIAHaz3acFv3lFRJ/8g3nPpVN389MoeHhUAFyV6jDbfeU6PvkaPLWNgjFlojNlgjNlsjLmlO/sCgIyURD15/YmSpN9dMU0njGp93b1/3niihuek6WcXTtZlM4fr15d1/+LGAI48TafP46HLAcoYkyDpPklnS5ok6UpjzKRYDQxA7zSif7o2//xsXTBtaKv1Zpb/6AzNys/Re98/TZ+fM1KSdMkMzjYDcPh1ZwnQ2ZI2W2u3SpIx5glJF0haG4uBAei9Qmej/d/l03T/O1t006ljlJmaqH4ZyW0+fvVPz5Lfb/Xn97bqD4uCZ9RNHpqtm8+aoAmDslo1LANAd3VnCm+opF1Nbu9u3AYAMTEuL0u/+dw0jc7N1MCs1IiPy0xJVJ/0JN102pjwtme/NlenjMtVXnaqnvv6XP30/GMPx5AB9BI9vhK5MeZ6Y0yBMaagpKSk4ycAQBelJiVo/R0Ltep/zlRSk4Uspw3vq2tOytfS205vc/HCrgqeVg+gN+pOgCqUNLzJ7WGN25qx1j5grZ1prZ2Zmxu7Dy4AaEtqUoKyUpPavG9gdqp+/bnjdOMpx+iBq2dICjalv3vzqZKkfulJ+vCW03T7uZGv2ZffeDmaF75xshZOHqx3bv6MciJMLbb09VOPieZHAdCOi6bHd9KrOz1QH0saa4wZpWBwukLSVTEZFQD0kAGZKbrl7AmSFF4tXJIe/tIsjcvL0pC+afryvNE6b+oQ+QLBC79mpSZp7pgBkqRHPtqhHz23WsP6pUmSRvbP0JWzh+u+RVskSZ+fM0I/u3CKdpQe1LB+6frHkh360fNrdNOpY/S9s8brilkjtKe8VqMGZGh2i96sK2eP0ONLd+q3l0/ThdOHaum2Mn3uT4tb/QxnTMrT62s7t9gncLRK9Ji4vn631oEyxpwj6beSEiQ9ZK39eXuPZx0oAEcjnz+gZTsOyEqaMbJfs+lDKXhh17zsVCW0+MAvr2nQ5x9cotWFlXr2aye1uQr3xn1VOvP/3tUNp4xWXlaqMlMTdenxwzT6tpeaPa5vepLKa7ySpKyUxPAil5H848sn6Kq/LGm27bXvzNeZ//duZ39sIK4unj5Uv7l8Wo++RnvrQHWnAiVr7UuSXurwgQBwFEtM8OiE0f0j3j+kb1qb2/umJ+uui6fqjhfWauLg7DYfMy4vS5/+5ExlpSTK0ySAHTesjz7dXRG+vfS2Baqs8+rJj3fp/OOGaEdpjf62eLv6ZyTriY+D5/s0vazKSWMGqOD2BXry412659UN+vlFkzUuL0t3XzJVFbVeXXvyKC3ZVqqr/rxEV84eoao6r15YWaRrThypvy3e0eZYp4/oq6tmjwgvbvqDhRP0y1fWR/7FAd2wqrCi4wf1IFYiB4Aj0IPvb9MdLxxaNabpdGRLm4urtHFftc6ZMlgNvoAC1io1KaFTr+PzB8LLSizZWqrpI/rphZV79N9Pfaq+6Un67eXT9MW/fqxlty9Q/8wUSdJ9izYrJdGjL88b3WoaclZ+P/3uiunqn5msLcUHdc7v35MknX/cEP33GeO0srBCp08YqLKDDZp39yJ9f+F43f1K82sDPnLdbL29oURLt5V16Y/ov2+aG74mYEtMjx45uJQLACBq1lp5/VY/fHaVEjxGd10yNd5Datcrq/eqpLpeVzcugNpZgYDV6Nte0g3zR2vXgRq9tGpvOCzuKqvRvLsXhR/7ly/M1Jf/XqD3vn+q8rJTNe72l7Xw2EE6Y1KePtl5QD+/aEr4sXe+tE4rdpXroS/O0uSfvKqhfdP0wS2nSZKq6ry67uECzRs7QL9+PXjdvgGZKeGLCa/734V6eXWRHnh3q7z+gPL7Z2hGfj+9unqvPt1dER7fGb95R5saLy7dGbeePUGfPW6ITrrrrah+R73VFbOG9/j/9wQoAMARr8EXUFWdN1zpOnCwQdPveF2XzhimX7VxSZ+KWq/SkxNa9aR1lT9gW/WxtXy93QdqdOyQPpKk/dX1mnPnm3ryhjmaMTJHa/dU6tqHP9bL35qnfhnJKiyv1Ya9lVq/t0r/b9EWfXjracpOTVJVnVeVdT7d+Mgy/fyiybrs/sW686Ip6puepPnjcrV9/0Gd0Uav2uJbT9PgPmnKv+XFZtu/e8Y4zcjvp5TEBF3yxw9j8rtwwdY7z2k2rd0TCFAAgKPSlpJqDeuXppTEzk1JHi3eXLdPS7aV6cJpQzVpSPP+uVdWF6lferImDcmWlZTdZFkPf8DKY6RRtwbbl5fdvkAzfvZG+P4nrp+j44b11Q+fW6V/fXJoZaL/OmGEHluyU8cN66OUxARt3X9Q1508Sl/9zDHNAtvNZ43XPa82n3Jt6g9XTddN/1jebFvTEyj2V9drZpPxtDQgM0VPXD9HHiONzs1s5zcUGwQoAAAQ9qd3tmhk/3QtnDxYL6zco+o6n66YPaLZY55YulO/fn2jFkwcqF9cHHmqbE95rTJTE5WelKAEj9GZ//euNhVX66fnH6tZ+TlKTjRa8JtgxWz7XeeqYHuZLr1/sQb3SdWjXz5Bx7QIQo8t2aG7X9mgitrgWaVPXj9Hs0flaHNxtfpnpnR63bVYIEABAIDD4hcvrdOf3t2qR66brXljgwtof7qrXCVV9VowKa/T+3lxZZHGD8rSmIE9X2mKpMeWMQAAAGjqu2eO1/QR/cLhSZKOG9436v2cO3VwDEcVez1+LTwAANB7JCd6tHDyoHgPo8cRoAAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKxlp7+F7MmBJJO7rw1D6SKnrg8R09LtL90Wxva9sASfs7Mb5Yi/b3GKt9dOY5XT0W7d3XmeNxJB+LruwnFu+NnjoWUnyOx5F8LNq7/0g8FpHGcjj2wedUa0fyeyNWx2KstbZPm3ux1jr/n6QHeuLxHT0u0v3RbI+wreBI+D3Gah+deU5Xj0V3j8eRfCy6sp9YvDd66ljE63gcycci2t+568ciVseDzyl3jkVX9uP651TovyNlCu8/PfT4jh4X6f5otkc79p4Ui7F0ZR+deU5Xj0V797l8PGI1jni8NzgWsdkPn1Nt43PKneNxJL83evxYHNYpPAQZYwqstTPjPQ5wLFzD8XAHx8IdHAs3HSkVqKPNA/EeAMI4Fm7heLiDY+EOjoWDqEABAABEiQoUAABAlAhQAAAAUSJAAQAARIkABQAAECUClGOMMRcaY/5sjHnSGHNmvMfTmxljRhtjHjTGPB3vsfRGxpgMY8zfGt8P/xXv8fR2vB/cwd8JNxCgYsgY85AxptgYs7rF9oXGmA3GmM3GmFva24e19jlr7Vck3Sjp8p4c79EsRsdiq7X2up4dae8S5XG5WNLTje+H8w/7YHuBaI4H74eeFeWx4O+EAwhQsfWwpIVNNxhjEiTdJ+lsSZMkXWmMmWSMmWKMeaHFfwObPPX2xuehax5W7I4FYudhdfK4SBomaVfjw/yHcYy9ycPq/PFAz3pY0R8L/k7EUWK8B3A0sda+a4zJb7F5tqTN1tqtkmSMeULSBdbaX0g6r+U+jDFG0l2SXrbWftLDQz5qxeJYIPaiOS6SdisYolaIf+z1iCiPx9rDPLxeJZpjYYxZJ/5OxB0fSj1vqA79K1oK/lEY2s7jvyFpgaRLjTE39uTAeqGojoUxpr8x5n5J040xt/b04HqxSMflX5IuMcb8Ue5cG6w3aPN48H6Ii0jvDf5OOIAKlGOstb+X9Pt4jwOStbZUwR4DxIG19qCkL8V7HAji/eAO/k64gQpUzyuUNLzJ7WGN23D4cSzcxHFxC8fDHRwLhxGget7HksYaY0YZY5IlXSHp33EeU2/FsXATx8UtHA93cCwcRoCKIWPM45IWSxpvjNltjLnOWuuTdJOkVyWtk/SUtXZNPMfZG3As3MRxcQvHwx0ciyOPsdbGewwAAABHFCpQAAAAUSJAAQAARIkABQAAECUCFAAAQJQIUAAAAFEiQAEAAESJAAUAABAlAhQAAECU/j/WgDsQLF04kQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.semilogx(cs.freq, cs.power.real)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To improve the plot, we can rebin the data logarithmically" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "cs_reb = cs.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Cospectrum Power')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGtCAYAAACm11juAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABeoUlEQVR4nO3deXxcZb0/8M93tkz2rU26pGnapnQvtLRlF1CWgmwqgoJeFwS9iutPr+B+vSiiXi4XZVdAvQgiCoIUCghlKaW0pZTupXuTNkmzL5Nktuf3x5kzW2bPTObM5PN+vfpq5syZc57J0OTD99lEKQUiIiIiMh5TthtARERERJExqBEREREZFIMaERERkUExqBEREREZFIMaERERkUFZst2ATJgwYYJqaGjIdjOIiIiI4tq0aVO7UmpipOfyMqg1NDRg48aN2W4GERERUVwicijac+z6JCIiIjIoBjUiIiIig8qroCYil4rI/T09PdluChEREdGo5VVQU0o9o5S6oby8PNtNISIiIhq1vApqRERERPmEQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY1oHDvWM4j7Xt2Htr6hbDeFiIgisGS7AUSUHU9vOYr/9/i7cHkUAOCLZ8/KcouIiCgcK2pE49TjG45gSkUhbBYTOgec2W4OERFFwKBGNA4ppfBeUzdOn1WN6mIbOhjUiIgMyfBBTURmisjvReSJbLeFKF8c6nCgd8iNxXUVqCq2oYtBjYjIkLIS1ETkQRFpE5FtYcdXishuEdkrIjcBgFJqv1Lqumy0kyhfvdfcAwBYNLUcVayoEREZVrYqag8DWBl8QETMAO4CcBGA+QA+KSLzx75pRPnvvSPdsFlMmDOpVKuoORjUiIiMKCtBTSn1GoDOsMMrAOz1VdCcAB4DcHmi1xSRG0Rko4hsPH78eBpbS5R/3mvuwfzJZbCaTagssqGzn0GNiMiIjDRGbSqAI0GPmwBMFZFqEbkXwBIRuTnai5VS9yullimllk2cODHTbSXKWR6vwrbmHpxYVw4AqC62oW/YDafbm+WWERFROMOvo6aU6gDwpWy3gyhfHOl0wOH0YMEULahVFtsAAF0OJ2rL7NlsGhERhTFSRa0ZwLSgx3W+Y0SURh0DwwCAmrICAFpFDQDXUiMiMiAjBbUNAGaLyAwRsQH4BICnk7mAiFwqIvf39PRkpIFE+aDDNx6tulgLapUMakREhpWt5TkeBbAOwBwRaRKR65RSbgA3AlgNYCeAx5VS25O5rlLqGaXUDeXl5elvNFGe0ANZVYkW0FhRIyIyrqyMUVNKfTLK8VUAVo1xc4jGFX3NtKoiLaCxokZEZFxG6vokojHQNeBEodWMQpsZAFBRaIUIgxoRkRExqBGNM50DTlT5qmgAYDGbUF5oZVAjIjKgvApqnExAFF/HgBPVJbaQY1XFNnRydwIiIsPJq6DGyQRE8XUOOFFZFBbUuDsBEZEh5VVQI6L4Ogec/pmeOu73SURkTAxqRONM+Bg1QAtqHRyjRkRkOAxqROPIoNODQZfHv4aarqLIhh6HC0qpLLWMiIgiyaugxskERLHpEwaqwsaolRVa4PR4MeTixuxEREaSV0GNkwmIYtMnDIR3fZYXWgEAvUOuMW8TERFFl1dBjYhi0zdkD1+eQw9qPYMMakRERsKgRjSO+Pf59G3IriuzM6gRERkRgxrRONI5EHmMmr/rk0GNiMhQGNSIxpHOAScsJkFZoSXkeBm7PomIDCmvghpnfRLF1jngRGWxDSIScpxj1IiIjCmvghpnfRLF1hFhVwIAKLNrFbbeQfdYN4mIiGLIq6BGRLG19g5hYmnBiOMWswnFNjMrakREBsOgRjSONHcNoq6yMOJz5YVWBjUiIoNhUCMaJwadHnQMODG1InJQKyu0csFbIiKDYVAjGieauwcBAFOjVNTKWFEjIjIcBjWiccIf1CqKIj5fXmjlOmpERAaTV0GNy3MQRdfcFbuixqBGRGQ8eRXUuDwHUXRHuwdhNglqI8z6BLRtpNj1SURkLHkV1IgouubuQUwqs8NijvzPvrzQigGnBy6Pd4xbRkRE0TCoEY0TzV2DUbs9AaDct61U3xAXvSUiMgoGNaJxorl7EHVRluYAuN8nEZERMagRjQNujxctvUNxKmoMakRERsOgRjQOtPQOweNVURe7BQJBjTM/iYiMg0GNaBzQl+aYwq5PIqKckldBjeuoEUUWb1cCAKjwBbVuBjUiIsPIq6DGddSIIvMvdhujolZVbINJgOO9Q2PVLCIiiiOvghoRRdbcPYgJJTbYreao51jMJkwoKUALgxoRkWEwqBGNA83dgzGrabpJ5Xa09A6PQYuIiCgRDGpE40Bzd+zFbnU1pXa0saJGRGQYDGpEeU4phaMJV9TY9UlEZCQMakR5rmPAiSGXN7GgVmZHt8OFIZdnDFpGRETxMKgR5Tn/jM/Korjn1pbZAQCtrKoRERkCgxpRnvOvoZbgZAIAaOWEAiIiQ2BQI8pzgYpaYl2fADhOjYjIIBjUiPJcc/cgSgss/r08Y6nRuz57GNSIiIwgr4Iat5AiGqmpazDmHp/ByuwWFFrNrKgRERlEXgU1biFFNFKia6gBgIhgUrmdkwmIiAwir4IaEYXyeBWaOh2oSzCoAUBtWQGDGhGRQTCoEeWxrc096Bt24+TplQm/ZsaEYrx7pBv//cJueLwqg60jIqJ4LNluABFlzqu7j0MEOGv2xIRf8+0L5qB/2IPfvLwXC6aUY+XCSRlsIRERxcKKGlEKlMqNStOre9pwYl0FqoptCb+muqQAv/zYYogAu1p6M9g6IiKKh0GNKAXf+Mu7uO7hDXB5vNluSlTdDifePdKNs09IvJqmK7SZMa2yCHvb+jPQMiIiShSDGlGSmroceHrLUfxrVxt+vmpntpsT1evvt8OrgLPnJB/UAGB2TQmDGhFRljGoESXpb5uaoRRw6YlT8NDag/j7O03ZbpKfw+n2f/3k5mZUFllxYl1FStdqrC3B/uMDcBu4akhElO84mYAoCV6vwl83HcHps6px+1Unoq13CDf/fSsGht0osJohAE6cVoHZNSUQkajXcXu8sJgD/5806PRgb1s/FtWlvgagw+nGmbe9gjMbJ+BjJ9fh5V1tuPmiuTCborcjlsaJJXB6vDjc6cDMiSUpt4uIiFLHoEaUhLcOdKCpaxDfvmAOrGYT7rp2Ka64ay1++I/tIedNry7CB+fW4MS6CsybXIZuhxPrD3Ri8+EuvN/Wj+buQfzk0gX4zOkNAIA7/rUH9726H+fNq8VPLpuPusoiANqkhbV7O3CgYwB9Qy4snFKOZQ2VKLKN/Ke76VAXOgeceHrLUaze3oLp1UX47BkNKb/X2bWlAID32/oZ1IiIsoRBjSgJT2xsQmmBBRcu0JasmFBSgJe+dTaO9w0DAFweL9bt78AL21vxyPrDeGjtQf9rRYATakqxtL4SZpPg8Y1H8JnTG6CUwvPbWlBXWYi1e9txwf+8hj9dtwInT6/C7984gFueDR0HZ7OYcNHCSfjM6Q1YWh9YH+2t/R0wmwTXrKjHn946hO9fPA8FFnPK77WxRgtne9v6ceGClC9DRESjwKBGlKC+IRdWbTuGjy6tQ6EtEIDsVjOmVRX5H8+cWIJrT5kOl8eL/ccHsPNYL0oKLFjeUIXyIm1j9Ade24+frdqJQx0DGHZ7cajDgVuuWIhz5kzEtb9bj+v/uAk/uWwBfvHcLlwwvxa3fGQhCq1mbD7cjZd2tuLJzc3453vH8NK3zsaMCcUAgPX7O7Foajl+evkCfPncWZhcnvhuBJGUFFgwpdyOPa19o7oOERGljpMJiBL07HvHMOTy4uMn1yV0vtVswpxJpbhiyVScN7/WH9IA4KJFWkVu1dYWvLijFQBw/vxa1FUW4aHPLodXKXzt0c2oLbPjV1eeiJpSO0rtVnzghIn46eUL8cI3PwClFB7feASANj5tS1M3Tp1ZDREZdUjTnTKzGi/uaEVH/3BarkdERMlhUKOckMkFZtv7h+Ne/7U9x/Gbl/eisaYEJ02rGPU96yqLcOK0Cqzaegwv7GjFiXXlqC2zA9Aqcg/82zLMn1yG316zJCTg6SaXF+LcOTV4YlMT3B4v3jnUDZdH4ZSZVaNuW7CvnNuIIZcH9722P63XJSKixDCokeHtbunDybe8hPtf25f2wPb4xiNY/rOXogaRPa19+MyDb+PfHnwbZpPg5x9ZFHM2ZzIuXjgJW5t7sOVIN86fXxvy3PKGKqz6+llYUh99j86rl0/D8b5hvLL7uH982rIk9vRMRGNNCa5YMhV/ePMguh3OtF6biIjiy6ugJiKXisj9PT092W4KpdGTm5vROeDEz1ftwjf+8i4GnZ60XPfv7zThu397DzazCXf+63209g6FPL+ntQ+X/OYNbD7chR98eB5e/NYHsGJG+ipWFy+a7P/6/PnJ76d57twaTCwtwA+f2obfv3EAi6aWo9Q+svo2WtesqMew24u39nek7ZptvUMYcqXncyQiymd5FdSUUs8opW4oL099LSoyFm1G5DGcNXsCvnPhHDy95SiuvPdNNHU5Rpzr9SpsOtSFvW3xB78/veUovv3XLThtZjWevvFMuD0Ktz2/y/+8x6vwH0+8h2KbGS9+62x84ayZo5pBGcm0Kq37s6G6CCfUJr/8hdVswvVnzYBJgMtPmoL/vurEtLZPt7iuAnarCW/t7xz1tZRSePCNAzjztldw/R835syeqURE2cJZn2Rou1v7cLDDges/MBPXnjId8yeX4WuPbcZlv12Lu65ZitNmVWNXSy+e2nwUz2w5iubuQZgE+MzpDfh/F8xBScHI/8Sffe8YvvmXd7GsoQq/+8wyFNksuO6sGbhnzT58+tTpWFJfiYfWHsC7R7rxv584yT92LBPuumYJnG5vyt2pN3xgFm74wKw0tyqUzWLC0vpKrD8w+qD2+MYj+Ok/d+CE2hK8/n47/rqpCVctm5aGVhIR5ae8qqiNlfb+YfQNubLdjHHh+W0tEAEu8HUNnju3Bv/4yhmoLLLiU79fj/NvfxUr73gdD7y+H7NrS/A/V5+Ia0+ZjoffPIjzb38VL2xvAQAMuTx4YlMTrrhrLb7y53dw0rQKPPjZ5f6FY79ybiMmlhbgP5/ZgYPtA/j1C7vxobk1uOzEKRl9f3WVRTmxmOwpM7RA3ONI/b/7Qx0D+NE/tuPMxglY9bWzsLS+Ar95+X1W1YiIYmBFLQV3v7IP//fWIZzeWI0LF0zCefNqMbG0INvNyrrDHQ68ua8dk8rtOPuEiWkZdP/8thYsn14V8v2dObEET33lDPz4H9txpMuB/7xsAT68eDImlGjnfGRJHa5YMhXf+/tW3PCnTVgxowq7W/rQM+jCrInF+NEl8/GJFdNCVvcvKbDguyvn4tt/3YKr718Hq8mEn6Vx4kCuO2VmFdRLwNsHO0dMfEjU2wc6Mez24ieXzYfFbMKVJ0/D957cit2tfZg7qSzNLSYiyg8Maim4/KQpMAmwekcLbv77VnxPtmLZ9EpcMH8SLlwwCfXVRfEvkgc6+ofx5r4OrN3bjjf2tqOpa9D/3Gkzq/GDS+ZhwZTUxwseaB/ArpY+/PCS+SOeK7VbcfvVJ0V97cnTK/HPr52JB17fjz+8eRBnzp6AT50yHafOrIoavj66ZCr+tO4gtjT14NaPLsKk8sx1eeaak6Zp49Re3tWaclA70umASYDp1doCvefNq8H3ngRe3N7KoEZEFIXkY7fDsmXL1MaNGzN+H6UUdh7rwws7WrB6eyt2HusFAMydVIoLF0zCBQtqMX9ymWGqMkopvHukG39efxh72vpRWWRFZZHN98eKymLf18Xa8apiGyqKrP5B9A6nG28f6MSb+zrwxvvt2OF7v6V2C06bWY0zZ0/AaTOr8db+Dtz+4h50D7rw8ZPr8P8umJPSOK97X92HXzy3C2tv+iCmVqRnAdd4DrYP4JXdbfjs6Q2G+dyM4jt/3YJVW49h/ffPizj2L56vP7YZmw514Y3vftB/7Iq71sKrFJ6+8cx0NpWIKKeIyCal1LKIzzGopc/hDgde2NGCF7a3YsOhTigFTKsq9FfaTp6u7fE41vqH3XhqczMeWX8YO4/1oshmxpL6CvQNudE54ES3w4X+YXfU1xfbzKgosqGtbwguj4LNbMLJ0ytx5uwJOKNxAhZOKYPFHDrcsWfQhbtf2YuH1h6ExSz40tmzcP1ZM0O2Xorn8rvWQvGXuGFsPtyFj9z9Jr72odmYXVOCixdNTuq/54/cvRaFVjP+fP2p/mO/Xr0bd63Zi93/dRFsFg6ZJaLxKVZQY9dnGtVXF+ELZ83EF86aifb+Yby0oxWrt7fgT+sO4fdvHEB1sQ3nzavFhQtrcfqsCbBb07vcQ7htzT14ZP1hPP1uMwacHsybXIZbrliIy0+aMmK9rWG3Bz0OFzodTnQNuNDlcKLLoYW4zgHt64mlBTizcQKWTa+KG7jKC624+eJ5uOaUetz2/C7c/uIe/Hn9YfzHyjm44qSpMMX5BX+0exBbjnTjOxfOGfX3gdLjpGkVmD+5DHf+630A2hImVyyZmvDrj3Q6cN680G7T+uoiKAW09AyNmyEDRETJYFDLkAklBfjEinp8YkU9+ofdWLO7Dau3t+LZrcfwl41HUGwz45w5NbhgQS3OnVuDsjQtVOpwuvHPLcfwyPpD2NLUA7vVhEsWT8G1p9TjpGkVUbvzCixm1JSZUZPmpSimVxfj7mtPxoaDnbjlnzvwrce34JH1h/HHz69AcYzuM3225kULk18IljJDRPCLjy3ChoNd+MObB/Ho24cTDmoDw2609ztDNq8HgLpKrUu7qcvBoEZEFAGD2hgoKbDgksVTcMniKRh2e7BuXwdWb2/Fizu04GY1C06fNQEXLKjF+fNrUVOafFja3dKHP68/hL9vbkbfkBuza0rw40vn46NL6iLuFTnWljdU4ckvn4En3mnCTX97D9/923v4zSeXRA2Oz21rwQm1JTmxdMV4sriuAovrKjDs9uCXz+/G/uP9CX1GR3wLFNeHB7UK7XHwRBQiIgpgUBtjBRatknbOnBrccsVCbD7chRd8XaTff3IbfvDUNiytr8SFC2pxwfxJaJhQHPVaQy4Pntt2DH9efxgbDnbBZjbhokWTcO0p07G8odJwg+FNJsFVy6ahvX8Yv3x+N5bWV+LzZ84YcV57/zA2HOzEjec2ZqGVlIgrT67D7S/swf+9dRg/unTkrNxwhzsiB7VJ5XaYBBF3miAiIga1rDKbBMsaqrCsoQo3XzQXu1v7sHpbK17Y0YKfr9qFn6/ahTm1pVpoWzAJC6ZoM0j3H+/Hn9cfxhPvNKHb4UJDdRG+d/FcXHnyNFQV27L9tuL697Nn4d3D3fj5qp1YOLV8xP6ZL+1ohVcBKxdOjnIFyraaUjsuPXEKHn37MG78YGPc/+4Od0YOajaLCZPK7KyoERFFwaBmECKCuZPKMHdSGb5+3mwc6XT4K22/fWUv7nx5L6ZWFGJKhR0bDnbBYhJcsKAW154yHafNrI47ON9IRAS/vupEXPFbbZeAZ796ZsjYuOe2taC+qgjzJpdmsZUUz5fPmYUnNzfj4bUH8K0LYk/6ONLpQGmBBRURuuHrKosY1IiIouB8eIOaVlWE686cgce/eBo2fP88/PJjizF3Uil6B934zoVz8ObNH8Td156MMxon5FRI05XZrbj30yejf8iNLz/yDlweLwBtWY8397Vj5cJJhuu6pVCza0uxcsEkPPzmwbhbqh3udGBaVVHEz7SuspBdn0REUTCo5YDqkgJctXwafv/Z5Vj9zQ/gK+c2pjThwGhOqC3FbVcuxsZDXfj5qp0AgFd2tcHlUbhwAWd75oKvnNuI3iE3/vTWoZjnHe50jOj21NVVFqKldwhOtzcTTSQiymkMapRVl504BZ8/YwYeWnsQ/3i3Gc9tO4basgIsmVaR7aZRAhbVleMDJ0zE718/gEGnJ+I5Xq/Cka7BqMtv1FcXw6u0LcOIiCgUgxpl3c0Xz8Xyhkrc9LetWLP7OC5cMCknu3PHqxvPbUTHgBOPbTgMAFi/vwP3vboP+q4nbX3DcLq9I9ZQ0506U5tM8vr7x8emwUREOYRBjbLOajbhrmuWosRuwbDbi5Xs9swpK2ZUYUVDFe5/bT9++/L7uOZ363Hrc7tw0LckR7QZn7q6yiI01pRgzW4GNSKicAxqZAg1ZXY88G/L8KlT60cs10HG95UPNuJYzxB+/cIeLG+oBABsOtQFIH5QA4BzTpiItw90wuGMvucsEdF4xKBGhnHStArccsWiERu8k/F9YPYE3HzRXDz0ueX48xdORandgk2HujAw7MbB9gGIAFMrCqO+/uw5E+H0ePH2gc4xbDURkfFxHTUiGjURwRfPnuV/vLS+Eq/tOY4ztx1D96ALU8oLYbNED+An+iaPbD/ai3Pm1GS6uUREOYOlCyJKu2XTK9HcPYgBpweNE0tw6szqmOeX2a2oryrC9qM9Y9RCIqLcYPiKmogUA7gbgBPAGqXUI1luEhHFoY8zvPHcRnztQ7MTes2CKWXYfrQ3k80iIso5WamoiciDItImItvCjq8Ukd0isldEbvId/iiAJ5RS1wO4bMwbS0RJWzGjCo9efyq+cm5jwq9ZMKUMhzoc6I2zywER0XiSra7PhwGsDD4gImYAdwG4CMB8AJ8UkfkA6gAc8Z0WeUVNIjIUEcFps6phTmI9vAVTygEAO1lVIyLyy0pQU0q9BiB8etcKAHuVUvuVUk4AjwG4HEATtLAGxGiviNwgIhtFZOPx41yPiSjXLJxaDpMAd7z0PnocrKoREQHGmkwwFYHKGaAFtKkA/g7gYyJyD4Bnor1YKXW/UmqZUmrZxIkTM9tSIkq7iaUFuO1ji7HxUCd+8sz2bDeHiMgQDD+ZQCk1AOBz2W4HEWXex5dNw45jvfi/tw7h5ovmoqbMnu0mERFllZEqas0ApgU9rvMdI6Jx5DOnNcDtVfi/tw5luylERFlnpKC2AcBsEZkhIjYAnwDwdDIXEJFLReT+nh6uxUSUqxomFOPk+kqs3deBtr4hrN/fke0mERFlTbaW53gUwDoAc0SkSUSuU0q5AdwIYDWAnQAeV0olNVBFKfWMUuqG8vLy9DeaiMbMzInFONThwF0v78VnHnobXq/KdpOIiLIiK2PUlFKfjHJ8FYBVY9wcIjKY6dXFaO9vwuYj3RhyedEx4MTE0oJsN4uIaMwZqeuTiAgAML26CADwXpM2jKG1dyibzSEiypq8Cmoco0aUH6ZXFYc8PtajBTWn25uN5hARZU1eBTWOUSPKD/W+ipqupWcQa/e2Y8lPX8Aru9qy1CoiorGXV0GNiPJDeaEVlUVW/+NDHQ784KltGHB68LNVO+H2sLJGROMDgxoRGVJ9dTFsFhMmldnx2IYjONA+gGtPqcfetn6s3t6a7eYREY0JBjUiMqRTZlThtJnVmFJhR/+wG1XFNvzksgUotpnxFtdWI6JxwvBbSBHR+PS9i+cBAL78yCYAwOmzqmE1m7CkvhKbDnVls2lERGMmrypqnPVJlH8mlRUCAM5onAAAWDq9ErtaetE/7M5ms4iIxkReBTXO+iTKP9OqtKB2pi+onTy9El4FbDnSja1NPVxjjYjyGrs+icjQrl4+DYvryjGtSluyY0l9BWxmE361eje2H+3BjAnFePZrZ8Fqzqv/7yQiApBnFTUiyj9FNgtOnl7lf1xmt+JHl87Hu0e6UWg1Y09rPx54fX8WW0hElDmsqBFRzvnUqdNRardg4dRy/Hr1bvzPi3twVuNELKrjsAciyi95VVHjZAKi8ePyk6Zi1sQS3PrRRZhYUoAbH30HfUOubDeLiCit8iqocTIB0fhTUWTD/35yCY50OvDDp7ahtXcImw9z+Q4iyg/s+iSinLe8oQrfPO8E/PeLe/DUu0cBAAduvRgikuWWERGNTl5V1Iho/PryuY04o7Ha/7itbziLrSEiSg8GNSLKC2aT4OHPrcA91y4FABxoH8hyi4iIRo9BjYjyhtVswsKp2hjVgwxqRJQHGNSIKK9MqSiEzWxiRY2I8kJeBTUuz0FEZpOgvroI9722Hx+/9014vSrbTSIiSlnMoCaaaWPVmNHi8hxEBACldm1C+4aDXeh0OLPcGiKi1MUMakopBWDVGLWFiCgt5k0u83/d1svZn0SUuxLp+nxHRJZnvCVERGny/Yvn4dcfPxEA0No3lOXWEBGlLpEFb08BcK2IHAIwAECgFdsWZ7RlREQpKi6w4JQZ2kbux1lRI6IclkhQuzDjrSAiSrOasgIAQGtvoKK26VAnfvvyXvzmmqUoKeDGLERkfHG7PpVShwBMA/BB39eORF5HRJRNBRYzKoqs/h0KNh7sxMfuWYdXdh/HpkPcC5SIckPcwCUiPwbwXQA3+w5ZAfxfJhtFRJQOtaV2tPYO4ZXdbbjy3nUotJoBADuP9Wa5ZUREiUmkMvYRAJdBG58GpdRRAKWZbBQRUTrUlBWgrW8YL+5oRWmBBZt+eB6mlNsZ1IgoZyQySMOplFIiogBARIoz3KaUicilAC5tbGzMdlOIyABqSu3Y19aOQacHS6ZXoshmwbzJZdhxlEGNiHJDIhW1x0XkPgAVInI9gJcAPJDZZqWGC94SUbDasgIc7RnC7tY+LJteCQCYP6UM+9sHMOTyZLl1RETxJTKZ4NcAngDwNwBzAPxIKfWbTDeMiGi0FtdV+L/Wg9qiqeXweBVe3NGapVYRESUukckE1wE4qJT6jlLq20qpF8egXUREo7Zy4ST89PIFOGVGFZbUa0HtQ/NqsWBKGX727E4MOllVIyJjS6Trsx7AfSKyX0T+KiJfFZGTMtwuIqK0+LfTGvCXL56GQps249NsEnzjvBPQ0juELU3d2W0cEVEciXR9/lgp9UEACwC8DuA7ADZlumFERJkyp1abuH6405HllhARxRZ31qeI/ADAGQBKAGwG8G1ogY2IKCdNrrDDbBIc7mBQIyJjS2R5jo8CcAN4FsCrANYppbh5HhHlLKvZhKkVhTjEihoRGVwiXZ9LAZwH4G0A5wPYKiJvZLphRESZVF9VxK5PIjK8RGZ9LgRwLYDPALgaQDOAlzPcLiKijKqvLsLB9gFsOdINr1dluzlERBElMuvzFwDKANwJYJ5S6lyl1I8y2ywiosyqrypCz6ALl9+1Fjf8aSNcHm+2m0RENEIiXZ+XAPgfAL0A5oiINeOtSpGIXCoi9/f09GS7KURkcA3V2m54MycU46WdbVi/vzPk+Y7+Ydz/2j54WG0joixKpOvzbADvA7gLwN0A9ojIBzLdsFRwCykiStR582rw5+tPwWM3nAoAeL+tL+T5zz28AT9ftQsPvL4fF/zPq+gfdmejmUQ0ziUy6/N2ABcopXYDgIicAOBRACdnsmFERJlkMZtw+qwJUEqhosiK99v6/c81dTnwXpNWmf/d6wfQ3j+Mncd6sbyhKlvNJaJxKpExalY9pAGAUmoPAMN2fxIRJUNEMLumBKu2HsNH716Ljv5hrNp6zP98e7+2GtHeoCBHRDRWEglqG0XkdyJyju/PAwA2ZrphRERjpbGmFN0OF9453I3X32/Hun0dmDmxGPMml/nPYVAjomxIJKj9O4AdAL7m+7PDd4yIKC9MLC3wf727tQ9vH+jE6bOqMbumxH+cQY2IsiHqGDURqQHwPQCNALYC+KxSqnesGkZENFYuWjgJD75xAP3Dbjz29mEMOD04beYEHGjXwlltWQGDGhFlRayK2h8BDAD4DbR9Pv93TFpERDTG5k0uw7b/vBCXnTgFXQ4X7FYTzmycgPPnT8I5cybiI0vq0Nw9iAHO/CSiMRYrqE1WSn1fKbVaKfVVACeOVaOIiLJhcrkdAHDevFqUF1kxZ1IpHv7cCpwyQ5vtuaWpO4utI6LxKOYYNRGpFJEqEakCYA57TESUVy5eNBkA8OVzGkOOL51eCRHg7QOdkV5GRJQxsdZRKwewCYAEHXvH97cCMDNTjSIiyoYTp1XgwK0XQ0RCjpcXWjFvUllCQe2HT23D3MmluPaU6ZlqJhGNI1GDmlKqYQzbQURkCOEhTbdiRhUe23AYLo8XVnP0zogXdrSgc8DJoEZEaZHI8hxEROPewqnlGHJ50dw1GPO8gWEPBl2eMWoVEeU7BjUiogQ0VBcBAA50DEQ9RymFAacbg04GNSJKDwY1IqIETK8uBgAcao8e1IZcXigFVtSIKG0S2ZQdIlIJYFrw+Uqpd6K/IjtE5FIAlzY2NsY9l4goGRNKbCiymXGwwzHiudtf3IPntx3DZ05vAAAMMagRUZrEDWoi8l8APgtgH7TZnvD9/cHMNSs1SqlnADyzbNmy67PdFiLKLyKC6dXFOBSh63PN7jbsae3HHS+9D4AVNSJKn0QqalcBmKWUcma6MURERtZQXYTdLX1wON3o6HdiWpU2bs3hG5PW3j8MAByjRkRpk8gYtW0AKjLcDiIiw5teXYwjXQ5cdd86nPXLV/zHux0uAIDy9TmwokZE6ZJIRe1WAJtFZBuAYf2gUuqyjLWKiMiA5k0uhcujsK25FwBwuMOBAacbPYOhHQ4co0ZE6ZJIUPsDgNsAbAXgzWxziIiMa2l9ZcjjHz29DVubeuDyKJTZLegd0jZtd3lU3IVxiYgSkUhQcyil7sx4S4iIDK6ushATSwtwvE/rXHi/tR8dA1o1bXp1MbY29/jPHXJ5GNSIaNQS+SnyuojcKiKnichS/U/GW0ZEZDAigiXTKvyPm7sDuxTU+xbE1XGcGhGlQyIVtSW+v08NOmbI5TmIiDLt8pOm4s19HegfdoccbwgLakNOjhQhotGLG9SUUueORUOIiHLBhxdPxsKpZTj7V2tCjk+vKg55zIoaEaVDIgve/ijScaXUT9PfHCIi4ysvtI44Fq3rc9XWYzijcULE1xARxZPIGLWBoD8eABcBaMhgm4iIDK3UboVI6LHp4UHN6cH+4/348iPv4LtPvBf3mn9efxhvvN+ezmYSUR5IpOvzv4Mfi8ivAazOWIuIiAzObBKU2a3oGdQWui2wmFBTag85Z8jlQZdvIdxjvUMxr+f2ePG9J7cCAA7+4sMZaDER5apU5o4XAahLd0OIiHKJ3pVpNQsqiqwwmwSlBRbYrdqP1UGXBwO+CQd2S+wftXta+zPbWCLKWYmMUduKwGbsZgATAXB8GhGNaxVFVhzuBE6ZUQ2vb++oskKtS7SpaxCDTg9cHm3mp91qjnqde1/dh9ue3zUmbSai3JPI8hyXBH3tBtCqlHJHO5mIaDzQK2r/c/VJqCzSvm6YUASr2aQFNZcHzkE9qGkVtTf3tuNrj23Gv751Duw2ExzDHvziuUBI088jItLFDGoiYgawWik1d4zaQ0SUE8p91bOqYhvMJm1mwX2fXoZBpwfLf/YShlwe/2btFt8OBTc/uRXt/U7saevDw28exLPvHUORzQyHU5shOuTyYmDYjeKCRP4fmojGg5j/+6aU8gDYLSL1Y9QeIqKcMLWyEFMrCv0hDQBKCiyo8FXXBp0e//ZSQ74gdqjDoT12efD8thYAgMPpwX+snIPbPrYIANDePzxm74GIjC+R/22rBLBdRN6GtkQHAEApdVnGWkVEZHBf++BsfO70GSOOW80mWM2CQZcHXb6gNuB0o6UnMPOzZ9CFhuoi7Duu/UhtnFgCm2/CQXv/MKZXF4+4LhGNT4kEtR9mvBVERDmmuMAStYvSbjVjYNiNTl9Qczg92Hy4y/9876AbdZWBoDa9utg/8eB4nzPDLSeiXJJIULtYKfXd4AMichuAVzPTJCKi3LZoajmeevcoCnxVMofTg/3t/g4J//pruvqqIvQOacfY9UlEwRKZYnR+hGMXpbshRET54r+uWIghlwdtfVrocgy7sf/4AGpKC2A1C3oGXf4tpqZWFKLQZkZVsQ1A5KD21OZmXPPAW1BKjXiOiPJb1KAmIv/uW0Ntroi8F/TnAICtY9dEIqLcMmtiCb59wRz/4wGnBwfa+zFzYjHKC63oHXJh0OnB4rpy/OHzKwBoY9smlhagqWtwxPVWbT2GN/d1+Hc60DV1OdBw07PYdKgzs2+IiLImVtfnnwE8B+BWADcFHe9TSo3ZTwURmQng+wDKlVJXjtV9iYhG4/NnzkD/sBs7jvVize427G8fwMWLJqOtb9hfUZtTW4rGmhL/a+bUlmJPa9+Ia21r7gEAHOwY8FfeAGDN7uMAgL9ubMLJ06sy/I6IKBuiVtSUUj1KqYMA/hdAp1LqkFLqEAC3iJySyMVF5EERaRORbWHHV4rIbhHZKyI3RXu9rx37lVLXJXI/IiKjMJsE3zz/BCyeWg6XR6Hb4cLMCcUos1vRO6hV1MJ3LJgzqRS7W/rwfmsfTvj+c9h+tAcd/cM46psxeqhjIOR8fYsqrrtGlL8SGaN2D4Dgjej6fccS8TCAlcEHfIvo3gVtnNt8AJ8UkfkiskhE/hn2pybB+xARGVJRUIjyd336KmpFttCgNndSKYbdXnzniffg9HixZvdxbPVV0wDgQLsj5HwGNaL8l8i/blFBI1iVUl4RSeinglLqNRFpCDu8AsBepdR+ABCRxwBcrpS6FaHbVRER5bzioDA2Y0IJygqtONQxgEGnB4VhQW3e5DIAwLtHuv2v3XKkR9sBocg2oqLWP6xNSLAGLbpLRPklkYrafhH5mohYfX++DmD/KO45FcCRoMdNvmMRiUi1iNwLYImI3BzjvBtEZKOIbDx+/PgomkdElD56Rc1iEkyrLER5oQXdvopaeNdnY00JSoKqY31Dbmw81Ik5taWYN7kM/3j3KP668Qg2HuxEU5cD3YO+ddp8M0jDfeEPG/D8tmMZemdENBYSqYx9CcCdAH4AQAH4F4AbMtmoYEqpDl8b4p13P4D7AWDZsmWcw05EhlDkC2P11UWwmE0oL7T69wAN7/q0W814+dtnQyngnF+tQafDiXcOdeEjS6dielUx3tjbjntf3edfKPes2RMAaNtVhfN4FV7a2YaXdrbh4C8+nMm3SEQZFDeoKaXaAHwijfdsBjAt6HGd7xgRUd4pKtDC2MwJ2uzOMrvV/1xhWEUNAGpK7dp5hRZsONiJAacHyxuqcPlJU7G3rR+v7G7zn3tcX6fNqY1Ve3lXK9bt68D3PzwfQ1GqbESUW+J2fYrICSLyL33mpogsFpEfjOKeGwDMFpEZImKDFgKfHsX1iIgMq9im/f/wzIna/p2VQctrRApqulK7FduaewEAi+sqAAAVRVYcD1oQd1eLtpTHgK+i9vmHN+KB1w9gyOXxL6hLRLktkTFqDwC4GYALAJRS7yHBCpuIPApgHYA5ItIkItcppdwAbgSwGsBOAI8rpban0vgI97tURO7v6emJfzIR0RgoK9QqaI0TtYpaTWmB/7nwyQQhr7MHOjwml2tVtvIiKyJtThDe9fnOoS609XIrKqJ8kMgYtSKl1NsiIbOK3IlcXCn1ySjHVwFYlcg1kqGUegbAM8uWLbs+3dcmIkrFjAnFuOfapTh3rrbaUG2Z3f9crIqaHvBK7Rb/pIOKQlvEc/WuT5MAXgVc87v1Ic+f86tX8NDnVmDGhGLcvWYvth/txV3XLE39TRHRmEmkotYuIrOgTSSAiFwJgNOIiIgSdNGiyf6wlWhFrdQ3li34/IqiwPi2x794Grb+5AKcfcJEf0Ut2npqBzscePrdowCAXz6/G8++xx/hRLkikaD2FQD3QdvzsxnAN5DALEwiIhqpsihojFoCXZ/65AIAqCgMBLXKIitK7VYU2cxwOD1we7zoH47e2VFqDw1xSin86B/bsHZv+4hz97b1Y9/x/hHHiWjsxQ1qvi2czgMwEcBcpdSZvq2kDIdj1IjI6ExBi9Mm0vVZUxaoqJUHVdQqfIGv0BfUOgacEcev6bodzpDHL+5oxR/XHcLPnt0JABhyebDhoLaN83m3v4oP/ferCb4jIsqkRGZ9VovInQBeB7BGRP5XRKoz37TkKaWeUUrdUF5enu2mEBHFFXvWpyXkbyAQzgCg3BfktIqa279Ux/9+4iR8eNFk/3lL6ysAAC29Q9joC2IA8MDr2rrlUysLAQBPbW7GVfetQ0c/JyEQGUkiXZ+PATgO4GMArvR9/ZdMNoqIaDwIX/A2mECrvNktgXP0rs9imxk2i8l3DQscTo8/qNVVFoVMWPjFxxZj5sRiPL6xCVfeu85/vKVX2+i9x7f4bqdDq8h1D7rS8daIKE0SCWqTlVL/pZQ64PtzC4DaTDeMiCjf2WMENX3B2uBtpopsZtjMppDKWqHVjGG31x+8akoLQgKg3WJGVdHI2aIut9ZP2jGgBTx9QkL/UGCc25rdbWjrG0r6fRFR+iQS1F4QkU+IiMn35ypoa6AREVEKPrpE2944VtfnhBItXNVXFfmPiQjKi6whsz+LfTsf7GntgwgwsbQgZJKC3WYKWWRXN+TWglnHgDZ2bcC3wXtbX6Dr8wt/2Ig/rTPkkGSicSORddSuhzbT808ABFq4GxCRLwJQSqmyzDUvOSJyKYBLGxsbs90UIqKobrtyMW66eC6s5uj/r3zNKdNRWWzDxQsnhxyvKAwNaoW+nQ+e2XIMy6ZXwm41ozg4qFkjV9Qcvgpat8OFhpuexSzfzgnNXQ7/OW6v8u9LSkTZkcisz1KllEkpZVVKWXxfl/r+GCakAZxMQES5wWo2hSy7EYnZJLhk8ZSQWaIAcOMHG3HdmTP8j/VN39v7h3HhgknaMVvg/8HtFjMqirVgd968Gpw0rQIA4HR7Qyp6+kbvTV2DIffrHWJQI8qmuBU1ETkDwLtKqQER+RSApQDuUEodznjriIgoxOUnTQ15HDyGTQ9qeten2SSwmgVm384yC6eWo8xuxbtHugFoW1Ptbx8IuV5zd2hQ6xtKaCMaIsqQRMao3QPAISInAvh/APZB6wYlIqIsm1SurbP29Q/NxjTfeDZ93JrdYoKIYMC3EG5JgQVWiynotSOreuFBrZezQImyKpGg5lZKKQCXA/itUuouAKWZbRYRESViaX0l3rr5Q/jm+Sf4jxVatc4Svdp22ixt6cvlDVWwBnWlRgpq4V2frKgRZVcikwn6RORmAJ8GcJaImABY47yGiIjGgIiMCFz+ipovqK1cOBlbfnQByouseL8tsDXUlPLCEdfrHAjdwYBj1IiyK5GK2tUAhgF8XinVAqAOwK8y2qoUcQspIqLAQrp2a+BHvL79lNUcqKhVl9iw9qYPYuaE4qjXYkWNKLsSmfXZAuARAOUicgmAIaXUHzPeshRw1icRUWDJDnuEddqClwSxmk2YWlEYsodouP5hNzzeGJuIElFGJbLX51UA3gbwcQBXAVgvIldmumFERJSaYlto12cwS9AYNZsvtJXZQ4NacNUNCOxWoJSC1xfa3m/tGzHxgIjSL5Guz+8DWK6U+oxS6t8ArADww8w2i4iIUqUvzxFp54PgWZ9WixbIygpDg9qy6VUhj/Vxanev2YdLf/sGlFK48t51OOu2l/HlRzah2xE6ro2I0ieRoGZSSrUFPe5I8HVERJQFNrMJZpOEjFHTWU2hXZ8AUGoPnVe2YkbkoLa3rR/vt/Wj2+FCz6ALsyaWYNXWFqw/0Jnut0BEPokErudFZLWIfFZEPgvgWQDPZbZZRESUKhFBkc2Mgkhdn0HdmhZT5K7P5Q1hQW3Qjd4hF/qG3HC6vTjYoS2Se8niKQAAl8eb1vYTUUDc5TmUUt8RkY8CONN36H6l1JOZbRYREY1GRZF1RAADQsef2Xxdn+EVtcXTymEzm2CzmNA/7Mbz247hMw++jbpKbTmP91u1JT6mV2sL7DKoEWVO1KAmIo0AapVSa5VSfwfwd9/xM0VkllJq31g1MlHclJ2ISHPfp5ahqnjkZuzhsz6BwBi1H14yH6V2C8rsVhQVmFFbasfu1j5sOtwFp8fr325qT2sfAPh3QnC5OSuUKFNidX3eAaA3wvEe33OGw+U5iIg086eURdx5wBJhjFqZr6K2aGo5rlo2DQBQVWTD7NoSANrYtGB72vphNgmmVGjXd7KiRpQxsbo+a5VSW8MPKqW2ikhD5ppERESZEtz1qQe1eZPLUFtWgAZfVyYA3Pvpk1FRaMXLu9rgcHpCrrGnpQ81pQWwW7QxcG4GNaKMiVVRq4jx3Mh9R4iIyPCCuz71ddROqC3F+u+dh5qyQAXuhNpS1JTZUVNaMOIaLb1DmFRu9y/14fIoDDo9aO0dynDricafWEFto4hcH35QRL4AYFPmmkRERJkSPOtTX0ctluDwFmxKeaG/Ouf0eHHPmr34yF1r09NIIvKL1fX5DQBPisi1CASzZQBsAD6S4XYREVEGBFfUgserRROpogYAdZWF/jXZXB4vmruHcKx3CF6vgskUPwASUWKiBjWlVCuA00XkXAALfYefVUq9PCYtIyKitIvU9RlLTWnkilpdVRFMJoHZJHB5vOgbckEpoG/YjfLC6HuHElFyEllH7RUAr4xBW4iIKMOS7fqsLYtcUZvmW1PNaha4Pcq/e0HvoItBjSiNuBUUEdE4EmkLqVhqogU13xpqVrMJTo8Xfb6N2/W/j/cNY+Udr2Fbc89om0w0ruVVUBORS0Xk/p4e/mAgIook0vIcsdT6JhMU20K3o5paoVXUbGaTr+tTC2h6Ze21Pcexq6UP33sysMrTip+9hKvvWze6N0A0zuRVUOOCt0REsZmDBvonMkbtlBnVuPWji/z7eursvn1ELWaByx3a9QkA7/sWyd3b1g+nW1tnra1vmBu4EyUpr4IaERHFJiL+qlrweLVozCbBJ1fUY0Kpth3VxYsm4dw5E/3PW8Mqavrf249qPRsOpwfbjrKXgyhVDGpEROOM3uVpSWIZjRPrKjB3Uinu/MQSPPS5Ff7jNrMJPYMueLzafp+9Qy4opbCtuQcnT68EABzpdIRcy+F0R7yH2+PFj/+xbcT5ROMZgxoR0ThjMQlsZhNEEg9qFyyYhOe/8QFYwrpLrWYTOgac/se9g268/n47uhwuXLFkKgAtqLmCtplq7hqMeI9dLX34w7pD+Oqjm5N5O0R5jUGNiGicsZpNIZMKRsNiFnQGBbW+IRduf3EP6ioLcfWyaagpLcDhTgcGhgNVtKYoQU3viuVWVEQBDGpEROOMxSz+fTpHy2o2hQS1nkEXtjX34JLFU2CzmDCtqghHOgfRHxLUIndtDru0qltHvzPi80TjEYMaEdE4o1XU0vPj32Y2hYSwoz2DcHsVJpRokw/qq4p8FTWP/5wD7ZGD2pBLO8cZ1E1KNN4xqBERjTNWsymhpTkSulbQ7gblhVYc6tBCWEWRFtSmVRXhWM8guh2BKtnmI10RrzXsZkAjCsegRkQ0zlhMktDSHIkIrsxNrSj0jz+rKta2kZpcbodXwR/gljdUYltzDwadWvXs7jV7ceU9bwIIVNQAoMfh4lg1IuRZUOPOBERE8aWz69MStCXVzInF/q/1itqEEm0LqkOdAwCAc+bUwOVR2NLUDQD45fO7sfGQVmELrqj9fNVOrLzjNSil0tJOolyVV0GNOxMQEcVnNUv6xqj5uj5NAsyaWOI/XuULatW+sWoHfRW102dVA0DEPUCDK2rbjvagy+HieDUa9/IqqBERUXwWswm2NHd9Ftss/v0/AaDSF9Qm6hW1Dq2iVl9VBLvVhJae0G5Nr1dhKKii1uPbisoRNAmBaDxiUCMiGmfsVhMKLOb4JybAH9QKLJgSFNRK7RYAQV2fvpmexQUWTCqzoyVs/Nmw24vh4DFqelBzMajR+GbJdgOIiGhs/ceFc+FN09gvfeHc4gIzJlfY/cdNvu2pCm1mFNvM6Bt2w2ISFFhMqC2zj5goMOTyhIxR0/cMHYyy3RTReMGgRkQ0zpw4rSJt19IraiV2K6aUF0Y8p7qkAAOdDhQXWCAimFxu908g0A26PCEVNZ3DyYoajW/s+iQiopT5g1qBGYW2yN2p+uK3JQVabaC23I623uGQGZ1DLk/IGDUdgxqNdwxqRESUsuDJBAAgAsybXBZyTlWxNk6tuEALcpPK7HB6vCGbuQ+5tDFq4QvxDkYIajf//T0s/PHq9L0JIgNj1ycREaVMH6OmV8t2/ddKmCR0RmmBb1/Ry0+aCkBbBBcADrQP+M8ZdHkw5PKirNCC9qC9PiNV1B59+0ga3wGRsTGoERFRyvSKmt3X7RlpNuk3zz8BH5pXg48s0YLa9GptYdz7Xt3nP2fY5cGw24MimwUWkwtur9Yt6uBkAhrnGNSIiChlelDTq2aRNNaUoLEmsBju3Eml+NwZDXho7UH/sQfXHsBb+zsxpcIOu9Xs3+g9vKLm4gK4NM5wjBoREaVMQat82WIEtXAigo8trQs59tLONvQPu2G3mmG3Bq4VHtT0vUSDbWvugZsBjvIUgxoREaXM6ZupWZDkllT11UURjxdYQhfjDV9H7UB7f9jjAVzymzfws1U7k7o/Ua5gUCMiopTpi9QWWJPb6aDMbo143G41oyBGRe2wb89Q3YCvi3T9/k50O5zYcqQbAHDLP3fg5V2tSbWJyIgY1IiIKGXDLl9QS6LrMxab2QR7UEUtfAupAV9w02eb2n0BccDpxsfueROX37UWAPC7Nw7g8w9vTEubiLKJkwmIiChlTo8WnJIZoxaLw+kJqaiFr6Omd7WafVtU6YvmDgy7/ct6qDRtj0VkBHlVURORS0Xk/p6enmw3hYhoXNCDU/hCtYlYWl8x4ljvkCu0ohY2Rs3pmzSgZzGP7wt9ligAeLwMapQ/8iqoKaWeUUrdUF5enu2mEBGNCzd8YCamVxfh/Pm1Sb/2oc+twCNfOCXkWO+QK+YYNT0Y6lFMD2VDrsCsTzeDGuURdn0SEVHKGmtK8ep3zk3pteWFVpzROCHkWO+gO6yiFjmo6UnNG2FVDq61RvkkrypqRESU2zxeFXMdNT2oeX1dnu4ISc3tYUWN8geDGhERGcLXPzQbj15/qn8dNbNJMBw269M/Rs332Bth4oArUpmNKEex65OIiAzhm+efAAD+iprdYkJ4DPOPUfMFtEi9nKyoUT5hRY2IiAxFXxvNHmER3WF/16f2ONIMTwY1yicMakRElFXFttBApi+eG2kR3fCJAuz6pHzHrk8iIsqqDT84D8GFsYKgilq0rk9A6/6MV1HrG3Lh8Y1N+PwZDRCRtLabaCywokZERFlVZLOgpCBQN9AraZF2O3AGVdS8KnLXZ3DV7SdP78B//XMHXn+/PZ1Njuq821/F5x56e0zuReMDK2pERGQo+ti0AqvZPyZNl1BFLehYt8M54nWZtLetH3vb+sfkXjQ+sKJGRESGcurManx48WRMKbePeC4kqCGwhdSN5zZiakUhAMAdUnXTnjfxtx3lKP6nS0REhtJYU4K7rlkKa4T9Q51hIczrq559ePFk/OrjiwEArqAxanpxTcDxaZSbGNSIiMjwdrX0YsjlCev6DFTUzCbxB7vg3Qr0yMZ5BJSrOEaNiIgMrXfIhZV3vI6LFk4aMWZNH6NmNgksJi2NBU8m0BfGNTGpUY5iRY2IiAxtyLeN1IaDXXC6A1tKeYMmE5glUFEL7fpkUKPcxqBGREQ5w+kJ6/r0Ruj6DApq+vOmNOe03S19ONLpSO9FiSJgUCMiopzhdHv966wpBM/qFFjMWhoLHqPmr65FCWptfUPY1tyTdDsuvOM1nPXLV5J+HVGyGNSIiCgneLxeeFVgnTWt61N7ziwCq2lk1+ewr6s0Wtfnub9ag0t+88ao2+b1qjFbq43GF04mICKinKAHIX9FLWzWp7+iFtQ9qr8mWlAbcHoiHk+U2+OFxWzCf/ztPTyxqWlU1yKKhBU1IiLKCXqlrMDq+9WlAI8vlAUHNZc3uKKmB7XMtOlYzxAAMKRRxjCoERFRTtAnEhRYgro+fZksuOszuKI27NK+Dt6QfW9bf9q6KQ91cEIBZRaDGhER5ZSQyQTewBZRga7PkWPU9JzWP+zGebe/ii8/8k7c+9z1yl789JkdMc852DGQbPOJkmL4oCYiV4jIAyLyFxG5INvtISKi7AqMUVMRdyZwBc36HA4bo3bYVwF7aWerP+RF86vVu/Hg2gMRn9O7Upu7B1N8F0SJyWhQE5EHRaRNRLaFHV8pIrtFZK+I3BTrGkqpp5RS1wP4EoCrM9leIiIyvsCsz8g7EwRX1JxhY9QOdwYqYJsOd6V0f49X+fcQ9cQJe0SjlelZnw8D+C2AP+oHRMQM4C4A5wNoArBBRJ4GYAZwa9jrP6+UavN9/QPf64iIaBwLdH2G7kxgNo2c9en2hu5MEDymbHsK66cBoVtUEWVaRoOaUuo1EWkIO7wCwF6l1H4AEJHHAFyulLoVwCXh1xBtBOgvADynlIo6qEBEbgBwAwDU19en5w0QEZHh6JMJEFZRExFYzRIy61Onj1E71OlAeaEVLo8Xh1LcWSB8v1GiTMrGGLWpAI4EPW7yHYvmqwDOA3CliHwp2klKqfuVUsuUUssmTpyYnpYSEZHh2H3Lc3iVNvNTJDCr02IyhVTUdOLbmuBIpwMN1UWoryryj1dLllEXtm383irc+tzOmOfsaunFw1HG3ZExGX4ygVLqTqXUyUqpLyml7s12e4iIKLv0ipre9WkOWnrDYpaQnQl0vpU7cLjTgWlVWlBLtaJm1K5Pt1fhvlf3xzxn5R2v4ydxZrKSsWQjqDUDmBb0uM53jIiIKK6CoIqaRymYglaztZpNIXt96vQxakMuD0oKLJheXYS9bf0jzusfduNXq3f5l/WIxKgVNcpP2dhCagOA2SIyA1pA+wSAa9JxYRG5FMCljY2N6bgcEREZkB66lFLweJR/ticAWEwSMusz8JrQx/XVxRGvffsLe/Dg2gOYOaEk6v2dBq2oUX7K9PIcjwJYB2COiDSJyHVKKTeAGwGsBrATwONKqe3puJ9S6hml1A3l5eXpuBwRERmQ3tOp7/UZ3PVpNZsidn0CoUmtrrIw4rUP+7pD9SVAIsmHilq8NeTIODI96/OTUY6vArAqk/cmIqL8pE8MUEoLHMFdnxazROz6DFdTWhDxeHv/MADA6YnR9ZkHFTWvUjAhQxugUloZfjIBERFRMH9FDdrOBOYEuj7D1ZTaIx7vGNCCWt+QO+prjVhRUyq5CpknyfMpexjUiIgop5iCuz69gTFrgN71GT9IVRXbIh5v73MCGH1Qu2fNPrT0DMU9L10i7ZCwq6UX6/Z1RDyfOS135FVQE5FLReT+np7UVpsmIiLj09dM8yoFrzdsMoFZEgpq5vDZBQC6BpwYdGldnrGCWiLXv+35XfjS/22Ke166RKqQrbzjdXzygbcinu9lUssZeRXUOJmAiCj/6RFLQVs7zDxieY7UQog+Pg0A+oZcUc9LtOuzN8Y10i3Z3MU9SnNHXgU1IiLKfyJBkwmU8i9mCwBWk9b1GaFgFteAMzCBIGbXZ4KTCcZyZmWywYs5LXcwqBERUU4JLM8ReWcCt0eFjFuLdx2dYzgQzvqHowe1RPf6zFQY+sZjm/HMlqMhx5KdHJDs5INg/cNuvLijNeXXU3IY1IiIKKcEd32G70xgMZvgCluyI5qSgtAVqvSKWmmBJWbXZ6JbSI22e/E/ntiCF7a3jDj+1LtH8dVHN4ccS7Z6N5q2ffXP7+D6P27EsZ7BlK9BicuroMbJBERE+c8koeuoBU8msJoE7ghdn99/citO/fm/Qo7d9+mTAQAVRVYAgMOpVdFqygrSsjzHaAbsDzo9eHxjE274U2ITEvTgFWmSROS2pdw0bDrUBSCwnh1lVl4FNU4mICLKf3qXpVcpuL2h3ZzRuj7XH+hES2/ochmnz5qAT51a7+86HRjWKmqTyu1pCWqjqVod7BgAMHLrq2j0W5kT6PLVzk+9bb2+7w3XYhsbeRXUiIgo//m7Pn0VteAqktkkWndogoElmF5Rqy2zo9vhjHqeHtSs5tj3GE0YOtCuBbUJJZF3UIh2r1hvOzg4pmN5Dk8CCwvT6DGoERFRTvHP+oywM4HeHZdCTvNX1GrL7CEzQMPpY9TidTOOpnsx2aCWSNfnkCvwntIx0SGRrbpo9BjUiIgop4Rsyu5NrXoWicPlhs1iQkWhNeZ5wx4vbBZT3DFao+n63H9cC2qJXsEf1GJ8L4Jnq6Zj6RCuxTY2GNSIiCinhGzKHlZRGw3HsAfFNjOKwmaDhnO6vSgwx//1OZowdLhTC2r9w4ktmqt3Zcaa7RpaUUutbcEzXjlGbWzkVVDjrE8iovzn3+sTvnXU0hTUBpxuFNksMUPYa3uO46G1B2G1xP/1OZogo4+DO9I5iMt/+waOdDpinu+fTJDhrs/OgcDYPTfHqI2JvApqnPVJRJT/ArM+MWLB29FwDHtQXGCGLUYI+84TWwCEBpZo0rWf5pamHrx7pDvmOXo3ZKzMGtz1mWq3ZVtvYJstdn2OjbwKakRElP8CW0hlpqIWK6gtm16V8PXSOdb+SJcDu1p6o99L7/qMEVqDK2qp7kzQ3B2o7KW6pyolh0GNiIhyin8yAQCPij0uKxkOp6+iFqPrs66yMOHrpXMM1y+f342Vd7weNWAFz/o82D4wYucCIKyilmLbdrX0jbgnZRaDGhER5ZTAZAKlraOWpgXyB4bjV9R0t350UdxzMhFkol0z0PUpuPnvW0fsBQqEjVFLsdq3OyiocXmOscGgRkREOSV8eQ6zKT2/ygZd2qzPeEHNbjXhkyvq03LPZEXrblQJTSYIWp4jxYra7pY+VBfbtGtkMae19Q5hMMZad/mEQY2IiHKKKbjr06uQwEoZCRkY9qCoILGK2liI1I5oQc2jEplMMLrlOQadHhzsGMCCqeW+tmQvqa34+b9w9f3rsnb/sWSM/xrThMtzEBHlP73r0+sduTPBaDicbq2ilq7kl6RNh7qw7JaX0DOorZ1WGmE9t2jbNvm7PmN8L4L3KE2lV7a9fxheBUyvKvLfs6nLkdAM2Ex4ryn13/Vr97bjua3H0tiazMmroMblOYiI8l/wZAJvmnYmUErB4fSg0Bq/6zNT7nhpD9r7h/1LcZTYRwa1aFUsvUIWa6mS4GyWSkVNf4n+/XF7Fc687RUs/9lLSV8r2373+n7c+fLebDcjIXkV1IiIKP8FludA2ipqepei1WzKWkUtXEEyXZ9x9vpctfUYegcDuxyksmuC8kU9i2/2hn5Po87+dLq9Uat9To83ZJcFI4u9TwYREZHB6FEkneuo6avsW8wmw4xRm1JRiM+ePgNHuhy4Z80+ANGDWqx11PYf78eXH3kn7Pzk26NX1Cy+77fR11H78iOb8NLONhz8xYdHPOdyK7hzJKgZ479GIiKiBEn4ZII0dH3qXYpWsxgmqAHANafU44xZE/yPo4ULvUc00gTYgeGRsyNTqYLpr7D4bpKOjd0z6aWdbVGf0ypqxm6/zjj/NRIRESXAFNz1meaKmtlkrKAGAGfOnoBfXrkYQPxZn5FCa6TFbVPZmUB/TfAYNd3AsHvE+Z0DTsz63iq8faAz6XulU6T36nR74WRFjYiIKP0Ce30qeJVKy84EeuiwGGiMWrBimzZSKdpG6N4Ysz4jTRxIpRjmDev69ARNbDjeNzzi/E2HuuDxKtz/2r7kb5ZGkcKty+Nl1ycREVEm+MeoIf1dnxaTGDKo6QP4o8369E8miPC9iNRFmdoWUoEwq7UlcI22CEHNKCKFWxe7PrOD66gREeW/TGzK7p9MYJK07R2aToEqVpzJBBHaHuk1o1mew2oe2ZZIFbVss8YIt+z6zBKuo0ZElP+Ct5DyqtjbJiUq0PVpvJAGBN5jtCqQN8bOBGkboxbWFrdHoaLICgD4yp/fwbZmYxVJgtsZzunhrE8iIqKM8G/KDgW315umipre9WnMX4tWX3dj9E3Ztb8jfS8i9ZamklH0MKi3xasUKgqt/ueDN2w3AqtpZBetzuXxwquMuwZcMGP+F0lERBSFKbii5o28dliy/BW1Mez2bO8fxuEOR0LnBqpDUcaoxVhHLVJFLR1dn27frhCLfHt/6re+9Ddv4LRb/5X09dPNHKfrE0BOLHrLBW+JiCinBGZ96jsTjP6awQvehlNK+cfFpdOKn70Er0LEBVnDBYejSPQJA2aTjOjqizSZINk10K7/40Z/qNGrjv79RcO+NVsN0gWqtzPaZAL9b7vVPKbtShaDGhER5RR/16evxCNIR0XNF0IijFFTKhAO0ymZrGT2d+Mlv9dn5MkEid8bAF7c0er/2h8aDT5rMtoOCl6v8h/LhZmf7PokIqKcErwzQbrE6vo0wq9yS4yB8UAgjEWq/KWr61Ond696ooRGowjsSRrazuDZnrnQ9cmgRkREOSV4eY50CSzPEbnrM5OO9w1jyDVym6dglnhdn3pFLcJv9Yhdn6MMahaTpLgW29ixRJkp68qxoMauTyIiyimBTdnTd82YXZ/pu01Ey3/2EpbWV6C4IPqv5Hgbocea9ZnuipqIbyycwWdMWiLMlO1xuPDXTUf8j9n1SURElGZ60SutXZ+eGF2fY/C7/J3D3TGfDwzgT2HWZ8TJBEk2MIiI9n3yGDzkBCpqgTf7zHtHccuzO/2Pc6GixqBGREQ5RZ88MJqqULjAGLWRvxbTeZ9UxVvwVvm7PhPb63M03ZYCyZGK2sgdFMI3j2dQG2PcQoqIKP8F70yQLv4Fbw26M0H8BW9jVdRGnj+acXciWrei0ReL1WfKBofbwbCxgOz6HGPcQoqIKP/pkwkyUVGzRlmeI9viLngbI6hFrKiNqutTYBLjV9SsEfZHHRnUWFEjIiJKq0zUvPTJBOZIsz4NsEBH3AVvE5j1GZzhRjWZANr4r2QXzc2kXS29eHNve8gxf3dx0IC8IWfuBTXO+iQiopxi8i/Pkb5rZnsyQTyxNhgHEpv1aRaB2/f1aLs+jTZGbeUdrwMI3eXB313Mrk8iIqKxE9hCKgOTCXyVqwklNv9zRphMoIeOeBW1iF2ferdoUIgbzfgygcBiFsMveOsPt0HtHHSFttnlNvZ7ABjUiIgox2RmHbXQWZ+rvn4WPrxosnaf9N0mZfHGqHljTiYYub3UaIphJgNW1CKJ1F08GNb1GW1LLiNhUCMiopzi35kgjdf0z/r0BaKaUjuW1Fdo9zFAHom74G2M5Tn03r3g50ZVJdTXUTN4UIvUXRy+A4STXZ9ERETplZGuT09o16d2nwxsKpoiEW3tsmjhKNKEgfDnTElOJugdckVuC3Jj1qclQnfxiDFq7PokIiJKL3/eyGDXJxAINkaY9QloFSJXnJ0JYj0XWlGLfa/X9hzH4p+8gLVhMykBfR01Y836jMQSobuYXZ9EREQZ5p/1mcYAFWnBW/0ro+QRa4xtm2K10T9GLYnJBOsPdAAA3jnUNeI5kwjMJpPxK2qmkRU1dn0SERFlWKDrM33XDFTURnZ9jmYpi3SKNYA/VnUr0kSDeO9Jv5wpwpg3yZExahErauz6JCIiyqyMbCHl9cJsksC4tOD7pO82o2I1m6J21cUKTal0fcaaRSrQQ6MxQ47D6YZSyl8djTVGzajvIRiDGhER5RTJRNenV41Y7DYTy4CMhtkk0Re8jdHISKErXjUs1k4HRq6otfcPY/6PVuPuNfsizpQNH6PGBW+JiIjSLBNjx9yeCEEtA4FwNLSKWvJdn5Eqagl3fUaaRgox7Dpqrb1DAIB/vnfMP+tTD5Rer8JwWFenk12fRERE6SUZ6Pv0eJX/F3vgPmm/zahoFbUoC97GaKP+XDJdn3q4kQhBTV/wNldmfer7eQ65Q6tpRu6+DcagRkREOcWUgbFjLo83Qtdn+vcUHQ1LjCpWIl2fwZkr1vlAoOJmjlBQE5GYbUnFkp++gO8/uTVt1wMCIVMPneHdnjazKWrX57DbY5ggmldBTUQuFZH7e3p6st0UIiLKED1ApfMXqdujQpbmAIInExjjF7a2v2YKXZ8Rt5AaxaxPIOLiu8d6hnDPmn0xrxtNl8OFR9YfTum18ehhLHwigcUsEbs+vV6FOT94Hv/5zPaMtCdZeRXUlFLPKKVuKC8vz3ZTiIgoQzIxG1ObTBD6K9GUhq7PdIZJsyl6BSjpWZ9x2qW/JlLXpzaZYOR4uV+t3o3bnt8V87rZoG8er6+hdvtVJ2LLjy+ALcosWv19ZSo4JiuvghoREeW/TC3PMaKiplfuRnGjdG5zZTWLP3SES3bWZ7z8GOj6jFRRi72dldH4K2pO7XtXZreivNAKq9kElzvwHpRSUEr5P7NI1cRsYFAjIqKcko4AFS7S8hxIQyCMNxYsGbFmWsa6TeR11OJU1CLsD6oTyZ2B+EDQGDVfRa3QZgagdX26giZnfP2xdzHj5lURFz/OJgY1IiLKKRFXjBglt8c7ouszHbdJZ5axmkzR11GLOUZN+ztkU/a466jpr4nc9anN+ozdXqPQA6V/mzDfN8JmNsEZFNSe3nIUQOQxfdnEoEZERDnFv9dnGnvetOU5oqyjZqiKWupdnyHH4u1M4LvewY4B/OPd5pDnBPqsz9xIatHG9YlEHueof7/Mkaa8ZoEl2w0gIiJKRmCvz/SFIFeEBW8Dy4Ckfp+dx3qxvKFqNE3zs5gFQ+7IbUlkwduQ8+PN+vRd7+4Iszj1ilqujFFLtp1uVtSIiIhS59/aKY3X1CYTRF7wdjR55OP3rsP+4/2jaFlArG2bYoWRyBW1xLo+IzFlYB21THJFWSQ4Gk4mICIiGoV0dEmGc3tUyGB7IHjB29HdqG/IParX62ItzxErM0WsqMXJLrGCnIgWYjxjuE/mzmO9WHnHa+gbciX92mQrah5OJiAiIkpdJro+3V4Fa9QFb0enuMA8yitoYi3PEet7ESmoxBs7FzOoIRBix8p/v7Abu1r6sG5fR9KvTXbjdU+E5UyyiUGNiIhySiZ+fUZa8FY32jxoM6cnqGl7fabQ9Rn2BkQSGaMW/blU80tH/zCO9w2n9Fq9ippKb2u0cBv9/JHLmWQTJxMQEVFOCcz6TOcWUiP3+gxUVEZ3n3QVZkwiUVuSTEXNJBI3fMYOcqm9oZNveQkAcPAXH076tYGPJvnPItmxdHq1kV2fREREKUjHIP9wkZfnSP99dOkMmUC8ilroY5PEH7cVK6hlI7+YRlFRi1aFjMbf9cmgRkRElLzAIP/0XdMVccHb9N9Hl+6lLWIFq/BZnyaRUc36jLT/Z6YFgloqFbUUuz4NMkaNXZ9ERJRTAoP80xd2YlXU0nkfXbqrdLGySPjEgUS6PmMFyWzEl9FUN91ehbN++TLmTipL6HyOUSMiIhqFTHRJetXIWX7+EWoZqKilc8YqEHsW58gxaqPr+sxGoUlGMS7R7VE40jmII52DCZ1vtKDGrk8iIspNmUhQQTKxXpsu7UEtiVmfJlP8rs9YT2dj2Qr/LhEpVtSSoYdejlEjIiJKkSnKPo3plIn12nRjOUYt0qzPeO/JaNtDjWaMWrwN6KOdz1mfREREKZIEwsao75HBa6c7B8X6VoSPXzObJOFN2SPJTten9vdY5Efu9UlERDRKgvjdYKMtiGS063MMK1YjJxPEr0zFejrXZn0my+tfniPjt0qIQZpBRESUuFiLvwafMxqB5W4z0PU5BoHDf6+wUCgiWLP7OH73+v7or4mzhVSmRJssIHGeT6fAgrfGiEjGaAUREVEyEqgKjTao6b+n42WDVMLDWFSGot1L79K75dmdCb8mWCYnE0Qb+G/KYHUzWhs4mYCIiChFAsSdTTDaPKEveDuabsJoklyDdVQiLc8RT+wFb0fZoBii7SKgh+ax6DH2+seoZf5eiTB8UBOReSJyr4g8ISL/nu32EBFR9iXS9TnqdbD8C97Glkp2GMuKWnhQSyTsxBpDl8n84oqSYGUMx6gF1lEzRkTKaCtE5EERaRORbWHHV4rIbhHZKyI3xbqGUmqnUupLAK4CcEYm20tERLlBJP6A/LSNURvVBuaRjeXyF+Ht6xtyJf2aENmoqPnXURvLoJbxWyUk0814GMDK4AMiYgZwF4CLAMwH8EkRmS8ii0Tkn2F/anyvuQzAswBWZbi9RERkINF+MceqqOmvSTSnRbtOIOgpbG3qQcNNz2LHsd4I90vsPqN9TarCM+GA05P0a4JJBpOa2xO5ojaaTdmTpU8mMMrOBJLpdCoiDQD+qZRa6Ht8GoCfKKUu9D2+GQCUUrcmcK1nlVIfjvLcDQBu8D2cA2B3Cs0tB9CTgfPjnRft+WSORzo2AUB7Au1Lt2S/j+m4RqY/i2jP8bNI/TXp/iyiHQ8/lsufRSrX4c+pkfL1s4j2nJE/i2htGYtrGOnn1GylVHnEqyilMvoHQAOAbUGPrwTwu6DHnwbw2xivPwfAnQDuA/CVDLf1/kycH++8aM8nczzKsY2Z/nzT8X3Mhc8iye/7uP4sEn1Nuj+LRD+PXP4sUrkOf06Nn88iye+7IT6LdH0e+fZzKviP4TdlV0qtAbBmjG73TIbOj3detOeTOZ5s2zMpHW0x2mcR7Tl+Fqm/Jt2fRbTjRvk80tUOo/3b4GeR/vP5c2psrpETP6dyquuTkiMiG5VSy7LdDuJnYST8LIyFn4dx8LMwpmzMadgAYLaIzBARG4BPAHg6C+0YD+7PdgPIj5+FcfCzMBZ+HsbBz8KAMlpRE5FHoY0xmwCgFcCPlVK/F5GLAdwBwAzgQaXUzzLWCCIiIqIclfGuTyIiIiJKjUGWcyMiIiKicAxqRERERAbFoEZERERkUAxq45SIXCEiD4jIX0Tkgmy3ZzwTkZki8nsReSLbbRmPRKRYRP7g+/dwbbbbM57x34Kx8PeEMTCo5aA0bXb/lFLqegBfAnB1Jtubz9L0WexXSl2X2ZaOL0l+Lh8F8ITv38NlY97YPJfMZ8F/C5mX5OfB3xMGwKCWmx5GGja79/mB73WUmoeRvs+C0udhJPi5AKgDcMR3WvzdqilZDyPxz4Iy72Ek/3nw90QWGX4LKRpJKfWab8eHYCsA7FVK7QcAEXkMwOW+HR8uCb+GiAiAXwB4Tin1ToabnLfS8VlQ+iXzuQBoghbW3gX/5zXtkvwsdoxx88adZD4PEdkJ/p7IOv5Qyh9TEagKANovn6kxzv8qgPMAXCkiX8pkw8ahpD4LEakWkXsBLNG3VKOMiPa5/B3Ax0TkHhhr/8N8FvGz4L+FrIn2b4O/JwyAFbVxSil1J4A7s90OApRSHdDGgFAWKKUGAHwu2+0g/lswGv6eMAZW1PJHM4BpQY/rfMdo7PGzMCZ+LsbBz8JY+HkYGINa/uBm98bBz8KY+LkYBz8LY+HnYWAMajnIt9n9OgBzRKRJRK5TSrkB3AhgNYCdAB5XSm3PZjvHA34WxsTPxTj4WRgLP4/cw03ZiYiIiAyKFTUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIobiFFRHlBRDwAtgYdukIpdTBLzSEiSguuo0ZEeUFE+pVSJVGeE2g/77xj3CwiolFh1ycR5SURaRCR3SLyRwDbAEwTke+IyAYReU9E/jPo3O+LyB4ReUNEHhWRb/uOrxGRZb6vJ4jIQd/XZhH5VdC1vug7fo7vNU+IyC4RecQXEiEiy0XkTRHZIiJvi0ipiLwmIicFteMNETlxrL5HRGR87PokonxRKCLv+r4+AOCbAGYD+IxS6i0RucD3eAUAAfC0iHwAwAC0vQ1PgvYz8R0Am+Lc6zoAPUqp5SJSAGCtiLzge24JgAUAjgJYC+AMEXkbwF8AXK2U2iAiZQAGAfwewGcBfENETgBgV0ptGd23gYjyCYMaEeWLQaXUSfoDEWkAcEgp9Zbv0AW+P5t9j0ugBbdSAE8qpRy+1yWyGfUFABaLyJW+x+W+azkBvK2UavJd610ADQB6ABxTSm0AAKVUr+/5vwL4oYh8B8DnATyc5HsmojzHoEZE+Wwg6GsBcKtS6r7gE0TkGzFe70ZgiIg97FpfVUqtDrvWOQCGgw55EOPnrFLKISIvArgcwFUATo7RFiIahzhGjYjGi9UAPi8iJQAgIlNFpAbAawCuEJFCESkFcGnQaw4iEJ6uDLvWv4uI1XetE0SkOMa9dwOYLCLLfeeXioge4H4H4E4AG5RSXaN6h0SUd1hRI6JxQSn1gojMA7DON76/H8CnlFLviMhfAGwB0AZgQ9DLfg3gcRG5AcCzQcd/B61L8x3fZIHjAK6IcW+niFwN4DciUghtfNp5APqVUptEpBfAQ+l5p0SUT7g8BxFREBH5CbQA9esxut8UAGsAzOXyIUQUjl2fRERZIiL/BmA9gO8zpBFRJKyoERERERkUK2pEREREBsWgRkRERGRQDGpEREREBsWgRkRERGRQDGpEREREBvX/AdehXHQ656kXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(cs_reb.freq, cs_reb.power.real)\n", + "plt.ylim([1e-3, None])\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Cospectrum Power\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For deeper analysis (e.g. time lags and other products), please refer to the relevant notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Deadtime/Dead time model in Stingray.ipynb.txt b/_sources/notebooks/Deadtime/Dead time model in Stingray.ipynb.txt new file mode 100644 index 000000000..9e4bd17ca --- /dev/null +++ b/_sources/notebooks/Deadtime/Dead time model in Stingray.ipynb.txt @@ -0,0 +1,1026 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Stingray's dead time models\n", + "\n", + "Here we verify that the algorithm used for dead time filtering is behaving as expected.\n", + "\n", + "We also compare the results with the algorithm for paralyzable dead time, for reference." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from matplotlib.gridspec import GridSpec\n", + "import matplotlib as mpl\n", + "from stingray import EventList, AveragedPowerspectrum\n", + "import tqdm\n", + "import stingray.deadtime.model as dz\n", + "from stingray.deadtime.model import A, check_A, check_B\n", + "\n", + "sns.set_context('talk')\n", + "sns.set_style(\"whitegrid\")\n", + "sns.set_palette(\"colorblind\")\n", + "\n", + "mpl.rcParams['figure.dpi'] = 150\n", + "mpl.rcParams['figure.figsize'] = (10, 8)\n", + "mpl.rcParams['font.size'] = 18.0\n", + "mpl.rcParams['xtick.labelsize'] = 18.0\n", + "mpl.rcParams['ytick.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import numpy as np\n", + "np.random.seed(1209432)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Non-paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_events(rate, length, deadtime=2.5e-3, **filter_kwargs):\n", + " events = np.random.uniform(0, length, int(rate * length))\n", + " events = np.sort(events)\n", + " events_dt = filter_for_deadtime(events, deadtime, **filter_kwargs)\n", + " return events, events_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAARLCAYAAAADAKrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xTZf/G8Sud0JZV9h4KZYn4gLJBcPNDQBAVHIg4cAsOQEUUVEQRRVzog6I+CAqKAiIoICiITNlCkT3LKLvQjHN+f5Qcks50pEnbz/v1wp6TnNznTnJa4eo339tmmqYpAAAAAAAAAIDfhQR6AgAAAAAAAABQVBDIAgAAAAAAAEA+IZAFAAAAAAAAgHxCIAsAAAAAAAAA+YRAFgAAAAAAAADyCYEsAAAAAAAAAOQTAlkAAAAAAAAAyCcEsgAAAAAAAACQTwhkAQAAAAAAACCfEMgCAAAAAAAAQD4hkAUAAAAAAACAfEIgCwAAAAAAAAD5hEAWAAAAAAAAAPIJgSwAAAAAAAAA5JOwQE8AAADkrX379umaa66x9hs0aKBp06YpPDw8W+N8//33Gjp0qLW/adMmhYUVnb863H333VqxYoVPx4aFhSkyMlJlypRRzZo11bx5c1133XWqW7eun2cZfFJffwsWLFC1atUCOKPA8fweqlq1qhYuXJjrMYcMGaIZM2ZIkm655Ra98cYbuR4zkArb88mOuLg4a/vLL79UixYtcj3mtm3btGrVKvXu3Tvd+z1/rj322GN6/PHHc31OAACQfVTIAgBQyP3zzz+aMGFCoKdRqDmdTp09e1b79u3T0qVLNW7cON188816+umndebMmUBPD0Ahd+7cOb311lu65ZZbtG7dukBPBwAAZKHolLkAAFCEffzxx7r22mtVv379QE+lQCpVqpQuu+yyDO93uVw6f/68Dh48qEOHDkmSTNPU7NmztX37dv3vf/9TTExMfk0XQBHz+uuv69tvvw30NAAAgI8IZAEAKAIcDoeGDBmSo9YFSPlo8cSJE306dvXq1Ro5cqT++ecfSSkVym+//baGDx/uzykCKMIcDkegpwAAALKBlgUAABQRtC7IH82aNdPnn3+umjVrWrdNnTpVCQkJAZwVAEhfffWVtm7dqq1bt9I/FgCAACKQBQCgkPNciOvjjz/Wli1bAjiboqFMmTJ65JFHrH3DMPTzzz8HcEYAAAAAggWBLAAAhdx9990nm80mKeVjrUOHDpXT6QzwrAq/66+/3mt/69atAZoJAAAAgGBCD1kAAAq5Vq1a6dSpU5o6daokafPmzfr444/12GOP5fm5/v33X3333XdasWKF9u/frzNnzqhEiRKqXLmyWrVqpa5duyouLi7TMcaPH6/3339fkjRs2DDdddddstvt+vHHHzV37lxt375dR48eVYkSJVS7dm116tRJt99+u0qUKJHnzyc3oqKiFBsbq8TEREnS4cOHMz1+/fr1WrBggVatWqUDBw7oxIkTcjqdKlmypCpWrKj//Oc/uummm9SsWbMMx/j+++81dOhQSSlB/ODBg7Vo0SKrMjoiIkJVq1ZVy5YtNXDgQEVERHg9/sCBA/r555+1YsUKbd++XSdPntS5c+cUHR2tMmXK6PLLL1eHDh10ww03KDQ0NNuvycSJE/Xmm29KkkJDQ7V48WKVL18+y8fNnz9fjz76qCQpJiZGS5YsUfHixbO8ljJTtWpVLVy4MMP7ly1bpt9//12rV6/WoUOHdPLkSUlSyZIlVaVKFTVv3lw333xzthfKs9vtmjZtmn766Sdt375d586dU/ny5dW0aVPddNNNuuaaa6xfoOSFxMREff/99/rjjz+0c+dOHT9+XFFRUapQoYJatGihrl27qkmTJnl2Pk/r16/XtGnTtGLFCh08eFDh4eGqVq2arrvuOvXp00exsbHZHvPs2bP64YcftHjxYm3btk3Hjh1TRESEypcvr+bNm+umm25S69atszVmXr/XDodDs2fP1pw5c7R582adPHlSpUuXVlxcnHr27Kmbbropz97j9L4HZsyYoRkzZlj7nr8Muvvuu7VixQpJ0mOPPZambYHnz9+XX35ZvXv3VlJSkmbNmqVZs2Zp165dOnXqlMqVK6f69evr9ttvV4cOHbzG2Llzp6ZOnaolS5bowIEDkqRq1aqpffv2uvfee336npcCe+0CAOBvBLIAABQBzz33nP744w/t379fUkrrgmuvvTbbYVJGTp06pVdeeUU//fSTTNP0ui8xMVGJiYnatGmTJk6cqK5du+qll15STEyMT2Nv2bJFTz/9tP799990x129erUmTpyoMWPGqE2bNnnyfPKKZyVyVFRUusfs3btXw4YN07Jly9K9/+jRozp69Kg2bdqkr776Sh07dtSYMWN8ev1++OEHDRkyxHpPzp07p5MnT8rpdGrw4MHWcefOndOoUaP0/fffp7s40IkTJ3TixAnt3LlTP/zwg+rUqaP3339fl1xySZZz8NS1a1eNHTtWTqdTLpdLP/30k+69994sHzdz5kxru3PnzipevHi2zpsdGzdu1PDhw7Vx48Z07z9//rwOHz6stWvXauLEierZs6eGDx+eJtxOz549e/TII49o27ZtXrfv27dP+/bt0+zZs3XFFVdo9OjRXj2Ic2rSpEl67733dPbsWa/b7Xa7Tpw4ofj4eH311Ve68cYbNXLkSJUsWTLX55SkpKQkjRgxwisUlKTk5GRt2bJFW7Zs0eTJkzV69OhsjTtz5ky98cYbOnbsWJpxT58+rR07dujbb79Vy5YtNXr0aFWqVCnT8fzxXm/atEmDBg3Srl27vG4/cuSIjhw5oiVLlmjq1Kl69913fXrOgbZ+/Xo988wz2r17t9ft+/fv1/79+7VgwQLddtttevnllxUaGqovvvhCb731VpqfI/Hx8YqPj9f333+vCRMmZBmkBuraBQAgvxDIAgBQBERHR+u1116zwi9364Jp06Z59ZjNiaNHj6pPnz5e/2C32WyqW7euypQpo8TERP37778yTVOmaerHH3/U5s2b9dlnn6lChQqZjr1r1y69//77On78uCSpbNmyqlOnjs6fP6/t27crKSlJUko4+/DDD2vGjBnZDgn95eDBgzp16pS1X61atTTHbN++XXfffbdXwFSiRAnVqVNH0dHRSkpK0o4dO7zG+e233zRo0CB98sknmZ5/+/btmjx5cpqAXEoJRt3OnTunvn37at26ddZtERERqlOnjsqUKSOHw6G9e/d6LUq2Y8cO9e3bVz///HO2KpPLly+vtm3batGiRZJSArasAtlTp07pt99+s/Z79Ohhbbdt29bnc+/bt88rJGvatGmaY1auXKkHH3zQuq6klH7AtWrVUvHixXXq1Cnt2LHDut80TU2fPl0REREaPnx4puc/c+aM+vbta1UMxsTEqF69ejIMQ1u2bNH58+clSX///bfuuusu/e9//8txKGuapl544QV99913XrfXrFlTlSpVUlJSkuLj45WcnCxJmjt3rrZt26YvvvjC5+rFjCQnJ+uBBx7QqlWrrNtCQkIUFxenEiVKaM+ePTp06JASExP16KOP+vwc33//fY0fP97rtipVqqhatWpKTk7W9u3bdebMGUnSX3/9pV69emnSpEkZ/jzwx3u9bt063XvvvV5jlixZUpdeeqlcLpfi4+N17tw5LV++XPfff79Pzzsr7u+B+Ph4qwq/QoUKqlevXq7H3rp1q8aMGWO9rpUrV1b16tV18uRJxcfHWz9bvv32W9WtW1cOh8OqgI+MjFT9+vUVGhqq+Ph4a4zExEQ9/vjj+vnnn9P9JVUgr10AAPITgSwAAEVEq1atdPvtt+ubb76RlDetCxwOhx588EGvMPbWW2/VE088oYoVK1q3HTp0SO+8845++OEHSdK2bdv01FNP6YsvvlB4eHiG43/11VeSpBo1aujFF19U+/btrY/6njlzRuPHj9ekSZMkpQRB48ePD5rKs2+//dZrP3X1rjt4cIexJUuW1IgRI3Tdddd5heSGYWjRokUaOXKkFeYtXrxYGzZs0GWXXZbh+RcvXixJatSokYYOHarGjRvr8OHD+vHHH70C2Q8//NAKY202mx577DH169dP0dHRXuNt2bJFr776qlauXCkppeLv22+/Vf/+/bP1uvTo0cMKZDdt2qQdO3aoTp06GR4/Z84c2e12SVLt2rV1xRVXWPdNnDjRp3MePHhQvXr1svbj4uL06quveh2TnJysoUOHWmFa5cqV9dprr6l169ZeHy93OBz66aefNGrUKJ04cUKSNHXqVD322GMqW7ZshnM4efKkTp48qYiICD399NPq06ePVWl55swZffzxx/r0008lpbS3ePbZZzV16lSFhGR/yYdPP/3UK9C65ppr9Mwzz3i9zufOnbMqNd2/4Bg0aJAmTZqUo3YUbm+//bZXGHvDDTfohRde8Pp5sGTJEr300kvav39/mmrh9Pz0009eYWyzZs00dOhQr+vfbrdr9uzZGj16tE6cOKHDhw/rscce0/Tp09Ncy/54r8+cOaMnn3zSGrNYsWIaPHiwbr31Vut9TkpK0meffaYPP/xQmzZtyvJ5+8L9PTBkyBCrIrlNmzZ64403cj32lClTJEm1atXSiBEj1KJFC+u+LVu26P7779eRI0ckSe+8847OnTsnm82mAQMG6MEHH7QC16SkJI0ePdpqm3Po0CHNmjVLt99+e5pzBvLaBQAgP7GoFwAARchzzz2nqlWrWvvu3qI59e2333oFC08//bRee+01r/BFkipVqqTRo0d79StcvXq1FQ5nplq1avr222/VoUMHr7AkJiZGQ4cO1f/93/9Zty1evNgK7wJp8eLFVrgmSZdeemmavpYrVqzQ33//be2PGTNGN910U5qK5ZCQEHXq1EkfffSR1+1LlizJch6VK1fWpEmTdOWVV6p48eKqWbOmV1h+7tw5K/SWpP79++uxxx5LE2BJUv369fXf//43TbCWXR07dlTp0qWtfc92BOn58ccfrW3P6lhfJSUlacCAAVZwVKZMGX344YdpqvN++ukn7d27V1JKf9sJEyaoTZs2aXp9hoeHq3v37ho1apR1m2EYWrp0aZZzCQkJ0QcffKB7773X62PvMTExeuaZZ6z+v1JKteXs2bOz/Xz37t2rcePGWft33XWXPvzwwzShd/HixdWvXz/997//tX4psmLFCn3//ffZPqfnuSdPnmztd+3aVePGjUvz86Bt27aaMmVKli0FpJSg8+WXX7b2r7nmGn355ZdpfhkRERGhHj166Ouvv1apUqUkpVRye34fuvnjvf7iiy908OBBSSm/2Pjggw+8QncppW3JY489ptdffz3L5x0sKleurKlTp3qFsVLKz4PnnnvO2k9KSpJpmho8eLCeeuopr++vqKgovfzyy14tcv7888805wrktQsAQH4jkAUAoAiJiYnxqgx0ty7w7HWaHZ5hR4sWLfTggw9mevyjjz6q5s2bW/sTJ06UYRiZPuaJJ55QmTJlMry/d+/e1nZSUpIVtOSnc+fOaf/+/Zo/f74GDRqkhx56yOqhGBoaqhdffDFNpaNnz9hGjRqlWRgntfr166tWrVrW/qFDh7Kc11133ZVpb8XVq1dbAXZ4eLgeeOCBTMcrVqyY1zx9mUNqERER6tKli7WfWei4d+9erVmzRlLK69itW7dsncswDD399NPWLx3Cw8M1fvz4dNtH/PXXX9b2tddem+WCYR06dFCxYsWsfV/fj/bt22d4/7333utVAeyuUMyOL774wvp+rl69uoYMGZLp8VdeeaXuuecea//zzz/P9jndZs+ebZ27VKlSeumllzJcvKpixYoaNmxYlmNOnz7datlRokQJvf7665m2Wbnkkkv05JNPWvtTpkyx2kG4+eO99vzFwi233JJpO43u3bvr2muvzfScwSKzn7+pF6CrWrWq+vbtm+6xNptNV199tbW/Z8+eNMcE8toFACC/EcgCAFDEtG7d2uujou7WBdkVHx9vVYRJUr9+/bJ8jM1m8/qI+4EDBzKt0A0JCdE111yT6ZiXXnqp1/7p06eznEd2rVixQnFxcRn+adq0qTp16qRHH33Ua2GzsLAwDR8+XK1atUoz5lNPPaW1a9dq1qxZeuutt3yaR7ly5axtdw/FzFx11VWZ3t+2bVutX79ev/zyiyZPnuxVuZpXc0jPLbfcYm17hq6peVbHtm3bNk2lZVbeeustLVy40Np/8cUXdeWVV6Z77JtvvqnVq1drxowZevbZZ7McOzQ01Cuoyuq1sNlsGYZVnu644w5r+++//7Y+Ku+rX3/91dru0qVLpi1B3Lp3725tb9++Pce/1HC3yZCkG2+8Mcv+wp06dVLlypUzPWbevHnWdurq6ozcfPPN1kfXT5w4obVr13rdn9fv9c6dO736E992221ZjnnnnXdmeUyg2Ww2XX/99RneHx0drdjYWGu/ffv2mbbY8Pz+Te/ndCCvXQAA8huBLAAARdBzzz2nKlWqWPs5aV3g2ScyNDRULVu29OlxrVq18urzt3r16gyPrVatmmJiYjIdL3UFaOrVvQPBZrOpbdu2mjx5crp9Et2KFy+uevXqZbkQ2c6dOzVt2jSvsMHlcmU5B8+PCGckLCxMNWvW1OWXX57pcUeOHNEvv/ziVV2Y1Rwy0rhxY69Fh2bNmpXucamrDrNj2rRp+uyzz6z9Pn36eIWd6YmJiVHDhg1VvXr1DI8xDEPx8fH63//+57XYWlavRc2aNdOtzE2tWbNm1rZpmmnCxMzs37/fq3rT1wXu6tat61UBmlFAnhm73e61MNx//vOfLB8TEhKS6S8N7Ha7Nm7caO37+nxKliypGjVqWPvpPZ+8fK89fxZGRERk2tvZrXnz5rleUNHfqlSpkuXPX8/rpnbt2pkeGxkZaW2n/mREIK9dAAACIbj/FgAAAPzC3brgvvvuk3SxdcG0adN8DgncK3pLKR9VLV68uE+PK168uKpVq2YtBOY5Tmq+VMOlXsQlqxYIOVGqVKkMQxabzabixYsrJiZG5cqVU4MGDXTFFVdkWfmXmt1u15YtW7Rz507t3btXe/fu1e7du7Vt2zZrhXJP7ircjMTExHj1r/SFYRjauXOntm3bZs1hz549+vfff60erNmZQ2Z69OhhLTz0888/6/nnn/eqiPv777+ta6R06dJZVkp7WrFihV555RVrv0WLFnrhhReyNb+kpCT9888/2rVrl/Va7Ny5Uzt27NC5c+fSHJ/Va5HZwmWeqlevrvDwcOsXC55V6FlJ/THwZ555Rs8884zPj3dLSEjI9mOOHj3q9b3n2V4jM6kr3D0dOnTIqyf0O++8o3feeSfbc8vq+eT2vfYcv2rVqj79DI2IiFD16tW1c+dOH59F/stskbr0ZBXeZtS+QgrstQsAQCAQyAIAUES1adNGt912m7799ltJKa0LJkyYoEcffdSnx3t+lDqzPqXp8Tw+s49ke1Y+5VSnTp20f//+LI/78ssv0yxc4xYXF2etZp7X4uPjNWHCBC1YsCDd8MdTWFiYz/1+swpHPCUmJurTTz/VzJkzdfTo0TybQ2a6du2qMWPGyOl06vjx41qyZIk6duxo3e/ZrqBLly4+h8u7d+/W448/bgWa1atX17hx43z+RcOaNWv0ySefaMmSJZlWW9tsNtlsNp9/AZCd75GYmBgdP35cknTy5EmfH5edY/N6nGPHjnnt+3r9Zfa6+Pv55NV7nZiYaG1n5/vOvfhYsPKsaPVFZoFrVgJ57QIAEAgEsgAAFGGDBw/WkiVLdODAAUnSRx995NMiN1LuqiM9P/KbWc/Bwm7y5Ml67bXX0v24e3h4uGrUqKEGDRroP//5j9q2basXX3xRK1as8GlsX1/X1atX65FHHkk3GLfZbKpSpYrq1aunpk2bqlWrVlq8eLE++OADn8bOTNmyZdW+fXurx+usWbOsQNZut+vnn3+2ju3Ro4dPY546dUoPPfSQ9VyioqL04YcfZroonKcxY8Z4LVTnKTIyUrVr11bDhg31n//8R+3bt1fv3r19Cvuzy/N7Kzu/lEgdlF955ZXZDtUkZfox/ozktFVIZkF76udz2WWX5SjETK8KNy/fa38892CQm4A1uwJ57QIAEAgEsgAAFGEZtS5wV81mxjMY8eyv6AvPKqbo6OhsPbaw+O233zRixAhrPzo6Wt26ddNVV12luLg41ahRI01VZ15Upno6ePCgHn74Yev9CAkJ0XXXXad27dqpYcOGqlOnTppWFJ6LZOVWjx49rPHcFcLFixfXH3/8YYWqcXFxatSoUZZjOZ1OPfHEE9ZHwG02m9566y2vXrWZ+d///ucV0JUtW1bdunVTs2bNFBcXp6pVq6YJubPzfpw9e9an40zT9GpRkZ3K2tTHDhs2zKdfruSF1Of29WdCeu04MhrzkUceUadOnbI/uVTy+r32XLwsO4sKZvbci5pAXrsAAAQCgSwAAEVc6tYFmzZt0oQJE7LsgVqpUiVre//+/VaYlpUzZ85YFblSSs9Ff8rLADEvvf3229Z21apV9fXXX3u9punJ64/jfvLJJ9aY4eHh+vTTT9WqVat8m8PVV1+tMmXK6Pjx4zp//ryWLl2qa6+9VvPnz7eO8bU6dsSIEVq2bJm1/8QTT+jaa6/16bF2u13jx4+39hs1aqQvvvjCK2hLT3Z+EbFv3z6fjtu5c6dX+Oe5OFVWPFexl1IC9/wKtapVq6aQkBDrY/3bt2/3aWGv1L1DPVWsWFE2m82qGM5OP92M+OO9rlmzprW9b98+JScnZ1ndaZqm1yJ9RV0gr10AAAKh6H5GEAAAWAYPHuwVwH700UeKj4/P9DGeYYvL5fIKwzKzbNkyr49k+1L9WNjs27dP27Zts/YffPDBLMPYpKQkr/AqNy0j3BYvXmxtX3/99VmGsZK0ZcsWazu3C6iFh4erS5cu1v78+fNlGIY1r/DwcHXt2jXLcSZNmqRvvvnG2r/pppv0yCOP+DyPv//+26tlw8CBA7MM6Hbu3OnV8zer9yOjxdlS8/w+Cg8Pz3AxufTUrVvXa95//fWXT49LTEzUkCFD9N5772n69Ok5asNQrFgxNWjQwNr39efB6tWrM7wvJiZGdevWtfZ9fT4Oh0PPP/+83nnnHX3zzTf6999/rfv88V5fccUV1rbT6fSprcjWrVuzVU1b2AXy2gUAIBAIZAEAgNW6wM3hcOjLL7/M9DH16tXzqm6dNGlSlucxTdPruNjYWDVu3Djb8y3ojhw54rVfvnz5LB/z9ddfe/WqzIv2BYcPH87WHNatW6e1a9da++n1vs2unj17Wtu//fab1qxZYy0QdfXVVys2NjbTxy9evFhvvvmmtd+wYUONGjUqW3PIyfuR+vsjq/fD6XRqxowZmR7jcDg0efJka79du3bZ6qMZEhKi9u3bW/szZszwqYr3q6++0owZM/TBBx/ohRdesBYUy64bb7zR2v7111+9KuHTs379em3evDnTY66++mpre+HChT5Vlf7444/67rvv9PHHH+ull17S9u3brfv88V7Xq1dPderUyfD49EydOjXLY7IjP/u9+kOgr10AAPIbgSwAAJAktW3bVr169bL2swrbQkJCdM8991j7y5cv1yeffJLpYz766COtWrXK2r/zzjvT9EktCkqXLu21v2TJkkyPX758ucaNG+d1W04XEspoHsuWLcv0PT948KCeffZZr+rAvJhDgwYNVL9+fUnSiRMnNGbMGOu+W265JdPHxsfHa+DAgda8K1asqI8++sin1hmesvt+zJo1S1OmTPG6zZfX4p133vEKB1N7++23ve7v169flmOm5u4HLaW8ns8995zsdnuGx2/YsEETJ0609ps0aZLjX5L06tXLWkDNbrfrueeeU3JycrrHnjlzRi+88EKWY951110KDw+XlBKEPvXUU5lWGu/bt8/rGqpcubK1WJzkv/f6oYcesrZ///13r2A9tT///NOrojsveAb3Gb3mwS6Q1y4AAPmNQBYAAFiGDBmSZe9YT3369PH6B/Dbb7+tF154QQkJCV7HJSQk6Pnnn/cKFS+55BLdf//9uZ90AVS7dm2v6uIpU6Zo4sSJacKHffv26a233lK/fv3S3JeUlJTrebRr187a3rp1qwYPHmxVp7qdPn1aX3/9tbp3767du3fn+Rwk7+D177//liSVK1dOHTp0yPAxx44d04ABA6zFsqKiojRhwoQsWz+k5z//+Y+ioqKs/XHjxmnGjBlpAupt27bpxRdf1DPPPJPmY+u+vBZnz57VnXfeqXnz5nm1ezh69KgGDx6szz//3LqtR48euuqqq7L9XBo3bqw+ffpY+7/99pvuvvturVu3zus4u92uyZMnq1+/flaAFxoaqqFDh2b7nG5lypTR888/b+2vXLlS99xzj7Zu3ep13Pr169WnT58s26JIKSH7U089Ze1v3LhRt912m5YsWeL1HrhcLs2cOVN9+vTxqpJ87rnnFBERYe37673u3r272rRpY+2PHDlSY8aM8QqP3a/5ww8/nOt2H6l5Bs1r167N837T+SGQ1y4AAPmt6JWkAACADMXExGjkyJE+B6UREREaP3687r33Xiusmz59ur777jvVrVtXsbGxSkxM1LZt27xCjerVq2vChAkqVqyYX55HQTBo0CA9/fTTklJaObz55pv66KOPVKNGDRUvXlwJCQnat2+f1+tWpUoV62PgqT96nRMDBgzQ3LlzrYBp1qxZmjdvnmrUqKHY2FgdO3ZMe/fu9QqDPefgcrmUmJiYZVuBrHTt2lVjxozxqjzs2rVrptXTr7zyile/yNq1a+uLL75QUlKS7Ha7nE5nln1du3btqm7duikqKkoPP/ywtdCa3W7XkCFD9MYbb6hGjRoKDQ3VoUOH0iwqVblyZeu2rN6P5s2ba+fOnTp27JieeOIJlS9fXjVr1tS5c+e0detWr4/BN2/eXMOGDct0vMwMHTpUe/fu1R9//CEpJaC77bbbVKlSJdWoUUNnzpzRrl27vIJFm82mF1980aeFuDLTtWtXbdy4UV988YV17q5du6pOnToqX768Dh06ZP2sCA0NVceOHb0WcUvP/fffr507d2r69OmSUhYM69+/v8qWLavatWvLbrdr9+7daULIBx98UJ07d/a6zZ/v9ahRo9S/f3/r592nn36qL7/8UvXr11dYWJi2bdtmfQz/kksukc1m8+pvmxv16tWztg8cOKDOnTurbt26On36tD777DOVKlUqT87jb4G8dgEAyE8EsgAAwEu7du106623WuFHVqpUqaJvv/1WL730kubNmycpJWBMr/rNZrPp//7v//TCCy/kOsQr6Lp06aLDhw/r7bfftsK406dPa9OmTWmOLVWqlJ577jmVL19eDz74oCRpx44duQ5Da9asqQ8//FBPPfWUtdCR3W5PNyQKCwvT3XffrYceekitW7e2KvxWrVql66+/PsdzkFJ6CXfo0MErmOvRo0emj0ndK3LTpk3pvnaZadq0qbX9wAMP6NixY149jk+cOOG1AJRbpUqV9PLLL+vgwYN65ZVXJKUERy6XS6Ghoemeq3Llyho6dKgef/xxHThwQEeOHEkT7NlsNvXs2VMvvfRStnrHphYREaEJEybovffe0+eff25VER46dEiHDh1Kc3z58uU1fPhwXXfddTk+p6fnn39eVatW1VtvvWWF7Dt27NCOHTusY4oVK6bhw4crOTk5y0BWkl577TXFxcVp/PjxVqh57NixNBXdUsovlp599lndcccd6Y7lr/e6YsWK+vrrrzVw4ECrFUJycnKaCs+6devqo48+sn4hkxeuu+46NWzY0OrJe/ToUR09elRSykJ8LVq0yLNz+VOgr10AAPILgSwAAEhj6NChWrp0aZoqsYyULl1a7733njZv3qxZs2Zp+fLlOnDggE6fPq1ixYqpVq1aatGihXr06KFLL73Uz7MvOO677z61b99eU6ZM0YoVK7R//36dP39eUVFRKlu2rOLi4tSiRQt169ZNMTExOnfunKKjo3X27FkZhqHvv/8+120fWrVqpZ9//llTp07V77//rp07d+rMmTOKiIhQ6dKlVadOHV1xxRXq1q2bqlevLklq0aKFli1bJimlIjq3gayUEii5g7nLLrtMdevWzfWY2WGz2TR06FB17txZ33zzjdasWaOEhATZ7XZFRUWpYsWKiouLU9u2bdW5c2dFRkbqwIEDGjlypAzD0MmTJ/XLL7/opptuyvAcjRs31syZMzV58mTNmzdPe/bskcvlUsWKFdWqVSvdeuutedYDMzQ0VAMHDtSdd96pH374QX/++ad27NhhhY6xsbFq0KCBOnbsqP/7v/9TdHR0npzXrW/fvrrmmms0ZcoU/fHHH9qzZ4+klNCybdu2uvPOO1WnTp00/Vkzc88996h79+764YcftHTpUsXHxysxMVGGYahUqVKKi4tTu3bt1K1bN6uXbXr8+V6XLFlSEydO1O+//64ZM2bo77//1tGjRxUdHa1atWqpc+fOuuOOO3IVuKcnPDxcX331lT744AMtXLhQCQkJcjqdKl++fIFrXxDoaxcAgPxgM7P6LBcAAADgZ8OHD7dWnh8xYoRuv/32AM8IAAAA8A8W9QIAAEBA2e12zZ07V5IUHR2tLl26BHhGAAAAgP8QyAIAACCgZs2aZX0cuXv37nwEGQAAAIUagSwAAAACZu3atRo9erSklIXD+vXrF+AZAQAAAP7Fol4AAADIN2vXrtWQIUNUsWJFJSYmKj4+3rrvwQcftBYOAwAAAAorFvUCAABAvjl27Jhat26d5vaOHTtq/PjxCg8PD8CsAAAAgPxDhSwAAADyTdmyZdW6dWtt2LBBTqdTNWrUUM+ePXXXXXcpNDQ00NMDAAAA/I4KWQAAAAAAAADIJyzqBQAAAAAAAAD5hEAWAAAAAAAAAPIJPWSRK6tXr/baDwkh4wcAAAAAACiKDMPw2m/WrFmAZhLcCGSRp1J/4wEAAAAAAAC4iHJGAAAAAAAAAMgnVMgiT9GyANmWlCR5VlaHhEhRUYGbDwoszwp9fhYhJ7iGkFtcQ8gtriHkBa4j5BbXEHKDT077hkAWuRISEuL1zXbZZZcpLIzLCr4z69eXbevWi/txcbJt2RLAGaEgcjqdWrdunbXPzyJkF9cQcotrCLnFNYS8wHWE3OIaQm79/fffVk5EoJ8xXhkAAAAAAAAAyCcEsgAAAAAAAACQT6g7BxBQro8/1s4NG6z92pddxg8mAAAAAABQaJF7AAistm11qkSJi/uXXx64uQAAAAAAAPgZLQsAAAAAAAAAIJ8QyAIAAAAAAABAPiGQBQAAAAAAAIB8QiALAAAAAAAAAPmEQBYAAAAAAAAA8klYoCcAoIhbu1bRGzde3DdNqXnzwM0HAAAAAADAjwhkAQRU6F13qf7Wrda+GRcnbdkSwBkBAAAAAAD4Dy0LAAAAAAAAACCfUCELAAAAACgQTNOUYRiBnkbQcrlcafZtNluAZoOCiGuoaAkJCeH9DRACWQAAAABAUDJNU0lJSTp16pTOnDkjp9MZ6CkFNdM0vfa3b99O2IJs4RoqesLCwhQTE6OSJUsqKiqK9zufEMgCAAAAAIKO3W7Xnj175HA4Aj2VAiUsjH/mI3e4hooWp9OpEydO6MSJEwoPD1eNGjUUERER6GkVevSQBQAAAAAEFcLYnLHZbAoLC7P+UOmG7OIaKtocDof27Nkju90e6KkUevzaAwAAAAAQNEzTTBPGRkdHWx+nDQ0NDeDsgpu7xYMbHz9GdnENFS0ul8tqC3P27FlJF0PZSy65hPfejwhkAQAAAABBIykpySuMrVixomJjYwM4o4LDNE2vwDo0NJRABdnCNVS0hIaGKiIiQqVLl1ZiYqISEhIkpYSySUlJio6ODvAMCy9aFgAAAAAAgsapU6es7ejoaMJYAMgHsbGxXgHs6dOnAzibwo9AFgAAAAAQNM6cOWNtlyxZMoAzAYCixfNnLoGsfxHIAgAAAACCgmmacjqd1n5UVFQAZwMARYvnz1yn0ynTNAM4m8KNQBYAAAAAEBQMw/DaZwEvAMg/qX/mpv6ZjLxDIAsAAAAAAAAA+YRAFgAAAAAAAADyCYEsAAAAAAAAAOQTAlkAAAAAAAAAyCcEsgAAAAAAAACQT8ICPQEARZtr3jz9s369td+gSRN+MAEAAAA5FB4eHugpAACyQO4BILCqVpX96FGvfQAAACAnTpxz6MQ5R6CnETCmTLmcLms/NMyhMsUjVLo4IS0KBofDwS8VUCQQyAIAAAAACoUT5xzalZgU6GkElMvwCGRDQmWLteV7IPv9999r6NCh1v6ECRN09dVX+/z4Q4cOqUOHDtb+1q1b83J6+aJTp07av3+/JGnBggWqVq1agGeU98aPH6/3339fkvTYY4/p8ccfz/FYR48e1VtvvaVWrVqpe/fuae4fMmSIZsyYIUkaNWqUevTokeNzAcGAQBYAAAAAUKj8tfu4nIYZ6GkEgCmHI6VCOCzEpnaXVgzwfFK8+OKLmjVrlsqUKRPoqSAIzZkzRy+99JJOnz6tFi1aBHo6QL4gkAUAAAAAFCpOwyyygWwwPu8jR47o5Zdf1rhx4wI9FQSh33//XadPnw70NIB8FRLoCQAAAAAAgMJt7ty5mjlzZqCngQLqjTfe0NatW7V161baFaBQIJAFAAAAAAB+N3LkSCUkJAR6GgAQcASyAALK9sMPKjtrlvXH9sMPgZ4SAAAAgDxSr149lS5dWpJ06tQpPf/884GdEAAEAXrIAgiokBdfVC2PVVPNuDjp1lsDOCMAAAAAeaVs2bJ6+OGHNXDgQEnSkiVLNHnyZN155515do7t27fr22+/1YoVK7R//34lJSWpdOnSql27ttq3b6/bbrtNpUqVyrPzHTt2TJMnT9aiRYu0c+dOGYahypUrq1OnTurbt68qVszeYmrr16/XDz/8oOXLlyshIUHJycmKjY1Vw4YNde2116pr164KDw/PchyHw6G5c+dq6dKlWr9+vY4dO6YzZ86oePHiKl26tC677DJ16tRJnTt3VmhoaKZjGYahefPm6ZdfftHGjRt16tQplSlTRk2bNlWfPn3UqlWrbD3H9HTq1En79+/3um3o0KEaOnSoJGnUqFFWe4IhQ4ZoxowZaW53i4uLkyRdc801+vDDD3Xq1ClNnTpV8+bN0969e+VwOFShQgW1a9dOffv2VfXq1a3H/vPPP5o8ebL++usvJSQkqFixYqpfv766d++uHj16yGazZfo8TNPUr7/+qnnz5mnt2rU6duyYbDabypcvr2bNmqlLly5q06ZN7l4sFDoEsgAAAAAAwG86d+6sBQsWaPbs2ZKkMWPGqG3btqpZs2auxk1KStIbb7yhb7/9VqbpvZjZkSNHdOTIEa1YsUITJkzQ0KFD1bNnz1ydT5IWL16sgQMH6uzZs16379y5UxMnTtS0adP09ttv+zz/YcOGWa+Lp0OHDunQoUNauHChPv74Y73zzjtq3LhxhmMtX75cQ4YM0YEDB9Lcd/r0aZ0+fVp79+7VnDlz9Mknn2jChAmqUqVKumMdP35cAwcO1Pr1671uP3z4sH755Rf98ssv6t27t2JjY316nvltzZo1euqpp9K0x9i1a5d27dqlH3/8UR999JGaN2+uTz75ROPGjZPT6bSOs9vtWrFihVasWKFFixZp3LhxCglJ/wPmu3fv1sCBA7Vp06Z079u9e7e+//57tWnTRmPGjAna1wz5j0AWAAAAAAD41UsvvaQVK1bo8OHDSkpK0uDBgzV58uQsKzUzkpycrIceekgrVqywbmvQoIFatWqlUqVK6cCBA/rtt990+PBhnT59Ws8//7wOHTqkRx99NMfPYd68eRo0aJAV3pUvX17XXXedKlSooIMHD2r+/Pk6duyYHn/88SyrKpOSknTXXXdZQV5ISIhat26tyy67TJGRkdq3b58WLVqko0ePas+ePbrzzjs1ceJENW/ePM1Yq1evVv/+/eVwOCRJlSpVUvv27VWlShXZbDYlJCTozz//1K5duyRJ8fHxGjRokKZOnZpmrOPHj6tv377at2+fJCk8PFxXX3216tevL7vdrj///FMbNmzQlClTrFYUOTVgwACdPn1ac+bM0caNGyWlhPfu4Pmyyy7L9ph79+7VQw89pFOnTqlcuXK67rrrVK5cOe3evVtz586V3W7XqVOnNGTIEPXq1Utjx45VSEiIrr76al122WVyOBxauHCh4uPjJUm//PKLvvnmG/Xu3TvNueLj43X33XfrxIkTkqSoqCh16tRJderUkWEY2rZtmxYvXqzz589r6dKl6tWrl6ZNm0YoC0kEsgAAAAAAwM9KlSql1157TQ888IAk6e+//9Z///tfPfTQQzkab9SoUVYYW7x4cb3++uvq3Lmz1zHJyckaM2aMvvzyS0nS+PHj1bBhQ3Xs2DHb5zt16pRefvllK4y9+eabNXLkSBUvXtw65rnnntMLL7yguXPnZjne8OHDrTC2bt26evfdd3XppZd6HXP+/Hm99dZb+t///qfz58/rqaee0k8//ZSm/cLLL79shbFdu3bVa6+9poiICK9jTNPUJ598orFjx0pKef03bdqkRo0aeR03duxYK4ytVKmSJkyYoPr161v3Dxo0SD/88INefPFFK4jMqdtuu02StG3bNiuQbdeuXZp2BNnhDlJ79uypl19+2et1uPvuu9W7d285nU7t3btXY8eOVWxsrCZMmKAmTZpYxz355JN67rnnNGvWLEnStGnT0gSy586d0+OPP269Btdff71GjhyZJqROSEjQ008/rZUrV2rfvn169tlnNXHixBw/PxQeLOqFPOX+LaBhmFkcCQAAAAAoStq3b6877rjD2h8/fry2bNmS7XF2796tadOmWftjxoxJE8ZKUmRkpF544QXdfvvtklJCyTFjxsgwjGyf87PPPlNiYqIk6YorrtCbb77pFcZKUkxMjMaOHaumTZtmOtY///yjmTNnSpJKly6tSZMmpQljJalYsWIaNmyYFSAfOXJEX331ldcx69evt0LIcuXKaeTIkWnCWCnl3+oPPfSQLrnkEuu2DRs2eB2za9cuTZ8+XZIUFhamd9991+rN6ql79+5Wn9dg1KhRI7366qtpXocmTZrommuu8bpt5MiRXmGslFKt/Oyzz1r7W7Zskd1u9zrm22+/tSqOr7zySr377rvpVgxXrFhRH3/8sSpUqCAppYfyypUrc/rUUIgQyMIvHASyAAAAAIBUBg8erBo1akhKWYTq2WefTRN2ZWX27NlWpWrLli117bXXZnr8M888o6ioKEnSv//+q9WrV2d73r/++qu1/fDDD2fYUzQ0NNRawCwjnq0Cbr/9dpUrVy7T4z3bLPz4449e95UuXVrDhg3Tfffdp6eeekrFihXLdCzPatfTp0973Td//nyrF2/Hjh1Vr169DMfp06ePqlatmum5AqVv374Zvj8NGza0tsuXL58moHWrWLGiSpYsKUlyuVw6efKk1/2e7+GAAQMybb0RExOje++919r/4YcfsnoKKAIIZOEXTlf2f+MIAAAAACjcoqKi9MYbb1iBWXx8vN57771sjfHXX39Z2zfddFOWx5csWVLt2rWz9pcvX56t8x08eFD//vuvJCkiIkKtW7fO9PgWLVpk2l/Vs+9t6pYB6WnYsKEVKO/Zs0eHDx+27qtRo4buuusuDR48WL169cp0nMOHD+v48ePWvudCVpL0xx9/WNuer1d6bDabrrvuuiznHgipK149eYbfjRo1yrTXb3R0tLWdnJxsbR89elQ7duzwGicrzZo1s7ZXrVqV5fEo/OghC7+gQha5ZZqGbDZ+ZwQAAAAUNs2aNVP//v316aefSpImTpyoTp066T//+Y9Pj9+zZ4+13aBBA58e07BhQ82bNy/N432xf/9+a7tWrVoKDw/P9HibzaZ69ep5Ba9uLpdLO3futPafeOKJbM1Fkg4cOGB9BD6j+3fv3q19+/Zp79692r59u7Zs2WL1hnVzV8O6eT7POnXqZDkPz2rbYFKxYsUM7/OsnHVXwPpyrKdt27Z57bds2TIbs0t5fwACWfiFMwc9eQAvLocUFhnoWQAAAADwgyeeeEKLFy9WfHy8DMPQ4MGD9eOPP1qVoJnxXEyqTJkyPp3P87jsLkZ19OhRazurEC+reZ08eTJNEJpd6c1/165d+uyzz/Trr79avW7TExoaKpfLle59x44ds7Z9eZ6+vvb5LXVv34xk1mYgM7ldzMxutyspKcmnax2FF4Es/MLhokIWuWMadtlEIAsAAAAURhEREXrrrbd06623yuFwaM+ePXrjjTc0YsSILB+bk0DTM4TMqPIxL6W3sJaUtk3Agw8+mGl7g/TUrl3ba3/69Ol6+eWX5XA40syhZs2aqlevnpo0aaKWLVtq0qRJmjFjRrbOl5GMnmOgZdaGIC94XkslSpTQww8/nO0xwsKI44o6rgD4hZOWBcgl03BkfRAAAACAAqt+/fp6/PHHNXbsWEnSN998o2uvvTbTxaQkqVSpUlYf1ePHj1uLhGXGs3dqiRIlsjXP8uXLW9u+VkemXjDLrVSpUl77N954o089SDOyZs0avfTSS1ZI2KxZM912221q2rSpatSokSZ8PnfuXIZjlS9fXrt375aUUslbrVq1TM996tSpHM+7IPOsHjYMQ/379w/gbFBQ0aARfuFgUS/klotAFgAAACjs7r//fl1xxRXW/gsvvJBmRfvUatWqZW3/888/Pp1n8+bN1nbNmjWzNUfPYHLXrl06f/58lo/Zvn17urdHRkZ69ThN3Y80Ixm1IZgwYYIVxl599dWaPHmyunfvrlq1aqVbCew5TupKY8/nGR8fn+WcMnqOhZ3n9XP27FmfesLa7fYMQ3oUTQSy8AtaFiC3qJAFAAAACr/Q0FC98cYbVt/Pw4cPa+TIkZk+5sorr7S258yZk+U5Tp06paVLl1r7nive+6JixYpWFavT6dSCBQsyPX779u3au3dvhvdfddVV1vbcuXOzPP+WLVvUqlUrXX755ercubNXqLpmzRpr+7bbbsv04/pJSUlat26dtZ86kO3UqZO1PX/+/CzntXjx4iyP8YW/WwzktZo1a3qF6u7F4jIzdepUNW/eXFdeeaUGDBjgz+mhgCCQhV/QsgC5ZRr2QE8BAAAAQD6oVauWnn32WWt/5cqVmR5/yy23WAsyLV++PMvwcOzYsdZH9StVquQV6Prq5ptvtrbfe++9TD/6P27cuEzH6tmzp7W9aNEir7A4NdM09dZbb0mSzp8/r5IlSyo2Nta637NvbGaLeUnSW2+9peTk5HQfK0k33HCDwsPDJUl//fWXli1bluFYv/32m1e4mxuelbwZLTgWbDzfw08//dRqoZGe48eP65NPPpGU8suBrFpyoGggkIVf0LIAuWXSsgAAAAAoMvr06aM2bdr4dGz16tV16623WvvPPPNMupWydrtdo0eP1pQpU6zbhg0blqMFle68807VqVNHUkrbggcffFDHjh1Lc77XX389y4rJVq1aWc/VNE098cQT6YbKSUlJGj58uJYsWWLd9uSTT3odU79+fWt7woQJOnLkSJpxTp8+rRdffFFff/211+2pWy+UL19eDz30kDWvwYMHe53bbenSpV4Bem7FxMRY2/v378+zcf3pnnvusXoLHzt2TH379k23/cTBgwf18MMPW+9L6dKl1a9fv3ydK4ITi3rBL6iQRa7RsgAAAAA5FBZSsD4CnZfMC8+9oL0GNptNr7/+um6++WafFot64YUXtHXrVq1du1bnzp3TwIED9emnn6pVq1YqWbKkDh48qN9++00JCQnWYx544AFde+21OZpfRESERo8erX79+unMmTNasWKFrr/+el1//fWqWbOmEhMTNX/+fO3fv19hYWGqXLlypm0LxowZo9tvv1179uzRmTNn9Oijj6pRo0Zq2bKlYmJitH//fi1cuNCr6nXAgAFq1aqV1zj9+vXT33//LUnau3evNafq1avLbrdr165dWrx4sRW+hoeHW5Wx6S1Q9tBDD+nPP//UmjVrdObMGd1///1q2bKlmjVrJpvNptWrV1uVs7Vr19bOnTtz9Hp68uxd+9lnn8lut6tEiRK68sor1bx581yP7w9lypTRuHHj1L9/f507d047duxQt27d1KZNGzVu3Fg2m03bt2/XggULrNc7PDxcb775psqUKRPg2SMYEMjCLxwGFbLwUXi4jIgIa9d24SMypuGUaZoFrp8QAAAAAq9lzaIbeLiMgvGR7/RUqlRJL774op577rksj42MjNQXX3yhV155RTNmzJBpmtq8ebPX4l1u0dHRGj58uLp165ar+TVp0kRTp07VQw89pP379+vMmTP6/vvvvY6JiIjQyJEjtXDhwkwD2djYWH377bcaMmSIFi1aJEnatGmTNm3alO5zfeqpp3Tfffelue+GG27Q448/rvfff1+maSopKUk//PBDuue86aab1K1bN6uH6caNG9McEx4erg8//FAjRoywqo7/+usv/fXXX17HderUST169NBjjz2W4XP01U033aT3339fJ06cUHJysiZOnChJuuuuu4I2kJVSehFPmTJFgwYN0o4dO+RyufT777/r999/T3NshQoV9MYbb/hcBY7Cj0AWfuFkUS/4yPX33169hy6//PILP5jMlCrZ0IiMHgoAAAB4KV08XLViowI9jYAxZcrlvBjIhoaFqnTx8ADOKPu6deumBQsW+LRQUrFixTRq1Cj17dtX3333nZYvX65Dhw7pzJkzKlGihOrVq6f27durZ8+eXn1Xc6Nu3bqaM2eOpk2bpp9//lnx8fE6f/68KlSooJYtW+ree+9VvXr1tHDhwizHKlOmjCZMmKDVq1dr1qxZWrVqlRISEpSUlKSYmBjVrl1brVq1Uq9evVSlSpUMx3nsscfUrl07ff3111qzZo0SEhJkGIaio6NVo0YNNW7cWN27d9fll18uu92uMmXK6Pjx4/r333+1YcMGXXbZZV7jRURE6NVXX1XXrl01c+ZMrVmzRseOHVNMTIzq1aunW2+9VV27dtVvv/2W69dTksqVK6epU6dq3LhxWrlypU6cOKFixYpl2qc3WDRo0ECzZ8/WvHnzNH/+fK1bt06JiYlyOBwqXbq04uLi1KlTJ3Xr1s2rNQNgM1Mvqwdkw99//y3Doxq2adOmCg0N1aLtR9W+dlmFFLCPySD/OZ3OtIFsWJiSD/+t8DL1FBIeHcDZoaDI6DoCfMU1hNziGkJucQ2lcLlcio+Pt/br1atnLd6ErJmm6bVQU3h4OJ84Q7a4q2zdoqKiuIaKkLz4GeyZE4WEhOiKK67I0zkWFkXv//DINw7DUGQIf3lCDpmmZDgDPQsAAACgQEkdyAIAgk9IoCeAwstB2wLkksnCXgAAAAAAoJAhkIXfOA0CWeSGSSALAAAAAAAKHQJZ+I3DZWR9EJAZWhYAAAAAAIBChkAWfkOFLHLFpEIWAAAAAAAUPizqBb+hhyx8YXvnHVXdtOnifqNG0rPPSjJlughkAQAAAABA4UIgC79xGrQsQNZCJk5Upa1brX0zLu5CICtaFgAAAAAAgEKHQBZ+Q4UscsOUKdGyAAAAAAAAFDL0kIXfOKiQRW6YokIWAAAAAAAUOgSy8BsnFbLIFRb1AgAAAAAAhQ+BLPzGYRDIIncIZAEAAAAAQGFDIAu/cbpoWYDcMCXTlEnbAgAAAAAAUIgQyMJvqJBFXiCQBQAAAAAAhQmBLPzGMEwZhLLIKfPCtUPbAgAAAAAAUIgQyMKvHAZtC5BTKYEsfWQBAAAAAEBhQiALv3K4qJBFLhHIAgAAAACAQoRAFn7lpGUBcupCywLTRQ9ZAAAAAABQeBDIwq8cLloWIHdoWQAAAAAAAAoTAln4FRWyyDkW9QIAAAAAAIUPgSz8ih6yyC3ToGUBAAAAAAAoPAhk4VdOg5YFyKkLPWSpkAUAAAAAAIVIWKAngMKNClnklOm+dKiQBQAAAHwWHh4e6CkAALJAIAu/clAhiyyYcXE6Z14M7ovHxbnvSfkvFbIAAADwkev8CRnJJwI9jYByOS8WNNjCwhQSWVqhxUoHbkJBzuFwEGIXMbznCAYEsvArJxWyyILx3Xf6Z906a79p06YKlcSiXgAAAMguI/mEnKd2B3oaAeUyXBd3QkIVVlL5FshOmjRJo0aNkiRVrlxZixYt8ulxXbt21datW6394cOHq0+fPlk+7qefftKgQYMkSbGxsfrzzz9ls9m0fPly3XPPPZKkq666Sl999VW6j1+2bJleffVV/fTTT+neH2cVi8hrfsEi2OeXF4YMGaIZM2ZIkkaNGqUePXrkeKw9e/botdde03333acWLVqkuf/uu+/WihUrJElffvlluscAeYVAFn7lMAhkkUMXLh3TcMk0DdlstLwGAACAb5IP/lUkF4c1JTkcKc/bFhKmEjXa5uv5W7dubW0fPHhQBw4cUJUqVTJ9TEJCQpow8ffff/cpkF2+fLm13aZNG9lsNp/nOnDgQM2ZM8fn41GwTZo0SW+//bbsdrvuu+++QE8HYFEv+JfTRcsCZJ9ppgryi+BfpgEAAJBzpuGUTFcR/eOUTGdAAul69eqpQoUK1v6qVauyfMzixYvT3PbXX3/Jbrdn+VjPQLZdu3Y+zjIFYWzRsmDBAp+uKSC/EMjCr6iQRa5c+EskfWQBAACAgqFNmzbWdnYCWZvNpquvvlqSdO7cOa+wNT2HDx/Wrl27rMd6BrItWrTQ1q1btXXr1gzbFQCpffXVV9Z1Q7sC+BuBLPzKMEwZhLLINu8FvQhkAQAAgILBs23B6tWrMz3Wbrdr2bJlklKqazt37mzdl17lrCd3r09JatiwoWJjY3MyXQAICAJZ+J3DoG0BcsYKYglkAQAAgALBs5fr9u3bdfz48QyPXb16tc6ePSspJcht166dQkJSYorff/890/N4BrLZbVcAAIHGol7wG5dpKtRmk8NlKpIrDdlxoYes6Urp8VMUF2QAAAAACqKyZcuqfv36+ueff2SaptasWaNrrrkm3WM9Q9d27dopNjZWjRo10oYNG7R7927t2rVLtWrVSvexmfWPXb58ue655x5J0lVXXWW1LfC83VNcXJy1nXqBMU/JycmaOnWqfvnlF23fvl1nz55V+fLl1aBBA91yyy269tprM3xsdu3du1eTJ0/WkiVLtHfvXoWEhKh69eq64YYbdM8996hEiRLZGu/PP//U7NmztXr1ah0+fFiGYahs2bK6/PLLdeONN+r666/3aVG0c+fOadasWVq2bJk2b96s48eP6+zZs4qOjlZsbKyaNm2qG264QR07dsxyLLvdru+++04///yztm7dqrNnz6pcuXK66qqrdM8996hx48bZeo7p8Xxv3TyvgS+//NJqT3D33XdbQb/n7ZK0b98+6zq+55579MILLyghIUFTpkzRggULtH//ftlsNlWpUkWdOnXS3XffrXLlylmPX7lypaZMmaK///5bR44cUUxMjBo1aqTevXv7dN04nU7NmjVL8+fP16ZNm5SYmKjw8HBVrFhRV111lXr06KEmTZrk7EVCQBCTwW+cLlOhYTY5aVmATIQ8/rgu+ecfa9/WsKH0/viUHXdlrIsKWQAAAKCgaN26tf658Hf8VatWZRjIutsSREVF6corr5SUEq5u2LDBuj+9QNazf2yJEiXUtGnTvH0C6di8ebMee+wx7d+/3+v2/fv3a//+/Zo/f76uueYavf322ypevHiuzjV9+nS9/PLLcji8/x3k7m/6zTff6MMPP/RprGPHjumZZ57Rn3/+meY+99znzJmjRo0aady4capWrVqGY82ZM0cjRoxIt+r55MmTOnnypHbu3KkZM2boqquu0vvvv69SpUqlO9aePXv04IMPaufOnV63Hzx4UD/++KNmz56txx9/3KfnGAjz58/X0KFDderUKa/b4+PjFR8frx9++EGfffaZateurddffz1NL+Pjx49ryZIlWrJkifr27avnn38+w3OtX79ezzzzjHbv3u11e3Jyss6cOaPt27drypQp6tKli0aOHKmoqKi8e6LwGwJZ+I3DMBUpyeGiZQEyZvvtN5X2+C20eeiQ0vaQpUIWAAAAKCjatm2riRMnSsq4j+y+ffu0fft2SSmLcEVEREiS2rdvb4WNixcvVt++fdM81rM6tnXr1goL8y3aqFGjhp577jlJ0ptvvmnd7r4tM3fddZfOnj2r4sWL65prrlHt2rWVnJysP/74wwqfFyxYoDFjxmjYsGE+zSc9kyZN0qhRo7zm3LFjR5UpU0a7d+/Wr7/+qoSEBPXv3z/LsQ4fPqw77rjDCpHDw8PVoUMH1a9fXyEhIdq1a5cWLVqkU6dOadOmTbr11ls1ZcoUVaxYMc1Yc+bM0aBBg2Re+DRjrVq11KZNG1WsWFEul0sHDhzQ77//roSEBEkpLSVeeeUVjR07Ns1Yu3btUu/evZWYmChJ1mt6ySWX6PTp01q8eLG2b9+ud999V2XKlMn+i+jB/d5OmTJFe/fulSTdcccdqlGjhiRZX7Nj7dq1mjJlihwOh6pVq6aOHTuqVKlS2rZtm3799VcZhqFDhw7pxRdfVKNGjfTVV18pPDxc1157rerVq6czZ85o3rx52rdvnyTpiy++UNu2bdW+ffs051q2bJkGDBig8+fPS5LKlCmjjh07qnr16nI4HNq0aZOWLl0qp9Op2bNna/fu3Zo8ebIiIyNz9Hoh/xDIwm+cLkNSKBWyyIEL14xpSKaLRb0AAACAAqR58+YqVqyYzp8/r82bN+vcuXNpqkY9F+3yDKKaNGmi0qVL68SJE1q5cqWSkpLSVPzltH9s5cqVrSDTM5D1Jdw8e/asOnTooNGjR3uFhE8//bTefvttffLJJ5KkqVOn6tFHH83RImN79+71CjD79++vQYMGeQXOzzzzjAYOHOj1GqTHNE0NHDjQCmObN2+uMWPGqHLlyl7HnTx5UsOGDdO8efN04sQJPfHEE5o8ebLXOZOSkvTaa69ZYeyDDz6ogQMHWv1+3RwOh15//XV9/fXXkqS5c+fqxRdfTPNajBgxwgpj69evr48++khVqlSx7n/22Wc1ceJEjRkzJtMexL5wv7eLFi2yAtnOnTt7tSPIrvXr10uSHnnkET3++ONer8P8+fP16KOPSpLWrFmjNWvWqGbNmvrkk0+8qr2feOIJPfjgg9YvF6ZNm5YmkD18+LAGDRpkhbF9+vTRc889l+Z7afv27XryySe1bds2bdiwQa+99ppGjBiR4+eH/MGiXvAbx4Ug1uEikEU2eVwypuFgUS8AAACgAImIiFDz5s0lpYR0a9euTXPMH3/8YW17BlGhoaFq3bq1pJQeo8uWLUvz2EAs6BUXF6cPPvgg3YrNgQMHWh/1dzqdWrNmTY7O8d577yk5OVmSdNNNN+m5555LU/1brlw5ffzxx5m2FpBSqnVXrVolKaWa9dNPP00TxkpSqVKl9M4776hBgwaSpG3btmnu3LlexyxatEhHjx6VlBKgDho0KE0YK6VU4A4dOlQlS5aUJLlcLm3atMnrmGXLlmnp0qWSpJIlS+rTTz/1CmMlKSQkRA888IBPQXmgXHvttXryySfTvA7XXnttmt6348aNS9N6o1ixYnryySetfXfI6+m///2vFVx36dJFw4cPT7cdxiWXXKJPPvnEum/69OlW+IzgRSALv3FeaFXgNGhZgOxyV8iaMl0OWhYAAAAABUybNm2s7dRtC+x2u/766y9JUp06ddKEi54BrWclrSQlJCRY/WPr1q2rSpUq5eW0M9SvXz+Fh4ene19ISIhatmxp7afuM+sLh8Oh3377zdrPrH9qdHS0HnnkkUzHmzp1qrV93333ZdpXNDQ0VAMGDLD2Z8+e7XV/nTp1NHToUN1zzz167LHHMl38KyIiQnXq1LH2T58+7XX/L7/8Ym3fdtttqlChQoZjPfroo0HbD7Vfv34Z3tewYUNru2nTplbYnVq9evWsbXfw6uZ0OjV9+nRr/7HHHst0PlWqVFGPHj0kpQThs2bNyvR4BB6BLPzGZUou06RCFjlmypQMJxWyAAAAQAGTWSC7fPlynTt3TpLUoUOHNI9t27atFfotWbLE675AVMdKUrNmzTK9v1y5ctb22bNnsz3+unXrrPCyevXquuSSSzI9/rrrrsswGHW5XF6veaNGjbI8v+fzW79+vZzOi0Ux9evX17333qsXXnhB1113Xabj7N27V0lJSda+5ziSd2V0x44dMx0rOjra6zoKFjabTZdddlmG93teC5m99tHR0da23W73um/Tpk3WdRQVFaXatWtnOS/P9zCj3s0IHvSQhV85XaYcVMgi2y6G+KbhoIcsAAAAUMDExcWpfPnyOnLkiNauXSun02l9/D6j/rFu5cuXV4MGDbR582bt379fe/fuVfXq1SUFLpDNqiesZ2sBl8uV7fHdCzxJ0qWXXprl8SVLllSVKlXSrcY9cOCAVyjas2fPbM3l/PnzOnHihFew6Mk0Te3du1d79uzRnj17tHfvXu3YsUObN2/W4cOH0xzruX3w4EFrP6vQWUoJg3/99ddszd/fSpcunemiWZ5tDNztG7I6LrVt27ZZ20lJSYqLi8vWHHNSpY38RSALv3IYppxUyCK73JeMaco0nCl/TDPTj8YAAAAACC6tW7fWjz/+qKSkJG3evFlNmjSRJP3++++SUir/3L1mU2vXrp02b94sKaXvaOpANrPH+kNMTIxfxz927Ji1nVmI56lMmTLpBm+5XQhLSlnsK3Ugu3HjRk2aNEmLFi1K04rAU2hoaLqh9PHjx70qZn15nun17A209Pq4ZiQ0NDRH5zhx4kSOHpdXj4f/EcjCr5wuw1rcC/CdxzVjOCTTlEyXZONHFgAAAFBQtGnTRj/++KOklI9QN2nSRLt27dLu3bslSS1atFBERES6j23fvr0mTJggKSWQve2227z6x1511VUZPraoyOj5pw5Dn3nmmUyrMT2ZpimHw5GmIviDDz7Q+PHjvSpepZRgvFatWqpXr56aNGmi1q1b66WXXvKqZM6NYHyP86NQyPM9rFq1qu68885sPT6zCl4EB9IN+FVKhSwtC5A9Hh9qsdoVmIZDthB+ZAEAAAAFRevWrWWz2WSaptauXSvJuydsev1j3Zo2baoSJUro9OnTWr58uSRp5cqV1v352a4gP5QvX97a9rW6MaMq1dSVp7169VLp0qV9GtM0Ta92B5I0Z84cvffee9Z+x44d1b17d1122WWqUqVKmoDS3R84tTJlyig8PFwOR8q/8U6ePJllK4hTp075NO/CxvM9jI6OVv/+/QM4G/gDi3rBr6iQRc6kqpD1/AoAAACgQChfvry1kvyGDRskSX/99Zd1f3r9Y93CwsLUunVrSSkf5z906FChDmSrVatmbW/ZsiXL4x0Oh1VpnFrVqlUVHh5u7Xv2I82IYRgZtjr48MMPre3evXvr448/1o033qiqVaumWy2amJhobXtW1NpsNlWtWtXa9+V5bt++PctjCqOaNWta27t3706z6Fd6zp8/nyZMR/AikIVfOQxTxoU/gM+s/2mn9JCVJNNFIAsAAAAUNG3atJGUssjQkSNHrFD1kksu8Qrn0uMZuv7zzz9as2aNJKlGjRpegVVhcPnll6ts2bKSpISEBKuiOCPLli3LMKQrVqyYLrvsMmt/3rx5WZ7/t99+U8uWLdWsWTPdfffdVq/X06dPewW6d9xxR6bj7Nmzx6uvbeoWB506dbK2586dm+lYTqfTq6K6KLniiiusUD05OVmLFi3K8jHvvPOOrrjiCrVs2VLDhw/38wyRWwSy8CvHhQW9HAZtC5ADpqyWBTKcmR8LAAAAIOi4A1lJmj59uvVx/MyqY908j1m5cqX+/fdfSXlTHeu52FJ6C1Dlt9DQUHXu3NnaHzNmjIwM/h3tcrn0/vvvZzpez549re1p06YpPj4+w2PtdrveffddSdLZs2dVvXp1hYWltItztxdwy2rBsNdee81r33MRL0nq0qWLtT1jxoxM5zV16lQlJCRkej5feb7fGb2uwaR48eJe18M777yTafXr7t27NXXqVEkp71HDhg39PkfkDoEs/MrdP9YdzAK+uVghK48esgAAAAAKliuvvNJaYOh///ufdXtm/WPdKlasaLU8mDFjhhWk5UUgGxMTY217VnQG0iOPPGL1VF25cqUGDRqkM2fOeB1z9uxZPf3001q3bl2mY3Xr1k1169aVlPJR9vvuu0+rVq1Kc9zx48f11FNPWcFoeHi4HnjgAev+MmXKqEKFCtb+O++8k2ZOknTkyBENGDAgTSVn6n6yjRo1Uo8ePSSlBMH333+/Nm3alGa8H3/8UW+88UamzzE7PN/vffv25dm4/vTII48oKipKkrRjxw71799fBw8eTHPctm3b9OCDD+r8+fOSUtod3HLLLfk6V2QfK+TAr9z9Y520LECOmFarApMKWQAAAPjIFhImM/iL4PzDlvJvr2BZEDcyMlLNmzfX0qVLdfToUUlSVFSUmjVr5tPj27Vrp/j4eKsvaUREhFq0aJHreVWrVk0nT56UJD366KP6v//7P507d06PPvqoIiIicj1+TsTGxuq1117TE088IYfDoZ9//lkrVqzQddddp8qVK+vQoUP69ddfdfToUcXExKh48eI6cuRIumOFh4dr/Pjx6tOnjxITE3XkyBHdeeeduvLKK9WsWTOFh4dr9+7dmj9/vlfl5bBhw1S7dm1r32azqV+/fho9erQkad26dbrmmmt03XXXqUqVKjpz5oz+/fdfLV261KqG9Vy4K70FyoYOHap169Zp+/btSkhIUK9evdShQwc1atRIDodDf/75p9avXy9Jql27tnbu3Jnr19azR++YMWO0f/9+hYeH6/rrr7eC62BTq1YtjRo1Sk8//bScTqfWrFmjG264QR06dFBcXJzsdrvi4+O1ePFi65cV0dHRevfddwN2DcN3wfETGoXWxQrZovq3IeSIu8+QKcl0ybNSFgAAAMhKZOWWgZ5CwEQYgf/4fWqtW7fW0qVLrf2WLVv6HBi1b99eEydOtPabNWtmVQ3mRu/evfXiiy9KkuLj460K0euuu06NGzfO9fg51alTJ33++ed67LHHdOLECR07dsz6KLpbTEyMxo0bp7Fjx2YYyEopYea0adP09NNPWz1pV65c6bU4mlvJkiU1bNgw3XzzzWk+Gt+vXz/t2LFD06ZNk5QSsrq3PYWEhKh3795q0KCB9dpu3Lgx3XNNnTpVTz31lJYuXSqXy6WFCxdq4cKFXsf17t1bl156qUaOHJnhc/RVz549NXnyZNntdp04cUIfffSRpJTWAMEayErSjTfeqFKlSmnw4MFKSEhQcnKyfvnlF/3yyy9pjq1Vq5bGjh1Lu4ICgkAWfkWFLHIn5boxDQctCwAAAJClkMjSCisZ6FkEmEfPzrCwMIVElg7cXC5o27at3nrrLWvfl/6xbs2aNVN0dLTOnj0rKW/aFUhSr169FBkZqa+++ko7duzQ+fPnVaZMGauKN5CuvPJK/fLLL/r666+1YMECbd++XS6XS5UqVVL79u3Vr18/Va1aVWPHjs1yrGrVqumbb77R4sWLNXfuXK1Zs0ZHjhxRcnKySpYsqUsvvVTt27dXz549FRsbm2YRLimlSvbVV1/VDTfcoOnTp2vdunU6duyYTNNUyZIlVatWLV1++eXq2bOnLr30Uh07dsyqkv3zzz+VkJCgihUreo1ZsmRJTZw4Ub/++qtmzJih9evX68SJEypdurQuu+wy9e7dWx06dPBqc5EbdevW1f/+9z998MEHWr9+vU6fPq2YmJh02y8Em1atWmn+/Pn68ccf9dtvv2nz5s06fvy4DMNQ2bJl1aBBA91www3q3LkzlbEFiM1M77sN8NHff//t1RC7adOmCg0N1aLtR7XvxHntPX5OrWqVUZ2y0apRpngAZ4pgZTz1lE5s3mztl27YUHpzpJIT1siRuEWupARFVmyu0BJVFVn+8gDOFMHM6XR69dG6/PLLrYUIAF9wDSG3uIaQW1xDKVwul9ciP/Xq1fNajAeZM03TaxGm8PBw2Wy2AM4IBY1pml4VslFRUVxDRUhe/Az2zIlCQkJ0xRVX5OkcC4ui93945CvHhW9CZwFYxRCBYYwZo50e//ho2rSpbC73XwDcFbJOiR6yAAAAQJZSB7IAgOATEugJoHAzTMllmnK4KMRGNlwo3HdfNbQsAAAAAAAAhQWBLPzO6TKtSlnAN+5FvS58NRxUyAIAAAAAgEKBQBZ+5zBMOamQRS6YhlOm4ZJpEuwDAAAAAICCjUAWfud0GXIYBLLwnXmxWUHKf93tCmhbAAAAAAAACjgCWfhdSoUslY3IBiuP9WhZIMl0EcgCAAAAAICCjUAWfkeFLLLP+3oxL/SPNekjCwAAAAAACriwQE8AhZ/DMGVc+BMSYgv0dBBkQrp0UaMtWy7u168v44cpF/YuBLMuWhYAAAAAAIDCgUAWfue4sKCXwzAUGRIa4Nkg2Nh27VKx3butfbNYMaWtkL3QsoAKWQAAAAAAUMDRsgB+5+4f6w5mAd+xqBcAAAAAAChcCGThd+7+sU76yMJX7sW83JeM1UOWQBYAAAAAABRsBLLwu4sVskaAZ4KCw0z71XASyAIAAAAAgAKPQBZ+R4Us8oJpOGlZAAAAAAAACjwCWfid072oFz1k4TN3y4KL14xpOFjUCwAAoJALCfH+J6rL5QrQTACg6En9Mzf1z2TkHV5Z+J3DSGlV4DRoWQAfWS1kPUJ8w0HLAgAAgELOZrMpLCzM2k9KSgrgbACgaPH8mRsWFiabzRbA2RRuBLLwO8OUXKZJhSyyIe21YhoOa3EvAAAAFF4xMTHW9qlTpwI4EwAoWjx/5pYoUSKAMyn8CGSRL5wu06qUBXzn2bIgZVEv0yTYBwAAKMxKlixpbZ89e1aJiYkBnA0AFA2JiYk6e/astU8g619hWR8C5J7DMK1eskDW0rlWDEfKzaZTsoXn+4wAAACQP6KiohQeHi6HI6VdVUJCgs6cOaOSJUsqKipKoaGhAZ5h8DJN06sHpMvl4iPHyBauoaLF5XIpKSlJp06d8gpjw8PDFRUVFcCZFX4EssgXTpchh0EgCx+5LxXTu0JWkkyXQ7YQAlkAAIDCymazqUaNGtqzZ48Vyp49e9YrLEDGDI9PJrIgD3KCa6hoCw8PV40aNQji/YzvLOSLlApZWhbAN2ZGPWQl+sgCAAAUAREREapRo4bCw/lFfHaYpimn02n9od0XsotrqGhzh7ERERGBnkqhR4Us8gUVssgeM9VXSa6UQNYKZgEAAFCoRURE6JJLLlFSUpJOnz6t06dPy+nkl/NZ8XyNCLSRE1xDRUtYWJhKlCihEiVKKCoqisrYfEIgi3zhMEwZF/6EhPDNjexzB7EEsgAAAEWHzWZTdHS0oqOjValSJZmm6fVxanhzOp3auHGjtX/JJZcoLIx/9sN3XENFS0hICAFsgPBdhXzhuLCgl8MwFBlCE35kIZ0esqJlAQAAQJFns9lY1CsTqT9eHhoayuuFbOEaAvIHPWSRL9z9Y93BLJC5tC0LrEW9qJAFAAAAAAAFGBWyyBfu/rFO+sgiFePhh5WwaZO1X6lx4/QPNF2SaVyslAUAAAAAACiACGSRLy5WyNLvCd7MRx/VwXXrrP2KTZtK5w657/U+1nBalbIAAAAAAAAFES0LkC+okIWvbDZbeh0LUhgOWhYAAAAAAIACjUAW+cLpXtSLHrLwSfqJrGk4WNQLAAAAAAAUaASyyBcOI6VVgdOgZQF8YXr81+NWKmQBAAAAAEABRyCLfGGYkss0qZBFNqW6Xgwni3oBAAAAAIACjUAW+cbpMq1KWSBT5oUgNlUem1Iha8g0XPk/JwAAAAAAgDxAIIt84zBMq5cs4JvUPWQv9I+ljywAAAAAACigwgI9ARQdTpchh0EgC2+hjRur2dat1r4ZFydzxTz3nvfBrpR2BabhkE2R+TRDAAAAAACAvEOFLPJNSoUsLQuQc+4FvVjYCwAAAAAAFFQEssg3VMjCZ1YP2dQtCy4EsQSyAAAAAACggCKQRb5xGKaMC3+AHLnQO9akhywAAAAAACigCGSRbxwXFvRyGLQtQFbMVF8v7NGyAAAAAAAAFHAEssg37v6x7mAWyFgG1wgtCwAAAAAAQAFHIIt84+4f66RlAbJiFcimvVZMw0mFLAAAAAAAKLAIZJFvHFaFLC0LkJVMQnvDLrkIZAEAAAAAQMFEIIt8425VYKdlAXyWToWsy0GFLAAAAAAAKLAIZJFvqJCF7zIO7U2DQBYAAAAAABRcBLLINw7DlCkCWfjAtP6TluGQScsCAAAAAABQQBHIIl85XIbVugDIWCYVsi6HZBoyDVc+zgcAAAAAACBvEMgiXzlcpuxUyMIXZvqhrGnYvb4CAAAAAAAUJASyyFdUyMI3mVwj7v6x9JEFAAAAAAAFEIEs8pXdZchhUCGLzJmmqYxCWXf/WPrIAgAAAACAgohAFvnK4TLlcJkXAjcg+8wLlbG0LAAAAAAAAAURgSzylcNlyDRNOQ0CWWTGzLKHrAxnPs4HAAAAAAAgb4QFegIoWuwX+sc6XIbCQ/l9ACTjzTe1e+NGSVJoaKiqN2woSTIz6iNrtSygQhYAAAAAABQ8BLLIVw5XSv9Yu8tUVIDnguBgdu6s41WrSpLCw8NVvXFj6cTWzB4hGU6rdQEAAAAAAEBBUuQD2c2bN2vatGlatWqVDh06pHPnzqlUqVKqU6eO2rVrp9tvv12lSpXyebz169dr2rRpWrlypRISEmSapipWrKhGjRqpW7duat++vWw2m8/jmaap+fPna+bMmdqwYYOOHTum4sWLq2LFimrZsqV69uyp+vXr5+SpB4Q7kHV/BdJlWv9J/27DIRHIAgAAAACAAqjIBrLnz5/XiBEj9N1336W57+jRozp69KhWrFihjz/+WCNGjFCXLl0yHc/hcGjkyJH65ptv0ty3a9cu7dq1Sz/99JPatm2rUaNGqUKFClnOMSEhQQMHDtTq1au9brfb7Tp58qTi4+P11Vdf6d5779WgQYMUERGR5ZiBdrFlAT1kkRkzszxWpuGQ6SKQBQAAAAAABU+RbOJpt9s1YMAArzA2NDRUDRo0UIsWLVStWjXr9rNnz+rpp5/WlClTMhzPNE099dRTXmFsZGSkmjRpoiuuuEIxMTHW7UuWLFHfvn116tSpTOeYmJiou+66yyuMLV26tJo3b65GjRopLCzMOvfnn3+uIUOG+P4CBNDFlgVUyCIrmVfI0rIAAAAAAAAUREWyQvbTTz/VsmXLrP2OHTtq+PDhqly5snXbypUrNXjwYO3fv1+S9Oqrr6p58+aqW7dumvE+++wzzZ8/39rv06ePBg0apBIlSkhKqcadNGmSxo8fL6fTqR07duj555/X+++/n+Echw4dqj179khKCXeHDh2qXr16WUHskSNH9Prrr2vOnDmSpJ9++klNmzbVPffck9OXJV84jJSlmmhZgPRcbOeRRQW1y07LAgAAAAAAUCAVuQpZu92uzz77zNpv1aqVPvjgA68wVpKuvPJKffnll1ao6nQ69dFHH6UZLzExUR988IG137t3bw0fPtx6nCQVK1ZMAwYM0IgRI6zbfv31V61ZsybdOf7xxx9atGiRtf/GG2+od+/eVhgrSeXLl9c777yj7t27W7d9+OGHOnPmTBavQOA5XAYtC5A501TWFbIumYYr/+YEAAAAAACQB4pcILt27Vqv0PLJJ59UaGhousdWq1ZNffr0sfYXLVok0/QOiaZPn66zZ89KSmkp8Nxzz2V47p49e+rqq6+29j///PN0j/viiy+s7bZt26pz584Zjjl8+HCVLVtWknT8+HHNmDEjw2ODhcNl0rIAF+3Yochdu1L+7Nwp7diRcntmPWTd/WOpkgUAAAAAAAVMkQtkDx065LXfqFGjTI+//PLLre2zZ8/q+PHjXvf//PPP1vZNN92kqKioTMe7/fbbre3ff/9dSUlJXvefPHlSf/75p7Xfs2fPTMeLiopS165drf25c+dmenwwcLgMOQwqZJEitGtXNb71VjW+9VbV69ZNti5dlJLGZnKNXAhi6SMLAAAAAAAKmiIXyHq2EpBkVbdmxOl0eu1HRkZa2ydOnNA///xj7bdt2zbL87ds2dKqyD1//rxX+CpJK1askMuV8jFsm82mNm3aZDmm5zFr1qzRyZMns3xMINldBj1k4YPMWxZ4fgUAAAAAACgoilwge+mll3rt//HHH5kev3TpUmu7cuXKio6Otva3bt3q1cIgq2pbKaWitUaNGtb+hg0bvO7fsmWLtV2tWjWVKlUqyzHr169vbRuGoU2bNmX5mEByuEw5XGaa9g+AJYtrw3TZvb4CAAAAAAAUFEUukK1evbpXH9d3331XR48eTffYVatW6fvvv7f2PfvJStKuXbus7YiIiDQLg2WkWrVq1vaePXsyHLNmzZo+jVe+fHkVK1bM2t+9e7dPjwsUh8uQaZpy0rYAGTClzENZd2Ws4cz4GAAAAAAAgCBU5AJZSXr++edVrlw5SdL+/ft166236vvvv9fRo0fldDq1d+9effzxx+rfv78cjpTgp2HDhrrrrru8xjly5Ii1Xb58eZ/P73ms5xiSdPjw4RyN6V7YK70xg43dlRK00bYAGcuiQtZqWUCFLAAAAAAAKFjCAj2BQKhZs6a+++47vfrqq5o/f74OHjyooUOHpnuszWZT165dNWzYsDQLdp04ccLaTt2bNjMxMTHWdup+r5772RnT89hTp075/Li85nK5ZLPZZJqmTMOQYaQNXZOdTpmmqWSnS5GhNloXFHEhpilbqttMw5Rhpn/9pDBkGk4ZzmQZGVxnKFrcvbcz2geywjWE3OIaQm5xDSEvcB0ht7iGgPxRJANZSYqNjVX79u21bds2rzYBqbVp00YPPPBAuuGo3X6xOs+zZUBWIiIi0h1DkpKTk3M9pucY+W337t2Kjo7W2TN2HT9xUgkJiWmOcZ4tplolQnQwIVlnwkyvqmAUPY2Sk+V5pTudTp08dVLGmVM6npCQ4eNiYxJls0fIlVxKx44dS/O9hKJt48aNgZ4CCjiuIeQW1xByi2sIeYHrCLnFNQT4R5EMZLds2aInnnjCq9dqZGSk6tWrp6ioKCUkJFgh7ZIlS9StWzf17dtXTz/9tMLCLr5k7nYGkhQS4nv3B88xnE7vHpie+9kZMzQ0NMMxg02yI+U3bA7DzNZzRBFimjKzaFtguOwKM1Ouda4jAAAAAABQUBS5QHbv3r3q27ev1W6gWLFiGjhwoO644w6vitS9e/dq7NixmjNnjlwulz777DMdPnxYb7/9tnWMZwianY9Mewam4eHhXvfldEzPjxGkHjPY2C/M1WmktIRwtzgALjKzaiMrw5UsEcgCAAAAAIACpsgFsiNGjLDC2MjISH3++ef6z3/+k+a46tWr65133lGNGjX08ccfS5Jmz56tjh07qkuXLpK8Wwpkp02A57GRkZFe9/ljzPxUs2ZNhYWFKTrpmMo4QlTRGZHmGJuk6OgYlShVTJXKRatChQr5P1EEjZBU12tYWJhKlSwpZ8hpRVasmOHjImKiFBZdTJGVKqlixYqE+kWcy+Xy+jhV48aNvX7BBWSFawi5xTWE3OIaQl7gOkJucQ0htzZs2MA6Lz4oUoHs3r179fvvv1v7AwYMSDeM9TRw4EAtW7ZM69atkyT997//tQLZ0qVLW8edOXPG53mcPXvW2vYcQ5JKlSqVozE9j009Zn4KDQ1VSEhISuVrSEiGlYsuI6VCNiSTY1A0mLbUS3q5K6ezqHw1nZJpXDiOvyDAW2hoqFd7GCC7uIaQW1xDyC2uIeQFriPkFtcQ4B9FKglbtWqV1/6tt97q0+PuuOMOa/uff/7RsWPHJEkVPar33Lf54siRI9Z2uXLlvO7L6Ziex5YvX97nxwWK3WXIwW9MkJksCl5N40IPZ5cj8wMBAAAAAACCSJEKZA8fPmxtlypVyuePytevX99rf//+/ZJSPp7vlpSUpKNHj/o03t69e63t2rVre91Xq1Yta3vPnj0+jXf48GGdP38+3TGClcNlyO7iI+bIiKksE9kLQawVzAIAAAAAABQARSqQjYi42M/U4fA9xEn9sWnbhY9YN2zY0NqWUqpns3L27FmvoDV12NuoUSNre/fu3Tp37lyWY3qe12azKS4uLsvHBJrDZcrhokIWOWcadq+vAAAAAAAABUGRCmQrVapkbSclJWnnzp0+PW779u3pjhMTE6OGDRtat//5559ZjvXXX39ZzY1DQ0N11VVXed3frFkzqz+Ly+XS8uXLsxzT87wNGzb06kMbrOwuQw6XyUJMSJ+ZdYWsVRlLhSwAAAAAAChAilQg26JFC69q12+++canx3333XfWdt26db16tN5www3W9syZM7OsaJ0yZYq13bp1a5UsWdLr/pIlS6ply5bW/tSpUzMd7+zZs5o5c6a1f+ONN2Z6fLBwuAyZpimnQSCLDGR1abhbFtBDFgAAAAAAFCBFKpCNjY31ClC//PJLLVu2LNPHfPXVV1q6dKm1f/vtt3vd37NnTxUvXlySdPToUY0YMSLDsaZNm6Y//vjD2r/nnnvSPe7OO++0tn/77Td9//33GY758ssvKzExUZIUFRXl80Jlgea4EMQ66COLdPleIUsPWQAAAAAAUJAUqUBWkp555hmrKtXlcumBBx7QBx98YIWabkeOHNErr7yiV1991bqtUaNG6t27t9dx5cqV0/3332/tf//993r66ad17Ngx67bz58/r448/1vDhw63b2rdvr/bt26c7x06dOqlFixbW/rBhwzRhwgQlJydbtx09elQDBw70qo595JFHFBsb69PrEGh2Z0rbBvrIwjVtmjZPnqzNkydrx3ffyfzuO5lZlsdKMl2SadCyAAAAAAAAFChhgZ5AfqtWrZref/99DRgwQElJSXI4HHrvvff00UcfqXbt2ipTpoyOHz+uf//91+r1Kkk1a9bUxx9/bPV39TRgwABt2LBBixYtkiTNnj1b8+bNU1xcnCIiIrRt2zadPn3aaw6jR4/OdJ5vvfWW7rzzTu3du1dOp1Njx47Vp59+qrp168put2vr1q1eC5N17NhR/fv3z+Wrk3/cFbJ2Alk0aKBz9pSFuWxRUVJcnJSwSln3LEipjqVlAQAAAAAAKEiKXIWslNJLdtq0aWrUqJF1m8PhUHx8vJYvX674+HgrjLXZbLrppps0ffp0VahQId3xwsLCNH78eN16662y2WzWeBs3btSaNWu8wtgrrrhCX3/9dZaVrBUrVtRXX32l//znP9Ztp0+f1po1a7Rx40avMPbWW2/Ve++959UfN9i5K2Md9JBFunxb8M102WlZAAAAAAAACpQiVyHrdumll+r777/X4sWL9euvv2rNmjU6cuSIkpKSVKJECVWtWlVXXXWVunfvrri4uCzHi4iI0Guvvabbb79dM2bM0F9//aWEhATZ7XbFxsaqSZMm6tKli66//nqfg9PKlSvr66+/1q+//qo5c+Zo/fr1Onr0qEJCQlSxYkU1a9ZMt912m5o2bZrLVyP/uStjHU4qZHGR+xcaPjMcMg27fyYDAAAAAADgB0U2kHXr0KGDOnTokGfjNWnSRE2aNMmz8Ww2m66//npdf/31eTZmMHC6UrqE0rIA6ct6US/pwoJetCwAAAAAAAAFSMH5jDsKFVMpoSwtC5AbpuGQaTp9am8AAAAAAAAQDAhkETB2l2H1kgW8mGbKn6y4HCnpPn1kAQAAAABAAVHkWxYgcBwuQw4XlY1FnW3BApXauFGSVLxYMWnPHqlxCZ8e617Qy3TZZQuN8NscAQAAAAAA8gqBLALG4TLpIQuFPPmkLt261do34+KkhZ/Jpx6yrpQFvUwqZAEAAAAAQAFBywIEjJ0KWWTEx56wVhBLIAsAAAAAAAoIAlkEjMMwZJqmnFTJIl0+hLLulgUEsgAAAAAAoIAgkEXAuKtj7VTJIg3fFvWyWha4CGQBAAAAAEDBQCCLgHFcqIx1UCGLnDJdkmnQsgAAAAAAABQYBLIIGHdlrMMgkEVqvldNm4ZDpmH341wAAAAAAADyDoEsAsZdGUvLAqRmmsrWwl6my+nfCQEAAAAAAOQRAlkEDC0LkDHT9xpZl0OiQhYAAAAAABQQBLIIGIcrJXRzUCGLdGWjQpYesgAAAAAAoIAgkEXAmJKcLlN2KmSRmo/tCqSLgayZjccAAAAAAAAECoEsAsphGLQsQAZ8DFgNR8qhVMkCAAAAAIACgEAWAWV3GrQsQPp8vCxMV0r/WNoWAAAAAACAgoBAFgHloGUBMuR7D1lJMl0EsgAAAAAAIPgRyCKgUloWUCGL9Ph4XbiDWCpkAQAAAABAAUAgi4CyuwyZpiknVbKwmF5fsjzaoGUBAAAAAAAoOAhkEVDu6lg7VbJII5stCwhkAQAAAABAAUAgi4ByXKiMdRhUyCKHDKckU7qwuBcAAAAAAEAwCwv0BFC0uStjHbQsKLJcq1dr/bp1kqTSpUurZs3qUuIa+dyzQCnVsVTIAgAAAACAgoBAFgFlVcjSsqDoioyUGRkpSSlfIyKyP4aLQBYAAAAAABQMtCxAQLkDWTsVsrC4F/XKXoWsXASyAAAAAAAg+BHIIqAcVssCKmSRc6bLToUsAAAAAAAoEAhkEVCmJIdh0kMWHswL/81OhawzpY9sNqpqAQAAAAAAAoFAFgHncBm0LIAkyWazXdzJTrhq2FOON515PykAAAAAAIA8RCCLgLM7DVoW4KIcVLm62xWY9JEFAAAAAABBLizQEwBoWVC02T79VBU3b5YkFS9eXLZaNaSbL5Oy07LAHcTSRxYAAAAAAAQ5AlkEXErLAipki6qQceNUbetWa9+sV1e6+dPsDeKukDXseTk1AAAAAACAPEfLAgScw2XKNE05Dapk4Sk7FbL2C1/pIQsAAAAAAIIbgSwCzr2gF31k4SUbl4NJhSwAAAAAACggCGQRcO7+sXb6yMJLNhJZw5FyPD1kAQAAAABAkCOQRcC5K2OpkEVumIbz4uJeAAAAAAAAQYpAFgF3sWUBFbLwYGYzoDccVusCAAAAAACAYEUgi4CjZQHSl71A1nTZaVkAAAAAAACCHoEsAo6WBcgLJhWyAAAAAACgACCQRcCZkhyGScsCpJLNgN7lSKmSBQAAAAAACGIEsggKDpdBhSy8ZPdqMA2HZJoyDadf5gMAAAAAAJAXCGQRFBwugx6y8JbNRb3c7QpoWwAAAAAAAIIZgSyCgt1FywLkjhXEughkAQAAAABA8CKQRVBwuAw5DFoWwFN2e8im9I81DfrIAgAAAACA4EUgi6DgcJkyDFNOgypZ5CyYp2UBAAAAAAAoCAhkERTc/WNZ2AuW7PaQddGyAAAAAAAABD8CWQQFhxXIUiELt2yG81TIAgAAAACAAiAs0BMApIuVsXYqZIscs0oV2U+dkiSFhoYqpHLlnI4k03ASyAIAAAAAgKBGIIugYKdCtsgyfvlFG9etkySVL19elctFScc2KUe9ZA27tbgXAAAAAABAMKJlAYICLQuQRg7yWNNwyDSceT8XAAAAAACAPEIgi6BAywJIks1m81jMK/vXgulyyDSokAUAAAAAAMGLQBZBwVRKKGunQhY5KY11P9JlT/ljEuwDAAAAAIDgRCCLoGF3GbI7CWThloNQ1ZWcUmHLwl4AAAAAACBIEcgiaCQ7DSpkISuIzUkPWVey11cAAAAAAIBgQyCLoGF3EchCHnlsTnrI2r2+AgAAAAAABJuwQE8AcLO7DDldpgzDVEiILdDTQT4JeeEF1dy8WZJUvFgxhdSoJD11q3K2qJe7QpZAFgAAAAAABCcCWQQNd/9Yu8tQsZDQAM8G+cX2448qt3WrtW/WveRCIJt9puGukKVlAQAAAAAACE60LEDQcLcroG0BJKUszpVdhlMyDQJZAAAAAAAQtAhkETTsLvPCVwJZ5JzpSpYMWhYAAAAAAIDgRCCLoOFuWZDszEFlJAqhnF0HpstOD1kAAAAAABC0CGQRNGhZgLxgupJpWQAAAAAAAIIWgSyChtMwZZimVSmLIi4nPWR1oULWcMg0uY4AAAAAAEDwIZBFULG7TCpkkSumKzml2wFtCwAAAAAAQBAikEVQsTsNAllckMMK2QsLetFHFgAAAAAABCMCWQQVu4tAFm45XNztQv9Y+sgCAAAAAIBgRCCLoGJ3GbI7TZk57B+KQiSHl4C7MpYKWQAAAAAAEIwIZBFUkp2GTNOU0yCQRU4X9bpQIWtQIQsAAAAAAIIPgSyCirtdgd1J24KiLseRvGlIhpMKWQAAAAAAEJQIZBFU3EEsfWSRi0hWpiuZHrIAAAAAACAoEcgiqNhdptdXFEWm15ccjeCyS1TIAgAAAACAIEQgi6BitSygQha5qZA1kmlZAAAAAAAAghKBLIKKu2VBMj1kkQumyy7TcMo0XIGeCgAAAAAAgJewQE8A8GRKcrhMKmSLELN1a52KjZUkRUZGKrx6Bfc9OR/zQnWs6UqWLSQqt1MEAAAAAADIMwSyCDp2l2FVyqLwMz75RP+uWyebzaZKlSqpXFSydHqPZOZuUa+Ur3YpnEAWAAAAAAAED1oWIOjYXQYVskVa7hd0s/rHGsm5HgsAAAAAACAvEcgi6Nidhuyu3IdyKOhycQ14VsgCAAAAAAAEEQJZBB27y5DTZcgwCGWLEpvNlrKRi1YFbhd7yBLIAgAAAACA4EIgi6DjbldA24IiLlfBrCnTsFu9ZAEAAAAAAIIFgSyCjt2ZEsQRyBZVeVMZbbrsVMgCAAAAAICgQyCLoJNMhWyRZlqVsbkMZl3JBLIAAAAAACDohAV6AkBqdueFQNZJD9miIKRPH8X9849sNpvCw8IUWrOS7O8NzvW4pssuGbQsAAAAAAAAwYVAFkGHHrJFi239esVs3WrtG6drKy/aFpguu0zDkGk4ZAsJz/V4AAAAAAAAeYGWBQg6TsOUYRLIInfcC3rRtgAAAAAAAAQTAlkEJbvLULKTQLbIMvOmQjblK20LAAAAAABA8CCQRVCyuwwqZJErVMgCAAAAAIBgRCCLoGR3EsgWbXlRIXuhMpZAFgAAAAAABBECWQQlu8uQ3Zn7UA5FmOGQZNKyAAAAAAAABBUCWQQlu9OQaZpyUCVbNOVBD1kppV0BLQsAAAAAAEAwIZBFUHK3K6BtQdGUV7XRpiuZClkAAAAAABBUCGQRlOyulEjO7iSQLZrysELWoEIWAAAAAAAEDwJZBCV3EOsOZlHU5G3LAjOPWiAAAAAAAADkFoEsglIyLQuKtrzKT13JKf1oDUceDQgAAAAAAJA7BLIISu7FvGhZUFTlVYVsstdXAAAAAACAQCOQRVAyTMlhmFTIFkl5117AdNm9vgIAAAAAAAQagSyClt1pEMgWWXldIUsgCwAAAAAAggOBLIKW3WXI7mQxpiIpj95203BXyNKyAAAAAAAABAcCWQQtu8uwFvdCUZNHiazhlEyDQBYAAAAAAASNsEBPAMiI3WnIaRgyTFMhNlugpwM/Me66S0c3b1ZoSIiKFSumyApReTq+6UqWDFoWAAAAAACA4EAgi6BldxmSmRLMFgsPDfR04CfmkCHat26dIiMjFRsbq9iwI9LZA3k3vstOD1kAAAAAABA0aFmAoOXuH8vCXkWQmXe9g01XMi0LAAAAAABA0CCQRdByB7F2Fwt7FS15+36bLrtMwyHTJNgHAAAAAACBRyCLoHUxkCVIK1JMyczDUNZ0JadkvLQtAAAAAAAAQYBAFkHL7jS8vqKoyOMK2QsLetFHFgAAAAAABAMCWQQth2HKMKmQLSpsNtvFnTzsIasL/WNNgz6yAAAAAAAg8AhkEdTsLoMK2SIn73vISpLppEIWAAAAAAAEXligJwBkxu4yqJAt5EJbttTlW7fKZrOlVMnWrqZz372RZ+ObVMgCAAAAAIAgQiCLoGZ3GrK78rZiEkHmzBmFnTlj7Rpnzubt+KYhGU56yAIAAAAAgKBAywIENSpki6q8X9jLXSkLAAAAAAAQSASyCGp2lyHDMOUglC1a8nJRL0mmM1miQhYAAAAAAAQBAlkENbszJZijSha5YRrJtCwAAAAAAABBgUAWQc0dxLqDWRQVeVwh67LLNJwyDVeejgsAAAAAAJBdBLIIanbnhUCWCtmiJY/zd3d1rGlQJQsAAAAAAAKLQBZBzaqQJZAtYvK6QjZlQS/TycJeAAAAAAAgsAhkEdQIZJEXrP6xBoEsAAAAAAAILAJZBDXDlJyGabUuQFGRxz0L3BWyLOwFAAAAAAACjEAWQc/uMqiQLVLMvI5jL/aQJZAFAAAAAAABRiCLoGd3GrI78zqiQ1Az8zySlWk4rF6yAAAAAAAAgUIgi6CXTIVsEZT3AbzpSqZCFgAAAAAABByBLIKe3WnIYRgy8rxqEkUKgSwAAAAAAAgCBLIIenaXKZmSgyrZosMP4bvpsksGLQsAAAAAAEBgEcgi6LnbFSQ7CWSRc6bLLtMwZBqOQE8FAAAAAAAUYQSyCHr2C0Gs3UXLgqLDPz1kU77StgAAAAAAAAROWKAnAGTFXSHLwl6FkzFsmPZt3KjIYsVULDJSUSXO++U87iDWdNml8Gi/nAMAAAAAACArBLIIelaFLC0LCiXz9tt1tH59xcTEyChRQpHGDuns/rw/j1UhSx9ZAAAAAAAQOLQsQNBzGKZMUSFbdJj+6FhwsVUBLQsAAAAAAEAAEciiQLA7DQLZQs5ms3ns+SGRNeySTHrIAgAAAACAgCKQRYFgdxmyO1nUq2jw3/tsuhwyDVoWAAAAAACAwCGQRYGQ7DSU7HIFehrIB6bp/o8fxnYlUyELAAAAAAACikAWBUKyM6VC1vRTUIdgYvqtRtY07ASyAAAAAAAgoMICPQHAF8lOQ6Zpyu4yFRlmy/oBKDiOHFHY0aMKPX9eIUlJkk5IkX6KZF0EsgAAAAAAILD8EshOmDBB3bt3V8WKFf0xPIqg5AsLeiU7XYoMo7C7MAnt2FGXb91q7RuXVNfZWW/45VymK1kyDZmGQ7aQcL+cAwAAAAAAIDN+SbbeeecdderUSffff79+/vln2e1UpCF3kp2G11cUdv7qIWv3+goAAAAAAJDf/NaywDAMLV26VEuXLlXJkiXVpUsX3XLLLWrcuLG/TolCLNnpuvCVQLZI8FPHgouBbLIUHu2fkwAAAAAAAGTCLxWy9evXl2ma1p+TJ0/q66+/Vq9evXTzzTdr0qRJSkxM9MepUUhZFbIuAtmiwV8VsskXvlIhCwAAAAAAAsMvgewPP/ygWbNmqX///lYfWXc4+++//2r06NFq3769HnnkEc2fP18ul8sf00AhYpiSw2VSIYtcsYJYAlkAAAAAABAgflsdqW7dunr22We1aNEiff755+revbuioqKsYNbpdOq3337T448/rnbt2mn06NGKj4/313RQCCQ7XQSyRYXpp54Fhl2SSYUsAAAAAAAIGL8vV2+z2dSqVSu98cYb+vPPPzV69Gi1adNGoaGhVjh7/PhxTZo0Sd26dVOPHj00efJknTx50t9TQwGT7DIIZIsMPwWySqmSNY1kv40PAAAAAACQGb8t6pWeYsWKqVu3burWrZuOHDmimTNn6qefftLmzZutYzZv3qx//vlHo0eP1jXXXKNbbrlF7dq1k81my8+pIgglO1MCWdM0uR6QY6bLToUsAAAAAAAImHwNZD2VL19e/fv3V//+/XXw4EEtXLhQCxcu1IoVK+RwOGS32zV37lzNnTtXlSpVUq9evdSrVy+VL18+UFNGgLnDWIfLVEQYgWzh5scKWYNAFgAAAAAABI7fWxb4onLlyurYsaM6dOiguLg4SbIqIE3T1KFDhzR+/Hh16tRJw4YNU2JiYiCniwBxtyugbQFyhQpZAAAAAAAQQAGrkJWkXbt2afbs2VqwYIG2bNli3W6z2WReWNSnevXq2r9/vwzDkMPh0PTp07VgwQKNHTtWLVu2DNTUEQBWIOtyqURgL134m78W9ZJkupIl05DpcsgWGu638wAAAAAAAKQn31OtY8eOafbs2Zo1a5Y2bdpk3W56BDCxsbG6+eabdcstt6h+/fo6fPiwZs6cqW+//VZ79uxRYmKiHnnkEX377be69NJL8/spIECokEVecFfHmq5kAlkAAAAAAJDv8iWQTUpK0q+//qqZM2dq+fLlcrlckrxD2LCwMHXo0EG33HKLrr76aoWFXZxahQoVdP/996tfv3568cUXNWPGDJ07d04fffSR3n777fx4CggCyU7Xha8EsoWd6c8esq7klK8GbQsAAAAAAED+81sgaxiG/vjjD82cOVMLFy7U+fPnJXmHsJIUFxenW265RV27dlVsbGymY4aGhuqVV17RwoULdfLkSa1cudJf00cQcpmS0zAJZJErFytkCWQBAAAAAED+80sgO3LkSP388886fvy4pJQQ1rMvbOnSpdWlSxf17NlTDRo0yNbYERERqlevnlauXKkTJ07k9dQR5JKdBoFsUeDvHrKSRCALAAAAAAACwC+B7OTJk70CWCmlurVt27bq2bOnrr76aoWH57x3o9PplCRVrlw513NFwUIgW1T4L5CV4ZBkXgxmAQAAAAAA8pHfWha4w9i6deuqR48e6tq1q8qWLZsnY1eoUEG9e/dWy5Yt82Q8FBzJTpeSXQSyyB3TZadlAQAAAAAACAi/BLKlSpVSly5ddMstt6hx48Z5Pv64cePyfEwUDMlOQ4ZhyuEyFB4aEujpIA+4PvtM2zdsUIkSJRQZblN05An5tUJWFwJZFvUCAAAAAAAB4JdAdsmSJblqSQBkxN2uINlJIFtoXHWVzkRGKiI2VrZwqbixWzrxr19PabqSqZAFAAAAAAAB4ZdAdsKECZKkmjVr6uabb87xGEuXLlVoaKg+//zzvJweCjB3u4Jkp6GYyABPBnnP6jvt3wpZuez0kAUAAAAAAAHhl0D2/fffl81mU9u2bXMcyC5dulQrVqxQyZIl83h2KMg8K2RRGPk5iHWfxbBLpinT5ZAtlGp+AAAAAACQf4L2M9/nz5+XJCUlJQV4JggmBLJFhf97yKZ8pUoWAAAAAADkrxxXyB49elR2e+Y9GM+fP68DBw5ka9zk5GQtXrxYGzZskJSyQBjg5jRMuQxTyS5XoKeCPGaz2S7u+LlQ1h3EsrAXAAAAAADIbzkOZH/88UeNGTMmw/tN09SqVat0zTXX5Gh80zRls9lUv379nE7RJy6XS7/88ot+/fVXbdy4UUeOHJHL5VK5cuXUuHFj3XzzzbrmmmsUEuJbMfH69es1bdo0rVy5UgkJCTJNUxUrVlSjRo3UrVs3tW/f3jt4yoJpmpo/f75mzpypDRs26NixYypevLgqVqyoli1bqmfPnn5/jYJNssugQrbQyp8eslTIAgAAAACAQMlxIHvvvffqhx9+0LZt2zI8xjRzFqq4A0ubzaZ+/frlaAxfrF+/XsOGDdOWLVvS3Ld//37t379f8+bNU9OmTTV27FhVrVo1w7EcDodGjhypb775Js19u3bt0q5du/TTTz+pbdu2GjVqlCpUqJDl/BISEjRw4ECtXr3a63a73a6TJ08qPj5eX331le69914NGjRIERERPjzrgi/ZSSBbqKxYoZgNG1SsVCmFh7gUUuyUVNP3X1rkhFUh66JCFgAAAAAA5K8c95ANDQ3Vyy+/nK1qT1/ZbDZdcsklGjt2rNq2bZvn40vSsmXL1LdvX68wtnz58mrWrJmaNGmi8PCLC/2sXbtWd999tw4fPpzuWKZp6qmnnvIKYyMjI9WkSRNdccUViomJsW5fsmSJ+vbtq1OnTmU6v8TERN11111eYWzp0qXVvHlzNWrUSGFhYda5P//8cw0ZMiR7L0ABdt5BIFuYhN53n+IGDFCl3r1V9va7FDFolP+X9jIckkyJQBYAAAAAAOSzHFfISlKzZs20aNEiOZ1O6zbTNHXttdfKZrOpefPmeuONN3weLyQkRJGRkSpZsqQVOPrD7t279cgjj1gLhlWpUkUvvfSSrr76aitgPnXqlMaPH68vv/xSUkrF7MiRIzV+/Pg043322WeaP3++td+nTx8NGjRIJUqUkJTSS3fSpEkaP368nE6nduzYoeeff17vv/9+hnMcOnSo9uzZIykl3B06dKh69eplvS5HjhzR66+/rjlz5vw/e3ceJ0dZrn38qpmeJckkkz1sSdhC2EQQVJAcFJcoCIEEhINsgoqKoAaOAgKiyHo4iAucAy8iIAiI7Jsg+74HIQlkIZB9mcxktt6r6nnePzpTzCSTZKa7a2q65/f9fHK6arrq6TuxwOOVu+9HkvToo49q77331kknnVToH0+/l/F9+cbK841ilf12XzoUIs/u+l59hJ+lQxYAAAAAAPS5glPPcePGdftza61qa2s3+zX/qFx88cVBGLv99tvrlltu0dZbb93lmmHDhun888+XMUa33367JOnJJ5/U4sWLtf322wfXrVu3Ttddd11wftxxx+miiy7qslZtba1++MMfasyYMfrlL38ZrDVr1ix95jOf2ai+F198Uc8991xwfsUVV+jQQw/tcs2YMWN0zTXXqLq6Wg888IAk6X//9381Y8aMLh255aijOzbjEcgif9bPsKkXAAAAAADoc6GkWWeccYbOOOMMHX744WEsX5DZs2frpZdekpTryL3qqqs2CmM7++lPfxrMZrXWdglKJemee+5RIpGQlBsp8Itf/GKTax111FH60pe+FJzffPPN3V536623BsdTpkzZKIzt7KKLLtKoUaMkSc3Nzbr//vs3eW25CAJZn7EF5auvOmTZ1AsAAAAAAPStUOYCnHHGGWEsWxT33XdfcHzkkUdqr7322uz1w4YN09lnn62mpibV19frU5/6VJf3//nPfwbHhxxyiAYPHrzZ9Y499tgg1H3hhReUTCa73NPa2qpXXnklOD/qqKM2u97gwYM1bdq0INx9/PHHdeKJJ272nlLXuUMWyNv6kQXW2lBmYQMAAAAAAHQnvEGt/VTnDtdjjjmmR/d85zvf6fbnLS0t+uCDD4LznmxAtv/++6uyslK+7yudTuuVV17RV7/61eD9N954Q77vS8ptbnbggQducc0DDzwwCGRnzZql1tZW1dfXb/G+UkUgOwD0xQxZk819jnGlyurQPw8AAAAAAEAqIJDtmFva4cgjj9zke4XqvHYhVq9erZUrV0qSBg0atMXu2C2ZP3++bKfgaI899tjiPYMHD9aECRP08ccfS8qNUOgcyM6bNy843m677XoUrO66667BsTFGc+fO1Re+8IUe/R5KkWesfGsJZFGQjnEF1s/KIZAFAAAAAAB9JO9A9txzz+3yNd/OoemG7xWqWIHs/Pnzg+Mdd9xRlZWVkqTly5frgQce0LPPPqsVK1YolUpp7Nix+tznPqejjz5a++yzT7frLV68ODiurq7e7CzazrbbbrsgkF26dOkm15w4cWKP1hszZoxqa2uVTqclSUuWLCnrQFbKdccSyJazvpkhK4mNvQAAAAAAQJ8qeGTB5uYv2iJ87biYwW7n8HPs2LEyxuimm27Sn/70J2UymY2uXbp0qe655x5Nnz5dv/nNb1RTU9PlmrVr1wbHY8aM6XEdna/tvIYkNTQ05LXmqFGjtGLFim7XLEcZzyjt+VGXgdD0RSCb6fIKAAAAAADQF/IOZLfZZpu83otSY2NjcDx48GD99re/1R133BH8bOedd9aoUaPU2NioRYsWBT+///77tXTpUt1yyy2qrv7kq80tLS3B8dChQ3tcR11dXXDc2tra5b3O571Zs/O1bW1tPb6v2Hzfl+M4stbKGiNjwuliTbu+0q4vY0zus/pg5ijCUWGtNvxrFxPisxNwM7LWyriZvvk8hKpj9vamzoEt4RlCoXiGUCieIRQDzxEKxTME9I28A9lnnnkmr/ei1DmofPHFF4Pzr371qzr33HM1fvz44P1ly5bpt7/9rZ5//nlJ0ttvv61LLrlEF198cXBNNvvJV51ra2t7XEfnULfzGpK6dOrmu+aG3b59acmSJRoyZIgS8ayaW1q1Zs26UD5nREVGdRX1WrEqq0wquVGwjdKxRyajzk+6MUaNaxvlJhs3eU+xjK5vl3XXyE9Wq6Ghgf9no4zMmTMn6hJQ4niGUCieIRSKZwjFwHOEQvEMAeGoiLqAvtQ5/OwIY4899lhde+21XcJYSRo/fryuv/56feMb3wh+dvfdd2vBggXBueu6wXFFRc//KGOxT3Jwz/O6vNf5vDdrdszD7W7NcpTK5n6Prm+7/N5RLvqm49l4Gcnk/jnmOQIAAAAAAH1hQAWyG86jHT9+vC644IJNzqmtqKjQJZdcEowYsNbq9ttvD97vHOD05uvOnQPTqqqqLu/lu2bnzr4N1yxHaTf3Z5g1BLLlqa8C2bQcSyALAAAAAAD6TsGbehVLPB5XLBbr1df0e2vw4MFdzv/zP/+zy1f9uzN06FAdeuihuvvuuyVJr7zySvBe51p7Myag87UbbhQWxpp9aeLEiYrFYhqSbNIIt0LjvM3/+earriamuiF1Gjp8iLYaWtNv5xZjyyo2eF4rKio0evRomUz4f7FQPaRWsbpa1Wy1lcaOHRv65yE8vu93+TrVnnvuSciOXuEZQqF4hlAoniEUA88RCsUzhELNnj2bPVp6oE8C2SVLlshxHE2YMGGj9/7yl7/o1ltvVUNDgxzH0cSJE3XKKafoW9/61iY7V/M1ZMiQLuef+cxnenTf3nvvHQSyy5YtUzabVXV1tYYPHx5cE4/He1xHIpEIjjuvIUn19fV5rdn52g3X7EuVlZWqqKiQ4zhyKip6NXahN1xj5TiOXENnY6mz3fxz7jhOaM9OF8aVjCvHcbqMEkHpq6ys5D9TFIRnCIXiGUKheIZQDDxHKBTPEBCOUBOP1157TUceeaS+8Y1v6N57793o/XPPPVdXXXWV1qxZk9vt3Bh9/PHHuuiii/TTn/60y4zWYhgxYkSX85EjR/bovlGjRnU5b2lpkSSNGzcu+FlTU1OP61i7dm1wPHr06C7v5btm52vHjBnT4/tKletbGStlPP7WBQXwM5K1wRxZAAAAAACAsIUWyD777LP63ve+p/nz50uSli9f3uX95557Tg888ICkjWe7Wmv15JNP6pprrilqTZMmTepy3rGx15ZsuElWx98OTZw4MfhZMplUY2PPdoVftmxZcLzDDjt0eW/77bcPjpcuXdqj9RoaGpROp7tdo5xlPF8Zn0C2PPXNDFlrchv9WT+7hSsBAAAAAACKI5RANpvN6qKLLgqCTGut1q1b1+Wam2++OXgvFotp5syZuu6663TYYYcFP7/tttu6hJeFmjx5cpfzxYsX9+i+1atXB8e1tbXBSIDdd9+9S5j8wQcfbHGtRCLRJWjdddddu7y/xx57BMdLlixRKpXa4pqdP9dxnI1+n+Uq4xk6ZMuA/+yzevfxx7Xy7bfV8MazSv/jj7mu1T7QEcRav+fzmgEAAAAAAAoRSiD78MMPBzNha2tr9bvf/U5//vOfg/ebmpr05ptv5uaMOo5++ctf6gc/+IG+8pWv6H/+5390wgknSMp1pj722GNFq2vkyJFdwsqnnnqqR/e9+eabwfHuu+8ezLasq6vT7rvvHrzXecOvTXnttdeC4caVlZX63Oc+1+X9fffdN+jA9X1fr7/++hbX7Py5u+++e5c5tOUs4xPIloUxY+SNHi0zdqzMmNHSqOF99tEdQWxHpywAAAAAAEDYQglkX3755eD4oosu0qGHHtpl46Xnn39exhhZa1VbW6vp06d3uf/MM88MQskXX3yxqLUdccQRwfEzzzyjDz/8cLPXr1q1Sk8//XRwPnXq1C7vf/3rXw+OH3rooS12tN55553B8Re+8AUNGzasy/vDhg3T/vvvH5zfddddm10vkUjooYceCs6/8Y1vbPb6cpLxjDzfyDd9002JvmA3eA3503xGFgAAAAAAgL4VSiA7d+5cSVJ9fb2mTZu20fsdIavjOPrc5z6n2traLu/X19dr5513lrVWK1asKGpt06dPDzpIXdfVueeeq/b29m6vzWazOuecc4LNxerq6jRjxowu1xx11FEaNGiQJKmxsVEXX3zxJj/7H//4R5eA+aSTTur2uuOPPz44fvbZZ3Xfffdtcs1f//rXwTiIwYMH6+ijj97kteWmozuWLtnysOEs6T5hXElWIpAFAAAAAAB9JJRAtrm5WY7jaPz48cHX+zt77bXXguMDDjig2zVGjBghKTfeoJhGjhyp8847LzifPXu2vv3tb3epSZI++ugjnXrqqV1GBvzsZz/baBzA6NGj9b3vfS84v++++3T22Wd3qTudTuv666/XRRddFPzsoIMO0kEHHdRtjV/+8pf1+c9/Pji/8MILdcMNNyiT+WTOZWNjo2bOnNmlO/b000/XyJEjt/hnUC4IZMvR+s7YPpohK+XGFjBDFgAAAAAA9JVYGIsmk0lJ0tChQzd674MPPlBzc3Nw3jl47CybzXWsdR51UCzTp0/X4sWLdf3110uSFixYoJNPPllbbbWVxo8fr9bWVi1YsKDLPUcccYROPPHEbtf74Q9/qNmzZ+u5556TJD3yyCN64oknNHnyZFVXV2vhwoVdunC32247XXnllZut8aqrrtLxxx+vZcuWyfM8/e53v9ONN96oSZMmKZvNav78+UHnriQdfPDB+u53v5vPH0fJCgJZ35dUFW0xKFnWzzKyAAAAAAAA9JlQOmQ7gtjOwWuHl156KTgeMWKEdtttt27X+PjjjyVpoxmrxTJz5kxddtllQSeuJK1evVpvvvlmlzA2Fovp9NNP1xVXXLHJtWKxmP70pz/p6KOPDr527bqu5syZo1mzZnUJY/fZZx/dcccdW+xkHTdunG677TZ95jOfCX7W3t6uWbNmac6cOV3C2KOPPlp//OMfu+1GLmcZz1//Sods+ejbGbLS+kCWTb0AAAAAAEAfCaVDduedd9abb76pRYsWKR6Pq66uLnjv2WeflZSbFzllypRu73/11Ve1bt06OY6jnXfeOYwSJeXmv371q1/VQw89pKefflofffSR1q1bp6qqKm2//fY64IADdNxxx2n8+PFbXKu6ulqXXnqpjj32WN1///167bXXtGbNGmWzWY0cOVJ77bWXDjvsME2dOrXHwenWW2+tO+64Q08++aQee+wxvffee2psbFRFRYXGjRunfffdV8ccc4z23nvvAv8kSlPWt7IikC11zt//rtFz5mhIfb0cP67K+grp8xt314elo0PWWhvNHFsAAAAAADCghBLI7r///nrzzTfluq6uuuoq/eY3v5GUC2NnzZoVXDd16tSN7l22bJl+9atfBeebGmlQLPX19TrxxBM3OY6gt/baay/ttddeRVlLygXXU6dO7fbPCrkwlkC2tFX89reaOH9+cG52Gq/UHWf0XQF+Jjez1rhSZXXffS4AAAAAABiQQglkZ8yYoRtuuEGu6+ruu+/Wu+++q2222UYvvPCCHMeRtVZjx47Vl770peCeDz/8UI888ojuvPNOtbW1SZJqamp0xBFHhFEiykTG8wlky1LfjizIvWbkEMgCAAAAAICQhTJ0dOutt9bPfvYz2fU7pc+fP1/PPvusfN8PvhZ8/vnnKxb7JA/++9//rhtuuCEIYx3H0U9+8hONGzcujBJRJuiQLU99F8dK1mRyr2zsBQAAAAAA+kAoHbKSdOqpp8pxHF1zzTXKZj8JOgYNGqTzzjtvo6/g77DDDkGAW1lZqdNPP12nnnpqWOWhTGQ8I9cYGWNVUcH8z/IRQYcsG3sBAAAAAIA+EFogK0mnnHKKpk+frueee04NDQ3aaqut9MUvflH19fUbXbvDDjtoxIgR+tKXvqSTTz5Zu+66a5iloUxkPCNZKeMbDaqojLocFEsftsh+MrKAQBYAAAAAAIQv1EBWkoYPH64jjzxyi9d9/vOf16uvvhp2OSgzHeMKMp7RoCoC2fLRh4mscSVrcpt7AQAAAAAAhCyUGbL5qKjoN6WghHQOZIF8WZOlQxYAAAAAAPQJUlCUNALZctWX23rlxhUQyAIAAAAAgL4Q+siCDtlsVu3t7XJdV8b0LjzbZpttQqoKpS7rG1lJGc+PuhSUMOtn2NQLAAAAAAD0iVAD2ZaWFt10003617/+paVLl+a1huM4ev/994tcGcqFlZT1DB2y5cZG0yFrrZXjOH362QAAAAAAYGAJLZCdN2+eTj31VDU3N8v2cbiCgSXjGWV8Atny0sf/zvCzuRDYuFJldd9+NgAAAAAAGFBCmSGbzWb14x//WOvWrSOMRegydMiiQB3zY62fibgSAAAAAABQ7kLpkL333nu1YsUKOY4ja6323ntv/ed//qcmTZqkYcOGqaKCvcRQPBnfV9Y3Mtaqgq+bl4e+HllgckEsG3sBAAAAAICwhRLIPvnkk8HxYYcdpv/5n/8J42MASVLaNZLNdcoOqqqMuhyUoE86ZAlkAQAAAABAuEJpVV2wYIEkqaqqSr/85S/D+AggkF4/roCxBeWkjztkvXTu1U/36ecCAAAAAICBJ5RAtrW1VY7jaOedd9bIkSPD+AggkPF8SVLa9SOuBCXL+pLxmCELAAAAAABCF0ogO3z4cEnS0KFDw1ge6CLt5jpj03TIlqa6Ovl1dTLDhskMrZMdMjiSMqyfkfUIZAEAAAAAQLhCmSG7/fbba+3atVq2bFkYywNduMbKN1Zpjw7ZUuS/9prmzJmjsWPHqjK1TEOrktKKF/u8DuunGVkAAAAAAABCF0qH7Ne+9jVJ0qpVq/Tuu++G8RFAF2nPBJ2yKHG2b+fHBh/rZXJdshF9PgAAAAAAGBhCCWRnzJihcePGSZIuueQSZbPsXI5wpT2fkQVlIbow1PqZXBjs8+8rAAAAAAAQnlAC2bq6Ol1xxRWqrq7WnDlzdNJJJ+mdd94J46MASbk5shnP0N1YohzH6XQWzX+GZv24AsYWAAAAAACAMIUyQ/b555+XJH3nO9/RDTfcoHfffVff/va3NXLkSE2ePFnDhw9XTU1Nj9ZyHEeXXXZZGGWijKQ9X9ZaZTyj2qrKqMtBCbJeRyDLxl4AAAAAACA8oQSyP/jBD4KOt45Xa62ampr06quv9no9AllsScf82DSBbImzkXU5dwSxBLIAAAAAACBMoQSykjYZqvQ2bOn6VWagex3zY9OeL6kq2mKQvyhHTvgZSTbolAUAAAAAAAhDKIHs9OnTw1gW2KRcEPtJpyxKh3PFFdpm3jwNqq2V47WpakydsjO2j6QW62fokAUAAAAAAKEKJZC9/PLLw1gW2CTXt/KtDTplUToqbr9dY+bPD87NjttJM74fSS3WI5AFAAAAAADhqoi6AKBY0q5R2vWjLgMlzPppRhYAAAAAAIBQEciibKQ9nw5ZFMT6GVnjyRqCfQAAAAAAEI7QNvXalDVr1mjNmjVqbW3VsGHD9OlPf1qSlEqlVF1drcrKyr4uCWUi7RplPCNrLZvBIS/Wy40rsH5aTsWQiKsBAAAAAADlqE8C2aVLl+qWW27Rc889p1WrVgU/nzJlim688UZJ0tNPP61LLrlExxxzjL7//e9r6NChfVEaykh6fRib8Yxqqwj20XvWT69/zUhVBLIAAAAAAKD4Qh1ZYK3VH/7wBx1yyCG68847tXLlSllrg1+drVy5Ui0tLbrxxhs1bdo0zZ49O8zSUIY65scytgD56tjQq6NTFgAAAAAAoNhCDWR/9rOf6frrr5fv+xsFsBt+pXz58uXB8apVq/Td735XixYtCrM8lJnM+iA2QyCLPHVs6NXRKQsAAAAAAFBsoQWy1157rZ544ong/FOf+pQuvPBC3XXXXd1ef/jhh2vfffcN5n+2tbXp3HPPDas8lKG0t75D1mVDJuTJ+pLxCGQBAAAAAEBoQglkV69eHcyGlaSzzz5b//jHP3T88cdr77337vaez372s/rb3/6mCy64IPjZnDlz9Pzzz4dRIspQ1rcy1jKyAAUxfpqRBQAAAAAAIDShBLL33HOPMpmMHMfRt771LX3/+9/v8b0nnHCCTj755OD8scceC6NElKm0Z4JOWSAf1s8Es2QBAAAAAACKLZRA9qWXXpKUmxP7k5/8pNf3n3baaYrFYpLE5l7olbRrlHbpkEX+rJcLZDecew0AAAAAAFAMoQSyy5cvl+M42nnnnTV69Ohe3z9y5EhNmDBB1lqtWbMmhApRrtKer7RnCNNKWrT/2Vk/LVkr+dlI6wAAAAAAAOUplEC2tbVVUi5YzdeYMWMkSdksoQh6Lu3mwtisT5cs8tMxroCNvQAAAAAAQBhCCWSHDh0q6ZNgNh9NTU2SpPr6+qLUhIGhY34sYwuQL+vlgljmyAIAAAAAgDCEEshuvfXWstZq4cKFeYWyq1at0qJFi+Q4jrbZZpsQKkS5SnumyyvQW590yBLIAgAAAACA4gslkD3wwAMlSb7v6y9/+Uuv7//jH/8YzAD9/Oc/X9TaUN7S7voO2fWdskCv+RlJNuiUBQAAAAAAKKZQAtlp06apoiK39J///Gc98cQTPb73hhtu0P333x+cf/Ob3yx6fShfWd/KWMvIghJi99pLyb32UnaffeR+ejf5u24fdUmyfoYOWQAAAAAAEIpYGIvuvPPOmj59uu699175vq+ZM2dq2rRpmj59unbccceNrk8mk3rjjTd066236rXXXpMkOY6jqVOnatdddw2jRJSxtGfokC0h5o47tHjBAg0fPlyx+DwNdtqlxncjrcl6BLIAAAAAACAcoQSyknThhRdq3rx5mjt3rqy1evDBB/Xggw92uebNN9/U/vvvr/b2dhmT62jsGFUwfvx4XXzxxWGVhzKWdg0zZFEQ66cZWQAAAAAAAEIRysgCSaqtrdVNN92k//iP/5C1tssvx3EkSZlMRi0tLfJ9PwhiJWn33XfXzTffrPr6+rDKQxlLe74ynunyTKFU2PW/Iq7Cz8gaT9bQaQ0AAAAAAIortEBWkoYPH64bb7xRV155pSZPnhz8vHM429nYsWN1zjnn6K677tK2224bZmkoY2nXyBirrB99sIdespL6QZBuvdy4AuvTJQsAAAAAAIortJEFnR1xxBE64ogjtHTpUs2aNUtLlixRW1ubXNdVfX29xo0bp3322Ue77bZbsBkYkK/M+nEFac9XTYznqdREH8d+EsRaLy1VDYm4GgAAAAAAUE76JJDtMGHCBE2YMKEvPxIDUMeGXhnXSLURF4Me6Rhj0m9GFqyfH8vGXgAAAAAAoNhoH0TZSbufdMgC+egIYglkAQAAAABAsfVphyzQFzK+kbFSev3oAvRvFaedpvELFyoWi8nx4nK2qpd31kHRFmX93KZezJAFAAAAAABFlncg++abbxazjs367Gc/22efhfKQ8fygUxb9m/PKK6qbPz8493fYRlLEgaxyc2Q7NvcCAAAAAAAolrwD2RNPPLHT3MfwOI6j999/P/TPQXlJe4aRBSiI9TOMLAAAAAAAAEUX2sgCa6PfmAcDV9r1GVmAglgvF8haa/vkL58AAAAAAMDAUFAg25PQtSPI6Lg2Fotp/Pjxqq+vV1VVlRKJhJYtW6b29vYu1++8884aPHhwIeVhAEt7RsZYZT2j6hh716H3rJ+WrJX8rBSribocAAAAAABQJvIOZOfNm7fZ95ubm/W9731Pc+fOlSR99atf1fHHH699991X1dXVG10/f/583Xnnnbr77rtlrZW1VldffbW22267fEvEANbRHZv2fAJZ5KVjXIH103IIZAEAAAAAQJGEllTNnDlT77//vmKxmK644gpde+21OuCAA7oNYyVp8uTJ+vWvf60///nPqqmp0aJFi3T66acrm82GVSLKWNr1178ytgD5sV4698ocWQAAAAAAUEShBLKPPfaYXnvtNUnS6aefriOPPLLH937hC1/Qz3/+c1lrtXDhQt19991hlIgy90mHLIEs8vNJhyyBLAAAAAAAKJ5QAtn77rtPklRbW6tTTz211/cfc8wxGjZsmCTpkUceKWptGBiynpFVbmQBkBc/I8kGnbIAAAAAAADFEEogO3/+fDmOo8mTJ6u2trbX91dVVWnSpEmy1mrJkiUhVIhyZ5UbW0CHLAph/QwdsgAAAAAAoKhCCWSbm5slSZWVlXmv4XmeJCkejxelJgw8ac8Es2SBfFgvQ4csAAAAAAAoqlAC2eHDh8taqw8//DAIVnsjkUho3rx5chxHY8aMCaFCDARp19AhW5Js1AUErJ+mQxYAAAAAABRVKIHs7rvvLklqa2vTvffe2+v7r7/+emUyuRBkn332KWptGDjSni9jrLKEssiT9TKyxpM1vf+LJQAAAAAAgO6EEsgecsghkiRrra644gq9+uqrPb73jjvu0J///OfgfPr06UWvDwNDZn0Qy8ZeyJf10+tf6ZIFAAAAAADFEUoge/jhh2vixIlyHEepVErf/e53dcEFF+jdd9+VMRt3K2azWb388sv6wQ9+oN/+9rey1spxHE2ZMkVTpkwJo0QMAB3zYxlbgHx1BLHMkQUAAAAAAMUSC2XRWEy/+93vdOKJJyqVSskYo3vvvVf33nuvqqurte2226qurk5SbqzB8uXL5fu58Mza3PzInXfeWddcc00Y5WGA6AhiMwSyyFNHEEuHLAAAAAAAKJZQOmQlaY899tDNN9+scePGScoFrdZaZTIZffzxx5o9e7Zmz56tJUuWyPO84H1JOvDAA/XnP/85CG2BfGQ8I6tPOmWB3go6ZAlkAQAAAABAkYTSIdvh05/+tB599FHdcssteuihh7RkyRJJn3TBbmjHHXfUaaedpiOPPDLMsjBAWOVCWUYW9G/2iCPUvnChYrGYKtwmOaMGR13SJ6yf29TLZ2QBAAAAAAAojlADWUkaMmSIfvzjH+vHP/6xFi9erDfffFMNDQ1at26dXNfV0KFDNXHiRO2zzz6aNGlS2OVggEm7vtIugWx/Zi69VGs+/lhDhgxRVess1Zhmqe3jqMsKWD8t69EhCwAAAAAAiiP0QLaz7bffXttvv31ffiQGuLRnlPYYWVAauu+cj5r1M4wsAAAAAAAARRPaDFmgP0i7vnxj5fp0yfZnjuMoCGQ3MdIkKtbLBbKbGrUCAAAAAADQGwSyKGsd82MZW1AC+mneaf10LiT2s1GXAgAAAAAAygCBLMpaEMgytqBk2H6WzHaMK2BjLwAAAAAAUAwEsihraTcXxKbokC0BdoPX/sF6uSCWQBYAAAAAABQDgSzKWsYzMlZKuXTIloz+lccGQaz12NgLAAAAAAAULhZ1AUCYrHLjChhZ0H9VTJ2qiQsWyHEcOSYru90otf/+P6Mu6xN+VpINRhcAAAAAAAAUgkAWZS/l+ows6MeclStVtWJFcO5X97/GfeulGVkAAAAAAACKov8lH0CRpVyzfnRBP/suPEqG9VIyXirqMgAAAAAAQBkgkEXZS7m+rLVK0yWLPBkvneuSJdQHAAAAAAAFIpBF2Uuv39CLjb2QL+ulJGsZWwAAAAAAAAoWSiD7zjvvhLEskJeO+bFs7IV82fXjCixjCwAAAAAAQIFCCWSPO+44HXLIIbrxxhvV0NAQxkcAPZb2fFmJjb2QNwJZAAAAAABQLKGNLFi8eLF+97vf6eCDD9Zpp52mJ554Qq7rhvVxwCYZK2U8w8iCktH/5rTmglhLIAsAAAAAAAoWC2XRWEye50mSfN/Xiy++qBdffFHDhg3T4YcfrunTp2uPPfYI46OBbqVcn0AWBbCyfoZAFgAAAAAAFCyUDtkXX3xRF1xwgfbaay9JkrVW1lq1trbqb3/7m44++mhNmzZNt956q9atWxdGCUAXaddX2jOytv91X6I0WC8l67GpFwAAAAAAKEwogeyIESN0wgkn6O6779Y///lP/eAHP9A222wj6ZNwduHChbriiit00EEH6YwzztAzzzwjY5jxiXCkXCNjrDIezxjyY720jJcm1AcAAAAAAAUJbYZshx122EEzZ87UM888o9tvv11HHXWUhg4dGgSznufp6aef1o9//GMddNBBuvLKK7Vw4cKwy8IA0zGuIE0gizwZLyVZI+tnoi4FAAAAAACUsNAD2c72228/XXrppXr55Zd1zTXX6Etf+pJisVgQzjY2NuqWW27RtGnTdPTRR+vOO+9UW1tbX5aIMtURyDJHFvnqmB/LHFkAAAAAAFCIUDb12pLq6modcsghOuSQQ9TS0qLnnntOzzzzjF5++WUlEglJ0pw5czR37lxdccUVmjp1qo499ljtt99+UZSLMpByzfpXAlnkx7rJ3KuXkjQi2mIAAAAAAEDJ6tMO2e4MHz5cRx55pP74xz/q5ptv1j777CNJchxH1lplMhk98sgjOvHEEzVt2jQ9/PDDEVeMUuRbq6xvgmAW6C3r5zb0okMWAAAAAAAUIpIO2c7efPNNPfXUU3r66ae1YsUKSZ+EsR06jhcuXKhf/OIXuueee/Tf//3fGjduXCQ1ozSlXUOHLPK3fn4sgSwAAAAAAChEJIHsvHnz9NBDD+nRRx9VQ0ODJG20c/luu+2m6dOna+rUqZo1a5YefPBBvfjiizLG6PXXX9fJJ5+su+66S8OHD4/gd4BSlHJ9pT0CWeTPeilZLx11GQAAAAAAoIT1WSC7atUqPfzww3r44Yf14YcfSto4hB0xYoQOP/xwzZgxQ7vuumvw80MPPVSHHnqolixZopkzZ+r999/XkiVL9P/+3//TL37xi776LaDEpVxfnm/l+kZVlZFP68B65qc/Vdvixap0fFVk16pisBt1SZtkvZSMl5K1Vo7jRF0OAAAAAAAoQaEGsm1tbXr88cf10EMPadasWUEA2zmIjcViOuiggzRjxgx96UtfUiy26ZImTpyo66+/Xl/5ylfkeZ6eeuopAln0WMr7ZGMvAtn+w37/+2pbsULVFVnF4vNVlVoiZZqiLqtbxkup0hrJz0ix2qjLAQAAAAAAJSiUQPaJJ57Qww8/rBdeeEGum+t227AbdpdddtGMGTM0bdo0jRw5ssdrjx07VrvvvrveffddrV69uqh1o7x1zI9NuUbDyNL6nw3+HdEfdcyPNV5KlQSyAAAAAAAgD6EEsj/96U+Djbk6b9A1fPhwHXbYYZoxY4Z23333vNevqamRJNXX1xelXgwM6SCQZY5s/9Z/g9mOQJY5sgAAAAAAIF+hz5CtrKzUlClTNGPGDB188MGqqqoqeM1Vq1Zpp5120le/+tUiVIiBIutb+cYSyPZbttP/7Z8+CWRTEVcCAAAAAABKVWiB7M4776zp06friCOO0KhRo4q69r/+9S821EFeUq6v9PpZsug/uv7z3I8jWWtk/SyBLAAAAAAAyFsogew999yjPffcM4ylJW0Y3gA9l/IMHbL9lu3y0l9ZL0kgCwAAAAAA8hZKIJtKpfTmm2+qvr5eu+yyS15rvPzyy3rnnXfkuq5mzpxZ5AoxUKVcX1nPyDdWlRUE+/1CJiOl05IyUiYrZd2oK9os66VkfQJZAAAAAACQn1AC2RNPPFGO42jKlCm68cYb81rjuuuu0zvvvKNRo0YRyKJoUp029qqrCX2EMnqgct99NWH+/ODcnzhWbXf+OMKKNs96aVljZP2MnMqaqMsBAAAAAAAlpiLqAjalsrJS1lq1tLREXQrKSNrNzY9lbAHyZdaPKzCMLQAAAAAAAHnol4Hs3LlzNWfOHEnS4MGDI64G5aQjiGVjL+SrY34sc2QBAAAAAEA+8v7O9rXXXqv7779/s9e8+eab+spXvtKrdTOZjNatWydjjBzH0YQJE/ItEdhIxjMylg5Z5I9AFgAAAAAAFCLvQPaEE07Q3/72t02OFLDWKp1Oa+XKlb1a19rcFuuOk9twafr06fmWCGzESkp7PoEs8md9WZMlkAUAAAAAAHnJe2TB8OHD9V//9V+y1m70q7Pu3t/cr86+/e1v6/jjj8+3RKBbKddXymVkAfJnvZSsl466DAAAAAAAUIIK2mb+qKOOUk1NjVzXDX5mrdUvf/lLOY6jSZMm6ZRTTunxeo7jqKamRsOHD9cuu+yiUaNGFVIe0K2Ua9aPLrCqWN+Jjf7EbvmSiOUCWTpkAQAAAABA7xUUyErSYYcdttHPfvnLX0qSxo0bx8gB9Dtp18+N1HCNBldXRl0OSpD10rLGl/Wzciqroy4HAAAAAACUkIID2e589rOflSRNnjw5jOWBgnTMj017PoEs8mLcpKRcpyyBLAAAAAAA6I1QAtnbbrstjGWBouiYH8vGXshXx7gC46VUUVMfcTUAAAAAAKCU5L2pF1Cq0p4vK7GxF/Jm/dyGXsyRBQAAAAAAvZV3h+zKlSu7nG+zzTabfK9QndcGCmWslPEMHbLIn/FkjUsgCwAAAAAAei3vQPbLX/6ynPU71DuOo/fff7/b9wq14dpAMaRdn0AWBbFeStZLR10GAAAAAAAoMQXPkLXW5vUeEKWU6yvtGVlri/aXBxhYcoEsHbIAAAAAAKB3CpohSxiLUpVyjYyxyvrMkUV+rJeSNZ6s70ZdCgAAAAAAKCF5d8g+/fTTeb0H9Acd4wpSrlFNrDLialCKOrpjrZeUU1kfcTUAAAAAAKBU5B3Ibrvttnm9B/QHnwSyvoYPqoq4GpQisz6QNV5KFTUEsgAAAAAAoGcKniELlKK0lxtVwMZe0TN/+INaV6yQ47aqItsox66JuqQe+aRDlo29AAAAAABAzxHIYkDyjJXrW6VcZshGzX7lK0o3NKgi06DK9HJVts6WY0tgLqvxcjNk2dgLAAAAAAD0QkGbegGlLOX6Snt0yPYfpbcRoPWSBLIAAAAAAKBX8u6QPemkk4pZxyY5jqNbb721Tz4LA0vK8xlZ0A9ZWTlRF9FD1ksRyAIAAAAAgF7JO5B944035DjhxibW2tA/AwNXyvXl+Vaub1RVSbN4v1FCjbLWS+fGFhhXTgWbwwEAAAAAgC0raIastSWUnAAb6Jgfm3J9Atl+wW7w2v99srFXSk41gSwAAAAAANiyvAPZM844o5h1AH0uvX5cQco1GlYbcTGQSvAveEynQFbVwyKuBgAAAAAAlAICWQxYHfNj08yRjdYHHyi2apUqso25X5k1stuPjrqqHunokDVeWpUR1wIAAAAAAEpDQSMLgFKW9a18Y5UkkI1U5be+pbHz5wfn/oTRarvrzAgr6gXjSsZjYy8AAAAAANBjDM7EgJZ0/aBTFsiH8VIEsgAAAAAAoMcIZDGgJV2fDlkUxBLIAgAAAACAXsh7ZMF5550XHDuOo8suu6zb9wq14dpAMSWzvjzfKusZVcf4+wn0nvWSsr4r62flVFZHXQ4AAAAAAOjn8g5k77//fjmOE5x3Dk03fK9QBLIISzKb645Nuj6BbL9hoy6gV4ybDF4rCWQBAAAAAMAWFLSpl7W54KS78LXjvUIVM9gFNtQxriCZ9TV8UFXE1aAUWTeRe/USkoZHWgsAAAAAAOj/8g5kp0+fntd7QH+Scn1ZiTmyyJv1UpI1sus7ZQEAAAAAADYn70D28ssvz+s9oD8xVkq7fjC6AOg9K+ulZNZ3ygIAAAAAAGwOQzMx4KVcQ4csCmLchKxHhywAAAAAANgyAlkMeEnXU9rzZUxpbSaF/sN6SVnflfWzUZcCAAAAAAD6uYI29crHokWLtGrVKrW2tqqmpkb19fWaMGGCxo0b19elAJJyG3rJ5ubI1tX0+T8SKAMd4wqMm1BlZXXE1QAAAAAAgP6sT9Knd955R3feeaeef/55tbW1dXvN1ltvra997Ws64YQTNH78+L4oC5CkYH4sgSzy1bGhl3WTUu2IiKsBAAAAAAD9WagjC1paWvSzn/1M3/72t/Xwww+rtbVV1lpZ+8lXwzvOV65cqb/+9a865JBD9H//939hlgV00TE/lo29kC/rpSRrZD029gIAAAAAAJsXWiC7bt06nXjiiXriiSc2CmEldfszSfI8T3/84x911llnhVUa0EXWt/KMZWMvFMDKeikZl429AAAAAADA5oX2/ezzzjtPCxculOM4kqRtt91WM2bM0H777acddthBQ4cOlbVWbW1t+vDDD/XKK6/o/vvvV3Nzs6y1+uc//6kJEyboZz/7WVglAoGk6ytFIIsCGDehCpcOWQAAAAAAsHmhBLKvv/66nn/++SCMPfHEE/Xzn/9c1dUbb3YzePBgbbXVVpoyZYp+9KMf6YILLgi6am+66SZNnz5dEydODKNMIJDM+owsQEGsl5Q1nqyflcPGXgAAAAAAYBNCGVnwyCOPBMfTp0/X+eef320Yu6GhQ4fqmmuu0X/8x39Iyo0vuPvuu8MoEegimfXlG6uMRyiL/Jj13bGGLlkAAAAAALAZoQSyb7zxhiSpsrJSP//5z3tXUEWFfvWrXwXdtS+88ELR6wM2xMZe0fEfekgNzz+vxsf/psYH/6C2q46PuqS82PVBrGWOLAAAAAAA2IxQRhY0NDTIcRztuuuuGjFiRK/vHz9+vHbZZRfNnz9fq1atCqFCoKuOIDbp+ur9E4uC7LijvLo6VSYrpVSNnLZ14e02GCLrpSRrZD06ZAEAAAAAwKaFkntUVVVJkgYNGpT3GsOGDZMkWWuLUhOwOWnPlxUdstGyJf/Pu/GSMnTIAgAAAACAzQglkJ0wYYKstVq0aFHeAcuKFSvkOI622WabIlcHbMxYKeX6wegCRKW0A1nrJoPRBQAAAAAAAN0JJZCdOnWqJKm5ubnLBl899dprr2nlypWSpC9/+ctFrQ3YFALZiFmVeh4r6yZkjSfrZ6IuBQAAAAAA9FOhBLLHH3+8tt56a1lrdckll2j+/Pk9vnfdunU6//zzJUn19fU68cQTwygR2Egy6yvjGfmmxFPBklX6iazxcuMKGFsAAAAAAAA2JZRAdsiQIfrjH/+oYcOGqbW1Vccdd5xuu+02pVKpzd733HPPacaMGVqxYoUGDRqkq6++WqNHjw6jRGAjyawvWdEli7x1jCtgbAEAAAAAANiUWL43nnTSSVu8pq6uTm1tbUomk7rsssv0+9//Xnvvvbd22mmnYNOuRCKh5cuX69///rcaGxtlrZXjOPrc5z6nt956S2+99ZZ++tOf5lsm0GMdQWwy62toTd7/aKCXnMceU+2KFapIr5HNNKuycq38KbtGXVZerJeSrJH16JAFAAAAAADdyzt1euONN+Q4zhav67jGWqtEIqFXXnlFr7zyykbXdWz+1XH9Cy+8oBdeeEGSCGTRJ5LZ9YEsHbJ9quIXv9DITmNN/Amj1FaigayUG1tg6JAFAAAAAACbUFAbYEeIWsx7Nny/J6EvUAyusXJ9GwSzQD6sm5BlhiwAAAAAANiEvAPZM844o5h19DvnnXee7rvvPknS5ZdfrhkzZvTovkWLFumuu+7S66+/ruXLl8vzPI0dO1a77LKLDj/8cH3ta19TLNa7P/ZXX31V9957r/7973+roaFBsVhMW221lfbZZx9Nnz5d++23X69/f+he0vWVokMWBbBuUtZ4sl5GTqwm6nIAAAAAAEA/QyDbjeeffz4IY3vjT3/6k66//np5ntfl58uWLdOyZcv09NNPa88999RVV12lHXfccYvrxeNxnXPOOXrqqae6/DyTyWjRokVatGiR7rnnHk2bNk2/+tWvNHTo0F7XjK6SWV9J1w9mGQO91TGuwHgJVRLIAgAAAACADVREXUB/097ergsvvLDX911yySW69tprgzA2Fotpjz320H777acRI0YE182ZM0cnnniiVqxYsdn1MpmMTj311C5h7JAhQ7TPPvtor732Um1tbfDzhx56SD/60Y+UzWZ7XTe6Srq+jLHKeCbqUlCiOjb0YmwBAAAAAADoDoHsBi677DKtWbOmV/c8/vjjuu2224Lzr3/960GX7d/+9je9+OKLuvjiizVo0CBJUmNjo84888zNztO98sor9e6770rKzdH9yU9+oldeeUV33XWX/vGPf+jFF1/USSedFFz/5ptv6uqrr+5V3dhYMpsL1NnYC/myXkqyho29AAAAAABAt/p9IDtnzpw++6x8RhW4rqsrr7wyOD/44IP1+9//XqNHjw5+VlVVpWOPPVbXXnttMD927ty5euSRR7pd88MPP9Rdd90VnJ999tn68Y9/3KUrdtiwYTr//PP14x//OPjZ3/72Ny1fvrxX9aOrjiCWjb1QCOMlg05ZAAAAAACAzvKeIdtTvu/rvffe0+rVq5XJZOT7fredodZaeZ4n13WVTCa1du1avfXWW1q4cKHef//9sMtUW1ubLrjgAkm5ADUWiymVSm3xvieffFIrV66UlBtT8Ktf/UoVFd3n3FOmTNGxxx6rv/3tb5Kkm2++WYcffvhG1912223y/VwguOOOO+q73/3uJj//jDPO0JNPPqkFCxbIdV3dfvvtOvfcc7dYN7qXdo2MpUMWhbFugpEFAAAAAACgW6EGsn/5y190ww03qK2tLa/7+3Jjpcsuu0wNDQ2SpNNOO00PPPDAFue8StJjjz0WHH/hC1/QNttss9nrOweyc+fO1bJlyzR+/PjgfWOMnnjiieB8xowZmwx4JamiokLHHHOMLrnkEknSE088QSBbACsp7fl0yKIg1k3KGk/Wy8hhYy8AAAAAANBJaCMLfv/73+uqq65Sa2trl45Ya23wa0Od39vcfNVie+6553T//fdLknbZZRf98Ic/7NF91lq9/vrrwfmBBx64xXsmT56sMWPGBOfPPPNMl/fnzZun5ubm4HzKlClbXLPz565cuVLz5s3b4j3YtGTWp0MWBemYH2s85sgCAAAAAICuQglkly9frj//+c+SFHS4dg5ZHceR4zjdBrAd740dO1bf+973dPvtt4dRYqCtrU0XXnihpNzIgcsvv1zV1dU9unfFihVdun/33HPPHt03efLk4Hj27Nld3uscplZVVWnSpElbXG+HHXboMl92wzXRO8msr6xn5BkTdSkoUXZ9EMvYAgAAAAAAsKFQAtn7779fnpfbrb6mpkYXXHCBXnjhBX3wwQc6++yzZa1VZWWlXn/9dc2dO1evvPKKbrrpJn3xi18Mwtl169bpq1/9qvbdd98wSgxccsklwaiC7373uz0OVSVp8eLFXc4nTJjQo/u222674Hjp0qWbXHPbbbcNNgHbHMdxuoxKWLJkSY/qQPfY2AuFsl5asibolAUAAAAAAOgQSiD7xhtvBMdnn322TjjhBI0dO1aO4+iAAw6QlNvs66WXXlJlZaVGjhypAw88UDfccINmzpwZvH/hhReGOrrgmWee0YMPPihJ2mmnnXTGGWf06v61a9cGxxUVFRo9enSP7us8sqDzGhuejx07tse1dP7sDddE73QEsYwtQCGMm5D16JAFAAAAAABdhbKp17JlyyRJ1dXVOuaYY7q8t+uuu6qqqkqe5+mtt97SN7/5zS7v/+AHP9Ds2bP11FNP6cMPP9RTTz2lr33ta0WvsbW1Vb/61a8k5cLU3owq6LxGhyFDhmx2863O6urqul1DklpaWoLjoUOH9riWztduuGZf8n3/k3EUxsiU4Nf+4xlX1lolMp7MkNL8PZSSyg3+0sVKZfFnbrIJmWxcxpg+n4s9EPm+v9lzYEt4hlAoniEUimcIxcBzhELxDAF9I5RAtrW1VY7jaKeddlJNTdcdxmOxmHbccUfNnz9fc+fO7fb+0047TU899ZQk6dlnnw0lkL3kkkuCTtLvfOc7+vSnP93rNTKZTHDceYbrlnQOfrPZbJf3Op8Xa82+tGTJEg0ZMkSJeFbNLa1as2ZdZLUUYt3ImGJeSoOybWpqaor0z7Tc7em66vxvCd/ztWbNmsjqKZZBXp3qNEQtK5cqlTVdNutD+ObMmRN1CShxPEMoFM8QCsUzhGLgOUKheIaAcIQysqBjfuzw4cO7fX+HHXaQJC1atKjb9/faa6/gK/idN7kqlqeffloPPfSQJGn77bfXT3/607zWcV03OO5pd6ykLnNhO/6sCl2zsrJyk2ui9+IZVxk/19HYkzm+wIb8TDx3YNKqqqqKthgAAAAAANBvhBLIdgSxncPFzsaPHy9JSiaTm+yE23bbbWWt1cqVK4taW0tLiy666CJJuc2wLr300l51onbWOQTtzVesOwemGwY1+a7Z+WsEhD+Fi6ddZTwrKwJZ5MfLtEuSHD+lyspKOY4TcUUAAAAAAKA/CCVpGjNmjNauXaulS5d2+/6ECROC4wULFmjcuHEbXdPRHZpIFHeX8s6jCk444QTtt99+ea81aNCg4Ljz+IIt6fz19w1HOnQOh3uzZudrN1yzL02cOFGxWExDkk0a4VZonNe7ubz9RfWQQRo8ZIiGjxqurcaNY/5niMy8eVrZ2KhY+1xlW5eqJrtU48okvBw0eJAq62pVNWKrXm3Sh97zfb/L16n23HPPLn/BBWwJzxAKxTOEQvEMoRh4jlAoniEUavbs2WWxL0zYQglk99lnH73//vtqaGjQnDlztOeee3Z5v3Mg++9//1v/8R//sdEaHRuDFbM78amnntLDDz8sKdele9ZZZxW0Xn19fXCcSCRkre1RF1w8Hg+ONxzr0Pm883WFrNmXKisrVVFRIcdx5FRU9GrsQn+S8owcx1HasxpSw3/5hOmTjvFc6F3hOCX73GzIeinJS6mihP9ZKFWVlZV0t6MgPEMoFM8QCsUzhGLgOUKheIaAcISSEBx44IHB8QUXXKCmpqYu7+++++5BOPHggw9uNNrg2WefVWNjoxzHCWbJFqqlpUW//vWvJeVGFVxyySUaPHhwQWt27uz1fb/Hm/Z0dOhK2uj317mLbsM/t81pbGwMjseMGdPj+9C9ZDY3AiLpsqNkn7GSyqwT2XoJWS9JhzUAAAAAAAiE8tccBx98sLbffnstWbJE8+fP1yGHHKJvfetbOuWUUzR69GgNHTpUn/3sZ/X6669rxYoVOvPMM3Xeeedp9OjReumll4LgVJI+/elPF6Wmv//970EQOmjQIN1444268cYbN3l954Dz5ptv1qOPPhqcX3nllRo9erQmTpzY5Z5ly5Zp5MiRW6xl+fLlwXHHBmcdtt9++y7X9aTr1lqrFStWdLsG8pPxjIy1QTCLvmDV0SVbLoyblDW+rJ+RE8tvVjUAAAAAACgvoQSyjuPoggsu0A9/+EP5vq+2tjb95S9/0SGHHBJ0hH7nO9/R66+/Lkl6/vnn9fzzzwf3d+4mmzFjRlFq6jy3NZlM6qWXXurxvQsWLNCCBQuC83Q6LSm38djw4cPV0tIiSfrggw96FCDPmzcvON511127vLfHHnsEx6lUSh9//LF23HHHza730UcfdZkhu9tuu22xBmyelZRyDR2yfay84ljJuolPXglkAQAAAACAQhpZIElTpkzRf//3f2vo0KHBzzrPjj344IM1bdq0IHy11ga/OjpCDz30UH3hC18Iq8Si+PznPx8cv/LKK1u8ft68eV26b/fff/8u70+aNKlLl+2rr766xTVffvnl4HjEiBGaPHnyFu/BliWyHh2yfcqW38iCjkDWS0ZcCQAAAAAA6C9Cncx86KGH6vOf/7zuuOMOvf766xo2bFiX9y+77DKNGjVKt912W6eNfXKOPfZYXXDBBUWr5cwzz9SZZ57Z4+u//OUvB2MALr/88k126k6dOlVPPPGEpNzs2zVr1nSZLbuhO++8MzjeaaedNgpPHcfR1772Nf3973+XJN1999067rjjNrkhkDFGd999d3D+9a9/vUcbi2HLEllfrm+U8YxqYmzI1DfKLJD1M5L1ZdYHswAAAAAAAKFvlTdq1KhNhqGxWEznnHOOTj31VL300ktau3athg8frgMOOEDjx48Pu7SimDp1qsaOHauGhgZls1mde+65uvHGG7vdhfDFF1/UP/7xj+D8xBNP7HbNb3/727r77rtlrdW8efN03XXXbTJM/sMf/qCFCxdKkioqKja5Jnovsb47NpH1VBOrjria8uVcd52GLl2qiswa1aRbFBtmlP3W/lu+sUQYN6EKlw5ZAAAAAACQE3og2xNjxozR9OnToy4jL9XV1TrrrLN07rnnSsqNLfj+97+viy++OAiVPc/Tfffdp8suu0y+nwv5dtllF33rW9/qds1dd91V06dP13333SdJuvbaa9Xe3q4zzzwzGAHR3t6uP/7xj/rrX/8a3Hfsscdq5513Du33OtAkst76V18jB0dcTBmr+L//09D584Nzf8KosgpkrZuU9ZI92qAPAAAAAACUv34RyJa66dOn65133gnGDLzyyiuaOnWqJk+erLq6Oi1atEjr1q0Lrh8+fLj+8Ic/dNtF2+H888/XggULNGfOHEnSrbfeqrvvvjsYcTB//nylUqng+k996lNBKIziSLlGvrFBMAvkw7gJWePL+mk5sUFRlwMAAAAAACLWp4HsvHnzNGvWLK1evVotLS2qra3VsGHDNHHiRO2zzz7abrvt+rKcovrNb36jESNG6KabbpLrujLG6IMPPtjoup122kl/+MMftOOOO252vbq6Ot1yyy36xS9+oWeeeUaSlEql9O9//3ujaw8++GBdddVVqq1lF/diS7i+4hk29kL+rLd+Yy83IRHIAgAAAAAw4IUeyKbTad166636+9//rlWrVm322smTJ+uUU07REUccEXZZRec4jmbOnKlp06bpnnvu0UsvvaTVq1crlUqpvr5eu+22m77xjW9o2rRpqq7u2TzSoUOH6v/+7//06quv6qGHHtJbb72lxsZG+b6v0aNHa5999tH06dM1ZcqUkH93A1ci4ynp+nzdHHkz6+fHWjcpkccCAAAAADDghRrIvvfeezrrrLO0YsUKWZvbPd1xnOC4Q8fP5s2bp3PPPVcPPfSQ/vu//1ujRo0Ks7zN6uhK7a2ddtpJ55xzjs4555yi1XLAAQfogAMOKNp66Ll41pcxVinX1+BqJnwgD35GMp7M+k5ZAAAAAAAwsFWEtfDs2bN16qmnasWKFV1+XllZqYkTJ2rPPffUHnvsofHjx6ui4pMyrLV65ZVX9J3vfEft7e1hlQf0SCKbG1cQzzK2APkzXjLXIQsAAAAAAAa8UFr+fN/Xeeedp3g8HnS/fvOb39Rxxx2nT3/606qqqupyfTqd1muvvaZbb71Vr776qiTpww8/1Hnnnadrr702jBKBHklkvPWvvlQXcTEoWdZNyLhJRl8AAAAAAIBwOmQfe+wxffjhh3IcR7FYTNdee62uvvpq7bfffhuFsZJUW1urL33pS7r55pv1y1/+UlKuU/bpp5/W66+/HkaJQI+4xirrGyWyXtSloIQZNylZI+uloi4FAAAAAABELJRA9vHHHw+Ozz77bH31q1/t8b0nnXSSTjnllOD8gQceKGZpQK/FMz4jC1AQ6+bmx1qPsQUAAAAAAAx0oQSyH3zwgSSprq5Oxx9/fK/vP/3001VTUyNJeuutt4paG9BbiayntOfLN3bLFwPdMOsD2Y5XAAAAAAAwcIUSyDY2NspxHO2yyy7djijYkrq6Ou26666y1mrt2rUhVAj0XCLrS1aMLUD+TFbWeGzsBQAAAAAAwglkhw0bJim3uVe+KisrJeXmywJRiq/f2IuxBSiEdRPB6AIAAAAAADBwhRLITp48WdZazZ8/X8lk7zvCPM/TokWL5DiOdthhhxAqBHou6fqykhIZOmSRP+slZbyUrGX0BQAAAAAAA1kogey0adMkSel0WjfeeGOv77///vvV2toqSTrssMOKWhvQW8ZKKdfPjS4A8mTchGSNrJeKuhQAAAAAABChUALZI444Qp/5zGdkrdUNN9yge+65p8f3vvnmm7rsssskSbvssouOOeaYMEoEeiWe8QhkUZCOcQWMLQAAAAAAYGALJZCVpOuuu0677babjDG68MILdcYZZ+itt96SMabb6z/++GNdeeWVOuWUU5RKpbTjjjvquuuuy2tTMKDYEllfrm+U8bp/foEtMeuDWOOxsRcAAAAAAANZLN8bd9tttx5d5ziOrLV6+umn9fTTT6u2tlYTJ07U0KFDJUmJREIrVqxQW1ubJMlaK8dxFIvFdM4558hxHN1+++35lgkURUd3bCLrqSZWHXE1ZWb77eV6nhyTlvWyslvXR11ROIwra1w6ZAEAAAAAGODyDmQ7gtPNbVDjOE6XV2utUqmU5s+fv9FaHdd1XLtw4cLgM4Coxddv6JXI+ho5OOJiyox59FGtXb1CVW3vKdEwX0Nj7eG17kfMugkCWQAAAAAABri8A1lJW9wtfFPv9/bnQNTSnpFvbBDMotjs+v9b3v8OMG5SxkvJWiPHKdfYGQAAAAAAbE7egexf//rXYtYB9HuJrM/GXmHpyGHL/C9lrJuQrJX1UnKqhkRdDgAAAAAAiEDegeznPve5YtYB9HuJrKek6zNKIwROmXfGdrBeblyBdRMSgSwAAAAAAAMS35kFeiie9WWMVdKlSzY85R3MmvXzY42bjLgSAAAAAAAQFQJZoIcSnTb2QrHZLi9ly3iyJht0ygIAAAAAgIGnoE29emPp0qV69tln9fbbb6uhoUEtLS2qrKzUkCFDtO2222r33XfXF7/4Re2yyy59VRLQKx1BbCLjS3URF1O2yj2RzY0rsHTIAgAAAAAwYIUeyK5Zs0aXXXaZnnrqKRljur1m9uzZevzxx/W73/1On//85/WrX/1KO+64Y9ilAb3iGquMZxTPelGXUlacs8/W8I8WyfFaNSjdqsqxg5X+6SFRlxUa4yZlvJSsNXIcvqQAAAAAAMBAE2oa8Pbbb2v69On617/+Jd/PdRdaa7v91fHea6+9pqOPPlovvfRSmKUBeUlkfUYWFJnz+OMa9PAjqv3ni6p79j1Vv7ow6pJCZd2EZC1dsgAAAAAADFChdch+/PHH+tGPfqS2trZgR/pYLKY99thDkyZN0rBhw+T7vlpbW7Vw4ULNmzdPnufJcRwlk0mdeeaZuvvuuzVp0qSwSgR6LZH1lPZ8+caqssKJuhyUoI6NvayXkKqZfQEAAAAAwEATWiB73nnnBWFsZWWlvv/97+ukk07SiBEjur1+3bp1uvXWW3XTTTfJ932lUildeOGFuuuuu8IqEei1eNaXbC6YHVZbFXU5KEHWy3XGGjepyohrAQAAAAAAfS+UkQUvvvii/v3vf8txHFVVVenGG2/UT3/6002GsZI0cuRIzZw5U3/+859VXV0tSXr33Xf16quvhlEikJdEJjc/Ns7YAuTLeLJ+Jje6AAAAAAAADDihBLL/+te/guMzzzxTBxxwQI/v3X///XXmmWcG548++mhRawMKkXR9WX0SzAL5sG5ShhmyAAAAAAAMSKEEsm+//bYkqaamRieccEKv7z/++ONVU1MjSXrnnXeKWhtQCGOlJBt7oUDGS8j6KVnDcwQAAAAAwEATSiDb2Ngox3E0adIkDRo0qNf3Dxo0SJMnT5a1VitXrgyhQiB/iazHyAIUxLoJyX4yTxYAAAAAAAwcoQSyqVRKkvIKYzvU1tZKknyf4Av9SyLry/ONMp6JuhSUqI5xBZaxBQAAAAAADDihBLL19fWy1mrFihV5r9Fx7+Y2AgOiEF8/PzaRZY4s8tOxoZfx2NgLAAAAAICBJpRAdtKkSZKklStX6oMPPuj1/XPnztWKFSvkOI4mTpxY7PKAgnTMj41n6N5Gnqwv62eCYBYAAAAAAAwcoQSyX/jCF4LjSy+9tFdjBzzP02WXXRacT5kypai1AYVKe0a+sXTIoiDWTQSjCwAAAAAAwMARSiB71FFHqaamRpL09ttv6yc/+Yna2tq2eF9bW5t+8pOf6O2335aUmyM7ffr0MEoECpLI+kGnLJAP4yZk/bSs4TkCAAAAAGAgiYWx6MiRI/WjH/1Iv//97+U4jp555hl9/etf1/Tp0zVlyhTttNNOqq+vlyS1trbqww8/1EsvvaQHHnhALS0tkiTHcXTqqadqzJgxYZQIFCSe9ZR0fVlr5ThO1OWgBFk3KVnJekk51UOjLgcAAAAAAPSRUAJZSTrttNM0Z84cPfXUU3IcR83Nzbr55pt18803b/KezuHWF7/4RZ155plhlQcUJJH1ZYxVMutrSE1o/xihjHVs6GXchCoIZAEAAAAAGDBCGVkgSRUVFfrjH/+o448/vksHobW221+d3z/hhBN07bXXhlUaULB4Jjc/Ns7YAuQpt6GXlXXjUZcCAAAAAAD6UGiBrJQLZS+88EI9+OCDOvzwwzVixIhNXjts2DBNmzZNDzzwgC644ALFYnQdov+KZzxZSe0ZNvZCnqyRdZMyWQJZAAAAAAAGkj5JPSdNmqSrrrpKkrRo0SI1NDSopaVF1lrV19drq6220k477dQXpQBF4Vsp5fpBpyzyZ7/8ZWUmbCvHT8hNNSu21bCoS+ozxo2rwo0zixgAAAAAgAEklED2zjvv1EcffaRp06bpU5/6VJf3dtppJ8JXlIX2jKd41iNMK5D905/UvHyBYslFalnymkYOjYXbut+PmGxc1viyXkpO1eCoywEAAAAAAH0glNzjscce0+23365jjjlG11xzTRgfAUQunvHk+VZpz0RdShmwG7wODDbbnnt12yOuBAAAAAAA9JVQAtmPP/442Kjra1/7WhgfAUQunslt6MUc2SIaWHmszPoNvZgjCwAAAADAwBFKINvW1hYc77zzzmF8BBC5jiCWObLFYwdaImt9WY+NvQAAAAAAGEhCCWS322674HjVqlVhfAQQOc/kxhV0dMoif85AC2I7Mdl22fUbewEAAAAAgPIXSiB7zDHHBMfXXnttGB8B9AvtGY+RBUUxMGfISh0be3myfjrqUgAAAAAAQB8IJZA9+eSTNWPGDFlr9dhjj+mMM87QnDlzwvgoIFLxjCfXN8p4dMkWxQDsErXr58h2bPAFAAAAAADKWyyMRV944QV9/etfVzwe17/+9S89/fTTevrppzVkyBDtsssuGjlypOrq6uQ4zhbXchxHl112WRhlAgXr6I5tz/iqiVVGXE1pqpgxQ6MWzpdjshqaTahiuxFKXPntqMvqM2Z9EGuycVUOHhtxNQAAAAAAIGyhBLI/+MEPgrC149Vaq3g8rnfeeafX6xHIor+Kd9rYa/SQ6oirKVHz56tq/nxJuX8h+f4A6za2vqyXknHpkAUAAAAAYCAIJZCVtMkNanq7cU1PumiBqGR9q6xvgmAWyIfJtqsiOzTqMgAAAAAAQB8IJZCdPn16GMsC/VJ7xlN7lkAW+TNubmMv46VUERsUdTkAAAAAACBEoQSyl19+eRjLAv1SPOMr4xq5vlFVZSj75KHMdWzoZbNxiUAWAAAAAICyRnoEFOiTjb3okkV+jBvv8goAAAAAAMoXgSxQoM4bewF5MZ6sl5bJsrEXAAAAAADlrqgjC5qbm7Vo0SI1NDRo8ODB2m677bTzzjsX8yOAfiftGbnGKp7xoy4FJcy47apw2dgLAAAAAIByV5RA9r333tOf/vQnvfrqq/L9rqHU2LFjdeKJJ+rEE09UTU1NMT4O6HfibOyFAtlsXNZ3Zb20nFht1OUAAAAAAICQFDyy4P/+7/903HHH6aWXXpLnebLWdvm1Zs0aXX311Tr66KO1bNmyYtQM9DvxjKeU68szJupSUKKM277+lTmyAAAAAACUs4IC2bvvvlt/+MMfNuqK7cxxHFlrtXDhQn3ve99TPE7YgPLTnvEkK8YWIG8mu35jL+bIAgAAAABQ1vIeWRCPx3X11VfLcRxJkrVW+++/v6ZOnaptt91Wnudp/vz5uv/++4PO2KVLl+q6667TOeecU5zqgX6iI4iNZzwNH1QVcTUoScaV9dOydMgCAAAAAFDW8g5kH3/8cbW2tspxHNXU1Ojqq6/WV77ylS7XfOUrX9Fpp52mCy+8UPfff7+stbrvvvv0s5/9jHmyKCsp15dvbK5TFsiTycaDTlkAAAAAAFCe8h5Z8PrrrwfHP//5zzcKYzvEYjH99re/1aRJkyRJbW1t+ve//53vxwL9kpUUz/qKZxlZgPxZNy7rZ2W9TNSlAAAAAACAkOQdyM6bN0+SNGTIEB1zzDGbvTYWi+m4444LzufOnZvvxwL9VjzjKZn1ZYyNuhSUqI75sR0bfAEAAAAAgPKTdyC7du1aOY6jCRMmqKpqyzMz99133+B46dKl+X4s0G+1ZzxZaxXPMrYA+QkCWcYWAAAAAABQtvIOZJPJpCRp6NChPbp+2223DY7b2+n+QvmJr58f27HBF9BrxpX1M7J0yAIAAAAAULby3tTLdV1J6lF3rJQbbdAhkUjk+7FAv5XI+jJWbOzVS/Z731Piw9mq8BNKNn2sQduMirqkSBmXjb0AAAAAAChneQey1lo5jiPHcXp0fefrfJ8OQpQfKymR9RhZ0FtnnaX44lmqzKzW2nmPa9zY0fm37pcBm22XrR0l62flVFZHXQ4AAAAAACiygZx7AEUXz3hKZH1Zy8ZevWM3eB24OrpjO+bJAgAAAACA8kIgCxRRe8aXMVaJLF3gyI9ZPz/WuIwtAAAAAACgHBHIAkX0ycZejC3IC53Fkp+V9bOydMgCAAAAAFCWCGSBIopnPVmxsVdvOYws6MK67XTIAgAAAABQpghkgSIyVkpmfcUZWdA75LBdmGxc1svI+tmoSwEAAAAAAEUWK3SBNWvW6IEHHgj1niOPPLJX6wNRimc8xTOerLVyHCfqckoG0wo+0bGhl3HjqqwcGXE1AAAAAACgmAoOZBcuXKjzzjuvx9dba3t9D4EsSkl7xpNvrFKu0eDqyqjL6fecvffW2PnzJVmNtkZmwii13/bjqMuKVMe4ApuNS7UEsgAAAAAAlJOCA9ne6G23IB2GKEWdN/YikO2BbFZONvfVfEeSdRn3ID8ja9ygUxYAAAAAAJSPggJZy3eMgY20Z3xZSW0ZT2OH1kRdDkqUybbJVA2JugwAAAAAAFBkeQeyTz/9dDHrAMqGb60SGU+taTfqUlDCTKZVtnaUjJdSRWxQ1OUAAAAAAIAiyTuQ3XbbbYtZB1BWWtOehtb68o1VZQVjN9B7JtO6/rWFQBYAAAAAgDJSEXUBQDlqS3uy1qp9/TxZoLdstl2yRibTFnUpAAAAAACgiAhkgRB0jCtoY2wB8mZzc2SzrVEXAgAAAAAAiohAFghB2jPK+kataTpkkT+TaZN1U7J+NupSAAAAAABAkRDIAiFpTXtqI5BFAUy2JfeaoUsWAAAAAIByQSALhKQt7cr1jZJZQlnkJzc/1jK2AAAAAACAMkIgC4SkY1wBYwuQN+vLuAk6ZAEAAAAAKCMEskBI4hlPxlrGFqAgJtMq4yZkDc8RAAAAAADlgEAWCImxUnvGU2vajboUlDCTaZWslcm2RV0KAAAAAAAoAgJZIEStaU9J15frm6hLQYnqGFeQmycLAAAAAABKHYEsEKK2tCdZMbYA+TNZWS/FHFkAAAAAAMoEgSwQorb14woIZFEIk2mVddtkLZ3WAAAAAACUOgJZIERZ3yrl+syRRUFMtlXWGNlsPOpSAAAAAABAgWJRFwCUu9a0p7oaT9ZaOY4TdTn9jr30UrV9+JZspkWJhnkats3YqEvqd4I5stlWVdQMi7gaAAAAAABQCAJZIGRtaVdbDa1RPONraC3/yG1k+nSlF42WSaxU60dS7bhxtO5vwHopWZPNBbNDx0ddDgAAAAAAKAC5BxCy1vXzYxlbsAU26gL6N5Npzc2StfxBAQAAAABQyghkgZAls748Y9nYa3OsFYns5plMq6zxZL1k1KUAAAAAAIACEMgCIbOS2tKeWjN0yG6OJZDdrGCO7PpXAAAAAABQmghkgT7QmnaVcY0ynh91Kf2UpUF2C6wbl6wvkyWQBQAAAACglBHIAn2gLZgjy9iC7jiSSGS3rGOOLAAAAAAAKF0EskAfaEt7wegCbGDFClUsX63KFQ2qamhTxdq2qCvqt0y2TdbLyHrpqEsBAAAAAAB5ikVdADAQ+NYqkfHUmmaO7Iacr31No+fPlySNk+RPGKW2u34SbVH9VDBHNtuqylhtxNUAAAAAAIB80CEL9JHWtKd4xpdv+Go+8mOybZIsYwsAAAAAAChhBLJAH2lLe7LWqj3D2ALkyRqZbLtMhrEOAAAAAACUKgJZoI90jCtgbAEKYTKtMl5C1vAcAQAAAABQighkgT6S9oyyvmFjLxTEZFolK8YWAAAAAABQoghkgT7UmvaC0QVAPkx2/cZejC0AAAAAAKAkEcgCfagt7cr1jVKuH3UpKFXGk3UTQTALAAAAAABKC4Es0Ida148raGVsAQpgMq0y2XZZQ7APAAAAAECpIZAF+lA848lYyxxZFMTPtEjW0iULAAAAAEAJIpAF+pCxUlvaU3PKjboUlDCTac69ppsjrgQAAAAAAPQWgSzQx5pTrtKuzxxZ5M94Mtl2mUxL1JUAAAAAAIBeIpAF+lhHdyxdsiiEybTIuHFZPxt1KQAAAAAAoBcIZIE+1p725Bmr5iSBLPJn0s2SFV2yAAAAAACUGAJZoI9ZSS0pVy0pV9baqMtBiTLZVska+cyRBQAAAACgpBDIAhFoTrlyfaNEljmyyJM1MtlWOmQBAAAAACgxBLJABDrGFTBHFoUw6RZZLy3jpaIuBQAAAAAA9BCBLBCBpOsr4xnmyKIgfiY3rsAwtgAAAAAAgJIRi7oAYKBqSbkaXF0pY60qHCfqciJj77hDzQueV7Z9lVJNH2rEVmOjLqlk2Gy7rPFkMs1S3TZRlwMAAAAAAHqAQBaISHPK1bihNWpLexo+qCrqcqKz997yBq1WtqVWqVXtGjZuHK37vWAyzTKxWllr5QzgYB8AAAAAgFJB7gFEhDmyG7A26gpKkkm3yBpP1o1HXQoAAAAAAOgBAlkgIhnfKOn6zJGVJNn1v9BbhjmyAAAAAACUFAJZIELNSVftGU+eMVGXghJlvZSsnw42+AIAAAAAAP0bgSwQoeaUK2utWlJe1KVEj5EFeTPpZplMm6wl2AcAAAAAoL8jkAUi1JJyZSU1J7NRlxIph3EFBfEzLZI1MpnWqEsBAAAAAABbEIu6AGAg84xVe8Yb0Bt72RdeUNWCt2XaV8u2LFVs67TMPjtEXVZJ6ZgfazLNqqwdEXE1AAAAAABgcwhkgYg1J10Nq4kp4xnVxAZe03rFD3+o4fPnB+f+hFFqu+snEVZUgowr48Zl0i1SfdTFAAAAAACAzRl46Q/Qz3R0x7YM4C5ZFM6kW2TcdlnDcwQAAAAAQH9GIAtErC3tylir5tTAniOLwphMs2RzwSwAAAAAAOi/CGSBiBkrtaQ8NScHamcjG3oVgwk29mqOuhQAAAAAALAZBLJAP9CScpXxjJJZL+pSUKqskcm2yadDFgAAAACAfo1AFugHOsYVNKcIZJE/k2mR9VIyXjrqUgAAAAAAwCYQyAL9QDzjyzXMkUVh/HRuXAFjCwAAAAAA6L8IZIF+wEpqSbpqSbmydoDNVB1gv90w2WybZDyZNIEsAAAAAAD9FYEs0E80p7LyfKv2DGMLkD8/05IbXTDQgn0AAAAAAEoEgSzQTzSn3C6vQD5MpkXWd2XdRNSlAAAAAACAbhDIAv1EyjVKe0bNSQJZ5M8wRxYAAAAAgH6NQBboR5qTrtoynnzD182RH+slZf1MsMEXAAAAAADoXwhkgX5kXTIrYyxjC1AQk26WzbbKWhN1KQAAAAAAYAMEskA/0pxyZZULZgcOuoGLzWSaZY2RybRGXQoAAAAAANgAgSzQj3jGqiXlqmlABbIoNp85sgAAAAAA9FsEskA/sy6ZVcY1ime8qEtBqTKujBuXSbdEXQkAAAAAANgAgSzQzzQlcvNjB9bYAhSbSbfIuO2yhnnEAAAAAAD0J7GoCwDQVdL1lXJ9NSVdTRgRdTXh8196Vi0fvaj4mveVbl2usePGyYm6qDJgMs2S3U4m3aLKwWOiLgcAAAAAAKxHhyzQD61LumpLe3J9E3Up4Rs2THZYnUxdrcyQGtkhNVFXVBZMpkWyhjmyAAAAAAD0MwSyQD/UlMzKWqvm5ED4urld/2KjLaPcWCOTbQs2+AIAAAAAAP0DgSzQD7WkXPnWqmkgzJG1XV5QRCbdLOulZbxU1KUAAAAAAID1CGSBfsjYXCi7LunKln3nqN3gFcXirx9XYOiSBQAAAACg3yCQBfqppkRWrm/UnvGiLiVktMiGxWbbZY3HHFkAAAAAAPoRAlmgn2paPz+2KTEQ5shKJLLhMJlmmXTLAOi0BgAAAACgNMSiLgBA9zKeUSLrqymZ1Q6jBkddTmic2+7UoI9myWldLi/dppptxsj95meiLqtsmHSL7KAxsm5cTvXQqMsBAAAAAGDAI5AF+rGmRFZDaiqV8YxqYuXZ0F7xP9eobsFC1a0/9yeMIpAtItNpjmwFgSwAAAAAAJErz4QHKBNNyaxkpXXJbNSloERZLyXrpYMNvgAAAAAAQLQIZIF+rC3tyTM2F8yWLWabhs1kmmUybbLGj7oUAAAAAAAGPAJZoB+zynXHNiddGTZlQp78dLNkjUy2NepSAAAAAAAY8AhkgX6uKenKN1atKTfqUlCiTKYl95pmbAEAAAAAAFEjkAX6uXXJrKxywSyQF+PKZNuDYBYAAAAAAESHQBbo51zfqj3tsbEXCmIyLTJuXNbnOQIAAAAAIEqxqAuI2uuvv65HH31U77zzjhoaGhSPx1VXV6ett95a++23n2bMmKHdd9+9x+u99957+sc//qE333xTa9askbVW48aN0x577KEjjjhCBx10kBzH6fF61lo99dRTeuihhzR79mw1NTVp0KBBGjdunPbff38dddRR2nXXXfP5raOENCWzGlYbU8r1NaiqMupyiovRuH3CpJuloeNlMs2qHDwu6nIAAAAAABiwBmwgu3z5cp1zzjl66623NnqvpaVFLS0t+uCDD3Tbbbfpm9/8pi6++GLV1dVtcj3XdfXb3/5Wf//73zd6b/HixVq8eLEeffRRTZkyRZdffrnGjh27xRrXrFmjmTNn6u233+7y82w2q9bWVi1YsEC33XabvvOd7+iss85SdXV1D37nKEXrklntMHKwmhJZbTd8UNTloASZbKtkjfx0C4EsAAAAAAARGpAjCxYvXqxvfetbXcLYqqoq7bHHHtp///01adKkLl2sjz76qI4//njF4/Fu17PW6mc/+1mXMLampkZ77bWX9tlnny5B7ksvvaSTTz5ZbW1tm61x3bp1OuGEE7qEscOHD9d+++2nPfbYQ7FYLPjsm2++Weeee27v/hBQUtozvrK+URNjC5Ava2QyrTIZNvYCAAAAACBKAy6Q9X1fZ555ptatWydJqqys1BlnnKHXXntN9913n2699VY98sgjev7553XkkUcG982bN0/nn39+t2v+5S9/0VNPPRWcf/vb39bLL7+sf/zjH7rrrrv08ssva+bMmUGI+tFHH+mXv/zlZus877zztHTpUkm5cPfXv/61Xn75Zf3tb3/Tfffdp+eee06HHnpocP2jjz6qv/71r3n9maA0NCVctaY9+Ybv+CM/fqZZ1svIuMmoSwEAAAAAYMAacIHsfffdpwULFgTnV1xxhc4888yNxhGMGzdOV155pU455ZTgZ48//rj+/e9/d7lu3bp1uu6664Lz4447ThdddJGGDh0a/Ky2tlY//OEPdfHFFwc/e/LJJzVr1qxua3zxxRf13HPPdanxuOOOCwJdSRozZoyuueaaLqHx//7v/26yixelrymZlTGWzb2QN5POdcfSJQsAAAAAQHQGXCD74IMPBsdTpkzRtGnTNnv9WWed1WXe66OPPtrl/XvuuUeJREJSbqTAL37xi02uddRRR+lLX/pScH7zzTd3e92tt97apcbOnbAbuuiiizRq1ChJUnNzs+6///5N/2ZQ0tYls/Kt1doEgSzyY924rMnKpJqiLgUAAAAAgAFrQAWy2Wy2S1fqYYcdtsV7qqurNWXKlOB89uzZXd7/5z//GRwfcsghGjx48GbXO/bYY4PjF154Qclk168Ot7a26pVXXgnOjzrqqM2uN3jw4C6h8uOPP77Z61G6jJXWJVw1JXKdsuWjnH4v/Z9JNcnPtMgaL+pSAAAAAAAYkAZUILtixQrV1NQE5zvttFOP7hs+fHhw3Nz8yVd9W1pa9MEHHwTnnYPbTdl///1VWVkpSUqn013CV0l644035Pu+JMlxHB144IFbXLPzNbNmzVJra+sW70Fpaohn5BurdSm6ZJEfP9UoWSuTXhd1KQAAAAAADEgDKpDdYYcd9M477+itt97So48+ql122aVH961YsSI4rq+vD47nz58vaz/p7ttjjz22uNbgwYM1YcKE4HzDjtt58+YFx9ttt12Xz9uUXXfdNTg2xmju3LlbvAelaV0yK2Ot1sYJZJEfk26WrJ8LZgEAAAAAQJ8bUIFsh6FDh2rnnXdWbW3tFq+Nx+N6+eWXg/POXbWLFy8Ojqurq7X11lv36PO322674Hjp0qVd3uu85sSJE3u03pgxY7r8XpYsWdKj+1B6fCs1JV01JnLBbDmwo0bKjBoub/gQecMHydRvfuwHCmXlp9fJpNfJWhN1MQAAAAAADDixqAvo72666SbF4/Hg/OCDDw6O165dGxyPGTOmx2t2vrbzGpLU0NCQ15qjRo0KOnk3XLMv+b4vx3FkrZU1RsYQ+BTbmra0Rg+uUlM8o5GDq7p0aZcax3HkP3G/Wle8o3UfvSg/06YxY8eqgucmVF5irSpqR8tLrVNFzYiSfoY6dIx62dQ5sCU8QygUzxAKxTOEYuA5QqF4hoC+QSC7Ge+9955uvPHG4Hz77bfXl7/85eC8paUlOB46dGiP162rqwuON5z32vm8N2t2vratra3H9xXbkiVLNGTIECXiWTW3tGrNGuZUFlvTWkfjh0zQQj+l7YfF1NTUpGy2NEcYbLXVVqp01yk3VTkXCq7t9JcSCIdTsU6jaraTdT+UP2iCGhsb5bpu1GUV1Zw5c6IuASWOZwiF4hlCoXiGUAw8RygUzxAQjgE5sqAnli9frtNPP71LSHHuuecqFvskw+4cgvVk/EGH6urqbteQpEwmU/CanddA+fGMVUN7Si0ZI2ulQYMGRV1SgUq/O7PUWOPKTTbJcXN/AdSbf9cAAAAAAIDCEMh2Y9WqVTr55JO7fPX/O9/5TpdxBZK6hLUVFT3/o+wc6nqe1+W9zue9WbOysnKTa6L8rGpJyLdWba4pnzCNeaZ9KtO+Wo515fiJ8nmGAAAAAAAoAYws2MCiRYv03e9+V6tWrQp+NmXKFP3Xf/3XRtd2DkF7Myu1c2BaVVVVlDU7z3XZcM2+NHHiRMViMQ1JNmmEW6FxXvWWb0LvVTgaPLhOqq3RNmPrtNVWW0VdUV4cx5EXN2pLfbK53ZixY1XhOBFWNTA4lVa1Q+oUq3MUq99O22yzTdQlFcT3/S5fp9pzzz27/PsU2BKeIRSKZwiF4hlCMfAcoVA8QyjU7Nmz2U+oBwhkO5k1a5ZOP/10NTc3Bz/bf//9de2113YbcnbuKuvNmIDO19bU1IS+Zl+qrKxURUWFHMeRU1HRqy5f9JyR1JJ2VVNVKcdxunRdlxp/ffbasbFUhePw3PQF68q67TKZdaqo2Lns/swrKytL+p8LRI9nCIXiGUKheIZQDDxHKBTPEBCO8vpf4AV4+OGHdfLJJ3cJY7/4xS/qhhtu2OSMzuHDhwfH8Xi8x5+VSCS6XUOS6uvr81qz87UbronytDaelecbNafKazMm9B2TapJ1UzJuYssXAwAAAACAouCvOST96U9/0rXXXtvlZ9OmTdPll1++2b8JGjduXHDc1NTU48/rPJt29OjRRVmz87Vjxozp8X0oXY2JrIzNBbMjB5fuaIjKS69W3eL5irWtkDW+arcdrcz3vxJ1WQOCn2pUrH4HmVSTKqqGRF0OAAAAAAADwoAOZF3X1fnnn68HH3ywy89/8IMfaObMmXK2MMdy4sSJwXEymVRjY+NGAWt3li1bFhzvsMMOXd7bfvvtg+OlS5eqJxoaGpROp7tdA+XLM1bNqaxqYhXaxdotPq/9VcX9j2jQwkXq6EP3J4wikO0j1kvKeslcMDtsQtTlAAAAAAAwIAzYkQXZbFZnnHFGlzA2Fovpkksu0VlnndWjcGv33Xfvct0HH3ywxXsSiUSXoHXXXXft8v4ee+wRHC9ZskSpVGqLa3b+XMdxNHny5C3eg/KwNp6V6xu1lPTYAht1AQOan2qScdtl/Z7PrAYAAAAAAPkbkIGs53n6yU9+oueeey742ZAhQ3TDDTfoW9/6Vo/Xqaur0+677x6cv/LKK1u857XXXgt2m6usrNTnPve5Lu/vu+++wZgE3/f1+uuvb3HNzp+7++67d5lDi/LWmMjKSlqbyEZdCkqUn2qUbC6YBQAAAAAA4RuQgexVV12lZ599NjgfOXKkbrvtNk2ZMqXXa339618Pjh966KEtdrTeeeedwfEXvvAFDRs2rMv7w4YN0/777x+c33XXXZtdL5FI6KGHHgrOv/GNb/SobpQHz1g1J12tjWdlLZ2m6D2bbZP1s7lgFgAAAAAAhG7ABbLPP/+8br311uC8vr5ef/3rX7uMCuiNo446SoMG5aZfNjY26uKLL97ktf/4xz/04osvBucnnXRSt9cdf/zxwfGzzz6r++67b5Nr/vrXv9a6deskSYMHD9bRRx/dq/pR+tYmMuvHFnhRl4ISZdJNMpkWWcMzBAAAAABA2AZUIOv7vi699NKgk9BxHF199dWaNGlS3muOHj1a3/ve94Lz++67T2effbaamj75+m86ndb111+viy66KPjZQQcdpIMOOqjbNb/85S/r85//fHB+4YUX6oYbblAm88mMx8bGRs2cObNLd+zpp5+ukSNH5v17QWlqjHeMLWAGKPKTG1tgZdKMLQAAAAAAIGyxqAvoS48//riWLFkSnA8aNEi33HKLbrnllh6vMXr0aF155ZVdfvbDH/5Qs2fPDmbSPvLII3riiSc0efJkVVdXa+HChWpvbw+u32677TZaY0NXXXWVjj/+eC1btkye5+l3v/udbrzxRk2aNEnZbFbz58+X636ykdPBBx+s7373uz3+faB8uMaqJeWqJlahSaNtjzakAzoz6WbJ+vJTTaocPC7qcgAAAAAAKGsDLpDtLJlM6qWXXurVGttuu+1GP4vFYvrTn/6k3/zmN7r33ntlrZXrupozZ85G1+6zzz76wx/+sMVO1nHjxum2227TWWedpVmzZkmS2tvbg+POjj76aF100UWqqBhQDc/oZG08oxGDqtSa9jR8UFXU5aDkWPmpJjmV1bLWyHH4dwkAAAAAAGEZUIHsRx99FNra1dXVuvTSS3Xsscfq/vvv12uvvaY1a9Yom81q5MiR2muvvXTYYYdp6tSpPQ5Ot956a91xxx168skn9dhjj+m9995TY2OjKioqNG7cOO2777465phjtPfee4f2+0JpWJvIatIYqSGeIZBFXvx0kyoHj5VJN6ty0KioywEAAAAAoGwNqED20UcfDf0z9tprL+21115FW89xHE2dOlVTp04t2pooP65v1ZTIKlbhaKdRQ1RZwdgC9I5JNUnWyE81EsgCAAAAABAivpcKlIlVbWn5xqohzuZeyIP1ZTLNMqlGWeNFXQ0AAAAAAGWLQBYoE+uSrjKe0aq2dNSloER57ctljSc/vjLqUgAAAAAAKFsEskCZsJJWtafVlvaUyJROh6O1NuoSsJ7JtMhk2+TFl8saP+pyAAAAAAAoSwSyQBlZ3ZaRlbSSLlnkyWtbIuu78hOroi4FAAAAAICyRCALlJG0Z9ScdLUmnpUxdJ6i90x6nYwbz3XJWhN1OQAAAAAAlB0CWaDMrGxLy/ON1iayUZeCEuW1LZX1MvITa6IuBQAAAACAshOLugAAxdWUyCrrG61sS2vc0Jqoy9ki+5m9lB0xRG6ySZIU225MxBXBpNbKekl57UtVOWQrOY4TdUkAAAAAAJQNAlmgzFjlZslWV1YomfU0uLp//2Pu/e8Val29QI3z/ylJGjduHK37/YDXtlRVscHyk2sUG7JV1OUAAAAAAFA2yD2AMrSqPbep16q2TMSV9BTzbvsbP9kg66Xlty+TtfznAwAAAABAsRDIAmUo5Ro1p1ytbs/I9Pswrb/XN1BZee3LZNykTKox6mIAAAAAACgbBLJAmVrVlpbrGzWWwOZedGD2T35ilayfkde+NOpSAAAAAAAoGwSyQJlqTGTl+lar2tJRl7J51oou2f7KymtfLpONy081RV0MAAAAAABlgUAWKFPGSqvb02pOuUq5ftTlbB4dsv2Wn1gpa1y6ZAEAAAAAKBICWaCMrWrLSFb9v0sW/Zc18tuXy2Ta5Kdboq4GAAAAAICSF4u6AADhSbq+WtOuVrdXaIeRg+U4TtQlbST243M14qNFqks15863G6PkRUdFXBU68+IrFBs6Xl77ElXWDo+6HAAAAAAAShqBLFDmVrVlVF9bpaZkVqOH1ERdzkacWXNU/eHHql5/7rf3/03IBhzry0usVKwiJuMmVFE1JOqKAAAAAAAoWYwsAMpcQzwjz1itbMtEXcomMD+2FPiJVbnXZEPElQAAAAAAUNoIZIEy17G517pkVsmsF3U5KFHWS8tk2+QnG2TZhA0AAAAAgLwRyAIDwIrWtKyVlreyuRfy5yfXrA9mW6MuBQAAAACAkkUgCwwAKdeoKZHVmvaMXN9EXQ5KlJ9cK8nKMLYAAAAAAIC8EcgCA8SylpR8Y7WqjS5Z5Mm4Mul18pNrZS3BPgAAAAAA+SCQBQaI1rSn9oy3fnwBM0CRHy/ZIGs8mfS6qEsBAAAAAKAkEcgCA8jy1rQyntHaeDbqUlCiTKpRsr58xhYAAAAAAJAXAllgAGlozyjrGy1rTUVdCkqVNfJTjfJTTbLGi7oaAAAAAABKDoEsMIBYSSta02pPe2pNu1GXgxLlJ9esD2bXRl0KAAAAAAAlh0AWGGBWtqZlrNXyFjb3Qn5MulnWZBlbAAAAAABAHmJRFwCgb7nGanV7RpUVFUq7vmqrKiOuiA3GSpGfXCunslrWz8iprIm6HAAAAAAASgYdssAAtKI1LWutVrTSJYv85MYWiC5ZAAAAAAB6iUAWGIASWV/rkq5Wtaflm4g7VGmQLUk22y7rpQhkAQAAAADoJQJZYIBa3pqS51utaqNLFvnxk2tksnEZNxF1KQAAAAAAlAwCWWCAWpd0lXT9YHwB0Fsd3bF0yQIAAAAA0HNs6gUMYMtbUhpcVammpKvRQ6ojqcEc8TWlFi9SJr5GklS77ehI6kDvWS8lk22Tn2xQbNj2chwn6pIAAAAAAOj3CGSBAWx1e0Y7jBqi5S2pyAJZ7+enqWX5+2pd+pokady4cbTulxA/2aCK6mGy2TY5NfVRlwMAAAAAQL9H7gEMYMZKK1vTakm5as940RTBtISSlhtXYOUn10RdCgAAAAAAJYFAFhjgVrSmZGxufEEUrKxIZUuYcWXSzfJTjbLWRF0NAAAAAAD9HoEsMMBlfauGeEYN8awynh9BBVZiU7GS5ifXyPquTKox6lIAAAAAAOj3CGQBaHlLStZaLW9N9/2Hk8WWPD/VKOun5bYupksWAAAAAIAtIJAFoHjWV3PK1aq2tHzT9wmpJZUtbdbIbflI1kvJb18edTUAAAAAAPRrBLIAJEnLWlLyfKtVbX3dJWvpki0DJrVWJtMir32prJeJuhwAAAAAAPqtWNQFAOgf1iVdJbK+lremtW19rRzH6ZPPrT7yB9p60WJtZVxJkh0/WvEbvtcnn43icls+VEVNvdy2j1Q9creoywEAAAAAoF8ikAUQWNaS0pDqSq1NZDW2rqZPPtNZ16KKdW3BuT8s2Sefi+KzbkJefJUkR2bINqqoqY+6JAAAAAAA+h1GFgAINMQzyvpGy1tSUZeCEuW1fSxrXLktH8paZlEAAAAAALAhAlkAAWOlFa1ptaU9tabdqMtBKTKevNbFMtm4/MTqqKsBAAAAAKDfIZAF0MXK1rR8a7WMLlnkyU+slHHj67tlvajLAQAAAACgXyGQBdCFa6zWtGfUmMgq5fpRl4MS5bV8KOu78loXR10KAAAAAAD9CoEsgI0sa0nJWjFLFnkzmVb5yQZ5iZUybiLqcgAAAAAA6DcIZAFsJOUaNSWyWt2ekeubqMtBiXJbP5KMJ7flw6hLAQAAAACg3yCQBdCtZS0p+cZqZVs66lJQqvyMvPZlMukW+am1UVcDAAAAAEC/QCALoFutaU/tGU8rWtMy1kZdDkqU175M1s/Ia1sWdSkAAAAAAPQLBLIANmlZS0pZz2hNeybqUlCqrJEfXymTbZfJtkddDQAAAAAAkSOQBbBJa+NZpVxfS5tTsnTJIk9eYrUkKz+xKupSAAAAAACIHIEsgE2ykpY0p5RyfTXEsyF+CsqaycpPNcpPNsgaL+pqAAAAAACIFIEsgM1a055R2jNa0pykSxZ58xOrZI0vP9kQdSkAAAAAAESKQBbAZllJS5uTSmZ9rU2E1SWLcmfSzbJeirEFAAAAAIABj0AWwBatbs8o4xktKfIsWTpuBxY/sVomG5fJtEVdCgAAAAAAkSGQBbBFxkpLW1JKZDw10iWLPHmJVZLs+lcAAAAAAAamWNQFACgNq9rSmjhikJY0pzSmrqZIq1q5p39bicULlI2vkSTVbTOmSGuj3zGu/ORaORWVsmYnORX8VxAAAAAAYODhfw0D6BFjpaXNKVVXVqgpkdWoIdVFWdc/+htqX7K1EmvnSZKqxo2jdb+M+YlVqhw8Vn5yjWJ120ZdDgAAAAAAfY7cA0CPrWpLy/WtljQni7NgMEOWWbIDhcm05Db3ijO2AAAAAAAwMBHIAugx30rLWlJqS3talyzeLFni2IHFS6yScRMymdaoSwEAAAAAoM8RyALolRWtabnGaklzqgirrY9iLZHsQOInVkvWsLkXAAAAAGBAIpAF0Cu+tVreklJrylVLyi1wNUYWDEjGlZ9qlJ9cK2sKfYYAAAAAACgtBLIAem1Fa1qesVq8rsBZsuSwA5afWClZIz+xJupSAAAAAADoUwSyAHrNM1bLW1NqSblqLahL1krtCVW0JVWRyKgikZGTyBStTvRfJtMq6yXlM7YAAAAAADDAxKIuAEBpWt6S1nb1g7SoKal9th0mx3HyWqf2iB9pwqJlwbk/YZTa7vpJscpEP+bFV8mJDZafaVFlzfCoywEAAAAAoE/QIQsgLx0jC9rSrla25dvVysyCgcxP5jb38uN0yQIAAAAABg4CWQB5W9GaVlvG00dNCWU8v/cLkMcObMaTn1wjP9Ugt3WxrOWBAAAAAACUPwJZAHmzkuY3xOUZqwVrE3mugIHMbVkkP9kor22J3Ka5ssaLuiQAAAAAAEJFIAugIImsr6XNKTUlslob793oAuJYyPpym+bKa1ssP9WkTMMsGTefcB8AAAAAgNJAIAugYEuak0q5vhY2JuT5phd3Eskix2tbomzjHNlMu7IN78hPrY26JAAAAAAAQkEgWjIATAAAagVJREFUC6Bgxkrz1yaU9YwWNSV7fiMzQ9GJSa/vkM22K9v0vtzWj5krCwAAAAAoO7GoCwBQHlpSrla1ZSRHGje0RsMHVUVdEkqQ9VLKrJmlqpG7SlayblxVI3eXU1EZdWkAAAAAABQFHbIAimZRU65LdsHauIzpSWcj3Y/oRpe5suvkx1dEXREAAAAAAEVDIAugaDxj9WFjQsmsryXNqajLQYnz2pbIZNvkxZfLGj/qcgAAAAAAKAoCWQBF1RDPqimZ1dKWlBIZb/MXMx8UW+C1LZH1XfmJlVGXAgAAAABAURDIAii6BWsT8nyjeWvjMoSuKIBJr8t1ybYvo0sWAAAAAFAWCGQBFF3GM1rUlFB72tNHTcnNXElYiy2jSxYAAAAAUE5iURcAoDytbMuovrZKkjSsNqaxdTURV4RSleuSbZfXvkyVQ7aRU1EZdUkAAAAAAOSNDlkAoVmwNq5E1tf8hriS2e7mydIhi57x2hbTJQsAAAAAKAsEsgBC41tp7up2ZT2juavj8s0GASzzZdFDn3TJLmeWLAAAAACgpBHIAghV0vU1ryGuRNbT/LXxqMtBCcvNks3KT6yKuhQAAAAAAPLGDFkAoVubyGp5a0qSVF9bpW3rayVJVlbuFf+ldQvekJtqliQN33psZHWifzPppk6zZLdmliwAAAAAoCQRyALoE4sakxpaU6UPGxMaWlOpYbVVkpXM5/ZSsr5Z2fbVkqS6ceNo3ccmeW1LVFE9VH5ilWJDt4u6HAAAAAAAeo3cA0CfsJLeX92ujOdr7pp2+cYo2NSLWbLoIZNuknHj8tqXyVoTdTkAAAAAAPQagSyAPpPxjd5fE1faNVrdlpFkJUcKglmgB4JZsnFmyQIAAAAASg+BLIA+1ZJy9XFTUknXV1vakyOpuqoq6rJQQv5/e/cdJ0V9/3H8ve06cHSkSkcsiA1FRImKxqgRG7GjImqUJJYgpigqRmOJUTCxJigWBMWfmih2jYigggIiRwepB8dxXL9t8/tjuWHnbtvdbbvj9Xw8lJnd737nOzuf/d7sZ7/zHX9V0b5Rsj8xShYAAAAA0OyQkAWQdD+VVKm8xqeyao/cPkNOp1NOJ1NaI3a1o2S9pRslSTabTTabLbWNAgAAAAAgBiRkAaREYXm1PD6/qtw+efxSZlaW7Ha6JMTGX1UkX9UueUs3y1OyTjabTe3atSMpCwAAAABIewxJA5AShiHtrnSr1Y9r5dm0QTlGuTJkyFHikzGwa6qbh2bAs3ul1C4w/7Df51FGRmu1b99excXFKW4ZAAAAAADhkZAFkBI2m00+v1/5t9yvThu3mI/7erZX6azfpLBlaD4MeYpXSoZPhmHI4S6Wcnqpffv2qW4YAAAAAABhkZAFkFJGqhuAZs+zZ7UcPo/s9rZShU/K7c3UBQAAAACAtMWEjQBSIly6zEeGFo3gKVmnil2rZffulaNinWT4U90kAAAAAABCIiELIGVsIcbH+g1DlR5fClqD5q6yaI3KC3+U3Vsmz+7lMvzeVDcJAAAAAIB6SMgCSAmbTSHnKzAMqajcLbePEY5ouKriDSrbvkz+mr1y71omw09yHwAAAACQXkjIAkgJm0JnZH1+Q16/oV3lbvkN5i9Aw1WXbJa7eJX87jJ59hTIII4AAAAAAGmEhCyA1AgziawhQ0UVNfL4/CqqcHPTLzSKr2KHvKU/yVdZJG/pxlQ3BwAAAAAAkzPVDQBwYAp3Uy9JqvT4VVLlkSTtrfIoP9uVnEahRfGWbpDNlS1Jsjmz5cztkuIWAQAAAADACFkAKRTqpl61Sqq9qvL4VFLt4SZfaDRPccG+qQvWyF+zN9XNAQAAAACAhCyA1AiMkI08IcGuCre8PkNFFW55/ExegEYw/HLv/kGGt0ru3Svk91anukUAAAAAgAMcCVkAqRFpzoJ9/Ia0s7xGPr+hXeU1IieLRvG55S76QYa3Rp6iH2T4valuEQAAAADgAEZCFkBKxJCPlSS5942QdXv9Kq50J7RNaLkMT7ncxQXyeyrkKV4pwyC7DwAAAABIDRKyAFLEpmhTFtSqcPtUWuNVeY1XpdWMbkTj+Kt2yVu6Ub6qYnn3rk91cwAAAAAAByhnqhsA4MBks8U+SlaS9lR6lOGwa0+VRxlOu7Kc/J6EhvOWbpLNmS1Jsjmy5GzVLcUtAgAAAAAcaMhoAEiJWG7qFcyQtKu8Rl6fXzvLa1Tj9SeoZWjpPMWr5K8pkWfvWvkqd6a6OQAAAACAAwwJWQDNhs+QCstr5PH6VVhWoyoPSVk0hiF30Q/yuwPzyvqq96S6QQAAAACAAwgJWQBJZ05V0IgbK7l9hnaU1ci9b6RspccX17bhAGH45N61XIanSp7dK+R3l6e6RQAAAACAAwRzyAJIqZ+e/osKlrwvj7dGkpTVqlXU13j8hnaU1qhz60ztKnerQ26GcjMciW4qWhq/W+6iZcroNFTuouXK6HSk7PvmlwUAAAAAIFEYIQsg6Wz7hsjaZMjbuYPKO7RWRftWqmjfStXt8mKqw2sY2lFarRqvT7sqalRW401gi9FSGd4quYuW7//X5051kwAAAAAALRwJWQCp14ipC6TAnLI7ympU4/Frd6VbpdUkZdFwhrtM7t0/yvBUyl30gww/02AAAAAAABKHhCyApDPnkJVR59+G8xtSYVmNqj1+FVe6VVLlaWLrcCDyVxfLU7xKfneZPLtXyDC4YRwAAAAAIDFIyAJIAZtlrfHp2AC/AknZKo9PJVUe7a5wN7lOHHh8lYXy7F0vX/WewPQFfpL7AAAAAID4IyELIOls1nxsXEYjGpJ2lrtVVuNVWY1XhWU18jVyKgQcuHxlm+UpWSd/9R7VFC6R31OR6iYBAAAAAFoYErIAks5m/rsvYRqnvKkhaXelR8WVHlV7fNpRWiOPj6QsGsZXvkXuouXyu8vl3vmdfFVFqW4SAAAAAKAFcaa6AQAOQEEjZFt9skB9vl8l/75Rso62rbX92H5Nqr60xiuv36+OuZnaXlatTnmZynLy+xNi56/eI/fOJcrocJjcu1fI2fpguVr3SnWzAAAAAAAtAAlZAEkXfFOvjk/MUPeNW8xHyg7Kb3JCVpIqPX4zGVtYVqN2OS61yqTLQ+wMb5VqCpfI1f4QyZAMT4VcbQfKZnekumkAAAAAgGaMIWMAUifBc7y6fYa2l1ar2uvT7gq39lR5uNkXGsbwyVP0g7xlP8lXuUvuXd/L8FanulUAAAAAgGaMhCyApLPtGyNri1IuHnyGtKO0RhVun/ZWebSrvEZ+srJoIO/eDXIXr5S/plQ1u5bK8NakukkAAAAAgGaKhCyA5EtGJjaIIWlXhVsl1R5Vun3aUVYtL1lZNJC/cqfcRctleCrlLlomw+dJdZMAAAAAAM0QCVkASRc8h2wylVR5tavCrRqvX9tLq1Xj9Sd1+2j+/DUlcu/+UX5PRSA56/elukkAAAAAgGaGhCyAA0qF26cdpTVy+/zaUVajcjcJNTSMv3q3PMWr5HeXyb37BxkGiX0AAAAAQOxIyAJIOps5RDY10wbU+PzavrdGNV6fispruNkXGsxXWShPyVr5q0vk2f2jjATfoA4AAAAA0HI4U90AAAceW7InkQ3BaxjaUVqjDnkZkiSPz68OuZmyp75paCZ85Vtls7sCK3tWydV2oGw2AggAAAAAEBkJWQApE0hdpW5koV/SznK32mYHkmrbfNXKz3YpN8ORBiljNAfe0o2SPfCn1GZ3ypXfL7UNAgAAAACkPRKyAJIu1VMW1LWnyqMar1/tclwq8vlV6rQrP9ulHJcj1U1DM+AtWSvbvqSsbA45W/XYvw4AAAAAQB18YwSQQumRkJWkSo9PVXt9yst0Kj/bKbfXryyXQ/nZLmU5mW4bkXmKV0m2QJx4yzbLntFajuz2sme1k92Vm+LWAQAAAADSCQlZAEmXrtMBGJLKaryqqPGqVZZTbQyp2uNTdoZDbbNdynCQmEU4hjy7f5Qvq63sWR3kyKqSv2avpPWyObPkyGoXSM5mtWOeWQAAAAA4wJGQBZAyNkPpNEjW5Je0t9qrshqv2mS5ZEiq9viVn+1Smyy6TYTnr94jf/UeeSXZnDmyZ7eXI6udDG+VVL5NdleOnPl95chql+qmAgAAAABShMwCgKRLtzlkw/Ebgflly6q96pCXIcMw5Pb61T7XJTujHBGF4a2Ur6xSvrLNks0hR04nOVsfLP+u5XJkt5OzTV/ZXTmpbiYAAAAAIMlIyAJIgf3JzPROyQZ4DUOFZTXKz3ZJktw+vzrmZTCFAWJn+OSr2C5fZaGcrXpKhl++6j1y5naVs00v2eyuVLcQAAAAAJAkJGQBJF3zSscGGAqMlq3x+tQhN1PbS2vUPtelvAy6UTSA4Ze3dKN8FdvlbNNHMoxAkrZ1LznyujG/LAAAAAAcAMgkAEi64JyT4XLK53SY6/6g5XRU6fFre2m1OuZlqKjcUE2mX+1yMkQeDQ1h+GrkKV4pb/lWufL7yfB75a3YJlfrg2XP7khiFgAAAABaMBKyAFLI0JpXH9PSb94xH8nNy1O6p6I8fkPbS2vULidwmXmNz6+22S5lu9I7mYz0Y7hL5d65RI6cznK2OVhuT5XsGVvkbNNbjqy2qW4eAAAAACABSMgCSDqb5d/mM21BMEPS7kqParyBEbKF3hplOOxqleVUboZT9nTPKiOt+CoL5avcKUdeNzlb95TfXSZ7Vlu52vSWPaNVqpsHAAAAAIgjErIAks+8HNuQ0TzzsaZyt0+VnirlZTjVOsspt8+vkiqP8jKdapXplJPMLGJmyFe+JTC/bKsecho+1dTskSO7o5xtesvuzE51AwEAAAAAcUBCFkDSWVOUzTwjK8lvSKU1XpXVeJXtcqh1llM+v6HSaq9yXA61ynIq02lP+6kYkCYMn7ylG+Ut3ypn64Mlw5C/uljO/H5y5nZJdesAAAAAAE1EQhZAChlqCQnZWoakSo9PlR6fMhw2tc50yW8YqnB75XTYlZfhUB6jZhErv0fekjXylW+Rq/1gGcWr5K8pkSu/v2x25isGAAAAgOaKhCyApKudscAmNfspC8Jx+wwVVbq1p0rKzXAqL9Mhr8+vkmqPspwO5WU4lMNcs4iB4a2Su3CJnPn9AuvuMrnaD5bdlZvilgEAAAAAGoOELIAUa6EZ2X18+6YzKK3xKsNhU16GU75MQ9Uen+yVHuVmONQm28WoWURhyFuyRv6aEmW0HSD3ziVy5vdnCgMAAAAAaIZIyAJIOjP1aBjq+NLbGrpqqfmcv31rrTvr6JS0K9HcPkPFVR7tqfIo22VXXoZTfsNQudunVplOtcl2ymEjMYvw/FW7VOMpk6sdUxgAAAAAQHNFQhZA0tmCko7t3/5E3TZtM9fLDspvsQnZWoG5Zv2q9LiVUW1TfrZLhmGovMar1llOtc5yMZUBwjK81XLv/E7O/L6SJL+7VI7MfNkcWbI5M/f9myXZMyyfNQAAAABAeiAhCyCFjJY+Y0FUbp+hneVuZTrtapsduAlYWY1XbbJdapXpFOk0hGbIW7JW/poSOVv3kuGukGx2axGbXTZnphxZ7eTM6x5I0gIAAAAAUo6ELICks9X5F1KN168dZTXKdgUSsz6/odJqr3IzHMpxOZThtPN+oR5/VZHcVUWBFUeGOTrWvu9fmzNbhqdK3vJtcuR0krNVT9ldOaltNAAAAAAc4EjIAkihA3x4bAhVHr+qPDWBm31lOeX1+bW3yiOH3aacfcnZLJeD5Czq87ll+Nwy3KXyBz1sc+XK2aqHZPjlqyyUI6uDnK17yJ7ROmVNBQAAAIADGQlZAElnndaSpGwoFW6fKtw+Oe025bgcyslwyOc3VFbtld1uU7bLoWyXXVlOh5xMOIsIDE+FPMUF8u7dIEerHpLfL19VkexZ+XLmdZc9qx1zzQIAAABAEpGQBZBCJGOj8foNldZ4VVrjld0mS3K2oiZQJsNhV5bLoax9CVryswjF8NXIW7JW3tJNcuZ1k8Pvlb+6JDDPbE5nOXK7yO7MTnUzAQAAAKDFIyELIOlsXHDfKH5DKnf7VO72ySYp02lX9r5ErNvnV2m1ZLPZlOm0K8tpV3aGQxkO5p5FHX6PvKUb5S3bLEdORzlyu8jw1shb9pPsGfly5HaWI7ujbHZHqlsKAAAAAC0SCVkAyWer/YcRso1lSKr2+lXt9UtVkt0mZTkD0xhkuxyq9thUUjv3rMuh7AwHo2dhZfjkq9ghX8UO2Zw5cuR2kSPXLX9Nibz2dbJnd5DdlSObIzNwgzBHlmyOjFS3GgAAAACaPRKyAJIuOCdISjY+/IZU6fGp0uOT5JHLnGfWIa/fUFmNVzabLTBy1uVQptOuDCejZxFgeCvl3bte3r0bZM9qJ0feQXL43PLZ7JZyNrs9kJh1Zsme1V6OnE6y2TmVAAAAAICG4FsUgKQjCZh4Hr8hT+3cs5KyXA7luOzyZjhU5fFJ2j+9QaYjkJzNdNq5QdgBz5C/erf81bvlkQKjY/clYAOjZPeNlnXmyFZVLO/edbJnB6Y9cGTmp7rxAAAAANAskJAFkHy1OT+D8bHJ4FfQ6NlKjzIcNmU67Mp0OuR22lXt2J+EdTpsynYyxQECDF+NDF+N5N5b7zl7ZttAItbnla+iUDZXtpw5XeTI7cLUBgAAAAAQAQnZZmLdunWaNWuWFi1apC1btsjr9apTp04aMGCAzjnnHJ1++ulyOjmcaB7I8aWW22fI7fOpzB0YKWu3aV+C1q4sl0MeX50pDjIcynE5GD0LC3/NHvlr9shjd8qR01nO3IPk8VTJU7pRdmeOZHcGbgxmd8pmc+5bd8rmyJA9sy1JWwAAAAAHLDJ4zcC0adP01FNPyev1Wh7fvHmzNm/erI8//liHHXaYHn74YfXp0ydFrQQawrbv/4yQTQd+Q6ry+lXl9UvVwVMcOOTNsKvK41OxpAxHIGGb6bQry2mXgwQtJMnvla98q3zlW2XLaCVHTmfZXTmSLZCArU3EWn6KsUl2V57sWW1lz2wne2Zr2erMVwsAAAAALRUJ2TQ3depUzZw501x3Op0aOHCgsrOztW7dOu3Zs0eS9MMPP+iKK67Q7Nmz1a1bt1Q1F4iJjTxeWrNOcRAYPZudYVeOyyG3z2+WczoCidnMff+5HNwk7EBnuMvkdZeFftJml+xO2Z05sme1CyRj3eWSNstmd8iemb8vQZsfmKOWjgIAAABAC0VCNo3NmzfPkow944wzdNddd6lDhw6SJI/Ho7lz5+qBBx5QVVWVioqKNHHiRL3xxht8kUUzYez7D+msxudXTZVfJVXewPQGTruynIGRsh6fXeU1gXI2m01Oe+A/R51/nXa7nA4bCdsDmeGXfG75fW75a0qkvZLsGXJktQ0kaL3VslXtliTZHC7ZM1rLntlG9sw2srla8XcNAAAAQItBQjZNeTwe/fWvfzXXR40apb///e+y2/df0ulyuTR27Fh169ZN119/vbxer1asWKH//Oc/Ouecc1LRbCAmpFWaL78hVXn8qvIERsraFJjKINNpV4YjkHStTcLWPc42W+A5l90ml8Mmp8O+bzkw/QFxcQDyu+WrLJSvslCSZHPlmUlYe2bl/gSt3SFbRuugeWf3R4uZqLVnBF6X0Towdy0AAAAApCkSsmnqww8/1LZt2yQFpim46667LMnYYCNGjNDYsWP18ssvS5L+/e9/k5BFs2CToeqeB6nK7zYfq+7UJoUtQkMZ2jeCNmgqg1oOm+qNkHXZ7YFkbJ35Z2uTtc7g/xz7XrdvpG3EhK3NJqfTKcMw5PfXbwuaB8NTLp+nXL7yrZIkmzNnf4I2o1zaNxetTQqa+2Tfv7Vz0Npssme0kj2jzf4Rtvbopzs2m00dOnSQ2+1WTU1NvHcNAAAAAEwkZNPUu+++ay4PHz5cXbt2jVg+OCG7YsUKbd68WT169EhoG4HGCr7yePX9E7V6xRfmem5eHiMlWwifIfl8htw+Q4GZafezSXLuGynrctiDErGhpzYIng7B6Qgqu2/dLikrKyv4BQneOySD4a2Uz1spX8X26IUdGYF5aDPayJHZRn5XqVS2WbJJNke2bDabDBn7ZkmpnSrFkGST3ZUrZbRRht0rV26ucnNzmSIBAAAAQMKQkE1DhmFo0aJF5vqJJ54Y9TUDBw5Ux44dtWvXLknSJ598oquuuiphbQSawpJuM5hD9kBkSPL4DXn8huQJPbq2NjlbN1kbejoEye/xy2EPvNZf45XLYZfdZpPdpn3/BpbRQvnc8lfulL9yp7xS4AZitaNkXbn7Chn78rH7E7I2m13+jNZSZZGcFeUybA4Zjjz5yr2yZbcN3GCMKRAAAAAAxBEJ2TS0detWlZaWmuuHHXZYTK8bOHCgmZBdvnx5QtoGxJfBLb0QUmB0rV81vvrP2aT60xvYbfJ5PHI57XLa7fJUekLWawtK0DrsNjlq/7UHr0sOm002W+DHAwZKNlN+r/zVu+Wv3h1TccORrbIKnzJy2suV017evT75SgMH32Z3yObIlOwZsjlcsjkyA/PZ2p2y2RySzSHZ7PuW7ZLdEVgOvNo6vYLNJsnGCFwAAADgAEZCNg1t3LjRst6zZ8+YXte9e3dz+aeffopnk4C4suYhSMmiYQxJXr8hr39/7BiGoYryckmB+GrTqpVcztAjZGuXHXaZSdhobLbAqFybbd98t0FTKDj2TZtQ+5g5fNew/BOoR/uTwkgvhqdC1XsKVb1nkyTJ1a23nNltZXNmyebIkM2eITkyAslYu6vJ27PZnfsTu47MwLJz37825744qjNPrhRI9tozGLULAAAANGMkZNNQ7ShXSbLb7erQoUNMr+vYsWPIOoB0ZTMMpixA3BlGYDoEb4ipEEKxSSFGysocwWiz7U+k1iZla6dQaHRi1SbZFUjM2kIlje2hE8k287H97UFiGN5K+SqqwzxrkxyuQGLW5pDNZg+MkrUHLdvsgelZLDcfs5mJVlttcnfff+ZNyWJkJnT3JXG1L7lrHbEb1Babo86vYTZr0re2PAAAAICEIyGbhvbu3Wsu5+bmym6P7QtSXl5eyDqSyefzyWazqVvrLLXLdqlPu+yUtAPpLdMZiOlMt02dOnaXp3LQ/ucyMrghExrOMFTjdpuryYgjnwKjX+3BUx/UZm+DfmeoP0I2fNOMffWGmKmhfkFDZoLWrLvOFAu1I3pr/4qYidwoCV1L2s6cvmF/ktpet2wL+MjaDamds7257szKbtR+mXPUGr7I4/+9+5O9NtkC0x8Ej5ANPCEFj5K1KZAAdmRKfo8Mv0fylDe8kWHtC04zyVz7nyOQALa7JLtLNse+f+0u2eyBthqGf98PbIa0b9mQv86PbnWGjdts5jbM6R4siWRHYCSwza7mEGR2u139+/e3rPv9sf0wBEiBPrZv374y9n1ubDYbMdRCJfK4+ny+iOtANMQQkBwkZNNQTU2NuWy5a3gUGRkZ5rI7KDGRTLt371ZeXp4Mn0+ZdkOZ2Yy2QXgZdslm2NS795BUNwU4IOxLlyVNtGRttBSbLcxKvZu6RXmxrc5SqJvCSZIzZ/9j3hjb1pD3M1QiPuJ7ULfy2nVf6DmSQ9aX4jxm3DYfNNpXcoQIrtqRviEea9B29o1kDprvd/+/gcSwmayWfX9SufZnCvP1UnlNcZj67NZ1wy8ZPkn+/cvGvuXa8kEJa3Nd9qD3wVZv++EZUcrY6tUbbs5jI+gGeea/Rp31QMF9bQu8Z4kcjW2YPwwY+0ekN6PR3w7H/ulIKisrU9gSJFphYWFSBtH88MMPCd8GWjZiCEgMErJpyOPZ/0Ur1tGxkuR07j+cXm+0r5KJUXvC3olELGJgZA5R9u13yL59u/mY/6CDVPXwX1PYKgCIXbqN20y3SWDqtcdm+afR9TVhtpC0e49qRwNLIX6EiNZYo/b2mCEmrY5l0+EeqFOPYZnPuG4SNkaGJPn2tTkoOW0mkesmc4NfGEOS2fDvX5Z10TDbbmtA0jp4taFvbPD7pRi3ab44RHVN62mMeu0PsR7yvQ9qU93kf+gt1X9d3UeasC/19yP2bTbltYkSPJgGAHDgISGbhoJ/GW/I5SzBSViXq+k3HGmMbdu2qVevXg1KJONA5pTzf1/IuXat+Yi3Xz+5Y5z7EwAaYv+8wLaQj0crF4u6X/oT+WW+WWpc3jBcNUlns9mCZlywWR4PVTbSel21sWP512aNx5Dbibn1zUCL2pn0UT9uGjpcP+YtxaOS8LWH/AzFts2mvDYRvF4v9/wAgAMcCdk0lJ29f97V4OkLogmepiAzMzOubYrVoYceakkoA9HUTd7b7Xa1b98+TGkgNJ/PZ7mc6rDDDqMvQoMQQ2gqYghNRQwdWIYMScyUXcQRmooYQlMtX76cOdBjQEI2DbVp08ZcrqiokGEYMY2wKS/ff2OP/Pz8RDQtKofDYZk6AYjGCDGCiBhCU9EXoamIITQVMYSmIoYQD8QRmooYAhKD68rTUOfOnc1ln8+nPXv2xPS64MteOnToEPd2AQAAAAAAAGgaErJpqFevXpb1zZs3x/S6LVu2mMu9e/eOa5sAAAAAAAAANB0J2TTUrVs3y5QDK1eujOl1BQUF5vKgQYPi3SwAAAAAAAAATURCNk0NGzbMXF6wYEHU8gUFBSoqKjLXjz/++IS0CwAAAAAAAEDjkZBNU6NHjzaXP/30UxUWFkYs/+qrr5rLffv21cCBAxPWNgAAAAAAAACNQ0I2TY0ePVqdOnWSJLndbk2ePFlerzdk2S+++EJz5swx16+44oqktBEAAAAAAABAw5CQTVMZGRm69dZbzfUFCxbouuuus9zgy+v1avbs2Zo4caJ8Pp8kacCAAbrooouS3l4AAAAAAAAA0TlT3QCEN2bMGH333Xd67bXXJAWSsqNHj9bAgQOVl5endevWqbi42Cyfn5+vxx9/XE4nhxUAAAAAAABIR2Tu0tw999yjtm3b6vnnn5fH45Hf79fKlSvrlevbt68ef/xx9enTJwWtBAAAAAAAABALErJpzmaz6ZZbbtG5556r119/XfPnz9eOHTtUVVWlNm3a6JBDDtGZZ56pc889VxkZGaluLgAAAAAAAIAISMg2E3379tUdd9yhO+64I9VNAQAAAAAAANBI3NQLAAAAAAAAAJKEhCwAAAAAAAAAJAlTFgBIKePMM7WnZ09zPX/wYNlS2B4AAAAAAIBEIiELIKX8jzyiDUuXmutDhgxh6D4AAAAAAGixyHsAAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEmeqGwDgwGY/+2wdWlCwf33QIGnevBS2CAAAAAAAIHFIyAJIKdvGjcratMlcN7KyUtgaAAAAAACAxGLKAgAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCSxGYZhpLoRaL4WL15sWbfbyfGjgSorJb9//7rdLuXkpK49aLb8QXFEX4TGIIbQVMQQmooYQjwQR2gqYghNERw/knT00UenqCXpzZnqBqBlqfvBA6LKyqr/GHGEJqIvQlMRQ2gqYghNRQwhHogjNBUxBCQGP3UAAAAAAAAAQJIwQhZxxeUMAAAAAAAAByZGVceGOWQBAAAAAAAAIEkYzggAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCRxproBB7J169Zp1qxZWrRokbZs2SKv16tOnTppwIABOuecc3T66afL6Yz/Idq+fbtmzZql+fPna9OmTaqurlbHjh3Vp08fnXXWWTrrrLOUnZ3doDqXLVumOXPm6JtvvlFhYaEMw1Dnzp116KGH6pe//KVGjhwpm80Wc32GYeijjz7S22+/reXLl2v37t3Kzs5W586ddfzxx+uCCy7QoEGDGtTGiooKvfnmm/roo4+0atUqlZWVKT8/X127dtWpp56qMWPGqFOnTg2qMx0QR+FVVlbqrbfe0vz587Vy5Urt2bNHXq9X+fn5GjBggE488URdeOGFat26dUz1nX322VqzZk2D9unCCy/U/fff36DXJBsxFNr111+vzz77rEHbP+GEEzRjxoyIZdxut/773//qvffe048//qiSkhLl5eXpoIMO0siRI3XBBReoZ8+eDdpuqhFD+02ePFlvvvlmk/bruOOO08yZM0M+11L7IallxVEokyZN0ltvvRXx+IbDeVFsiKHwOCeKDTEUGudEsSOG9uOcqPFaShz5/X59+umn+vDDD7V06VLt2rVL1dXVatWqlXr06KHjjjtOF110kXr16tWgdn711Vd644039P3332vnzp1yOp3q0qWLhg4dqjFjxuiYY45pUH2p6otshmEYca8VUU2bNk1PPfWUvF5v2DKHHXaYHn74YfXp0ydu2501a5YefPBBVVVVhS1z8MEH66GHHtKQIUOi1ufxeHTffffptddei1huxIgReuCBB2I6sS8sLNQtt9yixYsXhy1js9k0btw43XrrrcrIyIha5+LFi3Xbbbdp+/btYcvk5ubqT3/6k84///yo9aUL4ii8d999V/fcc49KSkoilsvLy9Odd96pCy+8MGK5mpoaDR06VD6fL+q2g6X7H31iKLyTTjpJO3fujFouWLQvH+vWrdNvf/vbiCePLpdLv/nNb3Tdddc16AeIVCGGrBL55aOl9kNSy4mjcD766CPddNNNkiJ/uQyF86LYEEPhcU4UG2IoPM6JYkMMWXFO1DgtJY5WrlypSZMmafXq1RHLORwOXXrppbrjjjvkcrkili0vL9cdd9yhjz76KGK5c889V3fddZdatWoVtZ2p7ItIyKbA1KlTLZ2K0+nUwIEDlZ2drXXr1mnPnj3mcx06dNDs2bPVrVu3Jm93xowZeuCBB8x1m82m/v37Kz8/Xxs3brT8kc3OztbLL7+sQw89NGx9hmHo5ptvtnwYMjMzNXDgQDkcDq1Zs0bl5eXmc3369NFrr70W8Zf34uJijR07Vj/99JP5WH5+vvr166eqqiqtWrXK0jH94he/0N/+9reI+7148WJdc801qq6uNh/r1q2bunXrpl27dmnDhg2W8lOmTNEll1wSsc50QByFj6O6bZSkdu3a6eCDD5bD4dDGjRu1a9cuy/MTJ07UzTffHLbOZcuW6aKLLpIkZWVlxfyr20knnaRx48bFVDbZiKHIfdEJJ5xgro8YMSKmfRs8eLBuu+22kM9t2LBBl1xyieV97dixo3r37q2SkhKtWbNGwX+Sr7vuOt1+++0xbTdViKH6MfSvf/1LX375ZYP2Z+3atdqxY4e5fsstt+iGG26oV64l9kNSy4mjcJYtW6arrrpKlZWVkhqWCOG8KDbEUOxtlDgnCoUYCo9zotgQQ/VxTtRwLSWOvvvuO40bN85yrpGVlaUBAwYoOztbhYWF2rhxo+U1I0aM0NNPPx125G9NTY2uuOIKLV261HwsNzdXAwYMkM/n0+rVqy3bO/bYY/Wvf/0r4g/VKe+LDCTVe++9ZwwYMMD8b+LEicauXbvM591utzFr1ixjyJAhZpkxY8YYfr+/Sdv97rvvjEMOOcSs87LLLjM2bdpkPu/3+43333/fGDZsmFlm5MiRRmVlZdg6n3vuOcu+TJkyxSgtLTWfr6qqMv75z38agwcPNsvcdNNNEds5YcIEs+zhhx9uvPLKK4bH4zGf37lzp/G73/3Ost0XXnghbH1lZWXGiBEjzLInn3yysWDBAkuZH3/80fjlL39plhk8eLDxww8/RGxnqhFH4eNoyZIlxsCBA82yo0aNMj777LN6+75gwQJj9OjRlm1/9tlnYet97bXXzHKXX355LG9XWiOGIvdF8+fPt8RQU3m9XuPcc8816zz22GON9957z/J+/vTTT8aVV15p2ZePPvqoydtOFGIocgzFau3atcbQoUPNem+99dawZVtaP2QYLSuOQlm0aJFx9NFHW/axIceO86LoiKHwOCeKDTEUGedE0RFD8cE5UcuIo7KyMuOEE04wyx5xxBHGiy++aFRXV1vKrV+/3hg/frxln//617+Gbec999xjlhs4cKAxffp0o6qqynx+7969xtSpUy31/eUvfwlbXzr0RSRkk8jtdhunnHKKeSCvv/56w+fzhSz7xRdfWL74vf32203a9sUXX2z50AYHbrCVK1daOsF//vOfIcvt3r3bUu7uu+8Ou+3XX3/dEsCLFy8OWe5///ufpdx///vfsHVOmjTJLDds2DCjrKwsZLlHHnnELHf00UcbGzZsCFmurKzMOPvss82yV199ddhtpxpxFDmOLrnkEssfiuA/YnXt2bPHOP30083yZ555ZtiyU6ZMMctNnTo1bLnmgBiKHEOGYRjPPvusWe7GG29s0D6G8uqrr5r1DR48OOy23W63cdVVV5llf/7znxter7fJ2483Yih6DMWiqqrK+PnPf27pgyoqKsKWb0n9kGG0rDgK5bnnnrO0uaFfHDkvio4YioxzouiIoeg4J4qMGIoPzolaThw99thjls/4okWLwm7b7/cbEydONMsfeuihxtatW+uVW7NmjSVp/Mwzz4St8/HHH7fUt3nz5pDl0qEvssdvrC2i+fDDD7Vt2zZJgaHnd911l+z20IdgxIgRGjt2rLn+73//u9HbXbp0qb7//ntz/c9//rOysrJClh00aJA5L4wkvfDCCyHnZXn99ddVUVEhKXDp3KRJk8Ju/4ILLtApp5xirofblxdeeMFcHjFihM4666ywdd59991q3769JGnPnj0h56apqamxzAV43XXX6eCDDw5ZX15enmUumS+//FKrVq0Ku/1UIo4CQu3L5s2bLXPsTZo0SR06dAhbZ35+viZPnmyur1+/XitXrgxZNvjxht44Jd0QQwGR9iXex/vFF1+0tOOoo44KWc7lcumvf/2rOX/SunXr9Pnnnzd5+/FGDAU0ZV8k6eGHH9a6deskBY79Y489ppycnLDlW1I/JLWsOAq2ceNGTZgwQQ899FDE+d+i4bwoOmIoPM6JYkMMRcc5UWTEUHxwTtRy4ujtt982ly+44AIdd9xxYbdvs9k0ZcoUZWZmSgrc0+GDDz6oV27mzJnmtvr06aNrr702bJ0333yzBgwYYNb30ksvhSyXDn0RCdkkevfdd83l4cOHq2vXrhHLB3/IVqxYoc2bNzd5u3379tXQoUMjlr/wwgvNeTuKi4v19ddf1yvz3nvvmcs///nPI3aWknVf/ve//5lzz9Tau3evFixYYK5fcMEFEevLycnRueeea67PmzevXpn58+dr7969kiS73R71phRHHHGEZR6UUHWmA+IoIFQcLVy40FzOzMzU6aefHrE+KTCPUPDk4cuXL69XxjAMyxfR5v5HnxgKCBVDtQoKCszlph7vgoIC8wRTUtSbpXTu3FmjRo0y19OxLyKGAiLFUDTffvutXn75ZXP9+uuvjxhrLa0fklpWHEmS1+vV1KlTdfbZZ1tO1IcOHdrgOVg5L4oNMRQe50SxIYai45woMmKo6Tgnajlx9NNPP2nr1q3m+tlnnx21De3atdORRx5prtf92+P3+/X++++b6+eff37YZLUUOMe5+OKLzfXg19ZKl76IhGySGIahRYsWmesnnnhi1NcMHDhQHTt2NNc/+eSTRm37q6++atB227Rpo8MOO8xc//TTTy3Pl5SUWH6RimVi9+OPP14Oh0OSVF1dbfmSIUlff/21+YuHzWaLqZ3BZZYsWWJ+yagVvN8DBgywvJex1Fl3v9MBcRQ5jgoLC80/ED169IjpTtMul0t5eXnmevCE3rU2bdpkJl2cTqf69+8ftd50RQxFjiEpMIos+KY2TT3JC/5S3KZNGx1++OFRXxP8/nz22WeWyeRTjRiKHkPReL1e3XPPPeZx7du3r66//vqIr2lJ/ZDUsuKoVmVlpWbOnCmPxyMpcJyuv/56vfjii+bo1VhxXhQdMRQZ50TREUPRcU4UGTHUdJwTtaw42rp1qznaVZL69esXUzvy8/PN5ZKSEstzBQUFlr9HsZyvB+/Ltm3bLD8sSenTF5GQTZKtW7eqtLTUXA8O4kgGDhxoLof6lToaj8ej9evXm+ux3lEx0nZXrVplCb5Y6szJyVHPnj3D1hn8AenevbvatGkTtc7gEwK/368VK1bUa2dD2li3zjVr1qimpiam1yULcRQ5jm6++WYtX75cX3zxhaZNmxZTG8vKyixfWkPdNT04YdO7d++YvtSkK2IocgzV1lubCMnJyVGPHj1iams4wf3bIYccIpvNFvU1wX3R3r17LXdYTzViKHoMRfPaa69p9erV5vqdd94ZtV9pSf2Q1LLiKJThw4frjTfe0K233tqoY8V5UXTEUGScE0VHDEXHOVFkxFDTcU7UsuLohBNO0LJly7Rw4UK99dZblkRrJFu2bDGX6/7tCe43XC5XTAn43r17W6ZeiJR/SmVf5GxyDYjJxo0bLevBX+Yi6d69u7ncmAO+ZcsW89ctSerVq1eTtxu8LxkZGTrooINirrP2F9ZIdcbaxo4dOyorK0vV1dWSAr+UDR8+3Hw++Nfcxuy31+vVli1b1Ldv35hemwzEUeQ4kgKXKHTq1EmdOnWKqb4PP/xQfr/fXA91vIM77IEDB2rv3r1666239Omnn6qgoEBlZWVq3bq1evfurZNPPlljx46N6ctzKhBD0WOo7vGurq7Wf//7X3344YdasWKFSkpKlJubqx49euikk07Sr371K3Xu3Dns9hrTvwXvtxTo32J9baIRQ9FjKJKKigo9+eST5vopp5yik046KerrWlI/JLWsOKplt9s1atQoXX311Ro2bFiD2xaM86LoiKHoOCeKjBiKjnOiyIihpuGcKKAlxlHbtm3Vtm3bmOrbvHmzfvzxR3O97t+e4PenW7du5tUfkdhsNnXt2tVMOG/atClsnansi0jIJsmuXbvMZbvdHnFS/WDBw9CD62jMduvWF+t2d+/eLb/fb87TEVxnrPXVLVu3XTt37mxUne3btzfnKAmu0+/3q7i4uMF11j0uu3btSpsvHhJxVLdsY/YlWE1NjZ5++mlzPT8/P+Rk3sG/wm7YsEGnnXaa5VdMKbB/u3fv1rfffqtnn31Wf/jDHzRmzJgmtS8RiKHo+xJ8vEtLSzV69GhLHyUFLqUpKSnR8uXL9a9//Us33XSTJkyYEHJ7jenf2rVrJ4fDYY5KaWqsxxMx1LR9mTlzpnbv3i0pcLJ4yy23xPS6ltQPSS0rjmrl5eXpqaeeanCbQuG8KDpiKL44JyKGQuGcKDJiqGk4JwpoiXHUENOmTbNcsRY8V2vddsb6A6MUOIepTcjGI/+UiL6IKQuSJPjyn9zc3JgDNngep7pzgTV0u1LoS49CadWqlblsGIalgwue0yO4XDSR9iV4vSF1BpcNbmNZWZnljn+N2e+6daYD4qjp+xLskUcesfw6duWVV4b8xS34j/6KFSvM/ejVq5eOO+44HXbYYZa5ckpLSzV58mRNnz69Se1LBGIo+r4EH+9169aZf7C7du2qY489VkceeaRyc3PNMtXV1Xr00Ud15513htxeY/o3u91uublUOvVFxFDj96WqqkovvPCCuT569OiY5+NrSf2Q1LLiKBE4L4qOGIovzomIoVA4J4qMGGo8zon2O5Dj6MMPP9Rbb71lrh9//PH1pk5o7Pl6cNl45J8S0RcxQjZJgufcCp7LIprg+VDcbneTttuQbQffYbVuPcHtiNe+xOP9Ca6j7n4Hd8ix1heqnlQjjpq+L7Vee+01vfjii+Z6t27ddPXVV9crV1xcXG8kwLnnnqtf//rX6t27t/lYTU2N5s6dq0ceeUTl5eWSAr/29enTR2eddVaj2xlvxFDkfal711YpcNfpW265xXJy4PF49MEHH+iBBx4wfx2dO3eu+vTpo+uuuy5sm+PRv6UaMdT4fZk7d65llOKNN94Y0+taWj8ktaw4SgTOi6IjhuKHcyJiKBTOiaIjhhqPc6L9DtQ4WrFihSZNmmSp94477qhXrjnknxqLEbJJEjw3R0OGcwf/Mu31ehu83bqviXXbdX8RDx5VkYh9CV5vSJ21d7quW0fd+oPLxVqfZN3vdEAcNX1fJOn//u//NGXKFHPd5XLp73//u+UXr1rr1q2ztO/OO+/Uww8/bPmDLwW+3F5yySV65ZVXLL9WPvDAA2l14kgMRd6XrVu3Wo7XlVdeqWeffbbeL7Uul0u/+MUv9MYbb6hLly7m408++WS9y1eCtxFrX1S3bGNjPRGIocbvyyuvvGIuDxs2TIccckhMr2tp/ZDUsuIoETgvio4Yig/OiQKIofo4J4qOGGo8zon2OxDjqKCgQNdcc40qKyvNxyZNmqTBgwfXK9vY9ydSv5EufREJ2SQJPnDBk+VHE3yQ6/4SEYu6ARvrtusGV/C2E7Evja0z+MMfro11y8VaX6h2phpx1PR9eemllzR58mRzmzabTVOnTtURRxwRsvyxxx6rpUuXat68eXr55Zc1bty4iPUPHDjQ8kvfzp079d577zW4nYlCDEXel+7du2vZsmX66KOP9OKLL+rOO++MeNfNzp076/777zfXq6qqNHv2bEuZ4HY25IQluGw63T2WGGrcvnz77bdau3atuX7llVfGvL2W1g9JLSuOEoHzouiIoabjnIgYioRzouiIocbhnMjqQIujxYsX68orr7RMRXDhhReGjYN4nxPVrTOVfREJ2STJzs42lxvyi0zw0OpYLy8Lt92GbLvukO7gbQcP6W7IvgSXrbsv8a6z7rDzWOts7CV9yUIcRY6jSAzD0GOPPab77rvPnDTcZrPprrvu0nnnnRfxtRkZGerdu7eOOeaYmLY1ZswYy3xaX375ZcztTDRiKHoMOZ1O9ejRQ8OGDYvpV9gRI0ZYfpWve7zj0c50+vJBDDWuH3r77bfN5Q4dOuiUU06JeXtSy+qHpJYVR4nAeVF0xFDjcU4UQAxFxzlRZMRQ43BOZHUgxdFHH32ka665xjKH6znnnKN777037GvSNf9EQrYZadOmjblcUVFhuYtcJLXznUiBu502Zbt164t1u06n0zLRcXA7Yq1PCux3qDrqtrMhdYZ7f1q1amU5aWjMfodqZ6oRR5HjKJyamhrdcsstljuGOhwOTZ06VZdeemnM245VRkaGDj/8cHN906ZNcd9GYxFDjYuhaILvRF33eDemf/P7/ZZLeNKpLyKGGh5DXq9X77//vrl+7rnnhrxZTjylcz8ktaw4SgTOi6IjhhqHc6L9iKHE4JwougM5hjgnqu9AiaPnnntOEydOVHV1tfnYhRdeqIceeijitAGNPV+P9P6kS19EQjZJOnfubC77fD7t2bMnptcFz7vToUOHJm1XkoqKihq83Xbt2lkuTwmuc/fu3TG3JdK+NLbO4LIdO3Y0l+12u2U91jrrvj+Nec8TiThq+L4UFRXpiiuusFyakpmZqSeeeEIXXnhhzNttqOC2Neaul4lCDDV9X0KJdLwb087i4mLLJTnB/VmqEUMN35fFixdbLsv6+c9/HvO2miJd+yGpZcVRInBeFB0x1HCcE1kRQ4nBOVF0B3IMcU5UX0uPI4/Hoz/96U96+OGHLZ/lCRMm6P777486+r5Tp07mckPOiYL3p26/kS59EQnZJOnVq5dlffPmzTG9bsuWLeZy3YmqY9G1a1fLfBmN2e7BBx9seS54XyorK2P+4AZvu+6+BG/jp59+iqm+nTt3Wn5didTOWOsMbqPL5VK3bt1iel2yEEeR46iu9evX6+KLL9bSpUvNx/Lz8zVjxgyddtppMW2vsYIvZwi+RCbViKGGxVCsIh3vxvRvdd+fuvueSsRQw2Pof//7n7ncpUsXyyiNRErXfkhqWXGUCJwXRUcMNQznRPURQ4nBOVF0B3IMcU5UX0uOo4qKCk2YMEFz5swxH3M4HLr77rt12223xbS94G1s2bIlphHEhmFo69atYduZLn0RCdkk6datm2VI88qVK2N6XUFBgbk8aNCgBm/X5XJpwIABDd5ucLm6dzwcPHiw5VeQWOqsqKiwBHrdfQm+W+emTZtUVVXVoDbabDYNHDjQ8vxhhx1mLge/j7HW2a9fv7S44UIw4ihyHAUrKCjQpZdeWq8jfu211yyXUkXz73//W3fffbcmTpyo5557LubXBXfYBx10UMyvSzRiKHIMvfHGG7r33nv129/+Vn/9619jaqMU+XgH92+N6YvatGmTVkkQYij2fqjWV199ZS6PHDmywSNSWlo/JLWsOEoEzouiI4ZixzlRaMRQZJwTRUcMNRznRPW11DgqLS3VVVddpQULFpiP5eTk6Mknn2zQFDnB/UZVVZU2bNgQ9TXr16+3JOHrtjNd+iISskk0bNgwczk4KMMpKCiwjNY5/vjjk7LdkpIS/fjjj2G3m5eXp8GDBzeozoULF5rDux0Oh4477jjL80cffbQ5d4zP59OiRYui1hm83cGDB9ebAyV4GytWrFBpaWmD6mzs+51oxFH4OKq1bt06XXXVVZbLPYYOHapZs2Y1+JesTz75RLNmzdIHH3ygN998M6bXFBYWavXq1eZ6rBPOJwsxFD6GvvnmG7388suaN2+eXn/99XqT1odSXV2tb775xlyve7yDt7Fr1y6tWbMmap3B+xL8vqULYih6P1SrsrJSq1atMtfD3b08kpbYD0ktJ44SgfOi2BBD0XFOFBkxFB7nRLEhhmLHOVF4LS2OKioqdM0112j58uXmYx07dtRLL72kUaNGNaiN/fv3V7t27cz14KR+OME3bmvbtm29H6nTpS8iIZtEo0ePNpc//fRTFRYWRiz/6quvmst9+/atF0SN2e4PP/ygH374IWL52bNny+v1Sgpk/ocPH16vzBlnnGEuv/3221FHbgTvy/Dhw9W6dWvL861bt7Z8mGfNmhWxvoqKCsvdGc8888x6ZU444QRzgmmPx6PXX389Yp1Lly61dC7Jms+moYijgFBxJEllZWWaMGGCZW6iUaNGacaMGWrbtm3E+kMJ7qzXrl2rJUuWRH3Ns88+ayZsXC5X2sUSMRQQKoaCj3dpaanlpgOR6gxObJxzzjmW5wcMGGC5jCha/7Z9+3Z99tln5nq6xY9EDNUK1w8FW7FihdkGSY26NK8l9kNSy4qjeOO8KDbEUGScE0VHDIXHOVFsiKHYcU4UXkuLo8mTJ1uSsb169dKrr75qGZkaK5vNptNPP93ShuC5XOvy+/2aPXu2uX7GGWfUG4mdLn0RCdkkGj16tDkhsdvt1uTJky0dUrAvvvjCMs/GFVdc0ejtDh061BL4d955Z9g7ya1cuVL//Oc/zfWLL75YWVlZ9cpdcMEFys7OlhSYLPnee+8Nu/05c+boiy++MNevvPLKkOUuu+wyc/nTTz/V3Llzw9Y5ZcoUFRcXSwoMew91I4KsrCzL49OnT7f8IhesrKxMf/zjH831I488UkOGDAm7/VQijgLCxdFdd91lmdfmlFNO0bRp00JuPxbnnXee5c6fU6ZMsdxhva733ntPL730kuX1Xbp0adS2E4UYCggVQ2eccYYlwfbwww9r586dYetcvHixHnvsMXN9+PDhIfuO4P5t1qxZYX+B9ng8uuOOO+TxeCQF5nZK9Nx+jUEMBYTrh4IFXwaVlZWlfv36RX1NXS2xH5JaVhwlAudF0RFDkXFOFB0xFB7nRLEhhmLHOVF4LSmOXn31VX3wwQfmerdu3TRz5kz16NGj0e289NJLzaRqQUGBnnzyybBlH3/8cXPEq91uD/v+pENfREI2iTIyMnTrrbea6wsWLNB1111nmc/E6/Vq9uzZmjhxonw+n6RA9v6iiy4KWefPfvYzDRw4UAMHDtTPfvazsNu+4447zABevXq1rrjiCkuHaBiGPvjgA40bN06VlZWSAkPKr7/++pD1dejQQePHjzfX586dq9tuu81yh7rq6mo99dRTuvvuu83HRo4cqZEjR4bdl+Ch33/+85/19NNPW+b+KCoq0i233GIZBfLrX//aMoQ92IQJE8znKioqNG7cOH344YeWiaALCgp0xRVXmB9ah8OhyZMnh6wvHRBH4ePom2++0bvvvmuuH3zwwfrb3/7WpDnvevTooXHjxpnrq1at0mWXXaZly5ZZypWWluqxxx7TbbfdZsZX165ddccddzR624lCDIWPodzcXN1yyy3memFhoX71q19p/vz5lnLV1dWaMWOGrrnmGrOPysvL03333ReynWPHjjV/hfV6vbrppps0Z84cy4nW5s2bNX78eMulyb///e+VkZERss5UIoYi/z0LtnbtWnP5oIMOsnyJiFVL7IeklhVHicB5UXTEUHicE8WGGAqPc6LYEEOx45wovJYSR+Xl5frb3/5m2a9//vOf6ty5cyxvQ1iDBg3SmDFjzPXp06frL3/5i8rKyszHysrKdP/99+upp54yHxs7dmzYxH869EU2I5ZblCGu7rrrLr322mvmut1u18CBA5WXl6d169aZIxykwN1PX331VfXp0ydkXT/72c/MCfq7deumTz75JOx2n376acuHQwrcoKFdu3batGmTZVh8VlaWnn/++Yjzq9QGbfDQbZfLpYEDByojI0Nr1qyxfEC6d++uOXPmhP2SIAX+0F922WWWjqdVq1bq37+/3G63Vq1aZf4yIQUuu/rHP/4huz38bwtfffWVbrjhBsudh7t06aKePXtq9+7dWrdunaX8pEmTdO2114atL10QR/Xj6Nprr7WcJPbu3bvBk22fe+65+uUvf2l5zOPx6Oabb7a0sbYt3bt3V1lZmVavXm2JzU6dOmnmzJlpdSfYuoih8H1R3fdGChzTgw8+WDU1NVq9erXl0va8vDw999xzGjp0aNg6a09wgi8dbdeunfr27WvGUPDlN5dddpnuuuuusPWlA2IofAzVGj9+vDmqdsiQIZZLqBqipfZDUsuJo0imTZum6dOnSwpcbjlz5syYXsd5UWyIofo4J2oYYig8zoliQwxFxzlRdM09jp555hk9+uij5nq7du0s92uIxcCBAzVp0qR6j5eXl+uqq66yTKuQnZ1tTtewatUqS190+OGH66WXXoo4GjzVfVHDf5JAk91zzz1q27atnn/+eXk8Hvn9/pB3tOvbt68ef/zxsB+whrr++uuVm5urRx991PxlI/hXqlpdunTRI488ErWjdjqdmjZtmu655x698cYbMgxDHo8n5LwjQ4cO1eOPPx71y2vnzp01c+ZM3XrrreZ8MGVlZSHnhrnwwgt19913R/zSIQXmTHv22Wd1xx13aNu2bZKkHTt2aMeOHZZyWVlZmjRpkmXoejojjqxKS0vrTfC9YcOGmO7CGOzII4+s95jL5dL06dP1xBNP6F//+pf5q9mWLVsslwLWOvnkk3X33Xen1V1gQyGGwrvnnnvUp08fPfbYY2bSYufOnSEv1TvyyCN17733Rp27acCAAXrxxRd12223mSPPiouLLSdWUmA02nXXXaff/e53EetLB8RQdME3XKidv7MxWmo/JLWcOEoEzotiQwxZcU7UcMRQeJwTxYYYio5zouiaexzNmzfPsl5cXFxvVH004W4gmJeXpxkzZmjSpElmcrmqqkrff/99vbKjRo3Sww8/HHVqjlT3RYyQTaF169bp9ddf1/z587Vjxw5VVVWpTZs2OuSQQ3TmmWfq3HPPjToUuiG/etTasWOHZs+erc8//1xbtmxReXm58vLyNGDAAJ122mm64IILlJeX16B9WbZsmd58800tXLhQhYWFcrvdateunY444gidffbZGj16dNQvCMEMw9CHH36od999V8uWLVNRUZHsdrs6d+6so48+WhdffHHIk8RIqqqqNHfuXH344Ydau3atSkpKlJmZqV69eunEE0/Ur371q2bRSddFHO1/bbjLNRri5ptv1sSJE8M+v23bNs2ZM0cLFy7Uxo0bVVZWptzcXHXq1EnHHHOMzjzzzLS8A2wkxFB4xcXFev311/Xll19q3bp1KikpUVZWljp27KghQ4bojDPO0CmnnFJvovhIvF6v3nnnHb3//vtauXKldu/eLZfLpe7du2vYsGH61a9+1ag5tVKJGApv9OjR2rRpkyTprLPOssyv11gtsR+SWlYc1dXUUUWcF8WGGArgnKjxiKHwOCeKDTEUHudEsWuucXTkkUdGvUFuNLHE1ldffaW3335b3377rYqKiuTz+dShQwcNHTpUY8aM0YgRIxq0zVT1RSRkAQAAAAAAACBJuKkXAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAksSZ6gYAwIFqy5YtOvXUU+Ne78cff6zu3btr2rRpmj59uiTpuOOO08yZM+O+reaqub03hmFo7ty5OuSQQzR48OBUNwfNXHOLf6SndO+XmlOcp/t7me5OPvlk7dixIyF1v/zyyzrmmGMSUjeahuMOoLljhCwAAGlszZo1uvzyy/WHP/xBZWVlqW4OANAvxRHvZdMUFhYmLCnncDh06KGHJqRuNA3HHUBLwAhZAEiRrKwsjRgxImKZvXv3avny5eb64YcfrjZt2kStFy3HmDFj5PF4Ut0MADDRL8UP72XTrF+/Xj179oxabufOnaqurjbXY3lNz549lZ2d3aT2ITE47gBaAhKyAJAiHTp00PPPPx+xzKJFi3TllVea67///e81bNiwRDcNaYQv6gDSDf1S/PBeNs0JJ5ygDz/8MGq5M888Uxs2bJAkdevWLabXIH1x3AG0BCRkAaCFmjhxoiZOnJjqZgAAAKRMRUWFNm3aZK4zT++BgeMOIN0xhywAAAAAoEVauXKl/H6/uU5i7sDAcQeQ7kjIAgAAAABapJUrV1rWuWHTgYHjDiDdMWUBALRQ06ZN0/Tp0yVJxx13nGbOnBmxzJQpU3TJJZeosrJS77zzjt555x1t3LhRpaWl6tChgwYNGqSxY8fq5JNPttSxYcMGzZo1S/Pnz9e2bdskSd27d9fIkSM1btw4dezYMab2rlmzRm+//ba+/PJLbd++XWVlZWrTpo169OihESNG6IILLtBBBx3UlLckovLycr3yyit6//339dNPP8nr9apTp0469thjdfbZZ+v4449vUH1N2Z+5c+fqzjvvrPd48HzCY8aM0bZt27Ro0SJJ0tlnn61HH300bHvmz5+va6+91lx/4IEHdP7554ctP3XqVDNmItWdiOMWjzqDY/vPf/6zLr/8crndbr311luaN2+e1q1bp6KiIrVq1Uq9e/fWz372M40dO1atWrVqUFsjKS8v13/+8x999tlnWrlypYqLi+V0OpWfn68+ffro+OOP1y9/+Ut16tQpbB2TJ0/Wm2++KSlwzB988MGI29yyZYtOPfVUc/3jjz9W9+7dY2prPOI/HvtcV7xjzOPx6D//+Y/effdd/fjjj9q7d6/atm2rAQMGaMyYMTrrrLNkt9v1m9/8Ru+//74k6cUXX7TM352M45Jun4NY+6Vo70W0dt52222aMGGCSktLNWvWLM2bN09btmxRVVWVOnbsqCOPPFJjxozRSSed1ODteL1evf3225o3b54KCgpUXFys/Px8de3aVaeddprGjBkT89+s77//Xm+//ba+/fZb7dixQ5WVlcrPz1f37t114okn6rzzzlOPHj1CvjYe72VTtl8rUf1kIvqBpvjxxx8t64ccckhStovU4rgDSHckZAEApmXLlun222+3zLklSVu3btXWrVv18ccf6+KLL9aUKVPkcDj0wgsv6OGHH653U5LVq1dr9erVmjt3rp5++mkdccQRYbdZVVWlqVOnau7cuZZLyySpqKhIRUVF+u677/TMM8/ouuuu08033yybzRa/nVZgv3/729+aCeVaGzdu1MaNGzVnzhydfPLJevDBB9WuXbuIdSVzf0aNGmUmZL/66isZhhG2rgULFljWv/7664gJ2f/973/mcnAiqVYi9jOR711BQYFuu+02rV271vJ4cXGxiouLtXjxYj3//PN65JFHdOKJJ8ZUZyQLFizQ73//exUVFVked7vdqqys1LZt2zR//nxNnz5d119/vX796183eZuNFa/4j/c+JyIeli9frttvv10bN260PL5z507t3LlT8+fP1xtvvBHxx41Ea0mfg8ZauXKlbrrpJm3dutXyeO3fov/+978aMWKEHnroIbVv3z6mOletWqVbb7213r7v2rVLu3bt0tKlS/Xcc8/pL3/5i0477bSw9RQWFuoPf/iD5s+fX++52rq+++47Pf3007rssst0++23y+VyxdTGWCRy+/GIj3Ts+1asWGEud+zYMWmJYKQWxx1AuiMhCwCQFPiy+sgjj6i8vFySdNBBB6lHjx7au3evVq9eLcMwJEmzZ89W//795fF49NBDD0mSMjMzNWjQIDkcDq1evdqso7i4WBMnTtR7772nnJycetvcs2ePxo8frx9++MF8zOFwqH///mrTpo327NmjNWvWyDAM1dTUaPr06VqzZo0ee+wxORyOuOz31q1bde2116q0tFSS1LZtW/Xt21dVVVVatWqVvF6vJOnzzz/XFVdcoZkzZ4ZNSsVrfzp37qwRI0ZIkuVL9+GHH642bdpIkgYMGKBTTjnFHEG1e/durVq1SoMGDQrZtoULF1rWv/7667DvycaNG82kvMvl0siRIxOyn4muM3h/pk+frj179kiS2rdvrz59+qi6ulrr1q1TZWWlpEC83njjjXrzzTfVt2/fiHVGsnTpUk2YMMHyQ8XBBx+sTp06yefzaevWrdqxY4ckqbq6Wo8//rj8fr9uvvnmRm+zseIV//He50TEw+LFizV+/HjzeEtSq1at1L9/f3m9XhUUFMjtdmvBggW66aabzM9aMqXz5yDWfqmpamNy9+7dkqT8/Hz169evXkzOnz9fl156qV599dWoP5T99NNPuvzyy804b926tXr37i2n06k1a9aYj+/du1e//e1vNWvWLB1++OH16lm/fr0uu+wyFRcXm485nU71799frVu3VmFhoZns93g8mjFjhlasWKFnnnnG8jewse9lvLYfSjz6yXTs+9xut9atW2euM4/ogYHjDqA5ICELAJAkvfrqq5ICX57uvfdey+W5BQUFGj9+vHbt2iVJeuyxx1RVVSWbzaYbbrhBEyZMML/sVVZW6q9//atmzZolSdqxY4feeecdjR071rI9wzA0adIkM/Fgt9t17bXX6tprr1Xbtm3Ncjt37tS0adM0e/ZsSdL777+vJ554Qrfccktc9rt2BFbr1q31xz/+Ueecc46Z2CguLtbDDz+suXPnSpLWrl2rKVOm6IknnqhXTzz358QTTzRHHw0cONB8/Pe//73luEiB41X7BXzBggUhE7J79uypN5fa1q1btXnz5pCXtH7++efm8rHHHqu8vLyE7Gci6wxWO/VCz5499ac//UkjR440RxSWl5dr2rRpmjFjhiSppqZG06ZN09///veIdUZy7733mgmJI488Ug8//LB69uxpKfP111/rz3/+s3nsnnnmGV100UXq3Llzo7fbGPGK/3jucyLiobS0VL/73e/MpFJGRoZuv/12XXLJJcrIyDDLPPnkk5oxY4aWLFkiuz25t1pI989BQ/qlpqj925Gdna3f//73uvjii80RnkVFRXrwwQf1zjvvSAokEf/0pz/pH//4R8Q6a5OAbdu21eTJk3XWWWeZx93j8WjmzJl65JFH5PP55PV6df/995vtqFVSUqLx48ebydDa4zN+/Hjl5+eb5davX68HHnjAvMrgm2++0R//+Ec99thjZpnGvJfx3H4o8egn07HvC07iS1y2fqDguANoDripFwDAdNBBB2nWrFn1vhAOGjRIkyZNMtcrKytlGIbuuOMO/e53v7OMvMnJydGUKVMsicG6l8tL0ttvv21+YbTZbHr00Ud1++23WxIPktSpUyfdd999uu2228zHnnnmmXqXHDdFTk6OXnzxRZ133nmWUWbt2rXTAw88oCuuuMJ87P3339fixYvTZn9GjRplLn/55ZchyyxatMi89DkrK8vyeCjB0xX87Gc/szyXiP1MxnvXvXt3zZ49WyeffLLl8u68vDzdeeed+sUvfmE+9vnnn8vtdketM5Rt27aZCTWHw6F//OMf9RISUmBe5+eff16ZmZmSAgmOzz77rFHbbKqmxn+89zkR8fD8889r586d5vrjjz+uq666ykzKSYGk9J133qnJkydLUr3pAhKtJX0OmsrlcumZZ57RZZddZrncvkOHDnrkkUd0ySWXmI99/PHH+vbbb6PW2b59e73xxhs677zzLMfd5XLpmmuu0bhx48zHvvvuO8soVCnwHgdPofDII4/o9ttvtyRDJalPnz56+umndcEFF5iPvfvuu/r000+jtjGSZGy/KfGRrn1f3XlEubHTgYHjDqA5ICELADD95je/qfflv9app55q+YLWrVs3XXXVVSHL2mw2nXLKKeb6Tz/9VK/M888/by6fc845OuussyK2bcKECeYlpH6/3xypEw+//e1vI46emDRpkrp162au144mDpaq/Ql+nxcvXhwygRKcEL/wwgvN5VDTFlRVVembb74x1+smZBOxn8l47yLFtiRLgqeyslKbN2+OWmcowUm/nJyciNvs3r27Lr74Yp166qm66qqrQiYvkqGp8R/vfY53PHi9Xs2ZM8dcP/fcc+vFdbCrr77avJw8mVrS56CprrvuOh133HFhn7/zzjstMVl7g7VIbrvtNstr6gred0mWeVQrKir08ssvm+vnn3++JTlZl91u1913361evXqZjz377LNR2xhOsrbflPhI174veB5RiUvXDxQcdwDNAVMWAAAkBZKoo0ePDvt8bm6u2rVrZ87rN3LkyIiX9AZfflhWVmZ5btOmTVq1apW5HunmUsHOO+88LV++XJL1svqmyMnJ0UUXXRSxTEZGhs4//3xNmzZNUmAEafANtFK5P8ccc4xatWqlsrIyVVVVacmSJTr++OMtZb766itJgfkyL730Ur300kuSQidkFy5cqJqaGkmBS2mDExiJ2M9kvHd2uz3kjcmC9evXz7JeN2Zj1aVLF0sdf//73/W73/0u7GflT3/6U6O2Ey/xiP947nMi4mH58uVmvyWp3vQpoVx77bUhb5qUKC3tc9AULpdLV155ZcQymZmZuuCCC8zpMz777DP5/f6wMWe323X66adHrLNHjx7Ky8sz50APvinV119/rerqanP96quvjrofmZmZuuKKKzR16lRJ0pIlS1RSUlJvRGsskrH9psZHuvZ9wdP1tGnTRt27d29UPZ9//rkmTJggKfB3MlLCOVkMw9D69eu1bNkyLVu2TMuXL1dBQYE5bURwn9JUwfOxxlv79u0b9bmIpCUfdwAtBwlZAIAkqWvXrpa5QkMJvty9d+/eEcvWXo4o1b/0d8mSJZb1Pn36xNTGww47zFzetm2bduzYYfkS2BhDhw5Vbm5u1HLHHHOMubx3716tXbtW/fv3l5Ta/XE6nRoxYoTee+89SYHRsMEJ2a1bt5ojlI855hj17dtX+fn5Kikp0fbt2/XTTz9ZRicFJ3XqjiJMxH4m473r3r171Nhu3bq1ZT34pjQN0aVLFw0ZMkRLly6VJD399NOaN2+eTj/9dI0YMUJHH3205XLpVItH/MdznxMRD7UJSymQ7BsyZEjU+oYNG6asrCxLEiyRWtrnoCmGDBkSU9IjeGqdoqIibdiwIezN+Lp161Zv30Jp1aqVmZANvtogeEqEjh07xnzzstp5YqVA8mzJkiURR2eHk4ztNzU+0rHv8/l8Wr16tbnelHlEaxN8Xbt2TZuk3NatW6OOpI+XRG7ntttuM5Oe8dDSjzuAloOELABAUmCEQkNE++IWPL1BXZs2bbKsjxw5skHbrlVYWNjkhGysiY+6Cejt27ebCalU788pp5xiScjeeuut5nPB0xXUJmqPOuooffLJJ5IC88gGJ2QjzR+biP1MxnsXy8ibuneob8r8oXfffbcuv/xy8wZSmzZt0nPPPafnnntOWVlZOvroo3XiiSfqlFNOCZtASpZ4xL8Uv31ORDwEz7vZrVs3y5yk4TgcDvXr18+cEzPRWuLnoLFC3ZgwlLqxu3PnzrCx1aZNm5jqDB7NGbzvwZfj1x0lGknv3r3lcrnMxGVwPQ2RjO3HIz7Sre9bu3at5UeVply2XjsnabreHKpz58464ogjVFJSYpl26EB0IB13AM0bc8gCACRZR7TGIlLCNZrS0tJGvzZYSUlJk+uIZdSUFBg5FWzv3r3mcqr35+STTza/KK9YscLStoULF5rLtQnZ4BG0wTf2WrdunZm86tSpkzk/Za1E7Gcy3rvgkd3JcOihh+qVV17REUccUe+56upqffnll3rooYd01lln6Re/+IVmzpyZkpGIUnziX4rfPiciHmpHPEr19yOSeF9CG0lL/Bw0VqzJ07o/CgZPMVBX8I0nGyP4fY31MyMF/k4Gx1xj+/hkbD8e8ZFufV/wZeu17WusJ554QqtWrdI//vGPRtexZcsWDRw4UAMHDmx0HcHy8/P15JNP6osvvtD//vc/TZ8+XcOHD49L3c1Zuh13AAiHEbIAAElNS7A2lNfrNZczMzN17LHHNqqehnwxbSrDMCzrwV9eU70/bdu21ZAhQ7RkyRL5/X4tXLhQZ5xxhgzDMBOy+fn55pfA4IRs8DyywdMVjBo1ql5MJGI/U/3eJcohhxyiOXPmaMmSJXrvvff0+eef1xsFKQVG8kydOlWvv/66ZsyYkbaXREaK/1rx2OdExEPwj0119yOShv5I1RQt9XPQGE5nbF9P6o7ObMixbaim1O3z+czlSPOup/P2GyKd+r66N3ZqaaMc8/LydNpppyVlW/GcjzbRWvpxB9BykJAFACRdcNIgOzvbcnfxZKuoqIipXN0RbMH7kA77M2rUKHMeyi+//FJnnHGGVq9ebY4aGzZsmJlgHTBggNq3b6/du3ersLBQGzdu1MEHHxxxugIpMfuZDu9dIh111FE66qij9Mc//lGbN2/WwoULtXDhQn355Zfas2ePWa6goEB33HGHnnnmmbB1xZKUqb0hW6ziEf91NWWfEx1jDblJVfDI2kjicVxa+uegIWJ93+vGZCJHNAeP2m3IaGafz2fZn1jma07H7TdGPPu+xqq93FwKjJKONvd9OG+99ZYmTZokl8ulJUuWpNU84KiP4w6guWDKAgBA0nXu3NlcLi0tjfkLeCJs2bIlpnJr1661rPfq1ctcTof9OeWUU8zl2nljg0e/Bt8Ax2az6bjjjjPXFy1apIqKCvPGMTk5OTrhhBPqbSMR+5kO712y9OjRQxdddJEeffRRLViwQM8884wOOugg8/nPP/9cGzZssLwmeJRy8CjKcIITHbGIR/xH0tB9TkQ8HHzwwebyli1bYr5RV+3N8EKJ93E5kD4H0YQaTRlK3bu+NzbpEovgeXnrfhYiWb9+vWWEamPv9J7q7TdVY/q+pjIMw3Lp+qBBgxo9QrigoECS1LdvX5JyaY7jDqA5ISELAEi6oUOHmst+v9+SOIzk66+/1l133aWnn35a77zzTsyj+yJZunRpTCPcgm+OddBBB1m+IKfD/gwYMEDdunWTJG3evFmbN2+23Jk7eJqCuuuLFi3SV199Zc7lN3z48JCXaydiP9PhvYunFStWaO7cuXrkkUc0b968sOXsdrtOPvlk/e1vf7M8XjfJFHwDqliSdGvWrGlQe+MR//Hc50TEw9FHH20u+3y+mOrcunWrtm/fHvb5eB+XlvY5aIrvv//ekkQMJ3h+7E6dOqlHjx4Ja9NRRx1lLu/atSvmy7e//PJLy3pjL51O9fZjEe++r6k2bdpk+Tw0ZR7R2gQfl76nP447gOaEKQsAAEl3yCGHqHPnziosLJQkvfDCCyEvka/r8ccfN5OM+fn5OvPMM5vcll27dunTTz+NuP3S0lK9+eab5nrdOdsSuT82my3m+QNHjRqll156SVLgi3ht3R07dqx3R+vgEbBff/215QY54dqeiP1Mp1iIh6eeekoffPCBpECSLVq7+vfvb1kPTvRJssyrGEvC4r///W+sTZUUn/iP5z4nIh569OihQw891JxX8MUXX9TIkSMj1vfqq69GfD7ex6W5fQ4a0i81VFFRkT766COdccYZYctUVFRo7ty55nqi9/u4445TTk6OKisrJUkzZszQAw88EPE1NTU1euWVV8z1wYMHq1OnTvXKxfJeJnL78RLvvq+pgi9bl5qWVKsdKTlo0KAmtQmJx3EH0JwwQhYAkHQOh0Pjxo0z1xcuXKinnnoq4mteeukly4jPCy+8MG5f4KZMmRL2Dt0+n09//vOfzUuOHQ6HrrzySkuZRO5P8EjVaPNQBk9b8Morr1jmj62rV69e6tq1q6RAUu6dd96RFBi9NGrUqJD1J2I/0y0Wmir4vfv+++8jjhSTZHnebrfXu/t28BfBzZs367PPPgtb12uvvaZvvvmmgS1uevzHc58TFQ/jx483l7/44gu9/PLLYetbvHixZsyYEXGb8T4uze1z0JB+qTHuv/9+7dy5M+RzhmHo3nvvNZ93uVy6/PLL496GYK1atdKFF15ors+dOzdikt0wDE2dOtUy/ULdz02tWN7LRG4/XuLd9zVV3Rs7NXak5I4dO8z+j5GS6Y/jDqA5ISELAEiJyy+/3HKi/Nhjj2ny5Mnatm2bpdzu3bv14IMPaurUqeZjnTt31oQJE+LWlsLCQl188cX66quvLI9v3rxZN9xwg+WL469//Wv17NmzXh2J2p/gG9UE33QrlGHDhiknJ0eS9Y7IdacrCC5fq3bk1ZAhQ9SuXbuw20jEfqZTLDTVL37xC/NyfsMwNHnyZL322mtyu92Wcm63W7Nnz9Z9991nPnbmmWdapgKQpJNOOsk8ppL0+9//Xp988omlzK5du/Tggw/q7rvvlhT7XeprNTX+473PiYiHs846S6eeeqq5ft999+mhhx6y3OTL6/Vqzpw5Gj9+vDl9RziJOC7N6XPQkH6pMQoLC3XJJZdYpsqQpG3btunmm2/W//3f/5mPXXPNNTHPadwUN910kzktjCTdfvvtevTRR1VSUmIpt3HjRt14442aPXu2+diwYcN03nnnhaw31vcyUduPl3j3A00VPI9oRkaG+vXr1+R6YknM+Xw+VVRUhPwveP7qcGUqKioSNvr8QJCq4w4AjcGUBQCAlMjIyNATTzyhcePGafPmzZKkN998U//3f/+nvn37qn379tq1a5c2b95sSY60atVK06ZNs9x1uilGjhypb775Rlu3btW4cePUtWtXde/eXXv37tXq1astX4zOPPNM/frXv07q/gwYMEA7duyQJM2cOVPffPON8vPz1bdvX91111312jB8+HB99NFHlsdDjZCVAona4EvRpfDTFSRyP9MlFuIhMzNTDzzwgCZMmCCPx6OqqirdddddevDBB9WvXz/l5eWpoqJCa9eutcxz16tXL/3hD3+oV19eXp6uv/56PfbYY5IC0wfceOON6tKli3r06KGSkhJt3LjRfF8uvvhirVq1SkuXLo2pvfGI/3jvc6Li4cEHH9S1116rZcuWyTAMPf/885o5c6YGDRqkzMxMrVmzxkxudevWTVu3bg37viXiuDSnz0FD+qWGateuncrKyrRlyxZdffXVZkyWlpZq9erV8vv9ZtlTTz1Vv/nNb5q0vVjl5+frySef1LXXXqvdu3fL7/frmWee0b/+9S8NGDBArVq10s6dO+vdnOrQQw/VE088YbkRXLBY38tEbT9e4t0PNFXwpev9+/dv8A9VtWoTc926dVPr1q2jlv/2229jGo0cPC9wXR9//HHKbsDW3KXquANAYzBCFgCQMt27d9ecOXMscwUahqG1a9dq0aJFWr9+vSXxcOihh+qVV17RkCFD4taGwYMHa9q0aeYopW3btunrr7/WqlWrzGSUy+Uyky+R7tabiP258cYbLZchFxQUaOHChWEvkQ6etkCSunbtGnJErxR65GzwKMJwErGf6RAL8TJ8+HD985//tMzXWFlZqWXLlmnBggVaunSpJSExatQovfjii+rYsWPI+m644QZdf/31cjgc5mM7duzQN998ozVr1sjj8chut2v8+PGaMmVKg9oar/iP9z4nIh5at26tF154Qeecc475mNvt1rJly/TNN9+YydgBAwbo3//+d9h6aiXiuDSXz0FD+6WG6Nevnx5//HEzCVIbkwUFBWYy1uVy6YYbbtATTzzR6IRLYxxyyCF6/fXXLX2n1+vVjz/+qEWLFlmSoU6nU1dccYVefvllyyjYuhryXiZi+/EU736gsbZt22Zebi417cZOzCPafHDcATQ3jJAFAKRU27Zt9cQTT2jlypX6z3/+o0WLFmnbtm0qLS2Vy+VS586ddfjhh+uss87SySefHDEh2lgnnXSS3nnnHb300kv65JNPtHXrVtlsNnXt2lUnnXSSLr74YvXu3Tsl+3PUUUfp5Zdf1jPPPKPvv/9eJSUlyszMVG5urmpqaizzD0qBhGzwTWLCjY6VpC5duujggw/Wxo0bJQVGKtW9+Vey9jNRdabKSSedpHnz5undd9/V559/rlWrVqmoqEhut1tt2rRRp06dNGzYMI0ePVpHH3101PpuvfVWnX322ZozZ44WLFhgXsbepUsXnXDCCbrooosafVllvOI/3vuciHjIycnRI488ossvv1xvvPGGFi1apMLCQmVmZqpfv34655xzdMEFFygjIyOm9y4Rx6U5fA4a2i811Kmnnqr//Oc/mjlzpj755BNt27ZNNptNPXv21EknnaSxY8eqR48ecdqbhunatateeOEFff3113rvvff07bffaufOnSorK1NeXp769u2r4cOH6/zzz7dMMRBOQ9/LeG8/3uLdDzRG3Rs7DR48uNF11Y6UjPVzPGzYMMuUQcG2bNli/ugZrgwaL5XHHQAaw2YwSQ0AAABgEXyToRdffDHijxtommnTpmn69OmSpOOOO04zZ85McYsAqby8XMccc4wMw9CTTz6p0047rUn1JSMh+49//EOPP/54QrfR0sX7uANAOOk7tAQAAAAAgBQoKCgwrzbh0vUDB8cdQLKQkAUAAAAAIEjtPKKtW7fmJlsHEI47gGRhDlkAAAAAAILUziOazqMk165dq/LycnN9x44d5vL3339vKduvXz/l5eUlq2nNVnM47gBaBhKyAAAAAAAEaQ6JuXvuuUdff/11yOfGjh1rWWcu7Ng0h+MOoGVgygIAAAAAAPbxer1au3atJOmQQw5JcWuQLBx3AMnECFkAAAAAAPZxOp1atmxZXOvs3r27Vq1aFdc6Z86cGdf6DnSJOO4AEI7NqL2FIAAAAAAAAAAgoZiyAAAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAk+X++UmHyZDlL5gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time')\n", + "\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exactly as expected, the output distribution of the distance between the events follows an exponential distribution cut at 2.5 ms.\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = \\frac{r_{in}}{1 + r_{in}\\tau_d}$$ \n", + "(Zhang+95, eq. 29). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSYAAARHCAYAAADujb0AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3gU5d7G8XvTSIOEGiD0klBtIFhQBEQBAWl28YAeURGPokeKDVHsKEdFBT1SRARBUUERFUQECyjSMQmEEBJqIKQH0vb9I2/m7GRTNnVSvp/r4mLn2dnZX7KTLfc+xWa32+0CAAAAAAAAgErkZnUBAAAAAAAAAGofgkkAAAAAAAAAlY5gEgAAAAAAAEClI5gEAAAAAAAAUOkIJgEAAAAAAABUOoJJAAAAAAAAAJWOYBIAAAAAAABApSOYBAAAAAAAAFDpCCYBAAAAAAAAVDqCSQAAAAAAAACVjmASAAAAAAAAQKUjmAQAAAAAAABQ6QgmAQAAAAAAAFQ6gkkAAAAAAAAAlc7D6gIAoCqIjY3VgAEDjO3OnTtr5cqV8vT0LNFxVq1apenTpxvb+/btk4dH7XmqHTt2rLZt2+bSvh4eHqpTp47q16+v1q1bq2fPnho4cKA6duxYwVVWPfnPvw0bNqhFixYWVmQdx7+h4OBg/fjjj2U+5rRp0/TFF19IkkaOHKmXX365zMe0Uk37eUoiNDTUuPzRRx+pd+/eZT7mgQMH9Oeff+q2224r8HrH57VJkybpoYceKvN9omg8J7pm+/btOnHihG644QarSylX1f3nmjJlir766iv16tVLS5YsKdFt7Xa71q9fr9WrV2vPnj06c+aMfHx8FBQUpMsuu0yjR49Wp06dSnTM1NRUffHFF1q/fr3Cw8OVnJyswMBANW/eXAMGDNDIkSPVpEmTEh3z+PHjWr58ubZs2aLo6GidO3dOjRs3Vrt27TRkyBANGTJEPj4+JTpmZbLb7Vq1apU6d+6sLl26uHSbjIwM9erVS+np6brhhhv0xhtvVHCVQO1Bj0kAKMDff/+t+fPnW11GjZaVlaXU1FTFxsbql19+0Ztvvqlhw4bpscceU0pKitXlAajh0tPT9dprr2nkyJHatWuX1eUALjt79qyefPJJ3XHHHTp06JDV5ZSbmvBzrV+/Xl999VWpbnvy5EndcccdmjRpkr7//nsdP35cGRkZSkxMVEREhD766CONGDFCL7/8sjIyMlw65vbt23XDDTfo+eef12+//ab4+HhlZmYqLi5Ou3bt0htvvKFBgwZp1apVLte5fPlyDR48WPPmzdPevXuVnJyszMxMHTt2TFu2bNETTzyhESNGVNnn1QMHDujOO+/UE088oeTkZJdvt3XrVqWnp0uSrr766ooqD6iVak83HgAooXnz5unaa68t8TfTyBUQEKDu3bsXen12drbOnTun48eP68SJE5Jyv8H++uuvFRkZqY8//lj+/v6VVS6AWubFF1/UihUrrC4DKLHHHntMv/zyi9VllLvq/nPt3r1bjz/+eKluGx8frzvvvFNHjhwx2gIDA9WhQwelp6crPDxcWVlZstvtWrhwoU6dOlVsj73t27fr7rvv1rlz54y24OBgBQcHKy4uTlFRUZJye1ROnz5d58+fL7TneJ5FixbppZdeMrZtNps6duyowMBAHT58WKdOnZIkHT58WP/4xz+0dOlSde3atcS/j4o0cuRIZWZmlvh2mzZtkpT7MxNMAuWLYBIACpGZmalp06aVakg3codcfvjhhy7tu337dj3//PP6+++/JeX2WH399dc1Y8aMiiwRQC1Wmg+mQFVQU8/d6vxzbdu2TRMnTlRaWlqpbj99+nQjlKxTp46mT5+um266yZgOKC4uTi+++KLWrl0rSfrmm2900UUX6a677irweCkpKXrkkUeMULJZs2Z66aWXdPnllxv7/P3335o+fbrx3mvWrFm64IILCg0Sd+7cqVdffdXYvvTSS/Xiiy+qVatWknK/XP7hhx/0zDPP6OzZs0pPT9fEiRO1bt26KjWsu7Tn2c8//yxJ6tatmxo0aFCeJQG1HkO5AaAIDOmuHD169NDChQvVunVro2358uU6efKkhVUBgLRkyRKFh4crPDyc+SUrSYsWLYzfeXh4OPNLokr78MMPNX78+BINC3a0efNm/fTTT8b2yy+/rNtuu800R3njxo01Z84cjRgxwmh79913C536Zv78+Ubvxbp162rRokWmUFLKnU/9448/VkhIiKTcKXZef/31Qut86aWXlJ2dLUnq2rWr/vvf/xqhpJTbk/C6667TokWL5OfnJ0k6ceKEFi9e7MJvoWqLjo5WdHS0JKlv374WVwPUPASTAFAAxzeD8+bNU1hYmIXV1A7169fXxIkTje2cnBx9++23FlYEAABQsMOHD2vChAl69dVXlZWVVerjOAZ3ffr00ZAhQwrdd8aMGWrYsKGk3Dk58xZCc3T+/Hl9+umnxva9996rNm3aFHg8f39/vfDCC8b2L7/8ovDwcKf9du3apZ07dxrbTz/9tLy9vQs8ZqdOnfTggw8a24sXLzYCzeoqbxi3RDAJVASCSQAowN133y2bzSYpd8jH9OnTy/SmE6657rrrTNsFvTkGAACwSlZWlmbNmqWhQ4eaAquLL7642Dka80tMTNSvv/5qbI8ePbrI/X19fTV8+HBje926dU77bNmyRYmJiZIkNzc3jRo1qshj5h++XdAx84aQS1L79u118cUXF3nMMWPGGF/yx8fHa9u2bUXuX9XlPc4NGjRQt27dLK4GqHmYYxIACnD55ZcrKSlJy5cvlyTt379f8+bN06RJk8r9vg4ePKjPP/9c27Zt09GjR5WSkqK6deuqWbNmuvzyyzV8+HCFhoYWeYy3335bc+fOlZT7Lfadd96pjIwMffXVV1q3bp0iIyN1+vRp1a1bV23btlX//v11yy23qG7duuX+85SFr6+vGjRooPj4eEkyhiEVZvfu3dqwYYP+/PNPHTt2TAkJCcrKylK9evUUFBSkSy65RIMHD1aPHj0KPcaqVas0ffp0SbmB9NSpU/XTTz8ZPWW9vLwUHBysyy67TJMnT5aXl5fp9seOHdO3336rbdu2KTIyUomJiUpPT5efn5/q16+vCy+8UH379tX1118vd3f3Ev9OPvzwQ2NOJ3d3d23atEmNGzcu9nbr1683eiz4+/try5Yt8vHxKfZcKkpwcLB+/PHHQq//7bff9PPPP2v79u06ceKE8cGoXr16at68uXr27Klhw4aVeEGpjIwMrVy5Ut98840iIyOVnp6uxo0b66KLLtLgwYM1YMAA44uE8hAfH69Vq1Zp8+bNioqK0tmzZ+Xr66smTZqod+/eGj58uC644IJyuz9Hu3fv1sqVK7Vt2zYdP35cnp6eatGihQYOHKjbb7+9VPNapaam6ssvv9SmTZt04MABnTlzRl5eXmrcuLF69uypwYMH64orrijRMcv7sc7MzNTXX3+ttWvXav/+/UpMTFRgYKBCQ0M1evRoDR48uNwe44L+Br744gtTzyPHL0XGjh1rfKieNGmS03Bux+ffZ599VrfddpvS0tK0Zs0arVmzRocPH1ZSUpIaNWqkTp066ZZbbnHqcRMVFaXly5dry5YtOnbsmKTc4cxXX321xo0b59LfvGTtuVueYmNjNWDAAGN7w4YNTsO5+/fvr6NHj0qS/vrrL/n5+SkmJkafffaZfv75Zx07dkzp6elq1KiRLrzwQg0dOtR0zILknRteXl7as2ePpNyVeJctW6bdu3fr1KlT8vb2Vvv27dW3b1/deuutRf5Nbt261TQHoCtfthV2vuX/neSZO3eucf4V9xxdmGnTphnn/7x589S3b1999NFH+vTTTxUbG6t69eqpXbt2GjRokO644w6n25fltbisP1dOTo5++OEHrV+/Xrt27dLp06eVnZ2thg0bqmvXrhowYIBuuOGGcp0rPC0tTUuWLDG2PTw8dM8992jSpEklnv5n27ZtRm9Cm82mK6+8stjbXHnllVq4cKGk3HM/MTFRAQEBxvW//fabcTkkJMSl548rr7xS+/btkyRt3LhRDz/8sOl6x2O6UmNAQIC6detm9LLcuHGj01Dy0jp58qRWrVqlLVu26ODBg0pJSZGPj4+Cg4N16aWXasyYMU6vPY7v9Rw5/n2OHDlSL7/8stM+6enp+uOPPyTl9mh1cyu4b9exY8e0atUq/f7776a66tevr65du+rKK6/UsGHDVKdOnbL8+ECNRDAJAIWYMmWKNm/ebHzwKe9VupOSkjRz5kx98803stvtpuvi4+MVHx+vffv26cMPP9Tw4cP1zDPPuLxKdVhYmB577DEdPHiwwONu375dH374oWbPnu3SG8zK5Ngz1dfXt8B9YmJi9PTTT5veKDs6ffq0Tp8+rX379mnJkiXq16+fZs+e7dLv78svv9S0adOMxyQ9PV2JiYnKysrS1KlTjf3S09P10ksvadWqVQVOpJ6QkKCEhARFRUXpyy+/VLt27TR37ly1b9++2BocDR8+XG+88YaysrKUnZ2tb775RuPGjSv2dqtXrzYuDxkypEInnt+7d69mzJihvXv3Fnj9uXPndOrUKe3cuVMffvihRo8erRkzZjiFvAU5cuSIJk6cqAMHDpjaY2NjFRsbq6+//loXX3yxXnnlFdMcpaW1aNEivfXWW0pNTTW1Z2RkKCEhQREREVqyZIkGDRqk559/XvXq1SvzfUq5H3Sfe+45p2F558+fV1hYmMLCwrR06VK98sorJTru6tWr9fLLL+vMmTNOx01OTtahQ4e0YsUKXXbZZXrllVfUtGnTIo9XEY/1vn379Oijj+rw4cOm9ri4OMXFxWnLli1avny5/vOf/7j0M1tt9+7d+ve//23MR5bn6NGjOnr0qDZs2KCbb75Zzz77rNzd3bV48WK99tprTs8jERERioiI0KpVqzR//vxiA0Wrzt2q4qOPPtLs2bN1/vx5U3ve733t2rXq1auX5s6dawpxCmO32/Xyyy9r0aJFpvbMzEzt3LnTOMefeuopjRw5sjx/FMs99dRT+vzzz43tvNfU/KF+Rb4Wu2Lv3r164oknCgx88x7377//Xu+++65eeOEFXXrppeVyv46uuOIKTZ06tdTvDR2nCmrRooVL56bjfeXk5Gjfvn2mL5ccfx+urojteMwDBw7o/PnzRoCWmZmpQ4cOlfiYoaGhRjCZF/SXRWZmpubOnasPP/zQ6fkyOTnZeK38+OOPdeutt+rJJ58sl0B669atxvNKYcO4FyxYoDlz5igjI8Op5qSkJEVHR2vt2rV68803NXPmTPXv37/MdQE1CcEkABTCz89PL7zwghEC5Q3pXrlypWkOytI4ffq0br/9dtMHV5vNpo4dO6p+/fqKj4/XwYMHZbfbZbfb9dVXX2n//v1asGCBmjRpUuSxDx8+rLlz5+rs2bOSpIYNG6pdu3Y6d+6cIiMjjRUj4+Pj9cADD+iLL74ocVhWUY4fP66kpCRju6AFDyIjIzV27FhT0FK3bl21a9dOfn5+SktL06FDh0zH2bhxox599FG9//77Rd5/ZGSkli5d6hQUSzINnUpPT9c//vEP7dq1y2jz8vJSu3btVL9+fWVmZiomJsa0eM+hQ4f0j3/8Q99++22Jeqo2btxYffr0MSbGX716dbHBZFJSkjZu3GhsOw7j6tOnj8v3HRsbawqLLrroIqd9/vjjD02YMMG0Emn9+vXVpk0b+fj4KCkpSYcOHTKut9vt+uyzz+Tl5VXsquspKSn6xz/+YfQg8/f3V0hIiHJychQWFmasNrpjxw7deeed+vjjj0sdTtrtdj355JOmD+OS1Lp1azVt2lRpaWmKiIgwPpysW7dOBw4c0OLFi13uzVaY8+fP695779Wff/5ptLm5uSk0NFR169bVkSNHdOLECcXHx+vBBx90+WecO3eu3n77bVNb8+bN1aJFC50/f16RkZHGwgm///67brrpJi1atKjQ54OKeKx37dqlcePGmY5Zr149dejQQdnZ2YqIiFB6erq2bt2qf/7zny793MXJ+xuIiIgwemU3adLEWACiLMLDwzV79mzj99qsWTO1bNlSiYmJioiIMJ5bVqxYoY4dOyozM9PoEV2nTh116tRJ7u7uioiIMI4RHx+vhx56SN9++22BX9ZYee5WFQsXLjTOdZvNpnbt2qlRo0aKi4szBSrbtm3TpEmTTL3dCvP6668boWTe63NgYKAOHz5snDcpKSmaNm2akpOTC10dubx4e3sb5+6ePXuMXsqtWrUyFiBp1KhRme/niy++0HfffVfgdY6vg+X1Wlzan2vTpk16+OGHlZ6ebrQFBASoXbt28vDwUHR0tPE4RUdHa/z48Xrttdc0ePDgEv9O8nNzc1O/fv00fvx49e7du0zHcnyNdfW5vXHjxvL29jZeA6Ojo03BZFRUVImP6fh+KysrS7GxscZrQWxsrCkILM0x81YcL63MzExNnDjRWBk7T8uWLdWsWTOdPn1aR44cUVZWlux2u5YtW6ZTp07pnXfekc1mU1BQkHGebdmyxbh99+7djTC4sNeAvGHcbm5uBX6Zv3DhQtOXhp6enmrfvr3q16+v5ORkxcbGKiEhQVLuSKCHHnpI//3vf8utBylQExBMAkARLr/8ct1yyy3GJOLlMaQ7MzNTEyZMMIWSY8aM0b/+9S8FBQUZbSdOnNCcOXP05ZdfSsr9BvuRRx7R4sWLi/wGOO8DV6tWrfTUU0/p6quvNoZApqSk6O233zY+bJ0/f15vv/12lemJtGLFCtN2/jeAeR/A8z4I1atXT88995wGDhxoCotzcnL0008/6fnnnzdCrU2bNmnPnj3q3r17ofef9+aza9eumj59urp166ZTp07pq6++Mn0ge/fdd41Q0mazadKkSRo/fryxCmWesLAwzZo1yxgCFBcXpxUrVuiee+4p0e9l1KhRRjC5b98+HTp0SO3atSt0/7Vr1xrf2rdt29Y0F9SHH37o0n0eP35cN910k7EdGhqqWbNmmfY5f/68pk+fboRKzZo10wsvvKArrrjCNOw2MzNT33zzjV566SXjzfny5cs1adIkYxL/giQmJioxMVFeXl567LHHdPvttxs971JSUjRv3jx98MEHknLf7D/++ONavnx5ocOsivLBBx+Ygp0BAwbo3//+t+n3nJ6ebvTcywv6H330US1atKhUw/TzvP7666ZQ8vrrr9eTTz5pej7YsmWLnnnmGR09etSp92hBvvnmG1Mo2aNHD02fPt10/mdkZOjrr7/WK6+8ooSEBJ06dUqTJk3SZ5995nQuV8RjnZKSoocfftg4pre3t6ZOnaoxY8YYj3NaWpoWLFigd9991xhmWFZ5fwOOw1evvPLKAofwldSyZcskSW3atNFzzz1nCi3CwsL0z3/+U3FxcZKkOXPmKD09XTabTffff78mTJhgBI9paWl65ZVXjOlETpw4oTVr1uiWW25xuk8rz92qIu9cHzp0qCZPnmwKRCIiIvT4448bPdO2bdumTZs2FbmARUZGhvHc0qtXLz333HNq27atpNzXoQ0bNuiZZ54xXoteeeUVXXzxxUW+vpRVo0aNjHPXcbj38OHDy3W1+LxQcsiQIZo0aZKaNWumgwcPav369Uav3fJ8LS7Nz3X48GFNnjzZCCWbNm2qJ598Utdee63p+X/r1q2aNWuWIiIilJmZqWnTpqldu3ZlmtJEyv2SbN68eWU6Rh7HKWtK8kVBw4YNjRE9ec8pUu7vPG86nJIcM3/4GxcXZwSTjscvyTEd9ztz5oxycnJK9fos5T5fOoaSvXr10pNPPmnq6RkbG6vnn3/eeL+0YcMGLVu2TLfffruuvPJK4z2l4+P/+OOPFxsu593vhRdeqPr165uuO3v2rN544w1j++abb9aUKVNMX0BnZWVpzZo1mjlzptLT05WVlaWXXnrJNLIFqO1Y/AYAijFlyhQFBwcb22VdpXvFihWmD9iPPfaYXnjhBVMIIeW+0X7llVdMb8y3b99uWmmxMC1atNCKFSvUt29fU2jg7++v6dOn64YbbjDaNm3a5DT0xAqbNm0yPghKUocOHZzmvdu2bZt27NhhbM+ePVuDBw926sHq5uam/v3767333jO1O35LXphmzZpp0aJFuvTSS+Xj46PWrVubQuP09HRTb5u8eaXyBzlS7tCo//73v04BU0n169dPgYGBxnZxb2a/+uor43Jxk94XJC0tTffff7/xYaR+/fp69913nXprffPNN4qJiZGUO//l/PnzdeWVVzrNBejp6akRI0bopZdeMtpycnL0yy+/FFuLm5ub3nnnHY0bN840HNjf31///ve/TXNG7dq1S19//XWJf96YmBi9+eabxvadd96pd9991yn89fHx0fjx4/Xf//7X+HJg27ZtWrVqVYnv0/G+ly5damwPHz5cb775ptPzQZ8+fbRs2bJih1pLuYHfs88+a2wPGDBAH330kVNo4uXlpVGjRumTTz4xeowcOnTI9HeYpyIe68WLF+v48eOScgP+d955xxQ+S7nTOUyaNEkvvvhisT93VdGsWTMtX77c6cNup06dNGXKFGM7LS1NdrtdU6dO1SOPPGL6+/L19dWzzz5r+tDtuEBGHivP3apm7Nixev3115162oeEhGjBggWmoOCHH35w6ZjXXHONFixYYISSUu65eu211+rjjz82hsNnZWVp9uzZ5fBTVA39+/fXG2+8ofbt28vX11cXXHCBHn30UeP6yngtLsqzzz5rTFnQsmVLff7557ruuuucQq/evXtr2bJlRqB67tw5zZw5s0z3Xd7yeohKKtFoCsd9HXulJicnm1bAdnXKhvz37XhMxxpLe0y73W46ZknExMToo48+Mrb79++vhQsXOg2fb9GihebOnauePXsabe+//75ycnJKdb9Sbs/g2NhYSdJVV13ldL3je+jQ0FA999xzTr9LDw8PjRw50rT6eXh4uKlnK1DbEUwCQDH8/f1NPcXKukq344f+3r17a8KECUXu/+CDD5reZH344YfFvsn617/+5fStriPHVSPT0tKMwKEypaen6+jRo1q/fr0effRR3XfffcZQIXd3dz311FNOHzIc57Hq2rVrkT1epNwgoE2bNsb2iRMniq3rzjvvLPJN9/bt2403oZ6enrr33nuLPJ63t7epTldqyM/Ly0tDhw41tosK32JiYvTXX39Jyv093njjjSW6r5ycHD322GNG+O7p6am33367wGH1v//+u3H52muvLbYXSt++feXt7W1su/p4XH311YVeP27cOFOP0LweayWxePFi4++5ZcuWmjZtWpH7X3rppaZhm3mLEJTG119/bdx3QECAnnnmmUIXeQkKCtLTTz9d7DE/++wz4wNg3bp19eKLLxY5/UT79u1NCx0sW7bMGCKYpyIea8eAfeTIkUVOMzBixAhde+21Rd5nVVHU82/+hZqCg4P1j3/8o8B9bTabrrnmGmO7oKGQVp67VUndunVNwVl+DRs21MCBA43tiIiIYo8ZGBiol156qdARCu3atdPkyZON7d9//90I2qu7Bx54oMjFpirjtbgw+/fvN93/888/X+QQdn9/f73wwgvGz7N9+3bt3r271Pdf3hznRHV8ziyO4xc4jsfIP8eqqwut5J8HuKhjulpn/r+d/Mdx1cqVK433h76+vnrhhRcKfU3z9PQ0PRccP368TPNbOq66XtB57tjjtXnz5kX+3Vx//fW67LLLNGTIEN13333lumgfUN0RTAKAC6644grTELq8Id0lFRERYfrgMn78+GJvY7PZTEN/jx07VmSPTTc3t2JXHu3QoYNpOzk5udg6Smrbtm0KDQ0t9N9FF12k/v3768EHHzQtAOTh4aEZM2YUOPfOI488op07d2rNmjV67bXXXKrD8QOLK2+Ke/XqVeT1ffr00e7du/X9999r6dKlpp6M5VVDQRwXV3AMH/Nz7C3Zp08fp553xXnttddMq58+9dRThS4Y8Oqrr2r79u364osv9Pjjjxd7bHd3d1NgU9zvwmazFRraOLr11luNyzt27DCGELvKsffU0KFDXZosf8SIEcblyMjIUof7jh96Bg0aVGyPmf79+6tZs2ZF7uM4P1z+3raFGTZsmDGkNyEhwViwIE95P9ZRUVGmudVuvvnmYo9Z0GrAVY3NZtN1111X6PV+fn6mVZyvvvrqIoc2Ov79FvQ8beW5W5VceeWVhS6Wlqdjx47GZVd6bo0cObLIFbfz9nHsLV+aFbGrGj8/P3Xr1q3IfSrjtbgwjs9vTZs2dWmevpCQEHXp0sXYzhvqWxU4fsldkmHOjlMwOB4j/5fmrk7VkH8/x16X+Y/pap35w0PHY5aE45zZgwYNKvbvskePHnrsscf0yiuvaOXKlWWaPzhvGHejRo0KXPTH8Tl68+bNRT4HeHh4aPHixZozZ44effRRU1gP1HYEkwDgoilTpqh58+bGdmmGdDvOI+fu7q7LLrvMpdtdfvnlpjeN27dvL3TfFi1aFLviZf4egQWtKl3ZbDab+vTpo6VLlxY4j1oeHx8fhYSEFLtgT1RUlFauXGn60F3cm2KbzebSypoeHh5q3bq1LrzwwiL3i4uL0/fff2/qbVbaN+bdunUzvbles2ZNgfvl74VWEitXrtSCBQuM7dtvv90U+hXE399fXbp0UcuWLQvdJycnRxEREfr4449NgUBxv4vWrVsX2FMzvx49ehiX7Xa7U6hWlKNHj5p677i6EFTHjh1NvUYKC4qLkpGRYVpA6ZJLLin2Nm5ubkWG5xkZGaYVs139eerVq2csNCEV/POU52Pt+Fzo5eXl0tx8PXv2LPPCYxWtefPmxT7/Op43jkOEC+LY2yl/T3krz92qxpU5Ax1Df1de84rrBSjlvh45nrt58wlXZyEhIS4FTxX5WlwUx/O1JAv3OYatVemcd3xvV5Ihx46/Q8cvJIoKGF09Xv5j5j8fXK0zf6BZmhWy09PTTfMqu7qy+oQJEzRixAhdcMEF8vHxKfH9SlJqaqrxWnXVVVcV2MOxb9++xvGzsrL0wAMP6LbbbtP777+v/fv3F7iYIgBnVfvdHQBUIXlDuu+++25JpVul23HIR3BwsMtvlnx8fNSiRQtjwRzH4+TnSu+o/G9cyzL/TmECAgIKDRtsNpt8fHzk7++vRo0aqXPnzrr44ouL7QmWX0ZGhsLCwhQVFaWYmBjFxMQoOjpaBw4cMFa0dVTcG0R/f3+n4UzFycnJUVRUlA4cOGDUcOTIER08eNBpwnhXaijKqFGjjAU6vv32Wz3xxBOmN/o7duwwzpHAwMBie8462rZtm2nurd69e+vJJ58sUX1paWn6+++/dfjwYeN3ERUVpUOHDplWTs1T3O+iqAV+HLVs2VKenp5G2FCS4ZT5h8f++9//1r///W+Xb5/HcQV2V50+fdr0t+dq74n8PZ4dnThxwjRn7Jw5czRnzpwS11bcz1PWx9rx+MHBwS49h3p5eally5ZVel6uohZzKkhxIWZRQ/2sPHermpK+7rnyPOzKl1RS7vNU3pdPRb02VxfF9UYrSHm/FhfF8bz/5ZdfSrWQTVU65x2/JChJT1LHfR2/wMg/zNrVYxY1BDz/e9Xz58+79F4p//zlrg4rdxQbG2s6X4r7Mqc8/fbbb8b7isKmlAkMDNT06dP1zDPPGG1//fWX/vrrL73++uuqX7++LrvsMl111VXq27dvkdMOALUZwSQAlMCVV16pm2++2Vg9ev/+/Zo/f74efPBBl27vOMTU1cnDC9q/qKGqJZmjqDD9+/c3VnssykcffVToaoahoaEurwBdUhEREZo/f742bNhQYAjiyMPDw+X5QIsLCRzFx8frgw8+0OrVq3X69Olyq6Eow4cP1+zZs5WVlaWzZ89qy5Yt6tevn3G94zDuoUOHuhyyRkdH66GHHjLegLds2VJvvvmmy4H7X3/9pffff19btmwpsieSzWaTzWZzOQgvyd+Iv7+/zp49K8l5ov6ilGTf8j5O3oq2eVw9/4r6vVT0z1Nej7XjqrEl+bvLW6SnqirpB++yzDFm5bm7detW01yVhQkODq6U4c3l8brnyGazuXyuOfbEzP83XR2V5O+xol6Li1LaBVQcldffTnlwPM8KCnEL47ivYzBft25dubm5Gc+9rh4z/36Ox8z/t5CSkuLSQj2Ox/Tw8CjR4j558k9hUZpjlFbeVCvu7u5FzoF8yy23KCAgQC+88ILTlxNnz57Vt99+q2+//VZubm669NJLNX78eNN7NwAEkwBQYlOnTtWWLVt07NgxSdJ7773n0mIQUtl6CTgOsynJPEQ1zdKlS/XCCy8UODzJ09NTrVq1UufOnXXJJZeoT58+euqpp7Rt2zaXju3q73X79u2aOHFigQGxzWZT8+bNFRISoosuukiXX365Nm3apHfeecelYxelYcOGuvrqq40P+mvWrDHe3GZkZOjbb7819nV1Ne6kpCTdd999xs/i6+urd999t8jFkxzNnj27wFWcpdyQpm3bturSpYsuueQSXX311brttttcCr1LyvFvqyQhRf4PypdeemmpenUUNby5MKWdQqGowDn/z9O9e/dShXkF9cosz8e6In72qqAyFzOw8tyt6dzc3Fx+PXB8LaoJwzZd/bkr8rW4KI7PHa1atTJNQeEqx3lBreY4R2FJgm3HfRs3bmxcdnNzU+PGjY1eoa4eM/8XrI49+/LPVX369GmXRrg4jhpp0KBBqZ4frVwgJm9+yYsuuqjYL0oHDRqk/v37a9OmTfruu++0ZcsW48vSPDk5Odq6dau2bt2qG2+8US+//HKtfj8POCKYBIASKmxId14vyqI4BgQl/dbf8Rv+qvSmujJt3LhRzz33nLHt5+enG2+8Ub169VJoaKhatWrl1MuvPHpoODp+/LgeeOAB4/Fwc3PTwIEDddVVV6lLly5q166d07Cn8uwxNGrUKON4eb1UfHx8tHnzZiNcDA0NLXCS9vyysrL0r3/9yxgaa7PZ9Nprr7k8UfzHH39sCqoaNmyoG2+8UT169FBoaKiCg4Od3nSX5PFITU11aT+73W7qmVGSnpb593366adLNTSwNPLft6vPCUX1gMl/zIkTJ6p///4lLy6f8n6sHXu9lGTxrZL0KKrprDx3a7rs7GzjubU4judvcUPK7XZ7sUFLWRaGqSxWvhYHBAQYIdqAAQOKXYm+qnOcwiP/9AyFOXXqlM6dO1fgMaTc+ZnzgklXj+k4B6inp6eCg4ON7ebNm5umS4mJiXFpXuDY2NhCa3RV/ue5ilissSDh4eHGHL6uzDcr5X5xNnDgQA0cOFA5OTn6+++/tXXrVv3222/atm2b6TH76quvFBISon/+858VUj9Q3RBMAkAp5B/SvW/fPs2fP7/Yb5CbNm1qXD569KjLH3xSUlKMHpqSTG8YK0JVXVn09ddfNy4HBwfrk08+Mf1OC1LeQ7bef/9945ienp764IMPil0VtDxruOaaa1S/fn2dPXtW586d0y+//KJrr71W69evN/Zxtbfkc889p99++83Y/te//qVrr73WpdtmZGTo7bffNra7du2qxYsXFzvMqiSBvOOHmqJERUWZPvSWpAdN/p4gx48fr7Rwp0WLFqYhd5GRkS4tgFPUB82goCDZbDaj51ZJ5tssTEU81q1btzYux8bG6vz588X29rPb7TViBenyYuW527t3b4WHh1fKfVklOjrapXkmDx48aFzOH77kDyEzMzOL7fWbv5dVVWTla3FQUJARTDq+L6quHL9EjI6Odul94d9//21cttlsTn/33bp1M3qnurpIo+MxO3ToYJq/2tPTUyEhIdq3b5+x75AhQ0p0zM6dO7tUR35NmjQxvaZFR0fr4osvLvZ2v/32mxITE9WiRQu1bt26xEPA84ZxS4XPL1kUNzc3de3aVV27dtXdd9+ttLQ0ffHFF3rppZeMgHfx4sUEk8D/o+8wAJTS1KlTTUHke++9p4iIiCJv4xg6ZGdnm0Khovz222+mIWKu9IaraWJjY00rM06YMKHYD0JpaWmmEKc8htk5vlm97rrrig0lJfMHg7IuNOTp6amhQ4ca2+vXr1dOTo5Rl6enp4YPH17scRYtWqRPP/3U2B48eLAmTpzoch07duwwDWWfPHlysW/8o6KiTPOQFfd4FLZwQn6Of0eenp4u9eTI07FjR1PdjiuoFyU+Pl7Tpk3TW2+9pc8++6xUw9O9vb1NH9ZcfT7Yvn17odf5+/urY8eOxrarP09mZqaeeOIJzZkzR59++qkpbKmIx9rxg2VWVpZLQzzDw8MrrbdMdWDluVsbOK4cX5iUlBQjrJFyV453lD+ELO75LC0trco/Hla/Fjs+d2zfvt3lnpjvvvuuXn75ZS1ZssTlv5XK0KNHD6N3aXZ2trZu3VrsbX799VfjcpcuXZym6+jVq5dxed++fS59Ieh4zMsuu8zpesf5xB33LUxCQoL2799f5DFdUbduXdPq60W9/jmaO3euHn74YY0ePVpz584t8f3mDeNu0qRJoaFq3vv4pUuXatasWUV+BvD19dUdd9yhSZMmGW2nTp0qlzlTgZqAYBIASilvSHeezMxMffTRR0XeJiQkxNTbcdGiRcXej91uN+3XoEEDdevWrcT1Vnf5V7h2nFOpMJ988olpPqryGErmOLG5KzXs2rVLO3fuNLYLmo+rpEaPHm1c3rhxo/766y9jHqlrrrmm2FVVN23apFdffdXY7tKli1566aUS1VCaxyP/30dxj0dWVpa++OKLIvfJzMzU0qVLje2rrrqqRPPsubm5mXpDfPHFFy59UFiyZIm++OILvfPOO3ryySdL3ctp0KBBxuUffvih2B5Au3fvNn3YK8g111xjXP7xxx9d6mX41Vdf6fPPP9e8efP0zDPPKDIy0riuIh7rkJAQ06rrxT13StLy5cuL3ackrJy7rDxYfe7WdCtWrCj2i6SVK1cawzM9PT01YMAA0/X5h3Y7/l0V5Ntvv3XpNcLKc7ciX4td+bkcn99Onz6tr7/+utjbREVFae7cuVq4cKFmzZqlH374odjbVJZ69eqZQrvinudSU1O1evVqY9vxNSTP5ZdfbnxpkZmZqc8++6zIY+7atcv0ujJ48GCnfa677jrj8t69e7V3794ij7lixQrjcQ4ICNAVV1xR5P5FcXyeW7duXbFfUB0/flx//fWXsZ0/FC3uPEtOTtaOHTuc7js/Nzc3TZ48Wc8995yWLFmib775psjjSub5m202m8uLDAI1HcEkAJRBnz59dNNNNxnbxX2gcHNzM61kunXrVr3//vtF3ua9994z9dy44447auUbmfwf8LZs2VLk/lu3btWbb75paivtghuF1fHbb78V+ZgfP35cjz/+uKl3SHnU0LlzZ2OIYUJCgmbPnm1cN3LkyCJvGxERocmTJxt1BwUF6b333nNpSgFHJX081qxZo2XLlpnaXPldzJkzp8gP86+//rrp+vHjxxd7zPzy5ouVcn+fU6ZMUUZGRqH779mzx7Ti/AUXXFDqLwtuuukmY6GhjIwMTZkypdA55lJSUvTkk08We8w777zTGIaXlZWlRx55pMieWrGxsaZzqFmzZqYVQyvqsb7vvvuMyz///LMpYM7v119/NfXwLQ+OAXZ1mNevIFaeuzVdeHi43nvvvUKvDwsL01tvvWVsDxs2TA0bNjTt06JFC9Mq10uWLCn0eMePH9cbb7zhUm1WnrsV+Vrsys911VVXmeZBfuGFF0w9vPPLyMjQE088Ybzmubm56ZZbbimy5sp2xx13GJc3btyoVatWFbrvs88+q/j4eEm5vfDGjBnjtI+3t7epfe7cuYVOvZCcnGx6Xbnooot04YUXOu138cUXm0brTJ8+vdDXlb///tv0t3PzzTeXaFG6/G6//XZjDuOkpCTNnDmz0F63drtdL774ovGlQtOmTZ3CxeLOs19++cUIVYsKJm02mykoX7ZsmaKjo4v8WdatW2dcbt26tXx9fYvcH6gtCCYBoIymTZvm0uqEeW6//XbTB8HXX39dTz75pDFReZ6TJ0/qiSeeML2hb9++fa2dj6Zt27am3qbLli3Thx9+6PQhPDY2Vq+99prGjx/vdF1aWlqZ67jqqquMy+Hh4Zo6darTqpfJycn65JNPNGLECKc3qeVRg2QOIPO+2W/UqFGRk7SfOXNG999/v7GojK+vr+bPn1/sMLyCXHLJJaY31G+++aa++OILp6D2wIEDeuqpp/Tvf//b6YOEK7+L1NRU3XHHHfruu+9MvZdOnz6tqVOnauHChUbbqFGjTEPYXNWtWzfdfvvtxvbGjRs1duxY7dq1y7RfRkaGli5dqvHjxxsfZtzd3TV9+vQS32ee+vXr64knnjC2//jjD911111OHyJ3796t22+/vdjpIqTcsPmRRx4xtvfu3aubb75ZW7ZsMT0G2dnZWr16tW6//XZTr7kpU6aYhqBW1GM9YsQIXXnllcb2888/r9mzZ5s+7Ob9zh944IEyT4OQn2PAsnPnznKfj7YyWHnu1gZvvfWWZs2aZTo38v5u7rrrLuO8DgwMNP3N5fHw8DAtPvXdd9/phRdeMJ3jWVlZWrt2rcaMGaPTp0+79MVj/i/Iigqjy1tFvha7+nPNnDnT+PIlKSlJt956q5YvX+60//bt2zV27FhT77lbbrnF5QXeKkv//v1NQ6WffvppzZ8/3xSanT59WpMnTzb1lpw4cWKhIyQmTJhgXJeamqpx48bphx9+MD03h4WFaezYscbQfHd39yIXE5o6darR2zAiIkJjx441TVVjt9v1/fffa9y4ccZj3LhxY9OXUKXRsmVL03vfNWvW6MEHH3QaDXDy5ElNnjxZ33//vdE2ZcoUubu7m/ZzPM/yhmw7cpwax/E1qiDjxo0zjp+YmKh77rlHv/76q9NrYEJCgmbNmqU1a9aYbgsgV+3rcgMA5czf31/PP/+8y4Ghl5eX3n77bY0bN84IrT777DN9/vnn6tixoxo0aKD4+HgdOHDA9MamZcuWmj9/fpm+da7uHn30UT322GOSct8Av/rqq3rvvffUqlUr+fj46OTJk4qNjTX93po3b24Mj80/BK007r//fq1bt854071mzRp99913atWqlRo0aKAzZ84oJibG9AHJsYbs7GzFx8cXO9y6OMOHD9fs2bNNPU+GDx9e5IfamTNnmuYva9u2rRYvXqy0tDRlZGQoKyur2Lm/hg8frhtvvFG+vr564IEHjEUQMjIyNG3aNL388stq1aqV3N3ddeLECafFV5o1a2a0Ffd49OzZU1FRUTpz5oz+9a9/qXHjxmrdurXS09MVHh5uGg7Ys2dPPf3000UeryjTp09XTEyMNm/eLCk3qLr55pvVtGlTtWrVSikpKTp8+LDpA7XNZtNTTz3l0oI1RRk+fLj27t2rxYsXG/c9fPhwtWvXTo0bN9aJEyeM5wp3d3f169fPtNhRQf75z38qKirKGMIXGRmpe+65Rw0bNlTbtm2VkZGh6OhopzBuwoQJTosaVORj/dJLL+mee+4xnu8++OADffTRR+rUqZM8PDx04MABY3hy+/btZbPZiuwdVRKO4cSxY8c0ZMgQdezYUcnJyVqwYIHTvG1VlZXnbk0WFBSkkydPasmSJVq+fLk6d+6sOnXqKDIy0uixJkk+Pj566623nBYjyvPggw9q/fr1xu//o48+0meffab27dvL3d1dUVFRxt9h8+bNNWLECL377rtF1uZ47u7du1eDBg1Sq1atdP78eafeyhWhol6LXf25LrnkEj377LOaMWOGsrKylJycrBkzZuiVV15Rx44d5enpqZiYGKcvfHv16mX6Iqgqee2113THHXcoJiZGWVlZeuONN/TBBx+oY8eOysjIUHh4uOn1vl+/frrnnnsKPV6DBg30xhtv6P7779e5c+cUHx+vSZMmGc8LZ86ccRqN8NhjjxW5sEzv3r01efJko2fv/v37deONN6pDhw5q0KCBoqOjTb9zb29v/ec//ynxwjMFefjhh3XgwAFt3LhRkrRhwwZt2LBBHTp0UKNGjZSQkKADBw6YvjAbO3asbrjhBqdjhYSEGCtuL1myRH/88YcCAwPVvn17Pf3008Zz6cUXX2zq8VyQTp06aeLEicYCcTExMRo/frwaNGigtm3bysvLS2fPnlVkZKTp8bv22mt18803l+2XAtQgBJMAUA6uuuoqjRkzpth5fPI0b95cK1as0DPPPKPvvvtOUu6b+4J6Q9lsNt1www168sknyxxmVXdDhw7VqVOn9PrrrxuhVHJysmnxgTwBAQGaMmWKGjdurAkTJkiSDh06VOZQsHXr1nr33Xf1yCOPGAuCZGRkFBiWeHh4aOzYsbrvvvt0xRVXGD2+/vzzT9N8TaXRoEED9e3bt0SrceefS27fvn0F/u6KctFFFxmX7733Xp05c8Y0B2pCQoJpoZQ8TZs21bPPPqvjx49r5syZknIDlOzsbKfeDHmaNWum6dOn66GHHtKxY8cUFxfn9IHWZrNp9OjReuaZZ0o0t2R+Xl5emj9/vt566y0tXLjQ6Kly4sQJ4wOMo8aNG2vGjBkaOHBgqe/T0RNPPKHg4GC99tprxoeXQ4cO6dChQ8Y+3t7emjFjhs6fP19sMCnlDnEMDQ3V22+/bYR7Z86ccerhK+V+wfL444/r1ltvLfBYFfVYBwUF6ZNPPtHkyZONIaHnz5936vHXsWNHvffee0YYUh4GDhyoLl26GHOrnT592ljtNywszNSDqSqz+tytqZ577jktX75cGzduVGZmpnbv3u20T0hIiF555RV16dKl0OO0adNG77//vh599FFjjuK0tDTt2bPHtN9FF12k2bNnFzs0WsodGrt06VIj+D969KjxpVNsbKxatGjh8s9ZGhX1WlySn2vMmDEKDg7WjBkzjC9u0tLSnJ47pNzh27fffrumTp1a7KroVgkKCtKSJUv06KOPGj08k5OTTb0984wZM0YzZswwhjcX5vLLL9cHH3ygqVOnGqFwQc8L3t7emjJlimlIeWHuu+8++fn56fXXXzfC9oLe/zRt2lSzZ892WhCqtDw8PPTOO+/oP//5jxYuXGi8Th48eNDp/j09PfXII48UGtw+8MAD+u2334xj5PX6jImJ0ejRo433Ga6uxj1p0iR5e3vrrbfeMp5/4+PjTV9gONZ255136tFHHy30vQ9QGxFMAkA5mT59un755RenXkOFCQwM1FtvvaX9+/drzZo12rp1q44dO6bk5GR5e3urTZs26t27t0aNGmWaLLu2u/vuu3X11Vdr2bJl2rZtm44ePapz587J19dXDRs2VGhoqHr37q0bb7xR/v7+Sk9Pl5+fn1JTU5WTk6NVq1aVeTj85Zdfrm+//VbLly/Xzz//rKioKKWkpMjLy0uBgYFq166dLr74Yt14441q2bKlpNyeBnmrLn/22WdlDial3GAlL6Dq3r27aTXmymCz2TR9+nQNGTJEn376qf766y+dPHlSGRkZ8vX1VVBQkEJDQ9WnTx8NGTJEderU0bFjx/T8888rJydHiYmJ+v777wucaD9Pt27dtHr1ai1dulTfffedjhw5ouzsbAUFBenyyy/XmDFjym2OPHd3d02ePFl33HGHvvzyS/366686dOiQEb41aNBAnTt3Vr9+/XTDDTfIz8+vXO43zz/+8Q8NGDBAy5Yt0+bNm41VbIOCgtSnTx/dcccdateuXYl6RN11110aMWKEvvzyS/3yyy+KiIhQfHy8cnJyFBAQoNDQUF111VW68cYbjbkuC1KRj3W9evX04Ycf6ueff9YXX3yhHTt26PTp0/Lz81ObNm00ZMgQ3XrrrWUKngvi6empJUuW6J133tGPP/6okydPKisrS40bN652w7qtPndrIh8fH82bN0/ff/+9Vq5cqf379ysxMVGBgYHq3r27hg0bpuuvv96lcOHSSy/VunXrtHLlSm3YsEGRkZFKSkpSo0aNFBoaqmHDhmnw4MEuBxUBAQFasWKF5s6dqy1bthiBepMmTXT69OkKDyalinktLunPdfnll2vt2rX67rvv9NNPP2n37t06ffq0zp07J39/f7Vt21aXXnqpRo0apbZt21b476SsmjVrpk8++UQ//PCD1q5da/w8bm5uCgoKUo8ePXTzzTebviAsTq9evbR27VqtWrVKP/zwgw4ePKiEhATVqVNHrVu31pVXXqlbb73VNDy/OHfeeaeuvfZarVixQps2bVJsbKxSUlLk7++vkJAQXXvttRo9enSxvQ1Lyt3dXY899phuvfVWff755/r111915MgRJSYmytfXV23atNEVV1yh2267rcgpai655BItXbpU77//vnbu3Gn8Pvz8/ExDu4uaGie/f/7znxo6dKi++uor/f777zp48KCSkpKUnZ2thg0bKjg4WFdddZVuuOEGtWrVqky/B6AmstmLG7MFAACqpBkzZhgreD733HNVbkJ/AKhOQkNDjcsfffRRtek1CwBAdcbiNwAAVEMZGRnG6o5+fn4aOnSoxRUBAAAAQMkQTAIAUA2tWbPGGKY5YsQIhmYCAAAAqHYIJgEAqGZ27typV155RVLuhPDjx4+3uCIAAAAAKDkWvwEAoIrbuXOnpk2bpqCgIMXHx5tWb58wYYKxwA4AAAAAVCcEkwAAVHEtW7ZUVFSUoqKiTO39+vXTxIkTLaoKAAAAAMqGYBIAgCquYcOGuuKKK7Rnzx5lZWWpVatWGj16tO688065u7tbXR4AAAAAlIrNbrfbrS4CAAAAAAAAQO3C4jcAAAAAAAAAKh3BJAAAAAAAAIBKxxyTcNn27dtN225u5NoAAAAAAAC1VU5Ojmm7R48eJbo9wSRKLf/JBwAAAAAAALiKLm8AAAAAAAAAKh09JlFqDOVGeXDsecs5hbLifEJ545xCeeOcQnnifEJ545xCeeJ8qh3KOpqWYBIuc3NzM51w3bt3l4cHpxBKLysrS7t27TK2OadQFpxPKG+cUyhvnFMoT5xPKG+cUyhPnE+1x44dO4ysqDQBNJE1AAAAAAAAgEpHMAkAAAAAAACg0hFMAgAAAAAAAKh0BJMAAAAAAAAAKh3BJAAAAAAAAIBKRzAJAAAAAAAAoNIRTAIAAAAAAACodASTAAAAAAAAACodwSQAAAAAAACASkcwCQAAAAAAAKDSEUwCAAAAAAAAqHQEkwAAAAAAAAAqnYfVBQAAAAAAABTGbrcrJyfH6jJQAtnZ2U7bNpvNomqQx83Nrco9DgSTAAAAAACgyrDb7UpLS1NSUpJSUlKUlZVldUkoIbvdbtqOjIyscoFYbVWnTh0FBAQoICBAHh7Wx4LWV4BCpaen66OPPtLatWt1+PBheXh4qG3btho6dKhuu+021alTx+oSAQAAAAAoNxkZGTpy5IgyMzOtLgVlVBVCLzg7f/68Tp06pbi4ODVr1kwBAQGW1sNZUkXFxcVp3LhxOnjwoCTJ09NTOTk52rNnj/bs2aMVK1Zo4cKFCgoKsrhSAAAAAADKjlCy5rDZbKZgkt6SVY/dbtfx48fl4eEhPz8/y+ogmKyiHn30UR08eFD169fXzJkz1b9/f7m5uenXX3/VU089pcjISD388MNavny51aUCAAAAAFAmdrvdKZT08/NTvXr15OvrK3d3dwurQ0nlDcfP4+vrSzhpMbvdrqysLCUlJSkhIUHZ2dmy2+2KjY1V+/btLevhSjBZBW3dulXbtm2TJL388su65pprjOuuuuoqvfbaaxo7dqx27NihP//8Uz179rSoUgAAAAAAyi4tLc0USgYFBalBgwYWVoSysNvtpjDZ3d2dYLIK8PDwkLe3t+rWravo6GhjYanU1FTLhnS7WXKvKNKvv/4qSQoODjaFknl69eolf39/SdLevXsrszQAAAAAAMpdUlKScdnPz49QEqhAPj4+qlevnrGdkpJiWS30mKyCJk+erDvvvFMJCQkFXp+Tk2OscOXp6VmJlQEAAAAAUP4cgxHHwARAxfD391diYqIkKTU11bI6CCarqMaNG6tx48YFXrd69WqlpqbKZrPpsssuq+TKAAAAAAAoP3lz3+Xx9fW1sBqgdvD29jYu5803acVwe4LJauLcuXOKjo7WZ599pk8++USSNH78eLVv397iygAAAAAAKL2cnBzTNgvdABUv/99ZTk6OJX97BJPVQHR0tK677jpj22azacqUKbr77rstrAoAAAAAAAAoPRa/qQaOHz8uT09Pozu73W7Xu+++q3feecfiygAAAAAAAIDSIZisBi688ELt3LlTO3bs0MaNG3XTTTcpJSVFb7/9tt58802rywMAAAAAAABKjGCyGvDx8ZGHR+6o++bNm2vWrFkaO3asJGnBggWKj4+3sjwAAAAAAACgxAgmq6lx48ZJyl0UJzw83NpiAAAAAAAAgBJi8Zsq6PDhw4qOjlZQUJA6depU4D5NmjQxLp89e7aySgMAAAAAAADKBT0mq6Bp06ZpwoQJevvttwvdJzIy0rgcHBxcGWWZZGVJ69bZlJZW6XcNAAAAAACAGoBgsgrq27evJOmnn35SRESE0/V2u11vvfWWpNxQsnv37pVanyRlZLhp2DB3BQdLjz4qFVAmAAAAAAAAUCiCySrozjvvVFBQkLKysnTvvfdq/fr1yszMlCQdOnRIkyZN0o8//iibzaannnpKbm7WPYwJCdKcOVJoqDR6tJSYaFkpAAAAAAAAhgcffFChoaGaP3++UlNTNXfuXN1www264IIL1KVLF50/f97qEms95pisgurWrasPPvhAEyZM0IkTJ/Tggw/Kw8ND3t7eSklJkSR5eXnp2WefVf/+/S2u9n9WrcrtOblunWTB6HIAAAAAAABDWFiYpNwMZdiwYTp69Ki8vb3l5uam1q1bq06dOhZXCILJKio0NFSrV6/WkiVL9MMPPyg6OlqZmZlq06aNrrjiCo0bN06tW7e2ukwne/dKgwZJW7ZIAQFWVwMAAAAAAGqjlJQUHT16VJL01ltvKTg4WIsXL1bv3r1ls9mM62AtgskCvPnmm3r33XcVHBysH3/8sUS3jYyM1PLly7V161bFxsYqKytLTZo0UUhIiIYNG6aBAwfKw8O1X3tAQIAmTZqkSZMmlebHsMzevdLdd0uff251JQAAAAAAoDYKCwuT3W6XJDVu3FjLli1T3bp1jeuDg4OVkZGhSy65RPfcc48mT55sVam1GsFkPrt379YHH3xQqtu+/fbbmjdvnrKyskztMTExiomJ0YYNG9StWze99tprateuXXmUW2WtWiUdOCB17Gh1JQAAAAAAoLYJDw+XJNlsNr344oumUDLPoUOHlJmZqc6dO1d2efh/LH7jICYmRhMnTjQWmimJWbNmae7cuUYo6eHhoa5du6pnz56qX7++sd/evXs1duzYWtFleN48qysAAAAAAAC1Ud78khdeeKF69uxZ4D4hISHavXu3rr/++sosDQ4IJv9fRESE7rjjDsXFxZX4tuvWrdOSJUuM7euvv16bNm3SqlWrtHTpUm3evFnPPfecfHx8JEmnT5/WQw89ZHQprpZsxde+cKGUllYJtQAAAAAAADjICyYHDBhQ6D5ubm6qU6eObDZbZZWFfBjKLemrr77SjBkzlJ6eXuLbZmZm6pVXXjG2+/Xrp//85z9yc/tf5uvp6albbrlFwcHBuu+++5SVlaV9+/bp66+/1rBhw8rlZ6h0HtmSf7qU4lPoLmfPSj/+mK1Bg6pxAIsKlZ2dXeQ2UBKcTyhvnFMob5xTKE+cTyhvVp5T2dnZRscdm80mu91evTvywOnxq+zHMycnRwcOHJAk9ejRo9D7nzRpkqKjo7VmzRqj7d5779WZM2f06quvas6cOdq6dau8vLw0evRoPfbYY5VSf2XI+53k/Z+VlWXJ312tDiZPnjypN954Q19++WWpj/HDDz/o2LFjknKHbz/zzDOmUNJRnz59dMstt2jp0qWSpIULF1bfYFKSLjgi/Rpa5C5//hmjZs3OVFJBqO727t1rdQmoQTifUN44p1DeOKdQnjifUN6sOKc8PDzk4eGhtLQ0ubu7V/r9o+KUpiNYWURHRys9PV1ubm5q3bq10goZzvn333+re/fupuvDwsJUt25djRs3TkOGDNG//vUv/fDDD/rggw/UpUsX9e3bt7J+jAqVnZ2tnJwcZWVlKSsry7LXkVo7lPu9997ToEGDTKFku3btdP/995foOGvXrjUuX3HFFWrevHmR+99yyy3G5X379ikmJqZE91eltDxd7C6pqbX2FAMAAAAAABaIiIiQJLVs2dKYVi+/1NRUHTt2TCEhIUZbYmKi4uLidOrUKf33v//VI488ojFjxmj27Nmy2Wzav39/pdRfm9Ta1OjDDz80JeI33XSTVq5cqdatW7t8DLvdrq1btxrbV155ZbG3CQ0NVePGjY3tH3/80eX7q3KanZU8sorcxc8vp5KKAQAAAAAA+F8w6Rg65nfgwAHZ7XZ17NjR1CZJ48ePV6tWrYx2T09P2e12eXp6VlDFtVetHsotSd26ddPUqVPVq1evEt/26NGjSkpKMh3LFaGhocYiO3v27Cnx/VYVNne77MHxUnSTQvfp2bOlLrywRSVWheokOzvb1F28W7duDNlAqXE+obxxTqG8cU6hPHE+obxZeU5lZ2crMjJSUu4ck76+vpzP1ZzdbjcN3/bx8anUBWbyzqfu3bvL19e3wH2io6MlSRdccIGxT17b4MGDTbfLaw8JCSn0eNVNdna23Nzc5OnpKU9PT7Vv375Uf3d79uxRTk7pO6XV2mCyV69eGjVqlAYMGFDqP47Dhw+bth3T9KK0aPG/oO7IkSOluu8qo9WZQoPJ+vWl/v3d5VFrzzKUlLu7uzw4YVBOOJ9Q3jinUN44p1CeOJ9Q3irznLLZbKbP5fm3Uf1V9mMaHh4uSercuXOh9xseHq7AwEA1bdrUaIuIiJC/v7/atWtnul3eCt+dOnWqMedm3s+R97+Hh4clXwjU2leud999t8zHyOv1KOUuMd+oUSOXbuc4lNvxGNVSEfNMjh8v1ZAvEgAAAAAAQDWQmJio48ePS8oNJgsTHh6u0NDQAtvyh49hYWHy8fEp0fR/cE2tnWOyPCQmJhqX/fz8Cl2NOz9/f/8Cj1EtBSVIXpkFXlXCdYQAAAAAAADKJCAgQOHh4QoPDzd1DHNkt9sVERGhTp06mdoOHjxYYJgZFhamkJAQl3MfuI7faBmcP3/euOzt7e3y7by8vIzLGRkZ5VpTZbO5SWpxxql91CjJYf5YAAAAAACAKiEmJkapqammHpNHjhxRWlqaKazMEx4eXmA7yo5gsgwyM//XU7AkqbnjPB1ZWUWval0ttDQHk926SQsWWFQLAAAAAABAEfLmoHQMJvNW8s7fY/LEiRNKSEhwGvaN8lFr55gsD46TgpZkBSLHMLJGLDXf6n/zTHbvLn37rRQQYGE9AAAAAAAAhRg4cKARThbVJklNmzYtsB3lgx6TZeDj42NcdhzWXRzH4dt16tQp15qsYGuSJPmc16hR0ubNUnCw1RUBAAAAAACgqqPHZBkEOHQLTE1Nld1ud2nZ+JSUFONyYGBgRZRW6d764oweur651WUAAAAAAGqJzOwcPfdDhNb+fVJpGdlWl1Ol+Hq5a0jnID0zMESe7vRJQ9VFMFkGQUFBxuXs7GydPXtWDRo0KPZ2cXFxxuVGjRpVSG2VLSz1jCSCSQAAAABA5Zj5fYRe3HDA6jKqrB1HkyRJzw9i0RZUXcTmZdC6dWvTdkxMjEu3i42NNS63bdu2XGuyysaDp4vfCQAAAACAcrLtyFmrS6jytkbzO0LVRjBZBsHBwaah2H///bdLtwsLCzMuV9fl5t3yDVkPO5WiY4nnLKoGAAAAAFDb9GpV3+oSqrzerfkdoWpjKHcZ9e7dW999950k6ddff9Wtt95a5P5hYWE6ffp/vQsvu+yyCq2vorgXMJXmT5GndfslLSq/GAAAAABArTPjuhDZbGKOyQI4zjEJVGUEk2V03XXXGcHkxo0bdfLkSdPck/ktW7bMuNy+fXuFhoZWeI0Vwa2AvrY/HjxDMAkAAAAAqBSe7m56flAn5lCsAqprtlHThIeHW11CiTGUu4yuu+46NWnSRJKUkZGhadOmKSsrq8B9N2/erJUrVxrbY8eOrZQaK4KbJF9Pd1Mb80wCAAAAAADAVfSYLCMvLy89+uijmjZtmqTc4dz33nuvnnvuObVs2VKSlJWVpVWrVunFF19UdnZu9/KQkBDddNNNltVdVjabTX3a1tf3Ef8LI6Pi03Q4Pk1tGvhaWBkAAAAAAKhM+Xvq2e12paWlGdu+vr6y2QqYEw61HsFkORg5cqR27NihTz/9VFJuOHndddcpNDRU/v7+ioyMVHx8vLF/YGCg3nzzTXl4VO9f/zXtG5qCSSm31+T4Xq0sqggAAAAAAADVRfVOxqqQmTNnqn79+vrwww+VmZmpnJycAlfpbt++vd588021a9fOgirLV7/2DZ3aCCYBAAAAAKidUlJStHXrVu3Zs0e7du3S/v37lZCQIElau3at2rdvb22BqHIIJsuJzWbT5MmTNXz4cH322WfasmWLTpw4ofT0dAUEBKhz584aNGiQhg8fLi8vL6vLLRcXNa+nAG8PJZ7735yaPx48I7vdThdtAAAAAABqmd9//10PPvig1WWgGiGYzGfUqFEaNWpUqW/fvn17TZ06VVOnTi3Hqqomdzeb+rZvqNX7Thptx5LO6cDpVIU09rewMgAAAAAAYIWGDRuqW7duCg0NVZMmTTRr1qxyv4+8VcCr4yrUMCOYRJn069DIFExK0o8HThNMAgAAAABQy/Tr10+//vqrsfjNsWPHrC4JVRzBJMqkX/tGTm0bD57W/Ve0qfxiAAAAAACAZdzd3a0uocQefPBBrV+/Xo8++qjuvPNOLVy4UN9++61iYmKUlZWlHTt2qE6dOmW6j8mTJ2vt2rUu7z916lTdfffdZbrP6oJgEmXSrWldNfLz0unUDKPtp8gzysmxy82NeSYBAAAAAEDVFRYWJkny8vLSsGHDdPToUXl7e8vNzU2tW7cucygpSbGxsWrUyNyx6/Tp05Kk+vXrOwW6PXr0KPN9VhcEkygTNzeb+rVvqJW7jxttcakZ2ncyWd2b1bOwMgAAAAAAgMKlpKTo6NGjkqS33npLwcHBWrx4sXr37i2bzWZcV1YrV640bR85ckQDBw6UJH3//feqV6/25iduVheA6q9fB+fh3D8ePG1BJQAAAAAAAK4JCwuT3W6XJDVu3FjLli3TZZddJpstdwRocHBwhdxv3qI9TZs2rdWhpEQwiXJQUDC5kWASAAAAAABUYXkBoc1m04svvqi6desWuF9GRoa6deumOXPmlOv9hoSElOk4w4YN0wMPPFAeJVmGodwos5DGfmpez1vHks4ZbRsPnlFmdo483cm+AQAAAABAyXz44YdasGBBkftceeWVBbbffffduueee4q9j7z5JS+88EL17Nmz0P0OHTqkzMxMde7cudhjuiIiIkJS2YLJrKwsRUVFacCAAeVSk1UIJlFmNptN13ZspI+2xxptyeez9Nvhs7q6fUMLKwMAAAAAANVRWlqasUBMYQq7Pi0tzaX7yAsmiwv3QkJCtHv3bnl5ebl03OLk9ZgMDQ0t9TEOHz6szMzMMve6tBrBJMrF9Z2amIJJSVoXfopgEgAAAAAAlNhDDz2khx56qMDr8gK9vICvNHJycnTgwAFJKrK3pCS5ubmVy+rcknTu3DkdOXJEUtl6TObVXpZwsypgnC3KxcCQRvr/uWEN34WfsqYYAAAAAACAIkRHRys9PV1ubm7q1KlTkfs++OCDGjp0qKntn//8p0aOHKmDBw9q4sSJ6tGjhy6//HLNnj27yGMdOHBAOTk58vDwULt27VyqdcOGDRozZowuuOACDRkyRD///LMOHDigOnXqqE2bNi4do6oimES5aORXR5e2CDS17TiapBMO804CAAAAAABUBXnDuFu1aiVfX99i983fMzE8PFwZGRkaN26c2rRpo8cff1whISH64IMPtGHDhkKPFR0dLUlq2bKlS0PDP/30U02cOFENGjTQE088oX79+umRRx7RTz/9pA4dOsjd3b3YY1RlDOVGubm+UxNti0kwtX0fEae7era0piAAAAAAAIAC5AWTxS1ok5KSoqNHj+qWW24x2hISEnTq1Cmlp6fr888/V+vWrSVJN9xwgy699FLt3bu30HkrExISJEkNGjQotsbIyEg9//zzGjt2rJ566imj3dfXV2+99ZZGjhxZ7DGqOnpMotwMCm3s1PZdeJwFlQAAAAAAACvEx8fr7NmzOnv2rJKSkoz25ORkxcfHG/9ycnIsrPJ/81N26dKl2P3sdrupx2TebSdMmGCEkpLk6ekpu90uT0/PQo/n5+cnKXfxmqNHjxZ53/PmzVOdOnX08MMPm9p79+4tqWxzVFYV9JhEubm0ZaDq+3jqbHqm0fZ9+Cll59jl7mYr4pYAAAAAAKAmuPzyywtsd+xxKOXOm9iiRYvKKKlAeT0mi5tfMi+EdNwvIiJCkvNq3lFRUZKktm3bFnq83r17y9PTU2fOnFH//v0VGBioqVOnatSoUab9srKytGHDBg0bNkx169Y1XZcX6lb3hW8kekyiHHm4u2lgiLnX5Jm0TG2PTbCmIAAAAAAAgHwSExN1/PhxScUP5Q4PD1dgYKCCgoJMbf7+/k6L1/z999+Sig47mzdvrrfffludO3eWp6enEhISCgxoY2NjlZqaqm7dujldt3fvXkn0mAScXB/aWCt2HTO1rQuLU69W9S2qCAAAAAAAVJa8oc9paWlGm6+vr2y28htJmdeLsbQCAgJcPkZ4eHiBC9+EhoY6/UxhYWHy8fExDe8uSL9+/dSvX78i9zl3ruDFhLOzs7V8+XI1aNBAjRs7T6lX3dBjEuXq+tAmTm3fhZ+yoBIAAAAAAIDSs9vtioiIMPWAtNvtOnjwYIE9LcPCwhQSEiI3t7LHbc2aNZMk/f7776b2JUuWKDo6ukb0lpToMYly1jzAWxc0q6fdx/83we3WI2cVn5ahBr5eFlYGAAAAAADgupiYGKWmppp6TB45ckRpaWkFDtcODw/X9ddfXy73HRAQoH79+unrr7+Wt7e3LrzwQm3btk1btmyRzWarEfNLSvSYRAW4Pt/q3Dl2aX3EaYuqAQAAAAAAKLm84d6OIWDewjf5e0yeOHFCCQkJ5RoYvvjii7ruuuv03Xff6bXXXlNqaqpefPFF2e12ekwChRnUqYle+ynS1LYu/JRuvqi5RRUBAAAAAACUzMCBA53moiyoTZKaNm1a5rkv82vQoIHefvttp/byvh8r0WMS5e7KNg3k5+Vuavsu/JTsdrtFFQEAAAAAAKCqIZhEufPycNOAjo1MbceTzmvP8WSLKgIAAAAAAEBVQzCJClHQ6tzrWJ0bAAAAAAAA/49gEhUi/wI4kvRdGMEkAAAAAAAAchFMokK0a+inkMZ+prYth+OVfC7LoooAAAAAAABQlRBMosLkH86dmW3XxsjTFlUDAAAAAACAqoRgEhVmUAHDudcxnBsAAAAAAAAimEQF6tu+oep4mE+xdWGnZLfbLaoIAAAAAAAAVQXBJCqMr5eH+rZraGo7fDZdB06nWlQRAAAAAAAAqgqCSVSo6zsxnBsAAAAAUDg3N3M0kZ2dbVElQO2R/+8s/99hZSGYRIUalG8BHEn6LjzOgkoAAAAAAFWRzWaTh4eHsZ2WlmZhNUDtcO7cOeOyu7u7bDabJXUQTKJCdWrir1aBPqa2nyJPKz2Tb8AAAAAAALn8/f2Ny0lJSRZWAtQOKSkpxmU/Pz/L6iCYRIWy2WxOw7nTM3O0KfKMRRUBAAAAAKqaevXqGZdTU1MVHx9vYTVAzZaenm76AsDxi4HK5lH8LkDZDAptog9+P2JqW7P/pAZ1ch7mDQAAAACofXx9feXp6anMzExJ0smTJ5WSkqJ69erJ19dX7u7uFleIkrDb7aY5DLOzsy0bKoxcdrtdWVlZSkpKUkJCgux2u6TcuSWt7DFJMIkKNzCksbzc3ZSRnWO0rdl3QnNHduOJCQAAAAAgm82mVq1a6ciRI0Y4mZqaqtTUVIsrQ2nl5PwvA7BqYRUUzWazqUWLFqY5XisbZwYqnH8dDw3o2MjUFpt4TjuOJlpUEQAAAACgqvHy8lKrVq3k6elpdSkoo7zeeXn/8nrnoeqw2Wxq1qyZpb0lJYJJVJLhXYOc2lbvO2lBJQAAAACAqsrLy0vt27dXq1atVL9+fUt7cqFsHINJVB116tRRkyZN1KFDBwUEBFhdDkO5UTmGdgnSA5/vMbWt2X9Cz14falFFAAAAAICqyGazyc/PT35+fmratKnsdrtpWDCqvqysLO3du9fYbt++PSFzFeDm5lblptTjrEClCA7wUc8WAfoz9n/Dt3ccTdKRs2lqVd/XwsoAAAAAAFWZzWZj8ZtqJv/QbXd3dx5DFIih3Kg0w7o2dWpbs5/h3AAAAAAAALURwSQqzY0FBZPMMwkAAAAAAFArEUyi0nRvVlet6/uY2jZGnlbSuUyLKgIAAAAAAIBVCCZRaWw2m9Nw7sxsu9aFxVlUEQAAAAAAAKxCMIlKNbxLkFPbmv0nLKgEAAAAAAAAViKYRKXq276hArzNi8F/8/cpZWbnWFQRAAAAAAAArEAwiUrl6e6mwZ2amNoS0jP1S1S8RRUBAAAAAADACgSTqHT555mUpK/2MZwbAAAAAACgNiGYRKUb3KmJPNxsprbV+07KbrdbVBEAAAAAAAAqG8EkKl2gj6f6tm9oaouKT9P+kykWVQQAAAAAAIDKRjAJSwwrYHXu1QznBgAAAAAAqDUIJmGJYV2c55kkmAQAAAAAAKg9CCZhibYNfdW9WV1T29YjCTqRdM6iigAAAAAAAFCZCCZhmeEFrM799d8nLagEAAAAAAAAlY1gEpYZXsBw7jX7CCYBAAAAAABqA4JJWKZHiwA1q1fH1PZDRJxSz2dZVBEAAAAAAAAqC8EkLOPmZtPQfKtzn8vK0foDpy2qCAAAAAAAAJWFYBKWurGAeSa/YnVuAAAAAACAGo9gEpbq36GRfD3dTW2r951QZnaORRUBAAAAAACgMhBMwlLenu4a0rmJqS0+LVMbDzKcGwAAAAAAoCYjmITlxlzQ3Knts93HLagEAAAAAAAAlYVgEpYb0rmJvD3Mp+KXe08oi+HcAAAAAAAANRbBJCznX8fDaTj36dQMbTp0xqKKAAAAAAAAUNEIJlEljC5gOPfKXQznBgAAAAAAqKkIJlElDO0cpDr5hnN/sec4w7kBAAAAAABqKIJJVAl1vT00uJN5OHdcaoY2R8VbVBEAAAAAAAAqEsEkqozRFzRzalu565gFlQAAAAAAAKCiEUyiyhjWJUhe7vmGc+89oewcu0UVAQAAAAAAoKIQTKLKqOftqetDG5vaTiaf15YoVucGAAAAAACoaQgmUaWMudB5OPdnu1mdGwAAAAAAoKYhmESVMqxLU3m620xtq/YcVw7DuQEAAAAAAGoUgklUKYE+nrouxDyc+3jSef0azercAAAAAAAANQnBJKqcMRc0d2pbuYvh3AAAAAAAADUJwSSqnOFdgxjODQAAAAAAUMMRTKLKqe/rpWs7modzH008p9+PnLWoIgAAAAAAAJQ3gklUSaMvYHVuAAAAAACAmoxgElXSiG5N5eFmHs79+e5jDOcGAAAAAACoIQgmUSU18PVS/w6NTG0xCef0R0yCNQUBAAAAAACgXBFMosoac6HzcO6Vu49ZUAkAAAAAAADKG8EkqqwR3ZrK3Wk493HZ7QznBgAAAAAAqO4IJlFlNfKro37tG5raos+ma+uRBGsKAgAAAAAAQLkhmESVNubC5k5tS/+KtaASAAAAAAAAlCeCSVRpYy5oJk9383DuFTuPKTM7x6KKAAAAAAAAUB4IJlGlNfD10uBOTUxtcakZWh8RZ1FFAAAAAAAAKA8Ek6jybrs42Klt2Y6jFlQCAAAAAACA8kIwiSpvWJcg+ddxN7V9sfeEUs9nWVQRAAAAAAAAyopgElWer5eHRnVrZmpLzcjW6v0nLaoIAAAAAAAAZUUwiWrh9kuch3N/wurcAAAAAAAA1RbBJKqF/h0aqYm/l6ntu/A4nU49b1FFAAAAAAAAKAuCSVQLHu5uuuUic6/JrBy7Vu46blFFAAAAAAAAKAuCSVQbdzCcGwAAAAAAoMbwsLoAwFWXtgxUh0Z+Ong61Wj75fBZvTY/Td4ZvvL3l5o2lfr2lXx9LSwUAAAAAAAAxSKYRLVhs9l0+8XBeu6HCFP7lAVHpW0dje3AQGn8eOn++6WQkEouEgAAAAAAAC5hKDeqjcRE6dcFzsO51TlWkt3YTEiQ5syRQkOl0aNzbwcAAAAAAICqhWAS1cLRo1KfPtIPK/xlPxFgus7WKEVqnFTg7Vatyr3d0aOVUSUAAAAAAABcRTCJKi8hQbr+emnv3v9v+LuF806dC08e9+6VBg2i5yQAAAAAAEBVQjCJKu+ee6R9+xwawpvLnpNvp05H5TicO7+9e6W7766I6gAAAAAAAFAaBJOo0iIicodjm6R6SzGNTE22uuekFmeKPNaqVdKBA+VcIAAAAAAAAEqFYBJV2rx5hVxRwuHcxR4PAAAAAAAAlYpgElVWWpq0cGEhVx5oKntmvtM35Ljknl3kMRcuzD0uAAAAAAAArEUwiSpr06bchW8KlOEpHQoyNdm8M6W2p4o85tmzuccFAAAAAACAtQgmUWWdOFHMDmHBzm1dYos97smTpasHAAAAAAAA5YdgElVWSkoxO0Q1kT3d09zW7qTkc77ImyUnl60uAAAAAAAAlB3BJKosf/9idsh2d+o1aXO3S52L7jVZt24ZCwMAAAAAAECZEUyiymra1IWd9rZ0busWI8le6E2Cggq9CgAAAAAAAJWEYBJVVt++UmBgMTudCpA9ztwF0tY4WWqSWODu9evnHhcAAAAAAADWIphEleXrK40fX9xetiJ6TTobPz73uAAAAAAAALAWwSSqtPvvd2Gnv1vInm0zt3U6Krlnl+54AAAAAAAAqHAEk6jSQkKkUaOK2Sm9jnTIPHGkzSdTan/S1DZqlNSxYzkXCAAAAAAAgFIhmESVt2CB1K1bMTvtK2g495H/XeyWexwAAAAAAABUDQSTqPICAqR164oJJ6OayJ7qZW5rHSf5p6t799zbBwRUaJkAAAAAAAAoAYJJVAvBwdKWLUUM685xk/abe03a3KSuN8Vq8+bc2wMAAAAAAKDqIJhEtREQIH3+uRQeLk2eLAUG5tuhgNW5M0NiVK+evVLqAwAAAAAAgOs8rC4AKKmQEOmNN6RZs6RNm6STJ6XkZKlu3bp6+UigIpISjH0PnE7Vr4fP6sq2DawrGAAAAAAAAE4IJlFt+fpKgweb28792lITVyWY2hb+EUMwCQAAAAAAUMUwlBs1yq0XB8vbw3xar9h1VKnnsyyqCAAAAAAAAAUhmESNEujjqZHdm5naUs5n6/M9xy2qCAAAAAAAAAUhmESNM+5S50VwFv0RY0ElAAAAAAAAKAzBJGqc/h0aqWWgt6ntp8gzOnQm1aKKAAAAAAAAkB/BJGocdzeb7urp3Gty8Z+xFlQDAAAAAACAghBMokYaV1Aw+UeMsnPsFlQDAAAAAACA/AgmUSO1b+Snvu0amtqOJKTr+/BTFlUEAAAAAAAARwSTqLHu7u3ca3L+79EWVAIAAAAAAID8CCZRY425oLnq+3ia2r7ef1KxCekWVQQAAAAAAIA8BJOosXw83XVXzxamthy79OG2IxZVBAAAAAAAgDwEk6jR7ru8tVPbf7ceUVZ2jgXVAAAAAAAAIA/BJGq0Tk3qOi2CczTxnNaGsQgOAAAAAACAlQgmUeNNKKDX5PzfWAQHAAAAAADASgSTqPFGdW+qRn5eprZ14ad0OD7NoooAAAAAAABAMIkar46Hu8Zd2tLUZrfnzjUJAAAAAAAAaxBMolaYcJnzcO4F244ok0VwAAAAAAAALEEwiVqhQyM/XduxkantRPJ5rd53wqKKAAAAAAAAajeCSdQaBfWafP93FsEBAAAAAACwAsEkao0buzVVUN06prYfIk7r4OlUiyoCAAAAAACovQgmUWt4urtpfL5FcCTpA3pNAgAAAAAAVDqCSdQq9/ZuLZvN3Lbojxidz8q2piAAAAAAAIBaimAStUrbhr66PqSxqS0uNUNf7GERHAAAAAAAgMpEMIlaZ8LlLIIDAAAAAABgNYJJ1DpDOwepeT1vU9tPkWcUdirZoooAAAAAAABqH4JJ1Doe7m66p3crp/Z3f6XXJAAAAAAAQGUhmESt9M/ereSWbxGcxX/EKOlcpjUFAQAAAAAA1DIEk6iVWgb6aES3pqa25PNZWvxnrEUVAQAAAAAA1C4Ek6i1HurT1qntnV+ilJNjt6AaAAAAAACA2oVgErXW1e0aqnuzuqa2iLhUfR8RZ1FFAAAAAAAAtQfBJGotm81WYK/Jt7dEWVANAAAAAABA7UIwiVrt9ouD1cDX09T2bdgpHYhLsagiAAAAAACA2oFgErWar5eH7unVyql97i+HK78YAAAAAACAWoRgErXexCvayM1mblv0R4ySz2VZUxAAAAAAAEAtQDCJWq91A1/d2LWpqS35fJYW/xljUUUAAAAAAAA1H8EkIBW4CM7cX6KUk2O3oBoAAAAAAICaj2ASkNS3fUN1b1bX1BYRl6ofDsRZVBEAAAAAAEDNRjAJSLLZbJp0pXOvybc3R1lQDQAAAAAAQM1HMAn8vzsuCVZ9H09T29qwUzoQl2JRRQAAAAAAADUXwSTw/3y9PPTP3q2c2t/59XDlFwMAAAAAAFDDEUwCDiZe0UZuNnPboj9ilHwuy5qCAAAAAAAAaiiCScBB6wa+urFrU1Nb0rksfbQ9xqKKAAAAAAAAaiaCSSCfSX0KWARnS5RycuwWVAMAAAAAAFAzEUwC+VzTvqG6Na1raouIS9XXf5+0qCIAAAAAAICah2ASyMdms+nhq9o5tb/+U6QF1QAAAAAAANRMBJNAAe64JFhBdeuY2jZHxWtr9FmLKgIAAAAAAKhZCCaBAnh7umvSlW2c2t/YRK9JAAAAAACA8kAwCRTi/svbyNfT3dT2+Z7jOnQm1aKKAAAAAAAAag6CSaAQDf28NL5XS1Nbjl36z+YoiyoCAAAAAACoOQgmgSI8clU7udnMbQu3HVF8WoY1BQEAAAAAANQQBJNAEdo38tOo7s1MbakZ2Zr/W7RFFQEAAAAAANQMBJNAMR7t296p7e0tUTqflW1BNQAAAAAAADUDwSRQjMta19eVbeqb2k4kn9cnfx21qCIAAAAAAIDqj2AScMFj1zj3mnx9U6TsdrsF1QAAAAAAAFR/BJOAC4Z1aaqOjfxMbftPpmhd2CmLKgIAAAAAAKjeCCYBF7i72TT56nZO7a9vOmRBNQAAAAAAANUfwSTgort6tlAjPy9T248HT2vH0USLKgIAAAAAAKi+CCYBF/l6eWjiFW2c2t/YFFn5xQAAAAAAAFRzBJNACUy8oo3qeJj/bJbvPKYjZ9MsqggAAAAAAKB6IpgESqBJ3Tq6q2cLU1t2jl2zmWsSAAAAAACgRAgmgRJ69Or2stnMbf/9PVqnks9bUxAAAAAAAEA1RDAJlFBoE3+N7t7M1HYuK0f/2UyvSQAAAAAAAFcRTAKlMK1/B6e2d389rIT0TAuqAQAAAAAAqH4IJoFSuKRFoAaFNja1JZ3L0ju/RFlUEQAAAAAAQPXiYXUBQHU1fUBHrQuPM7X95+codTnXTglxHkpJkfz9paZNpb59JV9fiwoFAAAAAACogggmgVK6ql1D9WnbQFui4o22M2kZGvXMEWlHO9O+gYHS+PHS/fdLISGVXCgAAAAAAEAVxFBuoAwevqyjc+OlkZJbjqkpIUGaM0cKDZVGj5YSEyunPgAAAAAAgKqKYBIopaNHpRnjGst+sp6p3Vb3nNQlttDbrVol9emTe3sAAAAAAIDaimASKIWEBOn666V9e23S1gJ6TfY6KNnshd5+715p0CB6TgIAAAAAgNqLYBIohXvukfbt+/+Ng81kj/czXW+rnyqFHCvyGHv3SnffXUEFAgAAAAAAVHEEk0AJRUTkDsc22G3StkJ6TarwXpNS7nEOHCjX8gAAAAAAAKoFgkmghObNK6Dx72DZk3xMTbYmSVK7U6U7HgAAAAAAQA1HMAmUQFqatHBhAVfkuEl/tHdu731AxfWaXLgw97gAAAAAAAC1CcEkUAKbNuUufFOgva1kT/UyNdman5VanCnymGfP5h4XAAAAAACgNiGYBErgxIkirsxyl/5q59x+WfGTSJ48WfqaAAAAAAAAqiOCSaAEUlKK2WFnG9nPeZiabK1PS8FF95pMTi5jYQAAAAAAANUMwSRQAv7+xeyQ4SntKKDX5BXhRd6sbt3S1wQAAAAAAFAdEUwCJdC0qQs7bW8r+/l8vSZbnZFanC70JkFBZSwMAAAAAACgmiGYBEqgb18pMLCYnc57FTzX5OURBe5ev37ucQEAAAAAAGoTgkmgBHx9pfHjXdhxezvnuSYL6TU5fnzucQEAAAAAAGoTgkmghO6/34Wdznu63GvSpeMBAAAAAADUMASTQAmFhEijRrmw41/F95ocNUrq2LGcCwQAAAAAAKgGCCaBUliwQOrWrZidCus1eUVur8lu3XKPAwAAAAAAUBsRTAKlEBAgrVvnQjj5VzvZz3mammwtz6jt1ae1bl3ucQAAAAAAAGojgkmglIKDpS1bihnWfd5T2u7ca7L56HA1b26vuOIAAAAAAACqOIJJoAwCAqTPP5fCw6XJk6XAwAJ2+qutbOfNvSZ/PRKvnyLPVEqNAAAAAAAAVZFH8bsAKE5IiPTGG9KsWdKmTdLJk1JyslS3rhQU5Knf7O0068dw022e/S5c17RvKJvNZlHVAAAAAAAA1iGYBMqRr680eLBz+xXpbTX3t0NKSM802jZHxWvjwTPq37FRJVYIAAAAAABQNTCUG6gEAT6eerSv81yTz34fLruduSYBAAAAAEDtQzAJVJJ/9Wmr+j7muSa3RMXr+4g4iyoCAAAAAACwDsEkUEnqeRfca/LJtWHKyaHXJAAAAAAAqF0IJoFK9K8+7dTIz8vU9tfRRH2+57hFFQEAAAAAAFiDYBKoRHW9PTR9QAen9mfWhSkrO8eCigAAAAAAAKxBMAlUsgcub6MWAd6mtvC4VH20PdaiigAAAAAAACofwSRQybw93fXMdSFO7TO/D9e5zGwLKgIAAAAAAKh8BJOABcb1bKmOjfxMbTEJ5zT/92iLKgIAAAAAAKhcBJOABTzc3fTcoFCn9hfXH1DyuSwLKgIAAAAAAKhcBJOARW66oLkual7P1BaXmqH/bD5kUUUAAAAAAACVh2ASsIibm00vDO7k1P76pkidSc2woCIAAAAAAIDKQzAJWGhQpybq07aBqS3pXJZe2XjQoooAAAAAAAAqB8EkYCGbreBek3O3ROloYroFFQEAAAAAAFQOgknAYle1a6jBnZqY2s5l5WjW+gMWVQQAAAAAAFDxCCaBKmBWAb0mP9x6RAdPp1pQDQAAAAAAQMUjmASqgIuDA3TLRc1NbVk5dj29LsyiigAAAAAAACoWwSRQRcy8PlTubjZT26c7j2nbkbMWVQQAAAAAAFBxCCaBKiKksb/u7tXSqf3xNftlt9stqAgAAAAAAKDiEEwCVcjM60Ll5+VuatscFa/V+05aVBEAAAAAAEDFIJgEqpCm9bz172vaO7VP+2a/MrNzLKgIAAAAAACgYhBMAlXMY33bq2ndOqa28LhU/XfrEYsqAgAAAAAAKH8Ek0AV41/HQzOvD3Vqn/l9uJLPZVlQEQAAAAAAQPkjmASqoPGXtlSXIH9T26mUDL3600GLKgIAAAAAAChfBJNAFeTh7qZXbuji1P7GpkgdTUy3oCIAAAAAAIDyRTAJVFFDOjdRv/YNTW3pmTl65rtwiyoCAAAAAAAoPwSTQBVls9n06jDnXpOL/ojRnuNJFlQEAAAAAABQfggmgSqsR4tA3XFJsKnNbpemfr3foooAAAAAAADKB8EkUMXNGtRJdTzMf6rrwuO0PiLOoooAAAAAAADKjmASqOJaN/DVQ33aOrVP+Xq/snPsFlQEAAAAAABQdgSTQDXwxICOauDraWrbeSxJC/84YlFFAAAAAAAAZUMwCVQDgT6eeuraEKf2p74NU2J6pgUVAQAAAAAAlA3BJFBNTLyijUIa+5naTqVkaNb6AxZVBAAAAAAAUHoEk0A14eXhpteHdXVqf2vLIR2IS7GgIgAAAAAAgNIjmASqkSGdm+j60Mamtsxsux7/er9FFQEAAAAAAJQOwSRQjdhsNr0+rKvc3Wym9tX7Tmp9RJxFVQEAAAAAAJQcwSRQzXRpWlcTr2jj1D75q33Kys6p/IIAAAAAAABKgWASqIZmXBeiBr6eprZ9J5M1//doiyoCAAAAAAAoGYJJoBpq4OulmdeHOrXP+C5c8WkZFlQEAAAAAABQMgSTQDV132Wt1TWorqktPi1TM7+PsKgiAAAAAAAA1xFMAtWUh7ub3rixq1P7u78e1t8nky2oCAAAAAAAwHUEk0A1NjCksYZ3DTK1ZefY9ejqfbLb7RZVBQAAAAAAUDyCSaCae21oF3m620xt34XH6ev9Jy2qCAAAAAAAoHgEk0A117Gxv/7Vp51T+yNf7VN6ZrYFFQEAAAAAABSPYBKoAZ66tqOa+HuZ2qLi0/TqxoMWVQQAAAAAAFA0D6sLAFB2AT6eeuWGLhr/6U5T+ys/HtTYHi3U1MdPmzZJJ05IKSmSv7/UtKnUt6/k62tNzQAAAAAAoHYjmARqiLE9WuiDrdH69fBZo+1cVo4GvrhP8Qt6KSHB+TaBgdL48dL990shIZVWKgAAAAAAAEO5gZrCzc2muSO7y828Do6ibCeVUL/ghXASEqQ5c6TQUGn0aCkxseLrBAAAAAAAkAgmgRrlouAA3XVhG+cr+u+V3IteCGfVKqlPH+no0YqpDQAAAAAAwBHBJFCDJCRIv83uJHuaeSEcW2CadGlksbffu1caNIiekwAAAAAAoOIRTAI1yD33SGG7PKWfuzhf2euAVC+t2GPs3SvdfXcFFAcAAAAAAOCAYBKoISIicodjS5L2tZD9aH3T9TbPHKnfXpeOtWqVdOBAORcIAAAAAADggGASqCHmzXPcskkbusueY97H1uGk1LbghXCKPh4AAAAAAED5IpgEaoC0NGnhwnyNcQHSrjbOO/crfiEcKfd4acWP/AYAAAAAACgVgkmgBti0KXfhGye/FLAQTn3XFsI5ezb3uAAAAAAAABWBYBKoAU6cKOSK857Sz52d23sfkAJTij3uSddGfQMAAAAAAJQYwSRQA6QUlTHuayn7sXwL4XjkSNfukWQv8rjJyWWvDQAAAAAAoCAEk0AN4O9f1LU2aX132XNs5tbWp6VOR4s8bt26Za8NAAAAAACgIASTQA3QtGkxO8QFSNvbObf32yd5ZxR6s6CgstUFAAAAAABQGIJJoAbo21cKDCxmp19DZE/yMTXZfDOkq/4ucPf69XOPCwAAAAAAUBEIJoEawNdXGj++mJ2yPKQN3Z2abRcckYLPOLWPH597XAAAAAAAgIpAMAnUEPff78JOh4Jkj2jm3H7tbsktp+THAwAAAAAAKCWCSaCGCAmRRo1yYceNXWU/72FqsjVKkXpGGtujRkkdO5ZzgQAAAAAAAA4IJoEaZMECqVu3YnZK8ZF+6eTcflmEFJCqbt1yjwMAAAAAAFCRCCaBGiQgQFq3zoVwcmcb2U8EmJpsnjmqO2KPvv3WroCAQm4HAAAAAABQTggmgRomOFjasqWYYd12m/TDBbKbp5VUSqM4bY47VqH1AQAAAAAASASTQI0UECB9/rkUHi5NniwFBhaw06lAee9v59Q8+au9ik/LqPAaAQAAAABA7eZR/C4AqquQEOmNN6RZs6RNm6STJ6XkZKluXSkoSOpxWah6zj2m2MRzxm1OpWTo36v3a8GtF1lXOAAAAAAAqPEIJoFawNdXGjy4oGs89PbI7hq56A9T66I/Y3Trxc11XWiTSqkPAAAAAADUPgzlBmq5G7s11ejuzZza7/tst1LOZ1lQEQAAAAAAqA0IJgHo7ZHdFOjjaWqLPpuuJ78Ns6giAAAAAABQ0xFMAlDTet56Y3hXp/a5v0Tp18PxFlQEAAAAAABqOoJJAJKkf/RsoYEhjUxtdrv0zxW7dC4z26KqAAAAAABATUUwCUCSZLPZNH/MhfLzcje1h51K0QsbDlhUFQAAAAAAqKkIJgEY2jTw1QuDOzm1v/LjQe06lmhBRQAAAAAAoKYimARg8uCVbXV56/qmtqwcu/65YpeysnMsqgoAAAAAANQ0BJMATNzdbPrgpgvl5W5+etgem6g5Px+yqCoAAAAAAFDTEEwCcNKlaV09NbCjU/uM78J1IC7FgooAAAAAAEBNQzAJoEBTrumgC5rVM7Wdy8rRPSt2KTvHblFVAAAAAACgpiCYBFAgLw83/ffmC+VmM7dviYrXW1sY0g0AAAAAAMqGYBJAoXq2DNRjfds7tT+5NkzhpxjSDQAAAAAASo9gEkCRZl4fqk5N/E1t57JyNP7TnQzpBgAAAAAApUYwCaBI3p7uWnTrRU5Dun+PPqs3NkVaUxQAAAAAAKj2CCYBFKtXq/qa2r+DU/sz34Vr/4lkCyoCAAAAAADVHcEkAJc8MzBE3ZrWNbWdz8rRuOU7lJWdY1FVAAAAAACguiKYBOCSOh65Q7rd843p/jM2Ua/+xJBuAAAAAABQMgSTAFx2SYtAPTGgo1P7zO/Dted4kgUVAQAAAACA6opgEkCJPDmgoy5qXs/Ulplt17jlO5TJkG4AAAAAAOAigkkAJeLl4aaFt14kT3fzkO4dR5P0wvoDFlUFAAAAAACqG4JJACV2YfMAPT0wxKn9xQ0H9GdMQuUXBAAAAAAAqh2CSQClMrVfB/VoEWBqy8qxa+wnfyktI8uiqgAAAAAAQHVBMAmgVDzd3bTo1ovl5W5+GgmPS9WUr/+2qCoAAAAAAFBdEEwCKLWuTevqxSGdnNrf/fWw1oWdsqAiAAAAAABQXRBMAiiTR65qp37tGzq137Nip86kZlhQEQAAAAAAqA4IJgGUiZubTYtuu1gB3h6m9uNJ53X/Z7tlt9stqgwAAAAAAFRlBJMAyqxloI/eGdXdqf3zPce1ZHusBRUBAAAAAICqjmASQLm47eJg3XJRc6f2h77Yq8PxaRZUBAAAAAAAqjKCSQDlwmaz6Z1R3RUc4G1qTz6fpX8s26HsHIZ0AwAAAACA/yGYBFBuGvh6aeEtFzm1b46K1+ubIiu/IAAAAAAAUGURTAIoV9eGNNa/rmrr1P70ujDtPJpoQUUAAAAAAKAqIpgEUO5eGtJZXYL8TW2Z2XbdvvQvpZ7PkiSlpUnr1tm0enVDLV/eWKtXN9S6dTalMR0lAAAAAAC1gofVBQCoeXw83bXk9kt02VublZn9v7klw06l6J4l+9Rs34VatEhKSHCX1MZ028BAafx46f77pZCQyqwaAAAAAABUJnpMAqgQFwcH6LnrOzm1rwg7ov98fVwJCQXfLiFBmjNHCg2VRo+WEhn9DQAAAABAjUQwCaDCPH5Ne/Xv0Mj5iut2SXXTi739qlVSnz7S0aMVUBwAAAAAALAUwSSACuPmZtPbN1ws9wxPU7vNJ1Ma/Jdksxdyy//Zu1caNIiekwAAAAAA1DQEkwAq1FOPeCvrm4uc2m0t46VeB1w6xt690t13l3NhAAAAAADAUgSTACpMRETucGwdair7jjbOO1wRITWLd+lYq1ZJB1zLMQEAAAAAQDVQaatyZ2RkaOfOnfrrr7908uRJJSYmqkOHDpo4caIkKTIyUocOHdI111wjT0/PYo4GoDqYN89h4+cusrc4I1vjZKPJ5maX/Ya/pI/6ShnF/93Pmye9/noFFAoAAAAAACpdhQeT6enp+uCDD/TJJ58oMd8kcX369DEub9++XTNmzFCzZs00ZcoUDRo0qKJLA1CB0tKkhQsdGrLcpW8ukf2OzbJ55hjNtoB02a/dI629WJKtyGMuXCg9/7zk61sxNQMAAAAAgMpToUO5Dx06pDFjxui9995TQkKC7Ha78S+/o0ePym6369ixY5o8ebLmzJlTkaUBqGCbNkkJCfkaz9STNnV12tfW+ajUJbbYY549m3tcAAAAAABQ/VVYMHny5EmNGzdOhw4dMtrc3d3Vtm3bAvc/ffq0JMlms8lut+v999/XypUrK6o8ABXsxIlCrtjVWvaDQc7tA/ZIDZKd2/M5ebJsdQEAAAAAgKqhwoLJqVOn6tSpU5KkevXq6ZlnntHvv/+ub7/9tsD9Z86cqVmzZikwMNAIJ1999VWn4d8AqoeUlMKusUnfXyh7sre51StbGrpd8sgu8rjJxWeXAAAAAACgGqiQYPK3337T77//LpvNpoCAAH3yySe6/fbbVbdu3UJv4+HhoTFjxmjlypVq0qSJJCklJUVffvllRZQIoIL5+xdxZXod6duLlX9WB1vjZKnf3iKPW8TTCAAAAAAAqEYqJJh07BU5bdo0tW/f3uXbtmjRQo899pixvXnz5nKtDUDlaNq0mB1iGkm/hzg12y44InU6WujNggoYBQ4AAAAAAKqfCgkm//zzT0mSv7+/hg4dWuLbDx06VAEBAbLb7YqIiCjv8gBUgr59pcDAYnb6LUT2Iw2d2wfukuo7jwWvXz/3uAAAAAAAoPqrkGAyLi5ONptN7du3l4eHR4lv7+bmptatW0sSc0wC1ZSvrzR+fDE72W3S2ktkT/MyNRvzTbqb55scPz73uAAAAAAAoPqrkGAyIyNDkuTl5VXMnoXLu62bW4WtzwOggt1/vws7pXpLawuYb7JJknTNvpIfDwAAAAAAVAsVkvo1bNhQdrtdsbGxpT5GVFSUJKl+/frlVRaAShYSIo0a5cKO0U2krR2dmm0XRUshxyTlHqej8y4AAAAAAKCaqpBgsuP/pwfHjx/X/v37S3z7X375RWfOnJHNZlNIiPPiGACqjwULpG7dXNjx1xDZYxs4t1+3Sx17pWrBgnIvDQAAAAAAWKhCgsm+DqtTvPTSS8rJyXH5tikpKXrxxReN7T59+pRrbQAqV0CAtG6dC+Gk3U36poD5JutkyXv0n6rjm13IDQEAAAAAQHVUIcHkiBEj1LBh7kq7f/75px5++GElJSUVe7vY2FiNHz9ekZGRkqR69eppxIgRFVEigEoUHCxt2eLCsO4UH+nbi52a955K0uTV+wq4AQAAAAAAqK5KvmS2C3x9fTV16lRNmTJFNptN69ev19atW9WvXz+1b9/e2C8xMVE//fSTjh07pt9//10//vijsrNze0XZbDY99NBD8vf3r4gSAVSygADp88+liAhp3jxp4UIpIcF5v/qJTdTB3kF/2g6a2uf/Fq0r2tTX2B4tK6dgAAAAAABQoSokmJSk4cOH68iRI5o7d65sNpuSkpK0evVq43q73a49e/bogQceMLXZbDZJ0pgxY3TnnXdWVHkALBISIr3xhjRrlvTjj9n6888Ypaa6yc8vRz17tlT//u7yrBOq/u+d0S+Hz5pue/9nu3VR8wB1b1bPouoBAAAAAEB5qbBgUpImTZqktm3baubMmUpKSjKCx7zwUfpfGGm323ML8vDQI488onvuuaciSwNgMV9fadAgu5o1O2O0XXhhC3l4SJKblo/toR5zftaplAzj+vTMHI1Z/Kf+eOQq1fP2rPyiAQAAAABAuamQOSYd3XDDDdq4caOmTZumSy65RJ6enrLb7ca/PB07dtSECRO0YcMGQkkACg7w0Sd39JCbzdx+4HSq7vl0l+n5AwAAAAAAVD8V2mMyj5+fn8aNG6dx48YpIyNDJ0+eVGJiorKyslSvXj01adKEuSQBOOnfsZGeG9RJT30bZmr/fM9xzfn5kB7t276QWwIAAAAAgKquUoJJR15eXmrZsqVatnRtAYuMjAx5eXlVcFUAqqpp/Tro98Nn9fXfJ03tU7/5W71aBapP24YWVQYAAAAAAMqiQoZyT58+XdOnT9eiRYtKfYznn39eAwYM0E033VR+hQGodtzcbFp820Vq28DX1J6dY9ctS7brZPJ5iyoDAAAAAABlUSHB5BdffKEvv/xSv/zyS6mPERkZqaNHj+ro0aPlWBmA6qi+r5dW3tVDdTzMT1nHk87r9o+3Kys7x6LKAAAAAABAaVX44jellZCQIEk6d+6ctYUAqBIuaRGot0Z0c2rfGHlGT60Lt6AiAAAAAABQFqWeYzIsLEzJyclF7pOYmKg//vijRMc9f/68Nm3apLCw3MUuAgMDS1sigBrmn71b6bfDZ7XozxhT+6sbD6pniwCNubC5RZUBAAAAAICSKnUwuX//fj355JOFXm+327Vnzx7dddddpb0L2Ww2XXzxxaW+PYCaxWazae6obvrraKJ2H08yXTf+053qHFRXXZvWtag6AAAAAABQEqUeyj1q1Chdcsklstvt5VmP6Xienp669957y/X4AKo3Xy8PffaPngr08TS1p2Zka+SiP5SQnmlRZQAAAAAAoCTKNMfks88+Kw8PD9ntdtO/PPnbi/snSd7e3goKCtLVV1+txYsX64ILLijbTwigxunQyE8f336xbDZz+8HTqbpz6V/KySnfL0wAAAAAAED5K/VQbknq2LGj9u7d69TeqVMn2Ww29enTRx988EFZ7gIACjSkc5BmXh+qZ/ItfLM27JRm/hChmdeHWlQZAAAAAABwRYWtyl3eQ7wBIL8n+nfUjV2DnNqf/yFCX+09YUFFAAAAAADAVWXqMVmYl156SZIUFOQcGABAeXFzs2nxbRer95ubFR6XarrurmU7tPXhPurUhMVwAAAAAACoiiqkx+TIkSM1cuRIXXHFFRVxeAAw1PP21BfjL1XdOubvWZLPZ2nUoj+VdI7FcAAAAAAAqIoqbCh3eSloDksAcNSpSV0tvu0ip/awUykat3wni+EAAAAAAFAFVchQbkfZ2dnavXu3Tpw4ofPnzys7O7vA+SftdruysrKUmZmptLQ0xcXF6c8//9SBAwe0f//+ii4TQDU3olszPXltR72w/oCp/cu9J/TcDxF6lsVwAAAAAACoUio0mFywYIHmz5+vpKSkUt3ebrfLZrOVc1X/x959x1dZ3o0f/9wZjEBImAHCHgERZOMC4xZtrRW02jqhWmmtfYp9uvs8HfJr7dNW0NpCh4Baa60SR4e40AgOhiISEAIoG8IMBMLIuH9/HKVgTkISzoFAPu/X67w8576+13V/7/a8IHxzDUmnqp9c2ouF63fx72Vbjrj+s5fy6ds2lWv6tz9BmUmSJEmSpE+L21LuSZMm8atf/Ypdu3YdMUMyDMNDr087vM1TvSXVVGJCwF9uGESPVk0qtN36t/d4b8OuE5CVJEmSJEmKJi6FyfXr1/PnP/8Z4NCMx8OLjUEQEARB1ELkJ21t2rThtttu4y9/+Us8UpR0ikpvnMyzUQ7DKS4p4/PT5rOl6MAJykySJEmSJB0uLoXJp59+mtLSUgAaNmzIj370I15//XU++OADvvWtbxGGIYmJicydO5clS5bw5ptv8tBDD5GdnX2oSLljxw4uvvhiBg8eHI8UJZ3CTstI5a83DOLTO0GsLdzHNY8s4GBp+YlJTJIkSZIkHRKXwuS8efMOvf/Wt77FjTfeSJs2bQiCgLPPPhuIHIozZ84cEhMTadGiBeeeey5/+MMfGD9+/KH2//mf/3FJt6Ra+UyfDH5++WkVrs/5aAdff3qxf7ZIkiRJknSCxaUwuW7dOgAaNGjAF77whSPaevfuTXJyMgALFiyo0PeOO+7g4osvJgxDVq5cycsvvxyPFCXVA9+5oDtfGphZ4fqf567l92+uPv4JSZIkSZKkQ+JSmNy1axdBENC9e3caNmx4RFtSUhLdunUjDEOWLFkStf9XvvKVQ+9fffXVeKQoqR4IgoA/faE/QzqkVWj75rNLmLVi2wnISpIkSZIkQZwKk5/sL5menh61vWvXrgCsWrUqavsZZ5xBq1atAFi2bFnsE5RUbzROTuTpMUNpm3rkL0nKykO+8OgCVm3be+hacTE8/zxMmwa//W3kv88/H7kuSZIkSZJiK+noITWXnp7Otm3bKCkpidresWNHAIqLiykoKCAjI6NCTGZmJtu2bWPjxo3xSFFSPZKZ1pinbx3K+ZPf5MBhB9/sKC7hyqnzeOTy4Tw2NZnp06GwsGL/9HQYMwbGjYOsrOOVtSRJkiRJp7a4zJhs3bo1YRiydu3aqO2dOnU69D4/Pz96YgmR1Pbu3Ru1XZJq4szOzfnDNWdUuL5syx6G/nQBkx4oj1qUhEixcuJE6NULRo+GXbvimqokSZIkSfVCXAqTAwcOBGDLli3k5eVVaD+8MPnee+9FHeOTA3SSkuIyqVNSPXTzkI58K7t7hetBl21wQR5w9JO6c3Jg+HDYsCEOCUqSJEmSVI/EpTB57rnnHnr/ox/9iO3btx/R3qdPn0MzIp999tkKS75fffVVtm3bRhAEh/aalKRYuPczpzGyZ8XtI4IBa2DgR9UaIy8PRo505qQkSZIkScciLoXJCy64gC5dugCwfPlyLr/8cn71q1+xbVvkBNzU1FSGDh1KGIZs2LCBu+66izVr1rB3715eeOEFfvCDHxwaq3///vFIUVI9lZgQkPzSIMItzSo2nr8EuhZUa5y8PBg7NsbJSZIkSZJUj8SlMBkEAT/60Y9ITEwEYPfu3UydOpXNmzcfirn11lsPvc/NzWXkyJEMGTKEb37zm+zcufNQ26hRo+KRoqR6Kj8fnpuRBM8MI9xz5EndQQLwmXeh1e5qjZWTAytWxCFJSZIkSZLqgbgUJgGGDx/O//3f/5Gamnro2uF7S15wwQV87nOfIwwje7qFYXjoFQQBAFdccQXnnHNOvFKUVA9NmfLxm6LG8OxQwpIj/xgMGpbC5+dByoGajSdJkiRJkmokboVJiBQWn3/+ee68804GDx5Ms2ZHLp38+c9/zpgxYw7NrDzcddddx7333hvP9CTVM8XFMG3aYRc2N4eZAyvEBWn74Kr5kFR21DGnTYuMK0mSJEmSaibuR163bNmSu+66i7vuuqvizZOS+O53v8vYsWOZM2cOW7duJT09nbPPPpuOHTvGOzVJ9UxuLhQWfupifnvCOXsIhi8/4nLQfifhZe/BvwYBQaVj7twZGffyy2OdrSRJkiRJp7a4FCbfeust9u7dS3Z2NsnJyUeNb926NVdffXU8UpGkQw7b5vZIc3sStthD0GfDEZeD3hsJC1PgjdOqHLegeuflSJIkSZKkw8RlKfdf/vIX7rrrLoYPH87jjz8ej1tIUo3t2VNZSwAv9ifc0Lxiy1krod+aKsctKjr23CRJkiRJqm/iUphcunQpYRiye/duMjMz43ELSaqxpk2raCxLjByGU5hSse3ixdB5S6VdDzvjS5IkSZIkVVNcCpPbt28/9H7QoEHxuIUk1VjbtkcJ2NcQnh5GuO/ILSiChBCufAda74raLSMjRglKkiRJklSPxKUwmZ6efuj9/v3743ELSaqx7Gw47I+n6HakRmZOlh75x2PQsBSungdN9x1xvXnzyLiSJEmSJKlm4lKYvPTSSw+9f+qpp+JxC0mqsZQUGDOmGoEbWsIL/StcDlL3R4qTDUoOXRszJjKuJEmSJEmqmbgUJv/rv/6LXr16EYYhDz74IA8//DAlJSVH7yhJcTZuXDUDl3UgnNOrwuWgzW747DuQUF6z8SRJkiRJ0hGS4jJoUhIPPfQQP/vZz3jxxRe59957+f3vf8/AgQPp3bs3LVq0oGnTpiQkVK8u+vnPfz4eaUqqh7KyYNQoyMmpRvDcnoRp+wj6rT3ictB1K+FFi7k69Qx69gzik6gkSZIkSae4uBQmDz/wJggCwjBk165d5ObmkpubW+PxLExKiqWpUyE/H/LyjhYZwMv9CFOLCbpsO7LljLWcfn5jICteaUqSJEmSdEqLy1LuMAwPvSBSnAyCoEJbdV6SFGtpaTBzJvTtW43g8gT4xxDCrakVmv7fa8uZNm9tlE6SJEmSJOlo4jJjsn379vEYVpJiJjMT5syBsWOrsaz7YDI8fSbhF+dEDsA5zFeeep+2qQ25/LSM+CUrSZIkSdIpKC6FyVmzZsVjWEmKqbQ0mDEjsqx7yhSYNg0KCyvGNW8OY8Y05vxrh3HjP96k6EDpobay8pBrH3mHV796DkM7pR+33CVJkiRJOtnFpTApSSeTrCy47z6YMAFyc6GgAIqKIDUVMjIgOxtSUgDSyGk5hCv+PJeSsv9sNVFcUsZnH5rLG3cNp0erJifsOSRJkiRJOplYmJSkj6WkwOWXVx1zUc/WTL9+IDc89u4R17fuPcjIP73NG18fTkZqwzhmKUmSJEnSqSEuh99I0qnsiwMz+dVn+1S4/uH2Yq58aC57DlvqLUmSJEmSorMwKUm18K3zu/PN87pVuL5g/S6ufWQBJWXlJyArSZIkSZJOHhYmJamWfv3ZPlw3oH2F6y8s38rtf19EeXkYpZckSZIkSQILk5JUawkJAdOvH8AF3VtWaHvknfV8519LCUOLk5IkSZIkRWNhUpKOQcOkRHJuHcoZ7ZpVaLsv90P+79VVJyArSZIkSZLqPguTknSM0hon8+/bzqRTeuMKbd//9wc8NHftCchKkiRJkqS6zcKkJMVA+7RGvHjHWbRq0qBC2x1PLeLpxZtOQFaSJEmSJNVdFiYlKUayWjfl+dvPpGnDxCOul4fwpcfe5bWV205QZpIkSZIk1T0WJiUphgZ3SOeZW4fRIPHIP14PlJZz1bT5vLu+8MQkJkmSJElSHVPnC5MHDx480SlIUo1c2LMVj90wkITgyOtFB0q5/E9zWbF1z4lJTJIkSZKkOiQuhcnvf//7fP/732f69Om1HuOee+7hoosu4tprr41dYpJ0nIw+oz2TR59R4frWvQe59I9vs75w3wnISpIkSZKkuiMuhcmnn36aZ555hjfeeKPWY6xatYoNGzawYcOGGGYmScfP7Wd1ZsLlvStcX7NzH5f+8W227jlwArKSJEmSJKluqLNLuQsLCwHYv3//iU1Eko7B9y/swX+N6Frh+rItexj5p7fZta/kBGQlSZIkSdKJl1TbjsuWLaOoqKjKmF27djF//vwajXvgwAFyc3NZtmwZAOnp6bVNUZJOuCAI+M2Vp7OjuIRH31l/RNvCDbu5cuo8Zt5+JikNav3HsSRJkiRJJ6Va/0t46dKl/PCHP6y0PQxDFi9ezM0331zbWxAEAQMHDqx1f0mqCxISAh76Qn+KDpTyTN7mI9rmfLSD0Q8v4JkxQ2mYlHiCMpQkSZIk6fir9VLuUaNGMWjQIMIwjGU+R4yXnJzM7bffHtPxJelESEpM4PEbB3Fxz1YV2l5YvpUbH1tIaVn5CchMkiRJkqQT45j2mPzJT35CUlISYRge8frEp68f7QXQqFEjMjIyOO+883j44Yc544yKp9pK0smoYVIiT986lLM7N6/QNmPxJr7y5PuUl8f2lz2SJEmSJNVVx7SpWc+ePcnLy6twvXfv3gRBwPDhw/nTn/50LLeQpFNKk4ZJ/Ou2M7lg8pss2rj7iLbpC9aR2iiJSVedThAEABQXQ24ubN4Me/ZA06bQti1kZ0NKyol4AkmSJEmSYiNupy3Eeom3JJ0q0hsn88LtZ3He798gf+veI9p+O+cjUhsmcXP33kyeDNOnQ2FhlDHSYcwYGDcOsrKOR9aSJEmSJMVWXAqTv/jFLwDIyMiIx/CSdNJrk9qQl+44mxEPvsHawn1HtP38lRX8v58mwNzKK46FhTBxYuQ1ahRMnQppaXFOWpIkSZKkGIpLYfLqq6+Ox7CSdErpmN6Yl+44i/N+/yYFRQeOaAuGLycsTYR3uh91nJwcyM+HmTMhMzNe2UqSJEmSFFvHdPiNJOnY9GzdlBduP4v0RskV2oLzl8KAj6o1Tl4ejBwJu3bFOEFJkiRJkuIkLjMm58+fH9Pxhg4dGtPxJKkuOaN9MwasOotXW71F0LD0iLbgorzIzMm8TkcdJy8Pxo6FGTPilakkSZIkSbETl8LkTTfddOhE2WMVBAFLly6NyViSVBfl58Orf0uH9mcSjn6boEHZkQGXLoKyBPigw1HHysmBFSugZ8/45CpJkiRJUqzUiaXcYRhW+ZKkU9mUKR+/2dgCnh5GWHLkH81BAIxcCFkbazaeJEmSJEl1WFxmTAK1LigGQUBiYiIXXXQRiYmJMc5KkuqW4mKYNu2wC+tbwbPDCD8/jyCp/NDlIAHCK96NzJxc1bbKMadNg3vugZSUOCUtSZIkSVIMxKUwuWzZsmrHHjx4kJ07d5Kfn88///lPnnvuOcrKyti/fz/3338/jRo1ikeKklQn5OZCYeGnLq5pDf8YQvi5+QSJ//klT5AYEn72HXhuCHyUUemYO3dGxr388vjkLEmSJElSLJzwpdwNGjQgIyODESNG8Mtf/pI//vGPJCYm8vrrr3PPPfec6PQkKa42b66k4cMM+NcgwvIj9+sNksrhcwugy5Yqxy0oiFGCkiRJkiTFyQkvTH7aiBEjuOuuuwjDkJycHN55550TnZIkxc2ePVU0rmgPzw/g0ztjBEnlcNV86Fx5cbKoKDb5SZIkSZIUL3WuMAnwpS99iYYNGwIwY8aME5yNJMVP06ZHCVjWAWZWUpz8/HzovDVqt9TU2OQnSZIkSVK81MnCZGpqKt26dSMMQ2dMSjqlta36HJuIpR3hxf4VLkdmTs6DThWLkxmVb0EpSZIkSVKdUCcLkwApHx8nu2VL1fuoSdLJLDsb0tOrEZjXifDFMypcDpLL4fPzoOO2Q9eaN4+MK0mSJElSXVYnC5Pl5eWsXr0agOTk5BObjCTFUUoKjBlTzeDFnSsvTl49FzpEipNjxkTGlSRJkiSpLquThclnnnmG7du3EwQBHTp0ONHpSFJcjRtXg+DFnQlf6lfhcpBcDqPmQYdtNRtPkiRJkqQTpE4VJg8ePMhf//pXfvKTnxy6NmLEiBOXkCQdB1lZMGpUDTq834Xw5WjFyTKSrp3LWqIfiCNJkiRJUl2SFI9Bb7755mrHhmFIaWkpe/bsYf369ezfv5/w4+NnGzZsyPXXXx+PFCWpTpk6FfLzIS+vmh0WdSEMQoKLjuxQllDOlQ/N45kxQ7m0V5vYJypJkiRJUozEpTA5b948giCocb8wDI/o9+1vf5t27drFMjVJqpPS0mDmTBg5sgbFyfe6RoqTFy454vL+0nKumjafp28dysjeFiclSZIkSXVT3JZyh2FY49cn/dq3b8+vf/1rbrjhhnilJ0l1TmYmzJlTw2XdC7txxra+FS4fKC3n89Pm86+lBbFLUJIkSZKkGIrLjMmvf/3rNe7ToEEDmjdvTu/evenXr+LeaZJUH6SlwYwZkWXdU6bAtGlQWFgxrnnzyOnb48ZBz55dmfxmwJ05i4+IOVhWzqiH5/PkzUP43Oltj88DSJIkSZJUTXWmMClJ+o+sLLjvPpgwAXJzoaAAioogNRUyMiA7G1JS/hP/1XO6kJQQcMdT7x8xTklZyDUPL+CJmwZzdT+3xpAkSZIk1R1xKUxKkmIjJQUuv7x6sbef1ZnEhIDbn1zEx7tjAFBaHvKFR9/hrzcM4tr+7eOTqCRJkiRJNRS3PSYlScff2GGdmHbdAD59/lhZecgX//IOf3ln/YlJTJIkSZKkTzmuMyZXrVrF/Pnz2bJlC9u2bQMgPT2dLl26MGTIEDp16nQ805GkU9LNQzqSmBBwy+MLKT9s5mR5CLf8bSH7Ssq4/azOJy5BSZIkSZI4DoXJvXv38sgjj/DMM8+wdu3aKmN79+7NrbfeylVXXRXvtCTplHbDoA4kJQTc+NeFlB1WnQxDuOOp99lXUsY3RnQ7gRlKkiRJkuq7uC7lXrRoEVdeeSUPPPAAa9asIfx407MwDI94fXLtgw8+4Hvf+x433ngjW7dujWdqknTKu25AJk/cNJjkxKBC2zefXcIvZ608AVlJkiRJkhQRt8JkXl4et956K5s2bTrienJyMj169GDAgAGcccYZdOnShcTExEPtYRiyYMECbrrpJnbu3Bmv9CSpXhjVrx05twylYVLFP+6//+8P+PELyw/9gkiSJEmSpOMpLku5S0pK+Na3vsW+ffsIgoAwDLn88su54YYbGDhw4BGFSICDBw/yzjvv8PDDD/Paa68RBAFr1qzhxz/+MQ888EA8UpSkeuMzfTL455eHcdXU+RSXlB3Rds9L+RQfLOP/PnsawadPzJEkSZIkKY7iMmPy2WefZc2aNQRBQGJiIvfddx8TJ05kyJAhFYqSAA0aNODss89mypQp3HPPPYeKmS+99BILFy6MR4qSVK9c1LM1M79yJqkNK/4+6je5q/j603mUlztzUpIkSZJ0/MSlMPn8888fev/Nb36TK664otp9r732Wu64445Dn5966qmY5iZJ9dXwri15+Y6zad44uULb5DdXM/aJ9ygtKz8BmUmSJEmS6qO4FCaXLVsGQNOmTbn55ptr3P/222+nUaNGAMyfPz+muUlSfTa0Uzqzvno2rZo0qND2yDvrue7RdzhQWhalpyRJkiRJsRWXwuSuXbsIgoCsrCwaNKj4j9+jSUlJoXfv3oRhyObNm+OQoSTVX/3bp/HaV8+hXbOGFdqeztvM56bOY++B0hOQmSRJkiSpPolLYTI9PR2A0tLa/8M2KSmyD1rjxo1jkZIk6TB92qaS+7Vz6dy84p+xL+Vv49I/vk3hvpITkJkkSZIkqb6IS2GyR48ehGHIsmXLKCoqqnH/0tJSVqxYQRAEdO3aNQ4ZSpJ6tGrC7DvPpXebphXa3lqzkwsmv0lB0YEKbcXF8PzzMG0a/Pa3kf8+/3zkuiRJkiRJ1RWXwuTnP/95AA4ePMj9999f4/4zZsxg165dAHzmM5+JZWqSpMN0SG9M7tfOYWBmswptizbuJvv3b7B2Z6TimJ8P48dDZiZccQWMHQvf+Ebkv1dcEbl+992ROEmSJEmSjiYuhcmrrrqKs846izAMeeyxx/jjH/9Y7b7z5s3j3nvvBaBr165cd9118UhRkvSx1k0bMmvcOQzv2qJCW/7WvZz72ze49Lo99OoFkyZBYWH0cQoLYeJE6NULRo+Gj3+/JEmSJElSVHEpTAZBwP3338/QoUMJw5CJEydy8803k5ubS0lJ9D3LVq5cyYQJExg7diz79u2jbdu2TJ48uVaH50iSaiatcTIzbz+Ty3q1rtC2Yfd+Xmr5BmQUVnu8nBwYPhw2bIhhkpIkSZKkU0pSPAa9/fbbAUhMTAQgDEPmz5/P/PnzSUpKomvXrqSlpZGcnMyePXtYs2YNu3fvPhQbBAEFBQWMHDmyyvsEQcDSpUvj8QiSVO+kNEji2THDuPGv7/LU+5uOaAtSDhJ+4U14biisqVi8jCYvD0aOhDlzIC0tHhlLkiRJkk5mcSlMzp49myAIAA79FyJFx5KSElasWHFEfBiGh2I/HS9JOn4aJCXw1xsG0bTh+0yfv+6ItqBBGeHVc+H5gbA8s1rj5eVF9qCcMSMe2UqSJEmSTmZxWcoNkaLip1+VtR3tuiTp+ElKTOA7A/oTLuhWoS1IDAk++y4M/LDa4+XkwKd+HyVJkiRJUnxmTD7yyCPxGFaSdJz88Q8B5J5OuLchQfYHFdqDC5cQphyAN3oDQcUBPmXKFPjNb+KQqCRJkiTppBWXwuSwYcPiMawk6TgoLoZp0z7+sKAHYXFDuGwRQcKRM9mDs1YSNjkIL/WDsOoJ+NOmwT33QEpKnJKWJEmSJJ104raUW5J0csrNhcLCwy4s7QjPDCUsqfhXRtBvLXxuASSVVTnmzp2RcSVJkiRJ+kRcZkw++OCDAHTu3Jkrr7yyVmP84Q9/4I033iAxMZFph6buSJLibfPmKBc/yoAnzya8eh5B45IjmoIeBYSj34ZnhsKBBpWOW1AQ40QlSZIkSSe1uMyYfPDBB/nd737Hc889V+sx3njjDebNm8eSJUtimJkk6Wj27KmkYVML+Nu5hEWNKjQFHXbAdW9Ck/2VjltUFKMEJUmSJEmnhDq7lHv//sg/bouLi09wJpJUvzRtWkXjjlR4fDjh9opBQesi+OIcaB69spmaGqMEJUmSJEmnhFov5d62bRsHDx6sMmb//v1s3LixRuMeOHCA3NxcFi9eDEBaWlptU5Qk1ULbtkcJKGocmTl59TyC9juPaArS9hFe/wbknAkF6Ue0ZWTENk9JkiRJ0smt1oXJZ599ll//+teVtodhyIIFC7joootqNX4YhgRBQO/evWuboiSpFrKzIT39UwfgfNr+BvDkWYRXvkPQbcsRTUHKQcIvvAnPDYE1bQBo3jwyriRJkiRJn6j1Uu5bb72VHj16EIZhhdcnorVV5/WJIAgYM2bMsT2hJKlGUlKgWn/0libBs0MJl3So0BQ0KIOr50Hv9UBkvJSUGCcqSZIkSTqp1bowmZiYyE9+8hOCIIhlPkCkINm9e3fuu+8+hg8fHvPxJUlVGzeumoHlCTBzAOH87hWagsSQ4DMLYfAq7rgjjNJZkiRJklSf1XopN8DgwYN57bXXKC0tPXQtDEMuvvhigiBgyJAh3HvvvdUeLyEhgYYNG9KsWTOSko4pNUnSMcjKglGjICenOtEBvN6HsLghQfbSiq3nL+WBvGLu79GXxITY/zJLkiRJknRyOubqX0YlpxmEYUijRo3IzMw81ltIkk6AqVMhPx/y8qrZYUF3wr0N4LJFBIlHzpD8/ZurWVe4j7/eMIgmDf3FkyRJkiQpBoXJaL7+9a8D0KlTp3gML0k6DtLSYOZMGDmyBsXJDzrCvgaEn3uHILnsiKZ/LC3g/Mlv8o+xw2jbrFHsE5YkSZIknVRqvcdkVb7+9a/z9a9/nc997nPxGF6SdJxkZsKcOZFl3dW2OoMLtpxDmyYNKzS9s34XZ/92Dks3F8UuSUmSJEnSSSkuhUlJ0qkjLQ1mzIDly2H8eEhPjx7XvDncfXdk+fesx9N5+7+Gc1qbphXi1uzcx7kPzuHVldvim7gkSZIkqU6Ly1LujRs3xnS89u3bx3Q8SVLNZWXBfffBhAmQmwsFBVBUBKmpkJEB2dmQkvKf+C4tUpjz9XMZ/fACXlu1/Yixdu0vZeSf3ubPX+jPTYM7HucnkSRJkiTVBXEpTF544YUEQWxOXg2CgKVLK57yKkk6MVJS4PLLqxfbPKUBM28/i9ufXMSj76w/oq2kLOSWx9/jo+37+J9Lesbs7w1JkiRJ0skhrku5wzCMyUuSdPJqkJTA9OsH8D+XZEVt/8mLy/nyE4s4WFp+nDOTJEmSJJ1IcZkxCdS6oBgEAYmJiZx++ukxzkiSdKIEQcBPL+tFl+aNueOp9yktP/LviOkL1rF+1z6evHkIaY2TT1CWkiRJkqTjKS6FyVdeeaXasQcOHGDnzp2sWLGCf/3rX8yfP5+ysjJ69erFT3/6U5f2SdIpZMywTnRMb8w1jyxg9/7SI9peXrGNEb97g39+eRidmqdUMoIkSZIk6VQRl8JkZmZmjfsMHjyY66+/nieeeIKf/OQnPPnkk6Snp3P33XfHIUNJ0olycVZrZt95Lp99aC7rCvcf0Za3uYizfzuHf375TAZmpp2gDCVJkiRJx0Nc95isjeuuu45bbrmFMAx56KGHWLZs2YlOSZIUY/3aNeOtu0YwoH2zCm2bdh/gvN+9wb8/KDgBmUmSJEmSjpc6V5gEuO2220hKSqK8vJynnnrqRKcjSYqD9mmNyP3auVzRu02Ftr0Hy/jc1Hk8OOejE5CZJEmSJOl4qJOFyVatWtG1a1fCMOStt9460elIkuIktVESz4wZylfO6lyhrTyEbzyTx9dmvE9JmSd2S5IkSdKppk4WJgHS09MB2Lx584lNRJIUV0mJCUwe3Y97P3Na1PYpb63hij/PZUfxweOcmSRJkiQpnuJy+E0srFu37kSnIEk6ToIg4DsX9KBL8xRu+dtCDpQeOUPylRXbOPuBOTw3dhi92jSt0L+4GGbNCpg/vyXFxQmkpJSzaVPAhRdCigd8S5IkSVKdVCcLk6+++iqbN28mCALat29/otORJB0nXxjQns7NG3P19PlsLjpwRNuKbXs5+7dzeOKmwVyS1RqA/HyYPBmmT4fCwkSgyxF90tNhzBgYNw6yso7LI0iSJEmSqqnOLeXOzc3le9/73qHP55xzzgnMRpJ0vJ3ZuTlz/yv6id2F+0q44s9z+fXLHzF6NPTqBZMmQWFh9LEKC2HixEjc6NGwa1c8M5ckSZIk1URcZkx+//vfr1F8SUkJe/bs4cMPP2TdunWEYQhAYmIi1157bTxSlCTVYR3TGzP7znO55W8LyVl85F7DZeUh35mZR7hrDyScDuXV+x1bTk5khuXMmZCZGY+sJUmSJEk1EZfC5NNPP00QBDXu90lBMggCwjDky1/+Mj169Ih1epKkk0CThkn8/aYh/O8Ly/n5KysqtAcDVhM23wP/GAwHGlRrzLw8GDkS5syBtLRYZyxJkiRJqom4LeUOw7DGr080atSI8ePHM378+HilJ0k6CSQkBEy4vDePfmkgDZMq/pUVdN4GX5oDzfdUe8y8PBg7NpZZSpIkSZJqIy4zJq+++uoa92nQoAHp6emcdtppDB8+nKZNK566Kkmqn24Y1IHkvU247q/zCZoceShO0GIv4ZfmRGZOrm1drfFycmDFCujZMx7ZSpIkSZKqIy6FyV/84hfxGFaSVI+9/XRzeGw44efnE7TZfURb0KiEcPRcmNUXFnWp1nhTpsBvfhOHRCVJkiRJ1VLnTuWWJOnTioth2jSgKAX+di7hirYVYoKEkODixXDhYgjKjzrmtGmRcSVJkiRJJ4aFSUlSnZebC4WFH38oSYLnhhC+Hf1wtGDgahg9FxodrHLMnTsj40qSJEmSToy4LOU+3I4dO/jwww8pLCxk3759NG7cmLS0NLp160bLli3jfXtJ0ilg8+ZPXwngjdMId6TCpYsIko6cIRl03kZ4w2x4dihsa1bpuAUFsc9VkiRJklQ9cSlMvv/+++Tk5PD666+zadOmSuPatGnD+eefz+c//3kGDhwYj1QkSaeAPZUduv1BByhMIbxqPkGTI2dIBunFkUNxZg6A/PZRuxcVxTZPSZIkSVL1xXQp9wcffMANN9zAddddxxNPPMHGjRsJw7DSV0FBAX//+9/50pe+xJe+9CWWLl0ay3QkSaeIpk2raNzUAh4bQbil4szIILmM4Mp3YMQHEIQV2lNTY5ikJEmSJKlGYlaY/POf/8w111zDu+++SxhW/MdfVcIw5N133+Xaa69l8uTJsUpJknSKaFvxrJsjfXIozvJ2UZuDYSvh6or7TmZkxChBSZIkSVKNxWQp97333svDDz9MGIYEQQBAEAT079+fIUOG0K1bN1q0aEHDhg3Zu3cvu3btYtWqVSxcuJDFixdTWlpKEASUlZXxwAMPsGXLFn784x/HIjVJ0ikgOxvS0w87ACeakiT452DCLSth+DI+/uvokKDr1iP2nWzePDKuJEmSJOnEOObC5GOPPcb06dMPFSQbNGjAjTfeyE033UTbo05xgS1btvDYY4/xyCOPsH//fsIw5G9/+xudO3fm1ltvPdb0JEmngJQUGDMGJk48WmQA83rClmaEn1lI0KjkyNb0YsIvRvadHHNle1JS4payJEmSJOkojmkp97p16/j1r399qCjZo0cPnn76ab797W9XqygJkQNwxo8fz5NPPkn37t0JgoAwDJk0aRJr1649lvQkSaeQceNqELw6I7Lv5LaKm0gGDcoIPvcOxQM/oKy8ZluPSJIkSZJi55gKkw888AD79u0DoFu3bjz66KN069atVmP16NGDRx55hE6dOhEEAQcOHOCBBx44lvQkSaeQrCwYNaoGHQqbwF+HE+ZH/0XZH95byeemzmNn8cGo7ZIkSZKk+Kp1YbKgoIB///vfACQlJTFp0iSaN29+TMm0aNGC3/3udyQmJhKGITNnzmTLli3HNKYk6dQxdSr07VuDDiVJ8I8hhLN7E+1ctueXbWHY/bNZsrkoZjlKkiRJkqqn1oXJF198kbKyMoIgYPTo0fTs2TMmCfXo0YNrrrkGgLKyMl566aWYjCtJOvmlpcHMmTUsTn6y7+TTw0goqbi18qrtxZz1wGxmvL8xZnlKkiRJko6u1oXJefPmHXp//fXXxySZT1x77bWH3s+dOzemY0uSTm6ZmTBnTg2XdQOjBmYw779GcFqbphXa9h4s49pH3uFHzy9z30lJkiRJOk5qXZhcvnw5AGlpafTu3TtmCQGcfvrph5aFf3IfSZI+kZYGM2bA8uUwfjykp0ePa94c7r4b8vMj8YO6NeXtb4zg6r7R9538+SsruGrqPHa476QkSZIkxV3FNW3VtGPHDoIgoEuXLjFM5z/atWvHzp072bZtW1zGlySd/LKy4L77YMIEmDWrjAUL1rF3bwJNmpQzZEhHLrwwkZSUI/ukNkriyZuH8PNZK/jxC8sr7D3572VbGDLxdZ68ZQiDO6Qft2eRJEmSpPqm1oXJ/fv3A9C4ceOYJXO4Zs2aAXDgwIG4jC9JOnWkpMDIkSHt2m0/dK1//w4kVfK3XEJCwI8uzmJA+zRu/Ou77N5fekT76p37OPe3b/DA1X25/cxOBEEQz/QlSZIkqV6q9VLu9I/Xze3cuTNWuRyhsLAQgJRPT3WRJClGPtsng7nfGEHvKPtOHiwrZ9xT7zP2ifcoPlgapbckSZIk6VjUujDZokULwjBk/fr1lJeXxzInysvL2bBhA0EQ0KpVq5iOLUnS4Xq1acrb3xjONWe0i9r+8IL1nPPbN1ixdc9xzkySJEmSTm21Lkz26NEDgL179/Luu+/GLCGAd999l6KiIgBOO+20mI4tSdKnNWuUzBM3Dea+z51OUkLFZdvvb9rN0Ptn8/TiTScgO0mSJEk6NdW6MDlixIhD7x977LGYJPOJv/71r4fen3XWWTEdW5KkaIIg4JvndePVr55D+2aNKrTv3l/K6IcX8O1/LKW0LLYrBSRJkiSpPqp1YfK8884jKSmJMAx54YUXWLRoUUwSWrBgAf/+978BSE5O5pJLLonJuJIkVce5XVvwzvjzuKB7y6jtv8ldxcV/eItNu/cf58wkSZIk6dRS68Jky5Yt+cIXvgBE9oQcP378MR+Es27dOv7rv/4LiMxcGT169KFDdiRJOl4yUhvywlfO4nsX9oja/vqHOxg08XVyV207zplJkiRJ0qmj1oVJgK997Ws0adKEIAjYuHEj119/PStWrKjVWAsWLODGG29k+/btAKSlpXHnnXceS3qSJNVaUmICP7/iNJ4ZM5S0RkkV2guKDnDxH97mV6+uJAzDCu3FxfD88zBtGvz2t5H/Pv985LokSZIk6RgLk61ateJXv/oVQRAQBAFr1qzh2muv5Wc/+xkffvhhtcZYtWoVP/rRj7j11lvZsmVLJKmEBCZMmOCJ3JKkE+5zp7dlwTfPY0D7ZhXayspDvvuvDxj98AJ27SsBID8fxo+HzEy44goYOxa+8Y3If6+4InL97rsjcZIkSZJUn1WcAlJDF154Id/97ne59957CYKA/fv38/jjj/P444/Trl07zjjjDLp27UpqaiqpqamUlpaya9cu1q9fz4IFC1izZg3AEbNNfvjDH3LxxRcfa2qSJMVE91ZNeOOu4dz1dB5T562t0P5M3mYWbXidrnlDeOVvaVWOVVgIEydGXqNGwdSpkFZ1F0mSJEk6JR1zYRLglltuITMzk+9///sUFRUBkULjxo0b2bRpU6X9PilGBkEAQEpKCr/4xS+47LLLYpGWJEkx0zg5kT9/oT/ndGnO13MWs7/0yJO5P9pZzIcZc+CM0+H9zkBw1DFzciIzJ2fOjMyklCRJkqT65JiWch/u4osv5plnnmHUqFEkJdWs3pmYmMhVV13FzJkzLUpKkuq0scM68cZdw+nWMqVCW5BUTnDJYvjMu9CgpFrj5eXByJGwa1esM5UkSZKkui1mhUmAzMxMfv7zn/Pyyy/z3//935x33nk0adKEMAwrvJKSkhgwYADf/OY3eeWVV/jlL39JmzZtYpmOJElxMTAzjQXfPI/PnZ4RtT3ovRFufB3aFFZrvLy8yB6UkiRJklSfxGQp96dlZGRw2223cdtttxGGIYWFhRQWFrJr1y4SEhJIS0ujQ4cOJCYmxuP2kiTFXXrjZO49ZyjPTl4Fw5cRJBx5MnfQvJjwS3Mgtw8s7MrRlnbn5MCKFdCzZxyTliRJkqQ6JC6FycMFQUDz5s1p3rx5vG8lSdJx9cc/BDC/B2xoQfjZdwhS9x/RHiSGcOESwo7b4YX+cKBBleNNmQK/+U08M5YkSZKkuiOmS7klSaovioth2rSPP2xsAY9kE66qZGl3z81w0+vQbmeVY06bFhlXkiRJkuoDC5OSJNVCbi4UFh52YX8DeGYo4at9CMsqLtsO0vbBdW/AkJVAWKEdYOfOyLiSJEmSVB9YmJQkqRY2b452NYB3u8PfziXc1bhia2JIkP0BXD0PGh+IOm5BQWzzlCRJkqS6ysKkJEm1sGdPFY2bm8Oj2YT57aI2B922RJZ2Z26v0FZUFKMEJUmSJKmOszApSVItNG16lIADyfCPwYQv9yMsrfjXbZC6H77wJpyZD8F/lnanpsY4UUmSJEmqoyxMSpJUC23bVicqgEVd4K/DCXc0qdiaAMHw5TD6bUiJnOidEf38HEmSJEk65ViYlCSpFrKzIT29msFb0+Av5xF+kBm1Oei8DW7JpWm/ArKzY5aiJEmSJNVpFiYlSaqFlBQYM6YGHUqS4N8DCV/oT1gSZWl3ykH2XjqP772Yx/6SstglKkmSJEl1lIVJSZJqady4mvYIIK8TPDaCcFv0TSofnPMRZz4wm7xNu485P0mSJEmqyyxMSpJUS1lZMGpULTpubxYpTi7uGLV58aYiht0/m9+98RFhGEaNkSRJkqSTnYVJSZKOwdSp0LdvLTqWJsGLAwj/MZiEkqQKzftLy7nr6TyumjqfrXsOHHuikiRJklTHWJiUJOkYpKXBzJm1LE4C/Rq2581x2Yzo2iJq+z8/KKD/b3J5cfmWY8hSkiRJkuoeC5OSJB2jzEyYM6fmy7pHjYLZs2HYaSnM+uo5/GxkLxITggpxm4sOMPJPc/nWc0s4UOrBOJIkSZJODRYmJUmKgbQ0mDEDli+H8eMhPT16XPPmcPfdkJ8fiU9Li1xPTAj40cVZzL7zXLq2SInad+LrH3L2A3NYtqUoPg8hSZIkScdRxU2tJElSrWVlwX33wYQJkJsLBQVQVASpqZCRAdnZkBK97gjAWZ2bs/Du87jr6TwefWd9hfb3Nu5m8MTXmXhVX24/sxNBUHGGpSRJkiSdDCxMSpIUBykpcPnltevbrFEyD39xIJf2as3XZiym6EDpEe37SsoZ99T7vLBsC3+8tj8tmzSIQcaSJEmSdHy5lFuSpDrqhkEdeO/ubM7u3Dxq+9N5mxlwXy6vrNh6nDOTJEmSpGNnYVKSpDqsa8sUcr92Dv9zSRZRzsVhw679XPKHt/nms3nsK/FgHEmSJEknD5dyS5JUxyUlJvDTy3pxSVYrbnxsIWsL91WIeWD2R7y0fCuPfGkggzukVzpWcXFk78vNm2HPHmjaFNq2Pfrel5IkSZIUaxYmJUk6SQzv2pL3vpXNV2e8zxPvbazQ/sGWPZz9wBz+99IsvndBD5IS/7MwIj8fJk+G6dOhsLDi2OnpMGYMjBsXOcBHkiRJkuLNpdySJJ1E0hsn89cbBjH9+gGkNqz4+8XS8pD/nbmc837/Jiu27mHXLhg9Gnr1gkmTohclIXJ94sRI3OjRsGtXPJ9CkiRJkixMSpJ00gmCgJuHdOT9b2WT3a1l1Ji31+xkwG9ep8/1q8nJCWs0fk4ODB8OGzbEIltJkiRJis7CpCRJJ6nOLVJ4ZdzZ/OqzfWiQWPGv9H2lZWw6fTFcPQ+a7K/R2Hl5MHKkMyclSZIkxY+FSUmSTmIJCQHfOr87C745gv7tm0WNCbptgVteg54V96WsSl4ejB0bgyQlSZIkKQoLk5IknQL6tmvG3G+M4HsX9iAhqNgeNC4h+Nw7cPm70LCk2uPm5MCKFTFMVJIkSZI+ZmFSkqRTRIOkBH5+xWlcU3YuYWFK1Jigzwa4+TXouK3a406ZEqMEJUmSJOkwFiYlSTqFFBfDC9NawCPZhO93ihoTNNtP8IW34Pw8SCo76pjTpkXGlSRJkqRYsjApSdIpJDcXCguBkiR4qT/h08MI9zaIGhsM/ghuyoV2O6scc+fOyLiSJEmSFEsWJiVJOoVs3vypCx9mwMPnE65oGzU+aLEXrp8DI5ZCYuWzJwsKYpejJEmSJIGFSUmSTil79kS5uK8hPDeE8PkBhAeSKjQHCRAMWwU3vQ5to8+eLCqKcaKSJEmS6j0Lk5IknUKaNq2sJYClHSN7T65rGT2i5R744hwY/kGF2ZOpqbHNU5IkSZIsTEqSdAppG33F9n/sToG/n034Sl/CksQKzUECBGeuhBtnQ0bhoesZGbHNU5IkSZIsTEqSdArJzob09KNFBfBeV3g4m3B9i+gRrYrgS3Pg3GWktywjOzvWmUqSJEmq7yxMSpJ0CklJgTFjqhm8qwk8cQ7hrNMJSyr+SBAkhARnrSDpltks21EY0zwlSZIkycKkJEmnmHHjahIdwMJukb0nNzSPGrE9KOLMB+bw4xeWc7C0PCY5SpIkSZKFSUmSTjFZWTBqVA07FTaFJ84lfK1P1NmTZeUh97yUz5kPzOa9Dbtik6gkSZKkes3CpCRJp6CpU6Fv3xp2CgN4pzs8mk24MfrsyUUbdzPs/tn89EVnT0qSJEk6NhYmJUk6BaWlwcyZtShOAuxsSt+8c/nhiD40TKr4o0JpechPX8xn6P2vM39t4THnKkmSJKl+sjApSdIpKjMT5syp+bLuUaNgzuyAe67qzrvjz+PMTulR4xZvKuLs387m2/9YSvHB0mNPWJIkSVK9YmFSkqRTWFoazJgBy5fD+PGQnh49rnlzuPtuyM+PxKelRa6flpHK7DvP5d7PnEaDxIo/NpSH8JvcVfT/TS6vrdwWvweRJEmSdMpJOtEJSJKk+MvKgvvugwkTIDcXCgqgqAhSUyEjA7KzISUlet+kxAS+c0EPPntaBmOfeI956worxKzaXsyFU97i9rM68X+f6UNa4+T4PpAkSZKkk56FSUmS6pGUFLj88tr17dM2lTfuGs79sz/kf2YuY19JxcNv/vT2Wv61dAuTR/fjytPbHmO2kiRJkk5lFiYlSVK1JSYE3J3dnatOb8tXnlzEq6u2V4jZuHs/V02bzxcHZjLpqtNp3bRhlWMWF0dmcW7eDHv2QNOm0LZt1bM4JUmSJJ38LExKkqQa696qCS+PO5uH5q3lv/+xlN37Kx5+8/jCDby4fAuTPt+XLw3MJAiCI9rz82HyZJg+HQoLK94jPR3GjIFx4yJL0SVJkiSdWjz8RpIk1UoQBNx2ZmeWfPt8Pnd6RtSY7cUl3PTXhXxu6jzWFe4DYNcuGD0aevWCSZOiFyUhcn3ixEjc6NGRfpIkSZJOHRYmJUnSMclMa8zTtw7l8RsH0bpJg6gx//pgC31/9Rr3/ns15w4Pycmp2T1ycmD4cNiwIQYJS5IkSaoTLExKkqRjFgQB1w3IZMl3zufGQZlRY4oOlPKDWYtZcvqb0KKoxvfIy4ORI505KUmSJJ0qLExKkqSYadWkIY98aRD//PIwOqQ1ihoTdNgBN70OZy+HxLIajZ+XB2PHxiJTSZIkSSeahUlJkhRzV5yWQd63z+er53SJ2h4klROckw8350KHbTUaOycHVqyIQZKSJEmSTigLk5IkKS6aNUrmd6P68dpXzyE9bBI1Jmixl+C6t+Cy96DRwWqPPWVKjJKUJEmSdMJYmJQkSXE1pF1Lyh/OJpzbg7AsiBoT9F0HY16F09YD4VHHnDYNiotjnKgkSZKk48rCpCRJiqvcXNi1PRHmnAZ/OY9wY/OocUHKQYIrFsLotyFtb5Vj7twZGVeSJEnSycvCpCRJiqvNmw/7sK0ZPH4u4cv9CA8kRY0PumyDW16DYSsgobzScQsKYpunJEmSpOPLwqQkSYqrPXs+fSWARV1g2gWEy9tF7RMklxOMWAY3vg7tdkSNKSqKaZqSJEmSjjMLk5IkKa6aNq2kYW8j+OcQwqeHEe5uFDUkaF0EX3wDLnofGpYc0ZaaGuNEJUmSJB1XFiYlSVJctW17lIAPM2D6BYQLuhFGWbkdBBAMWAO3vgpZG/nkcJyMjJinKkmSJOk4sjApSZLiKjsb0tOPElSSBLmnw2MjCAvSooYETQ8QXPkOjJpLs057yc6OeaqSJEmSjiMLk5IkKa5SUmDMmGoGb0mHx4YTvtqH8GBi1JCg61aKr3mN/5u9nP0lZTHLU5IkSdLxZWFSkiTF3bhxNQgOE+Dd7jD9fMJV0ddrlwXl/OylfPr9+jVmLtsSmyQlSZIkHVcWJiVJUtxlZcGoUTXsVJQCzwwlfG4wYVH0w3FWbS/mij/P5QuPLGB94b5jT1SSJEnScWNhUpIkHRdTp0LfvjXtFcCK9pHZkwu6QXkQNeqp9zdx2v+9ym9eW0VJWZQTdCRJkiTVORYmJUnScZGWBjNn1qY4CRxMpt+O03nh5hGc3bl51JC9B8v49j+XMmTS68z5aPuxJStJkiQp7ixMSpKk4yYzE+bMqfmy7lGjYPZsuGRAGrPvPJc/f6E/LVOSo8Yu3lTEeb97k7FPvMfWPQdikLUkSZKkeLAwKUmSjqu0NJgxA5Yvh/HjIT09elzz5nD33ZCfH4lPS4tcT0gIGDusE8u+eyG3ndmp0vtMn7+O3r98lT++vYby8jD2DyJJkiTpmCSd6AQkSVL9lJUF990HEyZAbi4UFEBREaSmQkYGZGdDSkrl/Vs2acAfr+3PmKEd+VrOYhZt3F0hZue+EsY99T7T5q3ld6P6MahDerVyKy6GWbMC5s9vSXFxAikp5WzaFHDhhVXnJEmSJKn6LExKkqQTKiUFLr+89v3P7tKC+f81gt+9uZr/nbmcogOlFWLmri1k6P2z+cpZnZkwsjctmzSIOlZ+PkyeDNOnQ2FhItDliPb0dBgzBsaNixRWJUmSJNWeS7klSdJJLykxgf8a0Y0PvnMB1w9oHzUmDOEPb62h1y9nMeXN1ZQdtrx71y4YPRp69YJJk6CwMPp9Cgth4sRI3OjRkX6SJEmSasfCpCRJOmW0T2vEX28czItfOYus1k2ixuwoLuFrOYsZdv/rvLl6Bxs2wPDhkJNTs3vl5ET6bdgQg8QlSZKkesjCpCRJOuVcnNWaRd/K5mcje9EoKfqPOws37Gb4g2/Q978Xkvfh/lrdJy8PRo505qQkSZJUGxYmJUnSKalhUiI/ujiLpd+5gFH92lYatytzPYx9FQavgoTyGt8nLw/Gjj2WTCVJkqT6ycKkJEk6pXVpkcJTtwzlha+cRe82TaPGBA1LCc5fCjfnQqetNb5HTg6sWHGMiUqSJEn1jIVJSZJUL1yS1Zr37s7mV5/tQ9OGiVFjgpZ7CK59Gz67AFKLazT+lCmxyFKSJEmqPyxMSpKkeqNBUgLfOr87733jQpJXZlYaF/TaBGNehTPzIbGsWmNPmwbFNatlSpIkSfWahUlJklTvLH+3EQefHUT4t3MItzSLGhMklxMMXw63vgbdNwNhlWPu3Am5ubHPVZIkSTpVWZiUJEn1zubNH7/Z0BL+ch7hy/0I9yVHjQ3Siwk+Px+ueRta7q5y3IKCGCcqSZIkncIsTEqSpHpnz57DPoQBLOoC0y4gXNSJsJKJkUHnbXDz63DhYmh0MGpMUVHMU5UkSZJOWRYmJUlSvdM02uHc+xrCy/3hsRGEG9Oj9gsSQoKBq2HsLBj4ESSUH9GemhrzVCVJkqRTloVJSZJU77RtW0VjQTo8Ppxw5gDCvQ2jhgSNSwguzIObc6HzlkPXMzJim6ckSZJ0Kks60QlIkiQdb9nZkJ4OhYWVRQSwpCOsaEt45koY9CFBUnnFqJZ74Jq5hKsyaLawD9nZ0aZiSpIkSYrGGZOSJKneSUmBMWOqEXgwGWafBtPPJ1xR+TTLoHsBe0e/xv++soRd+0pilqckSZJ0KrMwKUmS6qVx42oQvKsJPDeU8O9nE26NvpFkeRByX+6HZN07iz++vYay8kpO0ZEkSZIEWJiUJEn1VFYWjBpVw07rWsGj5xG+3I9wX3LUkK17DzLuqfcZMul1cldtO/ZEJUmSpFOUhUlJklRvTZ0KffvWsFOYAIu6wEMXEr7TFcqDqGGLNu7mgslvcc3D81m5be8x5ypJkiSdaixMSpKkeistDWbOrEVxEuBAA/pt78urY7K5vHebSsNyFm/m9F+9yvhn89hRfLD2yUqSJEmnGAuTkiSpXsvMhDlzar6se9QomD0bsvul8q/bzuSfXx5Gr9ZNosaWlIXcP/sjev5iFpNe/5CDpRVP+JYkSZLqGwuTkiSp3ktLgxkzYPlyGD8e0tOjxzVvDnffDfn5kfi0tP+0XXFaBu//9/nc97nTSWuUFLX/zn0l3P3cEvr++jVyFm8iDD0gR5IkSfVX9J+aJUmS6qGsLLjvPpgwAWbNKmPBgnXs3ZtAkyblDBnSkQsvTCQlpfL+yYkJfPO8btw4OJOfvpjPlLein869ctternl4ASO6tuDXV57O0E7pR82tuBhyc2HzZtizB5o2hbZtITubKnOSJEmS6ioLk5IkSZ+SkgIjR4a0a7f90LX+/TuQVM2fnFo1achvr+7Hned24bv//IB/LC2IGjf7ox2c+cBsbhiUyf+7vDedmlesMObnw+TJMH06FBZWHCM9HcaMgXHjIoVVSZIk6WThUm5JkqQ46d0mlWfHDuPlO85mQPtmlcY99u4Gev/yVX74/AcU7S8FYNcuGD0aevWCSZOiFyUhcn3ixEjc6NGRfpIkSdLJwMKkJElSnF3YsxXzv3keU68bQPtmjaLG7C8t5xevrKTnva/wy+dXc+6IcnJyanafnBwYPhw2bIhB0pIkSVKcWZiUJEk6DhITAm4d2pHl372An1zai5TkxKhxW/Yc5PuvLGbJoNehawFQswNy8vJg5EhnTkqSJKnuszApSZJ0HDVpmMT/XppF/vcuZMywjgRB9LigVRHBqHlw7VuQUVije+Tlwdixx56rJEmSFE8WJiVJkk6A9mmNeOgLA3jnm+dxUc9WlcYFnbYT3DgbPvMOpO2t9vg5ObBiRSwylSRJkuLDwqQkSdIJNCAzjRe/chb/GDuM5mHTSuOC3hthzKtwQR40PlCtsadMiVWWkiRJUuxZmJQkSTrBgiDggi4ZlE3LJny5H+HeBtHjEkOCQR/Bl2fBsBWQVFrluNOmQXFxPDKWJEmSjp2FSUmSpDogNxd27UyARV3goYsI38oiLIl+QE7QsJRgxDIY+yr0XQtBedS4nTsj40qSJEl1kYVJSZKkOmDz5sM+lCTBm73goQsJF3UmLI9+Qk6Qup/gskVwcy50i36Cd0FBfPKVJEmSjpWFSUmSpDpgz54oF/c2gpfPgIezCVe0rbRv0GoPwdXz4AtvQtudR7QVFcU4UUmSJClGLExKkiTVAU0rP/cGdqTCc0MJHz+XcGPzSsOCjjsIbpgDn10AzSOVztTUGCcqSZIkxUjSiU5AkiRJ0LbyCZH/sbEFPH4uYY/NMOIDghZ7o4YFvTYR9twMizuSmJYFNI5prpIkSVIsOGNSkiSpDsjOhvT06kQGsLIdPHw+4Uv9CPc2jB6VEBL0X8sdc2fxnX8uZUfxwRhmK0mSJB07C5OSJEl1QEoKjBlTgw7lCfB+l8gBOW9mER6MfoL3/tJyfv3aKrr//BV+/soK9h4ojUm+kiRJ0rGyMClJklRHjBtXi04lSfDWxyd4v9eZsCz6Cd679pfyo+eX0ePeWfz+jdUcLC0/tmQlSZKkY2RhUpIkqY7IyoJRo2rZubgRvHIGTL+A8IPMSsMKig7w9acX0+dXr/LXd9dTXh7W8oaSJEnSsbEwKUmSVIdMnQp9+x7DAIVN6Lt2EK/ffh5X9G5TadiH24u58a8LGTTxdf61tIAwtEApSZKk48tTuSVJkuqQtDSYORNGjoS8vJr379cPnn8eMjPT+GevM3l91XZ+8PwHvLl6Z9T49zft5sqp8xjetQU/v6I3w7u2rPa9ioshNxc2b4Y9e6Bp08jp4tnZkT0zJUmSpKpYmJQkSapjMjNhzhwYOxZycqrfb9SoyIzLtLT/XDuve0tm33ku/1xawA+fX0be5qKofed8tIPzfvcmnzmtDfeM7M2AzLSocQD5+TB5MkyfDoWFFdvT0yMH+YwbF1meLkmSJEXjUm5JkqQ6KC0NZsyA5cth/PhIsS+a5s3h7rsjxcIZM44sSn4iCAKuPL0tC+/O5uEvDqBL88aV3vdfH2xh0MTXue6RBXxQcGQRc9cuGD0aevWCSZOiFyUhcn3ixEjc6NGRfpIkSdKnOWNSkiSpDsvKgvvugwkTIsumCwqgqAhSUyEjo2bLphMTAm4a3JEv9G/Pn95ey4SX89my52DU2Cff38SMxZu4YVAHfnxpFg33N6nV8vKcnEjRdObMyExQSZIk6RMWJiVJkk4CKSlw+eWxGathUiJfH96VW4d2ZNLsD/n1a6vYvb+0Qlx5CI++s57HF26g6ZqO7FydBVQ+27IyeXmRPTPnzIk+o1OSJEn1k0u5JUmS6qmmDZP40cVZrPz+hXwruzuNkqL/aFhaHlLYcS18eRacnwcpB2p8r7y8yJ6ZkiRJ0icsTEqSJNVzrZo05FdX9mHl9y/ia+d0ITkxiBoXJJUTDP4IbnsFhn8AjaIvA69MTg6sWBGLjCVJknQqsDApSZIkANqnNeLBUf1Y/t0LGTOsI4kJlRQok8sIzlwZKVCelQ8NSqp9jylTYpWtJEmSTnYWJiVJknSELi1SeOgLA1jw9fNJXpVJGEaPCxqWEpy7PFKgHLoSkiruU/lp06ZBcXGME5YkSdJJycKkJEmSotq4pCkHnxkEj2QTrmhbaVzQuITgvA/gtlkwaBUklVUau3Nn5HRxSZIkyVO5JUmSFNXmzR+/2dYMnhtKmFEI5y4j6Lo1anzQ5ABcsJRw6CqY1wPe7wxliRXiCgril7MkSZJOHs6YlCRJUlR79nzqQkE65JxF+LdzCNe1qLRf0PQAwYVLIqd4D/gIEo+cQVlUFPtcJUmSdPKxMClJkqSomjatpGFDS/j7OYRPnUW4Kb3S/kHqfoKL8iIFyv6rDxUoU1NjnqokSZJOQi7lliRJUlRtK99WEghgTWtY04qwWwGcs5wgY3f0yNT9cPFiwmErYG5PWrTuhL8flyRJkoVJSZIkRZWdDenpUFhYVVQAH7aFDzMIe2yGs/MJ2lRSoGy2Hy5ZzDcWrqSgZU9uHdqR5EQLlJIkSfWVPwlKkiQpqpQUGDOmutEBrGwHj55H+OwQwq2Vr9deW7iPO556n173zuKhuWspKSuPSb6SJEk6uViYlCRJUqXGjatpj48LlI9kEz43mHBb5QXK1Tv3cfuTizjt/15l2jwLlJIkSfWNhUlJkiRVKisLRo2qTc8AVrSHh7MJ/zGYcFtlJ+nAh9uL+fLfF9Hr3ln86e01HCy1QClJklQfuMekJEmSqjR1KuTnQ15ebXoHkN+e0xu0Y/yUjfx6znKWb90bNXL1zsgS7wkv5/O9C3sydlhHGiYl1uhuxcWQmwubN8OePZGTxdu2jeyXmZJSm/wlSZIULxYmJUmSVKW0NJg5E0aOrF1xsl8/eP75gMzMTG49uz1/e28D97yUT34lBcp1hfu5M2cxP39lBd+9oAe3ndmJRslVFyjz82HyZJg+PfphPenpkf0yx42LzAKVJEnSiedSbkmSJB1VZibMmVPzZd2jRsHs2ZH+AIkJATcM6kDef5/Pw18cQI9WTSrtu2HXfr7xTB7df/EKk17/kOKDpRVidu2C0aOhVy+YNKnyE8QLC2HixEjc6NGRfpIkSTqxLExKkiSpWtLSYMYMWL4cxo+PzEKMpnlzuPvuyCzGGTMi/T4tKTGBmwZ3ZOm3z+fRLw2kd5vK96DctPsAdz+3hG4/f4Vfv7aKPQciBcoNG2D4cMjJqdlz5ORE+m3YULN+kiRJii2XckuSJKlGsrLgvvtgwoTIfo4FBVBUBKmpkJFRs/0ckxITuGFQB64fkMlT729kwksrWFJQFDV2y56DfOefS/m/V1fytWHdeOIHXVmWV7sfZ/PyIkvT58yJXjiVJElS/FmYlCRJUq2kpMDll8dmrMSEgOsGZHLtGe15Om8T97y0gvc37Y4au23vQX726jLC4augcTdY2BUOJtf4nnl5MHZsZFanJEmSjj+XckuSJKnOSEgIGH1Ge94dfx5P3zqUQZmVT2cMGpcQDF8OX3kZzv0AGh+o8f1ycmDFimPJWJIkSbVlYVKSJEl1TkJCwFV92zL/myP4x9hhDO2YXmls0LCU4KyVcPsrcH4eNN1Xo3tNmXKMyUqSJKlWLExKkiSpzgqCgM/0yeDtbwzn+dvP5MyOzSuPTS4jGPwRfHkWXPw+NCuu1j2mTYPi6oVKkiQphixMSpIkqc4LgoDLerXhf3qeS/jkWYTrW1Qem1RO0H9NpEA5ciG0iH6Yzid27owc4iNJkqTjy8NvJEmSdNIoKAhgbWtY25owczuclU/QZVvU2CAhhNPXE/ZZDyvawdyesCX6npUFBfHMWpIkSdFYmJQkSdJJY8+ewz5saAkzzibMKIwUKHtEry4GAZC1CbI2EX7YJlKg3HjkjMuiqidVSpIkKQ4sTEqSJOmk0bRplIsF6fDsMMJWu2HYSui1gaCSDYuCblug2xbCdS0jBco1rYCA1NQ4Ji1JkqSoLExKkiTppNG2bRWN25rBvwfBm1mEw1ZBn3UEiWHU0KDjdui4nXBzGszrQas27YAgLjlLkiQpOg+/kSRJ0kkjOxvS048SVNgUXuwPD11E+G5XwpLKf+QN2u4i+Nw73L3oVf709hoOlJbFNF9JkiRVzsKkJEmSThopKTBmTDWDixrDq33hzxcTzutOeDCx0tCV2/dyx1Pv0/X/vcL/vbqS3ftLYpOwJEmSKmVhUpIkSSeVceNq2KG4IczuA3+6mPDNLMJ9yZWGbi46wPf+9QGdJ7zM9//9AZt37z+2ZCVJklQpC5OSJEk6qWRlwahRtei4vwG81StSoHytD2FRo0pDd+0v5ZezVtL1568w7qn3Wbltb+0TliRJUlQefiNJkqSTztSpkJ8PeXm16FySBO90p8/Brtz52/X89u2VLN8avfB4oLScP769hj/PXcO1/dvznQt6MDAzrca3LC6GWbMC5s9vSXFxAikp5WzaFHDhhZHl6ZIkSfWRhUlJkiSddNLSYOZMGDmydsXJfv3g+ecTyMzsxLgRHXl2yWZ+OWsl89YVRo0vD+GJ9zbyxHsbuTSrNd+5oAcX9GhJEFR9knd+PkyeDNOnQ2FhItDliPb09MiemePGRWaCSpIk1Scu5ZYkSdJJKTMT5syp+bLuUaNg9uxIf4CEhICr+7XjrW8MZ9a4sxnZq3WV/V/M38rFf3iLsx6YQ87iTZSVhxVidu2C0aOhVy+YNAkKC6OPVVgIEydG4kaPjvSTJEmqLyxMSpIk6aSVlgYzZsDy5TB+fGQGYjTNm8Pdd0dmMM6YEen3aUEQcH6PVvz79rN4d/x5fHFgJglVTIicv66Qax5ewOm/epWH5q7lQGkZABs2wPDhkJNTs2fJyYn027ChZv0kSZJOVi7lliRJ0kkvKwvuuw8mTIDcXCgogKIiSE2FjAzIzq7ZXo4DMtN47IZB3DOyF7/J/ZBp89ayv7Q8amz+1r3c/uQifvzCcu4Y2o2/fq8Ty/IqP/m7Knl5keXpc+ZEL55KkiSdSixMSpIk6ZSRkgKXXx678bq1bMLvRvXjx5dk8cCcj/j9m6sp3FcSNXbj7v38+JWlhCPyoVkXWNgV9lZ+8ndl8vJg7NjIzE5JkqRTmUu5JUmSpKNok9qQCZf3ZvUPL+L/PtuH9s0qLzgGjUoJzlwJt78Ml70HLXfX+H45ObBixTEkLEmSdBKwMClJkiRVU7NGyfz3+d1Z9YML+dO1/clq3aTS2CAxJOi7juDWXBj1NnTaClQ8KKcyU6bEIGFJkqQ6zMKkJEmSVEMNkxL58pmdWPLtC3jqliEMzkyvMj7oupXg2rfhptfhtHWQEH2/ysNNmwbFxTFKWJIkqQ6yMClJkiTVUmJCwKh+7fhpr+GEfz+b8KPWVcYHbXYTXPEe3PYKDF0JDaPvVwmwc2fkIB9JkqRTlYffSJIkSceooCCAda1gXSvClrthyIdw2nqCxOhLt4PU/XDeB4Rn5cPiTvBuN9hd8djwgoJ4Zy5JknTiWJiUJEmSjtGePYd92N4MXhgAc3oTDvgI+q8haBx9ZmTQoAwGf0Q4cDXkt4MF3aEg/VB7UVE8s5YkSTqxLExKkiRJx6hp0ygX9zaCN06DeT0J+66DQR8SpEffNDJICKH3Rui9kXBdS1jQDT7MIDU1iG/ikiRJJ5CFSUmSJOkYtW1bRWNJEizsCu91IeyxCYasImhfWGl40HE7dNxOuKMJC0u7c31JBxolJ8Y8Z0mSpBPNw28kSZKkY5SdDenpRwkKA1jRHh4fTvj4uYQr2hJG34ISgKDFXn677H06T3iZn72Yz7a9B2KZsiRJ0glnYVKSJEk6RikpMGZMdaMD2NgCnhsKUy8gfK8zYUnlP5Zv3XuQn7y4nE73vMy4p97ngwI3npQkSacGl3JLkiRJMTBuHEycWMNOhU3hlTPgzV6E/dfAgI8ImhyMGrq/tJw/vr2GP769hst6tea/RnTj0qzWJCTUbh/K4mLIzYXNmyOH9zRtGlmSnp0dKbRKkiTFm4VJSZIkKQaysmDUKMjJqUXnfQ3h7SyY352wz3pSz/+QPQ32VBr+wvKtvLB8K73bNOUbw7ty0+AONGlYvR/t8/Nh8mSYPh0KCyu2p6dHZn+OGxd5JkmSpHhxKXcdt2fPHv7whz9wzTXXMHjwYPr27Ut2djZ33303ixYtOtHpSZIk6TBTp0LfvscwQFkifcPOrPnZ+fxj7DDO796yyvBlW/bwtZzFdJrwMt/71wesK9xXaeyuXTB6NPTqBZMmRS9KQuT6xImRuNGjI/0kSZLiwcJkHbZmzRquuuoq7rvvPhYvXszBgwdJTk5m8+bN/Otf/+L6669n6tSpJzpNSZIkfSwtDWbOrH1xsl+/SP/m6QGf6ZPBrK+ew/xvjuCLAzNJqmLJ9s59Jfzfqyvp9vNXuP7Rd3hr9Q7Cw07W2bABhg+v+WzOnJxIvw0bavc8kiRJVbEwWUeVlpbyta99jfXr15ORkcEf//hH3nvvPd59911mzpzJBRdcQHl5Ob/85S957bXXTnS6kiRJ+lhmJsyZE1nWXROjRsHs2ZH+hxvcIZ3HbhjERz+8iO9f1IMWKcmVjlFWHvL3RRs598E3OPuBOTy+cANbt5dz2WWQl1eLhyHSb+RIZ05KkqTYszBZR7344ousXLmSIAi4//77yc7OJjExkSAI6Nq1K7/73e8YOHAgAA8++OAJzlaSJEmHS0uDGTNg+XIYPz6yb2M0zZvD3XdH9n2cMSPSrzKZaY35f5efxtofXcwfrjmDPhlNq8xh3rpCbnjsXTrf8wpLmqyARtEP1amOvDwYO7bW3SVJkqLy8Js6Kjc3F4BBgwYdKkAeLjExkWuuuYaFCxeSl5fHvn37aNy48fFOU5IkSVXIyoL77oMJE2DWrDIWLFjH3r0JNGlSzpAhHbnwwsQan4Cd0iCJ28/qzG1nduLlFdu4//UP+feyLZXG70/aTzBiGeFZ+bC0AyzsBttTa/wsOTmwYgX07FnjrpIkSVFZmKyj+vTpw759++hbxQZFrVu3BiAMQ/bs2WNhUpIkqY5KSYGRI0Patdt+6Fr//h1IOoafxoMg4JKs1lyS1ZrlW/bwwJyPeHj+OopLyqLHJ5dD/7XQfy3h6lbwbjf4qA1Q+d6VnzZlCvzmN7XPWZIk6XAWJuuoW265hVtuuaXKmHfeeQeAhg0b0rx58+ORliRJkuqgXm2a8rtR/Zgwshd/nruW372xmrVVnNAddNkGXbYR7mgSKVAu7QAlR/+nwbRpcM891HiWpyRJUjTuMXmS2rFjB0888QQAI0aMIOlYft0uSZKkU0LzlAZ8+4IerPz+hXy/72DCDVX/8jposZfg4sXwlZcgewmk7a0yfudO+HjHIUmSpGNmNeskVFpayre//W0KCwtJSEjgq1/96olOSZIkSXVIUmICPcL28Lf2hBmFMOhD6LWRIDGMGh80KoUhHxIO/hA+bAPvdYXVrYm2zLugIL65S5Kk+sPC5EmmrKyM7373u8yZMweAO++8s8p9KCVJklQ/7dnz8ZuCdHh+ELzeh3DAaui/mqBxSdQ+QQB03wLdt0SWeb/XBZZ0hIPJh2KKiuKcuCRJqjcsTJ5EDhw4wN13383LL78MwOc+9znuvPPOE5yVJEmS6qKmTT91YW8jeKM3zO1JeNp6GPgRQevKq4xBi71w4RLC4csie1C+1xW2p5Ja8wO9JUmSorIweZLYsWMHX/va11i4cCEAV111Fb/4xS8IguqfoihJkqT6o23bShpKE2FxZ1jcibDTNhj4EXQvoLIfK4MGZTBgDQxYQ7i2JauCrpSWZZCU6Hb1kiTp2FiYPAmsXr2a22+/nbVr1wJw880384Mf/MCipCRJkiqVnQ3p6VBYWFlEAGtbR17NiiPLvPuurXSZN0DQaTv/b/F2Hv1FY8ad05nbzuxEqyYNY5+8JEmqF/w1Zx2Xl5fH9ddfz9q1awmCgO985zv88Ic/tCgpSZKkKqWkwJgx1QzenQKv94E/Xkz4Qn/CLc2qDF9buI8f/HsZHe95mTF/W8g76wuPOV9JklT/OGOyDluxYgVf/vKXKSwsJDk5mXvvvZfPfvazJzotSZIknSTGjYOJE2vQoTQJ8jpBXkfCzB0wYDX03FTpad4HSst5eMF6Hl6wnrM6N+fr53bhmjPa0yCpdvMfioshNxc2b44c3tO0aWRJenZ2pNAqSZJOLRYm66ji4mK+/vWvU1hYSIMGDfjd737Heeedd6LTkiRJ0kkkKwtGjYKcnJr2DGBDy8iryX7C/mtoNHQNB5IOVNrj7TU7eXvNTr71j6XcfmYnxp3dhfZpjap1t/x8mDwZpk+PvvQ8PT0y+3PcuMgzSZKkU4NLueuoKVOmsHr1agB+8IMfWJSUJElSrUydCn37HsMAexvRd3cv1v7vxfzlSwM5q3PzKsMLig4w4eUVdPl/L3P9o++Qu2obYRh9xuWuXTB6NPTqBZMmVb4fZmFhZOZnr16R+F27juF5JElSneGMyTro4MGD/PWvfz30+cEHH+TBBx+sss9TTz1Fu3bt4p2aJEmSTjJpaTBzJowcCXl5Ne/frx88/zy0bpHAl1p04EuDOrBgXSG/f2M1j7+3gQOl5VH7lZaH/H3RRv6+aCN9Mpoy7uwu3DS4A2mNkwHYsKF2OeXkRGZYzpwJmZk1fx5JklR3OGOyDsrPz6eoqOjQ523bth31VVZWdgIzliRJUl2WmQlz5kSWddfEqFEwe3bFAuCQjulMvX4Aa390MT+/ojcd06tesr20YA/feCaPDve8xFeeXMTry3Zx2WW1K5RCpN/Ikc6clCTpZOeMyUrcf//9/P73vyczM5NZs2bVqO+qVav429/+xty5c1m/fj2lpaW0adOGrKwsrrzySi655BKSkir/n75v374sX778WB9BkiRJOiQtDWbMiMw2nDIFpk2LvnS6efP/7OfYs2fVY7Zu2pDvXdiT/87uzj+WFvDgnI94ddX2SuP3Hizjz3PX8ue5awnPaA5hZ1jeHsoSa/w8eXkwdmzkmSRJ0snJwmQU77//Pn/6059q1fe3v/0tU6ZMobS09Ijr69atY926dbzyyiv07duXX/3qV3Tr1i0W6UqSJEnVlpUF990HEyZETsAuKICiIkhNhYyM2p2AnZSYwNX92nF1v3Ys2VzE7974iEffWc/eg5Wv6gna74T2OwnPXwJLOsKiLlDYpEb3zcmBFSuOXkCVJEl1k4XJT1m3bh1f+9rXKCkpqXHfCRMm8Oijjx76nJSURK9evWjcuDGrVq1i586dAOTl5XHTTTfx97//nUw3xpEkSdIJkJICl18e+3FPb5vK70efwS+uOI2/vLueKW+uYUlBUaXxQeMSGPIhDPmQcHWrSIFyVQaE1dt1asoU+M1vYpS8JEk6rtxj8jD5+fnccMMNbN26tcZ9Z86ceURR8rLLLiM3N5ecnBwee+wxZs+ezc9+9jMaN24MRPaNvOuuuyo9oVCSJEk6maU1TubOc7vy/n9nk/u1c/jiwEySE4Mq+wRdthFctQBufwXOyocm+496n2nToLg4VllLkqTjyRmTH3v22Wf58Y9/zL59+2rct6SkhF/+8peHPl9wwQVMmjSJhIT/1H2Tk5O57rrryMzM5I477qC0tJQlS5bwz3/+kyuvvDImz3C8eeCOjtWnv0N+p3Qs/D4p1vxOKdbq83fq7E5pnN3pDEY27s3Nv9wAZ6whSKv85+4gdT+cu5zw7HxY2RYWdYa1rYCKhc2dO2HWrDJGjqxfv/Cvz98nxYffKcWS3ydVVxDW8yl7BQUF3HfffTzzzDNR26tz+M2///1vxo8fD0SWb7/00ku0b9++0vif/exnPPbYYwCcfvrp5OTk1C7542zhwoWUl5ef6DQkSZJ0knruuZb87GddIAihyxbovxq6bSGoeiIlAOGOJpFl3ks6wIEGR7T9+MerufLKyg/dkSRJ8ZeQkMDAgQNr1idOuZwUJk+ezMiRI48oSnbr1o1x48bVaJx///vfh96fc845VRYlAa677rpD75csWcK6detqdD9JkiTpZFRc/PE/P8IAPsqAZ86EP19EOLcHYXGDKvsGLfYSXLAE7ngJLnsP2u4EInMs9u6t1/+skSTppFWv/wZ/6KGHKD5sQ5prr72WJ598ks6dO1d7jDAMmTt37qHP55577lH79OrVi9atWx/6fLQZmZIkSdKpICUlyuqb3Skw5zT448WE/xpEuL5FlWMEyeUEfdcR3DAHbnod+q8mMaXmB1dKkqQTzz0mgb59+/Ld736XYcOG1bjvhg0b2L179xFjVUevXr0OHbKzePHiGt+3Lujbty+JiYknOg2dxMrKysjLyzv02e+UjoXfJ8Wa3ynFmt8p2LSpijXbZYmwLBOWZRK23A3910Cf9QQNSyvtErTZDRcv5v59iWxZ0Y7bhnVkaMc0guqsDT/J+X1SrPmdUiz5fao/Fi9efEzb/tXrwuSwYcMYNWoUF110Ua1/eFm9evURnzt16lStfh06dDj0fu3atbW694mWmJhIUlK9/gopxvxOKZb8PinW/E4p1urjd+rCCyE9HQoLjxK4vRnM6gezTyPsvQEGrI4UIStxoLyM6QvWM33Bes5o14zbz+rEDYM6kN44OZbp12n18fuk+PI7pVjy+6TK1Otvxe9///tjHuOTWY8Q2eSzVatW1ep3+FLuw8eQJEmSTlUpKTBmDEycWM0OJUmwuDMs7kTYrjByWE6vjQRJlc/MeH/Tbu56Oo/v/HMp1/XP5PazOnFW5+a1nohQXAy5ubB5M+zZA02bQtu2kJ0deR5JklR79bowGQu7du069L5JkyYkJFRv286mTZtGHUOSJEk6lY0bV4PC5CEBbGoeeb12OmGf9XDGGoKWeyrtsa+knOkL1jF9wTr6tk3l9rM6c+OgTJqnVH3Izify82HyZJg+PfoMz/T0SJF13DjIyqrp80iSJKjnh9/EwoEDBw69b9SoUbX7NWjwnx+IDh48GNOcJEmSpLoqKwtGjTqGAfY3gHe7wfTzGbHxHG4a3IGGSVX/syZvcxH/9UwemT97iTF/W8ibq3cQhmHU2F27YPRo6NULJk2qfNl5YWGkwNqrVyTeuQaSJNWchcljVFLynxMAqztbEjhib4XS0so39JYkSZJONVOnQjXPjKxU374Bz01uycNfHMiG/72ESVedTp+MplX22V9azsML1jP8wTc449e5PDD7Q3YW/2eSwIYNMHw45OTULJecnEi/DRtq8ySSJNVfFiaP0eGnStXkFKLDi5HJyfVnU25JkiQpLQ1mzqx9cbJfv0j/tLTI5xYpDfjGiG4s/u/zmX3nudw8uAONjjKLcklBEd98dgmZP3uJWx5fyMz3t3PpZSGHHSJbI3l5MHKkMyclSaoJC5PHqHHjxofeH76s+2gOX77dsGHDmOYkSZIk1XWZmTBnTs2XdY8aBbNnR/p/WhAEnNu1BdM/nkV5/+f70rdtapXj7S8t59F31nPFI2+ydOhrMGgVNK7+z/WHy8uDsWNr1VWSpHrJwuQxSvvk17TA3r17K92r5tP27PnPRt3p6emxTkuSJEmq89LSYMYMWL4cxo+PHCgTTfPmcPfdkQNpZsz4z0zJqjRPacBdw7uy6FvZvPH1c7l1SEcaJ1f9z5+g5R6CC5bCHS/BZxdA5y0QVO/n+0/k5MCKFTXqIklSveWp3McoIyPj0PuysjJ27txJixYtjtpv69ath963atUqLrlJkiRJJ4OsLLjvPpgwAXJzoaAAioogNRUyMiA7G1JSajd2EASc3aUFZ3dpwX1Xnc5f3lnPn+auYfGmosr7JIbQaxP02kS4uxHkdYK8jlBUvSSmTIHf/KZ2+UqSVJ9YmDxGnTt3PuLzunXrqlWYXL9+/aH3Xbt2jXlekiRJ0skmJQUuvzx+46c3Tubrw7ty57ldmLu2kD++vYYn3tvAvpLK94oPmu2Hc/IJz86HNa0iRcqVbaEssdI+06bBPffUvpgqSVJ94VLuY5SZmXnEUuwPPvigWv2WLVt26H3v3r1jnZYkSZKkSgRBwFmdmzP1ugE8fM6lhC/3I9zS7Ch9IOiyjeCz70aWel+QB612R43duTMy81OSJFXNwmQMnHnmmYfev/nmm0eNX7ZsGdu2bTv0+ayzzopLXpIkSZKqVrQtGRZ1gUfPI/zLCML3OhMeqHphWdC4hGDQRwS35MKXZsMZq6FByRExBQXxy1mSpFOFhckYuPTSSw+9f/XVVyk4yk8hjz/++KH33bt3p1evXnHLTZIkSVLl/nMmZQAF6fDKGTDlEsLnBxCuO/oWTUG7QoJLFsO4F+GyhZC5HQgpqnwLS0mS9DELkzFw6aWX0qZNGwAOHjzI9773PUpLS6PGzp49myeffPLQ55tuuum45ChJkiSpoqZNo1wsTYKlHeHv5xI+dAHh3B6EexpWOU6QXE7Qdz3B9W/CmFeZvX8lm3fvj0/SkiSdIixMxkCDBg24++67D31+8803uf3221m3bt2ha6Wlpfz973/nrrvuoqysDICsrCyuvfba456vJEmSpIi2bY8SUNgU5pwGf7yY8JmhhCszCMuDKrsELfbyVMEHdJzwMp+fNo/nlmymtKzyA3YkSaqvPJU7Rq6++moWLlzIE088AUSKk5deeim9evWiadOmrFq1ih07dhyKT09P5/777ycpyf8LJEmSpBMlOxvS06Gw8CiBYQKsaht5NdlP2Gc99F1L0GJvpV3KykOeW1LAc0sKaNesITcO6sCtQztyWkbqMeVcXAyzZgXMn9+S4uIEUlLK2bQp4MILPQlcknRysSoWQz/96U9p3rw5Dz30ECUlJZSXl0c9pbt79+7cf//9dOvW7QRkKUmSJOkTKSkwZgxMnFiDTnsbwfweML87YeYO6LcWsjYSJFc+K3LT7gP86rVV/Oq1VZzZKZ1bhnTk+oGZpDdOrvZt8/Nh8mSYPh0KCxOBLke0p6dHnmXcOMjKqsHzSJJ0griUO4aCIGD8+PE8++yzjB07lqysLJo1a0ZycjKtWrVixIgR/L//9/945pln6Nmz54lOV5IkSRKRQl7tBLChJcwcCFMuJXypH+Gm9KP2mru2kK/lLKbdT1/kS395hxeWb6GsPKw0ftcuGD0aevWCSZMqn91ZWBgpsPbqFYnftas2zyRJ0vHjjMkoRo0axahRo2rdv3v37nz3u9/lu9/9bgyzkiRJkhQPWVkwahTk5BzDIAeT4f0ujOrRhR/fvZuH5q3lsXfXs6O4pNIuB0rL+dt7G/nbexvJTGvETYMjS72zWv/nRJ4NG2DkSMjLq1k6OTmRGZYzZ0JmZm0fSpKk+HLGpCRJkqR6b+pU6Nv32Mbo2zcyzhntm3H/5/uy/n8u4fEbB3FpVmuCqs/LYcOu/dw7ayW9f/kqwx+cw5/eXsPazSVcdlnNi5KfyMuLFDWdOSlJqqucMSlJkiSp3ktLi8wurM3sRIB+/eD55yPjfKJRciLXDcjkugGZrC/cxyPvrOfh+etYsa3yA3MA3ly9kzdX7ySxPI/STu2gqCOsbQUcpboZRV4ejB0LM2bUuKskSXHnjElJkiRJIrLkec6cyLLumhg1CmbPrnrJdIf0xvzgop4s++4FzPn6uXz5zE6kNqx6nkhZQjlBnw0E174Nt78M5yyDtKqLmtHk5MCKFTXuJklS3FmYlCRJkqSPpaVFZhcuXw7jx0dOuo6meXO4++7IPo4zZhw5U7IqQRBwTpcW/Ona/mz68SU88sWBXNSz1VGXegfN9hOcvYLgtllw3Rtw+lpILq32c02ZUu1QSZKOG5dyS5IkSdKnZGXBfffBhAmQmwsFBVBUBKmpkJEB2dmQknJs90hpkMSNgztw4+AOrNlRHFnqvWAdH24vrrJf0GEHdNhBeFEe5LeDJR1hXUuqWuo9bRrcc8+x5yxJUixZmJQkSZKkSqSkwOWXx/8+nVuk8D+XZPGji3vy68d38J1H1kHWRoIGZZX2CZLL4PT1cPp6wt2N4IMOsLQD7EitELtzZ6TAejyeRZKk6rIwKUmSJEl1RBAEtDrQEl5oCbP6EvbcBKevI+i0vep+zfbDmSvhzJWEm9IjBcrl7WFfw0MxBQVxTl6SpBqyMClJkiRJdciePR+/KUmCpR1haUfCtL3QZ32kSJm2r8r+QbtCaFdIeP4S+KhNpEj5YQZFRYlxz12SpJqwMClJkiRJdUjTplEu7moCb/WCt7IIO26H09dB1qbIcu5KBIkh9CiAHgWE+5J5uqg9Q1Z34KzOzQmOdtqOJEnHgYVJSZIkSapD2ratqjWAda0ir1f6RZZ691kPnbZVebJ30LiE13as4dwH19CjVRNuHNSBGwdn0q1lk5jkXFwc2cNy8+bIjM+mTSPPEYtDgiRJpy4Lk5IkSZJUh2RnQ3o6FBYeJfCwpd6k7iM8bT30WU/Qck+V3VZu28tPXlzOT15czoiuLbhpSAeuPaM9aY2Ta5xrfj5MngzTp0fPNz0dxoyBceMiJ51LknS4hBOdgCRJkiTpP1JSIsW8GilqDPN6wvTzCf8ygvDdroTFDY7abfZHO/jKk+/T9qcvcv2j7/CvpQWUlJUftd+uXTB6NPTqBZMmVV5ELSyEiRMjcaNHR/pJkvQJZ0xKkiRJUh0zblykoFdzARSkR165fQi7bIE+62lwWgEl5ZUXHA+UlvP3RRv5+6KNtGnagC8OzOSmwR0YmJlWYT/KDRtg5EjIy6tZZjk5kRmWM2dCZmbNn0ySdOpxxqQkSZIk1TFZWTBq1DEOUp4AH7ZlVIMhbP7JJUwe3Y9zujQ/arctew5y/+yPGDJpNqf/6jUmvJzPR9uLgcgMyMsuq3lR8hN5eZGipjMnJUngjElJkiRJqpOmTo3MMKxtERCgb9/IOGkpDbjj7C7ccXYXVm7by1/eWc+j76znox3FVfZftmUP/ztzOf87cznndGnO3gUdWPJhO6BhrXPKy4OxY2HGjFoPIUk6RThjUpIkSZLqoLS0yLLnvn1r179fv0j/tLQjr/do1YSfXNaLld+/kNfvPIfbzuxEWqOjz1l5c/VOFrVaDHe8BJ+fB702QFJprXLLyYEVK2rVVZJ0CrEwKUmSJEl1VGYmzJlT82Xdo0bB7NlV7+UYBAHDu7bkj9f2Z9OPL+WJmwbz2dMySEwIKu8EBIkhQfcCgs++C199ES5bCJ23QhDWKMcpU2oULkk6BVmYlCRJkqQ6LC0tsux5+XIYPx7S06PHNW8Od98dWf49Y0bFmZJVaZScyLX92/Pcl4ex4X8u4f7P9+XMTpXc6DBBgzKCvusJrnkbvvISZC+BNoXA0YuU06ZBcdUrySVJpzj3mJQkSZKkk0BWFtx3H0yYALNmlbFgwTr27k2gSZNyhgzpyIUXJpKScuz3aZPakLuGd+Wu4V1ZsXUPf124gT/N3sDGfXur7Bc0PQBDPoQhHxLuaAJLO8CyTNjVJGr8zp2QmwuXX37sOUuSTk4WJiVJkiTpJJKSAiNHhrRrt/3Qtf79O5AUh3/d9WzdlB9f2ouO67P48g8L4bQN0HsDQcrBKvsFLfbC8OUwfDnhxuaRImV+O9h35KE5BQWxz1mSdPKwMClJkiRJqtLevQFsbh55vdaHsPM2OG099NxMkFxWZd+g/U5ov5PwgjxY3Ro+6ACrMqA0iaKi4/QAkqQ6ycKkJEmSJKlKTZse9iFMgNVtIq+XSgl7bI7MpOyylSCh8r0lg8QQum+B7lsISxJhZVtWhe05WNqGBkkefyBJ9ZGFSUmSJElSldq2raShNAmWdYi8Gh8g7LURTltP0L6wyvGC5DI4bQMPrN3Aoz9NZtQZ7fjigEyyu7c86qng1VVcHNnDcvNm2LMnUlxt2xays4nJXpySpGNnYVKSJEmSVKXs7Mhp4IWFVQTtawjvdYX3uhKm740s9e69IbLfZBV27ivhoblreWjuWto1a8i1/dvzxQGZDOuUThDUvEiZnw+TJ8P06dHzTU+HMWNg3LjIgUKSpBPH+fKSJEmSpCqlpESKedVW2ATe6gXTLiD8ywjCd7sS7m1w1G6bdh/ggdkfcfZv59Dz3ln88PkPyNu0u1q33LULRo+GXr1g0qTKi6iFhTBxYiRu9OhIP0nSiWFhUpIkSZJ0VOPG1aZXAAXp8Gpf+MMlhE+dSZjXkfDA0Rfvfbi9mF+8spIzfpPLGb9+jZ+/soKPthdHjd2wAYYPh5ycmmWXkxPpt2FDzfpJkmLDwqQkSZIk6aiysmDUqGMYIEyANW3ghQFctelSZtwyhGvPaEejahx8k7e5iB89v4zuv3iFsx+Yzf2zP2TT7v1AZAbkZZdBXl7t0srLg5EjnTkpSSeCe0xKkiRJkqpl6tTIHo61LQIC9O0LDz+USFpaO67u146i/aU8s2QTf1u4kZfyt1JaXvnJ3gBz1xYyd20h33puCed3b8XOt9qzZGU74OhLxSuTlwdjx8KMGbUeQpJUCxYmJUmSJEnVkpYGM2dGZhjWpjjZrx88/3xknE+kNkripsEduWlwR7btPcBTizbxt/c2MPujHYRV1CjLQ5i1chu03gZfXQyr28Cy9rCqLZTU/J+6OTmwYgX07Fnz55Ik1Y5LuSVJkiRJ1ZaZCXPm1HxZ96hRMHt2pH9lWjVpyLhzuvDa185lzQ8v5lef7cPgDmmVd/hYkBgSdC8g+MxC+OoLcOUCyNoISaU1ynHKlBqFS5KOkYVJSZIkSVKNpKVFlj0vXw7jx0N6evS45s3h7rsjy79nzDhypuTRdEhvzLfO7878b57Hsu9ewE8u7UXvNk2P2i9ILifI2kRw5TvwtRfhM+9Aj02QWHbUvtOmQXH083UkSXHgUm5JkiRJUq1kZcF998GECZCbCwUFUFQEqamQkQHZ2ZCSEoP7tG7K/16axf9c0pNFG3fz+MINTH97I1v376uyX5BcBr03Qu+NkZPAV2XA8vawpjWUJVaI37kz8hyXX37sOUuSjs7CpCRJkiTpmKSkHJ9iXhAEDMhMY0BmGllbTuO2/9kJvTdAr40EKQer7tuwFPpsgD4bCPcnwcp2kSLl2lZQ/p/FhAUF8X4KSdInLExKkiRJkk46xXsD2Ngi8nr1dMKO26HXRui5iaBxSZV9g0al0Hcd9F1HuC8ZVnxcpFzXkqIidzyTpOPFwqQkSZIk6aTT9PDtJsMEWNs68nqlH2GnbZEiZY9NkSJkFYLGJXDGWjhjLeHeBjxT1I4zVrVneNeWJCYE8X0ISarnLExKkiRJkk46bdtW0lCeAKvbRF4v9yPsvA16bYDuBZHl3FUImhzk1R1reHXyGto1a8g1Z7TnC/3bc3bn5iTEqEhZXBzZx3LzZtizJ1Jgbds2dvtxStLJxMKkJEmSJOmkk50dOQ28sLCKoLJE+DAj8kosI+y6JTKTsntB5GCcKmzafYDfzvmI3875iA5pjRh1RjuuPaP2Rcr8fJg8GaZPj55zejqMGQPjxkUOFZKk+sDNMyRJkiRJJ52UlEghr9rKEiMH3vxrMPz+UsJ/DCbMb0dYcvR/Fq/ftZ8HZn/EiN+9QacJL/ONZ/KY/eF2ysvDo/bdtQtGj4ZevWDSpMoLqYWFMHFiJG706Eg/STrVOWNSkiRJknRSGjcuUsyrsdIkyG8feSWXEnbfDL020iBrKyXl5VV23bh7Pw/O+YgH53xEu2YNubpvO67t3y7qnpQbNsDIkZCXV7P0cnIiMyxnzoTMzJo+nCSdPJwxKUmSJEk6KWVlwahRxzhISRIs68CoxGFs+emlTL9+AFf0bkNSNZZrb9p9gN+/uZoLJr9Fx3te4s6cxby6chtl5SGFhXDZZTUvSn4iLy9S1HTmpKRTmTMmJUmSJEknralTI7MLa1sABOjbNzJOWuNkbh7SkZuHdGRH8UGeXryZGe9v5OUV2yg9yrLtzUUHmPzmaia/uZo2TRvQZGM7PtzdHoIWkVPDayEvD8aOhRkzatVdkuo8C5OSJEmSpJNWWlpkyXNtlkwD9OsHzz8fGedwLVIa8OUzO/HlMzuxo/ggz+Zt5qn3N/Hyiq2UlFVdpNyy5yA0W0PwhTWExQ1gRdvIsvF1LWtcpMzJgRUroGfPmj6ZJNV9LuWWJEmSJJ3UMjNhzpyaL+seNQpmzz76Po4tUhowZlgn/nXbmWz+8aVMu24AnzmtDcmJR1/uHaQcJOi/luDat+GrL8Ili6DzFkioei/Lw02ZUu1QSTqpOGNSkiRJknTSS0uLLHnOz48U8qZNi34CdvPmkdO8x42r3SzE5ikNuGVoR24Z2pHCfSX8Y+lmnlq0iReWb+VgWdXFxqBxCZyxFs5YS7gvGVa2hRXtYG2ryKnhlZg2De65J3ISuSSdSixMSpIkSZJOGVlZcN99MGEC5OZCQQEUFUFqKmRkQHZ27Ap86Y2TuWlwR24a3JFd+0r45wcF/O7Fjby1eStBUjWKlP+/vTuPr6K6/z/+vlmAhIQkJCSBhB0StojUiv6QgjtLtcpirWutK22hbi1ftRUXaLFaoBUtSJXg1oJKrKiAgghCUUBEWYQkbCEs2RNICGSd3x8D471J7paEC9y8no/HPJy5d+bMmZuPl5NPzpKSLaVky6gIkvbGmUO+98Waq4bbKS42n2XUqOapNwCcK0hMAgAAAAD8TmiobxN5ESHBuu1Hiar8LlFfPlUlo0eelHRY6pYnW7CbJGXraqnvIanvIRlVAdL+WLMn5d44qSJYkplgBQB/Q2ISAAAAAIBmUlYmqTJY2pVgbsHVMnrkSklHpO657pOUwbVS7xypd46MGps5zDuzow6XxEtq7ZNnAABfITEJAAAAAEAzCQur80JVkJSeYG7B1TK6n+pJ2SNPtuAal2XZAg2pe77UPV9PHtyqFf+M1piUeI1J6ajOkSHNVufycmnVKps2bYpWeXmAQkNrdeSITVdeybyWAM4sEpMAAAAAADST+HgXb1YFSRmdzC2oWka3fKlXjtQzR7Y21S7LNSSt2VuoNXsL9dAHOzS4c6TGpHTUuAs6qldM20bVNSNDmjNHWrBAKikJlNTN4f3IyB8WCkpKatQtAMAlEpMAAAAAADST4cPNhF5DK4I7qA6Sdnc0t4BaGZ0LzOHevXJkC610e5+N2SXamF2ix5fuVErHcI0ZYCYpB8SHy2azubz26FHp7rultDTX9ygpkWbNMrexY6X5883VzwGguZCYBAAAAACgmYSGmr0MZ83y4qLaACkr1txWXiCjU5GZpOx9RLbwk24v33akVNuOlOrZFRnqFdNWYwbEa9wFHXVx58h6ScpDh6SRI6Xt2717rrQ0s4fl8uVSQoJ31wKAMwFnuwIAAAAAAPiTCROacLFhkw5FS58PkOZdLeOtn+i+C3t5PFx7d8FxvbB6jy59cZ26TlupB/+7XWv2FKim1lBJiTRihPdJydO2bzeTmkePNu56AKiLHpMAAAAAADSjpCRz6LO7odLu2TT2ski9cnukDKOPtueUKm3bEb2/LUdbjxxze/XBoyc1e90+zV63Tx3atlLbI/Had7yjFBBj9tJshO3bzWHgixc36nIAcEBiEgAAAACAZjZ/vjn0ubG9EyVpwACzHEmy2WxK6dhOKR3b6alrk5WZX6b3t+fo/W1HtOFAiduy8o9XKr/dAdnGHZBRESTti5V2x5v/rQz2ql5paVJmptS7dyMeCgDskJgEAAAAAKCZRUSY8zE2Zj5HSUpJkZYtc77YTO8OYZp8RS9NvqKXsktO6L/bc5S29YjW7itUreG6bFvraqnPYanPYRk1NulAjJmk3BMvHW/jUf3mzpVmzPDyoQCgDuaYBAAAAADgDEhIkNatM4d1e2PsWGntWs8XmekcGaJJQ7vr898M0eEp12reTRdoZHIHBQe6Xp1bkmyBhmzd82W7ZptsE1ZIt6yVBmdK7UtdXpeaKpWXe1Y/AHCGHpMAAAAAAJwhERHmfIwZGWYvw9RUqaSk/nlRUeZq3hMmNG2IdGx4a917SVfde0lXlZyo0sc7c/XPFUe0/nCebMG1bq+3dSqROpVIP9klo6ittLuj2ZvySKSkHxKdxcXSmjXSqFGNrysAkJgEAAAAAOAMS0qSZs6Upk0zE3q5uVJpqRQeLsXFScOHS6GhzXvPyJBg3fajRFV+l6j1f6qW0T1P6pUj9ciTrU2V2+tt7Y9Lg3dLg3fLKGst7Ykzk5TZMVJNoHJzm7e+AFoeEpMAAAAAAPhIaKjvexmWlUmqDpIyO5lbQK2MhCIzSdnriGztTrotwxZWIQ08IA08tXjO/litzonXmBOxigjxbvEcT5SXmwncnByz/mFhUnz8mUngAjh7SEwCAAAAAODHwsLqvFAbYPZ6zI6RPu8vI/boqSRljmwdXM8tKZ1aPCf5sN4oOKz/PG3TFT1j9LP+8bphQJwSIkKaVNeMDGnOHGnBgoaHvEdG/jDkPSmpSbcCcA4gMQkAAAAAgB+Lj3f1rk3KizS39X1kRBy3kpTqVCSbmyVzq2oMfZqRr08z8jXx/W26uHOkbhgQrxv7x6tvXJhsNvcLl7GnxQAARxxJREFU8EjS0aPS3XdLaWmuzyspkWbNMrexY6X5852vXA7g3EdiEgAAAAAAPzZ8uNnTsKEeiPUcbStt7mluIRUyeuSaScqu+R4tnrMpu0Sbskv0p2W71DumrW4YEK8b+sfr0q5RCgxoOEl56JA0cqS0fbtXj6W0NLOH5fLlnq9gDuDcQmISAAAAAAA/FhpqDn+eNcvLC0+0lnZ0Mbegahnd8k8tnpMrW4j7xXMyC47rb6v36G+r9yg2rJV+2i9OP+sXr6t7x6htazMdUVIijRgh7djh/XNJZjJz5Ehp3Tp6TgLnIxKTAAAAAAD4uQkTGpGYtFcdJO3uaG62Wr2+qkhfl+Tog+05OlBywu3leWWVSt2YrdSN2WoTFKCresfoun5x+mBWnHbsaNq8lNu3m8PAFy9uUjEAzgISkwAAAAAA+LmkJHNORndzOHpi7JgA3XF5jO5QjP5+Q399e/iYPtieow925Oi7w8fcXn+yulYf78zTxzvzpC7bpNsipD3x0t44Ka+dJM/mpbSXliZlZkq9ezfigQCcNSQmAQAAAABoAebPN+dk9HYuR3sDBpjlnGaz2TQoIUKDEiL09Ihk7Sss1wc7zJ6Ua/cVqtZwX6Yt/qgUf1S6LF1GaRtpT5yZqMyOlmoCPa7b3LnSjBmNeCgAZw2JSQAAAAAAWoCICHOhmMYsNCNJKSnSsmWu53LsHh2qh4b10EPDeqjgeIU++j5PH2w/ohUZBSqvqnF7D1v4SenCLOnCLBmVgdL+DtLeeGlvrDnnpQupqdLUqeacmgDODyQmAQAAAABoIRISzIVi7r7bu2HdY8eaPSW9WWAmpm1r3XVxZ911cWedqKrRqswCffh9rj76PleHj510e72tVY2UlCMl5cgwJB2OMntS7omTisJUd8h3cbG0Zo00apTndQRwdpGYBAAAAACgBYmIMBeKycgwhz+nppqrY9cVFWWu5j1hQtPnbgwJDtRP+8Xpp/3iZBiGnp5zVM++lSv1zJEtzv28lDabpIRicxu2U0ZxqDkn5Z546VB7qTZAkpSb27R6AvAtEpMAAAAAALRASUnSzJnStGnSqlU1+vrrbB0/HqC2bWv14x931pVXBp6RYdE2m00xNZHSl5HSl8kywk9IPXLNrUuBbEG17suIKpcu2iddtE/GyWBpX6y0N065R2MlBTd/pSWVl5s9MnNypLIyKSxMio+Xhg9n+DjQWCQmAQAAAABowUJDpZEjDXXsWGi9NnBgooLOYMYgLMzuoDRE+q6buQVXy+iaL/U0E5W20Eq3ZdnaVEl9D0l9D+lP2TZ9Oqe9ru8fr+v7xalnTNsm1zUjQ5ozR1qwoOGepZGRP/QsTUpq8u2AFoXEJAAAAAAA8Kn4eCdvVAVJuzuam82Q0bHY7EnZM1e2mFK35dbI0Od7CvX5nkI9smSH+saGmUPI+8ZqSLf2Cg4M8LiOR496NhdnSYk0a5a5NWYuTqAlIzEJAAAAAAB8avhws6dhQz0QLYZNOtze3Nb1lRFx3EpSKrFQtkDD7X125pVpZ16Z/rZ6jyLaBGlkn1iN7hurUX1iFdPW+Srfhw41bvXytDSzh+Xy5eZCQwBcIzEJAAAAAAB8KjTUHP48a5YXFx1tK23pYW6tq2R0yzOTlN3zzOHc7i4/Wa1F3x7Wom8Py2aTLukSpZ/2jdVP+8ZpYKd2stnMVb5LSqQRI6QdOxr3bNu3m0nNdevoOQm4Q2ISAAAAAAD43IQJXiYm7VUES+kJ5hZQK6NTkX41LVdrD+doT2G528sNQ/oqq1hfZRXryeXpSohoo9GnkpSvPRWjHTuali7Zvt0cBr54cZOKAfweiUkAAAAAAOBzSUnmnIzu5nB0qzZAYwfHaP4vY2QY/bQrr0wffp+rj77P1fr9Rap1P+Jbh46e1L++OqB/fXVARmKANDZa2htnbscat+R2WpqUmSn17t2oy4EWgcQkAAAAAAA4K+bPN+dk9HYuR3sDBpjlSJLNZlPfuHD1jQvX5Ct6qai8Up+k5+vj73O1PD1PReXuh3zbgmql7vnmdtV2GYVhp5KUseZ8l7WeL6Azd640Y0ZjnwzwfyQmAQAAAADAWRERYS4U05iFZiQpJUVatsz5XI7tQ1vplkEJumVQgqprarXhQIk+2pmrpTtzte2I+1W+JckWXSZFl0kX75FxMkjKipX2xEr7Y6UTzhfQkaTUVGnqVHNOTQD1kZgEAAAAAABnTUKCuVDM3Xd7N6x77Fizp6SnC8wEBQbosu7tdVn39po+uq8OFJfr4515WrozV59lFuhkda3bMmxtqqXkw1LyYRmGpCNRZk/KvXFSfjtJNofzi4ulNWukUaM8fy6gJSExCQAAAAAAzqqICHOhmIwMc/hzaqq5OnZdUVHmat4TJjR97sYuUaH69ZBu+vWQbjpRVaMn5hTo70typR55srU74fZ6m01Sp2JzG5ouo7SNtO9UkjIrRqo2Uy65uU2rJ+DPSEwCAAAAAIBzQlKSNHOmNG2a2dMwN1cqLZXCw6W4OGn48DMzLDokOFA9bHHSZ3HSZ4aM6FKpZ67UPU/qVCSbB9NK2sJPShcckC44IKM6QDrUXtobq91FsTKMMNlsNveFeKm83PyccnKksjIpLEyKjz9znxPQ3EhMAgAAAACAc0poqO+HP4eFnd6zSYXtzG1jb6lNpYxu+VKPXKlbnmwhHi6g07VA6lqgvxz+Xv/+S4hG9onVqD6xurJXjNq2blo6JiNDmjNHWrCg4Z6lkZE/9CxNSmrSrYAzisQkAAAAAABo8eLjnbxxspW0K8HcbLUyOpaYScoeubJ18GwBnf3FJzT3yyzN/TJLrQIDNKxHe43qayYqkzt43pvy6FHP5uIsKZFmzTI3b+fiBHyJxCQAAAAAAGjxhg83exo21APRYgRIh9ub27q+MsLLzeHePXKlLgWyBbtfQKeyplYrMwu0MrNAjy75Xt2iPOtNeehQ41YvT0sze1guX24uNAScS0hMAgAAAACAFi801Bz+PGuWFxeVhkpbu5lbUI2MzgVmorJ7nmyR5R4VUbc35fCe7a1E5enelCUl0ogR0o4djXgwmcnMkSPN1c/pOYlzCYlJAAAAAAAAmXMyepWYtFcdKO2LMzcZMqKO64l/5WlzYZ7W7C1URbVnvSlXZBRoRcYPvSlH9Y3TlrRY7UiPVlPSONu3m8PAFy9udBFAsyMxCQAAAAAAIHOhmLFj3c/h6J5NY68I05/HhUnqoeMV1Vq9p1BLd+Vp+a487SvyvDflnPX7pfj90m8DpIPtpX2x0v5YqShMkncrfaelSZmZUu/e3j4PcGaQmAQAAAAAADhl/nxzTkZv53K0N2CAWc5pbVsH6af94vTTfnEyDEMZ+ce17FSS0tPelLagWqlbgbnpexkloWaCcl+sdCBaqvYsxTN3rjRjRiMfDGhmJCYBAAAAAABOiYgwF4ppzEIzkpSSIi1b5nwuR5vNpuTYMCXHhumhYY3vTWmLLJcu3C9duF9G9anelPtP9aYsdN6bMjVVmjrVnFMTONtITAIAAAAAANhJSDAXirn7bu+GdY8da/aU9GaBGVe9KVdlFqraaERvytI2p5KUHaSsGKmilXVucbG0Zo00apTndQTOFBKTAAAAAAAAdUREmAvFZGSYw59TU6WSkvrnRUWZq3lPmND0uRvr9qac+1q1fv2XQnOl726er/RtCz8ppRyQUg7IqJWUE2UmKfd3kHKilJvr3dyU3igvl1atsmnTpmiVlwcoNLRWR47YdOWV9NJEfSQmAQAAAAAAnEhKkmbOlKZNM3sa5uZKpaVSeLgUFycNH37mEm5V5UHS3jhzO7XSt7rnSd1zpcQis6ekG7YASZ2KzW1IhowTwXpxb4xqNsRqRHIHJUaGNEtdMzKkOXOkBQukkpJASd0c3o+M/CGBm5TULLeEHyAxCQAAAAAA4EZoqO+HP4eF2R/ZpOIwc/umhxRULaNLI3pThlTp2/Ijuu/dI5KkfnFhujY5ViOTO+gnPaIVEhzoVR2PHvVsyHtJiTRrlrk1Zsg7/BOJSQAAAAAAgHNQfLyLN6vr9KaMPC51z5e65kldCmULrvHoHt/nlun73DL9/Yu9ahMUoOE9o3VtcgeNSIpV37gw2WzOh30fOtS4RYLS0swelsuXm/N5ouUiMQkAAAAAAHAOGj7cHALd0NyWjmxSSZi0JUza0l0KrJHRqVjqlid1y5ct9phH9ztZXatP0vP1SXq+HtX36hzZRtcmx2pEUgdd1TtGUaE/LKJTUiKNGCHt2NG4Z9u+3UxqrltHz8mWjMQkAAAAAADAOSg01JyXcdYsLy+sCZSyY8xtrWS0PSl1zZe65Su0T75O2Co9Kia75KRe23BAr204oACbdEmXKLM3ZXKsnn8kUjt2NG0Rne3bzWHgixc3qRicx0hMAgAAAAAAnKMmTGhEYrKu422k7ztL33fWN7MMlYYc1Sfpefo0PV/rs4pVU2u4LaLWkL7MKtaXWcV65tMMGfHB0nWnVvrO6iCVNm4RnbQ0KTOz6Sua4/xEYhIAAAAAAOAclZRkLhbjbnEZT4wdKyUn2SRF6sedI/XHq5N09ESVVu0u0Cfp+fo0PU/7i094VJYtpEpKPmxukozCMDNBmXWqp2aV5ymnuXOlGTMa80Q435GYBAAAAAAAOIfNn28uFuPtIjP2Bgwwy6krIiRYY1I6akxKRxmGocyC4+Y8k7vytHpPocqrPFtExxZdJkWXST/aJ6PGJh2JOpWo7CDlREhGgNNrU1OlqVPNoetoWUhMAgAAAAAAnMMiIswVrBuzArYkpaRIy5a5X2TGZrMpqUOYkjqEadLQ7qqortG6fUWnelPma+sRzxbRsQUaUmKRuV2WLuNksHQg+odE5dG2DucXF0tr1kijRnn/bDi/kZgEAAAAAAA4xyUkmCtY3323d8O6x441e0o2ZuXr1kGBuqp3B13Vu4Oev046fPSknnwtX/NX5Uld883h3B6wtamSknLMTZJREvrDsO8DMVJFK+Xmel8/b5SXm8nPnByprEwKC5Pi482Vz+mpefaQmAQAAAAAADgPRESYK1hnZJjzMqamSiUl9c+LijJX854woXkXlekU0UYXBneWPu4s2QwZsUfN1b675ksJRWZPSQ/YIsulyCxpYJaMWkk5kVqY3UE99nTQpV2j1CrI+bBvb2VkSHPmSAsWNPxZRUb+8FklJTXbbeEhEpMAAAAAAADnkaQkaeZMado0sxdgbq5UWiqFh0txcWe2F2BY2KkdwyblRprbxt5ScLWMxMJTicoC2WJKPSrPFiCpU4k+PVqiT+dkKqx1oC7vEaOrk2J0TVIH9YkNk81m87qeR4961ru0pMRc9XzWrKb1LkXjkJgEAAAAAAA4D4WG+n5exvh4J29UBUn74sxNkhF2QupSYPWotLWt9Kj8sooafbQzVx/tNMd2J0a00dVJHXRNUgdd3TtGHcJauy3j0KHGzceZlmb2sFy+3Bw6jzOPxCQAAAAAAAA8Mny4Ofy5oWHRDspCpO87m5sMGR2OSV1PJSoTCmULrvXofgePntSCTdlasClbkjQooZ2u7m0mKi/r3l4hwYEO55eUSCNGSDt2ePtkpu3bzaTmunX0nPQFEpMAAAAAAADwSGioOSfjrFneXGWT8iPM7eueUmCNjISiH3pTxnm22rckbTl0TFsOHdMLq/eodVCALuvWXlf2jtHVvWN0UWKk7rnH1uik5Gnbt5vDwBcvblo5cI/EJAAAAAAAADw2YYK3ick6agKlAx3Mba20/rsK7asp0IqMfK3MyNfBoyc9Kqaiulardhdo1e4C/WmZFN4qSMeqY6QLT632XRQmyfv5KSVzWHdmZvMuHoT6SEwCAAAAAADAY0lJ5kIx7haW8cTYsdKlF7TWpUrQLYMSZBiGduWVnUpSFmj13gKVVdR4VFZpZbVsvXOk3jmSJKO0jZmgPL2VhXhVt7lzpRkzvH4keIHEJAAAAAAAALwyf765UIy3C8zYGzDALMeezWZT37hw9Y0L1+9+0kOV1bX6KqtYKzLN3pSbsktUa3hWvi38pNT/oLlJMgrDfkhSZsdIFcEur09NlaZOPXMrnIPEJAAAAAAAALwUEWGuXt2Y1a8lKSVFWrbM/QIzrYICNKxntIb1jNbUkX1UXF6pz/cU6rPMAn2Wma+M/OMe39MWXSZFl0mD9suolZQbKWXFmEPKD0eZQ8ztFBdLa9b4fuXzloTEJAAAAAAAALyWkGCuXn333d4N6x471uwp2ZhVr6NCW2lsSkeNTekoScouOaHPMgs0b3m+vjxUIFtYhUfl2AIkdSwxt0t3y6gKkA63l7I6mD0q8yIkw6bcXO/rCM+RmAQAAAAAAECjRESYq1dnZJhzMqamSiUl9c+LijJX854woXkXlOkcGaK7Lu6s0q8668sphozoMqlLvtS1QEoslK11tUfl2IJrzWu6FkiSjBPBUna0lh3uoCH5Meod01Y2W+MW0oFzJCYBAAAAAADQJElJ0syZ0rRp0qpVNfr662wdPx6gtm1r9eMfd9aVVwae0bkaw8IkySYVhpvblh6SrVZGfInU5VTCsVORbIGeTVBpC6mSknL0blGO3v2r1Dmyja7q1UFX9o7Rlb1i1CmizZl7mBaExCQAAAAAAACaRWioNHKkoY4dC63XBg5MVNAZzkDFxzfwohEgHWlvbhuSpKBqGQlFZpKyS74Ue0yedoLMLjmpBV9na8HX2ZKkPrFhuqJXjK7sFa3Le8Youm2r5nuYFoTEJAAAAAAAAM5rw4dLkZENDyO3VAdJWbHmJkkhFTI6F5pJyi4FskWVe3y/XXll2pVXpjnr98tmky7s1O5UojJGP+kerfA2pNw8wacEAAAAAACA81poqDmH5axZXlx0orWU0cncJBntyk8N+z6VqAyt9KgYw5C2HDqmLYeOaeaavQoKsGlwl0grUfn/ukapTXCg+4JaIBKTAAAAAAAAOO9NmOBlYrKuY6HS9i7mJkMffFmq3ZX5+iyjQGv2Fup4ZY1HxVTXGlq/v1jr9xfrzysz1SYoQEO7t9eUa5M0tHt0Eyrof0hMAgAAAAAA4LyXlCSNHSulpTW9rLFjbbr+0naS2unhYT1VVVOrjQdKtGp3gT7fXaD1+4tVWVPrUVknq2u1MrNAKzMLtOF3P9HFXSKbXkE/QWISAAAAAAAAfmH+fCkjQ9q+vfFlDBhglmMvODBAl3Vvr8u6t9eT1yTpRFWN/revyEpUbsouUa0HC37/d8cREpN2SEwCAAAAAADAL0RESMuXSyNHNi45mZIiLVtmluNKSHCgrk7qoKuTOkiSjp6o0tpTicpVmQXaeuRYg9cN6uSm4BaGxCQAAAAAAAD8RkKCtG6ddPfd3g3rHjvW7CnpLinZkIiQYF3XL07X9YuTJOWXVWj1nkKt2l2gtXsLVWtIt/4oQeMu6Oh94X6MxCQAAAAAAAD8SkSEtHixOax77lwpNVUqKal/XlSUuZr3hAlS797Nd/8OYa1108BOumlgp+Yr1A+RmAQAAAAAAIBfSkqSZs6Upk2T1qyRcnOl0lIpPFyKi5OGD5dCQ892LVsuEpMAAAAAAADwa6Gh0qhRZ7sWqCvgbFcAAAAAAAAAQMtDYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HM2wzCMs10JnB82b97scBwQQF4bTVdbW2vtE1NoKuIJzY2YQnMjptCciCc0N2IKzYl4ahnsf86SdNFFF3l1fVBzVgYtS93gA5qKmEJzIp7Q3IgpNDdiCs2JeEJzI6bQnIgnOEPKGgAAAAAAAIDP0WMSjUZXbAAAAAAAgJarqb1hmWMSAAAAAAAAgM/R5Q0AAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD4XdLYrgPr27NmjhQsXasOGDTp48KCqq6sVGxurpKQkXX/99brmmmsUFNT8P7ojR45o4cKFWrdunbKysnTy5El16NBBPXr00OjRozV69GiFhIR4VebWrVv17rvvatOmTcrNzZVhGIqLi1P//v11ww03aNiwYbLZbB6XZxiGVq5cqSVLlmjbtm0qLCxUSEiI4uLidOmll2rcuHHq06ePt4/u14gn58rLy/XBBx9o3bp12rlzp4qLi1VdXa3IyEglJSXpsssu0/jx49WuXTtvH9+vEVPeKyoq0nXXXafCwkJJUnp6epPL9CfElGt5eXlasmSJVq9erQMHDqioqEht2rRRYmKiBg8erJtvvlk9e/b0qkx/Rjw5V11drY8//lgrV67U9u3bVVRUJJvNpujoaA0cOFCjR4/WVVdd1Szfe/7En2KqIZMnT9YHH3ygwYMH68033/TqWtrmjUNMOUf73HvEk/dom59bbIZhGGe7EvjB7NmzNXfuXFVXVzs9Z8CAAXrhhRfUo0ePZrvvwoUL9dxzz+nEiRNOz+nWrZuef/55DRw40G15VVVVmjp1qhYtWuTyvKFDh2r69OmKjY11W2Zubq4efvhhbd682ek5NptNd911lx555BG1atXKbZn+jnhybunSpXrmmWdUUlLi8rywsDA9/vjjGj9+vNsyWwJiqnEeeughLVu2zDqm8fMDYsq11NRUvfjiiyovL3d6TkBAgO699149/PDDCgho2YNhiCfndu3apYceekj79u1zeV5KSopmzZqlzp07uy2zJfCXmHJm5cqV+u1vfytJXv/ST9u8cYgp52ife494ahza5ucWEpPnkGnTpjn8jxYUFKTk5GSFhIRoz549Ki4utt6LiYnRO++8o4SEhCbfd8GCBZo+fbp1bLPZ1Lt3b0VGRmr//v3Ky8uz3gsJCdHbb7+t/v37Oy3PMAxNnDhRK1eutF5r3bq1kpOTFRgYqMzMTJWVlVnv9ejRQ4sWLXL5V6+ioiLdfPPNOnDggPVaZGSkevXqpRMnTig9Pd3hy/inP/2pZs6c6fmH4IeIJ+fxVLeOktS+fXt169ZNgYGB2r9/v/Lz8x3enzRpkiZOnOj+A/BjxFTj/jK/fPlyPfjggw6v0fgxEVPOY8owDD377LP697//bb0WGBioLl26qEOHDsrNzVVWVpbDNTfffLOeffZZzz4EP0Q8OY+nnTt36vbbb3e4Ljw8XMnJyTIMQ7t27dLx48et9zp06KCFCxcqMTHR8w/CD/lLTDmzdetW/fKXv7T+8OHNL/20zRuHmPK8jhLtc3eIp8ahbX4OMnBOWLZsmZGUlGRtkyZNMvLz8633KysrjYULFxoDBw60zhkzZoxRW1vbpPtu2bLF6Nu3r1XmbbfdZmRlZVnv19bWGp988olxySWXWOcMGzbMKC8vd1rmq6++6vAsTz/9tHHs2DHr/RMnThhz5swx+vXrZ53z29/+1mU977//fuvclJQU49///rdRVVVlvZ+Xl2c89NBDDvd9/fXXm/DJnN+IJ+fx9M033xjJycnWuVdccYWxevXqes++fv1649prr3W49+rVq5vw6ZzfiCnX31HOFBYWGpdeeqnD/ZKSkhpVlr8hplzH1CuvvFLv8zlw4IDDOTt27DBuvPFGh/M+++yzRn4y5zfiyXk8VVZWGiNGjLDO7d+/v5GammpUVlZa51RUVBhz5sxxeJabb765SZ/N+c6fYqohGzZsMC666CKHZ7z99ts9vp62ufeIKedon3uPeGoc2ubnJhKT54DKykrj8ssvt/6neOCBB4yampoGz127dq1DQ3TJkiVNuvfPf/5zhy+qEydONHjezp07jUGDBlnnzpkzp8HzCgsLHc576qmnnN77vffec/gy2Lx5c4PnffHFFw7nffzxx07LnDx5snXeJZdcYpSWljp/eD9FPLmOp1tuucXhH0n7f8DrKi4uNq655hrr/JEjRzp/eD9GTLmOKVd+97vf1Wv40PghptzFVHZ2tjFgwACHxJSzXySOHj1qDBs2zDr3F7/4hesPwA8RT67j6eOPP3Y4b/HixU7LTE1NdTj3iy++cP7wfsyfYqohr776qkOdvf2ln7a594gp12ife4d4ajza5uemlj0R0TlixYoVOnz4sCSz+/WUKVOczhE1dOhQ3XzzzdZxampqo+/73Xff6dtvv7WOn3zySbVp06bBc/v06WPN7SBJr7/+umpqauqd995771lDgSIjIzV58mSn9x83bpwuv/xy69jZs7z++uvW/tChQzV69GinZT711FOKjo6WJBUXF+v99993eq6/Ip5MDT1Ldna2wzxIkydPVkxMjNMyIyMj9dhjj1nHe/fu1c6dO52e76+IKZO3z7Js2TItX75ckpigvQ5iyuTsWebPn6/KykqrHn/605+cLkbSrl07TZgwwTresmWLjh496rQO/oh4Mjl7lrVr11r73bt319ixY52Weccddyg+Pt46Xr16tdNz/Zk/xZS9/fv36/7779fzzz/vcj46d2ibe4+Yco72ufeIp8ahbX7uIjF5Dli6dKm1P2TIEHXq1Mnl+fZfLDt27FB2dnaT79uzZ08NGjTI5fnjx4+3VvMqKirSxo0b651jP4HsqFGjFBoa6rJM+2f54osv6k3uf/ToUa1fv946HjdunMvyQkND9bOf/cw6Pv3F05IQT6aG4umrr76y9lu3bq1rrrnGZXmS9JOf/ETBwcHW8bZt29xe42+IKVNDMeVMUVGRNddfq1at9PDDD3t0XUtBTJkaiqmqqip9+OGH1vEf//hHBQYGuixz5MiRuv322zVx4kQ98cQTbhv+/oZ4Mjn7jsrJybH2+/Xr57K8wMBApaSkWMcHDx50eb6/8qeYkszV2KdNm6brrrtOa9assV4fNGiQbrnlFq/qSNu8cYgp52ife4948h5t83MbicmzzDAMbdiwwTq+7LLL3F6TnJysDh06WMerVq1q1L2//PJLr+4bERGhAQMGWMeff/65w/slJSUOf60aOnSo2zIvvfRS6xeukydPOjR0JGnjxo3WL1g2m82jetqf880337SoniPEk+t4ys3Ntf5x7Ny5s0erQwYHByssLMw6tp9EuiUgplzHlDNPP/20ioqKJJkTs/fs2dOj61oCYsp1TG3evFnHjh2TZK5mOXjwYLdlRkVF6cknn9SkSZN05513qn379m6v8RfEk/vvqPDwcGvfkz+u2PdSad26tdvz/Y0/xdRp5eXlevPNN1VVVSXJ7GH1wAMP6I033rB6M3qKtrn3iCnXaJ97h3hqHNrm5zYSk2fZoUOHrF9AJDn8j+tKcnKytd+YvxBVVVVp79691rGnq2S5um96eroMu0XePSkzNDRUXbp0cVrmrl27rP3ExERFRES4LbNPnz7Wfm1trXbs2OH2Gn9BPLmOp4kTJ2rbtm1au3atZs+e7VEdS0tLHRrQLa3bPzHlOqYasnTpUn3yySeSzM/rnnvucXtNS0JMuY6pb775xtq/5JJLPKpjS0Y8uf+O6tWrl7W/efNml8nJEydOOMRgS/zFzZ9iqiFDhgzR4sWL9cgjj3iUAKqLtrn3iCnXaJ97h3jyHm3zcx+JybNs//79Dsf2jUtXEhMTrf0DBw54fd+DBw9af5GQpK5duzb5vvbP0qpVK3Xs2LFZy/S0jh06dHCY6yIrK8uj6/wB8eT+WQICAhQbG6sePXp4VN6KFStUW1trHbe0X9KIKe+epbCw0BomEhwcrOnTp7sdhtvSEFOuy0xPT7f2e/fube2vX79ejz32mEaMGKELL7xQl1xyicaPH6+XX37Z6gHQEhFP7p/l5ptvtn65O3bsmP761786Leu5556zftkPDg7WTTfd5FEd/Ik/xdRpAQEBuuKKK/TGG28oNTXVIVHoLdrm3iOm3KN97jniyTu0zc8PQWe7Ai1dfn6+tR8QEOByol979l2x7ctozH3rlufpfQsLC1VbW2tNtGtfpqfl1T23br3y8vIaVWZ0dLQOHTrUYJn+jHhq+rPYq6io0CuvvGIdR0ZG6kc/+lGTyjzfEFPePcvTTz9tDSf69a9/raSkJI/v01IQU66fxX7ep7i4OOXm5urJJ590mHNJMnu2lZSUaNu2bVqwYIGeeuopXXfddR7XwV8QT+6fJS4uTpMnT9a0adMkSQsXLlROTo7uu+8+9e/fXzabTd9//73mzZvnMMxu0qRJbuct80f+FFOnhYWFae7cuV7XqSG0zb1HTDWvlt4+J568Q9v8/EBi8iyz74Letm1bp6tp1WU/p0Zj5mmpe42n3d/t5ykyDEPHjh1TZGSkJHNupIbOc8fVs9gfe1Om/bn2Xd39HfHU9Gex97e//c3hr5J33nmnNQdOS0FMef4sH3/8sT799FNJUt++fXX//fd7fI+WhJhy/SwFBQXWfnl5uW699VZrAZKQkBAlJSWpVatW2rt3rwoLCyWZ/879/ve/V0lJiW6//XaP6+EPiCfPnuWOO+5QQkKCpk+frgMHDmj16tVOV9yOjIzUH/7wB40fP97jOvgTf4qpM4G2ufeIqebV0tvnxJPnaJufPxjKfZZVVFRY+/ZDHNyxn2+hsrKySff15t72q5/VLce+Hs31LM3x+dR9Vn9GPDX9WU5btGiR3njjDes4ISFBv/rVrxpd3vmKmPLsWQoKCqxhIkFBQZo+fXq9usBETLl+Fvtf2P/85z/r4MGDat26tR5//HFt2LBB77zzjt566y2tW7dOL7/8stUTwTAMTZ8+XV9//bXH9fAHxJPnz5KUlKSrrrrK5XdTUFCQ7rrrLo0aNcrj+/sbf4qpM4G2ufeIqeZD+5x48hRt8/MLicmzzH6eBk//2iHJ4a9C9qsneqruNZ7eu+5fo06vyiedmWexP/amTPt5Ixrz+ZyviKemP4sk/fe//9XTTz9tHQcHB+vvf/+7QkNDG1Xe+YyY8uxZnn76aau303333ae+fft6XH5LQ0y5fhb7XxaOHTum4OBg/etf/9Jdd93lsEJyQECArr76ai1cuNDqeVBdXa3nnnvO43r4A+LJs2dZsGCBRo4cqdTUVOs+sbGxuvjiizVo0CCHGPr73/+uESNGaN26dR7XwZ/4U0ydCbTNvUdMNQ/a5ybiyTO0zc8vJCbPMvt/pO0n8HXH/ouhMZn/ul8knt677heS/b3PxLM0tkz7L7yW9JcR4qnpz/LWW2/pscces+5ps9k0bdo0XXDBBV6X5Q+IKffP8tFHH2nFihWSzMVKfvOb33hcdktETLl+FpvN5nB87733ulydOzExUZMnT7aOt23bpm+//dbjupzviCf3z/L6669r+vTp1i+zffr00VtvvaW1a9fqrbfe0sKFC/Xll19q7ty51iIK+fn5uv/+++vNbdoS+FNMnQm0zb1HTDUd7fMfEE/u0TY//5CYPMtCQkKsfW+6Ndv3qLDvQdGY+3pz77rdvu3vbd+d25tnsT+37rOciTL9GfHU+J+9YRiaNWuWpk6dKsMwJJmNnilTpujGG2/0uBx/Q0y5jqmCggJNnTpVktlQ/Mtf/uIwVAb1EVOuY8q+54fNZvNozsjrr7/e4br//e9/HtflfEc8uY6nQ4cOacaMGdbxoEGDtHDhQl188cUO551eEfW9996zFgaoqanR448/rtLSUo/r4g/8KabOBNrm3iOmGo/2eX3Ek2u0zc9PJCbPsoiICGv/+PHj1heuO2VlZdZ+YyaPtb9v3fI8vW9QUJDDZLb29fC0PMl87obKqFtPb8ps6udzviKeXMeTMxUVFXr44YcdVoMLDAzUtGnTdOutt3p8b39ETLmOqaeeesoaJnL33Xe3yL/ce4uYch1Tbdu2tfa7du3q0WqbrVq1Uv/+/a3jvXv3elyX8x3x5DqeFi9ebP3yGBwcrBdeeKHeL5f2IiIiNGPGDKtHTmFhodLS0jyuiz/wp5g6E2ibe4+Yahza5w0jnlyjbX5+IjF5lsXFxVn7NTU11lL27uTn51v7nvzS4uq+kuMqoJ7et3379g5DzuzLPL1SqLdl1n2WxpZpf+7phQFaAuLJ+2cpKCjQHXfcoWXLllmvtW7dWi+++GKLXZHUHjHl/Fk+/PBDrVy5UpLUo0cPTZo0yeMyWzJiyvWzREVFNbjvTvv27a19+9Wd/R3x5PpZNm3aZO1fcskl6ty5s9vykpKSdNFFF1nHLW2uSX+KqTOBtrn3iCnv0T53jnhyjrb5+SvI/Sk4k7p27epwnJ2d7fDLhTMHDx609rt37+71fTt16qTg4GBrvqHs7GylpKR4dd9u3bo5vGf/LOXl5SooKPDoSy87O9var/ss9vc4cOCA27IkKS8vTydPnnRaT39GPLmOp7r27t2re++9V4cOHbJei4yM1Jw5c/SjH/3I7b1aAmLKeUy99NJL1r5hGC7nrzl69KjD8T333GPtJycnO8wR6O+IKdffU7169dL3338vSV4NobWfw8l+/il/Rzy5jqe8vDxrv1evXm7LOi05OVkbN26UJId/I1sCf4qpM4G2ufeIKe/QPneNeHKOtvn5ix6TZ1lCQoJDV+qdO3d6dN2uXbus/T59+nh93+DgYGsOIW/ua39e3ZWt+vXr5/AXEE/KPH78uEOjpu6z2A9Ny8rK0okTJ7yqo81mU3Jysttr/AXx5Dqe7O3atUu33nqrQ6OnW7duWrRoEY0eO8SU85iyXxVx3759WrdundNt27ZtDuW6es/fEVOuv6fs/806dOhQvbmZnMnJybH24+PjPbrGHxBPruPJfl4tT2NJckxue7Pqqz/wp5g6E2ibe4+Y8hztc/eIJ+dom5+/WlZL4xxlv9rm+vXr3Z6/a9cuh67Tl156qU/uW1JSYvXiaOi+YWFh6tevn1dlfvXVV9aKXoGBgRo8eLDD+xdddJGCgsyOvTU1NdqwYYPbMu3v269fv3rzYfg74sl5PJ22Z88e/fKXv3QY+nB6QYCW9ld8TxBT7mMK3iGmnMfUkCFDrP0TJ054tJBNaWmpMjIyrGNPejD4E+LJeTx17NjR2vf0l0hJ2r17t7Vfd/heS+AvMXUm0DZvHGLKPdrnniOe4G9ITJ4Drr32Wmv/888/V25ursvz//Of/1j7PXv2bPRfHe3vu337dm3fvt3l+e+88441VCwiIsLhl6fTRowYYe0vWbLE7V9R7Z9lyJAhateuncP77dq1c/gCW7hwocvyjh8/riVLlljHI0eOdHm+PyKeTA3Fk2T+An///fc7zMF2xRVXaMGCBV7N59aSEFOmujG1atUqpaene7S98cYbDuXav/fmm2+6rIM/IqZMDX1P9evXT71797aO//Wvf7md2H7hwoVWL4Hg4GBdfvnlLs/3N8STqaF4sr/Hli1bHHrMOJOdne2QbGqonv7On2KqudE2bxxiyjXa594hnhpG2/z8RWLyHHDttdcqNjZWkjnM5rHHHnOYK8re2rVr9e6771rHd9xxR6PvO2jQIIfhGI8//rjT1bV27typOXPmWMc///nP1aZNm3rnjRs3zlrtsaCgQM8++6zT+7/77rtau3atdXznnXc2eN5tt91m7X/++ecuV4d8+umnVVRUJEkKDQ1tkZMjE08mZ/E0ZcoUh7lOLr/8cs2ePbvB+8NETJmcxRS8R0yZnMXUL3/5S2t/8+bNmjdvntMyd+3apZdfftk6Hj16dItbWIJ4MjUUT9dff73DSu+TJ092uZLqyZMn9X//939Wojs0NFTXX3+90/P9lT/F1JlA29x7xJRrtM+9QzzB35CYPAe0atVKjzzyiHW8fv163XfffQ6TmVdXV+udd97RpEmTVFNTI8lcNfGmm25qsMwrr7xSycnJSk5O1pVXXun03v/3f/9nzWeUkZGhO+64w+Gv6YZh6NNPP9Vdd92l8vJySeZKeg888ECD5cXExOjee++1jtPS0vToo486rMR38uRJzZ07V0899ZT12rBhwzRs2DCnz2LfbfzJJ5/UK6+8ooqKCuu1goICPfzwww5/kf3Nb37j0UTA/oZ4ch5PmzZt0tKlS63jbt26aebMmQoODnb6TCCmJNffUfAeMeU6psaPH+/QI2nmzJmaMmWKQ4+I2tpaLV26VHfeeafVqy48PFwPP/yw02f3V8ST83iKjo7W7373O+s4PT1dY8aM0eeff259Dqd9/fXX+sUvfqHNmzdbrz344IPWL78tiT/F1JlA29x7xJRztM+9RzzB39gMd+OD4DNTpkzRokWLrOOAgAAlJycrLCxMe/bssf7aKJkrk/3nP/9Rjx49GizryiuvtCYNTkhI0KpVq5ze95VXXtHMmTMdXuvVq5fat2+vrKwsh1+E2rRpo9dee00//vGPnZZXXV2t3/72t1q9erX1WnBwsJKTk9WqVStlZmY6rDSamJiod99912VDJTc3V7fddpvDl214eLh69+6tyspKpaenO0x2e8UVV+if//xni5uw3R7xVD+e7rnnHq1bt8467t69uxISEpzeuyE/+9nPdMMNN3h1jb8gphr/y9SGDRscejOlp6c3uix/Qkw5j6mioiLdc889DnMzBQUFqXv37oqKitLevXsd5osKDg7Wyy+/rOHDhzst098RT87j6dlnn9Xbb7/t8FpkZKS6deum4OBg7d+/X/n5+Q7v33bbbZoyZYrTMlsCf4kpV2bPnm2tZDt48GCPhzDSNm8cYqo+2ueNRzw1Hm3zc0vQ2a4AfvDMM88oKipKr732mqqqqlRbW9vgROU9e/bUP/7xD6dfKt564IEH1LZtW82YMcP6q4b9pOenxcfH629/+5vbL5WgoCDNnj1bzzzzjBYvXizDMFRVVdXgHBSDBg3SP/7xD7e/8MfFxenNN9/UI488om+++UaSORfJ6X1748eP11NPPdXiGz7Ek6Njx47pyy+/dHht37592rdvnzePpwsvvNCr8/0JMYXmRkw51759e73xxhv685//rP/+978yDEPV1dXKzMysd26nTp30/PPP6+KLL3ZZpr8jnpybMmWKkpKS9Le//c1KapaUlOjbb7+td254eLgeffRR3XLLLS7LbAn8JabOBNrmjUNMOaJ93jTEE/wFPSbPQXv27NF7772ndevWKScnRydOnFBERIT69u2rkSNH6mc/+5latWrlsgxv/uJxWk5Ojt555x2tWbNGBw8eVFlZmcLCwpSUlKSrr75a48aNU1hYmFfPsnXrVr3//vv66quvlJubq8rKSrVv314XXHCBrrvuOl177bVeNVIMw9CKFSu0dOlSbd26VQUFBQoICFBcXJwuuugi/fznP2+x/zA5Qzz9cK2zoQvemDhxoiZNmtTkcs5nxJT3+Kusa8SUazt37tSSJUu0fv165eTkqKysTO3atVO/fv107bXX6sYbb1Tr1q29KtOfEU/OlZWVKS0tTf/73/+Unp5urX4bGRmp5ORkDR06VGPHjvW6nv7On2Kqrqb2RqJt3jjElIn2efMgnrxH2/zcQmISAAAAAAAAgM/Rnx4AAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzQWe7AgAAAPCdgwcP6qqrrnJ7ns1mU1BQkNq2bauYmBh169ZNw4cP18iRI9WuXTsf1PTclZaWpscff1ySlJCQoFWrVjW5TMMwlJaWpr59+6pfv3713q/7c/vss8+UmJjY5PsCAACcTfSYBAAAQD2GYaiqqkolJSXavXu3Vq5cqSeffFJDhgzRjBkzVFlZebar6DcyMzN1++2364knnlBpaenZrg4AAIDP0GMSAACgBUtKSlJsbGy912tra3Xy5EkVFRXp0KFDqqqqkiRVVVVp3rx5WrVqlV599VV17NjR11X2O2PGjLE+XwAAgJaExCQAAEAL9qtf/Upjx451eU5lZaW+/PJLvfzyy/ruu+8kSbt379add96pd999V5GRkT6oqf8iKQkAAFoqhnIDAADApVatWmn48OH6z3/+o9tuu816/cCBA9ZcizizEhMTlZ6ebm3MLwkAAPwBiUkAAAB4JDAwUE8++aSuvvpq67VVq1ZpzZo1Z7FWAAAAOF+RmAQAAIDHbDabnn32WbVt29Z6bd68eWexRgAAADhfMcckAAAAvBIdHa2f//znSk1NlSR9/fXXys7OVufOnV1el5mZqSVLluh///ufjhw5otLSUkVERKhz584aOnSoxo0b59ViOsePH9eyZcv01VdfaceOHSouLlZpaalCQkLUrl07JScna8iQIRozZozCwsI8KvPIkSNauHCh1q5dq/3796u6ulrx8fEaMmSIbr31ViUlJXlcP1fS0tIaHAZ/5513WvtjxozRc889J0k6ePCgrrrqKuu9zz77rN5w7iuvvFKHDh2SJG3dulWtW7fWvn379M4772jt2rU6cuSIbDab4uPjNXToUN122231fmYrV67U4sWLtWvXLuXn56tt27bq16+fbrjhBl1//fUKDAz06Pm+/fZbffzxx9qwYYNyc3N1/PhxRUVFqXv37ho2bJjGjRunqKgozz4sAADgt0hMAgAAwGujRo2yEpOStGbNGt1+++0NnnvixAlNmzZNaWlpqq2tdXivoKBABQUF2rJli+bNm6f77rtPEydOlM1mc3n/BQsWaM6cOSopKan3XmlpqUpLS3Xo0CGtWrVKs2fP1rRp03Tttde6LDM1NVWzZs1SRUWFw+tZWVnKysrSe++9p9/97neKiYlxWc65Yt68eXrxxRfrLa5TWlqqzMxMLVq0SLNmzdLll1+u4uJiPfbYY1q9erXDuSUlJVq/fr3Wr1+vDz/8UHPmzFGrVq2c3rOoqEhPPvmkVq5cWe+9vLw85eXlacOGDZo7d64eeeQR3Xrrrc3yrAAA4PxEYhIAAABeS0lJUWhoqMrLyyVJW7ZsaTAxWVxcrHvvvVfbt2+3XgsMDFTv3r0VERGh4uJiZWZmyjAMVVRU6KWXXlJmZqZmzZrltHfetGnT9Oabb1rHNptNXbt2VWxsrGw2m/Ly8pSVlWUlQY8ePaoHH3xQ//nPf3ThhRc2WOZf//pXzZ8/3+G1rl27Ki4uToWFhdqzZ4+qqqo0Y8YM9e/f36vPqiFxcXEaOnSoJGndunXW6ykpKYqIiJCkJvXOfPHFF/Xqq69KkoKDg9W9e3dFRkZq//79ysvLkySVl5fr4Ycf1gcffKBHHnlE27ZtkyTFxsaqW7duOnbsmNLT02UYhlXPGTNmOF3wKDs7W7/61a+UnZ1tvdaqVSslJSWpbdu2ys3N1f79+yWZydFnnnlG+/fv1xNPPNHo5wQAAOc3EpMAAADwWkBAgDp37qz09HRJ0r59++qdYxiGJk+ebCUlAwICdM899+iee+5xGMabl5en2bNn65133pEkffLJJ3rxxRf18MMP1ytz7dq1DknJESNG6PHHH683BDw3N1f//Oc/tXDhQklSbW2t5syZo1deeaVemStXrnRISiYnJ2vatGm64IILrNf27t2rp556Shs3btSOHTvcf0BuXHbZZbrsssus+532hz/8QZdcckmTyz+dlBw7dqweeughxcXFSTJ/JqmpqfrrX/8qyUxOjhkzRmVlZYqLi9O0adM0bNgwq5zdu3dr4sSJ1s934cKFmjhxosLDwx3uV1FRoUmTJllJydatW+vBBx/ULbfcotDQUOu8rKwsPf/881aPytdff129e/fWTTfd1ORnBgAA5x8WvwEAAECj2CcDjxw5Uu/9JUuW6IsvvpBk9mqcMWOGfv/739ebWzA2NlZTp07Vo48+ar02b948q3edPfuFdgYNGqS///3vDc5LGRcXp2eeeUbXXHON9dr69etVU1PjcF5tba1eeOEF67hXr156++23HZKSktSjRw/Nnz/f6uV4Prj11ls1ffp0KykpmT+Hu+++W0OGDLFeKysrU3h4uN5++22HpKRkfh4zZsywjk+ePKlvvvmm3r1ee+017dy5U5KZlJw/f77uueceh6SkZPZCfemll3TLLbdYr02fPl3Hjh1r2sMCAIDzEolJAAAANEpISIi1f/z48Xrvv/baa9b+9ddfr9GjR7ss7/7771dKSookM2G4YMECh/fLysochoQ/8MADCghw3ZwdMWKEtV9ZWani4mKH97ds2eKQAH366afr9QY8LTg4WNOnT3d47nNVeHi4HnnkEafvX3311Q7Ht99+u9PFi/r37++Q3MzKynJ4v7KyUm+99ZZ1fPfdd+vHP/6x03vbbDY98cQTVpnHjx/XokWLnD8MAADwWyQmAQAA0ChBQT/MClS3J2JWVpY1zFsyhxR74sYbb7T216xZ4/BeWFiYvvnmG33xxRd66623rKHQrtRdqObkyZMOx/b36Natmy6++GKX5cXGxtZL6p2LhgwZ4jTBKqnBFb1dsU9MlpaWOrz39ddfq7Cw0Dr25GfdqlUr/fSnP7WO6/6sAQBAy0BiEgAAAI1SVlZm7YeFhTm8V3e4b48ePTwqc8CAAdb+4cOHlZOT4/C+zWZTXFycLr74YperQ5eVlenLL7/UkiVLHF6vuyr4pk2brP2LLrrIozpeeumlHp13NvXu3dvl+23atHE47t69u8vzW7dube3X/Qztf9bBwcHq0qWLR3W0/1lv3bpV1dXVHl0HAAD8B4vfAAAAoFHse87V7Z1Xd7hv3bkLPZWbm6v4+Hin7+fk5GjXrl06cOCAsrOzlZ2drT179ujgwYP1EmiSrBWmTzu9QrVk9pj0RK9evTyr/FkUHR3t1fl1E8t12Ww2p+/Z/6yrqqocFvPxVEVFhUpKSur1cAUAAP6NxCQAAAAaxT6pFxsb6/Becy1mUlJSUu+1yspKLVq0SIsWLVJmZqbL64OCglz2xCsqKrL227Zt61Gd2rVr59F5Z5N9D0dPuEo8utNcP+ujR4+SmAQAoIUhMQkAAACvlZSU6MCBA9bx6UVrTrNPBrZu3drt3I3O1E0C5uXl6YEHHtD333/f4PlRUVFKSkpSSkqKBg8erICAAN17771Oy6+qqvK6Tq6GkJ8rmpJo9Jb9zzoiIqJeLHjqfPhcAQBA8yIxCQAAAK999913DscDBw50OLZPKIaEhDis0N1Y1dXVmjRpkkNSctCgQRoxYoRSUlLUs2dPRUVFOVyzfv16l2WGh4dbvSbrLurijP3cmnD8WScmJjbLzxoAALQMJCYBAADgtQ8++MDab9OmjX7yk584vG+/ivOxY8dUVlbmdh5Dd1asWKFvv/3WOn7wwQf1m9/8xuU1DQ0Ft9e1a1crMbl7926P6mHfUxSOP+vDhw+fxZoAAIDzDatyAwAAwCu5ubn69NNPreOrr7663uI3gwYNsvZra2u1ceNGj8reuHGjpkyZoldeeUUffvihjh8/br23Zs0aaz8uLk4TJkxwW96uXbscjusuiGNfz40bN6qmpsZtmZs3b3Z7Tkti/xkWFxcrPT3do+uWL1+uZ555Rq+++qqWLl3q0WcPAAD8C4lJAAAAeMwwDP3xj3+05mYMCAjQfffdV++8vn37OvSke/311z0q/x//+IcWLVqkmTNnatq0aQ7zDubn51v70dHRCghw3ZQ9duyY3n//fYfX6ia/RowYYe3n5ubqk08+cVnm8ePHtWTJErfP4Q1fzgd5Jlx66aUKCQmxjhcsWOD2msrKSs2YMUP//ve/9cILL2jOnDkKDAw8g7UEAADnIhKTAAAA8EhNTY2mT5+utWvXWq/dfPPN6tOnT71zAwMDddddd1nHX331lebOneuy/Lfeektff/21dTx+/HgFBwdbx5GRkdZ+ZmamcnNznZZVUVGhxx57zGHlcKn+YjcXXnihLrnkEuv4z3/+s7Kzsxss0zAMTZ061WEl7+Zgv4J2RUVFs5btCxERERo3bpx1nJaWpg8//NDlNbNmzXIYEn/LLbecsfoBAIBzF4lJAAAAuFReXq6lS5fqpptucuj5eMEFF+jxxx93et3tt9+u/v37W8ezZs3SY489Vm8ewsLCQj333HOaNm2a9VpcXJzuv/9+h/OGDh1q7VdVVenXv/51vaHaVVVVWrlypcaPH6/PPvusXp3sh4afNnXqVLVp00aSVFBQoFtvvVWfffaZDMOwzsnNzdWDDz5Yrwdmc7BPuH7xxRfNXr4vTJw4UZ06dbKO//CHP+ivf/1rvSRudna2Jk+erPnz51uvJScn66abbvJZXQEAwLmDxW8AAABasNTUVH388cf1XjcMQydPnlRBQYEOHjxYbwj0RRddpJdeesmht19drVq10osvvqi77rrL6oX4/vvv67///a969uyp6Oho5efnKzs726EnY3h4uGbPnq2IiAiH8q677jrNnz9fGRkZkqQdO3boxhtvVGJiojp27KjS0lJlZ2c7rJodHR2tsrIyqyei/XDw07p27arp06dr8uTJqqqqUl5enn7zm98oNjZW3bp1U1lZmXbt2mXNTzlixAi3Q769kZSUpJycHEnSm2++qU2bNikyMlI9e/bUlClTmu0+Z1JUVJRmz56t++67T0VFRTIMQ/Pnz9frr7+uXr16KSIiQrm5ufViKS4uTi+99JJDz1gAANBy0GMSAACgBcvIyNC6devqbf/73/+0efNmZWVlOSSS2rVrp0cffVQLFixQ+/bt3ZafmJiod99912EuR8MwtHv3bm3YsEF79+51SEr2799f//73vzVw4MB6ZQUHB2vevHlKTk52KCs7O1sbN27Uzp07HZKSw4cP1/vvv+9wvrOFa0aPHq358+crOjraei0vL08bN27U999/byUlb731Vj344INun9sbv/71rx0Sc7t27dJXX32l1atXN+t9zrQBAwbo3XffdRgaX1NTo/T0dG3cuLFeLA0ZMkSLFi1Sly5dzkZ1AQDAOYAekwAAAKjHZrMpJCREbdu2VWJiopKSknTZZZdp+PDh1rBnT0VFRenFF1/Uzp079dFHH2nDhg06fPiwjh07puDgYMXFxSklJUWjR4/W8OHDXS5q07FjR7333ntasmSJPvnkE+3cuVMlJSWy2Wxq166dunbtqv79+2v06NHWatFXXHGFtm7dKkn66KOP9Pvf/77BZxg8eLA+/fRTvffee1qxYoUyMjJ04sQJxcTEaODAgfrFL36h//f//p/27Nnj1fO786Mf/Uhvv/225s2bp2+//VYlJSVq3bq12rZtq4qKCpe9Us81iYmJeuONN7Rp0yZ98skn2rRpk3Jzc1VaWqo2bdqoU6dOuvDCC3X99ddr8ODBZ7u6AADgLLMZ9pPnAAAAAAAAAIAPMJQbAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD73/wFf/jRm+BluggAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.015, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.015, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate / (1 + rate * deadtimes_plot), \n", + " label=r'$\\frac{r_{in}}{1 + r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length, paralyzable=True)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAARLCAYAAAADAKrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDYOxm8iaZTDZIoSIdr/sqWhRaVEp0UabQmkRFRX1pVURUUjJLvuWfQ3DmJgxGGZhznb//pjm7pxZz5g5c2Z5PR8Pj+7rnPtc5zrn3Ob79Z7P+VwWwzAMAQAAAAAAAAC8zs/XCwAAAAAAAACA4oJAFgAAAAAAAADyCYEsAAAAAAAAAOQTAlkAAAAAAAAAyCcEsgAAAAAAAACQTwhkAQAAAAAAACCfEMgCAAAAAAAAQD4hkAUAAAAAAACAfEIgCwAAAAAAAAD5hEAWAAAAAAAAAPIJgSwAAAAAAAAA5BMCWQAAAAAAAADIJwSyAAAAAAAAAJBPCGQBAAAAAAAAIJ8E+HoBAACg+Dlx4oRuvPFGj861WCwKDAxUcHCwqlSpokaNGqlt27a6/fbbVaZMGS+vtOCZNGmSJk+eLElq06aNvv32Wx+vyHfuv/9+bdq0SZI0ZMgQPf3007meMywszDz+5ptv1LZt21zP6UtF7fV4au7cuRo5cqQk6corr9Ty5ctzPadhGJo7d64aN26sJk2apLs/7c+1ZcuWqUaNGrl+XgAAUPRQIQsAAAo0wzBktVoVFxenQ4cOacGCBXr11Vd14403atasWb5eHoBi4NChQ7rvvvv08ssvKz4+3tfLAQAAhRwVsgAAwOcaNmyoqlWrZnq/1WpVQkKCjh07psTERElSXFycXn/9dcXGxuqpp57Kr6UCKIZ69+4tm83m62UAAIAigkAWAAD43EMPPaQ+ffpke57VatWPP/6o9957T8nJyZKkyZMnq0OHDmrRooWXVwmguCKMBQAAeYmWBQAAoNAICgrSfffdpwkTJpi3OZ1OTZo0yYerAgCpRo0aOnDggPmH/rEAACAzBLIAAKDQuemmm9SuXTtzvH79ep09e9aHKwIAAAAAzxDIAgCAQumWW24xjx0Oh/7++28frgYAAAAAPEMPWQAAUCil/Trw6dOnMz3XarXqjz/+0Pr167Vz506dPXtW58+fV1BQkMqVK6errrpKbdu2VZ8+fVS5cuVM57n//vu1adMmSdKCBQtUu3ZtTZkyRfPnz1dMTIzKly+vhg0bqm/fvurWrVu6x69fv16rV6/W1q1bderUKZ0/f16SFBISourVq6t169bq3r27GjVqdDlvibp3766DBw9Kkjp37qzPP//co8c99dRTWrp0qSSpX79+Gjt2rObOnauRI0de1jokaciQIXr66aczvC8xMVG//fabNmzYoD179ujcuXOKj49XqVKlFBISorCwMLVv3169e/dWmTJlcvS8kZGR+vbbb7V69WqdOnVKQUFBqlatmjp16qTevXvrqquuuuzXlJHt27fr119/1caNGxUdHa3ExERVqFBBdevWVadOndS3b19VqFAhT59TSulpunDhQi1atEh79+7V+fPnVb58eYWFhalv3766/fbbZbFYcjzvoUOHNH/+fK1du1YnT55UfHy8ypUrp5o1a6pjx47q27evqlWr5vF83visT548qZkzZ+rPP/9URESE7Ha7rrjiCrVv314DBgxQw4YNc/y6M5LZ34EHHnjAPO7du7feeecdSdKJEyd04403mvctW7Ys3c+prl27KioqSpK0c+dOlShRQkePHtWPP/6oP//8UydPnpTFYtEVV1yhjh076t5771XNmjXd5li6dKl++ukn7d+/X6dPn1bp0qXVpEkT9ezZU927d5e/v79Hr89X1y4AACCQBQAAhVTaTXZKlSqV4Xnz58/X+PHjFR0dneEciYmJ+ueff7RmzRp98sknevHFF3Xvvfdm+/xOp1NPPvmk1qxZY94WExOjmJgYdezY0e3c3bt3a9SoUdq9e3eGc126dEkxMTHavn27pk2bpr59+2rUqFEKCgrKdh2uevXqpffee0+StHbtWp09e1YVK1bM8jFxcXFatWqVOfZkc7Xc+Oqrr/TZZ58pLi4u3X3x8fGKj49XVFSUli9frkmTJmns2LFu1dBZ+emnnzRmzBhdvHjRvO3ixYs6f/689u/fr+nTp+uBBx7Q888/73FolZmzZ8/qtddeM4NsV6nXwcaNGzVlyhQNHz5cAwYMyNXzudqzZ4+GDx+uiIgIt9tPnz6t06dPa82aNZo5c6Y+/PBDj+e8ePGiGcQ7nU63+2JjYxUbG6u//vpLn3/+uR599FENGTIk28DXG5/1l19+qYkTJ5qb+qU6duyYjh07pjlz5uiZZ57J8hcrBcnnn3+ujz/+ON3Ps/j4eB06dEizZs3SxIkTdcMNN+jcuXMaMWKEVq5c6XZuXFyc1q1bp3Xr1mnBggX67LPPsvzZ4ctrFwAApCCQBQAAhdKBAwfcxhltoDN9+nS9++67brddeeWVuvLKK+Xn56ezZ8/qyJEjstvtklKC0dGjR6tixYq6/fbbs3z+Tz/91C2MTeXv76//+7//M8ebN2/WY489pqSkJPO2ChUqqE6dOipVqpQuXLigI0eOmPcbhqE5c+YoKChIo0aNyuZdcNejRw9NmDBBdrtddrtdixYt0n333ZflYxYtWmSGQXXq1NE111wjSQoNDU0XLGdl69atZhBqsVjUrFmzdOeMHTtW3377rTm2WCyqXbu2qlatKovFopiYGB07dswMBM+fP6+hQ4fqhx9+UIsWLbJ8/iVLlujgwYMyDENSyvVQvXp1xcbG6siRI5Iku92u6dOn6+TJk5o4ceJlVZBKKVW4Dz30kCIjI83bgoKC1LBhQ5UuXVrR0dFmWBofH68333xTERERevnlly/r+Vzt2LFDDz74oNv1FBISovr168vhcOjgwYO6ePGiNm7cqEceecSjOc+dO6dHHnnE7RcG/v7+atCggcqVK6dz587p0KFDMgxDycnJmjx5sg4dOqSJEydmGmx747N+9913NX36dLfbateurdDQUJ05c0aHDx+WzWbTBx98oPDwcI9ee1Zc/w64/l1v2rSpypUrJ0m5qsb9+OOP9b///U+SFBgYqLp166p8+fKKiIhQTEyMJCkpKUnDhg3TL7/8ouHDh2vXrl2SpKpVq6pOnTq6cOGCDhw4YF73a9as0QcffJBpdbsvr10AAPAfAlkAAFDo2Gw2zZs3zxxXrVo1XTBy6NAhffDBB+a4TZs2euONN1SvXj23886fP6+vv/5an332mRkOffLJJ9kGsosXL5aU0sbgwQcfVPny5bVv3z5t27ZNVatWlSQlJydr5MiRZnhWrVo1vfXWW2rfvr1bGGiz2fTrr79q3LhxZjXhzJkzNWTIEFWqVMnj96VKlSq6/vrrtWLFCkkpbRWyC2R/+eUX87hv377mcYcOHdShQwePnnf27NlugdUzzzyjzp07u53z559/ugV0t956q0aOHJnu6+/R0dH69NNPNXPmTEkplcifffaZpk6dmuUaUgP6+vXra/To0WrVqpV538GDB/Xqq69qx44dkqTffvtN1157rUeV0GklJyfr6aefNgOtEiVKaOjQoerfv7+Cg4PN844dO6b33nvPrEL8+uuv1aBBA/Xr1y/Hz5kqISFBQ4cONa+nkiVL6qWXXtKdd95pVkQmJSVp+vTp+vTTT7Vnz55s5zQMQy+++KIZxvr5+WnQoEEaNGiQ29fVY2JiNGnSJP3444+SUq7/jz/+WMOGDUs3pzc+66VLl7qFsWFhYRo7dqxb8H/kyBGNGjVKmzZt8ui1Z8f170BYWJh5+wsvvKC2bdvmev7UMLZPnz569tlnFRoaKinlM/nyyy/NXyYlJSWpd+/eSkhIUGhoqMaOHatOnTqZ8/z9998aMmSIjh49Kum/nx1ly5Z1ez5fXrsAAMAdm3oBAIBCxWaz6fXXX3er8Lr//vvTnTdt2jSz8rVGjRqaOnVqujBWksqVK6dnnnlGAwcONG87dOhQhi0O0rr//vv16quvqkaNGipTpoyuvfZaPf744+b9v/76q7lOf39/TZ06VR06dEhXmRkYGKhevXpp3Lhx5m1Op1Nr167Ndg1p9e7d2zzevn27jh8/num5x44d0/bt28319ezZM8fPt2HDBr355pvm+LbbbtOTTz6Z7jzXfrYtW7bUhx9+mGEv0tDQUL355pu6+eabzdvWrVsnh8OR7VoaNGig77//3i2MlVKqGL/++mu3ysuJEye6tTbw1LRp07Rv3z5JKYHW9OnTNWjQILdAS0qp3Jw8ebL69+9v3jZu3DhduHAhx8+Z6uuvv9bJkyclpVScfvLJJxowYIDb19ODg4M1ZMgQvf322x7NOX/+fK1evdqc84MPPtDzzz+frndo1apVNWbMGD333HPmbZ9//nm6tgmpt6fKi8/a6XTq/fffN8f169fXjBkz0lVhX3XVVZo+fXqOKrt9bcCAARo3bpwZxkopn8PDDz+s9u3bm7clJCSobNmymjFjhlsYK6W8H66/fLp06ZK2bduW7rl8ee0CAAB3BLIAAKBAczqdio+P1/79+zVjxgz16dNHc+fONe+vX79+ukDWMAxz8y1Jeuihh9KFDmml7V156tSpLM+3WCwaPHhwluds2LDBPL7pppvcquwy0rlzZ5UsWdLjNWSkS5cuKl++vDmeP39+pue6Vsd26NDBLRTyREREhIYOHWq2PGjSpIm5wZGrhIQEt6/DP/744/Lzy/r/ht56663msdVq1blz57Jdz3vvvWd+lTytUqVK6e233zbD8Pj4eC1cuDDbOV1ZrVZ999135vjhhx9W69atMz3fYrHo5ZdfNt/XxMREzZo1K0fP6cr1s+zdu3eWwWOvXr100003ZTvntGnTzOPu3btnuBmdq8cee0xNmzaVlPJ386uvvnK73xuf9V9//eUW/L7xxhvpqj9TBQYGaty4cZn2lC5IypYtq+HDh2d6f9rP77777ku3wVeq8PBwt7+/x44dc7vf19cuAABwRyALAAB8buTIkQoLC8vwT+PGjdW6dWv17NlTo0eP1sGDB83H1apVS5988km68MVisWj58uVau3atZs6cqR49emS7hipVqriNL126lOX59erVy3bjoPfee09bt27VvHnz9MILL2S7Bn9/f7fKxLQbF3kiKChId9xxhzlesGBBpue6Bnw53czr/Pnzevzxx80WC5UqVdKnn36aYRBWpkwZbdu2TatXr9Z3333nUSuEtO9tdp9HmzZt1KRJkyzPqVevntq0aWOOU1s7eGrLli06c+aMOfbkPQsKCnLrKey6gVpOHD161C2UvOuuu7J9THYtGY4dO+bWi9nTa6BXr17mcdrX443P2vU56tSpo2uvvTbL+apWrepRGO1r7du3zzRYltL3xe7atWuW87kGsvHx8W73+fLaBQAA6RHIAgCAQickJEQDBw7U3LlzVadOnUzPq1y5slq2bKmQkJBMz0lOTtbWrVv1/fffu92edqf5tBo1auTRWsuUKaMmTZpkWtmW+lwHDx7Ud9995/a1YE++pp8R17AlIiJCO3fuTHfOli1bzHYK5cuX14033ujx/DabTc8884wZEAYGBmrSpEkZfi09lcViUWhoqK699tosd4BPSEjQ+vXr01X2Zvd5eNrv1rUqMKOvdWfF9fzAwEDVqlXLo8ddffXV5vHOnTvNVho5sWXLFvM4KCjIrFLNSuvWrRUQkPmWEWlf/1VXXeXRWlxfzz///JOukjuvP+vNmzebx2nbUWSmXbt2Hp3nSw0aNMjyftdqeUmqW7dulueXKFHCPE77Hvry2gUAAOmxqRcAAPC5hg0bmhthpRUQEKDSpUurTJkyqlWrlsLDw9WiRYscfyX57Nmz2rt3r44fP67IyEhFRkbq8OHDOn78eIYhQ+qu5ZmpWLFijp5fStmcZ9++fYqIiDDXcPToUR05ciTDfqbZrSEz4eHhatiwoVlNPH/+/HT9Nl1DsP/7v//LMjhLa/To0W7tGEaNGuVxUJbq1KlT2r9/f7rP48SJExmGr9m9Fxn1B86Ia6h17tw5JScnuwVZWXH9GrjNZsu2BUVGkpOTFRcXl211dVquPY2vvPLKLIPWVEFBQapZs6a52VNaab/WnrY3aU7WdsUVV2R6f24/65iYGPM4q1/AuKpfv75ni/ehnGzYJ6X8cicraXtTu/LltQsAANIjkAUAAD730EMP5fgr854wDEPz58/Xd999l2GVqKuAgIAcVX9lF4642rZtmz7//HOtWbPG7LeaEYvFIovFkm01qCf69Olj9nP97bffNHLkSPn7+0tK6Sf522+/uZ3rqS+//FI//vijOb7//vs93n3darVq1qxZmjVrlg4dOpTluTn9PLL66ndW58XFxXncOzevNjU6f/58jkOts2fPmsc5ufYy66kr5d3rSW1b4SovP2vX1166dGmP1pRVVXxB4ekvAlJlFbhmx5fXLgAASI9AFgAAFEkJCQl65plntHbt2gzvL1u2rBo0aKDw8HC1adNGtWvX9qjXbKrsNipKNX78eH3xxRcZ3leiRAnVrVtXTZo00TXXXKNOnTqpf//+ioqK8ngdmenRo4fGjx8vu92u2NhYrVu3Ttdff70kafny5WZA07BhQ7evJWdlxYoVeu+998xx+/btNXLkSI8eGxMTo8cff1x79+7N8P4KFSqoYcOGatq0qdq0aSM/Pz898sgjHs2dE2mrL9N+LTwrrqFhuXLlPGobkJGcVCOnyirIv9zncn09JUqUyLY3a2bShp95/Vlfzmu/nPc4v+UmYM0pX167AAAgPQJZAABQJL388stuYWzDhg31f//3f2revLnq16+fbhOvtF/fzgvfffedWxhbqVIl9ezZU61atVJYWJiuvPLKdMFuXvVorFSpkjp16qTly5dLkn799VczkF24cKF5Xt++fT2a78CBA3ruuefM6t1atWpp4sSJZtVtVux2u55++mm3gK5ly5a69dZb1bRpU9WrV89tMzNJWrdunUfrSpWYmOjReefPnzePLRaLx5W1knvwWKNGDU2bNs3zBeaS6zrTbtiUlYSEhEzvc309pUqVypPX443PumzZsmaVrKevPavXXRz58toFAADpEcgCAIAiZ+fOnVq8eLE5vuuuu/Tmm29mWdXqGtTlBavVqkmTJpnj8PBwff3119kGgHn11WIppRVBaiC7YsUKORwO2e12rVmzRlLK5j6eVAXHxsZq8ODBZuhZunRpffbZZypfvrxH61iyZIm2b99ujocOHaonn3wyy8dk9DX4rJw4ccKj8w4fPmwe16xZ0+NKZ8l9F/t//vnH88Xlgdq1a5vHJ06c8Kj3rWEY5sZtGXF9PRcuXFBCQkKO2iFkxBufde3atc1A9u+///ZoHcePH/fovOLCl9cuAABIz/P/BwoAAFBIrFq1yjwODAzUSy+9lG3wtm/fPrdxbvu4/vXXX25B07Bhw7INY48ePeq2udflbuqV6oYbbjCrEePi4rRlyxatW7fOfI7OnTtnuzlZcnKynnrqKTPE8fPz0wcffJCjTZNcP4/Q0FANHjw428fs37/fbZzd5+EaAmbFtRqzZcuWHj0mo/PPnTunAwcOePS433//XW+++ab+97//adGiRXI4HDl63rTPbbfbtWnTpmwfc+DAgSwrSl3ndDqdHs0pSZs2bdLrr7+uqVOnasGCBW7Vyd74rF3XuWnTJo/ev61bt2Z7TnHiy2sXAACkRyALAACKnNOnT5vHwcHB2Vb92Ww2/fDDD2635TZ4cF2DpHQtEjLyzTffuI1z274gMDBQ3bt3N8fLli0zK2Ylzzbzevnll93CzmHDhqlLly45Wofre1GpUqVsw/ELFy5o3rx5brdl93ksX75csbGxWZ6zdetW7d692xzffPPNWZ6fVrt27VSqVClz/NVXX2X7GKvVqg8++EDff/+93n//fX322WcetXlIq2HDhrrqqqvMcdprJSMzZ87M8v7GjRu7VU5+/fXXHq3lo48+0qxZszRhwgSNHTvWra+oNz7rW2+91TyOjo52q37PSGJioubPn5/t68iJ/Oz36g2+vHYBAEB6BLIAAKDIcf0q/fnz57Vz585Mz3U4HHrrrbfSVche7iZKGa1BktkmIDMLFixIFwrndg2Se+i6dOlSrVixQlJKWNa5c+csHzt58mS3frO9e/fWY489luM1uL4Xhw4dUnR0dKbnJicna8SIEYqJiXG7Pbv34tKlS3rppZcyDW7Pnj2rl19+2RzXqlVLN954ower/0+5cuXceu7OnTtXCxYsyPIxEydOdPv6fP/+/XP0nK4ef/xx83j16tWaMWNGpueuW7dOs2bNynI+f39/Pfjgg+Z4w4YNmjJlSpaP+e6777RlyxZzfOeddyowMNAce+OzbtGihdq2bWuO33rrrUxbMRiGoTFjxpgtDvKKa3uI5OTkPJ07P/j62gUAAO4IZAEAQJHTsWNHt/Hw4cPdQiQpJbhZv369Bg4cmC4IlTzfJCoz11xzjYKDg83xRx99pHnz5qULDA8dOqRXX31Vzz//fLoWBUlJSblag5RSBdmoUSNJUlRUlFnB2KNHDwUEZL6dwKJFizR58mRz3K5dO40ZM+ay1uD6edhsNj3xxBPpvqZus9m0dOlS3XnnnVq2bFm6OTz5PNasWaNBgwYpIiLC7fbNmzerf//+5u1+fn4aM2ZMjvrHphoyZIiqV69ujl944QW9++676QLAyMhIvfjii5o+fbp5W1hYmPr165fj50zVq1cvdejQwRyPGTNG48ePd9vAymq1asaMGXriiSc8artx3333KTw83BxPnDhRI0aMSNdn9MyZM3rnnXc0duxY87bQ0NB0Ab23PusxY8aoZMmSklJ6Gg8YMEDLli1z+zsTHR2toUOHpqu4zQuuQfPq1avzfP784MtrFwAAuGNTLwAAUOS0adNGHTt2NKtSIyMjde+996p69eqqXr26Ll68qKioKLcer8HBwQoKCjJvS9tyIKeCg4P1xBNP6IMPPpCUEpSNGDFC77zzjmrVqiV/f3+dOnVKJ0+edHtctWrVzNtyu4ZUffr00dtvv53utsycPXtWI0aMcAu7KlWqpBEjRujSpUuy2+1yOBzZ9rh99913VblyZd1xxx2aPn26Dh48KEnas2ePevXqpRo1aqhatWqKj49XZGSkW7BYqVIlJSQkmNWI2b0Xt956qxYvXqz169frtttuU/369VWhQgVFRUUpKirKPM9isWjkyJFq165dlvNlpkKFCpo0aZIeffRRnT17VoZhaPr06fr6669Vv359lStXTtHR0Tpx4oRb+B4aGqrJkye7VZNejnHjxmnQoEE6dOiQDMPQF198oW+++UaNGjVSQECADh06ZG4MV69ePVksliw3wgoKCtLHH3+sBx980Kw6nTdvnn7++WfVq1dPlSpV0unTpxUZGelWuVq2bFlNmjRJ5cqVc5vPW5917dq1NW7cOL344ouy2WyKiYnRk08+qapVq6pOnTpKSEjQ/v37zRA69XrIKw0bNtSpU6ckSd9++602b96s8uXLq169enr99dfz7Hm8ydfXLgAA+A8VsgAAoEj68MMP1aZNG7fb/vnnH23ZskV79uxxC2NbtGihOXPm6LrrrjNvS1tRezkeffRRt6+ESymba+3cuVN//fWXWxh7xRVXaMqUKW4Vh9u3b8+TTXS6d+/uFqZcffXVatiwYabnJyUlpfta9q+//qqFCxdq6dKlWrlypf7880+tWbMmyz+XLl2SlNLL9vPPP1dYWJg5n2EYioyM1KZNm7Rv3z63gK5z586aN2+e2/nZbdJ0zz336LnnnpO/v78Mw9ChQ4e0adMmtzC2QoUKmjBhgh544IFs3rGsXX311Zo9e7bb1+gdDocOHDigTZs26dixY26fW/v27TVr1izVqlUrV88rpYRj33//vVslanJysnbs2KGtW7eaYWyDBg00depUlS5dOts5a9SoodmzZ7v1ajUMQ3///bc2btyoI0eOuIWx4eHh+v7779W8efN0c3nzs+7WrZumT5+uSpUqmbfFxMRo06ZN2rt3rxnGDhgwQEOHDs32defEE0884fZ3aP/+/dqwYYNWrlyZp8/jbb68dgEAwH+okAUAAEVS2bJl9fXXX2vx4sVauHCh9uzZozNnzsgwDJUtW1Y1atRQ48aNdfPNN+v666+XJHXp0kW//fabpJSvv0dHR7ttepRTqdWY3bp106xZs7Rt2zZFR0fLarUqODhYoaGhCgsLU8eOHdWtWzeVKFFC//zzj8aMGSOn06nz58/rjz/+0O23356r96JixYpq1aqVNmzYIMmzzbzyWrVq1TRnzhzNnz9fixcv1r59+xQXFyeLxaKQkBDVrl1b4eHh6tatm7kjfJcuXcz+vwsXLtTzzz9vfm09I4899pg6dOig7777Tps2bVJMTIyCg4NVt25dde3aVXfffXe6is7LVaNGDX3zzTfavHmzFi9erM2bNys6Olrx8fEqWbKkqlevrhYtWqh79+7pfjGQWyEhIZo2bZpWr16tefPm6a+//lJsbKxKly6tOnXqqFu3brrnnnvc+p5mp0KFCvr444+1b98+LVy4UBs3btQ///yjCxcuKDAwUKGhoWratKm6deumzp07Z9nuwZufdZs2bfTHH39ozpw5WrJkiQ4ePKiLFy+qcuXKat68ue655x5dd911Onz4cA7f1axdc801mjFjhj7//HNt375dcXFxKlGihEqXLq3k5OQcvde+5strFwAApLAY2X3XDAAAAIWa1WpVhw4ddOHCBZUsWVJ//vmnQkJCfL0sAAAAoFiiZQEAAEARt2zZMvOr7N26dSOMBQAAAHyIQBYAAKCImzFjhnk8YMAAH64EAAAAAD1kAQAAiiin06mPP/5YmzdvliS1a9dOTZs29fGqAAAAgOKNHrIAAABFyNtvv62//vpLJUuW1JEjRxQbGytJCgoK0rx581S/fn0frxAAAAAo3qiQBQAAKEKqVKli7lafKiAgQGPGjCGMBQAAAAoAAlkAAIAipGXLlqpXr54iIyNVpkwZNWvWTI899phatWrl66UBAAAAEC0LAAAAAAAAACDf+Pl6AQAAAAAAAABQXBDIAgAAAAAAAEA+oYcscmXr1q1uYz8/Mn4AAAAAAIDiyOl0uo3ZxyBjBLLIU2n/4gEAAAAAAAD4D+WMAAAAAAAAAJBPqJBFnqJlAXIsKUlyraz285OCg323HhRarhX6/CzC5eAaQm5xDSG3uIaQF7iOkFtcQ8gNvjntGQJZ5Iqfn5/bX7amTZsqIIDLCp4zGjWS5cCB/8ZhYbLs3+/DFaEwstvt2rFjhznmZxFyimsIucU1hNziGkJe4DpCbnENIbf++usvMyci0M8c7wwAAAAAAAAA5BMCWQAAAAAAAADIJ9SdA/Apx5QpOrprlzmu27QpP5gAAAAAAECRRe4BwLc6dtSFsmX/Gzdv7ru1AAAAAAAAeBktCwAAAAAAAAAgnxDIAgAAAAAAAEA+IZAFAAAAAAAAgHxCIAsAAAAAAAAA+YRAFgAAAAAAAADySYCvFwCgmNu+XaV37/5vbBhS69a+Ww8AAAAAAIAXEcgC8Cn/++5TowMHzLERFibt3+/DFQEAAAAAAHgPLQsAAAAAAAAAIJ9QIQsAAAAAKBQMw5DT6fT1Mgosh8ORbmyxWHy0GhRGXEPFi5+fH5+vjxDIAgAAAAAKJMMwlJSUpAsXLighIUF2u93XSyrQDMNwGx8+fJiwBTnCNVT8BAQEqEyZMgoJCVFwcDCfdz4hkAUAAAAAFDhWq1XHjx+XzWbz9VIKlYAA/pmP3OEaKl7sdrvi4uIUFxenwMBA1apVS0FBQb5eVpFHD1kAAAAAQIFCGHt5LBaLAgICzD9UuiGnuIaKN5vNpuPHj8tqtfp6KUUev/YAAAAAABQYhmGkC2NLly5tfp3W39/fh6sr2FJbPKTi68fIKa6h4sXhcJhtYRITEyX9F8rWq1ePz96LCGQBAAAAAAVGUlKSWxgbGhqqihUr+nBFhYdhGG6Btb+/P4EKcoRrqHjx9/dXUFCQypcvr7Nnzyo6OlpSSiiblJSk0qVL+3iFRRctCwAAAAAABcaFCxfM49KlSxPGAkA+qFixolsAGx8f78PVFH0EsgAAAACAAiMhIcE8DgkJ8eFKAKB4cf2ZSyDrXQSyAAAAAIACwTAM2e12cxwcHOzD1QBA8eL6M9dut8swDB+upmgjkAUAAAAAFAhOp9NtzAZeAJB/0v7MTfszGXmHQBYAAAAAAAAA8gmBLAAAAAAAAADkEwJZAAAAAAAAAMgnBLIAAAAAAAAAkE8IZAEAAAAAAAAgnwT4egEAijfH4sXat3OnOW7crBk/mAAAAIDLFBgY6OslAACyQe4BwLeuvFLW2Fi3MQAAAHA54i7aFHfR5utl+IwhQw67wxz7B9hUoVSQypcipEXhYLPZ+KUCigUCWQAAAABAkRB30aaIs0m+XoZPOZwugayfvywVLfkeyM6dO1cjR440x1OnTtUNN9zg8eNPnTqlzp07m+MDBw7k5fLyRdeuXRUVFSVJWrZsmWrUqOHjFeW9SZMmafLkyZKkIUOG6Omnn77suWJjY/X+++/ruuuuU69evdLdP2LECM2bN0+SNG7cOPXp0+eynwsoCAhkAQAAAABFyoZj52R3Gr5ehg8YstlSKoQD/Cy6vn6oj9eT4tVXX9WCBQtUoUIFXy8FBdCiRYv0+uuvKz4+Xm3btvX1coB8QSALAAAAAChS7E6j2AayBfF1nz59Wm+88YY++ugjXy8FBdDq1asVHx/v62UA+crP1wsAAAAAAABF2++//6758+f7ehkopN555x0dOHBABw4coF0BigQCWQAAAAAA4HVjxoxRdHS0r5cBAD5HIAvApyw//6xKCxaYfyw//+zrJQEAAADIIw0bNlT58uUlSRcuXNDLL7/s2wUBQAFAD1kAPuX36quq47JrqhEWJt15pw9XBAAAACCvVKpUSU888YSGDRsmSVqzZo1mzJihe++9N8+e4/Dhw/rxxx+1adMmRUVFKSkpSeXLl1fdunXVqVMn3XXXXSpXrlyePd+ZM2c0Y8YMrVy5UkePHpXT6VS1atXUtWtXDRw4UKGhOdtMbefOnfr555+1ceNGRUdHKzk5WRUrVlSTJk100003qUePHgoMDMx2HpvNpt9//11r167Vzp07debMGSUkJKhUqVIqX768mjZtqq5du6pbt27y9/fPci6n06nFixfrjz/+0O7du3XhwgVVqFBBLVq00IABA3Tdddfl6DVmpGvXroqKinK7beTIkRo5cqQkady4cWZ7ghEjRmjevHnpbk8VFhYmSbrxxhv16aef6sKFC5o5c6YWL16syMhI2Ww2Va1aVddff70GDhyomjVrmo/dt2+fZsyYoQ0bNig6OlolS5ZUo0aN1KtXL/Xp00cWiyXL12EYhpYsWaLFixdr+/btOnPmjCwWi6pUqaJWrVrpjjvuUIcOHXL3ZqHIIZAFAAAAAABe061bNy1btkwLFy6UJI0fP14dO3ZU7dq1czVvUlKS3nnnHf34448yDPfNzE6fPq3Tp09r06ZNmjp1qkaOHKm+ffvm6vkkadWqVRo2bJgSExPdbj969KimTZum2bNn64MPPvB4/a+99pr5vrg6deqUTp06peXLl2vKlCmaOHGirr766kzn2rhxo0aMGKF//vkn3X3x8fGKj49XZGSkFi1apM8//1xTp05V9erVM5zr3LlzGjZsmHbu3Ol2e0xMjP744w/98ccf6t+/vypWrOjR68xv27Zt07PPPpuuPUZERIQiIiL0yy+/6LPPPlPr1q31+eef66OPPpLdbjfPs1qt2rRpkzZt2qSVK1fqo48+kp9fxl8wP3bsmIYNG6Y9e/ZkeN+xY8c0d+5cdejQQePHjy+w7xnyH4EsAAAAAADwqtdff12bNm1STEyMkpKS9NJLL2nGjBnZVmpmJjk5WY8//rg2bdpk3ta4cWNdd911KleunP755x+tWLFCMTExio+P18svv6xTp07pqaeeuuzXsHjxYg0fPtwM76pUqaKbb75ZVatW1cmTJ7V06VKdOXNGTz/9dLZVlUlJSbrvvvvMIM/Pz0/t27dX06ZNVaJECZ04cUIrV65UbGysjh8/rnvvvVfTpk1T69at0821detWDRo0SDabTZJ0xRVXqFOnTqpevbosFouio6O1bt06RURESJIOHjyo4cOHa+bMmenmOnfunAYOHKgTJ05IkgIDA3XDDTeoUaNGslqtWrdunXbt2qUffvjBbEVxuQYPHqz4+HgtWrRIu3fvlpQS3qcGz02bNs3xnJGRkXr88cd14cIFVa5cWTfffLMqV66sY8eO6ffff5fVatWFCxc0YsQI9evXTxMmTJCfn59uuOEGNW3aVDabTcuXL9fBgwclSX/88YdmzZql/v37p3uugwcP6v7771dcXJwkKTg4WF27dtVVV10lp9OpQ4cOadWqVbp06ZLWrl2rfv36afbs2YSykEQgizxmsVhkGEa2/+MDAAAAACg+ypUrp7feekuPPvqoJOmvv/7S//73Pz3++OOXNd+4cePMMLZUqVJ6++231a1bN7dzkpOTNX78eH3zzTeSpEmTJqlJkybq0qVLjp/vwoULeuONN8wwtnv37hozZoxKlSplnvPiiy/qlVde0e+//57tfKNGjTLD2AYNGujDDz9U/fr13c65dOmS3n//fX333Xe6dOmSnn32Wf3666/p2i+88cYbZhjbo0cPvfXWWwoKCnI7xzAMff7555owYYKklPd/z549Cg8PdztvwoQJZhh7xRVXaOrUqWrUqJF5//Dhw/Xzzz/r1VdfNYPIy3XXXXdJkg4dOmQGstdff326dgQ5kRqk9u3bV2+88Ybb+3D//ferf//+stvtioyM1IQJE1SxYkVNnTpVzZo1M88bOnSoXnzxRS1YsECSNHv27HSB7MWLF/X000+b78Ett9yiMWPGpAupo6Oj9dxzz2nz5s06ceKEXnjhBU2bNu2yXx+KDjb1Qp6yWCxyOI3sTwQAAAAAFCudOnXSPffcY44nTZqk/fv353ieY8eOafbs2eZ4/Pjx6cJYSSpRooReeeUV3X333ZJSQsnx48fL6XTm+DmnT5+us2fPSpJatmyp9957zy2MlaQyZcpowoQJatGiRZZz7du3T/Pnz5cklS9fXl999VW6MFaSSpYsqddee80MkE+fPq1vv/3W7ZydO3eaIWTlypU1ZsyYdGGslPJv9ccff1z16tUzb9u1a5fbOREREZozZ44kKSAgQB9++KHZm9VVr169zD6vBVF4eLjGjh2b7n1o1qyZbrzxRrfbxowZ4xbGSinVyi+88II53r9/v6xWq9s5P/74o1lxfO211+rDDz/MsGI4NDRUU6ZMUdWqVSWl9FDevHnz5b40FCEEsshzNgJZAAAAAEAGXnrpJdWqVUtSyiZUL7zwQrqwKzsLFy40K1XbtWunm266Kcvzn3/+eQUHB0uS/v77b23dujXH616yZIl5/MQTT2TaU9Tf39/cwCwzrq0C7r77blWuXDnL813bLPzyyy9u95UvX16vvfaaHn74YT377LMqWbJklnO5VrvGx8e73bd06VKzF2+XLl3UsGHDTOcZMGCArrzyyiyfy1cGDhyY6efTpEkT87hKlSrpAtpUoaGhCgkJkSQ5HA6dP3/e7X7Xz3Dw4MFZtt4oU6aMHnzwQXP8888/Z/cSUAwQyCLP2Rw5/20jAAAAAKDoCw4O1jvvvGMGZgcPHtTHH3+cozk2bNhgHt9+++3Znh8SEqLrr7/eHG/cuDFHz3fy5En9/fffkqSgoCC1b98+y/Pbtm2bZX9V1763aVsGZKRJkyZmoHz8+HHFxMSY99WqVUv33XefXnrpJfXr1y/LeWJiYnTu3Dlz7LqRlST9+eef5rHr+5URi8Wim2++Odu1+0LaildXruF3eHh4lu0WS5cubR4nJyebx7GxsTpy5IjbPNlp1aqVebxly5Zsz0fRRw9Z5Dk7FbIAAAAAgEy0atVKgwYN0hdffCFJmjZtmrp27aprrrnGo8cfP37cPG7cuLFHj2nSpIkWL16c7vGeiIqKMo/r1KmjwMDALM+3WCxq2LChW/CayuFw6OjRo+b4mWeeydFaJOmff/4xvwKf2f3Hjh3TiRMnFBkZqcOHD2v//v1mb9hUqdWwqVxf51VXXZXtOlyrbQuS0NDQTO9zrZxNrYD15FxXhw4dchu3a9cuB6tL+XwAAlnkOZuDQBYAAAAAkLlnnnlGq1at0sGDB+V0OvXSSy/pl19+MStBs+K6mVSFChU8ej7X83K6GVVsbKx5nF2Il926zp8/ny4IzamM1h8REaHp06dryZIlZq/bjPj7+8vhcGR435kzZ8xjT16np+99fkvb2zczWbUZyEpuNzOzWq1KSkry6FpH0UUgizxHywIAAAAAQFaCgoL0/vvv684775TNZtPx48f1zjvvaPTo0dk+9nICTdcQMrPKx7yU0cZaUvo2AY899liW7Q0yUrduXbfxnDlz9MYbb8hms6VbQ+3atdWwYUM1a9ZM7dq101dffaV58+bl6Pkyk9lr9LWs2hDkBddrqWzZsnriiSdyPEdAAHFccccVgDzncBoyDMPrPwQBAAAAAIVXo0aN9PTTT2vChAmSpFmzZummm27KcjMpSSpXrpzZR/XcuXPmJmFZce2dWrZs2Ryts0qVKuaxp9WRaTfMSlWuXDm38W233eZRD9LMbNu2Ta+//roZErZq1Up33XWXWrRooVq1aqULny9evJjpXFWqVNGxY8ckpVTy1qhRI8vnvnDhwmWvuzBzrR52Op0aNGiQD1eDwopNvZDnDNFHFgAAAACQvUceeUQtW7Y0x6+88kq6He3TqlOnjnm8b98+j55n79695nHt2rVztEbXYDIiIkKXLl3K9jGHDx/O8PYSJUq49ThN2480M5m1IZg6daoZxt5www2aMWOGevXqpTp16mRYCew6T9pKY9fXefDgwWzXlNlrLOpcr5/ExESPesJardZMQ3oUTwSy8AraFgAAAAAAsuPv76933nnH7PsZExOjMWPGZPmYa6+91jxetGhRts9x4cIFrV271hy77njvidDQULOK1W63a9myZVmef/jwYUVGRmZ6f5s2bczj33//Pdvn379/v6677jo1b95c3bp1cwtVt23bZh7fddddWX5TNSkpSTt27DDHaQPZrl27msdLly7Ndl2rVq3K9hxPFLZv19auXdstVE/dLC4rM2fOVOvWrXXttddq8ODB3lweCgkCWXiFjQpZAAAAAIAH6tSpoxdeeMEcb968Ocvze/fubW7ItHHjxmzDwwkTJphf1b/iiivcAl1Pde/e3Tz++OOPs/zq/0cffZTlXH379jWPV65c6RYWp2UYht5//31J0qVLlxQSEqKKFSua97v2jc1qMy9Jev/995WcnJzhYyXp1ltvVWBgoCRpw4YNWr9+faZzrVixwi3czQ3XSt7MNhwraFw/wy+++MJsoZGRc+fO6fPPP5eU8suB7FpyoHggkIVX2B0EsgAAAAAAzwwYMEAdOnTw6NyaNWvqzjvvNMfPP/98hpWyVqtV7777rn744Qfzttdee+2yNlS69957ddVVV0lKaVvw2GOP6cyZM+me7+233862YvK6664zX6thGHrmmWcyDJWTkpI0atQorVmzxrxt6NChbuc0atTIPJ46dapOnz6dbp74+Hi9+uqr+v77791uT9t6oUqVKnr88cfNdb300ktuz51q7dq1bgF6bpUpU8Y8joqKyrN5vemBBx4wewufOXNGAwcOzLD9xMmTJ/XEE0+Yn0v58uX10EMP5etaUTCxqRe8gpYFAAAAAHwlwK9wfQU6Lxn/vvbC9h5YLBa9/fbb6t69u0ebRb3yyis6cOCAtm/frosXL2rYsGH64osvdN111ykkJEQnT57UihUrFB0dbT7m0Ucf1U033XRZ6wsKCtK7776rhx56SAkJCdq0aZNuueUW3XLLLapdu7bOnj2rpUuXKioqSgEBAapWrVqWbQvGjx+vu+++W8ePH1dCQoKeeuophYeHq127dipTpoyioqK0fPlyt6rXwYMH67rrrnOb56GHHtJff/0lSYqMjDTXVLNmTVmtVkVERGjVqlVm+BoYGGhWxma0Qdnjjz+udevWadu2bUpISNAjjzyidu3aqVWrVrJYLNq6datZOVu3bl0dPXr0st5PV669a6dPny6r1aqyZcvq2muvVevWrXM9vzdUqFBBH330kQYNGqSLFy/qyJEj6tmzpzp06KCrr75aFotFhw8f1rJly8z3OzAwUO+9954qVKjg49WjICCQhVfQsgAeCwyUMyjIHFr+/YoMAAAAcLna1S6+gYfDWTi+8p2RK664Qq+++qpefPHFbM8tUaKEvv76a7355puaN2+eDMPQ3r173TbvSlW6dGmNGjVKPXv2zNX6mjVrppkzZ+rxxx9XVFSUEhISNHfuXLdzgoKCNGbMGC1fvjzLQLZixYr68ccfNWLECK1cuVKStGfPHu3ZsyfD1/rss8/q4YcfTnffrbfeqqefflqTJ0+WYRhKSkrSzz//nOFz3n777erZs6fZw3T37t3pzgkMDNSnn36q0aNHm1XHGzZs0IYNG9zO69q1q/r06aMhQ4Zk+ho9dfvtt2vy5MmKi4tTcnKypk2bJkm67777CmwgK6X0Iv7hhx80fPhwHTlyRA6HQ6tXr9bq1avTnVu1alW98847HleBo+gjkIVXUCELTzn++sut91Dz5s35wQQAAIDLUr5UoOpUDPb1MnzGkCGH/b9A1j/AX+VLFa6Ch549e2rZsmUebZRUsmRJjRs3TgMHDtRPP/2kjRs36tSpU0pISFDZsmXVsGFDderUSX379nXru5obDRo00KJFizR79mz99ttvOnjwoC5duqSqVauqXbt2evDBB9WwYUMtX74827kqVKigqVOnauvWrVqwYIG2bNmi6OhoJSUlqUyZMqpbt66uu+469evXT9WrV890niFDhuj666/X999/r23btik6OlpOp1OlS5dWrVq1dPXVV6tXr15q3ry5rFarKlSooHPnzunvv//Wrl271LRpU7f5goKCNHbsWPXo0UPz58/Xtm3bdObMGZUpU0YNGzbUnXfeqR49emjFihW5fj8lqXLlypo5c6Y++ugjbd68WXFxcSpZsmSWfXoLisaNG2vhwoVavHixli5dqh07dujs2bOy2WwqX768wsLC1LVrV/Xs2dOtNQNgMdJuqwfkwF9//SWn87/wtWXLljoed0lWh1MNq/DDBtmz2+3pA9nL6OmE4o3rCLnFNYTc4hpCbnENpXA4HDp48KA5btiwobl5E7JnGIbbRk2BgYGFbgd7+FZqlW2q4OBgrqFiJC9+BrvmRH5+fmrZsmWerrGoKH7/C498YWNTLwAAAADId2kDWQBAwePn6wWgaKJlAQAAAAAAAJAegSy8ws6mXgAAAAAAAEA6BLLwCpuTClkAAAAAAAAgLQJZeAU9ZAEAAAAAAID02NQLXuF0GnI6Dfn5sRsjsmaZOFFX7tnz3zg8XHrhBR+uCAAAAAAAwHsIZOE1NqehEgSyyIbftGm64sABc2yEhRHIAgAAAACAIouWBfAam4M+sgAAAAAAAIArAll4jd1JH1kAAAAAAADAFYEsvIYKWQAAAAAAAMAdgSy8xkaFLAAAAAAAAOCGQBZeY6dCFgAAAAAAAHBDIAuvoUIWAAAAAAAAcEcgC6+xOQhkAQAAAAAAAFcEsvAaWhYAAAAAAAAA7ghk4TW0LAAAAAAAAADcEcjCa2xUyAIAAAAAAABuCGThNXYqZAEAAAAAAAA3BLLwGjb1AgAAAAAAANwRyMJrDMOQ3UnbAgAAAAAAACAVgSy8yk6VLAAAAAAAAGAK8PUCULTZnIZK+noRAAAAAFBMBAYG+noJAIBsEMjCq2wOWhYga0ZYmC4a/1VSlwwLk8WH6wEAAEDh5bgUJ2dynK+X4VMOu908tgQEyK9EefmXLO+7BRVwNpuNELuY4TNHQUAgC6+iZQGy4/zpJ+3bscMcN2/enF4qAAAAuCzO5DjZLxzz9TJ8yuF0/Dfw81dAiPItkP3qq680btw4SVK1atW0cuVKjx7Xo0cPHThwwByPGjVKAwYMyPZxv/76q4YPHy5JqlixotatWyeLxaKNGzfqgQcekCS1adNG3377bYaPX79+vcaOHatff/01w/vDwsLMY9f1FRQFfX15YcSIEZo3b54kady4cerTp89lz3X8+HG99dZbevjhh9W2bdt0999///3atGmTJOmbb77J8BwgrxDIwqtsTgJZAAAAAPkr+eQGGU579icWMYYkmy3ldVv8AlS2Vsd8ff727dubxydPntQ///yj6tWrZ/mY6OjodGHi6tWrPQpkN27caB536NBBFovn37UbNmyYFi1a5PH5KNy++uorffDBB7JarXr44Yd9vRyAQjR4Fy0LAAAAAOQ3w2mXDEcx/WOXDLtPAumGDRuqatWq5njLli3ZPmbVqlXpbtuwYYOsVmu2j3UNZK+//noPV5mCMLZ4WbZsmUfXFJBfCGThVXYqZAEAAACg2OjQoYN5nJNA1mKx6IYbbpAkXbx40S1szUhMTIwiIiLMx7oGsm3bttWBAwd04MCBTNsVAGl9++235nVDuwJ4G4EsvMYQFbIAAAAAUJy4ti3YunVrludarVatX79eUkp1bbdu3cz7MqqcdZXa61OSmjRpoooVK17OcgHAJwhk4TV2p0EPWQAAAAAoRlx7uR4+fFjnzp3L9NytW7cqMTFRUkqQe/3118vPLyWmWL16dZbP4xrI5rRdAQD4Gpt6wWvsDqfsVMgCAAAAQLFRqVIlNWrUSPv27ZNhGNq2bZtuvPHGDM91DV2vv/56VaxYUeHh4dq1a5eOHTumiIgI1alTJ8PHZtU/duPGjXrggQckSW3atDHbFrje7iosLMw8TrvBmKvk5GTNnDlTf/zxhw4fPqzExERVqVJFjRs3Vu/evXXTTTdl+ticioyM1IwZM7RmzRpFRkbKz89PNWvW1K233qoHHnhAZcuWzdF869at08KFC7V161bFxMTI6XSqUqVKat68uW677TbdcsstHm2KdvHiRS1YsEDr16/X3r17de7cOSUmJqp06dKqWLGiWrRooVtvvVVdunTJdi6r1aqffvpJv/32mw4cOKDExERVrlxZbdq00QMPPKCrr746R68xI66fbSrXa+Cbb74x2xPcf//9ZtDversknThxwryOH3jgAb3yyiuKjo7WDz/8oGXLlikqKkoWi0XVq1dX165ddf/996ty5crm4zdv3qwffvhBf/31l06fPq0yZcooPDxc/fv39+i6sdvtWrBggZYuXao9e/bo7NmzCgwMVGhoqNq0aaM+ffqoWbNml/cmwScIZOE1Nochm4MKWWTN7+mnVW/fvv/GjRtLn33mwxUBAAAAyI327dtr37//H3/Lli2ZBrKpbQmCg4N17bXXSkoJV3ft2mXen1Eg69o/tmzZsmrRokXevoAM7N27V0OGDFFUVJTb7VFRUYqKitLSpUt144036oMPPlCpUqVy9Vxz5szRG2+8IZvN5nZ7an/TWbNm6dNPP/VorjNnzuj555/XunXr0t2XuvZFixYpPDxcH330kWrUqJHpXIsWLdLo0aMzrHo+f/68zp8/r6NHj2revHlq06aNJk+erHLlymU41/Hjx/XYY4/p6NGjbrefPHlSv/zyixYuXKinn37ao9foC0uXLtXIkSN14cIFt9sPHjyogwcP6ueff9b06dNVt25dvf322+l6GZ87d05r1qzRmjVrNHDgQL388suZPtfOnTv1/PPP69ixY263JycnKyEhQYcPH9YPP/ygO+64Q2PGjFFwcHDevVB4DYEsvMbmdNKyANmyrFih8i6/hTZOnfLhagAAAADkVseOHTVt2jRJmfeRPXHihA4fPiwpZROuoKAgSVKnTp3MsHHVqlUaOHBguse6Vse2b99eAQGeRRu1atXSiy++KEl67733zNtTb8vKfffdp8TERJUqVUo33nij6tatq+TkZP35559m+Lxs2TKNHz9er732mkfrychXX32lcePGua25S5cuqlChgo4dO6YlS5YoOjpagwYNynaumJgY3XPPPWaIHBgYqM6dO6tRo0by8/NTRESEVq5cqQsXLmjPnj2688479cMPPyg0NDTdXIsWLdLw4cNlGCn/xq9Tp446dOig0NBQORwO/fPPP1q9erWio6MlpbSUePPNNzVhwoR0c0VERKh///46e/asJJnvab169RQfH69Vq1bp8OHD+vDDD1WhQoWcv4kuUj/bH374QZGRkZKke+65R7Vq1ZIk8785sX37dv3www+y2WyqUaOGunTponLlyunQoUNasmSJnE6nTp06pVdffVXh4eH69ttvFRgYqJtuukkNGzZUQkKCFi9erBMnTkiSvv76a3Xs2FGdOnVK91zr16/X4MGDdenSJUlShQoV1KVLF9WsWVM2m0179uzR2rVrZbfbtXDhQh07dkwzZsxQiRIlLuv9Qv4hkIXX2B2G7E6nDMPw6KsPAAAAAIDCr3Xr1ipZsqQuXbqkvXv36uLFi+mqRl037XINopo1a6by5csrLi5OmzdvVlJSUrqKv8vtH1utWjUzyHQNZD0JNxMTE9W5c2e9++67biHhc889pw8++ECff/65JGnmzJl66qmnLmuTscjISLcAc9CgQRo+fLhb4Pz8889r2LBhbu9BRgzD0LBhw8wwtnXr1ho/fryqVavmdt758+f12muvafHixYqLi9MzzzyjGTNmuD1nUlKS3nrrLTOMfeyxxzRs2DCz328qm82mt99+W99//70k6ffff9err76a7r0YPXq0GcY2atRIn332mapXr27e/8ILL2jatGkaP358lj2IPZH62a5cudIMZLt16+bWjiCndu7cKUl68skn9fTTT7u9D0uXLtVTTz0lSdq2bZu2bdum2rVr6/PPP3er9n7mmWf02GOPmb9cmD17drpANiYmRsOHDzfD2AEDBujFF19M93fp8OHDGjp0qA4dOqRdu3bprbfe0ujRoy/79SF/sKkXvMbmdEpGyuZeAAAAAIDiISgoSK1bt5aUEtJt37493Tl//vmneewaRPn7+6t9+/aSUnqMrl+/Pt1jfbGhV1hYmD755JMMKzaHDRtmftXfbrdr27Ztl/UcH3/8sZKTkyVJt99+u1588cV01b+VK1fWlClTsmwtIKVU627ZskVSSjXrF198kS6MlaRy5cpp4sSJaty4sSTp0KFD+v33393OWblypWJjYyWlBKjDhw9PF8ZKKRW4I0eOVEhIiCTJ4XBoz549buesX79ea9eulSSFhIToiy++cAtjJcnPz0+PPvqoR0G5r9x0000aOnRouvfhpptuStf79qOPPkrXeqNkyZIaOnSoOU4NeV3973//M4PrO+64Q6NGjcqwHUa9evX0+eefm/fNmTPHDJ9RcBHIwmtS+8fSRxYAAAAAipcOHTqYx2nbFlitVm3YsEGSdNVVV6ULF10DWtdKWkmKjo42+8c2aNBAV1xxRV4uO1MPPfSQAgMDM7zPz89P7dq1M8dp+8x6wmazacWKFeY4q/6ppUuX1pNPPpnlfDNnzjSPH3744Sz7ivr7+2vw4MHmeOHChW73X3XVVRo5cqQeeOABDRkyJMtvwAYFBemqq64yx/Hx8W73//HHH+bxXXfdpapVq2Y611NPPVVg+6E+9NBDmd7XpEkT87hFixZm2J1Ww4YNzePU4DWV3W7XnDlzzPGQIUOyXE/16tXVp08fSSlB+IIFC7I8H75HIAuvSa2MtTudPl4JAAAAACA/ZRXIbty4URcvXpQkde7cOd1jO3bsaIZ+a9ascbvPF9WxktSqVass769cubJ5nJiYmOP5d+zYYYaXNWvWVL169bI8/+abb840GHU4HG7veXh4eLbP7/r6du7cKbvdbo4bNWqkBx98UK+88opuvvnmLOeJjIxUUlKSOXadR3KvjO7SpUuWc5UuXdrtOiooLBaLmjZtmun9rtdCVu996dKlzWOr1ep23549e8zrKDg4WHXr1s12Xa6fYWa9m1Fw0EMWXmNzOP/9LxWyAAAAAFCchIWFqUqVKjp9+rS2b98uu91ufv0+s/6xqapUqaLGjRtr7969ioqKUmRkpGrWrCnJd4Fsdj1hXVsLOByOHM+fusGTJNWvXz/b80NCQlS9evUMq3H/+ecft1C0b9++OVrLpUuXFBcX5xYsujIMQ5GRkTp+/LiOHz+uyMhIHTlyRHv37lVMTEy6c12PT548aY6zC52llDB4yZIlOVq/t5UvXz7LTbNc2xiktm/I7ry0Dh06ZB4nJSUpLCwsR2u8nCpt5C8CWXiN2bKAClkAAAAAKHbat2+vX375RUlJSdq7d6+aNWsmSVq9erWklMq/1F6zaV1//fXau3evpJS+o2kD2awe6w1lypTx6vxnzpwxj7MK8VxVqFAhw+AttxthSSmbfaUNZHfv3q2vvvpKK1euTNeKwJW/v3+GofS5c+fcKmY9eZ0Z9ez1tYz6uGbG39//sp4jLi7ush6XV4+H9xHIwmtSWxXYqZAFAAAAgGKnQ4cO+uWXXySlfIW6WbNmioiI0LFjxyRJbdu2VVBQUIaP7dSpk6ZOnSopJZC966673PrHtmnTJtPHFheZvf60Yejzzz+fZTWmK8MwZLPZ0lUEf/LJJ5o0aZJbxauUEozXqVNHDRs2VLNmzdS+fXu9/vrrbpXMuVEQP+OseujmFdfP8Morr9S9996bo8dnVcGLgoFAFl7Dpl4AAAAAUHy1b99eFotFhmFo+/btktx7wmbUPzZVixYtVLZsWcXHx2vjxo2SpM2bN5v352e7gvxQpUoV89jT6sbMqlTTVp7269dP5cuX92hOwzDc2h1I0qJFi/Txxx+b4y5duqhXr15q2rSpqlevni6gTO0PnFaFChUUGBgom80mKaUKN7tWEBcuXPBo3UWN62dYunRpDRo0yIergTewqRe8xuE0ZIiWBQAAAABQHFWpUsXcSX7Xrl2SpA0bNpj3Z9Q/NlVAQIDat28vKeXr/KdOnSrSgWyNGjXM4/3792d7vs1mMyuN07ryyisVGBhojl37kWbG6XRm2urg008/NY/79++vKVOm6LbbbtOVV16ZYbXo2bNnzWPXilqLxaIrr7zSHHvyOg8fPpztOUVR7dq1zeNjx46l2/QrI5cuXUoXpqPgIpCF1xhK2diLlgUAAAAAUDx16NBBUsomQ6dPnzZD1Xr16rmFcxlxDV337dunbdu2SZJq1arlFlgVBc2bN1elSpUkSdHR0WZFcWbWr1+faUhXsmRJNW3a1BwvXrw42+dfsWKF2rVrp1atWun+++83e73Gx8e7Bbr33HNPlvMcP37cra9t2hYHXbt2NY9///33LOey2+1uFdXFScuWLc1QPTk5WStXrsz2MRMnTlTLli3Vrl07jRo1yssrRG4RyMKrbA6DClkAAAAAKKZSA1lJmjNnjvl1/KyqY1O5nrN582b9/fffkvKmOtZ1s6WMNqDKb/7+/urWrZs5Hj9+vJyZ/Fva4XBo8uTJWc7Xt29f83j27Nk6ePBgpudarVZ9+OGHkqTExETVrFlTAQEpHS5T2wukym7DsLfeestt7LqJlyTdcccd5vG8efOyXNfMmTMVHR2d5fN5yvXzzux9LUhKlSrldj1MnDgxy+rXY8eOaebMmZJSPqMmTZp4fY3IHQJZeJXd6aSHLAAAAAAUU9dee625wdB3331n3p5V/9hUoaGhZsuDefPmmUFaXgSyZcqUMY9dKzp96cknnzR7qm7evFnDhw9XQkKC2zmJiYl67rnntGPHjizn6tmzpxo0aCAp5avsDz/8sLZs2ZLuvHPnzunZZ581g9HAwEA9+uij5v0VKlRQ1apVzfHEiRPTrUmSTp8+rcGDB6er5EzbTzY8PFx9+vSRlBIEP/LII9qzZ0+6+X755Re98847Wb7GnHD9vE+cOJFn83rTk08+qeDgYEnSkSNHNGjQIJ08eTLdeYcOHdJjjz2mS5cuSUppd9C7d+98XStyjk294FU2hyG7k0AWAAAAQP6x+AXIKPhFcN5hSfn3l8WvYPxzv0SJEmrdurXWrl2r2NhYSVJwcLBatWrl0eOvv/56HTx40OxLGhQUpLZt2+Z6XTVq1ND58+clSU899ZT+7//+TxcvXtRTTz2loKCgXM9/OSpWrKi33npLzzzzjGw2m3777Tdt2rRJN998s6pVq6ZTp05pyZIlio2NVZkyZVSqVCmdPn06w7kCAwM1adIkDRgwQGfPntXp06d177336tprr1WrVq0UGBioY8eOaenSpW6Vl6+99prq1q1rji0Wix566CG9++67kqQdO3boxhtv1M0336zq1asrISFBf//9t9auXWtWw7pu3JXRBmUjR47Ujh07dPjwYUVHR6tfv37q3LmzwsPDZbPZtG7dOu3cuVOSVLduXR09ejTX761rj97x48crKipKgYGBuuWWW8zguqCpU6eOxo0bp+eee052u13btm3Trbfeqs6dOyssLExWq1UHDx7UqlWrzF9WlC5dWh9++KHPrmF4rmD8hEaRZXMYsjmK6/8TAgAAAOALJaq18/USfCbI6fuv36fVvn17rV271hy3a9fO48CoU6dOmjZtmjlu1aqVWTWYG/3799err74qSTp48KBZIXrzzTfr6quvzvX8l6tr16768ssvNWTIEMXFxenMmTPmV9FTlSlTRh999JEmTJiQaSArpYSZs2fP1nPPPWf2pN28ebPb5mipQkJC9Nprr6l79+7pvhr/0EMP6ciRI5o9e7aklJA19diVn5+f+vfvr8aNG5vv7e7duzN8rpkzZ+rZZ5/V2rVr5XA4tHz5ci1fvtztvP79+6t+/foaM2ZMpq/RU3379tWMGTNktVoVFxenzz77TFJKa4CCGshK0m233aZy5crppZdeUnR0tJKTk/XHH3/ojz/+SHdunTp1NGHCBNoVFBIEsvAqu9Mph9OQ0zDkl8HuiwAAAACQV/xKlFdAiK9X4WMuPTsDAgLkV6K879byr44dO+r99983x570j03VqlUrlS5dWomJiZLypl2BJPXr108lSpTQt99+qyNHjujSpUuqUKGCWcXrS9dee63++OMPff/991q2bJkOHz4sh8OhK664Qp06ddJDDz2kK6+8UhMmTMh2rho1amjWrFlatWqVfv/9d23btk2nT59WcnKyQkJCVL9+fXXq1El9+/ZVxYoV023CJaVUyY4dO1a33nqr5syZox07dujMmTMyDEMhISGqU6eOmjdvrr59+6p+/fo6c+aMWSW7bt06RUdHKzQ01G3OkJAQTZs2TUuWLNG8efO0c+dOxcXFqXz58mratKn69++vzp07u7W5yI0GDRrou+++0yeffKKdO3cqPj5eZcqUybD9QkFz3XXXaenSpfrll1+0YsUK7d27V+fOnZPT6VSlSpXUuHFj3XrrrerWrRuVsYWIxcjobxvgob/++sutIXbLli11PO6SIs4mac3Rs6oeUlJXVQpW+zoVFRRAy2Kk53z2WcXt3WuOyzdpIr9/G8oDnrLb7W59tJo3b25uRAB4gmsIucU1hNziGkrhcDjcNvlp2LCh22Y8yJphGG6bMAUGBspCYQxywDAMtwrZ4OBgrqFiJC9+BrvmRH5+fmrZsmWerrGoKH7/C498Zfv3L6HN4SSQRYac48fraJp/fHClAAAAAJcnbSALACh4yD3gVXZHSgG2jY29AAAAAAAAAAJZeFdqEGt3srEXAAAAAAAAQCALr7I5UlsWUCELAAAAAAAAEMjCq8yWBQSyAAAAAAAAAIEsvMvc1IuWBQAAAAAAAACBLLzLaUgOwzArZQEAAAAAAIDiLMDXC0DRZ3cYVMgiU3533KHw/fv/GzdqJP3+uw9XBAAAAAAA4D0EsvA6m9OghywyZYmIUMljx8yxUbKkD1cDAAAAAADgXbQsgNfZHE5aFgAAAAAAAAAikEU+oGUBAAAAAAAAkIJAFl5nczpld1IhCwAAAAAAABDIwutsDkNOpyEHoSwAAAAAAACKOQJZeJ3933YFNgdtCwAAAABkzs/P/Z+oDofDRysBgOIn7c/ctD+TkXd4Z+F1tn839LJRIQsAAAAgCxaLRQEBAeY4KSnJh6sBgOLF9WduQECALBaLD1dTtBHIwutSK2PtVMgCAAAAyEaZMmXM4wsXLvhwJQBQvLj+zC1btqwPV1L0EcjC61I39KJCFgAAAEB2QkJCzOPExESdPXvWh6sBgOLh7NmzSkxMNMcEst4VkP0pQO6YLQscBLIAAAAAshYcHKzAwEDZbDZJUnR0tBISEhQSEqLg4GD5+/v7eIUFl2EYbj0gHQ4HXzlGjnANFS8Oh0NJSUm6cOGCWxgbGBio4OBgH66s6COQhdfZnLQsAAAAAOAZi8WiWrVq6fjx42Yom5iY6BYWIHNO53//7mJDHlwOrqHiLTAwULVq1SKI9zL+ZsHr7GzqBQAAACAHgoKCVKtWLQUGBvp6KYWKYRiy2+3mH8Pg32DIGa6h4i01jA0KCvL1Uoo8KmThdYZS+sjaqJAFAAAA4KGgoCDVq1dPSUlJio+PV3x8vOx2u6+XVeC5vkcE2rgcXEPFS0BAgMqWLauyZcsqODiYyth8QiCLfGFzOM3NvQAAAADAExaLRaVLl1bp0qV1xRVXyDAMt69Tw53dbtfu3bvNcb169RQQwD/74TmuoeLFz8+PANZH+FuFfJFSIUsgCwAAAODyWSwWNvXKQtqvl/v7+/N+IUe4hoD8QQ9Z5AubwzA39wIAAAAAAACKKypkkS9sTqe5uRfgyvnEE4res8cch4aHi9+/AgAAAACAoopAFvnC7jBkdxoyDIP+JHBjPPWUTu7YYY6rNm/uw9UAAAAAAAB4Fy0LkC9sDqcMw2BjLwAAAAAAABRrBLLIF7Z/g1gCWQAAAAAAABRnBLLIF6n9Y20ONvYCAAAAAABA8UUgi3xhc6YEsTY29gIAAAAAAEAxRiCLfJEaxNKyAAAAAAAAAMUZgSzyhd2skKVlAQAAAAAAAIqvAF8vAMVDaoWsjQpZpOF/9dVqdeCAOTbCwqT9+324IgAAAAAAAO+hQhb5wu40ZEiyUyELAAAAAACAYoxAFvnG7jDY1AsAAAAAAADFGoEs8o3N6ZTNSYUsAAAAAAAAii8CWeQbGxWyAAAAAAAAKOYIZJFvbA4qZAEAAAAAAFC8Ecgi31gdTipkAQAAAAAAUKwRyCLf2ByGnE5DdqpkAQAAAAAAUEwRyCLf2BzOf/9LlSwAAAAAAACKJwJZ5BurGchSIQsAAAAAAIDiiUAW+Sa1MtZKhSwAAAAAAACKKQJZ5BsbFbIAAAAAAAAo5ghkkW9oWQAAAAAAAIDijkAW+YaWBQAAAAAAACjuCGSRbwxJdqdBhSwAAAAAAACKLQJZ5Curw2lWygIAAAAAAADFDYEs8pXN4TR7yQIAAAAAAADFTYCvF4DixeqgZQHcOd97T8d27zbHta++Wv4+XA8AAAAAAIA3EcgiX9kcTtmctCzAf4xu3XTuyivNca3mzX24GgAAAAAAAO8q9oHs3r17NXv2bG3ZskWnTp3SxYsXVa5cOV111VW6/vrrdffdd6tcuXIez7dz507Nnj1bmzdvVnR0tAzDUGhoqMLDw9WzZ0916tRJFovF4/kMw9DSpUs1f/587dq1S2fOnFGpUqUUGhqqdu3aqW/fvmrUqNHlvHSfsDkMOZ2G7E6nAvzomAEAAAAAAIDipdgGspcuXdLo0aP1008/pbsvNjZWsbGx2rRpk6ZMmaLRo0frjjvuyHI+m82mMWPGaNasWenui4iIUEREhH799Vd17NhR48aNU9WqVbNdY3R0tIYNG6atW7e63W61WnX+/HkdPHhQ3377rR588EENHz5cQUFB2c7pa6n9Y20OQwHksQAAAAAAAChmimUkZrVaNXjwYLcw1t/fX40bN1bbtm1Vo0YN8/bExEQ999xz+uGHHzKdzzAMPfvss25hbIkSJdSsWTO1bNlSZcqUMW9fs2aNBg4cqAsXLmS5xrNnz+q+++5zC2PLly+v1q1bKzw8XAEBAeZzf/nllxoxYoTnb4APpfaPZWMvAAAAAAAAFEfFskL2iy++0Pr1681xly5dNGrUKFWrVs28bfPmzXrppZcUFRUlSRo7dqxat26tBg0apJtv+vTpWrp0qTkeMGCAhg8frrJly0pKqcb96quvNGnSJNntdh05ckQvv/yyJk+enOkaR44cqePHj0tKCXdHjhypfv36mUHs6dOn9fbbb2vRokWSpF9//VUtWrTQAw88cLlvS76wOQy3/wIAAAAAAADFSbGrkLVarZo+fbo5vu666/TJJ5+4hbGSdO211+qbb74xQ1W73a7PPvss3Xxnz57VJ598Yo779++vUaNGmY+TpJIlS2rw4MEaPXq0eduSJUu0bdu2DNf4559/auXKleb4nXfeUf/+/c0wVpKqVKmiiRMnqlevXuZtn376qRISErJ5B3zrv5YFVMgCAAAAAACg+Cl2gez27dvdQsuhQ4fK398/w3Nr1KihAQMGmOOVK1fKMNwrO+fMmaPExERJKS0FXnzxxUyfu2/fvrrhhhvM8ZdffpnheV9//bV53LFjR3Xr1i3TOUeNGqVKlSpJks6dO6d58+Zlem5BQMsCpHPkiEpERJh/dOSIr1cEAAAAAADgNcUukD116pTbODw8PMvzmzdvbh4nJibq3Llzbvf/9ttv5vHtt9+u4ODgLOe7++67zePVq1crKSnJ7f7z589r3bp15rhv375ZzhccHKwePXqY499//z3L832NlgVIy79HD119553mH3+X6xkAAAAAAKCoKXaBrGsrAUlmdWtm7Ha727hEiRLmcVxcnPbt22eOO3bsmO3zt2vXzqzIvXTpklv4KkmbNm2Sw+GQJFksFnXo0CHbOV3P2bZtm86fP5/tY3zFkGRzGrQsAAAAAAAAQLFU7ALZ+vXru43//PPPLM9fu3ateVytWjWVLl3aHB84cMCthUF21bZSSkVrrVq1zPGuXbvc7t+/f795XKNGDZUrVy7bORs1amQeO51O7dmzJ9vH+JLN4aRlAQAAAAAAAIqlYhfI1qxZ062P64cffqjY2NgMz92yZYvmzp1rjl37yUpSRESEeRwUFJRuY7DM1KhRwzw+fvx4pnPWrl3bo/mqVKmikiVLmuNjx4559DhfsTmctCwAAAAAAABAsRTg6wX4wssvv6zdu3crNjZWUVFRuvPOO/XMM8+oU6dOKl++vE6ePKlff/1Vn332mWw2mySpSZMmuu+++9zmOX36tHlcpUoVj5/f9VzXOSQpJibmsuasVKmSoqKiMpwzPzmdThmGU4ZhyOl0yulMH7wm2xyy2h3/3k+lbHHnZxiyuIwNw5AjTasQIDuprV4yGwPZ4RpCbnENIbe4hpAXuI6QW1xDQP4oloFs7dq19dNPP2ns2LFaunSpTp48qZEjR2Z4rsViUY8ePfTaa6+l27ArLi7OPE7bmzYrZcqUMY/T9nt1HedkTtdzL1y44PHj8lpMTIzOJjqUkGhXTEx0hr1iqwbaFGwJ0alTyUpISFB8fLwPVoqCIjw5WSVdxtbkZO3ZscNn60HRsHv3bl8vAYUc1xByi2sIucU1hLzAdYTc4hoCvKPYtSxIVbFiRXXq1CnbtgAdOnTQo48+mmE4arVazWPXlgHZCQoKynAOSUpOTs71nK5zFERWu0OGDDkMmRucAQAAAAAAAMVBsayQ3b9/v5555hm3XqslSpRQw4YNFRwcrOjoaLOX65o1a9SzZ08NHDhQzz33nAIC/nvLUtsZSJKfn+fZtusc9jRfzXYd52RO12Az7ZwFTbI9pWrW7jRy9BoBAAAAAACAwq7YBbKRkZEaOHCg2W6gZMmSGjZsmO655x63itTIyEhNmDBBixYtksPh0PTp0xUTE6MPPvjAPMc1BM1JL1TXwDQwMNDtvsud07WvS9o581PVqlWVfP6SLuiiqlYNlT2DHrJly5RQmdJlVL5SiEJKBKhmzZo+WCkKCr8SJdzGQSVKqHnz5j5aDQorh8Ph9nWqq6++mgp85AjXEHKLawi5xTWEvMB1hNziGkJu7dq1i/2CPFDsAtnRo0ebYWyJEiX05Zdf6pprrkl3Xs2aNTVx4kTVqlVLU6ZMkSQtXLhQXbp00R133CHJvaVATtoEuJ5bIk0Y5Y0585Ofn58sFj9ZLBb5+fnJT+kDWYeR0puXlgWQJMNicRtbLBa3KnLgcvj7+3MdIVe4hpBbXEPILa4h5AWuI+QW1xDgHcXq++KRkZFavXq1OR48eHCGYayrYcOGuVXr/e9//zOPy5cvbx4nJCR4vI7ExMQM55CkcuXKXdacruemnbOgsf670ZfNkT6sBQAAAAAAAIqyYhXIbtmyxW185513evS4e+65xzzet2+fzpw5I0kKDQ01b0+9zROnT582jytXrux23+XO6XpulSpVPH6cL9j+DWRTg1kAAAAAAACguChWgWxMTIx5XK5cOVWtWtWjxzVq1MhtHBUVJUmqXbu2eVtSUpJiY2M9mi8yMtI8rlu3rtt9derUMY+PHz/u0XwxMTG6dOlShnMURKmVsVTIAgAAAAAAoLgpVoFsUFCQeWyz2Tx+nJ+f+9tk+bfnZZMmTcxjKaV6NjuJiYluQWvasDc8PNw8PnbsmC5evJjtnK7Pa7FYFBYWlu1jfMmQZHMaZqUsAAAAAAAAUFwUq0D2iiuuMI+TkpJ09OhRjx53+PDhDOcpU6aMmjRpYt6+bt26bOfasGGDuducv7+/2rRp43Z/q1atzIbZDodDGzduzHZO1+dt0qSJWx/agsrmcNKyAAAAAAAAAMVOsQpk27Zt61btOmvWLI8e99NPP5nHDRo0cOvReuutt5rH8+fPz7ai9YcffjCP27dvr5CQELf7Q0JC1K5dO3M8c+bMLOdLTEzU/PnzzfFtt92W5fkFhdXupGUBAAAAAAAAip1iFchWrFjRLUD95ptvtH79+iwf8+2332rt2rXm+O6773a7v2/fvipVqpQkKTY2VqNHj850rtmzZ+vPP/80xw888ECG5917773m8YoVKzR37txM53zjjTd09uxZSVJwcLDHG5X5ms1pUCELAAAAAACAYqdYBbKS9Pzzz5tVqQ6HQ48++qg++eQTM9RMdfr0ab355psaO3aseVt4eLj69+/vdl7lypX1yCOPmOO5c+fqueee05kzZ8zbLl26pClTpmjUqFHmbZ06dVKnTp0yXGPXrl3Vtm1bc/zaa69p6tSpSk5ONm+LjY3VsGHD3Kpjn3zySVWsWNGj98HXbA4qZJHCMXu29s6YYf5xzJ7t6yUBAAAAAAB4TYCvF5DfatSoocmTJ2vw4MFKSkqSzWbTxx9/rM8++0x169ZVhQoVdO7cOf39999mr1dJql27tqZMmWL2d3U1ePBg7dq1SytXrpQkLVy4UIsXL1ZYWJiCgoJ06NAhxcfHu63h3XffzXKd77//vu69915FRkbKbrdrwoQJ+uKLL9SgQQNZrVYdOHDAbWOyLl26aNCgQbl8d/KP1eGUYRiyO5wK8C92vxeAq8aNddFqdRsDAAAAAAAUVcUyCWvbtq1mz56t8PBw8zabzaaDBw9q48aNOnjwoBnGWiwW3X777ZozZ46qVq2a4XwBAQGaNGmS7rzzTlksFnO+3bt3a9u2bW5hbMuWLfX9999nW8kaGhqqb7/9Vtdcc415W3x8vLZt26bdu3e7hbF33nmnPv74Y7f+uAVdanWslSpZAAAAAAAAFCPFrkI2Vf369TV37lytWrVKS5Ys0bZt23T69GklJSWpbNmyuvLKK9WmTRv16tVLYWFh2c4XFBSkt956S3fffbfmzZunDRs2KDo6WlarVRUrVlSzZs10xx136JZbbvE4OK1WrZq+//57LVmyRIsWLdLOnTsVGxsrPz8/hYaGqlWrVrrrrrvUokWLXL4b+c/2b/9Ym9Mpyd+3iwEAAAAAAADySbENZFN17txZnTt3zrP5mjVrpmbNmuXZfBaLRbfccotuueWWPJuzIEitjLWxsRcAAAAAAACKkcLzHXcUKalBLC0LAAAAAAAAUJwQyMInzJYFVMgCAAAAAACgGCn2LQvgGzazZQEVssWdZdkyldu9+79xbKx0660+XBEAAAAAAID3EMjCJwylhLFWKmSLPb+hQ1X/wAFzbISFSfv3+3BFAAAAAAAA3kPLAviMzemkZQEAAAAAAACKFQJZ+IzV7qRlAQAAAAAAAIoVAln4DC0LAAAAAAAAUNwQyMJnrA4qZAEAAAAAAFC8EMjCZ2xOpwzDkJ0qWQAAAAAAABQTBLLwmdTqWCtVsgAAAAAAACgmCGThM1Z7SmWsjQpZAAAAAAAAFBMEsvAZm9P4978EsgAAAAAAACgeCGThM6mVsbQsAAAAAAAAQHFBIAufsf4byNrsVMgCAAAAAACgeCCQhc/YHYYM/de6AAAAAAAAACjqCGThM4ZSQlkrm3oBAAAAAACgmCCQhU9ZHU6zlywAAAAAAABQ1BHIwqdsDiebegEAAAAAAKDYIJCFT9kcBhWyAAAAAAAAKDYIZOFTKS0LqJAFAAAAAABA8RDg6wWgeLM5nDKMlCrZQH9+P1AcObZu1c4dO8xxs+bN+cEEAAAAAACKLHIP+JTNmVIda3MYCvT38WLgGyVKyChRwm0MAAAAAABQVFGSCJ+y2lP6x9JHFgAAAAAAAMUBgSx8KjWItRLIAgAAAAAAoBggkIVPmS0LnGzsBQAAAAAAgKKPQBY+lVoZa7NTIQsAAAAAAICij0AWPmV3GDJEywIAAAAAAAAUDwG+XgCKN0MpfWRtDloWFFeWL75Q6N69/42bNJGeeMKHKwIAAAAAAPAeAln4nM1hyOakQra48vvoI9U4cMAcG2FhBLIAAAAAAKDIomUBfM7mcMpKhSwAAAAAAACKAQJZ+JzV4ZSNHrIAAAAAAAAoBghk4XM2hyGbw5BhUCULAAAAAACAoo1AFj5nczhlGIbsTgJZAAAAAAAAFG0EsvC51P6xtC0AAAAAAABAUUcgC59LDWJtbOwFAAAAAACAIo5AFj6XGshaqZAFAAAAAABAEUcgC5/7r2UBFbIAAAAAAAAo2ghk4XNUyAIAAAAAAKC4IJCFz9mchgyxqRcAAAAAAACKPgJZFAg2h5OWBQAAAAAAACjyCGRRINgcBi0LAAAAAAAAUOQRyKJAsDmcsjmpkAUAAAAAAEDRRiCLAsHqcNJDFgAAAAAAAEUegSwKBJvDkM1hyDCokgUAAAAAAEDRFeDrBQBSSoWsYRiyOw0F+lt8vRzkI6N6dVkvXDDHgdWriysAAAAAAAAUVQSyKBBSN/Sy2p0K9Kdwuzhx/vGHdu/YYY6bN29O6T4AAAAAACiyyD1QIFjt/way9JEFAAAAAABAEUYgiwLB6kjpHZtMIAsAAAAAAIAijEAWBcJ/LQvY1AsAAAAAAABFF4EsCgRaFgAAAAAAAKA4IJBFgWBIsjkMAlkAAAAAAAAUaQSyKDCsDqdZKQsAAAAAAAAURQG+XgCQyupwUiFbDPm98opq793737hJE+ndd324IgAAAAAAAO8hkEWBYbU7ZXWwqVdxY/nlF1U+cMAcG4cOEcgCAAAAAIAii5YFKDCsDqfsDqecTkJZAAAAAAAAFE0EsigwUtsV0LYAAAAAAAAARRWBLAqMZDuBLAAAAAAAAIo2AlkUGKn9YwlkAQAAAAAAUFQRyKLAsKZWyNrpIQsAAAAAAICiiUAWBQY9ZAEAAAAAAFDUEciiwLA7DTkNAlkAAAAAAAAUXQSyKFCsDqfZugAAAAAAAAAoaghkUaBYHU4lUyELAAAAAACAIopAFgWK1e6kZQEAAAAAAACKLAJZFChWh1M2h+HrZQAAAAAAAABeQSCLAsVqd8rpNGSjShYAAAAAAABFEIEsCpTUdgW0LQAAAAAAAEBRRCCLAsX6b7sCq522BQAAAAAAACh6CGRRoFjtVMgCAAAAAACg6Arw9QIAV7QsKH6M9u11oWJFc1y2USNZfLgeAAAAAAAAbyKQRYFiBrJ2Atniwvn55/p7xw5z3Lx5c0r3AQAAAABAkUXugQLFaUg2p0GFLAAAAAAAAIokAlkUOFa7k0AWAAAAAAAARRKBLAocq8Mpq93w9TIAAAAAAACAPEcgiwLH6qBCFgAAAAAAAEUTgSwKHKvdKZvTKadBlSwAAAAAAACKFgJZFDhWhyEZKcEsAAAAAAAAUJQE+HoBQFqp7QqsDqdKBvr7eDXwNr8BAxS2b99/48aNpR9/9OGKAAAAAAAAvIdAFgVOamWs1UHLguLAsnOnyhw4YI4Nm82HqwEAAAAAAPAuWhagwHGtkAUAAAAAAACKEgJZFDhmhSw9ZAEAAAAAAFDEEMiiwLE5DTkNKmQBAAAAAABQ9BDIokCyOZwEsgAAAAAAAChyCGRRIFkdTloWAAAAAAAAoMghkEWBZHU4ZXUYvl4GAAAAAAAAkKcIZFEgJdtpWQAAAAAAAICih0AWBZLV4ZTTachOKAsAAAAAAIAihEAWBZLVntKugCpZAAAAAAAAFCUEsiiQUoNY+sgCAAAAAACgKCGQRYFkBrJ2KmQBAAAAAABQdBDIokBKDWKTaVkAAAAAAACAIoRAFgXSfy0LCGQBAAAAAABQdBDIokByGpLdadCyAAAAAAAAAEUKgSwKLKvDSYUsAAAAAAAAipQAXy8AyIzV7pTVYfh6GfAy5333KXbvXnNcuUkT+ftwPQAAAAAAAN5EIIsCy+pw0rKgGDBGjNCJHTvMcaXmzX24GgAAAAAAAO+iZQEKLKvDKZvTKcOgShYAAAAAAABFA4EsCiyr3ZAM0UcWAAAAAAAARQaBLAqs1CDWaqdCFgAAAAAAAEUDgSwKLDOQpUIWAAAAAAAARQSBLAqsZDuBLAAAAAAAAIoWAlkUWP+1LCCQBQAAAAAAQNEQ4OsFAJmxOQwZokK2qPNv107NDxz4bxwWJm3Z4sMVAQAAAAAAeA+BLAo0q90pq4NNvYq0hAQFJCSYQ8PlGAAAAAAAoKihZQEKNKvDafaSBQAAAAAAAAo7AlkUaFaHk5YFAAAAAAAAKDIIZFGgWe2GbASyAAAAAAAAKCIIZFGgWR1OOZyG7E5CWQAAAAAAABR+BLIo0FLbFVjtbOwFAAAAAACAwo9AFgWa9d8NvegjCwAAAAAAgKKAQBYFmlkhSyALAAAAAACAIoBAFgXafy0LCGQBAAAAAABQ+BHIokCjZQEAAAAAAACKEgJZFGgOQ3I4DQJZAAAAAAAAFAkEsijwkh1OWe2Gr5cBAAAAAAAA5BqBLAo8q91JhSwAAAAAAACKBAJZFHhWB4EsAAAAAAAAigYCWRR4VkdKD1nDoG0BAAAAAAAACjcCWRR4VrtTMiSbg0AWAAAAAAAAhVuArxcAZCe1XUGyw6mgAH6HUNQ4X3tNJ3bvNsc1rr5a/j5cDwAAAAAAgDcRyKLASw1krXanVMLHi0GeM+6+W7GNGpnjK5s39+FqAAAAAAAAvItyQxR4Vvu/gSwbewEAAAAAAKCQI5BFgZf8byCb+l8AAAAAAACgsCKQRYFncxpyGgaBLAAAAAAAAAo9AlkUCsl2p5JpWQAAAAAAAIBCjkAWhUKy3UmFLAAAAAAAAAq9AF8vAPBEssNpbu6FIub0aQXExrqNVa2a79YDAAAAAADgRV4JZKdOnapevXopNDTUG9OjGLLanbI5nHI6Dfn5WXy9HOQh/y5d1PzAAXNshIVJ+/f7cEUAAAAAAADe45WWBRMnTlTXrl31yCOP6LfffpPVavXG06AYSW1XQB9ZAAAAAAAAFGZea1ngdDq1du1arV27ViEhIbrjjjvUu3dvXX311d56ShRhZiBrd6pUoL+PVwMAAAAAAABcHq9UyDZq1EiGYZh/zp8/r++//179+vVT9+7d9dVXX+ns2bPeeGoUUamVsWzsBQAAAAAAgMLMK4Hszz//rAULFmjQoEFmH9nUcPbvv//Wu+++q06dOunJJ5/U0qVL5XA4vLEMFCGuFbIAAAAAAABAYeWVQFaSGjRooBdeeEErV67Ul19+qV69eik4ONgMZu12u1asWKGnn35a119/vd59910dPHjQW8tBIWe1O2VIstJDFgAAAAAAAIWY1wLZVBaLRdddd53eeecdrVu3Tu+++646dOggf39/M5w9d+6cvvrqK/Xs2VN9+vTRjBkzdP78eW8vDYWIIcnmcFIhCwAAAAAAgELNa5t6ZaRkyZLq2bOnevbsqdOnT2v+/Pn69ddftXfvXvOcvXv3at++fXr33Xd14403qnfv3rr++utlsVjyc6kogJLtTiXbaW8BAAAAAACAwitfA1lXVapU0aBBgzRo0CCdPHlSy5cv1/Lly7Vp0ybZbDZZrVb9/vvv+v3333XFFVeoX79+6tevn6pUqeKrJcPHku1Oc3MvAAAAAAAAoDDyessCT1SrVk1dunRR586dFRYWJklmRaxhGDp16pQmTZqkrl276rXXXtPZs2d9uVz4SLLdKas9pc0FAAAAAAAAUBj5rEJWkiIiIrRw4UItW7ZM+/fvN2+3WCxm6FazZk1FRUXJ6XTKZrNpzpw5WrZsmSZMmKB27dr5aunwgWS7U4ZhyOYwFBRACwsAAAAAAAAUPvkeyJ45c0YLFy7UggULtGfPHvN216rHihUrqnv37urdu7caNWqkmJgYzZ8/Xz/++KOOHz+us2fP6sknn9SPP/6o+vXr5/dLgI9Y/21XkGx3KiigQBR3AwAAAAAAADmSL4FsUlKSlixZovnz52vjxo1yOFI2ZnINYQMCAtS5c2f17t1bN9xwgwIC/lta1apV9cgjj+ihhx7Sq6++qnnz5unixYv67LPP9MEHH+THS0ABkGz/N5B1OFTWt8XdAAAAAAAAwGXxWqrldDr1559/av78+Vq+fLkuXbokSen6f4aFhal3797q0aOHKlasmOWc/v7+evPNN7V8+XKdP39emzdv9tbyUQCZgaydHrIAAAAAAAAonLwSyI4ZM0a//fabzp07JyklhHXtC1u+fHndcccd6tu3rxo3bpyjuYOCgtSwYUNt3rxZcXFxeb10FGD/BbIOH68EAAAAAAAAuDxeCWRnzJjhFsBKKdWtHTt2VN++fXXDDTcoMDDwsue32+2SpGrVquV6rSg8HIYhu9Mwg1kAAAAAAACgsPFay4LUMLZBgwbq06ePevTooUqVKuXJ3FWrVlX//v3Vrl27PJkPhUey3Wlu7gUAAAAAAAAUNl4JZMuVK6c77rhDvXv31tVXX53n83/00Ud5PicKB6vDSYVsEeOYPl2Hd+0yx/WaNmXLNgAAAAAAUGR5JfdYs2ZNrloSAJlJthPIFjlt2iihRIn/xs2b+24tAAAAAAAAXuaVQHbq1KmSpNq1a6t79+6XPcfatWvl7++vL7/8Mi+Xh0Is2e6Uw2nI7nQqwM/P18sBAAAAAAAAcsQrgezkyZNlsVjUsWPHyw5k165dq02bNikkJCSPV4fCLLU6NtnuVEAQgSwAAAAAAAAKlwKbaF26dEmSlJSU5OOVoCBJtjv+/S9tCwAAAAAAAFD4XHaFbGxsrKxWa5bnXLp0Sf/880+O5k1OTtaqVau0699NfsqVK3e5S0QRlBrEWglkAQAAAAAAUAhddiD7yy+/aPz48ZnebxiGtmzZohtvvPGy5jcMQxaLRY0aNbrcJXrE4XDojz/+0JIlS7R7926dPn1aDodDlStX1tVXX63u3bvrxhtvlJ+H/Up37typ2bNna/PmzYqOjpZhGAoNDVV4eLh69uypTp06yWKxeLw+wzC0dOlSzZ8/X7t27dKZM2dUqlQphYaGql27durbt6/X36OCxOr4r2UBAAAAAAAAUNhcdiD74IMP6ueff9ahQ4cyPccwjMuaOzWwtFgseuihhy5rDk/s3LlTr732mvbv35/uvqioKEVFRWnx4sVq0aKFJkyYoCuvvDLTuWw2m8aMGaNZs2aluy8iIkIRERH69ddf1bFjR40bN05Vq1bNdn3R0dEaNmyYtm7d6na71WrV+fPndfDgQX377bd68MEHNXz4cAUFBXnwqgs3q8OQ05CSHQSyRcamTSrzb0W8JCk5WWrf3nfrAQAAAAAA8KLLDmT9/f31xhtv6L777rvs4DUzFotFV111lZ5++ml17NgxT+dOtX79ej355JNuPWqrVKmiWrVqyWazad++fbLZbJKk7du36/7779fMmTMzDFINw9Czzz6rpUuXmreVKFFCYWFh8vf316FDh5SQkCBJWrNmjQYOHKhZs2ZluWHZ2bNndd999+n48ePmbeXLl1f9+vV18eJFHThwQHa7XYZh6Msvv1RMTIwmTJiQ6/elMLA6nFTIFiH+Dz+ssAMHzLERFiZl8EsSAAAAAACAouCyA1lJatWqlVauXCm73W7eZhiGbrrpJlksFrVu3VrvvPOOx/P5+fmpRIkSCgkJUUBArpaWpWPHjrmFsdWrV9frr7+uG264wazOvXDhgiZNmqRvvvlGUkrF7JgxYzRp0qR0802fPt0tjB0wYICGDx+usmXLSkrppfvVV19p0qRJstvtOnLkiF5++WVNnjw50zWOHDnSDGNLlCihkSNHql+/fub7cvr0ab399ttatGiRJOnXX39VixYt9MADD+T27Snwku0EsgAAAAAAACiccp16hoaGZni7YRgqWbJkll/z95XRo0ebYWydOnX01VdfqVq1am7nhISE6JVXXpHT6dR3330nSVqyZIkiIiJUp04d87yzZ8/qk08+Mcf9+/fXqFGj3OYqWbKkBg8erCpVqujll18259q2bZuuueaadOv7888/tXLlSnP8zjvvqFu3bm7nVKlSRRMnTlRQUJB+/vlnSdKnn36qPn36qEyZMjl7QwqZZLuDQBYAAAAAAACFkmc7VeXQkCFDNGTIEHXv3t0b0+fKrl27tGbNGkkpFbnvv/9+ujDW1dChQ83erIZhuAWlkjRnzhwlJiZKSmkp8OKLL2Y6V9++fXXDDTeY4y+//DLD877++mvzuGPHjunCWFejRo1SpUqVJEnnzp3TvHnzMj23qLA6nLI5nXLmcasMAAAAAAAAwNu80hdgyJAh3pg2T8ydO9c87tWrl5o1a5bl+SEhIXruued05swZlStXTk2bNnW7/7fffjOPb7/9dgUHB2c53913322GuqtXr1ZSUpLbY86fP69169aZ4759+2Y5X3BwsHr06GGGu7///rvuv//+LB9T2CXbnZIhWe1OlQz09/VyAAAAAAAAAI95r1FrAeVa4XrXXXd59JgHH3www9vj4uK0b98+c+zJBmTt2rWTv7+/HA6HLl26pHXr1ummm24y79+0aZMcDoeklM3NOnTokO2cHTp0MAPZbdu26fz58ypXrly2jyusUtsVJBPIAgAAAAAAoJC57EA2tW9pql69emV6X265zp0bp06d0j///CNJKlWqVLbVsdk5cOCADJevzYeHh2f7mODgYNWqVUtHjx6VlNJCwTWQ3e+yu3yNGjU8ClYbNWpkHjudTu3Zs0ft27f36DUURmYg66CPLAAAAAAAAAqXyw5kR4wYIYvFYo5dQ9O09+VWXgWyBw4cMI+vuuoq+funVFeeOHFCP//8s1asWKGoqChdvHhRVatWVZs2bXTnnXeqZcuWGc4XERFhHgcFBWXZi9ZVjRo1zED2+PHjmc5Zu3Ztj+arUqWKSpYsqUuXLkmSjh07VjwCWTb2AgAAAAAAQCGT65YFhmFkGr4aebDpUl4Gu67hZ9WqVeV0OjVt2jRNmjRJycnJ6c49fvy45syZo969e+vNN99UiRIl3M45ffq0eVylShWP1+F6rusckhQTE3NZc1aqVElRUVEZzlnUWP+tjLUSyAIAAAAAAKCQuexAtnr16pd1ny/Fxsaax8HBwRozZoy+//5787b69eurUqVKio2N1eHDh83b582bp+PHj+urr75SUFCQeXtcXJx5XLZsWY/XUaZMGfP4/Pnzbve5jnMyp+u5Fy5c8Phxec3pdMownDIMQ06nU05n7kP5dM8hyWp36KLN/u9zEMwWZn6GIddfuxiGIYfd7rP1oHBK7b2d2RjIDtcQcotrCLnFNYS8wHWE3OIaAvLHZQeyy5cvv6z7fMk1qPzzzz/N8U033aQRI0aoZs2a5v2RkZEaM2aMVq1aJUnaunWrxo4dq9GjR5vnWK1W87hkyZIer8M11HWdQ5Jbpe7lzpm22jc/xcTE6GyiQwmJdsXERMvmpT6vp8v7KdBRUqeMRJ07d85s14DCJzw5Wa5XujU5WXt27PDZelA07N6929dLQCHHNYTc4hpCbnENIS9wHSG3uIYA7/Dz9QLyk2v4mRrG3n333Zo8ebJbGCtJNWvW1JQpU3TbbbeZt/344486ePCgObbZbOaxn5/nb2VAwH85uD1NJaDrOCdzpvbDzWjOouii1S7bv9W3rq8dAAAAAAAAKMiKVSCbth9tzZo19eqrr2bap9bPz09jx441WwwYhqHvvvvOvN81CMzJ1+ZdA9PAwEC3+y53TtevEaSdsyhKtjlk+/clE8gCAAAAAACgsMj1pl55JSEhQQEBATn6mn5OBQcHu43vuecet6/6Z6Rs2bLq1q2bfvzxR0nSunXrzPtc15qTNgGu56bdKMwbc+anqlWrKvn8JV3QRVWtGiq7F3rISlKpssEKLh2silUqKDTUkicbyME3/NJcr0ElSqh58+Y+Wg0KK4fD4fZ1qquvvppf1iBHuIaQW1xDyC2uIeQFriPkFtcQcmvXrl3s9eOBfAlkjx07JovFolq1aqW7b/r06fr6668VExMji8Wi2rVr66GHHlK/fv0yrVy9XKVLl3YbX3PNNR49rkWLFmYgGxkZKavVqqCgIJUvX948JyEhweN1JCYmmseuc0hSuXLlLmtO13PTzpmf/Pz8ZLH4yWKxyM/PT37yTlBqdRiyWCyyO6WSgfyPQ2FmpPl7brFY3Np6AJfD39+f6wi5wjWE3OIaQm5xDSEvcB0ht7iGAO/wasuCDRs2qFevXrrtttv0008/pbt/xIgRev/99xUdHS3DMOR0OnX06FGNGjVKQ4cOdevRmhcqVKjgNq5YsaJHj6tUqZLbOC4uTpIUGhpq3nbmzBmP13H69GnzuHLlym73Xe6crudWqVLF48cVVtZ/NwtLtvNbFwAAAAAAABQeXgtkV6xYoUceeUQHDhyQJJ04ccLt/pUrV+rnn3+WlL63q2EYWrJkiSZOnJina2rQoIHbOHVjr+yk3SQr9bdDtWvXNm9LSkpSbGysR/NFRkaax3Xr1nW7r06dOubx8ePHPZovJiZGly5dynCOoio1iCWQBQAAAAAAQGHilUDWarVq1KhRZpBpGIbOnj3rds6XX35p3hcQEKBhw4bpk08+0R133GHe/u2337qFl7kVFhbmNo6IiPDocadOnTKPS5YsabYEaNKkiVuYvG/fvmznSkxMdAtaGzVq5HZ/eHi4eXzs2DFdvHgx2zldn9disaR7nUWRGcg6CGQLO8eKFdrx++/mH8eKFb5eEgAAAAAAgNd4JZBdsGCB2RO2ZMmSmjBhgv73v/+Z9585c0abN2+WxWKRxWLRyy+/rMcff1w33nijxo8fr/vuu09SSmXqokWL8mxdFStWdAsrly5d6tHjNm/ebB43adJEfn4pb1uZMmXUpEkT8z7XDb8ys2HDBrO5sb+/v9q0aeN2f6tWrcwKXIfDoY0bN2Y7p+vzNmnSxK0PbVFldxpyGAYVskVBlSqyV65s/lExaLkBAAAAAACKL68EsmvXrjWPR40apW7durntyrdq1So5nU4ZhqGSJUuqd+/ebo9/+umnzVDyzz//zNO19ezZ0zxevny5/v777yzPP3nypJYtW2aOb7nlFrf7b731VvN4/vz52Va0/vDDD+Zx+/btFRIS4nZ/SEiI2rVrZ45nzpyZ5XyJiYmaP3++Ob7tttuyPL8oSbY7lWx3+HoZAAAAAAAAgMe8Esju2bNHklSuXDn16NEj3f2pIavFYlGbNm1UsmRJt/vLlSun+vXryzAMRUVF5enaevfubVaQ2mw2jRgxQvHx8Rmea7Va9dJLL5mbi5UpU0Z9+vRxO6dv374qVaqUJCk2NlajR4/O9Llnz57tFjA/8MADGZ537733mscrVqzQ3LlzM53zjTfeMNtBBAcH684778z03KIm2e6U1W74ehkAAAAAAACAx7wSyJ47d04Wi0U1a9Y0v97vasOGDebxddddl+EcFSpUkJTS3iAvVaxYUSNHjjTHu3bt0oABA9zWJElHjhzRww8/7NYy4Nlnn03XDqBy5cp65JFHzPHcuXP13HPPua370qVLmjJlikaNGmXe1qlTJ3Xq1CnDNXbt2lVt27Y1x6+99pqmTp2q5ORk87bY2FgNGzbMrTr2ySefVMWKFbN9D4oKq92pZAcVsgAAAAAAACg8ArwxaVJSkiSpbNmy6e7bt2+fzp07Z45dg0dXVqtVktxaHeSV3r17KyIiQlOmTJEkHTx4UAMHDtQVV1yhmjVr6vz58zp48KDbY3r27Kn7778/w/kGDx6sXbt2aeXKlZKkhQsXavHixQoLC1NQUJAOHTrkVoVbo0YNvfvuu1mu8f/Zu/P4uOqy///vMzOZLM3WHShtgba0tEjpDd6C9lZxqTcKxRaEH7IJKCqCCt4KKLgii3xxQfwqX0RAQBBZZL1B2XcEgdKFllKga9o062TWs31+f0xymrRpm+1kJsnr+XjkMefMnPOZK7nHevvOletz1VVX6aSTTtL69evluq5++ctf6vrrr9eMGTNk27ZWrVoVdO5K0hFHHKEzzzyzLz+OISvn+nI9I883ikas3d8AAAAAAAAAFFgoHbIdQWzn4LXDc889FxyPHj1aBxxwQLdrvPfee5K0w4zVgXLeeefpsssuCzpxJWnz5s165ZVXuoSxsVhMZ599tq644oqdrhWLxfTb3/5Wxx13nCwrHww6jqNly5bptdde6xLGzps3T3/5y19228k6ceJE3XLLLfqP//iP4Lm2tja99tprWrZsWZcw9rjjjtM111zTbTfycJbz8ht6sbEXAAAAAAAAhopQOmSnT5+uV155RWvWrFEymVRlZWXw2pNPPikpPz92/vz53d7/4osvqqmpSZZlafr06WGUKCk///VTn/qU7r//fj3++ON699131dTUpJKSEu2zzz46/PDDdeKJJ2ry5Mm7XSsej+vnP/+5TjjhBN1777166aWXtGXLFtm2rTFjxuiggw7SUUcdpQULFvQ4ON1zzz31l7/8Rf/85z/18MMP680331RDQ4MikYgmTpyoQw45RMcff7wOPvjgfv4khqaOIDbn+qqID3wnNQaH9de/atyyZdvOV66UOs1RBgAAAAAAGE5CCWQPO+wwvfLKK3IcR1dddZV+8pOfSMqHsa+99lpw3YIFC3a4d/369frhD38YnO9spMFAqamp0SmnnLLTcQS9ddBBB+mggw4akLWkfHC9YMGCbn9WI10QyHqepJLCFoM+i/zsZ5q6alVwbmbOJJAFAAAAAADDViiB7OLFi3XdddfJcRzdeeedWrJkifbaay8988wzsixLxhhNmDBBH//4x4N73nnnHT344IO6/fbblUgkJEmlpaU65phjwigRw4DdHsjajCwAAAAAAADAEBHK0NE999xT3/72t2WMkSStWrVKTz75pDzPkzFGlmXpBz/4gWKxbXnwX//6V1133XVBGGtZlr75zW9q4sSJYZSIYcD2fBkxQxYAAAAAAABDRygdspJ0xhlnyLIs/epXv5Jt28Hz5eXluuiii3b4E/x99903CHCj0ajOPvtsnXHGGWGVh2HAKN8dSyALAAAAAACAoSK0QFaSTj/9dC1atEhPPfWU6uvrtccee+hjH/uYampqdrh233331ejRo/Xxj39cp512mmbNmhVmaRgmcp6vnEcgCwAAAAAAgKEh1EBWkmpra/X5z39+t9d96EMf0osvvhh2ORhmcnTIAgAAAAAAYAgJZYZsX0QiRVMKhpCc6+dnybaPuwAAAAAAAACKGSkohjTb9SWT3+ALAAAAAAAAKHahjyzoYNu22tra5DiOfL934dlee+0VUlUY6jrGFeRcX6WxaIGrAQAAAAAAAHYt1EC2paVFN9xwg/7xj39o3bp1fVrDsiytWLFigCvDcJFzvfZHOmQBAAAAAABQ/EILZFeuXKkzzjhDzc3NzPdEaHLetg5ZAAAAAAAAoNiFEsjatq1vfOMbampqCmN5IBCMLGCGLAAAAAAAAIaAUALZu+++Wxs3bpRlWTLG6OCDD9b/9//9f5oxY4aqq6sVibCXGAaGbyTHN3TIAgAAAAAAYEgIJZD95z//GRwfddRR+j//5/+E8TaAJCnneASyAAAAAAAAGBJCaVV9++23JUklJSX6/ve/H8ZbAIGc5xPIAgAAAAAAYEgIJZBtbW2VZVmaPn26xowZE8ZbAIGskw9k2TwOAAAAAAAAxS6UQLa2tlaSVFVVFcbyQBcdYazNxl5DU2Wl3E5fqqwsdEUAAAAAAAChCWWG7D777KOtW7dq/fr1YSwPdNExriDn+iqNRQtcDXrLe+klLVmyJDifO3duOP8wAQAAAAAAFIFQOmQ//elPS5Lq6uq6BC1AGLKu1/5IhywAAAAAAACKWyiB7OLFizVx4kRJ0qWXXirbtsN4G0BS1w5ZAAAAAAAAoJiFEshWVlbqiiuuUDwe17Jly3Tqqafq9ddfD+OtgPwMWRHIAgAAAAAAoPiFMqrx6aefliR96Utf0nXXXaclS5boi1/8osaMGaOZM2eqtrZWpaWlPVrLsixddtllYZSJYcJIsl0/GF0AAAAAAAAAFKtQAtmvfvWrsixLkoJHY4waGxv14osv9no9AlnsTs716ZAFAAAAAABA0QttM3NjTK+e35mOQBfYFQJZAAAAAAAADAWhBLKLFi0KY1lgp7KuJ9vz5RujCCH+kGJdcYX2XrFi2/ns2dLFFxewIgAAAAAAgPCEEshefvnlYSwL7FTO9SWTfywviRa6HPRC5NZbNXHVquDczJxJIAsAAAAAAIatSKELAAZCx7gCxhYAAAAAAACgmBHIYljItgexWdcrcCUAAAAAAADAzoW2qdfObNmyRVu2bFFra6uqq6s1d+5cSVImk1E8Hlc0yp+bo/dy7UFszqFDFgAAAAAAAMVrUALZdevW6aabbtJTTz2lurq64Pn58+fr+uuvlyQ9/vjjuvTSS3X88cfrK1/5iqqqqgajNAwTtmfkGynnEcgCAAAAAACgeIU6ssAYo9/85jc68sgjdfvtt2vTpk0yxgRfnW3atEktLS26/vrrtXDhQi1dujTM0jAM5VwvGF0AAAAAAAAAFKNQA9lvf/vb+sMf/iDP83YIYC3L6nK+YcOG4Liurk5nnnmm1qxZE2Z5GGZyrs+mXgAAAAAAAChqoQWy1157rR599NHg/AMf+IAuueQS3XHHHd1ef/TRR+uQQw6RMUaWZSmRSOjCCy8MqzwMQ/lAlk29AAAAAAAAULxCCWQ3b94czIaVpO985zv629/+ppNOOkkHH3xwt/d88IMf1G233aaLL744eG7ZsmV6+umnwygRw1DW9eV6Rq5PlywAAAAAAACKUyiB7F133aVcLifLsvSFL3xBX/nKV3p878knn6zTTjstOH/44YfDKBHDUMe4AsYWAAAAAAAAoFiFEsg+99xzkvJzYr/5zW/2+v6zzjpLsVhMktjcCz3WMa6AQBYAAAAAAADFKpRAdsOGDbIsS9OnT9e4ceN6ff+YMWM0ZcoUGWO0ZcuWECrEcJRtD2KzBLIAAAAAAAAoUqEEsq2trZLywWpfjR8/XpJk2/aA1IThj5EFAAAAAAAAKHahBLJVVVWStgWzfdHY2ChJqqmpGZCaMPy5vpHnm2B0AQAAAAAAAFBsQglk99xzTxljtHr16j6FsnV1dVqzZo0sy9Jee+0VQoUYrrKur6xDhywAAAAAAACKUyiB7Ec+8hFJkud5+tOf/tTr+6+55hoZYyRJH/rQhwa0NgxvOddXziOQBQAAAAAAQHEKJZBduHChIpH80n/84x/16KOP9vje6667Tvfee29w/rnPfW7A68PwlXM9ZsgOMeagg5Q88MDgyxx0UKFLAgAAAAAACE0sjEWnT5+uRYsW6e6775bneTrvvPO0cOFCLVq0SPvtt98O16fTaf3rX//SzTffrJdeekmSZFmWFixYoFmzZoVRIoaprOvL941s11c8FsrvGzDA/L/8RauWLAnO586dG85vigAAAAAAAIpAKIGsJF1yySVauXKlli9fLmOM7rvvPt13331drnnllVd02GGHqa2tTb6f72rsGFUwefJk/fSnPw2rPAxTHd2xOY9AFgAAAAAAAMUntMSqrKxMN9xwg/7rv/5LxpguX5ZlSZJyuZxaWlrkeV4QxErS7NmzdeONN6qmpias8jBMBYGs6xW4EgAAAAAAAGBHobYQ1tbW6vrrr9eVV16pmTNnBs93Dmc7mzBhgi644ALdcccdmjRpUpilYZjKtgexWYc5sgAAAAAAACg+oY0s6OyYY47RMccco3Xr1um1117T2rVrlUgk5DiOampqNHHiRM2bN08HHHBAsBkY0BedRxYAAAAAAAAAxWZQAtkOU6ZM0ZQpUwbzLTHC+EZyPKMcHbIAAAAAAAAoQrSjYtjJuh4dsgAAAAAAAChKg9ohCwyGnOsHs2RR/CJnnaXpK1duO581S/rTnwpYEQAAAAAAQHj6HMi+8sorA1nHLn3wgx8ctPfC0JdzfdluftM4y7IKXQ52w3rhBdWsWhWcm6amAlYDAAAAAAAQrj4HsqeccsqghF2WZWnFihWhvw+Gj5zryxgj2/NVGosWuhwAAAAAAAAgENrIAmNMWEsDu9QxriDrEsgCAAAAAACguPQrkO1J6NrRRdtxbSwW0+TJk1VTU6OSkhKlUimtX79ebW1tXa6fPn26Kioq+lMeRqicm9/QK+f4UlmBiwEAAAAAAAA66XMgu7LTJjzdaW5u1pe//GUtX75ckvSpT31KJ510kg455BDF4/Edrl+1apVuv/123XnnnTImP//z6quv1t57793XEjFCBYGs5xe4EgAAAAAAAKCrSFgLn3feeVqxYoVisZiuuOIKXXvttTr88MO7DWMlaebMmfrxj3+sP/7xjyotLdWaNWt09tlny7btsErEMJVzfRlJWccrdCkAAAAAAABAF6EEsg8//LBeeuklSdLZZ5+tz3/+8z2+98Mf/rC++93vyhij1atX68477wyjRAxjRpLt+kGnLAAAAAAAAFAsQglk77nnHklSWVmZzjjjjF7ff/zxx6u6ulqS9OCDDw5obRgZcq7PyAIAAAAAAAAUnVAC2VWrVsmyLM2cOVNlZb3fVamkpEQzZsyQMUZr164NoUIMd1nXU9YhkAUAAAAAAEBxCSWQbW5uliRFo9E+r+G6riQpmUwOSE0YWXKuL8f35fum0KUAAAAAAAAAgVAC2draWhlj9M477wTBam+kUimtXLlSlmVp/PjxIVSI4S7n+pIRYwsAAAAAAABQVEIJZGfPni1JSiQSuvvuu3t9/x/+8AflcjlJ0rx58wa0NowM2fYNvRhbAAAAAAAAgGISSiB75JFHSpKMMbriiiv04osv9vjev/zlL/rjH/8YnC9atGjA68Pwl3O9Lo8AAAAAAABAMQglkD366KM1depUWZalTCajM888UxdffLGWLFki39+xY9G2bT3//PP66le/qp/97GcyxsiyLM2fP1/z588Po0QMc7n2DtmORwAAAAAAAKAYxEJZNBbTL3/5S51yyinKZDLyfV9333237r77bsXjcU2aNEmVlZWS8mMNNmzYIM/LdzIak9+Eafr06frVr34VRnkYAWzPyDfbRhcAAAAAAAAAxSCUDllJmjNnjm688UZNnDhRUj5oNcYol8vpvffe09KlS7V06VKtXbtWrusGr0vSRz7yEf3xj38MQlugL3KuR4csAAAAAAAAikooHbId5s6dq4ceekg33XST7r//fq1du1bSti7Y7e23334666yz9PnPfz7MsjBC5FyfQHYIMMcco8YVK4LzMbNnyypgPQAAAAAAAGEKNZCVpFGjRukb3/iGvvGNb+j999/XK6+8ovr6ejU1NclxHFVVVWnq1KmaN2+eZsyYEXY5GEGyrq8sm3oVPf/nP9faJUuC89q5c8Nr3QcAAAAAACiw0APZzvbZZx/ts88+g/mWGMFyri/PN3J9X7EIER8AAAAAAAAKj5QKw1auvTs25zC2AAAAAAAAAMWBQBbDVrZ9fmyWObIAAAAAAAAoEgSyGLY6NvTKeQSyAAAAAAAAKA4Eshi2gkCWkQUAAAAAAAAoEgSyGLZc38j1jbLts2QBAAAAAACAQosVugAgTDnXDzplUZwiCxbowJUrt53PmiU98UQBKwIAAAAAAAgPgSyGtazrsalXkbM2bVJpXV1wbqqrC1gNAAAAAABAuBhZgGEt4+Q7ZH1jCl0KAAAAAAAAQCCL4S3jeDLGKOswRxYAAAAAAACFRyCLYS3THsSmHcYWAAAAAAAAoPBCCWRff/31MJYFei1t5wPZDB2yAAAAAAAAKAKhBLInnniijjzySF1//fWqr68P4y2AHsnPj90WzAIAAAAAAACFFNrIgvfff1+//OUvdcQRR+iss87So48+Ksdxwno7oFtGUtb16JAFAAAAAABAUYiFsmgsJtd1JUme5+nZZ5/Vs88+q+rqah199NFatGiR5syZE8ZbAztI2wSyAAAAAAAAKA6hdMg+++yzuvjii3XQQQdJkowxMsaotbVVt912m4477jgtXLhQN998s5qamsIoAQhkHE85z5fnm0KXAgAAAAAAgBEulEB29OjROvnkk3XnnXfqf//3f/XVr35Ve+21l6Rt4ezq1at1xRVX6KMf/ajOOeccPfHEE/J9P4xyMMKlHU8ybOwFAAAAAACAwgtthmyHfffdV+edd56eeOIJ3XrrrTr22GNVVVUVBLOu6+rxxx/XN77xDX30ox/VlVdeqdWrV4ddFkaQjOO3PxLIAgAAAAAAoLBCD2Q7O/TQQ/Xzn/9czz//vH71q1/p4x//uGKxWBDONjQ06KabbtLChQt13HHH6fbbb1cikRjMEjEMZex8EJsmkAUAAAAAAECBhbKp1+7E43EdeeSROvLII9XS0qKnnnpKTzzxhJ5//nmlUilJ0rJly7R8+XJdccUVWrBggU444QQdeuihhSgXQ1zO8+UZQ4csAAAAAAAACm5QO2S7U1tbq89//vO65pprdOONN2revHmSJMuyZIxRLpfTgw8+qFNOOUULFy7UAw88UOCKMRRlHD8YXQAAAAAAAAAUSkE6ZDt75ZVX9Nhjj+nxxx/Xxo0bJW0LYzt0HK9evVrf+973dNddd+kXv/iFJk6cWJCaMfRkbE9pmw5ZAAAAAAAAFFZBAtmVK1fq/vvv10MPPaT6+npJ6hLAStIBBxygRYsWacGCBXrttdd033336dlnn5Xv+3r55Zd12mmn6Y477lBtbW0BvgMMNWnHk+P5cj1fsWjBG8MBAAAAAAAwQg1aIFtXV6cHHnhADzzwgN555x1JO4awo0eP1tFHH63Fixdr1qxZwfOf/exn9dnPflZr167VeeedpxUrVmjt2rX6f//v/+l73/veYH0LGMI65sdmHF9VBLJFxf/Wt1S3YkVwvufs2YoWsB4AAAAAAIAwhRrIJhIJPfLII7r//vv12muvBQFs5yA2Fovpox/9qBYvXqyPf/zjisV2XtLUqVP1hz/8QZ/85Cfluq4ee+wxAln0SEcgm3Y8VZUVfFIHOjFf+Yq2LFkSnO8xd24BqwEAAAAAAAhXKMnUo48+qgceeEDPPPOMHMeRtGM37P7776/Fixdr4cKFGjNmTI/XnjBhgmbPnq0lS5Zo8+bNA1o3hq900CHLHFkAAAAAAAAUTiiB7Le+9a1gY67OG3TV1tbqqKOO0uLFizV79uw+r19aWipJqqmpGZB6Mfw5npHrmyCYBQAAAAAAAAoh9L/djkajmj9/vhYvXqwjjjhCJSUl/V6zrq5O06ZN06c+9akBqBAjRcbx6JAFAAAAAABAQYUWyE6fPl2LFi3SMccco7Fjxw7o2v/4xz9kWdaAronhL00gCwAAAAAAgAILJZC96667dOCBB4axtCQRxqJPMrYn1zOyXV/xWKTQ5QAAAAAAAGAECiWQzWQyeuWVV1RTU6P999+/T2s8//zzev311+U4js4777wBrhAjUbCxl+sRyBaTXE5WLtflXLHQp6kAAAAAAAAURCipxymnnCLLsjR//nxdf/31fVrjd7/7nV5//XWNHTuWQBYDIuP4+UfbU01Z/2cZY2BEDzlE/7FqVXBuZs6UVq4sYEUAAAAAAADhKdo2wWg0KmOMWlpaCl0KhomO+bFp5sgCAAAAAACgQIoykF2+fLmWLVsmSaqoqChwNRguXN/I9vygUxYAAAAAAAAYbH0eWXDttdfq3nvv3eU1r7zyij75yU/2at1cLqempib5vi/LsjRlypS+lgjsIOP4QacsAAAAAAAAMNj6HMiefPLJuu2223Y6UsAYo2w2q02bNvVqXWOMJMmyLEnSokWL+loisIOM4xHIAgAAAAAAoGD6PLKgtrZW//M//yNjzA5fnXX3+q6+OvviF7+ok046qa8lAjtI25483yjnEsoCAAAAAABg8PW5Q1aSjj32WJWWlspxnOA5Y4y+//3vy7IszZgxQ6effnqP17MsS6WlpaqtrdX++++vsWPH9qc8YAcd3bEZx1dpLFrgagAAAAAAADDS9CuQlaSjjjpqh+e+//3vS5ImTpzIyAEUlY5ANu14qi0vKXA1AAAAAAAAGGn6Hch254Mf/KAkaebMmWEsD/RZ0CFrM7IAAAAAAAAAgy+UQPaWW24JY1mg3zwj5VxfaTb2AgAAAAAAQAH0eVMvYKjKOF7QKQsAAAAAAAAMpj53yG7atKnL+V577bXT1/qr89pAf6UdT1nXlzFGlmUVuhwAAAAAAACMIH0OZD/xiU8EYZZlWVqxYkW3r/XX9msD/ZVxPPm+Udb1VV4SLXQ5AAAAAAAAGEH6PUPWGNOn14BCSbdv6JVxPAJZAAAAAAAADKp+zZAljMVQlHH89kfmyAIAAAAAAGBw9blD9vHHH+/Ta0ChZV1PRts6ZQEAAAAAAIDB0udAdtKkSX16DSg030hZxws6ZQEAAAAAAIDB0u8ZssBQlHF8RhYUCf83v9F7y5YF5/seeKCY7AsAAAAAAIYrAlmMSBnHU9b15RujiGUVupwRzXzyk2odN27b+dy5BawGAAAAAAAgXP3a1AsYqtKOJ2OMsnTJAgAAAAAAYBD1uUP21FNPHcg6dsqyLN18882D8l4YOTrGFWQcXxXxAhcDAAAAAACAEaPPgey//vUvWSH/qbcxJvT3wMjUEcimHU9jC1wLAAAAAAAARo5+zZA1xgxUHcCgyjq+jMTGXgAAAAAAABhUfQ5kzznnnIGsAxhUHWFs2iaQBQAAAAAAwOAhkMWIlXE8ZVwC2YJ76y2Vr1q17Twelz7wgcLVAwAAAAAAEKJ+jSwAhrK07Snn+vJ8o2iEWcWFEv3CFzS7UyBrZs6UVq4sYEUAAAAAAADhiRS6AKBQMo4nGebIAgAAAAAAYPAQyGLESju+JAJZAAAAAAAADJ4+jyy46KKLgmPLsnTZZZd1+1p/bb82MFDSttv+SCALAAAAAACAwdHnQPbee++VZW2bu9k5NN3+tf4ikEUYbM/I843SdMgCAAAAAABgkPRrUy9jjCR1G752vNZfAxnsAttLOx4jCwAAAAAAADBo+hzILlq0qE+vAcUk7XjBLFkAAAAAAAAgbH0OZC+//PI+vQYUk4ztyfV82a6veIw97gAAAAAAABAuEiiMaB3zYxlbAAAAAAAAgMFAIIsRLW3ng1g29gIAAAAAAMBg6NemXn2xZs0a1dXVqbW1VaWlpaqpqdGUKVM0ceLEwS4FCDpjCWQBAAAAAAAwGAYlkH399dd1++236+mnn1Yikej2mj333FOf/vSndfLJJ2vy5MmDURYgz0g511fGJpAFAAAAAABA+EIdWdDS0qJvf/vb+uIXv6gHHnhAra2tMsbIGBNc03G+adMm/fnPf9aRRx6p3//+92GWBXSRdjw6ZAEAAAAAADAoQgtkm5qadMopp+jRRx/dIYSV1O1zkuS6rq655hqdf/75YZUGdJFxPGUcv9vPIwAAAAAAADCQQhtZcNFFF2n16tWyLEuSNGnSJC1evFiHHnqo9t13X1VVVckYo0QioXfeeUcvvPCC7r33XjU3N8sYo//93//VlClT9O1vfzusEgFJ+Y29jDHKur7KS6KFLgcAAAAAAADDWCiB7Msvv6ynn346CGNPOeUUffe731U8Ht/h2oqKCu2xxx6aP3++vv71r+viiy8OumpvuOEGLVq0SFOnTg2jTEDStg290rZHIAsAAAAAAIBQhTKy4MEHHwyOFy1apB/84AfdhrHbq6qq0q9+9Sv913/9l6T8+II777wzjBKBQKYjkGWOLAAAAAAAAEIWSiD7r3/9S5IUjUb13e9+t3cFRSL64Q9/GHTXPvPMMwNeH9BZ1vHlm23BLAaXd//9WnbXXcGXd//9hS4JAAAAAAAgNKGMLKivr5dlWZo1a5ZGjx7d6/snT56s/fffX6tWrVJdXV0IFQLbGOXD2LRNIFsQ++2nXFtbl3MAAAAAAIDhKpQO2ZKSEklSeXl5n9eorq6WJBljBqQmYFcyjsfIAgAAAAAAAIQulEB2ypQpMsZozZo1fQ5UN27cKMuytNdeew1wdcCO0o4n2/Xl+n6hSwEAAAAAAMAwFkogu2DBAklSc3Nzlw2+euqll17Spk2bJEmf+MQnBrQ2oDsd4woyNoEsAAAAAAAAwhNKIHvSSSdpzz33lDFGl156qVatWtXje5uamvSDH/xAklRTU6NTTjkljBKBLjo29GJsAQAAAAAAAMIUSiA7atQoXXPNNaqurlZra6tOPPFE3XLLLcpkMru876mnntLixYu1ceNGlZeX6+qrr9a4cePCKBHooiOIzRDIAgAAAAAAIESxvt546qmn7vaayspKJRIJpdNpXXbZZfr1r3+tgw8+WNOmTQs27UqlUtqwYYPeeOMNNTQ0yBgjy7L0n//5n3r11Vf16quv6lvf+lZfywR6xPGMHN8EowsweKyHH9boZcu2nW/cKC1cWMCKAAAAAAAAwtPnQPZf//qXLMva7XUd1xhjlEql9MILL+iFF17Y4bqOzb86rn/mmWf0zDPPSBKBLAZFxvYYWVAAke99T/t1GmtiZs4kkAUAAAAAAMNWnwNZaVuIOpD3bP96T0JfYCCkHY+RBQAAAAAAAAhVnwPZc845ZyDrKDoXXXSR7rnnHknS5ZdfrsWLF/fovjVr1uiOO+7Qyy+/rA0bNsh1XU2YMEH777+/jj76aH36059WLNa7H/uLL76ou+++W2+88Ybq6+sVi8W0xx57aN68eVq0aJEOPfTQXn9/2FHa9uT5RjnXU2ksWuhyAAAAAAAAMAwRyHbj6aefDsLY3vjtb3+rP/zhD3Jdt8vz69ev1/r16/X444/rwAMP1FVXXaX99ttvt+slk0ldcMEFeuyxx7o8n8vltGbNGq1Zs0Z33XWXFi5cqB/+8Ieqqqrqdc3YpqM7Nm37BLIAAAAAAAAIRaTQBRSbtrY2XXLJJb2+79JLL9W1114bhLGxWExz5szRoYceqtGjRwfXLVu2TKeccoo2bty4y/VyuZzOOOOMLmHsqFGjNG/ePB100EEqKysLnr///vv19a9/XbZt97pubNMxP5axBQAAAAAAAAgLgex2LrvsMm3ZsqVX9zzyyCO65ZZbgvPPfOYzQZftbbfdpmeffVY//elPVV5eLklqaGjQueeeu8t5uldeeaWWLFkiKT9H95vf/KZeeOEF3XHHHfrb3/6mZ599Vqeeempw/SuvvKKrr766V3Wjq4zjyUhs7AUAAAAAAIDQFH0gu2zZskF7r76MKnAcR1deeWVwfsQRR+jXv/61xo0bFzxXUlKiE044Qddee20wP3b58uV68MEHu13znXfe0R133BGcf+c739E3vvGNLl2x1dXV+sEPfqBvfOMbwXO33XabNmzY0Kv6sY1vpJzrE8gCAAAAAAAgNH2eIdtTnufpzTff1ObNm5XL5eR5XredocYYua4rx3GUTqe1detWvfrqq1q9erVWrFgRdplKJBK6+OKLJeUD1Fgspkwms9v7/vnPf2rTpk2S8mMKfvjDHyoS6T7nnj9/vk444QTddtttkqQbb7xRRx999A7X3XLLLfK8fCi433776cwzz9zp+59zzjn65z//qbfffluO4+jWW2/VhRdeuNu60b207SljE8gCAAAAAAAgHKEGsn/605903XXXKZFI9Ol+Y4wsyxrgqrp32WWXqb6+XpJ01lln6e9///tu57xK0sMPPxwcf/jDH9Zee+21y+s7B7LLly/X+vXrNXny5OB13/f16KOPBueLFy/eacArSZFIRMcff7wuvfRSSdKjjz5KINsPacdT1vXlG6PIIH32AAAAAAAAMHKENrLg17/+ta666iq1trZ26Yg1xgRf2+v82q7mqw60p556Svfee68kaf/999fXvva1Ht1njNHLL78cnH/kIx/Z7T0zZ87U+PHjg/Mnnniiy+srV65Uc3NzcD5//vzdrtn5fTdt2qSVK1fu9h50L+PkO7jZ2AsAAAAAAABhCCWQ3bBhg/74xz9KUtDh2jlktSxLlmV1G8B2vDZhwgR9+ctf1q233hpGiYFEIqFLLrlEUn7kwOWXX654PN6jezdu3Nil+/fAAw/s0X0zZ84MjpcuXdrltc5haklJiWbMmLHb9fbdd98u82W3XxM9l24fV0AgCwAAAAAAgDCEEsjee++9cl1XklRaWqqLL75YzzzzjN566y195zvfkTFG0WhUL7/8spYvX64XXnhBN9xwgz72sY8F4WxTU5M+9alP6ZBDDgmjxMCll14ajCo488wzexyqStL777/f5XzKlCk9um/vvfcOjtetW7fTNSdNmhRsArYrlmV1GZWwdu3aHtWBHXVs6JVmjiwAAAAAAABCEEog+69//Ss4/s53vqOTTz5ZEyZMkGVZOvzwwyXlN/t67rnnFI1GNWbMGH3kIx/Rddddp/POOy94/ZJLLgl1dMETTzyh++67T5I0bdo0nXPOOb26f+vWrcFxJBLRuHHjenRf55EFndfY/nzChAk9rqXze2+/Jnou5/ryjFHa8QtdCgAAAAAAAIahUDb1Wr9+vSQpHo/r+OOP7/LarFmzVFJSItd19eqrr+pzn/tcl9e/+tWvaunSpXrsscf0zjvv6LHHHtOnP/3pAa+xtbVVP/zhDyXlw9TejCrovEaHUaNG7XLzrc4qKyu7XUOSWlpaguOqqqoe19L52u3XHEy+78sYX8YY+b4v3x+8WcADJZVzlc457fUTzIYtYow6b59mjJHX3mEP9JTnebs8B3aHzxD6i88Q+ovPEAYCnyP0F58hYHCEEsi2trbKsixNmzZNpaWlXd8wFtN+++2nVatWafny5d3ef9ZZZ+mxxx6TJD355JOhBLKXXnpp0En6pS99SXPnzu31GrlcLjjuPMN1dzoHv7Ztd3mt8/lArTmY6uvr1ZTylEy5qq/fIscbeoFmXZmnEq9Sm6MZtbW1KZlMFrqkYW1OLqfOn3Q7l9PyJUsKVg+Gh2XLlhW6BAxxfIbQX3yG0F98hjAQ+Byhv/gMAeEIZWRBx/zY2trabl/fd999JUlr1qzp9vWDDjoo+BP8zptcDZTHH39c999/vyRpn3320be+9a0+reM4TnDc0+5YSV3mwrrbdQL2dc1oNLrTNdE7qZwj1xi5vno0wxcAAAAAAADoqVAC2Y4gtnO42NnkyZMlSel0Wlu2bOn2mkmTJskYo02bNg1obS0tLfrRj34kKb8Z1s9//vNedaJ21jkE7c2ftncOTEtKSgZkzc5/RrD9muidZC7/uc16hkAWAAAAAAAAAyqUtGn8+PHaunWr1q1b1+3rU6ZMCY7ffvttTZw4cYdrOrpDU6nUgNbWeVTBySefrEMPPbTPa5WXlwfHnccX7E7nkQLbj3ToHA73Zs3O126/5mCaMGGCcq1ZJZTRhAkT5Q7BGbLlpTFVjqpUZW2lJlbGNWnSpEKXNKx5q1bp353+DObAAw/U3E6/mAB6wvO8Ln9OdeCBB3b5BRewO3yG0F98htBffIYwEPgcob/4DKG/li5dyn48PRBKIDtv3jytWLFC9fX1WrZsmQ488MAur3cOZN944w3913/91w5rdGwMNpAdio899pgeeOABSfku3fPPP79f69XU1ATHqVRKxhhZlrWLO/I6zyTdfqxD5/PezC7d1ZqDKRKJyLIisixLkUhEEQ29QDbn5f/vmHV9/ounAKLRKJ3J6Dc+R+gvPkPoLz5D6C8+QxgIfI7QX3yGgHCEMrLgIx/5SHB88cUXq7Gxscvrs2fPDjpg77vvvh1GGzz55JNqaGiQZVnBLNn+amlp0Y9//GNJ+VEFl156qSoqKvq1ZufOXs/z1Nzc3KP7Ojp0Je3w/U2YMCE43v7ntisNDQ3B8fjx43t8H3bk+ka25yvtsJskAAAAAAAABlYov+Y44ogjtM8++2jt2rVatWqVjjzySH3hC1/Q6aefrnHjxqmqqkof/OAH9fLLL2vjxo0699xzddFFF2ncuHF67rnnguBUkubOnTsgNf31r38NgtDy8nJdf/31uv7663d6feeA88Ybb9RDDz0UnF955ZUaN26cpk6d2uWe9evXa8yYMbutZcOGDcFxxwZnHfbZZ58u1/Wk69YYo40bN3a7BvombXvK2LTYAwAAAAAAYGCFEshalqWLL75YX/va1+R5nhKJhP70pz/pyCOPDDpCv/SlL+nll1+WJD399NN6+umng/uN2fZn7osXLx6QmjrPbU2n03ruued6fO/bb7+tt99+OzjPZrOS8huP1dbWqqWlRZL01ltv9ShAXrlyZXA8a9asLq/NmTMnOM5kMnrvvfe033777XK9d999t8sM2QMOOGC3NWDXMo6njOv1eAwFAAAAAAAA0BOhjCyQpPnz5+sXv/iFqqqqguc6z4494ogjtHDhwiB8NcYEXx0B2Gc/+1l9+MMfDqvEAfGhD30oOH7hhRd2e/3KlSu7dN8edthhXV6fMWNGly7bF198cbdrPv/888Hx6NGjNXPmzN3eg11LO5583yjr0iULAAAAAACAgRPqZObPfvaz+tCHPqS//OUvevnll1VdXd3l9csuu0xjx47VLbfcItd1u7x2wgkn6OKLLx6wWs4991yde+65Pb7+E5/4RDAG4PLLL99pp+6CBQv06KOPSsrPvt2yZUuX2bLbu/3224PjadOm7RCeWpalT3/60/rrX/8qSbrzzjt14oknBjN3t+f7vu68887g/DOf+QwdnQMgbefnx2YcT+UlbOwFAAAAAACAgRH6Vnljx47daRgai8V0wQUX6IwzztBzzz2nrVu3qra2VocffrgmT54cdmkDYsGCBZowYYLq6+tl27YuvPBCXX/99d3uQvjss8/qb3/7W3B+yimndLvmF7/4Rd15550yxmjlypX63e9+t9Mw+Te/+Y1Wr14tSYpEIjtdE73TsaFXyvY0pn97v2E3rN/9TnsuX77tfM4c6VvfKmBFAAAAAAAA4Qk9kO2J8ePHa9GiRYUuo0/i8bjOP/98XXjhhZLyYwu+8pWv6Kc//WkQKruuq3vuuUeXXXaZPC8f9O2///76whe+0O2as2bN0qJFi3TPPfdIkq699lq1tbXp3HPPDUZAtLW16ZprrtGf//zn4L4TTjhB06dPD+17HUmyji/PGKVsd/cXo18iv/+99lq1Kjg3M2cSyAIAAAAAgGGrKALZoW7RokV6/fXXgzEDL7zwghYsWKCZM2eqsrJSa9asUVNTU3B9bW2tfvOb33TbRdvhBz/4gd5++20tW7ZMknTzzTfrzjvvDEYcrFq1SplMJrj+Ax/4QBAKo/+MpFTOUzLnFboUAAAAAAAADCODGsiuXLlSr732mjZv3qyWlhaVlZWpurpaU6dO1bx587T33nsPZjkD6ic/+YlGjx6tG264QY7jyPd9vfXWWztcN23aNP3mN7/Rfvvtt8v1KisrddNNN+l73/uennjiCUlSJpPRG2+8scO1RxxxhK666iqVlZUNyPeCvKTtKu14XTaaAwAAAAAAAPoj9EA2m83q5ptv1l//+lfV1dXt8tqZM2fq9NNP1zHHHBN2WQPOsiydd955Wrhwoe666y4999xz2rx5szKZjGpqanTAAQfov//7v7Vw4ULF4/EerVlVVaXf//73evHFF3X//ffr1VdfVUNDgzzP07hx4zRv3jwtWrRI8+fPD/m7G5lStiffN0rbnkaV0kwOAAAAAACA/gs1ZXrzzTd1/vnna+PGjTLGSMoHlx3HHTqeW7lypS688ELdf//9+sUvfqGxY8eGWd4udXSl9ta0adN0wQUX6IILLhiwWg4//HAdfvjhA7YeeiaZy8+PTRLIAgAAAAAAYIBEwlp46dKlOuOMM7Rx48Yuz0ejUU2dOlUHHnig5syZo8mTJysS2VaGMUYvvPCCvvSlL6mtrS2s8oDdStle+yMbewEAAAAAAGBghNL253meLrroIiWTyaD79XOf+5xOPPFEzZ07VyUlJV2uz2azeumll3TzzTfrxRdflCS98847uuiii3TttdeGUSKwW65vlHV9NvYCAAAAAADAgAmlQ/bhhx/WO++8I8uyFIvFdO211+rqq6/WoYceukMYK0llZWX6+Mc/rhtvvFHf//73JeU7ZR9//HG9/PLLYZQI9Egy5ypJhywAAAAAAAAGSCiB7COPPBIcf+c739GnPvWpHt976qmn6vTTTw/O//73vw9kaUCvpGxPtuvL8fxClwIAAAAAAIBhIJRA9q233pIkVVZW6qSTTur1/WeffbZKS0slSa+++uqA1gb0RrCxF2MLAAAAAAAAMABCCWQbGhpkWZb233//bkcU7E5lZaVmzZolY4y2bt0aQoVAz3SMK2BsAQAAAAAAAAZCKIFsdXW1pPzmXn0VjUYl5efLAoWSdXx5xihFIAsAAAAAAIABEEogO3PmTBljtGrVKqXT6V7f77qu1qxZI8uytO+++4ZQIdAzRvk5sowsAAAAAAAAwEAIJZBduHChJCmbzer666/v9f333nuvWltbJUlHHXXUgNYG9FYy5yrteDLGFLoUAAAAAAAADHGhBLLHHHOM/uM//kPGGF133XW66667enzvK6+8ossuu0yStP/+++v4448Po0Sgx1K2J983Stt0yQIAAAAAAKB/QglkJel3v/udDjjgAPm+r0suuUTnnHOOXn31Vfm+3+317733nq688kqdfvrpymQy2m+//fS73/2uT5uCAQMpmevY2ItAFgAAAAAAAP0T6+uNBxxwQI+usyxLxhg9/vjjevzxx1VWVqapU6eqqqpKkpRKpbRx40YlEglJkjFGlmUpFovpggsukGVZuvXWW/taJtBvqfYgNr+xV2lhixmGzD77KJfNBufxffaRVcB6AAAAAAAAwtTnQLYjON3VXE3Lsro8GmOUyWS0atWqHdbquK7j2tWrVwfvARSS6xtlXZ8O2ZD4Dz6o5UuWBOdz584Nr3UfAAAAAACgwPocyEra7SZHO3u9t88DhZbMucHoAgAAAAAAAKCv+hzI/vnPfx7IOoCilrI92a4vx/NVEqV/EwAAAAAAAH3T50D2P//zPweyDqCoBRt75TyNriCQBQAAAAAAQN+QLAE9kLTdLo8AAAAAAABAXxDIAj2QdXx5xihFIAsAAAAAAIB+6NemXr2xbt06Pfnkk/r3v/+t+vp6tbS0KBqNatSoUZo0aZJmz56tj33sY9p///0HqySgx4zyc2STOa/QpQAAAAAAAGAICz2Q3bJliy677DI99thj8n2/22uWLl2qRx55RL/85S/1oQ99SD/84Q+13377hV0a0CupnKu048kYI8uyCl3OsBH5n//RvitWbDufPVv69a8LVxAAAAAAAECIQg1k//3vf+vcc89Vc3NzEGIZY7q9tuO1l156Sccdd5yuueYazZ8/P8zygF5J2p583yhtexpVOmjN5cOe9cgjGrNqVXBu1q0rYDUAAAAAAADhCi1Veu+99/T1r39diUQi6CaMxWKaM2eOZsyYoerqanmep9bWVq1evVorV66U67qyLEvpdFrnnnuu7rzzTs2YMSOsEoFeSeY6NvYikAUAAAAAAEDfhJYqXXTRRUEYG41G9ZWvfEWnnnqqRo8e3e31TU1Nuvnmm3XDDTfI8zxlMhldcskluuOOO8IqEeiVlO21P7qSSgtbDAAAAAAAAIakSBiLPvvss3rjjTdkWZZKSkp0/fXX61vf+tZOw1hJGjNmjM477zz98Y9/VDwelyQtWbJEL774YhglAr3m+kZZ11fSZmMvAAAAAAAA9E0ogew//vGP4Pjcc8/V4Ycf3uN7DzvsMJ177rnB+UMPPTSgtQH9kcy5wegCAAAAAAAAoLdCCWT//e9/S5JKS0t18skn9/r+k046SaWl+T8Jf/311we0NqA/UrYn2/XleH6hSwEAAAAAAMAQFEog29DQIMuyNGPGDJWXl/f6/vLycs2cOVPGGG3atCmECoG+CTb2yjG2AAAAAAAAAL0XSiCbyWQkqU9hbIeysjJJkucRfKF4dN3YCwAAAAAAAOidUALZmpoaGWO0cePGPq/Rce+uNgIDBlvG8eQZoySBLAAAAAAAAPoglEB2xowZkqRNmzbprbfe6vX9y5cv18aNG2VZlqZOnTrQ5QF9ZpTvkmVkAQAAAAAAAPoilED2wx/+cHD885//vFdjB1zX1WWXXRacz58/f0BrA/orlXOVdjwZYwpdCgAAAAAAAIaYUALZY489VqWlpZKkf//73/rmN7+pRCKx2/sSiYS++c1v6t///rek/BzZRYsWhVEi0GdJ25PvG6UdumQBAAAAAADQO7EwFh0zZoy+/vWv69e//rUsy9ITTzyhz3zmM1q0aJHmz5+vadOmqaamRpLU2tqqd955R88995z+/ve/q6WlRZJkWZbOOOMMjR8/PowSgT5L5tz2R0+j4qH8RwgAAAAAAADDVGhp0llnnaVly5bpsccek2VZam5u1o033qgbb7xxp/cYY2RZliTpYx/7mM4999ywygP6LGV77Y+upNLCFgMAAAAAAIAhJZSRBZIUiUR0zTXX6KSTTgpCVikfunb31fn1k08+Wddee21YpQH94vpGWddXW3unLAAAAAAAANBToQWyUj6UveSSS3Tffffp6KOP1ujRo3d6bXV1tRYuXKi///3vuvjiixWL8afgKF5tWVdtOWbIAgAAAAAAoHcGJfWcMWOGrrrqKknSmjVrVF9fr5aWFhljVFNToz322EPTpk0bjFKAAZHIuRrv+co4nspLooUuZ0gzRxyh1j32CM6rDzhA1i6uBwAAAAAAGMpCCWRvv/12vfvuu1q4cKE+8IEPdHlt2rRphK8Y8tqyjiQpkXUJZPvJ/+1vtWbJkuB87ty54bbuAwAAAAAAFFAoucfDDz+sW2+9Vccff7x+9atfhfEWQEG15TwZiTmyAAAAAAAA6JVQAtn33nsv2Kjr05/+dBhvARSUZ4zStkcgCwAAAAAAgF4JJZBNJBLB8fTp08N4C6Dg2nKu2nJu8MsHAAAAAAAAYHdCCWT33nvv4Liuri6MtwAKLpF15ftGKdsrdCkAAAAAAAAYIkIJZI8//vjg+Nprrw3jLYCC6xhXwNgCAAAAAAAA9FQogexpp52mxYsXyxijhx9+WOecc46WLVsWxlsBBZOyXfkm3ykLAAAAAAAA9EQsjEWfeeYZfeYzn1EymdQ//vEPPf7443r88cc1atQo7b///hozZowqKytlWdZu17IsS5dddlkYZQL94hspabt0yPZT5NhjdcDKldvOZ82S7ruvgBUBAAAAAACEJ5RA9qtf/WoQtnY8GmOUTCb1+uuv93o9AlkUq7asq1SZJ883ikZ2/wsG7MhatUoVb78dnJse/KIGAAAAAABgqAolkJW0053ne7sjfU+6aIFCacu5+V822K5qykoKXQ4AAAAAAACKXCiB7KJFi8JYFig6HfNj27IEsgAAAAAAANi9UALZyy+/PIxlgaKTcTy5vmGOLAAAAAAAAHokUugCgKHMSErmXCUIZAEAAAAAANADBLJAPyVybr5T1vMLXQoAAAAAAACK3ICOLGhubtaaNWtUX1+viooK7b333po+ffpAvgVQdNqyrmTyweyYinihywEAAAAAAEARG5BA9s0339Rvf/tbvfjii/I8r8trEyZM0CmnnKJTTjlFpaWlA/F2QFHpmB/bRiALAAAAAACA3ej3yILf//73OvHEE/Xcc8/JdV0ZY7p8bdmyRVdffbWOO+44rV+/fiBqBopK1vVle36+UxYAAAAAAADYhX4Fsnfeead+85vf7NAV25llWTLGaPXq1fryl7+sZDLZn7cEilIbG3sBAAAAAACgB/o8siCZTOrqq6+WZVmSJGOMDjvsMC1YsECTJk2S67patWqV7r333qAzdt26dfrd736nCy64YGCqB4pEIutqbIWvnOurNMZeeQAAAAAAAOhenwPZRx55RK2trbIsS6Wlpbr66qv1yU9+sss1n/zkJ3XWWWfpkksu0b333itjjO655x59+9vfZp4shpVtc2Qdlcb4bAMAAAAAAKB7fW7le/nll4Pj7373uzuEsR1isZh+9rOfacaMGZKkRCKhN954o69vCxSljvmxCebIAgAAAAAAYBf6HMiuXLlSkjRq1Cgdf/zxu7w2FovpxBNPDM6XL1/e17cFipLjG2UcL+iUBQAAAAAAALrT50B269atsixLU6ZMUUlJyW6vP+SQQ4LjdevW9fVtgaLVlnPVlnNljCl0KQAAAAAAAChSfQ5k0+m0JKmqqqpH10+aNCk4bmtr6+vbAkWrLefK9Ywyjl/oUgAAAAAAAFCk+rypl+M4ktSj7lgpP9qgQyqV6uvbAkWrY35sW85VRTxa4GqGDv/MM7W10xiT8XPmiJ8eAAAAAAAYrvocyBpjZFmWLMvq0fWdr/M8r69vCxStZM6VUT6QnVhVWuhyhgxz3nnauGRJcD5u7twCVgMAAAAAABCuPo8sANCVZ6S07QWdsgAAAAAAAMD2CGSBAZTIukrabOwFAAAAAACA7hHIAgOoLefI942SNmM5AAAAAAAAsCMCWWAAteXcLo8AAAAAAABAZwSywABK5jz5xqiNObIAAAAAAADoRqy/C2zZskV///vfQ73n85//fK/WBwrFKB/KJuiQBQAAAAAAQDf6HciuXr1aF110UY+vN8b0+h4CWQwliZyrGtuT5xtFI1ahyyl60XnzNO/tt4Nza//9paVLC1gRAAAAAABAeAZ1ZIFlWbKsngdU7FSPoSiRdWSMUYKxBT3jOIrYdvAlxyl0RQAAAAAAAKHpV4csgSmwo9b2IDaRdTS6oqTA1QAAAAAAAKCY9DmQffzxxweyDmDYyLm+cq6vVubIAgAAAAAAYDt9DmQnTZo0kHUAw0oi62pUqStjTK/GdAAAAAAAAGB4G9QZssBI0Zp15Hq+Mo5X6FIAAAAAAABQRAhkgRAk2scVtLKxFwAAAAAAADohkAVCkMy58k1+dAEAAAAAAADQgUAWCIFvpLacSyALAAAAAACALghkgZAkso5SjivX8wtdCgAAAAAAAIoEgSwQkkTWlcy2ebIAAAAAAAAAgSwQktasI4k5sgAAAAAAANiGQBYIie0ZZV0/CGYBAAAAAAAAAlkgRImso7acK2NMoUsBAAAAAABAESCQBULUmnXlekZp2yt0KQAAAAAAACgCBLJAiBLt4wpa2dgLAAAAAAAAIpAFQpXMefKMCYJZAAAAAAAAjGyxQhcADGdGUlvWVaKUDtmd8S+9VOuXLQvOJx94oKIFrAcAAAAAACBMBLJAyBJZV7UVnhzPV0mUpvTtmc9/Xo377huc7z13bgGrAQAAAAAACBfpEBCy1qwjmXwwCwAAAAAAgJGNQBYIWaJ9Q69W5sgCAAAAAACMeASyQMgczyjjeHTIAgAAAAAAgEAWGAytWVdtOVfGmEKXAgAAAAAAgAIikAUGQSLryvONkrZX6FIAAAAAAABQQLFCFwCMBIn2+bGJrKuqUv5j18XGjYpv2rTtfNw4aerUwtUDAAAAAAAQIpIhYBCkbE+eb5TIOppUU1bocopK9DOf0QdWrQrOzcyZ0sqVBawIAAAAAAAgPASywCAwkhI5V6PY2AsAAAAAAGBEY4YsMEgSWVdZx5Pt+oUuBQAAAAAAAAVCIAsMktaOObI5p8CVAAAAAAAAoFAIZIFBkmgfV9DK2AIAAAAAAIARi0AWGCSub5R2vCCYBQAAAAAAwMhDIAsMotaMq7acK9+YQpcCAAAAAACAAiCQBQZRIuvI942SObpkAQAAAAAARiICWWAQNWfyG3o1pdnYCwAAAAAAYCQikAUGUdb1lXG8IJgFAAAAAADAyEIgCwyy5oyjRNaV5zNHFgAAAAAAYKQhkAUGWVPakTFGLXTJAgAAAAAAjDgEssAga8k4MpKa0nahSwEAAAAAAMAgixW6AGCkcX2jtqyr5jgdsgAAAAAAACMNHbJAATRnHKVtTznXK3QpAAAAAAAAGEQEskABdIwraE7TJQsAAAAAADCSEMgCBZDIuvJ8oyY29gIAAAAAABhRmCELFICR1JJ1VFYSlTFGlmUVuqSC8W69Ve8sWxacTz/wQP5hAgAAAAAAwxa5B1AgzWlHYyviStmeKktH8H8UDz5Yqc6B9Ny5hasFAAAAAAAgZIwsAAqkqX1+bDNjCwAAAAAAAEYMAlmgQNKOp5zrBxt8AQAAAAAAYPgbwX8nDRRec8ZReTwq3zeKREbuHFkAAAAAAICRgg5ZoICa045836g1y9gCAAAAAACAkYBAFiig5ozd/kggCwAAAAAAMBIwsgAoINszStqemtKO9htb6GoK5LnnVL106bbztjbp4x8vWDkAAAAAAABhIpAFCqw5bauyNCrH81USHXlN69GvfU0zVq0Kzs3MmdLKlQWsCAAAAAAAIDwjL/0BikxzxpFMfp4sAAAAAAAAhjcCWaDAWjKOfMMcWQAAAAAAgJGAkQVAgflGas06Ko/z+xEAAAAAAIDhjgQIKALNaUc5x1fa9gpdCgAAAAAAAEJEIAsUgeaM3eURAAAAAAAAwxOBLFAE2nKeHM+oiY29AAAAAAAAhjVmyAJFojljq6wkImOMLMsqdDkAAAAAAAAIAR2yQJFoTjvyfKNE1i10KQAAAAAAAAgJgSxQJJozTpdHAAAAAAAADD8EskCRyLq+0o6npjQbewEAAAAAAAxXBLJAEWlK20rkXDmeX+hSAAAAAAAAEAICWaCINKUdyeTnyQIAAAAAAGD4IZAFikhLxpFvjJqYIwsAAAAAADAsxQpdAIBtfCO1ZFyVlTBHFgAAAAAAYDiiQxYoMk1pW7brK5lzC10KAAAAAAAABhiBLFBkmtvHFTQztgAAAAAAAGDYYWQBUGRStqec66spbWtybXmhywmd98ILWvbmm8H5gQcdxD9MAAAAAABg2CL3AIpQU9pWeTwqzzeKRqxClxOu6mp5VVVdzgEAAAAAAIYrRhYARagp7cj3jVoYWwAAAAAAADCsEMgCRag548go3ykLAAAAAACA4YORBUARcn2jRNZVU5wOWQAAAAAAgOGEDlmgSDWlbWVsTxnHK3QpAAAAAAAAGCAEskCRak7nu2Ob0nTJAgAAAAAADBeMLACKVFvOleMbNadtTaopK3Q5obH+/GdNWL582/mSJdIZZxSwIgAAAAAAgPAQyAJFykhqTtsqi0XkG6OIZRW6pFBEfvELTV61Kjg3M2cSyAIAAAAAgGGLkQVAEWtKO/LaN/gCAAAAAADA0EcgCxSxprTd5REAAAAAAABDG4EsUMRszyhpe2zsBQAAAAAAMEwQyAJFriltK2m7sl2/0KUAAAAAAACgnwhkgSLXnHYkIzVlGFsAAAAAAAAw1BHIAkWuNevIMyYfzAIAAAAAAGBIixW6gEJ7+eWX9dBDD+n1119XfX29ksmkKisrteeee+rQQw/V4sWLNXv27B6v9+abb+pvf/ubXnnlFW3ZskXGGE2cOFFz5szRMccco49+9KOyLKvH6xlj9Nhjj+n+++/X0qVL1djYqPLyck2cOFGHHXaYjj32WM2aNasv3zqGCN9ILRlHZbGojDG9+vwAAAAAAACguIzYQHbDhg264IIL9Oqrr+7wWktLi1paWvTWW2/plltu0ec+9zn99Kc/VWVl5U7XcxxHP/vZz/TXv/51h9fef/99vf/++3rooYc0f/58XX755ZowYcJua9yyZYvOO+88/fvf/+7yvG3bam1t1dtvv61bbrlFX/rSl3T++ecrHo/34DvHUNSUdjS2Iq5kzlNV2Yj9jy0AAAAAAMCQNyJHFrz//vv6whe+0CWMLSkp0Zw5c3TYYYdpxowZXboQH3roIZ100klKJpPdrmeM0be//e0uYWxpaakOOuggzZs3r0uQ+9xzz+m0005TIpHYZY1NTU06+eSTu4SxtbW1OvTQQzVnzhzFYrHgvW+88UZdeOGFvfshYEhpSufnxzJHFgAAAAAAYGgbcYGs53k699xz1dTUJEmKRqM655xz9NJLL+mee+7RzTffrAcffFBPP/20Pv/5zwf3rVy5Uj/4wQ+6XfNPf/qTHnvsseD8i1/8op5//nn97W9/0x133KHnn39e5513XhCivvvuu/r+97+/yzovuugirVu3TlI+3P3xj3+s559/XrfddpvuuecePfXUU/rsZz8bXP/QQw/pz3/+c59+Jih+GcdXxvHUxBxZAAAAAACAIW3EBbL33HOP3n777eD8iiuu0LnnnrvDOIKJEyfqyiuv1Omnnx4898gjj+iNN97ocl1TU5N+97vfBecnnniifvSjH6mqqip4rqysTF/72tf005/+NHjun//8p1577bVua3z22Wf11FNPdanxxBNPDAJdSRo/frx+9atfdQmN/+///b877eLF0NeYdpTIunI8v9ClAAAAAAAAoI9GXCB73333Bcfz58/XwoULd3n9+eef32Xe60MPPdTl9bvuukupVEpSfqTA9773vZ2udeyxx+rjH/94cH7jjTd2e93NN9/cpcbOnbDb+9GPfqSxY8dKkpqbm3Xvvffu/JvBkNaYsmWMUWOasQUAAAAAAABD1YgKZG3b7tKVetRRR+32nng8rvnz5wfnS5cu7fL6//7v/wbHRx55pCoqKna53gknnBAcP/PMM0qn011eb21t1QsvvBCcH3vssbtcr6Kiokuo/Mgjj+zyegxdLRlHrm/UmGJsAQAAAAAAwFA1ogLZjRs3qrS0NDifNm1aj+6rra0Njpubm4PjlpYWvfXWW8F55+B2Zw477DBFo1FJUjab7RK+StK//vUveZ4nSbIsSx/5yEd2u2bna1577TW1trbu9h4MPUb5zb2a0rZ8YwpdDgAAAAAAAPpgRAWy++67r15//XW9+uqreuihh7T//vv36L6NGzcGxzU1NcHxqlWrZDoFY3PmzNntWhUVFZoyZUpwvn3H7cqVK4Pjvffeu8v77cysWbOCY9/3tXz58t3eg6GpMeXI841aMnTJAgAAAAAADEUjKpDtUFVVpenTp6usrGy31yaTST3//PPBeeeu2vfffz84jsfj2nPPPXv0/nvvvXdwvG7dui6vdV5z6tSpPVpv/PjxXb6XtWvX9ug+DD2NaVtG+Xmyw8bYsXI6fal9JjIAAAAAAMBwFCt0AcXuhhtuUDKZDM6POOKI4Hjr1q3B8fjx43u8ZudrO68hSfX19X1ac+zYsUEn7/ZrDibf92WML2OMfN+X7/On9QPJ9qWWtK3SqKVpYytkjOnSpT0UeU88oWXLlgXnBx54oKKuW8CKMBR1jHrZ2TmwO3yG0F98htBffIYwEPgcob/4DAGDg0B2F958801df/31wfk+++yjT3ziE8F5S0tLcFxVVdXjdSsrK4Pj7ee9dj7vzZqdr00kEj2+b6DV19erKeUpmXJVX79FjucXrJbh6m0/rdikMXp3Q1YlxlVDQ0OhSxpQncNZoK/4HKG/+Ayhv/gMob/4DGEg8DlCf/EZAsIxIkcW9MSGDRt09tlny3G2zeq88MILFYtty7Bte9ufjfdk/EGHeDze7RqSlMvl+r1m5zUw/GxJpCVJrTlfJSUlwSZxAAAAAAAAKH4Est2oq6vTaaed1uVP/7/0pS91GVcgqUtYG4n0/EfZOdR1t/vT7M7nvVmzcyi3/ZoYXlI5V8mso9Zcvvu4tLS0wBUBAAAAAACgpxhZsJ01a9bozDPPVF1dXfDc/Pnz9T//8z87XNs5BPX9nv9pfufAtKSkZEDW7DzXZfs1B9OECROUa80qoYwmTJgolxmyobCjZbLKyjV63GhNnDhxSM+R9TxvxxmydP2il/gcob/4DKG/+Ayhv/gMYSDwOUJ/8RlCfy1durRXedZIRSDbyWuvvaazzz5bzc3NwXOHHXaYrr322m5Dzs4jBXozJqDztdt3N4ax5mCKRCKyrIgsy1IkElFEQzcoLGZNaUdTR1eoOetqr+qej7YYCqLRaJcucqAv+Byhv/gMob/4DKG/+AxhIPA5Qn/xGQLCwciCdg888IBOO+20LmHsxz72MV133XUqLy/v9p7a2trgOJlM9vi9UqlUt2tIUk1NTZ/W7Hzt9mti+ElkXTm+UWPK3v3FAAAAAAAAKBr8mkPSb3/7W1177bVdnlu4cKEuv/zyXf4maOLEicFxY2Njj9+v82zacePGDciana8dP358j+/D0GQkNaZslcYi8nyjaMQqdEl9FvnJTzRlxYpt57NnSz/7WQErAgAAAAAACM+IDmQdx9EPfvAD3XfffV2e/+pXv6rzzjtPlrXrkGvq1KnBcTqdVkNDww4Ba3fWr18fHO+7775dXttnn32C43Xr1u12LUmqr69XNpvtdg0MX40pW3tUlao542jcqHihy+kz629/0/hVq4Jzs3w5gSwAAAAAABi2RuzIAtu2dc4553QJY2OxmC699FKdf/75uw1jJWn27Nldrnvrrbd2e08qleoStM6aNavL63PmzAmO165dq0wms9s1O7+vZVmaOXPmbu/B0NeUduQbMbYAAAAAAABgCBmRgazruvrmN7+pp556Knhu1KhRuu666/SFL3yhx+tUVlZq9uzZwfkLL7yw23teeumlYLe5aDSq//zP/+zy+iGHHBKMSfA8Ty+//PJu1+z8vrNnz+4yhxbDl2eMWjKOGtO2jGHzNAAAAAAAgKFgRAayV111lZ588sngfMyYMbrllls0f/78Xq/1mc98Jji+//77d9vRevvttwfHH/7wh1VdXd3l9erqah122GHB+R133LHL9VKplO6///7g/L//+797VDeGh8a0Ldv11ZZzC10KAAAAAAAAemDEBbJPP/20br755uC8pqZGf/7zn7uMCuiNY489VuXl5ZKkhoYG/fSnP93ptX/729/07LPPBuennnpqt9eddNJJwfGTTz6pe+65Z6dr/vjHP1ZTU5MkqaKiQscdd1yv6sfQ1jGuoDHlFLgSAAAAAAAA9MSICmQ9z9PPf/7z4M+7LcvS1VdfrRkzZvR5zXHjxunLX/5ycH7PPffoO9/5jhobG4Pnstms/vCHP+hHP/pR8NxHP/pRffSjH+12zU984hP60Ic+FJxfcskluu6665TL5YLnGhoadN5553Xpjj377LM1ZsyYPn8vGHqyrq+k7akxzRxZAAAAAACAoSBW6AIG0yOPPKK1a9cG5+Xl5brpppt000039XiNcePG6corr+zy3Ne+9jUtXbo0mEn74IMP6tFHH9XMmTMVj8e1evVqtbW1BdfvvffeO6yxvauuukonnXSS1q9fL9d19ctf/lLXX3+9ZsyYIdu2tWrVKjnOtq7II444QmeeeWaPvw8MH40pW5XxqLKOp7KSaKHLAQAAAAAAwC6MuEC2s3Q6reeee65Xa0yaNGmH52KxmH7729/qJz/5ie6++24ZY+Q4jpYtW7bDtfPmzdNvfvOb3XayTpw4UbfccovOP/98vfbaa5Kktra24Liz4447Tj/60Y8UiYyohme0a0zZmjq6XI1pW5NqygtdDgAAAAAAAHZhRAWy7777bmhrx+Nx/fznP9cJJ5yge++9Vy+99JK2bNki27Y1ZswYHXTQQTrqqKO0YMGCHgene+65p/7yl7/on//8px5++GG9+eabamhoUCQS0cSJE3XIIYfo+OOP18EHHxza94Xil8i5sj1fDSkCWQAAAAAAgGI3ogLZhx56KPT3OOigg3TQQQcN2HqWZWnBggVasGDBgK2J4acxZas0FpXj+SqJ0ikNAAAAAABQrEhugGFgc1tOxhhtbsvt/mIAAAAAAAAUDIEsMAy0Zl2lbE91iWyhSwEAAAAAAMAuEMgCw0RdIqu07akl4xS6FAAAAAAAAOwEgSwwTGxuy8k3Rpta6ZIFAAAAAAAoViNqUy9gOHN9o/qkrWgkwuZeAAAAAAAARYrEBhhG6hJZNvcCAAAAAAAoYnTIAsNIx+ZemxJZ7V1TJsuyCl3SbplDD1Vy1KjgfNQBB6j4qwYAAAAAAOgbAllgmNmUyGpUPKqWjKvRFSWFLme3/Jtu0ttLlgTnc+fOpXUfAAAAAAAMW+QewDCzpX1zr7oEm3sBAAAAAAAUGzpkgWGm8+ZetusrHuP3LgAAAAAAAMWCpAYYhjaxuRcAAAAAAEBRIpAFhqFE1lXS9lTXHswCAAAAAACgOBDIAsNUXSKrjOOpJeMUuhQAAAAAAAC0I5AFhqktbTl5xmhTgrEFAAAAAAAAxYJNvYBhyvWN6ttsxYp8c6/Il76k/d96a9v5AQdIt95awIoAAAAAAADCQyALDGN1iaz2rC7V5raspoyuKHQ53bJefVVVq1YF5yaVKmA1AAAAAAAA4SrOljkAAyKR69jcK8fmXgAAAAAAAEWAQBYY5ja15jf3amZzLwAAAAAAgIIjkAWGuS1tObm+0YaWbKFLAQAAAAAAGPGYIQsMc54xqktkFYtYSuVcjSrlP/YAAAAAAACFQocsMAJsbM3KSNrQSpcsAAAAAABAIRHIAiNA1vW1NZnTlmROtusXuhwAAAAAAIARi0AWGCE2tGTl+0abEnTJAgAAAAAAFAqBLDBCJHKuWrOuNiXywSwAAAAAAAAGH4EsMIJsaMnIdn1tSeYKXQoAAAAAAMCIRCALjCANKVtZ19eGFsYWAAAAAAAAFAKBLDCCGOW7ZFO2q6a0XehyAAAAAAAARhwCWWCEqUvk5PpGG1rpkgUAAAAAABhssUIXAGBwecaoLpFVLGopZbsaFeefAQAAAAAAgMFChywwAm1szcoYMUsWAAAAAABgkBHIAiNQ1vXVkLS1JZmT4/mFLgcAAAAAAGDE4G+VgRFqfWtG4yvj2tSa1dQxFQWrw3zhC2pYsSI4Hzt7tqyCVQMAAAAAABAuAllghEpkXSWyrjYmspo8ulwRqzAxqP+jH2ndkiXB+ei5c2ndBwAAAAAAwxa5BzCCrW/JyHZ91bflCl0KAAAAAADAiEAgC4xgDSlbGcfT2paMjDGFLgcAAAAAAGDYI5AFRjAjaW1zRhnb02a6ZAEAAAAAAEJHIAuMcFvacko7ntY2Z+TTJQsAAAAAABAqAllghDOS3m9KK+t4qktkC10OAAAAAADAsEYgC0D1SVtJO98l6/l0yQIAAAAAAIQlVugCABSH95vSqoxXaVMiq8m15YP2vtGPfUwHrVq17XzmTOn55wft/QEAAAAAAAYTgSwASVJDylYi52pdc0Z7VZcpGrEG540bG1XS2Bicmk7HAAAAAAAAww0jCwAE3mtMy/F8bWjJFLoUAAAAAACAYYlAFkCgOeOoJeNofWtGrucXuhwAAAAAAIBhh0AWQBfvNaXlekbrW7KFLgUAAAAAAGDYIZAF0EVr1lVT2tGG1owcumQBAAAAAAAGFIEsgB2835SW5xuta2aWLAAAAAAAwEAikAWwg0TOVUPK1sZEVjmXLlkAAAAAAICBQiALoFvvN6Xl+0brmtOFLgUAAAAAAGDYIJAF0K2k7ak+mdOmRE5Zxyt0OQAAAAAAAMMCgSyAnXq/KSPfGK1rYZYsAAAAAADAQCCQBbBTacfT1mROdXTJAgAAAAAADAgCWQC71NElu7aZLlkAAAAAAID+IpAFsEtpJz9LdnMbXbIAAAAAAAD9RSALYLfW0iULAAAAAAAwIAhkAexW2vFU35bvks3QJQsAAAAAANBnBLIAeuT95nR7l2y60KUAAAAAAAAMWbFCFwBgaMg4vra05RSxLE0d7am8JDog6/rf+542LV8enO81Z44GZmUAAAAAAIDiQyALoMfWNqc1sapU7zeldcDEqgFZ05x6quqXLAnO95w7d0DWBQAAAAAAKEaMLADQYxnH1+ZETvVJW2mbWbIAAAAAAAC9RSALoFfWMksWAAAAAACgzwhkAfRK1vW1OZFt75J1C10OAAAAAADAkEIgC6DX1jZn5Buj95szhS4FAAAAAABgSCGQBdBrWddXXSKr+mROqRxdsgAAAAAAAD1FIAugT9Y2Z+T7Ru829XOWbCKhaFtb8KVEYmAKBAAAAAAAKEKxQhcAYGjKub42tGYVsSy1ZBzVlpf0aZ3ohz+sg1etCs7NzJnSypUDVSYAAAAAAEBRoUMWQJ+ta87I9Y3ebUwVuhQAAAAAAIAhgUAWQJ+5vtHa5owSWVdbk7lClwMAAAAAAFD0CGQB9MvG1oxyrq/3mtIyxhS6HAAAAAAAgKJGIAugX3wjvdeUVtr2VNdGlywAAAAAAMCuEMgC6LctbTmlbE/vN6Xl+XTJAgAAAAAA7AyBLIB+M5LebUzJdn1taM0UuhwAAAAAAICiRSALYEA0ph21ZBytb8nI8fxClwMAAAAAAFCUCGQBDJh3m9JyPaO1zXTJAgAAAAAAdIdAFsCASWRdbU3Z2tiaVdbxCl0OAAAAAABA0SGQBTCg3mtMyzdG7zWlC10KAAAAAABA0SGQBTCg0o6nukRWW5I5tWXdQpcDAAAAAABQVAhkAQy499tnyS7bklDOZXQBAAAAAABABwJZAAPO9oyW1SWUsX29Wdcm1/cLXRIAAAAAAEBRIJAFEIqWrKu3trQplXO1rK5NvjGFLgkAAAAAAKDgCGQBhGZrytY7DSm1ZBytrE/KEMoCAAAAAIARLlboAgAMbxtasyqN5X/3UxqLaNrYUQWuCAAAAAAAoHAIZAGEbk1jOghly2IRTaopD17z/vAHvbd0aXC+7wc+wD9MAAAAAABg2CL3ADAoVtYnFY9GtLohpXg0ovGVpfkX5s9Xoqpq24Vz5xamwBAY35XdsEyx6qmKlo0udDkAAAAAAKAIMEMWwKDwjbRsc5tSOU9v1SfVmnEKXVKojO/K3vqm/FyrnMZl8rLNhS4JAAAAAAAUAQJZAIPG9Y3erEsoY3tatrlNOdeTZVmKRIbXP0X5ztil8u2EnNZ35dspQlkAAAAAACCJkQUABlnO9bVsc5vmTarR8s1tOmjPKo0ePVqNjY27vdf4rpyWd+Slt8qKlsiKxGVF819qP46U1ihSUriNw4IwNpeQ0/S2vPRm+el6xccfLKdxmTT2QMYXdOKmNsvPbFXJmFmyIiWFLgcAAAAAgNARyAIYdG05V6sbkpo5vlJrGtOqisdVXV2tRCKx03u8bLOc5lUybk5epkGSgjDWisQlKxI8VzrxkHxIO8iM78luWJYPY5vzYawkGS8ne+sbhLKdGC+X/xllmvLn9W+oZNyBisTKd3MnAAAAAABDG4EsgIKoS+RUXVoiY4zGRX2NHTVKjrPjXFnje3Jb35Wb2iTj5uQ0r5Lf3Z/+R2KKxKsVH3eg7MYVio+fK8uyBuE72VZnPoxtzQeNqbqurxPKBtzUZrkta2R8R25inXwnqfiYWbLrX1d83IGKxKsLXSIAAAAAAKEhkAVQMKsbktrz3XVKZJKqrYpqXERSOi0deqgkyc+1ym5aJeNm5KU3y2l+RzJe94v5rvxsk5yWNSqpnS63Nf/YU07rezJuWtGKPRQpG9OrMNf4nuzGZfJzLXJaVu8QxgbXjfBQtnNXrO8k5TStknGSkqRc/RuKj/uA7K1LVDLmAEXLx+1+PeNLsmRZ+a+KigplMhkZY0L+TgAAAAAA6DsCWQAF4xvpA+d9VWM3vBc8Z2bOlHlrhdzW9+Um18t4tpymt+Vndz9jVpK85EZF4lWSpEi8WtGKCbu83hgjt2W13GSdJCMv3SArGle0YoKiFRMViVd2f59ny7fb8l/ZJvl2W36+bXLTrt9vu1DWr9xbscpJPR6xYIwvL7VFXqZesVF7KlI+flA7gfvCGCMvvaVLV6ybWCtpW3BqnKTs+tfyoWzjcpXUTFesalI3a/nys83yMvXyM41SpETRUXsoUjZeNTU1qq6uVjabHcTvDgAAAACA3iGQBVBQfnfP2Qm5bevlZRvlNK2S/B1HGeyK0/y2rJJRwePONvkyxshpXikvVS8vVSenZY2i5eMUHTVRxrPltm1QJF6paMVEWSUV8u02GbtNvpOUcXPb1vFyclvfD2bG7k5HKFsyZqaM78tt26BoxQTFqiYrUlLR/T2+Ky+5SW5yo4xnS8aXnW1RpGSdYtVTiiqYNb7bHlYnZHKt+Z+b78o4KdlNK4Ou2B3u83LKbX1D8bFz5Jh3ZLyMYjXTJEl+rkV+Zqu89FYZ35WMLy/bKCtaJuNmZVrfUzQbkYmPVXl5jSKRSK/r9t2MvHQ+6I2U1ihauRczbQEAAAAAA45AFkBR8X0jebYkyU2s63UYK0kyvpzG5bImHCK7cblKJ/yHrEjXf+6M8eU0rpCXaZTbtkFu6xpJkpfeIi+9RVa0VNGKiYqOmijfTnZa2s6HsnYy6JCVb/e+RC8ne+ubskoqFauaLBlPXnqzomVjFK2crGhZbXCd27ZRXmqTjO8FYbWfbVK0YqJi1VPlO6ldBrO+k84HmrkW+blWyYrkg+fycbLi1f0Oco0x8rON8rPN8u2EfCcltY8NMF5Ofq5Vfq5FXmqzOnfFdst3ZW99UyVjZuZP7bZ84OrZkoz8bJO8dL28TGMwvsIqGaVI+UTJr1DUTShixeSUpRUrHyurpEJWtGyn36PxHXnprfLSW+Tn8pvKGTcr326Tm9ygaOloRSsn7XKMhfEd+dn8z9f4rqIVE3o99gIAAAAAMHIQyAIoKp4xcnJZRaQgmO0L42blNK1UfNyBcppWqmTsnCAgC2a+ZlvkJt5v//P57e73cnLb1sltWyerpFJWNJ4PGr3cDtf2h3GScprektv6rqJVe0u+Jy/TpEi8SlZJhbz0Vsn48rNN+SA21xLc66Xq5KU2KzpqT8Wqp2wLZqsmyxgvCGBNx8/Rd+XbrVIkJuNm5bZtyI9nKB+nSPk4RUprexUi+m5GXmqzvNTmbYGpncyHsrlW+Xaijz8vI6dppYyTVrRyr/YZwvXyMlsl3+3mZ5iSk3tHjfVbFa+coLLayfIqSuV3zPK1LFnRMkVKymVFy2XFyqVIVH6mQV62STJGxsvl3yO9RcZJyYqV59/bc+Vlm2XFyhSr3EvRij0kKyLfbm0PYZvlO8n2nNlIxshL1/do7EV/mfa65eXyvyjwXBnfljxHxnfyx0aKVe2laPn4UGoAAAAAAPQegSyAotOSSqmmI2zqBz/bGIStkbb1ilVPkfFd2Q1L5ecSclrWyEtu2O06xknK9KFRtzeMl5PbskZuYm0+YK2cJMuOy0tvldu2fqd/5i8ZealN8lJ1XYJZSUEA67V3qBq7bdttkXjQJWu8nJTcJCtakg9lYxWKlFTIilXIipXLikS3vZvx5Wca5Kbq8uGwUf49knX5wNR0N4SibzoC8R4zvuy2zbLbNqvc26xYaXW+/liFIrEy+bFyWbEySe2hs+/Ky3R0x7Z2XcrN5P/v0fpevlO6cq98yN/6vjqCV0nyneS2YLZ9jWj5+G7HXkQrJvR4VnBnvpNqD9Zz7d3CORmvvWu42w3MTH6sg2dL0RL5uRZF4lWKVU9VtHxsr98fAAAAADCwCGQBFBXXN/K9nNqyGcV8X7FI//7s2028r0i8So5lyYqVym3bkN+Aq/nt9j+hLzK+K69tvby29ZIV6UXAuS2YjcSrZeR3DWB3eB+7/fpNUiSmaNk4RSrGKeKkZUVKtl1nSVa0NB/ORuPys00y7R2YXmqLvFSdjJvu17ccCs+Wn23q5gUrH8pGYjJ2UrsdoWD89k7kOlnBJnFWMAKiu5EaXnqzvPTm/NiLUXsoWpEfe+G0vpufTVs+XtHy8bKiJTvcG7yt58jL1MtLbcmPxQjKcboGs+2P8h0Zz5bxna41WRFFR+2lWPVk+XabIqXVilXvo2jZ6F1/3wAAAACA0BDIAigqxkht6bQqvZwa23Lao7pU0X7O4rSb3lLphENkN66UZGQ3viU/s3VgCg5Tn7pNTX4sQW/4bhAiSpIiJYrEKmSV5LtLrZKK/Hk0np9hm6yTn2nQbsPMomRk3Ezf7rQTcu1Ez6/3cnITa+Um1gZhbtTNyc+2yGl5pz2cnZCf5RstyXcfZ5vyQXe2MT9Kwc3m5xpntsq42WBubs+L8OUlN8hLbVK0cpJiVZPl5xKKlNaqpGYfRUprevlTAAAAAAD0F4EsgKLjubZa0ym5nq/6tpwmVpWpX42yvqtc/Wv5TsVcyy7+/B+SJN/Jh7q9DXaxUx1hrtsexEbKx3cKZ1fnu5rdtIzn7HKUQt8L8POd18lNilXtrVjl3srlWhStGK+SmmmyYqUD8z4AAAAAgN0ikAVQdKLGViKbVVvK1rhRcW1N5jShqlT96pP1nR7NiwXC5uda5edaO4WzExQpbZM8u70btmFAZ/F2Ybx8125yo2LVUyUZ+dkmxaqmKFq1tywrEs77AgAAAAACBLIAio4lT66TVdL2FI3k52E2JG2Nq4z3L5QFikxHODv4b+zKbVkjL7VZJbXTZXxPXnqLYrXTFC0bs9PbjJuVl2uRfE/Ryj0JcAEAAACgDwhkARQVq30uqevkJEmtWTeYIRtNS2Mqer9LPYDuGScle+sSRSsmKFYzTf7WpYqWj1NJ7TRZsTIZNycv19weHLfk59i2c5MbVFKzj6IVEwekFi+1RW6qTpHSWkXLRsuKV8vq5/xoP9cqN1UnK1qqWOXeu9xIDQAAAAAGC4EsgCLTHsi6ueCZpoyjSPsQ2YhlqbacUAUYSF66Xl6mcdsYg1yTFIlvC2CNL99OyM+1yM+1SJESldTsJ9vNKpLcpJKa/fq8QZgxJtj8TL6bD1ETa2VFYoqU1ipSNkaRstGKxMp6tp7n5Ec/pOrkO2nl/02x5CU3KjpqT8Wq9pYVZWYuAAAAgMIhkAVQVLbvkO3QmLIVtfLdsZZlqaaMf76AAWU8ua3vykttVqxmH1lWTL7d2h7CJtTxy5IOuUyjopWTFKueKj+XULRivGI1+yoSK+/5WxpfTtNKeemt8jINcprekhUp2RbCullZmQZJkhUry39FyxSJlXc6L5ciMfm5FnmpuvYZvEbGTctN1slLb5EVK1eseoqM7+Xn547aQ9GqyV1qtSxLFRUV8jxPrusOyI8UAAAAALpDogGgyHR0yGZ3eLY+aWtiVama07aMjGrL6JQFBppx03IaV/TkSnnJDfLSmxWr3id/nmlUrHIvRUftqUhJxa7v9mzZjcvl5xJy29bLbX23/flcPlhN1UmSrHiVomVjFIlXyYqVy4qWydt+dq0VyW+EZnx5mXq5yToZO7HtvWxHTsMyuSWjFKuaIhlfbmqzouXjFR01UVasXLLiqqnZ1uW7/bgEY3z5uUR7SN0q4yRVMuYARctG9+BnBQAAAADbEMgCKErbd8hK+VB2S1tOEyrjUvtfIjO+ACgw35Xb8o685EbFavbLh51tGxQprVF01ERFyyfIikS73uKkZDcsk3EzcprflpfavNPljd0m127r+mQkLivWqVM2EpfvpOSlt0jG2/laTkpO01tyE+8rVjVZ8j156fr8a5JiaUcmUipFSuWlfClWKt9py8/Qtdskk/+FkfGykiJyGpdJ4z6gaGltX35yAAAAAEYoAlkARcWSkec6Msbv9vWOTtnxlfHgfDShLFBwxs3IaVwuN1au6Kg9FPUm5ufBRtYoUj5esVF7KFJaIy/TKKfpLfluTk7j8vxM2t7ybRnbltepC7bXtTa/Laf1PUXi1fkO2WiZnLStaHyUIrFyuS1pee1dssZJdZqh2yrj5WRFyxSfMFdOwzJZ4z7Q5xm6AAAAAEYeAlkAxcWYLht6dXuJpK1JW+NGtYeyxmh0RVz9248dwEAwbkZu63tyW99TpGxMezjryEttlhUrk/FyMk5adsNSGTdT2GJ9R362MX/o+2rdsiX/vBVRbK+pipaU5jcG850dbjVeVvbWJYqPP1h2w1LFCWUBAAAA9BCBLICCuumyP6l5S50m1Y7SzL1Ga1K8rttxBdszkhpStow6QllpzChCWaCY+Nkm+dkmOZESRSsmKFo+TsbLyWl5R/KLeOMs48u4afl+dteXuR2h7Nx8KDv+IEXi1YNUJAAAAIChikAWQEG1jZuoRs9o7B61yuxRKz+Skdu8vkf3BqGsKQnOxxLKAsXHd+QlN8pLbix0JQPOuJltnbJbO0LZqt6vY0x7gN2o6Ki9FIlXhlAtAAAAgGJAIAugKJSVRGUZXxHjyXV23ZW2vca0I9PpnFAWwGAKQtkJc2VvfbNXoazxXXmpzXJTm2Sc/AgHN1WnaMVElVTvIytWFmbpAAAAAAqAQBZAUSgriSmq/JzG3c2Q7U5TetuMR0v5UBYABotx07Lrlyg+4WDZW99UtGKirJJyWbH2r2iZLGvbr4p8Jy0vuUleerOM78m4abltG+XnmhWrmiwZIy+9VbGqSYpVTZEVCe//ZTNuVorGZVmR0N4DAAAAwDYEsgCKQllJdFsg24MZst1pSjtBZ6xlWRpTUTJA1QHA7uVD2TdUMmZ/Gd+ROvfqW5asWJkisfL8eIJccz50zTbJaw9iOzjNb8tt26BY7X6S8eWlNitWNVXRyj0HLDTtGJHgJjfIz7ZIVkSReKUi8WpFSqsVidfIig7OL7aM78q4GRk3I7/9MVY9VZFY+aC8PwAAADDYCGQBFIWyWFRRk5bU90BWyo8viLR3oVmWNLqcUBbA4OkIZaV8AGvFKoIu2UisXH6sXLIkL9MgL7kx3526k3WchmXySmsVq9lPxnPkJjfkN0crGyMrXt2l47bH9fmevPQWecmN8p10fmRCerMsKyoTr5ZfkpDa8tdasTJFSmsUKamUVTIq/xjt37+pxs3JyzXL2An5TiofxHrOjtfZbYpPmNerzmDfzcppWCorXq1oxURFSmv69DMCAAAAwkYgC6DgLEuKx6KKmvyu6+5OAoqeakjZspTv7LIk1RLKAhh0Juj67A8/1yK7/jVFKiYoVjVZxs3KTayTFYkpUjZakbIx+YB2N92sxsvJTW6Ul6wLOlLd5AZ5qc2S8bddGInlu2TbO2WNk5JnRYOXrWi8PZwdlX+MlUtWNB+cRmL5404hqHFz8nMt8nIt8nMt2wJo48t30zJOWsbNtnfHpmXcjCKlNYqPnSOncYVKxn2gR6Gq8WzZDW/K2CnJSclLbZYVK1W0fIKiFRPYJA0AAABFhUAWQEEd8MJjmlm/SXuvHaMKv0WjaiJyJ/S9Q1aSjKStKVsTrHxAEbEsVZfxzx2AoctP18tO10vRuKJlY/JBrJuVl94qx1K+ezVWJvmejPG2PbZ/GT8fuvq55vys2mzjTt7IlZ9tkp9tCp6yYuXbOmTbw1h/Z+MELMmy2sNZGZmOmeDGl28n5LcHs34uIXXZjrFTCZkGua3v5ZdrWaOS0dN3+bMxvie7YZmMk5bduFy+ncgHsaMmyLg5uW3rFSkZpeioiYqO2ktWJLrL9QAAAICwkVAAKKhP3fQrjd/wXnCemzpJ5tJj+72ukVSftDWxqlRNaVuWJVWV8k8egCHOs+WlNstLbZYjKz/vtT2gtSIl7eFrewjbHszKeDKeIy9TL+Okev2WwXzXTMO2J62orJJRsqKl+e7YTl2yViQqWTFZliXfbssHsHZb107c3XDb1skqqci/VUmFYpV7dV+b8dtD2DY5TauCINlLbZKX2iQrWpYf8zBqonwnJTe5SSW10xQtH9frnwMAAAAwUEgnABQVs5OOqb6tJdW35TSxqlSNaVuWpEpCWQDDhpGfa5Wfa5Va39v95QP61p6MnRjAf7F35DStkhUrk9PyjqxYuaJlo7uWYIycppXys81yWtbIS2/ppsys3LZ1ctvWKVI+TiW102Q3LFe0bLRitdMVaQ99B1pJSQnzawEAALBTJBMAiooxA/s/731JW5I57VFVqoaULcc3qi0vEf8zGQCKnZHdsFylE/9DTuMKWRPmdQlQ3ZY18tJb5batl5fcsNvV/EyDctkmxaqmSMaXl2tVrGpvxaqmDNgYg9LSUlVWVioej0vGl5usl3xHipbIisTzXczBMaMTAAAARioCWQDFZYADWUnyjbQ5kdO4UfmZsrbra1xlXFG6lwCguPmO7IZlKp0wT3Zj/tGKlMhJrM1vUpbeLLf13Z6vZ3y5ifflpTcrVjs9H8ymt6ikZpoi5eP61dVqWZbGjBkjGVeRbJ3sLe9Jvrvz6yMRKdIezkZL2o9L8hu0RWLbPU+ACwAAMJwQyAIoKqYXMwZ7w5dUn7JV4+X/2atL5DS+Mq7SaCSU9wMADAzjpGQ3vqX4uDmyG1coWj5ebuv78rKNcpre7tuablZOwzJ5ZWPzYwzcFbIiUVmxClklFYqUjGo/bp+T24Og1rgZRTPrZNlNsuTL81x5yY3y7TZZ7V2x+e7Y7ULYjtciJfk5vDuRD3DjQWjbscGaFa+SFS3baY3GmPwcYCcp30nJisYVrdiDgBcAAKCACGQBFJWBnCHbndasK9v1Nb6yVJsTOY0dVaLKOP8UAkAx87ONclreVUntNPnZFvl2Qk7jCqmf/53hZxuV29KsaMVEReLVQRjrWdvCynxQW95912q0RJIlL1UnN9MgK5dUrq1OmaZ3FakuVSSS/6Wf8W0Z9WRDNavLeIP8e3U+bg9wo6WyomVdayypVKSkUlZ8lOR78p2UjJOScVMyftdfdrqJtYpWTlKscq/8GIV+Mp4tWZFdBsoAAADYhv+vCUBxCWFkwfYyrq9NiawmVMbVkDSyy3yNrogzVxYAipiX3CDjZWVFS+Wl6qSB+osK48tL1eXXbGdFS/PdsSWjFIlVyIqVtc9/jbeHjtv9N4bx5LZtUtO7r8t30vnnqif2pRjJs2U8e/dRcySWD2BLKhWJ58NYv6RiW21mWyjb+TESr1KsaoqM58hrW6/oqD0Uq9xbVqxsl2+3Q6XGl59plJfeLC/bLMuyFCkbo2j5BEXKx8qy+AsUAACAnSGQBVBUBnpTr51xfaO6RE5jO+bKekZjK+IqiRLLAkCx8jMNg/I+xsvJeDkp2ySvuws6z3u1IvLthHzX3hbGDgbflZ9rkXIt22q0IrJiFZLxZNxM97dlm2Rnm2TFqxWrmizje3KTmxStmKDoqD0UiZZJuxjT4DupfICdrpfxHBnflZ+ulyJRRT1HXrpBViSqSPk4RcvHK1I2pk+zeY2Xk5fequioPRmvAAAAhh0CWQBFZnAC2Y53akjZst2YRldImxJZVZXGVFMeY8MvAMDO+Y6M78i4gxjA9oTxZZxkzy61E3Ial8uNVShWPbm9U3hL/kVL7SMZSvPzaqOlUqREfrZJvt0mSfKzzXLTm/MheXu3smNFFCkbq2jF+Hw4m9oiK1qSf658nCJlo3fbOevnEvkN2zJbJWPkZRoUH3dgr8chGOMPeJdux5x7un8BAEB/EcgCKKjtY8/B6pDtLJFzlXY8jS4vkTFGSdtVbVmJqspijDEAAAxrxk3LaVolp/U9RUpr20PYbUFsx7FkybjZ/IiC1OZ8B/EOi/nyM1vlZ7bKsaKKlo9TtGKCjJuTl9qc75wtG90e0I4N5tca48tPb5XbvgmajJ/vwHUzitXsI3vrEsXHHdQ+s3c334/x5baskZfe0t71u6ci8ar+/5w8W3bjCsl3VTJmliLxyn6vCQAARi4CWQAFtWMj6uAHslJ+hMHWlK22XERjKkrU5Bu15VyNrihRRQl/KgkAGOY8Oz96YGciMcl3e76e8eSlt8hLb5GsaPt82XGKujl56QY5lqVIaY0iJZXt4w/s/JiC5Ca5qTrJdyRJvpdVfMws2VvfyIeysdKdvqXvpOU0vSXfTsq322R8V26yTpF4paKj9lC0YmKfNh7z7TbZjctl3Kzke8rVv6aS6n0UrZrcp3EMAAAABLIACqrY/odM1vW1KZFTZTz6/7d333FS1OcfwD8zW64Xejl6uQMsiAUUEcGChqgRQYgFRUXQKEkUBUxBVIxGMQTBRFETBAuC4k9MFLtGRIqggMjR2x1wheP6tim/P+ZumLnbelvv+LxfL3Rmd/Y7MzvPzs0++53ni1YpNhRXKUixWdAq1Qa7hbcoEhHRaSqUZGxDqnyq5ywEiEnZWo1ZyQnFUg7FXQmpqqCuRrD5h1mlthhuRYa9zQC4Sn6Evd3ZEK0pjVYh1xTBU74HquyG5+QeLREs2mFN6whLWkco7mpIFfshprSDNa0TxKSsoDZdri2C5+RuKJILnhM7oEhO2FvnwaOqkJ1lsLXO87o9+q6rKhR3BRRXBSyp7f0uS0RERKcPJmSJKK4SKx17SrVbRq1bRmayFSoAR6WMdLsV2Sk2WMVE3WoiIqJEp0JxnYTiOgmpfE9Qr1CcJ+Au3Q572zPhLq5LytrStNYUGZ7yPZBriqB4quE58fOpAc0UN6Sqw5CqDkNMyoYlrRMssgS5pgiiLU2bT/Pea1ZVVUgVByBVHdHaLf1JL9PgLtkGS3oObFm94C7aDGt2b1jTOpleq7groNSWQHaUQpXdAACp8hAsqe1hzegG0ZYazptIREREzRwTskQUVwnWQdZEAVDulFDtkpGdYgVUoKYuSZuVbIWYyBtPRETUgiiucrjqaslqNWXPAiBoJQo8tZCqj0Iq3wtfpY8UVzkUVzk8og2W1A6wpneG4qmBVLkfYkp7WNM767VmVUWCp2wnZEcZ5NpieE7u0gcuqydXF0JxnoStdT+oZbuhOE7Akt4ZiuOEIQmrQnGVQ64tgeKp1pK2qqLVt01pB2tmdz2xDGh3DWVnZ0MQBP0fERERtUxMyBJRXAkJ20f2FElVUVrrQaVL0gf+qnJJyEq2ITPJmtBJZSIiopZCdVdptWTbaUlZQIUiueE5uauu3EEQFA/k6gLI1QVar9n0zrAoMuSa4xDtGbCkdoBUUwjVUwup4iCkqsO+t0eqhbv4B1gzuwNQITtOwJiElR2lei1cAPC4qyBVHoY1sxugKJAdJbCktIU1oxsEawqgyEhJskKACkCFKtVCkbUEsSq7gLo6u9o/bRqCAGt6F1jSOkEQWfOeiIiouWBClojiqjklM92yiqJqN5KtIlql2qDUDfyVnWJDmt3SDFLLREREzZvqqYG7+EdYs3oCqgKp4iBU2dmktk71mq2rNZveCYq7ClAkuMvyoThPBLNFkCoPQq4thmBLg+IqNyVhGy0tO+E5uRueykOwZnTVErO1WjJZVVXYaqr1Zd1KupdesqqejFVlFwRrClTJpZVDSO8Ma3oOBIs99DfD67a6oHgcUGUHVI8DqlT3T/FAsKVCtKVDtKVDsKdDsKb67NGrqoqWTFbcEKxpTBwTERGBCVkiijebHbLdDgEqVFWBYk38i3SnpOBYpQtpdYN9lcoKKq0iWqXYkGJL/O0nIiJqzlTJAc+JnyPXoKHWrGBL1xK8IQ5ipkq1UKXa4F8guyCV74VUeRiW1PYQRCsURUb1iVJAVaFCga1VK4gCoKqyloCVXIDibtSUmNwK1oxuUBUJcnUBLKkdYcnoEvQAYqrsgeKphuqpgeKpgeqp0fZHkRss5657XIJoS4NiaF8QRQg2LTELKFrJBtmtvcbwXgrWZNiye8GS0i749ypKVFUFVIUJYiIiigsmZIkorr5b/SWstUfRVj6MvfnfQIC72fQ0rfHIqK2QkZGkDfZVJLmQUpektVvEeG8eERERhUj1VAdeKJIUN+TqAm1SUeAoK9Kfku1OqGLg6wnFeRJu50kI9gxYM7pCVWRINcdgSW4NiDbfL5RdWgJWNiR5VcWQlHVAkRx1yWYnoJoTtBAseg9Z0ZYGwZ4B0ZoKVZX1HrGqfOofoMCa3hXu0p9hSW4Fa3afoAY3U1UVqrsKgAoIFkAQIQiiPq3NB3f1qCqyNqics0wrMaEqsGZ0hSU9h4lZIiKKKSZkiShuBAA2iwgRWs8Jye2Ezd68EpkqgEqXhGqXhKwUG1QAjkoZ6XYtSWsVm0t6mYiIiJoz1V0Fz4mfIVlTtMSs7NYSl76Wb9Qzthqq5AhhhTIUdwXgroAceGkAgFxzHNaMbtrgZq5yWDO6ajV0GyRDVVWpS5qWQnGcMPWybUQABEsSBEsKRFsKBGsKBGuyVkbBmgLIbsjOMijOE5Cd5doAbaoCxVUBiCJURYJUXQhrZjetFq+f9yxaVNkD2VEMubYEgADBYoMg2gDRBsFihyBaAYsdoj2Lg70REbUQTMgSUdzYLSIEABZVq7XmkVyw2YO7vS7RKABOOjyodHqQnWIDVKDGLSMzyYqMZCsTs0RERBQTquSA5+Ru4OTueG9KY6pSV3P3OKzZfQBVhVxbBFtWL4jJbbSkqaMUirNMK5mgKnoyVVVkCKZesXW9ZEULBEsSRGuKVkbBmFAVoP16DkBVPFAcJyA7T0BxntR7/IrJrWHN6glVdkOqKoA1szssqR38Jj5VRdKSpOG8FfVJ55rjkJ1lWqkK2VnXth2CxVa3A6dYUtvB1rpfXJLGREQUWUzIElHc2K3axaQFHsiyp1GtsuZIVoETtR5UOiW0SrVBVVVUuiSk2i3ITLIiycoLaCIiIjq9qZITntKfICe3hi27D9zSTm2kV1UFVBmy41RitlGphAAES1JdL1ntH1QZsrOsruxBY4qzDG5nGcSUdrBl9YRHckKuOgJLRpe6JKlL/4f6AdUUGYLFDjEpC2JStvZ/W1rg/VZkqJ4ayLVFkB0lUGUPoEiQHSWQa4q0HsdGolXvKVtfd1eVXbC3OSNig7cREVF8lVWP3AAAX1dJREFUMCFLRHGTpCdkJXjcTRshOVF5FBXF1W7YLQIyk2xQVBU1LglJVhGZyTak2i3NplYuERERUTQozjK4jm/Sarhak6E4tfquerfWJtCTp67y0LbFUQKXoxSWtI6wZnaH4jEM0qZIpsSsqnggWFMhemoh1JYAgClBK1hsUCWX1uNVchpe66nfSijOk5Bqi6A4SrUyCl43Sqor1+CA5K6E6qmBrXUuXMU/wN7mDIj29JDfHyIiSgxMyBJR3NgtWkrSonrg8rSshGw9t6yitNaNkw4go658gUtSYBUFZCRbkZFkhchaYERERHTaUvWBzeJPhVxzDHLNcQi2NECVtQHJ/PTSFWzpWi/Z5GxYPLV1dWBPtafW96qtT8xKDsjOE4BxMLUgybXHocoO2NqcAXfJj7C17g9LSptGy6WkpMBut8Nms7HmLBFRgmJClojixm7sIdtCE7L1ZBUod0qocEpIs1uQmWyFpKiocErITLIiM5mJWSIiIqLEoEL1VAe3pKcasqcacnUBPNAStIJoqesh60I4vX29UVwVcBf/AHvbs+A+sQO2rN6wZuToz4uiiOzsbAAKBNkBueYoFLl+sDZRKw0hiACEujq8olYWwZIEwZqklXyIco1aVZEBxQMVqj7IGlQVKrT/az2D3XXJbDdgmBZEKyxpHWFJ7VhXZ5eIqHliQpaI4ibJIqLrqy8g89h2tKo5ibZVpVDaZGLf6PPivWlRowKodsuodstItorITrFBUVRUuSRkJFuRmWQDx/8iIiIiap5UT3WEU7Be1iE54CreAnubM+BR90KVamFJz4HqroLkqoC1uhCQayFAhaSmQ6jfIkFAw4HCvBFEa10tXi1BC9F+Kllb/68Jg5opkgNydSHkmuPBjx1R10u5PkErWlOheGrhqTgIS0pbWNI7wZKUHbgZVeFgaESUUJiQJaK4sVtFdF7xOlIP7NMfq+qU3aITskZOScHxKhdS6hKzsqKiyikhM9lWV8og3ltIRERERAlJkeAu2QZbq1wAgFR9FICWeJRrjsHjKIfkOAlLhh2C3kO2Tl0PWQiilqS02M3J1gbz8JLIFESLVkc3uRXEpFYQkzJ9JjxlVznkqkLIzlJABWTnCSjOcqC+R6yqGHrLqoAqneod66VchGDPhDW9szYgWm0xRFsaLGmdYEltB1XxQJUcWokIqRZK/bTshCBYIdhSIdrSIFhTT01bksI5El6psgdyzTEokqOuJ7IAYw9lAQIEazLE5NZNSm4TUfPHTz4RxU2SRUSkb+NqjhySAkeVCym2U4nZSqcHGUlWpCdZYWVmloiIiIgaUeE5uQuy8wQESxJUdzUkVyVOHj96aonkDhDEBonS+kHEVFm7EpddUFHlezX1PWYbJG1FeyYUdxWAwxBES92gZq0hJrfSBmmrLYFUXagto8qQaoogVxdAlRy+1xXMXrsr4SmrhEfcC0tqR1jTO0Hx1MBTvrfR+6NKDj0pK4hWCLY0iNZUU5JZezwdYlIGRHsmRHtGk5O0irsKUnWhVktYVeoSyoLXpLa2cgGiPROW5NYQk1s3aaA2VZGhuLQB8WRnGQTRBktqB1hS20Ow2INrQ1WgSk6ItlSIooi2bdvC4XDA4QjvWBGRb0zIElHc2K3iqVuoCA6PAofHhVSbiKy6xGy504NkqwXpSRak2thrloiIiIjMFEfpqZn6ZGtEVyBBVSSonprGz4l2WJJbaT1lJScERxkAQBBFqIoCVXZpCcqaY4AiRXy75OoCyNUF2sBqSVmnesh6HFBl32NUCNYUPTkr2NIg2tOhuFINzydBtGsJWsGWbijVYGnUlqqqUBwlkKqPQnFVAFAh1xZDqi6E6jYmugVDDV8Roj0dYnJrWJJba6+rOKAlupNbQ0zKgiDatPq+ovXU/+vGnFAlV11P4xNQXOVQFa0Wr+KugGBJhuKuhqdiP8SkbFhS28OS0s607aqqQHFV1P0rr0uaKxBsKRCT28FuAWyZmcjMzOTAcERRwoQsEcWFAMDGHrJe1XoU1HpcsFsEpNutkJNUOD0yRMGDVLsF6UlWJFnFICqAERERERFFkeKGXFsEubYIgDaomZjcqi4pWAGltgSxuN5XXOVQXOVBL6+VNXDAlL4WrXoPWdGeCcVeDUEsNb1Oq69r1wZBq6ulKztKtEHcFDfk6mNa+QjF7W2teokGAFCcZVCcZZCgJYjrk7Oq5IRcc7zxywVAEKxA3aBxAKAqHiiOE3XJ2ZN6iQfBnqH1kpVdUJwnIYl7ICa3gWBN1ZKw7kp9O1TJoSV1ZRfE5DZQ3LWw1lRDtaRBsbcGlDaApXEiWlu/VJdoFwCLLe51elVVgeIsgyo5YUnr5DWBTpQomJAloriwW5hQDMQtqyhzeHDS4UGKTUR6khWyqqLaJcFqEZBitSDZZkGyTYSFv1wTERERUZypnmrInup4b0bTKJKeJK0nWFO0erNWX/V1LVDcVdpgZbXFaGryWa0f8Ky6UKsxa0vTasuKNi0JLNr0aQgWqJ5ayM4TUN2V3ttzV0FyV0Eq3wcxuZXWS1b2aK+tS8AqrnLIrnJANiSPKw9BtaSg1mVDUmYOLHINXMfLYUluBUEQ6xKwHq3HtOLREswGgmjRBoGz2AzbbANECwTBcur/df+0hGnd95j6QefqvtcIELTEd4DvOaqqQnVX1v0wUKJtIwCp6gismd21xGyUvispkhOqpxqKpwZQpLqaytlxT0xT88CELBHFhd2q/ZFiyYLAVNT3mnXDIgBpditS7RZ4ZBVVLgkQtAR3is2CZKuIZKsFzM8SEREREYWnvietbwIi3gNYVaC6qyLUqqonmT0QANESsHSE6qlBTUkRakp2wZbSGkndzwBkp9bBV/HUlbA49X9VkQBB0EssCBablpStnxbC6KUqCBCtKXUlJlK1nsR1A7KpsqcuCVsMVXLq+yrVFgOKDFtWT3hkN6TqAtgye8KS2s7/fiuy1nNY8fhZRivdoXhqoHpq9OSvrqpAq6ec3BqWlDZar2Qvg7apqgpVdkL11NbFlzbIm2BNhmBJZs/e0wQTskQUF0l1CdmGv6qSf7IKVLokVLokiACSbGJdT1kRbklBBQBBEJBq0+rOJtss7IlMRERERBQVzem7jBpyHV+Powyek7shV4TT41Mw94wVLXrpBa0nqXCqdyyEug6zWq1dwZIM0VbXS9nHQGuKuxJybbHWQ9mQTHU5T8CS2gHWrB5wexwQqzNhzewJS3K29jrJCbWufIPirtR6uQb13VTVE7Kn/l8NqIo2OFtKW1hktzawmyBodXyTW2nJXKkWqkcbaM5nvWcBEES7nqAVrWkQ7BnaYHNekrvUfPFoElFc2C31acLmdBGTWBTUDwSmAA7AIgDJNgtSbRYoqooatwSLKCA9yYo0uwV2C2+dISIiIiKiWNISwSok4yOhEyxaD1lbKgRrKlRVhuIo9duDub4HrSU9B9bMblBclRDtGVBlF1S9VIMKxV2tJWVdFVBll59dkaF6an3uQX1i2ANBKxWR0haqpNXxBQBVceu9YhVPrZaglWqh95C1pJh6yorWFMj1SVgBhuSsVutYsKUl5qBr7HQVFCZkiSguWLIg8mQVqHHLqHHLEGuANLsFaUlWyIqKCocHSVYRaUlWpNkssIgJ+IebiIiIiIjIG1VuYo1iFXJ1AeSaY7BmdIWY3EorteCq1Aaec1f57q3a9I011SMWrMmGAdB8vEJyADjZ6HHBkgTBnmkYcC4DslA36Ft9b2IIhsTsqR7HWgI7TRtsz5ZWV5s4tHIIqqpqdXJdlVDc5VDc1VrP5vqaxqY6xxatjq+q1G8c+cGELBHFRZJFBBDpP3xUTwFQ5ZZR5ZZhEwWkJVmQbrfCJSkoE7T3P8VmQSp7zhIRERERUUunypAqDwKVB2O/asnZ9NfKLqiOEiiOkrpHBAi2NIj2TAi2VNQNf2YYFA2oL/kgWlOh1C2D+octyRBt6VoJCNFaNxCbtW7QNSsE0QpVVbSEtascirsSqiJr26J4oLqrtIYshkSsoU6wqngAZAJgHdxAmJAloriwW0VYVN8F0ylyPIqKcoeEcoeEZKuIVJsFKXYLXJKCcocHVotWc1YbFIwDghERERERESUmNcSewgIEW6qWhLWlQbSlQbGlawOuBejFqsouKK4K7Z+7Aqqnxuc69GSu5ARso9hBNghMyDYT+/btw/Lly7FhwwYUFBRAkiS0b98eubm5uPbaa3HllVfCauXhpObDbhEhqk3/pZCaxikpcEoK4PDAJgpItWuJWElWUemUtB87BQFWUYTVIsAqGv5ZRNhY6oCIiIiIiKiZUKF6aiB7S6YaesVCsNSVILACqgrVXQVVDvb7ugoonrresRQsZvCagYULF+LFF1+EJJnrjRw5cgRHjhzB559/jjPPPBPPPvssevXqFaetJApNklWERXUHXpCixqOoqHBKqHBKEAUgxWZBklU0JGFFNMy/WkQByTYLkq0ikq0W2CxM0BIRERERETU7qgzIsj6QGUd3iS0mZBPc3LlzsWzZMn3earUiLy8PKSkp2LdvH06e1Io+//TTT5g4cSJWrFiBnJyceG0uUVAEADaLCFHiL2iJQjEMCGYkCtATtDaLiGSrCElWUVOXh7XWJWjrE7miIEAQAFEQ6v7FYWeIiIiIiIiIEhgTsglszZo1pmTsVVddhdmzZ6Nt27YAAI/Hg1WrVuGpp56Cw+FAaWkppk2bhnfffdcwwh5R4rFbRAgARIU9ZBOdogJuWYVbVgGPggpoCXW7RUSyTesl65FVVPs45Qh1CVqrKMBuEbV/Vu3/TNYSERERERHR6YgJ2QTl8Xjw17/+VZ8fOXIk/v73v0MUT42GbrPZMGHCBOTk5GDq1KmQJAk7duzAf/7zH1x77bXx2GyioNitWhxbVAlQeWNEc6MCcMkKXLKCCkh1CVoBoniqV6yxh6wgCLCJAuxW8VRtdwGwiVpi1mYVYBUEWMRT/0RBYB14IiIiIiIiapGYkE1Qn376KY4ePQpAK1Mwe/ZsUzLWaNiwYZgwYQLeeOMNAMC///1vJmQpodnr6o6KqhvO7p1QIzv055zts+K1WdREWoJWBWT/yXUBWk/ZJGuDnrJeOkoLggCL6GOAMYtWHkEwvwCpqalQFAWKokRw74iIiIiIiIgiiwnZBPXhhx/q00OHDkXnzp39Lm9MyO7YsQNHjhxB165do7qNRE2VVNdDVlQ92POX32Lnti/159LS09kzsoVSoQ0k5nHLAE7VqrUI2mBhVlGApUFPWV+Diwl1y9lEAba6ZK2kCrBYrLBbwbItRERERERElLCYkE1Aqqpiw4YN+vzFF18c8DV5eXlo164dSkpKAABffPEFbr/99qhtI1E4TpUscEPyuOK8NRRvsgrI9XVqfRCBul6yYl0v2fpkrDYPAG631jNWFIBq1QWrKNYNMFZXyxanatqKAiDgVEkF/f84NU9EREREREQUDUzIJqDCwkJUVlbq82eeeWZQr8vLy9MTstu3b4/KthFFQpJFBKBAgAxJYkKWAlNQP7iY3Og5rRQC4HE5YbdaYLeKkAUrrBZBT7qGSmhQC9cimuvi1te5tei9erXniYiIiIiIiAJhQjYBHTx40DTfrVu3oF7XpUsXffrw4cOR3CSiiLJbRVhUDwDAwx6yFCYVWrK2xukBoMVVlSSayhZovWOhDxbmr2esMRmrJV7NyVhfBEGARYBpcDOLUD/YmbkNscHjTOUSERERERGdPpiQTUD1vVwBQBRFtG3bNqjXtWvXzmsbRInGbhEhqk4AgORxxnlr6HSgAlBVQFHVBo+Gpj6Zq/eQrU/a1g1AZtGTsaeSswGTrYakrAAAhgStIOBUqYX6eUMCWZs3ll/Qphs/dqpd8zJkZLPZ4r0JRERERER0GmBCNgFVVFTo02lpaRBFMajXpaene20jllRVRVayFd1bpaBrdk5ctoGaB4vbBTusyMq7ALm9zj71uMUSx62i5kw2lDNIpDiqT4LGgxLkcgK07KwxEaw9bl6q8XPCqXkfCV5/A6wJDWaCeZv0ZRr0LBYME015u1UVaNfOrc/b7Pa4HTdqnlQV6MwYojAwhigSGEcULsYQha00cb6LJTImZBOQy3XqFu7k5OSgX2e32/Vpt9vtZ8noqa2thSSpsKqh9zyj04sgCIC9DQDAlhTnjaEWIbifrsgbtcH/mzW1vkdwaC8TBAB15yIBgNvH61XjhJ/kr2D4r2kdwWxLcIs1XrbhC30d0DC/VAV6ubfng4ktX+2GGpc+t08IYpkwCYZO1lKYbdWFGJ1mIhlDdPpiHFG4GEMUFkFpIV8soosJ2QTk8Xj06WB7xwKA1XrqcEpSfE6bkiQh2WpFspVfISiApFZAeiskPfgghGPH9IfVTp3g+tvf4rhhRERERERERNQkRXvAjGxgTMgmIOOttooS7A2n5iRsvOrg7d+/H6mpqSElkun0pKoqZFlGn88/h/3AAf1xV8+eHJSOiCgB+So/4e1x42NqkHfNeGsn2NeGuk1EREREFB1NvX473TAhm4BSUlL0aWP5gkCMZQqSkuJzD/iZZ56ZULUbKfGJDX48sNlsyMvLi9PWUHMlyzJ++uknfZ7nIgoVY4jCxRiicDGGKBIYRxQuxhCFa/v27SF1LjxdMSGbgLKysvTpmpoaqKoaVK+O6upqfTo7OzsamxaQxWIxlU4gCkQVGtZYFBhDFDaeiyhcjCEKF2OIwsUYokhgHFG4GENE0cH7yhNQhw4d9GlZlnHy5MmgXldSUqJPt23bNuLbRUREREREREREROFhQjYBde/e3TR/5MiRoF5XUFCgT/fs2TOi20REREREREREREThY0I2AeXk5JhKDuzcuTOo1+Xn5+vT/fr1i/RmERERERERERERUZiYkE1QQ4YM0afXrVsXcPn8/HyUlpbq8xdeeGFUtouIiIiIiIiIiIiajgnZBDVq1Ch9+ssvv0RRUZHf5d966y19unfv3hylnoiIiIiIiIiIKAExIZugRo0ahfbt2wMA3G43Zs2aBUmSvC77zTffYOXKlfr8xIkTY7KNREREREREREREFBomZBOU3W7Hgw8+qM+vW7cOd999t2mAL0mSsGLFCkybNg2yLAMAcnNzceONN8Z8e4mIiIiIiIiIiCgwa7w3gHwbM2YMfvjhB7z99tsAtKTsqFGjkJeXh/T0dOzbtw9lZWX68tnZ2ViwYAGsVh5WIiIiIiIiIiKiRMTMXYJ77LHH0KpVK7z66qvweDxQFAU7d+5stFzv3r2xYMEC9OrVKw5bSURERERERERERMFgQjbBCYKABx54ANdddx3eeecdrF27FsePH4fD4UBWVhb69++Pq6++Gtdddx3sdnu8N5eIiIiIiIiIiIj8YEK2mejduzdmzpyJmTNnxntTiIiIiIiIiIiIqIk4qBcRERERERERERFRjDAhS0RERERERERERBQjLFlARHGlXn01Tnbrps9nDxgAIY7bQ0REREREREQUTUzIElFcKfPm4cDWrfr8wIED2XWfiIiIiIiIiFos5j2IiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEaYkCUiIiIiIiIiIiKKESZkiYiIiIiIiIiIiGKECVkiIiIiIiIiIiKiGLHGewOI6PQmXnMNzsjPPzXfrx+wZk0ct4iIiIiIiIiIKHqYkCWiuBIOHkTyoUP6vJqcHMetISIiIiIiIiKKLpYsICIiIiIiIiIiIooRJmSJiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEaYkCUiIiIiIiIiIiKKESZkiYiIiIiIiIiIiGKECVkiIiIiIiIiIiKiGGFCloiIiIiIiIiIiChGmJAlIiIiIiIiIiIiihEmZImIiIiIiIiIiIhihAlZIiIiIiIiIiIiohhhQpaIiIiIiIiIiIgoRpiQJSIiIiIiIiIiIooRQVVVNd4bQc3X5s2bTfOiyBw/hai2FlCUU/OiCKSmxm97qNlSDHHEcxE1BWOIwsUYonAxhigSGEcULsYQhcMYPwBw3nnnxWlLEps13htALUvDDx5RQMnJjR9jHFGYeC6icDGGKFyMIQoXY4gigXFE4WIMEUUHf+ogIiIiIiIiIiIiihH2kKWI4u0MRERERERERESnJ/aqDg5ryBIRERERERERERHFCLszEhEREREREREREcUIE7JEREREREREREREMcKELBEREREREREREVGMMCFLREREREREREREFCNMyBIRERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQjTMgSERERERERERERxQgTskREREREREREREQxwoQsERERERERERERUYwwIUtEREREREREREQUI0zIEhEREREREREREcUIE7JEREREREREREREMcKELBEREREREREREVGMMCFLREREREREREREFCNMyBIRERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQjTMgSERERERERERERxQgTskREREREREREREQxwoQsERERERERERERUYwwIUtEREREREREREQUI9Z4b8DpbN++fVi+fDk2bNiAgoICSJKE9u3bIzc3F9deey2uvPJKWK2RP0THjh3D8uXLsXbtWhw6dAhOpxPt2rVDr169MHr0aIwePRopKSkhtblt2zasXLkSmzZtQlFREVRVRYcOHXDGGWfgV7/6FYYPHw5BEIJuT1VVfPbZZ1i9ejW2b9+OEydOICUlBR06dMCFF16IsWPHol+/fiFtY01NDd577z189tln2LVrF6qqqpCdnY3OnTvj8ssvx5gxY9C+ffuQ2kwEjCPfamtr8f7772Pt2rXYuXMnTp48CUmSkJ2djdzcXFx88cUYN24cMjMzg2rvmmuuwZ49e0Lap3HjxuHJJ58M6TWxxhjyburUqfjqq69CWv9FF12EJUuW+F3G7Xbjv//9Lz766CP8/PPPKC8vR3p6Ojp16oThw4dj7Nix6NatW0jrjTfG0CmzZs3Ce++9F9Z+DR48GMuWLfP6XEs9DwEtK468mTFjBt5//32/x9cXXhcFhzHkG6+JgsMY8o7XRMFjDJ3Ca6KmaylxpCgKvvzyS3z66afYunUrSkpK4HQ6kZGRga5du2Lw4MG48cYb0b1795C287vvvsO7776LH3/8EcXFxbBarejYsSMGDRqEMWPG4Pzzzw+pvXidiwRVVdWIt0oBLVy4EC+++CIkSfK5zJlnnolnn30WvXr1ith6ly9fjqeffhoOh8PnMj169MAzzzyDgQMHBmzP4/HgiSeewNtvv+13uWHDhuGpp54K6sK+qKgIDzzwADZv3uxzGUEQMGnSJDz44IOw2+0B29y8eTOmT5+OY8eO+VwmLS0Nf/rTn3DDDTcEbC9RMI58+/DDD/HYY4+hvLzc73Lp6el45JFHMG7cOL/LuVwuDBo0CLIsB1y3UaL/0WcM+XbJJZeguLg44HJGgb587Nu3D7/73e/8XjzabDb89re/xd133x3SDxDxwhgyi+aXj5Z6HgJaThz58tlnn+G+++4D4P/LpTe8LgoOY8g3XhMFhzHkG6+JgsMYMuM1UdO0lDjauXMnZsyYgd27d/tdzmKx4Oabb8bMmTNhs9n8LltdXY2ZM2fis88+87vcddddh9mzZyMjIyPgdsbzXMSEbBzMnTvXdFKxWq3Iy8tDSkoK9u3bh5MnT+rPtW3bFitWrEBOTk7Y612yZAmeeuopfV4QBPTt2xfZ2dk4ePCg6Y9sSkoK3njjDZxxxhk+21NVFffff7/pw5CUlIS8vDxYLBbs2bMH1dXV+nO9evXC22+/7feX97KyMkyYMAGHDx/WH8vOzkafPn3gcDiwa9cu04npl7/8Jf72t7/53e/NmzfjzjvvhNPp1B/LyclBTk4OSkpKcODAAdPyc+bMwU033eS3zUTAOPIdRw23EQBat26NHj16wGKx4ODBgygpKTE9P23aNNx///0+29y2bRtuvPFGAEBycnLQv7pdcsklmDRpUlDLxhpjyP+56KKLLtLnhw0bFtS+DRgwANOnT/f63IEDB3DTTTeZ3td27dqhZ8+eKC8vx549e2D8k3z33XfjoYceCmq98cIYahxD//rXv/Dtt9+GtD979+7F8ePH9fkHHngA99xzT6PlWuJ5CGg5ceTLtm3bcPvtt6O2thZAaIkQXhcFhzEU/DYCvCbyhjHkG6+JgsMYaozXRKFrKXH0ww8/YNKkSaZrjeTkZOTm5iIlJQVFRUU4ePCg6TXDhg3DSy+95LPnr8vlwsSJE7F161b9sbS0NOTm5kKWZezevdu0vgsuuAD/+te//P5QHfdzkUox9dFHH6m5ubn6v2nTpqklJSX68263W12+fLk6cOBAfZkxY8aoiqKEtd4ffvhB7d+/v97mLbfcoh46dEh/XlEU9eOPP1aHDBmiLzN8+HC1trbWZ5uvvPKKaV/mzJmjVlZW6s87HA71n//8pzpgwAB9mfvuu8/vdk6ZMkVf9qyzzlLffPNN1ePx6M8XFxerv//9703rfe2113y2V1VVpQ4bNkxf9tJLL1XXrVtnWubnn39Wf/WrX+nLDBgwQP3pp5/8bme8MY58x9GWLVvUvLw8fdmRI0eqX331VaN9X7dunTpq1CjTur/66iuf7b799tv6crfeemswb1dCYwz5PxetXbvWFEPhkiRJve666/Q2L7jgAvWjjz4yvZ+HDx9Wb7vtNtO+fPbZZ2GvO1oYQ/5jKFh79+5VBw0apLf74IMP+ly2pZ2HVLVlxZE3GzZsUM877zzTPoZy7HhdFBhjyDdeEwWHMeQfr4kCYwxFBq+JWkYcVVVVqRdddJG+7Nlnn60uXbpUdTqdpuX279+vTp482bTPf/3rX31u52OPPaYvl5eXpy5atEh1OBz68xUVFercuXNN7f3lL3/x2V4inIuYkI0ht9utjhgxQj+QU6dOVWVZ9rrsN998Y/rit3r16rDWPX78eNOH1hi4Rjt37jSdBP/5z396Xe7EiROm5R599FGf637nnXdMAbx582avy/3vf/8zLfff//7XZ5szZszQlxsyZIhaVVXldbl58+bpy5133nnqgQMHvC5XVVWlXnPNNfqyd9xxh891xxvjyH8c3XTTTaY/FMY/Yg2dPHlSvfLKK/Xlr776ap/LzpkzR19u7ty5PpdrDhhD/mNIVVX15Zdf1pe79957Q9pHb9566y29vQEDBvhct9vtVm+//XZ92V/84heqJElhrz/SGEOBYygYDodD/cUvfmE6B9XU1PhcviWdh1S1ZcWRN6+88oppm0P94sjrosAYQ/7xmigwxlBgvCbyjzEUGbwmajlxNH/+fNNnfMOGDT7XrSiKOm3aNH35M844Qy0sLGy03J49e0xJ48WLF/tsc8GCBab2jhw54nW5RDgXiZHra0uBfPrppzh69CgArev57NmzIYreD8GwYcMwYcIEff7f//53k9e7detW/Pjjj/r8n//8ZyQnJ3tdtl+/fnpdGAB47bXXvNZleeedd1BTUwNAu3VuxowZPtc/duxYjBgxQp/3tS+vvfaaPj1s2DCMHj3aZ5uPPvoo2rRpAwA4efKk19o0LpfLVAvw7rvvRo8ePby2l56ebqol8+2332LXrl0+1x9PjCONt305cuSIqcbejBkz0LZtW59tZmdnY9asWfr8/v37sXPnTq/LGh8PdeCURMMY0vjbl0gf76VLl5q249xzz/W6nM1mw1//+le9ftK+ffvw9ddfh73+SGMMacLZFwB49tlnsW/fPgDasZ8/fz5SU1N9Lt+SzkNAy4ojo4MHD2LKlCl45pln/NZ/C4TXRYExhnzjNVFwGEOB8ZrIP8ZQZPCaqOXE0erVq/XpsWPHYvDgwT7XLwgC5syZg6SkJADamA6ffPJJo+WWLVumr6tXr1646667fLZ5//33Izc3V2/v9ddf97pcIpyLmJCNoQ8//FCfHjp0KDp37ux3eeOHbMeOHThy5EjY6+3duzcGDRrkd/lx48bpdTvKysqwcePGRst89NFH+vQvfvELvydLwLwv//vf//TaM/UqKiqwbt06fX7s2LF+20tNTcV1112nz69Zs6bRMmvXrkVFRQUAQBTFgINSnH322aY6KN7aTASMI423OFq/fr0+nZSUhCuvvNJve4BWR8hYPHz79u2NllFV1fRFtLn/0WcMabzFUL38/Hx9OtzjnZ+fr19gAgg4WEqHDh0wcuRIfT4Rz0WMIY2/GArk+++/xxtvvKHPT5061W+stbTzENCy4ggAJEnC3Llzcc0115gu1AcNGhRyDVZeFwWHMeQbr4mCwxgKjNdE/jGGwsdropYTR4cPH0ZhYaE+f8011wTchtatW+Occ87R5xv+7VEUBR9//LE+f8MNN/hMVgPaNc748eP1eeNr6yXKuYgJ2RhRVRUbNmzQ5y+++OKAr8nLy0O7du30+S+++KJJ6/7uu+9CWm9WVhbOPPNMff7LL780PV9eXm76RSqYwu4XXnghLBYLAMDpdJq+ZADAxo0b9V88BEEIajuNy2zZskX/klHPuN+5ubmm9zKYNhvudyJgHPmPo6KiIv0PRNeuXYMaadpmsyE9PV2fNxb0rnfo0CE96WK1WtG3b9+A7SYqxpD/GAK0XmTGQW3CvcgzfinOysrCWWedFfA1xvfnq6++MhWTjzfGUOAYCkSSJDz22GP6ce3duzemTp3q9zUt6TwEtKw4qldbW4tly5bB4/EA0I7T1KlTsXTpUr33arB4XRQYY8g/XhMFxhgKjNdE/jGGwsdropYVR4WFhXpvVwDo06dPUNuRnZ2tT5eXl5uey8/PN/09CuZ63bgvR48eNf2wBCTOuYgJ2RgpLCxEZWWlPm8MYn/y8vL0aW+/Ugfi8Xiwf/9+fT7YERX9rXfXrl2m4AumzdTUVHTr1s1nm8YPSJcuXZCVlRWwTeMFgaIo2LFjR6PtDGUbG7a5Z88euFyuoF4XK4wj/3F0//33Y/v27fjmm2+wcOHCoLaxqqrK9KXV26jpxoRNz549g/pSk6gYQ/5jqL7d+kRIamoqunbtGtS2+mI8v/Xv3x+CIAR8jfFcVFFRYRphPd4YQ4FjKJC3334bu3fv1ucfeeSRgOeVlnQeAlpWHHkzdOhQvPvuu3jwwQebdKx4XRQYY8g/XhMFxhgKjNdE/jGGwsdropYVRxdddBG2bduG9evX4/333zclWv0pKCjQpxv+7TGeN2w2W1AJ+J49e5pKL/jLP8XzXGQNuwUKysGDB03zxi9z/nTp0kWfbsoBLygo0H/dAoDu3buHvV7jvtjtdnTq1CnoNut/YfXXZrDb2K5dOyQnJ8PpdALQfikbOnSo/rzx19ym7LckSSgoKEDv3r2Dem0sMI78xxGg3aLQvn17tG/fPqj2Pv30UyiKos97O97GE3ZeXh4qKirw/vvv48svv0R+fj6qqqqQmZmJnj174tJLL8WECROC+vIcD4yhwDHU8Hg7nU7897//xaeffoodO3agvLwcaWlp6Nq1Ky655BL8+te/RocOHXyurynnN+N+A9r5LdjXRhtjKHAM+VNTU4MXXnhBnx8xYgQuueSSgK9rSechoGXFUT1RFDFy5EjccccdGDJkSMjbZsTrosAYQ4Hxmsg/xlBgvCbyjzEUHl4TaVpiHLVq1QqtWrUKqr0jR47g559/1ucb/u0xvj85OTn63R/+CIKAzp076wnnQ4cO+WwznuciJmRjpKSkRJ8WRdFvUX0jYzd0YxtNWW/D9oJd74kTJ6Aoil6nw9hmsO01XLbhdhUXFzepzTZt2ug1SoxtKoqCsrKykNtseFxKSkoS5osHwDhquGxT9sXI5XLhpZde0uezs7O9FvM2/gp74MABXHHFFaZfMQFt/06cOIHvv/8eL7/8Mv7whz9gzJgxYW1fNDCGAu+L8XhXVlZi1KhRpnMUoN1KU15eju3bt+Nf//oX7rvvPkyZMsXr+ppyfmvdujUsFoveKyXcWI8kxlB4+7Js2TKcOHECgHax+MADDwT1upZ0HgJaVhzVS09Px4svvhjyNnnD66LAGEORxWsixpA3vCbyjzEUHl4TaVpiHIVi4cKFpjvWjLVaG25nsD8wAto1TH1CNhL5p2ici1iyIEaMt/+kpaUFHbDGOk4Na4GFul7A+61H3mRkZOjTqqqaTnDGmh7G5QLxty/G+VDaNC5r3MaqqirTiH9N2e+GbSYCxlH4+2I0b948069jt912m9df3Ix/9Hfs2KHvR/fu3TF48GCceeaZplo5lZWVmDVrFhYtWhTW9kUDYyjwvhiP9759+/Q/2J07d8YFF1yAc845B2lpafoyTqcTzz33HB555BGv62vK+U0URdPgUol0LmIMNX1fHA4HXnvtNX1+1KhRQdfja0nnIaBlxVE08LooMMZQZPGaiDHkDa+J/GMMNR2viU45nePo008/xfvvv6/PX3jhhY1KJzT1et24bCTyT9E4F7GHbIwYa24Za1kEYqyH4na7w1pvKOs2jrDasB3jdkRqXyLx/hjbaLjfxhNysO15ayfeGEfh70u9t99+G0uXLtXnc3JycMcddzRarqysrFFPgOuuuw6/+c1v0LNnT/0xl8uFVatWYd68eaiurgag/drXq1cvjB49usnbGWmMIf/70nDUVkAbdfqBBx4wXRx4PB588skneOqpp/RfR1etWoVevXrh7rvv9rnNkTi/xRtjqOn7smrVKlMvxXvvvTeo17W08xDQsuIoGnhdFBhjKHJ4TcQY8obXRIExhpqO10SnnK5xtGPHDsyYMcPU7syZMxst1xzyT03FHrIxYqzNEUp3buMv05Ikhbzehq8Jdt0NfxE39qqIxr4Y50Nps36k64ZtNGzfuFyw7QHm/U4EjKPw9wUA/u///g9z5szR5202G/7+97+bfvGqt2/fPtP2PfLII3j22WdNf/AB7cvtTTfdhDfffNP0a+VTTz2VUBeOjCH/+1JYWGg6XrfddhtefvnlRr/U2mw2/PKXv8S7776Ljh076o+/8MILjW5fMa4j2HNRw2WbGuvRwBhq+r68+eab+vSQIUPQv3//oF7X0s5DQMuKo2jgdVFgjKHI4DWRhjHUGK+JAmMMNR2viU45HeMoPz8fd955J2pra/XHZsyYgQEDBjRatqnvj7/zRqKci5iQjRHjgTMWyw/EeJAb/hIRjIYBG+y6GwaXcd3R2Jemtmn88PvaxobLBduet+2MN8ZR+Pvy+uuvY9asWfo6BUHA3LlzcfbZZ3td/oILLsDWrVuxZs0avPHGG5g0aZLf9vPy8ky/9BUXF+Ojjz4KeTujhTHkf1+6dOmCbdu24bPPPsPSpUvxyCOP+B11s0OHDnjyySf1eYfDgRUrVpiWMW5nKBcsxmUTafRYxlDT9uX777/H3r179fnbbrst6PW1tPMQ0LLiKBp4XRQYYyh8vCZiDPnDa6LAGENNw2sis9MtjjZv3ozbbrvNVIpg3LhxPuMg0tdEDduM57mICdkYSUlJ0adD+UXG2LU62NvLfK03lHU37NJtXLexS3co+2JctuG+RLrNht3Og22zqbf0xQrjyH8c+aOqKubPn48nnnhCLxouCAJmz56N66+/3u9r7XY7evbsifPPPz+odY0ZM8ZUT+vbb78NejujjTEUOIasViu6du2KIUOGBPUr7LBhw0y/yjc83pHYzkT68sEYatp5aPXq1fp027ZtMWLEiKDXB7Ss8xDQsuIoGnhdFBhjqOl4TaRhDAXGayL/GENNw2sis9Mpjj777DPceeedphqu1157LR5//HGfr0nU/BMTss1IVlaWPl1TU2MaRc6f+nongDbaaTjrbdhesOu1Wq2mQsfG7Qi2PUDbb29tNNzOUNr09f5kZGSYLhqast/etjPeGEf+48gXl8uFBx54wDRiqMViwdy5c3HzzTcHve5g2e12nHXWWfr8oUOHIr6OpmIMNS2GAjGORN3weDfl/KYoiukWnkQ6FzGGQo8hSZLw8ccf6/PXXXed18FyIimRz0NAy4qjaOB1UWCMoabhNdEpjKHo4DVRYKdzDPGaqLHTJY5eeeUVTJs2DU6nU39s3LhxeOaZZ/yWDWjq9bq/9ydRzkVMyMZIhw4d9GlZlnHy5MmgXmesu9O2bduw1gsApaWlIa+3devWpttTjG2eOHEi6G3xty9NbdO4bLt27fRpURRN88G22fD9acp7Hk2Mo9D3pbS0FBMnTjTdmpKUlITnn38e48aNC3q9oTJuW1NGvYwWxlD4++KNv+PdlO0sKysz3ZJjPJ/FG2Mo9H3ZvHmz6basX/ziF0GvKxyJeh4CWlYcRQOviwJjDIWO10RmjKHo4DVRYKdzDPGaqLGWHkcejwd/+tOf8Oyzz5o+y1OmTMGTTz4ZsPd9+/bt9elQromM+9PwvJEo5yImZGOke/fupvkjR44E9bqCggJ9umGh6mB07tzZVC+jKevt0aOH6TnjvtTW1gb9wTWuu+G+GNdx+PDhoNorLi42/bribzuDbdO4jTabDTk5OUG9LlYYR/7jqKH9+/dj/Pjx2Lp1q/5YdnY2lixZgiuuuCKo9TWV8XYG4y0y8cYYCi2GguXveDfl/Nbw/Wm47/HEGAo9hv73v//p0x07djT10oimRD0PAS0rjqKB10WBMYZCw2uixhhD0cFrosBO5xjiNVFjLTmOampqMGXKFKxcuVJ/zGKx4NFHH8X06dODWp9xHQUFBUH1IFZVFYWFhT63M1HORUzIxkhOTo6pS/POnTuDel1+fr4+3a9fv5DXa7PZkJubG/J6jcs1HPFwwIABpl9BgmmzpqbGFOgN98U4WuehQ4fgcDhC2kZBEJCXl2d6/swzz9Snje9jsG326dMnIQZcMGIc+Y8jo/z8fNx8882NTsRvv/226VaqQP7973/j0UcfxbRp0/DKK68E/TrjCbtTp05Bvy7aGEP+Y+jdd9/F448/jt/97nf461//GtQ2Av6Pt/H81pRzUVZWVkIlQRhDwZ+H6n333Xf69PDhw0PukdLSzkNAy4qjaOB1UWCMoeDxmsg7xpB/vCYKjDEUOl4TNdZS46iyshK333471q1bpz+WmpqKF154IaQSOcbzhsPhwIEDBwK+Zv/+/aYkfMPtTJRzEROyMTRkyBB92hiUvuTn55t661x44YUxWW95eTl+/vlnn+tNT0/HgAEDQmpz/fr1evdui8WCwYMHm54/77zz9Noxsixjw4YNAds0rnfAgAGNaqAY17Fjxw5UVlaG1GZT3+9oYxz5jqN6+/btw+2332663WPQoEFYvnx5yL9kffHFF1i+fDk++eQTvPfee0G9pqioCLt379bngy04HyuMId8xtGnTJrzxxhtYs2YN3nnnnUZF671xOp3YtGmTPt/weBvXUVJSgj179gRs07gvxvctUTCGAp+H6tXW1mLXrl36vK/Ry/1piechoOXEUTTwuig4jKHAeE3kH2PIN14TBYcxFDxeE/nW0uKopqYGd955J7Zv364/1q5dO7z++usYOXJkSNvYt29ftG7dWp83JvV9MQ7c1qpVq0Y/UifKuYgJ2RgaNWqUPv3ll1+iqKjI7/JvvfWWPt27d+9GQdSU9f7000/46aef/C6/YsUKSJIEQMv8Dx06tNEyV111lT69evXqgD03jPsydOhQZGZmmp7PzMw0fZiXL1/ut72amhrT6IxXX311o2UuuugivcC0x+PBO++847fNrVu3mk4usapnEyrGkcZbHAFAVVUVpkyZYqpNNHLkSCxZsgStWrXy2743xpP13r17sWXLloCvefnll/WEjc1mS7hYYgxpvMWQ8XhXVlaaBh3w16YxsXHttdeans/NzTXdRhTo/Hbs2DF89dVX+nyixQ/AGKrn6zxktGPHDn0bADTp1ryWeB4CWlYcRRqvi4LDGPKP10SBMYZ84zVRcBhDweM1kW8tLY5mzZplSsZ2794db731lqlnarAEQcCVV15p2gZjLdeGFEXBihUr9PmrrrqqUU/sRDkXMSEbQ6NGjdILErvdbsyaNct0QjL65ptvTHU2Jk6c2OT1Dho0yBT4jzzyiM+R5Hbu3Il//vOf+vz48eORnJzcaLmxY8ciJSUFgFYs+fHHH/e5/pUrV+Kbb77R52+77Tavy91yyy369JdffolVq1b5bHPOnDkoKysDoHV79zYQQXJysunxRYsWmX6RM6qqqsIf//hHff6cc87BwIEDfa4/nhhHGl9xNHv2bFNdmxEjRmDhwoVe1x+M66+/3jTy55w5c0wjrDf00Ucf4fXXXze9vmPHjk1ad7QwhjTeYuiqq64yJdieffZZFBcX+2xz8+bNmD9/vj4/dOhQr+cO4/lt+fLlPn+B9ng8mDlzJjweDwCttlO0a/s1BWNI4+s8ZGS8DSo5ORl9+vQJ+JqGWuJ5CGhZcRQNvC4KjDHkH6+JAmMM+cZrouAwhoLHayLfWlIcvfXWW/jkk0/0+ZycHCxbtgxdu3Zt8nbefPPNelI1Pz8fL7zwgs9lFyxYoPd4FUXR5/uTCOciJmRjyG6348EHH9Tn161bh7vvvttUz0SSJKxYsQLTpk2DLMsAtOz9jTfe6LXNyy67DHl5ecjLy8Nll13mc90zZ87UA3j37t2YOHGi6YSoqio++eQTTJo0CbW1tQC0LuVTp0712l7btm0xefJkfX7VqlWYPn26aYQ6p9OJF198EY8++qj+2PDhwzF8+HCf+2Ls+v3nP/8ZL730kqn2R2lpKR544AFTL5Df/OY3pi7sRlOmTNGfq6mpwaRJk/Dpp5+aCkHn5+dj4sSJ+ofWYrFg1qxZXttLBIwj33G0adMmfPjhh/p8jx498Le//S2smnddu3bFpEmT9Pldu3bhlltuwbZt20zLVVZWYv78+Zg+fboeX507d8bMmTObvO5oYQz5jqG0tDQ88MAD+nxRURF+/etfY+3atablnE4nlixZgjvvvFM/R6Wnp+OJJ57wup0TJkzQf4WVJAn33XcfVq5cabrQOnLkCCZPnmy6Nfnhhx+G3W732mY8MYb8/z0z2rt3rz7dqVMn05eIYLXE8xDQsuIoGnhdFBhjyDdeEwWHMeQbr4mCwxgKHq+JfGspcVRdXY2//e1vpv365z//iQ4dOgTzNvjUr18/jBkzRp9ftGgR/vKXv6Cqqkp/rKqqCk8++SRefPFF/bEJEyb4TPwnwrlIUIMZoowiavbs2Xj77bf1eVEUkZeXh/T0dOzbt0/v4QBoo5++9dZb6NWrl9e2LrvsMr1Af05ODr744guf633ppZdMHw5AG6ChdevWOHTokKlbfHJyMl599VW/9VXqg9bYddtmsyEvLw92ux179uwxfUC6dOmClStX+vySAGh/6G+55RbTiScjIwN9+/aF2+3Grl279F8mAO22q3/84x8QRd+/LXz33Xe45557TCMPd+zYEd26dcOJEyewb98+0/IzZszAXXfd5bO9RME4ahxHd911l+kisWfPniEX277uuuvwq1/9yvSYx+PB/fffb9rG+m3p0qULqqqqsHv3blNstm/fHsuWLUuokWAbYgz5Phc1fG8A7Zj26NEDLpcLu3fvNt3anp6ejldeeQWDBg3y2Wb9BY7x1tHWrVujd+/eegwZb7+55ZZbMHv2bJ/tJQLGkO8Yqjd58mS9V+3AgQNNt1CFoqWeh4CWE0f+LFy4EIsWLQKg3W65bNmyoF7H66LgMIYa4zVRaBhDvvGaKDiMocB4TRRYc4+jxYsX47nnntPnW7dubRqvIRh5eXmYMWNGo8erq6tx++23m8oqpKSk6OUadu3aZToXnXXWWXj99df99gaP97ko9J8kKGyPPfYYWrVqhVdffRUejweKongd0a53795YsGCBzw9YqKZOnYq0tDQ899xz+i8bxl+p6nXs2BHz5s0LeKK2Wq1YuHAhHnvsMbz77rtQVRUej8dr3ZFBgwZhwYIFAb+8dujQAcuWLcODDz6o14OpqqryWhtm3LhxePTRR/1+6QC0mmkvv/wyZs6ciaNHjwIAjh8/juPHj5uWS05OxowZM0xd1xMZ48issrKyUYHvAwcOBDUKo9E555zT6DGbzYZFixbh+eefx7/+9S/9V7OCggLTrYD1Lr30Ujz66KMJNQqsN4wh3x577DH06tUL8+fP15MWxcXFXm/VO+ecc/D4448HrN2Um5uLpUuXYvr06XrPs7KyMtOFFaD1Rrv77rvx+9//3m97iYAxFJhxwIX6+p1N0VLPQ0DLiaNo4HVRcBhDZrwmCh1jyDdeEwWHMRQYr4kCa+5xtGbNGtN8WVlZo171gfgaQDA9PR1LlizBjBkz9OSyw+HAjz/+2GjZkSNH4tlnnw1YmiPe5yL2kI2jffv24Z133sHatWtx/PhxOBwOZGVloX///rj66qtx3XXXBewKHcqvHvWOHz+OFStW4Ouvv0ZBQQGqq6uRnp6O3NxcXHHFFRg7dizS09ND2pdt27bhvffew/r161FUVAS3243WrVvj7LPPxjXXXINRo0YF/IJgpKoqPv30U3z44YfYtm0bSktLIYoiOnTogPPOOw/jx4/3epHoj8PhwKpVq/Dpp59i7969KC8vR1JSErp3746LL74Yv/71r5vFSbohxtGp1/q6XSMU999/P6ZNm+bz+aNHj2LlypVYv349Dh48iKqqKqSlpaF9+/Y4//zzcfXVVyfkCLD+MIZ8KysrwzvvvINvv/0W+/btQ3l5OZKTk9GuXTsMHDgQV111FUaMGNGoULw/kiThgw8+wMcff4ydO3fixIkTsNls6NKlC4YMGYJf//rXTaqpFU+MId9GjRqFQ4cOAQBGjx5tqq/XVC3xPAS0rDhqKNxeRbwuCg5jSMNroqZjDPnGa6LgMIZ84zVR8JprHJ1zzjkBB8gNJJjY+u6777B69Wp8//33KC0thSzLaNu2LQYNGoQxY8Zg2LBhIa0zXuciJmSJiIiIiIiIiIiIYoSDehERERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQjTMgSERERERERERERxQgTskREREREREREREQxwoQsERERERERERERUYwwIUtEREREREREREQUI0zIEhEREREREREREcUIE7JEREREREREREREMcKELBEREREREREREVGMMCFLREREREREREREFCNMyBIRERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQj1nhvABHR6aqgoACXX355xNv9/PPP0aVLFyxcuBCLFi0CAAwePBjLli2L+Lqaq+b23qiqilWrVqF///4YMGBAvDeHmrnmFv+UmBL9vNSc4jzR38tEd+mll+L48eNRafuNN97A+eefH5W2KTw87kTU3LGHLBERUQLbs2cPbr31VvzhD39AVVVVvDeHiIjnpQjiexmeoqKiqCXlLBYLzjjjjKi0TeHhcSeiloA9ZImI4iQ5ORnDhg3zu0xFRQW2b9+uz5911lnIysoK2C61HGPGjIHH44n3ZhAR6Xheihy+l+HZv38/unXrFnC54uJiOJ1OfT6Y13Tr1g0pKSlhbR9FB487EbUETMgSEcVJ27Zt8eqrr/pdZsOGDbjtttv0+YcffhhDhgyJ9qZRAuEXdSJKNDwvRQ7fy/BcdNFF+PTTTwMud/XVV+PAgQMAgJycnKBeQ4mLx52IWgImZImIWqhp06Zh2rRp8d4MIiIioripqanBoUOH9HnW6T098LgTUaJjDVkiIiIiIiJqkXbu3AlFUfR5JuZODzzuRJTomJAlIiIiIiKiFmnnzp2meQ7YdHrgcSeiRMeSBURELdTChQuxaNEiAMDgwYOxbNkyv8vMmTMHN910E2pra/HBBx/ggw8+wMGDB1FZWYm2bduiX79+mDBhAi699FJTGwcOHMDy5cuxdu1aHD16FADQpUsXDB8+HJMmTUK7du2C2t49e/Zg9erV+Pbbb3Hs2DFUVVUhKysLXbt2xbBhwzB27Fh06tQpnLfEr+rqarz55pv4+OOPcfjwYUiShPbt2+OCCy7ANddcgwsvvDCk9sLZn1WrVuGRRx5p9LixnvCYMWNw9OhRbNiwAQBwzTXX4LnnnvO5PWvXrsVdd92lzz/11FO44YYbfC4/d+5cPWb8tR2N4xaJNo2x/ec//xm33nor3G433n//faxZswb79u1DaWkpMjIy0LNnT1x22WWYMGECMjIyQtpWf6qrq/Gf//wHX331FXbu3ImysjJYrVZkZ2ejV69euPDCC/GrX/0K7du399nGrFmz8N577wHQjvnTTz/td50FBQW4/PLL9fnPP/8cXbp0CWpbIxH/kdjnhiIdYx6PB//5z3/w4Ycf4ueff0ZFRQVatWqF3NxcjBkzBqNHj4Yoivjtb3+Ljz/+GACwdOlSU/3uWByXRPscBHteCvReBNrO6dOnY8qUKaisrMTy5cuxZs0aFBQUwOFwoF27djjnnHMwZswYXHLJJSGvR5IkrF69GmvWrEF+fj7KysqQnZ2Nzp0744orrsCYMWOC/pv1448/YvXq1fj+++9x/Phx1NbWIjs7G126dMHFF1+M66+/Hl27dvX62ki8l+Gsv160zpPROA+E4+effzbN9+/fPybrpfjicSeiRMeELBER6bZt24aHHnrIVHMLAAoLC1FYWIjPP/8c48ePx5w5c2CxWPDaa6/h2WefbTQoye7du7F7926sWrUKL730Es4++2yf63Q4HJg7dy5WrVplurUMAEpLS1FaWooffvgBixcvxt133437778fgiBEbqeh7ffvfvc7PaFc7+DBgzh48CBWrlyJSy+9FE8//TRat27tt61Y7s/IkSP1hOx3330HVVV9trVu3TrT/MaNG/0mZP/3v//p08ZEUr1o7Gc037v8/HxMnz4de/fuNT1eVlaGsrIybN68Ga+++irmzZuHiy++OKg2/Vm3bh0efvhhlJaWmh53u92ora3F0aNHsXbtWixatAhTp07Fb37zm7DX2VSRiv9I73M04mH79u146KGHcPDgQdPjxcXFKC4uxtq1a/Huu+/6/XEj2lrS56Cpdu7cifvuuw+FhYWmx+v/Fv33v//FsGHD8Mwzz6BNmzZBtblr1y48+OCDjfa9pKQEJSUl2Lp1K1555RX85S9/wRVXXOGznaKiIvzhD3/A2rVrGz1X39YPP/yAl156Cbfccgseeugh2Gy2oLYxGNFcfyTiIxHPfTt27NCn27VrF7NEMMUXjzsRJTomZImICID2ZXXevHmorq4GAHTq1Aldu3ZFRUUFdu/eDVVVAQArVqxA37594fF48MwzzwAAkpKS0K9fP1gsFuzevVtvo6ysDNOmTcNHH32E1NTURus8efIkJk+ejJ9++kl/zGKxoG/fvsjKysLJkyexZ88eqKoKl8uFRYsWYc+ePZg/fz4sFktE9ruwsBB33XUXKisrAQCtWrVC79694XA4sGvXLkiSBAD4+uuvMXHiRCxbtsxnUipS+9OhQwcMGzYMAExfus866yxkZWUBAHJzczFixAi9B9WJEyewa9cu9OvXz+u2rV+/3jS/ceNGn+/JwYMH9aS8zWbD8OHDo7Kf0W7TuD+LFi3CyZMnAQBt2rRBr1694HQ6sW/fPtTW1gLQ4vXee+/Fe++9h969e/tt05+tW7diypQpph8qevTogfbt20OWZRQWFuL48eMAAKfTiQULFkBRFNx///1NXmdTRSr+I73P0YiHzZs3Y/LkyfrxBoCMjAz07dsXkiQhPz8fbrcb69atw3333ad/1mIpkT8HwZ6XwlUfkydOnAAAZGdno0+fPo1icu3atbj55pvx1ltvBfyh7PDhw7j11lv1OM/MzETPnj1htVqxZ88e/fGKigr87ne/w/Lly3HWWWc1amf//v245ZZbUFZWpj9mtVrRt29fZGZmoqioSE/2ezweLFmyBDt27MDixYtNfwOb+l5Gav3eROI8mYjnPrfbjX379unzrCN6euBxJ6LmgAlZIiICALz11lsAtC9Pjz/+uOn23Pz8fEyePBklJSUAgPnz58PhcEAQBNxzzz2YMmWK/mWvtrYWf/3rX7F8+XIAwPHjx/HBBx9gwoQJpvWpqooZM2boiQdRFHHXXXfhrrvuQqtWrfTliouLsXDhQqxYsQIA8PHHH+P555/HAw88EJH9ru+BlZmZiT/+8Y+49tpr9cRGWVkZnn32WaxatQoAsHfvXsyZMwfPP/98o3YiuT8XX3yx3vsoLy9Pf/zhhx82HRdAO171X8DXrVvnNSF78uTJRrXUCgsLceTIEa+3tH799df69AUXXID09PSo7Gc02zSqL73QrVs3/OlPf8Lw4cP1HoXV1dVYuHAhlixZAgBwuVxYuHAh/v73v/tt05/HH39cT0icc845ePbZZ9GtWzfTMhs3bsSf//xn/dgtXrwYN954Izp06NDk9TZFpOI/kvscjXiorKzE73//ez2pZLfb8dBDD+Gmm26C3W7Xl3nhhRewZMkSbNmyBaIY26EWEv1zEMp5KRz1fztSUlLw8MMPY/z48XoPz9LSUjz99NP44IMPAGhJxD/96U/4xz/+4bfN+iRgq1atMGvWLIwePVo/7h6PB8uWLcO8efMgyzIkScKTTz6pb0e98vJyTJ48WU+G1h+fyZMnIzs7W19u//79eOqpp/S7DDZt2oQ//vGPmD9/vr5MU97LSK7fm0icJxPx3GdM4gO8bf10weNORM0BB/UiIiJdp06dsHz58kZfCPv164cZM2bo87W1tVBVFTNnzsTvf/97U8+b1NRUzJkzx5QYbHi7PACsXr1a/8IoCAKee+45PPTQQ6bEAwC0b98eTzzxBKZPn64/tnjx4ka3HIcjNTUVS5cuxfXXX2/qZda6dWs89dRTmDhxov7Yxx9/jM2bNyfM/owcOVKf/vbbb70us2HDBv3W5+TkZNPj3hjLFVx22WWm56Kxn7F477p06YIVK1bg0ksvNd3enZ6ejkceeQS//OUv9ce+/vpruN3ugG16c/ToUT2hZrFY8I9//KNRQgLQ6jq/+uqrSEpKAqAlOL766qsmrTNc4cZ/pPc5GvHw6quvori4WJ9fsGABbr/9dj0pB2hJ6UceeQSzZs0CgEblAqKtJX0OwmWz2bB48WLccsstptvt27Zti3nz5uGmm27SH/v888/x/fffB2yzTZs2ePfdd3H99debjrvNZsOdd96JSZMm6Y/98MMPpl6ogPYeG0sozJs3Dw899JApGQoAvXr1wksvvYSxY8fqj3344Yf48ssvA26jP7FYfzjxkajnvoZ1RDmw0+mBx52ImgMmZImISPfb3/620Zf/epdffrnpC1pOTg5uv/12r8sKgoARI0bo84cPH260zKuvvqpPX3vttRg9erTfbZsyZYp+C6miKHpPnUj43e9+57f3xIwZM5CTk6PP1/cmNorX/hjf582bN3tNoBgT4uPGjdOnvZUtcDgc2LRpkz7fMCEbjf2MxXvnL7YBmBI8tbW1OHLkSMA2vTEm/VJTU/2us0uXLhg/fjwuv/xy3H777V6TF7EQbvxHep8jHQ+SJGHlypX6/HXXXdcoro3uuOMO/XbyWGpJn4Nw3X333Rg8eLDP5x955BFTTNYPsObP9OnTTa9pyLjvAEx1VGtqavDGG2/o8zfccIMpOdmQKIp49NFH0b17d/2xl19+OeA2+hKr9YcTH4l67jPWEQV46/rpgsediJoDliwgIiIAWhJ11KhRPp9PS0tD69at9bp+w4cP93tLr/H2w6qqKtNzhw4dwq5du/R5f4NLGV1//fXYvn07APNt9eFITU3FjTfe6HcZu92OG264AQsXLgSg9SA1DqAVz/05//zzkZGRgaqqKjgcDmzZsgUXXnihaZnvvvsOgFYv8+abb8brr78OwHtCdv369XC5XAC0W2mNCYxo7Gcs3jtRFL0OTGbUp08f03zDmA1Wx44dTW38/e9/x+9//3ufn5U//elPTVpPpEQi/iO5z9GIh+3bt+vnLQCNyqd4c9ddd3kdNClaWtrnIBw2mw233Xab32WSkpIwduxYvXzGV199BUVRfMacKIq48sor/bbZtWtXpKen6zXQjYNSbdy4EU6nU5+/4447Au5HUlISJk6ciLlz5wIAtmzZgvLy8kY9WoMRi/WHGx+Jeu4zluvJyspCly5dmtTO119/jSlTpgDQ/k76SzjHiqqq2L9/P7Zt24Zt27Zh+/btyM/P18tGGM8p4TLWY420Nm3aNOlz4U9LPu5E1HIwIUtERACAzp07m2qFemO83b1nz55+l62/HRFofOvvli1bTPO9evUKahvPPPNMffro0aM4fvy46UtgUwwaNAhpaWkBlzv//PP16YqKCuzduxd9+/YFEN/9sVqtGDZsGD766CMAWm9YY0K2sLBQ76F8/vnno3fv3sjOzkZ5eTmOHTuGw4cPm3onGZM6DXsRRmM/Y/HedenSJWBsZ2ZmmuaNg9KEomPHjhg4cCC2bt0KAHjppZewZs0aXHnllRg2bBjOO+880+3S8RaJ+I/kPkcjHuoTloCW7Bs4cGDA9oYMGYLk5GRTEiyaWtrnIBwDBw4MKulhLK1TWlqKAwcO+ByMLycnp9G+eZORkaEnZI13GxhLIrRr1y7owcvq68QCWvJsy5Ytfntn+xKL9YcbH4l47pNlGbt379bnw6kjWp/g69y5c8Ik5QoLCwP2pI+UaK5n+vTpetIzElr6cSeiloMJWSIiAqD1UAhFoC9uxvIGDR06dMg0P3z48JDWXa+oqCjshGywiY+GCehjx47pCal478+IESNMCdkHH3xQf85YrqA+UXvuuefiiy++AKDVkTUmZP3Vj43GfsbivQum503DEerDqR/66KOP4tZbb9UHkDp06BBeeeUVvPLKK0hOTsZ5552Hiy++GCNGjPCZQIqVSMQ/ELl9jkY8GOtu5uTkmGqS+mKxWNCnTx+9Jma0tcTPQVN5G5jQm4axW1xc7DO2srKygmrT2JvTuO/G2/Eb9hL1p2fPnrDZbHri0thOKGKx/kjER6Kd+/bu3Wv6USWc29bra5Im6uBQHTp0wNlnn43y8nJT2aHT0el03ImoeWMNWSIiAmDu0RoMfwnXQCorK5v8WqPy8vKw2wim1xSg9Zwyqqio0KfjvT+XXnqp/kV5x44dpm1bv369Pl2fkDX2oDUO7LVv3z49edW+fXu9PmW9aOxnLN47Y8/uWDjjjDPw5ptv4uyzz270nNPpxLfffotnnnkGo0ePxi9/+UssW7YsLj0RgcjEPxC5fY5GPNT3eAQa74c/kb6F1p+W+DloqmCTpw1/FDSWGGjIOPBkUxjf12A/M4D2d9IYc009x8di/ZGIj0Q79xlvW6/fvqZ6/vnnsWvXLvzjH/9ochsFBQXIy8tDXl5ek9swys7OxgsvvIBvvvkG//vf/7Bo0SIMHTo0Im03Z4l23ImIfGEPWSIiAhBegjVUkiTp00lJSbjgggua1E4oX0zDpaqqad745TXe+9OqVSsMHDgQW7ZsgaIoWL9+Pa666iqoqqonZLOzs/UvgcaErLGOrLFcwciRIxvFRDT2M97vXbT0798fK1euxJYtW/DRRx/h66+/btQLEtB68sydOxfvvPMOlixZkrC3RPqL/3qR2OdoxIPxx6aG++FPqD9ShaOlfg6awmoN7utJw96ZoRzbUIXTtizL+rS/uuuJvP5QJNK5r+HATi2tl2N6ejquuOKKmKwrkvVoo62lH3ciajmYkCUiopgzJg1SUlJMo4vHWk1NTVDLNezBZtyHRNifkSNH6nUov/32W1x11VXYvXu33mtsyJAheoI1NzcXbdq0wYkTJ1BUVISDBw+iR48efssVANHZz0R476Lp3HPPxbnnnos//vGPOHLkCNavX4/169fj22+/xcmTJ/Xl8vPzMXPmTCxevNhnW8EkZeoHZAtWJOK/oXD2OdoxFsogVcaetf5E4ri09M9BKIJ93xvGZDR7NBt77YbSm1mWZdP+BFOvORHX3xSRPPc1Vf3t5oDWSzpQ7Xtf3n//fcyYMQM2mw1btmxJqDrg1BiPOxE1FyxZQEREMdehQwd9urKyMugv4NFQUFAQ1HJ79+41zXfv3l2fToT9GTFihD5dXzfW2PvVOACOIAgYPHiwPr9hwwbU1NToA8ekpqbioosuarSOaOxnIrx3sdK1a1fceOONeO6557Bu3TosXrwYnTp10p//+uuvceDAAdNrjL2Ujb0ofTEmOoIRifj3J9R9jkY89OjRQ58uKCgIeqCu+sHwvIn0cTmdPgeBeOtN6U3DUd+bmnQJhrEub8PPgj/79+839VBt6kjv8V5/uJpy7guXqqqmW9f79evX5B7C+fn5AIDevXszKZfgeNyJqDlhQpaIiGJu0KBB+rSiKKbEoT8bN27E7Nmz8dJLL+GDDz4IunefP1u3bg2qh5txcKxOnTqZviAnwv7k5uYiJycHAHDkyBEcOXLENDK3sUxBw/kNGzbgu+++02v5DR061Ovt2tHYz0R47yJpx44dWLVqFebNm4c1a9b4XE4URVx66aX429/+Znq8YZLJOABVMEm6PXv2hLS9kYj/SO5zNOLhvPPO06dlWQ6qzcLCQhw7dszn85E+Li3tcxCOH3/80ZRE9MVYH7t9+/bo2rVr1Lbp3HPP1adLSkqCvn3722+/Nc039dbpeK8/GJE+94Xr0KFDps9DOHVE6xN8vPU98fG4E1FzwpIFREQUc/3790eHDh1QVFQEAHjttde83iLf0IIFC/QkY3Z2Nq6++uqwt6WkpARffvml3/VXVlbivffe0+cb1myL5v4IghB0/cCRI0fi9ddfB6B9Ea9vu127do1GtDb2gN24caNpgBxf2x6N/UykWIiEF198EZ988gkALckWaLv69u1rmjcm+gCY6ioGk7D473//G+ymAohM/Edyn6MRD127dsUZZ5yh1xVcunQphg8f7re9t956y+/zkT4uze1zEMp5KVSlpaX47LPPcNVVV/lcpqamBqtWrdLno73fgwcPRmpqKmprawEAS5YswVNPPeX3NS6XC2+++aY+P2DAALRv377RcsG8l9Fcf6RE+twXLuNt60B4SbX6npL9+vULa5so+njciag5YQ9ZIiKKOYvFgkmTJunz69evx4svvuj3Na+//rqpx+e4ceMi9gVuzpw5PkfolmUZf/7zn/Vbji0WC2677TbTMtHcH2NP1UB1KI1lC958801T/diGunfvjs6dOwPQknIffPABAK330siRI722H439TLRYCJfxvfvxxx/99hQDYHpeFMVGo28bvwgeOXIEX331lc+23n77bWzatCnELQ4//iO5z9GKh8mTJ+vT33zzDd544w2f7W3evBlLlizxu85IH5fm9jkI5bzUFE8++SSKi4u9PqeqKh5//HH9eZvNhltvvTXi22CUkZGBcePG6fOrVq3ym2RXVRVz5841lV9o+LmpF8x7Gc31R0qkz33hajiwU1N7Sh4/flw//7GnZOLjcSei5oQJWSIiiotbb73VdKE8f/58zJo1C0ePHjUtd+LECTz99NOYO3eu/liHDh0wZcqUiG1LUVERxo8fj++++870+JEjR3DPPfeYvjj+5je/Qbdu3Rq1Ea39MQ5UYxx0y5shQ4YgNTUVgHlE5IblCozL16vveTVw4EC0bt3a5zqisZ+JFAvh+uUvf6nfzq+qKmbNmoW3334bbrfbtJzb7caKFSvwxBNP6I9dffXVplIAAHDJJZfoxxQAHn74YXzxxRemZUpKSvD000/j0UcfBRD8KPX1wo3/SO9zNOJh9OjRuPzyy/X5J554As8884xpkC9JkrBy5UpMnjxZL9/hSzSOS3P6HIRyXmqKoqIi3HTTTaZSGQBw9OhR3H///fi///s//bE777wz6JrG4bjvvvv0sjAA8NBDD+G5555DeXm5abmDBw/i3nvvxYoVK/THhgwZguuvv95ru8G+l9Faf6RE+jwQLmMdUbvdjj59+oTdTjCJOVmWUVNT4/WfsX61r2Vqamqi1vv8dBCv405E1BQsWUBERHFht9vx/PPPY9KkSThy5AgA4L333sP//d//oXfv3mjTpg1KSkpw5MgRU3IkIyMDCxcuNI06HY7hw4dj06ZNKCwsxKRJk9C5c2d06dIFFRUV2L17t+mL0dVXX43f/OY3Md2f3NxcHD9+HACwbNkybNq0CdnZ2ejduzdmz57daBuGDh2Kzz77zPS4tx6ygJaoNd6KDvguVxDN/UyUWIiEpKQkPPXUU5gyZQo8Hg8cDgdmz56Np59+Gn369EF6ejpqamqwd+9eU5277t274w9/+EOj9tLT0zF16lTMnz8fgFY+4N5770XHjh3RtWtXlJeX4+DBg/r7Mn78eOzatQtbt24NansjEf+R3udoxcPTTz+Nu+66C9u2bYOqqnj11VexbNky9OvXD0lJSdizZ4+e3MrJyUFhYaHP9y0ax6U5fQ5COS+FqnXr1qiqqkJBQQHuuOMOPSYrKyuxe/duKIqiL3v55Zfjt7/9bVjrC1Z2djZeeOEF3HXXXThx4gQURcHixYvxr3/9C7m5ucjIyEBxcXGjwanOOOMMPP/886aB4IyCfS+jtf5IifR5IFzGW9f79u0b8g9V9eoTczk5OcjMzAy4/Pfffx9Ub2RjXeCGPv/887gNwNbcxeu4ExE1BXvIEhFR3HTp0gUrV6401QpUVRV79+7Fhg0bsH//flPi4YwzzsCbb76JgQMHRmwbBgwYgIULF+q9lI4ePYqNGzdi165dejLKZrPpyRd/o/VGY3/uvfde023I+fn5WL9+vc9bpI1lCwCgc+fOXnv0At57zhp7EfoSjf1MhFiIlKFDh+Kf//ynqV5jbW0ttm3bhnXr1mHr1q2mhMTIkSOxdOlStGvXzmt799xzD6ZOnQqLxaI/dvz4cWzatAl79uyBx+OBKIqYPHky5syZE9K2Rir+I73P0YiHzMxMvPbaa7j22mv1x9xuN7Zt24ZNmzbpydjc3Fz8+9//9tlOvWgcl+byOQj1vBSKPn36YMGCBXoSpD4m8/Pz9WSszWbDPffcg+eff77JCZem6N+/P9555x3TuVOSJPz888/YsGGDKRlqtVoxceJEvPHGG6ZesA2F8l5GY/2RFOnzQFMdPXpUv90cCG9gJ9YRbT543ImouWEPWSIiiqtWrVrh+eefx86dO/Gf//wHGzZswNGjR1FZWQmbzYYOHTrgrLPOwujRo3HppZf6TYg21SWXXIIPPvgAr7/+Or744gsUFhZCEAR07twZl1xyCcaPH4+ePXvGZX/OPfdcvPHGG1i8eDF+/PFHlJeXIykpCWlpaXC5XKb6g4CWkDUOEuOrdywAdOzYET169MDBgwcBaD2VGg7+Fav9jFab8XLJJZdgzZo1+PDDD/H1119j165dKC0thdvtRlZWFtq3b48hQ4Zg1KhROO+88wK29+CDD+Kaa67BypUrsW7dOv029o4dO+Kiiy7CjTfe2OTbKiMV/5He52jEQ2pqKubNm4dbb70V7777LjZs2ICioiIkJSWhT58+uPbaazF27FjY7fag3rtoHJfm8DkI9bwUqssvvxz/+c9/sGzZMnzxxRc4evQoBEFAt27dcMkll2DChAno2rVrhPYmNJ07d8Zrr72GjRs34qOPPsL333+P4uJiVFVVIT09Hb1798bQoUNxww03mEoM+BLqexnp9UdapM8DTdFwYKcBAwY0ua36npLBfo6HDBliKhlkVFBQoP/o6WsZarp4HncioqYQVBapISIiIiIyMQ4ytHTpUr8/blB4Fi5ciEWLFgEABg8ejGXLlsV5i4iA6upqnH/++VBVFS+88AKuuOKKsNqLRUL2H//4BxYsWBDVdbR0kT7uRES+JG7XEiIiIiIiIqI4yM/P1+824a3rpw8edyKKFSZkiYiIiIiIiAzq64hmZmZykK3TCI87EcUKa8gSERERERERGdTXEU3kXpJ79+5FdXW1Pn/8+HF9+scffzQt26dPH6Snp8dq05qt5nDciahlYEKWiIiIiIiIyKA5JOYee+wxbNy40etzEyZMMM2zFnZwmsNxJ6KWgSULiIiIiIiIiOpIkoS9e/cCAPr37x/nraFY4XEnolhiD1kiIiIiIiKiOlarFdu2bYtom126dMGuXbsi2uayZcsi2t7pLhrHnYjIF0GtH0KQiIiIiIiIiIiIiKKKJQuIiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEaYkCUiIiIiIiIiIiKKESZkiYiIiIiIiIiIiGKECVkiIiIiIiIiIiKiGGFCloiIiIiIiIiIiChGmJAlIiIiIiIiIiIiihEmZImIiIiIiIiIiIhihAlZIiIiIiIiIiIiohhhQpaIiIiIiIiIiIgoRpiQJSIiIiIiIiIiIooRJmSJiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEb+H7juATif3X31AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff_dt), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Paralyzable dead time')\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Non-paralyzable dead time has a distribution for the time between consecutive counts that plateaus between $\\tau_d$ and $2\\tau_d$, then decreases. The exact form is complicated (e.g. )\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = r_{in}e^{-r_{in}\\tau_d}$$\n", + "(Zhang+95, eq. 16). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAARHCAYAAAD5ry3JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9f7H8Xc66YC2rLI3LVNkyB7iAERBARUcqIgDFVTQqzguXq84cLAFXAxxAAoqAuIAZUOZMgTKpi1QRgd00JnfH/313KRJ25SOpO3r+XjwIOd8z/nmc5JvkuaT7zCZzWazAAAAAAAAAMAFuDk7AAAAAAAAAADIRsISAAAAAAAAgMsgYQkAAAAAAADAZZCwBAAAAAAAAOAySFgCAAAAAAAAcBkkLAEAAAAAAAC4DBKWAAAAAAAAAFwGCUsAAAAAAAAALoOEJQAAAAAAAACXQcISAAAAAAAAgMsgYQkAAAAAAADAZZCwBAAAAAAAAOAySFgCAAAAAAAAcBkkLAEAAAAAAAC4DA9nBwAAyF9kZKRuvvlmh441mUzy9PSUr6+vqlWrpmbNmqlTp0667bbb5O/vX8yRup4ZM2Zo5syZkqSOHTtq4cKFTo7IeYYPH66wsDBJ0ujRozVmzJhC1xkaGmrc/vLLL9WpU6dC1+lMZe16HLVs2TK98sorkqTatWtr7dq1ha7TbDZr2bJlat68uVq0aGFTnvN9bc2aNapTp06h7xd54z0xf+np6Zo/f74GDhyo6tWrOzucIlParys2NlZ9+/ZVfHy83n33XQ0ePLhA58fExOi7777TX3/9pePHjysxMVGVK1dWvXr11LdvXw0cOFABAQEFqvPYsWNatGiRtm3bpsjISKWnp6t69eoKCQnRgAEDdOutt8rDo2Bfubds2aKlS5dqz549On/+vDw8PFSjRg21bdtWgwYNUocOHQpUX0mLjY3VV199VaC/MX788Ue9/PLLkqTPP/9cPXr0KK7wAJQiJCwBoIwxm81KTU1Vamqq4uLidOTIEf3888/68MMPNW7cOA0dOtTZIQIo444cOaL//Oc/2rFjh7788ktnhwM4bOfOnfrPf/6j8PBw9evXz9nhFJnSfl1ms1mvv/664uPjr+n8P/74Q6+99pri4uKs9kdHRys6Olrbt2/XJ598orffflu9evVyqM4ZM2Zozpw5Sk9Pt9ofERGhiIgIrVmzRq1atdIHH3ygRo0a5VtfQkKCXn75Zf3xxx9W+1NSUnTs2DEdO3ZM33//vQYOHKgJEyaoYsWKDsVZUrJ/pPrggw/k6+tboITl+vXrJUk+Pj7l5odCAPkjYQkApVBISEievSNSU1OVkJCgU6dOKTExUZIUFxenCRMm6OLFi3rmmWdKKlQA5dCgQYOUlpbm7DCAAjl37pweeOABmc1mZ4dSpMrCdX3wwQc2iTxHrV69WuPGjVNGRoaxr2HDhqpWrZqioqIUFRUlSbpw4YKeeuopzZo1SzfeeGOedU6cONGqd7KHh4dCQ0Pl4+OjY8eOKTY2VpK0f/9+DR8+XEuWLFHt2rVzrS8lJUWPPvqo/v77b2Ofn5+fQkJClJGRofDwcF29elWStHz5cp09e1Zz586Vl5dXgR+P4rJixQq9+uqrkiRfX1+Hz8vIyNCmTZskSZ07d3apawLgXCQsAaAUGjFihENDoVJTU7VkyRK9//77SklJkSTNnDlT3bp10/XXX1/MUQIor0hWojRKT08v1Um93JTm68rMzNSkSZM0f/78azo/IiJCr7zyipGsDAkJ0aRJk6ymqdi6dateffVVRUVFKSMjQ+PGjdMvv/yi4OBgu3WuXr3aKlnZt29fTZgwQVWrVpWU9f63bNkyvfvuu0pOTtbFixc1ZswYLV26VCaTyW6dkyZNMpKVJpNJY8aM0ciRI1WhQgVJ0uXLlzVjxgyjx/r27dv10UcfGVN5uIJrfd/fs2eP0fOVoeAALLHoDgCUYV5eXnrwwQc1efJkY19mZqZmzJjhxKgAQKpTp44OHz5s/GP+ypIxZswY4zFn/kq4spiYGD366KPXnKyUpClTpigpKUlS1vy8CxYssJlTt3Pnzvrmm2+MkSuJiYnGPK85paWladKkScZ27969NXXqVCNZKUmenp4aOnSoZs6cacxfeeDAAa1YscJunUePHtWiRYuM7RdeeEHPPPOMkayUpEqVKum1116zGiHz9ddfKzIy0qHHwZVlDweX5PBwfADlAwlLACgHbrnlFnXu3NnY3rJli2JiYpwYEQAAgH2rVq3SXXfdpS1btlxzHdHR0fr111+N7XHjxqly5cp2j61Ro4Zee+01Y3vZsmU2811K0u+//64zZ85IyhoGPmHCBLm52f9K3b17d6t5w+fNm2f3uIULFxo9QBs1aqSRI0fmek2jR49WSEiIpKzk6VdffZXrsaVFdsKycePG/HAFwAoJSwAoJ/r06WPczsjI0NGjR50YDQAAgLVjx45p2LBhGjt2rKKjoyVlDZF+9tln85wD0p5ff/3VWBCnYsWK6tu3b57H33rrrUZCMz093e6cmatWrTJud+3aVbVq1cqzTsuE5YEDBxQREWFVnpmZaZVUHTx4cK4JUElyc3PTvffea2xbnlsanT9/XgcPHpQk9ezZ08nRAHA1zGEJAOVEzl+tL1y4kOuxqamp+u2337Rlyxbt3btXMTExio+Pl5eXlwICAtSoUSN16tRJgwcPthoGldPw4cMVFhYmSfr5559Vv359zZkzR8uXL9f58+cVGBiokJAQDRkyRP3797c5f8uWLVq/fr127typc+fOGauDVqpUSbVq1VKHDh00YMAANWvW7FoeEg0YMEDh4eGSsoYhffrppw6d98wzzxhfZO655x5NnDhRy5YtK9RcUqNHj851Rc3ExET98ssv2rp1qw4cOKDY2FhduXJFPj4+qlSpkkJDQ9W1a1cNGjRI/v7+BbrfiIgILVy4UOvXr9e5c+fk5eWlmjVrqmfPnho0aJBDK5sWxJ49e7Ry5Upt27ZN0dHRSkxMVFBQkBo2bKiePXtqyJAhCgoKKtL7lLJ6oqxYsUKrVq3SP//8o/j4eAUGBio0NFRDhgzRbbfdluvcYnk5cuSIli9frk2bNuns2bO6cuWKAgICVLduXXXv3l1DhgxRzZo1Ha6vOJ7rs2fPatGiRdqwYYNOnjyp9PR01ahRQ127dtX9999v9NYprNxeAw899JBxe9CgQXrvvfckSZGRkbr55puNsjVr1ti8T910003Gghh79+6Vt7e3Tpw4oSVLlmjDhg06e/asTCaTatSooe7du+uBBx5Q3bp1rer4448/tHTpUh06dEgXLlyQn5+fWrRooTvvvFMDBgyQu7u7Q9fnrLZb1GbMmGEMd+3YsaPNsPBt27YZz1nfvn01ffp0SdK6deu0fPly7d27VxcuXJCHh4dq1apl9CKrX79+rvdp2TaGDh2q//73v0pJSdH333+vn3/+WadOndKVK1dUuXJltWrVSgMGDFDfvn3zTNyMHz9eP/zwgyTrdpWbvNqb5WNiyfL4vN6j8xIaGipJCgwM1LZt23Tu3DlNnTpV69atU1JSkqpWrao2bdpoxIgRat26tdW5hf0sLux1xcTEaNmyZdqwYYNOnDih2NhY+fr6qnr16urUqZMGDhyo6667rsCPSV42bNig3bt3G9u1atXSW2+9pe7du2vp0qUFqsuyd2bHjh3l6emZ5/Hu7u7q0qWLVq5cKUn6888/dffddxvlZrNZ27ZtM7a7deuWbwyhoaGqVq2a8TfX2rVr9fDDDxvlhw4dMhbokbJ6ZebH8n7PnDmjQ4cOXfPfQTmFhYVpxYoV2rVrl6KiopSWlqaAgACFhISoV69eGjx4sCpVqmR1juXfetmioqKMti9JX375pd3Vv9evX2/Mr5rXcPAtW7Zo5cqV2rNnj86ePauUlBQFBAQoODhYHTp0UJ8+fdShQ4fCXDoAF0TCEgDKiZyTofv4+Ng9bvny5frwww+Nng0560hMTNSZM2e0ceNGffzxx3rppZf0wAMP5Hv/mZmZevrpp7Vx40Zj3/nz53X+/HmbP9D379+vN954Q/v377db19WrV3X+/Hnt2bNHX3zxhYYMGaI33nijwCtL3nXXXXr//fclSZs2bVJMTEyuw8WyxcXFad26dca2I4sfFcb8+fM1e/Zsu0PTrly5oitXrigqKkpr167VjBkzNHHiRKvetHlZunSp3nrrLSUnJxv7kpOTFR8fr0OHDmnu3Ll66KGH9OKLLzqc1MlNTEyM/v3vf9vtsZLdDrZt26Y5c+Zo3Lhxuv/++wt1f5YOHDigcePG6eTJk1b7L1y4oAsXLmjjxo1atGiRpk6d6nCdycnJRqI6MzPTquzixYu6ePGidu/erU8//VSPP/64Ro8enW9CtDie63nz5mnKlCnGolvZTp06pVOnTun777/Xs88+m+cPD67k008/1fTp023ez65cuaIjR45o8eLFmjJlim688UbFxsZq/Pjx+uuvv6yOjYuL0+bNm7V582b9/PPPmj17dp7vHc5su64gNjZWr7zyiv7880+bsuy5ML/88ks999xzevzxxx2qMyoqSs8884zRsypbdHS0oqOjtWbNGrVs2VJTpkzJMxFa2kRHR2vYsGE6e/assS8yMlKRkZE2w4CL67PYUfPnz9f06dOVmJhotT81NVVxcXEKDw/XwoUL1a9fP7311ls2SazCqlChgoYPH65Ro0YV+Ie4bIcPHzZut2zZ0qFzmjVrZiQs9+3bZ1UWFRWly5cvG9utWrVyqM7Q0FAjYZmzzkOHDhm3PT091bRp03zra9iwoSpUqGCsGr5v375CJyxPnz6t1157zSbxKP3vM23z5s2aM2eOJk6cqFtuuaVQ95ctezi4r6+v2rdvb1MeFxencePGGauI24vrwIEDWrBggbp06aKPPvpIVapUKZLYADgfCUsAKCcs/3CXbHtcStLcuXOtJpOXsiapr127ttzc3BQTE6Pjx48bQ6yuXr2q//73v6pcubJuu+22PO9/1qxZVsnKbO7u7rr99tuN7e3bt+uJJ54wJsmXpKCgIDVo0EA+Pj66fPmyjh8/bpSbzWZ9//338vLy0htvvJHPo2Bt4MCBmjx5stLT05Wenq5Vq1bpwQcfzPOcVatWGcmSBg0aqF27dpKk4OBgh3pGZNu5c6eRKDSZTHZ7qUycONGq95PJZFL9+vVVvXp1mUwmnT9/XqdOnTISZvHx8Xruuef07bff5rsK/O+//67w8HCjZ0OdOnVUq1YtXbx4UcePH5eUNSRu7ty5Onv2rKZMmXJNPRClrF6cI0aMsBoK5+XlpZCQEPn5+Sk6OtpIJl65ckVvvvmmTp48qVdfffWa7s/S33//rUceecSqPVWqVElNmjRRRkaGwsPDlZycrG3btumxxx5zqM7Y2Fg99thjVgl1d3d3NW3aVAEBAYqNjdWRI0dkNpuVkpKimTNn6siRI5oyZUquid/ieK4nTZqkuXPnWu2rX7++goODdenSJR07dkxpaWn66KOPHP4ynxfL14Dla71169YKCAiQpEL15pw+fbo+//xzSVlf7Bs2bKjAwECdPHlS58+flyQlJSVp7Nix+umnnzRu3DgjOVC9enU1aNBAly9f1uHDh412v3HjxjxX2nVm23UFV69e1ahRo7Rnzx5JWT90hYaGyt3dXSdOnDDmQk5LS9OHH36oKlWq5PsjzpUrVzRy5EidOHFCUlaiIjQ0VJmZmTp06JCRXD9w4IDuu+8+ffvtt8WetKxXr566d++ulJQUbd++3dh/ww03yNvb2zimsF588UWrZGW2xo0bW70Gi+qz+Fquy2w267XXXrPpzVi/fn3VqFFDSUlJCg8PN56n1atX68iRI1qwYIGqVat2LQ+LlcDAQD322GN66KGHcl2l2xGpqanGXJPZ8TvC8m+j6OhoXb161Vj8JuePXo62Ccs6T58+bVVmWWft2rWNRXryYjKZVKtWLeOz+tSpUw7FkZtDhw7p4YcftvqxzNPTUyEhIfL19dXJkyeNhGtsbKyeffZZTZ48Wf369ZOU9R7v5eWl8+fPG6NWvL29dcMNNxj1ZX8GWEpPT9fmzZslSV26dLH54SgtLU2PPvqoDhw4YOwLDAxUw4YN5e3trfPnzysiIsL4m2zLli0aPny4fvjhB6N9AyjdSFgCQDmQlpZmDJ2Tsr6850wcHDlyRB999JGx3bFjR/3nP/9R48aNrY6Lj4/XggULNHv2bCN58vHHH+ebsMyeZ2n48OF65JFHFBgYqIMHD2rXrl3GypwpKSl65ZVXjORSzZo19fbbb6tr165WybK0tDStXLlS7777rvEH9qJFizR69OgC/bJerVo19ejRw+g59PPPP+ebsPzpp5+M20OGDDFud+vWzaHhYZL03XffWSV0nn32WZuhUBs2bLBKYPXt21evvPKKzfDi6OhozZo1y1hhNDMzU7Nnz9Ynn3ySZwzZCewmTZrov//9r1XPhvDwcL3++uv6+++/JUm//PKLbrjhhmvqvZOSkqIxY8YYCR9vb28999xzuu++++Tr62scd+rUKb3//vtGL7YFCxaoadOmuueeewp8n9kSEhL03HPPGe2pQoUKevnll3X33XcbX4ySkpI0d+5czZo1y+pLUW7MZrNeeuklI1np5uamkSNHauTIkVbDgc+fP68ZM2ZoyZIlkrLa//Tp0zV27FibOovjuf7jjz+skpWhoaGaOHGiVWL8+PHjeuONNxQWFubQtefH8jVgORTwX//6l92hgAWVnawcPHiwnn/+eSOZYTabNW/ePCPBk5SUpEGDBikhIUHBwcGaOHGi1dxoR48e1ejRo42EWfZ7R8WKFa3uz5lt11Vk9yb39fXVCy+8oHvvvdd47aSnp+vHH380hndL0uTJk3XnnXfm2SM7ew5Ad3d3Pf300xo5cqTR4z8hIUEzZ840Fie5dOmSxo4dq++++67Qvbzzcuedd+rOO++0GTb+3nvvFdkiIHFxcQoLC5OPj4/+9a9/qX///jKbzdq6datVL+2i/Cy+luv67LPPrJKVN998s1588UWr6UGSk5ONXulXr17VsWPHNG7cOM2fP7/Qz9Ndd91VqPOzXbhwwfhhQpLDydScvc0vXLhgTDNhOZWOm5ubwz3TLe8753Q8ltvZfws5Gmd2wjKvKX7yk5SUpGeeecb4W8rd3V2jRo3SiBEjrN4T//jjD7355ps6f/68MjIy9Nprr6l9+/aqVq2aXnrpJUnWUz9UrVpVX3zxRZ73vWvXLl25ckWS/eHgS5YsMT6bfHx89P777+uWW26xmiriwoULmjx5spYtWyYpaw7Ub7/9Vo888si1PSAAXAqL7gBAGZeWlqYJEyZY9RAaPny4zXFffPGF0VujTp06+uSTT2y+IElZv5I/++yzVnMwHTlyxO6wtZyGDx+u119/XXXq1JG/v79uuOEGPfnkk0b5ypUrjTjd3d31ySefqFu3bjY9+zw9PXXXXXfp3XffNfZlZmbaHTKUn0GDBhm39+zZY9P7wdKpU6eMnkbu7u668847C3x/W7du1Ztvvmls9+vXT08//bTNcZbzabZt21ZTp061OxdicHCw3nzzTd16663Gvs2bNxsrjualadOm+uabb2yGYYWEhGjBggVWPfemTJliNXTcUV988YUx7NPb21tz587VyJEjrRI+Ulbvl5kzZ+q+++4z9r377rtWw+8KasGCBUZvJpPJpI8//lj333+/VS8OX19fjR49Wu+8845DdS5fvtwYwmYymfTRRx/pxRdftJm7sHr16nrrrbf0wgsvGPs+/fRTmx462fuzFcVznZmZqQ8++MDYbtKkib7++mubXryNGjXS3LlzC9Qz2Nnuv/9+vfvuu1Y9r0wmkx599FF17drV2JeQkKCKFSvq66+/tlnIoUmTJlYJoatXr2rXrl029+XMtutKPD09NW/ePD344INWrx0PDw/dfffdVr1JL1y4YLxH5mfSpEkaPXq01fQk/v7+Gj9+vNXr5sCBA/r5558LfyEu4v3339cDDzygoKAgVa5cWf3799cdd9xhlJfEZ3FuIiIiNG3aNGP7wQcf1KxZs2zmMvbx8dGIESP0+eefG/NChoWFGUkjV5A953U2R4es5/zhwvJ1bFmnn59fnnOsWrIc0p4zLstejTnv29E4c9ZZEPPnz1dkZKSx/eGHH+rZZ5+1ieWWW27RnDlzjN6mCQkJhV6h3HJ6HXsL7lguKPTcc8+pT58+No95tWrV9M4776hHjx7GvtWrVxcqLgCug4QlAJQxmZmZunLlig4dOqSvv/5agwcPtvoS0aRJE5uEpdlstpq3aMSIETZfynPKOXfeuXPn8jzeZDJp1KhReR6zdetW4/Ytt9xi1UvLnl69ehl/PDsSgz29e/dWYGCgsb18+fJcj7XsXdmtW7cCD1c7efKknnvuOWP4UosWLewuFJGQkGA13PjJJ5/M94uR5eqnqampVpP45+b999+3O0xLyvpC+s477xjJ4itXrmjFihX51mkpNTXV6gvNo48+muek+CaTSa+++qrxuCYmJmrx4sUFuk9Lls/loEGD8kzM3XXXXQ7NyWXZY2TAgAF2F4uy9MQTTxgLaWRmZmr+/PlW5cXxXO/evdsqMfqf//wn1y/Cnp6eevfdd3Od09aVVKxYUePGjcu1POfz9+CDD9oswJOtZcuWVq/fnEMqnd12Xcmdd96Z5xQTgwcPthp+mT0kNL86BwwYkGv5448/bnWfP/74oyOhurwmTZrkOe9sSXwW52XBggVGsrRu3boaP358nsffcMMNVotqZfeMdQU55+11dIhwzmHJlvVY3rb826MgdaamplqVWW4XVZ2OyszMtHqfuv322/P8TGvZsqXV6/a33367pvvNlv3jX0hIiN0f6bKn+pCU5wrxJpNJDz/8sDp37qx77rmnyObXBOB8DAkHgFLolVdeuaYVqevVq6ePP/7YJjlhMpm0du1aXbx4UREREXZ7c+SUc3hV9uTvuWncuHG+w6fef/99TZgwQadPn3aop4G7u7uCgoKMXnQ5v6A4wsvLS3fccYeRnPj55581evRou8daJsAKuthOfHy8nnzySaM3RZUqVTRr1iy7iSJ/f3/t2rVL58+f1+nTp9WmTZt868/52Ob3fHTs2FEtWrTI85jGjRurY8eOxqqof/75Z4GGue7YsUOXLl0yth15zLy8vHT77bcbw5nXrVvn8EIelk6cOGGVtLv33nvzPeeBBx6wu7BKtlOnTlnNBetoG7jrrruMuRQte5RIxfNcW95HgwYNrOYRs6d69eq65ZZbXL4XW9euXfN8X7C3wnhegoODjd5o2cMSszmz7bqa/BZ28vLyUv369Y1EZc7H0p6cC8zkZDKZdN999xm9NXfs2KHLly8X+cIuJa1jx455lpfEZ3Fefv/9d+P2HXfcke+q2lLW+1v2DznHjh1TRERErj8UlKTsxGs2R4eq5zzOsge75WJfjvaulGQ1L2XOuK61Tss4c9bpqH/++ccqwW3ZSzw3Dz30kBo0aKCGDRuqYcOG13S/UlZiPfs9w17vSkmqUaOGMXXHxx9/rLZt2+Y6tL9Hjx5WvSwBlA0kLAGgHKhUqZIGDRqkMWPG5PmFv2rVqvkmFVNSUrR//36bxE7OlZJzcnQFS39//3wTaZmZmTp69KjCwsKshms5MgzansGDBxsJy5MnT2rv3r02w2d37NhhDFcPDAy0mg8sP2lpaXr22WeNBJqnp6dmzJhht0dBNpPJpODg4Hx7cSYkJGjfvn02PUPzez4cnW+zQ4cORsLS3rDZvFge7+np6fACBZYrr+7du1fp6ekOLURgaceOHcZtLy8vo5djXjp06CAPD49cv/zlvP6cwyRzY3k9Z86c0blz51SjRg1jX1E/15aLa9hbddWezp07u3zCMr/Vc3P2Tsrvy7Rlj6ucj6Ez266rya+nu2Q9PDW/3l41a9Z0qE7LeU/T0tK0e/duu/PclSbNmzd36Lji/CzOTVRUlFXyypFkqZT1urRcsXrXrl0ukbDMmfxz9O+DnMdZJm0tk4QFeZwtP1NyJoGvtU7LOB1JLNuzd+9eqzoc+cEsJCSkUIunZctvOLiUNZpgy5YtkrIWBurTp49uuukm9ezZU127di2SRZ4AuLbS/RcUAJRTISEhuU7O7uHhIT8/P/n7+6tevXpq2bKlrr/++gIP+YyJidE///yj06dPKyIiQhERETp27JhOnz5tN6FjObm9PZUrVy7Q/UtZk8EfPHhQJ0+eNGI4ceKEjh8/bnc+xfxiyE3Lli0VEhJi/Nq/fPlym4SlZZLo9ttvtxk2lpf//ve/VsPd33jjDYcTSdnOnTunQ4cO2TwfkZGRdr/k5PdYOPpl1DLpExsbq5SUFIeH1lkOs01LS3MoSZFTSkqK4uLiHF7cIJvlPG6Orrzq5eWlunXrGj06cso5bDi3L1mOxGaZsMypsM+15TC6Bg0aOBRTkyZNHAveiQqyoJZkPW+cPXmteu/MtutqLKfMyI1l0iW/9x5Hf7yqWbOmfHx8jPd6y3ZdWl3L52BRfxbnJuf8zS+++KJefPHFAtdTmDk0i1LOv3kcHTad11ByyzoLMqLD8r5zfn5a/tBSkDotj73WFbEt5zavXbt2gf6uKazshKW/v3+ufw8NGTJEq1atMqZJSEpK0ooVK4zpaZo2baquXbuqZ8+e6tSp0zUnbgG4LhKWAFAKjRgxosBDkh1hNpu1fPlyffXVV1a/vNuTV080e/JLHljatWuXPv30U23cuNFquFROJpNJJpPpmnuUWBo8eLAxn+Qvv/yiV155xfgSnpqaql9++cXqWEfNmzfPWClaylp4yNFh1ampqVq8eLEWL16sI0eO5HlsQZ8PRyf3z3lcXFycw3N3FtWiI/Hx8QVO+sTExBi3C9L2cpvTUyq667FcZCFbUT7Xltfu5+fnUEylYahtQb+U55WQzI8z2+748eP1ww8/5Hvc6NGjNWbMmGsNzWEFmVfPEXm9xnLy9/c3EpaWQ/RLK0dfj8X5WZybwizcUhz1FFbOdpaQkODQeTmPs0zYW9aZmJgos9ns0PuMZZ05fwCw3HY0xvzqvJY6CrLgT2GlpqYaPSe7deuW6w+KXl5emjNnjqZMmaJvv/3Wpp0fOXJER44c0YIFC1SxYkXddttteuqpp1SrVq1ivwYAJYOEJQBAUtYfrs8++2yuK21XrFhRTZs2VcuWLdWxY0fVr19fAwcOdLh+R+dm+vDDD/XZZ5/ZLfP29lbDhg3VokULtWvXTj179tR9992nqKgoh+PIzcCBA/Xhhx8qPT1dFy9e1ObNm435kNauXWskMEJCQqyGfeblzz//1Pvvv29sd+3a1eG5R8+fP68nn3xS//zzj93yoKAghYSEqHXr1urYsaPc3Nz02GOPOVR3QeTsrVOQ5IXll4uAgACHhmXbcy29PvJKdF/rfVlej7e3d75zQ+YmZ3KwqJ/ra7n2kuxZc60Kk4AsKGe23bKuIEPkLX+Mutaeg67Ekc/B4v4szk3OZNANN9xwTT33XGE4uJQ1t6ebm5vRhi5evOjQeZbHmUwmq57dlj/WZWRkKDY21qFesxcuXDBu5/wBw3K0TEGS8pZxXuvQ6JJ8T7W0c+dOJSUlSVK+8076+fnp9ddf1+OPP65ffvlFa9as0a5du2za65UrV7RkyRItX75ckydPLtC0PQBcFwlLAIAk6dVXX7X6ghQSEqLbb79dbdq0UZMmTWz+IM45PLYofPXVV1bJyipVqujOO+9U+/btFRoaqtq1a9t84SuKniXZ99WzZ0+tXbtWkrRy5UrjD2nL1bGHDBniUH2HDx/WCy+8YHxZqlevnqZMmeLQxP/p6ekaM2aMVQKrbdu26tu3r1q3bq3GjRsrKCjI6pzNmzc7FFe2xMREh46z7C1jMpkK1AvDMjFXp04dqxW2i5tlnI4sApItrx4ultfj4+NTJNdTHM91xYoVjV6Wjl57QXr2lAfObLtlnaNtzWw2W7XfvHqROZLMvJZF2ZzBWZ/FOX9I+fe//31NUyG4Ci8vL9WsWdP4QTPnkPfcWA6TrlWrltWPDvXr17c51pGEZWRkpHE759y6ltN2REZGOtRr02w2W/1Q6+jUHzlZPucF+ZwsLEfmr8wpODhYjzzyiB555BElJCRo586d2rp1qzZt2mS1GN7Vq1c1duxYrV69mp6WQBlAwhIAoL179+rXX381tu+99169+eabefYGKephX6mpqZoxY4ax3bJlS2OYT16KauimlDXUOzth+eeffyojI0Pp6enauHGjpKxJ6R3pyXLx4kWNGjXKSAr6+flp9uzZDg/b+v33343VcSXpueee09NPP53nOfaGGefF8gtUXo4dO2bcrlu3boFWMbXsjXLmzBnHgysCll8sIyMjHZp702w2W31Zzcnyei5fvqyEhIQCDTe3pzie6/r16xsJy6NHjzoUh6Nf5ssLZ7bd9957z5ieoixyNMEWERFhNfdfzqSMZVLHkR+uYmNjHQvQiZz5WZxzqo+zZ8+W6oSllLUIVnZi79ChQw6dc/DgQeN2zkWSateurcDAQOM9+ODBgw4tVGN53znncG3ZsqVxOzk5WSdOnMh3Qbfjx49bJeAdXcwpJ8vnPCoqSmlpaQ7NA7l48WLVrFlTdevWVZ06dQo8d2R2wrJZs2YOTzFjyd/fX7169TIW4Tp9+rQ+/PBD47WTkpKixYsXa+zYsQWuG4BrcfxbBwCgzLL8tdvT01Mvv/xyvokpyz/qpWtfmTTb7t27rRIxY8eOzTdZeeLECavFdwo7ZPDGG280erPFxcVpx44d2rx5s3EfvXr1yrc3RUpKip555hkjyeHm5qaPPvqoQIuaWD4fwcHBGjVqVL7n5Pwylt/zYZkky4tlb762bds6dI6942NjY616QeRl9erVevPNN/X5559r1apV17T6u+V9p6enG5P25+Xw4cN59jKxrDMzM9OhOiUpLCxMEyZM0CeffKKff/7ZqndrcTzXlnGGhYU59Pjt3Lkz32PKE2e23bLu6NGjDiXZtm3bZty2t4KxZZLEkV6b+c0N6wqc+VnctGlTq89cy4Xi8hITE6Px48dr+vTp+v7774tkipai0rFjR+P2tm3b8n1sMjIyrNpd586dbY6xXL3ekZENhw4dshq+nbPOpk2bWv1dkT23Y14se+AGBQVdc2LZ8jWVlpamffv25XtORESEJkyYoMcff1z9+vWz+lHTERERETp+/LgkGQlHey5evKjff/9dn3zyiSZNmpRnndkjWCwTvaXh9Q4gfyQsAQBW8yv5+vrm22ssLS1N3377rdW+wn4xt4xBcmxOpi+//NJqu7DDwz09PTVgwABje82aNUaPS8mxxXZeffVVq2Tg2LFj1bt37wLFYflYVKlSJd8vrJcvX7ZZpCO/52Pt2rX5zum1c+dO7d+/39i+9dZb8zw+p86dO1utqjp//vx8z0lNTdVHH32kb775Rh988IFmz57t0DD6nEJCQqy+vORsK/YsWrQoz/LmzZtb9QZZsGCBQ7FMmzZNixcv1uTJkzVx4kSrIYbF8Vz37dvXuB0dHW3VY8uexMRELV++PN/rKAhnzY1WVJzZdsu6tLQ0LV26NM9jMjIy9M033xjbPXv2lK+vr9UxllMlOJI0WblyZb7HFKQHeXEors9iR67Lzc3NanjuDz/84NAIhoULF+qHH37Qxx9/rNdee82lerLecsstxmswOwGWl19//dXone7h4aE+ffrYHGO5788//8x3VXTL56dx48Y2yUWTyWT12bpkyZI8E6uZmZlWC/n17dv3mt9vW7RoYTWn5nfffZfvOZavo8qVKyskJMTYdqSdrV+/3rid13DwvXv3avTo0Zo8ebLmzp2bb89sd3d3q898VgwHygYSlgAAq6HK8fHxea5KmpGRobffftumV8e1LnJiLwZJxjDs3Pz88882X9QKG4NknZT8448/9Oeff0rKSibl1RtAkmbOnGk13+WgQYP0xBNPFDgGy8fiyJEjeX4hSklJ0fjx43X+/Hmr/fk9FlevXtXLL7+ca2IzJiZGr776qrFdr169Ak9iHxAQYDXn57Jly/Tzzz/nec6UKVOshiffd999BbpPS08++aRxe/369fr6669zPXbz5s1avHhxnvW5u7vrkUceMba3bt2qOXPm5HnOV199pR07dhjbd999t9UXqeJ4rq+//nqrXkBvv/12rkPdzWaz3nrrLauVxYuC5fD70jJ3oCVnt92ybsaMGXlOVzBjxgyreV0tX3fZLIfWRkRE6K+//sq1vsWLF2v79u35xpVz2oiSbrvF9Vns6HU9+uijxu24uDi99NJLVsPyc9q3b5/V/K7XXXedw4vSlYQaNWpYfW69/fbbub7Hnj17Vu+8846x3adPH7vDlfv06WMslJOamqrx48fn+mPphg0brJKAw4cPt3vc/fffbyQdDx06pI8//jjXa5o2bZrRe9DNzS3XOh3h4eFh9T71ww8/WCUUc4qKirJ6vu+++26rJKXlj3G5tbHs+itVqpTnqI2OHTta/Ujx3nvv5TmKJiYmxmrUQ4sWLXI9FkDpQcISAKDu3btbbY8bN84qySJlJTa2bNmihx9+2CZRKDm+iEtu2rVrZ/XH6bRp0/TDDz/YJNSOHDmi119/XS+++KLNH6/Zq04WRvPmzY0vwlFRUUaPl4EDB+a5uu2qVas0c+ZMY7tz58566623rikGy+cjLS1NTz31lM0w4LS0NP3xxx+6++67tWbNGps6HHk+Nm7cqJEjR+rkyZNW+7dv36777rvP2O/m5qa33nrrmnofjR492mri+3/961+aNGmSTYIsIiJCL730kubOnWvsCw0N1T333FPg+8x21113qVu3bsb2W2+9pQ8//NBq+Ghqaqq+/vprPfXUUw4NpXzwwQet5hybMmWKxo8fbzPP4aVLl/Tee+9p4sSJxr7g4GCbBHZxPddvvfWWsaL7xYsXdf/992vNmjVWr5no6Gg999xzNj02i4Jl4iWvL8CuzJltt6xLSkrSgw8+qF9++cXqdRcTE6MJEyZo9uzZxr477rjDamhvth49elh9ZvzrX/+y6hEvZfVYfO+99/TGG29Iyn+F8kqVKlm9z5V02y2uz2JHr6tVq1a6//77je0///xTw4cP199//211XPb75ogRI4zElLu7u1555ZV8rrDkjR071kjYRkdH6/7777eZzmPbtm164IEHjM97X19fjRs3zm59Xl5eVmWbN2/W448/bvWjUHp6upYsWaIxY8YYf8OEhITk+p7QrFkzDRo0yNieOXOm3nnnHaspSq5cuaK3337b6keyoUOHFmi6GXseeeQRY35Ys9ms0aNHa/78+bp69arVcZs3b9bw4cONXrfVqlXTY489ZnWMZa/nS5cu2QwxT0lJMYbcd+vWLc8e6P7+/ho2bJixvXbtWr344os6e/aszbH79+/XiBEjjNh8fX15/wXKCBbdAQCoY8eO6t69u9GrMSIiQg888IBq1aqlWrVqKTk5WVFRUVZzTPr6+srLy8vYl3NId0H5+vrqqaee0kcffSTpfz0X3nvvPdWrV0/u7u46d+6czR+rNWvWNPYVNoZsgwcPtuppkb0vN9lzeFkmg6pUqaLx48fr6tWrSk9PV0ZGRr5zbE6aNElVq1bVHXfcoblz5yo8PFySdODAAd11112qU6eOatasqStXrigiIsIq8ValShUlJCQYXx7zeyz69u2rX3/9VVu2bFG/fv3UpEkTBQUFKSoqymoOMpPJpFdeecXuXF6OCAoK0owZM/T4448rJiZGZrNZc+fO1YIFC9SkSRMFBAQoOjpakZGRVsnp4OBgzZw5s9DDut59912NHDlSR44ckdls1meffaYvv/xSzZo1k4eHh44cOWJ8yWncuLFMJlOePb+8vLw0ffp0PfLII8YX1B9++EE//vijGjdurCpVqujChQuKiIiw6ulUsWJFzZgxQwEBAVb1FddzXb9+fb377rt66aWXlJaWpvPnz+vpp59W9erV1aBBAyUkJOjQoUNGsii7PRSVkJAQnTt3TlLWkNHt27crMDBQjRs31oQJE4rsfoqTs9tuWeXr6ys3NzfFxsbq+eefV9WqVdWoUSMlJSXp8OHDVq+b66+/Xm+++abdevz9/fXkk09qypQpkrKmS3jqqadUo0YN1a1bV3FxcTp58qRR37333qvDhw/bJN8seXp6qmHDhsYQ80mTJmnVqlWqUKGCunbtqqeeeqqoHga7iuuzuCDX9corrygiIkIbNmyQlDXf8b333qsaNWqoXr16SkhI0MmTJ61+IDSZTHr99dfVrl27on5ICq1Ro0aaOHGiXn75ZWVmZioyMlLDhw9XvXr1VKNGDZ09e9Yq2ejm5qa3335bdevWzbXOQYMGaffu3Uav/M2bN6tPnz4KDQ2Vv7+/jh07ZvXDRmBgoKZNm5Znwvy1115TeHi4MQ3LggULtGTJEmMI+eHDh63m7G7durXGjx9/bQ+KBX9/f02fPl0jRozQpUuXlJKSonfffVfTpk1TSEiIvL29derUKeP9XJJ8fHw0depUm8+zpk2bymQyyWw2y2w2a/jw4WrdurXS09P19NNPy2w2W80Jnp8xY8Zo48aNxufjihUrtGrVKjVo0EDVq1c3nk/LHwyznz9HVm8H4ProYQkAkCRNnTrVphfLmTNntGPHDh04cMDqC9L111+v77//Xl26dDH25ewFci0ef/xxm6F/cXFx2rt3r3bv3m2VrKxRo4bmzJlj1WNtz549RbLIxYABA6ySDa1atbKapymnpKQkm+FPK1eu1IoVK/THH3/or7/+0oYNG7Rx48Y8/2X3aPD09NSnn35qNddV9grWYWFhOnjwoFUCq1evXvrhhx+sjs9vEZVhw4bphRdekLu7u8xms44cOaKwsDCrZGVQUJAmT56shx56KJ9HLG+tWrXSd999ZzVMOSMjQ4cPH1ZYWJhOnTpl9bx17dpVixcvVr169Qp1v1JW8uibb76x6rmUkpKiv//+Wzt37jSSlU2bNtUnn3wiPz+/fOusU6eOvvvuO6u5Is1ms44ePapt27bp+PHjVkmXli1b6ptvvrG7mmxxPtf9+/fX3LlzVaVKFWPf+fPnFRYWpn/++cdIVt5///167rnn8r3ugnjqqaesXkOHDh3S1q1b8xy264qc2XbLqqCgIH3++efGsNqLFy8qLCxM+/fvN143JpNJ99xzj+bNm5fnPI6jRo3Sk08+adVT69y5c9q+fbuOHDmitLQ0ubm56bHHHtN//vMfh+IbM2aMMTzXbDZr7969CgsLc2iBlaJQXJ/Fjl6Xl5eXPvnkE40aNcpqKPm5c+eM9w7LZGW1atU0Y8YMq56ZrmbgwIGaMmWKVc/v06dPKywszCpZGRAQoKlTp6p///751vnmm29q1KhRxvtcZmamDh48qO3bt1slKxs3bqyvvvoq35W//f39NX/+fN10003GvuTkZO3Zs0d79uyxSlb27t1b8+bNM3rRF1ZoaKiWLFmi9u3bG/uSkpK0Z88ebdu2zSpZ2aBBAy1cuFAdOnSwqadq1apW7SA5OVlhYWHatWuX9uzZY/TsNZlM6tGjR75x+fr6asGCBVaf35mZmTp+/Li2bt2qsLAwq2RlrVq1NHPmTIeePwClAz0sAQCSsnqALViwQL/++qtWrFihAwcO6NKlSzKbzapYsaLq1Kmj5s2b69ZbbzX+0Ozdu7d++eUXSVnDi6Ojo+3O+eSo7N58/fv31+LFi7Vr1y5FR0crNTVVvr6+Cg4OVmhoqLp3767+/fvL29tbZ86c0VtvvaXMzEzFx8frt99+02233Vaox6Jy5cpq3769sUqqI4vtFLWaNWvq+++/1/Lly/Xrr7/q4MGDiouLk8lkUqVKlVS/fn21bNlS/fv3N+aB6t27tzHn2YoVK/Tiiy/m+YXmiSeeULdu3fTVV18pLCxM58+fl6+vrxo2bKibbrpJQ4cOtelBca3q1KmjL7/8Utu3b9evv/6q7du3Kzo6WleuXFGFChVUq1YtXX/99RowYIDd4Z+FUalSJX3xxRdav369fvjhB+3evVsXL16Un5+fGjRooP79+2vYsGE287zlJSgoSNOnT9fBgwe1YsUKbdu2TWfOnNHly5fl6emp4OBgtW7dWv3791evXr3yHE5fnM91x44d9dtvv+n777/X77//rvDwcCUnJ6tq1apq06aNhg0bpi5duhR4pdf8tGvXTl9//bU+/fRT7dmzR3FxcfL29pafn59SUlIK9Fg7mzPbblnVtm1brVy5Ul999ZV+++03nT59Wunp6apTp446d+6soUOHOrzy8bhx43THHXfou+++0+bNm40ERo0aNdSlSxfdc889at68ucOx3XbbbfLz89P8+fN18OBBXb58WT4+PiW2kFRxfRYX5Lrc3d01duxYPfDAA/rxxx+1efNmHT9+3EiWVq5cWc2bN1fv3r11++23O/RDj7P169dPnTt31nfffae1a9fq1KlTio+Pl6+vrxo3bqxevXpp6NChDvfMM5lMGjt2rAYOHKjvv/9eGzdu1Llz55ScnKyAgAA1b95c/fr108CBA63mdsxLxYoVNXv2bG3ZskXLly/Xjh07dPHiRWVkZKhq1apq27atBg0aZDN1QFGoU6eOvvnmG23YsEGrV6/Wzp07deHCBaWkpCgoKEgtW7ZU3759dfvtt+d5Pf/+97/VsGFD/fDDDzp9+rTxeKSmphoJy5yL/eSlcuXK+uKLL7R9+3atXLlSe/fuVVRUlBISEuTt7a2qVauqWbNmuummm9SvX78iS+ICcA0mc37j0wAAKGdSU1PVrVs3Xb58WRUqVNCGDRtUqVIlZ4cFAKXSsmXLjPkNa9eubTPXJAAAQE4MCQcAIIc1a9YYQ4X79+9PshIAAAAAShAJSwAAcvj666+N2648LxcAAAAAlEXMYQkAwP/LzMzU9OnTtX37dklS586d1bp1aydHBQAAAADlCwlLAEC59s4772j37t2qUKGCjh8/rosXL0rKWin13//+t5OjAwAAAIDyh4QlAKBcq1atmrHacjYPDw+99dZbatKkiZOiAgAAAIDyi4QlAKBca9u2rRo3bqyIiAj5+/vruuuu0xNPPKH27ds7OzQAAAAAKJdMZrPZ7OwgAAAAAAAAAEBilXAAAAAAAAAALoSEJQAAAAAAAACXwRyWcNjOnTuttt3cyHcDAAAAAACUV5mZmVbbRbUWAAlLXLOcjRIAAAAAAAAoLLrIAQAAAAAAAHAZ9LDENWNIOPJj2QuX9oL80F5QULQZFATtBQVBe0FB0F5QELQXFERpaC/FNfqWhCUc5ubmZtUQW7duLQ8PmhDsS09P199//21s016QF9oLCoo2g4KgvaAgaC8oCNoLCoL2goIoLe1l9+7dRq6oKJOqrpmeBQAAAAAAAFAukbAEAAAAAAAA4DJIWAIAAAAAAABwGSQsAQAAAAAAALgMEpYAAAAAAAAAXAYJSwAAAAAAAAAug4QlAAAAAAAAAJdBwhIAAAAAAACAyyBhCQAAAAAAAMBlkLAEAAAAAAAA4DJIWAIAAAAAAABwGSQsAQAAAAAAALgMD2cHAAAAAAAAXIvZbFZmZqazwyhTMjIybLZNJpOTooGrK4724ubmVmraHAlLAAAAAACg9PR0xcfHKz4+XikpKc4Op8wxm81W28eOHSs1ySOUvOJqL97e3goICFBAQIA8PFw3Lei6kUHJycn68ssvtWrVKp08eVIeHh5q2LCh7rjjDt13333y9vZ2dogAAAAAgDIgLi5O586ds0mSoGi5coIIrqc42ktKSorOnz+vCxcuqGbNmgoICCjy+ygKvFJc1IULF/TII4/o6NGjkiRPT09lZmZq37592rdvn5YsWaJ58+YpODjYyZECAAAAAEqzxMREnT171tlhlHkmk8kqAUXvSuSluNuL2WzW2bNn5eHhIT8/vyKtuyiQsHRR48aN09GjRxUUFKQ333xTN910k9zc3LR582a9/vrrOnbsmJ577jktWrTI2aECAAAAAEqp9PR0RUZGGtvu7u4KDAxUpUqV5OHhQVKtCJnNZiUlJRnbvr6+PL7IVVG3F7PZrPT0dF2+fFlxcXHKyMiQ2WxWZGSkGjdu7HK9f10rGkiStm3bprCwMEnSe++9pxtvvNEo69Gjhz744AMNHz5cu3fv1o4dO9ShQwcnRQoAAAAAKM0SExONxXVMJpPq1q0rHx8fJ0dVNpnNZrm7uxvb7u7uJCyRq+JoLx4eHqpQoYIqVqyoU6dOGYtrJSYmutzQcDdnBwBbmzdvliTVrl3bKlmZrWPHjvL395ck7d+/vyRDAwAAAACUIQkJCcbtgIAAkpVAOeDj46NKlSoZ25bvA66CHpYuaOzYsXrwwQcVFxdntzwzM9OYCNnT07MEIwMAAAAAlCWJiYnGbVecxw5A8fD391d8fLwk6/cBV0HC0kVVq1ZN1apVs1u2fPlyJSYmymQyqXPnziUcGQAAAACgLDCbzcrIyDC2K1So4MRoAJQky9d79nyWrjRFAQnLUuLq1as6deqUvv/+e33zzTeSpBEjRqhx48ZOjgwAAAAAUBplz12ZzXK+PABlW87Xe2Zmpku9B5CwLAVOnTqlPn36GNsmk0kvvfSSHn30USdGBQAAAAAAABQ9Ft0pBc6ePStPT0/5+vpKyuq2P2vWLH388cdOjgwAAAAAAAAoWiQsS4E2bdpoz5492r17t/7880/dc889SkhI0IwZMzRt2jRnhwcAAAAAAAAUGRKWpYCPj488PLJG79eqVUsTJ07U8OHDJUlz585VTEyMM8MDAAAAAAAAigwJy1LqkUcekZS1GM/hw4edGwwAAAAAAABQRFh0xwWdPHlSp06dUnBwsJo1a2b3mOrVqxu3Y2NjSyo0AAAAAAAAoFjRw9IFjR8/Xk888YRmzJiR6zHHjh0zbteuXbskwrKSni6tXm1SUlKJ3zUAAAAAAADKMHpYuqBevXpp9+7d+uuvvxQeHq6QkBCrcrPZrOnTp0vKSla2bt26xGNMTXXTgAHuCgyURoyQRo2ScoQJAAAAAADg8p555hn98ccfGjdunB588EHNmzdPv/zyiyIiIpSenq7du3fL29u7UPcxduxYrVq1yuHjX3rpJQ0bNqxQ91ma0cPSBT344IMKDg5Wenq6Hn/8cf3xxx9KS0uTJB0/flyjR4/W2rVrZTKZ9Prrr8vNzXlPY1ycNGWKFBoqDRkixcc7LRQAAAAAAIACO3TokCTJy8tLAwYM0IwZMxQZGSk3NzfVr1+/0MlKSYqMjFTVqlWt/mULCgqyKWvfvn2h77M0o4elC6pYsaI+++wzPfHEEzp37pyeeeYZeXh4qEKFCkpISJCU9SL6z3/+o5tuusnJ0f7PsmVSeLi0erXkhFHqAAAAAAAABZKQkKCoqChJ0vTp01W7dm0tWLBAnTp1kslkMsoK67vvvrPaPn36tG699VZJ0m+//aZKlSpZlZvNZiWV43n4SFi6qNDQUC1fvlwLFy7U77//rlOnTiktLU0NGjRQ165d9cgjj6h+/frODtPG/v1Sv37Sxo1SQICzowEAAAAAAMjdoUOHZDabJUnVqlXTt99+q4oVKxrlxbVuyOHDhyVJNWrUsElWgoSlXdOmTdOsWbNUu3ZtrV27tkDnHjt2TIsWLdK2bdsUGRmp9PR0Va9eXSEhIRowYIBuvfVWeXg49rAHBARo9OjRGj169LVchtPs3y89+qi0dKmzIwEAAAAAAMhdduLQZDLpnXfesUpWWkpNTVW7du00cuRIjR07tsjuN+e6JQU1YMAA1alTR7Nnzy50TK6EhGUOe/fu1WeffXZN586YMUNz5sxRenq61f6IiAhFRERozZo1atWqlT744AM1atSoKMJ1WcuWSUeOSE2bOjsSAAAAAABQVsycOVOzZs26pnMff/xxm2Rj9vyVbdq0UYcOHXI99/jx40pLS1Pz5s2v6b5zCg8Pl1S4hGV6erpOnDihm2++uUhiciUsumMhIiJCTz/9tLHATUFMnDhRM2fONJKVHh4eatmypTp06KCgoCDjuP3792v48OFFNgeCK5szx9kRAAAAAACAssRsNisjI+Oa/+WUnbDML+kXEhKivXv3qm/fvkVyHdk9LENDQ6+5jpMnTyotLa3QvTRdET0s/194eLgee+wxXbhwocDnrl69WgsXLjS2+/btqwkTJhgrPqWlpWnZsmV69913lZycrIsXL2rMmDFaunSpTCZTkV1DiTKZ8z1k3jzprbckX98SiAcAAAAAAJR5Y8aM0ZgxY4qkrszMTB05ckSS8uxdKUlubm5Fslq4JF29elWnT5+WVLgeltmxFybp6apIWEr66aef9MYbbyg5ObnA56alpWnSpEnGdu/evTV16lS5uf2v86qnp6eGDh2q2rVr68knn1R6eroOHDigFStWaMCAAUVyDSXOI0PqekjaEiqZ7SddY2OltWsz1K9f/slNlD05f7my90sWkI32goKizaAgaC8oCNoLCqK0t5eMjAxjsRGTySSz2Wxso+jlfGx5rJ3v5MmTSk5Olpubm0JDQ/N8TkaPHq1Tp07p559/NvY9/vjjunTpkt5//31NmTJF27Ztk5eXl4YMGaIXXngh17rCw8OVmZkpDw8PNWzY0O795ty3Zs0azZkzR+Hh4apTp47Gjx+v8PBweXt7q379+gVuT9nHZ/+fnp7uUm2yXCcso6OjNXnyZP3444/XXMfvv/+uM2fOSMoaBj5hwgSrZKWl7t27a+jQofr6668lSfPmzSu9CUtJpi5HZK4dI61sJyVVsHvMjh0RqlnzUglHBle0f/9+Z4eAUoT2goKizaAgaC8oCNoLCqK0thcPDw95eHgoKSlJ7u7uzg6n3LiWTlP5OXDggIYPHy5JqlmzplauXClJ+vvvv7Vy5Urt3LlT0dHRSkpKUkhIiBYtWlTkMeTn4MGD+uOPP7Rjxw6dPXtWcXFx8vHxUZ06ddS5c2cNGzZM1apVK5FY9u7dK0mqW7euJCkpKSnPuFu3bm11zKFDh1SxYkU98sgj6t+/v5599ln9/vvv+uyzz9SiRQv16tXLbl3ZPSPr1Kmj9PR0m7VQclq6dKnefvttde/eXS+88IKioqL0/PPPq169emrYsKFSUlIKdN1S1g8WmZmZxv272vtXuU1Yzp49W59++qlVQ2vUqJH69OmjOQWYfHHVqlXG7a5du6pWrVp5Hm+ZsDxw4IAiIiKMF0ZpZKp3Sebh67OSlpFVbcoTE5kmFQAAAACAknDw4EHjdkhIiGJjYzVp0iT99ttvNseW9DDi06dP67333tPWrVttyq5cuaKDBw/q4MGD+vbbb/Xaa6/p9ttvL/aYHF34JjExUWfOnNGQIUOMffHx8bpw4YKSk5P11VdfqV69epKypgm88cYb9c8//+SasIyLi5MkBQYG5hvj8ePH9f777+u+++7Tv/71L2O/r6+vZs+eXao7wuWl3CYsv/jiC6tk5T333KPx48fbfRHnxmw2a9u2bcZ2t27d8j0nNDRU1apVM+bKXLt2rR5++OECRO56TP4pMt+zRdrUTAprIul/Q8T9/DKdFxgAAAAAAOVI9gIyklS5cmWNHDlSJ0+elMlkUsuWLdWwYUOlp6fr2LFjJZqw3Lhxo1555RUlJiZKktzd3dW8eXM1aNBAnp6eOnv2rHbv3q2UlBRdvXpVEyZMkJ+fn2688cZijSs7YdmsWbM8jzty5IjMZrOaNm1qtU+SRowYYSQrpaxpAc1mszw9PXOtz8/PT1JWEvfMmTN5dn6bO3euvL29NWrUKKv92XNuNmnSJM/YS6tym7DM1qpVK7388svq2LFjgc+NiorS5cuXrepyRGhoqJGw3LdvX4Hv1xWZ3CT1OJQ1RPyXttJVL0lShw511aZNHecGB6fIyMiw6lLeqlUrhpcgV7QXFBRtBgVBe0FB0F5QEKW9vWRkZOjYsWOSsuaw9PX1LVXxlzZms9lqGLiPj0+RL8SbnUSTpOXLlysjI0Ndu3bVv//9bzVs2NDq2IyMjBJ5vvfu3auXX37ZuPa7775bo0ePVo0aNayOu3Tpkl599VWtW7dOZrNZkyZN0s0331xkC93Yc/ToUUnSddddJ988Vgw+deqUzXHZ+2677Tarc7P3h4SE5Fpnjx495OnpqZiYGN1xxx0KDAzUSy+9pMGDBxvHmM1mXblyRevWrdNtt92m6tWrW7WX7IRoq1at8ow9NxkZGXJzc5Onp6c8PT3VuHHja2oP+/btU2Zm0XdWK7cJy44dO2rw4MG6+eabr/kN4uTJk1bblhn1vNSp878EXvaqUKVOpv2h3qZG52Uevk5a0V5BVyvrppvc5VFuWxksubu7y4PGAAfRXlBQtBkUBO0FBUF7QUGUtvZiMpmsvg/n3EbxKurHOz093egxKGUlpAYPHqyJEyfaTUSVRFuNjo7WU089ZSxs8+677+quu+6ye2zVqlU1c+ZMDRw4UCdOnFB0dLQ2bdqkm2++uVhii4+P19mzZyVJzZs3z/O5OHz4sAIDA62SrOHh4fL391ejRo2szs3u5dqsWbNc66xdu7ZmzJihadOm6ejRo4qLi1PdunVtjj9z5owSExON+CzLDxw4ICmrU9y1tKPsc7L/9/DwcKkfLErPO2kRmzVrVqHryO4lKWUtb1+1qu0cjvZYTh5rWUepkuEm8+o20s37ZPK0zqSbKl2VeehmtXFrIR+fhrIcIg4AAAAAKL3SMjL139/DtepgtJJSS9eq6MXN18td/ZsHa8KtIfJ0L/n1HI4ePWq1+EqbNm303//+16lJqKlTp+rSpayFeMeMGZNrsjKbl5eX7rzzTk2dOlVSVu/M4kpYBgQE6PDhww4de/jwYZsh9Nn7ciYLDx06JB8fH9WvXz/POnv37q3evXvneczVq1ft7s/IyNCiRYtUuXLlElugqKSV24RlUYiPjzdu+/n55bo6eE7+/v526yh1DtSTogNlHrBDpsqJVkUmd7PW6YDuXnBJXwy9XoE+uc/dAAAAAAAoHd78LVzvrDmS/4Hl1O6orGnj3uqX95yIxcFywR1JmjBhQp7zKFoaNWqU/vzzT7300ksaOXJkkcXz448/SpIaNGigJ554wqHzgoODjduxsbFFEkthmM1mhYeH6+6777bad/ToUash3NkOHTqkkJAQh3NEecnu0bl9+3Y98MADxv6FCxfq1KlT6ty5c6Hvw1WRsCwEy18uKlSo4PB5Xl5exu3U1NQijanEXawkfdVT5j5/y9TsjE3xD/vP6e+z67VkeHu1qxNY8vEBAAAAAIpM2GnnJ5Bc3bZTznmMsocIS9INN9zg8Dob0v+GMRflQjxffvmlMbehn5+f3nnnHYfOs+z1WJzzVzoqIiJCiYmJVo/N6dOnlZSUZHexnsOHD6tv375Fct+VKlVSz549tXr1ar3++utq06aNwsLCtHHjRplMphJf6b0kkbAshLS0NON2QTLnlvNEpKenF2lMTpHmIa1sJ3NkFenGAzJ5WA8RP34pSV1nbNLUO1vqyS71mRMFAAAAAEqpjvWC9MeRi84Ow6V1qh/klPv9559/jNsFSZglJSXJx8dHDRs2zHe1bEdlZmZqzZo1xvaBAwesEqqOcoXhztkJVMvkYPZcoc2bN7c69ty5c4qLiyvSROIbb7yht99+W7/++qt+++03dejQQe+8846eeuophYSEFNn9uBoSloVgOQ9EQVZEskxSOto92/WZpL8bqIlfoNL67tTpy0lWpakZmXp62T5tPBGjOXdfJ39vmh4AAAAAlDZv9AmRySTmsLTDcg7LkmY2m41eklJWD0tH+fr66pdffinSeI4ePVokU+A1adKkCKIpnFtvvdVmrkt7+6SsIdyOzovpqKCgIH344Yfy9fW16gBW1PfjasgaFYKPj49x23J4eH4sh4G7QvfmojJ4sDR3bqAyPXvo0cV79NOBaJtjvtkdpV1R8VoyvL1a1azkhCgBAAAAANfK091Nb/Vr5pQ5GpG7kydPKjExa22JChUqqGnTpk6N58SJE8btNm3aaMmSJU6MBqVRyS9bVYYEBAQYtxMTE2U2mx06LyEhwbgdGBhY1GGVqKAgadw4KTxcWrpUCgiQgny9tOyRG/ThgBbycLMd/n3ofII6Td+gBdsjnBAxAAAAAABli+Vw8GbNmhVoZfBnnnlGoaGh+vTTT632jxo1SqGhofr888+VmpqqhQsX6p577lG7du3UrVs3jR49WhER9r/Xx8XFGbcrV65csIsBRA/LQrFcuSojI0OxsbEOvRAvXLhg3K5atWqxxFbcvLwy9fPPGbrpJnf5+tqWm0wmjevVWJ3rB2nYwp2KjL9qVZ6clqkRi/dow4kYzRjUSj6ejr+ZAgAAAACA/7FMWLZo0aJA5+a24E72/oCAAA0ZMkTh4eHy8fGR2WzWxYsX9fvvv2vfvn1atWqV/Pz8rM61XOfj8uXLBYoHkOhhWSj169e32s7tl4WcIiMjjdsNGzYs0phKioeH1K+f2W6y0lLXBpW1a1xP9Qu1P1Hu3LDT6jJ9o8IvJNgtBwAAAAAAebNMWLZs2dLh8xISEhQVFSVJVgvuxMfH6+zZs5KkDz/8UH5+flq0aJF2796tPXv2aNq0afLw8NC5c+e0atUqm3qrV69u3D5w4IAxXB1wFAnLQqhdu7bVkO6DBw86dJ7lRLhFtQKXK6vq560VIzvprX6hsjNCXHvPXlaHqeu1ZM+Zkg8OAAAAAIBSzjJh2apVK4fPO3TokMxms4KCgqxGkVou6FK/fn19+eWXatu2rUwmk0wmk/r166cbb7xRUtb8mTm1bdtWHh5Zg3qvXr2qmTNnOhxTSkqK1ZBylE8kLAupU6dOxu3Nmzfne/yhQ4d08eJFY7tz587FEpercXMz6bVbQvT7k10UXNF2oaGElAwN+2qnxvywTynprDQHAAAAAIAjzpw5YyT4vLy8CrSydnZiMmdnquyOVh4eHvroo4/k5eVlc26lSlkL6VquXG1ZNmDAAGN77ty5euedd/JcOfzQoUOaPn26br75Zl26dMnha0DZxByWhdSnTx/9+uuvkqQ///xT0dHRVr9K5PTtt98atxs3bmwzR0RZ17tJVe0e21P3f71Lfx2zfQP6eNNJbTsVq8XDO6hhlXzGmwMAAAAAUM5Z9q4MDQ01ejY6IjsxmTNhmZ3I7NSpk+rWrWv33Ozp7mrXrm23/MUXX9T27duN4xYsWKBFixapTZs2qlOnjjw9PZWYmKjz588rPDzcSLr6+vqW2unzUHToYVlIffr0MeZmSE1N1fjx45Wenm732A0bNui7774ztocPH14iMbqaGpUq6LcnOuvVm5vaLd8RGa/2U9dr+YFzJRwZAAAAAACly4EDB4zbBZm/Usp/wZ3evXvnem54eLgkqWlT+9/tq1atqq+++kodO3Y09qWkpCgsLEzLli3T4sWLtWLFCoWFhRnJSjc3N/Xp08dq0R6UT7SAQvLy8tK4ceOM7c2bN+vxxx+3WoAnPT1dS5Ys0ZgxY5SRkTXcOSQkRPfcc0+Jx+sqPNzdNPG2Zlo5sqOq+HralMclp+muedv10op/lJaR6YQIAQAAAABwfZbraRQkYZmZmakjR45Isu5hmZGRoaNHj+ZZX/YwdJPJlOfaHDVr1tTChQu1YMECDR06VM2aNVNAQIDc3d3l7e2tqlWrqk2bNho8eLDefvtt/fXXX5o0aZLD14CyiyHhRWDQoEHavXu3Fi9eLCkradmnTx+FhobK399fx44dU0xMjHF8YGCgsaJWeXdb82DtGtdLwxbu1JZTsTblH/51TFtOxujbB9urTqCPEyIEAAAAAMB1zZkz55rOO3XqlJKTk+Xp6anGjRsb+0+ePKmrV6/Kzc0t12RkdpK0Tp068vf3z/e+OnfuXG7W8EDRoIdlEXnzzTc1atQoeXpm9RbMzMzUwYMHtX37dqtkZePGjfXVV1+pUaNGzgrV5dQN9NFfT3fVuF72H5NNJ2PVbsp6/Xb4fAlHBgAAAABA2ZQ97Lthw4ZWi+pkz19Zr149+fraX1si+9zmzZsXc5Qor0hYFhGTyaSxY8fqp59+0qOPPqqQkBBVqlRJnp6eqlq1qnr06KG3335bP/74Y67zO5Rnnu5u+nBASy17pIMCKtj2PL2YmKrbPt+mN349rIxMsxMiBAAAAACg7MhvwZ28kpG5zX0JFBXGJOcwePBgDR48+JrPb9y4sV5++WW9/PLLRRhV+XFXq5q6bmwl3fvlTu2KircqM5ult34P16YTMfr6gXYKrujtpCgBAAAAACjdshOTOROW2cnIFi1a5Hpu9pBweliiuNDDEi6nURU/bRzdTU91bWC3fO3Ri2o7eZ3WHbtYsoEBAAAAAFBG5NfDMrf5KxMSEhQZGZnnMUBhkbCES6rg6a6PB7fWNw+0k7+3u035uSspunnOFr275ogyGSIOAAAAAIDD4uPjdfbsWUnWw7ot9+fWe/LQoUMym82qVKmSateuXfzBolxiSDhc2rC2tdW2doDu+XKH9p+7YlWWaZZe++WQNp2I0YL72qqKn1cutQAAAAAAgGwBAQFGT0pH9lvq0KFDvscAhUUPS7i80Or+2vpsdz3Soa7d8lWHzqvdlHXaeiq2hCMDAAAAAABAUSNhiVLB18tDc4ddry/ubSMfT9tmGxF3VT0/3qSp64/LbGaIOAAAAAAAQGlFwhKlyoiO9bT12R4KqeZnU5aeada45Qd0z5c7FJ+c5oToAAAAAAAAUFgkLFHqtK5ZSduf66mh19eyW75s3zm1n7peuyLjSjYwAAAAAAAAFBoJS5RKFSt46JsH2mnmoNbycrdtxscvJanbzE36ZMtJhogDAAAAAACUIiQsUWqZTCY93a2BNo7upgZBPjblKemZemrpPg3/ZrcSUtKdECEAAAAAAAAKioQlSr0OdQO1c2xP3dky2G75N7uj1HHaBu0/e7mEIwMAAAAAAEBBkbBEmRDk66Vlj9ygD+5oIXc3k035ofMJ6jR9g77cEeGE6AAAAAAAAOAoEpYoM0wmk164sbH+eqqragdUsClPTsvUI4v26LElfys5LcMJEQIAAAAAACA/JCxR5nRrWFm7xvZU39Bqdsvnhp1Wl+kbFX4hoYQjAwAAAADX4eZmnRLIyKBjB1Be5Hy953w/cDbXigYoItX8vbVyZCf9t1+o7IwQ196zl3XD1A367u8zJR8cAAAAALgAk8kkd3d3Y/vq1atOjAZASbJ8vbu7u8tkspM8cSISliiz3NxMev2WEP32RBcFV/S2Kb+Skq6hC3dqzA/7lJLOL4kAAAAAyh8/Pz/jdmJiohMjAVCSEhL+N+rU8n3AVZCwRJl3U9Oq2jW2p3o1qmK3/ONNJ9Xz4806GZNUwpEBAAAAgHP5+/sbt+Pj45WcnOzEaACUhOTkZF2+fNnYtnwfcBUezg4AKAk1K1XQ70921hu/Hda7a47alG+PiFO7Kes1f9j1GtiyhhMiBAAAAICS5+fnJzc3N2VmZspsNisiIkKBgYGqVKmSPDw8XG6YaGlmNput5g3MyMjg8UWuirq9mM1mpaen6/Lly4qLi5PZbJaUNXelK/awJGGJcsPD3U1v39Zc3RtU1vBvdysmKc2qPC45TXfN264Xb2yst29rJk93OiADAAAAKNs8PDxUp04dnT59WlJWUuTSpUu6dOmSkyMrmzIzM43brrbICVxPcbcXk8mkOnXqyMPD9dKDvDpQ7tzWPFi7x/VS5/pBdss//OuYbpq9WVHxDIUAAAAAUPb5+fmpZs2a9PYrZtk93LL/ZfdwA+wp7vZiMplUs2ZNl+xdKZGwRDlVN9BHfz3VVWN7NrJbvulkrNpOXq/fDp8v4cgAAAAAoOQFBgaqSZMmql69ury9bRctRdGwTEAB+SmO9uLt7a3q1aurSZMmCggIKLJ6i5rr9fkESoiXh5s+GthS3RtW1qOL9yj+qvUbwMXEVN32+Ta9fkuIJtwaInc3218bk5Kkdeukc+ekhATJ31+qUUPq1Uvy9S2pKwEAAACAwvPw8FCVKlVUpUoVmc1mq+GoKLz09HTt37/f2G7cuLFLDsWFayiO9uLm5lZqelLzykC5N6h1TV1Xs5KGLtypXVHxVmVms/TW7+HafDJGX93fTsEVs35pDA+XZs+W5s+X4uJs6wwMlEaMkEaNkkJCiv0SAAAAAKBImUwmubu7OzuMMiXnkF53d3ceY+SqvLcXhoQDkhpX9dPG0d00qkt9u+VrjlxUuynrtGrvJQ0ZIoWGSlOn2k9WSln7p0zJOm7IECk+3v5xAAAAAAAAsEbCEvh/FTzdNWvIdfrq/rby87L91eLs5RTdsWCzlkUekeT4ZLfLlkndu0tRUUUYLAAAAAAAQBlFwhLI4f52dbT9+R5qGVzRttAkmXockgaFSRVSHa5z/36pXz96WgIAAAAAAOSHhCVgR7PqFbXtue56uEMdu+WmRuel4eukmrEO17l/v/Too0UVIQAAAAAAQNlEwhLIha+Xh+YNa6u3e7aROc32pWKqdFUauklqd1yODhFftkw6cqSIAwUAAAAAAChDSFgC+bjwVz3pmx4yx/jZlJnczTL1PiAN2CF5pTlU35w5RR0hAAAAAABA2UHCEshDUpI0b56ki5Wkr3vIfLiW3eNMIeekB9dL1fOfpHLevKx6AQAAAAAAYIuEJZCHdeukuLj/30j1lFa0k3lNK5kzTDbHmoKSpPs2StedVF5DxGNjs+oFAAAAAACALRKWQB7Oncu5xyTtaSh9213meB+b400emTLduk+6bbfkmZ5rvdHRRRsnAAAAAABAWUHCEshDQkIuBdGB0sKeMh8NtltsahElPbBBqnLFbvkV+7sBAAAAAADKPRKWQB78/fMoTPGSfrpB5nUtZM60M0S8SkJW0rJ5hE1ZxYpFGCQAAAAAAEAZQsISyEONGvkdYZJ2NJYWd5X5SgXbUs8MmfrvkW79W/LIMPYH2++YCQAAAAAAUO6RsATy0KuXFBjowIFnKmcNET9ZzW6x6brTWQvyBCYoKCirXgAAAAAAANgiYQnkwddXGjHCwYOTvaVlnWTeFCpzpm2xqfpl6cEN6jbijHx9izRMAAAAAACAMoOEJZCPUaMKcLDZJG0Nkb7vInOil02xyTtdK0079eyP+5WSnmGnAgAAAAAAgPKNhCWQj5AQafDgAp4UUVVa2EvmiCp2i2duPKGeH2/WyZikwgcIAAAAAABQhpCwBBwwd67UqlUBT0qsIH3XWeatTewWb4+IU/sp67Xin+jCBwgAAAAAAFBGkLAEHBAQIK1efQ1JS7ObtKm56u/qqMAKnjbFsclpGjg3TC+v+EdpGXYmvgQAAAAAAChnSFgCDqpdW9q4seDDwwcPlvb8EKw9L/RU5/pBdo/54K9junnOFkXFJxdBpAAAAAAAAKUXCUugAAICpKVLpcOHpbFjpcBA+8cFBUnjxknh4VnHBwRI9YJ89ddTXfV8z0Z2z9l4IkbtJq/X7+EXiu8CAAAAAAAAXJyHswMASqOQEGnyZGniRGndOik6WrpyRapYUQoOlnr1knx9bc/z8nDT5IEt1aNhZY1YvEeXr6ZblV9ITFW/z7bq37eE6N+3hsjdzVRCVwQAAAAAAOAaSFgCheDrK912W8HPG9S6pq6rWUn3Ltyh3VGXrcrMZum/v4dr08kYfXV/OwVX9C6iaAEAAAAAAFwfQ8IBJ2lc1U+bRnfXk13q2y1fc+Si2k1Zp/XHLpVwZAAAAAAAAM5DwhJwogqe7po95Dp9dX9b+Xm525SfvZyimz/Zoklrjyoz0+yECAEAAAAAAEoWCUvABdzfro62P99DLYMr2pRlZJr1yqqDunNemC4lpjohOgAAAAAAgJJDwhJwEc2qV9TWZ7vrofZ17JavPHhe7aes17ZTsSUcGQAAAAAAQMkhYQm4ED9vD80bdr0+v7eNKnjYvjxPxyWr56xNmr7huMxmhogDAAAAAICyh4Ql4GJMJpMe7VhPW5/toaZV/WzK0zLMev6nA7r3y52KT05zQoQAAAAAAADFh4Ql4KKuq1VJ25/voXvb1LJbvnTfWXWYul67o+JLODIAAAAAAIDiQ8IScGGVKnjq2wfbacagVvJ0N9mUH7uUpK4zNurTracYIg4AAAAAAMoEEpaAizOZTHqmW0NtfKa7GgT52JSnpGdq1Pd79fC3u5WQku6ECAEAAAAAAIoOCUuglLihXqB2ju2pgS2D7ZZ/tStKnaZt0D/nrpRwZAAAAAAAAEWHhCVQigT5eumHR27Q+3e0kLub7RDxg+cT1HHaBi3cGeGE6AAAAAAAAAqPhCVQyphMJr14Y2P99VRX1Q6oYFOelJahh7/doye++1vJaRlOiBAAAAAAAODakbAESqluDStr19ie6hNSzW7559tOq+uMjTpyIaGEIwMAAAAAALh2JCyBUqyav7dWPtZJb/YNlcl2hLj+PnNZHaZu0Hd/nyn54AAAAAAAAK4BCUuglHN3M+nft4botyc6q7q/l035lZR0DV24U8/+uF+p6ZlOiBAAAAAAAMBxJCyBMuLmptW0e1wv9WxU2W75zI0n1PPjTToZk1TCkQEAAAAAADiOhCVQhtSsVEF/PNlF429qYrc8LCJO7aes188HzpVwZAAAAAAAAI4hYQmUMR7ubnqnf3OtGNlRlX09bcpjk9N057ztennFP0rPYIg4AAAAAABwLSQsgTKqf/Ng7RrbU53qBdot/+CvY7p5zhZFxSeXbGAAAAAAAAB5IGEJlGH1gny17ulueq5HQ7vlG07EqN3k9fo9/EIJRwYAAAAAAGAfCUugjPPycNOUO1vpu4faq1IFD5vyC4mp6vfZVv3n18PKyDQ7IUIAAAAAAID/IWEJlBNDrqulnc/3VNvalWzKzGbpv7+H67bPtur8lRQnRAcAAAAAAJCFhCVQjjSu6qdNo7vric717Zb/ceSi2k5Zpw3HL5VwZAAAAAAAAFlIWALlTAVPd825+zotvL+t/LzcbcrPXk7RTXO2aNLao8pkiDgAAAAAAChhJCyBcuqBdnUU9lwPtQyuaFOWkWnWK6sO6q552xWTlOqE6AAAAAAAQHlFwhIox5oHV9TWZ7vrofZ17JavOBitdpPXK+x0bAlHBgAAAAAAyisSlkA55+ftoXnDrtdn97RRBQ/bt4TTccnq8fEmTd9wXGYzQ8QBAAAAAEDxImEJQCaTSSM71dOWZ7uraVU/m/K0DLOe/+mAhi7cqfjkNCdECAAAAAAAygsSlgAMbWoFaPvzPXTPdTXtln+/96xumLZBe6LiSzgyAAAAAABQXpCwBGClUgVPLRreXtPvaiVPd5NN+dGLieoyY6M+23oq1yHiSUnS6tUmLV9eRYsWVdPy5VW0erVJSUnFHT0AAAAAACjtPJwdAADXYzKZNLp7Q3WqF6R7F+7Qqdhkq/KU9Ew9+f1ebTwRo1mDW8vPO+utJDxcmj1bmj9fiotzl9TA6rzAQGnECGnUKCkkpEQuBQAAAAAAlDL0sASQqxvqBWrn2J4a0CLYbvnCnZHqNH2Dth29oiFDpNBQaepUKS7Ofn1xcdKUKVnHDRkixTOyHAAAAAAA5EDCEkCeKvt66ccRN2jS7c3l7mY7RPyf6AR1nblByw5GFqjeZcuk7t2lqKiiihQAAAAAAJQFJCwB5MtkMulfvZvoz6e6qFalCjblZo8Mmfrvlm79W/LIcLje/fulfv3oaQkAAAAAAP6HhCUAh3VvWEW7x/XUrSFV7Zabrjst3bdRCkx0uM79+6VHHy2qCAEAAAAAQGlHwhJAgVTz99aqxzrr2Q6hsrdIuKn6ZenB9VLTMw7XuWyZdORIEQYJAAAAAABKLRKWAArM3c0kt7AQ6fvOMid62ZSbvNNlGrhT6r1fcst0qM45c4o6SgAAAAAAUBqRsARQYElJ0rx5kk5Xkxb2kjmist3jTO1OSMM2SRWT8q1z3rysegEAAAAAQPlGwhJAga1bJ8XF/f9GYgXpuy4yb2ti91hTzThp+HqpUXSedcbGZtULAAAAAADKNxKWAArs3LkcO8xu0sbmMi/rKHOyp83xJp80mQaFST0OSqbch4hH553TBAAAAAAA5QAJSwAFlpCQS8GJYGlhT5nPBNotNnU8Kt27RfK7arf8ypWiiQ8AAAAAAJReJCwBFJi/fx6FV3ylxd1k3tnQbrGpToz00Dqp3gWbsooViyhAAAAAAABQapGwBFBgNWrkc0Cmm/RXK5mXt5c5xcOm2OSbKt29VepyWDKZjf3BwUUcKAAAAAAAKHVIWAIosF69pMBABw48Ukv6qqfM5yvZFJlMkqlruDRkq+SToqCgrHoBAAAAAED5RsISQIH5+kojRjh4cJyf9E13mf+ub7fYVP+iNHy9bh1xSb6+RRcjAAAAAAAonUhYArgmo0YV4OAMd+mP62Re2VbmVHebYlPFq1rmtkXv/3lUmZlmOxUAAAAAAIDygoQlgGsSEiINHlzAkw7Vkb7uIfNF21V7MsxmjV95UHfN266YpNSiCRIAAAAAAJQ6JCwBXLO5c6VWrQp4UkzFrKTlgTp2i1ccjFa7yesVdjq28AECAAAAAIBSh4QlgGsWECCtXn0NSct0D2n19ap14Dp5u9u+DZ2OS1aPjzdp+objMpsZIg4AAAAAQHlCwhJAodSuLW3cWPDh4YMHm3RgUX1tfa67mlT1sylPyzDr+Z8OaOjCnYpPTiuiaAEAAAAAgKsjYQmg0AICpKVLpcOHpbFjpcBA+8cFBUnjxknh4VnHBwRIbWoFaMfzPXT3dTXtnvP93rO6YdoG7YmKL74LAAAAAAAALsPD2QEAKDtCQqTJk6WJE6W1azO0Y0eEEhPd5OeXqQ4d6uqmm9zl62t7XqUKnlo8vL1mbjqpF38+oLQM62HgRy8mqsuMjZoxqJVGdqwnk8lUQlcEAAAAAABKGglLAEXO11fq18+smjUvGfvatKkjjzzecUwmk8Z0b6hO9QI1dOFOnYpNtipPSc/UE9/t1YbjMZo1uLX8vHn7AgAAAACgLGJIOACX0rFekHaO7ak7mgfbLV+4M1Kdpm/QP+eulHBkAAAAAACgJJCwBOByKvt66ccRN+i925vL3c12+Pc/0QnqOG2Dvt4V6YToAAAAAABAcSJhCcAlubmZ9FLvJlo7qotqVapgU56UlqHh3+zWk9//ratpGU6IEAAAAAAAFAcSlgBcWo9GVbRrbE/d0rSq3fLPtp5W1xkbdfRiYglHBgAAAAAAigMJSwAur3pFb/3yeGe90SdE9hYI33PmsjpMXa+le8+UfHAAAAAAAKBIkbAEUCq4u5n0Rp9Q/fp4Z1Xz87Ipv3w1Xfd8uVPP/7RfqemZTogQAAAAAAAUBRKWAEqVW0Kqafe4XurRsLLd8ukbTqjXrE06FZNUwpEBAAAAAICiQMISQKlTK6CC1ozqopdvamK3fNvpOLWful4r/4ku4cgAAAAAAEBhkbAEUCp5uLvp3f7N9fOjHRXk42lTHpOUpgFzw/TKqoNKz2CIOAAAAAAApQUJSwCl2u0tgrVrbE91rBtot3zS2qO65ZMtOhN/tWQDAwAAAAAA14SEJYBSr35lX61/ppue7dHQbvn64zFqO3md/gi/UMKRAQAAAACAgiJhCaBM8PJw09Q7W2nJ8Paq6O1hU34hMVV9P9uq//4WroxMsxMiBAAAAAAAjiBhCaBMubtNLe0c21PX16pkU2Y2S//57bD6f75V56+kOCE6AAAAAACQHxKWAMqcJlX9tGlMdz3euZ7d8t/DL6rdlPXaeOJSCUcGAAAAAADyQ8ISQJnk4+muT+5uoy/vaytfT3eb8jOXr6r37C364M+jymSIOAAAAAAALoOEJYAy7cH2dRT2XA+1CPa3KcvINOvllQc1aP52xSSlOiE6AAAAAACQEwlLAGVeixoVte3ZHhrevo7d8p//iVb7KesVdjq2hCMDAAAAAAA5kbAEUC74eXto/rDr9ek918nbw/at71Rssnp8vEkzNp6Q2cwQcQAAAAAAnIWEJYByw2Qy6bFO9bVlTHc1qepnU56WYdZzP+7XsIU7dflqmhMiBAAAAAAAJCwBlDvX1w7Qjud76O7ratot/27vWd0wdYP+PhNfwpEBAAAAAAASlgDKpUoVPLV4eHtNu6uVPN1NNuVHLiaqy/SN+mLbaYaIAwAAAABQgkhYAii3TCaTxnRvqA3PdFP9IB+b8qvpmXr8u781YtEeJaakOyFCAAAAAADKHxKWAMq9jvWCtHNsT93RPNhu+Zc7I9Vp+gYdjL5SwpEBAAAAAFD+kLAEAEmVfb3044gb9N7tzeXuZjtE/J/oBHWctkHf7Ip0QnQAAAAAAJQfJCwB4P+5uZn0Uu8mWvNkF9Ws5G1TnpiaoQe/2a1R3+/V1bQMJ0QIAAAAAEDZR8ISAHLo2biKdo/tpZubVrVb/unWU+o6Y6OOXUws4cgAAAAAACj7SFgCgB3VK3pr9eOdNeHWEJlsR4hrz5nLaj91vZbtO1vywQEAAAAAUIaRsASAXLi7mfSfvqFa/XhnVfPzsim/fDVddy/YobE/7VdqeqYTIgQAAAAAoOwhYQkA+bg1pJp2jeup7g0r2y2ftuGEes3apNOxSSUcGQAAAAAAZY+HswMAgNKgdoCP1o7qotdXH9b7fx61Kd92Ok7tpqzXl/e1Vf/mwXbrSEqS1q2Tzp2TEhIkf3+pRg2pVy/J17e4rwAAAAAAgNKBhCUAOMjD3U3v3d5c3RoE6ZFFexSbnGZVHpOUpju+CNP4m5rov31D5eGe1Yk9PFyaPVuaP1+Ki7OtNzBQGjFCGjVKCgkp9ssAAAAAAMClMSQcAApoQMsa2jm2p26oG2i3/L21R3XLJ1t0OPKqhgyRQkOlqVPtJyulrP1TpmQdN2SIFB9fTIEDAAAAAFAKkLAEgGvQoLKvNjzTTaO7N7Rbvv54jFpNWqdl2y8WqN5ly6Tu3aWoqKKIEgAAAACA0oeEJQBcIy8PN02/q5UWD2+vit62M2xkeKdKd2+ROodLMjtc7/79Ur9+9LQEAAAAAJRPJCwBoJDuaVNLO57voTa1KtmUmdwkU7fD0pBtkk+Kw3Xu3y89+mhRRgkAAAAAQOlAwhIAikDTav7aPKa77mlWz265qcEFafh6qVaMw3UuWyYdOVJUEQIAAAAAUDqQsASAIuLj6a7a/7SRedX1Mqe525SbKl6Vhm6WOhyTo0PE58wp4iABAAAAAHBxJCwBoIgkJUnz5kk6WFf6uofMl/xtjjG5mWXq9Y9053bJOzXfOufNy6oXAAAAAIDygoQlABSRdeukuLj/37hUMStp+U9tu8eamkRnDREPjrNbni02NqteAAAAAADKCxKWAFBEzp3LsSPNQ/qlrcy/XSdzuu3brSkgWRq2Sbr+hPIaIh4dXbRxAgAAAADgykhYAkARSUiwt9ck7asvfdNd5lhf21KPTJlu3i/dsUvySrNb75UrRRsnAAAAAACujIQlABQRf9spK//nQoD0VU+Zw2vaLTaFnpEe2CBVvWxTVrFiEQUIAAAAAEApQMISAIpIjRr5HJDqKf3cXua1LWXOMNkUmyonSvdvkFqdluUQ8eDgoo0TAAAAAABXRsISAIpIr15SYGB+R5mk3Y2kRd1kvuxjW+qZKVPfv6W+eySPdAUFZdULAAAAAEB5QcISAIqIr680YoSDB58Lkhb2lPlYdbvFplaR0gMbNXDEFfnaTn0JAAAAAECZRcISAIrQqFEFOPiql/RjR5nXN5c5084Q8apX9L3nBn2zK7LoAgQAAAAAwMWRsASAIhQSIg0eXJAzTNL2JtKSLjIneNuUJqVn6MFvduuppXt1NS2jyOIEAAAAAMBVkbAEgCI2d67UqlUBT4qqIn3ZS+ZTVe0Wf7LllLrN3KhjFxMLHyAAAAAAAC6MhCUAFLGAAGn16mtIWiZ7S0s7q9qxENkOEJd2R11Wh6nr9cO+s0URJgAAAAAALomEJQAUg9q1pY0bCzo8XBo8yKTw+aFa/URnVfPzsimPv5quIQt2aNzyA0pNzyyiaAEAAAAAcB0kLAGgmAQESEuXSocPS2PHSoGB9o8LCpLGjZPCw7OODwiQbg2ppl3jeqp7w8p2z5m6/rhunL1Zp2OTiu8CAAAAAABwAg9nBwAAZV1IiDR5sjRxorRunRQdLV25IlWsKAUHS716Sb6+tufVDvDRmlFd9Povh/TBX8dsyreeilW7Keu18L62uq15cAlcCQAAAAAAxY+EJQCUEF9f6bbbCnaOp7ubJt3RQt0bVtYji/YoNjnNqjwmKU23fxGmV25uojf7hMrDnY7zAAAAAIDSjW+2AFAKDGhZQzvH9tQNdQPtlr+75qhu/WSrzl6+WrKBAQAAAABQxEhYAkAp0aCyr9Y/01Wjuze0W77u+CW1m7Jea49cLOHIAAAAAAAoOiQsAaAU8fZw1/S7Wmnx8Paq6G07q0f0lRT1+XSL3vo9XJmZZidECAAAAABA4ZCwBIBS6J42tbT9+R66rmYlm7JMs/TGr4d1+xfbdCEhxQnRAQAAAABw7UhYAkApFVLNX1ue7a6RnerZLf/18AW1m7Jem07ElHBkAAAAAABcOxKWAFCK+Xi667N72mj+sOvl6+luUx4Vf1U3zt6sj/46JrOZIeIAAAAAANdHwhIAyoCHOtTVtud6qFl1f5uyjEyz/rXiHw2ev12xSalOiA4AAAAAAMeRsASAMqJljYoKe66H7m9b2275Twei1X7Keu2IiCvZwAAAAAAAKAASlgBQhvh7e2jh/W015+7r5O1h+xZ/MjZZ3Wdu0qxNJxkiDgAAAABwSSQsAaCMMZlMeqJzfW0e012Nq/jalKdmZGr0D/t0/9e7dOVquhMiBAAAAAAgdyQsAaCMals7QDue76nBrWvYLV+854xumLZee89cLuHIAAAAAADIHQlLACjDAnw89d1DHTTlzpbycDPZlIdfSFTn6Rs0L+y0E6IDAAAAAMAWCUsAKONMJpOe69FI65/pprqBFWzKr6ZnauSSvzVi0W4lpjBEHAAAAADgXCQsAaCc6Fw/SLvG9lL/ZtXtli/YEanO0zfq0PkrJRwZAAAAAAD/Q8ISAMqRKn5eWv5oR73Tv5nsjBDXgegrumHqBn2zK7LkgwMAAAAAQCQsAaDccXMzafxNTbVmVBfVrORtU56YmqEHv9mtp5bu1dW0DCdECAAAAAAoz0hYAkA51atxVe0a20s3N61qt/yTLafUbeZGHbuYWMKRAQAAAADKMxKWAFCOBVf01urHO2vCrSEy2RkivjvqstpPXa9l+86WfHAAAAAAgHKJhCUAlHPubib9p2+ofnmsk6r6edmUX76arrsX7NDYn/YrNT3TCRECAAAAAMoTEpYAAElSn9Dq2j2up7o3rGy3fNqGE7px9madjk0q4cgAAAAAAOUJCUsAgKF2gI/WjOqiF29sbLd866lYtZuyXqsORpdwZAAAAACA8oKEJQDAiqe7m96/o4V+HHGDAn08bcpjktJ0xxdhenXVQaVnMEQcAAAAAFC0SFgCAOwa2LKGdo3tqRvqBtotf2/tUd36yVadvXy1ZAMDAAAAAJRpJCwBALlqUNlX65/pqtHdG9otX3f8ktpOXqe1Ry6WcGQAAAAAgLKKhCUAIE/eHu6aflcrLR7eXhW9PWzKzyekqs+nW/TW7+HKzDQ7IUIAAAAAQFlCwhIA4JB72tTS9ud76LqalWzKMs3SG78e1u1fbNOFhBQnRAcAAAAAKCtIWAIAHBZSzV9bnu2ukZ3q2S3/9fAFtZuyXptOxJRwZAAAAACAsoKEJQCgQHw83fXZPW00f9j18vV0tymPir+qG2dv1od/HZPZzBBxAAAAAEDBkLAEAFyThzrU1bbneqh5dX+bsoxMs15a8Y8Gz9+u2KRUJ0QHAAAAACitSFgCAK5ZyxoVte25HnqgXW275T8diFb7Keu1IyIu1zqSkqTVq01avryKFi2qpuXLq2j1apOSkoopaAAAAACAS7Nd7hUAgALw9/bQl/e1VY9GVfTcj/uVkp5pVX4yNlndZ27S5IEt9VTX+jKZTJKk8HBp9mxp/nwpLs5dUgOr8wIDpREjpFGjpJCQErkUAAAAAIALoIclAKDQTCaTnuhcX5vHdFfjKr425akZmRr9wz7d//UuRZ5P15AhUmioNHWqFBdnv864OGnKlKzjhgyR4uOL8woAAAAAAK6ChCUAoMi0rR2gHc/31ODWNeyWL95zRk3eWK9l6y8XqN5ly6Tu3aWoqKKIEgAAAADgykhYAgCKVICPp757qIOm3NlSHm4mm/JUv0Tp/g1Sy9MFqnf/fqlfP3paAgAAAEBZR8ISAFDkTCaTnuvRSOuf6aa6gRVsyz0zZer3t9R3j+SR7nC9+/dLjz5ahIECAAAAAFwOCUsAQLHpXD9Iu8b2Uq+61e2Wm1pFSPdvlCpfcbjOZcukI0eKKkIAAAAAgKshYQkAKFZV/Lx0/amOMm9oJnOmbbmp2hXpgQ1SqOMTVM6ZU4QBAgAAAABcCglLAECxSkqS5s8zSWFNpe+6yJzgbXOMyStDpjt2STfvldwz8q1z3rysegEAAAAAZQ8JSwBAsVq3ToqL+/+NyKrSwl4yn6pq91jT9aek+zZJAYl51hkbm1UvAAAAAKDsIWEJAChW587l2JHkLS3tLPOWpjKbbY83BcdLD66XmpzNs97o6KKLEQAAAADgOkhYAgCKVUKCnZ1mk7S5mbS0k8xJXjbFpgrpMt25Q+p1QHKzM/GlpCuOr9MDAAAAAChFSFgCAIqVv38ehaeqSwt7yhwVZLfY1OG4NHSzVDHZpqxixSIKEAAAAADgUkhYAgCKVY0a+RyQ4CMt6Srz9sZ2i021YqXh66QG5632BwcXUYAAAAAAAJdCwhIAUKx69ZICA/M5KNNNWt9C5h9vkPmqp02xySdNpiHbpG6HJFOmgoKy6gUAAAAAlD0kLAEAxcrXVxoxwsGDj9XIGiJ+LsBusanzEenurbpnxFX5+hZdjAAAAAAA10HCEgBQ7EaNKsDBl32lRd1k3t3AbrGp3iX94Ltefx69WCSxAQAAAABcCwlLAECxCwmRBg8uwAkZ7tLa1jKvaCdzqrtN8cXkFN36yRa9/Ue4MjPNRRcoAAAAAMDpSFgCAErE3LlSq1YFPOlwbemrnjJfsF0SPNMs/Xv1Yd3xxTZdTEwpmiABAAAAAE5HwtLFJSQk6JNPPtHdd9+t9u3bq1WrVurVq5fGjRunv//+29nhAYDDAgKk1auvIWkZ6y9900NBkfXsFq8+fEHtJq/X5pMxhQ8SAAAAAOB0JCxd2KlTp3TnnXdq8uTJ2rdvn1JTU+Xp6alz585p5cqVGjZsmObOnevsMAHAYbVrSxs3FnB4uKTBA911/JM2mjf0evl42n50RcZf1Y2zNuujv47JbGaIOAAAAACUZiQsXVR6erqefvppRUZGKjg4WJ9++qn27NmjXbt2afXq1erdu7cyMzM1adIk/fXXX84OFwAcFhAgLV0qHT4sjR0rBQbaPy4oSBo3TgoPzzo+IEB6+Ia62vZsDzWr7m9zfHqmWf9a8Y8Gz9+uuOS04r0IAAAAAECxIWHpon777TcdPXpUJpNJ06ZNU69eveTu7i6TyaSGDRvq448/Vtu2bSVJM2fOdHK0AFBwISHS5MlSVJT0888ZeuONk3rxxdN6442T+vnnDEVGSh99JDVtan1eq5qVFPZcD93ftrbden86EK32U9ZrZ2Rc8V8EAAAAAKDIkbB0UevWrZMktWvXzkhMWnJ3d9fdd98tSdq/f7+Sk5NLND4AKCq+vlK/fmYNGHBJw4Zd0IABl9Svn1m+vrmf4+/toYX3t9XsIa3l5W77UXYiJkndZmzSrE0nGSIOAAAAAKWMh7MDgH0tWrRQcnKyWuWxOkW1atUkSWazWQkJCfLx8Smp8ADA6Uwmk57s0kA31A3UvQt36vilJKvy1IxMjf5hnzaeuKRP7m6jihX4yAMAAACA0oBvby7q4Ycf1sMPP5znMTt37pQkeXt7KygoqCTCAgCX065OoHY831MjF+/RD/vP2ZQv2nNGu6Li9d1DHdS6ZiUnRAgAAAAAKAiGhJdSMTExWrx4sSSpR48e8vAg9wyg/Ar08dT3D3fQ5IEt5eFmsikPv5CoztM3aF7YaSdEBwAAAAAoCBKWpVB6err+9a9/KS4uTm5ubnrqqaecHRIAOJ3JZNLzPRtp3dNdVSeggk15clqmRi75W48u2qOk1HQnRAgAAAAAcAQJy1ImIyNDL7/8sjZu3ChJeuaZZ/Kc5xIAypsuDSpr17ieuq1Zdbvl83dEqPP0jTp8PqGEIwMAAAAAOIKEZSmSkpKiZ599VitWrJAkDRw4UM8884yTowIA11PVz1s/P9pRb9/WTHZGiGv/uSu6Ydp6fbs7quSDAwAAAADkiYRlKRETE6OHH35Yf/zxhyTpzjvv1HvvvSeTyc43cQCA3NxMeuXmpvrjyS6qUdHbpjwhJUMPfL1LTy/dq6tpGU6IEAAAAABgDwnLUuDkyZMaOnSodu/eLUl66KGHNGnSJLm7uzs5MgBwfTc2qapdY3uqd+MqdsvnbDml7jM36filxBKODAAAAABgDwlLF7d//34NGzZMp0+flslk0ksvvaTXXnuNnpUAUAA1KlXQb0920eu3NJW9t89dUfFqP2W9fth3tuSDAwAAAABYIWHpwo4cOaKRI0cqNjZWnp6e+vDDDzVy5EhnhwUApZK7m0n/7ddMqx7rpKp+Xjbl8VfTNWTBDr2w/IDSMjKdECEAAAAAQCJh6bKSkpI0evRoxcXFycvLS7NmzdIdd9zh7LAAoNTrG1pdu8b2VNcGQXbLp6w/rhtnbVZEXHIJRwYAAAAAkEhYuqw5c+bo5MmTkqRXX31VPXv2dG5AAFCG1An00Z9PddULvRrbLd9yKlbtJq/TLwejSzgyAAAAAICHswOArdTUVH3zzTfG9syZMzVz5sw8z/n+++9Vs2bN4g4NAMoMT3c3fTCghbo3rKwRi/coLjnNqvxSUppu/yJMr97cVP/pEyIPd37jAwAAAICSQMLSBYWHh+vKlSvG9sWLF/M9JyMjozhDAoAy685WNbSzZk8NXbhDOyLjbcrfWXNEm0/G6OsH2qlmpQpOiBAAAAAAyhcSlrmYNm2aZs2apdq1a2vt2rUFOvfYsWNatGiRtm3bpsjISKWnp6t69eoKCQnRgAEDdOutt8rDI/eHvlWrVjp8+HBhLwEA4KCGVXy1YXQ3vbD8H83afNKm/K9jl9Ruynp980A79W5SteQDBAAAAIByhISlHXv37tVnn312TefOmDFDc+bMUXp6utX+iIgIRUREaM2aNWrVqpU++OADNWrUqCjCBQAUAW8Pd80c3Fo9GlXW49/9rYQU657r0VdSdOsnW/Rm31C9clNTubmZnBQpAAAAAJRtTMiVQ0REhJ5++mmlpaXlf3AOEydO1MyZM41kpYeHh1q2bKkOHTooKOh/q9Hu379fw4cPV1RUVJHFDQAoGkOvr60dz/dU65oVbcoyzdK/Vx/W7V9s08XEFCdEBwAAAABlHz0sLYSHh+uxxx7ThQsXCnzu6tWrtXDhQmO7b9++mjBhgqpWzRo6mJaWpmXLlundd99VcnKyLl68qDFjxmjp0qUymUpnLx3mzURecrYP2gvy4mrtpVFQBW14qovGLv9H83ZE2pT/eviC2k1er6/vv15d6gfZqQHFzdXaDFwb7QUFQXtBQdBeUBC0FxREeW8vJrPZbHZ2EK7gp59+0htvvKHk5GSr/Y7MYZmWlqY+ffrozJkzkqTevXtr1qxZcnOz7cC6ceNGPfnkk0YvzA8//FADBgwooqsoXrt371ZmZqazwwCAErXieJLe2xGvlAzbj0t3kzTm+kq6P9Sv1P74BAAAAABFwc3NTW3bti2auoqkllIsOjpaL7/8sl566SWbZKWjfv/9dyNZ6eHhoQkTJthNVkpS9+7dNXToUGN73rx513SfAICScUcjX83vU1X1K9oOSsgwS1N3X9a/NsTqSio/6AAAAABAUSjXCcvZs2erX79++vHHH419jRo10qhRowpUz6pVq4zbXbt2Va1atfI83jJheeDAAUVERBTo/gAAJatJoKe+7FtVfev72C1fF3VVD66+oIMxqSUcGQAAAACUPeV6DssvvvhCSUlJxvY999yj8ePH67fffnO4DrPZrG3bthnb3bp1y/ec0NBQVatWzZgrc+3atXr44YcLELlraNWqldzd3Z0dBlxURkaG9u/fb2zTXpCX0tJelrc36/OwCI1d/o9ScwwRP5OYocf+uKSPBjTXE53qMUS8mJWWNgPXQHtBQdBeUBC0FxQE7QUFUVray759+4pl+sBynbDM1qpVK7388svq2LFjgc+NiorS5cuXrepyRGhoqJGw3LdvX4Hv1xW4u7vLw4MmBMfQXlAQrtxenurWSJ3qV9a9C3fq+KUkq7LUDLPG/PiPNp2M0yd3t1HFCq55DWWRK7cZuB7aCwqC9oKCoL2gIGgvKIjy1l7K9ZDwjh076uOPP9b3339/TclKSTp58qTVdr169Rw6r06dOsbt06dPX9N9AwCco12dQO14vqcGtapht3zRnjO6Ydp67Tt72W45AAAAACB35TphOWvWLN1yyy2FGraX3UtSyloNqWrVqg6dV61aNbt1AABKh0AfT33/cAdNHthSHm62nyPhFxLVefoGzd/OPMUAAAAAUBDlOmFZFOLj443bfn5+ua4OnpO/v7/dOgAApYfJZNLzPRtp3dNdVTewgk15clqmHl28R48u3qOk1HQnRAgAAAAApQ8Jy0JKSUkxbleoYPtlNTdeXl7G7dRUVpUFgNKsS4PK2jW2l25rVt1u+fztEeo8faMOn08o4cgAAAAAoPQhYVlIaWlpxm1He1dKspooNT2dXjcAUNpV8fPSz4921Dv9m8nOCHHtP3dFN0xbr8V7oko+OAAAAAAoRUhYFpLlkvIFWcbdMknp6elZpDEBAJzDzc2k8Tc11R9PdlGNit425QkpGbrvq116Ztk+paRnOCFCAAAAAHB95Wc99GLi4+Nj3LYcHp4fy2Hg3t62X2oBAKXXjU2qatfYnnrg613689glm/LZm08q7HSsFg9vr0ZV/OzWkZQkrVsnnTsnJSRI/v5SjRpSr16Sr29xXwEAAAAAOA8Jy0IKCAgwbicmJspsNju06nhCwv/mMQsMDCyO0AAATlSjUgX99mQXvfnbYb295ojMZuvynZHxaj9lveYPa6s7W9Uw9oeHS7NnS/PnS3FxtvUGBkojRkijRkkhIcV5BQAAAADgHAwJL6Tg4GDjdkZGhmJjYx0678KFC8btqlWrFnlcAADnc3cz6b/9mmnVY51Uxdd2+o/4q+kaNH+7Xlh+QBdjMjVkiBQaKk2daj9ZKWXtnzIl67ghQ6T4+OK8AgAAAAAoeSQsC6l+/fpW2xEREQ6dFxkZadxu2LBhkcYEAHAtfUOra9e4XuraIMhu+ZT1x1X/X5u17PfkAtW7bJnUvbsUxTo+AAAAAMoQEpaFVLt2bash3QcPHnTovEOHDhm3mzVrVtRhAQBcTN1AH/35VFe90Kux3fLkoFhp+DqpwfkC1bt/v9SvHz0tAQAAAJQdJCyLQKdOnYzbmzdvzvf4Q4cO6eLFi8Z2586diyUuAIBr8XR30wf/x959h0dV5+0fv09mUkghCS1A6CX0ltBJggURLKggigoIViyIwd1Vny3q6k/dddcAFrBRRERFIroWbGgKnQSQ0ELvhJqQkJ6c3x9Zs8YZIAlTUt6v68q1k/mc8809++R6drgz33Nu7KrPJvVToI/tZaSNeoXS6LXS4B2SYdpZwb7UVOmeexyZFAAAAADch8LSAYYPH172+KefflJ6evpFj1+8eHHZ4/bt26tTp05OywYAqH5u6t5UyTHR6tYo0GZmGJIxaJd062rJN6/Ca8bFSbt2OTIlAAAAALgHhaUDDB8+XE2aNJEkFRQU6KmnnlJRUZHdYxMTE7VkyZKy7ydMmOCSjACA6qVdQz9deWKIzI1t7M6NVqeliQlSi1N25/bMmeOgcAAAAADgRhSWDuDl5aXp06eXfb9q1Srdf//95W7AU1RUpE8++URTp05VcXGxJCksLExjx451eV4AgPvl5EgL51mkFT1kfhkus8Bic4zhly+NXS313yXp0lvE580rXRcAAAAAajLbC2ihSm655RZt3LhRH3/8saTS0nL48OHq1KmT/P39tWfPHp05c6bs+KCgIM2cOVNWK/8nAIC6KD5eysj47zc7Q6UTgTJv3CCjcVa54wwPSVE7ZLY4LX3TR8r1vuCaZ8+WrjtypNNiAwAAAIDT8QlLB3ruuec0ZcoUeXp6SpJKSkq0fft2rV+/vlxZ2b59e33wwQdq166du6ICANzs+PHfPXHWX/owUuaWlnaPN9qelCYkSM3O2J3/6hKXUQYAAACAao+P9zmQYRiKiYnRqFGj9OmnnyopKUnHjx9Xbm6uAgMD1aVLF40YMUKjRo2Sl5eXu+MCANwoO9vOk0VW6bveMo80lK7+RYZnSbmxEZAn8/ZVUkIXKaWdJMNmiawsm6cAAAAAoEahsLRj9OjRGj16dJXPb9++vZ588kk9+eSTDkwFAKhN/P0vMtzaUkr/7xbxBufLjQyLKV25TWaLM9K3vaV8z3LzgADHZwUAAAAAV2JLOAAAbtC06SUOOFVf+iBa5o7mdsdGx+PS+ASpSUa550NCHJMPAAAAANyFwhIAADcYOlQKCrrEQYVW6atwmT/0kFlk+z/ZRlCOdMdKqed+SaaCg0vXBQAAAICajMISAAA38PWVJk+uyJGGtLmNtHiIzAxf26m1RMY1W6TrNuquyUXytT0EAAAAAGoUCksAANxkypRKHHwiqHSL+C77e8mNLkf0dXCCUo+dc0g2AAAAAHAXCksAANwkLEyq1D3e8j2lL/rK/LmrzGLbO4TvyzivAbMStWD9IceFBAAAAAAXo7AEAMCN5s6VunevzBmGlNxe+mSwzCwfm2luYYkmf7xJ936ySTkFRQ7LCQAAAACuQmEJAIAbBQZKy5dXtrSUdLSBtDBa/qca2x3PW3dIg15LUtrJ7MsPCQAAAAAuRGEJAICbhYZKSUmV3B4uafRIbx2YMUAvjOwsD9sd4tpyLEt9ZyTok01HHRMUAAAAAFyAwhIAgGogMFBaulTauVOKiZGCguwfFxwsTZ8upaWVHh8cZOj/ru6o7x8cpJAAb5vjs/OLNe6DZE39bIvyi4qd+yIAAAAAwAGs7g4AAAD+JyxMevVV6YUXpPh4KT1dysqSAgKkkBBp6FDJ19f2vCs7NNLGmGjduShFP+85bTN/Y+V+rT1wVh9P6Ku2De0sAAAAAADVBIUlAADVkK+vNHJk5c5pWt9H3z84SM9+t1P/74ddNvMNhzMVMSNB88f11qhuTR2UFAAAAAAciy3hAADUIhYPQ8+P6Kyv7xughr6eNvOM3ELdPG+9/vifbSosLnFDQgAAAAC4OApLAABqoRGdmyhl+lANah1sd/7v+D26cvYqHc7IdXEyAAAAALg4CksAAGqplkH19PPDgzV9aDu781X7zyo8NkHf7Tzh4mQAAAAAcGEUlgAA1GKeFg/968ZuipvUV4E+tpeuPnW+QCPfXau/Ld+h4hLTDQkBAAAAoDwKSwAA6oCbuzdTcky0IloE2sxMU3rhh10a/tZqHT+X54Z0AAAAAPA/FJYAANQR7Rr6KfGRIXpocBu785/2nFZ4bILi95xybTAAAAAA+A0KSwAA6hAfT4veGN1DH94VLn9vi838eFa+rp6zWi/9uEslbBEHAAAA4AYUlgAA1EHj+oRq/bRodW8aYDMrMaU/f7NDN85dp9PnC9yQDgAAAEBdRmEJAEAd1amJv9Y8FqlJ/VranX+z44TCY+O15sBZFycDAAAAUJdRWAIAUIf5elk19/beeu+2Xqrnafu24FBGnqLfWKkZCXtlmmwRBwAAAOB8FJYAAECT+7fSmseiFNbYz2ZWVGJq+hdbdeuCDcrILXRDOgAAAAB1CYUlAACQJPVoVl/rp0VrXO/mduefpR5X3xkJSjmc4dpgAAAAAOoUCksAAFAmwMeqRXeF643RPeRlsX2bsPd0joa8vlJzVu1nizgAAAAAp6CwBAAA5RiGoYcGt9HKqUPUtoGvzTy/qEQPx23RhA83Kju/yA0JAQAAANRmFJYAAMCuiBZB2vB4lG7qFmJ3/uHGI+o/M1Gpx865OBkAAACA2ozCEgAAXFCwr5fiJvXTv27sKquHYTPfcSJbA2YlasH6Q25IBwAAAKA2orAEAAAXZRiGpg9tr58fHqwWgT4289zCEk3+eJPu+2SzcguL3ZAQAAAAQG1CYQkAACpkcJsGSpkerWs7NbY7n7vuoAbNSlLayWwXJwMAAABQm1BYAgCACmvk562v7h2gv4/oJDs7xPXLsXPqOyNBn2w66vpwAAAAAGoFCksAAFApHh6G/jIsTN89MEghAd428+z8Yo37IFlTP9ui/CK2iAMAAACoHApLAABQJVd1bKSUmGgNbdfQ7vyNlfsV9fpK7Tud4+JkAAAAAGoyCksAAFBlzer76PsHB+rpqzvYnW84nKmIGQn6YutxFycDAAAAUFNRWAIAgMtitXjo/43soq/u7a8Gvp4284zcQt08b73+9OU2FRaXuCEhAAAAgJqEwhIAADjEyC4h2jh9qAa2DrY7/9fPe3TV7FU6nJHr4mQAAAAAahIKSwAA4DAtg+rp54cGKya6nd35yv1nFR6boO92nnBxMgAAAAA1BYUlAABwKC+rh/49qpuW3t1XgT5Wm/mp8wUa+e5aPfPtThWXmG5ICAAAAKA6o7AEAABOcUuPZtrweLTCQwNtZqYpPf99mq59e43Ss/LdkA4AAABAdUVhCQAAnKZ9Iz8lPTpEUwa1tjtfsfuUwmPjlbDntIuTAQAAAKiuKCwBAIBT+Xha9OaYnlp0V7j8vCw282Pn8nXVnFV66cddKmGLOAAAAFDnUVgCAACXuKNPqNY/HqXuTQNsZiWm9OdvdmjU3HU6fb7ADekAAAAAVBcUlgAAwGU6NwnQmscidXffFnbnX+84ofDYeK05cPaCa+TkSMuXG/rii4b66KPG+uKLhlq+3FBOjrNSAwAAAHAl21t3AgAAOJGvl1XzxvVRdLuGeiRui/KKSsrND2XkKfqNlfrnDV01LaqtDMOQJKWlSbNnS/PnSxkZFkltyp0XFCRNnixNmSKFhbnkpQAAAABwAj5hCQAA3GJy/1Za81iUwhr72cyKSkxN/2Krxr6/QQfTCzVmjNSpkzRjhpSRYX+9jAwpNrb0uDFjpMxMZ6YHAAAA4CwUlgAAwG16Nq+vddOidHvv5nbncVuOq+NzCYpLqlz7GBcnRUZKR444IiUAAAAAV6KwBAAAblXfx1Mf3hWu12/pIS+L7VuTQt8c6Y4kqed+SRW/i3hqqjRiBJ+0BAAAAGoaCksAAOB2hmHo4SFtlPToELUJrmc7t5bIuGaLNHKj5FlU4XVTU6V77nFkUgAAAADORmEJAACqjb4tg5QcE62rW4fYnRtdj0h3JUoNsyq8ZlyctGuXoxICAAAAcDYKSwAAUK0E+3qp+75+Mn/uKrPEsJkbDbNLS8uuhyq85pw5jkwIAAAAwJkoLAEAQLWSkyPNn2dIye2ljwfLzPKxOcbwLJYxcpM0fLNkLb7kmvPmla4LAAAAoPqjsAQAANVKfLyUkfHfb442kBZGy9zX2O6xRo+DpTfkCc6+6Jpnz5auCwAAAKD6o7AEAADVyvHjv3si11uKGyAzqZPMEtvjjSbnSreIhx296Lrp6Y7LCAAAAMB5KCwBAEC1km33w5KGtDZM+nSQzPPetlPvIhk3JktXbZEs9reIZ1X8Pj0AAAAA3IjCEgAAVCv+/hcZHmpUukX8UEO7Y6PPfun2VVJ92wtWBgQ4Jh8AAAAA56KwBAAA1UrTppc44LyPtGSgzDUd7I6NZhnShASpXfm95SEhjskHAAAAwLkoLAEAQLUydKgUFHSJg0wPaWUXmUv7y8z1tBkbPoUyblkvRW+TPEoUHFy6LgAAAIDqj8ISAABUK76+0uTJFTx4f4i0cKjMo8F2x0a/PdLY1Ro7OVe+vo7LCAAAAMB5KCwBAEC1M2VKJQ7Oqid9PFjmhnZ2x0aLM/q0XoK+23nCMeEAAAAAOBWFJQAAqHbCwqTRoytxQomHFN9N5ud9ZeZZbcZn8wo08t21eubbnSouMR0XFAAAAIDDUVgCAIBqae5cqXv3Sp60u5n0QbTM9Po2I9OUnv8+TSPeWaP0rHzHhAQAAADgcBSWAACgWgoMlJYvr0JpmeknLY5Ug0Ot7Y5/3HVK4bHxit9z6vJDAgAAAHA4CksAAFBthYZKSUmV3B4uafRNFu15u6c+uLOP/LwsNvNj5/J19ZzVennFLpWwRRwAAACoVmwv8uQkBQUF2rRpk1JSUpSenq7MzEx16NBBDz/8sCRpz5492rt3r6644gp5enq6KhYAAKjmAgOlpUultDRpzhxp3jwpI8P2uODg0ruLT5kidexY+tyd4S0U3iJQYxcka2t6VrnjS0zp/77eoaS9Z7Tgjj5q6Ofl/BcDAAAA4JKcXljm5ubqnXfe0YcffqjMzMxys8jIyLLHycnJeuaZZ9SsWTP96U9/0ogRI5wdDQAA1CBhYdKrr0ovvCCtWFGsDRsO6fx5D/n5lahv35a66iqLfH1tz+vcJEBrp0XqkbgtWrDhsM386x0nFBGboI8nRGhA62AXvBIAAAAAF+PUwnLv3r2aOnWq9u7dK9Msv93KMIxy3x85ckSmaero0aOKiYnR9u3bFRMT48x4AACgBvL1lUaMMNWs2emy53r1aiHrRd7V+HpZNW9cH0W1a6hH47Yor6ik3PxgRq6i31ypf97QVY9FtrV5nwIAAADAdZx2Dcv09HRNmjRJe/fuLXvOYrGobdu2do8/dar0wveGYcg0Tb399ttasmSJs+IBAIA66J7+rbTmsSiFNfazmRUWm4r5fKvGvr9BmbmFbkgHAAAAQHJiYfnkk0/qxIkTkqT69evrb3/7m9asWaNvvvnG7vHPPfecXnjhBQUFBZWVlv/85z9ttpEDAABcjp7N62vdtCjd1qu53XncluPqOyNBG4/wHgQAAABwB6cUlqtXr9aaNWtkGIYCAwP14Ycf6s4771RAQMAFz7Farbr11lu1ZMkSNWnSRJKUnZ2tZcuWOSMiAACow+r7eGrx+HC9fksPeVls3w7tOZ2jwa8l6a3V+20uawMAAADAuZxSWP72U5RPPfWU2rdvX+FzW7RooSeeeKLs+8TERIdmAwAAkEovQ/PwkDZKenSI2gTXs5nnF5XooaVbNHHxRmXnF7khIQAAAFA3OaWw3LBhgyTJ399fN9xwQ6XPv+GGGxQYGCjTNJWWluboeAAAAGX6tgxScky0RnULsTtflHJE/WcmauvxLBcnAwAAAOompxSWJ0+elGEYat++vawXu2XnBXh4eKh169aSxDUsAQCA0wX7eumzSf30yg1dZfGwvUP4jhPZGjAzUe9vOOSGdAAAAEDd4pTCsqCgQJLk5eVV5TV+PdfDw2n3BQIAAChjGIaeuKK9fn5osEIDfWzmOYXFmvTRJt33yWblFha7ISEAAABQNzilDWzYsKFM09Thw4ervMa+ffskScHBwY6KBQAAcElD2jZQSky0hoc1tjufu+6gBs1K0q6T2S5OBgAAANQNTiksO3bsKEk6duyYtm3bVunzV65cqdOnT8swDIWFhTk6HgAAwEU19vfWV/cN0HPXdpKdHeL65dg59Z2RqCWbj7o+HAAAAFDLOaWwHDp0aNnjl156SSUlJRU+Nzs7Wy+++GLZ95GRkQ7NBgAAUBEWD0N/vSZM3z0wSE38bS9zk5VfpNsXJmvqZ1uUX8QWcQAAAMBRnFJY3nzzzWrYsKGk0juGT5s2TefOnbvkeYcPH9bkyZO1Z88eSVL9+vV18803OyMiAABAhVzVsZE2Th+qoe0a2p2/sXK/ot9Ypf1nclycDAAAAKidKn8L7wrw9fXVk08+qT/96U8yDEM//PCD1q5dqyuvvFLt27cvOy4zM1M///yzjh49qjVr1mjFihUqLi79hIJhGJo6dar8/f2dEREAAKDCmtX30fcPDtQz3+3USz/utpmvP5ShiNgEzR/XWzd2a+qGhAAAAEDt4ZTCUpJGjRqlgwcP6vXXX5dhGDp37py++OKLsrlpmtqyZYseeuihcs8ZRumFom699VaNHz/eWfEAAAAqxWrx0P8b2UVD2jTQxMUbdSansNz8bG6hbpq3Xn+8or1eGNlZnhanbGQBAAAAaj2nvpN+9NFH9e9//1sBAQGSSgtJqfTTk78Wk78+9+t/Wq1W/fGPf9Tzzz/vzGgAAABVcl2XEKXERGtg62C781d+3qOr56zWkcxcFycDAAAAagen/+n/+uuv108//aSnnnpK4eHh8vT0lGmaZV+/6tixox544AH9+OOPuvfee50dCwAAoMpaBfvq54cGa1pUW7vzpH1nFP5qgr5PO+niZAAAAEDN57Qt4b/l5+enSZMmadKkSSooKFB6eroyMzNVVFSk+vXrq0mTJlyrEgAA1CheVg/F3tRdUe0a6p6PN+lcXlG5+cnzBRrxzhr9dViY/npNmCwehpuSAgAAADWLSwrL3/Ly8lLLli3VsmXLCh1fUFAgLy8vJ6cCAAComtE9mqlXs/q6beEGbTxyrtzMNKW/f5+mlfvPaNGd4WoS4O2mlAAAAEDN4ZQt4U8//bSefvppzZ8/v8prPP/887r66qs1duxYxwUDAABwgvaN/LTy0Ug9OKi13fmPu06pT2y8EvacdnEyAAAAoOZxSmH52WefadmyZVq5cmWV19izZ4+OHDmiI0eOODAZAACAc/h4WjR7TE99cGcf+XlZbObHzuXr6rdW6x8rdqukxLSzAgAAAADJBTfdqaqMjAxJUl5ennuDAAAAVMKd4S20/vEodQsJsJkVl5h6+uvtumneOp0+X+CGdAAAAED1V+VrWO7YsUNZWVkXPSYzM1Pr16+v1Lr5+fmKj4/Xjh07JElBQUFVjQgAAOAWnZsEaM1jkXokboveTz5sM/9q+wlFxCbo4wkRGtA62A0JAQAAgOqryoXltm3b9Oc///mCc9M0tWXLFk2cOLGqP0KGYahPnz5VPh8AAMBd/Lytmjeut6LbN9SjcVuUV1RSbn4wI1fRb67UKzd01dTItjIM7iIOAAAASJexJXz06NEKDw+XaTr2Gky/Xc/T01P333+/Q9cHAABwFcMwdE//VlrzWJQ6NvKzmRcWm3r886267f1kZeYWuiEhAAAAUP1c1jUsn332WVmtVpmmWe7rV79//lJfkuTj46OQkBBFR0drwYIF6tmz5+W9QgAAADfr2by+1j8epbE9m9mdL91yTH1nJGjjkUwXJwMAAACqnypvCZekjh07KjU11eb5zp07yzAMRUZG6p133rmcHwEAAFAr1Pfx1EcTIhS9ar+mf7FVhcXld6nsOZ2jwa8laebN3XX/gFZsEQcAAECd5bS7hDt6qzgAAEBNZxiGHhnSVkmPRKpNcD2beX5RiaZ8+ovuXrxR2flFbkgIAAAAuN9lfcLyQl566SVJUkhIiDOWBwAAqNH6tQpScky0Jn20Sf/Zlm4z/yDliJIPZ2rJxL7q2jTADQkBAAAA93HKJyxvueUW3XLLLRo8eLAzlgcAAKjxgn29tGxyP/3zhq6yeNhu/95+Ilv9ZyZqYfIhN6QDAAAA3MdpW8Idxd41MgEAAGoDwzD0hyva6+eHBis00MdmnlNYrLsXb9IDSzYrt7DYDQkBAAAA13PKlvDfKi4u1i+//KLjx48rPz9fxcXFdq9vaZqmioqKVFhYqJycHJ08eVIbNmzQrl27tG3bNmfHBAAAcJshbRsoJSZaEz7cqO/STtrM3117UOsPZeiTCRHq2Njf7ho5OVJ8vHT8uJSdLfn7S02bSkOHSr6+zn4FAAAAgOM4tbCcO3eu3nrrLZ07d65K55umyR0yAQBAndDY31tf3TdAL/64S899t1Mlv/v77uaj59R3RqLeva2XxvZqXvZ8Wpo0e7Y0f76UkWG7blCQNHmyNGWKFBbmzFcAAAAAOIbTtoTPmDFDr7zyijIzM8t9otI0zbKv3/vtjLuMAwCAusbiYeiv14TpuwcGqYm/l808K79Ity9M1mPLUnXyTInGjJE6dZJmzLBfVkqlz8fGlh43ZoyUmenMVwAAAABcPqcUlocPH9a7774rSWWfkPxtCWkYhgzDsFtQ/jpr0qSJ7rvvPn3wwQfOiAgAAFBtXdWxkTZOH6rodg3szl9P2qc2f1qpuB9yKrVuXJwUGSkdOeKIlAAAAIBzOKWw/Oyzz1RUVCRJ8vb21l/+8hclJCRo+/bteuKJJ2SapiwWi9auXautW7dq1apVeu+99zR06NCy8vLMmTMaNmyYIiIinBERAACgWmtW30c/PDhIT13Vwe48NyhDGp8gtUuv1LqpqdKIEXzSEgAAANWXUwrLdevWlT1+4oknNH78eDVp0kSGYWjQoEGSSm/Gk5SUJIvFogYNGmjIkCF66623FBMTUzb/61//ytZwAABQZ1ktHnrxui768t7+auDraTM36hXKuGWdFLVNMkoqvG5qqnTPPY5MCgAAADiOUwrLQ4cOSZK8vLx02223lZt17txZnp6lb7g3bNhgc+6DDz6oYcOGyTRN7d69Wz/88IMzIgIAANQY13UJUUpMtHo1CbI7N/rvkW5bLfnnVnjNuDhp1y4HBQQAAAAcyCmFZWZmpgzDUPv27eXt7V1uZrVa1a5dO5mmqa1bt9o9/4EHHih7/NNPPzkjIgAAQI3SKthX0ceHyExua3dutDgjTUiQWp+s8Jpz5jgqHQAAAOA4Tiksf71+ZVBQkN1527alb7T37Nljd96zZ081atRIkrRjxw7HBwQAAKhhcnKk9+d5SD93l/l5X5n5VptjDN8CacwaadBOybj0ZXXmzStdFwAAAKhOnFJY/lpUFhYW2p23bNlSkpSTk6P0dPsXig8NDZVpmjp69KgzIgIAANQo8fFSRsZ/v9ndTFoYLTO9vs1xhiEZg9NKi8t6+Rdd8+zZ0nUBAACA6sQphWXjxo1lmqYOHjxod96qVauyx2lpafaDeZRGO3/+vOMDAgAA1DDHj//uiUw/aXGkzM2t7R5vtD4lTYyXQk9fdN0L/O0YAAAAcBunFJZ9+vSRJJ04cUKpqak2898Wlps2bbK7xq837rFabbc7AQAA1DXZ2XaeLLZIP/SU+VUfmQUWm7Hhn196M55+uyXZ3yKeleXYnAAAAMDlckphOWTIkLLHf/nLX3T6dPm/7Hft2rXsE5Sff/65zdbxn376SadOnZJhGGXXsgQAAKjL/P0vMtzRQloUJfOU7UGGhykjert083rJp8BmHhDgwJAAAACAAzilsLzyyivVpk0bSdLOnTs1cuRIvfLKKzp16pQkKSAgQP369ZNpmjpy5IimTp2qAwcO6Pz58/r222/1f//3f2Vr9erVyxkRAQAAapSmTS9xwJmA0tJyawu7Y6N9euldxJueLfd8SIiDAgIAAAAO4pTC0jAM/eUvf5HFUro16dy5c5o7d66O/+biS5MmTSp7HB8frxEjRqhv3756/PHHdfbs/95Ijx492hkRAQAAapShQ6X/3tfwwoqs0vLeMr/tJbPQ9m2eUT9XGrdS6rNXkqng4NJ1AQAAgOrEKYWlJEVGRuqf//ynAn6zz+i316688sorNWrUKJlm6fWUTNMs+zIMQ5J03XXXafDgwc6KCAAAUGP4+kqTJ1fkSENKbVV6Q54zfrZTiynjqq3SDcm6c3KhfH0dHhUAAAC4LE4rLKXSwvGbb77RI488ooiICNWvX7/c/MUXX9TkyZPLPon5W7fffrtefvllZ8YDAACoUaZMqcTBJwNLt4jvbGZ3bHQ6pq8CE7XpSKZjwgEAAAAO4vRbcDds2FBTp07V1KlTbX+41aonn3xS99xzj5KSknTy5EkFBQVp0KBBatmypbOjAQAA1ChhYdLo0VJcXAVPKPCUvoyQeXi/dMVWGZbydwo/cO68Br2WpFk3d9d9A1qV7XIBAAAA3MkpheXq1at1/vx5DR06VJ6enpc8vnHjxrrlllucEQUAAKBWmTtXSkuTUlMreoYhbWorHQuWeeMGGYG55ab5RSV68NNflLTvjN4c3UN+3k7/ezYAAABwUU7ZEv7BBx9o6tSpioyM1OLFi53xIwAAAOqkwEBp+XKpe/dKnpgeJH0QrYAT9m8LvjD5sAbMStS241mXnREAAAC4HE4pLLdt2ybTNHXu3DmFhoY640cAAADUWaGhUlJS6fbwyhh9nZcOzOqnf1zfRRYP2+3f29Kz1X9moj5IPuygpAAAAEDlOaWwPH36dNnj8PBwZ/wIAACAOi0wUFq6VNq5U4qJkYKC7B8XHCxNn166jXzpUikoyNAfr+ygnx4apOb1fWyOzyks1sTFG/XAks3KLSx27osAAAAA7HDKRYqCgoJ04sQJSVJeXp78/f2d8WMAAADqvLAw6dVXpRdekOLjpfR0KStLCgiQQkKkoUMlX1/b8yLbNlRKTLQmLE7R92mnbObvrj2oDYcy9MnEvurQyM8FrwQAAAAo5ZRPWA4fPrzs8aeffuqMHwEAAIDf8PWVRo6UJk2Spk4t/c+RI+2Xlb9qEuCtr+8bqGeHd5K9G4RvOnpOEbEJ+nTzUWfFBgAAAGw4pbCcNm2aOnXqJNM09frrr2vBggUqLCx0xo8CAADAZbB4GPrb8DB998BANfH3spln5RfptoXJmrYsVQVFJW5ICAAAgLrGKVvCrVar3nvvPf3973/Xd999p5dffllvvvmm+vTpo86dO6tBgwby9/eXh0fF+tKbb77ZGTEBAADwX1d3bKyUmKG6c1GyEvaesZm/lrRPaw+c1ccTItS6wUU+tgkAAABcJqcUlr+90Y5hGDJNU5mZmYqPj1d8fHyl16OwBAAAcL7mgT764cFB+tu3O/Xyit0283WHMhQem6AFd/TRDV1D3JAQAAAAdYFTtoSbpln2JZWWlsZ/L4z021lFvgAAAOA6VouHXryui/5zT38F1/O0mZ/NLdSouev01FfbVVTMFnEAAAA4nlM+Ydm8eXNnLAsAAAAXub5riFJiojXug2StPZhhM//nT7u1ev8ZLR4foeaBPq4PCAAAgFrLKYXlihUrnLEsAAAAXKh1A1/FPzxET361TTMT99nME/edUZ9X47XornANC2vshoQAAACojZyyJRwAAAC1g5fVQ7E3ddeSiRGq72P7t+6T5wt07Ttr9Nx3O1VcwuV8AAAAcPkoLAEAAHBJY3o214bHo9W7eX2bmWlKz32XppHvrNGJrHw3pAMAAEBtQmEJAACACunQyE+rpkbqgYGt7c5/2HVK4bEJStx72sXJAAAAUJtQWAIAAKDCfDwtmnNrTy28s4/8vCw286Pn8nTVnNX650+7VcIWcQAAAFQBhSUAAAAq7a7wFlo3LUpdQ/xtZsUlpp76artunrdeZ3IK3JAOAAAANRmFJQAAAKqkS0iA1j4WpQkRLezOv9yerojYBK07eNbFyQAAAFCTUVgCAACgyvy8rZo/rrfeGdtLPlbbt5YHzuYq6o2Vei1pn0yTLeIAAAC4NApLAAAAXBbDMHTvgFZa/VikOjTys5kXFpuatixVty9MVmZuoRsSAgAAoCahsAQAAIBD9GoeqA2PR2lsz2Z255/+ckz9ZiZq05FMFycDAABATUJhCQAAAIep7+OpjyZEaNbN3eVpMWzmu0+d16DXkvTOmgNsEQcAAIBdFJYAAABwKMMw9GhkWyU+MkStg+vZzPOLSvTgp79o0kebdD6/yA0JAQAAUJ1V+8KyoKDA3REAAABQBf1bBSs5Jlo3dAmxO1+YfFgDZiVq2/EsFycDAABAdeaUwvLpp5/W008/rfnz51d5jeeff15XX321xo4d67hgAAAAcKkGvl5aNrmf/nF9F1k8bLeIb0vPVv+Zifog+bAb0gEAAKA6ckph+dlnn2nZsmVauXJlldfYs2ePjhw5oiNHjjgwGQAAAFzNw8PQH6/soBVTBql5fR+beU5hsSYu3qgHP92svMJiNyQEAABAdVJtt4RnZGRIkvLy8twbBAAAAA4R1a6hUmKiNaxjI7vzd9Yc1ODXkrT71HkXJwMAAEB1Yq3qiTt27FBW1sWvN5SZman169dXat38/HzFx8drx44dkqSgoKCqRgQAAEA10yTAW9/cP1Av/JCmv3+fpt/fKHzT0XPqOyNB793WS2N6NndPSAAAALhVlQvLbdu26c9//vMF56ZpasuWLZo4cWJVf4QMw1CfPn2qfD4AAACqH4uHoWeGd9KQNg1016IUnTxf/iaL5/KKNPb9ZD0WdUb/vL6rvKzVdlMQAAAAnKDK7/5Gjx6t8PBwmb//s/hl+u16np6euv/++x26PgAAAKqHYWGNtXH6UEW1bWB3Pitxn6LfWKkDZ3JcnAwAAADudFl/rn722WdltVplmma5r1/9/vlLfUmSj4+PQkJCFB0drQULFqhnz56X9woBAABQbTUP9NGPUwbpyas62J2vO5Sh8NgEfbUt3cXJAAAA4C5V3hIuSR07dlRqaqrN8507d5ZhGIqMjNQ777xzOT8CAAAAtZzV4qGXruuiyDYNNHHxRp3NLSw3P5tbqBvnrtOTV3XQ89d2ktXCFnEAAIDazGnv9hy9VRwAAAC12/VdQ5QSE63+LYPszv+xYreGvbVaRzPzXBsMAAAALnVZn7C8kJdeekmSFBIS4ozlAQAAUEu1buCrhEeG6E9fbdOsxH0284S9Z9Tn1Xh9OD5cV3ds7IaEAAAAcDanFJa33HKLM5YFAABAHeBl9dCMm7orsk0D3fvJZmXlF5WbnzxfoOFvr9Ez13TSn4d1lMXDcFNSAAAAOAMXAAIAAEC1dGuv5kqOiVbv5vVtZqYpPfvdTl337hqdyMp3QzoAAAA4i1M+Ybl+/XqHrtevXz+HrgcAAICaoUMjP62cGqnHP0/VO2sO2sy/Tzul8NgEfTQhXJFtG9rMc3KkFSsMrV/fUDk5HvL1LdGxY4auukry9XXFKwAAAEBlOaWwnDBhggzDMVtzDMPQtm3bHLIWAAAAap56nha9dWsvRbVtqCmf/qKcwuJy86Pn8nTl7NV6cWRnPTG0vTw8DKWlSbNnS/PnSxkZFkltyp0TFCRNnixNmSKFhbnqlQAAAKAiqsWWcNM0L/oFAAAAjI9ooXXTotQ1xN9mVlxi6smvtuuGd9brxrEF6tRJmjFDysiwv1ZGhhQbK3XqJI0ZI2VmOjM5AAAAKsMpn7CUVOWi0TAMWSwWXX311bJYLA5OBQAAgJqsa9MArX0sSg/HbdHC5MM28+W70mUGJUhNI6TjwRVaMy5OSkuTli+XQkMdnRgAAACV5ZTCcseOHRU+tqCgQGfPnlVaWpq+/PJLffHFFyouLlZeXp5mzpwpHx8fZ0QEAABADeXnbdX8cb0V1a6Bpn6WqvyiknJzIzBX5riVUnw3aWMbSZe+VFFqqjRihJSUJAUGOic3AAAAKsbtW8K9vLwUEhKiqKgo/eMf/9Dbb78ti8WihIQEPf/88+6OBwAAgGrIMAzdN6C1Vk+NVIdGfrZziynjqlTphmTJq7BCa6amSvfc4+ikAAAAqCy3F5a/FxUVpalTp8o0TcXFxSk5OdndkQAAAFBN9Q4N1OIbomTubGZ3bnQ6Jo1PlBpX7CKVcXHSrl2OTAgAAIDKqnaFpSTdeeed8vb2liQtXbrUzWkAAABQnS2a6yl9GSFzRXeZxbbbv43g89IdSVL3g5IufZ31OXOcEBIAAAAVVi0Ly4CAALVr106mafIJSwAAAFxQTo40b54kGdLGttJHQ2Rm1rM5zvAskXHtZmnEJsladNE1580rXRcAAADuUS0LS0ny9fWVJJ04ccLNSQAAAFBdxcdLGRm/eeJ4sPRBtMw9IXaPN7odlu5KlBpkXXDNs2dL1wUAAIB7VMvCsqSkRPv375ckeXp6ujcMAAAAqq3jx+08meclLesnM6GLzBI7W8QbZZeWlp0PX3Dd9HQHhgQAAEClVMvCctmyZTp9+rQMw1CLFi3cHQcAAADVVHb2hSaGtL6D9MkgmVk+tlOvYhnXb5SGbZYsxTbzrAt/ABMAAABOVq0Ky4KCAn344Yd69tlny56LiopyXyAAAABUa/7+lzjgSENpYbTMA43sjo1eB6U7k6Sg8+WeDwhwUEAAAABUmtUZi06cOLHCx5qmqaKiImVnZ+vw4cPKy8uTaZbevdHb21vjxo1zRkQAAADUAk2bVuCgXG9p6UCZA9OkQWkyfrdL3GhyTub4BOnbXtKu5pKkEPuXwAQAAIALOKWwXLdunYzfvxOsANM0y533xz/+Uc2aNXNkNAAAANQiQ4dKQUG/u/GOPaYhre4kHWkg8/oUGb4F5caGd5E0Kllm8hkFbemqoUOr1UYkAACAOsVp78RM06z016/nNW/eXP/617901113OSseAAAAagFfX2ny5EqccLCx9P5QmYcb2B0bEftU7+6VOpWf45iAAAAAqDSnfMLy0UcfrfQ5Xl5eCg4OVufOndWjRw8npAIAAEBtNGWKFBtbiRPO+5TejCdyp4z+u23Gx40MhccmaMG4Prq+K3vDAQAAXK3aFJYAAABAVYSFSaNHS3FxlTjJ9JASu8g80kAasVFGvcJy4zM5hbpx7jo9eVUHPX9tJ1ktbBEHAABwFd55AQAAoMabO1fq3r0KJ+4NKb2L+LEgu+N/rNitYW+t1tHMvMvKBwAAgIqjsAQAAECNFxgoLV9exdIyy1fdUofo3j5t7Y4T9p5ReGy8ftx18vJCAgAAoEKcsiX8Qvbs2aP169frxIkTOnXqlCQpKChIbdq0Ud++fdWqVStXxgEAAEAtEhoqJSVJ99xTue3ho0dLc+d6KDCwu67t3kD3frJZWflF5Y45kV2g4W+v0TPXdNKfh3WUxcNwcHoAAAD8yumF5fnz5/X+++9r2bJlOnjw4EWP7dy5syZNmqSbbrrJ2bEAAABQCwUGSkuXSmlp0pw50rx5UkaG7XHBwaV3F58yRerY8X/P39qruXqHBuq29zdo09Fz5c4xTenZ73Zq5f7TWnhHuJoEeDv3xQAAANRRTi0sN2/erJiYGB07dkymaUqSDMMoe/yrX5/bvn27nnrqKS1ZskSxsbFq3LixM+MBAACglgoLk159VXrhBWnFimJt2HBI5897yM+vRH37ttRVV1nk62v/3A6N/LRyaqSmLUvVu2tt/+D+fdophccm6KMJ4Yps29DJrwQAAKDucVphmZqaqkmTJikvr/wFyj09PdWqVSv5+/urpKRE586d0+HDh1VUVLrtxjRNbdiwQRMmTNDixYsVHBzsrIgAAACo5Xx9pREjTDVrdrrsuV69Wsh6iXfB9TwtentsL0W3a6gpn/6inMLicvOj5/J05ezVenFkZz0xtL082CIOAADgME4pLAsLC/XEE08oNze37NOTI0eO1F133aU+ffrIYrGUO76goEDJyclasGCBfv75ZxmGoQMHDuiZZ57RrFmznBERAAAAuKTxES0UHhqose9v0PYT2eVmxSWmnvxqu5L2ndG8cb3VwNfLTSkBAABqF6fcJfzzzz/XgQMHZBiGLBaLXn31VcXGxqpv3742ZaUkeXl5adCgQZozZ46ef/75spLz+++/18aNG50REQAAAKiQrk0DtG5alMaHh9qd/2dbuiJiE7T+YIZrgwEAANRSTiksv/nmm7LHjz/+uK677roKnzt27Fg9+OCDZd9/+umnDs0GAAAAVJaft1UL7uijt27tKW+r7VvoA2dzFflGkl5P2mdzvXYAAABUjlMKyx07dkiS/P39NXHixEqff//998vHx0eStH79eodmAwAAAKrCMAzdP7C1Vk+NVIdGfjbzwmJTjy1L1biFyTqXV+iGhAAAALWDUwrLzMxMGYahsLAweXlV/lo+vr6+6ty5s0zT1PHjx52QEAAAAKia3qGBWj8tSmN6NLM7X/LLMfWbkajNRzNdnAwAAKB2cEphGRQUJElld/6uCut/b91Yr149R0QCAAAAHCawnqc+mRihGTd1k6fF9g7hu06d16BZSXp37QG2iAMAAFSSUwrLDh06yDRN7dixQ1lZWZU+v6ioSLt27ZJhGGrbtq0TEgIAAACXxzAMPRbVTgkPD1GrINs/sucVleiBJb9o8kebdD6/6n/IBwAAqGucUljefPPNkqSCggLNnDmz0ucvXbpUmZmlW2iuv/56R0YDAAAAHGpA62ClTI/W9V2a2J2/n3xYA2Ylant65f+QDwAAUBc5pbC86aabNHDgQJmmqUWLFuntt9+u8Lnr1q3Tyy+/LElq27atbr/9dmdEBAAAABymga+XPp/cXy9d10UWD9st4tvSs9V/ZqI+TDnshnQAAAA1i1MKS8MwNHPmTPXr10+maSo2NlYTJ05UfHy8Cgvt3zFx9+7deuGFF3TPPfcoNzdXTZs21ezZs6t00x4AAADA1Tw8DD15VQf9+OAgNavvbTM/X1Cs8R9u1JRPf1FeYbEbEgIAANQMVmcsev/990uSLBaLJMk0Ta1fv17r16+X1WpV27ZtFRgYKE9PT2VnZ+vAgQM6d+5c2bGGYSg9PV0jRoy46M8xDEPbtm1zxksAAAAAqiS6fUNtjBmquz5M0Y+7TtnM315zQOsOntWSiX3VvpGfGxICAABUb04pLBMTE2UYpVthfv1PqbSMLCws1K5du8od/+udEw3DsDkeAAAAqGmaBHhr+f0D9fz3aXr+hzT9/m3tpqPnFDEjQXNv763RPZq5JyQAAEA15ZQt4VJp2fj7rwvNLvU8AAAAUNNYPAw9e20nLb9/oBr72V7m6FxekW5dsEExn6eqoKjEDQkBAACqJ6d8wvL99993xrIAAABAjXNNWGOlTI/WHR+kKGnfGZv5zMR9WnPgrD6eEKFWwb5uSAgAAFC9OKWw7N+/vzOWBQAAAGqk0MB6WjFlkP6yfKf++dNum/nagxkKj03Q+3f00XVdQtyQEAAAoPpw2pZwAAAAAP9jtXjo5eu76It7+iu4nqfN/ExOoW54b53+7+vtKipmizgAAKi7nFJYvv7663r99df1n//8p8prvPXWW5o4caImT57swGQAAACAe93QNUTJMdHq1zLI7vzlFbt1zVtrdOxcnmuDAQAAVBNOKyzfeOMNffHFF1VeY+XKlVq3bp22bt3qwGQAAACA+7Vp4KvER4bo0ci2dufxe0+rz6vxWrHrlIuTAQAAuF+13RKel1f6F+WcnBw3JwEAAAAcz8vqoVk3d9fHEyIU4G17afkT2QW65u3Vev77NJWUmG5ICAAA4B5VvunOqVOnVFBQcNFj8vLydPTo0Uqtm5+fr/j4eG3ZskWSFBgYWNWIAAAAQLU3tldz9W5eX7ctTNbmo+fKzUxTeubbnVq574wW3tlHjf293ZQSAADAdapcWH7++ef617/+dcG5aZrasGGDrr766iqtb5qmDMNQ586dqxoRAAAAqBE6NvbXqqmRmrYsVe+uPWgz/y7tpMJjE7R4fLgi2zZ0Q0IAAADXqfKW8EmTJqlDhw4yTdPm61f2ZhX5+pVhGNx0BwAAAHVCPU+L3h7bSwvu6C1fT4vN/Ehmnq6cvVr/+nlPuffMAAAAtU2VC0uLxaJnn31WhmE4Mo+k0qKyffv2evXVVxUZGenw9QEAAIDqakJES62dFqUuTfxtZsUlpv705TbdMn+9zuZc/PJMAAAANVWVt4RLUkREhH7++WcVFRWVPWeapoYNGybDMNS3b1+9/PLLFV7Pw8ND3t7eql+/vqzWy4oGAAAA1FjdmgZo7bQoPbT0Fy1KOWIz/2JruiJiE/TxhL7q1yrI9QEBAACc6LJbwZCQELvPm6YpHx8fhYaGXu6PAAAAAOocf2+r3r+jj6LbNdRjy1KVX1RSbr7/bK6i3lipf4/qqocHt3HKzicAAAB3cMrHGB999FFJUqtWrZyxPP7r7Nmzuv766+Xj46MVK1a4Ow4AAAAczDAM3T+wtfq1DNLY9zdoz+mccvOC4hJN/SxViXvP6O2xPVXfx9NNSQEAABzHqYUlnKewsFB/+tOfdPr0aT7FCgAAUMv1Dg3Uhsejdd8nm7V0yzGb+Sebj2rjkUwtmdhXPZvXd0NCAAAAx+FCkTVQbm6u/vCHPyghIcHdUQAAAOAigfU89cnECL2WtE9//HKbCovL3yl816nzGjgrUa/d0kP39G950S3iOTlSfLx0/LiUnS35+0tNm0pDh0q+vs5+JQAAABfnlMLy6NGjDl2vefPmDl2vJtu5c6eeeOIJ7dq1y91RAAAA4GKGYeixqHYa0CpYty9M1sGM3HLzvKIS3b9ks5L2ndbrt/SQn3f5t/tpadLs2dL8+VJGhu36QUHS5MnSlClSWJjTXgYAAMBFOaWwvOqqqxx20W/DMLRt2zaHrFWT5eXl6cUXX9Snn36q4uJiNWrUSD169NBPP/3k7mgAAABwsQGtg5UcE61JH23UV9tP2MwXbDisDYcy9cnECHUJCVBmpnTPPVJc3MXXzciQYmNLv0aPlubOlQIDnfMaAAAALsTDmYubpumQL0inTp3Sxx9/rOLiYl177bX64osv1K1bN3fHAgAAgJs09PPS55P766XrusjiYfthga3pWeo/M1Gv/3hYkZGXLit/Ly5OioyUjhxxUGAAAIAKcto1LKtaNBqGIYvFQhn3O4ZhaPDgwXr44YfVr18/d8cBAABANeDhYejJqzpoUOtg3bEoWcfO5Zebny8o1mPfbJQZckba3k0qtlRq/dRUacQIKSmJT1oCAADXcUph+eOPP1b42Pz8fJ09e1a7du3SV199pfXr16u4uFidOnXSc88957Ct5TVdaGio5s2b5+4YAAAAqIai2zfUxpihuuvDFP2465TN3Oh9QGazs9J/+kqZfpVaOzW1dDv50qWOSgsAAHBxTiksQ0NDK31ORESExo0bp48//ljPPvuslixZoqCgIE2fPt0JCQEAAIDapUmAt5bfP1DPf5+m539I0+83PBkh52ROSJCW95Z2N6vU2nFx0q5dUseOjssLAABwIU69hmVV3H777br77rtlmqbee+897dixw92RAAAAgBrB4mHo2Ws7afn9A1XP9LKZG95FMm7aIF2RKnmUVGrtOXMclRIAAODiql1hKUn33XefrFarSkpK9Omnn7o7DgAAAFCjDGnRWNaPomUebmB3bkTsk25fJQXkVHjNefOknIofDgAAUGXVsrBs1KiR2rZtK9M0tXr1anfHAQAAAGqU+Hjp3NF60pJBMte1t3uM0fysNCFBapteoTXPni1dFwAAwNmqZWEpSUFBQZKk48ePuzcIAAAAUMOUvYUu8ZASu8r8rJ/MXE+b44x6hTJGr5Mit0vGpbeIp1es2wQAALgs1bawPHTokLsjAAAAADVSdvbvntjbVPogWuaxILvHGwN2S2PXSH55F103K8sx+QAAAC6mWhaWP/30k44fPy7DMNS8eXN3xwEAAABqFH9/O0+e85U+Hiwzpa3dc4yWp6UJ8VLLUxdcNyDAQQEBAAAuotoVlvHx8XrqqafKvh88eLAb0wAAAAA1T9OmFxgUW6Sfusv8T4TMfKvN2PArkG5dLQ1Mk2TazENCHJsTAADAHtt3KQ7w9NNPV+r4wsJCZWdna+/evTp06JBMs/TNkcVi0dixY50REQAAAKi1hg6VgoKkjIwLHJDWXDpZX+YNyTKanCs3MjwkDdkpM/SM9HUfKddbkhQcXLouAACAszmlsPzss89kGEalz/u1qDQMQ6Zp6t5771WHDh0cHQ8AAACo1Xx9pcmTpdjYixx01l9aHCnzylQZPQ/ajI02J2VOSJC+jJCONtDkyaXrAgAAOJvTtoSbplnpr1/5+PgoJiZGMTExzooHAAAA1GpTplTgoCKL9H0vmd/0lllosRkbAXnS7aukvnv04IO2W8QBAACcwSmfsLzlllsqfY6Xl5eCgoLUpUsXRUZGyt/ulcLdY+bMmXrzzTcVGhqqFStWVOrcPXv26KOPPtLatWt1+PBhFRUVqUmTJgoLC9ONN96oa665RlZr1f7PMHXqVE2dOrVK5wIAAKB2CwuTRo+W4uIqcPC2llJ6kMwbN8hoWP4W44aHKQ3dpj+tPK15LXor2NfLOYEBAAD+yymF5UsvveSMZd3il19+0TvvvFOlc1977TXNmTNHRUVF5Z4/dOiQDh06pB9//FHdu3fXK6+8onbt2jkiLgAAAFBm7lwpLU1KTa3AwacDpEVRMof9IqPrEZvxF1vTFRGboE8m9lXflkEOzwoAAPCraneX8Ork0KFDevjhh1VYWFjpc1944QW9/vrrZWWl1WpVt27d1LdvXwUHB5cdl5qaqgkTJujIEds3hQAAAMDlCAyUli+Xunev4AmFVumbPjK/6ymzyPafCvvP5iry9ZV6Y+W+cpd0AgAAcCQKywtIS0vTXXfdpZMnT1b63OXLl2vhwoVl31977bWKj49XXFycFi1apMTERP39739XvXr1JEmnTp3S1KlTedMHAAAAhwsNlZKSSreHV4whbWmtq9Ij1TbY9i47BcUlmvpZqu5clKKsvCI75wMAAFwep2wJ/60zZ85o7969ysjIUG5ururVq6fAwEC1a9dODRs2dPaPr5LPP/9czzzzjHJzcyt9bmFhof7xj3+UfX/llVdqxowZ8vD4Xzfs6emp22+/XaGhoXrwwQdVVFSkrVu36ssvv9SNN97okNfgCsXFxe6OgGrs978f/L7gYvh9QWXxO4PK4PdF8vOTPv64dHv42297aMECQxkZhs1xwcGm7r7b1AMPlKhjRz9l5g3W/Uu2aNnWdJtjP950VCmHM7X4rt7q2ay+K16GS/D7gsrg9wWVwe8LKqOu/74YphM+1vfLL78oLi5OCQkJOnbs2AWPa9Kkia644grdfPPN6tOnj6NjVFp6erpeffVVLVu2zO68Ijfd+frrr8vubm61WvX999+refPmFzz+73//uxYtWiRJ6tatm+IqdFV099i4caNKSkrcHQMAAACXKS/PUHJygM6c8dT58x7y8ytRgwaFiojIko9P+X8emKapj9LOa+bGcyq28y8Hb4v0p75BGtXO9tOYAACg7vDw8HBYv+fQwnL79u164YUXlJKSIkkV2uJsGKV/2e3Tp4/+8pe/qGvXro6KUymzZ8/W22+/rZycnLLn2rVrp+HDh2vOnDmSKlZYPvroo/r+++8lSdHR0Ze8Yc/OnTs1atSosu9/+OEHtWzZsqovw6koLAEAAOquLacK9PTKs0rPsf8Jjxva1tOTfQPlY+WqUwAA1EWOLCwd9m7i3Xff1a233qqUlJRKX4vRNE2lpKRo7Nixmj17tqMiVcp7771XrqwcO3aslixZotatW1d4DdM0tXbt2rLvhwwZcslzOnXqpMaNG5d9f6lCFAAAAHCHHo289MGIxhrS3Nvu/Mt9uZr03SntP1f5G1YCAAD8lkOuYfnyyy9rwYIFMk2z7BOThmGoV69e6tu3r9q1a6cGDRrI29tb58+fV2Zmpvbs2aONGzdqy5YtKioqkmEYKi4u1qxZs3TixAk988wzjohWad27d9eTTz6p/v37V/rcI0eO6Ny5c+XWqohOnTqV3dxny5Ytlf657tK9e3dZLBZ3x0A1VVxcrNTU1LLv+X3BxfD7gsridwaVwe+LY/3Y19S/Evbqb9+mqeR3n1PYk1mkSd+f0ezR3TWu94Uvi1Sd8fuCyuD3BZXB7wsqo6b8vmzZssUpu3Evu7BctGiR5s+fX1ZUenl5afz48ZowYYKaNm16yfNPnDihRYsW6f3331deXl7pNXI++kitW7fWpEmTLjdehfXv31+jR4/W1VdfXfZaKmv//v3lvm/VqlWFzmvRokXZ44MHD1bpZ7uDxWKR1er0+zahluD3BZXB7wsqi98ZVAa/L5fv/4Z10pC2DXXnohQdO5dfbna+oFgTP9qslQcyFDuqm3w8q98/riqD3xdUBr8vqAx+X1AZde335bK2hB86dEj/+te/ygq+Dh066LPPPtMf//jHCpWVUumNd2JiYrRkyRK1b99ehmHINE3NmDHDpeXdm2++qWHDhlW5rJRU9ilJqXTffqNGjSp03m+3hP92DQAAAKC6Gtq+kVJihurqjvbf8761+oAiX1+pvafPuzgZAACo6S6rsJw1a5Zyc3Mlld6gZuHChWrXrl2V1urQoYPef/99tWrVSoZhKD8/X7NmzbqceC6XmZlZ9tjPz08eHhX7r9ff39/uGgAAAEB1FhLgreX3D9RfrwmTvb/7pxzJVERsgj7bcsz14QAAQI1V5cIyPT1dX3/9tSTJarVqxowZCg4OvqwwDRo00BtvvCGLxSLTNLV8+XKdOHHistZ0pfz8/22H8fHxqfB5Xl5eZY8LCgocmgkAAABwJouHoeeu7aRv7hugRn5eNvPMvCKNWbBB07/YqoIix1/jCgAA1D5VLiy/++47FRcXyzAMjRkzRh07dnRIoA4dOujWW2+VVHqB0e+//94h67pCYeH/7ohY0U9XSip3DYKioiKHZgIAAABcYXinJto4PVpD2tj/EMOMhL26cvYqHcrIdXEyAABQ01S5sFy3bl3Z43HjxjkkzK/Gjh1b9njt2rUOXduZfnu3psrcIem3JaWnp6dDMwEAAACuEhpYTyseGqw/XtHe7nz1gbMKfzVe32xPd3EyAABQk1S5sNy5c6ckKTAwUJ07d3ZYIEnq1q1b2fbyX39OTVCvXr2yx7/dHn4pv90G7u3t7dBMAAAAgCt5Wjz0jxu6atnkfgqqZ/vH+NM5hbr+vXX68zfbVVTMFnEAAGCryoXlmTNnZBiG2rRp48A4/9OsWTOZpqlTp045ZX1nCAwMLHt8/vx5maZZofOys7PLHgcFBTk6FgAAAOByo7o1VUpMtPq1DLI7f+nH3Rr+9hodO5fn2mAAAKDaq3JhmZdX+sbit58qdKT69etLqtwnFd0tJCSk7HFxcbHOnj1bofNOnjxZ9rhRo0YOzwUAAAC4Q5sGvkp4ZLAejWxrd/7zntMKj03QT7trzocUAACA81W5sPz1k4AVLeUqKyMjQ5Lk6+vrlPWdoXXr1uW+P3ToUIXOO3z4cNnjtm3tv5kDAAAAaiJvq0Wzbu6uj8ZHKMDbajNPz8rXNW+t1gs/pKmkpGI7lAAAQO1W5cKyQYMGMk1Thw8frtQNZiqipKRER44ckWEYNeoTh6GhoeW2dG/fvr1C5+3YsaPssaOvBwoAAABUB7f1bq71j0epZ7P6NrMSU/rb8p26/r21Opldc3ZYAQAA56hyYdmhQwdJpddqTElJcVggSUpJSVFWVpYkqUuXLg5d29kGDBhQ9njVqlWXPH7Hjh3lrtM5cOBAp+QCAAAA3C2ssb9WPxapewe0sjv/dudJhccmaOW+My5OBgAAqpMqF5ZRUVFljxctWuSQML/68MMPyx7XtAJv+PDhZY9/+uknpaenX/T4xYsXlz1u3769OnXq5LRsAAAAgLvV87TonbG9NH9cb/l6WmzmRzLzdMXsVfr3z3sqfBNLAABQu1S5sIyOjpbVapVpmvr222+1efNmhwTasGGDvv76a0mSp6enrrnmGoes6yrDhw9XkyZNJEkFBQV66qmnVFRUZPfYxMRELVmypOz7CRMmuCQjAAAA4G4T+7bU2mlR6tzE32ZWXGLqj19u0+j563U2p8AN6QAAgDtVubBs2LChbrvtNkml15yMiYm57BvwHDp0SNOmTZMkGYahMWPGlLsmZE3g5eWl6dOnl32/atUq3X///eVuwFNUVKRPPvlEU6dOVXFxsSQpLCxMY8eOdXleAAAAwF26NQ3QumlRurNPqN3551vT1XdGojYcynBtMAAA4FZVLiwl6eGHH5afn58Mw9DRo0c1btw47dq1q0prbdiwQePHj9fp06clSYGBgXrkkUcuJ57b3HLLLbr99tvLvl+1apWGDx+um2++WePHj1dUVJT++te/Kjc3V1LpHddnzpwpq9X2rokAAABAbebvbdXCO/to9pge8rba/vNk35kcRb6+Um+u3M8WcQAA6ojLKiwbNWqkV155RYZhyDAMHThwQGPHjtXf//537d27t0Jr7NmzR3/5y180adIknThxojSUh4deeOGFGnWH8N977rnnNGXKFHl6ekoq/RTq9u3btX79ep0587+LiLdv314ffPCB2rVr566oAAAAgFsZhqEHB7XRykeHqF1DX5t5QXGJHv1si+5clKKsPPuXWwIAALXHZX+k76qrrtKTTz6pl19+WYZhKC8vT4sXL9bixYvVrFkz9ezZU23btlVAQIACAgJUVFSkzMxMHT58WBs2bNCBAwckqdxfS//85z9r2LBhlxvNrQzDUExMjEaNGqVPP/1USUlJOn78uHJzcxUYGKguXbpoxIgRGjVqlLy8vNwdFwAAAHC78BZBSn48Wvd8vEmfpR63mX+86ag2HsnUJxP6qmfz+m5ICAAAXMEhe5DvvvtuhYaG6umnn1ZWVpak0gLy6NGjOnbs2AXP+7WkNAxDkuTr66uXXnpJ1157rSNiOcTo0aM1evToKp/fvn17Pfnkk3ryyScdmAoAAAConQLreerTu/tqZuI+/enLbSoqKb8NPO3keQ2clag3RvfQ5P6t3JQSAAA402VtCf+tYcOGadmyZRo9enSlr8VosVh00003afny5dWqrAQAAADgeoZh6PHodkp4ZIhaBvnYzPOKSnTvJ5t1z0eblFPAFnEAAGobh97lJTQ0VC+++KKmTZum//znP1q3bp1SUlKUnZ1tc6ynp6e6deumK664QrfccotCQkIcGQUAAABADTewdbBSYoZq4uKN+mbHCZv5/A2HtOFwhj6ZGKHOTQLckBAAADiDU25LHRISovvuu0/33XefTNNURkaGMjIylJmZKQ8PDwUGBqpFixayWCzO+PEAAAAAaomGfl76zz399Y+fduuvy3fodzvElXo8S/1mJOrtsb10R59Q94QEAAAO5ZTC8rcMw1BwcLCCg4Od/aMAAAAA1EIeHoaevrqjBrcJ1h0fpOh4Vn65+fmCYt21KEWJe0/r1VHd5OPJByMAAKjJHHYNSwAAAABwpqHtG2nj9KG6qkMju/M5qw8o8vWV2nv6vIuTAQAAR6KwBAAAAFBjhAR469sHBuovwzrKMGznKUcyFRGboM+2HHN9OAAA4BAUlgAAAABqFIuHob+P6Kyv7xugRn5eNvPMvCKNWbBBT3yxVYXFJW5ICAAALgeFJQAAAIAa6dpOTZQSE60hbexfLz82Ya+ueHOVDmXkujgZAAC4HBSWAAAAAGqsFkH1tOKhwfrDFe3tzlcfOKvwV+P1zfb0S66VkyMtX27oiy8a6qOPGuuLLxpq+XJDOTmOTg0AAC7G6XcJBwAAAABn8rR46J83dFVk2waa9NEmZeQWlpufzinU9e+t09NXd9BzwzvJain/uY20NGn2bGn+fCkjwyKpTbl5UJA0ebI0ZYoUFubUlwIAAMQnLAEAAADUEqO6NVXy49Hq2yLQ7vylH3dr+NtrdOxcniQpM1MaM0bq1EmaMUPKyLC/bkaGFBtbetyYMaXnAQAA56GwBAAAAFBrtG3oq8RHh+jhwW3szn/ec1rhsQlasuaUIiOluLjKrR8XJ0VGSkeOXH5WAABgH4UlAAAAgFrF22rR66N7aPH4cPl7W2zm6Vn5un3JaqX6pUkyK71+aqo0YgSftAQAwFkoLAEAAADUSrf3DtWGx6PVo1mA7dCQjMid0ui1Ur38Sq+dmirdc48DQgIAABsUlgAAAABqrbDG/lrzWJTu6d/K7txoe1KakCA1P1PptePipF27LjchAAD4PQpLAAAAALVaPU+L3r2tl+bd3ltW0/afQEZAnnTbKilijyq7RXzOHAeFBAAAZSgsAQAAANQJY7u1lM9nUTJP+9vMDIsp44pt0k3rJe/CCq85b56Uk+PAkAAAgMISAAAAQN0QHy9l7asvLYqSuT3U7jFGh3RpfILUJKNCa549W7ouAABwHApLAAAAAHXC8eP/fVBolb7uI/P7HjKL7GwRD8qR7lgp9dqvimwRT093aEwAAOo8CksAAAAAdUJ29m+/M6Rf2kiLh8jM8LU51rCWyBi2Rbo+RfIsuui6WVkOjQkAQJ1HYQkAAACgTvC3vXSldCJI+iBa5q6mds8xOh8t3SLe6NwF1w0IcEw+AABQisISAAAAQJ3Q1H4nKeV7Sl/0lflTN5nFhs3YaHBeujNR6nbQ7ukhIQ4MCQAAKCwBAAAA1A1Dh0pBQReaGlJKO+njITLP+dhOPUtkjNgsXbtJsv5vi3hwcOm6AADAcSgsAQAAANQJvr7S5MmXOOhYsLRwqMy9TeyOje6HpDuTpODSC2JOnly6LgAAcBwKSwAAAAB1xpQpFTgoz0v6rL/MxM4yS2zHRuOs0utadjpSsfUAAEClUFgCAAAAqDPCwqTRoytypCGt6ygtGSQz29t26lUs44YUxf7yi/KLih2eEwCAuozCEgAAAECdMneu1L17BQ8+3Kh0i/iBRnbHc1YfUOTrK7X39HnHBQQAoI6jsAQAAABQpwQGSsuXV6K0zPGWlg6UubqjTNN2nHw4UxGxCVqWesyhOQEAqKsoLAEAAADUOaGhUlJSRbeHSzINaVVnDUkfoIa+XjbjzLwijZ6/QU98sVWFxXYufAkAACqMwhIAAABAnRQYKC1dKu3cKcXESEFB9o8LDpamT5fS0qSkD5po4/RoDWkTbPfY2IS9uuLNVTqUkeu84AAA1HJWdwcAAAAAAHcKC5NefVV64QVpxYpibdhwSOfPe8jPr0R9+7bUVVdZ5Ov7v+NbBNXTiocG6/++3qF/x++xWW/1gbMKfzVeC+8M14jOTVz4SgAAqB0oLAEAAABAkq+vNGKEqWbNTpc916tXC1nt/KvJ0+KhV27sqsi2DTT5403KyC0sNz+dU6jr3l2r/7u6o54dHiarhc1tAABUFP+rCQAAAABVdFP3pkp+PFp9WwTanb/44y4Nf3uNjp/Lc3EyAABqLgpLAAAAALgMbRv6KvHRIXpkSBu785/3nFaf2AT9tPuUa4MBAFBDUVgCAAAAwGXytlr02i09tHh8uPy9LTbz9Kx8XfPWav2/H9JUUmK6ISEAADUHhSUAAAAAOMjtvUO14fFo9WgWYDMrMaW/Lt+pG95bq1Pn892QDgCAmoHCEgAAAAAcKKyxv1ZPjdQ9/VvZnS/feVLhryZo1f4zLk4GAEDNQGEJAAAAAA7m62XVu7f10rzbe6uep+0/uw5n5umKN1fp1fg9Mk22iAMA8FsUlgAAAADgJHf3a6m1j0WpU2M/m1lRiak//GebRs9fr4zcQjekAwCgeqKwBAAAAAAn6t6svtZNi9YdfULtzj/fmq6I2AQlH85wbTAAAKopCksAAAAAcLIAH6s+uLOP3hzdQ14W23+G7TuToyGvrdSbK/ezRRwAUOdRWAIAAACACxiGoSmD22jV1CFq28DXZl5QXKJHP9uiuxalKCuvyA0JAQCoHigsAQAAAMCFwlsEKTkmWjd3b2p3/tGmo+o3M0Fbjp1zcTIAAKoHCksAAAAAcLGgep5aendf/XtUV1k9DJt52snzGjgrUfPXH3JDOgAA3IvCEgAAAADcwDAMxUS3V/zDg9Ui0MdmnltYons+3qR7Pt6knAK2iAMA6g4KSwAAAABwo0FtGihlerRGdm5idz5//SENei1JO09kuzgZAADuQWEJAAAAAG7WyM9b/7mnv/7fyM6ys0NcW45lqd/MBH286YjrwwEA4GIUlgAAAABQDXh4GHr66o764cFBahrgbTPPzi/WHR+k6JG4LcovKnZDQgAAXIPCEgAAAACqkSs6NFJKTLSubN/Q7nz2qv2KfH2l9p3OcXEyAABcg8ISAAAAAKqZpvV99N2Dg/TnYR1l2Nkinnw4U+Gx8fo89bjrwwEA4GQUlgAAAABQDVk8DD0/orO+uneAGvp62swz84p0y/z1+sN/tqqwuMQNCQEAcA4KSwAAAACoxkZ0bqKU6UM1uE2w3fmr8Xt15exVOpyR6+JkAAA4B4UlAAAAAFRzLYPq6aeHBmv60HZ256v2n1WfV+P17c4TLk4GAIDjUVgCAAAAQA3gafHQv27sps8m9VNQPdst4qdzCnXdu2v11+U7VFxiuiEhAACOQWEJAAAAADXITd2bKvnxaEW0CLSZmab0/37YpeFvrdbxc3luSAcAwOWjsAQAAACAGqZtQ18lPTpEDw9uY3f+057TCo9N0M+7T7k2GAAADkBhCQAAAAA1kLfVotdH99Di8eHy97bYzI9n5WvYW6v14o+7VMIWcQBADUJhCQAAAAA12O29Q7V+WrR6NAuwmZWY0l++2aEb3lurU+fz3ZAOAIDKo7AEAAAAgBquUxN/rZ4aqcn9W9qdL995UuGvJmj1/jMuTgYAQOVRWAIAAABALeDrZdV7t/XW3Nt7q56n7T/1DmfmaeibqxSbsEemyRZxAED1RWEJAAAAALXIpH4tteaxKHVq7GczKyox9cQX23Trgg3KyC10QzoAAC7N6u4AAAAAAADH6tGsvtZNi9aDn27WR5uO2sw/Sz2uTUcT9MnECEW0CLroWjk5Uny8dPy4lJ0t+ftLTZtKQ4dKvr5OegEAgDqNwhIAAAAAaqEAH6sW3RWu6HYN9fjnW1VQXFJuvu9Mjoa8tlIzbuqmBwe1lmEY5eZpadLs2dL8+VJGhu36QUHS5MnSlClSWJjTXgYAoA5iSzgAAAAA1FKGYWjK4DZaNXWI2jaw/ThkQXGJHo7bovEfblRWXpEkKTNTGjNG6tRJmjHDflkplT4fG1t63JgxpecBAOAIFJYAAAAAUMuFtwhScky0bune1O588cYj6j8zQT9sPqfISCkurnLrx8VJkZHSkSMOCAsAqPMoLAEAAACgDgiq56lP7+6rf4/qKquHYTPfefK8rp2fqFTzUJXWT02VRozgk5YAgMtHYQkAAAAAdYRhGIqJbq/4hwerRaCPzdy0lMgYsUkavkmyFlV6/dRU6Z57Lj8nAKBuo7AEAAAAgDpmUJsGSpkerRGdGtudGz0OSXcmScHZlV47Lk7atetyEwIA6jIKSwAAAACogxr5eevLewfohZGdZZi2c6NxljQ+QepU+QtTzpnjgIAAgDqLwhIAAAAA6igPD0OPD+oo328GyTzvbTM3vIpl3JAiXbVFshRXeN1586ScHEcmBQDUJRSWAAAAAFCHxcdL2dsbSe9HyzzY0O4xRp/90riVUv2KtZBnz5auCwBAVVBYAgAAAEAddvz4fx/k+EifDpK5uqPd44ymmdKEBKn9cbvz30tPd1BAAECdQ2EJAAAAAHVY9m/vq2Ma0qrOMpcOkJnraXOs4VMo4+b10tCtkkfJRdfNynJwUABAnUFhCQAAAAB1mL+/nSf3N5EWDpV5NNjuOUbfvdJtqyT/3AuuGxDgoIAAgDqHwhIAAAAA6rCmTS8wyKonfTxY5oZ2dsdG6NnSLeKtT9idh4Q4KCAAoM6hsAQAAACAOmzoUCko6ALDEg8pvpvMz/vKzLPajA3fAmnMWmnwDskwy54PDi5dFwCAqqCwBAAAAIA6zNdXmjz5EgftbiZ9EC0zPdBmZBiSMWiXdOtqyTdPUul6vr5OCAsAqBMoLAEAAACgjpsypQIHZfpJi4fI3NTG7thodbp0i3iLUxVbDwCAC6CwBAAAAIA6LixMGj26AgcWW6Qfe8j8MlxmgcVmbPjny7httZYc3KWSEtPOAgAAXBqFJQAAAABAc+dK3btX8OCdoaVbxE/auRW4If3lmx26ce46nT5f4NCMAIC6gcISAAAAAKDAQGn58kqUlmf9pQ8jZaa2tDv+ZscJhcfGa/X+M44LCQCoEygsAQAAAACSpNBQKSmpgtvDJanIKn3bW+Ene6me1fafl4cy8jT0zVWakbBXpskWcQBAxVBYAgAAAADKBAZKS5dKO3dKMTFSUJD944KDpenTpbQ0acOCVlozLUqdGvvZHFdUYmr6F1t164INysgtdG54AECtYHV3AAAAAABA9RMWJr36qvTCC1J8vJSeLmVlSQEBUkiINHSo5Ov7v+N7NKuvddOi9eCnm/XRpqM2632WelybjyXokwkRCm8R5LoXAgCocSgsAQAAAAAX5OsrjRxZsWMDfKxadFe4oto1VMznW1VQXFJuvvd0joa8vlKxo7rpwUGtZRiGExIDAGo6toQDAAAAABzGMAw9NLiNVk4dorYNfG3m+UUlejhuiyZ8uFHZ+UVuSAgAqO4oLAEAAAAADhfRIkgbHo/STd1C7M4/3HhE/WcmKvXYORcnAwBUdxSWAAAAAACnCPb1UtykfvrXjV1l9bDd/r3jRLYGzErUgvWH3JAOAFBdUVgCAAAAAJzGMAxNH9pePz88WC0CfWzmuYUlmvzxJt33yWblFha7ISEAoLqhsAQAAAAAON3gNg2UMj1aIzo1tjufu+6gBs1KUtrJbBcnAwBUNxSWAAAAAACXaOTnrS/vHaDnR3SSnR3i+uXYOfWdkaBPNh11fTgAQLVBYQkAAAAAcBkPD0N/Hham7x8cpJAAb5t5dn6xxn2QrKmfbVF+EVvEAaAuorAEAAAAALjclR0aaWNMtK5o39Du/I2V+xX1+krtO53j4mQAAHejsAQAAAAAuEXT+j767oGB+r+rO9qdbzicqYgZCfpi63EXJwMAuBOFJQAAAADAbawWD70wsrO+ure/Gvp62swzcgt187z1+uN/tqmwuMQNCQEArkZhCQAAAABwu5FdQpQyfagGtQ62O/93/B5dOXuVDmfkujgZAMDVKCwBAAAAANVCy6B6+vnhwYqJbmd3vmr/WYXHJui7nSdcnAwA4EoUlgAAAACAasPT4qF/j+qmuEl9FehjtZmfOl+gke+u1d+W71BxiemGhAAAZ6OwBAAAAABUOzd3b6bkmGiFhwbazExTeuGHXbr27TVKz8p3QzoAgDNRWAIAAAAAqqV2Df2U9OgQPTS4jd35it2n1OfVeMXvOeXaYAAAp6KwBAAAAABUWz6eFr0xuoc+vCtc/t4Wm/nxrHxdPWe1Xvpxl0rYIg4AtQKFJQAAAACg2hvXJ1Trp0Wre9MAm1mJKf35mx26ce46nT5f4IZ0AABHorAEAAAAANQInZr4a81jkZrUt6Xd+Tc7Tig8Nl5rDpx1cTIAgCNRWAIAAAAAagxfL6vmjuut927rpXqetv+kPZSRp+g3Vio2YY9Mky3iAFATUVgCAAAAAGqcyf1bac1jUQpr7GczKyox9cQX23Trgg3KyC10QzoAwOWgsAQAAAAA1Eg9mtXX+mnRGte7ud35Z6nH1XdGglIOZ7g2GADgslBYAgAAAABqrAAfqxbdFa43RveQl8X2n7h7T+doyOsr9dbq/WwRB4AagsISAAAAAFCjGYahhwa30cqpQ9S2ga/NPL+oRA8t3aIJH25Udn6RGxICACqDwhIAAAAAUCtEtAjShsejdFO3ELvzDzceUf+ZiUo9ds7FyQAAlUFhCQAAAACoNYJ9vRQ3qZ/+dWNXWT0Mm/mOE9kaMCtRC9YfckM6AEBFUFgCAAAAAGoVwzA0fWh7/fzwYLUI9LGZ5xaWaPLHm3TfJ5uVW1jshoQAgIuhsAQAAAAA1EqD2zRQyvRoXdupsd353HUHNWhWktJOZrs4GQDgYigsAQAAAAC1ViM/b3117wD9fUQn2dkhrl+OnVPfGQn6ZNNR14cDANhFYQkAAAAAqNU8PAz9ZViYvntgkEICvG3m2fnFGvdBsqZ+tkX5RWwRBwB3s7o7AAAAAAAArnBVx0ZKiYnWnR+kKH7vaZv5Gyv3a+2Bs/p4Ql+1beh70bVycqQVKwytX99QOTke8vUt0bFjhq66SvK9+KkAgEugsAQAAAAA1BnN6vvo+wcH6pnvduqlH3fbzDcczlTEjATNH9dbo7o1tZmnpUmzZ0vz50sZGRZJbcrNg4KkyZOlKVOksDCnvAQAqPXYEg4AAAAAqFOsFg/9v5Fd9NW9/dXA19NmnpFbqJvnrdefvtymwuISSVJmpjRmjNSpkzRjhpSRYX/tjAwpNrb0uDFjSs8DAFQOhSUAAAAAoE4a2SVEG6cP1cDWwXbn//p5j66es1obduYqMlKKi6vc+nFxUmSkdOSIA8ICQB1CYQkAAAAAqLNaBtXTzw8N1uPR7ezOk/ad0aA3EpSadaJK66emSiNG8ElLAKgMCksAAAAAQJ3mZfXQq6O6aendfRXoY3urh2KvAmnMWmnwTskwK71+aqp0zz2OSAoAdQOFJQAAAAAAkm7p0UwbHo9Wn9D6NjPDkIxBadKYNZJvfqXXjouTdu1yREoAqP0oLAEAAAAA+K/2jfy08tFIPTiotd250fqUNCFeCj1d6bXnzLncdABQN1BYAgAAAADwGz6eFv17ZE/V+6mPzAKLzdzwz5duWy312y2p4lvE582TcnIcGBQAaikKSwAAAAAAfic+XspJaSEtipJ5KsBmbniYMqK3Szevk3wKKrTm2bOl6wIALo7CEgAAAACA3zl+/L8PzgRIiyJlbm1h9zij/QlpQoLU9GyF1k1Pd1BAAKjFKCwBAAAAAPid7OzffFNklZb3lvltL5mFtv+MNurnSuNWSn326lJbxLOyHJsTAGojCksAAAAAAH7H3//3zxhSaivpwyiZZ/xsjjcspoyrtko3JktehRdcN8B2dzkA4HcoLAEAAAAA+J2mTS8wOFW/9LqWO5vZHRthx6TxiVLjTLvzkBAHBQSAWozCEgAAAACA3xk6VAoKusCwwFP6MkLmj91lFhs2YyP4vHRnktTjgH67RTw4uHRdAMDFUVgCAAAAAPA7vr7S5MkXO8KQNrWVFkfKzKxnO7WWyBj+izRyo+RZJKl0PV9f5+QFgNqEwhIAAAAAADumTKnAQelB0sJomXvs7/U2uh6R7kqUGmRVbD0AAIUlAAAAAAD2hIVJo0dX4MB8L2lZP5nxXWWW2Nki3jBb1rsTtebcIceHBIBaiMISAAAAAIALmDtX6t69Ikca0ob20seDZWb52EyLPYp19+JNemDJZuUWFjs8JwDUJhSWAAAAAABcQGCgtHx5RUtLSUcblG4R39/Y7vjdtQc1+LUk7TqZ7biQAFDLUFgCAAAAAHARoaFSUlIFt4dLUq63FDdAXc52ku0GcWnz0XPqOyNRSzYfdWRMAKg1KCwBAAAAALiEwEBp6VJp504pJkYKCrJ/XHCwNH26lLbT0Nb3wvTdgwPVxN/L5ris/CLdvjBZjy1LVUFRiXPDA0ANY3V3AAAAAAAAaoqwMOnVV6UXXpBWrCjWhg2HdP68h/z8StS3b0tddZVFvr7/O/7qjo21cfpQ3fFBshL2nrFZ7/WkfVp34Kw+nhCh1g18beYAUBdRWAIAAAAAUEm+vtKIEaaaNTtd9lyvXi1ktfOv7Gb1ffTDg4P0t2936uUVu23m6w5lKDw2QQvu6KMbuoY4MzYA1AhsCQcAAAAAwMmsFg+9eF0XfXlvfzXw9bSZn80t1Ki56/Tkl9tUVMwWcQB1G4UlAAAAAAAucl2XEKXERGtg62C781d+3qOr56zWkcxcFycDgOqDwhIAAAAAABdqFeyrnx8arGlRbe3OE/edUfirCfo+7aSLkwFA9UBhCQAAAACAi3lZPRR7U3d9endf1fexvfDlyfMFGvHOGj377U4Vl5huSAgA7kNhCQAAAACAm4zu0UzJj0erT2h9m5lpSn//Pk0j31mjE1n5bkgHAO5BYQkAAAAAgBu1b+SnlY9G6oGBre3Of9h1Sn1i45Ww57TdOQDUNhSWAAAAAAC4mY+nRXNu7amFd/aRn5fFZn7sXL6ufmu1/rFit0rYIg6glqOwBAAAAACgmrgrvIXWTYtSt5AAm1lxiamnv96um+at0+nzBW5IBwCuQWEJAAAAAEA10iUkQGsei9TEiBZ2519tP6GI2AStPXDWxckAwDUoLAEAAAAAqGb8vK2aN6633hnbSz5W23+6H8zIVfSbKzUrca9Mky3iAGoXCksAAAAAAKohwzB074BWWv1YpDo28rOZFxabevzzrbrt/WRl5ha6ISEAOAeFJQAAAAAA1Viv5oFa/3iUxvZsZne+dMsx9ZuZqE1HMl2cDACcg8ISAAAAAIBqrr6Ppz6aEKFZN3eXp8Wwme8+dV6DXkvSO2sOsEUcQI1HYQkAAAAAQA1gGIYejWyrpEci1Tq4ns08v6hED376i+5evFHZ+UVuSAgAjkFhCQAAAABADdKvVZCSY6J1Q5cQu/MPUo5owMxEbTue5eJkAOAYFJYAAAAAANQwDXy9tGxyP/3j+i6yeNhuEd9+Ilv9Zybqg+TDbkgHAJeHwhIAAAAAgBrIw8PQH6/soJ8eGqTm9X1s5jmFxZq4eKMeWLJZuYXFbkgIAFVDYQkAAAAAQA0W2bahUmKidU1YI7vzd9ce1JDXkrT71HkXJwOAqqGwBAAAAACghmsS4K2v7xuoZ4d3kmG7Q1ybjp5TRGyCPt181PXhAKCSKCwBAAAAAKgFLB6G/jY8TN89MFBN/L1s5ln5RbptYbIe/zxVBUUlbkgIABVDYQkAAAAAQC1ydcfGSokZquh2DezOZyXuU/QbK3XgTI6LkwFAxVBYAgAAAABQyzQP9NEPDw7SU1d1sDtfdyhD4bEJ+nJbuouTAcClUVgCAAAAAFALWS0eevG6LvrPPf0VXM/TZn42t1Cj5q7TU19tV1ExW8QBVB8UlgAAAAAA1GLXdw1RSky0BrQKsjv/50+7dfWc1TqamefaYABwARSWAAAAAADUcq0b+Cr+4SGaFtXW7jxx3xn1eTVeP6SddHEyALBFYQkAAAAAQB3gZfVQ7E3dtWRihOr7WG3mJ88X6Np31ui573aquMR0Q0IAKEVhCQAAAABAHTKmZ3NteDxavZvXt5mZpvTcd2ka+c4ancjKd0M6AKCwBAAAAACgzunQyE+rpkbqgYGt7c5/2HVK4bEJStx72sXJAIDCEgAAAACAOsnH06I5t/bUwjv7yM/LYjM/ei5PV81ZrX/+tFslbBEH4EK2F60AAAAAAAB1xl3hLRQeGqix72/QtvTscrPiElNPfbVdSXvPaP4dvdXA1+uia+XkSPHx0vHjUna25O8vNW0qDR0q+fo681UAqE0oLAEAAAAAqOO6hARo7WNRejhuixYmH7aZf7k9XRGxCfp4QoT6twq2maelSbNnS/PnSxkZtusHBUmTJ0tTpkhhYQ6PD6CWYUs4AAAAAACQn7dV88f11jtje8nHalsXHDibq6g3Vuq1pH0yzdIt4pmZ0pgxUqdO0owZ9stKqfT52NjS48aMKT0PAC6EwhIAAAAAAEiSDMPQvQNaafVjkerYyM9mXlhsatqyVN2+MFnb9xYqMlKKi6vcz4iLkyIjpSNHHBQaQK1DYQkAAAAAAMrp1TxQ6x+P0tiezezOP/3lmPq8kqjU9Kp9VDI1VRoxgk9aArCPwhIAAAAAANio7+OpjyZEaNbN3eVpMWzmBX7npTuTpB4HJFX+LuKpqdI99zggKIBah8ISAAAAAADYZRiGHo1sq8RHhqh1cD3bubVExvBfpBGbJGtRpdePi5N27XJAUAC1CoUlAAAAAAC4qP6tgpUcE60buoTYnRvdDkt3JUoNsiq99pw5l5sOQG1DYQkAAAAAAC6pga+XPry9n3zWdZFZYrtF3GiULY1PlLocrtS68+ZJOTmOSgmgNqCwBAAAAAAAFZKYaCg3sYP0ySCZWT42c8OzWMZ1G6VhmyVLcYXWPHtWio93dFIANRmFJQAAAAAAqJDjx//74EhDaWG0zAON7B5n9DpYekOeoPMVWjc93UEBAdQKFJYAAAAAAKBCsrN/802ut7R0oMxVYTLt3CTcaHJOGp8gdTx6yXWzKn/pSwC1GIUlAAAAAACoEH//3z1hGtLqTtKnA2XmeNkcb3gXyRiVLF2RKnmUXHDdgAAHBwVQo1FYAgAAAACACmna9AKDg42l94fKPNzA7tiI2CeNWykF2L+7Toj9m48DqKMoLAEAAAAAQIUMHSoFBV1geN6n9GY86zrYHRvNMqQJCVLb8hesDA4uXRcAfkVhCQAAAAAAKsTXV5o8+SIHmB5SYheZn/WXmetpMzbqFcoYvU6K3C4ZpVvEJ08uXRcAfkVhCQAAAAAAKmzKlAoctDek9C7ix4Lsjo0Bu6XbVkt+eRVbD0CdQmEJAAAAAAAqLCxMGj26Agdm+UofDZGZ3Nbu2GhxRt73x+uAedKxAQHUeBSWAAAAAACgUubOlbp3r8CBJR7Sz91lfhEhM99qMy6wFOjad9bo79+lqbjEdHxQADUShSUAAAAAAKiUwEBp+fIKlpaStKu59EG0zBP1bUamKT373U5d9+4ancjKd2xQADUShSUAAAAAAKi00FApKamC28MlKcNPWhypNuda2R1/n3ZK4bEJStp32nEhAdRIFJYAAAAAAKBKAgOlpUulnTulmBgpKMj+ccHB0vTpUto2i/a+3Uvv39FHvp4Wm+OOnsvTlbNX65WfdquELeJAnWV7AQkAAAAAAIBKCAuTXn1VeuEFKT5eSk+XsrKkgAApJEQaOlTy9f3f8eMjWig8NFC3LdygbenZ5dYqLjH15FfblbTvjOaN660Gvl4ufjUA3I3CEgAAAAAAOISvrzRyZMWO7do0QGsfi9JDS3/RBylHbOb/2ZauiNgEfTwhQv1bBTs4KYDqjC3hAAAAAADALfy8rVpwRx+9PbanvK22FcWBs7mKemOlXkvaJ9NkizhQV1BYAgAAAAAAtzEMQ/cNaK3VUyPVoZGfzbyw2NS0ZakatzBZ5/IK3ZAQgKtRWAIAAAAAALfrHRqo9dOidGvPZnbnS345pn4zErX5aKaLkwFwNQpLAAAAAABQLQTW89THEyI08+bu8rQYNvNdp85r0Kwkvbf2IFvEgVqMwhIAAAAAAFQbhmFoamRbJT4yRK2D69nM84pKdP+SzZr80Sadzy9yQ0IAzkZhCQAAAAAAqp3+rYKVHBOtG7qE2J2/n3xYA2Ylant6louTAXA2CksAAAAAAFAtNfD10rLJ/fTy9V1k8bDdIr4tPVv9ZyZqUcphN6QD4CwUltXc999/r7vvvlt9+/ZVz549de211+qVV17R2bNn3R0NAAAAAACn8/Aw9KcrO2jFlEFqXt/HZn6+oFgTPtyoBz/drLzCYjckBOBoFJbVWGxsrB599FGtWbNGeXl5slqt2r9/v959912NGjVK+/fvd3dEAAAAAABcIqpdQ6XERGtYx0Z25++sOajBryVp96nzLk4GwNEoLKupr7/+WnPmzJFhGPrDH/6gDRs2KCUlRUuWLFG7du104sQJPfrooyou5q9HAAAAAIC6oUmAt765f6CeGR4mw3aHuDYdPae+MxK09Jejrg8HwGEoLKuhkpISzZo1S5I0ceJE3X///fLxKf3Ye8+ePTVv3jz5+vpq165dWrZsmRuTAgAAAADgWhYPQ88M76Rv7x+oxn5eNvNzeUUa+36yHv88VQVFJW5ICOByUVhWQ2vWrNG+ffskSZMnT7aZN23aVDfddJMkUVgCAAAAAOqkYWGNtXH6UEW1bWB3Pitxn4a+uVIHz+a4OBmAy0VhWQ2tXbtWktS2bVs1a9bM7jGDBw+WJCUnJysnh//nCwAAAACoe5oH+ujHKYP0pys72J2vPZih8NgEfbUt3cXJAFwOCstqaNeuXZKk9u3bX/CY1q1bS5KKi4u1d+9el+QCAAAAAKC6sVo89PL1XfTFPf0VXM/TZn4mp1A3zl2np7/erqJitogDNQGFZTWUnl76l5+mTZte8JiQkJCyxydPnnR6JgAAAAAAqrMbuoYoJSZa/VsG2Z3/Y8VuDXtrtY5m5rk2GIBKo7CshrKzsyVJ9erVu+Axv96E57fHAwAAAABQl7Vu4KuER4bosai2ducJe88oPDZeP+7igz9AdUZhWQ0VFRVJkjw9bT/K/isvr//dCa24uNjpmQAAAAAAqAm8rB6acVN3fTIhQgHeVpv5iewCDX97jf7+XZqKS0w3JARwKRSW1dCvn54sLCy84DEFBQVljy9WbAIAAAAAUBfd2qu5kmOi1at5fZuZaUrPfrdT1727Riey8t2QDsDFUFhWQ35+fpKkvLwLX1cjNze37LG/v7/TMwEAAAAAUNN0aOSnVVMjdf/AVnbn36edUnhsgpL2nXZxMgAXQ2FZDf16s50TJ05c8Jhfb8wjlb8BDwAAAAAA+J96nha9dWsvvX9HH/l6WmzmR8/l6crZq/XKT7tlmmwRB6oDCstqKCwsTJK0b9++Cx5z4MABSZLValWbNm1cEQsAAAAAgBprfEQLrZsWpS5NbHcpFpeYevKr7bp53nqdySmwczYAV6KwrIYGDBggSdq1a5dOnTpl95hVq1ZJknr16lXujuEAAAAAAMC+rk0DtG5alMaHh9qd/2dbuiJiE7T+YIZrgwEoh8KyGoqIiFDTpk1lmqbefvttm/mxY8f0xRdfSJLuuOMOV8cDAAAAAKDG8vO2asEdffTWrT3lbbWtRQ6czVXkG0l6PWkfW8QBN6GwrIY8PDw0ffp0SdKCBQv02muvKScnR5L0yy+/aPLkycrJyVFYWJiuu+46d0YFAAAAAKDGMQxD9w9srdVTI9WhkZ/NvLDY1GPLUjVuYbLO5RW6ISFQt1FYVlM33XSTxo8fL0l6/fXX1a9fP0VERGjs2LHat2+fmjRporfeeksWi+0FgwEAAAAAwKX1Dg3U+mlRGtOjmd35kl+Oqd+MRG0+muniZEDdRmFZjf31r3/VG2+8ocGDB8vPz0/5+flq0aKFJkyYoGXLlql58+bujggAAAAAQI0WWM9Tn0yM0Mybu8vTYtjMd506r0GzkvTe2oNsEQdcxOruANXRzJkz9eabbyo0NFQrVqyo1Ll79uzRRx99pLVr1+rw4cMqKipSkyZNFBYWphtvvFHXXHONrNaK/9c+bNgwDRs2rLIvAQAAAAAAVJBhGJoa2Vb9Wwbp9oXJOpiRW26eV1Si+5dsVuLe03pjdA/5eVeuTsnJkVasMLR+fUPl5HjI17dEx44ZuuoqydfXka8EqB0oLH/nl19+0TvvvFOlc1977TXNmTNHRUVF5Z4/dOiQDh06pB9//FHdu3fXK6+8onbt2jkiLgAAAAAAcJABrYOVMj1ady/eqK+2n7CZv598WBsOZ2jJxL7qEhJwyfXS0qTZs6X586WMDIukNuXmQUHS5MnSlClSWJhDXgJQK7Al/DcOHTqkhx9+WIWFlb+g7gsvvKDXX3+9rKy0Wq3q1q2b+vbtq+Dg4LLjUlNTNWHCBB05csRhuQEAAAAAgGM08PXS55P76+Xru8jiYbtFfFt6tvrPTNSilMMXXCMzUxozRurUSZoxQ8rIsH9cRoYUG1t63JgxpecBoLAsk5aWprvuuksnT56s9LnLly/XwoULy76/9tprFR8fr7i4OP3/9u47Oqpq/f/4Z1JJCCS0BASkJ0gRAlKkYwFEsQCKInJFRSwggvcieC9FwC8qF1AsKEpT0FBVVBBFpPeiAkJoEgJKaAkJCSFtfn/kx7kzmcxkJgnJTPJ+rcVa58w+s8/ek4eZ5JldFi1apE2bNmnixIkKCAiQJF24cEHDhg1j7QsAAAAAANyQl5dJo7rW189Dble18v425clpmXrii30asuw3paZnWpWdOSN16CCtWOHaPVesyH4e45sApoRLkr755huNHz9eV69ezfviHNLT0/XWW28Z5127dtU777wjL6//5YJ9fX3Vr18/Va9eXUOGDFFGRoYOHjyo7777Tr169SqUPhSHzMzMvC9CqZUzPogXOEK8wFXEDFxBvMAVxAtcQbyUfO1qBWvXS+01MOo3rTt20ab8k+2ntDMmXlEDIlWvUlklJEjdu3vr4EHbkZnOOHBA6t7drA0bMhUcXMDGw6OV9vcXk7kUD/OLi4vT9OnT9fXXX+da7symO6tWrdKIESMkZU8D/+mnnxzu3j1x4kQtWrRIktS4cWOtcPUrl2K0b98+ZWVlFXczAAAAAAAoUplZZs05mKRPD1xRbkmUsr4mjWsTotUzG+uXXyrkcoVrunaN19SpJwpcD1CUvLy8FBkZWTh1FUotHmjWrFnq0aOHVbKybt26eu6551yqZ9WqVcZxu3btHCYrJalfv37G8cGDBxUbG+vS/QAAAAAAQNHy9jLp2abl9V6Xiqrgb5tKSU4369XN8frFfEbyKvhAn19+qaBTp2ynogOlRalNWM6ZM0cpKSnG+cMPP6ylS5eqVq1aTtdhNpu1Y8cO47x9+/Z5PiciIkJVqlQxzvMawQkAAAAAANxDm2pltLBHFTWv4pdruanln1K/LVK5lFzLXbF8eZW8LwJKqFK/hmWTJk306quvqnXr1i4/98yZM0pMTLSqyxkRERHG5j779+93+b7uokmTJvL29i7uZsBNZWZm6sCBA8Y58QJHiBe4ipiBK4gXuIJ4gSuIl9Kra+ssjfvxqP67wXbatummBJmf2CitjpT+DMv3PVatCtWHH1ZSYGBBWgpP5SnvL/v3778hyweW2oRl69at1bt3b915550ymfK3GO7Jkyetzm+++WannlejRg3j+NSpU/m6tzvw9vaWj0+pDSG4iHiBK4gXuIqYgSuIF7iCeIEriJfSw8dHertXY3WsW0lPRv2q+KvpVuWmgHSp906Zd9SXtkRIZtcnuMbHm7Rli4/uuaewWg1PVtreX0rtlPAPP/xQd911V76TlZKMUZJS9sKilStXdup5llPCLesAAAAAAACeo1fjqtozopPqBITkWm5qc0x6eLtUNjVf9cfFFaBxgAcrtQnLwnD58mXjuGzZsvLycu7lDAoKyrUOAAAAAADgWWpXDNTQKu1l3lsn13JTzYvSExukmhdcrjspqaCtAzwTCcsCuHbtmnFcpkwZp5/n5/e/xXnT0tIKtU0AAAAAAKBohZTzkn5pIvO3LWW+Zjtt11Q2TXp4m9T2iCSz0/WWK1eIjQQ8CAnLAkhP/98aFc6OrpRkteZARkZGobYJAAAAAAAUrapV///BkZukhR1lPlfe5hqTSTK1j5b67JACrtmU5yYs/3v2AB6NhGUBWO7O5MqOSJZJSl9f30JtEwAAAAAAKFqdO0shIf//JCFI+rKDzL/nvjGvqfZ56YmNUvWLDuusUCG7XqA0ImFZAAEBAcax5fTwvFhOA/f39y/UNgEAAAAAgKIVGCgNGmTxQIa39FMzmVc1lznd2+Z6U7lU6ZFt0m3HZW+K+KBB2fUCpREJywIIDg42jpOTk2U2O7cOxZUrV4zjEOMrGAAAAAAA4Kmeey6XBw/VlBZ1lPlikE2RycssU+c/pAd2Sf62+1vkWh9QSpCwLIAwi8UkMjMzFR8f79Tzzp8/d9pSmQAASgBJREFUbxxXrly50NsFAAAAAACKVni41Lt3LgUXy2UnLf+onuvzTPXjsqeIhyUYj/XuLTVocGPaCXgCEpYFUKtWLavz2NhYp553+vRp47hOnTqF2iYAAAAAAFA85s6VmjTJpSDdR1odKfOPt8qcYZuKMQVflR7dIjX/U42bmDV37o1vK+DOSFgWQPXq1a2mdB86dMip5x0+fNg4btiwYWE3CwAAAAAAFIPgYOmHH+wkLWWS9tfK3pAn3nZxSpNPlkx3HlDdYXtl8k+/4W0F3BkJywJq06aNcbx169Y8rz98+LAuXLhgnLdt2/aGtAsAAAAAABS96tWlzZvtTA+XpHPB0sJOMh+plmvxd0f+Uqt3Num3vy7fuEYCbo6EZQF169bNOP7ll18UFxfn8Povv/zSOK5Xr54iIiJuWNsAAAAAAEDRCw6Wli+XoqOlESMkm/1203ylb1sqYHtjeZlNNs8/eiFZt8/crDk7Tjm9wS9QkpCwLKBu3bopNDRUkpSWlqbRo0crIyMj12s3bdqkpUuXGudPPPFEkbQRAAAAAAAUvfBwafp06cwZ6dtvMzV+/En985+nNH78SX37bZbO/1hXW15qr5tDAmyem5qRpcFLf9NTi39V8rXc8wxASUXCsoD8/Pw0cuRI43zr1q0aPHiw1QY8GRkZWrJkiYYNG6bMzExJUnh4uB5++OEiby8AAAAAAChagYFSjx5m9ep1UY8+el69el1Ujx5mBQZKbWpV0J4RnXTvLaG5PnfB7tNqO3OzDsUlFXGrgeLjU9wNKAkeeugh7du3T4sXL5aUnbTs1q2bIiIiFBQUpOPHj+vSpUvG9SEhIXr33Xfl48PLDwAAAABAaVeprJ++GdRaU9cf139+OKzMLOtp4AfjktT63U36uO+t6t+iRjG1Eig6jLAsJK+//rqee+45+fr6SpKysrJ06NAh7dq1yypZWa9ePS1cuFB169YtrqYCAAAAAAA34+Vl0qt31NfPQ25XtfL+NuXJaZka8MU+Pb/8d6WmZxZDC4GiQ8KykJhMJo0YMULffPONnnrqKYWHh6t8+fLy9fVV5cqV1bFjR73xxhv6+uuv1aBBg+JuLgAAAAAAcEOd6lXSvhGddWeDyrmWf7wtRu3f36zjF5KLuGVA0WFOcg69e/dW79698/38evXq6dVXX9Wrr75aiK0CAAAAAAClRWg5f/0wuK0m/XREk9YeUc6NwvedSVTLdzZqbr/m6t20WvE0EriBGGEJAAAAAADgZry9TJrQPUI/DG6rKmX9bMoTUzPUd8FujfjmgNIysoqhhcCNQ8ISAAAAAADATd0dXkV7R3ZShzoVcy1/d9Of6jJrq07FpxRxy4Abh4QlAAAAAACAG6seHKCfn7td/+pSL9fy7THxajFjo1YdiivilgE3BglLAAAAAAAAN+fr7aW37mukbwa1UoUAX5vySynpum/OTr226pAyMpkiDs9GwhIAAAAAAMBD9GpcVXtGdFKrmiG5lr+57pju/ni7/k5MLdqGAYWIhCUAAAAAAIAHqV0xUBtfbKehHerkWr7hxEVFTt+gdUcvFHHLgMJBwhIAAAAAAMDD+Pt4a+aDTbT4iZYq5+9jU37uSpq6zd6mST8dUVaWuRhaCOQfCUsAAAAAAAAP9XCzm7Tr5Y66tVp5m7IsszR+TbR6frpD569cK4bWAflDwhIAAAAAAMCDhVcJ0raXOujpNjfnWv7jkfNqMWOjtvx5qYhbBuQPCUsAAAAAAAAPF+DrrU8ebqb5jzZXoK+3TfmZy6nqMmur/rv+uMxmpojDvZGwBAAAAAAAKCEG3lZTO4Z3VMPQIJuyzCyzRn33hx6av0vxKWnF0DrAOSQsAQAAAAAASpDGVctp5/COerxF9VzLVx6MU8sZG7U7NqFoGwY4iYQlAAAAAABACRPk76PPHovUR31vlb+PbfrnZPxVdXh/iz7Y8idTxOF2SFgCAAAAAACUQCaTSc+2raWtwzqoXqVAm/K0zCwN++qA+i/aq6TUjGJoIZA7EpYAAAAAAAAlWGT1YO1+uZN6N62aa/niX/9Sq3c36ve/Eou4ZUDuSFgCAAAAAACUcMEBvlo68DbNeKCxfLxMNuVHzier7cxNmrvzVDG0DrBGwhIAAAAAAKAUMJlMGt6xrja+2F41Q8rYlKdmZOmZJb/pqahflZLGFHEUHxKWAAAAAAAApUjbWhW0d0Rn9WwYmmv5/N2xajtzsw6fSyrilgHZSFgCAAAAAACUMpXK+mnlU631fz0bKpcZ4jpwNkmt3tmkL/edKfrGodQjYQkAAAAAAFAKeXmZNPqOBvr5udtVrby/TXlyWqYeX7RXzy//XanpmcXQQpRWJCwBAAAAAABKsc71KmvviM66s0HlXMs/3hajDu9v0YmLyUXcMpRWJCwBAAAAAABKubBy/vphcFuNvTtcplymiO89c1ktZ2zUV/v/LvrGodQhYQkAAAAAAAB5e5n0evcIrX6mjSqX9bMpv5yaoT4LduuVlQeVnplVDC1EaUHCEgAAAAAAAIZuEaHaN7KT2teukGv5jI0n1OXDrYpNuFrELUNpQcISAAAAAAAAVqoHB2jd8+30ry71ci3fFhOvFtM3aPWhuCJuGUoDEpYAAAAAAACw4evtpbfua6SvB7VSSICvTfnFlHTdO2en/r36kDKYIo5C5FPcDQAAAAAAAID7ur9xVe0d0Un9Pt+jXbEJNuVTfj6mbSfjtejxFqpWvozT9aakSBs2SGfPSleuSEFBUtWqUufOUmBgIXYAHoeEJQAAAAAAAByqXTFQG19sp399d0jvb/7Tpnz98YtqMWOjvni8hbrWr+ywriNHpFmzpPnzpYQE2/KQEGnQIOm556Tw8EJpPjwMU8IBAAAAAACQJ38fb818sImiBrRUOX/bMXBxSdd098fbNHntEWVlmW3KL1+W+vSRIiKkd97JPVkpZT8+Y0b2dX36ZD8PpQsJSwAAAAAAADjtkeY3adfLHXVrtfI2ZVlmadwP0bp3zg6dv3LNePzMGalDB2nFCtfutWJF9vPOnCloq+FJSFgCAAAAAADAJeFVgrTtpQ56us3NuZaviT6vFjM2auvJS0pIkLp3lw4cyN+9DhyQevRgpGVpQsISAAAAAAAALgvw9dYnDzfT/EebK9DX26b8zOVUdflwqzqNOK6DB22niLviwAHpqacKVAU8CAlLAAAAAAAA5NvA22pqx/COahgaZFOWkWXWgUp/SA/skvzTCnSfFSuko0cLVAU8BAlLAAAAAAAAFEjjquW0c3hH9Y+snmu5qX6cNGCTFJZQoPt89FGBng4PQcISAAAAAAAABRbk76PP+0fqo763yt/HNuVkCkmRHt0iNTspKX9TxOfNk1JSCtZOuD8SlgAAAAAAACgUJpNJz7atpS1D26tqQKBtuU+WTHftl+7dK/lmuFx/fLy0YUNhtBTujIQlAAAAAAAAClWLGiH6d61OMh+pmmu5qeFf0oCNUuVEl+uOiyto6+DuSFgCAAAAAACg0GVd9ZW+vU3mdY1lzjTZlJsqJkv9N0mNT7lUb1JSYbUQ7oqEJQAAAAAAAApdUJAkmaR9daXF7WVOLGNzjck3S6Yev0ndf5V8nJsiXq5coTYTboiEJQAAAAAAAApdVcvZ4H9XkD7vLPOJ0FyvNTWJlfpvlirmPXwyLKyQGgi3RcISAAAAAAAAha5zZykkxOKBVD/pq9Yyb2ooc5bt9aYqSdLjm6SGZ+zWWaFCdr0o2UhYAgAAAAAAoNAFBkqDBuV81CTtbCAtvV3mK/42zzH5Zcp0717pzt8l70yb8kGDsutFyUbCEgAAAAAAADfEc8/ZKThdOXuKeEzlXItNzWOkx7ZIwcnO1YcShYQlAAAAAAAAbojwcKl3bzuFKf7S8rYyb2sgs9m22BR2WRqwUar/t6Tseho0uHFthfsgYQkAAAAAAIAbZu5cqUkTO4Vmk7S1obS8jcwpfjbFpjIZMj2wW5X7HNTHn+Sy8CVKJBKWAAAAAAAAuGGCg6UffnCQtJSkmFDp804yn6mQa/HF2if0wKKtik24emMaCbdCwhIAAAAAAAA3VPXq0ubNDqaHS9KVAGlJO5l31cu1eFtMvFpM36DVh+JuTCPhNkhYAgAAAAAA4IYLDpaWL5eio6URI6SQkFwuyvJShf2NdL+5lcr7+doUX0xJ171zdurfqw8pI5Mp4iWVT3E3AAAAAAAAAKVHeLg0fbo0ebK0YYMUFyclJUnlyklhYVLnzlJgYFX9ebGT+n2+W7tPX7apY8rPx7TtZLwWPd5C1cqXKYZe4EYiYQkAAAAAAIAiFxgo3XOP/fI6lQK1aWh7/fPbP/TBlpM25euPX1SLGRu1qH8L3dGg8o1rKIocU8IBAAAAAADglvx9vPXeQ0315YAWCvL3timPS7qmbrO3afLaI8rKMhdDC3EjkLAEAAAAAACAW+vXvLp2v9xJTauVsynLMkvjfojWvXN26ELytWJoHQobCUsAAAAAAAC4vfAqQdr+Ukc91frmXMvXRJ9X5PSN2nryUhG3DIWNhCUAAAAAAAA8QoCvtz59pJnm9WuuAF/btNaZy6nq8uFWTVt/XGYzU8Q9FQlLAAAAAAAAeJR/tKqpHS91VMPQIJuyjCyz/vXdH+o9f5fiU9KKoXUoKBKWAAAAAAAA8DhNqpXXzuEd9Vhk9VzLvzkYp9ve2aQ9pxOKtmEoMBKWAAAAAAAA8EhB/j5a2D9Ss/o0lZ+3bZrrz0spav/eFn245SRTxD0ICUsAAAAAAAB4LJPJpCG319bWYe1Vt1KgTXlaZpaGfrVfjy/aq6TUjGJoIVxFwhIAAAAAAAAer0WNEO1+uZMealI11/KoX/9Sq3c3av/fiUXcMriKhCUAAAAAAABKhJAAXy37x22afn9j+XiZbMqPnE9W25mbNH9XbDG0Ds4iYQkAAAAAAIASw2Qy6eVOdbXxxfaqGVLGpvxqepaeWvyrnor6VSlpTBF3RyQsAQAAAAAAUOK0rVVBe0d01j0NQ3Mtn787Vm1nblb0uStF3DLkhYQlAAAAAAAASqRKZf307VOt9cY9DZXLDHEdOJukVu9uVNS+M0XfONhFwhIAAAAAAAAllpeXSWPubKCfn7tdVcv525RfuZap/ov26oXlv+taRmYxtBA5kbAEAAAAAABAide5XmXtG9lZd9SvnGv5R9ti1OH9LTpxMbmIW4acSFgCAAAAAACgVAgr5681z7bVf+5qIFMuU8T3nL6sljM26usDfxd942AgYQkAAAAAAIBSw9vLpIk9GmrVM21UuayfTfnl1Az1nr9br6w8qPTMrGJoIUhYAgAAAAAAoNTpHhGqvSM6qX3tCrmWz9h4Ql0+3KrYhKtF3DKQsAQAAAAAAECpVCMkQOueb6dXOtfLtXxbTLxaTN+gHw6fK+KWlW4kLAEAAAAAAFBq+Xp7aWqvRvrqyVYKCfC1Kb+Ykq575+zQf1YfVgZTxIsECUsAAAAAAACUeg80qao9L3fSbTWCbcrMZun/fj6qbrO362xiajG0rnQhYQkAAAAAAABIqlMpUJuGtteL7WvnWr7++EVFztioX45dKNqGlTIkLAEAAAAAAID/z9/HW+891FRfDmihIH9vm/K4pGu6++NtemPtEWVlmYuhhSUfCUsAAAAAAAAgh37Nq2v3y53UtFo5m7IsszT2h2jdN2eHLiRfK4bWlWwkLAEAAAAAAIBchFcJ0vaXOmpQ65q5lv8QfV4tpm/U1pOXirhlJRsJSwAAAAAAAMCOAF9vzXmkueb1a64AX9tU2unLqery4VZN33BcZjNTxAsDCUsAAAAAAAAgD/9oVVM7XuqoiCplbcoyssz657d/qPf8XUq4ml4MrStZSFgCAAAAAAAATmhSrbx2vdxJj0VWz7X8m4Nxajljo/acTijahpUwJCwBAAAAAAAAJwX5+2hh/0h92Lup/LxtU2t/XkpR+/e2aNbWk0wRzycSlgAAAAAAAIALTCaTnmtXW1uHtVfdSoE25WmZWXpxxX49vmivklIziqGFno2EJQAAAAAAAJAPLWqEaPfLnfRQk6q5lkf9+pdavbtR+/9OLOKWeTYSlgAAAAAAAEA+hQT4atk/btO0+xvJx8tkU37kfLLaztykhXtOF0PrPBMJSwAAAAAAAKAATCaTRnSqpw0vtFON4DI25VfTszRo8a/aeSq+GFrneUhYAgAAAAAAAIXg9toVtXdkJ93TMNSmLDPLrDXR54uhVZ6HhCUAAAAAAABQSCqX9de3T7XW5HsaKucM8YgqQcXTKA/jU9wNAAAAAAAAAEoSLy+TXruzgdrXrqApPx/T0QvJGnhbDT3crFpxN80jkLAEAAAAAAAAboDO9Sqrc73Kxd0Mj8OUcAAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZMZrPZXNyNgGfYs2eP1bmXF/luOJaVlWUcEy/IC/ECVxEzcAXxAlcQL3AF8QJXEC9whSfEi2UbJally5aFUq9PodSCUilnUAKOEC9wBfECVxEzcAXxAlcQL3AF8QJXEC9wRWmLF/dMzwIAAAAAAAAolRhhiXxz1+HIAAAAAAAAuPFu1MhP1rAEAAAAAAAA4DYYIgcAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNvwKe4GwNbx48cVFRWlHTt26PTp08rIyFBoaKjCw8PVq1cv3X333fLxKfwf3d9//62oqCht3rxZMTExSk1NVZUqVVS3bl317NlTPXv2VEBAgEt1/v7771q6dKl27dqluLg4mc1mhYWFqXHjxnrggQfUqVMnmUwmp+szm81au3atVq5cqf379+vixYsKCAhQWFiY2rZtqz59+qhhw4audt2jES+uSUtL03333aeYmBgNHTpUw4YNK1B9noZ4sS8lJUXffPONNm/erEOHDik+Pl4ZGRkKCQlReHi42rdvr759+6p8+fKudt9jES/2JSUlafny5Vq/fr2OHDmixMREBQcHq1q1aurUqZPuv/9+1a5d28WeezbixXWXLl3Sfffdp4sXL0qSoqOjC1ynJyFmcjdkyBCtX7/epfvffvvtmj9/vkvP8TTEi2Pnzp3TypUrtX79ep06dUqXLl1SmTJlVKNGDbVu3Vr9+vVTvXr1XKrTkxEv/zN69Gh99dVXBepX69at9fnnnxeoDndGvNiXkZGh77//XmvXrtWBAwd06dIlmUwmVapUSc2aNVPPnj115513FsrvRTmZzGazudBrRb699957+uijj5SRkWH3miZNmmjq1KmqW7duod03KipKb775pq5evWr3mtq1a+vtt99Ws2bN8qwvPT1dkyZN0uLFix1e16FDB02ZMkWhoaF51hkXF6cRI0Zoz549dq8xmUx68sknNXLkSPn5+eVZp6cjXlz3xhtv6LPPPpOkUpewJF7sW7VqlV5//XUlJCQ4vC4oKEhjxoxR375986zT0xEv9q1Zs0bjxo1zGC9eXl4aNGiQhg8fLn9//zzr9HTES/68/PLLWr16tXFemhKWxIx9HTt21Llz5/K8zlJJT1gSL47NmzdPM2fOVEpKit1rvLy89Mwzz2jEiBHy8irZEy2JF2skLB0jXuw7fPiwXn75Zf35558Or2vatKlmzJihmjVr5lmnK0hYupHJkydbvQn4+PgoIiJCAQEBOn78uOLj442yypUra8mSJapevXqB7zt//nxNmTLFODeZTGrQoIFCQkJ08uRJq1+YAgICtGjRIjVu3NhufWazWUOHDtXatWuNx/z9/RURESFvb28dPXpUV65cMcrq1q2rxYsXOxy1dOnSJfXr10+nTp0yHgsJCVH9+vV19epVRUdHW73B3HvvvZo+fbrzL4IHIl5cH+W2aNEiTZw40TgvTQlL4sV+vORsoyRVrFhRtWvXlre3t06ePKnz589blQ8bNkxDhw7N+wXwUMSL/XhZunSpxo4dK8tfn6pXr64aNWooJSVF0dHRSktLM8o6dOig2bNny9vb2/kXwsMQL/kbdf3DDz9o+PDhVo+VloQlMeP4d97bb7/dOO/QoYNTfWvUqJFeeeUVp671NMSL/Xgxm82aOHGivvjiC+Mxb29v3XzzzapSpYri4uIUExNj9Zx+/fpZ/T5c0hAvtvEyd+5cbdmyxaX+HDt2TGfPnjXOR4wYoeeee86lOjwB8WL//eXQoUMaMGCA1fPKlSuniIgImc1mHT58WMnJyUZZlSpVFBUVpRo1ajj/QuTFDLewevVqc3h4uPFv2LBh5vPnzxvlaWlp5qioKHOzZs2Max566CFzVlZWge67b98+8y233GLU+fjjj5tjYmKM8qysLPOaNWvMbdq0Ma7p1KmTOSUlxW6dn376qVVfJkyYYE5MTDTKr169ap41a5a5UaNGxjUvvviiw3Y+++yzxrVNmzY1f/HFF+b09HSj/Ny5c+aXX37Z6r4LFiwowCvj3ogXx/GSm3nz5pkjIiKs7jVz5kyX6/FExIv9eNm7d69VXHTt2tW8fv16m75v3brV3K1bN6t7r1+/vgCvjvsiXuzHy+HDh82NGzc2ru3WrZt5165dVtdcvnzZPGnSJKv7Tp8+vQCvjHsjXlz/PDKbzeaLFy+a27Zta3W/8PDwfNXlaYgZxzGzefNmq8+k0o54cRwvH3/8sc3rc+rUKatrDh48aH7wwQetrvv555/z+cq4N+Ilf59JOR07dswcGRlp1Dty5MhCqdfdEC/24yUtLc3cvXt349rGjRub582bZ05LSzOuuXbtmnnWrFlWfenXr1+BXpucSFi6gbS0NHOXLl2MH/KQIUPMmZmZuV67adMmqyBbuXJlge79yCOPWP3nu3r1aq7XHTp0yOpNa9asWbled/HiRavrxo8fb/fey5Yts/pPtWfPnlyv27hxo9V133//vd06R40aZVzXpk0bc1JSkv3OeyjixXG85JScnGweOXKkzR+F4eGlI2FJvDiOl8cee8zqFwHLX1Jyio+PN999993G9T169LDfeQ9FvDiOl+eee864pn379uZz587ZrXPChAnGtZGRkVa/NJYUxItrn0eWXnrppVw/l0o6YibvmPnkk0+M655//nmX+ljSEC+O4yU2NtbcpEkTqwSFvUTK5cuXzZ06dTKuffTRRx2/AB6IeMn/Z5Klq1evmu+55x6r33eTk5MLVKc7Il4cx8v3339vdd3y5cvt1jlv3jyrazdu3Gi/8y4q2YtXeIiffvpJf/31l6TsIcjjxo2zu65Ihw4d1K9fP+N83rx5+b7vb7/9pl9//dU4Hzt2rMqUKZPrtQ0bNtSLL75onC9YsECZmZk21y1btswYFhwSEqJRo0bZvX+fPn3UpUsX49xeXxYsWGAcd+jQQT179rRb5/jx41WpUiVJUnx8fIHX6nBHxEs2Z/qydetW9enTR999912e15ZUxEu23PoSGxtrtSbuqFGjVLlyZbt1hoSEaPTo0cb5iRMndOjQIbvXeyLiJVtufblw4YLVJhgvvPCCqlSpYrfOYcOGGa9dcnKytm7davdaT0W8ZHO1L6tXr9YPP/wgSaVqEy+JmLnOUV8sP1dK20aSOREv2ez1Ze7cucYSJA0bNtR//vMfu5telC9f3mo67759+3T58mW7bfBExEu2gvRFkqZOnarjx49Lknx9fTVjxgwFBgYWqE53RLxks9eXTZs2Gcd16tRR79697db5xBNPqGrVqsa5q5vGOULC0g2sWrXKOG7Xrp1uuukmh9db/mc5ePCgYmNjC3zfevXqKTIy0uH1ffv2NXbGunTpknbu3GlzjeXC8ffcc0+eb26Wfdm4caPNQtGXL1+2+iOvT58+DusLDAzU/fffb5xf/4OgJCFesuUWL9fFxcXp2Wef1aBBg3TixAnj8UcffVQtWrRweI+ShnjJllu8bN++3Tj29/fX3Xff7bA+KXsjBF9fX+N8//79eT7HkxAv2XKLl6NHjxrJJZPJ5PDLMyl7HdTrX6BJsllDrCQgXrI5+jzK6dKlS8bacX5+fhoxYoRTzyspiJlsjmLm8OHDxnFpT1gSL9lyi5f09HR9++23xvm///3vPNdK7tGjhwYMGKChQ4fqtddeyzXx4cmIl2yufCbltHv3bi1atMg4HzJkSIl9HyJestmLF8v1Sxs1auSwPm9vbzVt2tQ4P336tMPrXUHCspiZzWbt2LHDOG/fvn2ez4mIiLAa1bFu3bp83Xvbtm0u3Tc4OFhNmjQxzn/55Rer8oSEBKtvhZ1ZJLxt27bGh2tqaqrNCJSdO3caH6Ymk8mpdlpes3fv3hL17SHx4jhertu/f782bNhgnIeEhGjq1Kl6/fXXjTf80oB4cRwvcXFxRjzUrFlTfn5+edbp6+uroKAg49xyIW5PR7w4jpfbb79dO3bs0ObNm7Vo0SKFhIQ4rM9sNlstUl62bNk82+BJiBfnPo9ymjBhgi5duiQpexRuvXr1nHpeSUDM5B0z165ds9qJtaQmCpxBvDiOlz179igxMVFS9i7CrVu3zrPOChUqaOzYsRo2bJgGDhyoihUr5vkcT0G85O8zyVJGRoZef/11Y1PBevXqaciQIS7X4wmIl7zjpVy5csaxMwlwyw2Q/f3987zeWSQsi9mZM2eMDxtJVsHoSEREhHGcnxE+6enpViPPHO045ex9o6OjrXZNdabOwMBA3XzzzXbrtPyWuUaNGgoODs6zTstf7rKysnTw4ME8n+MpiBfH8ZKTj4+P+vXrp1WrVlmNvC0tiBfH8TJ06FDt379fmzZt0nvvvedUG5OSkqy+BClJ0zmJF+feX6pUqaKWLVvmWd/mzZt19epVl9rgSYgX1z6PpOxRFWvWrJGU/Xo9/fTTeT6nJCFm8o6Z6Oho44v6wMBA1axZ06m2lkTEi+N42bt3r3Hcpk0bp9pYkhEvrn8m5bR48WIdOXLEOB8zZoxTX+Z7IuIl73ipX7++cbxnzx6HScurV69avScV5pexJCyL2cmTJ63OLQPHEcut4k+dOuXyfU+fPq309HTjvFatWgW+r2Vf/Pz8VK1atUKt09k2VqlSxWodiJI0DY94ca4vAQEBeuyxx/T9999r4sSJVtMySxPiJe++eHl5KTQ0VHXr1nWqvp9++klZWVnGeUkaHUW8FLwv1504cULjx483ziMjI9W8efN81+eOiBfX+nLx4kVjKrivr6+mTJmS5/TNkoaYybsvll/UR0REKDU1VcuWLdOQIUPUoUMHNWnSRG3atFHfvn317rvvKi4uzqn7eiLixXGd0dHRxnGDBg2M461bt2r06NHq3r27mjdvbsTLBx98YIzuLomIl4L1JTk5WR988IFx3qVLF3Xs2NGlOjwJ8ZJ3X/r162ckrBMTE/XWW2/ZrevNN980BnT4+vrq4YcfdqoNzig9cyPd1Pnz541jLy8vhxs+WLIcjmxZR37um7M+Z+978eJFZWVlGYvTWtbpbH05r83ZrnPnzuWrzkqVKunMmTO51unJiBfn+tK+fXunhtiXdMRLwfti6dq1a/r444+N85CQkBK1Jirxkv++ZGZmKiUlRdHR0Vq9erWWLl2qa9euSZJCQ0M1depUp+vyFMSLa32ZMGGCsYTE888/r/DwcKfvU1IQM3n3xXJaX2Jiorp162b1u7CUPf0vISFB+/fv19y5c/Xiiy/q2WefdboNnoJ4cdwXy/XzwsLCFBcXp7Fjx1otiSRlj3y6Hi/z58/X+PHjdd999zndBk9BvBSsL59//rkuXrwoKXsZtpK+vjLxkndfwsLCNGrUKE2ePFmSFBUVpbNnz2rw4MFq3LixTCaT/vjjD82ePdtqmvqwYcPyXA/UFSQsi5nl1MKyZcva3ZkqJ8s11PKzRmPO5zg7rdFyLQOz2azExERjHa+EhIRcr8uLo75YnrtSp+W1lsO9PR3xUvC+lCbES+HGy3//+1+rbzEHDhxYotZEJV7y35c2bdooKSnJ5vHOnTtr7NixJXJaJ/HifF++//57/fjjj5KkW265pUQml5xBzOTdF8uE5fVdeiXppptuUvXq1ZWenq6jR48au8GmpqZq2rRp+vPPPzVlyhSn2+EJiBfHfblw4YJxnJKSov79+xsbXQQEBCg8PFx+fn46ceKEkYhKTEzUP//5TyUkJGjAgAFOt8MTEC/578vVq1e1YMEC47xbt24lfv1c4sW5vjzxxBOqXr26pkyZolOnTmn9+vV2dwAPCQnRv/71L/Xt29fpNjij5Pyl5aGuj8CQZHc7+9xYrieRlpZWoPu6cm/L3XFz1mPZjsLqS2G8Pjn76smIl4L3pTQhXgovXhYvXqzPPvvMOK9evboGDRqU7/rcEfGSv74kJSXlmqz08fFRYGCgzpw5UyITlsSLc325cOGCMRXcx8dHU6ZMsWlLaUHMOO6L2Wy2muYrSR07dtSIESOs1iRLT0/Xjz/+qClTphijYlasWKG6detq8ODBTrfF3REvjvtiOSDjjTfeUGJiovz9/TVy5Eg99thjxqYXWVlZWrdunSZMmKDz58/LbDZrypQpatiwoW677Tan2+LuiJf892XFihVWywU8//zzTj/XUxEvzvclPDxcd955pxYuXGg1nd2Sj4+PnnzySd1zzz1O399ZrGFZzCx/6M5m9iVZjeqx3JHJWTmf4+y9c44mur4wuHRj+mJ57kqdlutC5ef1cVfES8H7UpoQL4UTL19//bUmTJhgnPv6+uqdd95RYGBgvupzV8RL/vpy5swZVahQQZGRkWrdurXCwsKM569evVr/+Mc/NGbMmBL3fkW8ONeXCRMmGKMfBg8erFtuucXp+ksaYsZxX86cOWP1R+jAgQP1ySef2Gyg4Ovrq3vvvVfLly9X1apVjcc/+OCDErUMEvHiuC+WCYbExET5+vrqk08+0ZNPPmm1Q6+Xl5fuuusuRUVFGSOyMjIy9OabbzrdDk9AvOS/L1988YVx3KZNm1LxOUW8ONeX+fPnq0ePHpo3b55xn9DQULVq1UqRkZFW7ynvvPOOunfvrs2bNzvdBmeQsCxmlok1y40c8mIZVPn5pj5nMDt775zBbHnvG9GX/NZp+Z+4JI1kIF4K3pfShHgpeF8WLlyo0aNHG/c0mUyaPHmybr31VpfrcnfES/760qBBA23fvl1RUVH6/PPPtXHjRi1atMhqR8cVK1Zo0qRJTrfDExAvefflu+++008//SQpO05eeOEFp+suiYgZx32pUaOGfv/9d61du1afffaZxowZI5PJZLeusLAwvfHGG8b51atXtWTJEqfb4u6IF8d9yRkbzzzzjMPdwmvUqKFRo0YZ5/v379evv/7qdFvcHfGSv77s3r1bx44dM84HDhzo9P08GfGSd18WLFigKVOmGInKhg0bauHChdq0aZMWLlyoqKgobdu2TR999JGxadH58+f17LPP2qylWxAkLItZQECAcezK1GXLb9Usv0XLz31duXfO4cKW97YcguxKXyyvzdmXG1GnJyNeSu7P9kYgXvIfL2azWTNmzNCkSZNkNpslZf9xMG7cOD344INO1+NJiJf8xUtuOz3fdtttioqKUpMmTYzHoqKidODAAafb4u6IF8fxcuHCBSNJ7e3trf/7v/+zmn5VGhEzeb/H+Pj4qGbNmmrTpo1TI2U6dOigOnXqGOdbtmxxui3ujnhxHC+WszxMJpNTa1L26tXL6nnES+mJF3tWrlxpHFeuXFldunRx+n6ejHhxHC9nzpzRtGnTjPPIyEhFRUWpVatWVtd5eXmpa9euWrZsmbGZYGZmpsaMGZPrckn5QcKymAUHBxvHycnJxh/Gebly5YpxfH0obn7vm7M+Z+/r4+NjtbCrZTucrU+SsXB4zjpyttOVOgv6+rgr4sVxvMAa8ZK/eLl27ZpGjBihjz76yHjM29tbkydPVv/+/Z2+t6chXgr3/SUwMFBvvvmm1SiYr7/+ukB1uhPixXG8jB8/3pgK/tRTT5XIUdmuImZuzO8wLVq0MI5jYmIKpU53QLw4jpeyZcsax7Vq1XJql2M/Pz+rJQZOnDjhdFvcHfHi+vtLRkaG1qxZY5zff//9JWozSUeIF8fxsnz5ciOh6evrq6lTp9okWy0FBwdr2rRpxpf4Fy9e1IoVK5xuiyMkLIvZ9bWupOxsdHx8vFPPs1yjxpkPKEf3lax3mnP2vhUrVrT6Q8yyzuu70blaZ86+5LdOy2urVKni9PPcHfFS8L6UJsSL6325cOGCnnjiCa1evdp4zN/fXzNnziz0Xe/cDfFS+O8vDRo0UKNGjYzz/fv3F7hOd0G82O/Lt99+q7Vr10qS6tatq2HDhjldZ0lGzNyY32Es68nPrrXuinhx3JcKFSrkepyXihUrGseWuwt7OuLF9b7s2bPHKgZuxIYp7op4cdyXXbt2Gcdt2rRxavPI8PBwtWzZ0jgvrLUsSVgWs1q1almdx8bGOvW806dPG8eWU0GcddNNN1mtVZCf+9auXduqzLIvKSkpTv8HtLx3zr5Y3uPUqVNO1Xfu3DmlpqbabacnI14cxwusES+uxcuJEyf0yCOP6LfffjMeCwkJ0fz583XXXXc5dT9PRrzcmPcXy7aUpD8OiRf78fL+++8bx2azWS+88IKefvrpXP9NnTrVqk7LsrffftupdngKYubGvMdYTuuzHHXn6YgXx/FSv35949iVqZeW69bltqSJpyJeXH9/2bhxo3FctWpVNW3a1Kn7lATEi+N4OXfunHFs+V6TF8v128+cOeP08xwhYVnMqlevbjUE99ChQ0497/Dhw8Zxw4YNXb6vr6+vsc6AK/e1vC7nDmKNGjWyyvY7U2dycrJVIjJnXyynLcTExOjq1asutdFkMln9x/F0xIvjeIE14sX5eDl8+LD69+9v9eFau3ZtLV682Gq6XUlGvDiOl++//17jxo3T008/rbfeesupNkrWyQTLKTyejnixHy+WO3b++eef2rx5s91/OUfdOirzdMSM4/eY5cuXa+LEiRo+fLhL7zGWf3RWq1bN6ee5O+LFcbzkTAzkXOPOnrNnzxrHlrvMezrixfW/kbZt22Ycd+rUyeEmXyUN8eI4XizX3Hb2vUWy/hLElR3LHSFh6QYsd3TbunVrntcfPnzYKnPetm3bIrlvQkKC/vjjD7v3DQoKspr65kyd27dvN3az8vb2VuvWra3KW7ZsaaylkZmZqR07duRZp+V9GzVqZLNWhKcjXuzHC2wRL3nHy/Hjx/WPf/zDajrI9cWlS9IIbWcQL/bjZc+ePVq8eLE2b96sb775xmbHRnssN9rJ+Y2+pyNe+DxyFTFjP2Z27dqlRYsW6YcfftCyZcuc+iMxNTXVaurebbfdludzPAnxYj9e2rVrZxxfvXrVqQ10kpKSdOTIEeO8pI2oI16c/0xKSUlRdHS0cV4a11kmXuzHi+WXX84mVSVZ7Tifc/p7fpGwdAPdunUzjn/55RfFxcU5vP7LL780juvVq5fvEYSW9z1w4ECeu5cuWbLE+AMtODjY6oPyuu7duxvHK1euzHNEpGVf2rVrp/Lly1uVly9f3uo/ZVRUlMP6kpOTrXY769Gjh8PrPRHxki23eIEt4iWbvXhJSkrSs88+azVVt2vXrpo/f75La0KVFMRLttzixfKz6OLFi1YL1duzZs0aq9ewa9eueT7HkxAv2XLGy7p16xQdHe3Uv88++8yqXsuyzz//3GEbPBExky239xjLPxgTExOdeo/58ssvlZiYaJz36tUrz+d4EuIlW27x0qhRIzVo0MA4/+STT/LcOCQqKsoYAe7r61vidoQmXrI58zfSwYMHrb54LWnJa2cQL9lyixfLe+zbt89qZKk9sbGxVoPLcmtnfpCwdAPdunVTaGiopOwht6NHj7Y7cmPTpk1aunSpcf7EE0/k+76RkZFWU67HjBljd2epQ4cOadasWcb5I488ojJlythc16dPH2MHqQsXLmjixIl277906VJt2rTJOB84cGCu1z3++OPG8S+//OJwx6kJEybo0qVLkrJ3aC2Jm2QQL9nsxQusES/Z7MXLuHHjrNaF6dKli957771c718aEC/ZcouXrl27Wn1b/PbbbztcJ+jkyZMaP368cV6rVi2rX1JLAuIlG59HziNmsuUWM927d7f6o3Hq1KlW64jltGfPHs2YMcM4b9eunZo1a2b3ek9EvGSz9x7zj3/8wzjes2ePZs+ebbfOw4cP64MPPjDOe/bsWaI2JpWIl+uc+UyyTECVKVPGpXUKSwriJVtu8dKrVy+rNZFHjRrlcAfy1NRUvfrqq8YXIoGBgYX2BRoJSzfg5+enkSNHGudbt27V4MGDrdakycjI0JIlSzRs2DBlZmZKyt6J6eGHH861zjvuuEMRERGKiIjQHXfcYffer776qrHmwZEjR/TEE09YvYGZzWb9+OOPevLJJ5WSkiIpe9ftIUOG5Fpf5cqV9cwzzxjnK1as0CuvvGK1Y1Vqaqo++ugjqz/kOnXqpE6dOtnti+XQ6bFjx+rjjz+2WhfswoULGjFihNXoyhdeeMFqJ7ySgnhxHC+wRrzYj5ddu3Zp1apVxnnt2rU1ffp0q8WwSxvixX68+Pr66j//+Y9xfvbsWfXv399qDSgp+5fe5cuX65FHHjGWGfD19dXEiROt1gQqCYgXPo9cRczYj5myZctqxIgRxnlcXJweffRRm51WU1NTNX/+fD311FPG78JBQUGaNGmS3b57KuLF8XtM3759rUb/T58+XePGjbMaKZaVlaVVq1Zp4MCBxqircuXKWcVaSUG8OP+ZZDl1t1q1asYSbKUJ8WI/XipVqqSXXnrJOI+OjtZDDz2kX375xXgdrtu9e7ceffRR7dmzx3hs+PDhRjK4oEzmvMaOo8iMGzdOixcvNs69vLwUERGhoKAgHT9+3Bg5KGXvXPvll1+qbt26udZ1xx13GJtHVK9eXevWrbN7348//ljTp0+3eqx+/fqqWLGiYmJirD70ypQpozlz5jhcIycjI0Mvvvii1q9fbzzm6+uriIgI+fn56ejRo1a72dWoUUNLly51mFyMi4vT448/bvUGUq5cOTVo0EBpaWmKjo62WuS+a9eu+vDDDwttsVd3RLzkLxn9xBNPaOfOnZKkoUOHatiwYfmqx9MQL7bx8vTTT1v9IVinTh1Vr17d7r1zc//99+uBBx5w6TmegHix//7ywQcfaObMmVaPhYWFqXbt2sbn0fVfLq/fb8qUKSVuqqYl4iX/X47u2LHDanSD5ZpiJRkxYz9mcr42khQaGqratWvr2rVrOnLkiNV0v6CgIH366aeKjIy0W6enI17sx8ulS5f09NNPW61x5+Pjozp16qhChQo6ceKE1WwAX19fffDBB+rcubPdOj0d8ZL3Z9IzzzxjjLJr1qyZlixZkudzSirixX68TJw4UYsWLbJ6LCQkRLVr15avr69Onjyp8+fPW5U//vjjGjdunN06XUXC0o2YzWa98847mjNnjlXyLad69erp3XfftVq3JCdX/rNI0sKFCzVt2jSrP7Jyqlq1qv773/+qVatWefQke4TJ66+/ruXLlztcTyUyMlLvvvuuU4uy/v333xo5cqT27t3r8Lq+fftq/PjxJW4kS07ES/6U1oQl8WItMTFRbdu2tfmW0FUlNYaIF8dWrlypSZMmWa0dl5u6detqypQpat68eZ51ejLiJf9Ka8KSmLHPbDZrwYIFmjFjhlJTUx1e27x5c02cODHfa6l5CuLFsaSkJL3xxhv6+uuvHdZ500036e2333aqnZ6MeMnbgw8+aGym0qFDB82ZM8ep55VExItjUVFR+u9//2uV7MxNuXLl9Morr+ixxx7Ls05XkLB0Q8ePH9eyZcu0efNmnT17VlevXlVwcLBuueUW9ejRQ/fff3+eyThX/7NI2dPblixZog0bNuj06dO6cuWKgoKCFB4errvuukt9+vRRUFCQS335/fff9dVXX2n79u2Ki4tTWlqaKlasqFtvvVX33XefunXr5tIoSLPZrJ9++kmrVq3S77//rgsXLsjLy0thYWFq2bKlHnnkkRL/h2FOxItrSmvC8jri5X/PtTedwxUlPYaIF/uuXLmi5cuXa+PGjYqOjlZCQoL8/PxUuXJlNW/eXHfeeafuvvvuEj3SPyfixXWlNWF5HTFj36VLl7Rs2TJt2bJFx48fV0JCgsqUKaMqVaqoWbNm6t69u7p06WJMKywNiBfHDh06pJUrV2rr1q06e/asrly5ovLly6tRo0bq1q2bHnzwQfn7+7tUpycjXuzr1q2bYmJiJGWvZ2q5Hm5pRbzYd+XKFa1YsUJbtmxRdHS0seRRSEiIIiIi1KFDB/Xu3dvldjqDhCUAAAAAAAAAt1F6vvYHAAAAAAAA4PZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALfhU9wNAAAAQNE5ffq07rzzzjyvM5lM8vHxUdmyZVW5cmXVrl1bnTt3Vo8ePVS+fPkiaKn7WrFihcaMGSNJql69utatW1fgOs1ms1asWKFbbrlFjRo1sinP+XP7+eefVaNGjQLfFwAAwB0xwhIAAAA2zGaz0tPTlZCQoGPHjmnt2rUaO3as2rVrp2nTpiktLa24m1hiHD16VAMGDNBrr72mpKSk4m4OAABAsWOEJQAAQCkWHh6u0NBQm8ezsrKUmpqqS5cu6cyZM0pPT5ckpaena/bs2Vq3bp0+/fRTVatWraibXOI89NBDxusLAAAAEpYAAACl2qBBg9S7d2+H16SlpWnbtm364IMP9Ntvv0mSjh07poEDB2rp0qUKCQkpgpaWXCQrAQAArDElHAAAAA75+fmpc+fO+vLLL/X4448bj586dcpYyxE3Vo0aNRQdHW38Y/1KAABQkpGwBAAAgFO8vb01duxY3XXXXcZj69at04YNG4qxVQAAAChpSFgCAADAaSaTSRMnTlTZsmWNx2bPnl2MLQIAAEBJwxqWAAAAcEmlSpX0yCOPaN68eZKk3bt3KzY2VjVr1nT4vKNHj2rlypXasmWL/v77byUlJSk4OFg1a9ZUhw4d1KdPH5c28UlOTtbq1au1fft2HTx4UPHx8UpKSlJAQIDKly+viIgItWvXTg899JCCgoKcqvPvv/9WVFSUNm3apJMnTyojI0NVq1ZVu3bt1L9/f4WHhzvdPkdWrFiR63T6gQMHGscPPfSQ3nzzTUnS6dOndeeddxplP//8s8208DvuuENnzpyRJP3+++/y9/fXn3/+qSVLlmjTpk36+++/ZTKZVLVqVXXo0EGPP/64zc9s7dq1Wr58uQ4fPqzz58+rbNmyatSokR544AH16tVL3t7eTvXv119/1ffff68dO3YoLi5OycnJqlChgurUqaNOnTqpT58+qlChgnMvFgAAKHVIWAIAAMBl99xzj5GwlKQNGzZowIABuV579epVTZ48WStWrFBWVpZV2YULF3ThwgXt27dPs2fP1uDBgzV06FCZTCaH958/f75mzZqlhIQEm7KkpCQlJSXpzJkzWrdund577z1NnjxZ3bp1c1jnvHnzNGPGDF27ds3q8ZiYGMXExGjZsmV66aWXVLlyZYf1uIvZs2dr5syZNpv6JCUl6ejRo1q8eLFmzJihLl26KD4+XqNHj9b69eutrk1ISNDWrVu1detWffvtt5o1a5b8/Pzs3vPSpUsaO3as1q5da1N27tw5nTt3Tjt27NBHH32kkSNHqn///oXSVwAAULKQsAQAAIDLmjZtqsDAQKWkpEiS9u3bl2vCMj4+Xs8884wOHDhgPObt7a0GDRooODhY8fHxOnr0qMxms65du6b3339fR48e1YwZM+yO5ps8ebI+//xz49xkMqlWrVoKDQ2VyWTSuXPnFBMTYyRHL1++rOHDh+vLL79U8+bNc63zrbfe0ty5c60eq1WrlsLCwnTx4kUdP35c6enpmjZtmho3buzSa5WbsLAwdejQQZK0efNm4/GmTZsqODhYkgo0mnPmzJn69NNPJUm+vr6qU6eOQkJCdPLkSZ07d06SlJKSohEjRuibb77RyJEjtX//fklSaGioateurcTEREVHR8tsNhvtnDZtmt2NlmJjYzVo0CDFxsYaj/n5+Sk8PFxly5ZVXFycTp48KSk7afr666/r5MmTeu211/LdTwAAUDKRsAQAAIDLvLy8VLNmTUVHR0uS/vzzT5trzGazRo0aZSQrvby89PTTT+vpp5+2mg587tw5vffee1qyZIkkac2aNZo5c6ZGjBhhU+emTZuskpXdu3fXmDFjbKaSx8XF6cMPP1RUVJQkKSsrS7NmzdLHH39sU+fatWutkpURERGaPHmybr31VuOxEydOaPz48dq5c6cOHjyY9wuUh/bt26t9+/bG/a7717/+pTZt2hS4/uvJyt69e+vll19WWFiYpOyfybx58/TWW29Jyk5aPvTQQ7py5YrCwsI0efJkderUyajn2LFjGjp0qPHzjYqK0tChQ1WuXDmr+127dk3Dhg0zkpX+/v4aPny4HnvsMQUGBhrXxcTE6O233zZGYC5YsEANGjTQww8/XOA+AwCAkoNNdwAAAJAvlknCv//+26Z85cqV2rhxo6TsUZDTpk3TP//5T5u1C0NDQzVp0iS98sorxmOzZ882RuNZstzgJzIyUu+8806u616GhYXp9ddf19133208tnXrVmVmZlpdl5WVpalTpxrn9evX16JFi6ySlZJUt25dzZ071xgV6Qn69++vKVOmGMlKKfvn8NRTT6ldu3bGY1euXFG5cuW0aNEiq2SllP16TJs2zThPTU3V3r17be41Z84cHTp0SFJ2snLu3Ll6+umnrZKVUvao1ffff1+PPfaY8diUKVOUmJhYsM4CAIAShYQlAAAA8iUgIMA4Tk5OtimfM2eOcdyrVy/17NnTYX3PPvusmjZtKik7kTh//nyr8itXrlhNLR8yZIi8vBz/Otu9e3fjOC0tTfHx8Vbl+/bts0qMTpgwwWb04HW+vr6aMmWKVb/dVbly5TRy5Ei75XfddZfV+YABA+xumtS4cWOrpGdMTIxVeVpamhYuXGicP/XUU7rtttvs3ttkMum1114z6kxOTtbixYvtdwYAAJQ6JCwBAACQLz4+/1tdKOfIxZiYGGO6uJQ9NdkZDz74oHG8YcMGq7KgoCDt3btXGzdu1MKFC40p1Y7k3CAnNTXV6tzyHrVr11arVq0c1hcaGmqT7HNH7dq1s5t4lZTrDuOOWCYsk5KSrMp2796tixcvGufO/Kz9/Px07733Guc5f9YAAKB0I2EJAACAfLly5YpxHBQUZFWWc9pw3bp1naqzSZMmxvFff/2ls2fPWpWbTCaFhYWpVatWDnervnLlirZt26aVK1daPZ5zl/Jdu3YZxy1btnSqjW3btnXquuLUoEEDh+VlypSxOq9Tp47D6/39/Y3jnK+h5c/a19dXN998s1NttPxZ//7778rIyHDqeQAAoORj0x0AAADki+VIu5yj+XJOG865NqKz4uLiVLVqVbvlZ8+e1eHDh3Xq1CnFxsYqNjZWx48f1+nTp20Sa5KMHa+vu75jtpQ9wtIZ9evXd67xxahSpUouXZ8z4ZyTyWSyW2b5s05PT7faRMhZ165dU0JCgs2IWAAAUDqRsAQAAEC+WCb7QkNDrcoKaxOVhIQEm8fS0tK0ePFiLV68WEePHnX4fB8fH4cj9y5dumQcly1b1qk2lS9f3qnripPliEhnOEpI5qWwftaXL18mYQkAACSRsAQAAEA+JCQk6NSpU8b59c1yrrNMEvr7++e5NqQ9OZOD586d05AhQ/THH3/ken2FChUUHh6upk2bqnXr1vLy8tIzzzxjt/709HSX2+RoKrq7KEgC0lWWP+vg4GCbWHCWJ7yuAACgaJCwBAAAgMt+++03q/NmzZpZnVsmGgMCAqx2DM+vjIwMDRs2zCpZGRkZqe7du6tp06aqV6+eKlSoYPWcrVu3OqyzXLlyxijLnJvJ2GO5diesf9Y1atQolJ81AAAo3UhYAgAAwGXffPONcVymTBl17NjRqtxyV+nExERduXIlz3US8/LTTz/p119/Nc6HDx+uF154weFzcptSbqlWrVpGwvLYsWNOtcNyZCmsf9Z//fVXMbYEAACUFOwSDgAAAJfExcXpxx9/NM7vuusum013IiMjjeOsrCzt3LnTqbp37typcePG6eOPP9a3336r5ORko2zDhg3GcVhYmJ577rk86zt8+LDVec6NeCzbuXPnTmVmZuZZ5549e/K8pjSxfA3j4+MVHR3t1PN++OEHvf766/r000+1atUqp157AABQOpCwBAAAgNPMZrP+/e9/G2s/enl5afDgwTbX3XLLLVYj7xYsWOBU/e+++64WL16s6dOna/LkyVbrGp4/f944rlSpkry8HP8qm5iYqK+++srqsZxJse7duxvHcXFxWrNmjcM6k5OTtXLlyjz74YqiXG/yRmjbtq0CAgKM8/nz5+f5nLS0NE2bNk1ffPGFpk6dqlmzZsnb2/sGthIAAHgSEpYAAABwSmZmpqZMmaJNmzYZj/Xr108NGza0udbb21tPPvmkcb59+3Z99NFHDutfuHChdu/ebZz37dtXvr6+xnlISIhxfPToUcXFxdmt69q1axo9erTVTuaS7SY7zZs3V5s2bYzzN954Q7GxsbnWaTabNWnSJKudxQuD5Y7e165dK9S6i0JwcLD69OljnK9YsULffvutw+fMmDHDamr9Y489dsPaBwAAPA8JSwAAADiUkpKiVatW6eGHH7YaKXnrrbdqzJgxdp83YMAANW7c2DifMWOGRo8ebbPO4cWLF/Xmm29q8uTJxmNhYWF69tlnra7r0KGDcZyenq7nn3/eZsp3enq61q5dq759++rnn3+2aZPlFPPrJk2apDJlykiSLly4oP79++vnn3+W2Ww2romLi9Pw4cNtRmwWBstE7MaNGwu9/qIwdOhQ3XTTTcb5v/71L7311ls2yd3Y2FiNGjVKc+fONR6LiIjQww8/XGRtBQAA7o9NdwAAAEqxefPm6fvvv7d53Gw2KzU1VRcuXNDp06dtplK3bNlS77//vtXowJz8/Pw0c+ZMPfnkk8aoxa+++kpff/216tWrp0qVKun8+fOKjY21GvlYrlw5vffeewoODraq77777tPcuXN15MgRSdLBgwf14IMPqkaNGqpWrZqSkpIUGxtrtYt3pUqVdOXKFWPkouW08utq1aqlKVOmaNSoUUpPT9e5c+f0wgsvKDQ0VLVr19aVK1d0+PBhY/3L7t275zl13BXh4eE6e/asJOnzzz/Xrl27FBISonr16mncuHGFdp8bqUKFCnrvvfc0ePBgXbp0SWazWXPnztWCBQtUv359BQcHKy4uziaWwsLC9P7771uNpAUAAGCEJQAAQCl25MgRbd682ebfli1btGfPHsXExFglmMqXL69XXnlF8+fPV8WKFfOsv0aNGlq6dKnVWpFms1nHjh3Tjh07dOLECatkZePGjfXFF1+oWbNmNnX5+vpq9uzZioiIsKorNjZWO3fu1KFDh6ySlZ07d9ZXX31ldb29DXN69uypuXPnqlKlSsZj586d086dO/XHH38Yycr+/ftr+PDhefbbFc8//7xVwu7w4cPavn271q9fX6j3udGaNGmipUuXWk2xz8zMVHR0tHbu3GkTS+3atdPixYt18803F0dzAQCAG2OEJQAAAGyYTCYFBASobNmyqlGjhsLDw9W+fXt17tzZmD7trAoVKmjmzJk6dOiQvvvuO+3YsUN//fWXEhMT5evrq7CwMDVt2lQ9e/ZU586dHW6mU61aNS1btkwrV67UmjVrdOjQISUkJMhkMql8+fKqVauWGjdurJ49exq7V3ft2lW///67JOm7777TP//5z1z70Lp1a/34449atmyZfvrpJx05ckRXr15V5cqV1axZMz366KO6/fbbdfz4cZf6n5cWLVpo0aJFmj17tn799VclJCTI399fZcuW1bVr1xyOYnU3NWrU0GeffaZdu3ZpzZo12rVrl+Li4pSUlKQyZcropptuUvPmzdWrVy+1bt26uJsLAADclMlsuTgPAAAAAAAAABQjpoQDAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAbuP/AfpFTjBdu4k5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.008, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.008, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d, paralyzable=True)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate * np.exp(-rate * deadtimes_plot), \n", + " label=r'$r_{in}e^{-r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Perfect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Periodogram - non-paralyzable\n", + "\n", + "Let's see how the periodogram behaves at different intensities. Will it follow the Zhang+95 model?" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/6 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, np.log10(3000), 6)\n", + "bintime = 0.001\n", + "deadtime = 2.5e-3\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, 2, norm='leahy')\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████| 5/5 [00:04<00:00, 1.07it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAARHCAYAAAAiFIfrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1QUZ9sG8IuOSBMLKmIJAvbee4saXzVqosYYe48aI/beo8bee+8Nu9EoFuxYsKAiCoIISBXpLFu+P/iY7LCFBRYVvX7neM7MzswzM7szg3vv/dyPgUKhUICIiIiIiIiIiIgonzD83AdARERERERERERElB0MahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+Yvy5D4CIiCivrFmzBmvXrgUA1KtXD3v27Ml1m5MnT8bx48cBAF27dsWiRYty3WZeePXqFe7fv49evXqpXd6nTx94eXkBAEaNGoXRo0d/ysMjHWzbtg1///13trYxMjLC8+fP8+iIKLtcXV2F6d27d6N+/fqf8Wg+HXd3d0yZMgUA4ODggMuXL+e6TYVCAXd3d1SsWBGVKlVSWf7u3Tu0bt1amPfw8ECpUqVyvV/Sv9jYWLi7u+P27dvw8/NDbGwsAKBQoUKoWLEimjVrhq5du8Lc3Fyv+507dy727duXrW1Kly6Nixcv6vU4iIhIf5ipSURE9BVJTk7GkiVL0LVrVzx+/PhzHw7lAoOTROlevXqF3377DVOnTkV8fPznPhzKIYVCgT179qBFixZYvHgxPD098f79e6SkpCAlJQVhYWG4fPkyZs+ejVatWuHq1at63T+fqUREXx9mahIREX1F/vrrLxw+fPhzHwbpga+vrzBdrVo1WFtbZ7mNkZFRXh4S0WfRtWtXpKWlfe7DoFxauHAhdu3aJXrN3t4epUuXhkwmQ0BAgJC1GR0djeHDh2PhwoXo2rVrrvetUCjw8uVLYb5evXowNTXNcrtixYrlet9ERJR3GNQkIiL6ivCL/9chNTUVb968EeZXrlwJBweHz3hERJ8Pn2v537lz50QBzQoVKmDmzJmoXbu28JpcLselS5cwd+5cREZGQqFQYMaMGahYsSIqVKiQq/0HBQUhKSkJAGBiYoLt27fDxMQkV20SEdHnx6AmERFRNixatOiLraOZHfqoL0p55+XLl5DJZAAAa2trBjSJslCqVClRJh59OeRyOZYuXSrMV6xYEfv374eFhYVoPUNDQ7Rt2xYVK1ZE9+7d8eHDB6SlpWHp0qXYunVrro7hxYsXwrSTkxMDmkREXwnW1CQiIiL6wih3PVcebIaIKL/x8vJCSEiIMD979myVgKYyR0dHjBw5Upi/efMmPnz4kKtjUH6m5jbrk4iIvhwMahIRERF9YZSzivgFnIjyszt37gjTDg4OqFGjRpbbKI9kL5fLcz3ID5+pRERfJ3Y/JyKib0pCQgL279+PCxcu4O3bt5BKpShWrBjq1q2Ljh07okGDBlq3nzx5Mo4fPw4gffCKzF3R3d3dMWXKFADAwIEDMWnSJMjlcpw/fx5nz57FixcvEBUVhQIFCqBUqVJo0aIFfvnlFxQtWjRX56Uum+/48ePCsQIQdc3s06cPvLy8AACjRo3C6NGjRduuWbMGa9euBZCeVdOrVy8kJSXh9OnTOH36NAIDAxEXF4ciRYqgQoUK6NmzJ5o3by5q482bNzh48CBu3LiB0NBQAOldRJs1a4b+/fvrfM4xMTFwd3fH9evX8ebNG3z48AEWFhYoVqwY6tevj86dO6NatWo6tZVfKH8B/5SZmsrX75AhQzB+/HikpaXh/PnzOHHiBF6/fo2YmBgULlwY3333HX766Se0b99eNEBReHg4Dh06BA8PD4SEhCAtLQ3FixdHo0aNMHDgQDg6OmZ5HLdv38bZs2fx6NEjhIWFITU1FTY2NrC3t0edOnXQtm1b1KlTR+dzAdIHKenWrVsO3xmxtLQ0nDlzBufOncPz58/x8eNH2NrawtXVFT/99BN++OEHGBgYZLvdV69e4dSpU7h58ybCwsIQHx8PGxsbODo6okmTJvjpp59QokQJndtLTEzEP//8gzt37uDZs2f48OED4uPjUaBAAVhbW8PV1RWNGjVC165dYWlpqVObYWFhOHjwIK5fv47AwEBIpVLh8/3111/h4uKS7fNWJ/Pnl6Fv377CtPIz+N27d6JAmIeHB0qVKiXatlWrVkLG4JMnT2BmZoY3b97g8OHDuH79OsLCwmBgYIDixYujSZMm6N27t8r1eunSJRw7dgy+vr6IjIxEwYIFUalSJfz444/o1KmTzoN1PXr0CGfPnsXdu3cRHh6OxMREFCpUCOXKlUOzZs3w008/oVChQrq9WV+4yMhIGBoaQi6Xo3z58jptY2trK5rPbabm5wpqfgl/S+VyOS5fvozz58/j6dOniIiIgFQqha2tLUqWLIn69evjhx9+QMWKFfPmTSAiykMMahIR0TfjyZMnGDNmjPClIENgYCACAwNx5MgRNG/eHIsWLYKdnZ1e9vnu3TuMHz8e3t7eotdTU1MRGxsLHx8fbN++HbNmzUKXLl30ss+88OTJE4wfPx5BQUGi10NCQhASEgIPDw/06NEDs2fPhpGREXbt2oUlS5aoDPDh5+cHPz8/uLu7Y9OmTVkGI3fu3InVq1cjMTFR9LpEIkFsbCz8/PywZ88etG/fHvPmzdNphHBtNAVSsis3AbTMo/R+zqyiwMBAuLm54dmzZ6LXw8LCEBYWhps3b+L06dNYvnw5LCwscO7cOcyYMQMJCQkq7QQGBuL48eNYuXIlWrRooXZ/sbGxcHNzw82bN1WWRUVFISoqCs+ePcOuXbvQsGFDLFu2DIULF9bb+eri2bNncHNzQ2BgoOj1yMhIREZG4saNGzh48CBWrlypc5vJycmYP38+3N3dIZfLRcsyztvb2xubN2/GkCFDMGrUqCyDpjt37sSGDRuE0aSVxcfHIz4+HiEhIbh8+TLWrFmD+fPno23btlrb3LFjB1asWIHU1FTR60FBQQgKCsLRo0fxxx9/oEiRIrqd+Ge2efNmrF69WuU5FR8fj1evXuHQoUNYsWIFWrRogQ8fPmDy5Mm4evWqaN3Y2FjcunULt27dwunTp7Fhwwato2rHxMRgxowZuHTpksqyiIgIRERE4O7du9i4cSPc3Nzw66+/5vo8lX/Eyo2c1ixdsGAB5syZg8jISEilUp22effunWg+N8/2mJgYRERECPOfs6THp/5bGhISgtGjR6s8w4H/rrdHjx5h8+bN+OGHH7BgwQKtpQGIiL40DGoSEdE3ISQkBIMGDUJcXBwAoFChQnByckJycjJevnwpfNG6du0a+vTpgz179uQ6sBkTE4MBAwbg7du3ANK/lJUvXx4KhQL+/v7CsSQlJWHKlCmwt7dHw4YNc7SvJk2aAEj/opPx5a1YsWJ6yZp6+fIlli5dKgSqSpQoAUdHR3z8+BF+fn5QKBQAgMOHD8PZ2RlpaWn4+++/AQBmZmaoUKECjIyM4OfnJ7QRExOD0aNH459//lH7BUqhUGDatGk4duyY6PUyZcqgePHiSEpKgp+fnxBcOX/+PF69eoVdu3blOuv1c1MepdfIyAjly5eHp6cnTp8+DW9vb0RERMDExAT29vaoX78+unbtmieZqu/fv0ffvn0RHh4OAChSpAjKli2LlJQU+Pr6CvfMlStXsGrVKtSoUQNubm5QKBQwMTGBi4sLLCws8Pr1ayHLKjk5GW5ubjh37hyKFy8u2l9aWhoGDhwo+vJta2uLcuXKwczMDBEREQgODha+3N++fRt9+vTB8ePHYWZmpvfzV+fx48fo37+/8PkA/93XMpkMfn5+SE5Oxt27dzF48GCd2vzw4QMGDx4MHx8f4TUjIyM4OzvDxsYGHz58wKtXr6BQKJCamoq1a9fi1atXWLFihcaswPnz54sGAzMwMECZMmVQrFgxGBgYICIiAkFBQUIA9ePHjxgzZgwOHDigsWvw4sWLsX37dtFrZcqUgb29PaKjo+Hv74+0tDQsW7YMlStX1unctbG3txeeazdu3BBer1q1KmxsbAAgV8+31atXC4PPmJiYoFy5crC1tUVgYKDwDE1KSsLYsWNx8uRJuLm54enTpwDSn61ly5ZFXFwcXr58KTwDb9y4gWXLlmn8YSQ4OBgDBgxAcHCw8JqpqSlcXFxQsGBBhIeHC8Hy+Ph4zJkzB4GBgZg6dWqOz/NLYWxsnK0s4wsXLojmv/vuuxzvWzlLs2jRorCyssI///yDf/75B0+ePEFUVBQsLCxQokQJNGrUCN27d8/V/jT51H9L4+Li8Ntvv4l+yC1atChKly4NIyMjhIeH4927d5DJZFAoFDh37hxiYmJEo9QTEX3pGNQkIqJvQkaXQ2tra0ybNk3UTTAmJgZLliyBu7s7AOD169eYPXs2Vq9enat9njhxAgBQuHBhTJkyBR06dBD2mZqail27dmHFihWQy+WQy+VYvnw5jhw5kqN9bdu2DYC4e3zjxo31MlL7gQMHAABly5bF3LlzUb9+fWGZr68vBg8ejMjISADAihUrkJycDAMDAwwfPhxDhw4VvmglJSVh8eLFOHjwIID0oNnp06fRs2dPlX1u2bJFFNBs3bo1xo8fL/qimZycLGTEpaSkwN/fH25ubti5c6fOXUAzUw6k5Ia9vX2Ot1X+Am5hYYE+ffoIwZQMqampSEhIgL+/P/bv349OnTph7ty5es2wOX36NID0YOacOXPQqlUrGBqml2MPCQnB0KFD8fr1awDAvn37cODAASgUCvTs2RNjx44Vus5KJBJs2bJFuJ8SExOxf/9+uLm5ifZ3+PBhIaBZoEAB/P3332jTpo2wTyA9G3L58uXCverv748DBw6gf//+ejtvTRISEjBmzBghoGlubo5Jkybh559/FjLzkpKSsH37dqxfv15tZlRmCoUCEydOFAKahoaGGDRoEAYNGiTqehwREYE1a9bg8OHDANIDPqtXr8bYsWNV2rx+/boooNmuXTtMmTJFJaAUHh6O9evXC/ejXC7Hhg0bsGnTJpU2L126JApourq6Yv78+aJgekBAAGbNmgUvLy+dzj0rjRs3RuPGjYX9ZZgwYYLoGZRTGQHNbt264c8//xTuWYVCgR07dmDx4sUA0j/Trl27IiEhAfb29pg/fz6aNWsmtPP69WuMGjUKb968AQAcPHgQo0aNgpWVlWh/qampGD16tBDQNDMzw5gxY9CrVy/RfRsUFIS///5byOTctWsXnJ2d0b179xyfa9WqVbVmj35pYmJisHfvXmHexcVFpZRAdig/U42NjdGxY0eVTOuPHz/i48eP8PX1xa5du9CnTx9MmDABxsb6+7r8qf+WbtiwQQho2tnZYeXKlSr3ztu3b7FgwQIhA/nOnTu4ePEivv/+e72dNxFRXmJQk4iIvhkWFhbYvXu3St0oOzs7LFy4EAULFhSCARcuXMCDBw9Qu3btXO3TxsYGBw8eROnSpUWvm5mZYejQoYiPj8fmzZsBpHdLCw8Pz1VALK+UKFECBw8eVKnxVqFCBUycOBETJkwAACHgM3nyZAwYMEC0roWFBWbPno1Hjx4JI9HeunVL5YtYcHAwVq1aJcz/9ttvmDFjhsoxFShQAAMGDECVKlUwYMAApKWlwcvLC+7u7jkOACgHUj4X5VF64+PjhYBmoUKFULp0aZiYmODt27ei7pSnT5/G69evsWfPHpVgSm5YWFjg4MGDKnUFHRwcMHfuXKFrbEb2ZJ8+fTB9+nTRuqamphg5ciSePn2KK1euAEj/3DMHNZUzs8aMGaO2K3TRokXx119/ITIyEtevXweQnqWrLqjZrVs3vdXQBNKDS2FhYQDSMx/XrVunEgC3sLDAqFGjUKpUKUyaNCnLNk+dOgVPT0+hzWXLlqFDhw4q6xUrVgzz5s2Do6Mjli1bBiC963TXrl1RtmxZ0boZzxMAqFmzJlauXCkKDGewt7fHnDlzEB0djYsXLwJI/1xkMpnoRwG5XI4lS5YI8+XLl8e+fftUrrPvvvsO27dvx/Dhw0WZlV+yX3/9FbNmzRK9ZmBggIEDB+L69eu4desWgPSAtpWVFfbt26dyL5QvXx7Lli0TrrWUlBQ8fPhQpS7itm3bhOCamZkZtm/frrYubJkyZbB27VrMmTNHCIItXLgQ7dq1y3EX7IkTJ+Zou89BoVBgxowZorIJgwYNylWbykHNjHsYSH+eODo6QqFQ4M2bN8I+ZTIZdu7cidevX2Pjxo0wMTHJ1f6Vfcq/pf/++68wPWfOHLU/BpQuXRpr1qzBzz//LJQXOH/+PIOaRJRvcPRzIiL6ZowZM0ZrIfyJEyfCwcFBmM/4Qpkb/fv3VwloKuvVq5doPqc1y/LaH3/8oXHQitatW4vq+zk4OKBfv35q1zUwMBDVU8zomq9s165dQtdmR0dHTJ48Weux1a1bVzR4yI4dO7Su/6VT/gIOpGf1bNy4ETdv3sThw4exb98+XL9+HQcOHED16tVF22UOFOaWtoF9ateuLSrRYGFhgTFjxmhsS3kQF3Wfu3KQVvk+zMzAwAD9+vVDgwYN0L17d7Rp00brOejLqVOnhOmuXbtqzejt0qWLTseVkWENAJ06dVIb0FQ2dOhQVK1aFUB6sHHnzp2i5QkJCaJu7MOGDVMb0FTWrl07YVoikagMyOLt7S3Kaps9e7bGwLmJiQkWLlyIAgUKaN3nl8DKykrr/ZL58/vtt9803guVK1cW/RiVuV6iRCIRZR4OHDhQ60BXBgYGmDp1qtBmYmIiDh06pPlkviIrVqwQ1RutVq0aOnfunKs2lX8oAtIzV/fu3YsbN27gwIEDOHjwIG7fvo0tW7agXLlywno3btzAggULcrXvzD7l31Jdn6mmpqbo168fmjRpgl9++SXLAROJiL4kDGoSEdE3wcLCIsvsPVNTU1Fml6enp1DjKqeyGnijZMmSoq6H8fHxudpfXjAwMNB6HgULFhQFt5o1a6Y1kKL85V/d+WZkjQFAx44ddcqSUR5kyd/fX1SzLr9RDiDVrFkT7u7uaNmypUqX+lq1amHv3r2i4Jqnpyc8PDz0dizt27fXuly5S2idOnW0ZokWK1ZMmFb3uSvX2Fy3bp3QDVOdpk2bYteuXZg/f77OtStz482bN6LPpUePHllu07t3b63Lg4KCRD9i6JpVqnytX7t2TbTM0tISDx8+hKenJ/bu3atT1nHmQX1SUlJE88r7KFu2LOrWrau1vWLFin2yQHNuNGrUSOv1qm7kdG20Pdfu37+P6OhoYV6Xz9rU1BT/+9//hPnMn/XXaP369aLyBzY2NlixYkWWgXltJBKJaNChdu3a4cCBAyrXsaGhIZo1a4YjR46Ifvw8ePCgSlA0pz7131LlZ6pyLU91fvrpJ2zbtg1z5szJVakDIqJPjUFNIiL6JtSsWRMFCxbMcj3l7JmPHz8KNQNzwsTERKfBBpS7FGYe4fRLULJkSVhaWmpdx9zcXJhWznRRR3lQl8wjPYeEhOD9+/fCvJOTk07H6OzsLDqGhw8f6rTdl+jChQvw9PTE/v37sX79eq3XrampKZYsWSJaZ/fu3Xo5DiMjoyw/S3197oA4Y9DX1xdt27bFuHHjcPLkSa0Bzk/h/v37wrSpqamQLalNnTp1tNbjy3yN6jowSZUqVYTp0NBQ0f0CpAdO7O3tUbduXa11FBMSEnD79m1RBiqg+tncu3dPmNa1HEd+yPRydnbWulz52gZyd30rf9YmJiZas/eVKX/WT5480Xnk8PxoyZIlorIjJiYmWLVqVa5qaQLp96u3tzeuXLmCPXv2YPHixVp/KLOyssKyZcuEYKJCodDbM/VT/i0FxM/UW7duoXXr1pg+fTouXLiAjx8/6nrYRERfNNbUJCKib4KuAYPMXyLCwsKy/PKribW1tU4ZJpnr131pChcunK31s/rSpty9LrPMXejGjx+P8ePHZ2v/AIQRu/OjjKCUrrVV7ezs0LFjR6F76oMHD5CcnJzrLsC2trbZGiQjN587kJ4pdO7cOXh5eQFIryl35swZnDlzBkB6EKpRo0Zo1qwZ6tevr9c6d1lRvp4cHBx0el9MTU3h6OgoDCCTWeYuysqDz2T32DKPJK/s/fv38PX1xdu3bxEcHIzg4GD4+/vj3bt3ap83mbPTlbuwZq7fqUn58uV1O/jP6FM+15Q/67S0NNHAR7pKTU1FbGysSmZtfieRSDBz5kxhgDvgv4Bmw4YN9bIPQ0NDlCxZEiVLltRpfScnJzRq1EioDXvz5k29HMenvOaA9HIVV65cEX6cjY2NxZEjR3DkyBEYGhqiUqVKaNy4MZo1a4ZatWrlKiOWiOhzYVCTiIi+CboOsJC5O2JushkyZ/rkV8rZILrI6ouWNvrKHslpOzdv3hSN8pxTAwcO/KQDDtWqVUsIaqalpSE0NFTnLFdNPuXnDqQHATdu3IgVK1bgwIEDKllpr169wqtXr7Br1y5YWVnhhx9+wIgRI3QOVORGTEyMMJ1VoEGZjY2NxmVxcXG5OqYMygOqZJBIJDh06BAOHTqEV69ead3e2NhYawag8rnrku0O6P68/Zw+5fWtr8/648ePOQpq/v3333qp16xcA1YfYmNjMXr0aOGHDCB9ALhVq1apDLT0qdWqVUsIar5//x6pqanZvmYy+9TPVGtra+zZswcLFizA2bNnRT9YyOVy+Pj4wMfHB5s2bUKRIkXQuXNnDBkyRNQFnojoS8egJhERkZLMWUpfS2AyN3L7xSo7MgdX6tatm6MvkpoG9MhKeHi4XkZuVq6F9ylkDnToIzj8KT/3DAULFsT06dMxZMgQ/PPPP/Dw8MDDhw9Vrov4+HgcPnwYp06dwvLly0WDEOWFnJaF0Nb9W/mczMzMsqxVqUnmAGJERASGDRuG58+fq12/UKFCcHFxQdWqVVGvXj0YGhpqrUuak3PXdt5fis/1XLOxsdGpfIE6OX1fnz59KgocfgnevHmD4cOHi2rV2traYsOGDahVq9bnO7D/l/mZGhsbq3P2vCaf45lqZ2eHZcuWYcyYMTh79iw8PDzw7NkzlSztqKgobN++HceOHcPWrVtRrVq1T36sREQ5waAmERF9ExITE3VaL3NGTX7IOPqaZH6/Z8yYkaOumt+a1NRU0byuGXVfKnt7e/Tv3x/9+/dHQkICHjx4gDt37uDmzZuijLOUlBSMHTsW58+fz9OMTeUM7uwM5qVtYA7la71AgQJ6yYKTSqUYPXq0KKBZs2ZNtGvXDlWrVoWTk5PKyMu3bt3S2qaVlZWQranruWs772+R8mddqlQpvWc85jcPHz7EiBEjRFnGpUqVwpYtW3QuFZPXvrZnaunSpTFixAjhfffy8sLt27dx69YtUWD548ePGDZsGDw8PESDGBIRfakY1CQiom+C8uin2mQeGKhMmTJ5cTikQeZMmLCwsE8a1OzWrZvOo1DnBS8vL1y6dAnR0dGIj4/Hxo0bdapzpjzau4GBgdYai/mNpaUlmjdvLnRHffv2LZYuXYoLFy4ASA8+HDp0CGPHjs2zY1B+Drx7906nrqgKhUL0uWSmfK3HxcUhISEhW13b1bl48SIePXokzI8ZMwa///671m3UdV9XVqZMGSGoqevAaZlr437rlD/r0NDQT77/PXv2fPJ9anLz5k38/vvvSElJEV6rVq0aNmzYkCf1Qi9duoQ7d+4gJiYGxsbG+Pvvv3XaTvnetba2zvW9+SWxtbVF27ZthZHYfX19sWDBAiGbNyYmBmfOnEGPHj0+52ESEemEQU0iIvomPH78GAqFIsvuX8pZSyVKlPiqgkP5gbOzM6ysrISMsDt37qBFixZZbhcTE4O///5bGAyiYcOGcHBwyOOj1b93795h165dwryPj49O3QCvX78uTDs7O2ut5fglioqKgre3NwICAhAbG4tJkyZpXLd06dJYsWIFOnbsiICAAADIsm5kbtWsWVOYlkql8PLyQtOmTbVu8/LlS62ZjcptyuVyeHl5oVWrVlkei5eXF86cOQMHBweULFkSrVq1ErLIrl27Jqxnb2+P4cOHZ9mer6+vaD5zt9SaNWvC29tb2LdMJhMNbqbOgwcPstzvt6RmzZrYsWMHAODDhw94+fKlTj/WnD9/Hnfv3hU+63bt2mX53n/JvLy8MGLECFEWZJs2bbBs2bI8K/Xy4sULIahrYGCAiRMn6hQ8VS5DUrt27Tw5trz07t07PHnyBAEBATA2Ntb6LKhQoQI2b96Mpk2bCs+svH6mEhHpC4c4IyKib0JkZCSuXLmidZ24uDjRCKxt2rTJ68PSu89Rs0ufDA0NRaNAHz9+XKdBNvbs2YPjx49j3bp1mDZtGj58+JCXh5ln6tatK/oMjxw5kuU2Pj4+otF5O3XqlCfHlpeePHmCUaNGYfny5di+fbvKyOCZGRkZibqp5vVI6C4uLqL97d69O8ttDh48qHV5xYoVRRl8ysFsbVatWoVDhw5h+fLlmD9/vqjOYmRkpDBduHDhLLN8Mz/zAEAmk4nm27VrJ0yHh4cLGbKaJCYm4tSpU1meR3bk9+dagwYNUKBAAWF+586dWW4jkUiwbNky7N+/H0uWLMGGDRvydUAzJCQEI0eOFAU0e/bsiTVr1uRp7ep69eoJ0wqFAkePHs1ym3///Vf4wQQAOnfunCfHlpeuXLmCsWPHYs2aNVi3bl2WJXgKFCiAUqVKCfN5/UwlItIXBjWJiOibMXv2bERFRaldJpPJMGPGDCEYZmRkhL59+37Kw9ML5S6xmWuC5RcDBw4UpmNjYzFx4kRIJBKN6z99+lRUo65atWqoUqVKnh5jXnF0dESDBg2E+WPHjuHOnTsa14+MjMS4ceOEAa7s7Ozwyy+/5Plx6lu9evVE9dsWLVqkMmiXspiYGNHAJ5UqVcrT4wOAYcOGCdOenp7Yt2+fxnVv3boljEaviZGREfr37y/M37lzBxs3btS6zd69e3H//n1h/ueffxYFH2xtbYXpV69eITw8XGNbqampmDx5MiIiIkSvZx4YqEaNGqhfv74wv2DBAo3d6hUKBebNmycaMV0f8vtzzcbGBj/99JMw7+7ujtOnT2vdZsWKFaJu/L169cqz48trMpkM48ePF/1A1bNnT8ydO1en8hq5Ua9ePZQtW1aY37x5s9YyCgEBAZg5c6Yw/9133wndtPOTFi1aCD8GSCQSLF++XOv6/v7+8PPzE+Y/xTOViEgfGNQkIqJvRnh4OHr06IHbt2+LXg8ODsbw4cNx/vx54bXff/8dpUuX/tSHmGvKQY1Hjx7pZRTsT61KlSr49ddfhfkrV66gT58+ePz4sWg9iUSCffv2YcCAAUKgw8jICFOmTPmkx6tvkydPhrFxeoUgmUyG4cOHY9++faLArlwuh4eHB3r27Cka5GHOnDn5cnArS0tLUTD28uXLGD9+PMLCwlTW9fHxwYABA4QAiYWFBbp3766ynru7O1xdXYV/7u7uuTrGLl26oHHjxsL8vHnzsHTpUtGgOBnX5IgRI1S6cavz22+/oXLlysL8ihUrMHnyZJW6i9HR0Vi0aBHmz58vvGZvb4+hQ4eK1mvSpIkwnZaWhhEjRqh0L09LS8OlS5fw888/w8PDQ+WY1GV0zZs3T8imi4qKwq+//goPDw9R4Dk8PBxjxoxRyfzUB+Xnmqenp97b/xRGjRolGsxqwoQJWLx4sUoAODg4GBMnTsT27duF11xdXdVe4/nF6dOn8fDhQ2G+bt26mDVrVq7bvXv3rugeX7Nmjco6BgYGmDp1qjCfmJiI3377DWfPnhXdo2lpaTh+/Dh69eol/LhpYmKCxYsXC8/j/MTR0VEUjN27dy8WLlyo9geH27dvY8iQIUKWdokSJfJlIJeIvk357wlNRESUA82aNcO9e/cQEhKC/v37o2TJkihVqhQ+fvwIPz8/0Zfz9u3bZzm4xpfKxcVFmA4NDUWHDh3g7OyM+Ph4bN++Pd/UWpwyZQqCg4OFWpGPHj1Cjx49ULx4cZQuXRoJCQkIDAxEUlKSsI2BgQGmT5+OWrVqfa7D1osKFSpg4cKFmDRpEuRyOZKTkzF37lwsW7YMrq6uMDQ0xJs3bxAdHS3abubMmfn6i+jo0aNx48YNIVvozJkzOHfuHMqWLYtixYpBLpfj3bt3ooCfoaEhFixYADs7u09yjAsXLsSgQYPw6tUrKBQKbNmyBbt370aFChVgbGyMV69eCcFWJycnGBgYaM0KMzU1xerVq9G/f38h+/H48eM4ceIEnJycULhwYURGRiI4OFiUQWllZYU1a9ao3M8dO3bE9u3bhffw2bNn6NKlC0qVKoUSJUogPj4ewcHBokBs4cKFkZCQIPwwoNyFPUOZMmWwcOFCTJw4EWlpaYiIiMDvv/+OYsWKoWzZskhISICvr68QJGrXrl2W3dSzw8XFBe/fvweQXmri3r17sLW1hZOTkyir7ktWqFAhrFmzBkOGDEFMTAwUCgW2b9+OXbt2oXz58rCxsUF4eDjevXsnKgFgb2+PtWvX5uvuwJs2bRLNJyQkqATkszJw4EDRjwrZ0bx5c4wbNw7Lli0DkF7X1M3NDXPnzoWzszOkUin8/f1FmaQmJiZYuXKlTjWNv1TTp0+Ht7e3kI29c+dO7N27F9999x0KFy6MtLQ0BAUFie55c3NzLF26VFTWgojoS8ZMTSIi+iZUqlQJa9asETJ+QkND4eXlhZcvXwoBTRMTEwwbNgwrVqzI8y5xeeX7778XdRuLiorC7du34ePjo5Kx9SUzNTXFpk2bMHz4cFHX0/fv38PLywvPnz8XBTSLFi2KNWvWiDI887POnTtj27ZtopqLiYmJePjwIe7fvy8KaGYEPXr37v05DlVvLCwssGvXLlG2oVwuR0BAAO7cuQMvLy9RQLNkyZJYu3YtOnTo8MmO0d7eHvv37xcdY2pqKh4/fowHDx4IQRFnZ2ds2rRJGMBHm1KlSuHIkSOi2pUKhQKvX7/G3bt3ERAQIApoVq5cGfv370f16tVV2jIxMcHmzZtFg9BkjMLu5eWFFy9eiAKazZs3x/Hjx0Xraxrkp0OHDti+fTsKFy4svBYRESHcjxkBzV9//RVjxozJ8ryzY8SIEaKgnq+vL+7cuYOrV6/qdT95rUqVKjhy5IioO79MJsPLly/h5eWFoKAgUUCzUaNGOHToUL7sNZDh5cuXovqUQPrgPTdu3MjWP22lFHQxdOhQLFu2TPRDQGxsLO7duwdvb29RQNPJyQk7duzIl3W1lRUrVgz79+8XBWalUin8/Pxw+/Zt3L9/XxTQdHZ2xvbt21GnTp3PcbhERDnCTE0iIvpmNG3aFKdPn8bevXtx+fJlhISEwMDAACVLlkTTpk3Ro0cPlCtX7nMfZq6YmJhgz549WLduHS5fvozw8HBIpVIULVo033VFNzIywtixY9G7d2+cOHECt27dEkbHBtLrR1asWBEtW7bE//73P50CSPlJo0aNcOnSJZw5cwZXrlyBj48PYmJiYGBggMKFC8PZ2Rlt2rTBDz/88NWcu52dHbZt24Z79+7h7NmzePLkCUJCQpCQkAAzMzMUKVIEFSpUQKtWrdC+fftsDTCir8FmrK2tsW3bNnh6euL48ePw9vZGVFQUChYsiLJly6JDhw745ZdfRMH4rBQqVAirV6/GixcvcObMGdy9exehoaGIi4uDiYkJ7O3tUbVqVXTo0AHNmzfX+qNLiRIlcPToUZw6dQoXLlzAixcvEBsbCwMDA1hbW6NMmTKoXLkyOnToIIzA3rJlSzx58gRAeobs+PHj1b639erVw7///oujR4/i4sWL8PPzQ3JyMooUKYLq1avjl19+QcOGDeHv75/Nd1W7WrVqYd++fdi8eTMePXqE2NhYmJmZoWDBgkhNTc3We/25lSpVCrt378a9e/dw4cIF3Lt3D+Hh4YiPj4e5uTlKliyJGjVqoFOnTqJBbvKrzAHNz6ljx45o0aIFTpw4AU9PT/j6+iI2NhZGRkYoWrQoKlWqhLZt26JNmzZfTaaio6MjDh06BE9PT1y4cAE+Pj54//49kpKSYGFhgSJFiqBq1apo3bo1WrdunS+72hPRt81Aoa0KOxERERFRPjZr1iwcPHgQ69aty/eZV0RERET0n/zZt46IiIiISAcZgw0VK1bsMx8JEREREekTg5pERERE9FWKjIzEnTt3YGdnJ6o1S0RERET5H4OaRERERPTVCQgIwLBhw5CamooBAwawVhwRERHRV4ZBTSIiIiL66nz48AG+vr7o06cPhgwZ8rkPh4iIiIj0jAMFEREREdFXKTg4GI6Ojp/7MIiIiIgoDzCoSURERERERERERPkKu58TERERERERERFRvsKgJhEREREREREREeUrDGoSERERERERERFRvmL8uQ+Avg0PHjwQzRsaMp5ORERERERERPStksvlovnatWtna3sGNemzyHzhEhERERERERER6YrpckRERERERERERJSvMFOTPouvpfu5csbp13JORJ8L7yci/eC9RKQ/vJ+I9IP3EpH+fE33U2578TKoSZ+EoaGhcLEaGhqiZs2an/mIck8qleLx48fCfNWqVWFszFuKKCd4PxHpB+8lIv3h/USkH7yXiPTna7ufvL29RbGi7MrfIV0iIiIiIiIiIiL65jCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPmK8ec+ACJ9USgUkMvln2x/MplMZd7AwOCT7Z/oa8L7iUg/vpV7ydDQ8Ks8LyIiIiLSHYOalG8pFAokJSUhLi4OCQkJkEqln3z/yvz9/fkFiyiHeD8R6ce3dC8ZGxvD0tIS1tbWsLCw+GrPk4iIiIjUY1CT8iWJRIK3b98iLS3tsx6HsTFvISJ94f1EpB/fyr0klUoRGxuL2NhYmJiYoHTp0jA1Nf3ch0VEREREnwhralK+86UENA0MDGBsbCz8Y4YIUc7xfiLSj2/1XkpLS8Pbt28hkUg+96EQERER0SfybfyUT18NhUKhEtAsWLCg0PXMyMjokx5LUlKSMM+ub0Q5x/uJSD++lXtJJpMJJWgSExMB/BfYdHJy+irPmYiIiIjEGNSkfCUpKUkU0LS3t4ednd1nORaFQiEKohoZGfFLFFEO8X4i0o9v5V4yMjKCqakpbG1tERMTg/DwcADpgc2kpCQULFjwMx8hEREREeU1dj+nfCUuLk6YLliw4GcLaBIREdGXwc7OThTEjI+P/4xHQ0RERESfCoOalK8kJCQI09bW1p/xSIiIiOhLofx/AgY1iYiIiL4NDGpSvqFQKCCVSoV5CwuLz3g0RERE9KVQ/j+BVCqFQqH4jEdDRERERJ8Cg5qUb8jlctH8pxwUiIiIiL5cmf9PkPn/DERERET09WFQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoXzH+3Afwud29exdnz56Ft7c3IiIikJCQAEtLS5QoUQJ16tRBt27dUKlSJb3vNyYmBkeOHMHVq1cREBCAxMRE2NnZoXTp0mjXrh06d+4MGxubbLXp7++PgwcP4u7du3j37h2kUimKFSsGFxcXdOrUCd9//z2Mjb/5j5yIiIiIiIiIiPK5bzbC9e7dO0yaNAn3799XWRYbG4vY2Fi8ePECe/bswf/+9z/MnTsXlpaWetn3pUuXMG3aNMTGxopeDw8PR3h4OO7du4dNmzZhwYIFaN68uU5trlmzBhs3boRUKhW9HhwcjODgYHh4eKBKlSpYsmQJvvvuO72cBxERERERERER0efwTXY/DwwMRPfu3UUBTRMTE1SuXBkNGjSAs7MzDAwMhGVnz55F7969kZCQkOt9nz9/Hn/88YcooFmuXDnUq1cPDg4OwmuRkZEYMWIErl69mmWb8+fPx9q1a4WAprGxMSpXrow6deqgUKFCwno+Pj7o06cPQkJCcn0eREQAkJaW9rkPgYiIiIiIiL5B31ympkwmw+jRoxETEwMAMDIywogRIzBgwABRJmZ4eDiWL1+OEydOAAB8fX0xbdo0rFq1Ksf7Dg4OxpQpUyCTyQAALi4uWLx4sah7+507dzB16lSEhIRAJpPBzc0N//zzD+zt7dW2ef78eezZs0eYb9euHWbOnIkiRYoASA84uLu7Y+HChUhOTkZUVBRGjx6NY8eOiQK3RF+KdevWYfXq1ahXr57o2s5KbGwsDhw4gKtXr8Lf3x8pKSkoWrQoXF1d0alTJ/zwww8wNNTtdxx9tqWrp0+f4sCBA7h//z7ev38PY2Nj2Nvbo1GjRujevTsqVKig1/3l1tu3b7FgwQIMHDgQ9evXz3L95ORk1K9fH6mpqZg7dy569uz5CY6SiIiIiIiIvlbfXKamu7s7/Pz8hPlFixZh9OjRKl3L7e3tsXjxYgwYMEB47fz583j06FGO971ixQokJSUBABwcHLBr1y6Vep0NGjTA/v37UaxYMQBAYmIi1q5dq7a9tLQ0LF68WJhv2bIlVq5cKQQ0gfQM1J49e2Lt2rVCPc1nz57hzJkzOT4Porxy//59bNiwIdvb3blzBx06dMDKlSvx6NEjxMfHIy0tDaGhobhy5Qrc3NzQu3dvhIWFfdK2dKFQKPD333+je/fuOHbsGIKCgpCamorExEQEBARg79696NatG1asWAGFQqGXfebWzp078b///U+nTPIMN2/eRGpqKgCgRYsWeXNgRERERERE9M345oKaJ0+eFKabNGmCzp07a13fzc1NCDAC6V3RcyI8PBwXLlwQtWtnZ6d23eLFi2PatGnCvLu7u0r9TQC4ePEiQkNDAaR3OZ85c6bG7LEmTZqIMqN27NiRk9MgyjNPnjzBiBEjst2d+cmTJxg6dCiio6MBpP9g0K9fP4wZMwYdO3aEubk5AODhw4cYPHgw4uLiPklbulq0aBG2bdsmBCwbNWqEkSNHYvjw4ahZsyaA9AzzjRs3YsWKFbnenz54eHhAIpFka5uMAGilSpU0Zp4TERERERER6eqb6n4ukUjw8OFDYb5jx45ZbmNqaoomTZrA3d0dQHoX0Zy4cOGCUPPSysoK7dq107r+999/Dzs7O8TExEAqleLSpUv4+eefReucO3dOmG7UqBFKliyptc2ePXti3759ANKzNYODg+Ho6JiT0yHSqzNnzmDGjBlCJrOuJBIJJkyYIGQAduvWDXPmzIGpqamwztu3bzF8+HD4+/vj9evXWLZsGebMmZOnbenqzp072LlzJ4D0Z83q1avRsmVL0TonTpzA1KlTIZPJsGnTJrRq1Qo1atTI8T4/B4VCgWvXrgFgliYRERERERHpxzeVqRkSEgIzMzNh3snJSaftbG1thekPHz7kaN+3b98WpuvVqwcTExOt6xsZGaFhw4bC/JUrV0TLFQoF7t69K8w3btw4y2NwdXVF0aJFhfnLly9nuQ1RXkpISMCMGTMwbty4bAc0AeD48eMIDAwEkF6jdv78+aIgJACULl0aW7ZsEbIsjx49iuDg4DxtS1crV64UpseMGaMS0ASALl26wM3NTZj/UrI1s+PZs2eIiIgAALXnSERERERERJRd31RQs1y5cvD29sb9+/dx9uxZuLi46LSd8mjhNjY2Odr3y5cvhenKlSvrtI3ywCCZM0RDQkJEXV+rVKmiU5uurq4a2yT6VCQSCXbt2oU2bdrg8OHDAAADA4NsB7yOHj0qTA8bNgxGRkZq13NwcED37t0BAFKpFKdPn87TtnTh7+8Pb29vAOnZ27/99pvGdfv27SuUq7h7967e6nl+Khldz4sUKYKqVat+3oMhIiIiIiKir8I3FdTMYGVlhfLlywvZVtokJCTg5s2bwryu2Z3KJBKJUPsSAMqUKaPTdqVKlRKmw8PDkZKSIsxnZJRlKF26dLbbfPv2rU7bEOmbp6cn/vrrLyHzuUSJEti0aZNoYK6sxMTECIF5IyMjNGvWTOv6yt2e//333zxrS1eenp7CdMOGDbU+j0xNTdGoUSMA6VnaOd2nsri4OOzcuRN9+/ZFgwYNULlyZdSuXRvdunXDkiVL1Gagurq6wtXVFV5eXsJrffv2FV5Xzh5XlpFp3qxZMxgYGKgsj4iIwMaNGzFo0CC0bNkS9erVQ4MGDdCpUyfMnj1bY7tERERERET07fomg5rZsW3bNiQkJAjzOek6GRkZKRq1WLkLuDbKo5hntKNu2tDQUGVdTZT3rdwG0edQoEABDBs2DGfPnkXz5s2zte3z58+F+8rJyQnW1tZa11euQ/ny5UtRd3d9tqUrHx8fYTpjQCBd9/no0aNs70/Z8ePH0apVKyxcuBB3797Fhw8fIJVKkZCQgGfPnmHr1q3o0KED9u7dm6v9AOkBy2fPngFQX0/z3LlzaNeuHVauXAlvb298/PgRUqkUsbGx8PPzw4EDB9C3b18MGjRI9CwmIiIiIiKib9s3NVBQdj158gRbtmwR5suWLYtWrVplu52PHz+K5rMKmGSwsrISzSt3N1dus2DBghpHPc/M0tJS43F9KkkSGSoszn49T3MjYFrtgihW0AzFrMygUChEweIM72KT8TFFmqtjtDIzRulCBTQu949OREqaHHKl/RvGxWdrH0UKmsLeykzj8ufhCWrPLztK2pijUAH19VslMjleRSbmqn0AKGdnAQtT9V21E1KlCPqQrPJ6tNQY3fsNRvsff4atXWG8iZMBcXF4E/1fcDAxVQqfsPRrvkIxSxgZijP8AgIChGmbosWFdbWxtLJGQnwc5HI5Lj98gbJOzgCAO09eCOuUKlVK5X0PjUvBh6Q0ndrSxMLUCOXsLNQef6lSpRAQnYgkiUzj9tICtsL0i1f+as+3kIUJSlprzvh8GZGAE4f2Yce6/+py2hSyQ+2GTWBfvCRiP8TA2+s23ocEQyKRYN68eYhIlKJt524AgL7D/4CVmTFOuR8RMjl/+eUXYcCxkg6lVI7r0pnzUCgUMDYxgV35aqLlL589wfRx4yGXp5+3S+WqqFClOkoUsYUkKRFPnz7F/fv3AQA3btyAm5sbVqxZjzcx2Q8iZ+ZctCBMjdQ/Nz8kpyH0Y4raZboyMDBAJXtLjcvD41MRlZi9EeQzMzcxhFPhghqXv/2QjPjU3D0LbcyNUcpW87PwVVQiJFJ5rvZR1NIUxSw1Pwufvc/es1WdUrbmsDFX/yxMlcrxOir3z8LvCluggIn6Z2FcihTBsarPwuyqaG8JQzXZzgAQmShBRHz6QGc5/dtkYmQIl6Kar6mQjymITU7TuFwXlmbGKKPl72tAdBKS0zQ/CzVRyOVIS5PhQ1IaDAyA76RSjX9DG669let7Y0ab8uhZXf0AjZEJqWi5KfcZ5jt6VENdR1u1y+4Fx2LA4Se53seVYfVRVMP9d+hxKOZdep2r9q3MjHF7VCONyxdd8cfehyEal+uiWgkr7P9V84+Dw44+xc2gnNXEh0KB1FQJWpQyx6ga1pDJ1F+b7bZ4ISQud383/mxSFoPrq+95lSqVofaqm2qXZceqzpXQ2ll9IsSLiAR03/NQ7bLsONW/Dr4rbKF22TnfCEw865vrffiM09yjZv2tIKy/HZSr9ssVKoDTA+tqXD7hzAv88zJ3ySGtnApjdRfNJcl+2v0AL3P5//RBdR0xtlk5jctrrbwBiSx3f8Pnt3NBlyrF1S4L+ZiCdlv/v3fP/99LGcwuXgM0/D3LbG+vGqhRUv335xtvYjDc3Uftsuy4NbIhrDX8P2H3g3f4+2qA2mW6KmJhiqsjGmhcPufiKxx5krvyUnVL2WBHz+oalw849Bj33uXu+3/3aiUw63vN33labLiDqKTc/f92Yovv0Ld2KbXL4lLS0GjdbbXLsmNjtypoUs5O7bJHoXH47cCjXO/jwuB6cLBR/73shM97TL/gl/PGFQrI0yQ40KEYAKj927TC8w223cv52A8A4Fq0II71ra1x+R8nnuGyf3Su9vGDa1H01a0js0YMamrw7t07/P7770hL++8/75MnT4axcfbfsozRlDMoD1akTeZBSpTbUZ7WpRu9ujYlktw9cHJKrlDALwd/pC2MDZCSVgBpMjnkcjmSkpLU1j1MlsiQovQlWyqTY6vXW9x8EyN6XRtDA8DYUPMf2jSZArkLNwJGBlAJ1CmTyHK7B8DYADDUtA9F+rLG5ewwuF5pGGsI8GQlOSUFkKrfR1KaQu177lS5Bpwq1wAA0XLl/1jJFf8tS05ORubTUC7pYFukmE6frW3hokiITw+qRUREoniZ9HISylnLRYoUUcm8TEmVqbSvqS1NDA0UonYzBs4BgEKFCiElTYoUqebP3LLQf19CPkRHqT3flNQ0JCVpfh9evvTFrg2rhfnm7Tuh78hxMC/wX4Dhl2FS7Nu4Cv+eSK91unP9CtRo1BzWtoXQ7ufesLcwwp0b14SgZqtWrVCnTh0A6Z9Z+AdxwMPr1nUAQIWqNWFgWkB03Ad3bBECmn1HjkO7rj0AAI5WxrA0Sf/APTw8MHnyZMhkMly7dg2PHnnDrKT2ALIukpOTIdVwb6SkynV+VmhiYACtGbzJaq6pbFMotO4jJS33+zCVSLPcR26fVSmpEiQZag5i5fp9ApCckgoTufpgnESm/jmV/X2kQJGm/ppKTsv9NQWkX7ea/mpovm51/3xkcu3XVOa/rzlhZJCGpCTNx5TVs1AjuRxQAGlyOWRSqSgbPrOX4XFISMvddfvsVSAeQ31QIypZlqP/52T29IUfTGPU/5/xaXiqXvbxxOcZihRQH4x/9iox1/uwNDHA48ePNS5//uZjrvdhKpdo3ceLd9Hwi0zVuFwXUSnpzyhN15Xv+1iEJWY/GK/sWcBbPDZXH3xNleXs/86Z+fi9RpEk9UHklx/S9HPdPn+OeGv1waFnQcl62Ye2z/tZQFyu95Gakqr9un0bA7/I3AWxS5jK8Pix5h9XfENj8Co2dz++PHvzDo9tNP/o7xcRD0ku/zT5vHqDcrJwtctCE6SaP4t43c/N58VLGESaql32NDRFP8/Cpz6wMlX/XejZ64Rc7yPKPFn7cyooFn6RufvR3tIgTfs+QqLgF5m77/8vgkLx+LHm4/QN/4iYlNxdVM9eB+GxsfpAWbxErp/nlO8rWMWpj6H4REn09vc1ylJ97MgnICn3f/uULld1f5uevcn9s1CRpv1Z+CI498/CMgVkkDuqDzDrikFNNcLCwtCvXz9RoKN///45HrVXKhU/tDUNQJJZ5vWUI/DKwVZdszQBiIKymY/ra7Xl7lvsyOWvFF+zjF+Bhzcs+3kPJJuUuyKbmWvO+lFmpvQDQFJigtrpAgVy15aulI9flx8mTM1ytz8AOHVorxBErFG/MYaOn66yjrGxMfr8PhaBr3zh9+wJUlNScO38aXT6pW+295cmkcDn4T0AQM0GjVWWv3qeXsfUwtIKbbt0V9tG69at8cMPP+DMmTMwMjKCz9OnqK2HoCYRERERERHlbwxqZuLv749BgwaJRhdu0qQJxo8fn+M2MwcdNXVdySzzeiYm//3qqRzwlMt1/zVEOZCp3N7XTB9dF792PmH57z1SDuybmuqa/fzfemlpEqXp/9rSPZNafVu6Ut6nubk5surQaWqmvL/sd/9MS0vDw9s3hPmeg0ZoXNfQ0BDtf/oFqSkpKO7gCBu7wtneHwA8f/QAqSnpXW5rNmiisjzjOZaclIi3Aa9QxslFbTt//PEHhgwZghIlSiANRgiM+zZ+kCEiIiIiIiLNGNRU8vDhQ/z+++/CiMwA0KBBA6xduzZXAcDMmV+6dvvW1m1duc3M62mjvG9dgzf6ZmhgoLVmlybmRuk15EyMDGFoaAgLCwu1Wa8FJMmQyP8LelQvaQ2v4NjcHPJXr4aDNcyNc9b9vIC5ucaamvJUKcyTdQ+6K9c4NDSAcEwFChRQ6aqvfE8aGxrodPzKTZgaGQrbmChdRyYmJrCwENeCMpemwFwmDiRqaksTcxMjUbuGhobCDxfm5uYwMjGGXKH5Bw8zpffGAOrP19zMBBYW6rM+7927J2R4FrUvARcXV63H27zV92je6nuV1wuYmYp+qDEzMxPOSyZXwDz+v3N44pVe/6ukYxmUKa1aJ6xyzdq463kFCrkc891GoH3X7qjTqBkca1VBgQKWwkjppZW2TZLIYJ6DgZlUzqNAAY01NVMN0mCemvuampmvI9H+Zakwl+a+pqa2fZinJiNNnrsAcAFTY1hYaM5eNk9KhKFB7roZmZuZwsJC898j82zWK1angLkZLDTUyjKSymGemPtuRgXMzTXW1JSmSGGenPuamgUKFNBYUzNRIYG5RE1NTR1rlgHpNTW1XrdpKUiV5a6mZpbXVHISFMhJTU0gzQAwMTSEqZkpqlSppLFnjOv1xFzX1KzsXBbVtdTUdLmZ+4HNqlZ0QXUNNTUlwbFweZr7mprVqlTWWFPTF6FwCcp9Tc3q1TXXeKsU4w+XD7mrqVmhhJXWfVR89RQxstzV1Cxinn4tValSRe11VcHLC1a5rKlZ+bvSqF5dc01NlytZ1w7PShWX8qiuoaamaUQCXB7k/u9r1UqVNNbUDDGLgMur3NfU1PZ5V04Mgkt47mtqar1ug18gKDl3NTUrOhZG9eqaa2pWePwABia5+9tUuVwpVK+uuaamy5X4XNfUrOJcDtU11NQs8jEFLnf+/xwy19Q0M9W5pmaViq6orqGmZrx1DFye576mZrWqVTTW1HwsfQeXd7mvqan1ORXxCi4fc1dTs6KDjfZ9+D5GgiJ3NTUrlimB6tU195iqcCs51zU1K5cvg+rVNdfUdPHM/f8Lq1ZwRnUNNTUVoXFweZT7/7NVq1JZY03NN0bv4RKQ+5qaGdT9bar88Q1conJfU1PrNfXmGcIkuaupWal0URgaSrOVqJcZg5r/7/Tp05g6daoo6Ne8eXOsXr06WzUr1bGxsRHN6zqCb+b1bG1t1baZmJgIhUIhBAB0bVO5vU/JwtQIvpOyP+CSTCaDn99/N7+BgYHac3YsZAFHpfm13aqimJUZzr0I1zoQS07k9Ivjl8LC1AgdKtpj5vcuMMlhTU1trMxNUKWE7j8IJL797z/BBc2MUaWE5kG1Chb8LzBuYwqt62YwUvz3JdbJ3lbYpmTh/+4niUSicl052BSAg434S7imtnRlYWEhDNYlkUjg5Kg90O+f9N9/ns3NzbK9P+Xs8yqVKmR7e2XK74/yfWhsZCBq9+m9WwCA9t+3Vru/mZPGo+fDe0hISEBSYgLc9+6A+94dsLa2Rv369dG4cWM0bdoUpUr99x+brK4LfbCzMIWdhfraTfpS3NocxbUM6qQPZew0B6f0xaWo5sGQ9CWvP29zE6M834dNARPYaBi0TV+KWZqhmGX6IHrKdTEtLCx0+v+BLkrZFtA6cJQ+OBXJ/o+ewP//HyHOCAVs0v9Tb2xsrDGoee9PzYOM6EMJW+Mc/T8nOxqWK5Ln++hduzR611YfZNOX6d+7Yvr32n9ky61tv2geRCgrUqlUVE/MyMhIbX19jxGaB0PSB2PjvL+mqpa0zfN9dK5SEp2rqP8xQF/+aOaEP5ppr3OeWyu6VMWKrFfLlZMD6+fxHoAn41vkaftlClsK11Tme6l69eo5GqsisxbOxfL8uh1YvywG1i+bp/uY90NFzPuhYp7uY09vzQO+6MuN0ao9s/TJzjLvn4V1Stvl+T5+rlEKP9dQH7jVhS5/mya0csaEVnlbsmv9z5oDntnh7e2dq+0Z1ASwZs0arF27VvRa586dsXDhQr08bIsWLQpDQ0Mh+hwVFaXTdsrrGRgYoHDh/7qA2tvbC9MymQwfPnyAnV3WBVYzD4jyLTAxMsS89hUwr30Fvbabl18cKWvK2UQpKbplRyivZ239XxBDn23pSjmoqcs+k5WyvKysrLK9v+jo/35Fy8nxZtfLly8REpKefdOiRQu165QvXx67d+/GtGnT8OLFfyPQx8XF4eLFi7h48SIAoGLFiujWrRt++eUXlQHUiIiIiIiI6Nuk/9SsfCQtLQ0TJ05UCWgOGzYMf//9t14CmkD6iOMlSpQQ5t++favTdhmjCwNAyZIlRV/my5Qpo3Fdbd69eydMlyunuTsC0ZdOObAfHq5+1MXMlNcrWrRonrSlq+zuM7f7+9QDg129ehVAegC1dm3NvwxXrlwZx48fx549e9CrVy9RV/MML168wIIFC9C5c2edPx8iIiIiIiL6un2zQU2JRIJRo0bh5MmTwmvGxsaYP38+3Nzc9J5xV6VKFWHa11e3WjLKmUsVK4rT0R0cHETdx5XX1UZ53xUq6DdzkehTcnb+L50+IyNQm4SEBCEz0sjISPTDgD7b0lV296m8Tk5+kFDOzoyLy31drqxcuXIFQPpAa1n9QGRgYIC6detiwoQJOHHiBP755x/8/fff6Nq1KwoVKiSs9+bNG0yePDlPj5uIiIiIiIjyh28yqCmVSvHHH38ImURAen2+TZs2oXv37nmyz3r16gnTd+/ezbIQqkwmw927d4X5Bg0aqKxTv/5/tVZu3bqV5TH4+vqKurSra5Mov3B1dRUGrPHz8xOVAlBHuVaHs7OzKPNZn23pSvlHhUePHmW5vvI6yj+S6Eo5A/L166wHfkhLS8OYMWOwePFiHDx4MFv7+vDhg1DnRVPXc23s7e3RuXNnLFq0CNevX8fQoUOFZbdu3WK2JhEREREREX2bQc0lS5YIWUQAYGdnhz179qBJk7wrbNumTRuhYH1UVJRQK06TCxcuICYmBkB6Bmnbtm1V1lF+7cqVK1l+0T9w4IAw7eTkBFfXvC3MTpSXLC0tUbduXQDpAbjr169rXV/5nm/WTDxIhD7b0lXLli2FjPBbt24hNTVV47qpqamiHy5ysk/lguzBwcEICNA+iuPjx49x/vx5bN++Hfv27cvWvq5duwa5XA5DQ0ONx+rp6YmhQ4eiTZs2mDlzpsa2TExMMHbsWFEdUQY1iYiIiIiI6JsLal67dg27du0S5m1sbLB7925Urlw5T/dbvHhxtG7dWphfsGCBxi/mYWFh+Ouvv4T5tm3biurvKb9erFgxAOnd6SdPnqyxbt7169dx5MgRYb5Pnz45Og+iL0mnTp2E6XXr1kEikahd7927dzh69CiA9K7O3bp1y9O2dOHg4IBatWoBAGJiYkTPpcx27dqFDx8+AABq1aqF7777Ltv7K1iwINq0aSPMr1u3Tuv6u3fvFqaVtwMgGlFYXdZ5RtC3evXqou7jyoyNjXHt2jUEBwfj4sWLWrvEJyUliQZKUvc8JCIiIiIiom/LNxXUlMlkWLBgARQKBYD0gMSyZctEte1yok+fPnB1dRX+aTJ27FiYmZkBSM80+vXXX+Hl5SVa5+7du+jdu7cwSrmFhQXc3NzUtmdqaipaduvWLQwZMkQ0aJBUKsXhw4cxevRoyGQyAICLi0uedbMn+pR+/PFHODk5AUgfbdvNzQ2JiYmidYKDgzFkyBAhE7Jz585qa1Lqsy1dKdfvXblyJU6cOKGyzokTJ7By5Uph/o8//sjx/kaMGAETExMAwJkzZ7BkyRKkpaWJ1lEoFFi3bh0uXLgAIL0WZ+/evUXrWFpaCtPKg48B6ZmuN2/eBJCejapJgwYNhC7xMTExGDt2rBC4VSaRSDB9+nThB5tatWoxqElERERERETQz/De+cT58+cRFBQkzBcoUAA7d+7Ezp07dW6jSJEiWLx4cY72/91332H+/PmYNGkS5HI53r17hz59+qB06dIoXrw4wsLCRAFJQ0NDLFiwAI6Ojhrb7Nq1K7y9vXHo0CEA6YHNtm3bwtXVFZaWlvD39xe6sQOAra0tVq1apbeR3Yk+J1NTUyxYsAD9+vVDamoqLl68iEePHqFdu3YoUqQIAgICcPHiRSHLz9HREdOmTcvztgCgVatWwuA+Xbt2xaJFi1TWqVOnDn777Tfs2bMHMpkMkyZNwsGDB4V6t3fv3sXDhw+F9fv164eGDRvm7M1Ceh3PadOmYfbs2QCArVu34ty5c2jZsiXs7e0RGxuLq1evCl3TDQ0NMW/ePBQpUkTUTqlSpYTppUuXIiQkBCYmJmjbti2ioqIQHx8PQHs9TUNDQ8yaNQtDhgyBXC7HzZs30bFjRzRr1gwODg6wsbFBWFgYPD09ERoaCiD9R56pU6fm+PyJiIiIiIjo6/FNRbbOnz8vmk9KSsKNGzey1YaDg0OujqFz584wNTXFrFmzEBsbCwB4+/Yt3r59K1rPxsYG8+bNQ7t27bJsc86cOShUqBC2bduGtLQ0yOVytaOhOzk5YdWqVTnqukr0papZsyY2bdqEcePGITo6GpGRkdi7d6/KehUrVsSGDRtgY2PzSdrS1bRp02BiYoKdO3dCLpfD29tbNBARkJ5VPmDAAEycODHX++vVqxesra0xe/ZsxMXFITQ0VG3NTGtra8yfP1/tM+inn37Cvn37IJFIEBsbiw0bNgBI/6Eoo6yGg4NDlnV7mzRpgqVLl2LmzJlISEhAcnKykCGamYODAxYtWoSqVatm95SJiIiIiIjoK/RNBTWzGhjjU2nfvj0aNGiAI0eO4PLlywgKCsLHjx9hYWEBJycnNG/eHD179oSdnZ1O7RkYGGDs2LHo3Lkzjh49ihs3buD9+/dITk6GjY0NKlasiPbt2wsBVaKvTcOGDXHhwgUcOHAAHh4eCAwMREJCAqysrFCpUiV06NABXbp00SlDWZ9t6cLAwACTJk1Cx44dcejQIdy9excRERGQyWSwt7dHnTp10KtXL1SrVk0v+wOA//3vf2jatCkOHToET09P+Pv7Iy4uDubm5sIz6JdfftH4DHJ2dsbevXuxbt06PHnyBPHx8bC0tERCQgKuXr0KAGjevLnOx1K/fn0cO3YMnp6eCAwMRFxcHAwNDVG4cGG4urqiVatW6Ny5s1C+g4iIiIiIiMhAkVFgkigPeXt7CwOKGBoaombNmtluQyaTwc/PT5h3cXERDVjyqSkUCiQlJQnzFhYWQn1EIsoe3k9E+vGt3ktf2v8R6OsglUrx+PFjYb569eos4USUA7yXiPTna7ufchsr+qYGCiIiIiIiIiIiIqL8j0FNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiFWlpaZ/7EIiIiIiINDL+3AdARKRs3bp1WL16NerVq4c9e/ZoXM/d3R1TpkzJ8X5GjRqF0aNH672tnLpz5w7c3d3h7e2NyMhIyGQy2NnZoVKlSmjfvj06dOgAExMTndq6ffs2Tp06hcePHyM8PBypqamwsrLCd999h0aNGuGXX35B4cKF1W67Zs0arF27NsfnsXDhQnTr1k3tMm9vbxw7dgz37t1DREQEZDIZihcvjtq1a6Nbt26oVKlSjvcLpAdgevXqhadPnwIAXr58meO2dL0OM4uNjcWBAwdw9epV+Pv7IyUlBUWLFoWrqys6deqEH374AYaGuv2eqM+2fHx8cPjwYdy/fx9hYWGQy+UoVqwYKleujA4dOqBNmzbZOq7Dhw/j2rVreP36NRISEmBhYQFHR0fUq1cPPXv2RLly5XRqKyYmBgcOHMD169fx5s0bJCYmwtraGhUrVkTbtm3RpUsXmJmZ6dRWYmIiTpw4gWvXrsHX1xexsbEwNDSEnZ0dqlSpgvbt26Ndu3YwMjLKsi2JRIJz587h0qVLeP78OWJiYiCXy1GoUCFUrFgRrVu3xo8//ghTU1Odjk2f9/enEBUVhSVLlqBhw4bo0qWLTtu0bNkSoaGhGDZsGNzc3PL2AImIiIiIwKAmEX1B7t+/jw0bNnySfRkYGHwRbSUmJmLKlCm4cOGCyrL379/j/fv3uHz5MrZu3YqVK1fCyclJY1sRERGYPHkybt68qbIsJiYGMTExuH//PrZs2YJp06ahe/fuOT5uTdS9F0lJSZgxYwbOnDmjsiwoKAhBQUFwd3dHixYtMGPGDBQqVChH+161apUQ0MyNnF6Hd+7cgZubG6Kjo0Wvh4aGIjQ0FFeuXMHevXuxfPlylChR4pO0lZaWhvnz5+PQoUNQKBSiZW/fvsXbt2/xzz//oFq1ali0aJHW6wsArl69ikmTJiE2Nlb0elxcHJ49e4Znz55hz549GDFiBEaNGqW1rePHj2Pu3LlISkoSvR4dHY0bN27gxo0b2LBhAxYuXIiGDRtqbevatWuYOnUqoqKiVJaFhIQgJCQEFy5cgIuLC1atWoXvvvtOY1uPHz/G+PHj8fbtW5VlGffklStXsH79eqxYsQI1atTQ2JY+7+9P5dy5c5g5cybi4+NRv359nbbx9fVFaGgoAKBFixZ5eHRERERERP9hUJOIvghPnjzBiBEjdO7uWLVqVUycOFHn9v/99188evQIAGBnZ4cff/wxT9rKDrlcjpEjR+L27dvCa/Xq1UOVKlVgamqKV69e4erVq5DJZPDz80OfPn1w+PBhlCpVSqWt2NhY9OvXDwEBAQDSg4sNGzZEtWrVUKBAAYSEhODKlSuIjIxEcnIypk+fjuTkZPTt21fUTuPGjWFhYaHzORw+fBiBgYEAgLJly6oENFJTUzFgwADh/QKAMmXKoEWLFrCzs8O7d+9w8eJFxMbG4urVqwgMDMSWLVuydQxAenbqtm3bsrWNOtm9DpW3Gzp0KFJTUwEADg4OaNOmDWxtbeHv749Lly4hJSUFDx8+xODBg3HgwAFYW1vneVvjx4/H+fPnhfkqVaqgZs2asLa2RmBgIDw8PJCSkoInT56gX79+OHToEBwcHNS2devWLYwaNUp4bwoVKoSWLVvCwcEBkZGRuHXrFt6+fQupVIo1a9YgOTkZEyZMUNvWzp07sXDhQmHewsICrVq1gpOTE5KSknDjxg28ePECYWFhGDx4MJYvX4527dqpbevy5csYNWoUZDIZAMDW1hYtW7ZE6dKlIZVK8fz5c1y/fh1SqRR+fn7o3bs3Dh06hNKlS6t97/v37y8EWi0sLNCyZUshCPr69WtcuXIFKSkpCA0NRb9+/bB7925Ur15dpS193t+fkqenJ+Lj47O1zZUrVwCkXxPagrxERERERPrEoCYRfXZnzpzBjBkzVDK2tHF2doazs7NO6969exfLly8HAJiYmGD9+vVwdHTMk7ay4+jRo0LAw9raGqtWrUKjRo1E6/j5+WH06NEIDAxEdHQ0FixYoDaLcMmSJUJAs3jx4li7di2qVq0qWic1NRULFizAoUOHAACLFy9G48aNRdlhtWrVQq1atXQ6/lOnTgkBTSsrK2zevFkly3LRokVCQNPAwABjx47F4MGDRV2AJ02ahClTpuDixYsIDAzE9OnTsWvXLp2OAQA+fPiASZMmQS6X67yNOjm5DoH0rsoTJkwQgpDdunXDnDlzRF2T3759i+HDh8Pf3x+vX7/GsmXLMGfOnDxt6+TJk0JA08jICIsWLULnzp1F64SGhsLNzU3oFj1v3jxs3LhRpa20tDRMnz5dCGh26tQJs2fPhqWlpWidjRs3CuULtm3bhg4dOqBy5cqith49eoTFixcL83Xr1sXy5ctRrFgx4bXx48fjyJEjmDNnDtLS0jBp0iS4uLiodGuPi4vD1KlThYDmDz/8gPnz54uOCwD8/f0xcuRIvHnzBjExMZg8eTL279+vco6TJ08WPv969ephxYoVKFKkiGi98PBwjBkzBt7e3khJScG4ceNw7tw5la7o+ry/v3RXr14FADRr1kznMgZERERERLnF/3kS0WeTkJCAGTNmYNy4cdkOJOkqJiYG48aNg1QqBZAeLKlZs+ZnbwtIr+WZYeLEiSoBDwBwcXERgqhAejfbjx8/itaJiorC8ePHAQCGhoZYv369SkATAMzMzDBnzhw0bdoUACCVSrFz584cHXtAQABmzpwpzC9cuBBlypQRrRMSEoLDhw8L82PGjMGwYcNUahpaWVlh+fLlQvDr7t278PDw0PlYpk+fjvDw8BzXJMztdXj8+HEhuOvi4oL58+erBLhKly6NLVu2wNzcHEB6wCs4ODhP29q6daswPWrUKJWAJgCULFkSq1atEt67q1evCt2Ild29exchISEAgFKlSmHhwoUqgUMTExOMHj0aLVu2BAAoFAqcOnVKpa3Vq1cLAWhXV1ds3bpVFNDM0L17dyHTMzk5GUuXLlVZ5+jRo/jw4QOA9CzUpUuXqhwXADg5OYneswcPHuDhw4eidS5fvgx/f38AQIkSJbBhwwaVgCYA2NvbY/PmzShatCgAIDg4WG33cn3d31+6mJgYPHnyBAC7nhMRERHRp8WgJhF9chKJBLt27UKbNm2EoJeBgYEQDNGn6dOnIzIyEgDQsGFD9O/f/4toCxAPZKOtdl3lypWFgX1kMhnevXsnWn7lyhUhU61Ro0YqmXHKDAwMRMd969atbB+3TCbD+PHjkZycDAD46aef8P3336us5+HhIQSAHR0dMWTIEI1tmpiYYPjw4cJ85iw6TQ4cOIBLly4BAMaOHavzOQD6uw6PHj0qTKsL2mZwcHAQ6phKpVKcPn06z9oKDQ3Fq1evAKRnafbq1Uvj8dvb28PV1RVAeiDSz89PZR3l12rVqqU1gNysWTNhOigoSLTs48ePuHPnjjA/depUIdCoTu/evWFvbw8gPegYHh4uWn7x4kVheuDAgTA21twBxdHREW3atBHmM1/7ym39+uuvaoOjGaytrUUDYqm7j/R1f3/prl27BrlcDmNjY+EHEyIiIiKiT4FBTSL65Dw9PfHXX38JGVYlSpTApk2bMGDAAL3u559//hEy/iwsLLBgwYIvoq0MygGrzMEaZRKJBImJicK8nZ2daLmvr68wra62X2bKGZURERE6HauyHTt24NmzZwDSA2KaRo5XHrTn+++/1xpwAtK7IWes4+XlJXTB1sTf3x+LFi0CADRo0AADBw7U+RwA/VyHMTExwnkaGRmJAnrqKGey/fvvv3nWVsmSJfHgwQMcPXoU69evz3LwJYlEIkyrC1gqdynWdq0CEN5PQPVaff78uRCAt7Ozy3IgGmNjYzRo0ABAeo1KT09P0XLlwGG1atW0tgVAVEcz87Wvz7YA/d3fOZGSkgJ3d3eMHj0aTZs2FWqpduzYEXPnzhWda4ZWrVrB1dVVyPoGgClTpsDV1RWurq6izFNlGfU0a9WqBSsrK5XlcXFx2LlzJwYMGIBGjRqhSpUqqFu3Ltq3b48pU6bAw8NDZRArIiIiIiJdsKYmEX02BQoUQN++fTFs2DAULFgQd+/e1VvbSUlJ+Ouvv4T5ESNGaBwA5VO2pczZ2VnoArtx40bUqlVLbWbetm3bkJKSAiC9u27m0a4nTpyI/v37Izw8XG033syUAywFCxbM1jGHh4dj3bp1wvzkyZPVBjKA9CBdhrJly2bZtqmpKWxtbREVFYW0tDT4+vpqDNJKJBK4ubkhJSUFtra2+Pvvv3M8Cn1ursPnz58LARknJyeNA/ZkUB5E5eXLl0hKShIGRdJnW0D6Z6uuDEFmvr6+QlanmZkZKlasqLKOi4uLMH3v3j14eXmhXr16KutFR0fj4MGDwnzm7sjK10SZMmV0+syKFy8uTPv4+AgZqkB69mZERAQiIiKEjE5ttF37Bw4cQHh4OCIiIlCpUqVctQXo7/7OLk9PT0ybNk3IKs+QlpaGV69e4dWrVzhw4ACGDBmCsWPH5vi+yWjzxo0bAKA2w/nu3bsYM2aMKNCdsV1cXBzevHkDd3d3VK5cGRs2bNDpMyQiIiIiysCgJhF9cjY2Nhg5ciR+/fVXtTXr9GHbtm1C9lTZsmVz1VVcn20p69u3rxD0uHHjBnr27InRo0ejcuXKMDc3R0BAAHbt2oUzZ84ASA+czJ49W6UdMzMzODo66jxgkfJo2MrBKl2sWLFCNJBKhw4dNK6rnPGna+BEOWMwJCREY1BzyZIlQobq3LlzcxQM0cd1+ObNG2Fal1GrLS0tYWNjg48fP0Iul+Pt27eoUKGC3tvShUKhwM2bNzFjxgwhmNqnTx+1mYINGjSAi4sL/Pz8IJfLMWTIEPTv3x+dOnVCqVKlEB0djdu3b2PNmjXCvdKuXTu0bdtW1E5O6p4qZ+xm1PXMYGtrC1tbW52u49TUVGFAGwBCl/sMlpaWsLS0FA2cpY1yHU11+9fX/Z0dFy5cwNixY4VsWEtLS7Rs2RLlypVDXFwc7t69ixcvXkAul2PTpk1QKBQYN24cAGD48OGIj4/HuXPn4OPjAwDo0KEDqlSpAgBqA+T37t0TskwzB7AzBrTKeF64uLigUaNGKFy4MOLi4vDy5Utcv34dCoUCz549w5AhQ3DixAkONEREREREOmNQk756ClkaYu/OR9Kbf6CQ6m8wGgUAhfy/LnMxhgbIeb7L52FgbAGLcj/Atv50GBjlbJCVnKhbty7q1q2bZ+3HxcVhx44dwvyff/6pMtjK52grsx9++AHPnj3Dli1bAKR31x46dKjadRs0aIApU6ZkK2ilTmBgoGjwnnbt2mVr25MnTwrzGYO4aKKcYZeRCahNZGQk4uLiRPPqXLt2DXv27AGQPjp4ds5BmT6uQ+Vj1DXDzt7eXhgMJjIyUvhM9dmWJsHBwTh16hTCwsJw7949YVAiIL02akaAKzNDQ0OsXr0aAwcORGhoKFJSUrBx40a1I6Xb2tqif//+GDZsmMoy5WvizZs3kMlkGuuGZnj9+rUwHRUVpXVdbbZt24bo6GgA6T8E5GZQm5MnT4q6cKu7Bj/1/R0VFYUpU6YIAc0mTZpgzpw5cHBwEH5UUCgU2Lp1qzDo0pYtW9CxY0e4urqiR48eANLv1YygZtOmTUW1QzPL6HpepkwZfPfdd6JlW7duFQKaAwcOxKRJk1S2f/jwIQYNGoSkpCS8fPkSly5dUgmEExERERFpwqAmffU+3J2Hj16LPvdhfLEkkY8AAIUazfm8B6JHBw4cELKHKlWqhPbt238Rbakzfvx4NG7cGIsWLRLVxlRmbW2NRo0aiWr45URSUhLGjh0rZL4pDzaji+3btwujVrdp0ybLuoP16tXDgQMHAABnz57Fn3/+qbW7e0bGWgZ1NTUzAjcKhQJlypTB9OnTdT7+vBAfHy9MFyhQQKdtlAfGUd5en21pcv/+faxevVrl9SFDhuDPP//UmiVXrlw5HD9+HNu3b8fWrVuF4FlmlStXRv369dW2ValSJVhaWiIhIQGxsbG4cOGC1mzf0NBQUTmAjG7a2eXl5YX169cL83379oWtrW2O2vL398e8efOE+Q4dOsDZ2Vntup/y/t6zZ4/wrKpQoQKWLVumkhlrYGCAIUOGwNfXF2fOnIFCocD+/fsxZ07Onv/Xrl0DoH7U80ePHgnTyoOAKatVqxYGDBiAdevWwdDQEI8fP2ZQk4iIiIh0xj4+9NVLfX/vcx/CFy/lvdfnPgS9kUgk2L17tzA/dOjQHNeM02dbmjx58gSbNm3Cy5cvYWxsjJYtW2LUqFEYPXo02rdvD3Nzc8TFxWH58uXo2LGjThmP6qSmpmLUqFF4/vw5gPRBTObPn69z1mlUVJRoABF1WXiZtW7dWqjxGR0djcmTJ4u6lyt7+vSpkNGWIS0tTTSvUCgwZcoUREdHw9jYGEuWLMl2TVB9Uz4fbaN4K1NeT3l7fbalSebu2xm2bNmC9u3b4/bt2xq3lUgk2LdvHw4fPgyZTAZHR0f06dMHY8eORf/+/YXA3s2bN9GrVy8sXrxYpQ1jY2P8/PPPwvzcuXPh7++vdn/JycmYNGmS6DqQSqVZnmNmPj4+GDlypNCOs7MzRowYke12gPRM18GDBwsB5KJFi2ocKAv4dPc3IB69fdiwYVq7+vft2xcuLi5o06aNTvVu1fH39xdGt1dXT1N5YLCMbvjq9OvXD//88w8eP36cZfY3EREREZEyZmrSV8+seF2kvPX43IfxRTMvrjrgR3514sQJoYuqo6NjrrJ+9NmWOmfOnMGkSZMglUpRvnx5rFmzRqULZ3h4OMaPHw8vLy+EhIRg4MCBOHnyZLZGSE5ISMDIkSNx584d4bXx48ejUaNGOrexZ88eIWhWr149nUaHNjMzw7Rp0zBmzBgA6SN09+zZEyNGjEDdunVRsGBBhISE4OzZs9i6dStSUlJQsmRJhIaGAoBKwHXXrl3C6Ne///67TiO957Xc1v9TDpLrsy1NOnTogJ9//hmFCxdGbGwsbt68iQ0bNiAwMFAI2G3YsEFl5PWEhAQMGjQIjx49goGBAcaOHYshQ4aodB0/duwY5syZg9TUVGzfvh02NjYqWXrDhw/HxYsXERISgg8fPqBHjx4YOnQo2rdvj5IlSyI+Ph537tzB+vXr8erVKzg4OAjB2OyWfnjw4AGGDx8ulDWwtbXFmjVrchQM9/f3x6BBgxAWFgYg/fpetWqVxsG5PtX9DaRntGYEh01MTLK8t6tXr47Tp09nax+ZZdQnLViwIOrUqaOyvF69enj27BkAYMyYMejRowfatm2LmjVrigKuNjY2sLGxydWxEBEREdG3iUFN+uoVqj8DBjDI85qaBvm8pubXwt3dXZju2bNnlvX6PlVbmQUEBGDKlCmQSqWwtbXF9u3b1Q52Y29vj82bN6Nnz554+fIlIiIisHbtWsycOVOn/YSHh2PYsGF48eKF8NqoUaMwcOBAnY9VoVCIsjR79eql87bt27fHlClTsHjxYsjlcjx//hyjR49Wu+6QIUOQkJAgdFlX7oLt6+uLZcuWAQBq166tsTvrp6Y82ri67vLqKHehNjMzy5O2NFEOqhUtWhRdunRBmzZthIClVCrF1KlT4eHhIWpvwYIFQnfioUOHanz/f/rpJ5iYmAgZd+vWrUPXrl1F13ahQoWwadMmDBkyBGFhYUhISMDy5cuxfPlylfYqVaqEiRMnCoNz6ZrBCqQPmjNhwgThvcy4z8qVK6dzGxnu37+PkSNHIjY2FkD6e7127VrUrl1b7fqf6v7OkPFDAJA+mFlOBmTKrox6mk2aNFG7v0GDBuHcuXMIDw9Hamoq9uzZgz179sDCwgJ16tRB48aN0bRpU50HZiIiIiIiyoxBTfrqGRiZoFCjOXqvGalQKIRBEID0gIS+uyZT9rx//14IvBgbG6NLly5fRFvq7NixQ8h87N+/v9bRuwsUKIDx48djyJAhANIHKZk2bVqWQdYnT55g5MiRwmjUBgYGmDRpEgYMGJCtY3348CHCw8MBpAeG2rRpk63t+/fvj4oVK2Lx4sVC5payypUrw83NDTVr1hQFcwoXLgwgPXDn5uYGiUQCS0tL/P3333oNMOeGciBS13qPyutZW1vnSVvZYWlpiaVLl6J9+/aQSqWIjIyEh4eHUOsyLCwMJ06cAABYWVll2XW7c+fO2Lt3Lx4/fgyJRIIzZ85g0KBBonWcnZ1x7NgxLF++HCdOnFDpVm5ra4vffvsNw4YNE3Vd1nWU+vXr12P16tXCqO729vbYunWrTqOkZ3bs2DHMmjVL6L5uaWmJ9evXo379+hq3+RT3t7KMAZAAfJKsx48fP8Lb2xuA+nqaQHrQfO/evZg+fbqoLmpSUhI8PT3h6emJhQsXomzZsujcuTP69esHS0vLPD92IiIiIvp6MKhJRF+NCxcuCEGMBg0aoGjRol9EW+rcvHlTmG7SpEmW6zds2BCmpqaQSCRISEhAUFCQSldWZadOncL06dOFLDVTU1MsXLgQHTt2zPaxXrhwQZhu165djkZ/r1+/Ptzd3eHv7w8fHx/ExcXBzs4OLi4ucHZ2Fn4kUB6Nu2TJkgCADRs2CF1rq1SpIjoebbZt2yZMN2vWTONgLrmhHKzKCPxmRXk95etKn21ll6OjI6pXr44HDx4ASK9xmhHUvHPnjjBAVO3atXUaxKhZs2Z4/PgxAKgNZAPpQesFCxZg8uTJ8PLywvv372FqaopSpUqhdu3awnUWEBAgbJPVqPDJycmYOnUqzp07J7zm7OyMLVu26DyifAaZTIbFixdj165dwmvFixfHpk2bshylPK/v78xyUms0N65fvw6pVApDQ0M0b95c43qlS5fG7t278ezZM5w/fx7Xrl2Dn5+f8GwFgMDAQKxevRoHDhzAjh078uQ+JSIiIqKvE4OaRPTVUA525bb+pT7bUicjexKATqMwm5iYwMbGBpGRkQDSaxxqsmLFCmzcuFGYL1SoENauXau27l1WFAoF/v33X2E+t++Fk5OTxu6mEolEGCjF0NBQyKpTDtzduXNHVBtUm7///luYLlSoUJ4ES5Tb1DQIj7KEhAR8/PgRQPpgTWXKlMmTtjLI5XJIJBKdum0rB/2Ury/l91/XLEDlAGtWo7JbWVmhdevWGpc/ffpUmNYWTIyMjMSwYcNEQdQmTZpg1apV2c4ATExMxJgxY3D9+nXhtcqVK2PDhg1asy4z5OX9rY5ylm7GNZGXMrqeV61aVcio1qZy5cqoXLkyxo0bh5iYGHh5eeHWrVu4du0a3r9/DyD98xs9ejTOnTuX6/qyRERERPRt4P8aieirkJCQIHQXB6Ay0MnnaksT5SCTLll5MplMFBxSF1ySy+WYNm2aKKDp5OSEI0eO5CigCQCvX78WDYyircutOsnJyQgODkZwcHCW696+fVvILK1cubJOGYGfm6urqxCA8fPzE5WkUCejyy6QHsRUznrVZ1snTpxAu3btUK1aNcyaNUunc8moFwmkB4EzZPdazdxW5mtVJpMhMjJSVOdVE5lMJgxIAwB169ZVu967d+/Qq1cvUUDz119/xaZNm7Id0IyNjUXfvn1FAc3vv/8e+/bt0ymgCeTN/a1N6dKlhemgoCCdMjenTZuGv/76C3v27EFycrLO+5LJZLhx4wYAzV3PtbGzs0P79u0xd+5cXL16FTNnzhRKt7x580bI8CUiIiIiygqDmkT0VXj48CFkMhkAoFixYtnuappXbWmi3LX08uXLOh1TRv1Ea2trODg4qKwzc+ZMHD16VJhv0KABDh48CEdHxxwf5/3794XpSpUqZWsAkufPn6NGjRpo06YN/vzzzyzXP3bsmDCtnBG6aNEivHz5Uqd/ypRf79atm87HnR2WlpZCoC0tLU0UCFMnI8MNUA2W67utwMBApKWl4cqVK1nW6ExISBDVrlQe3V75Wn3w4IFOmYDK3a8rVaokWta1a1c0adIEXbp0ETJzNbl48SJiYmKE4yhfvrzKOuHh4ejbt68QODc0NMSUKVMwa9YsGBtnr0NKQkICBg4cCB8fH+G1gQMHYs2aNdkKsufF/a1NmTJlhOxYiUQCLy8vreuHhYXh6NGj2LVrF1atWiUaFCqr2tDe3t5C0FpTUPPp06f4/fff0b59ewwePFhjWwYGBujdu7coSznjRxQiIiIioqwwqElEX4UnT54I08oBmc/dlibff/+9MH3w4EGtmYxSqVQ0MnTbtm1VgjX79u3DkSNHhPl27dphy5YtOR48JkNu3gtnZ2dh/z4+PvD19dW47uXLl4XsLwsLC3Tv3j0HR/t5dOrUSZhet26dMEBMZu/evROCzgYGBmoDrfpqq0mTJrCysgKQ3h15586dWs9h2bJlQmZokSJFRHUgGzRoIGQOpqWlYdWqVVrbunbtmjAwjLGxsUrJAuURw5WD8JnFxcUJI94DEEZAVyaVSjFmzBihu76JiQmWLVumdl1dTJs2TZTtOXnyZEyaNCnbg8Dp+/7WRefOnYXprVu3CnVQ1dm9e7cw3apVK1F3b+XpjB93lGUEae3t7VUC1hmsrKzg4eGBN2/e4Pbt21rLKSgUCnz48EGYL168uMZ1iYiIiIiUMahJRF8FPz8/YbpixYpfTFua9O7dW+jKmpiYiEGDBuH58+cq68XFxWHs2LFCFp2FhQVGjRolWicwMBCLFi0S5hs1aoTly5fnaECfzJSzHzUFMDQxMTERBdsmTZok1M9Tdv78eYwfP16Y//3333WqQ/il+PHHH4U6oS9fvoSbmxsSExNF6wQHB2PIkCFC9/rOnTujXLlyedaWubk5hg4dKsyvXr0a7u7uKvtLTU3FokWLsH//fuG1CRMmiLpPm5qa4vfffxfm9+3bh6VLl6oNuF6+fBlubm7CfK9evVCqVCnROj169BCChPv27RPVbM0QEhKCwYMH4+3btwDSyxH8/PPPKutt2rRJ1A1/3rx5wgBH2XXixAmcP39emB89ejQGDBiQo7b0eX/rqn///kLw+dGjR5g5c6baEgbHjh0TgtwmJiYqmZTK3fXVBSMzygFo63petmxZoVSFVCrFyJEjERoaqrKeXC7H4sWLhVqiDg4OqFq1quaTJCIiIiJSwoGCiOiroDxqtp2d3Wdvq1WrVkJAoGvXrqKgI5AevFi7di369euHpKQkBAUFoVu3bqhXrx6qVasGCwsLBAUFwcPDQ6i1Z2xsjGXLlql0h9+wYYMowFSxYkXRiM1ZGTRokMZlQUFBwrRynUVdjRw5EhcvXkRISAh8fX3Rrl07tG3bFmXKlEFiYiLu3r0ryozr0KEDevXqle39fE6mpqZYsGAB+vXrh9TUVFy8eBGPHj1Cu3btUKRIEQQEBODixYtC3UJHR0dMmzYtz9saOHAgHj58iCtXrkAmk2HKlCnYu3cvGjdujIIFCyI0NBSXL18WAkoAMHjwYHTp0kWlrX79+uHJkyc4e/YsAGDLli1wd3dHq1at4ODgIHyWypm9derUwcSJE1XaqlixIvr06YPdu3cjLS0No0ePRp06dVCjRg2Ym5vj1atXuHz5MtLS0gCkl4BYs2YNjIyMRO3ExcVhx44dwnzJkiURExMjGvVeG2dnZ6HbvlQqxdq1a4VllpaWMDc317mtEiVKiIKp+ry/dVWsWDEsXrwYo0aNglQqxblz53Dnzh20bt0apUqVQmJiIm7evCm638aNGycMyJVBOQi9fft2SCQSWFlZoW7durC3t4e/vz+ArOtpTps2Dd27d0dqaipevHiBtm3bokWLFihTpgxsbGwQERGBmzdvCqPbGxkZYcaMGdkqcUFERERE3zYGNYnoq5CTEZo/RVvaVKtWDQcPHsS4cePw6tUrKBQK3L17V+i6q8ze3h5LlixRGagnKSlJCDRl0DUQk0FTUDMhIUE0CnNO3gtra2vs2rULv//+O/z8/JCSkoJTp06prGdiYoJ+/fph+PDh2e7q+yWoWbMmNm3ahHHjxiE6OhqRkZHYu3evynoVK1bEhg0btL6X+mrL2NgYq1evxuLFi7Fv3z4oFAo8e/ZMFNTKULBgQUyePBk9evRQ25aBgQGWLFmC0qVLY8uWLZBKpYiOjhaVPFBet1u3bpg1a5bGbOEpU6ZALpcL53X//n1R/dYMtWvX1hjoO3/+vGhwndDQUNGI91np2rWrENS8e/euqIt4QkIClixZonNb9erVU8kQ1cf9nV0tW7bE1q1bMX78eERFRSEmJkbtZ2RmZoZJkyahd+/eKst++OEHrF27FrGxsUhNTRWeJ7/99hvKlCkjbN+wYUOtx+Lq6orNmzdj3LhxiIqKQlpaGi5evKh2XTs7O8yaNQstW7bM7ikTERER0TeMQU0i+iood9HNqCX4JbSVFVdXV5w8eRL//vsv/v33Xzx58gQxMTGQSqUoVKgQKlWqhJYtW6Jr165qA0T+/v5CRpu+Ze72nNP3wtHREceOHcPJkydx/vx5PH/+HHFxcTAzM0PZsmXRsGFD9OjRA0WKFNHHYX82DRs2xIULF3DgwAF4eHggMDAQCQkJsLKyQqVKldChQwd06dJFp3qJ+mrL1NQUM2bMwC+//IJDhw7h7t27CA0NRWpqKmxsbFC+fHk0bdoU3bt3zzJobWRkhD///BPdu3fH4cOHcefOHQQFBSE+Ph4WFhYoUaIE6tWrh+7du8PV1VVrW4aGhpgxYwY6deqEQ4cO4f79+wgPD4dCoUDRokVRo0YNdO7cWWs2oLYardmlz7aU5fb+zokGDRrg1KlTOHnyJDw9PfH69WvExsbC1NQUZcqUQePGjfHrr7+iZMmSarcvUqQIDh48iFWrVuHevXuIjY2Fubk5kpOTha7nDRo00GngpAYNGuDChQs4fvw4rl27hlevXuHDhw9QKBSws7ODk5MTWrRoga5du+b5s5aIiIiIvj4GCoVC8bkPgr5+3t7ewqAFhoaGqFmzZrbbkMlkolqHLi4uKt0RPyWFQiGqV2ZhYZEvM8yIvgS8n4j041u9l760/yPQ10EqleLx48fCfPXq1XM0kBfRt473EpH+fG33U25jRRwoiIiIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIhUpKWlfe5DICIiIiLSyPhzHwARfbt8fHxw+PBh3L9/H2FhYZDL5ShWrBgqV66MDh06oE2bNjA0zPlvLydOnMCkSZPg4OCAy5cvZ2vbp0+f4uTJk7h9+zYiIiKQnJyMQoUKoUqVKujUqRPat2+fq2NTtz93d3c8ePAAYWFhSEpKgqWlJUqXLo369evjl19+QalSpXRqKyAgAEeOHMG9e/cQHByMhIQEFCxYECVKlEDdunXRo0cPuLi4qN327t276Nu3b47Po2vXrli0aJHe21JHn5+Rv78/3N3dcfPmTYSFhSExMRHW1taoWLEi2rdvjx9//BGmpqY6tfXvv//ixIkTePLkCWJjY2FpaYmSJUuiTZs26N69O4oWLapTO+oEBQWhY8eOkEgk8PDw0PmaAID379/j6NGj8PT0xLt37xAXF4eCBQvCxcUFrVq1Qvfu3WFpaZllO3K5HJcvX8apU6fw9OlTREdHw8DAAIULF0a1atXQqVMntGzZUqf3Pi0tDWfPnsX58+fh4+OD2NhY4Vpt0qQJfvzxRzg7O2vcfvLkyTh+/LjO70Fmu3fvRv369dUu8/T0xKlTp/Dw4UPhHB0cHFC/fn306NEDFSpU0Hk/CoUCly5dwvnz5/Ho0SNER0cDAIoVK4batWuje/fuqFWrVo7PQ98kEgm2bduGiIgIzJo1S6dtJk6ciJMnT6JmzZo4ePBgHh8hERERERGDmkT0GaSlpWH+/Pk4dOgQFAqFaNnbt2/x9u1b/PPPP6hWrRoWLVoEJyenbO8jICAA8+fPz/Z2qampmD17No4fP65ybBEREbh8+TIuX76MXbt2Ye3atbkKUAFAQkICZs2ahTNnzqgsi42NRWxsLJ48eYIdO3Zg5MiRGDFiBAwMDNS2lZaWhiVLlmD37t0qx/7x40d8/PgRvr6+2Lt3L3799VdMnjxZ50CdrjQdmz7b0udnJJfLsWzZMuzcuRNSqVS0LDo6Gjdu3MCNGzewfft2rF27Vuu1GB8fjzFjxuDmzZui1z98+IAPHz7g2bNn2LlzJ+bOnYv27dtndfoqkpOTMXbsWEgkkmxvu3PnTqxcuRLJycmi12NjY+Hl5QUvLy/s2LEDK1asQO3atTW2ExkZCTc3N3h5eaksCwkJQUhICP755x/UrVsXy5Ytg729vca2/P398eeff8LPz0/lmGJjY/HixQts374dv/32G8aPH6/3axVQf43FxMTAzc0Nt2/fVln2+vVrvH79Gvv378fPP/+MadOmoUCBAlr38e7dO4wfPx7e3t4qy4KCghAUFAR3d3d0794ds2fPhrHx5/2v2cuXLzF69GgEBQWha9euOm0jl8tx7do1AECLFi3y8OiIiIiIiP7DoCYRfXLjx4/H+fPnhfkqVaqgZs2asLa2RmBgIDw8PJCSkoInT56gX79+OHToEBwcHHRu/+3btxg0aBDi4+OzdVypqakYPHiwELAxMDBA48aNUaVKFZiYmODx48e4fv06FAoFHj16hP79++PYsWMwNzfP1n4ySCQSDBs2DPfv3xdeq1mzJurUqQMrKytERETg2rVrCA4OhlQqxapVq/Dx40dMmTJFbXsTJ07EuXPnhHlXV1c0atQIhQoVQkxMDG7dugU/Pz8oFArs27cPUVFRWLlypSijrnTp0pg4caLO53Dnzh14enoCAMzNzdGrV68ctaVQKHDr1i0hIJi5rQz6/IwUCgUmTJggCijXqlULNWvWhKWlJXx9fXH58mWkpaUhICAA/fr1w4kTJ1CkSBGVtiQSCQYPHoxHjx4Jx9+mTRs4OTnh48ePuHTpEt69e4ePHz/Czc0NBQoUQPPmzXV6b4D0gObIkSPx7NkznbfJsHTpUmzZskWYr1ChAho0aABbW1u8efMGFy9eRFJSEsLDwzF48GAcPnxYbXZkYmIiBg4cKAQhDQwM0KxZM1SoUAFyuRzPnz8XPr979+6hb9++OHLkCKytrVXaevfuHX777TfExMQAAExMTNCqVSs4OTkhKSkJT548wcOHDyGTybBr1y5ER0dj6dKlKkHIDh06aM3kzGzr1q3CPmvVqoXq1auLlsfExKBnz554+/at8JqrqyuaNm0KS0tLBAQE4NKlS0hKSsKRI0fg7++P7du3awxsvn37Fr/99hvCw8MB/HddlCtXDikpKbh58yaeP38OADhy5AhkMhkWLlyo8/nkhWfPniEoKChb23h7eyM2NhYAg5pERERE9OkwqElEn9TJkyeFgKaRkREWLVqEzp07i9YJDQ2Fm5sbvL29ERkZiXnz5mHjxo06tX/79m2MGzdO6N6ZHevWrROCZUWKFMGGDRtQrVo10Tre3t4YOnQo4uLi8Pr1a2zZsgWjR4/O9r6A9ABLRkDT2toay5cvR9OmTUXrTJ06FRs2bMCaNWsApGfctWjRAg0bNhStd/LkSSGgaWJigvnz56NLly4q+zxy5AhmzZoFmUyGCxcu4NixY+jevbuwvESJEhg0aJBOx+/v74/169cL84sXLxa9X9lp6/Xr19iwYYMwv2jRIpX3HtDvZ3T48GEhoGlhYYEVK1aoBGT8/f0xZMgQhISEIDIyEkuXLlXbJX7jxo1CQNPBwQHbt29H2bJlheXjx4/HwoULsW/fPshkMkyePBkXL17Uqbt3cHAw/vzzT/j4+GS5bmY3btwQAprGxsaYPXu26PMGgPDwcAwfPhzPnz9HUlIS5s6diz179qi0tXnzZiGgWbJkSaxduxaVK1cWrXP//n388ccfiI6ORmBgIFavXo3p06ertDV9+nQhuOjs7Ix169ahTJkyonUuXbqE8ePHIzk5GWfOnEG7du3Qtm1b0TrNmjVDs2bNdHovNmzYIOzTwcEB69evh5mZmWidyZMnCwFNExMTzJkzBz/99JNonYiICIwZMwYPHz7Ew4cPsWDBArVZ4QqFApMmTRICmjVq1FDJHB4/fjz279+POXPmAADc3d3RpUsXjV3iv1RXr14FkH5dZKdbPhERERFRbnCgICL6pLZu3SpMjxo1SiWgCaR/MV61ahVMTEwApH9hDg0N1dquRCLBypUrMXDgwBwFNAMDA7Ft2zYA6QGuffv2qQ2q1axZE5MnTxbmjxw5ku19AeldxXft2iXML1y4UCWgCaQHfkeNGoWePXsKryln3WVQfl8nTJigNqAJAN27d8eff/6pdrvsSE1NxZgxY5CQkAAA6Nu3b466VGe09eeffwpt9erVS21b+vyM4uLisGTJEgCAoaEhtmzZojbDzMnJCX/99Zcwf/bsWSQmJorW+fjxI7Zv3y7Mr1y5UhTQBNIDZDNnzhT2ERMTI/r8NTl37hy6du2ao4CmTCYT1UNctGiRSkATAOzt7bFy5UoYGRkBALy8vNRm6rm7uwvTf/31l0pAEwDq1KmD2bNnC/OnT59WWcfHx0fo2m1ubo61a9eqBDQBoE2bNhg1apQwv2/fPnWnqRMvLy+sXr0aQPpnsXLlShQqVEi0zsOHD4Uu1ED6OWYOaALpdTA3b94sZI8fPXpUyLZU5u7ujocPHwJIz47duXOn2lIIv/76q+h+zekz5XPKCGpmJ/uYiIiIiCi3GNQkok8mNDQUr169ApAerFPXvTiDvb09XF1dAaRnPGWuu5dBLpfjxIkTaN++PTZs2AC5XA4AaNWqVbaO7dixY0JNxd9//10lKKWsY8eOcHFxQZUqVeDs7Iy4uLhs7QtI756b0V2zXLlyaNOmjdb1BwwYIEx7eXmJ6j8GBQUJ74+lpaXW9xUAevfuLQSMAwMDswwYq7N06VLhsyxfvjwmTJiQ7TbUtfXdd99hzJgxatfT52d07tw5oTxBz549UadOHY1tNWjQAPXq1UOlSpVQp04dREREiJafPXtWqFXZpEkTtYHWDH/88YcwffLkSY3r3b9/H7/88gvGjh0rHGfNmjVVAnHa3Lp1C+/evQOQntHYqVMnjeuWKVMGP/zwg9A1PTIyUrT8w4cPovOuV6+exraUMycz6mMqUw4cNm7cWOvnqBwke/nypcb1tElISMDEiROFZ8OIESPUfkYXLlwQpuvWrav2B5cMVlZWGDJkCID055O6gXEOHz4MIL2b/ty5c7XW3uzduzfKli2LGjVqwMLCQrcT+0KEhIQIz5+WLVt+5qMhIiIiom8Ju58T0SdTsmRJPHjwAAEBAYiOjs4yQKM8IEpGEC6zly9fYtKkScK8ra0tpkyZgjp16mRrxPOMjDILCwv89ttvWtc1MzNTm4GWHb6+vsJ05rp+6pQuXVqYTktLw4cPH4SsL+W2KlasmOWAKgULFkSRIkUQFhYGIL07bcmSJXU+9sePH2Pv3r0A0rMcFy5cmONBXDK3NXv2bI1t6fMzylhmYGAgBKe0UdcdO0NGTVEg63qClStXRrFixRAREYGgoCD4+vqq7a47fPhwIZhpbGyM/v37Y8yYMWjfvj0+fPiQ5fEC4izJYcOGZbn+smXLNC7LyOLMEB4ervGaUT4+ExMTWFlZiZaPHDkSP//8MwICAmBnZ6f1mFJTU0Vt5cSyZcuEa71ixYoa34unT58K0z/88EOW7TZp0kSYVg7UAum1NDPKEdSvXz/Le7xatWqioGpuKRQKXL9+HRcuXICPjw/Cw8NhYGCAIkWKoHr16ujSpYtKVqW6keSPHz8uvNa1a1e1pRcysjTNzc3VdpuXyWQ4f/48Lly4gKdPnyIqKgrGxsYoVKgQKlasiKZNm6JLly45rk1MRERERN8uBjWJ6JMqWLAgqlatmuV6vr6+QvaemZkZKlasqHV9Y2Nj/PTTT/jzzz9hZ2cnZKjpIiwsTAh61KlTJ8vRjPWhT58+aNeuHSIiIlCwYMEs18+cHai8TZs2bXDt2jVEREToNPq4RCIRagtmbisrcrkcc+bMEbLeevTooTUzMTttdevWDVWqVFG7rj4/I6lUiidPngBIzwzNziBU6ih3Da9Zs2aW69eoUQP//vsvgPT6n9pqEDZp0gQTJkzIUZ3CjK7PFhYWqFWrVra3V2ZtbQ17e3uhPuTatWtF3fKVrVu3Tphu0qSJSkAUSM/E1jYyegblQZx0eW8ze/bsmZBFaWBgoHV0ceV7Ql13+MyUj//9+/eIiooSBpHKeO8BcfDzU3jz5g0mTJigtmRBxgj1586dQ/PmzbF8+XKd6rpqk/HjUcOGDVUCk2FhYRgxYgRevHghel0ikSApKQkhISG4dOkS1qxZg5UrV6Ju3bq5OhYiIiIi+rYwqElEXxSFQoGbN29ixowZUCgUANIDgJoyuszNzdGvXz/06dMHjo6OOdqncrdWFxcXAEBKSgpOnDiBf/75B/7+/vj48SPs7OxQu3ZtdO/eXWWgnuwyMTGBg4ODzgE15dHiS5UqJeqiamRkhOLFi6N48eI6tXX16lUhA65AgQLZet9OnDghjMBta2uLsWPH6ryttrZsbGwwcuRIjevq8zN68+aNkAWc0ZZMJsPZs2dx9uxZ+Pr6Ijo6Gra2tqhWrRq6dOmiMkBNhoSEBFFXbV3eS+UMx8DAQLXrtG/fHl27dkXt2rWzbE+dxMREIbBfvnx5YYR7Dw8PnDp1Ck+fPkVkZCQsLS1RsWJF/O9//0OXLl3UBiAz9O3bV6hDeuzYMbx//x7Dhg2Di4sLDA0N4efnh02bNuH69esAgKJFi4pqm2ZHQkICdu3aJdQdNTExwYgRI7LdzqJFi4SgeZcuXVCjRg2N6ypngur644CykJAQIaip7noNDw/HkSNHcPnyZbx79w4SiQTFixdH48aN0adPH63d8HUVFBSEX3/9VciWNTIyQuPGjVGlShUoFAr4+PgIn8+1a9cwdOhQ7NmzB0ZGRsJI8j4+PsKgY1WqVEGHDh0AQO0o80lJScLAXZmzlCUSCYYPHy5kkhctWhQtW7ZEyZIlIZVKERQUhEuXLiE5ORlRUVEYMmQIzp07l62scSIiIiL6tjGoSV+9NLkM8x5dxLngF0iSSbLeQFcKQP7/QTcAMDQwALL+HvxFsTAyRQfHiphR43uYGGoOZuS14OBgnDp1CmFhYbh3754o0PPTTz9h3LhxGrctV64cpk6dmqv9+/v7C9P29vZ49OgRJk6cqDJYyvv374XA1//+9z/89ddfn6TL5IcPH0SDA7Vr1y7HbUkkEqxatUqYb968uc7nIJPJsHbtWmF+yJAhsLW1zdFxZG5r6NChsLGx0bi+Pj+jzG0FBARg/PjxQoA1Q2RkJDw8PODh4YEGDRqoHVxGOaBpYWGh9RyU96lue2XqRtPOjoCAAOFHAXt7e0RGRmLSpEm4efOmaL2YmBjcvHkTN2/exO7du7Fu3TqUKlVKbZv9+/fHy5cvcerUKQAQtsvM0NAQrVu3xuTJkzW2pY6HhwcePXqEt2/fwtPTE0lJSQDS39dly5Zlma2d2e3bt4WAm6mpqcZarRmKFy8u1IZ89eoVGjdurHX9jEzyDMqfZUBAgDBtb2+PY8eO4a+//hIGw8rw5s0bvHnzBocOHcKff/6JwYMHZ31iGigUCkyYMEEIaJYqVQrLli1D9erVRUHaO3fuYNiwYUhJScGDBw9w8OBB9O7dWxhJ3t3dXQhqOjs7Y9CgQRr3eevWLSG4m7me5sWLF4WAZu3atbFt2zaVDOvIyEj07dsXAQEBSE5Oxvbt2zF9+vQcvwdERERE9G1hUJO+enO9/8VfTzw+92F8sbxjQgAAc2vlbORqfbh//74wMrGyIUOG4M8//xSyzPKK8iAygYGBWLVqFRISEmBtbY3WrVujTJkySExMxK1bt4TA19mzZxEdHY3t27drzW7LLZlMhokTJwojuhcsWFBrkCEr8+fPx+vXrwH8N7K6rv755x+EhKRfL8WKFcuyrmV22urdu7eQUaeOPj+jjFqVQPpANv3790d4eDjMzc3RqlUrlC9fHhKJBA8fPhSCYnfu3EGfPn1w6NAhUXd95bZ07RKvHGRV3l6flNuVSqUYOHAg/Pz8YGxsjKZNmwqZe0+fPsX169chl8vh6+uLX375BceOHVPbNdzY2Bh///032rRpg8WLFwufX2ZFixZFw4YNdepermznzp3C+53B1tYWa9as0TowkSZbt24Vpnv16oUSJUpoXb9evXpCfdRjx46hb9++Wp89metPKtf/VL5ez549i82bNwNIDzS2bNkSRYoUQUREBK5cuYLQ0FCkpaVhyZIlSEpKEg0mlR23b9/G48ePAaQHgjds2KA2E7xBgwaYOnUqZs6cCQDYu3cvevfunaN9XrlyBUB6rdLMn7e3t7cwPWDAALX3R9GiRTFr1iz069cPAISyEEREREREumBQk756d6Pefu5D+OLdiQzKeqU8pCk4smXLFpw/fx7z5s3LdXdvbRITE4Xpffv2AQBat26NhQsXqmTenThxAjNmzIBEIsGdO3ewYcOGbAUGs0Mul2PatGmigWimT5+OwoUL56i9VatW4dChQ8L8iBEj1HYp1UQ5SNSvX79cZamqaysjM08dfX5GytlyJ06cAJBer3HlypUqXfhv3LiBsWPHIi4uDq9evcL8+fOxcOFCYblyF2Rd3w/l9TJ3YdYX5XPMCDyVK1cOa9euRfny5UXrPnv2DL///jvev3+PyMhITJw4Uej2ndnNmzexZcsWhISEoECBAmjZsiXKly8PmUyG58+f4/r16wgPD8fcuXNx5MgRbNq0SefgZmhoqMprsbGxQv3Z2bNnZzmwUIYXL17gxo0bANK7levyQ0CXLl2wdu1apKSkwM/PD3/99RemTZumtiv65cuXceTIEdFraWlpwrTy+58R0Bw9ejSGDx8uquk5efJkLF26VHi/169fjwYNGuQoiJtRpxVIH9RHW2mLH3/8Ef/H3n1HR1F2YQB/dtN7LyShJSShhBLpvRdBEEEEC6CCKM0CCALWD1BUUIoIKAiICEhvSgu9hZJCQklII73XTdk63x/LTnZ2Z0t6gPs7J4ctszOzJZo8ue+9f//9N1xdXdGiRQtIJJIqD/tiGIYdkMQ3IEv9eYaFhWHo0KG8++nWrRuOHDkCHx+fGvf3JIQQQgghz5e6LX8ipBHo7trM8EbPuR5uhodi1KWRI0fi4sWLiI6OxpUrV/D999+z/eVSUlIwffp0TrBX28rLyznXg4ODsW7dOt6lxGPHjsXixYvZ69u2bdNaUlobpFIpPv30U0412FtvvYVx48ZVeV8Mw+CHH37Ar7/+yt42aNCgKoWxV69eZYd92NraYtKkSVU+j5rsqzbfI819NWvWDFu2bOHtSdqnTx+sWrWKvX7kyBEkJ1f+oaSmVcTG9G6sDs3n6OjoiO3bt2sFmoByIvvmzZvZnpI3btzQqpgElEH09OnTERUVhc6dO+PUqVP4+eefMXv2bHz44YfYtGkTjh07xvaQfPDgAaZPn250cPvTTz/h9u3biIqKwvHjxzFjxgz2nE6dOoUpU6YY/b2mHpq/9NJLRgWrbm5unCXqO3fuxNSpU3H58mWIRCJIJBLExMTg22+/Zb931Ks/1UPBiooKzr6nTZuGOXPmaA0pMjc3x5IlS9hp6wzDYP369UY9R02qXpkAtCaba7K0tMSRI0ewdetWfPHFF1UONAHlgCzVknu+UFM9mP3jjz8wZ84cnDlzRqs6WSgUonXr1hRoEkIIIYSQKqNKTfLM+zJ4GAQCAfXU5KHeU7Mh+fr6spfd3NwwduxYDBkyBNOmTUNERARkMhmWLFmCkJAQWFhY1PrxNfc5f/58nROSAWDixIn47bffkJGRAZFIhOvXr+usQqoOkUiEuXPn4tq1a+xt48aNq1avOYlEgqVLl7J9EAGgb9++WLNmTZUCtYMHD7KXR48eXaMAgm9fjNr3Ep/afI809zV79my9z6d///4IDg5GeHg45HI5zp07h7fffhsAOAOb1Jcf66MeeNXF55lvv5MnT9Y7SKp169YYPnw4O2389OnTnFAqNDSUHRLUokUL/Pbbb7yvma+vL7Zv346xY8ciOzsbsbGx2Llzp1GVkh07dmQv+/v7Y/78+ejfvz/effddiMViPHr0CGvXrsXSpUv17kckEnGqFt944w2Dx1Z59913kZ2djW3btgFQPu/Q0FCt7UxNTfHVV1/h4sWLyMjIAMBtP6D++tva2uodggUAH3/8Mf777z8AynYcBQUFWv1b9WEYhp1MD4A3vK5tqgpgFxcXdOjQQev+gQMHonfv3mzf1TNnzuDMmTMwMTFB+/bt0atXL/Tp0wedOnWq0xYehBBCCCHk2UWhpoa1a9fi119/hbe3N86dO1fj/aWmpmLw4ME13s+ff/6J7t27a91+8uRJg8MP+Fy8eNHoSclPOzOhCf73woha7xnJMAxnuay1tXWdVV09j2xtbbFq1SqMGDECMpmMHdqimsRbm9R7JNra2hqcOG1iYoKePXuy4Vx0dHSthZqPHz/GBx98wBk0MnXqVCxevLjKn6+8vDzMnj2b09tuxIgR+PHHH6tUmSUWi9kAAwBeffXVKp1HbeyrNt8j9X0BhqvaAGXFpup1jI6O5j0vzepIXdRDTTs7O6MeU1Waz5Gvkk5Tnz592FBTc2jS5s2b2cuGQmAXFxfMmjULX3/9NQBl78nq9oHt0qULZsyYwVYvHjhwAIsWLdIbaJ87d44z3Z4vcNPns88+Q3BwMH766Set6fQCgQBdu3bFokWLEBQUhGPHjrH3qbeFUH/9u3btqvV+aGrRogW8vb2RlpYGhUKBBw8eoFevXkafc2FhIWf5e119rtRduHABANCvXz/eimWBQID169fj+++/x759+9ieuXK5HBEREYiIiMCvv/4KJycnDB8+HNOnT0fTpk3r/LwJIYQQQsizg5afq7l79y5nwvDTQLWEk5BnUdOmTTnVW1FRUXVyHPWKKFdXV6OWFKsvZ1VNG66pa9euYcKECWygKRAIsHDhQixZsqTKgeb9+/fx6quvcgLNKVOm4Oeff67yUtPLly+zPS1btmyJoKCgKj2+NvZVm++R+r7MzMyMqojTtS83Nzf2XEpLS41aHq1eUefm5mZw++rQfE7u7u4GH6P+hy715yiRSDjL0fv06WNwX+pBcVxcnNZy7KoYM2YMe7m0tBSJiYl6tz916hR7efTo0dU65vDhw3Hq1CkcPnwYK1euxOeff441a9bgzJkz2LlzJ/u5VT8XLy8v9rL662/Maw/ofv2NIZPJqrR9TWVlZeH+/fsA9AfmNjY2+N///odz585h0aJF6NatG9tSQKWgoAB79uzBiy++yAmJCSGEEEIIMYQqNZ9ISUnBrFmzOJUOtcHS0tKoXwDVaf4C6eHhoXMpmXqoGRAQYPQvT9Xpn0VIbVEoFJBIJEYNVlHvWVcXvSsBcIblqE8t1kcul7OXa6MX3O7du7Fs2TJ2v1ZWVvjhhx8wbNiwKu8rJCQE8+fPZysHTUxMsHTp0mpPOFYPiapzPrWxr9p8j9T3JZVKUV5ebnByua59WVpaomnTpnj8WDlsKy0tDYGBgXr3pT4YS731Qm3y8/ODUChkq+OKi4sN/v9BPRhTf44FBQWc/zfy9THV5Orqyl5mGAalpaVa3+8VFRUwNzc3GFBrrirQNzG+tLSUHRAEoMYV1G3atEGbNm1470tLS0Nubi4A5fNVf87+/v5sRXJRUZFRx6rJf1M035OSkhI4OjpWaR9VcfHiRTAMAzMzM6N+xmnSpAneffddvPvuuygvL0d4eDhu3LiBixcv4uHDhwCU34uLFy9GcHAwfHx86uzcCSGEEELIs4NCTQCxsbGYPn062/C+Nrm6umLr1q1Vesznn3/OhppWVlbYtGmTzmnH6qHmF198Ua2JqYTUl8OHD2Pjxo1IS0vDqFGj8P333xt8TGFhIXu5Kj3mqkI9tCgoKEB2drbBACglJYW9rB68Vscvv/zCGQ7i7u6OjRs3Vqsi8sCBA/j888/ZMMvW1hY///wz+vXrV+3zUw+JarKfmuyrNt+jFi1awNramm0fERMTg06dOlVrX4CyH6Uq1IyMjDQYakZERLCXa1L1qo+VlRVatGjBVv3GxMQY7LOo6zlqBr7Z2dkGP/Pq37cCgQD29vbs9Q8//BBhYWHIzc3F9u3b0aNHD6P3Bej/78CtW7fYqtCmTZuiZcuWevetSSQSIS8vD5aWlgaHC4WEhLCXu3TpwrlP/fMaGxtr1LHVX/+qtocxNzeHh4cHWwWckJCAF154Qe9j/vjjDyQlJaFp06YYMWJElZZ+qwLbLl26VDmAtbKyQq9evdCrVy/MmzcPt2/fxsyZM1FcXAypVIoTJ07g/fffr9I+CSGEEELI8+m5X35+5MgRvPbaa5zlgA3p4MGD2LdvH3v9888/R9u2bXm3zc/PR3Z2Nnvd0C/ShDQ0W1tbJCUlQSqV4vz58waXpIpEIoSFhbHXq9obz1iurq7sMneGYXDixAm921dUVOD69evsdb5+t8bauHEjJ9AMDAzEvn37qhV2HT58GEuXLmUDTS8vL+zevbtGQWR8fDzy8/MBKIej1CSEq8m+avM9EgqFnCWzqj6S+qj6B2ruC1BOklcx1Is5KiqK/QOam5sbWrdubfDY1aXez9mYZb3qvU7Vn6O9vT2nCtGYftPqQ678/f05S45VPXIZhmGH4+hz6dIl9rKjoyOaNWumc9vbt2+zl9VbVxjjzJkz6Ny5M4YNG4YVK1bo3ZZhGM7/q4cPH865v0+fPuywoISEBK0epZru3r2LvLw8AMrPenUG/aj3mVUN59Fn9+7d2Lt3L1atWsWpJjXU6kIsFrPfW7qWnotEIsyfPx+vvPIKevXqpXeIVpcuXfDyyy+z11WDlwghhBBCCDHkuQ01s7KysGjRIixcuNDo4Q51LTU1FcuXL2evjxw5Uu8QDfUqTS8vL6OWBBLSkPr06cMOsCgqKsL27dv1br969Wq2ms7V1bXKrRyqQv17bePGjXort7ds2cJWj7Vr1w4BAQHVOub58+exdu1a9nqXLl2wa9euag3xunfvHr744gt2irifnx/27NlT7XNTUe9j6u/vb1TLgLraV22+R+r72rNnD2JiYnTu6/Dhw4iLiwOgHAbTt29fzv1DhgxhqxkvXLjAqcRUxzAM1q1bx14fP358nQ4XGzduHLv/8+fP4/Llyzq3vXnzJnu/mZkZRo0axblffRn377//rrcFgEgkwq+//spef/HFFzn3q18/dOgQkpOTde6roKAAGzZsYK+PHj1a76Tsu3fvsper+kcQ9SncFy9eZJeW89m1axdbgenl5aXVSsHe3p7zmi1fvpz9Y4MmhmHw008/sdcNPUddxo4dy14+ePCg3vM/f/48+7p7e3tz/niq3g5AfUm8yo0bN9ifm3SFmra2trh16xbu37+PvLw8zjR6PqpAF6h6lSohhBBCCHl+PZeh5saNGzFixAgcPnyYvc3X1xcffPBBw50UgC+//JIdoOHk5IQvvvhC7/bqoSZVaZKngaWlJWbMmMFeX7duHTudWp1YLMbKlSvx999/s7d9+umnNQrUDBk3bhzatWsHQBm4Tp48mTOBXGXXrl1syCIQCDB//vxqHa+oqAifffYZG0IGBARg8+bN1ZpaLJPJMG/ePHbis4eHB7Zt22Zw+awx1MM+Xb0F62tftfke9e7dm62wlEqlmDZtGm8Yefr0aXz11Vfs9U8++URr8ratrS37uWYYBnPmzOFMSFcdY9myZWzVoYODA95++20jn3n1+Pr64q233mKvf/TRR7xVlrdv38bcuXPZz+K0adO0lnjPnDkT1tbWAJSVdO+88w5nubRKVlYWZsyYwS7Hd3d3x9SpUznbjBgxgg2ZxWIx3n//fXZ7dUlJSXj77beRnp4OAHB2dsasWbP0Pmf1z5iuVQ66uLm5sZ+JiooKLFy4UGvpO6D8fH333Xfs9aVLl/JOY583bx479TwsLAxz5szR6gdaUVGBJUuWsJWPjo6O1Z4U369fP7aNQlFREebOncu+duqioqKwZMkS9vqMGTM4Qab6cnL1/q8qqoreFi1aoEWLFjrP57XXXmMvf/3115wqWnWnT5/GyZMnASj7/9a0by8hhBBCCHl+PJc9Nbdu3cpWfwHAhAkT8NlnnxmsJKhLJ06c4CwXW7x4MZydnfU+Rj3UrMsljITUpnfffRdhYWE4f/485HI5Fi9ejL/++gu9e/eGjY0N0tPTce7cOU4V3vTp0zlVSHXB1NQUq1atwpQpU5CTk4PExES89NJL6NevH9q2bQuZTIbLly+zE38BYOrUqejduzfv/j777DMcOnQIgLISSjNM2rFjBycw6dixI/bu3Wv0+U6cOJENH44cOYKkpCTOvoxZUq0ycuRInT0S1fdr6L9JhtR0X7X9Hi1btgxJSUlISEhATk4OJk6ciJ49e6Jjx44wMTFBaGgoJ4gZNmwYJkyYwLuv6dOnIyQkBNHR0ey+Bg0ahNatW0MkEuHMmTNsCCgQCLBixYo66xGrbv78+bh//z7u3LmD0tJSzJw5Ex07dkTXrl1hZWWFu3fv4tKlS2yg2bFjR8yZM0drPx4eHvjpp58wZ84cyGQyREdHY8SIEejbty8CAwNhbm6O2NhYXLhwgW0rYW1tjV9//ZUN9lTMzMzw008/4a233kJhYSESEhIwatQo9vWSy+W4d+8eLl++zA4vsra2xubNm/V+boqKijjfU9X5jC1atAg3b95EUVERrl69imHDhmHIkCHw8fFBYWEhLl68yPkcf/DBBxgyZAjvvry9vfHdd99h/vz5kEqlCAkJwYABAzBs2DA0bdoU+fn5OH36NNv+xsTEBMuXL4ebm1uVzxtQfq5++uknvPbaa8jNzUVMTAzGjx+PAQMGsCFyVFQULl26xFaNDh48GBMnTuTsR31Iz507d/Dpp5/C398f7u7uGDt2LC5evAgAGDhwoN7zmTZtGo4dO4akpCSIRCK8+eab6Nq1K1q3bg13d3eUlJQgPDwct27dYh/zzjvv1NnwLEIIIYQQ8ux5LkNNlaCgICxatKjBh+uIxWL8+OOP7PXg4GBOfyldVBNDAQo1ydPD1NQU69atw/fff49du3aBYRjcu3ePt+ecjY0NPvvsM07FT13y9fXFnj17sGDBAoSHh0Mul+P8+fOcXoOAcnnmJ598wqk6rar9+/dzrqv35zPG8OHD2VBT87GnT5+u0h9pgoKCdIaa6v2Ga9riojb2VZvvkaurK/7++28sXryYffz169c5vThVJk+ejM8++0znvszNzbFt2zZ89NFHuHbtGmQyGe/7YG1tjWXLltV4KrexrKys8Mcff+Cbb77BoUOHwDAMIiMjERkZqbXtiBEj8N1333H6X6obOHAgtm3bhk8//RSZmZmQyWS8rz2gfJ/WrFmjcxWBv78//v77b8ybNw8PHz6EVCrFqVOncOrUKa1t27Rpg9WrV8PPz0/vc83MzORcVx9OZKymTZti69at+PDDD5Geno6ioiIcOHBAaztra2ssWLAAb775pt79DR8+HHZ2dli6dCnS09MhEol4q9MdHBzw008/1bjFhre3N/bu3YuPPvoI0dHREIvFOl/XCRMm4Msvv9RqgRAQEIDOnTvjzp07AICjR4+yt7du3Zqt/tS19FzFysoK27dvx+zZs9n/vt+6dYsTYqqYmZlh2rRp+Pjjj6v6lAkhhBBCyHPsuQw1u3XrhnHjxmHw4MF12s/MWH/++SfbGF8gEHCWhekiFouRmJjIXg8MDMSdO3dw+PBh3L59GxkZGRAIBHBzc0Pnzp0xZswY9OzZs86eAyFVYW5uji+++AKTJk3C3r17ERoaivT0dIjFYjg4OKBVq1bo27cvJkyYUO+9Yn18fLBnzx6cPXsW//33HyIiIpCbmwuGYeDt7Y2ePXvijTfeqNYgD5X8/PxaHU6mrx9kTalaYgCo1tL4uthXbb5HTk5O2LRpE0JDQ3H06FHcvn0b2dnZkEql8PT0RNeuXTFx4kSD09EBZYi2bds2nD17FkePHkVkZCTy8vJgZmaGZs2aoW/fvnjzzTcNTg6vbZaWlvjuu+/w1ltv4dChQ7h+/TqysrJQUVEBFxcXBAcHY/z48Vq9Qvl069YNZ86cwdGjR3Hu3Dncv38f+fn5EAgEcHFxQfv27TFs2DCMGDHCYF9IPz8/HDx4EKdOncLJkyfZYTkmJiZwdXVFp06dMGLECKP/X63++QKqF2oCQPv27XHs2DHs378fZ86cQVxcHEQiEaytreHr64t+/fphwoQJcHd3N2p/vXr1wn///YdDhw7h7NmziI2NRUFBAczMzODn54cBAwbgjTfeqHEltIq3tzd27NiBCxcu4MyZM4iKikJeXh4YhoGnpye6dOmCiRMn6hykJBAI8Ntvv2HdunUICQlBdnY2hEIhGIZhB2bZ2dlpTXzn06RJE+zfvx+nTp3C6dOncf/+fWRnZ0MikcDR0RFeXl7o06cPxo4di+bNm9fK8yeEEEIIIc8PAaNac0Zw8OBBLF68GAD/ctG6UFpaikGDBrFL5oYOHYpffvnF4OPu3r3LLoMUCATo0aMHb3WRuj59+uCHH36Ai4tLjc+7qsLDw9nlbkKhEO3bt6/yPuRyOeLj4wEon7O/v3+1hinUFoZhOEOmrKysGkVITsjTiL6fCKkdz+v3klwux6NHjzjD0hryZwTybJDL5ZweyUFBQfS5IqQa6HuJkNrzrH0/RUVFcbKi4ODgKj3+uazUbEx2797NBpoCgQBz58416nHqS88ZhmEDTTs7OzRr1gw2NjZIS0vjNPm/cuUKJkyYgL/++gteXl619ySqSKFQ8C59NJapqSlMTU1RVlbWqL551X+JJITUDH0/EVI7npfvJblcDoVCAZlMxvZ9JaS20eeKkNpB30uE1J7n/fuJQs0GJJVKsX37dvb6oEGDjJ5irj4kCFBObV24cCFGjBgBc3Nz9vbY2Fj8+OOP7MTdtLQ0zJo1C//88w9nO0IIIYQQQgghhBBCnhbChj6B59mZM2c4E57feecdox+rPn21efPmOHLkCMaMGaMVVAYEBOC3337D+PHj2dsePHiAPXv2VP/ECSGEEEIIIYQQQghpQFSp2YD27t3LXm7Tpg26du1q9GO3bduGvLw8pKamwt3dXW+fTIFAgK+//ho3btxgl6P/+eefmDJlSvVPvgZqq6emtbU19dQk5BlB30+E1I7n9XtJLpdDKBTCzMyMHcLUmFrUkKfTs9a3jJCGQt9LhNSeZ+37Sb2nZnVQqNlAsrKycPPmTfa6eiWlsVxcXIwe+mNubo5JkyZh9erVAICUlBQkJyejWbNmVT5ubTA1rfpHTyAQcH4x07ze0Brb+RDyNKPvJ0Jqx/PyvaR6jqp/TU1Nn+of8EnjZGJiUq2fYQkhXPS9REjted6/n2j5eQP577//2DTazMwML730Up0f84UXXuBcV1/CTgghhBBCCCGEEELI04JCzQYSEhLCXu7VqxecnJzq/JiaVZ1FRUV1fkxCCCGEEEIIIYQQQmobhZoNQCQSITw8nL0+dOjQejmuWCzmXLexsamX4xJCCCGEEEIIIYQQUpue34X3DejWrVuQSqXs9X79+lXp8Q8fPsSRI0eQl5eHvLw8/PDDD0b11kxNTeVc9/LyqtJxCSGEEEIIIYQQQghpDCjUbABhYWHsZU9PT3h4eFTp8UVFRfjjjz/Y6zdv3sSLL75o8HGXLl1iL9vZ2SEgIKBKxyWEEEIIIYQQQgghpDGg5ecNIDIykr0cFBRU5ccHBQXB2tqavb5v3z6Dj8nMzMTRo0fZ66NGjYJQSG8/IYQQQgghhBBCCHn6UKrVAGJiYtjL7du3r/LjbWxsMHLkSPb61atXcfjwYZ3bi0QifPzxxygvLwcAWFhYYNq0aVU+LiGEEEIIIYQQQgghjQGFmjU0aNAgBAYGIjAwEIMGDTK4fW5uLgoLC9nrTZs2rdZxP/roI9jZ2bHXly5dil9++QWlpaWc7W7duoXXX3+dM5ho3rx5aNasWbWOSwghhBBCCCGEEEJIQ6OemvUsLS2Nc109mKwKd3d3/PLLL5gxYwbEYjFkMhnWr1+P33//Ha1bt4a5uTmSk5ORmZnJedy0adPw9ttvV/f0CSGEEEIIIYQQQghpcBRq1rOcnBzOdXt7+2rvq0ePHti9ezc+/fRTxMfHAwAqKioQERGhta2DgwPmz5+PiRMnVvt4hBBCCCGEEEIIIYQ0BhRq1rOysjLO9epWaqq0a9cOx44dw9mzZ3H69GncvXsXubm5kMlkcHV1RYsWLTBo0CCMGjUKzs7ONToWIYQQQgghhBBCCCGNAYWaasaNG4dx48ZV6THnzp2r0vZjxozBmDFjqvQYQ0xMTDB8+HAMHz68VvdLCCGEEEIIIYQQQkhjRIOCCCGEEEIIIYQQQgghTxUKNQkhhBBCCCGEEEIIIU8VCjUJIYQQQgghhBBCCCFPFQo1CSGEEEIIIYQQQgghTxUKNQkhhBBCCCGEEEIIIU8VCjUJIYQQQhqQVCpt6FMghBBCCGlw5VI5ZHJFQ58GeYqYNvQJEEKeTxMmTMDdu3eN3v7NN9/El19+qXebqKgoHDlyBNevX0d2djbKy8vh5OSEoKAgjB49GiNGjIBQaPhvOQUFBdi/fz+uXr2KR48eoaioCGZmZnBzc0PHjh0xevRo9OvXz+hzN0Z0dDT++ecf3L59GxkZGVAoFHB3d0e7du0wcuRIDBkyxKhz12f27Nk4e/YsACAkJAQ+Pj7V2s/hw4exaNEieHt749y5c0Y/LjExEXv27MGNGzeQmpoKiUQCNzc3BAQEYMSIEejfvz/Mzc2N2ldtvUd///03vvnmG6Ofg7W1NcLDw43eHgAKCwvx4osvIj8/H3/++Se6d+9u1OMkEgmOHDmC06dP48GDBygsLISlpSV8fX3Rr18/TJw4EW5ubkafR1RUFHbv3o3bt28jMzMTpqam8PDwQK9evTBhwgS0bt3aqP1IpVKcOHECJ0+eRHR0NAoLC2FjY4MmTZqgT58+ePnll+Hv72/0efFJS0vDyy+/jJKSEnTr1g07d+406nGXLl3C0aNHERYWhry8PAgEAnh7e6N79+547bXXjH6O9UUkEmH9+vVwdHTEzJkzjXrMm2++idu3b+Oll17C6tWr6/gMCSGEEELqx2cnHmD1xXiYCQVYOzYI7/Vo3tCnRJ4CFGoSQuqdTCZDTExMre1PLBbj66+/xqFDh8AwDOe+7OxsnDt3DufOncOOHTvwyy+/6A2CDh48iOXLl6O0tJRzu1QqxePHj/H48WMcPXoU3bp1w+rVq+Hu7l6jc5dKpVi+fDn27t2rde7JyclITk7Gf//9hw4dOmDlypXw8/Or1nF2797NBpo1kZCQgOXLl1f5cevXr8emTZsgk8k4t6elpSEtLQ3nz59H8+bN8fXXX6Njx45691Wb79G9e/eq/FyqQi6XY9GiRcjPz6/S46Kjo/HRRx8hNTWVc7tUKkVkZCQiIyOxZcsWfPLJJ5g6darefTEMgx9//BF//PEH5zMmFouRkJCAhIQE7N69G++99x4+/vhjCAQCnfuKj4/Hxx9/jNjYWM7thYWFKCwsxIMHD/DHH3/grbfewoIFC4wOqdXJ5XIsWLAAJSUlRj8mPz8f8+bNw/Xr17Xui4uLQ1xcHP7++2+8+uqrWLp0KaysrKp8XrXtxo0bWLBgAXJycjBnzhyjHlNYWMiG6gMGDKjDsyOEEEIIqT9XE/Pxw/k4AIBcwWDOoSi80t4TrjYWDXxmpLGjUJMQUu/i4uIgFosBAAEBARg7dqzBx7Rt25b3drFYjOnTp+PmzZsAAIFAgN69eyMoKAhmZmaIjIzE5cuXwTAMIiIi8Pbbb+PAgQOwtLTU2teuXbvwv//9j73u7u6OgQMHwsvLC+Xl5YiMjMSNGzfAMAxu3ryJyZMnY8+ePXBycqrGq6C0YMECnDx5kr0eFBSE4OBg2NvbIykpCSEhIaioqMDdu3cxdepU7N27F97e3lU6Rnx8PFauXFntc1RJTk7GtGnTqhQ2AcD333+PP/74g73u5+eHbt26wdXVFSkpKTh//jyKiorw+PFjzJ49G7///js6d+7Mu6/afo/UQ82PP/7YYAhnZmZm9POWy+VYsmQJLly4YPRjACA8PBxTp05lv0dUn+mOHTtCKBQiIiICV65cQXl5Ob799lukpaVhyZIlOve3cuVKbN++nb3eq1cvBAcHQy6XIzQ0FOHh4ZDL5di0aRMYhsG8efN495Oamoq33nqLDWjNzMwwaNAg+Pn5oaysDHfv3kVYWBjkcjl27NiBvLw8rFq1Sm9IyufXX39FWFiY0dvn5+dj4sSJSE5OZm8LDAxE3759YWtri4SEBJw9exZlZWXYt28f4uPj8ccffzR4sHnr1i3k5ORU6TGXLl2CXC6HiYlJrVeLE0IIIYQ0lNOx3J+JpHIGoY8LMaqtRwOdEXlaUKhJCKl30dHR7OVBgwZh2rRp1d7Xhg0b2EDT1dUVGzduRIcOHTjbhIeHY8aMGSguLkZcXBx+//13zJ07l7NNcnIyJ/ibMmUKPv30U62QKzw8HHPnzkVOTg6SkpKwYsUKrFq1qlrnfuTIETbQNDExwcqVKzFmzBjONunp6Zg3bx7Cw8ORk5ODZcuWYdOmTUYfQyKRYN68eaioqKjWOapcv34d8+fPR15eXpUed/v2bWzbto29/umnn+Kdd96BiYkJe1tBQQGWLFmCc+fOoaysDN988w2OHj2qta/afo8kEgni4pR/EXZ3dzd6+a8x8vPz8emnn+LKlStVepxIJMLcuXPZQNPDwwPr16/Xql6NjIzE7NmzkZOTgx07diAoKEjrswMoqwFVgaa5uTnWrVuHgQMHcrY5fPgwlixZArlcjs2bN2PQoEHo1KmT1r4+//xzNtD09/fHhg0b0Lw5d1nQ2bNnsWDBApSXl+P48eMYPnw4hg0bZvTzv3PnDjZu3Gj09gDw2WefsYGmmZkZvvnmG4wfP56zTXZ2Nj766COEhYUhLCwMK1asqFbFcUNTBeTBwcFwcHBo2JMhhBBCyFMhLrcUVxLz0dbDFt2aVb8Yoy7FZIu0bssrkzTAmZCnDQ0KIoTUO/XquKCgoGrvJykpCVu3bgWg7HW4a9curUATUAYAn332GXt93759Wtvs2LEDEonyf5xDhgzB0qVLeav2goODsX79erb67Pjx48jKyqrW+W/ZsoW9PGfOHN5QysvLC2vXrmUrBC9cuID09HSjj/Hjjz/i4cOHAKpWZagikUiwZs0avPvuu1UONAHlc1QteX711Vcxffp0TqAJAE5OTli1ahVbTRkbG4vbt29r7au236OHDx+yA1pq8jnUdP36dYwdO7bKgSYA/PXXX2z1nrW1NbZt28a7HL9jx47YtGkT+1r+8MMPvMH1mjVr2MsfffSRVqAJAGPHjuVUZ/78889a20RHR7NLuy0tLfHLL79oBZqA8n1RX0q9a9cuXU9VS0lJCT799FPI5XKjP6thYWG4ePEie/3bb7/VCjQBZWj922+/sVXO+/fvx/37940+t8ZAJpOxnylaek4IIYQQY1xNzEen1Rfx7t4I9Fx/Bb/feNzQp8TrQbb2SjAKNYkxKNQkhNQ79VCzffv21d7PgQMH2B6Ns2bNQosWLXRu+9JLLyEgIABBQUHw9/dHcXEx5/4zZ86wl9977z29xw0ODmYr2RiG4e3jZ0h6ejoePXoEQFml+frrr+vc1sPDA4GBgezxNPsZ6nLx4kV2wMqbb75Zpf6fCoUChw8fxogRI7Bx40YoFMophIMGDTJ6HxKJBDdu3GCvv/XWWzq3tba25iw55+u5WtvvUW19DlViYmLw/vvv4+2332ZDVF9fX72fS02nTp1iL7/zzjt6e6gGBQVh+PDhAICcnBytnqnx8fFs/0U7Ozu9r/+UKVPg7OwMAAgNDUVGRgbnfvXgsHfv3nqfU//+/dnLVemd+9VXXyEtLQ0mJib48MMPjXqM+uvVtWtX3j8MqNjZ2bGfG4ZhsGfPHqPPrTEICwtDUVERAPCG04QQQgghmjZcTUSZVA4AYBhg1YX4Bj4jbXIFg9icUq3bc0sp1CSG0fJzQki9kslkbOWgm5sbPD09q72vY8eOAVAGYvoCGwCwsLBgt9dUWFjIhlBCodCogKtZs2ZsYJSdnV2V0wagrMC8c+cOEhISkJeXZ7Avp6pCETCu4jI3NxeLFy8GwzBo1aoVFi5cWKXejjExMVi0aBF73dHREYsXL0aXLl2Mnnhubm6O0NBQJCYm4vHjx2jTpo3e7VVLrgHt51gX71FtVQyrLFy4kP1sA8C4ceOwdOlSzJw5E0lJSQYfL5VK8eDBA/b6iy++aPAxvXv3xr///gtAGTy+9NJL7H2XLl1iL/fs2ZO3j6yKubk5evXqhePHj4NhGJw+fZozgGj27Nl49dVXkZCQwIafuuh7H3U5ePAgTpw4AUD5BwpDw6JUoqKi2MvGvF59+vRhL6sHtdUlk8lw6tQp/Pfff4iOjkZubi47Vf6FF17Aq6++qtUfdvLkyWzLDJVffvkFv/zyCwBl1bZmewwAOH/+PADAx8cHrVq10rpfLBbj6NGjOHPmDO7fv4/CwkJYWFjAyckJHTp0wIABAzBy5EiYmtKPfoQQQsjzIiaHu6w7Lq8UMrkCpiaNp77tcUEZxDKF1u0UahJj0E+2hJB6pT4kqF27dgCUfQTDw8ORmpoKhmHg4eGBLl266O0Zl5GRwVaTdenSpUZDPxwcHHD9+nVkZ2cjPz9fa3k0H/XlzDY2NtU6ro2NjVHh3MOHD9mqTgsLC4PhIMMwWLx4MfLy8mBmZobVq1frDbT0MTU1xfjx4/Hxxx/D2dlZaxq3IRYWFmjdujVat26td7ucnBzOknPNUKsu3iPNUJNhGNy/fx8xMTEQiURwcnJCmzZteAMkfTp06ICFCxeia9euVXpcYWEhZzo53/JuTep/FFDvVat5PTg42OC+OnXqhOPHjwMAIiIitKaqe3h4wMPDcLN21T6MPe7jx4+xbNkydvuZM2fyth/goz5V3pjXS/38MzMzkZubC1dXV6OOpenu3bv49NNPtQJrqVSKpKQkJCUl4eDBgxg3bhz+97//Vav9gzpVqMm39Dw2NhYffPAB0tLStM5FJBIhJSUFJ06cwPr16/Hrr7/C39+/RudCCCGEkKeDZjDIMEBemRQedo1nqviDLO1+mgCQR6EmMQKFmoSQeqUeJLm4uGDx4sX4999/tfoBmpiYYPjw4Zg3bx6aNm2qtR/1Za0BAQEAgIqKChw+fBj//fcf4uPjUVRUBGdnZ3Tu3BkTJkxAz549ec9JIBDA2dnZYAWaSk5ODu7cuaN1/NrGMAyuXr2KL774gg27Jk+ebPA8d+zYwVbpzZs3z2CgyMfS0hJTp07F5MmTeV//2hQZGYnPP/8c5eXlAIChQ4eyy+1Vavs9kkgkbFDs7u6OEydOYNu2bVqhEAC0atUKn3zyCYYMGaL3mL169cK8efM4y6+rojqhl3pVpGav1cTERPayMe+hl5cXe9mYylJNIpEIO3bswI4dOwAon4+h4UtSqRTz589HWVkZbGxs8OOPPxoVWKuov2bGTFlXr3gGgLS0tGqFmmFhYXj33XfZz6yFhQX69++PgIAAiMVihIWFsZ+/gwcPQiwW46effgIAvP766xgwYACuXr2Kq1evAlBW3Pbu3RsAfxCcnJzMvp+aoWZRURGmT5/OhvjNmjVDjx494O7ujvLycqSkpODcuXOQyWRITk7GO++8g5MnT8LW1rbKz5sQQgghTw+GYZAj0g4Gc0TiRhVqPuQZEgQAeaXSej4T8jSiUJM88xiZFDlH/gdR5AkoJGW1uGNAwVSWyQsFQsDw79SNitDcGrYdR8Ht5S8hMK1ZFZGx1EPNAwcO6NxOLpfj33//xdWrV7F27VqtQDI+vrIfjIeHByIiIrBw4UI8fsxtfp2ZmYkTJ07gxIkTGDVqFL799ttqVy2qrFmzhh0w4+bmhhdeeKFG+1OXkpKCo0ePIiMjA7du3eKES+PHj8f8+fP1Pv7hw4dYvXo1AOWS43feeada59GyZUssWbKkWo81pKCgAHv37kVGRgbu3r3LGdjSu3dvfPPNNzU+hqH3KCYmhr0/Oztb7yTsuLg4zJ49G1OmTMGSJUt0hmfqy/Wrw8HBAVZWVmxQFh8fb7AqVzW9HVCG+iUlJbCzswPAXXJvTJsH9SpG1bAiQ0JCQhAREYHk5GRcunQJZWXK/8ZaW1tj9erVBs9/7dq17BLyL7/8ssoBuqenJ9tj9tGjR2wwqIsqyFYx9nmqE4vFmD9/Pvs+tW/fHmvXrmWHEKkcO3YMCxcuhEKhwIkTJzBmzBh2CTgAlJWVsaFmcHAwpk2bpvOYqpYP1tbW6N69O+e+vXv3soHmiy++iB9//JET3lpbWyMxMRGTJ09Gbm4ucnJysG/fvmr/t4EQQgghT4cyiRwVPMu6cxpZBeQDHaEmLT8nxqBQkzzzcg5/g9xjKxr6NBqtisfKnoPu45fVy/HUQ01AOdzjnXfeQceOHWFvb4/09HSEhITgt99+Q2FhIYqKijBr1izs3r2bU3GoPugnKSkJa9euhUgkgr29PQYPHozmzZujtLQU165dY4954sQJ5OXl4Y8//qhSNZi6Y8eOYf/+/ez12bNnV3tffG7fvo1169Zp3f7ee+/h448/hlCou/9NRUUF5s2bB4lEAkdHR3z//fdGVa/Vt0ePHvFO2B45ciQ+//zzGofOxrxHmp9DFxcXTJs2DUOHDoWnpydEIhHCwsKwZcsWti/nn3/+CRsbG3z88cc1Oj9dBAIBunbtylbZ7t27F19//bXO7RUKBY4ePcq5raKigg01RaLKHxCtra0NHl+9hUNJifYESj7bt2/X6g/p6OiI9evXo1u3bnofe/36dWzduhWA8r0fO3asUcdU161bN/b1OnDgAKZMmaL3e+TQoUOc6+qVrsY6evQoWxXr6emJrVu38rbKGD16NB49eoTNmzcDUE62r+7UclU/3F69esHc3Jxzn+rzCQAzZsyAqampVkWqr68v5s2bx/6h4u7du9U6D0IIIYQ8PXSFl3zVmw0phmfyOQDk0vRzYoTG0x2WkDpSnhDa0KfQ6JXH3zC8US2Qy+WcQSrvvfcedu7cicGDB8PV1RXm5uZo0aIFpk2bhoMHD7KVT2VlZfj88885+yotrZyQt2vXLohEIgwePBhnz57FypUrMXPmTCxYsAAHDx7E999/zwYBN27cwMaNG6t1/hcvXuRUL/bo0QOvvfZatfalC9/yZwD4/fffMWLECL2T1r/99lu2gnXZsmVG9T9sCJrLpFX+/fdfjB49mjPRuqqMfY/UQ83AwEAcOXIE06ZNQ7NmzWBubg5nZ2cMGTIEu3btwoQJE9htN2/eXKWJ3lU1adIk9vLevXvZIUB8Vq1axanUBJSDa1TUgy0LC8NLjNS30QzFdOF7LwsLCzF58mR8+OGHnJ6X6goKCrBo0SIoFAo0adKk2tW5Y8eOZUPw2NhYfPvtt5y+pOrOnTuHffv2cW5TVetWxenTp9nL06ZN09v794033oCfnx8GDhyItm3bVvlYgDKcVvUY5QtF1Qf/hIWF6dzPyJEjcfz4cURGRvL+UYEQQgghzxZd4WVOadX/qFuXdC8/l+j8ua6m8koluJdZgoonk+HJ04tCTfLMs/Ltbnij55yVX496OY6JiQlCQkLwzz//4Ndff8WCBQt0VhJ6e3vjhx9+YK9HRUUhNLQyoFYt/VQJDg7GunXreAOGsWPHYvHixez1bdu2carYjHH69GnMmTOHDXt8fHzw888/12qVJqAMHi5evIjo6GhcuXIF33//PVq0aAFAuTR9+vTpnKnWKmfPnsXevXsBKJepDxs2rFbPqzZ17doVZ8+eRVRUFG7cuIFffvmFHRqVl5eHxYsXa4VPxqjKe7RkyRIcP34cmzZtwm+//QY3NzfefZqYmOCrr76Cr68vAGV15LZt26p8bsYaPHgwBg4cyB5r3rx5+PLLLxEdHY2KigqUlpbi5s2b+OCDD7B161Y4OztzqjDVq/j0VSwaYmyF708//YTbt28jKioKx48fx4wZM9g+l6dOncKUKVN4v9c+//xzZGVlQSgU4ocffoC9vX21ztPNzQ0fffQRe33nzp2YOnUqLl++DJFIBIlEgpiYGHz77beYM2cOAKBJkybs9ppVj4ZIpVLOHxYGDRqkd3tPT0/8+++/2LRpE+bNm1elY6lcuXIFUqkUAoGAt1+rekXsihUrsHjxYly9elWrT7GVlRX8/f1rXAlNCCGEkKdDro7wsjFVauaIxMgr4/8js0zBoLhCxntfTfz7IAt+34Wg/aoL6PzzJTzOr8UWdaTe0fJz8sxzG/sVIBBQT00e6j0164urq6vRgzm6dOmCtm3bsj0XL1++zPaT06w8mz9/PqdiSdPEiRPx22+/ISMjAyKRCNevX8fQoUONOo+dO3fi22+/hUKhfL+9vb2xY8cOo4fWVIUqPAOUgc3YsWMxZMgQTJs2DREREZDJZFiyZAlCQkLY1yArKwtLly4FoJwArVnV2tio9x40NzfH0KFD0b9/f3z44YfshOcVK1agf//+RlebVvU9UgU8xkyBNjMzw+uvv44VK5RtLC5fvmzUOVXXqlWrMHPmTNy8eRMMw2Dv3r1sYK3O0dERmzdvxrvvvsveph5YWVtbo6ioCIBxy6zVtzGmshPgTqn39/fH/Pnz0b9/f7z77rsQi8V49OgR1q5dy34+AWD37t04e/YsAGD69OkGl6kb8u677yI7O5sNm0NDQzl/AFExNTXFV199hYsXLyIjIwMAd8m9MfLy8tjqTmtra/j4+NTo3I2h+p5o27Yt3N3dte5/9dVXsW/fPsTExEChUODQoUM4dOgQzM3N0aFDB/Tt2xd9+/ZF27ZtG2U7CkIIIYTUDZ3LzxtRr0pdVZoquaUSOFjV3uwHhmEw/+g9Nix9kC3CuiuJWD2mXa0dg9QvCjXJM09gagb38ctqvWckwzDsUAxA+Qsu/cJY+zp06MCGmsnJyeztNjY27GVbW1t07txZ735MTEzQs2dPHDx4EAAQHR1tMNSUyWRYvnw5du/ezd7WqlUrbN261ajBK7XF1tYWq1atwogRIyCTyZCTk4OQkBCMHDkSCoUCCxcuRGFhIUxNTbFq1Sqj+ic2NmZmZvj6669x584dFBcXo6KiAkePHsV7772n93H19R6ph3e5ubkoLS3lfAZrk62tLf744w/88ccf2Lp1KxtMqpibm2PEiBFYtGgRnJ2d2UpIa2trzjmph5qaVXt81KufVX05q6NLly6YMWMG1q9fD0DZ63LRokUwNTVFfHw8Vq5cCQBo164dPvzww2ofR91nn32G4OBg/PTTT1qT21W9ShctWoSgoCAcO3aMvc/FxaVKx8nNzWUv61t2XlsUCgVbma2q4NVkZWWFbdu24ZtvvuG0bpBIJLh9+zZu376Nn3/+GZ6enhg5ciSmTZtWrYnvhBBCCHm66Bq0kytqPMvPjQk1/Vxr72fubJEEMTmlnNtupxTW2v5J/aNQkxDSqDk6OrKX1ZexOjk5sZddXV2NWmqrXvVXUFCgd9uCggJ8+OGHnCEoXbt2xYYNG+olzNDUtGlTdOzYEXfu3AGgXI4/cuRIHDhwADduKHuiBgQE4NatW7h16xbvPtRfv3379rFLfoODg2t1gnt12dnZoU+fPmwfSdVUbF3q8z3S3J9IJKqzUBNQhrzvv/8+3nnnHYSFhSE5ORkymQxNmjRBcHAw+30RHx/P9hrSDHE9PDzYisSsrCx2ib8uqgnaAHQuxzfWmDFj2FCztLQUiYmJ8Pf3x+eff84GrO3atcOff/7J+3j1P2BkZGSwA4UAZdW1ra2t1mOGDx+O4cOH48GDB3j48CFEIhFcXV0RFBTEmaqemJjIXvby8qrS81LvWVofIiMj2b6k+oYMubi4YN26dUhISMB///2Hc+fO4cGDB5DLK/tEZWZm4o8//sDevXvx66+/okeP+mk7QgghhJCG8TRUauqafK5S2xPQozOLtW7LKGk8IS+pOgo1CSH1Ti6XQyKRGLX0Uz2IU++7p75sWH0SuqHjqvCFIiqJiYl47733kJKSwt42duxYLFu2rMo9+AxRKBSQSCRG9blT7wWoel0yMzPZ2+7fv89WtRqyadMm9vKcOXPqNNRkGAbl5eVGVZCqB8/6+p7W1ntkbMWl5rnUV7Btbm6OHj166Ayg1KdYt27dmnOfv78/IiIiAOgeQKVOfZuWLVvyblNRUQFzc3ODf0TQDFhV09TVg9N//vnH4DkByl6y6v11hw8frvf7t02bNmjTpg3vfWlpaWy1ZVVaYaio/zfI2P/u1IRq6rmbmxuCgoIMbu/r64tZs2bh7bffRklJCcLDwxEeHo6LFy+yFaylpaX48MMPce7cOb2vIyGEEEKebjoHBTWinpoxBkLNvFqegB6dqT1pPaPY8Iom0njRoCBCSL3ZsmULevTogaCgIMyfP9+ox6hPS2/VqhV7WT20KCgoQHZ2tsF9qQdg6gGhunv37uH1119ntxUIBPj44485E9Rrw+HDhzF8+HB06NABX331lVGPKSwsZC+rV6o2VteuXcPIkSPRqVMnzJgxw6jHqC+11vUca/oepaSkoH///mjfvj06d+6stbybj/rn0MfHp86GrTAMg4KCAsTFxbFBoD4hISHs5S5dunDuUw85VeGmPurbaAZoH374Ifr06YNOnTpxKmN1Uf+sAnX7eRWJRHj8+DEnMNVF3+tlDC8vL3YQUmlpKVsJq8/q1auxbNkybNu2DXl5eVU6nqqfZv/+/avc3sTOzg79+vXD4sWLcerUKaxfv54996KiIjYwJYQQQsizKU/HoKDsRrT8/EGW/p93a7tS8x5PqFkqkaOkDgYSkfpBlZqEkHrj5ubGLvu+ceMGysrK9FbvpaSkIDw8nL3et29f9rKrqys6duyIyMhIMAyDEydO4J133tG5r4qKCs7UYtXAIXWxsbF455132JDLwsICK1euxMiRI41/kkaytbVlK6fOnz+PiooKvUGZSCRCWFgYe71Dhw4AgLlz52Lu3LlGHXPQoEFsNV5ISEidDzlxcnJCfHw8ACA8PBxZWVl6B//I5XJ2KT0AtG/fXmub2niPPD09UVhYyE5JP3/+PMaOHav3Mep9GPv06WP0sapqxYoV2LlzJwDgyy+/xJtvvqlz28zMTFy8eBGAsmfskCFDOPcPHDgQy5cvB8MwuHbtGsRisc4BQGKxGNeuXWOv9+vXj3O/qpcrAPz3338Gly6r+kACyhYSzZo1AwCcO3dO7+NUQkNDMWXKFADK6d6q10TTmTNn2Knmw4cPx7p163Tuk2EY7Nu3j70+fPhwo85FnaWlJdq2bYvIyEgAwMWLFzFp0iSd21dUVOCvv/5i+y+//PLL7H2GQsr09HTExMQA0L30PCUlBT/++CMSExPBMAyOHz+uc3/Dhg1Dnz592KDUmECWEEIIIU8vXcvM88okUCgYCIUNOw+iTCLD48JyvdvUR6gJAOnFFQi01F7BkpBXirWXE2FuIsSCAX7wsDNumCapP1SpSQipN4MGDWKDu9LSUk6fPE0Mw2DZsmXskvGOHTtyhrUAyqm/Khs3bmRDFz5btmxhq8fatWuHgIAAzv0ikQizZ89mwzIbGxts2bKlTgJNQBmMqYaxFBUVYfv27Xq3X716NRuMuLq61mmwVlvatGmDFi1aAFCGYr/88ove7f/66y+kp6cDUIaVL774Iuf+2nqPzMzMOAHg5s2b9U4H//fff9mwVSgUYvLkyVU6XlWoD7w6cOAA2y+Tz7fffssGsy+++KJWYOzt7c22FcjPz8eOHTt07mvHjh3sHxxeeOEF+Pr6cu5Xfy8OHTrE6XmpqaCgABs2bGCvjx49GiYmJjq3r4lOnTqx+7548SJnkI+mXbt2ITY2FoCy4nLYsGHVOqZ6MLl161bOgCVN+/fvZ79vu3TpAmdnZ/Y+9SX86q0xVFTho7m5OXr16sW7fxcXF5w7dw6xsbF49OgR5w8ffFT9OQHtFgGEEEIIebboCgQVDJBfXj9L0GVyBQ7cTcdXp2JwJ7WQc9+j3FLo+VEXQO2GmgzD4J6OylC+JehF5VJ0/vkS1l9JxOqL8ej9yxXI5IpaOx9SOyjUJITUGzs7O7z99tvs9V9//ZUztVqlpKQE8+fPZ6vQzMzMeJdojxs3jh1+UlRUhMmTJyMhIUFru127drEhi0Ag4F36/u2337JBjampKTZs2IBu3bpV/UkaydLSkrMke926dexkdnVisRgrV67E33//zd726aef1tny59qmPt36n3/+waZNm7SCOrlcjq1bt7KDZQBgxowZWiFdbb5HM2fOZJfiJiQkYO7cubw9Eg8fPoxFixax16dOncppg1DbBg8ezA7puXfvHlavXq01nKa8vBxLlixhJ13b2NhgwYIFvPubN28eWxG4Zs0aHD58WGubw4cPY82aNex1vonkI0aMYP8QIBaL8f777+Px48da2yUlJeHtt99mw2lnZ2fMmjXLwLOuPjc3NwwaNAiAsipy4cKFWkvfAeV/A7777jv2+tKlS2FqWr3FKuPHj2ernJOTkzF79mxOWKhy8eJF/Pjjj+z1Dz74gHO/ej9Lvp6nquXh3bp109n31draGqNHj2avz5s3D48ePeLddseOHWyFqY2NDafynRBCCCHPHn29M+urr+ZXp2Mw4c87WHYmFr3WX8H1pMqfmR5k6e+nCQD5tdhTM7WoAsU6lpnzDQs6GJWBIrXtE/LKcD6+aq2ESN2j5eeEkHo1e/ZshIeHIzQ0FAqFAl9//TX27NmDvn37wtbWFsnJyQgJCWGDCaFQiOXLl/NObjY1NcWqVaswZcoU5OTkIDExES+99BL69euHtm3bQiaT4fLly5zhOVOnTkXv3r05+0lKSuKEPa1atarS0B2+6eHr16/nVCaqlpGqe/fddxEWFobz589DLpdj8eLF+Ouvv9C7d2/Y2NggPT0d586d41SgTp8+3eBS6cZk1KhRuHnzJvbs2QMA+Pnnn3H48GEMGDAATk5OyMnJwYULFzj9TocPH64VhNX2e9SqVSt88cUX+PLLLwEoA6ghQ4Zg2LBhaNq0KYqKinD16lVOL82BAwdi3rx5VX4NqsLc3BxfffUV5s6dC4Zh8Pvvv+PMmTPo06cPXFxckJ6ejjNnzrDfH2ZmZvj555919ojt0qUL3nrrLezcuRNyuRyLFi3Cnj172OXjoaGhnOq+qVOnomfPnlr7MTMzw08//YS33noLhYWFSEhIwKhRozBo0CC0bt0acrkc9+7dw+XLl9kQ1traGps3b+ZUJ9aFRYsW4ebNm+x7NmzYMAwZMgQ+Pj4oLCzkDMkBlOGi5lL9qrC0tMTatWsxefJklJWV4erVqxg6dCgGDx6Mli1bQiKR4Pbt25zeo5MnT9YKEdXbPxw7dgx2dnbw8PCAv78/evbsidDQUAD6p54DyiDz/PnzKCgoQEZGBl5++WX06NEDvr6+cHJygkgkws2bN3Hv3j32MQsWLICjo2O1XwNCCCGENG5SuQIF5VKd9+eIJGijuytUrcgRifHD+Xi1c2Kw9L+HODdTuQLloYEhQUDtVmpGZ+ge8shXqZmQX6Z124OsEgwNcKu1cyI1R6EmIaRemZubY9OmTVi2bBlbmfjw4UNOeKTi5uaGr7/+Wm8A4evriz179mDBggUIDw+HXC7H+fPn2aWbKkKhEJ988gnvwJpDhw5xln/qOh9dqjs93NTUFOvWrcP333+PXbt2KZdE3LvHCR9UbGxs8Nlnn+G1116r8nEa2tdffw0PDw9s2LABMpkMiYmJSExM1NrO3Nwc06dPx7Rp07T6DdbFezRx4kTY2triq6++QklJCYqKijg9F1VMTEzwxhtvYOHChbU6LEqXoUOH4rvvvsM333yD8vJyJCUlcUI5FS8vL/zwww/o2rWr3v0tXboUZmZm2L59OxQKBTsRW51AIMA777yDhQsX6tyPv78//v77b8ybNw8PHz6EVCrFqVOn2IpRdW3atMHq1avh5+dn3JOugaZNm2Lr1q348MMPkZ6ejqKiIhw4cEBrO2trayxYsEBvn1JjBQUFYffu3fjoo4+QlJQEkUiEI0eOaG1nYmKC9957Dx9//LHWfb169UKLFi2QlJQEhmGwa9cuAMrwnGEYtiWCoVDTzc0NO3bswJw5c5CcnAyFQoFr165xeqSqqF6DN954o+pPmhBCCCFPjfwy3YEmAOToGCJUmw7czYBcwV2hdSE+Dwl5pfB1sUFMjnaoaWthApG48mf+2gw17+mpDM0o1n49Unn6fT7KLa218yG1g0JNQki9s7a2xnfffYe33noL+/btw507d5Ceng6xWAxnZ2f4+flh8ODBGDt2LGeJpi4+Pj7Ys2cPzp49i//++w8RERHIzc0FwzDw9vZGz5498cYbb+hcNlyVcKy2mZub44svvsCkSZOwd+9ehIaGsq+Fg4MDWrVqhb59+2LChAlwcHBosPOsCYFAgFmzZmHMmDHYu3cvrl27huTkZJSVlcHOzg4tWrRAr169MGbMGHbptaa6eo9GjRqFPn364J9//sGlS5fYqeM2Njbw9PREr1698Morr2j1YK1rr7zyCrp164Zdu3bh6tWrSE5OhkQigaOjI1q3bo3hw4djzJgxRrUhEAgEWLRoEV566SX2M5adnQ25XA4PDw906dIFr7/+Ojt8Sh8/Pz8cPHgQp06dwsmTJ3H37l3k5eXBxMQErq6u6NSpE0aMGIHBgwdXeVp3TbRv3x7Hjh3D/v37cebMGcTFxUEkEsHa2hq+vr7o168fJkyYAHd391o7ZuvWrXHixAkcP34cZ86cwb1795CXlwdTU1N4eXmhR48eeP3113X+d8fS0hI7d+7EmjVrcOXKFeTn58PMzAwSiYRdet6qVSs0bdrU4LkEBgbixIkTOHbsGEJCQvDgwQPk5+dDJpPByckJzZs3R//+/TF27NhafQ0IIYQQ0jjlGJhwXh/Lz/dEaLfXAYAdt1PxzfBAreXnTlZm8HWxxp3UIva2Wg01M3VXamaWaFdqphZp3xZPoWajI2D0TSEgpJaEh4dDoVA21RUKhQgODq7yPuRyOTvkAQACAgLqbPiEMRiGYQdAAMqgrj5/iSfkWULfT4TUjuf1e6mx/YxAng0ymYztRQsohxZWtx8vIc8z+l6qfxficjFo03Wd938zPBBfDK27P9qnFpaj+YqzvIOAmjtZ4dFng2C/9D9UyCoH7/Rs7gR7S1OciqlsvWUiFEDy/Sitn2WySsR4mF2C1u52Rk8k77bmEm6rBabqBrVyxdkPuC2YWn9/DrE53BDTz8UajxYPNup4deVZ+36qaVb09D5zQgghhBBCCCGEkAZwJ7UQyQXlGNjKFY5WZg19Ohw5BiocDd1fU3sj0nVONn9cUI4dt1M5gSYAtPawhUTjNrmCQVGFjPP6XorPw8vbbqKoQgYnKzMcfbcberfU38NdodA9+RzQ7qnJMAxSC7UrNZMKyiGVK2BmQjO3Gwt6JwghhBBCCCGEEEKMtOpCPLquuYzxO26j7Q/nkVygPVSmIRlaXm5oeXpN6Vp6rvL1ae0hqq3dbOFio92/XnMJ+oqQWHYqeUG5FN+fizN4Pon5ZSiXKnTerzn9vKBcijKpXGs7uYJBIs8AIdJwKNQkhBBCCCGEEEIIMYJYJse3IY/Y65klYmy4mtRwJ8TDUC/Kuuyp+ShHxOmLySeNp19la3dbuBoRat5O4e47Wk+vTBV9VZoAUFguRblaiJnCMyRIJY76ajYqFGoSQgghhBBCCCGEGCG5oByF5dzp4oZCvPpmaLp5XU4/3xORrnWbjbnhPtdtPOzgaq0dauaphZolFTIUaLz2hU+qNvWJztQfagJAptoEdL6l5yo0Ab1xoVCTEEIIIYQQQgghxAjJPFV8j3JFPFs2nLwGqtRkGAZ7wrWXnq9/pb3ex5mbCNHCycrg8vPHPMv8iyqkUCj0z7++b0SomaE2AV1fpeajHAo1GxMKNQkhhBBCCCGEEEKMkFygHXilFFZwli83NEODgHJLJWB0TfKpgbsZxXiQzQ14uzdzxJTOPvB1sdb5uAA3G5iaCA0uP3/M89ozDFAs1l+taUylZrrakvhUnuXxKrT8vHGhUJMQQgghhBBCCCHECHyVmkDjCrsM9dSUKRitJfS1YXe49tLzScHeEAoFmNK5qc7HtXa3BQD+ULNMf6gJQO9zkckVeKgRtAoE2tupDwtK1ddTM6/xvM+EQk1CCCGEEEIIIYQQo+gK1hpTr0VjlpcbquasKoZhsFdj6rlAAEzo4AUAmNrFhzdMBIBAPaFmnoHl54D+UDMurxQSOXfyeRcfR63tMoqNq9RMyi+DRKZ7kjqpXxRqEkIIIYQQQgghhBhBV7/FxtJrkWEYowYB1XZfzRuPC7QC3wG+LvBysAQANHe2xqBWrryPbfMk1HQxMChIV5Ws5vAgddEZ2kvPhwRon4f6oCB9PTUVDJCYzx+ukvpHoSYhhBBCCCGEEEKIEfh6agL1W6kZky3C9H8i8e7eCDzI4oZ2JWIZpHLD/TJrewL6bp6p55OCvTnX3+7KvwRdtfzc3FQIOwtTzn2GemoC+is172Vph5oD/Fwh1KgaVQ0KYhgGqUW6Q02gcbUaeN6ZGt6EEEIIIYQQQggh5PnGMIzOasFHOfUzAb2kQoaBG68h80kPyINRGXi8dAgcrMwA8FdgNnO00jrv7Fqs1JTJFdgXyQ01zUwEGN+hCee2V4I8YW9piuIK7mCfQDdb9rKrjTlK1Ab/GJp+DhgINXmGBHVoYg8POwtkqFVnqi7nl0lRLtW/vLwxtRp43lGlJiGEEEIIIYQQQmqMYRhcTsjDfw+yIJPrD4YS88rw69UknInNqaezq7kckQRiHf0U6yvo2n83nQ00AaC4QoYj9zLZ63xDgtp62GrdliOqvUrNC/F5yCrh7m94gDucNZaTW5ubYkoXbrVmrxZOsFGrztTsq5n3ZFCQWCbnhJDqCiv0LD/XCDVdbczhbmuOJnaWnNtVPTUNVWkCFGo2JlSpSQghhBBCCCGEkBqbvi8S226mAAA6+zjg6pw+vJVUd9OL0fuXKyiVyAEAXw8LxJfDAurxTKtHV5UmAGSWiFFSIYOdZd3GLOficrVue6A23ZtvAFAbDzucjOGGx8YMClIoGBx/kIWL8XkY1MoVo9p68G63h2fp+cRgL95tV4xojdhsEU7H5iDAzQa/vNKec7+LtRnnel6ZFAoFg5RC3cN7Csr4Q02xTK4VQLbzsINAIEATewtAba5RTqkEUrlC73FU4nLrpyqXGEahJiGEEEIIIYQQQmokIa+UDTQB4E5qEQ5GZeDV9tpB2IZriWygCQCrL8bjs0GtYG7auBeT6lr+rPIoV4QXeCZr1xaGYRDySDvUjFUPNXkqMNt62GndlmvE8vPfbjzGrINRAICfLyVgx+udMLkzt9JSLJPjYFQG5zYrMyFebufJu087S1OcnNEDYpkcFqYmWvdrVmrKFQyKKqR6X/tCjeXsKjHZpZAruP1F23kqXwtPe0ut7bNKxHqHBKnE5dKgoMaicf8XgxBCCCGEEEIIIY0eX+/CO6lFvNtGZWgPt4nPa/xLevVVagJ1vyz5QZaIs/RcJVZt8jrf8nM/F2uYmXAn4xgaFMQwDJadjeXctuj4A0g0lt+fisnR6mk5uq0nbC3019DxBZoA4GKjPQE9t1Sic0gQABTp6KnJNyQo6Emo2cTOQuu+jGIx7/JzzerRxwVlWq9DbWMYBr/feIzBG69h9sEoFOtZYv88o1CTEEIIIYQQQgghNcK3nDlBR1AZzxP+qS+hbihlEhmuJObpPG9dk89V6jrUDOFZeg4AcXmVFYl874O7rYVWBSTfQCF197NEWj0sM0vEWlWZe8LToGmSjqXnxtA8T0C5BF1fqKlrUFB0ZrHWbapKzSY8lZoZJRVI5Vl+PrCVK+e6ggES8uv2vT56Lwvv77+L8/F52HgtCVN3h9fp8Z5WFGoSQgghhBBCCCGkRrJ5lj3H52kv0y0Ry3iDt4cNHGqmFZXjhZ8vod+Ga2j9/XlsDU3W2sbQ0uRHOXUbdJ3XEWqKZQp2eTZfpaarjTncbLiViYZ6ap59xD/AacPVRPZyqViGo/eyOPfbW5piRKC73n3r42LNX6mZrGf5eYGuSk2e6uHKUJOvUrMCqRrvsYWpED2aO2ltW9dL0H+/8Zhz/Upifp0e72lFoSYhhBBCCCGEEEJqhK/yLyG/FAzD7WmYwBN0AsBDnqXC9Wnz9cfsMm6ZgsFnJ+5rLTFuyEpNuYLBhfg8nferzl2zV6ZAADhbm8HNVrtSU/O9URcSyx+gXk0qQHiasq3AsftZKJPKOfePC2oCSzP+peXG4KvUNLT8XFelpmao2cTegp3I7sVTqZleLEZKEbdS08fBEgFu2tPjH9XxsKCIdG6VqaHl/M8rCjUJIYQQQgghhBBSI3wDakRiuVZFYEI+f6jZ0MvPwzT6f+aVSRGTwz0nfcEaADzKqbvnEJZapDO8A8Ceq2avTCcrM5iaCOGmERZK5AqUiPkH7EjlClxI4A81AWDD1SQAwJ6I2l16DtReqFkmkWl91lT9NAEdy895KjV9HKzQytVaa9u6rMrNLhEjvZgbrnbysq+z4z3NKNQkhBBCCCGEEEJIjehazqxZmamzUjNbBIVCd+VgXUsr1u6lGJVRWS1XLtUOaDXllUmRX2Z4qnh1hMTxLwdXiXkSCmsuP1eFma622sutdfXVDE0ugEgs570PAHaHpyIhrxT/Pczm3O5ua45BGv0nq4ov1MwW6Z9KXsgzROdBtgiahajtPCuDQQ+e1+NeZgkqNKpzmzpawtfZBkLunCXE1WFVbkS69oCtTt4OdXa8pxmFmoQQQgghhBBCCKkRvp6aABCvUS2XqKNSs1Qi5w0W60taEU+oqbZ82VA/TZW6quA790h35SRQufRdM3h1exLeaVZqArrfs7M6lp6rlEsVmPDnbUjl3NTw1Q5eMDWpWczEN/08OqMYMj2Bt0gsh1TODSP53q9ANxv2srmpUCtAVS2rV+ftaAVzUyGaO3GrNesy1AxP0x5w1MmLQk0+FGoSQgghhBBCCCGkRnRV/WlVauoINQHgQQP11ayQynkH7ESp9TXk66fZ1oOv12Lth10VUrnBQTEx2SJIZAoUV3CXlKuCO75QU1flaYiOIUHq+IK3mi49B/gHBd1J1Q4bNRVpVGvyfR497LjVmZrDgjSrNAGgqYMVAGgtQU8uLIdYpruatSYi+So1afk5Lwo1CSGENApSqe4eQYQQQgghpPFiGAbZOkLNxHxuGKhr+Tmgu69mVokY0RnFkNfR8nTN/oUqUZlqoSZP5d8gfzet22LroK/m9ccFvIGbutSiCnYCujpVqOluZ9zy8+IKKW4kF3JuC/K0Qxcf/ZWCTR0t0au5s95tjGFuKoS9JXcojqFl/wBQWM4Nc3VNgVfXxE67r6YmH0flNq1cuQG2gtH/WQaAvFIJfr/xGEfvZeodyqRJc0iQk5UZmjlZGf345wmNTyKENCobNmzAunXr0K1bN+zcudPoxxUWFmL37t24cOEC4uPjUVFRATc3NwQGBmL06NF48cUXIRQa93ecxrovY0VFRWH37t24ffs2MjMzYWpqCg8PD/Tq1QsTJkxA69ata/V4NZWcnIzly5fjzTffRJcuXQxuX15eju7du0MsFuN///sfJk6cWA9nSQghhBBCdCkRyyCR84duyuBHGcjIFAweF+peYv4gSzsQ3HErBTMP3EWFTIEuPg44/X5POFqZ1cp5q/AtPQeAlMIKFJRJ4GRtzlupObiVK365ksi5rS6WJYfwLD1v7mSlNTznWlKB1nb6KzW1l59fSsjXCo+HBLihYxN7vLM3Quc5TuzkDaFm48lqcrUx16o4NURzWBBfEOpmo79Sk09TR+Vn19/VRuu+uNxStPGw07odUA77ab/qAnse73Rriq2vdTJ4vFKxTGtAVScvewgEtfPaPmuoUpMQ0mjcvn0bGzdurPLjbty4gZEjR2LNmjWIiIhASUkJpFIp0tPTcf78ecybNw9vvvkmMjIyntp9GYNhGPzwww+YMGECDhw4gMePH0MsFqO0tBQJCQn466+/MG7cOPz8889V+kthXdq+fTtGjRqFixcvGv2Yq1evQixW/gA2YMCAOjozQgghhBBiLF1VmgB3uXlmmVxvtWWMRqVmmUSGT47eY6sUb6cWYeO1pJqdLA9doSYARD/pq8kXanZp6qBVVVgXy8/PxWmHmtO7N9O67WqS9hJ1N1tzzr/q+Co1z/IsPR/i74qJnbzgYq07TH492FvnfVXlyrME3ZACjVAzl6dfqOZr4MkzAV2Tj4NyG75QU997/fPlBE6wuu1milGBd1RmidaAIxoSpBuFmoSQRuHu3buYOXNmlZcg3717FzNmzEBeXh4AwNvbG1OnTsVHH32El156CZaWyv8JhYWFYfr06Sgu1u790tj3ZayVK1di69atbGDZq1cvzJ49Gx988AGCg4MBAHK5HJs2bcLPP/9c4+PVhpCQEEgkVZsQeeHCBQBA27Zt4eHhUQdnRQghhBBCqiJHx8AZAMgsEaP8SSiZVqK/+u5BNrenZmhyoVYF3sX4vGqepW76Qs27Tyagay4/NzMRoImdpVbYFZtTWqsFBMUVUtxKKeTc1tHLHr1aaC/1vsYTalZWampXJfIt0Q7RGBJkKhSgn68LLM1MML1Hc95zDHCzqdWej3zDggzR/JxoPjcToQCOltxQtgnPknx1FmrDhFpVMdQ8Gp2pddtJjWnxfPiGFXXypn6autDyc0JIgzt+/Di++OILlJXp70miSSKR4NNPP2Wr9saNG4dvvvkG5uaV/xNMTk7GBx98gPj4eMTFxWH16tX45ptvnpp9GevGjRvYvn07AMDc3Bzr1q3DwIEDOdscPnwYS5YsgVwux+bNmzFo0CB06tSp2sdsCAzDsFWdVKVJCCGEENI4GOp5mCaSo5WjEKki/YNVskUS5JdJ4PykUu9SgnaAGZ5WBIZhanU5bmqR7snmURlPKjU1Qk0fBysIhQL4u9pwBtmUiGXIFkm0htJU18X4PK3q1kGtXBHopj2k6D7P8n1VmOlkZQYToYCzL80wOqO4Avc0hjX1bO4EWwtldPRBj+b48XwcNIttJ3XyrtX3Q7P3pTEMLT93sTbTWh7fxEClpo+DJfu8WjpbQygA57nrqryMyy3l7Q97KiYbc/q01HvMCN4hQVSpqQtVahJCGoxIJMIXX3yB+fPnVznQBIBDhw4hKSkJABAQEIDly5dzgkMAaNasGX7//Xe2MnL//v1ISUl5avZlrDVr1rCXP/roI61AEwDGjh2LefPmsdcbS7VmVdy7dw/Z2cq/cPI9R0IIIYQQUv+y9VRqAkCaSFmhmSoy3CdRva/m5QTtysOcUgkyS/Qfr6rS9S4/L4ZCwSBFI9Rs/mRwiz9PuPgot/aGBYXwLD0f7O+KJvYWsLUwMfh41ZJroVCgtXxcM/jj6905WG0YUnNna4xp56m1TW0uPQcMV2qa8vTu1Ao1NZbW81WqGuqpqeqnCSgHGLVwtgbDAIxMCEZsipjHEmRlAenpQEoKkJgIxMUBW0/mgcmzBZNjBybLHkymA5gMR5y9oMDZc3KcPw+cPQucPAmcOAEcPQocOgQcPAic+9cMTGwTMDHKL9NH3og8b4vdu4G//wZ27xYgMdHwsvnnBVVqEkLqnUQiwe7du7Fx40YUFCibWQsEAgwYMADnz583ej/79+9nL7///vswMeH/n7q3tzcmTJiAnTt3QiaT4dixY5g1a9ZTsS9jxMfHIzw8HABgZ2eHt956S+e2U6ZMwdatW5Gfn4/Q0FBkZGSgSZMmVT5mQ1EtPXd1dUX79u0b9mQIIYQQQp4xD7JK8NWpGGQUV2Byl6aYoWO5sSa+3ozqVBWaaQYqNQHgYbYIvVs6QyJT4Ppj7VATACLSigxW2VVFmo7p54CyUjNbJIZYY/p4Mz0DZGJzStGnpUutnNv5OP7l4AKBAAGutgjjWa6sTr0/pZuNBaf/qeb7FsLXTzPAlXN92YjWCHmUixKxMqB+u2tTBLprB7s1wVepyTAAZCaATAg/Jwc8zCgHZMInt5ng9mVzHCwAysuBigog/ZInGLGQ3abQxgbvxwFisfJLIgEKRA5gYroDCiEgf/KlELCXQ03M4P6VcluJBKgQD1Le/0QKAM/v+J5BsydfXBUAhv5l6Nm35VyTAph8VP0WEwDt8Npr2Vi4sPpFMc8KCjUJIfXu0qVL+Pbbb9nrTZo0wTfffANLS0ujQ838/HxERUUBAExMTNCvXz+92w8YMICdpn769GlOeNhY92WsS5cusZd79uzJVn/yMTc3R69evXD8+HEwDIPTp09j6tSpVT6muuLiYhw8eBDnzp1DbGwsSkpKYGlpiebNm6Nnz56YNGkSmjZtynlMYGCg1n5mzJjBXt6xYwd69OihtY3q89GvXz/eJS7Z2dk4cOAArly5gri4OIhEItja2sLd3R2dO3fGiy++iO7du9fo+RJCCCGEPIuuJ+Vj5JZQFD2ZOn01qQAOlqaY2MlwFZ6hSs3UqlRqPumrGZZWhHIp/0T18PRivNim9nqr6+upWSKW4XKidrja1El3qFlbw4KyS8Ts8neV7s0c2eXgge6GQ0314ThutuZAltr+RWJ2KT/DMDirUalpZ2GKrk0dObe187TDtbl9cOBuBlq6WGFCBy/O/QwDlJYCIlHlv7q+dN2fkNkMTJYnIDUBpKbKf+WVhSIPeZ7nP0++KgVxrqUC+E3rV01TAO48e1Mqe/JVqfFMIP/nH3dMmZKJjh0b+kwaFoWahJAGY2VlhSlTpuD999+HjY0NQkNDjX7s/fv32Qbcfn5+sLfX3zxZvXdkTEwMysrKYG1t3aj3Zazo6Gj2smogkKFjHj9+HAAQERFRo1Dz0KFDWLFiBUpKuD9siUQi3Lt3D/fu3cOff/6JRYsW6a0gNUZ2djbu3bsHgL+f5r///oulS5dqtTIoLCxEYWEhYmNjsXv3bvTp0wdr166FrW3t/kWZEEIIIeRpdT4uF2P+uIlSCbeS8vP/HmJ8+yYwNdHfuY5v4Iy61BI5GIbRqtRs62Gr1Qfy4ZPrfP00VSINBHlVoVAwekNNADhxP0vrNrZS00071IzLqXmoKZUrsPJ8nNbtg9SWg/MFquqszISwNq+MfdxtucutK2QKlErksLUwRUyOCKkFYkBsBkhMAbEZ2jdxx8l/hSgqAvtVXAwUFdmhqMgOoUXAZva2yvtrPifJ4skXIfpRqEkIqXcODg6YPXs23njjDbi6uhp+AI/ExET2so+Pj8HtbW1t4eDggKKiIigUCiQnJ6N169aNel/GUj+mZkUkHy+vyr+mqnp/Vsf27dvx3XeV6y1cXFwwYMAA+Pj4IC8vD5cvX8bjx48hkUiwbNkymJqaYtKkSQCAhQsXAgB2797N9hJ99dVX2desWTPt5RoXL14EwzAwMzND7969OfeFh4djwYIFkMuVPygHBwfjhRdegKOjIwoKChAVFYVbt24BAK5cuYL58+dj8+bN1X7uhBBCCCGNkVzBYMPVRERlluC1jl4Y4u9qcIDLfw+yMH7HbVTItKsi4/PKsDsiDZM76/8Z01ClZnqpDAViBcpk3LSrQxN7lIhlSCmsDBVVA1au8PTTVIlIL9Z7vKrIKZVApjn5RsO/PFOrmz2p1HS2NoeLtRnyyip7OsYa6KkpVzA4E5uD3FIJujVzhL+rDed9up9Zgrf3hON2qnZ4O7hV5e9PfMu+GQWUwWSFOezNbHHyJJCfDxQUAIlXfMDEOinvL1du88JxIUpLgNwCG6D8Jc6+rgIY84Pep0IayBtvZMHTU2p4w2cchZqEkHrXtWtXdO3atUb7yMmp7PdibE9IDw8PFBUVsY9XhYeNdV/GUg3OAQBPT+3G3XzHU1E/36p4+PAhfvih8iec8ePH4/PPP+dUmUqlUnz//ffs8vqVK1di2LBhcHZ2xrRp0wAoe2SqQs1hw4ahS5cuAMBbrapaet61a1etKstffvmFDTQ///xzTJ48Wevxp0+fxscffwy5XI4LFy7g3r17aNeuXbWePyGEEEJIYzTnUBQ2X38MANgamowT07rpXaZ9MCoDr/91B1K57lBvxdlHeCPYByY8w1lUDPXUTC+VI6VEe+m5r4sN8suknFAzqaAMpWIZLifqrtSMyytFSYUMdpY1jzTS9Ew+V+GrRG2mNkTG380WeY8LKs8vtxQKBaM1bRsAGIbB1N3h+Ds8jb3N18UaIwLd8WJrd9zPKsGXp2JQIVUol12Xmyu/yixgI7fC9YNOOFWoDCrjU93ARPUAKswqv8SVy80zAbzI+Tu+9mfhEXvp+ZsjLRAAAlM5FAIFYPLkS8iwl9t4WcPRxhTm5oC5OSCFDBcSczjb2luZ4PXOXjAzFQACBr/dTIREoQAEjHJf6v8+uTzpBS/09nWCiQk4Xz9eiMP9rJInq9wZCATA7xM6wtrCRHmuAkChkMPS8gGaNavdYVlPKwo1yTOPkSuQHpKIopg8KKSGG1Mbv2OAYSr/mikQCBtTiw2jCM1M4BDoAq/BLSEwsKSksVFf7mxlZaVny0rqvSbVH99Y92UskajyL8HGLF1XP6/qHA8AtmzZwoaIAwYM4PRIVTEzM8OSJUtw7949hIWFoby8HPv37+f0zjSWRCLB9evX2eNpioiIAADY29vrXOY+bNgwjB49GocPH4aJiQkiIiIo1CSEEEJIgwl9XID3999FlkiM93s0x5dDA3hDMGNFpBWxgabKbzce6ww1d4enYcrucMgNVCnG5pRiT0Qa3nxB9yqkbAOhpkwBhGVrb+PnYg2RRIbTsZV/aGcY4GB0Btvbkw/DAHczitG7pbPe4xrD0NJzXdRDzQBXG9xQCzXLpQqkF1fAR20bmUwZRB4KzceuoxVAeZMnYaU54svNsaHcHBvKhUCZG1DurbxPrY8kAJQC+IwzNMYcgBueJba2gJU1gxxJGWAmA8zkyi/Tyq/3+vhg370UFErFgKkCMJXD08kU370cCCsr4EZaDtZci1Pe9+Sx615tgwmdPWFpCVhYKENKExPgrV2RnIBZ3aVvhsHVpjI2YxgTtPruPhLzK9tdlQBo/4oEs3u3RMijXGzYfI8TCwR52iE6k/s7l7xDOeZM6cK5jWEYfJoQB4FrZfWlv6sNpr3N/QzIZAwiIynQVKFQkzzz0kMSkXk+qaFPo9EqT1f+B9Z7mF8Dn0nVSCSVPxTpG4yjTn079cc31n0ZS/0xFhaGe8+ob1Od40mlUnYKOQB88sknOrcVCoWYOnUqysvL0bx5c7i5Ve+Hrhs3brC9MgcOHKh1v6mp8n9nIpEIMTExOqtdFyxYgNmzZ8PLy4t9DCGEEEJIfYvJFmHob9chEiv/SPy/M7Ho3syxRsNvlp2J1botVkdvx7jcUry9hz/QfLmdB47c4/aQXHH2ESZ18uat1mQYBjmlhkOWG5na2/i52GhNFQeA3zTCWT4R6UV1FmoKBYC+rNfF2gw2FqYQi4GsLMAyzwVMvBQotQDKLIBSC7x1XwimVHl/To5y+bey16QLgF41Pu/GQCgE7O0BB4fKL3t75ZedHWBjowwp+b747rOyUu5TKmdgsegc7zFdrM3w2/+aIXzNY9xRW54vsLPA228rh5GmXSyGIJ079KhtgAn4FrV52vP//mRpKoSLNXcKu0AgwBdDA/Du3gjO7f87HYspnZvi6D3t3qtLh/hj7qFoTrXvmdgcyOQKTq/a1KIKTgsDAAj2duA9N1KJfqMjz7zSlNrrt/KsehpfI6GwZpWl6j1rGuu+jCUUCtmqyfo4XkREBFvh6e3tbXC5/IgRIzBixIhqnZ+KKkRt2bIlb7/Nbt264fTp01AoFHjrrbfw5ptvYvDgwQgKCuK8J9UNVQkhhBBCaku5VI6JO++wgabKvw+zqx1qRqYX4VB0ptbtSQVl7HRrdadjcrSWnAsFwB8TO+H1YG+0/v48pxrtYbYI+yLTMSlYexJ6UYVMa1+WpkKtHp13c7X/mO7rYg0G2unh1aQCrds01VZfzVSNUJORCdHRyR1hsRVsQMn5t8wCJWIrOK5TDsZRavbkq9LFiFo5vbplIYGTMyASVEBqIgEspICFDDCXYnwXN/QIsOOElerhpYODMpisxq8TBpmZCOFgacpbrdvcSbkyzcnKjHN7YXllIJjD0y7AzYY/vGxix1+I4uNoxfu70uTOPvj5UjxnKn1OqQSrLsbj2D3u96CZiQAvtnbH8EA37AqrrAYtqpAhNLmQE8pH8Ay/6uilf+gsoVCTPAdsmtqjJE53k2mifI2eNurLrMVi48rvKyoqf2BRr1ZsrPsylrW1NduT05hjqm9TneOlp6ezlwMCAqr8+OpQhZp8VZoA8NFHH+HatWsQiUQoKSnBpk2bsGnTJjg4OKB79+7o1asX+vbta9TwJkIIIYSQuvTR4WjczdAO5LJKqr+klK9KE1Aug84WSeBhx/2ZLy5Pu4Jz62udMKWLciDQ4sGtMGPfXc79y8/G4rWOXlpL5HN4hgR1aeqIK4nc38E0CzItTIXwsreEuRFtsFyszVAqkXOC0qpOQJdKgcxMID2d+/XPVTcwSc5AqSUgsgQqzBFmYF/iJ1+NgdBUAYWFBLCUApaqf5WXh7R3wNgurnB2BpydgQJFKV7ff0N5v4UUAiFgaWeBwhIxZ8l0G3db7F3QEg3ZoczVxlxHqKlc0u+oEWpWyBSokMphaWbC2wPVzdZc6zYAaKKjUrOpA3/YaSIU4LuRbfDS1puc21eee6QV7g/wc4G9pRmGB7pzQk0AOBmTzQ01eUL6ThRqGkShJnnmeQ1uCQDUU5OHek/Np416eKgeCuqjvp29feX/IBrrvoylHmoac8zy8spm6HZ2dlU+Xl5eZdP26pxvVcXExCAtTflDAF8/TQBo1aoV/vzzTyxduhQPHjxgby8qKsLp06dx+vRpAECbNm0wbtw4TJo0Cebm/D/YEEIIIYTUlV1hqdgSmsx7X3VDzcj0IhyM0q7SVEnML9MKNRN5Qs3xHSqHXE7p3BTLzzxCcmHlz433s0Q4EJWBCR29OI/j66fZvZmTVqipydfZGkKhAG625nC2NkN+me5Jzv18XZBaVIFbKYXsbVGZJZDKFRBCiJwc7bBS8ys7W7X8W5OL3vOsT0JTBcxsZXBxYRDY3Bwe7gK4ugJubuD86+ICNqjcdCsRC47d593fhFc7YEaPymnp2SWmEISUcbbJ5PncfTUsUO9gqPrgYm2O+LwyrdtVU+cdNEJNQFmt6WlmglyeoF1zKblKE3vdlZq6vNjaHQP8XHAhvvL3Ir5hW6PbKte7DwvQXi126mE2lo2oXPHGV6lJy88No1CTPPMEJkJ4D/Or9Z6RDMOwPf4AZbBUnaW8pHrUJ3hnZWn3LuGjvp36MuTGui9jeXh4ICMjg92XoeE3NT2eTKa7aXtdUFVp2tvbo3Pnzjq3a9euHQ4dOoTbt2/j1KlTuHz5MpKSkjjbPHjwACtWrMDff/+NHTt2cN4vQgghhJC69DC7BB/sv6vz/myeIMYYuqo0VRLzy9CjuRPntoR8bljkbmsOW4vKeMDcVIjFg1th5oEorWONb9+EU63J108zwM3GYFDp66IsBhAIBGjjbsu75JxRACi1RNNyLxQ9loIJc1ZWU5ZYoaLECj5/AnnZQDU7MdU5SysFvJoI4ebG4G5RLspNygFrCWAlAazEmDPUG2/1cWfDSjs7IQSCqv3hPdDNVud9bjbcfbnYmEMg0BXuKgV52uFVtYC7obja8L8OquXnjpY8oWaFFJ72llrLzx0sTWFuyl92qqtS08dR93wEgUCAlaPaoMe6Kzq3AYDRbZW/a7jbWaCzjwOnB+idtCLkiMRws1UeX7NS08POAp46AldSiUJNQshTyd/fn72squLTRyQSsdWMJiYmaN68eaPfl7H8/f3Z6d/GHFN9m5Ytq16lq16dWVxc9/1Yz58/DwDo06ePweE+AoEAXbt2RdeuXQEAmZmZCA0NxfXr13HhwgUUFCh/WE5MTMRnn32Gbdu21e3JE0IIIYQAKJPI8Nqfd1Aq0Z2+ZRmYIM7HUJUmACRpBJgMwyBBowLO18VG63Fvd22KFWcfcXpORmeW4FB0BsZ3qKzW5KvUdLM1h5+LDfLLCnWeV0snG2RkAKmpgEWiD5hwR6DYig0tUWIFiCwARoi1OvaRrXPvdchUBg9PwLepKTw9AQ8P5dee2ATElOYB1mLARgxYiyG1kGPxqx0glikw91A0Z2Gfn4s1fvq4I8xMdB7JKIHuekJNjSXXJkIBXKzNeZdnq3w9PFCrxUBD0B1qKisonaz5KjWVxRc5Gp9JVXDIR2dPTQfdlZoA0K2ZEyZ0aIJ9dzN47+/QxB7NnStX8Q0PdOeEmgyjHBj0xgs+KCyXcnrYAkAwLT03CoWahJCnUmBgIIRCIRQKBWJjY1FWVsZZ+q0pPDycvezv789ZetxY92Us9UE9ERERmDx5st7tVQEoAAQFBVX5eOqDeuLi4gxuL5VKsWDBAnh5eaF58+aYNGmS0ccqKChAZGQkAN1Lz/Xx9PTEyy+/jJdffhlSqRTr1q3Db7/9BgC4du0asrKyqFqTEEIIIXXuoyP3EJ1ZonebwnIpxDI5LEyNT7kMVWkC0ApLckQSrXDV11n751ULUxN8Nsgfcw5xqzU3XE3ihJp8PTXdbS3QzNoWN3PlyqCy2AootgZKKgPLX9daYT27AKiFwedRpwQKZRBpW4EmTYAx3ZxwMTMND0V5bECp+ldgLseRuX3QXaP6NSjSEq/t5AbMCgaYse8urHmSy2+GB8KsFppWtnCygpmJgHf5M18w6GajO9Ts5GWPse14RoQ3ABcDoSZfpWZBmfJ5aT4/zYpVdfaWprAyE6Jcym362lTP8nOVFSPb4FB0JmQKnqXn7bi/Y4xo7YZvQx5xbjsVoww1I9N5hgTR0nOjNGDbV0IIqT5bW1u2Gk8qleLy5ct6t1dV+wFAv379nop9GWvgwIFs64Nr167pHRYkFotx7dq1Gh2zY8eObMVkSkoKEhIS9G4fGRmJkydP4o8//sCuXbuqdKyLFy9CoVBAKBTqPNdLly5hxowZGDJkCL788kud+zIzM8Mnn3zC6SNqbIsAQgghhJDqup1SiK08fTTtLbVrjPiqHnW5m16sVaVpYSrU6oWoWampufQcAFq68P8R/t1uTeGlsQT2TmoRFAoGBQVARARwPcQCTFhLOFxslQABAABJREFUMBfagjnSBczOvhj1ghP2zwgGdgwADnUHQjoAt1oBD32ANBeg2BpyWd1XAwoEyirK4GBg1CjgvfeAr74CNm8Gjh0DDpwpAz44DXx8AoL3z0Lw5hVM+DINmzYBEz4ogaDTYwj8MyHwLoDAsQwCc2UYrOrrqO7Vjl7YOL49+IocyzRmO7RvYodJnbQnyVeHqYkQfjyVtgD/xG9dA3MAZdDaGKo0AX2h5pPl51ba3z+FFTJI5QoUlHPbHuiq+gSUK734+mr66BgUpK6Vqw1m9OBfaTemLTcc7tHMCQ4a3/P/PczGoagM/PtAu+aYhgQZh0JNQshTa/To0ezlDRs2QCLh/yEwNTUV+/fvB6D8n9a4ceOemn0Zw9vbGy+88AIAID8/Hzt27NC57Y4dO9gl2C+88AJ8fX2rfDwbGxsMGTKEvb5hwwa92//555/sZfXHAcol9ypynmZIqtC3Y8eOcHJy0rofAExNTXHx4kWkpKTgzJkzepfEl5WVcQYlUZUmIYQQ0vgwDIPEvDLEZIsa+lRqxdF72svDB/i5YHbvFlq3V2VYEF+V5owezbWmNicVlHOuJ/AMCdKs1GQYICcHiIowQcs8PzC3fMGEBIE51BXFv/WGo5NySE1wMHBiZXPgfBBwxw+IawJkO6KwoB6CMQspTNxKMHw4g3feAZYuBTZsAA4dAkJDgZQUQCxWTjwPCwOOHwd++w34+mtgxgzgpZcAx+ZlENiIIVBLRlRhVocm/KGSmYkAHjqWM7/fswX+mdLF4ET3ZSNa12p4GOimHWoKBYATzzAdvqATALr4OOClto3nZ2O+INLG3ATOT5ada04/B5TVznk8VaiueoJcAGhip/2aGFOpCQBfDg2ArQW3EtfzSQ9NdaYmQgzx584zyC2VYPyO2/jxQrzWfmlIkHEo1CSEPLVefvll+PkpB0DFxMRg3rx5KC3l/pCWkpKC9957j61eHDNmDG8fyca6L2PNmzePrdZcs2YNDh8+rLXN4cOHsWbNGvb6hx9+WO3jzZw5E2Zmyh8kjh8/jh9//BFSKfcvogzDYMOGDTh16hQAZS/ON998k7ONrW1lDyDVsCMVqVSKq1evAlBWo+rSo0cPdkl8fn4+PvnkE+Tna0/blEgk+Pzzz9lBRy+88AKFmoQQQkgjo1AwmHkgCn7fhaDND+cx5e8wMPqmmlSBTK7Aw+wSHI7OwPfn4vDu3gj0Xn8FnVZfxEeHo1EhrZtpM6HJ2gNwtk/qpFUBCRgfaibkleJAFPdnJwtTIRYNbIUWGgHl44IyyNWWx6oqNRmJCZgcOzCPPHH7sDPmzAFGjgTatgVsbQF3d6BbN+DKOl/gUjsgoiWQ4Ank2qOkuI5DSzMZ4FwCNM/BqAkV+OorYMsWoP+nscDb54G5/0Iw5yQUUy7g9z0V+OMPYPlyYNYsYOxY5Xn7+ABm2rkXR1pxudZt3k9CzfY6Qs2mjlZ6A8lx7Zvgv/e6w86Cv9tf92aO7ACZ2hLAMyzIxdqc9zx1BXzfDA9sVINv+ULN5k5W7DnqCjU1hwQBuoNclXae3Pe6ib0FG54a4m5ngZUj23Ju+2JoAO9rP7y1cUNabcxN0EpH9S3hop6ahJCnlrm5OVasWIGpU6dCLBbjzJkziIiIwPDhw+Hq6oqEhAScOXOGrcxr2rQpli5d+lTtCwAGDRrEDvd55ZVXsHLlSq1tunTpgrfeegs7d+6EXC7HokWLsGfPHvTo0QMAEBoairCwMHb7qVOnomfPnoZeYp1at26NpUuX4uuvvwYAbNmyBf/++y8GDhwIDw8PFBYW4sKFC+zSdKFQiGXLlsHV1ZWzHx8fH/by2rVrkZ6eDjMzM4wcORJ5eXkoKVH2ntLXT1MoFOKrr77Ce++9B4VCgStXrmDw4MEYOHAgmjZtCmtra6Snp+PSpUtIT08HAFhbW2PJkiXVfv6EEEIIqRu7I9Lw243H7PW/wtIwup0nJnT00vMow47fz8IH++8ivbiC9/67GcWwNjfBdyPb1Og4mhQKBqHJhZzbWrnaoJmTNW+1X5aRE9CP39duoTOjR3N4OVgqQ834POXkcJElJEU2WLNRisJMcyQkAGdueYNJaw6UVR7/16NVelo1YyqHqUMF+neygY8P0LSp8uv7W1FIkOQBduWAhQwCgTKoPbB8BFT5YM45AS79y63gjUgrMrqqTlNqofbnQRVqtnK1gaWpEBUybq/FZkYca2ArV1yY1Qsjt4RqBdUrXmxT6+EhX6ipa8k1X3/JHs2dMKK1e62eU025WvOFmpWBPV8VakG5lLdfqL6emgAwp3cL7ItMR0G5FAIB8PmQgCq9R7N6t4CXgwUuxuehn68LXtbRl3R0W0/YWdxHiVjGe79KRy/7RtMGoLGjUJMQ8lQLDg7G5s2bMX/+fOTl5SEnJwd//fWX1nZt2rTBxo0b4eCgu4y/se7LWEuXLoWZmRm2b98OhUKB8PBwziAiQLnM/Z133sHChQtrfLzXX38d9vb2+Prrr1FcXIz09HTenpn29vZYvnw5hg8frnXf+PHjsWvXLkgkEhQVFWHLli0AADs7O2RnK3vLeHt7IzAwUO+59OnTB6tWrcKXX34JkUiEsrIynDhxgndbb29vrFy5Eu3bt6/qUyaEEEJIHSqTyLD4xAOt29dfSaxRqJlbKsabu8IMBgkn7mfVeqj5MFuE4grucXs0cwQAePAseTW2UvNUTA4AZbUlCm2AImtY2LbC7DPA5Zv+YOJbKYfzyJXLYhf8o/7ouq0AM7GWomNrMzRrxuBYaiLkdmWAfRlgX64MLC2l6O3njLOzenMed8FagsQI7jCl7s0cOYOTOnlp/8wckV6M0dUcbpNWxBdqKkNLE6EA7TztOBOrgcpBNYYEezvgyuzeeHnbTdzPUgaxn/TzxSB/VwOPrLpAd+33VFfvzCBP7QrUxlalCfCHsuq9THVWavL0pdXXUxMAgprYI/rTAbickI9WrtZ4wcexyuc7NqgJxgY10buNh50Ftk3qhHlH7iG5ULtKWOX14Nrpt/o8oFCTEPLU69mzJ06dOoXdu3cjJCQESUlJEIlEsLOzQ9u2bTFy5EiMHTuWHW7zNO7LGAKBAIsWLcJLL72EvXv3IjQ0FNnZ2ZDL5fDw8ECXLl3w+uuvo0OHDrVyPAAYNWoU+vbti7179+LSpUuIj49HcXExLC0t4efnh/79+2PSpElwdnbmfby/vz/++usvbNiwAZGRkRCJRLCxsYFIJMKFCxcAAP379zf6XLp3746DBw/iypUrSEhIQFFREYRCIVxcXBAYGIhBgwZhzJgxsLDQvwSFEEIIIfVv9cUEpPKETFcS8xGWWlitoAEAtoQmGww0ASCzCv0sjXWDZ+m5amo2b6jJU6mZnw88egTExSn/jYlV4OTFADAFnYDyyn38yFZb1vGyVesKOHnKMLSLLZo3Z7A6PBoKteBySJAzTs7oAUCAtj88xkOe3qi+PEtrW7vbad3W19eFc51veEpEmvbkaGPxVe56q/Ukbe9prxVqVqUq1M/VBpHzB+BifB5cbMx09umsqQBX7UpNXUuuX2rrjp7NnXD9sfKz+V6PZhhSB0FrTQW628LbwZITPA8PrFy+zRdqFpVLkVOq/T2kbziSShN7S7zWqWYV4cYY174JxrbzRHJhOWJzRIjJKUVsjgixOSJUSBUY2cYDH/RsUefn8aygUJMQ0mh0794dMTEx1XqsnZ0dZsyYgRkzZtT4PBrbvs6dO1el7du1a4f//e9/1T5eVdnb2+O9997De++9V63Hd+zYEZs3b0ZZWeUkTmtra3z00UdV3perq2utvXeEEEIIqT/pRRX4/lyczvt/uZKEPyZ1qvJ+ZXIFNl5LMmrbvDIJZHIFTA0MeakKvn6aPVShptryc6bcDCi0wc2TNvg6vDLAfPQIKNDahRAA/wDFmhIIAC8voEUL5Vfz5sp/F166jUKzYsCuHAIzBbw97LD30wEoKJNi1ZdJUK/xUw+Q/FyseUNNP55p692eVLCq0wzbPO0t4WFnwalojUjXPSTSEM1KTWdrM1iZVVaGtvfSDlr5Jp/rYyIU1El1pjo3W3P0auGEa0mVH5YX2/AvJ7c2N8W5mT0R+rgQNhYmeMHbodFVaQLK1+3P14MxbW8EskRivN+zBUarTRS3NBXC3EQIibyyPUBhha7l542roEEoFKCFszVaOFtjmP4FacQACjUJIYQQQgghhDSoz/97iDI9g3r+Dk/DylFt4M5T3ajPkXuZSNHom9jJyx7fjmyDLaGPcTCqcjI5wwA5pRI04RngU12hjwsr919uBosSO0Sds8exBODRI1PgfB8wBTZAhTIIvP7kq06ZyQDHUsChDHAoQ79gS3w2zhu+vsoQ05Ln6e+UiHElsXLwZVxeKeQKBtk8S33d1MJavopMAPDjuX1YgBsG+rngfHweAODldh7op1GpCSjfP9XyewBIzC9DYbmUt3LPkNQi7hJgb43J8UP9tQe78J1TQxMIBNjyWkfMOhCFxPwyjO/QBG+94KNzewtTE/Tza3zPQ9PAVq5IWDqE9z6BQAAnazNOwF1Qxr/83JhKTfJ0olCTEEIIIYQQQkiDCUstxI47KXq3kcgV+D30MZYOCajSvtdfSdS67dOBrTCitTsuJeRp3ZdVIq5RqFlSAsTGAjExQNR9Be4e9FOGloXK4FIM4J2dqq0FqIuKS4GAAWNXzoaWcChDmwAhtr0fgERZNl4/GAr1wryXR7fFiwa6/bRytcGVxHz2ulimQEphOf9SXxtupSYfX57bhUIBTr/fE+fjcmEiFGCAnwtvBWEnbwdOqAkAd9OL0aO5E26mFOBuegncbc3xSvsmMNEzbEUmV2j1MPXWeO+DmtjjfyMCsexMLBhG2XuSbyhPY9Da3Q7nZvZq6NOoV46Wppz3sLBCxlupaainJnl6UahJCCGEEEIIIaRBMAyDeUfvgWG4t/do7oQbj7nrrjddf4yFA1vBzMjl4ZHpRbiUkM+5rYm9Bca3Vw7z4OtpmW3E9HG5HHj8WBlcan6lp6tvKQSgu1quRlTVlo5l8GmmwJLxykpLZbWlAO1/uoFHuZWVleVOVujePQC3r5ZCMyfkq5rUFOCmvc2j3FLeXqXuapWauvat63YToQBDArSrI9Xx9dV8958IZBRXoFxauRT5tY5e2DO5s879ZJaIodD43Hk5aC8t/3xIAD7p6wsToQCWakvTScPTrM5VDgrifg9bmgphY07v27OKQk1CCCGEEEIIIQ3iUHSmVvBoZSbEP5M74/W/7uCqWo/AtKIKHIrKNHqYx/orSVq3vd+jBcxNlaGoevimoj6op6CAP7iMiwPEtT9TSIutLdCqFeDvX/nvA0kmfoy4C1iL2XBy1outMXMw97EtnK04oWZKYTmkcgUS8sqgia9qUhNfdWJsjgimPJWQ6kt9+fbtYGkKZ+uqLxVX4ZuAzve8/olMx8KBfjoHTPFNPvdx4K/StbGg6KQx4g01NSo13WzNG2XPUFI76DuTEEIIIYQQQkitUygYCPUs/xXL5Fh4/L7W7QsGtIKPoxXm9vHF1aQ7nPvWX0kwKtTMK5Xg77BUzm1mJgLM6NGMve5hawFGLgCKrIF8W6DAFr88cMBvxcrwMidHc6+1z8xSDqmdCHAqVX45luLQx23Qo5MFPDygVVX56o4UCGy4ieqI1toDYVo4c8NEBaMMNhPySrW2belsRKjpql1ZGZtTyrusVz0sbulsDYEAnEpc5W3VD5laudrA2sxEbw9WlT0R6bpDTQOTz0nj56QRasoUDB4XcPukNrYhQaR2UahJCCGEEEIIQUGZBFI5U+VBLIRffG4pTsfmoJWrDYb4uz5XlUKHozPw3j+RKCiXYm6flvhpTDve57/zTqpWhZ2XvSUWDvADALzS3hPeDpacirqrSQW4k1qIzjqCKpUtocmokFUuRWYkJhji7ovThy3x4AHw4AEQGe0MJI4EFJXL2W9W5wkb8mSpuJV7OT552ZNTfbkuLBYrNaa+N2/fEp6e2t+HUrkCZx/lcm7zsLNAxybay7FbOGkHlUn55UjI577e7rbmsDWiCtHP1UYrnHyUIwID7QpO9Z6almYm6N7UETeSC9nb+vs6GzyePiZCAbo2dcRFnp6omv6JSMfKkW14w/XUwnKt2yjUfLo48AyH0myJQP00n20UavJYu3Ytfv31V3h7e+PcuXO1uu+oqCi8+uqrVX7crl270KVLF73bxMfHY8+ePQgNDUVqaipkMhnc3d0REBCA0aNHY+jQoTA1pbecEEIIIYRwfRvyCF+efAgFA8zu3QLrX2nf0Kf0VItML0KfX66iVKKsJPtiaAC+GR7YwGdVP8okMry7NxKF5VIAwNrLiRji74ZRbT20tj0bm6t124oXW7NLfc1MhJjZqwU+/+8hZ5tfriRi26Rg3uPn5QFR0Qr8sFYKJrWdsgIzzw4oscK/AP7lbG1cb05jmJgo+1kGBiq/XHzEWHLjtrL68slS8VHtm2DFVE/O4zx5/oigObxG5cbjAhRXcAObYQFuvIEdX/VlYn6ZVoisazq5JiszEzR1sEKyWhD4KLeUN1TSXNb/w6jWeHX7TWSXK9DW2Qyf9Gtp1DH1WTDAD1eS8iFXa4oZ4GaDCqmCc47JheW4kVyAXi20g1S+5ecUaj5djJl4T5PPn22UcGm4e/cufv/99zrb/4MHD+pkv+vXr8emTZsgk3H/J5eSkoKUlBSEhIQgKCgIP/74I3x9fevkHAghhBBCyNMnuaAMX5x8yFZgbbiahDeCvdGTJwQgxvnlahIbaALAynOPMLdPC7g+B8sgI9KL2UBT5b+H2byh5v2sEs51RyszTO7MHazzXvdmWHYmFmK1qsu/w9LxcXBb5KRY4P59sJWX9++rlowLAbSprafE4epaGVyqf/n6AuZq2cme8FwIUrm9Qrs1c9TaH9+wIl2h5smYbK3bhgfyD9XhCzVvphRwPpcA4GvE0nOVADcbTmCYmF+mNSnewlQIWwvuUJYezZ1wcLQHSqUKOJgL4VWD6fIqo9p64NZHfXE5MR9uNubo7+eCJvaW2BqajPf2RXK23RORzhtqpvMsP/fhGRREGi9HS8OhJlVqPtso1FSTkpKCWbNmQSqVGt64mtRDzebNm6Np06ZGPc7BQbsZssry5cuxc+dO9rqpqSkCAwNhZWWF+Ph4FBQom2tHR0dj8uTJ+Oeff+Dt7V3NZ0AIIYQQQp4lN5MLtSZPX0zIo1CzBiLTijjXpXIGeyPSMbt3zSvUGrt0nuo3zfASAGRyBWJyRJzb2nnYcqoO5XKgOMsCfRRtcPZWBZBnC+TbQZJni04/Vn/QjCHm5srl4ZrBZUAA4Gzkt8WN5AKt23o0d9K6zcPAsCJ1px5ym3wKBMBQHZPCNXtqAsC5R9qVsS2NGBKk4u9my1n+rmCAO6mFnG3cdQxlsTARwMKkdidQd/J2QCdv7u/Jr7T3xKyDdyGVV/5HbV9kOn4e0w4mGhWtmpWaFqbCGg0wIvXP0cpwpEWh5rONQs0nYmNjMX36dOTUcTdo9VBz5syZeOWVV2q0v5MnT3ICzeHDh+PLL7+Eq6srAEAqleLgwYP47rvvUF5ejtzcXMydOxcHDhx4rvr6EEIIIYQQfrkak2IBIC5Xe5IwMQ7DMHioEdYBwM7bqc9FqJnBU2V4L1M71EzIL2ODJ4YBUGQNq2RvrFgB3LunrLqMiQEqKgCgblaaNWkClFgXQmRbCDiJAOdSuDeVIH11X9Q0f7up1kMSUPaB7OyjXahibKVmVokYYRpheRcfR7jxhKKAMlzUHKYTzzMh3M/I5eeAslJTU7lUwbne0ENZnK3NMTzAHccfZLG3ZZWIcTE+D4P8XTnbpmqEmt4OlvQ78lPGycpwYKnre4Q8GyjUBHDkyBF89dVXKC/XbhRcmxiGQUxMDHu9devWNdqfVCrF999/z14fOHAg1qxZA6GwsjeMmZkZJk6cCG9vb7z//vuQyWS4d+8ejh8/jtGjR9fo+IQQQggh5OmXwxNqxudqT0gmxkkvroBIrD2V+WZKIR5ml6C1u10DnFX94VvSm1MqQY5IDFcbC6SkKEPLPWcVYE52Uva7zLMDZCY4A+BMrZ8RA0dPKXq9YI62bYE2bSq/HB2BEb89xOnYysKWAqEAAgEDoPrhllgmR1gqN4Ds2MQe1ubav37zhZrZPJWaZ2K1i290LT0HAIFAgBbOVrifpR2wq6vK8nN/ngnomtwbQf/CicFenFATAPZEpHFCTYZhkFbE/f3fuxaWxZP6ZUylphtVaj7TnutQMysrCz/99BMOHz5cL8d7/PgxysqUfx0zMzODn59fjfZ35swZpKenA1AuOf/yyy85gaa6Pn36YOLEidi1axcAYNu2bRRqEkIIIYQQ3krN+DwKNasrJlv3a/fn7VR8O7Juej02FhlFFcrKyzILIPdJYJlrhwEhQqTEAyVs0ab9k6/aYWoKNPdVIJ7JApxLABcR4FwCc7cy3P96IHgGhAPQDuFkCgYF5VK41CAIiUgrhkTOrWDszrP0HACcrMxgZiLgLJfmq9Q8xdNPc0Rrd73n0cLJ2nCoWYXl5wFu2pPONTWGqrgxbT1haSpEhVof1gN3M/DLK+1hbqr8fbmwXKpVZUpDgp4+NCiIPLeh5saNG/Hbb7+xISMA+Pr6YtiwYdi0aVOdHFN96XnLli1hbl6zb65//62c3derVy94eXnp3V491Lx37x5SUlKM7ulJCCGEEEKeTXyhZmpRBcqlcliZ1W4PvPp0JjYH34U8glAgwMBWLpjQ0cuoUKamHmbrDpH+upOK5SNa806rflrl5SkrL6Ojlf8ePeMHpLQDKri/69yvrQOaypVLxV2UweX3k5tidD8btGoFzDkShYQbyZzN3+7RTGuYjTp3Hcu/axJq8vfTdOTdViAQwN3WgtPfUbOnpkLB4FQMt1LT0coM3Zry71OFr6+mOnOTqg3taeFkBVOhADIFo3ObxhAg2Vma4qW2Hth/N4O9raBcijOxOezAKv7J5zQk6GljTKhJPTWfbc9tqLl161ZOoDlhwgR89tlnOH36dJ0d8+HDh+zlmi49ZxgGoaGh7PXevXsbfExgYCDc3NzYvqHnzp3D1KlTa3QehBBCCCHk6ZajYyhJQl4Z2nk+nUul04rK8dLWULb67VxcLr44GYP2TezwagcvvNqhCdp41M1z4+unqZJaVIELPL39ngbFxcrQUj3AjI4GMjM1t6yd6kt7e7DLxVX/XshPxKrwaAjUFqfdty/HwjbBSCsqx45bqZx9CAXAwgGt9B5H16Cetqj+5yP0sXao2b0Zf6Wm6hw4oaZGpWZYWpHWHx+G+LvC1IR/lZ6KoVCzpbNVlQJ2UxMh/FysEZOjuxq5oXtqqkzs5MUJNQFgb0RaZajJ0yaBKjWfPk7GVGo2ks8kqRvPbaipEhQUhEWLFqFbt251fiz1Ss2ahpppaWkoLi5mrwcFBRn1uMDAQDbUjIqKqtE5EEIIIYSQpx9fpSYAxOWWPrWh5oG7GZzlvCpRGSWIyojBV6di8OYL3vh9QkdY1nI1aky29lAcdTvvpDSqUJNhGFx/EsL1bO4EuVyAR4+Au3eVX1FRyn8fP66jEzCVAa4lcGsmxqLXPBEUBLRrB3h7K6d7q+te6oVf7t2HWG1Z8Z6IdHz/Ulv8dDFBa8n3pE7e8DPQB9LYnpZVEaoxJMjJykxvP0rNc8gtlUCuYNhp3fz9NPUvPQeUoaU+vlUYEqQS4GarN9RsDD01AWBkGw/YWZiiRCxjbzt8L5OtQE8tpFDzWeBgqT/UNBEKjAo+ydPruQ01u3XrhnHjxmHw4MH1NuFMPdQMDAzEw4cPceDAAYSGhiI1NRUymQyurq7o2LEjXnzxRQwdOlTnuSUlJXGuN2vWzKhz8PHxYS8nJyfr2ZIQQgghhDwP+AYFAcpQ82n1QM8ScJVdYWkY7O+Gt7vWbjsmfcvPAWD/k95+Nhb8v4rJ5AqcisnBzjupeJgtQpemjvh+VJsaLYfWJSuLwfhVsbh6Swbk2sNRZIHyTGuIxXXw+5GJAh2DBAgKEqBJSwlWRUcArsWAfTkEAuClrk0xf6Kn3l242ljg9WBvbL+Vwt4mkSvwbcgjbA3V/t3ms0H6qzQBwJ2vUpOnp6WxskrESMznThnv0dxJ7++cmtWiCkYZbKrCzgiNqecAMDTAcDDe0mClpvH9NFVaGQiJG0NPTQCwMjPB2CBP7LxTWb0rEsvx74MsjO/gpWP5OYWaTxtzUyGszUxQJtUezgYALtZmz1S7D6LtuQ01f/3113o9Xn5+PrKzK5s7b9myBdevX9faLi0tDWlpafj3338RFBSEn3/+mTewVFVbAoBQKISrq3F/7XVzq5yQp76P+iaTyQxvpEEul4NhlH9xFwgEYBiGvd4QNI/dkOdCyNOOvp8IqR3P6/eS6nmq/pXJZM/Nc68phmH0VGqKqvUzW2PwMEt/taRKSGw23gpuwnufXC7Xe51PqUSGFJ4KMO42cuy/m4Y3g705tz/IFmHH7VT8HZ6OTLVQ7W5GMcAosGl8e4PH16WiAnjwAIiKEjz5AqKjBcjKEgAIZLcrrPYR1AgUgFMp4FqiDC1dRMp/Hctw4ouB8LCzwIkHuVhdzp1O3drN2qjP28weTTmhJgCsv5Kotd3otu5G7dPFSrtSN6O4otqf/WuJuVq3dfWx17s/VxvtSrK0wlL23KIzuZ9nZ2szNLE1M3iOPvb6g/CWTpZVfp6tXPRXf7pYmWjtszrfS7Xh1fYenFATAHaHp+Hltu5ILSzT2t7TiNeUND6OVqZ6Qk3zZ+49bajvp8bquQ0165t6lSYANtC0srJC8+bNYW9vj+zsbE4FZnR0NCZMmIBt27ahbdu2nMcXFVX+tc7Gxkbn1HNNtraVzdHV91GfFAoFIiMjq/14U1NTmJqaoqysDCYmjad5fXl5eUOfAiHPDPp+IqR21Pf3koIBCsUKCAA4WAhRX8URcrkcCoUCMpkMMpkM0dHR9XPgZ0CpVMFZyqsuIikLkZFP5y+D0emFnOuOFkJ42Zjgfr6Uc/u91Fyjfy415nMVo7F/APB3NMWjQu7ruOliDIKEucql3xlibL1Xgru52o9V2RWWhukt5TAz0f9NxTBAZqY54uKs8OiR8isuzgrJyZaQy2v3G1IgYODtLYafXwX8/Mrh61sOuXMJvopJhcCU/zN17Fokunpa4Nx97dDZsjQHkZGGw2ghgGA3c4Tn8IfxKuO8jfudI69MOxB4+DgDkZHV++/nschirdvcZPl6z0VWrF3deyPyAZhsS0jlDGI1+rQ2txHg7t27Bs+FYRjYmAlQKuX/I4+gOAuRPOerj7BIfxVrTnI8IvP1xwz19d9oNzkDB3MBiiSVz/9gVCa8vjmFchn3NREAyEmMQQFV9T11LAW6Qz0rSGqUPTwNnvefeSjUrCeaoaatrS3mzZuHsWPHwsamsoQ/NTUV69atw5EjRwAAhYWFmDVrFg4dOgQnp8rm0mJx5f9MLC2NL5NXn7gukej/QYAQQgghxFgMgMRiGSRP+hgWihVo4WCKhv71UK5gcCVdWTnX28sSpvQLK0ehmD98AoCUEuMDzaMJZdhxvwQWJgLM7WSPnk0abhlniUSBvAru8+rkZo4f+zpjwolsJBVXPq/00toNbZOKtYPJca1ssO1eCbLLK8/pZqYY51LKsTe2FGHZhn8mF8sZPCyQor1r5c/yIpEQ8fHK0FIVYsbFWUEkqv1f8dzdJWjVqhx+fqqvCrRsWQ5LS24wFJJcDkG87s9UQrEUXT0tkFCs/bq3tDf+vCcG2OgNNbt6mCPI1bjl+k6W2sUh+eLqVT4xDIOLqdqVuu1c9J+LM885qD7Dj0tk0GwP6+tg3GslEAjgZWOiFaqreNtW/bPSzE7/Y/ieS0MxMxFgYFMrHI7nVmXmlmt/Rp0shfT/h6eUnZnuz5yTReP5PJK6QaFmPVGvwHRycsLu3bvRsmVLre18fHzwww8/oFmzZli/fj0AICMjA5s2bcLixYvZ7aTSyh+YjK3SBJRVjirPWhk2IYQQQhpOiUTBBpoAUCFnIJIq9P6yUdcUDINZ5/PY0CjYzRybBrtAWE/91J8G+kLNzDI5pHLGYHVgfJEUy0MLoXr3F18twNExHrA3b5j3PoknMGv+JIhpYmPCuT+nTPm5NTfwHI0+Nk8Q7OtgihEtrPHng8pqOwbAoivaE7L5MAyAYivs/88O18qcERtrjbg4K6Sl1UHvQlMZrD1FGNZFilatytkvR0fjQr7cCv3bJRQpX5/EIu7rZGkigKeN8Suw+vtYwt1aiOwy/s/vu+2MH3BlKhRoVfPlV+j+vtDnbq4UiRqfv9ZOZrAz8L3gbKn93FXnkFDE95kyfvCJ1//ZO+/wNur7j79O05bkveM4O3H2TggrYe/dlr2hpbRQyqZ0wq8USik0QAu0hRbKCrOsUCBAAtlk753Yjh3vqT3ufn8oknW60/C2k3s9jx5bd6e7r6STdPe+9+fztiqdwu3zOl71lpeqI0Uv4FYJ4jLrBVIN/UtEOmOIUtRUI1+lDYHGwCDNFPv7O1MTNY94NFGzl/j973/PvffeS0VFBVarVVXQjOSnP/0pS5cuZf369QAsWLCAu+++O+y0jCy7FsXkf3QjhUyjsW9SwHQ6HZMmdbwnUCAQYO/evUDwqqPFYunT8nNJkmRlfampqb0WOqWhcaShfZ40NLqHvvwsNXhdgFzQ8El6LJb4/de6g0AggE6nw2g0YjQaGTlyJHq9ns931bGu9lB4ufV1XhqsgzmtHyVP9zVVO2oBZQ9ACLYTSC8ZzZi8+MEgHy3ajUR7r3aHT6LGXMiJk9V7VfY0G9YcJPo5zZ04gilTipm8fysrDrUHykhA5pDRqsnUgUBAVtY3ceLEhMeezVvXA/JS4XPmTGG208sr25cmHLvk1yE0pDFaKmLXNj3UZkBdOniNfJLw0ckjCBIlQ0XKDbWQ1xq8He57mWIx8tZvTkUQshKvKIq3Du0EYpcz1/jNTJ48mbJ3v5BNH1eYxrSpUzu0rZ+17OVX/9ulmH7MkExuPH1Wh777ir5soaW2PRjLHjAwZcqUDo0H4Nm3lSXht84dzZQpQ+M+TlfQBl/L9w9DRg5Tpozl/ZpdgFwAP3NGKVNG5CQ1pinl21lSeUAxPd9m4tiZ05JaRzRjlixl0yFlq4DCtBTV160zn6XuYtIkif9WruHzXerfcyHOGF/MlCnjemVMGt1LyfaNUFWlOq90SBFTpozp5RH1LH35eeoJNm/e3CFNKxpN1OxFMjIyyMjISGpZQRC45pprwqKmy+Vi7dq1HHvssUDwJCVEZCl6IiJLzs3mvkumi3SMJosgCLKDk+j7fU1/G4+GxkBG+zxpaHQPvflZcniVDq02b6BXth/aRuivwWBAr9ezolzZP3x9VRtnjYufsHw00eiK76wra3Yzvij+8eumamU/wE3Vdi6f3jenGrvqla6sCUXpGAwGRuQoxcuDrV7GFSY+Rtfr9QmPYXdHbTsz1cigTAvFWVZmDM5g7cH2fVJymoKCZW061GWgb8hAqrchigJKqa7zZGXB5MkwaVLw7+TJMGGCwEe7q7nqtXWK5ZtcPpo9YqdSrGva4pfSb6uxc8juU3xfTChI6/D5wY+OHcbvF+3BHdUT9sFTR3fYvFGYlsKOCFGzxu5Br9d36Pur1e3j7U3VsmkpBh1XzyhJ+NyKM5Qp5PUOHwaDge0R4woxuTgz6ddrRIy08hE51k6dkwGU5tlURc08mympdSbzWepO3r1uFm9sqGRFWROHWtxUtXqobHHR4AxWP84dkc2Dp43p1TFpdB/Z1tjtHQrSU4/497W3P0/9jaP3mQ8Apk+fLrt/4MCBsKgZKY46HA4kSUrqR9dubz/ozMzM7J6BamhoaGhoaBzViJKkmjzq9AYIiBL6PupTtraiWTFtR61SgDuaqYuRfB5iT0Piss31lUrxeIPKtN5iZ53yPS7NC4ZlDstWikf7GxM/x2QQRYmdUfvX2HwbkiSwezdMbC1lzdLWwyJmOtjlLuau5tcaDDB2bLtwGRIxi4tB7TRhdXns8vftNfZOiZqH2uInvze5fHy1p0ExfVxB8uXiIXKtZq6fVcLzK8rC06YVp3Pe+IIOr6sgTf5c3X4RuydAWkryp8tvbqhSfA9+f3IRWZbEvT1zrCZ0QtAdHaKmLWhc2VojFw/zbSZyrcm/N2r7PMCIGNOTYXSeTXV6fif2md7AajZw8zFDufkYuWPW4w/gD0hYzZosMpDJTI19ESMvjuCpcWSgfXr7MTk58pKCyLTygoL2H+tAIEBTUxPZ2dkJ11lX114alJurlV5paGhoaPQ9Pp+vz1qiaHQPLl8g2PdPBbvXT0ZK77+/kiSx5qBSWNtWkzhd+WiiPpGoWa90iUXS4PBS1qRMiV5f1bFE5e5ke41cWByUnkLG4ZPe4SpCzoFuEjXLm124XALUZ4bLxvc480j/BTgcAAWHb12nsBCmTGkXMCdPhtJS6Egh1ncqon+IHXV25o5UljcfaHTyzb4GJhelM7VY6W6tSpCMDfDORmWZ6PhOiJoAT5w/nuo2D5/uqGVyUTpvXTOjU+5wNQG3xu7pkKj54qpyxbRoES0Wep1Ans0cFjJD23f7AorP4MTC9KTHBOr7PMCInM6LmrFaUuTZBpaAZDbo0fTMgU9mnGOMXE3UPOLRPsL9mOh08siU9KFD5T+QFRUVSYmaBw8eDP+fqK+nhkZPUFpa2uV1XHzxxTz22GPh+9dccw2rV68G4JVXXuGYY47p8jY0OofX6+WDDz7g888/Z/v27TQ3N5OSksKIESOYO3cul112GXl5eQnXs3fvXs4999wObfudd97pVL/eo5H33nsvHD4X/XkCeOCBB3j//fcBePTRR7nkkkt6bCyffvop//nPf3j99dcV8w4ePMipp54KQHFxMV999VWPjUOja6iVnoewe/pG1CxrcqkKdjtq7YiihE5LuQWgzhFfhNqbQNTcUKXuyKxp81Dd6qYwvXdT0D3+APuiRMqx+e2usmHZyh6vnRE1JQmqq2HjRtiwIXhbttoEB84GqX3fqou5hiQRRMi2Q34r5LUwb46Rt+4eQ35+/IeJosQ/VpWx5mALZ4/N55JJ8v6mvoDIOhXRP8R2FfF/2f5GTnthBR6/iE6Af10+lWtmlMiWSeTUBPhit/JVGV+g7vxLhMVk4L3rZ3XZEV6gIsbVtHkYFaN0O5qNVS0KkXh0rpUTRyQ+P2sfQ5So2eYNfl9FXTAaX9gxAXhYVixRM7nnpsaYGE7Nzrh7NY5svI07qV90C/7mvVhGXUT23MfRGbq313Zcp+YAE9o1Oo4mavYClZWVvP766zQ2NtLQ0MBdd93F2LFjEz6uoqJCdr+oqP1gpLi4mMzMTJqbmwHYvn17Us2sd+zYEf4/mTFoaGhoJMuWLVu44447ZBdPIOjC27hxIxs3buSf//wnd955J9ddd13cdW3durUnh6rRD3A4HNx2220sX76c4uLivh6ORhdxxhU1u1pU2znWxHChObwBKppdDO1C6eWRREPC8vP4oub6ytiOzPWVLZzdy6Lm3nongSgVqDRC1MyxmLCZ9bL98oCK0zQSUYSKCjM7dghs2tQuYtbWRi/ZtVOrtDSYOjXowAz+lTj7/S9p8LQLhbssZvLyRgPxBbxf/W8Hj321Bwg6CF+/ajqXT2v/rt1S3aboRRlJdBk9wCOLduE5/BhRgkcW7ZaJmm5fgMbDPQpDjM23KVo++KJSs80GXUw3YbJ0tcVFdPk5BJ2SyfJPFZfmTccM6ZBrtCDNBO25ZtTaPWypVorLEzooAKelGMixGMP9I0N0qfw8htirlfpqRNPw1W14qpYD0LbpBUw5E0if8uNu3UZmauzv3rwOtGrQGJhoomYvIEkS//znP8P3Z8+enZSg+O2334b/FwRB0WPzmGOO4bPPPgNg+fLlXH755XHXt2PHDurr21Pf5syZk9T4NTS6k/vuu6/Dj/n2229ZsWJF+P6gQYO6c0ga3cD69eu57rrrwsFlgiBw/PHHM2XKFHQ6HRs2bGDp0qW4XC7+8Ic/UFlZyYMPPhhzfZGi5iWXXMKoUaMSjiHywo9G/6epqYnly5f39TA0ugmH1x9znt3rR5QkdL0c/qVWeh5ie61dEzUPU2ePL2rub3TGdcGp9dMMz6tq5exx3VNuHUIUJf6z9iBba9q4YEIBJwyXl0hvr1WKQOMiRE1BEBiebWFzRMhJZE9Nnw+2bYP162HNGh3Llo1h1y4LTmf3JssOGRIULkO3KVNg2DDQ6SKXEpi7JZP3t7SHz1S3edhT74jZ0xCgssXFE4v3yqY9/MUuLps6KCyyxeunCcreswFRYumBRtm0XXUO2tz+cIn2oValCHjiiGz2NTjxBmILqKV5Ngx6Xcz5vUGBisOwti05UdPlC/DaukrZNINO4NoZg7s0Br8o8e1+Zf/RjpafQ7AEvcEp/6x2pfw8x2oi22JUiNiaU1MjEtHvwn1wiWyaq+yzbhc1s1Jji+la+fmRjyZq9gKDBw+muLiYysrgj917773HDTfcgF4f++DIbrfz6quvhu+fcMIJivLyM844Iyxqfv3119TU1Mh6bUbzxhtvhP8fOXJkt5QBa2h0lJtuuqlDy69evZq//OUv4fvTp0/n1ltv7eZRaXQFu93O7bffHhY0CwoKeOaZZxTu8Y0bN/LTn/6Uuro6Xn75ZSZOnMgFF1ygus5IUfOWW25h2LBhPTZ+DSWPPfaYoiS9Lxg8eDA7d+7s62FoJCAgirh8sQULSQo6OW293Lhs7cHmmPO21bRx1tgE9btHCYl6avoCEhXNrphhI/FEzZ4IC3rw0x08/nXQgfjE4r189qM5nD6mva2JWhBUZPk5BMtxNx9qQ/LpoD6d6g0Z3HizyKYNOjZvhvYOUDqgc70eQxiNEhMmCGH35dSpwf6XSXSNAuDEETkyURPg2/2NcUXNZ5cdwB/lVt1Ra2fToVamDAr2wfyuIv57U9bswun1YzEFP7fba9pUXde76u3MGJwJqJeel2SmUppvlYnI0XS29Lw7UQu4Sdap+d7mQzS75OLe+eMLOtx6IV/FLfq1SqjShA6Wn0NQCI280JOVamRQF13UY/JsrCyTi+P5WqmvRgQBR41ymku5T3eVWE7N9BQDJkPfXjDR6Hm0d7iX+P73vx/+f+/evTz//PMxl/X5fDzwwAPU1AS/BARB4Mc/Vl7NOOOMM8g/3FDH6/XywAMP4PerOyW+/fZb3n777fD9a665plPPQ0OjNykvL+f2228P95fNz8/n6aef1gJFepDS0lJKS0s55ZRTkn7Mq6++Gg4hs1gs/Otf/1JthzFlyhSef/758AWdxx9/HLdbeQIkiiLbtm0DID09XdFDWENDo38Rr59miDZPbCdnTyCKUszyc4BtNVoCeohE6ecQOyzI4fGrJo2HiCd4dgZRlHh+xQHZtJDAGUJN1BxXYKO5GRYvhqeegp2vjEH69zx45hx4/UT4cjL/elHH2rWRgmbHEVJ8UFIPM/bCWesZ9rPV2O0C69fDv/8NP/85nHRS8oImoNqT8dt9sUUBu8fPCxFp4JG8uaE9oOe7ivhOTUkKOjFDrCpvVl0usky9qkX5mz4oPSWhs7AzyefdjWr5eZJOTbWAoJuOGdLxMagIq9GfveKMlLj9A2Pxk+OHkWpsP/W/56SRXe4rPEalBF0r9dWIJOBUipqiuydETfXPhNYO4ehAEzW7gVNOOSWhEHDDDTfIeoY9/fTT/P73v6epSX5AsX37dm644Qa++OKL8LSrr76amTNnKtZpMpm46667wveXL1/OD3/4Q1kvTr/fz1tvvcXtt99OIBA86RgzZgw/+MEPOvdkNTR6CYfDwa233hruG2s0GnnmmWeSCpnR6F1CjnEIfteNHDky5rITJ07kzDPPBKCuro5FixYplikrK8PpDJYCTpgwoVMpphoaGr1HMqKmvZdFzf2NTlrcsbe5Q6VE+WjEFxAVDjO1MvNYoubGQ60xU+8B9jY4aXX7Yi8QwX+3HOKCF1fzo7c3Ut2qHjZT3uyiNep9/XZfI86I9gc7au1IDhPS/jykVaPQfzKTudNTyMqCk0+Gu+6CnUsyoSFdFujTUUaOhO99Dx5+GD78EDbv8iH95H8Il65AOGkbwoSDTJ0Kpi6eU08pSictyuX87f7GGEvDv76rULynIRasr0SSJOweP1tVejVGEykQr4pRrh65zCEVEbAozZzQidkfnJpqomZtEk7N3XV2Fu+VizSDM1I4s7TjTnC1MUQzoZMC8MySTDbefRLPXjyJz340h1+cOrpT64nkmKFZsvspBl3MVHSNo5OAo1o5zRX7+6uzxBQ1tXYIRwVa+XkvkZqaygsvvMDVV18dFmn+85//8OabbzJmzBhsNhuHDh2ivFx+pe+8884LJ9SqcfHFF7N+/XoWLFgABIXNM844g9LSUmw2G3v37qWxsf2LIzMzk/nz52MwaG+9Rv/mF7/4BXv2tLsvfv3rXzN16tSkH//555/zwQcfsGnTJpqamsjMzGTYsGGcc845XHzxxaSmJk7d27JlC59++ilr166lsrKSlpYWBEEgLS2N4cOHM2fOHC699NKYQuszzzzDs88+C7Qnc2/cuJG3336b1atXU1tbi16vZ/DgwcydO5err746bguJELW1tbz22mssWbKEsrIyAoEAhYWFnHjiiVx77bUMHTqU3/zmN+HvhZ5MhPf5fGzfvj18/+yzz074mOOPP56FCxcCsGTJEs477zzZ/Mj1TZw4sZtGGpvI9+m1115j5syZLFmyhDfeeIMtW7bQ3NxMeno6EyZM4MILL+Scc85Bp1O/JhiZKj5//nxOPvlknnnmGT744ANaW1spKChg1qxZ3HHHHWGnfYjq6mreeustli5dSkVFBW1tbaSnpzN8+PBwcnxmZmZSz2nx4sW89957rF+/nqamJtLT0xk3bhyXXXYZZ5xxRsLHdyT9fPv27bz77rusWrWKgwcP4vP5yMjIYOzYsZx55plcdNFFmCLO6iNfoxCVlZXhliiRKecdST+32+28//77LF68mJ07d9Lc3ExqaiqFhYXMnj2biy66iEmTJsV8fPR7d9ZZZ7Fnzx4WLFjAsmXLqK6uRpIkCgsLOf7447nyyisZMWJEvJfxqEEtJEivE2RhLXZvAEmSeu0ixboEDsFtNfZeHU9/RS0kaEpRuuL1ixUWlIwTc2NVKyeOyIm7zJK99Xzv5TVhgXR9ZQur7zhR8f5EuzAlCTxNZh77ux1qM1m/XmLt4tlgby+r9QP7Eo4yNnq9xPDhLsaOdXLyyVnMmqVnyhRIjzIfriqzE707leZ33YFo0Os4flgW/9vZnhi+r8HJwWYXgzPlxzIBUWL+t7Gf7YEmF6vLm/H4RUWi9qySTEV69/aI13t1DKdmpJuzSkWMHpSRgidOP02A8f3AqZlq1JNmNshc5bUJ+s0CvPRdhWLaDbOHdCq4KBlRs6PJ55GMyrUmneaeDNfOGMw/VpaxoSoYFvbL00aT0QkXqcaRS8CpSFND9DQhSSKC0H3+uowUzal5NKMpW73I6NGjeeedd7j33ntZv349EBQE1FJ+U1JS+PGPf8yPfvSjuL03AR566CGysrJ48cUX8fl8iKIoEwVCjBw5kvnz52snYRr9nn/+858y99+ll17KZZddltRjW1pauPbaa1m1apVsel1dHXV1dXz33Xe89tpr/O1vf4tZ1tza2sr9998fU0Bxu93U1dWxevVq/v73v/P73/+e888/P+64JEni0Ucf5eWXX0aKsrXs2LGDHTt28J///IfHHnuMs846K+Z6vvrqK+6+++6wkzFEWVkZZWVlvP322/z617+OO5bupLm5WfZ8kikVLywsDP+/ZcsWxXw1UbOiooJNmzbR2NiI1Wpl2LBhTJkyJeH3Y2f43e9+J+tBDNDQ0MA333zDN998w6uvvspzzz1HVlZWjDW0c/fdd8uc92VlZdTV1fGrX/1KttwLL7zAX//613Bf0sjtNjQ0sGbNGv7+97/zq1/9iosvvjjm9lwuF3fddZdi321oaGDp0qUsXbqUU089lblz5yYceyIcDge/+93v+PDDDxXz6uvrw9t78cUXefbZZxk9uuuukFgsXLiQhx56KHzRMITP56O1tZVdu3bx6quvct555/Hwww9jtSY+qXvxxRd56qmn8Pnkjqd9+/axb98+3njjDe6//36uvfba7nwq3YIoQUCSMHaxtDBZop2aRr1AutlIg7NdEAiIEi5fINyfr6dJJGo2u3zUtHk63PPuSEOtn+YxQ7MUr9++BqdiOYiffN6+TEtCUfP/vtgtc3yuPdjCzjo7YyNEQVGEb9Z4kLYPgtqM9pvbxP+FlxKAzr+nZnMwsGfaNJg+HSZN8nPIvp4sG6SbdEyZkkksX4BaGX5pN7nWThiRIxM1IejWvCIizRzgg63VMd+rEG9uqKQ4Q3lh95oZgxWiZqi03O7xs6Va/b2WOTVjlJ9bjLF/qw06oVuFtq6QbzPJRM1E5eduX4B/rZYbUgQBbphVEuMR8VErP49mYhdEze7Gajaw+o4TWVneRK7VJPu8amgABJxKpyaSiOhpRp/SgT4cCdDrBNJTDAonf44mah4VaKJmL1NSUsKbb77JsmXL+Pjjj9mwYQO1tbV4PB6ys7MpKSlh3rx5nH/++Ukn+QqCwJ133skFF1zAO++8w9KlS6mursblcpGRkcG4ceM466yzuOCCC2RuGQ2N/sjKlSt58sknw/enTp3aIZHugQcewOFwhNO3J06ciNFoZOPGjXz77bdIksSePXv4+c9/zltvvaXoz+nz+bjuuuvCPR1NJhMnnngiY8aMwWKx0NbWxpYtW1i5ciWiKOJ2u3nggQcYO3ZsXNHmySefDCe4T5s2jdmzZ2M2m9m7dy+LFi3C4/Hgcrm45557KC0tZfjw4Yp1LFy4kHvuuSfcSqKgoIDTTz+d3NxcKisr+eKLL2hububXv/51ryWBd6a/aaRwV1VVpZgfKWo2NDRw6aWXsnHjRsVyWVlZ3HzzzVx33XXd1mf1mWeeYeXKlUCwVce8efNISUlh8+bNfPPNN4iiyPr167niiit46623SI+26kQQcg1Gc8opp8icwpGuWoDx48czZ84cMjMzaWhoYNmyZezZswe73c4DDzxAU1MTN954o2K9Xq+Xa6+9lk2bNgHtCfRTp05FFEXWrl3LqlWr+PLLL1m7dm1nXyIg+B7eeOONbNiwITxtwoQJzJkzB6vVyv79+/n888/xeDwcOHCAa665hv/+978UFhYyadIk7rvvPlpbW8P9pTMyMrjlllsASEvr2EnRG2+8we9+97vw/aysLE4++WSGDBmCw+FgzZo14QuJH3/8MXv37uXVV1/FZotd7vjmm2+GP69jx47luOOOIz09nfLycj7//HPsdjt+v59HHnmEMWPGMGfOnA6NuSdpdHo50OxDksBiEBiTImHQ95y46fWLilRjq8mAzawnWltp8/SeqLkhTvJ5iG019qNe1FTrpzki20K+zSRzqcUqP19f2ZxwGxsSCJ+bqlr5ak+9bJoUEPjoaxcrnGmsWxdMIt+wARyOEqBzgpECkw/yWyG/BfJbOONEI5/cNzEsWvoCIhf/aw0Ld9Rh1sM9MzJQaRcdJpmAos4yN0ZfzWhR88klexXLRfP2xkMcO1R5Ue7ccQX89rOdNEWUroee09qDzQpnZ4hddXZEUUKnExRBQQadQI7FRLbFRIpBh9uvdGyOybNi7OPk8xAFaWb2RnxxJQoKemXtQYWb8/TReTFDtZLZfiI6W37eUxj0Ok4YHv+ihcbRi1pQEIDobuxWURMgM8WoEDU1p+bRgSZqRnHJJZfELbNTI145XCyOP/54jj/++A4/Lh4jR47k/vvv5/777+/W9Q50fL5gv6NPPgFn/IvXHUYU24WJGNWo/RqLBc49F37zG+gP2TvV1dXcddddYdEuLy+Pp59+ukNivMPhYNiwYcyfP5+xY8fK5i1evJif/OQnBAIBtm3bxuLFizn99NNly7zyyithQbOwsJCXX35ZNXl7+/bt3HjjjTQ2NuL3+1mwYIHCfRfJihUryMrK4qmnnuLYY4+Vzdu3bx/XX389NTU1+Hw+XnnlFX7729/KlmlsbOShhx4Kvzbf+973+M1vfkNKSvsJ+b333sv999/P119/rSoW9gQZGRmkpqbicrmAYBDauHHj4j4msq2A2+2mra0tLDBJkiRLu3744YdjrqepqYk//elPLFmyhGeffZaMjIyuPBUgKKoLgsC9997LjTfeKCt9XLduXbjP6/79+3nqqacU71MkixcvRqfTcccdd/CDH/wAg8HAypUrZWXnb7/9dljQTEtL47HHHuO0006TrUeSJN555x0eeughfD4fTzzxBFOmTGHGjBmy5V588cWwoJmRkcGzzz7L7NmzZcssXbqUO+64Q+Fo7Cjz588PC5oWi4VHH31U4TCuqqrihhtu4MCBAzQ1NfGHP/yBp59+mtGjRzN69GgOHjwYFjVtNhs33XRTh8exYcMG2T5yySWX8Mtf/lIhWC5ZsoR77rmH1tZWtm/fzoMPPsjTTz8dc70rVqzAbDbz2GOPcc4558jm3Xnnndx0003s2rULgJdeeqnfiJpev0hZkyvseHP6JRqcXgrSek64c/qUpecWk17RAxCCbq9kTtq7iiTBhkOJHYTba9s4ZXRuj4+nP1OnUl6bZzMxMscqE2v2NjjCwlUIr19kS1RfxlklmWytbpPtF+ur4gvMTy7ej1STAeFbJtSncd9fus+Jn5fX7r6cPj34/+x/f0lzRL/PRkuGzIX5ypqDLNwRdEd6AvDUulbuONtHbpr66dNOFVGztJtEzVklmZgNOjwRouC3++R96VaWNbH8gLzvZVG6mXH5aTLRuKrVzQdb5e6pPKuJYdmpjCuwydaxs85OQJRihgQBuP0i5c0uhmVbqGqRi4BF6ebwPjM23xYuU45kXD9y90U7JVvdfty+ACkqTtOAKPHnxUoR+SfHD+v09vOsJgSBuH1q+0OpvoZGsqg6NQn21TRmdu+2MlONlDe7ZNO0nppHB5qoqXHE89BD8MgjPbFm4fBtYHPYwMT//V/85Xoar9fLz372Mxoags3WjUYj8+fPT6rHZCSpqan885//pKRE6eQ46aSTOP/88/nvf/8LwOrVqxWi5rvvvhv+/5e//KWqoAkwbtw4brzxRp544gkANm/enHBsf/zjHxWCJsCIESP42c9+xi9/+Usg2Bs3mueeey4sRJ1wwgk88sgjil5jGRkZPPPMM1x++eWqZd0hvvnmG3bv3h13rHa7nRdffFF13ujRo8Ply4IgMGvWLL755hsAFixYIHPNRSOKoqJc2e12h0WosrIyHI52R5DRaOTKK6/koosuYujQoUiSxI4dO1iwYEF4PatXr+b222/npZde6pZ+wbfddpuqwDZ9+nSeffZZrrnmGiRJ4s033+TGG29U3ddC3Hrrrfz4xz8O3w+FJEFwn58/f374/vz581UvdgmCwA9+8APa2tr44x//SCAQYP78+bzyyivhZex2Oy+88EL4/p/+9CeFoAnBfefJJ5/kRz/6UZxXID4Oh4NXX301fF9N0AQYNGgQf/vb3zjvvPMQRZEvvviC2tpaRS/RrvDnP/8ZUQye5J9++uk8+uijqsvNmzeP5557jmuvvZZAIMBnn33Ghg0b4vbpfeCBBxSCJkB+fj4PPvgg119/PUDYtR2rz2pvcqjNrXBTqfW77E4cXmUYj9Wkx2zQYdQL+AKRfTX9vdLH0u0PKJ63Wr9ALQFdvfw812piVK6VFWXt4pbLJ3KozS0rW95W0yZ7fwFmDM7AoBNkj91W04bXL2Iy6PB6YcsWWLMG1q6FVd+JbNw0EQLd2EokzRV2X1LQwle/Gc9JU22KfpfDc1JZX9kuah5olF/5/t8OeS84p19iZXkz501Q78kd7dTMtwUdit2B2aDnmCGZfBMhZG6taaPB4Q2XVz6l4tK87fjhDEpPUThh/VFfFLOHZCIIAqX5clHT4xcpa3KyOkZIUIgdtXaGZVsUTs2iiAsqEwrT1EXNfhASFCI/RljQkCyl8/KDrdXsjnIwj8u3cd64jh23RmLQ68ixmFQ/lwBDs1JJS9FO3zUGDmo9NaFnEtCzVPq5ak7NowPtW1HjiCeqtaKGCoerbfuU3//+97IS4wcffFDhREuGs88+O67IdNxxx4VFzWg3YyAQ4Oabb6ayspK6urpwQEksIp2gbW3xU0SHDh3KvHnzYs6PdHrV1soPACRJ4tNPPw3fv/vuu2OKAkajkXvvvZfrrrsu5rYWLlwYDoGJRUtLC48//rjqvIsvvljWk/Hyyy+XiZqzZ89WFYMAnnjiCZlTE8DvbxdFIkvPrVYr//rXv5gSVe83c+ZMZs6cyXHHHccDDzwAwKpVq1iwYAFXXXVV3OeViLy8vHAZtBqzZs1i7ty5LFmyBFEUWbRoETfccIPqsoIgcPXVV8dc16JFi6irC7qApk2bltC9f+211/Lcc8/R2trKqlWrqK6uDvcn/fbbb8Nu2cmTJ8fd1+bNm8esWbP47rvv4m4vFkuWLAm3EBg/fnzcHrAjR47knHPOoaamhqFDh9LW1tZtouahQ4dYvXo1ADqdLrwvxGLmzJmcc845fPTRR0BwX40lalosFr7//e/HXNeMGTMwGo34fD48Hg/Nzc1kZ3dvGVVH8fgDqifC0eJFd6OWfG416hEEAZvJICtl9QUkPH5R1fXUnagJuZdPG8S6yhZZeNGOmoGdgF7d6sZk0HVJOKtzKMtr86xmRuYoexzuqXfIRE21vqXTijMQhKCoKQUEqE/HW5PBFdf7KNthZvNm8Mp20y5eDMiyhwXMk4414M9tZllNe7mjXidw/KSZCkETYHi2RdYTtMHpo83tJy3FgCRJMmE2xNqDLZw3QdnexR8QFWFK3VV6HuLEETkyURNg6f5GLpxYyP4GJ+9uPiSbZzHqueXYoegFgVve0SnaREQyqyRYjj42Tznm7TX2uE5NCDo6TxqZQ6NT3oN4UEa7qBnLYdifnIf5Kq6umjavQtSUJInHv9qjWPaek0bK3MydocBmjilq9rfScw2NRMQqPw/0gKiZmaqUtnI1UfOoQBM1NY54jjkGFi3q61H0b/q6cvK9996T9RT83ve+x5VXXtmpdU2fPj3u/Mik8khHIIBer0+6/YTX6+XAgQPh+5HCnBrRwlw0OTnt/YjcbrnTYcuWLWHxq7i4mPHjx8dd15w5c8jOzqaxsTHuct3Fqaeeysknn8zXX3+NKIrcddddrFy5kksvvZRRo0YRCATYunUrL730El9//TXZ2dm43e5w2FFke4HTTjuNiRMn0tDQQFZWVtznevHFF7NmzRreeecdIFh+3VVR8+yzz07Yn/P0009nyZIlQND1GkvUHD58eFyhKzLMasKECQnHZjAYmDx5MkuXLgVgzZo14eT4b7/9NrzcSSedlHBdZ5xxRqdFzchtnXLKKQmX//Of/9yp7SQi1PMSgkLu4MGDEz7mvPPOC4ua0WFikYwbNy5u2wuTyURaWlr4MxYd8NQXHGr1qJYs+npQ1JQkSSFqphh0GA73x7OZ5aImQJvH3+OipprQevywbEblWNgZkdS8TaVceCAgSRI3LtjAy2sOYtQLPHrOOO6aN7JT64rt1FQ60/Y2OIncTGTyueTXQUMa+xfnsXllNtKKEqhPBzG4L7zXqdG1YzDAsFF+9uirZH0wBVP7e73FbMTglIukI3MsmAzqwulQFffdgSYnk4rSqWh2qSZ5r4nRq3V/o1PhWh2jIhB2hROHK39PXlt3kD31Dj7YWq1waV8/qyQseJ89No8PtqqLCxB0agKMUxHNvtxTT6VKAFAkO2rtHGpVfg8Wpcudmmr0J1FTLahHra/mt/saWR3l/B6UnsKV04sVy3Z4DGlmtsa44BLrNdTQ6I9IkhSz/Fx0df85SqaaU9OmiZpHA5qoqXHE89vfBpMIu7+npoQYcQQZvDI7sMrRI3tq9hXbtm2TlStPnjw5bvlyIiLFQTUi07JD/SnjYbfb2bdvHxUVFVRUVFBWVsauXbvYuXOnLBU5OtE8mtzc+H3bIoNjQuW0IcrKysL/jxkzJuGYIegiVStjB3jsscd47LHHVOeVlpYCQfG0I/2Cn3jiCW699VZWr16NJEksWLBAJlSHyMzM5IUXXpAF3UT2BTUajZSUlFBaWppUieo111wTFjUrKyvZu3cvI0d27uQe2tPW4xEZCBWvd2k8xzDIe4u++uqrspLuZIjcdmVlZfj/UaNGJXxsdL/ZjnDoULsbKNn9sScoL29PnE32+UT2e62qqiIQCMi+E0Ik+rxC/M9sb+P2BWRJ45H4Az0nanr8osz5CMF+miFsZuVra/cGyFNM7V6i+3wa9QJTBqUzriBNJmrWtHlodHq7rUS4t/jfjlpeXnMQCLpff7FwO5dPLZa54pJFTdTMs5lU06hDYUEeD2zeDJ8uSEXaNjnYB/OwgKneAKKD6AOQ1woFLfzmqgLOPzmViRNhweZD3LBAGRoXoiHKJQjBcuBYDFcJc9nfGBQ1o3tThlh7sEW1hUJPhgSFOHZoNnqdIPvMvbPpEO9sOqRYVhDg53NHhO9fNrU4rqg5qyQTUB/z6+sOJhzbzlq7ovQcgj01Q6i5DHVCMCiov1CQpvwuUEtA/9NipUvzjhOHYzZ0/YJNvL7DmqipMZCQvG1IfpfqvJ4oP1dzWg86ysMAjxY0UVPjiMdoDPaL7O6ekZIETmf7F7XFYlEtb9KITXNzM7fddlvY5ZSTk8MzzzzToWCgaKzWrh8cu91u3nzzTd5//3127twZU7DU6/VJCaMQ3D86S8ilCSQdhpOVpUw27UlsNhsvvfQSL730Ei+++CItLXI3i8lk4qyzzuL+++8nOzsbuz14AmixWLBarQlF4ViUlpbKgorKy8u7JGomI2ZFvgeR70008ZLRgS6H9TQ1tZ90h3rRJrNd6Nr+0dFt9RSRr1+yzydyOUmSaGlpUXXTdvTz2tn9t7uI5dIE8Itij/WxVC09j0g3txj1ChHG7onvau8qkiQpys8nFaZjNugZV2Djv1HthrfX2DlexQHXn/lqj/xk0BeQWHagkR9MGdThdUWLmmaDDqtJHxY1Jb8O6tOgJpMFa3L57NdBQTN4TS/xBZSERAiYFDQH/+a0IeiD+8zY04zMPJzwvaOu487a0jghNLFETUC19Bygus1DVau8tyj0jqiZlmJg2qD0mG7RSC6aUCgTps8fX4DFqFcN9hqZYwn35RyebcGkl5eqR6d7A4owm511dqpU3JyRgsLwbAupRh0uX/u6R+ZYe9y53RHUBMXaKKfmlkOtfLJd3iYoPcXAj+YM7ZYx5MdxlmmipsZAIuCMfSEl4O5+p+alUwfxp4jwrhOGZzM4U70HssaRhSZqamho9AmiKHL33XeHHWYGg4H58+eHewT2FRUVFdx8882y0nII9kcsLCxk5MiRTJgwIdzvsyuBK8kS6QhNVkTtC5HFaDRyyy23cMMNN7Bu3TrKy8vx+/0UFRUxbdo0MjMzgWBCemh8XX2/BUEgLS0tLGqGxNLOoubaiybSlRdPgE8UWhTZsuCss85i8uTJSYywnWRK1mPRlQsHkftjX9KZfTzaUdnTgTW9QTyXJoAoBW/6JJ9qQJSos3sISJBrNcZ1HqmLmu3LB/tq6mlxt+/rHr8YDo3pCXwBCTFq35hRErwQoZayvL22bcCJmttUSlO3Vrfxg/hdTlSJTD+X/DrS7bm88ILA2rUmdB/PJVCbFi4h39fpEQcxmyWmTBGYMQPSh9j547a1MgEzWkwD2FLdCgRFTbV08UTEc2oOUxE1Q2FBK2OImgDfVTQrRU0VwbW7RU0I9tVMJGoadAIPnjZaNs1qNnD+hAIWbFBWF8we0n6xR68TGJNnVaTaRyIIMHd4Dkv2tYvrh1o9qq9BpKip0wmcO65A5iw9e1z3Bcd1B6o9NaNEzT+rBDLdMmcoGSqlr50hllNTEOLvzxoa/Y14oqbo6n6n5ozBmXz+ozn8c1U5+WlmfndG31UTafQumqipoaHRJ8yfPz/cGxCCScOzZs3qwxEFxZqf/OQnYUEzOzub6667jmOPPZbRo0cr3Fuhvoo9TaQzsLVVmRyqRrLL9QQmk4k5c+bIwo8i2bRpU/j/WGXDHo8Hg8GQVJp5pJDZVedgMqJopEMwskdrR4l8X6dOnRqzN2cy5OXlhRPtk3GAdmX/6Mz+2BOERHKQu1bjEbmcTqfDZhv4J4hqff+i8Ysiel1iwV6SJHbV2cNiZZ3dw8TCtHCPzGiik88FIejOjMRmNshETQimoGcbeqbk26MShjJzcCYA41VSlgdiArqaqKk2LR5ud9BxWbY4H6lsGNRkQn0ataKOW8NLJVcZoIbOKCLmtMgcmOsem8H4QcH34Acv70Col39/3HvySB5ZtFs2bWuEuBbthixMM5OVamR7HLEznrA4LEvp4DnQ6MTlC8j6hUbzXUUzF02UhwVFC65mg061Z2dXuWn2EOZ/u0/RPxOC7R5mDs7k3pNGMuPwPh/JZVMHqYqaodLzEGPzbXFFzbF5NmYPyZSJmgCL9yhFisjyc4A/njuemjYP6ypbOHlkLr88dbTiMX2JWk/N2ojy84pmF6+tq5TNN+oF7jhxRPTDunUMACOyLVhM2qm7xsAh4FDvpwkQ8CR33NZRThuTx2ljerrJjUZ/Q/tm1NDQ6HW+/PJLXnjhhfD9iy++mGuuuaYPRxTkyy+/ZNeuXUCw/PStt96K2xcxsgy3J52RkT0SQ8JVIkLPozeQJInm5mYaGhooKCggLS1+edSXX34Z/n/mzJmyeVdffTUHDhzA6XTy17/+ldNOOy3uuioqKsKBQyDvd9kZ9uzZk3CbO3bsCP8/dGjny82GDBnCxo3B/nDJvl8tLS3YbDaFozQyJGfHjh2cffbZcdezd6/SaZIsJSUlbNiwAQi+XmeeeWbc5b/99ls++eQTBg8ezJw5cxTveWcZNmxY+P/I9yQeW7duDf9fVFSEwWCg1u7B7RNxqZRl9ndc3oAibVgNX0DCnMQRn8MbkLkv/aJEk8tHnspJtihJilLWVKNekfxrU9mw3RNAxSTXLaglPEf2C4wum90eJQZ+ubuOz3bWMXNwJj+YUtTv3Lx2j5+yJmWPsq1xRKiQgLlmDaxdG7xt2QJBs/i4mI9LGkOwhPyiU1M5/+QUZsyARQ0HuHfhVtliW2pbGT/IRlmjk/e3yPtA2sx67pk3kpdWl8sCZ0LPyxcQwz09Q4zNtzF5UHqnRU2r2UCe1URdRAn+gSYXaw82448TsLW2Qi54+gOi4vUfnWtF38UUbDXGF6ax6JZjeX5FGaIkMbEwncmD0phclM6wLEvc5O2zSvNJTzHQGnWRIRQSFCKRw/SYIVmUqiyz/ICynDS6n93wHAtLfnp83PX3JekpBswGHR5/+/dIZE/Nv3yzT7FvXD1jcKf62cYillNTKz0/Ogg4aqhffAfe2g2kDJ5Hzrwn0JkG5nsfcNbGnNcTTk2No5eeqf3R0NDQiEFZWRn3339/WAScMGECDz30UB+PKsi6devC/x9//PEJg14i05d7Mihk0qRJ4V6hVVVVCQWcLVu2UFsb+0Ciu3nkkUeYM2cO5557Lh9++GHcZaurq8MOV71erxAQbTZbWKRMJqgocnsjRoxg0KCO95SLZPHixQmX+eKLL8L/n3rqqZ3e1jHHHBP+f8mSJQkTtL1eL+eeey6TJ0/mlFNOiZlC/vnnnyfcdldcxqHWCxBMf0/Ep59+yvvvv88zzzwjc+l2VSyKFEc3bdrEwYOJwyw+/fTT8P8zZsygotlFeZOLWruHapUwiP6OmkvToCJqxBNoIlHrt6cmEgK4fAFFH8/I0vPwNJV+ebHWGQtRlGhweqm1e/AleKzXL59vNujCYoDFZGBoVH+t7RFOzTfXV3L6Cyt5YvFeLn91LQ993nsXh5IlliNzd70Dr1/E7YbVq+G55+Dmm2HaNEhLg9mz4Sc/gRdfhA0bQoJmxzGZJY45BgbPq4YzNsC1i+G2TxGuXMrL/9Bz440wZQrMGKJ0za+vaqHN7efH725SSeoeQkaqkYlRws2+RicOj599DU7Fflyab+PMOI6conRzwpLg6L6a+xudMUOCQqw52Cy7kLmirEnhRp5c1HP9hk8alcub18zgrWtn8pszxnDRxCJG5FjjCpoAKUY9F0+Ut3yxGPVMHSQfayJRc/aQTNVl3FGfPYNOIGeAhXAJgqBwSoZ6ija7fPxjVZniMffM63wfbzU0UfPopnHZL3Hufg9/yz7sW/9Fy9on+3pIncYfI/kceqanpsbRiyZqamho9BpOp5PbbruNtrbgSVl2djbPPvssZnPspMfeJLJXYGNj/B/b9evXs3DhwvB9f2fPEJPAZDJx4YUXhu//5S9/ibv8/Pnze2wsakSKXO+++25c1+of/vAHvN7gCcLZZ59NQUGBbP7pp58e/v+jjz5i377YXdzKysp48cUXw/evvfbaDo89mvXr18cV6pYvX87KlSuBYPp1V0TNM888MyxWNzQ08Nxzz8Vd/qWXXqKurg6/309jY6OsB+fxxx8fDsHZt28fb731Vsz1bN++XSbMdmbcocT6DRs2yNpIRFNXVxcWEgVBkL1ekW7TZHvFRlJSUsLs2bOB4EWFxx57LO7y69atk4ma559/PvWO/tEftDO4fAGaXPLxC4Ky3BNIKASG16nSIzOWIJqon2YInU7AGNXQM1p4jIfD62dbbRv7G5yUN7nYVmPHH+P5SIA3Ku196qB0jBHl8+OjEpjLm13YPX7a3H7uiEoR+sOXu9nViXCaniTSESj5dUiHMpE2DMX36SQmT5VIS4NjjukeAdNoFqGoEabuhzM3wLWLeX7JQVaskHDP3YAwqQIhL9gTc3SulfSUdgFxarGydP3LXXWc8NelfLZTHrAmCHD78cMA5fsjSbC91h4ziGfuiBxMMdojjM1L3F5ieI5c1Gx1+/l0e/yLgo1OH/sa2isEokNjAM4a2796RYb47RmlZEYIvb88bbSipHmcSkp5JMcMzaI0ide2KN2cUGjtj0QH9YR6ar669iB2j/x774IJBQlfr44Sq/xcLT1e48jDufcj+f39C2Ms2f8JOOL01OyB9HONoxdN1NTQ0Og1fvWrX4XLbE0mE3/961+77KzrTiL7O65bt04mWoaQJIlPPvmEH/7whzIh0+1O3NeuK9xyyy1hAezrr7/moYceCouDkWP49a9/nZR7LhY7d+5k586dSbkkQ5x66qnh3pJbt27lz3/+s0LkdblcPPjgg3z22WdAMKX+nnvuUazrvPPOCztkvV4vt9xyi2qp9ObNm7nuuutwOILliJMnT+bSSy9NeszxuPvuu2Uu3BArVqzgjjvuCIu2P//5z7vUwzM9PV0WNPX888/z7LPPKoJ4RFFkwYIFPPPMM+FpN954o6y3pclk4v777w/ff/jhh/nvf/+r2Oa2bdu45ZZbuhT2k52dLWsXcffdd4eF3kjq6+u57bbbws7bc845R1auH9nPsrGxUdZGIFl+/vOfh8XRL774gl/84heqfVGXLl3KrbfeGhZPTzvtNOYcd4IiUGYg0aRSdp5nNSt6WkLXnJqBGI+NThgHefJ5JNGiUzJOTUmSONTqZketHXdEWrIvINIQo+ReEiWC0mY70b0Fx6r01dxRa+fPS/bKypAh+Lr94pPtCcfaG7jdsGoVvPYvI9JnU5BemQvPnA2vnwhfToYtQ9m5Vd9pARNDAIoamX1BMy+9BBs3wuebmxCuXIZw6haEiUEBc/7SfTz+9V7FezAtSsTMTDUqXJBrDraw+ZDSaXrxxEJGHxbJJhYqv1O3VrfFFDWtZgMnxAh6UiuRjkat7+U3+xOfbK852Bz+/5Nt8hN3nQBnje2fPd2GZVvY84tTePXKaSy//QR+odLTckxEano0qUYdkwrTyLGayLXGd2FGl54PFKKdkg1OL/6AqOrSvGtu97o0QT2sCDSn5tGA6GlFjOo1Ga+Eu78TLyhI8jmQ/AOvQkajf6L11NTQ0OgVvvzySz755JPw/alTp7J+/XrWr1/fqfVddtll3R7yce655/LMM89QV1eHJEnceeedvPnmm0ycOBGr1UpNTQ1Lly6VJbYHAgEkSaKtrQ2/359UsE1nKCws5Le//W24dP/111/n66+/DguKNTU1LFq0iNraWvR6PTqdLixc6XQ9e/3KZDLx29/+lttvvx1JkvjHP/7BF198wQknnEBOTg5VVVV88cUX4QAbo9HIU089RVFRkWJdZrOZRx99lFtuuQWHw0F5eTkXXHABJ598MuPHj8fv97Nx40aWL18eLvkfMmQITz/9dFLJ5YkwGo20trZy/fXXc/zxxzNt2jQgKHIvX748vNyJJ57YLc7QW265hc2bN7No0SIkSeKZZ57h3Xff5aSTTqKgoIC6ujpWrlzJnj17wo+ZPXs2P/nJTxTruvjii1m6dCkff/wxPp+P+++/n9dee43jjjsOk8nEli1bWLJkCYFAgOHDh7N///5Oj/uOO+5gw4YNfPfddzQ3N3Pdddcxe/Zspk+fjsViYfeevSxa9AWuw0LlkCFD+NWvfiVbh81mIzMzk+bmZrxeLzfddBMnn3wyfr9f9fmpMWPGDO677z4effRRAN577z2+/vprTjnlFEpKSnC5XHz33Xey1hLDhw/n0Ucf7XAJdH+jxa0U9grTzARUWmEkI2pKkoTLl/xj1dyfKTESzU16HQ7kvToDohSz56DHH+BAo4s2j7pCF6v/aUBFpI4OQYl2AgJ8vadeNdEY4P0t1Szd38AJw3NU5/cELhds2tTe/zLUAzOoySu/NztKSgpMnQo5w5180rgzGOaTY0fQSdxwySRuOC4TgOpWpbi16VArmw4pA8KmFivFyGnF6exvjH+xYly+jb9d0u46jy4/B9hS3UZDlOAM7U7M08fk8dWeeuW6k3C2Dc9WhgVF70a5qTrqXfL9/buKZi6bWkxZo5OtUS0B5gzNItfaPypQ1Mi2mLhy+uCY861mA0MyUylvVvZunTE4MxwcVppnpV7lfQlRNEBFzfwoUVOS4OPtNQpBfnyBjRNHqAvqXcFk0JGVapQ58fU6ISl3rMbAxt9WrpgWcNYiSVK/6++cDPFETYCAuwGDrf+YWzQGLpqoqaGh0Su0tMgb669evZrVq1d3en1nnnlmt4uaNpuN5557jh//+MfU1wdPkFatWsWqVasUyw4ZMoRHH32UBx98kLKyMkRRZNu2bbKS4O7mwgsvxOfz8cgjj+B0Ojl06BCvvvqqbBmLxcJjjz3Go48+yqFDwSAGk6nne1qdfvrpPProozz00EO4XC4OHDgQTpGPZNCgQTz++ONxk+7Hjx/Pf/7zH+6++27279+P3+/niy++UC2ZPuGEE/jDH/6gKGPvLNdeey27d+/mm2++YdmyZSxbtkyxzDXXXMMvfvGLbhGLBUHg6aef5sknn+Tll1/G5/NRVVXF66+/rrr8hRdeyMMPPxxTPH/iiScoKCgIl+Vv2rRJ1scSghcU7rvvPq688spOj9toNPLiiy/y29/+lvfffx+I/ZkeM2Eyzz87n+xs5cnf5ZdfzvPPPw8EheOQ+HjFFVeEy+kTcf3115Obm8vDDz9MS0sLTU1NvPvuu6rLXnjhhfz2t7/FarXS6Ix9Mt7XtLp9uHwiGSkGUlScl76AqCj/tpj0mAw61PS+ZMrPPX5R1bkaS9SMnm7QCTFPukwqYqc3IJKqksje5PRyoMkV0yEKsUVNtYfMjBI1x6m49373+U5VQTfEfR9vZ9ltx/fISaXLFXRFRgqYW7eGBMyuk5oaFDBnzGi/jRsHBgP8a3U9C9+S96KNdN8VpJljilvRTFcpN59anMF7m2P3VDtjTB4Lrpkh63upJjpvq2lTtFpINeooOdwf9YzSPH6xUOmoTdQbEoLOxURcNNLCS1vtsv1rTUUzoF56fs647vk96kvGFdhU3/fIUKHS/DSWxek/OlBFTbXy70cWKUMafzhnaI8JTcOyU2mqbN/nS/Osqr8FGkcW/rYK5UTRh+hpQZ+S2evj6Srxys/hcAm6JmpqdAOaqKmhoaERwaRJk/joo494/fXXWbx4cTiJOyUlhby8PEpLSznppJM477zzMJlMzJ07l//85z8A/Pe//+1RURPg+9//PscddxxvvPEGS5YsoaqqCq/XS1FREXPnzuWmm26isLBQFr5ksfRQzHAUF198MbNnz+a1115j2bJllJeX4/V6yczMZOzYsZx55plccMEF4X6M8Rg/fjwfffQRCxcu5PPPP2fLli00NjZiMBjIz89n+vTpnHPOOZx44ond+hxSU1P5xz/+wYcffsg777zDzp07cTgcFBYWMnv2bK644gomTZrUrdvU6/Xce++9XHHFFbz99tusXLmS8vJyWltbMZvNFBcXM336dL73ve8l3L8EQeC+++7j7LPP5o033mDVqlXU1NRgsVgYMWIE559/PpdddlncXqXJYjabeeyxx7j66qt57733WLVqFdXV1bjdbtIyshhROo7jTzuLWSecTEqGurjw85//nJycHN555x0qKirw+Xzk5uZSXV2dtKgJwbYFJ510Em+//TbffPMNu3fvprm5GYPBwODBg5k5cyaXXHKJ7PXrSF/H3qS6zc3B5mA7i4MClObZFAni0enFABkpwWX0AgjIi7CTcWrGdD92QNSMhVrPQ69fJDXqJN3p9bOv0alwykXj9ouqzpXofr4pBp1C2FJz78UTNAFWljXxzqZD/GBK106+elrAFIwB5szUh8XLmTNh7NiggKmGmssuL6KfoCAIPHruOG54c0NCZ3N0+TnAtEHKaSF+evwwnrpgQtj1FyItxcDQrFRZwvvmQ63Yo0T80jxbuF/jlKJ0RYo5qAvY0USXyKsxp9DMVxVu9rW0f+7WVbYQECU+2a48aT/vCBA1S/Ntit6nEEw+D5FINB6k0t93IKAW1LP2oPzCvNmg45oZsd2uXeWGWUNYX9ne4/cnxw3vsW1p9B/8rUqnJgQdjwNN1JQkKQmnZvxQNg2NZNFETQ0NjV7hkksu4ZJLLumRdYdExWQ45phj2LlzZ9xlsrOzue2227jtttsSru9Xv/qVoqw2xO23387tt9+e9NgSjSvEoEGDuPvuu7n77rtjLhMKYwLIzc1Negxdpbi4mPvuu69b1mU0GrnwwgtlIUm9xQUXXMAFF1zQ4cd1ZT8fPHgwd955Z6ceG82kSZPiiq9jxoyJu7899thjCYN3QkycOJGJEyeG79e0eaiIcvhEp+KGEASBa6+9NmYp/+DBg5P+XNhsNm644QZuuOGGpJaPDpSZd+Z5zDvzPMYV2GL2hoykI31nk0WSJGoiUtglCSpb3IregGql5xmHQ1oEQUCvg8iX3B9ILGqq9dOEjjk1Y2HSK+epiWRNLn9CQROCQqsvIGEytK9XkiSFU3N8QZqixD0z1cig9BTV5PgQ2RYjjVE9Ix9cuJ0LJxSquk7VCAmYa9a0C5jbtnWfgIkhAPktUNAcLB8vaEGX6+Drx87CbEjO0RUtAgKKsukrphUzY3AG//6ugjfXV3KgSenem1acTp6Ku21mSSY6Qe6g1esE5l84kZ8cDgZSY2JhmkzUPNiifK8iBTWdTuDccQX8e027y2lQegrFGYkvoA3JVJafR2LUC4zNNjEu2ygTNe2eAOsrW/g6qux9cEYKk4oGfu/DWILwMZFOzbzYvTdh4Do1Y/W0jOT7k4vI7sFk958eP4xcq4mV5U0cPyyb70/uetsJjf6PWvk5gOiqA0p7dzBdRPQ0gRi/f7sWFqTRXWiipoaGhsYA4MUXXyQnJ4chQ4Ywffr0uMvu27cvHCKUlZXVIcebhkZXUROr+mP/ylhj8iUhAPYU/sNiXSRtHj8efyAsVEmSpHBqGnSCLHncIAj4I7yavqScmuqvR0CUECUJnSAXEKMdnPo47RhilZ9H4/ErFb98mwm9TuBQqzxQwO0PyNbrDYhEP8tY4tK4AltMUdOgE/jqx8dx3ourZGLa3gYnz604wB0njlA8xulUOjC7U8C0WIIl5KmD2/iydU9QxMwO9sCMRAR21zmYWJRcgJmqU1Ml/GVMno0/nDOOR84ey6ryZt5YX8lbG6uoafMwOCOFpy9Sv4BSkGbm1uOG8ddlB4CgoLzgmhmcPiZ+iM74gjTVsu5IooX+35wxhk+211Dn8GLQCfz+7LFJlQanGPVxRe6pg9Ix6wXGZ5v4ZL9c0H386z2KCzbnjCsYkL3volFzYRammcMl/7GWiWTABgUlIWr+8JihCZfpCoIgcPm0Yi6fVtyj29HoX8QSNQdiWFDAEbv1SHgZV2MvjETjaEATNTU0NDQGAB9++CE7duwA4N1335U546L597//Hf5/9uzZPT00DQ0Zav0b+2OpdyxRsy8FWE+M16ne4aU4IygmOLwBhUsyPcUgE1L0OojI5cEvqpdrRxKr/ByCwqYuwm2p5t40qLgxQ6iXnyvXEf38dTqBksxUml1Kt4fLJxKpmbhVRNkJKknaECxB/3K3MlgGgn3yJg9K5//OGssNCzbI5v3fF7v4wfgSynYZw+LlmjWwfXv3C5ih8vEZM4Il5Ho93PNROV8tORj38Vtr2pIXNe1KUTPbYlRZMoggCMwZmsWcoVk8ecEEml0+rCZ93F5/T180kfPGF3Co1cOFEwrISsLdNjEJp2O0oBZM9T6VZQcaGZljCaepJ8Pw7NSYouacIZmAjwk5ytflnU2HFNPOGz/wS88BxuUr34NjhmTKvkOGZ1sw6oWYF4KKjqDy80hK86w9EhCkoaHaUxMIOJWtIPo7iUrPQXNqanQfmqipoaGhMQA47rjjwqLm73//e5577jmFAzMQCPCvf/2LBQsWAMHU8+5I6NbQ6AgDxqkZQ0BMJlSnp4glajY4fAxKT0EQhLil5yEMgryrpiQFk8ENMURNvyjG3HZwvkSkbqUqasYpPw+GCMlTpdWdmvJpKXodgiCoimbuKBHWpeLyjOnUjOEws5n1/Ob0MQBcPWMwT355gE0bBajJgNpMGmoyGPyIAambdhGLBaZNk4f4hARMNbZVt6nPiGBrEsuEqI8Ky8q2GBU9LmOh1wnkqLg6oxEEgTNL85MeE8CEJFLL1VyCaSkGzhrbsW1BUBCNFXgT7CFZy6hMI3oB4hm5Uww6ThmV0+Ht90fy08ycMipXlip/7cwS2TIGvY5ROVa219pV1zFgnZpp8ffrm4/puYAgjaObmD01XUemU1N0a05Nje5BEzU1NDQ0BgA33ngj7733Hs3Nzaxfv56TTjqJU045hSFDhmA0GqmpqWHZsmVUVlaGH/PDH/6QmTNn9uGoNY5G1Bx43kBip2BvEhClmL0i+7L8PJaw6A2ItHn8pKcYaXEpQ4LSU+SHc2q6lD8gEasdZKKgnOhSc7XwoHiipiAImPU6WalutKjpF0XFe2I+PGCzQacQRV1Rr1W0yAnB3oxqjC9QCmKST88Piifw1r/Nhx2YAtu3nwBiVBiR6hoTEy1gzpwJpaWxBUw1ttbIBcvMVKPCxbqtJnlRs84uL+lXKz3vC8YVpCne70gEAUbnxu/n2BHiJaAfOzSTxrJazHqB0ZlGdjTF7hF38qhcLEn04x0o/OfKaTzwyXb2Nzq5YloxF00sVCxTmm9TFTWNeoGcHuw52ZNkpwZbXqh9z5n0Oq6b1XMBQRpHL1LAR8BRpTpvQJafJzHmgEtzamp0D0fOL6+GhobGEUxeXh4vv/wyd9xxBwcOHMDtdrNw4ULVZU0mEw888ABXXXVVL49S42hHkiRVB54kBUWsZANMepp4bsz+6NSEYAl6ikGvCPSxmvQYo1RMNUemT5SI5ZuKV3oOSmdmR52aEOyrGS1qRgrdas89JGrqBIEUg142ToVT0ycfUygQSI2htjSkyiyoyQy6MGsyoDGNl6To59BJEd7gh4IWCke5+cMNRRwzS9dhATOaVrePimZ5ifRxQ7P4rqJZFvjTEadmdFBQbj8RNVONekblWNld71CdPzQztVvFw2FZ6qJmcUYKJZmpNJYF74/PiS9qnnsEpJ5HUpSewstXTIu7THRv0xCFaeZwOv1AQ6cTyLOaqG7zKOZdMqlQEaalodEd+O2VxCoDGJCiZlJOTU3U1OgeNFFTQ0NDY4AwduxYPvroIxYuXMgXX3zB9u3baWhoQJIkcnNzKS4u5pRTTuG8884jLy9+EIOGRk8Qz+Xo9UuY+8lRR7xy+OhU9N7EE6cxY6h/YTTRpecQy6kZ+zm7vB0VNZXrSihqRg1KkoJCaygZPZ6oCcHS3khRMxiqJGLU6xAlSREyND7fhiAIOBywYYM8xGf7djOIJ8Qdb7JYrUEH5rCxXl6t3BpMI8+yI+igBtieM5Ibxo/v8na21yjdcOML03D6Aize235iuKfBKQuWioXXLyoCp9QSzPuKCYVpMUXNRAE1HWV4DKfmsUPlLV7GZcfuNwpw7riOl74PdMbG6F06UEvPQxSkmVVFzZt7OCBI4+glVj9NgIDrCOmpKehkwm1AKz/X6Cb6yemFhoaGhkYymEwmLrroIi666KK+HsoRw+23387tt9/e18M4IogvFvafvprxxtJfnZqiBJWtypPsjBTloZxeRWCMVW4PKNyf0QTE6FLxjjs1o92kEBTWQmJnQlHTqIeoUmu3L4BRr8PtE9tLlf16cJqp+e9QJjwLO3aAigbbOYx+yG+BghZ+f10hl5xuYcyYoAPzZ//dhbBUGeLzxOK9zBuRw7ldDJCJLj2HYO9Jp1cuagZEiZ21DiYPih8WpJZ8nkyPzN5iQmEa/92i7vSJ5Q7sLLFEzTlRoub47Nivz4SCNIbGKWM/Uon1Xgx4UVNF4B+Va+WkkUdGz1SN/oe/rSzmPHEgOjWjxyzoMaSV4G89EJ6k9dTU6C40UVNDQ0NDQ0OjW4gnFnr6k6ip0vczhF+UECUJXS/3/wyIUsJ+nmKUmGjQCVhU3JsGlaH7YoiakiQl7KmZTPm5Xhc/YMakko4eub8kEjVTjVHrlwSaWyWcLdDUCthtENCDUw9tsGdpJk5n3CHFxWZr74FZa6nh9aptYQcmQN1QJ+PGTQTA6fXznzWxXTbXv7me9XfNY3BmaqfHo1ZWPuGwUzOabTVtnRI1+0tPTYgfFtTdTs3BmSnohOCFg0iinZojMgykRLVRCNFV0XqgUpqn3tu0cICLmvk25Wfh5mOGDNiSeo3+T6yQIDgyys/1lgJ0qTkQIWpqTk2N7iK5iEMNDQ0NDQ0NjQTEdWrGcSH2Nolco33h1ozn0oxFRopRNXxJLRDIH0Mw9fhFxFiJLKHHRouaKutK5NQ0qwwqnqgpCO0l64EAiJ6gA5MWCzSkQW06NeUmKirA3qIPCpqdxGaDE0+EO++EV1+F7duhuRm++QaeegqefCATQ54jLGgCvL6uMrxPv7XxEC1uZYBTiAanjytfWxe3BUAitqs4Ncfm21TFPzVXZzR1DqXrt7/01ITYIU/Q/aKmUa+jJEpwNul1TB+cIZtm0AlMjSEWH42l5wBZFpOqADgovf+0MugMU4vl771Jr+O6qPR3DY3uJBCn/Fz0NCMFlBeiukrzd49T9lwBFS+Oxrnv425dd3T5ud5agD5F7nQW3Y1ICY4/NDSSQRM1NTQ0NDQ0NLqFeA7IgVJ+Dn2TgK7WT9MUK678MBmp6gU3ehWhU60PJiQOCYIk089VnJiRRPfUBPn+EhY1JQG8BvSuFPbvF9iyBdavhwN79dCWCm5TsMS8kyE+NhvMnSsXMFtaggLmk0/CVVfB2LHyUJ+CNDPnjJWLVvUOLwt3BE/aXlhxIOF2l+5v5Def7ezUmEEpVA7LSsVmNjBBRfzblkRYkKpTU0Wc6ivG5NliCuVj82MLnp0luqz49DG5qn1JZ0YJnQBZqUaFq/NoQk1kLhrgTs3rZpYw/bCwqdcJ/OXCCRSkDWyhVqN/E8+pCd3fV9NV8TVNy36F6GnC31ZG7afXInqVvZs7gyQGFOPVWwrRpWTLFxT9SN7WbtmmxtGNVn6uoaGhoaGh0S3ELT/vT07NBGPpCwFW7fUpSjNT1uSK+Zj0GMlLOiHodIw0QMQSahP104TE5ec6QUhYrq/WU9PjE2lrA4dDwtuYEhQr/TpAwA90tTAtLQ2mTw+WkIduo0dDgkp5Va6bVcJH2+TOk5e/q2B4toVV5c2y6cOzLZxZmsfzK+Q90h77ag/zRuZwZmnHXH1qyechMTPHGnTK1dojEtCTcWralaJmrqX/iJomg44xeVa2RQUkZaQYVJ2BXeU3p5eyoaqVjVWtTChI40/nq4c7Rbs3Ac4am49BLZ3rKGFMno1v9sk/rQO9p2aO1cSy249nW42dfJuJ4ozOt47Q0EgGf1sCUdNZi8FW3G3ba9vyL9l9yWfHU72K1CGndnndoqtekeSut+SjMyrbVQTcDejMyu9VDY2OoImaGhoaGhoaGt1CvLJtb0BEkiTVcuneRJKk/unUVBE108wG0lMMipRqAJtZH1dIMQgCvghVM1ZQkFo/zej+golEzUSl5wCSKKD3Gwl4deDTg19Pi19HCxB0XXZRqBJEECQw+bHkBli7FsaM6ZyAqcZ54wrIsRhpcLaHFX2yvVZVrL35mCHcOXcEK8ua2FAld6Fc+3qwv+agjORFn2hhD2B8RNn5hII0au0RCej1Dty+QDBcCfh2XwMry5qYNzKH2UOCjkJ1p2b/cqJNLExXPPexh1Ptu5vhORbW/nwubR4/VlPsz9ZJI7Mx6gXZd8T3Jxd1+3gGEjNLMvnnKrkgM66bWwT0BWaDnmnFmtii0fNIkpSEqNl9Tk3R78a5/xPFdL/jULes3+9UhrzprQUIOuXvvOhqhIwR3bJdjaOXo/eyooaGhoaGhka3Ek8slKS+EQujCYiSIhAkmv7SU9Nk0MXsc5iRYoy7vmhNJtnyc6Nepyh7jy43j15XdOm5zxcs6T50CPbuhc2bYcMGCDRYu6WEHEEEkw8sbrKLfJDbGrzpRSSzj/RMqdOOzFiYDDqumD5YNs0vSryzSX4SaNAJ3DCrhBSjngXXzMBmlpcw1zm8XNXB/pqxQoJCjI8qQRcl2FkXFAPnf7uPeX9bzv2fbGfO00t5Z2NVeBzR9KeemoBqaX1399OMRKcTyEg1xr1YMDgjlcfPG4/x8D5/w+wSLppY2GNjGghcPb2Y0bntDqzrZg4+KpPgNTQ6i+huQPLHrsoAZY/KruAq+xzJq/xdiQ736SwBh3KsekthMCgoell3g2JaNO6q5Rx8ZQplzxXQuPSXWh9ODQWaU1NjwKCLOjsJBALo9Z0PBtDQ0NDQ6D5EKXF6tzcgJuwT2dMkU1reH8rPTQYdOkEgM8WIXicohMWMlPiHcNEJ6L6ApHDK+kVRsV2LUUdAiu3MlCRJ7tQUdeA2UFUFTmfw5u3GPAO9HiyW4E00+KnzOEEfETBk0IMowuF9T5Qg1ahXHDN0B9fPHMyzS/fHXeaiiYXh5OfReTb+/v0pXPnaOtkyS/Y18PAXu3j4rLFJbXebSjl5tFMzmq3VbTQ5fdz94VbZ9J9/sJXzJxTQ0M/Tz0Fd1ByT1/cOwDtOHMH1M0vw+EXytT6LWEwGNtw9j4+21pCRauCMMXl9PSQNjQFFon6aAGI39tR07H5XdXrA3j1OTTUBVm/JB0nZ7kZMkIAuiX5qF15NwH4QgJY1f8KUNwVb6aXdMlaNIwNN1NQYMAiCgMFgwO8PluE5nU5Mpv51AK6hoaFxtJKMu9ETEOlrScKbhFu0tx2laiXx5sNuMZ1OINdqoqatPa06xaAj1Rj/op5eJwBKcdIY4apUKz1PNepx+0Wg/eQj6G6V8HkF7HaQ2lLCJeSIOpyAM8nnGhdBBGMADAEG55rITNdhNgf7gwI4vFBXIx+zw3t4nP7g6+PxB0g1p/ZIifK04gwmFaWx+VDsnpU/mjNUdv/yacV8vbeef6yUn7Q+8uVu5o7I4bQkBCA1UTOyvFdN/PtyTz0Lt9cqXMlVrW5eW1dJnV2efp5i0GEx9a8LxaeOyiUjxSBLlu8vrsiM1PhO6aONVKOeS6cO6uthaGgMSBKVnkOwp2Z3IPrdMZPOA91Ufq4qaloLkfxu5bIJRE1fw7awoBmibeu/uyRqBpy1tG19GfuO1wnYK7GMvoScuU+gM/X1EapGZ9HKzzUGFDZb+5dNa6uWlqahoaHRX0gUvpPsMj1NMmPoqfJzUZQQVWrfg/1G5dPMEY7WQekppB92ZpoNOoZlWxKKdtFOTVD2wlRLPk816YPp6X4duI3QlgJNVjZuCJaR798vgCMFvMagS7OzHC4hz8oNYMl1B8vH81shywFpbvJzBVJS2gVNgBSVNOowXhcBUcLpC5Cfndn5ccUbsiBw/aySmPNH5lg4ZVSuYvpfLpzI5KJ02TRJgmveWE91q/IkL5ro8vPh2RasESFRaqLmv1ZXyITwSP709R5qokTNPJupz/vdRpORauSta2cydVA6Y/Ks/OuyqYxTcaVqaGhoDGSScWp2V0/NWKXnoN4LszOol58XoFcpPxdd8cvP/W0Vimnuiq8JJHhcNJIk4ir/itpPrqD8n8NpWvZLfA1bET3N2Le8RNuWFzu0Po3+hebU1BhQpKen09zcDIDD4aCxsZHs7Oy+HZSGhkav4fYFONjixhsQybWY+uWJ+NFKMg7IfiFqqgiW0eXd3kRNNzuIKEkcaHTS6PRh0AkMzUolKyJpWq2fZqSoqdcJjMmz4Q+I6HVCUvu8XiW8xx8QIcLh6Qq7HPVh52WN3YjLaQRJ/vjEGemxMRiC5eM6U4BmnzvoxjxcQp6elUpNmxciXgOTXodOZfx6nYDJoFPuR+428Llp9fgwG3RkZ/ZcuMdV0wZz/8fbVYOXfjhnqOq4Uw/315z5l2/anaVATZuHa95Yz/9+OEf1/QJocfk42BKVfB4l7GVbTBSmmamOIWJGs7POoZjW3/pphjh9TB6n3zWvr4ehoaGh0WOoCXfRdJdTM1bpOXRn+blKUJClANGjEhSUwKmp6mKVAjj3fUzahOuSGo+7chn1i36Er2l3zGWc+xeSMf2OpNan0f/QRE2NAYXFYsFoNOLzBdNHa2pqsNvtpKenY7FYerXHpiRJBAIR5XmBgCauaGh0kmQ+T5IksbfeERZiyt0+jIJEulYG2C9w+3zB3oZxl/HL3ue+wKMyTovJQJu7fVyiCF6fD3039WVsdHppPOyM84twoMGB1agLC1kur3JMRkFSvFYCqDo9Iwl9lnSSpFin2+tH8upwuYK9LxtbDeAzERnY46RrwrPRGBQwU1Pb/xqNQcelw+Onue6w8HZ4M26fD4/PL6uUNxl1MfeTFB14xUDQ6uj3gNcFPjdOr5/aNi86gwGLpedCSvLTzJwzLp8Pt8qdKEa9wPUzY7s4S/NtPPe9yVz7xnrZ9C931/OHL3fz69PHqD5ue60y+XxcgbJEbkJhWtKiphp5Vq03pIaGhkZf4G8rU0wTTGkyR2XA1XVRM17pOQTLz6N7b3eGaAFW0JvRmTMQBOUxVaKgoFguVsfu95ISNUVPK9UfXBDTnRoeh70y4bo0+i+aqKkxoBAEgSFDhlBeXh4WNh0OBw6H0nXQG4gRJ4w9EUqgoaFGKKhDEAQMMdw9A5FEnydRkhQ9AMtaBZmj7UjHFxDxixI6QcCoF9D1owspXr9IdAO/6K6ODgF2NfZt3z63LyAblAC49UI4aCbEboeu217f6NcmAOxqbRc1vQFRsf0ah466Tm5fFMWg8zRA0HEpCSBBWV037y+CBAIY9MEEdJ0uKF76/dDWFrxFIkkSRH2G61tQlN67dQK7mtQ/19GvVUCUaPX4qG3zUusM4LZk9PgFxutmlihEzUsmFSUMjbl6xmC+3lvPv1bLXTkPfb6Ty6cOYrRKCE6i5PMQ4wrS+HJ3vep2Jxel0+D0UtkSu9S9vzo1NTQ0NHqbgLsRz6GVGNKGYMqd2OPbi3Zq6lKy0dsG4avf0j6mbig/d5V9EVfck/xOJG8rgrlr1Q7RKep6S2Hwd9mUBjoDiO19kkVXJ5yagKt8EQF3M/qUzLiPd1V8nVDQBPDbqxIu01eI3jZc5YswZo7ulf1xIKKJmhoDDpPJpBA2+wJJksKhRQBGo1Fzamr0OH5RpKrVExQHAJvJQM4RcDKazOfJ7ROpd0SHW+gpGODps05vgAanF0mCtBQDWTGcpw6vn/qIxGKzQUdhWkpvDTMhzW6fokejSa+TlXsLCAzJSu3tocmod3hl6d5GnQ6rWU+zS/57UmAzk5IgjCdZWtw+nFGvTbrZSJYl+F63uJTzSzKTf538fvD5gqnjXq+ExyMQCHSv2K83SKSYBURdAFfAHywfF4KvY77NnGSlhHB4H5YipghIUYFGmanGmBcrvH6ReocXUQqGAjl9ASQJal0B/rimhed+MLyzTzFpzh1XwLTidNZXBnt7mw067j95VFKPfeaiiawua2ZrRPiPKMFr6yr53ZmliuW3qoQEqYmaE1TcmwDpKQbevnYGH22r4Z6PtsUcV65t4P+OaGhoaHQVX8t+Dr19ajicJnvek2RMu61HtxntRjSklaBLySHyqCTgqu2yi9Kx+53EY3EcwtRVUTMqKEhvLQCC5iRdSjZihJMzoVMzVmm+6MO5/2PSxl0d9/G+ZmXJuWBKQ2dMI+BoFzIlnx3R04rOnK5Yvi/xtZZR9focxMOvU86pfyN90s19PKr+hyZqagxITCYTI0eOxOl00tbWRltbm0wQ6S2iRZijnYAo0ezyodcJZGolwT1CTZuX2ogSw3rBS0aqAcMR4BRO9Hlqdvuos3tl01KMugEtagZEiZ119nA/x1q7h1G5VtXPT3mTS9aPDyAjxZgwBbu3qHd4cUaMz6jXkZ5ioMEhf8+K0s0Y9X2zv0qSRI3dI3MGZqQYMBt1in3LZjZ0m6jZ6PTR5pH/Rjm8gbCoWRf12hn0AkOzlCXUkgQeT7B0PPIm//nr2sU1QQCTWcIj+MJJ5BgClKSnkJtmpqrVR51D7vjLTbJ0WRCg1e1T7SEaSZo5/uFpSNxv9oisq/WyusbDjkYfEjCxsOdPSEwGHf+9YTZ/XrKX2jYPNx0zhKnFyZ0EWkwG3rh6OpP/vEQ2/YOt1aqi5qqyJtl9QZAnn4dQEzoBXrpsKqPzbPzwmBQeWbSbJpf6xWDNqamhoaEBbVtelKVtNy3/NWkTb0Rn7Jm2JqLfheiSuzANaUMQorcX8HbJRZmo9Dy8GUc1ZI/t1DYApIBX0SdTb8lv/z9K1EzYUzNOiJJz9/uJRc2mXYppxVesoHXTP2hdP1++LftBTObxcdfX27SufSosaAK0rHlCEzVV0ERNjQGLIAhYrVasViuFhYVIkiQrX+1p/H4/W7a0lwWMHDkSg+Ho/Ui1unzMeeZbKluCgtulU4r4x6VT+3ZQRyC/fXUtC7fLr2ouvHkUxw8f2IFZyXye/vDGet7fIn/uJr2Omt/NUA3nGAh8u6+BHy3aJ5t2xhgdb183QTatvMnJtS/LRRCAR87O47YTet6ZlgxnvL2IJme7YDKtOJ1TRqfx58XyxvNf/XgME0oye3l0QSqanfz4Ffnrfd3MwfxgShG3vr1aNv13Z+Ry59QR3bLdqxZ+wy6VcJb9D04iy2Lk5DcXYY8QPacPzuCT2WPYuhU2bQqmjm/cCFu3gjtxWHby6AOQ2wZ5rZDXwpM3DeHqMzLY0dDCvL8tly1638kj+eWMMfzj4238fYX8c7jx7gkMy7Ymtck7l6xi6YH4JzGLby1lzGD1E7cWl4+T3lyE2x/t7ww6Jkfm9Fw/zUhKMlP5y4WdKwObWJTOrJJMvqtoDk/bWNXK/gYnwyPGX97kZEWUqDk+Pw2LSXmsMWNwJvk2E7UR4vzP547gkklFQNAF/tPjh/H7RepBCXmaqKmhoaGBr0HuaJd8DjxVy0kdelqPbE9NtDOkDwFU+k86a9B1UtRUKz2P7tsJyNyLnUEt0EhvKQz/r0uRJ6AH4oiaUsBLwBE7vMhV9jmitw2dSf2iHqiImnoThoyRGNKKFcsG7FWQ079ETXf1Ktn9gKvrbQiORI5eBUbjiEMQhF4PCopEr9f36vb7Gws2VbC7of1s++V1VfzfOeMpzujbUtMjjW21Dpz+qN5/DS7mjhrY+14yn6e1VW2K5+70B6h3+SlK7z9l2B2hvMWjeE4f7aij0eUnz9bufnt3S61iOYD/7arnjnnJlb32JE6vn8pWudMxPy2VwZlWxbjLWjzMHtY3+2tlq08xnsIMC4MyLYrpFa2ebvtOr1B5nwG+OdDE3BE51NQJUJsLtelQm8HGtmwy79Anyl3qGEY/6UMcXHdOBtOnwz/3b2JZazmCvn1c3z9jPFarnhxPimK8tQ4/er2eWrvyNcy1pSb9WhVkpKq+FpGMzLPFXF+2TU+WxUxVq1LdHV9gw9BHLuCOctHEQpmoCfD+lkPcNW9k+P5bG5Unc9+bXKS6vlSjnhcvncqP3tlIvcPLT44bxh/PHSdb5mcnDufPS/YqehMDsu8bDQ0NjYGC316Ft24DxuxxGDO6fpE34FKWQ7sqvu4xUTOgUl5tSBuCFPAql3XWYcxSD5VLhFrqedr462nd8Ix8Gw5lcnlHiC49h/bycwg6NSORvK1IAR+CXlmh5LcfBMXly4jHBjw49y/EVnpZzGWiE8+NGSMRdHr01kEq2+tffTUlScTXuEM2zZg5uo9G07/RRE0NjaOUqhY3H2+vYVSOlVNG53Z5fdF9vyQJ9jU4NVGzGxFFib0NTsX0XXXKdNwjDbcvwO569UCwsibXgBU1K5pdimkBUeLtjYf4yfHDwtPe3qh+oLVkbwMuX6DPS9ArmpUC0+DMVIaq9M880Kjch3uLcpXXe0hmKoNU9p+qOKEqHcEfEGk8XPIrSUCzBeoyoDaDu7624aw0Qs2Zsse0dnGbWVk+SkudbNHVY89sgYJmyHQwqMDK0/efgiRJ3PvbKpmgOSLHEu7Pm2NRuvZCZcsNTvmJlkEnkJ6S/OFkol6hWalGslS2H8n4ApuqqNkbpefdxcWTCvnlp/KTlQ+2VMtEzQUblGmsl01VnoiFOHd8AQd/fXrMnmu5VjM3HzOUZ5buV85L8JpraGho9DfcVSup/u95wbJsfQr5576BZcS5XVqn6FYGrrkqvu7SOuOhFoRjSCtBVAm36WwCulrpuWBKwzb+GoWo6bfHdkbK1+nCVbYIT/VqDLbB2CZch86QoiqK6i3toqYuNUcxX3Q3yoTP8FhaY/TTjMCx+72YombA3aQo7Q+Jwgab0qnpj2g70B8ItB1E8snPfYxdaA1wJKOJmhoaRyG76uzMeOqbcH++h84s5dend+7KX4hDKieY0cEbGl2jstWt2osulth3JBHZdzKasiYnc4Zm9fKIugc1kQ3g9fUHw6Lm/ganwtEVwu0X+XZfA2eU5qvO7y3UnkdJZirDspWlwGVN6s85EV6/yKryJto8fk4ZldupfpflKtsuyUzFZjaQnmKg1d1eAq4mmnUEtxu2bYMlKwKIiyZCXXrw5m13I8TuFJU8o0bB1KnB27RpMHGin9raTQgC3Ph5HZsb2r+H6w73ojzQ6KLBKf9+njk4M/y/zazHoBPwR3zmGg+LmdE9UrMtHQvJSxQUlUz5+NiCNBapJH1PjNFXsj8yNj+N0jwrOyPaEiw90Ehtm4f8NDO76+ysPdgie8zkonTGFcR/jonei7vnjeC55Qdk7y1AnhYUpKGhMcBoWfM4kjd4GVAKuGla9UiXRc2AU/nb4q1dl1TSdmdQFTXTh6o6HjubgB4sPZdfLrWMOE/V2Rqv3Fv0tuHc/ynOPf/FeeBTmeDmKv+C/PPeVi8/j+PUhGBYkKqo2VYWcyzh7R74DNHnQGdUtsBR66cZEjX1KqJmoJ85Nb2N2xXTTNnjVJbU0ERNDY2jkMe/3isLHPnzkr3cf/IoTDHSZpOhqtWjmNbs1kTN7mRPDPHyaHBqbqlWXrEO0VmRrD9wUMXhCLD8QFO4v97bm+IfZH2+q67PRU01x2lJZgpDVFx5ZU3JOzWbXT4+3VHLR1urWbijNiw6js61suJnJ5DdQXeZ2jhDItug9BRa3e2fpcoknZqSBFVVwd6XGze2/925EwIBACPQ9ZI4kwkmTmwXL6dOhcmTIT3KnOj3Q93h856sFD1E5Kc2On34AiJrDjYr1j8zos+pIAhkW4yy/owhMTNaDFVzdcZDbZ+IZGRu4t6c41WCcmBgiZoAF00q4o9f7QnflyT4cFs1Nx8zlAUq7ux4Ls1kGZJl4arpxby8pt2RkmLQJXTQamhoaPQ3PDXrZPe9dRuQRD+CrnMShyT6ET1NajNwV36LdeT5nVpvPNR6aurTShRtmUC9tDsZHDteV0yzjv4egikdwZCK5G8/NlJzWoqeVhqX/gL7tleQAsrzPQDn3g9x7FxAwKnm1IzdUxNihwWpvTbG7LGykmzJ78R14DOsoy9RLBtP1DTYlL+nAYeyOqIviS49BzDmaKKmGpqoqaFxFLJkr/wqZKvbT0WzK6mTyViolWo2u3o/kf5IJpaouafeSUCU0A/QsJxk2HzoyBQ11US2EK+vP8gvTxsTs/Q8xOc766D7j7M7hLqomUqKUU9hmpnqtvaD4GTer+UHGnn48118tade4SiDoDv5/77YxVMdDGpRG+fgjGDpeXFGCjtq20XNQ21uRFGShVCF3JeR4uWmTdCgbMHVJTIyJKZNE8Li5dSpMG4cGJUtp+KSZVZeqKp3eFWdvzOjgnmyLfLQmcYY5ec5HQyYSSSejUjCqTk+hltxUtHAKT8HuHhioUzUhGAJ+s3HDOWtDT0jagI8cvY4Fu2uDwv3d80biS1B4ryGhoZGf0L0u5ShNqIff+sBjJmd6zUeL4nbXfF1z4iaUT01Bb0ZvSUfya88r+qMU9PXsg/Hnvfl2zClkTr0jGAehXUQ/pa97eNRCQpqWv4b2jb/I+G2Gr+5j9ShpyqmR6af69Scmip9TEH52gCkT7uDhi9vlU1z7H6vw6KmoDehS82Tlaf3t56a6k5NrfxcDe0IRkPjKKOmzaPal3F/o7PToqYoShxq08rPe5pYoqY3IFLe5JKl5h5pbK2O3WWwvAPOv/5GrPJzgNfXVXLFtGJFCWo0W6rbqGpxMyij7/qKqvXUDIlXQ7NSZaLmgSYnkiTFLJPdVWfntOdX4FZptRDJ31eW8eCpozsUcBItaubbTOEy9si+mpIE3mYzC973c2CXMSxg7toVcl92I+nOYPp4fgvkt2AustPw7Ml0R0ZRVopS1Kyze1kTJWoKQjBxPZIci1xBDbk8I0v01ZZLRElm/P10ZE7i36FxBUqnZkaKgeI+/Ax0hpmDMxmUniJrdfDFrnpWljUp3OmzSjIZkcRrkwyDMlLYcs9JfL6rjsEZKRw7THmSqaGhodGf8bfsU53ua9rTaVEzXrJ0T/XVjHYj6tNKEAQdekueYtnO9NRsWfsXkOTHU7axV6IzBH8v9dZCmaip5tRUCxlSI+Csxr5d6QqN7KmpT1X+3sR0akaX5gt6bOOupGnpLxA9zeHJzv0LEf3u8HMKEU/UhKBb0ysTNfu5U1NvwpAxom8G08/RRE0NjaOM5QfUfzgOdEEYqnd48QWUbqr+LGo2Ob24fCJF6eYO9YPrS2KJmgC76+1HtKh5JJaft7h8CoEoku21dn71qbL0pCDNTE2bvPzn8111XD+rpNvHmCwHo8RCnQBFaUGxcVi2hVXlzeF5dk+AJpcvZun4E4v3JhQ0AVw+kfnf7uf3Zyd/1TpaRB6SmYrLFXRf1q0sQFqa0d770m3iyr8nverECCLk2A+Ll62Q1wJ5rQip8u/JUQU29Pru+U5Sc2pWt7kVQnlpno30FLk4Gf3+NLt81NmVaazZHXRqpqcYyUw1xvx9GJWEcJdnM1OUbuZQRNuTacUZA+a7PIROJ3DhxEKeW34gPM0bEPnR2xsVy3aXSzNERqqRH0zp3nVqaGho9Ba+5hiiZvMe1enJEMsxCOBr2ErAUaPa+7GzSGJAEU5jSBsCgM5oRTBaZX0rxQ46NQPOWuxb/y2fKOjImHFn+/ashUQeUUo+O6K3DZ0pWBEhelpUy9515izMg47FtX9h9LOSb85oQ2dqvxCpVn4eiCFqBqJETYNtMDpDKpYR52Pf/h/ZmF1lXyictL5mefK5LiUHfURQkd5WDHXtv7eisxYp4EXQ932PaUmS8DXInZrGzNGdbq1wpNP5BnoaGhoDkmUxRM39XUgkjhWo0V97av5jZRnFD3/B4P/7gh+8sgZfILGA0h/Y0xBb1NxVd+SGBbW6fXGFy7Iml2rvoa6ysqyJ+z7exkOf7+SLXXW0xREgO0O80vMQb6qUoD5x/njFtC92da55fHcR/VwGpadg0AcPMdR6KMZKQG9yenltnXr6ZGaq0hH412X7aUny4ond7aehRo+0Lx9p1Sikj6ez40+zsNlg5kz49OlBsG4EVOSCu2sHtJmZMHcu3HYbnPfzQ3D1N/CzTxGuW4Jw9gaEGfsQhjQoBE2AEdnd48YDdafmsgPBsKVIZkX00wyRreLA3KvyHdTRnpoQv6/myNzkLs7cdry8T+ltJ3S9b2lfcPHEQsU0tYs4l2oCpIaGhkaYWE5NfxdEzeik7GhcBxd3et1qBJzVIMqPAwxp7Reo9an5Uct3zKnZuvFvSAH5OZp19PcwRrj99Fa13pLtYUFqIrFtwg0M+dFBCi54n9Th58Qdg94q/41TCwoS3UoxWZIkRfq5Pr3k8HO4WLG8c897UY8X8TfJx27MGi27r5qAHicoqTcJOGsU/V21kKDYaFKvhsZRxvIDKg2wgbLGzrvdYomayYoNvUmzy8ddH24NO8He21zNu5sOcfk05Q9bf0KSpLhOzV1HcAL61jguTYA2jz+u868zLNvfyNy/LSNSK9UJMHVQBscPz+bM0jzOHpvfJWdYMqJmNNOK07l8ajE/e38LTRGfry921Sn6P/YWkiRR0SJ/LpF9E2MloE+PSNsO8e81Fbh88osMJwzP5qEzSzlheDbnv7iazyME3Ba3n78tP8AvTpUfqLa0wNatsGULbN4cvG3YpIem02XLxd+zEqPTwejRMGVKMLQn9LekJFjSDXDru3UIK+K3EIhkRJKiXjJkqzg1F25XOi5mqoiaWSqfJ7WLJ50VNTcdUraUSDHoKEpLroT8gVNGMTLHyoaqFk4bnccpo3M7PI7+wLyROXGdqxD8DAzWgnw0NDQ0wvhilZ/3kFMTwF2xGFvpZZ1efzTRoh2AIX1I+H+9JR9/6/728XVA1BS9dlo3PKeYnjHzHtn9aNERwO+oDpdp+5p2K+abC2cj6IMXPnNOepLK8q8U4mnkc4hEl5qcU1N01SnWGXKxpgw5DcGUhuRtP4pzlX8la23kby1XPD6y9BxArxYWZK/EmD5U9bn0JqohQVo/zZhooqaGxlGE2xdgrUrqLfSQU7MfBgWtLm+SJb8DLNnX0O9FzUOtHoXYE8nuJBPQRVHiuRUH+GhrDWMLbPzm9DHdKgb2BPFKz0OUNbm69Xk8v+IA0eZPUYJ1lS2sq2zhmaX7uXBCAe9dP6vTwmaFSrhWikEXt/T6B1MGodcJnDY6l7c3tV9Nrnd4WV/VwgwVobCnaXH7sXvkn6lIUXNolopTU6XdhShK/G3ZAcX0x84dx3GHe/794tRRMlFT8uv401t15FeMYPcOPZs3B4XMcmVgJtA1wTczUyleTpgAlgQaZJ1dPSk0Fsn0lEyWYPq5HLUerdEhQaDeK3OXyvdMjrWD6UVAico+AcGQoGSFeUEQuHTqIC7t5rLs3sao13HeuHxeXRe7l1d3l55raGhoDHT8PVJ+Xh93vqticafXrYa/rUwxLSTcAYq+mqKnKeny6Lat/1I4/VKGnIo5f5psmt5WpHhsICIwJ7qEG+SOR2PGCDJmP0Dzit+pjiOynyaAXi39XEVMVks+D7lYdYYUUktOxrn3w/YxOw4FQ6IyhscZt1zUNNgGK7fbS301JdGPY9c7SH4n1tHfR2eWBx36VEKCtOTz2GiipobGUcSag82qvS+ha6JmpYo4A/2zp+bWGqVAFs8B2V9INMZky8//s/Ygt7+/BQj2Yaxp8/DG1TO6PL6eJDlR08m0YqUwo4bXL+Lxi6SlxP4JXJcgnAfgg601LD/QxPHDOxeyUa5SUn/j7CH8LaK/XjQ/mBwUN84ozZeJmgCf7azrE1FTNVE8IgxmWJa6UzOaz3bWKkLMphWnc+zQLAIB2LcPGjbnULJjMuW7jVCfBk1WmiQdN3dr70sJsuyQ28qsGTp+c2URU6ZAs76Vf6wux2LUc/YJw5MOZoruQ2k16TEbdDQ61b8fR3Zjb1y1nprR6HUCU1U+O2oXCdS+h7qz/Lw7Bd2BxEWTimKKmjoBvj9ZEzU1NDQ0IvFFhNtE4m890Om+iGICUdPfshdfa1m3OfnU0r0jnZq6KJcjBIVXg4rDMBIp4KNl3XzF9MwZdyu3Z1URNZ3tYUFqInF0EFPmjLuxb39VtfQ/2gkq6E0IRhuSr/0iqVpQkCIkCDBEvO4pg46TiZoAnqrl7aKmakiQvKpH3anZ8wnokiRR88HFuMo+A6B59WMUX71O1nvUq+LU1MrPY6P11NTQOIpYtl+99Bygus2Dy9e5WN+B1FNTTSAbEKJmnH6aEBT1PP7E79/r6+X9Ct/aWNVhJ1lvk6j8HJIPC/rnqjIyfvUpWb/+lNvf36zai9PlC7AzSefryrLYn6lERIfrANxx4nBSDOo/zTMGZzAyNyj6nFGqTMX8fGfHUzG7AzVRM5FTs0zlIsrflgfdsZLdjHQgD2nNCFK/nMGsWQJpaTBmDHzvewLlnwyFXYOgMQ2krh3GpKWLzJsHP/sZPP+CCFd9A7d/inDDYoTz11F4agXnnQeSzckpzy/n2aX7efzrPcz727Kk22vURn2+CtLMnDRS6VQI0Z3CXmYSoubEwjRSjUpHp1pPzd3dJWrGcWoejZw5Ji/m5/7kUbkUHA7d0tDQ0NA4HLDTqnQ5Hp6Jr2W/+rwEJHJqQrAEvbtQdyNGODVTVRLQkyhBt+9aoAjZMeVNJWXIqYplVcvP7RE9NaPKzwWjFX2UECoYzOSe8ozqWKLLz0Hp1gyo9NRUFTUjXhtz0XGK+e6qFRHjjp98DqiKw/5eEDU9VcvDgiYEhfi2bS/LlokOCULQYcyUi7Ia7WhOTQ2No4gVZeohQSHKmpyMzU/r8HoPtaiLYv3SqXlIKZCVN7tw+wKkqJzY9xcSCa+iBPsanIwriP/+ba2Wi3WSBJ/uqOXamX2XnJ2IzVG990x6Hd6ocKdkRM1Gp5fb39+C53B591+XHeC88QWcWSo/4NpW04YYpXVOGZSOUSewJsrBqeb8TZboJG6TXsfIHCsXTCjkrY3Kg6rIpOKSzFTG5dvYXtv+fi4/0ESb2x/XgdoTJBI1rWYDuVYT9Y52x2JZk4vm5mDfy82bYfkaHx9/Ngrqp8lCepZ10xh1OkgrdNOS1gB5rcFbbivbHz+R4rCrVMdvKl3UOdovDlS2Bp/bo1/toSHCWbm3wcnvF+3mTyqhTdHUOeROzXybmZNH5fLe5mrFsoIAw7K7r3eiUS+QlWqU9V+NRq2fJnTAqdnB9HPQnJrRWM0GzijN48Otyn6nWum5hsaRgehpoXn1Y9h3vIFgtJB94h8Vac0ayeFvq1AE7MjmN+/BlF3a4fWqlUFH46r4mrQJ13V43WqoCncRJdFqgmAiUVOSJFrW/FkxPWPmPartkuIFBUmSpHBfGjNHqa4ndcipWMdcimPXW7LpBpvy/EKXkgURpfeiS8WpqSb4prevy5w/DUFvRgq0n4O6Dy0P/6/sBSpgzJA7TPVWZeuxgF09rBLA7wePJ3jzetv/j755vcFl/X4IBJT/t+6opW3/jxBFPX7RgCjqEdbbsJS2L9fw3fmIvlORJAFJEtClZGOrNAcv/ksQCOjIzs5m3rxmrNaBEXjbk2iipobGUYIkSTFDgkIcaHR1StSM3VPTJ2va3NeIoqQqQkmHBcHxhR1/7r3F3iTcpLvqHHFFzWaXT/W9+mRbTb8VNWvbPApR6KSRObK+igDlKj0ao1lT0RwWNEMs3F6rEDU3VikDTG4/YTjXzSwh7cGFsp6X25JwkcYiWgwcnJmCTidw5fRidVEzqgT1jNI8majpFyW+3lvPBROUV907iiRJrC5vptbu4eRRudjMsQ8XKpqV+1RJRrto1dQEOU0F1O0QoCENGmxsaEwnS1YFZQRiuxc7QkkJTJoEEye2/x07Fs5/eT1f7m53YRj1AkXpcgdccUaKbH+ravVQ0+bh398pS8SeXrqPH84Zwpg8m2JeCF9AVJSZ51lNnBoj1KYkIxWzoXsvruRaTfFFTZV+mqDeU1Ot36vacomI5dQclXt0ipoAF00sUoiaBp3AJZOUpYEaGhoDB0kMYN/2Co3Lf40YIUjVLbySlB9WoE/J7LvBDVBiJZ+H6GxfzUBU+rnOkg9+D6K3/YK2u+Lrbju3iRY19dYiBEP7cYmqqOmKL2q6DvwPX8NW2TRD+nCsoy9RXV5nzlSIgwFH8KKr6KpH9DTLlo/nFsye+ziug4vD+7lgtGIZeYFym6lKp2b0a5rIqSkYzJgKZuKuXIbHl4Ldk4a9zk3dd624/ensX56Ds/lcXD4LTq8Fr64E85NmnE5wOMDpBKczg7pNb+J0m3F7Lbh8FjxSLn6zulgpdpt2ePHhWzxuV05aGHlHBwzn2GNbmD+/831kjxQ0UVND4yhhV51D5pRSo7N9NWOJmqIEdk+g151jsShrcilCgkLsrnf0a1EzUfk5qId4RLIthqvws111eP0iphjlj32JWruAOUOzWHOwWSYWJePUrFEps19T0ayYpiZqThmUjl4nMDbfxoaI+dtq2zp1cCuKEgejetGG3GtnleYr3HUzB2cwPKo094wxecz/Vl5i9fnOum4RNe/8cCtPH173+AIbK24/MebnOFRGL7mMh0XLNF74g41f7IFt2+DQIYCpsseod/btGDqLDzG7BXLbDt9aefHWEdw4V93ZFt3DtDg9RRFKMyg9Rfb+1to9PLlkr0IMB/AFJO75cBsf3jQ75hgbVL5z82xmSvNsFKWbOdQq3ye7s59miHybSbVsPMSsDjg1u7JcJEVpZvQ6gUCUJbonnv9A4bzx+YrX5Iwxef0+yE1DQyM27qrlNCy+E2/tesU8KeDBU70Ky7Az+2BkA5tYyefh+Z0VNaPKoPWWfIzpw3Hu+6h9GcchfE07MXVDEnW0GzEUhBO5/WhEZ51iWiQta55QTMuYcSeCTv0YThAE9NZB8pR1R/DCutrraMgapZgWnmcbxKDLvqV59WNIATeZM+9VFe31KdlIErh9qbS6MmlxZlGx2IXdZaG1FdraoGLxCbQ0TMHuTsPuTsfhzyHwmTU8v7UVWps+oc1uxC9GXFz9Q+if/ygH+Lri2QPqYu9AYcWKDKqqTEyblnjZI5n+oTRoaGj0OMsPxC89h86Jmr6AqCoWhWh2+/qNqBmvVDjeSX9fI0kSe+rl702e1aRwMO5K8BxiiZqtbj9L9zdySgz3WF+ypVopME4sTGNoVmqHRc3qVuV+ur6yBV9AxKhvF3Q3RYmaOgHGH3bATihMk4ledk+AimYXQ1TCcOJR5/AqhLJQybbJoONP54/n5rc2hrevVuY8b2SOohQ/2sHaGfbWO3hmafvB7bYaO08s2ctDZwZLuerqgmXj27YFbx98MQLp4HhwtrsLXlzU5WGEsViCKeMTJ8rdl/+rqOamtzbIln1u3R5VUVOSJIUzVs0tGB3+I0nw9NLYvbk+3l7D/3bUctZY5YkHQK1dTdQ0IQgCp4zK5bWocJjhPVB+nRenPNxs0DGxMF11nlpPzWjSUwyduhhi0OsYlG6WuXx1Agzt4OfoSCLXauaek0byx6+CJ5EmvY7/O7vrJ80aGhq9T8BZR8M39+DY8UaC5fqmF/ZAx9+sHhIUojOipiRJCsFQn5JLypBTZKImBN2aXRU1RU8Lkld+vBnpRISO99R0Vy7FXfmtbJouNRfb+GvjjkVvLZSJmv7DTk3VBPEop6bLBfX1waqc4G04TU0vBP9fFpzW3Bw5HxpqnqOl9SW8gYhqmcejt/TzuGMOcvQeM4QwmUQsFq38vH8oDRoaGj3OsgSl56Ae3pGImjYPKlkrYZpdPll/vb5ETSALsbs+uWCYvqDO7qXN45dNO3lULu9vOSRLs9+d0KkZe/7H22v6qaipFGInFqUxNMvC+sr297Pe4cXh8WONUyZd3aYUNd1+ka3VbeH0Z0mS2BTVw7M0zxYOUhmvUt6/tbqtw6Jmoj6UN8wqYUyelVVlzZw+Jo/Jg5TCk8Vk4MQR2bKS6j31DvY1OBjRBXHsi111wRIbpxkabNCQxlPfWlj8B4lt2wTqFX30k0udT4ggQrYDclq59qwMLj7ZxqRJMHx4sCdmNFfnF/PQ5ztlvUnXHmzhu/JmZg3JlC1b7/AqSqfVvpcGpSsTzdVcmpHc+cEWTh19kkwYD1HnUO5zIZFRTdTsKadmLKYUpccUJdPMBgw6AX90g9kIOhMSFGJiYbpM1BxfkNYv3eK9ycNnljKrJJPNh1q5aGIhUwZ102dLQ0Oj13Dseof6r+9AdCW+yKiJmp3D1xr7YiOAv6kToqbfiRSQV9DoU3NJLTlJsayr4mvSp9za4W1EouY2jUw+h1jl57H3q+bVjymmpU/9KTpj/GMLvS3Y5sQXMNDsyKHRkcu+RS7KV5o4uPGHNDlyaXTk0OTIxfnBOTS2BYXM+vpgKXfHUb+YqtExMjL8/OxnB8nO9ide+AhHEzU1NI4Sop2aFqMeg16g1d3+RdgZp2as0vMQ/SksKF6K9p66/uvUVCs9L823MSrHKuupuCvBc9gex6n6ybYanrxgQucH2UNEi5pmg45ROVZVl115sytuT9HoFOoQ31U0h0XNgy1uRf/BKRGC4gSVFgVba+ycPa4g9pNQITokCKAks11QEwSBE4bncMLw+H0mzxiTJxM1IRgYlKyo6ffDgQOwY0f77YNvcqHiTFlgTxvwTVJrTAYJMpzocu2IOa3h0nGyHAgGkVG5Vv5138mqQmYkRr2O204Yzn0fb5NNf275AWYNmSqbpvbdpipqZihFzWhSDDqZQLqzzsFflx3g53NHKJatU3Fq5tuCzoRzxxVgM+uxe9pbYpzbwf0oGXLjODVjhQRBcB/MthhV3aYhOtNPM8Rd80bw1Z56PH4RnQAPnBK7pO1owajXccmkIq2PpobGACTgrKX+65/h3P1e0o9JRvjUUOJvjl9+7m8rR/S70RkS/6aHUEs+16XmYswej95SQMDZ3vPYXbEESRIRhM5fiPPUrFVMM0S5IHUpOSDoQGo/5oglhHuqv8NV9rlsmmBKRzfyp+zdC9XVUFPT/lf2f/kz1Dc+T5s7s/3BjwNcfvh2ZCMIIhaTgxSjk1STE2tOESmWFMxmMJvBZCL8fzI3kwmMRtDrwWBo/6sT/DQuugGd2IZB50ev86PXBcJ/DXqRQd//lLaVD+KrWYqAhCAEb8VXrkRvsiAIwQv9gYCf5uaNGDQ1D9BETQ2No4IGh5cdtXKX3uwhmTS7fLJS2gNJlPBGM5BETTXXX4j+XH6uljg8KtfC6Dy5qFnd5ombfh2r/ByCz39XnT1u6ElvI0mSwl07Lt+GQa9jqIqoWdYUX9RUc2pCUNT84ZyhgHo/zUlFEaKmyvo7ExaUyKmZLMcOy1JM26ni2G1rg5075eLljh2we3cwpVFO9+wDOh2MHAnjx0NuiYcX922F7DbIdiAYA0gEuxlFc+txQxW9LmNxw6wSfv2/HTI35ZsbKnnigvGyXoQvrCxTPFZtHypWcWpGMmNwBjcfM4Rb390sm/7Q5zu5anoxeTZ58JCakJ532DmZn2bmP1dM556PtuLyiTxwyihVR25XyY8aUyTxRE0I9suMK2p2Ivk8xKmj89hw1zxWlDUxuSiN6YPjj0VDQ0Ojv2Lf+RYNX9+BGNWTMYRgSiNj2u00r/qDbLrm1Ow4kiQl7KkJEv6WfZhylK17YiGqiJr61FwEQSCl5CQcOxe0L+tpwlu3EXN+5xsZeqq/U0wzF86U3Rd0enSpubKAqYCzFo8HqqrkQuXeb/ZSVfYM9W0Fh2/51DtKcP40md9pZZl7f8RggPR0SEtr/5vi3UKKbwe2lFas5jasZgfWDCsmfxkWs4MUo4tUk5OhFzxHWm4eFkuwrZHVGvzr3/0C9uW3E9kav+DC/2IZfk63j991cDnVlQviLpOf/yUNGZ8S0LX3WzWkDaVkktxt6/fDxo3dPsQBiyZqamgcBawoU5aeHzcsm+01bTJRs97hxe7xx006jqayJYGo6e4foqY/ILI9Tvn1wRY3Tq8fi6n/fS2qipo5Vkbn2gB5Wu7ueruqONDq9qmmVEfy8bYa7prXf0TN8iaXzMUGwX6aoN5770ACp7FaT00IipohokvPQe7UHJ5tIdWow+VrF9Hi9WqNhZqoOaQTomZphAgtSYA9hW+/1vHsHrl4WVkZex1dRhAh0wk5wcCeC0608vBVxYwZA6mHn1KrW8dLv0o8CItRz/UzSxIuFyLHauKyKYN4Ze3B8DS3X+Tf31Vw17yRQPDz88qag7LH6QQ4Y4yyrCuRU/O+k0dxyaQinl9RJhPAW9x+fvW/Hbzw/Smy5aP73oJcZLxwYiEXTux6sFM88uKUn8cKCQqRqK9mV8rPIeg4L83vP985GhoaGh2lec2faVr6i5jzraWXkT33T+gt+TSv/iNI7cc1gQShLxpKRHeDohelGr7mPR0SNdWcmvrUYFumlMFyURPouqhZIxc1BUMqhqwJ1NYGj9kqK4PC5fZPf03VISM1rUXUtBRT0zqYpqvU1ti/HZU6HWRlQWYmZFhasHhWk2FpJj21iQxLM4UTT6Rw3LGkpYGh8TPEHY9jS2nDam7DltLKiIv/SvaEi4jO5Wzbupb6L34Yd9uCwcLQC3IUjwVw5BTgiJrub+uZg2bX/k8TLuPc+yGBqOR3Y864HhnPkUT/O3vX0NDodpaphAQdPywLl0+ZBL6/0SlzpiUisVOzf/T52NPgkAWqqLG3oWPPvbfY26AU60blWhmTpywx3lXnUBU14wm6IT7ZVhMWgvoDas7aCYdDTVSdmipCYSSxAq22VLeFBe3okCCQi5o6ncC4/DTWVbaEp22raUMUpaTdhQAVKq7oZJ2abjfsOSxabt9uwvjZDLx1Fmi0gc/AEmBJ0iPpADqR4qEBjp1hZPz4oAOz2ljPz79ZhWBo/2ydddEkpsi1PdJTjBw7NEv1AkskD59VSlYHhbJbjxsmEzUBnl9Rxs9PHIFOJ/D7L3YpUravmj5YkSYP6j01Q4zKtXLJpCL0OoG/XDiBk59bIZv/z1Xl3H78cCZGfIeoOjW74G7sDLG2ZzXpGZtAUMxOjT/W7F5+LhoaGhr9CUn006LSxxBAbykk59RnsY68oH1aah4BZ3X4fsClOTU7ik+l9NyUP02RMO/vYFiQmlNTlxpsAWTKnaiY52+J39czGq8XDh6E8nKoKHOz9d2zqGm+gZrWQdS0DKLGPpzauwz4FF6QWzq0nZ7GYIDc3PZbXh7k5ARvIdEyK0t5S0sjLCq6D+3k0IJzZevNnPMbsuYcC0DjsqW0+OWBR7a8ElVRMmXQsQnHbMwaHbNVgME2WDEt4OgZUdNZ9pl8gqADnQEC7RfA7bveUjzO2MVQqqMBTdTU0DgKWKEias4ZmsUeFbHsQAdFzUMtsZPPof+Un8frpxliT72jX4qa0U7N9BQDuVZTTFFTjXil5yG+3d9Ii8tHRmrn++R1J5tjJJ+DuqhZHqd9gi8gUq/imgMIiBIbqlo5blg2G6taZPOyLUaF0DWhUC5qOrwByptdDMtOPuSlIsrhnJ5ikL3ugQCUlcGuXcES8V272v8vKyMY5AMEC7iVad9dQh+ATEfQeZljDzswyXQwdUIeb998THjRZ5e2yQRNiC3OvnLFNG55ZxMbq1pIMxvIs5nJs5rIs5nIt5k5szSfk0fF7yGqxuwhmUwvzpC9J3vqHSzaXcfQLAuvrpMLnnqdwK9OGx29GiAoAMYKx7l73gj0h4XreSNz+cHkIt7edCg8X5LgjQ2VPBLxHVIfI/28N4m1venFGeHnE4scayKnZv/4rtDQ0Oh/eOs30/DN/YieJtKn/pS0cVf39ZC6HW/9FkRvi2K6bdzVZM97An1Ktmy63hIlampOzQ7jb1Emn6cOPUMhavo6GBak7tQMlmUbM4Yr5vkiRE1JgoaGoGAZ61ZdTUSwagrwB8U6+4LMTMjL8ZAuriHb2kCWtZ4sawN5hSmkSxvIttaTbQtOG37STQw59V5VcbEj6FOzFdNEd/tFb3+UUxHAkKZexWPIHI0uNS9uf1pj1pjYY7Epj6H99qqYy3cWf1sFvvotsmnmwmMQDKm4K75qnxhQHjeasjWnZiJ6TdRsampi7969HDx4kObmZpxOJzqdDqvVSkZGBsOGDWPEiBHYbFoZkoZGd+L1i6wub5ZNm1CQRpbFxHAVEaajYUH9qafm6+sOsnB7LbOGZPKT44bJ0ojj9dMM0V/7akaLmqNyrAiCoNr/MlaKu1ry+QnDs1m6v13w9osSn++q4wdTulkk6yRqQvSkoqComWMxYTHqcUa4jcuaYu+7aoEtkXxX0czUQemKfWBKUTpC1NFbrAT0joia5U2ucLk4TVasgRzuuadduNy7F5Wr9d1Lbi6MHdt+Gz1G4pr/fUOruZVYve8/21VHdaubwvQUJEliyV5l/7DIwKNIRuZaWfTjxFfUO4ogCNx63DB++La8udDzK8qwGPVE65PXzBjM6Bi9Y3U6gaJ0s6JVQ0GameuiyuL/eN54magJsCPqcxbt1ExPMWA26BM+p+4kP4abMlE/TSCha7ar5ecaGhpHJpLop+aDS/C3BfsZ1392I6bs8ZgLpvfxyLoXtb6IWcc9TObsB1SX10WlWQdctUiSpDjOONoJuJtw7v8EJAnr6O/J0rvV+mmmlpxMy9o/g9heHebroFNTPSgoeKHVr8/jQNMkKutyqWoqoappCDUfTKf+ycPOywpwdTyWoMdItzopGmyhoAAKCqCwUP439H9+fjDYJuCyU/7CyfKVCHpZqwSAnJIhXRY04XAAUhSBiH60/raKqKGkoEtV7/spCAIpRXNw7vso5vaMWeoXsgH0lgLFcw30gKjpPPC5YlrqsDMRdEa5qKmCURM1E9Jjoqbf72f58uUsWrSIVatWUV6uVNyjEQSB0aNHc+yxx3Laaacxc+bMhI/R0NCIz/rKFllSL7SHiwxTcbt1NCwooajZSz01X193kKtfD16lfX19JYdaPTx2bvuPQDJOzf4oajY6vYo07lG5QYdmYZpZkZ68O4ZTUy35/J6TRspETQiWoPcXUTNaiE4zG8IuQEEQGJqVKgtKKouz71a3xd9P11Q0c9zQbIUAphbcop6A3sa545XJ1aGr95GOy527JCqXzIYmK/iDP8NVwJ/jjrBz6HQwYoRcvBw7FkpLg6JmJOsOttC2pFUW3iMIkc6CoKv1jQ2V3Dl3JP/+roJ3N8tFPYNOYJhKv9Oe5vKpg7jno620uNtPaD7cWk2039IQx6UZojgjVSFq/uyE4aQY5WLksGwLeVaTrG/mngb55y+6p2a80J6eIttiUryPkJyombCnplZ+rqGhoYKnZl1Y0Azh2PX2EShqrlZMSx1+dszl9dHCTMCL5G1FMGd099AGLKK3jer3zgo7L9u2vEjR979E0AV/g9WSz41ZozGkD5OVnHdE1BRFOFgeYPve4znYOJyKhmEcbBxG7Ttj2V8GlZUCkqRMK+9NdEKA3LQaCjKqGDpuBCUjs8nPasS891fk2Q6Rm1ZDblotuRmNjPrhBgzpQ5Jfd0o26E1yl6CkbFFmzIx//JT09swZilR30R1hsmiV60aG9JK4wr950HEJRM3YTk1Bp0dvLSRgby8599sPxlw+Ek/NWvz2KlKHnobOEL+FlOuAsp+m5fB3RdOyX8Z9rFZ+nphuFzXr6+t54403WLBgAQ0N7Yq7dPhoOrRDShFH14IgIEkSkiSxa9cudu3axcsvv8zgwYO59NJLueKKKzQHp4ZGJ1leptZPM2j7V3OWJQpbiSZRUFBLLzk1//Dlbtn9+d/u48FTR5GeEjwpjxbIsi1G2jx+fIH276I9MQTBvkQtJGhkbvB9EwSB0blW1le2l2nvqneoXvWPDrMZmpXKWaX5pKcYaI0QghbuqCUgSgnLUnsatWCniYVpsucVLWpWtbrx+kVMBqXNMFbyeYjvKprZeEhZQjZZpR1BdAK6JMHanS5WpAQdlnv3BntehoTMJkUbSQHo5hMYox+y7eHbTWdncedFBYwaFbwKnwxf7VG6Ln9y3DD+uuyAbNp/1hzkjDH53Pb+ZsXy35tc1CftC6xmA9fNKuHpb9vLwVQqyLl+VgkjcpRtGyKZUJjGyojenzaznh8fO1R12VG5VrmoGfX5i3YI93Y/TQiW2+daTAqBNVFIECTuqamVn2toaKjhV3HT+Zp29sFIepZoUVMwWDDlTIi5vN6iDKgLOGuDIk8/I+CoIeCqw5gzoVedpK0bnpWVknuqluPc9yHWURcDSqemoDejtxVjzBwtEzUD9oOIPic6owVJgsZG2L9f/XbgAHi9fVcOnpbSSvGwNIqLBYqLobgYBg0K/s10f0jKzp+Rm1aDQR8UGvPPewvrqIuoW/Qg9ryXZOuyTbyxQ4ImBM8nDJYixYWIaIyZozr2xGJuT4cuJVvWx1R0BY9BJdEvExgB9Gnqx2AhUgYdF3e+Mas07nyDrVi2zWScmo3LfkXLd48fHt8Qiq9arWg3EUIKeHGVy92YeksBprxgA3pdaq5qT1cAvbUIfUpmwvEc7XSbqNnU1MTf//533njjDTye4MmjFG0LODzNbDaTlpaGTqfD5XLhcDjCy0Y+5uDBgzz55JM8//zzXHXVVfzwhz8kLU3pkNHQ0IjN8v3KYI7jhwe/dG1mg8Jp1JHyc5cvoHARRtMbQUG76+yK8mqPX+SDrdVcM6MEjz+gcGFOLkrnUKubnRFCZl86NRudXv62/ADVrR6umTGYY4YG3bSxks9DjMmzyUTNZpePeoeXvAhHmN3jV7gYxxekYTLoOHNMnqyEtt7hZXV5E8cOU/9h7i12NzgVwU7RDskhUY5ASYKDLS5V0aomgai5q87Bt/uUFwBCIUGBQLC8aM8e2L07FcPS8fgaLdBsgWYrb/kMKFt7dy+CAEOGwJgxwdu4cUHXpZTVxumvLZaVBFknDGfCBKVzNB6L9ygPqO6cO4Jv9zXKUuE3VLVyzj9XyhLgAYrSzcy/UNlMv7e49dhhMlEzGqNe4JenJnYZ/OyE4fx38yEanMHvtqcvmhSzDHtUrlUWfuTyiRxq9TAoIwVfQFR8P+b3cj/NEIXpZtn3fGaqkZEqQUnRJOypqTk1NTQ0VPC3Kr+LfU27+mAkPYfoacXXuEM2zVQwHUEX+/Ra4dSEoHAYpzy2L2jb+m/qv/wpiD7MhbMp/N7nshLwnkL0ttGybr5iumPPB2FRM1owN6QPQxB0GDJGUdNSRFn9SPbXjaKsfhS1X/nYVwH79kFr4sD0HiEtDYYODR6/DRkCgwvtpO66nYLMSgozqijIqCS3dC6FF32g+njHXoHaGrnIFnDW4aldj33bf+QLC3oyZ97bqXHqrYVxRU29pQCduftyB/RRombgsFMzYK9SuERj9dMMYc6fjqA3IwXUj/UTOUyj+2qKnmZEnwOdUf0iuGP3u2FBEyDQVk7rxufIOkbdcemuWobkk5+npg47MxxelFpyMo5db6uPXXNpJkW3iJpvvPEGTz31FG1tbTJRMicnhzlz5jBu3DjGjBlDaWkp2dnZGI3yg2S/3091dTXl5eVs2bKFjRs3smrVKuz24JvvcDj4xz/+wYIFC7jtttu4+uqrtd4jGhpJIEmSwqmZZzXJTmaHZVtkJ7sdcWoeSlB6DtDkit/LsDv4YGuN6vQF66u4ZkYJO2sdivTj8QVp2EwGmahZ1erG4fFjNfduhpooSlzy7+/45rCo9tLqcr669TjmDM1SFVpD5ecAo3OVP7i76hwyUXNHrbKf5riCoPv93PEFir6AH2+v6TFRs87u4df/28mGyhbOm1DAL08drfp9riYwRoc4qSagN6mLmomcmgBvr61GqrdBsxVarAgtVn6xJYP9+4JX8dt7XApAz6XEFxXB6NFB4TLy78iRkKLSrtLls6DTycuLd9Wp91b1B0R21zsoyUzFFrGf+wIi3+yXOzWHZKYyPNvCNTMGc+/H22TzosuzdQK8ftV08tN6v7w6RGm+jVNG5fKVijgLcNPsIQxNou/ppKJ0ttx7MssPNDKxMC1m/02AkSr72u56O4MyUlSDqXL7oPwc4LzxBWw+1O7WvmJacVLHUdlaT00NDY1O4Gs5oDJtH1LAh6A/Mhzentq1ENXkJKVwdtzHxHJq9idEv5vG/2fvvMPjqM4ufqZs39Wq92pLsi333rGxwXQDppPQAoFACJCQAEkghISQQEJIgI9QAwESIKHYdGMwNu69W5Zl9d612l5m5vtjvWV2ZovKSrJ9f8+jR9o7d2aupJV29sx53/PdgwDvvehxtu5E34EXkDjr53E/d9/Bl0RlyD7sNZ9D4NzgPG40NtGo6zwLtR3FqO0sRqNtIRqeBqoq/wSbIx6NfMLDMDxyc2m/YJmfD+TlQfTYGGLCtdV8h7Y1/xaNqTJmhj+HVnqD2t1TAdPuv/h/Rz7046+FInFg16eMPividnaIhffQvpqctRmco1fSTxNAVOcpxaqgzJgJZ/NWyTZGmxlVjGX1OZIxztIEWqZs3WNpQufXd0nGnc3bwh7fXrtWMqYpPC/wdf45YUVNEhIUG4N6597Q0IBf/OIXOHDggF/MTE1NxeWXX44VK1Zg8uTJsS2CZZGbm4vc3FwsWOC1D3s8HuzZsweffvopvvzyS5jNZphMJjzxxBP49NNP8cQTT2Ds2Pi9qSQQTgcaeu1o6ROLOQsKk0RvZouStdjV0Ot/bHJ40GNzRQ2IAKL30wTCOzVDW1IMhjWHW2THvzregS6rC4fDpGgrWRooF4+f6LJiavbwlgF9crTNL2gCgMPD4473D2DPfWehKoqoKRcWdLzD4nfjAvLJ576wmwvGp0v67X12tB1/uCA+L6J3f3jIL6LubOgFzwO/WSG+aPDwAv76nbR0bXqO+KJErn1CuL6arWan93u0qgCT1vvRd9JpadIBvVrYLWKRVAAgbes9RKhdQJIVSLIAiVY8cnU2LlucgJIS7139/qBRMChI1Ij64VbICNm13Tac9/J2VHZakaJV4P2bZmHJWG9jzT2NJlFvVgBYVpwKiqJw/YwcPPjZUdlybh+PrhjnP9ZIcueCAllRU8nQ+FUMLk0fGQYVLp8c+QIfAIpTpc/BE502LBkrDQkCRqb8HAB+vbwEZieHzdVdmJOfhMfPj1yK5SNqT00iahIIBBk8JhnXPO+B21QF5WniPHK2SPtpqjJnR9yH0co4NUdZArrHVAXeKa7ystV8HndRk3fbYNrzDHieQospF3WdY1HbUYy6zrGo6yxG49+cqK7XwuEIV5Ex9GK5UgkUFgJFRUBeSj2S+15ETlI9spPqkZ3UgPEX3Yfk2ff265jO1t2SsUjPG7nnTN/+50X9KAEAFAPj7Af7tRbReXSRr3mGqvQ8cLwxcLYEhEDBY4dp91NQpkorfqI5NQFAnTVfVtSM1E/TByMjanoszZJ9BYFHx9pbJX8fAODqOCAZ82GrCemnSdHQ5J/jf6jOXxZ2X+LUjI0Bi5qrV6/G73//e9hsNgiCgIkTJ+K2227DueeeC5YdvMuJZVnMnTsXc+fOxcMPP4yPPvoIb731FqqqqnDgwAFceeWVePjhh3HFFVcM+lwEwunKjpDUcwD+smYfcm632h57TKJmtH6agHz6+bF2M657ey8ONPdhWXEq3r5+OjIT5BOTo9FudmJrnfTFBfCKYx8dbkF1l9R9OinLIAkRAbxBO+FEzSaTHeuOd2Ld8Q5sre0GQ1P4zbmluHFW9BfbSDy9sUoydqjFjOe21OBEyNq1CgaZQW640jQZp2aIECqXfO4TNdP0KszLTxKV0B5s6cPhlj5MkuknORjazE68HxIs86f1lbhlTh6y9IGL0a/q7KjuFouT49J0mF8gdo+GPncFAThS48QO3uus9PVJqqkBth0sBjomANzwJU/rdPKOy1ePH8Xrh8S/85u+l4fBaIKlaXqRqFnXa4fDzYnCbX67tsLv/O2yuXHFv3bjwP1LkGPU4FsZIXBpsfcuelaCGueWpmFthfwbr+Ulqf0SDOPJyomZyE5QS2643D6/ALmJkZu4D4SSVOlNBV9YUGg/TWBkgoIAQKtk8exl/W8NEKmnpoKhoFcNb5I7gUA4NfD01cqOu7srTh9RUyYkSBXFqUlrZJya9tHl1PSYmyRjzpYd/v6UQ4XF4i0Lr6gAjh0DDm9vwLEjn6G6vRQO9/AEDlIUkJsLFBUJSLO/jbyUauQl1yI3pQYlU4sw9ZbXQZ9s0+7qtqPpzb+I9uct0hvw0XC2yYiaGeHDkeXcvRJBE0DyoicG9bfF6jIjbh+qkCAf+gnfh6Vc7Fjt2/cc9GU3SdcWpacm4A0Lwh6pUzeW1g5sSPk5AElfT9/6wiWVc7Y2eKytkp+jp68e7m6xg0aVNR+MOvB+XJFQADaxWNQT1r+NODVjYsDq40MPPQQAyM/Px89//nOsWLFiyBYVikqlwrXXXotrr70Wn376KZ577jnU1dXhkUceIaImgRCBHfVSsW9uvljULJJxu9V02zA9xyvsCYKAyk4rjndYcU5JqkgkkXNqqlgazqC0dZPDDZ4XQAcFzzz0WTkONHvdk+tPdOIvG6vwl0vCN1aPxCdH2ySpvsG8t78ZWoX0jffEDAMcbulFQWi5d1WnFf+3tRbrKjokYTsAcOt/D2BOfiLGpw+s3+/2uh5JArmPR9dWgILYyVqcqhO5W+XKz0MDj47KJL9PSA+IMReVZYhETQC4d/VhfP2j+bJO2m213dhe34N5+Un9KlP/vFz6u3J4ePz683L88+opALzp2q8flYqwvzqnBDRFobs7IFTuLzdA+GZSwHVp0uAvHhZ/kewNAAMTzaOidgGJViDRimWztLhheTLGjvWWimdlAXJG5D+VS7+/3MTBra80XY+vjgdER0Hw9mP1CdOCIODLCvEbp26bGz94bz++uG2erKh5dnFAZb1hZq6sqJlhUOGt66aPeLCUDwVD40cLCvCbLwOBFGqWxkNnD63DwIecU9PnrpZ1ao5QT82BEqmnZopWSVoBEQgECQLnhsdcL7vtdOmrKQgCnK27RGOMLguMPjfifnKuO36UOTXlxBzwbjhbtkGTv7xfx+J5oLHRK1oeOWDB7rW1qG1MQ3VHGVq7Q2WI2CoI+ktysveabMwYr+My+CM/3+vG5OxdqH/pVtF++tyxfkETANiEAnjbDwUuZGUdyRGQe96wCUWyzwsftEIHitVC8IRvD6YtvgwJM+7r11pCYXRSYS8YRdLQXkdp8pdDk38u7PXr/GMC54T50CuSuWxCDE7N7Pmy4zE5NXXyTs1gXB0H0R0lpdzVcUAiatpkSs+1QaXnPjT558AsI2oqU4ioGQsDFjV1Oh1+/OMf44YbbpD0yIwnF198MS644AK89dZbeP7554ftvATCqcjOEKcmRQGzchNFY0UyYRE1Qe7AF7bW4icfHQYAZCeoceD+Jf5wiGaT9E37+HS9X7AEvAnEFpfHn0IOAN9UigUUOUElVtYcbo24/dsTnZK+cDlGNZK0SllBMFjUPNZuxoy/fgeHRyp++uB4Ae8fbMHD50hFTUEQ8J99Tfj0aBsmZRrwi6XFkmTuv8q4NH2ElgMDUhElSatEqk4p6t93vFMsmh1tF4uauUa1KKH6+uk5eOyrClES/LdVXXh3fzOumy5+oX92UzV++vERvzj57+/NkMwJx2fl8r1P397bhB8vKADFAasP8qg5ZgD6NIBZA/RpoHXo8ed1qbi7NrTRuwJAUUznHii+u/g+odL3oU2z45IPN4BSBdor5M7Mxc3XRRd563vFLtQMgwoqdnCOt1KZ53JFh8UvatZ029Au4xxcd9x7U2FLrVhYL07VIS/I2XjZpEzoVYzoOUlRGJTLOl48sLQY22t78PmxdmgVDN66fjqyjfFZY5JWiWStAt22gCPdF+4VmjYOjJxTc6AYVCwYmpL0JAZI6TmBQJDHY2mQdZIBp08COmduAGcTX3+qMmdHvdFzKvTU9FgaZcftDRvCipo2W8BxeeyY92vfh91/yZMIID5mpNRUbyVMNvUx8hL2oTDtBApST2BMvhVT7jsYdX9OJnma1ojLZ2hWDUafAy7o5xMaWhQNT18NeIe4f7kqM7xL0wejTQ/rfmYTi5F27quDvsnIRHVqDv3N4eTFf0TTv7+GuDdt6PUGBTbKzQIAYDSpUCSVSm6cxCJqRnNq8h4H2r+8CeAi50S4Og5IBEtH82bJPI2sqLkc5oMvisZodTJomXAxgpQBi5pffvkl0tJG5ofMMAxuvvlmXHTRRSNyfgLhVMDN8dgd1CsT8PaRNKjFf/aFSVJRs7bHK2q2mZ342cdH/OPNfQ488U0lnl7pdVXKBQWVZRhEoibgLUH3iZoWpwdWl1iskyvTjAWL04N1lZHvcPMCJIEdk06maOclaiTO0uAelo+vq4woaPr4rqoLOEc6/p99TbjhP/sAAO8B2FLTjU9unet3tVV1WvHhIfl+oOGQCyYpTdOJvsfKDqvfHWtzeSSJ9r7Scx+FyVrcv2Qs/rRefIfw558cwUUT0v2/u0+PtokETQB4ekNVTKKm08Nh7aEeCJ1iwRJm78eSN3Tw9E4Hx9GSfW0ADkU9wyBgOCDB7ndcItEGJFqx8ZfTMGeySjach+fV0K8TEPzUOiLjiJWjIUTUzBsCwW1culxv1cBzeWutfIsGwOucDuXsYnEDd62SxS+WFuPRtYE3pL9dMQ7LS0bfxZaSpfHpbXPR0udAilYpuZEw1BSn6LDT1ut/fKLLCkEQZP+vjVRPzYFCURSSNQpZgTZaMjqBQDgz8ciEBPlwd58eoqazbZdkLFrpOSDvuuPso8up6ZFzagJwNGyA1XrSdXkEOHo08LmmBhGrpoaCFH0bCtNOoDC1CgWpVSeFyyos/uVGJKV6bxi2ffw6bNWfifbjXRbQyvCBfwDA27skY4wmRTKmMBaJRE13Xy0EgfenWEcj1KUJRO/DCoQXNSlWi4yL/zskqeRslJ6abBxETWXaFOjLboDl6Jth5zD6bFBMbNdOquwFAxI15XtqBv4OerY8DHfXEfEEipbcvJHrq+ls2SF6TCuNUKZNlczT5C0FKEaU/K5InkAqYmJkwKLmSAmao20NBMJo5VBLn0SQmxNSeg6E6al5UgT71+4GkXsPANZWtONpeEXN0PJzNUujMFl6vF67B75TywmhHVYXBEHo9z/ur453iARJAJhXkITtYXps+vCJejRNYWyKVtRz0ufU7LW7YxYct9b2wOXhJeLJs5vEZSlfVnTg0bUVePwCb8+bv22qloSvhLrhQimWceSVpupFopXDw6PRZEd+khYVHVbJhaYv+TyYXy8vwb/3NopSrVv6nHjsq+N4euVEHGrpw/X/3iM51uFWMzhegNtFobkZaGoC6uuBhgbvZ99HdS0Fqzl8m5Lo2eQDh6YF8Do7YLQBRjuQYMOMMgWuWZKIBzftBfR2hF6PpuqUWDxLKVs+7j0mhbIMgyhkq7zdLGm1EIrV6RG5+gCIHJEDZZxcb9WgBPTQ9gLROFumwecvlxUjx6jGtroeLC9OxbUxOnRHiqxhcpAWp+qwM+h5YHFyaLe4ZMvPTzWnJuANC5ITNVNPMYGWQCAMD+4IJbnunuMDut4bbciLU9FFTUAqUA3Wqcl77LAeewe82wr9hBvAqBMHdTzO3ASrU4cTbeNxorUMla1lqGwbjxNtZWi8XoAgxO93l6DpwZj04yjOa8PU5UuRVHsHClKrkJ9aBYNaeuOYMeT5BU0AYGX6Prp7T0CVPi3ieeWEZUbGIccai4CmTUE7usBZmsEaojsJgTAhQRmxiJrymkfqOS/IBusMhEhBQYwhDzQ79H3JASBp/m9hPf4/CB75oM9YQoJ8GCb+AJYjb/gfqzJmxyTG0gotaFWSKACIO1l+7mzdjb59z8qu27T3b+AdgUqnUFGTs7VL3LyqzDmyIjitMkJXehWsFe/6x/Tjrom6doKXwSf6EAiEUYlsSFB+omRMrWCQlaASpaTXdtshCAJe2yHtiXS0zYLWPgcyE9SSoKBsoxpJMsESwWFBrWbpG32nh4fFyUlcpNGQKz3/zbmluHf1YUlvzGB8Tk3AK0gEi5qtZifMDg/e298kEYXHp+tx/Ywc7KzrxadBpdQ2N4fdjb1YENRfstPqxO7GXsm5n/imErPzErGoKBmv72wQbaMpYN3t83HhqzvQIxOw5FtvKCUyglZ5uwX5SdqIyefB6FQsnrl0Eq78l/iC6++barAoMxN3v1UJc3MKYFYDlsCH06JG2qtAj3xb0ODvLtqEwaG3e92WRhvuvSgDk8crUFTkTa0U9HaUPPWNaPqc+QX4wfk5eOiA/EXU1OyEqG+6JoaImnY3j5puG8bK/I58NJik58uTubHQX3KNGmgUNOxBfWIrgpya22qj/oJEBPfT9MEyNH4wJx8/mJM/8IWehsj9vk90WiUOceDUFAJTdEqgQ/r/NLStB4FAIADeEttw8M4e8PYO+fCTUwiHJCSIgip9Rkz7Mpo0sag5CKcm73Gg9YPz/SnSpr1/R+5Nh2IWoMxmoLxc7Lo8uPMlNHZG7q84GGiKQ15KDcakV2BM+nGMPfm5KP04UvXtoCgg/cL/QFeagOb3muFs2R/2WArjGPFjGQHLE5OoKXVq0jJOTdYobXnkNtXELmqGhgRRNJRR1gYAjEF63WWY8iPox18f03ljgdakADQL8B7JtqEOCQqGNeQiYca9MO38U5jtsV9zqrPnIf3i/8F8+J9gdJlIWvBYzDdQGH22SNT0OTV7tj0mmavKWQTjrF/A3vAtHA3f+sfdPZXg3VbQCu91oSPEpQkAqqy5YdeQsvQZ0KpEuLuOQFN4HgyTb4tp7YQ4iZrnn38+Vq1ahUsvvRQZGRnxOAWBQIjCzhhCgnwUJWtFomZNtw0bq7rCCoPfVnXh2mnZEqdmdoIaiRrpv5VeR0CgCz5PMB1Wp6yo+UV5Gx7+8hh4AXj4nBJcMcV7oeXheHx6VNyj0aBicXZxCq6Zlo3Hv66UPQ8ATMoMlGnIiYQnuqx4Y1eDZPzlq6ZgUVEK3t7TKBI1AWBjVZdI1Pz6eGfYUpwb39mHK6ZkweYWOzKvmJyFuQVJ+MMF43HXh/IF17JOTRlR82/fVWNFaZpsSbRP1HS7gZYWr7uyqQloaMhEwaGZqK3nAYsGsKjBWdRY9RcGgPTizkf/PIADIy0t0Ni9sDDw+dPGajx/qBwUGxDzrv7xQtHvYme99DmXoVchVadCYZJGlBruY3IMye9lmVJx+EibObKo2St1KucZBy9q0jSFklQ9DrYEWj/4nJoWp0c0DniTq0Nd2D7KMvTIMJx6jsKRQi4s6ESnVeLUTNQo4l4KHw/CJaCnnIICLYFwumKt+hhd39wN3mWCccZ9SJz/2xFzQ0YLT3F1V0BzCouaAu+Bq22vaEyRMiHmEmA6xHXH27sg8B5QdP/flpt2/9kvaAIAZ66H9di7MEy6RTTP4wEqK4GDB4FDh7wfBw96gxelDI2gaTQC48cD+ZqvUaDb4Bcw81OroGLDt51SJE+AtmQVAEA7dqXo+wuFjUHUdMuEr4TCyzo1pTd3Q0VU4GRfzdzFUc8h8B642sXPG2XKRL8AFgn9+O/BfOBF+PpNqrLmI+WsP0fdrz9QFA1GlwXOLH3/E49+msEkzvw5zIdek/099MepCQC64kuhK76032tg9bmiEnPO1gpH0xbY68RBPxSrRdqKf4KiGSjTpopETUCAq/Mw1CeFS2fLdsl5VFnzwq6B0aQgdZnUFUqITlxEzdraWjzzzDP4+9//jgULFuCKK67A8uXLhzVQiEA40wl1aupVjKxDD/CKmsHlyzY3hz+uDy8Krj/RiYsmpEt6Y2YnqJGolv6di52aUlEHANotLowJ6RfZYXHisjd2+cWXq97cg2cudeDexWOwqaZb4ma8YHw6VCyDa6blRBQ1y4LKr+XCgj4+0ir5+ZWk6rDwpFC2ZKxU4Puuugu/XB64kxmcRB2K2emRFU1/tmQsAOCH8wrw+q4GkQsQ8CbL58iU1J41JgUsTcHDC14h1cXiy202/EnRjXU7FBCOFQFWFWBVA1YVbv8yER3tQGdnaA8kCkN1MdsvWA4w2L0fCYHPd5ybjvtXZiM3F9CE0f2ad7KgysWO2roeOxYUBh7LuYMzT4p2s/MSZUXNqTGImhNlyviPtpmxcmL4Zuv1MufKHwKnJuAtQQ8WL7ttbnRanTjYbJa0ObhzQSH2NPRii0yvTTmXJiE8xTJ9bis7rZKemqdaP00fyVr5azcSFEQgjA54txWda28F7zIBAHp3/hHq/HOgiUFoiQeRemoC3hL0kVrbUODqPCxJoo619ByQCwsSwNu7wOj6ZwRy91TCtOsp8ZEEoO5IBZqaxOJleTngjFOfn5wcoKwMmDgRmDDBK2SOGwekpwPO1h1oee9C0Xye0cNc8hsk1PwFgrNXcrzEOQ/5y3N1Y1eiZ/Mvw547FqdmLKKmnFNTTtQMFVGB2MOCXF1HJCXWyhj6aQKAOmsOsq5aD8ux/5x0Nv4UFDv0N59Zbaa8qJkUP6cmANCqBCTNewRd394jXVNCQVzP7YMJDQsSeHR9e69kXsK0u6AwFgLw9gQNxdVxIEjUlHFq9uN/BSF24lp+znEcNm/ejM2bNyMhIQGXXHIJLrvsMkyaNDS9HwgEgjw9NheOtYsTsGfnJvoDakIpkAkLWnc8fCL5tyc6JS5NwFt+nqiJLGq2yAhMgFfADOXryk6Jm+yna46A4wXUyYhDl07yikkTMw2YlGnAYRmX4pgULXSqwL++klSpMPXXjdILlJtm5/ldD3mJGhQla0UBPFtqu+HheLAMDUEQ8FVF/8qJFhclY26B10nL0BT+b9VkzH12k190FDgKRdok7N9PobXV67AMfFYh7cgyNLcIXuHS403S/tXrgJzD8mi/VjY4KArQJ3tgVppFwuWt56TijhUZ+MHnW3HY1C3pXZmiVeAvd09CtBaEcs/duh7xm402OVEzwXvgWXmJ+N9Bae/UqdkxiJoyTs2jUcKCQkOCgKHpqQkAJWnS53JFuxXb6qSl54uLknHvojGY9teNMDvFpUZE1Owfcu7pqi6pUzNdf2qKgElhRU1yo5pAGA042/b4BU0f9rqvRkw4dEcoPwdO/QT0wfTTBMIloLf1S9QUBAF1nz+IQ9VTUNEyCRXNk3CsZTIqWiahxxqf1/CsxHqUZB7DjBVnYdIUNcrKvGKm0Rh+n96df5SMObOvgjttOTJmXYquL66BuytwVapImQhd6dWBx0klUKSUieYEwyaKRUbGkAuKUUPgAu9RYnJqOqKnnwPeoKBQIvWQDWag/TR9qHMWQp2zMOb5A4HRZwFt0vF4OzUBwDDpVvTtfw7uHrEppb9OzYEil4Du6jwoekwp9DDO/Jn/sUom8MfXV1PgPZJ2A4rk8YPueUuQJy6i5i9/+Ut8/PHHOHLkCIST78hNJhP+/e9/49///jeKi4txxRVXYOXKlUhOTo5yNAKB0F9CHX4AMKdAvvQc8Do1+0N1l002Tdlbfi4nagZEk7aw5efSUhS5UCEA+PknR6FRiMs4FQyFC8cHLhSvnpaNw19KL5wnhrhV5fpRhoo8FAXcMFPcL2fJmBSRqGlxctjbZMKc/CQcbbNIRF+dkhE5WwUegEMJ2JSAXYV5WWV4/nmgowNobwfa2xORfWwZGlsEwK4EHEqUA5j5e9kfCYD+/Q6HBgHQOZGQ6sHZ0/TIyfHesc/NBQoKgPx87+NzX9mBTTViYe2XtxdhbCqFvxlLce5L0vKMexcXQa+K/hIlF3QVKnjLOTUz9AGnZigsTcmGKYWSl6iBQcWKni9HZHqYBlMvI2rmD5GoOS5dPixILjhrfkEyso1qPL9qEm56Z79/PMOgwrmjMNF8NJOqUyJBzaLPEXgeHG0zw+QQ/x9JOwVDgoDwvTNJ+TmBMDrgrNL+4sEJzcMJ7zKDt4e/KQ6c+gno8snnsYtTjEZG1IzQV1MQvGXi+/YBBw54nZcH91pQ0/A+BGHoW5rkJNWiOLMcJRnlKMk8ipLMcozNOOYP6km/5APoxl4S9TjO9v2w13wu/l5oDRw53vATReJYZF+zCT3bfgfriQ+hSBqHtHNfAkUzon20Y1fCFEbUVBjHih5TFA02cYxIBI3JqWkLec5SDGhVomQerUkDpdBBcAfac0Vrt+BD/nkzK6Z9h4twYUHxdmoCAMUokLz4SbR9vMo/RiuNUOcMz80ZuQT0UBKm3SVy8CqSxgOMEuAC72F9oqar85DU0R2h9JwwOOIiat5000246aabUFVVhdWrV+PTTz9FS0uLX+A8ceIEnnzySfzlL3/BkiVLsGrVKixduhQMw0Q5MoFAiIVYQ4J8yCWWR+Pfe6QXzNkJKnlRM7inZpjy89BSTUBejPIRHIgCAEvHpsAYdO5rpmbjN3KiZoi7LidBDTVLS0KBgjm3JE3iplsyNgVv7A6UaAhuGmu290LVk4QX15shVGQFREubCiXJaahr4tDdSQE2lXdbUILkU/+VO3P0PjvxQqkW4FJbAb3D/5GU7sFT147BY1sPoJHrBXROUIwAo1GN1Y+cK3ucbpsLW0JCaiak6/19J5eXpOGiCen4rDyQ/qlXULhzfmyNwfMSNaAocRl9aIm3fPm5t4x/Zm6iZP/x6Xqo2OivRxRFoSxDL/p7K2+zgOOFsK7oxhBRk6WpIetfOU7GqXms3SJJPi9I0iDb6P3+b5iZB5dHwN83VUOnZPDUxWX9Duw606EoCsUpOuxtCjil5Fzip2JIEBC+zJyUnxMIowO59GyPeWREzVgEHnfP8WFYSfxwhoQEUawWypSJMe8vl2Tt+x26XN6wnv37vSLm/v3ej76+0D3k20n1h5wcYPJkYNIkb+n4xIlADv4D55abI+7naNwYk6hp2vWkdN+syyEoAtZOWmlAypI/I2VJ+P6QurGXhg+RkSkHVyQWi0RN3tYO3tkXsecpF+LUpDUpsgnVFEWBNRbB3XnYPxbNmezDFeLwpVhNv543wwGjk2mfRDFgE6QO1XigHXMxUpY9D9PuvwAUg+Sznoq5V+1gYaOImpTSAOOMn4rHGAWUKRPhat/nH3N1HoLAc7Kl52oiasaNuL5zGTt2LO6//37cf//92LFjB9asWYO1a9fCavXe3fB4PFi/fj3Wr1+P5ORkrFy5EpdffjlKS0vjuSwC4bTA7PDgo8MtfmcVHSSi9CckCIju1EzUKEQl5ACwoVrafyZsUFBw+XkYp2ZoqSYAtEcQNUO5dKL47mJJmh4zc43Y0yguyZoUImrSNIXiVJ1fhPA7KB0Kv0OyyFCCp58GuruBri7vR1NrNoSKBP8ceBg88SzwBABvX0pxGcM+jA5oRkBWJoXMTCAzE8jO9jorfS5L30diInD3R9V4cVsdAG/p7Bc/nIfpOUqsdvJoOhYQpxtNDlidHlFZv48vj7VL+jleVCYusXrpyqk4+x9bUdlpBUsDj81PglGmN6scSpZGlkEtcsbWdovvjMo9jzIMXkHGoGaxrDgV31QGLmgvnBB7CVhZpkEkajo83gR0uZJkQFp+nmtUhxVA+0upjKj5WXkbum3iv935Ia7tW+fm49a5JNF8MBSnikVNuZCw9FPWqRmm/FxHys8JhNEAZ5M6NT0yffGGA3dQqnc4PH014D0O0Ky0R/hoh3f2wd1VLhpTZczsV8iPr/y8z25EedMUHG2aihPfTMXRBq+g6XZHOUA/0eu9wuXkycCUKd7PkycDcsWSvTvrEO3K29GwIeo5Xd3lsFZ+KB5kVHDk9j+tW5k+A4w+B9zJNGoftDpZtpRXrlTa2XEgYjsGPqSnJqMOH46pSBCLmrytHbzLAloZvsKHd1vhCnGbKtNnDCgcKp6wOmkJNmssAsUM3+t9wpTbkTDl9mE7nw9JT80QEqb9GIxG+rxQpk0ViZqCxw53byUcsiFB4ZPPCYNj2P6S5s6di7lz5+LRRx/F119/jTVr1mDLli3gOG85Znd3N9544w288cYbKCsrwxVXXIGLL74YCQnDo84TCKcSJrsbk/6yAU0mr5Dzgzn5eOWqKaAoCoIgSJya+YkaZMkEzPjIS9SApiARn3w8cm4JfvfVcVE5pdyb9hyjWlaMMsUQFNQpU34eyakZysqJXiGK5wGLBejtBc4yFGF3Y71XoHR6P3Ywadj9tne776O+ajYEE07Ok7qPXlwtd0YGQIRGQsNMQoJXpNQnu7G3px3QOQGd4+TnwNff/HQWlpaEv1gL4O3reUlZBlrMTlw+KRNJJ51ZJWk64Jh4dmWnFdNypD+P0IR6ALg4RDTMNqpx4KeL8OF3e5GjZ6BX9q+cakyKViRqVnZa4fLw/qTp0OecQcVCqwy8/D172STc+M4+HGzpw3ml6XjgbHE5UyRC2xkAwJFWs6yoKQiCpPx8qPppAt6bD+l6JdqDXM9H2yySefMLSduXoSaciB1M2inaU5MEBREIoxtZp6alEYLAy7rN4omcU5M1joXHVBUYEHh4ek9AmXrqZSw42/fAl0DtI1rpuSAAjY0B5+XeHbOwZ3sFGruH1v1GUxyK0ioxLuswps7UYe7KCzB5MlBYCNAxPg085ibJGKPPFbUzcHUeBGfvlA3S8WHa9WeE/pz0ZbegWxnL9acYiqKgHbsS5gP/EI3LuTQBQJk+XTLmaPouoqgZWv7PaMK34ZENC+qrgTJ1cth9XO37AUEcrtqflgXDhZxTczj6aY4GIjk1vS7N+2S3KcP01Qx1alLKBCiSJwxqjYTwDPvtAZVKhYsuuggXXXQRurq68Pnnn+Prr7/Gnj174PF4BZMjR47g6NGjePLJJ7F8+XJceeWVWLBgwXAvlUAYtTy/pcYvaALAP3fW4/JJmbioLAM13TaJQBip9BwAFAyNXKNGtt+fiqVx06w8fFfVhTVHZLpHB5GVoIaCoSX9I31OTQ/Hy/bOBIC2Xhe6uwGzOfBRuUcLoSULcDGAi4WSVwIuFi47DbhY74dTAS2vxuIPNOjtBUymYME17+RHgGe/lTv7yJV5R8Jg8KZHpqUFPmdmAllZ4s+ZmYDWb7ZV4AfvdcimqwPA5OzYS5YoisIFMq5FuTLn4x1SUdPN8fgyJDApSaPAgkKpa5hlaIxLHtid4ImZBmwO6tnp4QUc77Bg0skE87aQ1gaZIeXeEzIM2HXfWQM+dyhH2sz+0Kpgum1uSduEoRQ1Ae/vpt0iDQYKJtSpSRg8sYiap65TU168TJJpNUIgEIYfzipzbca5wNnawcqVk8YRj4xTU1t4HvoOvCAac/ccPzVFzZadkrFgcYrngaoqYM8e78fevV4hs1v0smzEYG+KpxpaMT7rEMZlH8bkSTzGqP6H4vSjUCu97w3UOWch69IL+n1cj0wvVv24q2Ha81fRmKPxO+hKVknmAoDl2DuwlL8tHqQVMMz4KVAd+fokHLqxl0pEzdDkcx/qXOn1nKPxO2Dur2Xn8x67qEcm4C0/D0e4sKBIoqYtpLco4HX4jjbk3IpniqhJq1NAMSoInNRQY5x2Nxi1vCFALizIXve1+EYOvGFiw32T6UxiRD3PKSkpuOGGG3DDDTfAbDZj48aNePvtt7F//34IggCn04kvvvgCX3zxBfLy8nD99dfjqquugk43OgUIAmG4WHdc2lD8wc+O4rxxabKhIHMilJ77KErWyoqaV0zOQrJWiaVjU7H6QAfgZrzp2m5G9LWWUuKTD1lYrQBzYAyEPsG/7eA2DW7aDnSZBPAH5nrFSDcTECZdLNZyDFLuCj37FNEjeTkUsAGojfodjjxqNZCRERApgwVLua/VA6zM+uOFE/DhoRZRcAngLSEfinAPuTLn451SR+DW2m5J24ILxqeDZYb2RT20pQDg7WnoEzVDnZpD1cMSkHdqfl7ehl8tlzZVl/v7ypMJOhoMJWl6SShTMBoFHVOyO6F/FKdGD+pKO416aiZqFEP+d0wgEAYGZ5O/4cyZG4dd1JRLgtYUnCsjap6aYUHB/TR5nkJtZzG2bFqK/S8FRExp/8uBQ9PA+HEcJuYdQbH2f5iQuQvjsw8h1eB9H0CxGuTcsB9ta96EuztwrePs2D8gp66kxFubDk3BComoaW/cKCtq2mq+RMdXt0rG9RO+fzLFemCipjpnMVhDATzmOv+YpkC+lzury4IiqUSUou1s2Q7B4wTFSq//5IKtIrlQWRlRM1IvWd5lgfnQK5Jxddb8sPuMFMqUSZKfczjx+nSDoigw+hx4TNXicWUCEsK4NAHIitnW49KgBDUpPY8ro6KRw7Fjx/D1119j/fr1KC8vB0UF+ov5woUaGhrw5JNP4h//+AceeughXH755SO1XAIhIjVdNnxxrB29DjdMdg9Mdjf67B6YHV7nIktRYCgaLEWDoSmUpOpx/bQcpOnV4HlvLx2PR/rZ97XF7sGWTTQETyrAUwBPAzyFIxUUfmTrQn0XIFTkARzt/zjKZeFXXwFOZ+DD4RA/PlY/BUKvC+AY734e776fKlQw/Aiw2YoAXv6uKOAVFq9/3/dovGhbJ4A3twLekm1p6uOpiEYDGJN4tLrNgMYFqN2A2gVofJ9dgNoFRufGnl/Pxdg8BXQ6b5J6vMkwqPDoilLc/7G4f0+ZjAA3EGRTttulouanR6UlcaH9NIeCyZlSke5Qax+uRQ6sTg8sTnHJT6hTczDkGNUoTtXhRGfgLv/W2h4cazdjfLr45x3aTxMA8oxD7dSMfNNvdl4iFESMGnKKU05np6bUkZkSpiSdQCAMP+FETY+lASoMb7pyqLjD6LKgTJ8mmeeKIQFdEASvww481LlLRtTlxPPA8eMCvvo4GwernsThhhk40jQNFsfQtSHSaoGpU4Hp04Fp04Cpk1zIx2twHvx92ET5xDm/gsJYBGX6NLi7A70+BVcfPKYaKBJjb6cDAB5Ls+gxq8+BKnu+JOFZrq+mo3kb2j+7BuDFN9QpVovEOQ/1ax2hUIwCaRe8ic51t8NjaYJ+/HXQj7s27Hx1zhKRqCl47HC27YY6Z6FkLtdvUVP6XsgdIoQFYz76L/DOXtGYpuA8sAmjr5c5RTNIv+S/6Pr2PvCOLiRMvQuqbOnP7HSF0WdLRE3j9J+AUYc3B9EqI1jjGNF+gkem8pGEBMWVERM1T5w4gU8++QSffvopmpvF/0B9QuaECRNw7rnnYt++fdi6dSs4joPJZMKvfvUrHDx4EI8++uhILJ1AAAB8+y2Fn/98HCoqtCfLnSlwvACOUwNCAYDY1avH+nVmFoD83b3XPvV9lSsa/+emWI4r3+A6EH0xDGrcCKDTAQajgFanGVB5ggRJN86flojLZqcgJQX+j+Rk72eNBhAECvmP7xS1AghlfmESpk4YfgHg7oVF+OeOBhxpC6QwXzklchPsWMlOUEtaDBzvsErmfVYufqPF0BTOGxe+T9FAmZQl39cSANpkAqiG0qlJURRumpWLR74Uv0F7fWcDnry4TDRW1SX9GeUPsVNzXHr4RvUA6acZLzIMKsnfRCinak/NBDULhva+vvkg/TQJhNGBIPDhRc2+4Q0LEgRBUn7OGovA6LJBKfQQ3IGbn9GcmoIgoP2TK2Gr/gQAoM5fjszLPxsWYdMrYAZKyPfsAfbtE2A2UwCeG5JzpBs7MCFrD8pyD6As+wAmj+vCogfXgmG8292marStXgl7hKR4Zdo0GGd605hVadNgPfaOaLurY3+/RE3e4wAf0luS1eeAZjVQZ86Do+k7/7i7uxwea6vfCezqPIy2NZdKxRyaRfpF70BhLPK3mRso6uz5yLnxoMj8FHZu7mKYD78qGrM3bpQVNUNDggCAjiRqJvje4wVeE8M5NQWeQ9/eZyXjxpn3hT3+SKNKn47sazaO9DJGBFXadDibNvsf00ojEqbfG3U/ZdoUiRgqOXbmnEGvjxCeYRU129ra8Nlnn+Hjjz9GRYX3xUwISRtJTk7GxRdfjFWrVmH8+IDbq6OjA++88w5effVVuFwuvPvuu5g+fTpWrlw5nN8CgQDAGy5z3XU0urrkBITTU/wbreh03qTugXwYjYBC4e3BafjVZtjcAUGCoSm8/vA5kDEB+qEoCkvGpOA/+6SN1X2sGDcyzlQFQ+OrO+bhB+/tR3mbBVdNzcatc/Oi7xgDFEWhNE2HfU2BGquKDgsEQfBfbFZ1WnEsxL25sDApbH++wZCsVSI7QZyA7kuzlwubGkpREwBunJWH36ytEIVnvbWnEX+4YLy/RJfnBbyyvV6yb1Fy9LLl/lAaxalJ+mnGB4qiUJyqw4Hm8HWHqado+TlFUZicacD+oO9tCmlhQCAMKbzHjr79L4CzNENXegXU2bFlCfCOHokzzodcf8R4wtnaJKIWm1AIiqKgSCqFq32vf9zdc1x0zRCKo3GDX9AEAEf9N7DXfgVt0flDumZBAE6cAHbuBHbv9gmY3sBJMQO7tqcooKQk4L6cPt3rxhQ2XScSCSmFzi9oAkD3pl/CHUHQ1BZfjtRz/gGK8b6uyLlhne37oSu5Iua1ctZmyRij95ok1HlLROsFgN4dT/iT37s3/0riRgSAtBWvQlvU/96e4YhF0ATC9NVsknd4hIYEAZBNufZBs+qTaeyBv69wgpatajU8fWLBU5k6Beq8ZWGPTxg5EqbfDVv1p97fGc0idcXLYNSJUfdTpk2F7cTqsNsVSeMiuj0JgyfuoqbFYsHatWvxySefYNeuXeB5b0hCsJjJsizOOussrFq1CkuXLgXLSpeVlpaGe+65B5MmTcJdd3kb7/3nP/8hoiZhROjsBLq6iHg5ICgeUHoAJXfyswdQeD+vmpmGrFQWBgPQ6rDgjQM13u0q75x7l+fjh2flwGDwhujo9V5RctBLoigsGZuCL44FyqVXlmUgM0JivI8lY6OImqVD70yMlawENb74YXzKHUrT9CJR0+TwoMPiQvpJwfCbE9JyngtlQoeGikmZBpGoWd1lg8XpkRU1h7L8HPCG/awoTcPaoFCkVrMTX1Z04OKT5farj7RKRN4xKVpMiOKs7C9jknUSV10wRNSMH8Up4UXNJI3ilC77f3TFOFz/7z2wu3nkGNW4d3H4ViQEAqH/dK69FdZKbw+fvoMvIuOSD2IS8Dhba9htHrP0Rlo8kXOr+UJVFMnjRKKm4DKDs7aAlQkmAby9GUNxNG8etKjZ0gLs2uUVMX1CZo+0Ff2AoChg/Hhg5szAx7Rp3uvVUNq14mtDwW0F77aCVui8ZfcNsqmWUOcuQfKiJyTJ2cq0aZK5ro4D/Vq/XPK5LxFanbsUwO9F28wHX4RZskeA5CV/hX789f1aw1DB6nPAJhbD03vCP+Zs3gqBc/mFYB+crFMz8rW7wlgkEjXdfbWSHqaCIMC05xnJvgkz74tZnCUMLwpjEXJu2AtXxyEokoojtiEIRi4sSLSdlJ7HnbiImh6PBxs3bsTHH3+MDRs2wOXy9uAIdWWOGzcOl19+OVauXInk5NhK4pYtW4aCggLU1dXhxIkT0XfoJ3//+9/xwgsvICcnB+vXrx/y4wPedPePPvoIe/fuRXNzMywWC7RaLdLT0zFjxgxcfPHFmDMnNovyl19+iXvvjW6LDmXjxo3IzBze5uGnE7m5wMSJAo4cOT1elJRKbygNq+DhEDxgFAIyElkk6BioVN5tOh3AMW58caIFYDlAcfLj5NfXzc7Eymlp0GqB1/ZW4+PjzYF5LIeDDy3E/+2sxks7a8L2lXzgJ4sw96To8taeHvyLqRVtnzcvHxMnxudn8ORFE1DRYUF1lw2Tswx49vLYUjmXjA1/NzdZq8CsvMQhWuHoQi4sqKLD4hc1v5URNeMp8E7KMuCrkACto21mtMmKmgNMYIrALbPzRaImALy+sx4Xl2VAEAQ88XWlZJ8Hzy4GTQ/t/xAlS6MoWSvq8emjOFWHtFO0r+OpwNgICeinaum5j0snZeLYg8tQ223D5KwEJJLkcwJhyODsnbBWfhAY4N3o/PpHyL3xAGhV5J6NnE3au9q/zTy8Ts1QRxoAsAknRc2kUsk2d09FWFHTUf+1ZMzZtqdf6+nr84qWO3cGhMzGIfqR0BSH0jFmzF6QKBIw9THep6S10ioeztYB2qgDZ2mUuB5Z41iknP03aApWyApijDoJbEKhqPzf1b4/9m8IEIl0/uMaToqamXNAMWoIXPh2S8Ekzv0VjNPv7tf5hxp17lmwBIma3r6ae6DOFrfw4h3966kJnAwLCnZ+ci5wlmawhkD7L2fLNlGwFAAw+hzoS6/uz7dBGGZohQ7q7P6JkEoiao44cRE1Fy5ciL6T0W++0gKfoJmYmOgvLy8rK4t0mLBkZWWhrq5OIpIOloMHD+KVV6TpZENFd3c3HnnkEXz9tfSF2mQywWQyobKyEu+99x7mz5+PP//5z0hLiywClJeXR9xOiA9qNbB6NYff/74TFRVaUJQAo9EAmqYhgEef0wOGBhQsBSVLQ8lQULAUaN8NPEpAc58DW+q6/Y9BAXoVg2tnZkGlpMCyAMt6nYi+zye6zXhrbwPACF7HIyNgfIYOxzr7To4JAMOf/CwADIf/3DQNpZlavzipUgU+1GqvoBm4PqIBhH/zLQgsCh6vQKNMD8krrk/BFSfDyncqXPjEIr71Lag86LDbIwbldFgDTchb++JfNhzMpKwEHH9wGbpsLqTqlDHfRS1J1SHToJJ1BJ5TkgZmiEWr0YJcmfPxDisWj0mBIAjYUCW+852sVWBKVvxKVifJhQW1mOXLz+Mg7K2cmIEkjQI9QWnvnxxtQ7vZiX3NJuxtMonmZyeoceOs3NDDDAnj0nSyouYC4tKMK5ES0E/VkKBg8hI1yEsc2h6wBAIBcHcfQ3B/PsBbCty96SGknvOPiPty1khOzeHtqSmXfO5LilYmjZPO7z4OTd7ZknHO2gZX5yHJuKttT9iSdacTOHgw4MDctQs4dgwYireKNMWhOOMYJuXuxaS8vZg1V43FN96JxKyBB70wMk5A3t4BGAtlv3fDxJuhLTwv4jGVaVNFoiZna4XH2gJWlxXTmjwWOaem9zqFYlXQFJwDW/WnkjmStU6+HYnzRj73QpN7FiyH/ykaczRulIianE1G1FSHNywA8gnoblONSNQMTYwHgIRpP5Y4RQmnPow+F7Q6GbyjW3Y7ST6PP3ERNU0mk0jIZBgGixYtwqpVq3D22WdDMch60a4u75vlkpKSQa/VR0NDA+666y643e7okwdAd3c3rrvuOtTW1vrHaJpGcXExkpOT/YKmr4nytm3bcNVVV+G9995DRkb4ks1gUbO0tBTp6bH171MqyT/UwVJYCNxzT+ACYOrUqWBZGtGEQS8UeF6DKU9X4mhboCTVCmDJddPx/ZnyYsfPPq4HxYr7tvz11jl4a08v3t0v7YWTqFHgmgs0ATF1kFAUhWXFqXhzj/RubnZQqbaci6fX7pYVmILpCAp1kQt4Geqy4VBomuq3k81Xuv6ezM//3BEsPY8348I4NQGgvM0icUguHZsy5K7EYCbLhAUdbu2D3c1LxjMThv55pFYwuH5GDv5vS61/zMML+Pe+Rqw5LH3Tef/SMVCxjGR8KChN0+Ozcql7Zx4RNeNKpAT0tFO0nyaBQIg/4ZLAzYdfg27c1bLCn4+ITk1rq2y5bX9w91bBY26AKmseaDZylYPHVCsZUxgLvZ+TZUTNMGFB9gb5Sjne2QuPqRpMwlhUVIgdmAcOAC6X7G79gqaBsjKgLPVrTEj6FJPy9mJC9kFoVTYw+hykLH0G2rGXDrp8mJF1anp/l64OqaipTJsc9ZjK9GmwVa0Rjbna94Mtik3U5GRFzRz/10kLH4ez4wC4CGK5fsL3kHL230dFebU6R6avZuMmICSJnZNxakYKCgICbRWC8ZhqgNzFAAB3TyVsVZ+ItlMKPQyTbou6bsKpB0VRUKZNlW0bQSkToEgZmJGPEDtx66kpCAJKSkqwatUqrFy5Eikpke949Ie77roLOTk5GDNmaHo6HT9+HLfddhs6OqSNgoeKBx54QCRoXn/99bj77rtFP5fe3l689NJLeP311yEIAlpaWvCTn/wE7733XtgXh2BR85FHHom5bJ0w8tA0hYeWleDGd/aJxv+0vhLXT8+RFYBCS3pZmsKiohSMTzfgw0OtcHFiAWdOXuKQC0lnxyRqSv+19DrcaOmLXLYS7NSUKxuOp1NzMCwZIy9qrohD0vdoQc6pWXlS1FwvU3q+dGxsfWkGyoR0PShK7Mo43GqGXikVDtPjVAr8gzn5IlETAJ74uhJdNvHNshStArfPLYjLGoDwYUELSPJ5XCmOWH4+Ov93EQiEkSdSEnjn13ci5/t7QCvk/79EcmoCAjyWJlkBJhb6Dr2KrvU/AQQOrKEA6Zf8DyqZQBofkp6ajBKMzlteziYWIzQx2h1GzLXXfyN63GVJxf66OdhfNxeH39Nj31FvaflQUFwMzJ4NzJnj/Tx9OqDVAvWv3CYKzmH0ud52AEqZBpkDgNFKrw99gTWursOSbcrU6KKmSrav5v6Yg3o8Mu0KmCBRU5lShrxbKuDuLgfv7APvsUFw2yB4bBA8DrCJxVDnLBoVgiYAsIZcsMax8Jiq/GOO5i0QODcoJmC+CE0/p1gtaEXkEEc2QapBePoCphPTvmcR6r42TPpBTKEzhFOTcKKmKnO2qNcqIT7ERdT83ve+h8svvxyTJsXWk66/XHDB0KWorVmzBo8++ijsdnv0yQNk27Zt2LQp0Hfjvvvuw5133imZl5iYiAcffBDZ2dl4/PHHAQAHDhzAF198gQsvvFAyv7u7G+3tgTu048ZJ74ISRjfXTsvGb748htqewPPvaJsFa4604vLJ4jurXVaXJIRidl4iDGoWBjWLHy8sxDPfiV2cc/ITh3zNZxfL36DIChY11VKnZo8tFqdmeFFTwVBIGqV93OT6ak5I15/WpZoJaoWk7L6iw1vyvKFKKmouK46vqKlVsihO0aEyqOz6cKsZhUni30GSRhE3h+T0HCOmZieI/k5DBU0AuPesMdCp4pfTJ+eiNahYTMwcmjdjBHmyE9RQszQcHqk7+FTvqUkgEOJHOHEP8KYq92x7DClnPSW7PZJTE/AKVQMRNQWPEz2bfw0I3Mnj1KH1gxXIvPxzqDJnye7jDip9BgDWkA+K9r7e0qzmZM/HgPApl+7tcgnYuakNu8t/hP21c7Gvbi7qOov7vX45MjK84qVPwJw1C5Dz3HCObkkSuCp9+pAJmgDAaCI4NUPKz2lVoj+FPBLhEtBjJbT8nFYnS8Q9imZjElhHC+rcxbAEiZqCx3ayr2agx2Fo+rlca4BQ5P6mfO0XOHsnLEf+Jd5IMUiYNrI9RgnxRZk2RXaclJ4PD3GRjR955JG4CZpDRVtbGx588EE88MADcRU0AWD16tX+r8eOHYsf/ehHEeffcMMNmBiUhvLpp/L9S4JdmtnZ2TAaIzcTJ4w+WIbGA2dLL9b++E2lpGesnFB0dpBQ9OtzSkRuSSVD46ZZeUO4Wi/5SVqJIynDoIKSDfw7kSs/r+uxy77ZDya4/DxUAM3Qq0bN3d9QxqfrMS7EHXflVPnm96cToY7Aqi4rXB5e0k8zw6DChIyhTfmWY1KIaNdmdkoSx+PdwuCW2ZH/5gwqFj9eUBjXNYyTSVSfm5942vZ3HS3QNBXWrXk69NQkEAjxIZJTEwD69j0LR8tO2W2crS3ivpxlYH01Xd1HwTvFvdF5Zy9aPjwPjuatkvkC55KUJSuMYjdbaAm6x1yHxjo7PvwQeOAB4KyzgMREARc//gl++8GzWL3newMWNA0G4Oyzvcd9/32gvt6bfP7xx8DDDwPnnScvaAKAu+uoZEyROrQplbJOTVsHBI9TInIrUyfHdP3L6LIlAUT9SUAPLT8PLj0/VVHnypSgN30nehzq1KQ10atLaW06qBD3tKe3GoIgoHvTLyWBSrqSVf5WDITTk3AJ6KpMEhI0HJyRXth//OMfOP/880Vi45gxY6KKjQNl+/bt/q8vvPDCmF6Yli1b5v/60CFpbxVALGoSl+apy82z85AV0uNvd6MJ60KSnNefEL/oAmL3W7JWie9+vADfm5GDC8an45Nb50RM4x0Mt88Tl85eEeIqlRM1ff0WIxGp/DzeYtRgoCgKr1w9FblGr6h83rg0/GLp2BFeVfwJTUB3cwI+OdqK7hB34tKxKcMiSMs5EU0Oj+hxvJ9H35uRCyUT/qX1zgWFSNLG17WXaVBhZq74JteZILKPBsKJmqSnJoEwcngszeDs0muo0QDvcUjLtkMReHSu+yEEj7TaJXL5OeDpG6Co2XFQfikuM1o/ugj2hg3i85jrEVpuyyYUih7zugnYVzsHr224Bz/517+x6HeVyCvU4IorgD//Gdi0CbDb+//WVKHwui7vugt44w3gyBGgpwdYvx548kngiiuAvDxEDKoMxtV5RDKmTBlaUZOWc2ra2+HqLve7Y/3njtEZSVGUpATdY6oG5+iNuq/AuSXPpVjcoaMdjWxfzYCoKQg8OLvYNBIt+Rzw/qxDw4Lcpmp0b/gpLEf/JZlvnPHTWJdMOEVRJI0HZPoXq7JIa8DhIH71byEIgoCenh64XC7wfGS3VijZ2UP7Zuy1116DzWbzP77qqqvw0EMP4auvvhrS8wCAw+GA1Roohxw7NjahIykpEOjQ09MjOydY1Bw/fvwAV0gYadQKBj87ayx+8an4zvAfvzmBFeMCFz2h/TRVLI35heLgjzEpOrx1/Yz4LfYk9ywqAscL+KqiHTNyE/G788WiupyoWd5mjnpcn1PTw/HotIk7vo/Wfpo+FhWloPpXy+Hw8NDHsbR4NBEqagLAS9vqJGNnx7n03MfkGNLV4/08StEpcenEDPzvYItkm5ql8dOzhqYXdCQoisI/r5mGO94/iBQTdjQAAQAASURBVOouK66dnoMfRHGQEoaGsWHCgohTk0AYGTq/uRvmQy8DoJA491dInPebUVX14ek9gVAxUFN0IRwNGyB4Au9V3N3lMO39GxLnPCiaG7X83CLtkxgLkRx+gtuKttUrkX7J//yJ3KHJ54IANNum4Jv3gG3bgO3bgX17n4DLPfj2L6XFTsxboPL3wpw6FVAN4b9YV5ecqDm0QR+0yugVQLjAtS5n65BNPlf0o9xbmTYV9jrx+1lXxwFo8pZE3I+ztkAiSp8GTk02IR9sQpGo7YGjeau/rybvNElE5GghQT4UCUVwdwb6n/L2DvQdeEEyT513dtiWDYTTB4pRQJU+A86WgJlNkTIRjJr0sx8O4vrO22q14pVXXsH69etRXV0NjuOi7xQCRVE4elRaBjAUTJo0CQ8++GBcw3XUajV2794Nq9WKtrY2pKbG9o+ysTFwERKurPzYsWP+r4moeWpzx/wC/HF9pcjhtrG6C58ebcPFZRloNjkkZbQLCpKgUcSnN2A0lCyNB5cV48Fl8mVBckFB/XFqdlhdCKm+R4YhcurmaIBlaOgjuPRON0JL7gHg60qZNgkyPUfjQWj5uRzDIY7fPDtPVtS8dW7+sInzk7MSsPUni4blXIQAxany4QKkpyaBMPzYGzacFDQBQEDvjj+A0WUjYcoPR3JZIuRKz7WF50OTtwzd3/1cNG4++i+RqCnwHDh7tJ6aA3VqRi5bFjgH2j65AhmXfAht4QpYO+qxt3Yu9tQswJ6a+dhXOxcd5tDU7f5fsxrUvZhWsBPTCnZiRuF2TM3fheLL/wJD2Q39PlasuENFTZqFImloK+IoigKjSQcXJDrztna4gkQyH8rU2Fu6yfXVdHXsjypqhvbTBADGcOqLmoC3BN1yNCBqCm4LnO37oM6aA94uvWaNxakJAKwx+k1qRp+D1HNein2xhFOaxNkPoO2Tq04K5d4baYThIW6iZlVVFX74wx+ipcX7xi60P+BIMmfOHKxatQrLly8ftru1Op0u5rR2nuexbt06/2O5/ZxOJ2pqAv+gx40bhz179mD16tXYvXs3WlpaQFEU0tLSMHPmTKxcuRLz588f/DdCiAt6FYt7Fo3Bb78SX9xe+9YefHXHPNR02yT7LB0m99tAMMoEBdndUoc2Q1Pg+MD/hvaTTk25QKEMAxEFRhtyTs1QcozqiKnQQ0lJqg5KhoaLC18NkDkM4viKcenIMarRZAr0VGJpCj9fcvq3JDjTIT01CYSB47E0wXZiDRhtOrQlqwadGGur+UIy1rXxp1BlzoIqffqgjj1UuGRCghTJ46DOOQuWo2/C1RkoA/f0VkHwOEGx3v8nvKMLECJXv4X2uYwFQRDgDBE1KVYrco52W1Kwt3Y+9nxSgUN9i7Fn341wum7t97lE56AElGYexvSCHZhWuAMzCndg3DgaXK/Y3OJq3wvESdQUBEHi1FQkloCSKSsdLIw2TSRqcrZ2Wadmf0rfwyWgR0PO0cueBuXnwMmwoJCScEfTd1BnzZGUngMAE0NPTUA+LEh0HG0msq5YS3ppnkFox1yM7Ou3w9m6C6qMmaPmdeZMIC6iptPpxL333ovm5mZQFDWqBE0AeOEFqTV8NPHhhx+ioSFwERLcX9NHRUWF3/lKURQee+wxbNu2TTKvrq4OdXV1+PDDD7Fo0SI89dRTSAnXGZswoty9qBBPb6yC2RnoAWhzc7jo1R2Yli1168Y7TXowKBgaOiUDqyuyO3tcmg5H2wIOTrubh9XpkfTTBIZHjCL0jzEpWrA0BQ8f/n/8suLUYbt5xDI0JmToRenjoQyHU5KhKTx8Tgnu/CDw5uTexWNQkCzv4iOcPhSHKT9P0Upv9BAIhADuvjo0/2eeV6gDoC+7EWkrXh3UMZ0ygTbgXGj/7DrkXL/DWwI8wsg5NRVJ40DRDFQ5C0WiJiDA3VcDZbK3OitaP01gYE5NT18tBFfgdVQQgGbVj7Cv83xs/KIWe2oWoKajtN/HDSVJ14npBTtw1iVTsOjcPBQLT4I//BvxnFkvoXP9jwE+cG3sbNsz6HOHg7O1gnd0i8aGup+mj9AEdM7eAaFT3MuUNY4FrYw9aJFNHAtKaYDgCrR8iiUBPTQkCDg9ys8BQB2ur+asn8uKmnQM6ecAJD01Q4+ReeVaKJIG/3dCOLVQpU0NGxpEiB9xETU///xznDhxwi9oTp06Fddccw0mTJgAvV4Pmj5zyjP7S0NDA5566in/48TERFx55ZWSecGl54Ig+AVNg8GA/Px86HQ6NDU1oakp8CK1efNmXHXVVXj77beHvE9pf/F4PNEnjXJC2ykMpL1CMAlKGv93+UTc+K747rjJ4cHGanGDe52SwfQs/aj+OSaq2aii5sQMg0jUBIAWkw3NvVJnaqqWHdXf75kIBaAoWYvKTmvYOWcVJcX0exuqv6eJUUTNtGF6Hv1gVg6UNIV1lR2Yk5eIu+YXkOfvGUCmXgElQ8HFBYT+ZK0CEHh4PP3rJz5Qhvq1iUAYDsxH3/YLmgBgOfoWDLMfBmsYmFuM99jhbN8ru81jqkb7Vz9Eyvn/jnrTLd5/T66uY6LHlMIAQZUGj8cDxiAVTZxdx0EneFv/uMzSNieh8M5euGw9oJXR27P46K7dj51VC0+Wki/A3tp56LUNzhDBMAKmTAGmZn+DKYlvY1rBDhSkVoGiADZ5AjIXbUX7R5/DFbKfMu9cKFImwh3kHHW174fbaQfFDP3NIkebNCCJSZ4Ql9dvSh1iThA48CE9UhUpE/t9bmXqFDibt/gfu7uPweUwg2Y1YfdxmWTEb03mkH7fI/XaROlywRgKwJkDPd8dTVvgdjngtsq0b1AmxvR9U/p82XFanYK0Sz8DnVBCrvsIcYNc64mJi6j56aef+r++7LLL8Mc//nFUNeUerZhMJtx5550wmUz+sXvuuQcGg/RCJDgkCADS0tLwwAMP4Pzzz4dSGSiROH78OP785z/ju++8SW9NTU2466678N///lc0bzjheR4HDkTu1XMqcviwtA9Of5lAAffPSMDTe8OLMgAwJYVF+RFpicpoQkVF/ufK0oCRl4YHbd1/BPvbpE5NS1sDDhyI3DuKMPxkKD2ojLA93dmGAwf6nzo70L+nZJnnVDCmljoccDQP6Nj9ZQoLTJlAATDh0CH5JFnC6Ue+nsEJU+CNTJoKI/qaNxSvTQRCvNHV7IbYRy+gcsd7cKWdM6DjsaZ9SODdYbfbq1aj4ouH4cy5ul/HHdK/J0FAUtcxBL9DcqtycfCg9/VC0U0h9B1AXfkmOPu8Djpl2y6Eevh4RTJot9hpeGT3N+B14V1lnZ0sDh7U48ABPQ4c0OHYsUvg8Vw+wG/KS1pCBybNZDFpkhVTplgxYYIVarUA2mGHcc+HoPhAexZPdzlOrLkDqtZdop+FRzsWh0+0QcsUQo3A/1CBc+DI9jXg9CWDWqMcqqZ1CPXbN/VpURuH/+Eai4DwMqOXbk8amvp5bi1yIKptEjgc3f4ROEN4x6mu6QhC61iO1nQDDfF77RrO1yadZiJUQaKm4DajfMNLYGw1CK2hqWnqhccSw/fNu5DIGkB7AtedPGuAacJf0dnEAU2n33tdwujlTL/Wi4uo6ev1qFAo8Ktf/YoImjHQ19eHW265BZWVAXlgxYoV+N73vic7v7a21v91QUEB3nnnHdmy8tLSUrz88sv49a9/jQ8++ACAVxB99913ceONNw7tN0EYEq4dp4fZJeDlw+HFmVnpo7+/pEER2ZGdomaQrJY2je9x8OhySB1NcnMJI09BAovNzVIRGgCydQyy9cObBF+cGNm5kaImlQKE+LKqRIendgduTl4yJtrbVgKBQLl7JWOM+SgwYFEzuqCgrXkOnoSJEcWeeEK5OkDxdtEYpy0IfK2RulQZe6ACi3ZLbxh6DGVQdm8W7+Nq84uaPA9UV6tPCpjej6amwbVloSgepZlHMLNoK2YVbcPMoq1ILymCdeITkrm8Ohu2wh9BV/030bi6+b+Sue4kb5Arp58AYI1oG2spj4uoyVqrJWOcLj79sAVlUtQ5Hp18IGfEffTSkmfWcjzi85x2ik0DPKMD2OHphz4cuBNnQNX+uWhMX/5r2d8tr4j+ewEA0ErY838AbfWzoCCAV6TAPPHP4GR+/gQCIb7E5d1mZ2cnKIrC+PHjkZCQEI9TnFZ0dHTg1ltvRUVFoK9OWVkZ/vjHP4bd5/XXX0dXVxcaGxuRnp4esU8mRVH47W9/i+3bt/vL0d98800iao5ibpukR5+Lx7vH5ct6Z2WM/tAJgzLyzYwUNY0klVRg6nHy6JYRNVOJGDUqyTeEfxkZiefpWGP49VAAEmWecwTCUHJlsRZJKhr7O1yYnKLAigIiahII0aDdJskYaz4iMzM22D5pNQuvTAXtCvTQowQP9OUPwzTj7RERcBhbrWSM0wRETV6dBQEUKATaWdCOQKAL5RI7MgHAY5ggEjVdHgUO7ldiR10G9u/3iphm8+De/mk0HCZP7MWctDcxK/9rTCvYgQSNuMLIrlkQdn9n9pVQdnwNhTmys8iTONv72TBeso0xlwOZKwew+sgwNrGoKdBK8Or4tOyKRTwbiKDK6aSiGmOR9m4NhnZ1iB7zqvQwM09N3IlzINBKUHygwQEluMBayiVzBTb2XrvOnGvhSZwF2tECd+JMgCG90wmEkSAuoqZOp0Nvby9UqtEvvIw0VVVVuP3229HYGLhIKS0txWuvvQa9PnJj6JSUlJhDf5RKJa699lo8/fTTALy9O+vr65GfL98PJJ7QNI3JkycP+3mHGo7jRFbvSZMmgWGGzk34xhQByg8O4c094ubdRjWLq5fOAkOPbgd0XvkBoDl8me+YjCTMKisEtuwUjWuSM+Ds6AAQcC+oWBoLZk0jru9RiMnQhT/u2im77fLZxZg6NbZG80P19zRFEJCw9mv0OaV9jNL0SsycPq3fxyQQ+su0aSN37ni/NhEI8aDloB2h/7WV1uOYMqms370TBYFH086jCI6wYwz5SD//bbR/sBwIKktnnK0YozgIw5QfyR4rnn9P5oPb0BsyljdhCbTFgZCJ5oO5ogRzLd+BsVO927vaBIR2IE8asxJfr63BrupF2F2zAPvr5sDhHpzQkp3agcXLUzBvnoAFC7y9MVnWCGfrXLR/+LDo5+nfp3gO9JPDh2W4899E67vzAD60i+ZJaCXGL7oBtEIHgStD48E7AC5QFWLg6lAydWjDOASBR9P2OtHzRplShqnTZgzpeXzY61rReTz8dorVYtLcC0FR/bsZK3BlaDygFP1s9Y6jYX9eAs+hcbM4MEefMhZFQ/zzHenXJrPy9+jd/GCUWRQmz1wMiu7PukgoDGH4Gem/p6Hm0KFD4PmB956Pi6hZUFCAnp4eUYI3Qcq2bdtwzz33oK8vcHdz0qRJePXVV5GUFKP1vR/MmCF+Ua6trR0RURMAWHZ4S1KHA4Zhhvz7evXqaehzclh9OJBweevcfKiUoz9JN0kbuUQ+y6hGplF6od1l96DdKr7IzTSooFCM/u/5TGRCZvg72ueUpg/4b2Iwf0+TsgzYWtsjGc8wqE7L/z0EQiTi8dpEIAw1vEwKscA5wPeWQ5XRP1HJ1XkYgrNXNKbOXgBdzjwkn/UUujf8VLTN3b475r+R4L8nQRAguMzg7O3gbB3g7B2AwEOVNQ+sLjPqsXjTCcmYOm2CaC0K41iRqOkx14GhAYpmwTs60GVJxa7qRdhVtRC7ahaj/OfTwXHnxfS9yEHTAsqy92Fm0VbMKNyOmUVbMeG87yN5we8kc9ncBUhZ+gy61t8t2aZMGhvxZ8qmT0LSvF+jZ+ujstvV2fOh1Jy8vmBZqNKmwtkauIHq7joMBhwotn8GGt7ZB+uJ1eCsLdCNuwoK45jAMU01ENziCilV6qS4/f9U6rMib0+dBIViAO2mWBbq7AVwNG7wD3l6KyFYG6CQSez2WNoBQdwHn03IjfvrxnC/NiXN+ikYpQ5d394DCPLiCa1OhkJJTFmEU48z/VovLt/5smXLsH//frS1tWH37t2YNWtWPE5zSvPf//4Xjz32mCgVbcGCBXj++eeh08WnBCbU1RkcSEQYnbAMjXe/PxPPfFeNjVWdmJ2fhAfPjk9vn6EmURNZhMwyqJGul16sdVicaDWLezRm6MkFxmgl06CCQcXCHOKMLE3TIcc4MmW3kzITZEXNTAN5HhEIBMJoQ+Dc4F3y16TO1p39FjUdzdskY+rshQCAhKl3oXvTgwAXuHnKWfoXHudo2oLurY/A1boLAiftKU2rkpB5xVqo0qdFPI6rJ6QkmKKhMIp7KCoSx/rFKUEAGjty8e3L3di2Jx3ffvYCqlrCBwDFQkICMH8+sHAhsGABMF71D7h23yeao0oL70QzTP4hnK07YTn6ZuDbYNRQZcyMem7jzJ/DevwDuDqlQXqa/GWix8qMmSJRE7wbrs5DUGXG9h5T4DmYj7yBnm2P+hPGTXufQc71O8EmeA0e7i5puwNFSvz6rTLatIjbFamTBnxsTeEKkagJAPa6dVBMuV0yl7M0ScZYfWxVNqcaCVNuB2vIQ/vn10sEbABgNLFVQI5m9nY24sbv/oNqSzeuKZqG5+ddDp2CXP8STm/i0lzsmmuugdHovbv2pz/9CS5XmNKCM5Snn34ajzzyiEjQvOyyy/Dyyy/HTdAEAKdTfOEVz3MRhg4lS+PBZcX4/Ifz8Nh546BVnhp3YaKKmgkqJGuVCK0ob+5zoNsmLmXKTCAvxqMViqJQmib9X7J0bOoIrMbLpMzQvFgvRBwnEAiE0QfnkAbe+HC27uj38RzNWyRj6uz5ALyvWaxO3CORs0pFnXDwjh60fXYNnE2bZQVNAOCdPTDtejLqsdzdYlGTNY4ROQ95HqjonIu3Nt+Be958Cwsfq8aSx4/j1jvT8eqrGJCgmZcHXH898MILwIEDQHc38OWXwCOPAMuXA0rrbsk+ygiiJkVRSFn2HHSlV3kHGCWSFj0BRhP9GoBiFEhd8QpASUsmNfnigCg5kdTZJl2rHPbG79D8zjx0fXOnX9AEAN7Rjd7df/Y/dnVKRU1lHEVNWhNZ1FSmDrxVl6bgXMmYvXat7FyPjKjJnKaiJgBoiy5A1lXrwWilbmpGF9k9eypw57b3UW5qh5Pz4M0Tu/Fm1Z6RXhKBEHfioo4YjUb89re/xc9+9jMcOXIEt99+Ox5//HHk5kpT/M4kBEHAo48+ivfee080fvfdd+MnP/lJzMc5duwY1qxZg66uLnR1deGpp56KqbdmcN9OAMjOjk/jawIBABI1kf+9ZBrUYGgKKVolOoPKzY+0WiRz04kYNaoZl6bHnkaxy2ZZ8SgUNQ3qYV4JgUAgEKIhV3ruQ+TOixFniFOTVhpFjjtGnw1PX63/scfSDEEQYurbbav+WCSMhcPRtDniMXmXGZxFfF0u6MuwbRuwaZP3Y8sWoKfnZgA3Rz1fOIozyjF77DZc8KNbcNZZFAoKIs93dYhT4ymFHmxQibYcNKtB2gVvI/msp0AxqpgETR+q9OkwzvwZTEHioiKpFMp0sTtXXtSMLNZ4zA3o2vhz2E58FHaOteI9JJ/1FGhWA5eMU1OZGkdRk1WDUiZAcPXJbh+MqKlMnQJGmwnOFmhfZW/4FgLnAsWIq6TkRM3T1anpQ5U+HdnXbkbrmpVwdx31j+tKVo3gqgaPxe3E7k7x/5X1zZW4c3z44C4C4XRgwKLm888/H3VOcXExKisrsWPHDpx33nkYP348JkyYAKPRCI0m9rLEu++W9mo5FXnsscdEgqZCocDjjz+Oyy67rF/HMZlM+Oc//+l/vHPnTlxwwQVR9/vuu+/8XxsMBpSWStPxCIShIlEd3akJAGk6sajZ3OeQzCVlw6ObuQVJ+M++wEWxiqVxdvHIlfBMypIXNcnziEAgEEYfXARR091TCc7RDUadHNOxPJZmePpqRGOqrHmi4A9Wl41gj6XgtkJw9YFSRU89tld/HNM6OFsbPH11UBgLZbe7eyrhdKuwr24udpw4CzurFmN/w0LY5c2fMcHQHGbMZDAz70tMS3wVs4q2IFnvdcHmX3FJ1HJnweOEq1ucBq1MmxJTUA1FUQMWwpIWPAaBc8JS8S5YfQ5Sl78gCWpRJI0HpdCJSoad7eFFTc7eieZ3FoCztUU8N+/she3EGujHXyspP6eUCWD08TXkMNp0eMKKmgMvP6coCprCFaK2AILbAkfLdmhyzxLN5cyNobuf9qImALAJ+ci+eiNMe/8GZ9teaArOCRsYdqrQ55a+h+p12WVmEginF4MSNWO5o+mbw3Ecjh49iqNHj0bZQ8rpIGq++eabeOedd/yPNRoNnnvuOSxevLjfx5o0aRK0Wi1sNm/m4f/+97+oomZrays+/jhwIXbRRReBpuPSfYBAABC9/NwnMKXrVShvl7ozg8kgYtSo5uZZeXhzdwP2NJpAU8Dvzx+PtBF016bqVMg0qKS9WcnziEAgjBCCIAAQ+p1kfCYQyakJAM7WXdAWxhZ+42zeKhlTnSw99yFXWuuxNEEZTdT0WOFoWC8aolVJ0E/4HtymathrPg9Z906RqGmzAVu3Ahs3Auu/yMXu/Z1wcQN/XVIrbJhesAOzxmzB7DGbseSKRcg/52F0b9kM0y6x+OoxN0QVNV3dRwFe3B87Uun5UEHRLFKW/AUpS/4SYQ4DZfp0OJs2+8fcXUfBu62gFdIWOOYj/4oqaPrnHn0TupIrJD1OlSkTY3qvOxgYTRo8vdLAKEafG7OQHw5NwbkiURPwlqCHipqy5eeGM6O6klYZkTRfPqzqVMTslt4V6XESUZNw+jOo8nPvBVr85gOI+4vJcHDs2DH8+c9BZRUKBV566SXMnTt3QMfT6XS48MIL8f777wMAtmzZgtWrV4d1fFosFtx3332w273/1FQqFW699dYBnZtAiJUkbWRR0ycwpcmEBYVCHHajG4OaxdafLMK+JhNStEqMTR35fr2TswwSUZM8jwgEwnDDexzo+vYeWI+9A8aQh7RzX4E6Z+FIL2tUwdnD99QEvOJgrKJmpJAgH6xe2n6JszQDKWURj63o2Q6E9NHUlV6FlKV/hb1xk0TU7Ko+gC21V2PjRq+QuWsX4Pa3DE+P/s2EYNR2Y1bRVsybdBznXD0fWdXnQMkGepAbUy/xfn+GfMm+HnND1MAlV4c0sCdSSNBwo0qfKRI1IfBwdRyAOltaWmuv+UIyRiuNSJz3a5j2PAPO2uIfd9R/A3vDt6LwKCC+/TR9hBOaB1N67sPbl5QCEHj/ba/7Clj0B9G80KAgitWAViUN+vyE4UdW1HTZRmAlBMLwMmBRc/bs2UO5jlOWZcuWoanJ+2KQk5OD9evXS+Y88cQTorCk3/zmNwMWNH3ce++9WLt2LcxmMwDg17/+NRobG3HLLbeIAoB27dqF3/3udzh+/Lh/7Gc/+xny86UXPATCUBKp/DxZq4CK9ZYWpeqii5rEYTf6UTA05uSPnovgSZkJWHdc7P7JMZKemgQCYXixVrwHy5E3AACe3hPoWHsLcm86AoqJfOPvTIKzd0Tc7mzdFfOxJCFBNAtVpvg9CyMjanpiSEBXdm2UjGmLLwUAqDJmwOxMxO6qedhR5S0nP9QwExwf89Il5OYCixcDk7V/xfSUt1CScRQ0LYBiVEgZ9xw668Whiqw2w/tZxmXnMTdEPV9oP01geJyasRKur2aoqMk5eiXPA9Y4BtnXbAKjTQNna4dpd7ArVEDP5l9Jjq2IYz9NH4xGXtweTOl54NgpUGXOFvWldXUcgMfaClYXCMkJdWoy+pzTwlR0JiIvahKnJuH0Z8Ci5ltvvTWU6zht2b9/P3bsCCQ3MgyDtWvXYu1a+QS6cLz22muix+np6Xj++edx++23w+l0wuPx4LnnnsMrr7yC8ePHQ6lUor6+Hq2traL9br31Vtx8880D/n4IhFiJVH6eFRTYEkuZciYJeCH0kxtm5uKZ76r9j8sy9Bifrh/BFREIhDMRe8O3oseevlo4W3cSt2YQfIT0c8Dr1IwlyId3WSTCnCptOmiFVjQm1y8wagI674aiW1zabvbk4dC+pdj4LLBxow779raAF6RJ3rEybpxXxFy8GDjrLKCgAKAooGPtEVjKA/0eBc4JZ/s+yf60X9TMk2wLDSWSw9mxXzxAMaKApZFGTtR0NHwL43Rx2Kq9fh0gcKIx7diVflekvuymEFETcHVKXaqnulMT8Jagh4Zt2evWwVB2AwBvFaUn5LnBxrmPKCF+yImaJpcDHM+DIW3nCKcxcUk/JwT48ssvRY85jsPmzZvDzO4f8+bNwzvvvINf/OIXqKqqAgA4HA7s379fMtdoNOL+++/HNddcMyTnJhCiYVSH//eSmRAQMtNjKD/PIOnnhH4yLceI1bfMxv9tqUGaToU/XjSBOA8IBMKww1lbJWP2uq+IqBlEpKAgAOAd3fD0noAiqSTiPGfrTomYpZIpTZbvqRnZqano3Q1Tnwo7q87BjqrF2Fl1Fsqbp0AQgoWC/gmaJRlHMbd4I+aO3YRFCx2YdvuHsvPYxLGSMbneoazOK2oyeqmoGc2pKZws5Q5GkTweNDt6biqzicWgtemi9Hlb3VfgHL1g1In+MbnSc21RIHtAmTwOqqz5cLZIWxUEMxyiJq0N49RMGypR8zz07hCXm9vrvvKLmry9U1J2zxpO/5Cg0xU5URMATG4HklVa2W0EwukAETXjTHV1dfRJg2DixIn45JNP8PXXX+Orr77CwYMH0dnZCY/Hg9TUVBQWFmLZsmW46KKLkJw8uIbTBEJ/YBkaehUDi5OTbMsKKidP00UWLLUKBnrVwJ0PhDOXlRMzsXJiZvSJBAKBECc4m1TUtNWtQ9KCx0ZgNaOTaKImcDJ0J4qo6ZAR+tQ5UlGT1cn11JQ6GdvbgW+/pfDhh3nYvy0VxxsGF1w6ZQqwZAmwcFYbxtZPR4o+8H3ri24Ju5/COEYy5uo8JBljtN7XO1plBKXQQ3AHQhijiZqevloILrNobDSVngPenAVd8SqYD74YGORcsFWthmHizQC84qytVlwNRykNkr6qhok3RRQ1aW161GCloYDRyJyDVkCRWDokx1dlzgKtSgLv7PGP2eu+hsBzoGhG4tIE5EV/wqmBWSb9HAB6nDYiahJOa0a9qOlyuaBURndyDQWrVq3CqlWr+rWPXA/NYF5++eXBLCkmGIbBeeedh/POi62JOoEwXCSqFbKiZoao/Dzy33eGQUUcdgQCgUA4JeGs0gRmV9secPZOMJrUEVhR/xEEHgLnBMWo4/J6HC39HPD21dRP+F7kOXIhQVlSUZNiVaA1qaLzeizNaGvzBvps2OD9KC8HvO7L/of6UBSPsuwDWDSnDRfcdD4WLwZ83gJbzV60rRF/z8rkcWGPpUgslg4K4madFKMGpTScPDcF1pAHd3d54PszRy4/l+unOZpCgnzox10jFjUBWI696xc1XW17wIf0aNXkLwfFiK81dSVXomvDzyB45ENUhsOlCQDMyZYBonMnTxiynrsUzUKTvwzWyg/8Y7yjC672fVBlzoKzbY9kH1J+fupiCePUJH01Cac7wyJqCoKAnp4eOBwOcJxU4AAAnufh8Xjgdrths9nQ0dGB3bt34/PPP8eWLVtk9yEQCKObRI0CjSbpXcOshGCnZmRRkyRWEwgEAuFUROBcYfpFCrDXr4d+3NXDvqb+4mjZgY7Pvw+PuQ6agvOQfuHboFXGIT1HaPq5IqkEblMtwAeCcBytOxAJgefgaN0uGmONY8HopKIR4HVrtnXy2H5iifejajkqW2SnxgTDADNmCJiW8H+YU/Q1Zo/ZggSNCWxiMfIuPV80191TIdlfkRRe1JQrP5ecX5cpEpxDRU3O2gyB94Ci5d/6jfaQIB+q7PlgDPngzPX+MUfDt/BYW8DqsmALSaAHAG3RhZIxWpUAXckqWMrflj3P8ImaUqfmUJWe+9AUnicSNQHAVrcWvNuC7g0/la6JODVPWcKVn/c4iahJOL2Jq6h58OBBvPDCC9i2bZso/ZtAIJwZhAsLChYqowUFkeRzAoFAIJyKcEG9/0Kx1607JUTNrvU/gcdcBwCw162Fad+zSJr3yJAdXxAEibOO0eeCUhrhatvtH3N1HATvcYTt8ejqPCQpnw5Nxe7tBb77Dvj2W2Dd6v/iSK20rDtWWJbHrFk0liwBli4FFi4EDAYKLR9+Bkf9N/55nt4T4OxdYDQp/jF3t4yoGcGpyaiTJCXEkjkhvRklYUECD87SDDYhX3Z/eVFzStjzjRQURUNfehVMe54OGhVgPf4+jNN/Alvtl5J9NIXylWz6spvCiprDFZCkSCoFo8sCZw0o6prCCyLs0X80BedKxixH34Zp99MQOLEIRrFaqLPmDen5CcNHWFHTJe9IJhBOF+IWg7Vu3Tpcd9112LhxI5xOJwRBGNAHgUA4dUlUy4uaWQmBNyUpWgUiVbMRUZNAIBAIpyJyIUE+7HXrRv11LufohiskEdsmE8IyGAS3VSKsMOoUqDPniCfybrjaxWsJRi44x2Vcgs8/B37xC2DWLCAlBbj0UuBvf0O/BU0F48Ksos348bl/xL/uvAhdLT3Ytg3405+A888HDN7Kb6gyZ0vX1rpLvK5QpyajBJtQGPH80dyaoWXMjEFaQhypr6azQ5z+zehzR217BN34ayVj1mPvwmNthSuknFqZPh2sLkv2OOrcxWBl+pUCw+fUpGgWqee+AkaXBVA0DJNvh67kiiE9B6vPkYi0HlOVqOfqydUgdcUrw9JLlBAfwoma3U4iahJOb+Li1LRYLHj44YfBcZxs7x3fWOjFXPBclUqF0tJSnH322fFYIoFAGAYSNfL/YoLLz1mGRrJGgS6bW3YuST4nEAgEwqmIXEiQf5u1Ge6uI1CmThrGFfUPd0+ldKzzEATOJelROFDkQoJobZpXHAwxDzpbd0CdLe8iczRtgs2pxZ6aBdh2Yim2n1iCQ41zEKbrVVRUKmDePGDBzFZMdNyI6QU7oFF6SzjVuUuRkJoiu586cy5MIWPO1p3QFgVK0EOdmgrj2LBl4f45iWNFztVQGJ04FE/i1ER4UdPdWwUuZNtodGn6UKZOgSJ5PNzdx/xjzrZd6DvwgmRucOp5KBRFQ192A3q3SUO7lCllQ7PYGNAWrkD+D+sgCDwoKj5+I23heTB1HYk4J2X5/0FfelVczk8YHsKJmr2kpybhNCcuoubq1athMplAURQEQcC5556L8847D6mpqVizZg0++ugjsCyLF198EQzDoLe3F8eOHcNHH32E9nZvqY5er8fzzz+P9PT+N+cmEAijA2PY8nNx+ViaXhVW1CQ9NQkEAoFwKuKRCQkKxl63bpSLmsclYwLnhKvrCFTp04fkHHI9Rxl1ClRZcyXjztadosd2O7BtG7B+PY+1796HA7X/gpsbmNiqZJyYPaMP51yYhrPPBubOBdRqoGvry+jbuUE0V1t8adjjqEIdpiHr5hzdknL7SKXn/jlRnZpRys8hFTV5jwN9e59B784nJXNHY0iQD4qioBt3LXq3/VY0btr9F8lcTaG0n2Ywhgk3oHfb7wAEjDaMIR+0KmEoltov4iVoAoCmYAVMe/4adnvSwj8gYfJtcTs/YXggPTUJZypxETW3bg2UgFx33XV49NFHRds/+ugjcBwHQRAwf/58AMAFF1yA2267DQ8++CDWr1+Prq4u/OY3v8GLL4oT7ggEwqmDXE9NNUvDqBb/60nTKXFMMtMLKT8nEAgEwmBwdRxE784/QQCPxFkPQJUxY1jOG8mpCQC2unUwzpQGdYwW5ERNAHC27R0yUZOzdUjGGE0qWONY0OoUkejZ17Afx072xPz2W2D7dsDpBLzdtKQiaCRYlsfU3O2YV7IR84o3YEbhduSc+ziM038immev/liyr27syrDHZbRpYBOK4Omr8Y85W3dBEARQFCVyF/qIFBLkX2+YMunAeaM7NS1H3wDv7PX/7rq3PAyPqVr2eMqMmVHXNJLox10tETXBe0QPaU0qVFG+DzYhH9oxF8NW/Yl/LJK781RFnb0QFKuVTXs3zvo5Emf/YgRWRRhqLJ7hSz/nBR4vlG/F65U7kaVNwDNzLkWJkbQuIIwMcRE1Kyq8ZRU0TeOuu+4SbZs8eTJomoYgCNi5cycWL17s32YwGPC3v/0NV155JY4fP46NGzfiwIEDmDp19N4tJBAI4ZHrqZlpUEnaUqRHKDEnTk0CgUAgDBTe2Yfm/y71949z1H+L3FvKwaiT437uSD01AcDZtAm82wZaoY37WgaCu1dafg4Arva9AG4dknNwDpnyc00qKIoCnToPuzZ1YfuJpdhWuQR7a+fDIV/UERWaBmbOBM4+2/sxZ9xRmNYsFa/F0iR67DbVwN0p7jWpSJ8hKxgGo8qaIxI1eWcPPL2VUCSVwrT7acl8RVJp1PUrEosjbmd0Yqcmo5f21HT3VMK0+8/Rz5U8HtrC86POG0kUicVQZcyGs21X2DnawvNA0UzUY6Usfx68xw5nyzaoc5cMaRDWaIFiVVDnLYU9JB3eMOk2JC38wwitijDUhHdqDn1PzbVNFbh3x2oAwP7uZrTZzdh5yX2yrQcJhHgTF1Gzr68PFEWhoKAAaWlixV6n0yE3NxcNDQ04dOiQZF+lUol77rkHd999NwDg888/J6ImgXCKIufUDA4J8pGqD18uRpyaBAKBcGbjNlWjd8cT4J0mJEy7G5q8JTHva69fJwrE4J09sFZ+hITJQyPKRSKaqClwTjiaNkNbuCLuaxkI4Z2ae2THBwJvDzgxPRyDI43TcfiNGdi8D9j83Xuw2gdWTk5RAqZNo/wi5uLFgNEY2M7ZsyS9Lz2WZtFjW/VnkuNqx4R3afpQZc6BteI90ZijdSfcvVUiR6B3oTQ0eUujHlNhjFZ+LnZq0qwarKHAn1wfGxT0E29G8qInhqxnajzRjbsmoqgZa4o4q8tC1qrPo088xUmc/RDsNV/AV2qvG3cNUpY9R0So04jh7Kn5Ud1h0eO9XU2os/Sg0BD/G4YEQihxETXtdu8fTrh+mGPGjEF9fT2OH5e/WFq6dCn0ej2sViuOHInc1JhAIIxe5IKC5JyXaboIoiYJCiIQCIQzFoFzo231pXCfTIy2VX2M3JuPRHWu+fBYWiRjzuatwHCImrbIPTUBb1/N0ShqCgIPT88J2W2uzkMQPE5Q7OBen3ke2H+QwVcb7sW2yqXYVb0IFkeQ8oj+CWvjsg5hfvEGLJ7djMt+/UckR3hvTauTQTFqCJzDP8aFiJqudql4qym6OOo6VJnSUnhH4yY4Gr+TjBsm3x7V+QkAtDYdlEIHwW2V3R7aUxMAEqb/GN3fPRD12IBXiE1Z+jeoMmfFNH80oBt3Fbq/+wWC+2H6oRhoCs4d9jWNZtTZ85DzvV2wVn8KZfI4aItXEUHzNMPsdsiOx6OnZr2lRzJWa+kmoiZhRIiLqGkwGNDb2ytJN/eRn58PAOjp6YHJZIIx+NYpAJZlkZeXh/LyctTW1sZjiQQCYRiQc2pmyjg108IIl3oVA50qLv+mCAQCgXAK4Gjc6Bc0vQiwVLyHpLm/jml/zt4uPWbzVpmZQw8XEhTE6HO8QmdQ7z973VcAopcEDzecuVEk+Ing3d6woH72JhUEoLISWL8e+OYbb1/Mrq67B7zGCROAhVPLMU31GOYWf4cUvbeUPXHeI0iK8r6aoigw+hx4TFX+MU9I+bmrU+xEEmgN2OTxUdelSpsKMEqAc/nHLEfeQKj4RmtSkbRAmrwdbr0K41i4QsrhfTDaDMlYwvR7oUgqheXo23B27IenVypS09p0JC98Avqy78c1qCYesLosqPOWwtHwrWSbKns+GHXSCKxqdKNMmzKqk+0JgyNs+blr6MvPG629krFaGaGTQBgO4qIWJCUloaenx59kHkpeXuCO5IkTJzBzprSJs16vBwCYzeZ4LJFAIAwDoSnnAJCfqJGMpYcpP5fbn0AgEAhnDvbGDZKxcGXRcvA2ac9Gj6kKnLUNjE4qBA0VgiBIgoIUicVgjUVwNm32j7m7y+ExN8Tk1htOov2MnW17YhI1m5oCIuY33wCNjQNfU2FaJeYXb8A5lxbhwpvOQWYm0PbZY7BVfiiaF2s/SFafLRI1OUuTP9BH4D2SUB9ONyYm4Y9iVVClTg0pjZYaPZIXPdEv4Y1NlBc1KYUetFIvHacoaIsuhLbImwDOOXrh6jgAV/teuHsqwRqLkDDldtAqo2TfUwX9uGtlRU1tjKXnBMLpgofn4OA8stviERTUaAtt4CHv3iQQhoO4iJoTJ05EdXU16urq0NbWhowM8UWjz6kJAIcOHZIVNVtbvReC4dyeBAJh9FOWocfkLAMOtXhvTrA0hWunZUvmpenknZoZEXptEggEAuH0x9GwUTLm7pEPsJFDzqkJAI6WrdAVXz7gdUVDcPVB8IjfSDLaDChTJ4pETQCw130Nw6Rb4raWgRAuJMiHNyxISnc3sGFDQMSsqJCdFhNFRcBZc9sxlXkAc4s3IivR66RUZcxGZuY5EDg3HHXfiPahNWkxJ3czevH1iMA5wDt7wKiT4e6thMCJXU8eXWwtDwBAlTU3Yr9HVeZc6MtujPl4AKAIk4Au59KUnadOhCZvSb960o52tMWXAevvBnhxgpS2aHQHHREIQ004lyYAmFwOcDwPhh4aN7bJZZc9X62le0iOTyD0l7jUGcybNw+AV5D805/+JNk+fnygdGPt2rWS7RUVFWhsbARFUZLSdAKBcOpAURS++dF83LO4CDfNysW2exahIFma8ppGnJoEAoFACIF3meFs2y0Z9/SeiPmmN2eXOjUBwNG8bVBri4ZHJiSI0WVCUyDtn+ktQR9dRBOOfWFBViuwdi3wwAPedPHUVOCKK4AXXui/oJmV2IBV81fjn/8EamqA6mrg9f+k4apzd/kFTe+5d8HVdRSOlu3gXWK3kKbg3JjLqFl9jmTMl4AeWnoOAJw2clhPMKrM2RG2UkhZ9my/y73ZMH1k4+k4Hu0w6iRox4j7nLKJxVCkTBqhFREII0MkURMATGH6bQ6EBpnScwCoI05NwggRF6fmBRdcgKeeegp9fX348ssv0dbWhjvuuAMLFy4Ey7LIyMhASUkJKisrsX//frz00ku44447AADt7e341a9+5S//KCsri8cSCQTCMJGqU+Fvl0a+uAwXFJROks8JBALhjMXRtAUQOMk47+wFb+8Eo02LegzOJu/UdMa5r6ZcSBCjzYAybRpodQp4RyD1216/HgLPgaKZuK6pP4QrP3d5FDhQPxtb156DvS/y2L6DhtstOzUqqanA3IKPsWDMF5hfsgEFqVVQZ85G9nWX+edQFAX9hBvRs/UR0b6Wo28BMqKgtvC8mM/P6KSVIx5LM5Spk+HqPCTZxun6I2rOCbvNMOUOqNKnx3wsH4pE+fPLhQSdSaQsfQbO1p3gLE2gFDqknvMiCcAhnHFEEzV7nDYkq6TGkoHQaJWWngPEqUkYOeIiamq1Wtx5553405/+BIqisHfvXvzoRz/CW2+9hVmzvKl6V199Nf7whz8AAP72t7/hnXfeQXJyMk6cOAF30NXReefFfnFCIBBOTVLDiJok+ZxAIBBOLcxH30TPtsdAUQySFv0B+tKrBnwsh0w/TR/u3hMxiZp8GKems30feI8dNCvt8zwUcGGcmhTNQJO/HNbj/w2s0dkDZ9seqLPCC2GxnbMNfQf/AY+lGfoJN0CTu3jAx/I5NXmeQnnzVGytPBtbj5+NXdWLYHNJ+zfGgsEALFkCLFsGLF8OTCzjUP/8VQjuN0lrUiX76Sd8Dz1bfyOaZyn/N2hNSshMStYJGw5WLxU1fQnobjmnZj9ETdY4BrQmVfL86084UCjhRc3MAR3vdIHVZyPvB5VwdRyEInk8aMXQCDcEwqlEVFFzCPtqhnNqNlhN8PAc2FF0g45wZhC3WOGbb74ZjY2NePvtt/1jwb00r732Wnz44YcoLy8HRVFobW1FW1ub36EJAOPGjcPKlSvjtUQCgTBKYBkayVoFum1iu0dmAhE1CQQC4VTB3XMcnevu8LsrO768GeqcRWB1WQM6nr3xuwjnqoQ6e37E/QXOBd7ZK7+Rd8PZuntQwl8kwomaAKApWCESNQHA1XFgUKKmIPBo//x7cDR5f2bWY+8i+/ptUKZM7OdxgIpyJ/73xQpsPX42tp9Ygl5bqHgYG0olsHBhQMScNQtQKALbOXsPQgN0GIlQCbCGXGjyz4G9fl1gX1urJIhJlTlHdv9wMDLl5x5/+fkR0TivTIWgiL0lFkVRUGXOgb3mc9F4f8OBgmH0OaAYlaTX55lcfu6DotmYgqsIhMHQausDAGRqE0Z4JVKiOzWHTtSUSz4HAE7g0WQzoUCfPGTnIhBiIS49NX08/PDDeOWVVzB79mxoNBqkpwfKIxQKBV5++WVMnTrV3xcp+HNJSQlefPFFsGzcdFcCgTCKkCtBJ05NAoFAOHWwVn4kLhfn3bDXfT2gY/FOU9gwGgBw90ZPQA/XT9NHPEvQQwU3AGBPBrooU6VCo8fSMKjzOZu3+QVNwBt6Y9r795j2bWoC3nwTuOkmID8fmDBRhd+8/xy+PLiqX4ImTQOzZwMPPQSsWwf09nqTzx9+GJg/XyxoAvK/H1oj777VT4weqqPpZzhMaFAQ4HVq8i4zPH01onFPP1yaPhKm3C56rM5d0u9woGAoigZrLJKMxxoURCAQBs7Pd36MnPd+h9z3fo+Hdn060suREN2paRuyc4VzagJALemrSRgB4q4YLl68GIsXL4bFYpFsS0tLw3/+8x+sW7cOGzduRHt7OxITE7F48WJcfPHFRNAkEM4g0vQqVHRYRWOZpKcmgUAgnDI4mrdIxjym6oEdq2kzIPBht7t7T0Q9BmfviHyOlviFBXFWmZ6aJ52arD5XOt/cOKjz2ao/kY5VfQxh2f+BYsRqYleXOKH8eHR9OCxlZV4X5vLl3tLyxMTY95VrDRDOaakduxK00igJBhLNKeyfqCnnIPZYm+HqOioZ709IkA9N4QVIO/9fsFS8B0VSKZLmP9rvcKBQFIlj4e4+JhojoiaBEF8OdjfjmSPem0YCBPz58AZ8v3gmJiUNrAohHpijBAENqVPTFv7/MAkLIowEw6Ya6vXy/XcYhsH555+P88/v34UIgUA4vZB1ahJRk0AgEE4JBJ6DQ8b56B6gqGlv3BhxuydKOjcA8LbIoqazeSsEgR+00CSHJCiIYvz9ImltmqSM2DMIUVMQBFirPpaM845u2Bs3gE85F5s3B0TM/fu9ZeYDISepFgtKv8WCkm+xoPQ7zPpl+YD7kso5NRmZnpoAQLMa6MZdDfOhV+S3a9Oh7Gf4DsUoQWvTwQeFSXGWJvnk8wE4NSmKgn78ddCPv67f+4aDNUrXQURNAiG+bG2vlYxtaasdVaKmJYpTs3cIe2qGKz8HgDoSFkQYAYgVkkAgjAomZSXgo8OBcr1krQLZCeoRXBGBQCAQYsXVeRCCq08y7ukdoFOzYUPE7e7eE1EFyWhOTd7ZC3d3eb/7TsZCaE9NRpvhXytF0WD0ufCYqvzbPeaBl5+7u8vhCXKuujwK7K+bg62Vy7DjtSLsrcCAE8pT9O2YX7IBF928HLNT/4Gktt8hOFja1XFowL1AOXuXZEwuKMiHvuzGsKKmtmDFgMRpVp8DV5Co6bE0wT3I5PN4oi26AH37nvU/pjWpUKVNHcEVEQinP00yad+RSrBHArMnevr5UCAIAik/J4w6hl3UbGtrQ1tbG0wmExISEjB1qveF2G63Q6lUgmFIWhaBcCbyw7n5eGt3A2p77KAo4JFzS6Fk49r2l0AgEAhDhKNps+z4QJyanKMbro4DEecIHjs4SzNYg7SU23+cKE5NAHA09z9MJxY8IT01Q8NcWEOeSNTkLI0Ddo2aj3+Kww3TsLVyGbZWehPK7S7dgNZtMABzS7ZiXv4HWFDyLUozj4BRKFFwtwmW8gJ0fiWe72ofeGq7fPl5eFFTlTkHiqRxcPdUSLZpCs8b0BpYfTZc7ftEa3K27RHNEcCA0xYO6PhDjTpvGRLn/BKmfc+BVicjdfkLoFhS1UIgxBM5EW+0lVkPV/p5r8sOmyf8XbI6M3FqEoafYRE16+vr8cYbb2DDhg1oaWnxjy9atAivvOK94/rNN9/g8ccfx9VXX40f/vCHMBgMw7E0AoEwSshN1ODA/UuxpbYbOUY1JmeNvmRBAoFAIMgTTtTk7R3gXWbQytiv67zHEtdHUwodBLe477K7tzKyqBnFqQmcDAuafFvMa4sFgfdISt8Zbabocei6Bc4J3tYRU5K1IHj7YPrKydev/RF6rQ8MaK0qFbBgQaAv5qxZQNNrV4oERzaxGBRFQ5UxU7J/qADYH2SDgtThg4koioK+7Eb0bPl1yAYamoJzB7QGRidNQHe27RI95jV5AD06hEOKopC04DEkLXhspJdCIJwxNMn0kGywnpmiZjSHKnFqEkaCuIqagiDg2Wefxcsvvwye5/3p5nI0Nzejt7cXr7zyCj755BM8++yzmDx5cjyXRyAQRhkGNYvzx6eP9DIIBAKB0A8EQZANCfLhNlX3q0TW0SDtp6krvRqWI6+Lj9tzApq8s8MeR1bUpBhRQrujeWBhQfb69ehcfzd4excSpt+NxLkPgzpZl+09r/iaN1SsZGTEWI+lMayo2dgYJGKu9yaWB4j9JiBNe4VLn4i5YAGgCWqJyTm6JQ5KRVLpyc/jJOKyM0JCfTR4h4xTUyuffu5DP+F69Gx9RBQipcqcC0adPKA1yCWghwZUDST5nEAgnD6cDk7N3iEKCoomajZYe+HhObA0qb4lDB9xre2877778OKLL4LjOImgSQU35AHQ2BhokN7S0oJbb70VVVVVIBAIBAKBQCCMXtw9x0VhK6H0NwHd0bhBPECzMJTdKD1vb+SwILmgIHXO4pC1VckmlUdC8DjR/sUN8PSeAO/sQe/238NR/41/e2g/TUAa5sIa8iVzPOZ6/9ddXcD77wN33gmUlgJ5ecDNNwNvvRUqaEanNLsCP/kJjzVrvMfdsQN44gmvqKkJyfhxywQwKZJKAAAUzUCZNk08v+soePfAerVJempSNGhVYsR9WH0ODFPuEI0lzv7FgM7vO140Rks/TQKBMPwIgoBGmZ6aTbY+eHhOZo+RIbpTc2h6akYTNT0Cj2abtL82gRBP4ubUfP7557F27Vq/eDl58mRcdtllmDhxIq699lrJ/EsuuQRVVVXYs2cPKIpCX18fHnroIfzvf/+L1xIJBAKBQCAQCIPEGcGlCQDufoQFcfZOuEKCWlQZs6GUcXq6e45HPVYwtNIIde5ZEtHU0bIVuuLLY16js2M/+BAXqLXqY2gKzvGeV0bUZHXilFxWL3ZqWp06fPElg+21XjfmgQMDTyjPS23E/LFfYUHpt5hfvAFpCW3IvPIbaHIXR91X7mfqc2oCgCpjpvj3LfBwdRyAOnt+v9cZ6qSl1Skx9RRNOevPUBiL4Oo4AO3YS6Edc3G/z+1D1qkZuk4iahIIZyw9LjvsnLSHJHdSvMvXJ43AqqREFTWHyKkpF5oUSq2le9T8XAhnBnERNVtbW/29MgHg/vvvxw9/+MOI+8yePRv//ve/8fbbb+MPf/gDAODw4cPYuHEjlixZEo9lEggEAoFAIBAGiaNpU8Tt/XFqOhq/k4yp85aAVurB6LLBWZsDxw1K/JZDIppp06DOXiA9Z/O2fomanKVRMhYcbMTZpM7P0LJyXp2PnVWLsOW4N9znQN0ceHhFzGsIJkXfhvklG7CwdD0WTT2GqZfehs6vfiSaYzvxYWyipoz7VZEYJGqmT5dsd7bvHZCoyYc4NSOFBAVDMUoYZ9zX7/PJwcYiamqJqEkgnKlEcibWW3tHjXhnGSU9NQGgzhJ9Tjja7Ga8X3MABqUalxdMgkGhHvCxCGcOcRE133//fTidTlAUhauuuiqqoBnM97//fTQ2NuKNN94AAHz++edE1CQQCAQCgUCIAc7WDk3N86CdHXClnw8g9l6WA8XRFMWp2Q9R094o7aepyV0KwFsGHSxquk3VEHgPKFr+clYS1qNJgypzjqSvpjPK+kPxmKX1367OgxB4DhTNyDo1ocrEnj2BvpibN0+Azba+X+f1YTAAS5cCiybvx2T3DzAu6zB8XZ0MU34E7ZhLAFoB8AF3kbXyIyQveTqqE1LeqVni/1opExZkr1sHw4QbQKv6F/AX6qSNVdQcSuSCgoKhFHrw6qyIcwgEwulLYwQRr87Sg0UZRcO3mAiY3Y6I200uB3iBBx3lNaDS1IH7d32MTocVd45fiBuKxf/zI/08fNRZBpaA3udyYPFnz6PK7L3h9XZVCT4/9zbSn5MQlbiImps3exMwKYrCPffc0+/9b7/9drz99tvgOA6HDh2KvgOBQCAQCATCGY6r4yDaVq+E5qTwp+r4Cs7x08HmLYzbOT3mBnj6aiPP6Uf5uSNU1GSUUJ10ASoSi8XbeQ88fbVQJBZLjiN4nOBd4jI5RpsGWqmHMm0KXO37/OPOjn3g3TbQCm1Ma/RYpKKm4LbCY6qCIqkUnK0NggBUt4/D1sql2Fq5DDsfm4ee3uA9KMkxwqFSAQsXAsuWBRLKWRZo//IZWI8dFs3VjV0JRp0ITf45sNd+4R/nrM1wtuyI6qj0hPTUpNUpYDSBRHJFUikohR6C2+Ifs9d8jvqXc6EZcyH0466BpvAC0Gxkdw3vcYiOAQC0JnzyebygVUZQrBaCR77fnCK5DIihJJ5AIJyeRHImjqYE9Gjl5wIEmFwOJKnCv84JgoCL1r3qFxV3dNSj1JiKuWkF/jmNIUnwWlYBm0dcnj/QBPR/HNvqPzcAfNNciY/rj2JVIQmPJkQmLqJmY2MjKIpCcXExUlP7f9c1OTkZ+fn5qK6uRltb/5q3EwgEAoFAIJxp2OrWof2zayG4zKJxa8W/oYujqOlo2hx1jsdcD4Fzg2Iil1dztna4u46KxtSZc0Gz3jSbYMegD3fPCVlRk5NL1tZ4k7XV2QtEoiZ4D5xtu6HJPSvq9wLIl58DQPXBCmyvLcVn/7ocm/bej1aTNOE8FmgamD07IGKGJpQDgMC5Ya/5QjRGKROgPvk96EpWiURNALBWfhhR1BQEHu6Qkv7QnzlF0VClz4CjSdwmQOAcsFV+CFvlh6DVKUg95x/QFV8W9lyhCetA4PcznFAUBUafHbaVgSJl4jCviEAgjCYi9ZAcTQno0URNwFuCHknULDe1iURFAHj7xB6/qCkIgkTknZGSix0d9XAHhSYN1Kn5n6q9krGXKraNSlGTF3h8WHcIbTYzVuZPQp4+caSXdEYTl1uPJpP3jz85OXnAx0hL817YuFyuIVkTgUAgEAgEwumI+fDraFu9UiJoAoCnuyKu55YrPZcIQQIHj7ku6rHs9dJybHVuoAURmygjaoZJQOdk0thprffaUpUlFfaczVujrs+Hz6nZY03GFwcuxyPvP4vlTxzG+KWX4Oabgf99e1a/Bc3SrMO4efHzWP2RG93dwPbt4RPKAcDRvBm8s1c0pi08HxSj9H499hIgpCzfeuJDCBHShzhzIwSPuO+aQuZnri/7fsTvhXd0oePLm8A7w4sBoaXnwMg4NYHICeiKlEnDuBICgTDaiNhTcxC9I4cSQRBiEzWjhAV1OKySsb1dgcqELqcNDs4j2p6vS0K+LlE0NhCn5sHuZhzulbZu+br5OE70SV8vRpo7t36Aa759C/fsWI1pa55GTYgYTBhe4uLUNBgM6Onp8YubA6Gry/vEMBqNQ7UsAoFAIBAIhNMGQRDQs+1RmHb+Kewcd2/khPDBEhoSRDEq6EqvQu+2IyHrqJZ1VAZjPvSKZCxY1FQkSfcPdRb6kBPNgp2aoTjbdkdcGwBYrcCmTcDqf34fmw8/g6PNUyEIA/MHFBUBC8ZvwezUFzG/5FukGbwibO7ZF0NhLIy6v63qY8mYduwl/q8ZdTI0ectgr/vKP8aZG2A78SG0Y1bKumZlQ4KCks996MtuBO+ywLT7L6Iep8EIHjsczdugLTpfdrusU1M9/D01AYCJKGpOBMh7VQLhjKXJFl7PqB8l5edOzgOPwEed1+OSb7Ph3y4jeu7vboKb56CgGVmBN0+XiDa7WeTwrLf0gON5MHTsr49yLk0fr1Rsx5OzL475WPGmxdaH147v9D/uddnxRuUuPDZD/vWOEH/iImpmZWWhu7sblZWVMJlM/RYmW1paUFVVBYqikJ0dPZWQQCAQCAQC4Uyja/3dskJgMLytDbzTBFo19DeJOXsX3N3lojFV5lwok8dL5kZLQHe27pIIpLQ2XVQurUgY4+1vGPTmzd0j79TkQ5LPgYCoyRpywWgzRCnlrg5pD3eXC9i5MxDus3074HYDwG0Rvxc50tMD5eTLlgFjxgC9OzehZ+t7onkec0NUUVMQBFirPhEP0gpoC8VvqHQlq0SiJgC0f3YdKFYLVdY8qHMWQlt4AVSZswDI/yzlSv4pioZx+t1ImHonHE2bYa14D9bKD8A7xW/weUd4NVBWdNaOjKgZKQHdK2rKtxsgEAinP9GcmoIggKJi75EcD8weqUtTQTOiknAgulNTTvR0cB4c7W3D1ORs2ZCgXJ0R7Q5xf2SPwKPZ1hdzSTYv8Hi3Zn/Y7a9X7sTvZpwPFRMX6arfbGuvgwBx1UO5SVodQhg+4lJ+vnCht3cTx3H45z//2e/9n332WX95zNy5c4d0bQQCgUAgEAinOvb69VEFTR9yidZDgaNZWnquzlkI1jhGuoYooqZpzzOSsYSpd/nLqQGAYlVgDQWiOaHBNj44m4yoqQ30bFSmThEfp68GHnsf9u0D/vIX4IILgORkYPFi4Le/9To03W7EjF7Vh+UTP8Ujl/0M3z7/C7S2Au+8A9x2m1fQBADGIC1R5ywNUY/t6jgAzlwvGtPkLpUI19qxK71J7yEIHhscDevRu/33aH53Ado+uRKctS1M8rnUqemDohlo8pYg9ZwXkH7RO9LvxR5B1JQRPOlR5tRkdNmikCQCgXBmIQgCGiP01LR4nOhxRRYKhwO50vNcrfRGZrS19jjlnZy7O72vS/KiZiIK9UmS8dp+9NXc3FYTUTzuctrwQe3BmI8Xb7Z31ErGYkmFJ8SPuMjdK1euxKuvvgpBEPDqq6+irKwM5513Xkz7vvTSS/joo4/8jy+66KJ4LJFAIBAIBALhlMV89F+SMVqVCM3YS2EN2ebqqYAqc/aQr0EuJEiVswiKxLGScU9vVdjjuE01sJ74UDRGsRokTLlDMleRVAJPX03guOZ68B6HJG2bk3Fq0pqAaKZMmwxb3TrUdJRgmy+h/HcadA2wmlDJOjCzcBuWn6fBdPbnmJy3ByzjdckklN0FOSMPq8+TjHn6ooua9vpvJGPBpec+GE0qtEUXwlb9iWRbMLaqj9HYtBm0KjFkCwVW5ncpB62W9tGXC2vyIR8UNLqcmspU0k+TQDiT6XbaYOci382qt/QgOUL4znAgJ2rm6xNREyIs9oYRLX2Ec3Lu6WzEraVz0SAj8ObpEmFyOSTjddYeLI54tgD/qdoXdc7LFdtw/dgZMR4xvuzoqJeMRRJlCfEnLqJmcXExLr/8cnzwwQfgOA4//elPsXLlSlx++eUYM0Z6995ms2Hnzp3417/+he3btwPwphGuWLEC48dLS5gIBAKBQCAQzlR4t1XSU5FS6JF1zUa4rV0SUTNuTs1QUZNioM6aB1ppAK1JE5WAR3Jq9u17TlRSDgD6iTfLuuQUSSUhJdUCPKYqKEPCieSdmulobvaWkn/54e34dsNdaOnNj/AdhoemOEzO24MFpd9iQcl6zCzcBrXSAU3h+bDX7hTNZXSZssdgE2REzTDJ6sE423ZJxjSF8uaBlKXPgLN3wtmyLeIxeUc3eIf4DTBryPcnz0dDTpDk7eGdOvI9T0fIqamTd2oSUZNAOLNpjNBP00edpQfTUsL35R0O5ETNPJ3UPRnVqRlm+54u7822cD01LTLnrzPHdofQxXnwfu0B0ZiKYZGi0qLZ1ucf29RWgyM9rZiYJP96Oly4ec7vXA2mxWaGi/NAOUpK5M804vZTf+SRR3Ds2DEcOXIEgiBgzZo1WLNmjWjOrl27MG/ePJjNZvC892LWV3ael5eH3/3ud/FaHoFAIBAIhNMUR/M2WMrfBmvIQ8L0n4BW6EZ6SUOKrfpTCG5xSqmu+HIokydAULRJ5rvjkIDOuyxwtYvdFcr0aaCVBgCAwjgGziBR02Oqke09xjm6YT7yesjRKRin3yN7XlYmbMjdUykRNX2CqsmWiO0nlmBr5dnY9VImjh3zzZDeZI9GWRmweOpBzNA8hrnF3yFBI33D62jcKBkLK2rKiGkecwzl5617RI9pTRrYhEL5cyTkI+vqDfD01cDRtBmOpi1wNG2CJ0zAUjCRSs9DkUsu769Tkx5lTk1FyHOKQDiVEQQBb1XtwYe1hzDOmIbfTDsXOoVqpJc1qonFfTcawoLMbqlTMjSRHIjeU7M7jJPzYHcLXJwHTbZe0bj6pPhYqJc69WMtP/+i8ZhETL04rwxTkrLw6L61ovFXKrbjb/Mui+m48eJgd4skAR4ABAhotvWh0CD9WRDiT9xETbVajddeew2/+MUvsGlTSDLmyQtap9MJh8MhGS8rK8Nzzz1Hks8JBAKBQCD0C1fnIbS8vxzgvRedjsZNyLj80xFv5D+UWCvelYzpxl8LAGA0KeBZI2hPQHCLh1PT2bIdEMQhBOrsRf6v2cQxcLbu8D8WPDZwtlawuizRPuaDr0gEWm3xZbIl7ACgSJQG1wQnoNtswObNwJpXr8B3+36NI03TB5xQXlDgDfbxhftkZgLdm9+DaXf4cm7BI33TyGgzZOdSrAqMNhOcrdU/xkURNTlbOzzmOtGYKmNWxOc3RVFQGMdAYRwDQ9mNAACPpRk9W38Dy9E3w+4nFxIUDprVgGK1EDyBN8WRnZrinpoUqwGtGJkSTkaXKQmgAgBl6uQRWQ+BEA/erz2IWzZ5Xzs+afCmer+95HsjvKrRTSx9Eust0efEG1mnpkyfy6jp52Gcmi6ew+GeVkn5ea420RvsrE0AS9GiBPY6S2xi73+qpann14+ZgTlpefjd/nXggo75ZtVuPDHrQmhZpWSf4WJ7e23YbQ3WXiJqjhBxCQrykZiYiFdeeQVPPvkkxo0b5x8XBMH/EUx6ejoefPBBvPvuu8jJGVkbN4FAIBAIhFMP096/+wVNALDXr4vaU/BUgrN3wVYrdi/Q2nRo8s4OzNGKS6o9vScghKSgDhZ74wbJmDonIGoqZMKCPL3iEnTB40Tf/v+TzDPO/FnY8yqSxE5NN8diy2YOv/89sHQpkJQEnHce8MIn38Phxpn9EjST9Z24+ioeL70EnDgB1NQAr70GXH+9V9AEAI+lKebj+Qjn1ASkYUEec+Tyc2fbbsmYL728P7D6bKSteBUZl64GowvjVOyHUxOQujUjOTVDe56OlEsTACialQrPFANl8oSRWRCBEAferhI7vD+oPQhPP14X3DyHx/evw3lrX8Yje76AU8atdrrRFCEkyEfdqHBqSkXNdLUeSlocFDfQoCAA2NlZLxF583ReAxpD08gLcYbG4tTscznwacNR0ViiUoMLcscjW2vEJXllom0mlwPvRUhJHw62y/TT9FHfj76arbY+3Lt9NX6w6V3s7YzedoYQmWEp+r/00ktx6aWXor6+Hnv37kVdXR36+vrgdrthNBqRkZGB6dOnY8KECaDpuOqsBAKBQCAQTlMEQZANUend/ji0Yy4J62aTK4serVgrPxSJtgCgL70KFB24pOM1BUDfIf9jgXPCY66Hwlg0JGsQPE5YjkiDitQ5C/1fyyegV4nmWCreEbkUAUCVvQDqrLlhz03rClDeMgNbKhZj6/Gzsat6MaxOw0C+Deg0Dswp+gYLSr7FgtJvMS7zMPJvORRRzOMGImqGcWoCAGvIgytIqOSdPeBdFtBKvex8Z6u0n6Yqo/+ipg9t0YXIuWEfur/7hdi1STHQjrm4X8di1Ckip2kkpyYf4tQcqX6aPhQpE8FZW/yPlWlTQbEqwHP6CzeEM4PKPvGNBBfPocNhRZY2Iab9nzr4rb8c+Ovm4+AEAU/MunDI1zmakCs/Zyha5B5siNGRGE/keloaFCokqbRos5v9Y71Rys8jlaevbaqAK0QEzwkSMgv1SaJgonprLzieBxNB2/mo7pCklPuKwilQnexLecf4+Vhdf1i0/eVj23BLyZyI30c82dFRF3ZbrAnovMDjrM//D1Vm7+vgB7WHcHTVA8jRkSrlgTKsnUzz8/ORnz+whuwEAoFAIBAIkXD3VMiKTq6O/bDXfCYRaVxdR9Dx5S1wdx+DtvgypJ37ilfIGMXIlp6Pu1b0mNMUSOa4uyuGTNT0ipHi3p2qnEUiYUo2AT0oLEgQeJj2/FUyxzjjp6LHggBUV3vDfb75Bli/nkFn5/YBrVupBBYs8JaSL18OlDKvwrxN7Ap1dRyMKGr236lJgdGmh93KGuTCghrCugSdrTJOzUGImgDAqJOQtuJV6EqvQt++5yHwbhhn3Q82oX/X7HJOTbkbBoIgSFycjHpkRc3EmT9DW9NmCJwDoFkkzv3ViK6HQBhKOJ5HjVl6k6HVbo5Z1AwNc/lf7YHTXtRsCgkKUtIMShPScLg3cDOubhSkXss5NQ0KFZKUGpGoGT0oKLxT86v/Z++8w+Moz/V9z/ailVZdspolWe7duGGDTQ89QEgh5CSEkJDGCcnJSTnpjZOchPSQBELILxAgQCihF2Mb27h3W7ZlyWpW79L2Mr8/1trd2ZktqpbN3Ne1l73ftG9XW2afed73OS3vzR3tziyzZUFbbfi+Lxig1TVAsUJvz2H+USdPPb+tYkn4/5dPq6LClk3dYOQi2M6uJvZ2NbM0p1i27UTT6R4KC5FKpJqAvqurSbKfIb+Hv9bs5FuLrxjrFN+zqPFMKioqKioqKucFSi7NYXq3/whz+bVhgSXgaKftmavDTkHH8SfQ22eQufo7kzLX0eAfbMJ9WtqnXJdRgbFA6lqILT+HM301y9835jmIokj/3l/JxjOWfkk2L9kcosrPXfWv4es5Jlmus8/AUnEdzc3w9tuh24YN0BDfGJEQQQgyv3gvF1a9zeVXmbjmC1/EEtW20dU0n8GYbTxdB7HO/IDi/kRRJBBTHh7bEzMWjSVX4qKNRVHUHFAWNUVRlJWf69Kno7Xkxt3/SLBMvwpLnBT1VNCaYsKCAl5EnwMhxnUa9PTL3MZKQUOTibnscopu34OnYy+G3EUYsmaf1fmoqIwnp539MpcdQJtrAEit5Vt0EvXwPs+lKofRECtSFVkyKLNlSkTNdtcgbr8Pk04/ybOLkEjUjCZReXlQDCYUPZXCcYqjnIXTFXp4Ngz1xhU125wDbGitke7PksHFBZFzB42g4dOzVvH13S9J1nup+ehZETW3dyQ+GUk1NKrVGXvmAW+3nlRFzTEwZUXNRx55hOPHjyMIAj/5yU/O9nRUVFRUVFRUpjjuxjfjLvN27MVV/wqW8msQgwE6Xv24TIwaPPII9lXfQhDk5VJiwIer8Q0EnRlT8TrFdcYL/2ATvr5ajAUrJOEpQ8f/KVs3bdaH5IniSk7NcQoLcjW8jq9b2gNrWIyMRmvJR9BbJSFA0U7N/n2/Df+/azCX7SfXs8/5P2z5iZYa6e+cETFnDqxb3cki8XOsmrGJDEsfAPYV35AImgCG3IWy7b2dB+PuO+juCTn5ojAVXxxKo/cr/1jUJSg9B9DZ5D/MAkPK/bX8A6cIuqUukbG6NMcTxQR0V5eslD6o0GtTax4fYXYs6DOrRhSOpKJyrhDPXdbmkosrSviDAbpjBDFPwE+/143daI6z1bmNKIo0x/TULLHaKbPKxbsmRx9VGWfvMyyeqBn7t+nzugmKQTQK5y+DPg/BmLyTZEicmooJ6L2syVeuEPnnqQOy4324YolsbrdOXyQTNWMF9sliR4J+moDs9RIPpZT5bR31OP3esxqCdC4zZUXNLVu2sGXLFlXUVFFRUVFRUUmKGPDhat6ccJ3e7T/CPP1q+nb+BHfTBtnywFAzntbtmKZdKBkP+t20PnUJ3vZQ0IK16gPkXfuP8Zt8FI6aZ+h89ROIAQ8aUza5V/0FS3moxM9x7HHZ+sOp55L5mooQBS1CVDr5eIma/Xt+KRvLWPKfMpFXEAR0GeX4uiL9sHxnRM2OU7W88JKFd2vu592aSzjRNm/U8ym0N3LhzLd53wdmcc1HVzFtGjjr99H+3POS9TQKopnWlIU2rVgiInq7DsnWG8avIDbq0ksx5CyQJL1LjmGJHxIEoLPJXbX+QeUfToql56MICZooZE5NQkIwGdMlY7HJ53D2nZoqKucz8UTN9hRFzS63AxG54NXmGjxvRc0ejxNXwCcZK7JmUKrgSGw8y6LmkD+eU1N6JU9EZMDrUfybJeqnGY/imJ6asTQkCAt6s1V+TnJb5VLZWJ5Z3l96NHMdDxL104TUy8+VHLPeYIBtHfVcPm1kAX0qIaasqKmioqKioqKikiqe9l2I3sQ/0Lztu+nd8k3FXo7DOI7/UyZqDh56KCxoAjhqnsbT+TWMuYvGNukYRFGk551vIAZCP1CC7m7an78J+6pvY53xfrxdUhdhqExWofeiRkfQVITWFRHHfL3yflgjxdOxXyYGa0zZpM39mOL6+owKfF2HGXKnsatuLe/WrGfvnwLs21+OKD49qjlkZ8PFKztZavkeF858m+k5JxEEsK/6DpnTVgEQcHXItotXom3IXYgrSqwMDDYRcPegNcldJ0r9WnVpxRhyF8UXNRMkn4M8/RziJ6ArJZ8b8pcn3P9kEs+pGUswJvkczn5QkIrK+UzdQBynpkIZrBLt7iHl7V0DzLbH7xl8LtPslLvuii0ZlCo4NRvOcliQklMzTWckU0m89DoVRU0l92AypE5N+fNSn+B5ie3xWmhOZ2FmoWw9s1aPQaOVtE/oS9IbdCIIBIPs7GxKuE6Px4nD58GqT9ybvSdO79INLSdVUXOUqKKmioqKioqKyjmPq0Feem7MX46nXZoW3b/nFwn346j5F1nrfoGg0QIhoXHw4J9k63nb94y7qBkYasY/UB8zKtK3/QcMHPyjbP3YgCDJvsylElEz4Ggl6BlAY0wtFEKJgX2/lo2lL/qMpEQewOmEbdvg5X9+jo3v/BcHmy4gEBzdKWdaGlx0USjY57LLYOFCCDp9ND30oGQ9X9/J8P+DCkJavPJmQ84CXKdelox5Ow9hLlknW9c/KBc1tWlFGLTxy8W01sTl51pLPmj0EIw4gvyDyj+cZKKmoMGYt0Rx3bOBslNTLqYoOTVVUVNFZeKoHZR/JgK0ulIr4+1wKYuarSk6Pc9FlFx3JVY7pWl2hXXPrqgZm35u0enRajSynpoQcjmW2+T7SBYiFItFp5fsv8iSIUuGr4/j1BRFkcahPslYuS1LsT+rIAjYDWY6ooT1syFqHulrU3TExtLk6E8q9McTkN9uHUPvnfc4qqipoqKioqKics6jFBKUe/X/o+XJixWdYfEIONtwn34Hc8l6ANzNmxRdjt6YkJvxwNOxP+6yoFPuPkyb9cG46wcsZdCzRTLm66vBmL9sVHPzDzYzdPxJyZigNZK+8LN4vbBjRyjUZ8MG2L4dvF6AS0d8HJMJ1qwJJZRfcglccAHoY/IXBGuhrF+nr/tI+P8BhecqkVMzFm/XQUVRU6nXpc5WjC4tftBGsvJzQdCgSyvGP3AqPKYkaopBP972vZIxfdYcWb/Ks4myU1NJ1JQLLBpV1FRRmTCUks8h9fLzdrfyeqlufy7SrCBqFlntio7EqebUtOlNAGQaLbJ144mXI3VqlljtEhFSp9FSYs2QuDMbBpWfl16vSyYQliRISc80SkXNs1F+vl2hn2ZVeg41A9LvsyZH36hFzd3dzfR7XWQoiNEqiZm4LvcqKioqKioqKpNA0NOPp22nZEyfMx+9vZKMZfcm3NZScb1szBEVyKPk0gTwdVePYqaJ8XbuT3ldU9FFisnZwwTMSgnooy9BH9j/+3BitT+gZX/Dch7a9/+4+qZ87Ha4+GL43vdg8+ZhQTM19Fova5Z3853vwMaN0NcHb74J3/wmrF4tFzQh5Nww5CyQjHm7DhP0h37oKItm8ZyaqYcF+RXKz7VpRehz5oGgVdwmmVMT5GFBgcFmxJgABV9PtSyMyFgwdUrPQdltqeTUVHbSqj01VVQmirEGBXXGcWq2naXAlslAKfSlxGqnwGxDr5F+3qfaS3GikImaulD5s13JqRmn9FlJ7Kywxf9cLrbYZWPTY8KCGhy9BKOcm8M0KojASmLxMLGPI55TMygG+enBDcx6+n+5+KXfsbdLuZXLaFDqp3nrdHm1TioJ6PFE2aAosqmtTnGZSmJUUVNFRUVFRUXlnMbVvBmiQnEAzKWXA5C+8G40CmWxAGnz7iD3fY8gaE2SccfJZxEDPvyOVhy1zytu6xuBUzPod9O98V7qf59J01/n4Gp6W3E9b8e+lPdpnf2RxMdUSkDvGZ2o6XcP8u7LO3ho439y54PPsvR/2rn5V1v58V9v4o03wDUC04RGCLC4bAd3X/Yz/nb31Rz8zTLe2W7n+9+HdevAmLgVVRhjbC9JMYD3jNN1JD0b9fYZCDrpD6bY3qXDyERNjQ6tJQ+Nzow+a5biNsmcmgDaGHFaDLhlwp9iSNAUSj4H0Cj1IU3RqTkV0s9VVM5HejzOuCJQqqJmPEdmqtufiyg5NYutGWgEjcxVON5OzR6Pkx2dDbj9vuQro+TUDH2Rxis/V6JPwT14WWFV3GMWWzNkY7HCpC8YoFWhb6vS81WawKkZK2r2el2yC38ArzYf55t7XubkYBdbO+r56KbH8AcDsvVGw/YOqahp1Rl4X/Fs2XpKr5tYErli3249GXeZSnzU8nMVFRUVFRWVcxq3Qum5ufQyADSGNDKWfonebd+WLNfnzCf7kl+h0Zkxl78P58nnwsuC7m5cTW+H+nGecSfG4h9sIOgdSlr+G/QO0f7vD4QDdvz9tXS+egfFdxxDo5OKqZ7OA5L7Wks+xoILcNa9JN2pRod1xk0Jj6vs1EwtAV0Uobo6Uk6+8S0dvQPytPhUEIQgc6cdYFXVRlbP2Mjyyi3YTJEfOZkXfD/cv3QkGAvkZfSetl2Ypq0m4JSKmhpTFoJG+ZRX0GgxZM+X9F71dR9FDPpl2wRiAnx01qJw6rshdxG+7qOy/ScLCgK5UxNCJejRJfNKIUHnhFNTKSjIreCkVRBEVVRUxk7tgHI/TQiJYakEm3TECQo6n3tqno4JCjJotOSarEBIgKuLcr82OfoIikE0wtj9YhtbT3Lzhkfo97rJNVnZdM3nmZWRuJw5rqipEAgUT+BWEtquKJrJgye2K66vVC4e69SEkIBZFCOAKrkZlVLlh4kVNQNiEIffS1rM6/a109ILtycGOtnbfZoVufLzoZHQ63FyrF/a1mZFToni421ScPjGEi8oCGBDi9pXczSoTk0VFRUVFRWVcxpXY0xIkNaAqWht+G764s+hz4w4DjRGO3nXPI7mjEPPOvNW2T4dxx9n8NBfEh43WTl3wN1D27+uliWGBxwteFqladkBVxeBmF6Khvxl5F3/DPZVUkHWvvJbSct1Rb2doE4aChRP1BRFOH4c/vQn+PCHobAQ5s2DL34Rnn0WegdG1t9p7lz4whfgmWdg/68v5N//tZL/ufFrXDrvFYmgiUZH2rw7RrTvYWROTQgLk7FOwGQuQH2utJRdDHhkf1tRFPHH9NTU2iK9NI25ixX3rUtJ1JT/4Irtq+lpkwZeCVojhuz5Sfc9mQg6C4JW+iMz4Jb38ot1b2qMmXFFZxUVlbERr/R8mHjJ5pJ14pSfn889NWNLyossGWHRMlaA8wYDcZ+jkfLtva/S73UD0Ol28LltzyRcXxRFWX/KtLBTU6GnZhynplL5+crcUtJ0yoJ3sYKoqSRMnlIIC4oNCYLE5eeKKe4Kj6PL45CNxTosR8POLnmf65V5ZRSYbehihOxUys8TOTUP97Wd1++riUI9g1BRUVFRUVE5Z/EPNsnEOlPhajR6a/i+xmCj4ObXGDj4Jwj6sC24C729MrzcUn6NLHhmqPofgLy8KRpvT3Xc4B2/o422Z6/B13VYcXkojCgSRuNVCAky5i1GEDRkrvo21qpbcNa+gCFnAebyqxPOCwBBIGAuRTMYOb6vtwZRDAIajh8P9bAcvrW3J99lPGbMiAT7rF8PBVE6Xuu/snDL++sDYK28MSXRTwmdfQYao52gpy88NlyiHRsUpIkTEjSMMWchsT9HvZ0HMWTPC98XvQOS1wcgCQgy5C2W7VfQmhAMydPm4zk1hwn6XXi7pa8jQ+5iBK1Cw9GziCAIaMw5BKLK9JWcmrK/j9pPU0VlwqhLImq2OgcS9k4E6IwjfLalmJ5+riGKoqynZnS5tZIA1+jopdCS/PM+Ef5ggJ0xgTQb22o52NPCwqxpits4/V6CMaXYiZyaI+mpmW20siynSLHPo1L5eblN7lysG5R/BzQoOTWtqTs1IeQ4LcEuGVMSC9/tbOAeLoq771TY3lEvG1uZW4ZWo6HImiEpp09Wfu4LBmTO2lg2ttbyoYrFo5jpexdV1FRRUVFRUVE5Z3E1ysuih0vPo9HZisla80PFfWj0Vizl1+I48c+o0cSCJsQPC/INNND2r6vx98XvjeRu2Sq571Hop2nIXRL5f/ZcDNlzk84pmqClDAYPI4pQ1zGL7Scv5uBGF5u3WsckYhZPc3PZFaawkFkSP68IfUYF7jjLbAs/Peo5CIKAMX85rsY3wmP+/lr8g82IPukP8Hj9NIdRTEDvPAhRfUtjXZoA2rSIGGnIlQcGaK0FknTYeCgFPkUnrXs7DsjaIBgLplY/zWG0piyJqBnr1BRFUbIcSJger6KiMjaSOTVT6YsZzznW5XbiCwZkwTnnOj0eJ66AtJ9ltDNRqfS6YaiXlbnyXtYjoWGoF79CsM7vq7fypzXyihKQl57D6Hpq9sYIgiatDrNOz9LsYkVRU+k5qEqXf9fGpoODPCjIbjCTbjDJ1htG8XEoiLOxjwGUBcmRopR8vupMSXuJ1S4RNZscfYiiGPe7X2mOsWxorVFFzRGiipoqKioqKioq5yyy0nMiIUEjwTrz1hhRU4rGmEnQIz0RVwoL8g+dpvWpS2Wl5LF4WrcjBnxht51S8rmS+y8VRBHq600c2PQR9u24jR21F9E1ODpHJECOrY3VVRu5cPZ2rrvrJuatW0cKWh0AenuF8nhmFabi9aOeE4SEvWhRE8BZ/5psPa05cT+y2CR1AG/XIcl9/6A8+TxajNOastBlVOLvr40st89IeNzwtmlyUTPaqanYT3OKhQQNo4kRkGOdmkF3N2JA+iNcm6bsQFJRURk7dQNJys+TiJqiKMbtqSki0uEakvVMPNdpdsr7IhZbkjg1xyEs6MSAPOQO4LHavdx3wbVkGeXl5IlETYvOgF6jxRcVlqPkyAS52Dlcur4sR/mqpZKoWWhOx6LT44wKODqpJGrGuBkThQQB2BUed59Xfrm0W0EwbHT0cdrRP+rXaFAMytyzFbZs8sw2QP48OP0+ejxOsk1WlOiJIypHo4YFjRxV1FRRUVFRUVE5JxHFoMypqTFmYshbEmeL+JinX4VgSEf0KpfT2RZ8iqHqRwk4WsNj3h65U7N367cUBU1Ba5SIOaLPgbdzfzjsJdapqTFlKfZaVGI42CdUSq7hrbcW0tOjB+Yl21QRu6WbVTM2sapqIxdWbaQy7xh6ewX5N/xrxG5RXYayqGlb8OmUXIyJUArKcZ16WTamtSR2amqMGejSp+MfqA+PeTulCeix7kIAnU3qMMy44L/ofuuzoTuChvRFn0143OjjCwYbojciLkhFzV2ybQxTVNTUmqRlrGLATdDnRKMP/SiVJcijOjVVVCaSsTo1+71uvAkSpNtcgyMSjIKiiGaMn/0TTWw/TZCKV0ql0rFC3WhQEgABXAEfD5/YwX8tuES2LJGoKQgCmQazRJTui1N+Hhtek3WmdP2CbHl7FJveSIaCe1IQBGbYcjjYGzlPin1Mbr9PJqQnCgkCsCu4OJUcj/F6Vb7bWc8HrPJqilQ43NsmC1daGRU8pCTuNjn6EoiayZ2atYPdNAz1UKYQRKSizKhFzeeee24cpyGnfSx1USoqKioqKirnPd6uQwRdUmeDqWT9qNK0NToT1sobGKp+VGGpgG3BXXja90hETX9/HUG/O5xiLgb9OE4+L9vaWnULptLLI4LXGdynt2AsWE7QMyArVTfkLo4r+klFTNi0CTrCbQo1jDQHMjsb1q2DVVVbmB+8h5kFR9BoIuX3puJ15F37RNJwIiX0CqKmoDWRNvdjI95XLErCnqvxLdlYMqcmhNya0aJmwNlGwNmB1hLaNln5OUD6gjvRZ1bh7diLadqalNPJBUFAl1aML0ok90clrceGBGkMGZLgq6mEUn/MoKsLjT70I1BJHNaqoqaKyoTg8vtkKd6xJBM147k0I9un1lezur+Dj554hVp3P2vTp/H0nFlk69JS2nayUeqLWJRC+flYUSrVHuaBY9u4d946tBrp9/ugP76oCaG+mtF/w/jl5zFOzTPuyMr0bDIMpnB4ESg//mEq06WiZrfHSa/HGd6fkmCczKmpFHgUKzQGgsG4ye7bOxr4wPSRi5qd7iE+slF+Trgqqs1APFFzcbby95pS8nmFLVvW+3ZD60nuqFoxwhm/dxm1qPn1r399zFfYVVRUVFRUVFRGi1tBwBpN6fkw1pm3Koqa5unvQ58xHUPWbGmSuRjE31cTLl/2dh6U9XM0l11F7tWP4h+UJ3C6T79DxrJ78XYdlC0zRpWeiyIcPRoRMDduhE7lKrWUyM4OBfqsWxf6d948EASR04/dIws2si24i+z1vxp1KI3OPkMWwmSdeSta09gdCDprAVpbKYHBSGmY6Jf/YIgtiVbCkLsQZ92/JWPerkPh/qypOgzNxRdjLr446fFk+7KVSETNgKMFMegn6B2UC975yxCEkQnXk4WS8B1wd6NLD4ma/qEW2XLVqamiMjGcGkrs0oTkomSy8vRUenJ2ux1c9+ZfaHaHBNbNA6f56eG3+dmK65NuezaIDQkCqXhl1unJM6VJxEIlsW6knOiP/8VeP9TLi01HubFsvmRcyamZpo84G2MFQaXyc38wwIBPWs49HM6jETR8qHwxfz6+PbzshtL4VSBKfTVPDnSx/Iy7USkkKFHyefRcookVMOMJmjC6BPR+r4trXn+QY/3SYDsBgcunzQzfjydqxkPJqXlL2QL+7/BGydiGFlXUHAlq+bmKioqKiorKOYliSFCZPCQoVcyllyn2zkw/E2ijz5oj28bbXR0WNd2nt8iWW2fegqDRoksvR2udRsAREXXcLdsQxSCemORzUYTavot5/PcRIXMsImaWtZMVle+wasYmLlx4jMu+/RoxZg/cLTtkgqY+azbZl/5uTBexNXoL9uX/Te+274bum3PJvPD7o95fLMaCC3AOxolXP8Ow2zIR8cKChkXNQKwYJ2jQjjK5XQlZWJAYJDDUgq/3hGzdqRoSBKAxKTk1I8JKQMHxqoqaKioTQ22SfpqQXLRM5tRMpSfnHVuekPWp/FfDoSksavbJxmLTvsvSMiXPzXg4NeOVnw/z++qtKYma0U7NWEGwz+siKAbRRF0YU+pPGd2/88fLrsET8LOzs5GLCir4xsL451kz4oQFhUVNhecpWfm5Yop7jLM0UVn3nu5mPAE/Rm1q0pfT7+WGNx9mb7f8YuZds1Yy2x45p0gmaooiBALg8YRu9ad9iD0ZENSEbqJAVcU80jrqGPT4IChAUMNrp11s1YkEgwKBAASDof2I4vA+BbRaHTk5ftnx34uMSdQUxeTJoCoqKioqKioq440oBnG3bpeM6dLLFcudU0XQGkibcxsD+38f2ad9Bubp7wNAny0XNaPdde4WuahpmrYmtG9BwFS0VhJGFHT34Oupxtl6gENNS9hZexG76tayu24NPY7cUT8Ou93HsmVDLF06yNVF/0dp4M+ScnL8g2CwSbYZPPSgbD+2BXeNS1WOfcU3MJdejm+gHkvZlWiM4xcqYcy/AGfNvxKukyz9HMCQoyBqRjloY8vPtZYCBM34eQO0NnnfMuepl3DUviAbn6ohQRDfqTmMklNTLT9XUZkYYktalWh1JhE1k4iWrc7ETs9fH32Hl5rk/adPDfXQONSbVNA6G8SKmnqNltyYHoklVju7uiK9j/u8Lga87oQp3onwBPyKLsZo3mqt4WhfG3PtkQtqyUTNWEEwKIoM+jySnphK/SmjE8ezjBYevujDyR8EyqJm7WBErFUuPx+7U1MpJGgYbzDAvu7TrMorQxTB5YKBARgcBKdTeusfDPDTPe9ypH0aeMsQPQbw6sFjoNSQR3d6JdffF9qH1wsOVwHB9nvBrwO/Fvw6fima+EMwtNzjCYmQEVafuUX4FAD3SMY6gbUJnxUtgrCQT32qlc98pjXhmu8FRn029tZb8pIvFRUVFRUVFZXJwNdbIwv1MRVdOOb9Zl74Q7xdh3E3b0JrKyHv2sfDPToNWbPl8ziTgC6KIu7TWyXLtJZ8SQL2sKjp8Rs42HgBu+rWsv9pG9v3/JIh9+h7i+XkhMrI16+HtWv9+HwHw+nkZYMmBvdLL0L7emsw5i8N3w+4e3CceEqyjqA1kTbn9lHPKRZjwfKUe0yOaL/5yfeZilNTl1GOoE+TtA+IDm8KxKSfj7e7UObUBLrf/k/FdSfieRwvkjo1Y1PkBS1aS/5ET0tF5T2JUkhQsSVD4ppsdw3KnHvRJO+pGV/03NnZyNd3vxR3+ca2Wv5jhvwizaa2Wn55eDN6jYb/WrCelVE9DCeDWFdpsSVD9vwoJqA7eplvKBzVMesGuwnGGMaMWh2egNSJ9/vqrfx+9S3h+0M+uctSImoqCIK9HpdU1FQo3VZKWk8FpfLz6F6hSk7NZOXnGfrhvuUCuI3gsHDKZeEND/T1hQTK7Y0mxANXILpMoXVcptDtzP+v+VYmnBEzA/FzrwAtsE5xSeOZm3x96fmA58xtohFFgYceKuSmmxI7fN8LjFrULCpSr6qqqKioqKgABH0Ogt5BtJZ8td/0JOHt2CMbM+QtG/N+NYY0Cj/wBgF3DxpjpuTvqTHnojFlE4xyng0noPt6T8hCi4xFaxAEAYcD3n0X3n71Jt56bg77G1fg8cl/aKRKbm5ExFy/HubMISxi+v1w4EBkXZ1CoIyv97hE1Bw6+ihiQPrDyDrrg2hNU89BE0vocQhAvOohQVFok60laDDkLsTTsi085us+irfrELqMCllLAq1t4kVNxfUyKqZ0ubaSK1bi1HRIRU2ttXBUwV4qKirJUSo/X5VXxtP1US50MUiPx0VOnLTmdtfoys/7PC4+svHv+BIkp29sPSkTNZuG+rjprb+Gg2m2tJ/i4E3/Ra5pckKFRFGUuQljS88hTgL6UB/zM0cnaiqFBH1xzlp+dWQzfjEYHvv7yT38ZNk1YVFS0ampi3ZqysXJXq+L6VH3lUq3lcTQVCg0p2PR6XH6feGx6Ndh01BvSJx0mmAwDb0jnR1vpNHXC7290NMTug3/P/SvBrHtB4gOE4ghcXkzcKXkyPnAVXHnNfbmAFMTURTw+9XfHWpPTRUVFRUVlTHgqPkXXW98hqC3H3PpFeRd9wSamNJelfHH0yYXNcezLFcpyEYQBPRZs/G0RByZvt4axKBfMtbvtLO7bg0H9/43O34Ae/eGxMbQSffIXWmJRMxk6OwzZWPRfRpFUWTw0J9l69gWfHrE8zwbaAw29Nlz8HUfVV5uykpZNLOUXyMRNQEGDz9M+qLPytbVpcnLxcdCSqKmRk/W2h+P63HHG43C+yaRU1OXNm3C56Si8l4lNiioyJJBeZr8PdrmGograo7GqSmKIndt/Sf1SfpMbmyrlY09cnKnJGm7wz3EE3X7+OLcixLua7zo8Thxx7gjixX6JiqVzScrH0/EyQF54+x1BZU0DPXyVH3kSqXD7+WRml3857xQIF3S8nNFp6ZUxFRyatpH4NQUxZD42NkJnZ0COYdX0dDmg4E0xEEre5wZXPbL0PKjTR9DHDBDMPS97AVuSukoo3OOnu9cd10X06Z5z/Y0zjqqqKmioqKiojJK3Ke30vHK7RAMnQC7Gt9g8MgjZCz54lme2fmPJ9apKWgVw17GG0PWHImASdBH47F63njcw+bNv2JX3VqOt85HFEefTp2f42TdpZawiDl7duoiZiz6TLmo6Y3uA9q8WRZGY8hdNKVLnGMx5i+PK2pqLan3Jk2b+7FQoJEYcRYNVT+GuewK+X7H2S2pTSsGrQEC8h8ngtaIdfZtZCz9TwzZc8f1uOONolPTFXIgBb1DBL3Ssk61n6aKysQQCAY5NdgjGau0ZVNgSZet2+YajOswTNpT0zWAKIqSqoYHjm3jXw2HZOvatHoGAxEHX8NQL/WDPUy3RYTW5xoOy7Z7ruHwpImasaXnECo/j0WpZLppqG/Uxz3RL3dqVqXn8IW5ayWiJoSe33vmXoQgCMmDgpRCdmJETKWemllGM14vtLVBa6vyraUltLyzc/jC7TA3SvblASKxjpPjuJ1IBAHMZjAawWCAIRw4RCfoA6Dzg87PqsJibGZdeB2jMXR7qfUQnb4BEIKgEbEadHx+3oVotfBuZx0bO04iaIKgCS0vT88ML9dqCYc8BoMB0tJqmDfPcXafjCnCqEXNv//973z0ox9FExufOUmIoshjjz3G7bePX78nFRUVFRWVVPEPtdDx0kfCguYw7tNbVFFzghGDfrxR/Q4BDNnz0Ogn/kq+LmsOTd3Tz4T6rGFn3UXU3zsDmJF023iUZNWxonILyyvfYUXFFlbf8zim/MXjMl+NOReN0U7Q0xcec9b8i75dPyPjgq/GdWmeS20UjAXLGTr6N8VlWnPqoqbOWoil4lqcUeE8QU8f/ft+J193nMU4jS7Uw3To8MORMUse6QvvJn3hp1PqCzoVEPRpoNFDMCJcBNwhYcU/JE+Sncql9Coq5zKnnf14Y0q/K9KzyTfLK0kS9cVM5tR0+n0M+T3YzvQ9HPC6+cbul2Xr3Vgyj1Kfnt+27ZeMv912kjtsKwCoH+xhf488TGxzex1dbkdcN+l4ohRko+jUVBg7NdQjG0uVWKemTtAw3ZbFjPQcFmdNkzwvNQNdnHb2U2y1p+DUlJ8XdbtctLRAUxM0N8PLO3MIHr4a+tOhLx36bdz21Xz6kudMTW00ATC7weQBs5tZ+elU5KWRng7p6ZCWBgZzgL83baPV3w1GLxh8YPRiMcNfLruJmbl2LBawWsFiCd2MRumF5u/v28IP9r8hOfQvr/0iq/LkvWCrnn6R7qhet9Mz8vjpzaF+8P3eQiqf+qtEdK4Hlr4vj/WF0nNMv1/kwAFV0Bxm1KLmj3/8Y55++mm++c1vsnLlyvGcU1J27drFfffdR3V1tSpqqqioqKhMOmLAS8dLHybgbJMt8w82KWyhMp74eqoR/VKngSF/7P00lQgG4ehR2LoVNm+GTW/fxenWsYnWVflHQwJm5RaWV2yh0B4l9mgNGHPGz40nCAKGnIW4T2+WjPdu/RbezoM4Tj4nXV+fRtrs1FJOpwqJXKWaETg1AWzz75SImgDuxjdl6+kU0srHSs4lv8GQPQ9/fz2GvMWkzfwgQlRvtHMBQRDQmnMIOCJprMEzTs2AQ00+V1GZLJRCgipt2RQoiZoJEsyT9dQMbT+ILSMkar7TXseQXyq0laVl8qfVt/Dq3u2ybTe11nJHVUjUfL5R7tKEUGL3i01H+UTVxFcQxCafg7KomWW0kK43MRAV1HMqhbT5eMT21Cy3ZaE/0zrllukLZWJvdV+HoqgpIDDUY+BYc0i0fPtIPsEt10KPHXozoMfOZ/vtfEZyPX7WmVuEvlE/kvFDp4PMTMjKgk5tBz26brA6weIEq4tfXHI5OVkaMjLgt6feZEPvITB7wOQOiZl6v0R8vGbuRdy/UuoivWvLM7TV7CT2Mu6jl36C95fZU5qn0uujydHHKuSiZmz/0uhApgyDmS/Nu5jv7ntNss4P9r8uEzVVpIxa1MzJyeH48eN84hOfYP369Xz5y1+mqkrejH482b9/P7/97W/Ztm0boiiSkyMvcVFRUVFRUZloujd+GU+r/OQcwD8oz0ZUGV887XtlY8ZxEjXdbti1C7ZsCQmZW7eG0jUjmEa0P40GliyBiy8O3das9uF46kJEv7zcC0KOU0FrGPX8lchYdi/u0+8QG6bjOPFP2bppsz9yzvWENWTPR9AaEQNyx8pInJoA5rIr0aYVExhqTrjeRIhxgtZwXri8NaYsiagZdmoOyp9TtaemisrEoCRqVsQTNeM4Nd1+n0S0i0eba5CqjNBn7dG+dtnyny2/jkyjhZnmTKwaPY4oJ/fGttpw+bpS6fkwzzUcniRRU6H8XCEoSBAEKm3Z7OuJXJRUes5Twen3ysreZ0SliM/OiPTiFv1a6Lbz/KseGkQ4+MZigk2LQ6JlTwb02imQBMfkApdI9h1k8tEZAmRkB+g2dIBt6MzNwS0LKrhqVglZWSHxcljEzMwMOSmHRck7t7zNIzW7JPv82EcuDAdI/en1UwinI38LjSAgoCEQFbK0vbNBsv3DJ3bycM1O2Vz/a/563l82P+XHphQa1aTQXzUQDNIXU/ofG+T0xblr+eWRzZL1NrXVsbH1pCpsJmDUouYLL7zA17/+dTZv3szGjRvZtGkTF198MR/60IdYv379uJUteTwe3njjDR599FEOnInzFEWR5cuXc//994/LMVRUVFRUVFJl8PBfFUt2hwk6Owj6XWh0o0+3VkmMp323bGy0IUFdXRHxcssW2LMHvGPouW7QelhYuotLri3j0mtLuPDCUJlTBD3+wlW4mzYob5+3ZPQHj4Ol4lryrn+azlf/A9GXuFzJtuBT4378iUbQ6jHkLVG80DBSUVPQaLHN+zh9OxIH8uisqhgXD605B1/U/bBTc0jJqTn+jlcVFRWoU0g+r7RlU2hW7qmphFLpuVmrxxXwScait1cSNZdlh97nOkHDEmsuWwYjnwVNjj5ODfVg0xvZ0nEqzqOBN1qO4/B5sOqTu9cfqN7KH4+9S7rBxM+WX8fqvOlJtxmmQSHcqETBiQchN2W0qNnjcdLncSn2sUzEySiXphjQQG8GZtds/toM9fWw//gMgvs+B51ZofJwUcPvw1tMTJVKMgQhFGJYWAgFBaH/5+ZCXh7oM5x89dgTYeES2xAfmTefBVkFfH33S5L9fPaqz3BZCl+nyoFHrrCoGdsXNNtoocRqZ2935O+zt/s0br8Pk07P3q5mvrj9X7J9XpxfwY+XXZ3KUxBG6fXRpCCOxwqaIHVqQsitea/q1hwxoxY1s7Ky+POf/8wTTzzB/fffz8DAAJs2bWLTpk3k5eVx2WWXsW7dOlatWoXROLLSmf7+frZu3crGjRt56623cDpDL1JRFDGbzdx777187GMfO6f6PamoqKionPt42nbR9XZyJ1VgsAmNQkCLyvjgaY8JCdIaMOQkv6ouinDyZETA3LIFjh8f21zMBgdLp7/LisotrKh4h0WluzCZg5R9tgtNnLMsU9GauKKmMXfx2CYUB2vl9ehufZv2F26O60I0FqzAOAGi6mRgzL9AWdQcYfk5QNq8T9C34yfEOluH0Vjyzrmy8MkkNgFd9DsJ+l3KPTVtavm5ispEUDsoD56pTM8hw2DCqNXhiUr4bh+BqLkgs4CdXdI2O22uSPl6dYyoadbqKUvLJBgIOeaWpeVJRE2At1tPIiAQFJU/cwHcAT+vnj7OLdMTBwI+23CIL2x/Nnz/9k2PcfTmr2HUpiZ7HO/vkNy36gzkxunlWWnLlo3VDnazzJj4Yk1fX+hcZPi24aCJ4KG7oSsr5LYMankaeDq8hRmoSGn+Y0YTQMhwsLQincJCmDYtJFwO34bv5+WBXq+8C1E0871Ha3D6I+J37WAX6Qb596ZSb1Il7AqiZrRI2OORCoZZRgurcsskoqYvGGBPdzN+MchNb/1VlnJfYLbx+Prb0Z0p+0+VEgUnr1Jv1tjS8+F5xqK6NUfOmNPPP/zhD3PFFVfw05/+lBdffJFgMEhHRwePP/44jz/+OFqtlrKyMmbOnElVVRXZ2dnYbDasVitarRa3201fXx8tLS00NDRw5MgRGhsbEc98qA3/KwgCN9xwA/feey+FhcrpbCoqKioqKhOF6PfQ/tJHFNOJY/EPNCqmTquMHTHgxdt1UDJmyFmoWLLt88G+fREBc+tW6OiQrTYi7HZYOXs/S/MeZ3nFFuYV70OvlZ4YG/PXoNHFL1M3Fa2Nu2winJrDGPMWM+0jW2l/4Wa8scIwoYCgcxVjgbJTd6ROTQB9ehnmsitxNbymuFwNt0mMUgJ60NVNQEHU1KqOVxWVCaEuphTabjCHBZQCs03iSIzn1FQSOxdkTVMQNUPriaIoc2rOseehETQEzxQ9L7PmE8umtlpFF1sszzceTihqBoJBvrP3VclY/VAvOzsbuagguSgYFIMcixE1Z2eE5q9ERbr8s652sIul2cV0d0uFy+hbt8xEm3XmNsEYvJDVR1aBlxsWF1NSAiUl8JOGZ2jQNYB9AGwOymwZ7P7gt0Z9GEEQmGHL4WBvpA1JzUAn2Sa5gBfPBRuLolMz6jXT7ZFWoWQbrazKm84fjm2TjP/owJtsbD0pC9HSChoeX387BRa5kzkZVr2RLKNFIloq9Wbt8SqImgpBTqHemhfxvX2vS8Z/uP8NVdSMw5hFTYDs7Gx+9rOfcdddd/HrX/+aDRs2EAyGPrj8fj91dXXU1dXx6quvJtlTCDHqKo1Wq+XKK6/kM5/5DLNnzx6P6aqoqKioqIwYR90LBGL7ZWp02BbcxeCBByTDaljQxOHtOiwTlof7afb3w7vvRgTMHTvAlfx3UkJKS2HtWlizJnRbsAAG9r5F75Zfxt3GNO3ChPs0FqwEjQ6CUjEUQYMhZ8HYJpwEnbWQwg+8Refrn8RZEym90qWXY535gQk99kRizFfutaYZhagJYFvwSVXUHCWxTk2AgLtb5tTUmHMSiv8qKiqjQxRFWX/HaFdhqqKmklNzUabcXDS8fZOjD4df+v08114guV9ltmPT6hmMKmF/s6VGJmoWmtNx+L2Snp4vNVXjCwbCATqxPF1/ULH8/XBfW0qiptL859jlIuwwOb5cxJNl0JaL2JEDHdl8+ecVfPp06HxkUtH5IKufzAIP1y0qCguWxcXw8cN/oNfaClYXggBVOSX89fr/DG/6wyePIkT19FRyD46UynSpqNntcXKwp1WyToHZhkkXx+4ZQ4ZCSX/fGXdmqFeltPdrptHMaoX08ddPK5fn3LfsGi4uqExpLkqUWO0SUbMxZaemcquCL865iF8deUfyvtjYVqu6NeMwLqLmMFVVVfzud7+jqamJf/zjH7z00kt0dHRIRMrhkvFoB2b0/WGKioq44YYbuOWWWyguVvvtqKioqKicXTytO2RjWWv/F2PhKgVRs0G27vmIKAbp23kfQ9WPoUsrJvuSX2HIHr/kbiWG+2mKIjR1l7O3YRVHd3yenffCoUOh8dEiCLBoUUi8HBYyS0rk6xmyEl9kTeTEBNDoLRjzluFpk76m9Jmz0OjH/mMiGRq9hbxr/sHgwT8zeOSv6NKKyFzzo0k59kShs89AY7QT9PRJxrWW0YVKWsqvQ2vJJ+CU/0BW+0AmJlWnptqXVEVlYujxOOmPEXkqokTN/JiwoB6PE0/ALyvR7lBIPp+bWYBGkJaKtzlDouaRvjb5+jGioFbQsMSax+aByOeBkiP0xrJ59HpcPHlqf3isz+tiY2stVxTJK2GCYpAfHXhDNg5wpFc+LyWq++SlHDPT8qmpgWPHQu1qjh2L/L+rqxKQtiSS+9HHB50xgD+rC7J7IbcHIaeH712xnO81PREasw0hCLCudB7/77I7JNvmeQbpG4iIY70xpdqxYpuSK3KkVCm4WGNLslMtPYd4Ts3QvPt9bsSYdjFZBgvlaVnkm21x2ysM853FV/Dl+etSnosSxdYMDkQl1Le7BmXvqdgSeZAHBQ1jNyq7NX926G1V1FRgXEXNYUpKSvja177G1772NQ4ePMi7777LgQMHqK2tpaWlBZ8vcmVGFEX0ej2lpaVUVlaydOlSVq1apboyVVRUVFSmFLJwGkGDbcGdBL0DsnX9A+8Np6az5l/0vft9APx9J+l85T+Y9tFdE9Lz2uWC3bvhjf+XzY4dT7G3fiVdgwXJN0yAxQIrV4YEzLVrYdWq2FAfZfTZcxIsFTAWrk66D1PRGpmoachbnPzg44QgaEhfdDfpi+6etGNOJIIgYMxfjqtR+qNWa84b3f60etLmfoz+3T+XLVOdmolRdGo6Wgk4pYKB1qaKwyoqE4FSCndlekTUVAoLancNUpomTXFWcmpOs6STZ0qTuDuHe2rG9tMEZafj0hhRU4n3ly6g1+uUiJoAzzUeUhQ147k0ITVRs7cXXtnkRNx6AWJrLrTmQVse3+vK5Vu+pJuPHa0fsvsgp4fMaS7+65JFlJfD9OlQXg6vD+7nji2PSzaxLbch6KTnmzaFIKXMGDdgdBm0J+CXBT/Zx8mpmYzY11siEvXUjNerUhAEVuWW8XzjYcV9agUNf7jwFj41c2XK84iHUgL6aWe/5GJCbJjR8DzjoeTW3NOl3BP9vc6EiJrRLFy4kIULI70vRFFkaGgIp9OJIAhYrVasVuXmuyoqKioqKlMBMejH27FPMmbInodGb0XQmUFrkJRE+2PL1KcIns4DuE69jCH/AixlV4x5f0MnnpLc93YdxN9fh94++hIeCLktGxtDpeTbtoX+3b8f/H6AW0a93/z8iIC5Zg0sXhy/0X0idLYyBK0JMeCWLTPkLEBrsifdh6noIvr33C8ZM+YtHflkVMJYZrxfImoachaiUXANpopt3h2KoqZWDbdJiJJT09t9hNjgJdWpqaIyMSiJmhUx5eextCmImkoOtzxTGgVmW4yoGfr/UQWnY6xTE+CCtPgl3QAZBhPrCytxB3yyUKPnG47w21U3SfpcBsUgP9qv7NKEUPl5qCpUoKMDjhyJ3KqrQ87LUL/tpWduEfwK+xstVivMmCG9FZZ5uf7gT8E+gKAJfUauL53PNy9bJNl2nk7+nMX2NgVlUbMgRsQOOXldZBjMIxbaUkXJqRmLkhAYj1hhFiLl57H9NCHUUxNgdZ6yqGnR6Xli/ce4tmR8qouUeoM2DvVK3nepBgUNYzea+dqCS/jGnpfDY0uy1fMPJSZc1IxFEARsNhs2m/zDVEVFRUVFZSri7T6C6JeWjRjyQ8EkgqBBl1aCv782vGwq9tR0NW+m7enLw/ezL/nNmF163va9sjFfT/WIRU23G/bsCYmXw7fW1uTbJWPOnIiAuXYtVFSESszHiqDRos+ahbfzgGxZstLzYcxlV6Czz8DfdzK0T52FtNkfGfvk3sPY5n0Cb+cBho79A31GOTlXPjgm17A+swpT8TrczZsk46pTMzEakzwR2Nt5SDamisMqKhND3YCCUzNB+Tko99WMdWrqNVrsBrNs+w73EIFgUObUNGl1lKfJndszTHYyDWZJ0Es01xbPRa/Rotdouaywipebq8PLWl0D7OpqYmVupF/iM/WHOBJzbHHQAi0FcLqArtP5rPljgJpqHV3yUPjxxexi6VwTVTMEmYCZny8/B9nT1YHQLG3AqSQIzs6Q94fe2SlvdWTTyUXNmQr7qxno4oKcEsXwmokqP4+lbIxOzd6ETs3Q+usU+mTmmqz8+/I7WZ5bmvLxk1GsIGo2OaR/15GKmgBfXXAJgz4PzzUepio9l5+vuH5M8zxfmXRRU0VFRUVF5VxDKSnamB9JW9all8pETVEMIsRJzDwb9G3/keR+z5ZvkjbndjSGtFHtL+DqUuwd6u0+iqXiuoTbNjVJBcy9e0NJ5WPBYIDlyyMC5oUXQrZcWxk39FlzFEVNY9GalLYXtAYKb3md/j33I/pdpC/5AlrL6EqlVUIIWj05l/2OnMt+N277TF/8OYmoKeitkve+ihytWUnUlL9XVHFYRWViqB2UK3eVtojIFM+pGUtsT808UxqCIMi2D4oine4hWfn37Iw8tBr5eZBGELgov5wXmo4qzv/9ZfMl/48WNQGeazgcFjW7e4J84/GjiMdXIZ7OPyNk5sOA1J34ruKRRofBAFVVMHs21KcdY69+L+R3QV4XpDn5xy3/zayM1L7PTwx0ysaqFARMq95IqdUuCaCpjwp7Gsaml4evKe3vRH8nF+SUyPprgrIrcqQUmtOx6PQ4/fFP7lJNPgfIVEgJj5Sfx+9VuTynhBtL54fdmjPTc/n3FXcyIwXRdSSUWDNkY7EJ6Kmmn0cjCAI/XHY1P1x29Zjmd76jipoqKioqKipJ8LTtlo0ZC6JETVtMmkzQR8DRhi5tapRXigGfrH+j6BvCUfMMtnkfH9U+PQouTQg5NaNxu2HfPti+PVJOfnocOunnpbewZPoOLrqqjPU3LmXZMjBNYpCyPk5YUKpOTQCdrZjs9fcnX1HlrGGpfD8ZF/wXA/t+h6C3knPZ79AY1GqjRCg5NQNOeU87rSpqqqhMCHUx5ecGjZYia0TkK7DIP8PaXfL+4LFOzXxz6CJooUXek3NPd7MkqRwSJ4dfnF+hKGqatDreVzQrfP/6krloBIGAT4C2PGgq5M/P57DPLXLokEBLiwaYmCoHY6aLlQvMzJ4Ns2YR/nf6dNCeCWD/5eF29u2Sng/VDnSnLGqeVBI14whus+35iqna0SiVn89Ml4uaNWeOq+SWVRIQR4ogCMywSRPQYxmJU9Os08taEQzPPVEJvSAIPH3pf/D66RO4A36uKZ6NQTv+EphSKX2jQyo6xzo1NYJAukH+91IZOaqoqaKioqKikoTYkCBBa8SQHXES6GzyEhb/QOOUETW9XQdl5fMAg0f+OmpR09shd68GgwLVh4Z4pR127ICdO+HAgbG7MHW6UP/LRdPeYGHG31g6fTvTMhsRBCj++GH0qZ8XjxsGhbAgXUYlOmvh5E9GZcIQBIGstT8hc/X3EbSjaMD6HkRjzABBC2Ig4XpT5fNRReV8o26wR3K/3JYl6UGp5NRsdUqdmoFgkM4YUTPXlBZ3+w2tJ2VjSv00h1mvUBYMcPm0mTj7jLx7IHT+cPCgDeM7X8PRaIdASLroAV6Lu+eRodOFXJdZZUNs1exAKOyEgg4o6OQba9by3SVXJdw+umfiMLGiciJqBuSu2nii5pyMPF4/fTzh/tKURE0lp+aZ4yqVRI+HUxNCYUHjJWpCqAQ9us9rf5KgoGE0gob3FU9sCHWRNQMBQZLCHpv2HuuKzTSYJe9LldGjipoqKioqKioJCPpdeLuk/eAMuYslAocuvSx2szNhQasmenop4W5RLrzytGzD23MMQxzXYSI87XvoGszlQONyDjSsYH/Dcg42XcCAa+wKY15eqHx89erQbdmyUFJ589++jK83ckIvGNLR2WeM+XijQZ8lFzVNKZaeq5x7qIJm6giCgMacTdApDw2JRpempp+rqIw3Qz4Pp53SXn6xwltscAzIy897vE6CojTca7iXplJPzrcVRc2CuPOcZ88nS5tGd0MaNBUiNk2D5kI2tVeQJzMvjkOpsCbI7Jka5s+HefMit6qqUGDgA9UHeHf7K5JNEjlNh4lOlR9mRKJmv/TBWnUGxXR6CDk1k6Hk1MwzpZGuN0mctCf6Q5/PfQql2+MRFASJ+2qm6YyKfTITkRkjavaGg4Lkomb2OD2GVNFrtBSYbbRGOZ6bhvok68SKr+P1PKuooqaKioqKikpCvB0HZI6j6NJzUCg/Z3IT0P2OVgj6FecB4GndHnfboSOPkHXR/yY9hssV6n057MDc+uYvae5WPt5I0Gph0aKIgLl6NZSXQ9DTh0ZvQdAaAAh6BvD1npBsa8xfdtb6luozZ2HIW4K3Y194zDbvjrMyFxWVqYbWlFjUFPRWBIPyD3cVlYlid1cTn9v2DF0eB5+fvYYvz183pjCxqcjxfnk58+yYUmijVicL6olNOo+XfA7KTs0DPS2ysWin5tAQ7N9v5dgxC8ePW2ho0NN99NuIfq1km/7YnYwQQSMyo1KgM/skfTmnEIraoagNS1EfR+74QVxnXGw/UIA5GclFRKUgJKX0eSVEUQw7JoepSs+J+5qck0JJu5KoKQgCszJy2RWVln6ivwtRFOMEBY2P2FaZQNQsS7OP+L0XK4L2pejUnCzK0jIlombdUDeiKIYfpypqThyqqKmi8h4l6B3E074bna0E/VlyOqmonAvElp4DGPKXSe7r0hXKzycpAb1741cY2P9bANIXf0GxR6M7gag5WP0omRf+UOJECwbh+HHY/m6Anbu07NgBhw6B3x+95egEzZwcqYC5fDlYrZHloijSvfFLDB78M4JGj3XObWSu/h6+nuOA1DVizFs6qjmMB4IgkH/90/Ru+w7+oVZs8z+pOjVVVM6gNeeQqOuELq3ovBOTVKY2Nf2dXPbKHxnyewD4790vsiynmPWF59c5cHW/XJxTcvgVmG0SUbMtpqdmbEgQRPXUjOMkHEZ0mtA1lfD8g9ns3xe6IHr8uBZRjK0K0SpunzI53VDcCkXtCNPayK0c4vjnP4k9Tc8n39nN305Gzt9cwKnBnrhC27F+6UUYjSAolm3HYtUbKTDbJE7XVJ2a3R5nWJgbJlGATSrOUSVRE6AqXSpqDvk9tLkGJywoKHTM+I+lRKEHZTLkoqY7JMzGiIVaQUO6QmDSRFOZns32qER6p99Hm2uQQks6QTEoE5DHSzxWUUVNFZX3JP6BRlqfuiyUXCxoyb70d6QvuPNsT0tFZUqiJGoa85dL7msVyij9A/Jk8PHG23kwLGgCDOz/HZYZN2Euvigyj6HTBBK4RgOODk5s28DRrqvYvTvkxNy1w8fAkJ6x/uDQ60O9MFesgJUrYdmcesoyD2OatgqtWflk13HiKQYPPACAGAgwdPhhHMf/iSF3kWxdY4y4PNnobCXkXvXXszoHFZWpiMYkdy9Fo4YEqUwm3oCfj256LCxoDvNSU/V5J2oe75M7pJUcfgVmG9VRQl6ba1DiKmt3y0XNXFPIoRkdNCQOWKGxCBqKERuKoKEIOkMXNf5bsvXoL2JYrbBggYhxegdDBfU4CuppzTrBoC7i6zRr9Tx5xZ3Y00IXaOdnykvfD/e2xRU1Y52albZsjCkGylTasmWiZlAMJu2XWKMQEqQU6jNMjslKjtFKl8cRd514oubMDPnjPjHQSe8oErlTZYYtkVNzFKJmjNgaEIMM+jyyx5BpMJ+Vi2ZKj7d2sJtCSzqDPo+snYPq1Bw/VFFTReU9yMCBP4QETQAxQO+Wb2CbczuCTk1gU1GJxdu+S3JfMKSjz6ySjGl0JrSWAknCb6rl556OffRu/TZB7wDpiz9P2qwPpTw3d9tO2Zij5mmJqBlbet7RX8ChpmUcbFrGoaalHGpaRvdQ7NX/0fUPLMs5yaLSXaxcEeTSj3+UxYsjieQDBx+ke8Pn6QC01kIKb92A3i4PChjY/3vZmOgbwtOyVTZuyL9ANqaionL2iXfRYhidKmqqTCLf2vsKe7qbZeOx6d7nA9X9clEztvwcID8mwdwd8DPgc5Nxxg3XqeDU1A1k8O9/w549RoQXPkmgfhr02sdn4meoqICFC0NtaYb/LS8HjUYA8s/cVoaqOjxOTg50MejzsDCrUNLrc16mPLTvSF8bN5bNl433eVyynqKpuCLDc7Zls7WjPnzfHfDT6hykyJqRcDulkKBETs3QvPJ4p/1U3OWJnJqxnOjvlLkcBcYvkXuaJR2LTo/TL/ftl6bZR7y/TIUenH1el+wxZJvOjlioJJifHOhibX75lCmRP19RRU0VlUnA72jFfXoLevsMjHlLzvZ08LRJnWdBTx+ejj2Ypl14lmakojI1Cbj78PXWSMbi9XHU2UokomZgIHn5edA7RPsLtxAYCv3Y6mzdDoKGtJm3pjQ/JeHUWfci4vpfIQgCnZ2w4dledmz8JofOiJjt/eMjJtgt3Swq3cWisl0sLtvJotJdZFpDiauGvCUUrfpoeF3R76F3yzfD9wOOVro33kvB+1+Q7NPTsR9Pq3KoUSwaU7ZiQJOKisrZJ7lTU00+V5kcXm0+xi8Ob1Jcdq6Jmm6/j03tdRSYbSzKUn4PHYtxHOaarGSbrLL14iWgD4uaDZ0uxCNVUF+CWFcC9SXcFhYwBWDuWB4KVqvIwoWCRLycPx/SU2y1KwhCyLmo8NgAFig4NQ/1timsqVyyn0o/zWGUwoJqB7skoqYoilT3t5OhN4fHY0OCQFl8jGZ2Rn4SUVO57FrJAVoz0CkLCso0jl8ityAIzLApJ6CXjkP5OUCv1yULChovp+lImaH0OginzCsFMo1Pmb+KKmqqqEw43u6jtD51GUF3qL9K1vpfkrH482d1Tr4+eUKhu/kdVdQ8S4iiiOP4E/Tv/gUBZwe2BXdiX/XtsxaAohLB27FXNhav5FmXXoonytUZ9PYT9PSjMca/Uu84+a+woDlM91ufx1S4Km7oTzSBwci2/U572Hl58rk+9h7KpKEB4FNJ95MMg9bDkmVaVq7SsWIFlNSvo9jyLvGqe3w9xxDFYPg17GnfTdArbf/vqn8VT8c+yYWewYN/SnlOxvwL1J58KipTlOROTTX5/L3A0b42ej0uVuWWodVM/jlNm3OAO955Iu5yJTfiVKXP42Llv3/NycGQSPL9JVfxrcVXSNbxBQOcjOnnGE+cK4wSNUWvDhqL+N1vBfqOw65dcOLEleM294wMWLIkSHFxB7NnO5k928l1183GaJw4KaLQnC4LQzqiIK5BnJCgETk1lcuOLy4IVaMEgkGuf/MvvHb6OAAX5k3nc3PWKB43WR/POfbEYUFxnZoK5efH+zslzw8ouyHHQmW6sqg5mvJzpbn1eJyyvqCZZ8kBWanwOhh+P6pOzYllQj5JXnnlFdrb27nuuuvIyUl8UqOicr4zcPBPYUEToHfrt7HN/yQa3dm5OhP0OQg45AmF7tPvAF+b/Am9x/H119H91hdxNb4RHuvb8WOM+Rdgqbj2LM5MBeL101QuedbalMKCGjEYF8Td/9Cxx2VjQU8fna/eQcEtryFolHta9vXB/v2w4bGV7Dv8Pg41LaWha/z6gpXnnmBR6RkHZtlOZk87RPF1fyZt9m34h1poeiixm1L0u/AP1KPPqADA1azskunb+b/kX/ckEHLFyp4PjR5j3lI8bTtk2xqnrRrFI1NRUZkMNCa5YyUa1al5/vPdva/yowNvArAip4S3r/4cJt3oWpuMhqAY5OPvPJHQjXkuOTUfOLYtLGgC/PjAm3x29oUSF2bdYDe+YECy3ayY0nO/H44cgeqXygm+9gGoL4HTBRDQIm/+MgpsQ1DWzF1XlHDlhVaWLg2VjwcCQQ4cOB1eTTvGjKBkCILA/MwCiavxeH8n3oAfQ0yvzGNKfUiTiIfRVNjkzvRTgz3h///t5O6woAmwraOebVHl6sPYDWaykwhdSqFPw+g12rh9QG16E9Ms6bQ4I4FQNQOdCoLg+P4+jRcWNBqnZobC3OqHehCZGr0qs40WMgwm+r3u8FjEqamQMq+KmuPGhIiazzzzDFu3buXnP/8599xzD5/+9Kcn4jAqKucEvu6jkvuibwh309tYyq85O/NRcGkCuFu2IQb9CBrVwD0ZiAEf/Xt/Rd+OHyH65SUJzvrXVFFzCuBp2yUbMxYsV1gzTgL6QCOGHGVR0z/Ugrtxg+Iy9+nN9O+5H/vyr9LWBvv2hW5794b+rasbXvMzKT2ORBRl1rOgZC8LSvawoGQP84v3Ybf2ytZz1DxL2uzbFN2rGnMOQZe0N5Sv+2hY1HQ3b1Y8tvPks3i7j2LInstQ9aOIfulJn7XqFnLf9zccNU/Tu+V/8A/Uh4+Xvuhzo3m4Kioqk4DWnFjUVJ2a5zcdrkF+eujt8P2dXU38o24fn5y5YtLmcP/hTbzZciLhOh3uIUk4zlTm7Vbp+bs3GGBHZyPXlMwJj1XHiHOiCPnOEp544kwI4K7QeYTLBTD9zG0MZPZB2WkoPY1Q1hz6f2Y/Bq2W33/sJ+jPcsHRvBhR0y8GOTHQyfyYfptKjkmlPqTxqLQplZ9HDC1P1x9IaT9V6TlJX4tKoU/DxHNpDjMzPVciatYOyFPaxzuRW6nPpFbQMM2SYp+BKJScmtHi8TBnS9QcLreP7t97crArlNA+gYFMKhMkap44cQJRFAkEAixdunQiDjGh/PrXv+YPf/gDRUVFbNig/INzrLS2tvLEE0+wZcsWGhoacLvd5ObmUlFRwTXXXMM111yD2TyyKyUHDx7kqaeeYteuXbS3tyOKIvn5+cybN48bb7yRiy+++Jz40j7fCDjklntn3ctnTdT0xxE1Rd8Q3s4DZz1N+L2Ap2MfXa9/Cm/Xobjr+Pvr4i5TmTw87Xsk97WWfMWkcwCdolMzfl9Nx/EnIerqsihCc890jpxezJHmJRx5cAHHu720thtGN3kFCjKaWXYBrFpfzNzsVynt/iTZafJG9Uq4Gl4n6HPInhOAtFkfkgX8eLursVRch+j3JOyT2bfrZ+Re9VcGD/5Rtix90d0IgkDazFuxVFyPu/Et/EOnsc68Fa1p5Ff5VVRUJgfVqfne5lBvm8wxuL2zYdJEzdOOfv5nzyuycY0gSBKIfcEA/V63LFV5PNjb1cwrzceYm5nP+0vnj+k3WCAYZEenvIf2nu4miah5uL0L8UQ51JYh1pZBbRk/6B+5eKSEzj7ENRensXw5XHABbNJv5meNLyiuOzM9B32cSpPJJFa8hFACeuz4sZiemqVWO2lJBMJock1ppOmMDPk94bG6Mw69QZ9bJkjHI1k/TYASqx2rzoDD75UtSyZqVqXnsrGtNnzfLwZl64y3e1DJqVlszRhVOwolUbN2UC7MJnO7TiSV6VJRs9/rPlMir5afTyQTImr29fWF/z937tiaCE82Bw8e5MEHH5zQYzzxxBP87//+Ly6X1J3V0tJCS0sLW7Zs4c9//jM/+9nPWLRoUdL9+Xw+fvjDH/Lkk0/KltXX11NfX89LL73E2rVrue+++8jLS/3Kk8rY8TvkTamdp14+a1eGfb3xv1jdzZtVUXOC8Q820/rUZYi+xCVPvikkaorBQNwy6PMZv6NN1u/SkL8s7vtWqQemf6BBcd1AAPa+uY39h27jyOlFHG1ezJHTixlwjZ9Ql5vlZFFFNXOzXw65MIv3kpfRRvEdJ9BnQNCzmsYHHYh++bamoovRpZcyVP1oeEz0u8J9MGNJm3O7TNT09YRc6p723Ypu5GEcx5/EVHQRvl6po8aQsxBj4erwfY3OpLqXVVTOERI6NTU6tBb1XPR8ptEhd/sfV0jlniieazgkE2xmZeRycX4lD57YLhnvcA+Nu6i5sfUkV7z2p7CA+t3FV/KdJaPvUXm4r00imEHoQujGQ31UHIHt2+Hdd2Hv/osRA+vHMnUAMjJEBotqCZY3IExvgvIm1s7J5vlrIhUSzSeMINdZgZH1o5xI5tvlYUGHY8KCHD4P9UPS12uiEm8lBEGgMj2bAz2R9l7DYttrp4/jjRH44zE3heMKgsDsjDyJcDaMTZfEqanQVzOW8Q6vmaHQZ7JsFKXnoBwUVKeQIH82xcIZCq7dk4Ndak/NCWZCRM28vDyam0NvtL6+PiyWc+MP1tTUxOc+9zl8Pt+EHeORRx7hvvvuC98XBIGqqirsdjv19fV0dIS+8Ovr6/n4xz/OY489xrx58+LuTxRFvvSlL/Hmm2+Gx4xGI7NmzUKr1VJTU8PQUEg82bJlCx//+Md58sknSU81Wk5lTAR9TkTvgGw8MNSMt3P/WUlCj1d+DqG+mhnL7p3E2bz3GKp+LKmgCeAfqEcM+BC0o+8/FXB2MnDwj3g7D2CdcRNpcz6afKMo3Ke30vn6pwg4WrHNv4OsdfePSIh31P6bnk3/heh3YSpag3X2bVimX4WgHT/n4UTiHUE/TUAxids/2ITTCYcPw4EDkTLyAweCuFxPjdtc7ZZuFpbulpSRT58/C3/PUUkiu9ZaGJ6nxpiBteoWiXAJoLPPIO/6f+Jp2yVb5qh5Fm+MU1NnK8OQtwRBb0X0OcLj3jOtN+L10wwjBuje8AXZsO2MS1NFReXcQ5NA1NRap6lBeOc5TUN9sjGlvoUTRYtLfu79+9W3sFPB7djhHkoazjJSfn54o8QR+rNDb/NfC9Zj0Y3u/OfdjnpEjwFOlUBtaciFWVfGhgEb0prCUbyv9D4oPQ3lTSxc5uOpT15KfpmHrH/8UbK3fPN0yWaFCunpw6Qizk0G8xQS0GNFzeMKCeSjmX+FTSpqdnuc9HtdvNB4RLbuNxdexraOeolr0qjV8fGq+OeY0cy2xxE1U3BqJmO8y8+nWdIpsdppcvSFx5bljK79iFK/TyWn5tnsVVmhkIB+cqBbFTUnmAkRNa+//noeeOABICTiffOb35yIw4wrJ06c4FOf+hSdnfIPtvFi//79/OxnPwvfX758OT/5yU8oLQ2VLIqiyBtvvMF3vvMdent7cblcfO5zn+PVV1+NW4r+8MMPSwTN2267jS9/+cvYbKEvGrfbzSOPPMJvf/tb/H4/dXV1fPOb3+R3v/vdhD1OlQhKpefDOOteOjuiZn9t3GXu01slicUq44+rSd7SwpC7CI0pC3dTpP8UQT/+wUb09spRHcfZ8AZdr90ZFrSctS8g6K1YZ7w/pe0Djnbanr8xLMoP7P89+qy5pC+8K7Xt3T10vvYJRO8gAI6aZ3DUPIPGlIW16hbSZt+GcdrqKf1aG0k/TQDBYKdlcBbVDTM41rqA6tMLOdaxglNtIUeFlNE/7txcWLoU5k8/Trn7eyws3U1RZoMsidzT3AIxzdONhSslQmH60v9k6PiTEAxdzNOYsii48Xm0pizMJZegMWRIUssdtc9BQFryZMhfgiBo0GfNkQjBwwnooRCyGAQNRLtoRKmLQTCkkzbrwyk8GyoqKlMRjdEuf5+fQZdWNPkTUplUGqMEjGG6PA663A5yooJtJoput1xAqErPUey/1zHOCej+YIAtUX0cAVwBH6+dPs5NZfGDA6MRxVDv7G3bQg7MJ9+cjVi7EoJjq5rRamH+fFi+PHT7Ts+DdGTXIOhC71NNZiEzZ15K7YD8Ockzp0nuF5jjG2TmKjgkzwZZRossHOdIn1TUrFZwEI+kn+YwSn01j/d38nJTtWQsXW/i24uvwKDVcainlX81HKTP6+bu2auZZslI6VjxEu2TlcynIt6Pd/q5IAj8ZNk13LnlSbzBAOVpWXxhztpR7UvJqdk9xcRCJWdq7UAXPR55xZLdYJqMKb0nmBBR87Of/SwHDx5k69at/P3vfwfg7rvvJitLngw2FXj++ef57ne/KysHH2/uu+8+AoHQD7d58+bx0EMPYTJFXsyCIHDllVdSWlrKbbfdhsPhoK2tjb/97W/cfffdsv319PTw+99Hyv0+8pGP8N3vfleyjslk4u677yY3NzcsLr/xxhvs3bv3nOx3eq4RUCg9H8Z56iUyV31rEmcTwp+g/Dzo6cXXdRhD7sJJnNF7h6Dfhadlm2RMl1HJtI+8S//eX0lFTUIl6CMVNcWAl95t36F/z/2yZf27f5GyqNmz7Tsyl/HAvl9jW/CplNxz7qa3w4JmNEF3D4OHHmTw0IOYiteRd80/0FrG1yExXij1jhxuzzDsvjx4MOTAPHgQDh4U6OuL3yd1NBRl1jOv+ACL5ju4+LbbWLIEpk0DQYD+va/Rs/mZBFvLlFRMUeXcAMbcReTf8C8G9v8BjTGDzNXfDb/mBK0BS+V1DFU/FtkgIO/hZMwLPSeG7LkSUVP0u/D1npC/5u0zMOZfgOP4E3Fnbpv7MTSGtLjLVVRUpjaCoEFjypIFiAHo1H6a5z1K5ecAx/o7WGsqn/DjK4VyZButMmEOoMMtP1cZCwd6Whn0eWTjzzYciitq+v2wfz9s2QJbt4b+bZP8hBjdb2hTlour15lZvRpWrYJlyyC6gPKhFxx0dkcuPLS5Qs9Fu4LQm2+SOjMLzgGnJoT6akaLmnWD3Th8HqxnBMBqhZCg0To1Y/n7yd30eqX6wvuKZ4fT1xdkFbIgS973Mxmz4ySzJ3NqVtiy0QoaAgoXm4aZCJfjbZVLWZM/nSZHP4uzpo2oX2k0GQYTAoIs7TyWs9lTc4ZCD9GTg130xnwmZRhM6N6Drb0migkRNRsbG/nqV7+K1Wrl9ddf5+9//zuPPvoolZWVzJ49m6ysLNLS0lIuK/vCF+RlaeNBe3s7999/P88999yE7D+aAwcOsH///vD9b3/72xJBM5rZs2fz+c9/Puzq/Nvf/sZdd92FVit94T/99NM4HKFSP7vdzn//93/HPf4tt9zC66+/zsaNGwH461//qoqak0B02Wcs3vY9+B2t6Kwj/zIbLUHvYMI5AbhPb5lSoqYoBnE1vgViEHPZFQmdfe6Wbbga3sSQuwhL5Q1TrnTV0/IuYkB6omsuvQxBowunREfj76uFsitS3r+v9wQdr3wMr0LPQwBP204Czo6kvcw8HfsYOvKI4v7dTRswl16WdC7ersNJ13E3b6J//2/JuvAHSdedbERRDPWCFKGlt5RjLQs43r2Ohm05HDgANTVK7svRIwhBZs3SsHQpLJrbT3HHJ5mTtyWcQq61lVB63W2SbfxD8tKjZBgLV8nGLNOvwjL9KsX1LTNuloqaSvs8I/Tqs+bIlg0d/busn6ap+GIylnwxsai58NMJj6miojL10ZqyFUXNeGFrKpPDH6q38o/avcy25/ODpVel7A4bCUrl53BG1MyfBFHT7ZDcN2v1mHV68kxyUbPTPb5OzXfalXuiv9RUjTfgx6DVMTgY6oM5LGJu3w4Oh+JmKaPTi/iLm6CyHqGyESob+J/LV/KtJZfH3SY/RpjsdDvwBwN0KDwnuTGCsJJADKFka6VwmLPFfHsBr58+Lhk72tfO8txQpaSSqDmanqBKouYjJ+UVPzeUxm8rlyrxnJrJRE29RkuFLYsahT6UwyiVeI8HZWlZlKWNzeCmETSkG4z0e90J1zubTs0Csw2LTo/TH2lnWDvQzYBPOmc1+Xx8mRBR87rrrguLCYIgIIoioihSU1PDyZOppX9FMxGi5gMPPMCf//xnnM6Ial5RUcGVV17JH/8oT2AdKy+//HL4/5WVlSxZkrjs+AMf+AD3338/fr+fnp4edu7cyerVUofNK69EUv2uvvrqpL1LP/ShD4VFzc2bN+N0Os+ZfqfnKkohQdG4Tr2Cbf4nJ2k2iftpDuM6vZn0xZ9Lut5kIIoi7c/dgKvhdQBMJZdScPMrimKls+4l2l+4KXzfOutD5F75cMo9KUUxiKflXXx9tZiK1yqKjGNFqfTcXHoJADoFR+ZIwoIcJ5+j87U7JD0N5Yg4T72Cbd7H468hinRv/DJKLj+AgQMPjJuoCSERfarQ0xNyXx45Agf3DrD37X9yrGXBuIb3AOh1fmbmH2Je8T7mFu9nfvE+1tz+WQouGBYtM2h7zo+rPuJ0CQw2EfQ50egjn9n+QXlvMMFgU3TIAqA1YBhhywtz2RUI+rSEfWAN+aELZIZseTDg4JG/yvdZfDGG7HlYKm/EWfu8bLmp5BIMCgKpiorKuYXGnA0Khj3VqXn2eKb+IF/c/iwA73Y2cGqwmzffN779i0VRjOvUPD5JfTV7YtxxwyKHkqg53uXnm9vk525ibzq9NeV8aMMgjfsz2b8fgvHNcqmR2QeVDVQtdvLIHavZad7GV/Y/K1llTmbii9ixbksRkU63g3aX/DwiP+a502u05BitdHmk551V6TlhJ+JUQKmv5qHetoioGZN8nm+2jUoUq1TopRgtbAHoBA1XF80e8b6VjqUTNLIwLJs+eTlzVXpuQlFzqvd5zDSYk4uaZ1EwFASBSlsOh3ojLehqB7vQxphypvrzfK4xYZ84YhwLS7zxeEyU0+ovf/mLRNC89dZb+frXv87rr78+Icd79913w/9fs2ZN0vUzMjKYP39+2N359ttvS0TNvr4+qqsjPTrWrk3em2LVqlVotVoCgQBut5tt27Zx+eXxr96pjJ1EPTUBnHUvTjlR0316y1lLZpfNpXlzWNAEcDdtwFX/Gpby98nW7d/7K8l9x/EnCXoGyLv2cYkQFEvA1c3Q0f/HwKEH8Q8/Pxo9BTe9iLnkknF5HMO4G9+OGREwFa8HiOPUTO0iUMDVRccrtyuWBsfirPt3QlHTUfM0npatCbZ/Ef9AI7r00oTH8XZLG6NrjJmYStbjrPs3BCNx20Gn/Ar5RDMwAEePRgTM4X9bJW/XDODiMR8r09rFokValqzMZOFCWDDPje3dcvTBSGNzQWcmb8F1ku309hnENkTx99diyImUrgUGpU5NjSEDc8W1OI79Q3EuxtwlaHQj69+j0ZmwlF+N44RyqJEuvRytKXTlXcmpqeTSMhWFnlf7im8oiprpCz8zojmqqKhMTbQm5bAgrdpT86zxu6PSC4kb22o50NPC4uzx+5t0eRy4A37FZbEC0kTRHePUHC5HzVXo56nkShwtoijyTuspxNP5UFOOWDMdasqhK/ReeG60O9b5oawZKhsQKhtC/2aF+l13GUysWr2Sf2xXchyOTNQEODHQqeheVXJmFlrSZaLmVCo9B5ivIGoO99X0BvycHJAGzcwZRT9NgFKrXVFojGZdQSX2cXBC6jVaqtJzZP1Akzk1IdRX8+Xm6rjLx7un5ngT6qupfNEEQCMIpBtGV94+XlTasiWiZqfbgSbmd/XZDDM6H5kQUXP58vhBClON+fPn87WvfY0VK1ZM2DF8Ph91dZGrdonSzKOZNWtWWNQ8dEjap+348eMSgTiVfVosFkpLSzl16lR4n6qoObEk6qkJ4Gp8i6DfhUY3OV8gSiKZxpJH0Bn5Ugw6O/D1HseQNfYriWPF07ZTNuZu3igTNcWAF0/rDtm6rvpXaHvuOgpueBaNMVJeNezKHDz8EI4TT8tKwgn66Ntx37iKmgF3H54OaY9GQ+4itGcSYjUGG1pLPoEokS9Vp6andbtyr8OCFfj6TxF0RQLQXA1vEvS7FcWtoN9FzzvfSHwwMcjAoT+TteZHcVcJ+hyh0vkoDPlLyb/uSVqeXIenNXKRx++YuB84LhdUV0vFy8OHoVFucBwzWi3Mng1zp9dTLvyZOdMOMnvaIfLSW8m96i/Y5n4MAMeJF+kISk+gLRXXozFKG+7rM6tkx/D11khETf9gk3QO6SVYK6+PL2pOW604ngzrjJviiprG/EgbE116qSwBPRadfQY6W3F4W3PZVbgaXgsv16YVYam4flTzVFFRmVrES0Af/gxQmVw63UNs6TglG//nqQPjKmo2xik9B+Wk6YkgNjxk2BVl1Rux6gw4/JFzprGWn/v9sG8fbN4ML77poeudr4FjbIJFXh6sXRu6Pcoz7LPuRNAHFNft97qpHejmWEwZtVbQKIaWRDPNIg/7ufOdJ7kgp0Q2HluqPjwWLd7A1BM159rzZX0YhxPQawa6ZP0lR1N6DqDTaClLy1RM4x7m+lJ5RctomW3PH5Womaw1wHinn483yUTXLIMFzVkOIVXqqxmMMfapTs3xZUJEzeFwoKnMihUruPnmm7nssssm3JHW3NyMzxexn5eVlaW0XXFx5KSvMeZXeH19ffj/BoOBwsLU+jIWFxeHRc3YfaqMP8lETdHvwt30NpbyayZlPj6FkCDbnNtloTLu01umhKjp6zkqG3O3vCsb83YeQAwolyJ4Tm+h9Zkryb/hWXzdR3HUPo+z9t8EHC0Jj+1p24EY9CNoxudj0n16sywF1lx6qeS+zl4pETX9fXUppdErCYO2hXeTve4XdG34vKQ/puh34m6SC8MA/XvuJxBT0qwx50pEUYDBww9jX/mtuK4/X/dRYsvXDdnzAWT9PEXvAEG/C0itTYASDgecOBESMIdFzMOHobZ2fPteDpOdDYsWhW4LF4b+nTMHTCZwt7TQ+s+fS9aPLhMfUhAc0+Z8VDamt8+QjUU7rcWAV/b5oksrwVx2JWgNiiK3SaGfZiqYp78PQWtSfI8ZzvTTBBQT0GVzKJa6X3Mu/wMt/7yEwGAjgs5C7vv+lnLLCBUVlalNXKemVS0/Pxu82HRU9sMa4Kn6A/x42dXj9nsoXuk5wKnBHtx+HybdxH3Ou/w+XAFp2W+0gJBnSuPUUCQFfaTl514v7N4NmzaFhMytW2EwXK09ujTjWbNCAuaaNaF/Z8wIBQL6gwG+89huBL+yoDnMrq4mjsUIxpW27KRl4NeWzOWeHc9JXhenhnokz88wSqX7Sk7P0YqCE4VFZ6DSls3JwUjlyJEzoqaSc3i0Tk0I9dVMKGqWjL2f5jBzMvJ4NmYsJadmeuJwzqwJ6qk5XmQkEzWngFhYmUJP2an+PJ9rTJ2GF5PMH/7wh0k7Vmen9EsmNze1pN/o9bq7uwkGg2g0Gtk+U91f7Lqx81IZf5KVn0OoF+SkiZoxTk1Ba8I660MKouY7pC/41KTMKRHebrmo6enYI3MaKgmdkv107KPpoekjOrbod+HrqZY448ZCbLI5hHqERqPPqJAkRYsBNwFHK7okpXoBhRLutNkfQdDqsZRfKwv9cZ56SSZq+odO07/r/2T7yV73cwaP/h1345vhsaCrC0fN09jm3K44H6V+moacM6KmVV4GFHC0I1iTO3e6uiLCZXU1HDsW+rehIemmo0Kr8VORe4LZRQdZvMTI6ltuYtEiKCwM/dhQQmeTuxv8AyFRM+Dqwln/qmSZxpyLuVTumNfFcWqG9zl0mljhWGcrQWOwYS6+ROJ+HEYpJCgVNIY0zNOvxFn7gnyfUaImgCGJqGmOETV1thJK7jiGt+sQ+syZaPTy0kAVFZVzk7hOTbWnZkq4/D7+Z8/LvN16kgtySvjp8uvG9IP9+YYjiuN1g93s6W5WdOeNhnghQRDq2Vgz0DWqxOdU6fEoJ58Pk2eOETWTODXdbtixIyRgbtoE27aFKkFGi0YbZMVyTVjAXLMG4v2UO9jTKuvLOCcjT+bQe6u1hlbXgGQsXkJ2NKVpmXxj4WX8+MCbCdez6PSKidXFVnnI1Dy7/DzvbDMvs0Aiara6Bni3o56dnXKDz1hE2cr0bN6I45lYmFnIdNvYgnKiUZpnKiXNsxKItnqNFovOMKZ5TTTJHuNUEDVnKIRGxaIGBY0v71lRczLp7++X3E9Pl1v9lbDZIle/RFFkYGAAu90OhHpqKq2XjLS0yFW22HlNJn6/cq+dc4lAIJDwPsiDgnSZswgMNEgcT866l/Bd/KtJ6WEZK2rqMirR2OciGO2Inr7wuLt5Mz6f76z21RTFIL6eY/IFAS+u1t0SgcYVJQSOJ86WnWjs4xNY4myMCQnS6NHlr5S8FzTp8kRQd/cJTKbEJ1iKJdzGbPx+P/qi9aA1QlSJvbPuRXwX3S/5+3a/801Ev/SHgKFgFcbKDyBqzRJRE2Bg/wOYqz6sOB9350HZmNY+G7/fj2CSX730DragM4V+4ASD0NZm4PRpkePHAxw/LnDsmMCxY9DdPTGvR0EQqayEWWWtTNf8jZkFR6gqOEp53gmMOi/6nIXk3fwmGkPob6XwVg8jGvNA0IIYWck30Ijf76d//wOSfqIAlqoPEBCFUP1aNOZC2d/N21sTfr14+uRKrsY6Db/fj6n8GpmoqbWVgilv1J+9poobFUVNbdYCyT61mYkd3rqCCxXnoM1aQBAIngffDWebVL6bVFQmBYM8ZE1jziMgauSfeVOUs/l++umBt/j10XcAONjbiigG+ePqD4xqX06/lzdbTsRd/mTtPhbbx0dorE/gVAM40tPKnCRusbHQ6ZSH3Nj1pvB3T45RevGs2+PE7fWg02iBUPXH9u0C77wjsHmzwM6d4PGM4fzD7IIZ9Qgz6mHmKcrmD7H5Q/dKzsHivR22KIQO3TVzJV/d/ZKkbPqZevl510xbTkrf+d9ecBkn+zt5sv5A3HVyjWmK+7qpZB7/ezByfrs0q4jZcY57Nt9L8zLyiO3gvfal3ymuW5WWPepzpTJL/GDJ64rnjOvv3/cVzsRuMNF3JjTHoNFyWX5l0mPkGSxYtHqcMW5mCJV2T/VzhowkblS7wXTWdYYyiz3pOhn6sc1TPdeTMumiZnt7O+3t7fT395Oens6iRYsAcLlcGAwGtFrtZE9pwvF4pP36TKbUShP0emlpRvR+vN5IaWGq+4NQqbrSPiaTYDDIgQPxvzjPVQ4fjnGnBf1kxZTtOsmGjGwMPRERLuBo4ci2pwikzZrQ+Qn+ITJj5uMQsjl46DBp1nkYPJFwmMDQaQ7vfJWg6ey5KTSuZux+5Uvh9XufwV18xrYvitgbNxNdoB3UZRBIm4m+b1fS44gaI97cK/ClLyCt5j7JstbqN3D6Fo/yEUQQvF1k9kibcvvS5nHoqFRkNvRpiS3uOXV4E96uxBdCrC0niP2KP1LbDtrQiX1a+jIMvVGvuaHTktecbuAg6ccfl+23s+Au2g4eBHEaGcYCtJ6ISO9t38XhLU8QsMlFX1v9dkkxuYhA9Wk/tB3A2OPDCjg8Vuo7qzjVWcWxfVDb7uDUqTk0NJjweCauF05BgYeKCjeVla4zNzfl5S6svmrSD34WISgtsQ4acuio+CHt1bVx9ignw5Area6cXTUc3Pkm9t0/J/Zn0WlhGY1xPg/TjUXonJEfNO6u6vBnp6Fjq+y1crpX5NSBAwiecmJPq52mWWP63BX8JdgFHYIYOQELmIo5dKwBiAis+n4T8S6zBUzFHKntBhL/4FUZX2TfTSoqk4S+e0D2eeDVZp7T54CT+X56/ITU9f6P2n3caarAoBn5b6WN/c2ykmzJsWr28CHttHG5mH2oJXH5xKYTh6jqn4DeMGfYMyS/0Ovp6Qu/7rQO6e8y0WXk578/Se3BLPbutXHkiJVAYAzPQ2YfzKxDqKpn2WIHFLWx1xWZU4MPntmxiSpzfAFsmFcb5e+Vaf0Byo3pnHT3hccGfR7ZepZ+d8rvtS+mzeKYpYUDTuUqPpuoUdyXAPy6fD3PdNdg1xr5dP4CDh6UC6xKTOZ7ydovf36UsGn1tJ+oo2OU7wNN/0DcZTNdunH/7PtV6cU82B56Hu/Mn0fTsRqakmwDUKy3ciLQJxu3xPk7TyVc3X0JlwsOT8qPQeioRtPXSKBoGViTl4ynSkAMohc0+BKERjnauzjgG7/n+r1+rjcpomZjYyOPPPIIGzdupDUqXnbt2rU8+OCDALz11lv86Ec/4oMf/CB33XXXiNyHU51YFX64hDwZOp30zxOtwEf36Ex1f7H7PNtXMc53BJ+8H03QkE3ANkciagLou7dMuKipccm/5gLmUKmRP2Mxhh5p4rWufx/esyhqap3yZvbD6AYiwVkaTxsarzRh2Z++kKE5PyLt2HcwdG+SbS8KenyZy/Flr8ObvR5Rnw5BH+LJnyOIkfeWbjB+OuBI0PfJy3F99gtkYwGzvARb626WjcWiiXmtiRojaCK9WnzZaySiJkS95oJ+LDU/k+3Tk3cNAduZhuaCFk/hzVjqpW07TK3P4LB9Sz7nM0Kcx2+gsauSuv5VVJ8qo7HRSHPtZ2hs+BwdAxP72srO9kUJlxHxMi1NfoIheDqwHf2qTNAUNSYG5/085L4cAcEYAVjjacNS/0eEoFSk96UviDzHSvsxF0OUqKnx9SL4hxB1aWg88h9tQUNonqIxF0/eNRg7Xg7dR8Az7dYRPYZYRJ0Nb+6V4X0CeHPlZfMBi9xtPIzPvjTuMhUVlfMPUScvTQ0aJs6hdz4hiiKnvdKyaI8Y4LCzm6VpI+/5t2kg8blEq8/BEVc38y1j/2Hf7pWXf0dT74kv/IwH/Qo9pdO1EVOHzZ+GeHgmYvUMODYD6ov5tjj6i6lFRR6WLBlEO+sUL+S+Abk94RY1FxUuRi8US0RNgLf7m1MSNQ85pee3Nq2e6cZ05pqzJKKmEuUm+fsvHgaNlv+bfhF3nnyDJq/c6ZqpjW+gWW0rZLVt4toJjAfzLKmVfVcYM8Yk7Bcb5H1HAXJ1ZuaYx6/0fJi5lmx+Wb5uxNuVGtM5ofD6sWmnduk5SN/LSmSkWD6vPfQM+rf/NxQhZUjD84EHEXPkrZ9Gg1bQUGRIS/hZl+xxqIyMCRU1RVHkN7/5DX/+858JBoOStO5YWlpa6Ovr48EHH+Tf//43v/nNb1iwYHx62Z1tYkXHYDC+ah9NrOgY7dyMdrSmur/YfcY6QVXGF41X7kYSDdl4s9YQ2zXO0LMVd9mdEzofrYKoGTSFRE1fxhLZMn3/Prz5107onBKhdcZP/tYNHAolwAiCROAcxp++EDQGhub8CHPDQ5hankIUDPgyl+PNXocvcxXoYv4KGj0B6wx0QxEhU+s4CUEfaMb2XlESNf0KombQJBc1Na7TSfev8UpFzaA+S9L00Zu1FivSfpmGni24y+7E1PJPdE6pC1HUWnBOv1sy5im4HnPDQwhi5MeCoeMNBku/SEtXLo2NJhobjTTVQ8uhv1PfOYPTvWUExYl13xcWeigvdzN9euhWXh4SL+321MswrLW/kgnjIgJDs78/qosNQVMBRJ3HCEGvRAwcxlnxn/GbcwIBc6lsTONqImCbg8atIGqaIn2sHFX/jT9tNlpPC96cS/Gnj/371FlxD6KgRTd4FL99Ga6S/5DPwZiPqDHLBFwAv8LnjIqKyvlLUG+Xj6miZkr0Bjy4gnLzwR5H+4hFTb8Y5J2B5OcSb/Y1jouo2eZzJFze4J5YUXPAH+PE9OnoPDSNPx0rZNcuGwcPL0b0j/7cpLTUzdKlgyxdOsTSpYMUFIQuhv+waRdCr/R8bIk1j2ydmZ+37JGMbxxo5tMFib+Xu3wuWrzS53K+JQeNIDDHksULvfHPkwHKjCMzCNl1Rn5Vvo47T75BX0D6HGbpRxeANFWYZkjj1uwqnuquSbje1ZnxL8ymQlEcUfOi9KKz2tIrltI4r41zQWhLJryma5OHJQHodv8V4UxvesE7hG7/4/gu/86Y5zdMcTJRU5faPFVSY0JFzS996Uu8/vrrimJm7Bu7uTlyBbG1tZU777yTxx9/nMrKyomc4qRgNkvTrTwej6QMPB6x5eFGY+TFH11yHlvenojodaP3N5loNJrzQrAOBAISq/f8+fMlYrPrVDNd+6XbFFYswrbgCtpOLcLXGbGc64aqmV+Zi3aEzfNTScYepn/nS8R+tE6fvx5T8SLEwFxOH/lPxKgTUau7mhln2kOcDbrb+4h3rV/j62Xu9DT09hn0bvobsS3epy+9CeO0M3NfvAx4IKVj9vSuxXE4ImoKoo85RVoMeaN/HkRRpHXfAaIlNkGfxtw1H5GlPIuiyOl90v6maUJ30r/D6Z2DRF/aMNuLmR6zTdupxfg694fv64aOMTvfQ+f2h4n9hM5c/V1KF0dceB4P1NfD9oEfUrO/nsbuchq6ZlDfOYPGnip8sh8HcjFuLOj1IjNnwuzZIrNmhf4d/r/FogWsZ25SPK3vMnT4YTTmbNKXfEkxpCjo6ef0ls2ycfuan1C65Iujmm+/ayEDHa8mXMcy6yOUrL0t4TpDutX0Nj8qGSvP02CduYjORhdSX6nA/AsuQ4g+2VuyYmQTT4ULLk66StuJOfg69srGq1Z9FJ0teSCUythI9t2kojJZiOICWk+UERiMlCMXL/so5vKzd24xUs7W+2lHZyPIsxI5JjrCrbtSZVNbLQOHpL8p1hdU8k77KUlfxnecbfxl4QI0KZ5XKuEJ+Ok+KG9nE02jb4gFYzxOIl7Z14e4qQyqZyAeq4ST5TzgG/3F6XnzRNauFbn4YpGLLhIpLNQBmWduEY6eel1y36ozcOvKdeg0WpZ37mVXd8RccNLdR1pFMZUJAkWebzwMMQVDV1TMY9HCRQS6s/np6fihfNPM6axZujzlxzjMIuC56SVc9caDeKJE9VvnrWDR9LG9b8/2d9PfFy7kKz0tHO5ro8vjoMfjpMvtpMfrICiKXF00mztmLB+z+Jhf+yrtMeFTH198EYuKJrYibySstQV4uEMeHFaWkz/iz5fJpuW0EZriB8TOKS1n0ezEjyHocXJyUJp7YXWepmwcH/sSbyNbjsVJjQJWzF0wplCqs/1+Gm8OHTo0IqNeLBMmav7ud7/jtddeC38wLFiwgPe///3MmzePD39YHi5x/fXXU1tby549exAEgYGBAb7+9a/z1FNPTdQUJ42MDKn9f2hoKKXy+qGhyAeiTqeTbDMcGBS7XjIcjohoFb2PySa2tP58QKvVSh6X6Jb3pTHYitDpdFgrrqOvU9pHw9f+Lkb7h1I6liiK9G75BgP7/4DGkkvOZX/AMv2qhNsEB+Xl3KacWaE563QYC1dLwmD8/XXgbk+avD1R+HsTl377O3ZizpmNt32HdIFGj3nacjSjeI2ZC5fjOPyg9Dhd+7FMG/mJ4TC+3hoCQ9KyL1PRReiNZsX19RkVeKMEoUD/KbRabdyTLDHgI+iROgN01nzZeyz0mtsvGet68RZEnwNRhH5nJg3dFbR619PjuIe6B7TU1UFtLTQ3h4yxcG9qD3qUWK0BystdlJe7Wb06k3nztMyZA+XlAqGHk/qJpuPks3S8+GGGE8J9bdsp/OAmhJheZI6GrZJQHwDrzA+SecGXR31iq89IfKVf0JnJXvvjpJ+Dxmx56E5woBadTkfAIX1Naa0F6KdA4iOAMXueTNTUZVRiypx+dib0Hif2u0lFZTLJu+ZRut76LAFHO+kL7yKt8lrZ5/C5xGS9nxqcfYrjO7oa8SFi1qUu0r10Wh66eOfMleg1Wt6ICg9qcvazu6eFC/Onj3S6YeLNOxpXwEerZ4iytPEpxw0E4MAB2LAB3n4b3ti4DtF52aj2JQiwaBFcfDGsWwcXXQS5uQLJzj9anP3UxgQkXZg3HZMhZCC5efoCiagJ8GJzNV9ZsD7uPnd2y1sGrCmoQKfTsTinGINGizeoXJUyxy4/D0yVi6ZV8uIVd/KZbU/T6hzgkzNXcEv5InTa8X3dn43vpuX5ZSzPL5vQY8zKyJOImmk6I1cUzxr3528szMlUTqjPMlmn/PlCtknZDTtMjjkt6WPwKYQl+3uaxvWxV2UkrkrItdjG9Xjv9XO9CXnkbW1t4V6ZAF/5yle46667Em6zfPlyHnvsMR599FF+/OMfA6GGp5s2bWLdupH3iphK5OdLVfiuri4KC5P3HunsjIhiWVlZkh/Y0fvs7k49dCF6nzk549cQV0VOwNEqG9NaQ393U8mlsOPHkmWe9r2kzUpN1HSc+Cf9e+4PHWewic7X7qDkzjo0uvjlIb5eaSiNoLOgtUacoebii2QJ166GN7DN+0RKcxpPxGAAX8/xhOt4Wt7FOuNmvDFJ28a8JWh0yoJhMox58p5/no49QOLPr0S4mt6WjZlLL427vt5eKRE1g95+gu5utGbl92vA1SEb01jkpWm6khtoeOkfNPeU0dhVQWN36NbUXU5DVwWDbnsKj2bs6PVQklVDec5xynNPMD33JFWzjaz61P/R0XEgXI29aJGd0X43u1u20/nKxyHKg+pp24mndTumojWSdV2Nb8m2T5v7sTFdqdfZShIuz1j25ZQci/rMGbIxX1/ofRwYlP7Y0aVNHQekPlveJ9RUnNzhqaKicv5hKlxJ8e1y53aqHOpp5Rt7XsLt9/G1hZdxRdHMcZzd1OXUoLwvO4A3GGBbRz2XTUut95soiiHHXxQ6QcM1xXNwBXwSURPgqfoDYxI1Gx19srEso4Uej7T25lh/56hFTVGEo0cjIubGjdDbG73GCE4ehCCUnmbFWh/f+lAFa9dCZvJWlzLeaZMbBy4uqAj///1lC/jGHmkbmucaDycUNbd3SgOXBARW5IQqYQxaHYuzprGzSzkWZlYSQSUZl06rouYD3xjTPt6r3DFzBZvbI60B7pm7FuMUEjQBqtKVf1NkxTFcTCUyk8wx2ySv3IolMCTXTgIDHQS9LjSG8XkOKuM8x8NkThEjwvnChLzDnn76aTweD4IgcOuttyYVNKO5/fbbaW5u5pFHHgHg5ZdfPudFzWnTpqHX68PhPk1NTSmVX0eX5E+fPl2yrKwscpXJ6XTS1dWVkkjZ1BT58isvH1vfEJXEBBxtsrHh8ldj3hJCV30joou3fY9s/XgMHnpIcj/o6sLbeQBT4cq42wyLIcPo7ZUS4cZUfAnwXck6jppnz4qo6e+vQwy4E67jbn0XT/sumcvOWLh61MfVZ89F0JkRo1LXR/J3UcLVtEE2Zi65JO76uowK2Zivrza+qOkMiZour5mW3lKae8roabmGrg2hkvGGhtCtpWURoih3a0wEghCkKLOB8twapufVs+yWTzFrloaqKigrg9ZHb8Qf9XrU2WdQOO3/6FQO3RwRvr6TtP/7ZsXXj7Pu3zJRM1bIR2vAVHTRmOagS49ffq+1TiPjgv9KaT9aSwGCPg3RF7ni7+utIegdJBjVogBAm55YSJ1MQp9vUswl6yd/IioqKuc03oCfy159gO4zgtjm9lPUfuCblKTZz+7EJoE6hR/dw7zdelImajYO9fLLI5vpdA/x8RnLw+Lvwd5W6ockih/rC2dgN5q5qWwBn9v2DP6oEvSn6w/wixXXJywNb3UO8E57HQszpzHbLr2I2qQgal5WWMVT9dLqpON9HVw1gnLcU6fgzTdDQuaGDdAhv56bMnPmBagu3IYw52QopdzqYkHVCq5fKz3/cvt97Os5Tb7ZRkWCMnGAd9rl/S0vyo/sb2ZGLvPs+Rzpi/TD3tZRT+1Al6L44Q342RUjWM7PLCDdEDEvXJBTElfUHEtZ61RFDPjp3fhnfN1NZKy+DVPJ1Gxl9h8zLsCs1fNWSw1Lc4q5o2r01V4TRabRQq7JSqdb2rM10zD1hTZ7EtExKwVR0h/n89XX04yxYHzCgmYkEDWtOsOUE7rPdSbk2dyyZQsQ6pt5zz33jHj7T3/60zz66KMEAgEOHZKHgJxr6PV6Zs6cyZEjod4V1dXVXHPNNUm3q66OlN/OmTNHsmzu3LkIghDuV1pdXc1FFyX+Ie5wOGhsbAzfnz1bXtqoMn4oOTV1lpCoqTGkoc+aja8n8jf2dOxFDAaSlmX5BxpxN8sTvf39tRBH1Ay4ewm6pR/gOrvUBWYsXIHWOo2AI9L/w9X4JkFPPxpj6gmK44G3W6GRVAy+7qM4T70iGzdNWzXq4woaHYbcxXhaI71avN1HCPpdo3J/imIQd5P0b6Ux56LPmR93G71d7s7z99cyYF1JQ4NUqKyvh1MnKqiva6Z7KFlwwPg3KM+1tVKeV8OM6UMsuvIaqmYESNuzmhJ7NUZ9qH+vIX8ZRR/5tGQ7rSVfImoqXQAYDQFXF23P3UDQ1aW43Fn3IlkX/W/4vm+gAV+vtGm8adoaNPqxndQlcmpmrvkBGn3yq8gQ+g7V22fgjWob4O+twT/YKFtXlzZ1RE1TyXqMBSvwtO0EQhcLrFUfOMuzUlFROdfY1lEfFjQBAmKQ5xoP8cW5Y7vwdC5wajC+qLmxVXqR2u33cd0bD4UFs8fr9nH37NX8fPkNPN9wWLb9jaXzgJCD8vJpM3k1qjy9xTnA1vZ6LiqQX2AF+PvJPdy97SncAT86QcPf193GB8sXh5c3DfXJtrmyaJZM1Kzul4fdRdPTExIv33wT3ngD6hJn4iREU9DJXTfmcumlsH49ZOWA8W/PS9bpcEsTv7vdDi595QEO97WhEQTuX3FDwtfdlnapU9Og0bI8R/q9/P6yBRJRE+C/d73IM5d9Qra//T0teALSoKjVedKy6Qty4n/vz84YWZjUuUDLQ3fQvy3UZ7z71V9Q8b3dmEoXnuVZKXNr+SJuneK9g2em58pFzXPAPZiZTNRM4TEoOTUBfN2N4yZqlqVlohU0kr7Fw6QyR5WRMSGiZnNzM4IgMGPGjFGVOGdlZVFaWkpdXR3t7Ym/9M4VVq5cGRY1t23bxle+8pWE6/f19XH0aETYWbVKKtSkpaUxd+5cyT6TiZrbt28PN2DVarWsWDEBIRIqYfwxQo3GmIkQlXRmzL9AImqKviF8fScwZEkF7FiGjj+hOO7ri3/G549xaYJcPBMEDZYZNzJ4ICpUJ+jDeeol0mYnDjQZb3w9clHTkLdUUpYNMHj4L7L1xuLUBDDmL5OImgT9eDsPYSoc+fvF23lAJiabS9ZLwp1EEfr7Q30rm5uh7tBqjr/1bVr7imnrK6Ktr5i2b1UwGDdMdOIEZ70epk+HigqorAz9W1EhYj18E9MMm7Aaz0xK0FL6mRaCri6aG/dL9mHIlgu4WqvUQSD6hggmSUtNRtDvov2FWxRf68P4ek/g6z2BPjPkYHErlJ6bS0fXhysajd6KxpwjE1cNeUtJm3P7iPalz6ySiJpBbz+ejn2y9ZKVvE8mgqCh8ANvMXTiSQgGsM76kCwUS0VFRSUZXR7598Jph7wX2vlIXZzyc4BdXU0M+tzYziRSP3Fqv0ws++Oxd9nSdgp3jDAGcH3JvPD/by1fJBE1IVSCHitqiqLI/x7cwLf2Ri4m+8Ug397zqkTUbHRIXaEA6wsr0QkaiSP0eL/UaunxwLZtIQHzzTdh9+7hXt4jR5/Tj2/WCYQ5NTC7lumlGv546/9EraEl22iRCOadLmk+wV9O7OBwX+g8PiiKfG33S9xWsVSxtLXH4+RQr9TIsDK3FFNM39PbK5dx38G3CEY9sOcaD7OhpYZLY5y32zukpecAq3Klouby3Pjf++ebUzPoHqJ/x5ORgYCPvq3/j4LSn5+9SZ3jVGXksrWjXjKWrLR7KmDS6TFqdTLRf5ixiJr+brlpYLToNVrK0jKpU7hApYqa48+EiJr9Z5qvZmWNvgF0bm4udXV1sgTwc5Urr7yShx9+GAj1Cj18+DDz58d3a/3zn//E7w+9WTMyMrjwwgtl61x11VVhUfOFF17gnnvukSWtR/P445E0wgsvvJD09PRRPRaV1Ih1n8UmLxvzlzFU/XfJmKdtd0JRUxRFhqofU1zm75f38xnG11cjG9Nnyq9EWWfcJBU1CZWgT7aoqeTUtM2/k+4NUlFT9EqvrOvSp6MbYYJ8LIZ8eV9Nb8eeUYmarsa36XVk0dZXTGtfEW39RfRX30XnU9DUFBEyHZLfbTOBb496/iMlw9LD9MJOZi2bSUWFEBYvKyuhuBjkQXoC3dkzGdgb1RtKDOCqf02avH0Gg4IrVWuRn2wHnaOvJRPFIJ2vfkIqRsfBWfcSGctCoqar4U3ZcnPp5bKx0aBLn443RtTMXvdziaCdCkrOXXejvE/rVEsVF3RGbHP/42xPQ0VF5RxmwOuRjbW6BhXWPL/wBPw0JxBv/WKQLe2nuLp4DqIo8vvqLYrrDYty0VyQUywp339/6Xzu1jyNLypw5sm6/VxfMo/Lp1UhCAL+YIAvbn+WPx/fLtvfycEuWpz9TLOELrDG9tTUChpKrXZmpOdwLErIrO7t5MCBiIi5eTO4XIyKggK45BK49NLQbe2OX9Ee5bzMMsoDL/NMaRJRsyMmrXp7p1Tc8AT8PN94hE/OlJ8Lxro0QVp6PszMjFw+M2s1DxzbJhn/8s4X2H3Dl9CdqdQKikFebJafB6/Omy65Pys9D6vOgMMv/a2crjdRYE4eSHsu4R/sgoBPOjaOAtR7kTkKbt5C87mhDWQazLQpfBdoBIEMQ/x8iWESOTXHk0pbtrKoOU59O1UiTIioabPZ6O3tDYubo2E4/CY2OfxcZcmSJcybNy8sQn7jG9/g8ccfJy1NnuBVXV3NAw9EhKUPfvCDmEzyN+gtt9zCAw88gMvloqurix/84Afcd999isd/6qmneOedd8L3/+M/1B+bE4koBgk4pVfNh0OChjHkXyDbztuxF+Z+LO5+vZ0HJO7OaHz98Z2asSFBoCyWmIrWyhxmrvrXCHqH0BgSp82NJ74YUVMwpGOtupnuDZ9PuJ2xcPSl5+F95C+TjXnadkNUFYnfH+rn1NoaubW1Se+3tkJbyxfx+r885jmNBas11MeyrCzkusxyPkYhL1KSXUdp9iky0oYo+uhuDNmpl6dbKq5jYO+vJGPOUy+ht8uF8lRFzVBv0OQnIkr07/oZzpPPysZNRRfjPr1ZOs+6F8lYdi+iGJSFOGlM2RjyFo9qDrGkzfkoPe27w/ets2/DVLR2xPvRKVx8UAqf0tni9/FUUVFRORcZ8Ml7I7c6B87CTCaXhqFeRBLbFDe21nJ18Rx2dDayt/t0yvu+oUT6nWw3mrmyaCYvNUXOLbs8Dt73+p9ZnDWNe+ev45+n9kuWx7Kjs5GbykL9DZti+ndOs6Sj02iZlZFH9SkPHJmJeLSKtqMzWTxKfTorKyRiDguZs2cTDhkURZGed6ShRFlGubsyz5xGdZTIGitqnuiXX2h9uv6Aoqj5TptCP8045fvfX3IVT9Tto9cbUXAP9bby0Ikd3D07ZGD55u6XeatFakbINlpk4S5ajYZl2cWSUBqAOfa8MYUdTkWCCq7tgFPuClZJnY9WLuM7+14LOx5npueyJHtsxpDJIp6omWkwJ+wHPEx8UVPukB4LM9JzZGFscG6U+Z9rTIioWVhYSE9PDzU1NfT3949YmGxtbaW2thZBEJg2beq/uS699FJOnw6dUBQVFbFhgzwYBOBrX/saH//4xxFFkRMnTvCxj32M++67L9zbUhRF3njjDb797W/jdIa+kHNzc/nMZz6juL+cnBw+9alP8dvf/haAf/3rX3i9Xr75zW+SnR1qaO12u3nkkUf4zW9+E97u4osv5uKL1STaiSTo7oGg9IpirFPTkLsQNDoIRuzzniShNEPH/hF3mT+RqKlQkhvbUxNCPSUtlTcwdPjh8JgYcOOqfxXrzMnpiScG/Xh7pcnnhuy5aM3ZZ/qQxg+7MU0bfel5MAh9fdDRPpODDZfT1Wejc6CAjoFCuv41m4FfRcTLjo5Uy6ImvuQ2I83BtPSTFGU1UpxZz7SsRhZ/6DtUzLRRVgbZ2ZGTfQBvzzJa/vF5RH/oMyZ73a8xKKRVJ8I07UI0xkyCnsgJpevUq4jFQ7J1FcvPFUXNNmD6iOYBITG/b8dPZOPGwtXk3/QiLY9dgK83ckLhbtlKwNWNf6BB3hqg9NIROynjkb7gLgj6cda/ijFvKZmrvzeq/SgJxYGhZtmYdoo5NVVUVFTGSr9Xbt1rdcUXNV9prua5hsPMTM/li3PXYjhHgxiUnD2xvH2mr+bvq7eOaN83ls2Tjd06fbGiaLm/p4WPb35cNh7Ljo4GbipbgCiKEqem6DRhqV3CFzbDpn9/ALFxdBfHTSa46CK44gq4/HJYtAg0cb6qHX6vxHUKyqWeuSbpXJx+Hw6fB6veiD8Y4KTC3+Ctlhp6PU6ZIBEbEqQVNLL+l8Nkm6x8d8mVfGmHtKfnd/a+yofKF/OP2r383+GNsu0+MH2RolB5QU6JTNQ8H/tpBj3y88vAUPwWDSrJKbSks+3aL/Kbo+9g05v4n0WXpSQITgXihQWlWtY9WU7NeGFBavn5+DMh3/Zr1qzhyJEjBAIBHn74Ye69994Rbf+b3/wGURQRBIGVK+OnOZ9rrFy5knvvvZf7778fgKNHj3LjjTcyY8YMsrKyaGhokPQQNZlM/OpXv8Jmi19CcPfdd3Po0CE2btwIwIsvvshrr73GrFmzMBgM1NTUMDgYuZJRXFzMT3/604l5gCphFEOCYkRNjc6EIXu+pF+et2M/YsCn2H9ODAZwHFPupzl8zKDPqRhyEitqCvo0RWEJQiXo0aImgOPks5Mmavr6aiEgLaXRnxHdjNMuTChqRjs1RREGBqCzMyRCdnRE/q801tUVcmCCFng53iEmFY0QID+jhUJ7M+VLL2B6uV7iuiwrA+dbt0oTvDU6pn/4p8S7SG/Imk3JJ2twNbyOPnuuYlJ1MgSNDnP5+3Aci/zYCXr7cZ56VTp/c66sfyaATmEs6OpgNKJmz6avyJLOdfYZ5N/wDBqdCUvFdfTvuT+yUAziqn8V/6BcGByv0nMAQWsgY+l/krH0P8e0H6U2ETK0BrSW8+9HjIqKynubAZ9C+Xkcp+YrzdVc90akz/aJgU7+tObWCZvbRKIUEiQgSNyb+3pOc7y/QxbAY9bq+dK8i/npoQ2S3o0QKoWcZ5eeiwJ8sHwRvzi8UdYXMlV2nCnV7nS6GKqehnh4FhytglMlVAe1hOTS1AVNQYClSyMi5po1IWEzFboVHH3ZCgJCnkk+nw73EOV6I/VDvTJhFEJl/y80HuHjUWnWNf2dspTypdlF4X6nStw9+0L+dOxdiVO02+Pk5rce4R2FUvbytCy+t+RKxX0phQWdj6KmqOTUdKii5lhZnF3Ewxd9+GxPY8TY4/T+TFnUdExe+bkSqqg5/kyIqHnDDTfw0EMPIYoiDz30EHPnzuWqq65Kads//elPPPtspIzw2muvnYgpnjU+85nPYLVa+cUvfhF2Y548KXfRFRQU8POf/5wLLpCXKEej0+n47W9/y/e//32eeeYZRFHE5/Nx+LA87XDJkiX8+te/HlOvU5XUiA0JAnn5OYRKnaNFTTHgxttzFGOuPDHP1bThjJstwXEHTmHIll6FF0VRFp6it1fGLU0xl1yCxmgn6OkLjzlPvULQ70ajG1158EhQCgkS0xbQ0gJNQ1dTX3uCXkc2fc5M+p1Z9Dqy6Xdm0ufOxf38Inp6oLs7JFZO5Za8Oh0UFYX6VhYXQ0lJ5P+2zt9ha/s5ObZ2dNrQifW023ZiVCiNHoptc2DOS+o21FpySZvz0THN31J+rUTUBECU/ghQKj0PHV/BqeloH3H1ubPuRZx1L0kHBQ151zyG1hy6OmqpuF4qap7ZLuCSn9CMR0jQeKM1ZaExZYXc33HQpRWPm8NURUVFZarQ75WXn/d6Xbj9PlkIyyM1uyT3/167h9+uuumcdGsqhQRdVTRLEugTFEU++c6TMvHto5VL+dGyq3lf8Wxu3/QYTVHOyS/PX6d47mfU6njn2s/zf4c28ofqrZLS6Fjm2vNx+r3UnykzF7sy2ba5gJsfEnnjLRPiwBdG+GhDlJdHRMxLLw1VmYyGbrdTNqYkIOSZ44iatmxZiFE0T9cflIiaf4jpjwlwxbSZCeeo12j5xcobueb1ByXjsY5LCAmyL195F3lxemReVTQLu8FM35m/mYDA+8+0AjifCLoVnJqqqPmeJZ5TM9MwRqdmT2PYWDceVKarouZkMSHf9DNmzOCmm27imWeeIRAIcO+993LDDTdw0003UVEh7zHidDrZuXMnf/vb39i+PdSEWhAErrzyynBp9vnE7bffzuWXX84///lPNm3aRHNzM0NDQ6SlpTFz5kwuv/xybrnlFsV+m0oYDAZ+/OMf86EPfYhnn32W7du3097ejtfrJSsri4ULF3Lddddx5ZVXoolXr6Eyrig5NWPLz+FMX82YBG9v+x5FUdORoPR8GF9fnUzUDLq7JQIlKPfTHEbQGrBUXMdQ9aPhMdE3hKvhDayV1yedQyye9r107XmI3q4hxJJP4U2/mP7+UOJ3Xx/h/w/fOk/NpqvpNfqcWfQ5M+lzZuPyDvdDuvHMbWpjt0OevYNs/WHy0ttCbsuMZuZcfQeVSxZRXAx5efHLpwYOGuje0CIZ8/fXKoqaAWen5P5kOfYs06+StU+IxZCjfGKtKGq6OkYkagb9Lro3fkU2nr7wbon71Fi4Co0pW1Jq7qx/DTEY4wbOrEKXPjX7UurtVXjadsRdPpWSz1VUVFTGC6Xyc4A21yDTbdIL9KdihEBPwE/DUC9VGbkTNr+JQqn8/JMzV8hSyrd3yvu/fW7OGgDW5pez98Yv87ujW9je2cA1xXP4zKz4LXpsehM/WPo+/nvBJfy1Zif3H94kC/1ZV1DB31d9gjv/spu61wQ4PAva8vACITvKCIQAq5PCpe1896PlXH55KJxwPOjxykVNJadmbPk5QMeZBPQT/Z2yZcO80XKCfq+LDIOZIZ9HJqZrBIFPzUpeZXhV0SyuKZ7Dy83xe5WatDqev/yTzEzwGrYbzTx1yX/w9d0v4Q74+PrCyxKuf66i1FMz6BpA9PsQdBPf6kllapEZR9TMNo1N1BR9HgKDnejSx+e3VEVatsxlD2pPzYlgwi5ffvvb3+bYsWMcOXIEURR5/vnnef55af+QXbt2sWrVKgYHBwkGg0DIVQZQUlLCD37wg4maXlxuvvlmbr755hFtE6+HZiIKCgq45557uOeee0a8bTwWLlzIwoULx21/KqMnNvkc4jk15UnbnvY92OZ/UjIW9DlwnHwu6XGV+moqhQQp9dMcRhRBU3ILvbtfxulJw+FJw+W1EHy6Gt2c6xkaCqV1Dw0h+//QUKjkOyRWivR1OegfnIPH94ekc48w58xtaqHRBMnL01BYSPhWUIDk/vCYyQRtz34SV8Prkn2Ufuy7aFMQ7vQZ8os/vj7531YUgwRcsaKmcluB8UZjzMBUvA5341tx14nn1NQoCK9BZztkpn78/l0/wz8gLdPSWPKwx/SuFDRaLOVXy0T6WEzjWHo+3ugzZyQRNdV+mioqKucfSuXnEOqrGStqNsUIcBBK5j4XRc1TMb0Cc01WriqahU7Q4BeDcbdbm1/OoqxIFkGW0cJ34pQtxyNNb+SLcy/i7tkX8tSpAzx8Yic1R3XMbFpL8LGZVG7R4PGMvC+/wQBC1Sm8s6thbg2UNZNuz+Yzt3x9xPtKhLJTUyEoyCR3Pg6HBR1PIGr6ggH+3XSU2yuX8feTu2VhVteXzKMsLbWKuJ+vuJ7XTx9X/JtqBIHH1t0uSzxX4tJpVey84UspHfNcRamnJkDA2Ycu/dx7j6uMjbg9NVN0avrjiJoQKkEfL1HTpNNTbM2QfT+lOk+V1JkwUdNkMvGXv/yFr371q5LUbSBs6fV4PLjdbtn43Llz+e1vf3veJJ+rvPdQEjVje2oC6LPmExTM+HwB/AE9/oCegRO1eGaDzxe59Z/YREftLPzB0Dq+gB4hfR6urlP4zox5/UaEpgK074DbDS5X6N/+0xn01/4et8+Mx2fC7TMjPrkErza0fHhdlwuczpAwGQhcCyQudU+OwEh6KJ0NDIaQYzI3N/ZfEe3hL5FtOUVeehu5tjYKSjMou+NQSvsVRVEW+qTLqEBrSk2109nllgVff61sLOjqlpV8ay2Td3JnKb82saipEBIEoX6ysS0OQunnqeHrO0n/7p/LxrPW3ofWZJfPM8Z5rMR49tMcb3QKYUHRaFWnpoqKynnIQBynZqtTmnrrCfhl6dUAdQPJA3emGqIoypyaFbZs0vRGVuaWsrWjPu62n5u9Zlzm0N0Nb76p5Y1Xl1L9+lJaWmBUneZKTvMfN2Rw2/VpXHQR3Lj5NTa0Ri601w324An4MY5jiwAlp2aWQv+9fIXy884zr6ETA4nPR56pP8hHK5YqhjR9YU7qf4NZGXl8ce5afnlks2zZr1e+n/eXKZ9DvRdRcmpCqARdFTXfe2SOoaemGAwQdPbFXe7rbsRcnrj930iYYcuWi5px5q8yeia00YzdbufBBx/k+eef5+GHH+b48VCisRgnNjgvL49PfOITfPSjH8VgMEzk1FRUxsz27fC1r83g+HFLyN2o0RIMhpyOAe8PCfq/h4hAUNQQFDWIXzMhiqGU7eH1QunY/fKdfy524Jozt9EwNZ2PE4HVCllZoVtubkSkVBIu8/LAZiNOoI5A6zPHcTdFXNjB/jaCnn40xuQXW/yDjbJkbWOe3JUbD52tRFba7VdwagZi+mnC5JWfA1gqrqVn05fjLBXCAU9KaC15MaKm/LEoIYoi3Ru/jBiQOniM09aQNud2xW3MZVeA1iALoIpMVYu5eF1Kxz8bJGoXAaBLU0VNFRWV849+n7ynJkCrU3re1OJUOI8CxQTrqU63x8lgjEO1/EzYxPrCGXFFzUJz+v9n76zD4zjvtX3PMkgrZlmSLTMzxI5jO5w4jIU0PW3Tnjbpab9yygynbdoU0iRtk1NukoYTBxyHzQwyk8hi1q60ON8fa2l3dmZJaNnvfV267H13dna0llc7zzy/5+GmAYpgPh9s3QqvvRb82r697zNqcpgzenBPPYg08whMP4qU1s2DH/wB6ebg/VPSchWipl8OcKKrmeka5UV9BOQAbr8fa4Ijxq0aTs0sTadm9PHzWE5NgNdqj/Bc1QFF0Q/AjPQ8VhfE/n0dyTfnXM6/T+6hridUgPWVWav7YwQEQbQyNUHkal6opA2i/dzvbIv5BjfUZUETHNm8Va80pojx86FnRNKzb7jhBm644QaqqqrYtWsXlZWVdHZ24vV6SUtLIy8vj3nz5jFt2jSR+SgYE3R2wm236amvjyZwqT9ACRLHanKSbmsl3dZKVq6FvPIpZGUFxcpU/Wn0J35Euq2tf5vs4mxm3PNGwu2YiWDOm68QNQHcjbuxjlsV97GeCJcmgClvQcLPLekMGBxlioInLadm5Og5jNz4OYAxbTzG7Jl4m9XFZIb0cnTG6L+09bZ8vG1H+28HXI3BDxlxwrldJ1+k57SyZR1JT/bqB6MGe+tMqViLV9NT+Zrm/eaCJejMjpjPO5rEa0AXmZoCgeB8RKsoCKCuR+nU1Bo9Bzje2TzUhwTA85UH+J8tz9Lt8/DVWav5yuw1Q7ZvrTzNCWfHmVcXTORHe9/QfNwnpyxNqhSpsjIkYm7YEMw0Txq9HyaeRpp5GGYeYfxML0e7Qp9LUo1m0kyhD2bTNFq5D7U3RhU1f13xLl/fuQ4dEt+Ycxn3z4lf5qfVfp5MUVCnp5f6iJ+vSNx+H5/c+JRq/TPTliddMJJutvL2NZ/hM5ufpt7VyaenXsSnpkbPPr1QierU7Bai5oVItEKgRMTCaHmafXib1VnFg2F1wUT+fDQUIZVptjFV471QMDhGtBKwpKSEkpJzs4hBIEiGxkaorx+aZrTzDZOhl1RLB6nWzuCfYX93WNtJtXSSP/ty8qYtIy0NxZeh5SXc79+J2RBy1GVe8gBp86b03w748ql69BlkT+hDp2PmZ4ZU0AQw56lHD9wNOxMSNSNHz4P7S1zUBDCmlStETX9XjaqB3u9Uuxt1Izh+DsER9A4NUTOysCqSSEep7HOB3wWG6BcE5ICf1ne/olp3zPkMppzYecK2CWujiprnYut5OHGdmiJTUyAQnIdE5hX2Ee5qA6hxaityJ7qii5o7m2uo6+nkkvwJpBoT/wDR5XVz93v/6ndT3r9zHWsKJ7Ewe2guLmmJmn1OzWU5pZj1Btx+ZUGfQdJxz5SlMffr8cB778Err8C6dXAoej9NTMrL4coroal8J/+xPINkDblKj0ZogSX2dIXINyVdfSIfrWn8iZN7+OK2F/pvf3PXK6wumMjS3NKYx9fqTqwoyGG0YNLp8YS1xzf2dmsez4KsYna21MR8njSThQ+XJ/c5r4+Jjmxev/JTA3rshYLsiT5+LrjwSDdpv2dr/V+PJK6o2Tq0Ts3bymbzcvVB/nVyN6lGMw8tu2VIIzcEQYblFf31r3/NmjVrRGmN4LylsBAmTpQ5fnzsCZuSFMBi0WG1Bgtt+v60WILj23Y7pKQEv3RN6zD2HMBu7sZm6sZm7qbw4s+TWTq9f5u+7T2778d39DeYDF7F89kn34bzqPKKtq18P3nXqa9yt7Xspt2gHBE2RYww6wwWMpZ+h9Z3vxS8bcvFseD/DcVLo3xeDRGya9+j9Fa/TcDdRsDdjs6SSfqir2KbcK1iO3fjLtVjwxu5E8GYXk6P4mKhjK/zFKbMUJSAVg7lSDo1AWwTrqNj+89U69FKgvrQa2TM6rytBGKImj2V61VlWHpbHhnLvp3AcV5Dy1uf1bzvXM7ThKDTVG8vwO+s07zfkCouFgoEgvMLb8CPy+fVvK/OpRQ1a6OMn5/sasUfCKCPmAL74Z71fGd38CJXWUoGm9b+D3lWdXGMFlubqlTj4a/XHhkyUTOyxR1gwtlSJIvByLKcUt6OGGW8uWw2BTb1tEF1dUjE3LAhmJmeLCkpsGZNUMi88spQS/mLVRae3qBd5NTHOLsyR1zLnbS1SS0gVHa38unN/1Gt/9+x7XFFzZYIsVFC0iwVkSSJXEsKNWE/O0093RzpVE/AfHzyEip3tdEcxS0I8F+TFpNiNMc8NsHAOV/Hz931R2l6+lv4na1kXnYfqfNvGO1DGhNEc2QmNH4eT9Qc4vFzg07P3y/5EL9fdjMWvVEImsPEsLyqDz/8MI888gjZ2dmsXr2aNWvWcNFFF4mcTMF5g80Gzz7r59vfbuPoURs6nYzdbkevl9BJPjx1G5EkGUkKoJMCGOy5WHJno9OBThecsO3/OzK9lc9jkHox6rwYDR5MtlQyZt5OoGUbvvq3Meq9GPReDDovZkcW2Uv+HyaThLdmHZ5TT2PQezEZ3FiMPRSs+T7ppXOxWEDfe5SOV67FbOjFbOzBbOwlc+Yd5F7154S+z+5DbTS99k3FmmNWOlkr/1e1bd2WbfSGC5qSnvyb12EpvoSemneC48Vn6al+C9nvRdIrM5K8LQdV+9XKZUyb/z9Yxl2Cr+M0luJLNMthBoshtQSdNZtAT8jp4es8pWrcbnj5Doo/vLt/RFiWZdX4uTFjUkJZnIrn12hA97WfVIqaPVqi5siONJjzF6K35akyMeOKmhrHqfO0ErBGPzHsqnhctZZx0fcTem0NqeMw5czF07RHsS6ZHJjzF8V9/GhjTJ+oKWpKJsc5PTovEAgEA6Ezyug5oBoPjjZ+7g34qXa2K5rSOzw9/GRfqODudHcbjx3dltBoM0BDr3o0uaFnAGphFDTHz886NQEuK5ysEjXvPZu/6PXCxo0hIfOAeogiIebPD4mYy5YFSxUjWZIT/2JaSUq64naRLY0Ug5luX0gMfan6IL+ueJfPzwg2qvsDAe5+91+a0QNPV+7jN0tvjDlm3xYhaqabLCpRu49cq1LUbOzt5qhGnub09DxuLJ3Jn8JGSMORkPjM1IuiHpNg8JyP4+eyz0v1A2vxNBwDwHlwA+O/txNraXImiAuRaE7Nc1HU7CNaDqhgaBhWqbipqYmnnnqKp556CovFwkUXXcSaNWtYvXo1mZmZ8XcgEJzDTJ0K3/hG6I1vzpw5GAwGvG0nqfnL5YptHXPvI2vVA1H2JFH31G/prX0vbElH8UcXUfuPqxVj1gA5V/2FlKlBh2j3kS6aXvmb4v7smTeSOnMuAF0H3qc5U5kNYilYnPD3aJuwFiQdyIH+Na28SFmW8TQrm8GNmVOwjlsd3E/p5XQf+kdoe08n7vptWIqUQeieVuU8lM6SGdV5aM6ZgzlnTsLfS7JIkoQ5d0HUkeV+/B66DvyZzIt/CoCv46SiAAfAlJv8SJJRqwG9XXkicy44NSVJh3X8NXRHCI6m7NhOfS2npuSN/uHU72rCdfIlxZrOlIZ96p0JH6ttwlqVqGkdtwpJd+5fNTVkTILw94i+dZGnKRAIzkOijZ6D2qkZbfwc4HhXs0LU3NN6ht6I8e09rbUJH1dknidAQ5wMxmQ4FSFqGnV6imyhC3f3TlvOw4c39Ytxt6Wv5PCLZfzqFXjjjWDme7Lk5sIVVwRFzMsvh7wEPkbkWlOZkJqlKcL2URLh1JQkietKpvOvk7sV61/c9gKFNge3j5/LT/e9yXsNyovHfbS6Xaw/c5Rrx0UvIYx0amqVBPWRE1EW1NTr5LDG+PmUtBxuLZsTVdS8ZtxUyh3ZUZ9HMHgCbu0LBwFX2wgfydDhOraxX9AEQJZpf/cxrHf9dvQOaowQLVNzKERNf2cjAU8POiFCjimGpZVn9erVWM4G3MmyjCzL9PT08Oabb/LNb36Tiy++mDvvvJNHH32UEyfU5RcCwVjG56xXrWkJOOGoRp3lAI0v36kSNM35i7FPCYk4xjQN4StsPLe3fpvqfnMSoqbOnIYxY4pizd20FzlM5ATwd9eohbzsWf1/t5YqRV6AnsrXFbdlvxdv2zHFmjFretKh60OJtTQx50b34X8jn81l0s7TTLz5vA9DutqpGVkWpBY1JfTWkf9gnTbvvmBb+1ksRSvjlttoOzWjf9DoPvwPCEREG0y9E50h8Q8dtvLrVWvWsqsTfvxoEi1XU4iaAoHgfCRaSRAExSdvWBZiTRSnJqjLgva3qh3vld2JCyNaAuZQiponI5xnZSkZCqehTWfhkZyvcNWWL1D2ix/yxM3Xc889Es88k7igqdfDypXw4x/Drl1QVwd/+xt8+MOJCZp9LI7j1hwX4dQE+MH8q8ixqIXGu9/9Fw8ceJvv7XlddV84/z65J+b9kVmXmebonxEiG9D9coAtjUojQLrJSo4lhVUF5VEFk/umrYh5TILBcz46NV1H31etOSvWj8KRjD0cJjMSyvPDYNRE/HxkXxxRE8DbWhN3G8G5xbCImn/4wx/Ytm0bjz32GHfffTfjx48HQgKn3+9n7969/OpXv2Lt2rVcccUV/PSnP2Xbtm0EAoE4excIzm20RkTjiZrmXLXo5WncrVrLXPlzhcinJXz52kOipjtC1JQMVkxZsceCIzHlzlXclj2d+DqUV9EjXZoQIWpqZBa6KpW/uL3tx1SilSkz+tX4kSB15iewRB67pAe9chbL7zxDb/VbAHg08jQH4tQ0OMZDxC/s8H9bQDXyrbNmjYrr0JQ9i4JbN5Ay82OkL76fvOufifsYvU0jU9Oj/eFUlmW6DqhHz1Nn/FdSx2nOnUvKzI/13zblziN12oeT2sdoYUzXFomFqCkQCMYisizTEyUzE6AjhlNTRlYIiTVRMjVBPc69r039Ge10EsKIpqipMZI+EDx+n2qUfnxqFnV18PjjcPvtkJ0NV19qZt2jhZw8mHjBUX4+fOxj8NRT0NwM77wD998P8+YFo5AGwtI4omaJPV21Nj41ixcu+zg2gzJ+yBPw8+XtL+GXY58HPl91AJfPo3lfQA7Q6okUNaM7NbUa0CPzWaek5SBJEkadnhtK1J+fp6TlcFlh7Iu4gsFzPmZquo5tVK156o7gbakehaMZW+gkHWkRAmaG2YpOiv9mFs+pCcM3gi4YPobt7NdoNHLRRRdx0UUXcf/991NTU8M777zDO++8w7Zt2+jtDX1Yqa6u5i9/+Qt/+ctfcDgcrFy5kjVr1rBy5Urs9ui/jASCcxG/llNTQ8AJx5yvbtqOxD7pFiyFy5T7tWSiM6crXJJ9Ts2Ap1uVUWnKna/KsYyHOWcuzsP/Uqx5mvYoxqM9TbFFTb0tF1PuPIVQ62nYib+nud9ZqJWnGVkSNNLoTCnk3/QyAVcjAX8venMGkikV55F/0fTqRxXbdh36O9bSy3A3RIqaEuYIYTih5zZY0KeOw98V+sXqbTui2MbvUmY/jXSeZjiWwmWqn89YaB1rtPFzd/02vBHRBKbs2ZiSLF8CyL70D6ROv5uApwvruNVJ/38YLYwZ0ZyaovlcIBCMLSq7W7njrb+xvbmaeZlFPLXmI/0N333EytSE4Ah6sT0dj98X0yl5vFN5Aru/9Yxqm6ZeJy6fB5shfvZ/ZJ5ntLWBUOVsJyDLyH4dnCxB3j+VHUcXUHg0+X3pdME8zGuugauvhrlzg3nuQ8mSnNilPZHj530szinhX6vu4qYNjxOQ5aiPN+sNLM4epxhHd/o8vFx9iNvGq+OHOjy9qv1lWaKPo0Y6NbWY7Mjp//utZbN5/JjSLHDv1OUJCSmCwRHVqTlGRU054Kfn+CbN+7or1pOx8mOa940F5ICf7r3rkH1uUuddj5TA++pAyDTbaPf0hG5HGUmPJBFR0ydEzTHHiL0LFxcX86EPfYhHH32UrVu38uijj/LhD3+YkpKSfgenLMt0dHTw0ksv8YUvfIGlS5fy8Y9/fKQOUSAYErScmoY4Tk1DWjk6c3r0DfQmMlb8KMpjxytu97ko3Q07FVmYEBxfT5ZIpyaAu3GP4nY8pyZojaDL9FS+0X+rt367ah9aJUEjjSRJ6O15GB2l6MwOJEnCVn4DklF5wcV1/DkC7k5V87kxcwo6U2KtqpGYMqcqbvs6TxPwBK9Wy7JMIMKpOdJ5moMhWlGQFloFQSkz/2tA0QSSJGEpXIat7IoxI2hC8D0i0rkLoBdOTYFAMMb44rYX2d4cdCPtbq3lu7vVI8exnJoQyraM1nzex4mw8XN/IMCBdvWFZ0h8BF1LwOzw9NIbw3WaCE1N8MjjXgIPfwj5899F/sl98NJlNB/VFga1yM2Fu++Gf/87uL/334evfz3oxhyOJJ+5mYVRm3wlJIrs0Uv81o6bzkPLbom5/58vXMvXZqtjgP59Uj3JBOrRc4gtdERmamoxJayx/cqiKVw3bkb/7RV54/nElKVx9yEYPNEyNcfq+Lm75gCBHu28COeBsTuCLssyVQ+spfrX11Pzu9s49YOLkCMyjIeKSIf0FUWTE3qccGqen4xKO4LZbGblypWsXBlsujt9+jTvvvsu77zzDtu3b8fjCY4VeL1eNm3SvoohEJyrRI4EA+jtBTEfI0kSprwF9FZt0Lw/be59GDXasAGMaRMUDsiAuw1/b5tq9BzAMoCWZ5NGGY+naa/ydoSoqTNnoE8pUqxZS6+gY7uyNb2ncj0pU+/E03qYrr0PqZ/7HBA1tdAZ7dgn3kz3oVBJk+xz0b7zF8ge5YcUc2ReahIYs2aoskc9LQexFCxG9nQi+92K+/TWHMYKkt6EzpJJoDf0gVTnVX/QCHi6cR55MuKxZlKmfmDYj/FcQmewYEgtwdelzPsypAhRUyAQjB26vL28VK2czHi/4aRqu0ScmhC7JAjgRFcLATmATtJxsqsFVxTx8XR3K9PS418YjDZq3tDbRWlK4iWosgz798NLLwW/tmwBWS4AYn9eDEeSYMmSoBvzmmsGN0o+EEx6A/Mzi9jcVKm6r9DmwKjTx3z8PVOWUuNs54d731Ddd03xND4zbTk+OUC22U5zmFPvldrDdHh6VG3CkSVBEMepqTF+HsnktNDnKkmSeHrN3bxVfxxfIMAl+eVRRV3B0HK+OTW1Rs/7cB7cgBwIII3kf+YhordyN879r4Zun95J57YnSVv2wSF/ru/MvYJqZzvbmqpYmlvKN+eq+xu0iBQ1JYMJOSLSwtuifk8TnNuM+jtxb28vZ86coaWlBafTSSAQ6HffyDFGEgSCcxVVUZDOgM6apb1xGObc+Zqips6aTdqir0V9nEFD7PR1nNQUNQfi1NRbMjGklirElHBRM+DrxdumnI0yZc9SuegsBUuRjCnI3tDV1p7K9cgBP83rP6US6CxFF4/qOHU8UqZ9SCFkPBnlAAEAAElEQVRqAnTu/LVqu4HkafY/NnuGas3bUoGlYLG2eD6GnJoQPN5wUVPScGo6j/1H8TMDYCu/Ab0l8ZPH8wVDxiS1qOkQoqZAIBg7bDhzXFHyA9piVKz2c4D6sy6nyAzKSHr8XupcXRTZ0zTzNPtIxKnZG/DRHkVsbejpjitq9vTAm2+GhMyaAXRRZGfDVVcFR8qvuCJ4ezRZkluqKWpq5Wlq8d15V1Lj6uD/joWmdfKsqfx5xe3BLEtJzy1ls3nkyOb++91+H89WHuCjk5QX6pN1auZa4k/RTElTXizW63RcVpiYI0wwdETP1GwbkwKgVklQH/6uJtzV+7CUzh25AxoiPPXqrIzu/a8Ni6iZb3Pw0uWfSPpxkaKmKX8K7rrD4A9d8BJOzbHHiIuaHo+HnTt3sm3bNrZu3cr+/fvx+ZS25HAx02pNvNlWIDgXiBw/19vykRLI24mWq5mx9FvoLelRH6clanrbT+COGOfW2/IHPKpqyp2jEFP8zjr8zgb09rxg1qGsPEEx5cyK3AWS3oR13GpcJ18M7cdVT/Ob9+Ku26zcWGcg85JfDuhYRwpL8SXoU4rwd9f2r8l+9cnOYJyaWqVOnpYKQJ2nCaObqTkQ9LY8RVamztMatK+ECeKaBUEzkysIOl+w5C+ityrkaNFZs4VTUyAQjCleqTmkWuvyuvEG/ApnX6z2c4A6V2Lj5wDHu5opsqexf5CiZqsv+jFFy/WsroaXXw6KmG++GRQ2k0GSZBYtkrj66qAbc8GCYHv5ucKSKGVB41ISG5uXJImHL7qVspQM/u/YdkrsGTyy/DZyrSHB8c4JcxWiJgRH0CNFTS1xPFOjab2PeJmaEhITU0dZNR6jyH4fHVv+RaC3m7RlH0Rvix5FEHdfPq9CcFLeGSDQ04k+QRH9XCGWqAnBXM2xKGr6ner3UefBDciyPKDIqKFGlmX8TqWoqXfkYHR3420KZfcKUXPsMeyipsfjYffu3f0i5r59+/B6Q29MkW5Mk8nEnDlzWLp0KUuXLmXOHPXoq0BwLhNZFBSv+bwPc55a1DRmTCF1ZuyrUEaNBvTe2vfxO5Vh+Ob8RQP+hWLKmYvrxAuKNXfTHmz2KxPK0+zDWnqFQtQE6D7wmGq7tIVfGlC5zkgi6fSkTP0AHTt+EWsjzfH9RDFmTSOYoxh6nwyJmlpOzTEmatqVzlJJ9iD5nciG4ImGp/WQSvA2OMqwjFs9Ysd4LpE657/pPvIkvo4TIOnJWPbdMZULKhAILmxkWeaVmsOa97W6XeSFCVlxRc2exMbPAY53NnNJfjn7W6OLmqcTEDWbY7hH+7I2/X7Yti0kZO7dG/Uh0bE7YeYRUued4vj3biH3HP7VvjRKWVCiTk0Ao07Pt+ZewbfmXqF5/4q88RTb0hQt92/WHaexp0shfrZqjChnmWNlasYuoy1LycBiEL9jB0LVr9bi3P8aAC0v/5TyH1eAwRLnUdpEGz3vw+9sHVOiprelCl9r7IZz54H1ZF/z5RE6oqHD71K/j/raavE0HMOcP/oOZ9njQvYqJwMN9iwI+JWiZmvVOSPEChJjWETN7du3s3Xr1n4Rsy8jE9Qipl6vZ8aMGSxdupRly5Yxf/58zGbzcByWQDDsyD63YpwW4pcE9W+XOg5b+Q24TjwfXNAZyVr9YFzRQsup6Tz2H9XaQEbP+9DM1Wzcg63sSjzNB9TbRxM1y+LnnRgzppCx+BvJH+QokDLtQzFFTWPmNHTGxNr4tNAZrBjSy/G1H+9f8559vf2uRtX2Y07U1BiXlzwt/aJmd8VfVPenTP9IQs7n8xGDvYCiu3bhrtuKIaUIY8ak+A8SCASCc4R9bXVRnZUtbqdC1Iw3ft6XqRlv/BzgZFfQmRPbqRk/m6/Fp22zlF0W3nzBxvsHYN06aG7W3Cwms2bJHC17F8/M/VBeiaSTmZ497pwWNAHG2dPJt6aqCpSSETXjoZN03D5+Lg9UvNO/5pcDPH16H5+etrx/TXP8PIaoaTEYcRgtUX/WJqeNnZzyc4ne6v39giYERbzO7f8hZdmHB7S/aCVBfQRzNbV7B85FXEej52mGtnmPgKcXnWlgQvBoEa24yVmx4ZwQNbVKgvSp2UhG5esse934u5owOM7xN2BBP8Miat51111RczElSWLy5Mn9TsxFixaRkhI/qFkgGAv4XOpWzXglQeHkXPFnOvcuwOeswz7xZqzjLon7GENKMeiMEAg5oAM96k/U5oKBi5parklP057gnyqnphS1tdyYNgFD+kSFSBf52OzL/4hkGBsXNkxZMzDlzO1/LSIZzOh5+HOEv15+VwN+V1MUUXPsZWpGovO2EqAU2e+l69DfI+6VSJ3+kZE5uHMUncGKddyq0T4MgUAgSBqt0fM+Wt1KwTBRp2atq12xbtEb6I1o2z3e2Uy3182Jruitt4mMn7eEjZ/L9dmwdzryvmlwdAL/9ic3E242w6WXwtq1cO21kJLXQ84/XyTcFzQ+NX4e+2gjSRJLckp5vkp5gTvR8fNEuXPCPIWoCfDvU3sUoqZmUVAMUROCI+jRRM3w5nNB4rhrK9RrdUcY6Nl+XKfmGGtA1yoJMhfPwl0TOp+Svb24jm0kZcalI3logyag4dSE4Ah65qWfHuGjUePTEjVTstDb1XnI3pYqIWqOIYZ1/LxP0LRardxyyy2sWbOG2bNnCxFTcN4SOXoOiY+fA+jMDtIXRy8F0kLS6TE4SmMIhQAS5kEU1uhTitFZsgj0hn4ZuM+WBUWKmob0cnTG6CM91tLL6YpyrI6592EpXDrg4xwNUqZ9mNbhFDWzZ4bcu2fxtBw8b52aOk/wZ6y3aj2BiO/RWnoFBod2fpdAIBAIzm3WVUcXNVt6lcJFPKdmQ083/kBANX4+JS2Xqu422jwhkfREZwsH2tSfz8Kp7+mix+fFGmXc2OuV2LcjncA718He6dCQvIuvqCgoYK5dC2vWgD3so9KOZvXJ9oTUsVGItyKvTCVqTh1iQXB+VhGTHNkc6wxdtH+/4RRV3W2UnBVQk3VqQrAB/XiXtrVWODUHhrf5tGrN11ar3jBBopUE9THWGtBdx5R5mpLBRPbar1H78IcU686K9WNO1NTK1ARwHXrrnCh00nRqpmSh0ygU87ZUYR2v3XchOPcY1p8sSZKQJIne3l7++c9/8tOf/pTf/OY3vPnmm3R1aQdqCwRjmciSIAgW9Aw3xrTy2PdnTUNndgx4/5IkYYpwa/raj+NtP64SnqKNnvdhK9UeQTc4yshY/v0BH+NokTLlDpC0HRqDaT7v30eWugHd03JAM1NTN9ZETbvW+HnwA1HPqZdV96XOuHvYj0kgEAgEQ0+r26XZkt1HpMuuM45T0y8HOOPqpKFHKXgU2dKY6FCWuxzvamZvqzJnXIuqiBPyxkb4618lvvrVCVx22RzWfeMqeP2ShAVNSYIlS+AHP4Ddu4OlQY88AtddpxQ0ITQiH85YcGoCfGzSEkV0wLXjpg25IChJEndOmKdaf+pUKLQ08mfIIOlwGGOP7+bEKAua4hCi5kDQEjW97YMQNRPI1Bwr+F0duKv3KdYsZQtJmX21oiQTgrmaY41ooqbf2Upv1Z6RPRit44giahqz1IYJURY0thgWp+b3v/99Nm3axNatW2lrC/5wy7LMsWPHOHbsGH/729/Q6XRMnTqVJUuWsHTpUhYuXIjNNvDsOYHgXMDv1ChvScKpOVAM6RMg+rnCoPI0+/eRM4feqg2Kte5D/1BtF0/UtBSvUo3LA2Rf9oeYDs9zFb09D2vpFfScfkV5h86g2QKfLMZstajpba5QOTUlkwPdAEPYRwstZ6nO2wJyQPV6SgYr1gnXjtShCQQCgWAIea32CIGISKpw2iIEqY44Tk2AnS01yCj3WWxPw2GysL05VMTR5XXzZt2xuPs73dWGtzqXF16AF1+ErVtBlvVA4qPUqalw5ZVBR+bVV0Negqkwp7rUwsyElLHh1Ew3Wzlw05f554ldpJmsfGDC3GF5njvGz+UHe5RCz5t1x/nirFWA+mco02yLW/QRqwFdjJ8PDI+mUzP+RYVoxM/UjB8dca7Qc2ILRLwP2iavQG/PwFK2kN5T2/vXe6t24+tqxpCaHbmbc5ZYArPz4AasZfNH8GjURBU1s9WFZ97mGCfWgnOOYRE1b7/9dm6//XYADh06xObNm9m0aRM7d+6kpyc4DuL3+zl48CAHDx7k8ccfR6/XM3PmzH6Rc8GCBZhMpuE4PIFg2PC71E5NQxKZmgPFmDY+5v1DIWqacuaq1rRFzZkx96MzpZAy5U66D/2tfy1l5sewloytEYtwUqZ9UCXCmbJmoDNYB71vY/ok0JvAHypc87RU4O9pUmw31kbPQVvwlzyt6LuPEojIp7WWrBmS11MgEAgEI0+sPE1Qu+ziZWoC7GhWNwiPs6fjjsjUDD6/duu67NfBsfHIu2fw4e+UorHL+OQ2YZ53lJe/vJyLL4ZETl88fh86ScKgC056aDk1J4wRpyYEBcT7pq8Y1ueYlp5HaUqGIv90T2vIARj5MxRv9ByC4+dapBjMFNoGPuF0ITPU4+fyeeTUdB19X7Vmmxz8f5My83KFqIks4zy4gbQld4zU4Q2aWAKz8+CGUW90jypqZo5TrXtbhVNzLDGsmZoA06ZNY9q0aXzsYx/D6/WyZ88eNm3axObNmzlw4AA+X/CDh8/nY+/evezdu5dHH30Uo9HInDlzWLp0Kffee+9wH6ZAMCT4BpmpOVC0GtDDMecvGvRzRI6fA/g6T6u3i+PUBMhc+b9IehPu+u1YSy8j46IfDPr4RhNb+fXoTGkEPKFsL0vRxUOyb0lnwJQxFU9zaFzF01IBEe6UsVYSBKC35gAS4d+LztuCqVX9oc86Xrg0BQKBYCziDwR4reZIzG1awoQLWZbjZmoCbGtWn3QW2dI03XlOX+jCoNxjRn9wGr5d02DfNHAGxa+ES8v1fph0CmnOQZhzECm/GS9w0SWLMUVkcjq9bt44c4wjHY2c6GrhRGczx7taqHF2oJMkpqblMDuzkG1Nyu/FIOkotqclekQXDPOzihWiZn1PF3WuTgpsDsXPEMQvCYLoTs3JadlxXZ4CNbIsazrcAr1dBHoGFj0XN1NzDBUFaYma1kkXAWCfcTnNL/5YcZ+z4o1zRtT093Thaz+DMbMYnVl7si5aURCA68h7yD4PkmH0TGtaoqYhJQudJQW9PVMhkIvx87HFsIua4RiNRhYtWsSiRYv43Oc+R3d3N9u3b2fbtm3s2LGDgwcP4vf7AfB4PGzfvp0dO3YIUVMwZlAXBUkjIjYZY4iaksGmmcuY9HOkT0Iy2JB96iD2/ucy2jHEcY0C6K1ZZF/2h0Ef07mCzmAla82DNL1+DwS8GBzjSZv/+SHbvzF7pkLUlD2dqm30trGX/STpDOis2QTCXKc6Txu6VnUzpG38NSN5aAKBQCAYIrY3V9Mcx20V7rJz+jyqUfUSezpVznbFWjSnpkWvLvuR2xywZwby7hlweCI+X3KnQOnpXjqn70OefRBmHkGyqUXXhp4uysLKfU53tbJy3e+pdXWotgXwyzIV7Q1UtKuji0pTMvpdnIIQ87OKeLZSWVC5q6WGKy1TVO7ejAREzWiZmpPF6PmA8Hc0IEe5IOHrGNgI+vmSqSn7vPSc3KpYMxVOw5ASdGRbJy5DMtmQPWHvhRXrkWV51AX2npPbqX7wBnztdRizyxj3/17EUqyczJN93pgCtOxx4TqxFfuUoTF9DIRoTk0AY1aJEDXHMCMqakaSkpLC6tWrWb16NW63m3feeYff//73HDlyBEmS+tvTBYKxQmRRkM6ajaTx4XqoieXUNOctQNIN/r+6pNNjyp6Fu35r1G1MWTORpNFtthstUqZ+EEvRSnxdVZiyZ6MzRc9pShZT1gxif6Qbm05NCI7Nh4ua+p5KJL9SODflzseQUjjShyYQCASCISDe6Dko8xC1Rs+npOWqRE2t7Yrt6aSbLMHYutp82D0DefdMOK0eL4zHrFlw7bUBJk8+StGUVq4+8gyxpIX6CFHzt4fejypoxmOslASNNPOyilRru1tqWZyjLvpIyKkZZfxclAQNDK08zT6CuZrJ58TGz9QcG6Jmb+VuZE+PYs02KRTZoDOasU+9hO59oTgrb3MlnobjmPMnjdhxatH49DfxtdedPabTNL/0E4r/WxlB5o/h0uzDeXDDuSVqSjp01qAj3pBVAmFlRv7ORgKeHnQmEX01FhhVUfPgwYNs3LiRTZs2sWvXLjye4GjIaF+NEAgGSqRT0zACo+cAOqMNvS0fv0s9/j4Uo+d9mHLnxhY1Exg9P58xpBZjSC0e8v2aNMqCIhmLmZoQjGfwtlT0344UNEG4NAUCgWAso5VnmWo00+V1998Od2pqjZ5PSctl/ZmjMZ9H9uk4vi2d114ywL++jtyUpICiC7BmlY4bboDrr4eyMvD5Auzd6+REb0/chzdEjNfubqlJ7vnDmCacgprMz1J/xtrZUkOrW/3ZISvKiGw40cfPhag5ELTyNPvwtZ8B20BEzdiX9QNjZPzcdUxjCmnycsVt+4zLFKImBN2aoylqyrKsGpvvPbldtV0ihU3Ogxvgpu8O1aEljS9C1NSnZCLpgmYczQb01ppRF5QFiTGiomZtbS2bNm1i06ZNbNmyhfb29v77Il2Z06ZNY9WqVaxevXokD1EgGBSSXtk+bXCUjdhzG9InRBE1B18S1IdWWZDy/gtb1BwuTFmxy5cA9NaxeQKUiBhrm7B2BI5EIBAIBENNnauTnRHi3sLsYnyBAHtaQ+Oo4XmIWg7MfGsqaSaL6j65xwz7pyLvmY60bzrXuvqmYxIUT6w9MOsw0tyDSLOOsO7T38asV58etSSQ8VkfIWoe79TIb5N0jE/NZEJqFi6fh72tdSoR16w38F+Th+6z2/lEnjWVQpuDM65QDM/ullpaetWi5mCKgkTz+cCIKWq2nQFb/M+zkZwv4+euYxolQZOU5Vr2GZertnEe3EDmpZ8ZtuOKh6+9TjESD+DrVicQJyJq9pzYQqC3G12UiwnDTaRTs2/0HKKImi1VUUVNORCga9fz+DrqSJ13PcbMoTe1CBJnWEXNrq4utmzZwsaNG9m8eTNVVaFsgkgR02KxsHTpUlavXs2qVavIyxubo5SCCxv7pJvo2PlA/+3UmR8bsec2pk3AfWaTan0oRU2zRllQOBe6U3O40KeOQzI5NLM0+7exj80P4HpbbDez3l6gWVIlEAgEgnOfV2vVLs2ri6exseGUYi3cadehISA6jGYKrQ46PL3IrWnBfMw90+HQRPAHT2cSDa3SZXbw33c6qJ60kZfsLyIZ/P33VTvbmejIVj2m2RffqdnYGxI1e3xe1ej55YWTeenyjyuyMmVZprK7jb2tZ9jfVkdAlrmpdBazMgsS/G4uPOZlFSlEzWpnO0c6G1XbJSJqZpps6CRJleE6SeNnQBCf2E7NWlCnB8QlblGQs/WcyJ2MhZbb0ZCWjzFXGR9mLp6JPjUHf1colslTH9uhrnquQIDOrU/gaTpJ6ty1WErmDPzAAU/DcdVawNmG7PMihRWjaYnLOksqgbD3Rfw+nEfeI3XO1YM6poGiEjXtsUVNX4xczfq/foa2tx4BguP5E763C1NO2dAcqCBphkXU/NWvfsXmzZupqKggEAj0r0cKmfn5+VxyySWsXr2aZcuWYTabh+NwBIIRI2PFjzE4xuNpPYi9/AasJWtG7Lm1Cnr09sIhHYc2Zs0ASQ+yP8r9yV+BFcRHkiRMWTNw122Ous1YztSMhW38NRdsTqtAIBCMddZVq/M0rymexqGIcpxevw+Xz4PNYKIjIndOlqH9RCY9z64m8F4+VCafj0lJLcytQJpXwSWLLfz+mk/z8/1eXt6h/DxzurtVU9RMxKnZ0BMSX052qV2aU9NyVeU/kiRRlppJWWomN5SKz1CJMD+rmJcjfq42nDmm2i4RUVOv05FtttMYJpwV2dJIMYpz0oEQM1OzvS7qfbEIeGI7NWWfB9njQkogbmC08DaewB8hvFsnLVcJsZIkYcwuVYiavg51kVgsGv79JVpf+xUAzS/8gLL738VaPnCDi6dRLWpCUMQ0pIXOPQIaTs3UedfTsVmZvek8uGFURE3Z7yPgalesxXNqeloqNfflba2l7e1H+28HnG20v/cYuTd/f2gOVpA0wyJqPvLII5pFP5IkMWvWLFatWsWaNWuYOnXqcDy9QDBqSJIOx5xPjcpzazWgD2WeJoDOYMGYNQ1v8wHVffrUEvSW9CF9PkGI+KLmGHVq2mOLsVaRpykQCARjEo/fxxsRYlOOxc7C7GLNvMOWXhe2FBOdXjeyTwdHJwTbyvfM4JstyWXx6Q0B/JOPI82rCIqZWe39983ODI58lqZkqB53ult7hLIlAadm+Pj58U71eKaWWCpIHq1cTS1RM5GiIIAVeeN5JqxR/dJCkaE3UGKPn9cOaJ/xnJoA/u5WdOewqOk68p5qzTZ5hcaWQQdnOP7uZmS/D0kjFiMSf08nrW/8tv+27HXT/t5jgxM169X/twB8XU0KUVNr/Dx1/g10bP03BEIXj1wHNwz4WAaDlpNUKWqWqu6P5tR0HnoreLUtDPeZ+IV4guFj2MbP+wRNm83GihUrWLVqFatWrSIzM/mAYIFAEB9j5jTVmrlg6ZA/jzlnrqaoacoWDoPhxBinLGjsZmpGFzUlvQVryaUjeDQCgUAgGCreqj+hyou8smgqOkmn6aKrbO5h08vpPPSXMuS3vwc9ybXOmlN83LTWwA03QOr8Sq7f+Kjmdn2j3WUp6nOSqiiiZrNP7dQ0SDp8cmgirTFM1NRyak4QjeZDwnyNBvRGDeEry5KYyPWD+VdzqL2BQx2NLMgq5ttz1bmGgvjIsoy3WdvZBmeLggay3ziZmhAUrIxZA3BwjxDdB15TrdkmLdfYEgyOiM/FsoyvqwljevxICtfR98HvU6x5mk5F2Toxojo1u5QXbrTaz41ZpVjHL6LnxJb+td6qPfi6mjGkjuxFHlXzOUpR05CWD3oj+L39a94ooqbr8FuqtWjbCkaGYRE1x40b1z9WvnjxYoxGY/wHCQSCQWHKnYc5bxHuhmAjnc6URuqMu4f+eXLmwqG/q9dFnuawEqssSNJbkEypI3g0Q4chhqhpKVmDzpiY00IgEAgE5xbPnN6nWruuZDoQctHJLemwZzrynhms/lQ+Pi9AEnEqWW1BJ+bcCn7/Xwv4+IyFANQ6o5soZmcExQFtp6Z26UiLV+nUNOsNlNjTORbmyFQ4NbuEU3O4KLKlkWOx09QbW+zKNCX2+WFqei57b/wSLr8Hm96EXicibwaCv6MBOUZMg6+jDuQAJBkpFHAn4NQ8h8uCZL+P7v1KUVNvz8RSNl9z+0inJoCvoz4xUfPw26q1yLH3ZPFqZGpC0EGqvK3lhMzEPn2NQtQEcB16C8fi2wZ1XMmiJWoawkRNSafDmFmMN0wEjiZUOg+9rVrzRhlVHyyB3m6aX/oJXbuex1w8i7w7fy5KiTQYFlFz/fr1w7FbgUAQA0mSyL/lNTr3PkTA00XqrE+gtw79B2hTjnbgtBA1hxdTDKem3pZ3TgekxyKWU9MmRs8FAoFgTOIL+HmuUjnVYdUbuapwKrt3w7uPTyTw/OehKnRy5iNBSmv6x8oZd4a+X39lGaEc8wJbKla9kZ4w1w2AhMSMjKBokGtJwaI30BvmbKqM4tRsjXBqFlhTybemKkTN8EzNExHN5zpJokxDRBUkjyRJzMsq5vXaIzG3y7IkflFUr9ORqrMM9tAuaGLlaQJBB2FPG9iScyzHaz+HxJq3RwvX8c2qLEf77KuQIvJ1+wgf6e7D114P6uloFc5DagehbxCipizLuBuijJ93Niluazk1dfYM7NMvpfnFHyvWu3a/cE6ImuFOTQjmaipFzUoCbhe6sMkCb0sV3qaT6v13NBDw9KIzDd37SM/pXdQ+dCees/8G7toK/N0tlH7l9SF7jvOFYW0/j6Szs5Ndu3bR2NhIe3s7Op0Ou91OUVER06dPJztbXMEUCAaDzpRC+qKvDOtzRBU1c4SoOZzordnobfn4XfXq+8ZoniaAzpodvGofNsLXhxA1BQKBYGzyXsMpms+KEbJPD0cmkHd8JdO/aaa6GpKqQdb7WL0a5lzaxoPGh5EyOzQ3G2dP7/+7TtJRnprFgXbl78xJjmxsBhNwtqQnJZPDHaGT/miiZmT7eb7VQa5VOSHR7XPj9LqxG82ciBg/L7GnY0ogE0+QGPOzimKKmma9AateTAqOJLHyNPuQupuQkxU1E8zUPFfp3rtOtZY659qo22s5Nf2d8cuC/K4Oek/vUq37uhoH3A7v72iIOv6vcmpqCMt6WzrWiRchmazIYQVwHVv/Te6tPx7RyABfAqKmuXA6rsPv9N+WfR6cFetJnX9D/5qWS7P/OdpqMOVNHPSxyoEAra//moYnv6YYhwforVFPQAhGSNR85513+OMf/8iuXbtU5UHhTJs2jbvvvpsbbrgh6jYCgWB00VvSMTjG4+sMXcmS9GaM6SJYfbgxZs/AX6UWNXW2nFE4mqFB0unRW3Pwu5Qf2IzZszGkivEKgUAgGIv8a/8h5C1zkffMgP1ToceK2tsSA5sLZh9GmlsBM4/w2qe/x6ku+M0z2oImQLE9TXF7gkMtavblafZRkpKhEDVrXR14/D6FAOkO+OmKOLHMO+vUjKSht5txeoNKHC0Xo+dDyjyNXM1wssy2MTvBMlZJSNR0NiGTXFFwYk7Nc1jU3BchakoS9llXRt1eH5mpSXD8PB6uo+9rGgQ42/qttyfvFI+WpwkoGtpB3X6uszqQdHokk560JXfS/t7jimNqee1X5H/wgaSPaaAk4tRMmbuWtjf/oFjr3PlchKipdsP24W2pGrSo6etooPaPd+Pcr85hBbBPF10DWgyrqNnb28s3vvEN1q0L/mfuEzTDm9HD/37w4EG+9rWv8dxzz/Hggw/icDiG8/AEAsEAsU1YS+eeULuetfQKJJ1wIAw3pqwZ9FapWwNjjXCPBfS2PJWoKVrPBQLBcHKwvZ7/3vgfTnW38oEJ8/jRgmswRhkHFCRGZSW88AI8/7zMhrevAX9yr6ejwMVHb7OxseBFdmW9h2QInqBb9UaMOj0FtujZ0ZlmW78Ds4+JGkUUfXmafUSOhAdkmRpXh6LUJ3L0HILj7XkWDVGzp4uALOOPEBfKRUnQkLJAowE9nKxzuAn7fCUxp2byo9CRmZqGtHyVyHeuiprelmrc1UpnnbV8qSLLMRJDulamZnynplaeZv/jOxsHJmpGaT4H8EUWBUX8G+jtoVzjrGu+rBQ1gba3HyXn+m+i1yhsGw4SETXt09ags6Qo3MHde15UtM/Hep0HWxbUW7WPyp9fHjUH1T7rSgo+8tCgnuN8ZdiSkH0+H/fccw/r1q1TuTP1ej2ZmZmkpaWhCwtj7hM4t2zZwsc//nHcbvdwHZ5AIBgE6Yu/hrXsaiS9GXPBUjJX/u9oH9IFQbSG+bE8fg7aoqyl7OpROBKBQHCh8LH3nmBj42nOuDr55YF3+McJ9dje+Yw/EGBrUyWVgxjblGXYuRO+8x2YOxfKyuB//gc2bJASFzTLqpFufBXpe7/k5n+/wIMPgn7GiX5BEyDtbEZZqtGCPUK47KPYlqZam5ymnmKYpRI11SfUkS7L5oiSIIB8ayq51hTVen1PF8c7NUqCRrjp93ynLCWTdJM16v2Z5uj3CYaHuJmagORU/9+IhRwIKMaWAQyZ6pHlc3X8vHvfK6q1lNmxL9pHKwqKhzOOqDkQknFqRo6fh4uo5sJpCrcjBFvtWzf8fkDHNRASETV1Jgsps5TnH/7uFlzHNgLgaTodU7z3Ng+uLKju/z6lLWjqjeR94AFKvrAOvcbvOsEwOjV/8YtfsH379n7rf0lJCXfddRfLly9n/Pjx/dsFAgFOnjzJ+++/z7/+9S8qKyuRZZkDBw7wwAMPcP/99w/XIQoEggGit+WQf+Pzo30YFxymLO2yoLEuapoLl9JTFSqY81uKMOUuGMUjEggE5zONPV1sb65WrD1fdYCPTlo0Skc0snR6erlk3e/Z11aHTpL4zZIb+fS05Zrbunwefr7/LY50NHFT6SyuL5zN229LvPBC0JVZU5Pcc5tMsGYNXLs2wP/0/kiRj9nqCZ4Ed3iUzkiHMVS8UGB1aDaLF9nVJ3o3l87iC9uexxWsVKfIlsZVxcrR15IEGtBbNJyaeVaH9vj5WadmJGL8fGiRJIn5WUW8WactumQKp+aIEynoSEYzsldpUErWqSl7XKo1Y9Y4ek9tV6ydq05N1eg5kDI3ep4mgM6SimS0KJrkfXEyNaPlafbfP1BRM0rzOYA/0qkZURSki3CGZl37Nbp2Kc8dW9f/hqyrvqgo4hkuEhE1AVIX3Ejn9qcUa107n8M+9ZKYLk0Ab+vAnZqy30dPxM81gCl/MkWf/hfWsvkD3veFwLA4NWtqavj73//eL2jecsstvPjii3z4wx9WCJoAOp2OiRMn8tGPfpQXX3yR224LNmHJssw//vEP6urqhuMQBQKBYMxhzJquuT7WRU3HnE9jKrgIgIAxE+ek+5GkYRskEAgEFzhaZTCH2wfeEDsQ2twufrhnPd/b/RqNPV0j+tw/3vsG+9qCn68Dssz9O9fh9GpPR927+Rm+t/F9/v1PidvvkMnIDnDVVfDQQ0kImnYXt33Ax5NPQlMTvPIK3Hevjox8j2KzVndQwOiMOJa0sDbZaCPo4SVBfWRZ7Gxe+z/cVb6Aj09ewtvXfAZzRFmPViO5yqnpUzs1C6yp5EURNbWcmmL8fOiJlauZOQIiiSCELMsqB5uldH6wCDIMyal098VDqyRIb89CinDpnouiZsDrprviDcWaIb0AS8ncmI+TJEnl1ozn1HQdfU87T7Pv8QMWNWONn4f+LQOeXpWjVm9TvrfaJi7FNmWlYs3f1Uz7u48N6NiSJVLU1FlS0BnNqu1SZl8DEb8nunY9hyzLMfM0YXDj576OBgj4FWu2qZcw4Xs7haCZAMPi1Hzuuefw+XxIksTKlSv50Y9+lNDjTCYTP/jBD2hqauLtt9/G7/fz9NNPc9999w3HYQoEAsGYQme0Y0ibgK9DWbcw5jM1rdnk3rye/TvfRdZbQaf+kCEQCARDRZWzXbV2oqtFVRAzXPgCfpa++Jt+x+Gfjm7l2C33YzEMf1uz2+/jsWPbFGtdXjf72upYllvWv3b6NPznGT9/+dMC5KO39Y+Tq+W9KGS3wLwKpHkVrFlp4Mlr71Ftkmm20R52ItwnanZEnBw7FKKm9uhdsS1dc31mRgH/t/IDUQ9Ta/z8dJdSIGn1qp2a+VFFzW5qXeoyowmpI5MbdyExL0auZpYQNUcUf2ejwlkIYMqdiLf5NL72kEEpaVFToyRIZ0lBb8/E56kNPf85KGq6jryrag5PmX11QgVWhrQ8hUgcT9SM1cgN8Z2eWsiyHNup2d3c36oe6dIEZaZmH1nXfhXXkXcVay2v/pKMNf/dn1k5XESKmlouTQC9PR371NU4K0ITZN7m07ir9g6vqNlWq1qzTV2FzqKOORGoGRYrzMaNG/v/PpDx8a997Wv9f9+8efOQHJNAIBCcD5g03Jpj3akJZzOVjelC0BQIBMNOlYZT0y8HNMeah4O36k4onuuMq5MXqw+OyHM/fXofLW71SOe+1np27IBvfQtmz4bx4+HLX9QjH5qUcD7mokWw8tNHkL7/C6Sf/QTdB15AmnqC28q186AjhacWtxOP30ev36dYV46fazs1I5vPEyXPmoIpoiCqKiIbrkXLqWlzkKtxslnf08WJCKdmgdWBXcMRJBgc84VT85xBK0/TmFOGIUP5b5Ts+HlkSRCAzmxXCWbnYqZm916N0fM4eZp9RDo1A842AlHc9BC7vAYGNn7u72oi0Bt9ikD2uvtF28jmc0CzmChl9tWYi2cp1rzNp+nc9mTSx5csKlHTHt09n7rgRtVay2u/wtdard44DG9LlapLJlG8berRB2NG9Pc4gZJhETWrq6uRJInS0lLKysqSfnxZWRnjx49HlmWOH49+hUAgEAguNCxFKxS3JZMDQ9r4KFsLBAKBIBItpybAoREaQT/Zpc72OjFCguqjR0JmAdmrR94/hcBfb+aLF89h0SL44Q9h//7E9mUywdVXw8MPQ20tbN0q03Dps0jF9fSZkSQkbizVFjUjhadWdw8dGq5I5fi5Q3NfxRrj54mgk3SURoygn1YVBamPKdeSgsVgVJXV1Pd0cjJCYJnoEKPnw8EkRzYpBm2xWIiaI4tWeYoxuwxDeqFiTertAJ9HtW00ojo1IxzW56JTU5WnqTdgn3l5Qo/VO9QTWNGESb+znd7K3TH3N5Dx81jN5/37PTuCHlkSBNqipiRJZF/7VdV688s/G7AYmAiyLONL0KkJkDrvetVax8a/qjeMiFeQvb2qAqVE0XJqRl4UEERnWETN9vZ2APLz1e1diZKbG3QeOZ3qNzOBQCC4UEmd+QmMfS3oko6MZd9BZxAtnwKBQJAoWpmaMHK5mvU9naq1Gqd6ZHmoqWir590T9cib5xN46C7k//ke8q/ugbcvwtmc4O8Ru5Nrbu/mP/+BlhZYtw4+9SkoLIQDbfUci3ApXpw3XnNMG9TCk18OUN3drtouLcypmW+NJmoOvBG2NEIgqXF24AvLNot0amaZbf0xBXkRDej7WutwRzhNRUnQ8KCTdMzLKtS8L0sUBY0oWqKmKbtM02mWzAi6VqamzqR2aspuZ0wn40jjaTiOp/6oYs02+WL0Ud6/ItFsQI8yQu469n7MPE3QFkRlWab5pZ9y5N5sjn2hlM6dzynuj9V83r/fsxfjtMfP1aImgGPJHRizSxVr7up9dO97Ne7zDZRAbzf4vcrjiyFqGjOLsYxfGHe/9plXqNYGOoLubdVyakaP2BAoGZbwArvdTmdnJ52d6g9tidLVFbQ7p6SIHAGBQCDoQ2d2UPTBbbjrt6O35WJMLx/tQxIIBIIxRbWGqwTgcMdIiZrqkb7hFDVPngw2lf/yb3rkPd+FQGLj5P3kNsPcYD4mE09z6yW3csukxarNnq7cp1q7uWyWaq0PLeHplMYYqSOBoqDiKFmbiRDp1PTLAWpdHf1iZ2T7eUGYMJFnSeVIR0ik6Yk4cQZREjSczMsq5r2GU6r1TLO42JsoflcHHRv/imQwk7b8I+jC/r8lirfptGrNmK0eP4egqCmnJeZAi5WpqdrW2YYufeCGqqGkaxCj5xBF1IySqxkvTxPA16X+3dZzYiuNTwVjAv3dLZx59CPYfn4cgyNoLIuVpxna71mnpsb7tta/EYCkN5B11Zeo//tnFeutrz1A6pyr4z7nQEi0+Tyc1Pk30ntqR9T7dbY0Uuddj3O/Uoz1tlRhTUAQDUeWobe5jl6fBb9swBsw4g8YSHEXI1eCzweBQHC7vj+9XvB4JEym4XO4jiWGRdTMz8+no6ODo0eP0tnZicOR2FWJPvoeK0lSv2NTIBAIBEEknQFL4bLRPgyBQCAYk0R1anYkX6YwEOpcalGz1tWe1D4CcoD9bfXY9EYmpeUo7wvAjh1BIfP55+HAgb57clT7icaSJTIHSt/ANWsPFDYQ3m1xsE37dXrmtFrUvKk0lqipHhE+pTGan6bI1FSfU2SYrIPKrNRqQD/d3UZpSiayLKtEzbwwYTWaCzWc8lTh1BwuojWgC6dmYgQ8PZz89jy8TUFhuP29xyj71uaEymzCUWVqSjqMmcUY09VOWqk7CadmtExNjYIvv6sNwzkiaqpGz4HUOcmImurxc1+U30+qPE2dHnPBVNy1FaHHajg1nQdeV9wO9HbRtesFMlZ9AojdfN5HLKemLopTEyB95cdoev57/Y8HcB5+G9nnQTKY4j5vsgxE1EyZdyPVT/yQbq8DpzcVlzcVpy+1/7Y/fwX+daup2/tten1W3H4rvX4rutqpBDKgpyf01durvO3xBIVKny8oTvr9AH89+xXGU7GO0IDdPofPfraGW28dmfiac5lhETUXLlzIkSNH8Pv9/PnPf+b//b//l9Tj//znP/e3py9atGg4DlEgEAgEAoFAcIHh9Lo1i3Ig6NQMyAF00rCkM/XTMMjx8y5vL7e8+Rc2nAmedH555iq+O2stb74ZFDFffBHq6uLsJBKDl8WXuPnEHSmsXQukdVH8xGtoSRsV7WrH0JGORiralSfdS3NKY2ZdauUexnNqFmpkao4bYJ5mH5Hj5xBsQL8kv5xWjwtfxGhnvjVJUVNkag4b0cqCRKZmYnRs+Ve/oAlB917PsY3YJq+I8Sg1kePnhowiJINJOxPQmbgjXsupKWkUBcG5UxYUcDtVQqMxuwxT4bSE95GoU1MrT9M6fiF6R55C1Aw421SCoVej9KZ778thomYi4+cxMjVt0UVNndmGY+EttL31SNjOfHgaT2BO4nWKh88H7e1QU9HD4abFdHgy6HBn0uHJJMBV9L4HbW3Q2hr8s60NOjuhqwu6uqbj96tL4tR8T3kzvhY8ZDiden7xi3GsWdM+ck96jjIsoub111/PP/7xDwD+9Kc/MXXqVK6+OjE78bp16/jTn/7UfzvRxwkEAoFAIBAIBLGIVhIE4PJ5qXF2UKLh3BtK6jTGzxt7u3H7fZj1sT+a+wMBPvj2P9hw5hhytw32TuNnvy/hN4cD9DiTFGNTnDDnINLcCphxlNtXXME9s1YB8FptdFX0YLvaMfRazRHV2s0xXJoQRdTsUgsT4UVB6SYr6SYr7Z7QyeaEQY53R46fQ6gBvaFH7RQLd4vmJ+TUFKLmcDE1LReL3kBvRI6plgtYoMZ1+B3Vmru2IilRU5ZllajZl5loyBikU1MrU9OsPX4+mmVBvq5m3LUHcZ85iOvIu8gR+Z4pc65Jyv1q0CgK0hI1XUffU+Vp2qau0nQm+rqaMYb9e2iKmhXrCXjdSAaTKlNTMtmQPcoLgr6zTstE28/DMRVOV625zxyKKWr6/cEs58ZGaGoK/hn5Fb7e0X+tcAWwVbmzbTEPDzQv6Z17+Hw6XK7hvRA7FhgWUXPOnDksX76cjRs34vf7+cIXvsDGjRv56Ec/ysSJEzUfc+zYMR5//HGeffZZZFlGkiSWLl3KwoXJZRIIBAKBQCAQCARaxBI1AQ51NA6rqCnLsmamJkCtqyOuQPeJZzfw8lM5yLtXwbHxIAdPZhLxkwCQ2wTzKnAsOk5X2REkXSiPa39bSMjc33om6i6qne10enoVDsotTZWq7a4dpz5pDSfLopGpqSFqOsLGzyVJ4r8mLeJXFe/2r31ssjrfMxmijZ8D1Gm4asOFzFxr7Oz/LLONDCGwDRsGnZ45mYVsbQqVc6SbrP1FToLYuI6+p1rzNJ5Mah/+zkZkrzKiwZRdBjDooiBZK1Mz2vj5KIiaruNbaPjn/6PnxJaY2yWTpwna4+d+jfFzZ+ToOWCfukrz39Xf2agQNX0talFTdjtxHXkXS8lcAi7l9IB1wiKVCO7vPjt+rvHaR8vU7CNcvPQGDLT05FH9dgc9NXDmjPqrvh6am4N5koIQK1a0U1TkGe3DGHWG7R3/xz/+MTfeeCPt7e3IsszTTz/N008/TU5ODhMnTuzP2ezs7OTYsWM0Nwf/U8hnf1KzsrL4yU9+MlyHJxAIBAKBQCA4x3js6DZ+e/A9ssw2HlhyA7MztduNB0q0PM0+jrQ3cmXRlCF9znBa3S68Yc3a4dQ421WiZiAA27YF8zH/70kXdScuT+r5JAlyZ7TQOGULzKuAgkYkCe5fcDU/3nsSpy90MnSgLeQE2tcWe369or2eZbll/be3RoiaGSYrU9JiZ3hmmtRlLqc1RkjTIopLfrZwLRMd2Rxub2RtyXQuK5wc83niUWB1YJB0ijHzyrPiqpZTM3zkPJ5TU7g0h5//mrRYIWrGynEVhPC21ipGz/vwNCUnaqryNAmOWwPobOlIJitymLM6KaemJ/GioJEeP+/e/xrVv7lJ8b1pIRkt2KetTmrfOksKktmuEHU1nZqRJUE6PdZJy3HXq53zkbma3jZ12zYER9B1FvXFGmv5UrWoGW38XJLQnXW0ezxQWwuVlVBVFfyzpgZqTq3g1M6dNLoKae3NRUYHT2se0phEksBqDX1ZLKG/m81gMAS/jEbQeTtxH3kdg86HQedFL/mwl07HMWVJ/3Y6XfBLkoJfshwgM/MUK1Z0kGQE7nnJsImaeXl5/OMf/+ATn/gEZ84Er/bKskxjYyNNTco3sz4hs8+WXVhYyEMPPUR+/rkR9isQCAQCgUAgGF62NFZyz8Yn+2+vXf9nTt32DfS6oRutqo4jah4a5rIgLedfH325mj09sGFDUMh88cWgQyVIYo4/iwUuvxxuuAFWXdnL/LceQPKFxiGNOj0fm7SYF6oqFGLQwY4GfAE/Bp1eIXBqUdHe0C9qNvR09Tsb+1iSUxp33FLLqenREHzTjErxU6/T8d9TL4q572TQ63SUpGRwMqykaGtzFS29Tk1XbUFYrme8TM1yhygJGm7+a9IiPH4fL1QfZHZGAd+bf+VoH9KYwHXsfc11b5JOzcjRcwiJmpIkYUgvxNt4ov++ZJya2uPnUTI1R9Cp2bnzOWofugPZF98hl77yY+gG4NY2pOUrXjdfp/J3k9/ZTm9VZJ7mIvTWVAyp6qLlcFHT39NJIMrvou69L2MpW6BaNxdOQ2dLUzg4vZ3NtLfDgROZnKpeS52zhDPOUurdE2lfoaOyMpjvrO2utALzNY9hNEhPh4wMcDggNTX45XCA/sy7GJp3YDd2nf3qpHDVTRQuv5rUVOh+4Qv4j7+KRd+D2dCDRd/D7EfrsaRYExYbu/ZupPqB2xRreR96kKwrlkR9jM8XYO/e9oF/w+cZw+rNnzBhAs8++yyPPPII//znP+ntDVrT5Si+YavVyq233sq9995LWlracB6aQCAQCAQCgeAc4p8ndylu17o62Nt6hvnZxUP2HJUa2V/hHG5PvMRiIEQbPZe7bDz/Lyv/2QWvvQYu7S6j6KR2M+6iM/z205O57DKwn9ULHzm8m26fMt/tptJZ5FpTmZlRoBA13X4fxztbKHdkaeZmhnMwTPQM30cfS3NL4h5yormHDtPAm80TZUlOiULUdPm8/O7Q+3S41S6sfOHUPKcw6PTcO30F905PrtzmQsd1VFvUTNapGUvUhOAIulLUbEx4hlirKEhnTlHlSMLIiZodm/9J7aMfgSiOewAkHabcCTgW307WtV8b0POoRM0Ip6br+GbV62ibugoAvUMtavq7Qr/bvBqj5314Go7TvTfU3u4L6KlzlnDy+AJ2n/gsp86kUt1VTk3XBGqcE+n+NqhauwHi9wwNCw4H5OYGv7KyIDMTjDXrsLZswmFqI83cSpqplVnffpqcwhQyMoKCpl6vvT/nIT+VP/1iaEGnZ+Lnv4rpbEJAXZWXtuZDisfonNVIqYlPEPjaalVrWtENgugMe+BIWloaX/nKV7jvvvvYtm0bO3bsoLGxsX8s3eFwUFBQwPz581m8eDEpKbGzaQQCgUAgEAgE5x+bG0+r1po0TmoHQ3V3e8z7D3cMr6hZ5wqJmnJDNuyegbxnBhwr40k5OUeqLr+JwNwDSPMqoLySer3Eksu/if2sk7DX5+UXB95WPe5TU5YCMCtDPRG1v60On+yPOiLfR3jTeeToOQSdmvFwGC3oJR1+DYEinDSjJeb9Q8F901bwr5NK19PvDm3kIo3vI7woKFdjTDMc4dQUnKto5S4CBFzt+J1tcYte+vA2nVatmcJEzcgGdMnnBrf2xR3Vsbi1nZro1ArUSIyft739R+r+71Oaomzm5Z/FOvEizIXTMeVPRmca3PtWZK5moKeTgKcH3dnYDs+Zg6rH2CYFHewGDVEz3KnpiygJcnltVHeX94uVVVsnUt35Uaq7y6nrLsUnG+FZgJmD+p4Ggl4P+fnBr7y8kGCZmws5OerbZo1rYJW/+A3O/a+F7dTAtIvtCTkp7dNWk3XtV2l55RdIegO5t/8MU155//3GLPUFPG9LFeb8xEVNrSgAQ+bQXcy9EBixFGWbzcaqVatYtWrVSD2lQCAQCAQCgWAM0O11s7dVnePY3Du0omY8p2ZjbzetbpdmM/dgCQRg6xYIPHUN7JkBdeoyiJhIASivRJpXwf/eM566tBP8Oqwwxy/L/P3ETr40K5jf9kDFOwr3IcCUtBwuyQ+ekM3MKFA9xYG2uriCJsDB9jCnZqNa1FycHd+pKUkSmWYrTTH+jfWSDpvBFHdfg2Vpbimr8st5uz7kjGp1u3i55rBiO7POoMj4NOkNZJistEXJ1ZuYKkRNwbmH39WBu3pf1Ps9jSewjk+srFeVqSlJGLPG9d80pGs0oCc4gh7p1JQMJiSDEZ3eAHoDhLXeD7dTs3XDH6j/62fUd0g6Cj/+Z9Iv/uiQPp8hTX3RydfRgCmnDAB33WHV/eazjeJaoqa3vYnTp+HIEdj9koO9W3/H6Y4pnO6cQr1rnGr7kSA7zUm27ii5tjPkWM+QazvD1BtvZcKiGRQWQmFhUKiM5qJMlMg2eL09M6k2+rzbf0rO9d8EnUElVhuz1Be+vC3q6YVYCKfm4BHVcAKBQCAQCASCUWV7c7WmY691CJ2a/kCgP7cyFofaG1ieN35InrOnB954A55/PpiP2dioziqLhc7kJTDjCNLcCphzCMnRzXfmXsGX5s1gX2uGQtQE+MvxHXxx5ipqnB38ZN8G1f6+MmtN/8ncLA1Rc39bvWauZa4lhcawfLszrk7a3C4cRgvbmpWun2lpuaSb1SVAWmSZ7TFFTYfRnNTJ52D46uw1ClETQEbpyMq3pqiOJ9+aGlXULHeI8XPBuYfr2KaYI+CexpMJi5qR4+eGjCKksAsRmg3oCZYFRWZqSuZgroYkSejtmfjDcyKHUdT0ttbS8O8vqu/QGyj61D9IW3L7kD+nwaG+6OXrqA+JmmeUI8+SwYQxp4zOTjh8KIs3T97FqY7JnO6cwumOKVT+cwrufg34orNfw0dKCpSWQklJ8Cv87yUlUFAAvftep+a3Nysel7c8nawrZgzpsahEzZTk35e1ypMgulMzGVSipqTTFLUF0RlSUbOtrY0TJ07Q2NiIzWajuLiYiRMnDuVTCAQCgUAgEAjOM7RGz2FonZpnXJ0q4TTFYFZlTh7uaIwrasqyzPozR6nsbiPLbCfPmkK+NZU8ayquNjMvvxwUMl9/PShsJkNuLlx3HVx3ncxHmn9Ety50Yj8zPZ9vzQ02oM/OLGR+VhG7WkInRAfbG9jeXM0DB97B5fMq9rs0p5SPTAyJqtkWO/nWVEXO54G2Otxh7qc+bimbzR8Ob1KsVbQ34DCaFQ3qAItz4rs0+4jniI1sPh9OLi+crHo9I8kPGz3vI8+ayiGN2IIUgznueLpAMBr0RCkJ6sObYK6mLMsqUTM8TxPU4+dwNlczkf1HXNTSmUP/n1Si5jCOn3ftfl7Vci4ZzRTf9x9S564dlufUErX8YWVBrZU1HGlayvH2GRxvn8HJnqWcLNZTVwdBiUcj53IISTO1MC71BJMXlpBW/TcK7FUUpFRSYK9i+lVrmPqZB+KOd8uF01RrngixdigYClEzGlqipi9JUdPbqhw/N6TlI+mF9zAZhuTV2rdvH7/97W/ZvHkzfr/y6m5ubi533XUXd911F2atkAOBQCAQCAQCQdK0uV08U7mfamc7vkAAvxzA4/dR39iATWdkSWo+sxMsZBhtNmuMMAO0uJNtzIlOlcbo+aqCcl6qVmaTJVIW9MmNT/HYsW39t+W6HNgzA3n3DDhRCknmY1LQgDS3gre/vpLlywzo9VDv6qL7CaVTaVZmgcIp+NGJi1Qi3Oe2PKtyT0pIPLj0RnSS8rhmZhQoRM2TXa10eHoV25SmZLAst0wtarbVa7ooE8nT7CO+qJmY43MokCSJr85ewx1v/S3qNnlWtUgZrQG93JE1Yi5TgSAZXEe08zT78CTYgO7vbET2Kt8vTBGipjFjMOPnyvc/3VmnJqBqQB9Op2Zv5R7VWvFnnhw2QRNCmZour40THdM53j6Dup+WcaILKg74qa45PWzPDaCT/OTbqilOPcmkGanMvGwROR3Pk7b/exSnnsRhCk495H/4t9T//SuKx2bmXpNQXqUpt1wVI6A1Vj8YZJ9X1fRuGEJR05CWD3oj+EMXET0t2p9nohHp1NS6ECCIzaBFzT/84Q/87ne/IxAIaLaaNzQ08Mtf/pLnn3+ehx56iHHjRiezQSAQCAQCgeB8weXzsOLl38UstnmssYLftx7kvukr+OCE+VgNxhE8wsQJyAG2aJTNwNA6NSu71aLmFYWT1aJmnLKgyu5W/nxkO5woC5b87J4B9eoMs5hIAZh4OljyM7cCKb8ZgNK5c9HrgyfrRzvVJ/6THTmK23dOmMeXtr+oGBmPFDQBPjZ5MQuz1Z/BZ2Xk88aZo/23ZWSaI9xRszIKmJGuHoU82N6gcrlCMJ8yUeI1oDuMI2uIuKlkFpMdOZqvPWgLmFFFTdF8LjgHCXjd9JzaFnObRJ2aqjxNEnRqJjp+rnJqhomaKUpRM9DTgRzwI2mUCA2W3ipliZhktJAy55ohfQ6/H44fh717Yc8e2LNlJfu3n6Cme4LG1kPzPeokP0UppyjPOkVJyhGKbYcpST3BuNQTFNpPY9IHhbrCTzxO+sWLaH+3lTNnlK+Fp+GY+ugSLJmSDEZMuRPxhAmZkWP1g0VL7B5Kp6ak02HMLMbbdKp/LRmnZsDTozpGoygJSppBiZpPPvkkDz74IEDUK5GSJCHLMseOHeMTn/gETz/9tGg4FwgEAoFAMKYIyAF2NNdg0RuYnal2now062oOJdTUva+tjk9ufIqv7XiZj09azL3TVjAuJX34DzAJjnY00xrFkRltfSBUO9tVa9Mz8im2pVHjCmVtRntdnU5Yvx5+80+QX/0OdCX3edZmA++0g/jm7IPZh5AcasG2xtlBaUqfqNmsun9SmlLUzLLYua5kBk+fjl76kW6y8qMFV2vep1UWFMnsjAKmpuWikyQCYQaGg+311LmUDhi7waQpgEYjnlPTMYLj5wB6nY4vzVrFJzc+pXl/gYaAmS9ETcEYovfUDmSv+mJEOJ4ERU1vs/pilErU1CoK6k5s/FwlalqU4+cKZJmAq0Mldg4W2efFXbNfsWYunjWo8eCuLti3Lyhg9omYBw6AS/HrLuPs1+BJM7UwPu0Ic65axJRpBlLe/ACltn2UpJ7ApPdgnbwCvT2T7t0vaD7elBeME9RHXFSDKKKmLfHjNhdOU4ia/s5G/N2tQ/bvGDl6DkMrakJwBD1c1PS2ViMHAki6+BMbWiVBwqmZPAP+39jd3c0vf/nLfjFTlmWWLl3KFVdcQVFRET6fjyNHjvDss89SXR28YlxVVcXvf/97vvrVrw7N0QsEAoFAIBAMM/5AgGvX/4n1Zx1t/z11Gb9fdsuoHtOh9ob4G4XR6nbx8wNv88iRLTx76UdZVTA8meeH2ht46NBGqp0dpJssZJhtZJisZJitFNvTubJoiqrNelOUPE1A5RocDFpOzRJ7OlPT8xSi5qmuVnp8XqwGI3V18NJLwXzMN94Atxsg8ZOtvDyZ66+XuP56uOgSLzn/eYxYU3nhRUbHOuI7NQHunrgwpqj5vXlXkhMl21GrLEi1TWYBFoORianZCgfjzpYa1aj6ouxxGJJwSmWFOa+0SDOO3Ph5Hx8uX8D3dr9ObdjPRB95FrWAmasxkg5Q7hDN54JzD5dWnqakg7C8YW9LFbLPixTH3e9tPqVaixQ1dUYz+pQshbgkOdUXbCKRZVlVFBRr/ByCrryhFjXd9UdUIrClZG5Cj5VlqKpSipd798KJE3EfmjSSJDNhgsT06TBtGuS3/pOcmt8z3nGEDEvwtZ/48xPobekcOfyE4rHGzHHYp62OLmrmnhU1U9Tvae76o6q1RJ2aEBQ1u3Y+q9xn3WFsk4amyMjXpf5ZG3pRUzmdIHvd+Lua+iMEYhGZpwnCqTkQBixqvvrqq3R0dCBJEmazmV/+8pdceumlim0uvfRSPvnJT/Ktb32LZ599FlmWeeaZZ/j85z8v8jUFAoFAIBCMCV6orugXNAEePryZj0xcmFR24FBzWkOgS4ROby/f3f0abw+DqFnd3c7qVx6K2WZdbEtj2/WfV4zsRhs9h6EdP4/M1JSQKLanMzUtt38EW5ZBrs3jK9/pYdsbRrbFntLUprAe5lUgza1g+1fvZlxqGgCnujrjPBBqXe39f9cagZ6kIZRdWTRFVfjTx6yMAv576rKozzc9PU/lwNTaR9+24ccUKWhCcnmakIhTc+TPF8x6A/9vxkq+tP1F1X1arkwtoRNgohA1BecgWnma9plX4Nz/amgh4MfbWo0pV2v0OYSn7ohqLTJTE4LOM6WoGd+pKXvdCqEVIoqCNMRLf3crRNGRuna9QN3f7iXQ00nWVV8k58Zvxz0GgN7K3ao1S+k89fGeFTB37ICdO0NfLWqj4KApzmhggm0HE9MPMDG9gonpFVz913dIyQy9Pk3Pn6TpGWUOsq+zkUCv+veEMXMcKbO1x+l1lhT0Z8U5Q6r6PS3codhHMsKyqUBdFuQ+c2jIRE139V7VmiF9aJ2Q0RrQExE1NZ2aQ3x8FwIDFjW3bt3a//cvf/nLKkGz/wkMBn7wgx9w4MABjh07RmdnJ3v27GHJkiUDfWqBQCAQCASCEePdevUo3hMn94yqqFnZFZHBpNOz+4YvIAVkDh8+zMauMzzVfJRqT7fqsdubqwnIAVVpzGD5+s51MQVNgBpXB9/a9SqPLr+tfy1a8zlAi9uJLMtDUrhSFSEE51tTMesNTLLnIR8qD5b87JkBzVn8LpkdSwFWXqzDuvAIr+c8g5QXOos95WzuFzW1RMdIqsOcmkcjnJr51lTNcWyDTs+HyxfwiwNvq+57cOmNMZ2TVg0HZjhmvaFfSJ2Rkc9zVQdiHv+SJJrPIYGioFFwagLcM2UpP963QRV/oCVqivFzwVhBDgRwHduoWDNmlWCftkopagKexhNxRc3e2grFbclowZhTptrOmFGEuzrMTe5qRfb7wBBdiogsCYLEnJpa+J3t1P7xIwTOuq+bnv0OtskrsE9fE/X5+9ASNc0l86isDAmXfULmUAuYeSn1THTsCQqXaRVMHd/GlQ8/S/33l+NtDNk9DZnjFIImgMGhznn2dzbi1xiJNmaOw5hZhKVkLr1VexT3mXIn9v/+1aeqJwUihWdIdvx8qmptKHM1XSe2qNasExYN2f4hmqhZmdDzeNuEU3MoGLCoefhwMPvAbrdz++23x34Sg4EPfOADfP/73wegoqJCiJoCgUAgEAjGBDs1ilf+c3ofv1h83ZALg4kS6dQstWcwLT0Pn8+H05zKneYp3J41mYYcK1/ftY6KsHH1Xr+PM65Oiu3pQ3Y8O5qr+efJXQlt+6+Tu/j5orWkmay0uV0cjDFK3+v34fJ5sA+yMEaWZSq720O3XRbshxfzoRfhhZcXI3dEdzNqYnbDzCNIcytYfZWXDbd+hH+ccLL+XeVZ7YmuFlbmlwNQ54ovataczf30Bfyc6FLuS2v0vI+PTlqkEjVvHz+XS84+dyxmZRZEFTVnpOf1i6LTE8jKTFbUjFcUlDbCmZp9pBjN3DdtOd/fs75/zSzpmZKmFgq0ioLMegPF9rRhPUaBIFnctRUEwtzgANbJKzDlqMXLeGVBciCAO0LUNBdO1yzqiczVlOQAvs4GjDmlyD4vPad3Ysouw5Ce379NZJ4mxMnUJLqo6Tz0Zr+g2UfnjmcSEjV7KvdQ5yymomXh2a8FHFm3hOb4E/QJYzLBzJkwZ07oa/Zs6Hz4DlxH3u3fTjLbsZt7Ve5Ic4FaGNRriJq+zkbksJbuPoxZwRK5lDnXqkRNY15oqkNndaiavrXQJTN+rnHsnrqhEzV7jitFTZ09A1PepCHbP0R3aiaCyNQcGgYsajY1NSFJEiUlJRiN8ds0FyxY0P/3qqrEG6EEAoFAIBAIRgt/IMDuVvWHzlpXB5saK1mRN37Ej8kX8KtKb0pT1ScROkniqqIp7G2r49u7lS6cY53NQyZqyrLMl7epR3Wj4fJ5+dvxndw3fUXM0fM+WtyuQYua7Z4euuptsHch8p7pcLico34DwaHzxDIgCwthyeWdPJf5BEw9gWT0AbCwdBWg7cw72RkSJht6Ehk/D554V3a34Q1rNAd1SVA409Lz+Nz0i3nwYHC0dEpaDr9afH3c54NgA3q0TM7wzM2ZGfma2/RRmpJBvs2R0HP2kWWJnak50kVB4Xx11hrerjvOuw2nkID7CuaQqvFzqJWpOT4lc9QueAgE0XAdVedp2iZfjFFD1PQ0xhY1vS1VyBHCo7lohua2WiKNr62Wrtr91D3+KXztZ0BvpOiTfyVt6Z0AqjxNAMkUvf0czo6fa+A6tkljTSNblGCJz44dsHUrbNkis3H9P2l2xX7vS4bc3KBoOXduSMCcMgW05BSXQ3khSXY7g6JjhDtSy+2o5dT0dTZoisWGzLOi5txraX7xR8p9h4mOkiRhSM3G114X7dsDksvU1FlSMGSOw9caunjsPnM4xiMSx9fZpBLnrRMWJ1TgkwyDETW9GqKmUYiaSTNgUdN1tp4rNVV75CKSoqLQP05XV/wr1QKBQCAQCASjzeGORlw+bVfCU6f2joqoecbViS/ipKYsRoaVVrbfsc5mVg9RruYLVRW826A8cbAZjGy77vMYdXq2NVVx17v/VNz/8OFN3DttOVsa44uazb1OSlKSb4GVZdi1C154AZ541oi8/xtJ72POHLjhBrj+epg/Hx49UsHzm5U5crMyg8JfuUMtaoa7Les0xs8j8yz7ioK0nJOT42Q0/nLx9dw2fg5NvU5W5k0g3ZzY6HasBvTZmSGH1WRHDgZJp/rZ62MgcQyZpjiZmsbREzUtBiOvX/5Jnt32Hul6E1lRRuGNOj1T03I53BHKCZyXJU5KBecerqPqPE3b5BUYM9TjrvEa0N216igKc/FMzW21RJrGf/wP7tM7Qwt+Lw1PfBnH4tuRdDqVYAoRTk2NEedoTs2e42pR0129D09XB0cr09iyJShibt0KFRUQ6H+Lk4CBC5rl5bBwIcybFxIx85PYXbhztQ/X4bdVayYNt2PU8XOnOo+7b9zZOmEJ1skr6OkTv/UG0pbfpdhWnxJH1NTp0UXJGY6GuXCaQtT0Np8i4OlBZxpc/EjPya2qNWv50kHtU4tBiZoRRUE6ewa6OBMMAjUDFjW93uAH/ERcmhAcU+/D6Ry60HeBQCAQCASC4WKHxuh5H/85vZcHFl+Pfoiv+sfjtIYbpSyG6KdVLnM8yrhxsngDfr6242XV+hdnrmLa2XHl8tQsfrbvTQ601/fff6ijkXfqT7A5AVGzJSLXMBZuN7z1VlDIfOEFqO03QST2eRW9H6YexzjvMIe/fx0Txiv/bfe3qU/mZp8VBbPNdhxGC53eUIHOyTBRUytTc0Z6vmKfdT2d+AJ+jnWoZxsnxRg/h6CLZlluWcxttIjVgB5+n+lsvuahDu2Sj6VJjp4DZFnOzfHzPiRJotwSf4z8/jmX8rH3nsAvB0gzWfjizFXDf3ACQZJEOjV19oyzI+M6dPYMAmGClzeOUzNy9BxiOTULVWsKQfMsvtaa/tbouJmaWk5NDVEz4Oml9+xzNfXksb9pCXubl7KveQkH8+10J/7rJSYTJgQFzAULgn/Onw/p6YPbpz5NLWo6NUTNZMbPfR31ijXJaO7PypR0OsZ97jlaX/s1/q5m0i/5BOb8ycr9apQFKe63ZySdgW0umIrzwOuhBVnGU38US8mcpPYTSeToOYBtGERNndmOPiVLUYY10PFz4dIcGAMWNftC2xP9oQ3fzu/3x9hSIBAIBAJBorxTf4Lv7w5+GPzGnMtYUzi0WUEXOjtb1CHufdT3dPF+46mEcguHEq3m89IBODWHgkcPb1a5CvOtqXwpTNSRJIn/nrqM+7Y8q9ju94c2srUp/gf/Zg3HTjgtLbBuHTz/PLz2GnSrz4Vjkp4OmYsqOVX+bjAn09aLHyB7BaB0X0aKmgZJx9SzOYuSJFGemqWIK1A4NV3K8XMJiXlZRYp9BmSZ+p4uTaemVp7jUDAhNRObwajpSJ4VMXI+PSM/qqg5EKemzWDCojfQ6/dp3p82ik7NZPhw+QLmZRZxtLOJZTmlSY/hCwTDjae5UuGGA7BNWt4/imvKmUCvMyQ0xnVq1iTu1EwmI9DbWnNW1NRwasYrCgq74Of3w4ED8NazZ3jjrcfY3bicM86yhI8jFhMmBMXLcAEzI/lhgrgYHOoc456IoifQdmrqLKlIRnOwRf4svq5GvBE/A4aMYoVOY0jJIveWH0Q/Jq2yoDCSKQnqw1So0YBed3jwoqZmSdDiQe0zGsaskghRM/4FW9nvU7leDRquaUF8BixqCgQCgUAgGF2ae52sXf+nfjFie3M1R2/5mjihHkJ2NkcXNSE4gj7SomZlkk5Nh8lCriWFxrCMsuNDIGq2u3v43p7XVevfm38VKRHZgx8qX8BXd7yM0+fpX3umcr/qsYU2B2cixL9WjUb148eDTsznn4f33w8fF0yQ7FY+eIuJj9+ewsUXw4OHT/LVHXsVmxxqb2BCWE6mLMvsa1WegExLz8OkD32cnuBQipqtbhdtbhcZZhsNEU7NbIuN8RpidI2zQyVq6iSJCanRhevBoJN0zEjPZ3uEKznPmkpuRAnOzPR8nkadv2nS6Qc8cp1ptqn+zfsYzUzNZJmRkc+MOLmjAsFII8syvad30vrar1X32Sav6P+7KWdCv6MRIOBqx+9si5qPGClq6iwpmmO4AMZ0tVMzGr62Ghi/QDNTU2cOjZ/rbGkgScGcEcDptbNn9ziOfx82boQtW6CzE2DC2a+BkWM9w5ycLczM2sbMrB1c98d/k1sW2604VBg0nJqRr4vOkoohXe22lyQJfWquQsj2dzQEX98wjGfzNBMlnlMzmZKgPsxaouYgG9DlgJ+ek9sUa6b8yZoO36HAmFVCb+Xu/tv+rmYCblfMUXJfR4MqH1U4NQeGEDUFAoFAIBijvFBVoXBXOX0enqncz2emLR/Fozp/8AX87NEoCQrn6dP7+PWSG/obokcCLadmrExNCI6gh4uaJ7paCMiBQZWZ/HTfBtVo+KyMAv5r4iLVtg6ThQ+Vz+fRI2rnRDjXFk/nj0eV2zS7nfj9sG1bUMR84QU4NJDznfFVSHMrYF4FFNXz+w/9gPSz2quWC/JIRyPXjpvef7vK2aYYLQf16LZWWdCJrhYWmm3URRQF5VsdFGk0ZNe42jnWoRQ1x6dkKsTToWZmRoFK1NQaS5+eod2APi+rCPMAjy/LbI8qao4Vp6ZAcK7haThO+3v/R8fWf+NtPKG5jW3yxf1/N+ZqlwVZxy9QrcsBP+6Ihmpz0YyoE5z61JyEWrMhlDEYz6l5pk7Pa2c+yq7qOexuWs7h1rn45cG9R1qtQffl0qWwZAnkvLqEbM82+r4tQ0bRiAmaAIY07ffbcEyF06K+7gaHUtT0NBxDDruwCAMRNeM4NTUctPHQEjU9gxQ13WcOE+hVXkgcjjzNPjRzNVurMRdMifoYb5v6orkhUzg1B4IQNQUCgUAgGKNo5fttajwtRM0h4mB7Q9Sx2D4ae7t5t/7kiI79V3YpnZpGnZ4CW+xg/omObDY2nu6/7fb7qHa2xxxbj8XprlZ+c0jdHvu/i9ZGzRj976kXxRU115aERE25xwwHJ/HE01N5aDs0ak89R8VshssuCxb9PGL+E7v9oUbVVKNZkdfYl/8ZzqF25RNGujRBPZ49QUvU7GxhXmYRDT1Kh02+NZVxGg30xzqaqYpot4+XpzlYIr8PCGWFhjNDo7gCYHF28nmafWTFcLKMdqamQDAW6dj6JGf++BHF6HEkksmGpSwkWJo0GtC9TdqipqfxhGrf5iLt0XMIZjXapq3GFZabKJlTyFj9KVpf/aXyOc+KcAFPSNSUZTjRMY31z09m+wNBd35lJcBjUZ8zESakHWLZpdksvyyHpUth5sxQC7mvu4WjL24LdgWdxVI6b1DPlyxaTs1ItPI0+x8fkasZKWgCGLOSEzUNKfEzNZNFn5qjynQdrFNTc/S8fMmg9hkLY5Y6fsXbUhVT1IzM0wTh1BwoQtQUCAQCgWCMsr/1jGptc5hwJQixseEU39z5Cr1+L1+dfSk3lkY/Aetjh8bo+cV543mv4ZRi7anTe0dU1Ix0apbY0+M6LrVEseOdLQMWNX9z8D3cEYLvFUVTuKIo+gf4OZmFLMspZXOTdtZUmslCae8E5A3LkfdMhyPl4DOQzKlNdjZcd12wrfzyy6Gvp/J7/z4DPaHtSiPKDMpSMjDp9HgCodz3wxHZkVoXEfqaz/vQcmqe7Gqhxe3EHzFmlm9NpVjDqfl2vdpVNTlteEXNRRqi5KIc9cnuREc2Rp0eb0CZj78kN/k8zT4yYoiaqRExBgKBID6NT90fU9AEyLr6S+jC/n9pOzW1HZ7umsRLgvrI+/DvOP7gbeiajxEoWcrETz6C0Z6uEjV9rTUEArD/sI31h+5je8Ml7GxcSWtvLrwQ8yli4jC1MTdnE7NztjA7eyuzsrfhMHWQd+cvyLr6i6rtw0eJ+xhxUVOj7CeSWKKmVlmQ6jmSdWrGucA2EFFTkiTMBdMULfWehqPIAT/S2SkYV10XPqcXe0kaelNwzdN4EnfNAazlS1Su1p4TI9N83kesBnRZlvE7W9EZLQq3sZaomUz+rCCEEDUFAoFAIBiDyLLMPg2R5XR3G2dcHRTa4jf2Xih0eXu5+vU/9uc53vn239h+3edVglQkO1vUzeffnXcl16z/k0LQe+b0fn679KYRGUH3BwJUR7j44o2eQ7SyoCYuHaAY+0rNYcVtnSTx80Vr4z7uU1MvUoiackCCkyXIe6fjrZjH7NMW4KakjmXq1KCIef31wbFBfcQ/g9vvU41+j0tJV9w26PRMduQoGtr3tNbi8nmwGUyAtlNzdkSrb7lDe/y8TqP5vMDmoNiWrlrfGCGaA0zW+PcbSpbllnJZ4WTeOHMUCI6e31Q6S7WdUadnalquSuAdSPN5H9GcmnaDaURjHQSC8wF/dyveaCU/Oj32GZeRcck9pC68WXGXllPTE6UB3V2beElQH8ac8Xhu+3PQdilJGLPL0Ov1SEYLPreHw21z2d5wCbu338zOr0Nb2z0x9xeP8nJYNOkkU9p/yvzcjUxIO4ROklXbuY6+H0XU3KNas5SMrKgpGUzo7Zmare59aJUE9ZGIKGpMctxZH8+pOYCiIAiOoIeLmrLXjbfpNKa8cs68cZK6DcHfi5ZcG0VLm+h477c4K944+6RGSr/yBvapK/sfH+nUlExWLMXq32lDhUFD1Oza/QI9xzfTfeB1fK3V6KwOCu7+A2nLPgiEohbCMYqioAExaFGzoaGB5557blgfc+ONNya1f4FAIBAIznfqe7pUeYZ9bGo8za1lg2uNPJ94u+6EoqDGG/Dzq4p3eOziO2M+bleEU9Oo07Mst4yri6byXFXopK7Z7eStuhNcXjR5aA9cgzOuTnwRjr/SGCVBfUzSEMUGWhZU2d2qKrJZmTeBmRrjypHcVjab//f2q7TuHoe8dxrsmwZdwfKHREvLdTpYvjwkZE6O87LXRIjAoP2aLc4pUYiaLp+XdTWH+v8vRQp5mWYbhRGlXMW2dJWT8WRXM/Uaoma+NRWHyUKq0UxXmKuqRyN3btIwOzUlSWLd5Z/guaoDeAJ+biqZiTGKoLg8r0zxWkxIzUpIWI9GVphzJRwxei4QJI+n4bhqzVw0g4zL7sOx8BYMUZx2xqwS0Okh7L0rmjjqrk3eqdmPJOHzBYt8Nm2SWPfWK+ysnke3d+AXYg2Sl2lZu5iXs5Els5u4+dc/IT8f6v76S9o2/DHi+XWKchbXsY3IsqzKpeyt0nJqzh3wMQ4UQ1p+TFHTXBjDqZmaiKiZ5Ph5nKKggTg1QVucddcdAksRdW+GLvT1Nrqo+tvjGJxvhDb0e6l77BOU//QQkk6Pv6dLJbxbyhYgGYwDOrZE0HJqdu9WWosDPZ2ceewe7DOvwJCare3UzBROzYEwaFHz2LFj3H///QlvL8ty0o8RoqZAIBAIBEq0XJp9bG6sFKJmGFqi1r9P7eHni64jy6ItqHj8PvZGvMazMwow6w3cNn6OQtSE4Aj6SIiapzWbzwfq1ByYqLn+zDHVWqyxc4BTp+DFF+Gll4y0vXU/si+5gqKUFLjiiqCIee21wTHzRKnUKFYq0TjxuqVsNo8dU7alPnlqL7eWzaHX51UJubMzClQnwnqdjgmpmRwJK/o50dlCnUYRTr41KIgW29I41BE7MHTyMGdqQvDYbymbHXe7L85cxWs1RzjV3YrNYOQXi66LWlSRCJlmq+a6Q5QECQRJ42lQvz9nXfVF0lf+V8zHSXoDxqxShZDpiSZqRjaf2zM0G7j78Plg61b45z/z2bkzlX377PT09F00WRXzuLRIT4dly2D5cpmyg3czlf9gNYTyRTL1nwTG03Nsk+JxksGEfeaVdO95sX/N39WEp+EY5nzl7+/I8XOdLR1jdlnSxzpY9Gl5cOag9p06Pabc8qiPTcypOfpFQRCtAf0wru6ZEGGwDRjUcSeehmN07XwOx6Jb6D21PegIDsM2jKPnAAZHXkJlWLLHRefWJ8i87F5VUZBktAz49bvQGdHx82Q/8GhdNREIBAKBQKCdp9mHyNVUUuPqUK25/T4eO7aNL89arfmYivYGVWbkguzgWNDacdOx6o0KR92zlfv5/bKbo7rbhgqt5vPS1PjOiBSjmXxrqsIxOFCn5vraI6q1ywuVJ4R+f9CJ8+KLwa+DinOyBAXNrFaYexDL/KM0/+BjmAcYrxhZugNQouHUvLRwEhkmK22e0MnxuupDdHvdHO1oIhBxkqTVDg5B52K4qFnr6qRSQ4zOP1vuVGRPjylqWvQGzezN0WJCahZ7b/wiB9sbGGdPJz/CrZosmcKpKRAMGVpOTWPexIQea8qdoBA1vS1VyD6vwuEm+zy465W/AyKbz2UZDhyAN9+EDRvgnXegs9MADMyFlmVpYEHeu6z9/A2sutTEjBlBxz5IND03kaZnexTbd257kow1n6G3ep9i3VK2EPuMSxWiJgRH0MNFzYDbhadO+T1aSuaOii4RqyzIlFuOdDYeRfOxcURNyWRDl6SzUp+ijlgJJ9n99aElajoPvEZ7exoQEY2gS9HcR/PLPyN14c0jnqcJwTIsY+a46NEPYbRv/CuZl92rcmoaMoqE9jVABiVqyrI6l0IgEAgEAsHwE8upuaullh6fF+swjtqMJWqdalET4OHDm/jCjEs027p3tqizjhZkBx0NKUYz14ybxtOnQydMrW4Xb5w5ytXF6g/mQ4mWOJbo6O8kR7ZC1DzZ1YI/EIjaVq6FPxBgQ4RTM9tsZ25WIR0d8PrrQRFz3TpoaUl4twBIUtB90zl9JxUlb0FRPZIEHiCg9wID+3mu0nRqpqvWjDo9N5XOUrg1e/xeXq4+pDkSHi2TtTxiPE9GZnOjuhypoM+pGUewnOTIiVsENdLYjWYWDSJHM5xomZrCqSm4UOitOYC/qwnbpOUxRapE8DRqjJ/nJZadbIzM1Qz48bZWYworEXLXH4OIC36WopmcPBkUMN98M/jVGNt8HpOCPA+LCjcxz/wvFua9w3jHESSdxLTP+YnUfBxL7qDp2e8o1jq3/BtL2ULFmDmAbdJF2CatUD1fz9H3yVj5sf7bvTX7VY+1lMwd+Dc0CAyOvKj3xcrThPhFQcascUmLaDqjGZ3VQaBHPX0AAx8/N2aXIhktyN7e/rXuQzvw5X1F0UAPIEupmvvoPbUd1+G3cWk2nw+vqAmQOnctret/E3e73pPbcJ85rMrUTDbfVBBiwKLmhg0bhvI4BAKBQCAQJMF+jdKSPrwBPzuaq7k4Xx38fyFSq+HUhKDrcV3NIa4rUWeB7WxWlwQtyAp94LytbI5C1AR4rebIsIuaWk7NsgQyNQEmOnIUze2egJ8qZxvjNRq7o7GrpUbhZJQbsyiuvowrHtPxzjvBMcOksPRin3uK++/K55O3ZZCTA5/edIqDR+oVm7W4nRQb0pPceRAtp2a0HNLbxs9RjaA/dXqv5vazozg1tRrQt2g0vudbgydmxXFKvYa7+Xy0yYwmagqnpuACoOnFH9P0n28AwbKdsm+8j34QRX+RTk3JbA+OMCeASasBvemkUtQ8m6fZ1JPH1ro1bK2/lB2v30ZVveqhCVNgr2RR3jssPPu1/Fu/ovW1X+I6/E7/NjpziqYAZy6YgqV0nmJcvLdqD+3vPaba1jpxGZaSOUhmO7Lb2b/uOvq+Yrtzofm8D0N6dKdmrOZziO/UTHb0vA99SnZ0UXOARUGSTo8pfzLuMHet37I8mIEaua01n8J7/oK3pYqmZ76luK/55Z+p/v0MGUUYRyCrMvuGb+FtP0PP0ffRp+WRMvMK7DOvxHX0PZqf+55i29bXH1QIuH3HKRgYAxY1i4rEiy4QCAQCwWjgDfjjZvBtbjwtRM2zRBM1AR46vCmKqKm8gm7WG5iRHjoxvKZ4KgZJpyjt2aohXA01kU5No07f7/iLh1ZZ0LHO5qREzVerjiEfHY+8dzrsmQ51eexK+NFBxo+H666DtWtlxi/oYXz6FIVbVKs4prnXSbGGuzIRIp2aBkkX9TVbXTCRLLNNUcL1Ss0hlYApITEjQ/tkc4JGA3p4ERCAzWAk1Ricp4/3fY1EnuZokmXRFjXThFNTcJ7jd3XQ/MIP+2+7aw7Q/v7/kXXF5wa8z0inpilvYsJuPK0GdG/jSZgB7e3w9tvw0h9LeHvjAU50JFgMpEFxcS+XXWZi1SodC7LWo3vqCsX9vrZqAmGiI4AuSkwFgGPJnSohq3PzP1XbWScuQ9IbsE1cFmrOJpjH6Ots7BcB3VV7VI8dNVEzhlMznqgZL//SMMCmbYMjJ+qYtX4QpXHmwmkRoubF2s+RMZH0Fcvx93TS8uovCIR9xnPuf021/Ui4NCFYojTuvqdU6+b8STQ//31FzqeW6G4UouaAGdFMTYFAIBAIBIPnSEejol1Zi40iVxMIRuXURBk/B3i99ghHO5oUbji336ca75+TUYBJH/rYZDeamZtVyI4w8XN36xl6fV4swzj2H+nULLGnJzw+rlUWdKKzGeKU/LS2wmuvwcsvwxMvLEfuujTxAyaYfXbRRbB2bVDMnDaNsyOEEqB2dWRrlDeFi4zJUuVUvmbF9rSor1nfCPqfjoYyuXr9PrZFOHcnObKxRRkT1XJqRpJvdfQLDfHHz5NoRRqDiPZzwUjRW3OAxie/iq+rmcxLP0P6irtH9XjcdYeRPco8yN5TOwe8P7+zHX+XMivZlJtYniYox899AT0HWhbx+EPj2fTNYNGP3w+QvEBUWAirVweYNKmShQu7yM/3MmfOHAwGHT2nszgVoQN5W2sI9HYr1nQW7RxFAMfi22l88qsxj8GYMx7j2TIj26QVClETwHV0I46FNwHQEyGQSkZzXAFxuIiZqamRQxmOzmhGZ0tTiH7hGLMG7tSMet8Ax88BzAWh70eWUgmY52pu53cFR0L0VgcZqz9Ny8s/jbnfkRI1o2HMKsE2bTWug2/2r8k+j2q7gYrMAiFqCgQCgUAw5tgXY/S8j82Np0XhHtDp7cWp8eExnIcPb+KBJTf03z7QVq8SjfvyNMNZklOqEDW9AT+7Wmq5KK9scAcdBX8goHIdJpqnCdGdmpHIMuzbFxQx162DzZsh0G9ITUxocjjgqquCQubVVyfXVq41jtzc69TYUklADvDNna/yr5O7SDdZuSS/nNUFE1Xj51rN5+HcPn6uQtTUIlqeJsD4lEwkJOTIytYwCqyhTLBiW3rM5zrfx88zTNrt50LUFAwlst9HzW9vwVN/FIAzJ7dhyp+MbeKyUTsmb7Pa3e9tGbjjXytP05RgSRDAmZ6JPHn0HjaduYKt9ZfS6RmYQJWZCatXw5o1cOmlMHky+P0B9u5VZ0JrjUD7WmtUTk0phlPTlFOGdeIyeo5vjrqNbeJF/X+3TlbnarqOvY9j4U3Ifp/CLQhgLpqpKEsaSWJFB5gLYl+QBDCk5uKJJmoOdPw8NcovdL0RyaTtvE8E+8zLaXruuwD4LUtB0paq/L0+5ICMpJPIuuJztL7+K+SIaYhwrOVLBnxMQ0X68o8oRE0thFNz4AhRUyAQCASCMcZ+jZKgEnu6Qrxpcbs41tl83gsi8Yjl0uzj/45v5wfzr8J+dhx4h0ae5vws9RX0JTml/P7QRsXa1qbKYRM1z7g6FePuoN3iHQ0tp2afqNndHSx56BMya2tVm8alvLxvrBwuvhhMA+y7yNY4eW11xxc1/3R0Gz/bHzxpqHK2s6+tjt8eel+1XbzX7JL8CeRY7DTFEFKj5WkCWAxGimwOamLEHuSFi5pxnJrn+/i5SW8g1WhWjeiLoiDBUNJzanu/oNlH59YnR1fU1BAwvc2nB7w/rebzWE7Nri54661gwdvrr8OxY2nAo0k/r90OK1eGRMw5c/rayeOjT81GMpgUzjVva7Ui8xKCmZqxcCy5M6aoaZ0UEjVt5UtAp4ewi5d9uZqe+qOqrMPRGj2H6E5NfVpeQq5IvSMXGo5p3jdQUdMQZaxdb88Y1IV068RlZN/4HVpe+QWB1Mtibuvv9WGwGTGk55O+4qO0vfWI9oY6PdayBQM+pqEidcHNSH/5DLIn+tSJQRQFDZhzq0pRIBAIBAJBXLScmh+frL4SvbHxlGrtQkMrT1MfETzf4enlHydD42ZazecLs9UfNpdqtD9vHsZczdOazeeJi5o2g4misAIKuSGLbf8q5YorICsLbrwR/vjHJARNKcCMxS7+93/h4EE4dgx+9avgSe1ABU3QHj9vTkTUPKJuPNVCq/k8HINOz82ls2NuMyuGqAlQrpGrGU6BLZTpmW6yYoviAso028jSeD3ON7Qa0EVRkGAo6Tm5TbXmiSL2jBSaTs22WmR/so1rQTRFzTCnpt8P27fDj34El1wSdFTecAP8/vfB9+9EMeg8LMx7h3vnfJvnvvlrWluDF8O+9CWYNy9xQRNAkiTV2K2vrYaAO2L8PIZTE8Cx+DZU1ehhhDs1dZYUlVDZW7kL5+F3aX7xx6rHjlbzOZwVEDULkhIbh49VFmQYYqem3j7wPE0I/izk3vRdJj3YSsCyMOa2Ppe3/+9ZV39Js1AIwDJuDrooZXSJ4jrTxal/H+D0fw7ibu2J/wAN9NZUHAtvjrmNcGoOHOHUFAgEAoFgjBHp1CxLyeCq4ql8Z7cyIH1zYyX/NWnxSB7aOYeWU/Ojkxbx54jx4ocObeSeyUuQJEnVfG7RG5ierh4Bm5CapXL0bW3UFjVlWeZoZxOZZhs5MbLBYqHVfF6axPi52w2ZJ+ZQ/XY67JsGDTk0AuuTOQhrD8w6jDTnIMY5x9j6yfuxD/FUnpbA1dwbO1PzZFeLphitRSLu1tvGz+GRI9FdP7HGzwHKU7N5p167SAFQFBVJkkSxLZ2jnU2q7c53l2YfmWab6uc7zag9li4QDIRzUtTUGjUP+PG21mDKKUt6f1rj5y3yFJ58PJiL/MYb0NIygAMFZs+GlTMOMrvp88zPfR+rISjuFKx5ZFAXsSCY7RhePONtqVJlDsbK1AQwphdgm7oK16G3VPdJZjvm4pmKNdukFfSe2hFa8Puo/MklmvseTaempDegT8nG36X8/TAUouaAMzVjODWHgs6jrci+6PEtAP6ekPBvypuIY+EtdG5Xl/QMdvTc5/Rw+OEdyN7A2WNrYeZXlqMzJO8NTFv+ETo2/V37TkkXMz9VEBshagoEAoFAMIZodbtU7sOZGQXMySzEqjfS4w9dvd4syoI4o+HU/MjEhbzfcJIjHaGThP1tdXzs/Se4Z/JSDrTVK7afm1mEQadX7UeSJJbklPJS9cH+tRpXBzXOdkWjda/Py9Wv/5F3G05i0un5zdKbuGdK8sH1kc3nEN+pWVsL69cHx8rfeAO6u69P+nlnzoSLL+/lYdNjMPE0kj744f7i/PL+kf2hRLsoKLZT8z+n9ia8/0vyy+NuszJvArmWFBojyioAUgzmuK97PKdm+Pg5BEfQtUTN870kqI9MDReWwzT0P1uCC5deLVGz6SSy34ekH51TYi2nJgTFzgGJmg3H8QX07Gtewnu1V/PembUc+mvsCzDRyLI0cFHh61xU8Dq3//JLTFgyh4Yn/0bLy8rLYJFi4UAwRjg1tUpUdKb4jvW0JXdqiprW8iWqf2Pb5BW0vv7r+AenN2IZF9u5P9wY0vJVoqYpQVFTH6U9XWdJRR92cS2p44lSFDRUombbAfXvwkh8PV7F7axrvxpF1BxcSVDbgcZ+QRPA2+Wh+2QbjsnxCwEjsU9fgyG9EF/7GdV9hrT8UXsfOh8Qr5xAIBAIBGMIrTzN2RkFGHV6FueMU7jDDrY30Op2aRavXChojZ+Ps6fxmanL+dzW5xTrfz2+g78e36HafoHG6HkfSyNETYCtTVUKUfN3h97n3Ybgv4sn4OdL217k9vFzSItSkBINLadmZFGQ3w9799rZuDGN999P4+jR5D/qWa3BEfJrrw2W/JSWwp+P7kXaqHQeXlY0Oel9J4LDaMEg6RT5ofGKgp46rRY1/7ziDg63N/Bm3XF2tdRi0On40fyrE8qZ1et03FI2mz8c3qS6b1ZGProoo259TIjTgF5gU4qa4bEA4Vwombha7tw0kakpGCL83a2ao9n4fXibKzHlxb/QMRx4W6u015tPA9quQS0aG+HVV+GJv36J9ytX0ulJfgzYZApmIV9cvpWZZz7FlIx96KSgWy5buh6Yg7v2gOpx5sLpST9XJIlkCcZzagKkLryZur/dCxHj++Gj5/1rk5YndGyZaz6d0HMPJ4a0PNw1+xVrg3VqDjRPE2KMn9sGL2oGPH46j6gLDCPxu5SipnX8AuzTL8V5cINyfeLgRE13i3rc3N3eq7FlfCSdnrSLPkzLuv9V3WcQo+eDQoiaAoFAIBCMIfZr5Gn2jcJelDteNfK6pbGSa8ZNG5FjOxfRGj8vsDr4yMSFfH3nurjN6AALNEqC+liikau5pbGSW8pCzo5/huV1AnT73GxtquKKovjNpeFENp8bJB2FNgetrcET2nXr4NVX9bS0JHayE8748UER89prg1lr1gi9dX3tUdVjLi9M7vgTRZIksix2Gnq6+tda3dHHz090NrOrRRkEOjezkI9OWtR/2xvwo5ekuGJkOLePn6MtasYZPYfg+Hks8iMcMuOi5HxOukDGzzVFzSRFf4EgGj2n1Ber+vA0HBsVUdPv6iAQpUwsmoOz/7FnszFfeSX4vr+j/9u7MaljmD4drrgCrrwyWPRjs0F3RRdV/6u8SNSx9QlSF9yEu7ZCsW7ILEYfJ6M4ESKdmlrEy9QEMKRmkzLjcrr3vaJYt2qImob0fMzjZquazgGQdNimrCT94v8ibfldcZ93uDGkqX/nJOrUjCZqGgY4eg4xxs+TiMOJRsexFgJeZSGiMc2Mt0NZJOfrUefO5t72E07/eGV/0VPK3Osw5w/u4qtWhqa3Y2CiJkDa8rs0RU2jKAkaFELUFAgEAoFgDLFP06lZCMCy3FLVfZsbT1/Qombk+HmeNRWT3oBJb+AnC67hfyLcmloszI7+4X9Rzjh0kkRADuU/bQ0rCzrS0cjeVvWo0Y7m6qRFzb6iIDkgQVUhKUfnc8mfdGzeDIH+c4AEm0f1fph0Cmn2IT58k5W/3HFZ1I4FfyDAhjpl9lyW2ca8rMKkjj8Zssw2hagZqyjoP6fVJ6W3jZ+juG3UiA+Ix/Lc8RRYHdT1dCrWYzWf91Eez6kZMX5eFKUBfcoF4tRcUziJh8IE5GJbWtzXUCBIFK08zT6CuZpXjdzBnCWWcKnVgN7cHMzFXLcu+OdAsjGzsuDyy4NC5uWXQ7GGjmLKVQu8XTuepupX1+FtUpYPmotmJH8QGiSS7SglIGoCpK/8uELU1NszsU1eoblt3gceoOZ3twTFZb0B+/RLcSy8hdT5N8TMohxpUmZfTcemv/XftpTMxZit/rynhX4YnJqGKBftdEPg1GzXGD3PXlBI3ZvKnz1/xPg5gHXCIkq/sp7ObU+iT8snc82nB308WqKmJ0JgTQZL8UwspfPorVRe7BZOzcFxwYuaJ06c4N///jdbt26lpqYGn89Hbm4ukydP5rrrruPyyy/HYBjcy1RTU8Oll1466GP961//ypIl6rDbV199lc997nNJ7++dd94hP18E0goEAsFYYn+EQGbRG5h4Nr9vWW6ZavtNF3iuZqRTsyisdfre6StYmDOO3x3cyH9O78UT8Kse7zBamJoW/eQm1WhhZnq+Qmze2VKDx+/DpDfwVJSsx+0RZUTxaGgMcOqNMgL7roADU6ArhVZgYxL7yMuDK64K8Hf732DGUSRr8IN5S+bUWKWx7G6tVTklLyucnJTrMVmyI05gW2IUBWm9xreWzdHYMjn6RtB/d+h9xfrszPhibrrZSqbZpukw1UmSqiyqOIrbaeIFkqm5dtx0PjttBQ8f2UyuJYU/X3wH+mQqlAWCGMQXNUcezZKgs3iaTxMIwK5dQRFz3TrYtg3k2N0pKiRJZtEiiauvhmuugQULQB/n+o4xuwxz8UzcNcpRc+f+V1XbmosGn6cJqNrPtdCZExsBT114M1nXfo3WN36LITWb/I/8AX3ERaQ+UmZcyqSfn8TbUoUxu3TIMiGHGseiW3HXHqBj098xZBRTcPcfkGL90g5jOMbPdbZ00Okh4jPTYF+/gC9Ax2Hl6LnOrCdjVq5K1PS51KImBLNSo4nYySLL8pCLmhAsDIoUNeM5NWVZTvjf/ELkghY1f/vb3/Lwww/j8ynty9XV1VRXV7NhwwZmzpzJz3/+cyZMmDBKRxmfQ4cOjfYhCAQCgWAE8AcCHGhXltjMSM/vL7HJNNuYlpbLoY7G/vu3NVfhDfgH5FQb6/T6vCqHX5EtXXF7SU4pSy4p5YEl1/OXY9t59MgWTnSFLDBfmbU6rriyJKdUIWr2+n3sa6tjYfa46KJmU2xRM3y88NVXYft2CVn+QMzHRBI8oYVrr5W49lqYNw90Oh3vPllNtTP0ofx4Z+z8Ks3R82HK0+wjMge22+fG7fdhjgjSP9bRxO5W5ej5vMyiIRMD7522nD8d3ULv2Yy2KWk5LM1JzCFTnpqlKWrmWlJUP1PFGpma4+zp2AyDrBUeIxh1en699EZ+vfTG0T4UwXmGLMv0nIouarrrR0nU1HBq9visbKm7lHd3f4j3fgN16sGMuKSZWlhe+Bori9dxx08+RdmKi5N6vCRJFH/2aSp/dhm+1ti/pyxD5dRMJFMzQaemJEnk3f4T8m7/SULb61Myh2RsejiRDEZyb/0Rubf+KOnHDodTU5Ik9KnZ+DsalM81SFGz60Qb/l6lLpM+LQdjqvr3YOR2w4G/x0fArb7Y7e0c+Pg5QNqyD9H0/PcJOEORQilzrtXcVvYHqHzuCG37GrDk2Bh/50ws2RduTn40LlhR84c//CF/+1vIxm0wGJgyZQpWq5UTJ07Q1hb8ITtw4AB33XUXTz75JEVFA7MFWywWVqxI7oqBx+Nh27bQL+C8vDwmTpyouW24qDl58mRycxOzy5tMF8YHZYFAIDhfONnVgsunvDo9M0PpuF+WW6YQNV0+L/ta62KW3UTi8ft4/Nh2Wt0u7pq4IKqLTJZl/nB4E389voOSlAx+seg6SuK0Qo8kZyLGhgGK7NptnzmWFL40azVfmHkJb9WdYF/rGaam53JVUfzcqiW5Jfzx6BbF2pbGSmwGo0qE7qOup5NaZ4di7Li+PjhW+Mor8Prr0KaI0EzsCn16usyiRW0sX97BRRd1snr1DNXEySRHNtXO9v7bp7pbYwrfr9ceUa1dXji8oma0BvTCCPEvkdHzwTA5LYfXr/wUfzi8iXSTla/PuTRhB+GE1CxNR26+hmtI6//Y5AskT1MgSJSA103n1idw1+wndeEt2BIoAfG1VqvEl3BG26nZ4CrknZq1vF2zli11l+H2J58lu2ABXFzwAov8P2FW1jb0umAeSdG0Hw/o2Mz5kxn/rU1U/fxK3GcORt9uCJrPIZjRKBlMmq3nfYx2Wc9YRW/L0HRVDiZTE8CQmqMhag5OHO4+pS5DTJ+Zg96ilqyiOTWHEneb2qUJg3dqGhw5jPvs0zQ88VVkj4usa76MJcr/paYttbTsCE5ouWq7OPVEBdPuXaS57YXMBSlqvvrqqwpB88orr+Tb3/422dnBq/per5dnnnmGn/zkJ/T09NDc3MxnP/tZnn766QHZfrOzs/nzn/+c1GO++c1v9ouaVquVhx9+mKws7WyhcFHzW9/6FosXL076GAUCgUBw7qOZpxkxCrsst4zHjildKZsbTyclat785v/xSs1hAP53/1scuvkr5NvUYuCL1Qf57JZngeA4da2zg41rP5vw8ww3tRolQcURTs1IdJKOSwsncWnhpISfR8u5t6WpkpYYOZAAm+qqyDszi1dfDQqZe/Yk/JQKZs4MFvxccw0sXuynouJUzO3LU7N5sy7UBOyXA5zuamWSRn7jofaG/ub2Pqal5UYVuocKLVGzuVdL1NQaPZ+tWhsMy/PGszxvfNKPi5YJGVkSBMEM0UiX9aqC0WlkFgjOVRqf/Bqtr/8agJbXf834b27COiH2CX6s0XMI5lfKPi+SwThUhxmTQAB274Z//HUxr23dwcHWBUnvIz09mIt5zTXBkp/8fDj9o1/gCru4JhnNCY11R8OYWUzZN96j6lfX0XNcXZgGYC4afPM5gKTTYcgoUmV2hpOoU1OgRNLpMKTm4OtQXmBNpJwpFvoU9TTEYJ2azmr1hejUCRlIeh06s17hmvRrFAUNNR6N0XOAgNuPv9enKbYmin3aaiZ8N/Z7E0DbAaVw7G6OHsVzIXPBhdV4vV5+9rOf9d9evXo1v/71r/sFTQCj0cgdd9zB7373u353Q0VFBS+99NKIHOMzzzzDU0891X/7m9/8JtOna//SaG1tpbEx9AF4ypThaSIVCAQCwehzQEPUnBVRWrI8r0y1zcYkcjUPtzf2C5oAnd5efndIO7nxz0e3Km5vaaqkJswBONrUaDTLFmqIs4NlSloO6RFNzVsaKzVHz+XWNOR3lhD4/Ue4a+5ULrkEfvKTJAVNaw8s2MeXf9FIdTXs3w8//WmwvTaRGPBJGqPZx6KMoP+q4l3V2g2lQ+POiYVWG3ZLxCj30Y4m9kRkzC7IKqb8HMmhjHYc+Ta1U1OSJB5cehO5Z91IlxZM4tNT1Y29AsGFiq+zkdb1D4YW/D6anvte3MfFEzUJ+PE0x74QNFhcLnjxRfjkJ2HcOFi4EH71ym1JCZpz58LXvw7vvQdNTfDEE3D33UFBE8DTeFyxvTFnAtIgc2n1KZmUfmW95misKW/ikAqN8US2RDM1BWq0RtATKWeKuU+NsqDBFAXJARlnjVLUtOTaMFiDFxsMNuVFB59GUdBQ426NPmbuGUQDeqLI/gDO2i7FmindMuzPOxa54Jya69ev58yZ4Adgg8HAt7/9bXRR3vBXrFjBHXfcwT/+8Q8AHn/8ca677rphPb6amhp++MMf9t++5ppruPXWW6NuH+7SLCwsJC1Nuz1TIBAIBGOffa1aTk2lqDnZkaMqKAlv446H1rav1x7hhwuuVqx5A37erjuh2vZkV8uwu/gS5YyWU3MYjk0n6VicU6IY0z7V11Tu1cOx8cgHpsL+qVAbigtIZoApa1IbLZN3Is06AhMqkQwB7rvtGxQP4DxPK29SK1ezoaeLv5/YqVgzSLoREduyNE6Wm3uVzteRcGkOhmhOzQINpybApYWTOHXbN+j2ecgy20QpgEAQRtfuF1VNOc6DbxDo7Y45mtxzcnvcfXvqj2HOH9pIjdpaePnloJj5xhvQm6QGYjX7uOwKA9ddF3TiF8boJwu4nfjalZ8PTLnasWXJojPbGPc/z3Lm8XvoeP8v/esZaz4zJPvvwxAnV1M4NQeOKWcC7upQVIsho2jQr6dKhJYkDGl5A95fb6OTgEc5Im8fF9I19FYjtIX+E/lHcfwcwNvhxpo3vEJ7T6MT2RtQrNmKh/7C/PnABSdqrlu3rv/vF110EYWxfkOAQtSsqKigurqaceMGd2UjFt/+9rdxOoMf2jMyMvjWt74Vc/twUVO4NAUCgeDcwOXz8PUd63ir7jjzs4v5+aLrNMdpk2V/hFMz35qqalGWJIklOSUKt2Vldxt1rk4KEnAp7m6pVa3taqmlqbdb8VxbGivp9qlluZNdrazMPzfGZrWcmkUahSxDwdKzoqYsA/U5UDEZuWIKHC4Htznp/WVmBscLr7oqOF74kT1PsqEulP1mkHQDdp1OStMQNbvUouYfDm/C7VeOeN0xYe6IiNZZWuPn7khRU52neesQ5mkOlnJHtPFz7SZeAIvBiGWExmAFgrFE167nVGuy1033/tdwLLpF8zFywE/v6R1x9z0UuZqyDPv2wfPPB7927Up+H3m2Gi4pfolVxS9y7X+vpOS2ryb0OE+D+gKjKW9oRE0IFtUUfuJxUuffiOvw21jLl+JYcseQ7R/iF9eITM2Bk7H6U3TtfgHkoECWefngY4LSln0w6Jw+e6HBPvNKDBruzUTprlJ/XrOPC33GMViVspVvFMfPATydg8vVTAStcfzw10QQ4oISNWVZZuvW0Kjc8uXL4z5mypQp5OTk0NT0/9k7yyg30jNtXyWGZmZwm5ntIY8HPIyZmQwkG4aFJJvNfuFsYLPJ7gY2yYY5mwwzMxrGOGZoQ9vNTOoWQ9X3o6yWSlVSq8Httl3XOTq2qkqlklpSvXW/9/PcPQC8+eabfPjDHz4jx/fCCy+wZUusxO+rX/0qeXmpG+7Gi5pz544eZqCjo6Ojc+b50YG3+fmRzQAjQTF/vuyeCe3THQooUrlBXXoe5aLCGoWoCbC1u4n31Swa9XkSk6QBJCRebz/OvTOWjSx7vV2diA1wKuEYo/jCIX544C2ODfVwV82SKSlhbtMSNZMEBU2E/n4Ibl+I+FA2HJoDfWMvwRIEWLVKFjGvv17+vzEut6fxtPMzSqUzZyT1fqzMyMhHQEAi5npKLD/3hUP8+oi6j9oXFlw+ruccKwUaLpJ+f8x9fNTVzb6E0vOVBRXMSOKOPBuU2rOwG834IkpHiVb5uY6OTnJEvxvPodc01w3vfiapqBlor0f0uxXL7HVr8DUoW6eMV9QMh2HLFnj6afnW2Dj2fSzI38n600LmvLw9RA3apuH0A2oTS89hckVNkCdMs1bcRtaK2yZ1v1FGS0DXchaG3EGanjjC8MkBHBWZ1Nw5H2vu2IOWzncyFl9HzTe24Dn8BraKRWQuv2XC+7TPWEX1V95mcNOfMeeWUXDTVwH5b9L9bguSKFG0tiLtcmlPi4aoWRWbhE4sP5fCImIogsE8vnFQOgRSiZpTUH7ubdUQNXWnpiYXlKjZ1tbG0FDsw7FwYXoXVHPmzBkRNQ8cOHBGji0QCPDDH/5w5P6yZcu49dZbR31cfX3solUXNXV0dHSmB08kOMgeObWXX190x4QcWAcH1CnayUTNtUVawTWNo4qaoiRqOjUBXms7qhA1X0siap4c7tdc/sktj/LQyT0APHRyDy9s+ATXVZzZ81Zi+XmW2UameeL9iEIh2LZNTih/9VXYuRMkqRxI/yIUgEw3l1wV4B/vymfDBihMEnYdEUWaE3qV1kwgZd5mMlOVkUOTO5Y0mlh+/reG91TOyCtLZ7I0f4yvcZxo9dSMP57HT2mkntdMH5cmyCLAjMw8Dg0qG/1rBQXp6Ogkx33gFaSQtjPKve8FpEgYwai+rPVr9NPMWn23XJIuxco6g53pi5puV4CXn3Xx3EtOXnjFTl//2PpW2u2wfk0Pa/xf4/KKFyhyqNvKgBxglC7BLi1RM/2wu+nAaKFGgoao2flOE656+dzlPjlI28sNzLj3zE+Ynos4Zq7FMXPtpO7TOXcdzrnrRu6LYZGjv9lFoE8WA/t2tbPwixdjtI4uOSW6Eg1mA/ai2N/caNdOQLdknxlRUxIlgoPJhcvQBBPQ0yHxPRHMBuzFehsGLS4oUbMxYfqsqqoqrcdVVMR+ZJubmyfzkEb461//SkeHfFITBIGvfe1roz4mEAhw6lSssfWcOXN47733ePrpp9m1axcdHR0IgkBhYSErVqzglltu4aKLLjojx6+jo6OjIxMRRY4N9SiWBSJhtvU0sb50/M4JreTzRXnaoubqwkqVE29b9+h9NY8P9eIJBzXXvdZ+DEmSEASBgYCXnb0tmttpOTW94SCPJoTm/Pzw5jMuaiaWn5ePs1xbkqChAV55RRYx33oLhodHf1wiBoOEOKMRYVE9LKqHqnZWLLiE+9belvJxHb4hQqKy11R1ZupKjtGYmVWgEDUb3f00DvdTk5mHKIn89NA7qsd8fsE61bIzhVa7hvg0+Seb1KLmHdOon2aUGZkFKlGzNEX5uY6Ojhqt0vMoEU8/3mObcc5br1qnFRLkmHMZ5vwqhWio5XSMp7cXnn8eHv3tCd7aWYY/og5eSUVZGdx8M9x0E1x1Ffh3PEvHn/6Q8jGhvvR7YWs5TSfbqXmmGd2pqS4/Hz6hnER11feOjFN0ph5Xfe+IoAkQ9oQY2N9FwarUk6ERfxh/t3IS1VGRhWCMTRhEA4MUj/OF4QzFiYSGAkgRKen6YBJR09flxtM6hLM8C3tJ6pYJkighRURNt2kkGMHXpXSZO8oyFe+JTowLStSMui0BDAaDIvE8FYVx1on4fUwWHo+HP/whdmK7+uqrWbx49IH50aNHiUTkixxBEPjOd77D1q1bVds1NTXR1NTEk08+yaWXXsoPfvAD8vOnT3mWjo6OzvlEo7ufYIIABfB2Z8OERE2t5PPFSZyamWYbC3NLFD04d/W1EoyEsWi4WaK819uadF27d4hDg50szC3lzY4TiJL2YO+kW+3UPObqISIpm51v7jpFSIxgHmcJ9WhERJEOr3KWu3wMvSAHB+HNN2NuzFPjDcfNHURYcIzffHohN11rpvaFXxOOey92JRGH42mMEx+jTMSpCXIC+hvtsQthUZK46Pn/5ZmrP0a3381Rl3K8Mze7iOvPsAgdT7bFhkEQFJ+zaFDQYMDHvoTQrJUFFdROo9LzKBcVVfNcy6GR+4U2J5XTJEhLR2c0gj2NhF0d2CoWpexpGPG68Na/jWBx4Fxw9aSKSlI4xPDe51NuM7z76bRETcFkwVa5GEvxLIWoGeptQgoHEUyWkWWnTsm9MZ9+Wk4cF0WA9M/hK1bIQubNN8OyZRD/lgz3qU0ygtWJFDdxE+prQhLFtBLMVU5No3nUHpXTjVF7amq490Nu5SSsGIwQGgpgydYTos8GwyfVYxVPy9CooqandQgShpTxIUEARoda1DyTCeipSs9BFj0TcdX30nD/flkMNQjMuHchuQu1J0B6d7XT8uxRuUz/kioqrlf+tnjbRn9PdGJcUKKmyxVzbDidzqSp54lkZMRO4vH7mCweeughBgcHAVmc/Oxn02veG196LknSiKCZmZlJVVUVTqeTtrY22tpipYSbN2/mrrvu4v777x81JOlMEg6f+ea+Z5qooJzsvo6OTvqcT9+ngxoJ5QBvth/nG4uuGvd+jyWITAICMzPykv6eri6oVIiagUiY3T0trCxIfuHw3igC20stR5ibWcirrUeTbtPlG8bl8+I0xy4Oj2iUzrvDAbZ1NnKRRqn8ZNDhHVKIhwBl9syk71c4DDt2wOuvG3jtNYEdO0AUx3FhbgnCnAaEBcdgwTEo6+Lyklo+ds1yABbmlrA3rhfknr42vAF/SrH5lEsd4lNpz9Z8Lel+l9bkV/EblBOh3X43V770ayqc6oHz5+ZdihgRERFV684U+RYHPXEX+X1+D+FwmHe7TilcyABXFM+clmOLj9at5JGTe9g30IHFYOQ/ll2HQTo/xkEXAufTuWmsuDb9ia6/fQYiISylcyn/wkuabrrIcC8tP7qGYKvcosu55EZK/+ERDOaxB6Rp4T38FqJ3MOU2Q7ufIf/9P1SIqWLQh79V6ei2Vi0lggFTUR3E9+iURLztxzjcNZdnnzXwzDMCBw6M7fffJIRYXfIW1yzdzYd/9f+IK/Qj8WMT7FHPktnrLsJ7+PXYIYUCBAbaMWWXjPrciaKmuaCWiIR8YpsmjPZdkhx5YDRBRH3MgsVORJRAjK2TRImwV11Z4ukcxuC8oCSOaYOWqOluGRr1fDfcqH6cvTxD8TjBotZtgu7AGTuX+no9KdcHXX7Vc3e83Rhzd4oSHW83kjlXXVUTcgdpfqYeKSxv27WxCUdNFlmzYtsONw+qHmcrc44854V8btLigvrGBwIxRd1mS38Gx2KJXZgFg9pleeMlFArxl7/8ZeT+lVdemXaKeXxIEMiO0i996Utcd911imM+duwYP/zhD9m4cSMg9xb9x3/8Rx599FHFdlOFKIrs27dv9A3PMQ4ePHi2D0FH57zhXP4+vd1zRHP59p5mtu95D5thfKfe+l5lKEqx2c7Rg4eTbl/uU1+QPblvK+YC7Z6XAJuakouVAE8d3c2VoWxeajqUcruX39vKTHvOyP13urT7UT+0dzOO4sGU+xovh73qMnjTsH/k/CNJ0NJiZceOTLZvz2LHjiw8nvG5RufM8bJ27RAVy9r4vv1RBLNycLnWmD/yvLXY2Ru3LiCGeWrHJuY6YoPZwXCAPZ5umgPDNAWG2OdRi5qhzn72uUc/lyb7Ls2RYH1WBW8PKd25vkhIFRqUa7SyyG2a8nN3Bkbipfz24QH27dvHM53qz1OxOzJtxxa/rljHifxBck02ij2WaXucOqNzLp+bxkQkhO3hLyOcDrkKdtRz4pcfInjLT1Sbmt/8HqbW2HfSs+8Fjv7oVoLXfR8mwYlvfvuPqgtWyWxHCMWVufY2cuDNJ5AKYn0kDR37sSYIZO7MWvbt24cx7MAChEUj73VfxpvNt/H6iio6e8d2fnaYhrms/CWurHyadRUvkmVxIQkG+tovoq8vubPV0nSY+HdGMphxOatJ9KId3vo6UukoAX9hP/YB5e+431447X9ntL5LVkchhmH1xLBosKpfT0BEa47t5L7j4J4cQV1nDARE6FILgf4uN/t27wVjikmCw27VosahFtgX1+O9W63BNB47CUHtPvATpj61UzPiC7Pvvb1gOv26JAlaleY3X/sw+/bsBUPCa28NQlg5MXvqrXrwxrXdOah+L5uHW2nep22cuGDOTUm4oETNUChmUU7XpQlgMsXepsmeDXjttdcUJe0f/ehH035sfI/Q6upqHnroIc2y8tmzZ/O73/2Or3/96zzxxBOALIg+/PDDfOhDHxr/wevo6OjoqGj0q9MKAcKSyD5PD2sytUvGUxGWRNqDygFOuSV1r55FDnWLlQOeXu4u0J44kySJoz71bHk8ez09NPgHaQuqB6DxtAXdClGzKaDdgHKXu4uPF5+Zpv7dIfWA1D6cy0t78tixI5MdO7Lo6hrfxF5BQZC1a4dYu3aI1auHycs7PXMuifz0kIAv7kLLgMAV2THLznxHPk/1Nyj2d9jXPyJqvuNq5evNWwhKqR2RZZaJNYs3CQb+s/oS/qd9N4/1pQ7JuLNgFtYz1CYgFVlG5YWp63S/1wNetci7yJleS6GzgUkwKERrHZ3pjjDYjOAfVCwzNm7C0LwdsWpNbLveExgPPaN6vPHEG5jf+RGh9V9S1l2PFUnCcFLZ31cymAiv/Bjmrb9UPmfD24TjRE2hSz3pJxYvIBQS2HrqMt5+dy5vttzGQCBJQlsS8m2dXFn5DFfUvMjKy23YBw9i6I49lyCJGDr2IdZcknQfwrCyekHKLEbKUlfQGYY7iIwiagoutagjZZ9bpedRpMxi0BA1JYu69JxAkn6Hwxe2Y+2s0ZNEI5GAwQjkJ5GdJAn6E/5mdgHsCVqNWeN3JJi85+WE8aRRleITIfP02MgnQeJHTzq9n8yE8dOwxr47QhCRYuJv4ntiEcCh99NMxgUlahqNsQ+UKKZfPhUvZJrN40+u1eKRRx4Z+f+8efNYtWpV2o/985//TF9fH62trRQVFaXskykIAt/+9rfZtm3bSDn6X//6V13U1NHR0ZlkGgPaoibIIt54RM3ukJdIQrntaKJmlTWTLKOFoUhsdvuAhnsxSlvQjVtM3Z8oIEX4rYZLTmtf8TQneU8OeHvxi+Fxu1dT0RPyIvmscLQO6fAsODKLn7eNXsanhdUqsnz5MGvWyEJmXZ1f8zrdKBi4KLOUN12xMv6LMkvJN9tH7s+3q8WtQ94+3pc/k56Ql2+3bBtV0LQKRgri9jlejIKB/1e2ggpLBj/t2JPYvmnkue7MPzspujkmpajpEUMExAgHE0TNSksmuSa9h5qOzmQh9Gs3ETZv+gmBex8YcWCaN/8UIcnvlenAY0jOfMKrPzH+4+ipx+BWBm2JlauJzL1eLWqefIfwmk+O3Dd0xSoKfGE7W9qv5ZU/f5iN28twu5eP6TiqKr1cnfVzrqp6msUF2zEIEpHyFQSv+y2hU5uwPvcviu0NbXuSi5piBMGdKGqWImWpxwbCULtqmWqbQXXbGDEndejOdEXKSBLApPX7nkzUHJq6FilnjI6QLAQWmqDgHJFrkomaAAMpRE2PqP5bam2rUX4+rUTNoSRi+lBELWpqbRsGusJQZga/CN6E588zTmyC6DznHPmWTA52e+wCIL4UfTTiS86t1smzs3d1dbFjR6yB9R133DHmfeTn56cd+mOxWLjnnnv48Y9/DEBLSwvNzc1pp8BPFgaDgUWLRimlOAeIRCIKq/fChQsVwrmOjo6a40O9/P3Wxzni6uaG8rn8ZPWtZJqt5833SZIkWuqfTrr+iORmyZIlY95vX8cJqFcuW1U9iyWLUu/r4v49vNwWKynvCHkomlVLqUYK+Imm/ZBQfX5JUQ1buhsVyxLLlbUIZNlGXqckSbQefkJzu6Ak4inJZs0EApQUzxuA7dvhjTcM/O25WqRD7wdxfJ+jxYslNmyQb5dcImGzOQEnkFqU/nltOXe/cz8HBztZmFPCH9Z/gBlxATYLxAiOk2/gjcQE5FOSlyVLlnD3O3/DM4qwDPCRWatYsXSZ5rrxfJeWspSLmhfw4c2P4Ison/+DM1ewfsWaJI88s8zwHuedhM/bUHEmnoPKi6fLK2aN63ulozMa58u5aaz0NT+P1hSYoe8E1UPvkXP5J/EceIW25m0p92Pe9hvKZy8m5/JPptwuGb1PP0Viw5TSdR8g59JraXpzOYGm3bFj66lnfmXeSODMgb928Mqpe3i9+X1sarsBX3hs7vZVqyRuvVXkllskKsVNtP/PVxTrCxZfSeGSJURmVdPw/Bdkx9lpMgfrqUrymxTqb+VUQphgbvV88lZfSeNTym0LLCGKR/lt6+94g0Tveu2y9ThHGR9MNel8l3qOLmTg2KuqxzpyCpib8D4MHuyhCbUb1xwwMv8cPh/0bmujbcvpHqkC1NyzgOz507cSIcrRjbvwo92mL5csqpZoBw0O7O+mGWXbptKFlRQtUbqNgy4/R17frliWn5VPxZIzM+l66JWthFXWSyWVBRXkLZEny3s8rbTToNqmxFlE8RJl7/ijm3fhRz3Wy/U4qVoyj6GjfZxCWU5ePK+ckiU1I/fPt3PTgQMHxmQ6TOSCEjWzs2ON7z0eD5IkpZXO53bHHCc5OTmTdjwvvfTSyB/PbDZz0003Tdq+k7F8uXJmsrGxccpFTVCW9J8vGI3G8/J16ehMJl/Y9RybT4tkfzu5m/m5JXxp8ZWq7c7V71OP381AMHkfnvf62vBJYTLNY3OVNWqEJMzMKRz1PbqoqEYhagLsGmjj9iy1W3CfRpjPvy5cz7a3/qpKLo+nwOqkN6AsjW/0DIwcW5vHhTucvB/1xu5TXFM5vlRtUYS9e+GNN+Tbxo3gG3n7x1buW1wM11wj366+GkpKBGDss+Jz80rYc9sXGAoGyLJYMQhKd4EJE8sLKtjcFXNCHXZ18UjTfp5u1u5VajOamJ1VyKzsQq4qncXHZ6/GlGY5eLrfpTtmLKUyM49bX/8T3X553FNoc/K1JVefte9ioT1TtezF9nrVsouLa8/J3wudc49z9dw0VkKdyfsr9z31LXLX3E3vo19SrxQEhbgH0P23z2DJLiFr5e1jPg7PnmdVy7JX3o7JZCJrxW30xImaAG2b32CT6xM88WiQV1/dRkhM34xiNgS5coOFW2+FW26B8nIBTne+7Hl2l2p758y1mEwmTFkF2CqX4G/eO7LO37gLQySomdgdHFSXi1sLa7EX1arev0h/86ift0jvSdUye9mcaf851fouWQq0r0kNtgzVtpJfW3AKuQIIETBap/frT0bvtrjPhwT9uzrIXzy+KpOpIuQO4u9OHqzja3cn/Tz629TtibKqc1XbCxnqcbPoD5+Rz7kYihAeVo5bjTYTEb9yQjXijj1/sE977B/s9SuOURIlAr3a27rq+zBgwN+ufi8zq3NSvtYL5dyUjAvqlRcXF4/8PxKJMDAwQF7e6Bc98T0vCwomb6bkjTfeGPn/xRdfTG5u7qTtOxmJrs4zkeauo6Ojo0UgEua1tmOKZS+2HtEUNc9V6ge7U66PSCKbOk9xQ+W8Me335JC6h2Bd5ujno7UayeLbupu4vVrtlt/dp3ZgXl5Sx9rCKpVbM55rK+bwdkcDbd7Y+eTUcMxbc9SV+j15q+NEyvXxSBI0NMgC5uuvw1tvQV/yivqUOJ2wfj1cdZV8W7Ro8ip7DIKBHGvy8vBVBZUKUVOUJD655VHVdvfNWM5/rLiOSmeOShw9E6wurGLfbf/K745uwxsO8YG65dRknr1ekPkagsDzLWpnzkUan3MdHZ3xE2zXDrwDiAz30Pj9dQTald9FY2YBFZ95gpaf3ozoi2s5Iom0/eY+7D9swJyr7hsJEHH3497/EgZnHs556zFY7AS7Ggi0Ktud2OvWYs6R3fKZy2+j58lv0uMr5s3m23it+Q523H8lEREgvX7JNqOXS8tfYkPVk1xe+QKr/tKJwaIWT3wN21XL7DNiDnbHnHUKUZNIGF/DNpzz1eObUF+zapm5oBrBZMGUU0Z4ICZqhXqbRn0NicnnGIyY88/N38SoyzYRg1XdbifkTj5ZGuj14ihXV6RMd8RQhEC/UvAKDPrP0tGkj7txMOV6f4+HSCCsKTS7mxPaExkEHOXqCU2DxYhgFGLp4shhPWeCwID6Pc+ozcF1RDkWD7li2/m7vZr7ShR7A/0+pLC2UUAMRBg+0Y+nVd2yyVlx7n2ep5ILStSsrlb+wLe0tKQlara2xi70amtrJ+VY3G43e/bsGbm/YcOGSdnvaCSW3TudEwsa0NHR0UmXk8N9SAld+5rcqYNpzjWOjCLggSzijVnUdKsTy2ekITatLqhCQFC879t61BdJkiSxp0/pHqnLzCfHauea8jkpRc2ry2bT4h5UiprufkRJxCAYRhU1d/a2MBT0k6VxIQnQ2gpvvy0LmG+8AU2jX+NpY4xw2cVGrrpKdmKuXg2T3CY7bVYWqC/cAgkpvUW2DH629jbyNIS9M0mRPZNvLJ2aMclo5NvUY5TE34xMs5UFOdPbxaKjcy4hiRECHWpHdDyBNrWrvPD2f8c5dx2Vn3+W5h9dixSKXXNIIT+DG/9E4a3fUD0u1N/KyX9bSsQtz1AJVieZS29CMKqFycwVtwHyeeDJJxfywBs72N22Aon0J30yM+Hmm+HK/D+wpPefcZhjYkSwuwFbxQLF9pIk4Tu1Q7HMlFuOOa985L5jzjr6X/tfxTaeoxuTiJrqk5i5QL5GNedXK0TNYG/jqJWFwW6lqGkuqEEwnaWT2wQx52r3AjVY1eeCsCe5qOnvOTdFzeCgn8Tm1hHf6C1pzjbDJ0cZy0vgbR8ms1Zp4BLDIr4OpVPTUZqBwayuRBEEAaPdTDhOzA57z8x7E+xXOykzqtWiZnAo9hvn79F2qvp7PEiihHA6AT3ZdlEGDnTjaVGazix5dkzO8QVbXihcUKJmeXk5OTk5DA4OAnICeDo9mOrrYyf2uXPHVyKXyM6dOxVp7OvWrRvT4+vr63nmmWfo6+ujr6+PH/zgB2n11owXaAHKyrRnTHV0dHQmm+MabsM27xBhMXXPmnOJ0QQ8gLc703cmRjk5pLQj5lrs5KYhdmVZbCzMLeHAQCxNdFdvC8FIGIsxNgRo8QyqSsiX58sXFxvKZ/OtPa8kfY4NZbN5u+MEG7tiJXCBSJgO7zDlzmyOunqSPhZk9+rGrpPcVDkfgI4OWcCMCpknxv52xahsg3knEOYf5+JLRTbe8akJ7GzyWF04etuXn66ZekFzupGvcSGbyJrCaowGPRFUR2eyCPU2IYXG5g6zlM0jd73cN9M593LKP/0Arb+4U7GNv3mP1kPpf/VnI4ImgBTwMLT9EdV2TUMzeXLLx3jm27BrF8jtQdILWM2x9nH73ZncebeFq64CqxX6XvXS9YDSXRXsOq4SNUN9zURcyrAie52yz7Bjjvo6zlv/jmoZaLsvo85Kc2ENvhPvjiyXgl4i7j5MSSozxFBA5fy0FE9Oj+qzgSlvLKJmckHL36PtmpvuBPrV37uwN5x2y7yzxaiiJuBtVYua3vZhhfMSwFmZTTJMdpNS1DxTTk0NUdNW6MCUYSbsjn3ugi5Z1Ax7gkk/j2JIJOjyY82Vq3dSlekD9O/rVL8nuktzVC4oURNgzZo1vPKKfHH27rvvcs8996Tcvr6+nt7e2IX42rVrJ+U4du+O9YApKSlRlMang8vl4k9/+tPI/R07dnD99deP+riNGzeO/D8zM5PZs2eP6Xl1dHR0xkuDhqgZkUTavC7KbefHCVur/HxhTgkHB2P9Kvf0tTMQ8KYlSoLsEmkYVoqadVnpBcQBrC2sVoia/kiYff3trIoT1nb3qXt8Lc+XXSgr8yvJtdg1e4UuzCmh1JGlCMKJcnK4TxY1h1KLmpIrg9/81cvzLbKQeTR5K7dRqayJcN0GI2vXBflE3/cRsmI9sSvzl45/x5NMbUYe+VYHfQHtC6/rK+by/tpzN+hgsihIQ9TUS891dCaXgEbpefalH8a15W+QpL9y8T0/RoibKMtadQfG7GKFGOhv3qf5WG9D8rChxqFZvNJ4F6803cXRgaXwdHqvAaDQ3s5VVU9x3dw3uPXb/0jO0qsV6y3F6oCRYNdx1TLt0vPVivumrEIsZfMUZfu+hm2IoQAGs7Kvp8qpKQiYT4t5WmXjod7GpKKmv2m3qoeppegcFjWzi8FogoTKhbGWn4/mhpuuBAc0ei2KEmIwckZ6hIrBCIP1vRjMRrLn5o9LOA25g/i7lO+3Jccmu07j0CqpTnQkAjgrk18PGB1KB/KZcrFqiZrWPDuWLJtC1IyWn/tGESr93Z4RUdPXlXrbREETUr8nOjIXnKh5zTXXjIiab731Fl1dXSkFxYceemjk/3V1dcyZM2dSjmPfvtiJfeHChWN+/MKFC3E4HHi98gXRY489Nqqo2dnZybPPxhpu33jjjRh0d4OOjs4UoeXUBLmc9HwRNROdmlXOHG6onKcQNSUkNnae5Nbq9H77+wJehhJcMzPS6KcZZW1RNb8/prxo3NbTpBA192j001x22qlpNBi4qmwWjzfuV22zoVyeGKtNImpeVjKDYwnvSUGwiL79pUSOzID6mdBRzAtpv5oEMtww/zjCvBMw7zgLlhXyu2s+yaGBfoSn3YpNKxzJZ/+nGkEQWFlQySttagXXYTLzy4veN61dGVNFgUb5eSIXFdWc+QPR0bmA0BI1s1bdicHiYODNX6vWORdsIGPxdarltorFeFyvjdwPdTcg+t0YbDGBShJFAglip0rIHANlzkY2VD/BhqonWFK0g/yr/4Gi9/0JozNHta21REPU7NQQNU+m7qcZxTlnnULUlEJ+/Kd24Zh9iWK7RKemKbsUwSSXlloKalT7DfU2Ya9dqVouBjy0/+FjiMZSwpkfAsGCyf0IlpJz17AiGIyYc8pU7tMLx6mpHSAT8Wn3o5wIkWCE+l/uGOkFmbu4iBn3qvutj4ZWP828ZSX0bGtV9Lz0tmmImon9NAFnVQqnpk35HkT8YUVp92QR1Oipacm1Yc62QnusXD7sCSGGIqN+3vzdXrLnRP8/dsFdFzVH54IUNYuKiuju7iYYDPKVr3yF3//+95ppUZs2beKxxx4buf93f/d3k3YcR+OsKIsWjf0HxOl0csMNN/D4448DsGXLFp5++mluu+02ze3dbjef//zn8Z2OhbVarXz84x8f+4Hr6OjojJMTSUXNQS4uOPfdVr5wiMaEfn9zc4pZXzqTHxx4S7H8rY4TaYuaJ4fVSTjp9NOMsrZQIyyop5nPxt3Xcmouy4/1C7umfI6mqHl12eykx3PK3S+/J51BpKMLkerroH4m3W2laR+7CmsAZp9EmH8c5h2Hik4EQ2xW+9W2fuoHu2n1qmf/y53TR9QEOSxIS9T87vLrqc44e+E80wmtoKBE1iRJy9XR0RkfwQ61qGktm499xhpc2x5EjP99FQwU3/tjzUkYa+ViPIdeUyzztx7EMTNW9RbqOYXoH56QkFlX2sVVBX/g6qonmZ+3G0EA+8yLKf3QLmzVyfdlLqhRuQI1nZonlf00EQyaIqNjzuUMvPVbxTLP0XcUoqYkSQQTnJrmuPGPWWMsFOpt1Dz+zr99lkDHcQLFD4BRnuiM2C7GPndyDDhnC1NuhVrUtKmdmil7avZ6JyR2eVpcDBzoxpJro3B1OYJx4iag7q0tdG1uwWgzUXnTLFUpNkBAy6mJ3DvSkqPdd3y8uA73KMJtBvZ347/ag61wbHkbWqXnmXW5eFqGGD4R6wcf6PMR9oUw2WNuy0SnptFuwpqfPGQx0amJBJFAWLHPySBRXDY5zRitJizZVtW2oeHUye8Qcw5LoqQSQG2FDgKDfqSQtgseg4CjTB2cpKPkghM1LRYLX/jCF/jKV74CyCXon/zkJ/n3f/93Kivlxv3hcJgnn3yS73//+0Qicq+32bNnc9ddd2nu88orr6StTb4gLC8v580330x5DL29vSN9PYGR5x0r//zP/8wrr7zC8LA8Y/D1r3+d1tZWPvrRjyoCgHbu3Mm///u/c+xYLHX4C1/4AlVV+oWAjo7O1HE8SRly83kSFnRsqEcVhDQ3u4hLi2owCQbCcWV7b3c2pL3fxNJzQLPcOxmzswtU5ePbEoJ/EkOCqpw5CpfcNWXqiySLwci6khmq45Hcdjg+g0dequbhIyAe+hZI47wgsARhZiPC3BMwtwFqWhBMSQZ+p/l1/bssyVP3iy6fRk5NQOGUjbKyoILPzrv0LBzN9CTHYscgCIiSuhwLYEFOccqUeR0dnbETaFOmmgtmm5zObTBSfPcP6fhzrDdx3rX/gq1S25xhq1ys3nfL/hFR89gx+NtPfDz23J4xC5lLlsAdd8i32TV2Wv/3DbxHdmMuqqPw1n8j++K/QxilGk0wmrAU1CqEzERRUwqH8De+p1hmLV+gKbI55lymWuY9uhFu/trIfdEzgJTQvzq+5Nys5dTUCBYa3HI/g5v+jGhZOiJoyi/KjKfDjOMcvsQz51WQKO0lOjUlUUoZEiOFRYKDfqx5Yz8/eJpd1P9m10hgj7d9mJo75o95P4n7bHk2dh1+8sEDLPrSJapAnKBGT02A8Bkos/b3qt2F3g73hEVNwSiQUZmNsyJLIWoCeNuGyZopT9qGhgMqR6SzMjtllYqWeBnxhiZV1JQkSSUuRz9H5my1sBx0+UcVNaPl6aGhAGJQmSPgqMjCVuxk8KD2NZK9RDs4SUfJBSdqAtx+++3s2bOHRx6Rm1C/++67XHPNNcyZM4eMjAwaGhro7499CXNycvjZz36m6eYcD1EBNEpm5vjU96KiIn7xi1/wqU99ikAgQDgc5uc//zm///3vmTt3LhaLhebmZjo7OxWP+/jHP85HPvKR8R6+jo6Ozpjxh0O0eNTuOYAmz/khamr105yTXYjTbGVNYZUiQfzAQAc9fjeFGhdGiSSGBIGcTJ4uBsHAmsJqXm6Lhd41ugfo9A5R4siiwztEh09ZAhQNCYpSmZHDkrwy9vW3jyy7onQmDpOFjg54550MjA/cQehoNbTKgmLq7FxtjJYIkRmnTouYJ6C2BcGcPEjKbDASFkWFmPzXE7v41Bx1/+vpJmpeUzabusz8EdHaYTLzm4vv0kNv4jAaDORa7El7j+ql5zo6k4skSQQSnJqW0jkIBvmiOnf9JzFmFOA5+Aq26uXkXP6JpPvSEjUP7ezknXfhscdA7sSVfguuFSvgrrvgzjuhri5+TRY1X3lTVdqeDpaSWQohMzzQhhjwYjjtEve3HURK6CedGBIUxZxXgblwBqGeWGie7/gWpEh4pN9ooksTEpya+Wo1MtjTqLgf6DxGx//9PQCSsUi1fSgukflcxJSnNvsk9tQMe0OqlPBE/D2ecYmavbvaFfvu291J5U2zJ1T+PXBYKViF3SHczS6y6pRVGUnLz89AynfErw7Z0Ur9ToVWP01nZTYGixFHhVrf8LQOjYianhaN0vNRyqyNdvXfIOwNY01/SDwqEW8YMaAcd1pO98O0ZCmdmqIInY0B9u+Hjo5cBn0W3H4T7qAJb9CIL2TEFzTiF01YXpQY7jMw0LwCf8hAMGIgEhEQbBZEBALuMKIoIEoQkQQkSf6/JBjgq/JzRed35X+N5Ocv5POfb+HKK7Wvry4kLkhRE+A73/kOubm5/PGPfyQUCiGKIkeOqMst6urq+NnPfsaMGTMm7bl7epQ/bFlZ4++TsHbtWh566CG++MUv0tAgO3/8fj979+5VbZudnc2//uu/cvfdd4/7+XR0dHTGw0l3n8rFGKXR3a+5/FxDK/l8brZ8wbG+dKZC1AR4p7OBO2tGD4NpGFaX7deNoacmyGEq8aImwNaeJm6vXsRujX6aiaImwA9X3cztr/8Fd6eTjJNzsbivZdY/RdPJBeCiMR0TAKYw1DXBnAZsCxoJ1JzEYNZOs3SYzCzIKWFBbgkr8ytYWVDJ4rwyPvDOAzzVdGBku6GQX9VDFKBimpWfW4wmXrrmk/z3gbcIiRH+ad4lipJ/HZkCmzOpqLlWDwnS0ZlUwq5OZXk5YC2dp7iftfJ2slbePuq+LGXzwGCkcXBGrLT8r0vHdDxRIfOuu2C0S7GxCpqQLCzoBLYqWZBNJyQoHsecdbjiRE3R78bfvHekXD1V8jmAwWJXBSzFOzXFoJ+2X9494vaUjGo1J1WAzrmAWSMBXUhwaobTeI3+nlgfw7GgcjCKEv5eL87y8V+vazn5/N0ehagZ9oU0hUZ53eSnfEcC6gnjZKJqMrT6aWbOyAHQfL+8cWFBnmaNkKAU/TQBTInl50wsLEgUobMTTp2C5mZoaYGmoyInti5g0GdmyGfGGzQSMloIfQ78vmKC/iLCooAonXaU/kAASkZ/soMAltM3LcYqywm0t1v56lfreOkldXuoC40LVtQUBIF/+Zd/4ZZbbuHxxx9n8+bNdHZ24vP5yM7OZt68eVx33XXccsstWCzJPnzjIxruE2W8Ts0oCxYs4LnnnuP111/n1VdfZf/+/fT29hIOhykoKKCmpoYrr7ySG2+8kbw8vU+Xjo7O1HPcpd1PE86f8vMjGqLmvBw5iO6K0pl8b9/rinVvdZxIS9Q8NawUfS0GI2WOsQ2utcSfbd2yqJlYeg6xfpqSBPX1sHEjbNw4i8x3vstwm4Fh4JkxHcFpjGFWrYZrrzLxovNZ9uS+i2CRB+tBZGk0nkpnDj9ZcyuLc0upzczDIKhdjP807xKFqAngCipLmgQESsf4nk0FdVkF/O4S7dY2OjL5ViegXZZ1se7U1NGZVIIaIUHWsnkaW6bm2DF47DErD7x4kCPdc8f02LEImRMlWQJ6VNT0J/bTRDskKIpz7uW4Nv9Fscxb/05M1NRyaia4M8351UpRs7cRSZIQBIGuR76Iv3nvyDotUTM+nflcRMsJm9gbNVU/zSjjDQtKTO0GCPRMUNTUOJb4fpagHU4T5UykfGsJqGMVNYcb1OP3jBlyr1BzthVThkUhQHvb5JZ5YU+Qnh3qsefoTk21qBlfmi+K0N4OR47A8eOyWNnSAh0d0NMDg4Pg8UAgAKGQvL0aK8lFyulXSROJCDQ02LjiirN9JGeXC1bUjFJXV8eXv/xlvvzlL497H6P10Ezklltu4ZZbbhn382lhNBq59tprufbaayd1vzo6OjqTgZbbMEqzZxBRSt0ncbogSRLHhnoQEJidXahYl+jUzLHYKTrtHLmosBqr0UQgLpDg4ZN7AVhXXMe6khlJRbfEnpq1mXljLlFeXVCFgKBwy/6qfguFNifbe2IN+SVRgJYydj1Uyx+3y2Jmr+JPN8YBnTECNS0w9wTC3Aacc9vZ/vFvIwjg2Odk7+7k7oNci52XrvnkiDCcjPUldczPKebwYFfSbYrtGZgNek+ic5F8jdRbgDyrg9lZhZrrdHR0xodW8rm1PL1+grKQGV9aDpCeoLkgfxfXVD/G+64f4NL/+F2aRztxkomaURKdmoLVibViQdL9OeasUy3zHN1I/vX/CiRxaiaEA1kKahRiqugbQvQO4tr6IAOv/0KxrWTQcGqmIfhNZ+x1a8m+9CMj4nDehs9hTUh0D6VIPo8SDWcZC5IoEXSpy/cnkqYuhkVNsTDx+FIJimHvGXBqaomafWMUNU9p99ME2UDmLM/EdTQ2hg0O+gm5g7S/2qBIRgdZ0EzVG7OzEzbtsLNpWxUtA3baXXZ63Fbcv7PjDYDfD5Hk3YrOWwwGidra5IL4hcIFL2rq6Ojo6Jx5jidJPgcIRMJ0+8c++JxqJEniw5se4oGG3QB8cvZafn3xHQiCgCiJKlFzbnbRSMNzm8nMRYXVioCgwaCP39Rv5Tf1WwGYl13EN5ddw/trl45s4wuHaEsoBRxLSFCULIuNBTnFHByM9Vj2hkN8aesrcKoSjl+BdGwGnKgBn51vjfkZTmMKQ22znFA+56Qc8mOLXWDNySsfeU+uKJ2ZdDd2o5lnr/74qIImyAPnf5x7MZ/Z9lTSbaZbP02d9Mm3aSegry2sThkooKOjM3a0RE1LaXKnZkMDPPIIPPpovJCZHsvmD7He9j2urX6MysxTABQs/+bYdjJBLCXJRc2Ib0jVX9Reu3Kkv6gW5sJaTLnlhAdiLjTvsU1IoohgMCRxaipFTa0E9O7Hv87Am79WLRecNZAwJxwePrdFTUEQKP/knym4+asIBhOWIrVdN93y87ESGg6AqG6VNB6BNEqgz6u9z+70Rc2pcmoGXX7EsIjBNPoEdqp+mlEcFVkKUROgZ1ur3Lc0DrffQLN9Dk/9Jxw6JJeCd3ZCfz+43bKzUib79O18RvlZEQQBQYDocCc27JHIywvx2c+2UlAw+aL3uYYuauro6OjonHFOpBA1QS5Bt6bc4uyztbtpRNAE+P2xbdxStYAbKufR5B7AH1EOKuYkODmvKpuVMvX8iKub+95+gJmZBSwvkHtKnXJrhQSNrZ9mlLtql3DgHTccr0E6USMLmI0VEBn/UMDphIsvhnXrwDK3ka/0/wYhSU9MgDk5sVCDlQUVZJqtDIeUrgiDIPDQ+g9ycXFN2sfxwZkr+Op7L6r2FaV8mvXT1EmfgiROTb30XEdn8gm0K5PPMRixJgh/LS2yiPnww7Br19j2vyB/F7ffNMRHv3klWfW/o/uRHyjW26qWjuOox485vwrBZEEKx0SyoV1PkHftvxAZ6o4lc5zGUnEZzc8eRYqIFF9aja1QOekiCAKOOesY2vbQyDLRM0Cg9SC2qsUqp6bBmYvRrmxDppWAriVoGpy5GJy1RIaV59xz3akZJdGdGY9W+bklx6YoHQ+7g4R9Y0vGDg5qjyG0ksLTJVkydmg4SMQfxmg7HSI1kMKpeSZEzYDGWE2S3ZS2Au3JxHjcp9Sl59F+mlGcFXIFkjdo4GB7Nkc6Mzn5vJ2WgRX0DFtx+c34Q8ZYf8ppjiCAQRAxChImo4TFKGI1i9hNEWzmCA6L/G/xolyCDd04zGHslggOS5jsPCPWkI8MS4gMW4QsW4jihTnMvmsODgfYbND96lEGdsb63Nfeu5C8xdqT++FwhH37DmiuuxDRRU0dHR0dnQnjD4fY1HWKYnsGi/PKVOtTOTVBLkFX+yWmF9t71A6Lnx7eyA2V86hP0U8zyqfnXMT/Ht5ETwpXqoTEX07sHBE1Tw6rQ5RmZKbXG1kU5X6YW7ZEb1cjndiQ1mOTkZMDl10mi5jr1sGyZWA+fb1QP+jgq0+lni2eE1cubDIYubJ0Fs80H1Rs8+uL7+TmquTlfVpkmm18aOZKfnlki+Z63al57lJg0xY19ZAgHZ3JJ7GnpqWoDsFkobMTHn9cFjK3aP/MJiVaWh51ZGatvpuKGVfS9upe1baJvRPPNILBiK16maLMXPS6aP7RdWQuU7YKkzDSc2odYZ8sOvTv62LxVy4dEaWiOOderhA1AbxHN8qiZl+zYrklX/07lujc1Dxui52KzzzBsQfV9bZiIIIYimAwn78tV0IafUMzanLo39upWObv8ZIxSvhMPEGXdhmvv9eLJEoIhrGLb4m9M+PxdXtGji/Qn6Kn5hkoPxeThBIF+nxpiZoDB5TjXrffwObGQvZ9Hfbvl13cHR35DLmuPG1UnS7CpYTJCBargN0uT85nZUFuLuTng7mjkxyTl8JMP8WZASrKJdb/23JycsBggON/2c/QUbXhIIrJaWbJN9Zx8MeNBEYRw0uXFlIW11LXcfNMnEV2fF0esufkk7uwKPmDdRTooqaOjo7ONMUV9PG1915kW3cTlxTX8p8rbsBpnn5+RlfQx8XP/3xE2PvW0mv45rJrRtb7wiFaPIMp99HkGWAWOWfwKCdOYm9LgDfaj3Ogv4OjLnWQyZxs5WAk3+bk4O1f4ldHtvB25wm29TQremxGeb392Mj/Tw6pnzNZ+bnPBzt3xkTMrVvl0p0YYx9QFhfHBMx162DhQnlQp0VNRu6o+0vsQ/rNpRt4vf0YnnAQgyDwnytu4BOzk4cwpOIf516ii5rnIXlW9cWVUTCwqqDyLByNjs75S8QzSNgVE4UG/Xlsavocr14Fb7+dLFRDm2jYz513SoR/fC0RT+xk5G+Rk3rjA28ADPYsTZfimSb/hi/T+vP3KZaFB9pU7kjRsoiwL3YCFAMRBg50U7BKOZGr1Vez75X/QQz5iAwrxwpapeajvQeC2Ubl55/DWnUJUmST5jYhdxBrrj3lfs5ltJyaGTXZKlEzMFZRM0lYjxQSCQ0FsOTYxnagpC5d98eLmlPt1EwmaqYog/f74Z13YNObIbY8XUxLfy09bguegImIJKAeZ06NkCkI8gS7wwGZmZCXB0VFUFYG+YKLzJ5WqnO91BR4ybKFyVtSTO09C1X7kUSJ3f92WNEuILMul/icZUt26uswW5Hz9L+OUUVNe5Fy0tZgNlJ8aVWSrXVSoYuaOjo6OtOUb+95daTf4t7+djJMVr6/8oazfFRq/nB0u8Kp+P39b/DpuRdRfLqk6qSGGJhIs2cQrDln6AgnBy1RE+Bnhzdh0kjlnputnmEtsDn55rJr+CbX4A+H2NHbzOe3P8O+/lh/oaOuHprdA1Rl5Go+Z12WLGp2dcW7MGH3bjnNcSIIBf28/9osNlxh4rLLYNas+P49qbGZzJQ7slU9QONJFHqX5pdz9I6v8E5nA/NzijVdvukyN6eIq8pm8Ub7cdU6vfz83EWr/HxxbikZ03CCR0fnXCbQcYThYBZvttzKS433sLV9A2Ep/dLd5cvh/e9PTC0XaKxcjLf+7ZHtgh1HiXgGCHTUKx5vq1p6VvrkZq28nYJbv0nvM/+ecjtDproPtL9XLVhZSudizCxUCJihnlN0P/Il1bZarkyLhtAZRTBbqfznZ8hYcBXejuGk24XdoQtK1DRYjdhLM1XbjbUXplbyefy+xiNq+lL09owenyRKo6SfT65TU4qIiCHtWYpAv4+hIXjjDTkscs8e2XXZ0xPf29IMTI2L0GgEux2ys2WhMsPdS1mWj5o8D3WFbpavNLLiX5YlffzxP51k6Liy6mngcA9VcaX/UYIuv6r/qTVP+T2yZKX+DNgK5TGLvdCJi9RVarYi7UoUnbGji5o6Ojo60xBJkngwrn8jwLPNB6elqLm5+5TifkiM8HZHA3fPWAqMXnoOck9NrDVn4Ogmj1NJRM0HT+6mLsE9aTYYRy0Tt5nMrCup4/21SxSiJsBr7cf4+Ow1I6nxUtgIzWXQUM13Xi1i53Y4dUprr+ljMMD8hRHCdQ2cLH4P57x2fnXTldwzI/ngcDRmZOalFDVnZ6n7gZY6sib0nPH809xLtEVN3al5zqJVfn6RXnquozNpeDzw/PPwt1+U8dq7XQTF9IWbhQvhnnvg7rthZpLsN1uCqIkkMrTjMRCVpdNT3U8znsLbv03Y1cng28mT102FC2BIuUwrLVoQBJwLrlaVoGthzle7sgy2DIwZ+UQSemoLJguVn3uajEVyJUxoSLv/I8hOzfOZxPJzc4ZF1d8UlGFBnmYXzc8eJeILU7yuisI1Fartk5WfR/eVNWtsQY2SKI3i1JSPL+QOIoWTW6HD3sl1akb88ndv0Gti26k89rbmcKw7k/ZBO64fmglNWYq4hNUqkJUFJSVQVQVz5si/K0uWyP9aLMpHHPjvowrx2SYkFwYjwQjDpwbVzxoSGTjYTcFK5UR6UMOlakmYHDCP6tR0nP53FMHSIGDNH73MXyc9dFFTR0dHZxrS5nXRG1AOhNp9Q0m2Prvs7WtTLXunMyZqNqQjanoGYeyh3lNGRBRpdKubooOc3n54sEuxbFZWAaYUCanxbCibw9ffe2nkviTBM3vayNwLW/+2BPHI1dBUDmHZMfPo+F4CGRmwdi1ccol8W7MGsrKMwGyCkRmYDcYJu2RqM/PZ1KWttlY6c854+4SbKudT5cyRP09xVOhOzXOWFfkVZFtsuIKxi5g7ahafxSPS0Tn38fvh5ZflHpnPPQdeL0B6kwWzZsWEzAVptD+2Vqq/r4Ob/0+17GyKmoIgUPqhXxIZ6mJ49zOa2xizZ6hEzWQBMgU3fw3PgVcUZfdaaJWfA9hqV+E58HLs+EwWKj73FBmLrxtZFhpKLlxqlWefTyS+PpPTgsluxpRhUSSjRwVFf6+Xo3/YjXTandj89FGcldk4ypTuztROzbGHBQVd/pHn1Nzn6RAhLTEtHjEYQYqICMbRU8k1Hy/C9u3w4otya6L6wya6uq4gLGqVjE8uJpOE0xwizxmkNMtPdZ6XWUVuLl5nYMMX5yZtaZQMo8MMcX+nVC7W4Yb+pGJx3+4OlagZ0HDLWvOUkzyjlZ/bC6Pl56lFTVuBPa2UeZ300EVNHR0dnWnIbg2h0BX04wuHsJvSLwc70/QHvCoBCWBjXMq3llOz0OZUBOY0e7QFw+lCi2eQkJj+1HVimXUqZtvKyDw5j6GjxUgN1dBQxXOubJ4DYNWYjzVKZWVMwLzkEli0CExJzvoW4+QMB1K5UxP7aZ4JjAYDn5l3KV/a9fzIslJ7lspJq3PuYDOZeWj93/GZrU8yGPTxhQWXs740iSVMR0cnKaEQvP66LGQ+/TQMjWGetLpaFjHvuQeWLk2/LQmArWqJapnvxLuqZdYpDglKRDCaKP+Hh2j64TX4jm1WrTc4y1XLAv0+zQAZW8VC6v7zMIMb/4Rr6wME2g6pn9BgxD5Du4d04W3fxH9qJxF3H8aMfMo++X9kLlFW6lyoTk0pIqqELFOGPC62FTpwx4uafT7EsEjj44dV4uLAgW61qJmiBHw8CeipQoJA7qMphiIp+1hGCfvCmDMso27X3y9PVLz5JuzdC01N8nddUlRVT6aYKWE0Qna2QFmZ7NhesgQuukgee9oMYfZ9V9n7VTAbWPCptWMWNAFMduV4NZWL1ZUi0Md9apBAv09RXq71d0hs42DOHqX8PNpTU8M5rNiuUC89n0x0UVNHR0dnGqLlfgTo8g1Tk2b69VSQ7DiPuLrp8g1TbM/kxJCyMb5JMHBp8QyeajowsmwoFGA4EiTTOPqA7WyQrJ9mMrT6aYI8qDxxArZtk2fLt22D/fsNRCIfn9DxGQzyIDJexKw8CzkqtSnEw/jk8zPJPy+4jD39bTx8ci95Vju/v/SutF2zOtOTa8vncPzOr57tw9A5z3EfegPv0Y3Y69aoBKRzlUhEDvZ4+GF44onE8LjUFDq7uO8Txdxzj+zsH6+R31o2HwQDSCmShowmebuzjMFip+rzz9L4vcsUQqTBngWWfEA5FpBCIqHhABYNocOUXUzBzV+l4Oav4m85gGvrgwxtf4hQbxMYjBTe9m3M+donasfMi6j776MEO49jLZ2L0Zmj2iY4nFzUDJ/HombYoxaxzE557GgrdOKOLzcWJVqeP4anSd0WJ7EfasQfThqeA2Pvz5nWYyRZLE0VEhQl4g2pRM3mZnj8cVnA3L9f7rUePEN/ekGADKdIvtVHVa6HWYUeFlcMsnZFmFVfWpni98FM9vwCXIdjBoeyq2rH3fPVaFcaO6SwiBiKYDArx3mSJOGqT10p1r+nk9KrauXtRUnVexPAkthTM4VT02AxjpSnG60mzNlWQi7t76neT3Ny0UVNHR0dnWnInn5tsbBzmomaib0g43mns4H31y5VOTVrM/M0nXMdQQ+Z9vND1Iw6Ndvb5UTynTth1y7537FcVCYjJ0cuJY+Wk69ZIyc+nm1SOSLH4l6dCCaDkfsv/wC/ufhOnCbLWQme0NHRObdwvfsAbb/94Mj9kg/9iryr/kFzWykSZmjn44h+N1lr3o/RnjVVh5kWoihPmj38MDz2mCx0pEuutYdrqh/n+pqHuewqJzO+9OKEj8dgdWApmUWw42jSbaxl8zFMk/AvozOXqv/3Mi0/vRV/024wmim++4f0NmlvH+jzaYqa8dgqF2Gr/E+K7vwe4YFWMJox55SmfIwpIx/TzOTn1FROzfNZ1AxplNabRkRNtTuud7v2eDqxnDxVP02AkCtAJBjBaEl/kjRaXp5ymx5vSodolKaTIV56UA7w2b8fOjomHg6phSBIZGVKVFUbmD9fHmdu2ADz5sHxP+xRisZA9VXzRh1nVd86lzbHSQK9HnLmF1I0gYTvRKcmyC5WS4Ko6e/yJBUUo/Tt6aDkyhoEQaB3VzveVqV93ZRpweRUiqhGqwmjzaQpgNsKHYr3wl7kTHoMicnnOhNDFzV1dHR0piHJHJAd06yvZjLxFWRR8+bKBbQmBMfMzCqgOiNXtX1n0MNsu3r5dEArJMhuNOOLxEaUktsOjZVwqpI/PjaPr+yTRc0JI4hQ2QEzmvj0DWX8yy01zJrFuMp2zjQzUoiaU1F+Ho+ejq2jo5MuvS/9UHG/7+Ufa4qakiTR8r+34d4ni329z32Puu8dwGDLmJLjTIYkySnFDz0EjzwCLS3pPzYnB269po9L+u9lTcmbmAxyqxVH+ecn7fhsFYtTippns5+mFua8Cmq/tR1/6wFMmYWY8yro+tVOzW0DfV4yZ6Q3dhEMBs1woPFwoZafawm28eXn6RLo9SpaB6Tqpxn/mMSS9VSk4+70d3tUZc+9bguvHSliZ1Mux7sz6XFbCf/X5A76BCQybGFKs3zMLPSwqNzF2to+KnP91Lx/PvnLlKK7t31YJWiaMszkLSke9bnMWVZq7pg3KcdtdKhbcEV8IchSjvlcRzVcmgIQV4Yf6PPhaXZhzXfQ9vIJ1eZFays0BVtztlVb1EwQKm1FTk33J4CtWBc1JxNd1NTR0dGZZvT5PZp9KkF2ak4nkomvAO90NIykd8czM7OAKg1RsyM09n5FU0WiU1PyW7jbcjt/frUTqbFCFjO7Y8ne70zkybKGoK4Joa4Z6pqguhXBJg/iP3rTZ5kztdrgmCiyZeAwmfGG1faBOVMsauro6OikQ8QzQKBlv2JZqLuB8FAPOJTnqkDTeyOCJkCotxHXjkfJXfexKTnWRI4fl4XMBx+Eo8k1QxUZGXDrrXKfzGuuAf/uV2j7zWuKbaxlkyNCwOmwoJ2PJV0/3URNkHts2quXjdwPJwkk8WskoE8FoeFUQUFnwMI3TRit/DxdpIhEcMA3kkCdjqjp7/GMUdRUjmtNGWbCCcnt7nYPr26x8fqeuexvz6F90EYwYmAyA3ysVjldfO5cuPhiuLiyg+z6w0knxwMan+muzc2qZYVrKlRl32cak10tamr11dTqp1l8WTVdG5WW677dnUhhdZ9Wa76d4nXaQV6WLCv+LrVgrSVqaiKArUBPPp9MdFFTR0fnrHDU1c2hgS5WF1ZSodEr6EJmb4qS7q5pJGr6wiHqXT1J1x9xdbNZIwl7VlYB1U5tp+Z0JBCAA++ZkPZdjHSqUhYw24v4kzTxWXOLBZYvl8t7juTv4FXra5A/kLQ3UV1mgfaKaYIgCMzIyOfgYKdiud1oplL/nuvo6ExDvCe2JqZoAOA7uQP7wmuVy45uUm0XaN53xo5Ni/Z22Y350ENyS5N0sdngpptkIfOGG8ARd03taj+i2t4yiaKmTSMBXbH+LIcEpUPEpy0UBvqmfkJWEiVCKXpqhtypy27PZbRcqKbTvSYtOTYEkyFp4nUi/h7vGEXN9P/WYU9QJcBm1ORweIePF/fks6Mxn4ZeJy6fmckSMAUBsrOhpgaWLYMrr5S/8zk5yu063grQfiz5fhKdo6GhAAP7lX0sBJOBwrUVk3LcY8GoUX6eKEiGfSHcCX1UbUUOStZX072lGSkS+73v29OhmVBfddvcpOnkycKC7AmierISc2uufcrF4PMdXdTU0dGZch5v3McH3n6AsCSSabby8jWfYm2R9mzYhcievtak6zq806f8/OBAB5FUjf+BPx/foVo2M7tQs/y8I3T2RU2vV+5VtHu3fNuzBw4ckAiF7puU/c+YAatWyamQa9fKKbLW0xUzzzU7ee2N5CnwWWYb+dbpP7Nbm6kWNWdnF2IQpmG9vI6OzgWP7/gW7eUnt6tFzYbtqu2C3eqyxclmYACefFJ2ZL71lqYGq4nZDNddJ6eW33xz8t7LAQ1Rc9KdmimwVaoT0qcTkiglTVnWcrWdacKeoKKMVr0+pJnKfj6g5dSM9j0UDAK2Age+TrdqG8FsUIlX/h4P2XPlyeLg4OhC8FgS0H3dHsIibDxWwBvHijnUnkWX204oPHkCZm4uzJoluy9vuw0uvTS91kSpApFALWp2b2tVCIEAeUuL00pjn2xMGuXn4YQJh6Hj/SAqjzd7TgEmu5nseYUMHuweWa4laOYuLiZrZvL8gmRhQbYi5Rg9mXNYLz2ffHRRU0dHZ1KQJIn/OfgO/3t4EzkWOz9dextXlM7U3Pbbu18hfFoMGw4F+OGBt3jiqo9M4dFOb/akcGpOp/LzVI7SKLt61QLtrKwCsiw2cix2BoOxgdNUOzVdLlm03LVb5ME3u2k4aGO4JRtJTBxwjm8AWloqC5jR28qVkJ+85STrS+swCYaR70YiMzLzzonQmxkaQVazpyj5XEdHR2eseI9t1lzuO6melPOf3KZaFuw8PunHBPIk2/PPy47MF19MP9XYaISrrpKFzNtuk4WP0QgmiJrGzAJMk1gZYC6oxmDPQtToC27Or8KYMX0CELUQg5GkImKgz4ckSVN6fk7VTxMASS7JPRui05kmrBEUFC0/B7mvpkrUFKDmffM49cghxeJ452WiU1MwGRCMAmIgMrIsMIpT0+2GBx6Ap5+GXduz6B24kslxYUpkZ4jMmW/k4ovl1hHr1o2/t/pYRE1Jkujf06napviSyekNO1a0goIiXuXr0Uo9z5ojD8Dzl5cqRM1EDFYjlTfOSnkMWqKmYBSwJiSlm5xmTE6zSojXk88nH13U1NHRmRT+5+A7fGnX8wC0el184J0HOH7HV3AmhHUMBLwccSlPJrtTOBMvRFL1qZxO5ed7U4QEJcMkGKg6XYZcnZHLYNzAqeMMiprd3bKAGXVf7t4NDQ3RtQagZGJP4PRCTQsZs7r48d3LuGldJmVlY9tFptnGRUXVbNIo2YfUITzTCa3j1Ptp6ujoTEfEUEBTvARZ1JTiLJHCcCfhAfV5L9h7CikSRjBO/LIqFJLTjR98EJ56ShZJ0uXii+G+++Cuu6CoKP3HSZEwgS6lMGstm5/+DtJAEASslYvxaQjI1mnYTzORRCdYPGIwQng4iDlr6sLpgkOjK9xhd/C8FDU1y8/jEqrtxRkMHFBeZ5SsqyZ3URGNjx9WOA5TiZqWHBtGm0mRiO3v9SoE7NZW+L//g5degoMH5cnyGOMtL5bIcEhUZLpZWjnIupm9rKwaoGB5CbV3LxjnPpVEAqlFzfBwEDEYwWAxEuj1qt6bjBk52EvOTjiaUaunZtz3UxIlho4p+2karEYyqnMAyJ6dpyk0Rim/pm7U77I5S11+bs13IBjVKrOtyKkKWNKTzycfXdTU0dGZMJs6T/LV915ULOvyDbOlu5Fryucolmu5+1o8LvzhEDaT+kR1oeEJBTiaok/ldHJq7utT/i3NBiMr8yvY2tOU5BGy4GUyyAO9Kmcu++I+DwORAH4xjM0gn5p6/G6ebjqI2WDkfdWLyLJo97CJRxTh1Cm5hHzfvpiI2TqZurk1wKxFAW5el3XagSnRl9VLk8fHFaXLKZxACu7VZbOTipp154iouSBXLRAvzhujwqujo6MzBfibdiOFtHvpiZ4BQnGl5YaOA9o7iYQJ9TZhKa4b1zFIEmzdKguZjz4KPcmHACoWLpSFzHvugdrasT1vsLeJ4V1PMrTjUYgoL/Ans/Q8ii2JqDkdQ4ISiSQpPY/i7/NOqaiZqp/myDaeIPZRtzr3SBSjjHaTQkzKX1lKx9uNI301HeWZlF5Vi2A0YM134O+OTaBH08mliEgwwf1qybFhzrAoRM1THRb+9rkwb24yc+wY+Cah84DRIFKcGWBeyRCXzezlyjndLP/CCup/tUtRQp2s/cF4GM2pCbJb016SoZnenTPv7E1Ua5Wfx/e79bYNqT4jWTPzRvpjCkYDeUtL6N7SotqPoywzrT6hWk7NxNLz2HK1qKk7NScfXdTU0dGZEF2+Ye59+37N3oq7+1pVouY+DVFTQqJhuE9TDLnQ2D/QgZSiUVKnb3jKy5y0iIgi+waUf8sFOcVsKJ+dUtScmRUrZ9Pqq9kZ9FJjy8ITCnL1y78Z6c34l+M7eOO6f8AYV2szPAwHDsQEzP375dtYnC2jYbNBwSwXrQWHEGpaoLYFyrr43Q2fZn1p1umtBGZSxRomXoqzoXw239rziua6GVnTOyQoyuUlM1iRX8F7px3Ys7MKuaVqctwFOjoXGpIkMbjpz7j3vYi1YiEFN34FQxoTPDrpkaz0PIr/1E6wy79fhs79SbcLdp9QiZpi0E/Xg5/HteNRLEV1lH38T9gqF42sP3BAFjIfegiakp82VVRXy0LmvffCokWjb5/I8L4X6Xnq2/JrS8JkhgRFSRYWdC6ImsmSz6ME+nxk1qZR5z9JjFp+juzUPB9JfF2mBDeqJdvG/M+toXdnGyaHmaKLK0dCWWyFSlEz7AkR9obk9gIJPRgtOTY6Axn89m0H754soLHPQTAy8XCXnGyJ6kwXq6r6uXZ+F7UF6pJ2a54dk92kEOe0gqrEsIjrSA+SBDnzC5MG2yQyUVEza9bZaxehFRQUjis/10o9j/ZNjZK/vFQtagpyOFA6fWit+XaMdpMioCizRvv7nzO/kN7tMYe/JceGo/TsuFzPZ3RRU0dHZ9xERJEPvH0/HRo9kgDe0+inuCdJafWxoR5d1CT5+xMlJEboD3jJt53dWb7jQ714w8oB1pK8Mi4vqQNeS/q4WQpRM0e1viPkocaWxR9P7BgRNCVRYOMBF19racHRWc2+fbKIefLkpLyUGDY/VLVBdRvfvnU+d64vYM4c+NTWl/i/E7sUm56pFPKV+ZWqXqNRtHpVTkcMgoF3bvgn7m94j7AY4e9mrsRs0FMedXTGg2vz/9Hxx48DMLzrCSJD3ZR++Fdn+ajOH5KFBEXxn9wBC06Lmsmcmpzuq7lIGSo0+M4fGHjrt/J+Tu2i/Y8fhw9t55FHBB58UC5XTZfCQnj/+2Ux86KL5JCQ8TDw1u/o+MunR93OMWfd+J4gBcnCgs6F5PPRXHJTHRaUjqipVaZ9PhBK6Klpdqqde7ZCBxU3qPsi2grVbjp/j3ckeavTZeHpfeVsbiig8ScZ+AMCE+mJaRAkijP9LK5wccPlPv7+p7WYTbDn23s0A2oAjDYTJrsZo00paiYK65IocfyPe3A3DgLgqMhi7t+v0CyBTiRdUVMMiwyfVAZYmrOtZ9VpaLAYwSAoROh4wVern2b2bGWlk700A2d1Np64hPTCNeU4K7MSH6p9DGYjFTfMovmZo0hhEWd1NvmrtCuSsmblUXZNHT3bWzE5LVTdOietv5HO2NBFTR0dnXHzrT2v8FZnQ9L1Wr0ytZyaACeG1CehC5HRRE2Q3ZpnW9TU6qe5LL+cNYXVWAxGgmJE41FKp2aVhlOzcSCI85STn2zvRzz6PmgtlW9+Gz+YvMPHmRvCU3YSqtoQqtuguhUK+xEM8iApf42BBfMvBeDksHLW12o0Ue5Mb+AzVowGA1eWzuTJJvXF87lSfg5gN5n55Jy1Z/swdHTOeVxbH0y4/wAlH/rlWXfrnw9IkpSeU3PBRyEcROg5mnS7YEJPSoDhPc8C0Ocr5OWm9/PiS/ex9zvp/90yMuB975MdmVddJSeZTwTv8Xfp+NtnRt0u75rPY69eNrEn08BavlC1zGDPwlxQM+nPNdloueTiCfSln4o9GaTn1Jy8cuXpghiKKIJ7AEzO9PuGJqZR97otPP5fAq9utnP46OX4Q0YmImJarTBjBly6MsBF0n4WV8RMH0WXVGKxAJxOaO/QLiuynA6bMTnMCrE88TPobhocETQBvK1D9O/rIn956ajHmShqaiXDB/p8eJpdsos1jqxZZze0UhAETA6T4vMdFXxDwwG8bco2XY6yTFVrCEEQqH3/Apqfrsfb6SZnXiEVN84e03EUrCwje04+YV8YW4EjqcNTEARKr6ih9IqaMe1fZ2zooqaOjs64eKHlMP+5/42U2zS6B+jze0YEOH84xOHBLs1tj49B1PSGg/zi8GbqXd28v3Yp11XMTf/AJwFJktjd10ZIjLC6sBKDMHkzbumE73T6hs+6q1UrzGhpXjl2k5m1hdVs7NK2UUZFTbcb3EeLkTatQmorgfZiaCvhxwM5p7ecvL9peTksXy7fli2DrLpebnzvRxjE5DPV23qa+AyyqNmQIGrWZuRN6t88kavLZqtETZNgoPJ0wJKOjs6FQ6i/WXFf9A0hegcxOqeu1PV8JdhxlIhbXaoYT6B5L0RCGHrqEcTkIlEwrvcmwNAQPPzaHJ47/AW2dVxNRErvkstigRtukB2ZN94IDu02bWMmNNBO68/vUPXOHHnesnlkrbqTrFV3KUrkJxOjPRNrxUICrTGLqr1u7Tkh0Ie9qZ1t/il2agaHE1yYCc41OD+dmlrhLonl56kwZDt47kAJLx0q4XBHFu6AiYmImBkZMHcuXHMNfOQjMOu0ObR/7wCnHlFWscW7G21FzqSipjVXbi+SGIgT9oaQRGlEPPN3qcM1Bw50pyVqJgrD9uIMvG1DxHe/CvT7GDqu/n3MmnX2J9iNdrNC1Iz2vNUqPY+mnidizbMz62MTm7wxZ1oxZ05dL12d5Oiipo6Ozphpdg/w4Y0PpbXt7r42NpTLs1+HBrs0e28CnBhKvzP+JzY/yiOn9gLw1xPv8cb1f3+67PnMI0kSf7fxQR46uQeA6yvm8tzVH5+UQXlIjHBwoHPU7ZKV+08lWoFPS06HwVxeWjciakoBM3QUQVspUlsx//lwLZ86Gu0fVgLcPWnHZDbDvHmwZAksXiz/u2SJMgU2JEa49IX7CaQQNAF29MhCgi8cot2rfL/PdAr5NeXq2eKajLyRgCUdHZ0Lh/Bgh2pZqL9VFzUnAS2XpmB1IgViYoEUDiL0HsPQkbyfJsjl536/nIL84IPw/PMSfv/P0zoOQYArrpCFzPe9D3In+U8rhgK0/uJOwq6E8YXRTOHNXydr9V1Yyyc37TwZhbd9i9Zf3wuRMILFTsHNX5+S550o6Tg1p7LfeaJT01boUIlcYc/4Rc3goJ+2VxsIDQcpWFFK3tLp0R5K6zVplZ/Hs2UL/Pa38NZb0NaWhSSNt8e3hNMSYU6Zh/s+k82HPwwFSToR+brVgmN86bu90MmAagsZa5xTM+HpEYMRjDZZvklMJAcYOt5H2BfCpJEQPrIbUVKln5udZsxZVkKu2Ocq0O9Tv98CZNWd/VZIJruZ+G9ANP28b4/6fJk959zoR68zMXRRU0dHZ8z86ODbDCT0/Ms0W/nGkqv58q4XFMt397WOiJp7UrgQ03Vq7u9vHxE0QQ4Z+u/9b06ZqPl2Z8OIoAnwUms9TzTt586aJRPe9+HBLlXZ9uysQo4lCL5d3rObgC5JkspRWmsp5uRhG4cOwbFtqxE3V0BbMfTmgRRzNb49ScdQXKwULxcvlmfLLaNM2P/X/jfYldDr1SgYqM3I48Rw7DPYMNxHj99Nj189k36mRc3azHwW5BRzKM7VvLKw8ow+p46OzvRDDHgRNSaxQv2tZ8xNdyHh1einmbvu4/S/9r+KZYbOQxg6tftpRkQDO7vW88LWD/LG7yRcrqioNbq4tWqVLGS+//1Qpt2OTRMx4MV94GWMzjwccy8fVUjreuCf8Z3Yqlpe+ne/IPeKT6X/xJNA1qo7qSubj79lP/a6NVgKxxjZfpYIjyJqioEIYU8I8xhcg+NFiogqscmaYyM0HFSktI83KEiSJE4+eABPi/zbM3yiH3OmhcxpIGaFNErqE8vPW1vhV7+C55+H+noIKR4yFtFZIiNDYGaxm0sqOrl1cRt5zjAIsOxz60fCh7SIpqrHY1c4NZNbsC25sqipGYjjC6UUNaWIxODhHgpWJP9BEYMREvNIjTYT1jy7StSM9hqN4ijPwjSKiDwVmBLem4g/jL/bg/vkoGK5Ocuadp9MnXMbXdTU0dEZM293nFAt++Old7O6oEolar4X11dzX4p+ke3eITyhAE5zahv/745uUy17s+MErqCPbIt9tEOfME9p9Dp8svHApIiaWv00r6uYy7HDSlGz03d2RE1Jgs5O2LzXQ/dLi5E6CqGzCDqKaOjLI1bEkXv6NgkYw1DaDZXtCJUdFMx0sf+zH6CkZOxuiP6Al//a/6Zq+deWXAXAd/cqA4529DQjSuok+qnobfnj1bdyx5t/wRMOUmLP5MuLrjjjz6mjozO90HJpAoQH1P2qz1fEgJehnY8hhQJkLr8VU3bxpO3bd1zp1DTYMsm5/BNqUbProCIkSJLgQN8qXjx1Ly813kOvb/RyzygzCpr48GeruffeWKnqWIj4hjj1rRUEu+RxWO4Vf0/pR36ddPuBt38/ElYUT87ln5xyQTOKtXz+lDlDJ4vIKOXnAIFe75SImiF3UCVKmbOsmDPMClFzvOXngR7viKAZZeBQz7QQNTXdpzYLf/4z/O1vsGsXDI97iCxhM4nMKHRz+fwBvvHXGsrKoOW5drrfbYnfDH+vF0dpZtI9+buVPVZNTrNCfE0VtGPNk8vPtdyWEW8IToueQZda1AQY2N+dUtTUCgky2ExYTQbcpwZjC0X1+Pdspp7Hk1iajwRdm5tV2xWsLEsrzVzn3EcXNXV0ziKiJCIgjDrL7guH2NPXxpK80lFFv6mg2TOouL+6oJI7ahYjSRKFNic9/tgM5e44V5xWyXI8J4b7RkqYtXCHAtzf8J5qeUiM8GJrPffOmPzG9vFIksRzzYdUy19qrScYCWMxTuwnNZmo+b+HNymWnYny8x/sf5P/2Pc6NqOJHyy7jdXScurr5Vnuo0cZ+f/QEEAGcMekHwMF/VDWCeVdCOUdUNkBpd0Ipph7tQ9oM62nhIox735L1yn8EeVgbnl+OV9fcjWvtx9Tbb+9p5l8q3o2fUbWmRc1N5TP5sSdX+X4UC/zc4rJ1TgOHR2d85uwS1vUDPVfGKKmJEk0//RmvIflyai+V35C7Te3YXRkT3jf4cHOEWEwir1uLdbyBRjsWQqHrLFxC4LfRcPgXF5svJcXTt1Hy/DMtJ+r2NHK9TUPc2PtgyyoOMncfxsYd5mya/NfFcc98PZvyb/hi1iKZqi29TXsoFMjGMhet4aSv0uvNF5HZjSnJsjBKhk1OePa//CpAcKeEFkz80aceMkIDWmUYGdZT4tmMTFtvE5NT5uGO3x49GCiqSAqajb123h4VxVbGvLp+G97oqEwbcxGkdp8D5fU9fK+JW2U5siv01mZRVlZDaCdmB5IIWpKEVEVHJUYUGTNd2j2QYVY+bnRoeXUjI1hg4Paf5OhE/2EPaGkjsrE0nOQnZpG6+gtjqaLqGnSeG/6diecLwUoSJJIrnP+oYuaOjpniV8d2cL39r2OxWDkeytu4L665ZrbHXV1c/HzP2cw6CPbYuPFDZ9kbVH1FB9tDFfQx3BIeSKtzpBPcoIgsDy/glfaYgmhp9z99Ae85FhsSZPPoxwf6kkpaj58aq/quaM83XTgjIua+wc6VIIuwFDIzzudJ0fK7MdLYkm3UTCwrniGKk28axKcmqIIbW1w/Di8uXeA771mgM4PMNxRxEd78kC79emkUFkJCxfCggWwy7KTd4zvQmkXgi29AfjTTQdYURATNSOiyPf2vc7GzgYuKqrhy4uvJEND/NcKqfrWsmsxG4ysLqhSrdve08yc7ELV8qlKIS+yZ1JkT+4E0NHROb+50J2a3vq3RwRNgGBHPf2v/4LCWybeh1Gr9Nwx+1IEgwF77So8h+UgxA5PBS8fupsXTt3HkX7tcZoW2TYX11TKQuaK4k0YBFm8kHwQHmjHnFc+ruP2ndqpXCBJeI9u1BQ1ux75IlJYeV41ZhdT8ZknMEyDCfJzibB3dFHTP84E9NaXjtO1UXaZWXJtzP2HlSnDR7QERtmpqXSJiiGRSCCM0Tq2y31vq3qMOV6BdLIIh+GRR+DXPyxkz5FyvMHxpZQLApQXhVle1MUdy9pYUKY9nrbk2Eb+b9UQNaNOTEmUcNX3Euj34azIwlmVTaDfjxRRipWJ5eYGkwFrnp1Ar/ozE31uTafmaXFdiogEh5IIzeLpEvQkgp6WU9NoM2GNe81aGCxGMqomPqE0GaicmqB6z7Nm5Sv+jjrnN7qoqaNzFtjZ08zntj2NdLp+5OObH2F5fgVzc4pU235y86MMnu5f6Qr6+eLO59h0o3rmfapodg+qllVl5Iz8f0WCqAlyX80qZy6ecOpB0YlR+mr+rl7dEyrKy61H8YdD2Ezj7/XS7RtmZ28LKwsqKdYQk7RcmlGeaT44IVFTlET29ilF33nZRdhNZkrsmQoxNd3yc1GUewudOCGLl/H/NjSAf6RyJRdYP+5jT0ruIJR1QXknQlkXX71+AV++bgFZce1t/nPfEBt3tyTdxR01i3my8cDIdwXk9/q7K64fuf/ZbU/x26PyZ+OtzgZCYoT/WnWTal9aIUxLcuVBX77NyaysAkVv1x09zRg03DQ1GdNjplpHR+f8JpRE1Az1Jf/NPJ/wHFa3Cxnc+CcKbvoqgsGg8Yj0SSZqAngLL+fRY3W8cOo+dnVdnvY+7dYAt95u5d67I1Q/U4FZ1E43DrQdGreoGWg/olrmPb6FnMs+olgW8QzgPaas8sBoovIzj4/7uS9kIr6EYJVsZagKyE7NsRL2hujeEvs+Bwf89O/rovhS9URrlMSQIABzpkUzBTzsCY1Z1NR0amr0sjzTNDfDz34Gzz0nj1lFEWDsVSu5ubBmDXzoQ3DXXeBpcHHiL/UpHxMvhtkKNETNXi/ejmGanqzH2xp7v8xZVuzF6tLyRKcmyEJnoqhpzrKO9OrUEu6i4npoOKjp8ozSv79rbKKm1YQ1P3ULr8y6XATjxH53J4tUQUhRClfrv3MXErqoqaNzFvj9se0KkSYoRvjt0a38ZM2tiu0ODXSypbtRsWxrdxNDQT9ZlrMz+9Si4VSsdOaM/H95gboseHdvK/2B0WewU4UF7eptUfTnTMQdDvB6x3Fuqhxfn6bX249x82t/JChGyDRbeeO6f1C4AQGea0kuaj7bfIifr7193CVlDUN9uMPKgerSfPmEXOrISipqRiKycHn/u0388p16vG3ZzPDNIdCRS0MDBM50xZAgYiwY5JqVucydKzB3ruzAnD9f4tZ37x/5/JY5svjq7beSkTAOqcpI3Xvzy4uupN3jYmtP08iyQ4NdHHf1MCu7kDfaj48ImlH+fHwn/7nyRtXf4tCgUtTMMtuocMZmndcUVis+g0MhP5s6TyoeU+7Ixj4B4VxHR0cnXZI5NUMXiFPTU/+2almo5yTeo+/gnDexPsOJyefeSCZP77qYh78ML7/0dcKR9C7eTUKIS8pe4YbaB7n5hgDzvvoEgfZjNDylLWiCLGpmLLpmzMcsSRLBDrUYoyXQeo9vUYV85F392RHhVmdsJDo1bQUOIv4wYiBWRZNYcpwO/h6PymGm5d6LR8uhp+XUBLmvZrScOR2kiIi3/ew4NUVRDvf59a9h61Zwuca3H5tNHofefjt8+tPqhPJUIT1RLNmxayxzlhWDxSgH7JzGVd9L//4ulbAYGgpois5aoqa90IkL5XVPtJ8maJdYR8vPtUKC4hk+OUDIHdT8TCR1ao7yOZkupeegXZofjznTQvbcqamq0pke6KKmjs4U4w+HeLxxn2r5307s4vsrblAIJn86vkO1nYTEjt5mri6bWKnzeGn2DKiWVTpjwtSKfLWo+V5fK65Q6hMwpHZq/jaFSzPK000Hxy1qfnnn8yMl3sOhAB/b9DB7b/vXEWGs3etSpWbH0+Z18V5fKysLRk+pfq+3lV8e2UyG2codNYtZVzxDMxl+WX45kgQ5/kKkBuQk8d48envyuOpPIk2NBpqa5LIcqD59gz2qPU0ch0NOF6+bHeZx/xtQ0i0H+BT3cHXNDF68NjFwQOCVaz/N/53YiT8S5u/qVmiWhFenEDUX5pSwPL+c26oXKkRNkN2a/zD3Yv7+3cdVj+sNeGjzuqiIE9vDYoQjCeXnC3NLFMLnmsIqVc9WX0R5ITNVpec6Ojo6yXpqhi+AnppiwIv/pHoMBDD4zh8nJGqKAQ/+pt0EI2be7biGF07ex1ttt+N7ICoojC5oXnYZXGX6ClcX/oFcWx8A5kF5XOZv0U5KjxJoOziu4w4PtCH61YJTsP0IEXc/xrgqAu/RjartnAs2jOt5L3TEUAQprOzJY3KYsRU48LbF/h6BPh+SJI1pcjs4oB4bR+KEUi20ys8tmVZtp+YYxUh/jxcppO4/FPGHEcMiBtPkOvX8fvjtb+WQn337ouPZsVNRAddeC5/5DCxdmnpbS7YNwWRQ/U0V2+TGxEVBELAVKv/WWsJgKrSEVK2woGjyOaQICmJ0UTNagq7lVtQWNY0YHWYMVqNCqI8na9b0Gf+O5tTMX1k2bVylOlODLmrq6EwxL7QewRVUn4wGgj6eaNrPB+tWABCIhPnbiV2a+9ja3XjWRM3RnJqVzhwKrE56A3FhQX1tmr0wyx3ZtHljU7HJnJquoI+HTymlOqvRhFEQ8IZjotNzzYcIixFMhtGbXcfT6/eoQowODnbyUms9N1TOA+D5FnXJVyLPNh8aVdRs87i48qVfj7gyf3lkC8uctVj6i5AOL4CePKTT4uX/+mfyjRbweO5V7UddlDdJ5A5CSQ+UdPNfN69i+UILc+dCeTkYDLCxs4knXlKmhC9N0gfVbjLz93MvTvl01c7kouaHZ61EEARurVrIl3e9oFj3TPMhOnzDnBzu03zsnr42hah5YqhP0ZcUYEFOieL+msLRe9VORUiQjo6ODiR3aor+YSK+IYz2LM315wO+hm2qfpBRhnY9Tonn5xhTnD+SIYrw2iNH+dO7v+CVxrtwBdP/TZ+bu4cbax/k7g9aWfUv/0Hjf27HWx87BwV7TiJFwgRa9qfcT6AtedVH6scdTrrOe2IrmUtvjN1PFDUFA45Zqc/HOtqEfRoikN2MNR+V0BXxhhQp16MR0BCntIJc4lEFBQlgyrBg1njesSage1qTB1GGPUGFg3G89PSYuP/+YrZsMdLUpDIUp4XFGGF2sZub1/TzjftrcYyhKl0wyCKlryO5mzqxF2OigD0WDGaD5vtm0yhTjy8BN9pTODWTJJ/HM7C/S1vU1BAtjTYTgiBgzbNrvi+WXNuo5elTiVZpfjwFK/WAoAsNXdTU0ZliHmjYnXTdH45uGxE1n2k+SF+Sku2t3U2ay6cCLVEzvqemIAgsL6jg1bi+mieH++iLEzkBajPyWJhbqhA1u3zDmqX1DzTsVoiXAHdUL8YXCfFUU8wR0RvwsKW7kctL6sb0mt5NKPGP8qODb42Imqn6aUZ5pukg/778OsWycBg6OqClRe4P9KdtXQwdvB76cqA/B/pzec+tHtgAnBrLixgDRUUwaxbMnAmVM0J8r+NhKO6Fol4Ee0x8Xrwhjw0V8xSPTez7CbEy+fFQ5sjCJBgIS8oZc6Ng4L4ZcijDrOxC5ucUK4J+tnY3pfwe7O1v4+aqBSP3D2qIAwtzlaLm4rxSbEaTKiE9Ht2pqaOjM1UkEzVBdmsay8dXmXAu4Kl/J+k6KRTAtfVB8q7+p7T2JUmwdy88+CA8/DC0ti4H0gv9qcxo4IbaB7mh9iFm5siTm2Wr/waApXgW3vgS+UiYUG8T/lFFzcNjdvQBBDqST676Trw7ImqKfje+RmXVga1q6aSkxl+IRDRCgkx2k2a6tL/PR8YYRM3ggLoP52guwMTyZnOmFcEgTIpT06vRT3Pked3jFzV37oQf/tDAq68uxuUyMZ6Qn9JSWFrQwfuXtrCoXBYYM2bk4HDUjnlftoJRRM2E16kVFhRFMAoUrqnA3+dl+ES/qp1AzsIiBIP69TrKMrGXZsSOQ4D8pbFxqZZwFw0K0nJqJpbID58cIDQcUIVOJSs/B1lU1Xpfsmblj7u91plAqzQ/StasvDG1XNA5P9BFTR2dKaQ/4OXF1uSD0k1dp6gf7GZuThF/PKZddgVyKrMoiRiEqbfWtyQEBdmMJgqsSlFuRb5S1ARU7tQleWXM0BCITgz1KvpySpKkWXr+6bkX0ejuV4iaIJegj1XU3JpE1Hyn8yTbe5pYmFPCGx3HFevKHdmUO7LZ3tgD/bnQn8OBvhw+/Y6X4W4Hzc2ykNnWJve9jDH79O3MYsn1snqBg5kzYwLmrFlQV4ciqOe93i6+/5y6HQLAtu4mrk8UNZOUyY8Xo8FAhTObRreyrcG1ZbMpccQO9NaqhQpRM74nrRaJ4ushjZCg+TnFivtmg5EV+RWqPrbx1Oqipo6OzhQRHlRPIkUJ9bdiPY9FTa9GP814Bjf+cVRR88QJeOghWcysT50LoqC4GG5ZvYsrw//EooIdJF7LO2ZeBICleKbqscHuEwRaU4uaon+YcH8L5vzkYTBaBDVCgqLE99X0ntgKCZNzjjnrxvRcOjHCPrWoaXSYNUXNQJ93TAnRmuXno4maw4mipixmmhObljMep2ZyN+JYBFJRhMceg9/8BrZvB58P5LYO6V+3WCywaBHcfbfcG9Npi7D3W0q3spY7NR20elxGMZgNqp6N9pIMzW2d1dlUv28e9tOl5GFfCNeRXgYOdhPo9+EozaTihlmajxUEgVkfXUrHW41EfGEKL6rAmh8TTw0mg0qojPZ2DbrU1W8FK0vpfjeuNYkEg4d6KFyrbAuWUtRMIgZOp36akNqpWaAHBF2Q6KKmjs4U8tipfYTE1L1y/nBsG/807xJebz+WdJvBoI96VzfzE8pnJ0pYjPBWRwMGQWB9SR1GjXTRRKdmpTNHNXu3XKOvZiJL88sosqkTxo8niJrvdjdyMCHgZUFOMZcU1bAgp1jl8nu66QD/s/qWMc0oajk1pYAFBrP40v1HWGk04N9yCdJgFpy+uTzFdPbZkfzKUvffpf2sE8NglKiuEqithd3CflxZbbLbsrgHivoozrex6e5/G3U/x4Z6kq7TckJu72lW3HeYzMzMLFBtNxaqM3JVouaHTjuWo9xWvZD/3P9G2vtMFF+1ks8TnZoAqwurUoqaulNTR0dnKpDCQSJu7fYacH6HBYlBH76GbSm38Tftwde4G3uN0nHZ0QGPPCKLmTuSzw2ryMqCO+6A++6D9eshcNxN03+pd2DMLMRcNAOQnZqJ+BrfI9Q7ejWNv/XgmEVNreTzkec9uQMpHEIwmTX7aTrmpp/irqMk4lWLQCa7GVu+2r0X6B1bArp2+Xny6wQxLBL2KEVWc5bsxNNOPx+DEBkW8XUmdy+OJpAGg3J/zD/9CQ4cSJzQT4+cHPn799nPwpVXKtcFBtTPP5ZS/3hsKZyXllyb6hoie3Y+llzbiAhtsBgpv7aOwrUVChemyW4mf3kp+ctL0zoOc6aVqlvmJF1vcpgJxomakSRBQaYMC3nLE0RN5BT0tERNawpR0yCQWTf2Vh9nEpNGaT6AKcNM9tyJXZPonJvooqaOzhTy4MnkpedR/npiF8Y0HJhbu5smVdTc1dvCRzY+xBFXNwDXlc/l+Q0fV5zYI6JIa1y5OECVRk+rFQWjz5ItzSvHaVIPRhLDghKTrQE+PeciBEEg1+pgfelMhQDc7BlkT1+bZgq7JMHwMHR1ybfOTmhujfDu6wsQ+9fAYPaIaIlPPrFvPH0DZa/M5AU6k0dxMcyYAZmlHl4NbkUo6IfCfijo5xtXrOI7qzYQjITJ+Nv9CAnl223eAJ5QAKdGOE88J1KImtt7mhU9So+6uqk//fmIsiK/QlP8HgurCqp4Jy5lPMdo5YYEh+iK/ApVD9Z4HCazokVBo3uAgYCXXKs8cE1MPi+0OSmyq0X10fpq6qKmjo7OVBB2qSdiFOvP47AgX8N2VT9NgyMH0TuoWDa48Y/Ya5YzOAhPPC7yt990sWl3MaKU3jnJYvBzecXz3HVDB3/3k89ii6s4NdSuBMEACedWW93akXGRllNz+L2nVMusZfMJtCsdZoG2Q2QuuSGt4xx5TApRUwr68DfvxT5jlbaoqaeejxttp6ZJs8fgWBLQJUnSdGqKKXpqaoUERUVNg8WIYDYogn7G4tT0d3tShueE3er3we2Gn/0M7r8fjh4dX3/Mykq4+Wb4f/8PalNUkms9v5ZbNh1SipoaJfYGs5G5/7iKvl2yez5vWcmk9BcdDaPdBIOx++Ek5eeWHBuOskwseXaC/TFh3d04SGgoMPIZAe2erUarPM7XEjWdlVmjBvNMNYLRoBlqlL+ibNLDrHTODXRRU0dnijg13MfmLmWXxLrMfOZkFylK0vsCXv7nUPJeUlG2dTfx8dlrJnxcITHC9/a9zvf3vUEkbvD+cls9m7tOcVnJjJFlXf5hldO0wqkus6ly5pJvdSTtCQqyqKnF8TiRrc/v4fFGZRmXw2TmgzNjLr5bKhfyWn0bDGXCcAa4MvjqoWFWWGLiZXd37P8B1XjQCKxPepxnlEw3ddVGcksDtDoa6MpohoJ+5s00sfFD95GfJQ8imt1Bah97WfHQnpAsqx4b6lH83eI5MdzHkiQhPlGShTMBuMMBDg50jvTMfKZJndh6c+UC1bKx8tn5l/J8y2HqXd1YBSNfq1iN1ag8PcmBQQv4Vf27qsevKazi8pI6fnDgLcXyvf3tXFE6E384xIkhpeNpYZIJgbUpRM1si4086xi60evo6OiMk1CKfpoAof6WKTqSqcejUXpedOf36Hzgn0fKqv1hG4/eP8zbT0Z48SUDwaABGN0dZTBIrC1+lRtnPMhVlU+TaRmi+JYfKQRNAIMtA2v5fAKtyvOevW7tyP8tRepWN/5T6oDHrIvuo+eJbyiWjTUsKOzuIzKcfBIS5BJ0a8UifCe3K5ZbyxdgmmBFxYVMWLOnphlThkVVHuzvS9+pGXYHNUXEiD+ctOeqKiQIOfkc5HGS2WlRCF5aQmAyUoUEQUwg7e+HH/1IdkSfOjV2IdNgkJgxw8dHP2rlc58zkqFd2a1Cy3Vq1nCnpoO1IIWomaMtVpozLJSsrxnX842XRDEx4g0RCYRHHJtRLDlWBEEgb3ERnW/HOcUlGDjYTdHFMWNGolPTYDGOJIXbSzLAIIAY+6Nmz56ek/kmu5lggqipBwRduOiipo7OFPHQyT2qZR+oW87y/ApVn00xYYRwaXEte/ra8MQ5F5L1gRwLhwc7+fDGh9jdp+6TCPBeX6tC1NQOCVI7NQVBYHl+Ba8lKaHPtzqocGYjISmCWSRR4Eirm2PHoLcXHtjXgn/XUnA7kTwOGHZSIFRw6x/t9PVBTw/09FyEJCoTPV89fTubOBxQVSXfKivlf3/V9TzdjlbIH4TcQWx2OHDfd7Gb7EjSck4MVdHj97C2qErRL7VYw1HY4ZMHn/F9JhM55uoZVdRMdMYmsrW7MSZqaoQl3Vq9MOXj06HCmcP2Gz/L8zu3UGR2kG3SdpfeWr1QJWqaDUZ+f8n7Nd+HvX1tXFE6k6Mawu+CXO2L3wpnNqX2rJH3N566zOnVKF1HR+f8JVVIEMg9Nc9XvBohQVmr7sR14C1ee36IF07dxxstt+MJpZ/+vnatXFp+ddEfkF78lGKdVhk5gH3GGpWoaYsTNQ1WB6bccsID2mOoKJlLb6b3ue8jBWMTvWMVNVP104ziO/4utpoVSCHl7K3eT3NiRDScmiaHWU6LTghWGYtTU8ulCSBFJKSwiGA2qtalcmqCXIasEDXHUH7uTSFq9gxb+Pkvcnnj76F1HD89DgesXi2yYcMpNmwYxGCAJUuWYBqDEhHSeC1aJffpYLSaMGdbCWn0pkwmap4NEnt7iiGRgIZwHnWN5i4qVoqagLvJlSBqKoXAaD9NkMvhC9eU07NV/iNbcmyKx04nnFVZis961qw8bCnEap3zG13U1NGZAiRJ0kw9v2/Gcmoz81KW1QJ8as5F/OnYdt7ubBhZdsTVrSivHSu/PrKFf935HIEUSc9HE0qNmxNCgkDuqRlPKAQuF9T6ZiOd8oLXLpdye23gtSN5bdiEUj78ssDAgADHP4s4aAG3A7x2dkgGYt1l5p6+xWg8fYsx9SKTxRahqsJIWRlY8ty8HtiJkDcgi5V5g9ywuITnbrtPES7QMNTLd554W3G0lxXPxm6SZ2EFQWBWdiGzsgtVz2c1msi12BkIxgYyXT65mXsqUXM0wRJSOzUB3u1u4h/mXUK718W2HuVAaWFOCTOzJsf9YTOamWVP3bPn8pI66jLzaRiOuS6/vuQqFuSWqJydAHtO99XU6qe5QKOfJsh/hzWFVTzdrHal6iFBOjo6U8Voomb4PO2pKQb9+BpibWckCQ5zD7/+ehGPPHg/Pf2pW6rEM2+2nw9+2MY998itXAA6/rqPgYTtLCXaombW6rsY3PjH2LFlFGOboayQsRTPSi1qGs1Yy+ZiLZ+vcHEG2g4jiSJCmu1bAm2HR93Ge3wL1srFquW6qDkxwj6Nct3TPf0SU7QjvjBhbwiTY/RyXa1+miP7CUQwaImaQ1qiZkzYS3Quhr0hpIg44sRLhadNGRLUMmDjL1tr2HSigH6vhbGOt/PzYcMG+MIXYNUqCIdF9u0bHNM+4pnM8nOQw4Kmu6ipVfbt7VCHOUWP2V6aoXIPh4aUn7NEp2a09DxK5c2zyV1YRNgTJHtOAQaL+nM4HSjbUIevw42/x4ut2En1++aN/iCd8xZd1NTRmQJ297WpehGuKawaEbA+Nns13937muZjcyx23le9iMODnQpRE+Seh9dVzNV8XCqeajrAZ7bJfZ8kCQiZwG+VbwErBCzgt7LpRAb/d1zuQ+l2wxsncxBP3Qp+i7yd38r//KqG//HC4KB8845MUq8nWVl3C/C3kXvTKKXOGMaY62ZhrYN9Yj3kuBByhiDXBTlDkDOEkDNMy8e+TJFdrpeJiA4qHnmHbn9sUPv2cA++SBBHXM9QLdfqNWXpp6CX2DMVomZnGqJmqhAggP6Al/4ULQKAESHz2TPk0hwLZoORB9d/kM9ufZJWr4sP1q3g60uuBmBGZh6ZZivDcQ6VvacdyFrJ5wsSks/jSSZq6v00dXR0poqw6+w4NSOeQSQxfNbKlX0ntyOFAhwfWMALp+7jxcZ7aXNHG+2NLmiWOpu4oeYhbpzxIFf+27fJXvU+xfpg13HlAwQD5sIZaOFceA0Fd3yP7ld/DvZcQpd/EUNCn2pL8cyUSe3WsnkIJgvW8oUKUVMKegn1NmIp0n7uRLT6aZoLqhWhROHBdlxbH1Bt55h9WVrPoaNNJEn5OZC0r6bJMXoCejKnJsjCk1ZpdTpOTQWSLGyaM1N/d8RQBF+nm7ZBG3/cUsPGE4UM+syMTciUKHAGuXr1MN/7fT4z6ibXdKBZfj7OoCCQ+2oOn+hXLZ9OoqZWyrevXR3mFD1mQRAwZ1kJ9MbG9olJ6SpR06Zu95Q5Y3oFA2lhK3Aw/1/WEvGGMTpMeiXVBY4uauronAFEUQIERBFEEf7vyB6koAkkA4jyj+7tBavo74dwGG5wruG7Pe8hRQwQMcq3sPzv5RVL2PSmGVP7QqTdXRA2wentftkQ5ngx+Hyxm9+vvK9eJtHQX4no/yaEzLKAKWrPwh0CPqJYUn36FmN078DZRRAk8vMFiouhqAjFv0LWMF9veOS0aOkCp4/bahfy+JUf5sZXd/ByW71qf5cU1YwImgBGg4Gbqxbwx2OxHla+SIjX249zS1Ws3+RrbWpRc0N5+qJmqSNrJMQJZFFTkiQOawh2UY67Uouax0cRPQFODvfR6R3iaY1+mrdVTa2oCbCyoJKtN/+zarlBMLA0r4xNcX1r6109+MIhDmo4nhakCNlaU6TdV3OGLmrq6OhMEaM5NUXvIKLfjcGWuiFdeKibvpd+jO/kDpxz11Nwy9cRNJztAD3PfZ+eJ78JYoS8DZ+l5IP/O+7jHw+NjfCH74V57Pl9HBtUOw6TkWvt4dqaR7mh5iGWFb2LQZBb+AQ71efwRFHTnF+lEiqjCIJA3g1foqX82qTPnax0PYrttHPSWq7uPx1oO5S+qNmRIGoKAtmXfoTep7+jWBzsUL5mc1Ed5iQ9zHXSI9GpKZgMCGbZ+WjVSkDv8+GsTEfUTN5/UyvMBbR7asYLluYMtQgWcgdTiprNzfCdr4Z56ulLGfCOXcgsyfJz1Zxu/m5NMwUZ8vGZDpQjzZgzqUKTVujReNPPIXlY0HQSNU0O9W91KqcmgCVB1AwNB0d6tEqSxccq+AABAABJREFUpAqiShQ1zyUEQZiQW1fn/OHc/RTr6Jxl3nxT4ItfnMPRow5EESRJQBQlubeylHgSv/n0LcaXTt9kcoCvaT7PU6dvUAV8VLHu+dO3sSGcfr5zF6dTLmvJz5fFyeJieMG1gz5LF2QPQ6YbsoYh281ldUX89Yq7qc7IU+3nryeOImxSXgBcUlQDwBcXrdcUNW+qnK9adkuCqAnwh2PbRkTNsBjhzY4TivXF9kwWJenrqEViX81AJEyP352yfHy00nKt9bUZeZxyK2euX2qr562E469y5rAsf3pdKC3NK1eImhFJ5OBAh8qpWeHIJseqdldEWZFfgUEQVL1tdaemjo7OVDGaqAkQGmjDWjpHc50kRhh48zd0P/GNkdRwb/3bSEgU3f5t1fbB3iZ6nvi3kbTv/td+Ttaae3DMuli17WTS3Q2PPQYPPgjvvgtwVVqPs5vcXF31FDfWPsja0tex2CyKnpUAwY6jivtSOKhwNsLoouRoaCWgx2MdRdTMXHazarkWiT01zfnVZCzYoBI1E3HqpecTJtGpabLHXGFaTk1/mn01U5Wfi35tUTOYWH5uEBSl7loiX1hDDGxvh+99D558Ejo7IR0XdBRBgJkz5R61N+buxdCpdjv2bG/DnGOjNI1gHU/bEK7DPVjzHeQtKU5aKh/2JDhmDcJIG4DxYCt0qhcKSufr2UbTqdmR3KkJ6uOXwiIRbxiT04wUFpEiyrHtuSxq6uhE0T/FOjrjYHAQ7rvPQF9fmpF9OpoIAmTmRBiy9EOGB5xeyPCypDKbA+ETSE4PZHjB6aGsyMT2ez9Bfr6gSikF+PWREJ/Zpg4X2Nw7zNKn/4f/XXs7H6xbrpg11gpbuui0qHl5SR2rCyrZ0atMmL25Sn1hclXpLDJMVtzh2GDzhZYjbOk6xSXFtezoaWEopBy8Xl02a0wz2CUaYUEbu04STpJ8DtAb8KTsu6rl5PzQzJV8Z68yZul7e19XPc+tVQunXanHUg2RdXPXKRrdyg5qyfppRskwW1mUW8q+/nbFct2pqaOjM1WkJWr2t2qKmt7j79L513/C37xXtW541xOaoqbv+LsjgmYUz5G3zoioOTQETz8tC5mvvw6RyKgPAcBshuuvh+uKfslq7xexm2Snm33mxZT//f00fG2hQtgMdipFzWD3SdVrTNZPM11GdWpWLDr9r4ao2aqugNBC9LsJ9TUrllnL5mGrWYFgsiCFk4fB6P00J044ISjIGCci2jScmv5uT1r7TVl+HtD+UiSWn5szLQiG2FhMs2T9dC/K7m5ZyHz8cVnUHAsGQaI238On/sXO575gHBmHH/ihj2SfvvZXGrBkWclfnnwCv293B42PH4bTOlvvznZmfGCR5utILD83Oc2K1z5WtJya5kwrBlN6fW6nApOGaJtYPi6YDAq3opYoGxoOYHKaVY8FXdTUOT/QP8U6OuOgtxf6+qaXoHNWMIjk5RjIyWHklp0d+/8uzzE2Dx8Ghx8cPnD4WFCWzXO3fICcHMjMhO6Ah4pH/lux2xNGM0RCigKYDyxcT3l58vf87+dejCcc5Bu7XyYkKgeDQyE/H9n0EPv72/nh6pgr4t2uRsV2NqOJ5aeFMUEQ+N6KG7ju1d+PJGffVDmfudlFque2m8x8cs4afnJoo2L51997kbeu/0deaz+qesyGMm13TTK0RM1E96QWx4d6WV1YlXRdIh+oW853972mcCkmOjdh6vtppoOWc/TBk+qAroWjiJoAV5bOVIiaJfZMVSiWjo6OzplitJ6aAOF+5aRbxOui84HP49r8l6SPCfU2jpQiKpb3N6u2TXQ6TgS/H156SRYyn39evp8OgiCyfr2Be++FO+6AvDwQAx+l94Uu/E17yVx6IznrPo5gNGEtma0QcgMd9YrXquqnySQ4NYvqUq6POjVNeZUYbJmI/ljpaGICerC3ifBAG/YZqxUtAgIafwdL2TwMFhu2mhX4TmxVrY8y3URNSZLo39uFt22IrJl5ZM3Jn3YTpImEVU7NOGdkpgWjzaQQi4YbBpBEKaXgJkmSIrk5ES3xCdRBQZYEASuxp+ag18S//bed57aMPbXcYJCYVTDM+5a1ceuSdkwGmP+JtdhsssNREiVCrtRf5MYnjmDOtJA1Sz0pPHioh6Y4QRPA3ThI/a92MvNDS7CXKI0jieXnE+mnCbL4Z7AaEeMEZEvu9Ck9B6WAngxLtlXxHYoPjooSdAWwl2Rofq4MVl0O0jn30T/FOjrjoKICFiyQOHRoeg/EQHZD2u3yzW/w4hE8YAmBOQzmEDMKM1hZXkxmJgwbhni0YweCLQDWANiC3D57Fp9eugKzLcxV7/wUrEF5nT3ATbWzeXbDx5I+9+ONPra8tVmx7JLZa6mpid0vsWeqXI6+iLop+121S0Z5nQL/b9EVXFU2mw9tfFAzQOd/Dr3DtRVzuLpsNoMBH4cStllVUIkl7kLiyrJZPHv1x3j45B5mZObzT/MuSTr4/sriq/jDse2KoJpNXad4ua2e19vVF1JXl43tQqrEkaVa9mb76KLmsaGepKJmYjp6ptnKjMx8FueWsrc/+TR+ntXBZcW1SdefLebnFGMxGAnGidq7+9SptKn6aUb514XrearpAI3uAcwGI99fcQPGNFNqdXR0dCaCJEYIu5Tnp0RBDJRhQZIk0fKTm/Ee25Ry36LfjegdxOhUBkEkOgFBFgUnQiQCb70FDz0ETzwBLlf6j12Qv5Mbah/io/+2jnm33KZYZ7A6KHrfv6seYymdoxA1Ra+LyFA3pmw5GC7Yqe5tPVFR02B1YMot10xAN2bkY8qRXWqCIGAtX4CvYdvI+kBHPZIYQTAY6Xv1Z3Q99K8gRrCUzKb2m9tG/kaBdnX3cmupnPRrn3lxUlHTlFeBuXB6natbXzhO9xZZjO/e0kLt3QvIWzr6OflsIUVEhegFKEqeBUEgc2YugwdjlS9hTwhv2zDOSvW4LUrEG1IkVKvWa4hPYihCJKG/Z6Irz5xhwR808H/bq3n+QCkdQzbG0iNTECRmFri57+p+PvEJ6HpNOc4Mu4NQJIuaYU9QVcqsPmiJE/+3j7INdeRfVBZb3hmieesRhaAZJTjgp/7Xu6i9ewE58wuJ+MP07ekgNKx2ak4EQRDIX1pCz/bYdzdvcfIQybOBVvp5Iok9QBOFbog5fCN+9WfOaJue6eY6OmNBFzV1dMaBzQZPPx3hu9/t5dgxOwYDZGdnIggCHX4XHX4X3kgATyRIhAgIEggSggCriiqYk1OIwSALjiaTXFJlNoPFov3/6P3OwADfPvASGCMjtw3VM/i31VeMCJd2u3x80f9bLPLz9Ae8VD/6XQzhmGBoFAy8fefXqDw9GToQMPH4gy8rXqtU5eeaq1ZwYmgQoUHZm7A6Iyfl+3RZ8QysRhOBSGwQdkWpsv+UIAjMzMpPKaLVZOSyIr8i5XNFWZZfzo6bP8/X3nuR/z2svrj7521Ps+fWL7CtpwkpYTR1cZF68H9dxdy0EuYLbE7+38L1fGvPK4rlX9zxHMcSxMPFuaWUaoiUqdByao6Wbg7Jw4IkSVI5NWdlFSAIAmuLqlP+PW6qnI/JMP0GQWaDkYW5JZpCZjyjlZ+DHMx06PYvsbO3hUpnDjWZ6p6sOjo6OmeCyFCPqkzaVrsS75G3FMvCAzFRM9B2eFRBM0qorzktUTOY4HRMB0mCnTtlR+Yjj0T79aXHjIIWri//AzfUPkRNljwZOPOy/5f24y2l6nN1oONoTNTUcmpOsPwc5L6aWqKmtXKx4r1LFDWlkJ9g90kCrQfoeuDzI8uDncfoefo7lHzgp/Jr0Eg+t5bL/b0dsy6h/+Ufax6XY866aeWC7N/XOSJoRuna3DytRU0tcdGU4J7LnlOgEDUBXMd6U4qaqfppgnb5eaKoB7GQoHAYfvc7+OUvHBw5sh5pjEJmbb6H25e0cceyViwmKLqkEnu2etwZ75YMDqqT2DNqc3A3uZADBmSkiETbyycYONwN8yXwS7DVg5Si7YQYjNBw/36y5xQw3NCPGFK3WppISFCU8utnYrCa8HUMkzUrj8K16V1rTBWJnzUtEkVNc5babRo6nYCuFUCll5/rnA/on2IdnXFSUwOf+1xsELtkyRJMJhNyCE8OIAtHXb5hTg730+UfZm52EfNyCsf9nBExm/958JDCDdiU1cOll14x6mP/cHQb3rDSAXlHzWIq44TJXKuDYnsmXb6YG+To6cTt5oS+hMCo5bjF9kz+e+WNfHHn84TECLdXL+LOGnWi6cysgpQi2l01S8Y0MLebzPxkza3cUDGPe97+G4PBWMJkvaubXxzZzGBQPaC8KEnqdbr884LL+MWRzfT4Y/2U4hPLo4wl9TyKlqiZiM1owh9RDliShQX1+N2qPp8zs+TP5kVFNfymPnk5261nIfU8XZbmlacUNQUE5mm0ENDCZjJzWUl6ybQ6Ojo6k0VIo/TcXrMCb/3bsmoY3S7Oqanl1jPYMrDNWI338JvK/fc1Y6taolqWiOgfJjzYgTm3TLUukSNHZCHzoYegoWHUzUcoL4d77oF73x/C/rs5EIqdry3Fs9J67ijWEnVbl2DnUZxz5RLsQKKoaTBiKZi4k9FSPAtvvbqnd7Sf5sjxaYQFDW1/hN4X/ku13LXlbxS9/78xmK2qkCCQe2oCKXueTqeQIH+Ph6Yn1c5fb4cbMRTBYJ5+E6UAYa+GCJTgnsuarS6tHjraR9lVyccPqfppgrb4lFh6DvD6vhx+/1/yRILcmza9ihIBiep8L7csbufjd7kJNSvbDDkrsjRDauJDh4Iaped5S0soWFlG42Nqd7G3eQjakI2j6fTRlcBVnzzw0l468VwDo9VExfWpw77OJukEIVmyE0VNjfLzoahTUxc1dc5P9E+xjs4ZRBAEShxZmqXD48FoMLC6sIo34sqZjw/10uv3UGDTSPE7TUiM8IsjW1TLP7/gMtWyOVmFClGzYbiPkBihxTOo2rYyI1e1LJHPzr+Me2YswxcOUZVk+1lZqYXeO0cpPU/GhvLZ/MeK6/nM1icVy/9972uaoS8Xnw4JGi+ZZhtfX3I1n9/+TOrjGmM/TYBS++ifoZUFlRwY6MAVJ9geT+Lm1BI7Z2UVAKnfB7vRzDXjEGWnimX55aA244wwIzMPp3n6JFvq6OhcuIhBPyBhsCgTlLVCgsz5VZiyigm7YtbHUJxT09egFjWrvvgakeEetaiZkAAO2qImyKJgMmGxuRkeflgWM/ft09xEk9xcuOsuOT35ssvAYADvsR00xgmaAI6569PfKXL5eSLxJfTBTuXJwVxQg2CaWAkrJE9Aj/bTHLlfoZ4Q7Hny3zQfG/H0M7z7GbLXvJ9Ah1LUNGYXjzhtTdnFmIvqCHWrleTp0k9TDEU4+eBB7XJrUcLX4cZZlT31B5YGiSFBACaH8vLZkmXFXpqhSKX2tA4R9gSTugmDAz7N5VG0xKdoCfG+1mz+sKWG95pzCUbGIgZLVOV6uXlxB/euaMFmkd2PIY2vvqM8CzGocQyjiJqWbCvZcwqI+MO0vHBc4diUX5j2kVXfMY/QcID2V0+m9UpshQ4KViQPIDpfMFiMYBDU72McKqdmZqrycw1RU++pqXMeoH+KdXTOMS4qrFaImgDbepq4qXJ+0sc80bifNq+ymdXawmrWFKqdiXOyi9jYFRtUhMQIp4b7NUXNqjSDUwptqWdTZ54W07SozchLu/Rci0/NXssfjm5TOEGHQwFVsvXc7CLyUwjDaT/fnIv4yaGNNGk4WwGsRhOXjqMfZa7VjtlgVIUgxTM/p5hAJMzOuMT2Y65ezfJBLVEz+neozchTOXajXFM+B4dp4iU/Z4qleeqwoHjSKT3X0dHROdP0vfRjuh//GpIkUnjzNyi8/Vsj67RETVNOKaa8CoWoGVY4NbcpthcsDuy1Kwm0qR1TiaFAEd8QondQ8zgD7fU458WqQXp75fTkBx+ETelVuwPgcMAtt8hC5rXXyq1x4vEe3ah6jHPu5ek/AWAtUU+4RcOOxKBPFaw00X6ao+3Hlihqajg1UzG46U9krbiNYJeyr2G0n2YUx6xLcCWImsbMAs1y/LNBy3PH8HW6k673tA6NSdSMBMJEfGE5+dt4ZntdR7waoqaGgzF7dr5C1ESCoeP9SUvrA6M4NcUE8enoUfjqFzJ4dePleIJjuXyXqMj1c+PiLj6w4hQOi7qMOxGD1Yg1365KWgdlArlW+XnUNVh0cSUZ1dmceuww/q7UafCVN8+mYKU8cWIrctL46OGk/UZtRU4K15STv6L0ghDjBEHA5DARdqs/h1EsOUoR03A6DT3siT1mpPxcd2rqnKfon2IdnXOMtRol0lu7G1OKmlq9JT83X+3SBJiboy7NrXd1azs1JykNelYKUfPOmsUT6gllNBj42drbufzFX6bc7qIJujSjWI0mvrX0Gj62+RHN9ZcVz8A+DmeIQTBQbMug1Zs8aWFBTgnDoYBC1HSHA3T5hlVuYS0H5+zTjllBELiosJqnmw+qtrltGqaex7M4rxQBQdUvNcrCNEKCdHR0dM4kgc7jdD3ypZG+mT1Pf5uMZTdjr1kOQHhQ3Y7FlF2KObcC/6ldI8si7j7EoA8pFFCFydhnrEIwmjDnq4PiEl2Zob4W1TZRgh31uN3wzDOykPnqq3L/vnQwmWQB8777ZEEzI8X8pr9Nfb5xzNEepyTDYMuQhd84sTfYKYuaQQ0no3US+mkCWIo0nJqng4HiMeWUYnDkJBWQE/EcfBXPkbcgYTIzWnoexTHrYlxb/qpcNk36afbt7qB3Z/L2QiCLmuniqu/l1KOHiPjCGKxGMutyyZqZT/bsPKz5jokergotp6ZWInXWnHw631E6oF1H+5KKmqmSz0HuqdndDd/9Ljz6KHR3A6Q78S5RkBHg2nldfOyiRrIdaX5hT+OsyEIwCJou03inplbyebxr0FGexbzPrKb9tZN0bWrSDAUqu6aOoosrR+7nLijC+vd2Gv66f+Q9EowCuYuKKVxTjrM6e1p8rqcSo908iqip7qFpzrIqRM1gKqemLmrqnAfon2IdnXOMtRruyi1dp5I283+9/Rjbe5QXMJXOHO6oWaTaFmBOtroU/Kirm+YEUdMgCJRNUll9KlHzrtqlE97/pcW13DdjOQ+e3J10m4mWnsfzwboV/Ojg25oJ7NeUjb90u8SRmVLUnJdTTH/Aq1p+bKhHQ9RMXn4Ocn/RRFHTKBhSiufTgQyzldnZBRxNEpCkOzV1dHTGimv7Iwy8/ksEq5OiO/4De+2KCe3Pc+h1VRCQe9+LcaKmhlMztwxTnrpqIdTfSqjnlGq5ve4iAAyObFVyulrU1AgJipjZ3H4dr/zodt74FPhSV8sqWLdOFjLvuAMKkp/elc932lEZRRYoK5NsnRxryRylqNl9EjEUUJWew2Q6NevUy4pmYrAqRTZBELBWLMR3bLPmfgz2LERfnMAnSXQ/9lXVdipRc566r7pz/tXpHPoZxdflpvlpdR/NRLxt6YmakijR/OzRkQRwMRDBdbgX1+FeWgBrnp385aUUr6uatB6dEY2emiYNESijKhujzaQQjYaO9yGJEoJBPTZP1lMzGIYHdlbzzO8raf3I2I41JwduvRU+uuwoGZ2pAxOLLqmke2urZlmzo1weLxpMBtVrihfXEoVZg9WoEsgMJgMV188kZ14Bpx47RLA/9pjCSyspWa++pnGUZrLgC2sZONiNIAhkzcqblFCgcxWT3YzaExsjsacmyKJmvHM47A4iRURd1NQ5bzmznn0dHZ1JJ9fqUAWdbOo6xeKnf8RPDr5Dt28YbzjI3068xxUv/oprX/mdah//NO+SpOnVczVCVOpd3bQmiJpl9qxJS8AutGWQZVaflGsz8lien7qcOF3+e9WNZJiS91K8pLhmUp4HZHfofyy/XnPdeEKCopSM0ldzQU4xszRE6cT0dYATCctyLXZF+b2Wc/XykhnkWSffCTHZpCpBX6A7NXV0dMaA58hbtP36PrzHNuE58DKtv7gDUWPyaCwEWtQNKH2ndo78X1PUzC7FrCFqhgdaFYnaURwz1wKykJbo1kwUMcOny9EjooHtnev55ru/4/LHOvnsW8/y/L71aQmay5bBD38o99l85x349KfTFzQlSRpxVEaxlMwZlyNLVXItiYS6G7STzydJ1DRYndiqlymWJesHaktSgm4tm0/1l99QLfc37VEtsySImtaS/8/eeYe3VZ5v+D7akuW9Z2LH2XsvCAl779kyOqCl0Am00NLSRReltEAH/Aqlix1W2QQSyA7Ze8eJ997a4/z+UCz76BzJcuLYifPd1+XL1ne+c853bEmWHj3v+4widdHXu28XTCDlzC/1suoTiyzLoTLiiNRqg92INUdp2XU3ODWDcSLxtrpjBux4ml1Uf3yIyvcPRJ3TV+J1akp6HYmlacp9Hb6ogq0noqfmp/syuO1fMzjjD2fzl89KqWyKr/e31Spz6aWhoKCWFvjnP6GkJPbbe2uOnYJLRlJ8w3i0QtJt+d3BlIZEpZio7KmplNq0HINd2IenMOruGTDRAkVGmG0j9/ziqI9xnVFP+tRc0qbknNaCJoAhRliQIcEY6rsZgSkp4v4jh/52Iv1cMFQR92KB4BRkTtZwVar2rtY67lv/Ng9seBebwaRKtu7CZjBy+6jZUY9dlJCKWW/A0yNFe29rPeWdrcp5cYQExYskSYxMymBjU6Vi/LrivqWexyLPlsyPp5zLAxveVW1LN9vCpdf9xeVF45mTOYy1Dd3lSIUJKUxMPfbG5rES0FNNVrKtiZqu1wMRrkVZllWiZuR+MzIKKbAlK5yhN484PnfSQDE1PZ+Xy7aoxg2STtOJLBAIBFrIXU65Hq5KX+MRHLs+IXHqZcd8XHf5FvXYoc/DFRf+iPRznS0FncmCMVXbqenUSD63jpgT/tmYXoSnamf4tr+1GtnvQzIYkWXY8HmA5zc8yvtlN1Lviv+DxBEjQo7Mm26CsWN7nx8Nf1stQbey56JJoz9mPJg1w4L2nlBREyDrhkeo/Mv1BB0tmLJHknGZ2mEJ2n01dbYUCr/7FqbsUqyl83AdWB3zXOY8dcVEzm1/I3neLQScrdgnnIc0yL2vnVUdOKsj+nJLUHzDBNr3NSl7bMqh+YklsV9XunrpzdhF44ZqCi8Z2S/9NgOaQUHaLYSSR6fTukP52rxtbxMJhcp+oX6Xj6AnwMEGG0+vKGH1oQzc/vhNAnpdkEl5bdx2RgXfeXGSanukEBlJ1vxCJEkibVI2ciAYSio/atg0JBhJHt0dpGlMMOFp6P4Qpyv9XA4EVT03tRyDinWb9DC6e87pVkZ+rGiJ6F1E+50bI0VNQn01tYOC+segIhAMJkLUFAhOQa4eNpHn9n+uuc0vB6MKmgB3jJpDagy3nV6nY1RSJttbut9UbW6uwh1Q/iPsr36aXYxMzlSJmtcOP7bU82h8Z9yZ/GPf5+yL6Cc5N2t4v7+4kiSJZ8+4gbM/+Bt1rg6MOj1/mn3lcZ0nlqg5PjUnLA5HEunUrHG14/B7FWOlEaKuWW/gXwtu4murXqXa2c7to2ZzS+mpIWpGc2qOSs7EpBf/9gQCQXx0bvsA18F1qnHH7mXHLGrKwQDuim2qcX9bLf6WKoxpBSqnpiEl9GGYZvl5UzmuQ8o1GjOLMSRnd9+O7Kspy+xYX8drHxbwwguwf/9dca8/JwduvDEkZs6YAT3/pbkrttO85Akko4X0C+/BlBlfKF5k6TmEysiPBZPGft6aPWpRU2/AmKEufT1W7OPPZeTvD+JrqcaUNQKdSVtssE+9HF68B7peU0kSBd94MZygnrLgKzFFTZ01KXx/6IkkSdhGzT/+C+knOg6pwxJzFg4nqTQNv0b4jqOyvVdR010XPWyoJ7IviKvOgS0v+msmxfygTOOGahwVbSQOTyVtWk74tZpfo/xcH8U5lzwqXTXWtreJvHNLwrdbW+Gn9wf573/PoNlpQtMqqYEkwahcB9dPPsJlE2vQ6cCUGkXQiuFsNNiNpE3ufm5In5qLKclM7fJyJL1E3rkligAeg10pqAW9AYLeAD6HV9UjMzKwRtA/xHJqRnPHaoma3nYPAbeyP6+kl/qtVYNAMJiId3cCwSnIRQVj+NnU8/nNtqUKR2UsJCSuL57ML6Zd2Ovc0clKUTNS0IT+FzWvHT6Jlw51l1nNyxreb6XnXZj0Bv44+wouWfKMYvyc3P5za/RkTEoWO6/6PhubKpmQkqPqa9lXYomaY4++gU02Wcmy2Knv4XqJDAXqrZ9mFwtzS9l3rbbb5GRmSnqe5rgoPRcIBF0EPQ6aPvgjvsbDJM25Eft4ZQ9CWZZpeOOnmvs6dy875vN66w4ge7XruV2H1mNIzVcknEO3qGnU6DHp2L2UoEMpIPV0aQIY00PiXVXnMN4/fAPvl93Inn+rBdJoJNm9XHeDiZtugoULQa/xHtjfVkfZL+Yge0Ours5t7zPil1vQWWKkAx0lsvQcwKThuIwHc5468dtTu1fVU9OUWYLUzx9y6RNS0SfEFuZMGcMouPMF6t/4KZJOT9Z1v8E+qft1WdKs66l9/jvIHm1Xojlv7CnhcOssa1WNdSVcJxSoXws54wgL0nJqln5pMq07G1RhRI6KtrhFzdrPjlD9UShIqmlDDQGvn6y5oceaqvxcImrqtjHJjDXXruhl6Kxqx9Pu5Z8vmnj8cdizB2Q5XvFPpqRE4vbb4Xvfg32PbcLX0f2BtFYKO6iFyJ5kzi5QiViJI9JIHJGmOd9o1wgLcng1g456c2oKjg19lL8zRBeSVeXngK9d7dQUpeeCoYK4JwsEpyCSJPGTKedz99gzePHgJv6x/3O2NGunSxYmpPDlkTP50siZDLNrv2iJRKuvZiRF/SxqXlk0gSdmX8nLZVsosqfy6+kXn5AX7hcWjOG+CQt5dMenQKgP5R2j58Te6ThINds49zjCgXoSSxQdn9r9yfuo5EyFqHmwo4lAMIheFyrF0hI1S2OENZ1qZFrs5NuSqYoIVZogQoIEAsFRqp+9nfZ1LwHQuvxZcr/8f6QuvCO8vXPre7h79LnsibtiK4HOZvRx/k9V7KtRet6Fq2w9tjELkCOc9Mbko07NFPUHNs7dn6rGbKVzwz/X1MC/l57HS++fxZaGeXGv06x3sajgf1xc/CJXfWMGBdf/OOb89s9fCQuaAL76g7Su/Bdp597d67k8Gk7NYxU1DakFSCarQjh2H96kSpTvz9LzvpI06zqSZl2nuU1vTSR51vW0rnhOc7sp9zjq/AcIOSjTebhVMWZMNoedhaZUC3qbkUAPx2Y8CeiuCKemzqQnaVQ6pmSLhqjZTmb0TksKGtZWRtyuCouagQhXqd5q1Az+6SJ5dHpY1NxUnszfV5Ww+fdG/HEHkMskWXycN6aeP7+TS05+SICUZRm/K0KQilKWrCVEAkgGHZlz4v8wA9DsZ+nv9OJrU0fXxOqpKTh2orU7gL45NX3tHlVPTSFqCoYK4p4sEJzCpJlt3D3uDO4edwabGit5dv86FpdtwxnwclHBWL46ajbn5o4Mi1nxMioOUbOgn0VNSZLC13Ki+d3MS7mxZCoN7k7Ozi3tt8CjE00sp+a4Hi7E0qQMVtZ1p+F6An4qHK0MTwy9Ad+vkQweK4H+VGRKep5K1BwnnJoCgQDwdzaFBc0uav59F6bsUhLGLgq5NN/8WfQDyDKOvctJmn5ln8/tLleHBIW3la3XDgk66tTUmSzoEzMJdPR4Do9IUQdwps1n8f/BSy/Bp5+CLM+Ia216yc/c3CVcUvwC5xS9SYLxqIjUaO11X62S+uaP/0zqOXf1+gGlt3afasx8jKKjpNNhzhmtEI89ldtV8wZT1OyNlAVfiSpqRiafHwuyLON3+NCb9Sek9NRV26lyhCUWp4bvB5IkkVCQRPu+pvB2b4sbX6c3qiAnB2XcDcqALmt2ApIkYclKQGfSE/R2l9Y6KtoiD6GJt82Nr10p0LkbHAQ8fvRmg0pIjFUKDNBuz+Cn79j4bH8mnZ7oYlQkRkOQmUXN3HnmIcblhnqRpidlAkdFTV8Q2R8RumTTXoshyu8wbUpO1N9v1HVp9Of0dXrxtmk5NUX5+YkgllPT2Ieeml4tp2YU17FAcKoh7skCwRBhWkYB0zIK+POcq5GR0UnH3iA9LqdmPwYFDQZT+7m0fSCILWr2cGpqhB7tb2/sFjU1y8+HVoDO7IxhvFuxWzE2NUpZukAgOL1wH9JwYAb8VDx5DcUPrcNbswd32YaYx3DuXnZMoqanF6emv0VdddGzh6IxrUApah6l05vI0ooreP/IF1j9wtQ+OMNgauZKLil+gQuGv0qaRf3/wVuzp9djeCp3aO7n2Pkx9gnnxdw3svzckJofV9l6NEy5o2M6YgFMOSevqGkdOR9T9kjNcKPjFTUDbj8Hn99Ox4FmDAlGhl83XhEM0x90lKn7adqLUxS3EwoSFaImhEq1k0drf8DqaXKpRD1Ldug+IukkbAWJdB5qDW9zNzgJuP29OtE0HaIyOKs7SCxOVQUFaQlMfj88/jj85S9QVpYMpMQ8ZxcSMiOzOrhldjlfvM1A84YqxfaAJ4Dx6Ms+rT6k0crPo/XUzJ6vbl/RG9pOTZ9m+Xk0gU1wfBxLT02DzYikl5AD3Y1PRfm5YCgj7skCwRBDkiSkOBuPRyOehOj+Lj8X9E6OVbv8PNVkVQieWgLl/vYGzssPlcEfiOixmWlJIMXcuxPnVOL20bN5bOdntB4tQbx2+CSKE/v3jZtAIDg1cR3SDtoLOlqo+NNlSMbe35w79nx6TOeOJbYFnW04961QjRuSu0VNQ2oBHAn1n3b7LXxWdQnvld3E8spL8AbjFxXG5x/g1m+XctmszcjPnRlzrqd2H3IwiBSl6kOWZTxValEToHnJEzFFTdnvxdtQphg71tLz8P5xhAydzE5NSZJIWfAV6l9V97Q+XlGz4fMqOg40A+B3+Cj/314m3Ds3Zkl1X9Hqp5lYrPwg3KbRV9NRGV3UjCw9h5BTs4uEwmSFqIkcOl5SaewWEdF6eTor27EPT1E7NXuUAq9aBT/+MaxcSY8PEXr/PWYne7lsfCVfmnMEiymIIcGIOVldFt5TgFL19iR6+bnOpMeUasHb0i08JpamYc3p+wcFmj01O714tcrPhVPzhBAz/TyKqCnpJIyJZoX47G11I/uUHwwIUVMwVBD3ZIFAoMJuNFNgS6bSqV2+Y9UbSYuRoC44MVgNRpJNFtq8yk/Ix6VkK8r7NBPQj5acB+UgBzuU7oih5tIEyLYmsvOq7/NS2RbSzQl8oWTqYC9JIBCcJLii9MoE7SRufVIWxtQC3Ec2hcc8FdvwdzRiSIy/dYe/vV6zvLwnHZveUo31dGrKScP4tPIS3i+7kaUVV+D0xxeGAlCSvJuLhr/IRcNfZsxYAyN+sJO2dfupipgnGUyKvp6y14m/pVKdon4UX1M5QbdadALo3Pou3rqDmLJHaG731h+EoDKR91iTz8P756rDgiI5mUVNgOT5t1K/+EFFewHJaMYYZ6J8NCIFR2+zC2+bG3Nq/3ywKQdlOiLOYUg0Yc5QHl87LKgj6nF7FzU1RNKKtl5FTUeFtqjpqOwg6AlAUBnx3RkwcdddodYOLWpDalQSrEGuuErHww9D23/WEOghlppSLJriUs/+h5G9PSG6UxMg75wSDr+2C2TQmfUUXXZsvd21Stn9neqgIIPdKFK0TxDR/s6SXorZTsCYpBQ1Pc3qgDohagqGCuKeLBAINBmdkhVV1Cyyp5wS6ZtDkRxrooaoqewVqRX601VyXuloU6XZD6WQoJ7k2JL47vgFg70MgUBwEiHLclSnZjQyLrmfgKNFIWoCOPd8RtLMa+I+Tqx+ml1o9X+UEnP55JOQkLL4pUdo7YxfgBo+HG68Ec5s/xLDOv5F179ub1MCsizjaypX7WMdOV+V8O6p3hNV1NQqPQ8jyzR/8hdyvvCY5matfpqmnOML1+vN6SkZTBjT+16KO5AYU/NInHYFHRvfCI/ZRi1AOs4e4FrChqfJ1W+iprveoRLgEoerXzMaE80Yk82KwBlHZTuyLGu+vnRrJJ9bs7udhwmFyart0QTLLuSgHDWgyFnVHnZHBoPwzo5c/rOuiLKmBM35WuilIJML2vjKvDIWzfMx9luzCHoCbIlwf5pStUXNoLtb7I90jELsAJn06bkkFCbhanCQWJIaUwCNRbzp5yL5/MShj1J+bkwyx3RYq/pqyuo5eosQogVDAyFqCgQCTUYnZfJJtbqfE/R/SJAgfnKsieyNCPrp2U8TQo7OwoQUKhyt4bH9R0vOtftpDk1RUyAQCCLxN1cQaK9XDkoSyBrv+AB9cjapi+7EeWAN/O9hxTbHnk/7XdTsIihLbG2Yw3tlN/HJ9JHUhZfcu/iUmwvXXw833QSzZoUur/JvXtrXds+RPQ6Cjhb8zWpR0z7hfLWoWbMH+8TzNc/nqdoZcz2tK/5B1tW/0OyTqZl8frxOzV5EUWPWiOMWBweCnJufxFu3H0/lDowZw8i+8ffHdTxZlqOImk7oxdEYL5EuTQB7sXYP9oSCJFp7vJ7pStXWKql1RYiaeqsBQ48QG1OShkha0RZVJAXwNDpDbkytbU0uNq/x8INXJ7H2cBq+QPz3l5Ej4dpJh7lixEEMRzs2uGqgfX8zJo0AF1OKFb1ZffyeTk2tnpr6KEFBXViyErBkxS/CaqEz65EMOkU/U2+zS+E0BZF8fiKJ1lOzt9+5Kan3UCidCAoSDBHEPVkgEGgSKyyoKOHUDgk6ldHqqzkuNVs1NiopUyFqlnU24w34w+JmT4aqU1MgEAgi0XJpZlz+Yzo2vYVHI8E745IH0Jlt2ErnqsqyI4W/3tAKCeqZZi7LsLt5Ku8dvpEPDt9AjWNY3MdONjVx4aj3ufPJmznzTNBHaCRaLktfU7mmUzNh/HkQ0c8xMsynJzGdmoR6hbau+g9p53xDtU3ruObj7Kmps9gxpBXgb67U3H6yl553YUzLp+ThbQTa6tAnZiDpj+9tm7/DqwrbgZCA1190aoQEJZakaM61FSTRulP5msRR2a4Sa4L+IO7GyORzu0qsTCiMFElDgTbRXKhaLk23V8czq4fz9vY8mn5rIp4emQBJSXDNNfDrX0NODtR+JlH1gXJO9ZJD5J49XLWvOdWimULds6dmX8vP+wtJkjAkGBVisbNG3QpA9NM8cUh6HTqzXiXA9yZqGpN6F5pF+blgqCDuyQKBQJPRKbFEzZSBW4hAQaQAqZMkJqbmquaNTM7gk5pup21Qlvnz7pX8fe869dwh2FNTIBAItHBpJJ8njF1E6lm3c+jnswi01YXHDSm5pC76OgA6sw1ryWxFkI+naif+9noMSdH/X/YkMiRIZ00icdoVbHxrJe8fvpH3D9/I4fb4Bb0EYzvnFL7BxcUvMSf3Y9JnX0XBwps158YrauoTM7AUTgSdXtHr0hMjAT1aSFBPmj9+ktSz71QJUZFOTclgwpgRv5gbDXPO6FNe1ISjolJEi5ljRculCf0nasqyRj/NBGNUt6B2X812UicoH0+eRqeqt2XPfprh4xUm07ojQiStaI8uavYoT/90XwbPrh7Ontok5DiFTJ0OZs+Gn/4ULrhAuS1zTj61y48oxEhnZTsNa9T3SVOKBV0vPTW1goJilZ/3J0a7SSFqagnjIvn8xGKwGfH2WdTs3akpRE3BUEHckwUCgSaxnJqi/HzwuK10Bk/sWkGHL/QC85YR08m2qoMitITK769/R/OYovxcIBCcLqicmpKEZfh09NYkir77NhWPX4G/tQbJaCbv9n+iM3ULIraxi1Tp5I7dn5I8+/pezxv0uhXCYHlHCUtrfsB7S65l56H0uNdvsciclf0qFw1/iQUF72HWd4sN1tI5UfeLV9Q0phUhGUyYMkvw1nV/MOat1hY15WAAT/UuxZh1xGwCrna81bt77L8bx65PsI8/VzE3sqemKau0X0rDTbmjcez6RHObOefUETX7k2iiprvJqTne5+M3OvF3ehVjdo1+ml3Y8tWvXbTck1ohQRZNUVMjLKi8jbRJ6moWgLIdTn7/zjiW7s3E5Yv3LbFMQYHEHXfAAw+AKYpupDcbyDlrGFXvH1CMt+9vVs01pVqQ9DrVeKBnT02nuqdmrFTs/kQrLCgSUX5+YtFbjdAS0ce01/Lz3t2zQtQUDBXEPVkgEGiSb0smwWDC4feqthXZUwZ+QQIARiRlsOWKe3nt8DaybYlRU73jFSpnZhRiN4qyIYFAMPSRgwHchzcoxky5Y9AfbethLZnJiN/sxlO5HXPeOPR2ZZ/BhLGLaHzrF4ox5574RE1P1U6q2gv48PB1fHDkBnY2zYh73UYjXHhhKPDnssskqu//BgGHWhyxls6Nfox0tfvRU7ObQGdTxLyQ+GnKHaMQNf2t1QRcHegjPkTz1h9E9nkUY+b8CViKZ1D7L2W5efOSJxWiZsDREi6976K3kJ94iZWAfio5NfsTT0sUp2azCzkoxwwdiQftfpopUecbrEbM6VaFU9RZ1aFaS2Q/TVCGBHVhy08CnaRwdUaKpMEgPPccPPKIzL59U4i3vNxsCDC/pJE/PG1lykK1eKpF1pwC6laUq4Re1bFTrQpXZhe9l58PzNv4WAnbXYigoBOL1t+6t995XOXnoqemYIgg7skCgUATSZIYnZzJpqYq1bZC4dQcVIYnpnHvxIUx58RTUl6YkMLf5l3bT6sSCASCk4Ogx4FksqkcYt6avQTdSteXtWSW4rbeloxt1Bmax7WOmINkNCtEPEcvfTXLy+HVV+GFZ4vYtPtw3NegkwLMzlnKtRc38qVHbiKth75qSCtQi5p6I5Yi7Q+5QNup6dy3Muo8c94YOre8rdjmrd2LtVgpxmr10zQXTCBl3s3Uv/oAQWdbeLxzy9t46w9hyioJ7XsCQoLiOc7pKmp6m92a47IviK/Dc9zCVOchjX6aUUKCukgoSFKImgG3H0+TC0umLTymnXyudmrqTXqs2Qm4evR8dFZ1IAeCHDqs4wc/gPfeA7cb4hEzJWRKMzu5bc5hLhwfSuoaMy66GzoSnUlPzsJhVL6jHboJIaec3mLQXE6s8nOdWa/p7jwRxOfUFB+On0i0Wg309jsX5eeC04mBeTYUCASnJKOjlKALUfPkpzgxDUuUUIE8WxKPz76S3Vffz9T0/AFemUAgEJwYZL+Xij9fx547kzlwX3EosbwHWiFB1uKZcR9fZ7JgHaF0Q3pr9uBrrVGMVVbCn/4E8+bBsGFw332waXd8vYunZq7kwVl3s+zaPJ4573xuvfKIQtAEMKYVqPazDJuKzhRdlNLbktFFBM15Krer5oWdmhqioEejBF0r+dxcMAGdxU7Kgq8qN8gyrcv/Eb55IkKCuojm+JSMFgypp+f/vWjl53D8fTW1+mnqLQasOWpHZU9sGn01I92VkeXnBrsJQ4K2YNOzBD0YhP+uzmP4cCgthddf7xI0YyGTYvXyhZlHWPbdT3nxq5+HBU3oe8l35qx8jDHKgE2poceszqhXCZtBd/T084HqpwlgjPK7DqOTMCYKUfNEYk5X9oWVjDpMUXrFdqE3G9CZY7fy0FuOv9WHQHAyIOR5gUAQFa2+mhnmBGyG3j/9EwwuRp2e20fN4c+7u504BbZkHph0Nl8eOQuLYeBeEAsEAsFA0PD2r+lYvxgAX+MRKp+8htLfHwqLfa4ydUhQpFOzNxLGLsK551PFmHPPZziKbuS11+Dll2HVqr6te1JxBeenPc4Fw14hz16h2GZIyVPNN6SqRU1bjNLzLozpRUpnpSxrzgHt8m2vRliQllPTkj8BgLRz7qb5wz8qztO+/lUyr/klkiSp+mkCmHJG9Xod8WBMK0QyWZG9SrHOlF2KpDs9PR29iZqJJbFdlbHwtrjxtSvbENiLU3otaY8WFpQ+NRSOFPQFVOvWcmmGj1eYzOq323jys1LWH07DH4zvb63XBZk/zcPt47czLrcj6ry+lnzrjHpyzx5O+ZtqAR+6RU1JJ6E3G5Ql5z2CYQIuZXn6QCSfh8/Vi1PTlGQ+7tYFgtikT8+jYV1V+H6QNbcQval3QdKUZMbdEL1nrnBqCoYK4p4sEAiiouXUFC7NU4dHZl5KaVI6e9rqmZlRxE0lUzFHcW8KBALBqUzQ66blk78oxvytNbSvf5WU+bcAGk5NvRFz4aQ+ncc2ZmH450ZXFkuOXMPHt01j3X5NjTAqY7P2cPN3xnDddZDVuJKqp/6gOc+Qkqsa03JqWkf0XharEjW1ztfl1MxTi5oeDWdl5PH09nT0yaFgFlNWCdaR83H1KHP31u7DU7kDS+FE7fLzfnJqSjodppxReMq3Ko8/REvPZVnGcaQNv8tH8qh0VWly0BdQiY498RxnWFCHZul5Sq/72fIS1X0wq7qdmu56B0Q8rrT6aXq98JvfwFN/y6G2Lpf4emXK5CS5uWlGBTfNr2bKfXPZ9pvogqbOdGwl3+nT86j97AjeFrVN1JzS7bbTmfVKUfPoz7Isq5yaAxUSBGC0xz6XKD0/8VgybIz7zmza9jZhSjKTNDq+cDmjEDUFpwniniwQCKKi5dQsFCFBpwxmvYFvjTtzsJchEAgEJ5z29a8S6GhUjbd88ldS5t9C0OfBHSFwWYqmoOtjUFpn0mxePvBNPjh0FRvqziIox1++NzJlOxcMf4ULhr3K1AtnkH/nfwHwJkUvgdcSNRMmnE/D6w+Fb+ssiSREpIprYUxT99VUzykMndeejj4xQ/E7jXRqBn0ePHVKt6W5YIKil2nSzGsVoiZA+/rFWAonqsrP9fZ0DPb4k+B7w5w75rQQNWVZpvyNPTSurwZCyeBjvzkLnaFbgNMS1HriPs7y807NkKDenZ+6KH0wA24/eotBMySoZ/L5qlXwox+FvgcCEE9nNbNZZv6weu5eeIBhaaHfS2JRKsYkM8ZkM742bfH3WEu+dQYduWcXc+S13aptXU5NCAlMPc/d1VNT9gWR/UHlWgYoJAh6d2oaRUjQgGBKtpA5q2+tM2K1PkAKPf4EgqHA6Vl/IRAI4mJUciapJmXPlmmiB6NAIBAITjKaP/6z5rjr4FpchzeFxK2A0u1kLYmvn2ZjI/z973DeeZBXaOYXq5/k89qz4xI0x4yBB+7Yw1uXj+PNyyfxjUkPU5K8F3PR5PAcY9YIdAnaApCWqGktmUXWtb9GZ0vBkJJH3u3PYUjM6HUtxgx1AroCvRFDck74ZmRfTW/tPuRgQHGbgLIs1pw/XnE7acY1qtN0rF+MHAwo0tW1zne8aB1vKIqazVtqw4ImhIJ1mjYp+7zGKj2PZ3tvdJQpnZo6sx5bbux+ml1ElqDL/iAN6yoB7eTzQIKde++FjAw44wxYvrxL0IyFzKhRocdx7bYWHrl6R1jQ7LmGhPzoyeb64xAS06fmqPoiQoSoGZFE3eXUjAwJggHuqdlb+bkQNU9aTDFETb3ZoArTEwhOVYSoKRAIomLWG3h4+kXopdBTxejkTO4YFX/yo0AgEAgEJxrXwc9xa4QAddHyyV/73E+zuRn+8Q+44ALIyYGvfQ0+/jgUPtIbo0bBT34C27fDrl3wvYteojRF6dKyFE0J/yxJkmZgkWQwoU9IU49LEhmX/ZAxf2th1ONVJM1UC4daaCWgK7anFSj6TUb21ZT9XnwNh8O3NZPPj/bT7HlMa0S/T0/1Ljq3faBIkYf+66fZhXXEbPVYnEL2qYLf6aPyXXW6dufhVsXtXkXNJidyX/on9MDb6lY5Qe3DUuIu1U6dnK0aq1tZTtAbUIQErTqYxq3/nEHexCQeewyamno/ttXo5+LxNexZ3szevXD77eCqalfNsx0NGNIKLurieIRESa8j95wS5ZhBh31YSvh2ZClwwBPQLD2HgS0/N9iMMav5Rfn5yUssp6YoPRcMJcS9WSAQxOTOMfM4N28UNc52ZmQUYhUBMwKBQCA4iWiO6KUZSdvaF/B3NKjGI4XE1lZ4661Q2M+SJeD3q3aJSmHiAS4a/grX32hg4T13o7d0l8hGlkADWHo4NbvW4tjxkWLMkJzTr06aXkXNiO0mjbAgT+1eTNkjQj9XaYiaBRNUY0kzr8MVkUTf+Pav1Pv2Uz/NLuwTLyRh/Lk4dn4MQPK8W1S/91Odqg8O4HeoRS9ntbI3pKeX8vOgJ4Df4evVladFpEsT4uunGZ5bkkpCYRKOim6x0d/po3F9Nc1HXDz+8Uje3p5Lpyfe158yIzM7+er8Ms4dE3rcJ3lLgFBrA0dlm2qPbqdmYtSj6o8znCdtSjbu+k7qVpQjGXQUXFSq+H3rI5OqgzKyL0hAQ9QcyKAgSa/DYDNq3s9AODVPZoSoKThdEPdmgUDQK6VJGZQm9V7aJhAIBALBQOJvb6B93Usx58heF52b/6cY01kSMeWOpqkpJGQuXhxyYvq037drUmA/xAXDXuGi4S8zJm0LkgTshUM/fpqcW/6MfeL5SDo97vItiv0MKbkYkpQ9q7UchFql58dD705N5XYtkdFbswcmXwyAp2qnarslovwcIGnmNdS9eI9iLFLkhP4vP5d0Ooru+xDn/lVIBlOfk+5PdjrKWhRl5z1xNzgJ+gLojCGhzBtHebmnyXlMoqazUh2uY++DqClJEjmLijn4727xf3N5Ml+5KYntFXOQ4wr9geRk+MIX4Kc/8FL5tNK57agICZmyLCvEUwgJP13CXEyn5nH2sZQkifwLSsk7twQ5IKv6GWqJTAGPH79L/emK3jawb+ENCaboomaKEDVPVmKWn1tEP03B0EGImgKBQCAQCAQCADzVu2l4/acEvQ7SLrgH+/hzBntJMWn97Blkv1cxZhk+HffhjVH3aXJlsqL9fj69UM/SpfH04+tm2DC4/nq4+oI6std9Bdfez1RzfA2HqHjsYgwpuSROvxpf42Hl+nqUnofHNAQ3Q0pe/AuLA0NKHkg6kLVr6ONxarrKNoR/dkeUnxtS8tDb1eXyxvQirCNm4zq4Lub6+tupCSFhM2H00AvMC/qDlL+pTo/vniDjqu0koTAZiK9npqfJpSiHjhdXbadyQDqaat4Hkseko8+08+fFWby+NZ8Wp5F4EswlCWbOhF/8ItQqIoSZuojAH0dlO0F/EL/Di79D+XzRs6enwWbElGbVFIH7q+Rb0uuQNPQknVlD1HQHNMvPB7KnJoDBboR67W3CqXnyEtOpqXF/EwhOVcS9WSAQCAQCgaAXvHUHaV7yBJLRQvpF92FIyhzsJfU7Qa+b8j9chK/xCACd2z6g9JH9mLJKNOd76w/Rue19jJkl2CddOOChA3LAT/PSv6nGc7/8f9T843bcRzaHxxqcOXxcfhUflV/b59TygoKQkHn99TBrVkhIgWzkRUtpWfo36l65H9mjDjTxt9bQolEaby5Ul0AbU3KxjTkL555ukTRxymVxrzEeJL0BQ2o+/uYKze0qUTOzGMlkRfZ2Czztn7+C9+pfYEjJxddwSDFfq/S8i8QZ18YWNSUdxqwRcVyFAEI9J9316vtcT5zVHSQUJiPLskrUlAw6VaK2p8nZ53XIsoyzRunUtGTYwg7ReNiyBe67T+LTZbMIBON7DsnMhC9/GX76U7DZ1NsTCpNpbetW4fwOH7v//Dmp47NUc7v6aYb3zU/UFDVPdMm3lnMu4PEPevk5RA8Lkoy6AXeNCuLHmGgKfTag0S5XlJ8LhhLi3iwQCAQCgUAQg4CjhUMPTSXoDr1579j4BiN+uxtJN7TKtxy7l4YFTQDkIO3rXibjsh+q5rrLt1H2y7nI3pAQknHFT8i6+hcDtVQAOja/rRLorKXzsA6fRurZd7H5zz/j4/Kr+ejItWyqPwO5D/mYeXlw3XUhIXPOHNBp7CrpdKSdezf2yRdT8487cOz6JK5jW4ZN0T7nV56l9oXv4q0/SNKMa0ied3Pc640XY8awuEVNSW8gaca1tK3+T/dgMEDDm78g7fxvQ0SwTGTyeU+SZl5D/cvfj7Gu4eiMInAkHjxNTmo+Ket1XldfTb/DR9CrtCPbh6fQcaBZMeZu6nsCuq/dQyCiPNqa03vqud8Pjz0GTzwBVVVdo7EFTZ0kM3dWgN//0cDcuTGnYi9KpnWH0lrornNQU6f+vUWmr9sKkmjZrrYlGk6weKflnAu4/Zrp5wMZFASh8nMtTMkWkaB9EiPpdaHWAZ1e1TYhagqGEuLeLBAIBAKBQBCD9vWvhQVNAG/dfpx7V5AwduHgLeoE4Dq4VjXmqd2nObf54z+HBU2Apvd+T8YlD6Aza9imThDNn/xZNdY5/gc89hgsfvXLrFl7e5+Ol58P11wD114L8+drC5lamDKLKfrBElo/e4a6l79P0KkOIumJRcOpCWDKHkHR997u05r7ijG9iGjSlVbPzYwrfkLb2hcg2C2Kta15XrPfZyynpimzGEvxDNw9ytcV+56A0vOTFXejk/pVFUg6iewzi/rUk1CWZcrf2qtyWdryEnHVOxTjzqrQc5aW6zChIAlHRRtBT/ff1XMMoqarplM1Zs2NXnq+fz/ccw98+GH8/WuTLF6unFzN184oY+6vF6CLo+1n2pRsaj49rOlyjCRS1Iy83cXxBgX1RtSemk51T82BLj83JkYRNUU/zZMeU5JZiJqCIY+4NwsEAoFAIBDEwBtRZgvgrd039ERNjfAWb91+zbmR4Teyz437yCZso844EUtT4anahXPXUgDKO0pYcuQallTexPZ/Tz06Iz4XbVFRSMS89lqYPTt+ITMSSZJIXXgHSbNvoGPjm7R//jKdOz6CgFKQMOeNw5Qz6thO0g9EhgH1xJBWqBoz54wk5Ywv0br82e5BOUjT+4+q5lryo4uaAEkzr40qavZ3SNDJit/lY+9TG8KhKy076plw39y4y7XbdjXSvl/psESCYVeP4cibe3FWdofguGo7kQNBzX6a5nQrlnSbIiU9svzc2+6heslBvM1uUidlkTErX+XKc0b20wRsuUqnZjAIf/87/O53UNa7wfToJcmMzW3nm2cdZNbwULq6Oc2qCteJhjHRzJg7p3P41V2qYKCeWDJtKnHHlpeoWbJ7ooVEVfo5EHQHCGg4NY83tKivRHdqCnf1yY4xyQzV6jAvnRA1BUMIcW8WCAQCgUAgiIG/uVI1piV0nsrIwYBmz0OvhlNTlmW8depx54E1AyZqrn/+VRZv/yEfHbmW3c3T+rRvUXoNN341l2uvhRkzunpk9g96axIpZ9xKyhm34u9somPDG7R//jLu8i0YUwvI/fL/IR2rctoPREtA1yWkordqO+wyrvgJrav+DYEe4opG2JA5f1zMcyfNuJb6Vx7Q3DaYQu9A0rylVpEi7Wv30LankdSJ2b3uKwdlqpYcVI1nzSvElp+ELS9RIWrKARlXvQNPi4aomWrBnG5ViJoBlx+/04fBZkSWZcpe2kFnWSsAHYdaMNhNqp6Urhq1WNJVfl5ZCffdB2+9BW53r5cHQFISXH1eJ7cWbiTJovxAwJKdEN9BuuZnJjD6zhnUrSyneskhlbsVtNPO9RYDlgwb7galyKs/wUKiplPT7VcFBenMeiT9wD6HROupKUKCTn6ihQWJoCDBUELcmwUCgUAgEAhi4GtRi5q++qElanqqdytK7LsIdDQQcLSiT0jpHmuv1yyx1nJ69ie7dsHixbD41SDbd/y0T/sOS9zHBcNf5fyixZz51avIuuqhE7TKbgz2dFIX3k7qwr6VwZ9Iooma0cYBTBnDSF14By2f/DX6cTOL0Vli91I0ZY/AMmyqIsCpi9Ol/FzlsgQclR1xiZot2+pw1ynDgYyJJvLOCwV52fLVorSzugNPs1pRNKVZMaerW0V4mpwYbMm4ajrDgmYXTRtrNERNpVNTbzWw+D0zv/wl7NnT6yWFmTgRfv5zuOoqCPpt7Pi9Hl97RK/O7N57dUYi6SRyFgwjeUwGRxarXZvJo9M197PlJ6lEzWhuxf5Cs6emRy1qDnRIEIAhmqgpys9PeoxJ2n87UX4uGEqIe7NAIBAIBAJBDPwtVaoxb2OcdZSnCLEESW/dfqwlM8O3PTV7ox5DluV+C46QZdi0Cd54A15/HXbv7toSn0tp3Di4bP5e5tRey8iUHWFHpn2COpH8dCGqqBmjLB0g47IHaV3+D2SftuUuVkhQT5JmXqcpap4O5edBf5COgy2qcWdV9PLoLuRAkOqP1R+k5J5dHBbDbBq9LJ1VHeqemjoJU3LIqRmJp8lFQmEyzdvqVNs6y1qRgzKSLvRACvoCuBtDwl+r08CTn5ayZG8OTk98j3+rNRTG9bvfQU5Oj+UZdGQvKKLyHWXrCy3RNl6sWd2uzbrlR/A7faRPyyV1gjoNHSB9ei7NW2q7z12QhCmK462/0CoHDnj8qiCmge6nCbGcmqL8/GTHlKQtPAtRUzCUEPdmgUAgEAgEgijIsoxPo/x8qDk1tUKCuogUNb212qKmv60WX1M5poxhx7yOQABWrQqJmG+8AeXlfdt/0qRQf8xrrgmJmrI8iprn5tL62Q4AUhZ8FdvIece8vlMdY5S/TSynJoAxNY/Uc+6i+YPHNLebe+mn2UXizGupX/wjxZjOYseQmhfX/qcyjvI2VQo5hNyUvX0Y0LSpVhXkY0q1kD6j+/dmzUkAnQTB7maQzuoOfG0exX7mVAuSTtIUNd1NTmRZpmWrWtQMuP246jrD4qmrzsGqA2n85bMR7KtPpLf08i5GjoQHH4Tbbos+J3NWPi3b63EcCTnCLdkJpIzNiOv40ehybWbPL0SWQ+JpNJJK0xh2zVgaN1RjSrZQcMnI4zp3PGj11NQqPx/o5HMQTs1Tmajl55b4+tMKBKcCQtQUCAQCgUAgiELQ2apI+e4i4Ggm4GxDb0sehFX1P85YTs1apWMqmlMTQm7NvoqaHg8sXRoSMd98Exoa+rQ747O28YXvTODaa3WMimjNKEkSuV9+mozLH0T2uU+bMudo6K1J6GzJqvYBvYmaABmX3E/LsqeRPQ7VNkuM5POemHNGqkrQLcNn9Ju792RGq/QcQr0svS1uzGlqkRFCDs+apWpneO45xQphTmfUY81KwNUjvMdV00nQpxRSu86jXX7uwlHejrdV25HbWdZKMDGRBx+Ef/7DTnvnVM15kZhMcNll8Ic/wLA4nh50Rj0jvzSF1t0NBH1B0qfk9FsfSUmvi0t+zZiRR8aMgRPbtZxzvg6vqhfoQIcEAehNenRGHUGfci1GIWqe9Ijyc8HpgLg3CwQCgUAgEERBy6UZ3tZQhn7YlIFbzAki4GjFW7076nZPRChQNKcmhETN5Dk39nrOzk744IOQI/Pdd6G99wpcBRMz1nF+0WLOG/YaU266kezrfh11riRJx+UeHWoY04rwOLcrx6KImr4ODxVv78Pd6CR1QhZp532Xpnd+pZpnjlPUBMj+wh8pf/QCZJ8HyZxA5hU/6dsFnKK072+Kus1Z1R5V1GxcX6USGc2ZNtKn5Kjm2vITFaKmljPUdPQ8xkQTklGH3EOo8jS5aNlWq9oHYFN5MnfclsaWg6HWEPG0gRg2DO69F+6+G/qaj6W3GEifmtu3nU5hdCa9KnXd26IWlwfDqQkht2bP9eitBvRxptELBg9Rfi44HRD3ZoFAIBAIBIIoxBI1vQ2HsAwBUdN1SJ163pNIp6ZWInoXsRyfzc3w9tshIfOjj+JPRIZQQvncuTJnmX7F2Wl/J8/eXZeecuaX4j+QAGN6EZ7K+ETNI6/voW1PIxBy/RVeehs665MEXT1UaJ2+Tz0xE8acRemjZbjLNmApmhyXS/RUx9fpVSSNR+Ko0g4LCnoD1Cw7rBrPO7dE07loy0ukaWNNzLV0iaeSJGFJtylEUHejU5GW7vXD31eV8MaWfFpdRuIpMTcY4Nxz4dFHYXx8rVYFhP4eerOBgLu7h6ZWcv1g9NQESChIUoiaCYVDo0phqKO3GZAMOpXjV4iagqHEaX9vPnjwIC+99BLr1q2jsrISv99PVlYWo0aN4rLLLuO8887DYOi/X9P27du59tpr+7zf888/z4wZM2LOGehrEQgEAoFgqKMVEtSFd4j01XQdiN5PE8Bbty/c80/2+/A2RL9ud/lmgl4XOlNIOKmuDpWUv/46fPppqGdmvBgMcPbZoUTkK66ApNbPOPJbpavPOnI+5pxRUY4g0MKUVaIaM2YWq8bkQJC2fUp3Yds+B5lXPETdS/eFx5LnfhGdqW9lqMaUXIxTL+vTPqcyHQeaFQ68SJxV2oJn/dpK/B1exZg1xx414MaW13uYjjm1+29lTrcqRM3A0f6Ne2rtPL5sJBvLUwnK8RRry2Qk+vju/Sbuvz/02BX0HZ1ZrxA1gx71E+ZgpJ9DKJTKURFqTWBMMpN3rvp5RHDyIUkSxkSTyvXbFTAmEAwFTut785NPPslTTz2F369MlauoqKCiooJPPvmECRMm8Pvf/56Skv554t69O3p51/EwGNciEAgEAsFQx9cSq/x8aIiazoPR3ZUAQWcbgY5GDEmZIUEz4I8+OeBn52e7+GDLdF5/HdbG1ktVWK1w4YVw9dVwySWQmtq9rert51TzU878ct9OICB5/q00L3kyfDth/LkYU9RlvgFvQBE6A+BpdpH2pXsA6NjyDpbCSWScJOXjfqcPZ2U75kwb5lTtUu7Bov2Adj/NLpxV7aqwoIDHT+1nR1Rz884rCSeQR2LNtatKmCPpWebeMyzIH4TnPy/ipQ2FNHSaiceVqZNkphS08p1F+znjQhslN8XfhkCgRm8xqIKdVHNsg/P23ZpjZ9z35uBrC4maQhQ7dTAlW5StAyyGqM8hAsGpyGn7bPTwww/zn//8J3zbYDAwevRorFYrBw8epKWlBYAdO3Zwyy238Morr5Cfn3/c5+0pag4bNozCwsK49ktOjm7xH6xrEQgEAoFgqOOPWX6uDu841ZCDQVwHY5efQygB3ZCUiVcjJEiWYU/zFD6puJJPyq9i378n9WkNycmhEJGrr4YLLgCbOr+EgKuD9vWLFWOSyUbSrOv7dC4BWItnMOz+T2hd/g8MqXlkXPag5ryejrEuvC0ukCH9ontJv+jeE73UuHE3ONn3zCZ87R6QYPi140ifdnL0Y5RlOWpIUBdaYUH1qyvDzskubAVJJMdIAdebDZgzbHga1OFmXZgUoqaNI80W/vjJKNaWpeMPxtf4Mi0lyKWjy/namWVYDKGyVluutntUED/xlAQPVvk5hAKD9JkJg3Z+wbGRMiGTzsOt4dvJY6I/hwgEpyKnpaj5wQcfKETACy64gIceeoiMjNAD3Ofz8frrr/Ob3/wGl8tFY2Mj3/rWt3jttdeOO52xp6j5jW98g6uuuuq4jjeY1yIQCAQCwVBnqDs1vbV7CTpbFWOSyaZKfPfW7sM2ch6eoyFBvqCBjXUL+KT8SpZVXk6No29BPNnZcOWVISFz4cJQOnIs2j9/RbWmpBnXoLf2Xm4rUJMw7mwSxp0dc46WqCkHZHwdHkzJJ1fqcf2aipCgCSBD+f/2kjohKxS+Msi46xzda+tCw03ZMyxIlmWaNlSrjpV/Xkmvr99teYlRRU291YDBaiQYhKefht/9OocjlXnE48qUkBmX2853Lynnki/Yqf5I+fxnzbX3egxBbOJxPw5W+bng1CVzdgF+h4/2fU1YshIovFS0bBEMLU47UdPn8/G73/0ufHvRokX86U9/Qtcjks9oNHLDDTeQn5/P17/+dfx+Pzt37uSdd97hssuOvf+PLMvs3dvtcBgzZswxHwsG91oEAoFAIDgdiNVT09d4GDkYROprrO9JhFY/zaTpV9G25nnFmLduP+3tsPh/ibyz4r+sqLqYdm+qat9YFBeH+mNefTXMmQP6PuhNrSv/qRpLWSBKz08kWqImhErQTzZR01XXqbgd9ARo2VF/Urg1tVLPU8Zn0bqjXjHm7BEW5KrtxNOsDIlJKEwicWRar+ez5SXSsrVOc1uLlMiNN8Jbb3UFdfX+ILRbA1w0ppq7zzqA3RJyZbbuVAfYWHOEqHm86M29/z0GK/1ccOqiM+jIP38E+eePGOylCAQnhNNO1FyyZAnV1aFPPg0GAw899JBCBOzJGWecwQ033MDzz4de2D/33HPHJQQeOXIEpzP0yanRaGTEiON7YhnMaxEIBAKB4HQgVvq57Pfib63GmFYwgCvqX7TSypPn3xoWNeuceSyruJzl669j9RfA57uzT8efMCEkYl51FUyeHEoxj0Xbmhdo/vgvSHoD1hFzsI1egCE5G9e+lYp5xozh2Eaf1ae1CPpGwK2d6uRtdoM6V2hQ8Xd6VWNNG2tOElFTXXqes3CYStR09AgLat3ZoNonbUpOXFVWWmFBH+zM4plVJRxu1ujtoIlMaZaDR/5qZW5mJVXvH1BsjQw20tuMGJPMcR5bEI24ys+tp93bd4FAIIjJafes+N5774V/njdvHnl5eTHn9xQCd+7cSUVFRdx9MCPpWXpeXFyMqbdaq14YzGsRCAQCgWCoE3R3qkqzI/HWHzqpRM2AowXj8segs57AuEtDSmIMXJEhQUYrZYFF/GPPwyw5eD47m2b2eQ2TMtZyzQ1WbvrOZEaOjH8/54G1VD31xe7be5fT9N4jmnNTzvjSKe2QPRWI5dQ82fB1qEXNjkMteJpdij6VA03QF6CjrFUxZkqzkpCfhDndiqep+3fZMyxIS9RMGZ8Z1zm7RM1Wp4EnlpWyZE82Ll98b/kshgDnjKnjO4v2U3pGBsXXjMdRkdL7OXPtoq1VP3Cy99QUCASCk5HTStSUZZl167qb4c+fP7/XfUaPHk1mZiYNDaEXF0uXLuW22247pvPv2bMn/PPxlp4P9rUIBAKBQDDU8cUoPQ/PaTgEYxYMwGrio/qvN2DYswwAw4GPcY2bQuJYbUdjwNWOp2on/qCezfXzWVpxBZ/W3kD5s0ZAOzxGC6MxyKzMjzi78C0WFf6PbFs1aXO/S87IP/Zp7a2fPRP33OQzxOuXE03Qc2qImkF/kIBLe61NG6vJO2/wSi47y1qR/UHFWNLREnJbfqJC1OwKC5KDMq5aZTl9QmFS3CX/Hyw1ct+/ZrO3JoF4emWCTFGqk6/MO8ylE2vDo2mTQ6XwtrxEdCY9Qa+2cxdE6Xl/oeul/Fxn1iPpxYc5AoFA0JPTStSsqqqivb09fHvChAlx7Td69OiwELh9+/ZjPn9Pp+bxipqDfS0CgUAgEAx1YpWed3EyJaD7mspxHRU0u2j5+M+aoqbDAW/+vYxXVjzH8qpLaPX0LQ010djKgoJ3ufwKuP5HV1L9g0sh2C16qBygvSAHg3RsfSeuubZxZ2PKHN6n4wv6TlSnZsvJJWr6HWqXZheNG2vIPacESRdb3JODMvWrK+g83EpCYRJZ84vQGY5fPGo/oC497xY1k2jZFtlXsx1Ps1u1T8r42MninZ3w4IPw739DaytA7yKj2QyXXgr3XFSG+YDyeUxvM5JUGlqnpNdhH5YcM8FdhAT1D70FBYmQIIFAIFBzWomahw8fVtwuKiqKa7+Cgu6ysvLy8mM+f09Rc/To0ezZs4fXXnuNdevWUVlZid/vJyMjg8mTJ3PRRRdx3nnnRS3lGOxrEQgEAoFgqBMrJKiLkykB3V2+VTXm2P4BQa8bnclCdTW8+y7873/w8cfgdk8GYpen9yQvrYmFmS9wduFbzMj5DKPOT95V/yAlM4Hmwsm4j2wKz3Ud3hQ+b1xrL9tAoE073CSS1IVfj3vNgmMnmqjpPcmcmlql5+FtbR46DjaTNDI95jHqVpaH+0a27mwg6A2Sd17Jca+tbV9ESJBOImlEt1MzEmdVBx2HWlTj0UrPly+H+++HdetAljWnRCAzbJjEfffBXXeBTgf1a0xUKFtmkjohS+EItBenxBQ1bbnqaxH0nd7Kz0VIkEAgEKg5rUTNLocigE6nIyMjPldCZmb3C4mex+gLzc3N1Nd3fxr7zDPPsGaN2sVQVVVFVVUV7733HhMmTOCPf/yjpmA5mNfSH/j92i+UTyUCgUDM2wKBIH7E40lwMuJp6v3DP0/9wX79n+ap3kXrJ3/BW7MX+9TLSTn3W3H3qnNGiJpBWWJX1Wj+9a0jLNkwik2b+t7zbkzqZs4ufIuzC99i/PBqgh1KZ5k+awR+vx/ziNkKUZOAD8ehz7GWzovrPG2b3lKNpZzzTSSTFde+FbgPb4BgkJSz78I27aoh8TriZMfn8mmPd3jxujzojH2Irz+BeNpii6wN66uwFSfHnNO0sVpxu3FDFVmLio7rf5Ov3YO7zqEYsxUkIhtCr4PNWerQntbdDbjrnYoxS3YChhRT+D7vdsOvfiXxzDM6GhshnhJzvS7I7OHNPPV6EmPHh8TKYDD0ZS1UuyxTJmcqHmPWwhiipQ4MaWbxmOwPjLH/lnqr/pT9PYvXeQJB/yEeT0pOK1Gzra0t/HNCQkLUpPBI7Pbuf/Y9j9EXero0gbCgabVaGTZsGElJSdTX1yscmDt27OC6667jueeeY9y4cYr9B/NajpdgMMjWrWo3yanOjh07BnsJAsGQQTyeBCcDxv1bVS+UZKMNydctOriq9/XL/zSptRzDur+j3/sBEiHLlWvvZ1Q1tBAYf2V8692xAq/Pxtqac/m08lKWV11Cgyt2iGAker3M9OkdnDVtL+fXX0uevVvYDXao5+9r9IFjK3pDLpHxh4dWvIHfkRDXec1rFxP5SqZm+KWQkAEjb4CAH5Bx6Y3UbNvWp2sSHCO1jqibtq/dCkknh6hJmSfm5tadDbSu3wymKK+VgzI0KIVEX7uXrZ9vBrNynz79bzqsXpfT7lU+XyTowNHdczNS0ARwp/nZunUre/ZYefzxAjZuTCQYjK9XZkaClxtmVHDL7CMY7Dq8/iQ0n65Gm2GvJ6SPjjJzoOUw9DSMBmTQAUGNfe06tu8ULa36hTrtDxK66PQ4hsx7KPE6TyDoP073x9NpJWp6PN0vLiyW+MqhAEVKudcbvcQlFpGipt1u55577uHKK68kIaH7BX9lZSVPPPEEb70Vciy0trZy11138cYbb5CamhqeN5jXIhAIBALB6YDUqS6HDuZMRF/RHdQnOZvA5wZj/P+LFedor8bw+TPod7+LJKs/aTdsebFXUbO21sjKlcmsfOmHfF4+B2+wb2uxGTo4M/99zpp5iDl3XUhSUgC8LqxPxXaqypZksKYAEMyZpNquq41P6JA6atE17lOMBbPHhwTNLvSn1UvWkwNfjHpmR/DkETXdvdRdB4FyH5Satbc7gqB1iLYAZB1HX80qDYEqO+J+nKpXiJqR+IPwn+VFvHJfDg0NRuJxZep0MlOndvDt6XsZn9bdf5/kGNcy0RoSNmVUQi4AegnS9NCo4QZKPknuB0MBQy9/X5NImBcIBIJITqtXiD5f94uLeJ2NAAZD96/pWC3/PR2YqampvPjiixQXF6vmFRQU8Mgjj1BUVMSTTz4JQE1NDU899RQ//OEPw/MG81oEAoFAIDgdkDqVpdayNQ05rRh6iJoQEibl9L7339NvW4xx+aNIwej/j3VNB5Fay5FTulvRBIOwc2cCK1Yks3JlMvv2dZWxDov73Jmp7Zyd+TyLCt9ids4yTHov3gX3Ekg6KlqYEpBt6SHRNgrBlO7zycn5yNZUJFe3vUtXE5+oqStboRoLFJ8Z55UIThi9iZonC5441nLEG13U7Iiyf1sQYufzRMcVhNqIx7XpqDDYk1Q9VKrFzyNNVv64dCRry9LxB+N7nZ+c7OOqqxq5/fZqLBagzAcbj27UASOjXH94fb2cJ9OgLWqmCFGz3+il/FyImgKBQKDmtBI19fruf7rBYPwvxnqKf0bjsTVofvjhh/n+979PRUUFCQkJmoJmT+6++25WrlzJ5s2bAXj55Ze59957w07LwbyW40Wn0zFx4sRBOXd/EggEFFbvCRMmKP4uAoEgfsTjSTDQ+Nvq6Nz8Fo4t7+Bvr8U+7SrSLvo+Ug9H4MF/ttDzLbwlaxhJY2fQsPUlxbFK0k3YJ8cfuAOhpPKyP/9ekRgejQLnXozTLuPjjyXeeUfigw8k6uv7/uZ22jSZSy8NcvHFQdLeORtf+UbF9hFnXoW1pPs6KvLH4tq/MurxUkdMIafHdVeNmo+jR4K55KgnY/nPSbvkAawls6Iep3Lpg0QW3ZZeeDvmwr79TgX9y96VG3CjXYKeYUsjf3LpAK9Im8N7dtGGsk+8McWMr7VH+XdLgFFZIzRTuus7KqhBHfiVZkgmb0LpMf1vql9eTo3crhjLmJ5H/hTl76zD3sKh7aF2CsEgvLYln/+sK6K6zUo8rkxJkpk5Ex5+OMCiRRKQefQLmAyOaW246xwkDEvGkhVfK4hodNhbOLRb3fqheOrIcKK74PjwtXvY9dHaqNvzhueTOblwAFfUf4jXeQJB/zHUHk/bt2/vk6YVyWklalqt1vDPPcu3e6NnmbbZ3MunnDFITk4mOTl2o/IuJEnilltuCYuaLpeLjRs3MnfuXGDwr+V46ekYHSro9foheV0CwWAgHk+CE4GvuYqOja/TvuE1nHtXgNz9AspzZDOmlFxSF94OQNDnIdCudGoaUwuwZI9UHTfYXN7n+2v7jg+0BU2dPjxe0VHM8spLWP69RawrN+CL3W5NhUXvZG7uEs4qeIdzp+5i3l9WIkl6Ord/QnmEoGlIycU+YrZC1DXnjo4palryxiquO2HkPIWoCeDY8jaOLW+TMP5cMi77EbYxCxXBR0F3J649y5RrSSvENnxa3AFJghND0BNdcPe1ek6a5+iAQ/nAkIw6suYUUvWBMtK7dUs9iYUpqv29TW7N47rrnKo3ifH8b5JlmebN6tYVWbMKVPsmFqVQ127ij0tHsXx/Bt5AfG9Kk5PhlltCgUFJSRDtLV1ySTrJJbGT3+MlqTgNdFKoB2kPEvOTT5r7wqmO1IvubLSbh8zvWrzOEwj6j9P98XRaXXlPQdHhcCDLclwvmDs7O8M/p6SknIilaTJt2jTF7cOHD4dFzVPtWgQCgUAgGEwa3/kt9a//5GjgjDZtq/4dFjX9rdWq7ca0AoxZ6jJzb73a5dUbjp0fq8bMM25lb/avWfyHT/h0zyzK2sf0+bg5tgrOKnibhQXvMCtnGRbDUcHGAd7q3Zjzx9H49q9U+6VfdJ9C0AQw5agFXOX20Yrb9imXUr/4R5pzHTs/xrHzYxKnXUH+1/+LzhJyzHXuWILsV/b4Tpx6mRA0TwIC7uiPFW+zthA4GPg7lfcfo91E+rQcqj46qBDgmrbUkn9RKTqDssza3aDtRnXVdSIHe+nXqYHjSBueRqX32FaQhDVH6RJ9/nl4+GEje/acQTyuTIBJk+AXv4Arrujzso4bvUlPQmESjiPdQaPGRBOGxMiIMMGxojPpQ3eFKHc7g3VwquwEAoHgZOa0EjWzs7PDPwcCAVpaWkhL671coqGhu6QlIyMjxsz+JT1d+clqz7TyU+1aBAKBQCAYLNzlW6l/9Ye9znMd3oDs9yEZjPiaK1XbDWkFmDLV7WO8DX0TNeVgAMfupQBUdxaxouoiVtRfxeevnY/DIQG3xn0sSYJZs+CM1H8zz/AHRqduI5oe2L7pTRIczTj3LleM6xPSSF34NdV8k4YrtSfmXKWoaSmcSPZNj1H/6gMqobKLjk1vUf3sV8m/6yUkSaJzy9uqOYlTLot5XsGJR5ZlAjGcmp5mV9wfqJ9ofB1qUdOYaCZ5dDptuxvD4wGnj87DrSSVKl8vuxvUieMAsi+It9nV5/U0blB/IJIxIze0rRF+8AN45RVwhLXU2L9Dmw2uvx5+9zvIOtYen/1EzoJhHPxPdwl61vyik+I+MFSQJAm92RD1AwWDTYiaAoFAEMlpJWoOG6ZsoF9RURGXEFhZ2f3GprdemP1JZDp5z5T0U+1aBAKBQCAYLFqWPhXXPNnrwl2xDWvxdPwtVartxtQCdOYE9ElZitJ0X0NZ3GvxeuGTV/bx6vIHWV51MQfbxse9bxcJCXD++XDZZXDxxZCdDfu+9yD+HkKsbEpA8iodaB0b3wyV3UeQdsF3w87JnphyRkVfhKTDmDVCNZx+4fdImnU9TR/8gZZlTyN71YJR++evYB05j7Rzv0XH1neVhzUnYBuzMPp5BQNC0BdUlRkrtnsD+B0+jPbBdekF/UGVANTlHEybkqMQNQGcVe0KUdPv8BJwRu/r4KrVdnFGI+Dx07JNWXouGXWsqcrhoSmwdWu8R5IpLQ7wk58ZuDX+zzhOOCnjMhn99em07WvClpdIyvjMwV7SkENviS5q6oWoKRAIBCpOK1EzPz+flJQUWltbAdi9ezeT42jsv2fPnvDPY8b0vRSsqqqKF154gebmZpqamrjnnnviOk5FRYXidm5ubvjnwboWgUAgEAhOJYLuTtrWPK8aN2aNwJQ1AseOjxTjrgNrsBZP13ZqpuYDYMoswdVD1PQ2HIrpWquqgvffh/fegyVLoLNzLDC2T9eRl3CYK2/O5oqrrZx1FvRsix1wtCgETYBg3jSkzjp0jfvCY+6y9arj6iyJpJ37Tc1zmjREyy6MmcXojNq9uY1p+eR84TEyLvsRzR89TvPHTxJ0tinm1L10HwQDqr6l9gnnozNZop5XMDDEKj3vwtvsGnRRM7L0HEJ9BwHsReo+9s6qDsXtaC7N8Pa6TuhDYVPLtrqQIAx0unX8bUUp7+3Oo8MZX69Moz7AgtJG7r34EBf+fjbSSZj7YB+egn14ymAvY8iiM0f/oxusp9Vbd4FAIIiL0+6Zcfbs2Xz44YcArF69mhtvvDHm/D179tDY2P0p75w5c/p8TlmWeeaZZ8K3Z82aFZeguGJFt5tCkiRVj83BuBaBQCAQCE4l2ta9TNCtFDISZ15Lwd2v4K3ezcEfKZ2SroNr4bxv4m9Ri5rGtILQ96yS0LyjyB4HgY4GDEmh2lCfD9asCYmY778P29SBwb1i0AeYmrGCM/PfY0H+e5Sm7CT/i8+RcuaXVHPdlTtUY8GMUsgeqxA1tUg95y70Cama23QmK8b0InxN5apt5lguzq5rSMwg65pfknbetyn7+Ux8jUe6Nwb81L14r2ofUXrev8iyTMvWOhwV7dhLUkgZlxlXuXAwDlHT0+IiQUM4HEgiS8+BsNBqTDZjSDDi7xEk1FdR01Xr6JOo2bi+mk3lyTz5aSk7qpOR4+qVKZOX7OaWWUe4ZmoVOh2kT89F0ut631Uw5NBbor8914uemgKBQKDitPtvef7554d/XrZsGXV16nTCnrz44ovhn0eMGMHo0aNjzNamoKCA/Pz88O3XX3+dQCB6nyIIBfr897//Dd8+44wzVOXlg3EtAoFAIBCcSrR8+n+qsbSzv4EkSZhyx6CzKUUZ54E1AJpOTWOXUzND3b7lyI4KnnsOrrsOMjPhrLNCPfD6Imjm5sJXvgKLF0P5uvX884JFfHXC7xmZuhNJgvaNb2ju56ncrhqT00cQKFkY83yS0UL6Bd+LOSdaX83IkKBYGJIyKfjmYiRDL64+ScI+5ZK4jyvonfqVFZS9vJP61RUc+u92mjT6PWoRj1PTE0dYkN/po+Ld/ZS9tIOOg81xnbsv+DScmoajoqYkSdjyEhXbPM0u/K5ukTNaSFB4e1185eduN3z/Ox7m3jeZr70wne3VKb0KmgZDqH3Erl0Sa/9TwXXTQ4Kmzqgjd9HwuM4rGHrozdqips6sV4VcCQQCgeA0FTWzjnbZ9nq9PPDAA/j92i/cVqxYwauvvhq+fcsttxzzea+99trwzwcPHuSpp6L39/L5fDzwwANhkVKSJO68807VvMG6FoFAIBAITgXcR7bgPvS5YsyUXRru2SjpdFhLZiu2+xoO4W+vVzk1dbaUcN9JY1YJnoCZNdXn8OiGR7jq7S2Uzp8eFiTblJXWUdFJAaZlreCBa99m8+ZQmfqzz8I110DO1FkYknMU8x07PiTo7lQdx1OhFjWDGaXIGSMxZAyPev6Us27HkJwddTvEEDVz+/bBqLV4Bjk3Pxl7TsnssNtV0D80rlf2hq1foxbrtYhP1IwdouPr9LLnL+upX1lO89Y69j2zGWd1R8x9+opm+XmPNO5IURPA1WMN7sbYTk1vixt80XuLbtgAixaB3Q6PPmGm1WWit+Cf3Fz4zW/A5YJ334WxY6Hg0pGMuGUShZeOYvy9czGn22IeQzB00Vu0y89F8rlAIBBoc9qJmiaTiXvuuSd8e/Xq1dxxxx2K/pV+v59XXnmFb33rW2FH5ahRo7juuus0j3n22WczevRoRo8ezdlnn60558tf/rLCrfnEE0/w8MMP09LSopi3e/duvvzlL7NkyZLw2M0338yMGTMG5FoEAoFAIBgqtHz2d9VYyll3IOm6X/5YS+eq5rgOrMUXERRkSC1g927405/ghgevYN5Lzdz+8cc8t+v77Gvpvad1FxlJHVwx4p/8YcH1rLw+g/9cuIAf/VBmyhQUqeWSTkfitCsV+8o+D53bP1Ad0x3h1JR1BuSU4SHn49TLtReiN5Bx8fd7XW+0sKDI5PN4SFl4B8nzo6ee2KeK0vP+RA7KuJuUwqOrzkHQH+x134Anjp6aLdFFzYDHz4F/blEJn1rJ4MeDr9OjGuvZ59OWrxY1ewqr7vo4nJhtyuoqvx9+9SvIy4OZM+HTT6GXAix0upD4uX49VFfDAw+EnJpdSJJEyrhMsuYXYkoWPWVPZ6I5NUVIkEAgEGhz2vXUBLjqqqvYvHkzL7/8MhASA88//3xGjx6N3W7n4MGDNDd3l8ikpKTw+OOPYzAc+6/LarXy9NNPc/PNN4fDff7zn//w0ksvMWrUKOx2OzU1NZSXK/tWXXrppfzwhz88qa5FIBAIBIKTnaDHQdvq/yoH9UZVT0qbhqjp3L8Sf2sNbZ4U1tacy6rq81nTeAXVv+makR73OiQpyJw5Oi66KFRqmvT6mfgqe0Qg6/TYxpyluW/i9KtoWaas7Gjf8DpJM7urP2RZVpWfy6nDQR/6P2+fegWtS55QHTtl/q0Y04t6Xb8p5/jLz7uQJInc2/6G+8hmzZJ50U+zf/F1eNQJ5kEZd71D08HYk4C7F5WO6E5NORDk0PPbVf0rAVw1/evU1OqpaVCImkmq7V3rCvqDeFoiSuglINKY2RaADAMHDlj40Y90LF0aEjZ7RyYjQ+KOO+Chh8AitEpBHETrqSlCggQCgUCb0/bZ8ec//zmpqak8++yz+Hw+gsEgu3fvVs0bMWIEjz/+OCUlJcd9zpEjR7J48WK+//3vs3nzZiBUar5z507VXIvFwp133snXvvY19PrY0YeDcS0CgUAgEJzMtK97haCrXTGWNO1KVXmztWRW+Gd/UM/2xlmsfbyIFftXsL1pFkG57/HDqeYGzsj/gDPy3md+3kdM+dliEsYuxN9Wx76egubR8+tt2mErCWMXorOlEHS2hsc6t7xD0OcJJ4/7mspV1xnMKO0+fuk89PZ0Ap1N3RMkHemX3B/XtWg5NXUWO4aU3Lj2V+1rtlHwrdco+9kMxbqNmSWYCyYc0zEF2nhbtXteumo64xA11aqdZNAh93B5elvdyIGgItBGlmWOvL6H9v3a/TOdNZ3IQRlJF0+ATu/0Vn5uSrWgtxgU1+M46tT0NDlVoq99WAqdh1vDt4NBePHVbF5YUUBdXe+l5QASMuPz2vn1LwNc9pW0XucLBD2J5tQ0CKemQCAQaHLaipqSJPG9732Pyy+/nMWLF7Ny5Upqa2txuVwkJyczduxYLrzwQi6//HJMpl4a2/eBwsJCXnrpJVatWsU777zDli1bqK+vx+PxkJaWRmFhIWeddRaXXXYZubnxvWEYrGsRCAQCgeBkRSsgKGXR11RjlY2pvF7/EMt3TWRd7Tm0e7WTwGOhkwJMyljH/LwPOSP/fcanbUSv6xZ/6l7+PsUPrcOxa6lq34Tx50U9rmQwkTjlMtpW/yc8FnR34Ni1lMTJFwHRQoK6RU1JbyD1nLtpfOsX4bGUM78cV3o5HA1F0ukh2O3cM+WMjitBOxrmnJHkf+NFKv9yPbLHAZKO7BsfPa5jCtR4I12IR3HWdJBO7NeYWuXn1uwEpftSBm+bB3OaNTxU/dEhmjbVRD1u0BPA2+Lqt56RkUFBOqNOIQpJkoQtP5GOg93tnjyNTgIev2Y/zZRxGTgq2ihvNPOnT0ay6lAG/mB83brsZh8Xja/l7gUHSEnXM/HWM47xqgSnM7ooPTVF+blAIBBoc9qKml2MGDGC+++/n/vvj8+xoMXSpeo3Kb0xf/585s+ff8zn1KI/rkUgEAgEglMdd/k2XAfXKsaMmSUkjD2btjb47DP4+GP46CPYuxfg530+R35KHXMz32J+3ofMyf2EJFP0dCB32Qba17+KY+cS1baE8efGPE/i9KsUoiZAx8bXu0VNrZCgHqImQOblD0IwgGPXx1hL55F9/W9jnrMnksGIfcL5dG57Pzxmn3xx3PtHI3HyxYz41XZchz7HMmwa5ihl7oJjJ6pTs1YdNhWJllPTlpeoKin3NLvComb9mkpqPz3c67GdNZ0nTNQ0JJpVcyJFTeRQX013g1LUDAbhxWXp/OGpbCqbzMTjygSZUVkdfOPMQ5w5stsNnTGrSCRVC46JqE5NERQkEAgEmpz2oqZAIBAIBIKhRc+AIG/AxNaGOWzz/Jo1Z+j4/PPeQz20sFn8LDrHwPnnwwUXQOLqn9L66dNx71//6o+QA0oBRjInYBsxO8oeIewTL0AyWZG93f0L29e/Svb1v0NvT1OFBAHIGUpRUzKYyLr2YeDhuNfbk+wvPk7A2Yqncgf2iReSfsE9ve8UB6bMYkyZxf1yLIEaTxRR01nTiSzLMZ2xWqKmNVddst7VV9NZ00HFO/tU2yWjDtmnDCZy1XSQOqF/Uu79ET01e4YEdaFVau+s7giHBNW2mXh82Ug+25+JNxBfuwmr0c8F42r55lkHSbH1+F3pJDKm55K7aHj8FyEQ9CBqT03h1BQIBAJNhKgpEAgEAoFgSBBwtNC+bQlr/7eF1WX3srbmHDbWL8DlTzim441J3cy8vI+Yn/ch1/z1CZJLu3s+Nh6I3p9aMlnRW5Pxt9WGx3wNh1TzEsYsRDLEbgujM9uwT7qIjg2vh8eCzjYa/vcwOV94TFV+rrMmI9uze722vmDOGUnxT1b36zEFJ55o5ecBpw9fhxdTktrVGJ6j6dS0q89xVNSsXXZY1Z9SbzVQeutk9j69UTHurOndKRoPQV9AtU5tUVM7LOjV9yz89e05HGm2Ea8rszTXxVdnHeS8sfWKLTqznsxZ+WTNK8SUIhKBBMdONFFTbxNv2wUCgUAL8ewoEAgEAsEQxFt3EG/9QWxjzgqHygxFvI1H2PbG2yx518GKrcNZW3M2LZ7rj+lYaZZ65uWGRMy5eUvItNaFt9lz8xVzTVnRRc28259D9nmo/vttMc/XW+l5eF3nfkshagI0f/xnUhfegadmj3Jd+eNxiN6UAsDbpi1qQsgtGVPU9CjtzJJBhyVT/eGAp9mFu8FJyw6lyCfpJUpvnYx9eArGZDO+Nk94m7O6fxLQ/Q6fasyQqBY1zelWdGY9QU+AZoeBx5eN4pM/ZOH2xefKNBsCnD2riW/fVUHmjlbFNr3FQO45xWTMyIsqRgkEfUFv1r5fivJzgUAg0Eb89xUIBAKBYIjR8ukz1Dx3BwCGtAJKfr5Rlfp9KtPYCEuXwgevVvDxhwEqOr55TMcxGuGMM+D882FizZ0Ma/k/dJKsmieZbOhsKcp9M7TLptMv/SHJs29ADgZo+vAxPOVbNedB/KJmwtiF2KdcSueWd7oHAz4q/3ojBJRONZEgLoBQCnk0pyaEEtCTR2dE3R7pgNRb9OitBlWSuKfZRe3ywxDxsMmYmY99eAoAttxE2nqImr42D36n77jLaX0dHtWYllNT0kmsqC3gidezOdhgJ15XZlGqky/NPcKlE2rQFRmhQf3ckL2giOwzio5h9QKBNiL9XCAQCPqGEDUFAoFAIBgggl4Xnds/RG9LwTbmrBOS9uxtOEzNv+8K3/Y3V9L47iPk3PRov59roOjshFWr4JNPQgE/mzd3bSns87GmTIFzz4VzzoEzz4SEo+az+tcyafyfWrQAMKbmq/5W5vxx6O3pBDq7w0HsUy4l65pQ30pJpyf7+kcof/QCzWMaknMw54+Pe93ZNzwSCuvpkULuqdimmmcumBj3MQVDl4DLT9AbvXlsbyXgKlHTbECSJExpVlw9nJbuBqc6eEgnkb2gW+iz5tpp29OomOKq6SBxRFpvlxGTyJAgUIqazc3wox/BCy9AR0epaq4WZjNceqnMV4atI9vk6N5Q64OIinydWU/mnIJjWrtAEI3o5edC1BQIBAIthKgpEAgEAsEA4Guq4Mjvz8NbsxeA1LO/Qe5tf+338zS8+XMIKMsynbuX9vt5TiROJ6xeDcuWwaefwuefg1/d4i8uhhf5Oe8CA+ecA2efDZmZ2vOspXOjHsOQphYudCYrObf8mZrnvkbQ3UHitCvI+9q/kXTdicf2ieeTMP68qKnnfRG1zXljSV34NVqW/i32vIIJ4Iw5RXAaEC35vAtXbewS8IAn0qkZestgTrUoRE0t4TRtcjbmVGv4tmZQT03n8YuaHWpR05Bo4v334cc/Dn34IWt/ThGBTF6ym+/e5eXeh5PR6ST2PWOi42APUVPj+SdrboEoCRb0O7poQUFW8bZdIBAItBDPjgKBQCAQnGCCHicVj18ZFjQBWpY9TcalP8SYHr/bsHXlv2lb8zymzGIyr/0VBnu6Yrunejdtq/6t2s9dsY2g14XOZFVtOxlwuWDNmpCAuWwZrFsHPnW7vLhIszs4a34nF1yRznkXGCgpie+ljjVGCrkxVduNlTznRuyTL0H2udAnZmqKlFk3/I6yh7REzfPiWldPMq/6GW2r/0vQHV2QMuVPgP1H+nxswdAiVuk5hByWQV8AnVG7f5+6/PyoqJnWy3OIBDkLhyuGbLnqgKH+6Kvp7+HU7HTreGrlCN7/awZt7fHtb9AFmVPcxPfO3s+wdBdjvzmLrs8krDl2Og62RN1XMurImi/KzgX9j86oC3VIiBDk9UJAFwgEAk2EqCkQCAQCwQlElmWqn/0K7iObIjYEcZdviVvU7NjyTjh4xgE49i6n+KG16K3dyb71rz8EclC9czCA+/AmbKPmx7fmgB/n3uUEOptImHiB4hz9gccDa9d2OzHXrg2NHQsWvZNpWSuYm/sx1z78NWZdMBKdru9p5wZ7OqacUXhr96m3aTg1u9BbE8GqdqJ1YR02leR5N9O2+r/dgzp93P00FetIyiLj0h9Sv/hH2tvTCtHbUgAhap7ueFpdsSfI4Kp3kJCvfmzLgSCyT/k80iVqmlJji5op4zKxZikff6ZUKzqTXuHqdPVDArqv08uqg2k8taKEPbVJyHH2ysyye7hhRgVfnFWOodtYjTnDFv7ZmqMWYnuSOTNPs3+nQHC8SJKE3qzsXasz6dH1vLMKBAKBIIwQNQUCgUAgOIE0vvMb2te9rLnNW7c/7uM0L3lSuW/1bqqevoXCb7+BpNPhKttIx/rFUfd3Hfq8V1Ez6HHSuuI5mt5/FF/jYQBM2aUM//FqDElR6rbjwOsNlZAvWxb6WrMG3LGNZFHR6WDm9ABTvI8wJ/tDpmSuwaT3YkwvovTCRzieNqXW0rmaoqYxNV9jdvxk3/B7XGUb8B5NKs+45AGMqXnHdKy0C75L89K/4m+uVG2zFIp+moIQ3tbePyVw1XRqipoBt7qkvCu8pDenZs5Zw1Vjkk7CmmvHcaSt+9z1DoL+4DEJNa2toV6Z//1nKR2u+BLM9XqYNbKNb87dzehsh2q7KcWC3tR9LKuGu7QLSS+RfeawPq9bIIiXyEAuERIkEAgE0RGipkAgEAgEJ4iOTW/RsPjBqNu9tfGJmgFnG47dy1TjnZv/R8NbvyDrqp9R/9qPYx7DdWhd9OM7Wmj++C80L3mCQEeDco11B2h4/SfkfumpuNYKIdfl+vWwfHlIxFy1KlRifqxMngwLF8KiRXDWWaA/9A4VjyvdivYplx538JJ1xBzaVv5LNW6M4dSMB0NKDsUPrcW5PyQOW4tnHPOxdCYrWdf+mur/u1W1TYQECbrw9ubUJBTWo0VkP00IpZ9DbFEzsTSNhEJtV7ctN1EhahKUcdc7NPttRuN//4Of/Qy2bOnqldm7oJmdDXfeGRJBaz+opWGNWtAEsGTaFLetWQmaJcAAaVNzMaVY4l63QNBXbPmJir64toL4HycCgUBwuiFETYFAIBAITgDuiu1UPX1zzDnxOjU7t3+oCv/povHNnyN7XTi2fxDzGK5Dn2uON330BA2vPUjQHb0ctOWzZ0i78F7MOSM1t3d0hNyXy5fDihWhnpjHWk4OMG6Uk9n5KzljUjkX3XUBuaOUJfrVW95R7WOffMmxn/AotihhQYYoPTX7gt6WTOLki477OADJc79I84d/UrU0sAhRU3CUyJ6aOpOeoC+gEOmiJaBH9tOEnuXnlqhiX+7C6O5FW55GX82ajl5FzcbGkCD50kuh55l40Olg/nz43e9gbo+HtC0/+rl6lp4D6Ix6LBk23A0RqVsS5JwlXJqCE0vuouE4KtrxtXswJpvJXVQ82EsSCASCkxYhagoEAoFA0M/4O5uoePyKmEIhxC9qdmx+K+b2pvceUQ9KkiL619dQhr+9QVFG7tiznLrnv9P7AoIBGl77MQV3h8rom5pg5cqQiLl8eShlOKCuWI2bsWNDLsxFi2DuuMN0PD4pFIbTAp1/H0HgF5vCfT1lWaZz67vKSzVZSRi76NgXcBRz/ngkcwKyR+nmOl6nZn8j6XRkf+Exjvx2UfhvrLMkkjDpwkFemeBkITL93JxuRQ4Ecdd3i3Su2k5kWVY5nLVETd3R8nOdQYcxyYyvTfmpRUJhEvaS1KjrseaqBUVXdSdM156/eDH84hewfXvUQ0Ygk2b38/VvGXnoIbBoGCm1Su27sGSq+/Bac+wqUTNlQiaWCAFUIOhvbPlJjL9nDr62kKjZ1f5BIBAIBGrEM6RAIBAIBP1M/cv342soU40bUnLxt9aEb/uaKwh63ehM0UsZZb+Pzq3v9en8OmsSKWfcpurD6Tr0OYlTuh2Nbav/E9fx6px5vPuyjv1r6lm9JYudO/u0HBWjR3eXky9cGCoR7aL2v39UpHv76g/S/NETZF4RKq93H9ms+B0CJIw7t1+S3SW9AWvJLJw9Sv0lkxV94rH3Ez1RJIw5i/w7X6Dx7V8DMlnX/RaDPR2/Xy1ICU4vgt4AfofS2W1KsaAz6hWiZsDlx9fmUZVSx3JqQqgEPVLUzFk4PGb7B2u2upzbGVH+Xl8P998Pr74KDu0qcRU6SWZKQSvfPOsACy4wM+LmSVHnWjJtSAYdsl8dpmbJUguV9uEptGyvV4xlLRCJ54KBQW82oM8Sb9UFAoGgN8QzpUAgEAgEEciyTPOHf6Rt7UuYc8eQfcMjGFJy4trX11JN66p/q8Yzr/4l/vY6Wj7+c88T4a0/iKVgfNTjOfetIOhsVYyZcseEQ2e0SL/o+1iGT9MQNdeFRU05GKRjy9uqfa0jz6R10i9Y9mY5y5cH2Vi3gMrOkqjniofS0pCAueAMH4sWQn6RduiB7PfRtvYF1XjTB4+Sdu7d6BNS6dQoPU+cculxra8naefcrRA1k+d+EUl3cqbOJs+5keQ5Nw72MgQnGZEuTQiJmsYkMy3b6hTjzprOPouaSSPT6SxrDd+25iWSPCYj5pp0Rj2WzATc9d1qpasm5BR96SWJhx+GXbtkiCvBHLKzZC4rLeNL845gMYRESqM9dqCXpNdhy7XjqGhXbdNyX2bMzKNhfRXu2qNrnmDpNRVdIBAIBALBwCJETYFAIBCcVjj3rUL2e7COmI3OrC45BGj97FnqXrwXAHfZerwNhxj+4Iq4gmialzyp6n+ZOO0KMi5/UCUyQqgEPZao2bFJXXqeedXP8NbspeGNn6q26RMzSTv/O8h+dVNL18HusCBX2XoCbXV4A0Z2N09jc8M8tnuvZctH86itjXmJvTJ+vMy8qY3MHLaV6VkryfB9jqdmL76lh2n7VE9w6mXk3/kCOqNZsV/n9g8IdDSqjhd0ttH0/h/IuvZhOiJKzwHsky8+vgX3IHHG1RTc/QrtG9/AnDeOjEt+0G/HFggGAi1R05xq0SyxdtV2kDJWKUhqBgX1KH/Nml+Iu8FB255GrNl2hl83DknX+3OjLdceFjUbOkw88XYpn/0OnOFMo9jH0OtDzu7f/hbGZrWz529KN7zBbup9DXmJKlFTZ9JjTDKr5uqMekZ9Yzrblm4CiwSJ8SWtCwQCgUAgGDiEqCkQCASC04bqf3yN1s/+DoC1dC5F930Q7tXYhez30fDWLxRjrv2rcO75tNe+jQFXBy3L1Cnhmdf8CkmSMGWrg3Zi9dWUZZmOzf9TDuqN2CdeiG7mdbjLt9Cx8Q3F5ozLfoTemggkYswswddwqPs6Dn1OQ4PMmjUSS/7hZvWa5exsmoEncOyl23o9TJsGZ54JCxbA/HlBPK/dStua56ECqABFZ9FAkI4Nr1P/yv3kfPFPimNpOVy7aProTyTNuRF3ROCRpWhKv/a8lCSJpFnXkTTrun47pkAwkHiiODWtuWqXoUsjLCjgVjfI7enU1Jv0FF8f/YOYaJhzEnn7vxL/XDOcI8024nVl5uXBN74BP/gBmI7qlq27vKp5xsQ4RE2NsCBLpi3qB1aSToJM8XZJIBAIBIKTFfFfWiAQCASnBd66A7QufyZ823VgDY1v/4bs63+jmNf++Sv4mytU+zd/9Hivombr8mdVpeL2SReFnZha6eHe2uiipqdiO77Gw4qxhDEL0duSAci741+Ut1aHHZjWkfNJXXRneK65eA579pvY0jCPzfXz2dwwn8NPdb15PyvmtUTDpHMzc3IHiy7J5MwzQ+nCiT10gtZVL1C/5vlej9Oy7CnSL7kfY0ouAAFHC52RAm4PZI+DisevVI3b+7H0XCAYCsQqP9fbjASc3U5yZ62WqKlVfn7sLsUjR0K9Mt96swi3Jz4hU68LsnC+n8f+bGKSRptMX6eGqGlXuy0jsWmEBWk5WAUCgUAgEJwaCFFTIBAIBKcFrsMbFWngAM1LHif9/O+E+2XKskzj+7/X3L9j8//wNpRhyizW3C4H/DR/+EfVePpF94V/NmYMB70BAt2iQSynpsqlCSROvTz8s96ayPAfLadjy7uAjK70YlassbB6NaxaBauXP0NLx/EF6NitHqakLmV69gqmZy1nYsZ67HnDGPHTnUgGZW/MoMdJ/eIfxnVc2eeh6b3fk/OFxwBoW/cysl8tVPTEV39QvT4hagoECrwt2qKmJEnYcu10HGwJj3sanQS9AXSmbtGyt56a8RAMwhNPhL7KwlXivQmaMtmJHq6fXsEXZ5Uz/LKRZE/SDubxd6ifK+IpP7dmJ2BKs+JtDte8kzw6vdf9BAKBQCAQnJwIUVMgEAgEpwXe2n2qMdnrovGdX5Nz8xMAOHZ+jKd8q/YBZJnmj/9Mzk1/0Nzcvn4xvqZyxZhl2FRsPdydkt6AKbNEsZbYoqa6n2bitMu7lsPBg7BunYl1665i7VrYvBmU4dd9FzSzsmD+/FAp+ZlnwsSxMocf/Br+5krFmpuX/o3087+t2Lfpgz8o5vXEkFaocsC2LHuKjEvux5CcTZtG6bkpZ5Tm360LfWIm1uKZfbk8gWDIE+nUlAy6sOBnzVGKmsjgquskoTA5PKTZUzNOUXPTJnjgAVi2LPK5KDoGXZDZxU18e+EBRmR2p7O7NFykXWg6NeMoP5f0OoqvG8eRN3bja/eSPj2X1IlZ8S1UIBAIBALBSYcQNQUCgUBwWhCtzLt56VOkXXgvpoxhNL2n7dLsonX5s2Rd9XN0FmVvOlmWNfdNv+g+Va82U/ZIhVDnb6ki6HGiMyvTd33NVbjLNoRvt3uT2SvdxGt/LWLtWli3DpqaYi63VySCjEzZwZSs1Vxw12WcdWk+JSWgXLKFzKt+Ts2zX1XsW/fSfVhLZmIrnRtab0s1je/8VnWO3C//H8lzv4jObKPi8avo2PRmeJvsddH0wR9IOesOXAfWKPYzZZdScNfLHHpoatT12ydffNImkwsEg0WkqNnl0gQ0+2o6ayJEzUinpoTCyana3wm//CX84x9QXx/vKmVyktzcNKOcm2ZUovUwji1qqoPQjHE4NQHsw1MY/7258S5UIBAIBALBSYwQNQUCgUBwWuCti+L4C/hofPPnpJ3/HRw7l8Q8RtDZRuuqf5N2zl2Kceeez3Af2aQYM6QVkjRTHTajHRZ0AEtRd+M4vx9WvbqaZXu/ztbGOWxvnM2htrEx1xYPVkMnkzPXMSVrDVMzVjApcx1JpjaMWSMo/fbXiRbunjL/VprefxRv9e7uwYCPyieupvjnGzGm5tHw2o+RvU7FftaR80k56/awoJJxxU8UoiZA88d/IejqUJ0zef6tWIZNIWnW9bR//ormuhJF6blAoEAOBPG2KwU/U4ol/LMtVx2UExkWFClq6s0GzSCd99+Hn/4UNm4MlZvHg9EgM294A99edIBh6a6Yc111DuSgrJms7o9waupM+pjCq0AgEAgEgqGJEDUFAoFAcFoQK5CndeW/8Gr0a7SNXoBz73LFWPOSJ0lddKfCIdj0/qOqfdMv+J6q5ySASSMsqGxbJbvWTwo7MDduBKfzOuD4EriLimBa3nrGBf/FtMxVjEzdjkGnTjZOnHp51PRfCJXN53357xz+7UJFP1B/Wy2VT15N9hf+ROvKf6r2y/nCHxXHtQ6fhn3KpXRueSc8JnudmonxyfNuBiDzqp/Rvn4xyBGqid5Awvjzoq5ZIDgd8XV4IajsHWxO7RY1LVkJoJMUcyIdkUGP8jmiZ+l5fX2ovHzxYuhQfxYRlZEj4Xvfg+vm1nPk5R1x7SP7g3ianJpBPr6InprxlJ4LBAKBQCAYeghRUyAQCARDHn9nEwFHc/QJclAlXkoGEwV3vcyRR87FU7UzPO6t2YNj5xLsEy8AwFO1i86t7yr21dmSSTnrds1TtZvGsaLqAnY2zWBn0wx2NM6k/t/5x3hl3RgMMGUKzJsX6ok5bx4UFEDryl1U//0vMfftGT4UDduo+eR88Qlq/610qboOruPI785WhTAlz7sZa4m632Xm5T9RiJqa5xq9IBzIZM4bS/LcL9K2+j+qOV0p8AKBIISnRe1+NCV3i5o6gw5Lpg13nSM85qrtRJbl8AcQkU5NyWTg2Wfh0Udhz57412K3w9VXw29+A3l5oTF3g7r8vYvksRm07W5UjLlqO7VFzQinZjwhQQKBQCAQCIYeQtQUCAQCwZAnlkszGsnzb8WQkkPaed+m5p9fV2xrXvIE9okX4CrbSO1/vqnaN3Xh19FbE2ltDQVnrF8PGzaEvg4fXggsPKbr6MmwYTB7NsyZE/o+dSpYNXKBrCWzYx5HZ0vBNnJ+XOdMPftO3Ec20frZM4px2asUUiSTlaxrf615DOuIWSRMvBDH9g+inid5/q2K25lX/pS2dS8qXKLJs66Pa80CwelEZD9NAFMPpyaALceuEDUDbj++Nk+4TL1L1DzSZOWJZaWsOZyBN87QH0kKPRc99BBccYV6uzndhs6oI+hTOq8zZuaRNjlbJWo6azpJnZitGAt6Ayo3abz9NAUCgUAgEAwthKgpEJyiuA6tp3X5s+gS0ki/4HsYkjIHe0kCwUmLVsK4ISUPf2t11H3SL7wXCDkO6159gKCjOzG4c+t7HHn0IoUw5/AlsKd5KjtaZlPu/CkbfwL7+66lamIzdDBjqo/556Yxe3ZIxMzJiW9fU84odLZkgs42ze32yRdrlslrIUkSObf8GU/VTlWwT0/SL7oPY3ph1O2ZVz4UVdSUjBaSZl6rGDNljyD/jn9T/cyXkP1eEqddGdUJKxCczmiKmilKUVPL+ehpcWFKseDxyPx9aT6LNxdQ32EGorel6ElGBtx6K/z85yGHZjQknYS9OJX2fd0pZ8ZkMwUXj0QOqBtzuurUYUHHmnwuEAgEAoFg6CFETYHgFMRTu4+yh+eFXUvOPZ8x/MEVIgVYIIhCz7TxLnJufpyqp29B9qlFAPvUyzHnjQFAZ7aRetYdNL33SHi7y29l69IWdjTdHS4jP9Q2lqB8NKji82NfqyTJlKbuZlLaaiZlrmVSxjpGZlcw9q916OLTHpXH0+mwFs/EsfNjze3xlJ73RGc0U/Ct1yj76XT8rTWq7YaUXDIu/kHMY9hK55Iw/lzNNSVOv0qzrDx57k0kzriaQEcjxrTjL9cXCIYi8Tg1TWkW1ZxPPgzy2AuwejUEAqVxnUuvhwUL4Fe/grl9CBPPP78EZ00H/g4vBruJEV+cFO7baUwy4+sRdBQZYgTaoqYoPxcIBAKB4PREiJoCwSlI25oXFGWYrgOrcR1ah620D+8qBILTCC2npm30AtLO+xZN7/1etS39ovvCPzc3w2bjPXyyM8ju5insbp7K4fbR3QLmcZJlrWJ8+gbOvv0C5p1pYVzKWpofn6eYkzT5OnRG8zGfw1oyW1vU1BuwT7ywz8czpuRS8O03OPLrBch+pcCQdc2v0FliWLWOknHFQ5prSokoPe+JzmhGJwRNgSAq3pYIUVMCU5LyucOcGupT0dBh4m/LS/hkbxYOr7F7h14oKoK774Z77gn18u0rtvwkJtw3D0+jE3OaVRFEZM1OUIia3hY3AY8fvbl7TmTyOYAx8difHwUCgUAgEJy6CFFTIDgF0RJoOrd9IERNgSAKkU5NnS0ZfWIm6ZfcT8vSpwi6O5BlqHUWcMh0I6+8eAZbtsDmzVBeDpANqMXPvpKRATNnwhjLEkpan2RC+gaybCG3Y/FtG7EOn0bdK2+p9rNPvey4zmstmaU5njBm4TGH7dhGzCb3tqeofvYr3ecpnUfyGbfFtX/C6DOxjVmIc8+n4TFDSh4J4889pvUIBAK1U9OYZEbSd1dx+P3w1IsJPP7UXCpbrcRbXm6xwMUXw29/G0oyP170Jj22vETVuDXXTvt+Zaibq9aBfVj385SvwxO5m+ipKRAIBALBaYoQNQWCUxBf4xHVWOe298m6+ueDsJqhQcDRSt3LP8B1aB0J484h65qH0Zltg70sQT8gy7LqgwB95mj27pXYvDmdtY61rF9axe7mqbR6MvrtvCkpMGNG99fMmVBYGArSaFl2iJp/vq2Y763bj3X4NDo3K8eRdNgnXXRca7GO0A4L6mvpeSQpC76M3p5O25rnMWYMI+OSB/rUBiPvK89w+Fdn4G+rRTKYyPvqs0h68dJEcPrSebgVd6OTpJFpitTyeJBlGU+EqNnVT3PlSvjJT0Lf/X4jEE8vC5niDAffvd3FN3+VyUB0uLHmqF3ertoOpagpys8FAoFAIBAcRbxzEAhOQXyNh1Vj7sMb8Lc3nBKBQbLfS9NHj+M+vJGECeeTcsaXBr0faP2rP6T1s78D4KnYhs6cQNY1vxzUNQmiIwcDSLr4yr+byutZf2QKe1smsb91IvtaJrGvfRrO8J933NGvY8duh+nTlSLmiBEhAVMLU7ba6uSt3Y+3/hCe6l2KcWvpXAyJxye2GpKzMWYMU30gYp9yfA5QgMRpl5M47djEUVP2CEp/fxD3kU2Y88ejT0g97vUIBKcqNZ8epvrDgwDozHpG3DyJpNK0uPf3O3zIPVLFmx0GHn21hA9+CK2t8a/DbvZx/tg67lpwkBSbn8LLRw2IoAnRRE2H4rZ2+bkQNQUCgUAgOB0RoqZAcIoh+73aic2yjGPHRyTP++LAL6qP1C9+kKb3HwWgfd3LEPCRuujrg7YeWZZp//wVxVjryn+SefUvkKKpUoJBwXlgDTXPfR1fYxnJ828j55Ynw38jnw/27YNt20Jf27eHvldUZAMr+m0NyckyU6fC1KkSU6eGBMxRo0KhGfGiKWrW7adz67uq8cTjLD3vwj7pYlqW/i182zpiDqbM4f1y7ONBZ7ZhG3XGYC9DIBhUAm4/NZ+UhW8HPQEO/mcbo746lYSi+FpEeFvdBIPw2uZ8XtxQSHmLjXjLy/VSkPlnStx7awv5BzYrt5kH7u2CJTMBdBIE5fCYq1YZFuTr0BA1hVNTIBAIBILTEiFqCgSnGL7mSpBlzW2d2z846UVNORik5bNnFGNNHzw2qKJmoKOBgEPZw8vfXImv/iCm7PhSYAUnnqDPQ9Vfb8TbWE6jK4fl/95Pzap1HHTNYds22L0bvOr3usdFbi5HBczQ17RpMHy4FNWBGS+G1Hwko0WRvO6t26+ZJm6ffOnxnewoGVf8BPeRzbgOrsWUPZLcLz3VL8cVCE52mrfUUnXUAZl3/gjSp+YM8orUtO1pRPYHFWNBb4D9/9zC6K9Px5odO3xr3Tq4/7tmVn2+CH8wXlulTH6yi+unV3LDjAomf38uHYdclB9QzuoZ5HOi0Rl0WDJtuOu63Zmu2k5kWe7+ACvCqakz69EZ+ye4TSAQCAQCwamFEDUFglMMrdLzLjq3f4gcDA56KXcsvLX7CDpbVWOe6j2Y88YMypo81Xs0xx27lgpRc5BpboZdu2DnTtjyWTWblj3HvpZJ3b0vP+m/c5WWKgXMqVMhO7v/jt8TSafDlF2Kp3JHeMxTvYugx6mYZ8wsxpx/fKXx4WOl5DL8x6sIehzoTFbRu1JwWuBt91D26q6w8+/w4l0kFqeEe02eLLTsqNccD7j87P9HSNg0p1kV25qbQ30yX3op9DPElwCelAQXzuvktpLNZCd1C4TeFhcBt181fyBFTQiVoPcUNQNuP742T/hv5o9wagqXpkAgEAgEpy/iHY1AcIqhFRLURaCjAfeRTViLZwzgivqG69A6zfGOzf8bNFHTWxNF1Ny9jNRFXxvg1ZyeNDXBpk12Dh2yUFZmpb5ex+7dUFvbc1bx0a/jw6jzMG68ganT9WHxcvLk0Bv9gcSUPVIhagadbao5iVMu7dcWCJJOh96qThwWCIYqHQeaFaXMBGXa9jWROSt/8BYVQcDjp21vU9TtvnYP+5/dzOg7pyNZzTz1FPzlL7BH+1+XJno9zJkDP/0pnHcetGx3cOgFpTjoaXGfFKKmLcdOy9Y6xZirthNTigW/y4e3XZl+LvppCgQCgUBw+iJETYFgkPC319O29iV0RgtJM69Fb48vDMAbw6kJoRT0k1rUPBhF1Nz0FhmX/GCAVxPCU71bc9yxZ5mi5E3Qd2RZRvZ70RlDDqLGxpDrsst92fW9vt4AjO738xcVwQjTZ5RaVjEqdRujUrdTktfChL9p9KUdYLT6akbSH0E+AsHpjFb/RXe9Q2Pm4NG+r0lVeh7JZxstfGmKh61HTPgD8f5Pkhk2DO68U+Kee8DUQ/szRbg+AbzNLoK+gGp8MJyakThrO0kek0Hj59Wq35U5I2GgliYQCAQCgeAkQ4iaAsEgEPQ4OPzrBXhr9gLQuuIfDPvhZ2HhJxa+puhOTYDObR+QecVP+mWdJ4Jooqbr4Br87fUYkrIGeEXgieLUDLTV4a3e3W/lv7FwHlhL0/u/x99STeqir5Ny5pdO+DlPFH4/HD4MG1/7iM1vLuNQSymVurM50FhMQ8OJOafdLjNxosSkSTBxIuHvyUlB9nztQkXvSmvevBOziD7Sm6ips9ixjV4wQKsRCIYmkf0XAdwNTo2Zg4dW6XnCsGT2bPHwt+UjWHEgA5cv/pfsNpOfs0Y28M3zj3DxY3M055hT1aKmp8WFzqDuTTmQQUEQLQG9k6A/SP3qCtW2jOm5A7EsgUAgEAgEJyFC1BQIBoHW5f8IC5oQEvra174Yl5AVq6dm6FhrCXQ2x+38HEiCXhfuym3aG2WZji3vkLrgKwO7KMBbo+3UhFAJ+okUNeVggMa3f0PDmz+DYMgh4zq4Fr09vd9Sr08Uzc2wd2/31549oe8HDoSSyOH8o1/9h04KMCxxP6NStzEydTujU7YxKnUbcx/+J4njzlLN9zVVKgRNAFPOqH5d07FiyoktaiZMuCCuDzoEAkF0/Jqi5olzanpaXLhqHdiLkjAk9F4WHfQFaNvTXXre6dbxzw0lfPivImpqIN70cp0kMz6vndvnHWL+iFDwnS0veqsJvdWAzqwn6Ol2Znqa3ZiS1M85esvAhvAYk83oLQZFKbyrtpOWbXX4IkrPEwqTSBgWXzq8QCAQCASCoYcQNQWCQaDt81dUYy3Lno5T1Izt1EQO0rnzY5JnX3+MqztxuI9shoC6X1cXnZv/N+CiZtDjjPk7dexeRtq5d5+Qc/uaK6l6+macez5Tbatf/CD2yZeckNAnX1M5zgNrCDhakD0Ogl1fXifG9CJSz7oDfUIKAB4PlJXBvn1q8bKxsd+XFkankxkxQmL8eBg7Nkja+rsptqyhOGkvFoNbNb9j7X81RU1P7T7VWG9i4kDRm1MzcUr/pJ4LBKczvg6Paszb6iboC/R7YnbbnkYOPr8d2R9EZ9RRdNXYXpPW2/c143cH+N+2XF7YUERZYwJynEImyGQnerhychW3zCnHYlCWZZtSo4chSZKEOc2Kq6YzPOZtcaE3K38nklGHpB/Y8EFJkrDm2Ok83Boeczc4qV2u/l+dfWaRaBEjEAgEAsFpjBA1BYIBxtdciWvfStW46+Ba3OVbsRRNjrqvHPDja1aWXumsSQRd7Yqxzm3vn5SiZrTS8y46d3xE0ONEZ7YN0IpCyeuxcO5edkIS5Ts2vUX1M18h4GjW3O6p3E7HpjdJmnF1v5zPU7uPjg2v077hNdxlGxTbXH4rlR0llHeUUt5hpjLwAfUp13CwzEh5OchylIP2A3p9KHV87Ngg6el1FBe7KClxc9llo7DbQ/+iHLuXc6TqqZjHaV//Kjk3P4nOpHwT763dr5prjqOX5UBgSMlFMicgezRcY5KEffLFA78ogWCIoVV+jgzuRie23P4Nzar66GC432PQF+TwKzvxNrvIOXu4pvC2fDk8cJeV9bsX4Q/G/z/GbvZx1shG7jzjILkpatG2i94S3s2pSlHT7/CpnJAD3U+zi0hRk6CsSESHkGibMi5zYBcmEAgEAoHgpEKImgLBANO+fnHUbS3Lnib3tr9G3e5vrQ6XKHeROO1KOja+TtDd/cbEsf2DQQm48TVX0bbmv+htqSTPvwWdSdmzK1ryeRey14Vj58ckTrv8RC5TQbSQoC4CjmY8ldtjis19QZZl6l66j+YPHut1bsNbvyBx+lXH/HcMet00f/wkbav+TdOhI1R0jDgqXJ579Hsp5e2l1LtOfAqwQeelKPEgo4e3MuPyuYwfD+PGwahRYDaD3x9k69bu8B5Lj/fiWo8ZvT2dQGd3yWbQ2Ubn1ndJmnmNYp63Ti1qnizl55IkYc4eibt8i2qbtWT2oPSXFQiGGlrl5xBy/vWnqOl3+BQCYRfVHx/C0+Ki6Mox6Aw6jhyBhx6CN9+E9nYAdf9ILYxGmdnjXXxp6j6mZEdPSu9JUmnsNjRaTk53o7Lf6ED30+zCmtv77yV7ftGAu0gFAoFAIBCcXAhRUyAYYNo1Ss+7aFv9X7JveASdRfvFvLfhsGrMlF1Kwrhz6Nj0VnjM31aLp3wrlmFTjne5ceNvr+fggxMIOlsBaN/wGkX3faAQ5HpzagJ0bP6fQtSUA346t76LLMskTrkUSd+/T1vRQoJ64ti9rN9EzfpXfxSXoAngKd9K5+a34xJ5vV4oLw+Vih8+DAd2d7BryWoqas+gsvNWmtzZx7ny+Ei31DE8aS/FyXsoTtrL8OS9FCftJd9ehkEXAEmi9O59mLJL4zqeHAzSsfF15aDeSM4XH6fq6ZsVw22r/6sWNbXKz+M890BgiiJq2k/yfqoCwamAHAjid/o0t/V3X01HRVvUbRVr6njkn6m8vTWHysr4P6SSJBg/Hr77XfjylyV0OhtB70SattRSv6oiaoq7MclM5twCkkanxzy+WSMBnQhn/qA5NbNji5p6i4H0GSIgSCAQCASC0x0hagoEA4ivqRzXgTVRtwfdHbStfYnUhbdH2V/dT8qYMRxDUpZC1IRQCfpAipotnz0TFjQBHDs+wrl3BQljQunN/vZ6VciRbewiXAfXIXu7nSEdW95GDgaQdHoCjlbK/3BhWAy1jpzP8B8t79dScG88ouaupaRf8N3jPlfzkidpeve3mttSz/4GxvQi6l/9oWK84a1fYJ96GYGARFVVSLTsEi57fq+qiiwTTwQuOO41a2HUexmWuI/hyfsZmd/AqNIAo8cZSNv5EIlSrWKuZDAh+3s4pWSZpg//RO6tf47rXK6Da/G31ijG7BPOJ2nW9dQ+/x2FW7Nj67uqkKxIp6YhNR+dOSHeSz3hROvvmThZ9NMUCI4Xv8OnEum66O8E9M5ypajpD8LiTQW8tjmfw01965OZmytx223w4INgj9D2dCY9mbPyyZiZh7fZhd/pR2/RozMb0Jv16Ix6JF185zJpJKBHMnjl57GfpzNn5w+ai1QgEAgEAsHJg3g1IBAMIO2fv9rrnJZlT0UXNTUCbYzpwzBmDFONd27/gIzLfqgaP1E49y5XjbWt+ndY1NRyaSaMPgu9LYWOjW+ExwLt9bgOfY5l2DQqnrhKsZ9r/yocOz7CPunCflt3ZPm5LiEVnTkBf3NleMy5b3lYaD1W2j9/ldrnv6Ma1yWkkvfVfyCNupIjh9ysbd1CdYOdGkcRtY5Caj4qou5ZF5V1NvzRM5b6Hb3kJ89+mGGp5Uw8byYjRkBW5V/Iqvk/8hKOoNcpAynYhSqkV5+UReG3XufwrxeA3D2/dcU/yLz65xjssV1EoF16njTjGiSDkaTZN9LyyV+6NwR8tK9/ldRFXwdCLl9vwyHFvr2F8ww0WusxphdhLpw4CKsRCIYWmv00j9LfoqbjqKj58Z5M/vv5MHbVJBKU4/8Azmbyc+bIJh5/JYPR43r/XyNJEuZ0G+ben0ajYk6L3XMTUAUHDRR6swFTmhVvs0u1TdJLZM4rHIRVCQQCgUAgONkQoqZAMIBopZ7rEzMIdHTHSLsPb8RVthFr8XTV3EinI4ApczjG9CJMeWPx9hDonPtXEXC0oE9I7Z/Fx0AOBnDtX60ab1//Kjm3PInOZMV16HPVduuI2RgzhilETYCOjW/Q/OGfcO75VLWP69Dn/SZqysEA3jplebI5dyymrBG0rf5PeCzobMN9ZDPW4hnHdJ7mbcvZ8PufUN2+gFpHIbXOwtB39wiaEhZQ+aKF1lYAC/DSMV9PXzGZoKQkFNRTWgrD0qtIWPUNCq07yU0ox6gLqaimzLH4y2tCTtx4W9BJOgruegnbqPkkzbiG9vXdgr7sddHyyd/IvOLHMQ8hyzIdG15TDuoNJE67AoDkeTcrRU2gdfV/w6Kmr/EwBJRK8MnST7MLrfXYp1wq0nwFgn4glqjpaXAgB+W4XY2xWLlS5vu/Gc6mI5PxBuIXAfVSkEn5bXx1fhlziltInZhFybiBaRUCJ7dTE0JuTS1RM21yDqYk8yCsSCAQCAQCwcmGEDUFggHC21CGO0LYMxdMIHn+bdS//H3FeMuyp7EW/5/qGKryc50eQ0oeAPZJF9Hc03UYDFD2y3nkf/2/mgJpf+Kp3EHQ3aEaD7ra6dj8Nsmzr9d0alpLZiEHAyDpFE6+pg8eUwUi9TxXf+FrPILsUya9mvPGYBt5hkLUhFAJeqSoKcvQ1ATV1aGvmprun6urQyXh5Yd91DUsAHovcz8RWA2dDMtuZcyMPEpH6sICZmkpFBSE0se7yadt9Q2qXpXeXsKUtMi65mESxi4CIO2iexWiJkDzx0+SftF9qrTynrjLNuBrKleMJYxZFC4vt46YjTFrBL76g+Htrn0r8TaUYcosxqPZT/PkcmpaS2ZhzBjW7cLW6Uk9647BXZRAMESIFhIEoXRyX7un14TwaOzdCz/7Gbz7LnR0SEDsUJ5uZIanOblueiXXTK3E0MPMmTpxYMPB9CY9BrsRf6d231EYXFHTlmOnbVejajzrDOHSFAgEAoFAEEKImgLBAKFVep4063pSzvwSDa89qOg72Lb2BbJvehS9NUkxP9KpaUwrDAfn2CdeqAqg8dbsoeyXc8i88mdkXPrAcZVPx8K5f1XUbW2r/0PSzGtxlSkFXVN2abc4NXIern0ruzdGETQB3FX9J2pqJZ+bcsdiHXs2bZ4UGly5NDjzqHfl0fqXDFwfKkXLmppQQE9sjP22Xi3MZhhW4CHLvZT8hMPk28sosJeRZz9MQeJhRt/2Q9Iv/F7czr/keV/EeWA1LZ/8NeY8vT0dU+4YPJXbCbraFduS5n6B9EvuD9+2jZiNbdSZOPetCI8F2utpW/1frKVz6dj8Fu0b38BSsR2MCQRzJ9JcfSG+6p2q8ybNvDb8syRJJM+7mcY3f66Y07by32Re9VPN5HNzlB6Wg4WkN1D0/Y+of/WHBBwtpJ337QHthSsQDGV8HbGfoN0Njj6JmvX18MtfwiuvhH6OH5lMu4cLx9Xy5XlHSLKoe4lIRh1Jo46jlvwYMadaT1pR05qjDgtKGpnWr6n1AoFAIBAITm2EqCkQDBDt615WjSXNuh5DYgaJM66hfe2L4XHZ46Bt9fOknfON7rFgUOVa69lLM2HsIlUJOgABPw2v/ZjOre+R95W/Y8ob2++lrbFEzc5t7+Pcv4qgUxmiYC2ZHf45ceoVSlEzBt7afQR9HnTGvpWe+f3Q0BB6I1pXF/p+6LMEjmz8LU3ubJrdWTS5smn7cBwNLVa83pY+Hf9EYZB85CaUk28vY9S8sYyalk9xMQwfDsXFkJ0NzR88Qf3LP1Dsp7Mkkv+NF0mcckmfz5l902OhNghR0uqT599K9k1/wJCYgSzL+JsrcVdux9d4GGN6EfbJl6juY+kX3acQNQFq/nWnQsCWAPwe9Ic+o/HQZ+oTSzoSp1+pXMvcL6pEzcZ3f0PC+HPx1qpFzZOt/BzAnDOKwm+91vtEgUDQJ2KVn0Oor2bSyNhCotMJjz4Kzz0XCmaLH5nUVIkrroCf/UwiQ+fh8OIa3PXazZGTR6UPSvCNKdWKo6I96vbBDONJLE1DbzEQcB/9nUmQs3D4oK1HIBAIBALByYcQNQWCAcBbdwD3kU2KMXPRZMy5owFIXfR1hagJ0PLp06SefWdYHPK31SpTpAkln3ch6Q0M+8HHVP3fLTh3LVWtwXVgNQd/NB5DWgG20QtIGL0A2+izMOWOPm6R0xVD1CQYoO7Fe1TD1hE9RM1pV6hK8GMdz1O9h0D6ZJqaoLExVAIe+dVTvKyrC42pWXj0a/DIyYHCQigqCn3v+ko68i/M635IuqUuHMpjn3QRRfe+pzqGc/cy1diw+z/BWjLzmNakM5opuPtVDv10mqLfqzGzhNwvPYV9wnnhMUmSMKYXYkyPXQ5on3IpppxReHuWhMdw5GphG70AQ5KyPNOcMxLriDm4Dq4Nj8k+DxWPX4EhJVd5AEmHMbOkT+cUCASnLrHKzyHk1NTczw9/+xs8/TTs2hVqNRIvFkOA2SUt/OH5dKYrOpYkM/abs6j5pIza5UdUqewDXXreRW9hQYPp1DRYjRTfMJ7K9w8gyzI5ZxaRWHLi+4QLBAKBQCA4dRCipkAwAGiVnifPuiH8s230Aky5Y/DWdPdd9JRvxXXoc2xHxT9VP01CyeeK26l5DPv+Epo/+hP1r/5QJYIC+JsraV/zAu1rXgDAnDeOnNv+Fk4p7yu+5irNVPaeuMs2qMasJbMJBqGjA1o9Izmkv5zm6hbavSm0edJp9aTT6s/BlTyLusMN3WOedNpezMYbvVrupCHJ1ExOQgW5tgpyEsopnpjLuCuupKhIoqgI8vNDYT1aBFxXc+DQPQQc3b1GHbuXEvx/9u47PKoybQP4Pb1n0nshJCR0pEhRRMGGvYvoWnYtq67dXbG7sq6uuu7qgq67ruWzi2LHigVFEaV3AgFCep/JzCTTz/fHmJM5mZJJSELK/buuXM45c9okHCe553nfx9UKuUYvrhN83pAKSFVyXo8DTfEYSTkYcdcq1Lx6EzyWKsQdeQGST1skOXd3yORyJM2/DdUvXdvja4qbdl7Y9akXPIKyR4+XzMvqszfCZ5cm2arkvG5X+BJR/3M2tEKpV0GpP7TpO2Kp1Gzn9wMvvAA88wyweXNgOVYKuR+Tsqy4fOYBHF3QBFNhIoqmJYdsJ1cpkDW/EPHjUnDgnZ1w1gVCVVNBAhIm9F+DoGBdNQtSaA9P9/N25tHJMI8O/V4SERERAQw1ifqF9edwQ88vEB/LZDIkzP09al+/VbJNy5rXOkLN+gMhx1AHVWqKx/o1PDKMOxGVz14CV8XWqNfmqtqBg4+fiKxrX5PMVxiNIAAuF2C3A1Xfb8T+5nFo9Rrh8Jhg85hhd5thc8ejxR0Puyfw2OY2w+bpWOf4IA8tLcEVMB/EdO6BwKSyIEVfhVRdFVL1VUgR/1strk/RV0OjCDQhkql1SD3/YSSeeFbMnXYVOhPiZixA89f/FtcJHhccu1bBNOkUcZ3zwAb4nXbJvvrRc3vhVQKarLHIW7SyV44FBIat1y2/Dz5bfdjn/UkFkDlbIHOEPi83JCBu5kVh9zOMOQ7ply5Bzct/iHr+gdYkiIikBL+A0pc3w7o78IFEzhlFSD2q501hPDZX1Odba1vxxhvAk08CGzYEKjRjJZMBEycCV1/Qguktv0Ae1PDHmGuOuq8hx4yxN02Ho7wFfq8fppEJvdKFvSc0CV1Uah7G4edEREREXeFvKkR9zFW9G66DmyXrtHlToE4rlKyLP/oy1L51B+DrKEG0b+8IlMJWaibnhawThMAfZm7zBOiv+wXN7/0dNV+/CpdHC6dPB5dPC5dPB6dPB7dPC6dXF1i+dh2U40bAmzwNdjskXzYbQtZ1/PF3+q9fg5tc5kOS0YaM/HikpgKpqYBuz/NIEraJIWWKLhBc6lWtXR/wV7pRRyPzqhd71KDGOOFkSagJAI5tn0tCTceu0KHnhjHHdftc/UGu1iHzd8+h4pkFga7zcgX0xXNgmnI29BNPxY5KKyAIkNlqMEJtgWvfWjjLNkKuNSLl7AegNEWu1kk8/nq46/ah6bMnIm4zEOfTJKIOjRuqxUATAMo/KoEhJw6GnOghYSSRhp9/W5KMV3/OxbYqM7zdqMgEgIIC4MorgVtvBbRaoPLzOtR8K93G0EWoCQAyhRzGEfHdO3kf6LpSk38qEBER0cDF31SIesjnA9avN2L3bj38fuCrrwJVFoIQGLbW/mXbUQPHjgfghxx+QQ5BkEPXOg/aRR3beL2Ax5OIpq3vwtncAK9fBY9fDa9fBc16J7zQwlF+Dlobj4HXrwp8CSpgdRG8fsDjCVROtrUFvjqGzWkA3PPrVww2dL3JYKLVBhrppKUFQsrg/8Z5d0H4/HokaeuQpKtFvKYRqWffi9RzF4v7V7+8ocsu4JHIVFqknv9XJJ50c4+7zuvHzAMUSsDXUT5k3/q5ZBvHzm9D9xt9XI/O1x9MU87CqH8chLt2L9QZxVAaA006vF4vULkZkMkgxGUgbtJ8KI/+TbeOnbbgMXgaDsC2LnzTHVZqEg1slp2hVdrlH5Wg+Lpp3Z77WfD54W3t+JDwp/0J+L+f8rCpIh4eX/f+n5yeDlx0EXDffUBiovQ5+0FryPaG3LhuHf9wUsdrA13aIswbylCTiIiIBjL+pkLUA4IAXHGFHG++WRzD1sf++hVkW6Rtw1Q8lrc/KP71K4glhtMPETqlHfGaRvEr5+jjkJyqQlISxK/k5I7HKSmA0RgYIhhO87ffo3qLtMpRkzFaspx44k2w/vByyPDuqGRyGMafiPRLnhIbQfWUQmeCftTRaN3V0QncXb0L7oYyqJPzIHg9aNsj7RqvSsmHOkwF70CijEsNafjTG2RyObJ+/wrKmivCdm5nqEm9zdXYiopP98LT4kLy9CwkT8s83Jc0aAk+P+z7LCHrHeUtaNpUi6TJ6d06nrfVg83lZjz/4wisP5gAl7d7QWZKCnDWWcC99wJ5Ef6XKvj8aO3UOVybqodSd2hzgfYnuVIOVZwGHmv4ofpyhppEREQ0gPE3FaIe2L8fePNNedcbkoRRZYVRZUVyXhoSkjUwm4H4+MBX+2OzOVAJExxWer++C/Yv/yY51oj71kBfOLPH1+Kq2hmyTp05RrKsySjGyMWbYNvwPvzuVsjVesg0BsjVesg1esjUBsg1+l+XDZCp9VAYE6HQ9V6VjnHCfEmoCQCOrZ9DPfcatB1YHxK4GgZwlWZ/kKt1yLnlQ+xfPBOe+v0dT8jk0OZMPHwXRkOO4Bew95UtcNYGmr04ylugitPAXJR0mK9scGqtssHnDD+pZeVnexE/LgUKddfB5Lp1wMMPA198oYbDMa3L7YMlJACnnx6oyBwVw2cgbTV2+D3S8euxDD0faDSJuoihJis1iYiIaCDjbypEPaDVAjKZAEE4PBP79yejsePLZJIuKxs3QlH1HfQqO/TKwFfOqZcjY/I0mHQOWP49DyZ5LUxqCwxKGxRyPxTGJBQtrY9YQRmOZcQYdK6VdFVsO6RQM7jTfDtNmDkX1WkFSDrl9h6f51AZJpwMvH2XZJ192+dImHsNWnd9G7L9QB563l+UcanIve0TlD12ArzNlQCA+DlXQpWYdZivjIYSZ51DDDTb1f1YzlCzh1r2Nkd8ztPiQu2qA8g8sSDs82vWAI8+Cnz9dWAO6IDY3mSMOh/mn6bAffcFGv90R7ih5101CRqINAk62PdbQp+QyyBX8QNcIiIiGrgYahL1QGYm8Oc/+/Hgg3L4/X0bbCpkXqjUMij8DihlHqgUbihlHqj1GuiS0qBSASoVoNEAOl3Hl1Ybebnzc/KWfbC+dyvUzrJAOKmyw6C0IfOU3yPz0n9EvLayx++EY9sXknVFt94LpRkADKgoLUDLTz9LnteNnN7tudE02eND1rkqI47hj4mrU6ipSsqFXGM4pGP2BW3OJCjiUuFrqRPXObavhOD1wLFz8DQJ6m+azNEoeGQHbBs+hNKUHAiHiXpRa5UtZF3LniZ47G6ojOrDcEWDm620KerzNd8dRNK0TGh+bWzz3XfAY48B334LOBxRdw2hVXkxPa8Jv511AEdO9mPcrT37gMxxsCVk3WCs1FRH6ICu0Ci6/X5NRERE1J8YahL10N13Czj66M3Yu1cHuRwYNaoAKpUScjnEr6aVS2H74QXIZH7IZX7I4UfmVc/DOGqGuI1MBigUgFodCCftPz6PxmU3QyX3QCn3QC4TYJ51CaxrXpOcP/mMu5F6/l976dWMhPvEJ7F3UZGkKY1j8/sQfvNE2D9qBL8PbXvXSNapUgugNKeJy+ajLkXLT29IttEVdP+PR03mmMA3SujoZOCs2Nrt47Tzu9vgaTggWdd56PlAIZPLYRx/Mqw/viKu87e1oHXParSWdJ5PcyRUSbn9fYkDlkIXh/huNhsiilW4UBN+Ac1bapF6VE7/X1AwnwB4BUAzOKrs/B4f7GWhVY/BBK8fyx6vxusbR+K774DW1u6dQ6P04eiZPlxx5D6M1VSK612NMgg+P2SK7n+vOldqKrRKaFMG3odjXdEkhu+AzqHnRERENNDxtxWiQxAf78O0aYGB0ZMmAcpOd1TZNx/CkbRRsq74hNFQ6CMf0zzzGDjfk5adtKx7J2Q7VVLvNoNRp+TDUHwsHDu+Etd56vfDVbkD2uxxIdu7KrbB75T+Ua8fdbRk2TjhJOgKZohNW2QqLeKP+W23r02u1kGdWgh37R7J+XvKXVMiCUiB0CZBA4lxgjTUBICGD/8KwS39q55VmkT9J2yoCaBpU81hDTWtOxqAj1sAjwBkKOEf54/4256jvAUNv1RCaVAjbU7uYWtwYy+zQvBK56Y05sfDfsCCNaUJeOXnPGyuiO92sx+Vwo+JWRZcNqMMRxc0YeytM1G3WkDDLx3bCD4BrmYntMmBN+a2Gjts+y2Qq+TQpRmhTTOEncvTY3fD3dQmWWfIiYNMPvgqGyNWajLUJCIiogGOv60Q9RFBEOA8sF6yTp1WCIU++tA0ddooKBNz4G0S255D8IRO4K9KHtEr1xnMOPlMSagJALaNH4QNNTtXCQKhoaZMrkDOrR+j+atn4Gu1IOHYq6BK6tkf+5qcCZJQ09dSB29LXcQu2n6XA7ZNK9Dy8zK07v4OCr0ZSafdifg5vwvfJGgAh5qG8SeFVKp2/jkBnE+TqL8IgoC26s4z/QY4ylvgbGgVQ7L+5Pf6UfFRSSDQBIBqLxrXVSNjduiHYM56B3Y9uw7wB7a17W9G8e+nHpbhxp2Hnn+3JxnvfjUav2xSweXpXgWlWg3MmAEsmHoQ09V7IA/aXWVUh62kdNYHfl6WHfXY98Y2acAqA9QJOujSDNBnmZA4IQ3aVAMcYebTHIxDz4EolZoa/plAREREAxt/WyHqI56GMvgc0j/UtCOmdrmfTCaDcfyJsHz3QtTtVMm9W6kJAKbJZ6L2tZsl6+wbP0TKGXeHbNu654eQdbpOoSYAKE3JSDn7/kO+Nk3WeNjWvStZ56rcLgk1/e422DZ+hJafl8G+5RMI7o4qGp+tHtUvXAXb+vegSgwNVjUDdPg5ACjjUqDNmxISknc23DufE/UXd7MzYqduIFCtmXnCyH68ooC2aju8do9kXcvOhrChZv1PlWKgCQCOMivaqu3QZ5r6/Do7s5Q04+tdyXhzfS62Vpnh8XUvyNRogFmzgFtuAc46K7Cu5PlG2PZ2bCNTyKDQKaFNCQ2bnfUOuNINOPD2jpCKUQiAu6kN7qY2WHc2oHrlfuiz48I20BmMTYIAQGXSQKaQQfBJRzCwUpOIiIgGOv62QtRHwgVQsYSaAGAYe0LXoWYfzJ2oThkBTc5EuMq3iOvaStfCa6mBMj5dsm1bp1BTro/v02BQG6ZZkLN8Kwxj5gIA3LWlKHt0HjyNB6Mex755Rdj1A3n4ORAYgh4t1FSlFvS4CpaIuifS0PN2TZtqkHF8fo+rHt1WJ9qq7TCOTAg79DnidVWHXpejvAV+rx9ypTSEs+0L7TZuL7P2W6jp9QIvvQT89z9+bNwwFV5/94JMrRY4+mjgttuAU08Nc3y7W7KsNKohk8mgTQ1TqVnrwIGd26MG1cFaK0IbBEE2eCs1ZXIZ1PFauBqlw+kZahIREdFANzhmkCcahNrCBFC6mEPNeVGfV5jTIFeHHy52qExTzgpZZ9v0kWTZ01QREh7qRx0Fmbzv/pcStgN60Lya1a/c0GWgGYnckABFhGHsA4Vhwvzoz7NKk6jfdBVquhrb0FoeJviKQfP2Omz92w/Y+3+bsfWR1XA1t3W9U5TrEjz+kBDOY3ejrSZ0+LyjzNLt6+2O1lbgb38Dxo8PVFdefTXwyzp5zIGmRunDrPwG/Pf3O9DWBqxcGT7QBACPXTptS3tHenW8FrJOAW/jphrYD0RvVNQVbaphUIeA4YagKzTdm8OUiIiIqL8x1CTqI2ErNfOmxLSv0pwGTc7EiM/3dpOgYKbJZ4ass238ULIc69Dz3qROLYRMqZasc1UGQk3nwc1wbP0s8s5dVEtpMkYflnnkukNfMBNybeQKqvaKVSLqe12FmkAgKOsuv9ePsuUdc/76nF5UflYa+3VVhr8u235pVaZ9f2iVJhDazbs31NUBd9wBjBwJGI3AXXcB27cDfn/X+wKAwQAcO96CZy9ehx/++C2WLNiMKQnV8DrcEfcRfH54HdJh+MpfQ02ZXAZNUqcAzy8ddg0A8eNTkXZMLuJGJUIVp+nyOgfr0PN26oQwoeYgDmmJiIhoeGCoSdQHwjUJUqWMhMIQH/MxDONOjPicug+aBLXT5k2BMj5Tss6xfSX8ro6O7K27VoXs17lJUG+TKVVQdxre7qrYBkEQ0PjJ4yHbK4xJiD/2KuT+6QsUL21A/JzfRTz2QB96DgRev2HcCRGf148+th+vhmh4a+sUaioNKsgU0g9GmrfUQvDFmNz9yrqzHr426RDolpJGCGFCt84Enz9s9SUA2PZZOi2HDzXdzU64W0Ib03VXaWmgCjMjA0hLAx5/HNi/X9LrLCqjUcBZZwGrVwN2O/DaE42YlisNXKNVVnpbPUCnc7VXagII2ywomC7diPwLxyL71FEY9bvJmHjXbExYdDQyTy4IOycnACSMH9jV/l3RJIZ2QGeoSURERAMdQ02iPuBtKofP3ihZF+vQ83bGKAFWXzQJaieTy0OqNQWPE/ZtXwIAnAe3oHnV/6Q7KVTQ5R/ZZ9fUTpslHYLud9rQuvt7WNe+KVkvU2lQ8NdtyPzdczCOPxEKYyIyr3weOTd/EHaYua5gRp9ed28xTjg57Hp1WiFUidn9fDVEA5ff44NtfzOc9a29fmyPzQWPTVolaMgzI64oSbLO6/CgZY+0WVxXGtdXh6zzOb3h53DsxNnQGtrk5leOMgv8Qc9FCjUBhO3qHYtffgEuuABITAQKC4H//Q+oiblYVYBR48HcUXVYdtdO2GwyvP9+YM5MADCNiA/Zw3bAEvFoHntoFafKFBxqRu5ML1PKkb9gHOQq6dBrdbwWGceNwNhbZ2L0H45EyqxsqOO1UOiUyDghP+TnP9iErdTUMdQkIiKigY2/rRD1gbb9YYae53cv1NQXHwOZUg3BG+aPsz6s1AQA4+Qz0fzNs5J19o0fwjjxFFT+5zeATzqszzB2HuSayH8k9pZw82pW/9+1gN8nWWc++vKQxkYAYJpyJgoKZ6H6/64VO6lr86fBPOuSvrngXmYYHz7U1HM+TSKRt9WD3f9ZD2edA5AB2acUIu2Y3vsgqLUqtBpSn2GCLs0A684GyfqmTTUwj06O6bieFhesEULQlr1NXTahiTYk3u/xo7WyBca8eHhsLjjrIoe99gOWmKoO/X7gk0+AJUuAH34AHI4udwmRnOjDrMxaXDazDPnJgWvKPD60a7whzwzIZZJh4vYooabXFvq+qYyxUjP7lELo0o0Rn5fJZDBkx8GQHQecWRxxu8EmriABMpUcgqcj/DYVJB7GKyIiIiLqGkNNoj5wKJ3P28k1BugKj0Lrrm9DnuvLOTWBX0NKrRF+Z8cf77ZNH0NhTIKrYqt0Y4UKaRf8rU+vp124UNNdtVO6QiZD0il/jHgMZVwKcm5cDlfVLvham6HNmwK5quv50gYCdcoIqDOK4a7eLVnP+TSJOjT8XBkINAFAACo/L0XSlAwoDeroO8YoXIdxfaYJcaMSIdco4Hd1fMjSvKMeuS4vFJquf91q3FQTdm5HIBBqZszLj35dYcLWYLb9Fhjz4qNWaQLRKzWdTuDZZ4FXXgG2bAl0MO+uvDzg3HOBP/4RcP+wG40bpNWppsLQIE2hUUKfYZTMGdpaZYMvwvc2bKVmcKiZGv5DOHNxElJmDc+qd6VBjfwLxqLik70QfH5knDAS2uS+/7CSiIiI6FAw1CTqA2E7n8fYJCiYYdwJ4UPNPq7UlKs0MIw/GbZ1y8V1Pls9Gj/9e8i2qec8CG3eEX16Pe00WaGhZmemqedCkz6q62NlDvx5NMMxTjgFTcGhpkzGSk2iIJ0r+ASfAOvuRiRNyeiV43eeTxMIhJpylQIJ41MlQ8gFjx+W7fVdnlsQhJBwL5jjoDVigBftuoLZ9zUDx43oMtRsrbLB7/GJw68PHgSeeAL44IPA41jnxWwnlwNFRcAllwA33QTExQXWC4KArXullalyjQKG7PAN0Ywj4qWNkPwCHOUtiAsTgnYZaibrIVPIIPg6XozSqEbe+WMHfNO4vpQwIQ0JE9IO92UQERERxYxzahL1svBNgvKhMHZ/GFekxjDqPpxTs124Luid6QpnIenUP/X5tbRTJedBro08LBAAkk9b1E9Xc3gknXI75PqOYagJc6+FKiEzyh5Ew0trmGY51l0NYbbs4fE7hYcKvQoqc6DaO/GI0GkvGjd2PbFka5UNztrI47cFnwD7fkvk5wWhy47s9jIrBJ8fttLooabgE/DFu6047zwgKSlQWfmvfwFlZbEHmkolMHUq8MwzQFsbsHMncO+9HYEmALgaWuHp1JTIlJ8AmSL8r6bG/PjQ1xShi7s3TKipNHVU5Cs0SiQf2fH/TZlSjvwLx0qCTyIiIiIa+FipSdTLvE0V8NnqJeu6O/S8nS5/GuR6M/ytHcMBFYbELoO93mA84jRAJgeE8I0nZGo9sq55GTJF//1vRCaTQZM1Hm2lP4V9Xj/6OOhG9n3DosNJlZiNwr/tRsu6d6FKyIJx8hmH+5KIBgxvqwcea2j3bmtJI/xeP+TKQ/ss1+fywtXYJlmnzzSJ1X2mkQlQxWkkYZ2ttAmu5jZowjRiaReuQVBnLXuaIs7P6bY44XNGHwvud/tg2dkQcv0yhQwej4AVWzPw4dZM7Kw2we1TRDhKZFotMHMm8Ic/BIaXy7v4VrfsDQ0kTQUJEbc35sWHrIvULKhzIycAIYFlzhnFMOSY4ba6YB6dBH1G+ApRIiIiIhq4GGoS9bKwQ897GGrK5ArEHXkhLKueE9cZxp/U42vrDqUxCfqi2Wjd/V3Y59MWPgF1WmG/XEswTXbkUHOoV2m2U5rTkHj8dYf7MogGnLYwVZoA4Hf5YD9gCTtUuVvHrw7TJCiz40MmmVyGxMnpqF1V1rGBADSuq0bmiaENcADA7/WjaVOnak75r0Ogg+bYbNkbuZO6ZFh2O7McsEo/lKr+ar/42NKqxGu/5GJVWSb2V6shCN0fdp2QABx3XGBY+XHHdW9fW2no64n281EZ1dCm6CUd7R0HW8KG1Z2Hn8sUspBO3jK5rNemJCAiIiKiw4OhJlEvC9skqAfzabZLPf8heJsr4NjxFXQjZyD1wv5pygMEhqCHCzUNE+YjYe7v++06goVrFgQAmpyJMEwI3x2ciIaHcE182ll3NhxyqBluiHfnCr/kaZnSUBNAw/oqZByfD5k8NDi07mqAr01aZRk/OhneVo9kflBnnQNuqxNqszam60KhBlgvrcr8aZ0Cb60fh1/KEtHcqgLQ/SAzLw8480zg9tsDj3si3DB4pVEFbVrkruRAYF7N4FBT8PrRWmmDMU/aGb7z8HOlQT2s58okIiIiGqoYahL1srChZn7PKjUBQBmXitzbP4EgCP3+R5lx8pmofVPaSVxuSEDmlc8ftj8QtdkTwq5PPvUO/tFKNMyFq6RsZ9nVgOzTRx3S/yfChpqZ0lBTm6yHcWQ87Pss4jqP1YWWksaww8fDNQhKmpqBtmp7SNMj295mJE0NrS4M2yQoUwXnFg+W/5COz3emY0+dEZ4eDCtXKoEJEwKNfq67DtD3QkNsR0VLyHD5uMKkLn82xhHxaPilSrLOfsASEmp67NIpCFQmzpVJRERENBQx1CTqRYIghAw/VyXnQWlMOuRjH47ATpM+Cqap58C2/r32i0Dmb/97WBvThKvUVCXnIW76hYfhaohoIIk0/BwA3E1tcNa3QpcavRowms6hplwlhyY5NOVLnpYlCTUBoGFdVUio6bG5YN3dKFmnNKgQV5QEpVENrNwnea5lb1PYULM1KMwtqTXgrU05WPNCCurqelKNKUCv9mHGVC9uXqTFGWdEnx/TWe+As74VrqY2uJra4G52wm1xQqFTIuP4fMQVhFbHtpSEGXo+qusq2rDNgg5YgGM7SkYFvwCvwyPZRskGQERERERDEkNNol7kba6Cr6VOsq6nTYIGisyrXkRT7hHwNJYhbvqFMB7mId7KuFQYJ50K++ZPxHUpZ/8ZMqXqMF4VER1ugs+PtigdxIHAEPSehpp+rx/OOunxdRmmsEPKE8anoPxDpaQa0bKzAR6bC6qgLtxNm2sl82YCQOKkdMiVchiyTFBopcdo2dsUUrXfZnHjne8TsWJbBnZUx8Hp7X41JiAg2eDGrPxGXDLjIApTHEg+MhN5Z42JuIfP7cPe/9sUEt4GK315C8bdNjNkyHzLnsaQbWMJNTUJOqjMGkkzKPsBCwS/IP4cvA430KlLO7uaExEREQ1NDDWJelHYoeeDPNRU6M1IOfv+w30ZEhlX/Af17/0Z7rq9iJt2PuKPueJwXxIRHWbOhlYIXn/Ubay76pF+bM8mgnTWOSD4pGlZcJOgYHKVAomT01G/pqJjpV9A44Ya8fyCIITtet5eiSlTyGEqSIBle734nNfuRluNHbVOE558Evj4Y2D/fhUEYWy3X49cJqCwwI+Flyhw4x8ElC35EYKn4/tnP2iNun/tqgNRA00g0HG9cUMNMuaO6HgNrR44Klok2+kyjJKwNxrTiPhAGPwrn9OLtlq7OLdp5yZBAENNIiIioqGKoSZRL+rNzucUmSoxG5lX/u9wXwYRDSDRhp63s5dZ4XV4oDR0v7I7lvk0gyUfmSkNNQE0/FKJtDm5AICKFXtCrlmXYZQcM64wEZbt9fD6gS92pAWqMZcYYJMUjMY6vFyAQe3DhCwrzp5UiRMmNGHKA3MgUwCAHA3ZcbDvt4hbO2sd8LZ5oNSF/141B4Wt0TRtqkH6cXlidamttCmkkjJuVOxTtBjzpaEmEKjWbA81vbbQUFPJOTWJiIiIhiSGmkS9aChWahIRDQbhmgQZcs1wBFccCoC1pAFJk0PnpexKuFBTFyXU1GeYoM+OQ2tQVaKrsQ32/RbY91tQ90N5yD5JUzqua9s24Ml/p+HTD5JQbdVC6EGncplMQFaKB0fn1OKiaQeRk+AUnzOPTIJM0TFZpjHPLAk1AcBx0ApzcWhzI4/NBWcXQ/3bOescaKvpqKS0hptPsyj2rvTGEfEh6+wHLEidlRO4NlZqEhEREQ0bDDWJepGrcptkWZWUC6Up9A9CIiLqXa1hQs3040ag9OXNknXWnb0Uaspl0KWFH37eLvnITBzsNNT6wDs74G52hmzr1erxyo9ZeOePwJYtQFsbAKh+/YqdVunDmPGtOO30Rpx6aiMKFGkof68kZDtTQYJk2ZAbD6BMss5eFj7UbNnbHLIueXomUo/OhXVnPSo/K5U817SpBvoMEwRBCJlPU66Sw5gXH9uLA6BNMUChU8LX1jHXqP2AVZxrlKEmERER0fDBUJOoF8l1ZsmyvuiYw3QlRETDS+eh3OoELcxFiSEBmLWkEX6vH3JllJbenQh+IaQSVJdq6PIYiZPSULFiD/xun7guOND8+UAC3t2UhY3lCWh09KRTOQAISDG6MHNEEy468iCmHqWCfXLHs8bc+LB7mTp1JTfmxoVs44gwr6atNLTaMmlKBnSpBii1SlR+XioZYt60uRZZJxfCWe+QNPkBANPIhG79LGRyGYwj4mHd2SCu87S44G52QpOogzdMqMnu50RERERDE0NNol6Ucua9qHhmASAIkOvNSB5gDXaIiIYir8MDT4s0LNOlGyFTyGEuTkbTphpxvd/lg73MgriC2Ic8uxpbJcEkEH0+zXYKjRIJE1PRuC7QEKjepsayDdlYtScFZU16+Pyxh3nBVEoBEyfJcN7JrZjtXAu9uqPBjy4jG3Z0BLDqBC3U8Vq4LR1hqkKnhC5dWmWqNKihSdHDVd8qrnOUt0Dw+SXD1AVBQMteaagpVytgyA6Eoqo4DUwFibAFbeOxumA/YAk7hL8782m26xxqAoB9vwWaRB08YebUjLUJERERERENLgw1iXpR3PQLUJg3Gc6KbTCMnQeFLrTyhYiIeldrTZgmPhmB0M48RhpqAoEh6LGGmp4WF/a/uT1kvS5C5/NgTifwSekIvPxmGrZXx8HuUuJQqjGPzGvGeZMrMW1MGwqvOAL2/RaUfyzt+K7LMAGCtKo0+chMVH25r2N5WiZk8tDrMOaaJaGm3+0LzIeZ1fFe5mpoC1ttGRx8Jh6RJgk1gcAQdHen/YDuzacpni8/PmRdy55GJE3NCBl+LlPIoNDx110iIiKioYi/5RH1MnVaIdRphYf7MoiIho1wTYLaKxHNRUmAXAb4O8ZDN2+rgz7LBG2yAZpkXcQO3221dux9abOkyrGdISv0Qyu/H/j8c+DFF4HVq4HqagDQ//rVPQYDMGUKsHAhMLPtF/jrO4Jbjw3Y9e910CTpQvbTZRiBKum6tDl5gCxQzajPjkPGcSPCntOYF4/G9dWSddaSRkmoGW7oeef5ORPGpeLg+7sheDsC1+atdfD7pAGsOl4LTXL3vzf6TBPkKjn8no7jNW2pRdqxeSHDz5UGtdh5nYiIiIiGFoaaREREw4R1dyOsuxugzzIhaUrGkAl7Os+nCfxasQhAoVXClB8PW2lHcxuP1YUDy3aIy0qjGobcOJjyE2AamQBduhH2/c0ofXUrfE5vyLENOXEw5AbmUN60CfjPf4AvvwQOHAB8vpDNYyKXAwUFwCmnADfcAIwa1fFczao0VH4mrUYVvP6QDuRylTwQdHYKNeVKOTLm5gNzo1+DMUwFZMMvVUg/doRY2dl56DkAxBVKqy0VWiXixySjeWuduC7c9zGuKLFH/wZlCjnix6VKK3AFoPzjEnjs0mpQNgkiIiIiGrqGfahZWlqKN998E2vXrkVFRQW8Xi9SU1NRVFSEM844AyeeeCKUyt7/Nm3fvh3vvfceNmzYgKqqKtjtduj1eqSmpmLKlCk4/fTTMX369JiO9dlnn+Hmm2/u9jWsWrUK6enp3d6PiIgGn+btddj36lZx2dXQhqyTCw7jFfWezp3P5So5NIkdVYzm0cmSULMzr90N644GWHcE5mlU6JTwu30QfELItq1JKXivfBxWTJVh507AFTqiOmaJicCsWcCVVwJnnRUINsNJm52D1qoWNG+pC7/Br3QZprDDymOlTdbDkBMHR3lHx3Z3sxO20ibEjUqC4BdCvo9KoxraNEPIsRKPSJeEmuH0ZD7NdpknjkTztjpJNah9nyVkO6WJoSYRERHRUDWsQ80lS5bg2WefhdcrrR4oLy9HeXk5vvrqK4wfPx6PP/44Ro4c2SvnbGpqwn333YeVK1eGPGe1WmG1WrFnzx689dZbmDVrFh5//HGkpKREPebOnTt75dqIiGjoqv5qv2S55rsyJE3NgLYHw3+74vf4YNleD7/Pj8SJaZCrFL1+jnaCzw9nbafO5OlGSbiXMCEVVV/uC2n2E0lwt/RWtxwfbc3EV7tSsbs+Dg6nHD2bFxNQqwWMHQucc44M118PJCfHtp9MIUf+ReOhzzqIys/2SjqLB9PHMM9nV5KnZ0lCTQCo/7kKcaOS0FplC6m4jCtICFttGVeUFNJ5XkIuCxm23h2aRB3SjslFzTcHom7HSk0iIiKioWvYhpoPPfQQXnnlFXFZqVSiuLgYOp0OpaWlaG4OVCJs27YNl156KZYtW4asrKxDOmdTUxMWLlyIAwcOiOvkcjkKCwuRmJgoBprtIeuaNWtwwQUX4K233kJaWlrE4waHmkVFRUhNTY3petRq/qJPRDQcuJrbQued9Auo/mo/8heM69Vz+d0+lLywEY4yKwCgbnU5xtxwpKSRTG9yNrSGVFTqMqThntqsRf6F41DxyR64mtqiH88rx+fb07Bydyp2VMfB2qZCT0NMuRzIywOOPx645hrgyCN7XkUpk8mQPicP+iwT9r+xDV6HJ2SbWDqydyVhYhrKPy6B39URAFt21MNjc4U0/wEAU2H4Rj9ypRwJE1LR8HNV2OcNOXER5zKNVfqxeWhcXw1PS+RyWYaaREREREPXsAw1P/vsM0mgefLJJ+P+++9H8q8lEx6PB++++y4eeeQRtLW1oaGhATfeeCOWL19+SPOP3XHHHZJA8+KLL8YNN9yApKSO4VcWiwX/+c9/8OKLL0IQBFRXV+PGG2/EW2+9FfHcwaHmfffdF/OwdSIiGh7ah1V31rS5BunH5olNdXpD1Vf7xEATCMx32bytDomT+ma6k/BNgkLDvfhxKTCPTYbX4YGroRXOhlY461thqXLgvU+1+HxTIrZXmWE5hBATANLSgKOPBi67DDjjjMhDynsqriARY26YjtJXt6C1MmieTbksYsDYHQq1AkmT01H/U2XHSr+Axg3VMc2nGSxxUnrEUDNuVC9cq0aJrPmFOLAstDt9OyVDTSIiIqIhq2/KJgYwj8eDRx99VFyeO3cunnzySTHQBACVSoUFCxZg6dKl4nya27dvx8cff9zj865Zswbff/+9uHzLLbfggQcekASaABAfH49FixbhnnvuEddt3rwZn376adjjNjU1oa6uY86q4uLiHl8jERENTZad9eGfEICqlft67TyOihbUfn8wZL1tX+T5LA9V5/k0AUCfET6klclkENRqvL86Hr99MBNTryjEhKsm4f7lxfihNAWWNjW6G2jGxQFz5wLPPgs4HEBNDbB8efQ5Mg+VOl6L4t9PRepR2ZAp5ZAp5cg5bRQ0CaHd0HsieXroyJT6tZWwB4XVAKBJ0kEdr414HOOIeKjMmrDPHcp8msESj0gTmzaFo+KcmkRERERD1rALNb/88ktUVQWqBpRKJe6//37II/zVMXv2bCxYsEBcfvHFF3t83vfff198XFBQgGuvvTbq9pdeeinGjesYEhgpUA2u0szMzITZHPkXeyIiGn68bR7Y9lsiPm/ZXg9HZUvE52Pl9/pRtnxn2Pke7VHOf6jCdj4Pqjz1eoE33gDOPhtITwc0GuDSS4GPPwbqovexCUurBaZOBR58EKiuBqxW4Ouvgd//HtD3/vSkEclVCuScUYwj7p+DyQ8eh9Sjcnrt2PoME/TZcZJ17manpCkPEL1KEwBkclnYCl2FTglDp+P3lEwmQ87pRRGf5/BzIiIioqFr2A0//+STT8THRx11FDIzM6Nuv2DBArz22msAAtWa5eXlyMnp/h8OP/30k/j41FNPjWkY+7x587B9e2BI1datW8NuExxqskqTiIg6s+5qBPwROsv8quqLfRj12yMO6Ty135WFDRgBwFnfCo/dHXPAVPt9GWq+OwifywuFVgmlVgnFr1/qBC0Sj0iHKT/QZKat2ibd2aTFm8uVWL4cWLMGqK0FhOgvPyqlEsjPB04+ORBcjh/f82P1hb5qwpQyPQtlFdHD7liGuycekYba78ok6+IKEw+pS3tnhpw4JE3NQOP66pDnOPyciIiIaOgaVqGmIAhYu3atuHz00Ud3uU9xcTFSUlJQXx8Yuvf111/j8ssv79Z5nU4nHA6HuFxQUBDTfgkJHV1B2xsXdRYcao4ePbpb10VEREOfNdzQcxkkFZUtJY2wH7DAOCK+R+doq3Og+uv9Ubexl1mQMK7rRna2/c2o+GSvuOz1uOG1uSXbNPxchcQj0pF+XB4a6/34dHs2vtuTjN21pl/nxOw5hSIQYh53HHDFFYH5MYejhImpKF8hbRgkIQNMI7vuXq7PMCF+XAos2+vF/dKOye3FKw3IOqkAzVvrQjrcq0zhh78TERER0eA3rELNyspKtLR0VB2Mj7Hcori4WAw1I1VMRqPVarFu3To4HA7U1tZK5u+MpqKiQnwcaVj5rl27xMcMNYmIKJjf64d1d6NknUKnRPK0zJC5Lyu/KEXR1VO63RBP8AsoW74zpAN5Z/b9sYWa4artgtW2qPHR1gz8+EoySuu1cLjn4FAa+ygUgQ7lxx4L/O53wOzZPT7UkKLQKJF4RDoa1laGfV6faYJSH1uAPOL8sajProCzoRWJR6TDkNP7U+Wo4jTIPCFfEoibRibEfI1ERERENPgMq1AzuPM4AOTmxlYpkJ2dLT4+eDC0AUKsDAYDRo4cGdO2fr8fX375pbgcbj+Xy4X9+zsqY4qLi7F+/Xq8//77WLduHaqrqyGTyZCSkoKpU6fizDPPxKxZs3p8/URENLjYSptCKtfMo5ORfuwI1P9cKanCs++3wFba3OU8iZ3V/1QBx0FpAxm0Dy0OGvZuP2Dp8lh+r7+jou9Xe+sN+GhLBn4pS0RZkx4urxyHEmLK5UBubiDEvOyyQEVmXzX0GexSpmdFDDW78+9EoVUi/bgRvXRVkaXOzoXgB5q31kJl1iDntMhzbRIRERHR4DesQs32aksAkMvlMVdMpqSkhD1GX3r33XdRXl4uLs+bNy9km927d8PnC/xBKpPJ8OCDD2LNmjUh25WVlaGsrAzvvvsuZs+ejcceeyyk6zoREQ09lh0NIevix6ZAaVAhbXYuqr+SDhmv+qIUpoKEmKs1Xc1tqPy8NGR9xnF5sJY0oTVoTsbWKltgjkxN5F89rCVNWFtiwGfb07HhYAKqrDp4/YeWOMrlQE4OMGdOoEHQ8cczxIyVPtMEfZYJrZW2kOdimU+zv8lkMqQfm4f0Y/MO96UQERERUT8YVqGm1dpRSWIwGCJ2Pe/MaOzoohp8jL5SXl6Oxx57TFyOj4/H+eefH7Jd8NBzQRDEQNNkMiE3NxcGgwGVlZWorOyosli9ejUuuOACvPrqq102SepLXq/3sJ27t7QHypGWiSh2vJ96n+AXYOk0n6ZMKYd+pBlerxdJMzNR92M5fG0d/z92lLegeVc94kbFFlhVrtwXUgmqSdEj+ZgceJ1eSagJAWjZ3yQJwywWYNkyYMUKOTZtkqGmOgl+IbYPHCNRKgTk5AJHHSXgoov8OOkkaYjp9we+hqrevpcSp2WEhJoypQzaLMOQeC8niobvTUS9g/cSUe/h/SQ1rEJNl8slPtZqtTHvp1Z3dM50u91Rtjx0VqsV1113nSQ8vemmm2AymUK2DW4SBAQqSu+44w7Mnz9fcs0lJSV4/PHH8d133wEIzC16/fXXY9myZZLt+ovf78fmzZv7/bx9bdu2bYf7EoiGDN5PvaDJC3RqsCOkyLFtZ9D3tkAJbJMGU/s/3gHMNQJdVWs6fMDG0Ao+1zg5tm7fCgih75efLqvAp3v8WL/ehLIyLVpbD20oOQCoFT5kJ7Rham4zTp9Th3G/kT7fg6mwh5RDv5eEwG+LQf9MhEQFtu7gPUrDD9+biHoH7yWi3jPc76dhFWp6PB7xcaxVmgCgVHZ8m/qyKqGlpQW//e1vsWfPHnHdSSedhEsuuSTs9sFzhObl5eGNN94IO6y8qKgI//3vf3HPPfdg+fLlAAKB6JtvvonLLrusd18EERENDFWe0HWZnZqmFGqAEhfgDmry0+QD6rxAWhcNVna7JB3UAQB5KiA58J7pNCrx7fZUfLsnFdur4lBn08AnHOq4bwE6nR/5+U7MONKK04urkNfy64eACgCzjRhmv9r0PZUMmKgDNrR1rBsf+wfDRERERER9ZVj95q9QKMTH/m6MPQsOMlWqvumiWV9fjyuvvBK7d+8W140dOxaPPPJIxH1efPFFNDY2oqKiAqmpqVHnyZTJZPjzn/+Mn376SRyO/vLLLzPUJCIaqsKFmhmd3sOUMqBIA2xzStfvdEYPNdv8wAFpJWZ5sxafVudh7bNm7Nung82mwKFWYQIC4uJ8GDWqFbNnW3HaaU1ITAz+cFEGtMYBzV4gQQnoOVlmnxipAUwKwOIF0lWBx0REREREh9mwCjV1Op34OHgoeleCh5xrNJpevSYAKC0txTXXXIOKigpxXVFREZ5//nnJfJ7hJCUlxdz0R61W46KLLsITTzwBIDB358GDB2PuAt9b5HI5JkyY0K/n7As+n09S6j1+/HhJcE5EseP91LtcjW3Y1fKzZJ0+Jw6jZkwO2dZX7MXO0rWSuTXR4EOBOQ/GEfFhj79r+T68vcmAH0qTsLPGhDqb9pAb+gCATCYgyeDC6DQbjh/bgFteGAljvAKA/tevjEM+x1DHe4mo9/B+IuodvJeIes9Qu5+2bt3araLDzoZVqGk2m8XHDocDgiDE1OHVbreLj+Pj43v1mtasWYObbroJLS0dzRTGjx+P//3vf0hISOjVcwHAlClTJMsHDhzo91ATkA7pHyoUCsWQfF1Eh8NQuJ9s+5phK22GPssE85jkmDuK94bGkqaQdQnjUsJ+T5VGJVKPzkH1Smkn9LpV5YgvTIbfD3z1FfDuu8CPPwKlpQIcjlE49CpMQKcDCgqAGRPaMEO2HUdkW8WmPgkTUxGf3PsfJA43Q+FeIhooeD8R9Q7eS0S9Z7jfT8PqlaelpYmPfT4fmpubkZjYdYfX+vqO7rHJyYfWlTXYsmXL8OCDD0qGtx911FFYunQpDAZDr50nWOeqzv7o5k5ENNw0b63Fvtc7PkHNPm0U0mb33wdIlh0NIevix6ZE3D71qBzUfn8QfpcP+xv0+GJnGta9moCDf/KjySKHIJk7s6dhpoB4nQejR7hw7m9NuOQSIDMz8MyBd/ajcb30/ShhQlqYYxAREREREQUMq1AzLy9PslxeXh5TqBk8LDw/P79XruWJJ57Af//7X8m6s88+Gw899FCfzdsJhA6776vwlIhoOKv7sVyyXPNdGVKPzulWtWbLnkY4Km0wFyVBn2mKeT+P3Q17mUWyTpOihzYl9P/3DQ3A8uXAp5+qsG7N0aipV/RCM58AtRrIywNGG+swd2Q1jipogFIOKLRKTLp9DmTywPfC7/XDsqNesq9cJYe5KLapVYiIiIiIaHgaVqFmVlYW4uPjYbFYAAQ6gE+aNKnL/Xbt2iU+Hj169CFdgyAIeOCBB/DWW29J1t9www248cYbYz7Orl278MEHH6CxsRGNjY147LHHYppbMzigBYDM9jIZIiLqUsO6KlSt3AeZTIaskwuQeER6yDaCX0BrlV2yzmtzw9XQBm2KPqbz1P1YjvKPSgAAVZ+XYtSVkxFX2PWHcABg2V4X0pU8fkyKGGB++SWwaRNQUQFIP+c6tA/UEhKA0aOBk04CLrkEGDUqsH7/W/Vo2tRROepzetFWYxeDWltpk3Q+TwDm0cmQqwfv3EBERERERNT3hlWoCQAzZszA559/DgD48ccfcdFFF0XdfteuXWho6PhjbObMmYd0/gcffFASaKpUKjz00EM4++yzu3Ucq9WKF154QVz++eefccopp3S533fffSc+NplMKCoq6tZ5iYiGq9ZqG8re2wX4A4nhgXd2wDgiHup4rWQ7d3Mb/G5fyP62/c0xhZqeFhcqPt0rWVf5eWnMoWbz1jpYWpX4ancq1u5PREmdCfX/0MHl7nrf2AjQKP3Iim/DhEwrLrnJjHMuNyLSVD7G/Hg0baqRrLMfsIihZvPWupB9Eiak9tbFEhERERHREDXsQs2TTjpJDDW/+eYb1NbWSuba7OyNN94QHxcUFKC4uLjH53755Zclx9PpdFiyZAmOOeaYbh9r/Pjx0Ov1aG1tBQC8/fbbXYaaNTU1+PDDD8Xl0047DXJ57wwzJCIa6up/qhQDTQAQfAKsuxuQMiNbsl1rjb3zrgAA+34LUqZndXmemlVlELzSDoCtFS3wtLigigttnBNcgblxgx8VByfB7ZOjNxr5AIBC7keKMdCRfNbIRpxQXAezPlBZacyPR/GV0V9TuA7q9gMWpB6VA8EXYeh5ce/NX01EREREREPTsAw1U1NTUVdXB7fbjTvvvBPPPfdc2G5R33//Pd5++21x+dJLL+3xeXft2oXHH39cXFapVPjPf/6DGTNm9Oh4BoMBp556Kt555x0AwA8//ID3338/YsWn3W7HLbfcgra2NgCARqPBlVde2aNzExH1JsEvoPabMmCDDTDKgYm6w31JIfxuH5o214Ssb62yhaxrq44Qah6wdHked4sL9T9Xhn3OursBjtQsvP8+sGoVsGVLuCHkh/ZBlUwGJJi8GGG2YVpeE04cXYf85NaI22fM63qeaW2KHkqDCl6HR1xnO2CB46AVDeurOPSciIiIiIh6ZNiFmmq1GrfddhvuvPNOAIEh6FdffTUWL16MnJwcAIDX68W7776Lhx9+GD5fYAhhUVERLrjggrDHnDdvHiorA3+EZmVl4euvvw7Z5uGHH4bb3TH27/777+9xoNnu5ptvxueffw6bLfBH9T333IOKigr89re/lTQA+uWXX7B48WKUlJSI62677Tbk5vZfJ14iokga1lWh5usDgQWLD3ALwKzuHcPn9sHV2ApNgg4Kbe+/tTVvq4PfFTqkvLUyTKgZoVLTbXHC1dwGTULk0Lbm2wMQvH74/cDWKjO+35uErVVmlDUa0PyYGj5/xF17JC4OKCgAZs4EzjsPmDsX8Nl92PbE5rBD6IMZcuJgKkjo8hwymQzGEfGwbO+oyPTa3Nj173Vht+fQcyIiIiIiisWwCzUB4JxzzsHGjRvFuS1//PFHnHTSSSguLobRaERpaSmamprE7ePj4/HUU0+FreaMxaZNm7B27VpxWaFQ4PPPPxeHwcfq+eeflyynpqZi6dKluOaaa+ByueD1erFkyRI899xzGD16NNRqNQ4ePIiaGml10ZVXXokrrriiR6+FiEgQBECA2L36UDV0rkys88Ld7IQyxRjT/rb9zdj/5nZ4WlxQGlQouGwSjLnmsNt62zyoW10On8uLlJnZ0CbH1rinYX1V2PVtNXb4vX7IlR0VkpEqNYHAEPTOoabdDqxYAXz2sRc/fpmJKstI2F1K9Nbw8XbBAebppwca+oR7W5PHaTDy4gk4+MEuuJudYY+lNKow4oJxMXdz7xxqRsKh50REREREFKthGWoCgYY9CQkJeP755+HxeOD3+7Fz586Q7QoKCvDUU09h5MiRPT7XZ599Jln2+XxYvXp1j48XbObMmXjjjTfwpz/9CaWlpQAAp9OJTZs2hWxrNptx++23Y8GCBb1ybiIaftwtLux7fSscZVaozBqYi5NhLk6CqTARih4MGXZbnWGrHVtKGqGPIdS0l1mw96WOqkKvw4PKz/ei+OqpIdsKfgElz20QQ8eGnysx6sopMOaFD0DbuRpbYd9nCfuc4BPgrHOITW98Li9cTW0Rj7XlRwc2fxcYPr51K1BZCTjF3FAJwBT1WmIjwKD2Iju+DUdO9WPhDfE44QRArY79CObiJIz/01HwtXnh9/jgdwe+fG4fZAo59JkmSZDblXDzaoaTdkwuh54TEREREVFMhm2oKZPJcOutt+LMM8/EO++8g9WrV6OmpgZtbW0wm80YM2YM5s+fjzPPPBPq7vwlGMa+fft66arDGzduHD766COsXLkSX3zxBbZs2YKGhgZ4vV4kJydjxIgRmDdvHk477TQkJsbWPZeIKJzyj3bDUWYFAHisLjT8XImGnyshU8hgGpmAhAmpSJqSAZkitsDLuqsh7PqW3Y1IPzov6r6O8hbseXFTyDBpR5k1pHoSABwHrZIqSr/Hj9JXNmP09UdCkxh5SHjD+uqo19FaaRNDzbZaBwDA0qrE6tJkbDgYj5I6E6qsWthdKviF3q2+BDoqMIvj6jEjuRIz8huh/vXdffR102Do4UwjMpkMSr0KgOqQr1GfYYTSqILX7gl9UgaYRiYgeVomEiZFbtxHREREREQUbNiGmu0KCgqwaNEiLFq0qMfHCDeHZrD//ve/PT52rBQKBU4++WScfPLJfX4uIup9gs+PhvXV8NrcSJycHjVkO1w8NhcsO8KHkIJPQMueJrTsaYK1pAkFl0yI6ZiRjmffZ4HP5YVCE/5tqrXKhj0vbAw7z2Xn6sl2joqWkG29Dg/2/t9mjL5uWti5OAW/gMYNkUNNp1eOjz/wYcsbwPr1wO4dRjQ2zYXXL0NvDx+XywSY9R6MnqjCjBkyzJ8fmANTrQa8Djc2P7xV0p1dHa+FPieuV6+hp2QKOXJOK8KB5TsDnd3lMsQVBEJw85gUqIyH9uEhERERERENP8M+1CQiGgj2vbFNnHOw5rsyjLt1JtTx2sN8VVJNm2sloVkklm11cJRbYciJPqzb5/LCVtoU9jnBJ8BW2oz4sSkhz7XV2FHy/Eb4nN4wewa0VtlCQs1wncoBwFnnQOlrWzHqikkhFaYte5rgsbrg9wM7a0z4cV8StlXH4UCDAQ0ODVxeOaThZW8MnRagUviRkSlDfqIN4+PrMaewHgUpgS7ko6+fFvK9teyoD/nZxI9PjXnOy/6QeEQ6jPnx8Fhd0CTrf60CJSIiIiIi6hmGmkREh5mrqU3SRMXv9qF29UHknF50GK8qVLSKxc7q1lQgv4tQs2VvEwRf5JDUuqshJNR01jlQ8vwG+FrDDGMOEi7AjBRqAoBtbxMOfliC9FOL8cMPMnz7LbBuHbBjgxF1TceizaNAb1detjPqfEgztKE4zYYjRzRhTkED8mclIf+i8Wj4xYGyd8sk21t2NoSEms1b60KOOxC7iKvNWqjNAyusJyIiIiKiwYmhJhHRrwRBgNfhgdKg6tcKt9bK0GHR1p0NyD5tVNjrCFQ4NkOdoIUu3dgv19pabQvp6q1NMyB7fiGsuxvRsK4qMKz4V81bapF96qiow4qtO8MPPRef39UAQRDE1yf4/Ch9bWv4eRk7X2+nANPv9sFZ5+h43i3HurJEbDhoxu66OJQ369D8dzVcIcWfmi7PFRsBCrmABJ0HeWkuzDkrDqedBkwf40DJ02ulVZYyIOP4fACAeXRSyJGsOxuQdVKBuOx1eNBS2izZRmXWwDBAhp4TERERERH1BYaaREQIVEuW/G8D3M1O6DNNKLh0Yr8N/27tFBa2X4+roRXaFINkvdfhwc6lP8NtCbTMjitKQt55Y6CO663wLbymjTUh65KnZsA8Ohnm0cnwe3xoDGqoI/gENK6rQvpxI8IeT/ALEZsEtfPY3GirskGfFQjnmrbUSoLJdmlz8tBS0oi2mo7vY1u1HYJfQG2dDN98A3zzqRc/fzMVVRYtLG1qeHy9P+dlO5lMgEnjQUacE+NHezEt34qpcQeRaOhITCfdewyUBjX2vLgnZNh44hHp4s9dZQqEk47yjuC7rcYOV3MbNAmBeVfDDT1PGGBDz4mIiIiIiHobQ02iw8R+wILa7w9CppIj47gR0KUbI24r+PxwNbZBk6SLuas0xU4QBJS+ugXu5kBQ2FplQ9XKfRhx/th+OX/nCsh21l0NIaFm9df7xUATAFpKGrHjyZ+Qd85oJEzom87Rgs+Pxk2dQk0ZkDgpXVxMnZUtCTUBoH5tJdKOyQ37b9Zx0Aqvo1PFpQJAp74/ll0N0GfFQfALqPnmQMhxUo/KQcKcAnz9gxKrv0/B7lojypv1aLBr4HgI8IvFoxr0XtVlOwE6lQ+pJhfGFPlw9DFyjG7eivzkVnGLrPkF8Ln8qPlGWgJqP2CFTClDS0mjZL1MIUPGvHzJOvOYZEmoCQSqNVOPygEANG+tDbmyvvq3QERERERENFAw1CQ6DNwtLux5aZPYubmlpBFjb54Rdq45Z70DJc9vhMfqgtKoQtGVU6IGoNR9LbsbQ4JF627p0Oe+1Fodfq5Hy64GpB2TJy4LPj+aNodWTPravNj3+jYkTm5A7pnFYbt4H4qW0mZ4bW7JurhRSVAFVYfqs+JgyDXDcdAqrnNbnLDuakT8uNBmP5ZwQ8/HaIFtTskq665GZB4/Eo1b6rB5mwzryrKxqzYOBxr1qLPr0PKECh6PDMCIQ3qN0QnQKP1IivNgzGQNph/pR37FJkzMtED5a15ryDPDXJyEqi9aJXvq0o2QyWWo+UZ6xJbSprBNklKPyoE2WS9ZFz8mBVVf7JOss+5qQMqsbDT8XMmh50RERERENCwx1CQ6DBo3VIuBJhAIpSo/L0X+heMk2wk+P/a9vg0eqwsA4LV7sP/tHRhzw5EcWtqLalaVhazz2j3wtLj6vKmJt9Uj/nw7sx+wwtvmgVIX6BLdsqcptLoxSNPGGtj3W5C/YByMI+J77RqbwjQISpqcHrIuZWa2JNQEgLqfKsKGmtad9dIVMsCfp8a+X1TYvMuEnTUmHGwyoMqqhfVPAtraUgH0dfVhoPIy2ehGXqIDY9JtODKvCROzrVDKgezTRyHt6FwACuz4lxdtQd+WtiobVKbQ+UN16cZAyCyXSYaI16+tDBkyrjSoQqo0gcDcpep4raRC17avGXv+txG2fc0h2yeMT4VMzv8/EBERERHR0MZQk+gwaNndGLKuaWMNUmflSCqs6tZUSOYJBALhSWt5Cwy50TtLt3NbnDj4/i60VtthLk5C1imFYkg2HNjLLKhfWwmFRon0uSNC5p60H7DAfsASdt/WSlvEULO1ygbBJ0CfbTqkgLnzz1fCL6BlTxMSJwbCvMYw81p25rY4UfL8RhRdOblXgk2f04vmHdIAUq5RhHQlBwLdtis+KZE08rHtbUJbnQO61MAweqcTWP25Ex9+lIySOhPKm3Sos2tgc6rheqTv5rkMJoMAo86HnHwlxowBpk8HjjvKjWx3FRp/qZSEh+I+ChmSjugIcvWZJkl1r9/jD7mvFTolVHEayGQy6DNNaK0IGkLuD+36nnniyLBVtjKZDOYxyahfUyGuE3xC2EATCMzJSURERERENNQx1CTqZ942D+ydqtnala8oQfHvp0Imk8Hd4kLVyn1ht6v/uTLmUPPgR7th/TVsafilCo7yFoz63RFQmfq2scxA0FplQ8n/NopduS076zHmhumSjtzhqjTF/StbwoZ3+5dtFxvnmMcko+DSiT0ONiMNPW9n3dmAxIlp8Dm9gYYwQeRqBeRqeUg3cMHrx96XN2P09UeGDGXuruZtdRA8fsm6hAmpkKsVIdvKlXIkH5mF3SsqsLEiHtur41Bab0DN6wo0OoCWFsDjAQAtgFGHdF1dE6CUC0hMliEzzYcMfz3GZ7Zg5ohG5CW1IWVmFnLPGh20vRrACGQcmwvrrkbU/VQB296O4eEZx4+E0tDx70afZQqZQ9Tf6fuky+joTG8aGS8NNTvRpRuRPC0z4vPxnULNSDKOz4chm0PPiYiIiIho6GOoSdTPbHubwlZpAYCjzIrmrXVInJiGik/2SIaoB2vaUovs00Z1WXHpd/tg3SWtHmursWP3s+sx6srJ0CTqevYiBgHBL6DsvV1ioAkAHqsL+9/YhlG/OwIyhRxtNfaoHbgdlaGBo73MKukEbt3ZEJg3ckxyj64zUpMg8fi7GyD4BTRvr5O8FiAQLmbNL0TZezth3SF9Hb42L/a+uAnF102ThLjd1bgxdOi5LD8Dn3wCbNgA7NgB7NsHVFUBTU1AW9tI+P0FPT5fd8nlQFwckJ4OZOmsyNc1YlK2BZOzrdCq/Zhw12y07G5A2bu7JPvpM8MHfzKFHPHjUhA/LgXOegcc5S3QJOlhyI2LaX/JNkFz3xpHJKD2u4MRt80+bVTUJmDG/ATINYqI/0/QJOqQd/4YmPITurwuIiIiIiKioYChJlE/s5aEDj0PVvnZXig0CjRvDu1o3E7w+APD1X/tfhxJa5UtbIDqamrD7mfXYdTvJg/ZpkMN66rCVsbZ9jWj6st9yJpfGLVKEwgMP+/cLKhlT+jPz7qrIWKo2by1FpadDTBkxyF5ehbkSmlw1VWo6WvzwnFQGqS2S5qcDpVRjYLfTETd6nJUfLJH8ryrqQ2lr2xB0VWTIVeFVlZG0tAA/PQT8MsPHvz0QRYqLYVocGjQ0qaE06uA8LdoVal9MXxcgFbpR6LBjUxzGyZNV2Lu2XGYOxfIDCpurP6mCVVf7Jfs2VZlQ2uYcFqfZeryrNoUQ0j3eXH/DGPgpYb/fAIAoEvvOIdxhDni9uYxyYgrTIx6LXKlHOaiJDRvrZM+IQs0F8o6qSBs9SwREREREdFQxVCTqB8JghB2Ps1g7mYnSl/Z0uWx6n+uRMqs7KjDnh3lkYe7emxu7P7vehRefgSMebENZR8svA43Kj/bG/H5mlVlUJrUaNoSOTgGAK/dHdIsyL7fErJd8DDlYM3b6rDv9W0AAnOmui1OZJ/aMexa8PnRVueQ7hQm+KpfWxkyf6LKrIHx16o8mUyGtGNy4bG7QqoBHQet2L9sB0YuHA+ZXAanE9i6Fdi4Edi5E9i7F6ioAOrqAKsVaG0FBPH8KgD9Mz+jTCZAq/UjPt6L9AQX8lQtKE61Y1K2BYUpDsh/zYKVRjUm3HEU5GGKlPUZoUFla5UtEO4Hn0shgzY1fFgZK7laAW2qAc5aR8RtdBkdHxgodSro0o2hIbZchuxTYhuKnzEvH5Yd9RB8gR+QJkmHEeeP7dWmUERERERERIMFQ02iftRWbYfH5pasUxpUIR2t20OLdgqtEkqDCq7GNnGds9YBx0ErjHnxEc/nKA8/d2c7X5sXe57fgBELxiFhXGqMr6J7HAetqFq5D36PDykzsvuliUnFZ6XwtXmjb/PxnpB1crUCfrd0eG9wsyC/1x92PlRXUxtcTW0hw/mrvzkgWa77sRwZx+dDoQn8r9dZ3xoypDx+bEpg7sygfwJNm0KrNBOPSA/pcJ12fCE2bQxUWO5v0KOiWY8amwZNDg3sV/nh9Mjh8x2urtgC5DIBBrVPrLjMTw50GD9vUTZGzTBi8+bNgU09AmQft4TcBwCQPicvYtWpPjM01HRUtKC1U5CoSzOGVMz2hD7TFDnUlEFsjtTOOCI+JNRMnZUNbUps857q0o0Y/Ycj0by1DtoUAxLGpbA6k4iIiIiIhi2GmkT9KNzQ88wTRqJhfXXUJiKZJxUAgoDyj0ok6+vXVnYRakY+Zju/x499r25FyqxsZJ86qlfCnnaWHfXY9/pWMZyyl1mh1KsQV5TUa+fozF5mReO6qpD1cpU8pJGLhAzIOrkg5Hsc3CyotaIlJIRs17K3CSnTs8Rlt8WJtk4VgoJPQMveJjFA7hy2AYCpIAEeuxuOso7w1O8H6mxqlDYYsa/BgIpmPRy/pKP27sBQ8fYKS69Xhr5vwBOdVgvExwNJRjfS5M0oSHFgfKYVk7IsMGpDv3dKgwqjZ42Dzx8UJqtkMIyIh720OWTb5BlZiEQVp4HSqIbX3vHBQcueppCfWSxDz2NhyIoLOy0AAGiS9SGBY/KRmaj/qUIMrFVxGmQcn9+tc+ozTGErUomIiIiIiIYbhppE/Sjc0HPz6GToMkzY/ey6sPvoM01ImZEFn8uLik/3SgKa5q11yDmjKGzDII/NBbfFKVkXV5QEfZYJNZ0qCAGgfk0F7GVWjLxofMyVY9E0bqzGgXd2Suf0FICKz/ZiTGFiSJVhbxB8fhz8YFfI+oQJqUg8Ij3qsP6E8alInJQWEmoGNwuyHbBE3L9ljzTU7NypvJ11V4MYarbV2FBvU6OkzogDjQZUNOtg+zkdleWpqKsV4HAp4PQo4PXL0DdzVXaXAK1Whvh4IC0NGDECKC4GjjgCmDkTyMuDOEzc55Jj55JSSXVxOPHjUgP/FjrlnXHFiSGhZtoxuVB0UZmozzShJejDg3AhdLiKzp6IFo7qw8xVq88wYeTFE1D3YzmUBhWy5xd22eyLiIiIiIiIwmOoSdRPvG2ekKHL2lQD1PFaqOO1SJiYhubOczzKgNyziiGTy6DUqZA4MQ2NGzq6UQtePxo3VCPt6NyQ8znCVH4acuKQecJIKPUqVKwIHX7dVmXDzqU/I/fsYiRNzujhKwXq1lSg/MPdYZ9rq7ajeWstEif1/jD0+rWVIcN75WoFsk8bBbVZi/Tj8lDzbfjmQOnH5kFpUEMdr5WEwcHNguyd5rUMZittguAXIECG/fuBr950omRHNqqsOtTZNGh0qGFpVcO2VAnXFQKcThm83kIc7spKKQFqhR8mrRdJBhcyzU6MSHJgVJoDx55hwMwrRkAR42hnhUaJUb+bjNrvD6K1sgUehwdeh1vSvVuXYURmhErFxMnpqP+hAh6rCwCgTTMgZWZ2l+fVZxgloWbYbXop1NRFaRYUqQFXwvhUJIzvm6keiIiIiIiIhhOGmkT9xLa3KaQTubm4Yxh21vyCQBOQoMqy5GmZMOR2NPFJnp4lCTUBoOHnSqQelRPSMCjc0HNDThwAIG12LjSJOhx4Z0fI3JN+tw8Hlu2AdVcDck4rgipO063XWf3tAVR9Xhp1m6ov9yFhfCpkip4Ndfe5faj7/iDsB63wOb3wubzwOb0h85UCQOYJ+eKcmJknjISjvAW2ThWAcaMSoc8KfG/0WSZJqOlucWPfdhcO1qqx6gMtqptGoMGuQb1Ng8ZWNVraVLC7lGjzKOB5MDBUPCCWsLI/qy8FqBR+6NU+mLUepJhcyIxzIjepFUWpNhSn2ZFs7Pj+aVL0iCtMRNyoJJhG5ojzgHaHJlGH3LOKJev8Hh+8Dg8EQYDarI1YsavQKlH8+6lo+KUKCrUCSVMzYroGXVeBpVwmaeBzKBQaJbQpejjrWkOvI0KoSURERERERL2DoSZRP7GGGXoePLekJkGH/AvHYv+yHRC8fhjz4yWdsgHAkBsX6KBc01GN6Kxrhf2ABaZfO2G3CxtqZncEpPFjUzD2phnY9+Y2yfyN7Zq31MG6uxFZJxYgZWZW2ADS5/LCWedAW40DbbV2tFbZwnYH78zV2IaG9dWS4dqxEgQB+9/YBuuuhi631aYZkHpUTse+Mjnks8Zj49rdOFipQE2LFvUODdzrUmF5HmhqAprrx8JhF+DyyuH1ywOdwB9rD97GdPt6+4tKBRiNQFISkJ4eGApeVASMHyegOMUCfXUVmrfXQYgwr6hcJYdpVDLMxcmIG5UITYIu7HaHSq5SQB0fW7mnJkGHrJMKunX8rqowtSn6iI2GekKfGRc+1Oyl4JSIiIiIiIjCY6hJ1A8EQQgZEitXK2AcES9ZlzAhDebiZHgcbqjjtSHVlzKZDMnTM1H+oXTex4afqyShpuAXQhoPaRJ1UBqk8/ep47UovnoKqlbuR82qAyHDaP0uH8o/LkHD+irknF4EyIDWChsclS1orbTB1RAa5nQmU8qRNDkdDb9Im/dUf7UfSZPTux0wVa9vwKbVrahpSUC9XYsGuxpNrWo0t6phbVPB5lTC4VKi1aOAR66G6x453G7A50MgoIQawIQoZxhI/1sUoJQL0Ch9MGp9iNe5kTtKjVETtSgoAMaMASZNAjIzox1DBiABQAJyncVo3lqHxg1VsB9sgTpOA/PoJJhHJ8M0MqFXw77DRZOog1yjkAxzD9ZbQ8/F42WZQrrTyzUKqOO1vXoeIiIiIiIikhpIf70TDVlt1faQodGmwoSwncblagU06shVckmTM1D56V5JJ+/mbb82DNIHQktXYyt8Tumw8vah553JFHJknVwAU0EC9r+1XdI5Ovj6S57bEPkFRiDXKFB4+SToc+JRscOGygM+NDo0aHKo0Nyqhn+3DS5DPCwWwGIBWloAux1wOALdvJ1OwOUCPB7A6wV8PgFAyq9fg5kAlRLQKLzQqwNhZbLRjeJpBoybrkNxMTBhrA8NL3wH+Dp+znKVHBPvOQaK7s0IIFJolUg+MhPJR2ZC8At90qzpcJPJZdBnGGE/EFp9DPRe53PxeGFCUl26MeQDCSIiIiIiIupdDDWJ+oE1TOMSc9DQ8+5QaJVImJSGxnXShkFNm2uQOisw1Drc0HN9hFDT7w8EiRZ1InDSDBz4ogI1Wy2wu5RocSphd6pgcylhdynR6lagza1Amyfw5fQo4PLK4fbK4fbJ4fHJ4fHJ4PPL4RNk8EMG/2LZrxWS03v0eqUGalAkQCYDVHI/9HpAL3cjTutBosGNFKMLGfFOZMa1IS+xFfnJDujVfsjVCvjd0mrC8X86CprE9iUFZEdmov6nCvH55OlZPZrbMpyhGGi202WYIoeavV2pmWmCTCmXzIVryA5/rxEREcuBwF8AAD0hSURBVBEREVHvYahJdAhqa5X46ac4+HwyrF0bWOf3dwx19vkCyzU/KuFqzoPPDwiCDH5BhhRfGvBhx3Zeb6Ai0e3u+Ape1/7Y6wWc9iLYq7Lg9cvg98vgFWTACwoo4gLbOG3JcDuPgc8vE7cR/iGHXwhcj9/fPhS7MzWAkf34HRyoBChkAlQKARqVD3qVD0aNF2adBwl6N5KMbowoUmHcdD2023YgJ7EVYtGtXBbSECr92DzUrJJ2tu8caMo1CqgTpEOWs04phCAIsO9vhmlkIrLmF/b6Kx2KogWXvR1qKrRKpM3ORc23B8Tl4HlciYiIiIiIqG8w1CTqoXPOkePjjyciturB7NBVPxzK2ZUAzKGr69ofqEKfG6bkckCpBNRqQKcD9HogIQFITARSUwNNdbKzA411RowACguBto0HUPXFvqjHzT27GImTDNj0lzYguPdOp0BTppQjfe4INKyvDju0v50+I3TIskKtQN7Zo7v7koe9SMGlJlnfa5Wuwdqnb3A3O2EenQSVqYfzAxAREREREVHMGGoS9cCmTcDHH8swcIdDDx0yGSCXC1DK/FAp/NAq/dCpfdCrvUjL1yI1W43kZCAtLfCVlQXk5ga+EhO7Pn7Yc2Z2PXzYlJ8AhVYJQ3YcHAfDD3UGgLjCRCg0SpiLk9C4vjridrr03q0gHM60qQbIFDIIPmnA3NtVmsHiCnv4j42IiIiIiIh6hKEmUQ9YLAADzcjkckChCHypVIBGA2i1gSpJncoLRYsNerUXJq0XcVov4rQexOs9iNe5kWR0IUnvQYrRiYxxZmSeOBL1ayvRtFHaYdpUmIhRvzsCfdGPpatmMkqDCpoUPYBAmBUt1IwfmwwAMI9Ojh5qZhh7cKUUjlwphzbNiLYqm2R9bzcJIiIiIiIiosOHoSZRD8yZA2RmCqiqGsjBZqBKTQZAJgfkcpkkbFQoAsOyVaqOL7VaGkIaDIEvkynwFRcHmM1AfHzgKykpMJQ7OTnwpdfHcl1KlL5WAcu2ui63tJU2Y3fp+tAnZED2qYV91mFaZVRDZdbAY3WFfd6YHy+eO25UIqq/3h/+QLJAmNm+XbjqwXZ6hpq9Sp8ZJtTsw0pNIiIiIiIi6l8MNYl6QC4Htm/34c47a7F5sxEyGWA2myCXyyGXQ/xqrbDA2+IKDKGWBTpk61L1MGbHQaFoH1otnfexPVRUq0P/q9V2BI5qNeCtbkLDN6VQK/3QKP1QK/3QqbzQawLDtNuNu20mtCmGw/gdkxpx/hhUGlSw7KiHxxZ5nslIkqZkQJ/RtwGVISsOFmt92OdM+Qkd2+XEhe1kDgCGXLM4v6JCo4QxPwG2vU2hB5QBujSGmr3JXJyMxnUdlbEKnRKGHHYlJyIiIiIiGioYahL1kNEIXH11x5DoSZMmQSm2wAZaq2zYuURaZShTyjHhT0dB1UvZit8bj61VbfA6PBG3UWiV0CTFVELZbxQaJXLPHo3cs0fDY3ejrcaO1iob2qrtsO5qgM/pjbivTCVH5ol936Fdn2WCZUf4UNOYH99xPQo5TCMTYN3VELJd/JgUybJ5dFLYUFObrIdcrTi0CyaJ+LEpSJ6ehYafK6HQq5B37ug+aRJEREREREREhwf/wiPqI+GGJKfMyIIqrvc6I8uVciQekY66H8ojbqPPjoNMPnCHyauMaqgKE8VGK942D+pWH0TtD+Xwu0KrH9OPyYXarO3z64o0/6JCqwypqowrTAwfao6Vhprxo5NR8fGekO04n2bvk8llyDtnNHLPLAJksgF9DxAREREREVH3ybvehIi6q7XKBst2aZWfTClH+py8Xj9X0tSMqM8PtiG3Sp0KmScWYMKfjkb6sXmSCkZdhhFpffA9DEefFf77ZsyPDwnITKNCO19rU/TQpkgrZDVJoesAQNfHQ+mHM5lCzkCTiIiIiIhoCGKlJlEf6I8qzXb6DBP0mSa0dmqK0m6whZrtlAYVsuYXInV2bqAKUhAQPz6134YQR2oWZAoaet5Om6KHLt2Ithq7uC5xSviw2Tw6Gc76g5J1+nRWahIRERERERF1Bys1iXpZf1ZptotWrWnIHpyhZjuVUY3kaZlIPjILSp2qX89tCFOtaRyRELJOJpNhxAVjoUs3QvbrlABps3PDHjNpWiZkio7KQaVJDVNB6DGJiIiIiIiIKDJWahL1sv6s0myXeEQ6Kj7ZA8EnSNar47Vi923qPvOYZEmzIHWiDvrM8FWV+kwTxt48o8tj6lINKPjNRNR+fxByjQKZJ46EXMUmQURERERERETdwVCTqBcdjipNAFDqVYgfm4LmrXWS9YN16PlAkTQ5Ha2VLWjcUAN1vAZ5546BTHHoBe7m0ckwj07uhSskIiIiIiIiGp4YahL1oprvykLW9XWVZrukqZmhoWauuc/PO5TJFHLknjUauWeNPtyXQkRERERERERBOKcmUS9qLW+RLPdHlWa7uFGJkrkZlUZ1l53RiYiIiIiIiIgGI1ZqEvUiXboRrqY2cTn1qJx+qdIEAJlchsLLJ6FpUw18Lh8Sj0jv98Y6RERERERERET9gaEmUS/KPn0UIANaq+0wFych6+SCfj2/XKVA8pFZ/XpOIiIiIiIiIqL+xlCTqBdpEnQo+M3Ew30ZRERERERERERDGufUJCIiIiIiIiIiokGFoSYRERERERERERENKgw1iYiIiIiIiIiIaFBhqElERERERERERESDCkNNIiIiIiIiIiIiGlQYahIREREREREREdGgwlCTiIiIiIiIiIiIBhWGmkRERERERERERDSoMNQkIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVBhqEhERERERERER0aDCUJOIiIiIiIiIiIgGFYaaRERERERERERENKgw1CQiIiIiIiIiIqJBhaEmERERERERERERDSoMNYmIiIiIiIiIiGhQYahJREREREREREREgwpDTSIiIiIiIiIiIhpUGGoSERERERERERHRoMJQk4iIiIiIiIiIiAYVhppEREREREREREQ0qDDUJCIiIiIiIiIiokGFoSYRERERERERERENKgw1iYiIiIiIiIiIaFBhqElERERERERERESDCkNNIiIiIiIiIiIiGlQYahIREREREREREdGgwlCTiIiIiIiIiIiIBhWGmkRERERERERERDSoMNQkIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVGSCIAiH+yJo6Fu/fr1kWS4fGnm63+8XHw+V10R0uPB+IuodvJeIeg/vJ6LewXuJqPcMpfsp+LUAwNSpU7u1v7I3L4YoVp3/4Q4FQ/E1ER0uvJ+IegfvJaLew/uJqHfwXiLqPcP9fhrckS4RERERERERERENO6zUpMNisJdIExERERERERFRzx1qpSnn1CQiIiIiIiIiIqJBheVyRERERERERERENKgw1CQiIiIiIiIiIqJBhaEmERERERERERERDSoMNYmIiIiIiIiIiGhQYahJREREREREREREgwpDTSIiIiIiIiIiIhpUGGoSERERERERERHRoMJQk4iIiIiIiIiIiAYVhppEREREREREREQ0qDDUJCIiIiIiIiIiokGFoSYRERERERERERENKgw1iYiIiIiIiIiIaFBhqElERERERERERESDCkNNIiIiIiIiIiIiGlQYahIREREREREREdGgwlCTiIiIiIiIiIiIBhWGmkRERERERERERDSoMNQkIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVBhqEhERERERERER0aDCUJOIiIiIiIiIiIgGFeXhvgCiwaa0tBRvvvkm1q5di4qKCni9XqSmpqKoqAhnnHEGTjzxRCiVvLVo+Fq7di1WrFiBjRs3oq6uDna7HUajERkZGZg2bRrOPfdcjB07NubjbdmyBW+//TZ++eUX1NbWQhAEpKWlYdy4cTjrrLMwZ84cyGSyPnxFRAPPXXfdhXfffRcA8Mgjj+Dcc8+NaT++h9Fw5fP58MUXX+DLL7/Etm3bUF9fD5/Ph+TkZIwfPx5nnHEGjj/+eMjlsdV88L2JhrMdO3bg7bffxrp161BTU4O2tjaYzWaMHDkSxxxzDBYsWACz2Rzz8Xg/0XDw1FNP4ZlnnkFWVha+/vrrbu27Zs0aLF++HJs2bUJdXR2USiXS09MxefJknHPOOZg2bVq3jud2u7FixQp8+umn2LFjBywWi/j32pw5c3DeeechNze3W8c8XGSCIAiH+yKIBoslS5bg2WefhdfrjbjN+PHj8fjjj2PkyJH9eGVEh19FRQUWLVqEdevWdbntaaedhsWLF8NoNEbcxuPx4C9/+QveeuutqMeaPXs2HnnkEaSmpnb7mokGo1WrVuGaa64Rl2MNNfkeRsPVli1bcN9992HXrl1RtzviiCPwj3/8A1lZWRG34XsTDWdOpxOLFy/G8uXLo25nMBiwePFinH766VG34/1Ew8WWLVtw8cUXw+PxdCvUtNvtWLRoEVauXBl1uzPPPBP3338/TCZTl8csLS3FzTffjD179kTcRqVS4aabbsLVV1894D9QYKhJFKOHHnoIr7zyirisVCpRXFwMnU6H0tJSNDc3i88lJydj2bJlUX8pJhpKDhw4gIULF6KpqUlcp1KpUFRUBJPJhMbGRuzduxfBbzmjR4/Ga6+9FjbYFAQBN9xwg+QNXKPRoLi4GAqFAnv27IHdbhefGzlyJN566y3ExcX10SskGhhsNhtOO+001NbWiutiCTX5HkbD1Zo1a3D99dejtbVVXJeSkoLc3Fx4PB7s3LkTHo9HfC4rKwtvvvlm2PCE7000nLndblxzzTVYs2aNuE6hUKCoqAhxcXGorKxERUWFZJ8///nPWLhwYdjj8X6i4aK8vBwLFy5EfX09AMQcarpcLlx66aXYvHmzuM5gMKCoqAg+nw8lJSVwOp3ic0ceeSReeOEFqNXqiMfcv38/Fi5cKPm9LyUlBfn5+bBYLNizZ4/k77Wrr74af/zjH7v1evsbQ02iGHz22We4+eabxeWTTz4Z999/P5KTkwEEPmV899138cgjj6CtrQ0AMG7cOCxfvnzAf7JBdKh8Ph/OPvtslJSUAAj8gnvdddfht7/9rSSwrK2txT/+8Q+8//774rr58+fjqaeeCjnm888/j8cee0xcvvjii3HbbbeJnz46nU689NJLWLJkiVh1duKJJ2Lp0qV98RKJBozgYeftugo1+R5Gw1VZWRnOPvtsMdDMzMzE/fffj+OOO078t93S0oIlS5bg5ZdfFvc76aSTsGTJkpDj8b2JhrOnn34a//rXv8TluXPn4oEHHkBGRoa47pdffsGiRYtQWVkJIPAB2vvvv49Ro0aFHI/3Ew0HJSUluOqqqyQfRscaai5evBivvfYaAEAmk+HGG2/ElVdeCa1WCyD8+9cVV1yBu+66K+zxfD4fzj33XHHUgtlsxuLFi3HyySeL74nl5eW499578dNPP4n7PfPMMzj++OO7+cr7DxsFEXXB4/Hg0UcfFZfnzp2LJ598UvxjEAhUpC1YsABLly4V5yLbvn07Pv74436/XqL+9u6774qBJgD87W9/w4033hhSgZmWloZHH30Uv/3tb8V1n332GTZt2iTZrqmpCU8//bS4vHDhQjzwwAOS4RRarRbXXnstFi9eLK778ssvsWHDht56WUQDzqpVq0ICza7wPYyGs8WLF4uB5ogRI/D6669j7ty5krA+Li4O99xzD37zm9+I67788kscOHBAciy+N9Fw5na78cILL4jLs2bNwtNPPy0JNIFApdjLL78s3hderxf//ve/Q47H+4mGgw8++AAXXnihJNCM1d69e/Hmm2+Ky7fffjv+8Ic/iIEm0PH+9Yc//EFc99prr4VUTLd7++23xUBTqVTi2Wefxfz58yXviTk5Ofjf//6HWbNmieueeOIJ+Hy+br+G/sJQk6gLX375JaqqqgAEbv77778/4iTys2fPxoIFC8TlF198sV+ukehw+uCDD8THs2fPxplnnhl1+9tuu00yrG/FihWS59955x04HA4AQHx8PO64446IxzrvvPNw3HHHicu852ioamlpwb333gsgEELqdLqY9uN7GA1XW7duxerVqwEAcrkcjz/+eEgAE+zmm28Wh+wJgoBvv/1W8jzfm2g427Rpk2Qo+M033wyFQhF22+zsbFx88cXi8rfffovOg0N5P9FQVltbi0WLFuGOO+4QR8B01yuvvCIGiSNHjsSVV14ZcdsbbrgBRUVFAAIfZr/66qthtwuu6DzvvPMwZcqUsNupVCo8+uijUKlUAAJzcK5atapHr6M/MNQk6sInn3wiPj7qqKOQmZkZdfvgPwi3b9+O8vLyPrs2osPN7XZLPjHvakJ4AFCr1Zg9e7a4vHXrVsnzn376qfj4lFNOgV6vj3q84Hvuu+++k8ybRjRUPPzww6irqwMAXHPNNUhMTIxpP76H0XAVXNV89tlnY+LEiVG3j4uLw+23345rrrkGf/rTnzBhwgTJ83xvouGspqZGsjxu3Lio20+aNEl87HA4JPP3AbyfaOj697//jfnz50um2xo5ciSuvfbamI/h9/vx+eefi8vnnntuxA+kgcAHdxdeeKG4HLxvu127dqG0tFRcPv/886NeQ1paGubOnSsuf/bZZzFd++HAUJMoCkEQsHbtWnH56KOP7nKf4uJipKSkiMuxdjYjGowqKyuh0WjE5YKCgpj2i4+PFx8H/6JrsViwc+dOcTk4/Ixk5syZYrWA0+nEjz/+GNM1EA0W3377Ld577z0AQFFRUcy/GPM9jIaz4ErL4D/2orniiitw++2346qrrsLUqVPF9XxvouGuc0fl9irLSNrnwGwX/Lsi7ycayp5//nlJ6H7BBRfg7bffRl5eXszH2LVrl+Tvo1jukeDf8aqqqsRh5u2C58g0m80hH9x1dcxwFdcDBUNNoigqKyvR0tIiLo8fPz6m/YqLi8XHnavQiIaS/Px8bNy4EevWrcOKFSvEoQ9daZ9AHgi8sbbbvXu35A2zq0oAANDr9cjNzRWXec/RUNLS0oL77rsPQGD4+COPPBK1q2UwvofRcFVTUyNOu6DT6bqs0uwK35touCssLJQsf//991G3/+GHH8THGRkZMBgM4jLvJxoOxo8fj1deeQUPPfRQSJ+BrgQHkiqVKmyjrc7y8/Ml8212vkeCjzlmzJiYGkGOHj1afGy1WnHw4MEu9zkcGGoSRdF5kvjgN9NosrOzxccD9eYn6k0mkwmFhYWSN9NI7Ha75Jfd4OrO4HtOrVZHnf8sGO85Gqoeeughcdj5lVdeGXMwCfA9jIav3bt3i49HjhwpVnhVVFRg6dKlOO+88zBz5kxMmjQJJ554Iu655x5s3Lgx4vH43kTDXU5OjmReyyeffBINDQ1ht123bp1k+ofg+TUB3k80tE2fPh1PP/003nnnHUyfPr1Hxwi+R7KyssQmjtHIZDLJFENlZWURjxlr1WjwPRfumANF198domGsvr5efCyXyyXdYqMJHroXfAwiCgzLCJ5sPni+luD7Jfg+6grvORqKvv76a7ERV0FBAW644YZu7c/3MBquggOP1NRU+P1+PP/881iyZAlcLlfItgcPHsQ777yDc845Bw8++KBkqCzA9yYiALj77ruxbds2NDQ0oLKyEueffz5uuukmzJkzB/Hx8aiursaKFSvw73//Gx6PBwAwduxY/OY3v5Ech/cTDWXPPPPMIR8j+N93cHPVriQnJ2Pfvn0hxwAgfkAOxH7fJSYmQqFQiA2LBup9x1CTKAqr1So+NhgMUSfoDRZcYh58DKLhbsuWLXjuuefE5REjRmDevHnissViER93nr8pGt5zNNRYrVbcf//9AAKBZHeGnQcfox3fw2g4Ca4g0+v1+Mtf/oLXX39dXFdYWIikpCQ0NDRIGie89957OHjwIF566SXJ/cb3JqJAddfy5cvx0EMPYeXKlaiursZdd90VdluZTIYzzzwT9913X0gTIN5PRNH19B4J3rbzPRK8HOsx5XI59Ho9bDYbAEimNBpIOPycKIrgT/NjGVbbLvgXYbfb3avXRDRYVVRU4Prrrxc/vQeAO++8UzKkIvh+4T1Hw9lDDz0kfiJ+xRVXSDrJxorvYTRcBf/h9f3334uB5gknnICVK1dixYoVePnll/HJJ59g5cqVOPbYY8Xt169fj4ceekhyPL43EQUkJiZizpw5XQ5fPfroo3H11VeHDU94PxFF1xf3SG/8Tth5pMNAwVCTKIrg8CXWChcAkpCmc/c/ouGouroal19+uWTYwhVXXCEZeg7wniMCgK+++goffvghgEA1880339yj4/B+ouEq+I+59oBzwYIFWLp0KXJyciTb5uTk4Nlnn8X8+fPFdcuWLUNJSYm4zHuJKNBo5PTTT8d9990nzs+n0WgwYcIEzJgxAyNGjBC3Xb16Nc466yw8+uijIf/2eT8RRdfTe6R9/mgg9B4JXg7e7lCOOVAw1CSKIvgm9vv9Me8XfMOrVKpevSaiwaa0tBQLFy5ERUWFuG727Nn44x//GLIt7zka7iwWCx544AEAgeF7f/3rX7v1iXow3k80XHXu6pqTk4N77703YrdXuVwu6VArCAJeffVV8XneSzTclZeX4/LLLxcbhWi1Wtx11134+eef8c477+Dll1/G559/jpUrV+LUU08FAPh8PrzwwgtYtGiR5Fi8n4ii6+k90j73JRB6jwQfM3i77hyzu9Mg9ReGmkRR6HQ68XF3yq2DKwQ6TzZPNJxs2LABl1xyCaqrq8V1M2fOxNKlS8P+Qhoc3nTnngvelvccDWbBw85/85vfYNq0aT0+Ft/DaLjqPIffRRdd1OUfYyaTSQxjAODHH38UH/O9iYa7xYsXi/P8aTQavPjii7jiiitCPnTLycnBP//5T1x77bXiuo8//hgff/yxuMz7iSi6vrhHeuOYDDWJBiGz2Sw+djgcEAQhpv2COzvHx8f39mURDQofffQRLr/8cjQ3N4vrjj32WPznP/+RhC3Bgu+X4PuoKw6HI+wxiAaTlStX4qOPPgIQ+MPwtttuO6Tj8T2MhiuDwSBZnjJlSkz7HXHEEeLj8vJyMeDnexMNZ+Xl5fjuu+/E5WuvvbbLe+rWW2+VzAX9v//9T3zM+4koup7eI9F+fwv+nTDWY/r9frS2tkY85kDBUJMoirS0NPGxz+eThDPRBM8bmJyc3OvXRTTQLVmyBH/84x8lFV9nnnkmnnnmmahDaYPvucbGxpjPx3uOBjuLxYI///nPAAJDZx966KGQarPu4nsYDVcJCQmS5cTExJj2S0pKkiy3V6bxvYmGs3Xr1kmWzz///Jj2u+iii8THO3fuFO8d3k9E0aWmpoqPu3OPNDQ0iI9TUlIkz/XkvmtqapIMf+98zIFC2fUmRMNX585+5eXlMf1iHDx3YH5+fq9fF9FA5fF4cM899+CDDz6QrP/973+PW2+9NeJ8Zu2C77nW1lY0NDTE9ItreXm5+Jj3HA1Gb731lvgHm06nw3PPPYfnnnsu4vbBv7i++OKLWLFihbj86KOPIjk5me9hNGyNGjVKshzcDT2azk0Q2huT8L2JhrO6ujrxsdlslgQu0YwePVqyXFlZiaSkJN5PRF0IbrpVUVEBQRC6/BtKEARUVlaGPUb78oYNGwAABw8ejOk6gu+5cMccKBhqEkWRlZWF+Ph48ZP6nTt3SoZSRLJr1y7xcec3dKKhyu1248Ybb8S3334rrlMqlfjzn/+MCy64IKZjjB07FjKZTBwmu3PnThxzzDFR93E4HJI3Z95zNBgFVzW3trZi9erVMe9bUlIi6dTsdDoB8D2Mhq/i4mLJ8oEDBzBx4sQu96upqREfa7Vacagd35toOAueRy+4K3NXOndtbg9leD8RRTdu3DjxcVtbG/bv34+RI0dG3Wffvn2S+S/HjBkTcsx3330XgPT3vGh27twpPjabzcjKyoppv/7G4edEXZgxY4b4OHjS+Eh27dolqaCZOXNmn1wX0UDi9Xpx0003SQJNg8GA//znPzEHmgBgNBoxduxYcTmWe+6nn34Sh0YoFApMnz499gsnGuL4HkbDUWJioiTYXLlyZUz7/fLLL+LjsWPHiqEM35toOEtPTxcft7a2Yv/+/THtV1paGvY4vJ+Iohs1apRkZM2aNWu63OeHH34QHyckJIR8uBd8z9TX12PPnj1dHjP43gz+fXKgYahJ1IWTTjpJfPzNN9+gtrY26vZvvPGG+LigoCDkfyhEQ9Hjjz+Ob775RlxOTEzEK6+8gtmzZ3f7WCeffLL4+MMPP0RbW1vU7YPvuaOOOgpxcXHdPifR4XbjjTdi9+7dMX8Ff1r+yCOPSJ7Lzs4Wn+N7GA1XZ511lvj466+/xt69e6NuX11dja+++kpcDr53AL430fA1Y8YMSdXlW2+9FdN+y5cvFx+PGjVKMh8f7yeiyGQyGU488URxedmyZZK5LTvz+/1YtmyZuHzyySeHDFcvKiqSTNvw5ptvRr2G6upqSbHKKaecEuvl9zuGmkRdOOmkk8S5Y9xuN+68886QOZfaff/993j77bfF5UsvvbRfrpHocFq1ahX+7//+T1w2m814+eWXJUMnuuO8884Tu6M3NDRg8eLFEbd9++238f3334vLl112WY/OSTRU8T2MhqtzzjlH7Pbq8Xhw5513wmazhd3W7XZj0aJF4tBao9GIc889V7IN35touEpMTJSEkC+//HKXlWOvvPKKpHJswYIFkud5PxFFd/HFF4vB5K5du/D0009H3Papp54SKy/lcnnE398uueQS8fGbb74ZsUra4/FI3hMzMzNxwgkn9Oh19AeGmkRdUKvVuO2228TlH3/8EVdffbVk4lyv14tly5bhxhtvhM/nAxD4NKQ7w26JBiOfz4e//vWv4rxIMpkMTzzxREiThu5ITk7GVVddJS6/++67uP322yWd+pxOJ5599lk88MAD4ro5c+Zgzpw5PT4v0VDE9zAarhITE3HXXXeJy1u3bsXFF1+Mn376SbLdvn378Lvf/Q5r164V191yyy1iINqO7000nP3xj38UqyN9Ph+uvvpqPP3002hqapJsV19fjwcffBAPPfSQuG7cuHFYuHChZDveT0TRjR49Guecc464vHTpUjz88MOSD+dsNhv++te/4tlnnxXXLViwAIWFhWGPuWDBArFa0+v14g9/+APefvttyYfd5eXluOqqqyTviX/6058kc+sONDKh/S9RIorq/vvvlwy3kMvlKC4uhtFoRGlpqeRNPT4+Hm+88UaXE/oSDXYrVqyQBCZ6vR5Tpkzp1jGSk5Px6KOPSta1v9EGD3tQqVQoLi6GWq3Gnj17JG/q2dnZePvtt2Pq7Ew0FMybN0/scvnII4+EVJV1xvcwGq7++c9/Sv7gAwJz++Xk5MBqtUqabAGBYeuPPfZY2GPxvYmGs7Vr1+Laa69Fa2uruE6lUiE/Px8JCQlobm7G3r17JcNk8/Ly8Oqrr4btmM77iYaTd999V/ygLSsrC19//XWX+9jtdlx++eXYtm2buE6n04lTA+3evVsydcOECRPw6quvQqvVRjxmSUkJLr30UrGJJBD4ELCgoAA2mw0lJSWSe/iSSy7B/fffH/PrPBwYahLFSBAEPPnkk3j++eejdv4rKCjAU089dUiVakSDxY033ogvvvjikI4R6Y3d7XbjwQcfxPLlyxHtrWry5Ml46qmnkJaWdkjXQTSYdDfU5HsYDWfLly/H448/jubm5ojbKJVKXHPNNbjxxhtDujYH43sTDWd79+7FHXfcge3bt0fdTiaTYf78+Vi8eHHU+S95P9Fw0ZNQEwhUY95xxx1dbj937lw8/vjjMJlMXR5z9+7duP3226M2C1IoFLj66qtxyy23hMzPOdAw1CTqptLSUrzzzjtYvXo1ampq0NbWBrPZjDFjxmD+/Pk488wzB3R5NlFvOu2007psvtCVrt7Yt2zZgvfeew8//fQTamtr4Xa7kZiYiIkTJ+L000/HSSedFPUPUKKhqLuhZju+h9FwZbVa8eGHH+Krr77Cvn370NTUBJVKhREjRmDWrFlYuHAhcnJyYj4e35toOFu1ahW+/PJLbNiwAfX19WhtbYXJZEJWVhamT5+Os88+u1uN5ng/0VDX01Cz3Zo1a/Dhhx9i3bp1aGhogM/nQ3JyMiZPnoxzzjmn281ZvV4vPvroI3z++efYuXMnGhsboVKpkJ2djRkzZuCiiy6KOIx9oGGoSURERERERERERIMKP+4gIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVBhqEhERERERERER0aDCUJOIiIiIiIiIiIgGFYaaRERERERERERENKgw1CQiIiIiIiIiIqJBhaEmERERERERERERDSoMNYmIiIiIiIiIiGhQYahJREREREREREREgwpDTSIiIiIiIiIiIhpUGGoSERERERERERHRoKI83BdARERENJzNmzcPlZWVh3ycl19+GTNmzOiFKyLqPy6XC+effz5KSkpw+eWX4+6775Y8f+mll+Lnn38GAEyfPh2vvPJKt8+xdu1aXHbZZeJyX98rr776Kv7yl78gKSkJH374IZKTk/vsXERERMMZKzWJiIiIiOiweOSRR1BSUoLk5GTcdNNNh/tyesXChQtRVFSExsZG3HnnnRAE4XBfEhER0ZDESk0iIiKiASI1NRVFRUU92tdsNvfy1RD1re+++w5vvPEGAOCWW26B0Wg8zFfUOxQKBe6++25cccUV+P777/H666/jkksuOdyXRURENOQw1CQiIiIaII4++mj87W9/O9yXQdTnnE4nFi9eDAAoKirCeeedd5ivqHfNmjULc+fOxTfffIN//vOfOPHEE5Gamnq4L4uIiGhI4fBzIiIiIiLqV//5z39QXl4OALj11lshlw+9P0tuueUWyGQy2Gw2PProo4f7coiIiIacoffbAxERERERDViNjY146aWXAACFhYWYN2/e4b2gPjJ69Ggcc8wxAIAVK1Zg165dh/mKiIiIhhaGmkRERERE1G/++9//orW1FQBw4YUXHuar6VsXXXQRAEAQBDz11FOH+WqIiIiGFs6pSURERDQE3XnnnXjvvfcAAM8++yyOPfZYvPzyy3jrrbdQUVGBuLg4jBw5EvPnzw/bxMThcOD999/HqlWrsGfPHjQ2NkKtViMlJQXTpk3DKaecgqOOOqpb17RmzRosX74cGzZsQF1dHQwGA3Jzc3HKKafgwgsvhNFoxKuvvoq//OUvAIAbbrgBN954o+QY7777Lu666y4AQFZWFr7++usuzztv3jxUVlYCCHTbPvfcc6NuX1lZiffeew+rV69GRUUFLBYLjEYjMjMzcdRRR+Gcc85BQUFB1GMsWbIES5cuBQDcd999+M1vfgO3240PPvgAn332GUpLS9HQ0ACTyYT8/HzMmzcPCxYsgMlk6vL1tPv555/x8ccfY8OGDaisrITH44HZbEZRURGOPfZYnHvuuYiLi5Pss3jxYrz22msAAs2lVq9eDbVa3eW5/u///g8PP/wwAGDEiBH4/PPPY77OYHa7HW+//TYAQKPR4Oyzz+7RcXrT2rVrcdlll/V4/3POOSfiXLjHHXcc0tLSUFtbi2+++QZlZWXIy8vr8bmIiIioA0NNIiIiomHg3nvvxfLly8XlhoYGNDQ0oLi4OGTbDz/8EH/729/Q2NgoWe9yuWCz2bBv3z4sW7YMM2fOxKOPPor09PSo525sbMSiRYvw/fffS9ZbLBZYLBZs2bIFr7/+Ov71r38dwis8dD6fD08++SReeukluN1uyXPNzc1obm7G9u3b8cILL+DCCy/E3XffHVMgCAC7du3C7bffjr1790rWNzU1oampCevXr8fzzz+Pv//97zj66KOjHuvgwYO455578PPPP4c81/5z/fHHH/Hss8/ioYcewgknnCA+f84554ihptVqxXfffSd5PpIPPvhAcoye+uCDD+BwOAAAM2bMgNls7vGxBgOFQoHjjz8er7/+OgRBwOuvvy6G8kRERHRoGGoSERERDXHvvfdexMq6M888U7K8dOlSLFmyRLIuMzMT2dnZcLlcKC0thd1uBwD89NNPuOCCC/DSSy9FrFxsbGzExRdfjAMHDojrVCoViouLodVqsXfvXlgsFpSXl+PKK688bJV7brcb119/vSR4lclkKCgoQHJyMlpaWlBSUgKv1wufz4c33ngDJSUl+N///ge9Xh/12AcOHMDSpUvR3NwMAEhKSsLIkSPhdDpRWloqDsVuamrCddddh/feey/i93PXrl24/PLLYbFYxHUqlQpFRUXQ6/U4cOAA6uvrAQSC2Jtuugn/+Mc/MH/+fADAhAkTUFRUhJKSEgCBALurULO0tBTbt28HAMjl8kP6GX344Yfi4+OOO67Hx+lNZrMZs2fPjnn7bdu2Sb7/RxxxRNTtjz32WLz++usAAnNrLlq0aEg2RiIiIupvDDWJiIiIhrj2QPPUU0/FDTfcgIyMDOzduxcrV67ExIkTxe1WrFghCTSnTp2Ku+66CxMmTBDXud1ufPzxx3j00UdhsVhQV1eHG264Ae+88w4MBkPIue+66y5JoHnBBRfg9ttvR0JCAgDA4/HgvffewyOPPIKmpiaxgUx/e+ihhySB5gUXXIAbbrhBUoVqtVrx/PPP47nnnoPf78f69etx//334+9//3vUY7/yyisAgNzcXNx7772YM2cOZDIZgMBw7CVLloiv2+VyYcmSJXjyySdDjtPa2oo//OEPYqCmUChw7bXX4re//a1k2PrKlSvx4IMPoq6uDj6fD/fccw+mTp2KlJQUAIFKy/Zu3N988w1sNlvUYe/vv/+++Pioo47qsjI3krq6OmzevFlyrIFg9OjReP7552Pa9rvvvsO1114rLp9//vnivJmRzJgxAwqFAj6fD/X19di0aROmTJlySNdMREREDDWJiIiIhoV58+bhH//4hximTZw4URJo2u12/PnPfxaXjz/+ePzrX/+CUin9dVGtVuPcc8/FpEmTsHDhQlitVuzbtw/PPfccbrnlFsm2P/74I1atWiUu/+53v8OiRYsk26hUKlx44YUoLCzE5ZdfHjLsuz+sW7cOb731lrh8xx134MorrwzZzmw247bbbkNxcTFuu+02AMBHH32E8847D7NmzYp6juzsbCxbtkwMc9sZjUbcddddqK+vx4oVKwAAq1atgtvtDhna/tJLL6GiokJc/vvf/45TTz015FwnnHACMjIycPHFF8PpdMJut+PVV1/FrbfeCiBQnfvEE0/A6/XC7Xbjs88+wwUXXBD2ugVBwEcffSQun3feeVFfZzRr166FIAgAAJ1O1+25JXfv3h3259IVq9Xa7X3C2bt3L2699Vb4fD4AwJQpU/DAAw90uZ9Op8OIESNQWloKIFDhzFCTiIjo0DHUJCIiIhog3nvvPbG5T6xefvllzJgxo8vtrrvuOjHQDOedd95BS0sLAMBkMuHhhx8OCTSDFRQU4Oabb8bixYsBAG+88QauvfZaaLVacZs33nhDfJyTkyOGauFMmTIFN9xwA/7xj390+Vp6W3CV3tSpU7sMzk477TR88cUX+OyzzwAAL7zwQpeh5k033RQSaAZbuHChGGq2traivLxcMgTd7/dLgtfTTjstbKDZbty4cTjjjDPEpjxffPGF+P1PTk7GMcccg2+++QZAIJiNFGquXbsW1dXVAAKhbizzb0YSXKVZWFjY7SHYVqsVq1ev7vH5D0VTUxN+//vfi1MvZGRkYOnSpTHPqVpUVCSGmsHfByIiIuo5TuZCRERENMQZDAaMHz8+6jbBc27OnTsX8fHxXR73jDPOgEKhABBo+rNp0ybxOY/HIwmgzj333C4DoIsvvhg6na7L8/Ymp9MpGXYeaxOc4Hkl16xZA5fLFXFbuVyO448/PurxCgsLJcs2m02yvGPHDtTU1IjLCxcu7PIaL7vsMvzpT3/CM888g6efflryXPDr/OWXXyTHDhbcIOi0006LOcQLpz3UA4BRo0b1+Dj9ze124w9/+INYJavT6fDMM88gKSkp5mMUFRWJjzs3iyIiIqKeYaUmERER0QCRmpoqCT9iEUv36KKioqhVcW63G9u2bROXIzWp6SwuLg65ubnYv38/AGDDhg2YOXMmAEga4ADAtGnTujyeyWTClClT8MMPP8R0/t6wZcsWeDwecTnW1x4cEns8HmzdujXia8zOzobRaIx6vLi4OMly8DW1X2c7lUqFSZMmdXmNRUVFEf89tQfXFosFfr8fH3/8Ma666irJNk6nUxJ2H0rXcwCSofPdCQTbTZ8+XZyftDvWrl2Lyy67rNv7tbv33nuxYcMGcfnhhx/G2LFju3WM4NdbU1MDn88nfiBAREREPcNQk4iIiGiAOProo/G3v/2t14+bmJgY9fmamhrJXJb//Oc/8c9//rPb56mtrRUfV1ZWSp4bMWJETMcoLi7u11CzrKxMshxLBWQ4dXV1EZ+Lpeq1c8Dl9/sly+Xl5eLjrKysQ6qYBAJzo55xxhliSPjhhx+GhJorV66Ew+EAEKisDJ6DtSfau78DiNqYaCB59tlnJdWq1113XdRh/5EEv16v14uWlpao0xEQERFR1zj8nIiIiGiI66pKsLcaqQQfp33uwXaxhlj9HfS0zyN6qNo7kocTPM9oTwV/P3srEAyuvNy9ezdKSkokzweHeeeee+4hn6+trU183NW/yYHg888/l3ShP+GEE3DzzTf36FidX2/w94KIiIh6hpWaRERERENcVw1ZvF6vZHnChAkxDWvvLHheSI1GI3muvet1Vw61ArG7Or/22bNn9+g4qampvXE5EUVr8tRT48aNQ3FxMXbv3g0g0DDo9ttvBwA0NDSIFbNKpRJnnnnmIZ8v+DV0t0lQf9u2bRsWLVok/rstKirCY4891uOfQ+dK3IH++omIiAYDhppEREREw1zn+Ryvv/56zJs375CO2TkUtdls0Ov1Xe7XucIzmliD0mhNfDq/9qeeempAVhEGX2fnJkKH4txzz8UjjzwCAFixYoUYan7yySfw+XwAgDlz5iA5OfmQz2UwGMSKVqfTecjH6yu1tbW47rrrxGrK+Ph4PPPMMzAYDD0+ZufKzEM5FhEREQXwI0IiIiKiYS4tLU1SgVZdXX3Ix8zLy5Msx9rx+eDBg1GfD77Ozs10wvH7/VGH16elpUmWe+O194Xg66ysrIzptQPAW2+9he+++w779+8Pu88ZZ5wBpVIpHnfnzp0AAvNptjvvvPMO5dJFwXOLRhuufzi1tbXhuuuuE+dIVSqVeOqpp5CTk3NIxw1+vSqViqEmERFRL2CoSURERDTMGY1GjBo1Slz+6aefYtrP4/Hg7rvvxj//+U+89dZbkuAyMzMTmZmZ4vKaNWu6PJ4gCFi/fn3UbYKHp7c3sYkmUpjX7ogjjpAEpbG+9r179+Luu+/G008/jf9v7+5ja77iOI5/iBrVpHqrHuJ6WqPXNEKkaQiGZS2GtUHWdeiKKhIPZdo/JDrpMk0pQcOW0m0hSj2WzLZkVq52jcfwB0ETqtWKkEvTSV3Vuvuj2S+9u9rr4bZ19f366/f73XPPOb/2D/HpOeebn5+vR48evdL33lTjauf/VVt35+7du0pNTdXChQs1efJk3bp1y6VNYGCgPv74Y+P+5MmTqq6uNn4PJpNJ48eP98AbSP379zeu792755E+PcnhcCg5OVnXrl0znq1Zs0ajRo16674bv2+/fv3Yfg4AgAfwrykAAAA0YcIE47qgoMCp2nZTjh07psOHD+vHH39UamqqS2g2efJk4/rIkSNut5YXFhaqoqKi2TaNV/vV1NS4DcdOnDjR7Ocmk8kpMNy7d+8rrYLMzs7W4cOHtW3bNq1Zs8alWrmnDR061GkL+MGDB91+p/G7m0wmhYSEvLRd45WYf/31l6xWq3HW6Oeffy4fH583nbaT4OBg4/r/VeffBZs3b9aff/5p3MfExGj27Nke6bvx+3744Yce6RMAgPaOUBMAAACaM2eOEV7V1dUpKSmp2RCyoqJCmZmZxn2fPn00ceJEpzZxcXFGnzabTampqU2GfzabTevWrXM7T4vF4rSycs+ePU22vXHjhnJyctz2OX/+fOO6tLRU3333XbPndRYUFOj48ePGfWRkpEfOnGxOp06dFBsba9wfPXpUZ86cabJ9ZWWl07vPmjWrydWB48ePl8lkkiRdv35de/fuNT5rXCH9bY0cOdK4vnnzpnFm57vg6NGjys7ONu5Hjx6ttWvXeqz/q1evGtdhYWEe6xcAgPaMUBMAAADq1auXkpKSjPurV6/qiy++UFFRkVPAV19fr+PHj+urr77S48ePjecpKSkulcv79Omj1atXG/cnTpzQ4sWLXVaBnjt3TrGxsaqsrHQ7zx49ejiFYz///LOys7NVW1trPLPb7dq3b59iY2Nlt9uNMyObEhkZ6bRSNS8vT4sWLXI5B/TJkyf64YcftHz5cuNn4uvrq1WrVrmdtyfEx8dr4MCBkhq2Si9dulS//PKLS9Gd4uJizZ07V9XV1ZKkoKAgJSQkNNmvj4+Ppk2bZtxfvnxZUkN19CFDhnhs/uHh4UYgbbfbdePGDY/1/TYuXrzoFGAOHjxYWVlZHluhWlVV5bRSc/To0R7pFwCA9o7q5wAAAJAkJSQkqLS0VIcOHZIk3bp1SwsWLFBgYKAGDRqk2tpalZWVuRTeSUxM1GefffbSPuPj43X79m3l5eVJkqxWq86cOaPBgwcrICBAFRUVRpjZuXNn+fv76+HDh83Oc9WqVYqLi1N9fb0cDoc2bdqknTt3Kjg4WM+fP1dpaalx3ubQoUM1YsQI5ebmNtlfhw4dtGHDBs2bN884T9Fqtcpqtap///7q3bu3qqqqVF5e7hQg+vj4KDMz0+msyJbk5+enbdu2ad68ebLZbHr27JnS09O1detWhYSE6IMPPlBZWZnu379vfKdr167asmWLSzX6/5s5c6Z2797t9GzGjBkenX/37t0VFhamCxcuSJKKiooUGhrq0THexNKlS52OHDCbzUpLS9PTp09VV1enurq6ZlfuSlJycnKTAXBxcbHx/X79+slisXhu8gAAtGOEmgAAADB8//33slgsysrKMlb62Ww22Ww2l7Z+fn5KTk7Wl19+2WyfaWlpMpvN2r59u+x2uxwOh0pKSpzadO/eXRkZGcrJyXEbaoaFhWnz5s1au3atMcfq6mpjheF/JkyYoPT0dP30009u39vf31+5ublav369Dh06ZGyNLi8vf2lF9gEDBmj9+vWtvpXYYrHowIEDSklJMYr51NTU6MqVKy5tBw4cqMzMTA0bNsxtv0OGDNFHH31kVD/v3Lmz0+pNT4mKijJCzdOnT2vRokUeH+N1NV5xLEmnTp167T4SExOb/MxqtRrX0dHRTscnAACAN0eoCQAAACdxcXGKjo5Wfn6+/v77b5WUlOjRo0d68eKF/P39ZbFYNG7cOEVFRSkgIOCV+kxMTNTUqVN14MABnT59WpWVlaqvr5fZbFZERIRmz56twMDAVzoDU2ooQhQeHq68vDydOnVKZWVlqqmpUVBQkIYNG6bo6GiXMz7d6dKli9LS0rRgwQIdO3ZMZ8+eVXl5uaqqqtSpUyf16NFDoaGhioiIUGRkpMt2+9ZiNpuVm5urwsJC/fHHH7p06ZIePnyoZ8+eKSAgQKGhoZo0aZKmTp36WnOMiIgwQs1PPvnEqSiTp0yZMkUZGRn6559/dPnyZVVWVqpv374eH+ddYbfbdfLkSUkN56J6evUrAADtWQeHu70UAAAAQCuZO3euzp8/L6lhW/CyZcvaeEbtR0JCggoLCyVJOTk5Gjt2bIuMs3HjRu3atUuSlJSUpCVLlrTIOO+CX3/9Vd98840kafr06U7FtQAAwNuhUBAAAADQzj148EDFxcWSGs59HDNmTIuNFR8fr65du0qS9u/fr7q6uhYbq63t2bNHktSxY8dmt6gDAIDXR6gJAAAAtHP79+83zhGNjY1t0XMfg4KCFB8fL0m6f/++fv/99xYbqy1duXLFOOs0OjpaISEhbTshAADeM4SaAAAAQDtWUFCgnTt3SmoomBQTE9PiYyYkJKhnz56SpB07dhiB6vskKytLkuTr66sVK1a08WwAAHj/EGoCAAAA7chvv/2m6dOn6+uvv9akSZO0ZMkS1dbWSpJSUlLk5+fX4nPw8/PTt99+K0m6ffu28vPzW3zM1nThwgUVFRVJklauXKnevXu38YwAAHj/EGoCAAAA7YjZbFZJSYnOnj2rO3fuGM9jYmI0a9asVpvHp59+qqioKEnSli1b9OTJk1YbuyW9ePFC6enpkqTw8HDNmTOnjWcEAMD7iVATAAAAaEcGDRqk4cOHy9fXV926ddPw4cOVkZGhtLS0Vp/LunXrFBwcrAcPHhjbtb3dvn37dO3aNZlMJmVmZqpjR/7LBQBAS+jgcDgcbT0JAAAAAAAAAHhV/NkQAAAAAAAAgFch1AQAAAAAAADgVQg1AQAAAAAAAHgVQk0AAAAAAAAAXoVQEwAAAAAAAIBXIdQEAAAAAAAA4FUINQEAAAAAAAB4FUJNAAAAAAAAAF6FUBMAAAAAAACAVyHUBAAAAAAAAOBVCDUBAAAAAAAAeBVCTQAAAAAAAABehVATAAAAAAAAgFf5F6BQcLNwXqc9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, 3, 5)\n", + "deadtime = 2.5e-3\n", + "bintime = 2 * deadtime\n", + "\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 5 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lc(lc_dt, 2, norm='leahy', silent=True)\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It will.\n", + "\n", + "## Reproduce Zhang+95 power spectrum? (extra check)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4000it [00:00, 6396.64it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAARHCAYAAAAMUaZ5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1gUV9sG8HtpSlGxiwW7aOy992hssSWaqLEmbzTGxMRujDUmajQaW9TYY++F2BvYwQJiA6QX6b2z7fuDjwnDLrDALsvC/buuXJk5O3PmWdxZ2GfPOY9EqVQqQURERERERERERKQjRvoOgIiIiIiIiIiIiEo2JiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinWISkoiIiIiIiIiIiHSKSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCKiEmHr1q2ws7ODnZ0dJk6cqJU+Fy1aJPS5aNEirfSpC+/evcOxY8dyfHzixInC89i6dWsRRkbasGDBAq2+rklzunhfMRT9+vUTnvvZs2e10uf79++xZ8+eHB83lPdcUm/z5s2ws7NDv379CnT+o0ePMG/ePHz44Ydo1aoV2rVrhyFDhmDJkiV4+vSplqMlIiJ9YBKSiIjIQKWkpGD9+vUYNWoUXrx4oe9wSAdu3ryJCxcu6DsMokKRyWTYs2cPhg4dCkdHR32HQzrg5uaG3bt3F+jcxMREfPvtt5gyZQrs7e0RGBiItLQ0JCUlwdvbG6dPn8aECRMwf/58JCQkaDlyIiIqSib6DoCIiIgK5rfffsPJkyf1HQbpiJubG+bPn6/vMIgKbc+ePdi0aZO+wyAdCQwMxMyZMyGVSvN9blpaGqZNmyb6Is3S0hJNmjSBXC6Hp6cnUlNTAQAXL15ESEgI9u3bBzMzM63FT0RERYcjIYmIiAxUQT7wkWFwdnbGtGnTkJycrO9QiAqN71Ull6enJyZMmICIiIgCnb9u3TohASmRSPD999/j4cOHOH78OE6dOoV79+5h0qRJwvFPnjzBH3/8oZXYiYio6HEkJBERUQ7Wrl2LtWvX6juMQjt06JC+Q6B82Lt3LzZu3AiZTKbvUIiKVEl5zy0tLly4gOXLlyMlJaVA53t5eeH48ePC/ty5c/G///1PdEz58uWxZMkSlCtXDtu3bwcAHDlyBBMnTkTt2rULHjwREekFR0ISERERFQN+fn74+uuv8fvvvzMBSUTFVlhYGBYuXIgFCxYUOAEJZHxBJpfLAQANGjTAl19+meOxs2bNQpMmTQBkjKw9fPhwga9LRET6wyQkERERkR7JZDKsXr0aw4YNExXtaNu2LcaNG6fHyIiIxHbs2IFBgwbh/PnzQluDBg0wY8aMfPWjUChw7do1YX/06NEwMsr5o6mRkRHGjh0r7Gc9l4iIDAenYxMRUYmVmJiIo0eP4tq1awgICIBMJkO1atXQsWNHDBs2DF26dMn1/EWLFuHcuXMAgFGjRqlMEzx79iwWL14MAJg2bRoWLlwIhUKBq1ev4tKlS3j79i0iIyNhbm6O2rVro0+fPvj8889RtWrVQj0vOzs7lbZz584JsQKAh4eHsD1x4kQ4OzsDyBhN8t1334nO3bp1K7Zt2wYAWLFiBcaNG4fk5GTY29vD3t4efn5+iI+PR5UqVdC0aVN89tln6N27t6gPX19fHD9+HPfv38f79+8BALVr10avXr0wZcoUjZ9zdHQ0zp49i3v37sHX1xcxMTGwsLBAtWrV0LlzZwwfPhytWrXSqC9DkZycLJoyb2Jigi+//BKzZs3Crl27dHbdvF7f2QUFBaF///7C/q1bt3KcDhkdHY0LFy7g3r178PT0RGxsLMzMzFCxYkXY2dmhW7duGD58OMqXL5/rNfv164fg4GAAQK1atXD79u38PMVceXt748SJE3j06BGCgoIAADY2NujTpw/Gjx9foKme6enpuHTpEu7cuYPXr18jKioKEokEVapUQevWrTFw4EAMGDAAEolE4z7d3Nxw69YtPH36FO/fv0dsbCxkMhnKly+P6tWro127dhg8eDDat2+vUX9KpRI3btyAvb09Xrx4gejoaJQrVw4NGzbE8OHDMWrUKJiamub7uauT9d8vk7Ozs+g9LOvrKD/vuf/73/8wb948SKVSXL16FefPn4eXlxeio6NRuXJlNGjQAJ988gkGDRoEY2NjoY+wsDCcOHECt27dQnBwMKRSKWrUqIFu3bph2rRpqFOnjkbPLSkpCefPn4ejoyPevXuHqKgomJmZoWrVqujQoQMGDx6Mbt265f+HVszt3btXtFbtmDFjsGjRIly/fj1f/bi7uyMmJkbY79GjR57ndO/eXdh+//493N3d0bRp03xdN1Nevxezc3JyEq1NmfV3bHbv37/H2bNn8fjxY3h5eSExMRHm5uaoWLEimjdvju7du+Pjjz9GmTJlChQ7EZEhYxKSiIhKJDc3N8yePVtIiGXy8/ODn58fTp06hd69e2Pt2rWoVKmSVq4ZFBSEefPmwcXFRdSelpaG2NhYvHr1Cvv27cPy5csxcuRIrVxTF9zc3DBv3jz4+/uL2oODgxEcHIxbt25h7NixWLFiBYyNjXHw4EGsX79epfiEp6cnPD09cfbsWezatSvP5OGBAwewZcsWJCUlidrT09MRGxsLT09PHDp0CIMGDcIvv/ySZwIrL1kTGoWxZs0ajB49utD9AEC3bt2wcOHCAn+wLg4uXryIlStXIjExUdQulUqRlJSEoKAg3Lp1C5s3b8aCBQswZsyYIo1PJpNh48aNOHDggDAVNJO3tze8vb1x7NgxLFu2LF/93r9/H8uXLxcSmlkFBAQgICAA9vb2aN68OdatW4fGjRvn2l9gYCCWLl2KR48eqX08MjISkZGReP36NQ4dOoS+fftiw4YNsLKyyrXPOXPmwM3NTdQeHR2N6OhoPHnyBEeOHMHWrVs1eMb65+fnhzlz5uD169ei9pCQEISEhODBgwewt7fHxo0bYWFhgcuXL2Pp0qUqr83M3wvnzp3Dn3/+iT59+uR63YsXL2Lt2rWIiooStaelpSEhIQE+Pj44efIkunTpgnXr1qFGjRqFep7ZE2AFpUmyTVMtWrTAwoUL0alTpwKd7+7uLmybmprmeT8AQP369VG2bFmhWvbLly+L3Xvlvn37sGnTJqSnp4vapVIp4uPj4e/vj8uXL2Pz5s1YuXIl+vXrp6dIiYj0g0lIIiIqcYKDg/Hll18iPj4eAFCxYkU0bNgQKSkp8PDwENbbc3R0xMSJE3Ho0KFCJyKjo6MxdepUBAQEAMhYTL9Ro0ZQKpXw9vYWYklOTsbixYtRvXp1dO3atUDXyhwx4unpifDwcABAtWrVhPWyCsPDwwMbNmwQPqTb2NigTp06iIuLg6enJ5RKJQDg5MmTaNy4MaRSKX7//XcAQJkyZdC0aVMYGxvD09NT6CM6Ohrfffcdrly5AgsLC5VrKpVKLFmyBGfOnBG1161bFzVq1EBycjI8PT2RlpYGALh69SrevXuHgwcPFnpUaXFgZGSEvn37YurUqejcubO+wymUa9euYcGCBcLrxMjICA0aNEDlypWRlpaGoKAgREZGAgDi4+Px888/w8TEBKNGjSqS+JRKJebNm4crV66I2hs1aoRKlSohJCQEgYGBwn3arFkzjfo9ffo0li1bJkpqVqlSBfXq1YNcLoevry9iY2MBAK9fv8bnn3+OXbt2oUOHDmr78/b2xsSJE0VJrnLlyqFBgwawtLREcnIyfHx8hPcVALhz5w7mzJmDv//+W22fAQEBGD9+vKiKsYWFBZo0aQIjIyO8e/cOCQkJcHd3x5QpU1S+DCiIjh07on79+kISFgAqVKiAli1bCseULVu2QH2HhoZi0qRJCAsLA/Dfzzs1NRXu7u7C+/ydO3ewefNmtGnTBnPmzIFSqYSpqSmaNGkCCwsLeHl5CSPyUlJSMGfOHFy+fDnHxOG2bdtUkrQ1a9ZE7dq1kZaWBm9vb+G97/HjxxgzZgwOHDiAhg0bFuh5FjedOnXC6NGj0b9//3yN6M3Oz89P2K5VqxZMTPL+WCqRSFCzZk34+PgAgMoXZfq2f/9+rFu3Ttg3NTVFw4YNUbFiRSQkJCAoKEh4HwgPD8d3332HPXv2FPhvASIiQ8QkJBERlTiZ0/8yq2p+/PHHwnS86OhorF+/HmfPngWQUZ1zxYoV2LJlS6Gumbk+VuXKlbF48WIMGTJEuGZaWhoOHjyITZs2QaFQQKFQYOPGjTh16lSBrrV3714A4qmL3bt310pV2WPHjgEA6tWrh1WrVomSYu7u7vjqq6+EJMamTZuQkpICiUSCGTNm4OuvvxaSjMnJyVi3bp1Q+TQ0NBT29vb47LPPVK65e/duUQKyf//+mDdvHho0aCC0paSk4Pjx4/jzzz+RmpoKb29vzJkzBwcOHBBNtcyP6tWrazQFUJN+CsPKygo7d+4sdBz6JpPJ8MsvvwgJyL59++KXX34RJYqVSiVu376NZcuWCcnIDRs2YPDgwQVORuXHP//8I0pAdurUCatWrUL9+vWFNjc3NyxduhTu7u548+ZNnn0+ffoUy5cvFxKQjRs3xpIlS0SJBblcjjt37uDXX3/F+/fvkZiYiO+//x7nzp1Tef1kJuUzE5Dly5fHqlWrMGDAAFGiRqFQwMHBAb/88osw4tvR0REvX74UJfkyr//DDz8I966RkRG+/fZbfPnllzA3NweQMeL41KlTWL9+vcoU6oLKTMhkXfLBzs5OeA8rDHt7ewAZycfMEWWZawoGBwfj66+/hpeXF4CMasrHjh2DUqnEZ599hh9//BEVK1YEkPG8d+/eLfwOSEpKwtGjRzFnzhyVa166dEmUgGzfvj0WL14s+nmnp6fj33//xbp16xAbG4vw8HDMmjULp0+fhqWlZYGea4UKFbTyXmVra1voPv76669C9wFAlAyvVq2axudVqVJFSEJm7UPfYmJisHHjRmF/7NixWLBgAcqVKye0yWQy2NvbY+XKlUhJSYFMJsOaNWtw8eJFfYRMRKQXTEISEVGJZGFhgX/++UdlJFOlSpWwZs0aWFpaCuvwXbt2Dc+ePdN4TbWcVKhQAcePH1f5oFemTBl8/fXXSEhIEEYpubm5ISwsrNAJLF2wsbHB8ePHhQ/pmZo2bYoFCxZg/vz5ACCsC7Zo0SJMnTpVdKyFhQVWrFgBV1dXYdrdw4cPVZKQgYGB2Lx5s7D/xRdfYOnSpSoxmZubY+rUqWjRogWmTp0KqVQKZ2dnnD17tsDTebt37y5aY4wKx8XFRUgKVKxYEVu2bIGZmZnoGIlEgv79+6Ny5crCayEyMhJPnz5Vm2TR5hqQiYmJ2L59u7DfuXNn7NmzRyXGVq1a4ciRI/jiiy/w9u3bXPtUKBRYsmSJMOquVatWOHjwoMqIX2NjY3z44Ydo1aoVxo0bh6CgIERFRWHDhg1Yv3696FhnZ2fRkg4bNmxQWYMVyEgk9uvXDzVr1sSIESOE9vv376skIe3t7UVTlletWqVy35iZmWHChAlo2LAhpk2bpjJVvTiysLDA8ePHVdZxrFWrFlatWoXx48cDgLBUxMSJE/Hzzz+LjjUzM8O3336Lly9f4s6dOwAy3quyJyETExOxYsUKYb9///7YsmWLygg+MzMzjB49Gq1bt8a4ceMQFxcHHx8f7N69Gz/88EOBnmfTpk21krgtTjJHBAIQJerykvXYuLg4bYZUKI6OjsIUbDs7O6xatUplpGjmqG8zMzPh9eXh4QFfX1/RFyFERCUZq2MTEVGJNHv27FynUi5YsAC1atUS9jNHABbGlClTch1pkr3ScW4L2+vT999/r5KAzJR9Cl6tWrUwefJktcdKJBLR2mqZ0zGzOnjwoJDAqVOnDhYtWpRrbB07dhStjbZ///5cj6eik7k0AABUrVpVJbmXVZs2bTBo0CB89NFH+PLLL1GhQgWdx3f79m0haWFsbIxff/01xxitrKywZs2aPPu8deuWMK3U2NgY69atU7vkQKZq1aqJ1pq8fPmyMJ04U9Y1IJs3b642AZlV06ZNUa9ePWE/NDRU5ZgLFy4I2507d841cd+lSxd88cUXuV6zuMitkEz79u1Fy2xYWFhg9uzZOfaVteiSuveq06dPC9Pfy5Urh99++y3XKcQNGzYUXe/YsWPCWoYE0ZqJ+RkFnfWezb7uoj5lff+rWbNmrlPVP/roI3Tp0gVDhgzB9OnTCzWtnYjI0DAJSUREJY6FhUWeo+MyR6tkunv3rjCNtKAGDhyY6+M1a9YUJSgSEhIKdT1dkEgkuT4PS0tL0Qf7Xr16CVMg1ck60lPd871x44awPWzYMI2q8mYt6uPt7Y3AwMA8zyHdy/pv7enpmWdif/PmzdiyZQsWLFigMnJPFxwdHYXtrl275lkFuVmzZmjXrl2ux1y7dk3YbtOmjWgJgZz07NlTSPLLZDLcv39f9PgPP/wAV1dX2Nvbq4ySzEmVKlWE7cy1UzMlJSXhyZMnwv7YsWPz7G/ChAkaXVffBg0alOvjWSucd+jQIdcRd1mnBKt7r8r6b923b19YW1vnGV/WpUBiY2Ph6uqa5zmlRdZCZrn9Dsku6/IbmV9gFQdZ3//u3buX6yhuExMTYYmWOXPmiL5EICIq6ZiEJCKiEqdt27Yarb2VtShEXFycsH5YQZiammqUgMha0Tl7NenioGbNmrlW1wXEo1bymkJWpkwZYVuhUIgeCw4OFo3a0rRwQ+PGjUUxPH/+XKPzSLfatGkjKuaxYsUKjBgxAlu3boWLi4veEwZZE3F5JRczdenSJdfHs772NH39GhkZoXnz5mr7yGRubo4mTZrk2aevry9OnTolSsRnn0b94sUL0XuNJstO1K1bFzY2Nnkep0/GxsZ5vv9o670qPT0dr169EvY1/bcuX768aHQ836v+kzWZmP3nnZusr29NvrQqKr179xbWV5XJZPjmm28wbtw4/P3333jz5k2hv+QkIiopuCYkERGVOJokAwHVD6UhISFo3Lhxga5Zvnx5jUZzFPSDV1GpXLlyvo7PK2GZ2zSz7FMe582bh3nz5uXr+gBUprOSfpiYmGDVqlX45ptvhESBu7s73N3dsW3bNlhZWaFjx47o2bMn+vTpI1oOQdeUSqVQCAeAxiOPGjVqlONjcrlcKAgDZFSMP3nyZL5jy+v1m56eDnd3d/j6+iIwMBCBgYHw9/fHu3fvhCrMWWVPdmSdJmpmZqZxcrFhw4YICQnR6Fh9sLa21qiicqbCvFeFhoaKpv5u2rQJmzZt0vjamfhe9Z+sCeLso3dzk/XYrIljfbO2tsbixYtFyy08f/4cz58/xx9//IGKFSuiS5cu6NmzJ3r37i0avUxEVJowCUlERCVO1tGGuck+Na8wi9wXRWXfopDfD3WFWctKW0UFCtrPgwcPsG/fvkJff9q0aSxw8/969+6Nffv2YcWKFfD19RU9lpiYiDt37uDOnTtYtWoVWrZsiS+++AIjRozQ+ZpoMTExohFUeSWkMuX2XhIXF6eV0U05vX49PT2xa9cu3Lp1CykpKbn2YWJikuNI08wq24DmzxtAkazTWRil6b3K3d1d46n5uRk+fLioiJE+ZZ3Ori6ZnpOsx2oyJb4offbZZ6hQoQJ+/fVXUfIfyHgPunLlCq5cuQIjIyN07NgRU6dORd++ffUULRGRfjAJSUREpVb2BEJJSSQWRlEukJ89adKxY8cCjWzJa22/nISFhamsx1cQQ4cOLXQfJUmXLl1w+fJlPHz4ENeuXYOjo6PaEWAvX77EwoULceHCBezYsUOn919Blz7IrbhO9tdvkyZNROsKakpdMasjR47g119/VVuh2tTUFLa2tsKalT169MDPP/8MZ2dntf3r4rkXB/p8r2rZsmWBkrS5jazNTVxcnFbeq9q0aVPoPrQl672SNVGel6wjmqtWrarVmLRh0KBB6NevHxwdHXHt2jXcv38fMTExomMUCgWcnJzg5OSEESNGYO3atflaF5OIyJAxCUlERCVOUlKSRsdlVjrNpOkIStKO7D/vpUuXws7OTk/RlG6ajOjLz5RJIyMj9OjRAz169AAAeHl5wcnJCY8fP8bDhw9Fo5kePnyIdevWYfny5fkPXEPZRz1nv/dzktsIrexJqLFjx2LixIn5Dy6bzJGimSwtLTFixAh06tQJdnZ2sLW1VZmGnNt6m1mfe0JCApRKpUYJvPyMTivpsr9XzZw5E/369dNTNCVD1iURgoKCNHpdKpVKBAcHq+2jMLT9/mdmZoYBAwZgwIABUCgUePv2LZycnPDo0SM4OzuLqqRfuHABTZo0wVdffVWg2ImIDA2TkEREVOIEBQVpdFz2QjR169bVRTiUg6zVRIGMNTmLMgk5evRoUYX00ibrB35NisZkH82TH40aNUKjRo0wYcIEpKen48aNG1i+fLlQhfj06dOYN2+eRgWlCsLCwgJVq1ZFREQEANV7PyfZ1y3NqkyZMrC2tkZsbCwAiNaHLIw//vhD2K5VqxaOHj0qKvijTm7TfLO+r0mlUgQEBGj0Xufv769BtKVD9erVIZFIhGRVUa+V2blzZ3h4eBTpNXUta3GmlJQU+Pr65rmes4+PjygZ2KxZM63Eosv3v8xCVM2bN8e0adOQnJyMc+fOYc2aNcIo5YMHDzIJSUSlBsd9ExFRifPixQuNRjY8fPhQ2Laxscnzgz5pV+PGjUWjtB4/fqzRedHR0Vi0aBG2bNmC06dPi0bGkOayVpbVZNTbu3fvcn386dOnOHnyJNatWwcnJ6ccjzMzM8PQoUNFIx/T09NzTfhpQ9aK2Jq+1p49e5br423bthW2c3vO2f32229Yv349jhw5Ajc3N6E9KChI9HP++uuv83xfSk5OFv3ssr/3tW7dWlQQ69GjR3nGFxsbCx8fnzyPKy2srKxERcs0ff1IpVL89NNP2LRpE06cOKFx8rs0aNy4MSpVqiTsa/K6fPDggbBdsWLFQn1plXW5gcK+/8nlcjx69AhHjhzB6tWr4enpmeOxFhYWmDBhAmbNmiW0hYeHazw6m4jI0DEJSUREJU5ERATu3LmT6zHx8fE4d+6csP/hhx/qOiytK8o10XTByMgIvXr1EvbPnTun0QexQ4cO4dy5c9i+fTuWLFlSqBF6pVnFihWFbW9v7zyPv3TpUq6P//bbb1i6dCn27dunUZXo7JXosyZFdeGjjz4Stl1dXfHixYtcjw8NDYWDg0Oux/Tp00fYfv36NZ48eZJnHI8ePcLBgwexZ88erFq1Ck+fPhUeyxypmUmTNe+OHj0qWvcx+6iucuXKoWvXrsL+kSNH8hz5derUKY1Gh2nK0N+rAPG/9e3btxEYGJjnORcuXMCZM2ewc+dOLFu2TKP7rLSQSCQYMGCAsH/y5EkoFIocj1coFKL3lY8++qhQr6usRW3ySg5LpVJcv349x8eNjIzw448/YtWqVTh06FCe75WAeH1QiUSSr0rvRESGjElIIiIqkVasWCFawD4ruVyOpUuXCskrY2NjTJo0qSjD04qsRVzys15VcTJt2jRhOzY2FgsWLEB6enqOx798+RJ79+4V9lu1aoUWLVroNMaSqmnTpsJ2YGBgrgm3EydO5Jlgy1rl9dq1a3Bxccn1+CtXrgjbFhYWagu0aNOAAQNQv359YX/x4sU5JrDT09OxePHiPIu6jBw5UjSaa+HChWqL8GSKi4sTjQC1sLAQVSvOXu03r2IkTk5O2Lx5s6hNXczTp08Xtj09PbFp06Yc+/Tw8MBff/2V63XzqyS8V33xxRdColwmk+GHH37IdQRdUFAQNmzYIOzb2NiwEnI248ePFxKJ7u7u2L59e47Hbt68WRiNaGRkVOj1V7NO5XZ2ds51uvvWrVtzXZ5AIpGIktTHjh3LczmDq1evCtt169aFhYWFBlETERk+JiGJiKhECgsLw9ixY1WmeAUGBmLGjBmiDwAzZ87UeQJEF7ImLFxdXXNdF664atGiBcaPHy/s37lzBxMnTlQZpZaeno4jR45g6tSpQhLD2NgYixcvLtJ4S5KePXuKPvjOnz8ft2/fFh0TERGBtWvXComz3EbrfP7550J/UqkUM2fOxNWrV1UqPCcnJ2Pnzp34+++/hbYJEyaorcbcr18/2NnZwc7OrtCFQMzMzLB69Woh6eHt7Y3x48eLRiICGevOffnll6LlGnJStmxZLF26VNgPDg7GmDFjcPnyZZWRhA4ODvj8889FyYmZM2eicuXKwn79+vVRq1YtYf/YsWPYu3evSmI+KCgI69evx9SpU1UeS05OVomzU6dOGDNmjLC/Z88eLF68WFSVWKFQ4PLly5g0aZLaPgoj+6gzTdftLU6qV6+OH374Qdh/9eoVxo4di/v374umwMvlcly8eBHjx48XJbkXLFhQ7CuOF7WmTZti1KhRwv62bdvw22+/CWvFAhnFlH799Vfs3LlTaPvss88KXGk804cffihUpFYqlZg+fbrKe0FgYCAWLFiAXbt2AYBoWYPspkyZIjweFxcnvIdkXx4hNjYWq1evhr29vehcIqLSguO+iYioxOnVqxeePHmC4OBgTJkyBTVr1kTt2rURFxcHT09P0YeCQYMGYebMmXqMtuCaNGkibL9//x5DhgxB48aNkZCQgH379qlU7y2uFi9ejMDAQNy7dw9ARkJ17NixqFGjBmxtbZGYmAg/Pz9RYkQikeDnn38WrfNH+WNlZYXp06cLo+Li4+PxzTffoEaNGqhTpw5iY2Ph5+cnjKwbO3YsPDw8cpzGXLVqVSxbtgyLFi0CkLF25+zZs1G+fHk0bNgQ5ubmiIuLg7e3t6g6bJs2bYrsHuzQoQMWLVqEtWvXQqlUwsfHBxMmTEDt2rVRq1YtREdHi9Z+++ijj3Dt2rVc+xwyZAh8fHywdetWABlfgPz444/C8wYyirxER0eLzhs2bJjaYhRz5szB3LlzAWQkR37//Xfs2LEDtra2MDc3R1hYmFBNOFPNmjWFwjjZp3RnWrRoEfz8/IQRrWfPnsXFixdhZ2cHS0tL+Pj4CKPHq1SpAltbWzx//jzX566prGv3JSUlYdSoUfjggw+QkpKC1atXi97LirOvvvoKvr6+OH36NICMRPaXX36JypUro379+khPT4e/v7/KF0Jff/01hgwZoo+Qi70lS5bA09MTr169ApBRpOXkyZPCa8bDwwMpKSnC8S1bthTeYwqjXr16+PTTT4Up3iEhIZgwYQLq1KkDGxsbREREwN/fX5gi/sMPP+Dw4cM5zrBo2rQpZs6cKbwPBAYGYurUqahUqRLq168PMzMzxMTEwNvbWzRa+cMPP8TYsWML/XyIiAwFk5BERFTifPDBB5g0aRLmzZuH2NhYvH//XqVyrampKaZNm4YffvhBGA1haAYMGIAPPvgAb968AQBERkYKH5Dc3d3RuXNnfYanMTMzM+zatQtbtmzB/v37hZGOoaGhCA0NVTm+atWqWL58uWg9MSqYGTNmIDk5GXv27BFGLGb/uRsZGWHatGmYM2cOxo0bl2t/o0aNgkQiwa+//iqs7xkfH692arZEIsHIkSPx008/FelUxClTpqB69epYsmQJkpKSAGSMLMw6Os/Y2Bjff/89PvjggzyTkAAwa9YsNGjQAL/99puQBMzpeZuZmWH69OmYOXOm2jXthg0bhvDwcPzxxx/CaMqEhAS8fv1a5dgKFSpgwYIFqFq1Kr7++msAGSM5o6OjRdPEgYyk8759+7B06VKcP38eQMa04uz92tjYYOvWrdi3b1+ez1tTrVq1Qt++fYW1euPj44XiLq9evTKYJCQA/Prrr7Czs8PWrVuF13hUVJRoVGkmKysrzJ8/H59//nlRh2kwrKyscODAASxYsEAYiZ2SkgJXV1eVY/v27Yv169ejbNmyWrn2smXLIJPJcPbsWaEtMDBQtN6nmZkZ5syZg6lTp+Lw4cO59jdr1iyULVsWW7ZsEX6PRUdHq3wBAWT8DfLFF19gzpw5uY6wJCIqaZiEJCKiEqlnz56wt7fH4cOHcfv2bQQHB0MikaBmzZro2bMnxo4dK1ofzhCZmpri0KFD2L59O27fvo2wsDDIZDJUrVrV4KZmGxsb48cff8SECRNw/vx5PHz4ED4+PoiNjQUAVKpUCc2aNUPfvn0xdOhQWFpa6jfgEmTOnDkYNmwYTp06hYcPHwoJ+xo1aqBr164YM2aMaP20vIwcORK9e/eGvb09Hjx4AE9PT8TGxkIqlcLa2ho2Njbo1q0bBg8eLFqXsigNHjwYnTt3xtGjR+Hg4AAfHx9IpVJUq1YNnTp1wvjx49GyZUvcvXtX4z6HDBmCfv36wd7eHvfu3cPr168RHR0NqVQqjIrs2rUrRo8enWfF62nTpqFXr144duwYnJ2dERwcjNTUVFhYWKBy5cqws7ND586dMWLECFhZWSElJQWWlpZISkqCQqHA2bNn1Y6yNDMzw7p16/D555/j5MmTePLkCUJDQ1G2bFnUqVMHAwcOxPjx43UyinrLli3YvXs3rly5guDgYEilUlSsWFHrU7+LwqRJkzBy5EicP39eeI1HR0dDoVCgQoUKsLOzQ8+ePTFixAhRAShSr1y5ctixYwcePXqEixcv4unTp4iMjIRcLkeVKlXQtm1bjBo1Cj169NDqdU1NTbFmzRqMHTsWZ8+ehZOTE8LDw2FiYgIbGxv07t0bY8aMQd26dTXu86uvvsKwYcNw4cIFPH78GF5eXoiPj4dcLkflypVRq1Yt9OzZE0OHDjXIZWCIiApLosy+UAURERERUTERGRmJ7t27o2nTprhw4YK+wyEiIiKiAjLM+WdEREREVCpkjsysVq2aniMhIiIiosJgEpKIiIiIiq3MKrLanopJREREREWLa0ISERERUbGjUCiwf/9+HDp0CNWrV8eIESP0HRIRERERFQJHQhIRERFRsWNkZISHDx+iZs2a2LFjB6ytrfUdEhEREREVAgvTEBEREVGxFBUVBXNzc1hYWOg7FCIiIiIqJCYhiYiIiIiIiIiISKc4HZuIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinTPQdABVPz549E+0bGTFfTURERERERERUGikUCtF++/bt890Hk5CkkewvNiIiIiIiIiIiIk1xeBsRERERERERERHpFEdCkkZKwnTsrKM5S8LzIdIn3k9E2sF7iUh7eD8RaQfvJSLtKGn3kjZmyDIJSWoZGRkJLzAjIyO0bdtWzxEVjkwmw4sXL4T9li1bwsSEL3+iguD9RKQdvJeItIf3E5F28F4i0o6SeC+5uLiI8kQFYfipWCIiIiIiIiIiIirWmIQkIiIiIiIiIiIinWISkoiIiIiIiIiIiHSKSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikTfQdARERERERkKJRKJRQKhb7DINIJuVyusi+RSPQUDZHh0ve9ZGRkVCzvXSYhiYiIiIiIciGTyRAXF4e4uDikpaXpOxwinVEqlaJ9b2/vYpnIICruisO9ZGJiAisrK5QvXx4WFhbF4l5mEpKIiIiIiCgHsbGxCA0NVflASVRSmZgwTUCkDfq+l2QyGWJjYxEbGwtTU1PY2trCzMxMrzFxTUgiIiIiIiI1kpKSEBISwgQklRoSiQQmJibCf8Vh5BSRISpu95JUKkVAQADS09P1Gge/4iAiIiIiIspGJpMhKChI2Dc2Noa1tTXKly9fLD5QEumCUqlEcnKysF9cpnASGRp930tyuRzJycmIj49HUlISgP8SkQ0bNtTbfc0kJBERERERUTZJSUlCARqJRII6derA3Nxcz1ER6ZZSqYSxsbGwb2xszCQkUQHo+14yNjaGmZkZrK2tER0djbCwMAAZicjk5GRYWloWWSxZcTo2ERERERFRNomJicJ2hQoVmIAkIiKDVKlSJVHSMSEhQW+xMAlJRERERESUTeb0NQB6GzFCRESkDeXLlxe2mYQkIiIiIiIqJpRKJeRyubBftmxZPUZDRERUOBYWFsK2TCbTW8E1JiGJiIiIiIiyyFwLMlPWdb2IiIgMTfbfY9l/zxUVJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinWISkoiIiIiIiIgMnlQq1XcIRJQLE30HQERERERERKRLPj4+OHXqFJ48eYLAwEAkJibC0tISNjY26NixI8aOHYsmTZpo1FdKSgpOnTqFGzduwNPTE0lJSahYsSIaNmyIIUOGYOTIkTAzMzP4vs6fPw8HBwe8e/euUH0VBYVCgRMnTuDhw4fYunWrRuds3rwZf/31F6pVq4Z79+7pOEIiApiEJCIiIiIiohJKKpVi/fr1+Oeff6BUKkWPxcXFIS4uDu7u7jh8+DDGjx+PRYsW5Zpc8/DwwLfffovAwEBRe3h4OMLDw/Ho0SMcPHgQGzduhJ2dXa6xFde+3r17h7lz5yIoKKjQfRWFsLAwfPPNN3j9+jU6deqk8Xl37twBAPTp00dHkRFRdkxCEhERERERUYm0YMECXL58Wdi3s7NDt27dULFiRURHR+Phw4fw9PSEUqnEkSNHEBkZiT///BNGRqorlwUGBmLSpEmIjY0FAFSpUgUDBw5EtWrVEBgYiBs3biA+Ph5eXl748ssvceLECdSqVUttXMW1r6CgIEyfPl0rfRUVPz8/vH79Ol/nhIWF4e3btwCYhCQqSkxCEhERERERUYlz4cIFIQFpamqK1atXY+TIkSrHnTp1CsuXL4dcLse1a9dw5swZjBkzRuW4xYsXC8m5nj174s8//4SVlZXw+Ny5c/Hdd9/h2bNniIiIwPLly7Fnzx61sRXXvhYtWiT01a1bN2zZsgXlypUrUF/FWeYoyDJlyqBbt256joao9GBhGiIiIiIiIipxsibH5s+frzYBCQBjxozBDz/8oPa8TPfv38eTJ08AAJUrV8bmzZtFib7M9l27dqFq1aoAgHv37uHp06cG1Vdme6VKlfD7778XuK/izsHBAQDQuXNnmJub6zcYolKESUgiIiIiIiIqUfz9/eHp6QkAsLKywrhx43I9fsKECTA1NQWQMb33/fv3osdPnz4tbE+ePBmWlpZq+ylXrhy+/PJLYf/cuXMqxxhCX+PHj4eFhUWB+yrO0tLS8PjxYwCcik1U1JiEJCIiIiIiohLF3d1d2G7WrFmelZwtLS1RpUoVYT88PFzYVigUePDggbCfV+Iq6+M3b94UFcQxlL569uxZ4L4K6smTJ/j5558xaNAgtG7dGi1atECvXr3wzTff4PLly1AoFKLjt27dCjs7O0yaNEloc3Z2hp2dHezs7DBx4kS113n06BFSUlJUnkdWDg4OmD9/PgYMGIDWrVujdevW6N27N7766ivs378fcXFxhX6+RKUR14QkIlLjyPMgXHgVinqVLDC/T0NUtSqj75CIiIiISEMffvghHB0dER4eDolEkufx6enpiI6OFvazjij09/dHfHy80J5XRej69evD2toasbGxiI2NhY+PDxo2bGhQfTVu3LjAfeVXREQEFi1ahPv376s8FhYWhrCwMNy+fRv79+/Htm3bUL169QJdJ9Pt27cBAE2aNFEpqhMfH4/Zs2fj4cOHKueFhoYiNDQU9+7dw7Zt2/DLL79gyJAhhYqFqLRhEpKIKJtDzwIx+ZirsO/oHQWn2bl/G0xERERExYexsTFq1KiBGjVqaHS8g4MD0tLSAADm5uaoU6eO8Jivr6+wXbt2bY36q1mzplDgxc/PT0jQGUJfNWvWLFRf+RETE4Px48cjICBAaOvYsSPatWsHU1NTeHp64tatW5DL5XBzc8OkSZNw5swZWFlZoXv37rCwsEBAQACOHz8OAKhTp44w9d7GxkbtNR0dHQGoHwU5d+5cIQFZoUIF9O3bF7a2tgCA4OBg3Lx5E3FxcUhMTMTcuXNRq1YttG7dOt/Pm6i0YhKSiCibvU4Bov0ngbEIjE1BHev8L1qdKpXjaVAsGla2hE35stoKkYiIiIoZqVyBVTc8cfltGJLT5foOp1ixMDPGkGbVsWxAE5gaF78VwdLT07F582Zhv3fv3ihb9r+/2yIiIoTtnBJb2VWvXh1v3rxROd8Q+tJ0pGFOfeXHihUrhARkpUqVsGXLFnTs2FF0jIeHB6ZOnYqoqCj4+flh+/btWLhwIdq1a4d27drByclJSELa2NiI1qvM7u3btwgNDQWgmoR0dXXF3bt3AWSM9Dx69CgqVaokOuann37CjBkz8OTJEygUCuzYsQM7d+4s0HMnKo2YhCQiyuauT7RKW0KqLN/9uIcnoO+ORwhLyPhW/c8RzfF9zwaFjo+IiIiKn5XXPfHbrXf6DqPYcgnOmOr7y6Cmeo5E1erVq+Hl5QUgYwTlrFmzRI8nJCQI25pWUs6axMx6fmnoS1N+fn64evUqgIyf+44dO9CmTRuV4+zs7PD7778LycWTJ09izpw5QiGh/Lhz5w4AwNraGm3bthU95urqKmx//vnnKglIIKPI0Zo1a/Dhhx8CAN68eQO5XA5jY+N8x0JUGhW/r6GIiEqI3+94CwlIAPjpsjvSZBwZQUREVBI5B8ToO4Riz8m/+P2MNm/ejBMnTgj733zzjcp6iOnp6cJ21sRbbrIel/X80tCXpm7cuCFs9+vXT20CMlOPHj3QqVMndO3aFUOHDi1wYRgHBwcAQK9evWBkJE6HZE0kPn/+PMc+6tSpgwsXLsDJyQl3795lApIoHzgSkohIRw48CRTtJ0vlCI5LRYPKljmcQURERIaqk21F3HwXqe8wirXOdSvqOwSBUqnE+vXrsXfvXqGtX79+KqMgAagkq/Ira2Gc0tCXpu7duyds9+vXL8/jDx06lO9rZBUVFYWXL18CUL8eZKdOnYTta9euYdKkSRgzZgy6d++uMiqyadPiN6KXyBAwCUlERERERFRIywc2gUQCrgmpRtY1IYuD9PR0LFmyBBcvXhTaevbsiT///FNtMs3CwkLYzixek5fU1FRhu0yZMqWqL02FhIQI202a6P614eDgAIVCARMTE/TsqVp00s7ODp9++ilOnz4NAHBycoKTkxMkEgmaNm2Krl27omfPnujQoQPMzMx0Hi9RScQkJBERERERUSGZGhvhl0FNi+Wah/SfqKgofPvtt3BxcRHaBg0ahPXr1+eYWMqaoEtJSdHoOlkTdOXLlzeovrIeU5C+NBUZ+d/I4QoVKuT7/PzKnIrdrl27HONdsWIFqlSpgn379glTzJVKJd6+fYu3b99i3759sLS0RP/+/TFt2jQ0a9ZM53ETlSRcE5KIiIiIiIhKvDdv3uDTTz8VJSAnTZqETZs25TqyLWu16PDwcI2uFRYWJmxXrVq1VPWlKZks/4UfCyo9PR0PHjwAoH4qdiZTU1P8+OOPcHR0xPLly9GrVy+VQj1JSUm4ePEiRo8ejT179ugybKIShyMhiYiIiIiIqES7desW5s6dK4wYNDY2xpIlSzBhwoQ8z806VTg4OFij62U9rn79+gbVV9Zp0gXpS1MVKlRAREQEACAuLg516tTJdx+aevLkCZKSkgDknoTMVKlSJYwfPx7jx49Heno63Nzc4OTkhHv37sHV1RVKpRIKhQLr169H27Zt0b59e53FTlSScCQkEVExc90jHC3W30HlpVfx7dmXkMkV+g6JiIiIyGCdOXMGs2bNEhKQVlZW2Llzp0YJSCBjlKC1tTUAIDY2Fn5+frke7+PjI1RvrlChAmxtbQ2qr7i4OAQEBBS4L01lTTp6eXnlefz58+exZMkS7Ny5E+7u7vm61p07dwAAtra2aNiwYb7ONTMzQ4cOHfDtt9/i+PHj+Pfff2FjYyM8fuHChXz1R1SaMQlJRFSMJKfLMOrAE7wJS0RMihQ7Hvph5yN/fYdFREREZJAyE1cKRcaXujVr1sSxY8fQq1evfPWTtXrz7du3cz02M+EFAD169FApdmMIfTk6OhaqL01kHT149+7dPI8/d+4cTp8+jU2bNsHf/7+/jzW5duZ6kL1791b7uFKpxJIlSzBmzBh06NAh19GgjRo1wuTJk4V9TUeOEhGTkERExcrz4DikSMUjH/966KefYIiIiIgM2OvXr7F06VIolUoAQMOGDXH8+PECVWIePny4sL1v3z7Ex8erPS4+Ph779+8X9j/99FOD7OvQoUNISEgocF+aGDFihJBAvH79Ojw9PXM81t3dHc7OzgAyiuh0795deMzI6L+0hlyuWpney8sLgYGBAIC+ffuq7V8ikcDHxwdubm5ISEjIc3RjVFSUsF2jRo1cjyWi/zAJSURUQAExyRj092NUX34NY/95itgUaaH7TJcpVdrcwxML3S8RERFRaSKTyTBnzhyhwnH16tWxf/9+UQGW/OjatSu6du0KAIiIiMD06dNFiSggIzE1Y8YMYZ3Djh07olu3bgbZV2RkJGbPnl3gvjTRuHFjDB48GAAglUoxY8YMtdOs/f39MXv2bGE06xdffAErKyvh8azboaGhKonIzFGblpaW6NixY47xfPbZZ8L2tm3bcO3aNbXHPX/+HIcPHxb2M58DEeWNhWmIiApo0jEX3PWJBgCcdguBuakxDo5rq+eoiIiIiOjChQuiNRJbt26Nf//9V+PzhwwZIlr3DwBWrVqFMWPGIDY2Fs+fP8egQYPw0UcfoVatWnj//j2uXr0qjES0trbGmjVrcuy/uPa1cuVKjBkzBnFxcXB1dcXgwYML3JcmVq1aBXd3d/j4+CA4OBijR49Gz5490aJFCxgbG8PDwwO3b98WksmtWrXCrFmzRH3UqlULEokESqUSwcHBmDlzJtq3bw9zc3NMnDhRmIrdvXv3XKugDx8+HKdPn8aTJ08glUrx/fffo3nz5mjdujVq1KiBlJQUvH79Gg8ePBASnYMHDy5wEpaoNGISkoioABQKpZCAzHToWRCTkERERETFwKlTp0T7169fx/Xr1zU+v0WLFipJSFtbWxw8eBCzZs1CYGAg4uPjVa4DALVr18b27dtzrfZcnPvatWsX5s2bh6CgoEL1pYly5crh2LFjmD9/Pu7evQu5XA4HBwchcZhV37598fvvv6NMmTIqfQwbNgz29vYAIJxvZWWF4cOHw8XFBUDeVbGNjIywY8cO/PDDD7h//z6AjCn9r1+/VjlWIpHg008/xbJlywrwrIlKLyYhiYgKQHXStGbu+0ajQWVLrcZCRERERGIeHh466bdp06a4dOkSTp06hevXr8PLywtxcXGwtLRE48aNMXDgQIwdOxbm5uYG21eTJk1w6tQpnDt3Do6OjoXqSxPW1tbYvXs3Hj16BHt7ezx79gzh4eGQyWSoUqUK2rZti08++US0DmR2v/32G+rVq4d///0XISEhUCqVsLa2xu3btyGXyyGRSHIsSpNVuXLlsHfvXty7dw+XLl3Cy5cvERISgtTUVJQvXx41atRA165dMXz4cDRr1kwrz5+oNJEoM1fpJcrCxcVFWHPDyMgIbdsa9ugumUyGFy9eCPutW7eGiQlz8KSe0Tx7te2Dm1bDnyOao3FVKzzwjUbP7Q9UjlFs+DjXfvo0rIzb3+Q8ZeP2u0h8uOtRrv3qG+8nIu3gvUSkPdq+n+RyuahIRpMmTWBsbFyoGIkMgVKpRHJysrBvYWFRoMrXRKVdcbuXtPF7TRt5IhamISLS0BX3cAzf5wylUol9TwIK1IeDd1TeBxERERERERGVMExCEhHlg0dEEkLi07DfOVDfoRAREREREREZDCYhiYjyKV2u0HcIRERERERERAaFSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiCifvCKT9B0CERERERERkUFhEpKIKJ8G/v24UOd3/PMurnmEaykaIiIiIiIiouKPSUgioiL2LCgOg3c7ISopXd+hEBERERERERUJJiGJqNRKTpdh7e13mHzMBYefBUGpVBa6zzSZXONj59m/LvT1iIiIiIiIiAyBib4DICLSl0nHXHD2ZSgA4NCzIMSmSDGrR/1C9VlhyVWMbW2DPWPb5HlsurzwSU8iIiIiIiIiQ8CRkERUKiWny4QEZKY9TgGF7jddrsDh58HY+cgvz2PNTY0LfT0iIiIiIiIiQ8AkJBGVSslS1WnTbiHxWuv/hwucak1ERERERESUiUlIIiIiIiIiIiIi0qlSvSakk5MTLl26BBcXF4SHhyMxMRFWVlawsbFBhw4dMHr0aHzwwQdav66vry/OnDmDp0+fIiAgAPHx8ShTpgyqVKmCNm3aYODAgejXrx8kEonWr01ERERERERERFTUSmUSMigoCAsXLsTTp09VHouNjUVsbCzevn2LQ4cOYejQoVi1ahWsrKwKfd3k5GSsWbMGp06dUqnCK5VKkZiYCD8/P5w/fx4ffPABNm3ahHr16hX6ukRERERERERERPpU6pKQfn5+GDduHKKjo4U2U1NTNGnSBOXKlUNUVBS8vLyEJOGlS5fg7e2NI0eOFCoRmZqaimnTpsHFxUXU3qBBA1StWhXJycnw8PBAeno6AODNmzf49NNPceTIEdjZ2RX4ukRERERERERERPpWqpKQcrkc3333nZCANDY2xjfffIOpU6eKEoxhYWHYuHEjzp8/DwBwd3fHkiVLsHnz5gJfe82aNaIE5KBBgzB//nzUrl1baEtJScGhQ4ewZcsWSKVSJCQk4JtvvsHly5dRtmzZAl+biIo3/+hklDExQo3yvM+JiIiIiIioZCpVhWnOnj0LT09PYX/t2rX47rvvVEY4Vq9eHevWrcPUqVOFtqtXr8LV1bVA1/X19cWpU6eE/bFjx2Lz5s2iBCQAmJub4+uvvxYlO4ODg/HPP/8U6LpEVLylyeT4eK8T6v92CzVX3cCM025QZFuqITu5Qokjz4Ow6NJbXPcIL6JIiYiIiIiIiAqnVCUhL1y4IGz36NEDw4cPz/X4OXPmoFq1asL+pUuXCnRde3t7yOVyAIC1tTUWL16c6/H9+/fHwIEDC31dIirezr4MwaW3/yUS/37sj2dBcbmeM/v8K0w86oLf73hh0G4n7HUK0HWYRERERERERIVWapKQ6enpeP78ubA/bNiwPM8xMzNDjx49hP2XL18W6NqPHz8Wtvv16wcLC4s8z+nfv7+w7e7uLqwVSUQlR4pUodJm/yY0x+NlcgV2PfYXte146KftsIiIiIiIiIi0rtQkIYODg1GmTBlhv2HDhhqdZ21tLWzHxMQU6NpRUVGFui6QUbWbiEq+h345v8+kyhSQK8TTtZ8H5z5ykoiIiIiIiKg4KDWFaerXrw8XFxckJCQgLCxMZT3GnAQHBwvbFSpUKNC1r127hrS0NISFhcHS0lKjc4KCgkT7Bb02EREREREREREBUqkUpqam+g6j1Co1SchM5cqVQ7ly5TQ6NjExEQ8ePBD2NR3FqE6ZMmVga2ur8fHXrl0TtmvVqiUaxUlEupOcLtN3CERERESkBXZ2doXuY9SoUVi7dq2wP3HiRDg7OwMA/vnnH3Tu3LnQ16CCSU9Px4ULF3D9+nW8ffsWsbGxKFu2LBo0aIBevXrhs88+Q9WqVfPsx9vbG0OGDMnXtU+fPo2WLVsWNPRS5ezZs0JdjOz3EwAsWrQI586dAwCsWbMGo0eP1lksV65cwaFDh3D06FGVx4KCgoRl8WrVqoXbt2/rLI7SrNQlIfNj7969SExMFPb79u1bJNd99OiR8IsNyFhHkoiKhtVPV/QdAhERERER5eLVq1eYPXu2ygxCqVSKFy9e4MWLF9izZw9+/PFHTJ48Oc++qGRLSkrCrFmz8PDhQ9SqVUvf4ZRqTELmwM3NDbt37xb269WrVyTJwNjYWPz888/CvqmpaZ5vmkVBJjPs0WGZ1clz2qfSRyYzrNeATCbL8T4s6vuT9xORdvBeItIebd9PcrkcSmXGOswSiQRKpVLYJ8Mxf/78fJ9z//59PHr0SNi3sbER/dtn3y5pr4vsz6c4Pj8XFxdMmTIFaWlpADLu0W7duqF169YwMjLCixcvcP/+faSkpOC3335DcHCwMBJPndevXwvbo0eP1mgGZI0aNYrlz6Y4yuueKYp7Kjo6Gg8fPsz1GtqOo7jdS5nXz/y/TCbTS0xMQqoRFBSEmTNnQiqVCm2LFi2CiYluf1zp6en4/vvvRd/mTJw4EXXq1NHpdfOiUCjw4sULvcagbfy2i2LTDOvD/osXL5Csppp25mP6xPuJSDt4LxFpj7buJxMTE5iYmCA5ORnGxsZa6ZOKzrhx4/J1/LNnz7B582Zhv02bNpg8eTKSk5OFNoXiv7/H0tLSRI+VRCkpKfoOQSQpKQnfffedkICsVq0a1q9frzI1+uXLl5g7dy4iIyNx8OBBNG7cOMcp125ubsL2pEmTNF5GraT/22tLenq6sC2Xy1V+bsuWLcOyZcuEfV38XFNTU4VtpVKp9hqVKlXC8+fPdRaHvu8luVwOhUIhDG7R19+dpaY6tqZCQkIwefJkRERECG1TpkzR+VTs9PR0zJo1C05OTkJb69atMWfOHJ1el6i0Ck40rCQkEREREelOYGAg5s2bJyRMqlatit9//50FLHSoXbt2aNeuHYYOHarxOcePH0dkZCQAwMLCAjt27FC7NmPLli3x559/Cl8e/Pnnn6JEVCaFQgEPDw8AGfUj9D0AiKikYxIyC29vb4wbN040ErFHjx6YN2+eTq+bmJiIr7/+Go6OjkJbzZo1sXXrVv7SI9KBoAQZplyP1HcYRERERFQMJCcn48cff0RcXByAjCWx1q9fjypVqug5Msru1q1bwvaECRNQv379HI/94IMPhEIjkZGRcHBwUDnG399fGPHWrFkzSCQS7QZMRCKcjv3/nj9/jpkzZyImJkZo69KlC7Zt26bTRGB4eDhmzJghWoeiRo0aOHDgAKpXr66z6+aHkZGRwVf+ksvlouHGLVq04JSaUuzfW14AwvUdRr60bt0aiWky4HSo2seKEu8nIu3gvUSkPdq+n+RyOby9vQFkrDdnYWHB+7MEW7x4MXx8fIT9n3/+GV26dFF7rJHRf+N4ypQpAwsLC1y/fh0XL16Em5sbYmJiYG1tjbp162Lo0KEYOXIkzM3N84zh1atXuHr1Kp4+fYr3798jLi4OEokE5cqVQ/369dGlSxeMGTMmx2rPW7duxfbt2wEAp06dQsuWLfHixQucPn0azs7OCA8Ph7GxMWrXro2ePXviiy++UPt5U6lUiqaNJiQk4OjRo7h79y78/f0hl8tRo0YN9OjRA5MmTULdunWxfPlynDhxAgBw8ODBfFcMz7zH8iKVSoVRiwAwfPjwPM/r3bs3rl+/DgB4/PixSuXlrP/urVu31iiOwsj673TkyBG0b98ed+/exdGjR/H69WvExsaifPnyaN68OYYPH44hQ4aIXnNZnT17Fj/99BOAjJGeffv2xbZt23DhwgXEx8ejevXq6NixI77//ntUq1ZNdG5oaChOnjyJBw8eIDAwEAkJCShfvjzq16+Pnj174rPPPoO1tbVGz8nBwQFnz56Fq6srYmJiUL58eTRr1gxjx47FwIEDYWZmJhxrbGys8jNetGgRzp8/DwD47bffcq2O/fbtW5w9exZOTk4ICgqCVCpFhQoVYGdnh48++ggjR44UXS/rzyhTSEgI2rVrByBj8FdmFeygoCB8+OGHKu3qJCYm4ty5c3B0dISHhwdiY2Nhbm6O6tWro1OnThg5ciRatGghupfMzc2FJHf2f7tBgwbBy8tL+DcJDQ2FUqlEjRo10L17d4wbNw4NGjTIMR5NyOVyGBkZwdTUFKampmjYsGG+f6+9fPlStCRFQTAJCcDe3h4//fSTaK2C3r17Y8uWLShbtqzOruvu7o7p06cjNPS/pEKdOnWwf//+YjcMXNfrYRY1Y2PjEvecSHN7nAP1HUK+mZiYwCSHGeT6fi3zfiLSDt5LRNpT2PtJIpGIRkRl36eSY8+ePbh27ZqwP3bsWHz++ec5Hp/1dRAfH4/JkyeLltQCgIiICERERODp06c4cuQI/vrrL9StW1dtf/Hx8Vi4cGGOCY/U1FRERETA2dkZf//9N1avXo2PP/4417gAYO3atTh48KBK4Ql3d3e4u7vj8OHDWLt2LQYNGpTjc3V0dMSSJUtU1sbz9/eHv78/Tp8+jaVLl6rEkd97RdNz4uLiRM+nXr16eZ5Xo0YNYfvVq1cqx2cdDNSiRQtIJBIEBgbCzc0N0dHRsLS0RL169dC6dWutfBGR/forV67EsWPHRG1RUVG4e/cu7t69iyNHjmDHjh2oWLFirn1JJBLMmzcPN27cENr8/f0RERGBn3/+WXTsrl27sH37dmFdzazXjYqKwtOnT7F79278/PPPGDVqVI7PJSUlBXPmzFF57UZFReH+/fu4f/8++vfvj169eonizP4z0OS9NikpCStWrMDFixdVHouMjERkZCQePHiAffv2Ydu2bWjcuLFK3+pkvZ6m7/mXL1/GypUrERsbK2qXSqWIj4/Hu3fvcOTIEQwdOhSLFy8Wkq65XWvfvn3YtGmTqC4JkJEk9/HxwbFjx7Bw4UJMmjQp1+eT13PN+n8TExO9fLlW6v/S3bp1K7Zt2yZqGz58ONasWaPTDwK3b9/G3LlzRW/ozZo1w+7du3P8douItEOuYCU7IiIiotLu8ePH2Lhxo7Dfpk0blaRabhYtWoSkpCRIJBJ0794dLVq0gKmpKV68eIF79+5BqVTCy8sLP/zwA06ePKkyw04qlWLy5Ml48+YNAMDMzAw9e/ZEkyZNYGFhgYSEBLx69QqPHz+GQqFAamoqFi1ahKZNmwpJFnU2btwoVPhu27YtOnXqhDJlysDb2xs3b95EWloaUlJSMG/ePNjZ2amd0nz9+nUsWbJEqDRfvXp1DBgwAFWqVEFwcDBu3LiB2NhYLF26FDY2Nhr/zAqjIDMUsyba3r9/r/J41iRkVFQUxo4dq7boY8WKFfHVV19h8uTJWpspuXXrVjx+/BgA0KRJE/Tu3Rtly5bFy5cvcffuXSgUCri4uGDcuHE4efIkypcvn2Nf586dUzvdvF+/fqKRuMuWLRNGrQIZU9a7dOkCa2trREVF4cGDB/Dy8kJiYiIWLVqEmJgYTJs2TaXf9PR0TJo0SSjqk3kPtGnTBgqFAs+ePYOTkxNu3bqFZ8+eFfRHBCDj33DatGlwdXUV2po3b44uXbrA0tISvr6+uH79OtLS0uDn54eJEyfi/PnzqFGjBlq2bIkFCxYgPj4eO3fuBABUqFAB06dPB5CxDmh+HDt2DCtWrBD2K1asiL59+8LW1hZJSUl4+vQpXFxcAACXLl2Cl5cX9uzZA0tLyxz7PH78uHC/Nm3aFN26dUP58uUREBCA69evIzExETKZDL/++iuaNGmS4yhtQ1Fqk5BSqRRLlizBhQsXRO3Tp0/Hjz/+qNNvOo8cOYLVq1eLhrH26NEDmzdvhpWVlc6uS0SGq84vNxCfKtN3GERERJQTqRRYtQq4dAlg1VwxCwtg6FBg2TKgmKx5Hxoaijlz5ghJtqpVq2LLli2iqZx5SUpKQr169bB582Y0bdpU9JiDgwNmzpwJuVyON2/ewMHBAQMGDBAd888//wgJyBo1auDgwYOoV6+eynXevn2LadOmITo6GjKZDCdOnMDPP/+cY1yPHj1CxYoVsWnTJnTt2lX0mI+PD6ZMmYKwsDBIpVL8888/WL58ueiYmJgYrFmzRvjZfPLJJ1i2bJloluD8+fOxcOFC3LlzR21yTxcqVKgAc3NzYYqrt7c3mjVrlus5Xl5ewnZqaioSEhKExJNSqRR+/gCwatWqHPuJiYnB+vXr4ejoiG3btqFChQqFeSoAMpLgEokE8+fPx7Rp00Q5iOfPn+Obb75BbGwsfH19sWnTJpV/p6wcHBxgZGSE2bNnY8yYMTAxMcHjx49F07BPnTolJCDLlSuHtWvXCtOPMymVSpw+fRorV66EVCrFhg0b0Lp1a7Rv31503N69e4UEZIUKFbBt2zZ06tRJdMz9+/cxe/ZslRGD+bV582YhAWlhYYE1a9aojOB9//49pk6dCj8/P8TExOC3337Dli1b0LhxYzRu3BhBQUFCEtLKygpffvllvuNwdXUVvUZGjx6NJUuWqORwHB0dMW/ePMTHx8PDwwMrV67E77//nmO/jx49QpkyZbB27VqVCu4//vgjvvzyS3h6egIA9u3bxySkIUpPT8d3330n+qbAxMQEK1aswJgxY3R67R07duDPP/8UtY0ZMwYrVqzgFCwiylFwnGo1PyIiIipGVq4Efv1V31EUX/8/Ogi//KLfOJDxefD7779HVFQUgIwRdps3b873mvzm5ubYs2eP2qW0+vTpg48//lhY687Z2VklCXnmzBlhe8mSJWoTkEDGjLlp06Zhw4YNADLWZcvLunXrVBKQANCgQQN8//33WLJkCQDg4cOHKsfs2bNHKNLTvXt3/PrrryqDdCpUqICtW7fi888/F63Hmt3du3fx7t27XGNNTEzE3r171T7WuHFjYTqvRCJBx44dcffuXQDAiRMnRKPSslMoFCrTd1NTU4UkpK+vL5KSkoTHTE1NMX78eIwcORJ169aFUqmEu7s7Tpw4IfTj7OyM7777Dvv27dPK5/dZs2apTYi1a9cO27Ztw8SJE6FUKnH8+HFMmzYt12XbvvnmG8yYMUPY/+ijj4Tt9PR0bN68WdjfvHkzunfvrtKHRCLBmDFjkJCQgHXr1kEul2Pz5s34559/hGMSExOxa9cuYX/9+vUqCUggY6DVxo0b8fXXX+fyE8hdUlISDh8+LOyrS0ACGWs4/vXXXxg2bBgUCgVu3LiB8PBwlbUwC+OPP/4QBpINGDAAa9asUXtc7969sWPHDkyaNAlyuRw3b96Em5tbrsnDRYsWqSQgAaBatWr46aefMGXKFAAQRkXntE6oISh1WS+ZTIbvv/9elIC0tLTEli1b0KNHD51e+++//1ZJQP7444+iNwoiIiIiIjJA2dYFJDX+f+qpvq1evVo05fann35SGemlicGDB+eaFOrWrZuQhMw+WlAul+Orr75CcHAwIiIihCrOOck60jIhISHXY+vWrYvevXvn+HjWZEh4uLhYo1KpFK0rOHfu3BxnCZqammL+/PmYPHlyjte6fPkyzp07l2u8cXFxOY4UGzVqlGhNwc8//1yUhOzUqZPa5A0AbNiwQTQSEsjIB2TKOhXb0tIS+/fvVyn42KFDB3To0AHdunXDokWLAABOTk44ceIEJkyYkOvzykvVqlWFacHqdOzYEb169YKjoyMUCgVu3ryJqVOnqj1WIpHgiy++yLGvmzdvIiIiAkDGFH11CcisJk2ahB07diA+Ph5OTk4IDQ0V1te8d++eMBq1VatWub7WevfujY4dO+LJkye5Xi8njo6OwpT6Dz74INc1TBs2bIghQ4YgLCwMdevWRUJCgtaSkCEhIXB2dgaQUZwq87WQkw4dOmDIkCGwt7cHkFGIJqckpIWFBT799NMc+2rfvj1MTU0hlUqRlpaG2NhYVKpUqYDPRP9KXRJy/fr1uHPnjrBfqVIl7NmzB82bN9fpdW/evIk//vhD2Dc2Nsbq1atzrfxEREREREQGonNn4OZNfUdRvBWDaYRnz54VrYn3ySefYPz48QXqK7PCbk6yrvWfdcQdkPF5UNPPgunp6fDz8xP2sybS1MmeSMuucuXKwnZqqni2zatXrxAZGQkAsLGxwQcffJBrX126dEGlSpUQHR2d63Ha0r9/f/Tt2xd37tyBQqHAnDlz8PjxY4wdOxaNGjWCXC7H69evsW/fPty5cweVKlVCamqqUIsh63T7QYMGoXXr1ggKCoK1tXWuz3XUqFF4+vQpTp8+DSBjOnJhk5CDBw/Oc33JAQMGwNHREUDGqNKckpD169fPNTGVtXiSJrkPExMTtGrVCvfv3wcAPH36FMOGDQOQkYTM1KdPnzz7GjhwYIGTkFmv1a9fvzyPz5pz0abMNRuBjMRr7dq18zxn6NChQhLy6dOnOR7XrFmzXJeBMDMzQ7ly5YR7LHtBIUNTqpKQjo6OOHjwoLBfoUIF/PPPP7ku6qsNYWFhwnB3IONbinXr1qmtakZERERERAZo+XJAIuGakOpkXRNSj968eSOavtuqVatcp/PmJWsyT52slWcz11fMTWJiInx8fBAYGIjAwED4+/vD09MTHh4eoqq52SteZ1elSpVcH89aqCRrnQIgo6JypkaNGuUZM5AxSlPdtG4go0r32rVr1T5mZ2cHAKhVq1aO1cHV2bBhA7755hs4OztDqVTixIkTosRyJmtra+zatUtUWCXrupampqawtbWFra2tRtedOHGikIQMDg6Gt7c3GjZsqHHc2bVo0SLPY7LmKnJbezO3EbmAeG3Mw4cPi6Y4ayLrtYODg4VtTV4j2ddLzY+QkBBhu0mTJgXup7ACAgKEbU2fT9b1SkNCQiCXy9VO4c/rfgVyv2cNTalJQsrlcvz666/CG7ZEIsEff/xR6ATkxIkThWG5AODh4aFyzJ9//ilajHX69OlMQBIRERERlSSmphnrHRaDNQ9JVWxsLGbNmiWMIqpcuTK2bt2ar0I02eVW8VZTqampOH78OM6dOwcPD48cE4zGxsYaJTKBjOmdBZU5ZReAxsVXKlasWODrFYSVlRX27duHffv2Ye/evcL6lZnMzMwwaNAgLFy4EJUqVUJiYiKAjJ9LYf7N7OzsRIVxAgICCpWE1CT5lPXfIOu/TXa5Vc4GUOjiMDExMcJ25lqqmlwXKNzrI7/X0pWsPz9Nn0/W45RKJeLi4tR+cZHf+zWvLyGKu1KThLx69aroWx1zc3McOHAABw4c0LiPKlWqYN26dfm6bkhIiMpiuK6urvmuxrRu3TqN3qSIiIiIiIjoPwqFAnPnzhVGcJmYmGDz5s3CGnf6EhgYiK+++ko01RrIGDBTo0YNNGzYEM2bNxfWqyxMgQ9NZR1xqWnSUx9JEVNTU0yfPh1Tp07F8+fPERAQAJlMBhsbG7Rt2xbW1tYAMipoZ8ZX2H9viUSCcuXKCUnIzORmQWUdKZuTrKPeckuY51UkJ+sU/kGDBqFVq1YaRPifwixfV5hEf9bXoz4V5DWefcRiTmurljalKgmZVXJysrC+gaZq1aqV7+vevHlTZc2OxwVYkDn7Wh1ERERERESUt82bN4s++y1atAgdO3bUY0QZyZWZM2cKCchKlSph8uTJ6Nq1Kxo3bqwyOipzXUBdyzryLq8COJni4+N1FU6ezMzM0KVLlxyLfri5uQnbOU2jTUtLg7GxsUbVrrMmHgs7Mk+TJGbWEXhZ1xjNr6z/rm3atMlxbUlNVK1aVah4rskIy8K8PrLGrc/XWWZSGxCPCs1N1uOMjIxgZWWl7bAMkuHW9c4nHx+fUnVdIiIiIiKi0u7WrVvYtWuXsD9q1ChMnDhRjxFluHXrFjw9PQFkTMc8efIkZsyYgdatW6udnpl1WqouRx5mXa4se2XpnGQ+j6KgVCoRExMDLy8vjZKkt27dErY7dOggeuyTTz5B27Zt0apVKzg4OOTZV2BgoFDgBkChl3bT5Ofr7u4ubNetW7fA18q67qWm/15xcXFqR8NmLcqSNb6ceHt7a3Q9dbKudanJz+vevXtYtGgRtm3blmsxmPyqV6+esK3JcwYy1qDNVKNGjTyLEJUWpWYk5KVLl3TS76FDh3J9fPny5Vi+fLlOrk1ERERERETq+fv7Y+HChULSrnnz5li5cqWeo8rw/PlzYbt79+55FhbJWp1Xl4UpWrRoAUtLSyQlJSE0NBTu7u6iAhvZvXr1CuHh4TqLJ7tff/1V+Ay+bNmyXCtUh4aGCiNIjY2N8eGHH4oeL1eunJBUvH37tsrj2WVdZq1BgwaoWbNmgZ5DJgcHB8yYMSPXY27cuCFs9+/fv8DX6ty5s1Cp2dHREWlpaShTpkyOx6enp2Po0KGIiYlB9erVsXLlSvTs2RNARpXqkydPAgCuX7+OH3/8MddrF2YUb/v27YW47969i2+//TbX469cuYJz584ByEjuZyaeCzsVOmsC283NDUFBQXlWyL58+bKw3aZNm0JdvyQpNSMhiYiIiIiIqHRITk7GrFmzhNFylSpVwrZt23JNvBSlrGvdRUdH53qsi4uLKKGRfbkvbTIzM8OQIUOE/c2bN+d6fF6Pa1vm+pgAcObMmVxHhf72229IT08HAAwePBjVq1cXPT548GBh297ePtdZjP7+/ti7d6+wP2nSpHzHnp2Liwvu3r2b4+MPHz4UlnIzNzcvVBLyo48+EoryREVFYceOHbkev2/fPkREREAmkyE6Olq0hmT37t2Fois+Pj5CQlKdt2/fihKpBYk7s6K5q6trrkvqRURE4MqVKwAyko5Zf175rVSfXZ06ddCpUycAGV8C5FTxPdPz589FSwJmvadKOyYhiYiIiIiIqET5+eefhWmnZmZm2L59e6FHrmlT1vUJnz9/LkoyZlIqlbh06RL+97//iRKPuq4XMG3aNCFhdefOHaxcuVJI5mWNYenSpbkm0fLi4eEBDw8P3L59W+Nz+vfvL6yN+Pr1a/zxxx8qSdmUlBT89NNPuHbtGoCMKubz5s1T6WvkyJHCFOf09HRMnz5d7dThly9fYvLkyUhKSgIAtGrVCmPHjtU45tzMnTtXNMo106NHjzB79mwhyfrDDz8Uag3K8uXLiwob7dy5E9u2bVMp/KJQKHDixAls3bpVaJs2bZpobUYzMzMsXLhQ2F+1ahXOnz+vcs03b95g+vTphSouU6lSJdHyCXPnzlVbYyMyMhKzZs0SRrYOGTJENH0963qM0dHRomn1mvrhhx+EZOaNGzewePFitet63r9/H998842Q7Ozbty+6deuW7+uVVKVmOjYREQAoFEqEJqTpOwwiIiIi0pFbt26JluNq06YNXFxc4OLiUqD+PvvsM60XlRg6dCi2bt2KiIgIKJVK/Pjjjzh+/LgwHTosLAz3798XVfSWy+VQKpVISEiATCbTqJBKQVSvXh2LFi3CsmXLoFQqcfToUdy5c0dIAIaFheHmzZsIDw+HsbExjIyMhESTkZFuxzmZmZlh+fLl+O6776BUKrF7927cuHEDPXr0QOXKlfH+/XvcuHFDKJhiamqKTZs2wcbGRqWvMmXKYOPGjZg0aRKSkpIQEBCA4cOHo2/fvvjggw8gk8nw4sULPHz4UJgCb2triy1btmhU2TovpqamiI+Px5QpU9C9e3e0bdsWQEZS+uHDh8JxPXv21MrIy+nTp+Ply5e4efMmlEoltm7dijNnzqBPnz6oXr06IiIi8PjxY9Hai506dcLMmTNV+ho1ahTu37+Pf//9F1KpFAsXLsSRI0fQrVs3mJmZ4dWrV3B0dIRcLkf9+vXh6+tb4Lhnz54NV1dXPHnyBLGxsZg8eTI6deqEdu3awcLCAj4+Prh+/bqQWLS1tcXPP/8s6sPKygrW1taIjY1Feno6vvzyS/Tt2xcymUzt81Onffv2WLBgAdasWQMAOHv2LO7cuYN+/fqhTp06SElJwZMnT0RLLdSrVw8rVqwo8HMviZiEJKJS5XcHzRbYJiIiIiLDFBcXJ9p3dnaGs7Nzgfv76KOPtJ6EtLKywo4dOzBjxgxERkYCAJycnODk5KRyrK2tLdasWYOffvoJ/v7+UCgUePPmjWiKrLYNHToUUqkUGzZsQHJyMkJCQnD48GHRMRYWFli7di3WrFmDkJAQABlJQl0bMGAA1qxZg5UrVyIlJQV+fn5ClfGsatasid9//z3XSugtWrTA4cOHMWfOHPj6+kImk+HGjRtqpxD36NEDv/32m8q07oKaNGkS3r17h7t37+LBgwd48OCByjETJ07E4sWLtZLclUgk2LJlCzZu3IiDBw9CKpXi/fv3OHr0qNrjR4wYgVWrVuWY7N6wYQOqV68uTFN3c3MTVSMHMr4AWLBgAcaPH1/guE1NTbF3714sX75cWO8xp3u6bdu2+PPPP1GpUiWVxz7//HPs3LkTQEaiNzNZOG7cOGF6eV6mTJmCKlWqYNWqVYiLi0NMTAzOnDmj9tgRI0Zg/vz5agtNlWZMQhJRqbLHKUDfIRARERERoWXLlrC3t8fRo0fh4OAAPz8/JCcno2zZsqhatSrs7OzQp08fDBs2DGZmZujVq5dQlOX8+fM6TUICGdOV+/Tpg+PHj8PR0RHv379Heno6bGxs0KtXL3z55ZeoUaOGqNhPUSVcRo0ahU6dOuHIkSN48OABAgICkJ6eDmtrazRt2hQfffQRhg8fLqwnmJsPPvgA9vb2uHz5Mq5fv45Xr14hOjoaJiYmqFatGtq1a4chQ4YIhVm0xdzcHLt378bFixdx+vRpeHh4ICkpCTVq1ECnTp0wbtw4tGzZUqvXNDY2xvz58zFu3DicOnUKjx8/RkBAAOLj41GmTBnUqlUL7dq1wyeffJLn60sikWDBggUYPHgwjh07BicnJ4SFhcHCwgINGjTAxx9/jM8++yzXtTY1VaZMGaxduxZffPEFzp49CycnJ4SGhiItLQ0VK1ZEy5YtMXz4cAwcODDHhO0PP/yAypUr4/Tp0wgMDIRUKkWVKlUQGhqqcRISAIYNG4Y+ffrg1KlTuHv3Lt69e4fY2FiYmJigdu3a6NChA0aPHo2WLVsWaNp3SSdR5raSK5VaLi4uwpBzIyMjYWi4ococSp+pdevWOpu+QMWb0Tx7nfRrIpehcex7VEmJR4KpOd5VrIkkM3OdXCs7xYaPi+Q6mXg/EWkH7yUi7dH2/SSXy4X1BAGgSZMmWpl+SVTcKZVKUeLEwsIiz8rCLVu2FNaMfPz4cb4SOqXN1q1bsW3bNgDArFmz8N133+k5ItKVgtxLuqSN32vayBPxL10iokJoG+aNOU/P42MfZ5RPTxHapUbGuFu7OXa0HoJzjbtAKWEdMCIiIiIq/v755x9UqlQJderUQdeuXXM91sfHR0hAVqxYkQlIIsoVk5BERAVgIU3FBsd9mPHiqtrHTRVy9A9wQ/8ANzy0aYqvPvoO7pXrFHGURERERET5c/nyZWHE1OnTp3OdEnzgwAFhu1OnTroOjYgMHIfmEBHlU62ESNw/tjDHBGR23ULc4XxkLkZ7Psz74AJQKLiqBhERERFpR+fOnYXt1atXIyYmRuUYuVyOPXv24MSJEwAypmZqo4IzEZVsHAlJRJQPtRIi4XDiJzSMC83XeVbSVJy0X4evB36LfS0HajWm5dc98Mugplrtk4iIiIhKp4kTJ+LixYuIi4uDq6sr+vTpg379+sHW1hampqYICwvDgwcPEBwcLJzzv//9Dx06dNBj1ERkCJiEJCLSULm0ZFw5s0JtAjLFxAynmnTH68q2qJUYjU89H6BmUrToGCMo8ff17Qi3sMa/DbU3XeXvR/5MQhIRERGRVlSpUgW7du3CggULEBAQgNTUVFy+fFntsWZmZli0aBEmTJhQxFESkSFiEpKISBNKJfZd24wWUQEqD92ybYWpH81GUPmqQtvCXpPx8+OTWOx0Ckb4b7q0EZQ4emkDen6+Fi+qNdBKaBFJ6Vrph4iIiIgIyKice+rUKTg4OODGjRt4+/YtoqKioFQqUaVKFdSqVQv9+vXDsGHDULVq1bw7JCICk5BERBqZ8NYBn7x7pNJ+pGlvTB00GzJj8dtpmokZlvb4Ak9qNMLxf9ejrFwqPGYlTYX9uV/QZtJmRJuX13nsRERERET5ZWpqihEjRmDkyJH6DqXE+O677/Ddd9/pOwwivWFhGiKiPNRIjMbmO7tV2q/Wa4spg39QSUBmdbFRF3wxZK5Ke+3EKGy7tUurcRIREREREREVV0xCElGJk5Aqw18P/LDkyls8DYwtXGdKJXbc/AuVUhNFzYFWVTB+6HzIjYzz7OJsk25Y1HOySvvnHvfwqcf9wsVHREREREREZACYhCSiEkWpVGLYXifMOvcSa255odPme7jvG1Xg/j70d8UIb2eV9q8HfovYslYa9/N7x9E40aSHSvtfN3eganJsgeMjIiIiIiIiMgRMQhJRieIZkYR7vuKq1CP3PylYZ0olfr1/SKV5X4sPca1++/z1JZHg2w9nIMSyoqi5SmoCVt8/XLD4iIiIiIiIiAwEk5BEVKKEJ6aptEUnS9UcmbfR7x6hY5iXqC2qbDnM7T2tQP1Fm5fH9AHfqrRPe3UTrcJ9C9QnERERERERkSFgEpKIShRjI4l2+lHI8csD1RGKazp/irh8TMPO7t+GnXDcrqf4WkoF/nDcCyiVBe6XiIiIiIiIqDhjEpKISoVuW+9j+wPNRxuOfvcIzaKDRG1BVpXxV+shhY5lUa/JSDExE7X1D3DDMJ8CThsnIiIirTIyEn9MksvleoqEiIio8LL/Hsv+e66oMAlJRKXCY/8YfHfulcbHz352UaVtZddxSDUtU+hYAspXw6b2I1TaVzw8ytGQRERExYBEIoGxsbGwn5qaqsdoiIiICic5OVnYNjExgUSinRmE+cUkJBFRNp1CPNAtxF3UFmhVBQeb99PaNdZ2+gShFtaitnbhPhwNSUREVExYWloK20lJSXqMhIiIqHDi4+OF7XLlyuktDiYhiYiyUTcKcnvboZAZm2jtGolmFljb+VOV9qWPjnM0JBERUTFgZfXfGtBxcXFISUnRYzREREQFEx0dLfoyTZ9JSO19oiYiKgFqJURijOcDUVuyiRl2txyo9WvtbvkRFjmdRo3kWKGtY5gXBvk9x9X67bV+PSIiItKcpaUljIyMoFAooFQqERgYCGtra5QvX16vU9mIdEmpVIrWjpPL5XytExWAvu8luVyO5ORkxMfHixKQpqamsLCwKLI4smMSkogoiy9f3oCJUiFq+6d5P8SYa//bohTTMtjQcRQ2OO4XtS90Ps0kJBERkZ6ZmJigdu3aCAgIAJDxgS4qKgpRUVF6joxItxSK//4W1lfxCqKSoLjdS6amprC1tdXrFwv6/ykQERUTEqUCk97cVmnf0vZjnV1zZ+vBCDevIGrrHfQabcK8tX6t4LgUfHLgCRqvuYWvT71AcrpM69cgIiIqSSwtLWFjY8ORYFRqKJVKyGQy4T8llwkiKpDidi9lJiDNzMz0GgeTkERE/69H8Bs0iAsTtd2v2Qzulevo7JrJpmWxve1QlfbZz1XXpcyNJr/Uxh1+jnOvQuEdlYw9TgGY/+/bfF2DiIioNLK2tkajRo1QrVo1lClTRt/hEOlc1sQJERWcvu8lExMTVKxYEba2tmjYsKHeE5AAp2MTEQmmvLql0naweX+dX3dn60FY7HQKZeVSoW2c+z0s6jUFYZYVNepj7D/PMMCuKqZ0qAMzE9Xvl9Jkctz3jRZf95Efto9uWbjgiYiISgETExNUrlwZlStXhlKpFE2xIypJZDIZXr16Jew3bNgQJiZMGxDll77vJSMjo2I5ip/vJkREACykqfjU86GoLdnEDKfsuuv82hEW1jjarDemvboptJkpZJjpehnLu0/QqI8zL0Nw5mUIHvhG4+C4tiqPyxWqIyU5u4aIiCj/JBIJjI2N9R0GkU5kn11jbGzM1ztRAfBeUo/TsYmIAIx+9wjlpCmitrONuyK+jGWRXH9zO9V1J796eR0m8vwN3T/0LAgpUnneBxIREREREREVISYhiahEkcoLNj1qrMc9lbaimIqd6WXV+rhl20rUZpMUg2E+T/Ld1+gDT7DuthdSmYwkIiIiIiKiYoJJSCIqUXY98s/3OeXTkjDQz1XU9t6yEu7UKdr1Ene2HqzS9j+3a/nu55pHBBZffouvTr7QRlhERSpNJse/b8Kw3zkAIfGp+g6HiIiIiIi0hElIIipRjru+z/c5w3yewEwhnvZ8tnFXKIyKds2Oiw07IcyigqjtIz8X1M1WsVtTR12CCzwylEgflEolRh94iuH7nPHlyRdo84cjvCKT9B0WERERERFpAZOQRFTqfZKtIA0AnGnSrcjjkBqb4kDzD0VtRlDiq5c3Ct4nk5BkQF6FJuCKe7iwH5GUjv1PAoT96x7hmHnGDevveCE+VaquCyIiIiIiKqaYhCSiUs0yPQWD/J6L2sLNK+BerQ/0Es+elgNU2qa+ugkjBdd3pJLvdWiCStvvd7wBABdehWLwHifsfOSPhZfeYuT+/K+XSkRERERE+sMkJBGVakN8n8Fcli5qO6eHqdiZvCvWxE3b1qK2mknR6Bv4Ui/xEOnCI79o9N/xEM1/v4Nfb3pCqVTmeKxckfHY7sf+yHqYg3cUguNScjiLiIiIiIiKGyYhiahUG/XukUrbaT1Mxc7qYPN+Km1fvLlToL4ykzYyRc5JHqKilCKVY/AeJ9zxjsLb8EQsveqBw8+D8jzvcpZp2plikjklm4iIiIjIUDAJSUSllrFCjo+yTcWOLmsFx9ot9BRRhnONuyLRtKyobfS7x7CQ5r9S8FenXkCpVOK6R4S2wiMqlMf+MYhPFReC+rsAVe2JiIiIiMiwMAlJRKVW1/fuqJgmrrx7pV57yIxN9BRRhmTTsjjXqIuorZw0BSO8nPLd1wnX93APT8Qxl2BthUdUKEnpquubPvCL0UMkRERERERUlJiEJKJSa4jvU5W2yw066CESVYc/6KvSNuGtQ4H6uucbjWhOWyUiIiIiIiI9YhKSiEqtIT7iJKQCElyr11ZP0Yjdtm2FEMuKoraBfi6olpT/EWOuwXHaCouIiIiIiIioQJiEJKJSqXZ8BFpFitehe2xjh2jz8nqKSExuZIxjTXuJ2kyUCnzucS/ffe185A9HnyhthUZkcPyjkxGXwtHARERERET6xCQkEZVKg/2eqbQVl6nYmQ6pmZL9xRuHog+EyEDFp0rR568HqP/bLVRedhWrb3rqOyQiIiIiolKLSUgiKpUG+6hJQtZvr4dIcvaian28qmwrausQ5oXG0dorMqNUKrXWF1Fxs/ORP+76RAMAFEpg2VUPBMWm6DkqIiIiIqLSiUlIIioRIpPS8Do0QaNjjRVy9A18KWp7b1kJrtUa6CK0gpNIcKRZH5XmT9491NolbnhGaK0vosKQyhVa73PRpbcqbQ9ZiZuIiIiISC+YhCQig7f6pieqr7iOlhscNDq+Q+g7VEhPFrXdqNsakEh0EF3hnLTrodL2qecDrfV/6FmQ1voiKox59m+K5DpGxe82JyIiIiIqFZiEJCKDFpaQhmVXPZCfWcX9A9xU2m7bttZiVNrja10Dz6o1FLW1C/dBg9gQrfTvFZmklX6ICmuPk3+OjyWkyrR2HasyJlrri0jb5Aoll8kgIiKiEotJSCIyaG4h8fk+p1/AC5W2W8U0CQkAZ5p0U2n7xFN7U7KJioMUac7TsS+9DSvCSIiKnlyhxHfnXqLi0iuwXX0ThzlKnYiIiEogJiGJyKDld8RIWWkaur13F7W5V6yF9+UqazMsrTrTWE0SUovrQhIVd0ef578YU3AcC9CQ4Tj8LAjbH/ghMU2O4LhUTD7ugtD4VH2HRURERKRVTEISUanS/f1blJVLRW13bFvpKRrNvKtUCy+q1hO1dQp9B9v4cP0ERFTEpIr8Fa15HhSL5usddBMMkQ7szrYcgVIJ3HwXqadoiIiIiHSDSUgiKlX6qVkPsjhPxc50ukl3lTZtFqghMmRpMjluvYvApTdhSEqTYdt9P8RrcR1JIl17FhSn0paYxtcwERERlSxcnZ2ISpXsSUgFJLhTp6WeotHc6cbd8cuDI6K2TzwfYmOHUXqKiKh4SJPJMWS3E+54RwEAPqhuhTdhiXqOioiIiIiIsuNISCIqNSzTU9A+zEvU5lKtAWLMy+kpIs15VK6NV5VtRW1dQzxQOz5CTxERFQ/3faOFBCQAJiCJiIiIiIopJiGJqNTo+t4dJkrx2nKOdVroKZr8U1cle7i3sx4iISo+rrjrbm3U5HQZ/n0ThrMvQxCfKs37BCIiIiIiyhGTkERUavQMfqPSdq9Wcz1EUjBnG3dVaRvu7aSHSIiKD4VSN/2mSOX4cNdjDN/njE8PPkWXLfcRlZSum4sREREREZUCTEISUbGXJpPD/nUo9jkH4H1caoH76aEmCXm/1geFCa1IvaxSD77lq4na+gS+Qvm0JD1FRFRyOXhF4rF/jLDvHp6I869C9RgREREREZFhYxKSiIo1pVKJ0QeeYsT+J/jq5Au02eiIdxH5X/PNTCZFlxAPUdubSnUQZVFeW6HqnkSCi406i5rMFDIM8n2up4CISq5/36pO8z7wJEAPkRARERERlQxMQhJRsfY6NEG05ltkUjr2PwnMdz/tw7xgLhNPpbxX23CmYme62LCTStvHXBeSSOuUStV53ulyHc39JiIiIiIqBZiEJKJiTV2l23V3vNQcmTu160HWNpyp2Jnu1WqOmDKWorYhvk9hIpfpKSIiIiqOYpLTMWq/Myr+fAV9/noA70gu3UFERET6xSQkERkcNQOU8tQj+LVKmyEVpckkMzbB5fodRG0V05LQU83zIyKi0uvHC69x4XUY4lJluOsTjS+OcukOIiIi0i8mIYmoxJMoFege/FbU5l+uKgLLV9VTRIVjr2ZK9ggvTskmIqL//PMsSLTvFBALqVyhp2iIiIiImIQkolKgaXQQKmarIG2IU7EzXa3fDulGJqK2j72dCjZElIiISg0Ff08QERGRHjEJSUQlXpf3Hiptj2o200Mk2hFfxhIOdVqI2urHh6NlpJ9+AiIiIiIiIiLKA5OQRGTQ0mR5Ty3rGqKahHxsY6eLcIqMuinZw1klmwxAeGKavkMgIjU8IxKx0dEbx12CkSqV6zscIiIiKoGYhCQig3bLKzLPYzpnS0Imm5jBrWo9HUVUNC427KzSNsj3mR4iIdKMZ0Qi9joF4KuTL/QdChFl8ywoFu033cU8+zcYf+Q5Pjn4FEpO3SYiIiItM8n7ECKi4quyhVmuj5dLS0bzyABR25MajSE3MtZlWDoXWL4qXlapi5aR/kJblxBPVExJQIx5OT1GRqTq0pswjDrwBDJFwZIa1zwitBwREWW1xykASen/jX684h4O76hkNKpiqceoiAxfZFIaJh9zhaN3FFrXLI8Dn7dB46pW+g6LiEhvOBKSiAyaRJL7451CPWEEceLDycCnYme6Wq+daN9YqcBAfxc9RUOUs42O3gVOQBKR7u165K/SFhSboodIiEqWH86/xhX3cCRL5XjkH4NJx/h3GhGVbkxCElGJ1kXNepCPbJoW2fW/7lJXZ31fbtBBpW0wp2RTMXTHO0on/aZIFTjrFqKTvotKqkzBaa9ERCXUUZdg0b5TQCxk8rzXMyciKqmYhCSiEk1dZWwnmyZFdv22tcrrrO8HNZsh3sxc1DbI9zkkSv5xS6XDx/ucEKCj0VppOv6QmJAqw8gDT9H7dCiGXAjDveBUnV6PiIiKB37tRESlGZOQRFRyKZUqIyH9yldDqFUlPQWkXTJjE1yv21bUVi0lDu3DvPUUEVHhvAyNz9fx4YnpOooE2O8cqLO+AeB3By9cdo+AQglEpiiw5GEM0mX8AoGIqLRQKpV4HhSLE67BeB/HL6KIqHRgEpKISqyGsSGonJogantkAOtBXv+6C2qWL6vRsVfqt1dpG+LzVNshERWJNbe89B0CABTJVLlNjj6i/RSZEp6RSTq/LhERFQ8rr3uiw5/3MO7wc9itu43H/jH6DomISOeYhCSiEqtDmGpC40kRTsUuqLKmRghaNgBHJ7TL89ir9VWP4bqQRDlzD09EteXXYDTPHiP2OeNdRKLKMUVRRCdZKldpU3BtSCKiUiFVKsfvd/77OzUpXY5NjpzJQkQlH5OQRFRidQhVTUI+rd5I4/P3jG1d6Bgikgo+XTSvyt8AEGJVGS5V64vaOoa+Q5XkuAJfl6gkm3PxNSL//760fxMGu3V3sObWO8g1SDw+CYxFmkw1eahOqpokIxEREZDx92FqtiU4Thl4oTUiIk0wCUlEJVa7cPE3ygpI4FKtgcbnT+tkixUDCzd9O6UIEhFXslXJNoISH/k91/l1ibILik3Bt2dfYvheZxx4ots1FbVpyRV3rL7pqdGxy66qFrvK6rF/DJqsvQ3Lny6j346HiEhM00aIRAYjLkWKf9+E4cX7OFZ+JyIiIhEmIYmoRJIoFWiXrUCLe6XaSMpWTVqbypUx0VnfubmsZl1ITsmmoqZUKvHR34+x46Ef/n0bhmknXHHkeZC+w9LYHqcAjY5b7+CN8AT1iUWlUokJR57DKzIJSiXg4B2FxZfdtRkmUbHmEZ6Ipr/fwfB9zmi78S7m2r/Rd0hUigTEJGPhv2/w1ckXcPCK1Hc4RESkBpOQRFQiNYoJQYX0ZFHbs+oNdXpNEyMN5k/rgJONHWLKWIraPvJzgZGC00Gp6LyLTMLbcPH6ins1TOwVB8H5qEx64XWo2vaYFCl8o8XvO/ucDednQFRY2x/6ISxLkn7zPR9EJnE0MOleqlSOPn89xHoHb+xzDsDAvx/jkV+0vsMiIqJsmIQkohKpvZqiNM9qaL4epCGRGxnjWj1xgZrKqQnoFPpOTxFRaZSUrpr0dvCO0kMkuvc0KFZtOwvLUGl2zSMc2+77itqUSsA/JkVPEVFpcs83Gn5ZXmsyhRL7DWhZECKi0oJJSCIqkdRVxn5WLf9JyA51KmgjHJ27omZK9hDfp3qIhIiISpt7PlEYusdJ32FQKRagJtnNkehERMUPk5BEVCJlXw9SLjGCa7X6ORyds76NquCD6lbaCktnrtZvp9I20M9FD5EQEVFps/9JIDQoME9ERESlHJOQRFTiSJQKlcrY7pVqFagojbmpMRxmdsPWUS0wvm0tbYWodREW1nhaXTzSs0OoFyonx+spIiIiKi0OPuW0VyJdCIpNgdv7eCiY5SeiEoJJSCIqcRrHvEf5dPG0nGfVC74eZBXLMvi2e30s6Fu815S8UbeNaN8ISvQPeJHrOZFJ6Xn2q1QqceR5EP536gW23feFVK4oTJhExZ5nRJK+QyAqdiKT0rD7sT92Zis+Y2jSZQqkSFm4jYo3pVKJORdfw3b1TbTZ6IjOW+4hOjnvv9mIiIo7JiGJqMRRux5kPpOQdazL5vu6nWytVdoqmpvlu5+Cyl6cBgAG+uc+Jds7KhntNzkiOC7nwgF/OPpg4lEX7HUKwPfnX+H7C28KHSuVHjIDTFqfeBGs7xCIipW4FCl6bHuA6afdMPPsS3Tdcg8RiYaXiPzt1jtUXnYVFX++ipln3CDn6DIqpnyikvHnXR9h/1lQHA6w0A4RlQBMQhJRidM+23qQAPCsesN89bGoX+N8X/fLTraifWMjCQbZVc13PwX1qKYdEk3FydMBfq4Z5Ulz4RIcjyWX3XN8/O/H/qL9vc6B/OBGGrviHq7vEPLtaWCsvkMgKlauuIeLRgj7xaTg/KtQPUaUfy9D4vHzFXckpcuRLldg5yN/XHxtWM+BCk6uUCJKg9kf+uYXnQwAeOgfrfJY1qQkEZGhYhKSiEqcdtlGQmYUpWmQrz6+6VYv39f9pJUNfv6wMWzKl0GzalY4NqEdbMrnf0RlQUmNTXGnTktRW53ESDSNDsrz3H+eBeU4Ys0rUnVqKnOQpKlDz/J+/RFR8abuy4QTru/1EEnBXVCTcOTIstLh9Iv3qLr8Gqouv4Y+fz0o1tOaf7r8FgCg7k+yoLjUIo6GSDvSZQpsdPTG5GMZM6uUeQyQoJKNSUgiKlEkSgXahYm/KX5bqTaSTXWfDJRIJFg1qCmClw3E6wV98Wnrmjq/ZnY36rZVactrSnamntsfICFVpu2QqJQz5LXjiChnhvYhMjZFqtLmE5Wsh0ioKKXJ5Jhy3FX497/rE42lVz00ev0qFEp4RyYV6VrYxw0suU+kiRln3DDP/g0OPctYY37tbdWls6j0YBKSiEqUJtHvUU6avShN/qZiG7Lr9dqotA300ywJ6RQQi3OvQrQcERFRyRSXIkVQbM7r6eqaQqGES3AcHLwikcpCK0RqeUcmIznb/bHjoR8arbkNJ/+YHM/zjEhEozW30HjtbVRdfg3XPAxvaRGi4kChUKqMOt+dbaknKl2YhCSiEqVduLr1IPO/vqOh8qxYC/7lxOtQ9gl8CTOZ6ggQdfY6BegiLCrBFJybT6XQimseqLL8GmxX38Sgvx8jKa1oR5ErFEqMP/Ic7TfdRb+dj9Dxz3uITOKoY6LscvoN5RudjEnHcv6S9qfLb+EXk/ElQ3yqDN+cdjO40b9ExYFczX2TeW8ZiuR0GX/HahGTkERksBJSZSrfYreO8FU5ziWf60EaNIkE1+uJp2RbyNLR/b1mFa3ji/iDNBkumVyBb864oeLSq2i05hbOvTT8UbTu4QmYe/E1bnhG6jsUKsa8I5Ow6oanUKDrumcEDj4t2rVPX4TE4+SL/6Ztvg5LwNHnRV/VPUUqxw3PiLzqn+XZx/JrHhi53xkbHb1Z+IyKzLvIJCTm8HfP2ZfiNUT9YlKQmFb8RxyfcA3GsD1OmHzMBa9DE/QdDpHBW3/HC5WXXUO15dcxYp8zUjjzoNBM9B0AEVFBXH4bhk8OPkWaTLxOTys1SUi3qvWKKKri4Xq9tvjfy+uitoF+rrhj21pPEVFJtNc5ALseZUynSUiTYfXNd3qOqPB6bX+ISAOonkr65egTpdK2/YEvZnavV3QxeKvGsOW+L77vWXRfukUkpaPDprt4G55YqH6+OvkCx1wyEqgXX4chOlmK1YObaiNEojwpStDoxuse4Rh3+Lmwf9U9HL5L+sPCjB/5iQoiICYZCy+9Ffbt34Rhv3Ngkf6+L4k4EpKIDNJ8+zcqCUgAaB3hJ9r3qVAdCWUsiiiq4uF2nVaQS8Rv7wM0LE5DlBsHr0h8c8YNK697YNUNT32Ho3VMQJIm0tX87vGJLtoCJ+oSJzHJmi27oS2vQhMKnYBUKJRCAjLTHieuFUZUEPucxevuRSSl455vtJ6iITJ8Dmq+8PvroeqAF8offi1CRAZJ3QefqsmxsEkST89+UbV+UYVUbMSYl8OTGo3QJeS/JFG7cB9UTY5FhIW1/gIjg+bgFYkBfz/mVEkiAxebIsW3Z1/imEswLEyN8Wp+H73Foi6ZGp7ILwOICiLrEg2ZwhK4jh0VrYCYZPz10B8xKemY0LY2utarqO+QCixdrvqlo0dEkh4iKVmYhCSiEqN1uP6mYk/tVKdIrqOpG3XbipKQADDA3xVHm/XJ89ywhDTYvwmFuakxPv6guo4iJEOz/0kgE5BEJcBXJ12F9e6SpXI0+O2WniMiIqKSIFUqR5+/HgqFZw48CcTtGd30HBUVN5yOTUQlRvap2EDRJCH7NaqCdUObaa2/cmUK//3Q9bptVdoG+OU9Jft9XCo6bb6Lr0+5YeJRF/Tb8ajQsZDheRIQi50P/eD2Pl5oO/SsaAtvENF/5Aol/nrgh2knXLHXKaBQhWCyF9zIyf9OvUBCqv6KlSWny/D7HS9MO+GKk66qI7yItOHWu9JRiCxVKse3Z1+i2brb+PTgEwTHGVZ1YjIMd32iRJWvpXIlDjwNzOUMKo04EpKISoyWkX4qbUUxHfvmjK5a66teRXO0qFG+0P042TRBvJk5yqf/94fAQH9XQKkEJJIcz4vItibe8+C4QsdChmXrfV/MPv8KQMZL5dC4thjfrraeoyIq3X68+Brb7meM9j/wJBBWZYx1fk3vqGTMOvcSB8epfqlVFCYceY4Lr8MAZDznuFQp/telrl5ioZJr5XVPjGppo+8wdG7R5bfY8dAPQMZ00tCENNyf1UOjc5VKJfyik1HH2hzGRjn/DUmUNQGZaa9TgB4iAaRyBZZd88Cdd5FoblMO64Y2QxXLMnqJhcQ4EpKISozW2SpjJ5iaw7eCYUwnHty0Gr7qbItbM7pp5Q88mbEJbmWrhm2TFIMWkVzwn3K3/o6XsK1UAhscvPUYDZHhCYlPxd+P/XH0eZDWRhLufix+705Mk2ul37zoawR0YppMSEBm+vsxf3+R9rmFxOd9UAnw9yPx/fPQLwbJ6Xm/P/nESdF4nQMa/HYLNVZcwz0f1UIdRMXRz1fcse62F5wDY7HfORCfH3qe90lUJDgSkohKBFO5FM2ixB+W3KrWhVJiGN+1XPqqs9b7vFG3DUZ5PRa1DfR3wasiWieTDFNQXKpo3/V94T6gxelxOidRUQuMTUHXLffxPj7jPupQuwLuzeqOMiaFG7mYpqYid0mQ0wL/iWmq7xvPgjgyn6igUtW8h8g0WOd5s0s8AmIzittEJUsx88xLvNRjMStSJVco4fo+DjXLl4VN+bL6DkdjcoVSpyNrd2cbgXnbKxKpUjnKmup+JgHlzjA+nRMR5aFZVBDMFOIPLW4FnIr9VWdbbYSkd9frqVsX0rXoA6FSrbSMMiECgOMuwUICEgCeBsXhnk+0HiPSjjdhCVrv89SL92i5wUHr/RKR9jwMEVfXfh2WAAWL1BUbIfGpaLnBAR3/vIdaq25gxTUPlWNcg+Ow9Ko7tt73RWyKtNDXVCqVcPCKxB4nf/hEFbxSdNXl17D29rtCx5MTdc9VKudrtzjgSEgiKhGyT8UG8r8eZIWyJpjRrR6WD2iirbD0ysfaBt4VaqBh3H9FCHoHvUJZaRpSTbkmChGRtqmbMnzfNxofNqmqh2i0wy86WSejEHX54ZNIX4LjUrD7cQBiU6WY0JbrKRsSpVKJV6EJeBeZhB71KqFaueL/t/L2B35wD08U9lfd8MS33euhqlVG7E8CYtH7rwfCSNjDz4Lw6LseMCrECMS59m/w510fAEBZEyNc+7oLejaonO9+YlOk+OmyOwY0qYr2ta0LHA8ZHiYhiahEUJ+ErJevPu580w1talXQUkSFV6+iRaH7uFGvDRq+uCrsl5VL0SP4DW6qGSVJRESFo8n0RkNz6oVuKlO7BHOUNJUsKVI5+vz1EN5RyQBU12Gk4m31zXdY/v8jCcuVMcHN6V3R0dZav0Hl4fcs63hneh2agD6NMpKQ+58EiKbiPwmMhcv7uAIn/RLTZNh6/7/PXKkyBbbe9y1QEjLTqRchTEKWMpyOTUQlQssIP9G+AhK8qmLYVTQ71LFGu0ImRW/UbaPSNsDftVB9EhEgkysgL4EJJ6LsLr8N13cIRY73dumirenFjt5RQgISUL8OY3EjVyix6NJbNFl7Gx/ufATX4NK59mqqVI41t/4bnZ2QJsOmu8W/MF9eX3ztVJMI91dTwVpTEYnpKu+Pp91CCtwfAIQnpuV9EJUoTEISkeFTKtE6WxLS27oGkszM9ROPlhgbSXBjehdM71rwZOrtOq0gz1ac50MmIYkKZffjAFRedk3n6xkRUdG67xuFZutuw3LxZYza76y16uZUvIUkpOZ9kAY8IxLzPqiY2XLfB7/f8YJXZBJue0ViyB6nUpmED0tIU0kaH3fVzShwotKOSUgiMng1kmJQLUX8zW1+14MsripamOH7HgV/LnFlrfCkRiNRW9sIX1RNji1kZFSavI/Tzge0kiQhTSasZ/QkIFbf4VAJNPPsSzwNjNV3GHD0idJ3CEVCoVBizD/P4BGRhHS5Ahdeh2HVDU99h0VFoBTm3AQ7H4pHyoUmpMHDAJOpRGQ4mIQkIoOnbj1It3yuB6lPlmbGBTqvX6MqGh13U82U7P7+Lwp0TSqdOvx5V98hFGtz7V9DqSzFn2JJZzptvgcn/xit9XfJQKZWB8YW/RcfgbEpCEsQTwvcfM+nyOMoadzex2PaCVd8fugZbnhG6DscyuZdpGp143RWECYiHWISkogMXqtsU7EBwxoJuaBvo7wPUmP14KZwnt0zz+O4LiQVVmgC1+vJzX3faCy54q7vMKiEGvD3o3yfkyqVq21fr6aIQXHUecu9Ir+mXM0XCTKFEtsf+BaLEamGKDo5HX13PMSBJ4E4+eI9hu5xwrOgWH2HRaVEmkyO/516gRorrqHb1vt87REVE0xCEpHBax4VoNJmKCMhG1S2wLROdQp0bpe6FdG+dt6Fax7b2CHRtKyo7UP/FwBHbhFpzdrbXmix3kHfYVAJlJimPqGoTrpMgUlHn8Pqp8tqH3fi0gH59t25V+i0+R72Oqn+rUE5S5HKMfv8K8SkSIU2mUKJg0+D9BiVevH5WPtToVAiMY1rhRqCtbe9sNcpAOGJ6XjsH4MR+55orQgRGaaFl96UyjVPixsmIYnI4DWPFH8wSDA1R0D5qnqKRjNuc3vjxvQueDmvD2pVKHgBHYlEkucxUmNTONRpIWqrkxgJu+jgAl+XiFSFJ6brOwTSo+Lw4XaPUwAOPw8u1Wvc5Ud0SjqWXHmL8Yef5VmE4g/H4l8pt7iIT5Wi57YHOPJc9e+MS2/C9BBR7qaf/m+JGqVSiaBY9dWDz7wMgc3K67D++Qo+3uvEZGQx99cDP9H++/hU+MUkqz+YSoWdj/z5Xl4MmOg7ACKiwjBSyPFBdKCo7U3lOlBKivd3LC1syqNF3odpzc26bTDM56mobYC/Kzwq1y7CKIiISqY0mQJWP11Wqa5a1HY89NPr9Q1NSHwa1tz6/ynqeSQh3cNZrENT/74Jw/PguLwP1DGFEhi8+3Gexz30y1h3NSAmGUP3OON1WILa46adcBW2L70Nx4h9zmhQxRKVLczwbfd62ghZJ666G8ZasNoWkaT6xaC0FKx32W/nI0xoVwu7Pm2l71CKnFKpxL9vwuD6Pj7HY3Y98i/wUlikHUxCEpFBqx8XBnOZ+I+MN5ULNr25JFO3LuSH/q7Y1m5Y0QdDxVJcihSn3UL0GkNZaRp6B71ChzAvtAn3Qa3EKFROSYCpQo5E07KIKWsFj0q18aqKLRxrt8hY+1WD0cBERaEgCcijz4Ow/JoH0rSQvIxLlYqmvpL2vXgfh9Y1814GpbRTNwJSG5RKJU67heC+bzQ61KmACW1rw8go998BQXGaFzlafs0jxwSkOne8o3DHO6N6/KkX7zGja12Nz9WGcy9DcNotBDXLl8Wc3g3UHhOemI6vT7kVaVykf0eeB6O2dcFnWhmqpVc98Nutd7ke4xvN0bD6xiQkERk0detBvqpStH8EGoK3leog2KoSaiVGC219gl7CRC6DzJi/Ckor36hk/OHojdCEVJx9GaqfIJRKfOT3HFNe3cJQ36ewkub+gbFn8BthO9iqEs416opdrQfhNe97MjCBsSmYeMxFa8vzFucp2C/ex+GMWwiqWpXBxPa1YW1uqu+QCqT9prs4PbkDRraw0XcoxVq6XDcjgtc7eGPRpbfC/suQBPw+7AOt9V+Y9Sp9o5Px0C867wML6XVoAprXKIeLr0PxycH/ZrhccVc/zX3Bv2/UtlPJt/Wer75D0JmQ+FRcehuGCmVNMaRpNViWMYFCocTW+yX3OZck/ORJRAatRaRqEvJ1FVs9RFLMSSS4Xrctpr6+JTSVT09B5xBPPKitvT/gyXCkyxTos+MBAmM1HyWiTRKlAuPc72KR02m0UPNlgiZqJUZjluslzHK9BMfazbGy6zg42Ja+6UdkmC6/DSsV9cGeBcXhxwuvkCLNSEz98zQQj7/vqeeoCkahBDbf9WUSUouc/GNw2T0cDSpZ4PO2NVHGxDjHY3dmW25g5yM/rSYhCysgh7UktemYSzBWD26qUijpTRiXCyCxZKnmRc0MiV90MrptvY/QhDQAQI/6lXB7RlcoASQUYp3W0PhUOAXEonmNcmhUxVJL0ZI6TEISkUH7QE3y4nVl3SQha1Yoo9I2rVPu17I2N0UlC1NEJ/83RW5Uixpaj00TN+u2ESUhAWCgvwuTkKXUFfdwvSUgO4V4YPPt3egc6qm1PnsHvcbtUz/jpm1r/ND3f3hTjL6MUCqVGhWRopIpOD4VD/5/+mjWBEtpmTp98EmgkIAEMpKSz4P0v15gQTn6ROk7hGLv1rtIjY676h6Oj/c5C9VqL70Nw8lJHXI83i9GnOTLT+X4kuJVaMZad/bFsMBPaRYQk4zyZU0NdpR3ceP2Ph7z/30N/5gUjG5pg18GNYXx/y+9cOR5kJCABID7vtF4HBCDzrYVC3w9B69IDNnjJCyrsuOTlpjetV6hngPlrHhXbiAiykP26dixZSwRbFVZJ9eqYlkG/+vyX2KjfFmTPBciNzaSYO3QZsJ+hbIm+OnDxjqJLy8367ZWafvQ37XoAyG9C41PxagDT4r8umYyKdY57sfDows0SkBGl7WCR8VacKtSFz4VqiPVOO8/7j8MeAGXQ7Ox+v4hlJEVj2rVt700+0BOJdNepwD03P4Ajdbchldkkr7DKXKP/GNU2gqzJpdCocTtd5HY5xyAAFa6LXbyUyV+5yM/IQEJAKfdQhCZlJbLGcWbf4zuR0JS8XLXOwpG8+xR79dbqLT0KpZeddfZtdzex2PJlbfY4OCNiET93CdbH+h+unNgbArabHTEDc9IeEYkYe1tL9E06+3Zqp4DgHNAbKGuueb2O9G6zsuveeTrvYzyhyMhichgGSvkaBotXr/ndeU6Oi1UsWN0K0xoWxt+Mcno37gKalXIe9HnrzrXxdBm1fE2LBEd61ijXFn9vPVGWFjDtWp9tIn47xd5p9B3qJCaiLiyVnqJifIv+f/Yu+/wpuouDuDfrKZ77z3ooKUUaCml7L2RIXsIIogICgqKihNxIaLi60BQEATZe+9NCxRKgZZC9957Z7x/AIX0pjvJTdLzeR4f7C839x6gpMm553dOtQjVYmmr7rbviGx4CqwytCtIx85D38p8/9VVIDTA/nYhOOQRjDA7L2TUuaHAk4jhUZiBvin3MCL+BoYl3AJfyuw9JpCI8WHYLoyMC8fkke8hhuVhVf/dSccATytWYyDsSyuqxA8X4rCwhxvi88tlKuRJ083fcxcbnm5FNRTycHZ+KIKcTNkNitR6sUKpMQfvM6v58spqYGnA3HmiCejfdNtyPakAfX+7KrO26vQjzO7qBHcLxW7nvZtejNB1l2u3WG+6kYyIJX0Ueo3G7IvKwI8X45V6jZzSKrh8eZqx/se1RCzu/WT4kiIGub3oXkYxTsXK3izOLq3W2u3s6oCSkIQQjdWuIANCsWzvjwdK2or9DJfLQW8PC/RG86ot7Yx1YWesq6Somu60SyeZJBBPKkG/lCjs9+zOYlSkKaRSKT4/GYtvzj5GjUSCKZ0c8PfkThDwmr+poW5fLWUbkHQHOw5/B/NK+T2rEoytsbrrOGz2G4AKQf0fPsVcHmLNHRFr7oj1AUNhV5qHuXdP4u2IgzCrYlaYdcxNws2tS/DGwAXY4tdfYb+f5spuxodyot1+v5aE368lsR2Gxsorq65NQAJPtuP+ejURf03qxF5QRIYUVD3UWjHZJfjmrPwJvyWVIpRXt7zvnSKcfZyLAZ6Wbb7NyF/h8vtZn3ucp/Ak5JZbqTJJsQdZpbicoPxBSC/aENay/t3NceC+/CGJD3Ma3kUQmV7comrIs49yMWzD9WY/70JcLtZdToBUCrzZww39PS2bfY62jLZjE0I0Fk3Gbr5TLp0Ya4NoS7ZGuJ9Zgi9OxaJaLIFUCmy7nYZdLaxorFTwXeSGzLl7Esf2fCY3AVkq0MUHPWfCd/av+L3T8AYTkPJkGFrgi9ApcH/tT3wd/DKqucx7q/qiamw+/iO+u/A3uBJ27mofepCFvr9ewcR/biIqo5iVGAjRBunFzD62m26kMNZEEimkbWHqD8G8XZHo9+tVfHfuMduhNEtZA4nE4J8uIbaepMu5uDyYf3xCWWE1yeD11/HOwfv1Pn43vRjrLifg7KNcrf53WF9SrkYJ0+F/v5bIWIvJVu0womMx2Uq/xpEW9jrdcisVvf53pdnP+/VqAmrEzfseFUukGPZnGPZGZWLfvUwM3xCGhyr+u9B0VAlJCNFYHXKZ1STKGkqjLS45+KKSJ4Cu+PmWIeoLqRmOynnztzEsGVO7OLIQTdMsubkfay78Jfexq3Y+mDl8CeJNWz9ltkjXEB/1momtvn2x/uQv6JHO7Mm09OY+eBakYcqIZahsZrJTES7GP6lYuBCXh+SPB6r8+oS0BRKpFD9EFONgfDmMj+RhYicHuJnrw9fGsE1MIm+LVFGdpQyR6fXfkGps4E61EpJczfW/K4n4cqgPDISy6YQD9zIxfvMNPGunt2KgJ74Y6sNChNpFQi9gSrE3Sn7lZWNevJlfLZZg++00fDbEW1FhaT2qhCSEaCy5k7HVaCKuOqoUCHHZQXYatmdhBlyKaMqiuiutYlZN1J0Uqk4+vL6z3gTkd13Hoc/krxWSgHxRtIUz+kz6Gp91nwIxh/kW56W4cBze9wUMq9kbZpFTVo3rcgZ1ENKWKGvL7qmkCuyILUOFSIqs0mqsu5yAdw7ex9A/w7BWyb3MiGbz+fasSq/H0/CtzCKJFLllzOFvP16Mx4vzPH68FI9qkQQPMktQQT32FCour+0NOlOUY9FZuKLA7ew3UgoVdq62gJKQhBC1VtrAdpW627FzdY2QpW+q5Ig032nakt2mbItIRfCPF9Htp0vYeUc1A2neijiIL69sZaxX8gSYMWwJlveeBTGXp5RrS7g8fBE6BYNf/hz5cgYu9U+Jwsndn8CsokQp12+Kwgp2+3kRpkc5pfjjWqLWbx9UF1O2RijlvPvjaFq2uiuubHh4y+ID9xDy0yUs2hcl9+abstS3/Zk0z4X4PJmvS6vEsP7sBDp8fx4WHx/H3qgMliLTPnRjpeVGbAxv0fZtohiUhCSEqLUfLsTJXReIa+BVIJtQuW/prNTJ2NpCXl9I2pKtnW6nFWHG9tu4mVqEGymFmPrvLTzIVG7ybda90/jx3AbGeqlAFyPGfYJ/ffsp9frPnHMOQLep3yPanLldPSQjFmd3fQTzCnb6M3LpZUqtnHuci45rLuCNPVEY+Mc1vHvoAdshkWY68iAL15IK8LBAs6cTS6VSlKkw8dYcJZUizP7vNjy+OoPxm24gU05/zqbIK69psCLuxMMchKcU4n9XEvHGnrstDZeokeLKJ9/TlSIJFu6Nohs9REZJpXq+5hHloSQkIUStPciS3+jXqyAdgjpDJlo7Gbut5C/vWLshR89YZm1A8l3WhnYQ5dkWkSbTB00iBbbfSVPa9folR2L9yV8Y64VCAwx6+Quccw5Q2rXliTOzR6/J3yDc1pPxWEBOIo7s/QIG1arf0q6vo5wqUNIy6y4noOqF/k6/XE5gffosaZ5Rf4Wjz2/XUVKjucmNsKQCtPv6LIw+OobQdZeR0cIkn7IsPngPm2+mIiG/HPvuZWLG9tstPtfZR7lNOu7fCOX9vCKtV98k44ZkllQhv1yzbxYQxdrztDr25MNsHLhP7aHaAkpCEkI0kl+uYidj6/C48LQ0aE1IGkPK4eJMnWSQRWUJOmc3f1vHwfhyjNt8C0sO3EN2SZWiQiQK8iCLWfW46vQjJCmhl6RHQTp2HfoWfKlsw/wyvhAjxn6CMHt2GtPn6xlj0MsrccHRj/FYt8xY7DvwFXREmv2BqLxahLjcMqouaaH992Q/SNftdbbjTho6fn8eXt+cxU+XaPsbmx7lqseW2clbbuGbs49QJWrazbuM4kp8e/YxPjkeg2g5r8sAMHP7bSTkP9lOfj2pAO8fVn1Frkgsqfd15O9w2SnkZx7lQiJp2WvOqUc5LXqetvjvThr+dyWR7TBabfGB+xCpwZActria6bEdglbwsTZEWFIBRmwMZzsUoiKUhCSEaKS6/SCB5k3GNtHlI9jJFACgy+fit/H+0NfhN/wkLXLahVmR1ty+kAfjyrEyrBCHo7Px06UEjNwYpqDoiKYxqSzFwf1fwrxStnK5isfHmDEf4ZpDe5Yie6JEqI/h4z7DMdcujMcGJkdi25HV4GloJfBf4ckw//gEPL85i84/XGzxFkkiq1IkwR/XEjF+0w1M2RqBe5kleJxbhiUH7uPc46ZVcRHF23IzpfGDVGBnZDo+PBqDN3ZHNXpsWZUIvf93BR8cjcaXpx8hdN1lPMqRfa0srRIxEqxbI9IwZP01nFFBwk4ikWLxgXsw/+Q47D4/ifXXk5r0PCmA3LIqXIjLVWn/Rk33yvY7jN6Jmqot9NKkG3zKxeNw8PeNFIhbeFNDWRbsuYv7Sm5h1FZREpIQopHkTsZuRhLS0kAH19/uhaQVA5G/cihmB6vvVG1dPnPrZnvr5wM3Xm1B7KdcOjPWmtsXcn+87BvPm6lFSC2swMawZAz64xpe2X6b8UGLaB+uRIxtR75H+/xUxmPzBi3EGTk9SNlQIRBi/OgPcN6xA+OxcY+vY62cPpbqrqJGjDf3RqH6aSXK3YxirD4vv48uaZ7p/0bgjT1R2HePud1w110arMAWdduqt+lmSqPVgKcf5SIu7/nAnKJKEbbdlt1mLKknyXEqNhcjN4YjtVC5bSN23U3Hz5cSUFolRnZpNebvvouEvMaH/OyMTIfd56fQ77drcPjiFK4lKm7aLNEMIjVLHCmax1dnYPnJCSw9dL/Flb/qpkokQU6peu1eUseBRVsj0vDTpQS2w9BKlIQkhGik9nmyCY9sPRPk6RvXc3T9nEz1oCtQ7/5sruZ68LDQl1mb1/351vP/jeuAz4d4N+ucKcZWiDFzkFnrkR4N/ZqmV1FF5TK3sK44FoO5uyJx5lEuttxKxcA/rqndnU2iWMvD92BYInPS7Xddx2GLX38WIqpfpUCIl8aswC1rD8ZjC+8cwRt3jqokjtIqxVRdxuWWyfQyBGhapqLcTC1iOwSiIRr7CReRxvxe2nyj6RWdVSJJbe+9hLxybL6RgvDkAoVWZ/0VzryxezSm8YTve4cf1P6ML6kS4fOTsQqLiWgGiVSKj45Fw23VaYT8dKlV5yqpFKGygaFFL5JKpUjML1f6IKeE/HIUVNTghwvx+K8FPbUvJ+Rh/KYbGLUxDEejm3YTRSSWICa7BDVK2uo+7d8I2Hx2EkPXX0dOaRU+P/kQ4zfdwM+X4ludaI2gn52kCdrO3kNCiNbgi0VoVyh7xyzagjkBtyHWhkJFhqRUHA4Hx+aG4MOj0YjPK8cYf1ss6uFW+7iQz8PHg7wAAJ+eeNjk85526QSfgudvqIRiEXqn3sdxt8AWx/rPLdnkcEphJe6kFyHQ0bTF5yTqq3taND67uo2xfsi9Kz7sOYOFiBpXItTHsPGf4eJ/y2W+/wHgp7Pr8djUDqdcmZXCirTkwD2lnp8Qol0S8stx7nEuhm8Iq73x8OlgL3w6uHk3IOuqrBEjs6QKURnMLYf/u5KIN194ryFPWpHsjcuTsW2712Nb9PeNFKy7/KRarKX9pkViCV7fcxf/3EyFgMvB+/3b4ZNBXuDUMzEyr6wawzeE4UZKIQQ8Dn4Y7dfo9+qLriXm41JCPjrZG2OQl1W916nrz+vJmNql6Z83UgorMGT9dVTUPPk3e/xhDm4u7oUAe5N6n3MjuRAjNoYht6waZnoCHHi1K3q6WTT5ms1xMjYHNp+drP16371M5JXXNLuw4RmJRNrkVg4tlVJYgYIK9ezjnV/+5O+sqd9PbRlVQhJCNI57USZ0JLJ3PmPMnZp1jnkhLR9iw4Z2lgbYOTMIN5f0xoqBXuBymT/g3gh1QSf7pleDnpKzTba5fSGboqSS+kRpI5PKUmw78j1jEM0DcydMG/EuJFz1rTDO1TfB0Jc/R5a+7AcBvlSCnYe+hU+ecvvOJSphMBAhRLutvRAvU/n8/fk4VItaXin1b0QqLD45DvevziBTzmC5mGxqp6Ltxm262epzKCLptP9eJv4Of9ITsFIkwecnY3E3o7je43+8FI8bKYUAgBqxFIsP3EdRncRUfZXC/9xKQY9frmD5kWgM/TMMX55+1OQ4n12zqfZGZdQmIAFALJFiyy1m65oXLT10v3YwWkFFDd45cL9Z12ytDWGyf59iiRQ3UwqRlN94e4bEgsaPaa0RG9Sz//yxmGxYfnICOu8fweUE7ej3qkyUhCSEaBwfOb3nYswd5BwpXz8PC7zc0U6RIakFSwMhbi7ujailffHhAM9Gjz/v5A8RR/bHQHP7QpI2SirF+lO/wKVEtuqlgq+DSaPeQ6mOfj1PVB/JxtYY+9JHqOQJZNZNqsux98BXMKpS/ptpQghpqsN1tnKWVYtR2MKKoGqRBPN335VJkCjKw2zlDCppTcKVyHdWAUO26rYEaQl57QAOPah/6/L3dXofiyVSRtL8Vj3bgn+6KNvj78eL8S1ubSBu5HnRWcxE/pWEhvumXqrzuKpbg2QUP78hkVNahc4/XEDwT5fg9tWZRp9bI1Zu+6WKGjHuqfmgGLFEit7/u4pfLifQQKMGUBKSEKJx6vaDBIBoi8YrIU/OC0H0e/1wen53GAi1sxsFl8uBn60Ruj6d/N2QEqE+rtvJbrnwz02CbSk1licNe+X+WUyIvcpYf6fvHNy31Jwq4+v2PnhtyCLGuk9BGjae+BmgN5CEEC2UkF+OsurGe+89bEE15LrLyulLm1Hc9J7VRLPI28Zd3MAuGnmJz7o/rQ/eZw4VA4DyOj0nCypqWtS7/PCDLKQUNv97Miy5kFG1+cyfSt7K3FwbwpJVkvR7lNu0GxciJSc5Femt/ffwxzX1+vtUJ5SEJIRoHO8CeZWQjfdocTLVg7e1YZvo1dHN2bRJx52WsyV7YHKkYoMhSiOVSpFbVqXSu612pXn44TxzkvRuz1D80XGoyuJQlG3t++LLkImM9ZcfXcWSWwdYiIgQQtTDwD+uNXs4RlMnmG9qxnAeQp4pr25ai5/SJiTZn3nvSDQ+aUZPdbFEile2327y8XW5rDqNm3K2dm8IY1aEsmnNhbjGD1KAarGkdgu6NlG3v091QklIQojGqVsJWcYXIsXIkqVo1JOtsW6TjpPXF5K2ZGuOxIIKWH96Eu2/O9eiipVmk0rx6+nfYFYle9c62cgS8wYvBDQ0wf9p6FQccQtirH97cRN6pdIQGUJI81WJxLiamI90Da7gSyuqlJssaa3iChHm7qIbnqR57qYXw+XL0wo/748X4xvt1QgAlSIxHueWYc6OO60ajlJcKcI3Z5m9KJvbc1LZ8svVcwCMpohIo0nh9aEkJCFEs0iljJ6QD80dIOXQy1ldGycGNHpMuJ0Xiur07xuYFEnbUDVMbE4Z3tofpfTrTI65iJfiwhnrc4a8hUJdQ6VfX1mkHC5mDluCBGNrmXW+VILth7+HRXn9DfIVafuddDzKoWEQqiKWSBHVwPADQlrqcW4Z2n19Fj1/uYKNGl4NU6SE4XJRmcUt2gJLGmZpoMN2CE1SI5YgNqe02d8D35x9hDwWE2MSKeD1zVn804SEZWP2RsnfLk5IW0Cf2gkhGsWuLB8m1bIDI6KbORm7rRjlZ9PoMWIuD+ec/GXW7Mvy4Zen2R+a2qJTsa1vMN8Q67IC/Hx2PWP9T//BOCOnolbTFOgZ4eXRHzAG1diX5WPDSdX0h1xzIQHtvzuHXZHpSr9WW5dcUA6fb88iYM0FtkMhWuj783FIK9LcCkhlk9CNTqWwMRSyHUKT2H9xCj7fnoPLl6dxrxk3gv67U//Pxn6/XcXs/243aYqzskkBRKYX4XpSAduhtNi5FgwtyiqpavwgQkBJSEKIhpE3GfthMyZjtyWWBk17MyqvL+Qg2pKtsQ7dz8Ss7bfx0bFoZJcq7g3h9xf+gmWlbIPyVEMLLOszW2HXYNttGw8sHPA6Y/2luHC8EXlMJTFIpMDXZ5jbtIhifXcuDnF57H9YJdppvZoNmCBEHaUXV+KDo9GoUUBVbJVIgs03UzH0z+usTyV+c28UOv9wEXc1uNL+85NN75EJAH1/vYK+vzEHFrZ1n52MZTsEtURJSEKIRmnpZGxSP+oLqT0O3c/ES3/fwD+3UvH1mce4laqYfjS9U+5hejSzYmz+oAUoFhoo5Brq4q8Og7DNpzdj/fsLf8EvVzWJhTvpmvvBRVP8ejWR7RAIIUQtqbKi7Uh0Nh43cTpyUzzMKUM83WBqtYvx+Uo9vq34+lwcCquaPiSpraAkJCFEo7TPZ05TbMpkbFK/R2b2SDKyklnrk3IPOqL6++5siaG+depIGZP4+GIRfjnzO2N9a/s+OOreVeHXYx2HgwUD32D0h9QTVWPbke+hW6M+242uJNKbfkIIIYo16u+bGp04Ka/R3NiJdpFKgfgixffV1XSUhCSEaBTv/DSZr8UcLh6Z2rMUjZbgcBhbsg1EVeieEVPvU367W1LvY4Q9hx5kKfyci24fRoc6PUKLdPSxtM+rCr+WuigWGmDaiKUQ1Rl45Z+bhNUX/2YpqueqRRIceZCFN/YofxgRIYSQtudiqvrccCNEk51MqsDZlAqU10jYDkVtUBKSEKJR6lZCxpvYoJovqOdo0lQnXTsz1qgvJLErzcNnV7cz1j/uMR3ZBmYsRKQ61+198HnoFMb6m3eOYlDibRYieuJiXB5sPjuBUX8xp5QTIg9fLIJtaT5cirLglZ8K39xkOBdnw6iqXCUDl4hqxWSXYO6uSIzfdAMH7qnnBN70YkpwKcP9LMXdID6fVqGwcxHNUiOmZJki7XlcjvcvF2D+2TxUUJUuAIDPdgCEENJURlXlcCiV3X5Ik7EV44xzR0jAARfPP5AOTLqDFT1nsBgVeZGDia7Kr/ndhU0wqpH9IHLbyg2/dRqm8ljY8HXwyxiYdAd9Uu/LrG84sQ4dX/kZRbqGKo9p8YF7KKqkrT2EiSOVoH1eKkIyYtAtIxbe+alwLc6GQ2k+eFL5HypruDykGVog2twR0RZOiLJ0xUVHPySY2AAcjop/B6S1yqtF6PfbtdqefvvuZSLExQzn3wiFDl99ak9oii4hwNxdkZjRxRG9PSyw5279k79VbczfN9gOQStF59fgXFweRnegHXyUhCSEaAyajK08+XrGiLDxQFDW49q1oMzHMK8oRr6eMYuRkWcMdFT7I7trRiymxTCH0SwcMB9iLk+lsbBFwuVhxrB3cPeft2Ba9bxxvlNpLn44vxFzhr6t8phoaA15kUF1BYYk3sZLj69jRMJNmFc2r1+vQCKGa3E2XIuzMSwxonY92cgS5538cdCjG465BaJCIFR06FqjuLIG/91JR0ZxJcZ0sEUXR1PWYrkQl8dI8F1PKsAHR6OxZrQfS1ERoloT/rmJQV5WjR/Iso1hyfjnZgquLuqplJ7eLXUsJpvtELTW8ZgcSkKCkpCEEA0iLwlJk7EV57RLgEwSkgsp+iffxW7vnixGRVghlWLN+Y2M5b/9BuCaQ3sWAmJPqrEV3u43F5uP/yizPvv+Gez1DMURDy0czkPUm1SK0PRozI88hvGPrkFPVK3wSziX5GLmg3OY+eAcSgW6OOIWhC1+/XDctQskbeQmRFON2BiO60kFAIDV5+Nwdn73Rp8jBbA7Mh1XEvMR5GSKbs4ta2/x3fnH6GBrjAkd7WAg5COjngrDP8OSKAlJNEp5dcu3rcbmlGlMp4kasRQ/XozHiYc5DRwjQQX1E8SOyLTGD1JzGvJtqXSUhCSEaAx5k7GjaTJ2g+yMhchoYu+lUy6dsDx8j8zaoKQ7lIRsg8Y9uoae6dEya6UCXXzYayZLEbFri28/jHt0FS/FyfZhXH/qF3Sw/wUFekYsRUbaEoG4BjPvn8Nbtw/BPzdJZdc1rKnEpNjLmBR7GQnG1vgjYBg2dhiEPH2qkgdQm4AEgCqRBBvDme9V6koqqMDELbdafe0fLsQDADbdSMa5N0LrPa5UgycdE3aw3Rbw16uJ+GWcf4uf/yi3rPGD1MS/EQ0n13y+PaeiSNTbvF132Q6BKAglIQkhGqPuZGwAiKEkZIPe69cOSw7cb/xAAFfsfVHO14H+C1U1A5PuPBlcQL3B2gyBuAbfXNrEWP+u6zhkafkwmnpxOJg/6E30TIuGReXzxv92ZQX4+ex6zBjxrsIveTOlEEFOpgo/b1sllUrxZ1gy5u/WvA8xz5KPH4bthFtx07fJVfIESDS2RpKxNVKNLFEm0EUVjw8xlwvjqgqYVpXCqrwIXgXpcCmpvwrnRW7F2fjm0mZ8cm071nccitVdxyLD0KKlvzWt9Fe46rdVXozPR1SG4oaSECKmki21kZBfznYIhCgUJSEJIRqj7nbsDAMzVgZDaJK3e7mju4sZIlKLoCfgYfaOO/UeW80X4KKjH4a+MPnXrTgbHoUZiDOj/iWKUCUSQ8hX762Mb945inaFshNVUw0tsCZoLEsRqYcsAzO8OWA+/juyWmZ9WswF7PXqjn2e9VchtcTwDWFI/2QQ+Dz1GSYhj1giRVhyATJLqtDXwwLm+jpshyTX+utJeGNPFNthNI9UitFxYVhz/i94FDU+5bhIRx/H3AJxydEP1+28EWXpAhGvaW/1Daor4JeXjF6pD9A79R56p96HSXX9H3z1RdVYHHEQb0QexcYOg7Gy+6S2e5NCBZ5VPDYksYASFURxwjKrUCmiTCQhRPEoCUkI0Qg8iRgedRIjsZQYa5JgZzMEO5vhdlpRo8eedukkk4QEnmzJpiRk61yKz8PsHXeQmF+OQV5W2D49EKZ6ArbDYjCuKsOK6zsY6yt6TqfBFAB2+vTCuEdXMTH2isz6b6d+wyUHP+TqmyjsWrll1YjJLkUHO/Xe8vrqjjvYcuvJDSI7YyEuLugBD0sDlqNiUqem/03hnZeKtef/ZLwe11XO18EO717Y4dML55z8UcNr2etKmY4ewu28EW7njTVdx0IgrsHApEi8HHsFYx5fh1mV/K2NQrEICyKPYuaDs/iu6zj8EDQG5QLdFsVAiDy/XE6Ag4kuPCzU73VF2/XalcF2CIQQLaTet9cJIeQpl+Js6EhEMmuxZjQZW9FOuXRirA1MuqPyOLSJVCrFpC23EJ9XDokUOPEwB5+eeMh2WHK9e3M/Y7puhLU7tvj2Yymi52YFqccQqjcHvIGsOslG64oi/HjuT4Vfq/qFply5ZVXYczdd4ddojfi8stoEJABkFFdhAwtbUZviVmrjN2HUAV8swopr/yHyn7caTEA+NHPAW/3mweH1TZgz9G2cdO3S4gSkPDU8AY65B2HO0Lfh8PomzBr6Nq7bedV7vGFNJb64ug0P/5qPydEXoDFTIYjae2v/PYzffBNdf7rIdiiEEEIUgJKQhBC15mDypKLCq4D54ZuSkM3Da0JfxyhLV2Tqm8qs9U+JAk+inKb20VklOHAvEzmlTRueo4nSiiqRWWdi6brLCSxFUz/L8iIsvnWQsb6sz2xIOey/Xfhrcie2QwAA5OkbY/7ANxnrU2MuYnj8DaVcMyqjGN7fnMOEf1o/yEKRYrJLGWvfnn3MQiTawS83Cde2LcMXV7cxbro9E2PmgGnD34XfrF/wS5eRKmlJUikQ4h+/AQid+j2Cp63BvnYh9R7rUJqPbUfX4Niez+BeSFVU2uK/2+xPpa2hJoWEEKIV2P9UQQghDXAz1wcAeBUw3wDTduzm8bE2hJGwkS4cHA5OuwTILJlWlSEo81GLr7vs8APE5zG38n137jH8Vp/H2E030O7rswhPLpDzbM0naWJFUI1Ygp8vxT/d3poCqYoriZaH74ZRTYXM2mnnAJxzDqjnGW3XAc8QbG3fh7H+26nfYFSl+L5sP19OQEFFjcLPS9SEVIrFtw7g5tYlCMyOk3tIpr4pZg95Gx1m/YLt7ftAwmWnt+xNW0+Mf+lDdJz5M3Z69aj3uCFJtxG1eRE+CNsJgZi+d9VNSmFF4we9YKOaVjgT7Ra09iJupRayHQYhRMEoCUkI0Qhe+VQJ2Vo6fC52vxLU6HGn5WzJHtSKLdm3UovQ+39XUVL5vLKnRizBylOxtV+XVInw/Xn5H77bivl77mLxgfvYdCMFr2y/o9I/D4eSXCy4c5SxvqLndJXFoGmW9J2LHD3Zfo1Opbn4+tI/CruGWAKcf5yLjc3sZ/j1mUe1SWyxRArRC9u6iXoxrSzFvgOr8MP5jRCKmdWPNVwe1gSOgferv2NzhwGsJR/rumflismj3kfI1NW45OAr9xg9UTVWXd6K8H/fRYecRNUGSOp1+EEWBq+/3qznnHmUq6RoCKlfRFoRxv59Q+U3ZQkhykVJSEKIRvCsUwkp5nARb2rDUjSaa5CXFbo6mTZ4zGnnToy11vaFTC+uxKlHObVf55ZVo6xadov37rttd+ueWCLF3+EpMmvrryep7PofX98B3TrVSgc8ghFu562yGDRNnr4xFveby1hfEHkUPVIfKOQaA/64imEbwpr9vI+OxWDb7TSsPvcY1p+egMUnJ/Dh0Wj6IKdmgjIfIWLLYrwUFy738VvWHgicvhbL+r6KEqG+iqNrmnA7b/SZ9DXGj16OFENLuccE5CTixr/v4N0b+8BVUmsP0jRRGcUYu0k5bSMIUYbUokqkFVWyHQYhRIEoCUkI0Qh1e0ImmFgrtAk/eS7dyAL3LJxl1rpnPIRhdeu2mcrrH0eeEEmYlWpxeYrf1iuPR0E6Zt87LbMmAQef9Jimkutrsu0+vXHEjVld/OfJdRCKqlt9/tIqMapELatiXLAnCu8fiUZBRQ1KqkT45uxjnIzNYRxXVFGDexnFkEg0M0EpEkuwKzIdq07H4mZKIdvhNNm0B+dw8b/lcC3OZjxWw+Xhk9Cp6D51Ne5Zuao+uObicLDPMxR+s3/Bj11GQyynh6xQLMLqi3/jzK4VcCnKYiFIAgD/RqRBrKH/1knbdSOlEN+cbXlbIEKIeqEkJCFE7enWVMGlRPbDM23FVq66W7IFEjH6pNxnJxiiVJ9e2w5Bneqk/3x6IcrKjaWINAiHgwUD30CJQE9m2acgDSuu72QpqCdKqphbe7fcTJX5+veribD89AQ6rrmA9t+da3afOHUwb/ddTNpyCx8ff4ju6y7j8AP1TnBxJWJ8c3ETthxby6g+BoA4E1t0n7oaX3afDBGvkR6+aqZURx/v9HsNwdPW4KZNO7nH9Em9jzv/vI1xsVdVHB05HZuD03JuRBCi7sZvvokPj8awHQYhREEoCUkIURunYnMwdP119P/tKvZGPdmaezkhH+3kTNh8RENplOqUgvtCEvXUPi8ZU6MvyqyJOFx8FjqVpYg0T4qxFT7oNZOx/t6NPfDPUa8p6An5z6trK2rEWHLwfm1V1KPcMo3ry1pSKcKmG8/bGIglUiw5cE9tt53r11Ri74Gv8d6NvXIf3+0ZisAZaxFRTwJPU9y28UD3qavxcY9pqJHTw9Kkuhy7D32Dn86uh46IhtYoyu7IdESkFtX7+OD11xGRVv/jhBBCiCpQEpIQohYS8soxamM4Tsbm4HxcHib+cxOTt9wCwNyKDVAlpLJdcOqAaq5sFc6gpNssRUOU5aPrO8GFbMLm7w4D8VhFSf4OtkYquY6y/dZpGK7Y+8isCSRibDixDjw17YGXkFfO2Oq97rJ6JU0bU1DB3PIel1eO9t+dQ5VIvf7cLcqLcXrXCoyOZ/Z/FHG4WNzvNUwc9T6KhQYsRKd4Yi4Pq0ImofvU1Xhg7iT3mEW3D+PSf+/DrTBTxdFpp60Rafj1aiLbYRBCCCEN0qx9HoQQrbUnKgPVL0xwlUiBnZFPko9edYbSAEAsVUIqVblAF1ftfdA39V7tWvv8VDiU5CLNSP7wAaJcn598qNDzeeanYdLDyzJr1Vw+VoZMUuh1GjKnmzOWHND8bf5SDhdzBy/C7S1vy0w47pr1GG9HHMQPQWNZjO65a0kFGLUxDD7WRhjrb8t2OEoTm1OGlace4cthPo0frALOxdk4vvtT+Mj5WVYgNMDEUe/jjJzqc20QYdMOQdN/wFeXt2BxxEHG412zHuPW1iV4dchb2O/ZnYUICZHFkUpgX5oP16JsWFUUPfmvvBgWlSXQFVVDIBGDLxFBIBZDxOWiXKCLMoEuSgW6KBbqI93AHOmG5kgztECGgRkqBUK2f0uEEKJWKAlJCFELsTn1Dy3xlFMJ+ZAqIZXutEsnmSQk8GRL9qYOA5V2TYlECi6Xo7Tza6qC8mqFD6r5IHwXeFLZSrhNHQYg1dhKoddpyHh/O61IQgJAjIUTVnWbiC+ubpNZ/+LKv9jfLgTxpnYsRSbrSHQ2jkRnY8cdZkJMm3x15hFeCXKEp5Uhq3H45yTg2J7PYV+Wz3gsxswBo8d+rLLKY7ZUCoR4p99rOOMcgE3Hf4RFZYnM46ZVZdh78GusDhqLD3rNhETOFm5ClMGqvBBdMx8hOOMRfPOS4VmYDs+CdOgrYLDYM8lGlogxd0SMuROiLRxx19IVt63dKTlJCGmzKAlJCFF7dSshy/k6SDOyqPf4WUFO2HQzpd7HSdOccumEL69slVkbqOQkZFRmMQLsTZR2fk2l6ASkW2Empj84L7NWw+Xh6+CXFXqdhnwx1Bs6PO3qCvNt8HhMiL0C/9yk2jV9UTX+OPU/DHp5JcBRnwR7alGl0q9RViXCWwfu4dyjXHSwNcYv4zrA2Uxf6dd9pvevV/FgWV+Y6euo7Jov6p4WjSP7voBpVRnjsUsOvnhpzAoU6rKbJFWlIx5d0WXGj9h+eDVCM5hDJpbd3IeAnARMGbEMBXra0aqBqBeXoiwMTrqN/kl30S0zVu50ekVzLsmFc0kuBr/QV7uGy8M9C2fcsPPCdTtvnHPyR5KJjdJjIYQQdUBJSEKI2qvbE/KRmT2kHPnJCw4H+GtyJ0pCKsAtGw/k6xrCvPJ5leqgpDvgSCX1/vm3lryJvkTxlofvBr9OFeTW9n1V8iGIwwGGeltjcS93lFerV9++1qrhCfDa4EW4uv09mSrTAcl3Mev+GaUm8BXlWmI+uruaN3hMRY0YuyLT8ef1pAaPe+9INP4Of/JanFhQgdyt1bi6qKfCYm1MVkkVjsZkY1oXR5Vd85leqfdwZO8XMKxhJnv3tQvBtOHvtslKqBRjK/Sd9BW+urwFS2/uYzw+OOkOwv99F+Ne+gBRVm4sREi0CV8sQv+Uuxj9OByDkm7DU86gQzYIJGJ0zklA55wEzLt7AgAQZ2KLc84dcdbJH+ecOyLLwIzlKAkhRDkoCUkIUWtmFSWwqiiWWaN+kKoh4fJw2jkAE2Ov1K5ZVRQjKPMxbth5sRgZaQ2n4hy8cv+szJqYw8VX3SYo9bocDvDPlM4Y5WsDY10BAGhdEhIAbth54ecuo7Dk1gGZ9TXnN+KYW6Daf7D84UI8djWShBy/6QaOP8xp9Fy/X0uU+fp6UgEqa8TQFTS83ba0SoTrSQVwt9CHu0XrBrVEphdjWpdWnaLZ+idF4uD+lXK3dP7RcSjeHPB6m95yLOLx8V6f2bjo6IfNx9bCrE6lqEdRJq5uew+vDn0bu7xVl7Qm2kEgrsHApEi8HHsFL8WFydxIVWceRZnwiMrEa1EnAQA3bdrhkEcwDnh0w10rV7WqpCeEkNagJCQhRK15FjL7QT5qQj/IOd2csTEsufZrHR4XTqa6Co2tLTjuFiiThASA4Qk3W5SEXHEsBiPaW9N2a5a9d2MPdCSyFafbfXohroXJfU9LAzzKZW43rev+sr7wsW7dFstx/rbYGyV/ku5LfjY4cD+rVedXlI97TMNLj6/Dveh5PGZVZfj57B+YNGo5i5E1bk9Uw5VCifnlTUpAAoBUylwTSeQsviA6qwT9fruK7NInCbyVQ73x0cCW3/TIL69BebXqKqyHJNzC3oNfQ09OAvLz7pPxefcplEx46rBHMIKnrcHeg1/LtDAAAANRFXYc/g5dsuLwUc/pbTppy7ZPjjO3zqujDjmJePXeaUx/cA6WdfqONlWurhEemdnjkZk9HpvaId3QHDl6JsjVM0aOvgnK+ULU8Hio4fIh4nIhEIthUFMJg5oqGIgqYVFRAvvSfDiU5j0ZblOcBZ/8VLgWZYOLhl/76grKeoygrMf4/Oo2JBpb45BHMPZ6dsclB1/690AI0WhtPgkZFhaGI0eO4Pbt28jOzkZpaSkMDQ1hZ2eHoKAgjBs3Dr6+vgq/bn5+Pnbt2oXz588jPj4eZWVlMDc3h7OzM4YMGYLRo0fDxIQ+qBNSdys20LRKyHd6u+PgvUzklD35IPjxIE/o67T5l7xmO+7KLCEamhCBz0Ontuh8M7ffRuS7fVsZFWkpu9I8zIk6JbMmAQdfdZvY4nOeeyMUjitPNXpcaxOQAPDjSx3qTUL+NyMQesuPtvoailAu0MX8gQtwcs+nMusTYq9i26PrOOAZwlJkrSORSJFRrLxekpnFlfBbfV5mbeWpR1jcyx0GQj5OPszG9+fjUC2WYGEPNwQ7mzZ6zr/Ck7H1VqpyAq5jWPxN7D34lcyE9GeW9Z6NNV3VY0q6Ookzs0folO/w14mfMCH2KuPx92/sQUBOPKaOWNam+meqk5upRWyHUC+D6gpMjz6PV6NOoWvW42Y9N0/XCNftvHHTth3Cbb1w07YdcvRNmx1DU/qX6tZUwbMwHf65Seia+QhdMx6hS3YcdMU1TbqGa3E2Ft0+jEW3DyPdwBy7vHvgP+9eCLPzppsahBCN02Y/kaempuL999/HzZs3GY8VFhaisLAQ0dHR2LJlC0aMGIEvvvgChoaKefNz+vRpfPTRRygsLJRZz8rKQlZWFm7cuIE//vgDq1atQp8+fRRyTUI0Vd2hNAAQ24RKyPY2Roj7cIDCtvS1VZmG5oiwdkeX7Pjata6Zj2BZXoRc/ebfKInKKEGVSPu24GqKZTf2MT707PYKRYyFU4vPqcrPPxYG9Q8YEfLVqzLktGtnbPLrj1l1tr7/cvZ3nHP2R7FQs16T1l1OwJenYmtv7LTG+ce5+PbcY5RWiTCvuwtmBD75/pux/Tbj2GqxBClFFRDyeBj91w1Ui5/02ryUkI9dM4OadL1nz1Gm/kmR2HPwa7kJyLf7zcW6LqOUHoOmKtPRw6SR7+N2+G58eXkro2JsaOJthP37LsaM+QjRFs4sRUnUiUtRFhbePoI5907JHfwkTyVPgMsOvjjt0gknXToh0tpNaf2tGdcWCBFl5YYoKzdsa98XwJN+lZ1yEtAv+S76pdxFr9QHMBBVNXou+7J8vB1xCG9HHEKCsTV2evfCdp/euGtNPVQJIZqhTSYhExMTMWXKFOTn59euCQQCeHl5wcjICHl5eXj8+DGkT/cRHTlyBHFxcfj3339bnYg8fvw43nnnHYjFzz+Eu7m5wcrKCmlpaUhLe5JwycnJwRtvvIFff/0Vffv2bdU1CdFknvktq4QEAEMhHwO9rBQdUptzzC1IJgnJhRRDEiPwr2+/Fp2vkd2YREmsygsx7+5xxvqqkJZXQQKAgQ77yb/ODsZshyDXu33mYFjCLdiUP68kcijNx3cXN2H+oDdZjKx5HmSW4O399xRyrqySKozYGIaKmieJwSuJBXA21UMvNwuceZRb7/P2RmXIJBOlUqiswrExPVIf4MD+L+VWNb0x8A38ETCMhag0DIeDb7pNwB1rd/x75HtGn0jPwgxc27YM04e/i8MewSwFSdjWLT0Gy27sxUtx4TLDv+pTxhfisHtX7PEKxTG3QJTp6KkgyqYR8fi4aeuJm7aeWB08HgJxDbplxGJgUiRGxofLvO+qj1txNt6/sQfv39iDO1Zu2OzXH9va92lRRSchhKiKam7/qBGxWIxFixbVJiB5PB4WLlyI69evY+/evdi8eTMOHz6MCxcuYMyYMbXPi4mJwUcffdSqa6ekpOCDDz6oTUB6eXlh3759OH78OLZs2YKzZ89i8+bNcHBwqI31nXfeQVaWevS4IoQNdSsh83SNkK+nngkHbXXMjbkle1jCLRYiIa2x5NYBxqCM/R7dWj2B9tmQGTbxuer5dqZAzwhv9X+dsT7v7gn0TlFMUk8V9t+XvwW+JQ5HZ9UmIJ/ZdCOl0W5p8vqO7r+nuLhaKijzEY7s+5xRwSQBB68NXkgJyGY67haI4GlrcE9OxaNxdQX271+Fj67vkN9wlGgnqRT9kyJxatcKXNv+HsY9vt5gAlLE4eKgezBeHrUc1gu2Ysqo97Dbu6daJSDlqeEJcNnRD5/1mIqgGT/Cee5GvDlgPo67dkY1t/G6oU45CVh7fiNS/5iNvftXYcyjaxA0cbs3IYSoknq+a1eivXv3IjY2tvbrb775BosWLWJUONrY2ODbb7/F7Nmza9eOHz+OO3futPjaa9euRXl5OQDAwcEBmzdvZvSbDAkJwbZt22BtbQ0AKCsrwy+//NLiaxKiKQor5LxRkkoZPSFpMrbqhdl5I79OL64hibfBldC2ak1hVFWO+ZHMKsgvu09q1Xl7uKr3pGd1sMurBw66Myu31p/6Bbo1jW+9Uwd5CtiC/UxKYQVj7XxcXoPPUYdkozz+OQk4vudTGFczf09vDHoDf/kPZiEqzRdnZo/Qqd9hbztm71QupFh55V/sOPwtDOT8uRMtIpViZFw4rm5fhtO7P8aA5LsNHh5j5oD3e70C53l/YczYFdjrFYoKgVBFwSpeqrEVfus0HMPHfw6rBVsxY9gSHHYPQk0jQ2kEEjHGxIVh78Gvkfb7LPx49k90yoqjxD0hRG20uSTkgQMHav+/Z8+eGD16dIPHv/POO7UJQeDJ1uyWyMrKwokTJ2TOa25uLvdYW1tbmarLvXv3MvpHEqLpCsqr8ebeKPT79SoW7YvC7rvMiaz2pfmM6hJKQqqemMvDSZfOMmsWlSUIznzEUkSkuebdPcHom3XctTMibNq16rytrYLUlH76EzratfzJHA7eHDgfxXWqcLwK0vHJ9f9aGVnb8OHRGJyKbdpEblXxzkvFqV2fwLyylPHYkr5z8GfHoSxEpT1KdfQxYfRyfNZ9itzHJ8RexeX/3odrkXomqEkrSKUYknALN7a+g4P7v0RIRmy9h0rAwUH3YAx6+Qv4zv4Vq4PHI9NQ/ucrTVYi1Me/vv0weuwnsJu/GfMGvYkzzh0hQcM/RC0rS/DW7UOI2LoEt7e8jcW3DsCqvFA1QRNCSD3aVE/I6upqRERE1H49cuTIRp+jo6ODnj17Yu/evQCAqKioFl37xIkTEImeNCs3MjLCkCFDGjx+0KBBMDc3R35+PkQiEU6fPo2XX365RdcmRB1N2RqBk08/VF6Il18FI28ozaMmDKUhinfMLRCTH16SWRuecBPX7X1Yiog0lY6oBosjDjDWv+s6noVoZFka6MDBRBdpRQ1PXA6wZ7cFQ093C+ySc6OkqdKMLPF+71n47fRvMutLb+zDDu9eiLR2b22IWi8hv5ztEGo5Fefg1O6PYV3BnBr8Yc8Z+CnwJRai0j5SDhdfhE5BpJUb/jm2FkY1spWPATmJCN/6LiaNeg/nnANYipIoUmjaA3x16R/0TnvQ4HGlAl381WEQ1nUegbg2dnM6X88YGzoOwYaOQ2Bbmo/JDy9h1r3T6Jib1ODzAnIS8cP5jfj24iYcdQvEZr8BOOIehBoe+y1ViGbgSCUwqq6ASVU59ERV0BNVQ7/mya9P/qsCVyoFB1JwpFJwAJn/F3O4qOIJnv7HRxVfgGouH1U8ASr4QpTo6KFYqIcyga7KhkYRdrSpJGRaWhqEQmHtlmgPD48mPc/U1LT2/wsKClp07WvXrtX+f3BwMASChl/weTweunfvXlt5ee7cOUpCEq1RWSOuTUA2pO5WbIAqIdlywrUzY21oQgQ+6TGdhWjajsT8cria67fqHFNjLsChNF9mLdzWE+ed/Ft1XkXgcDjYPLkzpm2LQFZJ/VuTF/Vkd+rneH+7Vg9mWd9xCKZEX5D5cM2XSrDhxDqETPse4ka22GmSD49GY06wdk4xtigvxvE9n8KxlHnzbGXIJHzTbQILUWm3A54hCDX7Dvv3r4JHncpHy8oSnNj9Kd7p+xp+6TxCc8qriYyO2Qn48soWjIy/2eBxBUIDrOs8Cj93GUn9wQFkGprjx8CX8GOX0eiUHY9Z989iavR5WFaW1PscgUSMl+LC8VJcOHJ1jbCtfV9s8uuPOzZN+1xMtIt+TSXsS/NhV5b/9NcC2Jfmw7YsHxYVJTCvLIV5ZQnMKkthVlXWpIFQrSUB50lCUke/NjFZrKOPAqEh8vWMkKdnhDxdI+TpGSNXz/jp/z9ZKxIa0M8BDdCmkpBubm64ffs2SkpKkJWVBUdHxyY979nEagAwMTFp0bUfPnxY+/9+fn5Neo6Pj09tErKlFZiEqKMXJ5w2RF4lZOwLlZCdHYxxO61YYXGR+mUbmOGGTTt0zXpcuxaU9Rg2ZQXIMmheX8DuP1/GlqnMpGZbFJ9Xhr/CU1BWLZL7+IgNYQh7uxe+PF3/drSGcKQSLLuxl7G+uus4tXmT1t/TEmkfD8IHR6Ox+nwc4/GLb4aip5uFQq61bmwHLNrX/GSivYluq68t5XAxb/BC3PnnbZkpyoHZcVhy6wC+7zqu1ddQF9+cfYxNN1LYDkPh9GsqcWj/F2ifz5zKvSZwDD4NncpCVG3DfUsXBE9bg/8Of4dByZEyj/GlEvx8bj065cRjwYA3UM2nyi5N4VKUhVWXt2BqzMUGj8vSN8HawDH4LWAYSoStuzGnlTgc3LHxwGIbDyzrMwsj4m/ilftnMCL+JvgNJI2ebdd+6/Yhmq6tpXgSMZyLc+BWlAX3oky4F2XCtSgb7kWZcCvKglWF+n2O4kIKk+pymFQ3fweEiMN9mpA0rk1M5usZIV/X6Hmysu7Xusb0c0PF2lQS8hkjIyMYGRk16djS0lJcuXKl9uumVk++qLq6Gunpzyu6XFxcmvS8F5OkWVlZqKyshK5u6z8IEaIpPOVUQj42a0VvNtIqx90CZZKQADAkMQL/+A1o1nnuZhTju3OPGz9Qy+WWVaHnL1eQ2UAFYHR2KYw/Otbia4yMu8FImMSa2WOfnIEPbOJyObAw0GGsWxnoyCQgG0ub+lgbIiab2aPvmS4OJnAx00NSATsDLWLNHbGy+ySsurxVZv3zq9uwr12IVm0rbOj7WhPxxSLsPPSt3P50f/oPxrI+s9Umsa+tCvSMMHz8Z/ju4iYsucVsMfHqvdNon5eC8aM/0Mq+gNrEqKocH4TvwuJbB2VuytSVq2uEr7tNwO8BwzR6yIwq1fAE2O/ZHfs9u8O6rABTYy42abt2p5wEdDq/Ed9d3IQjbkHY7DcAR90Dabu2htCtqYJXQTra56fANy8FPk9/9SzIgI5E/o1ubcSXSmBTXgSbcma7lIaUCnSRr2tYW2GZp2uEAj1DlAj0UKqjh1KBLkp1dFEq0ENJ7ddPfq3kC1DD5UPE5aGGy0MNl48aLg+ip//RewOmNpmEbI6NGzeitPT5B5p+/fo1+xw5OTmQvjCRzMrKqknPs7S0ZJzHycmp2ddvrfJqMXy+Pdvi57uZ6eHQq13rfXzZ4Wgce9i6hvP9PSzw85j6K0zHbb6JqNTnW+mFpy40+wVhTlcnLOld/5bALj9ebnKFX32+HOKFMR1s5T6WVlSJIRvCW3V+ANg6pRM61dNf7XJCPubvbd2WQwC4+mb3egdW/HMrFd+cZVY7yVN3O3aKoSXKBc8T8fUN+vv4WHSr+rcBQFdHE/w9qf4eU7N3ROJGavN+wNU1oaMdPh3kWe/jfX+7jtzy1k2lfa+vO2YGylZ9S1s4IfGoWyA+vr5DZm1Y/K1mJyEB4N8IZpUrAEz7NwJ6Aua21BOvBcOhnmq0/fcyseJEyyoFn9HhcRGxuGe9j6+9mICNLazsEtXzunAgKkPpiZr3buxhrK0JGgOJgrb+SqVSiEQi+NoY4kFW/ck/AI3+HMkvl/9B9Fk/ZQDg1/OyfS+zGD7fnkVhRf0fZgFgytZbSC9u/p95a34G1rU6aBwmPryMgJzE2jU9UTV+P/0rBr28Ui3erL74++3hYgYTXcW9Xfw7nPnvKKmgAhcfq9fgmRdxpBJsPPEzhifcYjy2r10IFgx8Qy3+3toCMZeHd/vOwR0rN/xx6n+MBFb3jIe48e87GDf6Q9yw82IpSlIfnkSMOVGn8MWVf+X2VH2mWEcPa4LG4scuo6nysRWyDcxatF17TFwYxsSFIUfPGHu8QvGfd29cdmivsPcOpBWkUrgVZaFzdjw6Z8fDPycRvvnJcC/MAhc0Ab2lDGsqYVhTCeeSXIWfO1vPBFt8++G9PrMglUhk3te+qDWfNZ7xtjLAnpmB9T7+1v77OBsnfxZDU23qbwJBK1t2UhKyAXfv3sWff/5Z+7Wrqyv69+/f7PMUFcn+kDU2bloPk7rVmsXF7JRLS6RSxOaUNX5gPaoqqxAZGVnv4w+S8xGb0/BQgsbY6YgRGVn/XZ6HGQVIKnnh8ZLm3xG6n5CKSJP6/w5is0tQ3co2GfceJcBNnCX3sfRSUav+HmqvEf0QnBxmxREARKVXKuQad6PuwUhH/qvT/celeJzXeHk9XyyCe53eT7HmslVCFRVyqpmkQHRSOmJzWjfEwJBT0+D3bXRaLmJzWpcgjE5KR2Rk/XHGZBUhv7J131T3Hychki/7w+ZZX9zmumHriVxdI5k3r4OTboMnESusn11KofzXgrv37iPXUP6PrHvx5a3+vtXhosG/7/sJxQr5t/GiwxFNS8a3VI/UB+iRHiOzlqlvin98m/9zrD7FxcWIjIzEyq76GH+44SRkS/78dDhixt/LRE997Hwk+z1cUSNp0vmT6/n+aowi/+5FPD5eG7wI17ctk+mtNCD5LuZGnVCLqcov/n7NeSK4myju7WJBPYniAevDFHYNhZJKsfrC35gRfZ7x0AVHP0wdsVSr+nlqii1+/RFj7oi9B79i9Lx1KM3HhR0fYP6gBS26SUaUY2Dibay58Bf8G6jIq+Dr4H+dRuDbruORp089HxWmhdu1rSqKMT/yOOZHHke6gTl2e/XADu+euG7vTYNDVIAvFsEnP7U24dgpOx6dchJgWqXY96P1EXG4yNc1QoGuIfJ1DWt/LdYxQLlAiHK+EOUCISr4OijnC1HJF0DM4ULK4UAKztNfUfs1XyKGUFzD/E8kgp6oCkY1FTCqqoBxdfmT/6rKYVxd8WQYTnUZhGLNrOi0rijCu7f2I8bcEXmeY+r9vKGIzxrSmobzLtEprc+7SKTGaHxvUsMoCVmP1NRULFiwADU1z98sL1++HHx+8//Iqqpkqy6EwqZtJ9DRkU0U1T0PIdrMpTgbAolYZu2xqfZsVdREEi4PJ1y7YFrMhdo1s6oy9EiLxkWnDixGRuSR1wvy5y6jUMWXfxOiNZyN+Lg2yQ7nUivx4ZWWDXCTZ6KnAWNtbDsDRhJS09yy9cSPXUbj3Vv7Zda/P/83Trp0RpKJDTuBEYalN/fhHTlbfyOtXDHmpY+U8u+JNM0NOy90nfYDdh/8BqEZsjdcdMU12HT8J3TKTsCyPrMpUcwin7wUrL7wN0Yk1D90Rszh4u8OA/FZ9ylIN1JMD2AiX0u3a9uX5df2j0w2ssRO717Y69kd4baeVCGpAPo1leiYkyiTcOyQm9Rgu4LWKNbRQ7yJLRJMbJBmaIF0Q/Mn/xmYI+PprwW6hupT5S+VQl9UBYuKElhUFMOyohgWlSVPvn76q3llsczXFpUlKkvYNoVXQRrOi6haFaAkpFwZGRl45ZVXkJPzfGvQrFmzWrQVGwCj5JbHa9oLdd3jxGJxPUcSon3aFTK3Uz+ifpCsO+oeJJOEBIDRcWGUhFQzvrnJGB0v276hRKCH3wKGKfQ6Orznb075XA4GOespLAnpbMTDEBc9xjpfS4ovPukxDWMeX5eZ9mtUU4G/TvyMgRNWUpWJGph5/wy+u7iJsZ5gbI1h4z5Dka6hymMisjINzdF/4ir878zvmHPvFOPxxREH0SE3CZNHLqNpyipmUV6Mz65tw+uRxxustjvlHIB3+87BPStX1QVHADC3a8++fwZToy/AooHt2gDgXJKLpTf3YenNfcjWM8ER9yAc9uiKUy6dUKpD2+cbY15RLJNs7JwdD6+CdIVPns7VNUK0hRMemjsizsQW8aZPko7xJjbI1zVSnwRjU3A4KBfoolygixTjprW2A55Uk5pVlT5NXpbAorIY5pWltf//JHlZ8nTteWJT0clfCTg45haIxHzlJJU1DSUh64iLi8OcOXOQkfE8AdKzZ08sXbq0xefkcmU/SDQ1mVj3OIGAncbAXA4HXlbMapSmcjPTQ0BA/b31fFOikVTRul5Q7Z0sEBBQf09I7zs3US1+oSekUKfZL7x+bo4ICKi/J6TXuZJW94Ts4OmGgHp6QloWVcLreuvv5nRo742AenpClhjnw+tB63tCdvTvUG9PyEhRKtolxzW6JVteEvKxqWwSUk9PDyio82LOAdq72MOrqHU9Ids7mDT4fds+JhKl0tb1hGzvYoeAgPp7QvpcrWh1T0i/di4ICJDtCal/6SqQ37LYj7kFQsThynygGBUXjqV9XlXImxknU93nPSGlQJVYAj6Xg44d/OrtCZnAy4RXfOt7Qjb09+1XlACv3Jb3hIzPZ7YOMDc3B+KVU9H37s19jLX1HYcoPGkyr7cPAjrK/rv0OFmIODn/vpv0c0QKVIjEmBXoiCW93WAoZL5NMcorh1d4/RU1z8jb0uJsqov04iqIJE2/E21loAMzfYHCt+NXCIR4dehbOLfjI5k+Tv1SorDgzlH8r/NIhV6vOZ79XVWJJMip4eD6Q8X93g2FPJRWqf9N1RFxN7DhxDrGeraeCYa8/AUNPgHgaKKL1KLWbetShGq+AHMHL8QdazesPbeBkfAamByJiC2LMWXEMlxzaM9SlG2HjqgGC+8cxorrOxusQoo2d8SyPrNx1C1Is5Ih2ujpdu23bTywrPdsjEi4gRn3z2FY4q1Gt8BaVxRh9v0zmH3/DKp4fJx39Mcx90CccQ7AfQvnNv13y5FK4FqU/STZmBOPgOwEdMpOgFOpYvsOphma44G5E6ItnBFt4Yhocyc8sHBCrr6JQq+jiUQ8PnL0TZs38f1p1aVZZSkMnvaKNKyuhFF1BQxrKmBYXfnk15onazpiEQQSEQQSMQRiEfgSMQQS8dNfRSjQNcRO714479wRyzo7ISDAR+5lW/NZ4xlvK4OGP78m3EdGdet6QnIV8G+aI23phAItFBERgQULFqCg4HmyKiQkBL///vuTZEcLPXjwAGPHjq39+sCBA/Dxkf/N19Dz9u/fj/btVfPm6fbt25BInryJ43K56Ny5s0quqywikUimP0JAQECLttYTxSiurIHpiuMNHrP23J94O+KQzJr/K+tw3/L5dPnODsa4nSbbp5PDAcSrRykuWC3U7adLuJFS2OLnn975EfqnRMmstZ/1Kx5aONbzjKa7+GYoerpZIK2oAgN+v4bYnDJwOMA3w9tjWb92rT4/G5ILyuG66gxj/dVgZ/wVnqzw6zmU5CJuwzyZaYjVXD7cX/tTodvcQlzMcGpeCAzqJApzy6pg/elJxvGS71X775K79BBj7crCHpj6bwRjOra815Jnvhvpi6V9PeSeTxF+OLcBiyMOyqyV8YXoNPMn1qZli1ePRGFFDdp9fbbeHo7arHtaNE7t/hj6ItmbQCUCPfSbtAoRNpr5WqRoEUt6o8vai2yHIaNv8l3sPPSt3MEbIg4XH/Wcge+7jqVKY2WQSjH28TV8e3ET2hVm1ntYrq4RPgudivUdh0DEo/fi6sy4qgwvPQ7DxIeXMTjpNqNNUmOy9E1wzqkjzjn747yjPx6Z2WttUlJHVAO/vOTavo0B2fEIyEmESbXibjaLOVw8NHPAbWt33LF2f/qrG1V5a5CwRaHo6qLZLScUkSeiV/6nDh06hA8//BDV1c/fcPbp0wc///wzdHXlV980lYmJ7F2IF6dtN6Tucaampq2KgxBN4i7nDWy8ifwqUaJahz2CGUnIUfHhCklCPvPjxYTayjOpFPjwWAzmhbjARI+dinBNsuTWAZkEJAD8276PQhOQZ+d3R6irOXS0ZW80iz7qOQPDEm7Bu+D5xHgDURX+Pv4T+k76irVeWyce5rTJBKRvbjIO7V/JSEBWc/kY99IHlIBUc+edO6Lr9B+w/8AqmQn0AMCXSvDtpc3ok3oPs4YupiohBeqS9Rhrzm9En9T79R5TzeVjXeeRWBUyEYXUykAjFAsNsMWvP7b49Yd5RTHGPrqOiQ8voX9KVJO2DtuUF2Hyw0uY/PASACBP1wjhtp4It/NCmJ03wm09NS6BpldTBZ/8VLTPT4FvXgra5z351aMwo8G2A81VwddBlKVLbbLxtrU7oixdUSFo2mwJop44WpqEby5KQgJYt24dfvnlF5m10aNH4+uvv1ZItZyVlRW4XG5txjg3t2kl2C8ex+FwYGGh2VlzQpqj7nbsVEML+sGrIPqC1iU1DnoE44fzG2XWRsWF4/uu41p1XgDYF5UJbytDrLkgOzlaLJHicV4ZAh1NW30NdSGF4jcimFaWYu5dZhXiagX83byobztLhZ6vLasQCDF76Nu49N9ymQ91PdOjsTjiIH4IGtvAs5UnsUCzh/+0hGNxDo7t+QzmlbI3gSXgYOawJTjj0omdwNRUfS0y2JZkYoMeU77DhhPrapMfLxqecAu3t7yNacOXUj/jVrIvycOXV7Zg5v1zMm0l6trj2R3v956FeFPq7a2p8vWMsbHjYGzsOBiW5UUYEX8TI+PDMTjxDoxqmC1n5LGoLMGwxAgMS4yoXUszNMd9C2c8sHDGfQtn3Ld0xmNTO+TqGbNWNWlSWQr3oiy4F2XCvTAT7kVZcCvKRLvCDLgWZTf4vd4SBUID3HmhuvG2tTtizB1poBbRWm06CVlTU4OPPvoIBw7ITj18/fXXsWTJEoVlqnV0dGBnZ4e0tCdVDsnJTdt+l5LyvCeAvb09Y1o2IdqKKxHDvUi2ErJuP0jScrODnXAhvuX9QOJN7fDA3Am++c9fo0LTY2BRXow8/dbd0V57MV4pW5TV0d/hrev7Is8bkUcZHwYOeAQjxsJJYdd4rZuzws5Fnrhu74M1QWPwXp2J5l9e3oqjbkEK/fsj8plVlOD4ns/k9upa3G8udvr0YiEq9abLV98PyOUCXUwdsRQXnDpg7bkNjCEDDqX5OLvzI6wJGoOPe0xHNZ+q7JtDv6YSS2/sw7Ibe2Egqqr3uFvWHni37xxK9mqZXH0TbO4wAJs7DICOqAZ9Uu9hVFw4RsbfgGtxdrPO5VCaD4fSfAxOuiOzXs7XQbKRFZKMrZFsbIUMA3Pk6RkhT88I+bpGyNM1QqHQAFV8Aap4z/+r4fLAk0ogkIjAlzz5VSAWw6i6AsbV5TCpKoPJ01+tyothV1YA27J82JYVwO7pf4Y1yut1m2xkiTtW7oi0dqtNOCYZW2vtNnVC5GmzScjq6mosWrQI58+fr13j8/n47LPPMGHCBIVfr0OHDrVJyJiYmCY9Jzo6uvb/VdULkhB14Fiax2iEHUdJSIUZ08EWQY4muJna8sE6hzyCZZKQPKkEwxNuYotf/1bHV1TZcBN0Ip9QVI1FEYcZ6991Ha/Q6/w8RnM/TBrJGXSjLj4NnYoR8Tfgl/f835WuuAZbjv6A0KnfoYZHSRJl0aupwqF9K2Ve055Z1W0ifunC3pAg0gocDv4IGIbrdt7Ycfg7eBWkyzzMhRTLbu7D0MQIzBj2Du5a1z98kDzBkUow/cF5rLq8BY6l9d/MTDM0x0c9Z2CLbz/qv6nlqvkCnHLtjFOunfFW/3nwzk9D/5S76Jd8F/1SohqdtF0ffVE1fArS4PNCqxJNIuJwEW3hhDtWboi0dnuSeLRya/XNekK0gfq+G1cikUiEt956SyYBaWBggJ9//hk9e/ZUyjWDg4Nx4sQJAEBYWBgkEgljavaLxGIxwsLCar8OCQlRSlyEqKN2BY1PxiYtZ6wrwOWFPXEtKR9ZJdWYvPVWs89x0CMY79/YI7M2Ki5cIUlI0jIzHpyDbXmhzNpl+/YKnQY7toMtdBvZzm+owweH86SX5zM9XM0UFkNr+Firbx+yKr4OZg1djGvblsn0lQrMjsOXl7fi/T6zVRZLW+oFyZOI8d/h7xCawbxBvLHDIHzcYxoLUbHPzVwfCfnasSU/0todQdN/wG+nfsO0mAuMx/1zkxD+77v4LHQKvg8aS8NS5JFKMSL+JlZd/gcdc5PqPaycr4PVXcdhdddxKBeo53Z9okQcDh5aOOKhhSN+6zQcHKkEHXMS0S8lCsEZseiW8RBuzayU1AQZBmZ4YOGEaHMn3LF2wx1rd9y3cEYVn3YxEiJPm/wpu3r1apw7d672a3Nzc2zYsAF+fn5Ku+bAgQPx1VdfQSwWIzc3F6dOncKQIUPqPf7EiRPIz88H8KRCc/DgwUqLjRB1U7cfJAA8NqMkpCLp8Lno42GJ5Bb2fQuz80KOnjGsKp5PFB6SeBs6ohra1sYCjlSCd27uZ6wruhdkU+gKeHitmzP+vP58W/2CHupRYaTuDcFv2Xri624T8PH1HTLry27uwwnXLjjrEqCSOB49HQql9aRSrD/5C0bF32A8dMAjGPMHLWhzW+SeVTq/3NEO9l+cYjkaxSnV0ceM4e/gnLM/fjy3gbHdUkciwleXt2Diw8uYN3ghbtp6shSp+umR+gBfX9qMnunRDR632bcfVvScgTQj6hlMnpByuIi0dkektXvtmlV5IYIzHqFb5kN0zE6EX14y3IqyFN5nUdFEHC6Sja3wyNQeDyydEW3uWJt4LNAzYjs8QjRKm0tCXrhwAZs3b6792sTEBP/88w88PZX7ZsPW1hYDBgzAyZNPBgasWrUKnTp1go2NDePYjIwMfPXVV7VfDx48WO5xhGgreUnIOJqMrVYkXB4Ou3fF7PtnateMairQNzUKJ127sBiZ+skorr9flqKMigtnbFmKNnfEYY+uSr+2PL+O64g+7hZ4kFWKQV6W6ONBH0qbamXIJAxKuo2QjFiZ9c3H1yJg5s8qmSRaLZbgp0sJSr8O21Zd3iLzGvbMZfv2mDpiWZscCrCwp3rcMFAKDgd/+Q/GBccO2HT8R/RIZ1a/dspJwPV/l2Jdl5H4uMc0lOrosxCoevDPScCqy1swMv5mg8ddcvDFO33n4BYlbkkT5Oib4ohHVxx54f2JXk0V2uenwC83Gd4FaXAuzoZLcQ5cirPhUJrfpEncrVXGFyLD0AwZBubIMDBDookN4k1sEW9igzhTO6QYWVKVNCEK0qb+JYnFYqxatQrSp3vEOBwO1qxZ0+oE5IwZMxAeHl779cOHD+Uet2TJEly4cAFVVVXIysrC1KlT8fXXXyM4OLj2mLCwMHzwwQfIyckBAOjr6+Odd95pVXyEaBoPeUlI2o6tdg57dGV8gB8VF05JyKeqRRLoLj+ikmstvbGPsfZD4BiF9+Ia6du0G2I8LgdTuzgq9NpthYjHx/Th7+L2P4tlhgw5lOZj/clf8PLoD5RenTd/911klSg/ec6mRRGH8EH4bsb6PQtnvDRmBSoEQhaiIqoQZ2aPPpO+xns39uKzq9uhI5HtQ8yFFG9HHMK42GtY3vsVbPfp3aYqYgOy4/FB2C68HHu1weq0eBMbvN97FvZ4hrapPx+ieBUCISJs2iHCph3jMZ5EDIfSPFhWFMOiogQWFcUwryyFRWUJjKorIBTXQCiugY64BkJRDQQSMURcHkRcLmq4fIif/n+pQA/FOnooEhqgSKiPYh195OsaIcPADBmGZm36hgMhqtamkpDHjx9HUtLzPiZ6enrYtGkTNm3a1ORzWFpa4ttvv23R9d3d3fHll1/i/fffh0QiQWpqKmbMmAFnZ2fY2toiIyNDZiI2l8vFqlWr4OREUzFJ21K3EjJL3wQlQnpzoG5OunRGFY8vM0RoVFw4FvV/nT6QAFh5OrbxgxQgJD2GsU0uU98UW337KvQ6LmZ6GOWnOVX5w3yscSzmee8pXxtD8Lia8X0Zb2qHRQPmYdPxn2TWxz2+jrlRJ/Bnx6FKvX50dqlSz8+2iTGXsPbcBsZ6spElho3/TCO21hnr8lGs5CFeUzs7YNttzRwK0RgJl4dvuk3AMbdA/HX8J3TOYVb+OpXm4t+ja7Do9iG80/c1XLf3YSFS1QnOeIgPr+/C6PjwBo/L0jfBypDJ+LPjYBqYRZROzOUh2dgaycbWbIdCCFGQNpeEfFF5eTkuX77crHM4ODi0KobRo0dDR0cHn376KQoLCwEAycnJSE5OljnOxMQEK1eubLBvJCFaSSplVELSUBr1VKajhzPOARie8HywjXNJLjplx+OOjYfCr5daWInI9GQ4mOhiQDtL8HnqPXFz1elHKrnO0ht7GWvruoxUeEP0q4t6wtJAc6rDvhvpi3uZxUgprISZngD/G+ffovMY6rCzJfcf3/4YmhCByQ8vyaz/eG4Dwm29ZHpskabrnxSJf46tZVR45ekaYej4z6mf3QtWDPLEwQeZKK0S13uMvoCH8pr6H1d3kdbu6DZtDRZHHMRnV7dBX1TNOCYkIxZXt7+H7d698GmPaXhsZs9CpEoilaJfyl28H74Hg5PuNHhokY4+Vncdh5+6jEKZjp5q4iOEEKJ12lQSMj4+nu0QAABDhw5FSEgIdu3ahbNnzyIpKQlFRUXQ19eHh4cH+vTpg0mTJsHc3JztUAlRObuyfMaHAEpCqq/D7l1lkpAAMPbxdaUkIcduej48YkpnB/w7jbZ9e+anYczjMJm1UoEufu84TKHXcTHTg52xZk069bM1QsKHA5FUUAEnU90WJ62H+rBUfcHh4I2Bb6B7egxcSnJql/VE1dh16BsETV+LYqEBO7FpqG7pMdh/YBVj+205Xwejxn6MGIu2vfNkRqBsCwUfayPkfTEUdzOK0fXHS3Kf81qIM37W8P6hIh4f33cdh91eofjt1G8YknRb7nFTHl7CxNgr2ObTG191m4iHFprbckK3pgrToi/grduH4N/AtGsAqODr4H+dRuCb4PEq6UlLCCFEu7WpJOSRI8rpzbVly5ZmP8fU1BRz587F3LlzlRARIZpL7lAaSkKqrYMe3fDrmd9l1sY+uoZPe0xT6nW3307DtyPaw9G0bVdjLIk4wKjo+qvDII3YTqoKXC4HbhYtb+XQx90CrubstYIo0jXEjOHv4OzOj8B/oTF/u8JM/HX8J5X0h9QW/jkJOLr3c8ZUZBGHi0kj39f6rbbPvBLkiM03UxnrfdwtsHqkL2NdwOMi0NEUAz0tcfpRbu26hb4ABjo8fD/SV+OTkM8kmthi2PjPMPHhZXx7cZNM8v8ZnlSCGdHnMS36AnZ498T3XcfhthJuuimLV34qXr13Gq9GnYJlZUmDx1byBNjgPxjfBo+nCmFCCCEKo9572QghbU67AkpCapJ0IwtctZP98N4hLxle+cwPuYqWWlTZ+EFazKq8EK/cPyuzJuJwsTZwtMKv5WGhPRV38n4vhjry78m+Eeqq5Ggad9nRDx/1nMFYH/f4OpbcOsBCRJrHMz8NJ3d/ArOqMsZj8wYvlJnSqk7G+7f8Z18vN/m7aZb2ZQ5+AIBzC0JhbVR/u4X3+rWDkP/8Y8OHAz3B5XLA53GxQA3+nSgMh4OdPr3Qfvav+LDnDJQI5N/o4kKKKQ8v4dbWJbi0/T1Mjr4AgbhGxcE2jWF1OWZHncLF7e8j5u8FeO/G3gYTkKUCXawOGgu3uRvw1oDXKQFJCCFEoSgJSQhRK/IqIWk7tnrb59mdsTbu0TUWImlb3rx9FHp1Whfs8uqBJBPFD4+Z081Z4edky6vBzC23w9ur98Cd77uOxQGPYMb6txc3oUfqAxYi0hzOxdk4tftj2JQXMR5b1ns2NnUYyEJUTbPrlaAWPW9qZwf8MaGj3MdaWjc70MsKD9/vh3+ndcHdd/tgSe/n1X9zQ7Tn9eGZSoEQ33SbAK85v+NP/8EQcer/yNQjPQbbjq5B+u+z8L/TvyEkPQaQ1j9VWhVMKksx7cE57DnwFbJ+m4mNJ9cxBpjVVSg0wMqQSXCduwHv95mNLAMzFUVLCCGkLaEkJCFErdQdSgNQElLd7WU5CZmUX45NN1JwOSEPUpY/+KmKXk0VFtxhthj5vus4hV6HwwFmBjpiQkft+Tc4McAeMwMdweNyoCfg4sthPmhvY8h2WA2ScriYPXQx4uskmPlSCXYc/g72JXksRabebMoKcGrXx3AuyWU89kXIZKzpOpaFqJpmUqeWDT+Z1dUJW6d1gbmeYgdTAYCzmT6mdHZABzvZvoAB9iYKv5a6yDIww+uDF9YmI2u49Q+qsqgswRuRx3B1+3tI/HMOfjn9O4Yk3IJQzrAbReNKxAjMfISlN/bi2O5PkfXbTGw5thZjH19n3Kyq66GZAxb2fx1O8/7Cpz2maWXfx78ndWI7BEIIIU+1qZ6QhBD1V7cSMl/XsN7+djpyBk20t1bvZII2SjC1xW0rN3TOed4XLCjrMZyLs5FsrNyhHtcS8zHoj+u101mX9HbHmtF+Sr2mOph97zRjO90Z544K702W/8VQmOgJFHpOtvF5XGya0hnrxvpDh8+BkM/DwfuZbIfVqEJdQ0wYtRxXtr8H3Re2fdqX5WPfgVXoM+lrVAo0Z3q5slmWF+Hk7k/gKefG1o9dRuOz0CksRNU0Az0t8dNLHZRybj6PWQtp08A2bEX6c0IA5u6KVMm1FC3RxBavD16IVSETsTx8N2bdOyPz77Au55JcLIg8igWRR1HF4+OGjScuO/oizNYbUVYuSDCxgbSB6soGSaWwL81Hp5x4dMmKQ2DWY/RJvQ9TOe0G6iMBByddO+HnLqNxwrVzy2Mhrfb9KF8sPUQV7YSQtoOSkIQQ9SGVMpKQDVVB9na3QFhyoczamz3clBEZacRer1CZJCTwpBryx8CXlHrdN/ZE1SYgAWDd5QR8PsQbhkLt/fHGlYjl9gL8PkjxVV1GWvznaKSreb+32zYeeKv/PKw/9T+Z9a5Zj7HxxM+YNmIpDarBkwTk6V0r5E793dhhEN7pO0dt/5w+G+yNTwZ7Ke38HhYGsDbUQXbp8+q4hT1clXa9F83p5oxpXRyg/8FRlVxPGZKNrbFg4AJ8EjoNc6NOYP6d43AqZVbavkgoFqFnerTMduhSgS4emdohxcgKaUYWyNI3RamOLkoFeqjiCcCXiMGXiqErqoZFZQksK4phU1YIj8IMuBdlMQYsNVW8iQ02+Q3AZr8BSDG2atE5iOLkfjEEj3ObnjwmhBBtoHnvwAkhWsuyohjG1RUyaw0lIZ1M9bB6pC8+Ph6DSpEEo/1sMKsrs98bUb69nt2x8sq/MmtjlZyEvJtRjLsZxTJrIokUWSVVCk9CRqQW4t2DD5BcWIGx/rb4doQveFx2khjjHl2DR5Fs5V6UpQtOuHZhJR6iWhv8ByM48xFeizopsz7l4SXct3TBVyETWYpMPTxLQHaUk4Dc4dUTrw9aoLYJSADgKrkgjcfl4OCrwXhr3z0k5JdjjL8tltUzrIbUL1ffBF93m4jvuo7HyLgbmB59DqPibkBHImrS8w1rKtE5J4Fx804ZsvRNcKBdCP7z7oULTh2o6lGNmOvrAKAkJCGkbaEkJCFEbcgbStPYZOx3+3rgzR6uKKsWw8JA8T2wCBCxpDce5pRix5103EwplDuVOtrcCTFmDvApSKtd65EWDZuyAqU1t//nZorCzpVSWIGc0ioE2JswkotiiRQjNoYjq6QKAPDDhXjYGeni3b6K3frcJFIplt7cx1heEzRG4YmVEBczcFlKtJIGcDh4c8Dr8MpPRe802S18X17ZigQTG2xv34el4NhlWV6EM/VUQB52D8LM4UsgaaCnX1sR7GyG62/3YuXaQj4XtkZCZD59PdV0Yi4PBzxDcMAzBGYVJZgQewUvPb6O/il3IRQ3LSGpDAnG1jjk0Q17vLrjin17+r5XQwH22td7kxBCmoKSkIQQtSE/CWnb6PN0BTzoCugNtrLo8LiY1MkBkzo54HhMNoZvCGMexOFgr1coPgzbVbvEhRTjHl3Db52GKyWuq4kFCjnP0kP38cOFeABARztjnJ4fAkuD5z3SHmaX1iYgn/njehIjCSmWSLE3KgMx2aUY5KWcbW69U+8jOPORzFqqoQW2+/RWyPkHelriUkI+OtkbY/PkTgo5J1G8Gp4AL4/+AGH/vgu34myZx/4+/hOy9E1x1iWApejYYV1WgFO7P5GbgDziFoSXR32AGp529TdtiKmeALp8LipFktq1od7sb7/lcDhYPcoXM7bdZjsUhSvQM8L6gKFYHzAUBtUVGJR0BwOSI9Er9T465CaDC+UNTks1tMA5J3+cd/LHOWd/JJo0/t6JsEteX3NCCGkLKAlJCFEb7QpoMrYm2+vZXSYJCQATHl5WWhKytU7F5uDP60nYfff5993djGJsCEvG8v6etWs1EgnjuS/2cNp8IwVbI1Jx5tHzvmCfnXyolJiX3tzLWPu5yyiFJVdOvt4dUqkUHDXerkqeyNU3wUtjVuDK9vdhVPO8jYWORIS9B79Cn0lfI9LancUIVce1KBMnd3+CdoXMAUOH3Z8kIKv5bScBCQA6fC7e7u2Ob88+BgAIeBy83Vs9vh+mdXGEm7k+ev5yhe1QlKZMRw/7Pbtjv2d3AIBpZSm6Zj6Cf24iOuQmwS83Gc4lObApL2rWeXP0jBFnaos4EzvEWDgiwtoDt63dkWlorozfBiGEEKJwlIQkhKgNDzmVkJSEZJ+JXtN+VERYeyDOxFamX2Hv1PuwK81DhqGFssJrkX8jUuutxFlzPk4mCdmQg/czMXvHHca6VAkFL+3zkjEy/qbMWrGOHtZ3HKLQ61ACUnPcs3LFpFHv4eC+leBLnyfLjasrcHTv5+g96WvEmdmzGKHy+eUm4fieT+FQms947JB7V0wYtbzNJSCf+WqYD4Z4WSE6uxT92lnAx9qI7ZBq2Rnpyl2fF+KC9deZ1ayarlDXEKdcO+OUa2eZdR1RDRxK82BWVQrD6koY1lRAKK5BDZcPEZeHai4feXpGyNM1Qp6eMSoEqplkTlTHwUT+vwVCCNFWVAdOCFEbdbdjlwj0kK1vWu/xpnpt84OlKvVwNYODiV7TDuZwsMNHts8YF1JMiFW/apffribW+1heeU2Tz7MxLFkB0TTN0hvMXpDrOw5FsdBAZTEQWb3dzWHFci/a426BmDt4EWPdrqwAZ3atgGsRszpQW3RLj8GFHR9oVQLS2lBxSSYOh4O+7SzxRqirWiUgG/LbeH+2Q1Cpar4ACaa2iLBph4tOHXDUvSv2eYbisEcwjrsF4qxLACKt3ZFqbEUJyFZwt9BnO4R6OZjoYUpnB7bDIIQQlaEkJCFEbdRNQj42ta132Aafy8FgJfXdI8CMQEd8PMgLB18Nbtbzdnj3ZKxNirmkqLAURhH9JDOLK3HoQZYCommcXWkepkVfkFmr4fLwU5dRKrk+kW/79ECsHuXLdhjY3GEAVvSYzlh3LsnFmZ0r4FScw0JUyjU04RZO7/oY5pWljMf+8+6Fl0drXgKSz+VgRHtrtsNgFVViE0XzsjJAdxflDMhrjXaWz28gbp7cCcfmdsP6CR2R+NGAVt3cer8/TbsnhKg3SkISQtSCaWUpLCpLZNYem8nfit3B1gg7ZwbC2oiqApRl85TO+HyIN8z0m/dGOMrSFQ/MnWTWumc8hEuRapJ1qlRWLVbZtRbfOggdieyk1W0+vZFmZKmyGIh8MwIdMTPQke0w8FW3CfifnP6rbsXZOLvzI61KRL55+zAO7VsJAxFzwvLvAUMxffg7GjGEZqi3Fb4f5QtPSwN0cTDB7leCml55rmamUiUXUVNn54eCz/IQmEtv9mCszQx6/nODz+NiiLc1XuvmAmez1lVtDvKkG/SEEPVGSUhCiFqQ1w8yTk4/yE8GeeHu0r4Y04F6RSqCtaEQQr7sj4KJAa3oISdnSzYATHx4ueXnZNmt1PoHB5jrKz/RYVpZivmRxxnra4LGKvQ6s4OdGj+IMHA4ajLwg8PBW/3n4a8OAxkPeRRl4vL29+GTl8JCYIrDlYjx09n1WHd2PXhS5sCoVd0mYsGANyDh8liIrvlmBjnhnT4eeLi8P24u6Y3Rfq2faKwvYOf3bs5yWwJC6mP59HtzUU831mLo4WaOH1/yg7WhDkz1BFgx0FNpu3lCXdWv6pOQlrClYhOtRUlIQohaqLsVGwDiTCjRqGy6Ah6W9fWo/dpAh4fFrUyoyN2S/VB1W7JPxubgj2uJiM8ra/zgRlSJxHhtZ2S9j9sosH9bfRbcOSoz/RgAjrgF4Z6Va4vPuXNGINaN7QA+98nWRxczPXzYxGE8RH1JOVzMG/Qm/vHtx3jMqTQXl/5bjuAM5UxuVzaL8mIc3fs5Ft0+LPfxpX1m4+Oe0+tt4aGORvraKPyc4zvSz01C5FkQ6iqzzVlPwMXHg7xUdv23erkj/ZPByP18CL4Y6qO01gO6LN2IIETR3MzVt5craR2ajk0IUQvucoYnxJm2viqENO7zId4Y08EWsTll6O1uAftWTmqMNXfEbSs3dM5JqF3rkh0Pz/w0PDJX/pa9N/dGAXhSEXRmfnd0a0UvqJsp9VdBqoJeTRXejjjIWP8m+OVWnbe/pyXM9XUwM9AJiQXl8LUxAo+rOckbUj8Jl4dXh7wFnkSCaTGyfUQtKktwZucKTBm5DIc9mtfvlU1BmY+w6+A3cClhbimv5Akwa+hi7JRTga3Ozr8RCkOh4t+G93IzV/g5VW2gpyVOP8plOwyiZbytDRH9fj9ciMuDk6keujiYIDKjGCtPxbb4nIZCHgRcLgoqngy0e62bMzY0MLCOSz9nCSGEKiEJIerBvZDZMzCekpAqweFw0MXRFJM7O7Q6AfnMTm9mQmCyCqshAaC8RtzgFOymnoNNc6JOwaqiWGbtkoMvrjgqZhiKkS4f/nbGlIDUMhIuD68MW4wN/oMZjxmIqrB//yp8dH0HOHK2NKsVqRQLbh/Bpf/el5uAzNYzQf+JqzQuAQkAPtaGCj/nRwM9We99pwjzQ101qaCVaBBzfR2M9bdDkJOpQhKCAXbGePxBfxx8NRgP3uuLT1RYWUkIUQ49geb/HFV39CdMCFELbnUqIau5fKQaWrAUDamPRCpt0nE7fJhbsqdFnwea+HxF+edWqkqvp0h8sQjv3tzHWG9tFSRpGyRcHuYNehPfBI9nPMaFFCuv/Iudh76FYXU5C9E1zrY0H0f2fo5fzv4BoVjEePyehTNCpq3GdXsfFqJrnbd7uSllsJq25O3G+dvhwoJQfDjAE2tGsz99npCGmOnrYKSvDXysjdgOhRCiAEdf68Z2CFqPkpCEELXgUSibhEw0sdaY4QJtSRcHkyYdl2hii6t2sskBr4J0dNPQfnRsmBpzgVH9dcfKDcfcAlmKiGgcDgcf9noF7/Z5Ve7D4x9dw+1/FiMkPUbFgTVAKsXEmEu4u3kRhiVGyD1km09vdJ+6GokmmlctH7W0L34Y7cd2GGqvp5sFvhzmgyW9PRo/mBCWqOs0+1/G+rMdAiEaq4+HJfxs6KaCMlESkhDCOoG4Bk4lsv2f4k0U37CftJ6tsS56NnHy4hY/5nCMmQ/OKTokrcSRSvBe+F7G+rfB4zVq8IamUMWAITatDRqD8aOXo1TAbLfgUZSJS/8txxdXtkIgrmEhuhdiKUjH0b2f4b8jq2FZWcJ4vIbLw9v95mL68HdRpqOeH/4b42drpLSBFNrKhiakEjU1PdCR7RDkcjPXzNdHQp4Z59/4TUZ7Y8W0kCKqR0lIQgjrXIpzwIXsNt0EDaxwaStOzWvaNoWdXj1RxZMdvDDp4SXoiFSb6IhILVTp9RThpcdh8M1PkVl7bGqL3V49WIpIuwU6Nq3CV5Pt8wxF96mrESfntZUnlWDF9Z2488/bGFxP9aEymVSW4osrWxG1eRGGJt6We0yciS36TPoa67qMokQ8IYQV3lYG0OFxwedyMC/EBcN8rNkOSa7e7hYw1ROwHQZRIjM9gdZW6w30tMQvY/3hZ9vw7+/U6yEqiogoGiUhCSGskzcZO56SkBqvQM8Ih9xlJ/CaV5ZiRMINlcYxb9fd2v+/nlRQOz1bbUmlWB6+m7G8uus4iKlFgVJowzCPprhv6YLgaWtwzLWL3Mfb56fi+J7PsH/fl/DJS5F7jCIZVFdgedguxG2chxXXd0K3nkrMDf6D0Xnmjyrr//huHw+0V8LgGG3W0a7hD4udHYxVFAkhyvP1iPbIXzkEeV8Mxe8vd1TaULeZQU4tet6cbs4AAAMhnxI0Wi7IyQRRy/oi94shbIeicCdf7w5bY13MDGq40tjVXF9FERFFaxvvugkhaq1uP0gAiKPJ2Fphiy9zS/aM+6rdkh2RVgQAuJNWhH6/XW31xGxl6598F8GZj2TW0g3Msdl3AEsRtQ1tZUB4gZ4RRoz7FAv7v45yvo7cY0bHh+PepoXYcegbBGc8VPhAKffCDKw+/xeS/pyDry5vgXllqdzj0gzNMealDzFv8EKU6qj2w4axLr/xg0it0b62MGug8mpeiIsKoyFEefR1+DBS8uvDjEDHZk/o1eFx8WrX58nLQEdTBUdF1An36Y4APYH23pzu6WaBdWM7sB0GUQJ6h0UIYZ27nCQkVUJqh+NuXZCjZwyriuLatREJN2FRXow8fdVWxmy5lYoqkUSl12yJD8N2MtbWBr6Eaj5trVKm9/u3w9dnHsusNbYVqDlczPSQVFChsPO1CoeDXzuPwGmXAPxzbC0j6Q08maA9IfYqJsRexR0rN2z26499nt2RbNyy7Yd2pXkYHReOcbFXMSD5LqMFx4tEHC5+7jIKn4VOUXnyUd0I+VyNeN2yNhLi/IJQ/Ho1EVUiCTo7mODQ/UykFlViUid7zO1GSUhCmqqjvTEuLOiBrRGpMBby8eVp5mt0XecXhCLEpWk9u5Wtu4sZriUVMNbbWRogo7gSZdViFqIimujNHm7o52GJDt+fZzsUokCUhCSEqNyNlEKZr93kbMdOoME0WqGGJ8B/Pr2x6Pbh2jWBRIzJDy/if51HqiyOkkoR1l6MV9n1Wqpn6n30T5HdLp6va4g/ArRvu426md3VGRvDkpFdWg0AGNneBr42ituSu7CHG5YdfqCw8ylCrLkjQqd8h7lRJ7Hy8la5w2AAoFNOAjqd34i15zfinoUzLjn64aZNOzywcEKysRVy9Ewgetr/VSCugXllKVyLsuBVkI6umY/QPT0GgdlxTYrpjHNHvNtnDu5auyns96nJlvX1kJuA4Kth6a6/nTF+G9+x9utFPZX/d+hvZ4T/pgeCx+Ugr7QSPf53TenXJEQVgpxMEeRkCgCNJiHbWxvKTUByOC0vZL/wsi22xpTiz3vyK9UbUl8l+UhfG3wzvD10lx9pWVCkloGO9lZAEu1HSUhCiMocjc7CjxfjcfqR7CRs96Isma9z9IxRImzb1S/a5B/ffjJJSACYde+MSpOQM7erfthGS3xy7T/G2rrOIxVeDUZvXpnaWRog8t2+OBmbDSsDIfq3s2z1FOMDs7siPKUQ3V3MMLy9jdolIQFAwuXhj4Bh2OHdC59d3Y43Io9CIKm/SqVDXjI65CUz1mu4PEjBgY5E1KI4rtr54OOe03DOX5OlDAAAyP5JREFUOaBFz9dWi3q6MRIQvjaGqKiRIL+c3WnmbJsR6IjNUzrXfh1eVsViNISon0U93fDzpYQWPVdfwIWXmeJ3YOjwqRucIkzrop6T2TWdulQTazt6FSCEqMTD7FKM+fsGIwEJqZTRE5L6QWqXWzbt8MBctsl6YHYcumQ9rucZinfgflbjB71AKpXiqzOPMGT9dSVFxNQj9QEGJkfKrBXp6OOnLqMVep3ZwU4Q8ikJKY+NkRAzAp0w1MdaIR+URvnZYuVQHwxvr/6V3YW6hljcfy485/yB/3Uajop6+kXWRyARNzsBKQEHh92DMHT8Z+g55Vu1SkB2sFOPQSpWhkIUrBxaW5Ub7GSKHTOCWI5KPdDNFEIa9uVQ1Qzzaq65Ic5sh6DRBnhaYqiaTmbXRDpPhxPq8rlYOdRbIecc5GWpkPNoK6qEJISoxI476RBJmHtCLCuKYVQj2yeN+kGqNx6XA19zAR7kN7EKh8PBX/4D8f2Fv2WW5949iTcGtVNChK134H4mVhyLUek1P7m2nbH2U5fRKNRt/Zbg17o5w0jIh5+tEWYG0t1zdfJdTzPEFtYgp0KCSxk1rFe3JRtbY9GA+fg0dCpmPjiH1+6ehG++YidlJxlZYYdPL/weMBSJavp6PzPQERvDmBWfTTU72Al/hyvmz81ET4B7y5hDvgghymFjJERWieZX1hoK2fuo729nhKgM+S0+3uvbDsdjspFSWNmqLeNt1Ym5IeCqYUsOTZX52WDcTS9GJwdjGOs+qf6VNtC3uilOzOsO7tJDighPK1ElJCFEJe5nFstdd5fbD1I9P5SS5z7vbgofMwF4TXwPtNl3AKp4sm+Gp0ZfgEG1mgzqqOPP640nH747/xjR2c3vlSRP97RoDJJTBfljoGKqIIf6WGPNaD+8GuwMPo9+9KsTc10eXvc3xopgU7yiRgnifD1j/Bj4EjrM+gV+s37Bxz2m4bxjB1Tymr89r5rLR5itFz7vPhmdZ/wIt7kbsLz3LLVNQAJAL/fWTeX8alh7BUZDCFGl/6Z3YTsEreZhaYDHHwxA2Fu9kPXZYLbD0TgvJiDVqT/wl8PUs/K2MaZ6AvT2sKhNQALAgyzFvL8n8lElJCGEVfInY6v/1sW2ztVYgC1DrSCWSBGyI6PR4/P0jbG3XXdMeXipds2opgKTYy5hY0f1ewN6LCa70WOakqhsKrm9ILuMVEgVJNEcEzraYm0L+3cpDYeDaAtnrLJwxqqQSRCKquGfm4T2eSnwLkiDdXkRLMuLoCMRgSuVoJwvRIGuEbL1TRBr5oCH5g64Y+WGSoGQ7d9Js73Zww3vHLyPGnHzKyKsDJq3nZ20XitbuBINsSDUFb9eTVTqNfp40FZKZRPwuOjqbMp2GBpPwONilK8NDj1oXtshRfO0NMCHAzzx761Uhd2gbwxPiS/6I9pb40h0458FGtLH3QIX4vNk1gypjQgASkISQljmIacSMs7UjoVISEvwmnEHdkPHwTJJSACYG3VCLZOQqhSSHoMhSbdl1op19LC2y0vNPtfnQ7zx6YmHigqNqFiQkynWjPbF6nNxyFTTrYBVfB3ctPXETVtPtkMhRIanpQH4XEAkYTsSQghRnX+mdIbZx8dZjWHr1CfVwy91sEX02cZ7vgc6msDOSBeHo1uePNXhczHQ05I5b0ABrAxbf+P0tRBnmSSkhwkfHhY0eBWg7diEEJZRJWTbcd7JH4/qJJiDMx+hU1YcSxGpB3m9IH/pPBIFekbNPldzksJEPS3p7YG0TwZhzys0fIRoLxsjHQjq9POY3Mm+Wefo1062Ws1QyMcHQaYQNrVPCCGEKEGQown4XA6MdVVT72WiJ2BtK/SJeSEoWDm0tqp1ehdH6DYy2G9+dxfcWNwbv7/csdXX36bGrROmdXHExgkd0dtBF5O8DLCurwU4VLIPgJKQhBCWuRXJ3gGr4vGRbmjOUjREmaQcLjb4M6se50adZCEa9dA75R6GJspWQZYI9PBDYPOrIIn24HA4tLWUaDV9HT7e7eNR+7WhkIe3e7nLPdbbykDu+hBvK8baaA99nBmvvr1GCdEkRVVUVtwS4Yt7o+KbETj3RijboSjdIC8rmOg976Xoa2uEM/O7Y043Z7zZwxWGQuVuP7Y0EMLOWH3bvcwIdMCa3uZYGmgCK33aiv0MJSEJIayqO5gm0dgGEi69SGurTR0GoJore2d4+oPzMK4qYykiFkml+OrSP4zl/3Uejnw9YxYCIoRoCh0tqPZbNcwH4W/3wrZpXRDzXn90czGTe9xr3VwYa5cX9pAZIvAiIY8DPb7m//kQogizg51kvhbwONgxI5BRiSxPNeUgW0zVO1OU2R+xubq7muPPCQFYN9Yf7a3r39VDu3faLkpCEkJYoyOqgWOJbMNe2oqt3XL0TbG/XTeZNaOaCsy+d5qliNgzKi4coRkxMmuFQgOsDhrHUkSEkOao++FeleZ1Zybm+mrYMA0Oh4MgJ1NM7uwAexPdeo+b3Mkes7o6QcDjwEjIx/ejfBHq2vCOibc60Y0c0jrz5fwbczFjp5+bub78hHtTLOnlDosXnv9Bf09MCLBH7Pv9sX16F1x8U/ur9dqC/u006/UfAKwNdeBsqieztrCnG+M4vpyEuSUNf9NolIQkhLDGtTgLXMhOHY03pW1U2u5/nUcw1hbdPgyuRMxCNOzgSsT48spWxvp3Xce1qBckIUT1xC2Ymq0okwIcZD68dXcxQw83+ZWEmo7P4+KvSZ1QsHIocr8Ygnde2MZdHycjmr1JWmd2V2eZ3nbBTqYIsGMnuf1mD2Zipqk62Bnj0QcDcHhOMB681xefDvYCALiY62NSJwcEOZoyntPdhblGmibQ0YS1607o+Lzvekc7Y3wwoF2rzqnsQkUOh4NdM4PQwdYIQv6TKd8rh3gzjvOwMGAkHRe24t8EYR/9hCaEsMa9iDkRLd6EkpDa7pKDHyKs3dElO752zb0oCyPjb+BguxAWI1OdqTEX4Z+bJLOWqW+Kn7uMYiki0ho6POY9XT8bSiarm6ilfSGSSNBj3RWU17Tupgefy4GvLXt/x/Ymuri5pBeORmfDQIeHod7WEPK1u5WJvg59bCGq09XZFNfe6ok9dzNgYyTE9C6O4LK0ffTDAe2QUVyJA/cykVNWzXh8SheHBp9vqifA8PbydxrpCnh4NdgZf4Un1649qQLNaVXMbYWFvgB55TW1X78up4JWFbhcDrZPD8QHGcUoqRKhm7MZMksq8ce1JOS/EF9TWegLsGtmEPZEZeB/VxLlHtPYAJqm6OpsirtL+0Iikdb774vH5WD/7K5YuDcKCfnlGNvBDu/1a/xm1IuG+VgjLLmgRX8WRPHopzkhhDXyJ2NTElLrcTj4ucsobDr+k8zy2xGH2kQSUiCuwedX/mWsr+w+GeWC+rckEvXlY20IWyMhMkuqatfY+iBC6megw4OruRFOvh6C/11JhEQqxY476S0617qxHRDkZKrYAJvJ0kCImUHsbQknRNsF2JsgwJ6dyrYXCfk8rJ8QgN/HdwT/vcOMxyd3ajgJ2Zjfx/ujr4cFHmSVYJCXFXq5miIyMgcNpVy/Gu6DD4/GNHBE23B8Xgg+OhqDtKJKTOxkjznBzrWPqTpnzeVy0Mnh+fers5k+rizsiX9upeC/2+lIyC9v1vn6trNE33aWuJyQj8j0YsbjS/s2nghsat/HxhL8oa7miHinT5POJU+gown2zeoK3eVHWnwOoji0HZsQohK77mYw1jyK5CQhTaknZFvwn3dvZOnLvrHvlxKFgBeqI7XVvLsn4FacLbMWZ2KLDf6DWIqItBaPy8HxuSEY6m2F9taGWDHQEwtCXdkOi9Qj1NUc/07rgu3TA+U+nien0uhFa1/yw+vdXRv8gE7U25rRvmyHQBpxeWEP1ra2tpS1oZAxDXhK59YlCJuinaX8CfJNxedxMT3QEV8Nb49+L/QW7GhZf9+95f09GzynoZzKZb4CsnKjfNXrc0KgoymOzwtB1LK++HiQFzgvDIjxsTZkMbInvK0NsWpYe6X0/nyrV+NbomcGOjLWhvlYKzSOPu4WjR7Ty90COs2o3GztvynSMEpCEkJY40aVkG1WNV+A3wKGM9bfijjEQjSqY1hdjhXXdzDWP+0xFTW8ljeef9Hy/sweQLQ1uPV6uTEHYRgLn3/I6mhvjKNzQ3D/vX74YqgPa9v2nmmvBh9+NJWLuV6Dj+sJtHvbc1vQ07XxD62k9QZ5yR+WMTvYCV8O88Hncvq/PdOBxXYHLaXD52LlUJ/ar830BFjWhGoxddXOlA9BC7MFc7o5M9ZGtG998omtCvQh3lbNfo6Qz8PkTvZKiKb5HEz0sH5CR4UNdBHyubA0EDZ63Dh/O7hbPB/o1NnBWOFDdGYHM7/X6urt3vAws7pefqG/ZkP6etDPkpagJCQhhDXudSohs/RNUKbT8Ic/oj1+DxiKKp7snfKpMRdgV5pXzzM03/LwPbApL5JZi7RyxXaf3gq7xqvBzrAxev7GcLy/Hbys6I5ua71Rp7JxRqAjDITq29Um2NkUs2irbov4UtKetFAne82ayq3X0gxTE7wa7Ix1Y/3lPrZxYid8OMATRi18DVXnSvO3e7kj4cMBODEvBAkfDZDZHqtpuBwOVoW2bODVeH87dHnh9z7cx7rRqfbq7NdxHVv0vNF+6lNc8Vo3F2R+Olgh52pqyxlrIyHC3uqFTZM7Ydu0Ljj3RqjC3zsN8rKSe6P4Rc3tmexl1fCNXHcLfUzv4oC/JnVq1nnJE+r77pkQot2kUsZgGqqCbFuyDcywzacPZt8/U7smFIuw9OZ+vNt3DouRKYdLURbeubmfsb6ixwxIOYr7INjO0gBRS/vgdGwurA2F6O1uLrM9iLTM5M4OsDYU4sTDbPhYG2K6nC1GiqSIajtDXXqbR4gqadpLrZ2xLuLzmtcnTh18OcwHCfnlOBaT3fjBLHAx14eLuX7jB2oAbgu/qU30BLiyqAeuJxVAl89DkJNpk/sDqiMDHeVVwJvqCfDzmA6Yuf220q7xDBu7NCwMdJTev3huiAsuJeQr9RoverCsH3T4XBRX0qCblqBKSEIIK6zLC2FYUymzRknItmdt4EuMtdcjj8GyTrWgNvjm4mboimXfrJx2DsAR9yCFX8vSQIjJnR3Q39MSfDmTm0nL9Pe0xLcjfTE72BkCJf+5hrqYQ1inf9H6CR1lqlwb8zC7RNFhEUII60z1BDjyWjfkfTGE7VBIA4R8Hvp4WKKbi5naJyD1G7jx11iVXWst7OGK6YGOcDSh4YSaQt2/n9UdfTIhhLCibhUkAMSbNp6E7KnkNwJEte5ZuWK/RzeZNX1RNZbcOsBSRMrRI/UBJsVellkTc7h4t++rmlc6Q1TCSJePfbO6wt/OCNaGOninjzte7ercrGmb4/yb1tOorTDTU0zfVULqw6FxRSql7JtBRP0o+i1TTzdzDPexxvF53eo95uNBXoq9aD3e6/e8pzeHA3S006z2DppgaJ3entO6NH9w1Hh/O0pCthLt0yGEsKJuP0ig8UrIIEcT9GpmY2Gi/laFTMSYuDCZtTfvHMHqruNQqKv5wzU4UgnWnt/AWN/gPxhRVo1PFiRt11AfawxtxRRJQzXuWalqUzo7wISSkOQpAa/1HyBXDPTEl6cfyawNa2+NiDTtq+QnRF10d2lZj8r6XHyzR4OPH54TjIFeVsguqVLodeVZ2NMNIS5muJlSiFBXcxx/mI27R4qVfl15mjNJWpNsmtwZC/dF4WZKIXq6mdfbt7Y+kzvZY/2EACVF13Zo53cXIUTtucubjG1qU+/xW6d2xpn5oc1uLEzU3y1bTxxz7SKzZlxdoTWTsl+NOo2grMcya0U6+vikx1SWIiJtRVu+T394TjBWDfPBOH9b/D2pE/6m5vHkBX4KmLw8rs7QrxAXM/TzaNrUV9p2SVqCy+XA3072e3dk+/rfOytbsIImVddXVSav6tG7kYEhimZt2PQWKPJUiyXNOj7IyRTzQ13RkeUhV2/20M6b5NZGQuycGYT4jwbin6ldmn1z8psR7ekGrwJQEpIQwoqmVEL2b2eJxb3dUfjlUEzt4ggjGrKgtVaFTGSsvR1xEEZVmtcw/0WW5UX49tImxvqXIZOQo2+q8nhI2xLoaMp2CKwR8rn4YIAndr/SFa90ddLaqg7SMgIeFwM8m5YwrI+lgQ7C3uqFnTMCsX92V5x+PQS6jUybdrfQx7/TusBBTZKQDfXBay0BjyP3/Jo2QVzd/DkhoPb7x9vKAGtG+7IWywoFbVNe2teDsabL5+J/darUjr7WjTrYKImd8fNkq42REFM7N3+bMiFNRZ/oCSGsqFsJWckTIN3w+VbrCR3tsGOm4gd2EPV01cEX55z80S8lqnbNrKoMS2/uw6c9prEYWet8d/FvmFeWyqzFmtljXeeRLEVE2hLqWURI/bq7mOHMo9xWncNET4CXA+ybfPzjDwYAAH6+FN+q6ypCB1sjOJnq4V5m6wdYdbQzxt0M2W2jYzvYwtFUDwH2xohMf/7YnG7Otf+v10jStjH8NvgaF+xshuQVA5FTWg0rQx1wWMzKjfS1QU83c1xu5VRiZ1M9uevzQ13Rr50l7mYUo7uLGRxN9ZBWVNGqa6naMB9rGOjwUFYtZjuUBp2c1x33MotRVCnCyPY2sFeTGyVs8rIyQGxOmcyanhJv3LQldFuYEMKKuoNpEkxsIOXQS1Jbtqobsxpyya0DsCkrYCGa1uuTEoVZ988y1t8cMB/VfOpNR0hLGFNFPNFQC3uyv73xh9F+6OthgdnBTk+qyhR03lF+NujmbFr79WAvK/R9ujX98JxgzOnmjP7tLLH2JT8sCHWtPW6gpxVaQ1fAQw9XxfYI1AQcDgfWRkJWE5DPKLuq19vaEBMC7OFYT6JSVfR1mMmnDk1o62BlKMSJeSEY5WsDAznnYMOsICeZrw2FPHhZGWBSJwfMC3GhBORTc7u5yHzd1ckUVq3cnk+eoHdyhBClE9XphyIUVcOxNE9mrbGhNET7nXXuiLNO/uj/QjWkYU0lPr62AwsHzmcxsuYTiGvw6+nfGOvbfHrjjEsn1QdE2hxt3X78aHl/2Hx2stHjrAzogwKRr25PPVUY2d4GK4d4t+i5EwPssTMyXSFxLO7tjsW93RVyrhcZCfm4+GYPhCUXQMDlIsjJtLYS28FED3/WM8jBw9IAXw33wYdHY1p87f9mBGLx/vuIyixmVC2R1nMwZCbO3urFfkJd1QyFfAz3scbRmOzatddeqOptSKirOQ68GgwA8PjqDBLyW95qyMpAp8XPfWb5gHY4EZuNjOIqcDjAdyN8adK8HEt6u0MileJodDY8rQzwRQtfwwkTfbcRQpQuPKVQ5mvXomzGMQkm7DXWJmqCw8EHvV5hLM+NOoF2BYr5AKYqH13fhfb5qTJrhUIDvNt3DksREW3W0Y7ZY228vx0LkShfU6sQXhwYQsgz+gIevh/lp/LrHpwT3OLp7MN8rOWuK6IIbow/8wZwLzdzOUc2TsDjoqebBbq5mDWrFcTy/p4tut4zDiZ62PVKEGLe79+q8xD5PEz46OdhUfu1kZCPV7s+T76Zyvm+tmxmoszemFl593JH9fsZtn16ID4Z5IWJAfbYMDEAi9SgurklvKwMkfDhQFxb1BNZnw3G/Beqk8lzXC4Hy/q1w7kFoVg/IQC2cr5PSctQEpIQonTxebJ3/DyKMhjHxJlSJSQBbth5YbdnqMyaQCLGmvMbWYqo+bpkPcaHYTsZ6x/1nIEsg7a3bYwo30hfG5nEwTAf69qtkG3RYC8r6Daxb9NwOQkesxYmi4j6y/58MAZ5tW4LsLpQxMT3l/xs4WL2fJurm7k+RvrSTWHyHIfDwb5XArF1amesGe2LW0t6y0xuntCR2RO1uUNNBnhayiQuORzg1eCmVRm2hryBOA0x0uXjsyHe+G9GIF4NdlaL7fAtpcPnopuLGSy1ZNeAhT47P7d5Gvw9wCbajk0IUTn3wizGWt3t2EIt3UpIGrei53SMeXwdfOnzbfyj4m9gWPxNHHNX72FFQlE1Nh9bKxM7AITZeuGPjkNYiopoO30dHs6+EYqI1CLweRwE2BmD2wYHNgDAglBXrBza9C1Tc0NcZLbXWegL0LOFlWBE/enraN5HHxM9Zsz921liZpATZv13p1XntjIU4uqinthzNwMcDvByR3scfsB8j0baNn0dHqZ2cZT7WF8PC8wNccaGsGRIpU/6DQ72ll+9Wx9DIR9n53fHmgtxKKiowStBTujbTvk30tRlSj1pvd7uFjDTE6Cgokal1zUQ8hmDueY0cZt+W6Z5P4kJIRrPvSiTsRZfpxJyQjOmTRLtEmvuiF87jcBbtw/JrK89vwGnXQJQw1PfKqXPr26DX16KzFolT4BXh74FCVc9GpIT7cTjctD1hcEQbdUv4/ybdfxLHWyxfkJHbL2VCmtDIT4a6NnkKkpCFEmXz0WlSMJY7+thyXhsXogL47iWsjPWZX1oTjdnU4QlF9Z+rcPj0hRaDcHlcvDHywH4alh7SCFtcWVdBztj/D25c4vj0IQJ1ER5DIR8nJ7fHVO33sJDFfeG3T69C+bsjMS9zGIMaGeJ1SN9VXp9TUSlRoQQlXMtYt5lf7EnZF8PC63ZLkVa5tPQKcjRk+1z51WQjvfD97AUUeNC0x5g6Y19jPWPe0xHtAXdFSVEUbo6mSr0fK91c8H5BT2wc2YQAuxNFHpuQppqZpATPCz0ZdZ6u5vDVE+AQ3OCEepqBi8rA6wa5oMJAerXL6816iZB3wh1oUEZGsbCQIfVrb2HXg1GsIJ/NhDN0tnBBLtmqn7HVHsbI1xd1BPFq4Zj3+xguX1SiSx6dSeEqJxbsWwSMlvPBOWC51siTswLoUqUNq5I1xAf9pzJWP8obCfa5yWzEFHDLMqLsf3w9+BCKrN+2b491gaOZikqQrTLsy1O6jIMwMPCoFkDOAhpzKph7fHsW0qXz8Ung560FhjgaYXLC3si5v3++GCAp0b3opNnWhdHXFgQik8He2HXzECseTo8SF/Oe0H6N0fk6dvOEtff7oVutCOAELWnsu3YBQUFiIuLQ2pqKgoLC1FeXg4ulwsDAwOYmJjA1dUV7u7uMDQ0VFVIhBA2SKVwq1MJWXcyNt39JgDwd4cBmBt1AsGZj2rXhGIRNpxYh16Tv1Gb7c0cqQRbjq2BU2muzHoZX4jZQ99WmzgJ0VT+dkbo6WaB1SPbAwCmBzqirFqEN/ZEsRqXiZ4Aq4b5YPmRaFbjINpjYid79HY3R1RmCQIdTWCu37wpw5qsl7sFerlbyKzNDnbGpYR8mbVRNDiHaLAAe2Mk5MsO7GzuNHFCNJ3SkpAikQhXr17F6dOnERYWhuTkxitXOBwOPD090b17dwwcOBBBQeo9gIAQ0nzmlSUwrq6QWaubhCQEACRcHuYOXoibW9+BQPK8z0/3jId49+Z+rA4ez2J0z30YtgtDE28z1pf2fRVxZtTblJDW+HWcP+aHujLWQ13VY3jMe/3aURKSKJStsS5sjWlgBgCM7WCLdZeNcTvtydCHgZ6W6F0nUUmIJpnd1Qn77z3vjc/hAKN8bRt4BiHaR+FJyNzcXGzfvh07duxAXl5e7bpU+mSL2rPtA8++frYmlUohlUoRGxuL2NhYbN68GY6Ojpg4cSKmTJlCFZKEaIm6VZAAkGjSvCl6pO2IsnLDN8Ev4+PrO2TWv7yyFeecO+KmrSdLkT3RPykSn13dzljf7t0Lf3QcqvJ4hFRFTAghREuY6AlwZWFPXEnMhw6PixAXM9otQzTaSF8bfDrYC79fS4KBDg+fDvaCW51esIRoO4UlIQsKCrB+/Xps374dVVVVAGQTjc9IpVIIhUIYGRmBy+WioqICZWVltce++JzU1FT88MMP+P333zFt2jTMnTsXRkZGigqZEMIC1+JsxhpVQpKGrOo2EeMeXZWZOi2QiLHtyGp0mfEjSnXYefPmlZ+KnYe/BU8qO800xswBrw9+88ntbRUb4k0DnQhRtU72xriTXlz7taelAYvREKJddAU8DPBUzs82XT4zoRnkSMOpiPJwOBx8Otgbnw72ZjsUQlijkCTk9u3bsXbtWpSUlMgkES0sLBASEoL27dvDy8sL3t7eMDc3h0AgOzFIJBIhMzMTycnJuHfvHiIjIxEWFobS0lIAQFlZGf7880/s2LEDCxcuxPTp07WuITMhbYXcSkhjSkKS+lXzBZgx7B1c274MQrGodr1dYSb+Ov4zJo16D1KOaisjLMqLcXjfFzCvLJVZL+frYMLo5SpJjI7ytUGlSIxTsU96Ub7Vyw1+tnSjjhBV+2CAJ6ZsvQXJ07fAHw5gt0KbECdTXaQUVrIdhtrztjKEi5kekgqetwl6LcSFxYhIa03u7ICw5EK2wyCENKBVSciUlBQsW7YMkZGRtclHS0tLjB07FoMHD4a/v3/TguDz4ejoCEdHR4SGhgJ4kpi8desWDh8+jOPHj6OkpARFRUX46quvcPjwYXz11Vfw8PBoTfiEEBbIS0JSJSRpzB0bDyzv9QrWnt8os/7yo6v45Np/+Dx0qspiMawux8H9K9GuMJPx2BsDF+C+pfI/wIzytcHGSQGwNBAiIa8cBjo8WBsJlX5dQgjThAB7dHYwQXhyAQIdTeFtbQiJhLkbiBBVea2bCz498ZDtMNQel8vBiXkh+PTEQyQVVGC8vx3mdnNmOyzSCi93tMM3Zx8jq+TJzkxrQx1kl1azHBUh5EUtTkLu378fK1euRHl5OaRSKfz8/PDaa69h0KBB4PNbX2DJ5/PRrVs3dOvWDStWrMC+ffuwZcsWxMXFITIyEi+//DJWrFiB8ePVYzABIaRpXOskISXgINmItpCSxv3UZTQGJkViRMJNmfVPr/2Hh2YO+K99H6XHoFtThQP7V6F7BvPD3bddx2OLX3+lxwAA+2d3rd0RQL2EiDYLdjZlO4QmaWdpgHa0DVsrnJnfHQN+v8Z2GC02N8QZHw3wRFRGMXbfzahdnxXk1KTn55c3P2FjZ6y+N8G4jWye87IyxPbpgaoJhiidg4kewt7qiV2RGdDhczHU2wre355jOyyN5mqmh8gXWo4AgKmuoJ6jCWlci/evLV++HGVlZXBycsLPP/+MPXv2YNiwYQpJQNYlFAoxefJkHDlyBN9//z1cXFxQUVGBjz/+WOHXIoQoHu+Fd4B1KyHTDC1QzacfZKQJOBy8MmwxHpsypwhuPv4jRsaFK/XyBtUV2H9gFfqlRDEe2+UVig97zVDq9QlpizrZU3820nyuxszPI8v7t2v0eW7m+ujXzhL8xjJXamxxL3dwuRz8OSEAc0Oc0dnBGAtCXbFubIcmPT+tuHnbuPUEXAzzUY8Bg7O6yiZae7qZg0+DbNocZzN9vNvXA4t6usGGdom02itdmTcwxnSgid6k5Vr8qmxgYID33nsPR44cweDBgxUZU4NGjhyJo0ePYvny5dDXp+oPQjSBqe7TDwNSKVxKcmQeS6DJ2KQZ8vWM8dKYFSjW0ZNZF0jE2HnoWwxOjFDKdc0rinFq98cYnHSH8dhFB1/MGrpE5X0pCdF2e14JAleDk0GEPTb6PMzr9vyDs5OpLuapoNefnoDHWAt1NVP6deUx0RPgj5cDcGtJH/wyzh8GQsUXigDA0de6wdJAPRI9P77khymdHWBnLMQwH2tsndqZ7ZAI0XijfG3xencXCHgc6At4+HyINwLsjdkOi2iwFv80On78OKys2NlCyePxMGvWLIwYMYKV6xNCmk4qleL20xJ+27IC6Ilkt/kkUj9I0kzRFs6YMmIZDuz/EvwXJlPrimtwaN9KvDZ4kUK3RfvmJmPvwa/gVZDOeCzc1hOjxn6CCoF6fAAjRJvoUAUTaYV1Y/ywoIc70osr0dPNHIZKSsK9yN/WCHbGQmQUV9Wuze2m+YNOhHwuqkQSxvqkTvbo42HJQkTyGesK8O+0LmyHQZTIykAIfQEP5TXi2rUJHe1YjEj78bgc/Da+I9aM8gWPy4GQz7zZQkhztPjdHVsJSHWLgRDSsHcP/Z+9+46vsrz/P/4+2TshkAQIhAAJSdh7gxDqKoICgnvUWUfdFbSuto7y+7ZaRxXBgXW2qAgibgSqICAoU/YKBBIIGQTIOrl/fyBHTs4JWec+I+f1fDx89NzXfd33/YFyk/DONTbpoU83S2JnbLjOp53665rz71a17EdJBVdb9cZn/9QT//u3gk7bSbtRDEOX/rxE379zn9MA8seEjjp/4mM6GsqofADwNhaLRT3bxui8zESnAWTr6DCHtqauQRoUGKAvbxqiST3aaFBKnP4xvquu7t+uSff0BpmJUTo3g393wfNCggL08NldbMfRoUG6b1TdSy2g6SJCgggg4RLm/0gQgN8qOFahZ/+303bcsaTunbEn9eCnmaifd7POUkRluWZ9+YLDuQdWvq9ROet17Xl3aVt8coPv3aa0QC98/bImbP/e6fkl7bqdnBYeykYUQH1d0TdZc9YeUIXVcUQV4G4XdE3UnfMssp62k/nvnKx95kxceLDaxDiGmJLUtXW05lzT3yU1AnA0NTtNF3VvrS2HSjU0tYXXLAcAoH5Mmedy3nnnaebMmcrLcwwcAPiPnKITMn793t7pSMiaIeSITvFmlwUXOzvdc1OxXu15jq4+/25VBjj+ZHbIgS3a8MbteuabWUo6Vliv+yUcL9Lfls7WtldvrjWAnJs2WOdPfIwAEl4vLMi7pjP/cVSaFlw/0NNlAJJObl4x5+p+6pscq4yESD09vpvOyah7nerAAIueGd/NbtM9AO6VkRil8d1aN+sA0tkGWYlRzffXC/9hykjI3bt365lnntGzzz6roUOHatKkSRozZoyCg9kBF/BnqcX5Dm01Q0j4nusGttOX2w577PlvdR2tA5Et9MH8pxRTccLuXHC1VXeu+Vi3/rRQH3caoE86DdB3yVnKiU7QiaAQhVdVKLUkT0NyN2vcjpX67a7VCq62On1OtSx6bOhlemLwFDahgU9Ijg1TZmKUNueXeqyGpOhQBQdYNC07XT1ZyB5e5qLubXRR9/rPwLggK0lvXt5HseH8mwaAucY4+SH/bcNS3V8I4GKmTse2Wq369ttv9e233yomJkbjxo3TRRddpO7du5v5WABeKrXGdOzKgEDtj2Lko6+b1KON4iM26sjxSo/V8HWH3hpwxdN655O/q1/+DofzwdVWTdz+vSaeNrqxyhJgt7HNmeRGxuv6c/+gzzv2c1nNgNksFosWXD9Q0z75WTsKjumCrq315dZD+n5P/UYGu0LuI2fbagF8Xe/kGAJIAG7Rs02MrhuYotdW7pUkDWwfp8v6NHyJIcDbmDKU44EHHlDXrl0lndwZ1zAMFRcX6+2339bkyZM1btw4zZ49W0eOHDHj8QC8VM3p2HujE1TtZBotfM+tQ1M9XYK2xSdr6OX/T/9vwESn07Nrqm8A+Xq3Mep27QsEkPBJnVpG6r9X99fqu8/Sn8/NUKCbs0CLxUIACQDwen2TYx3aPLmsicVi0StTemn7A9lac/dILfvDcH4IgmbBlLfqmmuu0QcffKBPPvlEN954o9q0OTnN4VQguX37dk2fPl0jR47Ubbfdpq+//lpWq/PpbwCah8Bqq1JKDtm1MRUbrlYZGKxpI69Vj2ue17zOTVt77pOO/dX/yqd1/Xl3qjgsykUVAr6thZf8Ayg+wrGO8d34mgIAaJybhnSwO06ODVNWUrSHqvlVp5aR6p0cqwDWoUUzYWq037lzZ91777365ptv9MYbb2jixImKjIy0hZFVVVVatGiRbr/9do0cOVLTp0/X1q1bzSwJgIe0O3rYYeTZbkJImGRrfDtNuOgh9bz6OT3f5wIV1nMTmcNh0Xq+zwXqe+UzGjfxEa1JSjO50jO7cXCKR5+P5icpummL2t9zVieni+W7W3JsuH5z2npZFot046AOZ7iicbzh1woAMN+Ng1L05G8z1Tc5Vhd1b63PbxzMBlSACUxdE/J0gwYN0qBBg/Too4/qq6++0rx58/Tdd9/ZRkAeOXJEs2fP1uzZs9W1a1dNmjRJF1xwgWJiWMQc8CUbDpRoyc4CdUuKtpsykFribFOaunehBJpiQ0Kq7sy+SfeMul6983dqxP5NSi/MVasTxYopP6Gi0EgVhkdpQ8sOWt42U+sSUmX1kiUCWoQH6/ZhHTXr+72eLgXNyFX92uvD9Qcbff1vs5I0uVdbZU7/xoVVNc6H1w7Qayv3anfhCY3vmqRRaY6L+DfVHSM6afqi7XZt3bxgZAzgbjGhjv9sjAjxjq+XgCtYLCc3UZuWne7pUoBmzW0h5CmhoaEaO3asxo4dq4KCAi1cuFBfffWVVq9eraqqKknSxo0btWnTJk2fPl1jxozRxRdfrKFDh7q7VAAN9PHGg5r4xg+yVhuSpHFdfx3pWHM9SEnaHcNISLiHNSBQq1una3Vr7//GcsUdI7S78LjO6tRSiU0ctYbm5/I+7fSPJfabL2Ul1n+5gLFZibq6Xzv9e/W+RtfQJSFKceHBKjrhuc2oJCkqNEh3jOhk6jOu7tdOM5btVnHZye9RB7SP06CUOFOfCXijy/u205x1B+zaLunV1kPVAE2X2iLC0yXAxQKcrEEd6sF1PeGcR/8fadmypa666iq98cYbWr58uf7+97+rd+/ekk6uH1leXq5PP/1U119/vc455xzNnj1bx44d82TJAM7gn0t32gJISfp406/Bo7MQkjUhmw++wLvOgJQ4Te7V1hZAXl5jJ8SzOrVkow8fld7KcVmAhr46V/VrZ7dQfvu4MJ3dJaHe1wcFBmj2ZX2U+8jZuqZ/O6W3itQFWQ3/u/jGQf6xVEBWUrRW3TVS08dmadbkXvry5sEKCuTvO/if8zITNDbr1xksE7q31mgTRh8D7tA6OlRj0vnz29yktYpUVKj9CO27R5r7w0o0nFd8F7V582a98cYbeu2117R27VrbTooWi8W2fmROTo6mT5+u7OxszZ0719MlA3Dimx0FtZ5LJYRs1s7LdJxaX9s3d9FOpnShds9N6K6JPVorITJE53RJ0BuX9fZ0SWikW4el2h1HhQQqPa5hG730bBujxbcO1W3DUjUtO01Lbh2mqEa8U61jwvT6pX20ZVq25l8/sMEbzjz12yz9a2KPBj+3NneM6OjQ1qmld4xSSWsVqT+OTtP1g1IUE+YdG/PAXHydchQaFKj51w3Uz/eP1papo/X+Nf0VTCAPH7X41qGN+toJ7xYSFKB3ruin1tGhCrBI52cmalq2Z9d3hyOPvXnbt2/Xxx9/rAULFig3N9funGGcHEmVlZWls88+Wz/++KOWLVsmq9Wq4uJiPfjgg1q3bp0effRRT5QOoBFqjoQ8HhSivIg4zxQDl+vTNlY3DErRKytOrl84unNLXdyzjb7edtjDlfm++IgQvX/NAE+XARe4bWiqth06pv+uzVW72DD9v7GZCilt+LTogSktNDClhUtr69Y6Wt/uOlLv/gEBFt0yNFW3fbi+wc/qkxyjH/eX2I6zEqN0/cAUzV6Vo5Jfpj2fl5GgzAZMM/c2zgYrJ0SGuL8QNMo9Z3XSw59tcWhvExPmkvtnJUVrxd4iu7Z2ca65t5ksFosyfPi9BE7pksCf4+bqgq5J2v/I2TpeYVUkQbNXcuv/K3l5efrkk080f/58bdly8gv7qcDxlPj4eF1wwQWaOHGiMjMzbe2HDh3Su+++q1deeUUVFRV677331KdPH40fP96dvwQAjVRzY5rdMUlO/5XGT9V9U0CARTMn99LDZ3fR8QqruiRE6u01+z1dFuBVggID9MLEHnrhlxGEVVVVWru28WszutKNg1MaFEI2xSNnZ2jyv39QVbWhAIv06DkZ6tEmRj/efZYWbs5T6+hQjc1K8ullBywWi67sm6y3Tvt78AZ2u/cZV/dv7xBCBgVY7Na6bopr+rfT7FU5dm2TerRxyb0BwN9ZLBYCSC9m+v8zpaWl+vzzz/Xxxx9r1apVqq6ulmQfPgYFBWnkyJGaOHGiRo0apaAgx7ISEhJ0xx13qHv37rr11lslSe+88w4hJOADQqoq1bbU/h+3u2vZGXt0Wkt3lASTtI8L93QJABrhst7Juubdn9zyrAu7t9auP43Rqpwi9U2OVcovmwN0bBmh24Y5Tsv2VTMn91LnVpH6aX+xRnRqqTtN3kQHrtM+LlxH/nqeLn7jBy3aflj92sXqsXMy1M5FX+PO6txK/xjfVc//b5dCggL0QHa6srxk1/WB7eMc2i7uSUAKAHANU0LIqqoqLVmyRPPnz9fixYtVUVEhyXHUY0ZGhiZMmKDx48crPj6+XvfOzs5Whw4dtGfPHm3fvt3ltQNwvQ4l+QqQ/fvvbGfsO0Z0VAbTI5q94R3j9enm/Lo7AnAbd2+2khwbruTY5v1Di7DgQD16Toany0AjxYUH66vfDzHt/neP7Ky7R3Y27f6N9dusJLWLDdO+4jJJUmxYkC7tnVzHVYB3CgsKdGjr3to7An/AX5kSQg4bNkwlJSfX+jEMw7bBjCTFxcXZplt37dq1Ufdv06aN9uzZ4xBqAvBOHUvq3pTmnC4J+ueF3d1VEjzo+kEphJAAAHihuPBg/e+2YZr9Q47Kqqp1Zd926twq0tNlAY0SEhTgsDTGzUM6eLAiAKaEkMXFxXbBY2BgoIYPH66JEydq9OjRCg5u2s6CBQUnd+BNT09vcq0AzFdzUxrJMYRsExPqrnLgJhEhjj997t8uVhO6t/ZANQAAoD46xEcwihfNxitTeqt/+zhtOHhUY9Jb6RJG9gIeZdqakIZhKD09XRMnTtT48ePVsqXr1nm79dZblZycrE6dWFsH8AWpxY6j3mqGkGh+RnaKV2CARdbqX0et/35oqiwWi7omRWlTXqkHqwNgtpYRTfuhMwAATRUSFKA7WJMX8BqmhJBXXHGFJkyYoO7dzZlaef7555tyXwDmSK3HSEg0P60iQ/X25X019ZNNOnK8Ulf1a6dr+rf3dFkA3OQmprwBAADgNKaEkA8//LAZtwXgo2quCVkcEqGiUNYX8gdTerfV5F5tZBhSQIDF0+UAcJN7z+qsx5jOCQAAgNOYNh0bAE6puSbkrtgkyUIg5S8sFgv/dwN+5K3L++jyvu08XQYAAAC8jNtCSMMwVFhYqIqKClVXVzfo2rZt25pUFQCzRVacUMKJErs2pmIDAAAAAOBfTA0hjx07plmzZmnRokXauXOnrFZrg+9hsVi0adMmE6oD4ErLdx9x2p5a4rgpzW5CSL8XwNBIwOsEWKTT9pECAAAAXCrArBvv2LFD48aN08svv6xt27apqqpKhmE06j8A3u/tNfudttecii1Ju2IIIf3d7wayQQ3gbe49q7OnSwAAAEAzZkoIWV5erjvvvFO5ubmSRJAINGPHK6r03a4jWlbLSEhnIeTu2ESzy4KXm9KrrdrGhHm6DACnmZqdphEd4yVJsWEsGw4AAADXMuU7zIULF2r79u2yWCwyDEO9evXSJZdcoqysLEVFRSkgwLQBmADc6IecIp398nIVl1XV2sfpSEimY/u95NhwrbxzhNr99UtPlwLgF/ERIVpy2zAdPlauuLBghUz9xNMlAQAAoBkxJYRcsGCB7fNFF12kp556ShbW/wKancc+33LGAFKSUp2NhIxhJCSktrGMhAS8UavIUE+XAAAAgGbIlCGJu3btkiQFBwfrwQcfJIAEmqmFmx03namp5sY0+eGxOhYSblZJgFvdMCjF0yUAAAAAgE8wJYQ8fPiwLBaLMjMzFRMTY8YjAPgCw3CYjs1UbPizsVmJ2vfw2VpxxwhPlwIAAAAAbmXKdOzIyEgVFRUpNJTpPIA/a1FWqtiK43ZtTMWGv2sbG8ZUdAAAAAB+x5SRkB06dJBhGMrJyTHj9gB8RMcSZztjMxIS/isyhB2HAQAAAPgnU0LI7OxsSVJeXp5++OEHMx4BwAewMzZg77I+yWc8fz1rTAIAAABopkwJIS+55BLFxsZKkv72t7+poqLCjMcA8HKpxY4b1xBCwl+d3aWVzs1IOGOfu0Z0clM1AAAAAOBepoSQsbGxeuyxxyRJGzdu1E033aR9+/aZ8SgAXoyRkKhLXHhwref+NjbLjZW43p6HfqMTf/utfrrnLP10z1n69IbBCgsOPOM1bWNYSxkAAABA89ToxaleeOGFOvukpaVp27ZtWrFihc4991xlZmYqKytLsbGxCg8Pr/ezbr/99saWCcCDUmusCVkti/ZGn3kkGPzLvWd10sOfbXF67v7RaZr2yc913qN9XJhyispcXVqTtY87+XWuZ9sYD1cCAAAAAJ7XpBDSYrHU2e9UH6vVqk2bNmnTpk0NfhYhJOCbao6EzI2KV0VQ7SPf4H+uH5iiN1fv09ZDxxp9j8B6fC0CAAAAAHhWk6ZjG4ZR7/8a2v/06wD4IMNQaon9mpBMxUZNrWPCtPbeszxdBgAAAADAZI0eCTlgwABX1gGgmUk6XqTwKvtNqQgh4Uxo0JnXSfRmgzu00Csr9rrsfoEBjOqEb+nXLlar9xXbtUWE+O47DfiSLgmRDjMJQoNMWfIfAACXaHQI+eabb7qyDgDNjLNNaXbHEEKiYSb3bKM56w6csU/fdrHaXXjCTRXZG9e18X+mbxycolnf/xpgdk2KUkwYyxXAt9w8pINumrPOdhwYYNHITi09WBHgP24a3EH3ffzrUledWkaoY3yEBysCAODM+FEZAFM4DSFjEz1QCXzZ/dlpig379edld4zoqJqDBa8bmOLmqn6VEBWqvsmxjbp2+tiuGtc1SeHBAerfLlbvXdnPxdUB5vvdgBTdMjRV0aFBSm0Rrneu6Kv4iBBPlwX4hbtGdNIjZ3dRzzYxuqh7ay28YVC91uwHAMBTGj0SEgDOxFkIyXRsNFS/dnHa+eAYfb+nUBmJUerUMlJDOrTQX77YqmMVVt08pIPOz/RsuD1rSi/1e2Zpg6+LCw/WvOsGyjAM/tEInxUYYNG/JvbQ8xd1VwDLCQBuFRBg0WPnZuixczM8XQoAAPXi9SFkRUWFQkL4iTrgawgh0RDXDUzRayt/nZp8ae+2ts8tIkJ0ftavf3Yu6Z2sS3onu7W+M4ls4vp3BJBoDgggAQAAUBe3hJCGYaiwsFBlZWWyWq1O+1RXV6uqqkqVlZU6fvy4Dh06pB9++EELFy7Ud999544yAbhQhxo7Y1cGBGpfFOuEwbnnJ3RXbFiQlu8pVP/2cXry/EyX3bt32xj9lFvisvudcm5GgiQpOtTxS+mw1BYufx7gbmd3aaUvtx62a3P25x0AAACoD1O/k1y3bp1efPFFLV++XBUVFXVfAKDZqDkScm90gqoD2DEVzoUHB+of47uZcu9bhqbq5vfX1d2xDpf1Sda7P+6XJFksJ+8rSW1iwjSkQwst31No63vDoA5Nfh7gadcP7GAXQvZsE6POLdn0AgAAAI1jWgj55Zdf6q677lJ1dbUMw2j0fZimBviegGqrUo4esmtjUxp4woXdknRVv3YuCSFfv6S3zs1I0LbDx3R+ZqKGpsbbzs2/bqD+b/EO7So4pnHdWuvKfu2a/DzA06b0bitDhj5cd0ApLSJ071md+L4MAAAAjWZKCFlaWqqHHnpIVqvV6Terp9pqhpOn9w0NDVWXLl00evRoM0oEYKJ2pQUKrrZfemF3DOtBwr12PjhGqfGuGbV1XkaCQoICdHX/9k7Pt4wM0d/GZrnkWYA38bY1WAEAAOC7TAkhP/roIxUXF8tiscgwDJ199tk699xz1apVK82bN09z585VUFCQZsyYocDAQBUVFWnz5s2aO3eu8vNPriMXFRWlF154QYmJjJ4CfA2b0sDdhqW20He7f50OHRsWpJS4cJfd/4bBTK8GAAAAgKYIMOOmy5Yts32+7LLL9Pzzz+uCCy7Q4MGDdeGFF0qSrFarDMPQkCFDdP755+vuu+/WJ598ouzsbElSQUGBHnnkETPKA2Cy1OJ8hzZCSJjprpGddPrmvPeO6uzS3Xon9mjjsnsBAAAAgD8yJYTcsmXLyZsHBOjWW2+1O9ejRw8FBJx87MqVK+3ORUdH65///Ke6dOkiwzC0ZMkSrV271owSAZiIkZBwt0k922rN3WfpuYu665tbhuhPY9I9XRIAAAAA4DSmhJAlJSWyWCzq0KGDEhIS7M5FRkaqXbuTC/avX7/e4dqQkBDdcccdtuOFCxeaUSIAE6WWOIaQu2NYWgHm6tk2RrcP76izOrdi8wwAAAAA8DKmhJAnTpyQpFrXc+zUqZMMw9DWrVudnh81apSioqIkSRs3bjSjRAAmqjkS8kRQiA5GtvBQNQAAAAAAwNNMCSGjo6MlOe5+fUpKSookqbCwUMXFxQ7ng4KC1L59exmGod27d5tRIgAT1Qwhd8ckSoxMAwAAAADAb5kSQrZo0UKGYdh2uq6pffv2ts/bt2932ufUSMijR4+6vkAApgmpqlTb0iN2bawHCQAAAACAfzMlhOzWrZskac+ePcrLc1wb7tRISMn5upCSdPDgQUm1j6YE4J1Sjh5SgOzf290xhJDwrJuHdPB0CQAAAADg10wJIQcPHizpZID4t7/9zeF8Zmam7fPnn3/ucH7Lli3at2+fLBaLYmNjzSgRgEmc7Yy9O5ZNaeBZf/ttli7q3lqRIYGeLgUAAAAA/JIpIeT5559vCw8/++wzXX755VqyZImqqqokSUlJSUpPT5dhGPrpp5/08ssv267Nz8/Xgw8+aBsB2bVrVzNKBGASZyEk07HhabHhwfrw2gE6+uRvPV0KAAAAAPglU0LIiIgI3XLLLbYgcc2aNfr973+vn376ydZnypQpts///Oc/NWrUKE2cOFG/+c1vtGnTJtu5c88914wSAZiEEBIAAAAAANRkSggpSddee62uvPJKuzUdT18L8tJLL1VWVpbt/MGDB/Xzzz+roqLC1icjI0Pjx483q0QAJuhQ4rgh1S7WhAQAAAAAwK+ZFkJK0kMPPaRZs2ZpwIABCg8PV2Lir+vCBQcHa+bMmerVq5ctiDz9f9PT0zVjxgwFBQWZWSIAF6s5ErI4JEKFYVF1XpeeUHcfAAAAAADgm0xP+EaMGKERI0aotLTU4VxCQoLeeecdffnll1qyZIny8/MVFxenESNG6IILLiCABHxQzRByd2yiZLHYtY3rmqQFP+fp1EDpoACLJvds464SAQAAAACAm7kt5YuKcj7KKTAwUOedd57OO+88d5UCwCSRFSeUeKLYrq3mVOy48GD9fVxXXd43Wc/9b5eCAiy6b1RnRkICAAAAANCMMdQQgMukOlkPcvcvm9IEWKQ/n5uhyb3aKj0hSukJUbqkd7K7SwQAAAAAAB7g9hAyLy9PeXl5Ki4uVkxMjHr16iVJOnHihEJCQhQYGOjukgC4SGqxk01pfgkhbx/eUX/6TRd3lwQAAAAAALyAW0LIvXv3avbs2Vq8eLEOHDhgax8+fLhmzZolSfr666/1+OOPa8qUKbrxxhsVHR3tjtIAuFDN9SClX0NIAAAAAADgv0zdHdswDD377LM6//zz9e677yo3N1eGYdj+O11ubq6Kioo0a9YsjR8/XuvXrzezNAAm6FjiGELujkn0QCUAAAAAAMCbmBpC3nXXXZoxY4asVqtD6GipsVvuvn37bJ8PHDig66+/Xjt27DCzPAAulspISAAAAAAA4IRpIeQLL7ygzz//3Hbco0cPPfzww3rvvfec9h83bpz69esnwzBksVhUUlKiadOmmVUeABPUnI59KDxGx0LCPVQNAAAAAADwFqaEkAcPHrSt9ShJ9957r+bMmaMrrrhCvXv3dnrNgAED9Pbbb+uhhx6ytW3YsEFLliwxo0QAJqi5OzajIAEAAAAAgGRSCPn++++rvLxcFotFkydP1o033ljva6+88kpdc801tuOFCxeaUSIAF4srK1Vc+TG7tl0xhJAAAAAAAMCkEPLbb7+VdHLdxzvuuKPB1990000KCjq5cTcb1AC+wdnO2Hti2ZQGvqFdbFit51pGBLuxEgAAAABonkwJIfft2yeLxaK0tDS1atWqwdfHx8crJSVFhmEoL88x2ADgfZyFkEzHhq947NwMdW8d7fTcDYM7uLkaAAAAAGh+gsy4aXFxsaSTYWJjJSQkaOfOnaqoqHBVWQBMRAgJX9YuNkxr7z1L+4rLFBoYoEe/2KINB0o0Oq2VHjm7i6fLAwAAAACfZ0oIGR0drcLCQlsY2RgFBQWSpNjYWFeVBcBEqSVOQkjWhIQXCgsKUFlVtV2bxWKRxWJR+7iTu7m/NKmnJ0oDAAAAgGbLlOnYbdq0kWEY2rZtW6OCyAMHDmjHjh2yWCxq27atCRUCcLXU4nyHtj0xrAkJ73P/6DSHtp5tYjxQCQAAAAD4D1NCyGHDhkmSrFarXnvttQZf/9xzz8kwDEnSoEGDXFobAHPUnI69PypeFUFs6AHvc8vQVHVL+nX9x4d+k66k6FAPVgQAAAAAzZ8p07HHjx+vV155RYZh6JVXXlHXrl117rnn1uval19+WXPnzrUdjx071owSAbiSYThMx645FTsowOLOioBaJUWH6qd7z9K6AyVqEx2q1jG174wNAAAAAHANU0LItLQ0TZgwQR988IGsVqvuvvtujR8/XhMmTFCnTp0c+h8/flwrV67UG2+8oe+//17SyfW5zjnnHGVmZppRIgAXSjpepIgq+02kam5Kc0EW60PCewQGWNQnmTWHAQAAAMBdTAkhJenhhx/W5s2btXHjRhmGoXnz5mnevHl2fVatWqXBgwfr6NGjqq4+uUnAqWnY7du311/+8hezygPgQqlOdsbefVoI+dvMRA3rGO/OkgAAAAAAgBcxZU1ISQoLC9Orr76qESNGyDAMu/8slpPTMsvLy1VUVCSr1WoLHyWpa9euev3119kZG/BiJyqtts8114OUfh0JufwPwzXvuoEKDjTtrxsAAAAAAODlTE0F4uLiNGvWLE2fPl0ZGRm29tMDydMlJiZq6tSpeu+995ScnGxmaQCa6OklO2yfO5Y4GQn5y87Ygzq0UCDrQQIAAAAA4NdMm459ugsvvFAXXnih9u7dqzVr1mjPnj0qKSlRZWWlYmNjlZSUpD59+igrK0sBAYyWAnzB89/usn3uWJzvcL7mmpAAAAAAAMB/uSWEPCUlJUUpKSnufCQAk+SX/roRTYca07GrLAHaF93K3SUBAAAAAAAvxbBDAE1Wczr23pgEWQMCPVQNAAAAAADwNm4dCdkQs2fP1pYtW2SxWPTkk096uhwAtQiotiql5LBdG1OxAQAAAADA6bx2JOS3336ruXPnau7cuZ4uBcAZJJceUUh1lV3bnl82pQEAAAAAAJC8OIQE4Bs6FjvujM1ISAAAAAAAcDpCSABNklpCCAkAAAAAAM6MEBJAkzgdCRlDCAkAAAAAAH5FCAmgSVKZjg0AAAAAAOpACAmgSWqOhCwLDFZeZJwk6eYhHTxQEQAAAAAA8DaEkACapGNxvt3x7phEGZaTf7X8bkB7T5QEAAAAAAC8TJCnC/BGzz77rF588UUlJydr0aJFpjxjz549eu+997RixQrt379fx44dU1RUlFJTUzVkyBBdeumlSkpiSiu8k7XakCQFWyuVXFpgd+70qdgD2se5sywAAAAAAOClCCFrWLdunWbNmmXa/a1Wq5599lnNmjVL1dXVducKCwtVWFioH3/8UbNmzdJ9992na6+91rRagMaotFZrwuurJEkpJYcUIMPu/O7TQkiLxeLW2gAAAAAAgHcihDxNTk6Obr31VlVWVpr2jAcffFAfffSR7dhisahz585q1aqV8vPztXPnTklSZWWlnnrqKR0+fFj33XefafUADfXtriNauPnkFGynO2OzKQ0AAAAAAKiBEPIXW7du1Q033KBDhw6Z9oyPPvrILoDs06ePnnjiCXXu3NnWtnnzZk2dOlWbN2+WJM2aNUuDBg3SiBEjTKsLOBNrtaENB0vUJjpMidGh+njTr8FjxxLHEHJ3TKI7ywMAAAAAAD6AjWkkzZs3T1OmTFFenmOg4kovv/yy7XNaWppee+01uwBSkjIzM/Xvf/9bycnJtrYXXnjB1LqA2hwsKVPPvy9Wn6eXqvWfv9CTX29TVfWv068ZCQkAAAAAAOqj0SMhTx/RZwazA8FTz3j66adN/7VI0v79+21TrSXplltuUUREhNO+sbGxuvnmm/XII49IktauXasjR44oPj7e9DqB0z3/3S79nF9qO374s826vM+vAXmHGjtjS4SQAAAAAADAUaNDyGnTpvn0phMvvfSSZs6cqePHj9vaOnXqpHPOOUczZsxw+fMOHjxod9y1a9cz9u/Vq5fts2EY2r9/PyEk3O7/fbPD7tgwpE15R23HNadjl4SE60hYtFtqAwAAAAAAvsNvp2O/+uqrdgHk5MmTNWfOHHXo0MGU50VH2wczpz/bmaqqKrvjsLAwl9cE1MVabTi0lVX+uqt7zenYu2KTJB/+4QQAAAAAADBHkzamMQzHgMLXdO/eXVOnTtXAgQNNfU5KSopCQ0NVXl4uSfrf//6n7t2719r/u+++s30ODg5WSkqKqfUB9XVqenZEZZmSjhfbnWNTGgAAAAAA4EyjQ8ivv/7alXW43cCBAzVx4kSNGTPGLdPKw8LCdPHFF+vtt9+WJL322ms655xzHDamkaQdO3bolVdesR1PnDhRoaGhptcINESqk/Ugd7MeJAAAAAAAcKLRIeTpuzf7ohdffNHtz7z99tu1bNky7dq1SyUlJbrssst0++236+yzz1ZCQoIKCgr01Vdf6bnnnlNJSYkkqW3btvrDH/7g9lqBuqSWsDM2AAAAAAConyZNx0bDxMfH6z//+Y+mT5+uefPmqbi4WE888YSeeOIJp/3POuss/fWvf1VCQoKbK3VUc41KX2O1Ws94jIaruR6kJO2KsQ8hff3PDZzjfQJcg3cJcB3eJ8A1eJcA1+Bdco4Q0s2io6M1bNgwbdmyRRs2bKi1X/fu3XXrrbcqKcnzI8uqq6u1du1aT5fhUmf6vUf9OAshd8farwnZ3P7cwDneJ8A1eJcA1+F9AlyDdwlwDd6lkxq9O/abb76p6urqujuaxDAMvfXWWx57fmPs379fU6ZM0T333GP7AxgUFKSuXbtq8ODBSk9PV0DAyf9LNmzYoEsuuUR//OMfdeLECU+WDTiV6mwkJNOxAQAAAACAE40OIZ944glNmDBBK1ascGU99bJq1SpNmjSp1mnM3qioqEjXXHON1q9fL0kKDAzULbfcouXLl2vu3Ll64403tGDBAi1dulRXXnml7br58+frpptuUmVlpadKB5yqORLycFi0SkMiPFQNAAAAAADwZo2ejt2qVStt2bJF1157rUaNGqV77rlH6enprqzNwU8//aTnn39ey5Ytk2EYatWqlanPc6V//vOfysnJkSQFBATomWee0bnnnuvQLyEhQQ8//LAyMzP10EMPSZJWrlyp1157TTfffLNbaz4lICBAPXr08MizXcVqtdoNf+7evbsCAwM9WJGPeDe31lOpJfa7YzsbBdmrVy+XlwTP430CXIN3CXAd3ifANXiXANdoju/S+vXrmzwjutEh5Pz58zVt2jQtXbpUixcv1pIlSzRy5EhdcsklGjVqlCwWS5MKO6W8vFxffvml3nrrLdv6coZhaMCAAXr66add8gyzHT9+XHPnzrUdT5w40WkAebrJkydr2bJlWrhwoSRp9uzZuu666xQcHGxqrbUJCmpey4cGBgY2u1+TO8WWlapF+TG7NmchJL/H/oH3CXAN3iXAdXifANfgXQJcg3fppEb/DsTHx2vmzJl677339PTTT6ukpERLlizRkiVLlJiYqDFjxuiss87S4MGDFRoa2qB7FxcX67vvvtPixYv19ddf6/jx45JOho/h4eG6++67ddVVV7ks6DTbhg0bVFZWZjuePHlyva679NJLbSHkkSNH9PPPP6tnz56m1Ag0hLNNafbE2G9K06ttjLvKAQAAAAAAXq7JMeyll16qs88+W9OnT9eCBQtUXV2t/Px8vfvuu3r33XcVGBioDh06qEuXLkpPT1fLli0VHR2tyMhIBQYGqqysTEVFRcrNzdWePXu0ceNG7d27V4ZhSJLtfy0Wi8aPH6+7775bbdq0aWrZbpWfbz9tNS0trV7XZWZm2h3v27ePEBJeoWNJ3ZvS3Deqs7vKAQAAAAAAXs4lY0Fbtmyp//f//p9uvPFGPfvss1q0aJFtnnhVVZV27typnTt36rPPPqvX/U4Fj9LJIavnnHOObr75ZodQzleEhITYHVdUVNTruprrBZzaORvwNGcjIWuGkP3axbqrHAAAAAAA4OVcOiE9PT1dL7zwgnJycvTOO+/ok08+UX5+vl2oeGoK9ekjHE8/PiU5OVnjx4/XpEmT1K5dO1eW6XatW7e2O960aZOGDx9e53Xbt28/430AT0ktzndoc7YmJAAAAAAAgOTiEPKU9u3ba+rUqZo6darWrVun5cuXa+3atdqxY4dyc3NVWVlp62sYhoKDg5WSkqLOnTurb9++Gjx4sM+OenSmW7duiouLU1FRkSTpP//5T71CyA8++MD2OSYmRt27dzerRKBBUp1Mx665JiQAAAAAAMAppm/N07NnT7t1DA3DUGlpqY4fPy6LxaLIyEhFRkaaXYZHBQYG6uKLL9Yrr7wiSfriiy80d+5cTZgwodZrvvrqK73//vu240mTJrGTErxGzenYuZHxKg8KqaU3AAAAAADwd25fZNBisSg6OlpJSUlKTExsFgFkdna2MjIylJGRoezsbKd9fv/73ys5Odl2/MADD+iJJ57QgQMH7PqVlJToueee0x133GFbV7Nt27a69dZbzfsFAA1hGA7TsXfFMgoSAAAAAADUjqF1bhIdHa2ZM2fqqquu0pEjR2QYhv7973/rrbfeUmpqqhISEnT06FFt3bpVVVVVtuvi4+M1a9YsxcTEeLB64FeJx4sUWVVu18Z6kAAAAAAA4EzYbtmN0tLS9NFHH2nIkCG2turqau3cuVMrVqzQpk2b7ALIwYMH66OPPlJaWponygWcSi1x3JRmNyEkAAAAAAA4A0ZCullSUpJmz56t1atXa+HChfrhhx908OBBlZaWKioqSklJSerfv7/Gjh2rfv36ebpcwEHN9SAlaVcMISQAAAAAAKgdIWQNEydO1MSJExt0zaJFixr8nH79+hEywic5CyF3syYkAAAAAAA4A6ZjA2gQpyMhmY4NAAAAAADOgBASQIN0qLEmZJUlQDnRCR6qBgAAAAAA+AJCSAANUnMkZE50K1kDAj1UDQAAAAAA8AWEkADqLaDaqg4lh+zamIoNAAAAAADqQggJoN7alh5RSHWVXdueGDalAQAAAAAAZ0YICaDeOpawKQ0AAAAAAGg4U0LITz/9VLNnz9bhw4fNuD0AD0ktzndoI4QEAAAAAAB1MSWE/OCDDzR9+nSNGjVKM2fONOMRADyg5qY0EiEkAAAAAAComykh5NatW2UYhqxWq/r27WvGIwB4QKqT6di7YwghAQAAAADAmQWZcdOioiLb565du5rxCAAmslYbWrqzwKG95kjIssBgHYhq4a6yAAAAAACAjzIlhExMTNS+ffsknQwkIyIizHgMABdbm1usvy/eobfX7Hd6vmYIuScmUYaF/a0AAAAAAMCZmZIejBs3zvZ59uzZZjwCgIsVnahU9kvLaw0gg62VSi49Yte2KzbRHaUBAAAAAAAfZ0oIecstt2jYsGEyDENvvvmmnnzySR05cqTuCwF4zJdbD6nwRGWt59sfPaxAo9qubTeb0gAAAAAAgHowZTr23r179cc//lGRkZH64osv9Oabb+qtt95S586dlZmZqfj4eEVFRclisdTrfrfffrsZZQI4TU7RiTOed7YzNpvSAAAAAACA+jAlhLzgggtsAaPFYpFhGDIMQ9u2bdP27dsbfD9CSMDznIWQuxgJCQAAAAAA6sGUEFKSDMNoUHtt6jtaEoC5CCEBAAAAAEBjmRJCDhgwwIzbAvCgDiX5Dm27mI4NAAAAAADqwZQQ8s033zTjtgA8qOZIyKPB4SoIj/ZQNQAAAAAAwJeYsjs2gOanZgi5OzZRYrkEAAAAAABQD4SQAOoUXlmu1seL7NpOn4odGGAfRoYEBqh9bLg7SgMAAAAAAD7A7SFkXl6e1q1bp//9739au3atrf3EiROyWq3uLgdAPaSWOG5Ks/u0TWnuGdlJSdGhtuNHzumiyFDT9r0CAAAAAAA+xi0pwd69ezV79mwtXrxYBw4csLUPHz5cs2bNkiR9/fXXevzxxzVlyhTdeOONio5mrTnAW6QWO9mUJjbR9jkjMUrbp2Vrxd4idWoZodT4CHeWBwAAAAAAvJypIyENw9Czzz6r888/X++++65yc3NlGIbtv9Pl5uaqqKhIs2bN0vjx47V+/XozSwPQADXXg5SkXbH2O2NHhgYpO70VASQAAAAAAHBgagh51113acaMGbJarQ6ho6XGhhb79u2zfT5w4ICuv/567dixw8zyANSTsxByd0ySk54AAAAAAACOTAshX3jhBX3++ee24x49eujhhx/We++957T/uHHj1K9fPxmGIYvFopKSEk2bNs2s8gA0gLM1IWuOhAQAAAAAAKiNKSHkwYMHbWs9StK9996rOXPm6IorrlDv3r2dXjNgwAC9/fbbeuihh2xtGzZs0JIlS8woEUADdCo6aHd8OCxaR0OZdg0AAAAAAOrHlBDy/fffV3l5uSwWiyZPnqwbb7yx3tdeeeWVuuaaa2zHCxcuNKNEAPVlGOpUYzr2zrjWHioGAAAAAAD4IlNCyG+//VbSyXUf77jjjgZff9NNNyko6OTG3WxQA3hWi7JSxVYct2vbGUsICQAAAAAA6s+UEHLfvn2yWCxKS0tTq1atGnx9fHy8UlJSZBiG8vIc16ID4D6dig86tLEeJAAAAAAAaAhTQsji4mJJJ8PExkpISJAkVVRUuKQmAI1Tcyq2RAgJAAAAAAAaxpQQMjo6WtKvYWRjFBQUSJJiY2NdUhOAxqm5KY3EdGwAAAAAANAwpoSQbdq0kWEY2rZtW6OCyAMHDmjHjh2yWCxq27atCRUCqC9n07F3xjESEgAAAAAA1J8pIeSwYcMkSVarVa+99lqDr3/uuedkGIYkadCgQS6tDUDDdKwxHbvKEqCc6AQPVQMAAAAAAHyRKSHk+PHjFRBw8tavvPKKPv/883pf+/LLL2vu3Lm247Fjx7q8PgD1VzOE3BOTKGtAoIeqAQAAAAAAvsiUEDItLU0TJkyQYRiyWq26++67NW3aNK1YsUKHDh1y6H/8+HEtXrxYv/vd7/TPf/5TkmSxWHTOOecoMzPTjBIB1ENgtVUdSvLt2nY62ZQmIphQEgAAAAAA1C7IrBs//PDD2rx5szZu3CjDMDRv3jzNmzfPrs+qVas0ePBgHT16VNXV1ZJkm4bdvn17/eUvfzGrPAA1hAQ6/kyi/dFDCjKq7dp2xTluSjM6rZVpdQEAAAAAAN9nykhISQoLC9Orr76qESNGyDAMu/8sFoskqby8XEVFRbJarbbwUZK6du2q119/nZ2xATdKig51aOtUlOfQVnNn7BkX93R6LQAAAAAAwCmmhZCSFBcXp1mzZmn69OnKyMiwtZ8eSJ4uMTFRU6dO1Xvvvafk5GQzSwNQg8VJm7OdsXfVmI59Tf92JlUEAAAAAACaC9OmY5/uwgsv1IUXXqi9e/dqzZo12rNnj0pKSlRZWanY2FglJSWpT58+ysrKsm1oA8DznIWQztaEBAAAAAAAOBO3hJCnpKSkKCUlxZ2PBNAEHesxHRsAAAAAAKAupgw7/Oc//6l169aZcWsAblRzJGRRaKQKw6Ls2oIYvQwAAAAAAOpgykjIGTNm6OWXX1arVq00evRoZWdna+jQoQoJCTHjcQBM0rHYfiTkztgkyfLr6pGBARYFBjhbTRIAAAAAAOBXpk7HPnTokObMmaM5c+YoLCxMQ4cOVXZ2tkaPHq34+HgzHw2giWLKj6lV2VG7tppTsZ+7qLs7SwIAAAAAAD7KlBBy9OjR+v7773XixAnbDtgnTpzQokWLtGjRIgUEBKhHjx7Kzs7WmDFj1LlzZzPKANAENUdBSo47YwcxChIAAAAAANSDKSHkSy+9pMrKSq1atUpLlizR0qVLtWvXLlsgabVatXbtWq1du1bPPPOM2rdvr+zsbGVnZ6t///7skA14Aac7Y8exKQ0AAAAAAGg406ZjBwcHa+jQoRo6dKgeeOAB7du3T0uWLNGSJUu0cuVKlZWV2frm5OTojTfe0BtvvKGYmBiNHDlS2dnZGjlypCIjI80qEcAZdHKyM3bNkZAAAAAAAAD1YeqakKdr166drrjiCl1xxRUqLy/XihUrtHTpUi1dulR79+619SsuLtaCBQu0YMECBQUFaeDAgXr11VfdVSaAXzgdCRnLSEgAAAAAANBwbgshTxcaGqqRI0dq5MiRkqTdu3dr6dKlWrJkiVatWqWKigpJUmVlpZYtW+aJEoFm7+e8o5r5/R5VWA1dN7C9w/mONULIalm0JybBXeUBAAAAAIBmxCMh5OnKysqUm5urgoICHTt2TNXV1bJYTm52cWoNSQCudai0XGe9uEyHj50M/P/9Q44eHJNu16dTjY1pcqJbqTIw2G01AgAAAACA5sPtIWRFRYVWr16tlStXasWKFVq/fr2qqqrs+pwePoaHh7u7RKDZm7fxoC2AlKRjFVa999N+23FAtVUdSvLtrmFTGgAAAAAA0Fimh5AVFRX68ccfbaHjunXrVFlZaTtfc7RjSEiIevXqpcGDB2vw4MHq1auX2SUCfueHnGKHtvUHjto+ty09olCr/Q8H2JQGAAAAAAA0likh5KpVq7RixQpb6HhqjUfJMXQMDAxUt27dNHjwYA0ZMkR9+/ZVaGioGWUBqKeaU7ElNqUBAAAAAACNZ0oIedVVV9W6rqPFYlGXLl1sIx0HDBigqKgoM8oA0EjOd8ZmJCQAAAAAAGgcU6djnwogw8PDNWnSJGVnZ6tnz56EjoCXcxZCMh0bAAAAAAA0lqkh5KnRkGVlZXrnnXe0cuVKuxGQ0dHRZj4eQCN1LHIyHdvJxjRlVdXuKAcAAAAAAPg4U0LIv/zlL1q2bJlWrFihwsJCSSdHRW7btk3btm3Tm2++qYCAAGVmZmrQoEEaPHiw+vfvr4iICDPKAdBANUdClgaH6VB4rEO/hMgQd5UEAAAAAAB8mCkh5JQpUzRlyhRJ0s8//6zly5dr2bJlWr16tU6cOCFJslqt2rRpkzZt2qTXX39dgYGB6t69uy2U7Nevn0JCCDgAT6gZQu6MTZJ+Gdl8uq5JjGYGAAAAAAB1M3U6tiRlZWUpKytL1113nSorK/XTTz9p2bJlWr58uTZs2KCqqipJUlVVldauXau1a9dq5syZCg4OVq9evTR48GDddtttZpcJ4BcRlWVKOl5s18bO2AAAAAAAoClMDyFPFxwcrAEDBmjAgAG68847VVpaqlWrVmnlypX64YcftGnTJlmtVklSRUWFVq1apR9++IEQEnCjjsWO60HucrIeJAAAAAAAQH25NYSsKSoqSqNHj9bo0aNVXl6uJUuW6F//+pe2bNkii8Vi210bgPt0KnLcGXsnO2MDAAAAAIAm8GgIuWnTJn333XdatmyZ1qxZo4qKCkm/7qoNwP1qrgcpMR0bAAAAAAA0jVtDyP3792vZsmVatmyZvv/+exUVFdnO1Rz1mJWVpVGjRmn06NHuLBHwe52cTcdmJCQAAAAAAGgCU0PIo0eP6vvvv9d3332n5cuXa+/evbZzNUPHsLAwDR48WKNHj9aoUaOUlEToAXhCRycjIXfHJHqgEgAAAAAA0FyYEkI+88wzWr58uTZu3Kjq6mpbe83gsXXr1jrrrLM0evRoDRkyRKGhoWaUA6ABOhXZj4TcHxWvsmDeTQAAAAAA0HimhJAvv/yy041lLBaLevTooVGjRik7O1uZmZlmPB5AYxmGOpbYh5CsBwkAAAAAAJrKtOnYpwLIiIgIDR8+XKNGjdKoUaMUHx9v1iMBNFHrY4UKr6qwa2NnbAAAAAAA0FSmhJDt27e3TbMeOHCggoODzXgMABdztjP2LkZCAgAAAACAJjIlhPzyyy/NuC0AkznbGXtnHCEkAAAAAABoGlN3x66ppKREa9asUX5+voqKihQQEKDIyEglJyera9euatWqlTvLAVBDpyLHkZBMxwYAAAAAAE3llhByyZIlmjVrltasWeOwWc3psrKydM011+jCCy90R1kAaujodDo2ISQAAAAAAGiaADNvXlZWpnvvvVe///3vtXr1alVXV9tCSMMwHD5v2rRJ06ZN0+9+9zuVlJSYWRoAJ2pOxz4RFKKDkS08VA0AAAAAAGguTAshq6qqdOONN2rhwoUOox8DAwMVHx+v2NhYBQT8WoLFYpFhGPr+++91/fXXq7y83KzyADhRc2OaXTFJMiym/qwCAAAAAAD4AdOmY//973/XqlWrZLFYJEkpKSm66qqrNGzYMHXs2NHWr7q6Wjt37tS3336rd999V3v27JFhGNqwYYOefvppPfDAA2aVCOA0YZXlSi49YtfGVGwAAAAAAOAKpgxx2rdvn9566y1bADlp0iR9/PHHuvLKK+0CSEkKCAhQWlqarr32Wn388ceaPHmypJNTtN9++20dOHDAjBIB1NCxxHFn7B1xbTxQCQAAAAAAaG5MCSE/+ugjVVVVSZJGjhypJ554QiEhIXVeFxISor/+9a8aNWqUJMlqteqDDz4wo0QANaQVOgb+O+Jae6ASAAAAAADQ3JgSQn733Xe2z42ZTj1t2jTb5+XLl7ukJgBn1tnJztiEkAAAAAAAwBVMCSFzcnJksVjUoUMHpaamNvj61NRUdezYUYZhaPv27a4vEIADZyMhtzMdGwAAAAAAuIApIWRRUZEkqXXrxo+iSkxMlCQdO3bMFSUBqEOnYvsQsloW7Y5hYxoAAAAAANB0poSQkZGRkqSSkpJG3+Po0aOSpKioKJfUBODMOhfZT8fOiW6liqBgD1UDAAAAAACaE1NCyNatW8swDG3durVRQWRxcbG2bt0qi8ViGxEJwDyB1ValluTbtW1vwVRsAAAAAADgGqaEkP3795d0cnfrV199tcHXv/rqq7bdtQcMGODS2gA4Sik5pOBqq13bzlg2pQEAAAAAAK5hSgg5fvx42+dXXnlFn376ab2vXbhwoV555RXb8fnnn+/S2gA46lzEpjQAAAAAAMA8poSQvXr10rBhw2QYhqxWq+655x499NBDZ9zpetu2bXrwwQd17733qrq6WhaLRYMHD7aNqgRgnjQnIeQOQkgAAAAAAOAiQWbd+Mknn9RFF12koqIiGYahDz74QB988IESEhKUlpammJgYSSc3r9m2bZsOHz4sSTIMQ5LUsmVLPfXUU2aVB/ido2VVig5z/srX3JRGknbE1T0dOyjA0uS6AAAAAABA82daCJmUlKS3335bN9xwg3JzcyWdDBjz8/N16NAhu76ngkeL5WSg0bZtW7344otq3Zo16YCm2lVwXBPfWKW1uSVKaxWpOVf3c+jjbDp2XSFki/BgdUmIdFmdAAAAAACg+TJlOvYpnTp10ty5c3XdddcpNDTU1m4Yht1/p4SHh+vqq6/W3LlzlZmZaWZpgN+486MNWpt7cpf67YeP6Yb/rnXo07nYfiRkXkSsSkMiznjfudcOUFCgqX+FAAAAAACAZsK0kZCnxMbG6v7779ftt9+ulStX6ocfflB+fr5tmnZMTIzatGmjvn37auDAgYqKijK7JMCvLPg5z+549b5i9WsX92uDYTiMhKxrU5pbh6ZqZOeWrioRAAAAAAA0c6aHkKdERERo1KhRGjVqlLseCaAe2hw7ooiqCru2ujalubp/OzNLAgAAAAAAzYzbQkgA3snZpjQ7Y52vBzmwfZxuH95RA1NamF0WAAAAAABoRlwaQhYWFmrHjh3Kz89XRESE2rVrp7S0NFc+AkADVFqr6+yT5mRTmu0tHEdCpreK1Pd3jnBJXQAAAAAAwL+4JIRct26dnn/+eS1fvlxWq9XuXGJioq666ipdddVVdpvTADDfir2FdfZxNhJyRy0jIQEAAAAAABqjyVvbvvTSS7rsssv07bffqqqqymHn67y8PP3jH//QxRdfrJycHFfUDKCe1uwrrrNPJycjIetaExIAAAAAAKAhmhRC/ve//9Wzzz7rMPrxdBaLRYZhaNu2bbrhhhtUWlralEcCcIHC479uRFNzOnZxSIQOh8e4uyQAAAAAANCMNXo6dmlpqf7xj3/IYrFIkgzD0ODBg3XOOecoOTlZVVVV2rJli+bOnWsbAbl3717961//0tSpU11TPYBGmbPu1+Cxc7H9dOwdca2lX95rAAAAAAAAV2h0CPnZZ5+puLhYFotFoaGh+sc//qExY8bY9RkzZoxuuukmPfzww5o7d64Mw9CHH36ou+66i/UhAS/Q4sRRxZfZj07ezlRsAAAAAADgYo2ejr1ixQrb5z/+8Y8OAeQpQUFB+utf/6r09HRJUklJiX766afGPhaAC9UcBSlJO+PYlAYAAAAAALhWo0PIzZs3S5IiIyM1ZcqUM/YNCgrSZZddZjveuHFjYx8LwIU6O9uUJpaRkAAAAAAAwLUaHUIeOnRIFotFKSkpCg4OrrN/v379bJ/37t3b2McCcKGam9JI0vYWhJAAAAAAAMC1Gh1CHj9+XJIUHR1dr/7Jycm2z0ePHm3sYwG4UKcix+nYO2KZjg0AAAAAAFyr0SFkZWWlJNVrFKR0ctr2KceOHWvsYwG4UM3p2GWBwdof3dJD1QAAAAAAgOaq0SGkYRiSJIvFUq/+p/ezWq2NfSwAF0qrMRJyZ2xrGRbnfy0E1O9VBwAAAAAAcNDoEBKAbwuvLFfbY0fs2nacYWfs3w1MMbskAAAAAADQTBFCAn6qU7GT9SDjnG9KkxgVokt7tzW7JAAAAAAA0EwFeboAAJ6RVui4M3bNkZDDO8ZrQo/WmtSjjVJaRLirNAAAAAAA0MwQQgJ+qnOxsxDSfiTkTYM76Mp+7dxVEgAAAAAAaKaYjg34qbQixxByey3TsQEAAAAAAJqiySMh8/Ly9NFHH5l6zUUXXdSg+wOoW6caO2NbLQHaE5PgoWoAAAAAAEBz1uQQctu2bXrggQfq3d8wjAZfQwgJNNyR4xWa/s32Ws93rhFC7olJUGVgsF1bWZXVlNoAAAAAAIB/cet0bIvFIovFUu/+hmGYWA3QfBmGofNmfq8DJeVOzwdZq9ShJN+ubUdsa4d+aS0jTakPAAAAAAD4lyaNhCQkBLzT5vxS/bCvuNbzHUryFWRU27XtdLIeZNvYMJfXBgAAAAAA/E+jQ8ivv/7alXUAcKGC4xVnPM+mNAAAAAAAwJ0aHUImJye7sg4AbpRe6BhC7ohznI4NAAAAAADgCm5dExKAd0gvynVo29qCHywAAAAAAABzEEICfiit0D6ErJaFkZAAAAAAAMA0hJCAH6o5EjInupXKg0I8VA0AAAAAAGjuCCEBPxNkrVJqcb5d27YWbT1UDQAAAAAA8AeEkICf6VicpyCj2q5tewt2xgYAAAAAAOYhhAT8jLNNabbFMRISAAAAAACYhxAS8DPphU5CSCfTsSOCA5XaIsIdJQEAAAAAgGaOEBLwM+mFBxzaao6EDA606PkJ3RUSxF8RAAAAAACg6YI8XQAA90qrMR3bagnQzrgkSVKf5Bi9c0U/tYsNU2Qofz0AAAAAAADXIGUA/EzN6dh7YhJUGRgsSZrUs60yEqM8URYAAAAAAGjGmGsJ+JGQqkqlHD1s18amNAAAAAAAwGyEkIAf6VR8UIFGtV3b9hZtPFQNAAAAAADwF4SQgB+p787YAAAAAAAArkQICfiR9CInISTTsQEAAAAAgMkIIQE/kl54wKGNkZAAAAAAAMBshJCAH0mrMRKyyhKg3TGJtuPW0aHuLgkAAAAAAPgBQkjAj3Q5Yh9C7opNUlVgkO34t5mJNS8BAAAAAABoMkJIwE+EV5arfelhu7bTp2K/fUVftY4Jc3dZAAAAAADADxBCAs3QzXPWObR1LnJcD3L7aZvSXNgtydSaAAAAAACA/yKEBJqZ/cUn9HN+qUO7052xW7SxfY4ICXI4DwAAAAAA4AqEkEAz88RX25y2szM2AAAAAADwFEJIoBmprjY0Y/kep+fSC52MhIwjhAQAAAAAAOYjhASakX3FJ2o9l1ZjOnZFQJD2xiSYXRIAAAAAAAAhJNCcVBu1n6s5HXtnbJKsAYEmVwQAAAAAAEAICfiFyIoTanvsiF0b60ECAAAAAAB3IYQE/EBaEZvSAAAAAAAAzyGEBPyA001pCCEBAAAAAICbEEICzUhpeZXT9vQidsYGAAAAAACeQwgJNCM3vb/OaXuXI/sd2hgJCQAAAAAA3IUQEmhGvt9T6LS9S43p2MeDQrQvuqU7SgIAAAAAACCEBJo9w1BGof1IyK0tkmVYeP0BAAAAAIB7kEIAzVyrEyWKLyu1a9vSItlD1QAAAAAAAH9ECAk0cxlO1oPcGk8ICQAAAAAA3IcQEmjmMgr3ObRtZVMaAAAAAADgRkGeLgBA01RXG9pw8Khiwpy/zs5GQm6Jb2d3fHkfRkYCAAAAAADzEEICPqykrFLnzVpR667YktSl0EkIWWNNyL+P6+ry2gAAAAAAAE5hOjbgw95es/+MAaTkOBLyQGQLHQ2NsGtrHRPm8toAAAAAAABOIYQEfNiL3+0+4/nAaqs6Fx+0a2NnbAAAAAAA4G6EkIAPO3i07IznOxbnKbjaatfGztgAAAAAAMDdCCGBZszppjSMhAQAAAAAAG5GCAk0YxmF+xzatjASEgAAAAAAuBkhJNCMMRISAAAAAAB4A0JIoBnrUmgfQlYEBGl3bJKHqgEAAAAAAP6KEBJoxmqOhNwR11rWgEAPVQMAAAAAAPwVISTQTMWUH1Pr40V2bUzFBgAAAAAAnkAICTRTXQpzHdq2sikNAAAAAADwAEJIoJnKOOJkZ2xGQgIAAAAAAA8I8nQB3ujZZ5/Viy++qOTkZC1atMi05yxZskSff/65fvzxRx06dEjl5eVq0aKFunbtqnPPPVdjx45VSEiIac9H85ZR6GRnbEZCAgAAAAAADyCErGHdunWaNWuWqc/YvXu3Hn74Ya1cudLhXF5envLy8vTNN99o5syZeuaZZ5SZmWlqPWieuhxxEkK2aOeBSgAAAAAAgL9jOvZpcnJydOutt6qystK0Z2zZskWXX365XQAZFxenPn36qE+fPoqIiLC179y5U1dffbW2bdtmWj1ovmqOhCwIi1ZBRIyHqgEAAAAAAP6MkZC/2Lp1q2644QYdOnTItGcUFhbqhhtuUEFBgSQpNjZWDz30kMaOHavAwEBJUllZmV5//XU9//zzslqtKi4u1tSpU/XBBx/IYrGYVhuaF4tRrfQaG9OwHiQAAAAAAPAURkJKmjdvnqZMmaK8vDxTn/PMM88oPz9fktSyZUv9+9//1vjx420BpCSFhYXplltu0X333Wdr27hxo5YvX25qbWhe2h89rIiqCrs21oMEAAAAAACe4tchZF5enqZOnar7779fJ06cMPVZ+fn5+vDDD23Hjz766BnXerz22muVkJBgO/7mm29MrQ/NS4aT9SC31jISMik61OxyAAAAAACAn/Pb6dgvvfSSZs6cqePHj9vaOnXqpHPOOUczZsxw+fPmz59vW2ty4MCBOvfcc8/YPyAgQPfee6+2bdumuLg4ZWRkuLwmNF9dnOyMvTW+rdO+Nw5KMbscAAAAAADg5/w2hHz11VftAsjJkydr2rRp+uKLL0x53uLFi22fL7nkknpdM2HCBFNqQfPnbCRkbTtjP3x2F7PLAQAAAAAAfs5vQ8hTunfvrqlTp2rgwIGmPaOyslLr1q2zHZv5LEByHAlptQRoe1wbh34d4yMUHOjXqzIAAAAAAAA38NsQcuDAgZo4caLGjBlj+q7Te/bsUXl5uSQpLi5OiYmJkqSCggLNmzdPX3zxhXJyclRSUqJWrVqpb9++uvDCCzVy5EhT60LzlVWwz+54V2yiKoKCPVQNAAAAAADwd34bQr744otue9bevXttn08FkB9++KGeeuoplZSU2PXNzc1Vbm6uFixYoJEjR+rvf/+7YmNj3VZrbaqqqjxdQpNYrdYzHjcn0eXH1b70sF3bz/Hta+lt+Pz/t3A/f3qfADPxLgGuw/sEuAbvEuAavEvO+W0I6U4FBQW2zxEREZo1a5b+/ve/29pSUlLUpk0bFRcXa+vWraqurpYkLV26VJdeeqneeecdtWjRwu11n1JdXa21a9d67Plm2LBhg6dLcImqKse/yDKP7HNo2xzvfD3I8vKKZvf/LdyvubxPgKfxLgGuw/sEuAbvEuAavEsnEUK6QXFxse3zjh07bKFP//799fDDDyszM9N2/tChQ/rHP/6huXPnSpJ27typ++67T6+++qp7i4ZPOFZV7dCWdSTHoe3nlrWNhAQAAAAAADAfO1K4QUVFhe3z0aNHZRiGRo0apdmzZ9sFkJKUkJCgv/3tb7ruuutsbd9++63d7trA8cpq3b2kQE4ySIf1ICXp51pGQgIAAAAAALgDIyHdoObGN1FRUZo+fbqCg2vfKOTee+/VV199ZVtP8s0339SoUaPMLLNWAQEB6tGjh0ee7SpWq9Vu+HP37t0VGBjowYqa5smvt+vb3INOz2U2YCRkaGiIevXq5dLa0Pw1t/cJ8BTeJcB1eJ8A1+BdAlyjOb5L69evty0f2FiEkG4QERFhdzx+/HjFxcWd8ZqgoCBNmjRJzzzzjCTphx9+UEVFhUJCQswqs856mpPAwECf/jW9sGxPree6FtiHkPuj4lUSGllLb4tP/z7AO/j6+wR4C94lwHV4nwDX4F0CXIN36SSmY7tBZKR9ANS3b996Xde7d2/b57KyMuXm5rqyLPiww8cqnLaHVlWoU3GeXVvtO2MDAAAAAAC4ByGkG9Tc2To+Pr5e17Vs2dLuuLCw0GU1oXlKL8xVoGE/PLq2nbEBAAAAAADchRDSDdLT0+2OS0pK6nVdVVWV3bGvrx8A82UdcbIpDTtjAwAAAAAADyOEdIP27dvbrQu5e/fuel138KD9xiNt2rRxZVlohrIKnGxKw0hIAAAAAADgYYSQbmCxWDR48GDb8Zdfflmv61atWmX73Lp1ayUkJLi8NjQvzkLITYyEBAAAAAAAHkYI6SYXXnih7fPGjRv13XffnbH/sWPHNHfuXNvx2WefbVptaD6yjtiHkEfCopQfEeeZYgAAAAAAAH5BCOkm2dnZSklJsR0/+uijysvLc9rXMAw99thjOnLkiCQpKChIV1xxhVvqhO8KqLaqS6H9Duo/x7eTLBYPVQQAAAAAAHASIaQLZGdnKyMjQxkZGcrOznbaJyQkRI8//rgsvwRCOTk5uuSSS/TVV1/JMAxbv7y8PN1xxx2aP3++re2qq65Sx44dzf1FwOd1LM5TmLXSrm1zPFOxAQAAAACA5wV5ugB/MmjQIP35z3/WY489purqah04cEC33XabWrZsqdTUVJWVlWnz5s2yWq22a4YMGaJ77rnHg1XDVzjfGZtNaQAAAAAAgOcRQrrZJZdcosTERP3lL39Rbu7JqbMFBQUqKCiw62exWDRlyhT96U9/UkhIiCdKhY/p6nRnbEZCAgAAAAAAzyOE9IDRo0dryJAhWrBggb766itt2bJFBQUFslgsateunQYNGqQpU6YoMzPT06XCh2QeYWdsAAAAAADgnQgha5g4caImTpzYoGsWLVrU4OeEhYXp4osv1sUXX9zgawFnsgrsp2MfCwrV3piEM14THcpfAQAAAAAAwHxsTAM0B4ahrBojIbfEJ8uwnPkV//2QDmZWBQAAAAAAIImRkIDPqKiq1qwVe7Tx4FGHc21Ljyim4oRdW13rQXZvHa0pvdu6tEYAAAAAAABnCCEBH3HjnLV6c7XjDtiS1LVgr0Pb5lp2xv7u9mE6VmHVsI7xCg8OdGmNAAAAAAAAzhBCAj6gvMpaawApSVlHHM/VNhJySGq8y+oCAAAAAACoD9aEBHzAicrqM56vuR6kxM7YAAAAAADAexBCAs1AZo2dsSsDArU9ro2HqgEAAAAAALBHCAk0AzVHQm6Pa6OqQFZbAAAAAAAA3oEQEvBxrY4XK+l4sV3bz/HON6UBAAAAAADwBEJIwMd1c7Iz9sZWHTxQCQAAAAAAgHOEkICP6354j0PbBkJIAAAAAADgRQghAR/X/bDjSMgNrVI8UAkAAAAAAIBzhJCAj+tWYyRkRUCQtsW19VA1AAAAAAAAjgghAV9mGOpeY03IzfHJ7IwNAAAAAAC8CiEk4MOSSwsUV37Mro31IAEAAAAAgLchhAR8mLNNaTaeYT3IXm1jzCwHAAAAAADAKUJIwIc53ZSmZe0jIW8YxIY1AAAAAADA/QghAR/WrcBxJGRt07Gnj83SrUNTTa4IAAAAAADAEbtXAD6s5kjIY0Gh2h2b6LTvH0enuaMkAAAAAAAAB4yEBHyUxahW1xo7Y29slSLDwmsNAAAAAAC8C2kF4KM6FucpoqrCrm1jS9Z8BAAAAAAA3ocQEvABm/NLHdqc7Yxd23qQAAAAAAAAnkQICfiAd37c79DmdGdsQkgAAAAAAOCFCCEBH7Bkx2GHtm5OR0IyHRsAAAAAAHgfQkjAR3WvsSnNkbAoHYiM91A1AAAAAAAAtSOEBHxQsLVSmUf22bVtaJkiWSweqggAAAAAAKB2hJCAD0ovPKDgaqtd20bWgwQAAAAAAF6KEBLwQeyMDQAAAAAAfAkhJOCDuhc4hpAbW7IpDQAAAAAA8E6EkICXO3K8QusPHLVr63Z4r0M/QkgAAAAAAOCtCCEBL7Zyb6E6PvG1Q3vN6dgHIluoICLGXWUBAAAAAAA0CCEk4MWmL9quo+VVdm1hleXqXHTQrm0DoyABAAAAAIAXI4QEvNjcDQcd2roeyVGADLs2dsYGAAAAAADejBAS8FK5xWVO23vl73JoW08ICQAAAAAAvBghJOClLv73D07bex3a7dC2NrGjydUAAAAAAAA0HiEk4IVKyir1/Z5Cp+d6HrIfCWm1BGhTfHt3lAUAAAAAANAohJCAF6qwVjs/YRjqeXi3XdOWFskqCw41vygAAAAAAIBGIoQEfEi7o4cVX1Zq17Y2IdUzxQAAAAAAANQTISTgQ5ytB7kuoe71INNaRZpQDQAAAAAAQP0QQgI+pNchx52x67MpzfUDU8woBwAAAAAAoF6CPF0AgPqruSmNJK1rleq079TsNP2cd1S/SU/QbcOc9wEAAAAAAHAHQkjAh9Scjn04LFq5UfEO/SwW6anfZrmpKgAAAAAAgDNjOjbgI8Iry5VemGvXtjax48nEEQAAAAAAwIsRQgI+ovvhPQqQYddWn01pAAAAAAAAPI0QEvARTjelSUh1fyEAAAAAAAANRAgJ+AhnIWRtm9K0CA82uRoAAAAAAID6I4QEfETPGpvSVAYEalPLFKd97zmrsxsqAgAAAAAAqB9CSMAXGIZDCLk5vp0qghxHPHaMj9A1/du5qTAAAAAAAIC6BXm6AAB161CSr9iK43Ztta0H+dM9Zyk6jFcbAAAAAAB4D0ZCAj7A6XqQteyMTQAJAAAAAAC8DSEk4AP65O90aFvHztgAAAAAAMBHEEICPqBPnmMI+WNiJw9UAgAAAAAA0HCEkIAPqDkSMieqlQ5FxHmmGAAAAAAAgAYihAS8XMLxIrUvPWzXxihIAAAAAADgSwghAS/nbD3IH5MIIQEAAAAAgO8ghAS8nLP1INckdvZAJQAAAAAAAI1DCAl4uT75Oxza1iQRQgIAAAAAAN9BCAl4ub41QshD4THaH9XSQ9UAAAAAAAA0HCEk4GXeWr1P3f9vsSQppvyY0ooO2p1fk9hZslg8UBkAAAAAAEDjBHm6AAC/2px/VNe896MM4+Rx7/xdDn3YlAYAAAAAAPgaRkICXuT9dQdsAaTkOBVbkn5kUxoAAAAAAOBjCCEBL5JTdMLuuHe+s52xGQkJAAAAAAB8CyEk4MX65tmPhCwOidDOuNa19g8KYK1IAAAAAADgfQghAS8VXlmurCP77Np+Suwow1L7a3vj4A5mlwUAAAAAANBghJCAl+pxeLcCjWq7trrWgxzRMd7MkgAAAAAAABqFEBLwUjWnYkvSmqQzh5Bdk6LNKgcAAAAAAKDRCCEBL7Ilv9T2uZ+TEPLHOjal6dGGEBIAAAAAAHgfQkjAiyzdecT2ecDBrXbnjgWFanN8uzNeb7GwMQ0AAAAAAPA+hJCAlyirtNo+R1SWqVtBjt35NUmdZQ0IlCS9f01/t9YGAAAAAADQFISQgJeoNgzb5z55Ox02pfmhdbrtc1AAIx4BAAAAAIDvIIQEvNCAvG0ObauS0jxQCQAAAAAAQNMRQgJeqP9BJyHkaSMhAQAAAAAAfAkhJOCFBtQIIY+ERWlHXBsPVQMAAAAAANA0hJCAlyguq5IkxZWVKr3ogN25H5LSJHa+BgAAAAAAPooQEvASA/75P0nOp2L/wFRsAAAAAADgwwghAS+RW1ImqbZNaQghAQAAAACA7wrydAGAPzMMQzsKjiso4Nep1v0Pbnfox6Y0AAAAAADAlxFCAh5SXmXV5DdWa8HPeXbtNTelyY2MV250S3eWBgAAAAAA4FJMxwY8ZOHP+Q4BZOvSI2pXWmDXtqp1mjvLAgAAAAAAcDlCSMBD3lq9z6Gt5ihIyfmmNGktIx3a7h7ZyTWFAQAAAAAAuBghJOAhRScqHdqcbkrjJITMSorSeRkJtuO48GBdNzDFtQUCAAAAAAC4CGtCAl5kwAEnIyGTHKdjWywWfXjtAC3cnK+8o+X6bWaiOsRHuKNEAAAAAACABiOEBLyExajWoINb7dq2x7XWkfAYp/3DggM1sUcbd5QGAAAAAADQJEzHBrxEVsE+xZUfs2tb3ibTQ9UAAAAAAAC4DiEk4CWG5G52aPu+LSEkAAAAAADwfYSQgJcYcsAxhFzeJsMDlQAAAAAAALgWISTgJQbnbrE7Lg0O0/qEVM8UAwAAAAAA4EKEkIBJDMPQhgMlmr/xoAqOVZyxb1xZqboeybFrW9U6XdaAQDNLBAAAAAAAcAt2xwZM8tgXW/XXL0/udt0iPFiLbhmiXm1jZRiG8ksrVG382nfQgS0O13/PVGwAAAAAANBMEEICJjhWXqW/LdpmOy48Ualnl+7SQ2enK+2pRQ79h+Q6hpDL2ZQGAAAAAAA0E4SQgAlyS8pUaTXs2mb/kKNvdx9x2n+wk01pGAkJAAAAAACaC9aEBNxo++FjDm0Wo1qDDmy1a9sW10aHI2LdVRYAAAAAAICpCCEBD+takKPYiuN2bYyCBAAAAAAAzQkhJOBhQ3KdTMVmPUgAAAAAANCMEEICHuYshFzOSEgAAAAAANCMEEICHjb4gP3O2KXBYVqfkOqZYgAAAAAAAExACAl4UMLxImUd2WfXtqp1uqwBgbVekxIXbnZZAAAAAAAALkUICXjQ8P2bHNr+l9ztjNf86TfpZpUDAAAAAABgCkJIwING7HMMIZe2O3MIabGYVQ0AAAAAAIA5CCEBDxqxb6PdcWVAoL5vy6Y0AAAAAACgeSGEBDwkuvy4eh/aZde2OqmzjgeHeagiAAAAAAAAcxBCAh4yNPdnBRrVdm3f1rEeJAAAAAAAgC8ihAQ8ZGSNqdhS3etBAgAAAAAA+CJCSMBDnO2M/V3brDqvax8XbkY5AAAAAAAApiGEBDwgtKpCAw9utWtb16qDCsOj67z2rE4tzSoLAAAAAADAFISQgAcMPLhVodYqu7b6rAf5r4k9FBYcaFZZAAAAAAAApiCEBDygsetBdm4ZYUY5AAAAAAAApiKEBDxg+D7H9SD/166rByoBAAAAAAAwHyEk4GZB1ioNzd1s17Y9rrUORLHWIwAAAAAAaJ4IIQE3G3Bwm6IrT9i1/a8e60ECAAAAAAD4KkJIwM3G7F3r0PZNSk8PVAIAAAAAAOAehJCACSqsRq3nsveuc2j7mhASAAAAAAA0Y0GeLgBoDj5cf0DfbD+so2VVWrqzQLsLTzjtF15ZriEH7NeD3BTfnvUgAQAAAABAs0YICTTRi9/t1u1z19er7/D9mxRqrbJrW8QoSAAAAAAA0MwxHRtoohnLd9e7r7P1IL9O6eXCagAAAAAAALwPISTQRBsOHq133zF77ENIqyVAi9t3d+i3ZeroJtcFAAAAAADgLQghATdpceKo+uTvtGtbndRZxWFRDn3DggPdVRYAAAAAAIDpWBMSfqeovFoPfLpZewrLNK5bkq7q175B1+84fEzv/rRfoYEBuqJvu3pfNzpnvQJkv2s2U7EBAAAAAIA/IISE37lnSYHWF1RKkt5fd0DWaunaAfULIvccOa4hz3+rw8cqJEkzlu+p93NZDxIAAAAAAPgrpmPDrxw6brUFkKe8sqL+QeKcdQdsAaQk7TpyvN7XZu9dZ3dcFhisZW0z6309AAAAAACAryKEhF85XmU4tC3bXVjv6//z0/5GPbddySFlFNpf+11ylsqCQxt1PwAAAAAAAF9CCAm4wXm71zi0LUrp6YFKAAAAAAAA3I8QEnCD83atdmj7LLWfByoBAAAAAABwP0JIwGTB1kqdvcd+U5qDEXH6KbGjhyoCAAAAAABwL0JIwGTD929SdOUJu7ZPO/aTYeH1AwAAAAAA/oEUBHDCMBw3sGms3+50nIr9aUemYgMAAAAAAP8R5OkCAHeotFbrmTXFenfLsTP2O15Rpev/u1bzNx5Up/hIvTy5p4amxjfp2efttg8hqywB+rJD7ybdEwAAAAAAwJcwEhJ+Yfo3O/TOlmOqa3zj419t039+ytWJymptzDuqibNXqbq68aMiOxTnqVtBjl3bsraZKg6LavQ9AQAAAAAAfA0hJPzCf9cdqFe/57/dZXecX1qhXUeON/q55zvZFfvTjv0bfT8AAAAAAABfRAgJv7A5/8zTsE85VmF1aLM2YX1IZyHkwk6sBwkAAAAAAPwLIST8wgVZiW5/ZmhVhbL3rrNr2xfVUutbpbq9FgAAAAAAAE8ihIRfsFjc/8yz9m1QZFW5XdtnHft5phgAAAAAAAAPIoQETHLh9hUObZ927OuBSgAAAAAAADyLEBIwgcWo1vgd9iFkWWCwvujQp17XhwbyagIAAAAAgOaDpAMwwYCD25RcesSu7csOvXUsJLzOa3u2iVFidKiuH5TicK5tTJjLagQAAAAAAHAXQkjABBdt/96hbV7aoDqvm9SjjT763QBJ0vUDUxQa9OsrOjS1hbq1jnZdkQAAAAAAAG4S5OkCAF9wqLRcs1bs1ep9xfXqf9E2+xDSagnQ/M51h5Bzrulv+zy4Qwst/8Nwfbj+gNrGhOmKvu1kYVMbAAAAAADggwghgTpUG4bOfvl7rTtQUq/+mQU5yizcb9f2XdtMHY6IbfCzeyfHqndyw68DAAAAAADwJoSQQB0mvL5KWw4dq3f/iduWO7R9lD7ElSUBAAAAAAD4FNaEBOrQkABSkqZs+Z9D20f1WA8SAAAAAACguSKEBFwosyBHPQ/vsWtblZSm3bGtPVQRAAAAAACA5xFCApLW5dZvvce6XOJkFOR/M0a45N4AAAAAAAC+ihASkPTUom1Nv4lhaMqWbx2a/5sxvOn3BgAAAAAA8GGEkICk//yU2+R79Di8W1lH9tm1LWuTqZyYhCbfGwAAAAAAwJcRQgIuculmJ1OxMxkFCQAAAAAAQAgJ/OLTn/Mafa3FqNYVPy+2a6uWRe+nD2tiVQAAAAAAAL6PEBL4xZ3zNjb62rNyNijl6GG7tsXtuys3umVTywIAAAAAAPB5hJDAL7YfPtboa6/a9I1D27+7ZTelHAAAAAAAgGaDEBJooojKMl28dZld27GgUH2YPqRB9+mbHOvKsgAAAAAAALwGISTQRBO2LVd05Qm7tg/Th6g0JKLOa7smRUmSOrQI18zJPU2pDwAAAAAAwNOCPF0A4Ot+t+Erh7b6TsXe8MfROnK8Qi3Cg2WxWFxdGgAAAAAAgFcghASaoMuRfcrOWW/Xti+qpb5p36Pe94iPCHF1WQAAAAAAAF6F6dhAE9y07nOHtte7/0bVAYEeqAYAAAAAAMA7EUICjRRaVaFrNi6ya7NaAvRKj3M8VBEAAAAAAIB3IoQEGmnStmVqWXbUrm1hx37KiUnwUEUAAAAAAADeiRASaKRbf1zo0Daz53keqAQAAAAAAMC7EUICjTAod7OGHths17Y3upU+7djXQxUBAAAAAAB4L0JIoBHuWj3foe3lXufVuiFNjzbRZpcEAAAAAADgtQghgQbqUJyni7cts2s7FhSqGT3Pr/Way/okm10WAAAAAACA1yKErOHZZ59VRkaGsrOz3f7sF154QRkZGcrIyNDzzz/v9uejfu74cYECjWq7tje6jVFhOKMdAQAAAAAAnCGEPM26des0a9Ysjzx78+bNmjFjhkeejfprebxEN6773K6tWhY923echyoCAAAAAADwfoSQv8jJydGtt96qyspKtz+7srJS06ZN88iz0TD3rp6rqMoyu7YFnQZoWzzTrQEAAAAAAGpDCClp69atuuKKK3To0CGPPP/ll1/Wzz//7JFn+4tKq9Hke8SfKNFtPy50aH9q0MVNvjcAAAAAAEBz5vch5Lx58zRlyhTl5eV55PlMw3aP8qrqujvV4Z7V8xRdecKu7bPUPlrRNrNR9wsOtDS5JgAAAAAAAF8Q5OkCPCUvL09PP/20PvroI4/VUFlZqalTp9qmYUdHR+vo0aMeqwe1SzpWqD+sWeDQ/pchlzX6nvERIU0pCQAAAAAAwGf45UjIl156Seedd55dANmpUyf9/ve/d2sdM2bM0ObNmyVJF110kbKystz6fNTf49++5XQU5PeNHAUJAAAAAADgT/wyhHz11Vd1/Phx2/HkyZM1Z84cdejQwW01/Pzzz3r55ZclSQkJCXrwwQfd9mw0TK/8nfrdhq8c2h8dekW9rr8gK8nVJQEAAAAAAPgUv52OLUndu3fX1KlTNXDgQLc+t+Zu2I899phiY2PdWgPqyTD0j8WvKkD2G9u8nXmWVrXpUq9bPHJOF3297bBDe3SoX79+AAAAAADAj/hlCjJw4EBNnDhRY8aMkcXi/s1BXnzxRds07AsuuEC/+c1v3F4D6ufqTYuUnbPeru1EUIgeHHF1va7/02/S1b99nKzVjrtz3zYs1RUlAgAAAAAAeD2/DCFffPFFjz1748aNmjlzpiSpZcuW+tOf/uSxWnBmSccK9fTiVx3an+53kXJiEup1j5sGn5zi3799nC7IStKCn0/uwt4lIVKX9U52XbEAAAAAAABezC9DSE+pqKjQtGnTVFVVJUl65JFHFB8f7+Gq6udUzb7KMBxHItZxgV74eobiy0rtmvdEJ+hvAyfV6xaPnp2uNlHBtt+7/17ZWytzilVSXqURHVsoMiTQ539f4Z+sVusZjwHUD+8S4Dq8T4Br8C4BrsG75BwhpBu9+OKL2rp1qyTp3HPP1Xnnnefhiuqnurpaa9eu9XQZTVJ6rLTuTqe5ad3nmrRtuWP7ObfrWEh4ve5xojBfa9ces2uL/OW/7T/nNqgewJtt2LDB0yUAzQLvEuA6vE+Aa/AuAa7Bu3SSX+6O7QkbN27UrFmzJElxcXF69NFHPVwRatPv4DY9+81Mh/bXu43Rl6l9PFARAAAAAACAbyOEdIOa07AfeughtWzZ0sNVwZnWpUc05+PpCrXaT5PeHxWve0dd76GqAAAAAAAAfBvTsd3gX//6l20adnZ2tsaNG+fhihomICBAPXr08HQZTRK1YoWkI2fs0+LEUX3+waNKLcm3a68MCNSUC6aqKCyqQc9sl5ysXr06NLRUwOtZrVa76QTdu3dXYGCgBysCfBPvEuA6vE+Aa/AuAa7RHN+l9evXq7q6ukn3IIQ02YYNG/TKK69IkmJjY/XnP//ZwxU1TlCQb/9RsVgsZzzf6nixFsz9i3oc3uNw7v6R12p5claDnxkQEOjzv29AfQQG8mcdcAXeJcB1eJ8A1+BdAlyDd+kkfgdMVFFRoQceeMA2DfuBBx5QYmKih6tCTT0O7dK8j55wGAEpSW9nnqVn+473QFUAAAAAAADNByGkib744gvbNOzAwEAtWLBACxYsqLX/li1bbJ/nz5+vn376yXb8xz/+UZmZmabV6o/CKst1/6oPNXXVBwqvqnA4v6BTf/3uvDulOkZR1iY9IbKpJQIAAAAAADQLhJAmqqj4NdiyWq369ttv633t3r17tXfvXtvxTTfd5NLa/JHFqFbmkX1qd7RAo3LW6+pNi5Rc6nydyG/a99CUC6aqKrBxr0h6q0iN7BTflHIBAAAAAACaDUJI+IWsXRv0yisPq6OTKdc1vZM5Ujec8weVBYc26ll/PS9D1w9MUWiQby86CwAAAAAA4CqEkCaaOHGiJk6cWO/+V111lVauXClJuv322/WHP/zBrNL8zp3v/r3OANJqCdAjwy7XUwMnN3oKtiT96TddGn0tAAAAAABAc0QICb8QffzoGc9/2zZLd2TfpJ+SOrupIgAAAAAAAP9BCNlE2dnZ2r9/vyQpOTlZixYt8nBFcObjERfpxnkz7NqqZdHSdt30rz5j9UH60CaNfgQAAAAAAEDtCCHhF94750q9H9RGgw9sUVlgsLa2SNay5EwdiojzdGkAAAAAAADNHiEk/IPFoi9T++jL1D6ergQAAAAAAMDvBHi6AAAAAAAAAADNGyMhT9PQ3awluXQNyDfffNNl9wIAAAAAAAC8BSMhAQAAAAAAAJiKEBIAAAAAAACAqQghAQAAAAAAAJiKEBIAAAAAAACAqQghAQAAAAAAAJiKEBJwoUt7t/V0CQAAAAAAAF6HEBJwkav6tdOsyb08XQYAAAAAAIDXIYSEX8gpOmH6M/7vgq6KDA0y/TkAAAAAAAC+hhASfuHA0XJPlwAAAAAAAOC3CCHhF45VWD1dAgAAAAAAgN8ihIRf6JIQ6ekSAAAAAAAA/BYhJPxCu9gwT5cAAAAAAADgtwgh4Rd6tYlxyX2u7d9eqS3CXXIvAAAAAAAAf0EICb9wae82srjgPmO7JmrHg2NccCcAAAAAAAD/QQgJv9AnOVZPDmvRpHu0CA/Wb9ITZLG4Is4EAAAAAADwH4SQ8Bu/SanfNOrx3ZLsjod3jNelvdvq698PUWx4sBmlAQAAAAAANGtBni4A8DZPj++mGZN6qqS8SumtIhn5CAAAAAAA0ESEkIATrWPC1NrTRQAAAAAAADQTTMcGAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSKARLu7Zxu64RXiwWkaGeKgaAAAAAAAA70YICTTCA2PS1SI82Hb8t7FZCgxgF20AAAAAAABn2B0baIQ+ybHa89Bv9ENOkTISo9QmJszTJQEAAAAAAHgtQkigkaJCgzQqrZWnywAAAAAAAPB6TMcGAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSOA04cEBahsT5ukyAAAAAAAAmhVCSPi9VpEhts9/PjdTYcGBHqwGAAAAAACg+QnydAGAp+18cIxW7i1SWqsIpbSI8HQ5AAAAAAAAzQ4jIeFX+iaG2B1f0rutokKDlJ3eigASAAAAAADAJISQ8Ct/HhynAUkhahEerHFdk/T8hO6eLgkAAAAAAKDZYzo2/ErryCC9mN1KvXr1UlAQf/wBAAAAAADcgZGQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExlMQzD8HQR8D6rV6+2Ow4I8P28urq62va5Ofx6AE/ifQJcg3cJcB3eJ8A1eJcA12hu79Lpvx5J6tevX4PvEeSqYtC81fzD5uua268H8CTeJ8A1eJcA1+F9AlyDdwlwDd6lk3w/igUAAAAAAADg1RgJiXppDkOHAQAAAAAA0HCuGM3JmpAAAAAAAAAATMXwNgAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYKogTxcAmGnHjh167733tGLFCu3bt09VVVVKTExUly5dNG7cOJ199tkKCuI1gH949tln9eKLLyo5OVmLFi1q0LXLly/XBx98oJ9++kn5+fkKCgpS69at1adPH02YMEH9+/dv0P0qKir0ySef6NNPP9WmTZtUVFSkqKgotWnTRiNHjtSkSZOUkpLSoHsCZlixYoU++eQT/fjjj8rPz1dpaantz2r//v01ceJEde3atd73W7dunebMmaNVq1YpLy9PhmEoKSlJ3bp104UXXqiRI0fKYrHU+36GYeirr77S/PnztX79ehUUFCg8PFxJSUkaPHiwJk2apMzMzMb80gGXMgxDS5cu1fz587V27VodPnxYAQEBat26tbp166Zx48Zp+PDhCgio/xgJM77Pc/XXO8CdHnjgAX344YeSpKeeekoTJ06s13W8S/BHn332me68884GX7dkyRK1bt261vN8r3dmFsMwDE8XAZjh+eef14wZM1RVVVVrn+7du+v//u//1KlTJzdWBrjfunXrdPnll6uysrJBIWRpaammTp2qr7766oz9xo8fr0ceeUTR0dF13nPHjh268847tW3btlr7BAcH64477tCNN97YoC/SgKvs27dPU6dO1Q8//FBn37Fjx+ovf/mLoqKiau1TWVmpv/71r/rPf/5zxnsNHz5cTz31lBITE+t8bl5enu6++26tXr261j4Wi0XXXnut7rnnHoWEhNR5T8AMubm5uv/++7Vq1aoz9uvdu7eefPJJde7cuc57uvr7PDO+3gHutGTJEt1000224/qGkLxL8FfPPPOMZsyY0eDragsh+V6vfggh0Sw9/vjjevPNN23HQUFBysjIUHh4uHbs2KHCwkLbuVatWum///2vkpOTPVEqYLqcnBxddtllOnTokCTVO4QsLy/XVVddpbVr19raIiMj1aVLF1mtVm3dulVlZWW2cwMGDNBrr712xi9+u3bt0mWXXWb3DiYkJKhjx44qKirStm3bdPqXpRtvvFH33Xdfg369QFPt3r1bl112mY4cOWJrCw4OVpcuXRQdHa2CggJt377d7s9qZmam3n77badBpGEYuv322+3+QRYaGqqMjAwFBgZq27ZtKi0ttZ3r1KmT/vOf/ygmJqbWGo8cOaJLLrlEe/futbXFxcUpLS1NJ06c0JYtW+z+QTl27Fg9/fTTDf/NAJpo//79uvLKK5Wbm2tri4iIUEZGhoKDg7Vz504dPnzYdi4qKkrvvfee0tPTa72nq7/PM+PrHeBOR48e1dixY5WXl2drq08IybsEf3bTTTdpyZIlkqQuXbrUKxSUpP/7v/9TfHy8XRvf6zWAATQzn376qdGlSxfbf3/4wx+MQ4cO2c5XVFQY7733ntGrVy9bnwkTJhjV1dUerBowx5YtW4wRI0bYvROjR4+u17V//vOfbddkZGQYL7zwgnHixAnb+eLiYuPxxx+3u/eTTz5Z6/2qqqqM8ePH2/oOGDDA+PTTT+3evb179xpXX3213T2/+uqrxv8GAA1UVVVlXHDBBbY/f1lZWcZzzz1nHD161K7fwYMHjfvvv9/uz+odd9zh9J6vvPKKXb/HHnvMKCkpsZ0/ceKE8dJLLxldu3a19bntttvOWOdNN91k69ujRw/jnXfeMSorK23n8/PzjbvuusvuuW+88UYTfmeAhrNarcall15q+zPYrVs3Y9asWUZZWZmtT3V1tfHpp58aAwcOtPXLzs42ysvLnd7TjO/zXP31DnC3adOm2f357NKli/HBBx+c8RreJfi74cOH2/4crlixokn34nu9+iOERLNSUVFhjBo1yvYS3nzzzYbVanXa93//+5/dXwLz5893c7WAuT766CO7bxwbEkJu27bNyMrKsl0zc+bMWvs+++yzdv/AzMnJcdrv3XfftfXr2rWrsXr1aqf9KioqjGuuucbW9/zzzzeqqqrq94sGmui///2v3fsyb968M/Z/6qmn7Pr/+OOPducLCgqMPn362M4/+uijtd7r/ffft7tXbe/I0qVL7fp98skntd7z9KB00KBBDmEqYKYvvvjC7s/qhx9+WGvfH3/80cjMzLT1nTNnjkMfM77PM+PrHeBOixcvdvher64QkncJ/q6goMDufSkqKmrSvfher/7YHRvNypdffmmb7hMUFKRHHnmk1gXOhw8frksuucR2/Prrr7ulRsBseXl5mjp1qu6//36dOHGiUfd48803ZbVaJZ2cLnD99dfX2vf2229Xly5dJJ1cC+Wtt95y2u/f//637fOkSZPUt29fp/2Cg4M1ffp0BQcHSzq5huSpqRKA2ebNm2f7PHz4cI0fP/6M/e+55x676TuffPKJ3fn3339fx44dk3RyCs39999f670mTZqkUaNG2Y5r+7r0xhtv2NX429/+ttZ7Pvroo2rZsqUkqbCwUHPnzq39FwO42Jw5c2yfe/bsqQkTJtTat3fv3jrrrLNsx87WkzPj+zwzvt4B7lJSUqKHHnpI0snvn8LDw+t1He8S/N3PP/9s+9y2bVvFxsY2+l58r9cwhJBoVhYuXGj7PHToULVt2/aM/U//grpx40bl5OSYVhvgDi+99JLOO+88ffTRR7a2Tp066fe//32971FdXa3PP//cdjxx4sQz7lYaEBCgKVOm2I5Pv/aUzZs3a8eOHbbjiy+++Iw1JCUlafTo0bbjzz77rF61A01RUVGhNWvW2I4vuOCCOq8JCQnR8OHDbcfr16+3O//pp5/aPp9//vmKiIg44/1O/7q0dOlSHT9+3O58cXGxli1bZjueNGnSGe8XERFhF6TyLsFdDMPQwYMHbV8/xo4dW+c1p68DuWfPHofzrv4+z4yvd4A7Pfnkk8rPz5d0cn27muvU1YZ3Cf7u9BAyIyOjSffie72GIYREs2EYhlasWGE7HjZsWJ3XZGRkKCEhwXZc3x2DAW/16quv2n0hmzx5subMmaMOHTrU+x6bN2+2W4j89IClNqe/b7m5udq8ebPd+e+//972OTY2Vj169GjQPRcvXmy3CQhghv379ys0NNR2XJ8deqWTP/U+5fR3p6ioyO6b3Pq8S4MHD1ZgYKAkqayszO6bUElauXKlbaSJxWKp19e60/usWbNGxcXFdV4DNJXFYtH8+fO1Zs0avf/++xo3blyd15SUlNg+R0ZG2p0z4/s8M77eAe6yePFi24inLl261PsHzrxLgH0ImZmZ2ej78L1ewxFCotnYv3+/3Tev3bt3r9d1p//ko+YIFsBXde/eXW+++aYef/xxp7v1nsnp3wQG///27jysqmrvA/iXUWUQRNBUMhUFlExTr3rTtLjmxFULFVMLNIfMwBDTFBOUVLIcA80hzUvlACqC0U2vV1NRsdK8llcgcQKuiqAog3DgwPsHD+vdm+EMnHMYv5/n6Xn22mfttdfBs9rr/M4azMxU7lBarnPnzmjevLlIV2xL0jK7d+8OIyMjtWVKOwSPHz+W7QxHZAidO3fGb7/9hl9//RVxcXFiqpg66enp4lg6nScpKUkWPHdzc1NbloWFBTp27CjSqtqSo6OjRtOHpG2ppKQEV69eVXsNkb60aNECPXv2FFPFqqNQKHDmzBmR7tGjh+x1Q/TzDPG8I6oNT548wbJlywCUTacODQ3VeIdptiUi+WdWlyAk+3raYxCSGo1bt27J0tKGrYqjo6M4ZpCDGrr+/ftj8+bNOHDgAPr371+jMqRtqUOHDjA1NVV7jZGRkWwqT8VpdNIyNR2VKW2bVZVJZCjW1tbo2rWr7MtRdXJzc3H27FmRlo6elH7uzc3N0a5dO43ur+q5VJO25ODgIHsvbEtU3ygUCnz88ccioG9sbAwfHx9ZHkP08wzxvCOqDStXrhTTsGfMmKFxIBFgWyIqLCzEzZs3RdrFxQUXL17EsmXLMGrUKPTu3Rsvvvgihg8fjiVLluD8+fPVlsW+nvbU/9+BqIF48OCBODY2Noa9vb1G10mnFkjLIGqItmzZonMZ0nYg3XBDHXt7e9y4caNSGQBERxmQtzlV7OzsYGJiIqYjsH1SfbRz507k5uaKtHQtU+lnVtPPfcW8+mhLANC6dWsR4GFborpWUlKC4uJipKWlIT4+Ht98843sS1hwcHCl5RAM0c8zxPOOyNBOnDghNlFzcnKCr6+vVtezLVFTl5SUJJvuvGLFiioDjbdv38bt27dx6NAhDB48GJ999lmlUf3s62mPQUhqNKTrHlhaWqpcDFlKOlW1Pq+dQFRbsrOzxbG1tbXG10nzVmxL0rSmZRobG8PCwgI5OTkA5GuFEdUHV65cwY4dO0S6U6dOcHd3F+matiVVz6WatKWKedmWqK6FhoYiIiKi0vlnnnkGgYGBGDFiRKXXDNHPM8TzjsiQHj9+jKCgIABl/SRtpmFLyyjHtkRNkXS6c2lpqQhAWltbo2PHjrC0tER6erpsuZ34+HhMnDgR3377rWwEL/t62mMQkhqNwsJCcazJFLpy0ge3QqHQa52IGiJpO9BXW9JH+5SWQVTX0tLSMHfuXBQVFYlzixcvlk1BY1siqtr//ve/Ks+3atUKGRkZKCgoqPT5NkQ/zxBtlMiQVq5cKUY4TZs2Db169dK6DLYlauqkG8kAZaMNFy1ahJEjR8o+k8nJyfj8889x+vRpAGXrqc6dOxeRkZEiH/t62uOakNRoSL8IavqLHgDZF8bi4mK91omoIappWyrf5Q2o3JakaWk+Xcokqit3796Fj4+PbKrLtGnTZFOxAcM8l6RpfbVPotqWmZkJV1dXDBw4EM7OzuKzfO3aNaxcuRLjxo1DSkqK7BpDtCdDPO+IDOXf//43YmNjAZSNvP/ggw9qVA7bEjV1FddcjImJwdixYyuNKnZ2dsb27dsxfvx4ce7atWvYt2+fSLOvpz2OhKRGQ9roSkpKNL5O2kDNzMz0Wieihqimbal8bRWgclsyMTERbU2aT5sytZ1uRGQIKSkpmDFjBu7evSvODR48GB9++GGlvIZ4LhmifRLVtj179sg+yw8ePEB4eLj4Ynfr1i1Mnz4dMTExaNWqFQC2J2rasrOzERwcDKBsDbtVq1ZpNUJKim2Jmrqvv/4aWVlZSEtLQ5s2bSqt8yhlZGSE5cuXIyEhQUzPjoiIgLe3NwC2p5rgSEhqNFq0aCGOtRl+LB3+3KxZM73WiaghknZqtWlL0rwV25I+ymQQkurapUuXMHXqVFkAcuDAgQgPD6+ys1df2xKfdVTXKo6Id3BwwIoVK2TB/Pv372Pz5s0ibYh+HtsTNRTSadhvvfUW+vXrV+Oy2JaIyjZx6dWrl0a7WZubm+PNN98U6dTUVLGZGvt62mMQkhoNGxsbcZyXl4fS0lKNrpPuampra6vvahE1ONJ2IG0f6qhqS9L2qWmZJSUlyM/Pr7ZMotp05MgR+Pj44NGjR+Lc0KFDsW3bNtkXOqmatqW8vLwqywBq1pYq5mVbovpq1qxZeOGFF0T68OHDYhSIIfp5hnjeEenb8ePHceTIEQDAs88+i4CAAJ3KY1si0l6fPn1k6fIp3ezraY9BSGo02rZtK46VSqXsi6Iq0jW97O3t9V4vooamTZs24jgrK0vj6zIzM8Wxg4OD7DVp+9S0zIcPH8qmIFQsk6i2hIWF4cMPP5SNAhk7diy2bNmicjpcTT73gOrnUk3LlOZlW6L6bNy4ceI4JydHfNEzRD/PEM87In3Kzs7G8uXLAZRNC125ciUsLCx0KpNtiUh7Fadsl+9gzb6e9rgmJDUazz33nCydmpoKOzs7tdelpaWJ486dO+u9XkQNTadOncRxWloaSktLYWRkpPKa0tJSsU5KxTLK05cuXQIAMX1BndTU1GrrRVQbioqKsHTpUsTExMjOv/vuu5g/f77adiF9LuXn5yMzM1OjH7ukn/2KzyVpO9C0LZXvNlxVGUT1TceOHWXp7OxsAIbp5xnieUekT/v37xfBihYtWmDHjh3YsWNHtfmlQb2vv/4acXFxIr1mzRrY29uzLRHVQMVp0ZaWlgDY16sJBiGp0ejQoQNsbW1FZ/XatWvo1auX2usSExPFsaurq6GqR9RguLm5ieOnT5/i5s2b6NKli8prbty4IXs4d+/evVKZhw4dAiBvc6pcu3ZNHNvY2KBDhw4aXUekDwqFAn5+fvjpp5/EOVNTUyxfvhwTJ07UqIwePXrAyMhITHW7du0aXn75ZZXX5OXlyTqcFZ9L0vZ5+/ZtPH36tNrp4OWkbcnIyAguLi4a1Z9IFzdu3EBUVBTS0tJw9+5dfPPNN2o/q4B83TkAaNmyJQDD9PMM8bwj0idpe8jPz0d8fLzG1yYnJyM5OVmkywMUbEvUlCUmJiImJgZZWVnIysrCZ599pnJjmnLSIDwAtG/fHgD7ejXB6djUqAwYMEAcnzt3Tm3+xMRE2S+GAwcONEi9iBqSbt26yX4RP3/+vNprzp49K45btWpV6cHXv39/cfzgwQP8+eefasuUtmFp2yYytOLiYsybN08WgLS0tMS2bds0DkACgJWVFXr06CHSmjyXEhISxDIEJiYmsrYDAH379oWpadlvyEqlEhcuXFBbpvS+PXr0kK01RGQoeXl52LVrF44dO4bff/9do2cJAPz+++/i2MzMTLZpgL77eYZ43hE1BGxL1FQ9fvwYu3btQkxMDOLj4/Hzzz9rdN3p06fFsbW1NZydnQGwr1cTDEJSozJ8+HBxfPLkSdy/f19l/r1794pjJycnPvyIUPbr2WuvvSbSkZGRsrUZKyopKUFkZKRIjxgxotIUHGdnZ9lUg3379qmsw927d2UBoFGjRmlafSKdff755zh58qRI29nZ4ZtvvsHgwYO1LmvEiBHiODY2Fk+fPlWZX/pceumll8QosHItW7aUfflT15by8vIQGxsr0iNHjtSo3kS6cnV1lS2M/91336m9Jj8/HwcPHhTpAQMGiClvgP77eYZ43hHpk5+fH5KSkjT+TzprJDQ0VPaao6OjeI1tiZqq559/XraualRUlNpr7t27J+tLeXh4wNj4/0Np7Otph0FIalSGDx8uFkZWKBRYvHgxiouLq8x75swZ2f903n777VqpI1FDMGXKFNEZTExMxObNm6vNu2nTJjGy0djYuNq2NHXqVHG8b9++an8pLCoqwkcffYSioiIAZdMdhg0bVqP3QaStU6dO4R//+IdI29jYICIiQjY1Rhvjx48XU2gyMzMREhJSbd6oqCicOXNGpL29vavMJ21LJ0+eFEsdVGX58uV4+PAhAMDCwgITJkzQqv5ENWVmZobx48eLdHx8vNjhtyrFxcVYvHixbLH+WbNmyfIYop9niOcdUX3HtkRNlaWlJUaPHi3SZ8+exeHDh6vNn5ubC39/fxFYbNasGWbMmCHLw76edhiEpEbF3NwcAQEBIn3u3DnMmjVLtvBrcXExIiMj4efnB6VSCaBslJY2U+yIGjtXV1e88cYbIh0eHo7Vq1cjJydHnMvJycGqVauwdetWcW7SpEno2rVrlWVOmjRJjIYsLi7G+++/j6ioKFmnNzU1FTNnzpRNO1i4cCHMzc319t6IqqNUKrFq1Sqxro+RkRHWrVuHbt261bhMe3t7zJw5U6QPHTqEBQsWyHYwLCgowNatWxEcHCzODRkyBEOGDKmyTHd3d9lUumXLlmHbtm2ytbUyMzMxf/582S/jc+fO1WjzASJ9mTt3rmyXzyVLlmDbtm2VRon88ccf8PHxwdGjR8W5iRMnVpryaYh+niGed0T1HdsSNWUffPABrK2tRXrp0qUIDw9HXl6eLN8vv/yCyZMn47fffhPnAgICKm2gxr6edoxKy3vaRI1IUFAQ9u/fL9LGxsZwcXGBlZUVUlJSxC8FAGBra4u9e/eqXTyZqCE7dOgQlixZAqBsQfITJ06ovSY3Nxc+Pj74448/xLkWLVqIKThJSUmyL5I9e/bEt99+i+bNm1dbZnJyMt5++22xGDpQNtXVyckJOTk5SE5Olk3fmTp1KoKCgjR+n0S6iIuLk30ps7CwQJ8+fbQqw97eHmvWrJGdKw+6S5cYMDMzg4uLC8zNzfHnn3/KvqQ5OjoiKipKZSfy/v37mDp1quwLo7W1Nbp16waFQoGkpCQxmhgAXn31VWzZskU2fYioNiQmJsLb2xuPHz8W58qfJebm5khPT5ftkAsAw4YNw6ZNm8SaWBXpu59niOcdUV1wd3cX7Sk0NBSenp4q87MtUVOVkJCA2bNny4J6zZs3h6urK8zNzXHnzh3cu3dPds2MGTOwaNGiKstjX09zDEJSo1RaWoqNGzdi586dsoZZkZOTEzZt2qTTKBeihqAmQUig7BfrRYsWqc3/6quv4vPPP5f9qlidpKQkLFiwQOXmNCYmJpg1axb8/f25RhDVGj8/Pxw7dkynMqprXwqFAitWrMDBgwehquv14osvYtOmTbLRY9W5e/cuAgICcOnSJZX5JkyYgODgYI4opjpz584dLFy4EJcvX1aZz8LCAnPmzMHs2bNV/r/fEP08QzzviGqbtkFItiVqyq5evYqFCxciJSVFZT4bGxssWLAAkyZNUpmPfT3NMAhJjVpKSgoOHDiA+Ph43Lt3D0+fPoWNjQ26d++OkSNHYuzYsQ2ioRLpqqZByHLnz59HbGwsfv31V2RmZkKpVMLe3h4vvvgi3njjDa037CguLsaRI0dw9OhRXLt2DVlZWTAzM4OjoyMGDBiAN998k1NzqNZ5eHjg+vXrOpWhrn1duXIF0dHRSEhIwP3796FQKGBnZ4cXXngBf//73zF8+HCtfsEuLS3Fv/71L/zwww+4cuUKMjMzYWxsjLZt26Jv377w8vJC7969dXpPRPpy+vRpxMXF4fLly8jIyEBRURFsbW3RrVs3DBo0CJ6enlpNIzNEP0/fzzui2qRtELIc2xI1VUqlEsePH8exY8dEP6q4uBj29vbo1KkT3N3d4eHhodWziX091RiEJCIiIiIiIiIiIoOq35PFiYiIiIiIiIiIqMFjEJKIiIiIiIiIiIgMikFIIiIiIiIiIiIiMigGIYmIiIiIiIiIiMigGIQkIiIiIiIiIiIig2IQkoiIiIiIiIiIiAyKQUgiIiIiIiIiIiIyKAYhiYiIiIiIiIiIyKAYhCQiIiIiIiIiIiKDYhCSiIiIiIiIiIiIDIpBSCIiIiIiIiIiIjIoBiGJiIiIiIiIiIjIoBiEJCIiIiIiIiIiIoNiEJKIiIiIiIiIiIgMyrSuK0BERERUH7i7uyM9PV3nciIiIjBgwAA91Iio9hQWFmLChAlITk6Gj48PAgMDxWsXLlyAt7e3SCclJel0LxcXF3Hs6+sLPz8/rcsICwtDeHi43uqkzrx583D06FEMHDgQX3/9NYyNOZaDiIhIW3x6EhERERE1caGhoUhOToa9vT3mzZtX19Wpdz766CM0b94cCQkJ+Oqrr+q6OkRERA0SR0ISERERVdCmTRs4OzvX6FobGxs914bIsE6fPo29e/cCAPz9/WFlZVXHNap/OnTogOnTp+PLL7/Epk2bMGTIELi6utZ1tYiIiBoUBiGJiIiIKhg0aBA+/fTTuq4GkcEVFBQgJCQEAODs7Izx48fXcY3qr9mzZyMqKgqZmZkIDg7G3r17OS2biIhIC3xqEhERERE1Udu2bUNqaioAYP78+QyqqWBhYYE5c+YAAC5fvowDBw7UcY2IiIgaFvYyiIiIiIiaoKysLOzevRsA0LVrV7i7u9dthRoALy8v2NraAgDCw8NRWFhYtxUiIiJqQBiEJCIiIiJqgrZv3478/HwAZcE1Uq9Zs2Z4/fXXAQD3798Xa2kSERGRelwTkoiIiMiAFi9ejOjoaADA1q1bMXToUERERGD//v1IS0tDy5Yt0aVLF4wcORJTp06tdH1eXh4OHz6MU6dO4c8//0RWVhbMzc3h4OCAfv36YdSoUXjppZe0qtP58+dx8OBBXLp0CRkZGbC0tETHjh0xatQoeHl5wcrKCt9++y0++eQTAICvry/8/PxkZRw6dAhLliwBULZpx4kTJ9Te193dHenp6QDKdmP29PRUmT89PR3R0dGIj49HWloasrOzYWVlhfbt2+Oll17CG2+8AScnJ5VlhIWFITw8HACwbNkyvPXWW1AoFIiJicGPP/6IlJQUZGZmwtraGp07d4a7uzsmTZoEa2trte+n3M8//4zvv/8ely5dQnp6OoqKimBjYwNnZ2cMHToUnp6eaNmypeyakJAQfPfddwDKNjOKj4+Hubm52nv94x//wOrVqwEAnTp1wtGjRzWup1Rubi6ioqIAyANrulAqlZg/f76sTj4+PggMDNS5bG1J/91rQtXn08vLS4wgjYiIgLe3N6exExERaYBBSCIiIqJa9PHHH+PgwYMinZmZiczMTLi4uFTKGxsbi08//RRZWVmy84WFhcjJycGNGzcQGRmJgQMHYs2aNXjmmWdU3jsrKwsfffQRzpw5IzufnZ2N7OxsXLlyBXv27MEXX3yhwzvUnVKpxMaNG7F7924oFArZa48ePcKjR49w9epV7Nq1C15eXggMDNQogAcAiYmJWLBgAa5fvy47//DhQzx8+BAXL17Ezp07sXbtWgwaNEhlWXfu3MHSpUvx888/V3qt/N/13Llz2Lp1K1auXIlhw4aJ19944w0RhHz8+DFOnz4te706MTExsjJqKiYmBnl5eQCAAQMG6Lyre2lpKZYsWSILQE6bNk0EqhsTJycndO3aFdevX0d6ejpOnjyJv/3tb3VdLSIionqPQUgiIiKiWhIdHV3tyLWxY8fK0uHh4QgLC5Oda9++PRwdHVFYWIiUlBTk5uYCABISEjBx4kTs3r272pGBWVlZmDJlCm7duiXOmZmZwcXFBc2bN8f169eRnZ2N1NRUzJgxQy8j42pCoVBg7ty5skCpkZERnJycYG9vjydPniA5ORnFxcVQKpXYu3cvkpOT8dVXX8HCwkJl2bdu3UJ4eDgePXoEAGjdujW6dOmCgoICpKSkiKnJDx8+xHvvvYfo6Ohq/56JiYnw8fFBdna2OGdmZgZnZ2dYWFjg1q1bePDgAYCywOm8efOwfv16jBw5EgDQs2dPODs7Izk5GUBZwFldEDIlJQVXr14FABgbG+v0bxQbGyuOX3nllRqXUy44OFgWIJ0+fToWL16sc7k11bFjRwwePFjj/OfPn4dSqQRQNjK0R48eKvMPGTJEBLJjY2MZhCQiItIAg5BEREREtaQ8ADl69Gj4+vqiXbt2uH79Oo4fP44XXnhB5IuLi5MFIPv27YslS5agZ8+e4pxCocD333+PNWvWIDs7GxkZGfD19cWBAwdgaWlZ6d5LliyRBSAnTpyIBQsWoFWrVgCAoqIiREdHIzQ0FA8fPhTTTWvbypUrZQHIiRMnwtfXVzbK8/Hjx9i5cyd27NiBkpISXLx4EUFBQVi7dq3Ksr/55hsAZQGqjz/+GEOGDIGRkRGAsunJYWFh4n0XFhYiLCwMGzdurFROfn4+3n//fRGANDExwZw5czB9+nTZNO7jx49jxYoVyMjIgFKpxNKlS9G3b184ODgAKBvJuGbNGgDAyZMnkZOTo3Ia+OHDh8XxSy+9pHbka3UyMjLwn//8R1aWLkJDQ7F//36RrusAJACMGzcO48aN0yjvhg0bEB8fL9IhISFwdXVVec2gQYOwa9cuAMCZM2egUCg0Ho1LRETUVDEISURERFSL3N3dsX79ehH8euGFF2QByNzcXCxfvlyk//a3v+GLL76Aqam822Zubg5PT0/06tULkydPxuPHj3Hjxg3s2LED/v7+srznzp3DqVOnRPqdd97BRx99JMtjZmYGLy8vdO3aFT4+PpWmQdeGX3/9VRbMWrRoEWbMmFEpn42NDQICAuDi4oKAgAAAwJEjRzB+/Hj89a9/VXkPR0dHREZGiuBrOSsrKyxZsgQPHjxAXFwcAODUqVNVBpd2796NtLQ0kV67di1Gjx5d6V7Dhg1Du3btMGXKFBQUFCA3Nxfffvst5s+fD6Bs9Ou6detQXFwMhUKBH3/8ERMnTqyy3qWlpThy5IhIjx8/XuX7VOXChQsoLS0FALRo0QLPPfdcjcsqnzZfrqrPliqxsbG4fPmy1ve9c+eO1tdUJSYmBlu3bhXpd955R6MRpt27dxfHeXl5uHLlCvr166eXOhERETVWDEISERERVRAdHS02k9FUREQEBgwYoDbfe++9JwKQVTlw4ACePHkCALC2tsbq1asrBSClnJyc8MEHHyAkJAQAsHfvXsyZMwfNmzcXeaQ7+D777LMiCFaVPn36wNfXF+vXr1f7XvRt586d4rhv375VBiClPDw8cOzYMfz4448AgF27dqkNQs6bN69SAFJq8uTJIgiZn5+P1NRU2ZTskpISWaDUw8OjygBkOTc3N4wZM0ZsAnPs2DHx97e3t8fLL7+MkydPAigLpFYXhLxw4QLu3r0LoCwIq8n6kdWRjoLs2rVrjTdV2b59O7788kuR1jYACZQFE/UVUNTWxYsX8fHHH4v0kCFDsHDhQo2ubd26NVq3bi3Wa/3Pf/7DICQREZEa3MaNiIiIqJZYWlri+eefV5lHumbkq6++CltbW7XljhkzBiYmJgDKNpmRjiwrKiqSTTX19PRUO210ypQpaNGihdr76lNBQYFsGramm65IR62dP38ehYWF1eY1NjZWu3Zf165dZemcnBxZ+r///S/u3bsn0pMnT1ZbR29vbyxcuBBbtmzB5s2bZa9J3+cvv/wiK1tKut6ih4eHTlN/U1JSxHG3bt1qVEZERATWrVsn0jUJQNaltLQ0+Pr6ihG/Xbp0wfr167UKyDo7O4vjihsdERERUWUcCUlERERUQZs2bWQBBk1osruws7OzyiCHQqHAH3/8IdLVbYpSUcuWLdGxY0fcvHkTAHDp0iUMHDgQAGQbrgDQaLSWtbU1+vTpg7Nnz2p0f324cuUKioqKRFrT9y4N6hYVFeH333+v9j06OjrCyspKZXktW7aUpaV1Kq9nOTMzM/Tq1UttHZ2dnav9PJUHmrOzs1FSUoLvv/8eM2fOlOUpKCiQBad12RUbgGwqeevWrbW+PioqCqtXrxZpZ2fnGgcgfX194efnp/V1YWFhCA8Pr9E9c3NzMWfOHDx8+BBA2b/5l19+qXI9zqpI/3bSvykRERFVjUFIIiIiogoGDRqETz/9VO/l2tnZqXz93r17srUYN2zYgA0bNmh9n/v374vj9PR02WudOnXSqAwXF5daDULevn1bltZkhGFVMjIyqn1Nk1Gl5SNKy5WUlMjSqamp4rhDhw46b0Zibm6OMWPGiE1zYmNjKwUhjx8/jry8PABlIxela4jWRPnu4AC0DrwBQFBQkFhTEgCSk5Nx9OhRjBgxQqd61QalUgl/f3/8+eefAMr+vTds2KBxu5CSBrSlu6QTERFR1Tgdm4iIiKiWqBuF9/jxY73cR1pObm6u7DVNg06q1k00hPJ1MHWlKhgkXSezpqR/z5oE8KoiHdmYlJSE5ORk2evSqdienp463+/p06fiWN1nsirlgVnplP1PPvlEb59fQwoNDZVN+1+0aBEGDx5co7Kk//7S0cZERERUNY6EJCIiIqol6tabKy4ulqV79uyp0TTviqTrGjZr1kz2mnQEmyq6jvDTVsX3XtPAUJs2bfRRnWqp2lSoptzc3ODi4oKkpCQAZRvULFiwAACQmZkpRqSamppi7NixOt9P+h5quinNm2++ibFjx2Lq1KkoLS3FgwcPEBoaapARxPqyZ88eMeIUKAvoTps2rcblSUfN1vTvSERE1JQwCElERERUT1Rcj3Du3Llwd3fXqcyKQcycnBxYWFiova7iCEpVNA1sqto0puJ737RpU41G6RmatJ4VN63RhaenJ0JDQwEAcXFxIgj5ww8/QKlUAijbvdne3l7ne1laWooRowUFBVpfP3XqVCxbtgxGRkbw8vISu4VHR0fDw8MDL7/8ss511LezZ89i1apVIt27d2+sWLFCpzKlox8tLS11KouIiKgp4E92RERERPVE27ZtZaPU7t69q3OZzz33nCyt6S6+d+7cUfm6tJ4VN2+pSklJicrpum3btpWl9fHeDUFaz/T0dI3eOwDs378fp0+fxs2bN6u8ZsyYMTA1NRXlXrt2DUDZepDlxo8fr0vVBenamDVZyzAoKEj8+3/44YdwcHAQrwUHB4v1K+uLlJQU+Pv7i9G2zzzzDMLDw3Ue7Sv9PNdkxDIREVFTwyAkERERUT1hZWWFbt26iXRCQoJG1xUVFSEwMBAbNmzA/v37ZYHG9u3bo3379iJ9/vx5teWVlpbi4sWLKvNIAziaBJ2qC76V6927tyywqel7v379OgIDA7F582YcPnxY7HhsKNLdsMt341YnNTUVQUFBmDVrFkaOHImUlJRKeVq3bo0hQ4aI9PHjx/HkyRPx72BnZ4ehQ4fq4R0AHTt2FMf/+9//dCqrZcuWCAwMFOn09HSsW7dOpzL16dGjR5gzZ45Yc7R58+bYvHmzLHBaU9K/XU02tiEiImpqGIQkIiIiqkdeeeUVcXzixAnZbszViYmJwcGDB7F161YEBQVVCnKNHDlSHB86dEjtVOszZ84gLS1NZR7paLr8/Hy1way4uDiVr9vZ2ckCfN99951Gowy3b9+OgwcP4osvvkBgYGCl3az1rUePHrIp0VFRUWqvkb53Ozs7ODs7V5lPOtLx3//+N06dOiVG740dOxZmZmY1rbaMk5OTOK64K3lNjB49WhYg3bNnD3799Vedy9VVUVER/Pz8ZKN6V69ejeeff14v5Uv/dl26dNFLmURERI0Zg5BERERE9chbb70lgk3FxcXw9/dXGTRMS0vD2rVrRbpdu3Z49dVXZXm8vb1FmVlZWQgKCqo2WJeVlYXly5erraeLi4ts5KJ0w4+KEhMTsXPnTrVlvvPOO+L45s2b+OSTT1SuN3nixAnExsaK9PDhw/WyZqIqpqammDx5skhHR0fj9OnT1eZPT0+XvfcJEyZUu4nJ0KFDYWdnBwC4du0avvvuO/GadAdtXfXp00ccJyUliTUndREcHCzWGi0tLcXSpUtVrgFaG4KCgvDLL7+I9Pvvvw8PDw+9lJ2RkYGMjAyR7tevn17KJSIiaswYhCQiIiKqR9q2bQt/f3+R/uOPP+Dl5YX4+HhZQE6pVCI2NhZTpkzBo0ePxPlFixZVWuuuXbt2+PDDD0U6Li4Oc+bMqTTK8sKFC5g8eTLS09PV1tPe3l4WzPr666+xfft2KBQKca6goAB79+7F5MmTUVBQINY8rM7w4cNlI0H379+Pd999t9I6lrm5ufjyyy8xb9488TexsLBAQECA2nrrw7Rp08T029LSUvj6+mL37t2VNnk5d+4c3n77bTEV2MHBATNnzqy2XDMzM/z9738X6d9++w1A2e7Zrq6ueqt///79RQC5oKAAiYmJOpfZoUMH+Pn5ifStW7cQFhamc7k1tWPHDhw6dEikx40bh3nz5umt/CtXrohjW1tbdO/eXW9lExERNVbcHZuIiIionpk5cyZu3ryJAwcOACjbWGPGjBlo3bo1OnfuDIVCgdu3b1fa6GX27NkYPXp0lWVOmzYNN27cEDsZnzp1CqdPn0a3bt3QqlUrpKWlieCjubk5bGxs8ODBA5X1DAgIgLe3N5RKJUpLS7Fu3Trs2LEDTk5OKCoqws2bN8V6kT169EDv3r2xZ8+easszMjLCZ599hunTp+Pq1auinqdOnULHjh3xzDPPIDs7G3fu3JEF/MzMzLB27VrZWoeGZGVlhS+++ALTp09HVlYWCgsLERoaik2bNsHZ2RnNmjXD7du3ce/ePXFNixYtsHHjRrUbmIwfPx4RERGyc56ennqtv62tLfr16ydGCcbHx8PNzU3ncn18fHDkyBH897//BQDs2rULo0aN0kvZ2khKSsL69etF2tTUFCYmJggICEBBQQGKi4s1Gv2pavTumTNnxLG7u3u1o1uJiIjo/zEISURERFQPrVq1Ci4uLggLCxMj6bKyspCVlVUpr5WVFRYuXIg333xTZZkhISFwdHTE5s2bUVBQgNLSUiQnJ8vy2NraYs2aNdi5c6faIGS/fv2wfv16LFu2TNTxyZMnYgRfuVdeeQWhoaHYtWuX2vdtY2ODPXv2YPXq1Thw4IAIFt25c6fKHbufe+45rF69utanw7q4uCAyMhKLFi0Sm8fk5+fj8uXLlfJ26tQJa9euRc+ePdWW6+rqiu7du4vdsc3NzWWjI/Vl3LhxIgj5008/4d1339W5TBMTE4SEhMDLywslJSVQKpUIDAzEwYMH1Y6C1afs7GzZcgPFxcWyUZH6IA1C6nOqPBERUWPGICQRERFRPeXt7Y3XX38dhw8fxtmzZ5GcnIyHDx+ipKQENjY2cHFxwcsvv4xx48ahVatWGpU5e/ZseHh4IDIyEj/99BPS09OhVCrh6OiI1157DVOnTkXr1q01WsMRKNv0pn///ti/fz9OnjyJ27dvIz8/Hw4ODujZsydef/31SmtUqtO8eXOEhIRgxowZiImJQUJCAu7cuYPs7GyYmprC3t4ebm5ueO211zB8+PBK089ri6OjI/bs2YMzZ87gxx9/xMWLF/HgwQMUFhaiVatWcHNzw4gRI+Dh4aFVHV977TURhHR3d5dtAqQvo0aNwpo1a5CTk4PffvsN6enp6NChg87l9uzZE2+99ZYYzZmYmIjt27dj7ty5OpddX1y8eFGMGu7cuTP+8pe/1HGNiIiIGgajUlWrfRMRERFRk/T222/j559/BgD4+vrK1vsjw5o5c6YYabdz504MHjzYIPf5/PPP8dVXXwEA/P398d577xnkPo1NUFCQWNZg5cqVmDhxYh3XiIiIqGHg4iVERERERPVERkYGzp07BwB49tlnMWjQIIPda9q0aWjRogUAYN++fSguLjbYvRqL7OxssSN7u3btMG7cuDquERERUcPBICQRERERUT2xb98+sQ7m5MmTxS7WhuDg4IBp06YBAO7du4d//vOfBrtXYxEZGYmnT58CAD744IM6WwqAiIioIWIQkoiIiIioHjhx4gR27NgBoGyDnkmTJhn8njNnzkSbNm0AAFu2bNFo1+imKjc3V2yu5ObmxlGQREREWmIQkoiIiIioDvzwww8YM2YMfHx8MGLECLz33ntQKBQAgEWLFsHKysrgdbCyskJwcDAA4MaNGzh8+LDB79lQ7d69G48ePYKJiQk++eQTGBvzqxQREZE2+OQkIiIiIqoDjo6OSE5ORkJCAm7duiXOT5o0CRMmTKi1egwbNkyM6tu4cSNyc3Nr7d4Nxb1798SO8e+++y7c3NzquEZEREQND4OQRERERER1oHPnzujVqxcsLCxgaWmJXr16Yc2aNQgJCan1uixfvhxOTk7IyMhAWFhYrd+/vlu9ejXy8/PRv39/+Pr61nV1iIiIGiSj0tLS0rquBBERERERERERETVeHAlJREREREREREREBsUgJBERERERERERERkUg5BERERERERERERkUAxCEhERERERERERkUExCElEREREREREREQGxSAkERERERERERERGRSDkERERERERERERGRQDEISERERERERERGRQTEISURERERERERERAbFICQREREREREREREZFIOQREREREREREREZFAMQhIREREREREREZFBMQhJREREREREREREBvV/3JFhypInJw8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "bintime = 1e-6\n", + "deadtime = 1e-5\n", + "length = 40\n", + "fftlen = 0.01\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 us; dead time = 10 us')\n", + "\n", + "r = 20000\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ok." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An additional note on the Zhang model: it is a numerical model, with multiple nested summations that are prone to numerical errors. The assumptions made in the Zhang paper (along the line of \"in practice the number of terms needed is very small…\") are assuming the case of RXTE, where 1/dead time was low with respect to the incident rate. This is true in the simulation in figure 4 of Zhang+95: 20,000 ct/s incident rate, 1/dead time = 100,000. However, this is not true in NuSTAR, depicted in our simulation below where the incident rate (2,000) is much larger than 1/dead time (400). A thorough estimate of the needed level of detail (that implies increasing the number of summed terms) versus increase of numerical errors has to be done. This is a quite long procedure, and I did not go into so much detail. This is the reason of the “wiggles” that can be seen in the model in red in the plot below.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAARHCAYAAACGfj84AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDTOMIfsyKtlJJCVRVEgiKqJQ2ihCdgr5CqVk/VJCtrIrSonsO2UPk53BGMYYszDb+f0xv7m/555zZuacWQ9ez8fDw33f576v+zpnzrmXz/25rstitVqtAgAAAAAAAAAXeOR2BQAAAAAAAADcfggsAgAAAAAAAHAZgUUAAAAAAAAALiOwCAAAAAAAAMBlBBYBAAAAAAAAuIzAIgAAAAAAAACXEVgEAAAAAAAA4DICiwAAAAAAAABcRmARAAAAAAAAgMsILAIAAAAAAABwGYFFAAAAAAAAAC4jsAgAAAAAAADAZQQWAQAAAAAAALiMwCIAAAAAAAAAl3nldgUA3LkmTZqkyZMnS5Lq1q2ruXPnZrrMgQMHavny5ZKk1q1ba8yYMZkuMzv8+++/2rNnj9q3b+/w9Y4dO2rXrl2SpO7du6tHjx45WT244MCBA1q8eLF2796tkJAQWa1WFS9eXNWqVVOrVq3UsGFDWSyWbNn3iRMntGDBAu3cuVPnz59XfHy8ihUrpooVK+qFF17Qs88+Ky8v107l27dv19KlS7Vv3z5dvnxZXl5eKlGihGrVqqXWrVurTp06LpUXGxurX3/9Vb/99pv++ecfhYeHK3/+/CpZsqQaNmyol156SYGBgS6VeerUKS1dulR79uzR2bNnFRERoTx58qhIkSJ66KGH1KRJEzVu3DhLPvfJkydr0qRJkrLut5jVZS5ZskRDhgyRJB07dizT9ZMkq9WqN998U9u3b5ckzZkzR48++qjT22fH7+Ly5ctasWKFNmzYoLNnzyosLEx58+ZVmTJlVLduXbVr107ly5d3urzw8HAtW7ZM27dvV1BQkMLDwyVJhQoVUpUqVdSwYUO1bt1aefPmTbcsq9Wqhx9+WFFRUS69p549e+r99993aZs72d167jt//ryefvppY/7PP/9UmTJlMl3uX3/9pUuXLun55593+Hrjxo0VHBwsSRo9erTatGmT6X0ie2T1udkVWX08t1qtWrt2rVasWKGDBw/q6tWrypcvn4oXL67HHntML730kipXruxSHUNCQrR48WLt2rVLJ0+e1PXr1+Xl5aXChQurRo0aaty4sZo3b+7UNVFYWJjq1avn0v4l6YsvvlCrVq1c3g64GxBYBIAsFBMTo8mTJ2v27Nlq0aJFqoFFuL+4uDj95z//0cKFC+1eO336tE6fPq1ff/1VTzzxhEaPHq1ixYpl6f4nTZqkadOmKT4+3rT83LlzOnfunP78809Vr15dY8eO1f33359ueZGRkRowYIDWrl1rWn7r1i2dOHFCJ06c0JIlS9SyZUsNHTpUBQoUSLfMEydOqGfPnvr3339Ny69du6Zr167pn3/+0YwZM/Thhx/qnXfeSffGJDo6WqNHj9bixYtltVpNr8XFxSkyMlKnT5/WTz/9pKpVq+rrr7/Wvffem249U3P06FFNmzYtw9vnRJnnz5/X559/nmXlJfvxxx+NoKIrsut3MWvWLE2cOFHR0dF2+zty5IiOHDmiuXPn6u2331bv3r3l4ZF6oxur1ap58+bpq6++UkxMjN3rFy9e1MWLF7Vu3TpNmjRJo0aN0lNPPZVm/c6cOeNyUBHILteuXdOXX36ppUuX6oMPPsjt6iATsuPc7KzsOJ6HhISod+/e+uuvv0zLY2Njdf36dQUFBWnu3Ll644039NFHH8nHxyfN8uLj4zVp0iTNmDFDcXFxdmVGR0fr/Pnz+u233zRx4kSNGzdODz74YJplHjlyJN33AcA1BBYBIAuNGjVKixYtyu1qIJOsVqt69eplutDPkyePKlWqJE9PT/3777+KjIyUJG3ZskWdO3fWwoUL5e/vnyX7HzlypCnD18vLS5UqVVK+fPl04sQJXbt2TZJ06NAhdezYUYsWLVLp0qVTLe/WrVvq0qWL9u/fbyzz8/NTxYoVlZCQoKCgIN28eVOStGLFCl28eFEzZ85M84L/1KlTeu2114y6SFLRokV13333KTw8XP/++6+sVqvi4uL01VdfKSIiQn379k21vJs3b6pLly7au3evafn999+vokWLKjo6WseOHVNsbKwk6Z9//tHLL7+s+fPnq1KlSqmWm5q4uDgNHDjQ7kYlM7K6zLCwML377ruKiIjIkvKSnT9/XmPHjnV5u+z4XVitVo0YMUI//PCDsczT01OBgYEqWrSoQkJCdObMGUlSYmKivv32W12/fl0jRoxItczRo0dr9uzZpmXFixdXYGCgEhISdPLkSSN78erVq+ratatGjx6t1q1bp1qm7Y1oQECAqlevnuq6tlzN1gWc0adPH23dujW3q4FMyo5zs7Oy43geFham119/XWfPnjWWBQQE6IEHHlBMTIyOHTum+Ph4Wa1WzZo1S5cvX9a4ceNSLS8xMVG9e/fWH3/8YVpetmxZlSxZUrGxsQoKCjIeSJ07d04dOnTQt99+q8cffzzVcm2P58WLF1eFChVSXddWVj9ABu4kBBYBIAtlZZACuWfmzJmmi+0OHTroo48+MjIFbt68qe+//16TJk1SfHy8Tp48qcGDBxtN/zPj999/NwUVmzZtqqFDh6pIkSKSkr5jy5Yt0+jRoxUTE6MrV66oR48eWrp0aaoZgZ9//rlx42KxWNSjRw+99dZbRhPQiIgITZo0SXPmzJEk7d69W1999ZUGDRrksLyEhAT16tXLCCoWLFhQI0aMUNOmTY06nDt3Th9//LF27NghSZo+fbpq1aplag5oa/To0aagYrNmzdSvXz9Tc8GYmBjNnTtXEydOVFxcnG7cuKFu3bpp1apVTjVntfXNN99kedZCVpZ58eJFvfvuuzpx4kSWlJfMarVq8ODBdpmBzsiO38X06dNNQcWmTZuqX79+Klu2rLHsn3/+0ZAhQ/TPP/9IkhYuXKinnnpKjRs3titv1apVpqBi5cqVNXToUD388MPGssTERK1du1YjRoxQaGiorFarPvnkE1WpUiXV5nlHjx41phs3bqzRo0en+p6A7Ma1xp0hq8/NrsiO4/mgQYOMoGKePHk0aNAgvfLKK0bz5NDQUI0aNUqrVq2SJP3666966KGH1KlTJ4flfffdd6ag4qOPPqohQ4aYHibGxcVp+fLlGjNmjKKiohQXF6cPP/xQq1atSjUQaHuebtu2rbp3757mZwUgfQzeAuC2MmbMGB07dkzHjh1z2/4VnTF37lzjfdwtfUzdLsLCwjRlyhRjvn379ho2bJip+VHevHnVtWtXU9bUmjVr9Pfff2dq33FxcaZmr40aNdL48eONoKIkeXt7q127dpo8ebJxsX748GH98ssvDss8fvy4FixYYMz36dNHH3zwgSkQ5+/vryFDhpia1M2fP1/nz593WObixYuNQIuXl5emTZumZs2amQKbZcuW1XfffWfqx+irr75SQkKCXXmnTp3S4sWLjfm2bdtqwoQJdn2Q5cuXT++++64mTJhgLAsODjZuupzl7k2gt2zZotatWysoKChLyrP1ww8/aOfOnS5vlx2/i/Pnzxt9UUpJN7YTJkwwBRUlqWrVqpo9e7ZKlChhLJs+fbpdeYmJifryyy+N+SpVqujHH380BRUlycPDQ02aNNGPP/6oQoUKSUr67dlum5LtjWhGMmSB3LBu3TrjWoP+Fd1LdpybnZUdx/PNmzdrw4YNxvyYMWPUvn17U5+HRYsW1ddff60XX3zRWPbf//7XyIy0FRERYTqnNmjQQDNnzrQ7/np7e6tt27b6/vvvlSdPHknSjRs3TO8vJdsHRa729QjAMQKLAADYWLJkidGXWkBAgPr375/qui+99JKpb7ZZs2Zlat9r1qzRhQsXJCUF7IYOHZpqX3JPPPGE2rVrl+6+586dawTz7r//fr311lup7r979+6qWLGipKRAy7x58xyuZxvIe+mll1S7dm2H63l7e+vzzz+Xt7e3pKQ+GTdu3Gi33sqVK406BgQEpJuN8fTTT6tJkybG/K+//prm+rbi4uI0YMAAI+MnK/qryqoyIyIiNGbMGL3zzjumJuZZ5dy5c0bwzNVm+9nxu5g5c6bRtL1y5cr6+OOPU8269ff3V9euXY35vXv36vr166Z1du3aZQxUIUnDhw+Xr69vqvUsW7as6YZ969atqX7utoFFbkQBZFZ2nJudlR3Hc9tM8SeeeELNmzdPtcxhw4bpnnvukZTUX2jyoIy21qxZY9TR29tb//nPf9IcmOXBBx9Uhw4djPnff//d4YPMW7du6dSpU8Y8D4qArEFgEQAAG7/99psx/dxzz6UZmJBkCu5t2rQpQ01MkyU3D5Kkxx9/XKVKlXJ634cPH9a5c+dMrycmJmr16tXGfJs2bdIc9MLDw0Nt27Y15m23TXb06FFT89yXX345zToWL15cjRo1MuZ///13u3WSm0tLSc1M0/vMJZmaVB89etQIUKVn2rRpRrbCiy++qCpVqji1XXaXuXjxYj377LOaNWuWEhMTJSVld6TVL6UrrFarhgwZYnw/Bw4c6NL2Wf27iIuL08qVK435IUOGyNPTM80ymzVrptdff13du3fX4MGD7W4abb9HpUuX1kMPPZRmeZL5e5SYmGg0t7YVFhamy5cvG/MEFgFkRnacm12R1cfz69eva9u2bcb8Sy+9lGZ5vr6+atmypTGf3nVBrVq1VLJkyTTLlMzH8/DwcLtrIkk6duyYce7Inz9/lozODoA+FgHksMjISP3www9avXq1zp49q/j4eBUrVkyPPPKIWrRoocceeyzN7QcOHGg82WzdurVdc+hly5YZ2U5dunTRgAEDlJiYqN9//12//vqrjhw5oitXrihfvnwqU6aMnnrqKb366qsqWrRopt6Xoyeey5cvNz2FPXbsmDHdsWNH7dq1S1LSk+iUzaEnTZpk9GMzfPhwtW/fXtHR0Vq5cqVWrlyp06dPKyIiQkWKFFHlypXVrl07Pfnkk6YyTp06pQULFmjLli1GFlyZMmXUsGFDvfHGG06/57CwMC1btkybN2/WqVOndO3aNfn6+qpYsWJ69NFH1bJly3RH4LtdhIeHmzKTnnjiiXS3eeyxx+Tp6amEhATdvHlT27Zt0zPPPOPyvq1Wq6mJav369dPdplKlSipatKhCQ0MlJTV769y5s/H60aNHTRlYzrwf2/1euHBBR48eNQVSbC/2CxYsqBo1ajhVZnI/SRs2bJDVajVlpl29etWYLl++fLrlSUlZFrbCw8PT7Vj9yJEj+uabbyQlBe0GDx6c6b6VsqrMefPmGQOKSNIzzzyj4cOH6+TJk5mqXzLbJtBPPPGEXnrpJQ0ePNipbbPjd/HXX38Zg9Lce++9qlu3brplFipUSJ988kmqr4eGhsrDw0OJiYl64IEH0i1Psv8eOcpYtH3vJUqUsNsmJ5w4cULLly/X7t27dfr0aUVGRip//vwqXLiwatasqYYNG6pp06ZpBmfPnz9vuvF2dA7NjO3bt2vp0qX6+++/dfnyZfn5+SkwMFDNmzdX27Zt5efn53KZWX3+SUxM1Pr167V161bt3btXoaGhCg8Pl7e3t/z9/RUYGKhHHnlErVu3tmuSn5ro6GgtW7ZMf/zxh44dO6aoqCgVKVJE1atXV9u2bdWwYUOX37cjKf9+ySZPnmxcL5QuXVrr1q0zXmvcuLGRxTt69Gi75tC211TTp09Xw4YNFR4ermXLlun333/XuXPnFB0dreLFi6tGjRrq0KGDXdcChw4d0sKFC7Vr1y5dunRJXl5euvfee/XMM8/o9ddfdzqDOzg4WMuXL9eWLVt0/vx5hYeHK3/+/CpVqpQef/xxtW7d2unzg7vLjnOzs7LjeL5r1y4jWGexWJy6fqlfv76R/fj333/r+vXrKliwoPH6lStXZLFYZLVaM3U8v/fee03LbJtBV6pUKdUs+ex04MABrVixQn/99ZfOnz+vmJgYFShQQEWKFFHt2rXVuHFju2t6wN0RWASQYw4cOKCePXsaQa5kp0+f1unTp7V48WI9+eSTGjNmjAoXLpwl+zx//rz69u1rN9LsrVu3FB4erkOHDmnmzJkaNmyYqc8Xd3PgwAH17dvXGB01WXBwsIKDg/Xnn3+qbdu2Gj58uDw9PTV79myNHTvWroP3oKAgBQUFadmyZfrmm2/SvSH7/vvvNXHiRKM5SrLY2FiFh4crKChIc+fOVbNmzfSf//wn06Mi2waGM8PRDZQzjh07JqvVasxXq1Yt3W18fX0VGBhoNK05ePBghgKLwcHBptF/nR11tlKlSkZg8eDBg6bXbC+gvb29nRr58L777lPevHmNkSgPHjxounmxLbNKlSpOXZTbbn/9+nWdPXtW5cqVM5atXr1at27dUkhIiNPBh5R9TNnekDiScsTm4cOHp7tNerKjzHvvvVd9+/bVs88+K0lZEli0bQKdP39+jRw50qXts+N3YdtP16OPPupSfVLz2Wef6dNPP1VoaKji4+Od2ibl98jRMSw3m0EnJiZq7Nix+v77741M1mTh4eEKDw/XyZMntXz5ct177736/PPPncrUzEphYWEaMGCANm3a5LB+Bw4c0Lx58zR+/HiXys3q88+WLVs0cuRIUzPIZHFxcYqOjtalS5e0a9cuffPNN3r77bfVq1evNI9x27ZtU//+/Y1jcLKLFy/q4sWLWrNmjZo1a6YPP/zQhXeeezZu3KjBgwfrypUrpuVnzpzRmTNn9Msvv6hHjx7q3r27EhISNGHCBE2fPt3uu3no0CEdOnRIS5cu1axZs9IM0iYkJGj8+PH6/vvv7TLPr127pmvXrunw4cOaOXOm2rZtq8GDB2d6VGTbh7eZMWfOnAwdv7Lj3Oys7Die276fMmXKOHUetK17YmKiDh8+bBrJedasWYqNjdXly5fTbAJty92P57du3dKQIUNM2frJwsLCFBYWpqCgIC1YsEDVqlXTuHHj7AKjgLsisAggRwQHB+utt94yAieFChVS+fLlFRMTo2PHjhk3gRs3blTHjh01d+7cTAcXw8LC9Oabbxoj1Pn7++uBBx6Q1WrViRMnjLpER0dr0KBBKl68uGmgCVckP/ENCgoymswVK1bM6BMnM44dO6Yvv/zS6Ny6ZMmSKlu2rK5fv66goCDjAnHRokWqUKGC4uLi9MUXX0hKGpWvcuXK8vT0VFBQkFFGWFiYevTood9++81hE5jkZpNLly41LS9XrpxKlCih6OhoBQUF6datW5KSmrH8+++/mj17dqazP3PT6dOnjWkfHx+nmt5ISRfSyRfcyd+3zOxbkgIDA53ed7KU+7Yts3Tp0k5dnFssFpUqVcoIaKUMZtuWaRscdLaOyWWm3DZPnjxOv2fJ3BSsdOnSRqftqfnvf/9r3Py0aNEiQ8Hf7CyzatWqevPNN9WiRQunb6KckXIU6P79+zv9vU6WHb8L2wxu25vqbdu2acWKFdq7d69CQkKUJ08elS1bVo0aNVL79u3TPS94eXm59P5SNim8//777dZJOXDL5cuXtWzZMm3atEknTpxQVFSUAgICVLFiRTVu3FgvvfSS8uXL53Qd0jJq1CjTKPF58+ZV+fLl5e/vr/DwcJ09e9YIvJ0+fVpvvvmmcS7ICWFhYXrttddMAXBvb29VrlxZefPm1YkTJxQWFqbz58/r7bffVv78+dMtMzvOP6tWrVK/fv1MAedixYopMDBQ3t7eun79uo4fP24EtuLj4zVt2jQVKFBAb7/9tsMy165dq549e5rKvOeee3T//fcbdYyLizMy/zIrb968xrXGwYMHjT5GAwMDjWOn7UBfrtq2bZvmzp1rvJ/AwECVKFFCV65cMf19J02apCpVqmjr1q2aP3++pKQHFhUrVlRiYqKOHj1qBL/OnTunnj17aunSpQ4DtLGxsXr//fe1efNmY5nFYlH58uVVpEgRRUREKCgoSPHx8UpISNCPP/6ooKAgfffdd051meGusuPcnJF9Z9XxPCPXBUWLFjUFSs+cOWMKLCbXz5WmyrbH87x586p06dJ266Q8np89e1ZLly7V1q1bdfr0ad28eVP33HOPqlatqiZNmuiFF17IsnNyr169TBnF+fPn1/333y8/Pz9dvXpVZ8+eNT6Pw4cP6/XXX9fPP/9s9EcJuDMCiwByRHJTnOQR7l544QWjyVZYWJjGjh2rZcuWSUoaKW/48OGaOHFipvb5008/SUq60B80aJCaN29u7PPWrVuaPXu2vv76ayUmJioxMVHjxo0zjUzrihkzZkgyNyuqX79+ljQz+/HHHyUlZTKNGDHC9HT86NGjevvtt41sia+//loxMTGyWCzq2rWr3n33XePiOzo6Wp9//rkxCuGlS5e0cuVKU985yaZPn266qXv66afVt29f0013TEyMFixYoPHjx+vmzZs6ceKEPvroI33//ffp9pWWmuLFizvVLMeZcjLCNuvElQCp7bopM1cysm8PDw+nbxDT2rftfHrNhG0VKVLEuHlJWaZtX3POfkaFCxc2mlE5KtNV27dvN7oSkJKa+6Xl8OHD+vbbbyUlHQ+GDBmSqf1nR5mjR4/OdJ0cmTdvnvFZ1atXz+HvPT3Z8buwDbQUL15cISEh+uSTT+wG94mJiVF4eLgOHjyo77//XsOGDVOLFi1cfQsOhYWFmQZBqFixosObWNtsnN27d2v27NnGzV+y0NBQhYaGauvWrZo2bZo+++yzTDdlS87IS/bBBx/o3XffNY0ae+vWLf3www8aO3asEhISFB0drXHjxmnq1KmZ2rezPvnkE1PQqUOHDurVq5eRsZSQkKDVq1drxIgRunbtmqm5f2qy+vxz5coVDRs2zAiYVaxYUZ999pldxn5MTIwWLVqkr776yghafvvtt+rcubMxAFWyCxcuaMCAAUaZAQEBGjZsmJo1a2b0lRceHq6JEydq/vz5Onz4cLrvOz1FihQxrjVsu1Np2bKlXXcqGZHcLPWhhx7S0KFDTZls27dv1/vvv296QBEZGSkfHx/169dP7du3Nz6ja9eu6eOPP9batWslJR0rt27d6vDcPnLkSFNQ8ZVXXlH37t1NI8Bfv35dM2bMMDIj//rrLw0dOjTNUdzTExgYmCXXGhnNUM+Oc3NG9p1Vx/OMXBdISefO5PuDzF4XnDhxQr/88osxX69ePdOxUkp6aGH7UOuXX37Rp59+atdf76VLl3Tp0iWtW7dO06ZN09ixYzPd5c+GDRuMoKKHh4eGDh2ql19+2XRsuXHjhr755htNnz5dUtJnMnXqVH388ceZ2jeQEwgsAsgxvr6+mjNnjt3ABoULF9bo0aPl5+dn3EStXr1af/31l11fPq4qWLCgFixYYJcJlSdPHr377ru6ceOGERw4cOCAQkJCMhyUyk4lS5bUggULVKhQIdPyypUrq3///urXr58kmQZmePPNN03r+vr6avjw4dq3b59xo7xt2za7QMO5c+c0YcIEY/7111932K9Zvnz59Oabb6p69ep68803FRcXp127dmnZsmV65ZVXMvQ+69ev71TfPNnF9qbXlZF9bbNwUo5U6yzb7fz8/NLsyN3ZfWf0/dium7JM23lny/Tw8JCvr69u3LghSaYm364KDw83XWR7e3ub+pVMKTY2VgMHDjQCAEOHDs10NnR2lJkdzp49q6+++kpS0u/f1SbQybLjd2Hb1DI6OlodOnQwmrHly5dPFStWlI+Pj06ePGn0wRkREaG+ffsqPDxcr7/+ekbeisFqteqTTz4xvTdHo7KmHEE0uQm3p6enypUrp6JFiyoiIkLHjx83msSHhoaqW7duGjFiRLqDG6UluV9SSWrUqJHD5rR58uQxjr/Jf+vNmzcrOjraLqOrTJkyppvqzNqzZ48RPJKkrl27qnfv3qZ1PD091bx5c1WoUEHt2rWza9acUnacf3788UfjmFOgQAHNmDHDYTAnX7586ty5szw8PIzfyvXr13XgwAG7a5HJkycbLQDy5s2r2bNn2zWrDAgIMI4NkyZNSvN9u4tq1app9uzZdgGZevXq6d133zWasye/96+++kpNmjQxrVuoUCF9+eWXeuaZZ4zf+bZt2+wCeXv27NHChQuN+f79+zv8DRYsWFAfffSRKlWqpI8++kiStHLlSr300ksZbmXSqlUrtWrVKkPbZoXsODdn977TOp5n5Log5bqZuS5IPifbdv/jKNP4zJkzpoFnkoPz3t7euu+++1SoUCFdu3ZNx48fN5r3nz59Wh07dtSkSZMy1V+qbTbla6+9pvbt29utU6BAAfXt21cRERHGb2P16tUEFnFbYFRoADmmZ8+eaY6W2r9/f1OzheRMvcx444030mxemfLEnpU3XVnpww8/tAsqJnv66adNTYxKly6daqDFYrHoqaeeMuYdNdudPXu2ETApW7ZsuqPHPvLII+rUqZMxn5z1cDuy7d8p5Y1VWmz7e3J2dOKUkjNksnLf2fF+sqKetmW4IjY2Vh9++KGpH6WOHTum2X/Xf//7XwUFBUmSmjZtqmbNmmVo39ldZlZLbgIdExMjSerbt2+GR7/Mju+R7U3kZ599pvPnzytPnjwaNGiQdu7cqUWLFmnevHnasmWLpkyZYmTBWK1WjR49Wnv27MnQe0n29ddfm4JiDz74oGmU0mS2I4hKScfQzp07a926dfrtt980Z84c/fTTT9qxY4d69eplZJ8kJCRo+PDhmaqnbRZQen+7l19+WbVr19YLL7ygd955J1Oj0zsruVWAlJRRn1bWXIUKFdSzZ890y8yO84/tgFOvvPJKuhliKQNlISEhpvnY2FjTqLrvvPNOmn21vf/++071Y+cOBgwYkOpvPGVXDw8//LDdZ5UsX758pqCfo2uN5OzL5LIcBRVtPf/886Zj7cyZM9Nc353l5rXGnXZdkHyuO3DggLGsadOmqlOnjt26ts2gpaSAYs+ePbV582atXLlSc+bM0cqVK7Vlyxa98cYbxrX1zZs31bt3b7sua1xhezx31ETb1muvvaZHHnlEbdq0Ubt27ewy5AF3RGARQI7w9fVNN4vNx8fHNODGpk2bTB1MZ0RqF73JSpUqZcrqSM6ocicWiyXN9+Hn52fKlmrYsGGa2W62GZmO3u+aNWuM6RYtWtg1AXPEduCbEydOZEl/UrnB9mm3sxmDkkz97zg7aERO7DujZdo2JUxZpu28K03e0yrTGbGxserevbtp5OyaNWsaGSyOHD582GhSlNxUMbOyo8zsMHfuXO3evVtSUvClQ4cOGS4rO76btjemERER8vb21vTp0/XGG2+Y+sv08PDQM888owULFhgjfsbHx2eqm4n//ve/xkjeUlJG1Ndff+3wvdk28/Xw8ND48eM1ePBgU1NNKSmbp1u3bpo+fbrxvuPi4jRq1KgMn8ds97F8+XLt378/1XULFy6sH3/8UV9++aV69uyZqb72nGXbbL1Nmzbp9kP20ksvpRt0yI7zz/z587Vz504tXrzYLpPfkZRNOVPe1O/atcsI3FoslnSvbTw8PBxmJ7mbwoULpzkQScoHOI0aNUqzvLSuNW7evGlqAt26dWun6mj7t96+fXuGg1G5LTvOzdm977SO57bzOfl+rFarhg4dahoMpWzZsqlm59tmn+fJk0dz5szR+++/b/fgPrkLJdsuSiIjIzPV/N72eD579myHg0glq1SpkubNm6fRo0ere/fuLgVrgdxCYBFAjqhVq5ZTo73aPmFM7kw9o7y9vR12xJ+S7ahxKUdRdgelSpVKt8N724uO++67L811bW/aU47kGBwcrEuXLhnz5cuXd6qOFSpUMNXBdsTX24ntRW7KzyYtthfEztwI59S+M1qmbYZWWmWm7JfI2TJdHdEzMjJS7777rimQUapUKU2aNCnVzztlc+WPP/440x2gZ0eZ2eHs2bMaN26cpKRjw2effebU6N2pyY7vZsr6vP3222kGNcqUKaP+/fsb8wcPHtS+ffucrkuysWPHmpraent7a8KECalmBL744ovav3+/fvnlFy1cuDDd7NR69eqZMq8OHz6sv/76y+V6SklZN8mfU2RkpNq1a6e33npLc+bM0YkTJzJUZlY5c+aMKQPHmW5L8ufPn+Zo99l5/gkICNCDDz6YZrZiXFycDh48aMqkk+yPc8kBeynpe+lM9ymPPfZYuuvktgceeCDN11MGNzJzrXHgwAHT9Zazf2vb70/y3+t2lB3n5uzed05fa6QnLi5Offv21aJFi4xl/v7+mjJlSqojxL///vv666+/9PPPP2vRokWqXbt2mvto3bq1qU/fNWvW6MKFCy7VM1nTpk2N6YsXL+qFF17QBx98oEWLFtmNZg3cjuhjEUCOcCbAJ9lfqF68eDHDo1v6+/s79eQ0oxdEOcXVwEV6Qci0Agwpmyv17dtXffv2dWn/kn3TsdtFykERnGW7bnqjE6fGdhRZV/Ztm/mVct/Z8X7y5s1r9K+V0TJdCSxevnxZXbt2NQ1+UKJECX3//fdp3tBPmTLFaK7cuHFjvfDCC07vMyfLzGpWq1WDBg0ymkD37t3b6VE6U5Md3yNfX1+jObTFYnGqz8QXXnhBI0eONLLFtm7dqoceesipusTGxmro0KHG4FrS/4KK6fXTljdvXpfOQ6+//ropI3LLli0Om+Wlp3z58nrvvfc0bdo0SUl/2y1btmjLli2SkjLCHn/8cTVo0EANGjRI9WY6O9gGFSXnR4ItX758qs3Dc+r8ExERoX/++Udnz57V2bNnde7cOZ06dUonT5506uGi7Xt39n2XKVPGNAKuO8rJa42UIxpnNKMz5ffwdpGb1xrZdV2Q1WWmJTIyUj179jSOhVJS/4TfffedKlWqlOa2+fPnT7PrgpQ6duxoGhRm69atGepHvGHDhmrRooVRVlxcnNauXWt0yREYGGgcz+vXr2+6JgRuBwQWAeQIZ294Unb6nNHOqSXX+nlxZ65ePGYmMykzn3dWlLN169Ys6TepS5cuGRoEJrmppfS/zumdYTsggW0ZrrAdXTIqKkpWq9Wpv6VtPVPuO6PvJ60yCxYsaLzubJmJiYmmPt+c/YyOHj2q9957z5TFVLZsWc2aNSvNfhUPHTqk7777zqjvp59+6tT+0pIdZWaHOXPmGIGbWrVqmfqfy6js+F34+fkZgcVy5co51XTXx8dH1apVMzLGbJsppyU8PFw9evQwjSSeL18+TZgwIdMjNztSrFgxlS1b1miSmzKI4opevXqpWLFiGj9+vN3gBiEhIVq+fLmWL18ub29vPfHEE3rnnXcyPeiZM5IH1EmWXpApWVqj6Gb3+Wf9+vWaNWuWdu/eneZDRC8vrzSbZYaFhRnTzr5vi8WiAgUKuHVgMSevNTIzUIctZ0YZd+Tnn3/WihUrMr3/fv36uRSkSpYd5+bs3ndax3Pb33V2v5/g4GB17drVeMgnJQ0YNH36dNWoUcPpfTurevXq8vb2Nh46ZOZ4PmbMGN13332aPn263bEg+UHHggULlC9fPjVu3FjdunXLcHIFkNMILAJwKyn7orpTgoOZkZmLd1elvJl65JFHMvRUPK2gT1pCQkJMT6Az6vnnn8/QdrYZcClvnNMSGhpqTGe0bzPbfSckJOjatWtOjTSc1r5tm/258n5sR+xN2d9Y8eLFFRwc7FKZYWFhphv5lGU6sm7dOvXp08cUkKxSpYqmT5+e5vaxsbEaNGiQ8V0eNGhQuoM1pCc7yswOZ86c0ddffy0pKUgwatQol/q7Sk12/C4KFSqkixcvGtPOsv1NOBNUOHXqlLp27WrqdD8gIEBTp05NtxlcZhQpUsQILGYmYGaxWPTaa6+pdevWWrNmjdauXautW7faja4cFxen9evXa/369Q5HZ85qGe02JK1s5ew6/8TFxWnIkCH6+eefHa7v6+ur8uXLq1q1anr44YfVoEGDNJsuZ8d7dwe5ea2RcsRoZ2X0OHz27NksudZ49913M7RddpybnZUdx/OMlmm7rjPvZ//+/Xr//fdNn0Pp0qX13XffOd0yylVeXl4KCAgw3n9mjufe3t7q3r27OnbsqN9++01//vmndu7caZflGRMTo19//VW///67Pvnkk9uij1aAwCKAHJHyJig1KZ9i52TTLth/3p988km6zUruJLbN2qKjo3XlyhWnAoW2gwWk1++UM/tOLtOZwKJt3zwp933vvfea1nMmC9JqtRqBw5RlJM8n92HmaKRPR1IOppCyzJTmz5+vkSNHmoKRTzzxhCZMmJBuhtAff/xhZDJ4enrql19+MTVjSsl2JPgVK1aY+u1LzkbJjjKzw4wZM4wm0H5+fvrss8+c3nbs2LGmrBPbfuay43fxwAMP6J9//pHk2qBZrgwe9Pfff6tbt26mAGSZMmU0ffr0bLsJTWZ7o+hM/8Lp8fX1VatWrdSqVSvFx8frwIED2rlzp7Zt26a///7b9LlMmzZNlStX1nPPPZfp/aYm5bkiIiLCqaZ7aWUzZdf5Z9y4caagYunSpdWqVSs99NBDqlixokqUKGE6LqY3iIRtywpXvruuZHLd6VL+rZ05tt9JsuPc7KzsOJ7b1sXZ64LLly+bsvbSez9r167VRx99ZDq2VqtWTd98802Gg6zOsu1yJiuO5wULFtSrr76qV199Vbdu3dLff/9tHM8PHjxoXPskJCTo008/VdWqVVWzZs1M7xfITgQWAeQIZzsmTjlYS2b7BoNrUvZZd/HixRwNLLZp08Y0MnhOq1q1qiwWi5E5e+TIETVo0CDNbaKiokwX0hkNGpUuXVoBAQFGEOTIkSNOXUgePXo01X1Xq1bNmI6JidGpU6fSDaicPHnSdOFepUoVuzKXLVtmt++0HDlyxJguWLCgSpcuneq6U6dO1fjx403LXnnlFQ0fPjzdUWcl8w1AQkKCS1kpyU2RkiVno2RHmdnBtp5hYWEu1TOtQRCy43dhe1wJDg5WbGysUxldts3iU47MbGvr1q16//33TTeuDz74oKZOnep0VrHVatWECRN09epVXb16VU2aNDGNSpuaxMREUwCgZMmSTu3PWV5eXqpdu7Zq165tBE7nzZunyZMnG3+j2bNnZ2tgMTAw0DR/4sQJpwYxSasZYXacfy5fvqw5c+YY808++aQmT56c5nctvYwk2+sSZweYCw8Pz7Km3ncCR3/rnGzy2aNHD/Xo0SPH9pdSdpybnZUdx3Pb93PmzBnFxMSk+6DB9rrAYrGk+Vv/6aefNHjwYNNgL40aNdJXX33ldKDvxo0bmj59unE8f/31153KlA0PDzclPWT18TxPnjyqV6+e6tWrp169eikkJETTpk3TDz/8ICnpPDRnzhx99dVXWbpfIKsxKjSAHLF//367Zs6ObNu2zZguWbJkmjeOyHoVKlQwZWPs2LHDqe3CwsI0cOBATZw4UUuWLDHdVN9O8ufPr6pVqxrztt/H1OzYscN4uuzp6am6detmeP+2o+I6s++jR4+amgSlbL5XoUIFU9bj9u3b0y1z69atxnShQoXsLvZt319oaKj+/fffdMu0fS9pjfz77bff2gUVe/furZEjRzoVVET2yI7fxeOPP25Mx8TEmL53qblx44apX63U+tPatWuXunXrZgoqPvPMM5o7d65LXRVYLBatWLFCixYt0p9//qlVq1Y5td2BAwdMQaSMDNxy8+ZNbdq0SbNnz9bw4cNNv/OUAgIC1L17d9OAAs4GvDLq3nvvdfnYEh8fr/3796f6enacf7Zs2WLKQBw4cGC6AWzbgIdkP6hbrVq1jOmQkBCn+vrM6Mjgd6qHHnrIlKHn7N/6+PHjGjx4sKZMmaKffvrJ1N/l7SQ7zs3Oyo7j+cMPP2ycoxMSErRz5850y7Tdb9WqVVPtf/WXX37RoEGDTEHF9u3ba8qUKS5lD+bNm1czZ87UkiVLtH79ev35559Obbd161bT/UtGjucRERFav369ZsyYoaFDh6bZnULx4sU1bNgwUz/h2X08B7ICgUUAOSI0NFTr169Pc52IiAjTiJ3PPPNMdlcry+VkH0XZwcPDQw0bNjTmly9f7lQn63PnztXy5cs1ZcoUDRkyRNeuXcvOamarpk2bGtMrVqwwmpam5scffzSmH3/88Uw132/SpIkxvX79+nRHN7Xdd/ny5e1uNCwWi5599lljftGiRWkOWpCYmKhFixYZ802bNrX7TlesWNHUDGrBggVp1vHixYvasGGDMZ9aFtXatWtNT+Q9PT01evRode3aNc3yU2rTpo2OHTvm9D/bG6Tu3bubXksOgmZHmdlhzJgxLtXT1pw5c1J9Tcr630XVqlVNGUrTp09P9+HTggULjBsyb29vPfXUU3brBAcH64MPPjBl9rRr106TJk3KUJ+9tn/LrVu3OvXQJHkUZykp6JdeNpAjcXFxeu+99zRq1Cj9+OOPWrduXbrbPPDAA8a0t7e3y/t0Rcpjy7Jly9Jt6vvHH3+kGQjKjvOPbb9wknN98s2dO9c0n7JpdL169UzfZ9uMyNSkd5x01e1+rVG4cGFTRv78+fOd6rvy22+/1dKlSzVx4kQNHjw4zfOZO8uOc7Mrsvp47u/vb3qwmd73PSoqyjR4TrNmzRyud/DgQQ0cOND02fTs2VPDhw9PtyuMlLy9vU0PBVatWpXuMSs+Pt4YtE1KOsbaBmWddfHiRXXt2lVffPGFFi5caBpILDU5eTwHsgKBRQA5Jq2si4SEBH3yySfGDYGnp2eWjGaa02w7mk/ZGfPtokuXLsZ0eHi4+vfvb2pimdLBgwdN/bE9+OCDql69erbWMTu99NJLRhOeK1euaMSIEamuu3jxYm3evNmYz+x3tkmTJsaNb2xsrAYOHJhqf1+bN2/W4sWLjfmOHTs6XK9Dhw7GDcjRo0c1ZcqUVPc/YcIEIwPRw8Mj1TJfe+01Y3rBggWpZjzExcVpwIABxg1jqVKlHD4wCAkJ0ZAhQ4x5i8Wizz//PFebxcMsO34XnTt3Nqb/+usvffvtt6mWmfK727x5c7t+tRISEtS3b19TMKpdu3YaMWJEhgexefnll43p+Ph4DR06NM0++GbOnGl6iPbGG2841fdgSgUKFDBlxnzzzTdpBuWsVqv++OMPYz4jN7+uevPNN43svytXrmjo0KGpBkdCQkI0atSodMvM6vNPypFmbb+XjnzzzTemByGS/WAtefPmNX13FyxYkOaD06VLl2rTpk1p7tdVd9q1xqlTp/Sf//wnzYcL69atMwWjmjRpkuHB0txBdpybnZUdx3Pb64L169cbXaY4Mnz4cON45uvrazrOJouKilKfPn1Mv7+PPvpI77//fqrlpsd2P+Hh4ekek8aMGWP0BSxJ7733XoYCuhUrVjR1AfP111+n+bu9deuW6TiUE8dzILMILALIMSEhIWrbtq1dk49z586pa9eu+v33341l77//vl0fTrcD25uYffv23ZZ9KlWvXl0dOnQw5tevX6+OHTvaNWGLjY3V/Pnz9eabbxoXSJ6enho0aFCO1jerFSlSRG+//bYxv2zZMvXp08c0euHNmzc1bdo0DRs2zFjWsGFDU7ZNSpUqVTL+pXZT4OPjo48++siY37Ztm9555x1Tp+nx8fFatGiRevToYTQNqlixoqkZpK3KlSurdevWxvzkyZM1atQo06ADN27c0GeffWbKtGrXrp3pibmtdu3aGVmL8fHx+uCDD7R48WJTwOXcuXN6++23TU2i+vXr57AZ4vjx400DbLz33nt64YUXHO4buSM7fhcvv/yyKctl3LhxGjp0qClTNzExUatWrVKnTp2MrJoCBQo4HPV45cqVxsBCUtKowrZ1yYg6deqYsmy3bNmit956SydOnDCtFxoaqqFDh+rzzz83llWrVs30mbnKNvBy/vx5vf322zpw4IDdeiEhIerdu7f27NljLLMNfNmWYXscGjhwYIbrJiUN4GB7k//rr7+qW7dudn0qb9myRe3bt7fLHnQkq88/jz/+uCkQMHz4cIfZn/v371f37t01btw4u9dsR6ZP9u677xoZt1arVT169NDMmTNNwYKYmBhNnjxZH3/8cbrv21W21xrbt29PM/jqrpo0aWLKOl64cKHee+89u2afkZGRmjp1qj788EMj8Ojr62s6V96OsuPc7OxvPDuO540bNzZl5H/yySf65ptvTL+JK1euqHfv3qYA8fvvv+9woLpZs2aZ+mRt0aKF3nvvPYf7dtYLL7yghx56yJhfunSpevXqpYsXL5rWO3v2rLp3727KXm7cuLFatmyZof1aLBa99dZbxvzBgwfVrVs3u/OIJJ0+fVrvvPOO8d49PDxuy0QL3H3osAhAjmjYsKF2796t4OBgvfHGGypVqpTKlCmj69evKygoyPSUulmzZpl6IpmbKlasaExfuHBBzZs3V4UKFXTjxg3NnDkz1T5k3M2gQYN07tw54yn1vn371LZtW5UoUUKBgYGKjIzU6dOnTTdcFotFH3/8sWrXrp1b1c4yXbt21cGDB40nxr/88otWr16tSpUqycfHR//++6/p4r9MmTKmgEJmtG7dWnv37tXChQslJQUXmzRpokqVKil//vw6ceKEKXMpICBAEyZMSLMPwiFDhigoKEiHDh2SlDSww6JFi4ym08eOHTM1hapRo0aaQQcfHx9NnDhRHTt2VHh4uKKjo/Xxxx9r3LhxKl++vNEXnm320muvvabmzZvblXXx4kXTTYaU9H2zvQh3xueff35bZ6/cDrL6d2GxWPT111/rrbfeMrJCFi5cqKVLl+q+++5ToUKFdPLkSVOmu7e3t7766iuHHeh/8803pvnIyEiXB8vp0qWLqW8rSRo5cqTOnTtn/H527Nih5s2b6/7771exYsUUHh5u932vUKGCpk+fnqkmbI0aNVKbNm2MzJ/Dhw/rlVdeUfHixVWuXDl5enoqNDRUJ0+eNO379ddfT/MhR1Z65513dOTIEa1evVqStGHDBm3cuFEVK1ZUwYIFde7cOeOmPV++fKpTp066WYNZef4pW7as2rZtaxxPw8PD1a1bNxUtWlRlypRRYmKiLly4YAp6enl5qVChQsYyRwFRHx8f47sbEhKiuLg4ff7555oyZYoqVqwoq9Wqo0ePGsfVunXrKigoyPQAJTNsrzUOHTqkZs2aKTAwULdu3TI1W3VnFotFX3zxhd58800dPnxYkrRx40Zt3LhRgYGBKlGihMLDw3X27FlTf6ne3t768ssvb8uHzyll9bnZFdlxnTN27Fi99tprOnfunOLj4zVu3DhNnz5dFSpUUGxsrI4dO2bKQGzUqJHDc31MTIxdlwTBwcEuXxf069fPNNCMh4eHJk6cqA4dOhgPQH777TetXr1aFSpUMH73KQN+devWdfjQwRXt27fX2rVrjRYeW7duVfPmzVW2bFmVKlVKUtLgZCkHuOrXr1+qgWTAnRBYBJAjqlatqk6dOqlv374KDw/XhQsXdOHCBdM63t7e6tKli3r16pXhZmu57dlnn1XVqlWNm+QrV64YN8VHjx7N1v7VspKPj4+++eYbTZw4UbNmzTKeOF+6dMk0KmuyokWLatiwYaY+g25nXl5emjRpkj799FMtXbpUVqtVcXFxxsW/rVq1amnChAkOn7hn1KeffqpChQppxowZiouLU2Jiot2AAlJSv4oTJkxIdzTJ/Pnz6/vvv1f//v2NbJ2YmBjt27fPbt1GjRpp7Nix6fZHV7FiRc2ZM0d9+vQxmmiFhYXZNdf09PTUO++8o169ejksZ+3atXZNS53tyN+W7Y0nskd2/C4KFy6sOXPm6LPPPtNPP/0kq9Wq+Ph4h4MClSpVSl988YUeeeQRu9eOHTtmN4iGo99Mep5//nm7Zfnz59ecOXM0cuRILV++3HgQdvLkSYcDd7Rs2VKDBw9WoUKFXN5/SiNHjlTBggU1Z84cI0M5JCTEYf+rvr6+6tq1a7aOPJ6Sl5eXJkyYoC+//FIzZ85UYmKirFarXT+dBQsW1Jdffqldu3alG1jM6vPPxx9/rBs3bpgG3wkNDXUYMCxfvrxGjhypP//80+hbzTYT1FaFChW0aNEivf/++0ZgLDIy0pQ1KyUNbDFhwoQszcJu27at5s+fbwRtg4ODjf4/z58/rzJlymTZvrJTwYIF9cMPP2jUqFFasmSJ8R0/e/asaRTiZOXKldOoUaMyNICGO8qOc7OzsuN4Xrx4cc2dO1cfffSR8Tu4ceOG3W9CSspYHzZsmMPr/e3bt9sF4ffu3evCu0vi6FhYvHhxLV68WIMHDza6MEhMTHTYt7Cnp6def/119e7dO0NdWtjy8PDQ1KlT9cknn5gepp47d87UKiVZoUKF1KdPn1RbowDuhsAigBzToEEDrVy5UvPmzdO6desUHBwsi8WiUqVKqUGDBmrbtq1pUIjbkbe3t+bOnaspU6Zo3bp1CgkJUXx8vIoWLXrbNYv29PRU79699dprr+mnn37Stm3bdPLkSeNir3DhwqpSpYoaNWqk559/3qXR+W4HPj4++uyzz9SuXTstX75cO3bsUEhIiGJjY1W4cGE9+OCDatGihZo0aZLlgXCLxaLevXurZcuWWrJkibZs2aJLly4pJiZGBQsWVJUqVdSsWTO1bNky3RFOkxUoUEBTp07V9u3btWLFCu3Zs0dXrlxRQkKCihQpolq1aql169Z64oknnK5npUqV9NNPP2nlypVavXq1jhw5oqtXr8rb21tlypTRo48+qldffTXNp+3OjKgK95Edv4sCBQpozJgx6ty5s1asWKFt27bp0qVLioyMlL+/v6pWraomTZroxRdfNPUtZyu7v0d+fn4aPXq03n77bS1ZskS7du3S+fPnjToWL15c9erV0/PPP5+lfcx6enpq4MCBateunX7++Wft2bNHp06dUkREhCwWi4oUKaLAwEA99dRTat68uVODkyTLqgFALBaL+vXrp1atWmnBggXavn27goOD5enpqdKlS6tRo0Z6/fXXVbx4cacGLZCy9vyTnF340ksvafny5dq3b59x7PPz81OpUqVUuXJlPfXUU3rmmWfk6empxMREI7AYFBSkAwcO6MEHH7Qru0SJElqyZIl+//13rVixQocOHVJ4eLj8/f31wAMPqFWrVnrxxRddHmgiPQULFtSiRYs0efJkbdmyxXiAWaxYMV25cuW2CSxKSX1WjhgxQm+99ZZ+/vln7dixQ2fPnlV4eLi8vLxUpEgRVatWTc8++6yaNGni9DnvdpEd52ZnZcfxvGTJkvrhhx+0Zs0arVq1SgcOHNCVK1fk4eGh4sWL6+GHH1bbtm1NTZJTyu7jeeHChTVt2jTt379fP/30k/766y9dvHhRMTExCggIUMmSJdWgQQO1aNEi3Qe3rsibN6/Gjh2rN954QytXrtTevXt15swZRUZGysvLS/fcc48eeOAB43h+u7RyAiTJYk1vCD4AAAAAd4RVq1apd+/e6tSpk2nQJAAAgIy4PdsaAgAAAHBZcjckrmQ3AgAApIbAIgAAAHAXSEhIMPoabNCgQS7XBgAA3AkILAIAAAB3uBs3bqh///46fPiwGjRoYBotFQAAIKMILAIAAAB3uMTERO3cuVN169bVV199ldvVAQAAdwgGbwEAAADuAufPn1fp0qWzbERoAAAAAosAAAAAAAAAXEZTaAAAAAAAAAAuI7AIAAAAAAAAwGUEFgEAAAAAAAC4zCu3K4Cc89dff5nmPTyIKwMAAAAAANyNEhMTTfMPP/ywy2UQWLyLpfwCAQAAAAAAAM4iZQ0AAAAAAACAy8hYvIvdKU2hbTMv75T3BMA1HAcAcBwAwHEAAMcB12RFS1YCi3cRDw8P40vj4eGhWrVq5XKNMi8+Pl779+835mvUqCEvL77WwN2E4wAAjgMAOA4A4Djgur1795riRBlB+BYAAAAAAACAywgsAgAAAAAAAHAZgUUAAAAAAAAALiOwCAAAAAAAAMBlBBYBAAAAAAAAuIzAIgAAAAAAAACXEVgEAAAAAAAA4DICiwAAAAAAAABcRmARAAAAAAAAgMsILAIAAAAAAABwGYFFAAAAAAAAAC4jsAgAAAAAAADAZV65XQEAAAAAyG1Wq1WJiYm5XQ1kUEJCgt28xWLJpdoAyA13+nHAw8PDLd8PgUUAAAAAdx2r1aro6GhFREQoMjJS8fHxuV0lZILVajXNnzhxwi1vwAFkn7vhOODl5aX8+fPL399fvr6+bvH+CCwCAAAAuKvExsbq7NmziouLy+2qIAt5eXF7C9zt7vTjQHx8vMLDwxUeHi5vb28FBgbKx8cnV+tEH4sAAAAA7hoEFe9MFotFXl5exj93yOIBkLPutuNAXFyczp49q9jY2Fytx50dygUAAACA/2e1Wu2Cin5+fkaTMk9Pz1ysHTIjuWl7MndpIggg59zpx4GEhASjC4+oqChJ/wsuli9fPtfeK4FFAAAAAHeF6OhoU1CxePHiKly4cC7WCFnFarWaAsOenp53VEABQPru9OOAp6enfHx8FBAQoLCwMIWEhEhKCi5GR0fLz88vV+pFU2gAAAAAd4WIiAhj2s/Pj6AiAOC2VLhwYVMg8caNG7lWFwKLAAAAAO4KkZGRxrS/v38u1gQAgMyxPY8RWAQAAACAbGS1WhUfH2/M+/r65mJtAADIHNvzWHx8vKxWa67Ug8AiAAAAgDteYmKiaZ6BWgAAt7OU57GU57mcQmARAAAAAAAAgMsILAIAAAAAAABwGYFFAAAAAAAAAC4jsAgAAAAAAADAZQQWAQAAAAAAALiMwCIAAAAAAAAAlxFYBAAAAAAAWSYuLi63qwAgh3jldgUAAAAAAHDVyZMntXjxYu3evVvnzp1TZGSkfH19VaJECT366KNq27atKlas6FRZMTExWrx4sdasWaOgoCBFRUWpUKFCKl++vJo3b64XX3xRPj4+t3VZOSExMVELFy7Utm3bNGnSJKe2mTBhgv773/+qWLFi2rx5czbXEEBWI7AIAAAAALhtxMXFaezYsZozZ46sVqvptYiICEVERCgoKEjz5s1Thw4dNHDgwDSDb8eOHdMHH3ygc+fOmZZfvnxZly9f1vbt2zV79myNGzdOlSpVSrNu7lpWTggJCVG3bt10+PBh1a1b1+nt1q9fL0l66qmnsqlmALITgUUAAAAAwG2jf//+WrVqlTFfqVIl1atXT/nz59e1a9e0c+dOHT9+XFarVfPnz9eVK1c0fvx4eXjY9wR27tw5derUSeHh4ZKkIkWKqEmTJipWrJjOnTunNWvWKCIiQsePH9dbb72lhQsXqnTp0g7r5a5l5ZTTp0/r8OHDLm0TEhKiI0eOSCKwCNyuCCwCAAAAAG4LP//8sxFU9Pb21siRI/Xiiy/KarUqOjraWO/XX3/V8OHDlZCQoNWrV2vp0qV65ZVX7MobNGiQEbxr0KCBxo8fr/z58xuv9+nTRz169NBff/2l0NBQDRs2TN99953DurlrWe4sOVsxT548evzxx3O5NgAygsFbAAAAAAC3BdvgWb9+/fTiiy86XO+VV15Rr169HG6XbMuWLdq9e7ck6Z577tGECRNMwbvk5d98842KFi0qSdq8ebP27Nlz25Tl7jZs2CBJevTRR5UvX77crQyADCGwCAAAAABwe2fOnFFQUJAkKX/+/Grfvn2a67/22mvy9vaWlNRM98KFC6bXlyxZYkx37txZfn5+DsspUKCA3nrrLWN++fLlduu4a1nu7NatW9qxY4ckmkEDtzMCiwAAAAAAt3f06FFjukqVKumOhuzn56ciRYoY85cvXzamExMTtXXrVmM+vcCW7etr1641DRrjrmVl1O7du/Xxxx+rWbNmqlmzpqpXr66GDRuqW7duWrVqlRITE03rT5o0SZUqVVKnTp2MZbt27VKlSpVUqVIldezY0eF+tm/frpiYGLv3YWvDhg3q16+fnn32WdWsWVM1a9bUk08+qbfffluzZs3S9evXM/1+AWQOfSwCQC67GZegL9af0OFLEWpWuZjeeKSsLBZLblcLAADArTzzzDPauHGjLl++7NS1UmxsrMLCwox528y/M2fOKCIiwlie3qjK9913nwICAhQeHq7w8HCdPHlS5cuXd+uyXBUaGqqBAwdqy5Ytdq+FhIQoJCRE69at06xZszR58mQVL148Q/tJtm7dOklSxYoV7QaeiYiIUM+ePbVt2za77S5duqRLly5p8+bNmjx5sv7zn/+oefPmmaoLgIwjsAgAueydxfs1/+9gSdLiAxcVl2jVu4+Vy+VaAQAAuBdPT0+VKFFCJUqUcGr9DRs26NatW5KkfPnyqWzZssZrp06dMqbLlCnjVHmlSpUyBlQ5ffq0EcBz17Jcce3aNXXo0EFnz541lj3yyCOqXbu2vL29FRQUpD///FMJCQk6cOCAOnXqpKVLlyp//vyqX7++fH19dfbsWS1YsECSVLZsWaOpesmSJR3uc+PGjZIcZyv26dPHCCoWLFhQjRo1UmBgoCQpODhYa9eu1fXr1xUZGak+ffqodOnSqlmzpsvvG0DmEVgEgFyUmGg1gorJvttxhsAiAABuIi4hUSPWBGnVkRBFxybkdnXchq+Pp5pXKa6hz1aUt6f79bAVGxurCRMmGPNPPvmk8ubNa8yHhoYa06kFvlIqXry4/vnnH7vt3bUsVwwfPtwIKhYuXFgTJ07UI488Ylrn2LFjevPNN3X16lWdPn1aU6ZM0YABA1S7dm3Vrl1bO3fuNAKLJUuWNPX/mNKRI0d06dIlSfaBxX379mnTpk2SkjIyf/jhBxUuXNi0zuDBg9W1a1ft3r1biYmJmjp1qqZNm5ah9w4gcwgsAkAuSnDQD86e8/QVAwCAu/j0jyCN+vPf3K6GW9obnNRk9z/NKudyTeyNHDlSx48fl5SU6di9e3fT6zdu3DCmnR2N2DYwabu9u5blrNOnT+v333+XlPRZTZ06VQ899JDdepUqVdIXX3xhBAwXLVqkjz76yBggxxXr16+XJAUEBKhWrVqm1/bt22dMv/rqq3ZBRSlp8J7Ro0frmWeekST9888/SkhIkKenp8t1AZA5BBYBIBdlQf/aAAAgG+06ey23q+DWdp5xv89n6tSpWrRokTHfrVs3VahQwbRObGysMW0bmEuL7Xq227trWc5as2aNMd24cWOHQcVkTzzxhOrWrStPT08FBgbq+vXrpgFynLVhwwZJUsOGDeXhYc54tQ0O/v3333rjjTccllG2bFn9/PPPKlGihAICAlyuA4CsQWARAHLRwUsRuV0FAACQhrqBhbT23yu5XQ239Wi5QrldBYPVatWECRM0Z84cY1njxo3tshUl2QWzXGU7eIy7luWszZs3G9ONGzdOd/25c+e6vA9bV69e1cGDByU57l+xbt26xvTq1avVqVMnvfLKK6pfv75d9mLlyu6XLQvcbQgsAkAuGvDLkdyuAgAASMOwJhVlsYg+FlOw7WPRHcTGxuqTTz7RqlWrjGUNGjTQ+PHjHQbbfH19jenkAV7Sc/PmTWM6T548bl+Wsy5evGhMV6yY/X/PDRs2KDExUV5eXmrQoIHd65UqVdLLL7+sJUuWSJJ27typnTt3ymKxqHLlyqpXr54aNGigOnXqyMfHJ9vrCyBtBBYBIBetO04GBAAA7szb00P/aVbZLfsRRJKrV6/qgw8+0N69e41lzZo109ixY1MNPNkG8GJiYpzaj20Az9/f3+3LctaVK/+7Hi1YsKDL27squRl07dq1U63v8OHDVaRIEc2cOdNo3m21WnXkyBEdOXJEM2fOlJ+fn55++ml16dJFVapUyfZ6A3DM/YbvAgAAAADACf/8849efvllU1Cxffv2GjduXJrZbMWLFzemL1++7NS+QkJCjOmiRYu6fVnOio+Pd3mbjIqNjdXWrVslOW4Gnczb21u9e/fWxo0bNWzYMDVs2NBuMJuoqCitWLFCbdq00XfffZed1QaQBjIWAQAAAAC3nT///FN9+vQxMvs8PT3Vt29ftWvXLt2+Cm2b/AYHBzu1P9v17rvvPrcvy1kFCxZUaGioJOn69esqW7asy2U4a/fu3YqKipKUdmAxWeHChdWhQwd16NBBsbGxOnDggHbu3KnNmzdr3759slqtSkxM1NixY1WrVi09/PDD2VZ3AI6RsQgAAAAAuK0sXbpU3bt3N4KK+fPn1/jx49WuXTunti9evLgxknB4eLhOnz6d5vonT57U9evXJSUF4gIDA92+LGfZBhKPHz+e7vo//fSThgwZomnTpuno0aMu7Wv9+vWSpMDAQJUvX96lbX18fFSnTh198MEHWrBggX755ReVLFnSeP3nn392qTwAWYPAIgAAAADgtpEc2EpMTJQklSpVSj/88IPq16/vUjm2IyCvW7cuzXWTA2KS9MQTT9gNCOOuZTnDNstv06ZN6a6/fPlyLVmyRF9//bXOnDljLHdm38n9Kz755JMOX7darRoyZIheeeUV1alTxzSwTEoPPPCAOnfubMyntS6A7ENgEQAAAABwWzh8+LA++eQTWa1WSVL58uW1YMGCDI1m3LJlS2N65syZioiIcLheRESEZs2aZcy//PLLt01ZzmjVqpURFPzjjz8UFBSU6rpHjx7Vrl27JCUNNGMbzLVtfp6QYD+C+vHjx3Xu3DlJUqNGjRyWb7FYdPLkSR04cEA3btxINwvx6tWrxnSJEiXSXBdA9iCwCAAAAABwe/Hx8froo4+MUYKLFy+uWbNmmQY8cUW9evVUr149SVJoaKjee+89U6BKSgpcde3a1eiD8JFHHtHjjz9+25TljAoVKui5556TJMXFxalr164OmzifOXNGPXv2NDJFX3/9deXPn9943Xb60qVLdsHF5OxKPz8/PfLII6nWx7Y5++TJk7V69WqH6/3999+aN2+eMZ/8HgDkLAZvAQAAAAC4vZ9//tnU52DNmjX1yy+/SEpqQhsXF2e85u3tbdc0t3nz5qY++SRpxIgReuWVVxQeHq6///5bzZo1U9OmTVW6dGlduHBBv//+u5ExGBAQoNGjR6daP3ctyxkjRozQ0aNHdfLkSQUHB6tNmzZq0KCBqlevLk9PTx07dkzr1q0zgroPPvigunfvbiqjdOnSslgsslqtCg4O1vvvv6+HH35Y+fLlU8eOHY1m0PXr109zxO6WLVtqyZIl2r17t+Li4vThhx+qWrVqqlmzpkqUKKGYmBgdPnxYW7duNYKXzz33XIYDqwAyx2JNziHHHW/v3r3G0yUPDw/VqlUrl2uUefHx8dq/f78xX7NmTXl5ES/H7cOj70qHyxO/fCGHa3L74jgAgOMAnJGQkGBq4lmxYkV5enrmYo3gqldffVV79+7N8PZz5szRo48+arf86NGj6t69u9FM15EyZcpoypQpqly5cpr7cNeynBEeHq5+/fql289io0aN9MUXX8jf39/utb59+2rlSvP1bf78+bVu3TrVq1dPCQkJGjVqlF566aU093Hjxg316tVLW7ZsSXM9i8Wil19+WUOHDk0zWIm7g9VqVXR0tDHv6+uboX5HbxdZcV7LijgRV1wA4IasVusdfRIEAABw1bFjx7Kl3MqVK+vXX3/V4sWL9ccff+j48eO6fv26/Pz8VKFCBTVp0kRt27ZVvnz5btuynBEQEKDp06dr+/btWrlypf766y9dvnxZ8fHxKlKkiGrVqqWXXnopzUFyRo0apXvvvVe//PKLLl68KKvVqoCAAK1bt04JCQmyWCypDtxiq0CBApoxY4Y2b96sX3/9VQcPHtTFixd18+ZN+fv7q0SJEqpXr55atmypKlWqZMn7B5AxZCzeRchYBNzLxYibKj1ijcPXShfMq3Etq+mVmqVyuFa3H44DADgOwBlkLN7Z7rZMJQD27rbjgLtkLDJ4CwDkkuUHL6X6WvD1m3pt/t+6HhOX6joAAAAAAOQmAosAkEu+3XEmzdfjE61afSw0h2oDAAAAAIBrCCwCQC5JdKInivCbZCwCAAAAANwTgUUAyCX0cAsAAAAAuJ0RWASAXBL//53kAgAAAABwOyKwCAC55FhoVLrr3LljmAEAAAAAbncEFgEAAAAAAAC4jMAiALgxCymLAAAAAAA3RWARAAAAAAAAgMsILAIAAAAAAABwGYFFAHBjFoZvAQAAAAC4KQKLAAAAAAAAAFxGYBEAAAAAAACAywgsAoAbY1RoAAAAAIC7IrAIAAAAAAAAwGUEFgEAAAAAAAC4jMAiALgxWkIDAAAAANwVgUUAAAAAAAAALiOwCAAAAAAAAMBlBBYBwI1ZGBYaAAAAAOCmCCwCAAAAAAAAcBmBRQAAAAAAAAAuI7AIAG6MhtAAAAAAkLq4uLjcrsJdzSu3KwAAAAAAgDMqVaqU6TJat26tMWPGGPMdO3bUrl27JElz5szRo48+mul9IGNiY2P1888/648//tCRI0cUHh6uvHnz6v7771fDhg3Vrl07FS1aNN1yTpw4oebNm7u07yVLlqhGjRoZrfpdZdmyZRo0aJAk+9+TJA0cOFDLly+XJI0ePVpt2rTJtrr89ttvmjt3rn744Qe7186fP69nnnlGklS6dGmtW7cu2+pxNyOwmMKECRP03//+N0Nfuu3bt2vp0qXat2+fLl++LC8vL5UoUUK1atVS69atVadOnWyqNQAAAAAAt69Dhw6pZ8+eOn/+vGl5XFyc9u/fr/379+u7775T79691blz53TLwp0tKipK3bt317Zt21S6dOncrs5djcCijQMHDmj69OkubxcZGakBAwZo7dq1puW3bt3SiRMndOLECS1ZskQtW7bU0KFDVaBAgayqMoA7HINCAwAA/E///v0dLrdarabmkN7e3rL8/4XU5s2btX37duO1UqVKZW8l4bK9e/eqc+fOunXrliTJYrGofv36qlmzpjw8PLRv3z5t2bJFMTExGjVqlIKDgzV48OBUyzt8+LAx3aZNGz3wwAPp1qFkyZKZfyPIMdeuXdO2bdtyuxoQgUXDuXPn9P7777vcNv/WrVvq0qWL9u/fbyzz8/NTxYoVlZCQoKCgIN28eVOStGLFCl28eFEzZ86Uj49PltYfAAAAAO50b731lsPlVqtV0dHRxryvr68sFot27dql8ePHG8tr166tbt26ZXc14YLIyEj16NHDCCoWL15ckyZNUs2aNU3r7d+/Xx988IFCQ0M1e/ZsVa9eXS1btnRYpm1g8b333tO9996bbfWHvTFjxtg1j84NZcqU0bFjx3K7Gnc8Bm+RFBQUpNdee02hoaEub/v5558bQUWLxaIPP/xQ27Zt04IFC7R48WJt3rxZnTp1MtbfvXu3vvrqqyyrO4A7GxmLAAAAGXP27Fn16NFDsbGxkqRixYpp4sSJ8vb2zuWa3bkqVaqkSpUqqXHjxk5vM2/ePONe3NfXV7NmzbILKkpSzZo1NW3aNHl6ekqSvvjiCyOJx1ZiYqL++ecfSZK/v7/KlSuXkbcCwEl3fWDx559/Vtu2bRUSEuLytsePH9eCBQuM+T59+uiDDz5Q3rx5jWX+/v4aMmSIPvjgA2PZ/Pnz7fqNAAAAAABkjaioKHXr1k3h4eGSkppGT5o0yamBP5CzVq9ebUy/+eabKl++fKrrVq9eXU2bNpUkhYaG2nVHJkmnTp0yslerVatmNIkHkD3u2qbQISEhGjdunH766acMlzF37lwlJCRIku6///5U0/IlqXv37lqzZo2CgoIUFxenefPmaeDAgRneNwAAAADAscGDB+v48ePG/CeffKKHHnrI6e3/+OMP/fzzzzpw4ICuXbumgIAA3XvvvWrevLlat26tfPnypVvGoUOH9Ntvv+mvv/5ScHCwrl+/LovFogIFCui+++7TY489prZt26Ya7Jw0aZImT54s6X8jFu/fv1+LFy/Wrl27dPnyZXl6eqpMmTJq2LChXn/9dRUvXjzdel2+fFnz58/Xxo0bdebMGSUkJKhEiRJq0KCBOnXqpHLlymno0KFauHChpOwdKTsuLk5Hjhwx5p977rl0t6lfv75WrVolSdq4caNatGhhet22GXT16tWzqKaps/07zZ8/X3Xq1NHGjRv1448/6tChQwoPD5e/v7+qVaumVq1aqXnz5vLwcJzjZTva8oQJE9SoUSNNmjRJP//8syIiIlS8eHE98sgj6tmzp4oVK2ba9tKlS1q0aJG2bNmic+fO6caNG/L399d9991njKgdEBDg1HvasGGDli1bpr179+ratWvy9/dXlSpV1K5dOzVp0iTd7V0ZFfrIkSNaunSpdu7cqfPnzysuLk4FCxZU5cqV1bRpU7344oumruRsP6NkwcHBxojxJUuW1K+//irJtVGhIyMjtXz5cm3YsEHHjh1TeHi48uXLpxIlSqhu3bp68cUX0xw1POXfrlmzZjp+/LgWLlyorVu36tKlS7JarSpRooTq16+vDh066P7770/rY7xt3JWBxalTp+rbb7819cFx//33q0mTJpo2bZpTZSQmJpqerLRp0ybVg4MkeXh4qG3btho5cqSkpKcyBBYBpMcinrACAAC4Yvbs2aZ7tbZt26pdu3ZObXv9+nV16tRJO3fuNC0PDQ1VaGiodu/erfnz5+u///1vqk1sIyIiNGDAgFSDGDdv3lRoaKh27dqlb7/9ViNHjtQLL7yQZr2sVqtGjx6t2bNny2q1ml47evSojh49qrlz52rMmDFq1qxZquWsW7dOffr0Md0LS9KZM2d05swZLV68WJ988kmadclK4eHhpvfjTLPlEiVKGNOORn92FFg8d+6cDhw4oLCwMPn5+enee+9VzZo1jWbVWWn48OH68ccfTcuuXr2qTZs2adOmTZo3b56mTp2qQoUKpVtWnz59tGbNGmP+zJkzCg0N1ccff2xa75tvvtGUKVOMfipt93v16lXt2bNH3377rT7++GO1bt061f3FxMToo48+svvuXr16VVu2bNGWLVv09NNPq2HDhunWPT1RUVEaPny4VqxYYffalStXjP3NmDFDkydPVoUKFTK9z9SsWrVKn376qZHhnCwuLk4REREKCgrSvHnz1KJFC40YMUJ+fn7pljljxgx9/fXXduN4nDx5UidPntSPP/6oAQMGmLrOu13dlYHFGTNmmA6kr7zyigYOHKg//vjD6TKOHj2qa9euGfNPPPFEutvUr1/fmL5w4YKOHj2qypUrO71PAAAAAEDqdu/ebWSPSdJDDz3kUqBs4MCBioqKMkYlrl69ury9vbV//35t3rxZVqtVx48fV69evbRo0SK7/hrj4uLUuXNno48/Hx8fNWjQQBUrVpSvr69u3LihQ4cOaceOHUpMTNTNmzc1cOBAVa5cOc3Aybhx44yRrWvVqqW6desqT548OnHihNauXatbt24pJiZGffv2VaVKlXTffffZlbFq1Sr17dvXaHVXvHhxPfvssypSpIiCg4O1Zs0ahYeH65NPPsmxEZIz0t+lbfDswoULdq/bBhavXr2qtm3bmgZbTVaoUCG9/fbb6ty5c5b1uzlp0iTt2LFDklSxYkU9+eSTyps3rw4ePKhNmzYpMTFRe/fuVfv27bVo0SL5+/unWlZy9lxKjRs3NmXM2maXSlLVqlX12GOPKSAgQFevXtXWrVt1/PhxRUZGauDAgbp27Zq6dOliV25sbKw6deqkAwcOSPrfyNwPPfSQEhMT9ddff2nnzp36888/9ddff2X0I5L0v0Fw9+3bZyyrVq2aHnvsMfn5+enUqVP6448/dOvWLZ0+fVodO3bUTz/9pBIlSqhGjRrq37+/IiIijMSwggUL6r333pPValWePHlcqsuPP/6o4cOHG/OFChVSo0aNFBgYqKioKO3Zs0d79+6VJP3yyy86ceKE5s2bp/z586da5oIFC4zfa+XKlfX444/L399fZ8+e1R9//KHIyEjFx8frs88+U8WKFfXYY4+5VGd3c1cGFpNVr15dAwYMUN26dV3e9ujRo8a0t7e3U9Hz++67T3nz5jU6mD148CCBRQAAAMCdxcVJI0ZIv/4qpcjyuqv5+krPPy8NHSq5yWAoISEhGjRokBE4K1q0qCZOnGhqRpmeqKgo3XvvvZowYYLdvdqGDRv0/vvvKyEhQf/88482bNigZ5991rTOnDlzjKBiiRIlNHv2bIcjEh85ckRdunRRWFiY4uPjtXDhQrssNFvbt29XoUKF9PXXX6tevXqm106ePKk33nhDISEhiouL05w5czRs2DDTOmFhYfr000+Nz+all17S0KFDTeMD9OvXTwMGDND69esdBuyyQ8GCBZUvXz7FxMRIkk6cOKEqVaqkuY1tE/ebN2/qxo0bKlCggKSkzM7kz1+SRowYkWo5165d09ixY7Vx40ZNnjxZBQsWzMxbkSTt2LFDFotF/fr1U5cuXUz9O/79999Gv5+nTp3S119/bfd3srVhwwZ5eHioZ8+eeuWVV+Tl5aUdO3aYmkAvXrzYCCoWKFBAY8aMMZr+JrNarVqyZIk+/fRTxcXF6csvv1TNmjX18MMPm9abMWOGEVQsWLCgJk+ebBcr2bJli3r27GmX2eeqCRMmGEFFX19fjR492i7T9sKFC3rzzTd1+vRpXbt2TaNGjdLEiRNVoUIFVahQQefPnzcCi/nz59dbb71lNzp8evbt22f6jrRp00ZDhgyxCxpu3LhRffv2VUREhI4cOaLBgwdr4sSJqZa7fft25cmTR2PGjFHz5s1Nr/Xu3VtvvfWWgoKCJEkzZ84ksHg7qlu3rtq0aaOnn346wx25nj592pguXbq0vLzS/ygtFotKlSqlkydPSkpKYwaAtMQnWtNfCQAAZJ9PP5U++yy3a+Ge/j+LR//5T+7WQ0nZVv369VNYWJikpOSPCRMmONXnoK18+fLpu+++U9myZe1ee+qpp/TCCy8Y/fTv2rXLLrC4dOlSY3rIkCEOg4qSVKVKFXXp0kVffvmlpKSkk/R8/vnndkFFKalbrw8//FBDhgyRJG3bts1unalTpxrBoCeeeEKfffaZ3b1wwYIFNWnSJL366qsOmxgn27Rpk/7999806xoZGakZM2Y4fK1ChQpGU1qLxaJHHnlEmzZtkiQtXLjQlD2WUmJiol3T2Zs3bxqBxVOnTikqKsp4zdvbWx06dNCLL76ocuXKyWq16ujRo1q4cKFRzq5du9SjRw/NnDnTqfv69HTv3t3h+Au1a9fW5MmT1bFjR1mtVi1YsEBdunRx+F1L1q1bN3Xt2tWYTx64Rkr6zk+YMMGYnzBhgqmVZDKLxaJXXnlFN27c0Oeff66EhARNmDBBc+bMMdaJjIzUN998Y8yPHTvWYQLWE088oXHjxundd99N4xNIW1RUlObNm2fMOwoqSlKpUqX03//+Vy1atFBiYqLWrFmjy5cv2/UtmRlfffWVEhMTJUnPPvusRo8e7XC9J598UlOnTlWnTp2UkJCg1atXa9++fWn22zpw4EC7oKKUNDr94MGD9cYbb0iSkb2cVtd67u6uDCz+97//zXQZoaGhxrQrX+wiRYoYgUXbMgDAkVvxCbldBQAA7m4p+tpDCv/f7DO3ffbZZ6Zg2ODBg+0yspzx3HPPpRnoefzxx43AYsqsvoSEBL399tsKDg5WaGionn766TT3ZZsReePGjTTXLVeunJ588slUX7fNeLp8+bLpNavVqt9++82Y79OnT6oJNt7e3urXr586d+6c6r5WrVplDMyRmuvXr+uLL75w+Frr1q1NffS9+uqrpsBi3bp1HQZkJOnLL780ZSxKUnx8vDFt2wzaz89Ps2bNUs2aNU3r16lTR3Xq1NHjjz9ujHuwc+dOLVy4UK+99lqa7ys9RYsW1XvvvZfq64888ogaNmyojRs3KjExUWvXrtWbb77pcF2LxaLXX3891bLWrl1rxBRq1arlMKhoq1OnTpo6daoiIiK0c+dOXbp0yeivcvPmzUbW6IMPPpjmd+3JJ5/UI488ot27d6e5v9Rs3LjRaM5etWrVNPsELV++vJo3b66QkBCVK1dON27cyLLA4sWLF7Vr1y5JSWNipDcGRp06ddS8eXOtXLlSUtJ3NbXAoq+vr15++eVUy3r44Yfl7e2tuLg43bp1S+Hh4SpcuHDG3ogbuCsDi1nBNvU3+emIM2zXvX79elZWyWW2B+DbVXIqf2rzgLvadPKqU+slJibeEb/V7MRxAADHATgjISHBGCTCYrHIarXaDYLhUN26sqxdm821u31ZH31UcuZzzEbLli0z9THXqlUrvfrqq879fSXTerVr105zuyJFihjTUVFRpnU9PDzsBsZIrazY2FidOnXKmI+Pj7db13a+Zs2aadbLNihx8+ZN07oHDx40AlClSpVSlSpV0izr0UcfVeHChY3sz5S/FWc/19SkLK9x48Zq1KiR1q9fr8TERH300Ufavn272rZtqwceeEAJCQk6fPiwZs6cqQ0bNqhw4cK6efOm0eTV29vbKK9p06Z68MEHdf78eQUEBKhq1aqp1vfFF1/Unj17tGTJEknSd999pw4dOmTo/SR77rnn5OXlleZn9Mwzz2jjxo2SkrI/kzPXUpZ13333qVChQqmWZTvAUFrvM5mnp6cefPBBbdmyRVJSf6TJI2pv3rzZWO+pp55Kt6xnn33WCCw6Opam/L7Yztvuq1GjRunuKzmrN2XZjvaRVlkpX7fN7K1Ro4ZKly6dbl2ef/55I7C4c+fOVH8XVapUMX0vU/L29laBAgWM31jK36yzUn4Wjo4jOYHAYgbFxsYa07b9UqTHtn8P2zJyWmJiosMObG93aaXsA+5k7LZr6a8k6fz589qf17l1kYTjAACOA0iLl5eXvLy8FB0d7dyIsP36yTs+Xp6rV8tCH4sGq6+vEpo2VVzfvrna9+TRo0f16aefGvPVq1fXoEGDjOwrZyQ3hZSSstzS6qPN9oFvbGxsuv25RUZG6syZMzp//rzOnz+vs2fP6sSJE/r3339No8UmJCTYlWX7esGCBZ3uOy4xMdG0rm2z5fLlyztVToUKFYzA1a1bt0zbDB06VEOHDnW4Xe3atSVJJUuW1K+//ppq+SnrMGLECPXu3Vt79uyR1WrVokWLtGjRIrvtAgICNGHCBHXr1s1YlrJfvSJFihgB4PTe68svv2wEFi9cuKDDhw87HPgmLbZ/pwoVKqS7T9uM2PPnz5vWt40RlCpVKs2yjh07ZkzPnz9f8+fPd6neZ86cMco/e/asqX7pvQfbz8jRd9f2AV/K38n58+eN6XvvvdelPhFtJY9dIdl/B5xZJ7klqeTc300yv+8LFy7oxo0bxnnE9m9XqFChdMuzHWQmKioqQ59DQkKCkYgSHx+fa9c/BBYzyPbg4UpbeNuLF7KQgLvXvlDnHizciE1MfyUAAJB9vL0VN3So4lIJpCD3XL9+XX379jWaVRYuXFhjx451abCWlPz8/DJdr5s3b2rJkiX65Zdf9O+//6aaQeTp6el0hrXtKMCuunLlijHt7AAlAQEBGd5fRvj5+WnKlCmaO3eu5syZo4iICNPrPj4+euaZZ9S7d28VKlTI6EcxX7588vX1zfB+K1SoYBpg9dy5cy4HFm3dc8896a5j+ze4ejX1VkzptYzMbAtI21aYyZlzzuxXytz3w9V9ZRfbz8/Z92O7ntVqVUREhAoVKmS3XmZ+r7cjAosZZBsgtH3ClR7bE0dWDWkP4Pbj7LBRWy7cUuequXfCBQAAcEeJiYkaPHiw0c+hl5eXPv/8c5cHa8lq58+fV48ePewG6rRYLCpevLjuvfdeValSRbVq1ZLFYlGPHj2yvU4pMyOdkRvNKb29vdWlSxd17NhR+/bt07lz55SQkKDixYurZs2aRkDu5MmTRv0y+/e2WCwqUKCAEVi0HfglI5zJgnY2JpDeQDK25Tz77LOqVq2aEzX8n/RG305LZmIZ7pJglZHveMrfT0YHA77TEFjMINvmz8lPyJxhu65t6mtO8/DwUI0aNXJt/1klISHBlO5bvXp155q0ALnM57f1UnT6F3b7QmPtOpyGGccBABwH4IyEhASdOHFCUtLNoK+vL9+T29j48eO1fft2Y37AgAGmwVry5cvn9E2/bQu0PHnypJkBZ3sP5+HhYVo3Li5Offv2NYKKhQsXVqdOnVSvXj1VqFDBrtzkfvYclSWZgzfe3t4uZebZrmvbL2R0dLRT5dgG2NL7TBxJ/o1lVFqDh9g27a5atarD/dy6dUuenp5OjfJs+16LFi3qcr1t/05xcXHpbm/bZLZYsWKm9W2zbT09PdMsKyAgwPiu1a5dO9VBYJxRvHhx4/h48+bNdN+DbbDaUT1tj60+Pj6m120zNm/dupXh74ltTCb5+2a1Wk3dIDhaJ5ltdmlkZKRT9bDNcvTw8FDRokWNv78rf7vk+tjWMyOfQ0JCgjw8POTt7S1vb2+VL1/e5fPawYMHXUqWc4TAYgbZpsBGRkY6vZ3tujmdXp6SMwfZ242zJw8g9zn/dIvvtGs4DgDgOABHLBaL6UYu5TxuH3/++ae++eYbY75169bq2LGjqY8yV/6+rnwv0lp33bp1CgoKkpQU2Fu0aFGaI0zbNgm1Wq12+83M99V23QoVKhjT//77r1Pl2AbvMvJbcWUbq9Wq8PBwXb16VcWLF0+3eey6deuM6Tp16pj289JLL+nkyZOKjo7WlClT9Mwzz6RZ1rlz50zfmwoVKmTovSY7ceKEnn322TTXP3r0qDFdrlw5u7+z7XRadQkMDDTGTXD273r9+nXlz5/fLvhUpkwZU/2ee+65NMux7Z/QUT3Teh+29T5x4kS69d68ebN+/fVXlSlTRo899pjq1KmT7j4cSbmObZP3o0ePOvX5/fPPP8Z0yZIlTcHEjNTHlfXTKiP5fy8vr1x5YOZ854AwsR3iPK1+EVKy7d+iaNGiWVonAAAAALiTnTlzRgMGDDCaMVarVs00eEtu+vvvv43p+vXrpxlUlGTKuMxsxlBaatSoYfQdeeHCBVNgy5FDhw7p8uXL2VaflD777DM99thjev7557VixYo017106ZKR6enp6WkXOCxQoIARKLQNQKbGdn/333+/SpUq5Wr1TTZs2JDuOmvWrDGmn3766Qzv69FHHzWmN27cmG5LytjYWD3//PN68MEH1bhxY9PozI0bNzam//jjj3T3bZtt6yrbzOJNmzalu/5vv/2m5cuXa9KkSTpw4ICxPLMPhpIDlJJ04MAB06AyadUlme37uNsRWMyge++915g+f/68U+3zrVargoODHZYB4O5CggQAAIBroqOj1b17d924cUNSUlPjyZMn52oXU7Zsm4faZiM6snfvXq1atcqYz85+53x8fNSqVStjfvz48WmuP2HChGyriyO2AZqlS5emeW89atQooynxc889Z9fHom2m3cqVK02ZdSmdOXNGM2bMMOY7derkct1T2rt3b5rBsm3btmnHjh2SkprrZyaw2LRpUyNgfPXqVU2dOjXN9WfOnKnQ0FDFx8crLCxMDz74oPFa/fr1jUFITp486XBE7mRHjhwxBUczUu/kJsr79u3Tli1bUl03NDTUCOZZLBbT52Wbmeds36G2ypYtq7p160pKCuyPGTMmzfX//vtvU2CxZcuWLu/zTkVgMYNsO0aNiYnRqVOn0t3m5MmTpqcImeksFQAAAADuJh9//LHR1NjHx0dTpkzJdIZZVqpcubIx/ffff5sCh8msVqt+/fVXvfPOO6ZgYvLgIdnlvffeM4JQ69ev16effmrq6y+5Dp988olTWWSpOXbsmI4dO+ZUtmCyp59+2mjNd/jwYX311Vd2gdaYmBgNHjxYq1evlpQ0inTfvn3tynrxxRdVrlw5SUkZeu+9957Rd6CtgwcPqnPnzkb/ig8++KDatm3rdJ3T0qdPH1M2arLt27erZ8+eRuC0V69e8vf3z/B+/P399e677xrz06ZN0+TJk00BbikpaLZw4UJNmjTJWNalSxdTX4c+Pj4aMGCAMT9ixAj99NNPdvv8559/9N5779ntwxWFCxdWx44djfk+ffoYwVZbV65cUffu3Y0M1ObNmxt/W0nKnz+/MR0WFmZq0u6sXr16GQHKNWvWaNCgQQ67utuyZYu6detmBDCfeeYZNWjQwOX93anofCaDKlSooMKFCxtPorZv3677778/zW22bt1qTBcqVEiVKlXK1joCAAAAwJ3gzz//1K+//mrMP/TQQ9q7d6/27t0rKSlgZxvs8Pb2TrOpZLt27UyBiazw/PPPa9KkSQoNDZXValXv3r21YMECVa9eXX5+fgoJCdGWLVuMVmxeXl5KSEiQ1WrVjRs3FB8fn239w5YoUULDhg0zmpH/8MMPWr9+vRHUCwkJ0dq1a3X58mV5enrKw8PD+DxtB7fJDj4+Pho2bJh69Oghq9Wq6dOna82aNXriiSd0zz336MKFC1qzZo3Cw8MlJf1tv/76a5UsWdKurDx58mjcuHHq1KmToqKidPbsWbVs2VKNGjVS1apVFR8fr/3792vbtm1G8/PAwEBNnDgxS/qm8/b2VkREhN544w3Vr19ftWrVkpQUaN62bZuxXoMGDbIkQ/K9997TwYMHtXbtWlmtVk2aNElLly7VU089peLFiys0NFQ7duzQ8ePHjW3q1q2r999/366s1q1ba8uWLfrll18UFxenAQMGaP78+Xr88cfl4+OjQ4cOaePGjUpISNB9993nVHJVanr27Kl9+/Zp9+7dCg8PV+fOnVW3bl3Vrl1bvr6+OnnypP744w8jWBgYGKiPP/7YVEb+/PkVEBCg8PBwxcbG6q233tJTTz2lmzdv6u2333aqHg8//LD69++v0aNHS5KWLVum9evXq3HjxipbtqxiYmK0e/duUzcH9913n7E+khBYzCCLxaJnn31WCxculCQtWrRI7du3T/Wgm5iYaEonbtq0KZ1FA3exRCe6TwAAAEAS29FYJWnXrl3atWtXhstr2rRplgcW8+fPr6lTp6pr165G3/o7d+7Uzp077dYNDAzU6NGjNXjwYJ05c0aJiYn6559/TM1Ts1qrVq0UFxenzz77TNHR0bp48aLmzZtnWsfX11djxozR6NGjdfHiRUnm0W6zy7PPPqvRo0fr008/VUxMjE6fPq3Tp0/brVeqVCl98cUXeuSRR1Itq3r16po3b54++ugjnTp1SvHx8VqzZo3D5rtPPPGERo0aZdekOqM6deqkf//9V5s2bdLWrVtNyUXJOnbsqEGDBmVJwNZisWjixIkaN26cZs+erbi4OF24cEE//PCDw/VbtWqlESNGpBrA/vLLL1W8eHGjifiBAwdM/RpKSUH9/v37q0OHDhmut7e3t2bMmKFhw4Zp+fLlklL/TdeqVUvjx49X4cKF7V579dVXNW3aNElJwdvkAODLL7/s9GC5b7zxhooUKaIRI0bo+vXrunbtmpYuXepw3VatWmnYsGFG9i+SEFjMhA4dOmjRokWyWq06evSopkyZoh49ejhcd8KECcbIWh4eHqbUXwB3n3Ph2dvcBQAAADmvRo0aWrlypX744Qdt2LBBp0+fVnR0tPLmzauiRYuqUqVKeuqpp9SiRQv5+PioYcOGmjt3riTpp59+ytbAopQUcHn88cf1448/auPGjbpw4YJiY2NVsmRJNWzYUG+99ZZKlChhGhDH19c3W+uUrHXr1qpbt67mz5+vrVu36uzZs4qNjVVAQIAqV66spk2bqmXLlkb/fGmpWrWqVq5cqVWrVumPP/7QoUOHFBYWJi8vLxUrVky1a9dW8+bNs7w5a758+TR9+nStWLFCS5Ys0bFjxxQVFaUSJUqobt26at++vWrUqJGl+/T09FS/fv3Uvn17LV68WDt27NDZs2cVERGhPHnyqHTp0qpdu7ZeeumldL9fFotF/fv313PPPacff/xRO3fuVEhIiHx9fXX//ffrhRdeULt27dLsu9JZefLk0ZgxY/T6669r2bJl2rlzpy5duqRbt26pUKFCqlGjhlq2bKkmTZqkGoTt1auX7rnnHi1ZskTnzp1TXFyc7rnnHoWEhDgdWJSkFi1a6KmnntLixYu1adMm/fvvvwoPD5eXl5fKlCmjOnXqqE2bNtn++7xdWazOjDpyl1i2bJkGDRokSSpdurRT/UIMGjRIy5YtM+Y7d+6sHj16qECBApKkGzduaOLEiZozZ46xTvv27TV8+PCsrbwT9u7da6R7e3h4GGnZt7PkVPZkNWvWzLbmA0BWSUy0yqv/L86v/+UL2Vib2x/HAQAcB+CMhIQEo38+SapYsWKWNH2Ee7BaraY+1nx9fWkhlgk1atQw+mDcsWOHMbAH7E2aNEmTJ0+WJHXv3j3VZCNkv7vtOJAV57WsiBNxxZVJQ4YMUVBQkA4dOiRJmj17thYtWmT0n3js2DHFxMQY69eoUUMDBw7MlboCcA88zQEAAEBOmjFjhu655x4FBgaqdu3aaa578uRJI6hYqFAhgooA0kRgMZPy58+v77//Xv379zcyHGNiYrRv3z67dRs1aqSxY8c6lboN4M515z4zAwAAgDtasWKFjh49KklaunSpqlevnuq633//vTFdt27d7K4agNtc9g7vdJcoUKCApk6dqu+//15t2rRRYGCgfH19jf4MWrRooRkzZmjatGlGE2kAAAAAAHLC448/bkyPHDlS165ds1snISFB3333nTFAqYeHR5aMXAzgzkbGoo02bdqoTZs2Gd6+Xr16qlevXhbWCAAAAACAzOnSpYuWLVum8PBw7d27V0899ZQaN26swMBAeXt7KyQkRFu3blVwcLCxzTvvvKM6derkYq0B3A4ILAIAAAAAcAcrWrSoZs+erZ49e+r06dO6efOmVq1a5XBdHx8fDRw4UK+99loO1xLA7YjAIgAAAAAAd7jKlStr5cqVWrVqldasWaMjR47o6tWrslqtKlKkiEqXLq3GjRurRYsWKlq0aG5XF8BtgsAiAOSw+ETGhQYAAEDO8/Hx0YsvvqgXX3wxt6tyx+jRo4d69OiR29UAcg2DtwBADlt+6GJuVwEAAAAAgEwjsAgAOexixK3crgIAAAAAAJlGYBEAcpjFkts1AAAAAAAg8wgsAkAOI64IAAAAALgTEFgEgBxmIWURAAAAAHAHILAIADmMsCIAAAAA4E5AYBEAchgJiwAA5DwPD/OtT0JCQi7VBACAzEt5Hkt5nsspBBYBIIdZyFkEACDHWSwWeXl5GfPR0dG5WBsAADLH9jzm5eWVa11uEVgEgBxGxiIAALkjf/78xnREREQu1gQAgMyxPY8VKFAg1+pBYBEAchhxRQAAcoe/v78xHRUVpbCwsFysDQAAGRMWFqaoqChjPjcDi17prwIAyEpkLAIAkDt8fX3l7e2tuLg4SVJISIgiIyPl7+8vX19feXp65nINkVFWq9XU31hCQkKuNQsEkDvu9ONAQkKCoqOjFRERYQoqent7y9fXN9fqRWARAHLYnXRyAwDgdmKxWBQYGKizZ88awcWoqCjTDRpuX4mJicZ0bg1iACB33W3HAW9vbwUGBubqPead/ykDgJtx9ZAfeSs+W+oBAMDdyMfHR4GBgfL29s7tqiALWa1WxcfHG/+sVmtuVwlADrvbjgPJQUUfH59crQcZiwCQw1x9mHQkJFKPBAZkS10AALgb+fj4qHz58oqOjtaNGzd048YNxcfzIO92Z/s3JHAM3J3u9OOAl5eXChQooAIFCsjX19ctWsMRWASAHGZxMWdx5T+XCCwCAJDFLBaL/Pz85OfnpxIlSshqtZqa0OH2Eh8fr0OHDhnz5cuXl5cXt7vA3eROPw54eHi4RSAxpTvnEwaAO9TNeG5yAADIbhaLhcFbbmMpmzx6enry9wTuMhwHcgd9LAJADnP1IZP7PZMCAAAAAIDAIgDkOFcDhR4ehBYBAAAAAO6HwCIA5DBX+8UgrAgAAAAAcEcEFgEgh7kaKHTD/nkBAAAAACCwCAA5LTouwaX1XR1FGgAAAACAnEBgEQBy2Ofrjjtc/kLV4g6Xk7EIAAAAAHBHBBYBIIedDY9xuHxU8yoOl3sQWQQAAAAAuCECiwDgJvzzejlcTlgRAAAAAOCOCCwCgJtILYBIwiIAAAAAwB0RWAQAN8fgLQAAAAAAd0RgEQDcRGqZiR4cqQEAAAAAbojbVQBwc77enrldBQAAAAAA7BBYBAA3YZFFzSoVtVseGJAvF2oDAAAAAEDaCCwCgBt5uWYpu2XWXKgHAAAAAADpIbAIAG7CYpHyeHFYBgAAAADcHriDBQA3ZyVlEQAAAADghggsAoCbsPz/v5SsNIYGAAAAALghAosA4CY8PSyyWOxDi2QsAgAAAADcEYFFAHATRfx8HGYsAgAAAADgjggsAoAbeOvRQIfZihKjQgMAAAAA3BOBRQDIQZG34h0ufyywkKSkkaFTstIWGgAAAADghggsAkAOmrX7nMPlIZG3JEkWB42hCSsCAAAAANwRgUUAyEHXouMcLv/96GVJjjMWAQAAAABwRwQWASAH/R0c7nD5zbiEVLehJTQAAAAAwB0RWASAHLTicIjD5V6eSYdjRwmLVhpDAwAAAADcEIFFAHADnv8fUXQ8eEvO1gUAAAAAAGcQWAQAN+DpkRRRtNDJIgAAAADgNkFgEQDcgGcaAUUyFgEAAAAA7ojAIgC4AY/kjEUHrxFXBAAAAAC4IwKLAOAGkjMWHfexSGgRAAAAAOB+CCwCgBsw+lh0kLNIWBEAAAAA4I4ILAKAG/DySD1jEQAAAAAAd0RgEQDcQHLGoiMTN5/KwZoAAAAAAOAcAosA4AbKFconSboZl2j32oGLEUpMpEE0AAAAAMC9EFgEADfw9qPlJEn3+Hk7fP1CxM2crA4AAAAAAOkisAgAbsDX21OSVMTPx+HriYwMDQAAAABwMwQWAcANJDeF9khl9BbiigAAAAAAd0NgEQDcgMf/D96SWmARAAAAAAB3Q2ARANxIaoNDk7AIAAAAAHA3BBYBwI1E3kpwuJym0AAAAAAAd0NgEQDcyM34VAKL5CwCAAAAANwMgUUAcCOp9bG49XRYDtcEAAAAAIC0EVgEADeSWh+L/X85krMVAQAAAAAgHQQWAcCNpJaxGHLjVg7XBAAAAACAtBFYBAA3klpgEQAAAAAAd0NgEQDciAdHZQAAAADAbYJbWABwI4Xyeed2FQAAAAAAcAqBRQBwI/ff45fbVQAAAAAAwCkEFgEAAAAAAAC4jMAiAAAAAAAAAJcRWAQAAAAAAADgMgKLAJBDrFZrblcBAAAAAIAsQ2ARAAAAAAAAgMsILAIAAAAAAABwGYFFAMghzraEfqiUf/ZWBAAAAACALEBgEQDcjIfFkttVAAAAAAAgXQQWAcDNeBBXBAAAAADcBggsAkAOcXZMaDIWAQAAAAC3AwKLAOBmLt24ldtVAAAAAAAgXQQWAcDNnA2Pye0qAAAAAACQLgKLAJBDrM4OCw0AAAAAwG2AwCIAAAAAAAAAl3nldgUAAP8vNla6fFkeiQlK9PDM7doAAAAAAJAmMhYBwB3s2CGVKyeVLas98z5S6RtXcrtGAAAAAACkicAiAOSQ1HpYtFgTpY4dpUuXJEkPhZ7SgF1Lc65iAAAAAABkAIFFAMhlTU/vlY4fNy1rfPZALtUGAAAAAADnEFgEgFzWdd9vdsuqhp2TT3xcLtQGAAAAAADnEFgEgBwSG59ot6xsRKieP7XH4fpVws5ld5UAAAAAAMgwAosAkEP+On/dbtk7B1fL02ofcJSkB0NPZ3ONAAAAAADIOAKLAJBDYuITzAusVr1x6M9U169x5Uw21wgAAAAAgIwjsAgAOcSaYljoElHXVCbyaqrr10iRsbj1VFg21AoAAAAAgIwhsAgAOcSaIrJYIupamus/eOW0ab7nT4eyukoAAAAAAGQYgUUAyCUl0wksloy6piLR/+uX8e9g+z4aAQAAAADILQQWASCHpGgJrZJR6TdtrpEiaxEAAAAAAHdBYBEAckjKPhbTy1iUGBkaAAAAAOC+CCwCQA5JmbGYXh+LEiNDAwAAAADcF4FFAMghrg7eIknVCSwCAAAAANwUgUUAyCF2fSxGpggs+vtLNWuaFpWOvJq9lQIAAAAAIIMILAJADknZx2KJ6BSBxZIlpSJFTIvuiblhvyEAAAAAAG6AwCIA5Aar1X7wlpIlpXvuMS3KmxAn3/hbOVgxAAAAAACcQ2ARAHKI1aYxdMFbUcoXH2teoUQJu4xFSSoSE5HdVQMAAAAAwGUEFgEgh9i2aC4RFW6/goOMRen/m0MDAAAAAOBmvHK7AgBwt7DtKbFkVJj9CiVLSj4+dovvIWMRAAAAAOCGCCwCQA6x2qQs2vWvKCU1hfawTySnKTQAAAAAwB0RWASAHGJuCu0gsFiypBQfb7f4nps0hQYAAAAAuB8CiwCQQ8xNoVMJLEZH2y2mj0UAAAAAgDsisAgAOcScseigj8USJaQI+2bPNIUGAAAAALgjAosAkEOsNjmLdqNC+/hIhQtL3t522xWmKTQAAAAAwA3ZjxIAAMgWthmLdqNClyghWSxSgQKSl/mZD02hAQAAAADuiMAiAOQCuz4WS5RI+t9ikYoUMb1EU2gAAAAAgDsisAgAOSQ5YdEnPk6Fb0aaXyxZ8n/T99xjeolRoQEAAAAA7ojAIgDkEOv/t4UuEZ3KiNDJUgYWaQoNAAAAAHBDBBYBIIckZyw6bNpcrNj/plM0hS4QFyOf+LjsqxgAAAAAABlAYBEAckjEzXhJUsFbUfYvBgT8bzpFxqIk3XOTfhYBAAAAAO6FwCIA5JDpO85Ikvxvxdi/WLDg/6YdBRZpDg0AAAAAcDMEFgEgh+y7kJR1WDDWQcaiv///plM0hZYYGRoAAAAA4H4ILAJADstQxiIjQwMAAAAA3AyBRQDIYelmLNIUGgAAAABwGyCwCAA5zP9WtP1C24xFmkIDAAAAAG4DBBYBIIcVjHUQWEwvY5Gm0AAAAAAAN0NgEQByWIH0MhYdBBYLk7EIAAAAAHAzBBYBIIfZZSx6ekq+vv+bDwhQosViWqUIfSwCAAAAANwMgUUAyGF2fSz6+0u2gURPT8UUKGha5Z6bZCwCAAAAANwLgUUAyGF2GYu2/Sv+v5gCAaZ5RoUGAAAAALgbAosAkMPsMhYLFrRbJ9o/wDTPqNAAAAAAAHdDYBEAcphdxqKDwOLNFE2h/WNjJKs1O6sFAAAAAIBLCCwCQA6yWBMd97GYQmw+P9O8pzVRvvG3srNqAAAAAAC4hMAiAOQgv7ib8lCKzEMHGYtxvn52ywrExmRXtQAAAAAAcBmBRQDIQQVTZitKDjMWE/zy2y3LT2ARAAAAAOBGCCwCQA7yT9m/ouQwYzGWjEUAAAAAgJsjsAgAOcjZjMU4X/uMxQJxBBYBAAAAAO7DK7crcKf5559/tHjxYu3Zs0eXLl1STEyMChYsqPvvv18NGjRQu3btVNBBdhKAu4OzGYtx+XztlpGxCAAAAABwJwQWs8jNmzc1YsQILV261O61K1eu6MqVK9q1a5emTZumESNGqEWLFrlQSwC5zdmMRZpCAwAAAADcHYHFLBAbG6uuXbtq+/btxjJPT09VrFhR/v7+Cg4O1vnz5yVJUVFR6tOnj27cuKH27dvnVpUB5BJ/R4FFRxmLfvaBxfyxN7OjSgAAAAAAZAiBxSwwffp0U1CxUaNGGjZsmEqWLGks2717twYMGKDg4GBJ0siRI1WnTh1VqFAhx+sLIPcUjI2yX+goYzGfg4xF+lgEAAAAALgRBm/JpNjYWM2cOdOYr1evnqZMmWIKKkrSI488ojlz5qhAgQKSpPj4eE2dOjVH6wog9/nfchAcdJSx6GjwFppCAwAAAADcCIHFTNq3b58iIyON+Z49e8rT09PhumXKlFGHDh2M+Q0bNshqtWZ7HQG4D4cZiw6bQhNYBAAAAAC4NwKLmXTp0iXTfLVq1dJcv2bNmsZ0VFSUrl27li31AuCeHPax6KApNKNCAwAAAADcHYHFTEpu2pwsKspBNpKN+Ph403yePHmyvE4A3Jd/rHOBxXgHo0LnJ7AIAAAAAHAjBBYz6YEHHjDNb968Oc31t27dakyXLFlSfg5GfgVw50qZsZiQJ6/k42O3nqPBW/IzeAsAAAAAwI0QWMyksmXL6qmnnjLmx48frytXrjhcd8+ePVq2bJkxb9vfIoC7Q8EUGYtx+Qs4XM/i6alI77ymZTSFBgAAAAC4EwKLWWDw4MEqUqSIJCk4OFgvv/yyli1bpitXrig+Pl7nzp3TtGnT9NZbbykuLk6SVLVqVb3++uu5WW0AuSBlxmJ8KoFFSbrhk880T2ARAAAAAOBOvHK7AneCcuXKaenSpRo5cqTWrl2rixcvatCgQQ7XtVgsatmypT755BP5+toPzpCTUvb3eDtKSEhIcx5wNykzFvMUDnD4W7QmJuqGTz6VjPrfAE8FYmPuiN9tVuM4AIDjAACOAwA4DuQOAotZpHDhwmrYsKH+/fdfnT59OtX16tevr3feecdu0JeclpiYqP379+dqHbLDoUOHcrsKQJpSZizGeHnqXwe/xeDgKPum0HExd+TvNqtxHADAcQAAxwEAHAdyBoHFLHD06FF9+OGHOnPmjLEsT548qlixonx9fRUSEmIEG7ds2aJWrVqpc+fO6tOnj7y8+BMAdwuvhHj5xd8yLUvInz/V9VM2hc4fezNb6gUAAAAAQEYQ1cqkc+fOqXPnzgoPD5ck5c2bV71799arr76qvHnzmtYbN26cVq1apYSEBM2cOVOXL1/WV199lUs1B5DTHPWRmJDKyPAWi4PAYtxNyWpNehEAAAAAgFxGYDGTRowYYQQV8+TJo1mzZql27dp265UtW1Zff/21AgMDNW3aNEnSL7/8okaNGqlFixY5WWVJkoeHh2rUqJHj+81qCQkJpvTm6tWry9PTMxdrBKSuYOzfdssK33uvAmrWtFu+PfqMbnibA4ue1kTVrFBBSiUYebfiOACA4wAAjgMAOA647uDBg0pMTMxUGQQWM+HcuXPatGmTMd+1a1eHQUVbvXv31vbt241+0r777rtcCSxKuiObYXt6et6R7wt3hjKWOLtlHgEB8nDwnfX09FRkioxFSfKKiZEKFsyW+t0pOA4A4DgAgOMAAI4DOcMjtytwO9uzZ49p/uWXX3Zqu1dffdWYPnLkiK5evZql9QLgnorE2zeFTi1IaJF9U2hJ0o0bWVspAAAAAAAyiMBiJly+fNmYLliwoIoVK+bUdpUrVzbNBwcHZ2m9ALinuGvX7Rf6+6e6fqS3g8BiZGQW1ggAAAAAgIwjsJgJPj4+xnRcnH0Tx9R4eJg/dgsDMQB3vPCYOPnFORjVOZVRoR0N3iKJjEUAAAAAgNsgsJgJJUqUMKajo6N16tQpp7Y7ceJEquUAuDMt3BfsOLDo65vqNgQWAQAAAADujMBiJjz66KOm7MOFCxc6td3SpUuN6QoVKqho0aJZXjcA7iXRKvnF3bJ/IZURni0Wi8PA4vXLYVldNQAAAAAAMoTAYiYULlxYTZs2NebnzJmj7du3p7nN3LlztXXrVmO+Xbt22VY/AO7DwyL5xrsQWJTjjMV9x85ncc0AAAAAAMgYAouZ1LdvX/n//+ALCQkJeueddzRlyhSFhZmzikJDQ/Xpp59q5MiRxrJq1aqpffv2OVpfALnDYrE4bgqdSmBRchxYPHMuNCurBQAAAABAhnnldgVud2XKlNHkyZPVtWtXRUdHKy4uThMnTtTUqVN13333qVChQrp27ZqOHz+uxMREY7ty5cpp2rRp8vLiTwDcDTwscimwmNrgLfluRmd11QAAAAAAyBAyFrPAo48+qsWLF6tatWrGsri4OAUFBWnnzp0KCgoygooWi0XPPfeclixZomLFiuVWlQHkMIssjvtYTGPwlkjvvHbL8sYQWAQAAAAAuAfS5bLIAw88oGXLlmnjxo1as2aN/v77b4WGhio6OloFChRQ6dKlVbduXb344ouqVKlSblcXQA7zsEj5XOpj0fHgLXlvRmV11QAAAAAAyBACi1nsySef1JNPPpnb1QDgZlztY5Gm0AAAAAAAd0dTaADIAY76WLzl6SWl0c9qlKOm0GQsAgAAAADcBIFFAMgBFovs+liM9sqT+vqSrBYP3fA2Zy3mvRmTHdUDAAAAAMBlBBYBIAd4OGgK7SgjMaWUzaHJWAQAAAAAuAsCiwCQAyySfFNkLKYVWLRYLJKkSB/zOvkYFRoAAAAA4CYILAJADkjKWEwZWEy7KbQkB02hCSwCAAAAANwDgUUAyAEWi+QXb24KnVYfiyX9k15L2RSaUaEBAAAAAO6CwCIA5ICYuESX+lh8svw9khz0sXgrWrJas76CAAAAAAC4iMAiAOSAr/88pjwJ8aZlaTWFzuPlKck+sOhhtUrRZC0CAAAAAHIfgUUAyAGng6/aLXNmVGiH60RGZkWVAAAAAADIFAKLAJADUjaDlqRoJwKL0Y6yGslYBAAAAAC4AQKLAJADHAcWU28KncxhxiKBRQAAAACAGyCwCAA5wC/ult2y0iULp7udw5GjCSwCAAAAANwAgUUAyAG+8faBxfyFC6a7HU2hAQAAAADuisAiAOQAR02hfQv5p7sdGYsAAAAAAHdFYBEAcoCjwGJC3nzpbkfGIgAAAADAXRFYBIAc4KiPxfi8vuluR8YiAAAAAMBdEVgEgBzgKGMxPp8TgUVHGYtRUVlRJQAAAAAAMoXAIgDkAEeDtyT4krEIAAAAALh9EVgEgBzgMGORPhYBAAAAALcxAosAkAMc9bGYkM+JwCIZiwAAAADwf+zdd3xb5dn/8a+G7TheGbazF9khi0AGKyRhlL1ngbLKLIVSWlah9AHKaKFACy0QRigQdsMMM5BAyCAkxNl7ONN2Eu9t6Tx/OFZ8pGPHlnWO5OTzfr34PdYt6ZyLXxNhf33d94UYRbAIAA6wnAqdmLTf95XFxVssEiwCAAAAAKKPYBEAHNDWomMxx/A2+p5rxvZUaVybkPX8XYURqwsAAAAAgHARLAKAA6yCxenZJY2+56rRPSy3Qufk5kesLgAAAAAAwkWwCAAOsNoKvdvvafQ9R/XuoHJv6FZodzlboQEAAAAA0UewCAAOCA4Wy73xcnsb3wotSX63RxWeONOap7w8orUBAAAAABAOgkUAcEDwVOhSb4K8nqZ9BJfFmbdDeyroWAQAAAAARB/BIgA4oG1NULAY10Zet6tJ7w0+ZzHFVxWxugAAAAAACBfBIgA4IHgrdLOCxaCOxUSLQTAAAAAAADiNYBEAHBC8FbosLiHsjkU3ZywCAAAAAGIAwSIAOCC0Y5FgEQAAAADQuhEsAoADrM5YjAt7eAvBIgAAAAAg+ggWAcBuVVWK8/tMS6VxCTpxQEaT3h7csegpL5MMI2LlAQAAAAAQDoJFALBbaWnIUpk3QTce1btpbw/qWJQksR0aAAAAABBlBIsAYDerYDGujTxNPGOx3CpYLCtraVUAAAAAALQIwSIA2M0iWMzo1L7Jbw/eCl27SLAIAAAAAIgugkUAsJtFCFiZkNj0t9OxCAAAAACIQQSLAGA3i47Fqvg2TX47HYsAAAAAgFhEsAgAdrMIFkvjmhEs0rEIAAAAAIhBBIsAYLP8vPyQtYX5NU1+Px2LAAAAAIBYRLAIADabvWxLyFqpVRdiA+hYBAAAAADEIoJFALBZRVFJyJplWNgAOhYBAAAAALGIYBEAbDZv5baQNcuwsAGWIaTFuY0AAAAAADiJYBEAbNampjJkrdwb3+T307EIAAAAAIhFBIsAYLPEmqqQtfJmdCxansdIsAgAAAAAiDKCRQCwWWK1VbDYjI5FgkUAAAAAQAwiWAQAm1l3LLIVGgAAAADQuhEsAoDNEi3PWGzh8BaCRQAAAABAlBEsAoDN2lh1LMbRsQgAAAAAaN0IFgHAZi3eCk3HIgAAAAAgBhEsAoDNgoPFSo9XhqvpH7/Vbq9qgl9fWhqJ0gAAAAAACBvBIgDYLPiMxeacryhJcrlCuxbpWAQAAAAARBnBIgDYLLhjsTnboOsEn7PoLyVYBAAAAABEF8EiANgsIsFiUMdiWWFxi2oCAAAAAKClCBYBwGZ2dCwanLEIAAAAAIgygkUAsFlosNjMMxYllca1MT32VlS0qCYAAAAAAFqKYBEAbJbkC+1YPLZPh2ZdI3grtKeyvMV1AQAAAADQEgSLAGCzthbB4qWHd2/WNYK3QnsryiXDaHFtAAAAAACEi2ARAOzk9yuuOjRYHJSR3KzLlMWZz2V0+3xSVVUDrwYAAAAAwH4EiwBgJ4uzEMM5YzG4Y7F2sSycigAAAAAAiAiCRQCwU3noWYjl3nj5m7mNuTyOYBEAAAAAEFsIFgHAThbBYoU3Xm3jPc26DB2LAAAAAIBYQ7AIAHZqoGMxPSne4sUNC54KLUkqLQ23KgAAAAAAWoxgEQDsZBksJsglV/Mu47UIIi3ObwQAAAAAwCkEiwBgpwY6Fl3NyxWtB75YXBsAAAAAAKcQLAKAnRoKFpt7GauORYJFAAAAAEAUESwCgJ0i1rFIsAgAAAAAiC0EiwBgp4bOWGxmsljhIVgEAAAAAMQWgkUAsFMDHYvNvgzDWwAAAAAAMYZgEQDsxBmLAAAAAIADFMEiANiJqdAAAAAAgAMUwSIA2KmhMxab2bNYHkfHIgAAAAAgthAsAoCNduTkh6yVxzEVGgAAAADQ+hEsAoCNVm7OC1kL54xFpkIDAAAAAGINwSIA2CiuqjJkrfaMxWZuhWYqNAAAAAAgxhAsAoCN4qtCwz/LQSz7wVZoAAAAAECs8Tp1o/z8fK1fv15bt25VQUGBysrK5Ha7lZSUpLS0NPXu3VuHHHKIkpOTnSoJAGwXV9lAx2Izr8NUaAAAAABArLEtWKypqdGcOXP09ddfa/78+crOzt7ve1wul/r3768jjzxSJ5xwgo444gi7ygMAR8RVN7QVunnXqfJ45ZdLbhn1LkSwCAAAAACInogHi7t27dKbb76pt99+W7t37w6sG0btD8N154rVPa5bMwxDhmFozZo1WrNmjV599VV1795dF154oS655BI6GQG0SnGV5q3QPpdb1W5vs4NFuVwq98YrqaZeUEmwCAAAAACIoogFi/n5+XrhhRf05ptvqnLv1r/64WEdwzCUkJCglJQUud1ulZeXq7S0NPDa+u/ZunWr/vGPf+i5557TpZdeqmuvvVYpKSmRKhkAbBc8vKXcGy+5XHI1ezO0VBEcLDK8BQAAAAAQRREJFt988009+eSTKi4uNgWDHTt21Lhx4zR48GANGDBAAwcOVIcOHRQXF2d6f01NjXbu3Kns7GwtW7ZMWVlZmj9/vkpKSiRJpaWlmjx5st5++23dfPPNuuyyy5o9URUAoiEuaHhL3RCWcD7CQga40LEIAAAAAIiiFgWLW7Zs0R//+EdlZWUFAsX09HSdc845OumkkzRs2LCmFeH1qnv37urevbuOOuooSbVh48KFC/XJJ5/o888/V3FxsQoLC/Xwww/rk08+0cMPP6y+ffu2pHwAsF1DwWJTZSbHK7ekyvq9BIsAAAAAgChyh/vGDz74QGeffXYgVDz00EP15JNPaubMmbr99tubHCo2xOv1auzYsXrwwQc1e/Zs/eUvf1Hfvn1lGIaysrJ0/vnn6/3332/RPQDAbt7K4K3QtdOdm9qwePtx+36BQrAIAAAAAIglYQeLd911l0pLS9WjRw/985//1Pvvv69TTjlFXm/kB00nJCTo4osv1qeffqrHH39cvXr1Unl5ue67776I3wsAIsnyjEWpycc5nDW0c733JpifJFgEAAAAAERR2MFiUlKS7rjjDn366ac66aSTIllTo04//XRNnz5dd911l9q2bevYfQEgHMFToQPBYhPf3z89KeS9+xYIFgEAAAAA0RN2e+Hnn3+ujIyMSNbSZB6PR1deeaVOO+20qNwfAJrK22DHYtPeX7+zscJrHnzFVGgAAAAAQDSF3bEYrVAx1moAgAYZRsjwlrK4ujMWmz8WOmQrdHW15POFXR4AAAAAAC0RdrAIANiP6mq5/X7TUnOnQu/3vWyHBgAAAABEiS3B4sknn6wXXnhBOTk5dlweAFoHi9AvMBW6+Q2LqiBYBAAAAADEEFuCxU2bNunJJ5/UpEmTdO211+rzzz9XdXW1HbcCgNhlEfpVNHN4i+lyBIsAAAAAgBgS9vCWpvD5fJo9e7Zmz56t1NRUnXHGGTr77LM1dOhQO28LALHBsmOxecNbzO9NCF1kgAsAAAAAIEps6Vi8++67NWTIEEmSYRgyDEOFhYV64403dMEFF+iMM87QlClTtGfPHjtuDwCxodFgsenJ4qhuaZIspkI3cA8AAAAAAJxgS7B4xRVX6P3339enn36qa6+9Vl26dJG0L2Rct26dHnvsMY0fP16/+c1vNGPGDPmYbArgQNPIGYuJcZ4mX+aK0T32vpet0AAAAACA2GHrVOi+ffvq9ttv17fffqtXX31V5557rpKSkgIBY01Njb755hvdfPPNGj9+vB577DGtWbPGzpIAwDmNdCw2R7tE7973WmyFJlgEAAAAAESJrcFifWPHjtXDDz+sOXPm6IknntD48ePl8XgCIeOePXs0ZcoUnXXWWTrvvPM0depUFRUVOVUeAERehIJF195RL3QsAgAAAABiia3DW6wkJCTotNNO02mnnabdu3dr+vTp+vrrr7Vw4ULV1NRIkpYvX64VK1boscce0/HHH6/zzz9fRx11lNOlAkDLRCpYdDXyXoa3AAAAAACixLGORSsdO3bU5ZdfrldffVVz587V448/rpEjR0qqPY+xsrJSn332ma655hqddNJJmjJlikpLS6NZMgA0XQNnLF4wvEt4l2MrNAAAAAAghkQ1WKyzatUqvfrqq3r55ZeVlZUll8sV+Kduq/SWLVv02GOPadKkSZo2bVq0SwaA/WugY/GQ9KRmXaZufnSFh6nQAAAAAIDY4fhW6Drr1q3Txx9/rE8++UTbt283PWcYhiRp8ODBOvHEE/Xzzz9rzpw58vl8Kiws1D333KMlS5bo/vvvj0bpANA0DQSLUxdt1SOnDm7yZYx6723KPQAAAAAAcIKjwWJOTo4+/fRTffTRR1q9erWkfSFinQ4dOuj000/Xueeeq0GDBgXW8/Ly9Oabb+rFF19UVVWV3nrrLR122GE688wznfxXAICma2ArdF5JVbMu88PGPYH3NuUeAAAAAAA4wfZgsaSkRF988YU+/vhjLViwQH6/X5I5UPR6vRo/frzOPfdcTZgwQV5vaFkZGRm65ZZbNHToUN10002SpKlTpxIsAohdDXQsVtT4m3WZvh1rt06Xx9GxCAAAAACIHbYEizU1NZo1a5Y++ugjzZw5U1VVtd05wd2JAwcO1DnnnKMzzzxTHTp0aNK1J02apF69emnz5s1at25dxGsHgIhpIFj8/XGHNOsyo3u0C7w3BFOhAQAAAABRYkuwePTRR6uoqEhSbZhYN4RFktq1axfY6jxkyJCwrt+lSxdt3rw5JKgEgJhiEfqVe+N1w5G9m3UZr8cVeG/oBelYBAAAAABEhy3BYmFhoSlM9Hg8OuaYY3Tuuedq4sSJiouzmGzaDLt375Yk9e/fv8W1AoBtLILFCm+8+oU9FZpgEQAAAAAQO2w7Y9EwDPXv31/nnnuuzjzzTHXs2DFi177pppvUrVs3HXJI87YTAoCjLILFzI6pzb6M20XHIgAAAAAg9tgSLF566aU655xzNHToUDsur1NOOcWW6wJARFkEi1VxFpOd92NvrshUaAAAAABATLElWLzvvvvsuCwAtC6WwaJF1+F+1HUsVnm88sslt+qdL8vwFgAAAABAlLijXQAAHLCCQr8al1t+j6fZl3HXHbLocoVuh6ZjEQAAAAAQJbadsRjMMAzl5+erqqpKfr+/We/t2rWrTVUBgI2CgsUKb7xcdfuam6H+e8q98Uqqqdz3JMEiAAAAACBKbA0WS0tLNXnyZH3zzTfasGGDfD5fs6/hcrm0YsUKG6oDAJsFB4ueODU/VqzXsajacNKEYBEAAAAAECW2BYvr16/Xtddeqx07dkiq7VgEgIOKZcdi8y/jkrlj0YRgEQAAAAAQJbacsVhZWalbb71V27dvl0SoCOAgFRIshtexWF9IsMjwFgAAAABAlNjSsTh9+nStW7dOLpdLhmFoxIgRuuiiizR48GAlJyfL7WZmDICDQMhW6PDOWKyv3JsQtEDHIgAAAAAgOmwJFj/55JPA12effbYeeeSRFv8wDQCtjtVW6BZekq3QAAAAAIBYYUvr4MaNGyVJcXFxuueeewgVARycLIa3rMwtafZl6n+EEiwCAAAAAGKFLcHirl275HK5NGjQIKWmptpxCwCIeX6LjsWWCrlGdbXk87X4ugAAAAAANJctwWJSUpIkKSEhYT+vBIADl8tieEtLhXQsSnQtAgAAAACiwpZgsVevXjIMQ1u2bLHj8gAQ+2pq5ArqJKzwhNexODAjed81rIJFJkMDAAAAAKLAlmBx0qRJkqScnBz99NNPdtwCAGKbRdgXbsdivHffRzUdiwAAAACAWGFLsHjRRRcpLS1NkvToo4+qqqrKjtsAQOyyCPsqw+xYNF3Wa3HEBMEiAAAAACAKbAkW09LS9Je//EWStHz5cl133XXaunWrHbcCgNgUwY7F+uhYBAAAAADECm+4b3zmmWf2+5p+/fpp7dq1mj9/vn7xi19o0KBBGjx4sNLS0pSYmNjke918883hlgkA0WEVLEagY9EynCRYBAAAAABEQYuCRZfLtd/X1b3G5/NpxYoVWrFiRbPvRbAIoNWx7Fi0aSs0w1sAAAAAAFEQdrAoSYZh2Pp6SU0KLwEg5rAVGgAAAABwgAs7WBw9enQk6wCAA4tNW6EJFgEAAAAAsSLsYPG1116LZB0AcGBpoGPxguFdwrrcYd1S9fO2Iutwkq3QAAAAAIAosGUqNAAc9CzCvnJvvDokhde1eP2RvQPXCL0wHYsAAAAAAOcRLAKAHSI8vGVsz3YNX4OORQAAAABAFMR8sFhVVRXtEgCg+SJ8xqJ77yAry45FgkUAAAAAQBS0aCp0UxmGofz8fFVUVMjn81m+xu/3q6amRtXV1SorK1NeXp5++uknTZ8+XT/88IMTZQJA5ER4KnRdsGjZschWaAAAAABAFNgaLC5ZskT//ve/NXfuXDoPARxcIt6xWHcNi3CSjkUAAAAAQBTYFix+9dVX+t3vfie/3y/DMMK+jmtvl05r4fP59OWXX+qrr77SsmXLlJeXJ5/Pp/T0dA0dOlRnnHGGjj/+eLndMb8LHUBL2NSxyPAWAAAAAECssCVYLCkp0b333iufz2cZDNatBQeO9V+bkJCgAQMGaOLEiXaUaIslS5bovvvu06pVq0Ke27Ztm7Zt26YvvvhCI0eO1D/+8Q9169YtClUCcESEh7cEOhY5YxEAAAAAECNsCRY/+OADFRYWyuVyyTAMnXjiifrFL36h9PR0ffjhh5o2bZq8Xq+ee+45eTweFRQUaNWqVZo2bZpyc3MlScnJyXrmmWeUmZlpR4kRN3fuXN10000qKysLrGVkZKhnz56qrq7WypUrVV1dLUlavHixLr/8cr311lut5t8PQDNFeCu0i+EtAAAAAIAYY8t+3Dlz5gS+vuSSS/Svf/1Lp59+usaNG6ezzjpLUu2WYcMwdOSRR+qUU07Rbbfdpk8//VSTJk2SJO3evVt//vOf7Sgv4jZv3mwKFbt27arnnntO33//vaZOnap3331Xc+bM0a9+9avAe7Zt26YHH3wwWiUDsFvEt0LXXYOt0AAAAACA2GBLsLh69erai7vduummm0zPDRs2LHC+4I8//mh6LiUlRU899ZQGDBggwzA0a9YsZWVl2VFiRD3wwAOBULF3796aOnWqJk6caNranZqaqj/96U+67LLLAmtfffWVNm3a5HS5AJwQ8eEte6dCM7wFAAAAABAjbAkWi4qK5HK51KtXL2VkZJieS0pKUvfu3SVJS5cuDXlvfHy8brnllsDj6dOn21FixCxdulSzZ8+WVBuk/v3vf1eXLl0afP2tt96q+PjacMEwDM2cOdOJMgE4rYGOxXW7SsO6XF3Hot/tUZU76BQLOhYBAAAAAFFgyxmL5Xt/yG3o/MBDDjlE2dnZWrNmjeXzEyZMUHJyskpLS7V8+XI7SoyY//3vf4Gvzz77bA0fPrzR16empur222/X7t27lZaWpmHDhtldIoBoaGB4y4y1u8K6XFL8vo/rCm+c4qtqGr0XAAAAAAB2syVYTElJUUFBQcjU5zo9e/aUJOXn56uwsFBpaWnmorxe9ejRQytXroz5rcL1Ow4vvPDCJr3nyiuvtKcYALHDIuyrtNrG3EQdk/Ztoy73xiu1ql6XIsEiAAAAACAKbNkK3b59exmGEZjwHKxHjx6Br9etW2f5muTkZElScXFx5AuMkJ07d2r79u2SpMTExP12KwI4iASFfdVuj3xuT2QuHXxWI1uhAQAAAABRYEvH4qGHHqoNGzZo8+bNysnJUadOnUzP13UsSrVnFB5++OEh19i5c6ckNdj1GAvqhtRItdu7PZ7a0GDr1q364IMP9O2332rbtm0qLy9XZmamxowZo/PPP1+HHXZYtEoG4JSgYLElg1uClQdPhqZjEQAAAAAQBbZ0LI4bN05SbSj46KOPhjw/aNCgwNdffPFFyPOrV6/W1q1b5XK5QrZJx5Ls7OzA15mZmfL7/Zo8ebJOPfVU/etf/9KyZcuUn5+viooKZWdn67333tPFF1+su+66S5WVlVGsHIDtgoNFb/jboEMuHRws0rEIAAAAAIgCWzoWTznlFP3tb39TUVGRPv/8c+Xk5Oj666/X0UcfLa/Xq06dOql///5au3atFi9erOeff17XX3+9JCk3N1f33HOPDMOQy+XSkCFD7CgxInbt2jeEoW3btnrwwQc1derUwFq/fv3UsWNH7dq1S+vXrw+sT5s2TdnZ2ZoyZUpgQnQ01NTU7P9FMc7n8zX6GIgWT3m5XPUe1+9YbOnfveCQ0qiokO8A+PscLj4HAPA5AIDPAQB8DkSHLcFi27ZtdeONN+rRRx+Vy+XSokWLdMMNN+i1117TEUccIal20Mlf//pXSdJTTz2lN998Ux06dNC6detUXV0duNYvfvELO0qMiKKiosDX33//feDxCSecoLvuust0luSWLVv04IMPatasWZKkhQsX6qGHHtIDDzzgbNF7+f1+ZWVlReXedlq2bFm0SwAkSUMKCpRY73FdGDiuc0KL/+6VexNMj/2lpQfk3+dw8TkAgM8BAHwOAOBzwBm2bIWWaicfX3bZZaYzEuufrXjxxRdr8ODBged37typlStXqqqqKvCagQMH6swzz7SrxBarX2tdqHjRRRfpmWeeMYWKUu3Amueee04nn3xyYO2dd97RmjVrnCkWgKPc9T4fpH3bl0/rk2j18mapCJou7eJoBQAAAABAFNgWLErSvffeq8mTJ2v06NFKTExUZmZm4Lm4uDi98MILGjFiRCBcrP9/+/fvr+eee05ery1NlRHhcrlMj3v06KF77703ZL2O2+3WQw89FJh4bRiGXn/9ddvrBOC84LCvLgzsktTyydDBw1vcNTUSbf4AAAAAAIfZntode+yxOvbYY1VSUhLyXEZGhqZOnaqvvvpKs2bNUm5urtq1a6djjz1Wp59+ekyHilLtlu/6Lr744v2emZiSkqJTTz1V77zzjiRpzpw5ttXXGLfbrWHDhkXl3pHk8/lM7c1Dhw4NTOcGoskTFPTVdSz2799fI3q1D++ib243Xau+EQMHSklJ4V23leNzAACfAwD4HADA50DzLV26VH6/v0XXcCy5q+vSC+bxeHTyySebtgi3FklBP8SPGjWqSe8bOXJkIFjcsmWLqqqqojLEJdaD23B4PJ4D8t8LrVDwVOi9HYtxXm+L/4xWekInTHtraiT+7EvicwAAnwMA+BwAwOeAU2zdCn2ga9/e3HXUoUOHJr2vY8eOpscFBQWRKglALDCM0GBxb5eh9UEJzRM8vKV2sTwCVwYAAAAAoOkcj25zcnKUk5OjwsJCpaamasSIEZKk8vJyxcfHt6o21f79+5se158S3ZiamhrTYxJ04ABTXV0bLtZTNxXa3cAZrM1Rdy3zYkXoGgAAAAAANnIk0crOztaUKVM0c+ZM7dixI7B+zDHHaPLkyZKkGTNm6KGHHtKFF16oa6+9VikpKU6U1iIDBw40Pd60aZOGDx++3/ft3Lkz8HWbNm3Url27SJcGIJosQr4Kz96OxQi0LFp2LBIsAgAAAAAcZutWaMMw9PTTT+uUU07Rm2++qe3bt8swjMA/9W3fvl0FBQWaPHmyzjzzTC1dutTO0iKiQ4cOpnDx66+/btL7FixYEPh6yJAhcrvZkQ4cUKyCxb1bod0RCBYtOxbZCg0AAAAAcJitidbvfvc7Pffcc/L5fCFBoiuobWfr1q2Br3fs2KFrrrlG69evt7O8iDjrrLMCX3/zzTdat25do6/fsWOHZsyYEXh80kkn2VYbgChpJFgM/uwLR7nFVGg6FgEAAAAATrMtWHzmmWf0xRdfBB4PGzZM9913n9566y3L159xxhk6/PDDZRiGXC6XioqKdNddd9lVXsScc845SktLkyRVV1frrrvuUnFxseVrq6qqdOedd6q6ulpS7aTsc88917FaATjEcit03RmLEbi8xyJYpGMRAAAAAOAwW4LFnTt3Bs5OlKTbb79d7777ri699FKNHDnS8j2jR4/WG2+8oXvvvTewtmzZMs2aNcuOEiOmQ4cOuvvuuwOPly5dql/+8peaN2+e6XUbNmzQ1Vdfrfnz5wfWfve73wVCSQAHkMY6FiMwF5rhLQAAAACAWGDL8Jb33ntPlZWVcrlcuuCCC3Tttdc2+b2XXXaZtm7dqilTpkiSpk+fruOOO86OMiPmnHPO0aZNm/Tcc89JktasWaMrrrhCnTt3Vo8ePVRYWKg1a9aY3nPWWWfp8ssvj0a5AOxmGSzWhoG9OyS2+PKWw1voWAQAAAAAOMyWjsXZs2dLqj1L7JZbbmn2+6+77jp5vbWZZ2sY4iJJt912mx5++GG1b98+sLZz504tWLDAFCp6vV7ddNNNevTRR6NRJgAnNDIVOrWNRbdhcy9PxyIAAAAAIAbY0rG4detWuVwu9evXT+np6c1+f4cOHdSzZ09t2LBBOTk5NlRoj/POO08nnHCCPvroI82YMUMbNmzQnj17FBcXp969e+vII4/UJZdcoh49ekS7VAB2amArdM92LetWPOvQTvpweY51xyLBIgAAAADAYbYEi4WFhZJqA8JwZWRkaMOGDaqqqopUWY5IS0vT5ZdfzjZn4GDWwPCW7IKWbVdOivcGrhWCrdAAAAAAAIfZshU6JSVF0r6AMRy7d++WJIabAGh9Ghne0hJ1E6Utr0XHIgAAAADAYbYEi126dJFhGFq7dm1Y4eKOHTu0fv16uVwude3a1YYKAcBGjQxvaQnP3mSx3CpYpGMRAAAAAOAwW4LFo48+WpLk8/n08ssvN/v9//znP2UYhiRp7NixEa0NAGzXyPCWlnDJ1fC16FgEAAAAADjMlmDxzDPPlNtde+kXX3xRX3zxRZPf+/zzz2vatGmBx6eddlrE6wMAW9nUseja+4ldHkewCAAAAACIPluCxX79+umcc86RYRjy+Xy67bbbdNddd2n+/PnKy8sLeX1ZWZlmzpypq666Sk899ZQkyeVy6aSTTtKgQYPsKBEA7GNTx6LbVdexyPAWAAAAAED02TIVWpLuu+8+rVq1SsuXL5dhGPrwww/14Ycfml6zYMECjRs3TsXFxfL7/ZIU2ALdo0cPPfDAA3aVBwD2sWl4y6mDMvXS/GyVexOadE8AAAAAAOxkS8eiJLVp00YvvfSSjj32WBmGYfrHtbfrprKyUgUFBfL5fIFAUZKGDBmiV155hYnQAFonm7ZCD+uS2vC16FgEAAAAADjMtmBRktq1a6fJkyfrscce08CBAwPr9UPG+jIzM3XnnXfqrbfeUrdu3ewsDQDsY9tW6Nr/W+32yr93kEtj9wQAAAAAwE62bYWu76yzztJZZ52l7OxsLVq0SJs3b1ZRUZGqq6uVlpamTp066bDDDtPgwYMDQ18AoNWyqWMxwOVSuTdeSTWV+9boWAQAAAAAOMyRYLFOz5491bNnTydvCQDOswj5ItGx6KrXpVgRHCzSsQgAAAAAcBjtgQAQaTYNb3HV2/1cHnw9gkUAAAAAgMMc7VhsjilTpmj16tVyuVx6+OGHo10OADSdRchX6Wn5x239UxVDtlazFRoAAAAA4LCY7VicPXu2pk2bpmnTpkW7FABonqBgscrtld/tiewtgrdW07EIAAAAAHBYzAaLANBqBYV8kRrc0uhWaDoWAQAAAAAOI1gEgEgLDhYjMLhFklwu8/CWxu4JAAAAAIDdCBYBINLs6lis9zXDWwAAAAAA0UawCACRFhTylXsTInLZ+luhQ7ogy8slw4jIfQAAAAAAaAqCRQCINJs6FusL6ViUpKqqiN8HAAAAAICGECwCQKTZdcai6p+xaBFWMsAFAAAAAOAggkUAiDQHpkJXWnUscs4iAAAAAMBBBIsAEGkNdCz2bJfYoss2OrxFomMRAAAAAOAogkUAiCTDaLBjcXCn5BZd2lWvZdFyezUdiwAAAAAABxEsAkAkWQxQqQsBIzm02bJjkWARAAAAAOAggkUAiCSLcK+uY9FQy5LF+luhK9gKDQAAAACIMm+4b/zggw8iWEaonJwcW68PALawCBbrBq20tGOx/vAWy4EwdCwCAAAAABwUdrB41113mc77AgDIumOxbit0Cy9d/yOX4S0AAAAAgGhjKzQARFJjW6FbmCx2SNwXJjK8BQAAAAAQbWF3LEqSEclJBABwIGisY7GFn5lu976WRYa3AAAAAACiLexgccaMGZGsAwAODI10LHZvl9jiy2ckxSuvtIrhLQAAAACAqAs7WOzWrVsk6wCAA4NlsFgbAl48smuLL1/X80jHIgAAAAAg2jhjEQAiyXIrdG3HYr/0pBZfvltam73XpGMRAAAAABBdBIsAEEmNdCxGwg1H9tp7zbgm3RsAAAAAALuEHSy+9tpr8vv9kaylWQzD0Ouvvx61+wOApUY6FiPh5IGZkqRyb0KT7g0AAAAAgF3CDhb/+te/6pxzztH8+fMjWU+TLFiwQOedd57++te/On5vAGiUzR2L8V733mtahJVshQYAAAAAOCjsYDE9PV2rV6/WlVdeqRtvvFFr166NZF2WFi9erGuuuUa/+tWvtGLFCnXs2NH2ewJAs1iEe5EMFl11t2F4CwAAAAAgysIOFj/66CONHz9ehmFo5syZOuuss3TDDTfo22+/lWEY+79AE1VWVuqTTz7RxRdfrEsuuURz5syRYRgaPXq0pk2bFrH7AEBE2LwVet81Gd4CAAAAAIgub7hv7NChg1544QW99dZb+sc//qGioiLNmjVLs2bNUmZmpo4//ngdd9xxGjdunBISLM4Ca0RhYaF++OEHzZw5UzNmzFBZWZmk2nMVExMTddttt+nyyy+Xy+Xaz5UAwGE2b4Wu+9yzvCYdiwAAAAAAB4UdLNa5+OKLdeKJJ+qxxx7TJ598Ir/fr9zcXL355pt688035fF41KtXLw0YMED9+/dXx44dlZKSoqSkJHk8HlVUVKigoEDbt2/X5s2btXz5cmVnZwe6Huv+r8vl0plnnqnbbrtNXbp0aWnZAGCPRjoW3RH4ZUjdFThjEQAAAAAQbS0OFiWpY8eO+tvf/qZrr71WTz/9tL755pvAxOiamhpt2LBBGzZs0Oeff96k69XfSu3xeHTSSSfp+uuv16BBgyJRLgDYp5GOxS6pzevetlKXTRoutyo9XiX4ahq9NwAAAAAAdolIsFinf//+euaZZ7RlyxZNnTpVn376qXJzc01BYd02vvqdiPUf1+nWrZvOPPNMnXfeeerevXskywQA+1gGi7XdhR53BDoW612i3JtAsAgAAAAAiJqIBot1evTooTvvvFN33nmnlixZorlz5yorK0vr16/X9u3bVV1dHXitYRiKi4tTz5491bdvX40aNUrjxo2jOxFA62S5Fbq2YzEyW6H3XSNkKAxboQEAAAAADrIlWKxv+PDhGj58eOCxYRgqKSlRWVmZXC6XkpKSlJSUZHcZAOAMi2CxfO9WaE+EB06FDHChYxEAAAAA4CDbg8VgLpdLKSkpSklJcfrWAGC/Rs5YjESuaN4KHRQs0rEIAAAAAHCQO9oFAMABxSJYrNy7ZdkVwanQksVWaDoWAQAAAAAOIlgEgEgKCvcqPHGRaVXcq344We4NmjJNsAgAAAAAcBDBIgBEUnCwGLxduYVMHYtehrcAAAAAAKKHYBEAIsmqY9EmdCwCAAAAAKKJYBEAIsnujsV6LYshHYs1NbX/AAAAAADgAIJFAIgkmzsWXfU2Q1d4LEJLuhYBAAAAAA4hWASASHK0Y9Hi2pyzCAAAAABwCMEiAERSSLAY2Y7FpHhP49emYxEAAAAA4BCCRQCIpJCt0JHuWNzXshgyvMXi/gAAAAAA2IVgEQAiyeaOxf1em63QAAAAAACH2BIsfvbZZ5oyZYp27dplx+UBIDYZhlRZaVqKdMfifq9NxyIAAAAAwCG2BIvvv/++HnvsMU2YMEEvvPCCHbcAgNgTFCpKkR/eUl85w1sAAAAAAFFkS7C4Zs0aGYYhn8+nUaNG2XELAIg9Ft2C9m6FpmMRAAAAABA9tgSLBQUFga+HDBlixy0AIPZYhHqVNm6FtuxYJFgEAAAAADjElmAxMzMz8HX9kBEADmhOdyx6GN4CAAAAAIgeW4LFM844I/D1lClT7LgFAMQei1DPzuEt5d6E0EU6FgEAAAAADrElWLzxxht19NFHyzAMvfbaa3r44Ye1Z88eO24FALHD8TMW6VgEAAAAAESP146LZmdn649//KOSkpL05Zdf6rXXXtPrr7+uvn37atCgQerQoYOSk5PlcrmadL2bb77ZjjIBILKsgkUbOxYZ3gIAAAAAiCZbgsXTTz89EBq6XC4ZhiHDMLR27VqtW7eu2dcjWATQKjTSsXjDkb0ifjvL4S10LAIAAAAAHGJLsChJhmE0a70hTe1qBICoswwWa8O/84Z3idht2ifGKb+82robko5FAAAAAIBDbAkWR48ebcdlASC2NbIVOs4duSNtj+vbUR8s22ndsUiwCAAAAABwiC3B4muvvWbHZQEgtjWyFTqCuaL8ezu/Lc9YZCs0AAAAAMAhtkyFBoCDkkWwWNdVmJIQud/j1J0oYTkVmo5FAAAAAIBDCBYBIFIaOWNxeJfUiN2mrmOR4S0AAAAAgGiybXhLQ3JycpSTk6PCwkKlpqZqxIgRkqTy8nLFx8fL4/E4XRIAREYjZyxGchBVoGOR4S0AAAAAgChyJFjMzs7WlClTNHPmTO3YsSOwfswxx2jy5MmSpBkzZuihhx7ShRdeqGuvvVYpKSlOlAYAkdPAGYted2Sn29d1LNZ4vKpxueU1/I3WAAAAAACAHWzdCm0Yhp5++mmdcsopevPNN7V9+3YZhhH4p77t27eroKBAkydP1plnnqmlS5faWRoARF4DHYsRbFaUJNX/9AwZ4MJWaAAAAACAQ2wNFn/3u9/pueeek8/nCwkSg7cFbt26NfD1jh07dM0112j9+vV2lgcAkdVAx6JLkU0Wa/z7Pk9DzlmkYxEAAAAA4BDbgsVnnnlGX3zxReDxsGHDdN999+mtt96yfP0ZZ5yhww8/XIZhyOVyqaioSHfddZdd5QFA5DUwvCXSHYvVvn1bn0POWaRjEQAAAADgEFuCxZ07dwbOTpSk22+/Xe+++64uvfRSjRw50vI9o0eP1htvvKF77703sLZs2TLNmjXLjhIBIPIst0LHRbhfUar27etYrPDG7bcGAAAAAADsYEuw+N5776myslIul0sXXHCBrr322ia/97LLLtMVV1wReDx9+nQ7SgSAyGugY7Gixm/x4vDV71gM2QpNxyIAAAAAwCG2BIuzZ8+WVHuO4i233NLs91933XXyemsHVjPEBUCr0cDwlkirf8ZiyPAWOhYBAAAAAA6xJVjcunWrXC6X+vXrp/T09Ga/v0OHDurZs6cMw1BOTo4NFQKADSxCvSqP19ZbMrwFAAAAABAttgSLhYWFkmoDwnBlZGRIkqqqqiJSEwDYLijUK/fGK+KTWyT9cWK/fbdkeAsAAAAAIEpsCRZTUlIk7QsYw7F7925JUlpaWkRqAgDbBQWLFZ64Bl7YMod0aLvvHsHDWyorJcMQAAAAAAB2syVY7NKliwzD0Nq1a8MKF3fs2KH169fL5XKpa9euNlQIADYIDhaDtylHSGKcJ/B1uTdhv3UAAAAAAGAHW4LFo48+WpLk8/n08ssvN/v9//znP2Xs7bgZO3ZsRGsDANs41LE4rEvKvnsEdyxa1AEAAAAAgB1sCRbPPPNMud21l37xxRf1xRdfNPm9zz//vKZNmxZ4fNppp0W8PgCwhUMdi6565zZa3oNgEQAAAADgAFuCxX79+umcc86RYRjy+Xy67bbbdNddd2n+/PnKy8sLeX1ZWZlmzpypq666Sk899ZSk2h+cTzrpJA0aNMiOEgEg8hzqWDTfwyJYZIALAAAAAMABXrsufN9992nVqlVavny5DMPQhx9+qA8//ND0mgULFmjcuHEqLi6W3++XpMAW6B49euiBBx6wqzwAiDyHOhbN92ArNAAAAAAgOmzpWJSkNm3a6KWXXtKxxx4rwzBM/9Rt46usrFRBQYF8Pl8gUJSkIUOG6JVXXmEiNIDWJahT0Ilg0XJ4Cx2LAAAAAAAH2BYsSlK7du00efJkPfbYYxo4cGBgvX7IWF9mZqbuvPNOvfXWW+rWrZudpQFA5EVlKzQdiwAAAACA6LBtK3R9Z511ls466yxlZ2dr0aJF2rx5s4qKilRdXa20tDR16tRJhx12mAYPHhwY+gIArYrPJ1VXm5ai1rFIsAgAAAAAcIAjwWKdnj17qmfPnk7eEgCcUVkZsuRIx6LVGYtshQYAAAAAOMCW9sCnnnpKS5YssePSABCbLLoEnelYtLgHHYsAAAAAAAfY0rH43HPP6fnnn1d6eromTpyoSZMm6aijjlJ8vP0/ZANAVFiEeZVW3YSRvq1VsEjHIlqxyhqfErweSdKG3aXauKdMI7qmKj3JYts/AAAAgKiydSt0Xl6e3n33Xb377rtq06aNjjrqKE2aNEkTJ05Uhw4d7Lw1ADjLqmPRY/8vUyzvQcciWqGC8mpd/NpCfb02T/3Sk3ThiK56fOZ6VdT41TklQZ9fO07Du6ZGu0wAAAAA9dgSLE6cOFHz5s1TeXl5YPJzeXm5vvnmG33zzTdyu90aNmyYJk2apOOPP159+/a1owwAcI5FmGe5TTnCLO9BxyJaoQe+WqMv1+RJktbkleqhr9cGnttZXKmnZ2/QSxeOjFJ1AAAAAKzYEiz+5z//UXV1tRYsWKBZs2bpu+++08aNGwMho8/nU1ZWlrKysvTkk0+qR48emjRpkiZNmqQjjjiCydAAWp8onbFoObyFjkW0Qk99t6HR51/5cQvBIgAAABBjbNsKHRcXp6OOOkpHHXWU7r77bm3dulWzZs3SrFmz9OOPP6qi3g++W7Zs0auvvqpXX31VqampGj9+vCZNmqTx48crKSnJrhIBIHIst0LXhn692ydG/HZje7bT/OwClXstzp0jWAQAAAAAOMDWMxbr6969uy699FJdeumlqqys1Pz58/Xdd9/pu+++U3Z2duB1hYWF+uSTT/TJJ5/I6/VqzJgxeumll5wqEwDC00jH4gkDMiJ+u04pCXvvYdGxyFZoAAAAAIADHAsW60tISND48eM1fvx4SdKmTZv03XffadasWVqwYIGqqqokSdXV1ZozZ040SgSA5rEMFmtDv6N6R35YlavuHgxvAQAAAABESdQPM6yoqND27du1e/dulZaWyu/3y+VyyeVy7f/NABArGpkKbcenWZs4jySGtwAAAAAAosfxjsWqqiotXLhQP/74o+bPn6+lS5eqpqbG9Jq6IS+SlJgY+bPJACDiGtkKbcfvSa4c3UNvL95uPSCGjkUAAAAAgANsDxarqqr0888/B4LEJUuWqLq6OvB8/RBRkuLj4zVixAiNGzdO48aN04gRI+wuEQBarpHhLW4bksUJfTtKaqBjkWARAAAAAOAAW4LFBQsWaP78+YEgse7MRCk0SPR4PDr00EM1btw4HXnkkRo1apQSEiymnAJALGukY3FHUeSDvgSvR93T2mhrgRH6JFuhAQAAAAAOsCVYvPzyywNnJAYHiS6XSwMGDAh0JI4ePVrJycl2lAEAzmlkeEtBRXXIc5GQGOeRXC6Ve+OVWLPvFzh0LKK1qfb5o10CAAAAgDDYuhW6LlRMTEzUeeedp0mTJmn48OEEiQAOPI0MbzEsmgojwe2qu0+cOVikYxGtzG+nLYt2CQAAAADCYGuwWNe1WFFRoalTp+rHH380dSqmpKTYeXsAcE4jHYs25Yr7PmO98VJlaaO1ALFqZU6xXpi3OdplAAAAAAiDLcHiAw88oDlz5mj+/PnKz8+XVNu9uHbtWq1du1avvfaa3G63Bg0apLFjx2rcuHE64ogj1LZtWzvKAQD7NdKxaJe6jsWQAS50LKKVqPb5dcRT30W7DAAAAABhsiVYvPDCC3XhhRdKklauXKm5c+dqzpw5Wrhwocr3/sDr8/m0YsUKrVixQq+88oo8Ho+GDh0aCBoPP/xwxcfb+0M5AERMI8Nb7NoK7dLejsXgAJOORbQSf5+5XuXVTT9f8bhnf9DtE/rqzEM721gVAAAAgKaydSu0JA0ePFiDBw/W1Vdfrerqai1evFhz5szR3LlztWzZMtXU1EiSampqlJWVpaysLL3wwguKi4vTiBEjNG7cOP3mN7+xu0wAaJnGtkLblCwuzymWZNGxSLCIVuLez1Y16/Xfb9yjOZvztewPEzQwk/OaAQAAgGhzO3mzuLg4jR49WrfeeqveeustzZs3T//5z3901VVXadiwYXK73TIMQ4ZhqKqqSgsWLNAzzzzjZIkAEJ4obIUO3GdvgBnAVmgcwHx+Q28s2hrtMgAAAADIgY7FxiQnJ2vixImaOHGiKisrNWvWLD377LNavXq1XC6XbV0+ABBxURjesu8+dCzi4PLDxj3RLgEAAACAohwsrlixQj/88IPmzJmjRYsWqaqqStK+SacA0GoEdQn65VK1u/Yj1u7fkVgObzEMic9SxLDXF4bfdeh282cbAAAAiAWOBovbtm3TnDlzNGfOHM2bN08FBQWB54K7EwcPHqwJEyZo4sSJTpYIAOEJ6hKs8MYFgj3D5p7FkC3Xfr9UUyPFxVm/AYgyn9/QVW8vDvv9M9builwxAAAAAMJma7BYXFysefPm6YcfftDcuXOVnZ0deC44SGzTpo3GjRuniRMnasKECerUqZOdpQFAZIUEi/vCPsc7FuvqIVhEDDIMQ9e+myWfv2V/MT5YtkNnD+0SoaoAAAAAhMOWYPHJJ5/U3LlztXz5cvn9/sB6cJjYuXNnHXfccZo4caKOPPJIJSQk2FEOANgvOFis10XYNt5j660rrYLF8nIpJcXW+wLNZRiGfvfhck1ZsKXF13p5/haCRQAAACDKbAkWn3/+ecvhKy6XS8OGDdOECRM0adIkDRo0yI7bA4DzrLZC73XmkM623rrBjkUgxizaVqh/zd5o/aRhqFdRrgoTklTQJnm/1/pkZU6EqwMAAADQXLZtha4LFdu2batjjjlGEyZM0IQJE9ShQwe7bgkA0dNIx2LvDon23tpjseU5aJgMEAtu/2h5yJrL8OviVd/rgR/eUN/CnSqOS9RfjrpETx5+FgOIAAAAgBhnS7DYo0ePwBbnMWPGKI5zvgAc6BrpWLT91nQsopVYvL3I9DixulIffvCQTsjOCqylVJfriVkvq3Npvu4cfyXhIgAAABDDbAkWv/rqKzsuCwCxq5GORbtZboWmYxExKDgi/MfMl0yhYn1//GmaXJLuOO4q2+sCAAAAEB5bp0IHKyoq0qJFi5Sbm6uCggK53W4lJSWpW7duGjJkiNLT050sBwAiJyhYLI9zLlikYxGtRf1B0F2Ld+uqZV83+vo//DRNrw+eoCWZfSyfzyupVEYyg98AAACAaHEkWJw1a5YmT56sRYsWhQx0qW/w4MG64oordNZZZzlRFgBETqx1LBIsIgYVV9YEvv79wg8U769p5NW1blv4ga465TbL5z5ekaOrx/SMWH0AAAAAmsdt58UrKip0++2364YbbtDChQvl9/sDwaJhGCFfr1ixQnfddZeuuuoqFRUVNXZpAIgdNTW1/9RT/4zFtDb2nrdoGWKyFRoxrH15sa5b8kXI+mWn/l6VHvPvPC9Z9b26Fu+2vM6esmpb6gMAAADQNLYFizU1Nbr22ms1ffr0kC5Fj8ejDh06KC0tTW73vhJcLpcMw9C8efN0zTXXqLKy0q7yACByLD6r6od98V5bf4djPSiGjkXEsN8s/lTJ1eY/ox/2HaOpgydo6qDjTOvx/hr99udPLK+zp6zKthoBAAAA7J9tP+0+/vjjWrBgQeBxz549de+99+qzzz7TsmXLNGfOHM2fP19Lly7VJ598orvuuks9e9ZuZzIMQ8uWLdM//vEPu8oDgMixCPEq94Z95w3rYvvtGd6C1mDFzuLA179cOSvk+UfHnC9JeuKIc0Keu37J50qqCv0z/eg36yJYIQAAAIDmsiVY3Lp1q15//XW5XLXzH8877zx9/PHHuuyyy9Snj/kAdrfbrX79+unKK6/Uxx9/rAsuuEBSbbj4xhtvaMeOHXaUCACRYxEs1nUsrs4rsf/2nLGIVuC1RVslSd2L8jQof5vpuTldBml+10GSpBXpPfVZ71Gm59tVlurM9T9aXpeuRQAAACB6bAkWP/jgA9XsPW9s/Pjx+utf/6r4+P0PMoiPj9eDDz6oCRMmSJJ8Pp/ef/99O0oEgMixChb3diwuq9elFWmvXDRSEsNb0Dos3V57dvKJmxeHPPdJ39Gmx08dHjrE7YwGgsWyKl/LiwMAAAAQFluCxR9++CHw9d13393s9991112Br+fOnRuRmgDANpbBov1ToS87vHvtvRjeglag7rTl47OzQp77utdI0+Nveg7XnjbJprVTNi5UnI9hLQAAAEAssSVY3LJli1wul3r16qXevXs3+/29e/dWnz59ZBiG1q3j/CQAMc5yK7S9k6AlyeOuPW6C4S1oDQzDkMvw64TN5mBxT5tkLco8xLTmc3v0aZ8jTGtpVWUav3W57XUCAAAAaDpbgsWCggJJUufOncO+RmZmpiSptLQ0EiUBgH2i1LFYp9ybYLFIxyJiy6rcEg3P26TM8kLT+oyew+V3e0Je/3HfMSFrVucsfrwiJ3JFAgAAAGgWW4LFpKQkSVJRUVHY1ygurj2XLDk5eT+vBIAoa2R4iyO3t+qOpGMRMWZTfnlIt6IUug26zhe9R6nK7TWtnbH+R8kwTGt//XptxGoEAAAA0Dy2BIudO3eWYRhas2ZNWOFiYWGh1qxZI5fLFehcBICY1cjwFifQsYjW4gSLwS1f9xxp+drihLb6tscw01rvolwNz9tkWtteVKE3fzZPmQYAAADgDFuCxSOOqD0Xyefz6aWXXmr2+1966aXAVOnRo0fv59UAEGVR3grNGYuIddsLK+Qy/Dpq+yrT+vq0ztrYruFjU6y2Q5+8aVHI2mVTF2n9Lo5OAQAAAJxmS7B45plnBr5+8cUX9dlnnzX5vdOnT9eLL74YeHzKKadEtDYAiLhGhrdcO66n/be3CjEJFhFDnpu7Sf3ydyil2txJ+333IY2+79NDjghZO9ZigIthSFPpWgQAAAAcZ0uwOGLECB199NEyDEM+n0+///3vde+99zY64Xnt2rW65557dPvtt8vv98vlcmncuHGB7kcAiFmNdCy6XS7bb+9ze1QdPPyCrdCIIQ99vVaH5W4IWV8cNA062Oa0TtqckmFaO2bbCrn9vpDXrsotaVmRAAAAAJrNu/+XhOfhhx/W2WefrYKCAhmGoffff1/vv/++MjIy1K9fP6WmpkqqHfCydu1a7dq1S5Jk7D2UvWPHjnrkkUfsKs9xd999t/73v/9Jkh555BGde+65Ua4IQMQ00rE4ddE2/ee84faX4IlXnL9emEjHImLMyDyLYDGj8WBRkr7rfqguXzkz8Ditqkwj8jbp5059Ta9z25/hAwAAAAhiW7DYqVMnvfHGG/r1r3+t7du3S6oNDXNzc5WXl2d6bV2Y6Nrb2dO1a1f9+9//VufODZ+71JrMmjUrECoCOAA10rGY2sa2j1mTcm+8eZspHYuIMSMtOxb7hKwNyEjSmrx95yV+132oKViUpOO2LgsJFskVAQAAAOfZshW6ziGHHKJp06bp6quvVkLCvqmlhmGY/qmTmJioX/3qV5o2bZoGDRpkZ2mOKS4u1n333RftMgDYySLEqwsWh3RKdqSEkAEudCwilhhGyFbo9WmdVZSQFHh85RE9VPDQyVr6hwnKTN53buisHkNDLmd1zqITxw4AAAAAMLO9lSYtLU133HGHbr75Zv3444/66aeflJubG9ginZqaqi5dumjUqFEaM2aMkpOd+SHcKQ8//LBycnKiXQYAOzWyFdrrtvX3NwHl3gTzAsEiYkjn0nx1Kis0rQV3K/7tjMFKbVP79+aRUwfrmneyJEnr2nXRjqT26lKaH3jt+K3L5TL8Mlz7/n6RKwIAAADOc2aPnqS2bdtqwoQJmjBhglO3jDq2QAMHiUa2QnscSjtCOhbZCo0Y0pTBLelJ+8Lxq8b01OHd2+nz1bm669OVmtV9qC5e/X3g+Y4VxTp0V7aWZfQOrO0urY584QAAAAAa5UwrzUGoqKhI9957ryQpLi5OiYmJUa4IgG0a61j0OBQseuKDFuhYRGzw+0O3QUv7H9wyvGuq7pjYT1LtAJdgx21dZnr8ycocbdxd1oJKAQAAADRXRIPF/Px8/fTTT5o+fbpmzpypdevWRfLyrcrDDz+s3NxcSdJ1112nDh06RLkiALZppGOxqsbvSAnl3qBgkY5FxIiiyhrLwS0/Z+5/InSd77qHnrM4bvvqkLXjn5sjn98IWQcAAABgj4hshV6yZIn+9a9/ae7cufL5fKbnMjMzdfnll+vyyy83DXA5kM2cOVPTpk2TJA0YMEA33HCDPvjgg+gWBcA+lsFibceiUwMlGN6CWDVz/S6NzDMHi3mJqdqe3PRfuK3s2F0FCUlqV7lvWvSYnWtCXrcpv1xzNu3RsYd0DL9gAAAAAE3W4o7F//znP7rkkks0e/Zs1dTUhEx8zsnJ0RNPPKHzzz9fW7ZsiUTNMa2oqCgwBdrr9eqRRx5RfHz8ft4FoFWz3Apd+/fe7q3Q/dJrp+qGDG+pqpKCftEDRMPlL3yvfgU7TWs/Zx7S5Gkro7qlyXC59WPn/qb1/gU71KG8KOT1G9gODQAAADimRcHiO++8o6effjqkS7E+l8slwzC0du1a/frXv1ZJSUlLbhnzHnroocAW6GuuuUZDh4Zu3wJwgAkKFmtcbtV4ahvC7R7ecuXoHrUleOJCn6ystPXewP68s3i7BuRvD1lflt7L9PiSw7o1eI0/nzRAkvRjlwEhz43ZuTZkjenQAAAAgHPC3gpdUlKiJ554Qq6938EbhqFx48bppJNOUrdu3VRTU6PVq1dr2rRpgU7F7OxsPfvss7rzzjsjU32M+eabb/Thhx9Kkvr27aubb745yhUBcERQsFhR77xDuzsWe7VPDLmnqa62bW29P9CYF+dv1sA9W0PWV3cwB4lX7Q3IrZx5aGd9cs0Y/Wf9gpDnxu5Yrc/7HG5ac+r4AQAAAAAtCBY///xzFRYWyuVyKSEhQU888YSOP/5402uOP/54XXfddbrvvvs0bdo0GYah//3vf/rd7353wJ23WFhYqD//+c+SJLfb3Sq2QNfU1ES7hBYL7pZtrHsWsIunvFz1o4z63YNu2ft3ze+vHQ5jFSzWFBdLqam23TtW8DkQu75eu0t/tuhYXNN+X7B445E9NeGQ9o3+PTmpf0dd1aV/yPqYHaHnLPr9vgPiv29oHj4HAPA5AIDPgegIO1icP39+4Os//vGPIaFi4AZerx588EEtW7ZMa9euVVFRkRYvXqyxY8eGe+uY9NBDDykvL0+SdOWVV2rEiBFRrqhxfr9fWVlZ0S4j4pYtWxbtEnAQGpSfr6R6j+uHfEWF+bb+XduyuSzknnVWLl6sql27bLt3rOJzILYMyN8Wsra6XrDY21PcpL8jUy4ZqOw3O6lnQU5gbczOtZJhmPY/b8nOVpb74PtzDzM+BwDwOQCAzwFnhH3G4qpVqyRJSUlJuvDCCxt9rdfr1SWXXBJ4vHz58nBvG5NmzJihjz76SJLUu3dv3XrrrVGuCICT3EFnGdaf0Nw3zeLswwiqO46i3CJYdDMZGjFg4B5zsFgUn6idSe2bfZ3Mth75R5jPLe5YUax+BTtMa2yEBgAAAJwTdrCYl5cnl8ulnj17Ki5u/z84H374vjOQsrOzw71tzCkoKND9998vqfYH/L/+9a9q06ZNlKsC4CRXVZXpcWW9rdAn9kx0pAar4S3uoLoAxxlGyPCW1e27mToMMxI9Tb7cjgFDQtbG7DRvh3ZxxiIAAADgmLC3QpeV1W6/S0lJadLru3Xbt+2puLg43NvGnPpboC+77DIdccQRUa6oadxut4YNGxbtMlrM5/OZ2puHDh0qj6fpP6QCkeDZe85hnXLvvjNkJ40dqThP2L/D2a81rh3SnHzTPev079FDivFjGSKBz4HY1WXyUqVUl5vW6p+vKEmXTDxCHnfTwsCFE06UJv/LtDZ2xxpNHTwh8LhXr14aMaJLeAWj1eJzAACfAwD4HGi+pUuXBs7tD1fYwWJ1dbUkNalbUardMl2ntLQ03NvGlK+//loff/yxJKlHjx76/e9/H+WKmsfrDft//pjl8XgOyH8vxLhyc3BSf1tyYoK9Q5y8e/9DWX/7deC56mrpIPz7wOdA7AjeBi1Ja+pNhL7vxAFKiG/6cQEFg4ep2u1RnH/fQdyjctaZXuPlf3+IzwEAfA4A4HPAKWG30RiGIanpW47qv+5AmMxTUFCgv/zlL5Jq/90eeughtW3bNrpFAYiOoLMMrbYl216CxyLA5IxFRNnA/Qxu+cNxfZt1vcr4NlresadpbWTuRrnrBY3shAYAAACcQ3QbprfffjuwBToxMVGTJ0/W5MmTG3z9rnqTWV955RV9+umngcePPfaY0tPT7SsWgH0Mw6JjsXZb8mHdUm2//arcktp7xlkEi0F1AU4LPl9RklbX61hMadO8b0P8hqGfMw/RyLyNgbWkmkr1z9+h1R27S5KauKsaAAAAQAQQLIapqt5QhLKyMs2ePbvJ712zZo3WrNl32HwFXUVA6xU0EVratxX6521Ftt++V/va4TB0LCIWDbDYCr22fdewr3di/wzdndlXVy2fYVoflbs+ECwyvAUAAABwjn0TBQDgYGAR3lmdd2iXugyl/rmO+wohWER0Dczfanq8JTldZXFtJIW3ZTkpwatFnQ4JWR+Vsz7wNbEiAAAA4Bw6FsP029/+Vr/97W+b/PpJkyZp27bazo1HHnlE5557rl2lAXCSxXbjCosJzXbZe9ytdZjJVmhEkb+iUn0Kc01r9bdBXzaqe1jXzcroI79ccssIrB2Wuy9YfDdru84ZxlRoAAAAwAl0LAJAS1iEd5bdgzbxG3X3tAgz6VhEFD3+ylfyGH7T2pp6g1vC7SwsjU80BZSSdFjuhkDK/tbi0HMdAQAAANijxR2LOTk5+uCDD2x9z9lnn92s6wOAY6K8Fdq/N0yxnERNxyKi5INlOzTrqwW6I2h9Xft9nYTuFpyF+HPmIRq8Z9826/aVpepdlKNNaZ3DviYAAACA5mtxsLh27VrdfffdTX69YRjNfg/BIoCYZdmxGI2t0JyxiNhx0/tLdW5hTsj6xtROga9dYe6ZuGhkV/28oK9+ueo70/qonA0EiwAAAIDDHN0K7XK5mjWt0TCM/b8IAKIp6luhjYbvScciomRncaX6WASLG9rtCxa97vA6Fl+5aKT1AJd65yx+s3ZXWNcGAAAA0DwtChYNw7D1HwCIeVZboT21IV+fDm1tv31gKzQdi4gR+WVVkqQ+hTtDntuYti9YvHBE17Cu3ybOo58z+4asH1ZvMvQJz89VSWVNWNcHAAAA0HRhb4WeMWNGJOs44H3zzTfRLgGAHRrpWPzlqG4hz0XavuEtdCwiNizaVihJIR2Lu9qkqCS+Nmwf16u9junTIex7FLRJ1oa0Tjqk3j1G5a6vPRtg786If83eqLuP7x/2PQAAAADsX9jBYrdu9v/ADAAxzypYjKsN+Q7rlmb77dkKjVhjGLX/zyFBweKGdrXnH94xsZ/uO6G/EryeFt3n58xDTPfoVFaoLqV7tCO5oyTpT5+tIlgEAAAAbOboGYsAcMBpZCu032//kQ51p0ZUu73yBU/DIFhElLSvKFFaVZlprW5wy4UjuigpoWWz4248qrflduhRORtMj9kODQAAANiLYBEAWqKRrdA+B86KretYlMulsuBp1GVloW8AbOZySX2KLCZC7x3c4m7GELeGPHLqIC3qZBEs1hvgIknbizhnFAAAALATwSIAtERjwaIDHYv1b1EWF7QdmmARUWI1EbpucEskgsXUNnEae9akkPWRueaOxZbfCQAAAEBjCBYBoCWstkLvDRYHZCQ7WkpIxyJboRElhxRYTITeuxU6ArmiJGnM6IHalmweADMqx9yx6IrUzQAAAABYIlgEgJZopGNxlAPDWy47fN8grXK2QiNGWG2Frhve0i89KSL3+MXATP2ceYhprVdxnjqWFUXk+gAAAAD2j2ARAFqigWDR63bJ7ba/Wyo9aV+YWBZHsIjY0KfAHCz6XG5lp2RIkhLjWjYNuo7b7bIc4HJYvXMW6VcEAAAA7EWwCAAt0cBW6G5pbRwvpczLGYuIDcEdi1uTO6rG07JJ0FYWWQaL+85ZLKiojvg9AQAAAOxDsAgALdFAx6LHgW7F0PtyxiKiz+Xzq1dRrmmtbht0pFlNhq4fLL6zeLst9wUAAABQi2ARAFqioWDRwaERdSFmyFboykrJ53OsDkCSEnJ3KsFXY1rblJopSTqyV/uI3qvLkH7a3SbFtDaq3lbov89cH/wWAAAAABFEsAgALWG1FdoTLycbFn1+Q5LFVGiJrkU47sW3ZoasbUyrnQh98qDMiN7rF4M7aVHQAJd++TuUVMWfewAAAMAJBIsA0BJBwV2Ny60aj1er80qdLyW4Y1HinEU4asPuUtVs2hyyvmlvsNjGG9lvO9rGebQko49pzS1Dw3aF1gAAAAAg8ggWAaAlgoLFkHMOHVQePLxFomMRjnrs23XqWZwXsr45NcOW+/kNQ1mZfULWR+RttOV+AAAAAMwIFgGgJYK2Qld446JUSANboelYhIN2lVSpZ9GukPUtKemSJCPC9zMkZWX0DlknWAQAAACcQbAIAC0R0rFo0TXokJDhLZIK9xRGoRIcrNbtLlX3YnOw6JdL25I7SpKS470RvZ/fMLSqQ3dVeszXHZ67KfB1aWWNAAAAANiDYBEAWqKBrdAT+3Z0rISHTx0kybpjMScn37E6gDi3O2Qr9I7k9qr22NPJO7Zn7bVXdOhhWh++a5Nchl+S9MbP22y5NwAAAACCRQBomQa2QmckO3fW4h8n9JNk3S3pqQydWg3YJd7rVs8ic7CYnWLP+YqSdEL/2i3WwecsJldXqG/BTknS4zPX23Z/AAAA4GBHsAgALdHAVmiv2+VYCZ6997LaCu1heAsclFBSpLQq87medecrStKk/pHt5HW5XHrolEEhk6Glfecsrtvl/IR2AAAA4GBBsAgALdHAVmiPg8FiHaut0ASLcNLuVaHdgVv2diyeNjhTAzOSI37P68f12u8AF78/0mNjAAAAAEgEiwDQMsFbofeeJedxOR8sshUa0dajOHQidHZqbbD4/hWj5bLh70XHpHg9cd8vQ9ZH5O4LFh/9dl3E7wsAAACAYBEAwufzSdXVpqW6cK+kyvlJtFZbod3lZRavBCKvxucPGdwi1Z6xeMaQTor32vctR6++3bUlOd20Vr9j8eUfs227NwAAAHAwI1gEgHBZbDOu2BssbtjtfKBnuRW6gq3QcManK3NDBrdItR2LR/fpYOu927eNV1Zmb9Naz+Jdal9eLCk6fx8BAACAgwHBIgCEqyJ0m3FdsHj+iC5OV9NAxyLBIpxxzpQF6mHRsbglJV0Xjehq+/2tBrgM37XJ9vsCAAAABzOCRQAIl0VoV7cVOs7t7MfrwIwkyzMWXXQswkHBZyyWe+O1KzFVvTq0tf3eiy2CxZG5G2y/LwAAAHAwI1gEgHBZbYX21IZ7Xo+zw1u2FlZYboWmYxFOCt4KnZ2SodE92zty7yyrjsW8TY7cGwAAADhYESwCQLgstkKXx0WnY9EwrLdCuxjeAoe4/T51L9ltWstOSdctx4YGfnZY366zSoPC9foDXAAAAABEHsEiAISrka3Q5dU+R0sxZFh2LLroWIRDOpcWKM5v/nO/NSVdw7ukOnJ/v9ujpRm9TGuH7s6W1+f8hHYAAADgYEGwCADhamQrdILX+Y7FCoszFt2csQiH9LQY3JKdmiG/YThWQ1bGIabHCb4aDczf5tj9AQAAgIMNwSIAhMtqK/TecG9wp2RHSzl1cKbkcqksKFx0lREswn5FFdUhg1uk2jMW/c7lisrK6B2yxgAXAAAAwD4EiwAQLsut0LXbkcur/Y6WcvnhPSQpZDu0mzMW4YBfv5MVMrhFikbHYuh5jiMY4AIAAADYhmARAMJltRXaGydJ2pzvbKA3omvtOXblQcGiwRmLcMB7S3ZYboXekpIuv0MZ+/0nDQg5Y1GShjPABQAAALANwSIAhKuRrdBet8vRUuruFjwZuryw2NE6cPDqYdGxuCUlQz6HOhb/cFxflcS31dp2XUzrI3M3SoYhw8HOSQAAAOBgQbAIAOFqZCt0z3aJjpbi3htkBp+xWFNS6mgdOHgFn7GYl5iq8rgEtUv0OnL/pITa+wRvh84sL1Tn0nzd9tFyR+oAAAAADiYEiwAQrka2Qv9iYKajpTTUsdimqtLROnDwCt4KnZ2SIUkamOHcIKPpvx6rJRYDXEbkbdQ/v9+ogvJqx2oBAAAADgYEiwAQLsut0LXBntvprdAu8/3rxFcTLMJ+idWVyigvMq1lp2bovGFd5HI593dhSKfkRge4fLE617FaAKfsKavS4m2Fyi+rinYpAADgIOTM/iQAOBBZboWOt3ih/dyuuq3Q5mAxsapCMox9ySNggx4Wg1u2pqSrZ3tnjwRwuVzKygwNFusGuNCxiNbEMAxlba8N7Ed0TZVhSCVVNUptExd4zfzN+Tp7ygLlFFeqc0qCPrxqjEb3bBeligEAwMGIYBEAwmW1FdoTZ/FC+zW0FVpSbWdlorMBDw4e63eVqqfF4JbslAx1aOv834fslAzlJySpfeW+80VH5tYGi24CdrQShmHoijd/1uuLtkmS2iXGyeOS9pRX64whnTT10lEqr/brz1+sUk5xbWf6zuJKPTFrvd66/PBolg4AAA4ybIUGgHA1shXaaXXbTS07JsvKHK4GB5P3luwIGdwi1W6FvmBEV0drMfZ25wZvhx6Yv01tqisJFtFqLN1RHAgVpdpu291l1TIM6aPlOUq+5zNl3P+Fvlpj/rv3TtZ2p0sFAAAHOYJFAAhXDG2FrotLLINNizqBSNlVWhUyuEWSslPSNcDBwS2SVO0zJElLgoJFj+HXobuz5fDRp0DYHvxqTbRLAAAAaBKCRQAIl+VU6Hi18Tr/0eree0vLrdB0LMJG7y3ZbrkVesveqdBOqvHXBotZDUyGdnKQDNASPsOIdgkAAABNQrAIAOGy2Apd4Y3TRSOd3f4pSS5ZD2+pXSRYhH0255eHbIWudnu0M6md47XUBYuLMw8JeW5E3iY6FtEqVFT7tHBrQbTLAAAAaBKCRQAIV1DHYoUnTobLHQj5nFTXiMUZi4iG4GBxa3JH+d0ex+uo8fslSSs69lCNy/wtzojcDYEhF0CsmrNpjzr/35faUhD6iysAAIBYRLAIAOEKDhb3hnrrdpdavdpWdUMpLLdCc8Yi7GQYIWcsZqc6vw1aknx7OxYrvfFa1aG76bnhuzbrzk9WRKMsoMlueG+JiipqWnQN9x8+1q5SQnQAAOAMgkUACFfQVui6bsHZG/c4Xkqcm63QcN7LP2YrvbxIiTVVpvUtKelRqaduK7SkkMnQ7SpL1asoV6WVLQttADst21kcketk3v+lcunQBQAADiBYBIBwBXUCRmsitCQlJXglMbwFznr0m3WWE6GjMbhFklLbeANfZ2X2CXl+RN5GbcqngxexaWdRZLc//2LyvIheDwAAwArBIgCEK+SMxegFi5L030sOsww3C/OLolANDgbrdpVaToTOTs3QktuPc7yeQZkpga+DOxYlaWTuRhlM20WMmrs5P6LXy9rOZz8AALAfwSIAhKuBrdDRMjAj2bJj8YufN0ehGhwsgge3SFJ2SoaGdkmNQjX7ZGX0DlkbnrdRfnJFxKipi7Y1+bWZpfkauHurDinYIbffZ2NVAAAAjfPu/yUAAEsxtBVakvyGYXnGYk6O82c+4uBh1bF4xxUTo1BJrQSvW5U1fuUmtdfOtu3Uuawg8NyIvE0qpmMRMWpH8f63Qh+Ws17/mvG8jtqxKrC2s207PT76HD15+FkyXPQMAAAAZ/HdBwCEq4Gp0NHiNwzLjkV/CWcswj49LM5YHD7m0ChUUstfLzhcHHTOYt/Cnfrqp/VOlwQ0ia+RdlqX4de9c9/SvKl/MIWKktS5rECPz3pFn793vzqVRnY7NQAAwP4QLAJAOAwjBjsWrWvo2SYKxeCgETy8pTC+rZSWFqVqav9q1llicc7iR29+5WA1QNOVV/sbfO6R7/+rB+ZMVVwj255PzM7St2/fo5TKfb9M2lrAsCIAAGAvgkUACEdlZchSaVxtgndIx7ZOVyOp4a3QbWtCawUiJfiMxezUDLWN90SpGnPHotUAlxF5G5WdTxcvYs+SHdbDVs5eO1d3LPhfk64xKH+b/vnN84HHPR/6WrM37o5IfQAAAFYIFgEgHGWhwURdt+AxvTs4XY2khrdCd/E23AUDhMswDMX5qtWlxLz1MjslQwne6AWLAzOSA183GCzSxYUYUlpZo5LKGsvn+uZv1yufPx2y7nO5Nb/zABUkJIU8d8WKb3XxylmBx9e/uyRyxQIAAAQhWASAcFgGi6GhnpNGdE2z3Aq9dnPoGXhASxVV1KhbyW65ZT4XbmtKepQqqvXv84YFvl7doZsqPHGm54fnbWr0LDvAKaWVNTr7lR+Vdu9nSrv3s9AXGIYmf/mM0qrM/70pSEjSqMuf1JGXPq7u17+iL3odFvLW/3z9H2XuPW9xZW6Jbv7fUnV/4Cu5//Cxnp+7STU+fuEEAAAig2ARAMJhESzWdQu6XE4XU6tdYpz6dQ8NdVwV5TKYhIsIeydru3oW7QpZz06NbrB4bJ+Oga99bo+WpfcyPT9s1yZt31PqdFlAiH/O3qiPlufIb5jPBq1zxvofNWHrspD1K07+nZbu7cYti2ujX516m3a2bWd6TVpVmWn79L/nbNL2otqp0ze+v1RnvbKAcBEAAEQEwSIAhMMqWNzbsdgtLdHpagKePG+EKj1e01rbmko6tBBx17+3JGRwi1S7FTqa3G5zsr8ko7fpcduaKj3w7+navIdzFhFdj89seEK511ejx76bEvqeI87Rx/3Gmtby2rbTVSffGvLaG7I+a3BK9GercjV3MxOkAQBAyxEsAkA4ykPPaKvrWLx0VDenqwnwuF0hA1ySqiuVW1IVpYpwIOthFSymRjdYlKTzh3cJfN3QOYtPz97oZElAiPzy6gaf+/XSLzUof5tpbUdSe/3fkRdbvv6LPofrw75jTGtta6r0x0aGvryxaFuDzwEAADQVwSIAhKOR4S2DO6U4XU2A2+UKTKeu07a6Uk/MargzBmiu6r1bKK22Qm+J8hmLkvTnEwcEvrYKFofv2qSnvtvgZElAk8XXVOu+eW+HrN9/1C9VGt9wR/wDR14SstZY12JljS/8IgEAAPYiWASAcDSyFTqarILF5OoKbWUKLiJo7qbaoCK4Y9Evl44/bmQUKjIb2iVVM288SlLoVmhJGp5HtyJi16UrZ6pLUBi4rGNPvTL0hEbf93Onvvqgr3mbdNuaKt2QZTEYBgAAIEIIFgEgHI0Mb4kmt0sqCQoWk6orQs6dA1pid1nt1vqeReZgcUdye1UHnfEZLeP71g5xKWiTrM1B5z6OyN0UhYqA/XMZft3+0wch6/cf/Uv53J79vv8Bi63S1yz9Sh5/aHeiS/x3AQAAtBzBIgCEI6Y7Fs11JFdX8OMjImrZzmJJUo9i81bo7JQMDchMjkZJlhK8td/mBHct9ijZpfblxVGoCGjcKRsXasieLaa1Ne276sOgTsSGLO7UVzO7DzWtdS/ZrVM3/BSxGgEAAOojWASAcMRox6LLJZUEncGVXFWuT1fkRKkiHIimLNii1MpSpVWZ/x5kp2ToohFdo1RVqD+d0F+StKSBcxaBaNhSUK6kuz+1fM6qW/HJw8+SvwndinWeH3FyyNr1Sz5v8vsBAACag2ARAMJhMRW6bnhLNHVsGx/Sseg1/Kosq5BhGFGqCgeajXvKQrZBS9LWlHTFe2PnW4tLRtZOaLc+Z3GTs8UAez341RqVV/tD1g/dtVkTtyw1reUlpurVIZOadf1p/Y5UXmKqae3kjYvUqzDoF0y0sgMAgAiIne/+AaA1idGOxWqfXyVxoVNDk6vLA+fiAZHQszg0WMxOzVAsHefZNz1JE/t2VJZFsDiCAS6IkhfnZ1uuX58V2lX475GnqqKZ/22p8sZpyqHHm9bcMnT1sq9Na9+sDZ3qDgAA0FwEiwAQjhg9Y7HKZ1gGnEnVlfKHNsgAYbPqWMxOyZDHFUPJoqQxvdprXbsuKgvqKKZjEbEksbpSl62caVqrcbn1wvBfhHU9q/f9cuUsqV7nenZBOZ3sAACgxQgWASAcMdqxmOB1N9ix6OcHSERQ8OAWqa5jMbaCxfS28fK7PVqW3su0fujubKmmJkpV4WBVUF5tuX7h6tlqV1lqWvuo7xjtSO4Y1n3Wt++q77oNMa31LdypsTtWm9ZOfXF+WNcHAACoQ7AIAOGI0Y7Fvh3bqiS+Tch6UnWl/OSKiCCrjsUtKelyx9h3Fj3b1wbtwQNcEmuqpLVro1ESDmJVNdat49dZDFeZHGa3Yp2pgyeErF26cpbp8Rer87RsR1GL7gMAAA5uMfbtPwC0EjE6vMXlcqk0LjRYTK6iYxGR1aso1/S4zBuvXYmpahvX9Om1TjhlUKYkaUl679Anlyxxthgc9KwaeoflbdSRQZ2EG1Mz9WXvw1p0r/cGHKUqt9e0duHq2fL4faa1M1/+sUX3AQAABzeCRQAIh0XHYiwEi5JUYhEs1nYsEiwicnoFdSxuTs2UXC61jfc28I7oSE6orScrs3fok1lZzhaDg55VsHjdki9C1l4cfpIMV8u+Td+TmKrPe48yrWWWF+qEzYtNa5vyQ39RBgAA0FQEiwAQjqBgscITJ787Njq1LDsWq8vZCo2I8fpq1LV0j2ltc2qGplw8MjoFNYFVx2LJgoXOF4KD2uerzIF82+oKXbZipmmt2u3RK4ee0KTr3X/SAN19fL8Gn586+LiQtUtWfdekawMAADQFwSIAhCMoWIyFwS11xg/vGbKWVF1BxyIiYtb6Xepesksew3xWXHZqplISYqtbsb7CNsnanJJhWqv+mY5FOOvF+ZtNjy9cPVtpVeb/nnzUd4x2Jndo0vWuH9dLvx/fV4lx1t/Sf9x3jIqDBnqdtW6+4mush8gAAAA0F8EiAIQjOFiMgcEtdXp3zwhZS66uoGMRETHxP3NDtkFLtR2Lw7qkRqGipssKGuDSfneOtGdPA68GIq9zirmj3GpoywvDT2769VLbqGNSvH68dbwuP7y7kuLNnfPlcQn6qO8Y01paVZlO2vyzaa2hoTIAAAD7Q7AIAOEIGt4SSx2LvqSkkDU6FhFJwYNbJGlTaif1Sw/9sxdLlmb0Dl1kgAuiZHjuRo3bsca0tiGtk77uNcLy9e6g8xmP6t0+8PWhnVP06iWHqfjhU1Xzt9NNr3tvwNEh1zp/zQ+mx23u+lRLtjMdGgAANB/BIgCEI6hjsW5wy2WjukWjGhNfYtuQteQqgkW0nLH3z1DvwtBgcXNqaKdsrMmyCBZ9Py92vA4cfKpq/Hrquw16J2t7YM1yaMuwk7T2nhP05XXjTOsDM5L01mWHB8JFj9ulOyZan63oDkogv+h9WJO2Q9//xaom//sAAADUIVgEgHA0sBX6kI7R79iy7lislJ+dbmihNxZtk2Tdsbg5NdPpcprs0r2Bf/BWaEn69K0vA4EpYJfzX/1Jv/9oeeBx2+oKXbpypuk11W6PXhl6gg7pmKTj+6frn2cP1ZBOyTrukI7635Wjdf6Irlpxx0S99svDtPKOiTrz0M4N3u/0wZ0CX1c0sB36xKDp0B8uzwn/XxAAABy0CBYBIBwNDG+Jha5Ay47F6nLlllRGoRocSP770xZJUs9i8xmL1W6Pug7sHYWKmuZvpw+RJK1v11lle7uL63TdvFb/9+Uaq7cBLWIYhmZv3K1//7BJn6w0h3ZWQ1s+7DtW9152rCTJ5XLp5mP6aNkfJ+rbm47S4E4pkqQBGcm6dFT3/R478N9fHmZ6bL0denaz/50AAACCESwCQHMZRoMdi7EwIMXfNvQHzrbVlSqp8kWhGhxIvl67S1Jox+KWlHRdMCp0GnmsaBtXO9DC7/ZoaXpv03NDd23WC7PXR6EqHOiuf2+Jxj87RzdPWxry3LUW26AnD/+FrhvXKyL3bpcYp3m3HKOhnWsDScvt0Ot/DNkOPXmeeWo1AADA/hAsAkBzVVbWhov11AWLvhjoWPS3aSO/zGdsJVeXB60A4XEZfvUo3mVa25yaqfSk+AbeEVuCB7i08VWr3dZNUakFB67s/DK9OD/b8rlheRt15I7VprUNaZ107Z+uVpwnct+aj+nZXkv+MEGHdGyrirgEfdx3tOn5dpWlIduhr39viZ79YaN8sfBbMgAA0CoQLAJAcwVNhJak8rjaUMUfAz+MuVxulcS3Ma0lVVfGxDZttH6dS/OV4KsxrW1OzYjp4NpVrzirAS4j8jY6VwwOCv9duLXB565d8mXI2ovDTtJ5I+0Z/lX3x7+p26F/O22ZfvfhMltqAQAABx6CRQBorqBt0JJUHkNboQsqqlUaZw4Wk6vKY6I2tH69ivJC1rJTMuWO4e8oXPViT6sBLgSLiDS3yzpqT6yu1GUNDG1xNfCelkqK90qSPu89qknboSXp2R82MdQIAAA0SQz/GAAAMcoiWIylrdC5JZUqiaNjEfawmgi9KS3TFN7Fmvp5zdL00DPshuVtZusnIqqhvw0Xrp6tdpWlprWP+o5RTlJ7+2rZW0xD26FPyF5s+b4a/k4ghm3cXaYTnpur3g99rds+XKbKmtBzpF9ftE0jn5il0U99p4+W74xClQBwcCBYBIDmsgoW906FHtk11elqQpzQPyMkWEyuLidYRERYdSxuTs2QTc1WEVG/tMI2ydqUmml6fkTeRv3+o+XOFoUDWkMdiw0NbakbMGSHQZnJga+tt0P/YPk+wnbEsuvfy9I363Ypu6BcT3+/UVMWbDE9vya/Wle/s0RLdhRp4dZCnf/qT9paEHqUDQCg5QgWAaC5GulYPGNIJ6erCTG2Z7uQrdBJ1ZX6eVtRlCrCgaCoona7pFXH4ubUTI3taV/HVUsFZzxLgiZDdy/ZrXe+WeJcQTjgWeWKQ/M26agdq0xrG1Mz9VWvkXrm3GG21fLrsfsmtltthz573XzL7dB0LCJWVdX49fVa8xCxG983T1//dKP5e7Uav6F3l2y3vTYAOBgRLAJAczUyvKV92+hPxnW5XCHDW5Kry/XwjLVRqggHguLK2oEtPYM6Fv1yafjoQ9UvPSkaZTVJ8Nl1SzJ7h7xm8E7OWUTklFaFbsu8KWt6yNqLw0+S4XLrguFdbKtlUr/0wNcVcQn65JAjTM83tB2ajkXEquvezbJc/zG7QH//qVCTlxXr+20VIc+vyi2xuzQAOCh5o10AALQ6jXQsxorgjsUEX428QZN8geaoyxgOKTSfU7U9uYPe/vWRUaio6YKbxxjgArt9uMz896R9ebF+tfwb01qNy61XDj1B143rpaQE+74lDw7W3x14jC5Z/b1p7fw1P2j6IebzF+lYRCyqqPY1OHX9+Bfmq7LG3+B71++q/f6trKpGv/1gmXKKKnXiwAz99ug+crtj+DwPAIhxBIsA0FwNnLHYo10bixdHR/AZi5KUVB3623ugqXx+Qy7Drz6FOab19e06q7sntjdAeIN+YAzeCi1Jw/M2OVMMDgpLdpiPnrh26ZdqW1NlWnt3wNHamdxBNxwZOlDITnXboVOq93Xfn7VuvuJ81ar2xAXW6FhELLLqBq7TWKgoSd+s26WJ/56jWRt2B9amr8pVvMetG4/qHakSAeCgE9s/CQBALGqgY/H84V2jUIy1MotgMZlgES1wz/SV6lKSrzY+81lsG9I6R6mipvMGBZ/r23VWaVCXMcEiIsUIGpTl9dXoNz9/GvK6pw8/U8v/OEEju6U5VZok6+3Q7StLdcJm8/bSworQcxcBp1TW+LStsFxlVebdFi1tLKwfKtb5zf+W6snv1uu/P22Rn0AdAJqNYBEAmquBjsWGpoBGQ0MdixXVDf+mH2iI32/orcXb1bdwR8hzG9OiP7CoKb66flzga7/bo2Xp5i6xQ3dnSzUcF4CWW7qj2PT4vLVz1KPEPGhibpeB+ucj12hwpxQnSwt4b+D+p0NvLeSXUYiO9btKdcST36vHg19r8N++1YLsgsBzwVv7I+X2j1boyrcW67Kpi2y5PgAcyAgWAaC5rIa3eONV4298C46Tgs9YlGo7FrcUhNYO7E/R3sEthxTkhDy3oV3sdyxK0sS+6Tp98L4QdElGb9PzbXzV0po1DleFA9Gbi7eZHt+66KOQ1zx1+Fka1iXVqZJCfNb78JBfQJ2zbp5pOvSbP28LfhvgiCe/26DlObUB/ZaCCv3fl6uVX1allTnFys639/uYtxZv11a+VwKAZiFYBIDmamAr9LpdpVEoxtpxI0LP7EqqrhA7fBCO33+4XFLo4BapdWyFliS326X3r9y3/dNqgEvx/IVOloQD1GPfrAt8PXb7Ko3bYQ6ss1PS9b/+RyoxzuN0aQEVcQn6OGhYS7vKUp268afA4xfnZ4ds6wac8O85m0yPp6/KVcb9X+jQv8/UyH/Msv3+P24psP0eAHAgIVgEgOZqYCv0pytzo1CMtZ7d00PWkqsqtHh7YRSqQWs35actkqQ+FsHi+lbSsShJcfXOWgzuWJSkvLkLHKwGB6JNe8z/fbh10cchr3l25GnyuZ0NFS8Y3sX0+Mhe7fXWoPEhr7t05UzT4+4PfqXc4ko7SwOaxMlfjHLOIgA0D8EiADRXAx2LscRISg5ZS6qu0KsLtkShGhwogrdCl8S1UV6is4MnWip+b7hoFSymrF7hcDU40Bz5r9mBr7sX5YWcW1jqTdDk4b9wuiw9dMog9enQVpKUkRSvJ886VJ/3GaXdbcxnPJ6+YYHSKkoCj3cUVarz/32pVbnmcyOBA5mPTl0AaBaCRQBorgY6Fod0Cg3zosVomxSyllxdoc9X50WhGrRmvnqdG8HDWzakdZJiaGhRU9xybO0W6KKEJG1KzTQ912blsmiUhANEVY1fOfW6+25e/Km8hvns3VcPPV4FbZz/b0X/jGStu3uSNtxzvLbff5LG9GyvR84eoXeDhrgk+Gp0/po5Ie8/8+UFbIvGQYOGRQBoHoJFAGgui2Cx3BuvC0Z0jUIxDUgODRaTqpnwiea74f0lkqSkqnJ1KjNvpW8t5yvWN6nfvmMCsoK6FlPycqTdux2uCAeK+gO8UitLdX3W5yGv+eeo0yVJAzNCP6Pt5nK51LtDW3nctb8MOKRjW70+eELI64K3Q0vSul2ltg/NAGLFpW8s0nHP/qDJ8zYTqANAExAsAkBzWU6FTlB6UnwUirFmJFl0LFYRLKJ5DMPQS/OzJUl9CkMnQm9s11m/PKyb02W1SBtv/XMWQwe4KCvLwWpwIKmfP9y0eLrSqsy/hPq0zxFa06G7JGnFHROdLM2S35DmdB2sjUGduxO2LlNvi/NUK33+kDWgtYnzVatjWZF6FOUptbLhoXvfb9yj699boveW7GjwNQCAWt5oFwAArY2vtFT1j92v9Hjlc3vkjqEtoa5kizMWawgW0TzzswsCX1tNhM5u31n3nzTAwYparv4WN6tzFrVkiTRpkmP14MBRUFEtSWpTXalbF30U8vxjY84LfO2Kgf9eHNE9TXK59MaQCbp33jum565aNkP3H32pac0TAzUDzeUy/DpuyzKdtX6+jt62UiNzN5iOKFjZobu+736onh9+sn7u1Dfk/Re9tlDnD+8SE39nASBW0bEIAM1UuLvI9LhucEtGDHUsJrZLDVmjYxHNtTp33xCHQyw6Fm+58kT1z4ids0Wbom38vl8LZNGxiAh5f8l29Xjwa0nSVctnhBwb8EPXQZrdbYgk6Yojujten5We7WuHubw6JDRIv2rZ13L7faa1q99erDFPfad7P1ularoXYZNITSHvl79dD85+XRsmX6tv3r1Xty76WEfkrAs593Twnq26bskXWvj6bfrv9CfUvSj0LOrj/j1HFdW+kHUAQC2CRQBoprJC83TMsrjaYHFsr/bRKMdSt27pIWucsYjmctf7LqFvQeh2sD5HDHWwmsgY06Nd4OsNaZ1UGjTRvWzhzw5XhNauvNqnC/67UJLk8fv0hwX/C3nNo2MuCAw6euacYY7W15iMpHitb99V3/Qw19S9ZLd+scn8d+H7jXv009ZCPTxjrZ79YZODVeJg8cPGPTr079+G/f5Opfn67aKP9cPUP2rNyzfoT/PfUa/ipg+tu2zlLGX99xYdvXWFaX32xj268q3FkmoHmhVVVBOuA0A9BIsA0EzxleaArq5jsUe7xGiUY8mVkhKyRrCI5qq/vT/4jEXD5ZJ69XK6pBZzu1369JoxkiS/26OlGeZ/B/eKFfJVVUejNLRSbyzaGvj6otXfq09Rrun5pem9NP2QwwOPkxJi5ySiiXuHGb007KSQ565Z+mWD7/v9R8ttqwkHrydmrdfusmZ8/hqG+uZv17VLPtcX796nrc9fpae/nawjd6wOu4b2laX68v0/64x1803r72Rt1+Y9ZRr3z+/V7t7PNfzxmVq+s7iBqwDAwSV2vrMBgFYiLmhLcbk3drZABySGhpwEi2iuwvKawNd9C8xnLBZ08LuA3gAA3alJREFUyFT7Nm2cLikiThncKfD1kow+GrdjTeBxG1+1/j3lC9103enRKA2t0HXv1k5Ol2Hozh/fD3n+sTHnyXDV/i4/wRtbv9P/9dieeidru/7X/0jtaZOsDhX7jj84Y8MCdSrNV05S7HTj48D2wbLQs3xNDEN9C3ZowpZlOm7rUk3YskzdS3Y3+frVbo8WZfbVio49VOGN14D8bTp620q18ZnDzMSaKr3/0SM6/dw/68veowLrd09fqYVba485WJ1Xqv/7crXe+dURTf8XBIADFMEiADSTO2gqdN1W6Jjidqs0ro0pTEze+/XWgnJ1j6HuSsSum6ctlSR5fTUhw1v2dO2l1hw3JHjdqqzxa0l675DnZn84k2ARTdY5JUE7iyt12oafNGzXZtNzG1Mz9fbAYwOPH/jFQKfLa9TEfum6akwPvfLjFr0xeIJ++/Mngefi/D5dt+QLPXjkxVGsEAc7t9+nCVuW6by1c3TG+h+bFSTW+bbHMP13yCT9r/+RKk5oa3quS8luPTT7dV21fIZp3Wv4NfXTxzX60n9oY7vOkqS3Fm83vYaJ0QBQK7Z+bQoArUBIsOiNwWBRUnm8uZusLmT864y10SgHrcxPWwoCX/ct2Km4oEEOu3pYDD5pReI8tdu8rQa4jMjb5HA1aM1Kqmo7e+/88b2Q5x4ffa587tqBQT3bJerXY3s6Wtv+eNwuvXThSO28/yRNttgOfUPWZ4rzcTQA7LezyLyrok11pa7P+kyrX75RX793n27M+qxZoeLKDt3156N+qT6/nqzjL/yrXh16fEioKEk7kjvqmpNv1W+Ov0F+mSc/d6go0f8+elht2fEBAI2iYxEAmsMw1LbGPLEwJjsWJcWlpUqlBYHHdVOhn5+7Wf85b3iUqkJr8cOmPYGvB+ZvDXl+V/fWHSx63W5JvpAzFiVp2K5NjteD1mn9rlKVVPo0bvsqHbN9pem5nLZpeuXQ4wOPF99+nNolxjldYpNkpiRoWUZvfdtjmCZuWRpY71Kar/PXzNGbg4+LYnU4UM3dtEc3vL9ES3eYzyqctDlLL375L/UOOq90f7JT0vX2wGM1dfBxtb80crn2/6a9/jPyVBXHJ+q/nz1pWh+Rt0mPfTdFvz3+hmbVAgAHE4JFAGiOqip5DPMkwDJvgq4a0yNKBTUsqX2qVG/XTjK/cUcz1P9xbOCebSHPdzlihHPF2OAXAzP09uLtKkpI0sbUTNPAjRF5G6NYGVqTyfOzJUm//+mDkOf+OeoMVez9xVNmcnzMhor1/euw003BoiT99uePCRYREX6/IbfbpV2llXrlxy2681NzGB9fU60nZr2k3yye3qTr5Sck6bvuh2pWj2Ga1X2oFmf2CZxnGo7Xh0zUiNyNun3hB6b1Gxd/pjcGT9C8roPCvjYAHMgIFgGgOcrKQpbKvfE669DOUSimcd52aabHqVWhtQMNqT8RemB+aLB42KTRTpYTcecO66K3956XlZXRxxQsdivZI+3aJaWnR6s8tAKGYehv365Tn4KdOmfdPNNzpd4EPTf8lMDjf549zOnywvJx3zHalJpp6hQbt2ONxm5fpfmEKghTXkmlLn1jkb7bsEf90ttqRU5JyGvaVlfo/Q8f0S82/9zgdSo9Xn3dc6Rm9Bqhmd2HaklGb/n3HjXQVPee0F+5JVV6Yd5my+fvGn+FDstdr0n1Ana3DD3/1bM6/LInVePhx2cACMYZiwDQHFbBYlyCKYSJGWlBwWJlmWQYUSoGrc3czfmBrwcEdSwaCQly9e7tcEWRdXTvDoGvl2b0Dn3BkiXOFYNWp8bn10WvLZQk/W7RRyGd7C8PO1H5iSmSpO9/c7QuHNnV8Rqbq0PbOPncHv1nxCkhz92x4H9RqAgHij98vEJfr92lKp/fMlRMqyjRl+/+ucFQcXnHHrr6F7co88bXdca5f9ZTh5+lxZ36NilUHJSZrNMGZ2reLcfI//gZeuDkQXru/OG68ajelq/3uT26+uRbVRp0fvawXZv1+4Uf7v9fFoiC1bklGvf090r/8+f69TtZKq2siXZJOMgQLAJAc5SEfkNcEpcodwzmikpNNT30Gv6Q8yEBK8/+sFFv/rwvTAzuWHT16yd5mtclEmu6pu0bbmQ1wKVy4SIny0Er88OmPXpvyQ61Ly/W1Uu/Mj3nc7n11KgzA4+P7tMh+O0x6foja88bfXHYSSqJMw//OmfdPA3avSUaZeEA8NrC0HN663h9NXr/o0d01I5VIc8VxrfVNSf9VsOv+JemDD3BcvhKY7qlJmjFHRP18TVjNaZne9Nznka+cctOzdSfj740ZP2e+e8ovaywWTUATrjp/SX6cUuB9pRV6+Ufs/XyAj6v4SyCRQBoDstgsY1q/DHYCRjUsShJaZWlUSgErcmu0kr97sPlgccdyouUUV5kftHAgQ5XZa8lFh2LU1/9XFsLykNfDEh6+cfaH9quX/K5koJ+YTOt3zhtbFd7PMYxrSRUlKQHfzFIr14yUpefNFyTh/8i5Pk7FrwfhapwoHv628mmbcd1fs7oo+FX/EuvDDsx7HMTrxzd8PnXnv38Qvifo87Qwsy+prXUqnLdO+8d09pHy3eGVRsQSd+uN09Mv/WDZXrgyzW67cNlWpVbOxypotqnimpfNMrDQYBgEQCaozQ0mCuJb6PdpVVRKGY/gjoWJSmtknMW0bh/zd4kX72g3GpwiwYdGGet9elQ2/2yvl3nkA6tEXkbdeyzP0SjLLQCu0qrFF9TrZt//jTkuX8ccXbg67+dPsTBqlrG7Xbp8sN76Kmzhuofh5+lKrf5LLlLV85Sj6K8KFWHA9G1Sz7XjVmfhax/322IJl70sLakZoR13bR4l24cnqJ7j+/X8GvaND5Myef26JZJ14Ws35D1mfoU7AsTz35lgY579gd1/b8vNe7p77V8Z3HIe4Bo+MuXq/X09xt1+JPf6dp3s5R8z3Sl/ukzPTFzfZPen1NcqTNemq/Of/lCl7y+UEUV1TZXjNaMYBEAmqF0d0HIWklcoo7qHYNdKRYdi3UDXPyx2GGJmFAY9I2j1eCWA6Vj8bfH1G6BNlxuLU3vZXru0N3Z2rarWPllMfhLA0Sdz2/oklXfqWvpHtP6D10HmSbHpia0zkEPQ48YrNeHTDCtxfl9uuvH96JTEA44/fds05Pfvhiy/nNGH51y3l9UlJC032uUPXKqHj/DHN639br02dmddfWhKY1ud75wxP7PPZ3bbbCm9RtnWov31+jBH143rX2/cY92Flfqxy0FOvPlH1VQTgAD+20rLNdlbyzSkf/8vtHXlVf79dL8bPkNqcZv6I+frGjSjozr3s3SpytzlVtSpbcXb9e4f85WWRVnN8IawSIANMPPq0NDltK4BA3I2P83wI6z3ApdGyzuLOasRVgLHkRk2bF4gASLF4zoEvg6eIBLgq9GA/K3q7zaLyBYjc+v2xZ+ELJev1tRklrrr3DOOrSz/jb6XPll/jy4ZulX6rl3YnTd9jqgudx+n17+4mm1rTH/4mZn23Y6++x7VRbUQW6l4KGT1SbOo+vH9dKpgzIl1Qb5fx7bTnH72+csaXCn5MD7GnPPMb9STdBW7ItXfa/Bu7MtX79xT5k63Pe5/v3Dpv1eG5CkPWVV+mpNnnKb+b35uVN+0tSft2l+dkGz79nzoa+1aGvt+4oqqi27ET9ekWN6vCq3RAMf+1brd3GsEkK1zl+jAkCUrNucq2OC1kriEuWKxanQFluh6zoWyzljBQ0I/pM84ADuWExPig98bTXAZUTeRuWUVJoGvQCS1HbO9xq+a7NpbV27zvqw71jTmt9ondGi2+3Smg7d9fbAY3TJ6n3dMPH+Gv1p3ju6/qSb9cSsDZp8wYgoVonW6raFH+no7eZhLT6XWxeccVeTtj+vvWuSUvduZU5K8OqTX4/VnrIqtfVIy5eFntdoxeVy6cOrx2je5nwVVVRrXnaBHvxqTcjrVnfsrpeHnajrlnwRWHPL0J/mvaPLTvtDg9f/w8fL9asjuiu5lXYtwxmzN+7WKZPnq7TKpziPS69efJgS4zxKT4rXuF7tG+y63V1apQVbClp07yOeMnc6njuss64a3VNfr83T1EUW3/tJ2lZYoX/9sFFPnTW0RffGgYeORQBohrjy0DMKS+JjNHRgeAvCsN+OxcxMqV075wqyUYLXo1+P7SlJWpLeO+T54XmbWm0wBHtd+uMnIWtPjzpTfrd5WnqX1ASnSoqoBE/tjwgPHHmJfEHdWlcun6E+BTv10nzrji2gjs9vaOoi80ToHkV5+r85b4S89u+jz9EP3fd/JmnJw6eob3roLpEObePl9TTvR1uP26Wj+3TQKYM76bfH9G7wdQ+NvTDkzNGLV32vgbsbnnZdUePXG4safh6QpL9+vValVbW/7K/2GfrlG4t0zpQFOvbZH3TUv2bL/YeP5f7Dx3pi5noZ9b4fKamM/Jbk/y3dqTNe/lFPf79ReY2cHf/P7zdG/N5o/QgWAaAZ4issgsUmbNmJCoa3IAz1c8U4X7X6Fewwv+AA6Vas85/zhkuyngw9PG+jyBURrHrbdp27bq5prTguUa8eOsm0duGIrkpPap3B4okDarvGVnfsrqmDxpuei/P7dO+8tyVJ7j98rA73fa4Plu0IuQZw7pQFumzqz6a1x76bErIFelnHnvrLkb/c7/XiPW61jbenA7Cxv6tbUzP0ytATTGtuGbpn/jsNvKNWZQ1HaaBxX6xueCBW/Y7EP36yQo9+s06/+3CZ3H/4WH0enuFAdQ379w+b1P2BrzTg0W/0xercqNaC2ECwCADNEG/RsVgaq8FiI8Nbthbu/9BmHJzqdywO3r1V8f6g34oPPbC2v3jcLp06KFPFCW21Ia2T6bkReZu0jrOEUE+Nz6/XfvOA4vzm4yReHzJBJfFtTWv/veQwJ0uLqPrb/x8ad1FI1+LlK75V3/ztkqSC8mpd83aWqn2EKNhndW5JyBlt47cs08Wrzdsv/XLp6pNvVZW38SnNkvTW5aMiWmOwK47o3uBzj4w9X9VBHcm/XPWd+ludQ7xXTB6Tg5jg8xt6+vsNzXrPnz5b1Wi3oMfv06TNWfrbrFf0w9Q/avkrN2nVyzfoh6l/1OMzX9Jp6xcoviYyg4VunrZU24sqtG5XqS7870JVcMTSQY9gEQCawbJjMVa3QjfSsbgyp8TpatBK1P85aPiuTaEvGHHgnalWs3dKevB26K6le/TypwujUBFi1dwNuzTp22kh688PP9n0eOFt4xXvPTC+zV7boZteC5oQ7TX8ga5FScovr9anK3MESFK1z6+7p680rbn9Pj317eSQ17487ET91Ll/k64bfFRHpN134oAGn8tOzdSrhx5vWvMY/ka7FokV0ZB7pq/UbR8uj8i13H6fLl/+jda8dL2+fu8+/eGnaTpyx2oN3rNVA/K368gdq/X7hR/q4w8e1LqXrtNtP32gpKrINRgUV9bo1Z+2ROx6aJ0OjO94AMAh/pLQQK4kLjEKlTRBIx2LczfnO10NWon654SPyLX4zfjw4c4V45DhXWtD+CUWA1z8WUucLgcx7JG7/q3eReZtX3O6DNKSzH1/dtp43TqsW+jnb2tz01G9A18/NO6ikMm4l62cpQF79p0hV3dOGA5uK3YWK+HOT/XBsp2m9YtWz9bIPPN/UwoSkvSnYy5r8rWHdk6JSI0NOaRjklbeMbHB5x+26Fq8dOWsQPduMBoW0ZAX5m3e/4ua4NBdm/XT67/Xq58/pT5F+9+S3L1kt56Y9bJWvXKjzl47d7+vb6rtRc2baI0DD8EiADSDqyR0W2RrOmMxdW/H4msLOVAc1nKK9519NTzoh0C/yyUNG+Z0SbarC0Qsz1m06trEQamoolpXLAs91+r5EeZuxe33n+RUSbZ69LTB6t2+9hdnG9p1sezWum/uvq7Fv3691tH6EJuOemZ2yJrH79Nf5kwNWX/gyIuV17Zdk6570oAMHdIxdGhLpA3MTNbi3x9n+dymtM56bYg5ePQaft0z/13L19vdYYnW6bWFW1RY0cLhK4ahGxdP14LXfx8S2DdFt5I9+t9Hj+i9Dx9Wellhy2qR9OBXa9gOfZAjWASAZujmMX8j4HO51SWzXXSK2Z+EhNp/6mEqNPbn5R/3TXoNDtVKu/eSkpMdrsh+a/JqO5GzGhjgsp5zFiFp4dJNOnv9PNNaYXxbvTfg6MDjoZ1T1C5x/2fFtQbJCV6tv2dfmPjQuAtDurUuWfWdBu+u/cxYlVuiPWUNTxLFwaHIIjC5YvkM9Q8aBLYxNVPPjjw15LV3Tupned0PrhodmQKbYFiXFJ20d4BRsIfHXhDSvXv5im/Vp2BnyGuJFVGnpLJGz/6wUQMe/UZXvLm4Rdfy+H164atn9eyM59TGZ31mos/l1rp2nbWmfdeQP6/1nbtunrL+e4tO2PRzg69pqj9/sbrF10DrRbAIAM2QIfMPTaVxCfq/kwdFqZomCNoOnRrBM1VwYOtUmq9OQb/FThlt78H50dI/vbYLZkO7ziEdyCNyN2rsP79XTjHbfA5mVTV+vXf3P5TgM4cmbw86VuVx+36BM/3XY50uzVYul0u3Hlu7zXtzWie9PPRE0/NuGfrznLcCjz9ezjmLMIuvqTZ1ttZ54MhLVO0JDeEHpFt3JbaJ81iu28HlcjUYZG5o10WvW5w5eveP74W8dsbaXSooj8ywDLReD89Yq9Q/fabfTlvW4oFwSVXl+vCDh/TrpV9aPr8+rbOu+sWtyrjpdQ245gUNuvo5dbh5qi46/Q791Mk6tO9Smq8v379ff5v1iuIaCCqb4vGZ68N+L1o/gkUAaAZvuTmYK4lLVHpSfJSqaYKg7dD1OxarapjgiYYNz9sUungADm6RpN8eUxucGC63lqb3Mj03ZM8WFRWX66Plod0oOHhMnr9ZVywP3QY9JWh7cPd2MXrmbgv0T9/Xpfzw2AtU5faanr9ozWwN3ft5sWYXg8Fg9uulX6pXcZ5pbVX7biHhnCRV/+10y6FH0egCbizIfHjshSGT0q9YPkO9Cs3B+vtLd6jDfZ/r7cUNT47GgWdnUYX++9MWzVibp+z8Mt372aqIXLdTab5mvn2PTt0YOlSuxuXWvUdfpsFX/VuvDj1eBW32fW6XxLfVuwOP0ZhLn9BFp9+hnQ0cP/CHn6ZpztQ7TGfnNtek/8wJ+71o3QgWAaAZ4srNv2ksiW9jGnYRc4I6FtOq9k21fvSbdU5Xg1ZkhNWZPQdosDi4076BAMEDXBJ8NRqYv01v/swPhgezT9/7VmN2ms8QXNW+m+Z1GRilipzTp8O+sHRLaoZeHBZ6huT9c9+UJOWWsBUa+yRWV+pPFlOT/3LUL+VzhwZ3HrdL5wztrLZBod5/LznMthrDsa59V00dNN60Fuf3WXYtStIlry/Sje8zCOxgsDavRCOemKUr31qsE5+fp95/Df2FVDgG7t6qOVP/qMNzQ7sCtyV30PiLH9XD4y5Ujcdr8e69XC69O/AYDbnq33p9sPU5oofnrtfC127T1Uu/lAyj2XXOXL9bR/9rtnz+5r8XrRvBIgA0g7e8zPS4JK6NXLF8OHdQx2Ld8BZJ+suXnIWChg2z6lg8ACdCB7Mc4JK3STPX79aG3Zy1eLAaP2d6yNqrhx5/UIx9ndQ/3dSZ/8jY81URtIX1vLVzNSJ3g16anx38dhwk1u0q1S9fN3dS3bR4urqU5pvWsjJ6692BRytYvKf2x9K28V79/YwhivPU/t26cERXnTgg3aaqGzf+kA4NPvfXcRfKH3SK4pXLZqhHUZ7l65+fu1nLdxZHtD5EV1WNX3kllaqsqR1asm5XqQY+9q3ySiP7C5ajt67QD2/dYTn1eWl6Lx15yd81r2vTj2UqaJOsX516uy4/5TYVxYd22SfVVOrFL5/R1+/eqyG7mv+ZPndzvuLu+ESrc+lgP5gQLAJAM8SVmYOF0rjW1bGYVFMpr6+Fk+hwwHp+7qbA18EdixWJSVLv3s4WFAVWA1zq/v/i/75c43A1iCbDMPTZyhw9O3uDLl71vek5v1whWzmP6t3eweqck+D1aMYNRwYeb0tJ1wvDTw553f1zarsWxzz1nV6Yt1lGGN0uaJ38fkPj/vm93lq8PbCWXFWmOy06+P581KUyLIZJXD2mR+DrG4/qrW1/PlHZ956gNy8bpQSvc+cr1nfvCQMC27B7t0/Usj9MCDy3pkN3vTXoWNPr4/01uquBrkVJ+u9PW2ypE85bm1eiw5/8Tp3+8qWGPz5LD329RgMe/Sbi97l45Sx99d596lARGtJ902OYxl/0iLamWg8a2p83hkzUYZc/rXldBlg+P2nLUi3+7y167dMnNCJ3Q7OvP/hv3/LfgYMIwSIANIPHqmMxluf+BQWLkpTCABdY8PsN3fj+Ukm1h+0PDjpjZ2efgQd0d1bG3o6spem9Q54bvjdYfG1h+OcOofW5/r0lOu2lHzX12ffUO6hTZGaPodqWYu6ievyMQ50sz1HDupi73x8dc57Kvebzhc9eP1+jctbpp62FuuG9JXryu+b/IIrWx+83NOm5OdpTZh76cNvCj5ReYe7Qm995gD7uO8byOn86ob/pcXpSgrq3S4zqrpATBmRo1R0Ttei28cq6fYKGdE4xPW/VtXj1sq/UrXiX5fX+NXujChnmckB47Nv1Wp5T++d77a5S/fnzyO4CivNV66lvJmvq9CcsJz+/Pvg4nXLeX1RY7yzFcGxs11njL3pUD1n8WZZqBxNdumqWfn7td/r5v7fovrlvaWJ2llIrm7aDI+P+LwIdnS/Nz9agx77RsL/P1HtZ2/fzTrQ2BIsA0FRVVYoL6vYriW8jfyz/Ni5oK7QkpVWxnROhvl2/7wehUbnrFef3mZ7f2TeGp59HwIdX1/6wW5zQVhvSOpmeG2G1LRwHtPyyKr24d1vvL1fNCnn+zUHm86k+unqMxvU6MDsW62TU2w69M7mD/jPilJDX1HUtStIfPl7hSF2Irh827dF3G/aY1jqUF+n3P30Q8tr7jr7U8hdUy/84Qd3SYnPwUWZKgkZ2S1NKm9qz6y4/vHvguZUde+rdAeZt3Qm+Gt354/uW16qo8Sv9/i84MuAA8PKP9v1vOG77Ks1/4w+65eePLZ9/ZMz5+tUpv7ecqh6OGo9Xfz76Mk286K/anNJw9+OIvE36vzlTNePd+1TwzCVa/spNmvLZk7pl0Uc6eusKxdeEBqB7yqr19Zpd+nlboa59N0tr8kq1PKdYF7++UNn5ZRZ3QWtFsAgATZS7Y3fIWklcokqqYnhrsUXHYlol/yGHWXm1Tyc+Py/w+MjtoRMMu5xofdD3gaJ+KJQVNMClS2m+OgWdE4YD209bCyVJHr9PF6z+wfRcldur9wccZVo7oX90zoBz0t9OH2J+PPpclQV1LZ6xYYEO3bXZybIQRZv3lOm4f4dOgb1jwf9Mw+IkaVb3Q/V1r5Ehr/3wqtGmAVqx7uoxPeStdwbOQ0deFPKaXy/9ssGuRZ/f0I3vL1FVjd+2GmEvvx2DSQxDx25dprc/flRz3rxDIy0G6Plcbt1wwk3607G/smUHyffdh2rolc/okTHnq7KxITB7Dd6zVb9a8a2e+vZFff/2Xdr97C/10bQHdMWyGUqo2XfO5Bkv/6jDn/zO9F6/Ib2TtSPi/w6Inv3/iQEASJL+O2ul/hC0VhaXoJjuUbHoWEytIljEPj6/odNfnG9aG7cjNFjscPz4kLUDzR8n9NXfZ67Xz5mH6Jx180zPHZ6zTtMPGR2lyuC0utzg+OwsZf4/e3cdHsXVxQH4t7txdxLiCRFIiABBg7sWl+LQQosWSrGW9oNCsUIpVtxrQHF3dwgBYkDciLuvfH8sJJmd2bhtct7n6VP23JnZG0iyO2fvPScnjTF20bYFUottPxvQtBHUlGunBlxNGuTCXMkbr6mP7R79seDZSUZ8wdMTmNx3Xk1OjdSCmLRc2P7C7nhrmpmMWT7nWPHvvcdzJkMs9OrmSkV5Otsb4cbX7dBpmzSh6mdkjWOO7THibVGCVU1UgJX3Dsv9ORCKJXibkAlXM/Z7NFL3Fd/hwUUgFqFNbBBckiJgkxYPw9wMFPAFKOArIV+ghAK+EoR86foug9xMWKXHo31MIIxz0uVeM0lNG2P7f4srNi2q9GuRlaWiju87TsDe5j2x8OkJTPC7wbkVm4umMA8DQp5hQMgzrLuzH3+498O61kORrazGefzbBGruUp9QYpEQQsrINyiaFctUVkdHW8NamE0ZlbJiMT23ADpqVbOVgiim51GpuBlcbDWuRIL2MisW4zR0odOkSQ3PrOb9r7cT1t8KxjNTB9ZYqw+UWGxI+B8TIKNkmrYAzG3QXpZ6ODLWs8bmVZv0NVTQ28kYl4OKut7+1nIQZvuchWqxMiGfB97Bsg7jKtxQgCiG46+4a6R9//goNITMrrjnbVvhgXkz1rHOJlrwaKx4yTVvmfd9K9uOYiQWAWCi/01s9+iPp3IaYzyJTKXEooIqvsOjOLf4UMx9cQYDg5+w6otWxhNTB4wcuAgROiZVds3ShOiZ4aueM/FT+88xwe8Ghr+9D6+492U+3zgnHT8++gcT/G9gZvevcNGuFesYsQTwjUlDZp4Ira30oCygzbSKjP71CCGkjAoy2LUJM1XUYKipwnF0HVHKisV/X1Lx5IbujF8c47FlRiLMM5n1sh6aOUNdpf5/FqmuLMD6Ac3wvJE9a6xFXHAtzIjUloiUHCiJhPgsmLmaN0tJldF84vHcjg3qw5nlvZ0Yj2O1DHGkaVdGTFkswjcvztTktEgNk0gk+Oa0HytunRaHL19dYcWXdRjLeZ2r09vWanOWqvLa2BaHmnVlxX+7uQeQU4f75GvaBqpo3idm4bx/HCtunRaHI+d/xcvDczHZ73qVJRUzldXwbecp6DBmXbUlFWVXosuK09TH+tbD0GbcRlhO24dhgxZjrdcw3LBsjnSV0lcb26TH4/zJFdhway/4MrW79z2JgOfGO+i47T66bH+AzLw6XFqKlIoSi4QQUkaiDPYWhUw5y/vrjFJWLOaLqMZPQycB86anfUwA65hOYwfU1HRq3bdd7JGgoYcImY6/rT5+Ui+kn5kGYfK/L9E18jUMcplbtc7ZeSFHWRUAMKW1VW1MrVZx5Uh+bTWEFfvy1RVoUz3feuvNB+7EyY8P/4GKmJkcOOrYAS85PqwBUGcbtpSFbBfrpd4TkKWkyoi1jw3EJD/2dnEASKHu0HVeREo2+AvOFv7nuOYGBu57wjhm6NsH8D00B58H3pFzlfLLUFbHNo9+aDp5O35rNRgiPnepjT5Oxshb2x93Z3aAuS7zfsTBSBN2hhqFj+d1suO8xslJXvhfLyfOMVnR2kY46dAeSzpNRI+Rq6A/6284T96Osf2+xZ7mvRClJX8H17znp3H8zBpoFORyjj8MT8E5jqQtURz1f/lBDXv8+DHOnz8PHx8fxMfHIzMzE1paWjAzM0OrVq0wdOhQNGvG3gpACKn7+Fnsm6QshUwsFq28FFVHAWqiUHhgrhZpFxPEOsagR/1u3MLlWaMmsCpWfL9xVjLMMpPwIjoNra3qdGVVUkkZudLEyPC391ljxZu2iOWsRKrPHIw1WbEgQwucsm+DwcVWd2oX5GCC/w1cCuyK2PRcdG1iBBsDDda5RHHkFIgQlZoDYy1VDD3wlDXunBSJCf43GTERj4+f2nOvVuxkZ1At86wpS7s7YNv9MKR+TBDGaBtiTZvh+Pn+n4zjNt7aiyvWnojRZiZdHoSlIDtfCI0GsBtAUTVdd1PuGF8swvo7BzDv+ekqea5YTX3cMXfBTSs3/OPcEemq7N+1ss5/0QY8Hg8dbA0Q9n0PiMQSKAt4EEsAAZ+H9NwCXH+XCBMtVXhZ6uG3OyGsa/B4PCzt3gQ8HvAwLBleVvow1VbFzBOvS31+CY+PtwYWeGtggb+bdgZfLELf0Bf47ul/6BTtzzp+cPBjXPjvf+gzbDlylVVZ47/fDcFoT/NSn5fUTfSbrIpERUVh0aJFePbsGWssNTUVqampCAgIwOHDh9G/f3+sWLECWlpaHFcihNRVgix2keE6v2KxlK3QogZ4Y0yYZHehyTZuKeALoNyKXRunvnvRqAmGyjRwafXhPdpuvoeCdQMg4Cv+9j3CLVcogkAswmCZf/9sJRVcKFYnStIAf38aaKhgfEsLHH4exYhvavkZI7EIADNeXoDL7v4AjwcNZQGuTm+LdjaKnUxqqIITszBw3xMExstptiCR4Nfb+yCQMFd0H2rWFUGGFqzDPc11sHuEe3VMtcaoKwuQuLw31t8KxpIL0pX+G1oOxpTXV2GbHl94nF5eFnZc24ZBg5exXnAXnQ/AliHNa3TepGzuBCchp4B7h4JALML+S5swLuA253iuQBln7FvjvJ0X/Iys8EFDH3yJGMpiEZTFQiiLRVD6+F+KmhYS1HWRoVq+D14meVkyyggI+LzC9yWCj2EdNWUMaW5WeEyzRlrwjyv6GZ7R3gYAoCTgY1lPZi3QsiQWZYn5Apy398J5u1YY738TG2/thaHMtvBO0f7459x6DPtsCWslZkIWszYrUSy0FboKhIWFYcSIEYykorKyMlxcXNC2bVs4ODgwfvDPnz+PsWPHIjOTOiERokg0C/JYsY5udXwrXClboXUbUG0wUjq1gjx4xjM/0Q40bwKoK+52tYp6ZspuVtPyY53FZ5GpNTwbUpMeR6Sic+QbVofOC7atGN0ttVQb5ufze0ayE0J3LFzw2siaEWuaHIVuEa8AANkFImy7H1YT0yPVYMv9UPlJRQADQp6iX+hzRiyfr4QV7Uazjt02tDmez+sMB2PFX2DB5/Mwt6MtnE2kX0uusiqm95zJOm5AyDN8+foyK77tfhgehadU+zxJ2eQWiNB/z2PwF5xFlz8ecB6jJBLiz/O/yk0q7mneC02m7sLogYtw2KUbXjRqghhtQ0TpGCNUzxRvDSzgZ2QNXxM7PDd1QIieGWdSsat9yY0hf+zJ3RSoJLtGuMNUW7pSsLWlXonXGCOzctBAoxz3CzweDrt0Q5uxvyJQn70CcVDIE+y6spVVW6PgY6mZ17Hp6LTtPixWXMX8M360u0pBUGKxkkQiEWbPno3kZGmhe4FAgFmzZuHRo0c4ceIEDh48iHPnzuH27dsYPHhw4XmBgYH4/vvva2nWhJCK0CrIYcVaN7WshZmUA8eKRe1iKxZla7KQhqf4+gnvaH8oyxTXzm/drmYnVEc8N+FKLErrLJ72+1DT0yE1aNfDcAx/V/I2aAAY14K9EqshUBbwMa0tM4kIHg/bPfqxjp3x8nzhn//yia7uqZFqsvluqNwxVWE+Nt3czYpv9+iHcF1mYwh9dWVMrWe1SdWUBbj1dXs4GEm3rl6z8cTu5r1Yx22+sQtesW9Z8fZb7lX7HEnpJBIJNJZcwMXA+JIOwo5r2zGSo0xGspoWBgxZhmm9ZrG2vVfE9a/b493ibpxjP/RwqFBpifY2Boj+sSfil/fCo7kdYaLN3o78yTcd7aBd7MOzn/s4Q125fKmjED0ztP98PR5xdEaf7HcdM15eYMQiU3MhkUgw5MBT3AtNRkx6LjbdCcEfD8LK9bykdlBisZJOnDiBt2+LXiTWrFmD2bNns7Y5N2rUCGvXrsXkyZMLY5cuXcLLly9raqqEkErS4ig4bGJW+TcP1UpbmxUqvmIxlYqHk2L6hL1gxVqMaTiNW4pL0tBBmEwXxlZx7wCJpMSbbKL4LvjFYMi7h4xYrkAZ54ttgx7Xwhxelno1PLO6Y9tQ9vbNI027IE2FebP7WfATWKYn1NS0SC1Y+vgY7NKYTRfiNHTxv/ZjCh+baKngM5dGuDuzA1SU6t/tp4m2KgIWdsUkL+mHzQs6T2E1AFMVCXH8zBqYZLFXKE7626dG5km4SSQStNpUevOVnx7+jSlvrrHiIbqN4DV2Iy7YeVXpvOwMNdDEiFlr8X+9nLCij3OFr8nj8WCkKT+h+ImXlR7eLu6G4xNbIWBhV3zd3gYz2tsyjvm2sz2if+xZ4nVS1bTQf8hP8DNkL8TYeGsv2sQwy+/EpOciJIlZ0347JRYVQv37zV7DTp8uKtjq7e2NQYMGlXj8/PnzYWJSdKNy/vz5Eo4mhNQljflCVsyicR1PLPL5rORi8eYtY46wE0mkYSleqqO3TGKxgC8Ar0ePmp5SnfGsEXPVYqPsNFhmJCK7QCTnDFIfeEcHoFF2GiN2yaYFMj8mzca2MMfBMZ7gN+A6m1w1RrNU1HHQpTvzOIkY019dqqlpkWogLmEbolfsWyx5fIwVX9RpUmHzCVUlPj78rzdOTm6NZqbsDzvrCz6fh32jPDC+pQUyVDUwtt8CFMjUkLPMTMSl//4HPZlu84eeR0Eo4q7nR6pXZp4Q3Xc8hE90eonHjfe7gZ8e/sOKv9VvjM6jViNUz7TCc5D9dbpzuBsA6fuzU5O80MXeENb66ljQxZ7Vjbw6NdJWxdDmZnD6uNV/bf+mODq+JX7s6Yh7szpg/cBmMNMpfedTiro2eg9bgUgtZrJdRSzEsbNroZ9TVIcxX8j+fVNSGQZSd1BisRLy8/Px4kXRTdiAAaWv6lBRUYG3t3fh49evy18YlRBSO6xU2G/6eBwrAuscmTqLOvnMLd0l3TSQ+u/fl9LtiZbpCXBJimSMPWjszFmns77r6yz9APCZKfsNfNtYdtdsUj+IxBIsOOtXajfow5+3YCTkG6qpbdhbWrd79GXFvnh1BSpCWh2vqF7GpHHG1QvycOjib1CSadjywMwZh5t1BQCM9miMmFJWNNU3B0Z7AADuWzTDt52nssY9EkJx4cT/oJ3HXJWl8/3Fmpheg5YnFLGabu1/GolbwUklntcmJhC7rm5lxSO1jNB9xEpEy6xOLa//9XYq7OvT0kIXw9yKNVwx1caNr9sj9PseWDegWa02juPzeRju3hj/6+2E9sUacQ1s1qiEs6RitA0xYtAi5POZtYktMpOw+cauwsf2q69X3YRJjaLEYiVER0dDVbVoKbG9vX2ZztPT0yv8c0oKFewlRFGo5Wazg4rQ3V0mMVR8xSIAXCipngyp994mSL8f+oQ9Z40FeHao6enUCct6OkJNiY9HZk6sMUos1l97n0Tgt1vvMVRmG3Q+Xwln7VsDAJqbKcCHSTVk0yAXjPZozIi9NbDAFWsPRswkJw0j3lIdOUV1NzSZHZRIsOXGTjilMOtm5gqU8WXvWZDw+Ij4oQf+GtcS+hoqNTTTuoHH4xU2xdjq2R8HPyZZi2sb+xa3/l0Cs8yihFauUIx7oUnUqKIaCEViTDvmC70fLsFs+RUcfRmD3++GoNVvdzD31JsSz22ckYQTZ1ZDVcTctZSqqol+w36qdFIRAH7o4Qi/77rgzsz2uD/LGwYK9jOzpLsDtFQFpR73xMwJ33T9ghUfG3gbwzg+0COKhRKLlWBrawsfHx88e/YM58+fh6Nj2bozRUcXvQjrNsCVIIQoKrU8dvMWhUgsyjRwkV2xuPdxeE3OhtRRvUPZ2+ItRw2phZnUvrbW+ng8tyOemTaBkMd8q9T2Yz2g+Ax2l3iiuApEYnx1/BXaRweicRYzkXLFxqNwW2cnuzpe/qIGaaoqYf/H1VnFbfPoz4rNfEmlfxTJjgdh4C84C/6Cs1h4zp81/u2zU5y15pZ0nIAAQ+lKVgs99WqfZ131Uy9H6KkrAzwepvechYs2LVjHeCaE4uFf36F5QlHN3k7bHkB54TnwF5zFnFNvEJnK8b6TlNu/vjHY8zgCeUIx4jPzMfrIc8w77YcX0dyrcT9RK8jDydOrYCZTF1PI42PYoMXwM7KWc2bZjfi4OtHZRBvetoYKWYO0rbU+fOZ1xv5RHqUeu8O9L446sj+0/uPqds76o58c941BbHoutt4Lxa5H4UjJzq/MlEk1ULzv3DpIW1sbTZo0gZpa6TUGMjMzcf9+UUa+rKscCSG1Lz0xlfG4gC8AVBTgU0WuFYvFtoLkCamuT0OnJBKiR4QvI/ZBQw99RzWsLWzFNTfTgZeTOV4Z2zDiLeKDoSIsgOnyK8jMY9ddJYppyP6nAMDdDdqh6Cbo++41V99KEagqsVepnLdrxWp81Db2LTzjgmtqWqQS/n0ZjRkniko1FYiYK+iGB93D2jsHWOddt3LD5hYDAQCd7AxY4w0Jj8dD1DJpfeJ8JWUMH7QEtyxcWcdZZSTi4V/fYaz/TdbY1nuhaPnbHeRQTd9K23qvAg3XJBLsvbwZXnHvWUPfdP0SN63cy31JI032PcPSGqyZWJ3sjTQx0csSmiqlrFzk8TCz+9f4oKHHCBvlZmDn1W2M+5PiRh5+DvMVVzHn1Bt8dfwVuvzxgH426hhKLNawvXv3IjOzqABp167s5fGEkLonODELmjJdoTOVS/8woU4wYL7BV5KIGduhH0ek1vCESF3TMdqPtZL1so0n+BxJg4bkl37OeGTG7L6oKhLCM16aIPls3xNWvSaieF5Gp+FCYDx4EjGGvX3AGCvgC3C6SRsAwNkprWFahkL1Dc3FL9swHov5AuxwZ9danP7qEq30VQAlNXWb9OYa/j7/K/hg/t6L1jLAxD7zIPm4wnuYW2Ou0xsUDRUleJpLd4zkKKti0JAfWGUCAEBDmI/DF3/D1ms7oCxi1iJNzMrH3scRNTHdeq0i73OXPj6GMUF3WfHdzXthu0e/Cs1jQRd7qCsXpV862OjDvXH92r04v3Ppi6aSNHQwvedMVvyz4CeY4H+jTM/zOjYDd0JKro1JapZS6YeQqvLq1Svs3r278LGNjQ26detWK3PJzhfBeW3ZfnC52Oqr4+wUL7nj350LwMWghApfHwC62Rti82AXuePDDj1HUHwm8vKKlkKrXr0NlKOg+lQvS8zrZCt3vMWme8ivZJe2lb0dMdiVu1NYdFoueu95UqnrA8CRMR7waKzDOXYvNBlfnSi5fkhZPJjZDjpqypxjh55HYd2tkEpd30hDBbe+bit3fPnVdzj2KrZSz+FloYv9o+R/wjj5X188jeLeFvEhPQ83WIlFdbST+Tka4WaGn3rK//Sxyx+PkFjJ5fsLu9hhQksLzrH03AK038asD7YkPBcTZY4zyklHmpp0G3dKTgHr98GOoa7wtuVecfAyJh3j/n5ZobkXd/mL1jDX5b5JP/XmA364/LZsF5JIOH8PqAj4ePGNt9zTfrsTir1PI+WOl4WTsSb+m9BS7vicU364UUpR8NL0dTLG+gFN5Y4P3PcUoSkV2y5V8HG16phA9pvnZhOGQSiUrshz3XCnQtcvbl1/Z/RzNuEcC0nKxqADzyr9HMfGt0BTE+7yBNffJWLuGfaWvhJJgNaNnTDD9wIj3C42CI8bO+NmcBL8YtPg/PE59zyOwKZ7YRWZeiFzHTVc/rK13PHvLwXhtF9cpZ6jg7U+dg5vLnf887988Co2Q+54WYxrYY7FXeXfYLTb+gAZlVzxuaxHE4xylyYwRCLmyoUP6TnosftpqdfIE4oR/vHnp21MECwymT+v163ckPrxd2VvR8PCnwkAeBqZislHX1XqawCAm9PbwFhLlXPsX98Y/HyNvWKmPLRVlfBwVnu542tuBuPIi2i54xWxz7UHlj/4k1GXbEzAHZh/fwqNzY0rdM3PXBphVR923dNPeu9+guj0XLnjZfGNtw2+4GhKA0gbP7T8vfJ1wH4f1AzdHbjrsgXEZ2LEYfmJvbI6M6kV7Aw1OMcuBMZj4flAzjF5q7AFYhF+fPgPlj36lzWWpaSKQYOXIUZbWiZAVYmPvAJhpe4zgArea8h5PyBPme41ErLkjpem+IqqTBUNDBjyI3Zd3YpJfuy/mxm+F9Ai/j1GDFzMqNu35HwAtt4vecUd3WtUrcHvHmLl/SOs+B3zZpjVfXq57jWLM9dRQfcmRrgflgw+j4f4zLwK/ZzUxXuNTwqEYvAAlPaR69kmbbDfpTsm+zGbtfx+YzduWrohUqf014nRh5+jkTbHa2ex3wPbuxmy3h98Uq57DTnqy73GgW66UK7kkkNKLNaQqKgozJgxAwUFRZ9ELV68GEpKtfNPIJZICgv2V0Rebh58fX3ljvtHJONtQuXe3JmpiODrK/+mIzAmGe9SZcYzyneT4hcaBV/ddLnjb+MzkF/JXaJv3oXCVsR9ExiTKazUv0PhcwQEgZfAvSX3dUxulTzHq9dvoK3C/RvH731mpZ8jUS2nxO+pgPBUvE3gaJ5SDlq8gpKfIzoRbxPkvxBrySYWVdRYX3dAeAx8feXPMzAuDcm5lfum8nsfDl8l7heQjHwxa07vwa5zZJSTjmD9ohUFsue8DnwH7XTupN+bxPyq+Z5644dELe7fgW9Csiv+HB9/D6jwUeK/t19oeqW/DklByb8LAyIr/7vQWl0EX1/535eBsakIL+fvvuJUhAWsotk5Sip408QR/I9fW1X8e/u9DYF5HveHA2HpBVXyHK/9A5Efy31T8iYqp0LPIeJo4NImJgj4+B7v4pM3yLOU/oz5hWRU+uvIyM4t+fU1PAVvEypXd8tAICzxOQKjk/A2qXJdfP1Do+FrkCl3PCguHZkFlVvt6fcuDL7g/hDTzz+g3P8WIzkajBxzlN4wNDNQZv2dvY7Lq7LfhUbq3KuD/d5lVfo5tJR5JX9PhaZV+jm0lXnIKPbvmaihixNN2jFW/GgX5ODzgDvYpdKnQs/hHx4LX1/5v08DP6QiNqtyW+P8QiLgq8Zd5ytPVLn3zp+8efseRtncidyglKr6XeiPDB3u34V+4eX7XeicFIk9l7egfSw7GSni8TGu37fwaST9EEFNwMN//Y1xKjiq0l9HldxrlPLaWKF7jXIa76yJQfYaGHE+AUKBEqb0nosgfQusvH8EApmO2m1j3+L54XkYM2BB4VbbrAJRqX+XdK9RdZonhOLQxd9Y8VAdEwwftAQFAu6fq7IICwtHTFI2UnKk31NJ2RV7na2L9xoVMa/rF+ge4QurjMTCmG5+NvZe3ozew5cXroCWJy1XiLTckn8+hWIJ3rzhTnpX6l7jo/pyryGW6ACoXMdx2gpdA2JjYzFx4kQkJBS9+Z00aRJtgyZEwWjlM39pZynIVuhEdfYnzEY5lVuNROqPPmHPoS/TKfyMXWsItBWgMVENCNYzQ4LMz1C7YjfY1MCzfuBJxBguk2Av4Atwqol0Jf1XbtQNuiSNNNmJ0V3u7ATil68u18R0SBWwSo/H3ku/4/XB2ZxJxTyBEkYNWIjTDm2xuJUudnU3xN2RZjDRaNglNGTxeDzY6Chjlrv2pwDWthmO3sOWs15bAGkX9SvHf8K3T0/KrTdHqoddaiwunFjOWkiQoayOzwb/gESNym1bdtSveFKyPkpX1cTU3nNY8R4RvpjlQw2/FA0lFqtZcHAwxowZg6ioqMKYt7c3FixYUIuzIoRUhKLWWOROLMpfqUsaljEB7G3O55p3hhO9AZbi8fBIZtWiVUYiGmdIP8m/EFa5ldSkbmgXEwjzTGY36KvWHkhRlyYD2pkpxu/72qIm4GFjJ2b5jNsWrgjSN2fEWsYHo+WHdzU5NVJOJlkp+P3GLrzd+xUm+11nraoDpO9/Bg5ehhOO0i32wxw04WnCvZ2fSH1mrwELraKk6w1rd7Qc9xsemTmyjhVIxFh/Zz823N4HHsffP6l6FukJuHZsGet1QAwexvWbjzcyjdzk+ZRcsdIWQFVQtAKspYkKbHVos6is69Ye2MZRs3LN3YNwTqrcFmJSs+i7uxq9ePECM2bMQEpK0ZaKtm3bYuvWrVBWrt0bNj6PB0djzQqfb6uvDnd3+bXqmkUGIDyncjUWm1oawt1dft0TZ9/n4CnJ1FhUVSlX3QsXWwu4u8uvseh4M6PSNRZdHWzhLqfuiVFaLhwfVX4puWtTJ7jLqXuSoZMMR//K1z1xa+4qt+6JrzAKjlGVr7FY0vdU0/h3cEyrXI3Fpua6JT9HoC8yJdw1Ft/GZ3JuhZb9OWpqbQZ3d/l1T5wf5FS67olLE2u4u8uve+J4h7kaUT2dXddONrForqMKTdWil4Tmzg5wl1NjURKTDseXlduKCQBuri5yayyGCj7AMaSCNRY//h5QEfBL/Pd2SQuFY2Ll656U+D0V6ofY/MrVPWlmZQx3d/k1Fp2fP4WqWsX+PWKjEzAohFl7KVVVE93mjEdLz6L6eI7XuH8uysPF0Q7ucmosaidlw/FJ5WssNm/mLLfGYqJGIhwDy1ljEYBILMGjxk4YGMKs1+cd7Y+jzh1xNzqv8HvAJTcCjjFh5X6O4sx11Ep+fY0NwrvMytVYbGqhD3d3+TUWnf18kM+v3KrmZrbmcHeXX2PR6W5WpWssujjYwL1YjcXi251cmjWF4335W7EBICkrv3Ar2sggdu28447SbtAujbQ4/03yI1Ph+LryNRbdXF3k1lgMRAwcwytfY7HE76nkYDimVK7GorOZNmb184R/7hvsefLx9yqPh91uvfDr7f2MY6e/uoxppkWvkwYaypzdUlnztG4Ed3f5NRadnzyBdiVrLLrYWcHdXX6NRceblf9QztWxCdzl1FhUic+E4/PKf1jRvFkzuTUWg/mxUHqUCqHMcmvd3Ex89+wk5j4/A02h/CY7L41tMbb/twgwLPp7kv3+cskKh2NceCW+ggrea8h5PyBPme41lCv3Pr34vcZLtwKcDYjH5H+lvzeidIzRZeRqbLy1l1XLFwDmPT8Nw5x0TOk9B2K+AAIeYG+oydqxSPcaRT5k5CG9lO2xspyTInH+xHLYpMezxn7wHoezTdpwnMVkqKEMQ00VRj33d4lZOPH6A4w1VTDKwwyaKkpoGiT/XqOs6uK9RllxbQte1GkSeoa/hGNKTGFMXZiPQxd/Q/sx6yAUcKes+DzAUk8dqgJpOjc1twAFIjG0VJTAF0u/B5T4PLi6ukIgYK+kLte9hhz15V6DX8G6ocXxJNTOsFqcPXsWS5cuRX5+0Q91586dsXnzZqip1c6n3j4+PhCLpUkyPp8PT0/PWplHVRIKmXWi3N3da61uJanfNOYeR/bmEYzYP04dMTqw8k0tqt2bN0BzZhJhnddQLO40qfDxliGumNlBfpK9LqPfAxX3Re/Z2HNlKyO217Unpr6+Ukszqps6jV6DO/8uYcR2uvXB1z1nAADEvw6sjWmRYirye2DdzfdYfD4APIkYEbumMFaq5POVYPr1IaSqaSHihx6w0GPXqiVsTyJS0HZzUa1Kw+x0RO2axGjikqmsBvPpB5ChWpT4op+hmnPidSyGHyz2QY5EgnEBt/DrrX0wyZGf8MjnK+H3FgOxrMM45CsVJX8+9zTHkbEtqnPKZaYo7wf4C86yYuP8b2LH1W3QELITQvtce+DLXrMg4fHRSFsV56e2RgsLvRqYqeLh+rstSbdwXxw7u4ZVEgYAdrj3wYzuX5e6aGVlX2cs7S4/0UeKyPv3aR0bhHt/L4KSzArd5e1GY3n7z0u8pomWCow0VeAfJ/0wkc8DtnQxRGtT6Qd2dfX3QF1SFXki2gpdDbZs2YIFCxYwkoqDBg3C9u3bay2pSAipHNnVitJgxVf91igj9soI2RWLs09W/pNmolhex6Rhts85Vvxv5061MJu6zaSbN3KUmCuqOke+rqXZkKoSmixdGdY+mnsb9Kdu0JRULLvWVvrwstQrfJykoYPjDh0Yx2gV5OLzwNs1PDPyydW3Rav8TDOTceX4jzh08Te5SUURj48DLt3gPGU7FnWezEgqAsCCLvJXJpOyO9KsKzqNXoN4dXYdvylvrmHjrb2ARIK4jDwsOFv+1ff1nVAkxpxTZX8vq5mfg83Xd+La8WWcScVDzbpiZvevyrQTromhgtwP1AEDmjbijD8xc8LqNiNY8e8fHUXr2KASrxmfmV+YVASkta83vqj8ThtSPpRYrEIFBQVYuHAhtm5lrv6YPn061q1bR5lyQhSYbH1FADBvzL2Vqc4xNGSHqMZigyYSSzB73na4J4Qx4u/0zHDTSv4W2YZq+xgvPGjszIg5p0TD9GMy6n1i9XeqJFXrrN8H7Hwo3arJ1Q360zboP4bRz0N53ZnZHs7FShLsduvNOmaa7yVGY4rcgsp1cyZlJ/74994uOgDPjsxHjwj53Ub/c2gHt4mbMaXPNwjTlW615RfLs+wf5QEP88o1tCBFXjRqAu8xaxGqwy4bMvfFWcx9cQYAcCu4ctse6yPrVdew9V5oqceZZSZh2cN/ELLnS8x6yd0g5EjTzpjae06pXYkBwEhTBUObc29DJ2xT23CXmgCAn9uOwrNGTRgxJYkYx86shUlWipyzuAWnVa7UCik/SixWkfz8fMyaNQunT58ujCkpKWHlypWYP38+eFWwb50QUjuEIjHnikVF6QoNZWVAT48RouYtDdvIQ88w24e9HWWr54AyvZFuaEy0VXHbwpUV7xwlXR3huOYGPlSythupOdfeJuCz/dKamTyJGMPePmCM5/OVcLpJG0xubYnp7WxqYYaKTVVJAP+FXQsf37FwQYABs1aXZ0IovIo1cfHceBt5Qkou1oS8AjFGBN3DzaPfo3FWMucxV6w90HrsBowYtIRRS/Ha9HZIX9UXd2d2QOKK3pjoZVlT024w3us3RtdRvyBCm/3h9a+396NX2ItamFXdlp5bgNh0dl1QZVEBmieEYrzfDWy4tReP/vwW0TsnY/mDv2As533wyrYjMaHvfIj43N3Nw3/ogf2jPNDURAtelno4O6U1lAT0vqmsBrk0wvoBzTjHhAIlTOg7j7VDxDIzEcfOroWyqKAmpkgqiH4KqoBQKMScOXNw69atwpimpiZ27tyJESPYS3oJIYrll+vvoZ3Pbo4h1lSgrQ8y26GNcirXmIEorpi0XDx/8AqD3z9mxDOU1XHApTtW9nWWc2bD9sDGjRXrElm07Wr344ianA6phAl/+xT+uUN0ACu5csVGug1670iPGp5Z/RLwKbnI43GuWpz+6lLhn4MSstB/zxPWMaRqPQpPQf6RP/HX+V+hImav6AnTMcHAwcvQZ/gKPDNl14yz1leHhooSOtgawECj9IY7hNvhz0uuXxahY4Kew39GnAZzNahAIsY/59bDITkaq669RY8dD7HonD9yGtiK30uB8Rhz5Dn0friIQXuf4Muj0lW3ppnJ+OLVZey99DueH5qL9C2j4HtoLg5e2oR5z0+jdQkd6dNV1DGxzzf4scO4Erc/m2mrYqKXJfwWdsXjuR3Rxlq/yr+++ozH4+HbLvZIXNEbWqrs5G2goSW+6zSZFe8Y7Y+9lzeDL25Y3+uKhBKLVWD9+vW4efNm4WMDAwMcPnwY3t7etTgrQkhVWXPjHXQ56q/omSrIVmiAI7FIKxYbqqO+MZjpcx4CmQLZB1y7I0NVA7MVtIlPddvyy1TWp+hditVZ/OlyyTWASN3xIaNoZcvIIPnboEnlOBXbDn2oWVfkCpi1+UYF3oVOsdfWG+8TkVLJTqaESSSW1uTLyBXil+vvsGH2Why++Bvr9z8A7HfpDtdJW3He3kvu9eR1miblM6iZKbrYs8vUFPfOwBwDhvzIet3Ry8vCX+d/xc/n3uDG+0SsvxWMmSfqf83f028+YPD+J3BdfxP99jzGvy9jkJ4rxAW/GIiPH8edvxchZuck7Lq6DZP9rsMzIZTRNKokV6w90HziVhx26QYA8LLUw8ExHpzH0urEqmGgoYLn33DX9N7u0Q8HPv5bFDcu4DZ2X9kKHsfvr5I8DE/Bny+iEJNGO0uqExX9q6Tbt2/j4MGDhY91dXVx6NAhODhQZyhC6otcoRi6edmsuFFj41qYTQXJJBb1czMhEIsYWz0ycoXQVqOXhfouIioByzi6Pm/xHAAAUBZQ6Q4uTa2NEOjsAec3RauqnFKiYZaZhFitkm8QSd0gkUiw5EJg4WO+WIRh7zi2Qdu3gXtjnZqeXr2WrK6D447tMS6gqGmLpjAPYwNu4w+PfoWx+2EpGNCMu7g/KZ9z/nEYtK/o95VX7Fvc4kgqCnl8zO4+HTvd+pS4Ustnficq7VRFtNWUcHV6O9wJSUL3HQ/lHvfc1AFTe83GXxc2MOIt44Ox6t5hfNdlCgDgwNNIfNXOGik5BZh76g1yCkRY1tMRX7Sxrtavo6bMOfWGs35i/+CnWH97H5xToit03VsWrljXehgu2bRgfO/P8rZBb0d2ncsDoz0q9DyEm4OxFpT4PAjFEuYAj4eve8xAs6RI1irTyX7XoVmQi6m95yBLpeTGameCs3H8fRYCkmMKY68XdIGLqXaVfQ2kCKXcK0EkEmHVqlWQfCyCzOPxsGHDBkoqElIP6XGsWHSwb1wLM6kgmcQiHxLo52YyYro/XERAHG2Rru9a3jnP6oB43rYV3utLv5/VlLnrChFAuQf7E/TuEa8K/+wbQ10I67Lr7xKx7ub7wsc9w1/CTKYg/GUbT6SpaWFeJ7uanl69tK5YLa1dbn1Y49NeMZu4nA+IK3xfTcrvTWw6frgYiLmn3jCSihbpCTh1ehXUhcwVoQV8AcYM+A473fuW2v3WvTE1aalKAj4PXZsYldjMAgD+adoZa72GseLfPj/FqLfYdvM99N39GG8TshCZmotpx14hKD6TdZ6iyCkQ4U5wEvY/iWAlFfVzMnDwwkacPfVzuZKKIh4fPsa2WNF2NDzHb0K3Ub/gkm3Lwu/9VX2dcWdme4xvaQkTbVWs7d8Ugo/divo3NcFIdwV6368g4pczy2SoCPi4O7MD8pRUMHTQUoTosj9oGvn2Ph7/uQAt4t6zxor7+UkqApKZdRmb/3qL6vlWE1qaUgmXLl1CeHh44WN1dXUcOHAABw4cKPM1jIyMsHbt2mqYHSGkKnFthebJNESp04zY27aNctKRKFO/57c7Idg1wr2mZkVqmkSCLhf+YoW3tBhQC5NRPOo9ewCb1jBifUOe4UgzaS05z413IP51YG1MjZTBjodhjMcT/G6wjvnHWbo16zMX6vJZFb7tbIeF5/wBAPfMm8HfwBLNkiMLx90TwtAmNgiPP3Zd3/kwHFoqSlg/kLu4P5HP/0MG2m+9h8w85k2zQCzC0XNrWUl0EY+P0QO+w0mH9jU5TSJjxzA3DHU1RWRaLuwNNdBz5yPWMcs6jEXnqNdoG/uWET9wcRPcJ25GgoYe57UXnffHqcmtq2Pa1SosORtdtj9ARCq7vnmzxAicPbkCtunxJV4jS0kVvsa28DWxxUsTW7w0tsMbI2vkKKtyHm+hq4Yl3ZmLg77r2gTT21kjI08Ic92SV8eRitFTV8abBV2w8pr0e3tZT0foqknLZsRoG6L7iJW49e9SWGckMM5rlhyJZ0fm42+njtjm2R8PGzuXufng5aAEDKLX+CpHicVKuHTpEuNxdnY27t1j1+opibm5eVVOiRBSTXTz2VuhoatAn94bs7dtG+ekIRDMjo57HkdQYrE+u3kT5pHBjFCgvjmuWnvUznwUjGE3bySracGg2GrfPmEvoCQSQiigt1R13YWAohtR3dxMDHnPvIFPU9HAqSZtYWeoAV11ZdnTSQXweDx0tDXA3dBkgMfDLvfe2HRzD+OYmS/PFyYWAeC3O8FY1dcZKkq0sao8/vSJYiUVAWDRk/9YCSkAmN9lapmTikOb0014dRHweejbtGhV1qExnowGU4C0W+7Yfgvgc3gudIo1EzTNTsW+S5sxcMgyzhWnfh8UbxdKZGoO7H65zjnWI8wHx86u5X5PDiBaywAHXHrgVJM28DGxg1hOZ2curxZ04YzrqClDR41eD6pTM1Nt/DWuZeHjD+lFtRDDdRuh28hVuHbsB85k8piguxgTdBfRWgZ4aOaMV8Y2CNVthEhtY0ToGCFayxAFMvV9B+9/yvkhcE6BCHdDkqCtqoTWVvqFq1VJ2dArdiWEhITU9hQIITWEa8WiQiUW5axYJA3M77+zQltaDCz8lHdya0vWOCmiqqaKizYtGTH9vCy0jwmUcwapKyQSCXKFRbXlRgXdg5qIuUXqmJM3cpRVoaNKSeKqdGRsi8I/H27aldWMYlTQPTTOSCp8LJYAaovPIySJ43WXsLyJTccZvw9YfZ29LdAjLhg/PfybFd/p1qewrm5Z0AeONWdcSwvOeKieKb7uMYMV7x/6DHN8znKeE5yUjfP+cax4UlY+4os1saorrr5NgPXKa5xjPcN8cO7kz5xJxQR1HUzrORP2U3djmfc4PDd1KFdS8adejtCjD5PqDG2Z1+BQPVN4jduISzbyu6mbZyZj+LsHWPHgLxy++BtuHV2KkD3TkLNpOAL2fY1/zq7FrBfnYJP2AQCgsvAc0nIKkJgl/TlIyymA8Y+X0Wf3Y3TYeh/KC8+hQCS/SUx2vhCJWXlUuqMYeudUCefPn6/tKRBCaogOR/MWSiwShRISApxl3nykqWjg0MdtvADwbSf7mp6Vwrlg1wpjA28zYv1DnuKOpSsAIDQpG7bUObVOkUgk6LD1PiPGtQ36UxdKuk2oWpZ66ng0xxttN99Diro2/mzaBV8UayClLBZhts85LOk0kXHerBOvceHLtjU9XYVy6Fkkvjjqy25+AEBFWICDlzZBWcxcxfjS2BZzun1Zak3F4gw0VEo/iFQZV1NtvOFYbfh3087oFfYCE/1vMuJr7xzATcvmeG1syzpn4L4neLOgC5p9bFix+vo7LLsUCLEEmNHeBluGuNaJpjzLrwRh+RX2yloAaB0bhP/OrIaKmN3l+USTtvi65wy528HL4qdeThU+l1Q9TVUlDG1uihOvPxTGktV1MGDIj1j09D8sfXQMmsKyJcb5kMApJRpOKdEY+fY+Nt/chRcmdvi9xSCYLM1nrWYsTnXReeSs6QdVJWaS+kJAHMb/5YOUnAL0czbBn2Nb0C4H0IpFQggpE66u0NBWoK5ilFgk27YxmiQAwL7mPQu76n3Xxb7wxoPI13nmWIhk6vj0D3lW+Gf71dcRVwdXgjRk35z2w6PwovpyLonhaB/LXGX6Ts8MDxo3BcD6MSFVoLWVPsx0pLXNfms5iDU+7dUlaOYz66ldCkqARCJBem4BFduX44eLgZxJRQBY8eBPNE8MZ8TyBEqY2PebEm+mSe07OEb+yqzZ3afjnZ4ZI6YqEuLP8xugVsD92vPdxzqnH9Jz8cPHpCIAbH8QBp/omms6FpyYhXP+cUjOLmoilJknxLdn/OQmFZ2TInH+xApoFeSyxn5q/zmGD1pSpqTiZy6NELCwKyvu3lin7F8AqTGHP2/Bion5AqxuMxKOU3dgd/NeyOdXbI1ci/gQHLy0CcF7pmGc/80SX/QvBjK3X0skEow+8hwpOdIdDxcC4/G3T8W6ktc3lFgkhJASZOdLPx3VzWduycpR1wQECtQ9lzOxyF1759PXTOqRzExg715GSAwetnn0K3xcWmdKIvVlXw/cL1YPDpAWEbdNLfpk3Wz5FURxFJ0nNSsxKw9rb7zHFpmOorN9zrGOPdysa+EKroEu7C6UpPJcGkk/uAgwtMIFW3ZJgSlv2FsgBd+dg94Pl2D18zVce5vAGm/ootLYyRYAaB/tjwVPT7LiP7Ufy7mqzctSDy/mdcL1r9pV+RxJ+Xk01sHvg105xzJVNDC2/wIUyGz1dU2KwNq7BznPuRgYj2nHfNFh631WDmX+Gb8qmXNpdjwIg8OaGxi07wkc19zAq5h0PIlIgc73F/HbHe7yYhbpCbh8/CcY5rLfr07tNRs/txtd5pW3Jye3hpOJFo6Ob4lPpfN4PODbzrRToy5SVxaguwP73gUAYrUMMb3XLJh+fQhTe83GObtWiFcv/y4yi8wkHLr4G27/uwROSVGcxww98AxpOQUIis9EfEYerr9LZNWynXHidbmfuz6irdCEEFKCTy8esisWczW0oFD94TgSi4ZyViwGxmeihYVeNU+I1KjDh4E05qqEc3ZeCCm26sHWgLbvlgWPx8O9pu3QKdqfER/8/hF+azW48PGyS4HYP1r+qhNSvXILROiy/QH84zIZcb3cTIz1v8WIFfAF2Nu8JwBAWcDD2BbUWK86iIqtrPut5WfoF/qcMf7d0xPY5dYbeUrsbbcJWfmYc+oN/L7rUie2bdYFL6JSOeOa+Tk4cGkT+DKb+u83dsavxX5HFbd9WHN4mOsiOJHqWtYFPB4Ps71tMffUG87xZ6YO+Kn95/jl3mFGfLbPOVyyaYGLdq1Y5+x5HMF5rU8rr7i8jk3H3z7RMNRQwZTWltAvx5Z4sViCOyFJePMhAz0djRnJl+TsAnhsvF3C2YBhdjou//cTLDMTWWPfdp6C/R9/Z5dFyNLuhX8e7t4YPiZaeBCWjDZW+vAwV6CyRg3Mgi72uBOShAKRBDwe8HMfZzgYacLRWBOeG+8gVU0L+5v3lH4vSCRonJmMJqmxsMxIgFVGAqzSE+GQEg23hDAYcSSnP+kY7Y/nR77B3K7TpO8FZF5j9JddknMmKY4Si4QQUoL8j4V7ZZu3qBjo18Z0Kk5PT7rCUlT0KZu8rdB8ummrXyQSYMcOVnhzC2ZHPGUBbWIoK6vxw4FrzBWgnwfcZiQWDz6LosRiLbodksxKKgLAlDdXWbWZjju0R6yWIQDg3NQ2cDahkgDVofiO3etW7nhpbAuPhKLVpBaZSZj26jK2tGB36wSkH3pFp+XCQk+hPtarEvdDk/EyJg3trPXRwkIPQpEYC876cx677s4BNCm2ghoAspRUManPN5wNLVpa6KLFx+SKpZ46tFQFjBU5i7s1qcKvhJTH6wVd0PzXW5xj67yGoleYD7pEMZOP+y7/DvcJmxGvWbb3qUKR9AczNj0X2fki2BlqgMfjISAuAx223iv8XjjqG4NHc7zLnNgf99cL/PMypkzHytLMz8G5kyvQNJm9imxN62GM19rS5K7pz+ow39xMB83NaAt0XdfbyQSBC7vhQXgyWpjrommjEl6beTzEaBsiRtuQPSaRoFlSJAYFP8YXr6/ALo3d0EhDmI/dV7eiW4QvpvWaVVgmiJQd3UUQQkgJQpKkKxVlu9CpGxnUxnQqjs8HDJkvtvISi1RerJ7x8QFevWKE/A0sccPKrZYmpPi6f9YZb4ysGbGW8cFomsS9IoTUrBuRORi4/xkrzheLMOPlBVZ8q+cAaKsqIW9tf/R0NK6JKTZI4uJ7MHk8rGw7inXMksfHoC6nThwAuG+4jXyh/E6d9dGhZ5HotP0+Zp98g7ab72HQ3idQWXQet4KTWMf2CnuBr30vsuILO09GsH5jVnyWty0uT2tbmCxSUeJjdb+mheN2hhqY0d6m6r4YUi4uJdQ9FvMFmNB3HlJUNRnxRtlp0hWr4rLVJQ2IzwR/wVmYr7gKhzU3MOrwcwhFYhx5EcVIMD+NTMXLGPm1uaNSc3DW7wM+pOciNj23wklFZVEBjp9ZgzYf2DUX97r2xFLvCWW+1tQ2VqykIlEstoYaGNvCgpVUVCvPvyuPB38jK6xpMwKOU3Zg1ICFCNUx4Tx0TNBdPPprARw5ktqkZPSTRgghJZh96jUgkbC6QvP1FHDrhMx2aHmJRZGcQvBEQe3bxwrtcetVro6ghMlMVx1mM75gxcfLdOrMyqN6pTUtJlOIRfdSOMdGBt1jrVR41qgJ+k8djITlvWnVbjUTyRR3O+nQFj4y9f5Ms1Mx8+V5uddIySnAwvPcK/Xqq/ln/Arr4gnFEpwLYK+2AaTb/Pde3syKX7H2wB/ufTnPWdTVntXxeWYHW0T/2BMPZnvD/7uuDXKFaF3ycn5nuWNROsb4qudMVrxPmA9rm3RZHX8Vi/MB8Vhz4z1r7FWxxOLbhEwsvxKErfdCcfJ1LOx+uY7P9j+F7S/XYb7iaoWemycR4+DFTegd7sMaO9mkLb7qOaPM711amOtiCa22rbfWDWhWofPEfAGOOXnDZdI2/NJmBKsZHwC4JEXiyZ/fYsi7B5WdZoNC76AIIaQEr2MzoFmQCyWJzAoJXcVPLBpncycWcwqo+2a9kZsL/PknI1TAF+BI0y6M2JkprWtwUvWD4ZeTIAbzBufzgNvgFftdof39RUou1rDdb7jrKAnEIvz08B9W3G3VUizt4UirWmqA7GdWEh4f/2v/Oeu4Hx79C7NM9mq8TzbfDcV3Z/0haSDtu5Oz5dfAK27zjZ0wz0xmxFJVNTG19xy5yRiBnLiZjhraWuvTz0Ud4NZYBwXrBsBKToL3mJM39rt0Z8UXPj0h7XhbAUMOPOVslHvzfSK23Q8Ff8FZOK+9ieVX3mLOqTcYdvBZYXfyvIquKJZIsPnGLowOussaumXhis/7L4CIYys/l/RVffF4bkfYGWqWfjBRSF+0scIIN7PSD5QjV1kVP3iPR7eRKxGpxa5Dr5Ofg//OrMGaOwcgKOPq34aOXi0IIaQUso1bpEHFTyxqF+RAVZjPOuyLo741NSNS3U6dAlJTGaEz9q2RqMH8/u3tRNs/y83CApGebRkhq4xEdIpidtg8HxBfk7Nq0ApEEpwL5e7GPTbgFpxSohmxMB0TqIwfWxNTIwB0VNml3c/at8bTRsxVRTr5Odhwi73SurgNt4Nx87385KMik0gk8PuQgVvvE3HzPbtxBZehbx9gXAC7GcbsbtMQrc3dWRWgmsqKQsDnIeyHHvD7rgtaWrDff87t9iX8DC1Z8b2XN+Ozd4+qbB6Hnkdh9knuhjKVIpHgl3uHMJOjVIWPsS0GD/6es6mTPFqqShDw6Xu7PlNTFuDfCa2QvqovbnzVDnM62uLrCpRtuGvhihbjN+GyNXdN7IVPT+Dy8R9hnJ1auQk3AJRYJISQUujmc3RJrAeJRQAwyU5jxd5RV8j6Y/9+dsi1B+OxaP0A2gJaQWH9h7JiX8vcGK26zq4TRarHxXDupKKSSIhlD/9lxVe2HQmolP1mlVTOL/2c2UEeD992mcoKjw66i55h7O2QxfXY+RDhyRwf/Cm46cdfofmvt9Btx0N03/Gw1ONNM5Ox4+o2Vvw/h3b4U2Z1uiw+/epXKE0baePpN53w9JuOjHimigYGf/Y9ktW0GHFlsQhHz62t8JZOp6QofPP8NHZf3oJb/yyGz6E58Dk0B/f+Woh9lzZhwdMTaPnhHWOlfrlJJPjt1h4sfvIfa+i9nin6Dvsf0lVp5SHhpqWqhC5NjLDpM1dsG9oc/4xrWe5rJGnooP/QH6XvCTh0i3wN34NzMN7vRuW+1+s5ejkhhBA5Pm1hrDcrFi0sWCHrdO7VVKk5Zdt6ReqwxETg+nVGKEbTAJdtWjBiZe3wSNiiu/VDtswqimHvHsI+paho/evYDPztEy17KqliOQUi/Pw4lXNswbOTsE9jdsl9r2eKAau/q4GZkU88zXUx21taU5HPA+Z1sgMA3LNw4dzKuffyZjTK4q6X+YnHxts47x+Hhef8MffUG7yOld9cQhHEZeRhz+OyN4ESiEX488IGGOUySwDEaeji6x4l16Mz1VaFoQYl1hVRSws9iNYPwNYhzQtjwfqNMXLAIghlasYpi0WFWzqVRCWX5uBJxGgTE4jVdw7Cf9/XCDgwAxtv7cXUN1fRKdof7glhcE8IQ/vYQEzyu4F1dw7g6Z/fImrnZGy9tgOtY4PAuYdaDs38HPx5/lfMfXGWNRarqY/ew1aUubv1J+NamJfreFK/jPRojFfzO+L71rrY1LnsjTbFfAF+7DAOgwb/gFSORLZpdioOXtqEZ4fn4euXF6Cbm1mV064XKLFICCFynHwjvRHVzasnKxZtbFgheYnFpRcCqnkypNqdPAmImHVh/nHuWOYaRaR0nTxtWStABRIxvn1+ihEb++cLaopUzcb+9ZIz7pAcjR85aisGfvUtBrewquZZkeJ4PB5+H+yKuP/1Qvzy3tgwyAVx/+sFAFjUaRKS1JhdPy0yk/Dv2bUlJkPScoUYuO8Jfr0VjC33QtF5+wNEpnKvXFUEZd36/MlPD/9G18jXrPi0nrNYJS8AwFxXDYC0o+q2oc3pgyUFxuPxMKODDbYMcS2M3bB2x8S+8zgbUix8egKvDs7GF68uSxP2HxOAJlkpGPLuAf64uh1ROyfj4d8Lsejpf3BOKfsHYmZZKZjhewGP/voO/vtnYMnjo7BMTyjxnHbRAXjy57cYw1FTMUlNG32G/Q+heqaMuIDPw8Uv2yDzl76Y18kOnewM8F0Xe3zd3gae5joY28Icmwa7sq5HGhZnEy0MttdEh8ZqmOUuv7M6l3P2rdFq3Ea8lGks9olnQii2Xd8B30Nz4BYfWhXTrTfYxU4IIYQAKOqOXG9WLFpbs0Ny3vjteBiO7cPcqntGpDodP84KHXPsUAsTqb8s9NSxodVgTPe9xGjwNOnNdfyv3RjGSou/faIxriV71TCpvITMPJzjqGXJk4ix6+pWqImYK7BfmNjBeiZ7+y2pGcZaqqw/J2ro4rvOk7FPpqtxp2h/7Lq6FV/2ml2mD0VScwpw4nUs5na0q9pJ15Bz/twdn7kMev8ISx8dY8X3NO+Fs03asOLiXwdCIpEgOCkb5rpqUFemD5nqg3EtLBh1D/9u2hk8SHDw4iYIZLZtOqdEY9fVbcDVbUhT0YCqqID1+7GynFOisereEfx870/csnTFcccOeN6oCT5o6kNNmI82H95iVOBd9A99xnl+nIYueoxYCT8j5nvWt4u7wVBDGfofV9luGORSpfMm9dMgOw1s9eVu6iZPiJ4ZOoxZh+3XtmOinAZIVhmJWPr4KEYPXFQV06wXaMUiIYTI8akbYr2psciRWLSRs2IRAIQiqiOisJKSWNugI7SN8NjMqZYmVH+F6ZriqJM3I6YmKsCipycYsQl/+yAuI68mp9YgvEvIRKP/XeEc+/n+n+gs00xHyOPji16zoaRMn63XNQdcunNuiZ7kdwMnTv8CjYLcMl3n7xeKV3rgfWIW+AvO4q8ylk1oH+2Pv8//Cj6YK6FfGVljTtcvWccHLeoKQLrKrYmRJiUV6xFddWX8rxfztf2vpl0wcuBCpKtwd5IGAN387HIlFfMESgjXNka4tjGrBAgXPiToFvka26/vwOO/FiB891QE7f8ahy7+JjepGKFthC4jV7OSigDQxEizMKlISFnpqwnw5+ce5T4vR1kVk/t8gyGDliJUx4TzGKMcxS69UdUosUgIIXKoCKRbhOrNikVzc0DAvJloLWE3b/kku0Akd4zUcadOsbZBn3Boz6q3ZaihXIOTqr9+bTWEFZv94iyaJzC3yXTcdr+mptRg9N/7hDM+6c01LH3MXs21odUQhFg7oYkRNQOoKyZ5fexmy+NhRo+v8UymSzQADAx5ilcHZ2Po2wel1nBTxG6wjmtulPnYlh/e4cyplVAX5jPiGcrqGDlwEXKVVRnx2d62cDBmNvUg9ctsbxsoyXzfn3Roj5bjfuP8eSoLEY+P2xYumN9lKpwnb4fmnGOwnbYXttP2QnvOUdhP3YUve87CGbvWyOdX/oOaSzaeaDluE4IM2Sv7F3Wr2NdACACMcDOD+NeBEK0fgG8725f9RB4Ppx3awmXSNizoPBlB+kX1O/MEStjcYiAA0PuJj+jjWkIIkcPvg7Qwb71JLCopSRu4hIcXhqzT5K9YXHohEFuHNpc7TuqwY+yECtc26H/Gl797HmF72cge521bMVZhKEnE+OPqH+g4Zg0kH+tdvaeO61WO6+90gt917OTokhuob47l7UZj99Dm1Am9DlnSrQmeRqTCLy4DeUoqGDZoCe79vQiWmcx6g3ZpcTh+dg3CtY1x0qEdnpo64I2RFd7rNUZOsWTaw/AUDNjzGD/3dYZHY506WUfwTnASFp7zh29sOvKEZd8dMPjdQxy5sAEaMklFMXiY2PcbvDVgJmW2DmmOr9uzV3+R+kVfQwWHxnji8z9fMOLB+o3Rfsw6TPK7jvnPTpVaNzFHSQVXrD1wuklbnLPz4qzTCQASHh+heqbYq2eKvW69YJCTjlFB9zDB7wbafHhbrrmnq6hjVZuR+NVrSOFrZXHmumpYUJ5kECFy8Hg8fNXOGhtuB5frvFxlVWxsNQQbWw5G6w9vYZMWD19j28Ik+J0Z7atjugqHEouEECLH/64EAahHzVsAaQOXYolFnfgY8CRizjdzfzwMo8SiIkpPB24wV79EaRniUWP2NujuDsY1Nat6q6u9IW4GJ2Fe1y/QPcKXsbWsfWwgZvpcwNYWAwpj5/3j0L9Zo9qYar3zKJzZMVhJJMSKB39i8ZP/WMcmq2kh+9h/SOzYEhoq9Pa3LnEw1sKL+Z2QkSeElooS1BafR4cxa3HxxP/gkhTJOt46IwHfvDjDiEVpGeK9nhne6zfGQzMnXMpsgZaB0g/O1vZvirkd7QrLm9SW1JwCXAlKgIaKAKMOP0NOQdkTimaZSfjl7iG59b5md5+OUw7tAEi/3pHujWGlr14nk6qkeoz2NIe+hjL67n7MiAsFStjj1ht7m/dEt4hX6BAdANfEcJhlJSNLWQ2pqprwM7LG/cZN8aixE7KV1cr93MnqOvjDox/+8OgHp6QoTPC/gXH+t1gfDhSXqqqJPc17Ya3XMCRp6DDGprS2QtcmhkjLEWK0Z2MY0BZoUkXsjTQxsZUFDj6LAgB0sNHH/bCUUs76iMfDEzMnPClWVihnTT+oKlFpCYASi4QQwim/2AoCnfx6smIRYNVZ5OXl4e6IJvA+HsI6tJTdZqSuun4dKGDWTTrVpC1n8phU3txOdrgTmoz3+o2xpvVw/O/h34zxDbf3ws/IEjet3AEAA/c9wdNvOqKlhV4tzLb+0PvhItJzi7oFt4kJxI5r2+GeEMY6Np+vhGGDluBmd3ZDC1I3KAv4jORBlI4xOo1ag2Nn16AbR9djWRaZSbDITEKXqDf44rW05uYjM0dsavEZlopFeByRguMTvQqPj0nLRUaeEA5GmuBzbJ3OLRDhv9exUObzMbS5KZQqucL1Q3oumv96CwUpqegQHYAFce9hnJ0GvbxMiHh8ZKhoIE1VE+kq6khX1UCaigYEEjEsMpLQOeo1ukW8hoqYuzv2yrYj8YdHP6zp3xQtLXTpA6MGrKu9EXo4GOHaO3ZCT8Lj47q1B65be1TrHIIMLfB9xwn4wXscmieEwzM+BK6J4VAVFaBAoIR4dV3ctnTFU1MHuQ2ZejgYYbSnOecYIZW1b5QHvmhjjTyhGJ3tDRGeko0mq8tejuKTrvaGlFQshhKLhBDCITS5KJnIuWJRR4cdUwQcDVxaClNrfh6k+ly4wAqds/dixdpY6dXAZOq/QS6meDGvE+6GJONbYT4+D7wNx5SYwnFlsQjHzq5Fh9HrCrfNeG26C/GvA2trygrv0LPIwqRi06QILL//F4a/e8B5bAFfgEl95uK2Ja2+VjQp6troOeJnjA24jTV3DqJxVnK5zm8b+xb/nF+PkHuNML/LVLzo7oDV19/jv9exhcf0djLG8QmtoKladEuULxRDY0nR79Gu9oa49lU7uav/AuIycD8sGV6WenBvLP3Q0TcmDUHxWehkZ4B3CZn4ZeFWHHl+Bj0ifFmdeitKDB6+7TIFv7cYBABY2JXq0DV0Kkp8XPqyLTbfC8X8M36ln1CNJDw+XpnY4pWJbbnOM9NRRb+m3M0yCKkKPB4PHWwNCh/bGWoy3pPxF5wt03WmtrGq8rkpMkosEkIIB0mxTousGotaWqwmKArDxoYVEkRGAOAu7J4vFNf69jFSDhIJK7GYpaSK2xaurEOntKY3RFWluZkOmpvpoLeTMcbHf4ObR5dCVVS0usggNxO3/12CfsN+wouPhfRDkrJgZ0gFv8vrjN8HTPrnJWzSPuCnB39jXMBtuYmaFFVNDB+0uHC1KFEMk1tbYv8T6RZoCY+PI8264mSTthgTeAfD395Ht4hXUCpHcs4uLQ6nTv+C4/63cKfHV4CGXuHY5aAEnAuIwyiPotVRXr/fYZx/MzgJD8NT0N7GALIOPo3E5H9fFj4+MNoDWfkizDwhXWXZNiYQ26/9gYsyjZwqK11FHRP6zsOZJm2r9LpE8fH5PHzTyQ7T2lpB+/uLCrH75NbX7XHsVQxUlfj4up0NdNSosRypmxyNNdHJzhD9mzbCZ66mtT2dOoUSi4QQUgrWikVF3QYNcK5Y5IeHA3DhPHzjnWAs7uZQzZMiVcbXF4iJYYSuW7kjT4lZn6iHgxG+bEsF/auaqbYqHjV2xvSeM3Hg0u+MMZOcNNz893uMHvAdLtq1QpPVN3Djq3bo0sSolmareB6GJWPk7gdY8fhfLHxyQu7WUADwMbbFmAHfFTaz0FenG1VF8euAZoWJxU+yVNSxx6039rj1hnZeNtwSwtA8MQxOKdGwT42FQ0os7NI+QFksknvd4e8eoE3sWwz7bAmemRa9ro058gLrbr5HboEYC7rY43VsButc7633kb+2P7LyRSgQi6GhLMCq6++w+vp75txvBePNhwyoF+Rh9d1DmOVzDnxUbWbnYLOuWNpxAmK1DAtjv/RzrtLnIIpPQ0UJSSv64MDTSCRk5WGMhznMddVw1j8O5/3jcOxVbOkXqWLvFneDA0cHdA9zHXSyN+Q4g5CaN66FOY68KGp0ZKqtismtLdHR1hB9nGk1rTyUWCSEEA5hyTmFf9aVrbGoyIlFjhWLvPBwQJM7sbjtfhglFhUJxzboC3atWLHTU1rXxGwanE/bKQ+5dEfTpCgsespsIqJdkIPzJ1dgZduR+F+7MVh+5S0lFsto58Mw7N5+Ej4XNqJpcpTc4zKV1fBT+8+xucVARv2u01PY5QBI3aRfSqOGDFUN3LdohvsWzRhxgVgEz/gQ9At5hilvrsIqg11nzjIzEXf+WYxpvWbhSLOuhXGf6HQAwNSjvnKfV2XReQj4PIjE8hOFbz5kwCo9HidO/4IW8ezaxRUVoW2Ekw7tcKhZN/g0YnbIndHeBnM72lXZc5H6Q09dGd90Yn5vTGhliQmtLHFEJMbSC4EITsrCqTcfamQ+5rrcjWGUOOqcElJbtgxpDj6Ph4fhKfC2M8Dvn7lCS5XSZqWhvyFCCOHwt0/RJ1WsrdCKnFi0tAR4PEZnFl5EBNCU+/DotNwamhipEhyJxYu2LVkxdWUF3cqvQJZ2HA81UT7mvmDX6vnh0VG0iQnC2P4LALSv+ckpkAKRGD9dDkLwHwdw99ImqAvzOY/L5ythl1tv/NJmBD5oMbeszmhvA29bWg2jSD5zaYTTfnHlOkfEF+CZqQOemTrglzYjMDbgNtbeOQCTnDTGcWqiAhy6+BtMs1Lwq9fQ8j1HCUlFAOgQ5Y8TZ36BcU4653iimjYOu3TDDUs3+BlZIllNG3yJBDr52dDNy4JOXg5087Ogk5cNPiSI0TRAhI4xQnRNpa/dH9noq6ObgzFW9nGCqU75u/gSoizgY/3AouR8cnY+NJQFEEskMPzxMvKE3OUGpraxQntr/RKT8O6NdeAbw/wZ0FNXhoqAj/UDmuG7c/6F8ZYWutBQoZQEqTt01ZVxYIxnbU9D4dBPMSGEcDj8/OOKGImkfm2FVlEBzMyY22XDwuQmFokCSU0FHj5khF4bWSNShzqE1gYJj495Xb5ArKYB1tw9yBrvGeGLF4e/wfW2Oug+YVAtzFAxLDofAOVf1+Nfjr9DABDx+DjUrCtWtBuNcN1GrPG+zibYOpQatyiaxd0cWIlFNzMd7B3lDq9Nd0s9XyhQwkHX7jhj3xqbb+zC2MDbrGPW3TkAk+w0LOw0iZG0q6gh7x7gz/MboCYqYI19Wkm7w70vcpRVWeOpatx1jmW1stDFDz0dMciFanuRqlW8K/vB0Z4YfeQ565hf+jljcTcHZOcLsfdJBB6EpQCQ/vgELOyKuyHJcDDSREc7A5z2+4ChB54Vnjvb2xZ8Pg9TWlvi+rsEXApKgLmuGn77jHvHDCFEsVBikRBCSqAhzGMXiVfkxCIg3Q5dPLEYHo5dw5tj2vHXJZ8XHw88fy5NTLq5AXxq6lKn3L4NiJnfq1yrFd0bK2hHc0XE42Fd62EI0W2EvZe3QLsghzFskZkEw6kjkKp0GHqfj6ylSdZdEokEwk2bsVFOUvGBmTOm95oJPyNmvdCmBsoISC6AR2MdbKKbVoXUxlofsT/1wqB9T/AiOg1elnrYO9IdTRtp49zU1hiw90mZrpOiro3x/ebjiZkjNtzay3o9X/DsJIxy0jCt5ywIBRW/Lfrq5QVsvb6Ts57ibQsXTOrzDWfiuzz+HteC0WSGkOoy0qMxhruZoc3mu3geJV3x20hbFV+3swEgrd94/at2uBuSDCW+tMOusoAPR+OiBPlgVzO8XtAF194loFkjbfRwkJb90NdQwfkv2iA7XwQVJT6UBfRekpD6gBKLhBBSAtZqRUDxE4vW1sCDB0WPs7LQ30T+1thLgfHoE/QQGD8eyPhY1L5RI2D4cGDFCsCA3SmT1IIb7ILo1zm64Y5tYVETs2mw+jc1wfmAeEbsuJM3Xhnb4PiZNXBNimCMqQvzoTpuNGLCI2G2eD54VbByqj7w/5CBX6b+D0du7mKNiXh8LO44ERtbfQYJj3lT2t5MFZs6G8CluRtUlZXBp9pdCquRtioez+3Iivdr2ggbBjXDt2f8Oc7iwONhS4uBCDCwwIkzq6FVwCzxMcnvBgxzMjB6wELO1YQlkkiw/MFfWPboX87hLZ4D8G3nKZVKWn7iYERd5EnN4fN5uDerA/Y8jkBWvgiTvSyhW6wJlqqSAD0cS94R4WKqDRdTbVacx+MV1iQmhNQP9BEBIYSUgFVfEagfiUUZJrGRHAdK7Vj8uzSJmFGsU2ZcHLBtGzB6NKNeI6lFN28yHubzlXDfnL3HvbQaYaRyprax4oy/NbBA27G/4nDTLqwxvkSCxksXYOmIRcjMk9/puKHIF4rxzZI92C/TWRsAMpTVMWjwD9jgNYSVVASAEQ6a4PF4UBbwKalYj83rZI+bX7cr1znXbDzRbeQqJKizV20PDHmKy8d/hF5uZpmvpyIswJ4rWziTiiIeHzO6f4W53aZVSVLRzUwHnuYK/t6DKBxVJQFmdrDFwq5NYKxVzqQ7IaRBocQiIYSUoF6uWGzKTjYJHj3kOBDoHv4SR8+uA4Rykh1XrwJn2c0pSA1LSABeM7eyPzZzRLYyu6i/iBLB1WqwqxlOT/bC5NaWWNXXmTGWrayGiX3nYXa3aRBxJMVWntiAR5sP1NBM666bT4Kw579foCwWMeLZSiroM+x/uMjR6fyTDo3p5reh6GxvBN9vO0O7HCufnpk6oOPoNQjXZq+08o4JwN1/FsE5Sf4HbZ80ykrB9WPfY8qba6yxXIEyRgxchB0e/co8L1mP5njj7swOmN7OGj/0cMCVaW1pNTMhhJA6ixKLhBBSAt38erhi0dubHbt7F13smV1T1QvysPfyZqiIS1lBtXAhUMAuVk9q0K1brNBNSzfOQz2oxmK1G+hiir0jPbCkuwMezpb5eePxsM1zAIYPXIwcJRXGkEAihveSGdJapg1MWHI2Jv/jg+7b7qFg/ARYZSQyxgv4AgwftAQPOVbhfuKgp0TJlwamuZkO0lb1hUY5Ot2/NbBAhzHr8MaQvbrYJSkST4/Mx3TfixDIJLYBABIJPg+4hVcHZ6NDTCBrOEVVE72Gr8Aph/KtpvxksKspkn/ug9ZW+uhga4A/hrlhRR9nmGhTwpwQQkjdRYlFQgiRISm2okufa1uUnl7NTaY62NpKG7AUd+8eXGXq4Mx/fop1c88pKAjYvbsKJ0jKjaO+4k0rdidcC101dGtiVBMzIh95Wepxxk87tMXAwcuQJ7NNUk1UAPGIkdIu3w2EWCxBz50PcfBZFJxP/okBIc9Yx3zT9Utc4mhGVNy3LRX8Qx9SYYJybnuP0TZE51Grcb+xM2tMU5iHP679gTcHZmHOizPoEOWPtjGB+OrlBTz+81scubARxjnprPOitAzRafQa3LMof8Og77rYQ7huAE5M8oJesTp2hBBCiCKgxCIhhMgoXoLOOJt98wAjBU/M8HhAR5mC+ElJGK9ZtO3bNDMZi578xz53xw5gzx52fPlyID+/iidKykoik1jMUVLBIzMnRmxYczPcmtEeauVY2UMqj8/nQbR+AOfYDWt3jOv3LcRgJkX4oSHAlCkNpn6pX1wGgpOyYZ0Wh7V3DrDG/3HqiD/c+5Z4jUez2qOlCa3qaqg+dZwtjxR1bfQa/jPOydla75QSjU039+Duv4vx4O+F2H59B7zi3nMe+8jMEW3G/srqUF4aL0s95K/tj7UDmlFNUEIIIQqLEouEECJjy73Qwj8b56SxDzAuuQueQuDYDu0Z6lv455X3j7A6Z6J9e2DaNGDSJMDVlTkWHw/cvl0NEyWlio4G7+1bRuh+46bIK7bNNmdNPxyb2Ap2htRVtDaUtD33P8cOWNh5Envg5ElgF7sjcn2Ukl0ASCTYeXUb6/fOOz0zTO85U/qBSAlaWNBqxYZseW+n0g/ikKOsisGffY+f2n/OWfe0LPa59kDXkb8gVsuw9IM/+n2wK/4c2wI3vmoHJQHdjhFCCFFs9EpGCCEy5p/xK/yzEcd2p3qRWJRdsQhA6cEDpK7sA4+4YEx6c501nrN2vfTmXiAAfviBfU1q4lI7ZLpBA8AtS+Y2aGU+vdzXZRtbDsYp+zasuOS77yCJiEBQfCbuBCchT8hR802B+cakodO2++jyxwNM9LuBXuEvGeNi8DC5z1xkqGqUeJ0Tk+Q3cyENg6uZDk5N9kInOwP0b2qCWd62ZT5XzBfg53aj0W3kSrzTMyv9hI8itI0wcPAyfNF7DuODnJIYaijj6PiWmO1tizGe5tAsR+MZQgghpK6iVzNCCCmBEdeKRUXfCg0AzZsDOjpAerHE6d270FFVwobb+8AHcwvmkaadES9qhPmfAn37AsrKzKYtZ84Av/9e6soiUrVSLlyBvkzshhWzcQttsat9v/RzxtIL7GYPAACeNIHmdmQe7NLiisIZGQgcPgHNOs4HeDw4m2jh1tft60UjB7FYgl47HyEhKx/6ORlYd2c/65itngPwwLxZiddpbamH3k4mABrGtnEi3yAXUwxyMS18PL+THd4nZqGNlT5+vByIzfdCIZEAn3uao7GuGn69Fcw4/66FK1wmbcO4gFtY+vgomqR+4Hyet/qNsc+1J7Z59EOWinqZ5zfE1RTHJ7aiBkOEEELqHUosEkJICVg1FjU0pP8pOoFAurX50qWiWGgosHEjuka+Zhyao6SC770nIPKsP+Z3tpcGdXSArl2BK1eKDgwPB16/Bty4uxGT6pF6/jIjsZiprIZnjZoUPq7oFkFStWa0t8GrmHT88zKGczxNTQtTes/FraNLGXHnp7cxxrgV/m7aGYHxmTj0PAoLutjXxJSrTWx6LsxXXC18vOr+YVYzjFAdE3zvPU7uNaa2scJoj8boaGsIFSU+hMJSuteTBsfGQAM2BtLX698+c8UPPRwhFEvQ6GNift2AoqR160138CwqDUKBEg649sABl+5wSo5Gu9hAOCVHI0tZFQkauvAxscMTU0fOD9B6Oxljkpclxhx5wTmfL9taU1KREEJIvUR7owghpJjA+AzGY9ZW6PqwDfoTjjqLWLCAFdrQajAidaRfd1ZesZv3QYPY59N26Br15/G7sE2PZ8TuWLhAWKzT8LKejjU9LcJBR00Zf41rCaUSVo/esXTFDvc+rPj62/uhlZ8NAPjl+rtqm2NNyBeKGUnFVh/eYZrvZdZxs7p/JXc1mKaKANuGNEd3B2OoKNFbWVI2hpoqhUlFWftGecBYs9h2Zh4PQYYWOODaA0s6TcTKdqOx070vnpg5yV2VP8bTHKM8zNHR1oA1tqZ/U/R2qkfvHwghhJBi6N0YIYQU88NF5lZFVvOW+pRYHDiw1ENiNA2w1mtY4eM1N4t1xOQ6/8yZqpgZKaMbu4+xYrL1FUndIi6l0/OijpMQqcUst9A4KxnLHv4LAEjNKeA6rU6RSCQoEIkhFjO/1tex6VBbfL7wMV8swvZrf7BKL5xs0hYX5XTqBYBfBzajhCKpUq5mOgj7oQf+HNuCc9ylkTZ+H+zKOQYAptqqGNCsEQDg+lft0M/ZBACgrsxH+qq+WNi1Ca1WJIQQUm/RuzJCCClGUOyNP08ihmEOcwVjvaiv+ImbG/DVVyUesrTjeMaqoVXXiq2WsrICPDyYJzx5AnzgrktFqlZSVj66Rr5ixYvXV5zaxqomp0TKQFBKvcsMVQ3M7fYlKz73xVk4JkcBAAyWXUKr3+7AJ5qjBmwtS8rKR789j6G66Dyc1t7Ai6hUAEB2vhAdtt5jHDvt1WW0invPiGUpqWJe1y84r/3X2BZIXNEb09vZVMfUSQOnrixAH45VhcOam+H1d10w29sW8zvbMcZcTbWxoIs97szsAAMN6YpHJQEf575oA/GvA5G1uj+0qEELIYSQeo4Si4QQUsyxV7GFf9bPzYSSRMw8oD6tWASkzVa6dOEcWtN6GA4168aKR6RkFz3g2g59924VTY6U5OerQax6mCmqmnhpXNQNdW45OqOSmvFdlyalHnOqSVtcsfZgxFTEQmy6uRuQSJCaU4AX0Wno9scDSEpZAVmTsvOF+ONhGC4HJQAAgpOy4b31Pn6/G4KfLr9FZl5RV2vj7FSsuneYdY2VbUchQseEFY/5sSdGe5oXJm8IqQ76Giro61z0/cfjAZNbWxY+Xj+gGfaMdMeibk1wZ2Z7vFrQBesGNEMTI83amC4hhBBSJ1BikRBC5GDVVwTqX2JRRQU4fhxwKmrwIVFTw9h+32Jpx4mctaRsVl0v2uLYtSv7mg8fVtdsSTGXztyDeWYyI3bbwhVivqDwsauZTk1Pi5Tic09zaKoISj6Ix8PcrtNQwGce1yfMB4OCHxc+TssVosnqG0jIzKuOqZZZRq4QPXY8hNbSi/jxUhBjLFcoxrzTfthwm9mBd/3t/dDPy2LEAgwssLHVZ6zrp63sC1MdtaqfOCEc/h3fEj/3ccLk1pY4O6U1+jVtVDjG4/EwpbUVVvdrCm9bw1qcJSGEEFJ3UGKREEI+KhAxVyeyOkID9S+xCACGhtItzKtXA99/D96bN7jcskeJp5wLiJP+wctL2mG6OEos1gjZ1YoAcLPYNugjn3vW5HRIGTUz1cbdmR2woIs9VvdrisGuppzHBRlaYLMnu47pxlt7oVZQlEgMTc6G6fIrEIsl2H4/DHNPvcG1twnVNn8uG24H48b7xDIf3zv0OSb432TFZ3WfjgKBMiM2vqUFtNVoKympOVqqSvi+hyP2jvRgJBUJIYQQwo0Si4QQ8hErsSjbuAWoXzUWi9PRARYvBlauBOztEfFDyYnFRef8pVswNTWltRqLe/ECyKvdFVT13eLzAegawa6veLNY45ZhbmY1OSVSDh7mulg3oBkWdWuClX2c5R63ot1oxGrqM2J2aXFY8OwkIyaRAParr2PWydfYci8UvXY9wnn/uCqbr0hc8nbrtTfflzhenFZ+NnZc3c6K/+3UETet3BmxcS3MsX0oNSMihBBCCKnLKLFICCEfCWVunjkTi/VxxSIHDZWSVwgFJWThVnCS9EG7dszB/HxpcpFUi4TMPKy/8Za1YjFeXRd+RkXNWlSVStluS+qEZqbaGOXRmHMsQ1UDiztOZMUXPzkOq/R4Riw8JYfxeOC+J5h+3BdRqcx4eWTnCzHq0DNoLb0A1/U38fxjIxYASM7Oxx8PwrD8ShDyhGL5F5Gx5s4hWGcwV1Qmq2mxGrYMbW6KQ5+3gCY1viCEEEIIqdMosUgIIR8ViJiJxQZRY7ESvv7v44o52cQiQNuhq9H+p5FwSYyAscz35y1LV0h49LKuiFb0dpI7dqRZFzwwY65q1BDmY/3tfaVed/ejCLTdfA9CUdkTf8jJAe7fB37/HY+nzoPpgV0Y5HcHSSGRGHPkBaLTcuC05gaMfryMmSdeY/mVt2W+9JB3DzDD9wIrPr/LVMTLrMzsYl9PV4cTQgghhNQz9DEwIYR8FJSQyXjcYGosVtDbhI+NFyixWKMWnw/AnEiObdDF6isK+OymO6TucjDWQkdbA9wNTWaNSXh8zO4+HU+PzAcfRR9+jHj7ADvDfXHD2p11TnEx6blQWXS+8PGeke7o52yCif/44GF4Clpb6uPgGA+YJ8YAa9dCcvgweLm5AICuH/8DADF4eNjYCcf8hyDMsBUgUwuxNLapH7D38hZW/LK1J2f3edrKTwghhBCiGGhpAyGEfNRjBzMZZtSQaixyODjGo2wH2tmxE66UWKwWLz5uRe0SwdG4pVh9xT0jSk42kbrnv0mt5G6J9mlkjz1uvVjxLTd2Mhq5lMUXR33ReMVVXH2biMw8ER77R+LtyEmQODkBu3cXJhVl8SFBh5hAfHN4Nd7tnY7pvhehJBKW6TkNs9Nx+tRK6Ml0gU5W08K0XrNY3ecNNZRhRl2gCSGEEEIUAiUWCSHko1xhKV2hlZQAPb2am1AtG9/SsmwH8njsVYvR0UBkZNVPqoFrteku+GIRukS9YcSjtQzwVt8cAOBproPhtNpL4RhpquLvcS3xbnE3mGipsMa/7zAeyWpajFjT5Cj8fP/PCj9nm5hA+Byei65XjoInEpX5PKuMRPxx7Q/4HZiJEUH3pN1j5NDPycCV48vgmhTBGpvU5xtE6hR9KGGjr44hrqZ4811X1rGEEEIIIaRuosQiIYQAyMxjr7xh1Vg0MmKtrCEfcW2Hfvy45udRj71PlK728kgIZa38umnZHODxcOGLNng4uyM1vFBg9kaaeDm/Mw6M9oCGclEDniQNHSzrMI51/Lznp+Ed5Ve+J5FIMNPnHO78uwRNUj9UeK4OqbH499w6PP7zW/QM8wFPwvxwpkvEKzz9cz48E0JZ5/7aagjO2bcGAGwZ4oqcNf0Q8n0P/DfJC420VSs8J0IIIYQQUrPozoMQQgBk57NX67C6QjegbdBlJZFIwOPxgDZt2IM+PsDw4TU/qXrqjwdhAIAe4b6ssZuWbrg/qwPa2RjU8KxIdTDVUcOEVpaY0MoSXpvu4HmU9HfRDvc+GBl0F52LJRL5kODwhY1oM/ZXVgMULqrCfGy/9gcm+13nHBfy+PjXqSMu2LVCsJ4p9PKy0CnKDyOC7sEhNZbzHK+497j830+I0jLEDSs35AuU4REfglZx7zmPP2fXCku9x+P5vE7wNNctdc6EEEIIIaTuosQiIYQACE3OZgYkElbXXWrcwvYyJl2aGPDwYA/6+NT4fOozPXVps4ye4ey/1xtWbthtVXpSiSiex3M6os3mu3gelQYJj48pvefC99AcaBUU1UK0zkjA6VOr0G3kKuQoy1/tZ56RiONn1qDNB+5OzpetPTGr+3QE6zNrPV6xaYEf23+O4W8fYNmjf+CSxF3mwCIzCRP8b5b49Vyy8cSIgYvRx9WckoqEEEIIIfUAbYUmhBAUrQb7RLMgF+rCfOZBDTCxeHdmhxLHW/52B0KRGNDXB2xsmIMvX1bbvBqa8ORs/HQ5CBoFufCO9meMBembQ9neDnzqBF0v8fk8PP2mE1JX9kEvR2OE6pliQecprOPafHiLf8+thVZ+NsdVgIHvH+PpkfmcScU8gRJmdZuOvsP+x0oqfiLmC3DUuSPcJ2zG5N5zEalV/hXcZ+28MHnkj/h9dCv8O6Fluc8nhBBCCCF1DyUWCSEEwIto5rZnVn1FoEEmFttZ68PLUq/EY2af+thIRHbVYmwsEBdXLfNqSC4ExMH2F+m21U5RflCV6cR71doDM9rb1MLMSE3SUVPG8Ymt8EUbKxzw7IsjTTuzjhkQ8gxPjnyLrhG+hQ1VPOOC8de59Th9ehVMs1NZ50RpGaLTqDXY7tm/TDVkxXwBDrp2h9OUP/Bdp8mshjJc0lQ08GXPWfhw5Chi1w7GtLbWUC9WP5IQQgghhCgu2gpNCCEA3nzIYDxmbYMGGmSNRT6fh+3DmsNr0125x+x8GI4/hrkBnp7AqVPMQR8foE+f6p1kPSWRSDDjxGvsfBheGOsVxt4GfcXGEz83MazJqZFaoqWqhF0j3LFrhDuaaQtgvTMBHWVWsDqnROP6sWXIUFZHvkAJhrkZcq4G3GvcFCMGLUZcGWozyspVVsUGryHY5dYbw949wMigu+ga+ZqR+H5uYo+Ldi3RZ9OP+KNVUygJ6PNsQgghhJD6hhKLhBDCwTg7jSPY8FYsAkALc124NNKGX5z8BEVYcjZsPD3ZA5RYrDDfmHRGUhFg11cs4AsQ6dEGbmY6NTk1Ugf8OMANQz4sxd1/FqNpchRrXLsgByiQf/4O9z6Y2/VLFAiUKzWPDFUNHHDtgQOuPSAQi6CblwW9vCwkq2lDqKuL77s7olWbJpV6DkIIIYQQUndRYpEQQjiwOkIDDTaxyOPxcHqKF5qsviH3GLtfruP2QEt0lB2gOovldjkoHgP2PoFILGHEzTMSWU0znjR2xt3FfaSduUmDMsqjMd4MaIkOvHU4fGEj+oc+K9N5Ceo6mNX9Kxxz8q7yOYn4AiSr6yBZXQf5a/sDAK1SJIQQQgip5+jdHiGEcDDNSmUHG2hiEQDsDDVxYLRHicd0PhMBGMpsyaXO0OUSnJiFQfvYSUUA6Bn+khVrP20UtFTpM8KGiMfjYWVfZ8T9PgqX1+/B+u6TkKesIvf4fL4S9rt0h8ukbdWSVCyurbU+lAR8SioSQgghhDQAdDdCCGnw3idmsWI26RxNR6yta2A2ddeEVpaY9M9L+QfweJB4eIJ3/VpR7N07ICMD0Nau9vnVB3++iEaBiJ1UBICBwU9YMV7v3tU9JVLHKQv42DzMHRi2H0jeABw/Dvz3HxAeDqG6Bq6nANet3XHQpRuGdXfH/qaNMHAf+3sJAPo6m+BiYHypz+lta4BBLqZ4EpECZxMtWOtr4MtjvgAAPg+Y18muSr9GQgghhBBSd1FikRDS4LXdzG5MYp0mc3PN5wMWFjU0o7rrwhdt0G/PY7njh8VGmCAb9PUFvKt3hVR9ser6W864RkEu+oS9YMTyDY2h0rJlTUyLKAoDA2DaNOl/kL7J6yGWwDA6DdPUlWFvqAEej4ekFb3hvuE2otJyC08d39ICB8d44k1sOm4FJ2HOp27vxWwY1AzzOtlzPnVLC108jkhBexsDNKean4QQQgghDQYlFgkhDV5yNrvDgU26TGLR3BxQkb/NsKFobaVX4vhldXN2YvHlS0osloFYLJG7WrF32AuoC/MZMZWhgwGBoAZmRhSZgM9DK0s9RkxfQwX+C7vih0uBCEnMxpDmppjkZQkAcDXTgauZDsa3tID+skuF5+iqKWFYczO5z+NhrgsPc91q+RoIIYQQQkjdRYlFQkiDlpCZxw5KJOzEoo1NjcynrjPQKDm56mPCsQWS6iyWye7H4XLHhrx7yA4OHVqNsyH1nZaqEjZ95ip3XFddGcFLumPHwzDkCsX4oo0VrPQ1anCGhBBCCCFEEVBikRDSoAXGZ7JiJtmprNVhlFgsMqGlBQ49j+Ice6vfGNlKKtAo/vdHicUSicQSfHnMFweeRnKOK4sKMCBEpuOvjg7QrVsNzI40ZLaGGlg7oFltT4MQQgghhNRh1K6PENKghSZns2Ks1YoAJRaLaW2lL3dMzBfglbENM+jnB+Tncx5PgP9excpNKgJA18jX0MuTaTA0YABtzSeEEEIIIYTUOkosEkIaND6Px4rZyDZuASixWMwId/l11gDgpex26Px8ICCgGmdUB8XFATt3Al98AaxcCQQFyT109JHnJV5qVCC7uRBtgyaEEEIIIYTUBZRYJIQ0aBP+Zm/TtU2LYx9IicVCxlqqODZBfjfiBl1nMSkJ+PxzwMwM+OorYO9eYNkywNkZaNMGePIEABCVmoO/XkRh+nHfEi+nn5OB0UEyiUU1NaBPn+r6CgghhBBCCCGkzKjGIiGkwcoXijnjE41F7CAlFhmGuTXGs2800GoTezXdS2M5icVJk6p/YrUpPR3o3Rt4LmcF4pMnQKdOOD7nZ4wUO5fpkpP8rrPrfY4cCWhqVnKyhBBCCCGEEFJ5tGKRENJg/XiZe3uqQXwMM8DnAxYWNTAjxdLCQg+d7AxY8ddG1hDymC8vQVfvIbeAI2FbX+TmAp99Jj+p+EleHoavX4gfHv5T6iV5EjG+8r3IHpgxo4KTJIQQQgghhJCqRYlFQkiDte7me864Xlw0M2BuTo0y5JjtbcuK5SqrItCAmYg1DQ7EL1fl1xlUePPmAbdulfnwFQ/+wpLHR0s8pke4LxxSY5nBFi2A1q0rMEFCCCGEEEIIqXqUWCSEkOIkEihHRTBjtA1armFujdHSQpcVl62zqJufjX9P3q+padWsV6+kjVpkuboCf/8NfPcdIBCwhlfdO4Jvnp/mvCRPIsYyrlWNM2YAHA2HCCGEEEIIIaQ2UGKRENIgFYi46ys2yk4FLzeXGaTEYokez+nIivmasFcyNo8LqZbn5928CfPNm2F87BiU4zga71QniQRYsED6/+K8vIAHD4DRo4F165B0/DRSVdl1ETfe2ouvXl5gxb98dQXeMTKdtHV1gTFjqnL2hBBCCCGEEFIplFgkhDRIB59FcsZtqCN0ufH5PDQ302bEuDpDe8ZXcWIxIwOYOBGCXr1geugQrNauhVv//uD37w9ERJR+flW4fBm4epUZU1MDjh8HtKV/J/NOv4HxPTF6DV+BNBUN1iW2X9+BL19dKnxslpmEtXcOsJ9r7lxAg30+IYQQQgghhNQWSiwSQhqkacdeccYv9zJlBymxWKrLX7ZlPObqDO0RH4KcqmrgEhEhrTd46BBriH/lCuDtDSQmVs1zySORAIsXs+Pz5gFWVgCAVzHp+P1uKADgmakD+g/9EZnKaqxTdl7djsvHlmHL9R14/8986OZnMw9wcACWLKnyL4EQQgghhBBCKoMSi4QQUoxObBQ7aMve1kuYTHXUoKOmVPg4RV0b4drGjGM840OgueQCdjwIq9yTicXAyJHAe+7mOwCAyEhg3DhAVI2dqG/fBnx9mTFj48JkY4FIDI+NtxnDD8ybYdDgH5CjxG4G1DPCFzNfXoB6Wgr7uXbtkq6EJIQQQgghhJA6hBKLhJAGJ1fOqjkLXTXAx4c9QInFMjk92YvxWHY7dOOsZJhkpWDGideYeeI1svOFFXuigweBx49LP+7yZWDVqoo9R1ls3cqOff89oKODm+8TobroPOdpt6zcMHTQEuQJlDjHWaZOBbp0qfg8CSGEEEIIIaSaUGKRENLgrL3JvdKtlYUucF+mc7GxMWBtXQOzUnyd7Y0wtY1V4eOXHHUWPRKk24L/eBAGraUXsfZGCasOuaSkAIsWscL5JiYQ6rK7U+Pnn4HQ0PI9R1lERQGnTjFj2tqIGTYGdquuofuOhyWeftm2JQYOXoYPGnolP8+IEdwJTEIIIYQQQgipAyixSAip/zIzGfX2ll95y3mYTVocEBPDDLZvD/B41Tm7emX3CHccGO0BAHjJ0RnaU6Yz9JILAYhIyWYdJ9fy5UBCAiMksbfHm5Mn8frsWeTIri4VCoF168p+/bLauZO1zTp91FgMOxGEsJScMl3imo0nXCZtwwGXbuxBdXVg927g339pCzQhhBBCCCGkzqLEIiGkfsrMBLZsATp1AnR0ABMTYMgQIDZW7imTCzg6RXt7V+Mk66cJrSwxrLkZfEzsWWMeHJ2hv/7vNbbfD8Oic/54FM5RX/CT5GRpQk+GeONGSFRVIdbQQMjq1ZDwZV7a9u0DoqPL/XXIlZ8vrXkoo43QDY8jUst1qS1TO2Hi62vSFZAnT0q3eR84IK0f+cUXlNQmhBBCCCGE1GllLPBECCEKJCsL6NABeCXT+fnUKUhu38ZQ7+k44diedVqzd76sGDp0qKZJ1m/jWlrgv1cxSFLThmFuRmH801bo4i4GxuNiYDwAYNPdEFyb3g4d7QzZF92/H8jNZcYGDICkX7/CJiq5TZpAMnIkeP/8U3RMfj6wfj2waVOlvy6xWIIbvx9Cj/h4RvyqlTuCDC3Kda2CdQMg4H9MHJqbS/8jhBBCCCGEEAVCKxYJIfXP0qXspOJHvJQUHD+7BsOD7jHiw93MIHj4gHmwqirQokV1zbJe69/UBODxWA1cHFJioJkvf6twgUiCztsfYNShZ/CNSSsaEIuBP/5gn7BsGSsk5qjBiJ07WVuoK2La8VdI3b2ffXn3vuW6zndd7IuSioQQQgghhBCioCixSAipX+7elW6BLsX+S7+jebHVc1s6mwN+fsyDWreWJhdJuSkJ+Ej+uQ98jZk1D/mQwJ1j1aKsY69i4bnxDlKy86WBK1eA4GDmQS1bAl5e7JNdXaXb3ovLzZVuMa6gCwFxGHHwGU7c8cfAkCeMsWQ1LZyz45iHHLYGGpjlTZ3GCSGEEEIIIYqPEouEkPojJweYMgWQSEo9VFOYh5Onf4F+jnSbbiM/H/Z5tA26UvTUlTFiUn9W3CO+7F2aDX+8DIlEAmzbxh6cOVN+DcIlS9ixXbukKx/L6bhvDAbsfYL/XsdiZNA9qIqEjPGjTt7IV1Iu07UEfB5eL+gMSz31cs+DEEIIIYQQQuoaSiwSQuqPQ4ekTS+KU1cHQkOBo0chlklC2aXF4e/z6yEQi4Bz59jXo8RipVl1Y9eybBEfzHGkfJZfHYTkwgVGTKKvD4waJf8kLy+gVStm7P174MaNMj1nToEIi88HgL/gLEYefl4YH+/PPv9QM46uznK8WdAFGipU3pgQQgghhBBSP9DdDSGk/ti3jx3bsAGwsUGySWNs6DAWq+4dYQz3Cn+J2GPzgSiOVXTt2UkxUk6OjtLkbk5RXcV2MYHlusTngbfBk1lpGDJoJOw1NEo+cfp04NkzZmznTqBHD87D/3oRhf1PIxGbngv/uEzWuF1qLDrIzP2dnhkemTmV+jV838MBK3o7gUddngkhhBBCCCH1CK1YJITUD/7+wBNm7Ts4OEiTSwDO+sVhdesROMbRDdqIK6nYvz9gYFAdM21YlJSANm0YoabJUTDKTpNzggyJBOP9b7LCg+GK/10OgkQiQXpuAYRi9vZ3yahREGpqMYOnTqEgOgbij8cnZ+djy71Q8Becxbi/fHD9XSJnUhEA5zyONOsqfzv2R3+ObYGf+zhTUpEQQgghhBBS79CKRUJI/cDVmGPyZIAv/fzknH8cwONhSu+5cE6ORvPEcPnX0tAAfv+9eubZEHXsCNy6xQgNTXuPXRotSz3VPSGU9W/1wsQOfkbW8Lv6FiuuvmWd0/dFAf4Z3wpzzr9H6yYd8bXvxaJBoRA/jV6MNW1GlO9rkEgwzv8WK3ykaRfOw4c1N8Nf41pAic+jhCIhhBBCCCGk3qIVi4QQxScUAocPM2N8PjB+fOHD/17HAgCyVNQx5LOlSFHVlH+9X34B7O2rY6YNU8eOrNBq7USoK5f+EiR3lWAJLgYlQPeHizj4LAo73fqwxr98dRk8SfmauLSPCYB92gdG7K55M4TqmbKOzVjVF8cmtoKygE9JRUIIIYQQQki9RolFQojiu3wZ+MBM+qBnT8DCgvPwED0zfDb4B8Rocmx19vYGZs+uhkk2YO3aAQIBI6T//DGCFnVDext9uacJxCKMCbzDiAl5fPzt3KnMT/3KxBYPZWog2qbHo1eYT5mvAQDjuVYrNuvCeGyhq4bEFb2hqUqbAQghhBBCCCENAyUWCSGK78QJdmzSpMI/3g9NZg3fs3BBs8nbkL9nHzBwIGBrCwwfDpw8Wbh9mlQRLS3A05MZ8/GBhZII92Z5I2BhVxyf2Ip1Wo/wlzDLSmHErth4Ik5TfjKSyy6OVYvTXl0u8/mqwnyMDLrLiOUKlHHM0bvw8dgW5ohY1hMGGirlmhshhBBCCCGEKDK6eyaEKDaJBLh0iRnT1AQGD/44LEHHbfc5T1U10IfK1MnAmTNASAhw7BhgZFTNE26gZLdDi0TAw4cAACcTLQxtbobNg10Zh3DVNDxcyjZoLkedvJEqs/V9YPATmGUmlen8QcFPoJ+XxYidtfdCqpq0McwQV1PsHO5W7nkRQgghhBBCiKKjxCIhRLG9fg3ExDBj3bsDamoAAL8PGXJPffNdl2qcGGHgqLOIu8xVgDPa22BN/6bo4WCEha1MMOT9I8Z4uoo6TtszO0yXRY6yKishqSQRY+rrq2U6f3rx5i8ftVk6B6L1A5C1uh/+m+QFDRXa/kwIIYQQQghpeCixSAhRbLKrFQGgT9HWV7cNt+WeaqylWh0zIly8vdmxGzcYD/l8HhZ2bYIr09thTW4ANIR5jPH/HNojV7li/2ZcTVy+eH0FfLGoxPMck6PQLfI1M2hmBqvPh4LH40FdWcB9IiGEEEIIIYQ0AJRYJIQoNq7EYu/eAIALAXFyT/u+h0N1zYhwMTYGmjZlxh48YK82/US2yzeAQy7dKvz0/kZWuGvejBGzykhE39AXJZ63PJwjMf3FF4CycoXnQgghhBBCCCH1BSUWCSGKKyMDuHePGXN0BOzsAABjjshPGo10b1ydMyNcPta9LCSRAMePs48LDwdu3mSEhBaWuPn3Yoh/HYiTk7xgoFH+xN4ut96s2LRXHInpjx580QIjX8psl+bzpYlFQgghhBBCCCGgolCEEMV18yZQUMCMfdwGHZOWi4w8odxTddXo11+NGzUKWL2aGTt6FJgzhxn7/Xdp0rEYpQnjC7t1f+Zqis9c+0AikYDH4yEyORN9d9xDYq4IWQUSZBUUndvOWh8CPg9aKgJoe46G8NEBKKUUdZruF/ocFukJiNIxxunJXtBTV0bTRlow0lQFdu8GkmU6ivfrB1hZVf7vghBCCCGEEELqAbqzJoQorhLqKx71lbPF9iMrfY3qmBEpiZubdEXp27dFsfv3gagowMJC+jglBdi1i3kejwdMmsS6HI/HAwCY6ajhYG/jwnhTl+ZQVlaCsoBjUf7zScBvvxU+FEjE2B9zE56b9sJAQ6XouJwcYPly9vlffVXaV0kIIYQQQgghDQZthSaEKK7bMvXvVFWBzp0BAPPP+Mk9LfanXtU5KyIPjyddtSjr2LGiP//xB5CVxRz/7DPAoew1MVWU+NxJRQCYPp0V6n75HxiEBzOD27YB0dHMmLMzozEQIYQQQgghhDR0lFgkhCimhATA358Za9sW0NBAnlB+p98JLS3QSJu6QdeakSPZsV27gLw8IDtbug1a1sKFVff8Tk7AgAHMmFAIfPNN0fbrlBTgl1/Y565cCQioCzQhhBBCCCGEfEKJRUKIYpJt2gIAnTpBLJbA8udrck/7qZdTNU6KlMrVFWjG7M6MwEBp0u7LL4H4eOaYtzfQrl3VzmHDBnZX5ytXpKsUc3KAIUOkycXiWrUChg6t2nkQQgghhBBCiIKjxCIhRDHducOOdeyIHy4FIjErn/OUy9PawtaQaivWupkz2bGVK4G//mLHq3K14ieOjtIVirJmzwY0NNhb7AFgzRrpVm5CCCGEEEIIIYUosUgIUUx37zIfCwRAu3ZYc+O93FPaWulX86RImUyfXrZViF26AP37V88cfvgBMDUt27GDBgHdu1fPPAghhBBCCCFEgVFikRCieNLTAR8fZqxlS0SLSq5/p6VK9fHqBIEA2LdP2mxHHisr4N9/AX41vUzp6AAHDwIqKiUf5+UFHD5cPXMghBBCCCGEEAVHiUVCiOJ58AAQi5mxTp1gu+q63FPaWeuDR1tZ6w5nZ+Dnn7nHNDWBM2cAE5PqnUOvXsD164ChIfe4qytw8aI0CUkIIYQQQgghhIUSi4QQxSO7DRrABWMnCMUSuafcm9WhOmdEKmLBAmD9esDdXZpEVFcH3NyAS5eksZrg7Q08fCj9P48HqKkB9vbAlCnAjRvyk46EEEIIIYQQQqBU2xMghJBy42jcMj5cA1DnPnyMpzmtVqyLeDxpcnHBgtqdh4ODNFktFEq3adP3CiGEEEIIIYSUCSUWCSGKJScHePKEEUpu4owUdW25p2wd4lrdsyL1gRK9JBJCCCGEEEJIedBWaEKIYnnyBMjPZ4T+1rKTe/iCLvbQ1yilQQchhBBCCCGEEELKjZZnEEIUC0d9xTsW3CsSNw5ywdyOttU9I0IIIYQQQgghpEGixCIhRLFw1Fe8a96M89BvOslfyUgIIYQQQgghhJDKoa3QhBDFUVAAPHjACL3TM8MHLQPWoduHNq+pWRFCCCGEEEIIIQ0SJRYJIYrDxwfIymKE7lq4cB462NW0JmZECCGEEEIIIYQ0WJRYJIQoDs76iuzE4pLuTWCqo1YTMyKEEEIIIYQQQhosSiwSQhQHR31FrsTiqr5Na2I2hBBCCCGEEEJIg0aJRUKIYhCJkHvzNiMUqWWEMJ1GjFj0jz1rclaEEEIIIYQQQkiDRYlFQohCCLn+AGoZaYzYHQsXgMcrfJyxqi/MaAs0IYQQQgghhBBSIyixSAip85ZdCsQfq/az4jetijo/n5nSGpqqSjU5LUIIIYQQQgghpEGju3BCSJ0lkUgg+O4cAOBc5CvW+A0rt8I/D2jWiDVOCCGEEEIIIYSQ6kMrFgkhddZfPtEAACWREJ2i/BhjoTomCNM1BQDc/Lpdjc+NEEIIIYQQQghp6GjFIiGkzhGJJWj+6y0ExmcCALw+vINWQS7jmJtWbmhipIm7MzugkbZqbUyTEEIIIYQQQghp0CixSAipGlFRwOnTQHQ0YG0NNG8OtGvHaK5SVsoLzzEed+PYBs3r1g1vF3er8HQJIYQQQgghhBBSOZRYJIRUTkICsHw5sHs3kJ/PHHN3B/7+G2jatEyXkkgkUFt8nhXvGsFOLE5eNLFC0yWEEEIIIYQQQkjVoBqLhJCKCw0FWrQAtm1jJxUBwNcX8PIC/vmn1Et9fuQ5BN+dQ4FIwohr5uegfUwgI5Zj7wA0blypqRNCCCGEEEIIIaRyaMUiIaRiYmOBHj2kW6BLkpUFjBkDSCTS/8t4FpmK1r/flXt67zAfqIkKGDH13j0rNGVCCCGEEEIIIYRUHUosEkLKLzMT6NMHCAkp+zlTpwLNmgHu7ghNysbCc/7473VsqacNCn7MERxUjskSQgghhBBCCCGkOtBWaEJI+S1aBLxi1z1E167AoUPA9Onspi05OZAMGQJxYhLsV18vU1JRSSTEgJCnzKCOjvR5CCGEEEIIIYQQUqsosUgIKZ+bN4Ht29nxMWOAa9eA8eOBHTuAU6cAPvNXDC80FP96DynzU3lH+8MgN5MZ7NsXUFGpwMQJIYQQQgghhBBSlSixSAgpu8xMYMoUdrxbN+DAAWYicdAgYNUq1qFjgu5iQPCTUp9q3ygP3DCLZw8MHlz2+RJCCCGEEEIIIaTaUGKREFJ2P/8MhIUxYzo60qSizCrCxKw8qCW74j+HdqzLbL/2B3TysuQ+TcQPPTCplQVw+jRzQFlZumKREEIIIYQQQgghtY4Si4SQsnn3DvjtN3Z840bA0rLw4evYdPAXnIXJT1eQL5bgqx4zkaCuwzjFIjMJa+8cZF0q7PvuEP86EBZ66sD160B4OPOArl0BXd0q+XIIIYQQQgghhBBSOZRYJISUzbffAgUFzFj37pBMnow9j8PBX3AW/AVn4b7hNuOQJA0dzOk2jXW56a8uoXPkawCAs4kWxL8OhJW+RtEBv//OnsOwYZX+MgghhBBCCCGEEFI1lGp7AoQQBXD5MnD2LCMk5PPhbjkEAQvPl3r6v04dMSbgDgaFMGsr7rqyFTnPnsPN3ox5wrt3wLlzzJiuLvD55xWaPiGEEEIIIYQQQqoerVgkRBFlZQH79gHdu0u3IWtpSWsd9uoFbNkCxMVV3XMVFADz5rHC2zz6I8DQqmzX4PEws8dXSFPRYIQdUmPhtnkN+/gtW9ixL76Qfp2EEEIIIYQQQgipEyixSIgiEYmA9esBc3Ng6lTgxg0gKkqaaMzIAK5eBebMAezspMfJbl0uh39fRoO/4Czm9p4JBAQwxhLVtLG83ZhyXS9a2wiqG39lD2zeDBw5UvQ4JATYv595DJ8PzJpVrucjhBBCCCGEEEJI9aKt0NUgODgY//zzDx4/foyoqCgIhUKYmJjA0dERAwcORM+ePaGkRH/1pJzevQMmTgQePiz92OxsYOFC4M8/gePHgSZNSjw8KSsf35x+gz9fRDPihtnp+N+Dv1jHL/Meh1S1sq8ejFrWE4111QCxGDh+FLh1i3nAF18AFhZA69bAkCFAZiZzfMgQwMamzM9HCCGEEEIIIYSQ6kfZrSq2ZcsW7NixA0KhkBGPjIxEZGQkrl+/DldXV6xfvx52dna1NEuicK5fB4YOBdLTy3eery/Qti2yjx7HTdOmcGusg7mn3uDUmw9lOv2Xe4egn5fFvKSxDXY371XiefrqyjgxqRVcTLVhpKlaNMDnS7dwt2wJpKQUxfPypB2f5fn22zLNlxBCCCGEEEIIITWHEotVaOXKlTh8+HDhYyUlJTg5OUFdXR3BwcFI+ZhIefPmDcaPH4+jR4/C3Ny8tqZLKkskAnJypKvwtLUBHq96nufgQemKPplkdSFTU+Ta2IEXEQ7VmGj2eFISBL164lDf+Tjm5F3mp+0a4YsvX19hxed1+QJivoAVn9jKAps+c4WuunLJF7a1BY4eBfr0kf4dlmb+fKBdu7JOmxBCCCGEEEIIITWEEotV5NKlS4ykYu/evfHjjz/CyMgIAFBQUIATJ05g9erVyMnJQWJiImbPno3//vsPvOpKSJGqFRsr3VZ85w7w+DEQGVk0ZmAANGsGdOwIjBkDNG9e+eeTSIAVK4D//Y9z+I2RNb7tPAXXrN0h4fGB9hK0iwnEtus74JEQyjhWVSTE3+fWQz83E7vc+5T61BoFudh9ZSsrftyhPW5ZuTFit75uj072hmX/ugCgRw9gwwbgm29KPq5bN2Dt2vJdmxBCCCGEEEIIITWCEotVoKCgAGuLJT+6du2KTZs2gc8v6o2jrKyMUaNGwdzcHNOnT4dQKISfnx/OnTuHgQMH1sa064fEROhduwZBdjaEOjrSFXDu7oCqaunnloVIBJw7B2zfDly7Jl2dyCU5Gbh3T/rf6tWAhwfw/ffS7ct8Zo8ksViC8JQcJGXnIyotB9ffJeLI8yik5RatSFQWFWDH1e2Y7Hed8+nWtxqCZR3GIV+p2OpAHg8PzZvCa9xGrL57CAuenWScw4cEO65th0FuBta0Hi5/haVEgt9u7oFdGrOzdJqKBr7p+iWOjm+JgS6NoKrEXrVYLnPnAsrK0lqQWVnscVtb4J9/AKpHSgghhBBCCCGE1El0x14Frl69ipiYGADS7c8//vgjI6lYnLe3N0aNGoU///wTALB//35KLFZUVBQEXl6w/yBTL1BZGRI3N6B7d/B69YKkfXvw1NXlXiY1pwCZeUI00lZFboEYuUIRMhOTIdyzDxaH9kA9Mqz8c3v5EhgxAr7GNljebgxONWlb5q3Sxtmp+O/0anjHBLDGCvgCfNlrFg65dJd7vogvwMLOk/FO3wzbru2AkoSZDP3l3mEY5mTgu86TOec0//kpzi3Quts3I2rqpDJ9DWU2YwYwcCCwYAHw33/SJGzr1tIVjTNmAMbGVft8hBBCCCGEEEIIqTKUWKwCFy5cKPxz+/bt0bhx4xKPL55Y9PPzQ2RkJCwtLat1jvXSvn3gySYVAaCgALznz4Hnz4F165CjpII7Fi64au2JKzae8DO04k7ySSRoGxuEiX43MCbwNnTycyo9RfeEMJw4sxo+xrZY0W4MzjRpLd22LEePMB/subIFVhmJrLE0FQ0MG7QEN6zdy/Tcu9364IOGPv49tw5qogLG2LfPT8E+NRZf9ZyBeE19DHE1xbIeDrA6fgQGGw9wTKwHMGVKmZ633CwtgX//la5aVFYGVFSq53kIIYQQQgghhBBSpSixWEkSiQSPHz8ufNyhQ4dSz3FycoKxsTESEhIAADdu3MDEiROrbY711YdcMUzLcJyGMB99wnzQJ8wHuA3EaBrgupUbwnQbIUtZDYY56bBPjUXHaH8Y55St63K8ui6eN7JHspo2VMQFaJoUhWZJkeBDwnm8Z0IoTp75Bb7GNtjh3hdHHb2Roq4tHZRI0CruPb55fhqfB97hPD9C2wj9h/4EPyPrMs3vk7NN2qDPsOU4c+pnVqJ0cPBjDE4MBMaPB+IsgDHzpVu5ZZmaSjs5V3ctUE3N6r0+IYQQQgghhBBCqhQlFispOjoa6elFyShXV9cynefk5FSYWHz9+nW1zK2+29/mM/Q2OYwW8SHlOq9xVjLGB9wq9/PFaejicLNuONK0C14Z27ASbY0zkjA66A7mPj8Ly0z2ikNAuoLxj2t/YMv1nQjRM0WSmjasMhJgnpks93kfmzpi6GdLEKtVcoOUDjb6mOhlCTczHbSy0AOf/2l+A4EXvaVdmD9+zxVKSwO2spu0FNLQAM6ela4qJIQQQgghhBBCCCmGEouVFBYWxnhsZWVVpvMsLCwK/xwREVGVU2owHG0bodW439AiPhhW6QkwyU5D88QweH14h5ZxwRBI5DRaKScfY1v83nIQ/nHqxGyWIiNG2xAbWw3BNo/++OL1FSx+clxuwlBJIoZjSkypz/23azfc/O4XXOvdDE7GWuDxULEu4i1aAHfvSpOLMt+zcgkEwF9/Aa1alf/5CCGEEEIIIYQQUu9RYrGSEoqtAOPz+TAyMirTecbFmlIkyK4iI2UyzK0xTHXU8ILXBC8aNWGM6eVmolvEK/QK90HPMB/YpseX69p5AiWctm+DbZ79cdfcpcRtwLYGGghNzi46V0kF2zwHIHnMeHS/cRJjrx2BakL5nh/6+sCGDRgzaRLGVNUWZCcnwMcHmDcPOHCg5GP/3969x/dc//8fv88ODhtjzPk8NkI6+OATpZZTZMoxZ0o5NELlVFFySDlPKJSU81npQ/mRSPgkEmGZHLYPxhiGnd57//7Yxev7fm+2vU87mNv1r9fz/X69no/ne5un5x57HipVSr0nONg1sQEAAAAAQL5DYtFJ169fN669vb0zPA06LR8fn3vWkZOSk5NzJa4r/TO6mY78+aduJaXubdjokXpKlptMKWYV9OioFLNZtxNMSr5wTvH/2aoiP+2U208/ye1G+r0UzaVLy/zUUzI/+6zcO3ZUhxIl1MHZBvZtLN15X6bFi1UgLExupzNftm328pL5pZeUMnmyVKaMZDI52wJrPj7SwoVy69RJbtOmyW33brlZxDAXKiRz796p8X19pXzwM4L8z5Tm30naMoD8j34AAP0AAPqB3OFmNpvvfdoEbPLZZ59pxowZklJnIe651+EX97B8+XJ98MEHkiRPT08dPXo029p416FDh5SS4prlwfe15GR5Xbok95s35X77tpJ9fZVUsqRMvr7Ze0CJ2SzvP/9Uie3bVfjvv1Xo3DkVuHVLSf7+SixXTjcaN1ZMmzYyFS+efW1Iw/3mTfkcPqwCd+4ovkoVxVetKnPBgjkWHwAAAAAA5L4CBQro0Ucftfs5Ziw6KSkpybi2dbaiJHl4/N+XPj/MHLyveHgosUKFnI/r5qZbDz+sWw8/nPOxM2AqWlTXn3wyt5sBAAAAAADuQ7ZnwnBP7u7uxrU9swEtk4menhkfCAIAAAAAAADkRcxYdFLhwoWN64SEBJufS0xMNK4L5sLS0wIFCqhevXo5HtfVTCaT1TLyunXrWiV7AeR/9AMA6AcA0A8AoB+w359//un0lnkkFp3k6+trXN+6dUtms1luNuzTFxcXZ1wXz8E99SxZLsfOL9zd3fPl5wJgO/oBAPQDAOgHANAP5AyWQjupTJkyxrXJZNK1a9dseu7y5cvGdalSpVzeLgAAAAAAACA7kVh0UpUqVazK58+ft+m5yMhI47patWoubRMAAAAAAACQ3UgsOqlChQpWS5mPHz9u03MnTpwwrmvVquXqZgEAAAAAAADZisSiCzRq1Mi43rt3b5b3nzhxQleuXDHKjRs3zpZ2AQAAAAAAANmFxKILtGzZ0rjeuXOnLl26lOn9K1asMK4DAgIUFBSUbW0DAAAAAAAAsgOJRRdo2bKlSpcuLUlKTEzU6NGjlZycfM97d+/erTVr1hjlXr165UgbAQAAAAAAAFcisegCXl5eGjFihFHeu3evXn31VauDXJKTk7V69WoNGTJEJpNJkhQYGKjOnTvneHsBAAAAAAAAZ3nkdgPyixdffFGHDh3SqlWrJKUmF1u2bKmgoCD5+PgoIiJCV69eNe4vXry4Zs+eLQ8PvgUAAAAAAAC4/5DVcqEPPvhAJUqU0OLFi5WUlKSUlJR7nhIdEBCg2bNnq3r16rnQSgAAAAAAAMB5JBZdyM3NTcOHD1dISIjWrl2rPXv26OLFi7pz5458fX1Vu3ZttW7dWiEhIfLy8srt5gIAAAAAAAAOI7GYDQICAjRq1CiNGjUqt5sCAAAAAAAAZAsObwEAAAAAAABgNxKLAAAAAAAAAOxGYhEAAAAAAACA3UgsAgAAAAAAALAbiUUAAAAAAAAAdiOxCAAAAAAAAMBuJBYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7EZiEQAAAAAAAIDdSCwCAAAAAAAAsBuJRQAAAAAAAAB2I7EIAAAAAAAAwG4kFgEAAAAAAADYzc1sNptzuxHIGQcPHrQqFyiQP/LKKSkpxnV++UwA7EM/AIB+AAD9AAD6AftYfr0k6fHHH7e7Dg9XNQb3n7Q/QPlBfvxMAOxDPwCAfgAA/QAA+oGcQfoWAAAAAAAAgN2YsfgAY1owAAAAAADAg8kVszrZYxEAAAAAAACA3ZiyBgAAAAAAAMBuJBYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7EZiEQAAAAAAAIDdSCwCAAAAAAAAsBuJRQAAAAAAAAB2I7EIAAAAAAAAwG4kFgEAAAAAAADYjcQiAAAAAAAAALuRWAQAAAAAAABgNxKLAAAAAAAAAOxGYhEAAAAAAACA3UgsAgAAAAAAALAbiUUAAAAAAAAAdvPI7QbgwRQREaGVK1dq//79ioyMVHJyskqXLq3AwEC1a9dOLVq0kIeH6388L1y4oJUrV2rPnj06e/as4uPj5e/vr+rVq6tNmzZq06aNChcu7PK4ANLL6X7gzz//VKdOnex+btmyZWrQoIHL2gEgc7Nnz9a8efNUoUIF7dixI1tiMB4A8rbs7AcYDwB5z/79+7VlyxYdOnRI0dHRiouLk4+Pj8qVK6cGDRqoQ4cOeuihh1we9+rVq1qzZo1++uknnT59Wrdu3ZKfn58qV66sVq1aKSQkRL6+vi6Pm9+4mc1mc243Ag+WsLAwLViwQMnJyRneU7duXX3yySeqXr26y+KuXLlSH330ke7cuZPhPVWrVtXHH3+s+vXruywugPRyox9YvXq13nvvPbuf4xcJIOccOXJE3bt3V1JSUrYlFhkPAHlbdvcDjAeAvCMyMlKjRo3Sb7/9luW9bdu21YQJE+Tj4+OS2Nu3b9c777yj2NjYDO/x9/fXpEmT1KxZM5fEzK+YsYgcNXHiRH399ddG2cPDQ0FBQSpcuLAiIiJ07do1SdLRo0fVq1cvrV69WhUqVHA67pIlSzRlyhSj7Obmppo1a6p48eI6c+aMoqOjJUlnzpxRnz59tGzZMtWpU8fpuADSy61+4Pjx48Z1lSpVVKlSJZue46+UQM44f/68Bg8erKSkpGyLwXgAyNtyoh9gPADkDWfOnFG3bt109epV4zVPT08FBgaqaNGiiomJ0alTp3R3LtyWLVsUERGhZcuWOZ1c3Lp1q0aMGCGTyWS8Vq1aNfn7+ysqKkpRUVGSpMuXL2vQoEGaN2+enn76aadi5mfMWESO2bp1q9544w2j3KpVK40bN06lSpWSJCUlJWn9+vWaMmWKMYugTp06Wrdundzc3ByOe/jwYXXv3t3oNP71r39p8uTJqly5siTJbDbrxx9/1Lhx44yERtmyZbV161aWQQEullv9gCS99NJLOnTokCTpo48+0osvvuhUfQBcJzw8XP3799elS5eM11w9U4nxAJC35UQ/IDEeAPICk8mkF154QeHh4ZIkd3d3DRo0SP369bNKGl66dEkzZszQxo0bjddat26t2bNnOxz7/PnzCgkJ0e3btyVJgYGBmjp1qtVS63379mns2LFGgtHb21v/+c9/VKZMGYfj5mcc3oIckZSUpKlTpxrlZ555RrNmzTKSCVLqXye6du2quXPnGvuqHTt2TN99951TsadMmWL8ElGnTh0tWrTI+CVCSp2t0LJlSy1ZskTe3t6SpIsXL+qrr75yKi4Aa7nZD5jNZp08edIo16pVy6n6ALjOpk2b1KVLF6tkQnZgPADkXTnVDzAeAPKG9evXG0lFKTXJP2TIkHQzEcuUKaOpU6eqX79+xmtbt27V4cOHHY49c+ZMI6lYoUIFffXVV+n2b2zcuLGWL1+u0qVLS5Ju3bqluXPnOhwzvyOxiBzx448/6n//+5+k1GWP48aNU4EC9/7xa9q0qbp27WqUv/zyS4fj/vHHH1adznvvvadChQrd895atWrp9ddfN8pfffWV1dRoAM7JrX5Aks6ePWsMIDw9PRUQEOBUfQCcd+nSJY0aNUojR47MdL9DV2A8AORNOdkPSIwHgLxi06ZNxnXTpk0VEhKS6f0jRowwknxS6rJoR1y6dEnbtm2zqtfPz++e95YtW1bvvPOOUV6/fn2m+zE+yEgsIkd8//33xvUTTzyh8uXLZ3q/ZULh2LFjOn/+vNNxAwIC9Oijj2Z6f6dOnYxZUlevXtWBAwccigsgvdzqByTr/ZSqVasmLy8vh+sC4Lz58+erdevWVkubqlevroEDB2ZLPMYDQN6T0/2AxHgAyAsSExP1+++/G+Xnn38+y2e8vLzUtGlTo/znn386FHvbtm3G4ZFFixZVq1atMr2/RYsWRuIxOTlZ27dvdyhufkdiEdnObDZr//79RrlJkyZZPhMUFCR/f3+j7OjeKr/++qtdcX19fVW3bl2jvHPnTofiArCWm/2AJJ04ccK4ZtkTkPsWL15szBqSpM6dO2vNmjWqUqVKtsRjPADkPTndD0iMB4C8ICoqSgULFjTKts4cLl68uHF9dy9ke1mOBxo2bChPT89M73d3d9e///1vo8x44N5ILCLbRUVF6caNG0bZcqCemaCgIOPakb9IJCUl6fTp00bZ1lMdnY0LIL3c6gfuspyhwC8SQN5Rt25dff3115o4caLTJzxmhPEAkLflRD9wF+MBIPdVq1ZNhw4d0m+//aYtW7YoMDDQpufuHqQiOX5Ku+Ueq7aOByz7CsYD9+aR2w1A/nfmzBmrsuVG6ZmpWLGicX3u3Dm740ZGRiopKcko2/rXT2fjAkgvt/qBuyx/kQgKCtKJEye0bt067d+/X5GRkUpOTlapUqVUv359Pffcc2rRooXTp1ADyFjDhg3VoUMHPfvss9n+b43xAJA35WQ/cBfjASDvKFq0qIoWLWrTvXFxcfrll1+MsiP7oyYmJhr7vUuOjQcuXbqk+Pj4DPdpflCRWES2u3z5snFdoEABqxNgM2O5BNKyDkfipq3P1rgxMTFKSUnJ8IAJALbJrX5ASt0fLTo62igvWrTIahnEXVFRUYqKitL333+vunXraubMmTYnQAHYZ968eTkWi/EAkDflZD8gMR4A7meLFy9WXFycUX7mmWfsruPy5csym81G2dbxQNrfWy5fvqxKlSrZHT8/Y3SEbHf9+nXj2tvb2+ZBueVSCMs6HIkrScWKFbPpOcu/mpjNZqvlmwAck1v9gGQ9O0H6v71VChcurFq1aqlhw4aqWrWq1T1Hjx5V586d9ddffzkUE0DewXgAgMR4ALhfHTlyRAsXLjTKVatWVXBwsN31uGI8IInxwD0wYxHZLiEhwbi2Z8qw5SltiYmJTsW1J3baDVzT1gPAfrnVD0jpf5Hw8fHRiBEj9MILL8jb29t4PTIyUnPmzNGmTZskSbGxsRo8eLA2bNigEiVKOBQbQO5jPABAYjwA3I8iIyM1ePBgqy1NRo8eLQ8P+1NZaf8ftzxAJjNpT49nPJAeMxaR7Sw7AXuWEFl2FnePhLdH2mdsjZ22kzKZTHbHBmAtt/oByXp/xxIlSmjt2rXq0aOH1S8RUur+KR9//LGGDBlivHbhwgUtWLDAobgA8gbGAwAkxgPA/ebChQvq06eP1ZYmffv2dWgZtJR+PODu7m7Tc2nvYzyQHolFZDvLf4gpKSk2P2f5Dz+rY+DvJe0vDrbGTtvhOBIbgLXc6gckaeLEiTpw4IDWrVunFStWqFq1apne//rrr+vRRx81yqtWrXJ4tiSA3Md4AIDEeAC4n0RERKhbt26KjIw0XmvatKneeusth+tMOx6wNUGY9j7GA+mRWES2K1y4sHFtz7Rhy/+4bZ2mnFFce2KnHTA4EhuAtdzqB+7y9fVV3bp1s/wlQpLc3NzUq1cvo3znzh0dPHjQ4dgAchfjAQB3MR4A8r7ff/9dPXr00IULF4zXGjdurLlz5zqV1Es7HrD1DwWOLqF+kJBYRLbz9fU1rm/dumV1ElNmLE99Kl68uFNx09Zna1wPD490m7UCsF9u9QOOeuyxx6zKlsunANxfGA8AcBTjASBnffvtt+rTp4+uXbtmvNasWTN99tln6RKD9nLFeEDK2d9J7hckFpHtypQpY1ybTCarTiIzlnsppD3i3d64knTlyhW74/r5+cnNzc3u2ACs5VY/4KiSJUtalR09kRpA7mM8AMBRjAeAnBMWFqa33nrLaiZhSEiI5s2bZ9fhjxnx9/e3Wg5t63jA8j43N7d0/QJILCIHVKlSxap8/vx5m56z3E/BluUKaZUvX95qqrQjcatWrWp3XADp5VY/4Ki0SyPSbuwO4P7BeACAoxgPANkvKSlJI0eO1Ny5c61eHzBggD7++GOHToC+Fy8vL5UrV84onzt3zqbnLMcN5cuXT3dKNEgsIgdUqFDBarrw8ePHbXruxIkTxnWtWrXsjuvp6anAwEC741reV7t2bbvjAkgvt/qBqKgoffLJJxozZoxee+01q/oykzbxYDkIAXB/YTwAgPEAkDclJiYqNDRUmzZtMl7z8PDQxIkTNWLECJevFqhbt65xbWs/wHggayQWkSMaNWpkXO/duzfL+0+cOGE15bhx48Y5Ejc2NlZ//fWX03EBpJcb/YDZbNaiRYu0fv167dq1S3v27LHpud27dxvXbm5u6fZYAnB/YTwAPNgYDwB5T3JysoYOHaqffvrJeM3b21ufffaZOnfunC0xGzZsaFzv379fKSkpmd5vMpm0f/9+o8x44N5ILCJHtGzZ0rjeuXOnLl26lOn9K1asMK4DAgIUFBTkdNyjR4/q6NGjmd6/evVqJScnS0rd3PWJJ55wKC6A9HKjH6hYsaIqVKhglNevXy+TyZTpM3Fxcfrmm2+MctOmTeXn52d3bAB5B+MB4MHGeADIez755BPt3LnTKPv5+enrr79W06ZNsy1m8+bN5e7uLil178Qff/wx0/u3bdumq1evSkqdSWk5nsD/IbGIHNGyZUuVLl1aUup059GjRxsD9rR2796tNWvWGOVevXo5HPfRRx9VnTp1jPKYMWMyPP3p+PHjmj9/vlHu0qWLSzaJBZAqt/qBTp06GdcRERFasGBBhvcmJSVp9OjRRtLTzc1NAwcOdDg2gLyB8QAAxgNA3rFr1y599dVXRtnX11dLly61+r86O5QtW1bPPvusUZ40aVKGkx0uXLigyZMnG+WWLVumOxAOqUgsIkd4eXlpxIgRRnnv3r169dVXrfYtSU5O1urVqzVkyBDjL4iBgYEZToMODg5WUFCQgoKCFBwcnGHsUaNGGXszhIeHq1evXlb7KZjNZv3www/q27evbt++LSn1xKgBAwY4/oEBpJNb/UC/fv2sZinMmTNHEydOTHcy9fHjx9WvXz+rv1z27NlTDRo0sP/DAsgxjAcAMB4A7h8mk0mTJk2S2WyWlJq4nz59umrWrOlUvb169TL6gcxWOg0fPlwFCxaUJF26dEndu3fXgQMHrO7Zv3+/evToocuXL0uSihQpYvV7DKy55ngdwAYvvviiDh06pFWrVklKTSq0bNlSQUFB8vHxUUREhDHNWJKKFy+u2bNnO30KVKNGjTR8+HDNmDFDkvTXX3+pffv2qlGjhvz8/HT27Fmrv1IUKlRIs2bNUtGiRZ2KCyC93OgHChcurM8++0w9e/ZUbGysJOnrr7/WypUrFRgYKB8fH124cCHdyXDPP/+8xowZ43BcAHkL4wHgwcZ4AMgbtm7dqrNnzxrlwoULa8mSJVqyZInNdZQqVUpTp051KH716tU1ceJEjRo1SikpKYqMjFSvXr1UuXJllS1bVhcuXLCa+FCgQAFNmjRJlSpVcijeg4DEInLUBx98oBIlSmjx4sVKSkpSSkrKPU9nDAgI0OzZs1W9enWXxB0wYIC8vb01ffp0YxbCqVOn0t1XtmxZTZs2jb9IAtkoN/qBmjVrau3atXr77bd16NAhSanLnI4dO5bu3kKFCmngwIF67bXXjD1YAOQPjAeABxvjASD3bd261ap8+/Ztmw9Uusty9rEjQkJC5OXlpfHjxxt/aDh37ly6Pyz4+vrqww8/VKtWrZyKl9+RWESOcnNz0/DhwxUSEqK1a9dqz549unjxou7cuSNfX1/Vrl1brVu3Nv6hu1LPnj3VvHlzrV69Wrt27VJkZKTi4uLk4+OjwMBANW/eXB07dpSPj49L4wKwllv9QKVKlbRy5Ur98ssv+u6773T48GFFR0crISFBfn5+qlSpkpo1a6Z27dqpXLlyLosLIG9hPAA82BgPALnr9OnTud0ESVLr1q3VuHFjrVmzRjt27NDZs2d1/fp1FSlSRAEBAWrWrJm6du3KoU02cDPfXdgOAAAAAAAAADbi8BYAAAAAAAAAdiOxCAAAAAAAAMBuJBYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7OaR2w0AAADITsHBwYqKinK6nqVLl6pRo0YuaBGQcxISEtSpUyeFh4erT58+Gjt2rPHe/v371bt3b6N88uRJp2IFBQUZ16GhoRoyZIjddYSFhWnu3Lkua1NWhg4dqm3btqlx48b68ssvVaAA8y4AALAH/3MCAAAA+dSUKVMUHh6uUqVKaejQobndnDxn1KhRKlSokPbt26dFixbldnMAALjvMGMRAAA8MEqXLq3AwECHnvX19XVxa4Ds9fPPP2vFihWSpGHDhsnHxyeXW5T3VKhQQf369dP8+fM1e/ZsPfXUU6pVq1ZuNwsAgPsGiUUAAPDAaNKkiT766KPcbgaQ7eLj4zVhwgRJUmBgoDp27JjLLcq7XnvtNa1Zs0ZXrlzR+PHjtWLFCpZEAwBgI/7HBAAAAPKZzz77TOfPn5ckDR8+nERZJooUKaKBAwdKkg4fPqy1a9fmcosAALh/MMIAAAAA8pGYmBgtWbJEklSjRg0FBwfnboPuA126dFHx4sUlSXPnzlVCQkLuNggAgPsEiUUAAAAgH/n88891+/ZtSakJM2StYMGCeuGFFyRJly5dMvamBAAAmWOPRQAAAAeMHj1aGzZskCQtWLBAzZo109KlS7Vq1SpFRkaqWLFiql69ulq3bq0ePXqke/7WrVvauHGjdu3apb///lsxMTHy8vKSv7+/GjRooOeee05PPPGEXW369ddftW7dOv3++++Kjo6Wt7e3KleurOeee05dunSRj4+PvvnmG3344YeSpNDQUA0ZMsSqjvXr12vMmDGSUg+22LFjR5Zxg4ODFRUVJSn1FOIOHTpken9UVJQ2bNigPXv2KDIyUrGxsfLx8VH58uX1xBNP6MUXX1RAQECmdYSFhWnu3LmSpPfee089e/ZUYmKiNm3apK1btyoiIkJXrlxR0aJFVa1aNQUHB6tr164qWrRolp/nrgMHDui7777T77//rqioKCUlJcnX11eBgYFq1qyZOnTooGLFilk9M2HCBC1btkxS6oE/e/bskZeXV5axvvrqK02ePFmSVLVqVW3bts3mdlqKi4vTmjVrJFkny5xhMpk0fPhwqzb16dNHY8eOdbpue1l+3x2R2c9nly5djJmeS5cuVe/evVlCDgBAFkgsAgAAuMC7776rdevWGeUrV67oypUrCgoKSnfv5s2b9dFHHykmJsbq9YSEBN28eVOnT5/W6tWr1bhxY02dOlVly5bNNHZMTIxGjRql3bt3W70eGxur2NhYHTlyRMuXL9ecOXOc+ITOM5lMmjVrlpYsWaLExESr965du6Zr167p2LFj+uKLL9SlSxeNHTvWpqScJJ04cUJvvvmmTp06ZfX61atXdfXqVR08eFCLFy/WtGnT1KRJk0zrOnfunN555x0dOHAg3Xt3v6979+7VggULNHHiRDVv3tx4/8UXXzQSi9evX9fPP/9s9X5GNm3aZFWHozZt2qRbt25Jkho1auT0aeZms1ljxoyxSir27dvXSD7nJwEBAapRo4ZOnTqlqKgo7dy5U88++2xuNwsAgDyNxCIAAICTNmzYkOEMs5CQEKvy3LlzFRYWZvVa+fLlVbFiRSUkJCgiIkJxcXGSpH379qlz585asmRJhjP4YmJi1L17d505c8Z4zdPTU0FBQSpUqJBOnTql2NhYnT9/Xq+88opLZrA5IjExUYMHD7ZKfrq5uSkgIEClSpXSjRs3FB4eruTkZJlMJq1YsULh4eFatGiRihQpkmndZ86c0dy5c3Xt2jVJUsmSJVW9enXFx8crIiLCWBZ89epVDRo0SBs2bMjw63nixAn16dNHsbGxxmuenp4KDAxUkSJFdObMGV2+fFlSajJ06NChmjFjhlq3bi1JqlevngIDAxUeHi4pNYmcVWIxIiJCx44dkyQVKFDAqe/R5s2bjeunn37a4XruGj9+vFXSs1+/fho9erTT9TqqcuXKatq0qc33//rrrzKZTJJSZ3A+9NBDmd7/1FNPGcnpzZs3k1gEACALJBYBAACcdDep2KZNG4WGhqpcuXI6deqUtm/frocffti4b8uWLVZJxccff1xjxoxRvXr1jNcSExP13XffaerUqYqNjVV0dLRCQ0O1du1aeXt7p4s9ZswYq6Ri586d9eabb6pEiRKSpKSkJG3YsEFTpkzR1atXjaWeOW3ixIlWScXOnTsrNDTUajbm9evXtXjxYi1cuFApKSk6ePCgxo0bp2nTpmVa99dffy0pNen07rvv6qmnnpKbm5uk1KXBYWFhxudOSEhQWFiYZs2ala6e27dv6/XXXzeSiu7u7ho4cKD69etntYR6+/bt+uCDDxQdHS2TyaR33nlHjz/+uPz9/SWlzjicOnWqJGnnzp26efNmpkuwN27caFw/8cQTWc5QzUh0dLT++OMPq7qcMWXKFK1atcoo53ZSUZLat2+v9u3b23TvzJkztWfPHqM8YcIE1apVK9NnmjRpoi+++EKStHv3biUmJto8axYAgAcRiUUAAAAXCA4O1owZM4yE1sMPP2yVVIyLi9P7779vlJ999lnNmTNHHh7WwzEvLy916NBB9evXV7du3XT9+nWdPn1aCxcu1LBhw6zu3bt3r3bt2mWUX375ZY0aNcrqHk9PT3Xp0kU1atRQnz590i1Bzgm//fabVYJq5MiReuWVV9Ld5+vrqxEjRigoKEgjRoyQJH377bfq2LGj/v3vf2cao2LFilq9erWRUL3Lx8dHY8aM0eXLl7VlyxZJ0q5du+6ZMFqyZIkiIyON8rRp09SmTZt0sZo3b65y5cqpe/fuio+PV1xcnL755hsNHz5cUuos1enTpys5OVmJiYnaunWrOnfufM92m81mffvtt0a5Y8eOmX7OzOzfv19ms1mSVLhwYVWpUsXhuu4uWb/rXj9bmdm8ebMOHz5sd9xz587Z/cy9bNq0SQsWLDDKL7/8sk0zQWvXrm1c37p1S0eOHFGDBg1c0iYAAPIjEosAAOCBsWHDBuPAFVstXbpUjRo1yvK+QYMGGUnFe1m7dq1u3LghSSpatKgmT56cLqloKSAgQG+88YYmTJggSVqxYoUGDhyoQoUKGfdYnlxbqVIlI7F1L4899phCQ0M1Y8aMLD+Lqy1evNi4fvzxx++ZVLTUtm1b/fDDD9q6dask6YsvvsgysTh06NB0SUVL3bp1MxKLt2/f1vnz562WQ6ekpFglP9u2bXvPpOJdderUUbt27YyDUn744Qfj61+qVCk9+eST2rlzp6TU5GhGicX9+/frwoULklITq7bsx5gRy9mKNWrUcPjgkc8//1zz5883yvYmFaXUBKGrkoT2OnjwoN59912j/NRTT+ntt9+26dmSJUuqZMmSxv6nf/zxB4lFAAAywTFnAAAATvL29lbdunUzvcdyD8ZnnnlGxYsXz7Ledu3ayd3dXVLqQSyWM8CSkpKslnl26NAhyyWb3bt3V+HChbOM60rx8fFWS6BtPZjEcnbZr7/+qoSEhAzvLVCgQJZ74dWoUcOqfPPmTavyX3/9pYsXLxrlbt26ZdnG3r176+2339a8efP06aefWr1n+Tn/+9//WtVtyXL/wrZt2zq17DYiIsK4rlmzpkN1LF26VNOnTzfKjiQVc1NkZKRCQ0ONmbnVq1fXjBkz7EqyBgYGGtdpDwMCAADWmLEIAAAeGKVLl7ZKGtjCllN1AwMDM01cJCYm6ujRo0Y5o4ND0ipWrJgqV66sf/75R5L0+++/q3HjxpJkdSiJJJtmVRUtWlSPPfaYfvnlF5viu8KRI0eUlJRklG397JaJ2qSkJP35558ZfsaKFSvKx8cn0/qKFStmVbZs09123uXp6an69etn2cbAwMAMf57uJo9jY2OVkpKi7777Tv3797e6Jz4+3irh7Mxp0JKslnGXLFnS7ufXrFmjyZMnG+XAwECHk4qhoaEaMmSI3c+FhYVp7ty5DsWMi4vTwIEDdfXqVUmp3/P58+dnur/lvVh+7Sy/pgAAID0SiwAA4IHRpEkTffTRRy6v18/PL9P3L168aLW34cyZMzVz5ky741y6dMm4joqKsnqvatWqNtURFBSUo4nFs2fPWpVtmQl4L9HR0Rm+Z8vsz7szP+9KSUmxKp8/f964rlChgtMHdnh5ealdu3bGwTKbN29Ol1jcvn27bt26JSl1hqHlnpyOuHsqtiS7k2mSNG7cOGOPRkkKDw/Xtm3b1KpVK6falRNMJpOGDRumv//+W1Lq93vmzJk2/7uwZJmktjwdHAAApMdSaAAAACdlNVvu+vXrLoljWU9cXJzVe7YmkjLbhzA73N1X0lmZJXgs9510lOXX05Gk3L1YzkA8efKkwsPDrd63XAbdoUMHp+PduXPHuM7qZ/Je7iZbLZfLf/jhhy77+c1OU6ZMsVpyP3LkSDVt2tShuiy//5azggEAQHrMWAQAAHBSVvu3JScnW5Xr1atn0xLrtCz3CSxYsKDVe5YzzTLj7Ew8e6X97I4me0qXLu2K5mQos4N3HFWnTh0FBQXp5MmTklIPcXnzzTclSVeuXDFmjnp4eCgkJMTpeJafwdGDW1566SWFhISoR48eMpvNunz5sqZMmZItM31dZfny5cbMUCk1Sdu3b1+H67Oc3ero1xEAgAcFiUUAAIBslnZ/v8GDBys4ONipOtMmJm/evKkiRYpk+VzamY6ZsTVZmdnBKmk/++zZsx2aTZfdLNuZ9mAXZ3To0EFTpkyRJG3ZssVILH7//fcymUySUk8tLlWqlNOxvL29jZmd8fHxdj/fo0cPvffee3Jzc1OXLl2MU7I3bNigtm3b6sknn3S6ja72yy+/aNKkSUb5kUce0QcffOBUnZazFL29vZ2qCwCA/I4/wQEAAGSzMmXKWM0mu3DhgtN1VqlSxaps6+m1586dy/R9y3amPeDkXlJSUjJdKlumTBmrsis+e3awbGdUVJRNn12SVq1apZ9//ln//PPPPZ9p166dPDw8jHqPHz8uKXV/xbs6duzoTNMNlntNOrI34Lhx44zv/1tvvSV/f3/jvfHjxxv7QeYVERERGjZsmDErtmzZspo7d67Ts3Itf54dmVkMAMCDhMQiAABANvPx8VHNmjWN8r59+2x6LikpSWPHjtXMmTO1atUqq+Rh+fLlVb58eaP866+/Zlmf2WzWwYMHM73HMiljSyIpo4TaXY888ohVstLWz37q1CmNHTtWn376qTZu3Gic9JtdLE+BvnsKdVbOnz+vcePG6dVXX1Xr1q0VERGR7p6SJUvqqaeeMsrbt2/XjRs3jO+Dn5+fmjVr5oJPIFWuXNm4/t///udUXcWKFdPYsWONclRUlKZPn+5Una507do1DRw40NjDs1ChQvr000+tkqGOsvzaOXL4CwAADxISiwAAADng6aefNq537NhhdQpxRjZt2qR169ZpwYIFGjduXLrEVevWrY3r9evXZ7nMeffu3YqMjMz0HstZb7dv384yQbVly5ZM3/fz87NK2i1btsym2YCff/651q1bpzlz5mjs2LHpTnF2tYceeshqOfKaNWuyfMbys/v5+SkwMPCe91nOSPx//+//adeuXcYsu5CQEHl6ejrabCsBAQHGddrTuB3Rpk0bq6Tn8uXL9dtvvzldr7OSkpI0ZMgQq9m3kydPVt26dV1Sv+XXrnr16i6pEwCA/IrEIgAAQA7o2bOnkUBKTk7WsGHDMk0ERkZGatq0aUa5XLlyeuaZZ6zu6d27t1FnTEyMxo0bl2ECLiYmRu+//36W7QwKCrKaYWh5KEZaJ06c0OLFi7Os8+WXXzau//nnH3344YeZ7t+4Y8cObd682Si3bNnSJXsQZsbDw0PdunUzyhs2bNDPP/+c4f1RUVFWn71Tp04ZHvTRrFkz+fn5SZKOHz+uZcuWGe9ZnhztrMcee8y4PnnypLGHozPGjx9v7N1pNpv1zjvvZLqnZk4YN26c/vvf/xrl119/XW3btnVJ3dHR0YqOjjbKDRo0cEm9AADkVyQWAQAAckCZMmU0bNgwo3z06FF16dJFe/bssUqymUwmbd68Wd27d9e1a9eM10eOHJlu77hy5crprbfeMspbtmzRwIED082G3L9/v7p166aoqKgs21mqVCmrBNWXX36pzz//XImJicZr8fHxWrFihbp166b4+HhjD8GMtGzZ0mrG5qpVqzRgwIB0+0LGxcVp/vz5Gjp0qPE1KVKkiEaMGJFlu12hb9++xtJXs9ms0NBQLVmyJN1BKHv37lWvXr2MZbj+/v7q379/hvV6enrq+eefN8qHDh2SlHpqdK1atVzW/oYNGxpJ4fj4eJ04ccLpOitUqKAhQ4YY5TNnzigsLMzpeh21cOFCrV+/3ii3b99eQ4cOdVn9R44cMa6LFy+u2rVru6xuAADyI06FBgAAyCH9+/fXP//8o7Vr10pKPXzilVdeUcmSJVWtWjUlJibq7Nmz6Q5Dee2119SmTZt71tm3b1+dPn3aOMF3165d+vnnn1WzZk2VKFFCkZGRRkLRy8tLvr6+unz5cqbtHDFihHr37i2TySSz2azp06dr4cKFCggIUFJSkv755x9j/8WHHnpIjzzyiJYvX55hfW5ubvr444/Vr18/HTt2zGjnrl27VLlyZZUtW1axsbE6d+6cVRLP09NT06ZNs9o7MDv5+Phozpw56tevn2JiYpSQkKApU6Zo9uzZCgwMVMGCBXX27FldvHjReKZw4cKaNWtWlod8dOzYUUuXLrV6rUOHDi5tf/HixdWgQQNjNt+ePXtUp04dp+vt06ePvv32W/3111+SpC+++ELPPfecS+q2x8mTJzVjxgyj7OHhIXd3d40YMULx8fFKTk62aZZmZrNsd+/ebVwHBwdnOAsVAACkIrEIAACQgyZNmqSgoCCFhYUZM95iYmIUExOT7l4fHx+9/fbbeumllzKtc8KECapYsaI+/fRTxcfHy2w2Kzw83Oqe4sWLa+rUqVq8eHGWicUGDRpoxowZeu+994w23rhxw5hpd9fTTz+tKVOm6Isvvsjyc/v6+mr58uWaPHmy1q5daySAzp07d8+TqqtUqaLJkyfn+FLUoKAgrV69WiNHjjQOWLl9+7YOHz6c7t6qVatq2rRpqlevXpb11qpVS7Vr1zZOhfby8rKaxegq7du3NxKLP/30kwYMGOB0ne7u7powYYK6dOmilJQUmUwmjR07VuvWrctytqorxcbGWi31T05Otpq96AqWiUVXLlMHACC/IrEIAACQw3r37q0XXnhBGzdu1C+//KLw8HBdvXpVKSkp8vX1VVBQkJ588km1b99eJUqUsKnO1157TW3bttXq1av1008/KSoqSiaTSRUrVlSLFi3Uo0cPlSxZ0qY9EaXUg2EaNmyoVatWaefOnTp79qxu374tf39/1atXTy+88EK6PR+zUqhQIU2YMEGvvPKKNm3apH379uncuXOKjY2Vh4eHSpUqpTp16qhFixZq2bJluqXfOaVixYpavny5du/era1bt+rgwYO6fPmyEhISVKJECdWpU0etWrVS27Zt7WpjixYtjMRicHCw1UE5rvLcc89p6tSpunnzpg4dOqSoqChVqFDB6Xrr1aunnj17GrMuT5w4oc8//1yDBw92uu684uDBg8bs3mrVqulf//pXLrcIAIC8z82c2c7ZAAAAyFd69eqlAwcOSJJCQ0Ot9s9D9urfv78xI27x4sVq2rRptsT55JNPtGjRIknSsGHDNGjQoGyJk9+MGzfO2FJg4sSJ6ty5cy63CACAvI9NQwAAAIBsFh0drb1790qSKlWqpCZNmmRbrL59+6pw4cKSpJUrVyo5OTnbYuUXsbGxxknk5cqVU/v27XO5RQAA3B9ILAIAAADZbOXKlca+kt26dTNOb84O/v7+6tu3ryTp4sWL+s9//pNtsfKL1atX686dO5KkN954I9eW4QMAcL8hsQgAAABkox07dmjhwoWSUg+x6dq1a7bH7N+/v0qXLi1Jmjdvnk2nJT+o4uLijAOI6tSpw2xFAADsQGIRAAAAcKHvv/9e7dq1U58+fdSqVSsNGjRIiYmJkqSRI0fKx8cn29vg4+Oj8ePHS5JOnz6tjRs3ZnvM+9WSJUt07do1ubu768MPP1SBAvyKBACArfhfEwAAAHChihUrKjw8XPv27dOZM2eM17t27apOnTrlWDuaN29uzL6bNWuW4uLiciz2/eLixYvGSekDBgxQnTp1crlFAADcX0gsAgAAAC5UrVo11a9fX0WKFJG3t7fq16+vqVOnasKECTnelvfff18BAQGKjo5WWFhYjsfP6yZPnqzbt2+rYcOGCg0Nze3mAABw33Ezm83m3G4EAAAAAAAAgPsLMxYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7EZiEQAAAAAAAIDd/j/ZltyAm4hOnQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy', silent=True)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy', silent=True)\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The script `check_A` checks visually the number of `k`s to calculate before going to the approximate value `r0**2*tb**2`. The default is 60, but in this case the presence of additional modulation for k=60 tells us that we need to increase the limit of calculated `A_k` to at least 150.\n", + "The script `check_B` does this for another important quantity in the model.\n", + "\n", + "Somewhat counter-intuitively, there might be cases where too _high_ values of k could produce numerical errors. Always run `check_A` and `check_B` to test it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAAQ5CAYAAACwFI2cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeXhU5dk/8O9kg7AjEJagQCIJSDCiFCiirRu4FFR+Iq+vUveKKK0iCmrFam0rtaIoIkIpWkE2RVBEKspqUUQEQtgJCSRAQgIJISH7zO8P3owzc56ZOefM2ef7uS6ua+bMeZ5zz8Jkzj333I/L4/F4QERERERERERERESmiDE7ACIiIiIiIiIiIqJoxiQtERERERERERERkYmYpCUiIiIiIiIiIiIyEZO0RERERERERERERCZikpaIiIiIiIiIiIjIREzSEhEREREREREREZmISVoiIiIiIiIiIiIiEzFJS0RERERERERERGQiJmmJiIiIiIiIiIiITBRndgBEcq1Zswbz58/H7t27UVtbi86dO+P666/HQw89hLZt25odHhERERERERERkSouj8fjMTsIonDeeOMNzJo1CwAQHx+PhIQEVFZWAgCSkpLw4Ycfonv37iZGSEREREREREREpA7bHZDlrVq1CrNmzYLL5cLEiRPx448/4qeffsLSpUuRkpKCkydP4vHHH0dDQ4PZoRIRERERERERESnGJC1ZmtvtxltvvQUA+O1vf4uHH34YTZs2BQBceumlmDdvHpo1a4aDBw9i+fLlJkZKRERERERERESkDpO0ZGnff/89cnNzAQD333+/5PZOnTrh1ltvBQAmaYmIiIiIiIiIyJaYpCVL27JlCwCgR48e6Ny5s3CfwYMHAwC2bduGc+fOGRYbERERERERERGRFpikJUs7ePAgACA1NTXoPt26dQMANDQ04PDhw4bERUREREREREREpBUmacnSioqKAJxvaxBMx44dvZeLi4t1j4mIiIiIiIiIiEhLTNKSpVVUVAAAEhMTg+7TuJCY7/5ERERERERERER2wSQtWVp9fT0AID4+Pug+CQkJ3ssNDQ26x0RERERERERERKQlJmnJ0hqrZOvq6oLuU1tb670cKplLRERERERERERkRUzSkqU1b94cAFBdXR10n6qqKu/lFi1a6B4TERERERERERGRluLMDoAolE6dOmHnzp04efJk0H0aFxcD/BcR09O2bdv8rsfE8PsOIiIiIiIiIqJo5Ha7/a5fccUViudgkpYsLS0tDf/5z3+Qm5sbdJ8jR44AAOLi4tC9e3eDIvMX+J+RiIiIiIiIiIhILpb/kaUNHDgQAHDw4EGUlJQI99m8eTMAIDMz09vDloiIiIiIiIiIyC5YSUuWdsUVV6BTp04oLCzE7Nmz8dxzz/ndfuLECXz22WcAgLvuusuMEAE4p92Bb0WwU+4TEZEd8P2XiMgcfP8lIjKPk96DtfiFNZO0ZGkxMTGYMGECnnnmGXzwwQdo2bIlHnzwQTRr1gxZWVl45plncO7cOaSlpeHmm282NK7G/4AxMTHo16+fYcfWS319PXbu3Om93rdvX8TF8S2CiEhvfP8lIjIH33+JiMzjtPfg7du3++WJ1LDvvaeoceuttyIrKwvz58/HjBkzMGvWLDRt2hQVFRUAgKSkJLz33nuIjY01OVIiIiIiIiIiIiLl7F1LTFHjhRdewDvvvIPBgwejefPmqKmpQdeuXTFmzBgsX74cXbp0MTtEIiIiIiIiIiIiVVhJSyFNnz4dM2fORHJyMtauXatobE5ODhYtWoQtW7agoKAA9fX1SEpKQlpaGoYPH44bbrhBUSn79ddfj+uvv17pXSAiIiIiIiIiIrI0JmkpqKysLMyZM0fV2LfffhuzZs1CfX293/b8/Hzk5+fjm2++QUZGBl577TWkpKRoES4REREREREREZEtsd0BCeXn52PcuHGoq6tTPPaVV17BjBkzvAnauLg49OnTB/3790fbtm29+2VnZ2PMmDE4duyYZnETERERERERERHZDZO0JHHgwAHcfffdKC4uVjx29erV+PDDD73Xhw0bhg0bNmDZsmVYsGABNm3ahJdffhmJiYkAgJKSEowfPx4ej0ez+ImIiIiIiIiIiOyESVrys2LFCtx5550oKipSPLaurg5Tp071Xr/mmmvw5ptvon379t5t8fHxGD16NGbMmOHtR7t7926sXLky8uCJiIiIiIiIiIhsiD1pCQBQVFSEadOmYfny5arnWLNmDY4fPw7gfIuDKVOmICZG/D3AkCFDMHr0aCxYsAAAMG/ePAwfPlz1sc0W2HvXjhoaGkJeJyIiffD9l4jIHHz/JSIyD9+DpZikJbz77ruYPXs2zp07592WkpKCoUOHYtasWbLnWbVqlffy4MGD0aVLl5D7+yZpd+/ejfz8fFx44YUKozef2+3Gzp07zQ5Dc9nZ2WaHQEQUlfj+S0RkDr7/EhGZh+/BbHdAAObOneuXoB01ahSWLl2Kbt26yZ7D4/Fgy5Yt3utXXnll2DHp6eno0KGD9/ratWtlH4+IiIiIiIiIiMgpWElLXhkZGZg0aRIGDBigeOyxY8dQXl7uN5cc6enp3gXKdu3apfi4REREREREREREdsckLWHAgAEYOXIkrrvuOrhcLlVz5OXl+V2/6KKLZI3r2rWr9/LRo0dVHdtsMTEx6Nu3r9lhRKyhocHv5wUZGRmIjY01MSIioujA918iInPw/ZeIyDxOew/etWsX3G53RHMwSUuYOXNmxHM0VsMC55OW7du3lzXOt92B7xx2ExfnvP9KsbGxjrxfRERWx/dfIiJz8P2XiMg8fA9mT1rSyJkzZ7yXmzdvjpgYeS+tFi1aCOcgIiIiIiIiIiKKFkzSkiZqamq8l5s2bSp7XEJCgvdybW2tpjERERERERERERHZAZO0pIm6ujrvZblVtIB/m4D6+npNYyIiIiIiIiIiIrIDJmlJE77NnZU0SvZNzMbHx2saExERERERERERkR0wSUuaSExM9F72bX0Qjm+LgyZNmmgaExERERERERERkR0wSUuaaN26tfdyZWUlPB6PrHEVFRXey23atNE6LCIiIiIiIiIiIstjkpY00bFjR+/lhoYGlJaWyhpXXFzsvdy+fXvN4yIiIiIiIiIiIrI6JmlJE926dfO7np+fL2tcQUGB93KPHj00jYmIiIiIiIiIiMgOmKQlTSQnJ/u1K9i7d6+scfv27fNe7tWrl9ZhERERERERERERWR6TtKSZgQMHei9v3rw57P779u1DSUmJ9/qgQYN0iYuIiIiIiIiIiMjKmKQlzQwdOtR7ed26dSgqKgq5/8KFC72XU1NTkZ6erltsREREREREREREVsUkLWlm6NChSEpKAgDU1tZi8uTJqK+vF+67adMmLF261Ht9zJgxhsRIRERERERERERkNUzSkmYSEhIwYcIE7/XNmzfj4Ycf9ltErL6+HkuWLMH48ePR0NAAAEhLS8OoUaMMj5eIiIiIiIiIiMgK4swOgJzl9ttvx/bt27F48WIA5xO1Q4cORXp6Olq0aIGcnBycPn3au3+bNm0wffp0xMXxpUhERERERERERNGJmTHS3EsvvYS2bdti7ty5qKurg9vtxt69eyX7paamYvr06UhJSTEhSiIiIiIiIiIiImtgkpY053K58OSTT2LEiBH4+OOP8e2336KwsBBVVVVo3bo1evfujRtvvBEjRoxAQkKC2eESERERERERERGZiklaCmrkyJEYOXKk6vGpqamYNGkSJk2apGFUREREREREREREzsKFw4iIiIiIiIiIiIhMxCQtERERERERERERkYmYpCUiIiIiIiIiIiIyEZO0RERERERERERERCZikpaIiIiIiIiIiIjIREzSEhEREREREREREZmISVoiIiIiIiIiIiIiEzFJS0RERERERERERGSiOLMDIJKjoqICCxYswJo1a5Cbm4uamhq0a9cOV1xxBe69915kZmaaHSIREREREREREZEqTNKS5R05cgQPPPAACgoKAAAJCQmIj49HYWEhvvjiC3z55Zd4+umn8cADD5gcKRERERERERERkXJsd0CWVl9fj3HjxqGgoAAdO3bE7NmzsWPHDvz0009YvXo1rrnmGrjdbkydOhXr1683O1wiIiIiIiIiIiLFmKQlS/vqq69w6NAhuFwuTJ8+Hb/61a8QGxsLl8uFHj164J133kG/fv0AADNmzDA5WiIiIiIiIiIiIuWYpCVL27BhAwDg8ssv9yZjfcXGxuKOO+4AAGRnZ6OqqsrQ+IiIiIiIiIiIiCLFnrRkaZdccgmqqqqQkZERdJ8OHToAADweDyoqKpCYmGhUeERERERERERERBFjkpYs7d5778W9994bcp9t27YBAJo0aYK2bdsaERYREREREREREZFm2O6AbO306dNYvHgxAOCqq65CXBy/dyAiIiIiIiIiInthRot0V1paivLyctn7x8XFITk5Oex+9fX1ePrpp1FWVoaYmBg8+uijkYRJRERERERERERkCiZpSXdz587FnDlzZO+fnJyMtWvXhtynoaEBkyZNwrfffgsAeOyxx0L2rSUiIiIiIiIiIrIqJmnJdmpqajBhwgR8/fXXAIARI0bgscceMzkqIiIiIiIiIiIidZikJd1NnDgREydO1GSu06dPY9y4cdi+fTsA4NZbb8Xf/vY3uFwuTeYnIiIiIiIiIiIyGpO0ZBt5eXl4+OGHcfToUQDAb3/7Wzz33HNM0BIRERERERERka0xSUu2kJ2djYceegilpaVwuVx4+umn8eCDD5odFhERERERERERUcSYpCXLO3jwIB588EGUlZUhPj4er776Kn7zm9+YHRYREZHpduzYgU2bNqF///4YNGgQf11CRERERGRTTNKSpZ07dw6PP/44ysrKkJCQgHfeeQdXX3212WERERGZbvHixbj77rvR0NAAABg6dCjeeOMNXHLJJSZHRkRERERESsWYHQBRKLNmzUJeXh4A4LnnnmOCloiICMChQ4fw4IMPehO0APDVV1/h0ksvxfjx43H69GkToyMiIiIiIqVYSUuWVVtbi48++sh7fcaMGZgxY0bIMR9//DE6d+6sd2hERESmqaurw913343KykrJbQ0NDZgxYwYWLFiAl19+GWPHjkVcHD/uERERERFZHStpybIOHDiAs2fPeq+XlJSE/edbUUREROREL730En744YeQ+5SWlmL8+PHIzMzEV199ZVBkRERERESkFksrosD06dMxc+ZMJCcnY+3atYrG5uTkYNGiRdiyZQsKCgpQX1+PpKQkpKWlYfjw4bjhhht0q9DJyMjA/v37dZmbiIjIjjZu3Ii//vWvsvffs2cPhg0bht/85jd4/fXXkZaWpmN0RERERESkFitpHS4rKwtz5sxRNfbtt9/GiBEj8O9//xv79+9HZWUlampqkJ+fj2+++QZPPPEERo8ejcOHD2scNREREQUqKyvDmDFj4PF4/LZffvnl2L17N2699dagY1euXImMjAw89dRTKCsr0zlSIiIiIiJSiklaB8vPz8e4ceNQV1eneOwrr7yCGTNmoL6+HgAQFxeHPn36oH///mjbtq13v+zsbIwZMwbHjh3TLG4iIiLy5/F48Oijj+Lo0aN+25s1a4aPPvoIl1xyCZYvX46vv/4aGRkZwjnq6uowbdo09OzZE++99x5bBBERERERWQiTtA514MAB3H333SguLlY8dvXq1fjwww+914cNG4YNGzZg2bJlWLBgATZt2oSXX34ZiYmJAM73ih0/fryksoeIiIi0MX/+fCxatEiy/c0330R6err3+nXXXYft27fjnXfeQbt27YRzlZSUYOzYsbj88suxfft23WImIiIiIiL52JPWgVasWIEXX3wRVVVVisfW1dVh6tSp3uvXXHMN3nzzTcTE/JzPj4+Px+jRo5GcnIxHHnkE9fX12L17N1auXInhw4drch/sprHi2M4CK6pYYUVEZIxw77+HDx/GY489Jhl366234r777hP+Dfrd736HUaNG4c9//jPeffdd4T5ZWVm4+uqr8dlnn+Gqq66K8F4QEdkPP/8SEZmH78FSLg/LHx2jqKgI06ZNw/Lly4W3y1k4bNWqVXjyyScBnG9xsGbNGnTp0iXo/i+//DIWLFgAAOjTpw+WLVumLnib2b59O9xut9lhEBGRw9XX1+N3v/sdsrKy/La3b98eixYtQps2bcLOkZeXh2nTpmHz5s3C25s0aYJ//OMf+OUvf6lFyEREREREUS0mJgb9+vVTPk6HWMgE7777Lm688Ua/BG1KSgrGjh2raJ5Vq1Z5Lw8ePDhkghYARo8e7b28e/du5OfnKzoeERERBTd37lxJghYAXnrpJVkJWgDo3r073nrrLUyfPh3dunWT3F5TU4MJEyZg/fr1EUZLRERERERqsd2BQ8ydOxfnzp3zXh81ahQmT56Mr776SvYcHo8HW7Zs8V6/8sorw45JT09Hhw4dvL1v165di3vvvVdB5ERERCSyY8cOzJ07V7L9nnvuwcCBAxXPd+WVV2LgwIH417/+hdmzZ/vdVldXh0mTJuGll17CjTfeqDpmCq6wsBDHjx9HYWGh5B8AXHbZZbj33nuRnJxscqREREREZAYmaR0mIyMDkyZNwoABAxSPPXbsGMrLy/3mkiM9Pd2bpN21a5fi49pdTEwM+vbta3YYEWtoaEB2drb3ekZGBmJjY02MiIgoOojefysqKnDHHXdIWutkZmZi1qxZaNKkierjXXHFFejTpw/+8Ic/SOJ44YUXkJSUhPvvv1/1/OTv9OnTGDVqFDZu3Bhyv8OHD+Pzzz/HI488gmeffRZJSUkGRUgUvfj5l4jIPE57D961a1fEbTGZpHWIAQMGYOTIkbjuuuvgcrlUzZGXl+d3/aKLLpI1rmvXrt7LR48eVXVsu4uLc95/pdjYWEfeLyIiq4uNjcUTTzwh+bvctGlTLFy4EM2bN4/4GL///e/RsmVLPPTQQ34fJj0eD373u9+huroa48ePj/g4dL41RbgEbaO6ujrMmDED77//Pp566ik89dRTaNmypc4RElEjfv4lIjIP34PZk9YxZs6cieuvv151ghaAtxoWOF8d2r59e1njOnToIJyDiIiIlFu4cCHmz58v2T5t2jT07t1bs+Pcf//9+Oijj4Qfhn//+9/j1Vdf1exY0crtdmPp0qWKx1VUVOCll15Camoq3nrrLdTV1ekQHRERERFZCZO05HXmzBnv5ebNmyMmRt7Lo0WLFsI5iIiISJnjx4/j8ccfl2wfPny44sVA5Rg9ejQ++eQTJCQkSG579tln8cc//hEej0fz40aLXbt2hfwC2+VyoUuXLkE/cxUXF+MPf/gDbr75ZtTU1OgVJhERERFZAJO05OX74b9p06ayx/me2NXW1moaExERUbSor6/HCy+84NcfHgA6duyIuXPnRvRrmVBGjBiBlStXIjExUXLbX/7yF0yYMIGJWpW+/vprybbHH38cGzZsQG5uLmpqanDs2DFkZWXhtttuCznPfffdF3GfMyIiIiKyLiZpycv3p3Ryq2gB/36s9fX1msZEREQULd5//33s3LlTsv2DDz7way2khxtuuAH/+c9/hP1P33zzTYwdO5YJQhVESdonn3wSV199Nbp37474+HgAQJ8+ffDpp59i8+bNuPrqq4VzLVq0CM8//7yu8ZrB7Xbj5MmTaGhoMDsUIiIiIlMxSUtevqvoKTkR803MNp5sEBERkXy7du3CnDlzJNufeOIJDBs2zJAYrrrqKnzzzTdo27at5LbZs2fj3nvv5ZexCtTU1EgWDOvRowdSUlKCjvnlL3+J9evXY9WqVejVq5fk9ldffRXvvfee5rEayePxYM+ePZg5cyZGjRqFjh07omPHjkhOTsa0adNQXV1tdohEREREpmCSlrx8f+aopO+Zb4uDJk2aaBoTERGR05WXl+OPf/yjpJLw0ksvxd/+9jdDY/nFL36B9evXIykpSXLb/Pnzcc8997D1gUzff/89zp0757ft+uuvDzvO5XLhpptuwvr169GjRw/J7ePGjcOqVas0i9NI33zzDS6++GL06dMHjz32GD7++GOUlJQAAIqKivDUU0+hZ8+e+Oc//8kvBIiIiCjqMElLXq1bt/ZerqyslH0SVlFR4b3cpk0brcMiIiJytCeeeALHjh3z29a0aVN89NFHinrEa+XSSy/Fhg0bkJycLLlt8eLF+OqrrwyPyY7WrFkj2SYnSduoY8eO+PLLL3HBBRf4bXe73bjzzjuxbdu2iGM0UnFxMUaOHInDhw+H3K+goAAPP/wwLrnkEmzZssWg6IiIiIjMxyQteXXs2NF7uaGhAaWlpbLG+a5a3L59e83jIiIicqrDhw/jww8/lGx/7bXX0KdPHxMiOq9Xr17YtGmTsJJzz549JkRkP6J+tNdee62iOdLT07FixQrJL5UqKyvxm9/8Bnl5eZGEaKi//vWvkkXxQjl48CCuvfZa7Nu3T8eoiIiIiKyDSVry6tatm9/1/Px8WeMKCgq8l0Unc0RERCS2fv16ybabbroJjz32mPHBBOjRo4ewTy5/hh5eWVkZtm7d6retX79+qr7MHjJkCD744APJ9sLCQtxyyy226OF69OhRzJw5U3hbhw4dhP13AeDcuXMYPXo0qqqq9AyPiIiIyBKYpCWv5ORkv3YFe/fulTXOt8Ih2IdsIiIikhIl2B577DG4XC4TopFq3ry5ZFtg71ySWr9+vWQRViWtDgKNHj0af//73yXb9+zZg3/961+q5zXKSy+95LeGAQBcd911yM7ORlFREfbs2YOlS5ciPT1dMjYrKwtPPfWUUaGG1dDQgJUrV+Lpp5/GO++8o6g6mIiIiCgUJmnJz8CBA72XN2/eHHb/ffv2eRd8AIBBgwbpEhcREZET1dXVSbYlJCSYEIlYXFycZBsracMTtTqIJEkLABMnTsS4ceMk2xctWhTRvHrbu3cv3n//fb9tLpcLb775Jvr06QOXywWXy4U77rgD2dnZmDhxomSOd999F5988olBEYsVFxfj1VdfRWpqKoYPH45//OMfePzxx3HxxRfjnXfeEf5fJiIiIlKCSVryM3ToUO/ldevWoaioKOT+Cxcu9F5OTU0VVkAQERGRmCixEx8fb0IkYkzSqhOYpE1ISMCQIUMimtPlcuGtt97CxRdf7Lf922+/xYkTJyKaW08vvPCCpKr4nnvuQUZGhmTfuLg4/O1vf8PVV18tue3BBx80rQfvunXrcPHFF+PZZ5/FkSNH/G4rLi7G448/jj59+uDHH380JT4iIiJyBiZpyc/QoUORlJQEAKitrcXkyZODnoxt2rQJS5cu9V4fM2aMITESERE5ReBPwAEmae0uPz8f+/fv99t25ZVXolmzZhHPHRsbizvvvNNvm8fjMb3KNJgff/xRElt8fDxeeumloGPi4uKwYMECtGvXzm/7mTNn8D//8z+Gv/7q6+vx0EMPhW1rcPDgQVx33XU4evSoQZERERGR0zBJS34SEhIwYcIE7/XNmzfj4Ycf9ltErL6+HkuWLMH48eO9fenS0tIwatQow+MlIiKyM1bSOs8333wj2RZpqwNfos9bvl+aW8lzzz0n2fbII4+EXWi2a9eukhYJALBlyxZ8+umnWoUny5IlS3D48GFZ+5aXl+PJJ5/UOSIiIiJyKiZpSeL222/H6NGjvdc3b96MoUOH4rbbbsM999yDq666Ci+88IJ3pd02bdpg+vTpwhM5IiIiCs7qSdrY2FjJNiZpQ9OjH62vzMxMScuDTZs2Wa7lwbp167BmzRq/bc2aNcMf//hHWeN/85vfCBOeK1as0CQ+OTweD1599VXJ9gEDBuAf//iHsGXDsmXLsHr1aiPCQ11dHT766CP84Q9/wKJFi7ioHxERkc0xSUtCL730EsaOHes9UXS73di7dy+2bt2K06dPe/dLTU3F/PnzkZKSYlaoREREtmX1JK3oC1gmgoLzeDySJG3r1q1xxRVXaHYMl8slqab1eDxYtmyZZsfQwvz58yXbnnjiCXTs2FH2HK+++iratGnjt+2rr76S9LjVyxdffIFdu3b5bevWrRu+/fZbPPXUU9ixYwfuu+8+ybjHH38c1dXVusXl8XiwYsUKZGRk4O6778Zbb72Fu+66C4MGDcKOHTt0Oy4RERHpi0laEnK5XHjyySexYsUKPPDAA0hLS0OrVq0QHx+P9u3b46qrrsJf/vIXLF++HD179jQ7XCIiIluyY5KWlbTB7d69W7Lo6rXXXiusSI6EHVoeBC7yFRcXh6efflrRHAkJCZIq5OLiYmzfvj3S8GQRVdE+/fTT3v+jsbGx+Mc//iHpn5uTk4PXXntNl5gaGhpwxx134LbbbsOBAwf8bvvxxx/Rv39/vPXWW7ocm4iIiPTFJK3DjRw5Evv378f+/fuxdu1axeNTU1MxadIkfP7559i6dSuys7Px3//+F//85z9xxx13ICEhQYeoiYiIogOTtM4ianVwww03aH6cyy67DKmpqX7bNm7ciMLCQs2PpZbH4/G7npiYKKmKlWPYsGGSbf/5z3/UhiXbpk2b8N///tdvW1JSEh544AG/be3atcPUqVMl4//617/i2LFjmsf10UcfhayabmhowB/+8AesW7dO82MTERGRvpikJSIiIjIJk7TOonc/2kZ2aHkQ2JLA5XKpmsesJO3f/vY3ybYnnngCiYmJku33338/Bg0a5Leturpal+rmd955R9Z+r7zyiubHJiIiIn0xSUtERERkktraWsk2KyVpuXCYfHV1dVi/fr3ftosuukiyyJdWrN7yILCSNiZG3WnHhRdeiN69e/tt27x5M8rLy1XHFk5+fj6+/PJLv20tW7bEo48+Ktw/JiYGb775pmT71q1bNY1r+/bt2LJli9+2tm3bYuzYsZJft61duxY//vijpsevra3FtGnTcNVVV2HkyJGa3z8iIqJoxyQtERERkUlElbRWaiXEhcPk+/7771FZWem37frrr1ddQRpOv379JAu3bty4UdIT1yxaVdICwI033uh3vb6+XlUbL7n27t0r2fa73/0uZLuGAQMGoHXr1n7btE5izpo1S7LtmWeewbvvvotJkyZJbhO1YVDrv//9L/r164ennnoK3377LT799FMMGTIECxYs0OwYRERE0Y5JWiIiIiKTsN2BcxjV6qCRqOWB2+22TMsDrSppAeNbHoi+iAi3UK7L5UL//v39th08eBBlZWWaxFReXi5JiMbHx3t75I4fP17SiuGTTz6RLC6mxoYNG/DrX/8ae/bs8dteW1uLe+65B2+88UbExyAiIiImaYmIiIhMwyStc4iStNdee62ux7RyywMtK2mvvvpqNG3a1G/b6tWrJYlgrQTGDsiL/xe/+IVk27Zt2zSJaf78+ZJK7f/3//4fkpKSAAAdOnTAgw8+6He7x+PB66+/HvGx//rXv4b8f//MM88Iq4+JiIhIGSZpiYiIiEwiStKK+sCahUlaecrLyyW9Qi+99FJ07NhR1+Nefvnl6NGjh9+2DRs24OTJk7oeVw4tK2kTExNx9dVX+23Ly8vDwYMHVc8Ziij5KydJG1hJC0CzvrDvvfeeZNvYsWP9rj/11FOS949PPvkkouMeP35c+AWEr/r6esyfPz+i4/g6efIk32eIiCgqMUlLREREZJLAJG1cXJxuPUzVECXWmDyR2rBhg+Qn8nq2OmgUrOXBp59+qvuxwwmsRo0kSQtI+9IC+rU8UJukFVXSatGX9tSpU8jKyvLb1rt3b0niunv37rj55pslYyNpufDRRx9JnssLL7xQst+SJUsirmzetGkTBg4ciI4dO6J9+/b4/PPPI5qPiIjIbpikJdtasGAB0tPTdf8pIRERkV5ESVqrCYyJC4dJGd2P1pdVWx4EJuwi/fLByL60omSjnCTzhRdeiA4dOvht06KStqKiQrLt2muvFT6mvXr1kmzLzc1VfewPP/xQsm3VqlW46qqr/LYdOnQIO3fuVHUMt9uNcePG4eqrr8YPP/wAADhz5gxGjRqlWSUyERGRHTBJS7aUk5ODv//972aHQUREFBE7JmlZSSu1ceNGv+vx8fGSJJZerrjiCnTv3t1v27p161BcXGzI8YPRupK2d+/e6Nq1q9+2devWoaamJqJ5RdRW0rpcLkk17ZEjRyJ+LpQkjQPbXwDqk7Q7d+6UVPBedtllyMjIwJ133inZf8mSJaqOs3z5crz77ruS7TU1NRg5cqQl2ncQEREZgUlasp3a2lpMnDgR1dXVZodCREQUkdraWr/rVlo0rBGTtOGVlJT4Xe/duzdatGhhyLGDtTxYtWqVIccPRsuFwxrHB1bTnjt3Dt9++21E84qoTdIC+vSlVRJPYMIeON+/Vw1RFe2YMWMAnF+0LDAGtS0PPvjgg6C35efnY/LkyYrnJCIisiMmacl23njjDezZs0eyyi8REZHdsJLWGQITkgkJCYYe/5ZbbpFsO3r0qKExBNJy4bBGor60VkvS6tGXVkk8WlbSBraTiImJwf/+7/8CADp37iypFs/JycH27dsVHaOsrAxffvllyH2WLFkS0ftOUVERtmzZokvVNRERkZaYpCVb+e677zBv3jx07doVd911l9nhEBERRYRJWmcI7NMbGxtr6PFbtmwp2RbpIk6R0rqSFgAuvfRSybazZ89GPG+gwNgBcytpRYLF061bN8k2tZW0gQuO9e3bF506dfJeF7U8+P777xUdY/ny5ZL3wUCVlZWKk78AsHnzZgwbNgydO3fGoEGDkJqaisOHDyueh4iIyChM0pJtnDlzBpMnT4bL5cLUqVPRvHlzs0MiIiKKiB2StIEJRyZppbTuv6qU6HiiRKOR9KikFc2hRzI6kkraTp06SXrnbt26NaI4lcSTmJjol0gF1FfSBh438P3piiuukIwpLS1VdIxFixZJtt1///2SbZs2bVI077Zt23DVVVfhq6++8t6PY8eO4aGHHjL9CwwiIqJgmKQl25gyZQoKCwvx4IMPCqsUiIiI7MYOSdrAmAKrRkn6mDBJq08lrWgOqyVpAWk1bWFhIY4fP25YPIEtD/Ly8lQ9ToFjAo/ZunVryZjy8nLZ85eUlODrr7/225acnCzsQas0Sfv6668L/w+sW7fO9H7NREREwTBJS7awbNkyrF69Gr1798bvf/97s8MhIiLShB2TtKyklQpMBhnd7sCKSVqjKmn1uJ+ihKaS+LXuS6s0SRu4eFhlZaVkcTs1xw08ZqtWrSRjzpw5I3v+jRs3Sr7guPPOO9GzZ09JNfC3334rO9FcVVWFzz77LOjtzzzzDL9sIiIiS7LemQA5TmlpqaJv1ePi4pCcnOy9np+fj1deeQUJCQl47bXXDF+Mg4iISC9M0joDK2mlWEnrLysrC7fddpsh8YgWD8vLy0OHDh0iOq7WlbRFRUWSbddeey1cLheuuuoqLF261Lu9pKQE+/btQ+/evcPOu2rVKlRWVga9fc+ePdi0aRN+/etfy461pqYGhw4dQk1NDTIyMng+QkREurDemQA5zty5czFnzhzZ+ycnJ2Pt2rUAzp/0PP3006isrMSzzz6Lnj176hUmERGR4ZikdQZW0krpUUlrlyRtYE9aADh37pxh8YiStLm5ucIK30g0b94cMTExfq81JZW0ov617dq1AwBJkhY43/JATpJ28eLFYffZunWr7CTtwoULMX78eJw6dQrA+YX61q9fj8svv1zWeCIiIrnY7oAs7d1338X27dsxaNAg3HvvvWaHQ0REpKna2lq/6/Hx8SZFEhwXDguPC4dJ6fGYGHU/RXMqSdJqvcBZpO0OAHWLh4WrpHW5XJKWB0oqaUVJ2rZt2wIArr76asltmzdvDjvnuXPnsHLlyrD77dq1S0aEwIkTJ/DQQw95E7QAcPbsWdx5552m/x8jIiLnsV65BjnOxIkTMXHiRMXjduzYgXfffRetWrXCq6++qsnP5IiIiKzEjpW07OUoFfiYsJI2fIJPDbtU0modp1btDiI9ruiYrVq1QllZmfd6pJW0bdq0AQBkZGQgNjbW7//WyZMnw86ZlZWFqqoqv233338/lixZ4tcCQW6SdvHixcIq6JycHKxZswbDhg2TNQ8REZEc1jsTIPo/ixcvRn19Paqrq3HHHXdIbm/8wHTixAlceeWVAIDnn38eN998s6FxEhERqWXHJC0raaVYSSulx2PCJK28eC688EK4XC6/cXpU0gLSxcO0qqSNjY1FTEyMX5JWzmMo6nM7aNAg7N27F99//7132969e2W9l3300UdBb3vvvfeYpCUiIk2x3QFZVuMHsdraWpSUlEj+NSZp3W63d1t1dbWZIRMREcnm8XgkSVqjKzDlYJI2PFbSSumxcJhR91OUDFSSZDY7SZuQkCDpi6tXJW3g4mGRVNImJiaiSZMmIY8XTnFxsWRbhw4d0LdvX79tNTU1OHjwYMi5Dh48iK1btwa9/bPPPsOJEydkxZWdnY0ZM2bg008/VfQYERFRdLFeuQbR/3n11Vfx6quvBr397bffxowZM/wWGiMiIrILUdsAVtLaj8fj0WWRLCWsmKSN5oXDjEjShtOjRw/k5+d7r+fl5cHtdit6HuQcV1RJ6/F4ZD1egUnaxiraSOKRm6QFzrc8CLUo8ZIlS0Ieq6GhAevXr8ddd90Vcr/Vq1fj5ptv9sbfsmVLvPPOOxgzZkzIcUREFH1YSUtERERkgsAqWsCaSVouHBaaKBlqhSStHslLJfSopGWSVn48gYuH1dTUCFsBKCGnktbtdgt7uIr49rIFpEnawOPJeQxFfWuDJWmzsrJCzvXTTz+FPV5OTk7I2z0eD55++mm/2M+ePYuxY8cKE8pERBTdmKQlIiIiMoFdkrSspA1NlKRluwN9KmmNup+iOe2WpBUtHqa0L62anrSA/JYHSitp5RAlPpOSkoJW0oYip5XB4cOHQ97+008/ITs7W7L93Llz+Oyzz8LOT0RE0YVJWiIiIiIT1NbWSrbZIUkratMQzUSPh9GVtKLkmdlJWlbShp9Tz3gCK2kBfZK0gZW0gLzFwxoaGiTJXC0qaQOTtHFxcWjTpg3atWuHzp07+922e/fukHMVFhb6Xb/44ouRkJDgty1ckvb9998PetuKFStCjiUioujDJC0RERGRCUSVtPHx8SZEEhoraUNjJa2YUT1pjVo4zG5J2sCFwwBxlamS42pZSSvaR48kbfv27b3zdOvWze+2UMlkj8cjSdImJydLkt+hkrQNDQ1YuHBh0NvXrFmDysrKoLcDQFVVFV588UXcdtttmD17Nt9/iYgcjknaKDB9+nSkp6fj2muvVTw2JycHf/nLXzBixAhcfvnluPTSS3H99ddj3Lhx+PLLL039oDB+/Hjs37+fi4YREZEtsd2BM1i1J63ZSVo9KmmN6r0rmlPJc2qFJK3ovURpDHL2V1tJG9jqANCn3UGHDh28l5UkfcvLy1FVVeW3rXPnzkhJSfHbVlBQgJqaGuEcR48exalTp4Ieo7q6Gl9//XXQ2wFg7NixePnll7FixQo88sgjGDJkiLDvLhEROQOTtA6XlZWFOXPmqBr79ttvY8SIEfj3v/+N/fv3o7KyEjU1NcjPz8c333yDJ554AqNHjw77Mx8iIiKSsmuS1uPxmJ4AtBJRuwNW0hpXSRsN7Q7kHkPvGLSspBUladu0aRPyeOHi93g8ipK0oQRW0QJAp06dJElaj8eDI0eOCOcoKCgIe5wdO3YEve3gwYP497//7bdty5YteOyxx8LOS0RE9sQkrYPl5+dj3LhxwpPAcF555RXMmDHDWy0TFxeHPn36oH///n7fcmdnZ2PMmDE4duyYZnETERFFA7skaUUJR1bT/oyVtGJG9aRluwP9YtCzJ62cSlqlr5mKigpJVatvkjZQqMdDbpIWCN7yQM75UajFyWbNmiXc/sUXXwh7mhMRkf0xSetQBw4cwN1336249xQArF69Gh9++KH3+rBhw7BhwwYsW7YMCxYswKZNm/Dyyy8jMTERAFBSUoLx48frUslARETkVHZJ0opi4uJhP7PCwmFWTNLqUUlrZrsDJyRpIz2u3pW04dodhHsMRec9aitpRclTI5O0dXV1mDdvnvC2qqoqbNu2LezcRERkP9Y7E6CIrVixAi+++KKkj5IcdXV1mDp1qvf6NddcgzfffNPvQ3F8fDxGjx6N5ORkPPLII6ivr8fu3buxcuVKDB8+XJP7YDdOqCgKPMnkCTgRkb5Ef6fj4uIs9/4rSoxVV1dbcpEzM4gq2lwul6GfDUQJ2fr6elM/n4gqaSONR/R/o6GhQfP7KfoCxe12yz6O1nGK4vF4PCHn0yIGUVI0cHyzZs0k+5SVlYU9TklJiWRbq1at/MYFJlXDPQeihGe7du28YwLvj8fjCfr5V5RgTUpKQlJSkmT7oUOHhHHl5+cHjbXRsWPHhGOzsrKEiexG69evxy9+8Yugt7/11lt488030apVK7z++uu47rrrwsZCRGQ05iCkmKR1kKKiIkybNg3Lly9XPceaNWtw/PhxAOdPFKdMmRK08mHIkCEYPXo0FixYAACYN29eVCZp3W43du7caXYYmsvOzjY7BCIiR9u7d69kW1xcnOXef8+ePSvZtmPHDmEFXTQSJZtKS0sN/WwgSvifPn3a1M8ngYnFc+fORRyPUfdT1Es0NzdX9nFEFZ0lJSWq4zxw4IBkW2FhYcj5cnJyJNuOHTumKIbAk+WKigrJeFFi9NChQ2GPI3r/O3XqlN+4wKSq6Pi+tm7dKtlWU1PjHXPu3Dm/2xoaGiTvt43Xd+3aJZnrzJkzwqT09u3bhXHt2bNHsq1Lly7ecy3g/OJiorEbN26UbPO1cuVKDB06VHjbf//7Xzz11FPe67/5zW8wc+ZMXH755SHnJCIym9U+A5uB7Q4c4t1338WNN97ol6BNSUnB2LFjFc2zatUq7+XBgwejS5cuIfcfPXq09/Lu3btlfWNMRERE4uo4K1aninrSstLhZ6IqVqMXDjOqV6sScn4qr1S0LhwWaTxaxBDsmM2bN5dsq6ysDDuX6Mufli1bhhwTLn45i5HJnU/05Uu7du3QokULyX0O1t6hqKjI73qzZs3QrVs3v22nT58Wvp+KeuL62rlzp/D/uMfjkSwaXV9fj+eff559bImIbIBJWoeYO3eu37fDo0aNwtKlSyUfBELxeDzYsmWL9/qVV14Zdkx6erpfr6e1a9fKPh4REVE0E/3E1Yo9aUW/qGGS9meiRIkWCUkljOrVqoRRSVo9aJUUDTdnJMxYOEykRYsWkm1ykrSixcXCVeerSdL69rkNfExCzXfq1Cm/67Gxsd6Er9wvYQIrqjt06ID27dv7bWtoaBDGHS5JW1lZKUwOb9++XViJVlxcjM2bN8sJm4iITGS9MwGKSEZGBiZNmoQBAwYoHnvs2DG/D0wZGRmyxqWnp3s/hIh+GuR0MTEx6Nu3r9lhRCzwJ18ZGRmGVwIREUWTwCor4HyS1mrvvx07dpRsS09PR9euXU2IxnpEq9t37NgRmZmZhsUgqspu1aqVoTEECkyIaRFPTU2NZJse93PTpk2SbRdffLHs44j+b19wwQWq4xS1eejSpUvI+QJ/2g8AnTt3VhSDnOfQ4/EgPj7e7zXocrnCHkf0HnfllVd6FyYW7dOiRYuQ84p+iTBo0CBccsklAKRVv7GxscjIyBB+/g1MNHfs2BH9+vUTxtWsWTNJXG63W1KNm5KSgj59+uDzzz/32962bVvJeNFrPVCnTp3Qq1cvv20LFy4Mun9ZWVnIx8/tduPs2bPC9zQiIj04LQexa9euiH/JxCStQwwYMAAjR47Eddddp/qb/ry8PL/rF110kaxxvidpR48eVXVsu7Ni5VOkYmNjHXm/iIisQvQhLi4uznLvvwkJCcLtVorRTKIq1ri4OEMfn2BVk2Y+R4Gv75iYmIjjCVb5qPX9jPQ5FSULXS6X6jhFJ6zh3ie0iCHw8Q72HLZu3dovIXn27NmwxykrK/O73qRJE0m7A9HrOtS8ohYFnTt39o4JfF49Ho/ksW18XAMrWTt16uSdJzAu0eN68uRJyZcnXbt2FX65dfLkScl4OS3kzpw5Ixl3+PDhoPvv2LEj6OO3YcMG3HnnnTh58iSGDx+ORYsWCfvvEhHpyWqfgc3AdgcOMXPmTFx//fUR/RTL9yc5MTExkp/jBOPb7kC0UAIRERFJiaofrfjBVBST2lXqnUjU+sHoKhBRUtFqPWmDLUSrhFE9aSNtYWFET1ojyD1uYJuCYD1afQX+xF/UO1ZJewJAeh4SExODCy64IOh8wdTV1UkSvp07dw66vyiuY8eOSbZ17dpVuN6HaPE1OYUvgS0ZAGnRja+ffvop6Dy33XYbTp48CQD4/PPP8fTTT4c9PhERaY9JWvLy/UDVvHlz2R+mfXtRyflQRkREREzSOoUooadFQlIJo5KXSgQ+Lnr1pNUjGe2EhcP0eE0EO2bgz+NF/WYDBSZpfXvHqhWYpG3Xrl3IL0yCPR4lJSWS23zbvsh5LRQUFEi2JScnC5O0x48f97teV1cn2SYiStLm5uYG3f/48ePCXrd//vOfJZXNs2bNwu7du8PGQERE2mKSlrx8ex81bdpU9jjfn0Fy1VAiIiJ57JKkFSU5mKT9maiS1ugkLSBNHDmxktaoBdKYpBXvH+yYWlTSipK0SitpT58+7Xc98FeBSippAwX2sw0XlygZ2qVLF2FFbmBC9vjx45L/vz179pSMC0zSlpWVSZKtgbZv3+53vba2Fv/6178k+7ndbuF2IiLSF5O05OX7gUTJB2nfE0qetBEREckj+mLTiklaVtKGJkqGmrHoReBnN7OTtEZV0hqVpFXy2TjakrSBlbQVFRXCLy8aud1uSTJRiyRt4DGD9dMON1+448h5LYveI5s1a4ZOnTpJtgcmaUWtDhoXLfMV2JIhVKuDRoGtFfLy8nD27Fnhvjt27Ag6T0NDA3JyciTJdiIiigyTtOTle0Kh5IO974cQ0SIFREREJCWq1rLi31FRkjZUAibaWKWS1mpJWj0qaUXY7kC/GNRW0gIImvgDzrdDCJxbi3YHWiRX1YwVHTdYLAkJCZIFuaqqqvyui3rUXnbZZZJtgZW0oVodNApsRXHo0KGg++7du1e4vbS0FNdeey0uvvhidOnSBR9++GHY4xIRkTxM0pJXYmKi97Jv64NwfCuBmjRpomlMRERETmWXdgespA2NlbRigcfXKkkbOA/bHegXg9z9AytpgdB9aUU/ydeiklZuUjncfHolexvHhRsven/t2rWrZFtgklZOJW1g8jwnJyfovidOnJC0rvB4PHjooYewceNGAEB1dTV+97vfcfFoIiKNMElLXr4fsCorK2V/MKuoqPBeFq3MSkRERFJM0jqDFRYOEx3TzCRtpEnOUJQm7tQQPXaRJmm1fj60ejy1OKaokjZUklb0E3k5SdpIRfLa0aqSVs540dgmTZr4LdYM6F9JCwD79+/3u75+/XosW7bMb1t1dTXmzp0b9thERBQek7Tk5btqaUNDg+weQ77fnAY26CciIiIxJmmdQdTuINoraSPt6RqKEQuksZJWvL+SJG2oxcNEt4mqccPFE+52tUlesytpg41t166d37bAJG3gwmkiSippAWDfvn1+17/44gvhfrNnz9blCxMiomjDJC15devWze96fn6+rHEFBQXeyz169NA0JiIiIqeyS5JWlHBkkvZnrKSVirQSNRS2O5AXj5kLhwGhK2lFX2yI+nFHWjUdON4ulbTBhEvSyhH4vIRL0gb2pT1w4IBwv9zc3KBJ4tLSUmzbtg2VlZUKIiUiik5M0pJXcnKyX7uCYM3iA/l+w9qrVy+twyIiInIkuyRpuXBYaFw4TMrISlqjkrRK4o+2JK3SSlq5lCb2taqA1XMBMjnjgx1flKT13VfO8+ubpHW73Th8+HDI/YuKivyuB7Y/8CVqt/DJJ58gJSUF/fv3R8+ePWWfXxIRRSsmacnPwIEDvZc3b94cdv99+/ahpKTEe33QoEG6xEVEROQ0dk7SspL2Z1w4TMrISlq2OzAmhlDHVFpJq/bxNWrhMBEtKmmDzSEnDlG7g7q6Or+1QUQC34t82x2cPXvWbwFokaqqKr/jhUrqBi5c9vXXX+POO+/0LhR34sQJPP300yGPR0QU7ZikJT9Dhw71Xl63bp3k29NACxcu9F5OTU1Fenq6brERERE5iejkmEla+2ElrZQTK2mjLUmrZF+llbRy74/Wz7XTKmkB+BXLiAQ+N6GS5yLV1dXey3l5eSHf+wMrad944w3J+9B//vMf2eueEBFFIyZpyc/QoUORlJQE4PzJ4+TJk4P+Md60aROWLl3qvT5mzBhDYiQiInICVtI6AytppfSspLVDklaUkLZbklbunADQsmVLybZwFZ56sFIlrZI51FbSAvBLeIrmCZWklXNc30raUK0OAGmSdseOHZJ96uvrsXLlyrDHJSKKVkzSkp+EhARMmDDBe33z5s14+OGH/RYRq6+vx5IlSzB+/Hhv9UhaWhpGjRpleLxERER2ZZckLRcOC40Lh0npWUlrxP2MNMlshUraSCk5pug9ItTzYlQlrdqFw7SopA01h9rksWhxtXCv/8AkrW+7Azl8K2mPHDkScl/fdgdlZWU4fvy4cL+1a9cKt589exZZWVnCv41ERNHCemcCZLrbb78d27dvx+LFiwGcT9QOHToU6enpaNGiBXJycvxW72zTpg2mT59uyRNLIiIiq7JLkpaVtKGJ2h2wkja6K2mtkKTVo91BsGNqscCXFklarV4LSh9voyppw41VWkkrh28lbbj3fd9K2lALhPkW/wDn/xZOnjwZb7/9Nurq6tCtWzesXbsWKSkpimIlInICVtKS0EsvvYSxY8d6v7F1u93Yu3cvtm7d6pegTU1Nxfz58/lHlIiISCE7J2lFicloZdVKWj2Sl3KxJ210JWnljg9FiyR+uHYHWr12zKqkVSMwSVtTU+Pthy7nOL6VtOGcOHHCezlUkjawwvatt97CtGnTvH8Tjxw5gueff172cYmInMR6ZwJkCS6XC08++SRGjBiBjz/+GN9++y0KCwtRVVWF1q1bo3fv3rjxxhsxYsQIJCQkmB0uERGR7dg5SctK2p+xklZKz8S1Efcz0iSzEUlavWOItF9rqPFqK0/NXDjM7EracDEEm0e0qNvZs2eF/W1FfCtplVQy79mzJ+h+x44d87v+ySefSPb58ssv0dDQYMp7KRGRmax3JkCaGjlyJEaOHKl6fGpqKiZNmoRJkyZpGBURERExSesMVqmkDUzgWK0nLdsd2KuSVu6cao6ltt1BOEYtHBZpJa0aahO8oiRteXk52rVrp3klra/CwsKgt5WXl6OiogItWrSA2+3Grl27JPucOXMGO3bswBVXXKHq+EREdsV2B0REREQmaPzJqS8mae1HVElrhXYHTq2kZZJWXjxW7kmrdg6tFw7T6jhKK2HVJo/VPM7BKmnl8k3SKqmkDZfcbWx5kJeXh4qKCuE+69evl2w7dOgQ/vvf/6KysjLk/EREdsUkLREREZEJAitpXS6XJX/aKYqJSdqfiRKSbHeg38JhRtzPSOO3QpI2Unr2pNWr3YFeydXAWOTEpXVrCa0WDgOULR7m2+5AiXDjGpO0WVlZQffZv3+/3/Vx48ahZ8+eGDJkCC688EIsWrRIVWxERFbGJC0RERGRCQKTtHFxcbonXtTgwmGhsZJWiguHmZ+kNbuS1ortDvSqpJXLKpW0jUlardsdKKmkbexLm52dHXSf4uJi7+Xt27fj3Xff9V4vLS3F448/HrQKl4jIrpikJSIiIjKBKElrRWx3EBoraaX0rKS1Q5JW7pyRMCNJq9exgs0R6ZxazuekSlol7Q7q6+u97/dK7lO4StrGJK1vIjbQyZMnvZdFrQ9OnTqFH374QXZMRER2wCQtERERkQmYpHUGqywcZqUkrZ6VtEbcTy3i1zKZbPWFw5Qyqt1BuEraYPNZtZJWjdatW0u2KWl3AKhbPCzcmHPnzgFAyN6yvgncbdu2CfcJtp2IyK6seTZARERE5HBM0jqDqN0BK2lZSetyucJWOeoZjxPaHURKyzmtUEmr5v40adJEsq1x0Uq5MVZVVaFFixZh9/OdT24v21DtCnyTtD/99JNwnx9//NHv+rFjx/D++++jWbNmuPfee3HBBRfIioOIyCqseTZARERE5HB2SdJy4bDQWEkrFe09aUX7M0mrfG6tFw5zYiVtuC8CtEhUN1bFKokrXCVt41yhKmnLyspQW1uLhoYG7Nu3T7jP9u3bvZdLS0tx2WWXoaSkBADw2muvYfXq1bj00ktlx01EZDZrng0QCRw+fBjz5s3D5s2bcfLkSTRp0gS9e/fGqFGjMGLECLPDIyIiUsQuSVouHBYaFw6T0rOS1oj7qUX80Z6k1YLe7Q7UxmJGJa3ouGrHNB5PSSWtUlpU0gJASUkJ3G530FiLioq8lz/88ENvghYATpw4gYceeoh9a4nIVqx5NkAUYMWKFXj++ee9J7TNmzfH2bNn8cMPP+CHH37A+vXr8Y9//MOUkyIiIiI1Gn9y2ig+Pt6kSEJju4PQuHCYFCtpzU/SRirSx9UK7Q7CsWolbaixgaxUSet7u9w+tqEqaYHzLQ8SEhKC3l5eXo6GhgbExsbi22+/ldy+detWVFZWonnz5rLiISIyGzNaZHk//fQTJk+ejLq6Otx8881Yv349fvrpJ2zZsgUPPPAAAOCLL77AwoULTY6UiIhIPjtX0jJJ+zNW0krp2QKCSVp58Ri5cJhV2x3YtZI22FitK2nl0qOStjGGcJW0J0+eDLvQWVlZGQDgu+++E94erFUCEZEVMUlLlvenP/0Jbrcbt9xyC6ZNm4bOnTsDANq0aYNJkybhpptuAgAmaYmIyFaYpHUGVtJK6VkpacT9ZJJW3560ckX6mlE7XmlvW7nMqKQNRe7+cqtiG7ndbskvRYKRU0kbLklbWlqKEydOoKCgQHj7nj17vJePHz+Ohx56CNdddx1mz56tW9U0EZFa1jwbIPo/WVlZ2L9/PxITE/H8888LP6CMGzcOl112Gdq0aWN8gERERCrZJUnLhcNC48JhUk6spFUaf7QnabWaO9w4JbfLfUyUxmdUJa0aWnw50lgVK/fxV5LUDVdJW1dXFzZJe/r0aZw5cybo7b5J2vvuuw9r1qwBAKxduxYVFRWYMGGC7HiJiPRmzbMBov/z9ddfAwCuvPJKtGvXTrhPWloa0tLSjAyLiIgoYnZJ0rKSNjRRuwMrVNKaWSGm58JhbHcgLx4jk7RyxyudW+t2B1qJtJJW7VgjFg6Lj4+X/G1SWkkrZ//GY4erpAUgq5I21N/PgwcPAgByc3O9CdpGzz33HO677z5ccMEFYeMgIjKCNc8GiP5PYw+h3r17AwBWr16N5cuX4/Dhw4iJiUFmZibuv/9+9OrVy8wwiYiIFLNzklaUmIxWVqmkDUzGWK3dgVaPCdsdqDu+0nmU7KtFuwM5SdpIWaWSNtz9Uvs8afG6TUxMlPxtktuTtvH4cvevr69HTU1N2DnlJGlDLbzZWGW7du1ayW01NTX4+uuvceedd8qImIhIf9Y8GyD6P4cPHwYAtGrVCuPGjcM333zjd3tubi4+//xz/OlPf+IfVyIishU7J2lZSfszq1bSWq3dgZ0qabWI3+xKWj3ouXCYHFZdOEzNHL7kPB56VNKKNG3aVJIUbayM1bqHrZwqWkBeJW1CQkLY8evXrxfenpOTI9nm8XhM+T9GRGTNswFylNLS0rB/XH3FxcUhOTkZAHD27FkAwOzZs1FcXIxRo0bh4YcfRufOnXHgwAFMnToVP/zwA1588UVcdNFFGDRokC73gYiISGuBC6swSWtPVqmktVKSVs9KWrY7kBePE3rSRvoYqu1zq8UCXFappFV6nMTERMk2uZWxSvb3eDxh+9E2kpOkbdKkSdDbG88nc3Nzhbf7Jmm///57jBs3DkeOHMG9996L119/nclaIjKUNc8GyFHmzp2LOXPmyN4/OTnZ+3OUxm9Yi4uLcc899+CFF17w7peRkYG5c+di9OjR2LNnD/7+979j2bJl2gZPRESkA4/HI0l0MklrT6JK2mhP0upZSct2B/LisXJPWhEtXh9qFg6Ty+xKWrXHVdPuIJDcSlqlC4fJqaSV2+4gVJK2cfypU6eEtzf+crO2thb/+7//603mvvHGG0hJScHjjz8eNk4iIq0Y/wmSSIWEhAT84Q9/EG5/9NFHAQC7d+9Gfn6+0aEREREpJkpyWjVJK/rpPpO0PxMlCaO93YETK2mVxh9NSVq92h0YsXCYFStplYxRk5gOtXCYUZW0gHbtDk6fPo2ysrKgtzdW0p4+fVp4e2Ml7YYNGyTVtn//+9/5946IDGXNswFylIkTJ2LixImqxjZv3hxlZWVIT09Hq1athPv079/fe/nAgQO48MILVR2LiIjIKIH9aAHrJmm5cFhorKSVsntPWlbS6rtwmFHtDuQcQ81YvStptezZq2UlrVxy9tey3UFVVVXIBcjOnj0Lt9sdNElbUFAAj8eDzz77THJbfn4+duzY4Xe+SUSkJ1bSkqW1b98eANCsWbOg+/gmb5V+iCAiIjKDnZK0ooQjK4t+xkpaKT0raaOx3YGc+eXcbmaS04i5nV5Ja8TCYaEqaeVWMhtdSQsgZCWtx+NBYWFh0L9bbrcbNTU12LFjh/D2vLw8v+unTp2S9JQnItIKk7RkaWlpaQCAwsLCoPucOXPGe7kxqUtERGRldkrSulwuSWxM0v6MC4dJ6fmYGFFJq0UlsBMraa3e7iDc+EgeEy0qaYOJpJJW64XDmjZtKtmmRyUtAFmVtHJ60gKhk7SANNEaqLKyEsXFxcLbGtvpNTQ04M4770SHDh3QqVMnfPzxx2HjIiJSiklasrSBAwcCAI4cOeJt6h5o27ZtAID4+Hikp6cbFhsREZFadkrSAtLYmKT9majdAStpI69EDcau7Q4ieT70fDy1OKZV2h1o9VrQq5K28f6YXUkbiui9S+njIaeS1uPxhGxR4Ctc1arH40FpaWnIfcIlac+dOxc2SfvOO+9g6dKl3uM9+OCDYY9LRKQUk7RkaTfddJP3ZzdvvPGG5PaGhgbMmTMHAHDVVVehTZs2RoZHRESkit2StIEn7kzS/oyVtFJ6PibR2O7AjpW0SumRdI62Slo9x8gZ13i7Ge3nwlXlhkvSlpeXh+1Z+/rrr0vGiPrYEhFFgklasrTWrVvjiSeeAAB89dVXeOaZZ1BUVAQAKCoqwvjx45GVlYWEhATVi5MREREZTVQZFB8fb0Ik8gQmkLlw2M+4cJiUExcOU/qcOjFJq4QZ7Q7C3S73NahFJW2o4+tVSav0dSJ3fz0qaeWSe+xw+4VL0jZWywa7LS8vD0ePHpXc9vnnn8uKj4hILuuWbBD9n/vuuw/FxcX45z//iRUrVmDFihVo2bIlKioq4PF40KRJE0ydOhWpqalmh0pERCSL3Spp2e4gOKsuHObxeODxeHT/WbyInguHadlGIBhW0lqz3UE4Wi0cJqK0kjaSx1qrZHqwONUuaqZlJW3j+5McWrS5ECVYfYVK4hYWFgZN4vq24/N4PCgqKkJNTQ26desWNiYiIhFW0pItPP3001iwYAGGDRuGDh06oLq6Gl26dMHIkSPxySef4KabbjI7RCIiItmYpHUOq1bSAvpUmcqhZyWtKBmtNSZp5c+p5lhqH189Fg7T4jhGVNJqGUeo/bV43ZjR7iBcjOF6x4ZK4lZXV3t/yRmocXFrj8eD3//+9+jcuTN69OiB3//+92EiJiISs+7ZAGlm+vTpmDlzJpKTk7F27VpFY3NycrBo0SJs2bIFBQUFqK+vR1JSEtLS0jB8+HDccMMNhp1U9u/fH/379zfkWERERHpiktY5rFpJC5iXpDWyklaP+6hFklnLZLIdK2m1YMTCYUoX/RLFpVUsoahZOEztmEhped+1mivcImVHjhwJOTZYkvbkyZNoaGjAxx9/jBkzZgA4H/Pbb7+Nu+66C7/85S/VB01EUcm6ZwOkiaysLO/CWkq9/fbbmDVrluRELD8/H/n5+fjmm2+QkZGB1157DSkpKVqES0REFBXslqTlwmHBWXXhMOB8bGYkjI3sSct2B/qI9JhmtDsIN97sCla57QfUJtO1ah+gdpzSuI1sdxBOQUFB0NtCJWkbGhpw6tQpvPDCC5LbvvjiCyZpiUgxtjtwsPz8fIwbN054IhjOK6+8ghkzZnhPwuLi4tCnTx/0798fbdu29e6XnZ2NMWPG4NixY5rFTURE5HR2S9KykjY4UbsDMxKjogSQWYuH6VlJy3YH8uIxu5LWjHYHdqmk1WvhMKXH0qvdgVkV/KGEi6mysjLobaHaHQDAiRMncPDgQcn2devWyQ+QiOj/MEnrUAcOHMDdd9+N4uJixWNXr16NDz/80Ht92LBh2LBhA5YtW4YFCxZg06ZNePnll5GYmAgAKCkpwfjx4y35B5mIiMiK7J6kFSUmo5XVK2nNYGQlbbQmaZUeX+k8SvbVIrEnp5JWaZJWTiVtpFWwWszhlIXD9GBUte25c+eC3uZ2u0MWJO3Zs0e4fffu3X7H3717N3Jzc0PGQUTEJK0DrVixAnfeeWfIb/yCqaurw9SpU73Xr7nmGrz55pto3769d1t8fDxGjx6NGTNmeE/adu/ejZUrV0YePBERURSora2VbLNTkpaVtD+zSiWtlZK0RvakNardgdL47V5JK3dOObFoHYdcei0cZtVKWrMrXs1qd6CFUJW0AEImaXfs2CHcfubMGdTV1aG8vBw33XQTMjIykJqaipdffjmSUInI4ax7NkCKFRUVYdq0aVi+fLnqOdasWYPjx48DOH9CNmXKlKAfSocMGYLRo0djwYIFAIB58+Zh+PDhqo9tZ044WQ08yWSVFBGRfkSrX8fHxwOw5vuvqCetE/72aUH0OLjdbks8PrW1tWjSpInhxxVVins8Hk0eE1HyU+vHWpT4bWhoUHQcUTJZbZxqXmOi9xEl90HJcyjaFupYav/PhHuuRRWpvvuLntfA+YLFHerYotuUvIYC73uwxzPccyqqJBaNaTye3NdC4zHkfCFSX18v62+Y2+2WtZ/cuSLdJ1ySNtTtoapji4qK8Oc//xn/+c9/AJx/jl5++WWMGTMGF154YchjEkUD5iCkmKR1iHfffRezZ8/2+6lGSkoKhg4dilmzZsmeZ9WqVd7LgwcPRpcuXULu75uk3b17N/Lz86PuD47b7cbOnTvNDkNz2dnZZodARORYov51jdWqVnz/DUzYVFVVOfJvnxolJSWSbXv27EHr1q0NjePMmTOSbVlZWWjRooWhcQDAoUOHJNuOHz+uyWsm8GfJ9fX1mr8WS0tLJdt27dqFhIQE2XNo+X9GtKhRbm5uyPlESaXS0lLZMTQWbfg6deqUcHxZWZnsfYHz62YEOnLkiGT/wC+zampqFD2GZ8+e9dtf9H9kz549aNasmfd6dna28P35xIkT3rnkxHXixAnJHAcOHEBMTIzktVFdXe03XvTYHz58WFjNeejQIbRr1054/zwej/D/4rFjx7Bz504UFhZKbhM9Ro3Ppeg+Bdq5c6esX3OePHlS1ntTfn4+ampqQu5TVlYm/HWKr6qqqpC3V1RUhLz97NmzQW/bv39/0Ns2bNiA2bNn+21raGjARx99hBtvvDHkMYmikRU/AxuN7Q4cYu7cuX4fWkeNGoWlS5eiW7dusufweDzYsmWL9/qVV14Zdkx6ejo6dOjgvb527VrZxyMiIopWogomK7c7CPxVjRWqRK1CVKHFdgf6tTuQc6xIadFT1+7tDiLtSavV3HrPq0VPWrki7Umr5jVoZI9ZvV5fRrQ7CJcIDpUEFiW7Gx04cEC4fd++ffICI6KoY92zAVIlIyMDkyZNwoABAxSPPXbsGMrLy/3mkiM9Pd27QNmuXbsUH5eIiCja2C1JGxibWck/K9JzkSwlRMd04sJhgcneaFg4TM78WtMzMSb38Y00+av2MdKiJ62e431pnZjWIjajFxgz4nihkrSi6uNGwapsfZO3lZWVKC4uRpcuXRRV6xORM1n3bIAUGTBgAEaOHInrrrtO9R/XvLw8v+sXXXSRrHFdu3b1Xj569KiqY9tZTEwM+vbta3YYEWtoaPD7eUFGRoYplUBERNFg+/btkm2NiVArvv+2atVKsi0zM9OESKxH1Nbgsssu8/sJtRF8F3ltdMkll/j94skoop9FX3jhhZq8Zlq2bOl33eVyaf5aFD2nmZmZir5ICewF3KRJE9Vx/ve//5VsS01NDTmfqN1BmzZtZMcQ+DgDQFJSknC8qD1EqGOJ3v969Ogh2T/w/1B8fLyix7B169Z++7dt21ayT+/evf3OXzIyMiQtNQCgS5cu3rmaNm0aNq6OHTtK5khPT0dmZqYkERf42tiwYYNk7MUXXyxMFPq+DkT/Ny6++OKg90X0Ohc9RhdccAEyMzOF98mXx+ORtR9w/rUkp0VecnJy2L7abdq0Cft/M/A5U0rUo1nObaJWJcD5/5+ZmZmYNm0aXnjhBdTW1iIlJQUrVqxAr169IoqVyE6cloPYtWtXxF+QM0nrEDNnzox4jsZqWOB84lH0YV/E98O/7xzRxMrVT2rFxsY68n4REVmB6ANc43uuFd9/Gxc1a1RfX2+5GM0iquJKSEgw/PERHS8mJsaU50lUMBAXF6dJLIGVtG6325D7mJCQoKhlQ7DHQA3RccM9noH/Z5XGIDpJDvbeJDqWy+UKeizR/RHNLapGDhW/qJLWd3/RfQqMJTY2Nuh+jXMFez5Cxd64T1xcnOS2wDiDPT7h4hLNK3puGscEe88I1BifnNe/3P1cLpes/eQka+QUKEVabRuqkjZUQmbHjh3C7WfOnMHOnTsxadIk77bDhw/jr3/9Kz766CPVcRLZnRU/AxuNPWnJy/enGs2bN5f9QdS36Xuon3sQERHReaLKGyt/KA2MjT1pfyZaiZg9afXrSRuN7Q6s0pM22DG16Ekrp92B0sdQy7YCWvR2lduTNtjYcPdHbhxq2x1oMb8a4eYzur2CEqKKduD8Ymdr1qyRbF+5cqXeIRGRxTFJS16+DdOV/CTE9yc74VbWJCIiIvHfSysnaQOTjkzS/kyUCNVrkaxQrJSk1bMnrd69XoPNySStssdAi4Sq1n135T4mWvSkjaTvq1avaa0WDjMzCarVsa2WyK2oqMDBgwcl28+ePeu3RgwRRR8macnLt6pHycmF70klT9qIiIjCYyWtc4gqaaM9SatnJW1g0kmP+6jFnE5M0mp1LLWPhdI5RT//V8sKlbSRHFvuGKMWDvN4PJomTu1YbRusFcK+ffsAAFlZWVizZk3UthMkilZM0pKXb5WMkg+nvidqwfpfERER0c/snqT1eDymJQCtJvBxkPOzZD1YKUmrZyWtGe0O1MRudpJWD0raHUSaUBVt06PdgRmVtGrHGlGBq0UyWmtWTLBqIViSNjc3F6+99hoyMzMxdOhQdO/eHZ9++qmxwRGRaZikJa/ExETvZd/WB+H4/mQz3OqbREREZP8kLSCuII1GgY+DGVW0wY5rpaSKXpW0TNLKO77SGPTsSavHHJFUo8qZS8tKWi1eT3KOrabdgZEV2FrNZ9ckbrAv0U6cOIE///nP3uvnzp3DI488wraCRFGCSVryat26tfdyZWWl7D94FRUV3stt2rTROiwiIiLHcUKSli0Pzgs80TZj0TBAnFyxUiWtndodMEmrb09ate0BjKqkNXreSNslKJ2H7Q6s7ccff8TZs2f9thUXF+PAgQMmRURERmKSlrw6duzovdzQ0IDS0lJZ43z75LRv317zuIiIiJzGbklaUeKRSdrzApOEVqqktVJPWju3O1DznEZTktYK7Q6cVEmrVYJXq4XDlOxv1EJ+ZsxhlG3btgm3Hz582OBIiMgMTNKSV7du3fyu5+fnyxpXUFDgvdyjRw9NYyIiInIiuyVpWUkbXGC7A7Mqaa2UpDWykhbQ/yfWVqykVXp8pfMYvXCYHu0OtKx49Z3LjEpaOb2u9aqktXqC0+rxKdW4cFig3Nxc1NbW4o033sBjjz2Gr776yuDIiMgITNKSV3Jysl+7gr1798oa5/uHpFevXlqHRURE5DhOSNKyJ+15rKSVMnLhMED7JI1oMTil7F5JK3dOObFodbxI2x3IfUz0qDD1Pb4RC4CppUXlrZbtDrQ6phMSubm5uRg/fjwmTJiAmTNn4sYbb8QHH3xgdlhEpDEmacnPwIEDvZc3b94cdv99+/ahpKTEe33QoEG6xEVEROQkogVA4uPjTYhEHlbSBsdKWikjFw4LdrxI2KGS1krtDuSOVzq3VsfTghUqaZWOdcLCYVrN6YQkbX5+PubNm+e97vF48Mwzz3BBMSKHYZKW/AwdOtR7ed26dSgqKgq5/8KFC72XU1NTkZ6erltsRERETuGESlomac9jJa2UnpW0TNKqj0mvYxrV7iDaK2ntsnCY0ZyQgJXjp59+knx2OHnyJLKyskyKiIj0wCQt+Rk6dCiSkpIAnK/ymTx5ctCTsE2bNmHp0qXe62PGjDEkRiIiIrtjktY5AitpmaTVt5LWiPvphCStlRcOkzuHWQuHhRvr5EraUKzc7sCoecyUl5cn3O67PgwR2R+TtOQnISEBEyZM8F7fvHkzHn74Yb9FxOrr67FkyRKMHz/ee2KSlpaGUaNGGR4vERGRHdktSSv6CT+TtOcFJgjZ7sB5lbRqEsxaJmnlzC+H2T9bVzp3pO0O1CZT9UpeNjK7kjYUu7Y7iIaetMEcO3YMO3bswC233IJBgwZh7ty5ZodERBGw7tkAmeb222/H9u3bsXjxYgDnE7VDhw5Feno6WrRogZycHJw+fdq7f5s2bTB9+nRLn1wSERFZid2StFw4LDi2O5BiT1rzK2kb9/Eda5VKWqPaHag5hpyxamNVUw0byVgtx5B15eXlYcaMGd7FvLds2YLk5GTceOONJkdGRGqwkpaEXnrpJYwdO9a7iInb7cbevXuxdetWvwRtamoq5s+fj5SUFLNCJSIisp3AJK3L5TKtAlMOtjsIjguHSelZSct2B/Jj0rqa127tDuxaSavluGhod+DkKlk5Pv30U2+CttELL7xgUjREFCnrlmyQqVwuF5588kmMGDECH3/8Mb799lsUFhaiqqoKrVu3Ru/evXHjjTdixIgRSEhIMDtcIiIiWwlM0lq5ihZgkjYUVtJK2b2SNvBxi8YkbaSVtErn1oPahcPCzaV1kjUwBrWPj14Lh5nd7kCL4zo5kZuTkyPZ9uOPP6K+vt7yny2ISIr/ax1u5MiRGDlypOrxqampmDRpEiZNmqRhVERERNGttrbW77rVT6SYpA2OlbRSouPaKUnrlEraSER6TC2qXrVeOEwuLSpMjepBrPXCYVpW3mpFi+M6OUkbTHFxMTp37ux9PzbrC0QiUob/U4mIiIgMFlhJ29heyKq4cFhwrKSV0jOpaNd2B5HEaJVKWrnHUTo+2BxatzuwSiWt0xcOY7sDazhx4gTGjh2L2NhYdOnSBZ999pnZIRGRDEzSEhERERmM7Q6cI7CSlkla51XSqondCpW0ZrY7MKrqVQm5yVWjK2m5cFjkorndQTBvv/023nvvPQBAUVER7rvvPpSXl5scFRGFwyQtERERkcGckKQNTE5Gq8CEpJXaHZiVmNBz4TC2O5Afk5kLh4ViVLsDLRcOs0MlrdIxei+QphW2O1Dn/fff97teWlqKL7/80pxgiEg2JmmJiIiIDOaEJC0rac+zSiWtKBljpXYHWj0udm13YLckrZ49aUXkJGmVktPuQAtWqaS1ysJhbHdgXZs2bTI7BCIKg0laIiIiIoMxSescVq6ktVK7AztV0gbGryb2wOfDyUlao9odGDWnUyppwy0cpsUxyF4KCwsBAGVlZThy5AgT3EQWxCQtERERkcHslqTlwmHBceEwKT0radnuQH5MVq2kNavdQSQJSKVtA4yqpFV7TCX7N+6nRaWuGlpU0zIZeV5JSQkWLVqECy+8EN27d8d1112HyspKs8MiIh9M0hIREREZzG5JWlbSBhfY7oCVtPpW0rLdgTG0aFegZG492h2ojSXcfde7klYJqy0cpiSRa2S7AyZpzzty5AjGjh2LiooKAMC6deu8i4sRkTUwSUtERERksNraWr/rdkzScuGw81hJK8VKWvtX0sqZLxQ9kmJ6VNLKjdPISlq17Q6Uvk602J/sJS8vD2fOnPHbNn/+fJOiISIRa58REP0fj8eDZcuW4dNPP8W+fftQXV2Ndu3aoX///rjvvvvQt29fs0MkIiKSjZW0zsFKWim796QNnE9NgtnuSVqlx3S5XLIXsdKj3UGwmNSwYiWtmqrYYPRcOExtTJHOx3YH6m3fvh0ej4f9iIksgpW0ZHl1dXV49NFH8dxzz2Hr1q2oqKhAfHw8CgsLsXLlSowePRoLFiwwO0wiIiLZmKR1DlbSSulZSct2B/JjMjpJK/dYerQ7UNvX1UmVtKL9jV44zIx2B3KPR8GVl5ejpqYGO3fuRE1NjdnhEEU1JmnJ8t555x2sW7cOcXFxePbZZ7F9+3Zs374d//nPfzBkyBA0NDTglVdeQVZWltmhEhERycIkrXMEVtIySSs+rp3aHQTGzySt/GOqFenCWFouHGbXSlq9K16tmui0alx2snnzZnTp0gWXXXYZLr74YuzatcvskIiiFpO0ZGlutxsLFy4EADz00EO47777kJiYCADo3r07ZsyYgc6dO8PtduPjjz82M1QiIiLZ7JakFf2En0na8wITemx3oG+CLxp70sqZX+sYIm0toDShGumcatmpklYprRYOU3pfrNjugEK7+eabcfr0aQBAQUEBXnjhBZMjIopeTNKSpZ06dQplZWUAgMzMTMntiYmJyMjIAAAcP37cyNCIiIhU8Xg8kgSn1ZO0XDgsOLY7kNKzkpbtDtTHFCmj2x0oYadKWrVjzV44TEt6JHPDHY/kW7t2LR8zIpMwSUuW1qpVK++HhZ9++klye21tLfbt2wcA6Natm6GxERERqSGqQLVjkpaVtOdx4TApVtJaI0lrZk9apcxaOMyMSlo1yVY1+2pdSWtG0k6rKlomHJU5e/Ysjh07ZnYYRFGJSVqytCZNmmDQoEEAgHnz5mH+/Pmorq4GABw7dgxPPPEE8vPz0bJlS9x7771mhkpERCRLbW2tZBuTtPbFSlopu/ekDZxPTezRlqSVM15pHFq3UJD72jG6klZu7Fr2stVq/0BGV8iSfg4ePIiKigpkZWWhtLTU7HCIogaTtGR5L730Ejp37oz6+nr8+c9/xmWXXYbLL78c1157Lb755hsMGjQIH330ES666CKzQyUiIgorsB8tAMTHx5sQiXxM0gbHSlop0XG1qqRluwP5MZlZSWvFdgeRMLKSVgm7LhymJJmrRaUsE8fKffPNN8jIyEBmZibS0tKwceNGs0MiigrWLtsgRygtLUV5ebns/ePi4pCcnOy93q1bNyxfvhxjx47F9u3b4fF4UFlZ6b3d7XajqqpK05iJiIj0IkrSWr2SlguHBWflSlqzEhOi49q5kpZJ2vD0aE2g9cJhdqmkDXZ8rapi9Vw4TGtsd2Cev/zlL97LJSUleP7557Fp0yYTIyKKDtY+IyBHmDt3LubMmSN7/+TkZKxdu9Z7PTs7G+PHj0dJSQkmTZqE4cOHo3Xr1ti7dy/eeOMNfPfdd/jtb3+LOXPmYMCAAXrcBSIiIs3YMUnLStrgAitpzUrSipIrTqykNSKJFBh/NCZp5cynNB6lcUQ6p5YLh5ldSSsn4WqFhcPY7sC5vvvuOzQ0NJj2axGiaMF2B2RpRUVF+O1vf4vjx4/jjTfewAMPPIAOHTogISEBmZmZmDt3LoYMGYLq6mo899xzXGmaiIgszylJWv7NFSck2O5A30patjuQH5OdetJquciXnnPKnVfJOLmVtHodTy47tzugyDU0NKCgoMDsMIgcz9pnBOQIEydOxMSJE1WNnTdvHiorK9GvXz9cf/31kttjY2MxadIkfPvtt8jPz8d3332HIUOGRBoyERGRbpySpGUlrb4LZCllpSSt3StpnZKkjYSePWnljFc6p9qFw+TOZYVK2nDjtHid2LHdgZHzRLtDhw6hZcuWOHnyJHr06IEmTZqYHRKR47CSlixt586dAIB+/foF3SctLQ2tW7cGAOTm5hoSFxERkVpM0jqHKBnJSlrn9aRVE7sVkrR2WjhMzpyh6F2d6zuXlSppjXxdya1oNTohykpb4zzxxBPo2LEjevfujfT0dOzZs8fskIgch0lasrTS0lIA4f+wNp481tbW6h4TERFRJJikdQ5W0orpWUnLdgfGxKBHa4FQc+vVmkDpMdQcxyqVtHKPY4WFw4xKRJO2srOzvX/7jxw5gpdfftnkiIich0lasrROnToBALZv3x50n8LCQpw6dQoA0K1bN0PiIiIiUkv0hWJ8fLwJkcgnqg5lklbcl5eVtM6rpLViktZqlbRyxoeiR7uDaKuk1avdgRJaJ1+16lvLRK8+Fi9ebHYIRI7DJC1Z2jXXXAMA2LFjBzZu3CjcZ8aMGQCA1q1b45e//KVhsREREanhlEpaLhzGStpg9HxcREkkre9n4HzRmKSVM5/aYxmVMAuMSW6CP1oqabW4n5HspxW2OzCXWX9niJyKSVqytNGjR6N79+4AgD/84Q9YsmQJqqurAQAnT57ElClTsHTpUgDne+Q0b97crFCJiIhkcUqSlpW0rKQNRs+FrkT3k5W02sdgdE9aIxYOi4QWlbTBaPXasNPCYWx34Bx79uzBe++9h6VLlzJhS6QBa58RUNRr2rQp5syZg9/97nfIzc3FCy+8gBdffBEtW7ZEeXm594/22LFj8b//+78mR0tERBQek7TOwUpaMaMrae2QpI2EnklvM46pNkkb6ZxGVtKK6NUTV+3x9HiOrdrugPTTt29f7+Vf//rXWL16NZo0aWJiRET2xkpasryLLroIn376KSZPnox+/fqhefPmOHfuHJKSknDLLbdg4cKFePLJJ80Ok4iISBYmaZ1DVEnLJK2+C4cZ0e5AryStlokkMypp9TqWaLweIjmG0kpaK7Q7CEZtbFZNmLLdgXWsX78e//rXv8wOg8jWrH1GQJqYPn06Zs6cieTkZKxdu1bR2JycHCxatAhbtmxBQUEB6uvrkZSUhLS0NAwfPhw33HCDISeWiYmJuP/++3H//ffrfiwiIiI92TFJy4XDxETJQbY70HfhMDPaHaiJPViSVk2iLRraHciZs3Gs3AS42mSq0ZW0Vlo4LNwxtGLFRC5p44svvsCjjz5qdhhEtmXtMwKKWFZWFubMmaNq7Ntvv41Zs2ZJTsLy8/ORn5+Pb775BhkZGXjttdeQkpKiRbhERESOZ8ckLStpxdjuQMzoSlq7tDtQG6cdFw4LRY92B3JiirZKWjULh0VaSevxeDStuJU7H5Ow1sFFRYkiw3YHDpafn49x48YJTwbDeeWVVzBjxgzvCVhcXBz69OmD/v37o23btt79srOzMWbMGBw7dkyzuImIiJystrZWss2OSVqeiHHhsGD0rKSNxnYHdqiklTM+lEj7tWr52EZzJa0VFw7TYi4mcY1z4sQJvPzyy7j55pvxj3/8g4uJESlk7TMCUu3AgQN46KGHUFxcrHjs6tWr8eGHH3qvDxs2DFOmTEH79u0BnK8AWrZsGf72t7+hqqoKJSUlGD9+PD755BND+kkRERHZGStpnYOVtGJ6VtIa0e4gMH4macMf08h2B3LnZCWt8QuHWRWTtMbZuXMndu7cCQD48ssvUV1djT/+8Y8mR0VkH9Y+IyBVVqxYgRdffBFVVVWKx9bV1WHq1Kne69dccw3efPNNvw/E8fHxGD16NJKTk/HII4+gvr4eu3fvxsqVKzF8+HBN7oPdOOFENbAaiBVSRET6qK6ulmzzTYLa5f23rq7OEX//IlFTUyPZ5nK5THlcRInRhoYGU2IRvYbdbrcmsYiSLVq/FkXH0GL+uro6VUkw0eMp57kNPJaS50C0X6hjKjmW2vvTGJfc5ycwhmD/R+TE4btdVPkaOCbU/8dw40WPT319fdDtweJqvD1YHKLbglUWBzt+oLq6Oln7yX0tNjQ0hE2wMgFrbVOmTMGTTz6JJk2amB0KWRBzEFJM0jpIUVERpk2bhuXLl6ueY82aNTh+/DiA8yeMU6ZMCVoRMmTIEIwePRoLFiwAAMybNy8qk7Rut9v7baGTZGdnmx0CEZEj5ebmSrb5Jmmt+P4rOgk+deqUI//+KVFQUCDZZtbjkpOTI9lWUFBgSiyiX3Lt3btX1S+8AhUWFkq2HThwAE2bNo147kaB1e5VVVWKH8czZ85Itu3cuRMJCQmK4zl16pRk2549e4SPha/A1irV1dWy78fhw4cl244dOxZ0fOCJdWVlZdB9i4qKJNsOHDggSWyWlZVJ9tuxY4ewsl/0WAT+XxS9/g4cOIDU1FTv9ezsbOTl5Un2y8/P985VUVHhd5vH45HcV9Fztnv3bhQWFkoKaerr6/3Gnzx5UjJ2//79OHLkiGT70aNHvWPPnTvnd1tdXR32798vGVNcXIydO3fi4MGDkttEj2NZWRl27tyJkpISyW2BsrOzhfc90KlTp7znnKEcP348bDL37NmzYRM7/Mm9eTweD5YvX45evXqZHQrZgBU/AxuNPWkd4t1338WNN97ol6BNSUnB2LFjFc2zatUq7+XBgwejS5cuIfcfPXq09/Lu3buRn5+v6HhERETRRnTCafV2By6XS9JrldUO1m93YFaFmZ4/ozZj4TA1z6mWvXPtsHCYEpH2cJXLqJ/ua92TNthYsxcOk8OM9xz2pLU+0RcuRCTGJK1DzJ071+/b01GjRmHp0qXo1q2b7Dk8Hg+2bNnivX7llVeGHZOeno4OHTp4r69du1b28YiIiKKRHZO0gHRBLFYmWStJa8SCWnIZvXCY3klas/t0WqUnrV7HEo03ityFw7TsSavlWCMXDpMbl1n76T0Hqffvf/8bI0aMwMiRI7Fu3TqzwyGyNOufEZAiGRkZmDRpEgYMGKB47LFjx1BeXu43lxzp6enenw/t2rVL8XHtLiYmBn379jU7jIg1NDT4/bwgIyPDtBWqiYicbM2aNZJtvklaq77/xsfH+/18OjExEZmZmSZGZL74+HjJtk6dOpnyuIiS/x07djQllrZt20q2ZWRkeBehjURycrJkW2pqqqb3M/D/X/PmzRXP365dO8m2jIwMNG/eXHE8wR5P0TF8BfaAbNq0qez7cfToUcm2iy66KOj4wP8Lod4fkpKSJNt69eqFSy65xG+b6H737dtX2DKiTZs2km0dOnTwi6FTp06SfXr27OmXwMvIyMCBAwck+3Xr1s07V8uWLSW3B97XCy64QLJPRkYGOnToIHkNxMbG+o0P9viIvnTxfU4SExP9bktISBD+xLzxcQlshwGIH6PWrVsjMzNT1v9fOa9L4PxzG+4XmwDQuXPnsF9itmzZMmwy2qwvz+i8H374wXv5xRdfxKhRo4Tv5RR9nJaD2LVrV8RfkDNJ6xADBgzAyJEjcd1116n+Jjqw/9JFF10ka1zXrl29l0Uf6KKBHSqglIqNjXXk/SIiMpuoTYDv+61V338DY2poaLBknEYSnfjHx8eb8rgE63VqlecoISFBk1hEc8TExGh6PwNPsNTML3ptqP2/LfpsL+d1JqpulXt8UfxxcXFBxwcey+Vyyd432NxKHkM5rwvRfC6Xyy9JGxsbG/a4wR6bwHlF+8TFxYUdH2ysKHER7rUpuq3xuRHdJjpG4/5yzjGDPX6BYmJiZCVitEquspLWOs6dO4cPPvgAU6ZMMTsUsiCrfgY2Er9ScoiZM2fi+uuvj+inQr7N9GNiYmRXO/i2O9BiQQgiIiInE1UviSoyrSbwQ7MWq93bnZXaHYiOa1a7A9Fx7dyTVk3sWsapdpyR7Q6UjDeqF6oocaxWqHYHVu1JG+qYSvZX+lpguwMKx3cdHCLyxyQtefmuQtu8eXPZJxktWrQQzkFERERSgSvHA9apdgwlsOqJSVpxVbRZP9OzUpLW6J60Wt9POyRpzejhGuqYevSkjfQxVNs7Vu+kYLi4tEqmm7FwmFxWTOSScVq2bIna2lqUl5fzuSMKwCQtedXU1HgvN23aVPY435/XiaqDiIiI6Gd2TdKK2h1EO1bSiulZSSu6n9FYSWvGwmFaJWkjrTxVO2ckz4melbRajdVr4bBQ86vZR2tM8tnP119/jR49eqB169a46aab/NbFIYp2TNKSl+9Jo5ITDN+TNlbVEBERheaUJC3/5rOSNhijK2n1TtKqiT3akrRKRDK31pW0kR5DizkC9w02VsuEqxJsd0B6OH78OADgP//5D95++22ToyGyDiZpycv3pELJh3rfkzQ79NQjIiIyE5O0zsFKWjGje9I6vd2B3PnD7WOVSlo544NtCzavnSpptWwp4HtspUlPPRKXVkzQajkP6eNvf/ub2SEQWQaTtOSVmJjovezb+iAc3xYHTZo00TQmIiIip2GS1jlElbRM0upbSWtEu4PAx83sJK1VKmm1Opbc+xNpuwO1C4eZXUkrombhMLVjAumZ1NWKlWOj8CorK/kcEv0fJmnJq3Xr1t7LSt4oKyoqvJfbtGmjdVhERESOYtckLRcOkxIlQdnuwPhKWvaklRdDpI+TkkraUCKJw4iFw8LNpXclrZ7JdN8xWrVVUBuTkVWyTABaX2lpKfbu3YuzZ8+aHQqRqZikJa+OHTt6Lzc0NKC0tFTWuOLiYu/l9u3bax4XERGRk4gW2bRDkpaVtFJsdyBmdCWt09sdWKWSVqtEbCSVtFq3O1A7l5ZzaFVJa6eFw5Tsx5600aFz58645JJL0LNnT3z//fdmh0NkGiZpyatbt25+1/Pz82WNKygo8F7u0aOHpjERERE5jaiS1g493QOTtKKf+kcbqy8cZlZiQs/kNStp1cek5zGN6kkb6ZyB7F5JK+d4kbJDgtMOMVJojV9gFxUVYfLkySZHQ2QeJmnJKzk52a9dwd69e2WN27dvn/dyr169tA6LiIjIUeza7oCVtFJWqqQ1YkEtufRMKpqRpFXznFohSWvVhcP0aHcQDZW04cZqtXCYE9sdkL1s2LCBnzEoajFJS34GDhzovbx58+aw++/btw8lJSXe64MGDdIlLiIiIqcITNLGxMSYlthTgklaKatX0lqpJy3bHdg/SavkWErn1qPdgdpK2nBzqU1iRlpJa9bCYeHiUrqP0v3Y7iA65ebmmh0CkSmsf0ZAhho6dKj38rp161BUVBRy/4ULF3ovp6amIj09XbfYiIiInCAwSWuHVgcAFw4TsVIlrdWTtHaupI3GJK2c+ULRM8mrdk4jXjtq5tWqklbp8YyueNVTuBjtcB/IX15eHrZu3YqTJ0+aHQqRoZikJT9Dhw5FUlISgPN9YSZPnhz0JGzTpk1YunSp9/qYMWMMiZGIiMjO7JqkZSWtlKiSlklabZKcwRiRaAt83KIxSWuFdgdaLxwml5pKWiWJVr0qabVaOIztDsgKhg4digEDBuCiiy7yyzkQOR2TtOQnISEBEyZM8F7fvHkzHn74Yb9FxOrr67FkyRKMHz/ee3KSlpaGUaNGGR4vERGR3TglScuFw8RJULY70CbJGQzbHciPyU5J2kjbHciJKZL5lL4G9GwtIXes1guHsd0BmaGmpgZPPfWUaX/PiIxm/VUqyHC33347tm/fjsWLFwM4n6gdOnQo0tPT0aJFC+Tk5OD06dPe/du0aYPp06fbYtETIiIiszklSctKWlbSBqPFwlvBsN2B+pj0PGak8RhRvanVwmHBnlu586t9PamtwA22n9kLhxnJijGRfPn5+Th58iQ6depkdihEumNWjYReeukltG3bFnPnzkVdXR3cbjf27t0r2S81NRXTp09HSkqKCVESERHZT21trd91Jmnti5W0YnpW0pqRpFWTZNY7SasmBqOqO8ONN6rdgdqFw+TGEmoeJfHIGauGlRcOU7qvkXORNeXl5TFJS1GBSVoScrlcePLJJzFixAh8/PHH+Pbbb1FYWIiqqiq0bt0avXv3xo033ogRI0YgISHB7HCJiIhsI7CS1i5/RwOTtG63G26327TKUSvgwmFielbSmnE/7VpJ68R2B0rIaXcgoqaSVm9yErxaVdKGOoZWtGx3wARtdDh8+DCaN2+OTp06oUOHDmaHQ6QbJmkdbuTIkRg5cqTq8ampqZg0aRImTZqkYVRERETRy67tDkQVog0NDVGdpBW1O2Alrb0rabVqLWD3JK2c+bQ8VqQJVL2rlLVoNaD3wmFmjvFlxaSpFWMiZe6++24AQGJiIv7973/jjjvuMDkiIn1E76dqIiIiIhPYNUkr6j0f7S0PWEkrZueetKLHLBqTtHr2wdWj3YGc8XLn06KSVuuf/cttlSBnjNLj6LFwmNJ9jZyLrK2qqooLiZGjMUlLREREZKDAJK1dFt4UxSmqJI0mrKQVCzyundodsJJW3THNbnegd5LODpW0erU70IOWrRaYoI0+R48excmTJ80Og0gXTNISERERGYiVtM7BSlqxwKQJ2x0En9tIelY5WrHdAStp1S0cpuZYavaTy+z/N2RNx48fNzsEIl3Yo3SDiIiIyCGYpHUOUSUtk7T6VtJGY5JWbdI7kuR4pJW0SueWO6fW7Q7UzhXIjpW0cumV3GfylSLxww8/wOVy4eKLL0bLli3NDodIM6ykJSIiIjKQXZO0op/xR3uSVpQEZbsDfRcOM6PdgZoksxWTtHouHBZIi3YHSmjZSsKKlbRqhKuk1XKBMqW0bnfAhG/0efTRR3H55ZcjPT0d3333ndnhEGmGSVoiIiIiA9XW1vpdT0hIMCkSZVhJK2X1dgdmJS7svHCYkytpndCTNhoqaZUcX+v/42qSumr3k4sJWArlxIkTmDhxotlhEGmGSVoiIiIiA9m1kpYLh0lZaeEwUXLFiZW0eidpRY8Zk7Thj6tHT1olj6GTKmmttnAY2x2Q1W3evNm0v3dEWmNPWjJNaWkpbrnlFjRt2hRr164Nu/+aNWswf/587N69G7W1tejcuTOuv/56PPTQQ2jbtq0BERMREUXG4/FIEnt2TtKyktY6lbRWStLqWUlrRrsDJmmVH0vLudXOqbaSVs1rwIqVtFovHKYlravfmfCl0tJStGvXzuwwiCLGSloyRV1dHZ555hmcOnVK1v5vvPEGHn/8cXz//feorq5GXFwc8vLy8M9//hMjRoxAXl6evgETERFpILCKFmCS1s6sVEkLSBOYrKRVjkna4Psa3ZNW63YHcmMxel6zKmnlUlJ5q3XClAlYkuvZZ5/Fq6++iiNHjpgdClFEmKQlw1VVVeGJJ57Axo0bZe2/atUqzJo1Cy6XCxMnTsSPP/6In376CUuXLkVKSgpOnjyJxx9/POp/cklERNZn5yQtFw6TslIlrejYTqykZZLWmIWdRKzQ7iAYJZWsauZyYiWtmQuHhTo+kRpz5szBs88+i8GDB7OAi2yNSVoy1P79+zFq1Ch8/fXXsvZ3u9146623AAC//e1v8fDDD6Np06YAgEsvvRTz5s1Ds2bNcPDgQSxfvlyvsImIiDQhStKKKlStiJW0UqIviJmk1beS1ox2B2qeUyskaa3akzaS5JzWlbRq5rJqJa0WtFg4TA4uLkZ6OX78OP7xj3+YHQaRakzSkiGqq6sxZcoU3H777Th48CDat2+Pa665Juy477//Hrm5uQCA+++/X3J7p06dcOuttwIAk7RERGR5dq6k5cJhUqLkINsdsJI22Bi1z4cdk7RazK31wmFy51PzetKyklftWKssHGZ0uwMmaCnQO++8Y3YIRKoxSUuGKCkpweLFi9HQ0IBhw4bhs88+Q58+fcKO27JlCwCgR48e6Ny5s3CfwYMHAwC2bduGc+fOaRc0ERGRxmprayXb7JykZSUtK2lFAo8bjUla0X12ciWtnPGh6NHuQO3CYSJaVtJq1VtWznGsunAYwOQqEZEIk7RkCJfLhcGDB2P+/Pl46623ZK+8ePDgQQBAampq0H26desG4PyJ0uHDhyMPloiISCeiStqEhAQTIlGOSVopVtKK6dlDVe92B6K5rNaTVm0MWiX/Ij2WUe0O1M5ndCWt3OOZtXBYpOP0notI5Fe/+hVuu+02ZGdnmx0KkSL2aIJGtpecnIx58+YpHldUVATgfFuDYDp27Oi9XFxcrDw4IiIigzit3QGTtFw4TISVtPbvSStnPrXHMqrdgV0raZWM0WPhMLX7Ne7LdgdkBY2LlGdnZyM7O9u7rg2R1TFJS7KUlpaivLxc9v5xcXFITk6O+LgVFRUAgMTExKD7+L7hNu5PRERkRXZO0ooqRKM9SStqd8BKWn0XDmOS1pgFpLR6HOTSY261yVSzK2nVLhymxf8Dtjsgp8nJycFnn32GO++80+xQiGRhkpZkmTt3LubMmSN7/+TkZKxduzbi4zae/IU6gfX9mWi0L2BCRETWZuckLStppVhJK6bnwmF6tztwUpLWzIXDtGh3YMTCYXLZsZI2GLULh7HdAdnVxo0bmaQl22BPWrK0xipZ0UltI99FWOxyoktERNHJaUnaaP9ylAuHiTmtklbNc6pnnE5M0hrR7kDuOLtW0or21zIhLIce7Q602Ieim5m/cCFSipW0JMvEiRMxceJEw4/bvHlzAEB1dXXQfaqqqryXW7RooXtMREREajktSctKWi4cJqJnJS3bHZiXpNXrWKLxeojkObFqJa3cY8rdT4setnJp1ROXSVoK56233sLs2bNx1VVX4YMPPkDnzp3NDokoKFbSkqU1Lhh28uTJoPs0Li4G+C8iRkREZDVM0joLK2nF9Kyk1bvdgWiuaEzSyplPLaPaHaiN16qVtEqPa+WFw5hYJaNVV1djzZo1eOGFF8wOhSgkJmnJ0tLS0gAAubm5Qfc5cuQIgPMnj927dzciLCIiIlV8W/Q0skuSlguHSVmtklbrpJxarKS1f5LWqu0OlAgcb/dKWqctHCYHE76ktblz5/I1Q5bGJC1Z2sCBAwEABw8eRElJiXCfzZs3AwAyMzO9PWyJiIisiJW0zsKFw8SM7knLhcPkxWCVJK2c8Uriknu8SI8R6RgzKmmVjgm1P9sdkFMcP37c7BCIgmKSliztiiuuQKdOneDxeDB79mzJ7SdOnMBnn30GALjrrruMDo+IiEgRpyVpuXCY9P6zJ62+lbSiuVhJq71Ik7RazG2lhcPMrqRVO87IHrONc7L6lazu8OHDOH36tNlhEAkxSUuWFhMTgwkTJgAAPvjgA7z99ts4d+4cACArKwv3338/zp07h7S0NNx8881mhkpERBSW05K0rKRlJa1I4HHt3u5ATfxWSNIauXCYkvGR9KSNhJ7JbS0reZWM9T2uVguH2a3dAZFSV199Ndq1a4cnn3zS7FCIJJikJcu79dZbcc899wAAZsyYgV/84he44oorMGrUKOTm5iIpKQnvvfeeqZUrREREcjBJ6yyspBXTs/KT7Q7s3+4gksfYCZW0eo71pfXCYVbpca30dqJg3nzzTXz//fdmh0Hkh0lasoUXXngB77zzDgYPHozmzZujpqYGXbt2xZgxY7B8+XJ06dLF7BCJiIjCYpLWWVhJK6ZnJa3e7Q5Ej1k0JmnlzKflsSJtdyBnTq0WDhOJJC65Y+ywcJiSdgda/b9lkpYiMW/ePLNDIPIj/bRNljR9+nTMnDkTycnJWLt2raKxOTk5WLRoEbZs2YKCggLU19cjKSkJaWlpGD58OG644QbhiZfexo8fj/Hjx8ve//rrr8f111+vY0RERET6snOSVlQhGu1JWlElLZO0xi8cxp608mIwspJW6dxGzanFXHpU0no8Hu+8Vls4LNJxkWAClvS2bds2s0Mg8sMkrQ1kZWVhzpw5qsa+/fbbmDVrluQkKj8/H/n5+fjmm2+QkZGB1157DSkpKVqES0REREHU1tZKttklScuFw6RESVC2O9B34TC2O7BmklbOeC3mjqTdQTRW0mrZ7sAsbHdAesvKykL37t3RqlUrs0MhYrsDq8vPz8e4ceOElTfhvPLKK5gxY4Y3QRsXF4c+ffqgf//+aNu2rXe/7OxsjBkzBseOHdMsbiIiIpIS/T1PSEgwIRLl2O5Aiu0OxPSspNW73YEdkrRGiLRdgRXaHciZT0SLSlqlY9QsAKZ0Xzlj2O6Aos22bduQmZmJtLQ0/PDDD2aHQ8QkrZUdOHAAd999N4qLixWPXb16NT788EPv9WHDhmHDhg1YtmwZFixYgE2bNuHll19GYmIiAKCkpATjx4/nHzkiIiId2bndAZO0Ulw4TMzoSlq9k7Rq4o+2StpIFw6LlJYLh4korWJV04Yg3PGVjnPCwmE8NyWjFBUV4cUXXzQ7DCK2O7CqFStW4MUXX0RVVZXisXV1dZg6dar3+jXXXIM333zT7wNmfHw8Ro8ejeTkZDzyyCOor6/H7t27sXLlSgwfPlyT+xBNnHCSGniiGe0/YSUi0kNNTY1kW2ACyE7vv7W1tY74G6iW6L673W7THpPAhIxZsYiSw1rFIfr/UV9fr9n8oi9SPB6P4vlFySW1cYoqk9XMo+R+iJ7DhoaGoOOD3d9I5hbNWVdXJ5xXtC3w/oqOG7gt2H303S7nuRUl1kONr6ur837BE+z/T7jXvihRHOo9SjSf2+0WJtzr6+tlfelTV1cnu5JWznxutzvsfGZ9GUXOs3r16qj+TGMG5iCkmKS1mKKiIkybNg3Lly9XPceaNWtw/PhxAOerXqZMmRK0AmDIkCEYPXo0FixYAOD86oZM0irjdruxc+dOs8PQXHZ2ttkhEBE5ztGjR4Xb+vTp471u1fffw4cPS7YVFBQ48m+gXKdOnZJs27NnD5o2bWpCNNKex9XV1aY8P4GJzqqqKs3iOHTokGRbYWGhZvMfOXJEsq24uFjx/I2fxX0dPHhQVc/Dc+fO+V2vr6+XFU95ebnfdY/HI/t+iNqg5eTkoHnz5hHHWFZWJtm2a9cuSesX0a8J9+7dKyxiEb0ujh8/7hdDQUGBZJ/c3Fx06dLFez07O1v43OXk5KBNmzYAgNOnT0tuz87O9t4OAGfOnJHs0xhLsNsak7Si95Xs7Gzk5ORItvveR9H/f9Hfk9OnT2Pnzp1B39MDkySVlZXYuXOn8HkLtG/fPpSWlobdr6ysDIWFhWH3O3nyZNh91BQ1EQWzefPmoO9zpD+rfgY2EtsdWMi7776LG2+80S9Bm5KSgrFjxyqaZ9WqVd7LgwcP9vvgITJ69Gjv5d27dyM/P1/R8YiIiEgeUYWAqI2AFYl+xh/tFQ+iCi4t+68qJaqkNYPan+fLYUa7A6v1pFXb7iBSdm93YJeetMHGa31cO7Q7IDLa999/L/xCh8goTNJayNy5c/2+hR41ahSWLl2Kbt26yZ7D4/Fgy5Yt3utXXnll2DHp6eno0KGD9/ratWtlH4+IiIjkE/2Mzs5J2mj/manVFw4zK6lidE9aLV+HeiZpjRZJoljPhcPkPsZGPIZ26UmrRrDj6L1wmJaYGCajTZo0CbfddhveeOMNs0OhKGWPs4Iok5GRgUmTJmHAgAGKxx47dszvp00ZGRmyxqWnp3t/UrRr1y7Fx41mMTEx6Nu3r9lhRKyhocHv5wUZGRmmLn5CROREbdu2lWy75JJL/HrVWvX9t3GxUV8XXHABMjMzTYjGGkQ/Xe/Xr59pz1+zZs38rsfFxZny/AQmeVq2bKlZHKLHNikpSbP5RQv5dezYUfH8GzZskGxLSUlRFWdg+4wmTZrImsf35/eNLr30UllJ806dOkm29ezZM+hxA38eHBsbG3RfUVyZmZmSx75jx46S/dLT09GrVy/JdlELgS5duvjFIFq5PbAYJiMjQ/grxIsvvtg7V7t27SS39+nTx6/oJfC9weVyeccHe14a77/o70Tfvn2Fz5vvfQx8/BITE4XnKG3btkVmZqawrUPXrl0l/8eaN2+OzMxMYdyBevXqhdatW4fdr1WrVkhKSgq7X1JSUthEbZMmTcLOQ6TUggUL8OKLL6JHjx5mh+JoTstB7Nq1K+IvjpmktZABAwZg5MiRuO6661R/g5mXl+d3/aKLLpI1rmvXrt7Lon55FJpdqqCUiI2NdeT9IiIyk6iStmnTpn5JWqu+/4r6rLrdbkvGahTRB/GEhATTqigDT2zMen5ElbRaxSFKorpcLs3mF50cqvk/Kdpfq8dB7v0VvQ7j4uJkJWlF+8THxwc9rqiKW8l9jYuLk+wviiHYcyF63gLnFO0TeIzY2FjhcX3nUhJX4BzBxvvOH+x5E8Xv+1oQtcUI9ToM9loPFruc9zW5+7lcLtWvQyKjZGdno2fPnmaHEVWs+hnYSNF97y1m5syZEc/h22A/JiYG7du3lzXO95tfUZN+IiIiipxo5XhR0smKRCfv0b4KcmCSNtKfCkcqMKFhVjuKwOPavd2Bmvit2pM2knYHevakldvuINi8cu6X3Pmc0pOW7Q6IIiOqNifSG7+achjfn/o0b95c9ofKFi1aCOcgIiIi7dg5SSuqbGCSVr9kpBpWSdLquXCY6DHmwmHaxxBpklapSHvS6r1wmJE9aZW8Tnz3VRq3XguHydnP4/FoNh8TuaSXffv2Yc+ePVHff5+MxSStw/j+XFL0s8RgEhISvJdra2s1jYmIiIjOc1qStqGhwYRIrCPw/pvdR80qSVqjK2m1TNKIHjMmaZXTopJW6bxqqJnPjIXktDymnpW0ZmCSlvQyY8YM9OnTB7/85S9RWlpqdjgUJZikdRjfkz8lH4h9T7yivSqGiIhIL05L0kb7ZwZW0oqJ2kBoxYx2B0zShj9upO0O5MwZaqydKmnlHlNpDErH6JHcVFIhK3c+IrP98MMPeP/9980Og6IEk7QO41vBoeQDq+9Jll1OFomIiOyGSVpnYSWtmGjhMK2w3YExSVq58wW7Telx9KjelDOnmoRxpK8HI9sdaEFpuwO5c7LdAdnJ6tWrzQ6BogSTtA6TmJjovezb+iAc3xYHTZo00TQmIiIiOo9JWmdhJa2Y0ZW0TNJqT8+etHZfOEzO8bWupI3WhcOsekyKPv/973/NDoGiBJO0DtO6dWvv5crKStl/tCoqKryX27Rpo3VYREREBGnf95iYGNMTe3KJqkSjPUkbWElr9nNplSStnpW0ZrQ7UBO/FZK0RrY7UHIcs9odRMKulbRatjswqp+xXnMRRaKyshIff/yxX96ESA/2OCsg2Tp27Oi93NDQILvBdXFxsfdy+/btNY+LiIiIpJW0vgt3Wh0raaUCk4NsdyA+rpbJMru0O9AyTrXj7N6TVmuspA1/LL0r1X3nZAKW7GbUqFFIS0vDnj17zA6FHIxJWofp1q2b3/X8/HxZ4woKCryXe/TooWlMREREdF5gktYurQ4AcQIysJI02rDdgZjRlbRaJntEj5lW7Q7UPh9WqaRVciwl44PdH7MWDgsXi1MqaYNhuwOi4E6cOIHJkyebHQY5GJO0DpOcnOzXrmDv3r2yxu3bt897uVevXlqHRURERLB3ktblckkStdFeScuFw6S0ahcQjGguvdsd2LUnrZELhykRSbsDJdQuHGbVSlqtKU3YW7XdAZO0ZLTPP//c7BDIwZikdaCBAwd6L2/evDns/vv27UNJSYn3+qBBg3SJi4iIKNrZOUkLSFseRHuSlpW0Ukb2Bg11TLWYpA2+n17tDrTodat24TC5rFBJa4eFw+RiuwMiIjEmaR1o6NCh3svr1q1DUVFRyP0XLlzovZyamor09HTdYiMiIopmdk/SspLWHytppUTHtFO7AyZpg++nVZJW7rxGLBxm90paqy0cpnXilZW0ZFX33HMPPvroI77+SHNM0jrQ0KFDkZSUBOD8KtKTJ08OehK1adMmLF261Ht9zJgxhsRIREQUjeyepGUlrT+rV9ICxicw9K6kNaPdgZrnVc9kslGVjkqOq8fCYVrfT7tU0sqZI5L99V44jO0OKBosWLAAd999N/71r3+ZHQo5DJO0DpSQkIAJEyZ4r2/evBkPP/yw3yJi9fX1WLJkCcaPH++tAklLS8OoUaMMj5eIiChaOC1JG+0LhwXef7OTtEatzB4KK2mDj7F7Ja1WjGp3YNdKWicuHCZK4jO5Sk4wceJEs0Mgh4kLvwvZ0e23347t27dj8eLFAM4naocOHYr09HS0aNECOTk5OH36tHf/Nm3aYPr06ZKTLyIiItJObW2t3/WEhASTIlGHlbT+AhOSVmt3AJyP0cjksShJy560wedWExPbHaibN5L5zK6kVdMrVm3v22D7RbronBbJb7X7EOmlrKwMFRUVaNGihdmhkEMwI+dgL730Etq2bYu5c+eirq4Obrcbe/fuleyXmpqK6dOnIyUlxYQoiYiIoofTKmmjPUlrtUpavVsByKFVu4Bg9L6PWiWZ7Z6klTtfsNu0aHeghNE/sQ83xoxKWi3GaPGFipaJVSZpyQ7OnDnDJC1phu0OHMzlcuHJJ5/EihUr8MADDyAtLQ2tWrVCfHw82rdvj6uuugp/+ctfsHz5cvTs2dPscImIiBzP7klaLhzmzy6VtEZiJW3wMXZK0kZaSatkbqMWDpM7X7i5jG4hIHe8VguHGdHuINS+RHbTtWtX3HnnnWEXbCeSg5W0NjBy5EiMHDlS9fjU1FRMmjQJkyZN0jAqIiIiUsruSVpW0vqzw8JhTqukZZLWmklatccJNa+RlcCRUlJJq7YNgdkLh5nx2DORS3axdOlSNG3aFP/+97/NDoVsjpW0RERERAZxWpKWC4f5339W0upfSav3fXRSkjYSSmO1YrsDLRcOi7SSVk0cwY4fbJwVFg4LFoeafbSei0hvH374oeRzHpFSTNISERERGcRpSVpW0rKSNpATK2nVxG+FJK1VFw7To92BnPGRJB+VVr+Guo9mV9KGO04k++vdT1fPeYi0kJuba3YIZHNM0hIREREZhElaZ2ElrZToeHZP0tq1ktbMhcO0mFev9grhxqmtao2ElvFHMkav/19sd0DRoqyszPC/u+QsTNISERERGcDtdkuSekzS2hsraaW0SnIGo/d91Kpdg92TtHo+j5G0b7BLJW2o8WpfT2piMHrhsFDzKt1Hy+MRGWXgwIHo06cPduzYYXYoZFNM0hIREREZQNSnLCEhwYRI1AusFI32JG1g0p1JWlbShhrj5CStkmPJjUGPOeWM06KSNpJWAlq9ntUsHBZqf7XJ10jiYE9asqN9+/bhD3/4g9lhkE0xSUtERERkAFGSlpW09haYkGS7A/0raZmkNSaGSBcOCzVHJD1pg5HzvEXyeFihkjbccbV47cqp2FWD7Q4o2mzcuBHnzp0zOwyyISZpiYiIiAzgxCRtYCVptGG7Aym9K2n1vo92SNJasZI2Eka1O9DqGGZV0pq9cJgcHo+H7Q6I/s/BgwfNDoFsKC78LkT6KC0txS233IKmTZti7dq1IfetqKjAggULsGbNGuTm5qKmpgbt2rXDFVdcgXvvvReZmZkGRU1ERKSOE5O00V5Jy4XDpLTq6RqMGZW0apLMVkjSas3u7Q6isZI23Bg5x1HS7kDunHLnY7sDsrPdu3cjLS0NiYmJZodCNsJKWjJFXV0dnnnmGZw6dSrsvkeOHMGtt96KadOmYdeuXaitrUV8fDwKCwvxxRdf4H/+53/wr3/9y4CoiYiI1GOS1nlYSSulVZIzGLY7sGYlrdntDuSMlzufUyppjRzjy8gqbCIru/vuu9GjRw9s2rTJ7FDIRpikJcNVVVXhiSeewMaNG8PuW19fj3HjxqGgoAAdO3bE7NmzsWPHDvz0009YvXo1rrnmGrjdbkydOhXr16/XP3giIiKVnJCk5cJh/qxWSat3AlMOvStp9U5EaxW/ns+F3ZO0SuaVO6fe/X7DVcJaoZJW6ZhIEsmR7KPHfkRWVVRUhAkTJpgdBtkIk7RkqP3792PUqFH4+uuvZe3/1Vdf4dChQ3C5XJg+fTp+9atfITY2Fi6XCz169MA777yDfv36AQBmzJihZ+hEREQRcUKSlpW0/lhJK8VK2uBj7F5JqxWj2h3oVUmrxxxaVNJqtXCYnHmVzql2XrY7ICf48ccfUVVVZXYYZBNM0pIhqqurMWXKFNx+++04ePAg2rdvj2uuuSbsuA0bNgAALr/8cm8y1ldsbCzuuOMOAEB2djbf/IiIyLJqa2sl2+yepHW73VF9ghxYScskrTN70jJJG/64erQ7iJSWbQm0rKQ1ito+unq0O9BTNP8NIvs4cuSI2SGQTTBJS4YoKSnB4sWL0dDQgGHDhuGzzz5Dnz59wo675JJLMGzYMPz6178Ouk+HDh0AnP8DXVFRoVXIREREmhJV0iYkJJgQiXqBSVpAmqiMJoEJSbPbHVghSat3Ja3e95FJWmXzaXEsJT1pjVg4TO9KWicvHCb3/48VKrqJjPTll1+iuLjY7DDIBqSftIl04HK5MHjwYIwbNw6/+MUvZI+79957ce+994bcZ9u2bQCAJk2aoG3bthHFSUREpBcntjsAzrc8EG2PBqyklWIlbfAxRidpI6FFJa2SueXOqeQxVPs4hbvvelTS6rFwWLA2A3LGaY3tDijaTZgwAX/605+wbNkyXHfddWaHQxbGSloyRHJyMubNm6coQSvH6dOnsXjxYgDAVVddFbUniUREZH1OSNKKKkWjtS+tx+ORJAdYSat/Ja3cY2o5l5r4rZCkNbLdgdw5RNu1SApqWUmrBTMqaeVSu3CY0vmNwiQt2UV5eTleeOEFs8Mgi2NGi2QpLS1FeXm57P3j4uKQnJysY0TnTwqffvpplJWVISYmBo8++qiuxyMiIoqEE5K0wSppo5EZychwrJCkFR1P68clJibG7zhsd6B9DEpjtWK7Ay0XDrNDJa3eC4ex3QFR5L777jt4PB5T+lSTPTBJS7LMnTsXc+bMkb1/cnIy1q5dq1s8DQ0NmDRpEr799lsAwGOPPYaMjAzdjkdERBQppyZpo7Unreh+s5JWuyRnKIHzaZnI0apdgxOTtHotHKZkTiX0WjhMDitU0pq1cJjcOdnugKJVeXk5WrdubXYYZFFsd0C2U1NTg9///vdYuXIlAGDEiBF47LHHTI6KiIgoNKcmaaO1ktaIilGlrJCkNeJx0TNJy0paZfMpjUkUgxb9bNW2O1Azl50qaZXup0UlLdsdEIX23Xffoba21uwwyKJYSUuyTJw4ERMnTjQ7DJw+fRrjxo3D9u3bAQC33nor/va3v/HnAkREZHmiD+RM0toXK2nF9F44DJDeT7Y70D4GPXvSyp3XiIXD7F5Jq/UYPbDdAZG/m266Cenp6Vi+fDl69epldjhkMaykJdvIy8vD6NGjvQna3/72t5g6darpJ0RERERyiCppExISTIhEPSZpf8ZKWjEjevWyktZ6SdpI2h0oSdIGEw2VtOHGKR3DdgdE5tm/fz+mTp1qdhhkQaykJVvIzs7GQw89hNLSUrhcLjz99NN48MEHzQ6LiIhINie0OxB9MRqtSVpRJS2TtMZU0gbOp3clrZrnVc8krRGs0JNWyVi1yXW7VNLKGRcq6RrJ/WS7AyJ9bNy40ewQyIKYpCXLO3jwIB588EGUlZUhPj4er776Kn7zm9+YHRYREZEiTkjSspL2Z6LEoNm/7rFCktaIStrA+axYSSu6z3avpNWLUe0O5M5ndiWtEnZYOEzr3shETnH48GGzQyALYrsDsrRz587h8ccfR1lZGRISEjBz5kwmaImIyJacmqQVVZRGA7Y7EDOjklbLhI9W8bPdQeTtDpTQO+lnZCWtmQuH6UXPdgdEdrZx40ZUVVWZHQZZCJO0ZGmzZs1CXl4eAOC5557D1VdfbW5AREREKjk1SRutlbRcOEzMjJ60dlk4TG2cZiRp5c6n5lha/PRezXi7VtKGGitnnJLXr9XaHTCRS073q1/9Cv369cOxY8fMDoUsgu0OyLJqa2vx0Ucfea/PmDEDM2bMCDnm448/RufOnfUOjYiISDEmaZ3FipW0VvhZsRGVtHZod8BKWn0WDosk8RvJ61DLSlq1Y7WupHVKuwMmacnu9u/fjzlz5uBPf/qT2aGQBTBJS5Z14MABnD171nu9pKQk7Jho/cklERFZnxOStFw47GespBUzo5LW6UlaOXNrHYNWj4McerU7ULtwmN6VtErvb6SPj5GVtGrmDYUJWIoW3333ndkhkEUwSWsT06dPx8yZM5GcnIy1a9cqGpuTk4NFixZhy5YtKCgoQH19PZKSkpCWlobhw4fjhhtuEFbG6G38+PEYP3580NszMjKwf/9+AyMiIiLST21trWSb3ZK0rKT9mRUraa2QpDXicTG63YGa+K1QSRsJpbHatd2B2rnCUfr4+e6vZGwkvW+1Hgew3QGRWl999ZXZIZBFMElrA1lZWZgzZ46qsW+//TZmzZolOYHKz89Hfn4+vvnmG2RkZOC1115DSkqKFuESERGRgKiSNiEhwYRI1OPCYT8T3W8maY2pwGS7A+tV0hrV7iAYrR5bOXOZVUlrVLsDrbHdAZE8y5Ytw29+8xvbfTYkbXHhMIvLz8/HuHHjhCd24bzyyiuYMWOGN0EbFxeHPn36oH///mjbtq13v+zsbIwZM4bNqomIiHTkhHYHrKT9mSj5yXYH5lTSapmk0aqnrt2TtHLnUxpTpGPNWjjMzpW0Ri8cpnReNfMROdH/+3//D3fffTdf91GOSVoLO3DgAO6++24UFxcrHrt69Wp8+OGH3uvDhg3Dhg0bsGzZMixYsACbNm3Cyy+/jMTERADn+72OHz+ebwhEREQ6YZLWWVhJK2bEwmFGtzuIxiStnolKPdodGHkOo3UbBq3GWWXhMLY7IFLv448/xubNm80Og0zEJK1FrVixAnfeeSeKiooUj62rq8PUqVO916+55hq8+eabaN++vXdbfHw8Ro8ejRkzZnhPuHbv3o2VK1dGHjwRERFJOCFJy4XDfsZKWjEjFg5juwPrJWmt2O7AzEpapePV9pY1opJWzrGUzsl2B0TBzZ8/3+wQyETsSWsxRUVFmDZtGpYvX656jjVr1uD48eMAzle8TJkyJeiH4yFDhmD06NFYsGABAGDevHkYPny46mNHKyecoAZWBEVrj0EiIr3U1NRItrlcLlu9/4pOtmtqahzxd1Ap0UJwgLmfCUTJirq6OkNjEn0Z4Xa7NY1BVEmr1fyiedTML/p/3NDQoGucgSJ5PYjir6+vDzpWybFESVrRfkpikPN4i76wCNzW0NAg3M93Ljn3VTRHqPG+9yvYWNF9DPXa9Hg8QR//YPOJtjXuLycZWldXJ6ua3uPxyPoCyegvmYisIlo+V9npM7BRmKS1kHfffRezZ8/GuXPnvNtSUlIwdOhQzJo1S/Y8q1at8l4ePHgwunTpEnJ/3yTt7t27kZ+fjwsvvFBh9NHL7XZj586dZoehuezsbLNDICJylMLCQsm2gwcP4syZM37brPz+e+LECcm2Q4cOOfLvYDiHDh2SbCspKTH1sWj8kt7XoUOH0KlTJ8NiOHjwoGRbYWGhpo9L4MlrZWWlZvPn5+dLtuXl5SmePycnR7Lt+PHjiucRJcbKy8tlzXPy5EnJtv3798tKfJWWlkq2ZWdno3nz5rL33717t986GI18z3WA8194iO6PaL2MnJwc4b5HjhwRbvPd9/Dhw2GPkZ2dLXzc9u7di7NnzwKA8JeOBw4c8LteVVXld72urs4bS0lJiWT87t27cerUKQDnn99AO3fuRF5enmT7yZMnvfMGPq9nz57Fzp07Ja+hxteP6DHLy8uTfKFYXV2NnTt3eu9/KIcOHUJFRYXfNo/HI0m8VFRUyGrpd/r06bD7MKlDTrNw4UIMGTIEvXr1MjsUw1n5M7BR2O7AQubOnev3oWXUqFFYunQpunXrJnsOj8eDLVu2eK9feeWVYcekp6ejQ4cO3utr166VfTwiIiKSR1QVIerxamWin/NH6wmyET/rV0p0fKN/CqzHT8UDRVO7AyMeT7n0WjxLr/sjp92B2rkCBd5Xte0LlLLawmFmsGpcRGqdOXMGv/3tb/Hxxx+bHQqZgElaC8rIyMCHH36IV155BS1atFA09tixY37fvmZkZMgal56e7r28a9cuRcckIiKi8JzakzZak7RWXDhMlGCxQk9avRcOY5JW+xj07Ekrd16zktF60CJBrPXCYeGOp4bH49H0PYAJWIpWbrcb77zzjvCzIzmbvco3HG7AgAEYOXIkrrvuOtV/yAJ/BnPRRRfJGte1a1fv5aNHj6o6drSKiYlB3759zQ4jYg0NDX4/L8jIyDB9ARQiIidp2bKlZFu/fv3QtGlT27z/in7in5ycjMzMTBOiMZeoMrpLly6mPhY7duyQbOvWrZuhMYl+wty1a1dNY0hISPC73qRJE83mF62qnZqaqnh+UQ/qTp06KZ5H9Dpr06aNrHlEbS569uwpa2ybNm0k2y699FI0a9ZMuH+7du0k2y655BJhDE2aNJFcF8W0detWybbu3bsL9xW99nv06OG3r6hNQWBbuIyMDL/Flhtdcskl6N69OwCgc+fOktsDH9emTZv63Z6QkOC93fcXjI169+7tPW8LLNJxuVzIzMxEYmKiZFyHDh288waeP7Zq1QqZmZmSL49atmyJzMxMYduIHj16SGJv2rQpMjMzhX/DAl188cWS+GNjYyV/05o3by58zQQSvQ4Dmf3lGJFezp49i4SEBFx66aVmh6Ibp+Ugdu3aFfGX40zSWsjMmTMjnsP3g3FMTIzwQ4aI74cFOf2ByJ/dfq4qR2xsrCPvFxGRWUTJlsTERMkJppXffwOTY8D5Sierxqsn0RfqcXFxpj4Wospsl8tlaEyihEl8fLymMYiOodX8weZWOr9Wz0WwqkQ584hOdCN5fwn1OET6uIn2UxK/nH3lnPjHxsaG/b8t576KWi2EGu8ba7CxotdUTEyMd5xoQTbRY9W4PdhjFkjJe3xcXJzsYiM5yVU5c7Halpzso48+Qvfu3XHBBReYHYohrPwZ2Cj82slhfBcfad68uexvFn2/8QxcwISIiIgi54R2B6IPztGyAnEgUaWE2dUfos99Rrc7EB1P60o3tjuI3nYHweaUE69WMcqZJ5LXpJKxkbymgo21UrsDucckcqrXX38dffr0QW5urtmhkEGYpHUY359WBf5UJRTfypja2lpNYyIiIiJpkjZYxZaViZK00dqT1ohkpFLR2pNWy/vIJK2y+dQcS1TxqfR4clipD2q4JK/SOZTsb/bCYcGOL2c+JmCJgMLCQsyePdvsMMggTNI6jO8JoJITBd+TrmitiCEiItJTYJLWblW0ACtpfYmS01aspDU6yWFE8jpwPr0radXEb4UkbST0rKTVo8pUzpxWrqQNtb/c51tplbQe7w1aLV6mZD8mcikavPrqq2aHQAZhktZhfE8OlFQV+J5g2fGkkYiIyOqYpHUWK1bSWrXdgd6VtE5udyB3bq1jMDI5bGa7A7lzRUpJJa1W7Q7UVNKq2V9OTGx3QEQkD5O0DuO76qdoVdlgfFscBK64SkRERJELbCdkxyStqFI0WpO0dqmktUK7A7170mp5H7VKMluhklbrJK1WxzKq3YEcdqqk1TK5G+5YonnZ7oCISH9M0jpM69atvZcrKytl/2GrqKjwXm7Tpo3WYREREUW9wEpa337wdsFK2p+xklbMiEpao9sdMEkb/rhWbHfAStrQyVG9Fg4zej8mcila3Hbbbdi+fbvZYZDOmKR1mI4dO3ovNzQ0oLS0VNa44uJi7+X27dtrHhcREVG0c2q7g2hdOEx0v5mkNaeSlklafWOQc1wlj1EklbRK4pcTk2i+cI+5VStpw43Xet9gzOqjTOR0K1aswE033YTy8nKzQyEdMUnrMN26dfO7np+fL2tcQUGB93KPHj00jYmIiIicm6RlJe3P2O7AnEpaLe8jk7SRH1fpsbRod6B24TCjGFFJq1crC6u3O2AlLUWToqIiLFu2zOwwSEdM0jpMcnKyX7uCvXv3yhq3b98+7+VevXppHRYREVHUY5LWWVhJK+bESlo18UdbktYO7Q7kjrNqJa1S4SpwndLugCjarFmzxuwQSEdM0jrQwIEDvZc3b94cdv99+/ahpKTEe33QoEG6xEVERBTNmKR1FlbSihlRSct2B9ZZUKuRUQuHad2uIdJqXzXHVltJa5eFw4x+zTKRS9Fm9+7dfu0qyVmYpHWgoUOHei+vW7cORUVFIfdfuHCh93JqairS09N1i42IiChaOSFJK0pCMkn7M1bSGlNJq2e7A62SzFZI0ppdSSuXUX1QtVo4zOhKWrXjrLJwGNsdEGlr586dSE1Nxfr1680OhXTAJK0DDR06FElJSQCA2tpaTJ48OegJ1KZNm7B06VLv9TFjxhgSIxERUbRxQpKWlbQ/E7U7YCWtMclrVtJab+EwkUjbHZi1cJjaueSOVzqX3RYOk4PtDogic/bsWUyePNnsMEgHTNI6UEJCAiZMmOC9vnnzZjz88MN+i4jV19djyZIlGD9+vPckIy0tDaNGjTI8XiIiomhQW1vrdz0hIcGkSNQTJWlFycpowEpaMSN+6swkrTmVtFodK5J2B8FouXCY2ZW0ahcO02sM2x0QWdOWLVtQWVlpdhikMeknbXKE22+/Hdu3b8fixYsBnE/UDh06FOnp6WjRogVycnJw+vRp7/5t2rTB9OnThSdfREREFDlW0joLK2nFjEhe69nugEla8X7hjmlUv1cjFg4TibQfrBmVtFZZOIztDoj0c+bMGTRv3tzsMEhDrKR1sJdeegljx471ngS63W7s3bsXW7du9UvQpqamYv78+UhJSTErVCIiIsdjktZZWEkrxoXDgo8xoupRqxj0THxZaeEwETWVtErn0Gqs0irXcPTqD6xmHyX7EUWruXPn4ujRo2aHQRpiktbBXC4XnnzySaxYsQIPPPAA0tLS0KpVK8THx6N9+/a46qqr8Je//AXLly9Hz549zQ6XiIjI0ZyQpOXCYT8TVdIySWvMwmFGJ2nVxG+FStpI6FlJa1SFrZaPk5aVtErHa92LVm37AiP7GSvBRC5FsylTpqBfv37Ys2eP2aGQRvjbdhsYOXIkRo4cqXp8amoqJk2ahEmTJmkYFREREcnldrslyTI7JmlZSfszUfLT7HYHWlceqmFEJa0d2h2IErtsdyB/rNy4lMwrN0a9K2nVJmxDjdMqyetyuSzV7oCIwjt9+jQ++OADTJ061exQSAOspCUiIiLSWWAVLeCcJC0XDvsZK2ntX0mrVZLZCpW0Wibt9ayk1aLdgd4JP6tW0tpl4TC1MbAnLZE8f//7380OgTTCJC0RERGRzpycpI3WSlouHCbGnrTBx2j1XFixklYJs9odOLmSNtT+Ri4cFmw+tXMyAUtE0YZJWiIiIiKd1dbWSrYxSWtvrKQVM6KS1g7tDuxeSeuEdgeRHEfp2EiTiWrHW23hMDWLnkWKiVwiY5WWluKuu+5CSkoK7rrrLpSWlsoaV1VVhUceeQQulwvx8fE4cuSIzpHaE5O0RERERDoTVdImJCSYEElkuHDYz1hJK8ZK2uBj7Jyk1fJYRrU7UFvxqkclre8YrStiw40LFpteC4cZ3e6AiM7761//Kvy8qbU//elPWLRoEXJzc7Fo0SL86U9/kjVuxowZmD17NoDznx27d++uX5A2xiQtERERkc6c0u7A5XJJEoHRmqRlJa2Y3XvSahW/FZK0cueTs5+aStpIY4iUnHYHImoecy0radVUo2q1cJia/UXxBM7HdgdE+nv++ecxYcIE3Y/z1ltvhbzuy+PxwO12w+Px4JlnnpHcPm7cOP4/D8AkLREREZHOnJKkBaQtD6J14TDR/WaS1pjkNdsdqK+kVUvNXGZX0sqhZlykrwejkqZKe9FGciw1mJgh0t6MGTMAAOfOnUNubi4qKytNiyU3NxcDBgxAbGwsBg0aJNxnzpw52LZtm8GRWRuTtEREREQ6c3KSlpW0P2O7A+0rP0X0rKTVql2DVZO0dupJq3W7AyMraZU+13IqaY1M1or2Y7sDInvYsWMH+vbti5SUFFxyySXYsWOHcD+Px4OGhgbd/p+9/PLL+PHHHwEAP/zwQ9D9/vrXv+pyfLtikpaIiIhIZ0zSOg/bHYgZ8biwJ629k7RWSrypSSRbqZJWj4XD2O6AyN6effZZHD58GABw9OhRYRI0Ly8PAwcORFxcHH7xi18gNzc3omOWl5d7/7/u2LEDX331Fd5//31ZY48ePRrRsZ2GSVoyTWlpKQYPHoxrr71W1fgFCxYgPT1d9XgiIiKjMEnrPFw4TMyISlq2O7DHwmFy5zazklbNwmFyjm+FStpIK2gD99c6YcoELJE+Vq9e7Xd96dKlkn3+/Oc/Y+vWrQCAbdu24c9//nPYedesWYOnn35aeFvr1q3xP//zP5gyZQr69euHYcOGqYicACAu/C5E2qurq8MzzzyDU6dOITk5WfH4nJwc/P3vf9chMiIiIu05KUkbmIiM1iQtK2nFWEkbfIydk7Ra9qQNpCRJq4RePXntVkmrNFkb6ePGdgdE1tbQ0IB//etfftvmzZsn2eZr0aJFuOuuu0LOu2TJEk3ii3aspCXDVVVV4YknnsDGjRtVja+trcXEiRNRXV2tcWRERET6qK2tlWxLSEgwIZLIsZL2PFbSimnV0zUUJmn1T9IqPaZR7Q4imdMulbTBGFFJq0eClu0OiMz3/vvv4+TJkygrK8O3334re1xubi5uuummsAla0g4raclQ+/fvx1NPPYWDBw+qnuONN97Anj170LRpUyZqiYjIFpxUSRuYpBUlK6MBK2nFREkVrR8Xo9sdqInfCknaSBjZk9ZqC4eFi0WrpH0wSl4nkSR39Vo4TC4mYImMc///Z+/Ow6Mqz/6BfyckEwKBJBDCEhYhkrAEUy0CRWxFFKgWqvhS6oJalF8VGwWLQqti9aVVtFURRBQpWkRFlIKvr8UN61IUqyKQEPYtYQkEwpqEbPP7I2+mszxn5uzr93NdXs6cOc8yZ4bJOffccz+/+hWApgQBUeKAlPHjx+Pbb781alokwExaMkVNTQ1mzZqFa6+9Fjt27EBmZiaGDx+uuJ8vv/wSS5YsQdeuXfltDhEROYabg7TMpP0PZtIykzZWGydl0upR7kAuo8odyGFFJq2e5Q7kjKd0LJY7IHIvJQHavXv3MkBrAQZpyRQVFRVYvnw5GhoaMGrUKLzzzjvo37+/oj5OnjyJmTNnwufzYc6cOWjdurVBsyUiItIXg7TuY8dMWlFwxY2ZtEYGafUKMhsZpDVjDnosHGZ1uQMnZdI6YeEwtfuy3AGRs9TW1uK+++5Dz549rZ6KJ7HcAZnC5/Nh6NChmDJlCi6++GJVfcyaNQuHDx/G5MmTMXDgQHz55Zc6z5KIiMgYbgrScuGwJqJMWquDtKLxzQ5ymJFJa3a5A7sFae2YSWt1uQO57eX056RMWiMWDos3ll4YgCWyp7fffht//vOfrZ6GZzFIS6bIzs7GkiVLVLdfuXIl1qxZg759++Luu+/WcWZERETGc1OQlpm0TUSBQZY7cH4mLYO08vvSayw9gvh6LhwWr62bM2m1ljsIBAIsd0DkUEeOHEFWVhZuuOEGq6fiaQzSkiyVlZU4deqU7P0TExORnZ2ty9ilpaWYPXs2/H4/nnzySceuhk1ERN7l5iAtFw77Dztm0tqhJi2DtNJ9Gzkfu9aktWrhMLmYSat8jFhY7oDIGXJzc7FixQqrp+F5DNKSLIsXL8aiRYtk75+dnY21a9dqHrehoQH33Xcfzp49i9/97nfo3bu35j6JiIjMJlqowS1BWq9m0nLhMDE9g2VSzC53oCbIrGcWq5y+5bJjuQM9+jS6Pydm0qqhx8JhcjEAS2QvJ0+exOzZs62ehudx4TCyteeffx4bNmzAkCFDcMstt1g9HSIiIlVEmbRO/WUIg7RNmEkrZkUmLaBfwMftmbRaxlU6ltXlDtQuHObETFol7YwMjrLcAZGzffbZZ1ZPwfOYSUuyTJ8+HdOnTzd1zO+//x7PP/882rZti8cff9y0b3WJiIj05qZyB1w4rAkzacXMyKSVCgjqMY5eC5/ZNUhrZiat1r7ttHCYmZm0arDcARGROzBIS7a1fPly1NfXo6amBv/1X/8V9XhVVRUA4NChQ7jkkksAAA888ACuuuoqU+dJREQUj5uCtMykbcJMWjEzjouoP2bSGjcHJWPKGcuIDFu1C4fpRc9MWicvHBavfzX7EZH7NTY2Wn4OZRc8CmRbzX+4a2trUVFREfVfc5C2sbExuK2mpsbKKRMREQkxSOs+okxaqy8w7BqkNSuTVg8M0or307MmrZy2cueltV8nZNI6aeEwvQO0DOQSecMf//hHq6dgG8ykJdt6/PHH8fjjj0s+Pm/ePMyfP1+3RcqIiIiM4uYgrShY6QWiYCTLHei38FYsoqCTXs+TQVrxfkYuHKZHuQOjM2mVBlntnElrVLtY/bHcARHFsnr1atx7771WT8MWmElLREREZDA3B2m9mknLcgdiZmTSml3uQM3r6rYgrZqxtPattU89M2nVzktuG62ZtErouaiZ0v5D92EAlohC7dixw+op2AKDtEREREQGc3OQtqGhwZMX21w4TMyqTFqWO9CX0kxaOX3o0beWcgdGlmRQkkkbj5pMWjuXO+Diz0Qkx9/+9jerp2ALDNISERERGay2tjZqm1ODtKJApBdLHjCTVsyqmrR6PU+95m+HIK1dyx3Iaau0Tz2/KDI6k9bqsgVGLxymZC7xePELQCKv2rx5s9VTsAUGaYmIiIgMJsqk9fv9FsxEu8hMWsCbJQ+YSStmRiat2eUOvBikVTqmEQFVrcFCJ2XShu6vpK2WhcOMILeMgZL9iIi8RLeFw6qrq/Haa6/hs88+w5EjR5CamoqCggJMmDABvXv3jtm2qqoKF110ERISErBlyxa9puQqc+fOxYIFC1QtkrVr1y688cYbWL9+PcrKylBfX4+srCzk5uZizJgxuPLKK4UXXEYrLCxEYWGhZe2JiIjM4uZyBwAzaZsxk9ac48JyB/bLpFXCiHIHei4cZtdMWr0zcI0od6BmHkREAL+UaaZLZG7fvn247bbbcODAAQBNB9fn86GoqAivvfYabrjhBtx///1xM0bUviilpaUoKSnBmTNnkJ6eji5duqBPnz6q+rKjTZs2YdGiRarazps3DwsXLozKcCktLUVpaSk+/vhj5Ofn48knn0SvXr30mC4RERFFcHuQlpm0TazOpDUyeCmXGTUpjSx34IQgrRlz0GPhMKvLHahdOEzuXGL1oyWTVk07Ndm3Iix3QERW4b/3JpqDtOfOncOdd96JsrIyAEB6ejrOO+88VFRUoKysDIFAAMuWLcM333yDF154AR07dtQ86WZ79+7FQw89hG+++SbqsYyMDIwYMQKTJ09G9+7ddRvTbKWlpZgyZYrw4i6e2bNnY+nSpcH7iYmJyMvLQ0pKCnbt2oXKykoAQFFRESZOnIg333wT2dnZus2diIiImjBI6z7MpBUz47iw3IH9Mmmtqh8bi5xyByJWZ9KqWThM7thyxpHaT+8yBix3QEQUTfMZ09tvv43du3cjISEBv/3tb/Gvf/0Lb7zxBj766COsXLkSQ4YMQSAQwLZt23D99ddj7969OkwbOHDgAK6//np88803wQ/50P+OHz+Ot956C1dddRUef/xxR148bN++HTfeeCOOHj2quO2aNWvCArSjRo3Cp59+ipUrV2LZsmX4/PPP8eijjyIlJQUAUFFRgcLCQv4hJCIiMoCbgrSibFEnnmdpJcqkZZDWukxaI4O0al5XvQLJeh9POwZprVw4zAmZtLHGVtPO7ExaljsgIjkYi2qiOZP2gw8+gM/nwy9/+UtMnjw57LF+/frh5ZdfxksvvYSnn34aBw8exE033YSXXnpJczmCefPmBTNBx4wZg5tvvhk9e/aEz+dDaWkpvvzyS6xcuRI7duzAK6+8gu+//x4vvvgi2rZtq2lcs6xevRoPP/wwqqurFbetq6vDnDlzgveHDx+OZ555JuxkMSkpCRMmTEB2djZ+/etfo76+HsXFxXj33XcxZswYXZ6Dl7jh4jTyYtOL9QWJiIxSW1sbtc3n86G+vt5xn7+i4FNNTY0r/hYqIXqdAoGApcdBdIHT0NBg6pxEYzU2Nuo6B9HzrK2t1WUM0euq5hiKguNqjoPoCx657zPRHOQ+F1EgNVY70Vj19fWyn6/U+yaS1Pzl7Cv12kbel3ouzZ99ao5r6Gsmev+GHiup8UXzb35Pid4nzY9FBkmb5yJ1PKTmJyeAItVeNAc5XyCZ/SUTEVnL7ufAZtAcpN22bRsAYMKECZL73H777cjLy8PUqVNRUVGBm2++GS+88AIuvPBC1eN+8cUX8Pl8mDRpEu67776wx/r06YM+ffrgV7/6Ff7nf/4Hs2fPxsaNG/Gb3/wGf/vb31SPaYby8nI89dRTWLVqleo+PvzwQxw8eBBA008SZ82aJZkBMGzYMEyYMAHLli0DACxZsoRBWoUaGxuxceNGq6ehu6KiIqunQETkGkeOHInaVlJSIsymtfvn74kTJ6K2FRUVoaKiwvzJWKg5WSDU5s2bLc8a8/l8YUGSyspKU89TpN7rouOllug9uHnzZqSnp2vu+/jx41HbioqK0KpVK0X9iAJVJ06cUPxa7NixI2pbeXm5rH72798ftW3fvn2y2lZVVYXdr6uri9nu0KFDUdt27tyJNm3aRG2PvAg/e/assO9du3ZFbSsrKxPuKxp/x44dYeVZRP1Ffm4VFRVJvr+a+2ou8xdq9+7dYfOKDJpWV1cHHxfNdfv27cH1WyKTdJqP/enTp6PaNf/7PnPmTNRjze83qbk0Xy+G2rlzJ86ePSscP/I9IbJ79+6o/Wpra6OCrdXV1bI+EyLnQkTuFQgEbH8ObAbNv8lq/mPRpUuXmPtdeumleOWVV9CuXTucOnUKkyZNwr/+9S/V4546dQoA8Mtf/jLmfmPGjMGrr76KVq1a4d///jf+53/+R/WYRnv++ecxevTosABtr169cMcddyjq57333gveHjp0aNzXJjTAXlxcjNLSUkXjERERUWyiDCtRbVcnYLmDJpGBJqMW3FEq8ot5O/x8UO8yEEYeZ9akld+X2rG0lBjQsnCY3P6MqEmrpL2aRcDsvHCYHT4Xicj+mDnfRPMZU3NN05MnT8bdNz8/H8uWLUOXLl1QXV2NO++8Ex988IGqcTt16gQAaN26ddx9e/fujbvuuguBQAArV65UNZ4ZFi9eHPbN4/jx47FixQr06NFDdh+BQADr168P3r/kkkvitsnLy0OHDh2C99euXSt7PCIiIoovMojZokULx164ioK0Xvx5WmSgw+p6tM0i31d2WDjMjKCPXs/TyJq6auaod5BdbU1aK1gVLNQrmK5m7FhtlfYRr50dXuN4nDBHItIH/7030ZzC0a1bN5SUlGDz5s3o2rVr3P179uyJZcuW4Ve/+hX27t2LadOmYcaMGYrHveyyy7B06VJs2bIFw4YNi7v/qFGj8MQTT2DLli2KxzJbfn4+ZsyYgUGDBilue+DAgWCWcXNfcuTl5QUXKNu8ebPicb0sISEBAwYMsHoamjU0NIT9vCA/P194IU5ERMo1f6ndzO/3o6CgAIDzPn87d+4cte38889Hv379LJiNdSITBVq0aBF8Ta3UokWLsC8FUlNTTZ1Xu3btorbl5+cHEyz0kJmZGbWtX79+6Nixo+a+RSUTLrjggqh/w3JElp5o27at4tfi3LlzUdu6dOkiqx/Rz/u7desmq21ycnLU/VjtREkeOTk5wjaRQUOp43Ls2LGobVLPXfTa5+bmhu3bXE4gVOR7KT8/X/geKCgoCP764Ztvvol6vGfPnmFjRX6Gt2rVKvi46FeO559/fvDxli1bhj3W/PdClBSVnp6OgoICYYmGjIwMFBQURJXVadmyJQoKCvDxxx8L5yH12RY5L5HzzjtPOP/IX460bNkSGRkZcftT8++OiJypoaHB9ufA8WzevFnzl8aag7QDBgzAli1bsHbtWvz0pz+V1aZz58547bXXcNttt6GkpASPPfZYzP2PHz8edcJ3yy234K233sKLL74oK0iblpYGQLxwh10MGjQI48aNw4gRI1R/27p3796w+927d5fVLjTALqpfRbE59SersbRo0cKVz4uIyAqRmbRJSUmSn7F2//wVBToAd/4tjEWUSWuHYyAqd2D1vGK939UQXcAZ+e9GFGSSIzJICyj/d6LluYr2kfs+FZUKiNVOyViiRclE+ynpU5TJHvm+E9UAj3yeUsGBpKSk4GNqjmvo46K5hr6mouvAxMRE4fyb+xXNu/kxqddSNI9Y2+Vcn4p+JaKlhIJTf3FCRMo1Njba/hzYDJp/l3XppZcCAD744ANhoX0p7dq1w9KlSzFw4MC4ac2XXHIJLr/8chQWFmLhwoX4/PPPkZKSgsceewzfffcdZs2aFfdnds0ZKjk5ObLnaLYFCxbgiiuu0PTHqDkbFmj6wyzKNBAJLXcQ2gcRERFpF7lwi+hi2ylEJ8+sSWufcgeR8zC73IHovN6MmrR2LHcgWtHeyvloGVfPmrRy2soZU81YatspPeZ6/mw31tjx6svGorT0hZz9rSrPQUTOx5q0TTSHqC+99FK0atUKVVVVWLBgAR588EHZbVNTU/HXv/4V99xzDz755BPJ/QKBAA4ePIiDBw/io48+Cm7v3LkzMjIysGLFCmzYsAHTpk3D8OHDo/4gVVRUYPbs2fD5fLjpppuUP0kHCf0ZTOvWrWWfFKempgr7ICIiIu3cHqT1Yk3ayIsJu/w8z+ogrWg8vYO0ov70CuboWVPX6iCtlsCpHkFavfqO1TbWdjkLhykZI1Y/StqoDZ6qDdYq2VePhcP0DOYySEvkHV48lxTRHKRNTk7Gd999p7q93+/Hc889h0OHDknu89e//hXFxcUoKSlBcXEx9u/fHwzcNtu5cyfuuusutGvXDj/84Q/RvXt3JCYmorS0FGvXrkVtbS3uuOMOXHPNNarn6gShdavk1A1qFvrTRTuXhCAiInIitwdpvZhJGxnMYyZtEzMyP7UEH+NxUyatnkFaNZQEVEW0vs5yjpNdMmm1ZMTGa2f1wmFSgV8GYImIotmi2ENCQgKys7MlHx86dCiGDh0avH/27FmUlJRgy5YtwcDt7t27UV9fj2PHjuGDDz4I+0MQCATQtWtX1NTU4K233sJ//dd/Gfp8rBR6EajkYiH0gsuLF1pERERGivwClEFa54vM+GAmrfR4LHcg3beR87E6k9aoAKiInLHkztGumbRa91XbhuUOiIjMY4sgrVKtW7fGwIEDMXDgwOC22tpabNu2DVu2bAn+t3379mBmaVlZGV5++WX4fD5XB2lDLxCUnKyGXlw5+cKRiIjIjiIzaaUW33ICUTDSi0FaZtKKmZFJa2S5AwZp5feldiy5AWAzMmmN6suITFqjatNG7muncgdERF7jyCCtiN/vx4ABAzBgwIDgtoaGBuzatSsYtC0uLsa2bdssnKXxUlJSgrdDSx/EE5rhk5ycrOuciIiIvI7lDtzHrpm0kQEWr2TSMkgbf3wlc9BSN1Zp31K0BH619OeWTFq9Fw5TS0u5AwZzichrLAnS3njjjcjLy8OFF16IMWPGGDZOixYtkJubi9zcXNfXom2WlpYWvH327FkEAgFZJ1VnzpwJ3k5PTzdiakRERJ7l9iCtFxd7cEomrdlBDj0X3pLCcgfqj6cdyh0YEQDWc+EwPdgpk1bpWFpq2AYCAV0/cxikJSKvseRs8ttvv8Xrr7+O+fPnWzG8q3Xs2DF4u6GhAZWVlbLaHT16NHg7MzNT93kRERF5mduDtMyktU8mrR3LHegdwDay3EHk8dIS2DMqSKt2fCPHNaImrRmLTXkhk9bM4LRcDL4SEYnZ4yt/0k2PHj3C7peWlspqV1ZWFrzds2dPXedERETkdQzSuo9TMmntUO7AjExao8od2DFIa8dyB3qXJpAzZrw+9cqkVdNOz0xaOfNQE9hV+l5QW56A5Q6IiOSzx9mkSkuXLsWHH36IAwcOWD0V28jOzg4rV1BSUiKr3datW4O3+/Tpo/e0iIiIPM1NQVouHNYkMpOWQdomVmXSGlXuwKtBWrVjyqHlGOu9cJgdM2nljGdUe7MWDrOiLyIiJ7DH2aRKS5cuxd13340rr7zS6qnYyuDBg4O3161bF3f/rVu3oqKiInh/yJAhhsyLiIjIq9wUpGUmbZPIoCDLHUiPx0xacd9q5qNkTnbNpJXTVmmfWjNR9W6nJZPWbguHaWVG2QoiIrcwNEh7/Phx1NTUGDmE7sXJ3WDkyJHB25988gnKy8tj7v/6668Hb+fk5CAvL8+wuREREXlRbW1t2H2/32/RTLRjkLYJyx2ImZFJ66UgrZx+lexnhyCt3L71Lncgt51dM2nNWjhMan8t5QlY7oCISB5DzyZfe+01DBw4EGPGjMHvfvc7LFu2DBs3bjRySEJTkDYrKwtA00XhzJkzJS+ePv/8c6xYsSJ4f+LEiabMkYiIyCsaGhqiLjTdlkkb+dN/L+DCYWKi8Zxc7kDL3N2USatmLCPovZCanCCt0zNpzS6vwMAqEZF6hn/lX19fj507d2LVqlWYPXs2fvnLX8Ln8yEQCODYsWOYP3++rGxPkZMnTwKwz0mxXfj9ftx7773B++vWrcPkyZPDFhGrr6/Hm2++icLCwuBFRm5uLsaPH2/6fImIiNwsstQB4L4gLTNpmUnbTEtQUS4vZdKacTzljGtkoNKocgdGHSe3ZNIaFbCPZOaXBUREThd9lm2A5g/X5uBss7Nnz+K5554L3k9PT0e/fv3Qr18/9O3bF/369cN5550n7HPv3r3BIG3btm2Nm7xDXXvttdiwYQOWL18OoClQO3LkSOTl5SE1NRW7du3C8ePHg/unp6dj7ty5wgsvIiIiUs9tQVouHNaEmbRiTq9JGzl/Jwdp7VjuwMpgqp0zadW21VKTVqqNVDuWOyAiMp6hEbkbbrgB559/PjZv3ozNmzejuLgYZ8+eDQZrI4O3lZWVWLduXdhiVykpKejTpw/69euHvLw8dOvWDZWVlVi4cGGwbU5OjpFPw7EeeeQRZGRkYPHixairq0NjYyNKSkqi9svJycHcuXPRq1cvC2ZJRETkbm4L0jKTtgkzacX0zESVYma5A68GaZWOqSVIq7VPuf3qtXCY1kxaESPKFsQb26gAKAOrRETqGRqkbdeuHUaPHo3Ro0cDaPrA3r17N66++mr4fD4kJyejXbt2OHjwYLBNZOC2qqoKGzZswIYNGyTHGTFihJFPw7F8Ph+mTZuGsWPH4q233sIXX3yBw4cPo7q6Gmlpaejbty9Gjx6NsWPHOnoBEyIiIjtjkNadIjNpGaQVj2fEcWG5A2dk0splZbkDrYFkJf020xKw1aONkQuHKe0zHgZ8ichrTP1te2TWa8eOHfH+++/j1KlT2LJlC0pKSlBcXIySkhLs2bMn6g9Cc+A29IO+R48euP766818GqYbN24cxo0bp7p9Tk4OZsyYgRkzZug4KyIiIpLDC0FaLy4cFhmMZLkD8XhGZNIySGu/hcPk9mFVjV0t41idSau2nRULh7HcARGRNpYVIA39wG3bti2GDBmCIUOGBLfV1NRg27Zt2LJlS/C/nTt34ty5cwgEAvD7/RgxYgR+97vfITk52YqnQERERBRXbW1t1Da3BWm9mEnLcgdikUEVI46LmeUOtMzfTUFaJ5Y7cGomrdT+Tlk4jIFVIiL1LAnSvvfee9i6dSuOHDkiuU/Lli1RUFCAgoKC4LZAIICjR4+isbER7dq140/0iYiIyPZEmbROPodhkLYJFw4TYyatdFuzg7Ry+5Ozn15BWrlt5YyptF+1czQ7k9bqhcPUjBVrH6szuomInMSSIG2vXr1ULVLl8/mQlZVlwIyIiIiIjOG2cgeiYKQXg7R2zaSNDIi4MZPWyCCtnkFmq4O0egbI9epLa9BZy8JhWsfQqw8jMmnltI+kpDSBVkb+myUichN7nE0SERERuZTbgrTMpG3ilExaswMhZmTSmlnuwG1BWqszaa0sd+DmTFq9sm/1GMNuAXMiIidhkJaIiIjIQF4I0nLhMPtk0lpd7sDpmbROCNKqHV9Jf0rH1RKkNarcgdr+7JpJq5SaDFyfz6d7OQ2WOyAiks8eZ5NERERELuWFIC0zae2bScuatMo4IUjr5ExauW3lzivWdrULh8Xrx4j3n5xMWqsWDtOD3GNmxOcFEZGTMEhLREREZCAGad2JmbRiZmTSstyB/YK0chlV7kBOeyszaUPH1jOT1oyFw8wsd6DHvxkiIifTbeGw6upqvPbaa/jss89w5MgRpKamoqCgABMmTEDv3r1jtq2qqsJFF12EhIQEbNmyRa8pkc1VVlbi6quvRsuWLbF27dq4++/evRtLlizBunXrcOTIESQnJ6Nv374YP348xo4da8KMiYiIlHNbkJYLhzWJzKRlkFY8ntPLHWiZvx71ga0K0iod0+pyB2qflxcyac0qryA1D5Y7ICKST5cg7b59+3DbbbfhwIEDAJo+TH0+H4qKivDaa6/hhhtuwP333w+/3x+zH7kfwiUlJfj4449RXFyMPXv24MSJE6iqqgIAtGrVCunp6ejZsyf69++PESNGoG/fvtqeIOmurq4O999/P44dO4bs7Oy4+69evRoPPPBA8EK3devWOH36NL7++mt8/fXX+Oc//4k///nPtrlAIiIialZbWxu1Ld45kZ0xk7ZJZDCS5Q6aGJWBGa9PvYI5epZrMCor0IyfhLux3IGZmbSx5qLn66cl8G9moJTlDoiI5NEcpD137hzuvPNOlJWVAQDS09Nx3nnnoaKiAmVlZQgEAli2bBm++eYbvPDCC+jYsaPqsTZs2IA5c+Zg48aNwW2RH+61tbU4ceIE9u3bh3/+85947rnnUFBQgJkzZ+IHP/iB6rFJP9XV1Zg+fTo+++wzWft/9913mDlzJhobG3HVVVfh/vvvR+fOnXHixAm88MIL+Otf/4r//d//xQ9/+EPceOONBs+eiIhIGbdl0jJI24TlDsTMOC4sd2C/cgdGBECNDMbH6i/ec5czL6XzlJMJqzYjVq+Fw1jugIjIeJqDtG+//TZ2796NhIQETJs2DZMmTQpmEmzZsgVPPPEEvvrqK2zbtg3XX389/vrXv+K8885TPM6qVavw4IMPoqGhIfhh3bFjR3Tt2hXt27dHcnIygKag8bFjx1BWVoby8nIAwPfff4+bbroJf/rTn/izeItt27YNv/3tb7Fjxw7Zbf7whz+gsbERV199Nf7yl78E/3inp6djxowZOHToEP7xj3/g9ddfZ5CWiIhsxwtB2sif/rtdIBBgJq0ELhwm3dbJQVo1tJY70DqWGWUK5DKqdIOaRcCMXDiM5Q6IiLTRHKT94IMP4PP58Mtf/hKTJ08Oe6xfv354+eWX8dJLL+Hpp5/GwYMHcdNNN+Gll15Cnz59ZI+xfft2zJo1C/X19cjMzMTtt9+On/70p3GzcsvLy/GPf/wDL730EioqKvDggw+ib9++cWvkkv5qamrwpz/9CW+99RYaGhqQmZmJAQMG4JNPPonZbtOmTdi2bRtSUlLwwAMPCP/IT5kyBT/4wQ+Qnp5u0OyJiIjU80KQ1muZtKLAATNpm5ixcBiDtM7IpNVa7kDvhcPkMjqT1qwasXZaOIzlDoiI5NF81rRt2zYAwIQJEyT3uf3227Fw4UK0bt0aFRUVuPnmm7FhwwbZY7zyyiuora1Fbm4u3n33Xdx6662yyiZ07NgRt956K95991307t0bdXV1eOWVV2SPS/qpqKjA8uXL0dDQgFGjRuGdd95B//7947b76KOPAACXXHIJ2rdvL9wnNzcXt956K6655ho9p0xERKQLBmndR5Q5zExa8XhGBF2cWu5AzRy5cJg8ahYA09JOqXh9eG3hMC39ERG5meYg7enTpwEAXbp0ibnfpZdeildeeQXt2rXDqVOnMGnSJPzrX/+SNcaXX34Jn8+HmTNnqsqWTE9Px8yZMxEIBLBu3TrF7Uk7n8+HoUOH4tVXX8Wzzz4rGXCNtHXrVgAILv62Zs0a3HHHHRg5ciRGjx6NGTNmBPchIiKyI7cFaUXBSK8FaUXBNmbSNnFbJq2W+Xs9k1ZOv0rZYeEwO2XSqhnHyHIHcrHcARGRmOazppSUFADAyZMn4+6bn5+PZcuWoUuXLqiursadd96JDz74IG67iooKAP8J1KnRr1+/sL7IXNnZ2ViyZAkuvvhiRe12794NAGjbti2mTJmCe+65B5988gn27duHPXv2YNWqVRg3bhzefPNNI6ZNRESkmduCtMykFWfSMkgrHo81aaX7VjMfrXMyKkirZSyjyh3I4ZZMWi1jx9vXzHIHRERep7kmbbdu3VBSUoLNmzeja9eucffv2bMnli1bhl/96lfYu3cvpk2bhhkzZsRs07ZtWxw7dgyHDx9GRkaGqnk2LyLWtm1bVe29rrKyEqdOnZK9f2JiIrKzszWP25yp/eKLL+Lo0aMYP348Jk+ejM6dO2P79u2YM2cOvv76azz88MPo3r07hgwZonlMIiIiPdXW1kZtc3KQVpRJ67WFw0SBT5Y7aGJGJq2R5Q70DDJbHaQ182fmdix34KVMWj0XDrOq3IHP52NNWiLyPM1B2gEDBmDLli1Yu3YtfvrTn8pq07lzZ7z22mu47bbbUFJSgsceeyzm/vn5+fj000/x/PPP49lnn1U1zwULFsDn8yE/P19Ve69bvHgxFi1aJHv/7OxsrF27VvO4Z8+eBQAcPXoUN910Ex566KHgY/n5+Vi8eDEmTJiALVu24IknnsDKlSs1j0lERKQnUSat3++3YCb6SEhIQEJCQlgwy2uZtHYud6BHHVQtmEkr3dYOQVqrFw4zqtyB3Dmp6c8umbR6jym3jREZryx3QEQkpvls8tJLLwUAfPDBBzh+/Ljsdu3atcPSpUsxcODAuB++EyZMQCAQwIcffojJkycrqkG6detW/L//9/+CZRWuv/562W3JPvx+P+655x7h9jvvvBMAUFxcjNLSUrOnRkREFJPbyh0A0SUPvBakddLCYWYHOayqSeuEhcOcFKRVO6aefSuZv54Lh9ktkzYWOZm0emXuWlHugEFaIvIazZm0l156KVq1aoWqqiosWLAADz74oOy2qamp+Otf/xqsMypl+PDhmDBhApYvX44vvvgCX3zxBbp3746CggJ069YN7dq1Q3JyMgDg3LlzOH78OEpLS7Fx40bs378/2M8vf/lL/OQnP1H/ZD1s+vTpmD59uunjtm7dGidOnEBeXp5kqYqBAwcGb2/fvh3dunUza3pERERxuTFIGxmQ9FqQ1s6ZtKJ5BAIB035GHHlszCp3wEza+OMrmYOZmbRmlTtQy+xMWr3Gt2LhMJY7ICLSRnOQNjk5Gd99953q9n6/H8899xwOHToUc79HHnkEXbt2xfPPP4+qqirs27cvLAAr0vxHolWrVpgyZQpuv/121fMka2RmZuLEiRNo1aqV5D6hwduamhozpkVERCSbG4O0zKR1TiYt0BQ4NWt+egY5pZhZ7kBLkJlBWmvLHURySiZtvLZ61AtWsq8RQV2WOyAiEtMcpNVDQkKCrEWmJk+ejOuuuw6rVq3CJ598guLiYlRVVQn3bdWqFfr374/hw4fjmmuuQbt27fSeNpkgNzcXO3fuxOHDhyX3OXnyZPB2ZmamGdMiIiKSzQtBWi4cZu9MWjODtGZk0nq93IHa8ZX0Z9TCYXLbKu1Tz4XD5MxD7z7UBnXttnCYVL8sd0BEJI/pQdrjx4/jwIED6NOnj6oLlHbt2mHSpEmYNGkSAKC8vByVlZWorq4GAKSkpCAjIwMdO3bUdd5kjcGDB+O9997Dvn37sHv3bvTq1Stqn2+//RZA0wVvXl6e2VMkIiKKyQtBWmbS2j+T1ixmLBxmZLkDPedvdSatFkZlRJv5fNQuHOaWTForSgew3AERkTamf+W/du1a/OIXv8BFF12EqVOnau6vY8eO6NOnDy688EJceOGF6NOnDwO0LvLTn/4UKSkpAICnn3466vGGhgYsWrQIQFN95PT0dDOnR0REFBeDtO7jxExas1i1cBhr0sYfX8kc7FDuwIyFw9TOQ+8+jMykZbkDIiLnMP1s8tixYwgEAqivr+cCTxRXWlpaMJj/wQcf4P7770d5eTmApizqwsJCbNq0CX6/35KFzYiIiOKpra2N2ub3+y2YiX68vnCYKJOWQVrxWGbVpHVruQM5/SrZT+0c7LJwmJZyB3LbGZ1Jq2ZOscZWuq+R5Q4CgQDLHRARaWB6uYM2bdoEbzNIS3LceuutOHr0KF566SWsXr0aq1evRps2bXDmzBkEAgEkJydjzpw5yMnJsXqqREREUZhJ6z6igCDLHTQxI5PWyHIHdgvSOjmTVi6zfuIudxwjSj2E9qG0P7tk0qrFcgdERPKZHqTt3Llz8LboooVI5L777sPw4cPxt7/9Dd999x1OnDiBLl26YPDgwZg0aRJ69+5t9RSJiIiEGKR1H5Y7kGZVJi2DtPHHVzIHPY6n1eUO1GbS6jkvuULbG509qiZTWE47PedgxJhERE5gepD24osvRnJyMmpra7Ft2zazh3esuXPnYsGCBcjOzsbatWsVtd21axfeeOMNrF+/HmVlZaivr0dWVhZyc3MxZswYXHnllVEXW2YoLCxEYWGh7P0HDhyIgQMHGjgjIiIi/XkhSCv6+b+bceEwaVbVpDWq3IGW+bspSGuXcgdKRLZXO0erM2nVzkVLHVy1WO6AiEgb07/yT01NxeWXX45AIIAPP/wQVVVVZk/BcTZt2hRcHEupefPmYezYsfjb3/6Gbdu24ezZszh37hxKS0vx8ccfY+rUqZgwYQJ2796t86yJiIgI8EaQlpm0zKSVGsuITFojyx3oOX+rg7RaGBWkldtW7ryUjqWG0mCvXq9zrPEi29l54TCWOyAiks+Ss8lp06ahZcuWOHHiBJ555hkrpuAYpaWlmDJliqrSELNnz8b8+fODF06JiYno378/Bg4ciIyMjOB+RUVFmDhxIg4cOKDbvImIiKiJ6G+4Fb9g0ZPXg7TMpJVmVSYtyx3EH1/tHOSMqbbea6y2epc70JLtq5WSTFonLxwmF8sdEBGJWRKk7d69O2bMmIFAIIClS5filVdesWIatrd9+3bceOONOHr0qOK2a9aswdKlS4P3R40ahU8//RQrV67EsmXL8Pnnn+PRRx9FSkoKAKCiogKFhYX8Q0hERKSzyCBtYmKi47OFIgOSXgvSMpNWWuRYTi934NUgrR7HwYiatFqo7c/rmbRKsNwBEZE2lpxN/uEPf0BycjImTJiAQCCAxx9/HL///e9x4sQJK6ZjS6tXr8YvfvELlJeXK25bV1eHOXPmBO8PHz4czzzzDDIzM4PbkpKSMGHCBMyfPz+YDVNcXIx3331X++SJiIgoqLa2Nuy+00sdAMykFWXSMkjbxIh6npGMLHfAIK2y/fQYy6hyB2oXDvNKJq1SLHdARGQ8S35r98Ybb2D58uUAmj6MA4EA/v73v+Ojjz7CL37xC/z85z9H7969rZia5crLy/HUU09h1apVqvv48MMPcfDgQQBNF1GzZs2SvHAYNmwYJkyYgGXLlgEAlixZgjFjxqge26vccHEaecHptUVgiIiMEhmk9fv9YX83nPj5G5lJ29DQ4Iq/hXJFvqZA0zmtHY6BKJBSW1tr2txENV31HlsUdK6vr9dlHNHx02v+gUBAcV+i/RsbG2X1I/oskftvVelxkPuaiMq/SB0XJfMXjR+5r6i/yOfZ0NAgDNSH9hPvuUqNE+vxeO9fqcea3wux3idSr6XUPJSMH0l0/ETZtVIZt0TkbU44BzaaLQqiNQdqT506hcWLF2Px4sVo3749LrroIvTp0wf9+vVD37590bFjR6unaqjnn38eL774Ythiar169cLIkSOxcOFC2f289957wdtDhw5Fly5dYu4fGqQtLi5GaWkpunXrpnD23tXY2IiNGzdaPQ3dFRUVWT0FIiJXOHnyZNh9n88X8++GEz5/a2pqwu6fO3fOlX8LpWzbti1qW3l5uS2OwfHjx6O2FRcXo6KiwpTxI4Nw1dXVuh+X/fv3R23bu3evLuNEBuC1vLerq6vD7tfV1Snuq7S0NGrbnj17ZPWzd+/eqG1y36eRAbTTp0/HbLdnz56obWVlZVFtRGXcjh07Juy7rKwsatvRo0eF+4re90VFRUhLSwveFy1YHflLzqKiIpw9ezZsW319fdiYogWXQ5+rKMhw8uTJ4OOi5xX6mka+B6uqqoKPSb0u+/bti+qz+VhFfl7X1tZi48aNOHLkSFSb7du3R/3NAoDvv/9e1hop+/fvj5p/dXV11K8v6urqcOrUqbBtgUAgKgCuZl0WInIuJ5wDG82SIO2FF16Ibdu2Rf2hbP55QyAQQEVFBT788EN8+OGHwcczMjLQt2/fsP969epl6tyNtHjx4rBjMn78eMycORMffPCB7D4CgQDWr18fvH/JJZfEbZOXl4cOHToET5rWrl2LW265RcHMiYiISEpkBpLTFw0Dop+D1zIfRJl0dl44zMyMNatq0rLcQfzxtVCzcJjWcgda5y+nlqwe/QLaa9LKHU/P11TpwmFWlDtgti0ReY0lVwmvv/46gKZvd7ds2YKSkpLg/0O/BW3+UG7OtD1+/DjWrVuHdevWBfdp2bIl8vLy8MYbb5j7JAyUn5+PGTNmYNCgQYrbHjhwIOxbyfz8fFnt8vLygkHazZs3Kx6XiIiIxNwYpI0MvDFIa86K6HJYXZPWjLGMPNZ6zt+ogJMZ7zUzFw5TEqRVUpNWDrNq0oYyItCqVx1brYyqeUxE5BWWXiWcd955OO+883DVVVcFt5WXl4cFbbds2YIDBw4EH48M3BrxEyqrDBo0COPGjcOIESNU/zGN/FlT9+7dZbXr2rVr8LboJ2QkLSEhAQMGDLB6Gpo1NDSE/bwgPz/fNllBREROFhmUbd26NQoKCoL3nfj5m5GREXa/oaEh7Dm53enTp6O2devWzRbHICsrK2pbXl6eab8+i3zvtmnTRvfjIvppfXZ2ti7jxPv3qkTr1q3D7rdo0UJxX6HJKc169eolq59WrVpFbcvMzJTVNjKI1rZt25jtDh06FLVN9JqIfurfvn17Yd+hpQqaSc0/PT09atuAAQPCtovKHbRt2zbsfn5+ftRx8/v9YWMePnw4qp/Q5yr6iX5GRkbw8e+//z7q8R49egQfj3wPtmrVKvhY5Jcwzf++WrZsGdVnx44dUVBQgJSUlLDtiYmJKCgoEH5W9OnTR3jcL7jgAllfMHbr1i1qccxWrVpFfS4kJSUhNTU1bJvP54t6fnb/W0hE+nLCOXAsmzdv1vxlr+1SOTp27IiOHTvisssuC247deoUSkpKwoK3u3fvdl3WxoIFCzT3EVrnKSEhAZmZmbLadejQQdgHyeOGrKhILVq0cOXzIiIyW+QFe1JSUszPVyd8/kZehDc0NKBFixa2ySY1muh5JiYm2uJ1E80hISHBtLmJyh3oPXbk+0/PcSKDk1r6jQw4BQIBxX2JMqPlvtdEx8nn88lqq/Q4iC6qRZ9loj6kPvOUzF90nCI/a+W0kwoOhLaN91ylsoWbH5d7rELnGOvYJyYmCvtsbif1eSW1Xeo9J4doHqIyBs3b421jxi2RtzjhHNhojnj2bdu2xeDBgzF48ODgtnPnzmHbtm3BwC01CS303rp1a9l1wEK/yRQViyciIiJ1REFapxOdQDc2Njo6+0EJUaKAXZ671eUORME9vbEmrfqatEbVFZU7ltZyB1LkPC+1x0NObdt4/SipK6t36QIlbbTWow0EArL21fK+JiJyM0cEaUWSk5NxwQUX4IILLrB6KrZy7ty54G3Rz16k+P3+4O3IFTmJiIhIvci/q24N0tbX19smUGk0UdDTiGCkGlYHaSPHMiLwIupTr+fIIK38vtSMpTWYrqS92oXDzJyjnDZq34PxAq5mLhym9r3ITFoi8hp7nE2SbkKzdZRcLIRebEUucEJERETqRWbShn4x6lSiYKyXzh8YpJVmRiatqE+jMmm1zF9U7kAPRgdp1QSG9Qxmx9puxcJhdsqkldrXLguH6Y1BWiLyGnucTZJuQi+alJyQh15YuSHDh4iIyC68Uu7AS0FaljuQJqpJqzcjyx3omQlsdSatWnqNaXW5A7WZtFoZmUlrdOkCq8sdODmgTESkBwZpXSZ09c7Q0gfxhP4UMzk5Wdc5EREReRmDtO7DTFppepYLkMJyB+Zn0uo1lpXlDuT257ZMWqXjmFXuQA5m0hKR19jjbJJ0k5aWFrx99uxZ2X/Yzpw5E7ydnp6u97SIiIg8yytBWlF2qVsxk1aaGZm0ZpY7YJBW3phmLRympdyBXguHxWO3TFo9sm/lUhNg1qs/IiI3YJDWZTp27Bi83dDQgMrKSlntjh49GrydmZmp+7yIiIi8yitBWmbS2uO02uogrVWZtAzSxh9f7RzkjGlWTVo9+o1HSVasmjZ6/pvQOyAcq42Skgdq9mG5AyIiBmldp0ePHmH3S0tLZbUrKysL3u7Zs6eucyIiIvKqhoaGqItRBmmdj5m00qzKpGW5g/jjy52DXWrSyu0z1vZ449gxk1bvmrFK2+gdKGW5AyIi+RikdZns7OywcgUlJSWy2m3dujV4u0+fPnpPi4iIyJNCa743c0OQVhSQ9FKQ1s6ZtEbWa5VDz4W3pJiZSavldY2cp5rXwSlBWiNq0motd6B24TC7ZdKq/Tdk1cJhcrHcARFRNHucTZKuBg8eHLy9bt26uPtv3boVFRUVwftDhgwxZF5EREReE1nqAAD8fr8FM9EXM2mjM2ntEqQ1sl6rHHoGOaUYGaTVM8jspkxao8aSaqsHtQuHae3HyExaqXZ2WjiM5Q6IiNSzx9kk6WrkyJHB25988gnKy8tj7v/6668Hb+fk5CAvL8+wuREREXmJKEjrhkxary8cJsqIZLmDJmbUpGW5A2MDWUaOabeFw9T0peZY6JVJa/eFw6T6ZPCViEgeBmldaOTIkcjKygLQ9DPLmTNnSma3fP7551ixYkXw/sSJE02ZIxERkRd4KUjrpUxaO5c7sDJIKwpuOS2T1k1BWqsXDjOi3IESXsqkVTuWkjZ6ZmHr3R8RkVvY42wyxMmTJ7Fo0aLgf6Sc3+/HvffeG7y/bt06TJ48OWwRsfr6erz55psoLCwMZr7k5uZi/Pjxps+XiIjIrRikdScuHCYmGsfpNWm9GKQ1siat3LZS3JBJq6WtExYO0/JFgB7/ZoiInCz6DNtix44dw1/+8pfgB/TkyZMtnpEzXXvttdiwYQOWL18OoClQO3LkSOTl5SE1NRW7du3C8ePHg/unp6dj7ty5wosuK+3atQtvvPEG1q9fj7KyMtTX1yMrKwu5ubkYM2YMrrzyStvNmYiIqJlbg7RcOIyZtCJmZdKy3IFzg7RmljuwayZtvP70yqS1YuEwqT5Z7oCISB7bRrcCgQA/zDV65JFHkJGRgcWLF6Ourg6NjY0oKSmJ2i8nJwdz585Fr169LJiltHnz5mHhwoVRF32lpaUoLS3Fxx9/jPz8fDz55JO2mzsRERHg3iAtM2mZSStiVvDazExaLfM3Kkirdny5/RmZvWhluQO9SjIYkUkrN3CqZxBVaRuWOyAiMp5tg7Sknc/nw7Rp0zB27Fi89dZb+OKLL3D48GFUV1cjLS0Nffv2xejRozF27FjbrTQ9e/ZsLF26NHg/MTEReXl5SElJwa5du1BZWQkAKCoqwsSJE/Hmm28iOzvbqukSEREJMUjrTsykFTNrkSuWO3BuJq3ctlK0lDtQy+xMWr2oXTiM5Q6IiKzDIK0DjBs3DuPGjVPdPicnBzNmzMCMGTN0nJVx1qxZExagHTVqFGbNmoXMzEwATRe8K1euxGOPPYbq6mpUVFSgsLAQb7/9NrOviYjIVmpra6O2uTVIK8oudStm0oqZFbw28jlG9uPkIK1aTix3IKe9UzJp1ZQ7sMtiY1KvL6/RiIjkscdX/kT/p66uDnPmzAneHz58OJ555plggBZouridMGEC5s+fH7xILC4uxrvvvmv6fImIiGIRZdLa7dcrajCTlpm0IsykDWdUVqDRmbRqxtRrUS41fSrtV2lfVmfSyil3oGY8pQuHaQnUivZhuQMiomj2OJsk+j8ffvghDh48CKDpAnDWrFmSFz3Dhg3DhAkTgveXLFliyhyJiIjkcmu5Ay4cxiCtiBtr0uoZpFXDKeUO5PYjYlS5A70WDlPTr9I2WjNplYyppo0ZWO6AiIhBWrKZ9957L3h76NCh6NKlS8z9Q4O0xcXFKC0tNWxuRERESrk1SOv1TFqWOxATjWNE0MfM56h3kFaPxZqsCNLqNZaV5Q5ijRVrDCdk0hq9cJiWzFeWOyAiko9BWrKNQCCA9evXB+9fcsklcdvk5eWhQ4cOwftr1641ZG5ERERqMEjrTsykFRMFaJyUSat3uQY3BWmNrEmrB7X9ymknp7at0j5izUPvTFotQWE1WO6AiEg9e5xNEgE4cOAATp06Fbyfn58vq11eXl7w9ubNm3WfFxERkVpeCtJy4TBm0pqVSWtmkFZLkNnrQVqtfZuRSatXINlJmbR6l0iIR24mLcsdEBExSEs2snfv3rD73bt3l9Wua9euwdv79+/Xc0pERESaeClIy0xae5xWi4IhbsukNSoQrXeQ2eogrdz+5LCiJq2S42dkMM/OmbRyxjRz4TAGVYmItLHH2SQRgKNHjwZvJyQkIDMzU1a70HIHoX0QERFZjUFad2ImrZgbM2mdHKRVO3ezyx2YucCa0zNpY40rl9ELh7HcARGRetFn2EQWOXnyZPB269atZWdepKamCvswS1VVFfr06aO6/XnnnYd3331X8vHp06djzZo1qvsHgOHDh2PevHmSj1933XXYunUrzp07F9yWnJys6ETttttuw7Rp0yQfv/DCC4XBCiVmz56Na665RvjYgQMHMGrUKE39A8Crr76KH/zgB8LHvvjiC9xxxx2ax1i3bh3atm0rfOxvf/sbnnjiCU39t2/fHp9++qnk44888ghWrFihaYyBAwfi5Zdflnz81ltvxTfffKNpjPHjx+Phhx+WfPwnP/kJjh07pmmM+++/HzfffLPwsVOnTmHo0KGa+geAhQsXYtiwYcLHvv/+e9x0002ax3j//feRnZ0tfGzVqlV48MEHNfWflJSEDRs2SD7+9NNPY/HixZrGyMvLw9tvvy35eGFhIT755BNNY4wePRp//vOfJR//2c9+FvWrDqXuvPNO3HXXXcH71dXVUfvcf//9mD17dvB+IBBQ9Pn7xBNP4KqrrhI+tnv3bowdO1bN1MOsWLECffv2FT728ccfY+rUqVHbp0+fjv/+7/+WPca3336L5ORk4WOLFi3C3LlzZfcl0qVLF3zwwQeSjz/wwANYvXq1qr5Fnz2NjY1RgeobbrgBmzZtUjVGs5tuugkzZ86UfHzIkCE4c+ZM8L7oXOjuu+/GAw88INnHQw89FLYYa6ijR49i+PDhsuYqCtS//fbb+Ne//oW//vWvGDRokLDd119/jUmTJskaAwBqamqitj333HO48847w768D7V8+fK4709RQOj9998Pnuelpqbiq6++kmz/+OOP49VXXw3eP3DgQNQ++fn5Mf99X3DBBXjttdeC90VfCFxzzTVo2bKlZB+x2q5atQozZszAH//4R8l2P//5z6O2vf3221i3bp1kG9FnXUNDQ9R7QnQuuGDBAuF5idT8m1+PuXPnYsSIEQDEr12fPn2ijnVkn5999hmuu+664P3k5OSovwM+ny/seYjm9eSTTwb/Dooe//vf/x5875w+fTrq8fr6eskvur766qvgcz5x4kTYY9999x369Okj/Dcxb948vP766ygvLxeOJ/pS5bLLLhMmvVx44YWyrrOkyt5s2bIl7P6pU6fw73//O2zb6dOno14vs75gIiJ7kPoMccq1xssvv6w5GYNBWrKN0AtUOSeezfx+f/B2bW2trnOSo7GxEdu2bVPdvqamBhs3bpR8fMuWLZr6B4BOnTrFHGPr1q3Yvn27pjGKi4tjjrF9+3bNr09RURF69uwpfOzgwYOaj1PzGFIXT5s3b9ZljE2bNqFNmzbCx4qLizWP0b59e8PfU61bt445RklJieYxtmzZEnOMbdu2aQ7Sxnrfnj59WpfXe/PmzZKvd1FRkW7vqYqKCsPG8Pv9MV8LPd63gUDA8PdU9+7d434W7tu3T9MYke+p3bt3R+1z6NAhHDp0SPUYRUVFkkH5vXv36va+lfrMLioqwsGDB6O2Hz58GIcPH5Y9xsaNGyWDtHp8Tp06dcrwz8JQu3btijoxN+uzMDRIKyJ6vUIVFRVJfuFcUVGh6TmcPHkSJ0+exObNmyVfbz3+vh4/fhybNm2S/CWW2s/CM2fOBNulpqZqfk/FO99KSkoKG0P0b0rL59SpU6fivqd27NghbBe6doQchw4dihpH1Pfx48dx/PhxWX2GzqOoqCj4ekcGL4H4xxoAzp49i7Nnz8bcJ/JcfdeuXVH7HD16NOYv+uIdv/379wfHiAxSVFVVSb6vqqurJR87duwYjh07FvXvrqGhARs3bhTOV/Q3CxC/biJlZWVRweazZ8+iqqoqbFtjY2NUYJ8BWSIqKioSbnfKtYYen2Msd0C2EfrNupL6ZaE/ufTSTy2JiMj++HfJO+xSk5bcxck/99arlIDVjCjZYSUnvgZERF7Bs0myjdBabkq+gQi9AHZDnT8iInIPBmm9g0FaMoLbAmpGPR8zj5MRQVsjFg6zglE1h4mIvILlDsg2UlJSgrdDSx/EE/pzTKmf0RkpISEBeXl5qtufd955KCgokHy8X79+2L9/v+r+AaBv374xx2j+iaOWmrT9+/ePOUZubq7mmrT5+fmSY2RmZmp6HeSMcfr0aV3GuOCCCyRr0m7cuFHzGO3bt4/7niouLtY0Rrz3VN++feP+fDCefv36xRwjLy9Pc7mDWO/bU6dO6fJ6DxgwQHKMQCCg23tK6ufve/bs0TxGUlJSzNeif//+msfIy8uL+55S8lN6kXjvqT59+igqtyMS+Z4S1Yfu2rUrWrduHbyvtCZtrM+pNm3a6Pa+lapJW1FRga5du6KsrCxse1ZWFjIyMmSPUVBQIPl3u1+/fpqfR5cuXeJ+Fsr9CW+ko0ePRv08u2/fvujXr1/UNq1/++R8FoaWOzh9+nRUeYNOnTohLS1Nso9Y76mjR4/Kfi3q6uqifi6dnp6Ojh07xvwsPHfunKLX+9y5c1F1Q9u1a4cLLrhAsibt1q1b447R2NgY9Z5o06YNunTpAqCp3EG891ToGAcPHoyqP9q7d++YAf3Iv69ZWVlR+5x33nmyznmlnk+899T5558fVcc0LS0NnTp1kmxTU1MTVYahY8eOUeOIgnjt27cXlqmI93qEvm9F51Wi1zvyp6ytWrUKe88kJydjz549Yf9uU1JSwp5H5E/3gabz0Pbt2wNoKiewc+fOsMfbtm2Lzp07AxD/G+3evXtwjMj3R6tWrdCtWzcAwM6dO8PKIbRs2RI9evQQHv/m43rkyJGwvzEJCQkoKCgIzjdUr169UFFREVWaoXfv3ti1a1fcRJrs7OyoRRRbt26NVq1ahZU3SEhIQHJyctQ2n88nWZOSiNwvPz9fuBCrU641dPnCPmAzu3btCuTl5QXy8vICffr0sXo6ZKKVK1cGcnNzA7m5uYG+ffsGGhsbZbWbN29esN2IESMMnmWT7777LvDNN98Evvnmm8B3331nyphGq6urCz6nb775JlBXV2f1lIiIHO/JJ58MAAj777PPPgvbx4mfv//85z+jntdf/vIXq6dlmhkzZkQ9/5KSEqunFQgEAoG33347am6vvPKKKWPv378/auzf/OY3uo+zdevWqHHuu+8+zf2ePn06qt8bbrhBdX/XX399VH9nzpxR1MfMmTOj+igqKpLV9syZM1Ftr7/++rjtDh8+HNVu8uTJMdt88803UW0eeeSRqP2+++67qP3+8Ic/CPtU8nr87Gc/C9vP5/MJ9/P7/WH7jRw5Murz9/zzzw/bp2/fvmF9fPnll1Hzeuyxx4KPV1RURD0+adKk4OOif6Mvv/xy8PGUlJSwx6644orgYx06dAh77Ec/+lEgEAgE/v3vf0f1+eijjwYCgUDgxz/+cdj2tLS0QCAQCEyZMiWqTVlZWeCmm26K2n7y5MlAWlpa1PbI/5599tlARkZG2LZhw4YFfvKTn4Rta9u2bWDYsGFh2zIyMgJZWVlxx+B//I//ufc/J5wDx6JHnIiZtGSZyspKXH311WjZsiXWrl2Ljh07Bh9raGhAZWUl2rVrF9y2e/duLFmyBOvWrcORI0eQnJyMvn37hn1bIbVYBBERkRVEWZRuKM0TWg++mZdKO4gyvUSZH1YQZXGYtSCPaBwjfuos6jOgw0/ERX1omb8e89QyJ7XjqxlT7lhKnr+S+Udul5pv5HY581H6HojXp9L+Yu0fa6zmdlLtpdoq3T/ePj6fT9ZzZlkEIiKWOyCL1NXV4f7778exY8eCP9Ht0aNH2D6lpaXBIO3q1avxwAMPBC92W7dujdOnT+Prr78Oa9OzZ08TZk9ERCRPaEmeZgzSOp8oGGmXmrRWBmlFARojjotRz5FBWvVjanmuZgXy5VITZNUamA1tLyfwqnR8uftaHSi1enwiIqvZ42ySPKW6uhpTp07FZ599FrY9Ozsb6enpwfslJSUAgO+++w4zZ85EXV0drrrqKvzzn//Ed999h/Xr12PSpElhfTTXViUiIrIDUSat3++3YCb6EgVpvVRHUPRcGaRlJq2ctnrM0+ggrZox5c5JyTHWkkkrRU4mrdysXCl6Z9KqHUttJq0Z+wYCAUcvkEZEZBR7nE2SZ2zbtg3jx4/HRx99JHx88ODBwdvr1q0DAPzhD39AY2Mjrr76ajz11FPBovvp6en4+c9/HtZ+yJAhBs2ciIhIOZY7cCdRMJLlDszLpBUFneyYSSt67m7NpJXbj93KHahhdCZtrLZmZNKy3AERkXVsG6Tlh7S71NTUYNasWbj22muxY8cOZGZmYvjw4VH7jRw5Mnj7k08+wT//+U9s27YNKSkpeOCBB6LeF6+//nrwdlZWli4rWhMREemFQVp3YrkDMbMyafUIforoHWRmuQPryh3IZcdMWqMyXLUwaxzGAIjI6+xxNinAnz+4S0VFBZYvX46GhgaMGjUK77zzDvr37x+138iRI5GVlQWgqY7fo48+CgC45JJL0L59+7B9P//8c6xYsSJ4f8qUKQY+AyIiIuXcGqQVZY16KUjLhcPErMyk1ePaQe8gs9VBWrn9qdknkpaFw4wod6BnJm1kGyszaZXQs9yBaH+tGbe83iciima7hcN69eqFrVu3Wj0N0pnP58PQoUMxZcoUXHzxxZL7+f1+3HvvvZg5cyYA4MCBAwCALl26AADWrFmDlStXYvPmzaisrAz+cc/NzcX48eMNfhZERETKuDVIy0xaZtKKmHVcnFLuwOogrdq565VJK7dvrX1qaau1JIPcPkMZEbA1o9yBaN/IvljugIhIG9sFacmdsrOzsWTJEln7XnvttdiwYQOWL18e3LZ06VKsXLkSZ86cEbYZPXq08IKRiIjISl4K0np94TC7ZNIaFcCUQ+8gpxQzyx24LUhr1MJhIkaUO9B74TA1beyUSWvHhcO0YKCWiLyOUS2SpbKyEqdOnZK9f2JiIrKzs1WP98gjjyAjIwMLFy4E0HRiIArQtmzZEjU1NZg/fz5++MMfcuEwIiKyFS8FaZlJy0xaKzNpGaTVb3wja9JaXe5ATn/MpJU3htTrw3IHRETqMUhLsixevBiLFi2SvX92djbWrl2rejyfz4dp06bhpZdeCl70+f1+BAIBpKWloW/fvhg9ejRGjx6NiRMnYsuWLXjiiSewcuVK1WMSERHprba2Nmqb3++3YCb68nqQ1s6ZtEZlmcphViYtyx24K0irpE+tIvuUMx+nZ9IaRcn7kOUOiIjkYZCWbK35j7Xf78e//vUvtG3bNmqfO++8E4WFhSguLkZpaSm6detm9jSJiIiE3JpJ6/WFw5hJK2bWcTGz3IGW+bspSKsXrYFwvTNplYxhh/Z6lGuQM45Z+0ZioJaIvI5BWpJl+vTpmD59uunjtm7dGidOnEBeXp4wQAsAAwcODN7evn07g7RERGQboiCtXTIutWAmbXQmLYO04nHMyqTVI7Co9/z1yPi1S5BWr0xauW3N6tOKTFo9/000j2uncgdy58ByB0RE0exxNkkkITMzEwDQqlUryX1Cg7c1NTWGz4mIiEiuyCBtUlKSKzKFvB6kFQXa7BJ8tzJIq3cmqhSWOzD2M8TONWml6LlwmBWZtEaULTB64TCWOyAi0h+DtGRrubm5AIDDhw9L7nPy5Mng7eagLhERkR2IgrRuIArSirJL3YrlDsTMyqQ1s9yB24K0ao+TFTVpRcxYOCyS2Zm0Ri8cppbcY8xyB0RE6tnjbJJIwuDBgwEA+/btw+7du4X7fPvttwCaLnzz8vJMmxsREVE8XgrSeimT1mkLh3khk5ZBWnlzMKrcgRZGlDtQOpaeY5iZSat3QFdu1qtU/3LfOyx3QEQkxiAt2dpPf/pTpKSkAACefvrpqMcbGhqwaNEiAMCll16K9PR0M6dHREQUk1uDtFw4jJm0IlbWpPVSuQMtczBq4TAjyh0o4fVMWrljyx1Hy75K5qB0HyIit7PH2SSRhLS0NEydOhUA8MEHH+D+++9HeXk5AKC8vByFhYXYtGkT/H6/JQubERERxVJbWxt23y1B2oSEhKgLai8FaSMzaZVknxnNC5m0ZpY70DJ/L2XSGlHuwKqFw5yYSWuXhcOUzkU0PhGRl0X/Vo3IZm699VYcPXoUL730ElavXo3Vq1ejTZs2OHPmDAKBAJKTkzFnzhzk5ORYPVUiIqIwkZm0fr/fopnoLzExMez5eSlIGxn0tEsWLWC/TFqWO4g/hpFzsjJIK5eZC4ep6cupmbTxFg7TiuUOiIj0Z58zyjhefvllq6dAFrrvvvuwbNkyjBo1Ch06dEBNTQ26dOmCcePG4e2338ZPf/pTq6dIREQUxa3lDoDourReWjgs8rkySNvErFqmRpU70Ltcg1HBZDsuHCZ3LK3vEa0Lh6kJWitl90xaOWOK9jU6Q5ZZtEREDsqk/fOf/4z+/fvj4osvtnoqpps7dy4WLFiA7OxsrF27VnH7Xbt24Y033sD69etRVlaG+vp6ZGVlITc3F2PGjMGVV14pXADEaIWFhSgsLJS9/8CBAzFw4EADZ0RERKQvLwVpvZxJa5dFwwBvZNKaWe7A6iCt3pm0Ro1pRLkDESsWDrNTJq0SVi0cxnIHRETq2edr/zjq6+sxbdq0YD1SuTZs2GDQjMyxadOm4MJYasybNw9jx47F3/72N2zbtg1nz57FuXPnUFpaio8//hhTp07FhAkTsHv3bh1nTURERACDtG7FcgdiVmbSMkgrbw5WLxwmt62cx2KNZeTCYXr0qbaN2sCrljGl9rUymEtE5Fb2OaOM47rrrkNFRQUKCwujFuGQ8s477+DWW281dmIGKi0txZQpU6Iu8OSaPXs25s+fH7xoSkxMRP/+/TFw4EBkZGQE9ysqKsLEiRNx4MABXeZNRERETdwcpI3MHvVSkDay3IGdMmmNKgUgh5U1afV4jgzSqh9TS1DUiNqzWurcKsmKVdNG6XtKTrkDJYxeOEyqXz32ISJyO8cEaR9++GH069cPmzdvxiOPPBJ3/7lz52LGjBmyA7p2s337dtx44404evSoqvZr1qzB0qVLg/dHjRqFTz/9FCtXrsSyZcvw+eef49FHH0VKSgoABAPg/EaTiIhIP24O0jKT9j+YSSs9jhGBF5Y7sF+QVm4/Sp+/3Pmrff3dkkkba1+zFw7j9SQRkXr2OaOMw+/349lnn0Xbtm2xcuVKvP7668L9amtrMXXqVCxcuBCBQABXX321yTPVbvXq1fjFL36huLRDs7q6OsyZMyd4f/jw4XjmmWeQmZkZ3JaUlIQJEyZg/vz5wYus4uJivPvuu9omT0REREFeCtJ6eeEwO2XSGhXAlEM0jlmZtEYFabXM36lBWjn9yHncjuUOrMqk1cIuC4eppSSYy2xaIvI6xywcBgBdu3bFn//8Z/z617/Gn/70J/Tt2xc/+MEPgo9XVFTgzjvvRFFREQDgnnvuwZ133mnRbJUrLy/HU089hVWrVmnq58MPP8TBgwcBNF1AzZo1S/IEc9iwYZgwYQKWLVsGAFiyZAnGjBmjaXwvckP2UOQFp5cutomIjBL5i56kpKSovxlO/fyNDNLW1dW54u+hHJGvUUJCgm2euyibtb6+3pT5iUp0NTY26j626N9IQ0OD5nFEv8ALBAKq+xUFoZT+O9H6XCODXnJeD9HrGO84yJ2nqA8l7xGpfUXHWk6fke2kPn9D+4r3HOIdP9G/0eZjJZV93NxWFHSvr68Xzrt5TpF9NreRmofUsZQTCBf1KTf7mQFaInLKObCRHBWkBYBLL70Ud911F+bNm4e7774bK1euRGZmJrZu3Yo777wThw4dQkpKCh5//HGMGjXK6unK9vzzz+PFF19EVVVVcFuvXr0wcuRILFy4UFFf7733XvD20KFD0aVLl5j7hwZpi4uLUVpaim7duika08saGxuxceNGq6ehu+YvO4iISL3IoE9NTU3cvxlO+fyNPJE+e/asK/8eipw+fTrsfiAQsM1zb/6iPtSRI0dMmd/OnTujth06dEj3sUVBssrKSs3jiBbSPXr0qOp+KyoqoraVlJSEne/Hc/z48ahtxcXFSEtLk9U+Mmh25syZuM9H9DqWl5fHbCd631VUVES1EfV98OBB2cf45MmTwn3PnDkTdl/q/Fz0uRWqqKgoKshaVVUV1teuXbui+j18+HBwn3jHQvQ+Kysrw8aNG4UBzVOnTgXbRv5Nqa6uxsaNG7Fjx46ods3HVerzSvTeKioqwrFjx6K2FxcXR81NFJA9cOBA1PbTp09H/dogEAiguro6bFtdXZ1ppVmIyJ6ccg5sJFuWOzh16lTMx++66y785Cc/wZEjR3D33XdjzZo1uOGGG3Do0CF07NgRr776qqMCtACwePHisBO28ePHY8WKFejRo4eifgKBANavXx+8f8kll8Rtk5eXhw4dOgTvr127VtGYREREFE2UeWann8VrFfkrHbtkkpohMpBgpwwwK2vSmvXzZaOOtxnzZ7kDc+j5uunRl5aF1fQeM97CYVJt9HzvsNwB3UFYJwAA2JRJREFUEZGYLTNpBw8ejG7duqFfv37o378/8vPz0b9/f7Rt2za4z5///Gdce+212LBhAzZs2IBAIID8/HwsWLAAWVlZFs5em/z8fMyYMQODBg1S1f7AgQNhQe78/HxZ7fLy8oKLlG3evFnV2ERERPQfop9sRZYIcLLIgLOXfqJm54XD5P4E2QhWBmn1eI56BxX1eO5OWThMbpBWad96BzflHA81NWnVzEVum9Dx1LynlLaRuz8DqkRE+rPllUIgEMD+/fuxf/9+vP/++8HtXbt2DQvazp49G3fccQfOnTuHn/70p3j88ceRnJxs4czVGzRoEMaNG4cRI0Zo+oO3d+/esPvdu3eX1a5r167B2/v371c9vhclJCRgwIABVk9Ds4aGhrCfF+Tn57sq44uIyGyRP+UEgA4dOqCgoCBsm1M/f1NTU8Put2jRIuq5uVXk+WbLli1t89xFP7Vu166dKfMTjd29e3fdxxYFtNq2bat5HFGwvVOnTqr77dixY9S23Nxc9O3bV3Yf6enpUdsGDBggu9xB5GdJ69at4z4f0bVIvOPQrl27qG3t27ePatOcFBKqa9eukn1HviapqanCfVu1ahV2PzExUbhf5OKNke3y8/OjvkyLPGaiBSCzsrKC+4QmFjUL/ewXlcHIzs5GQUGB8MuutLS0YFu/3x/2WHJyMgoKCnDixImodl26dEFBQUHUfHw+HwoKCoTvrfz8fLRv3z5qe79+/aLeF6IvHTt37hy1rU2bNlHvQ5/Ph5SUlLBtfr/fVV9kEpFyTjkHlrJ582bNXxrb8lPwxRdfxJYtW7BlyxYUFxfjwIEDAIDS0lKUlpaGBW5btGiB1NRU5Obm4quvvkKfPn2EJ0R2t2DBAl36CT3xSUhIQGZmpqx2oeUORCdPFJsbTyhatGjhyudFRGQWUSBJzkWoUz5/IwMVDQ0Njpi3HiJf24SEBNs898ggTjMz5icKciYmJpp2bLSOI7ow1DJ/UX9K/32LAqZJSUmy+xC1l/MZJNoWq53oMdG/C9F7RMkx8fl8wn3VPE8g+t9yixYthAtahfYlCtKG7iM6fqHHItbjoucR2nfk482PxXrvirKHExMTha9FUlKSZF9yFvoS9ZmQkCA7o5vZuUTe5pRzYCPZ8tn/+Mc/xo9//OPg/VOnToUFbbds2YJ9+/YFV6w8ffo0nn322eD+aWlp6NOnD/r27Yu8vDxcc801FjwLa5w8eTJ4u3Xr1rJ/fheaDRPaBxEREakjWuFbdHHvVJEn0V6qSRuZ7WanrA8ra9KKxjGqFITP5wsL9OjxHEV9aAka6VGnVWsJBr3KHSgdR0k/SsodSPUpJ4AYbyy5c1BDS8mCWPs3P2+1dWa1UPKaM/hKRCSPLYO0kdq2bYshQ4ZgyJAhwW3V1dUoKSkJC9zu2rUL9fX1OHHiBL766it89dVXSEhI0C1Ie/nllwezetXq2bMn1qxZo8t8RM6dOxe83bJlS9ntQrMuIlcNJSIiIuVEf0/dFKSNDEx6KUhr55q0Xlg4DGh6nqHBcj3qyeo9f6OCtFrm5NaatGrb6VWTNrSNlpq0WuvhytlX75q5evQPMJBLRAQ4JEgrkpKSgosuuggXXXRRcFttbS22b98eDNwWFxdjx44dFs7SfKFZO0ouGEKzYbx0kUVERGQUUSat1E/RnYiZtP/BTFrpcYzMpA3FIK38ORgxpt4LfCltb+TCYW7NpJXaV25wV8sCY8y4JSISc2yQVsTv9yM/Px/5+fnBbV5aaRgIv0hQckIeemHlpiwfIiIiq7DcgXsxk1ZM73IBsUQ+Tz2eox2DtHL7lbuvmVmOdix3oAcrM2n1pDU7Vuo4KNmXiIjCuSpIK6JnZsPy5cs1B32NLoIcukpmaOmDeEJ/khm5YjEREREp57UgrZe+GI98rgzSNhEFXZhJG38MI+ekV01ap5U7kNuf0zJpjS53ICdrVyktGbdERF7jiiBtY2OjKSfHHTp0MHwMrdLS0oK3z549i0AgIOsP3pkzZ4K309PTjZgaERGRp3gtSOvlTFqWO5Aex6jAi1lBWi3XGKK2Tg3SKh1Hqh+zyh0YuXCYnTJp9S53oGR/I2ojM1BLRF7nuCBtdXU1tm7dipKSkuD/d+7ciQ0bNlg9NVvo2LFj8HZDQwMqKyvRrl27uO2OHj0avJ2ZmWnI3IiIiLzEi0FauV8OO52dyx2Ijr8bM2m9Uu7ALkFavWrSKm2rNhhv5MJhauh1fPTMpGW5AyIi+7F1kPbo0aNhwdiSkhLs378/6ptKL1wMyNWjR4+w+6WlpbKCtGVlZcHbPXv21H1eREREXuP2IK0oe7SxsdFWWaVG4cJhYk7PpNV7/l4K0srtR+9AeKx+ReyQSatnSQGnLhymZT8iIjezTZB29+7dwWDsli1bsG3bNhw7dixsHzMLwjtVdnY20tPTceLECQBASUkJCgoK4rbbunVr8HafPn2Mmh4REZFnuD1IK6qzX19fb6uApVHsnEmrx0/s1WJN2vhtzQ7SqmF2TVol/bo1k9aIILNeYyrpX26fLHdARCRmepD23Llz2LZtG7Zs2RLMkt2+fTtqamrC9pP7La/P50OXLl2Mmq4jDR48GO+//z4AYN26dfjlL38Zc/+tW7eioqIieH/IkCGGzo+IiMgLQhflbOaFIK0XFiBlJq2YmZm0LHegbg5GLf6k5bnqUe7ALZm0euyvhZrFxuTsy3IHRETyGBqkPXbsWLBMQXOW7L59+6JOokI/oKX+CLZo0QK9evUK/peTk4NevXqhZ8+eaNmypZFPw3FGjhwZDNJ+8sknKC8vD6tVG+n1118P3s7JyUFeXp7hcyQiInI7USat3++3YCbGEAVpI4OXbuW0TFo31qRlJq26OZhZ7sDMvtX+4tJumbRWlztQsj/LHRAR6c/QIO0ll1wS9mErCsZG/kEJBAJo27Ytevfujdzc3GAAMTs7G++8846R03WNkSNHIisrC0eOHEFtbS1mzpyJRYsWCS+mPv/8c6xYsSJ4f+LEiWZOlYiIyLW8Wu7AC5hJKyYah0Ha+GMYOSe9grRKx5Hqx+pyB2r6s1MmrV7lDqQW+Iq1v5z+We6AiEgbU8odSP2BTk5ORk5ODnJzc4NB2dzc3LCsz9dff50f1gr5/X7ce++9mDlzJoCmkgeTJ0/Go48+im7dugFouohauXIl/vSnPwUvNHJzczF+/HjL5k1EROQmbg/SigKTXgnS2jmTVnTebGUmrdPLHWh5bd0UpLVLuQMpema/ejmTVmrhMJY7ICIyhylBWp/Ph8zMTFx44YXBQGxubi569OjBAKxBrr32WmzYsAHLly8H0BSoHTlyJPLy8pCamopdu3bh+PHjwf3T09Mxd+5cYVYMERERKef2IC0zaf/DTkFaoGk+oUFLZtLKo3dNXQZp5WXSKnk+zKS198JhZuxHRORmpkXkTp8+jV69euG2225DSkqKWcN62iOPPIKMjAwsXrwYdXV1aGxsRElJSdR+OTk5mDt3Lnr16mXBLImIiNyJQVr3igzm2ancAWBdkNbMTFqnljtQ+lroPSejFg7TMr7dFg5zYiatUkrLDZiVHctALRF5naFf+99zzz1o2bIlAoEAzp07hxdeeAFXXnkl3n77bSOHpf/j8/kwbdo0rF69GpMmTUJubi7atm2LpKQkZGZm4tJLL8Uf//hHrFq1Cr1797Z6ukRERK7ixSAtFw6zByNKAchhZiatWeUO7JhJq3UOasY0MpNWab8iei4cFm8OdsykNXrhMJY7ICIyh6GZtHfeeSfGjRuHOXPm4L333gMAVFRU4MEHH8Srr76KmTNnYvDgwUZOwfHGjRuHcePGaeojJycHM2bMwIwZM3SaFREREcVTW1sbtc3tQVqvZNLaeeEwwF5BWmbSxh9D6Zy0zMHqhcPktpWid7kDLWMoYVQmrdoxlS4cprR/I/cjInIzw7/279ixI5566im8+uqr6NOnT3B7SUkJbr31VkyZMgV79+41ehpEREREphJl0vr9fgtmYgwuHPYfzKRtovfCW7F4NUirNSvSzJq0evStd7kDOe3iHXOzM2ljMWLhsFjjxNtXa8YtEZHXmXZGOXDgQPz973/HrFmzkJaWBqDpg/mTTz7Bz372M/zpT3/CqVOnzJoOERERkaG8WO7AC0HaQCDgiJq0odyYSWtWuQMtQWYvBWnl9mNUuQO57azK1tSyiJfZC4fJfd8aEdBlNi0ReZ2pX/v7fD7ccMMNeP/993H99dejRYsWCAQCqK+vx9KlS3HllVfib3/7m2fqmREREZF7MUjrTmZmi6rFTFp19A4y22FhJb2Ok141adX0LadPPbMyrcykVRvEN7qMhhmBVwZoiYhMDtI2S0tLw8MPP4y3334bF198cXD7yZMn8dhjj+Hqq6/G2rVrrZgaERERkS68GKT1whftoudotyBtZLDDjZm0LHegbg5mljuQm0lrRLkDuZm0ahYOU0Ov95GafpRm35q1yBfLHRARRbP0jLJPnz5YunQpnnrqKXTq1Cm4fe/evbjrrrtwyy23AOAHOBERETmPF4O0XsikFQUiWe6giZmZtGaVO3B6kFYNvRYO06tvNbQcJzWZsEoyaWONqWdGrF0WDpPal+UOiIii2eJr/6uuugr/+Mc/cMcddwQX1AgEAvj666/5QU1ERESOxCCtO4mCgXbLpLVTTVonlTtwY5DWbjVpRcxcOMyqTFot/cnJpLXzwmEsd0BEJJ9tzihbtmyJqVOn4r333sMVV1wR9fiRI0fw+uuve+JndEREROR8bg/SirJHvRCkFZ2L2j2T1qzsRTMz4xikVTcHp5c7kEvLwmFGZNLKXcRLz3+reh47ufNSMn/+WpaIKJptgrTNsrOzMX/+fPz1r39Fr169EAgE4PP5UFNTg0cffRRXXXUV3n//faunSURERBRTbW1t1DY3BWmZSfsfzKSVHoflDuKPoWROTl84TGtgTu+Fw5yWSRtJS5kErQFVq8odMOOWiNzMXmeUIYYOHYp33nkHM2fORGpqavBDfN++fZg6dSp+8Ytf4N///rfFsyQtKisrMXToUFx++eWq2i9btgx5eXmq2xMRERlJlEnbXNbJDbwapHViJq2VNWmdnkmrJcjs1CCt2bVCrVw4TE5fcvpQ00bUXms/on31KHcgd1+WOyAi0sa2QVqg6YT31ltvxfvvv4/rrrsuuNpkIBDApk2bcPPNN+PXv/41tm/fbvVUSaG6ujrcf//9OHbsmKr2u3btwhNPPKHzrIiIiPTj9nIHoiCtF8pSMZNWmpU1afV4jqI+vJhJq9fCYXYsdyBnPlrnoGegVetYsdpJtbV7uQMGc4nIzex1RimhXbt2+OMf/4jly5ejoKAAAILB2k8//RTjxo2zeIakRHV1NaZOnYrPPvtMVfva2lpMnz4dNTU1Os+MiIhIP14M0jKT1h7sFKQ1KqBiRN1dN5Y7UDO+2TVplTBj4TArM2njtbX7wmFSfbLcARGRPI4I0jYbMGAA3njjDTz++OPIzMwMbvdC1oZbbNu2DePHj8dHH32kuo+nn34aW7ZsQcuWLXWcGRERkb7cHqT16sJhzKSVpne5gFi4cJj6OSgdU04/Wp6rHuUOlPSplJmZtFrfH3LHiUVLQFVLJi2Dr0REDgvSNrvmmmuwZs0aTJo0yVUXO25WU1ODWbNm4dprr8WOHTuQmZmJ4cOHK+7nyy+/xJIlS9C1a1dcf/31BsyUiIhIH24P0no1k5ZBWmlmZtIaUe7AC0Faq39iblS5A2bSGrtwWLx5qZ2HXuMSEbmFvc4oFWjdujXuv/9+vPPOO/jxj39s9XQojoqKCixfvhwNDQ0YNWoU3nnnHfTv319RHydPnsTMmTPh8/kwZ84ctG7d2qDZEhERaccgrTux3IE0MzNpWe5A3Ry8Uu5Ay8JhWtuYmUkrZxwzyx1I7cdyB0RE8kSfXTtMz5498cILL1g9DYrD5/Nh6NChmDJlCi6++GJVfcyaNQuHDx/G5MmTMXDgQHz55Zc6z5KIiEg/tbW1UdvsFszTgguH/QczaaXHMSuT1qggrZbX1oggrdY5WL1wmNy2Uo/pXe7AaZm0SseN1c6IhcOUziHeuEREXuP4IC05Q3Z2NpYsWaK6/cqVK7FmzRr07dsXd999t44zIyIiMkZkJq3f73fVRSgzaf/DbsF3L2TSGlHuQO8gMzNp5QVA9fhc1DN4q/WYG5lJa/eFw1jugIhIGwZpSZbKykqcOnVK9v6JiYnIzs7WZezS0lLMnj0bfr8fTz75JPx+vy79EhERGSkySOumUgcAFw4LxUxa6XFY7iD+GErmZNcgrVxaa9KakUmrpm87ZtLaZeEwvcsdEBG5GYO0JMvixYuxaNEi2ftnZ2dj7dq1msdtaGjAfffdh7Nnz+J3v/sdevfurblPIiIiM7g9SMtM2v9gJm0TM4MuZpU7sDpIK6dPvdmpJq3RC4fJ6UvvTFot7LRwmFZqjzMDuUTkZvb62p8owvPPP48NGzZgyJAhuOWWW6yeDhERkWwM0rqTEzJpjSgFIIeZx8aI52jHIK0VmbRy+pHzuN5Zr7H6VHuc5Mwxsi+tmbR61piVk0nLcgdERM7BTFqSZfr06Zg+fbqpY37//fd4/vnn0bZtWzz++OP8g0xERI7ixSCtFxYOEz1HuwVpvZBJy3IH6uZg5sJhcvs2otyBlv60jqGmvdyyBWZk0rLcARGRdRikJdtavnw56uvrUVNTg//6r/+KeryqqgoAcOjQIVxyySUAgAceeABXXXWVqfMkIiIS8WKQ1quZtHYvd2DWz5qtzKQ1KkirZf6itk4N0qoJnllZ7kDPYJ+dM2nlMKvkiFIsd0BEFI1BWrKt5j/ctbW1qKiokNyvsbEx+HhNTY0pcyMiIoqHQVp3ckK5AzstHGZWgEiP56j3/N2USWv3cgdy+zQiuB/JyExavdopbSP3OSnJziUiomgM0pJtPf7443j88cclH583bx7mz5+v2yJlREREeqqtrQ2777YgrSh71AtBWi4cJk3vTNRYWO5A3RzsmEmrR7kDIwLCUm2szKR1arkDqTnI3VfpPkRETmWvr/2JiIiIXCIyk9bv91s0E2Mwk/Y/mEkrPY5ZmbQM0qrrTy69Xke7lTuIbGfU+0hLG62ZtHq8dkbUj2W5AyKiaPY6oyQiIiJyCZY7cCdm0kozM5PWiHIHbgzS6pUBqybD0cpyB3qMJdXGLZm0SsbQkkkrtS8REUVjkJaIiIjIAF4M0ooCmG7DTFppZmbSstyBujmoLXeg11hmlTtgJm38TFojAt5ayx2oHZeIyC3sdUZJRERE5BJeDNIyk9YevJhJyyCtvDkYWZNWbZDWCHouHGZmJq3SuehJS4avGqL3NmvSEpHXceEwB5g7dy4WLFigeoGsXbt24Y033sD69etRVlaG+vp6ZGVlITc3F2PGjMGVV14pvNAyWmFhIQoLCy1rT0REZCS3B2m9unAYM2mlmXlszCp3oGX+XgvSqmXmwmHxWJ1Jq3Z8Oy8cJrUvERFFY5DW5jZt2oRFixapbj9v3jwsXLgw6qKptLQUpaWl+Pjjj5Gfn48nn3wSvXr10jpdIiIi+j9uD9J6NZOWQVppZgb3jCh3oHe5BqcGaeX0o3Ysq8sdODGT1qyFw5SOw3IHRET6s9cZJYUpLS3FlClToi7y5Jo9ezbmz58fvGBKTExE//79MXDgQGRkZAT3KyoqwsSJE3HgwAFd5k1EROR1gUCAQVqXYrkDaVZm0rLcgbw5eKXcgZR4z0NN0FZNH1Jt7LBwmBZK+mW5AyKiaAzS2tT27dtx44034ujRo6rar1mzBkuXLg3eHzVqFD799FOsXLkSy5Ytw+eff45HH30UKSkpAICKigoUFhZafuJERETkBqJgpd/vt2AmxuHCYf/BTNomZmbSmlXuQO8grdJ5WnFubuTCYXLaqenTyIXD5PSlNrgqh9kLh7HcARGRdVjuwIZWr16Nhx9+GNXV1ara19XVYc6cOcH7w4cPxzPPPBN2wp6UlIQJEyYgOzsbv/71r1FfX4/i4mK8++67GDNmjObn4DVuyByKvLD2woU2EZFRRH/DExMThX8v3PT5W1tb64q/ibHU1tYKt9vpeYsCmGbMTzSGUWOLgndax9F7/qKAbH19vaL+Ivvw+Xyanqec46TXcRCNpbRvUXBP7jzUHCfR52/k8xDtE/ocRL+CDH08Vvt4bUWk3lMNDQ2or6+XfB+KAttS+8v9ZafUlxCi7XbMtCYi61xzzTWOPgfWC4O0NlJeXo6nnnoKq1at0tTPhx9+iIMHDwJouiCcNWuWZIbHsGHDMGHCBCxbtgwAsGTJEgZpFWpsbMTGjRutnobuioqKrJ4CEZFjnTlzJmrb6dOnZf29cMrn79mzZ6O2HT161JV/E0Pt2rUratvBgwdt9bwj338NDQ2mzE/0C7AtW7bgyJEjuo8V+f7T4zmWlpZGbduzZ4/qfvft2yfcpqS/mpqasPt1dXWK2kd+YSSn/d69e6O27d+/X/FxOHXqVFQbpcc48vlXV1cL94388kRqv8jjEdlO9Pl78uTJsL5Onz4dtc/x48eD++zcuTPq8UOHDsV8/PDhw9i4cSMqKipi9l1VVRX2WPPrKXqvNb9mlZWVUY9t3rwZJ0+ejNq+ceNG4b/XHTt2RG0TfRkp+gyorKwUXotGBn5rampklY4x65cBRGSurl27OuYc2Ej2+m2Whz3//PMYPXp0WIC2V69euOOOOxT39d577wVvDx06FF26dIm5/4QJE4K3i4uLhSdPREREJJ8oq0lUHsDJRBfTXsiAED1Hu5U7MKIUgFpmHRujMvC0zF+Pn3i7beEwrePqvXCYmjkYUZNWj7aRlC4cprZ/OfvpOQeWTiAiN7PXGaWHLV68OOyb0fHjx2PFihXo0aOHon4CgQDWr18fvH/JJZfEbZOXl4cOHToE769du1bRmERERBSOQVr3EgVR7BakjZyPWT8hFgWDjQqoGPEc9Z6/HRYOUzO+mbWF4/VtdEBOTk1aNf3o2T70GNh94TCnzYGIyG7cdbXgAvn5+ZgxYwYGDRqkqv2BAwdw6tSpsP7kyMvLC/48ZfPmzarG9qqEhAQMGDDA6mlo1tDQEPbzgvz8fNutVk1E5BT79++P2tapUycUFBREbXfq568ooJWamip8jm4iKnfQo0cPWz3v9PT0sPuBQMCU+WVkZERtGzBgANq3b6/7WG3bto3apvU5fvHFF1HbcnJyVPcrKhvQtWtXRf21bNky7H5ycrKi9qmpqWH3W7RoEbf9li1borbJeY9HBs5Fnwfr1q2LahfrGMt9/pFfgrVq1Uq4X6tWrWK269+/f1SbjIyMsL5Cr7VE+4jKIWRnZwcfF31h17FjRxQUFARL1oVq3759sG3k/Jtfz+3bt0e1a37N2rVrF/VYfn4+2rRpE7bN5/OhoKAAnTp1ito/Jycnalvr1q2jtonGysjIEAaXI//OpaSkyPoy021feBLRfzjlHFjK5s2bNf96iZ9wNjFo0CCMGzcOI0aM0PSNceTJYPfu3WW169q1a/C26MKSYnPjyUKLFi1c+byIiMwgyhBKTk6W9bnqpM9fn88X9lwbGxsdM3e1ROdpfr/fVs878gInEAigRYsWlvxMOCkpyZBjExkQ1OO9J8qITkxMVN2vqF1CQoKi/kSZtErai8oFxGuv9jiI3l+RbUR9x/rMUzP/5nFE+8X7NyCaX+Qxl+q3eXu81z1We1FwIrSt1GsT67hKtRGVcZDaX+420fFNSEiQ9WsDuWURWO6AyL2cdA5sFG8/extZsGCBLv2EFmtPSEhAZmamrHah5Q5EBd+JiIhIvsjFaICmYJXbJCYmhi3+omXVeacQZUjYvdwB0BTcMvun41Jz0YMR5Q70/pm/HcodqJm/2uOgtiatHuUO1I4lp52cmrTx+pFTskDu+HLHjdfO6nIDVo9PRGRH9jqjJM1CV+ls3bq17BPj0J9CiVb6JCIiIvkiV60GmrIt3SYy68sLQVpR3V27/TRPdP5nxuJhZgawjVikygtBWiMXDpND6zE2euEwo95HctsoCfbKpUdQWO7rpuS56/VlABGRmzCTVoHLL78cBw4c0NRHz549sWbNGp1mFO3cuXPB25E1nGIJvXAUZf8QERGRfKIgrVszaUN5IUjr1ExaM4K0Zi44JSp3oBWDtNL76JVJq/T5GxGMV9qfEzJp9Vg4TGnGrpJgrp7BVwZpicjN7HVGSZqFXhQquWAIvcjywgUWERGRkRikdS9m0kqzMpNWD3rP301BWqPGErVTwyuZtEo0P1ep5yw1lpZMWiVY7oCIQnXu3NnqKdgCg7QuE3qRoORkPPSiyo0XkURERGbyapBWFMB0G2bSSjMzk1aPAKic9syklT+u2kxaJTVp9Q78Oi2TVmnAVe04avdnuQMiUmvEiBFWT8EWWO5AgeXLl2u++DB6pbqUlJTg7dDSB/GEljhITk7WdU5ERERe49UgLTNp7cELmbRSz1HLa8EgrfQ+RtakjcXshcOclkmrZeEwvcaJtx/LHRCRHEbHypyCR0GBDh06WD2FuNLS0oK3z549K3sl3zNnzgRvp6enGzE1IiIiz/BKkNaLC4cxk1aaaAxm0sYfQ8mcrApQ6ZVJq7bveH0aeZz0zqTVcy5a2hhR7kBrJi0RkdfZ64ySNOvYsWPwdkNDAyorK2W1O3r0aPB2Zmam7vMiIiLyEq8Eab2YScsgrTRR0MXMmrQM0safg1fKHajtz4xMWq8tHKbXHJTsQ0TkVPY6oyTNevToEXa/tLRUVruysrLg7Z49e+o6JyIiIq8JLSPUjEFad2C5A2lmZtIa8RydEKTVOgerFw4zq9yBnguHmZFJKzfYquT9qOfCYVqw3AERkXwM0rpMdnZ2WLmCkpISWe22bt0avN2nTx+9p0VEROQpokxav99vwUyMxYXDmjCTtokbM2m1zN9rmbRq6VHuQG2fRvzk3gmZtGrHibc/SxgQEWljrzNK0sXgwYODt9etWxd3/61bt6KioiJ4f8iQIYbMi4iIyCtY7sC9nJBJKwqeuC2T1ogAkd7z91qQ1spyB3oFb+2eSauE0QuHWVXugIjIzRikdaGRI0cGb3/yyScoLy+Puf/rr78evJ2Tk4O8vDzD5kZEROQFDNK6FzNppZkZdPFKuQM5fSrZ3+lBWilqg9lyjofSY25kJq3S0gVq2mhZOEyqPzl9stwBERGDtK40cuRIZGVlAWiqiTdz5kzJi6bPP/8cK1asCN6fOHGiKXMkIiJyM68EaSMzSL0QpHVCJq0ogGnGz5Ajg6RGBq+5cJg6etWbVbuPVkYHudUGba3KpFV7PPR4r1tV7oBBWiJyMwZpXcjv9+Pee+8N3l+3bh0mT54ctohYfX093nzzTRQWFgYvNnJzczF+/HjT50tEROQ2XgnSMpO2CTNpm+gdUIyFQVr1c1A6plpWljvwWiZtrHZqsm/V7mtEn0RkvPT0dDz77LPYtm0bzj//fKun42mJ8XchJ7r22muxYcMGLF++HEBToHbkyJHIy8tDamoqdu3ahePHjwf3T09Px9y5c6MutoiIiEg5BmndS5RJyyCteAwjj4sTyh3okdHs9Zq0akn1GW+OTs2k1XPhMCvLHdglY5vIa0pLS5GammrZ+BdddJFlY9sNI3Iu9sgjjyAjIwOLFy9GXV0dGhsbUVJSErVfTk4O5s6di169elkwSyIiIvepra2N2uaFIK0ogOk2okCgE8odMJM2PlF7LYFmO2bS2jFIq7VPNf1qmUM8emfSqm1r94XD1GKQlkh/VgZoAeDXv/61pePbCYO0Lubz+TBt2jSMHTsWb731Fr744gscPnwY1dXVSEtLQ9++fTF69GiMHTsWfr/f6ukSERG5hiiT1o1/a72YSctyB9KcXpNWdIzcVu7AyCCtWmYuHGb3TFqlbeVk0hq1cJiSPrXuS0Tu9sMf/tDqKdgGg7Q2N27cOIwbN05THzk5OZgxYwZmzJih06yIiIgoFq+UO+DCYU2YSSsew8jAnhPKHTg1SCunH7VjaT3GRi8cpkcbLQFbPQOXSscxauEwljsgso9Ro0bh/fff173f/fv347e//W3YovSkjr2+9iciIiJyAa8EaZlJ24SZtE0igy5Oy6RlkFZ6H6eVO1CbgWv3TFo9g8xas15Z7oDIWZYuXYp3330Xc+bMCdt+9913h90fNmyY4r67deuGZcuW4amnnsL999+P9evXy277hz/8QfF4bsZMWiIiIiKdMUjrXsyklWZmJi2DtMbRK9tWbj96lDuQ284OmbR6ttVz4bBmRiwcJsJyB0TmuummmwAAv/3tb3Hu3Dl8+umnuPDCC/Hoo4+G7feHP/wBL7/8suL+k5KSMG3aNADAuXPnZLUZO3Ysrr76asVjuZm9vvYnIiIicgGvBmkBc4KBVmImrTQzM2lZ7kDdHKyuSWtUuQO1AT8rMmm1vIZGLhymx/5a6tyy3AGROVq0aIGHHnoIH330EZ588kmkpKSEPd6jRw+8//77+PGPf2z4XAoLC/lvOoK9ziiJiIiIXMDLQVq3Z9Myk1YaM2njt7U6SKtmTLn9OKHcgV0zadVmxBqxcJgWLHdA5A4jR47Ep59+in//+9/o1q2b4vZ2+/LaSXjkiIiIiHTmlSCtKDjp9iAtM2mlOb0mrd6vrV2DtGqOk15BWqV9Gx2QYyZt9P4sd0DkfKmpqWH3L774YlX9DBw4ENu2bcO3336L0aNHyw7YJiUl4bLLLlM1ptfZ64ySiIiIyAVqa2ujtrkxSOvFTFoGaaVFjsFyB/oHac2Yg9mZtEaUO5CbSSsnSOuETNpY9Ah0s9wBkbOsWrUKrVu3BgCkpKTgkUceUd1XSkoKLrroIvzjH//Azp07Zbd78cUXMXToUHTq1Al33XWX6vG9hguHEREREelMlEnr9/stmImxvBikdUK5A1EQw4pMWpY7cGYmrZEZjkaVO4jXTk9mZ9LKoSUwHEnL+5blDois9+CDD2LEiBHYvHkzNm/ejH79+uH888/XpW+/349Ro0bh/fffD25bsmSJcN/evXvjX//6V/D+c889p8sc3I5BWrJMZWUlrr76arRs2RJr166Nue+ZM2ewbNkyfPjhh9izZw/OnTuH9u3b44c//CFuueUWFBQUmDRrIiKi+LxS7kAUpBUFMd2EmbTSzMykNSIQ7cYgrZw+5TxuVbkDudSOZbdMWhE7LBymtH85+7HcAZH+3nzzTfzXf/0XAKBnz57o2bOn7mMsWbIEU6ZMwe7du3Hddddh4sSJuo/hZQzSkiXq6upw//3349ixY8jOzo657759+zBp0iSUlZUBaPr2JikpCYcPH8b//u//4h//+Afuu+8+TJo0yYypExERxeXlIC0zaa1nl5q0Rma8iZ6jEzJptb4Oblw4TElNWq2BXz0WDtMafFcaPI3FrIXD7FTugIikjR8/3vAxOnfujL///e+K2z377LO4++67g/cTExMxePBgbN++Xc/pOZ69vvYnT6iursbUqVPx2Wefxd23vr4eU6ZMQVlZGTp27IgXX3wR33//Pb777jusWbMGw4cPR2NjI+bMmYN//vOfxk+eiIhIhsggrc/ns10gTw9eDNI6NZPWjKw1qzNpnRCkdUK5A7n9qNnHqCCt2tdezcJhSvsE4h8bO2XSstwBkTNNnz7d6inEdP311yM/Pz94/5FHHkFKSoqFM7Ine51Rkutt27YN48ePx0cffSRr/w8++AA7d+6Ez+fD3Llz8ZOf/AQtWrSAz+dDz5498dxzz+HCCy8EAMyfP9/IqRMREckWGaR1YxYtIM4gdXuQlpm00iLHMLsuqBHlDrQEmp0apNUrWG3mz9nVLhwmh9rgs5r+zMykVTNOvH6VvHfUvj8YpCWK1q9fPxQWFlo9jZgyMzPx9ddf46OPPsL333+P3//+91ZPyZYYpCVT1NTUYNasWbj22muxY8cOZGZmYvjw4XHbffrppwCAiy66KBiMDdWiRYtgzZWioiJUV1frO3EiIiIVvBKkZSZtEydk0lpR7sDI42JEtrDoGHkxk1av4Jkdyx3Em49RgWUrMmnjUVKaQMt+Uvuy3AGRPh5++GF8++236N69u9VTiSslJQUjRozgmkIx2OuMklyroqICy5cvR0NDA0aNGoV33nkH/fv3j9uuX79+GDVqFC677DLJfTp06ACg6Q/9mTNn9JoyERGRarW1tWH3GaR1D1EmLYO04jHMzqRluQN95mDnmrRS9Fo4TO4cYvUTr089M2n1HEeP/VnugMh8Q4cORcuWLa2eBumEC4eRKXw+H4YOHYopU6bg4osvlt3ulltuwS233BJzn2+//RYAkJycjIyMDE3zJCIi0kNkJq3f77doJsYSBWlFQUw3EQU7We6giZmZtGaVO3B6kFZOn3Iet0tgTO9MWrX9K6VXJq1UOzsvHKb3e8cu70Uiu2CA1l0YpCVTZGdnY8mSJbr3e/z4cSxfvhwAcOmllwovFomIiMzGcgfuxXIH0szMpDWi3IEbg7R6vQZ2yaTVunCYnpm0UtmzRmbS2n3hMDVzCd2HAVgiZdq0aYOBAwdaPQ3SESNaJEtlZSVOnTole//ExERkZ2cbOKOmi8D77rsPJ06cQEJCAu68805DxyMiIpLLK0FaLhzWhJm0TazOpGWQVp85uKHcgdqFw+yYSSunndELh8ntl+UOiMzj9/vx1FNPoVWrVlZPhXTEIC3JsnjxYixatEj2/tnZ2Vi7dq1h82loaMCMGTPwxRdfAADuuusu5OfnGzYeERGREl4J0jKTtgkzacVjuKHcgZbn4KYgrZqx5AZplTB64TC5fWmpSauU2oXD9AwMs9wBkf0cOnQI7dq1s3oapDMGaclxzp07h3vvvRcfffQRAGDs2LG46667LJ4VERHRfzBI617MpJVmRP1UKUaUOxAdI2bSqhtXCSvLHajtRym5gVat7w8t7fQodyC1H8sdEOmPAVp3YpCWZJk+fTqmT59u9TRw/PhxTJkyBRs2bAAA/PznP8djjz3GP+hERGQrXg7SenHhMGbSisdguQNvBWmNKHegltMyaeWWK1CzCJiZC4eZgdd9RGCSmosxSEuOsXfvXkyePBn79+8HANx88834/e9/zz/URERkO14O0notk9aO2V9eyKQ1q9wBg7TyxzWi3AEzafUZU8k4ct9jLHdAZI2EhARMmjTJ6mmQQez1tT+RhKKiIvzyl7/E/v374fP5cP/99+OBBx7gH2kiIrKl2trasPtuDdJ6ceEwM7NF1fJCJq0R5Q7cGKTVi15BWqV9qw3Sqs2klfsesCqTVqqdUUHXyHHi0VrugIhi+8EPfoDPP/8cF110kdVTIYMwk5Zsb8eOHbjttttw4sQJJCUl4fHHH8fPfvYzq6dFREQkKTKT1u/3WzQTY3kxk9YJQVojskzlsDqT1gtBWjPmYFQ2qVTfZpY7UBtI1kqvTFq3LxzGQC1RbIsXL2aA1uUYpCVbq6qqwm9+8xucOHECfr8fzz33HH784x9bPS0iIqKYWO7AvSLLHdht0TDAG5m0LHdg3BzcXO4gHqdm0uoxntKFw+yc1U3kVm3atLF6CmQw+331TxRi4cKF2Lt3LwDg97//PQO0RETkCAzSupcTMmntEqQ1MphiRLkDvReFMyLb1+lBWjntlI6rpJ2aOerxPjY6k1aPcgexaMmklTsHPcoyELld586drZ4CGYyZtGRbtbW1eO2114L358+fj/nz58ds89Zbb/GDi4iILBUIBKIClV4K0kZmmrqNUzNpzfhZd+QYZmfSeqHcgZOCtHr2Hat9rO1Kx1Lbj5GZtGrbxQsGm1VKg+UOiPSRnJyM1NRUq6dBBmOQlmxr+/btOH36dPB+RUVF3DZuvzAkIiL7E2WSeilIy0xa63khk5blDsybg5pxpcYxqtxBvHZamJlJq7atnguHGfEFiJ4YyCWvevDBB62eApmAQVoHmDt3LhYsWIDs7GysXbtWcftdu3bhjTfewPr161FWVob6+npkZWUhNzcXY8aMwZVXXim8yDJaYWEhCgsLJR/Pz8/Htm3bTJwRERGRdpGlDgD3BmlFWaRuD9I6NZPWioXDjAxgG5Et7MYgrZw+lT4uxYnlDiJZnUmrZzDULguHyZmL3H2U7EfkJm+99RbGjRtn9TTIBAzS2tymTZuwaNEi1e3nzZuHhQsXRl0wlZaWorS0FB9//DHy8/Px5JNPolevXlqnS0RE5Hm1tbVR29wapGUmLTNpY43Bcgf2rEkbj9kLh2ktd6DH625EoFiqDz1fQ7XBXaULh8mdF8sdEOnv7rvvxnXXXWf1NMgk9jurpKDS0lJMmTJFmJEjx+zZszF//vzgxVJiYiL69++PgQMHIiMjI7hfUVERJk6ciAMHDugybyIiIi8T/d32+/0WzMR4XgzSRmbSMkj7H0ZkfUpxQrkDrdm+eszHzJq0cijtW+/s3HjHw+6ZtGpeBzOyr83EQC55zZgxY6yeApnIfmeVBKCpHuuNN96Io0ePqmq/Zs0aLF26NHh/1KhR+PTTT7Fy5UosW7YMn3/+OR599FGkpKQAaKr3WlhYaKs/wERERE7kpXIHXlw4LDIQyHIH0mO4odyBluegNZPWaUFatQFVJX2KGH39oncmrZ5tzVo4jOUOiMyXkJCAmTNnYvjw4VZPhUzEcgc2tHr1ajz88MOorq5W1b6urg5z5swJ3h8+fDieeeaZsJPMpKQkTJgwAdnZ2fj1r3+N+vp6FBcX49133+U3NURERBp4PUjr9kxaljuQZnUmrdZgnegYWVnuwKogrdx+4u1jZbkDO2fSqg26xmprxcJhLHdAZKwzZ84Ek+rIOxiktZHy8nI89dRTWLVqlaZ+PvzwQxw8eBBA08XTrFmzJC8ghg0bhgkTJmDZsmUAgCVLljBIq4IbLkgjM5/cnglFRGQU0ZesLVq0kPxb4bbP33Pnzrni76KUyOcW67W1iihQUldXZ/g8I4OcPp/PsDGNeI6iIG1DQ4PqPkX/lpX0J7WfkvmoOU5a5x06dmQbrX3L7RNQd34u6ks0Zqx9RH00NjYGHxf11XwMRI+F9i16Pevr62OOKXpfx9ou6ktqXnK2NTY2ys6IlhMk5y8/ySuSkpJsd36hN7edA+uBQVqbeP755/Hiiy+iqqoquK1Xr14YOXIkFi5cqKiv9957L3h76NCh6NKlS8z9Q4O0xcXFKC0tRbdu3RSN6WWNjY3YuHGj1dPQXVFRkdVTICJypD179kRtq6yslP23wkmfv3v37o3aVlpa6sq/i81Cz9WApuCF3Z7vvn37hNuMnmfkxWRVVZVhYx46dChq244dO9C2bVvVfR4/fjxq2+bNm9GyZUtV/YnKllVUVMg+JqKL85MnTyo6pqLnVFxcjPLycsk2hw8fjtq2ffv2uNnYNTU1Yfdra2uj5io6Jlu3bsWZM2eEfZ46dSrsfiAQiOpTdJxOnDghPE4nTpyI2hYa9Nu+fXvU40ePHo3qKzJQePr06eA+os/F/fv3Bx8XzeH48ePYuHGjcPzDhw8H20YeDwDYuHEjysrKorbv2rULHTp0EB7zkpISyc8y0b8tUf+VlZVR20Tzq6iokPWLg6qqKln7Rb7PiNzKbucWZnDSObBR7Pf7LI9avHhx2B/K8ePHY8WKFejRo4eifgKBANavXx+8f8kll8Rtk5eXhw4dOgTvr127VtGYRERE9B+igIGoLIAbiOqxuj0LwqkLh5mRfWZmKQgjyh3IHUdLW7PLHaih13GUm2kZi9rnq6TcgVFzUNKH3d67kbTMT+9yByyJQF5w7bXXWj0Fsog7rxgcLD8/HzNmzMCgQYNUtT9w4EDYN5j5+fmy2uXl5QW/Zd28ebOqsYmIiIhBWrcHaSODFXYM0oqCGFYsHGYkI4K0ZgRFvVSTVkTpczI7IGd1TVo1+6t5PZW2seoLAyIvysjIwG233Wb1NMgi7rxicKBBgwZh3LhxGDFihKY/eJE/r+nevbusdl27dg3e3r9/v+rxvSghIQEDBgywehqaNTQ0hP28ID8/35YrVhMR2V3kT0gBoFu3bigoKBDu7+TPX9GFe4cOHSSfqxtELgLXqlUr2z1f0c/Vu3TpYvg8IwPWbdu2NWzMzz77LGpbr169NI2XlpYWta2goAB+v19Vf6KSAu3atZM9R9HPujMyMhQ9x8zMzKhtffv2RXZ2tmSbrKysqG19+vRBv379Yo7VqlWrsPuJiYlRc5WaT8+ePYV9RpavCAQCUX3W1tZGtZM6ThkZGeLJ/5/evXtHbcvKyorqK/K9npqaGtxHVLKge/fuwcdFJSia5yv6kq9Tp07Btunp6VGPFxQU4IsvvojanpOTg4KCAnTs2DHqsT59+kQtSOT3+1FQUCD8txV6rdisffv2Udtat24dtS0zM1PWl1mpqamy/vZFvs+I3OSee+7BjBkzwn7p7GZOPgcW2bx5s+YvrBmktYkFCxbo0k9ozaGEhAThiZBI6IeAqG4RxebGDKkWLVq48nkRERlNFLhs2bKl7M9UJ33+JicnR21rbGx0zPzVEP2k327PNzKQDDRlvRk9TzOPjahfreOJ/u36/X7VfWp9HUQXqkpfR1Ef8T5jRAkjSUlJcccVtYtsIwrWxeo7cv9AIBC1r+iCWOo4xcssFs1P9L6K9VxFfSQmJgYfF70vmscQzTn09RKN26JFC+Hr3Nyf1HxEEhMThX1JHRc5WrRoITsTW06fdvz1ApFe7r33XnTu3NnqaVjGSefARuEnnMucPHkyeLt169ay/4ilpqYK+yAiIiJl6urqoraJLsrdQHQi7faViM2su6qWaE5mlCIwsxSEEc9R759026EmrZo5qC0bEasEQKxtWssdKOkz3vGwug6w2lIJepQvULo/yx0Q6U/0iw7yFm+HqBW6/PLLceDAAU199OzZE2vWrNFpRtHOnTsXvK1kJdrQn3GJfjJERERE8jBI6+4gbWTNXTv+LM8uC4cZGcRxQk1aNwVp1dSk1WPhMLXt9XzvifqS81yl9jerJm1zO7njxdpf7nsi3lzkjK/XfkROc9FFFzFIS8ykdZvQC0Ml2QuhF1luv7giIiIyEoO07j6PYCatNDMzab0QpJXbp1JmBWnlMiKTVkl/Shb9kkPLQl5mZtIa8YWB1n9DRr7PiOzs/PPPx4svvmj1NMgG7HdWSZqEZnMoORkPvaBy64UkERGRGbwepI3MNHUbp2bSmhGkNTOAzXIH6ueghpp+nFLuIB67Z9Lq1V5p5q2IGRn7RG7zl7/8Bdu2bcMPf/hDq6dCNsByBwosX75c84WH0UWQQ1fpDC19EE9oiQPRIiBEREQkj9eDtMyktZ5dMmndUO5AC9EclbwOLHcgFggEdH1vOSmTVsl4Rh2jWP2bUe6AyG26du1qy3MJsgaDtAp06NDB6inEFVrD5OzZs7JPYs6cORO8nZ6ebsTUiIiIPMFLQVpRFqnbg7TMpJVmZgDbjCCt1vnbNZPWyoXD5LSL91jk9Y3TMmm1sHu5AxGWOyCKrX379lZPgWyE4XqX6dixY/B2Q0MDKisrZbU7evRo8HZmZqbu8yIiIvIK0QKcoQt0ugkzaZlJG8rMTFojnqPeC5+5KUir12tpZN969GlGJq1bFg5TMhc9MUhLbtKmTRsMGjTI6mmQjdjvrJI06dGjR9j90tJSWe3KysqCt3v27KnrnIiIiLzES5m0DNIySNtMlJnn9ExaBmmVjau23IGaTNp4fSrpT00bvTNp3b5wGAOrRNHat2+PF154AW3atLF6KmQj9jurJE2ys7PDyhWUlJTIard169bg7T59+ug9LSIiIs/wepCWC4dZz6ogbSSn16RlkFbZuGrLHSjpU9Sv1uNkdk1au2fS6jUvpYyaJ5Ed3XLLLTh06BCuv/56q6dCNsMgrQsNHjw4eHvdunVx99+6dSsqKiqC94cMGWLIvIiIiLzA60FaZtJazy5BWiOPjRHP0Y1BWr1YlUmrNzWviZ0yac2gJENWzn5S+6rdj0FacoOEhATXnhuSNvY7qyTNRo4cGbz9ySefoLy8POb+r7/+evB2Tk4O8vLyDJsbERGR23kpSMuFw5hJG6t/ZtJaH6Q1c+EwOcwqd+DWmrROLXdAROFCE+uIQjFI60IjR45EVlYWgKbFS2bOnCl5wfT5559jxYoVwfsTJ040ZY5ERERu5aUgrSgY6PYgLTNpxczOpDUjSKt1/m4K0tqp3IGWdm7MpDVj4TAzsNwBecmPfvQjq6dANmW/s0rSzO/349577w3eX7duHSZPnhy2iFh9fT3efPNNFBYWBjNCcnNzMX78eNPnS0RE5CZeCtL6fL6okgduD9I6IZNWFMRwWyatEYHoyPbMpFU2rlnlDoxcOIyZtNL7x5pXvHmw3AFRE5/PhwceeAAXXHCB1VMhm4ouJEaucO2112LDhg1Yvnw5gKZA7ciRI5GXl4fU1FTs2rULx48fD+6fnp6OuXPnCmvLERERkXy1tbVR29wapAWa6tKGBmbdvnAYM2nF3JhJyyCtsnGNCNLaYeEwr2XSyh2D5Q6IlOnUqRP27NmDli1bWj0VsjFG5FzskUceQUZGBhYvXoy6ujo0NjaipKQkar+cnBzMnTsXvXr1smCWRERE7iLKpPX7/RbMxBxeyqQNBAJRwU47ZtLapSYtg7TODNLK7UcNpWPrHeAzI2CodyatXm21jKE1k1btuFr2I7Kbdu3aMUBLcTFI62I+nw/Tpk3D2LFj8dZbb+GLL77A4cOHUV1djbS0NPTt2xejR4/G2LFjXX3xSEREZCYvlTsAvBekjcRM2iZmZ9AZ8RydEKTVg1ELh6mtSWtEuQM9Fw4zM5NWbVuWOyCyPy4WRnIwSGtz48aNw7hx4zT1kZOTgxkzZmDGjBk6zYqIiIikeC1IG5lJ6uYgrdnZomqJ5mRUwK8ZM2mj2TWT1qhxrSp3ILed2v60BpGV9Kfnv1M9yx3oMQ8ir7vpppusngI5gP3OKomIiIgczGtBWi9l0orq7bLcQROzM2m9EKSV26fec9ArSCu3b6307FNt9q9ZmbRmLBzGcgdE+psyZQqGDx9u9TTIAZhJS0RERKQjBmndG6R1ciat22rSGvEc9V4Uzq6ZtEYFaZWOI6dvvRcO0yuT1qhsWCsXDlM6hlXlDoicxOfz4dSpU0hNTbV6KuQQ9jurJCIiInIwrwdpRdmmbsFMWmmi/plJ68wgrdx+4u1jZbkDJf3p0beSQK+W11CvTNpY49h9sTYGcslJ/H4/A7SkCIO0RERERDryepCWmbTWs0u5A9akdWaQ1siFw8wqd6DkONkhk7a5jZ6ZtPHamLlwmBwMvpIbjRo1yuopkMPY76ySiIiIyMFqa2ujtrk5SOulhcOYSSvN7ExaI54jg7T6jauE1QuHKe1bTTujM2ljtdOj1ICdyh0wmEtOMnXqVKunQA7DmrREREREOorMpE1ISLBlIE8vzKS1X84DM2nV0TtIK2cMpfuaEaDSa+Ewo8odyOlTCTtl0qqhNCs23nhaFg6T258WDNKSEyQlJeG3v/0tLrvsMqunQg7DIC0RERGRjiKDtG7OogUYpGWQVrp/s7Mv7ZZJCzS9FqHzcnMmrRFBWhG9Fw6L15eaOcUa16hFx6TG1KOOLcsdEMmXlpaGEydOWD0NcigGackylZWVuPrqq9GyZUusXbs27v4ffvghXn31VRQXF6O2thadO3fGFVdcgdtvvx0ZGRkmzJiIiCg+rwdpuXCY9byQSSvqW++MSj3mLydwKXc+ov6Ujq90DkrG1fJclYxrRF1bpXMwM5PWSQuHsdwBEXDmzBmrp0AOZr+v/skT6urqcP/99+PYsWOy9n/66afxm9/8Bl999RVqamqQmJiIvXv34qWXXsLYsWOxd+9eYydMREQkk9eDtMyktZ5dMmmdVu4g8jnoEQxyYpDWyDILZpU7UJJJG9reiZm0agKjZi4cxnIH5DW33Xab1VMgB7PfWSW5XnV1NaZOnYrPPvtM1v7vvfceFi5cCJ/Ph+nTp+Obb77Bd999hxUrVqBXr144cuQIfvOb37g6c4eIiJzDa0FaLhzGTFrAHotN2bHcgVuCtGrGMqvcgZy5aOGETNpY7LBwmNbxiZwiISEB06ZNs3oa5GAM0pKptm3bhvHjx+Ojjz6StX9jYyOeffZZAMDNN9+MyZMno2XLlgCACy64AEuWLEGrVq2wY8cOrFq1yqhpExERyea1IC0zae13Om1EADMes4+NGeUOGKRVNq5V5Q6UjGNVJm28OWgZ34yFw7RiuQPygosvvhhvvPEG+vTpY/VUyMHsd1ZJrlRTU4NZs2bh2muvxY4dO5CZmYnhw4fHbffVV19hz549AIBf/epXUY936tQJP//5zwGAQVoiIrKF2trasPsM0roHM2ml2SGTlkFa9f3qMa4RmbRmlDtQ05ceWafx2ojaKnn97bJwGIOq5AX5+fn4+uuvMX78eKunQg7HIC2ZoqKiAsuXL0dDQwNGjRqFd955B/3794/bbv369QCAnj17onPnzsJ9hg4dCgD49ttvUVVVpd+kiYiIVIjMpPX7/RbNxBxeCtI6JZPWqzVpWe4g/vhqWVWTVm4fWujRn9MyaUWcUu6A2bZkR9XV1VZPgVwiMf4uRNr5fD4MHToUU6ZMwcUXXyy73Y4dOwAAOTk5kvv06NEDQFN2y+7du5Gfn69tskRERBp4vdyBm2vEOzmTVu/AViRRgNTIQIlXyx1oHV9Ov24od2BlJq1e46odS067WIFdvTNkfT4fA7DkeoWFhVZPgVyCQVoyRXZ2NpYsWaK4XXl5OYCmsgZSOnbsGLx99OhR5ZMjIiLSkdeDtMyktZ5dyh2YnUmrNSgYeYz0mL8dM2mdvnCYmrnEoncmbbz+tDxfNy8cpiefz2ebuZD7denSRViakUgNBmlJlsrKSpw6dUr2/omJicjOztY87pkzZwAAKSkpkvs0LyQWuj8REZFVvBakjcwkDQQCaGxstGXwUisGaaWZnUnrhXIHcvpTs79ZmbR69G3GwmHx+jIjkzbW+HLa2GXhMJY7IK+ZMmUKpk2bhrZt21o9FXIJBmlJlsWLF2PRokWy98/OzsbatWs1j9ucjRPrAje01p+bf2JJRETO4LUgbWQmLdD099uNtXidXO7AbZm0Xi13YOcgrZx+lL5GRgR+lVI6B7WBVjnj233hMKl5mP16EJnhrrvuwvz5862eBrmM/b76JwrRnCUbecEbKnQVbbdfCBMRkf0xSOvekgfMpJVmh0xaBmnjjy9nDmbXpDVz4bB4x8OoOcsNtHp54bB4cyAi8gJm0pIs06dPx/Tp000ft3Xr1gCAmpoayX1CV1JMTU01fE5ERESxMEjr3l+2OCWT1ohSAPHYoSat28odmFW/VQ69grRmlTtQu3CY2jZ2zqSVGk/JwmFysdwBeckNN9xg9RTIhez31T9RiOYFw44cOSK5T/PiYkD4ImJERERWCP2FB+DNIC0zaa0l+nmxFZm0LHdgfZDWzIXD5DCi3IHWdm7PpNXjfawlk1bvcgdyMEhLRrvpppvwox/9yOppkAvZ76ySKERubi4AYM+ePZL77Nu3D0DTReJ5551nxrSIiIiEAoFAVLalG2uzhhJlkro1SOuUTFogOohpRSat08odRB4jPYLMWoLldgrSGpm9qLXcgZ4Lh6ltY1YmrV6UvsZm/ftmlizZ3Y9//GP84x//wJIlS/heJEMwSEu2NnjwYADAjh07UFFRIdxn3bp1AICCgoJgDVsiIiIriGqoM5PWPZySSQuYH6Q1+9iw3IG68eXMQc8grZbSBEb1Gas/MzJp5c5F67hqFw7T8gWIGeUOzO6LKNTdd9+N0aNHC899iPRgz7NKov/zwx/+EJ06dUIgEMCLL74Y9fihQ4fwzjvvAACuv/56s6dHREQUhkHaJgzSWs/tmbQsd6BufDlzMDtIq7RPLZyYSSunrZ0XDtO73AGzbclK7du3t3oK5HL2PKsk+j8JCQm49957AQCvvPIK5s2bh6qqKgDApk2b8Ktf/QpVVVXIzc3FVVddZeVUiYiIGKT9P1w4zHpezKRlkDb++ErnoHZcI/t2Qyat2gXA9Fw4TE07NfspwQAs2VliYiJ+8IMfWD0NcjnmaJPt/fznP8emTZvw6quvYv78+Vi4cCFatmyJM2fOAACysrLwwgsv2PYiiYiIvINB2ibMpLWeHRYOMzuwx3IH6vtV8rgUq8odyG0XbyylfUnNSUsmrZkLhxnxXmS5A3KrjIwMPPvss0hPT7d6KuRyDNKSIzz00EP40Y9+hGXLlqG4uBhVVVXo2rUrhg8fjjvvvJM/OyAiIlvwYpCWC4fZ80tiO5Q7MDKAzXIH6sY3clwz6seK6PFTf6V96ZFJq2YsIzNpWe6ASGzDhg3o27cvkpOTrZ4KeQCDtA4wd+5cLFiwANnZ2Vi7dq3i9rt27cIbb7yB9evXo6ysDPX19cjKykJubi7GjBmDK6+80pLC14WFhSgsLJS9/xVXXIErrrjCwBkRERFpU1tbG7XN7UFaZtLaM5PWDuUOzM6k1TtIq8dra8cgrZU1aZUyI5NWj8W6rMykjcfMhcO0YgCW7Khnz54M0JJpGKS1uU2bNmHRokWq28+bNw8LFy6MulgqLS1FaWkpPv74Y+Tn5+PJJ59Er169tE6XiIjI00SZtH6/34KZmMdLQVpm0kozO5PWiHIHke3dmklrVJBWDiPKHSg5pno9D6tq0opYtXCYlv2Ujk9klRYtWqBt27ZWT4M8xJ5f/ROApkDqlClThBd8csyePRvz588PXiglJiaif//+GDhwIDIyMoL7FRUVYeLEiThw4IAu8yYiIvIqL5Y78FKQ1smZtEZnwpmdSctyB+rGVzoHJePaqdyBnguH2SmT1u4Lh7HcAbnN8OHD+X4iU9nzrJKwfft23HjjjTh69Kiq9mvWrMHSpUuD90eNGoVPP/0UK1euxLJly/D555/j0UcfRUpKCgCgoqIChYWFpv2UhYiIyI0YpG0iyjh1A2bSSrNDJq0XgrRax5fTr5ELh5nVp54Lh+nRj5ZxtWbSGrVwmBH0CsAyqEZ66N27N5544gmrp0EewyCtDa1evRq/+MUvUF5erqp9XV0d5syZE7w/fPhwPPPMM8jMzAxuS0pKwoQJEzB//vzgxVVxcTHeffddbZMnIiLyMAZpmzCT1np2qEnrtHIHTgjSurHcQSxKs1jVsCKTVm3g1IkLh8nFwCrZydmzZ1FcXIwLL7zQ6qmQx7AmrY2Ul5fjqaeewqpVqzT18+GHH+LgwYMAmi6cZs2aJXmSPGzYMEyYMAHLli0DACxZsgRjxozRNL4XueFiNDI7yK1ZUERERqquro7a1qJFi5h/J9z4+Xvu3DlX/G2MJArCBwIBWz7XyHO/hoYGQ+cp6ruxsdGwMUUBWa3PURRg0jr/yMCTkmMi2k/p+030eRLvOEkdWzUBuLq6urBsc1HdX6VzqaurC2uj5DjFew6i4yV6zUQBxeZ95PYhejze6yV1PETb6+vrUV9fL/m+FpWiqK+vF/Yltc3n88UNUCupZ6tXxi4DvqRV83oCdvz77iZuPAfWikFam3j++efx4osvoqqqKritV69eGDlyJBYuXKior/feey94e+jQoejSpUvM/UODtMXFxSgtLUW3bt0UjelljY2N2Lhxo9XT0F1RUZHVUyAicpytW7dGbTt69KiivxNO+/w9cuRI1LZt27YhLS3NgtkYa/fu3VHbDhw4YMvzgMgLnbNnzxo6zx07dkRtO3z4sGFjil6L8vJyTePV1taG3a+pqdE8/8gL/KqqKtl96nFMmxM3Qu3atQsdOnSQbHPixImobZs2bYob+BK127hxI1q2bBm8f/LkSeE+Uo4dOxa1bcuWLTh+/HjwfmlpadQ+Up+7olJyoYFB0fvq4MGDUX3V1NSE3a+urg7uI1rnY9euXWjXrl3U9manTp3Cxo0b437GhD7vZsXFxTh8+HDU9u3btwfnH2nnzp1R7/dz585h48aN2L9/f9T+os/5Q4cORW07d+5c1Da5vw49efKkrPIxovdQJJbwIy1GjBhhy7/rXuC0c2Aj2PP3WR60ePHisADt+PHjsWLFCvTo0UNRP4FAAOvXrw/ev+SSS+K2ycvLCztRW7t2raIxiYiIqIko40JUDsBNRBfVbs2EMHtxLC3sUJPWyGPjlHIH8cZQuq/TFg7T2kZtuQM9a9KK2hhVk1bP4KKe718z/n3b9bOUvOdHP/qR1VMgD3P3VYMD5efnY8aMGRg0aJCq9gcOHMCpU6fC+pMjLy8v+M3y5s2bVY1NRETkdaKfwzNI6x6iIKBdFw4T/czeSGYHsJ26cJgSdqpJqxc9jrGWmq9G0asmrZp99V44TMl7JrLcgdI5ENnNZZddhtGjR1s9DfIwd181OMigQYMwbtw4jBgxQtMfsb1794bd7969u6x2Xbt2Dd4W/cSFpCUkJGDAgAFWT0OzhoaGsJ8X5Ofn2/bCk4jIrkR/Q3v27ImCggLJNk7//P3uu++itnXv3j3mc3Yq0c/w4r2+Vgn9iTkAJCcnGzpP0c/Iu3btatiYKSkpUds6dOigabzIf3etW7fWPP/k5OSo+3L7PHv2bNS2Ll26KJrTV199FbUt3nu2bdu2UdvkjCn6OX9+fj5at24dvN+mTRtFfYvKMvTp0wfnnXde8L6S90JWVlbUttAgY2i/zbKzs6P6ihwz9HX95z//GdXH+eefH9ZH5PVeamoqCgoKhKUSQv8dhS4E3ax///747LPPorbn5eVhwIAB+Pjjj6Mey8nJCdbcDH1OBQUF2LJlS9T+onFFJfVEX0p26tRJ1vVtWlqarC81MzIy4u7j9i9HSX9//OMfcccddwg//8g4Tj8HjrR582bNX4rz08smFixYoEs/oSfICQkJwj+oIqEnQKKTbIrNjScCLVq0cOXzIiIykujErGXLloo+T532+Rt5oQ80BT2c9By08Pv9tnyukeUOjH5NREGYpKQkw8ZMSkoSbtcyXmRGYEJCgub5i46L3D5FF6pKPx9E+yp9Xj6fT9b+ooWKI+cbeTzi9S3qMzExMayNqL3UcYp38S/nOUhp3kfLcRDNL/T5SvUt9T6T6rNFixbCrObIY9tMNG5CQkLUuKKsWrkBF1F/UvsR6a13794x60aTOZx2DmwEfsK5TGgh9datW8v+I5aamirsg4iIiOQTlTuQCia5hehk2q2rIYuC8HYNGJhdk9bscgei427HcgeiYLna+eg1J6XlDuSOKedn8kr7VtOnUvHay6lJq6YPUXut/WgRq2+tx5jlDsjulK4FRGQUb4eoFbr88suFP0FRomfPnlizZo1OM4oWuqJm5M/cYgnNgolc6ZOIiIjkYZC2CYO01rPDwmFGHhun1qS1w8JhShm9AJXSseUEadUuHKZHPV4ratIqbaf0eco9xmYEc41axI68q2PHjrYsW0TeZM+zSlIt9OJQyYlx6AWWWy+siIiIjMYgbRO3nkuIFkSza+00ty8cJjrP1focI9vrEWS2Y5DWqIXD1Ixl1HtESb9mZNLKnYPa42X0wmFy+9byntVzPwZpSa7MzEwsXrw4qn44kVWYSesyoRcKSk5UQy+m3H4xSUREZBQGaZuIgpluwExaacykFXNDkNZN5Q7i9WdUJq2oBq3RlGbSstwBec25c+eQlJTE9yfZCoO0CixfvlzzRYfRRZBDVxoNLX0QT2iJA36LREREpI6oZJDbg7SiTFJm0lrPDjVpGaRlkNaIIK3aucgh95gblUkrIqfcgZb2cphV7kAOZtKSXkQLnxJZjUFaBTp06GD1FOJKS0sL3j579iwCgYCsP1JnzpwJ3k5PTzdiakRERK4nyqR1+0WAl8odMJNWmlGLXEkxotwBg7Tix+0W8NI7k9YMcsfVszyEnrVs5e6rtdwBa9KSWfr06WP1FIiE7HlWSap17NgxeLuhoQGVlZWy2h09ejR4OzMzU/d5EREReQHLHTRxa5DWyZm0Rme4MZNWzIlBWrVj2qncgZ4LhynNpLXLwmFK2+hZHkHLvkRmmDlzptVTIBJiJq3L9OjRI+x+aWkp2rVrF7ddWVlZ8HbPnj11nxcREZEXMEjbxK1BWmbSSjM7k9arQVozeK3cgR1+ou/UhcOUzEMvzKQlLbKysjBx4kTccMMNVk+FSMieZ5WkWnZ2dli5gpKSElnttm7dGrzN1H8iIiJ1GKRt4taFw0TPi0Fa6f6NPDZmlDvQY/5OzKS1Kjgsl5HlDtyUSWvGwmEsd0BO8vLLL6O8vBx//vOfXX9uRs5lz7NK0mTw4MHB2+vWrYu7/9atW1FRURG8P2TIEEPmRURE5HYM0jbxUiatU8odMJM2vshjZHUmrZz+1Ozv9IXD9A6C6lkHVm0fVmTSKsFyB+QG7du3t3oKRHExSOtCI0eODN7+5JNPUF5eHnP/119/PXg7JycHeXl5hs2NiIjIzbwYpBUFKb0UpGUmrXT/rEnrjkxauwVp442hpT+5fdkpk1ZtOz3KHej9JYSaMYnkGjhwoNVTIIrLnmeVpMnIkSORlZUFAKitrcXMmTMlL5Y+//xzrFixInh/4sSJpsyRiIjIjbwYpPVSJq2TFw6zIkhrZDDFjHIHDNIqG9OIwLmIloXD5PSnpS+1fcjNpJVqq7SdXuUOtParZl+WOyA1rr76anTq1MnqaRDFxSCtC/n9ftx7773B++vWrcPkyZNRWloa3FZfX48333wThYWFwQuO3NxcjB8/3vT5EhERuUVtbW3UNgZp3YOZtNJEwRlm0jozSKt1zFisLncQrz87ZtJqbafHwmFy34tasnP1fJ8xSEvNLrvsMtx+++146aWXrJ4KkSzRZ9XkCtdeey02bNiA5cuXA2gK1I4cORJ5eXlITU3Frl27cPz48eD+6enpmDt3rvBCi4iIiOQRZdL6/X4LZmIery8cxkxa6f6dVpPWjUFauf0qeVyKEeUO5DD6J/ZmZtLq2dYuC4cRWaVnz5745JNPrJ4GkSKMyLnYI488goyMDCxevBh1dXVobGxESUlJ1H45OTmYO3cuevXqZcEsiYiI3IPlDpowk9Z6bs+kZbkDdeOrGdfImrR69Cm3XaztSvoW9aNXJq0bFw5juQOySnV1tdVTIFKMQVoX8/l8mDZtGsaOHYu33noLX3zxBQ4fPozq6mqkpaWhb9++GD16NMaOHev6LB8iIiIzeDFI66WFw5hJK80NC4dFPgc95m/HIK2datLabeEwvdoo7cPsTFot7YzqU8+gL4O0BAAPPfSQ1VMgUoxBWpsbN24cxo0bp6mPnJwczJgxAzNmzNBpVkRERCTixSAtM2ntmUkbGaSwIpOW5Q60vQ5OC9LKoUffRi4c5sZMWrn7s9wBuUlubi5uvvlmq6dBpBiDtEREREQ6YZC2CYO01nN7Jq0R5Q4iubXcgVELh9mp3IGS/oxoo7QPI8oVNLfTI7DrtHIH5F333XcfUlNTcfvttyM1NdXq6RApxiAtERERkU4ig7QJCQm2DeLpxUtBWpY7kOb0TFqj5u/EIK2RC4fJaaPkcakx7J5JK2cuZreJF9TVMheWOyCzzJkzh68/OZq7rxqIiIiITBQZpHV7Fi0gDtKKgpluwExaaU6vScsgrfTjRmbS6lHuQO5cpLbHC7Aa8T5Qm11qp4XDRH2b/WWNFAbpvIuvPTmdPc8qiYiIiByotrY27L4XFuZkJq0zMmmNrhVpdnBG73IHbg3SqmGnmrRGlFDQg96ZtM1t9Myk1XPhMLPei8ySJS2uu+46q6dApBmDtEREREQ68WImrShI6dYgLTNppTk9k9ao+VsdpLVbJq1Sepc7cGImrZx2dl84jOUOyGj9+vXDU089ZfU0iDRjTVoiIiIinXgxSMtMWmdk0loRpDW7Ji0zaeOPr3QOSsa0U7kDKXq9J43KpJUzlty2etSYjTWGlRm38TBI6x0vvfQSzj//fAwdOtQT51zkfgzSEhEREemEQdombg3SOjmTFmgKoBgVvBAFZ4w8NlLPTy2nBGm1ji+nXyPLB5hV7kDta2d1Jq3WhdbkCgQCmrJeY/WrBbNkSanLLrsMOTk5Vk+DSDf2PKskIiIiciAvBmlFwTK3Lhwmel5OCtIamU1rh0xaLwRpvVbuQC0l5Q7U9GWnTFo92sfbj+UOyK46duxo9RSIdMVMWnKEQCCAlStX4u9//zu2bt2KmpoatG/fHgMHDsStt96KAQMGWD1FIiIiTwZpfT4fEhMTw7JnvZRJ65RyB0DT/I2ar9mZtF4odyCnPzX7WxmktePCYVoDrHLolUmrpI3aMgly99UzqKo3Bmm9YdCgQUhNTbV6GkS6sudX/0Qh6urqcOedd+L3v/89/v3vf+PMmTNISkrC4cOH8e6772LChAlYtmyZ1dMkIiLyZJAWiA5UeilIy0xa6b6dtHCYHYO0Rs3JC0Fat2bSmrFwGMsdkBPk5ORg3rx5Vk+DSHf2PKskCvHcc8/hk08+QWJiIn73u99hw4YN2LBhA95//30MGzYMDQ0NmD17NjZt2mT1VImIyONqa2vD7nslSBtZl9atQVonLxwGGBukNXvBIAZp1Y2vhtuDYm7PpDUysG/XcgfkXitXrkRDQwO2b9+OQYMGWT0dIt0xSEu21tjYiNdffx0AcPvtt+PWW29FSkoKAOC8887D/Pnz0blzZzQ2NuKtt96ycqpERERRmbR+v9+imZjLK0FaZtJKs+LYRAZrtDw/o+ZvxyCtUQuHOTWTVs1iXW7IpFUSUGW5A7KLbt26ISEhwbZ/e4m04jubbO3YsWM4ceIEAKCgoCDq8ZSUFOTn5wMADh48aObUiIiIoni13EFkkNZLC4cxk7aJ2Zm0QPRzZCZt/PHlzMHu5Q7UzkUON2XSKqVm4TCj5qIVg7Tu1a1bN6unQGQoBmnJ1tq2bRv8I/vdd99FPV5bW4utW7cCAHr06GHq3IiIiCIxSNuEmbTW82ImLYO08ceXMwcjg7R60LJwmBMzadWKV+5Aj/ei3uUOWJOWYunXrx+ysrKsngaRoex5Vkn0f5KTkzFkyBAAwJIlS/Dqq6+ipqYGAHDgwAFMnToVpaWlaNOmDW655RYrp0pEROTZIK1XFg5zUiatKJDhtkxaPcsdMEgr/bier6Mdyx3E68tqTlo4TMSK/hjIdZ+uXbti3rx5fG3J9RikJdt75JFH0LlzZ9TX1+O///u/8YMf/AAXXXQRLr/8cnz88ccYMmQIXnvtNXTv3t3qqRIRkcd5NUjLTFr78UImrRPKHWiZo1FzUnqcnFjuQE96ZNJ6feEws9nhfUP6eOedd3D27Fns3LkTl19+udXTITJcYvxdiLSprKzEqVOnZO+fmJiI7Ozs4P0ePXpg1apVuOOOO7BhwwYEAgGcPXs2+HhjYyOqq6t1nTMREZFSgUAgKtOSQVp3EQUi7RoMsEOQ1uxMWjsGae2YSatmXLVjaSlNIMWNmbR2WjhMbv9KsrRZ7oDUOu+889CqVSurp0FkGgZpyXCLFy/GokWLZO+fnZ2NtWvXBu8XFRWhsLAQFRUVmDFjBsaMGYO0tDSUlJTg6aefxpdffombb74ZixYtwqBBg4x4CkRERHFFZtECDNK6TWQQ3q6lDgB7LBxmdk1aLc/PqExgOwZp7VSTVo9yB2r6lepP7jFX+rpamUkrV6zMWy0Lh9m9fALZW69evayeApGp7Pn7LKL/U15ejptvvhkHDx7E008/jUmTJqFDhw7w+/0oKCjA4sWLMWzYMNTU1OD3v/+9a1eTJiIi+6utrY3a5tUgrVv/HkcG8uxa6gAQz83ILEErMmmdUO7AS0FaOYzoW+vCYXrTe+EwOZm0sRi1cJiS+ZgdWGUg1x0GDRqE1q1bWz0NIlMxk5YMN336dEyfPl1V2yVLluDs2bO48MILccUVV0Q93qJFC8yYMQNffPEFSktL8eWXX2LYsGFap0xERKSYKJPW7/dbMBPzMZPWfryYScsgbfzx5czByExaqxcOE3FDJq0VC4dpybiV6k+vcgcM0jpXUlIS6urqkJ2djWeffdbq6RCZzr5f/xMB2LhxIwDgwgsvlNwnNzcXaWlpAIA9e/aYMi8iIqJIXi53EBmsdGuQ1umZtG5bOEzPcgcM0ko/blXQzog+jZijHv3JzaRVwoyFw5TMQy8MwLrbxo0bcezYMezfvx+DBw+2ejpEpmMmLdlaZWUlgPgnBs0ZPKKfmhIREZnBy0FaZtLajx0yaVnuQP8grdbx1fTrxHIHavu1eyat3RYOY7kD0lvXrl3Rpk0bq6dBZBn7fv1PBKBTp04AgA0bNkjuc/jwYRw7dgwA0KNHD1PmRUREFIlB2v9wa5CWmbTS7JBJ64UgrRlZkWqPo1XlDuS2U9uf0mOudyat2rZ6LhxmBiVBXzl9kTMxQEteZ98zSyIAw4cPBwB8//33+Oyzz4T7zJ8/HwCQlpaGH/3oR6bNjYiIKBSDtP/BhcOs54VMWj3LHRgVZNYzkCzqT+/9AfuXO9AyRrz+5PZlVCZtvLZ2WzhMy/h26Y/s46677rJ6CkSWs++ZJRGACRMm4LzzzgMA3HPPPXjzzTdRU1MDADhy5AhmzZqFFStWAACmTp3K1R+JiMgyDNL+h1szaVnuQJoVmbReLHfg9Jq0epQ70HvhsHjMzKS1cuGwZnLfM1aVO2CQ1l0GDRqEhIQEXHHFFXjooYesng6R5ViTlmytZcuWWLRoEf7f//t/2LNnDx566CE8/PDDaNOmDU6dOhU8Ybjjjjtwww03WDxbIiLyMlFddK8EablwmP14MZOWQdr448uZgxF1Y9X2bcbCYWr6dkImrdLyBbH2MyOTluUOvOmrr77i60UUgkFasr3u3bvj73//O9544w28//772LlzJ6qqqpCVlYWBAwfipptuwkUXXWT1NImIyONEmbR+v9+CmZiPmbT244VMWj3LHTBIq6wPo8ZSM7bW42SnmrRmZtKauXCYnuSMyaCfc/C1IgrHIK3LzZ07FwsWLEB2djbWrl2ruP2uXbvwxhtvYP369SgrK0N9fT2ysrKQm5uLMWPG4Morr4y6MDNCSkoKfvWrX+FXv/qV4WMRERGpwXIH/+HWIC0zaaWJ+jb64tuJ5Q6UsEsmrZ5jGVHuQO5cpLaH9mf3TFol7LRwGMsdkMgvfvELq6dAZDsM0rrYpk2bsGjRItXt582bh4ULF0ZdaJWWlqK0tBQff/wx8vPz8eSTT6JXr15ap0tERORoDNL+RyAQQGNjo62DmGo4KZNWFMgwu9yB2Zm0TgnSBgIBUzJElfQb63Era9Kq6VNvojnoXRpAbiatmkXAzHjPxMJyByTl7rvvtnoKRLbDIK1LlZaWYsqUKcILRjlmz56NpUuXBu8nJiYiLy8PKSkp2LVrFyorKwEARUVFmDhxIt58801kZ2frMnciIiInYpA2XENDg+uCtMyklWZFJq0Tyx00j2VWkFaPTFUrA156Hye9MmnlzEHOfOTQq45uZBuWOyCzXXjhhfD7/aisrMQ999yDSy65xOopEdkOg7QutH37dtx+++04evSoqvZr1qwJC9COGjUKs2bNQmZmJoCmi9CVK1fiscceQ3V1NSoqKlBYWIi3336bfxCJiMizvBykFWWU1tfXu+75OymT1g4LhxkdxNaz3IFRNXW11Gm1S7kDKzNpRczI6ozXRmsmrZqM2HjjSu2r9PVjuQMyys9+9jM8+uijVk+DyNYYpHWZ1atX4+GHH0Z1dbWq9nV1dZgzZ07w/vDhw/HMM8+EnaQmJSVhwoQJyM7Oxq9//WvU19ejuLgY7777LsaMGaP5OTiRG2rvRV54Rt4nIqLYampqorYlJCTE/Rvhhs9fUTCrpqbGdUFaUSatk84BamtrDZuvqN+GhgZDj48ok1bteKIvWQKBgCHzr6urkxXIE42t9DmKgs9KXxefzydrf9FzqqurC2srCtLG6ls0//r6+rA2So6T6PM1dE6ix0XHSxR8bt5HzTFvnm+88UV919XVCds1Hyepx6Seg2h/qeckh9wvh+Rm9xr5ZRMZq127do76m0nGc8M5sN4YpHWJ8vJyPPXUU1i1apWmfj788EMcPHgQQNNPF2fNmiWZRTBs2DBMmDABy5YtAwAsWbLEk0HaxsZGbNy40epp6K6oqMjqKRAROcqOHTuith06dEjx3wgnfv6ePn06atv333+Ptm3bWjAb41RVVYXdr62tte05wJEjR6K2bd++3bDsX9EvuLZu3RoskWWEyMBqVVWV6tdj//79UdsqKio0v74nT56M2vb999/L+gKjrKwsatuePXsUzWnXrl1R2w4cOBCzj8gvnGpqamSNWV5eHrVt27ZtYcF0pX03X5eE2rlzJ9LT04P3Rc/x4MGDwn4PHTokORbQVDIu0r59+6L6Onv2bNj90OsBqeNw7ty54P3I9251dTU2btwoHH/v3r3/v717D4+iPvs//tmQhAQCSSCEQziFQwISRNECYj2AcmgRUBSxVcRatWqLVi4s9rG1xdpWqtWiiFZL7U+LCliqVH14PIBUHyy2iuUgJ0EwoGAQEAmBHH9/5Ml2D7O7s7uzO7Oz79d1ebn73Znv3LsJk9l7772/3rlD/bv+4osvgsY//PBDff755yHnDEx2VldX69///rc+/vjjoO2Nfo/37dtnKqFi9DM0cujQIVPnJzPfFvV9reEcnTt3duzfTDhDKl4DW825jbRg2qOPPqrx48f7JWj79OmjG2+8Meq5XnnlFe/tkSNHqlu3bmG3nzZtmvf25s2bDS8CAABIB0aVeEa9Wt3I6I21G6shApMaTm53kA4Lh1nZ7iDZPWmTFVMy2x2YYcXCYZHmtINVMSSiv6zb2gO47fmki7POOkv9+/e3OwzA8UjSusCiRYv8KjumTp2qZcuWqVevXlHN09TUpHXr1nnvm2nkXV5erk6dOnnvr1q1KqpjAgDgFkZf4XPb1/1DSdckrZOTBUYJ0kQmsxKV5AwncH6rk7RWsDpJa4Vok7RmxZJQtSJJG81+sSzClcyetPFua3Y/KxYOs5pdC5Ehce644w6NGjVK3/72t3X33Xfz8wVMSI/yjjRRUVGhOXPmaNiwYTHtv2/fPh09etRvPjPKy8u9XzvZuHFjTMdOZRkZGRo8eLDdYcStoaHB7+sFFRUVjq4QAgCnee+994LG+vfvryFDhoTdzw3n386dOweNlZeXq3v37jZEkziBldFt27aN+PO1S0lJSdBYnz59EhZvYWFh0FhFRYXh74ZVWrduHXQ/1ucXOJfU/Hsd7+tl9LoMHjxYubm5Efd96623gsb69esXVUzHjh0LGuvatWvYObKzs/3u5+bmmjpm165dg8YC4w18nXNycsLOvWbNmqCxwN9joxYAJSUlhvMazeebgDQ6Z/Xu3Ttorry8PL/7Ho/Hu01xcXHQHAMHDlRZWZn3fuBr3PK7a/R3pLS01Dt3ly5dgh4vKytTx44dg8YHDRqkzp07a8OGDYbPKfCDnHbt2mnIkCGG7QTatWsXNNajRw9TH0QanYuMdOjQwdTfPqPXN5CZf19IvLlz5yb8GxVIbW64Bva1cePGuL+1RJLWBYYNG6YpU6boggsuiOvTqd27d/vd79mzp6n9fC9mjPp5pQM3fp21VatWrnxeAJAoRhdlOTk5UZ9LU/H8G+qNeqo9j0iM2h049TkaxZWRkZGweI2uQbOyshL6+hi1O4j1eEaJhMzMzLjjN5rX7O+NFTEZ/duM9vfA7PaxxOvxeMI+bub3OJrjGo35JmmNfo+N5gp1TLNzBG7T8joYJSd89w31+xTumEZzZmRkGFY1h9reSDTbmXmPmpGRYSqhZ+a4JAadIfDDCCASJ19XJUt6P3uXWLhwoSXz+H5qmpGRoaKiIlP7+bY7MNPIHQAANzLqSZsu7Q6MLqjduIJzYAsHJ1d7GCUpEtmT1mjuRCdKEt3uwIk9aZNxfCvbHQTOZXe7g0TNFek1M9tmId55Yt020vah/n2YOYbZOKzeDva68sor7Q4BSEl8xAQv31U727Zta/rC2vfrPkYrfwIAkA5I0vpzY5I2MBHp5GotJyRpE51MCXyO8Tw/JyZpzc5n9fFjXTgsEUlaI5HmDCdSjGbnclJPWqsXDrMzCWrVsUnk2qt79+66++677Q4DSElU0ibJ6NGjtW/fvrjmKC0t1cqVKy2KKNjJkye9t3Nyckzv5/s1htraWktjAgAgVZCk9ZcOC4eRpP0PoyQRlbTWV9KmepI2WrEkfkPtF2482hgixRTtHFYkh6PZNtkLhyW7spkkbfLdd9996t69u7766itddNFFhj2qAURGkhZevm8uo7mo9n1j5saqGQAAzDD6oDKdk7RuvCag3UFodlTSkqRNzPGtqHa1au5kJNucVElrRYsLs8cKtZ3Z3xnaHcBX9+7ddcUVV9gdBpDynPvxP5LO941GNBfxvm/C0uXNKAAAgYwqadNl0QyjZKUbk7RU0oZmRyWt29sdJCqmaBOBqdjuwE2VtPG2O7Bin0Qkj42QgE1dVM4C1qCSNkmWLFkS99f+Er3KXW5urve2b+uDSHwrh1q3bm1pTAAApAraHfhzY5KWStrQUr2SNlELn9mdpLUiCRrPsZLR7sDsfmYkq5I21n0TuXBYOPH+LtLuwN3atWunM8880+4wAFcgSZsknTp1sjuEiPLz8723q6ur1dTUZOoP3LFjx7y3CwoKEhEaAACOR5LWnxuTtKlUSWt0Dee2SlraHSTm+E5fOCzSMcKJ5fWwopI2ljnNbmvVwmHh2h3EM7cd7Q5I0iZWdna2SkpK9PHHHys/P19PPfWU2rZta3dYgCuQpIVX586dvbcbGhp0+PBhdejQIeJ+VVVV3ttFRUUJiQ0AAKcjSevPjUlaKmlDS1Qlaji0O0jM8Z3ek9bplbSxbN9y3GRV0tLuAPGYMGGCnnnmGX3++efq0qVL2rR2ApLBuR//I+l69erld7+ystLUfnv37vXeLi0ttTQmAABSBUlaf/G2eXKiVKqkdUJP2lRqd0CSNvTjVlbSRsvqKtZkVNJanUR2QiWtk9odOPF46aZ3797KyclRz549SdACFnPulSWSrqSkxK9dwZYtW0ztt3XrVu/tAQMGWB0WAAApIZ2TtOmycBiVtKHZUUlLkjYxx3d6u4NELhzmpkpaM8eLF+0O0lNgcRcA65CkhZ/hw4d7b69duzbi9lu3btXBgwe990eMGJGQuAAAcLp0TtKmS7uDVK+kTeRXlu2opE2Fdgfx/BzsStLGKhFJ2mS0O4hUBev0StpY90vVdgckYO13zjnn2B0C4FrOvbKELcaOHeu9vXr1ah04cCDs9s8++6z3dt++fVVeXp6w2AAAcLLa2tqgMZK07pLqSVoqaUNzayWt2XnDPW5nUiwZ7Q5ikahK2ljY2e7AbFKVxGrqKisr06xZs5Sbm6tWrVrpxz/+sYYOHWp3WIBrOffKErYYO3asiouLJTW/2bzjjjtCvsl66623tGzZMu/96dOnJyVGAACcyKiSNl16taVDktYoCUm7g/Bzp1JP2kQlme1O0lrRTsDp7Q7MxmJmPrsradN54TDaHThTp06d9Nvf/lYHDx5UdXW1fvWrX9kdEuBqJGnhJzs7W7NmzfLeX7t2ra6//nq/RcTq6+u1dOlSzZw509ubraysTFOnTk16vAAAOAXtDvy5beEwOypF45EOC4elQrsDJyZpU6knbSxzRjtfLJJZSZvshcNCHSPWeaNhVQKWJK11+vfvL0lq06aNWrdubXM0gPsFX1Ej7V1yySVav369lixZIqk5UTt27FiVl5crLy9PO3fu1KFDh7zbFxQUaP78+YZv0AAASBeBSdpWrVqlzRvFdKikNUo6U0kbfu5UqqQlSRv6cSt/jtH+jGJtdxBrzOlUSZvoY8QyH5yHhcGB5CKrBkNz585VYWGhFi1apLq6OjU2NmrLli1B2/Xt21fz589Xnz59bIgSAADnCEzSpksVrWScrHRbkpZK2vACkz7JeG3SMUmbzOOHm8OqYyW73YFVMTqtkjYWtDuAGWPGjLE7BCCtkKSFIY/Ho9tuu02TJk3S888/r7ffflv79+9XTU2N8vPzNXDgQI0fP16TJk1Km357AACEk85JWippncfuStpkJElod5CY48eakEuFdgeRWJHwtKOS1q6Fw6xGuwN7XXjhhZo0aZJuu+02ZWRk6Ec/+hGLhAFJRpLWxaZMmaIpU6bENUffvn01Z84czZkzx6KoAABwJ5K0/tyWpKWSNjwqaY1ZUckaab5opVJP2lilUyVtLPtZtXAYCVN3KSgo0MyZM3XTTTepurpa+fn5docEpB3nXlkCAACkkNraWr/76Z6kZeEwe9ldSZtqSdpE/XydWEkb7XHtTLIle+GwZFXSWnl8uxYOswuJ4cTp27evpOa/6SRoAXs498oSAAAghQRW0qZTO6B0qKSl3UF4diT2aHeQmOM7qZI21iRtNK+THZW0iaiOjWbbRCd1Y+HxeCybkyRtbM4880y7QwDSHklaAAAAC6RzuwMWDnMeoyQFlbShkaSNbo5Yj+XEdge+7KqkjXfhMKuPaXZbs1WtVv6cScBaY+DAgX73c3JydO6559oUDYAWzr2yBAAASCHpnKSlktZ50qGSNvAYVNJac/xELhyWiDnjPYaTKmljXTjMin2irbwlWZrarr32Wt16663KzMxUbm6uFi5cqOLiYrvDAtIeSVoAAAALkKT157YkbapV0qZDT9rAY1BJa83xE5lwt6LdgRnJrqSNd454K2mj3S9c9a1VLRWiZWWbBRLIkXXs2FG/+93vdOTIEX311Vf6zne+Y3dIACQFX1EDAAAgaiRp/bktSUslbXhOqKQlSWvN8Z3Uk9aI1ZW0kaRCJa0VPWbDiec1tjrpS5LWGr169ZIktW3b1uZIAPhy7sf/AAAAKYQkrT+jpGYqo5I2PCf0pKXdgTl2JmmjZfXCYZHmsyLRn+xK2lj2C/eamf05kghNbSNGjLA7BAAGnHtlCQTYtWuXfvrTn+qCCy7Q4MGDdeaZZ2r69OlasWKF3aEBAJDWSdp0WDjMDZW0iaw4DEyQJiOBY2W7g0Ql4e1O0iYq0Wx2u3graZ3Q7sBJlbSh9kl0NbEVrREiod1B4nzrW9/yu3/xxRerTZs2NkUDIBzaHSAlvPjii7rzzju9b4Dbtm2rr776Su+++67effddvfnmm7r//vsdXdECAHC32tpav/vplKRNh3YHVNKGF5jEsaOSlnYH1hw/kQk/J7Y7sOr5NjU1yePxJLSSNpbWAXYvHEa7A3tlZmbqoYce0rFjx7Rq1SqdeeaZevDBB+0OC0AIzr2yBP7P+++/rzvuuEN1dXX65je/qTfffFPvv/++1q1bp2uvvVaS9PLLL+vZZ5+1OVIAQDoLrKTNzs62KZLkI0nrPHa3O7CjJ22qtDswG6dTkrROb3dgdr9w4+HmToVKWiv3IcHpLoWFhSoqKtKKFSt07Ngxvfnmm+rdu7fdYQEIwblXlsD/+fnPf67GxkZNmDBBDzzwgLp27SpJKigo0Jw5c/SNb3xDkkjSAgBslc7tDtIhSeuGdgduq6S1st0BlbShH3d6uwMnVdLGOp/ZfaxaOCzaGGl3kLoOHTpkdwgAokC7Azjahg0btG3bNuXm5urOO+80/IN7880367TTTlNBQUHyAwQAQM3Jr8AEWLonaVk4zF52V9LS7iD0HG5N0pqRrHYHqVpJa2bfQLEkUJO5cJgd7Q7SVZcuXbR//36/sdmzZ9sUDYBYkKSFo73++uuSpLPPPlsdO3Y03KasrExlZWXJDAsAAD+BVbQSSVoqae1ldyUt7Q5Cz5HMJK3ZecNJxXYH0Yg0n9nnb0UlbayxWFUZ6xZmKrTd+BrceOONuu+++1RdXS1Jys3N1Q033GBzVACiQZIWjrZ161ZJ0sCBAyVJK1eu1AsvvKBdu3YpIyNDQ4YM0Xe+8x0NGDDAzjABAGku3ZO0RslKtyVpqaQNz45KWiuPkaifr9VJWiuOn6jjJqLdgRmJrqSNZZ54t7di30QvHBbN3PEeP1HHdJtTTz1VK1as0M9+9jM1NDTopz/9qfr06WN3WACiQJIWjrZr1y5JUvv27XXzzTfrjTfe8Hv8448/1t/+9jf9/Oc/1+WXX25HiAAApH2Slkpa50nHStqWOKxKTNpdSWt2PquP7/SetPEsHBaLRFTSptrCYU5qd2DFPG6tpO3WrZuGDx+u0aNH2x0KgBiRpEXCHT58WEePHjW9fWZmpkpKSiRJX331lSTp8ccfV1VVlaZOnarrr79eXbt21fbt2zVv3jy9++67+tnPfqaePXtqxIgRCXkOAACEU1tbGzRGktZdSVoqacNzQk/aljhiSZ47MUlLT1rrFw6L9HokqpI2ErNJUzcvHGaWFX1rU70aNzc3VzU1NUHjLe+hAaQukrRIuEWLFumJJ54wvX1JSYlWrVolSd5+OlVVVbrqqqv005/+1LtdRUWFFi1apGnTpunDDz/Ub37zGy1fvtza4AEAMMGokjY7O9uGSOxBktZ50qGS1ug5xlodR5I29ON29qQ1ksiFw+LZJ1wlrdmFw6ysio114TArtg/czsrq51RPsFrhrLPO0urVq/1e10GDBql79+42RgXACs69sgR8ZGdn69ZbbzUcv+mmmyRJmzdvVmVlZbJDAwCAdgcGSVqj9gCpLNXaHYSqMk0Up1TSkqS17vjRHtNJ7Q6i4fZK2niOZ5VkJ2Ddnsg99dRTddVVV3nvZ2Vl6YEHHrAxIgBWoZIWCTd79mzNnj07pn3btm2rI0eOqLy8XO3btzfc5swzz/Te3r59u3r06BHTsQAAiFW6J2lZOMx57G53YFdP2lifI0la84/Hc6xktTuws5LWzBzJrKRNlYXDzErUv8tU0qtXL/3yl7/Uaaedpj179ujiiy/WqFGj7A4LgAVI0sLRioqKdOTIEbVp0ybkNr7J2xMnTiQjLAAA/JCkdX+SNtUqae1ud5CMBLaV7Q4SlYS3O0lrdt5wjzstoWX1wmGx/M7EktC0Iga7Kmmd1O7A7DGTdaxEKigo0JEjR4LGe/bsqTZt2mjWrFnJDwpAQjn3439AUllZmSRp//79Ibf58ssvvbeLiooSHhMAAIHSPUnr8XiCEpZuS9JSSRueUyppaXcQ3/ZGx3V6u4N4Fw6zah8rKmnjOX40+yeiV3C0McS6nVXbpALfb4z66tmzZ5IjAZAszr2yBCQNHz5ckrRnzx7t2rXLcJv33ntPUvOb4fLy8qTFBgBAi3RP0krBfWndlqR1QyVtIhMzdlTS0u4gMcd3epI20jHM7me0vxU9aeOppE2lhcMi7ZMo6dTuoKKiQh06dPAb69ChgwYPHmxTRAASjSQtHO0b3/iGcnNzJUkPPvhg0OMNDQ164oknJEnnnHOOCgoKkhkeAACSSNJKwUlaty0cRiVteHYsHGZlIpokbXRzJOpYZsQzZ6TnEs9rnoxK2lRtd2DldlbMlSpJ2k6dOumuu+7y3m/fvr2ee+45tW7d2saoACSSc68sAUn5+fn64Q9/KEl69dVX9aMf/UgHDhyQJB04cEAzZ87Uhg0blJ2dHfPiZAAAxKu2tjZoLN2TtFTS2svunrS0O2gWTyLZKUlaKyWr3UGif/9SqZI2GX2MI0l2u4NU061bN8Pxfv366dZbb9U///lPPfvss/r44481ZsyYJEcHIJlYOAyOd80116iqqkp/+MMf9OKLL+rFF19Uu3btdOzYMTU1Nal169aaN2+e+vbta3eoAIA0ZVRJm52dbUMk9qEnrbOkQyUt7Q6sP77VFZPxtjuIVah5I8WYzpW0sbRHcGrC1KlxhTJ06FB9+umnQeP9+/eX1NybNlR/WgDu4twrS8DH7bffrsWLF2vcuHHq1KmTTpw4oW7dumnKlCn6y1/+om984xt2hwgASGO0O3B/JS1J2vDsqKSl3UFs7EzSRssJC4dFO08qVNJG2+4gHna0RUi1dgenn3664Xi/fv2SHAkAu1FJ63Lz58/XwoULVVJSolWrVkW9/86dO/Xcc89p3bp12rt3r+rr61VcXKyysjJNnDhRY8aMCXpTlih8gggAcCqStO5P0tLuIDynVNLGmhRMVBLe7iRttNsnunVAKi4c5qRKWqtE+zxDnTucmIC16jjJNHbsWP3mN7/RyZMnvWNDhw5Vu3btbIwKgB2c+/E/4rZhwwbvolqxePjhhzVp0iQ99dRT2rZtm6qrq3Xy5ElVVlbqjTfe0A9/+ENNmzZNu3btsjBqAABSD0laFg5zmnSopKXdgfXHT4V2B4lcOMzsPlZX0prd16p2B9Eew6jvupNb+jgtCStJZWVlIR/r3bu3nnjiCbVv315ScwVtPO/jAaQu515ZIi6VlZW6+eabDd80mnHPPfdowYIF3iqYzMxMDRo0SGeeeaYKCwu9223atEnTp0/Xvn37LIkbAIBURJKWSlqnSYdK2nRsd5DM44ebI1HHimXORFfSxjJPtPEk4rixtjswEs/fODuqbRM5R6z79urVy+99dIvs7Gx16dJF06dP16FDh1RVVaXt27dr6NChMccIIHWRpHWh7du368orr1RVVVVM+69cuVJPP/209/64ceO0Zs0aLV++XIsXL9Zbb72lu+++W7m5uZKkgwcPaubMmbauFAsAgJ1I0rJwmNPYnaS1q5LWTUlas/NZeXyrY4u3kjbWn0GsC4eZ3SfeStpUWzgsVCVtMhOr0cyVyJ60sVYQd+jQQT169AgaHzhwoPdDzlatWqmoqMiRlcAAksO5V5aIyYsvvqjLL79cBw4ciGn/uro6zZs3z3t/1KhR+t3vfqeioiLvWFZWlqZNm6YFCxZ4/6Bs3rxZL730UnzBAwCQokjSUknrNHa3O7CrJy3tDuI7vtN60pqZw8pCEbsraZ26cJhRkjYRf+OckpwMF0fr1q1DPpaZmakOHToYPtahQwd17949aHzw4MHRBwjAtVg4zCUOHDigBx54QC+88EJc87z22mv69NNPJTX/kbnrrrtCXmR//etf17Rp07R48WJJ0pNPPqmJEyfGdfxU5YY3ooFvPt3WSxAAEqmmpiZoLCMjw9TfB7ecf40qad3w97GFUSK+qanJsc/R6PcokT8To+SoHa9NXV1dTMc12qexsTHu52CUDDP7czD6GTY0NEQVU7RzhGqVZuaYoX4Hwu0b6d+QmTmj+dlFSuIbPW70ehn9XFt+92L9t1dfXx/x+KEeD/V7lpGRETKeUDEYPWaUpPV4PKY+jGlsbDSVfG5qajL1IUsiP2xqkZubq+PHjxs+Fik53a1bNx06dChovKCgQOecc45eeeUVv/FRo0Y59u8IkGhuuQa2EklaF3j00Uf1+OOP+/0h6dOnj8aOHavHHnssqrl8/2iMHDlS3bp1C7u9b5J28+bNqqysNPwah5s1Njbq3//+t91hWG7Tpk12hwAAKWPPnj1BY5WVlTH9fUjV829gcqempsZVfx93794dNPbJJ5849jkeOXIkaOzgwYMJizfw53/ixImEvzZGiZDNmzfH9I2yTz75JGhsz549cT+HluIHXzt27DC1avsXX3wRNPbhhx+qoKDA9PGPHTsWNHb48OGQz8t3dfkWX375panXweg13L17t9++gcm6r776KuzcRv/uAs+te/fuDdrm448/NpzX6Fzta//+/UFjH330kXJycvzGDh8+HLTdxo0blZeXZ/jYpk2b1LZtW+/9wARgXV2d/v3vfxv+vvge32gdkJ07dxr+e//3v/+tjIwMw0WejY7T8nuxY8eOoMeMkrS7d+82lVw0+r0wUlVVZaqS1sxaKEePHg37eKSkcXZ2dsgkbbgY27Vr5138K1BNTY3Kyso0e/ZsPf744zp69KguvPBCnXLKKY79OwIkW6peA1uJdgcusGjRIr8/IlOnTtWyZcvUq1evqOZpamrSunXrvPfPPvvsiPuUl5erU6dO3vurVq2K6pgAALiB0RvVwK//u11gJa3bqiHc0JM2kesHOKUnrdvbHVghUfOaeb0ScWwrFw4zK97fjWT++0jEgm5S8984q1seJKvdQaTjhGtpkJeXF/KxwsJCFRcXh3xMkq644gq98sorWrNmje699960a40EILz0evfgchUVFZozZ46GDRsW0/779u3z+9SxoqLC1H7l5eXeRco2btwY07EBAEhlJGlJ0jqN3T1pk5FssTIRnczEpd0Lh4WT6IWArVg4LJGvn10JbLM9ae1aOMxIVlaWqUW0PB6P5YupJXqucEnaDh06aO/evYZ/9zt06OBXwORr4MCB3tuBldkA0CK93j241LBhwzRlyhRdcMEFcf1BCvw6Uc+ePU3t59sA3ezXWdwkIyPDFQ3fGxoa/L5eUFFR4egFUQDASXwX2GwxcOBADRkyJOK+bjn/Gn3F08zzTxXvvvtu0Fi/fv0c+xy/+uqroLH8/PyExRuYMG3Xrl3CX5tQ/+5iab31j3/8I2isb9++cT+HNWvWxDyvUVuDwYMHeyvyzDBqdxDu98DoK94dOnQwFe/27duDxnr06BF230i/k0atDLp37+63j+83AVv06dPHcF6j9gm+CcTOnTsHPV5WVhY0l9HiUIMGDVJBQYHy8/ODHhs8eLBfBaZv6wOp+UO9IUOGqGvXrmGPv3bt2qDHS0tLDY952mmnSTJu4WDU0q6wsFBDhgwxnfA1+7to9j1lp06dTH3wZebft9Hr4Ss3N1fV1dUx7V9UVKQuXboY/m726dNH48eP1xNPPBE03+TJkx39wR5gB7dcA7fYuHFj3B+Ik6R1gYULF1oyT0s1rNR8oW104WvE99NC3znSiRurpVq1auXK5wUAiWBUNZqbmxvTeTRVz7+BX9msr69PyecRitEH4VlZWY59jkYVbh6PJ2HxBiZ2MjIyEv7aGL2Ri/W4RsmTzMzMuJ+D0f5mY7Tid87oq9Thfg/ieU1jea6RHjczZzQ/u0jPw+g1N5or3DGNHgv8uQUep6mpSZmZmRGPbxR/qIRGy7ZGjxsdp+V1Nfv7lZubG7bi1DcOM4nfjIwMU8kZM/FFSobm5eXp4MGDIR8P1VdWaq6y7dq1q2GStnPnzrrooos0YMAAbd261Ts+YcIEU1XHQLpL1WtgK/FRDry+/PJL7+22bdua/qTP91Nh3zkAAEgXRiuip1ufucCLaretVm2UiHdytUey2x0Ezp2MirFEtztwYk9aK9odhDt+PMeMdKxY5k5UP9VQ85mNMVxcyf5qf6JbVISSnZ1tKklrVjLbHYTrKyv5f1M0UFZWlrp06WL4WKdOnZSdna0VK1aovLxckjR06FD98pe/jBAxADRL7xR1Eo0ePdrUSpThlJaWauXKlRZFFMx3Nddo+uT4fipotPInAABuZ/T3L92TtPSktVc69KS1MoFn9Nq4IUlrdt5wkrWYU6yieZ2SkfQ1e1yzMfjuG8vPItrnbPYYZnvSRjNnsuaKlKQN16IhPz8/ZKVfy6Jh/fv315YtW3TkyBEVFBQ4/t8QAOcgSQsv3yqgaN50+P6RclvVDAAAZhhV0qbbVxuppHWWdK2kjfU5GiWtrHgOdidpk7lwmJMqaWNNitldSRvL69/U1OSKhcPMxmDFNpF61oZL0paUlIRM0vouvO3xeKLqHw0AEu0O4MP3jUY0F7i+b8LSrWoIAACJdgdScMKysbExoUnBZKOSNrzAuVOtkpZ2B/EfM1lJ2nDHiMSuikarKmljOV6iKmmzs7MtraRN5s8m0uJjvXr1CvlYSUmJxowZEzSen5+v4cOHxx0bgPRGJW2SLFmyJO6v/SW6gXJubq73tm/rg0h8v+JpZV8iAABSBUla4+uUhoYGRycyo0GSNjyjhcMSjSSt9cdP1OtgpcAY4213EMtc8VbSRnP8SMeN5ZhWtHjIysqy5b2fFQnfcEnYSI9369ZNZ511lkaMGKF//OMf3vHLL7887Rc8AhA/ziJJ0qlTJ7tDiMj3ax/V1dVqamoy9Ufw2LFj3tsFBQWJCA0AAEcjSWucpK2vr3fN65Bq7Q6MruHcVkmb6HYHiUrSmo0x1ZK0Tmp3EI1YE6PRCJwjmjmtSizHexxfmZmZ8ng8jm13EGl9ld69e4d9PFKS1uPxaOnSpZo8ebI++OADjRo1Svfee2/EuAAgEpK08OrcubP3dkNDgw4fPqwOHTpE3K+qqsp7u6ioKCGxAQDgZCRpQydp3SLVKmml5vh846aSNjQqaaObI5ZjJbPdgZWVtGbniaeS1uy+Tlk4rOXvm9l2B2aTuVaJ9J40UiVt+/bt1b59ex09ejTosW7duklqbpnw/vvv68SJE1Etug0A4Tj7yhJJFfjHqrKy0tR+e/fu9d4uLS21NCYAAFIBSdrQ7Q7cItUqaaXgRKnbFg5LxyRtoo+fyIXDrGL1wmHJqKSNZ04zieVkLxwWbZK2TZs2prYzE4OZuSIlYbt06RIy9sLCQnk8HvXr18/wcd/CJily1S4ARIMkLbxKSkr82hVs2bLF1H5bt2713h4wYIDVYQEA4HgkaY0TllTS2isw4ZHMStpUa3eQqJ+v1YnLRL+uiexJm6h2B/EuHBap2jfaeWJ5nlZX0kZaOCxeLQlOMz1pPR6P6SStme18W/QZyc3NDUqkBmrXrl3IatuWBO+0adOCHrv66qsd/+EcgNTm7CtLJJ3vipRr166NuP3WrVt18OBB7/0RI0YkJC4AAJzMdxFNqTlh6bTFdhLN7e0OqKQNj0paY6nW7iAVetKGO0Y0+5lldyVtJFZV0rZIRLsDM8lXj8ejdu3aRdwuUpK2oKBAhYWFYbfJy8tTx44dDR9r6Vd75ZVX+sWTkZGh73//+xHjA4B4kKSFn7Fjx3pvr169WgcOHAi7/bPPPuu93bdvX5WXlycsNgAAnCqwktbsG1c3cXuSNhUraZOVpE10kiwUkrTWHz+RSVqrJLIlgxWVtGa3t2pfq44XzXFa/sZZ3e7ATJI20kLV+fn5EZO0bdq0iVhJW1JSomeffVannXaaysrK9MQTT2jYsGER4wOAeDj7yhJJN3bsWBUXF0tqrgq64447Qr7Beuutt7Rs2TLv/enTpyclRgAAnCYwSZturQ4kkrROZGeSNhmvjZXtDkjSxn/MZFXSmml3EOvCYVbsE0/P3FjbHUSb5LWqktbqdgd5eXkRt4lUSZufnx928es2bdooIyNDJSUlho+3VNJK0oQJE7R+/Xpt27ZN1157bcTYACBezr6yRNJlZ2dr1qxZ3vtr167V9ddf77eIWH19vZYuXaqZM2d6v/pXVlamqVOnJj1eAACcgCQtC4c5EZW05pGkTbxk/p7EOm8qVtLG8vN04sJhZtsdtG7dOuxiXZEqadu2bStJOu+88wwf79u3b8QYACBRgq+mkfYuueQSrV+/XkuWLJHUnKgdO3asysvLlZeXp507d+rQoUPe7QsKCjR//nzDN2cAAKQDkrQsHOZEgfElKjln12tDkjY26VBJG818Vu9jRyVtuO0SuXCYHe0OpOZE7IkTJwwfi9STtkuXLpKkcePGBT3WoUMHjR492lQMAJAIzr6yhG3mzp2rG2+80fsms7GxUVu2bNE///lPvwRt37599ec//1l9+vSxK1QAAGxHktb97Q6opA3NaN5kVNJa2e4gUYlmkrTxfTCQjIXDUr0nrdMXDoum3YGZJG1OTk7Ylgf5+fnKysoK2TqhrKxMktSjRw9NnjzZ77Ff//rX3kpbALADpY8w5PF4dNttt2nSpEl6/vnn9fbbb2v//v2qqalRfn6+Bg4cqPHjx2vSpElpuTgKAAC+SNK6P0nrhkpat/WkpZLWfAzJOGYiKmmNWL1wWKS5U72S1uxxYlk4zExPWqn5fJCTkxOy+rXl+JF60rZu3Vpt27aNmKSVpKKiIh07dizocd+Frh9//HH16tVLW7du1aWXXqobbrgh0lMBgIQiSetiU6ZM0ZQpU+Kao2/fvpozZ47mzJljUVQAALhPbW2t332StM3clKSlkjY0uyppSdKaj8FstWgi+8Y6YeEws3FF4qRK2lj2j7fCOdqetFJzy4NwSVopciVtx44d5fF4TCVphw4dqt27dwc93lJJK0nFxcWaP39+2GMCQDI5++N/AACAFBBYSZuO3zJx+8JhVNKGZlclrZXtDlIlSWtFDInqTWxXu4No9rOq2jdcXPE852QtAmaULG2pik1EuwPJXF9aM0laSWGTtAUFBZKkc845x/Bx3yQtADiNs68sAQAAUgDtDtxfSWuU/KOSNvS8tDtoZvQ6xJqktSphmUoLhxmJZ+GwRIqmmtXq5HO0+xi1AYimF2u07Q6kyElaj8ej1q1bhz2vtiRpWxKxRloSuOedd17QY/3799ewYcNMRAsA9iBJCwAAECeStMYJSzclaY2qgqmkbZbIr8iHY3QMN1fSOj1JG4kT2h04tZI22QuHVVdXB421JGmtrqRtYaaS1uPxhK2mLSoqkiQVFhaG3Ka0tFSSdNppp+nCCy/0O/6iRYsc/+EagPRGT1oAAIA4kaRNz0pakrSh57Wr3UGsVZWJ6qubTklaJ7U7sHI+s/tYUUmbrIXDwiVpzWhJzlrd7kBqbnlw5MgRw8daKmlPOeWUkPufeuqp3uOuWLFCTzzxhA4dOqRrrrlGvXv3NhUDANiFJC0AAECcSNK6P0nLwmGhOamS1sp2B1Ykmp2QpI2GW9odxPpamf3ZpFIlbSLaHSSikjY3N1dS+L60LUnar33ta4aPl5aWqn379n5z3nLLLaZjBAC7OfvjfwAAgBRAktb9SVoqaUNzUk9aN7c7sCqGaOe1M0kb6+sXTbuDWOcK5JZK2mjaHZjpSWu2krZr166SpLy8vJDbtCRpBw4caJhUbqmiBYBU5ewrSwAAgBRAktY4SWtUfZqqUrGSNjDZ4rZKWivbHTgxSWtmrlj2i7bdgdPFG3OkRLIRJ1XSRpLIhcOsrKTt3LmzpP8s/GWkJUnbqlUrjRo1KujxCRMmmI4HAJyIJC1S1uLFi1VeXq7Ro0fbHQoAII01NDQEJb/SMUnr9oXDqKQNzUmVtG5K0trRkzaeBfKopDX/uxdrJW2ofaLdzyhJ21LBatfCYV26dJEklZeXh9ymuLjYe/sXv/iFOnXqJKk55ptvvlkzZswwHQ8AOBE9aZGSdu7cqd/85jd2hwEAQFAVrRTdG1e3cHu7g1SspLUzSWtXT1o3tztIRpLW6Gvw4b5+Hu44gceyKkkb7hixSKVKWjcvHNaSpD3ttNNCbuP72GmnnaadO3dq48aN6tOnj3d/AEhlJGmRcmprazV79mydOHHC7lAAADBM0qZjJa3bk7RU0oaWqEW3InF7uwM7krThKiyjPU6kY8UqnoXDYokx3kpao/2TWUmbyIXDzPSkbREpSdtSJRsqSdu7d29v39oW7dq108iRI03HAABO5+wrS8DAgw8+qA8//FA5OTl2hwIAAEna/0OS1nnSsZI21qRgon6+TkjSRnP8eJN30R432e0OInFiJa3Z40aznVULh0XzrZH27duHfKyoqMg756BBgwy3IRkLIB04+8oSCPDOO+/oySefVPfu3fWtb33L7nAAACBJ+39YOMx5ApOMiVoUyq5KWtodxB5DKImspHVCuwOnV9LGcvxYKmmNzmextDsw87euqKhIklRWVhZym5ZFwyQpJydHl156adA2F110ken4ACBVkaRFyvjyyy91xx13yOPxaN68eZZ9qg8AQDxI0jZLx4XDklEtGg+3LxxGu4PYYnBSu4NYnlMiFw6zu5I21terpqbG734sfdFjaXfg8XgiHqtnz56SpIqKipDbBPaTffDBB3XxxRd7/41/5zvf0eWXX246PgBIVfSkRcq46667tH//fl1//fU688wz9c4779gdEgAAJGn/j9vbHQRWnjm9ilaytydtqrU7IEnbLNmVtPHOGeu8ocTzexBNJW00zOx/5MgRv/uFhYVRHyeadge+idns7GzV1tYabpeRkaFu3bpJkvr16xdy2379+vnd79Gjh/7617/qxIkTysjISMvFOAGkJyppkRKWL1+ulStXauDAgbrlllvsDgcAAC+jN5wkaZu5KUkbmOB0ej9ayf2VtLQ7iC2GRCVpI0lmu4NYK2nNireS1uqFww4fPuw35pukNfOcMzIyoloEzPdvXLiEcNeuXb1/G7KysjRgwADD7caMGWM4npOTQ4IWQFqhkhYJd/jwYR09etT09pmZmSopKfHer6ys1D333KPs7Gzdd999/KEGADiKUSVtOv6tcnuSlkra0OyqpKXdQWwxhDu+0YJSdvakNWL1wmFWxRhPJa3ZnrKh5gqspC0oKIh4TF9t27b1zh3NwmGSVF5ersrKSsPtWlodtDjttNO0YcMGv7FWrVrpwgsvjCpeAHArkrRIuEWLFumJJ54wvX1JSYlWrVolqfkN0e23367q6mr9+Mc/Vv/+/RMVJgAAMaHdQTO3LxxGJW1oTqqkjTVJm6jn4IQkbTTHT3ZPWivmTPTCYWbniWY+KytpT5w4oRMnTviN+SZpzfzeRFst7ftB5IABA/T6668bbtejRw+/+zfccIOeeeYZvw/wvvGNbyg/Pz+q4wOAWzn/6hJp7dFHH9X69es1YsQIzZgxw+5wAAAIQpK2mdsraQOTeFTS/oeTetLS7sBcDKE4rd1BrGKdNxUraQNbHUjR96T1XTTMzLmtXbt23tuhWhhIwZW0Z599tv7nf/5HgwcPltS8mNiCBQuiihUA3IxKWiTc7NmzNXv27Kj3++CDD/Too4+qffv2uvfeex2/gjIAID2RpG1m9MbeTUnawKpgKmnDz5uM14d2B7HF4KSFw2LpSZvsSlqjfRJVSRsLoyRtLO0OWnTt2lUZGRlhzxe+C32FS9L26tUraGz06NHasGGDvvjiC3Xs2DGqOAHA7UjSwrGWLFmi+vp6nThxQpdddlnQ48ePH5ckffbZZzr77LMlSXfeeae++c1vJjVOAEB6I0nbLN0qaUnShp/XrkpakrSRY4g2SeubwIvmOJGOZdWcVi4cFk+8VuwbS8I4UiWtmd8b359x69at1bNnT+3evTvk9n379vXeDpekHTVqVMjHSNACQDCStHCslouU2tpaHTx4MOR2jY2N3scD+zEBAJBoJGmbuT1Jm4oLhwUmZ5LZ7sCunrS0O4gcQzRJ2pycHNO/68laOCzWWEJJdCVttPtHu23gomFS9D1pAxPx/fv3D5mkLSoq8pu/W7duqqio0KZNm/y2O/300zVo0KCIxwYA/IfzSwCQtu69915t27Yt5H8/+MEPJDUvNNYyNmXKFJujBgCkG5K0zdyepKWSNjS7KmlTtd2B2Z9DvFWooWKIJklrVT/aUMd1QruDWOdKxL4nT54MeixSkjxSu4Pi4uKIxzdK0obi2+pAan5N77///qB/j9ddd13E4wIA/Dn/6hIAAMDBamtrg8ZI0jYLrD5NZalYSWvnwmF2VdLGmihLVKLZyhjtqKSNJkmbrHYHidzP7FzxVsKG2v/zzz8PGisqKgq7X6R2Bz169Ih4voonSStJ48aN0+LFi70Lin3729/W9773vbDHBAAEI0kLAAAQB6NK2uzsbBsisZfbFw6jkjY0J/WktbLdgRU/Yye0O4jm+IlM0sZSSWv0gVdgezOnVdLGMkfLPoFJ2tzcXL+fgdHvpFFi17eSNisrSz179gx7/Pz8fL/70SZpJemKK67QoUOHdOTIES1evDglPsgCAKdx/tUlAACAg9HuoJnb2x1QSRuaXZW0qdruwO6etOFUV1f73bc7SetbEdoisHI03p+d1T1p49n/wIEDfveLi4v9tu3cuXPQPtu2bQsa803SSlKfPn3Cxhi4+Fe4XrLDhg0L+VhmZmZQwhcAYB5JWgAAgDiQpG3m9iQtlbShGc2bau0O0ilJa1dP2lgYJWkPHToUcb9Qr1UsiWSz4q2kbWpqCqqKDUzK9urVy9R8ga9bpCTt4MGD/e737t1b559/ftB25eXlGjt2rKkYAADRC76ahqvMnz9fCxcuVElJiVatWhX1/jt37tRzzz2ndevWae/evaqvr1dxcbHKyso0ceJEjRkzxvBNWTLMnDlTM2fOtOXYAAC0IEnbjCSt8wTGaNVCVIESleCMJNHtDtItSdvQ0KCamhq/MbsraXNzc9W6dWu/BbXMVNJaKRGVtEav68GDB/XFF1/4jQUu+tW9e3e1atUqYr/vaCtpA5O0kvTII4/otNNO8/sbd9ddd6XEtwgAIFWRpHWxDRs26Iknnoh5/4cffliPPfZY0BusyspKVVZW6o033lBFRYXuu+++iH/4AQBwK5K0zVg4zHncXklLu4PYYgh1/MBWB5L9SVqPx6PCwkLt37/fO2Z1Ja3v76/Zn43RPC3vmczM0b1796Cx999/P2gssJI2MzNTJSUl+uSTT0LOnZOTo5ycHL+xcO/Vunbtqo4dOwaNn3LKKXr++ed100036ejRo7r11lv1rW99K+Q8AID4Ob8EADGprKzUzTffbPjG0Yx77rlHCxYs8F5sZGZmatCgQTrzzDP9vj6zadMmTZ8+Xfv27bMkbgAAUg1J2mYsHOY8dvaktauSliRt5BhCHT+w1YFkbZLW7D6BOnTo4Hc/nkpao36pX375Zdi5jGI0SmoaLeAVav8ePXoEjb333ntBY4GVtFJzK4JwAqtopfBJ2oqKipCPTZo0Sfv27dPhw4d1zz33JOXfNQCkM+dfXSJq27dv15VXXqmqqqqY9l+5cqWefvpp7/1x48ZpzZo1Wr58uRYvXqy33npLd999t3JzcyU1fzVn5syZCf+qEQAATlRbWxs0lo5JWre3O3BDJW1L30urOaknbayJ6EQ9Byckac0e3yhJ27ZtW0uOGe64kQT2Vw2spI0mwW608JaZytxA3bp1CxprKVoJbBlhdK4wStL+61//ChozijdSX1qjBPKQIUMMxyXpzDPPDDufZHx+BwBYjySty7z44ou6/PLLg1YGNauurk7z5s3z3h81apR+97vfqaioyDuWlZWladOmacGCBd4/2Js3b9ZLL70UX/AAAKQgo0ra7OxsGyKxl9uTtG6opJUS07/Trkpa2h3EHoORRFfSxvoaB1bSfvnllzG3UsnPzw86P/tW5pqN0ShJ++mnn0qS9u7d6zdeUlIStK1RuwOrKmmHDh0aNJaVlaXZs2cHjefk5Oi6664LOx8AIHn4SMwlDhw4oAceeEAvvPBCXPO89tpr3guMzMxM3XXXXSHfhHz961/XtGnTtHjxYknSk08+qYkTJ8Z1/FTlhjehgRe7buojCACJ5LugTQuPx2P6b4Obz791dXWu+BspBf9cMjIyHP/cjJJLtbW1llfFGVWTS4m/PjKqfq2vr4/puEb/7hoaGuJ+DvHMG/j8ojmvBO4XOK/RPL5f+2/Rpk2bmM9lLWMt+xvN09TUFHF+oxYFBw8e9FaGRvsaFxcX+yVSfRfrMkrSGv1OGSVP9+7dq5MnTwYlaXv06BG0f9euXYP2N+ozW1RUFLSvUYLX19e+9jXD537jjTdqwYIFfm3qfv3rX6tnz56OP5cBcCc3XwPHiiStCzz66KN6/PHHdfz4ce9Ynz59NHbsWD322GNRzfXKK694b48cOdLwU2JfvknazZs3q7Ky0vDrO27W2Niof//733aHYblNmzbZHQIApITAN+SS9PHHH8ecCEvV869RcuOLL75wzd/IEydO+N0/efKk45/b0aNHg8Y++OADy9tx7NixI2jss88+S/jrs2fPHsOxWI5r9JX3TZs2RVVJamTnzp1BY/v27TMVY+DX5uvq6mJ6boHV/jU1NYbzbNiwIWjs8OHDpo+5ffv2oLH9+/d79zc6V1ZVVUWc3+hN+zvvvON9z2H0DcLt27eHfLPfrl07v/u+P3vfhG2LLVu26ODBg35jRousbdmyRW+88UbQcdu2bRv0HBsbG5WVlRVx/ZBDhw4F7RspidGhQ4eQr+n999+vBx98UFVVVZo8ebK+/vWvO/48BiB9pOo1sJWc/z0tRLRo0SK/BO3UqVO1bNmyiP2KAjU1NWndunXe+2effXbEfcrLy9WpUyfv/VWrVkV1TAAAUp1RBVI69u/zeDxBvRcTtVCVHQKT0KnQk9bKnq3huGHhMLPzRyuelgzJXjgsMCksNVfSxnocq/aJtNhXtALbJxw5ciRsJalRjG3btg3q1/v5559r//79Qdt26dIlaCwjI8OwGjeQUR/Zfv36hXzdWrdurX79+oWcr3///lq4cKGWLVumq666ioXAAMBhSNK6SEVFhZ5++mndc889MX3qv2/fPr+Ki3ArffoqLy/33t64cWPUxwUAIJWRpP2PwISUm762FvhcUiG5kayetEaJX7uStLFKZk9as9yQpLWiJ21g5askffXVVzHPG5ikbWpq0pEjR0LOFYrvmh1ScwsGs0layXhRMF8ZGRlq37590HiHDh107rnnGu5zyimnpO3fHwBwA87gLjBs2DBNmTJFF1xwQVwXgrt37/a737NnT1P7+fZFMuql5HYZGRkaPHiw3WHEraGhwe/rBRUVFSlRJQQAdisoKAgaGzx4sOlvtLjp/Bv49d3c3FwNGTLExoisE/gzycvLc/xzKywsDBobNGhQ3F/hD+S78FKL7t27J/z1Mfr6fLdu3WI6rlG15qmnnhpULRmtwDYZUnPSzkyMrVu3Drofy3MzO89bb70VNFZRUWH6mEbvQ4qLi737G72WnTp1ijj/hx9+GDRWUFDg3c+oIrW8vFynnHKK4XwDBw7U3/72N7+xQ4cOqaioKCiBKzX/mzFKtJaWlvq13Dh48KDhazBy5EjD5zhgwAC9//77hjFKzb/LRouASdJdd92lCy64IGj8v/7rvxx/XgKAFm66Bpaaixbj/cYSSVoXWLhwoSXzVFVVeW9nZGQEfTocim+7A9850okbP7Fu1aqVK58XAFjNqFo0Nzc35nNoKp9/A+NuaGhI2ecSKPDnnJmZ6fjnZhRfRkaG5XEbJaaysrIS/voY9da18vllZ2fHPZdRjB6Px9S8gT2F4zmvBDKax6iSNj8/3/QxI/2+Gb3xNnO+M3pP8uWXX3r3i/b3z2jRrpa+tEY9YkPNVVJS4nf/5MmTht8qLC0tNdw/0gd55557bsjnMGrUKE2YMEEvv/yyd+yOO+7QpZdemhJV/gBgJJWvga2S3s8efnx7O7Vt29bwK3JGfKsx4ukPBQBAKjJa2d7qhZlSReCFtZtWDA+sjDB7nWQnoxjpSWssme0OzMTY2Niozz77zG8sMCkYTwxGjh07FjQWTdV1otodGFW3GlVvm53XqPK2JUm7a9cuv/GsrCzDvrCSDBdYfuedd4LGfL916KusrCxkjJI0bty4kI95PB4999xzuu+++/TRRx/p6quvDrs9ACA1kKRNktGjR2vfvn1xzVFaWqqVK1daFFGwkydPem/n5OSY3i87O9t72+iNKgAAbmZUeeX7tzGd5Obm+t1vWWE9lb+61iKwkjYVnlOykrRGcyYjiW3l83NakraqqiroQw6jpGAsMYQ6vlGSNpp2D4layM2obUdLUjWWYxj1gm2Zb/v27X7jffv2DVnVZfTzCGwf17lz55DvqyZOnKjs7OyQ75/GjBljON4iLy9Pc+fODbsNACC1OL8EAEnj+yYzmgtr3wsXN1XMAABgRqivx6ajYcOG+d2vqqrS//7v/9oUjbWopA2NStrQYo3x008/DRqzI0mbCpW00c5rlKT94osvdOzYMR04cMBv3HeB5EBmKpvDrfHRsWNHXXbZZYaPnXrqqYZtGQAA7ub8q0skjW9FSDQX8L6J2XR9UwoASF8kaf/jkksuCRr761//akMk1nNLJa0VlY2B7KqkdXOS1ugbeFa1O0hUkjaSWF9jo8UZfStpoxWqkjawClYKn6Q1kzSPtBDzDTfcYDh+1VVXRZwbAOA+tDtIkiVLlhguLBKNRDdQ9v2Kom/rg0h8v6ITuHosAABuZ5SkTddFDy666CJlZmb6fYD717/+VQ888EDKL2ZDJW1odlXSWvn8jPZL90rajIyMqFqgJardQWZmptq3b++3kFo8lbQdO3ZURkaG38/80KFD2rNnT9C24ZK0vXv3jhS6Bg0aFPbxc889V5dddpmef/55Sc0f8M2cOVO33nprxLkBAO6Tnu8gbNCpUye7Q4goPz/fe7u6ulpNTU2mLk59L+iMPukGAMDNApO0mZmZKZ+QjFVhYaHOP/98vf76696xPXv2aP369Ro6dKiNkcWPJG1obq2kteI5OCFJa/b4gUnavLy8qM5liWp3IDWfW3yTtJEqacPNm5GRoU6dOvm1NoglSVtSUqLTTjtNH3zwQchtQrUz8I3zmWee0ZVXXqmjR49q9OjRIRcaAwC4n/OvLpE0vl/9aWhoiLhqaouqqirv7aKiIsvjAgDAyQKTtOna6qDFlClTgsbc0PLALe0OkpWkpSdt6DnsbncQilGSNt7jWJWkDexL6/s+xShhG+nbDIEtD2JJ0krSjBkzQj5WUVGhwYMHh91fav6bcfHFF+vqq68mQQsAaY4kLbx69erld7+ystLUfnv37vXeLi0ttTQmAACcjiStv8mTJweNLV++3IZIrEUlbWiJqkKNxMrn57QkbWAlrcfjMeylGksMoY5fXV3td9/KfrTxKiws9Lvvm5h9//33/R7Lzc1Vjx49ws5nlKTduXOn31iHDh0iFqB8+9vfDpkQ/va3vx12XwAAAjn/6hJJU1JS4teuYMuWLab227p1q/f2gAEDrA4LAABH8+3NLpGk7datm8466yy/sQ8//FDbt2+3KaL4GSX+qKQNP6cbKmmtYFWStri4OOZzS6w9aZ1cSXvixAnV1NTo5MmT2rRpk99jp512WsRK2sAFvRoaGoIWDotURSs1/1wmTpwYNN6mTRsW/wIARI0kLfwMHz7ce3vt2rURt9+6dasOHjzovT9ixIiExAUAgFMFVtJmZ2fbFIlzXHLJJUFjqdzywK6eq/FyeyVtIpO0ViWZrWp3EGurA6MY3JCklZpbHmzcuNFvoUJJpvpfjx8/PuI2ZotPfvvb36p///7e+7169dJTTz0VsZoXAIBAzr+6RFKNHTvWe3v16tV+DfWNPPvss97bffv2NfWJMwAAbkK7g2BGSdpUbnkQ2I9WopI20pyp3u7AziRtbW2t35oPUnyLhplJ0jY1NcWdpDUS6blGs3BYoMOHDwe1OpCkM844I+J8EyZMULt27cJuM27cOFOxlZaWavPmzdqxY4c+++wzffzxx7r00ktN7QsAgC+StPAzduxYFRcXS2q+QLzjjjuCPp1u8dZbb2nZsmXe+9OnT09KjAAAOAlJ2mD9+vULWjDn3XffNVwMKRVQSRteovq5RmJlJW2ieg7HEuP+/fuDxhKdpD158mTQhxFt27aN6ziB4mkpYVRJ++mnn+q9994LGjdTSZubmxs2kdqjRw/DRRBDycrKUr9+/dSlS5ek/O4DANzJ+VeXSKrs7GzNmjXLe3/t2rW6/vrr/RYRq6+v19KlSzVz5kzvxVxZWZmmTp2a9HgBALAbSVpjRtW0L7zwQvIDsUCq9qQ1Sha5qZLWre0OjD7MiKfdgZnjB1bRSta3Ozhx4oSpfYwE9pCVpJdffjmokrZ169Y65ZRTTM0ZbmGvH/7wh5zLAQBJR5IWQS655BJNmzbNe3/t2rUaO3asLr74Yl111VU655xz9NOf/lQ1NTWSpIKCAs2fPz9ig34AANyIJK0xN7U8MGp3QCXtf9hVSWvl8zt58mTEuWMRS5I2cNEwydpKWiPJSNL+4x//CHrcbPJ57NixQe81nnnmGX3wwQd+Y6eeeqrpc/Do0aNVUVERNF5YWKjrrrvO1BwAAFjJ+VeXsMXcuXN14403ei9yGhsbtWXLFv3zn//UoUOHvNv17dtXf/7zn9WnTx+7QgUAwFYkaY0NGTJEpaWlfmNr1qzRF198YVNEsaPdQXhuqKTdunWr3/14kqK+nJikTVQlbSSrV68OGjv33HNN7duhQweNGTPGb6yqqiqoLZuZfrQtWrVqpaVLl2rUqFHe1g6dOnXSM888o/bt25ueBwAAqzj/6hK28Hg8uu222/Tiiy/q2muvVVlZmdq3b6+srCwVFRXpnHPO0S9/+Uu98MILfquZAgCQbmpra/3uk6Rt5vF4gqppGxoa9Le//c2miGLHwmHhpXpP2qqqKn322Wd+Y0OGDIk5Ll9OaHeQrCRt69atg8Y++ugjSc2/d2vWrPF7rEuXLhowYIDp+X2/6RfKyJEjTc8nSf3799d9992nN998U2+++aYqKys1fvz4qOYAAMAqfD/dxaZMmRJVw3sjffv21Zw5czRnzhyLogIAwF0CK2mzs7NtisR5pkyZogceeMBv7K9//auuueYaewKKEZW04dn1+lj1/DZu3Bg0duqpp8YUU6BUqaStrq4OGos2SdutWzd16dLFb+GzV199VceOHdNHH33k9208STr//POjSuZPnjxZ2dnZQR+MtejRo0fYxcDC8Xg8ysvLS4kPXwAA7uX8q0sAAAAHo91BaGeddZY6d+7sN9aStEklVNKGZzRnKlXS/vvf/w4aS2SSNtLPIDBJm5WVpY4dO1oWQ+A5S7KmkjYjI0MXX3yx39jJkyf13//934atDkaNGhXV/AUFBRo3blzIxx944AG1adMmqjkBAHASkrQAAABxIEkbWkZGhiZPnuw3duLECa1cudKmiGLjpkraWHu2hmM0p109aWNJQm/YsCFozEntDrp16xbX61lUVOR3f//+/dq1a5ff2NGjR4P2i6UnrdG3+JYvX65Vq1YFjUebpJWkO++80/Ace8EFF8RcRQsAgFM4/+oSAADAwUjShmeUtPnrX/9qQySxo5I2PLsqaa1KQgcmadu0aWPZorgtC1L52rJlS9h9Aitp413E7IILLggae/nll/3uB/aLlRRT9e7555+vgoICv7HnnntOr776qt9YSUmJ+vXrF/X8w4cP1/vvv68ZM2Z4q2YHDhyoP/3pT0n5nQMAIJFI0gIAAMSooaEhKClEktbfqFGjlJ+f7zf20ksvhewr6URuqqRN1sJhqVJJW19fr82bN/uNDR482LL4O3furF69evmNvfnmm6qpqTHc/tixY0FVrfEmaS+66KKgMd8kbV1dXdAHJ7m5uRoxYkTUx8rKytKkSZOCxgP/vY8aNSrmpGpFRYX+9Kc/6YsvvtCuXbu0efNmde/ePaa5AABwEudfXQIAADiUUW9HkrT+srOzg5JER48eNfz6s1ORpA3PrtcnNzc3aMyov2w4O3bs0MmTJ/3GrOpHKzUnksePH+83duLECcPKVcl40bCSkpK4YjjllFOCEsWrV6/29qFdvXp10KJeEyZMMKwCNsPMwsVXXXVVTHP7ysnJUWlpKRW0AADXcP7VJQAAgEORpDXnkksuCRpLpZYHtDsIz6iSNhmJsz59+qi4uNhvbOXKlTp48KDpORK5aFiLb3zjG0FjofoyGyVp462k9Xg8QR+U1NbW6vXXX5ckLVu2LGifqVOnxny8sWPHqkOHDiEfv/baazV27NiY5wcAwK1I0gIAAMTI6Cv7JGmDjR8/Xjk5OX5jL7zwgmHy04mopA3PrtenVatWmjZtmt9YfX29YdIxFKNFw6xO0o4ePTrovPDf//3fhtsmIkkrGbc8eOmll0K2OpgwYULMx8rNzdUf//hHb89YX8OHD9cjjzxC9SsAAAacf3UJAADgUEaVtNnZ2TZE4mxt27bVuHHj/MY+//xzvfPOOzZFFB0qacOzq5JWkq688sqgscWLF5vePxlJ2nbt2unrX/+639j27du1a9euoG337dsXNBZvuwOpeUGvwKTpyy+/rL/97W/64osv/Ma/+c1vxtzqoMXkyZO1bds2ffvb3/aODR48WH/5y1+CPrABAADNSNIiJRw7dky///3vddlll+mMM85QRUWFzjvvPM2aNSvq3mMAAFiFdgfmpXLLAzdV0iZiwTY7X59hw4apb9++fmP/+7//q927d5vaPzBJ27NnTxUUFFgU3X8E9qWVjFsevPvuu0FjVlTS5uTkaMyYMX5j+/fv16WXXhq0bTytDnx1795dixcv1ieffKJ33nlH7777riUJZwAA3Mr5V5dIe3v27NHkyZP1wAMPaOPGjaqtrVVWVpb279+vl19+WVdccYX++Mc/2h0mACANkaQ1b+LEiUHVp8uXLzeswnSaVK2kNaqGfPjhhy0/jp2VtB6Px7Ca9tlnn4247+HDh1VZWek3ZnUVbQujvrSBLQ927dql5cuX+421adNGpaWllsQwceLEiNvE2+rASI8ePTRixAgqaAEAiIAkLRytvr5eN998s/bu3avOnTvr8ccf1wcffKD3339fK1eu1KhRo9TY2Kh58+bpzTfftDtcAECaIUlrXocOHXT++ef7je3evTslvhGTqpW0F154YVCydMWKFVqxYoWlx7H79QnV8iDSBwAbN24MGktUkraioiKoinTVqlU6efKk9/6DDz4Y9FrOmDFDrVu3tiSG6dOna/DgwWG3mTt3rvLy8iw5HgAAiI7zry6R1l599VV99NFH8ng8mj9/vs477zy1atVKHo9HpaWleuSRR3T66adLkhYsWGBztACAdEOSNjpGLQ8CKwedyCgJmQqVtKWlpbrpppuCxm+55RZVV1dbdpyampqgsWQuDFVWVqYzzzzTb2zz5s2G/WZ9GX1AkKgkrcfjCWp5cPz4cW817RdffBH0zTCPx6NZs2ZZFkN2drb+53/+R8OHDzd8/Be/+IVmz55t2fEAAEB0SNLC0dasWSNJGjp0qDcZ66tVq1a67LLLJEmbNm0yfJMAAECikKSNzsUXXxw0lgp9aY3aHaRCJa0k/fKXv1RxcbHf2J49e3TPPfdYdgyjRHunTp0sm98M3wWqWkRaQCwZi4b5MupL+93vflfbtm3TwoULdfz4cb/HpkyZon79+lkaQ9euXfXmm2/qmmuu8Y61adNGy5Yt009+8pOkJtcBAIC/1Li6RNo65ZRTNG7cuKCvR/pqeRPQ1NSkY8eOJSkyAACMF2EiSRtaSUlJUBXfpk2btGPHDpsiMsfur/PHo6CgQL/97W+Dxu+//359+OGHcc//wQcfBC121bdvX51yyilxzx2NK664Iuhn8uyzzxr+7FoEJmlzcnLUv3//hMQnSWPGjFH79u39xg4dOqTzzz9f9957b9D2t99+e0LiyMnJ0ZNPPql33nlHTz31lHbt2uUtegAAAPZJjatLpK0ZM2booYce0g033BBym/fee0+S1Lp1axUWFiYrNAAADCtps7OzbYgkdRi1PHB6NW2qLhzW4sorr9SoUaP8xlr6/se7cNsTTzwRNHb99dcnPYndtWtXjR492m9s7969evTRRw23b2ho0KZNm/zGBg0apMzMzITFmJ+fr/vvvz9ofP/+/UFVtOecc07ItgRWGTFihKZPn67OnTsn9DgAAMAckrRIaYcOHdKSJUskNV/MJvLCGgCAQLQ7iF4qJmlTuZJWau5tunDhwqDfzTVr1ujpp5+Oed7q6mr9+c9/9hvLzMz0+yp9MhktIPbDH/5Qf//734PGX3jhhaDEaCJbHbS4/vrrNWfOnIjbJaqKFgAAOFfqXF0iZR0+fFh79uwx/d++fftMzVtfX6/bb79dR44cUUZGhuHCGAAAJBJJ2uiVlZVp0KBBfmP/+Mc/NGnSJEu+fp8IqV5JK0kDBgwwTPzNnj1bhw4dimnOpUuX6ujRo35jF198sW2VmZdffrm6d+/uN1ZfX6/LLrtMn3zyiXdsx44duvbaa4P2Hzp0aMJjlKRf/epXhj10W0ybNk0XXXRRUmIBAADOQdkhEm7RokWGX4ULpaSkRKtWrQq7TUNDg+bMmaO3335bkvT9739fFRUVccUJAEC0SNLG5pJLLtHmzZv9xv72t7/p5Zdf1rXXXqu5c+eqW7duNkUXLNUraVvceeedeuaZZ7R7927vWFVVlc466ywtWbJEp512WlTzPf7440Fj4VpUJVqbNm20dOlSnX/++X79oquqqnTxxRdr9erVysrK0mWXXRaUXM7Pzw+bOLVSRkaG/vjHP+rYsWNasWKFpObzxsUXX6xrr71W48aNYwEvAADSUOpdXSLtnTx5UrfccoteeuklSdKkSZP0/e9/3+aoAADpiCRtbK666irDJGdjY6P+8Ic/qF+/frrzzjv15Zdf2hBdMDdU0krNScwFCxYEjW/fvl3Dhw/XggULTPeo3bhxo/7xj3/4jZWWluqCCy6wJNZYnXXWWVq4cGHQ+Pr169WxY0cNGDAgaMEwSXrqqafUoUOHZIQoqXkthRdeeEFvvPGGXnrpJX366adaunSpxo8fT4IWAIA0RZIWCTd79mxt27bN9H/hqmgPHTqkGTNm6PXXX5ckTZ48Wffeey8XswAAW5CkjU15ebn+9Kc/Ba1036Kmpka/+tWv1K9fPz300EN+VZF2cEslrSRNmDBBl156adB4bW2tZs6cqUsuucRU+wOnLBhm5Lvf/a7hB/gNDQ2qrKwMGp8zZ44mTZqUjND8eDwejR49WhMmTFBRUVHSjw8AAJzF/qsowKTdu3dr2rRpWr9+vSTp6quv1rx581KykgUA4A4kaWM3ffp07dq1S7fddlvI1+zgwYO69dZbNXDgQD3zzDOqrq5OcpTN3JSklaQnn3xS48aNM3zsxRdf1JAhQ/SnP/1JNTU1htscP348aMGxVq1a2bZgmJEHH3xQ5513XsTtzj//fN1zzz1JiAgAACC81L26RFrZtGmTrrjiCn3yySfyeDz60Y9+pDvvvJMKWgCArYwqPEnSmtexY0c98MAD2rZtW9h+oLt27dKVV16pwsJCnXvuufrZz36mNWvW6OTJk0mJ0y3tDlq0a9dOr7zyin7zm98oMzN4iYq9e/fqO9/5jnr06KE77rhDe/bs8Xv8+eef15EjR/zGJk2apK5duyYy7KhkZWVp2bJlQYvU+erataueffZZw9cAAAAg2UjSwvF27Nih7373uzp8+LCysrJ0//3367vf/a7dYQEAYFhJm52dbUMkqa20tFSLFy/Wv/71r7A9Tevq6vTWW2/p7rvv1vnnn6/CwkKNGTNGv/71r7Vu3TrV19cnJD63VdJKzfHffvvtevvtt9W7d2/Dbb744gvNmzdPffr00ciRIzV06FD16tVL119/fdC2di4YFkqnTp30/vvva8WKFZo1a5bOOOMM78+tZ8+eWrFihbp06WJzlAAAAM342BiOdvz4cf3gBz/QkSNHlJ2drUceeUTnnnuu3WEBACCJdgdWO+OMM/Taa6/p1Vdf1Y9+9CPDBZ581dTU6PXXX/f2qm/btq3KysrUv3//oP+Kiopi/gaO2yppfQ0fPlzr16/XDTfcoGXLlhlu09jYqHfeeSfkHL169dKYMWMSFWJcsrOzNXHiRE2cOFGS9OWXX+rQoUPq0qWLcnNzbY4OAADgP0jSwtEee+wx7d69W5L0X//1XyRoAQCOQpLWeh6PR+PGjdOFF16oxYsX6yc/+YnhYk9GqqurtX79em//el/5+fnq16+fevfureLi4pD/tW3bVtXV1Tp27Jj3/xs3bgyaL9UraX0VFBRoyZIlmjBhgubOnauPP/44qv2vu+66lEla5+fnKz8/3+4wAAAAgpCkhWPV1tbqmWee8d5fsGCBFixYEHaf559/Pun90JqamvTFF19Ian5j2VKl4/t/q8bCPQ4ASD6StInTqlUrXX311Zo2bZpWrlypVatWadWqVdq0aVNM83355Zd677339N5771kWn5t4PB7NmDFDV111lVauXKkFCxZo5cqVEffr0aOHbrrppiRECAAA4G4kaeFY27dv11dffeW9f/DgwYj7GH0dMdGqq6tVVFSU9OOGEk9SuKmpyXvbTRVCAJAoLByWeK1bt9bkyZM1efJkSdKBAwf05ptvepO2H330kS1xufXvZKtWrTRhwgRNmDBBO3bs0MKFC/WXv/xFBw4cUIcOHdSxY0fvf6eccoquu+46dezY0e6wAQAAUh5JWpebP3++Fi5cqJKSEq1atSrq/Xfu3KnnnntO69at0969e1VfX6/i4mKVlZVp4sSJGjNmTMJWxK2oqNC2bdsSMrebNTU1qampye4wACBtkaRNrM6dO2vatGmaNm2aJOmTTz7R6tWrtXr1am3atEk7duzQ0aNHEx5H3759E34Mu/Xv318PPvigHnzwQbtDAQAAcD2StC62YcMGPfHEEzHv//DDD+uxxx4LWim5srJSlZWVeuONN1RRUaH77rtPffr0iTdcAABcoaCgwO4Q0krPnj01Y8YMzZgxQ1Lzh5UHDx7Ujh07tGPHDn300Ud+t61I4E6ZMkVnnHFG3PMAAAAALUjSulRlZaVuvvlmw155Ztxzzz16+umnvfczMzNVXl6u3Nxc7dy5U4cPH5Ykbdq0SdOnT9fSpUtVUlJiSewAAKSqU089lQ8ubebxeNSpUyd16tRJI0eODHr8+PHjqqqq0ueff274X01NjfLy8oL+a9u2rfLy8lRWVqahQ4fSEx4AAACWIknrQtu3b9d1112nqqqqmPZfuXKlX4J23Lhxuuuuu7x9V+vq6rR8+XL9+te/Vk1NjQ4ePKiZM2fqL3/5S1q+YcnKytK1117r12bA9/9WjSVybklqbGz06wGcl5eXlj9PAIjV4MGDNWfOHM6dDtemTRv16tVLvXr1sjsUAAAAwIskrcu8+OKL+tnPfqaampqY9q+rq9O8efO890eNGqXf/e53fotjZGVladq0aSopKdH3vvc91dfXa/PmzXrppZc0ceLEuJ9DqmndurV+//vf2x1G3BoaGvxWzK6oqHDdytUAkAyBbYIiCVz00o5FMAEgHXH+BQD7cA4O5mlihSFXOHDggB544AG98MILho+bXTjslVde0W233SapucXBa6+9pm7duoXc/u6779bixYslSYMGDdLy5cujDz4FrV+/Xo2NjXaHAQAAAAAAAAfJyMjQ6aefHv1+CYgFSfboo49q/PjxfgnaPn366MYbb4x6rldeecV7e+TIkWETtJK8KytL0ubNm1VZWRn1MQEAAAAAAIB0RpLWBRYtWqTjx49770+dOlXLli2LutdaU1OT1q1b571/9tlnR9ynvLxcnTp18t43U60LAAAAAAAA4D/oSesiFRUVmjNnjoYNGxbT/vv27dPRo0f95jOjvLzcu0jZxo0bYzp2KsvIyNDgwYPtDiNu9KQFAHtw/gUAe3D+BQD7uO0cvHHjxrjbYpKkdYFhw4ZpypQpuuCCC+JaUXr37t1+93v27Glqv+7du3tvf/LJJzEfP5VlZrrvn1KrVq1c+bwAwOk4/wKAPTj/AoB9OAeTpHWFhQsXWjJPSzWs1FwdWlRUZGo/33YHvnMAAAAAAAAAiIyetPD68ssvvbfbtm2rjAxzvx55eXmGcwAAAAAAAACIjEraJBk9erT27dsX1xylpaVauXKlRREFO3nypPd2Tk6O6f2ys7O9t2tray2NCQAAAAAAAHA7KmnhVVdX571ttopW8u/HWl9fb2lMAAAAAAAAgNuRpIWX7yp60axI55uYzcrKsjQmAAAAAAAAwO1od5AkS5YsUUNDQ1xzJHqVu9zcXO9t39YHkfi2OGjdurWlMQEAAAAAAABuR5I2STp16mR3CBHl5+d7b1dXV6upqUkejyfifseOHfPeLigoSERoAAAAAAAAgGvR7gBenTt39t5uaGjQ4cOHTe1XVVXlvV1UVGR5XAAAAAAAAICbkaSFV69evfzuV1ZWmtpv79693tulpaWWxgQAAAAAAAC4HUlaeJWUlPi1K9iyZYup/bZu3eq9PWDAAKvDAgAAAAAAAFyNJC38DB8+3Ht77dq1EbffunWrDh486L0/YsSIhMQFAAAAAAAAuBVJWvgZO3as9/bq1at14MCBsNs/++yz3tt9+/ZVeXl5wmIDAAAAAAAA3IgkLfyMHTtWxcXFkqTa2lrdcccdqq+vN9z2rbfe0rJly7z3p0+fnpQYAQAAAAAAADchSQs/2dnZmjVrlvf+2rVrdf311/stIlZfX6+lS5dq5syZamhokCSVlZVp6tSpSY8XAAAAAAAASHWZdgcA57nkkku0fv16LVmyRFJzonbs2LEqLy9XXl6edu7cqUOHDnm3Lygo0Pz585WZya8TAAAAAAAAEC2yajA0d+5cFRYWatGiRaqrq1NjY6O2bNkStF3fvn01f/589enTx4YoAQAAAAAAgNRHkhaGPB6PbrvtNk2aNEnPP/+83n77be3fv181NTXKz8/XwIEDNX78eE2aNEnZ2dl2hwsAAAAAAACkLJK0LjZlyhRNmTIlrjn69u2rOXPmaM6cORZFBQAAAAAAAMAXC4cBAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI08TU1NTXYHAaSa9957z+9+RoY7Pu9obGz03nbLcwKAVMD5FwDswfkXAOzjpnOw73ORpDPOOCPqOTKtCgZIZ4H/GN3Ajc8JAFIB518AsAfnXwCwD+dg2h0AAAAAAAAAgK2opAUskOpl+QAAAAAAAIiNFZXA9KQFAAAAAAAAABtR/gcAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANsq0OwAA7vTaa6/pz3/+szZv3qza2lp17dpVF154oa677joVFhbaHR4ApJXDhw9rwoQJysnJ0apVq+wOBwBc59ixY1q8eLFee+01ffzxxzp58qQ6duyoM844QzNmzNCQIUPsDhEAXKumpkZPPfWUXnnlFe3evVuZmZkqLS3VRRddpG9961tq3bq13SGa4mlqamqyOwgA7vLggw/qsccekyRlZWUpOztb1dXVkqTi4mI9/fTT6t27t40RAkD6qKur080336y///3vKikpIUkLABbbs2ePrr32Wu3du1eSlJ2drczMTB0/flySlJGRodtvv13XXnutnWECgCtVVVXpmmuu0UcffSSpOQfh8XhUW1srSerbt6+efPJJde7c2c4wTaHdAQBLvfLKK3rsscfk8Xg0e/Zs/etf/9L777+vZcuWqU+fPvr888/1gx/8QA0NDXaHCgCuV1NTox/+8If6+9//bncoAOBK9fX1uvnmm7V371517txZjz/+uD744AO9//77WrlypUaNGqXGxkbNmzdPb775pt3hAoDrzJo1Sx999JEKCwv10EMPaf369frggw/0hz/8QV26dNHOnTt166232h2mKSRpAVimsbFRDz30kCTp6quv1vXXX6+cnBxJ0qmnnqonn3xSbdq00Y4dO/TCCy/YGCkAuN+2bds0depUvf7663aHAgCu9eqrr+qjjz6Sx+PR/Pnzdd5556lVq1byeDwqLS3VI488otNPP12StGDBApujBQB3Wbdund59911J0r333qtx48YpKytLrVq10jnnnKP77rtPkrR+/Xr961//sjNUU0jSArDMP/7xD3388ceSpO985ztBj3fp0kWTJ0+WJJK0AJAgJ06c0F133aVLLrlEO3bsUFFRkUaNGmV3WADgSmvWrJEkDR061JuM9dWqVStddtllkqRNmzappqYmqfEBgJutXbtWklRSUqLzzz8/6PFhw4YpLy9PUvM52OlI0gKwzLp16yRJpaWl6tq1q+E2I0eOlCS999573j5dAADrHDx4UEuWLFFDQ4PGjRunFStWaNCgQXaHBQCudMopp2jcuHGGyYEWnTp1kiQ1NTXp2LFjSYoMANzvtttu09tvv63f//73ho83NjaqZSmurKysZIYWk0y7AwDgHjt27JDU3Jg7lF69ekmSGhoatGvXLlVUVCQlNgBIFx6PRyNHjtTNN9+sr33ta3aHAwCuNmPGDM2YMSPsNu+9954kqXXr1iosLExGWACQNjp16uT9MCzQihUrVF1dLY/HoxEjRiQ5suiRpAVgmQMHDkhqbmsQiu+KilVVVQmPCQDSTUlJiZ588km7wwAASDp06JCWLFkiSTrnnHOUmclbcABIpBMnTmjPnj16/vnn9cwzz0hqbscYrpjMKfgLAcAyLV/fys3NDblNy0JivtsDAAAAblNfX6/bb79dR44cUUZGhm666Sa7QwIAV9uzZ4/Gjh3rve/xePSjH/1I1157rY1RmUdPWgCWqa+vlxS+10t2drb3dkNDQ8JjAgAAAJKtoaFBc+bM0dtvvy1J+v73v0+bLwBIsM8++0xZWVlq06aNpOZe4AsXLtQjjzxic2TmkKQFYJmWKtm6urqQ29TW1npvp0LjbgAAACAaJ0+e1C233KKXXnpJkjRp0iR9//vftzkqAHC/IUOG6IMPPtD69eu1evVqTZ06VceOHdPDDz+s+fPn2x1eRCRpAVimbdu2kpp7wIRSU1PjvZ2Xl5fwmAAAAIBkOXTokGbMmKHXX39dkjR58mTde++98ng8NkcGAO6Xm5vr7f3drVs33XPPPZo+fbok6Y9//KMOHTpkZ3gRkaQFYJmWBcM+//zzkNu0LC4m+S8iBgAAAKSy3bt3a9q0aVq/fr0k6eqrr9a8efPUqlUrmyMDgPR1zTXXSGouJtu2bZu9wURAkhaAZcrKyiRJH3/8ccht9uzZI0nKzMxU7969kxEWAAAAkFCbNm3SFVdcoU8++cS7UM2dd95JBS0AJNDu3bu1Zs0abd26NeQ2xcXF3tuHDx9ORlgxI0kLwDLDhw+XJO3YsUMHDx403Gbt2rWSmnvFtPSwBQAAAFLVjh079N3vfleHDx9WVlaW7r//fn33u9+1OywAcL077rhDN9xwgx5++OGQ2+zcudN7u6SkJBlhxYwkLQDLnHHGGerSpYuampr0+OOPBz3+2WefacWKFZKkb33rW8kODwAAALDU8ePH9YMf/EBHjhxRdna2Fi5cqIsuusjusAAgLZx33nmSpDfffFPbt28PerypqUkPPfSQpOYE7eDBg5MaX7RI0gKwTEZGhmbNmiVJ+n//7//p4Ycf1vHjxyVJGzZs0He+8x0dP35cZWVl+uY3v2lnqAAAAEDcHnvsMe3evVuS9F//9V8699xz7Q0IANLIVVddpc6dO6u+vl7XX3+9Xn/9ddXV1UmSdu3apR/84AdatWqVPB6PfvKTnygjw9lpUE9TU1OT3UEAcJdf/OIX+vOf/yypufdsTk6Ojh07Jqm5H8ySJUvUrVs3O0MEgLTy8MMPa8GCBSopKdGqVavsDgcAXKG2tlYjR47UV199JUkqKiqKuM/zzz+vrl27Jjo0AEgb27Zt0w033KD9+/dLCs5BZGdn6+c//7kuvfRSO8M0JdPuAAC4z09/+lOdddZZWrx4sTZv3qzjx4+re/fuGjVqlG666SZ17NjR7hABAACAuGzfvt2boJUUck0GXw0NDYkMCQDSTnl5uVasWKGnn35ar732mvbs2aO6ujr17t1bI0eO1DXXXKNevXrZHaYpVNICLjJ//nwtXLgwpkqpnTt36rnnntO6deu0d+9e1dfXq7i4WGVlZZo4caLGjBmjzEw+1wGAcDgPA0Bycd4FAPtwDrYWSVrAJTZs2KBvf/vbqquri/oE+fDDD+uxxx5TfX19yG0qKip03333qU+fPlaECwCuw3kYAJKL8y4A2IdzsPWc3TEXgCmVlZW6+eabvQ2yo3HPPfdowYIF3pNjZmamBg0apDPPPFOFhYXe7TZt2qTp06dr3759lsUNAG7BeRgAkovzLgDYh3NwYpCkBVLc9u3bdeWVV6qqqirqfVeuXKmnn37ae3/cuHFas2aNli9frsWLF+utt97S3XffrdzcXEnNfbZmzpwpCvAB4D84DwNAcnHeBQD7cA5OHJK0QAp78cUXdfnll+vAgQNR71tXV6d58+Z5748aNUq/+93v/FalzcrK0rRp07RgwQJvL5jNmzfrpZdeij94AHABzsMAkFycdwHAPpyDE4skLZCCDhw4oDlz5uhHP/qRampqYprjtdde06effiqp+esFd911lzIyjE8JX//61zVt2jTv/SeffDKmYwKAW3AeBoDk4rwLAPbhHJwcJGmBFPPoo49q/PjxeuGFF7xjffr00Y033hjVPK+88or39siRI9WtW7ew2/ueIDdv3qzKysqojgcAbsF5GACSi/MuANiHc3DykKQFUsyiRYt0/Phx7/2pU6dq2bJl6tWrl+k5mpqatG7dOu/9s88+O+I+5eXl6tSpk/d+NCs3AoCbcB4GgOTivAsA9uEcnDyZdgcAIDYVFRWaM2eOhg0bFvW++/bt09GjR/3mMqO8vNzbHHzjxo1RHxcA3ITzMAAkF+ddALAP5+DEI0kLpJhhw4ZpypQpuuCCC+TxeGKaY/fu3X73e/bsaWq/7t27e29/8sknMR0bAFId52EASC7OuwBgH87ByUOSFkgxCxcujHuOlk+iJCkjI8NvNcVwfL9q4DsHAKQTzsMAkFycdwHAPpyDk4eetEAa+vLLL72327ZtG3JFxUB5eXmGcwAAosN5GACSi/MuANiHc7A5JGmBNHTy5Env7ZycHNP7ZWdne2/X1tZaGhMApBPOwwCQXJx3AcA+nIPNIUkLpKG6ujrvbbOfYElSZuZ/OqTU19dbGhMApBPOwwCQXJx3AcA+nIPNIUkLpKFWrVp5bzc2Nprez/ekmJWVZWlMAJBOOA8DQHJx3gUA+3AONockLZCGcnNzvbd9v3YQie/XC1q3bm1pTACQTjgPA0Bycd4FAPtwDjaHJC2QhvLz8723q6ur1dTUZGq/Y8eOeW8XFBRYHRYApA3OwwCQXJx3AcA+nIPNIUkLpKHOnTt7bzc0NOjw4cOm9quqqvLeLioqsjwuAEgXnIcBILk47wKAfTgHm0OSFkhDvXr18rtfWVlpar+9e/d6b5eWlloaEwCkE87DAJBcnHcBwD6cg80hSQukoZKSEr+vCmzZssXUflu3bvXeHjBggNVhAUDa4DwMAMnFeRcA7MM52ByStECaGj58uPf22rVrI26/detWHTx40Ht/xIgRCYkLANIF52EASC7OuwBgH87BkZGkBdLU2LFjvbdXr16tAwcOhN3+2Wef9d7u27evysvLExYbAKQDzsMAkFycdwHAPpyDIyNJC6SpsWPHqri4WJJUW1urO+64Q/X19YbbvvXWW1q2bJn3/vTp05MSIwC4GedhAEguzrsAYB/OwZGRpAXSVHZ2tmbNmuW9v3btWl1//fV+Dbzr6+u1dOlSzZw5Uw0NDZKksrIyTZ06NenxAoDbcB4GgOTivAsA9uEcHFmm3QEAsM8ll1yi9evXa8mSJZKaT5Jjx45VeXm58vLytHPnTh06dMi7fUFBgebPn6/MTE4dAGAFzsMAkFycdwHAPpyDw0uPZwkgpLlz56qwsFCLFi1SXV2dGhsbDVda7Nu3r+bPn68+ffrYECUAuBfnYQBILs67AGAfzsGhkaQF0pzH49Ftt92mSZMm6fnnn9fbb7+t/fv3q6amRvn5+Ro4cKDGjx+vSZMmKTs72+5wAcB1OA8DQHJx3gUA+3AODs3T1NTUZHcQAAAAAAAAAJCuWDgMAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAIBp69evV3l5ufe/yspKu0MCAABIeSRpAQAAAJi2efNm7+2CggL16NHDxmgAAADcgSQtAAAAANN8k7QVFRU2RgIAAOAeJGkBAAAAmLZp0ybvbZK0AAAA1iBJCwAAAMCUEydOaOfOnd77JGkBAACsQZIWAAAAgClbt25VQ0OD9z5JWgAAAGuQpAUAAABgim8/2qKiInXt2tXGaAAAANyDJC0AAAAAU3yTtIMGDYq4/YYNGzR69GiVl5ervLxcp59+ul555ZVEhggAAJCSMu0OAAAAAEBq8E3SRmp18Oc//1n33nuv6urqJEmlpaVasGCB+vXrl9AYAQAAUhFJWgAAAAARnTx5Uh999JH3fqgkbXV1tX7yk5/4VcyOGzdOv/rVr5SXl5fwOAEAAFIRSVoAAAAAEW3btk319fXe+0ZJ2u3bt+uWW27Rxx9/LElq1aqVZs2apeuuuy5pcQIAAKQikrQAAAAAItq0aZP3dnFxsYqLi/0ef+GFF/Tzn/9cNTU1kqSOHTvqwQcf1PDhw5MaJwAAQCoiSQsAAAAgolD9aE+ePKl77rlHS5cu9Y6dfvrpmj9/vjp37pzUGAEAAFIVSVoAAAAAERklaSsrK3XLLbfoww8/9D521VVX6Y477lBWVlbSYwQAAEhVJGkBAAAAhFVbWxu0aNjrr7+uH//4xzp69KgkKTc3V3fffbcmTZpkV5gAAAApiyQtAAAAgLC2bdumuro67/2VK1dq+fLl3vu9e/fWQw89pPLycjvCAwAASHkZdgcAAAAAwNl8Wx1I8kvQXnDBBXr++edJ0AIAAMSBJC0AAACAsHyTtK1bt/Z7bPjw4WrXrl2yQwIAAHAVkrQAAAAAwvJN0t5www36+te/7r1/77336o033rAjLAAAANcgSQsAAAAgpNraWm3fvt17v6KiQvPnz1dZWZkkqbGxUbNnzw5qiQAAAADzSNICAAAACGn79u1+i4YNHDhQeXl5euyxx1RUVCRJOn78uL73ve/ps88+sytMAACAlEaSFgAAAEBIH374ofd2x44d1blzZ0lSSUmJHn30UeXk5EiSqqqq9L3vfU/Hjh2zJU4AAIBURpIWAAAAQEibNm3y3h44cKDfY6eeeqrmzZsnj8cjSdq2bZt++MMfqqGhIakxAgAApDqStAAAAABC8u01O2DAgKDHx48fr1mzZnnvv/XWW5o7d25SYgMAAHALkrQAAAAADNXV1fktGhZYSdvihhtu0KWXXuq9v2TJEv3hD39IeHwAAABuQZIWAAAAgKEdO3aotrbWez9UklaS5s6dqxEjRnjv33///Xr11VcTGh8AAIBbkKQFAAAAYMi31UFubq5KS0tDbpuVlaWHH35Yffr0kSQ1NTXp9ttv14YNGxIeJwAAQKojSQsAAADAkO+iYWVlZcrICP/2oX379nr88cdVWFgoSTpx4oRuuukm7d27N6FxAgAApDpPU1NTk91BAAAAAAAAAEC6opIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABs9P8BdOE6Xluf0BsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def safe_A(k, r0, td, tb, tau, limit=60):\n", + " if k > limit:\n", + " return r0 ** 2 * tb**2\n", + " return A(k, r0, td, tb, tau)\n", + "\n", + "\n", + "check_A(r, deadtime, bintime, max_k=1000, linthresh=1e-16);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we had better repeat the procedure by using `limit_k=500` this time." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXoAAAQvCAYAAACpAlbxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeXxU1fnH8e9kgxAg7FtYSgIJYDAsFhC0dcWtYKUiWooLQlUUt6JgrbihlupPpVBEKMWqKBZEUEQUgbqAgEIMJBACYTEsCQRCgCwkM5nfHynjDHOTzCR3ZjLJ5/168WLuueee80wyS/LkzHMsdrvdLgAAAAAAAABA0AoJdAAAAAAAAAAAgJoh0QsAAAAAAAAAQY5ELwAAAAAAAAAEORK9AAAAAAAAABDkSPQCAAAAAAAAQJAj0QsAAAAAAAAAQY5ELwAAAAAAAAAEORK9AAAAAAAAABDkSPQCAAAAAAAAQJAj0QsAAAAAAAAAQY5ELwAAAAAAAAAEubBABwDUBlu2bHE5DgnhbyAAAAAAAAD1VVlZmctx//79AxSJ50j0AgbOfzIDAAAAAAAAtRnLFgEAAAAAAAAgyLGiFzBQk9INzquBKQEBAHUbr/kAUL/wug8A9UcwftqbRC+g8h/Szj2BQ0JC1Ldv32qNY7ValZKS4jju3bu3wsJ4mgFAXcRrPgDUL7zuA0D9kpyc7JIrCgbBESUAAAAAAAAAoEIkegEAAAAAAAAgyJHoBQAAAAAAAIAgR6IXAAAAAAAAAIIciV4AAAAAAAAACHIkegEAAAAAAAAgyJHoBQAAAAAAAIAgR6IXAAAAAAAAAIIciV4AAAAAAAAACHIkegEAAAAAAAAgyJHoBQAAAAAAAIAgR6IXAAAAAAAAAIIciV4AAAAAAAAACHIkegEAAAAAAAAgyIUFOgDUX6tXr9a7776rtLQ0lZSUqH379rrqqqs0btw4NW/ePNDhAQAAAAAAAEGDFb0IiNdee00PPPCANm7cqOLiYoWFhWn//v365z//qeHDh2v//v2BDhEAAAAAAAAIGiR64XcrV67UnDlzZLFYNGnSJP3www/aunWrFi9erNjYWB09elQPPPCAbDZboEMFAAAAAAAAggKJXvhVWVmZ/v73v0uSbr/9do0fP14NGzaUJF144YVasGCBGjVqpN27d2vZsmUBjBQAAAAAAAAIHiR64VcbN27Uvn37JEl33XWX2/l27drpxhtvlCQSvQAAAAAAAICHSPTCrzZt2iRJ6tq1q9q3b2/YZ/DgwZKkLVu2qLCw0G+xAQAAAAAAAMGKRC/8avfu3ZKkuLi4Cvt06dJFkmSz2bR3716/xAUAAAAAAAAEMxK98KucnBxJ5SUaKtK2bVvH7WPHjvk8JgAAAAAAACDYkeiFX505c0aSFBkZWWGfc5uzOfcHAAAAAAAAUDESvfArq9UqSQoPD6+wT0REhOO2zWbzeUwAAAAAAABAsCPRC786t1q3tLS0wj4lJSWO25UlhAEAAAAAAACUI9ELv4qKipIkFRcXV9inqKjIcbtx48Y+jwkAAAAAAAAIdiR64VfnNmE7evRohX3ObdgmuW7MBgAAAAAAAMAYiV74VXx8vCRp3759FfY5cOCAJCksLEy/+MUv/BEWAAAAAAAAENRI9MKvBg4cKEnavXu3cnNzDfts2LBBkpSUlOSo6QsAAAAAAACgYiR64Vf9+/dXu3btZLfbNXfuXLfzR44c0ccffyxJuu222/wdHgAAAAAAABCUSPTCr0JCQvToo49Kkv79739r5syZKiwslCRt27ZNd911lwoLCxUfH6/rr78+kKECAAAAAAAAQSMs0AGg/rnxxhu1bds2vfvuu5o1a5bmzJmjhg0b6syZM5KkNm3a6M0331RoaGiAIwUAAAAAAACCAyt6ERBPPfWU/vGPf2jw4MGKiorS2bNn1bFjR40ZM0bLli1Thw4dAh0iAAAAAAAAEDRY0VvPzJgxQ7Nnz1ZMTIzWrl3r1bWZmZlatGiRNm3apIMHD8pqtapNmzaKj4/XsGHDdPXVVysszPOH1FVXXaWrrrrK27sAAAAAAAAA4DwkeuuRbdu2ad68edW6dubMmZozZ46sVqtLe1ZWlrKysrRmzRolJibq5ZdfVmxsrBnhAgAAAAAAAPAQpRvqiaysLE2YMEGlpaVeXztt2jTNmjXLkeQNCwvTBRdcoIsuukjNmzd39EtNTdWYMWN06NAh0+IGAAAAAAAAUDUSvfVARkaGRo8erWPHjnl97apVq/TOO+84jq+55hp99dVXWrp0qRYuXKhvvvlGzz33nCIjIyVJubm5mjhxoux2u2nxAwAAAAAAAKgcpRvquOXLl+vpp59WUVGR19eWlpZq+vTpjuPLL79cr7/+ukJCfv77QHh4uEaNGqWYmBjdc889slqtSktL04oVKzRs2DBT7kMgnF+iwlM2m63SYwBA3VHVa35+fr7uvfderV27VmfPnq3WHBEREbrssss0Z84ctWjRotqxAgBqjp/1AQC1ncXO0ss6KScnR6+++qqWLVtmeN6TzdhWrlypRx55RFJ5uYbVq1erQ4cOFfZ/7rnntHDhQknSBRdcoKVLl1Yv+ABITk5WWVlZoMMAANQhzz77rD755BNTxrruuuv0/PPPmzIWAAAAAO+EhISob9++gQ6jSpRuqIPeeOMNXXvttS5J3tjYWN17771ejbNy5UrH7cGDB1ea5JWkUaNGOW6npaUpKyvLq/kAAKhLUlJSTBsrOTnZtLEAAAAA1E0keuug+fPnq7Cw0HE8cuRILV68WF26dPF4DLvdrk2bNjmOhwwZUuU1CQkJat26teO4qhXDAADUZdUtA+TrsQAAAADUTdTorcMSExM1efJkDRgwwOtrDx06pFOnTrmM5YmEhATHpm/bt2/3et7aICQkRL17967WtTabTampqY7jxMREhYaGmhUaAKAWqeo1PyIiwqV/VFSUBg4c6NHY33//vU6fPu04Dg8PV1JSUg0jBgDUBD/rA0D9sn379qAr80mitw4aMGCARowYoSuvvFIWi6VaY+zfv9/luHPnzh5d17FjR8ftn376qVpz1wZhYeY8NUJDQ00bCwBQu1X1mh8XF6c1a9Z4NNaAAQP0/fffu7TxfgIAtQs/6wMAahveleqg2bNn13iMc6typfIVrq1atfLoOufSDc5jAAAAAAAAAPAdEr0wlJ+f77gdFRWlkBDPyjk3btzYcAwAAFB9R44cUXR0tMf9mzRpohEjRujVV19ltRkAAABQT/CTPwydPXvWcbthw4YeX+dcj7CkpMTUmAAAqM+ca+d70nfmzJnq1KmTHnvsMR9GBQAAAKC28GyZJuqd0tJSx21PV/NKrvUD2SEcAIDqiYqKMmWcr7/+2pRxAAAAANR+rOiFIefdY73ZYdA5uRseHm5qTAAA1Be//e1v9d///rfG4zj/4Rb+U1RUpPXr11e6X8EvfvEL/fKXv6S0BgAAAEzDT5YwFBkZ6bjtXMahKs7lGho0aGBqTAAA1BcPPvigIiIitGLFChUWFnp83VdffSW73e7DyCCV/7wzf/58bdmyxe0P4idOnNDy5cs9GmfYsGFaunQpyV4AAACYgp8qYch5w5eCggLZ7XZZLJYqrztz5ozjdrNmzXwRGgAAdZ7FYtF9992n++67z6vrGjZs6NUfaFE948aN0zvvvFPjcT755BNt3rxZgwcPNiEqAAAA1HckemGobdu2jts2m015eXlq0aJFldc5f0SxVatWPokNAAAgUIqLi7Vo0SLTxvv000/VvHlzl7YuXbqoUaNGps0BAACA+oHN2GCoS5cuLsdZWVkeXXfw4EHH7a5du5oaEwAAQKAVFBSYWvv4xRdfVK9evVz+tWjRQq+//rppcwAAAKB+INELQzExMS6lF3bu3OnRdenp6Y7bPXr0MDssAACAoDJ27FgtWrRIixYt0s033+zRNWfPntUjjzyinJwcH0cHAACAuoTSDajQwIED9fnnn0uSNmzYoFtvvbXS/unp6crNzXUcDxo0yKfxAQAA1AajR4/W3//+d5c2i8WiZs2auexx0L59ey1ZssTjcVNTU13KadUVubm5On36tEtb48aN1bp16wBFBAAAUDeQ6EWFhg4d6kj0rlu3Tjk5OZX+svH+++87bsfFxSkhIcHnMQIAgIqdPHlSGzdu9Khv+/bt3Uo3wTMNGjTwaC+DQYMGqW/fvkpOTvZoXLvdXtPQAq6wsFD5+fmSpFOnTul3v/ud0tLSDPsOGTJEy5cvV8uWLf0ZIgAAQJ1BohcVGjp0qNq0aaOjR4+qpKREU6ZM0bx58xQW5v6w+eabb7R48WLH8ZgxY/wZKgAAPpGdna0jR44YnrNarcrIyHAcl5WVubxHnj171ufxVWXTpk26+OKLPe4/YsQIvf/++4qIiPBhVPVXRESE1q5dqw8//FB79uxxOffDDz/oyy+/DFBk5rNarRo/frzeffddWa1Wj65Zv369nnzySb3yyiuSpEaNGikkhEpzAAAAniLRiwpFRETo0Ucf1ZQpUySVl28YP368nnvuOXXq1ElS+Q/xS5cu1YsvviibzSZJio+P18iRIwMWNwAANWW1WnXnnXdq4cKFgQ7Fr5YuXarPPvtMN954Y6BDqbOaNWumu+++26191qxZdSrRu2jRIr311lteX/fmm2/qzTfflCS1adNGzz33nO655x6TowMAAKibSPSiUjfddJOSk5P1wQcfSCpP9g4dOlQJCQlq3LixMjMzdeLECUf/Zs2aacaMGYarfgEACBZffPFFUCZ527dvr/3799dojLS0NBK9tcQrr7ziUhorIiJCl19+uUaOHOlS+7c22rp1a43HOHr0qO69914NHTpUXbt2NSEqAACAuo1sHKr07LPPqnnz5po/f75KS0tVVlamnTt3uvWLi4vTjBkzFBsbG4AoAQAwT2pqquljtmvXzvQxz/foo4/qwQcf9Pk88I9zeyU4mzNnjn766SdNmjQpABF5zsz6wj/88EOtS/Ta7Xbl5eU5jkNDQxUdHR3AiAAAAEj0wgMWi0WPPPKIhg8friVLlujbb79Vdna2ioqKFB0drZ49e+raa6/V8OHDqekHAICBkJAQ3X///T6fZ+LEibrooou0fv16j+qiZmVlafbs2T6PC1XzphbtW2+9VesTvUZ+//vfq2nTpgoLC9OgQYN022236S9/+YteeumlSq87Vx6stvjoo480YcIEZWdnu7T36NFDH3zwgS688MIARQYAAOo7Er31yIgRIzRixIhqXx8XF6fJkydr8uTJJkYFAEBwGDt2rDp37uw4Lisrc0n0tGvXzjBZFxkZqaFDh6pPnz7+CFMXX3yxxxuwbd68mURvLdG/f3+P+zqXzQom06ZNc1uZO23aNHXr1k3ffPONSktLtX//fq1fvz5AERqz2Wx64YUXtHLlSp04cUK7d+827Jeenq6kpCS9/PLL6tChg66//no1a9bMv8ECAIB6jUQvAACAB+6++24NHjzYcWy1WpWSkuI4TkpKokY9qm3AgAF67rnn9PLLL+v06dOBDsdvQkJCNHbsWI0dO1ZS+SZu5yd6J02apOeff16RkZG65ppr9Oyzz/r1ufbCCy/o6aef9rj/Y489Jql8he+GDRvUvHlzX4UGAADggt9GAAAAgACzWCx66qmnNGXKFJ06dcrl3FVXXaUff/wxMIF54fDhwzp+/LgkKTc317RxDx06pEOHDkmStmzZIovFomnTppk2flVWrVpVrevS09O1cuVKjR492uSIAAAAjJHoBQAAAGqJ8PBwtWzZ0q2tNissLNTNN9+szz77rMZjNWzYsMo+n3/+uV8TvUVFRdW+9lyC2h+sVquWL1+ubdu2OTbD69q1q0aMGMFGcQAA1BMkehEQZ86c0cKFC7V69Wrt27dPZ8+eVcuWLdW/f3/dcccdSkpKCnSIAAAA8MDbb79tSpJXkgYPHqzIyMhKk6vFxcWmzFVdISEh6ty5s9q3b69Ro0Zp3rx5SktLC1g8paWlysjI0OjRo13KyZwzY8YMbdiwQY0aNQpAdAAAwJ88394XMMmBAwd044036tVXX9X27dtVUlKi8PBwZWdn69NPP9Wtt96qf/3rX4EOEwAAAB7Yvn17lX1CQ0PdViobadOmjVatWqVrrrlG3bp1U7du3Wpd7euOHTtq37592rBhgx566CFt27ZN27ZtM9zY8N1339Udd9yhhQsXOlbZmum///2v2rRpo8TERMMkrySlpKQoKipKSUlJ+uGHH0yPAQAA1B6166cm1HlWq1UTJkzQwYMH1bZtWz3//PO65JJLFBISov3792v69Olat26dpk+frtjYWF122WWBDhkAAAA1dMcdd6hp06Ye9f3Vr36lX/3qV47juLg47d2711ehGSorK1Nqaqqys7PdaiafLyQkRL179zbcRG/79u3avn273n77beXm5uqhhx4yNc77779fJ0+e9Kjvtm3bdPPNN2vfvn2yWCymxgEAAGoHEr3wqy+++EJ79uyRxWLRjBkz1LdvX8e5rl276h//+IdGjx6t5ORkzZo1i0QvAABAEHrwwQfVtGlTWSwW9enTRzfeeGOgQ/JYYWGhfvOb32jdunVeXRcaGlrp+ffff9/URG9ZWZl27Njh1TUHDhxQdna22rdvb1oc5xQXF2vfvn2SpEaNGqlz584klAEA8DMSvfCrr776SpLUr18/lyTvOaGhobr55puVnJys1NRUFRUVKTIy0t9hAgAAoAYef/xxxcTEBDqMavn444+9TvJKUu/evdWwYcMKawh7uvLW12w2m+ljzpkzR4888ojLfe/Vq5dWrVqlTp06mT4fAAAwRo1e+FWvXr10zTXXVLpSt3Xr1pIku92uM2fO+CkyAAAAQMrIyKj0fOfOnQ3bGzVqpCVLliguLs4XYXls5syZ+vrrr/XYY48Zni8pKTFlHrvdrpdfflkdOnTQfffd55bg3rFjhzp37qwVK1aorKzMlDkBAEDlSPTCr+644w79/e9/1x//+McK+2zZskWS1KBBAzVv3txfoQEAAACVCg0NrTCBKkk33HCD9uzZo+LiYnXv3t1ncVitVsNN8G666SY98MADuvTSS/W3v/1N999/v1ufuLg4DR06VMePH69RDB999JEef/xxHTlypNJ+w4YNM702MQAAMEaiF7XKiRMn9MEHH0iSLr300lq3yzIAAADqn8mTJ+uf//yn0tPTNXz48Cr7N2jQQCEhvvlVa8uWLerQoYP69OlT7TFWr16tKVOm1CiOcyXZPDF37lwVFRXVaD4AAFA1smjwWl5eXpW7DzsLCwvzqEab1WrVY489ppMnTyokJET33XdfTcIEAACokby8PFmtVpe2EydOBCgaBNItt9yifv36BToMSdKkSZN07Ngxj/o2a9aswnObN2+uURzelIAoKSlRXl5ejffe2L9/v/7yl79o+/btstvtatu2rSZMmKCbbrqpRuMCAFBXkOiF1+bPn6958+Z53D8mJkZr166ttI/NZtPkyZP17bffSpLuv/9+JSYm1ihOAACA6tixY4duvvlm7dy5M9ChGCorK1NBQYFLW6NGjWSxWAIUEfwpNTW1wnPt27d3OR4xYoReeeUVnT171q2vLzZla9KkiU6fPm36uLt379aTTz6pxYsXu7Rv375da9as0caNGzVgwADT5wUAINhQugEBd/bsWT344INasWKFJGn48OGG9cQAAAD84Z577qm1SV5JysnJUePGjV3+derUyVH+qq47fvy43nzzTb355ptav349G339T+PGjXX33Xe7tPXr109fffWVJk6caOpcu3bt0r///W/DdqvVql/96lemzVVWVqarr77aLcl7jt1u18CBA7Vx40bT5gQAIFixohdemzRpkiZNmmTKWCdOnNCECROUnJwsSbrxxhv10ksvsSIFAAAEzLmNYT3VokULH0XiuUOHDmn06NG6+uqra0U8vnTkyBHde++9juP77rtPs2fPDmBEgTdjxgxdf/316tatm9u5gQMHauDAgVq5cqUyMzNrPNf8+fM1bty4Cs+Hhobqggsu0Ndff+3Sfu+99+qll17SBRdc4NV8GRkZOnDgQJX9rrjiCv3444+Kj4/3anwAAOoSVvQiYPbv369Ro0Y5kry33367pk+frtDQ0ABHBgAA6jNvVog2bNhQo0aN8mE0lddZdWaz2Rw/V9Unc+bMUW5ubqDDCJjBgwfrwQcfNEzy+sK0adOqdd0nn3yiX//61zp+/LhX1xUXF3vUr6ioSCtXrqxOaJKk06dPa+XKlXr//fe1fPlyr+MEAKA2YEUvAiI1NVXjxo1TXl6eLBaLHnvsMbePmgEAANQGMTExuu6669zaW7RooVtuuUX9+/f36fyjR4/W6tWrPerri7qrgRYfH6+9e/dWeN5ut+vgwYNq1aqVH6OqvypaXRsdHa3WrVtLKt+M2cjx48f11VdfacSIET6JzZsNo89Zv369HnnkEX3//fcu7dHR0Vq3bp369u1rVngAAPgciV743e7du3X33Xfr5MmTCg8P11//+lf95je/CXRYAAAAhhITE73aiNZsd9xxh6Kjo/Xpp5+qsLDQ0Z6RkaEffvghYHH5yzPPPKP169f7ZJMvmOell15yJHiHDBmimTNnGvbz5vuYnp6u0aNHu7VfffXVHv/xozIHDhzQ1VdfraKiIrdz+fn5euWVV7Rw4cIazwMAgL9QugF+VVhYqAceeEAnT55URESEZs+eTZIXAACgCr/97W81b948LVy40PHvrrvuCnRYfjFw4EAdPnxYa9as0cqVK/X73/8+0CFVS2ZmpuLj4/W73/1Oe/bsCXQ4pgkJCdHBgwd13333OdpuueUWPfXUUzUat7S0VFdeeaV27Njhdm7w4MFe19I2snbtWsMk7znvvfee20pfAABqMxK98Ks5c+Zo//79kqQ///nPpu7ICwAAgLqpcePGuuKKK3Tdddepe/fugQ6nWqxWq3bv3q2lS5fq2muvld1uD3RIprjhhhsUExPj0maxWPTcc89p6dKl1R5327ZtOnz4sOG5Bg0aVHtcZwUFBVX2ueyyy7Rr1y5T5gMAwNco3QC/KSkp0Xvvvec4njVrlmbNmlXpNUuWLFH79u19HRoAAABgqoYNG1Z4LjMzU/v371fXrl39GFFwqWyl7eWXX27Y/vTTT+vKK6/UkCFDqhzfbrcrLS2tyn6FhYX69NNPlZCQUGVfSdq7d6/+9a9/6YUXXlCPHj3Url07de7cWQ8++KDP63kDAECiF36TkZHhUpPLk92R6+KGIgAAAKj7rr32WqWkpFR4vri42I/R1B1vv/22Bg0apK1btxqev/rqq5WamqrY2NhKx3n88cc1Z84cj+bMz8/3qN/x48d1ySWX6MiRI5LKawynp6dLkpYtW6b09HQWsQAAfIpEbxCaMWOGZs+erZiYGK1du9arazMzM7Vo0SJt2rRJBw8elNVqVZs2bRQfH69hw4bp6quvrnCX3JpKTEzkY08AAACoF55//nlZLBZ98cUXOnDggI4fPx7okILeyy+/rDFjxkiSwsPDDfsUFRXpyy+/1B//+McKx8nNzdX//d//mR7fl19+6Ujynu/UqVP673//q9tuu830eQEAOIcavUFm27Zt1d71eebMmRo+fLjefvtt7dq1SwUFBTp79qyysrK0Zs0aPfzwwxo1apT27t1rctQAAABA/RIeHq6XXnpJW7Zs0fjx4wMdTp3Ts2dPtWrVyvBcVbV39+/fX2GN5A8//LDaMeXl5VV6/uOPP6722AAAeIJEbxDJysrShAkTVFpa6vW106ZN06xZs2S1WiVJYWFhuuCCC3TRRRepefPmjn6pqakaM2aMDh06ZFrcAAAAAGCmsLAwrVy50tQx77zzTsXFxVXr2lOnTum+++6rtM+iRYs0c+ZMj8Y7c+aMVqxYoQULFuiDDz7Q0aNHqxUXAKB+IdEbJDIyMjR69GgdO3bM62tXrVqld955x3F8zTXX6KuvvtLSpUu1cOFCffPNN3ruuecUGRkpqfyjTBMnTqwzOwEDAAAAqHt++ctf6r///a8pY910002aP39+ta8fO3asR/3+8Y9/VNnn6NGj6t+/v4YNG6axY8fq1ltvVdu2bfWLX/yCT18CACpFjd4gsHz5cj399NOV7jxbkdLSUk2fPt1xfPnll+v1119XSMjPOf7w8HCNGjVKMTExuueee2S1WpWWlqYVK1Zo2LBhptyHYHNu5bO3zt88js3kACA4lZWVubVZrVaX94e68Jpv9H5XVlZW7ffBusput9fKr4nRY85ms/k9Vk+eL8E0ny/G92XM1X187t69W7m5uWrWrJnP5q/JY9TT16fqzGF0rk+fPhW+/q1evVpPPPGELBZLhXOvWrWqwvmcHT16tMr7/9577ykjI8Ot/cCBA7r33ntNX8kMAKg7SPTWYjk5OXr11Ve1bNmyao+xevVqHT58WFL5x5umTp3qkuR1dskll2jUqFFauHChJGnBggX1MtFbVlZW6Q7J3khNTTVlHACAf51773S2Z88eRUVFVXhNML7m7969263tyJEjpr0PBqvzP9V0+vTpWvk1MSq1tXfvXr/HarTJ2I4dO5Sbm+uT+bKzs93aMjIy3JJwZo6/e/duhYaGVntMo4/d79q1SyUlJV6PdX6SsKCgwKPv+dmzZ12OS0pK1LZtW91www168sknq70hc35+foXz79+/360tKyvLo3gzMzPd2g4fPux27Z49ezzq56yy1z6jBOt3332nESNG6Pnnn3dpd37dLy4urnA+Zzabrcr7v2nTpkrP1cbXIwBA7UDphlrqjTfe0LXXXuuS5I2NjdW9997r1TjOf+0dPHiwOnToUGn/UaNGOW6npaUpKyvLq/kAAAAABIeysjJ98skn+vbbbwMdSq332WefeV1G76233lKPHj28uubHH3/UokWLKjx/6tQpj8ey2WwqKCiolZ9IAAD4BoneWmr+/PkqLCx0HI8cOVKLFy9Wly5dPB7Dbre7/DV4yJAhVV6TkJCg1q1bO47Xrl3r8XwAAAAAaifnDZjPZ7SKtb6KiYmpcPV2Tk6Ox+NccsklSkxMdOyD4qlXX321yj4vvPBClfupvPXWW7r66qv161//WoMGDdKtt96qM2fOeBULACD4ULqhlktMTNTkyZM1YMAAr689dOiQy198ExMTPbouISHB8dfq7du3ez1vsAsJCVHv3r2rda3NZnP5CFdiYmKNPuYHAAgMo0/AdOvWTUlJSY7juvCaf/5HuSWpffv2LvezPjq/BECTJk1q5ddkw4YNbm2xsbF+j7Vly5Zubb169VJMTIxP5mvXrp1bW3x8vGn322j87t2712j8Nm3auLUlJCSoZ8+eXo91fomFqKgoj2J76KGHNG7cOMNzbdu2rfb9i46OrvDaffv2ubV16tTJo7lOnz7t1tahQwe3a/Pz8z3q56y0tNStzfm178UXX9TkyZPd+sTFxbkcV/a637RpUyUlJbmV/AkNDa00Nk82W/voo4/09NNP64ILLjA8v3nzZs2aNculbc+ePbrsssv0/fffq0+fPlXOAQAoz4kZ1dmvzUj01lIDBgzQiBEjdOWVV1a73tj5NbE6d+7s0XUdO3Z03P7pp5+qNXewq26NsvOFhoaaNhYAwH+M6tmHhYVV+poejK/5RvGGhIQE3f3wNYvFUiu/JkYJpkA8DqvzfKnN8/lifF/G7Onj8+6771ZcXJz+7//+TytWrHCLr7qxVDZ/TR6jnr4+VWeOqsZ+/PHHdfjwYc2YMcOtj6fznPu6GP0uZ8b3PTMzs8KE8fLlyyu87pVXXqm0NAQAILjVvp9YIUmaPXt2jcdwriEVEhKiVq1aeXSdc+kGb+tQAQAAAKidLrvsMjVr1swt0Qt3Rquwg8HWrVv1t7/9rcLzRhvRAQDqDmr01mHOH2OKiooyXElgpHHjxoZjAAAAAACqLy8vz6t9UIYOHaoXXnjB4/5vvPFGdcJy8cknn+juu+/WrbfequnTp6ugoKDGYwIA/IMVvXWYc929hg0benxdRESE43ZJSYmpMQEAAABAfXbdddcpNTVV3bt396i/c2m9qhw8eLDS81u3btW+ffvUtWtXw/OLFy/WLbfc4jj+4IMPNGXKFBUUFKhRo0YexwEACAxW9NZhzpsMeLqaV3KtGWW1Wk2NCQAAAADqC+dFNOeUlJRo9erVAYimnHMi93y33367YfvgwYODbkMiAKiPSPTWYc4bE3jzpuyc3A0PDzc1JgAAAACoLy6//HLD9sLCQj9H8rMffvjBcP7XX39dxcXFhtekpKQoNTXV16EBAGqIRG8dFhkZ6bjtXMahKs7lGho0aGBqTAAAAABQX0yePFkDBw4MdBhujD65OXfu3Eqvyc7OrvT8iRMntGnTJu3fv78moQEAaoBEbx0WHR3tuF1QUCC73e7RdWfOnHHcbtasmdlhAQAAAECdsXbtWtlsNsNzYWFheuWVV/wc0c+8KeGXm5tb7XlefPFFtWrVSoMGDVLXrl11ww03VLg6GADgOyR667C2bds6bttsNuXl5Xl03bFjxxy3W7VqZXpcAAAAABAIhw4d0g033GDaeJs2bdI111xjyliffvqp6cnRsLAwjRkzxpSxTpw4YdiempqqJ5980mVh0cqVKzVlyhRT5gUAeI5Ebx3WpUsXl+OsrCyPrnPeqbWi3VgBAAAAINj84Q9/0NGjR00bb/ny5YZlEJw3uPbEvn379Nvf/tbj/itWrDBs9/RTnNVx2223KT8/36WtuLhYvXv3Nuw/Y8YMbd261WfxAADckeitw2JiYlxKL+zcudOj69LT0x23e/ToYXZYAAAAAOB3drtd3377reG5xo0bV2vMU6dOGbYPHjzYq3G++eYbw4Sx874rzhYsWOCW7P3hhx/0+eefezWvt1avXu1y/N1331Xaf8mSJb4MBwBwHhK9dZxz4f8NGzZU2T89Pd2lNtOgQYN8EhcAAAAA+JtRMrVBgwamlV+QpOuuu04PP/ywV9dUtHn2ddddp9DQUMNzixcvdjkeN26cV3NWx5EjR1yOjx8/Xmn/kydPGrbb7XYtWLBAI0aM0LBhw/TKK68Yfm8AAN7x7vMkCDpDhw51/FV33bp1ysnJcande77333/fcTsuLk4JCQk+jxEAAAAAziktLdW6dev8Nt/nn3+unj17mjbe3LlzFRERUeNxrrrqKv3xj39UZmam4XnnMgplZWVKSUlx6+PpnisnT5502avF18aNG6d//etfjuMVK1YoJydHL7/8st9iAIC6iBW9ddzQoUPVpk0bSVJJSYmmTJlS4V9Kv/nmG5e/CptVtB8AAAAAPFFWVqbf/e53mjp1ql/m++1vf6tf//rXfpnLWw8//LAsFou6deum+fPnV2uMu+++26N+I0eOrNb41bFixQqXJO85r7zyimw2m9/iAIC6iERvHRcREaFHH33UcbxhwwaNHz/eZWM2q9Wq//znP5o4caLjjTU+Pt6vb/YAAAAAkJKSok8++STQYdQ6Y8eOrdZ1zz77bJV98vPz9eWXX1Zr/Kq88cYbbhvEzZs3r8L+TzzxhE/iAID6gkRvPXDTTTdp1KhRjuMNGzZo6NCh+u1vf6s//OEPuvTSS/XUU0+pqKhIktSsWTPNmDHD651iAQAAAKAmfvrppwrPxcfH+zGS4HfTTTfJYrFU2a+wsNCw3Xm/l4q88847Vfb597//7XJcWYmIpUuXVniuqKhI27dv92uJCQAINiR664lnn31W9957r8LDwyWVfyRq586d+v7773XixAlHv7i4OL377ruKjY0NVKgAAAAA4OLqq6/W0KFDAx1GvfLUU09Vej4tLU0ff/xxleP897//9XjO06dPu7XZ7Xb98Y9/VKNGjXThhReqTZs2uuuuuyjzAAAGSPTWExaLRY888oiWL1+usWPHKj4+Xk2bNlV4eLhatWqlSy+9VC+88IKWLVum7t27BzpcAAAAAHXQnXfeqZdfftnt4/yVefDBB7Vq1So1bNjQh5HVL6mpqZWev/fee6v8eq9fv96juUpKSjyOy8ikSZPcyj289dZbWrNmTY3GBYC6iM/mB5kRI0ZoxIgR1b4+Li5OkydP1uTJk02MCgAAAAA88/jjj6tLly665ZZbPOrfp08fhYSwRslMl19+uU6cOKGoqKhqj1FaWur1NVarVd99953H/YuLi/Xqq68annv33XdZ5Q0A5+HdEgAAAABgukaNGlV4bt26dX6MpH6LiIhwayspKdGmTZtMn+u5556r9PxLL71U6fnzV3o7lxk83zvvvEO9XgA4D4leAAAAAIDpLr74YjVv3tzwXE0/zg/PXXbZZYbtBQUFps914YUXVnp+9erVlZ4/duyYdu7c6fF8RvV/09LSdPPNN2vChAmaOXOm8vPzPR4PAIIdiV4AAAAAgOmaNm2qtWvX8vH6ABs9enSt2Wz77NmzVfb505/+5LhdVlZWad8zZ864HD/33HNKTEzUhx9+qDfeeEMPPvigrr32Wq9qQgNAMCPRi1pj4cKFSkhI0BVXXBHoUAAAAACYoE+fPnrvvfcCHUa9ZrFY9Oc//znQYXhs27ZtjtsPP/ywx9fl5+fr6aefdmvfuHGjV6uEASCYkehFrZCZmam//e1vgQ4DAAAAABBA51bfWq1Wffjhhx5ft2fPngrP/fTTTzWOCwCCAYleBFxJSYkmTZqk4uLiQIcCAAAAAPCTdu3aVXjOkzIPnrrtttsM2ynpAKCuIdGLgHvttde0Y8cONWzYMNChAAAAAAD86KKLLjJlnK+++qrCcydPntSpU6ccx/v379cll1yiiIgINWzYUBdeeKFXq4cBoLYi0YuA+u6777RgwQJ17Nixwr+yAgAAAAACr6rN0fxt2rRpkspX5jpv4mbk9OnTjtvjxo3T+vXrZbVadfbsWW3fvl2jRo3S/v37fRkuAPgciV4ETH5+vqZMmSKLxaLp06crKioq0CEBAAAAACrw8MMPu6yMDbS9e/fqwIEDOn78uFfXfffdd25tNptNGzduNCs0AAgIEr0ImKlTpyo7O1t33323aR/XAQAAAAD4zsKFCwMdgovt27d7XWu3sLDQsL2goMCMkAAgYEj0IiCWLl2qVatWqWfPnnrwwQcDHQ4AAAAAwEnHjh0N23fu3OnnSCrnbZJ35cqVFZ4bN26cy/GuXbs0YcIEXXnllbr88st15MiRasUIAP4SFugAEHzy8vK8+rhOWFiYYmJiHMdZWVmaNm2aIiIi9PLLLysiIsIXYQIAAAAAqik+Pl59+/ZVcnJyoEMx1ezZsys9n52drXbt2unUqVP69a9/rZycHMe5Dh066LvvvtOgQYN8HSYAVAuJXnht/vz5mjdvnsf9Y2JitHbtWknldY8ee+wxFRQU6IknnlD37t19FSYAAAAAoJosFosWL16sbt26BToUU2VnZ1d6/ujRo2rXrp02bNjgkuQ9Z/z48dq+fbuvwgOAGqF0A/zqjTfeUHJysgYNGqQ77rgj0OEAAAAAACoQHh4e6BBM4+2GbZmZmYbtRslfAKgtWNELr02aNEmTJk3y+roff/xRb7zxhpo2baq//vWvslgsPogOAAAAAABXY8eO1Q8//OBx/wceeMCwvayszO1469at2rlzpy644AL17duX33UBBAyJXvjNBx98IKvVquLiYt18881u58/tfHrkyBENGTJEkvTkk0/q+uuv92ucAAAAAIC65ccff/S4b25uboXnjh8/rsOHD6tDhw6SpPvuu09z5851nB8wYIA2bdpU7TgBoCYo3QC/ObcbaklJiXJzc93+nUv0lpWVOdqKi4sDGTIAAAAAoA4IC/N8ndu5300rMmvWLEnSoUOHXJK8krR582a99NJL3gcIACZgRS/85q9//av++te/Vnh+5syZmjVrlsvmbQAAAAAA1Cbp6emSpI0bNxqenzp1qp544gl/hgQAkljRCwAAAAAA4LW7777bsL1JkyZ+jgQAypHoBQAAAAAA8FJ+fn6Vfex2u5566il17NhRLVu21B133FFlaQgAqC4SvQAAAAAAAJK+/PJLj/s2aNDAsD0vL8+xR82iRYs0bdo0HTp0SCdOnNDbb7+t3/72t2aECgBuSPQCAAAAAABI+tOf/mTKOAsWLJAkTZgwwe3c6tWrtXfvXlPmAQBnJHqD0IwZM5SQkKArrrjC62szMzP1wgsvaPjw4erXr58uvPBCXXXVVZowYYI+++wzWa1WH0TsmYkTJ2rXrl1sxAYAAAAAdcT777+v0tLSQIfhsGXLFr/Ms27dOuXk5OjkyZOG51esWOGXOADUL2GBDgDe2bZtm+bNm1eta2fOnKk5c+a4JXOzsrKUlZWlNWvWKDExUS+//LJiY2PNCBcAAAAAUM/NmDFDkyZN8tn4c+fO9ajfpk2bquxjsVhqGo4kqaSkRFu3bq3wvHN93xMnTmjp0qU6fPiwLrnkkmot6gIAiRW9QSUrK0sTJkyo1l9Dp02bplmzZjmSvGFhYbrgggt00UUXqXnz5o5+qampGjNmjA4dOmRa3AAAAACAui88PFwRERFu7d9++61P533llVc86rdo0SKP+q1Zs6Ym4TjYbLYq+5w5c0aXXnqpxo8fr6efflpXXnmlXn31VVPmB1D/kOgNEhkZGRo9erSOHTvm9bWrVq3SO++84zi+5ppr9NVXX2np0qVauHChvvnmGz333HOKjIyUJOXm5mrixImO4vEAAAAAAFQlPDxcw4YNc2v3demGoqIij/qdOHHCo37PPvusR/08SeRWpKysTJL02muvaceOHS7nzKoTDKD+oXRDEFi+fLmefvppj9+8nJWWlmr69OmO48svv1yvv/66QkJ+zvGHh4dr1KhRiomJ0T333COr1aq0tDStWLHC8E26PqhureLz3+hr8sYPAAicc798ObNarS7vD3XhNd/o/a6srCygNftrI7vdXiu/JkaPOZvN5vdYPXm+BNN8vhjflzF7+/g0+3nvyfzezOnt49qb/kYLWSqK3+h7dn6bzWbz6Hvryf2vzvPZOXajOJzPVzZ+ZfFVdq6iMefPn68PP/zQMJaKvgfn8+b5UdH770UXXaQffvjBLfbzdenSRQcOHHBpKy4urnROu92u/fv3V/n9qexng2eeeUZPPvmkpk6danj+k08+0XXXXVdpHABwPhK9tVhOTo5effVVLVu2rNpjrF69WocPH5ZUXq5h6tSpLkleZ5dccolGjRqlhQsXSirfJbQ+JnrLysqUkpJiylipqammjAMA8K9z753O9uzZo6ioqAqvCcbX/N27d7u1HTlyxLT3wWB1ftLh9OnTtfJrYlRqa+/evX6P9fjx425tO3bsUG5urk/my87OdmvLyMgwra6m0fi7d+9WaGhotcc8evSoW9uuXbtUUlLi9VjnJ5YKCgq8+p5nZGS4tWVnZ1f7cZOfn1/ltUabUZ04ccLwun379rm1ZWVlVTjHnj173NoOHz5s2N8ooVhR/EeOHHFry8zMVGJiouM4NTXV8HG+Y8cOl+dFZmZmlTEePHjQrc++ffsq/do6x26UwHQ+n5WVVeH4Rvfh+PHjSklJMXw+5ObmKiUlxfA1KDMzU61bt1ZoaKhLkvPUqVNKSUlRYWGhS//S0lK3BU2lpaVKSUnxuMzCvn373L63AwcOdPu91263Ky8vz+36li1buiV6q0oyL1u2rNKfCaTyx73R49nZqlWrKjz39ttvq0OHDpVeDwDno3RDLfXGG2/o2muvdUnyxsbG6t577/VqnJUrVzpuDx48uMo3ilGjRjlup6WlGf5AAAAAAACAL82fP7/a11a0uMlMX3zxRZV9qkoYGyXSzzm3qrisrEwzZ87UlVdeqUsvvVRPPfVUlSuOAdRfJHprqfnz57v8tXPkyJFavHixunTp4vEYdrvdZVfRIUOGVHlNQkKCWrdu7Theu3atx/MBAAAAAGAGo5Xgbdu29X8gFfBk/5y//e1vNZ7n5Zdf1r///W/l5+erqKhIn332mRYsWFDjcQHUTZRuqOUSExM1efJkDRgwwOtrDx06pFOnTrmM5YmEhATHm9b27du9njfYhYSEqHfv3tW61mazuXx0NzExsUYf8wMABIbRJ2C6deumpKQkx3FdeM0/e/asW1v79u1d7md9dH4JgCZNmtTKr8mGDRvc2mJjY/0ea8uWLd3aevXqpZiYGJ/M165dO7e2+Ph40+630fjdu3ev0fht2rRxa0tISFDPnj29HisszPVXuKioKK9iMypf0K5du2rfv+jo6CqvNSrv0aJFC8Przv8IvSR16tSpwjny8/Pd2jp06GDY3+i+VxR/+/bt3dri4uJcjhMTE9WqVSu3fr169VLHjh0dx6dPn64yxu+//96tT9euXSv92jrHblS6wfn8li1bKhzfqExFy5YtlZSUpObNm7uda9WqlZKSkrR+/Xq3c3FxcUpKSnJ7HW3atKmSkpLUqFEjl/bw8HDHpuDObRXd7wkTJujpp592ux9Gr9vns1gshvfHqARDeHi44fzeiI6OrjIZ3K1btwrPNW/eXD169NDixYvdzs2fP19z5sypcYwAKrd9+3bD19fajERvLTVgwACNGDFCV155ZbXrje3fv9/luHPnzh5d5/xDyU8//VStuYPd+T9AV1doaKhpYwEA/MfoI59hYWGVvqYH42u+UbwhISFBdz98zWKx1MqvidEfFgLxOKzO86U2z+eL8X0Zs7ePT7Of957M782c3j6uvelvlOitKH6j79n5baGhoR59bz25/9V5PjvHbpSIcD5f2fiVxVfZOW9iPheL0e+2Rm1GY1xzzTWGf0AyiqOi36GNvl9m1feuzriVlZjYtWuXdu3aVeH5nJwcn/1BDUDwqn0/sUKSNHv27BqP4fzXw5CQEMO/NhtxLt3gycdRAAAAAADwpYiIiECHYLrKSjBs3rzZcDX4OV9//bVuu+022e12ffPNN/rxxx/Vq1cvXX755UH3CSMA5iHRW4c5f4wpKirK44L0jRs3NhwDAAAAAACY4/PPP6/0vFFJj3OKi4tlt9vdfs8fO3ZsjTayAxDc2IytDnOuu9ewYUOPr3P+S2lJSYmpMQEAAAAAgPJ6/5UpKCio9Pxrr73m1vavf/2LT+YC9RiJ3jqstLTUcdvT1bySaz0kq9VqakwAAAAAANR1hw8frvEYb775ZqXnP/30U8P2gwcP1nhuAMGJRG8d5lyXx5tdAp2Tu2bsNgoAAAAAQH2yfv36Go9x5MiRSs9X9Pv69OnTazw3gOBEorcOi4yMdNx2LuNQFedyDQ0aNDA1JgAAAAAAUDOVrdrdvn27pPIN2ywWi7p06aKbbrpJP/zwg7/CAxAgbMZWh0VHRztuFxQUyG63y2KxVHndmTNnHLebNWvmi9AAAAAAAEA1TZ06tcJzUVFRSktL069//WtJ0k8//aSffvpJ69atU1ZWlpo0aeKvMAH4GSt667C2bds6bttsNuXl5Xl0nXPh9latWpkeFwAAAAAA8J2lS5e6teXn52vjxo0BiAaAv5DorcO6dOnicpyVleXRdc4fAenataupMQEAAAAAAN86efKkYXtBQYF/AwHgVyR667CYmBiX0gs7d+706Lr09HTH7R49epgdFgAAAAAA8KETJ04Ytj/99NOO8x9++KHmzJlTYV8AwYdEbx03cOBAx+0NGzZU2T89PV25ubmO40GDBvkkLgAAAAAA4BtvvfWWYfvOnTuVkZGhnj176uabb9Z9992nli1bavbs2f4NEIBPkOit44YOHeq4vW7dOuXk5FTa//3333fcjouLU0JCgs9iAwAAAAAA5vr+++8rPNeuXTu98cYbOnr0qEv7/fffL5vN5uvQAPgYid46bujQoWrTpo0kqaSkRFOmTJHVajXs+80332jx4sWO4zFjxvglRgAAAAAA4B9paWmG7Z7u6wOg9iLRW8dFRETo0UcfdRxv2LBB48ePd3kBt1qt+s9//qOJEyc6/oIXHx+vkSNH+j1eAAAAAADgO6tXrzZst9vtjtunT592OQYQHMICHQB876abblJycrI++OADSeXJ3qFDhyohIUGNGzdWZmamS/H1Zs2aacaMGQoL4+EBAAAAAIAvBGITtFOnTlV4bsOGDcrJydGYMWO0Z88eSeW1fu+44w5/hQeghsjk1RPPPvusmjdvrvnz56u0tFRlZWXauXOnW7+4uDjNmDFDsbGxAYgSAAAAAID6oaKyir6Un59f4bkPPvhAqamp2rdvn6PtzjvvVJ8+fZSUlOSP8ADUEIneesJiseiRRx7R8OHDtWTJEn377bfKzs5WUVGRoqOj1bNnT1177bUaPny4IiIiAh0uAAAAAADwo/z8fJck7znPPPOMPvroowBEBMBbJHqDzIgRIzRixIhqXx8XF6fJkydr8uTJJkYFAAAAAACC2eHDhwMdAoAaYjM2AAAAAACAeu5cXd6KLFmyRKNHj9a9996rLVu2+CkqAN5gRS8AAAAAAAAMLVu2TIsWLdJtt93maHvzzTeVkZGh7t27BzAyAOdjRS8AAAAAAAAq9OKLL7q1JSQkBCASAJVhRS8CZu/evVqwYIE2bNigo0ePqkGDBurZs6dGjhyp4cOHBzo8AAAAAAAgafv27W5tdrs9AJEAqAyJXgTE8uXL9eSTT6q0tFSSFBUVpdOnT2vz5s3avHmz/vvf/+qVV15RSAiLzgEAAAAAqG3O/b5us9mUnJys0NBQJSUl8Xs8EEA8++B3W7du1ZQpU1RaWqrrr79e//3vf7V161Zt2rRJY8eOlSR9+umnev/99wMcKQAAAAAAqMixY8fUp08f/fKXv1S/fv00aNAg5efnBzosoN4i0Qu/e+aZZ1RWVqYbbrhBr776qtq3by9JatasmSZPnqzrrrtOkkj0AgAAAABQS5WVlWnu3LlKTU11tH3//ff6+9//HsCogPqN0g3wq23btmnXrl2KjIzUk08+KYvF4tZnwoQJ6tOnj5o1a+b/AAEAAAAAgEf+8pe/uLVNnTpVTz31VACiAUCiF3715ZdfSpKGDBmili1bGvaJj49XfHy8P8MCAAAAAAAmKSwsVKNGjQIdBlDvkOiFX6Wnp0uSevbsKUlatWqVli1bpr179yokJERJSUm666671KNHj0CGCQAAAAAAquns2bOaP3++PvzwQ0VHR+uhhx7SFVdcEeiwgDqPRC/8au/evZKkpk2basKECVqzZo3L+X379umTTz7RM888o1tuuSUQIQIAAAAAgBr4xz/+4VK+YdWqVUpLS1O3bt0CGBVQ95Hohdfy8vJ06tQpj/uHhYUpJiZGknT69GlJ0ty5c3Xs2DGNHDlS48ePV/v27ZWRkaHp06dr8+bNevrpp9W5c2cNGjTIJ/cBAAAAAAD4xvk1ektKSvThhx9q8uTJAYoIqB9I9MJr8+fP17x58zzuHxMTo7Vr10qSCgoKJEnHjh3TH/7wB5cX/8TERM2fP1+jRo3Sjh079Le//U1Lly41N3gAAAAAAOB3U6ZMIdEL+FhIoANA/RQREaGHHnrIsP2+++6TJKWlpSkrK8vfoQEAAAAAAJOFhJSnoPLy8rRu3TodO3YswBEBdQ8reuG1SZMmadKkSdW6NioqSidPnlRCQoKaNm1q2Oeiiy5y3M7IyFCnTp2qNRcAAAAAAKgdmjdvrgULFmjs2LGSJIvFotmzZ+vee+8NcGRA3cGKXvhVq1atJEmNGjWqsI9zAri4uNjnMQEAAAAAAN86ceKEI8krSXa7XY8//rhKS0sDGBVQt5DohV/Fx8dLkrKzsyvsk5+f77h9LjEMAAAAAACCl91ud2s7ffq0Dh8+HIBogLqJRC/8auDAgZKkAwcOaO/evYZ9tmzZIkkKDw9XQkKC32IDAAAAAAD+9eGHHwY6BKDOINELv7ruuusUGRkpSXrttdfczttsNs2bN0+SdOmll6pZs2b+DA8AAAAAAPhRenq61qxZo8suu0xjx47VmjVrAh0SELRI9MKvoqOj9fDDD0uSvvjiCz3++OPKycmRJOXk5GjixInatm2bIiIiqr3hGwAAAAAACA7z5s3TVVddpa+++koLFizQNddco/Xr1wc6LCAohQU6ANQ/d955p44dO6Z//vOfWr58uZYvX64mTZrozJkzstvtatCggaZPn664uLhAhwoAAAAAAPzIZrPp3Xff1ZAhQwIdChB0SPQiIB577DFdfvnlevvtt7V161adPHlSHTp00MCBAzV27Fh179490CECAAAAAIAA+PHHHwMdAhCUSPQGoRkzZmj27NmKiYnR2rVrvbo2MzNTixYt0qZNm3Tw4EFZrVa1adNG8fHxGjZsmK6++mqFhfnnYXHRRRfpoosu8stcAAAAAAAgOGzcuFFS+epeq9WqBg0aBDgiIDhQozfIbNu2zbFZmbdmzpyp4cOH6+2339auXbtUUFCgs2fPKisrS2vWrNHDDz+sUaNGae/evSZHDQAAAAAA4Lnbb79dTZs2VWRkpAYOHKgDBw4EOiSg1iPRG0SysrI0YcIElZaWen3ttGnTNGvWLFmtVklSWFiYLrjgAl100UVq3ry5o19qaqrGjBmjQ4cOmRY3AAAAAACAN9555x0VFhbKbrdr8+bNmjhxYqBDAmo9Er1BIiMjQ6NHj9axY8e8vnbVqlV65513HMfXXHONvvrqKy1dulQLFy7UN998o+eee06RkZGSpNzcXE2cOFF2u920+AEAAAAAAKrr66+/DnQIqC/y86WvvpJKSgIdideo0RsEli9frqefflpFRUVeX1taWqrp06c7ji+//HK9/vrrCgn5OccfHh6uUaNGKSYmRvfcc4+sVqvS0tK0YsUKDRs2zJT7EGzOrXz2ls1mq/QYABAcysrK3NqsVqvL+0NdeM03er8rKyur9vtgXWW322vl18ToMXeulqE/efJ8Cab5fDG+L2P29vFp9vPek/m9mdPbx7U3/Y0WslQUv9H37Pw2m83m0ffWk/tfneezc+xGcTifr2z8yuKr7Jy3X3ur1Vrh9+B8FY1R0ZyejHkudk/7ovbJz8+vle/HCHLHj8vy449ScrIsycmybN0qy5495ee+/lry0z5WZgmuaOuZnJwcvfrqq1q2bFm1x1i9erUOHz4sqbxcw9SpU12SvM4uueQSjRo1SgsXLpQkLViwoF4mesvKypSSkmLKWKmpqaaMAwDwr3Pvnc727NmjqKioCq8Jxtf83bt3u7UdOXLEtPfBYHX+L/2nT5+ulV8To1Jbe/fu9Xusx48fd2vbsWOHcnNzfTJfdna2W1tGRoYsFovPxt+9e7dCQ0OrPebRo0fd2nbt2qWSaqwUOj/JUVBQ4NX3PCMjw60tOzu72o+b/Pz8Kq89efKkW9uJEycMr9u3b59bW1ZWVoVz7Dn3y7iTw4cPG/Y3SuhVFP+RI0fc2jIzM5WYmOg4Tk1NNXyc79ixw+V5kZmZWWWMBw8edOuzb9++Sr+2zrEbJTCdz2dlZVU4vtF9OH78uFJSUgyfD7m5uUpJSTF8DcrMzFTr1q3dvtanTp1SSkqKCgsLXdpLS0vdFjSVlpYa3u/8/PwK74fR6/b57Ha78vLy3NoLCgrc2qpTLhH+MXPmTK1evVppaWn6zW9+o7FjxwY6JASRsNxcNUpPL/+3a5capaergcHrfTAj0VtLvfHGG5o7d67LG2FsbKyGDh2qOXPmeDzOypUrHbcHDx6sDh06VNrfOdGblpamrKwsderUycvoAQAAAAAAzPXoo486bs+ePVvJycmaOXNmACNCrWS3KzwnxyWh22jnTkX46I/QtQmJ3lpq/vz5LknekSNHasqUKfriiy88HsNut2vTpk2O4yFDhlR5TUJCglq3bu2oBbx27VrdcccdXkQOAAAAAADge999951sNluNPnWBIGe3K+LQoZ9X6v7vX7jBp0nqAxK9tVxiYqImT56sAQMGeH3toUOHdOrUKZexPJGQkOBI9G7fvt3reYNdSEiIevfuXa1rbTaby0d3ExMTecMBgCBk9AmYbt26KSkpyXFcF17zz54969bWvn17l/tZH51fAqBJkya18muyYcMGt7bY2Fi/x9qyZUu3tl69eikmJsYn87Vr186tLT4+3rT7bTR+9+7dazR+mzZt3NoSEhLUs2dPr8cKO69WYFRUlFexGZUvaNeuXbXvX3R0dJXXGpX3aNGiheF1Bw4ccGvr1KlThXPk5+e7tXXo0MGwv9F9ryj+9u3bu7XFxcW5HCcmJqpVq1Zu/Xr16qWOHTs6jo3KCJwf4/fff+/Wp2vXrpV+bZ1jNyrd4Hx+y5YtFY5vVKaiZcuWSkpKUvPmzd3OtWrVSklJSVq/fr3bubi4OCUlJbm9jjZt2lRJSUlq1KiRS3t4eLhjU3DnNqP7HR0dbfhp065duxq+bp/PYrEY3h+jskzh4eFubai9YmNj1axZs0CHAX+w2aTdu8tr6SYn/1xX1+C9oLrsLVvK3rev1Lev1LChaeP6C4neWmrAgAEaMWKErrzyymrXG9u/f7/LcefOnT26zvmHkp9++qlacwe783+Arq7Q0FDTxgIA+I9RPfuwsLBKX9OD8TXfKN6QkJCgux++ZrFYauXXxOgPC4F4HFbn+VKb5/PF+L6M2dvHp9nPe0/m92ZObx/X3vQ3SvRWFL/R9+z8ttDQUI++t57c/+o8n51jN0r0Op+vbPzK4qvsnDcxn4vF6Hdbo7aKxqhoTk/GPBe7p30RPEpKSrRq1SoVFhbqiiuuMPwDDIKQ1Srt3Clt3Spt2VL+/48/SgZ1tautXTupf3+pXz/HP0unTj+/LiQnSwavr7VZ7fuJFZLKa83U1LlVuVL5G5qnL3atW7c2HAMAAAAAAKA26datm8umfjt27KjWJyYQQGfPSqmp5cncc/+2bZOKi82bo3Nnl4Su+vWTDD69EexI9NZhzh9jioqKMvzrpZHGjRsbjgEAAAAAAFCbOCd5pfLyKUYr+FFLFBaWJ3GdV+qmppav4DVLXJzrSt2+faV6stKbRG8d5lx3r6EXdUUiIiIct0tKSkyNCQAAAAAAwJdKSkpcchsIkFOnysstOK/U3bnTvHIIFovUo4frKt0+faR6XLOZRG8dVlpa6rjt6WpeybUektXMv6gAAAAAAAD4WHFxsWNTPeow+8mJE+U1bc8ldLdskXbvNm/80FDpggtcV+peeKHk9Kl0kOit05yL0hsV56+Ic3KX3UYBAAAAAEAwmTRpkhYvXqywsDA9+OCD+stf/kLC10w5Oa6rdLdulfbvN2/8iIjyJK7zSt3evSUvPq1eX5HorcMiIyMdt53LOFTFuVxDgwYNTI0JAAAAAADAl+bNm+e4PXXqVPXp00fDhg0LYERBym6XDh1yT+oeOmTeHJGR5eUWnJO6vXqVJ3vhNRK9dVh0dLTjdkFBgex2u0d/wTpz5ozjdrN6XNcEAAAAAAAEv+HDh7NBW1Xs9vJVuec2SDv379gx8+Zo0sQ1oduvn5SQUF6WAaYg0VuHtW3b1nHbZrMpLy9PLVq0qPK6Y05P4lb1ZFdCAAAAAACAeqGsrLx+7vkrdU+eNG+OFi3ck7pxcZIXe0jBeyR667AuXbq4HGdlZXmU6D148KDjdteuXU2PCwAAAAAAwF8aNmyo1atXa/Xq1YqNjdUf/vAHNa4vm3hZrVJ6+s8bpG3dKv34o+T0ae4aa9vWdZO0fv2kzp0l6iL7HYneOiwmJkbNmjXTyf/9RWbnzp1KSkqq8rr09HTH7R49evgqPAAAAAAAAJ8rLi7W0KFDHceLFi3SunXr6t4GbWfPSmlprqt0U1Kk4mLz5ujUyX2lbocO5o2PGiHRW8cNHDhQn3/+uSRpw4YNuvXWWyvtn56ertzcXMfxoEGDfBofAAAAAACAP3311VfavXu34uPjAx1K9RUVSdu2ua7UTU2VSkvNmyM21nWlbt++UuvW5o0P05HoreOGDh3qSPSuW7dOOTk5LrV7z/f+++87bsfFxSkhIcHnMQIAAAAAAPjT66+/rtmzZwc6DM+cPl1ebsF5pe7OnZLNZs74Fkv5pmjOq3T79JGaNzdnfPgNid46bujQoWrTpo2OHj2qkpISTZkyRfPmzVNYmPu3/ptvvtHixYsdx2PGjPFnqAAAAAAAAH6Rl5ensrIyFRYW1q56vXl5UnLyzwndLVvKN06z280ZPzRU6tXr54Ru//5SUpJUm74GqDYSvXVcRESEHn30UU2ZMkVSefmG8ePH67nnnlOnTp0kSVarVUuXLtWLL74o2//+GhQfH6+RI0cGLG4AAAAAAABfWbZsmdq1a6fc3FxdeumlWrJkiVr7uyzB0aOuq3S3bpX27TNv/IgIqXdv15W6vXtLkZHmzYFahURvPXDTTTcpOTlZH3zwgaTyZO/QoUOVkJCgxo0bKzMzUydOnHD0b9asmWbMmGG46hcAAAAAACDYFRcXq/h/m5R9/fXXevLJJzV37lzfTGa3S4cPuyd1Dx40b47IyPKVuc4rdXv1Kk/2ot4gk1dPPPvss2revLnmz5+v0tJSlZWVaefOnW794uLiNGPGDMXGxgYgSgAAAAAAAP+bN2+eOYleu106cODnDdLO/Tt6tOZjn9OkSfnGaM4rdRMSJBbs1Xs8AuoJi8WiRx55RMOHD9eSJUv07bffKjs7W0VFRYqOjlbPnj117bXXavjw4Yrgrz0AAAAAAKCeKSkp8S4nUlYm7dnjvlI3L8+8oJo3d03o9usndesmhYSYNwfqDBK9QWbEiBEaMWJEta+Pi4vT5MmTNXnyZBOjAgAAAAAACG4LFy7UwYMHFRMTo5EjR6pJkyY/n7RapV27XFfqJidLZ86YF0CbNuUlF5yTul26SBaLeXOgTiPRCwAAAAAAgHpv7Nixjtvz//53fXP//Qr58cfypG5KilRUZN5kHTu6r9Tt0IGkLmqERC8AAAAAAADgZENKirb98Y/qY8ZgXbv+vEFav37l9XXbtDFjZMAFiV4EhN1u19KlS/XRRx8pPT1dxcXFatmypS666CLdeeed6t27d6BDBAAAAAAA9ViW5F2i12KR4uNdV+n27VteZxfwAxK98LvS0lJNnDhR69atk1S+UVxkZKSys7O1YsUKffbZZ3ryySc1evToAEcKAAAAAADqqzclDavoZEiI1KvXzwnd/v2lpCTJua4v4GckeuF3//jHP7Ru3TqFhYXpscce06hRoxQZGan9+/fr+eef17fffqtp06apd+/euvDCCwMdLgAAAAAAqIc+lWSR1FXSHe3ba+r118tyrvxC795So0YBjhBwFRLoAFC/lJWV6f3335ckjRs3TnfeeaciIyMlSb/4xS80a9YstW/fXmVlZVqyZEkgQwUAAAAAANA+Sc8cOaJ3f/1r6b77pIEDSfKiViLRC786fvy4Tp48KUlKSkpyOx8ZGanExERJ0uHDh/0ZGgAAAAAAQIXee++9QIcAVIpEL/yqadOmslgskqStW7e6nS8pKVF6erokqUuXLn6NDQAAAAAAoCJHjx4NdAhApUj0wq8aNGigQYMGSZIWLFigd999V8XFxZKkQ4cO6eGHH1ZWVpaaNGmiO+64I5ChAgAAAAAAOGzdulWrV6/Wxx9/rNOnTwc6HMANiV743bPPPqv27dvLarXq+eefV58+fdSvXz9dccUVWrNmjQYNGqT33ntPnTt3DnSoAAAAAAAADkOHDtWNN96omJgYbdy4MdDhAC7CAh0Agk9eXp5OnTrlcf+wsDDFxMQ4jrt06aJly5bp3nvvVXJysux2uwoKChzny8rKVFRUZGrMAAAAAAAAZjl9+rSmTp2qL774ItChAA4keuG1+fPna968eR73j4mJ0dq1ax3HqampmjhxonJzczV58mQNGzZM0dHR2rlzp1577TV99913uv322zVv3jwNGDDAF3cBAAAAAACgRlavXh3oEAAXlG6AX+Xk5Oj222/X4cOH9dprr2ns2LFq3bq1IiIilJSUpPnz5+uSSy5RcXGx/vznP8tmswU6ZAAAAAAAAEOlpaUun1IGAokVvfDapEmTNGnSpGpdu2DBAhUUFKhv37666qqr3M6HhoZq8uTJ+vbbb5WVlaXvvvtOl1xySU1DBgAAAAAAMF3z5s0did7CwkJFRkYGOCLUZ6zohV+lpKRIkvr27Vthn/j4eEVHR0uS9u3b55e4AAAAAAAAvOW8mrdZs2aBCwQQiV74WV5eniTJbrdX2i8srHyxeUlJic9jAgAAAAAAqClyGAg0Er3wq3bt2kmSkpOTK+yTnZ2t48ePS5K6dOnil7gAAAAAAACAYEaiF351+eWXS5J+/PFHff3114Z9Zs2aJUmKjo7WxRdf7LfYAAAAAAAAauLee+/V7373Oy1atCjQoaAeItELvxo1apR+8YtfSJIeeugh/ec//1FxcbEk6ejRo5o6daoWL14sSXr44YcVFRUVqFABAAAAAAC88uabb2rp0qW67bbbNH/+/ECHg3qGRC/8qmHDhpo3b566du2qwsJCPfXUU+rbt68GDBigX/3qV/rggw8klf8F7Pe//32AowUAAAAAAKiecePGBToE1DNhgQ4A9U/nzp310UcfadGiRfr888+1Z88eFRYWqk2bNrrooov0hz/8Qf369Qt0mAAAAAAAADVitVodG84DvsYjLQjNmDFDs2fPVkxMjNauXevVtZmZmVq0aJE2bdqkgwcPymq1qk2bNoqPj9ewYcN09dVX++UFKDIyUnfddZfuuusun88FAAAAAAAQCJs3b1ZRUZEGDx6syMjIQIeDOo5Eb5DZtm2b5s2bV61rZ86cqTlz5shqtbq0Z2VlKSsrS2vWrFFiYqJefvllxcbGmhEuAAAAAABAvTVkyBBJUmxsrL7++mvFxMQEOCLUZdToDSJZWVmaMGGCSktLvb522rRpmjVrliPJGxYWpgsuuEAXXXSRmjdv7uiXmpqqMWPG6NChQ6bFDQAAAAAAUJ/t3btXzzzzTKDDQB1HojdIZGRkaPTo0Tp27JjX165atUrvvPOO4/iaa67RV199paVLl2rhwoX65ptv9Nxzzzk+QpCbm6uJEyfKbrebFj8AAAAAAEB99s9//jPQIaCOI9EbBJYvX65bbrlFOTk5Xl9bWlqq6dOnO44vv/xyvf7662rVqpWjLTw8XKNGjdKsWbMc9XnT0tK0YsWKmgcPAAAAAAAAwOeo0VuL5eTk6NVXX9WyZcuqPcbq1at1+PBhSeXlGqZOnaqQEOP8/iWXXKJRo0Zp4cKFkqQFCxZo2LBh1Z47mJ1fx9hTNput0mMAQHAoKytza7NarS7vD3XhNd/o/a6srKza74N1ld1ur5VfE6PHnM1m83usnjxfgmk+X4zvy5i9fXya/bz3ZH5v5vT2ce1Nf6NPLFYUv9H37Pw2m83m0ffWk/tfneezc+xGcTifr2z8yuKr7Jy3X3ur1Vrh9+B8FY1R0ZyejHku9ir72u3SiROG1wNmuPjiixUSEqIHHnhAI0eODHQ4qGNI9NZSb7zxhubOnavCwkJHW2xsrIYOHao5c+Z4PM7KlSsdtwcPHqwOHTpU2t850ZuWlqasrCx16tTJy+iDW1lZmVJSUkwZKzU11ZRxAAD+de6PpM727NmjqKioCq8Jxtf83bt3u7UdOXLEtPfBYHX+L/2nT5+ulV8Toz0V9u7d6/dYjx8/7ta2Y8cO5ebm+mS+7Oxst7aMjAxZLBafjb97926FhoZWe8yjR4+6te3atUslJSVej3V+AqygoMCr73lGRoZbW3Z2drUfN/n5+VVee/LkSbe2EydOGF63b98+t7asrKwK59izZ49b2+HDhw37GyX/Kor/yJEjbm2ZmZlKTEx0HKempho+znfs2OHyvMjMzKwyxoMHD7r12bdvX6VfW+fYjRKYzuezsrIqHN/oPhw/flwpKSmGz4fc3FylpKQYvgZlZmaqdevWbl/rU6dOKSUlxeX3W6n8E6hFRUVubUb3Oz8/v8L7YfS6fT673a68vDy39rKtW93aVI3nJuCpjRs3SpK+++472Ww29ezZM8ARoS6hdEMtNX/+fJc3wZEjR2rx4sXq0qWLx2PY7XZt2rTJcXxup8fKJCQkqHXr1o7jtWvXejwfAAAAAAC1kcVqVfS337q1hxYUBCAaoDxn85///CfQYaCOIdFbyyUmJuqdd97RtGnT1LhxY6+uPXTokE6dOuUylicSEhIct7dv3+7VnAAAAAAABFLDPXsUdf6q4LIyheXnByYgoAKffPJJoENAHUPphlpqwIABGjFihK688spqfwxt//79LsedO3f26LqOHTs6bv/000/VmjuYhYSEqHfv3tW61mazuXx0NzExsUYf8wMABIZRqaNu3bopKSnJcVwXXvPPnj3r1ta+fXuX+1kfnf+zV5MmTWrl12TDhg1ubbGxsX6PtWXLlm5tvXr1UkxMjE/ma9eunVtbfHy8affbaPzu3bvXaPw2bdq4tSUkJFTr47rnNk8+JyoqyqvYjMoXtGvXrtr3Lzo6usprjcp7tGjRwvC6AwcOuLV16tSpwjnyDRJ3HTp0MOxvdN8rir99+/ZubXFxcS7HiYmJLptcn9OrVy+X36mMygicH+P333/v1qdr166Vfm2dYzcq3eB8fsuWLRWOb1SmomXLlkpKSlLz5s3dzrVq1UpJSUlav36927m4uDglJSW5vY42bdpUSUlJatSokUt7eHi4IiMj3dqM7nd0dLRhWcHY5ctlKS11aYs4dsytH1AbNW/eXFlZWYqJiVFSUlKFeyohMLZv3274+lqbkeitpWbPnl3jMY45vbmFhIQY/hBixLl0w7F6+gZ5/g/Q1RUaGmraWAAA/zH6ITssLKzS1/RgfM03ijckJCTo7oevWSyWWvk1MfrDQiAeh9V5vtTm+Xwxvi9j9vbxafbz3pP5vZnT28e1N/2NEr0VxW/0PTu/LTQ01KPvrSf3vzrPZ+fYjRIRzucrG7+y+Co7503M52IxWsRk1GY4RmamQv/5T/d4vvrKra1GLBapTRspJ8fccQEDeXl5uummmyRJ48aN07x58wIcEYIdfyqow5z/uh0VFeXxX4acS0QY/YUcAAAAAACfOHtWeuEF6fzE/M6dksHKZ68Y/U58ySXubSZt7gh445///KfhpxoAb5DorcOcP47ZsGFDj6+LiIhw3K7OTsAAAAAAAFTp7Fnp8GHXtuPHpb/8peZjn5/UjYiQfv/7qvsBAZSenh7oEBDkeEWrw0qd6hR5U+fF+WMyVqvV1JgAAAAAAPVMYaG0ZImUleXanpfnnug1w5Ah0lVXubZZLCR1Ueu9//77gQ4BQY5XuTrMuWaSN8WjnZO74eHhpsYEAAAAAKijysqkXbvcyy7897/SyJGSwcZvNTZnjtSggWtb48aUX0BQ+ve//61f/vKX+vOf/2y4aS5Qldq3qwRM47x7qTcvEM7lGhqc/4YJAAAAAIDN5t72299KxcW+me+ii8qTxZMnu7Z36OCb+YAA+eGHH/TDDz/oxIkTmjNnTqDDQZBhRW8dFh0d7bhdUFBguMuskTNnzjhuN2vWzOywAAAAAADB6r//lQYNkv70J/dzZiR5mzSRVqxwX5Hbvr3UsmXNxweCxLx58wIdAoIQK3rrsLZt2zpu22w25eXlqUWLFlVed+zYMcftVq1a+SQ2AAAAAEAtlZMjzZ4tff21+7nt282bp0mT8gRuRoZr2w03mDcHEKS8KcEJnMOK3jqsS5cuLsdZ5xe+r8DBgwcdt7t27WpqTAAAAACAWuL0aWnjRvf2jz6S7r9f+uADc+bp0EF65RWpRw/X9qgoqWlTc+YA6qDMzEwdPXo00GEgiJDorcNiYmJcSi/s3LnTo+vS09Mdt3uc/0YMAAAAAAh+994rRUdLI0aYN2bXrtKdd0oh56Ua+vQpL/VAUhfwSrdu3dS2bVuNHDnSZT8loCIkeuu4gQMHOm5v2LChyv7p6enKzc11HA8aNMgncQEAAAAAfCgnR3rxRenmm6UpU9zPHz4sebiPi5uICKlTJ/f2N9+UFixwT/QCqJElS5boww8/DHQYCAK8+tZxQ4cOddxet26dcnJyKu3//vvvO27HxcUpISHBZ7EBAAAAAGrAbpcOHZI++cT93IYN0pNPSh9+KDkt5qmxW28tL/kwebJ5YwKo0meffRboEBAESPTWcUOHDlWbNm0kSSUlJZoyZYqsVqth32+++UaLFy92HI8ZM8YvMQIAAAAAvPTdd1K7dlLHjtJvf2vu2L17S2+/La1e7X6udevyFb0A/CqC5x08QKK3jouIiNCjjz7qON6wYYPGjx/vsjGb1WrVf/7zH02cOFE2m02SFB8fr5EjR/o9XgAAAACAylfqLlokPf64dNVV7uePHi3/V11RUeXjTpjgfm7IEGnMGCk+vvrjAzDV/Pnz1b17d40YMUL26pZdQZ0XFugA4Hs33XSTkpOT9cH/dkzdsGGDhg4dqoSEBDVu3FiZmZk6ceKEo3+zZs00Y8YMhYXx8AAAAAAAn7Jay5O657vnHvPmaNKkvNyCs/fek4YPl44ckWbPNm8uAD6zZ88e7dmzRy1btnTJ4wDnkMmrJ5599lk1b95c8+fPV2lpqcrKyrRz5063fnFxcZoxY4ZiY2MDECUAAAAA1AObN0v33y9t3SqlpEhFRebP0bOn9Le/Sf36SStXSuPHu563WMyfE4Bf5OXlyWq1skAPbnhE1BMWi0WPPPKIhg8friVLlujbb79Vdna2ioqKFB0drZ49e+raa6/V8OHDqfsCAAAAADVVVCRt2yZ99JH7Oae9UWokNrY8kdunj/SXv7ie69FD+s1vym+T1AXqnMLCQjVt2jTQYaCWIdEbZEaMGKERI0ZU+/q4uDhNnjxZk9khFQAAAADM98gj0q5d0o4d0v/2QKkxi0U6vybn9ddLn35afruszD3RC6BOe+utt5SYmKhf//rXCg0NDXQ4qCVI9AIAAAAA4KHQ06fVKD1dljVrpC++cO+wZIk5E115ZXkN3X79pKQk6fyVe+Hh5swDICg99NBDkqTWrVvraE02ZkSdQqIXAAAAAIAqhPzlL0rMyFADo43Tqis8XOrdW2rUSPr2W9dzjzwi3XCDeXMBqJOOHTumTz/9VDfwegFJIYEOAAAAAACAgLLbpcOHpRUrpOeek955x61LyLp15iV5R44s34jtzBlpyxbp9tvNGRdAvbR69epAh4BaghW9MFVeXp5uuOEGNWzYUGvXrq2y/+rVq/Xuu+8qLS1NJSUlat++va666iqNGzdOzZs390PEAAAAAOqtHTvKa91u3Srl5Jg3buPGUt++5WUXGjeWXnjB9fyAAeXnAcAEjRs3VnFxsRo2bBjoUBBgrOiFaUpLS/X444/r+PHjHvV/7bXX9MADD2jjxo0qLi5WWFiY9u/fr3/+858aPny49u/f79uAAQAAANRtZWXS7t3SBx9IRhtSZ2RIn31mbpL3q6+k/Hzp66+l11+Xrr3WvLEBwMALL7yg6Oho3XnnnSotLQ10OAggEr0wRVFRkR5++GF9/fXXHvVfuXKl5syZI4vFokmTJumHH37Q1q1btXjxYsXGxuro0aN64IEHZDNrl1oAAAAA9cMPP5TXt/31r6VmzaT4eOnWW6WXX67x0KXNmyt/8GAduesu2T74QBozxr1TbKwUwq/aAPyrpKRE//73v/V///d/gQ4FAUTpBtTYrl279Kc//Um7d+/2qH9ZWZn+/ve/S5Juv/12jR8/3nHuwgsv1IIFC3Tddddp9+7dWrZsmX73u9/5JG4AAAAAQaqkpLzswsqV7ufee88nU1qXLdO2mBjJYpEktU5KKl+1CwC1yBNPPKEpU6YEOgwECIleVFtxcbFefPFFLVmyRDabTa1atVLv3r21bt26Sq/buHGj9u3bJ0m666673M63a9dON954o95//30SvQAAAEB9V1oqbd5cXkf33L/t28uTvWbp2rW8nu65f19/Lb30kmuf1q0dSV4AAGojEr2ottzcXH3wwQeSpGuuuUZPP/203nvvvSoTvZs2bZIkde3aVe3btzfsM3jwYL3//vvasmWLCgsL1ahRI3ODBwAAAFD7FBW5t917r2S3+2a+IUOkjz+WWrRwbd+61TfzAYAf3HfffRoyZIhGjx4tC3+gqldI9KLaLBaLBg8erAkTJuiXv/ylx9edK/EQFxdXYZ8uXbpIkmw2m/bu3avExMSaBQsAAACgdjl5Uvrxx/Kk6pYt5f+np7v3q26SNyRE6tXr51W6ffuW1+111rq1e5IXAILcnDlzNGfOHO3bt09PPfVUoMOBH5HoRbXFxMRowYIFXl+X878dbdu1a1dhn7Zt2zpuHzt2zPvgAAAAANReixdL//qXb8b+3e+kSZOkCy+UnD8Z6KtVwQBQS02dOpVEbz1Dorcey8vL06lTpzzuHxYWppiYmBrPe+bMGUlSZGRkhX0aNmzo1h8AAABAEDhy5Odaulu2SN9/797n9Onqj9+woZSUVL5KNypKeuUV1/NDhkiDBlV/fACoQwoKChQVFRXoMOAnJHrrsfnz52vevHke94+JidHatWtrPK/VapUkhYeHV9gnIiLCcdtms9V4TgAAAAA+UFQkffSR60Zp2dnmztG9u3TddT+XYOjZUwr736+yX33lnugFADisX79eV155pUJDQwMdCvyARC/87txq3dLS0gr7lDjtoFtZQhgAAACAH5SVSXv3urd/+WX5PzNER0udOkmpqa7tTzwh3XWXOXMAQD1zzTXXqFmzZpo7d65GjhwZ6HDgYyR667FJkyZp0qRJfp/33EcGiouLK+xT5LTbbuPGjX0eEwAAAID/sdmkXbtcV+kmJ0telH2rUoMG0mWX/bxKt18/qWtX6eOPpd/+1rx5AAA6efKkbr/9dg0fPlwNGjQIdDjwIRK98Lt27dopJSVFR48erbDPuQ3bJNeN2QAAAACYLDtbWrDg56Tujz9KhYXmjd+unXs5h9//3nebsQEA3BQXFys1NVX9+/cPdCjwIRK98Lv4+Hh9/vnn2rdvX4V9Dhw4IKl8A7hf/OIXfooMAAAAqMOKi6W0NPf2N98s/2eGX/zCdZVu375SeLjUqpVrP4vFnPkAAB5bvXo1id46jkQv/G7gwIGaOXOmdu/erdzcXLU6/4c+SRs2bJAkJSUlOWr6AgAAAPBQQYGUkuJafiEtTfrfxsim6dBBeughqX//8qRuixbufY4fN3dOAEC1PPHEEyooKNC4cePUpUuXQIcDHyDRC7/r37+/2rVrp+zsbM2dO1d//vOfXc4fOXJEH3/8sSTptttuC0SIAAAAQPDIzy8vt7B1q7RlS/n/u3aVb6BmhpAQqWfP8hW6774r2e0/n+vfX3r8cXPmAQD43LRp0/TWW28pNTVV0dHRgQ4HJiPRC78LCQnRo48+qscff1z//ve/1aRJE919991q1KiRtm3bpscff1yFhYWKj4/X9ddfH+hwAQAAgNrDOckqlSd1mzUzb/ywMCkx0bX8QlKS1KhR+fl33zVvLgBAQBw8eFCrV6/WzTffHOhQYDISvQiIG2+8Udu2bdO7776rWbNmac6cOWrYsKHOnDkjSWrTpo3efPNNhYaGBjhSAAAAIECys38uu3Bupe75ZRCKi2s+T//+0j33lCd1ExMldmQHgDrvhx9+INFbB5HoRcA89dRTuvjii7Vw4UKlpaWpsLBQHTt21OWXX6777rtPLVu2DHSIAAAAgO/Z7VJWlms93a1bpSNHzJsjKkrq00fq1ElatMj13G9+I40fb95cAIBab/Xq1frrX/8a6DBgMhK9ATRjxgzNnj1bMTExWrt2rVfXZmZmatGiRdq0aZMOHjwoq9WqNm3aKD4+XsOGDdPVV1+tsDD/f3snTpyoiRMnetz/qquu0lVXXeXDiAAAAIBaaNUq6e23K16pWxNNm5avzu3f/+fyC927S6Gh5bV8z0/0AgDqna1bt6p9+/Z66KGHNHnyZFkslkCHBBOQ6A2Qbdu2ad68edW6dubMmZozZ46s5+2Ym5WVpaysLK1Zs0aJiYl6+eWXFRsba0a4AAAAALxls0kZGVJamvu5Rx81Z46wMOmKK1xr6nbtWr6BGgAAlcjOztYTTzyhX/7yl7ryyisDHQ5MQKI3ALKysjRhwgSVlpZ6fe20adP0zjvvOI7DwsKUkJCgyMhIZWZmKi8vT5KUmpqqMWPG6D//+Y9iYmJMix0AAACAgdJSaedO19ILP/4oFRSYN0f79uUrf0tKfm4bMED6/HPz5gAA1Dv/+c9/SPTWESR6/SwjI0Pjxo3TsWPHvL521apVLknea665RlOnTlWrVq0kSaWlpVq6dKleeuklFRUVKTc3VxMnTtSHH37IEnwAAADALGfPSqmpP5dd2LpV2ratvN0sXbq4rtLt27c80du6tZSba948AIB6Lzs7O9AhwCQkev1o+fLlevrpp1VUVOT1taWlpZo+fbrj+PLLL9frr7+uEKePZIWHh2vUqFGKiYnRPffcI6vVqrS0NK1YsULDhg0z5T7UF+eXxfCUzWar9BgAEBzKysrc2qxWq8v7Q114zTd6vysrK6v2+2BdZbfba+XXxOgxZ7PZ/B6rJ8+XYJrPcPytW2X79ltZkpNlSU6W0tJkMfH+2bt1k71vX9n79pX69ZO9Tx/JaGNigzm9fXya/bz3ZH5v5vT2ce1Nf7vdbthWUXxVtdlsNo8ej57c/+o8n51jN4rD+Xxl41cWX2XnvP3aW63WCr8H56tojIrm9GTMc7F72heoTz7++GPNmDFDw4YNU+fOnQMdDmqARK8f5OTk6NVXX9WyZcuqPcbq1at1+PBhSeXlGqZOneqS5HV2ySWXaNSoUVq4cKEkacGCBSR6vVBWVqaUlBRTxkpNTTVlHACAf517z3W2Z88eRUVFVXhNML7m7969263tyJEjpr0PBqvzf+k/ffp0rfyaHDp0yK1t7969fo/1uMEmYjt27FCuj1adGq06ysjIMOUTbCFnzuhEcrJbe9j48Qqt8eiujtx+u0KGDFFhQoLKGjd2PXnwYPk/A+cnwAoKCrz6nmdkZLi1ZWdnV/txk5+fX+W1J0+edGs7ceKE4XX79u1za8vKyqpwjj179ri1HT582LC/UUKvoviPHDni1paZmanExETHcWpqquHjfMeOHS7Pi8zMzCpjPGjw/d63b1+lX1vn2I0SmM7ns7KyKhzf6D4cP35cKSkphs+33NxcpaSkGL4GZWZmqnXr1m5f61OnTiklJUWFhYUu7aWlpW4LoUpLSw3vd35+foX3w+h1+3x2u91R6tBZgUF5leqUWQSC3cMPP6xnn31WCxYsUMeOHQMdDqqJRK+PvfHGG5o7d67LG1psbKyGDh2qOXPmeDzOypUrHbcHDx6sDh06VNrfOdGblpamrKwsderUycvoAQAAgLop9ORJNdq1S43S08v/7dqlhj/9pE9MGt8eGqqiuDgVJiTo1NGj0qZNLudPDBum6K5dTZoNAICay8vL06pVqzRu3LhAh4JqItHrY/Pnz3dJ8o4cOVJTpkzRF1984fEYdrtdm5x+MBwyZEiV1yQkJKh169aOWsBr167VHXfc4UXkAAAAQN0Qdvz4zwnd//1rYLBis7rKwsNV1L27Cnv0cPwriouTvUEDSVLhrFluiV4AAGqjL774gkRvECPR6yeJiYmaPHmyBgwY4PW1hw4d0qlTp1zG8kRCQoIj0bt9+3av562vQkJC1Lt372pda7PZXD66m5iYqNBQsz/oBwDwNaNPznTr1k1JSUmO47rwmn/WYOOo9u3bu9zP+uj8EgBNmjSplV+TDRs2uLXFxsb6PdaWBrVke/XqpZiYGJ/M165dO7e2+Pj48vttt0sHD/5cS/d//1sMyrFUl71RIykpyVFT1963r9SrlxqEh6uBpOYG17Rp08atLSEhQT179vR6/rAw11/hoqKivPqeG5UvaNeuXbUfN9HR0VVea1Teo0WLFobXHThwwK2tU6dOFc6Rn5/v1tahQwfD/kb3vaL427dv79YWFxfncpyYmOjYGNtZr169XD72bFRG4PwYv//+e7c+Xbt2rfRr6xy7UekG5/NbtmypcHyjMhUtW7ZUUlKSmjd3f0S3atVKSUlJWr9+vdu5uLg4JSUlub2ONm3aVElJSWrUqJFLe3h4uCIjI93ajO53dHS04adUu3btavi6fT6LxWJ4f4zKMoWHh7u1AfVFVFSUevfuXWG50Ppk+/bthq+vtRmJXh8bMGCARowYoSuvvLLadcP279/vcuxpYWznHy5++umnas1dX53/A3R1hYaGmjYWAMB/jH6wDQsLq/Q1PRhf843iDQkJCbr74WsWi6VWfk2M/rAQiMdhdZ4vps/3xhsKO3RI2rpV+t9CB1ONHi1dd53Ur58s8fFSaKi8+cnel18jbx+fZj/vPZnfmzm9fVx7098o0VtR/Ebfs/PbQkNDPfreenL/q/N8do7dKBHhfL6y8SuLr7Jz3sR8Lhaj34mN2ioao6I5PRnzXOye9gXqq+3bt6tBgwb64x//qDfffDPQ4cBLte8n1jpm9uzZNR7jmNMPqyEhIYZ/NTbSunVrwzEAAACAoFJWJu3eLW3ZIhmVQPvXv2o+R4sWUv/+UlGR9O23rucefVTq16/mcwAAECTmzp2r66+/XjfeeGOgQ4EXSPQGAeePI0VFRXm8fL6x0+69Rh9pAgAAAGodq1XaubN8de65fz/+KJ05Y94cbduWJ3X79y9P4PbrJ3XqJFks0nPPuSd6AQCoh1599VUSvUGGRG8QcK6f17BhQ4+vi4iIcNwuKSkxNSYAAACgxs6eldLSylfqnkvqbtsmFRebN0fnzj8nc8/9M6i/CgAAXDl/UhzBgURvECgtLXXc9qYYtnNdI6vVampMAAAAgFcKC8uTuM4rdVNTJaefdWssLu7nZG7//lLfvpKHZc8AAICrDz/8UG+99ZZuvfVWrxYeInBI9AYB5+Ly3uz255zcZddQAAAA+M2ZM9I337iu1N25s7zWri/MmyfdfLPUrJlvxgcAoJ666667dNddd6moqIhkbxAg0RsEIiMjHbedyzhUxblcQ4MGDUyNCQAAAJBkXGahRw/zxg8NlS644OeVusnJ0oIFrn0uuogkLwAAPvTEE0/otddeC3QYqAKJ3iAQHR3tuF1QUCC73S6LxVLldWecNqxoxg++AAAAqKmjR11LL2zdKu3bZ974ERHShRe61tPt3VtyXkH0zDPmzQcAADxy8uTJQIcAD5DoDQJt27Z13LbZbMrLy1OLFi2qvO7YsWOO262oTQYAAABP2e3SoUPuSd1Dh8ybIzJS6tPHNanbq1d5shcAANQqb731lho2bKgpU6aoS5cugQ4HFSDRGwTOfwJlZWV5lOg9ePCg43bXrl1NjwsAAAB1gN0u7d/vntQ9etS8OZo0Kd8YrX//n5O6CQnlZRkAAEBQmDNnjr788kvt2rVLISEhgQ4HBkj0BoGYmBg1a9bMsUx+586dSkpKqvK69PR0x+0eZtZJAwAAQHAqK5N273ZP6pr9ccxLLpEGD/45qRsXJ/ELIQAAQW/Pnj3asWOHEhMTAx0KDJDoDRIDBw7U559/LknasGGDbr311kr7p6enKzc313E8aNAgn8YHAACAWsZqldLTXRO6ycmS0z4ONdamTXn93J9+cm1ftEiKiTFvHgAAUGvs3LmTRG8tRaI3SAwdOtSR6F23bp1ycnJcavee7/3333fcjouLU0JCgs9jBAAAQIB99pm0bFl5UjclRSouNm/sTp1c6+n26ye1by898IA0e7Z58wAAgFotOTlZI0eODHQYMECiN0gMHTpUbdq00dGjR1VSUqIpU6Zo3rx5Cgtz/xZ+8803Wrx4seN4zJgx/gwVAAAAvlRUJG3bJn39tfu51183Z47YWPekbuvW5owNAACC2ksvvaQOHTpo/PjxatCgQaDDgRMSvUEiIiJCjz76qKZMmSKpvHzD+PHj9dxzz6lTp06SJKvVqqVLl+rFF1+UzWaTJMXHx/NXFgAAgGB1+nT5ytxzpRe2bJF27pT+97NejVks5ZuiOSd0+/SRmjc3Z3wAAFAnTZw4UX/961918ODBQIcCJyR6g8hNN92k5ORkffDBB5LKk71Dhw5VQkKCGjdurMzMTJ04ccLRv1mzZpoxY4bhql8AAADUMnl55TV0nWvqZmRIdrs544eGSr16uSZ1k5KkJk3MGR8AANQrhw4d0qFDhxRDXf5agwxgkHn22WfVvHlzzZ8/X6WlpSorK9POnTvd+sXFxWnGjBmKjY0NQJQAAACo1LFjrgndLVukffvMGz8iQurd2zWp27u3FBlp3hwAAKDe++6773TzzTcHOgz8D4neIGOxWPTII49o+PDhWrJkib799ltlZ2erqKhI0dHR6tmzp6699loNHz5cERERgQ4XAACgfrPbpcOHXZO6W7dKvvqY4yOPSGPGSBdcUJ7sBQAA8KGXX35ZHTp00ODBgwMdCkSiN2BGjBihESNGVPv6uLg4TZ48WZMnTzYxKgAAAFSb3S4dOOCe1M3JMW+Oxo2lvn2l/v2lEyekt992PX/tteXnAQAA/GDz5s0aMmSI/vGPf2jChAmBDqfeI9ELAAAAeKusTNqzxz2pm5dn3hzNm7uWXujXT+rWTQoJKT8/e7Z7ohcAACAA7r//fhK9tQCJXgAAAKAydruUluaa0E1Olk6fNm+O1q3LV+meS+j27y916SJZLObNAQAA4EMnTpxQixYtAh1GvUaiFwAAADinpKQ8sevsyy+lxETz5ujY0X2lbocOJHUBAEBQy8nJIdEbYCR6Yaq8vDzdcMMNatiwodauXVtp3zNnzmjhwoVavXq19u3bp7Nnz6ply5bq37+/7rjjDiUlJfkpagAAUC8VFUnbt7uu1N2+vTzZ66ysrPpzdO3qntRt06ZmcQMAANRCvXr10oABA7RkyRJ16tQp0OHUSyR6YZrS0lI9/vjjOn78uGJiYirte+DAAY0dO1YH/7fjdEREhMLDw5Wdna1PP/1Un332mR577DGNHTvWH6EDAIC67swZKSXl54Tuli3Sjh2SzWbO+BaLFB/vmtDt27e8zi4AAEA9sXnzZj344IP66KOPAh1KvUSiF6YoKirSpEmT9PXXX1fZ12q1asKECTp48KDatm2r559/XpdccolCQkK0f/9+TZ8+XevWrdP06dMVGxuryy67zPd3AAAA1B0nT5bX0HVeqbtrl3tJhuoKCZF69XJN6vbpIzVpYs74AAAAQWzZsmWBDqHeItGLGtu1a5f+9Kc/affu3R71/+KLL7Rnzx5ZLBbNmDFDffv2dZzr2rWr/vGPf2j06NFKTk7WrFmzSPQCAICKHTvmmtTdskXau9fcOZo2lW655eekbu/eUqNG5s4BAAAA1BCJXlRbcXGxXnzxRS1ZskQ2m02tWrVS7969tW7dukqv++qrryRJ/fr1c0nynhMaGqqbb75ZycnJSk1NVVFRkSIjI31yHwAAQBA5fNh1le7WrVJWlnnjN2woJSVJP/zgWtLh4oulefPMmwcAAACm27x5sx599FEdPHhQo0aN0ksvvaSQkBCPrj158qRGjRqlL774Qg0aNFBGRoaPo/UNEr2ottzcXH3wwQeSpGuuuUZPP/203nvvvSoTvb169VJRUZESK9m9unXr1pIku92uM2fOkOgFAKA+sduln35yT+pmZ5s3R1RUeQ3dfv2k/v3L/+/RQwoLK0/4mlW7FwAAoB4aMWKE/vSnP2nIkCF+mc9qter666/X8ePHJUl/+9vf1KVLF02YMMGj62+99VZ98cUXkqSzZ8+qS5cu2rp1q8/i9RUSvag2i8WiwYMHa8KECfrlL3/p8XV33HGH7rjjjkr7bNmyRZLUoEEDNWcTEwAA6q6ysvJSC+fKLpxL6p44Yd4czZq51tPt10/q3r281i4AAABM99FHH+nzzz9XRkaGYmJifD5famqqI8l7zuzZsytM9JaVlWnbtm0qLi7WRRddpM8//9ytT0FBQdAtPCTRi2qLiYnRggULTB/3xIkTjpXCl156qcLCeJgCAFAn2Gzlm6I5r9JNTpZOnTJvjlatfl6he2617i9+IVks5s0BAACAKhUWFmr58uW6++67tXz5cmVlZen6669Xz549TZ+rpKTErS0tLc2wr81m08iRI/XRRx9Jki6++GLDfnazNvL1IzJo9VheXp5OefGLVVhYmM//CmO1WvXYY4/p5MmTCgkJ0X333efT+QAAgI+Ulko7driu1E1JkQoLzZsjJsZ9pW5MDEldAACAWuLgwYO67bbbHEnVv/zlL1q7dq1hcvX48eNavny5LBaLhg8frpYtW/okpk2bNjnikaTvvvvOJ/MEAoneemz+/Pma58XGIjExMVq7dq3P4rHZbJo8ebK+/fZbSdL9999faR1fAABQSxQXS9u3u67U3bZNMlhZUW2/+IV7UrdtW/PGBwAAgOleeukll+Pi4mLNnTvXLdF74sQJXXzxxdq9e7ckKSEhQRs3blSzZs2qnOPs2bMqKCgwPPfYY4/plltu0YUXXqhnnnlG3377rSPvVBeR6EWtcPbsWT366KP68ssvJUnDhw/X/fffH+CoAACAm4KC8pW55xK6W7aUr9y1Ws2bIz7eNaHbt6/UooV54wMAACBg3nrrLbdSoP/85z8dSV5J2rVrl1auXKnf//73FY5jt9v1zDPPaPr06Tp79qxhn1deeUWvvPKKBgwYoM2bN5tzB2oxEr312KRJkzRp0qRAh6ETJ05owoQJSk5OliTdeOONeumll2ThY5cAAARWfn55DV3nlbrp6ZJZ9cpCQqSePV2Tun36SE2bmjM+AAAAaqWTJ0+6rNadPHmyW5+lS5dWmOj94osv9Prrr+uzzz7zaL76kOSVSPQiwPbv36/x48frp59+kiTdfvvt+vOf/0ySFwCAQPn66/IVu1u2SJmZ5o0bHi4lJromdS+8UGrUyLw5AAAAEBSaN28uSRo0aFCF+zNVtBnanDlz2NOpAiR6ETCpqakaN26c8vLyZLFY9Nhjj+nuu+8OdFgAANR92dnlidyPP3Y/9/nnNR+/QQMpKck1qZuYWN4OAAAA/M/GjRu1ceNGr66ZOXOmj6IJfiR6ERC7d+/W3XffrZMnTyo8PFx//etf9Zvf/CbQYQEAULfY7VJWlmvpha1bpSNHzJsjKqq83EK/flL//uX/9+hRvoIXAAAAMIHdbtf//d//6d///rd27NgR6HBqLRK98LvCwkI98MADOnnypCIiIvSPf/xDv/rVrwIdFgAAwc1ul/bu/XmDtHNJ3ePHzZsjOtp1lW6/flL37lJoqHlzAAAAAOdZsmSJHnvssUCHUeuR6IXfzZkzR/v375ck/fnPfybJCwCAt2w2KSPDdZVucnL55mlmadXq52TuuZW6XbtK1NEHAACAHyxdulRHjx5VmzZt9OabbwY6nKBAohd+VVJSovfee89xPGvWLM2aNavSa5YsWaL27dv7OjQAAGqn0lJp507Xlbo//igVFvpmvtGjpZdekjp2JKkLAACAgOrVq5e+/vprrVmzJtChBAUSvfCrjIwMnT592nGcm5tb5TU2m82XIQEAUHsUF0upqa4rdbdtk86eNW+OLl1+XqkbFSU9+qjr+V69pE6dzJsPAAAAqKbjx4/rjTfeCHQYQYNEbwDNmDFDs2fPVkxMjNauXevVtZmZmVq0aJE2bdqkgwcPymq1qk2bNoqPj9ewYcN09dVXKyzM/9/eiRMnauLEiRWeT0xM1K5du/wYEQAAtVRBQXkS91xCd8sWKS1NslrNm6N7d9d6un37Si1b/nx+82bz5gIAAAB8oKpPguNnJHoDZNu2bZo3b161rp05c6bmzJkj63m/CGZlZSkrK0tr1qxRYmKiXn75ZcXGxpoRLgAAqIlTp8pr6Dqv1E1Pl8rKzBk/JETq0cM1qdunT/nmaQAAAADqBRK9AZCVlaUJEyaotLTU62unTZumd955x3EcFhamhIQERUZGKjMzU3l5eZKk1NRUjRkzRv/5z38UExNjWuwAAKAKx4+7J3V37zZv/LAw6YILft4grV8/6cILy8swAAAAAKi3SPT6WUZGhsaNG6djx455fe2qVatckrzXXHONpk6dqlatWkmSSktLtXTpUr300ksqKipSbm6uJk6cqA8//FAWNlMBAMB0YcePq9HOnWqUnq6Q7OzyBO+BA+ZN0KBBeRLXeaVuYqLUsKF5cwAAAACoE0j0+tHy5cv19NNPq6ioyOtrS0tLNX36dMfx5Zdfrtdff10hISGOtvDwcI0aNUoxMTG65557ZLValZaWphUrVmjYsGGm3If64vyyGJ46f+M4NpIDgOBUZlBSwXr4sGxLl8qSnCwlJys0OVlJhw+bNqe9USMpKUn2vn1l79dP9r59pZ49pfBw984m1fE1er8rKyur9vtgXWW322vl18To5wybzeb3WA2fL1arz+Lw9Xy+GN+XMXv7+DT7ee/J/N7M6e3j2pv+drvdsK2i+Kpqs9lsHn1vPbn/1Xk+O8duFIfz+crGryy+ys55+7W3Wq0Vfg/OV9EYFc3pyZjnYve0LwAEIxK9fpCTk6NXX31Vy5Ytq/YYq1ev1uH//TIZFhamqVOnuiR5nV1yySUaNWqUFi5cKElasGABiV4vlJWVKSUlxZSxUlNTTRkHAOBHdrtydu50aw4bOVKhJk1hi4pSYY8eLv+KO3eWQp1msNulHTtMmtHYboOSEkeOHDHtfTBYnf9L/+nTp2vl1+TQoUNubXv37vV7rMePH3dr27Fjh3Jzc30yX3Z2tltbRkaGaZ9gMxp/9+7dCg2t/ivA0aNH3dp27dqlkpISr8c6PwFWUFDg1fc8IyPDrS07O7vaj5v8/Pwqrz158qRb24kTJwyv27dvn1tbVlZWhXPs2bPHre3w4cOG/Y0SehXFf+TIEbe2zMxMJSYmOo5TU1MNH+c7duxweV5kZmZWGePBgwfd+uzbt6/Sr61z7EYJTOfzWVlZFY5vdB+OHz+ulJQUw+dDbm6uUlJSDF+DMjMz1bp1a7ev9alTp5SSkqLCwkKX9tLSUreFUKWlpYb3Oz8/v8L7YfS6fT673e4odeisoKDAra06ZRYBoDYg0etjb7zxhubOnevyhhYbG6uhQ4dqzpw5Ho+zcuVKx+3BgwerQ4cOlfZ3TvSmpaUpKytLnTp18jJ6AADqOJtNDbKy1Cg93eXfmjNnTJvCGh3tSOYW9Oypwh49VNKhQ/kGagAAAABgEhK9PjZ//nyXJO/IkSM1ZcoUffHFFx6PYbfbtWnTJsfxkCFDqrwmISFBrVu3dtQCXrt2re644w4vIgcAoI6xWtVw/341Sk9X1P/q6kZmZCi0GiWVKlLSqpXbSt3Stm0lauUDAAAA8DESvX6SmJioyZMna8CAAV5fe+jQIZ06dcplLE8kJCQ4Er3bt2/3et76KiQkRL17967WtTabzaVcQ2JiYo0+5gcAqKazZ6XUVFmSkx3/tH27LMXFpk1h79RJJ+PiHAndzjfeqNCOHdVYUmPTZvGts2fPurW1b99eSUlJAYim9ji/BECTJk1q5ddkw4YNbm2xsbF+j7Vly5Zubb169VJMTIxP5mvXrp1bW3x8vGn322j87t2712j8Nm3auLUlJCSoZ8+eXo8VFub6K1xUVJRXsRmVL2jXrl217190dHSV1xqV92jRooXhdQcMNrTs1KlThXPk5+e7tXXo0MGwv9F9ryj+9u3bu7XFxcW5HCcmJjo2xnbWq1cvdezY0XFsVEbg/Bi///57tz5du3at9GvrHLtR6Qbn81u2bKlwfKMyFS1btlRSUpKaN2/udq5Vq1ZKSkrS+vXr3c7FxcUpKSnJ7XW0adOmSkpKUqNGjVzaw8PDFRkZ6dZmdL+jo6MNP6XatWtXw9ft81ksFsP7ExUV5dYWblQfHwCCAIleHxswYIBGjBihK6+8stp1w/bv3+9y3LlzZ4+uc/7h4qeffqrW3PXV+T9AV1doaKhpYwEAKlBYKG3bJm3d+vO/1FTJ7Pp6V1whDR0q9esn9e0rW7Nm2utUQzC0Y8ege803ijckJCTo7oevWSyWWvk1MfpjciB+9jDaNyIsLMxncfh6Pl+M78uYvX18mv2892R+b+b09nHtTX+jRG9F8Rt9z85vCw0N9eh768n9r87z2Tl2o0Sv8/nKxq8svsrOeRPzuViMfic2aqtojIrm9GTMc7F72hcAglHt+4m1jpk9e3aNxzi3Klcqf2My+quxkdatWxuOAQBA0Dp1SvrxR9ek7s6dksEvuNVisUg9ekgNGpTP4+z556XBg38+ruYO9QAAAADgCyR6g4Dzx5GioqIM/wpppHHjnz84avSRJgAAarUTJ6TkZNekrsFu8dUWGipdcIHUv3/5Kt1+/aQLL5QaN5b+9jf3RC8AAAAA1GIkeoOAc/28hg0benxdRESE43ZJSYmpMQEAYKqcHNeE7tat0nmli2okIqI8iXsuoduvn9S7t+TF+yoAAAAA1GYkeoNAqVONQU9X80qudY2sfLwUAFAb2O3SoUPuSd1Dh8ybIzJS6tOnPJl7brVur14SG6sAAAAAqMNI9AYB5+LyRkX2K+Kc3GXXUACA39nt5atyt26Vtmz5OalrZt34Jk1cV+n26yclJJSXZQAAAACAeoREbxCIjIx03HYu41AV53INDRo0MDUmAABclJVJu3e7r9Q9edK8OVq0+DmZe26lbmys5MWnXQAAAACgriLRGwSio6MdtwsKCmS322WxWKq87syZM47bzZo180VoAID6yGqV0tN/TuZu2VK+cZnT+06NtW3ruklav35S586SB+9/AAAAAFAfkegNAm3btnXcttlsysvLU4sWLaq87pjTR2NbtWrlk9gAAHXc2bNSWprrKt2UFKm42Lw5OnVyL7/QoYN54wMAAABAPUCiNwh06dLF5TgrK8ujRO/Bgwcdt7t27Wp6XACAOqaoSNq2zTWpu3275LQpaI3Fxrqu1O3bV2rd2rzxAQAAAKCeItEbBGJiYtSsWTOd/F+dw507dyopKanK69LT0x23e/To4avwAADB6PTp8nILzkndnTslm82c8S2W8k3RnFfp9ukjNW9uzvgAAAAAABckeoPEwIED9fnnn0uSNmzYoFtvvbXS/unp6crNzXUcDxo0yKfxAQBqsbw8KTnZNambkSHZ7eaMHxoq9erlulI3KUlq3Nic8QEAAAAAVSLRGySGDh3qSPSuW7dOOTk5LrV7z/f+++87bsfFxSkhIcHnMQIAaoGjR8uTulu2/JzU3bfPvPEjIqTevV1X6vbuLUVGmjcHAAAAAMBrJHqDxNChQ9WmTRsdPXpUJSUlmjJliubNm6ewsP9n787jm6ry/oF/ku77QhcglKWFlpZCoayCGzoCwoCCMjjOMDrjjg+OKAijI4gyCG4jg4Mog8yjoiLID3xEEQcQ2QSk+05blkL3fW+z/f64k0tuc5MmabrRz/v1uq8m5957zrnJTdJ8c+73mD6Fx48fx+7du8X7ixcv7squEhFRV9DrgcJC6SjdhATAKD97h3l4CCNzjUfqxsQIwV4iIiIiIiLqURjo7SVcXV3x3HPPYdWqVQCE9A2PPfYYXn31VYSFhQEANBoN9u7di/Xr10P73xyLkZGRWLhwYbf1m4iIHECvBy5fvh7MNYzWLS11XBs+PsLEaMYjdaOiAJkfFImIiIiIiKjn4be3XmT+/PlITEzErl27AAjB3hkzZiAqKgre3t7Iy8tDZWWluL2/vz82bdokO+qXiIh6KJ0OyM01HalbVeW4NgICpAHd8eOBiAhAqXRcG0RERERERNSlGAHsZdauXYuAgABs374darUaOp0OmZmZJttFRERg06ZNCA8P74ZeEhGRVTQaIDtbOlI3KQmoq3NcGyEh0tQL8fHAkCGAQuG4NoiIiIiIiKjbMdDbyygUCixbtgzz5s3Dnj17cOLECRQXF6OpqQl+fn6Ijo7GrFmzMG/ePLgyhyIRUc/R2gqkp0tH6SYnA01Njmtj0CBpQDc+Hhg4kEFdIiIiIiKiPoCB3m6yYMECLFiwwO79IyIisHLlSqxcudKBvSIiIodoagJSU6VB3dRUIdjrKOHh0oDuuHHC6F0iIiIiIiLqkxjoJSIi6oj6eiHdgnFQNyMD+O+kmB2mUACRkaZB3YAAx9RPRERERERENwQGeomIiKxVXQ0kJkqDutnZgF7vmPqVSiAmRppTNy4O8PFxTP1ERERERER0w2Kgl4iISE5ZmRDUPX/+elA3P99x9bu4AKNHS0fqjh4NeHo6rg0iIiIiIiLqMxjoJYeqqqrCnDlz4O7ujiNHjti8/86dO/Hqq69CpVLZtT8Rkc30eqCoSDpKNyEBKChwXBvu7sLIXOORuqNGAZw0k4iIiIiIiByEgV5yGLVajRdeeAEVFRVQqVQ275+Xl4c33nijE3pGRPRfej1w5cr1YK5htG5JiePa8PYWcugaj9QdORJw5kcuERERERERdR5+6ySHaGpqwvLly/HTTz/ZtX9rayuWL1+O5uZmB/eMiPosnQ7IyzMdqVtZ6bg2/P2lAd34eGDECCHXLhEREREREVEXYqCXOiw7OxvPP/88Lly4YHcdf//735GRkQF3d3cGe4nIdlqtMCma8UjdxESgrs5xbQQHS1MvxMcDQ4cCCoXj2iAiIiIiIiKyEwO9ZLfm5masX78ee/bsgVarRVBQEEaPHo2jR4/aVM/p06exY8cODBo0CHfddRd27NjRST0mohtCayuQkSEdpZucDDQ2Oq4Nlcp0pK5KxaAuERERERER9VgM9JLdysvLsWvXLgDAzJkzsWbNGnz22Wc2BXpramqwatUqKBQKbNy4EadPn+6s7hJRb9TcDKSmSoO6KSlCsNdRhg2TBnTHjQNCQx1XPxEREREREVEXYKCX7KZQKDB16lQsWbIEEydOtKuO1atXo7i4GI899hgmTJjAQC9RX9bQIIzMNUyQlpAApKcLaRkcJTLSNKgbGOi4+omIiIiIiIi6CQO9ZDeVStWhNAt79+7FwYMHER0djWeeecaBPSOiHq+mRsihazxSNysL0OsdU79SCURHS3PqxsUBvr6OqZ+IiIiIiIioh2Ggtw+rqqpCbW2t1ds7OztDpVI5pO2CggKsW7cOrq6uePPNN+Hq6uqQeomoByovF4K6xiN18/IcV7+LCxAbKx2pO2YM4OnpuDaIiIiIiIiIejgGevuw7du3Y9u2bVZvr1KpcOTIkQ63q9VqsWLFCjQ0NOAvf/kLRowY0eE6iaiHKCqSjtJNSACuXHFc/W5uwshcQ0B3/Hhg1CihnIiIiIiIiKgPY6CXutz777+PxMRETJkyBQ899FB3d4eI7KHXAwUFQiDXeKRucbHj2vDyEnLoGo/UHTlSGMFLRERERERERBIM9PZhy5cvx/Lly7u0zaSkJLz//vvw9fXFhg0boFAourR9IrKDTgfk55uO1K2ocFwbfn7SgO748cDw4YCTk+PaICIiIiIiIrqBMdBLXWrXrl3QaDRobm7G/fffb7K+sbERAFBUVIRp06YBAF566SXMnj27S/tJ1GdptUBOzvVg7vnzQn5dG/J5tysoSDpJWnw8MGwYwB9+iIiIiIiIiOzGQC91Kb1eDwBobW1FeXm52e10Op24vrm5uUv6RtTnqNVARoZ0lG5SEvDfH1wcYuBAaUA3Ph4YNIhBXSIiIiIiIiIHY6CXutSGDRuwYcMGs+s3b96M9957z2ETvxHRfzU3A2lp0qBuSgrQ0uK4NoYOlQZ0x40D+vd3XP1EREREREREZBYDvUREN5qGBiA5WRrUTU8HNBrHtTFihGlQt18/x9VPRERERERERDZhoJeIqDerqRHSLRgHdbOyhAnUHEGpBEaOvD5BWnw8MHYs4OvrmPqJiIiIiIiIyCEY6CUi6i0qKoSJ0c6fvx7Uzc11XP3OzkBsrHSk7pgxgJeX49ogIiIiIiIiok7BQC8RUU9UXCwdpZuQAFy+7Lj63dyEIK4hoDt+vBDkdXNzXBtERERERERE1GUY6O1GmzZtwpYtW+yaeCwvLw9ffPEFzpw5g6tXr0Kj0SAkJASRkZGYO3cu7rrrLjg7d/3Tu3TpUixdurTb9ifqdfR64OrV68Fcw2jdoiLHteHpKeTQNR6pGx0NuLg4rg0iIiIiIiIi6lYM9HaTlJQUbNu2za59N2/ejK1bt0LTZmKlgoICFBQU4PDhw4iNjcWbb76J8PBwR3SXiBxBrwfy801H6paXO64NX19pQHf8eGHiNCcnx7VBRERERERERD0OA73doKCgAEuWLIFarbZ533Xr1uGTTz4R7zs7OyMqKgoeHh7Iy8tDVVUVACAtLQ2LFy/Gl19+CZVK5bC+E5GVtFrgwgXToG5NjePa6Nfv+gRphmXYMGECNSIiIiIiIiLqUxjo7WI5OTl49NFHUVZWZvO+Bw8elAR5Z86cidWrVyMoKAgAoFarsXfvXrz++utoampCeXk5li5diq+++goKhcJhx0BEbWg0QEaGNKCblAQ0NDiujQEDTEfqDhoE8LVNRERERERERGCgt0vt378fa9asQVNTk837qtVqbNy4Ubw/ffp0vPvuu1AajdxzcXHBokWLoFKp8MQTT0Cj0SA9PR3ffPMN5s6d65Bj6CvapsWwllartXifbgAtLUBaGhSJieKC1FQompsd1oR+8GDo4+OhHzcOGDcO+rFjhUBvWzy/iDqNTqczKdNoNJLPhxvhPV/u806n09n9OXij0uv1PfIxkTvntFptl/fVmtdLb2qvM+rvzD7ben46+nVvTfu2tGnreW3L9nq9XrbMXP/aK9NqtVY9t9Ycvz2vZ+O+y/XDeL2l+i31z9I6Wx97jUZj9jloy1wd5tq0pk5D363dloioN2KgtwuUlJTgnXfewb59++yu44cffkBhYSEAIV3D6tWrJUFeYzfffDMWLVqEnTt3AgB27NjBQK8NdDodkpOTHVJXWlqaQ+qh7qFoboZnTg48s7LExSMvDwoHBnOaw8LQOHIkGqOihL8jR0Lr7y/dqLRUWIioyxg+c43l5ubCy8vL7D698T3/woULJmVFRUUO+xzsrdp+6a+rq+uRj8m1a9dMyvLz87u8rxUVFSZlGRkZKHdkDnojxcXFJmU5OTkOu4JNrv4LFy7AqQP57ktlPsezs7PR2tpqc11tA2ANDQ02Pec5OTkmZcXFxXafNzU1Ne3uW11dbVJWWVkpu9/FixdNygoKCsy2kZuba1JWWFgou71cQM9c/4tkJsbNy8tDbGyseD8tLU32PM/IyJC8LvLy8trt49WrV022uXjxosXH1rjvcgFM4/UFBQVm65c7hoqKCiQnJ8u+HsrLy5GcnCz7HpSXl4fg4GCTx7q2thbJyclobGyUlKvVapOBUGq1Wva4a2pqzB6H3Pt2W3q9Xkx1aKxB5io8e9IsEhH1BAz0drL3338fH374oeQDLTw8HDNmzMDWrVutrufbb78Vb0+dOhUDBw60uL1xoDc9PR0FBQUICwuzsfdEfYeyvt4kqOt+6RIUMv8020OvUKB56FAxmGsI7uq8vR1SPxERERERERH1bQz0drLt27dLgrwLFy7EqlWrcOjQIavr0Ov1OHPmjHh/2rRp7e4TFRWF4OBgMRfwkSNH8NBDD9nQc6Ibl1NNDTyzs+GZmSkEdbOz4X7lisPq1zs5oSkiQjJKtykyEjoPD4e1QURERERERERkjIHeLhIbG4uVK1di0qRJNu977do11NbWSuqyRlRUlBjoTU1NtbndvkqpVGL06NF27avVaiWX7sbGxnboMj9ygJISIY+uUU5dxaVLDqte7+oKjB4N/bhxwhIfD8TGwtXdHa4A/B3WEhF1JbkrZ4YPH464uDjx/o3wnt/S0mJSNmDAAMlx9kVtUwD4+Pj0yMfk1KlTJmXh4eFd3td+/fqZlMXExEClUnVKe/379zcpi4yMdNhxy9U/YsSIDtUfEhJiUhYVFYXo6Gib63J2ln6F8/LysqlvcukL+vfvb/fx+fn5tbuvXHqPwMBA2f0uX75sUhYWFma2jZqaGpOygQMHym4vd+zm+j9AZn6EiIgIyf3Y2FhxYmxjMTExGDRokHhfLo1A2z6eO3fOZJthw4ZZfGyN+y6XusF4/fnz583WL5emol+/foiLi0NAQIDJuqCgIMTFxeHkyZMm6yIiIhAXF2fyPurr64u4uDh4enpKyl1cXODRZjCEi4uL7HH7+fnJXqU6bNgw2fftthQKhezxyKVlcnFxMSkjIuoNGOjtZJMmTcKCBQtw55132p037FKboNTgwYOt2s/4n4srDhyt2Be0/QfaXk5OTg6ri9qh1wPXrgEJCdeX8+cBmTybdvP0BMaOBeLjxUUREwO4uMAxWQGJqKeQy4Pv7Oxs8T29N77ny/VXqVT2uuPobAqFokc+JnI/LHTHeWjP66Unt9cZ9Xdmn209Px39uremfVvatPW8tmV7uUCvuf7LPWdty5ycnKx6bq05fntez8Z9lwv0Gq+3VL+l/llaZ0ufDX2R+04sV2auDnNtWlOnoe/WbktE1Bv1vP9YbzBbtmzpcB2GUbmA8MEk96uxnODgYNk6iHo9vR64eFEa1E1IABx5nvv6AuPGXQ/qjh8PREYCvWy0HhERERERERH1DQz09gLGlyN5eXnJ/gopx9tokie5S5qIegWdDrhwwTSoKzN7s90CA4VArtFIXYSHA1a+1oiIiIiIiIiIuhsDvb2Acf48d3d3q/dzdXUVb7e2tjq0T0SdQqMBMjOlAd2kJKC+3nFthIaaBnUHDwZ4yRYRERERERER9WIM9PYCarVavG3taF5AmtdIo9E4tE9EHdbSAqSnS4O6yclAc7Pj2ggLu552wRDUlZlYg4iIiIiIiIiot2OgtxcwTi4vl2TfHOPgLmcNpW7V1ASkpAiToxmCumlpgNGPGB0WESEdpTtuHGCUp5qIiIiIiIiI6EbGQG8v4OHhId42TuPQHuN0DW5ubg7tE5FZdXVCugXjkbqZmYBW65j6FQogKko6UnfsWMDf3zH1ExERERERERH1Qgz09gJ+fn7i7YaGBuj1eiisyCdab5TX1J9BMOoMVVVAYqIQzDWM1r1wAdDrHVO/kxMwapR0pG5cHGA00SARERERERERETHQ2yuEhoaKt7VaLaqqqhAYGNjufmVlZeLtoKCgTukb9SGlpdJRugkJwMWLjqvf1RUYPVo6Ujc2FjAa0U5ERERERERERPIY6O0FhgwZIrlfUFBgVaD36tWr4u1hw4Y5vF90g9LrgcJCaUD3/Hng2jXHteHhIaRbMB6pGxMjBHuJiIiIiIiIiMhmDPT2AiqVCv7+/qiurgYAZGZmIi4urt39srKyxNsjR47srO5Rb6bXA5cumY7ULS11XBs+PsLEaIaA7vjxQGQk4My3HyIiIiIiIiIiR2GkpZeYPHkyvv/+ewDAqVOn8MADD1jcPisrC+Xl5eL9KVOmdGr/qBfQ6YDcXNOgblWV49oICLiedsGwREQASqXj2iAiIiIiIiIiIhMM9PYSM2bMEAO9R48eRUlJiSR3b1uff/65eDsiIgJRUVGd3kfqQTQaIDv7+gRpCQnCpGlGE/R1WEiIaVB3yBDAiokCiYiIiIiIiIjIsRjo7SVmzJiBkJAQlJaWorW1FatWrcK2bdvgLHP5+/Hjx7F7927x/uLFi7uyq9TVWluB9HTpKN3kZKCpyXFtDBpkGtQdMIBBXSIiIiIiIiKiHoKB3l7C1dUVzz33HFatWgVASN/w2GOP4dVXX0VYWBgAQKPRYO/evVi/fj20Wi0AIDIyEgsXLuy2fpODNTUBqanXJ0hLSBDuq9WOayM8XBrQHTdOGL1LREREREREREQ9FgO9vcj8+fORmJiIXbt2ARCCvTNmzEBUVBS8vb2Rl5eHyspKcXt/f39s2rRJdtQv9QL19UBSknSkbkYG8N8gfocpFMKkaIYJ0uLjgbFjhTy7RERERERERETUqzAC2MusXbsWAQEB2L59O9RqNXQ6HTIzM022i4iIwKZNmxAeHt4NvSSbVVcLOXSNR+rm5AB6vWPqd3ICYmKkI3Xj4gAfH8fUT0RERERERERE3YqB3l5GoVBg2bJlmDdvHvbs2YMTJ06guLgYTU1N8PPzQ3R0NGbNmoV58+bB1dW1u7tLcsrKpKN0ExKA/HzH1e/iAoweLR2pO3o04OHhuDaIiIiIiIiIiKhHYaC3myxYsAALFiywe/+IiAisXLkSK1eudGCvyKH0eqCwEEhJkY7UvXrVcW24uwvpFoxH6o4aBTDIT0RERERERETUpzDQS+RIRUUY8MEH8EpPh2d2NpwrKhxXt7e3MDGacVB35EiAOZiJiIiIiIiIiPo8RoiIHOXCBTiNG4eBDQ0drysgQBrQjY8Hhg8HlMqO101ERERERERERDccBnqJHOVf/4LCniBvcPD1XLqGZehQQKFweBeJiIiIiIiIiOjGxEAvOVRVVRXmzJkDd3d3HDlypN3t8/PzsWPHDpw6dQqlpaVwc3NDdHQ0Fi5ciHnz5nVBjx1owID2t1GpTIO6AwcyqEtERERERERERB3CQC85jFqtxgsvvICKigqoVKp2t9+/fz9eeuklqNVqAICXlxfq6upw9uxZnD17Fj/++CPeeustKHtLuoJHH4XuwAEo//MfAECLSgWXyZOhNAR2x40DQkO7uZNERERERERERHQjYqCXHKKpqQnLly/HTz/9ZNX2CQkJWLVqFXQ6HWbPno0XXngBAwYMQHV1NT744AN89NFHOHDgAMaPH4/f/e53ndx7B/H2hu6775B88iQUOh20vr6Ii4uDkpOlERERERERERFRJ+slQyWpJ8vOzsbChQvxn/+OZLXGK6+8Ap1Ohzlz5uCdd97BgP+mPfD398fKlStx9913AwA+//zzTulzZ9J5e0Pr69vd3SAiIiIiIiIioj6EQw3Jbs3NzVi/fj327NkDrVaLoKAgjB49GkePHrW4X0pKCrKzs+Hh4YGXXnoJCpn8tEuWLMHYsWPh7+/fSb0nIiIiIiIiIiK6cXBEL9mtvLwcu3btglarxcyZM/H1119j1KhR7e5nGPk7bdo09OvXT3abyMhIPPzww7j33nsd2WUiIiIiIiIiIqIbEkf0kt0UCgWmTp2KJUuWYOLEiVbvl5WVBQCIjo4GABw8eBD79u1Dfn4+lEol4uLi8Mc//hEjR47slH4TERERERERERHdaBjoJbupVCrs2LHD5v3y8/MBAL6+vliyZAkOHz4sWX/x4kX83//9H1555RX85je/cUhfiYiIiIiIiIiIbmQM9PZhVVVVqK2ttXp7Z2dnqFSqDrdbV1cHAPjwww9RVlaGhQsX4rHHHsOAAQOQk5ODjRs34uzZs1izZg0GDx6MKVOmdLhNIiIiIiIiIiKiGxkDvX3Y9u3bsW3bNqu3V6lUOHLkSIfbbWhoAACUlZXh97//PV5++WVxXWxsLLZv345FixYhIyMDb7zxBvbu3dvhNomIiIiIiIiIiG5knIyNuo2rqyv+/Oc/y5Y/9dRTAID09HQUFBR0ddeIiIiIiIiIiIh6FY7o7cOWL1+O5cuXd3m7Xl5eqK6uRlRUFHx9fWW3mTBhgng7JycHYWFhXdU9IiIiIiIiIiKiXocjeqnLBQUFAQA8PT3NbmMcAG5ubu70PhEREREREREREfVmDPRSl4uMjAQAFBcXm92mpqZGvG0IDBMREREREREREZE8Bnqpy02ePBkAcPnyZeTn58tuc/78eQCAi4sLoqKiuqxvREREREREREREvRFz9FKXu/vuu7FhwwY0NTXh73//OzZv3ixZr9VqsW3bNgDALbfcAn9//27oJREREVHvpdfrodPpuqQtZ2dnk5RcOp0OWq22U9pzcnIyaU+v1zusvc6oX+4xsrdODw8PSV1ubm421aPX60364uTkZHUdnp6e0Ov14n1XV9d299XpdCZturi4yO6nUChMtlUqlRbbsPZ45I7dXP/lzoO2tFqt1ed/e31UKpUm2ygUCsk2lvou9xgbr7dUv6XnR26ds7MztFqtbJ2A8Lh4enpCo9GY9MXNzU2yj4eHh2yZoY6255q54/D09ISTk5Nk27aPmZubG1xcXEz2b9u+QqEweZ0RUc+m1+vR3Nwsec/oqxR6PgrkQJs3b8Z7770HlUqFI0eOmN3u3//+N15//XUAwD333IPnn38eoaGhKCkpwdq1a3H48GG4urpi3759iIiI6PR+JyYmil+GlEolxo0bZ1c9Go0GycnJ4v24uDg4O/P3FCKi3uaNN97AypUrJWUnT57E1KlTxfs3wnv+2bNnxSttDP72t7/hxRdf7KYe9Qzu7u5oaWkR78+cORMHDx7sxh7J27JlC55++mkAQmBi5MiR2Lp1KwYMGCAJsHS2K1euoLS0VFI2ZswYMdDiaIWFhSgsLJSUxcTEOCwo0xn1X7161SRtWWxsLNzd3W2uKykpSfL8ent7Y+TIkVbv39jYiIyMDEnZwIEDMXDgQKv2/+WXXyT3/f39MXz4cIv7aDQaJCUlScqCgoIwdOhQk22rq6uRm5srKRs6dKjZdG51dXXIzs6WlIWFhSE0NLRD/S8qKsK1a9ckZSNHjoRSef2iWA8PDxQUFLR7/tfX1yMrK0uyzaBBg9C/f3/xfllZGS5fvizZZsSIEfDz87Oq73q9Xrwq0iAgIED8LlVeXo5Lly5J1g8fPhz+/v5Qq9WSzzMACA4OxpAhQ9Da2oqUlBTJupCQEAwePBilpaW4cuWKZF1kZCR8fX1x/vx5ScDFz88PI0aMQGZmJhoaGsRyFxcXuLq6mpTFxcXJHq+/v7/sceTn50t+3DI8bsYpAZVKJQICAlBRUSHZ38fHB3V1dZIyFxcXqNVqEFHvodfrUV1djcTERJw5cwZZWVkdDvz+9NNP4ud/R2JFXal3fRuhG8bDDz+MsrIy/Otf/8L+/fuxf/9++Pj4oL6+Hnq9Hm5ubti4cWOXBHmJiIiIerOgoCCsWrUKISEhcHNz69IgLyAEGtt+kTIOhjmap6cngoODJWWO/JGlM+r38vIyqdN49KEt+vXrJwloubm52bS/s7OzSV9sCWK33dfDw6PdfRQKhcl+3t7estu6urqabGspIO7i4mJTn6zdVu48cHFxgUKhkJRZc/5b85i7u7ubbNP2x5L2+m6pDUv1K5VKs8+PpXUeHh6yjxFgOs+Koa/+/v6Sfjk5OZmMnja8NuSO19xxBAUFSZ4Hwzlj/BgaRv62fX7c3NxMzjFbRrkTUfczXMnk7e2NwMBA3HHHHSgtLcWGDRtQXl7e3d3rUgz0UrdZsWIFpk+fjo8//hgJCQmorq7GwIEDMXnyZPzpT3/CiBEjuruLRERERD1aUFAQXnzxRYSEhCAkJKRbLjX29vY2CTbaG8S0hpeXlxhMMnBkoLcz6vfy8jIJ2nUk0Gsc0LK1HmdnZ5MgnC2jr9vua037SqXSZD9zj6mbm5vJtpaC2S4uLjYdj7X98PT0NFnn7OwsCfQqFAqrzn9r+ujh4dHuNpb6rlAoLK53d3c3+7jKPT+G14CldXJ1GvocHBwse54GBARIAqgKhQIKhULy44XhMZY71+TOX8M5I9ee8Q8KCoUCTk5OJgFyuaCuQqHgJeBEvZRWq0VtbS2USiVefPFFrF+/vk8Fexno7UabNm3Cli1b2k1zICcvLw9ffPEFzpw5g6tXr0Kj0SAkJASRkZGYO3cu7rrrrm65fHTp0qVYunSp1dtPmDABEyZM6MQeEREREd24DCN5w8LC4OnpKQaL2uar7ExXrlwxuRR62LBhnZa6oaioyCQNwuDBgx0W5JarPywsDF5eXnbXee3aNZPL+4cMGWLVaNi2UlJSJEEpd3d3REZGWr1/Y2OjSaqDwMBADBgwwKr9ExMTJfe9vLzavQpPo9EgNTVVUubn54fBgwebbFtTU2MyYXNoaCj69esnW3d9fT0uXLggKQsODkZISIjJtnq93iSFhJeXF8LDw022LS4uRlFRkaSsbX89PT1x9epVkwBC2/Nfro9BQUGS9BLl5eUoKCiQbDNw4EBJ6ga5x97Q9/aOzVL9ra2tSE9Pl6zz9fXF4MGD0dLSYpLqw8/PD2FhYSgrK8PVq1cl6wYNGgQfHx/ZvkRERCA7OxuNjY1iuZOTE1xcXNDU1CQpi4yMlD1ePz8/2eO4ePGipMzwftA2JYOvry8qKyslZe7u7pLUEYY+dPXVEUTkGE5OTggICBB/zFq1ahVWrFjRZ368YaC3m6SkpIgTjtlq8+bN2Lp1q8kHT0FBAQoKCnD48GHExsbizTfflP2nhYiIiIh6Py8vL/j4+EhG8gYHB0sCQ11BLk2D4XLs3theZ9TvyDrbpg4wjFK0lty2SqXS7uOzpn25L9fm9pN7rCz1z5btHdEP48ffycnJqufWmj7aetxt+97esVmq39I5YWmdLX029EXu/LX2nFYoFGbblNtWjly5tWVE1Lt4enoiJCQEOp0OI0eORGZmZnd3qUt0XvIsMqugoABLliyxK7n7unXr8N5774lBXmdnZ4waNQoTJkxAQECAuF1aWhoWL15sMoEAEREREd0Y/Pz8oFAo4Ovr291dISIiIupxfH19oVAoMGnSpO7uSpdhoLeL5eTk4He/+x3Kysps3vfgwYP45JNPxPszZ87EsWPHsHfvXuzcuRPHjx/Hq6++Kl4CVl5ejqVLl/aZ4elEREREfYmPj0+XpmggIiIi6k0Mkz3Gx8d3d1e6DFM3dKH9+/djzZo1kvxD1lKr1di4caN4f/r06Xj33Xcll6m4uLhg0aJFUKlUeOKJJ6DRaJCeno5vvvkGc+fOdcgx9BX25mNqm8SfM7USEfVOxpPCGGg0Gsnnw43wni/3eafT6ZiXsA29Xt/jHhO9Xg9nZ2fZSap6wo/8er2+0/ohV29ntmep3Y7W54g6ba2nMx6/9va1pU1b+9fRui3VIVdmfEm/pXaseTyNt7Glb3Lr7dm/vX7as6+tz5U9bXfVtkR0Y3Bzc4O/v3+fmWSRgd4uUFJSgnfeeQf79u2zu44ffvgBhYWFAIR0DatXr5bNRQQAN998MxYtWoSdO3cCAHbs2MFArw10Oh2Sk5MdUldaWppD6iEioq5l+Mw1lpuba3Eypt74nt92ciBAmIjKUZ+DvVXbLwF1dXU98jFpbW01+X+wpaVFMtFRV5ALgjc3N3dacFwu/Vlzc3OPrt9cnfZ84Wy7j06ns+k5lzsWtVpt93mj1Wrb3VfuhzBz+7W0tJiUtba2mm1DbntbjsdcP+Ses5aWFskEek1NTVad/3KPedtjMteepeNo77E3Xt/a2mq2D3LHoNFo0NjYKNsvw+Nrqc9tz1NDX9r+kKrX62XL5I5Lq9WaPQ65beXIlcv9uNsXgkFEfYUhv7q7u7tdAy97G6Zu6GTvv/8+Zs2aJQnyhoeH48knn7Spnm+//Va8PXXqVAwcONDi9osWLRJvp6enm8xMSkRERES9HycMIiIiIjLP8L9SX/mfiYHeTrZ9+3bJr5ELFy7E7t27MWTIEKvr0Ov1OHPmjHh/2rRp7e4TFRWF4OBg8f6RI0esbo+IiIiIiIiIiIh6F6Zu6CKxsbFYuXKlXTP9Xbt2DbW1tZK6rBEVFSVO+paammpzu32VUqnE6NGj7dpXq9VKLt2NjY3lBClERL2Q3JUzw4cPR1xcnHj/RnjPl7vkecCAAZLj7Ivajvjw8fHpcY+JVqvFzz//bHIJopubGzw9Pbu0L87Opl8p3N3d4erq2intubi4yLbnqOPujPrN1WmcBsBabc9PpVLZ4WN3cXGxuw7DRDeWyKUGMLef3GX4rq6uZtuQuxTf3PHIXY5vrh9yz1nbnNgeHh5Wnf9yqQHaHlNDQ4Nse5YeW+O+t3dscqkQDH2QS8Hg7OwMT09P2efD8PjW19eb7XPbXJiGvrRNN6NQKGTL5I7byclJ9n1Frszc57FcuVxKxL4y8o+Ibjw9ItD773//Gw8//HB3d6NTTJo0CQsWLMCdd95p94fFpUuXJPcHDx5s1X6DBg0Sb1+5csWutvsquX/Y7OHk5OSwuoiIqOvIfelzdna2+J7eG9/z5fqrVCp73XF0NoVC0eMeE0v/V/aEAIVCoei0fsjV25ntWWq3o/U5ok5b6+mMx6+9fW1p09b+OeJ4bOmHNe1Y277xNrYcn6PWt9dPe/a19bmyp+2u2paIqDfqEf+xvvXWWxg1ahQmTpzY3V1xuC1btnS4DsOoXED48hUUFGTVfsapG4zrICIiIiIiIiIiohtLj8jRq9FosGzZMpSUlNi0X2JiYif1qGepqakRb3t5ecmOMpLj7e0tWwcRERERERERERHdWHpEoPe+++5DeXk5li5dKpsDSM7XX399w6Z7aMs4f567u7vV+xnnKrL2cSUiIiIiImpLLo8rUWeQy+lM1BV47tGNoEekblizZg0yMzORmpqKtWvX4m9/+5vF7Tdt2oStW7d2Ue+6n/E/VdaO5gWkeff4hkVERERE1LOcOXMGf/jDHzpczx/+8Ae89NJLDuiRvNOnT2PdunU4cOBAp7VBBADp6en4+OOPcfjwYdn1N998s3h7586dXdWtXquhoQEHDhzA+fPnUVlZiZaWFnh4eGDAgAF45ZVXbKqrtbUVBw8exNmzZ1FWVoampia4ubmhX79+ePnll/H3v/8dmZmZAICXXnoJMTExnXBEnUOn0+HIkSNIS0vDs88+293dIeqQHhHodXV1xT/+8Q/cd9992Lt3L2JjY/Hb3/7WZLvW1la88MIL+P7776HX6/HrX/+6G3rb9YxnBpWbsdUc4+Cu3KyxRERERERElixbtgzffvttd3eD+oDNmzfj559/7u5u3DAaGhrw17/+FaWlpZLy+vp6aLVam+rSaDRYt24d8vLyJOWNjY1wdnaGl5dXh/vbXSorK/HOO+/g4sWLiI6O7u7uEHVYjwj0AsCgQYPw1ltv4YknnsD69esRHR2NsWPHiuvLy8vx1FNPIS0tDQDw5z//GU899VQ39bZreXh4iLeN0zi0xzhdg5ubm0P7REREREREjvXCCy+0u01hYaFk8IerqyumT5/eaX1ikJe6CoO8jvXdd9+JQV5nZ2dMnjwZAwYMgEajQf/+/W2q68SJE2KQV6FQYPz48RgyZAj0en2vDvICQHFxMS5evNjd3SBymB4T6AWAW265BU8//TQ2b96MZ555Bnv37kVQUBCysrLw1FNPoaioCB4eHtiwYQNmzpzZ3d3tMn5+fuLthoYG6PV6KBSKdverr68Xb/v7+3dG14iIiIiIyEEeeeSRdrdJSkqSXLnn7e2NkSNHdma3iHqMEydO4PLly93djV7B+HG69957MX/+fLvrunLlinj71ltvxeOPP96hvhFR5+nyydhqa2strn/66adx2223obS0FM888wwOHjyIBx98EEVFRQgNDcWnn37ap4K8ABAaGire1mq1qKqqsmq/srIy8XZQUJDD+0VEREREREREPU9zc7N4OyIiosfURUSdq8tH9E6ePBlhYWGIiYnBqFGjEBsbi1GjRsHX11fc5q233sL8+fORmJiIxMRE6PV6xMbGYsuWLQgJCenqLne7IUOGSO4XFBQgMDCw3f2uXr0q3h42bJjD+0VEREREREREPY9erxdvG0/Ubg/jdDEdrYuIOleXv0L1ej2uXLmCK1eu4PvvvxfLBw0aJAn8rlu3Dk8++SRaWlpw9913Y8OGDX02z6xKpYK/vz+qq6sBAJmZmYiLi2t3v6ysLPE2L+ciIiIiIup7fvzxRxw4cABJSUlivk5PT08MGjQIo0ePxm233Wayz5kzZ/CHP/zBpDwqKkq8vXPnzk7p77333itezfnOO++gpaUFn376KY4dO4YrV65ArVZjwIABmDx5Mh588EGoVCqzdS1evBhnz56Fp6cnEhMTkZOTgzfeeAPZ2dlwcnJC//79MX36dKxYsUKyn1arxbFjx/Ddd98hLy8PNTU1UCgUCAoKwpgxY3DnnXdazIt87do1zJo1CwBw//33Y9WqVSgrK8PBgweRlJSEyspKODk5ITw8HLfffjt+97vfWfXYaDQanDlzBqmpqcjLy0N9fT0aGxvh4eEBf39/qFQqxMfH46abboJS2f7Fu8eOHcOhQ4eQkpKCiooKeHl5ISwsDNOmTcOCBQtQVlaGm2++GQAQHR2Nv/71r2brSk9Px/nz53HlyhWUlZWhuroaTk5O8PLywqBBgzBx4kTZOXbS09Oxdu1ak3Jz55qhP23L21Kr1Th27BhOnDiBixcvoq6uDs7OzggMDMSIESNw0003ITY21uLxGPr14IMPYs6cOSgvL8fhw4eRlJSE8vJyaDQaBAQEIDo6GnfccYdDR7rW1tbi6NGjSE1NxbVr19DQ0AAPDw8EBQVh1KhRuP322zFw4ECT/Y4dO4YPP/zQpPxvf/ubeLu959IgIyNDsp/Bhx9+KLYRFBSETZs22XJoAIDU1FScPHkSFy5cQHV1NbRaLXx9fTFs2DCMHz8e06ZNk0xKb07b10RtbS2amprg5uYGb29vhIeHm31NfPXVV9i7d6+kLDMzU3w9Wvs4mVNfX4+jR48iOTkZhYWFqK+vh6enJ0JCQhAbG4s777wT/fr1M7v/1q1bcfz4cfF2a2srPvvsM6SkpECv1yM4OBhjx47FokWLUFZWhmeffRYAcNddd+Hhhx8W3/vLysrg7e2NiIgI/PrXv8aIESMk7dh7rhkYP46vvfYaQkND8cUXX+DcuXNobW1Fv379EBsbi0WLFsHd3R2AMJ/UyZMn8csvv+Dy5cuoq6uDi4sLfHx8EBERgXHjxmHKlClWnQNkqssDvR9++CEyMjKQkZGB9PR0XLt2DYAwSrWgoEAS/HVycoK3tzciIyPx888/Y+TIkZI0Bn3J5MmTxcfm1KlTeOCBByxun5WVhfLycvH+lClTOrV/RERERETUc9TW1uLPf/4zTp06ZbKuubkZlZWVSElJwd69e7FixQqrg41dqbS0FG+++SYKCwsl5ZcuXcKlS5ewe/duPPnkk5g2bVq7dRUUFGDx4sWoqakRy/Ly8hAeHi7ZLjMzEy+88AJycnJM6rh27RquXbuG7777DiNHjsSmTZusCqiePn0aL774IhobGyXl6enpSE9Px//+7/9i7dq1FifIOnPmDJ577jlUVFSYrKurq0NdXR0KCgrw888/4//+7/+wfPlys/O0NDc34x//+AeSk5Ml5bW1tWKfTpw4gQ0bNrR7bBUVFXjvvfdkHy+NRoOWlhbxXNuzZw+ef/75Tr/0Pz09Hdu2bZOkMgSE4K/hOfzxxx8RGxuLJUuWwNvbu906T548iY8++kiSwgAASkpKUFJSgmPHjmH27Nl48MEHO9z/77//Hrt27TKZiL2+vh719fW4dOkSvvvuO8yYMQMPPvhgrwqGlZaWYuvWrcjOzjZZV1FRgYqKCvzyyy/Yt28fnn76aYvnSkZGBrZu3Sr7mmhsbERjYyNKS0slr4muSml57NgxfPrppyavecNrNS8vD99++y3uu+8+zJ07t936GhoasHHjRvHHOkDIm2zu3D148CA++eQT8X5VVRV++eUX8QcoA0efaxqNBhs3bhQn7gOECUQ1Gg0eeughAMJ78dtvv23y+tRoNGhqakJpaSlOnz6Nr776Cs899xwGDRpksU0y1eWB3ltvvRW33nqreL+2tlYS+M3IyMDly5eh0+mg0WhQV1eHf/zjH+L2fn5+GDlyJKKjoxEVFYV77723qw+hW8yYMUMM9B49ehQlJSUWg96ff/65eDsiIkLyi2h3ysvLwxdffIEzZ87g6tWr0Gg0CAkJQWRkJObOnYu77rqLl4IQEREREXXQ888/LwZ5/fz8MH36dAwePBhqtRoZGRn45Zdf0NDQgKamJqxbtw6xsbHiVYODBw/GCy+8AAB44403xDpfeOEFSXq4ztTS0iIGeZ2cnHDHHXcgOjoa9fX1OHLkCC5dugSdToctW7bgypUr+O1vf2uxvhdffFES5DUw/m6akpKChx56SAzOuLi4IC4uDoMHD4Zer0dlZSVOnjwJjUaDrKws/OY3v8Ebb7xhMVB44cIFHDhwAE1NTfD09MSkSZMQHByM5uZmHD9+HNXV1aivr8fKlSvxzDPPYPz48SZ1nD9/Ho888gjUajUAIDAwEHFxcRg0aBCCgoJQUlKCkydPipNvFRQU4L333sO7775rUldrayv+9re/IT8/HwCgUCgwbdo0hISEQKfTITMzE9nZ2cjIyJAdgWusrq4Oa9euFQNt7u7uuOWWWxAVFYXy8nLU1dUhJycHFy5cAADU1NRg48aNePPNN8UJx0NDQ/HQQw9BrVbjs88+E+u291xLSEjAu+++C61WK/Zp3LhxUKlU0Gg0uHz5MpKSkqDX65GWloaXX34Zb775psWrhxMTE5GVlQW9Xo/Q0FCMHTsWfn5+qKysxNmzZ1FbWwu9Xo8DBw5ApVLJjpK31ueff45vvvlGvB8YGIhx48ahX79+qK+vR2pqKgoKCqDT6XDw4EEUFhZi+fLlYgAuIiJCDDb/5z//EQODd955pxg/sCYNJCA8N4a6fv75Z/GcmTJlivgDiYeHh9XHVlpairVr14pXKisUCsTGxiIiIgJOTk64du0aEhMT0dLSgpKSErz22mt4/vnnMXr0aJO6srOzsXHjRnFiSsNrIigoCAqFApWVlUhLS0NxcTGA66+JV155Raxj9OjRcHd3R0lJCQ4fPgwACAkJwa9+9SubHqe29u/fjy+//FK8P2DAAIwePRr+/v5oaGhAZmYm8vPzoVar8cUXX6CyslIMgprzySefSIK8BjfddJNJWVFREY4ePWpSHhAQILnSu6PnmrljNw7yGhgGHhoC1oZ5p0JDQzFmzBgEBASgpaUFhYWFSEhIgFarRUlJCV5//XW89dZbNp1n1A2B3rZ8fX0xZcoUyYjTpqYmZGZmSoK/eXl50Gg0qK6uxs8//4yff/4ZSqWyTwV6Q0JCUFpaitbWVqxatQrbtm2TDYoeP34cu3fvFu8vXry4K7tq1ubNm7F161bJLMHA9dHchw8fRmxsLN58802TX9aJiIiIyAHUauDVV4EDB4A2I43sNVCtRsh/gyoGLm5ugELhkPrbCtZoENDm/0m3jrbn6QnMmQOsXt3B3vUMSUlJ+OmnnwAIc3V89tlnYtCisbERGRkZWLx4Md566y1kZWVBp9Ph/fffx9atWwEIgYlHHnkEgDTQ+8gjj+CXX37pkmOorq5GdXU1AgMD8fbbb2Pq1KniuuXLl2Pz5s14//33AQAHDhzApEmTzI7+a2xsxNmzZxEWFoYHH3wQkZGRqK2txZkzZ8Tgdn19PZ566ikxyBsVFYUnn3xSMkfMyJEjceXKFaxYsQK5ubmoqanBmjVr8Le//U28JLktw6jZmJgYLF26VJybZtCgQXj55ZexYsUKHDt2DBqNBh999BGio6Ph6ekpqeOVV14Rg7zTpk3D448/DmdnZ/j7+2P48OEAhByqa9asEQNMFy5cQG5urrje4OuvvxYDdv7+/tiyZQtGjx6NlJQUcZtffvkF77//vnj1rTn/+te/xCDv4MGDsWrVKkycOBG+vr44f/68mCM2LS1NTMPR0NCAkydPYvbs2QCES//vvfdeNDY2SgK99pxrZWVl2Lx5sxjkHT9+PB555BExqKxQKBAYGIizZ8/i3XffRWVlJSoqKrBhwwa8/PLLZkdnZ2ZmQqFQYPHixZgxY4ZkuwceeADvvPMOMjIyAAjnor2B3p9//lkSeJs3bx7uu+8+k+/8P/30Ez766COo1WqkpKRg165dYkB20KBB4gjIxMREMTg4ZcoUxMTE2NSffv36Yc6cOQCE7+yG82bMmDE2H6NOp8Pbb78tBnlDQkLw7LPPmsxHVFVVhS1btiAjIwNqtRqbN2/G66+/bpLi4KOPPhLjCsavCWN6vR5ff/215DVx8eJFcf6iyMhIREZGIiMjQwz0Gh+zPVJTU8VYjLOzMx5++GHcfvvtULT5fEpISMD777+PxsZGHDp0CJGRkbJBW4OkpCT4+Pjgj3/8I8aMGYPGxkacO3cOEydONNk2LS0NgBAEvv/+++Hv74/Lly+joqJC7IcjzjVz/XR1dcXixYsxefJkaDQaJCUliekiDh8+LAZ5J0+ejKefftokcFxYWIh169ahpqYG1dXVOHr0qPh+Qdbp9kCvHA8PD8THxyM+Pl4sa21tRU5Ojhj8TU9PF38Z7AtcXV3x3HPPYdWqVQCE9A2PPfYYXn31VYSFhQEQhrrv3bsX69evFz/cIiMjsXDhwm7rt8G6desklw44OzsjKioKHh4eyMvLE1/saWlpWLx4Mb788kuL+baIiIiIyA5r1wIyORc7wuW/S1fptPYSE4W/7Yxi7Ez2XIV3xx13iAFPg6SkJPH2Aw88IDsyzcPDA0888QSWLVsGQLgMWqvV9qjLwF1dXbFq1SpERkZKyp2cnPDss8+irKwMe/bsgV6vx+eff24xn6azszO2bdsmGX06d+5c8Xh37Nghpr5TqVR4++23ZUcADxkyBB988AEeeOABlJWVobi4GIcOHcK8efPMtj1s2DCsWLECrq6uknI/Pz+89957WLBggZir9LvvvsN9990nbpOSkiKmRfDz88Ojjz4qO9hHoVDgnnvuwYkTJ8RUFxcuXJBcql1dXS0GdxQKBTZs2IDx48ejtbVVUteECROwcuVK2dy5Bq2trTh06JB4//HHHxcDqm0Z8pF+++23ACAGDB3tq6++Eo9lxIgR+Otf/2py6TwgjHp96aWX8NJLL6G5uRk5OTk4c+aMxUDbnDlzTC57B4TX0WOPPSa+jq5du4aqqioEBATY1HetVisZBTpr1iwsWrRIdttbb70Vzs7O+Oc//wlAuPx+5syZFvO9drfjx4+LI7Q9PT3x4osvIjg42GS7gIAArFixAmvWrMGVK1fQ0NCAffv2iT88AcJVwoa6bH1N5Ofnd+pE9V988YX4A8dDDz1kNpd3fHw8HnvsMTG/8Z49ezB58mSLqWCWLl2KUaNGARDOO7nz0SA6OhpPP/20GNg1/mzp7HPt4YcflvwQYHzbOIY3b9482c+bgQMHYtGiRWIeaLkRwmRZ+wmFeghXV1fExsbiN7/5DdauXYs9e/YgISGhu7vVpebPny95AZ46dQozZszAvffei9///ve45ZZb8PLLL6OpqQmA8Avtpk2buj0VQtv8MDNnzsSxY8ewd+9e7Ny5E8ePH8err74qDscvLy/H0qVLJbOEEhEREZEDnDnT3T3o2X7+ubt74BDGX54tfWcKCQnB66+/jv379+Onn37qUUFeQJhUyNLgjz//+c9in7OyslBbW2t221tuuQVDhw41u37//v3i7WeeecZiOoaAgAA8+eST4v0jR46Y3dbQz7ZBXgNXV1c8/fTT4v1z585J1vv7++Pll1/Gn/70JyxcuNBsPQbGIyQbGhok63755RdxZPC4ceMwbtw4s/VMmzZNdrSgQWtrK5YsWYJ77rkHc+bMaTd4ZrxeLvjaUWq1GmeM3t8eeeQRi9+D+/fvj5kzZ4r323sOjbdtKyQkRJL71TCIyRYXLlxASUkJACGI195gralTp4o/gGg0Ghw7dszmNrvSyZMnxduzZ8+WDfIauLq6SnKGnzhxQjxvAcDb2xsPPfQQZs+ebfNrojPOPYPc3FxcunQJgPAeYWnCRgCYNGmSOPq6uLjY4kDGQYMGiUFea8yYMcNkFLFBZ55rnp6euOWWW8yuN/6MkcvrbTBlyhRs3LgRO3bswNKlSy32j0z1yBG91upp/4h0hbVr1yIgIADbt2+HWq0W8yi1FRERgU2bNnV7CgS1Wo2NGzeK96dPn453331X8kuVi4sLFi1aBJVKhSeeeAIajQbp6en45ptvrEpMTkRERERWmjwZ+M9/ursXPVc3T2BsyItrSWFhIXQ6nXi/7QzqgBBAMPj+++/xhz/8AQsXLsS0adNMUgwMHjxYTCfQ0xina5BjmL0+OTkZer0eqampZidmM75atK2rV6+ioKAAgPAdc8aMGbKjeY3ddddd+Nvf/gadToeysjKUlZXJBq/8/PwwdepUi0GcO+64A05OTtBqtSgoKEBlZaU4Cnvw4MH4/e9/DwDtpjKoqqpCXV2deL9tyrxEw6h1CKN223P33XebBJ4NvL29MXfuXDH1hSXNzc1iYAmAePWpI124cEEczevv729VUGzq1KligP/ChQtQq9VwcTG9XiAwMLDdfK2+vr7iiPC2I6StkZ6eLt4eO3as2VQgxm666SYxWJaRkYEFCxbY3G5XMFydbTB58uR294mNjYWPjw/q6urQ2tqK3NxcREdHAxDyus6YMcOqttu+Jjrj3DMwjssMHTrUbKDVWGRkpDg6OSsry+xVHbZe7WFp+84814YPH25xVHJ0dLT4nvLxxx/j4sWLmDJlCqKjoyUBezc3N07C1gEOC/RWVlbil19+QWVlJXx8fDB69GgMHjzYUdXTfykUCixbtgzz5s3Dnj17cOLECRQXF6OpqQl+fn6Ijo7GrFmzMG/evHZ/2eoKP/zwg3iZhLOzM1avXm32hX/zzTdj0aJF2LlzJwDh8ikGeomIiIgcaM0aIZetA3P0qtVqaNp8eXZ3c7PqS65d7Wk0JgEsNzc3KB2Vo7fNTOBdyfjyZHOSkpIkxy838jQqKgr3338/9uzZAwA4c+YMzpw5A4VCgcjISAwfPhxjxoxBVFSUbGCrJ3BxcbHq+2RERISYB9cQaJNjSHcnxxDkBYTRf56enu0Ger29vREWFiZOgFZaWiob6I2JibEY+ACE81elUuHKlSvicVgKLJaXl6OkpAT19fX4+uuvkZeXh6ysrHYnLzMOtlrz2BpP3GSNuro6pKSkoKKiAmfPnkVRUREKCgpw9epVyY8TnXHlpq3HBgiXiLu4uECtVkOtVqOqqkqSk9nA39+/3bqMJ3Oz5/iM+982b605xiPU5Sbq6imqqqrEEblubm4YMGCAVfsNGTJEzDdbUlIiBnrlGF4TpaWlKC0tRWFhIS5fvoyyNu/nnXnVsPHrLzExUTIq2RqW3r/kzktz3NzczKZRATr3XGuvn7fffjt+/PFHXLlyBXq9Hj/99BN++uknuLi4YMSIEYiNjcWYMWOsDpSTvA4HevV6PTZs2ICdO3ea/DoyYcIE/PWvf7X4a4LhhdbXnsQFCxZ06Be3iIgIrFy5EitXrnRgrxzPkIcJEH4xHThwoMXtjQO96enpKCgosPhPGRERERHZwMUFeO01YXGQQpkv02PGjOm0QQdlhYXiQAKDmJgYkwms+rpXXnkFQUFB+Oijj8QRhnq9HtnZ2cjOzsaBAwfg7u6O8ePH4+GHH273//Su5u3t3W6AFIAkoGGY6Km97doyvtTeltyqAQEBYqC3vr5edhtr86Yaj6qWCzJfunQJ27dvxy+//GIxRYVSqZQEVY0ZH6eXl1e7fbLmsWhoaMDBgwdx+vRpFBUV2dUvRzB+/H18fKzaR6lUwsvLSzxv6urqZANVxkFca9gTTLSn/8bbmTv/egLjvnl5eVkd+2nv+IqLi3HgwIEOvSYcqaPPgaX9rXm9GrT3WdiZ51p7/XRzc8OqVavw73//G2fPnhXL1Wo1MjIykJGRgS+//BKBgYG46aabMGfOHIvv3SSvw4He1157DZ9//rnsm9m5c+fwm9/8Bv/4xz8kCZgLCwvxwQcf4Pjx4yguLhZnv4yNjcXs2bMxZ84cqz7UqWfT6/WSPEnmLqMyFhUVheDgYPHLwpEjR/DQQw91Wh+JiIiIiG5ELi4uWLZsGR566CEcPHgQR48exblz58T5PADhkvqTJ0/i9OnTeP755/Hoo492Y4+lrP0+aDzYyNLo5M5I+2ccPDIXvLJ2vhTj42i7z549e/DKK69I8pQCwvEOHToUkZGRGD16NHx9ffHdd9/h+PHj7bZhTeCrvYBlVlYWVqxYYRKYViqVCAoKgkqlwrBhwzBy5EjU1dVh8+bN7bZpL3tHaho/Dt0Zg7Cn/9acfz2BI56btsf3448/4qOPPjIZbOji4oLQ0FCEhYUhIiICMTExFl8TjmTcl1GjRlmV1sRYaGio2XW2nJvtvdd15rlmzfusn58f/vznP6OwsBBnzpxBYmIiLl68KGmjsrISBw4cwOHDh/Hcc8/ZlJ+YOhjovXDhAj7//HMA159s45NGoVCgpaUFzz77LL7++muEhYXhl19+wRNPPIHGxkbJtmVlZfjxxx/x448/YseOHdi4caNsvinqPa5duyb5ZS02Ntaq/aKiosRAb2pqaqf0jYiIiIioLwgMDMSDDz6IBx98EK2trTh37hy+/fZbJCcnIzc3F3q9HjqdDm+++SbGjRuH8ePHd3eXAUASkLbE+PuGNZfYyzEeMWbLRFrG25obRWecH9QS4+2MjyMhIQGrV68Wg0hRUVGYPn06RowYgcjISHGSJL1ej/Pnz1vMD2s8erXtRG1yLI2SrKmpwapVq8Qgb3BwMGbNmoWZM2dizJgxSEtLk3zfP3HiRLvtdYRxChNrH3OdTieZnKs7rwqwp//G2/XkKxqMj62hoQF6vd6qwHTbkcAGOTk52L59uxgYNH5NhISEmARF7cmZbA/jPqpUKsyZM6dL2rVVTznXBg4ciPnz52P+/PlobGxEVlYW0tPTkZSUhOLiYgDCj5GbNm3Cpk2b4OHh4ZB2+4IOBXr/7//+T3yR6vV6jBgxAjNmzICXlxcuXryIQ4cOoaamBs3NzXj33Xfx6quv4tlnn0VDQwMUCoXsi1uv1yMjIwOLFy/G//7v/9qcdJp6DsOMkwbW5koyTrptyFNFREREREQd4+rqinHjxsHNzQ3z58/H1atX8cYbb6CiogIAsH///h4T6G1sbERVVVW76QOMJ3myNCLOEuP8k5cvX5YE/8ypq6uT5OQ013ZeXl67dTU0NIjpSJRKpSR9wAcffCAGeceOHYvly5eL36PlRvkZB2fbjtwbNGiQGOhtL58vAIsTyO3Zs0c8bwIDA7Fu3Tp4e3sjMjJSNtWBpbQajmCc99Xa75AFBQVivmsnJyer02x0hv79+4u3DelA2mP8fdvec78r9OvXT8yF3NLSgqKionZTxej1esnjYHx8+/fvF4O8bV8Tciz9YOFIxn205vUFCO9zrq6uVo/8d4SeeK55enoiPj4e8fHxWLx4Mc6dO4f33nsPGo0GDQ0NSExMbHdyTrquQ2eT8aydU6dOxbZt2yRDtZctW4YlS5YgKSkJhw4dQlRUFMrLy8XAsKurK4YMGQKlUomSkhLxzV+hUKC6uhpPP/00vvnmG6tmAaSexzhXm+HyHWsYT2LQNt9bV2hsbLR54gEDvV6PoKAg/OMf/wAgP6vn8uXLcfDgwQ71cfr06RYvfbrvvvuQnZ3doTYeeeQRLFu2zOz6cePGmVw+Zqt169bh3nvvlV137do1zJw5s0P1A8Cnn36KsWPHyq47ceIEnnzyyQ63cerUKbOzVX/88cd44403OlR/v379cOzYMbPr165di927d3eojQkTJuDf//632fUPP/xwuzM9t2fhwoVYs2aN2fW33Xab+IXBXi+88AL+8Ic/yK6rra11yD8IW7duxc033yy7LikpSZwZuyO+//57qFQq2XX79u3DX//61w7V7+LiIvkMb+vvf/87tm/f3qE2oqKi8NVXX5ldv3TpUhw9erRDbcyaNQtvvfWW2fW//vWvTX50tFZlZaVJmabNBFBarRb33XefeN/Nzsmn3njjDcyePVt2XX5+PubNm2dznW3t3r1bdhKTthNaAcLz//HHH9vcxvnz583mMdy2bRs2bdpkc53GBg4ciEOHDpld/9JLL4mzp9tr6tSp+PDDD03K9Xo9NBoNHnzwQaSkpHSojd///vdYtWqV2fVTpkyxKs+fu7s7Vq1aZTKC8fLly1CpVGYnclKr1ZLAmL2GDh1qMRdfdnZ2hy8ljoyMlL0UX+6y09zcXJsvu1YqlRYn9zGWl5dn12XdHh4eCA8Pl12n1+vFUUsGhomHLGn7um1paZE8Jnq9Hi+//DJycnJw8eJFvPvuu5LzxPjy2EGDBmHWrFniHBk5OTkW+2Dukt/2+i23X1VVleRcDwsLg6+vr2TbxMRE3HHHHWhtbZVto6ysTJzp3s3NTbyCsKioCGVlZZJRqxcvXjR7KfXAgQPRv39/FBcXQ6vV4qOPPpL9rM/Pzxdv//DDD2JfAwMDJd9hjI/h0qVLssGU4uJicfKlY8eOSUYnGl5bly9fFmeoB4A77rjD5HVlaEuv16O5uRm5ubniuqamJvFx02q1iImJEe8nJCTgV7/6Fa5evWr2eT18+LBseU1NDX788Ufx/uTJk8VRgpcuXYJSqTSpMyEhQbxtTdqI9PR0kzJzow8vX76M8PBwMZhYXV2Nc+fOyX4HMO7Xzz//LN4ePny4JNgm9/nYmYy/fyYlJaG5ubndOIhx/3vyADkXFxdEREQgKysLgNDv9uYrSk1NFd8fnJ2dJe+jxp9hcq8JY21fE3LnnqPSXsTExIj/h+Tk5KC6urrdqwz+9re/4fLlywgICMD9998vSXnaWbrrXCstLcXnn38u/qi1ceNGs9tOnDgRY8aMEd83Ovodsa/pUKD34sWL4u1nn33WJB9HYGAgtmzZgrvvvhu1tbXil0alUolnnnkGDz/8sOQLQUpKCt577z389NNPUCgUuHbtGv75z3/i+eef70g3qZsY52ry8vKy+p9j40sJ2pvttjPodLoOBUlbWlrE23L/kGZkZHQ4CNu/f39xdmE5WVlZHf4Sl56ebrGNnJycDl8Gk5aWhmHDhsmuKyws7PDjZGjD3Id3amqqQ9pISUkxm8g+PT29w23069fP4nPhiHPKy8vLYhuZmZkdbiMjI8NiG9nZ2R3+ELd03tbV1Tnk+U5NTTX7fKelpTnsnDI3864j2nB1dbX4XDjivNXr9Z1+Tg0ePLjd90JrRypYIzc31ySw5Yj609LSzAb2L1265LDzVu49W260Vnl5ucWZn81JTk42G+h1xPtUbW1tp78XBgYGIjk52SRAUVdXh+Tk5C57L7Qm0Ovp6Sn7g2trayuamprMjkjUaDRobm62vsNmNDU1iZ+vcgER4/+HOtKG3DGaO25bKZVK2cfJUfUDQgChsbFRts7m5maTx8me56bt5eeA8H5l+FHihx9+wNy5c83u3zb1Qds+GE9kJBdo02q1dvVbq9VKBkU0NTWZjGr75ptvMHXqVKjVatk2PvnkE/H1Gh8fL74HGX6YMw7qtLa2yj7fWq0WjY2NmDVrlvij9xdffIExY8aYXKJsOA/q6+slP7K3nYuk7fO6ZcsW/OlPf5KUGfrY0tIiqcv4R2m1Wi15fbV9/A19N/j8888l51rb1/utt96Kr776ClqtFgkJCcjKykJERITJYwIInxs//fST7DqNRiN5TRifQ3KvlTNnzkjeO42fd0PqEEB6rjU2Npr8D28uQKxWq+Hq6oqbbrpJ7POnn36KmJgYk20NbZeUlEh+PLRmPpnOFB0djdDQUJSUlKCpqQm7d+/G4sWLzW7/888/i5/hCoWi2/vfnttuu00M9H733Xe45ZZbJD+OGFOr1fjiiy/E+xMnTpT8f2F8/rSXeqDta0JuIJZxnKIjk7bFxMSI8w1pNBp89tlnWLJkidntT548KQ5IqKqq6rLUpd11rvn6+iIhIUF8T8vJyRFTz8gxjgWZ+/Ga5HUo27jhn1BXV1eMHj1adpvAwEA88MAD0Ov1qKmpgUKhwOLFi/HEE0+YfBkYM2YMPvzwQ/z+97+HXq+HXq/Hrl27uiynCjmW8T84tozKNp6hmc89EREREZFtjEfL7d69WzK7ubGcnBxJsGvKlCkm2xjnRTSMxOoqJSUleOedd0wGf2g0GuzcuRMnT54EIHzXeOCBBzrU1oIFC8TRd2VlZXj99ddRWlpqsl1xcTHWr18v5ucNDg62GEgHhJGxO3fuNPlRpLa2Fm+//TaKiooACCPlb7/9dsk2xunv9u/fL5sCoa6uDq+99hr+85//SMrbfpcKCAjAjBkzAAgBrXfeeUc2tUROTg5ee+01i0Ev436dPXtWDOIZ02q1+P777/H+++9b7JeB8blmz5Wd99xzjxhjyM/Px8aNG2UHDl28eBHr168Xg+Dh4eFdMpLSEqVSiYULF4r3Dx48iF27dsn+kHby5Els3bpVvD9z5sx2UyF0t6lTp4opGhsbG/H666/L/lheXV2Nt956S1zn6emJRYsWSbax5jXR2NiIbdu2tfuaAKTnXUVFhd3B3rbP4cmTJ/HRRx/J/kj1yy+/4KOPPhLv33zzzV32HHbXuebu7i4JEr/33ntmU1wcPHhQfG9yd3e3eWK7vq5DI3qbm5uhUCgQGBhocbj7bbfdhg8++EC8/9vf/tZivX/5y19w7tw5ZGdno66uDv/5z3/MXtJIPZfxL2e2XOrWnZfMEBERERF1lwMHDti8j0KhQHBwMBYsWCBeGTd79mzs27cPCQkJ0Gq12LRpE4YOHYrhw4cjMDAQra2tuHjxIlJTU8WgxuTJk2UnTw4ODhZTIDz//POIj49HS0sL5s+fL6bWKCsrw7PPPivu8/jjjzskcObs7Iz09HT88Y9/xPjx4xEaGora2lqcP39eDAQqlUo8/PDDVqeJM8fX1xfPPPMMNm7ciJaWFuTn5+OFF15AXFycGFi6cuUKkpKSxO8o7u7uWLp0qcU0Js7OztBqtfj2229x7tw5TJgwAT4+PigpKcG5c+fEEbne3t544oknTL43zZ49W0x9U1paiueeew6TJk1CcHAwlEolqqqqcPLkSTGY5OTkJI5alLs64P7770dGRgYuX76M6upqrFmzBnFxceKl8bm5uUhNTYVer4e7u7tYb9vv+3feeSe+//57tLS0QK1WY926dRg7dizCwsLg7OyMiooKJCUliYFW436ZG4VpfK698847uOmmm0zONUv69++PJ554Au+99x50Oh0SExPx3HPPIT4+HgMHDoRGo8Hly5eRlJQkjgT39/fH0qVLuzRHqjk33XQTcnNzxTR/X3/9NU6cOIH4+HgEBgaioaEBqampkhzEUVFR7cZXegJnZ2csW7YMr7zyCurq6lBSUoKXXnoJo0ePRkREBJycnHDt2jUkJiZKzuUnn3zSZOSvpdeERqNBUVERkpOTxaBue6+JoKAgMb1oeXk53n77bURFRcHNzc3mVILTpk1Dfn6++BwePnwY586dQ3x8PIKDg1FXV4ecnBxJGhiVSmU29Vxn6a5z7Te/+Q0SEhJQV1eHiooKrFq1CqNHj4ZKpYKvry/q6uqQmZkpyR7w29/+VnLVN7XPIe9mxiMw5RhfDuLp6YkhQ4ZY3N7JyQkPPfQQXnzxRQBCzjcGensf41QetvwqZhzcteYD3dGUSqXdeWcMOXoNYmNjTVKaxMTEdHiSuejoaIu/ao0cObLDuYZGjRplsY3IyMgO5+iNjY0120ZQUJBDck1ZaqOurs4hbYwZM8Zsjt7k5OQOt9GvXz+Lz0VMTIxsHjNbtHdORUdHWzU7syUxMTEW24iKiupw6gZL521tba1Dnu/Ro0ebbUOv1zvsnDJ3Kf/Fixc73IaLi4vF52LUqFEdbiMqKqrdc6ptbkpbtXdOjRw50u48/5WVlSajiYYPHy5pT6vVSv6nsTdHr6X3KR8fH4edt3K5SOUurw8KCrJrQpq4uDizqRtiYmI6fBwDBw5s973Q0sRB1hg5ciTi4uJMnkcfHx/ExcUhOjq6w5991rwXWpujV+7/JFdXV3h4eJidFVutVjtk/gvjNuQCJPa+Htq2IXeM5o7bnhy9co+To+oHhOfJ09NTtk53d3eT18xnn31mcxsGv/71ryXH88EHH+DZZ58VR71eunRJNm+5QqHA9OnT8fjjj8v28+677xZHZObm5or5LidOnIhhw4bBycnJ5DhcXFwk55lerzd5v3FycpK0J3fePvnkk/j4449RW1srO1+Bt7c3/vznP5tcou/s7AxnZ2fJc+bq6ir7fDs5OYmpUOLi4rB+/Xq88847uHbtGtRqNX755RfZeQoiIiKwbNkyBAUFmVwObvx4hISE4OGHH8Ybb7yBsrIyfPfddyZ1DR48GCtWrDC5PNnFxQW33noriouL8eWXX4qP4/Hjx03qAIRg/c0334y3334bgDCq1fA8aLVa8fX/l7/8BX//+9+RnZ0NvV6PpKQkJCUlSeoaP348Zs6cifXr14uPqfHjO2jQICxbtgzvvvsumpubodfrkZiYKDsHwNChQ/Hkk09i9erVaG1tRWVlJWpqauDn5weFQiE+T7/61a/wr3/9C4AwUVpBQQGA6+eaudegITev4THw8vLCBx98gMrKSjQ3N+PUqVOy+40ZMwZPPvkkAgICOnTJviMtXrwYQUFB2L17N1paWlBZWWkyKhUQXrezZ8/Gb37zmx4RpLZG//798dprr+G9995Dbm4u9Ho9UlJSZHPfh4aG4n/+539kc5xPmjQJ9913H/bu3WvXa6ItT09PTJ06VXyvNLwePDw8MGPGDJs/yxYvXox+/fphz549aGlpQW1trSSntbExY8ZgyZIlZj+zO1N3nGv+/v548cUX8e6776KkpMTiOeDu7o5FixbhV7/6VYfa7Iu65B3BkMtQoVC0m4za4JZbbhFvdzSAQV2nqqoKc+bMgbu7u+RXKXN52vLz87Fjxw6cOnUKpaWlcHNzk8ysa+4LY2fy9PSUvfTIGhqNRpJ3z8nJyeTN8N133+1I96zS0clorJGamtqp9Q8ZMsTu58Fat99+e6e38ac//ckkJ5ujvfbaa3jttdc6tY1PP/20U+sHIP5z1VkCAwM7/fmeMGFCp7dx//334/777+/UNlasWIEVK1Z0ahttL+PsDB2Z+PKNN97AypUrJWWGwIEx4wnn4uLiHP5lKzIyslPPKbn+Llu2TPyx3VGeeuopPPXUUw6ts62NGzdanNijIxQKBZydnfHll192Sv3GrJ34UqvV4sSJE2hqapKUDxkyBH5+fmb3c3V1lR216WhRUVHtDgaxl9yX7uHDh3fqF+WIiAiLozbtoVAoJLOfO6I+48fG19cXH330EY4fP44DBw4gNTUVRUVFaG5uhqenJwIDAzFq1ChMmzYNU6dONXs5bmxsLMLDw/HJJ58gPz8fTU1N8PHxkVwu3TbP4qBBgyTnmUajMQkkBgQEYOjQobLHYTB8+HC88cYbOHXqFE6cOIHCwkIolUpERETgV7/6FR544AE4OTmZ5M4eMGAAQkNDJc/ZsGHDzH63MHxP9ff3R2xsLO6++258/vnnOHToEPLy8lBbWwudToeQkBDExsZixowZuP322+Ht7Y2CggKTFA/Gx6BQKLBgwQL4+fnh22+/RVpaGqqrq+Ht7Y3Ro0djzpw5mDt3Lqqrq00uZR8yZIjYp/vuuw+bN29GTk4OKisrodPp4OXlhaFDhyI2Nhb33HOPmPfXx8cHdXV1uHbtGvR6PUaPHo2ysjKxfh8fH7z88su4fPkyjhw5gtTUVFRWVsLd3R1Dhw7FbbfdhnvuuUfyv5lx4N7Pzw+DBw9GSEgIBgwYgEOHDiE1NRWlpaVQq9Xw9PQUt5k4cSImTJiAgIAA3HzzzThy5Aj0ej1OnDiBOXPmSI53+vTpcHV1xaFDh1BcXGxyrpmbI2HIkCHIy8sTR+nGxsZi27ZtOHLkCE6fPo1Lly6Jo4hDQkIQERGBadOmieeop6enyQ9s3Rk8vfvuuzF16lTxuSkqKkJDQwNcXFzQv39/xMTEYPr06T0+XYOc4OBgrF27FgkJCTh79ixycnJQU1MDtVoNX19fDBs2DJMmTcJNN91k8TlYsGABxowZg//85z+S14SHhwdCQ0MxbNgw3HLLLRg+fLjJayI/P98kgPz4448jNDQUp0+fRkVFBfR6Pby9vVFbW2vxM9Wc2bNnY9q0afjxxx+RmpqKwsJC1NfXw9nZGYGBgRg+fDhuvvnmLvk8tqQ7zrXBgwdj48aNOHXqFM6fP48rV66gtrZWfJ5CQ0MxduxY3HLLLZLYEFmvS969jH95s/YNMzg4WHwxdnTED3UNtVqNF154ARUVFVCpVJI3xIaGBuj1esk/Pfv378dLL70k/vrq5eWFuro6yaU81v4wQERERETU20yePNnmCf6MUwcAwqhW41nU27rlllskg2gaGxuRkZFhU5vz5s3DvHnzAMj/GDFo0CCHTBwpx8fHB0888QReeukl2fWWJmP65JNPJPfbTrRojpOTE+68806Tx7UjV80NGjQIjz/+uOS+LYH+uLg4PPnkk5Iyf39/DB8+HIBwbOfPn4ezs7OYU9N4fVsKhQK/+tWvcP/996O1tVV2RJ0138uCgoLw4IMPivcjIyPh6+uL8+fPmzze77//PjIzMy1eJTZt2jTcfvvtiIuLkz3XTpw4YdVEqK6urpg1a5ZkcjtD2klrriAbNWoUdu7c2e52Bn/961+t3tYafn5+mD9/PubPn293HY7s05NPPmly/nWkvfj4eMTHx3eoT8OHDzd7fhszfk1Y2ua+++7Dfffd16E+GfPz88M999yDe+65x679rXnMDYKDg206X4119Fyz53FzcXHBbbfd1u25sW9UHZqMrbMZfrFrbyZF6n5NTU149tlnJTOzhoaGire1Wq04YQEAJCQkYNWqVVCr1Zg9ezZ+/PFHJCQk4MyZM5J/qKz9Z4yIiIiIiIjMy83NxXfffYeEhATJdzNzjIP3AwYM6MyuERGRg/ToZC6G0b+GBPXUM2VnZ+P55583yYvXNhdzQUGBmHfqlVdegU6nw5w5c/D222+Lv4z7+/tLctzKzZJKREREREREtqmurhbTcY0bNw4TJ040u21paSkOHTok3pfL805ERD2PQ0b01tfX49SpU5I8TXTja25uxurVqzF//nxcuHABQUFBmD59urhepVJJLvHJzMwEAKSkpCA7OxseHh546aWXTC5/Ms5FePvtt3fqMRAREREREfUFI0eOFCeKTkpKkp0YDhCCvC+++KKYYi82NhZhYWFd1k8iIrKfQ0b0VlZW4pFHHgEgXNIxatQojBo1CjExMYiNjTWZPZRuDOXl5di1axcAYObMmVizZg0+++wzHD16VNxm8uTJ+P777wEAp06dwgMPPCDO5Dht2jSTWb2zsrJQXl4u3n/sscc6+zCIiIiIiIhueN7e3pgzZw6+/vpr6PV6vPLKK/jiiy8wduxYaLVaNDQ0oLCwECkpKdDpdACESfOeeOKJbu45ERFZy2GpGwy5VAsLC1FUVCQG8wBhZkvDNq2trSgtLRXLqPdSKBSYOnUqlixZYvaynxkzZoiB3qNHj6KkpEQcsWu4/OfgwYPYt28f8vPzUVlZKe4bERGBqKioTj4KIiIiIiKivmHhwoXQarX47rvvoNPpkJWVJbmi0ti4ceOwYcMGyUAcIiLq2ToU6J0wYYLFWTMNwd+SkhLx8vzi4mLcdtttCAgIwMiRIzFy5EhER0cjJiYG4eHhds9iSl1PpVJhx44dFreZMWMGQkJCUFpaitbWVqxatQpXrlwBAPj6+mLJkiU4fPiw7L4xMTEO7zMREREREVFfpVQq8eCDD+K2225DSkoKUlJScOnSJTQ0NMDT0xP+/v4YNmwY5syZg3nz5kGtVjPQS0TUi3Qo0GtI5H7x4kVkZGQgLS0NGRkZyMzMRG1trdn99Ho9Kisrcfr0aZw+fVosd3Nzw4gRIxAdHY3o6GhOwtbJqqqqLD5PbTk7O0OlUtnUhqurK5577jmsWrUKgJC+wTDJ3ocffoiysjLcd999CAsLwwcffICmpiZx32+++Qb3338/pkyZYlObRERERETUO+3btw+5ubnd3Y0OUalUyM7OFu/X1dV1Y2/kqVQq3HbbbfD390draytSUlIk64ODg6FUOmRKHyIi6kIOSd0wbNgw8Vc/g4KCAjHwm56ejvT0dNTU1Mjubxj529zcjLS0NKSlpTmiW9SO7du3Y9u2bVZvr1KpcOTIEZvbmT9/PhITE8V8vhqNBgBQVlaGkJAQHD16VJKywd/fH/369UNeXh7eeOMN7N271+Y2iYiIiIiIiIiI+hKH5ehtKywsDGFhYbj77rvFsmvXrklG/mZkZKCioqKzukA9yNq1axEQEIDt27eLs7cCwoyuxiIiIrBp0yZcvHgRS5cuRXp6OgoKCjjLKxERERERERERkQWdFuiVo1KpoFKpcNddd4llJSUlJiN/y8rKurJbfdby5cuxfPnyLmlLoVBg2bJlmDdvHubPn4+WlhYolUo4OTnBz88P0dHRmDVrFubNmwdXV1f069dP3DcnJ4eBXiIiIiIiIiIiIgu6NNArJzQ0FKGhobjzzjvFsrKyMsnI3/T09G7sITlSREQEwsLCkJubi4kTJ+Ljjz+W3c7X11e83dzc3FXdIyIiIiIiIiIi6pW6PdArJzg4GLfddhtuu+227u4KdYLIyEjk5uaiuLjY7DbG+ZyDgoK6oltERERERERERES9FqfRpC43efJkAMDly5eRn58vu8358+cBAC4uLoiKiuqyvhERERH1JoZJjYmIiIjIlOF/pb7yPxMDvdTl7r77bnh4eAAA/v73v5us12q12LZtGwDglltugb+/f1d2j4iIiKjHUyqFf+N1Ol0394SIiIio59LpdNDr9X0mLSgDvdTl/Pz88OyzzwIADh06hBdeeAElJSUAhMn5li5dipSUFLi6unbZZHFEREREvYlCoYBGo0FLS0t3d4WIiIiox2ppaUF1dXWfGdHbI3P00o3v4YcfRllZGf71r39h//792L9/P3x8fFBfXw+9Xg83Nzds3LgRERER3d1VIiIioh6prq4OjY2N0Gq1cHJy6u7uEBEREfUoWq0WDQ0NSEhI6O6udBmO6KVus2LFCuzcuRMzZ85EcHAwmpubMXDgQCxYsABfffUV7r777u7uIhEREVGPVVNTA71ej9ra2u7uChEREVGPY/gf6ezZs93ck67DEb3dZNOmTdiyZQtUKhWOHDli8/55eXn44osvcObMGVy9ehUajQYhISGIjIzE3Llzcdddd8HZueuf3qVLl2Lp0qVWbz9hwgRMmDChE3tEREREdGNqaGhAU1MTlEol3Nzc4OnpibKyMuj1enh6enbZKF+5PMFarRZarbZXttcZ9TuyzraXnur1epvqkdtWp9PZfXzWtC+33tx+co+Vpf7Zsr3cZbu29sOYVqu16rm1po+2Hnfbvrd3bJbqt3ROWFpn62Ov1Wplz19rz2m9Xm/V82LYVo65x8na/Ymo92hsbERpaSlKS0uRlZXV3d3pMgz0doOUlBRxsjF7bN68GVu3boVGo5GUFxQUoKCgAIcPH0ZsbCzefPNNhIeHd7S7RERERNRDbdiwAS+++CIAICQkBG5ubigqKurSPrS2tpqUXbx4EQqFolPaU6vVJmVXrlwRJ6jrjPoLCgo6VL/cY3T58mW76mwb1GpubkZOTo7d+wNAZWUl6urqbO4LIPzg0F77ckGzmpoa2f3kAnwlJSWoqKiQrVtu+7KyMlRXV1vsk4G5/ps7z4zPa6VSadX5L9fH8vJy1NTUiPfbfrcDgMLCQnEuE1v6LrfeUv1yz09tbS1ycnJkz5eamho0NTXJPkZXr16V/ZHJ0Je2ecXlAsZarVb2uBoaGmTzkhcWFpqUNTY2mpQBkL0CQm6Cps76oYqIOp9Wq0Vtba0Y5N2wYUOf+vGGgd4uVlBQgCVLlsh+KFpj3bp1+OSTT8T7zs7OiIqKgoeHB/Ly8lBVVQUASEtLw+LFi/Hll19CpVI5pO9ERERE1LOUl5dj/fr1WLVqFXQ6HXx9feHr69ulfaivrzcJEqpUqk67uqyhoUESIAOAAQMGwNXVtcfW39DQYBJgGjhwoF2B3oqKCklgzM3NDf3797d6f41Gg/LyckmZn58f/P39rdq/7b4eHh5wd3e3uI9OpzPZz9vbG25ubibbtrS0mGzbr18/eHt7y9atVqtNtg8ICICLi4vV/Q8JCTHZrrGx0SRY3L9/f0kA18XFxarz35o+NjU1obKyUrJNSEgIPDw8rOq7Xq83We/p6Yng4GAAQjCzbbA8ODgYnp6eZp+ffv36ya7z8fFBYGAgmpubzfa5rKzMpK/u7u6oqqqSBMednJzg5ORkUubp6Sl7vJ6enrLHUV5eLgnkGM5J4yCuQqGAp6cnGhoaJPu7ubmZBJCdnJwY7CXqRQwj/ltaWtDY2Ai9Xi8Gedu+l9zoGOjtQjk5OXj00UdNPvSsdfDgQUmQd+bMmVi9ejWCgoIACP9A7N27F6+//jqamppQXl6OpUuX4quvvuq0ERVERERE1L3Ky8uxYsUKjBw5Elu3boWzs7Ps6L3OUl9fb/L/7YABAzqtvcbGRpP2goODHRbo7Yz6GxoaTOoMDQ01G4y0pKKiQvL8ent72xzobdsXFxcXqwO9bff19/eXDZQa0+v1Jvvp9Xr069fPZNvW1laTbb28vCwGettu7+7ubvYHD2v7L3ce9OvXTxKcNwR62zv/5R5zNzc3SR+bm5tl+2Yc6G2v723XBwQESAK9bdf7+fmJgV6576iGQG/bdQqFAoGBgWhqapJt08PDwyTw6ufnh5CQEFRXV0sCrS4uLnB1dTUpGzRokOzxKpVK2eMoLy+X/ADi5+cHAJIfbZRKJQICAkwCxT4+PibBehcXF7sHZxFR99Dr9aiurkZCQgLOnj2LrKysPjWS14CB3i6yf/9+rFmzBk1NTXbtr1arsXHjRvH+9OnT8e6775r8o7Fo0SKoVCo88cQT0Gg0SE9PxzfffIO5c+d2+Bj6Enu/HLX91Ze/AhMR9U5yl6pqNBrJ58ON8J4v93mn0+m6NEjYG+j1+h75mBifc3q9HpmZmWhoaMCwYcPM5rLsDO+//z62b98uKUtLS8PAgQM7pb3du3dL/i8GgGPHjjksZdmePXuwYcMGSdnRo0c7VP+nn36Kd999V1J2+vRpu+qcOXOmJFA1adIkHDx40Or9U1NT8eSTT0rKVq5ciZUrV1q1/8SJEyVfnGfNmoXPPvvM4j6VlZUmbf7ud7/D5s2bTbb99ttvTbbdvHkzJk2aJFv3yZMnTbZft24dlixZYrKtXq83mR9kzpw5ksE0Bvv27cO6deskZd9//70k8Dp06FB88MEH+Ne//iXZru35f/r0aZM+vvrqq/if//kf8f7x48exbNkyyTZffPEFxo0bJ95v2/fZs2fj008/BSC8d0+cOFGy/te//jU+/vhjAMLj9Oc//1my/rPPPkN8fDyKi4tN+vfHP/4Rb7/9Nq5evWqy7rHHHsPGjRtx5MgRvPDCC5J1e/fuxdixYzFlyhTJ++Zdd92FXbt24fHHH0dCQoJYHhoaigEDBiApKUksGzBgANLT02XPtbvvvlv2OJYuXSoZlXvHHXcAgGQ+HDc3N9x7773YtWuXZP+pU6fi1KlT4n2FQoGQkBCLaTOIqGfR6/Vobm7uk4Hdthjo7WQlJSV45513sG/fvg7V88MPP4i5h5ydnbF69Wqzl3rdfPPNWLRoEXbu3AkA2LFjBwO9NtDpdEhOTnZIXWlpaQ6ph4iIupZcvr/c3Fx4eXmZ3ac3vudfuHDBpKyoqMhhn4O9VdsvCXV1dT3yMbl27ZpJWX5+fpf3tbi42CQfZlZWlskl3Y5y9epVk/ZycnIcdgXbtWvXTOq/cOFChya3KywslO2zPSMG6+rqJHVVVlba9P6Tk5Nj0perV69aXYfhkliDsrKydvetrq42abOkpER2v/z8fJNtL1++bLaN3Nxck+0LCgpkt9fr9Sbbmuu/3HmWl5eH2NhY8X5mZiaKiopMtsvMzJSc/3l5ee328cqVKybb5OfnS7ax1HedTmdx/eXLl83WX15ebrKuuLgYaWlpsq9vwzq5Pufm5iIoKAgNDQ2SH6PKy8uRlpaGqqoqyT61tbXw8PAwKUtLS5M918wdR0NDgyT9g+HHEONtNRoNSktLTfavrKyUlCkUCtTW1prN80tE1JM5ZsYCkvX+++9j1qxZkiBveHi4yS+i1vj222/F21OnTm13hMSiRYvE2+np6SgoKLC5TSIiIiIiIiIiIuodGOjtRNu3b5f8Crhw4ULs3r0bQ4YMsakevV6PM2fOiPenTZvW7j5RUVFiPiZAeskKERERERERERER3ViYuqELxMbGYuXKlWbzSrXn2rVrkll6jS8XsiQqKkpMVJ+ammpX232RUqnE6NGj7dpXq9VKLq+KjY3t0GV+RETUPeSunBk+fDji4uLE+zfCe37bWcYBITei8XH2RW1TAPj4+PTIx8Q4p6RBeHh4l/dVbkKtmJgYqFSqTmlPbuKxyMhIhx23XP0jRozoUP1yk31FRUUhOjra5rqcnaVf4by8vGzqm1z+wv79+9t9fH5+fu3u23byKwAIDAyU3e/y5csmZWFhYWbbMJ5sy2DgwIGy28sdu7n+y00oGBERIbkfGxsrToxtLCYmBoMGDRLvt53oS66P586dM9lm2LBhFh9b477L5eQ2Xn/+/Hmz9RcVFZms69evH+Li4hAQEGCyLigoCHFxcTh58qTJuoiICMTFxZm8j/r6+iIuLg6enp6SchcXF0neY0OZ3HH7+fkhLCxM9jjk3rfbUigUsscjl5bJnokSiYh6AgZ6O9GkSZOwYMEC3HnnnR3KGXbp0iXJ/cGDB1u1n/E/F1euXLG7/b6o7T/Q9nJycnJYXURE1HXk8uA7OztbfE/vje/5cv1VKpW97jg6m0Kh6JGPidwPC91xHtrzeunJ7XVG/Z3ZZ1vPT0e/7q1p35Y2bT2vbdleLtBrrv9yz1nbMicnJ6ueW2uO357Xs3Hf5QK9xust1W+pf5bW2dJnQ1/kvhfLlZmrw1yb1tRp6Lu12xIR9UY97z/WG8iWLVscUo9hVC4gfDDJ/Wosxzh1g3EdREREREREREREdGNhjt5ewPhyJC8vL9lfIeV4e3vL1kFEREREREREREQ3lj4/oveOO+7AtWvXOlTHsGHDcPDgQQf1yJRx/jx3d3er93N1dRVvt7a2OrRPRERERERERERE1HNwRG8voFarxdvWjuYFpHmNNBqNQ/tEREREREREREREPQcDvb2AcXJ5uST75hgHdzlrKBERERERERER0Y2rz6du2LVrF7RabYfq6OyZjT08PMTbxmkc2mOcrsHNzc2hfSIiIiIiIiIiIqKeo88HeoODg7u7C+3y8/MTbzc0NECv10OhULS7X319vXjb39+/M7pGREREREREREREPQBTN/QCoaGh4m2tVouqqiqr9isrKxNvBwUFObxfRERERERERERE1DMw0NsLDBkyRHK/oKDAqv2uXr0q3h42bJhD+0REREREREREREQ9BwO9vYBKpZKkXsjMzLRqv6ysLPH2yJEjHd0tIiIiIiIiIiIi6iEY6O0lJk+eLN4+depUu9tnZWWhvLxcvD9lypRO6RcRERERERERERF1PwZ6e4kZM2aIt48ePYqSkhKL23/++efi7YiICERFRXVa34iIiIiIiIiIiKh7MdDbS8yYMQMhISEAgNbWVqxatQoajUZ22+PHj2P37t3i/cWLF3dJH4mIiIiIiIiIiKh7MNDbS7i6uuK5554T7586dQqPPfaYZGI2jUaDL7/8EkuXLoVWqwUAREZGYuHChV3eXyIiIiIiIiIiIuo6zt3dAbLe/PnzkZiYiF27dgEQgr0zZsxAVFQUvL29kZeXh8rKSnF7f39/bNq0Cc7OfJqJiIiIiIiIiIhuZIwA9jJr165FQEAAtm/fDrVaDZ1Oh8zMTJPtIiIisGnTJoSHh3dDL4mIiIiIiIiIiKgrMdDbyygUCixbtgzz5s3Dnj17cOLECRQXF6OpqQl+fn6Ijo7GrFmzMG/ePLi6unZ3d4mIiIiIiIiIiKgLMNDbDRYsWIAFCxZ0qI6IiAisXLkSK1eudFCviIiIiIiIiIiIqLdioJfIkWpq4J2QAOh0aIqK6u7eEBERERERERFRH8FAL5GjFBTA6Y47EJWbKxbpw8OB+HjpEhzcjZ0kIiIiIiIiIqIbEQO9RI7y6adQGAV5AUCRnw/k5wN79lwvDAszDf4OGAAoFF3cYSIiIiIiIiIiulEw0EsOVVVVhTlz5sDd3R1Hjhyxef+dO3fi1VdfhUqlsmv/bqXRWLddQYGw7N9/vSw0VBr4HT8eGDyYwV8iIiIiIiIiIrIKA73kMGq1Gi+88AIqKiqgUqls3j8vLw9vvPFGJ/SsizzxBPQ7d0KRnW37viUlwHffCYtBYKDpyN+ICECpdFyfiYiIiIiIiIjohsBALzlEU1MTli9fjp9++smu/VtbW7F8+XI0Nzc7uGddKCQE2sREXP7nP+GZkQHPrCz4XrgARXm5ffVVVgL/+Y+wGPj4AOPGSUf+RkUBTk6OOQYiIiIiIiIiIuqVGOilDsvOzsbzzz+PCxcu2F3H3//+d2RkZMDd3b13B3tdXFA9fTqqp08HAMSNGQPnkhIgIUFYzp8X/hYW2ld/XR3w00/CYuDhAYwdKx35GxMDuLp2/HiIiIiIiIiIiKhXYKCX7Nbc3Iz169djz5490Gq1CAoKwujRo3H06FGb6jl9+jR27NiBQYMG4a677sKOHTs6qcfdQKEABg0SlnnzrpcXFwOJidcDwAkJwKVL9rXR1AScPi0sBq6uwOjR10f9xscL993dO3Q4RERERERERETUMzHQS3YrLy/Hrl27AAAzZ87EmjVr8Nlnn9kU6K2pqcGqVaugUCiwceNGnDYOVt7I+vcH7r5bWAwqK4Xgr2HUb0ICYO8o6dZWoZ7z54Ft24QyJydg1CjpyN+4OMDbu+PHQ0RERERERERE3YqBXrKbQqHA1KlTsWTJEkycONGuOlavXo3i4mI89thjmDBhQt8J9MoJDATuvFNYDGprgaQk6cjfzExAp7O9fq0WSEkRln//WyhTKICRI6XB37FjAX//jh8PERERERERERF1GQZ6yW4qlapDaRb27t2LgwcPIjo6Gs8884wDe3YD8fUFbr1VWAwaG4HkZGnwNy0N0Ghsr1+vFwLHmZnAzp3XyyMipMHf+HggKKjjx0NERERERERERJ2Cgd4+rKqqCrW1tVZv7+zsDJVK5ZC2CwoKsG7dOri6uuLNN9+EKycOs56nJ3DTTcJi0NIiBHuNg7/JyUK5PfLyhGX37utlgwebBn8HDOjYsRARERERERERkUMw0NuHbd++HdsM+VutoFKpcOTIkQ63q9VqsWLFCjQ0NOAvf/kLRowY0eE6+zw3N2HStfHjr5ep1cJIXePgb1IS0NBgXxtXrgjLvn3Xy/r3lwZ+x48HwsKElBBERERERERERNRlGOilLvf+++8jMTERU6ZMwUMPPdTd3blxubgAY8YIy8MPC2VarTDBmyHwa5j4zYaR3RLFxcC33wqLQb9+piN/w8MBpbLDh0RERERERERERPIY6O3Dli9fjuXLl3dpm0lJSXj//ffh6+uLDRs2QMGRn13LyUmYfG3kSODBB4UynQ64eFE68vf8eaCiwr42KiqAH34QFgNf2UqUkgAAtwJJREFUX2DcOOnI38hIoT9ERERERERERNRhDPRSl9q1axc0Gg2am5tx//33m6xvbGwEABQVFWHatGkAgJdeegmzZ8/u0n72KUqlMPlaRASwcKFQptcDV69KR/0mJABFRfa1UVsLHDsmLAaensDYsdKRvzExwkhkIiIiIiIiIiKyCQO91KX0ej0AoLW1FeXl5Wa30+l04vrm5uYu6RsZUSiEXLthYcA991wvLyoCEhOlo38vX7avjcZG4NQpYTFwcwNGjxZG/BqCv7GxgLt7x46HiIiIiIiIiOgGx0AvdakNGzZgw4YNZtdv3rwZ7733nsMmfiMHGzBAWIxHWFdUCMFf45G/ubn21d/SAvzyi7AYODsDo0ZJR/7GxQFeXh07FiIiIiIiIiKiGwgDvUTUMf36Ab/6lbAY1NQASUnSkb9ZWUI+YFtpNEBysrDs2CGUKZVCnmHj4O/YsYCfnyOOiIiIiIiIiIio12Ggl4gcz88PuO02YTFoaABSUqQjf9PThUCurXQ6ICNDWD799Hr58OHS4G98vBCIJiIiIiIiIiK6wTHQS0Rdw8sLuOkmYTFobgbS0qQjf1NShBQO9sjNFZYvv7xeNmSIafC3f/+OHQsRERERERERUQ/DQC8RdR93d2DCBGExUKuFkbrGwd+kJGHyNntcviws/+//XS8bMMA0+BsWJkxCR0RERERERETUCzHQ2002bdqELVu22D3pWF5eHr744gucOXMGV69ehUajQUhICCIjIzF37lzcddddcHbu+qd36dKlWLp0abftTzcAFxdhsrW4OOCPfxTKtFogJ+d64Pf8eWECuNpa+9ooKgIOHBAWg6Ag0+BveDiDv0RERERERETUKzDQ2w1SUlKwbds2u/ffvHkztm7dCk2b3KYFBQUoKCjA4cOHERsbizfffBPh4eEd7S5R93NyAqKjheV3vxPKdDogP1868vf8eaCy0r42ysuBQ4eExcDPDxg3Tgj6jh8v/B0xQugPEREREREREVEPwkBvFysoKMCSJUugVqvt2n/dunX45JNPxPvOzs6IioqCh4cH8vLyUFVVBQBIS0vD4sWL8eWXX0KlUjmk70Q9ilIpTL42fDjwm98IZXo9UFAgDfyePw+UlNjXRk0N8OOPwmLg5QWMHSsd+RsdLYxEJiIiIiIiIiLqJgz0dqGcnBw8+uijKCsrs2v/gwcPSoK8M2fOxOrVqxEUFAQAUKvV2Lt3L15//XU0NTWhvLwcS5cuxVdffQUFLz+nvkChAAYPFpZ7771eXlQkHfmbkABcuWJfGw0NwMmTwmLg5gaMGXN91G98PBAbK5QTEREREREREXUBBnq7yP79+7FmzRo0NTXZtb9arcbGjRvF+9OnT8e7774LpVIplrm4uGDRokVQqVR44oknoNFokJ6ejm+++QZz587t8DH0JW3TYlhLq9VavE/dJDgYmDlTWAzKy6FISgISEqBITBSWvDz76m9pAc6dE5b/0js7A6NGQT9unLggLg7w9OzYsRBRl9DpdCZlGo1G8vlwI7zny33e6XQ6uz8Hb1R6vb5HPiZy55xWq+3yvlrzeulN7XVG/Z3ZZ1vPT0e/7q1p35Y2bT2vbdler9fLlpnrX3tlWq3WqufWmuO35/Vs3He5fhivt1S/pf5ZWmfrY6/RaMw+B22Zq8Ncm9bUaei7tdsSEfVGDPR2spKSErzzzjvYt29fh+r54YcfUFhYCEBI17B69WpJkNfYzTffjEWLFmHnzp0AgB07djDQawOdTofk5GSH1JWWluaQeqiTtAkAO9XVwSM7G55ZWfD871/3S5egsOOfP4VGAyQnQ5GcDPz73wAAvVKJ5qFD0Thy5PUlMhI6b29HHhUROYDhM9dYbm4uvLy8zO7TG9/zL1y4YFJWVFTksM/B3qrtl/66uroe+Zhcu3bNpCw/P7/L+1pRUWFSlpGRgfLy8k5pr7i42KQsJyfHYVewydV/4cIFOHUgR39paalJWXZ2NlpbW22uq20ArKGhwabnPCcnx6SsuLjY7vOmpqam3X2rq6tNyiorK2X3u3jxoklZQUGB2TZyc3NNygoLC2W3lwvomet/UVGRSVleXh5iY2PF+2lpabLneUZGhuR1kSczmKBtH69evWqyzcWLFy0+tsZ9lwtgGq8vKCgwW7/cMVRUVCA5OVn29VBeXo7k5GTZ96C8vDwEBwebPNa1tbVITk5GY2OjpFytVpsMhlKr1bLHXVNTY/Y45N6329Lr9WKqQ2MNDQ0mZfamWiQi6m4M9Hai999/Hx9++KHkwyw8PBwzZszA1q1bbarr22+/FW9PnToVAwcOtLi9caA3PT0dBQUFCAsLs6lNor5G6+OD+gkTUD9hglimbGyER06OJPjrkZ8PhR0j9xQ6HTzy8+GRn49+Rq/p5sGD0RgVdT34GxUFrb+/Iw6JiIiIiIiIiPoIBno70fbt2yVB3oULF2LVqlU4dOiQTfXo9XqcOXNGvD9t2rR294mKikJwcLCYD/jIkSN46KGHbGqXiACdpycaxo5Fw9ixYpmipQUeublC8Pe/AWCPCxegtPOXf/crV+B+5QoCf/hBLGsZOFAa/B05Epp+/Tp6OERERERERER0g2KgtwvExsZi5cqVmDRpkl37X7t2DbW1tZL6rBEVFSUGelNTU+1quy9SKpUYPXq0XftqtVrJpbuxsbEdusyPerA2r2ddayt0GRnX8/0mJgqpG+zMy+1WWAi3wkIEHD0qlukHDhRy/Rry/sbHAyqVMAkdETmU3JUzw4cPR1xcnHj/RnjPb2lpMSkbMGCA5Dj7orYpAHx8fHrkY3Lq1CmTsvDw8C7vaz+ZHyJjYmKgUqk6pb3+/fublEVGRjrsuOXqHzFiRIfqDwkJMSmLiopCdHS0zXU5O0u/wnl5ednUN7n0Bf3797f7+Pz8/NrdVy69R2BgoOx+ly9fNikLCwsz20ZNTY1J2cCBA2W3lzt2c/0fMGCASVlERITkfmxsrDgxtrGYmBgMGjRIvC+XRqBtH88ZzfVgMGzYMIuPrXHf5VI3GK8/f/682frl0lT069cPcXFxCAgIMFkXFBSEuLg4nDSenPi/IiIiEBcXZ/I+6uvri7i4OHi2ma/CxcUFHh4eJmVyx+3n5yd7leqwYcNk37fbUigUsscjl5bJxcXFpIyIqDdgoLcTTZo0CQsWLMCdd97ZoZxhly5dktwfPHiwVfsZ/3Nx5coVu9vvi9r+A20vJycnh9VFPZyzMzBhgrAYaLVAdjaQkCAs588DiYmAzD/71lAUFkJRWAgcOHC9MDgYiI+XLsOGMfhL1EFyefCdnZ0tvqf3xvd8uf4qlcpedxydTaFQ9MjHRO6Hhe44D+15vfTk9jqj/s7ss63np6Nf99a0b0ubtp7XtmwvF+g113+556xtmZOTk1XPrTXHb8/r2bjvcoFe4/WW6rfUP0vrbOmzoS9y34vlyszVYa5Na+o09N3abYmIeqOe9x/rDWTLli0OqccwKhcQPpjkfjWWExwcLFsHEXURJycgJkZYfv97oUynA/Lyrgd/DUtlpX1tlJUB338vLAb+/sC4cULQd/x44e+IEYCZCRyJiIiIiIiIqPdjoLcXML4cycvLS/ZXSDne3t6ydRBRN1IqhaDriBHAokVCmV4PXLkiHfl7/jwgM0O3VaqrgaNHhcXA2xsYO1Y68jc6WhiJTERERERERES9Xp//hn/HHXfg2rVrHapj2LBhOHjwoIN6ZMo4f567u7vV+7m6uoq3W1tbHdonInIghQIYMkRY5s8XyvR6oKjIdORvQYF9bdTXAydOCIuBuzswZsz1Ub/x8cCoUYCbW8ePiYiIiIiIiIi6VJ8P9PYGarVavG3taF5AmtdIo9E4tE9E1MkUCmDgQGH59a+vl5eVmQZ/8/Pta6O5GTh7VlgMXFyA2FjpyN8xY4A2E2cQERERERERUc/CQG8vYJxcXi7JvjnGwV3OGkp0gwgOBmbOFBaDqiogKUka/M3OFkYF20qtFiaMS0wEtm8XypRKIc2D8cjfsWMBmdmMiYiIiIiIiKh79PlA765du6DVajtUR2fPbOzh4SHeNk7j0B7jdA1uvBSb6MYVEABMny4sBnV1QHKyNPibkQHY836n0wHp6cLy8cdCmUIh5Bk2Hvk7bhwQGOiYYyIiIiIiIiIim/T5QG9wcHB3d6Fdfn5+4u2Ghgbo9XooFIp296uvrxdv+/v7d0bXiKin8vEBbr5ZWAyamoDUVGnwNzUVsCeHt14P5OQIyxdfXC8fNkwa/I2PB0JCOn48RERERERERGRRnw/09gahoaHiba1Wi6qqKgRaMWqurKxMvB0UFNQpfSOiXsTDA5g0SVgMWluFkbrGwd/kZCEobI+LF4Xlq6+ul6lU14O+hvQPAwcKo4KJiIiIiIiIyCEY6O0FhgwZIrlfUFBgVaD36tWr4u1hw4Y5vF9EdANwdRVSLowbBzzyiFCm0Qg5fg2B3/PnhZy9RlcJ2OTaNWH5v/+7XhYSYjryd+hQBn+JiIiIiIiI7MRAby+gUqng7++P6upqAEBmZibi4uLa3S8rK0u8PXLkyM7qHhHdaJydgVGjhGXxYqFMpwNyc6UjfxMShIng7FFaChw8KCwG/v6mI3+HDxcmgyMiIiIiIiIiixjo7SUmT56M77//HgBw6tQpPPDAAxa3z8rKQnl5uXh/ypQpndo/IrrBKZVAZKSwGN5/9Hrg8mVhxK/x6F+jtDE2qa4GjhwRFgNvb2G0sfHI35EjhWA0EREREREREYn4TbmXmDFjhhjoPXr0KEpKSiS5e9v6/PPPxdsRERGIiorq9D4SUR+jUAjpFoYOBe67TyjT64HCQtORv0apZGxSXw8cPy4sBu7uQFzc9VG/8fHC6GNX144eEREREREREVGvxUBvLzFjxgyEhISgtLQUra2tWLVqFbZt2wZnmVFtx48fx+7du8X7iw2XXhMRdTaFQph8TaUC5s69Xl5aahr8vXjRvjaam4EzZ4TFwMUFGD1aOvJ3zBhhAjoiIiIiIiKiPoCB3l7C1dUVzz33HFatWgVASN/w2GOP4dVXX0VYWBgAQKPRYO/evVi/fj20Wi0AIDIyEgsXLuy2fhMRARAmX5s1S1gMqqqESd6Mg785OcKoYFup1dfrMHByAqKjpSN/4+IAH5+OHw8RERERERFRD8NAby8yf/58JCYmYteuXQCEYO+MGTMQFRUFb29v5OXlobKyUtze398fmzZtkh31S0TU7QICgDvuEBaDujogKUka/M3IECaDs5VWC6SlCcv//q9QplAIeYaNR/7GxwsTwRERERERERH1YowA9jJr165FQEAAtm/fDrVaDZ1Oh8zMTJPtIiIisGnTJoSHh3dDL4mI7OTjA9xyi7AYNDYCqanS4G9qqjCK11Z6PZCdLSxGucwRHm4a/A0O7vjxEBEREREREXURBnp7GYVCgWXLlmHevHnYs2cPTpw4geLiYjQ1NcHPzw/R0dGYNWsW5s2bB1dOTERENwJPT2DyZGExaGkB0tOlwd/kZCF/rz3y84Vlz57rZYMGXQ/6GtI/DBggjAomIiIiIiIi6mEY6O0GCxYswIIFCzpUR0REBFauXImVK1c6qFdERL2Im9v1IKyBRgNkZQlB3/Pnhb+JiUBDg31tXL0qLF9/fb0sNNR05O+QIQz+EhERERERUbdjoJeIiG4Mzs5AbKyw/OEPQplOB1y4IB35m5AAVFfb10ZJCfDdd8JiEBBgOvI3IgJQKjt8SERERERERETWYqCXiIhuXEolEBUlLL/9rVCm1wOXLl0f9WsYAVxebl8bVVXA4cPCYuDjA4wbJx35GxUlBKOJiIiIiIiIOgG/cRIRUd+iUADDhgnL/fcLZXo9cO2a6cjfa9fsa6OuDvjpJ2Ex8PAA4uKkI39jYgDmUyciIiIiIiIHYKCXHKqqqgpz5syBu7s7jhw5YnHb+vp67Ny5Ez/88AMuXryIlpYW9OvXD+PHj8dDDz2EuLi4Luo1EfV5CoUw+dqgQcC8edfLS0pMg7+XLtnXRlMT8PPPwmLg6gqMHi0d+Tt6tBAUJiIiIiIiIrIBA73kMGq1Gi+88AIqKiqgUqksbnv58mX86U9/wtWrVwEArq6ucHFxQXFxMQ4cOIDvvvsOK1aswJ/+9Keu6DoRkbzQUODuu4XFoLJSmOTNOPibk2Nf/a2tQtqI8+evlzk5AaNGSYO/cXGAt3fHjoWIiIiIiIhuaAz0kkM0NTVh+fLl+Mn4MmUzNBoNlixZgqtXryI0NBSvvfYabr75ZiiVSly6dAkbN27E0aNHsXHjRoSHh+P222/v/AMgIrJWYCBw553CYlBbCyQlSYO/mZnCZHC20mqBlBRh+fe/hTKFQsjxaxz8HTcO8Pd3wAERERERERHRjYCBXuqw7OxsPP/887hw4YJV2x86dAi5ublQKBTYtGkTxo0bJ64bNmwY/vnPf+J3v/sdEhMT8d577zHQS0Q9n68vcOutwmLQ2CgEaw2TvSUkAGlpgEZje/16PZCVJSyffXa9PCJCGvyNjweCgjp+PERERERERNTrMNBLdmtubsb69euxZ88eaLVaBAUFYfTo0Th69KjF/Y4dOwYAiI+PlwR5DZycnHD//fcjMTERaWlpaGpqggfzVRJRb+PpCUyZIiwGLS1CsNd45G9yslBuj7w8Ydm9+3pZWJg08Dt+PDBgQMeOhYiIiIiIiHo8BnrJbuXl5di1axcAYObMmVizZg0+++yzdgO9MTExaGpqQmxsrNltgoODAQB6vR719fUM9BLRjcHNTQi8jh9/vUytFkbqGo/8TUoCGhrsa6OgQFj2779e1r+/6cjfwYOFlBBERERERER0Q2Cgl+ymUCgwdepULFmyBBMnTrR6v4ceeggPPfSQxW3O/3diIjc3NwQEBHSon0REPZqLCzB6tLAY3hu1WuDCBenI34QEoKbGvjaKi4FvvxUWg8BA6ajf+HggPBxQKjt+TERERERERNTlGOglu6lUKuzYscPh9VZWVoojhW+55RY4O/M0JaI+xskJGDlSWB58UCjT64GLF6UjfxMSgPJy+9qorAT+8x9hMfD1FSZ5Mx75GxUl9IeIiIiIiIh6NEbQ+rCqqirU1tZavb2zszNUKlUn9gjQaDRYsWIFqquroVQq8dRTT3Vqe0REvYZCIYy4DQ8H7r9fKNPrgatXTUf+Fhba10ZtLXDsmLAYeHoCcXHXR/3GxwMxMcJIZCIiIiIiIuoxGOjtw7Zv345t27ZZvb1KpcKRI0c6rT9arRYrV67EiRMnAABPP/20xTy+RER9nkIhTL4WFgbcc8/18uJi0+Dv5cv2tdHYCJw+LSwGrq7AmDHSkb+jRwPu7h07HiIiIiIiIrIbA73UI7S0tOC5557Df/57CfG8efPw9NNPd3OviIh6qf79gdmzhcWgogJITLwe+D1/HsjNta/+1lbgl1+ExcDZGRg1Shr8jYsDvLw6dixERERERERkFQZ6+7Dly5dj+fLl3d0NVFZWYsmSJUhMTAQA3HPPPXj99deh4GzwRESO068f8KtfCYtBTQ2QlCQd+ZuVBeh0ttev0QDJycJiyN+uUAh5ho2Dv+PGAX5+DjkkIiIiIiIiuo6BXupWly5dwmOPPYYrV64AAP7whz/gxRdfZJCXiKgr+PkBt90mLAYNDUBKinTkb3q6EMi1lV4PZGYKy86d18uHDzcN/gYFdfx4iIiIiIiI+jAGeqnbpKWl4dFHH0VVVRUUCgVWrFiBRx55pLu7RUTUt3l5ATfdJCwGzc1AWpp05G9KCtDSYl8bubnC8uWX18sGD5YGf8ePF1JQEBERERERkVUY6KVuceHCBTzyyCOorq6Gi4sLNmzYgF//+tfd3S0iIpLj7g5MmCAsBmq1MFLXMOo3IUFIA9HYaF8bV64Iy75918sGDJAGf+PjhYnneNUHERERERGRCQZ6qcs1Njbif/7nf1BdXQ1XV1f885//xK233trd3SIiIlu4uABjxgjLww8LZVotkJMjHfmbkADU1trXRlERcOCAsBj06ycd9RsfD4SHM/hLRERERER9HgO91OW2bt2KS5cuAQBefPFFBnmJiG4UTk5AdLSw/O53QplOB1y8eH3Ur2GpqLCvjYoK4IcfhMXAz0/I82s88jcyUugPERERERFRH8FAL3Wp1tZWfPbZZ+L99957D++9957Fffbs2YMBAwZ0dteIiKgzKJVARISw/OY3QpleDxQUSAO/588DxcX2tVFTA/z4o7AYeHkBY8dKg7/R0cJIZCIiIiIiohsQA73UpXJyclBXVyfeLy8vb3cfrVbbmV0iIqKuplAIk68NHgzce+/18qIi07QPV67Y10ZDA3DypLAYuLkJqSaMg7+xsUIOYiIiIiIiol6Ogd5usmnTJmzZsgUqlQpHjhyxef+8vDx88cUXOHPmDK5evQqNRoOQkBBERkZi7ty5uOuuu+Ds3PVP79KlS7F06VKz62NjY5Gdnd2FPSIiol5jwABgzhxhMSgvBxITpSN/8/Lsq7+lBTh3TlgMnJ2FYK9x8HfMmI4dBxERERERUTdgoLcbpKSkYNu2bXbvv3nzZmzduhUajUZSXlBQgIKCAhw+fBixsbF48803ER4e3tHuEhERdZ+gIOCuu4TFoLoaSEqSjvzNyhJSQthKoxHqSkoCPvpIKFMqhXaJiIiIiIh6EQZ6u1hBQQGWLFkCtVpt1/7r1q3DJ598It53dnZGVFQUPDw8kJeXh6qqKgBAWloaFi9ejC+//BIqlcohfSciIuoR/P2B228XFoP6eiAlRTryNz0dsCf9j04HlJaali9aBEybdn3k7+jRdh4AERERERGR4zHQ24VycnLw6KOPoqyszK79Dx48KAnyzpw5E6tXr0bQf0cdqdVq7N27F6+//jqamppQXl6OpUuX4quvvoJCoXDIMRAREfVI3t7A1KnCYtDcDKSmSkf+pqQAra32tXH1KrBrl7BA+CcqdsAANI4cicaoKChmzwYmTQJCQzt+PERERERERDZioLeL7N+/H2vWrEFTU5Nd+6vVamzcuFG8P336dLz77rtQKpVimYuLCxYtWgSVSoUnnngCGo0G6enp+OabbzB37twOH0Nf0jYthrXaThzHieSIiLqRszMwbpywPPKIUKZWAxkZUCQmQpGQAEViIpCcDIWdn89uRUVwKypCwNGjwNatAAD9wIHQ/7dd/X8XDBokTELXw8h93ul0Ors/B29Uer2+Rz4mcv9naLXaLu+rTqczKdNoNJ3Wj85urzPq78w+23p+Ovp1b037trRp63lty/Z6mRQ/5vov95y1LdNqtVY9t9Ycvz2vZ+O+y/XDeL2l+i31z9I6Wx97jUZj9jloy1wd5tq0pk5D363dloioN2Kgt5OVlJTgnXfewb59+zpUzw8//IDCwkIAQrqG1atXS4K8xm6++WYsWrQIO3fuBADs2LGDgV4b6HQ6JCcnO6SutLQ0h9RDREQOZggAA4BWC/fLl+GZlSUuutRUIShsB0VhIRSFhcCBA2KZ2t9fGPkbHY3GqCg0jhyJVpWq24O/Fy5cMCkrKipy2Odgb9X2S39dXV2PfEyuXbtmUpafn9/lfa2oqDApy8jIQHl5eae0V1xcbFKWk5PjsCvY5Oq/cOECnJyc7K6zVCYdTHZ2NlrtuMKgbQCsoaHBpuc8JyfHpKy4uNju86ampqbdfaurq03KKisrZfe7ePGiSVlBQYHZNnJzc03KCgsLZbeXC+iZ6///Z+/O46Oqzj+OfycbZIGwJBAIWxJIWAJhExBxATHgBgVL0VrEDVEUt6LwU4tarUutC4qAUkpbpYggglVEUVChKCpLIEBYwhaQLRD2QJLJ/P64ZshkZpLJZJZM8nm/XvfFveeee84zYTJJnjnz3IMHD9q1ZWdnKzU11XqcmZnp8Hm+ZcsWm++LbAc3ES0b4/79++367N69u9yvbenYHSUwS5/PyclxOr6jx3Ds2DFlZGQ4/H7Izc1VRkaGw9eg7OxsxcbG2n2tT506pYyMDJ07d86mvbCw0G4xVGFhocPHffLkSaePw9HrdlkWi8Va6rC0s2fP2rW5W2oRAPyNRK8XTZ8+Xe+++67ND7PExESlp6drxq+rfly1ZMkS637fvn3VvHnzcvuXTvRu3rxZOTk5atmyZaXmBACgVggO1vnERJ1PTNTx666TJP3yz39KU6fadCuKjJQc/DHoitATJxT9ww+K/uGHi+NFRRnJ31LbhZYtpSokkwAAAADUXiR6vWjWrFk2Sd4RI0Zo0qRJ+vLLLys1jsVi0Zo1a6zHl112WYXXpKSkKDY21loPePny5Ro9enSl5gUAoNZysDJw55Qpati0qc3K34isLIU6WM3oipAzZ1T/559V/+efrW3m8HDrit+S7XybNkYZCgAAAAAoB381+EBqaqomTpyoXr16uXX9gQMHdOrUKZvxXJGSkmJN9G7atMmtuWujoKAgdXbzTupms9mmXENqamqVPuYHAPAPR5+caduunTr07SsNHizJeM3fmJmp0KNHFZGVpTbHjysoI8Oo/+vgo6WuCM7PV70NG1RvwwZrm6VuXalzZ2u9X0u3blJqqlSnjltzlHbhwgW7tmbNmiktLa3KYweysiUA6tWrVy2/JqtXr7ZrS0xM9HmsjRs3tmvr2LGj4uPjvTJfXFycXVtycrLHHrej8du1a1el8Zs0aWLXlpKSog4dOlR6rJAyb/xERkZWKjZH5Qvi4uLcfnzR0dEVXuuovEejRo0cXrd37167tpYtWzqd4+TJk3ZtzZs3d9jf0WN3Fn+zZs3s2pKSkmyOU1NTrTfGLq1jx45q0aKF9dhRGYGyMf700092fRISEsr92paO3VHphtLn165d63R8R2UqGjdurLS0NDVs2NDuXExMjNLS0vS///3P7lxSUpLS0tLsXkfr16+vtLQ0RURE2LSHhoYqPDzcrs3R446Ojnb4KdWEhASHr9tlmUwmh48nMjLSri00NNSuDQACAYleL+rVq5eGDx+uq6++uko1w/bs2WNz3KpVK5euK/3Lxb59+9yevzYq+wu0u4KDgz02FgDAdxzVwQ8JCXH4ml4YG6uTsbFSWpqCSs4fPSqtXy+tW2dsa9dKu3a5FYvp/Hnpp59kKp0ECA01kr3du1/cunSRyvwBXRFHjycoKIifXWWYTKZq+TVx9GayP373qMz3SyDM543xvRlzZZ+fnv6+d2X+ysxZ2ed1Zfo7SvQ6i9/R/1nZtuDgYJf+b115/O58P5eO3VGit/T58sYvL77yzlUm5pJYHP1d7KjN2RjO5nRlzJLYXe0LAIGo+v3GWoNMmzbNI+OUrMqVjB9Mjt41diQ2NtbhGAAAwMtiY6X0dGMrkZcnbdhwMfm7bp20bZvkzt2+CwuNRPL69dKsWUZbUJDUoYNt8rdrV6l+fU88IgAAAADVHIneAFD640iRkZEO34V0JCoqyuEYAADADxo2lPr3N7YSZ85IGRm2K3+3bJHM5sqPX1wsbd5sbO+9d7E9Odk2+dutm9SoUdUfDwAAAIBqpdYnegcMGKADBw5UaYyEhAQtXbrUQxHZK10/r27dui5fFxYWZt0vKCjwaEwAAMADoqKkyy4zthL5+dKmTbYrfzdtktz9Wb59u7F98MHFtjZtjKSvg7qhAAAAAAJTrU/0BoLCwkLrvqureSXbukZFRUUejQkAAHhJeLjUq5exlSgoMFb6rl17MfmbkWEkhd2xZ4+xOfL11xfr/8bHS9QuBAAAgB89+uijOnjwoObOnevvUKo9Er0BoHRxeUdF9p0pndzlrqEAAASwsDCj3m7XrtJddxltRUVGjd/SK3/Xr5cc3N29UpYvNzbJqDXcvbvUo8fF0g9t2pD8BQAAgNcVFBSouLhYderU0a233urvcAJCrU/0zps3T2Z36uCV4u07G4eHh1v3S5dxqEjpcg116tTxaEwAAMDPQkKkTp2MbdQoo624WNq50zb5u26dcSM4dxw9Kn3xhbGVaNDAtuZv9+5Su3bGzeAAAAAAD/j973/PokU31PpEb2xsrL9DqFB0dLR1/+zZs7JYLDK5sJLmzJkz1v0GDRp4IzQAAFCdBAUZN19LTpZuvtlos1ikvXttE79r10pHjrg3x4kTtqt+JaPWcNeutit/27c3ktEAAABAJVXmHlW4iN++A0DTpk2t+2azWXl5eWrkwt2yjx49at2PiYnxSmwAAKCaM5mMcgtt2kjDhxttFov0yy/GDdomTKj6HGfOSKtWGVuJunWltDTblb+dOkl8yggAAAC/at68udLT0/XPf/7Tpj05Odkj469atUrvvvuu/v3vf3tkvOqORG8AaN26tc1xTk6OS4ne/fv3W/cTEhI8HhcAAAhQJpNxo7XLL7c/d/vtxorgktW/u3a5N8f589KaNcZWIjRU6tzZNvnbpYtxAzoAAADUKpMmTdKYMWOUl5enf/3rX7JYLJKMEqkjRoyw6dulSxf95z//qdT4TZo00WWXXabu3burRYsW+vnnn3X55ZfrjTfe0LFjxzz2OKoTEr0BID4+Xg0aNNCJEyckSVu3blVaWlqF12VlZVn327dv763wAABATdKunfR//3fxOC/PuMlb6dIP27cbq4Irq7Dw4hglgoOlDh1sk79du0r16lX5oQAAAKD6evHFF637c+fO1VtvvaWQkBA99thjSkxMtOk7YsQIPf3005W6d1VERIQk495Xf/nLX6ztU6dOden64OBgl+eqLkj0BojevXvri19vhLJ69WrdXFJ3z4msrCzl5uZaj/v06ePV+AAAQA3VsKE0YICxlTh9WsrIMGr9liRut2wxbgZXWWazlJlpbCUfqTOZjFXFpZO/3boZsQAAAKDGGTlypEaOHOn0fGJiopYsWaLXX39dn376qUtjVrWMaZ0ALDlGojdApKenWxO9K1as0OHDh21q95Y1d+5c635SUpJSUlK8HiMAAKgl6tWT+vUzthLnzkmbNtmu/N20yVjFW1kWi7Rtm7GV+p1GCQkXE789ehjJ3yZNqv54AAAAUO0NGDBAAwYM0Pnz5zVmzBi9//77bo1z22236ZVXXvFwdNVDkL8DgGvS09PV5Nc/ZAoKCjRp0iQVFRU57Lty5UrNnz/fejxq1CifxAgAAGqxiAipd2/pvvukmTON1b5nzhgJ35kzjfbevY2btLlr927po4+kJ5+UBg+WmjaVWraUhg6Vnn1W+u9/pQMH3CsrAQAAAK9p1qyZzfEDDzzg9lh169bVe++9p6KiIi1dulS///3vHfYLDQ112P6HP/whIFfruoIVvQEiLCxMjz76qCZNmiTJKN8wZswY/fnPf1bLli0lSUVFRVq4cKFeeOEFmc1mScZdCssWsAYAAPCJsDBj1W23bhfbioqkrCzblb/r1xtJYXfs329sn3xysa1Jk4urfktWALdubZSEAAAAgE999NFHio2N1e233669e/fq6quv1p///OcqjxscHKxBgwZp0KBBGjVqlK699lqb83fddZfD67p06aLly5frX//6l+rXr69x48bZ1QQOVCR6A8iwYcO0fv16zZs3T5KR7E1PT1dKSoqioqKUnZ2t48ePW/s3aNBAU6ZMUUgI/80AAKCaCAmRUlON7bbbjLbiYmnHDtvk77p10q83oq20I0ekpUuNrUTDhrY1f7t3l9q2lYL4gBsAAIC33HnnnRo6dKiCg4OVnZ2tCxcueGU17ZVXXqlevXrpxx9/lGQsfPzNb37jtH/fvn3Vt29fj8fhb2QAA8yzzz6rhg0batasWSosLFRxcbG2bt1q1y8pKUlTpkypMe9IAACAGiwoSEpJMbZbbjHaLBZpzx7bxO/atdLRo+7NkZcnff21sZWoV0/q2tV25S/3NQAAAPCIgwcPKi4uzqbNWyUTwsPDtXz5cn355Ze6cOGCBg8erAYNGrh8/bXXXqvPP//cps1kMskSYCXBSPQGGJPJpEceeURDhgzRggULtGrVKh06dEj5+fmKjo5Whw4dNHjwYA0ZMkRhYWH+DhcAAMA9JpNx87WEBOmmm4w2i8WowVt25e+BA+7Ncfq0tHKlsZUID5cKCmz7FRe7Nz4AAEAtZTKZrPea8pXIyEgNGzbMrWvvvvtum0TvVVddRaIXrhk+fLiGDx9epTGSkpI0ceJETZw40UNRAQAAVHMmk9SihbENGXKx/fBho85vyarfdeuM1cDuyM+3b/vqK6lnT9uyD507G0lhAAAA2HnqqacUFEAlsoYPH67Fixfr448/Vps2bfTwww9r165d/g6r0kj0AgAAILA1bSoNHmxsJY4fv5j8Ldm2b3dvfIvFSCCvXXuxLThY6tjxYuK3Rw8pLU2KiqraYwEAAAhwS5cuVXp6ur/DqLQhQ4ZoSOnFBAGIRC8AAABqnkaNpKuvNrYSp05JGRkXV/2uWydt3epeaQazWdq0ydj+9S+jzWQyavyWXvnbrZtUifpwAAAAgWz27NkaNGiQv8OotUj0wqPy8vJ0/fXXq27dulq+fHmF/ZctW6b3339fmzdvVkFBgZo1a6aBAwfq7rvvVsOGDX0QMQAAqDXq15cuv9zYSpw7J23caLvyd/1698a3WKSsLGP7z38uticm2q787dZNio2t2mMBAACohqKjo/0dQq1GohceU1hYqMcff1zHjh1TfHx8hf1ff/11zZgxQ5IUGhqqsLAw7dmzR3//+9/1ySef6L333lObNm28HDUAAKjVIiKkPn2MrUTdutKFCxePo6Ol8+dt2ypj1y5jW7DgYlvLlrYrf7t3l5o1M1YFAwAABKCgoCBdXvoNdfgciV54RH5+viZMmKDvvvvOpf5LlizRjBkzZDKZ9Mc//lGjRo1S3bp1tXHjRk2cOFG7du3SAw88oMWLFys4ONjL0QMAAJSjTx/pv/81VuqWXfl79qx7Y+bkGNvixRfbmja9uOq3JPnbqhXJXwAAUO3Fx8frr3/9q2JiYvwdSq1GohdVtm3bNv3xj3/Ujh07XOpfXFysN998U5J02223acyYMdZzXbp00ezZs3Xttddqx44dWrRokW666SavxA0AAOCy0FCpc2djGz3aaDObpR07bJO/69ZJJ0+6N8fhw9LnnxtbiUaN7Ff+JiVJAXQXawAAULNFRUUpJydHJt6c9jsSvXDb+fPn9cILL2jBggUym82KiYlR586dtWLFinKv++GHH7R7925J0h133GF3Pi4uTkOHDtXcuXNJ9AIAgOorOFhq397Yfv97o81ikXbvvpj0LbnxW26ue3McPy599ZWxlahXz6jzG8Kv8gAAwP/OnDlDkreaYCkA3Jabm6t58+bJbDZr0KBB+uSTT9SpU6cKr1uzZo0kKSEhQc2aNXPYp2/fvpKktWvX6ty5c54LGgAAwJtMJuPma7/9rfTCC9IXX0hHjkj79kmLFkmTJ0s33CA1b+7+HKdPS999Jzm68e3UqdI//iFt2CAVFro/BwAAgIsWLlzo7xDwK5YBwG0mk0l9+/bVuHHjdMkll7h8XUmJh6SkJKd9WrduLUkym83atWuXUlNTqxYsAACAv5hMxs3XWraUhg692H7okFHnt/TK3717qzbXf/9rbJIUFiZ16WJb9qFzZ+NmcwAAAFUUHBysO+64Q0OGDPF3KPgViV64LT4+XrNnz670dYcPH5ZklGhwpmnTptb9o0ePVj44AACA6i4uTrr2WmMrcezYxeRvyebifRDsFBRIP/9sbCWCg6VOnS4mfnv0kNLSpMjIqj0WAABQ6+Tl5alevXr+DgOlkOitxfLy8nTq1CmX+4eEhCg+Pr7K8545c0aSFB4e7rRP3VIrTUr6AwAA1HiNG0sDBxpbiVOnjFIMpVf+ZmVJxcWVH99sljZuNLZ//tNoM5mMOsOlV/526yZFR3viEQEAgBqKJG/1Q6K3Fps1a5Zmzpzpcv/4+Hgtd1QLrpKKiookSaGhoU77hIWFWffNZnOV5wQAAAhY9etLV1xhbCXOnpWeflp69dWqj2+xSFu3GtucORfbk5JsV/526ybFxFR9PgAAAHgFiV74XMlq3cJybhBSUFBg3S8vIQwAAFArRUYaN30ra+pUKTT0YtmHjRulCxfcmyM729jmz7/Y1qqV7crf7t3dGxsAAAS0sWPH+jsEOECitxabMGGCJkyY4PN5I3+tAXf+/HmnffLz8637UVFRXo8JAACgRmjXTkpPv3hcWGis1C1d83f9euncOffG37fP2BYtutgWEWHfz2Jxb3wAAFDthYeH66677vJ3GHCARC98Li4uThkZGTpy5IjTPiU3bJNsb8wGAACASggNlbp0MbbbbzfazGZp+3bb5O+6dUYtYHc4Shp37ixdcontyt+kJKMeMAAACFjPPvusbrrpJnXq1MnfocABEr3wueTkZH3xxRfavXu30z579+6VZNwArk2bNj6KDAAAoBYIDpY6dDC2W2812oqLpd27bRO/a9dKx465N8eJE9KyZcZWIjraqPNbOvmbnGzEAwAAAsJTTz2loKAgf4cBJ0j0wud69+6tt956Szt27FBubq5iHNzUY/Xq1ZKktLQ0a01fAAAAeElQkLHiNilJGjHCaLNYpJwc+5W/Bw+6N8fJk9I33xhbiYgIqWtX2+Rvx47GSmQAAFCt3HzzzSR5qzkSvfC5Hj16KC4uTocOHdK7776rJ554wub8wYMH9cknn0iSbrnlFn+ECAAAAJPJuPlaq1bSb35zsf3gQaPOb8mq36++ks6ccW+Oc+ek1auNrUSdOkapidLJ39RUiTf/AQDwi86dO2vo0KGaOHGiv0NBBUj0wueCgoL06KOP6vHHH9e//vUv1atXT3fddZciIiK0ceNGPf744zp37pySk5N13XXX+TtcAAAAlNasmbGV/J52//3StGm2fdq0kfbscW/8Cxekn34ythIhIVKnTkbS99Ah98YFAABuWbFihRo3buzvMOACEr3wi6FDh2rjxo16//33NXXqVM2YMUN169bVmV9XgzRp0kTvvPOOgqnZBgAAEHhWrZKioqQNG4xVvyVlH7KyjJIQlVVUJGVkGJsj779vlIbo2tWoBQwAAFALkeiF3/zpT3/SpZdeqjlz5mjz5s06d+6cWrRoof79++u+++7j3SIAAIBAFh0tXXmlsZU4c0bauNG25u/mzUYitypefdXYJKlt24slH3r0MG4Ax++VAAC4rVGjRv4OAS4i0esnU6ZM0bRp0xQfH6/ly5dX+vrs7Gx98MEHWrNmjfbv36+ioiI1adJEycnJuvHGG3XNNdcoJMT3/73jx4/X+PHjXe4/cOBADRw40IsRAQAAoNqIipL69jW2EufPS5s22SZ/N26UCgrcm2PnTmP78MOLba1b29b87d5diour2mMBAKAWuPrqq2UymfwdBlxEotcPNm7cqJkzZ7p9/VtvvaUZM2aoqMzKh5ycHOXk5Ojrr79WamqqXnnlFSUmJlY1XAAAAMB76taVLrnE2EoUFkpbttgmfzdsMG7e5o69e43t448vtjVrZqz4LZ38bdGiSg8FAICaomfPnho7dqzuuusuf4eCSiDR62M5OTkaN26cCgsL3br++eef13vvvWc9DgkJUUpKisLDw5Wdna28vDxJUmZmpkaNGqUPP/xQ8fHxHokdAAAA8InQUCktzdjuuMNoM5ulbdukp56yTdi66+BB6dNPja1ETAw1fgEAkPTZZ5+pSZMm/g4DlUSi14e2b9+uu+++W0ePHnXr+qVLl9okeQcNGqTJkycrJiZGklRYWKiFCxfqxRdfVH5+vnJzczV+/Hh99NFHLLMHAABAYAsOljp2lLp0sU/0vvyydPy4sfJ37Vpj3x25ucZW1tixRq3hkpW/7doZ8QAAUEOFhYX5OwS4gUSvjyxevFhPP/208vPz3bq+sLBQL7/8svW4f//+euONNxQUFGRtCw0N1ciRIxUfH6+xY8eqqKhImzdv1qeffqobb7yxyo+hNilbFsNVZrO53GMAQGAoLi62aysqKrL5+VATXvMd/bwrLi52++dgTWWxWKrl18TRc85sNvs8Vle+X7w+34ABKura1TiwWKR9+2Rav16m9eul9etlWrdOpsOH3Z/055+N7VeWyEgpLU2Wbt2smzp2lJzcI8ObX6PKPj89/X3vyvyVmbOyz+vK9LdYLA7bnMVXUZvZbHbp/9aVx+/O93Pp2B3FUfp8eeOXF1955yr7tS8qKnL6f1CWszGczenKmCWxu9oXqM26dOmiqKioavn7D8pHotfLDh8+rNdee02LFi2q0jjLli3TL7/8Isko1zB58mSbJG9p/fr108iRIzVnzhxJ0uzZs0n0VkJxcbEyMjI8MlZmZqZHxgEA+FbJz9zSdu7cqcjISKfXBOJr/o4dO+zaDh486LGfg4Gq7B/9p0+frpZfkwMHDti17dq1y+exHjt2zK5ty5YtynW0MtYDDh06ZNe2fft2+0+wJSQY2/DhkqSQ3FxFZGUpcutWRWRlKSIrS2FuJn9NZ89Kq1fLtHq1ta24Th3lt22rc+3bW7f8pCRZwsJ05MgRuzG2bdumAjduOFf2j+6zZ89W6v98+/btdm2HDh1y+3lz8uTJCq89ceKEXdvx48cdXrd79267tpycHKdz7Ny5067tl19+cdjfUULPWfwHDx60a8vOzlZqaqr1ODMz0+HzfMuWLTbfF9nZ2RXGuH//frs+u3fvLvdrWzp2RwnM0udzcnKcju/oMRw7dkwZGRkOv99yc3OVkZHh8DUoOztbsbGxdl/rU6dOKSMjQ+fK1NkuLCy0WwxVWFjo8HGfPHnS6eNw9LpdlsVisZY6LO3s2bN2be6WWgRqgssvv1yPPvpotfzdBxUj0etF06dP17vvvmvzwywxMVHp6emaMWNGpcZasmSJdb9v375q3rx5uf1LJ3o3b96snJwctWzZslJzAgAAADVFUUyMTvXrp1P9+lnbQvLyFL5tmzXxG5GVJTlIuLki6MIFRW7erMjNm61tluBg5Sclqb6DJBwAANXN119/rWhq1Qc0x0tC4RGzZs2ySfKOGDFC8+fPV+vWrSs1jsVi0Zo1a6zHl112WYXXpKSkKDY21nq8fPnySs0JAAAA1HRFDRvqdJ8+Onz77dr90kvavGiRDt5+u10/dz/YbTKbFbF9uyIcrDqNf+stNfnPfxS1bp2CzpxxcwYAADynTp06/g4BVcSKXh9ITU3VxIkT1atXL7euP3DggE6dOmUznitSUlKsN37btGmTW3PXRkFBQercubNb15rNZpuP7qampiqYG3UAQMBx9MmZtm3bKi0tzXpcE17zL1y4YNfWrFkzm8dZG5UtAVCvXr1q+TVZXapsQInExESfx9q4cWO7to4dOyo+Pt4r88XFxdm1JScne+xxN3WwKMP8zTcqkqx1f03r10tbtshUhdrcDb77Ti2/+856bGnX7mK93+7dZenaVWrUyO66kDJ1gCMjIyv12B2VL4iLi3P76xcdHV3htY7KezRq1MjhdXv37rVra9mypdM5Tp48adfWvHlzh/0dPXZn8Tdr1syuLSkpyeY4NTXVemPs0jp27KgWLVpYjx2VESgb408//WTXJyEhodyvbenYHZVuKH1+7dq1Tsd3VKaicePGSktLU8OGDe3OxcTEKC0tTf/73//sziUlJSktLc3udbR+/fpKS0tTRESETXtoaKjCw8Pt2hw97ujoaIefUk1ISHD4ul2WyWRy+HgclWUKDQ21awNqusjISPXs2TPgfp/1pk2bNjl8fa3OSPR6Ua9evTR8+HBdffXV9jXDKmHPnj02x61atXLputK/XOzbt8/t+Wujsr9Auys4ONhjYwEAfMdRHfyQkJByX9MD8TXfUbxBQUEB9zi8zWQyVcuviaM/xPzxPHTn+6U6z+dw/Hr1FNK9u3TllRcb8/OlTZukdesubps2SW7U3ZUk044dMu3YIX344cXGNm2k7t1tt7LXVfL56enve1fmr8yclX1eV6a/o0Svs/gdPQ/KtgUHB7v0fHTl8bvz/Vw6dkeJiNLnyxu/vPjKO1eZmEticfR3saM2Z2M4m9OVMUtid7UvUNuMHz+eFb01QPX7jbUGmTZtmkfGKVmVKxk/mBy9a+xI6dINpccAAAAAUEXh4VKvXsZWoqBA2rLFNvm7YYORFHbHnj3GtnDhxbayiaqCAslikUhWAQDcMGrUKP3ud7/T9ddf7+9Q4AEkegNA6Y8jRUZGOnwX0pGoqCiHYwAAAADwgrAwqWtXY7vzTqOtqEi6915p1izPzFF25ebPP0tNm9qv/E1IIPkLAKjQv//9b3+HAA+q9YneAQMG6MCBA1UaIyEhQUuXLvVQRPZK18+rW7euy9eFhYVZ9wvc/AgZAAAAgCoICZFKfdLOaskS6dQpY9Xv2rXGv3l57s1x9Kj0xRfGVqJBA/vkb7t27o0PAAACQq1P9AaCwsJC676rq3kl27pGRUVFHo0JAAAAQBW0aSN16CCNHGkcWyzS3r22ZR/WrpWOHHFv/BMnpOXLja1EVJTUtm1VIwcA1BBXlq49jxqBRG8AKF1cvjJ3+yud3OWuoQAAAEA1ZjIZyd82baThw402i0U6eNB21e+nn9qXb3DVmTNGzeCy/v53I6FcsvK3UyeJG/IAQI3WqlUrvfnmm/4OAx5W6xO98+bNk9lsrtIY3r6zcXh4uHW/dBmHipQu18CdEwEAAIAAYzJJzZsb2w03GG2xsVJu7sU+jRtL0dHSrl3uz3PggDR9+sXj0FApNdW27ENamnEDOgBAwNu7d69atmwpE7Xca5xan+iNdVQvq5qJjo627p89e1YWi8Wlb8YzZ85Y9xs0aOCN0AAAAAD4U0qK9L//GfV916+3Lf2wfbuxKriyCguNsdavv3gTueBgo9SEO+MBAKqVVq1a+TsEeEmtT/QGgqZNm1r3zWaz8vLy1KhRowqvO3r0qHU/JibGK7EBAAAAqAYaNpQGDDC2EqdPSxkZtsnfzZvdK/1gNkuZmfbty5dLt9wi9ehhrPzt1s2IBQBQLaWlpfk7BHgRid4A0Lp1a5vjnJwclxK9+/fvt+4nJCR4PC4AAAAA1Vi9elK/fsZW4ocfpEsvte0XFOR+3d+zZ6UPPjC2EgkJtmUf2rRxb2wAgMeNHTvW3yHAi0j0BoD4+Hg1aNBAJ06ckCRt3brVpXdgsrKyrPvt27f3VngAAAAAAkXduvZtTzxh3ACuZNXv2rXGSuDz592bY/duY/voI+d9zp41ykBQHxIAfGLYsGG6/vrrdeedd/o7FHgRid4A0bt3b33xxReSpNWrV+vmm28ut39WVpZyS92koU+fPl6NDwAAAECACg42Si506ybddZfRVlQkZWXZln1Yv14qdR+QKpk3T1qxwnblb/fu1AAGAC9ZuHChv0OAD5DoDRDp6enWRO+KFSt0+PBhm9q9Zc2dO9e6n5SUpJSUFK/HCAAAAKCGCAmRUlON7bbbjLbiYqO9dDI2JMRICrvjyBFp6VJjKxEZad/P3bISAADUMkH+DgCuSU9PV5MmTSRJBQUFmjRpkoqc/EK1cuVKzZ8/33o8atQon8QIAAAAoAYLcvDn47XXSrt2SQsWGCUgBg+WYmPdn+PsWfu2+++XrrhCevhh6d//Nm4K525yGQBqoXfeecffIcBHWNEbIMLCwvToo49q0qRJkozyDWPGjNGf//xntWzZUpJUVFSkhQsX6oUXXpDZbJYkJScna8SIEX6LGwAAAEANl5BgbDfdZBxbLNIvv1ys9/vDD9Kvn050y4UL0sqVxlYiPFxKS5PK+ZQjAEDq16+fbrnlFn+HAR8h0RtAhg0bpvXr12vevHmSjGRvenq6UlJSFBUVpezsbB0/ftzav0GDBpoyZYpCQvhvBgAAAOAjJpMUH29sN94oHTsmxcTY9mnTxui3e7d7c+TnGwlkR+bNMxLB3btLnTsb+wBQywwfPlzPP/+82rdvLxM3vqw1yAAGmGeffVYNGzbUrFmzVFhYqOLiYm3dutWuX1JSkqZMmaLExEQ/RAkAAAAA5RgwQJo1Szp+XNqwwVj5u26d9N13xmrgqlizxtgk40ZzHTsaSd9u3aocNgAEirCwMHXo0MHfYcDHSPQGGJPJpEceeURDhgzRggULtGrVKh06dEj5+fmKjo5Whw4dNHjwYA0ZMkRhYWH+DhcAAAAAnGvUyEj6DhhgHC9eLP3mN7Z9mjeXDh1y76ZsZrO0aZOx/etf9ud37pRWrDCSwA0aVH58AKimbr31Vn+HAD8g0esHw4cP1/Dhw6s0RlJSkiZOnKiJEyd6KCoAAAAAqIaef14aOVLauNFY9VuyZWZKhYVVGzsz82KSOTHRWPnbvbu0Y0fV4wYAP2nevLkGDx7s7zDgByR6AQAAAADVW0SE1KePsZW4cEH697+le+7xzBy7dhnbggUOT5v+9z+Fdu6swpgYo74wAFQz3bp104033qh7772X+zXVUvyvAwAAAAACT506UnKyfftjj0mdOl1c+bt+vXT2bJWnC378cXWRVNi4sc6lpCjoyiul7OwqjwsAnvLuu++qZ8+e/g4DfkSiFwAAAABQczRrJo0ebWySUad3507jhm8eqFkZeuyYolevllavdtzhk0+ka66RkpKkoKAqzwcArkpJSfF3CPAzEr3wC4vFooULF+rjjz9WVlaWzp8/r8aNG6tnz566/fbb1blzZ3+HCAAAAKAmCA6WUlKM1b9lE72XXCINHGis/F27VsrNrfp8999v/FuvnnGTt6ZNqz4mALigXr16/g4BfkaiFz5XWFio8ePHa8WKFZIkk8mk8PBwHTp0SJ9++qk+//xzPfnkk9whEgAAAIB3xcdLL7xg7Fss0oEDRtL3jTekX/9ecdvp09J33zk+9/HHUqNGxo3fOnas2jwAar327dvr888/93cYqAZI9MLn3n77ba1YsUIhISF67LHHNHLkSIWHh2vPnj167rnntGrVKj3//PPq3LmzunTp4u9wAQAAANQGJpPUooWxZWbaJXrN99yjvB07FLFtm+r88kvV5ipd+iEsTIqLq9p4AGqtc+fOKTw83N9hoJog0QufKi4u1ty5cyVJd999t26//XbruTZt2mjq1Km69tprdfDgQS1YsIBELwAAAIBqwTJ6tHbVqSNJCj55Up0LC6Vnn5W+/75qAxcUSPv22bc/8IC0YIGx6rd796rNAaDGIsmL0qgMD586duyYTpw4IUlKS0uzOx8eHq7U1FRJ0i9VfZccAAAAALzAHB0ty9VXO07APv20NGqU1KlT1W7GtmeP9M9/Sg8+KPXrZ38+N1f69W8rALVTbGysv0NANUOiFz5Vv359mUwmSdK6devszhcUFCgrK0uS1Lp1a5/GBgAAAABVdvfd0r//bZR/OHVKmj7dO/P8739Sw4ZS27bSyJHemQNAtbZ+/Xp/h4BqhkQvfKpOnTrq06ePJGn27Nl6//33df78eUnSgQMH9PDDDysnJ0f16tXT6NGj/RkqAAAAAFRNZKT06ycWbTz0kPTuu9K990qXXCKFVKGqYna2UeKhrB9+kJ57TvrsM1b+AjXIsGHD9NFHH+nkyZOKj4/3dzioZqjRC5979tlnNXr0aB08eFDPPfecnn/+eUVEROjs2bOSpD59+ujJJ59Uq1at/BwpAAAAAHhBixbSmDEXj2fMkO67z7ZPnTrShQvuz3HwoDR5svPzR45IFov74wPwizvuuEM33nijv8NANUWiF5WWl5enU6dOudw/JCTE5l2m1q1ba9GiRbr33nu1fv16WSwWa5JXMm7Ylp+f79GYAQAAAKDaCg62b/vwQyk5WVq3zthefdWzc959tzRxolFLGEDAiI6O9ncIqMZI9KLSZs2apZkzZ7rcPz4+XsuXL7ceZ2Zmavz48crNzdXEiRN14403Kjo6Wlu3btXrr7+u77//XrfddptmzpypXr16eeMhAAAAAED1FhwstW9vbL//vX2it107KSFBWrtWOnbMvTmOHZO++86+ffFiKTxc4lOWQLWSlJREngTlItELnzp8+LBuu+02nT17Vm+//bYGDhxoPZeWlqZZs2bpnnvu0apVq/TEE0/oiy++ULCjd7cBAAAAoDbr2FFatMgov7Bvn9SmjefGPnhQev11x+e2bJEyMiSz2XPzASjX7373OyUlJWncuHGqW7euv8NBNUaiF5U2YcIETZgwwa1rZ8+erbNnz6pbt242Sd4SwcHBmjhxolatWqWcnBx9//336tevX1VDBgAAAICayWSSWra0b7/2WumBB4yyDwsXSuvXe2a+r7+WunZ1fAO5ggLPzAHAxrx58/wdAgJEkL8DQO2SkZEhSerWrZvTPsnJydaaM7t37/ZJXAAAAABQo9StK113nfTUU9L999uf79dPatvW/fGLiuzbhgwxksCs9gUAvyDRC5/Ky8uTJFkquLtryK/vDhfwjjAAAAAAeN7jj0s7dkhZWZ4bs7jYKOtQ9u+9b7+V/vAH6dAhz80F1BJjx471dwgIICR64VNxcXGSpPXlfGzo0KFDOvbrzQRat27tk7gAAAAAoFaqX9++7a67pP/9T3r2Wc/McfasNGeOUUu4tBMnSP4C5YiLi9Ojjz7q7zAQQEj0wqf69+8vSdqwYYO+c3R3V0lTp06VJEVHR+vSSy/1WWwAAAAAAEmhoVLfvtLtt9uf699fGjtWatWq6vOcPy/t32/bdvy49PzzVR8bCGCTJk3S8uXLtWvXLiUnJ/s7HAQQEr3wqZEjR6rNr3eDfeihh/Thhx/q/PnzkqQjR45o8uTJmj9/viTp4YcfVmRkpL9CBQAAAACUlZoqzZhhlH4oq2NHKSKiauOfPy/96U/25R+ysjx3QzmgmrvjjjvUv39/hYeH+zsUBBgHt8kEvKdu3bqaOXOm7rnnHu3evVt/+tOf9PTTT6tevXo6deqUtXbvvffeq9///vd+jhYAAAAA4LI33pAGDDBuBFf6Zm0hIY5v3lYZO3YYW1mrVtknhYEA17hxY3+HgADFil74XKtWrfTxxx9r0qRJ6tatmyIjI3Xu3Dk1adJE119/vebOnatHHnnE32ECAAAAACorONi+7ZprjCRt27aen++vf5XK3sT7l1+MusBAAOrSpQuJXriNFb0BZsqUKZo2bZri4+O1fPnySl+fnZ2tDz74QGvWrNH+/ftVVFSkJk2aKDk5WTfeeKOuueYahYR4/2kRHh6uO+64Q3fccYfX5wIAAAAA+JHJZCR5GzWybY+NNW4Gl53t2fk2bbJvM5ulvDzPzgN4UPPmzdWzZ0+98cYb/g4FAYxEbwDZuHGjZs6c6fb1b731lmbMmKGiMh+ZycnJUU5Ojr7++mulpqbqlVdeUWJiYlXDBQAAAADAueBgqWFD27a4OOnvf5duvNGzJRmKiqT//te+/cwZz80BuCkhIUG7du3ydxioASjdECBycnI0btw4FRYWunX9888/r6lTp1qTvCEhIerUqZN69uyphqV+sGZmZmrUqFE6cOCAR+IGAAAAAMBlQUHS9dfbt/fpIw0f7vn51q2zb3Pz727AXZdddpm/Q0ANQaI3AGzfvl233nqrjh496tb1S5cu1XvvvWc9HjRokL799lstXLhQc+bM0cqVK/XnP//ZejfH3NxcjR8/3npjNAAAAAAA/Co2VrruOvv2O+80ksOeYrFIx455bjzABbfddpu/Q0ANQemGam7x4sV6+umnlZ+f79b1hYWFevnll63H/fv31xtvvKGgUj8IQ0NDNXLkSMXHx2vs2LEqKirS5s2b9emnn+rGG2+s8mMIRGXLW7jKbDaXewwACAzFxcV2bUVFRTY/H2rCa76jn3fFxcVu/xysqSwWS7X8mjh6zpnNZp/H6sr3SyDN543xvRlzZZ+fnv6+d2X+ysxZ2ed1Zfo7WsjiLH5H/2dl28xms0v/t648fne+n0vH7iiO0ufLG7+8+Mo7V9mvfVFRkdP/g7KcjeFwzhtvlObMkS5cuNi3fXvp1CnjpmxANXfppZfq0ksvrZa/ayDwkOitpg4fPqzXXntNixYtqtI4y5Yt0y+//nALCQnR5MmTbZK8pfXr108jR47UnDlzJEmzZ8+ulYne4uJiZWRkeGSszMxMj4wDAPCtXxz8Ybhz505FRkY6vSYQX/N37Nhh13bw4EGP/RwMVGWTDqdPn66WXxNHpbZ27drl81iPOVj5tmXLFuXm5nplvkOHDtm1bd++XSaTyWvj79ixQ8HBwW6PeeTIEbu2bdu2qaCgoNJjlU0EnD17tlL/59u3b7drO3TokNvPm5MnT1Z47YkTJ+zajh8/7vC63bt327Xl5OQ4nWPnzp12bb/88ovD/o4Sis7iP3jwoF1bdna2UlNTrceZmZkOn+dbtmyx+b7IdnCjsbIx7t+/367P7t27y/3alo7dUaK39PmcnByn4zt6DMeOHVNGRobD74fc3FxlZGQ4fA3Kzs5WbGys3df61KlTysjI0Llz52zaCwsL7RY1FRYWOnzcJ0+edPo47F63GzY0av+W+nluCQ7W+ebNJQdjAP7w3HPPKSIiQr1799a2bdv8HQ5qCEo3VEPTp0/X4MGDbZK8iYmJuvfeeys91pIlS6z7ffv2VfPmzcvtP3LkSOv+5s2bHf4gBQAAAAAgoAQH62yXLnbNhTExfggGkK699lpdeeWVqlu3rr9DQQ1CorcamjVrls07nSNGjND8+fPVunXrSo1jsVi0Zs0a67Erxb1TUlIUGxtrPV6+fHml5gQAAAAAIFBcaNXKtsFkUjGJN3hZeZ8SA6qC0g3VWGpqqiZOnKhevXq5df2BAwd06tQpm/FckZKSYr3x26ZNm9yaO5AFBQWpc+fObl1rNpttPrqbmppapY/5AQD8w9EnYNq2bau0tDTrcU14zb9Qqp5hiWbNmtk8ztqobAmAevXqVcuvyerVq+3aEhMTfR5r48aN7do6duyo+Ph4r8wXFxdn15acnOyxx+1o/Hbt2lVp/CZNmti1paSkqEOHDpUeKyTE9k+4yMjISsXmqHxBXFyc248vOjq6wmsdlfdo1KiRw+v27t1r19ayZUunc5w8edKurXnz5g77O3rszuJv1qyZXVtSUpLNcWpqqmIcrAbt2LGjWrRoYT0+ffp0hTH+9NNPdn0SEhLK/dqWjt1R6YbS59euXet0fEdlKho3bqy0tDQ1bNjQ7lxMTIzS0tL0v//9z+5cUlKS0tLS7F5H69evr7S0NEVERNi0h4aGWm8KXrrN0eOOjo5Wy5YtHT4OR6/bZZlMJoePx1HCLahBA8lB2QrAU95///1q+bsFbG3atMnh62t1RqK3GurVq5eGDx+uq6++ukq1xvbs2WNz3KrsO5VOlP6lZN++fW7PH8jK/gLtruDgYI+NBQDwHUf17ENCQsp9TQ/E13xH8QYFBQXc4/A2k8lULb8mjt5Y8Mfz0J3vl+o8nzfG92bMlX1+evr73pX5KzNnZZ/XlenvKNHrLH5H/2dl24KDg136v3Xl8bvz/Vw6dkeJiNLnyxu/vPjKO1eZmEticfT3raM2Z2M4m9OVMUtid7Uv4Gldu3bVhQsXdPfdd+s3v/mNv8NBDVX9fmOFpk2b5pFxSlblSsYPNEfvNjtSunRD6TEAAAAAAABQeevWreONBXgdNXprsNIfY4qMjHT47qUjUVFRDscAAAAAAABA5ZHkhS+wotdNAwYM0IEDB6o0RkJCgpYuXeqhiOyVrrtXmbs4hoWFWfcLCgo8GhMAAAAAAEBt0qVLF3+HgFqCFb01WGFhoXXf1dW8km09pKKiIo/GBAAAAAAAUFs0atRIH3/8sb/DQC3Bit4arHRR+srcJbB0cjc0NNSjMQEAAAAAANR0q1at0smTJ9WvXz/Vr1/f3+GgliDR66Z58+bJbDZXaQxv3xE5PDzcul+6jENFSpdrqFOnjkdjAgAAAAAAqOl69+7t9bwPUBbPODfFxsb6O4QKRUdHW/fPnj0ri8XiUvHvM2fOWPcbNGjgjdAAAAAAAABqLJK88Adq9NZgTZs2te6bzWbl5eW5dN3Ro0et+zExMR6PCwAAAAAAoKZ68cUX/R0CaineXqjBWrdubXOck5OjRo0aVXjd/v37rfsJCQkejwsAAAAAAKAmGTt2rI4cOaKbb75Zv/vd7/wdDmopEr01WHx8vBo0aKATJ05IkrZu3aq0tLQKr8vKyrLut2/f3lvhAQAAAAAA1AgzZszwdwgApRtqut69e1v3V69eXWH/rKws5ebmWo/79OnjlbgAAAAAAAAAeA6J3houPT3dur9ixQodPny43P5z58617iclJSklJcVrsQEAAAAAAAS68PBwf4cASCLRW+Olp6erSZMmkqSCggJNmjRJRUVFDvuuXLlS8+fPtx6PGjXKJzECAAAAAAAEkqioKOv+sWPH/BgJcBGJ3houLCxMjz76qPV49erVGjNmjHJycqxtRUVF+vDDDzV+/HiZzWZJUnJyskaMGOHzeAEAAAAAAKq7vLw8XbhwQRaLhRW9qDa4GVstMGzYMK1fv17z5s2TZCR709PTlZKSoqioKGVnZ+v48ePW/g0aNNCUKVMUEsLTAwAAAAAAoLSuXbuSM0G1xLOylnj22WfVsGFDzZo1S4WFhSouLtbWrVvt+iUlJWnKlClKTEz0Q5QAAAAAAADVW2pqqr9DABwi0VtLmEwmPfLIIxoyZIgWLFigVatW6dChQ8rPz1d0dLQ6dOigwYMHa8iQIQoLC/N3uAAAAAAAANVOvXr1dP/99/s7DMAhEr0BZPjw4Ro+fHiVxkhKStLEiRM1ceJED0UFAAAAAABQsy1atEjnzp3TpZdeqjZt2vg7HMAhEr0AAAAAAACAE0OvukpDr71W4hPQqOZI9AIAAAAAAABOpH7zjVSvntS5s9S9+8Wtc2cpPNzf4QFWJHoBAAAAAAAAJwZKUkGBtHatsZUIDpY6dpR69LiY/E1Lk6Ki/BUqajkSvfCbXbt2afbs2Vq9erWOHDmiOnXqqEOHDhoxYoSGDBni7/AAAAAAAEAtVl/SI5KudNbBbJY2bTK2f/7TaDOZpJQU25W/3bpJDRr4ImTUciR64ReLFy/Wk08+qcLCQklSZGSkTp8+rR9//FE//vijvvnmG/3tb39TUFCQnyMFAAAAAAC1yXutWmnkgQMymc2VT5xZLFJWlrH95z8X2xMTbVf+dusmxcZ6MmyARC98b926dZo0aZKKi4t13XXX6fHHH1ezZs104sQJvfPOO/rHP/6hzz77TD169NCtt97q73ABAAAAAEAtMnDNGoU2bChlZkrr1l3cMjKkCxfcG3TXLmObP/9iW8uWtit/u3eXmjf3zINArUSiFz73zDPPqLi4WNdff71effVVmUwmSVKDBg00ceJEHTx4UJ9//rnmzp1LohcAAAAAAPhUo0aNpLAwYwVujx4XTxQWSlu32iZ/N2yQzp51b6KcHGNbvPhiW1ycffK3VSujJARQARK98KmNGzdq27ZtCg8P15NPPmlN8pY2btw4de3aVQ2oXwMAAAAAAHxo9OjRCgsLc3wyNFTq0sXYbr/daDObpR07bJO/69ZJJ0+6F8ChQ9KSJcZWolGji0nfkvIPiYkS5S5RBole+NRXX30lSbrsssvUuHFjh32Sk5OVnJzsy7AAAAAAAEAt1LBhQ/31r3/Vjz/+qG7duumuu+6q3ADBwVL79sb2+98bbRaLUaahdOJ37Vrp2DH3gjx+XPrqK2MrUb++Uee39MrflBQjHtRaJHrhU1lZWZKkDh06SJKWLl2qRYsWadeuXQoKClJaWpruuOMOtW/f3p9hAgAAAACAWiAvL09333237r77bs8NajJJSUnGNmKE0WaxSPv32yd/Dx50b45Tp6RvvzW2EhERUlqa7crfjh2NlcioFUj0wqd27dolSapfv77GjRunr7/+2ub87t279d///lfPPPOMfve73/kjRAAAAAAAUEvExsb6ZiKTybj5WsuW0tChF9sPHpTWr7dNAO/d694c585J339vbCXCwoxSE6VX/nbuLNWtW7XHg2qJRC8qLS8vT6dOnXK5f0hIiOLj4yVJp0+fliS9++67Onr0qEaMGKExY8aoWbNm2r59u15++WX9+OOPevrpp9WqVSv16dPHK48BAAAAAABgypQp/g2gWTNju+66i23Hjtkmf9eulXbudG/8ggLp55+NrURIiLHSt2TVb/fuxkrgyMiqPRb4HYleVNqsWbM0c+ZMl/vHx8dr+fLlkqSzv96J8ujRo/rDH/6gP/3pT9Z+qampmjVrlkaOHKktW7bor3/9qxYuXOjZ4AEAAAAAQK3VqFEj5eXlSZJuueUW/fa3v/VzRA40biwNHGhsJU6elDZssF35m5UlFRdXfvyiImnjRmObPdtoM5mMOsOlV/526yZFR3vkIcE3SPTCL8LCwvTQQw85bL/vvvs0fvx4bd68WTk5OWrZsqUfIgQAAAAAADXN3Llz1bNnT5lMJjVs2NDf4bguOlq68kpjK3H2rJGsXbv2YvJ382YjkVtZFou0dauxzZlzsT0pyXblb7duUkxM1R8PvIJELyptwoQJmjBhglvXRkZG6sSJE0pJSVH9+vUd9unZs6d1f/v27SR6AQAAAACAR3Tq1EmNGjXydxieERkpXXqpsZU4f17KzLRd+btxo3ThgntzZGcb24cfXmxr1cp25W+PHlJcXNUeCzyCRC98KiYmRidOnFBERITTPqUTwOfPn/dFWAAAAAAAoBYouYdQjVW3rtSzp7GVKCyUtmyxTf5u2GDcvM0d+/YZ26JFF9uaNbNN/nbvbtx4zmSqyqNBJZHohU8lJydr586dOnTokNM+J0+etO7H8HEAAAAAAADgAa+//rq/Q/CP0FDjZmtpadIddxhtZrO0fbtt8nfdOunUKffmOHhQ+uwzYyvRuLHtqt/u3aXERJK/XkSiFz7Vu3dvLVmyRHv37tWuXbuUmJho12ft2rWSpNDQUKWkpPg6RAAAAAAAUAM8+uijatGihXbu3Kmrr75aw4YN83dI1UdwsNShg7HdeqvRVlws7dpln/w9dsy9OY4dk5YtM7YS0dFGnd/SK3+Tk414UGUkeuFT1157rV566SXl5+fr9ddf11tvvWVz3mw2a+bMmZKkyy+/XA0aNPBDlAAAAAAAINBFRkbqkUce8XcYgSMoSGrb1th+9zujzWKRcnJsE79r10rlfFK7XCdPSt98Y2wlIiKkrl1tV/526GCsREalkOiFT0VHR+vhhx/Wiy++qC+//FKPP/64/vjHP6pp06Y6fPiwnn32WW3cuFFhYWFu3/ANAAAAAACgXbt2/g4h8JlMxs3XWrWSfvObi+0HD9qv/N23z705zp2TVq82thJ16khdutiu/E1NNWoQwykSvfC522+/XUePHtXf//53LV68WIsXL1a9evV05swZWSwW1alTRy+//LKSkpL8HSoAAAAAAAhQf/jDH/wdQs3VrJl0/fXGViI3V1q/3ljxW5L8zc52b/wLF6SffjK2EiEhUqdOtit/u3SRIiOr9lhqEBK98IvHHntM/fv317///W+tW7dOJ06cUPPmzdW7d2/deeedvOsGAAAAAABcdsUVV+jcuXP6+eef1aFDB/373/+WiZt++VZMjHTNNcZW4sQJacMG25W/WVlGSYjKKiqSMjKMbfZsoy0oSGrf3nblb9euRi3gWohEb4CZMmWKpk2bpvj4eC1fvrzS12dnZ+uDDz7QmjVrtH//fhUVFalJkyZKTk7WjTfeqGuuuUYhIb55WvTs2VM9e/b0yVwAAAAAAKDm6ty5s6ZOnaqioiKf5TXgggYNpKuuMrYSZ85IGzfarvzdvFkymys/fnGxtGWLsb3//sX2du1sk7/dukmNG1fxwVR/PPMDyMaNG603KnPHW2+9pRkzZqioqMimPScnRzk5Ofr666+VmpqqV155RYmJiVUNFwAAAAAAwCfOnTsnSSR5A0FUlNS3r7GVOH9e2rTJduXvxo1SQYF7c+zYYWzz5l1sa93aNvnbo4fUtGnVHks1w7M/QOTk5GjcuHEqLCx06/rnn39e7733nvU4JCREKSkpCg8PV3Z2tvLy8iRJmZmZGjVqlD788EPFx8d7JHYAAAAAAABvur50rVgEnrp1pUsuMbYSBQXGSt3Syd8NG6T8fPfm2LvX2D7++GJb8+a2yd/u3aUWLYyb0AUgEr0BYPv27br77rt19OhRt65funSpTZJ30KBBmjx5smJiYiRJhYWFWrhwoV588UXl5+crNzdX48eP10cffUQ9GwAAAAAAUO2YTCZZfq3z2qRJE910001+jggeFxZm1Nvt2lW6806jzWyWtm2zTf6uWyedPu3eHL/8YmyffnqxLSbGSPg++6wUGlrVR+FTJHqrucWLF+vpp59WvpvvVhQWFurll1+2Hvfv319vvPGGgoKCrG2hoaEaOXKk4uPjNXbsWBUVFWnz5s369NNPdeONN1b5MQSisuUtXGUuU0+m7DEAIDAUFxfbtRUVFdn8fKgJr/mOft4VFxe7/XOwprJYLNXya+LoOWc2m30eqyvfL4E0nzfG92bMlX1+evr73pX5KzNnZZ/XlelvcXDjH2fxO/o/K9tmNptd+r915fG78/1cOnZHcZQ+X9745cVX3rnKfu2Lioqc/h+U5WwMZ3O6MmZJ7K72RfV2xx136PHHH9f333+v9u3bq2fPntXyZzW8JDnZ2G6+2TguLpays2Vav16m9eulX/81HT/u3vi5udKXX0pPPUWiF55x+PBhvfbaa1q0aFGVxlm2bJl++eUXSUa5hsmTJ9skeUvr16+fRo4cqTlz5kiSZs+eXSsTvcXFxcrIyPDIWJmZmR4ZBwDgWyU/O0vbuXOnIiMjnV4TiK/5O3bssGs7ePCgx34OBqqyf/SfPn26Wn5NDhw4YNe2a9cun8d67Ngxu7YtW7YoNzfXK/MdOnTIrm379u0e+ySao/F37Nih4OBgt8c8cuSIXdu2bdtU4EbdwbKJjLNnz1bq/3z79u12bYcOHXL7eXPy5MkKrz1x4oRd2/Hjxx1et3v3bru2nJwcp3Ps3LnTru2XX35x2N9RQs9Z/AcPHrRry87OVmpqqvU4MzPT4fN8y5YtNt8X2dnZFca4f/9+uz67d+8u92tbOnZHCczS53NycpyO7+gxHDt2TBkZGQ6/H3Jzc5WRkeHwNSg7O1uxsbF2X+tTp04pIyPDWkO1RGFhod2ipsLCQoeP++TJk04fh6PX7bIsFou1ZGFpZ8+etWtzt2QifCcoKEhnz55Vly5dJBn3NAKUkmJsN98sWSwKO3RIEVlZxrZ1qyKyshTqbvI3QJDorYamT5+ud9991+aHYGJiotLT0zVjxoxKjbVkyRLrft++fdW8efNy+5dO9G7evFk5OTlq2bJlpeYEAAAAAADwlnr16vk7BFR3JpMKmjVTQbNmOtG/v9FmsSg0N/di8vfXLezwYf/G6kEkequhWbNm2SR5R4wYoUmTJunLL7+s1DgWi0Vr1qyxHl922WUVXpOSkqLY2FhrPeDly5dr9OjRlZoXAAAAAADAW6655hp/h4BAZDKpMDZWJ2NjdfLyy63NIXl5Ct+2TZG/rvqNyMpSHQefWggEJHqrsdTUVE2cOFG9evVy6/oDBw7o1KlTNuO5IiUlxZro3bRpk1tzB7KgoCB17tzZrWvNZrPNR3dTU1Or9DE/AIB/OPoETNu2bZWWlmY9rgmv+RcuXLBra9asmc3jrI3KlgCoV69etfyarF692q4tMTHR57E2btzYrq1jx46Kj4/3ynxxcXF2bcnJyR573I7Gb9euXZXGb9KkiV1bSkqKOnToUOmxQkJs/4SLjIysVGyOyhfExcW5/fiio6MrvNZReY9GjRo5vG7v3r12bS1btnQ6x8mTJ+3amjdv7rC/o8fuLP5mzZrZtSUlJdkcp6amWm9wXVrHjh3VokUL67GjMgJlY/zpp5/s+iQkJJT7tS0du6PSDaXPr1271un4jspUNG7cWGlpaWrYsKHduZiYGKWlpel///uf3bmkpCSlpaXZvY7Wr19faWlpioiIsGkPDQ1VeHi4XZujxx0dHe3w06YJCQkOX7fLMplMDh+Po7JMoQFWk7OmS05O1m233aZVq1Zp48aNWrp0qVuvn0C5rrrK5rAoL09y8DOpuiPRWw316tVLw4cP19VXX12lWmN79uyxOW7VqpVL15X+pWTfvn1uzx/Iyv4C7a7g4GCPjQUA8B1H9exDQkLKfU0PxNd8R/EGBQUF3OPwNpPJVC2/Jo7eWPDH89Cd75fqPJ83xvdmzJV9fnr6+96V+SszZ2Wf15Xp7yjR6yx+R/9nZduCg4Nd+r915fG78/1cOnZHid7S58sbv7z4yjtXmZhLYnH0962jNmdjOJvTlTFLYne1L6qPp556SqNGjfJ3GKhtYmOl/fuNG70FkOr3Gys0bdo0j4xTsipXMn6gOXq32ZHY2FiHYwAAAAAAAPhS6RwFgPLZv52FGqP0x5giIyMdvnvpSFRUlMMxAAAAAAAAfMnVMpQAWNHrtgEDBuhAFQszJyQkaOnSpR6KyF7punt169Z1+bqwsDDrfkFBgUdjAgAAAAAAcOTSSy/V999/L8n4ZPIzzzxjU14SQPlI9NZghYWF1n1XV/NKtvWQioqKPBoTAAAAAACAIzNmzFBqaqqysrLUvHlzNWjQwN8hAQGFRG8NVroovaPi/M6UTu5yt1EAAAAAAOALnTt3lslkUseOHf0dChCQSPS6ad68eTKbzVUaw9t3RA4PD7fuly7jUJHS5Rrq1Knj0ZgAAAAAAADKioqKkslk8ncYQEAj0eumQLjrY3R0tHX/7NmzslgsLr1onjlzxrrPxyQAAAAAAIAntW7dWnv37rVpGzNmjJ+iAWoOEr01WNOmTa37ZrNZeXl5atSoUYXXHT161LofExPjldgAAAAAAEDtFBcXp88++0wPP/ywzpw5o6uvvlqTJ0/2d1hAwCPRW4O1bt3a5jgnJ8elRO/+/fut+wkJCR6PCwAAAAAA1F779u1Tp06dtGzZMn+HAtQoQf4OAN4THx9vU3ph69atLl2XlZVl3W/fvr2nwwIAAAAAALXYo48+6u8QgBqJRG8N17t3b+v+6tWrK+yflZWl3Nxc63GfPn28EhcAAAAAAKidBg8e7O8QgBqJRG8Nl56ebt1fsWKFDh8+XG7/uXPnWveTkpKUkpLitdgAAAAAAEDN9sUXX9gc/+53v1OnTp38FA1Qs5HoreHS09PVpEkTSVJBQYEmTZqkoqIih31Xrlyp+fPnW49HjRrlkxgBAAAAAEDN1L9/fx08eFALFizQmjVr9J///Ecmk8nfYQE1EoneGi4sLMym9s3q1as1ZswY5eTkWNuKior04Ycfavz48TKbzZKk5ORkjRgxwufxAgAAAACAmiM0NFRxcXG66aab1KtXLwUHB/s7JKDGCvF3APC+YcOGaf369Zo3b54kI9mbnp6ulJQURUVFKTs7W8ePH7f2b9CggaZMmaKQEJ4eAAAAAADAPaXvGwTA+1jRW0s8++yzuvfeexUaGipJKi4u1tatW/XTTz/ZJHmTkpL0/vvvKzEx0V+hAgAAAACAADN9+nS7tr/97W9+iASovViyWUuYTCY98sgjGjJkiBYsWKBVq1bp0KFDys/PV3R0tDp06KDBgwdryJAhCgsL83e4AAAAAAAggNxyyy26cOGC5syZo7CwMN13333q16+fv8MCahUSvQFk+PDhGj58eJXGSEpK0sSJEzVx4kQPRQUAAAAAAGq74OBgPfTQQ3rooYf8HQpQa1G6AQAAAAAAAFUSFRXl7xCAWo9ELwAAAAAAAFzy+OOP27WNGTPGD5EAKItELwAAAAAAACoUHx+vBx98UElJSda27t27669//asfowJQgkQvqo05c+YoJSVFAwYM8HcoAAAAAACgjLCwMMXHx2vz5s367rvv9P3332vNmjVq0KCBv0MDIG7GhmoiOzubdwABAAAAAKjGjh07JkmqU6eOLr/8cj9HA6AsVvTC7woKCjRhwgSdP3/e36EAAAAAAABJLVu2tGtr0qSJHyIB4CoSvfC7119/XVu2bFHdunX9HQoAAAAAAJDjG6ytXr3aD5EAcBWlG+BX33//vWbPnq0WLVrommuu0ezZs/0dEgAAAAAAtdpLL72kxx57TDExMfr666/VokUL3X///YqNjfV3aADKQaIXfnPy5ElNmjRJJpNJL7/8sr7//nt/hwQAAAAAQK1x+eWXa+XKlXbtderUUVBQkO677z7dd999fogMgDso3QC/mTx5sg4dOqS77rpLPXv29Hc4AAAAAADUKvHx8Q7bGzVq5ONIAHgCiV74xcKFC7V06VJ16NBBDz74oL/DAQAAAACg1rn00ksdtqenp/s4EgCeQOkGVFpeXp5OnTrlcv+QkBCbdwlzcnL0/PPPKywsTK+88orCwsK8ESYAAAAAALXegAEDtHz5cofnbr75ZtWpU0eTJ0/WkSNHJEnffvut4uLifBkiAA8h0YtKmzVrlmbOnOly//j4eOsPFbPZrMcee0xnz57V//3f/6ldu3beChMAAAAAUE1YLBb9+OOP/g6jVrr22mudJnqbNGmisWPH6p577lFBQYHq1Knj4+gAeBKlG+BT06dP1/r169WnTx+NHj3a3+EAAAAAAHzgzTff9HcIKOPKK6+07ptMJpK8QA3Ail5U2oQJEzRhwoRKX7dhwwZNnz5d9evX10svvSSTyeSF6AAAAAAA1c3ChQvt2kJDQ/0QSe3TsGFDNWzYUHl5eTbtbdu29VNEALyFFb3wmXnz5qmoqEjnz5/Xb3/7W1122WU22z/+8Q9J0sGDB61tS5Ys8XPUAAAAAICqOnPmjF3bZZdd5odI/KdLly5eG/s///mP03OhoaF67rnnbNpiYmL0xz/+0WvxAPAPVvTCZywWiySpoKBAubm5TvsVFxdbz58/f94nsQEAAAAAfOvtt9/WoEGDbNoOHz7sp2i8y9urlxMSEpye6969u1JTU3X99ddr/fr1ioyMVN++fRUVFeXVmAD4Hole+MxLL72kl156yen5t956S1OnTrW5eRsAAAAAoOZp0aKFGjVqZNduNpv19ddf+yGimis1NVWS1KZNG7Vp08a/wQDwKko3AAAAAACAauMvf/mLv0MIOPXr13fY3q5dOx9HAsCfSPQCAAAAAAC/SExMtGvLzs72QyTV31133eX0XEREhJKSkuzab7rpJm+GBKCaIdELAAAAAAD84rHHHvN3CAEjLS3N6TmTyaSsrCz16tVLkhQbG6s777xTTz/9tK/CA1ANUKMXAAAAAAD4Rc+ePdWyZUvl5OT4OxS/i4+P14EDBxyeu+2222QymZxe26JFCwUHB2vNmjXeCg9AAGBFb4CZMmWKUlJSNGDAALeuz87O1l/+8hcNGTJE3bt3V5cuXTRw4ECNGzdOn3/+uYqKijwcsevGjx+vbdu2cSM2AAAAAKhFGjdu7O8QqoUnnnjC6bnY2FhFRUU5PJeamqrg4GBvhQUggLCiN4Bs3LhRM2fOdPv6t956SzNmzLBL5ubk5CgnJ0dff/21UlNT9corrziskwQAAAAAANxTWFhY7vnIyMhyzw8cONBh+9ixY92OCUDNworeAJGTk6Nx48ZV+IPBmeeff15Tp061JnlDQkLUqVMn9ezZUw0bNrT2y8zM1KhRo5x+XAQAAAAAANh66KGHKuzTrFmzKs3RokULPfnkkzZtTZs21W9+85sqjQug5mBFbwDYvn277r77bh09etSt65cuXar33nvPejxo0CBNnjxZMTExkox3FRcuXKgXX3xR+fn5ys3N1fjx4/XRRx+VWwMIAAAAAABIdevWrbDPiy++qN69ezs936JFC6fnSv42f/7553X99ddr6dKlql+/vkaMGFHudQBqFxK91dzixYv19NNPKz8/363rCwsL9fLLL1uP+/fvrzfeeENBQRcXc4eGhmrkyJGKj4/X2LFjVVRUpM2bN+vTTz/VjTfeWOXHEIjcrVVsNpvLPQYABIbi4mK7tqKiIpufDzXhNd/Rz7vi4mK/1uyvjiwWS7X8mjh6zpnNZp/H6sr3SyDN543xvRlzZZ+fnv6+d2X+ysxZ2ed1ZfpbLBaHbc7iq6jNbDa79H/ryuN35/u5dOyO4ih9vrzxy4uvvHOV/do7+vqX9HV0ztEYzuZ01NcRZ18nT6hTp06FfUp/mtaRtLQ0p+dSU1OtX69LLrlEl1xyifVcdfwZBcA/SPRWU4cPH9Zrr72mRYsWVWmcZcuW6ZdffpFklGuYPHmyTZK3tH79+mnkyJGaM2eOJGn27Nm1MtFbXFysjIwMj4yVmZnpkXEAAL5V8rOztJ07d5ZbOy8QX/N37Nhh13bw4EGP/RwMVGX/6D99+nS1/Jo4KrW1a9cun8d67Ngxu7YtW7YoNzfXK/MdOnTIrm379u0e+ySao/F37NhRpRsdHTlyxK5t27ZtKigoqPRYZRM6Z8+erdT/+fbt2+3aDh065Pbz5uTJkxVee+LECbu248ePO7xu9+7ddm05OTlO59i5c6dd2y+//OKwv6OEnrP4Dx48aNeWnZ2t1NRU63FmZqbD5/mWLVtsvi+ys7MrjHH//v12fXbv3l3u17Z07I4SmKXP5+TkOB3f0WM4duyYMjIyHH4/5ObmKiMjw+FrUHZ2tmJjY+2+1qdOnbJbvFRYWGiNr+w5R98bJ0+edPg4MjIyHL5ul2WxWJSXl2fXfvbsWbs2d0omlnxi1hmLxaKtW7c6PX/99ddr7969Ts+npKRUy59FAKoXavRWQ9OnT9fgwYNtkryJiYm69957Kz3WkiVLrPt9+/ZV8+bNy+0/cuRI6/7mzZsd/iAFAAAAAKA6eOaZZzy2KlcyErKO3sCqSEREhLp06eL2vKGhoZKkl156ye7cFVdcYT0PAOUh0VsNzZo1S+fOnbMejxgxQvPnz1fr1q0rNY7FYtGaNWusx5dddlmF16SkpCg2NtZ6vHz58krNCQAAAACANzhbWe/KCtyCggK3P2ngag3clJQUt8Yv7eqrr9aYMWMUEREhSerQoYMee+yxKo8LoHagdEM1lpqaqokTJ6pXr15uXX/gwAGdOnXKZjxXpKSkWG/8tmnTJrfmDmRBQUHq3LmzW9eazWabj+6mpqZW6WN+AAD/cPQJmLZt29rUzqsJr/kXLlywa2vWrFm5NQJrg7IlAOrVq1ctvyarV6+2a0tMTPR5rI0bN7Zr69ixo+Lj470yX1xcnF1bcnKyxx63o/HbtWtXpfGbNGli15aSkqIOHTpUeqyQENs/4SIjIysVm6OVj3FxcW4/vujo6AqvdbQ6slGjRg6vc/TR9ZYtWzqd4+TJk3ZtzZs3d9jf0WN3Fn+zZs3s2pKSkmyOU1NTHX5cv2PHjjaJQUdlBMrG+NNPP9n1SUhIKPdrWzp2R6UbSp9fu3at0/Edlalo3Lix0tLSHNaUjYmJUVpamv73v//ZnUtKSlJaWprd62j9+vVtFjNJxgrWkvjCw8NtzoWFhTl8PL/5zW/07LPP2p0rq169eg7bSy+EKlFR3VxJ6t69u4qKihyWsijRtm1bh1/nEkVFReratavT8yVfV0maNm2apkyZovz8fNWvX7/C+AB4x6ZNmxy+vlZnJHqroV69emn48OG6+uqrq1RrbM+ePTbHrVq1cum60r+U7Nu3z+35A1nZX6DdFRwc7LGxAAC+46iefUhISLmv6YH4mu8o3qCgoIB7HN5mMpmq5dfE0RsL/ngeuvP9Up3n88b43oy5ss9PT3/fuzJ/Zeas7PO6Mv0dJXqdxe/o/6xsW3BwsEv/t648fne+n0vH7igRUfp8eeOXF1955yoTs8lkcvi3bUlfV/7uNZlM6tq1q+Li4spNuJb0dfQmlCMDBgzQ119/XW6f+++/X71799aTTz7ptE9ISIjT++GUKO9v8t69e9s9b8omwAGgIpRuqIamTZumgQMHVvmGEiWrciXjh3FFxeFLlC7dUHoMAAAAAAD86cEHH3Sp32233eZSv/vuu6/CPunp6S6NVZ5Zs2ZJktMVybfffnuV5wAAEr01WOmPMUVGRlb47mKJqKgoh2MAAAAAABAIBg0a5FK/oKAgl2vwVkXJat777rtPLVu2tDn36quvVstPjgAIPLySuGnAgAE6cOBAlcZISEjQ0qVLPRSRvdJ19+rWrevydaXrIRUUFHg0JgAAAAAAfCEpKUnZ2dk+m8+VUguxsbH6/vvv9cEHH+jIkSO68sordd111/kgOgC1AYneGqz0nUddXc0r2daQKioq8mhMAAAAAADURIMHD9bf/vY3h+fq1Klj3Y+Pj9cf//hHX4UFoBYh0VuDlS6OX5m7BJZO7oaGhno0JgAAAAAAappWrVrZlWQorUePHj6MBkBtRaLXTfPmzZPZbK7SGN6uwVP6YyOlyzhUpHS5htLvOgIAAAAAIElbtmzxdwgeUfoeNVVRkuS94447NHv2bJtzEydOVEREhEfmAYDykOh1U2xsrL9DqFB0dLR1/+zZs7JYLDKZTBVed+bMGet+gwYNvBEaAAAAACBAZWdna9q0af4Oo8puuOEGm0/Clqd+/fpOzz377LPW/VdffVXHjx/XsmXLVK9ePY0dO1bPPPNMVUMFAJeQ6K3BmjZtat03m83Ky8tTo0aNKrzu6NGj1v2YmBivxAYAAAAACEyLFy922F6Ze8NUB0888YTLfa+99lqn50onixs2bKhFixZVJSwAcFtgvQqjUlq3bm1znJOT49J1+/fvt+4nJCR4NCYAAAAAQGA7fvy4w/auXbv6NpAqcuUTryWSkpKcLoQq/WlaAPAnEr01WHx8vE3pha1bt7p0XVZWlnW/ffv2ng4LAAAAAFDDTJgwQY0bN/Z3GF510003OWy/7rrrfBwJADhGoreG6927t3V/9erVFfbPyspSbm6u9bhPnz5eiQsAAAAAUHOMHj3a3yG4rW7duk7PpaamWvfHjx9vl8z+17/+pcTERK/FBgCVQaK3hktPT7fur1ixQocPHy63/9y5c637SUlJSklJ8VpsAAAAAAB4WlhYWKX6P/jgg07PzZgxw7rfqVMnbd++XQsXLtTChQuVm5ur2267ze04AcDTSPTWcOnp6WrSpIkkqaCgQJMmTVJRUZHDvitXrtT8+fOtx6NGjfJJjAAAAACqt8zMTD300EOyWCz+DgWo0IABAyrV/+abb3Z6rk6dOjbHjRo10rBhwzRs2LAaX6oCQOAh0VvDhYWF6dFHH7Uer169WmPGjLG5MVtRUZE+/PBDjR8/XmazWZKUnJysESNG+DxeAAAAANXLL7/8oiuuuEJvvvmmv0MBXDJ+/HhJrt9sLSIiwum5Fi1aeCQmAPCFEH8HAO8bNmyY1q9fr3nz5kkykr3p6elKSUlRVFSUsrOzbe6a2qBBA02ZMkUhITw9AAAAgNpu2bJlysvLc3guODjYx9EA5evUqZP1edmlSxft3LnTad+SEg+RkZEaOnSoFi9ebHP+hhtuUFxcnPeCBQAPY0VvLfHss8/q3nvvVWhoqCSpuLhYW7du1U8//WST5E1KStL7779PMXkAAAAAkqSTJ086PcfNm+ENZrPZI2VCXnnllXLPd+7c2bo/Z84cPffccxo2bJjatGmj6dOna9GiRVWOAQB8iSWbtYTJZNIjjzyiIUOGaMGCBVq1apUOHTqk/Px8RUdHq0OHDho8eLCGDBlS6cL1AAAAAGqf22+/XQ8//LC/w0AVnT9/3t8h2Dlw4IBHxklISHB67r777rMuhJKMVb1PPfWUR+YFAH8h0RtAhg8fruHDh1dpjKSkJE2cOFETJ070UFQAAAAAaptly5Zp4MCB/g4DVVRcXKyhQ4f6OwyXlJRjiI6O9sh4vXv39sg4AFCdULoBAAAAAFApQUH8KVkTbNy4UZs2bfJ3GC4pKRNy3XXXuXyNyWRS3759HZ7r0aOHR+ICgOqEn84AAAAAANRCzkokdOzY0ceRVKykTEibNm3Uv39/p/3K3iDwgw8+sDmuV6+eXnrpJaWmpno8RgDwN0o3AAAAAAAAq9tuu82n81W0Qrx///6qU6eO9bhLly5asWKFw75lSzK0bNlSFotFFotFubm5atCggU1tXgCoSUj0wi/OnDmjOXPmaNmyZdq9e7cuXLigxo0bq0ePHho9erTS0tL8HSIAAAAA1DrvvPOOx+rgltixY4d27Njh9Pwll1yidevWuTyeyWRyeu6ll15yek1sbKzLcwBAIKJ0A3xu7969Gjp0qF577TVt2rRJBQUFCg0N1aFDh/TZZ5/p5ptv1j/+8Q9/hwkAAAAAtU55SVR3lZfklaQXXnihUuN17tzZYXt8fLwaNWpUqbEAoCYh0QufKioq0rhx47R//341bdpU7777rjZs2KB169Zp6dKl6t+/v4qLi/Xyyy/rm2++8Xe4AAAAAAAvKF2KoVGjRurQoYPL1/7+979XeHi4XfvIkSM9EhsABCoSvfCpL7/8Ujt37pTJZNKUKVN05ZVXKjg4WCaTSQkJCXr77bfVrVs3SdLUqVP9HC0AAAAAoLRt27ZV2MeVpO3VV1/t8pxla/jWrVtX586d09///nddddVVGjp0qF599VW9/PLLLo8JADURNXrhU99++60kqXv37taEbmnBwcH67W9/q/Xr1yszM1P5+fkO36kFAAAAABic3ZjMG7788ksVFxeX2+fVV19Venp6uX1ee+01l+e85JJLHLbfdddduuuuu1weBwBqOhK98KmOHTsqPz9fqampTvuUFMi3WCw6c+YMiV4AAAAALjt8+LC/Q/Cp48eP6/rrr/fpnF999VW556+55hqFhYWpoKDA4fnExERFRkbatLVt21Zbt2512P+JJ55wL1AAqGUo3QCfGj16tN58803dc889TvusXbtWklGzqWHDhr4KDQAAAEAN8PLLL+uBBx6QxWLxdyg+8cMPP+jChQt27REREeVe9/7771c4dnx8vKKjo92Kq6L5y3rqqaccto8aNUr16tVzKwYAqG1I9KJaOX78uObNmydJuvzyyxUSwqJzAAAAAJXz9ttva/369f4OwyecrZqtaJXvhx9+qO+++67cPsHBwZoxY4bbsVVGr169tGzZMpu2Jk2aaNKkST6ZHwBqArJoqLS8vDydOnXK5f4hISGKj4+vsF9RUZEee+wxnThxQkFBQbrvvvuqEiYAAACAGq5Zs2ZOz2VmZqp79+4+jMa3Fi9e7DTJe+mll+qWW26xHtetW9dhv4pKMEjSzTffbDOWMzExMRX2KREcHOywfeDAgTpz5ox++uknBQcH65JLLnEaOwDAHoleVNqsWbM0c+ZMl/vHx8dr+fLl5fYxm82aOHGiVq1aJUm6//77y63jCwAAAADt2rXTddddpyVLlvg7lErxVFmJsWPHaujQoXbtZUvlXXHFFQ6vP3/+vEvzBAcHy2w2Oz1/5ZVXKi4uzqatdevWOnHihMP+ffr0cTpWZGSkrrrqKpfiAgDYonQD/O7ChQt68MEH9emnn0qShgwZovvvv9/PUQEAAACo7kwmkxYuXKg//OEPXp/ryiuv9NiN3h5//HFlZGRU6hqTyWTX9sEHH6iwsLDCa1u2bKlp06ZVar7KmDt3rl2bs5q7kvTaa695LRYAqM1I9KLSJkyYoG3btrm8lbea9/jx4xo9erT1I0NDhw7VSy+95PCXGAAAAAAoq06dOho2bJjX5ykqKtIrr7zisfHGjRtn3f/hhx8q7N+rVy+7tvPnzzu8EZsjV199tV3bli1bXLq2Io7KK/z2t791uNr46aefrlSZBwCA6yjdAL/Zs2ePxowZo3379kmSbrvtNj3xxBMkeQEAAAD4VYMGDRy2u5MYdZbULFnRO3/+fP3jH/+ocJzZs2erY8eOlZ7fn+bPn6/nnntOK1askMlk0qBBg7i5GgB4ESt64ReZmZm6+eabtW/fPplMJj3++ON68sknSfICAAAA8Lvrr7/eYbK3vDq1zqSkpDiskVtSp9dZSYWyfxt16NBBt956a6Xnr6ygIPs0QevWrcu9JjQ01Gn7n//8Z61cuVLfffednnzySac3YgMAVB2JXvjcjh07dNdddykvL0+hoaH629/+prvuusvfYQEAAACAJCOxWXKj6KoymUz67LPPnJ53VvfXXzen7tmzp13bn/70J6f9e/XqpaioKG+GBABwEYle+NS5c+f0wAMP6MSJEwoLC9O0adN0ww03+DssAAAAALDRqVMnh3Vx3REVFaWBAwe63P8vf/mLWrVq5ZG5K+OWW25RWlqaXfvtt9+udu3aObxm/vz53g4LAOAiEr3wqRkzZmjPnj2SpCeeeMLhR5gAAAAAoLZq1qyZnnjiCZf7u1NOwpkJEyY4PTdv3jw1atTIehwREaHly5f7JSENAHCMm7HBZwoKCvSf//zHejx16lRNnTq13GsWLFigZs2aeTs0AAAAoFrbtGmTvv32W+Xm5vo7FHhZZcsg3H777S71a9GihcLCwlRQUOBGVFK3bt30yy+/aP369TKbzeratasiIyPdGgsA4B0keuEz27dv1+nTp63HrvyS6sl3pwEAAIBAtGDBAo0cOVLFxcX+DgWlbNmyRW+//ba/w3BZRESEnnnmmXJXC9erV6/cMerUqaM+ffp4OjQAgIeQ6A0wU6ZM0bRp0xQfH6/ly5dX+vrs7Gx98MEHWrNmjfbv36+ioiI1adJEycnJuvHGG3XNNdcoJMQ7T4vU1FRt27bNK2MDAADP2Llzp7766qsK+yUlJSkhIcEHEQF47bXXSPJWM8XFxdX6XiMtW7Z02P5///d/euqppxw+n7p06aK2bdt6OzQAgBeR6A0gGzdu1MyZM92+/q233tKMGTNUVFRk056Tk6OcnBx9/fXXSk1N1SuvvKLExMSqhgsAAALQ7NmzNXv2bJf6jh07VtOnT5fJZPJyVEDtduDAAafnOnbs6MNIUGLv3r3KyclxeK5u3bpem9eV19vOnTurX79+Ts8/+eSTeu655+zav/jiC17PASDAcTO2AJGTk6Nx48apsLDQreuff/55TZ061ZrkDQkJUadOndSzZ081bNjQ2i8zM1OjRo0q95dJAAAASXrnnXe0detWf4cB1FqtWrXSpEmT/B1GreSszm3Pnj0VExNTqbEsFovLfTt37lxhny+//FJ16tRxev6ZZ57RzJkzNWrUKN166616++23VVhYqLi4OJfjAABUT6zoDQDbt2/X3XffraNHj7p1/dKlS/Xee+9ZjwcNGqTJkydbfwEpLCzUwoUL9eKLLyo/P1+5ubkaP368PvroI97RBQCgBmvRokWVx8jKymJFIeAHa9euVZcuXbxWdg3uWbx4sct9z507pwcffFBZWVkuX3Pvvfdq4sSJ5fYJDw8v93xQUJDuvvtu3X333S7PCwAIDPxWUM0tXrxYTz/9tPLz8926vrCwUC+//LL1uH///nrjjTcUFHRxMXdoaKhGjhyp+Ph4jR07VkVFRdq8ebM+/fRT3XjjjVV+DIGobHkLV5W9eRw3kwOAwOSodmFRUZHNz4ea8JrfpEkT/eEPf9D777/v9hhms9ntn5uBwmKxVMvH6Og554//D1e+XwJpPm+M7+kx09LS1KVLF+s4leGof3FxcbnjVPW5Vpk53Z3LlescrZyt6Pu7Mqtt//SnP6lJkyZOx3M01ltvveWwr7MxIiIi9OmnnzqtD1yvXj3VqVOnWr5mAQC8j0RvNXX48GG99tprWrRoUZXGWbZsmX755RdJRrmGyZMn2yR5S+vXr59GjhypOXPmSDJq9NXGRG9xcbEyMjI8MlZmZqZHxgEA+FbJz87Sdu7cqcjISKfXBOpr/vjx49WvXz9lZ2dX2DczM1Off/65TduePXs89nOzuiibjDl9+nS1fIyOSm3t2rXL57EeO3bMrm3Lli3Kzc31ynyHDh2ya9u+fbvHPonmaPwdO3YoODjY7TGPHDli17Zt2zanH/8vq2y//Px8t/+ft2/fbtd26NChcsdz9JqYnZ2tRo0auTTniRMn7NqOHz/ucM7du3fbteXk5FT4ePfs2WPXtm/fPut1FotFn3zyiV2fkydPljv2uXPnyp23tIq+jq4u3gkNDS13nLp16yo4ONhhcvt3v/udNm/e7NI8AICah0RvNTR9+nS9++67Nr9UJCYmKj09XTNmzKjUWEuWLLHu9+3bV82bNy+3f+lE7+bNm5WTk+P0jq0AACDwBQcHq2fPnurZs2eFfSMjI+0SvQAQCD744AO9+uqrVR7H3XumSFK3bt20evXqCvsNHjy43PMNGjTQX/7yF7311ls2b/i88cYbuuyyy9yODwAQ+LgZWzU0a9YsmyTviBEjNH/+fLVu3bpS41gsFq1Zs8Z67MoP/ZSUFMXGxlqPly9fXqk5AQAAAKC6WbZsmcP2yq7UPnXqlP7yl7+4Va5n1KhRSk5OLrdP9+7ddcstt1Q41sCBA7V48WKtWbNGP/74o37++Wf169ePe6wAQC3Hit5qLDU1VRMnTlSvXr3cuv7AgQM6deqUzXiuSElJsd74bdOmTW7NHciCgoJcuputI2az2eaju6mpqVX6mB8AwD8cfQKmbdu2SktLsx7Xxtf8jRs32rW1adPG5utSE5RNlNSrV69aPkZHKwMTExN9Hmvjxo3t2jp27Kj4+HivzBcXF2fXlpyc7LHH7Wj8du3aVWn8Jk2a2LWlpKSoQ4cOLl0fFhZmcxweHu52PI7qxMbFxZU73nfffWfXlpSU5HIMjsp7NGrUyOH1e/futWtr2bJlhXPt2rXLrq1Vq1bW65wlZgcNGlTu2BEREXZtH3/8sT7++GO79oq+jpL0zjvvqH///k7PjxkzRl27di13DACAb2zatMlhnf3qjERvNdSrVy8NHz5cV199dZXekS1bp6pVq1YuXVf6Dtz79u1ze/5A5qm7FwcHB3MnZAAIQI7q2YeEhJT7ml4bXvMdJbJrw+M2mUzV8jFWl/8Pd75fqvN83hjf02NW5Tnp6LqgoKAKX98ctbkaQ2XmdHeuiq5z9HfVPffco4cffrjcsV2tQyxV/HWUVOGK3q5du1bL1xsAQGCgdEM1NG3aNA0cOLDKH7spWZUrGb90xMTEuHRd6dINpccAAAAAgEAxY8YMnTx50uG5xMREvfPOOwoNDS13jNtuu83l+Ryt/i2refPmGj9+vMNzDz30kHr37u3yfAAAlMVbhTVY6V9qIiMjHa4kcCQqKsrhGAAAAADgLStXrtRNN93ksfG+//57paen6/vvv3d7jN///vc6c+aMxo4dW26/kJAQDRo0yKUxp0yZonvvvVdbtmxRfn6+4uPj1b17dzVo0MDtOAEAkEj0um3AgAE2dzh1R0JCgpYuXeqhiOxduHDBul+3bl2XrytdA6ygoMCjMQEAAADVzaeffqoJEyZo27Zt/g6l1srJydGgQYPcusmZ5Lg0gyT9+OOPysjIqEpouu666yrs89///tflmsUmk0kdO3ZUx44dqxQXAABlUbqhBissLLTuu7qaV7KtoVVUVOTRmAAAAIDq5NSpU7rppptI8vrY+++/b3M/kBUrVig/P99h37I3o3OkvCTrU089ZXPzzMqqX79+uX9PtW/fXoMHD3Z7fAAAPIVEbw1W+oYElblLYOnkbkU1qwAAAIBAtn79+go/xRYdHe2jaGqPgoICpaSk6JtvvpEknTt3zmG/kJAQ9evXr8LxEhMT9dJLLzk8t2TJErfjlIxE77Bhw5yed7VkAwAA3kbpBjfNmzfP7Y8VlfD23VTDw8Ot+6XLOFSk9C+6derU8WhMAAAAQHVS0SfYunfvrsTERB9F4x/nz5/327x/+9vfdNVVVznts2jRIrVu3dql8SZOnKjQ0FD98Y9/rLBvZUrbScYK5CuuuELPPfeccnNzlZiYqOjoaA0cOFDPPfdcpcYCAMBbSPS6KTY21t8hVKj0yoOzZ8/KYrE4rV1V2pkzZ6z73BAAAAAAtU1qaqoSExPVuXNnPfTQQy79Dh3IXn75ZX388ceaNWuWS6tnK6thw4Zq1KiRjh8/bndu7969Tq/7/PPPK10SwdUEbnp6eqXHHTdunC677DJrW1pamtcX7wAAUBmUbqjBmjZtat03m83Ky8tz6bqjR49a92NiYjweFwAAAFCd3XPPPVq8eLGef/55ry3w6Nixo3r37q2FCxd6ZfzK2r59u37729/alHw7fvy4brrpJj300ENVGjsoKEh//etfqxqiS1z5ROL48eOdlnkAACCQkeitwcp+xCknJ8el6/bv32/dT0hI8GhMAAAAAAw//vijRowYoe3bt/tszvI+sXf48GGbvxkeeOABjyWi77rrLh08eNDhuc8//1z33XefR+a5/PLLbe5VUlZMTIymTJlCiToAQI1EorcGi4+Pt/lFbuvWrS5dl5WVZd1v3769p8MCAAAAPOqyyy5T/fr11aFDB82ePdvf4diJiIhweq64uFgrV670WSytW7fWpZde6vR86fuQlBdXVFRUpeeOi4uzq3ecmZmp6667rtJjOZOcnKyPPvpIbdq0cXi+NpTiAADUXiR6a7jevXtb91evXl1h/6ysLOXm5lqP+/Tp45W4AAAAAE85d+6cTp8+raysLN15553KyMjwd0g2Bg8erKAg5396lb4ZsreZTCYtWbJEf/nLXyrsW1hY6LC9devW6tatm6dDsxMWFubWdUOHDtXu3bt18OBBvfPOO3ruuef0wgsv6Ouvv9aTTz7p4SgBAKg+SPTWcKVvMrBixQodPny43P5z58617iclJSklJcVrsQEAAACV5cpK0lWrVvkgEtddcsklWrx4sW644QZ/hyLJKN/wxBNP6JFHHqn0tePGjdOKFSsUGhrq1tzlJbxLCw8PV8+ePd2ao0RcXJzuuecePfXUU/q///s/DRgwgNW8AIAajURvDZeenq4mTZpIMlYKTJo0SUVFRQ77rly5UvPnz7cejxo1yicxAgAAAK669tprK1zp6Wwlqj/dcMMN+u9//6ulS5f6OxS39e7dW2+//XaV7uPhykrgmJgYffbZZ6pfv77b8wAAUBuF+DsAeFdYWJgeffRRTZo0SZJRvmHMmDH685//rJYtW0qSioqKtHDhQr3wwgvWmlzJyckaMWKE3+IGAABA5a1evVr5+fnW45YtW6pr164ur6IMBJ06ddKXX36pd955R4cOHVJeXp42bNjg77A87ty5c/rjH/+o5cuXa9++fT6b97HHHtPw4cO1e/fuCj8N6I5XX31Vu3bt0tq1ax2ej4iI0IEDB9wu2wAAQG1GorcWGDZsmNavX6958+ZJMv4ASE9PV0pKiqKiopSdna3jx49b+zdo0EBTpkxRSAhPDwAAgEDy7LPP2rVdd911+vjjj2tU4uzKK6/UlVdeKUn65ptv1L9/fz9H5HkPP/ywZs6c6fN5Fy5cqIULF3pt/JYtW+rnn3/Wrl27NHDgQO3evdt6Ljw8XO+++26Neq4CAOBLZPJqiWeffVYNGzbUrFmzVFhYqOLiYm3dutWuX1JSkqZMmWJ3N1wAAAAEpiVLlujbb7/VNddc4+9QUAlff/2103Ph4eEemaOyK709uTI8MTFRu3btUk5Ojk6dOiWTyaSkpCTVqVPHY3MAAFDbkOitJUwmkx555BENGTJECxYs0KpVq3To0CHl5+crOjpaHTp00ODBgzVkyBDeQQcAAAgArVu3drnvjh07PJLoLSws1OOPP67Fixfr7NmzkqRTp05Vedza7osvvlDPnj3VrVs366fqLly44LT/4MGDPTKvK/VyS+vevbtH5i2tpJwcAACoOhK9AWT48OEaPnx4lcZISkrSxIkTNXHiRA9FBQAAAH8YMGCA+vXrp1WrVvlszhdffFFvvPGGz+arLRYvXqzFixerS5cuWr58uRo3buywX+/evXXdddfpySef9Mi8I0eO1PLly/Xee+9VeAO7K6+80mFpEAAAUH2Q6AUAAAACUHh4uL766iutXLlSOTk51vbMzEy99tprXpnz22+/dalfRESEV+av6TZu3Kjp06drwIABOnDggM25Hj166IcffvDofCEhIZo1a5beeustXXPNNVq9erXDfgcPHlRcXJxH5wYAAJ5Xc26/CwAAANQyderU0cCBA3XHHXdYt0GDBnltvoKCggr79OvXTw0bNvRaDK54/PHHFRUVpdatW+u5556TxWKx62M2m7V3714dOnTIp7FVVKrgT3/6ky677DIfRWOIiIjQp59+qtGjRyspKUmtW7dW69atNWjQIP3www8keQEACBCs6IVfLVu2TO+//742b96sgoICNWvWTAMHDtTdd9/t9z8QAAAAUL7g4GBdcsklkowbdXXr1k3PPPOMf4OSUUu4sLBQZ8+e1eTJk9WhQwf99re/tZ5fsmSJRo0apePHj/s8tg4dOmjYsGH6+OOPfT53eRo2bKh//vOf/g4DAABUAYle+M3rr7+uGTNmSJJCQ0MVFhamPXv26O9//7s++eQTvffee2rTpo1/gwQAAOV68MEH9dRTT5Xbp3Xr1po4caKuuuoq3wQFn4mOjtb333/v1xiioqIq7LNq1Sprore4uFijR4/2S5JXMm6SPG/ePK1cuVLfffedy3VvW7Ro4eXIAABAoKN0A/xiyZIlmjFjhkwmkyZMmKCff/5Z69at0/z585WYmKgjR47ogQcekNls9neoAACgHAcOHNDWrVvL3ZYuXaprr73WruYofOf+++9XcHCwdWvXrp0++OADf4flEV27dq1wcUDpG40dOHBAubm55faPjY31RGhOhYaGasCAAfq///s/l+oZh4WF6cEHH/RqTAAAIPCR6IXPFRcX680335Qk3XbbbRozZozq1q0rSerSpYtmz56tiIgI7dixQ4sWLfJjpAAAoLSSn9fuOH/+vFauXOnBaFBZxcXF1m3nzp269dZba0TyPSQkRCtWrNADDzygq6++2mF926VLl2rEiBG65557tHz58nLHa926tdLT070Vro06derooYcecnp+5MiRmj59ujIzMzVgwACfxAQAAAIXpRvgcz/88IN2794tSbrjjjvszsfFxWno0KGaO3euFi1apJtuusnXIQIAAAf69eununXr6vz5825d7+51qJz69eu71K+4uFhr1qzR8OHDvRyR97Vp00ZvvfWWJGPFbtkyB7t27dKuXbskSTNnzrS7Pi0tTVdddZVatmypW265RY0aNfJ+0L/6y1/+osGDB2vdunUqLi6WJNWrV0/XXHMNZcwAAEClkOiFz61Zs0aSlJCQoGbNmjns07dvX82dO1dr167VuXPnXPpIGwAA8K7mzZvrs88+00svvaQ9e/aU2/fMmTM6ePCgbwKDjR49eighIcH6xnp5vvrqK506dUqScTO1Sy65RB06dPB2iF4VHBxc6WuuuOIKvfHGG54PxgUmk0lXXHGFrrjiCr/MDwAAag4SvfC5HTt2SJKSkpKc9mndurUkyWw2a9euXUpNTfVJbAAAoHwDBgxw6SPkixYt0rBhw2zaHnzwQU2cONHpNVFRURo2bJheeuklhYTwa6q7QkND9c033+jNN9/Utm3brO379+/Xhg0bbPpOnz5d06dPt2mbMmVKQNeDbdq0qVq1aqV9+/a5fE1VypIAAABUF/wGDZ87fPiwJKNEgzNNmza17h89etTrMQEAAO87ffq0Tp8+7fT8kSNH9Oqrryo2NrbchDAq1qpVK/3tb3+zafvPf/6jW2+9tcJrH3roIdWrV0+nT5/W3/72N7Vr105hYWGSpMzMTK/E60kmk0kLFizQXXfdpU2bNrl0zTXXXOPlqAAAALyPRC987syZM5Kk8PBwp31Kr6oo6Q8AAAJHVcouTZo0SStWrHB6Pi4uTvfcc4/69u3r9hy1Udu2bV3ue+edd1r3c3JyvBGOV11yySXauHGjioqKZLFYdOjQIU2YMEEbNmyQxWKx9ouJidHdd99NohcAANQIJHrhc0VFRZKMjxU6U7JqRDLKNwAAgMBy6aWXqlGjRjp+/Lhb13/xxRflnv/Xv/6l9PR0tW/f3uH5+vXra+jQoerZs6fD8wcPHtT27dsdniu5IVZN06NHD40YMULz58/32JjVvcRGSXwtW7bUvHnz/BwNAACAd1Xv38xQI5Ws1i0sLHTap6CgwLpfXkIYAABUT/Xq1dOKFSv0t7/9zVqf35kffvjBrTm+/PJLffnll07PP//885Kk2NhYm/baWhYqODhYH3zwgZ588kmbG7U988wzysjIcGvMfv36eSo8AAAAVBGJXvhcZGSkJOn8+fNO++Tn51v3o6KivB6TJ1gsFj399NOaPXu2Tpw4Icm4ezUAIPCUfsMR7uvSpYv+/e9/V9jvhhtu0Geffea1OGprYteRoKAgpaWlKS0tzdp2ySWX6Morr1R2dnaF15d86iosLExXXHGF3Y3cAAAA4D8keuFzcXFxysjI0JEjR5z2Kblhm2R7Y7bq7L333tMLL7zg7zAAAAg4M2fO1J133qlVq1Y5/cTPhQsXfBzVRfHx8X6b2xfi4+OVmZmpH374QXl5eXbnY2Ji1Lt3b5vSWgAAAKh+SPTC55KTk/XFF1/YfGSwrL1790oy6qq1adPGR5FVTVZWlr9DAAB4UaB8wiQQNWvWTJ9//nmF/ebOnav77rtPJ0+e9EFUhqioKN13330+m89f6tatq6uuusrfYQAAAKAKSPTC53r37q233npLO3bsUG5urmJiYuz6rF69WpKUlpZmrelb3aWnp+ull16yuZMzAKBmaNu2rVJTU/0dRq13yy23aMSIETpw4IDTPufOndOf//xn7dy5s8I6/+vWrdP111/vtM5svXr1lJ6erlatWlUpbgAAAMAXSPTC53r06KG4uDgdOnRI7777rp544gmb8wcPHtQnn3wiyfiDLlBcddVV+vjjj/X2229bVxpFRUXJZDL5OTIAQFV06tRJEyZMoO56NRESEqLWrVuX22fu3Lk+igYAAACoPkj0wueCgoL06KOP6vHHH9e//vUv1atXT3fddZciIiK0ceNGPf744zp37pySk5N13XXX+TvcSrn++uvVokUL63FaWppCQvg2AwAAAAAAgHeRgYJfDB06VBs3btT777+vqVOnasaMGapbt67OnDkjSWrSpIneeecdBQcH+zlSAAAAAAAAoPrjM4jwmz/96U96++231bdvX0VGRurChQtq0aKFRo0apUWLFql58+b+DhEAAAAAAAAICKzorWWmTJmiadOmKT4+XsuXL6/09dnZ2frggw+0Zs0a7d+/X0VFRWrSpImSk5N144036pprrqlUqYKBAwdq4MCBlY4DAAAAAAAAwEUkemuRjRs3aubMmW5f/9Zbb2nGjBkqKiqyac/JyVFOTo6+/vprpaam6pVXXlFiYmJVwwUAAAAAAADgIko31BI5OTkaN26cCgsL3br++eef19SpU61J3pCQEHXq1Ek9e/ZUw4YNrf0yMzM1atQoHThwwCNxAwAAAAAAAKgYid5aYPv27br11lt19OhRt65funSp3nvvPevxoEGD9O2332rhwoWaM2eOVq5cqT//+c8KDw+XJOXm5mr8+PGyWCweiR8AAAAAAABA+Uj01nCLFy/W7373Ox0+fNit6wsLC/Xyyy9bj/v376833nhDMTEx1rbQ0FCNHDlSU6dOtdbn3bx5sz799NOqBQ8AAAAAAADAJdToraEOHz6s1157TYsWLarSOMuWLdMvv/wiySjXMHnyZAUFOX5/oF+/fho5cqTmzJkjSZo9e7ZuvPHGKs3vL2XrELvKbDaXewwAqDl4zQeA2oXXfQBAdUeitwaaPn263n33XZ07d87alpiYqPT0dM2YMaNSYy1ZssS637dvXzVv3rzc/qUTvZs3b1ZOTo5atmxZqTn9rbi4WBkZGR4ZKzMz0yPjAACqP17zAaB24XUfAFDdULqhBpo1a5ZNknfEiBGaP3++WrduXalxLBaL1qxZYz2+7LLLKrwmJSVFsbGx1uPly5dXak4AAAAAAAAAlceK3hosNTVVEydOVK9evdy6/sCBAzp16pTNeK5ISUmx3vht06ZNbs0NAAAAAAAAwHUkemugXr16afjw4br66qtlMpncHmfPnj02x61atXLpuhYtWlj39+3b5/b8/hIUFKTOnTu7da3ZbLb5CFdqaqqCg4M9FRoAoBrhNR8Aahde9wGgdtm0aZOKi4v9HUalkOitgaZNm+aRcUpW5UpG8jMmJsal60qXbig9RiAJCfHMt0ZwcLDHxgIAVG+85gNA7cLrPgCguqFGL5w6efKkdT8yMlJBQa49XaKiohyOAQAAAAAAAMA7ePvRTwYMGKADBw5UaYyEhAQtXbrUQxHZu3DhgnW/bt26Ll8XFhZm3S8oKPBoTAAAAAAAAADssaIXThUWFlr3XV3NK9mWPSgqKvJoTAAAAAAAAADskeiFU6VvLFCZ4tOlk7uhoaEejQkAAAAAAACAPUo3+Mm8efNkNpurNIa3C/+Hh4db90uXcahI6XINderU8WhMAAAAAAAAAOyR6PWT2NhYf4dQoejoaOv+2bNnZbFYZDKZKrzuzJkz1v0GDRp4IzQAAAAAAAAApVC6AU41bdrUum82m5WXl+fSdUePHrXux8TEeDwuAAAAAAAAALZI9MKp1q1b2xzn5OS4dN3+/fut+wkJCR6NCQAAAAAAAIA9Er1wKj4+3qb0wtatW126Lisry7rfvn17T4cFAAAAAAAAoAwSvShX7969rfurV6+usH9WVpZyc3Otx3369PFKXAAAAAAAAAAuItGLcqWnp1v3V6xYocOHD5fbf+7cudb9pKQkpaSkeC02AAAAAAAAAAYSvShXenq6mjRpIkkqKCjQpEmTVFRU5LDvypUrNX/+fOvxqFGjfBIjAAAAAAAAUNuR6EW5wsLC9Oijj1qPV69erTFjxtjcmK2oqEgffvihxo8fL7PZLElKTk7WiBEjfB4vAAAAAAAAUBuF+DsAVH/Dhg3T+vXrNW/ePElGsjc9PV0pKSmKiopSdna2jh8/bu3foEEDTZkyRSEhPL0AAAAAAAAAXyATB5c8++yzatiwoWbNmqXCwkIVFxdr69atdv2SkpI0ZcoUJSYm+iFKAAAAAAAAoHYi0QuXmEwmPfLIIxoyZIgWLFigVatW6dChQ8rPz1d0dLQ6dOigwYMHa8iQIQoLC/N3uAAAAAAAAECtQqK3Fhk+fLiGDx9epTGSkpI0ceJETZw40UNRAQAAAAAAAKgqbsYGAAAAAAAAAAGORC8AAAAAAAAABDgSvQAAAAAAAAAQ4Ej0AgAAAAAAAECAI9ELAAAAAAAAAAGORC8AAAAAAAAABDiTxWKx+DsIwN/Wrl1rcxwU5P57IMXFxR4ZBwBQ/fGaDwC1C6/7AFB7lH7Nl6QePXr4KRLXhfg7AKA6KvvN7O9xAADVH6/5AFC78LoPAKhueAsSAAAAAAAAAAIcK3oBB/gYFgAAAAAAQO0ViJ/coEYvAAAAAAAAAAQ4li0CAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEuBB/BwDAuWXLlun999/X5s2bVVBQoGbNmmngwIG6++671bBhQ3+HBwDwsry8PF1//fWqW7euli9f7u9wAAAecubMGc2ZM0fLli3T7t27deHCBTVu3Fg9evTQ6NGjlZaW5u8QAQAelJ+fr3//+99asmSJ9uzZo5CQECUkJOiGG27QLbfcojp16nhkHpPFYrF4ZCQAHvX6669rxowZkqTQ0FCFhYXp7NmzkqQmTZrovffeU5s2bfwYIQDAmwoLCzVu3Dh99913io+PJ9ELADXE3r17deedd2r//v2SpLCwMIWEhOjcuXOSpKCgID322GO68847/RkmAMBDjh49qttvv107d+6UZOR4TCaTCgoKJElJSUmaPXu2mjZtWuW5KN0AVENLlizRjBkzZDKZNGHCBP38889at26d5s+fr8TERB05ckQPPPCAzGazv0MFAHhBfn6+Hn74YX333Xf+DgUA4EFFRUUaN26c9u/fr6ZNm+rdd9/Vhg0btG7dOi1dulT9+/dXcXGxXn75ZX3zzTf+DhcA4AGPPvqodu7cqYYNG+rNN9/U+vXrtWHDBv39739XXFycsrOz9dBDD3lkLhK9QDVTXFysN998U5J02223acyYMapbt64kqUuXLpo9e7YiIiK0Y8cOLVq0yI+RAgC8Ydu2bRoxYoS++uorf4cCAPCwL7/8Ujt37pTJZNKUKVN05ZVXKjg4WCaTSQkJCXr77bfVrVs3SdLUqVP9HC0AoKrWrFmjH3/8UZL00ksvadCgQQoNDVVwcLAuv/xyvfLKK5Kk9evX6+eff67yfCR6gWrmhx9+0O7duyVJd9xxh935uLg4DR06VJJI9AJADXL+/HlNnjxZw4YN044dOxQTE6P+/fv7OywAgAd9++23kqTu3btbE7qlBQcH67e//a0kKTMzU/n5+T6NDwDgWatXr5YkxcfH66qrrrI736tXL0VFRUkyXverikQvUM2sWbNGkpSQkKBmzZo57NO3b19J0tq1a621vAAAgS03N1fz5s2T2WzWoEGD9Mknn6hTp07+DgsA4EEdO3bUoEGDHP6xXyI2NlaSZLFYdObMGR9FBgDwhkceeUSrVq3SO++84/B8cXGxSm6fFhoaWuX5Qqo8AgCP2rFjhySjGLczrVu3liSZzWbt2rVLqampPokNAOA9JpNJffv21bhx43TJJZf4OxwAgBeMHj1ao0ePLrfP2rVrJUl16tRRw4YNfREWAMCLYmNjrW/ilfXJJ5/o7NmzMplM6tOnT5XnItELVDOHDx+WZJRocKb0nRiPHj3q9ZgAAN4XHx+v2bNn+zsMAIAfHT9+XPPmzZMkXX755QoJ4U92AKhpzp8/r71792rBggX6z3/+I8ko3Vnegj9X8VMDqGZKPp4VHh7utE/JzdlK9wcAAAAQuIqKivTYY4/pxIkTCgoK0n333efvkAAAHrZ3716lp6dbj00mkx5//HHdeeedHhmfGr1ANVNUVCSp/NosYWFh1n2z2ez1mAD8f3v3H2t1Xf8B/Hnh3is3KWHQJcHih+1emVRzNTFyNXMha0UrR/RDymZiprJiFVTWxFiD5VbXS8hc1pq6Qpkz55xL0hyOzb9oBMaFSPRiSDgow4vcH9zvH3w9XhL0/joczv08Hpvb+835nM95/cNz88ln7w8AQPn09PRk2bJleeqpp5IkN9xwg+PZAEagffv2pa6uLm9729uSHD+Pfe3atfnlL385LPdX9MIZ5rWndbu6uk55TWdnZ2k9HId1AwAAlXH06NEsWbIkDz/8cJJk/vz5ueGGGyo8FQDl8IEPfCB/+ctfsmXLljzxxBNZsGBBDh8+nNbW1rS0tAz5/opeOMOcffbZSY6f2XIqR44cKa3Hjh1b9pkAAIDhd/DgwXz1q1/Nxo0bkySf+cxnsmrVqtTU1FR4MgDKoaGhoXT++uTJk7Ny5cosWrQoSfLrX/86Bw8eHNL9Fb1whnntJWz/+te/TnnNay9sS058MRsAAFAd9uzZk4ULF2bLli1Jkq985StZvXp1Ro8eXeHJADidrr766iTHH/hra2sb0r0UvXCGaWpqSpI8++yzp7zmueeeS5LU1tZm2rRpp2MsAABgmGzbti1f+MIX8vzzz5dexPPDH/7Qk7wAI8yePXvy5JNPZseOHae8prGxsbQ+dOjQkH5P0QtnmNmzZydJdu3alZdeeumk12zevDnJ8bNdXjvTFwAAOPPt2rUr11xzTQ4dOpS6urrcdtttueaaayo9FgBlsHz58ixevDitra2nvGb37t2l9ZQpU4b0e4peOMN88IMfzLve9a709vbmzjvvfMPn+/bty0MPPZQk+eIXv3i6xwMAAAapo6MjN954Y/7973+nvr4+a9euzac+9alKjwVAmXzsYx9Lkvz5z3/Ozp073/B5b29vbr/99iTHS973ve99Q/o9RS+cYUaNGpWlS5cmSX7729+mtbU1HR0dSZKtW7fma1/7Wjo6OtLU1JRPfvKTlRwVAAAYgHXr1mXPnj1Jkh/84Af56Ec/WtmBACirq666KpMmTUp3d3euvfbabNy4MV1dXUmSf/zjH7nxxhvz+OOPp6amJjfffHNGjRpaVVvT29vbOxyDA8PrJz/5Se65554kx8/iHTNmTA4fPpzk+Pkt69evz+TJkys5IgBl1tramjVr1mTKlCl5/PHHKz0OAEPQ2dmZOXPm5L///W+SZOLEiW/5nQ0bNuTcc88t92gAlFFbW1sWL16cF198MckbO576+vrccsstufLKK4f8W7VDvgNQFj/60Y/y4Q9/OPfee2+2b9+ejo6OnHfeebnsssty/fXXZ8KECZUeEQAA6KedO3eWSt4kp3wfR189PT3lHAmA06C5uTkPPfRQ7r777jz22GN57rnn0tXVlWnTpmXOnDm5+uqrM3Xq1GH5LU/0wv9oaWnJ2rVrB/X01O7du/P73/8+Tz/9dPbu3Zvu7u40Njamqakpn/70p/OJT3witbX+fQXgTCP7AYpB3gMUS9FyX9ELfWzdujVf+tKX0tXVNeAQaG1tzbp169Ld3X3Ka2bNmpWf/exnmTFjxnCMC8AwkP0AxSDvAYqliLnvZWzw/9rb2/PNb36zdCj2QKxcuTJr1qwpBUBtbW0uvPDCfOhDH8r48eNL123bti2LFi3KCy+8MGxzAzB4sh+gGOQ9QLEUNfcVvZDj52V9+ctfzoEDBwb83UcffTR33313aX/FFVfkySefzAMPPJB77703mzZtyq233pqGhoYkx8/iuummm+JheoDKkv0AxSDvAYqlyLmv6KXw/vCHP+Tzn/989u/fP+DvdnV1ZfXq1aX9ZZddll/84hcnvEG3rq4uCxcuzJo1a0pnt2zfvj0PP/zw0IcHYFBkP0AxyHuAYil67it6Kaz9+/dn2bJl+d73vpcjR44M6h6PPfZY/vnPfyY5/ij/j3/844wadfK/VpdeemkWLlxY2v/mN78Z1G8CMHiyH6AY5D1Ascj94xS9FNIdd9yRefPm5cEHHyz92YwZM/KNb3xjQPd55JFHSus5c+Zk8uTJb3p93xDYvn172tvbB/R7AAye7AcoBnkPUCxy/3WKXgrprrvuSkdHR2m/YMGC3H///Zk6dWq/79Hb25unn366tP/IRz7ylt9pbm7OO9/5ztJ+IG98BGBoZD9AMch7gGKR+6+rrfQAUEmzZs3KsmXLcvHFFw/4uy+88EJefvnlE+7VH83NzaUDwf/6178O+HcBGBrZD1AM8h6gWOS+opeCuvjii/O5z30ul19+eWpqagZ1jz179pywf8973tOv75133nml9fPPPz+o3wZg4GQ/QDHIe4BikfuvU/RSSGvXrh3yPV77F5skGTVq1AlvYXwzfR/r73sPAMpL9gMUg7wHKBa5/zpn9MIg/ec//ymtzz777FO+ifF/jR079qT3AODMJ/sBikHeAxTLSMl9RS8M0tGjR0vrMWPG9Pt79fX1pXVnZ+ewzgRAecl+gGKQ9wDFMlJyX9ELg9TV1VVa9/dfepKktvb1E1O6u7uHdSYAykv2AxSDvAcolpGS+4peGKTRo0eX1seOHev39/r+xa+rqxvWmQAoL9kPUAzyHqBYRkruK3phkBoaGkrrvo/4v5W+j/KfddZZwzoTAOUl+wGKQd4DFMtIyX1FLwzSOeecU1q/8sor6e3t7df3Dh8+XFqPGzduuMcCoIxkP0AxyHuAYhkpua/ohUGaNGlSad3T05NDhw7163sHDhworSdOnDjscwFQPrIfoBjkPUCxjJTcV/TCIE2dOvWEfXt7e7++t3fv3tJ6+vTpwzoTAOUl+wGKQd4DFMtIyX1FLwzSlClTTngs/29/+1u/vrdjx47S+oILLhjusQAoI9kPUAzyHqBYRkruK3phCGbPnl1ab968+S2v37FjR1566aXS/pJLLinLXACUj+wHKAZ5D1AsIyH3Fb0wBHPnzi2tn3jiiezfv/9Nr//d735XWp9//vlpbm4u22wAlIfsBygGeQ9QLCMh9xW9MARz585NY2NjkqSzszPLly9Pd3f3Sa/dtGlT7r///tJ+0aJFp2VGAIaX7AcoBnkPUCwjIfcVvTAE9fX1Wbp0aWm/efPmXHvttScc2t3d3Z377rsvN910U3p6epIkTU1NWbBgwWmfF4Chk/0AxSDvAYplJOR+baUHgGr32c9+Nlu2bMn69euTHA+CuXPnprm5OWPHjs3u3btz8ODB0vXjxo1LS0tLamv99QOoVrIfoBjkPUCxVHvunxlTQJVbsWJFxo8fn7vuuitdXV05duzYSd/QeP7556elpSUzZsyowJQADCfZD1AM8h6gWKo59xW9MAxqamry7W9/O/Pnz8+GDRvy1FNP5cUXX8yRI0dyzjnnZObMmZk3b17mz5+f+vr6So8LwDCQ/QDFIO8BiqWac7+mt7e3t9JDAAAAAAAweF7GBgAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAFBgW7ZsSXNzc+m/9vb2So8EAMAgKHoBAKDAtm/fXlqPGzcu7373uys4DQAAg6XoBQCAAutb9M6aNauCkwAAMBSKXgAAKLBt27aV1opeAIDqpegFAICCevXVV7N79+7SXtELAFC9FL0AAFBQO3bsSE9PT2mv6AUAqF6KXgAAKKi+5/NOnDgx5557bgWnAQBgKBS9AABQUH2L3gsvvPAtr9+6dWs+/vGPp7m5Oc3NzbnooovyyCOPlHNEAAD6qbbSAwAAAJXRt+h9q2Mb7rnnnqxatSpdXV1JkunTp2fNmjV573vfW9YZAQDoH0UvAAAU0NGjR/P3v/+9tD9V0fvKK6/k5ptvPuHJ3SuuuCI//elPM3bs2LLPCQBA/yh6AQCggNra2tLd3V3an6zo3blzZ5YsWZJnn302STJ69OgsXbo0X//610/bnAAA9I+iFwAACmjbtm2ldWNjYxobG0/4/MEHH8wtt9ySI0eOJEkmTJiQn//855k9e/ZpnRMAgP5R9AIAQAGd6nzeo0ePZuXKlbnvvvtKf3bRRRelpaUlkyZNOq0zAgDQf4peAAAooJMVve3t7VmyZEmeeeaZ0mdXXXVVli9fnrq6utM+IwAA/afoBQCAguns7HzDi9g2btyY73//+3n55ZeTJA0NDbn11lszf/78So0JAMAAKHoBAKBg2tra0tXVVdo/+uijeeCBB0r7adOm5fbbb09zc3MlxgMAYBBGVXoAAADg9Op7bEOSE0reyy+/PBs2bFDyAgBUGUUvAAAUTN+i96yzzjrhs9mzZ+ftb3/76R4JAIAhUvQCAEDB9C16Fy9enEsvvbS0X7VqVf70pz9VYiwAAIZA0QsAAAXS2dmZnTt3lvazZs1KS0tLmpqakiTHjh3Ld77znTcc7wAAwJlN0QsAAAWyc+fOE17ENnPmzIwdOzbr1q3LxIkTkyQdHR257rrrsm/fvkqNCQDAACl6AQCgQJ555pnSesKECZk0aVKSZMqUKbnjjjsyZsyYJMmBAwdy3XXX5fDhwxWZEwCAgVH0AgBAgWzbtq20njlz5gmfvf/978/q1atTU1OTJGlra8u3vvWt9PT0nNYZAQAYOEUvAAAUSN+zdy+44II3fD5v3rwsXbq0tN+0aVNWrFhxWmYDAGDwFL0AAFAQXV1dJ7yI7X+f6H3N4sWLc+WVV5b269evz69+9auyzwcAwOApegEAoCB27dqVzs7O0v5URW+SrFixIpdccklpf9ttt+WPf/xjWecDAGDwFL0AAFAQfY9taGhoyPTp0095bV1dXVpbWzNjxowkSW9vb7773e9m69atZZ8TAICBU/QCAEBB9H0RW1NTU0aNevP/HXjHO96RO++8M+PHj0+SvPrqq7n++uuzd+/ess4JAMDA1fT29vZWeggAAAAAAAbPE70AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOX+D7Ny4nMtKEUMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "check_B(r, deadtime, bintime, max_k=1000, linthresh=1e-16);" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 3036.28it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAARHCAYAAACGfj84AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT59sH8G8SAgiISFVwUSe4Z9U6q9aqtdZdrdZR67Za9561Vq3WiVatq646cWvrXuCeOKFOEBVR9s56/+Dl/HJICAmQgX4/19WrOSfnPOcJJifn3Lmf55ZoNBoNiIiIiIiIiIiIiEwgtXYHiIiIiIiIiIiIKO9hYJGIiIiIiIiIiIhMxsAiERERERERERERmYyBRSIiIiIiIiIiIjIZA4tERERERERERERkMgYWiYiIiIiIiIiIyGQMLBIREREREREREZHJGFgkIiIiIiIiIiIikzGwSERERERERERERCZjYJGIiIiIiIiIiIhMxsAiERERERERERERmYyBRSIiIiIiIiIiIjIZA4tERERERERERERkMgYWiYiIiIiIiIiIyGR21u4AEb2/fH19sXz5cgBA3bp1sXnz5hy3OXHiROzduxcA0LFjR8ybNy/HbZrDf//9h2vXrqF79+56n+/VqxeuXLkCABg2bBiGDx9uye6RCQIDA7Fr1y5cvXoV4eHh0Gg08PDwQOXKldG+fXs0adIEEonELMd+/Pgxtm/fjsuXL+PFixdQKpUoUqQIvL298fXXX+OLL76AnZ1pX+UXL16En58fbt26hTdv3sDOzg6enp6oWbMmOnbsiE8++cSk9lJTU3H48GH8888/uH//PqKjo+Hi4oKiRYuiSZMm6Ny5M7y8vExq8+nTp/Dz88O1a9cQEhKC2NhYODg4oFChQqhRowZatmyJ5s2b58rfffny5fD19QWQe5/F3G5z9+7dmDJlCgAgKCgox/0DAI1Gg759++LixYsAgE2bNqFevXpG72+Oz8WbN29w4MABnDlzBiEhIYiMjISjoyNKlCiBunXrolu3bihbtqzR7UVHR2PPnj24ePEigoODER0dDQAoWLAgKlasiCZNmqBjx45wdHTMsi2NRoPatWsjISHBpNc0YsQIDB061KR93mcf6nffixcv8PnnnwvLJ0+eRIkSJXLc7vXr1/H69Wt89dVXep9v3rw5wsLCAABz585Fp06dcnxMMo/c/m42RW6fzzUaDU6cOIEDBw7gzp07ePfuHfLlywcPDw98+umn6Ny5MypUqGBSH8PDw7Fr1y5cuXIFT548QUxMDOzs7ODu7o6qVauiefPmaNOmjVHXRJGRkahfv75JxweA+fPno3379ibvR/QhYGCRiCgXJSUlYfny5di4cSPatm2baWCRbJ9CocAvv/yCHTt26Dz37NkzPHv2DIcPH0ajRo0wd+5cFClSJFeP7+vri1WrVkGpVIrWh4aGIjQ0FCdPnkSVKlWwYMEClClTJsv24uPjMWHCBJw4cUK0PiUlBY8fP8bjx4+xe/dutGvXDtOnT0f+/PmzbPPx48cYMWIE/vvvP9H6qKgoREVF4f79+1i3bh1++uknDBgwIMsbk8TERMydOxe7du2CRqMRPadQKBAfH49nz55h3759qFSpEhYvXoxSpUpl2c/MPHz4EKtWrcr2/pZo88WLF/jtt99yrb1027ZtE4KKpjDX52LDhg1YtmwZEhMTdY734MEDPHjwAJs3b0b//v0xatQoSKWZD7rRaDTYsmULFi5ciKSkJJ3nX716hVevXuHUqVPw9fXFnDlz0LRpU4P9e/78uclBRSJziYqKwu+//w4/Pz/8+OOP1u4O5YA5vpuNZY7zeXh4OEaNGoXr16+L1qempiImJgbBwcHYvHkzvv/+e4wePRr29vYG21MqlfD19cW6deugUCh02kxMTMSLFy/wzz//YNmyZVi0aBGqVatmsM0HDx5k+TqIyDQMLBIR5aI5c+Zg586d1u4G5ZBGo8HIkSNFF/oODg7w8fGBTCbDf//9h/j4eACAv78/+vTpgx07dsDV1TVXjj979mxRhq+dnR18fHyQL18+PH78GFFRUQCAu3fvolevXti5cyeKFy+eaXspKSn44YcfcPv2bWGds7MzvL29oVKpEBwcjOTkZADAgQMH8OrVK6xfv97gBf/Tp0/x3XffCX0BgMKFC6N06dKIjo7Gf//9B41GA4VCgYULFyI2NhZjx47NtL3k5GT88MMPuHnzpmh9mTJlULhwYSQmJiIoKAipqakAgPv376NLly7YunUrfHx8Mm03MwqFAhMnTtS5UcmJ3G4zMjISAwcORGxsbK60l+7FixdYsGCByfuZ43Oh0Wgwa9Ys/P3338I6mUwGLy8vFC5cGOHh4Xj+/DkAQK1W488//0RMTAxmzZqVaZtz587Fxo0bRes8PDzg5eUFlUqFJ0+eCNmL7969w+DBgzF37lx07Ngx0za1b0Td3NxQpUqVTLfVZmq2LpExxowZg4CAAGt3g3LIHN/NxjLH+TwyMhI9e/ZESEiIsM7NzQ3lypVDUlISgoKCoFQqodFosGHDBrx58waLFi3KtD21Wo1Ro0bh2LFjovUlS5ZE0aJFkZqaiuDgYOEHqdDQUPTo0QN//vknGjRokGm72udzDw8PlC9fPtNtteX2D8hE7xMGFomIclFuBinIetavXy+62O7RowdGjx4tZAokJyfjr7/+gq+vL5RKJZ48eYLJkycLQ/9z4t9//xUFFVu1aoXp06ejUKFCANLeY3v27MHcuXORlJSEt2/fYvjw4fDz88s0I/C3334TblwkEgmGDx+Ofv36CUNAY2Nj4evri02bNgEArl69ioULF2LSpEl621OpVBg5cqQQVCxQoABmzZqFVq1aCX0IDQ3F1KlTcenSJQDAmjVrULNmTdFwQG1z584VBRVbt26NcePGiYYLJiUlYfPmzVi2bBkUCgXi4uIwZMgQHDlyxKjhrNpWr16d61kLudnmq1evMHDgQDx+/DhX2kun0WgwefJkncxAY5jjc7FmzRpRULFVq1YYN24cSpYsKay7f/8+pkyZgvv37wMAduzYgaZNm6J58+Y67R05ckQUVKxQoQKmT5+O2rVrC+vUajVOnDiBWbNmISIiAhqNBtOmTUPFihUzHZ738OFD4XHz5s0xd+7cTF8TkbnxWuP9kNvfzaYwx/l80qRJQlDRwcEBkyZNwjfffCMMT46IiMCcOXNw5MgRAMDhw4dRo0YN9O7dW297a9euFQUV69WrhylTpoh+TFQoFNi7dy/mzZuHhIQEKBQK/PTTTzhy5EimgUDt7+muXbti2LBhBv9WRJQ1Fm8hojxl3rx5CAoKQlBQkM3Or2iMzZs3C6/jQ5ljKq+IjIzEihUrhOXu3btjxowZouFHjo6OGDx4sChr6vjx47hx40aOjq1QKETDXps1a4YlS5YIQUUAkMvl6NatG5YvXy5crN+7dw+HDh3S2+ajR4+wfft2YXnMmDH48ccfRYE4V1dXTJkyRTSkbuvWrXjx4oXeNnft2iUEWuzs7LBq1Sq0bt1aFNgsWbIk1q5dK5rHaOHChVCpVDrtPX36FLt27RKWu3btiqVLl+rMQZYvXz4MHDgQS5cuFdaFhYUJN13GsvUh0P7+/ujYsSOCg4NzpT1tf//9Ny5fvmzyfub4XLx48UKYixJIu7FdunSpKKgIAJUqVcLGjRvh6ekprFuzZo1Oe2q1Gr///ruwXLFiRWzbtk0UVAQAqVSKli1bYtu2bShYsCCAtM+e9r4Zad+IZidDlsgaTp06JVxrcH5F22KO72ZjmeN8fv78eZw5c0ZYnjdvHrp37y6a87Bw4cJYvHgxOnToIKz7448/hMxIbbGxsaLv1MaNG2P9+vU651+5XI6uXbvir7/+goODAwAgLi5O9Poy0v6hyNS5HolIPwYWiYiItOzevVuYS83NzQ3jx4/PdNvOnTuL5mbbsGFDjo59/PhxvHz5EkBawG769OmZziXXqFEjdOvWLctjb968WQjmlSlTBv369cv0+MOGDYO3tzeAtEDLli1b9G6nHcjr3LkzatWqpXc7uVyO3377DXK5HEDanIxnz57V2e7gwYNCH93c3LLMxvj888/RsmVLYfnw4cMGt9emUCgwYcIEIeMnN+aryq02Y2NjMW/ePAwYMEA0xDy3hIaGCsEzU4ftm+NzsX79emFoe4UKFTB16tRMs25dXV0xePBgYfnmzZuIiYkRbXPlyhWhUAUAzJw5E05OTpn2s2TJkqIb9oCAgEz/7tqBRd6IElFOmeO72VjmOJ9rZ4o3atQIbdq0ybTNGTNm4KOPPgKQNl9oelFGbcePHxf6KJfL8csvvxgszFKtWjX06NFDWP7333/1/pCZkpKCp0+fCsv8oYgodzCwSEREpOWff/4RHn/55ZcGAxMARMG9c+fOZWuIabr04UEA0KBBAxQrVszoY9+7dw+hoaGi59VqNY4ePSosd+rUyWDRC6lUiq5duwrL2vume/jwoWh4bpcuXQz20cPDA82aNROW//33X51t0odLA2nDTLP6mwMQDal++PChEKDKyqpVq4RshQ4dOqBixYpG7WfuNnft2oUvvvgCGzZsgFqtBpCW3WFoXkpTaDQaTJkyRXh/Tpw40aT9c/tzoVAocPDgQWF5ypQpkMlkBtts3bo1evbsiWHDhmHy5Mk6N43a76PixYujRo0aBtsDxO8jtVotDLfWFhkZiTdv3gjLDCwSUU6Y47vZFLl9Po+JicGFCxeE5c6dOxtsz8nJCe3atROWs7ouqFmzJooWLWqwTUB8Po+Ojta5JgKAoKAg4bvDxcUlV6qzExHnWCQiC4uPj8fff/+No0ePIiQkBEqlEkWKFEGdOnXQtm1bfPrppwb3nzhxovDLZseOHXWGQ+/Zs0fIdvrhhx8wYcIEqNVq/Pvvvzh8+DAePHiAt2/fIl++fChRogSaNm2Kb7/9FoULF87R69L3i+fevXtFv8IGBQUJj3v16oUrV64ASPslOuNwaF9fX2Eem5kzZ6J79+5ITEzEwYMHcfDgQTx79gyxsbEoVKgQKlSogG7duuGzzz4TtfH06VNs374d/v7+QhZciRIl0KRJE3z//fdGv+bIyEjs2bMH58+fx9OnTxEVFQUnJycUKVIE9erVQ7t27bKswJdXREdHizKTGjVqlOU+n376KWQyGVQqFZKTk3HhwgW0aNHC5GNrNBrRENWGDRtmuY+Pjw8KFy6MiIgIAGnD3vr06SM8//DhQ1EGljGvR/u4L1++xMOHD0WBFO2L/QIFCqBq1apGtZk+T9KZM2eg0WhEmWnv3r0THpctWzbL9oC0LAtt0dHRWU6s/uDBA6xevRpAWtBu8uTJOZ5bKbfa3LJli1BQBABatGiBmTNn4smTJznqXzrtIdCNGjVC586dMXnyZKP2Ncfn4vr160JRmlKlSqFu3bpZtlmwYEFMmzYt0+cjIiIglUqhVqtRrly5LNsDdN9H+jIWtV+7p6enzj6W8PjxY+zduxdXr17Fs2fPEB8fDxcXF7i7u6N69epo0qQJWrVqZTA4++LFC9GNt77v0Jy4ePEi/Pz8cOPGDbx58wbOzs7w8vJCmzZt0LVrVzg7O5vcZm5//6jVapw+fRoBAQG4efMmIiIiEB0dDblcDldXV3h5eaFOnTro2LGjzpD8zCQmJmLPnj04duwYgoKCkJCQgEKFCqFKlSro2rUrmjRpYvLr1ifjv1+65cuXC9cLxYsXx6lTp4TnmjdvLmTxzp07V2c4tPY11Zo1a9CkSRNER0djz549+PfffxEaGorExER4eHigatWq6NGjh87UAnfv3sWOHTtw5coVvH79GnZ2dihVqhRatGiBnj17Gp3BHRYWhr1798Lf3x8vXrxAdHQ0XFxcUKxYMTRo0AAdO3Y0+vvB1pnju9lY5jifX7lyRQjWSSQSo65fGjZsKGQ/3rhxAzExMShQoIDw/Nu3byGRSKDRaHJ0Pi9VqpRonfYwaB8fn0yz5M0pMDAQBw4cwPXr1/HixQskJSUhf/78KFSoEGrVqoXmzZvrXNMT2ToGFonIYgIDAzFixAghyJXu2bNnePbsGXbt2oXPPvsM8+bNg7u7e64c88WLFxg7dqxOpdmUlBRER0fj7t27WL9+PWbMmCGa88XWBAYGYuzYsUJ11HRhYWEICwvDyZMn0bVrV8ycORMymQwbN27EggULdCZ4Dw4ORnBwMPbs2YPVq1dneUP2119/YdmyZcJwlHSpqamIjo5GcHAwNm/ejNatW+OXX37JcVVk7cBwTui7gTJGUFAQNBqNsFy5cuUs93FycoKXl5cwtObOnTvZCiyGhYWJqv8aW3XWx8dHCCzeuXNH9Jz2BbRcLjeq8mHp0qXh6OgoVKK8c+eO6OZFu82KFSsadVGuvX9MTAxCQkLw8ccfC+uOHj2KlJQUhIeHGx18yDjHlPYNiT4ZKzbPnDkzy32yYo42S5UqhbFjx+KLL74AgFwJLGoPgXZxccHs2bNN2t8cnwvtebrq1atnUn8y8+uvv+Lnn39GREQElEqlUftkfB/pO4dZcxi0Wq3GggUL8NdffwmZrOmio6MRHR2NJ0+eYO/evShVqhR+++03ozI1c1NkZCQmTJiAc+fO6e1fYGAgtmzZgiVLlpjUbm5///j7+2P27NmiYZDpFAoFEhMT8fr1a1y5cgWrV69G//79MXLkSIPnuAsXLmD8+PHCOTjdq1ev8OrVKxw/fhytW7fGTz/9ZMIrt56zZ89i8uTJePv2rWj98+fP8fz5cxw6dAjDhw/HsGHDoFKpsHTpUqxZs0bnvXn37l3cvXsXfn5+2LBhg8EgrUqlwpIlS/DXX3/pZJ5HRUUhKioK9+7dw/r169G1a1dMnjw5x1WRtX+8zYlNmzZl6/xlju9mY5njfK79ekqUKGHU96B239VqNe7duyeq5LxhwwakpqbizZs3BodAa7P183lKSgqmTJkiytZPFxkZicjISAQHB2P79u2oXLkyFi1apBMYJbJVDCwSkUWEhYWhX79+QuCkYMGCKFu2LJKSkhAUFCTcBJ49exa9evXC5s2bcxxcjIyMRN++fYUKda6urihXrhw0Gg0eP34s9CUxMRGTJk2Ch4eHqNCEKdJ/8Q0ODhaGzBUpUkSYEycngoKC8PvvvwuTWxctWhQlS5ZETEwMgoODhQvEnTt3onz58lAoFJg/fz6AtKp8FSpUgEwmQ3BwsNBGZGQkhg8fjn/++UfvEJj0YZN+fn6i9R9//DE8PT2RmJiI4OBgpKSkAEgbxvLff/9h48aNOc7+tKZnz54Jj+3t7Y0aegOkXUinX3Cnv99ycmwA8PLyMvrY6TIeW7vN4sWLG3VxLpFIUKxYMSGglTGYrd2mdnDQ2D6mt5lxXwcHB6NfMyAeCla8eHFh0vbM/PHHH8LNT9u2bbMV/DVnm5UqVULfvn3Rtm1bo2+ijJGxCvT48eONfl+nM8fnQjuDW/um+sKFCzhw4ABu3ryJ8PBwODg4oGTJkmjWrBm6d++e5feCnZ2dSa8v45DCMmXK6GyTsXDLmzdvsGfPHpw7dw6PHz9GQkIC3Nzc4O3tjebNm6Nz587Ily+f0X0wZM6cOaIq8Y6OjihbtixcXV0RHR2NkJAQIfD27Nkz9O3bV/gusITIyEh89913ogC4XC5HhQoV4OjoiMePHyMyMhIvXrxA//794eLikmWb5vj+OXLkCMaNGycKOBcpUgReXl6Qy+WIiYnBo0ePhMCWUqnEqlWrkD9/fvTv319vmydOnMCIESNEbX700UcoU6aM0EeFQiFk/uWUo6OjcK1x584dYY5RLy8v4dypXejLVBcuXMDmzZuF1+Pl5QVPT0+8fftW9O/r6+uLihUrIiAgAFu3bgWQ9oOFt7c31Go1Hj58KAS/QkNDMWLECPj5+ekN0KampmLo0KE4f/68sE4ikaBs2bIoVKgQYmNjERwcDKVSCZVKhW3btiE4OBhr1641asoMW2WO7+bsHDu3zufZuS4oXLiwKFD6/PlzUWAxvX+mDFXWPp87OjqiePHiOttkPJ+HhITAz88PAQEBePbsGZKTk/HRRx+hUqVKaNmyJb7++utc+04eOXKkKKPYxcUFZcqUgbOzM969e4eQkBDh73Hv3j307NkT+/fvF+ajJLJlDCwSkUWkD8VJr3D39ddfC0O2IiMjsWDBAuzZswdAWqW8mTNnYtmyZTk65r59+wCkXehPmjQJbdq0EY6ZkpKCjRs3YvHixVCr1VCr1Vi0aJGoMq0p1q1bB0A8rKhhw4a5Msxs27ZtANIymWbNmiX6dfzhw4fo37+/kC2xePFiJCUlQSKRYPDgwRg4cKBw8Z2YmIjffvtNqEL4+vVrHDx4UDR3Tro1a9aIbuo+//xzjB07VnTTnZSUhO3bt2PJkiVITk7G48ePMXr0aPz1119ZzpWWGQ8PD6OG5RjTTnZoZ52YEiDV3jZj5kp2ji2VSo2+QTR0bO3lrIYJaytUqJBw85KxTe255oz9G7m7uwvDqPS1aaqLFy8KUwkAacP9DLl37x7+/PNPAGnngylTpuTo+OZoc+7cuTnukz5btmwR/lb169fX+3nPijk+F9qBFg8PD4SHh2PatGk6xX2SkpIQHR2NO3fu4K+//sKMGTPQtm1bU1+CXpGRkaIiCN7e3npvYrWzca5evYqNGzcKN3/pIiIiEBERgYCAAKxatQq//vprjoeypWfkpfvxxx8xcOBAUdXYlJQU/P3331iwYAFUKhUSExOxaNEirFy5MkfHNta0adNEQacePXpg5MiRQsaSSqXC0aNHMWvWLERFRYmG+2cmt79/3r59ixkzZggBM29vb/z66686GftJSUnYuXMnFi5cKAQt//zzT/Tp00coQJXu5cuXmDBhgtCmm5sbZsyYgdatWwtz5UVHR2PZsmXYunUr7t27l+XrzkqhQoWEaw3t6VTatWunM51KdqQPS61RowamT58uymS7ePEihg4dKvqBIj4+Hvb29hg3bhy6d+8u/I2ioqIwdepUnDhxAkDauTIgIEDvd/vs2bNFQcVvvvkGw4YNE1WAj4mJwbp164TMyOvXr2P69OkGq7hnxcvLK1euNbKboW6O7+bsHDu3zufZuS4A0r470+8Pcnpd8PjxYxw6dEhYrl+/vuhcCaT9aKH9o9ahQ4fw888/68zX+/r1a7x+/RqnTp3CqlWrsGDBghxP+XPmzBkhqCiVSjF9+nR06dJFdG6Ji4vD6tWrsWbNGgBpf5OVK1di6tSpOTo2kSUwsEhEFuPk5IRNmzbpFDZwd3fH3Llz4ezsLNxEHT16FNevX9eZy8dUBQoUwPbt23UyoRwcHDBw4EDExcUJwYHAwECEh4dnOyhlTkWLFsX27dtRsGBB0foKFSpg/PjxGDduHACICjP07dtXtK2TkxNmzpyJW7duCTfKFy5c0Ak0hIaGYunSpcJyz5499c5rli9fPvTt2xdVqlRB3759oVAocOXKFezZswfffPNNtl5nw4YNjZqbx1y0b3pNqeyrnYWTsVKtsbT3c3Z2NjiRu7HHzu7r0d42Y5vay8a2KZVK4eTkhLi4OAAQDfk2VXR0tOgiWy6Xi+aVzCg1NRUTJ04UAgDTp0/PcTa0Odo0h5CQECxcuBBA2uff1CHQ6czxudAeapmYmIgePXoIw9jy5csHb29v2Nvb48mTJ8IcnLGxsRg7diyio6PRs2fP7LwUgUajwbRp00SvTV9V1owVRNOHcMtkMnz88ccoXLgwYmNj8ejRI2FIfEREBIYMGYJZs2ZlWdzIkPR5SQGgWbNmeofTOjg4COff9H/r8+fPIzExUSejq0SJEqKb6py6du2aEDwCgMGDB2PUqFGibWQyGdq0aYPy5cujW7duOsOaMzLH98+2bduEc07+/Pmxbt06vcGcfPnyoU+fPpBKpcJnJSYmBoGBgTrXIsuXLxdGADg6OmLjxo06wyrd3NyEc4Ovr6/B120rKleujI0bN+oEZOrXr4+BAwcKw9nTX/vChQvRsmVL0bYFCxbE77//jhYtWgif8wsXLugE8q5du4YdO3YIy+PHj9f7GSxQoABGjx4NHx8fjB49GgBw8OBBdO7cOdujTNq3b4/27dtna9/cYI7vZnMf29D5PDvXBRm3zcl1Qfp3svb0P/oyjZ8/fy4qPJMenJfL5ShdujQKFiyIqKgoPHr0SBje/+zZM/Tq1Qu+vr45mi9VO5vyu+++Q/fu3XW2yZ8/P8aOHYvY2Fjhs3H06FEGFilPYFVoIrKYESNGGKyWOn78eNGwhfRMvZz4/vvvDQ6vzPjFnps3Xbnpp59+0gkqpvv8889FQ4yKFy+eaaBFIpGgadOmwrK+YbsbN24UAiYlS5bMsnpsnTp10Lt3b2E5PeshL9Ke3ynjjZUh2vM9GVudOKP0DJncPLY5Xk9u9FO7DVOkpqbip59+Es2j1KtXL4Pzd/3xxx8IDg4GALRq1QqtW7fO1rHN3WZuSx8CnZSUBAAYO3ZstqtfmuN9pH0T+euvv+LFixdwcHDApEmTcPnyZezcuRNbtmyBv78/VqxYIWTBaDQazJ07F9euXcvWa0m3ePFiUVCsWrVqoiql6bQriAJp59A+ffrg1KlT+Oeff7Bp0ybs27cPly5dwsiRI4XsE5VKhZkzZ+aon9pZQFn923Xp0gW1atXC119/jQEDBuSoOr2x0kcFAGkZ9Yay5sqXL48RI0Zk2aY5vn+0C0598803WWaIZQyUhYeHi5ZTU1NFVXUHDBhgcK62oUOHGjWPnS2YMGFCpp/xjFM91K5dW+dvlS5fvnyioJ++a4307Mv0tvQFFbV99dVXonPt+vXrDW5vy6x5rfG+XRekf9cFBgYK61q1aoVPPvlEZ1vtYdBAWkBxxIgROH/+PA4ePIhNmzbh4MGD8Pf3x/fffy9cWycnJ2PUqFE6U9aYQvt8rm+ItrbvvvsOderUQadOndCtWzedDHkiW8TAIhFZhJOTU5ZZbPb29qKCG+fOnRNNMJ0dmV30pitWrJgoqyM9o8qWSCQSg6/D2dlZlC3VpEkTg9lu2hmZ+l7v8ePHhcdt27bVGQKmj3bhm8ePH+fKfFLWoP1rt7EZgwBE8+8YWzTCEsfObpvaQwkztqm9bMqQd0NtGiM1NRXDhg0TVc6uXr26kMGiz71794QhRelDFXPKHG2aw+bNm3H16lUAacGXHj16ZLstc7w3tW9MY2NjIZfLsWbNGnz//fei+TKlUilatGiB7du3CxU/lUpljqaZ+OOPP4RK3kBaRtTixYv1vjbtYb5SqRRLlizB5MmTRUM1gbRsniFDhmDNmjXC61YoFJgzZ062v8e0j7F3717cvn07023d3d2xbds2/P777xgxYkSO5tozlvaw9U6dOmU5D1nnzp2zDDqY4/tn69atuHz5Mnbt2qWTya9PxqGcGW/qr1y5IgRuJRJJltc2UqlUb3aSrXF3dzdYiCTjDzjNmjUz2J6ha43k5GTREOiOHTsa1Uftf+uLFy9mOxhlbeb4bjb3sQ2dz7WXLfl6NBoNpk+fLiqGUrJkyUyz87Wzzx0cHLBp0yYMHTpU54f79CmUtKcoiY+Pz9Hwe+3z+caNG/UWkUrn4+ODLVu2YO7cuRg2bJhJwVoia2FgkYgsombNmkZVe9X+hTF9MvXsksvleifiz0i7alzGKsq2oFixYllOeK990VG6dGmD22rftGes5BgWFobXr18Ly2XLljWqj+XLlxf1Qbvia16ifZGb8W9jiPYFsTE3wpY6dnbb1M7QMtRmxnmJjG3T1Iqe8fHxGDhwoCiQUaxYMfj6+mb69844XHnq1Kk5ngDdHG2aQ0hICBYtWgQg7dzw66+/GlW9OzPmeG9m7E///v0NBjVKlCiB8ePHC8t37tzBrVu3jO5LugULFoiG2srlcixdujTTjMAOHTrg9u3bOHToEHbs2JFldmr9+vVFmVf37t3D9evXTe4nkJZ1k/53io+PR7du3dCvXz9s2rQJjx8/zlabueX58+eiDBxjpi1xcXExWO3enN8/bm5uqFatmsFsRYVCgTt37ogy6QDd81x6wB5Ie18aM33Kp59+muU21lauXDmDz2cMbuTkWiMwMFB0vWXsv7X2+yf93ysvMsd3s7mPbelrjawoFAqMHTsWO3fuFNa5urpixYoVmVaIHzp0KK5fv479+/dj586dqFWrlsFjdOzYUTSn7/Hjx/Hy5UuT+pmuVatWwuNXr17h66+/xo8//oidO3fqVLMmyos4xyIRWYQxAT5A90L11atX2a5u6erqatQvp9m9ILIUUwMXWQUhDQUYMg5XGjt2LMaOHWvS8QHdoWN5RcaiCMbS3jar6sSZ0a4ia8qxtTO/Mh7bHK/H0dFRmF8ru22aElh88+YNBg8eLCp+4Onpib/++svgDf2KFSuE4crNmzfH119/bfQxLdlmbtNoNJg0aZIwBHrUqFFGV+nMjDneR05OTsJwaIlEYtSciV9//TVmz54tZIsFBASgRo0aRvUlNTUV06dPF4prAf8LKmY1T5ujo6NJ30M9e/YUZUT6+/vrHZaXlbJly2LQoEFYtWoVgLR/W39/f/j7+wNIywhr0KABGjdujMaNG2d6M20O2kFFwPhKsGXLls10eLilvn9iY2Nx//59hISEICQkBKGhoXj69CmePHli1I+L2q/d2NddokQJUQVcW2TJa42MFY2zm9GZ8X2YV1jzWsNc1wW53aYh8fHxGDFihHAuBNLmJ1y7di18fHwM7uvi4mJw6oKMevXqJSoKExAQkK15xJs0aYK2bdsKbSkUCpw4cUKYksPLy0s4nzds2FB0TUiUFzCwSEQWYewNT8ZJn7M7OTVg2jwvtszUi8ecZCbl5O+dG+0EBATkyrxJP/zwQ7aKwKQPtQT+Nzm9MbQLEmi3YQrt6pIJCQnQaDRG/Vtq9zPjsbP7egy1WaBAAeF5Y9tUq9WiOd+M/Rs9fPgQgwYNEmUxlSxZEhs2bDA4r+Ldu3exdu1aob8///yzUcczxBxtmsOmTZuEwE3NmjVF889llzk+F87OzkJg8eOPPzZq6K69vT0qV64sZIxpD1M2JDo6GsOHDxdVEs+XLx+WLl2a48rN+hQpUgQlS5YUhuRmDKKYYuTIkShSpAiWLFmiU9wgPDwce/fuxd69eyGXy9GoUSMMGDAgx0XPjJFeUCddVkGmdIaq6Jr7++f06dPYsGEDrl69avBHRDs7O4PDMiMjI4XHxr5uiUSC/Pnz23Rg0ZLXGjkp1KHNmCrj+uzfvx8HDhzI8fHHjRtnUpAqnTm+m819bEPnc+3PtblfT1hYGAYPHiz8yAekFQxas2YNqlatavSxjVWlShXI5XLhR4ecnM/nzZuH0qVLY82aNTrngvQfOrZv3458+fKhefPmGDJkSLaTK4gsjYFFIrIpGeeiel+CgzmRk4t3U2W8mapTp062fhU3FPQxJDw8XPQLdHZ99dVX2dpPOwMu442zIREREcLj7M5tpn1slUqFqKgooyoNGzq29rA/U16PdsXejPONeXh4ICwszKQ2IyMjRTfyGdvU59SpUxgzZowoIFmxYkWsWbPG4P6pqamYNGmS8F6eNGlSlsUasmKONs3h+fPnWLx4MYC0IMGcOXNMmu8qM+b4XBQsWBCvXr0SHhtL+zNhTFDh6dOnGDx4sGjSfTc3N6xcuTLLYXA5UahQISGwmJOAmUQiwXfffYeOHTvi+PHjOHHiBAICAnSqKysUCpw+fRqnT5/WW505t2V32hBD2crm+v5RKBSYMmUK9u/fr3d7JycnlC1bFpUrV0bt2rXRuHFjg0OXzfHabYE1rzUyVow2VnbPwyEhIblyrTFw4MBs7WeO72ZjmeN8nt02tbc15vXcvn0bQ4cOFf0dihcvjrVr1xo9MspUdnZ2cHNzE15/Ts7ncrkcw4YNQ69evfDPP//g5MmTuHz5sk6WZ1JSEg4fPox///0X06ZNyxNztBIxsEhEFpHxJigzGX/FtuTQLtL9e0+bNi3LYSXvE+1hbYmJiXj79q1RgULtYgFZzTtlzLHT2zQmsKg9N0/GY5cqVUq0nTFZkBqNRggcZmwjfTl9DjN9lT71yVhMIWObGW3duhWzZ88WBSMbNWqEpUuXZpkhdOzYMSGTQSaT4dChQ6JhTBlpV4I/cOCAaN6+9GwUc7RpDuvWrROGQDs7O+PXX381et8FCxaIsk6055kzx+eiXLlyuH//PgDTimaZUjzoxo0bGDJkiCgAWaJECaxZs8ZsN6HptG8UjZlfOCtOTk5o37492rdvD6VSicDAQFy+fBkXLlzAjRs3RH+XVatWoUKFCvjyyy9zfNzMZPyuiI2NNWronqFsJnN9/yxatEgUVCxevDjat2+PGjVqwNvbG56enqLzYlZFJLRHVpjy3jUlk+t9l/Hf2phz+/vEHN/NxjLH+Vy7L8ZeF7x580aUtZfV6zlx4gRGjx4tOrdWrlwZq1evznaQ1VjaU87kxvm8QIEC+Pbbb/Htt98iJSUFN27cEM7nd+7cEa59VCoVfv75Z1SqVAnVq1fP8XGJzImBRSKyCGMnJs5YrCWnc4ORaTLOWffq1SuLBhY7deokqgxuaZUqVYJEIhEyZx88eIDGjRsb3CchIUF0IZ3doFHx4sXh5uYmBEEePHhg1IXkw4cPMz125cqVhcdJSUl4+vRplgGVJ0+eiC7cK1asqNPmnj17dI5tyIMHD4THBQoUQPHixTPdduXKlViyZIlo3TfffIOZM2dmWXUWEN8AqFQqk7JS0ocipUvPRjFHm+ag3c/IyEiT+mmoCII5Phfa55WwsDCkpqYaldGlPSw+Y2VmbQEBARg6dKjoxrVatWpYuXKl0VnFGo0GS5cuxbt37/Du3Tu0bNlSVJU2M2q1WhQAKFq0qFHHM5adnR1q1aqFWrVqCYHTLVu2YPny5cK/0caNG80aWPTy8hItP3782KgiJoaGEZrj++fNmzfYtGmTsPzZZ59h+fLlBt9rWWUkaV+XGFtgLjo6OteGer8P9P1bW3LI5/DhwzF8+HCLHS8jc3w3G8sc53Pt1/P8+XMkJSVl+UOD9nWBRCIx+Fnft28fJk+eLCr20qxZMyxcuNDoQF9cXBzWrFkjnM979uxpVKZsdHS0KOkht8/nDg4OqF+/PurXr4+RI0ciPDwcq1atwt9//w0g7Xto06ZNWLhwYa4elyi3sSo0EVnE7du3dYY563PhwgXhcdGiRQ3eOFLuK1++vCgb49KlS0btFxkZiYkTJ2LZsmXYvXu36KY6L3FxcUGlSpWEZe33Y2YuXbok/Losk8lQt27dbB9fuyquMcd++PChaEhQxuF75cuXF2U9Xrx4Mcs2AwIChMcFCxbUudjXfn0RERH477//smxT+7UYqvz7559/6gQVR40ahdmzZxsVVCTzMMfnokGDBsLjpKQk0fsuM3FxcaJ5tTKbT+vKlSsYMmSIKKjYokULbN682aSpCiQSCQ4cOICdO3fi5MmTOHLkiFH7BQYGioJI2SnckpycjHPnzmHjxo2YOXOm6HOekZubG4YNGyYqKGBswCu7SpUqZfK5RalU4vbt25k+b47vH39/f1EG4sSJE7MMYGsHPADdom41a9YUHoeHhxs112d2K4O/r2rUqCHK0DP23/rRo0eYPHkyVqxYgX379onmu8xLzPHdbCxznM9r164tfEerVCpcvnw5yza1j1upUqVM5189dOgQJk2aJAoqdu/eHStWrDApe9DR0RHr16/H7t27cfr0aZw8edKo/QICAkT3L9k5n8fGxuL06dNYt24dpk+fbnA6BQ8PD8yYMUM0T7i5z+dEuYGBRSKyiIiICJw+fdrgNrGxsaKKnS1atDB3t3KdJecoMgepVIomTZoIy3v37jVqkvXNmzdj7969WLFiBaZMmYKoqChzdtOsWrVqJTw+cOCAMLQ0M9u2bRMeN2jQIEfD91u2bCk8Pn36dJbVTbWPXbZsWZ0bDYlEgi+++EJY3rlzp8GiBWq1Gjt37hSWW7VqpfOe9vb2Fg2D2r59u8E+vnr1CmfOnBGWM8uiOnHihOgXeZlMhrlz52Lw4MEG28+oU6dOCAoKMvo/7RukYcOGiZ5LD4Kao01zmDdvnkn91LZp06ZMnwNy/3NRqVIlUYbSmjVrsvzxafv27cINmVwuR9OmTXW2CQsLw48//ijK7OnWrRt8fX2zNWev9r9lQECAUT+apFdxBtKCflllA+mjUCgwaNAgzJkzB9u2bcOpU6ey3KdcuXLCY7lcbvIxTZHx3LJnz54sh/oeO3bMYCDIHN8/2vPCAcbNybd582bRcsah0fXr1xe9n7UzIjOT1XnSVHn9WsPd3V2Ukb9161aj5q78888/4efnh2XLlmHy5MkGv89smTm+m02R2+dzV1dX0Q+bWb3fExISRMVzWrdurXe7O3fuYOLEiaK/zYgRIzBz5swsp8LISC6Xi34UOHLkSJbnLKVSKRRtA9LOsdpBWWO9evUKgwcPxvz587Fjxw5RIbHMWPJ8TpQbGFgkIosxlHWhUqkwbdo04YZAJpPlSjVTS9OeaD7jZMx5xQ8//CA8jo6Oxvjx40VDLDO6c+eOaD62atWqoUqVKmbtozl17txZGMLz9u1bzJo1K9Ntd+3ahfPnzwvLOX3PtmzZUrjxTU1NxcSJEzOd7+v8+fPYtWuXsNyrVy+92/Xo0UO4AXn48CFWrFiR6fGXLl0qZCBKpdJM2/zuu++Ex9u3b88040GhUGDChAnCDWOxYsX0/mAQHh6OKVOmCMsSiQS//fabVYfFk5g5Phd9+vQRHl+/fh1//vlnpm1mfO+2adNGZ14tlUqFsWPHioJR3bp1w6xZs7JdxKZLly7CY6VSienTpxucg2/9+vWiH9G+//57o+YezCh//vyizJjVq1cbDMppNBocO3ZMWM7Oza+p+vbtK2T/vX37FtOnT880OBIeHo45c+Zk2WZuf/9krDSr/b7UZ/Xq1aIfQgDdYi2Ojo6i9+727dsN/nDq5+eHc+fOGTyuqd63a42nT5/il19+MfjjwqlTp0TBqJYtW2a7WJotMMd3s7HMcT7Xvi44ffq0MGWKPjNnzhTOZ05OTqLzbLqEhASMGTNG9PkbPXo0hg4dmmm7WdE+TnR0dJbnpHnz5glzAQPAoEGDshXQ9fb2Fk0Bs3jxYoOf25SUFNF5yBLnc6KcYmCRiCwmPDwcXbt21RnyERoaisGDB+Pff/8V1g0dOlRnDqe8QPsm5tatW3lyTqUqVaqgR48ewvLp06fRq1cvnSFsqamp2Lp1K/r27StcIMlkMkyaNMmi/c1thQoVQv/+/YXlPXv2YMyYMaLqhcnJyVi1ahVmzJghrGvSpIko2yYjHx8f4b/Mbgrs7e0xevRoYfnChQsYMGCAaNJ0pVKJnTt3Yvjw4cLQIG9vb9EwSG0VKlRAx44dheXly5djzpw5oqIDcXFx+PXXX0WZVt26dRP9Yq6tW7duQtaiUqnEjz/+iF27dokCLqGhoejfv79oSNS4ceP0DkNcsmSJqMDGoEGD8PXXX+s9NlmHOT4XXbp0EWW5LFq0CNOnTxdl6qrVahw5cgS9e/cWsmry58+vt+rxwYMHhcJCQFpVYe2+ZMcnn3wiyrL19/dHv3798PjxY9F2ERERmD59On777TdhXeXKlUV/M1NpB15evHiB/v37IzAwUGe78PBwjBo1CteuXRPWaQe+tNvQPg9NnDgx230D0go4aN/kHz58GEOGDNGZU9nf3x/du3fXyR7UJ7e/fxo0aCAKBMycOVNv9uft27cxbNgwLFq0SOc57cr06QYOHChk3Go0GgwfPhzr168XBQuSkpKwfPlyTJ06NcvXbSrta42LFy8aDL7aqpYtW4qyjnfs2IFBgwbpDPuMj4/HypUr8dNPPwmBRycnJ9F3ZV5kju9mYz/j5jifN2/eXJSRP23aNKxevVr0mXj79i1GjRolChAPHTpUb6G6DRs2iOZkbdu2LQYNGqT32Mb6+uuvUaNGDWHZz88PI0eOxKtXr0TbhYSEYNiwYaLs5ebNm6Ndu3bZOq5EIkG/fv2E5Tt37mDIkCE63yMA8OzZMwwYMEB47VKpNE8mWtCHhxMWEZFFNGnSBFevXkVYWBi+//57FCtWDCVKlEBMTAyCg4NFv1K3bt06R79IWpO3t7fw+OXLl2jTpg3Kly+PuLg4rF+/PtM5ZGzNpEmTEBoaKvxKfevWLXTt2hWenp7w8vJCfHw8nj17JrrhkkgkmDp1KmrVqmWtbueawYMH486dO8IvxocOHcLRo0fh4+MDe3t7/Pfff6KL/xIlSogCCjnRsWNH3Lx5Ezt27ACQFlxs2bIlfHx84OLigsePH4syl9zc3LB06VKDcxBOmTIFwcHBuHv3LoC0wg47d+4Uhk4HBQWJhkJVrVrVYNDB3t4ey5YtQ69evRAdHY3ExERMnToVixYtQtmyZYW58LSzl7777ju0adNGp61Xr16JbjKAtPeb9kW4MX777bc8nb2SF+T250IikWDx4sXo16+fkBWyY8cO+Pn5oXTp0ihYsCCePHkiynSXy+VYuHCh3gn0V69eLVqOj483uVjODz/8IJrbCgBmz56N0NBQ4fNz6dIltGnTBmXKlEGRIkUQHR2t834vX7481qxZk6MhbM2aNUOnTp2EzJ979+7hm2++gYeHBz7++GPIZDJERETgyZMnomP37NnT4I8cuWnAgAF48OABjh49CgA4c+YMzp49C29vbxQoUAChoaHCTXu+fPnwySefZJk1mJvfPyVLlkTXrl2F82l0dDSGDBmCwoULo0SJElCr1Xj58qUo6GlnZ4eCBQsK6/QFRO3t7YX3bnh4OBQKBX777TesWLEC3t7e0Gg0ePjwoXBerVu3LoKDg0U/oOSE9rXG3bt30bp1a3h5eSElJUU0bNWWSSQSzJ8/H3379sW9e/cAAGfPnsXZs2fh5eUFT09PREdHIyQkRDRfqlwux++//54nf3zOKLe/m01hjuucBQsW4LvvvkNoaCiUSiUWLVqENWvWoHz58khNTUVQUJAoA7FZs2Z6v+uTkpJ0piQICwsz+bpg3LhxokIzUqkUy5YtQ48ePYQfQP755x8cPXoU5cuXFz73GQN+devW1fujgym6d++OEydOCCM8AgIC0KZNG5QsWRLFihUDkFacLGOBq3HjxmUaSCayJQwsEpFFVKpUCb1798bYsWMRHR2Nly9f4uXLl6Jt5HI5fvjhB4wcOTLbw9as7YsvvkClSpWEm+S3b98KN8UPHz406/xqucne3h6rV6/GsmXLsGHDBuEX59evX4uqsqYrXLgwZsyYIZozKC+zs7ODr68vfv75Z/j5+UGj0UChUAgX/9pq1qyJpUuX6v3FPbt+/vlnFCxYEOvWrYNCoYBardYpKACkzau4dOnSLKtJuri44K+//sL48eOFbJ2kpCTcunVLZ9tmzZphwYIFWc5H5+3tjU2bNmHMmDHCEK3IyEid4ZoymQwDBgzAyJEj9bZz4sQJnaGlxk7kr037xpPMwxyfC3d3d2zatAm//vor9u3bB41GA6VSqbcoULFixTB//nzUqVNH57mgoCCdIhr6PjNZ+eqrr3TWubi4YNOmTZg9ezb27t0r/BD25MkTvYU72rVrh8mTJ6NgwYImHz+j2bNno0CBAti0aZOQoRweHq53/lUnJycMHjzYrJXHM7Kzs8PSpUvx+++/Y/369VCr1dBoNDrzdBYoUAC///47rly5kmVgMbe/f6ZOnYq4uDhR8Z2IiAi9AcOyZcti9uzZOHnypDC3mnYmqLby5ctj586dGDp0qBAYi4+PF2XNAmmFLZYuXZqrWdhdu3bF1q1bhaBtWFiYMP/nixcvUKJEiVw7ljkVKFAAf//9N+bMmYPdu3cL7/GQkBBRFeJ0H3/8MebMmZOtAhq2yBzfzcYyx/ncw8MDmzdvxujRo4XPQVxcnM5nAkjLWJ8xY4be6/2LFy/qBOFv3rxpwqtLo+9c6OHhgV27dmHy5MnCFAZqtVrv3MIymQw9e/bEqFGjsjWlhTapVIqVK1di2rRpoh9TQ0NDRaNS0hUsWBBjxozJdDQKka1hYJGILKZx48Y4ePAgtmzZglOnTiEsLAwSiQTFihVD48aN0bVrV1FRiLxILpdj8+bNWLFiBU6dOoXw8HAolUoULlw4zw2LlslkGDVqFL777jvs27cPFy5cwJMnT4SLPXd3d1SsWBHNmjXDV199ZVJ1vrzA3t4ev/76K7p164a9e/fi0qVLCA8PR2pqKtzd3VGtWjW0bdsWLVu2zPVAuEQiwahRo9CuXTvs3r0b/v7+eP36NZKSklCgQAFUrFgRrVu3Rrt27bKscJouf/78WLlyJS5evIgDBw7g2rVrePv2LVQqFQoVKoSaNWuiY8eOaNSokdH99PHxwb59+3Dw4EEcPXoUDx48wLt37yCXy1GiRAnUq1cP3377rcFf242pqEq2wxyfi/z582PevHno06cPDhw4gAsXLuD169eIj4+Hq6srKlWqhJYtW6JDhw6iueW0mft95OzsjLlz56J///7YvXs3rly5ghcvXgh99PDwQP369fHVV1/l6hyzMpkMEydORLdu3bB//35cu3YNT58+RWxsLCQSCQoVKgQvLy80bdoUbdq0Mao4SbrcKgAikUgwbtw4tG/fHtu3b8fFixcRFhYGmUyG4sWLo1mzZujZsyc8PDyMKloA5O73T3p2YefOnbF3717cunVLOPc5OzujWLFiqFChApo2bYoWLVpAJpNBrVYLgcXg4GAEBgaiWrVqOm17enpi9+7d+Pfff3HgwAHcvXsX0dHRcHV1Rbly5dC+fXt06NDB5EITWSlQoAB27tyJ5cuXw9/fX/gBs0iRInj79m2eCSwCaXNWzpo1C/369cP+/ftx6dIlhISEIDo6GnZ2dihUqBAqV66ML774Ai1btjT6Oy+vMMd3s7HMcT4vWrQo/v77bxw/fhxHjhxBYGAg3r59C6lUCg8PD9SuXRtdu3YVDUnOyNznc3d3d6xatQq3b9/Gvn37cP36dbx69QpJSUlwc3ND0aJF0bhxY7Rt2zbLH25N4ejoiAULFuD777/HwYMHcfPmTTx//hzx8fGws7PDRx99hHLlygnn87wyyokIACSarErwERERERHRe+HIkSMYNWoUevfuLSqaRERERJQdeXOsIRERERERmSx9GhJTshuJiIiIMsPAIhERERHRB0ClUglzDTZu3NjKvSEiIqL3AQOLRERERETvubi4OIwfPx737t1D48aNRdVSiYiIiLKLgUUiIiIiovecWq3G5cuXUbduXSxcuNDa3SEiIqL3BIu3EBERERF9AF68eIHixYvnWkVoIiIiIgYWiYiIiIiIiIiIyGQcCk1EREREREREREQmY2CRiIiIiIiIiIiITMbAIhEREREREREREZnMztodIMu5fv26aFkqZVyZiIiIiIiIiOhDpFarRcu1a9c2uQ0GFj9gGd9ARERERERERERExmLKGhEREREREREREZmMGYsfsPdlKLR25uX78pqIyDQ8DxARzwNExPMAEfE8YJrcGMnKwOIHRCqVCm8aqVSKmjVrWrlHOadUKnH79m1huWrVqrCz49ua6EPC8wAR8TxARDwPEBHPA6a7efOmKE6UHQzfEhERERERERERkckYWCQiIiIiIiIiIiKTMbBIREREREREREREJmNgkYiIiIiIiIiIiEzGwCIRERERERERERGZjIFFIiIiIiIiIiIiMhkDi0RERERERERERGQyBhaJiIiIiIiIiIjIZAwsEhERERERERERkckYWCQiIiIiIiIiIiKTMbBIREREREREREREJmNgkYiIiIiIiIiIiExmZ+0OEBERERERWZtGo4FarbZ2NyibVCqVzrJEIrFSb4jIGt7384BUKrXJ18PAIhERERERfXA0Gg0SExMRGxuL+Ph4KJVKa3eJckCj0YiWHz9+bJM34ERkPh/CecDOzg4uLi5wdXWFk5OTTbw+BhaJiIiIiOiDkpqaipCQECgUCmt3hXKRnR1vb4k+dO/7eUCpVCI6OhrR0dGQy+Xw8vKCvb29VfvEORaJiIiIiOiDwaDi+0kikcDOzk74zxayeIjIsj6084BCoUBISAhSU1Ot2o/3O5RLRERERET0/zQajU5Q0dnZWRhSJpPJrNg7yon0oe3pbGWIIBFZzvt+HlCpVMIUHgkJCQD+F1wsW7as1V4rA4tERERERPRBSExMFAUVPTw84O7ubsUeUW7RaDSiwLBMJnuvAgpElLX3/Twgk8lgb28PNzc3REZGIjw8HEBacDExMRHOzs5W6ReHQhMRERER0QchNjZWeOzs7MygIhER5Unu7u6iQGJcXJzV+sLAIhERERERfRDi4+OFx66urlbsCRERUc5of48xsEhERERERGRGGo0GSqVSWHZycrJib4iIiHJG+3tMqVRCo9FYpR8MLBIRERER0XtPrVaLllmohYiI8rKM32MZv+cshYFFIiIiIiIiIiIiMhkDi0RERERERERERGQyBhaJiIiIiIiIiIjIZAwsEhERERERERERkckYWCQiIiIiIiIiIiKTMbBIREREREREREREJmNgkYiIiIiIiIhyjUKhsHYXiMhC7KzdASIiIiIiIiJTPXnyBLt27cLVq1cRGhqK+Ph4ODk5wdPTE/Xq1UPXrl3h7e1tVFtJSUnYtWsXjh8/juDgYCQkJKBgwYIoW7Ys2rRpgw4dOsDe3j5Pt2UJarUaO3bswIULF+Dr62vUPkuXLsUff/yBIkWK4Pz582buIRHlNgYWiYiIiIiIKM9QKBRYsGABNm3aBI1GI3ouNjYWsbGxCA4OxpYtW9CjRw9MnDjRYPAtKCgIP/74I0JDQ0Xr37x5gzdv3uDixYvYuHEjFi1aBB8fH4N9s9W2LCE8PBxDhgzBvXv3ULduXaP3O336NACgadOmZuoZEZkTA4tERERERESUZ4wfPx5HjhwRln18fFC/fn24uLggKioKly9fxqNHj6DRaLB161a8ffsWS5YsgVSqOxNYaGgoevfujejoaABAoUKF0LJlSxQpUgShoaE4fvw4YmNj8ejRI/Tr1w87duxA8eLF9fbLVtuylGfPnuHevXsm7RMeHo4HDx4AYGCRKK9iYJGIiIiIiIjyhP379wtBRblcjtmzZ6NDhw7QaDRITEwUtjt8+DBmzpwJlUqFo0ePws/PD998841Oe5MmTRKCd40bN8aSJUvg4uIiPD9mzBgMHz4c169fR0REBGbMmIG1a9fq7ZuttmXL0rMVHRwc0KBBAyv3hoiyg8VbiIiIiIiIKE/QDp6NGzcOHTp00LvdN998g5EjR+rdL52/vz+uXr0KAPjoo4+wdOlSUfAuff3q1atRuHBhAMD58+dx7dq1PNOWrTtz5gwAoF69esiXL591O0NE2cLAIhEREREREdm858+fIzg4GADg4uKC7t27G9z+u+++g1wuB5A2TPfly5ei53fv3i087tOnD5ydnfW2kz9/fvTr109Y3rt3r842ttqWLUtJScGlS5cAcBg0UV7GwCIRERERERHZvIcPHwqPK1asmGU1ZGdnZxQqVEhYfvPmjfBYrVYjICBAWM4qsKX9/IkTJ0RFY2y1rey6evUqpk6ditatW6N69eqoUqUKmjRpgiFDhuDIkSNQq9Wi7X19feHj44PevXsL665cuQIfHx/4+PigV69eeo9z8eJFJCUl6bwObWfOnMG4cePwxRdfoHr16qhevTo+++wz9O/fHxs2bEBMTEyOXy8R5QznWCQisjK1WoMVF57h9stYfF6+ELrXtO7E20RERES2qEWLFjh79izevHkDiUSS5fapqamIjIwUlrUz/54/f47Y2FhhfVZVlUuXLg03NzdER0cjOjoaT548QdmyZW26LVNFRERg4sSJ8Pf313kuPDwc4eHhOHXqFDZs2IDly5fDw8MjW8dJd+rUKQCAt7e3TuGZ2NhYjBgxAhcuXNDZ7/Xr13j9+jXOnz+P5cuX45dffkGbNm1y1Bciyj4GFomIrGz60SDMOfkfAGD9lRAkKVT4oa6XlXtFREREZFtkMhk8PT3h6elp1PZnzpxBSkoKACBfvnwoWbKk8NzTp0+FxyVKlDCqvWLFigkFVZ49eyYE8Gy1LVNERUWhR48eCAkJEdbVqVMHtWrVglwuR3BwME6ePAmVSoXAwED07t0bfn5+cHFxQcOGDeHk5ISQkBBs374dAFCyZElhqHrRokX1HvPs2bMA9GcrjhkzRggqFihQAM2aNYOXV9r1cVhYGE6cOIGYmBjEx8djzJgxKF68OKpXr27y6yainGNgkYjIytKDiun677zNwCIREZGNUKjUmHU8GEcehCMxVWXt7tgMJ3sZ2lT0wPQvvCGX2d4MW6mpqVi6dKmw/Nlnn8HR0VFYjoiIEB5nFvjKyMPDA/fv39fZ31bbMsXMmTOFoKK7uzuWLVuGOnXqiLYJCgpC37598e7dOzx79gwrVqzAhAkTUKtWLdSqVQuXL18WAotFixYVzf+Y0YMHD/D69WsAuoHFW7du4dy5cwDSMjL//vtvuLu7i7aZPHkyBg8ejKtXr0KtVmPlypVYtWpVtl47EeUMA4tERERERESZ+PlYsM6PgJTmZljakN1fWlewck90zZ49G48ePQKQluk4bNgw0fNxcXHCY2OrEWsHJrX3t9W2jPXs2TP8+++/ANL+VitXrkSNGjV0tvPx8cH8+fOFgOHOnTsxevRooUCOKU6fPg0AcHNzQ82aNUXP3bp1S3j87bff6gQVgbTiPXPnzkWLFi0AAPfv34dKpYJMJjO5L0SUMwwsEhERERERZeJKSJS1u2DTLj+3vb/PypUrsXPnTmF5yJAhKF++vGib1NRU4bF2YM4Q7e2097fVtox1/Phx4XHz5s31BhXTNWrUCHXr1oVMJoOXlxdiYmJEBXKMdebMGQBAkyZNIJWKM161g4M3btzA999/r7eNkiVLYv/+/fD09ISbm5vJfSCi3MHAIhERERERUSbqehXEif/eWrsbNqvexwWt3QWBRqPB0qVLsWnTJmFd8+bNdbIVAegEs0ylXTzGVtsy1vnz54XHzZs3z3L7zZs3m3wMbe/evcOdO3cA6J9fsW7dusLjo0ePonfv3vjmm2/QsGFDnezFChVsL1uW6EPDwCIREREREVEmZrT0hkQCzrGYgfYci7YgNTUV06ZNw5EjR4R1jRs3xpIlS/QG25ycnITH6QVespKcnCw8dnBwsPm2jPXq1Svhsbe3+f89z5w5A7VaDTs7OzRu3FjneR8fH3Tp0gW7d+8GAFy+fBmXL1+GRCJBhQoVUL9+fTRu3BiffPIJ7O3tzd5fIjKMgUUiIiIiIqJMyGVS/NK6gk3OI0hp3r17hx9//BE3b94U1rVu3RoLFizINPCkHcBLSkoy6jjaATxXV1ebb8tYb9/+LyO3QIECJu9vqvRh0LVq1cq0vzNnzkShQoWwfv16YXi3RqPBgwcP8ODBA6xfvx7Ozs74/PPP8cMPP6BixYpm7zcR6Wd75buIiIiIiIiIjHD//n106dJFFFTs3r07Fi1aZDCbzcPDQ3j85s0bo44VHh4uPC5cuLDNt2UspVJp8j7ZlZqaioCAAAD6h0Gnk8vlGDVqFM6ePYsZM2agSZMmOsVsEhIScODAAXTq1Alr1641Z7eJyABmLBIREREREVGec/LkSYwZM0bI7JPJZBg7diy6deuW5VyF2kN+w8LCjDqe9nalS5e2+baMVaBAAURERAAAYmJiULJkSZPbMNbVq1eRkJAAwHBgMZ27uzt69OiBHj16IDU1FYGBgbh8+TLOnz+PW7duQaPRQK1WY8GCBahZsyZq165ttr4TkX7MWCQiIiIiIqI8xc/PD8OGDROCii4uLliyZAm6detm1P4eHh5CJeHo6Gg8e/bM4PZPnjxBTEwMgLRAnJeXl823ZSztQOKjR4+y3H7fvn2YMmUKVq1ahYcPH5p0rNOnTwMAvLy8ULZsWZP2tbe3xyeffIIff/wR27dvx6FDh1C0aFHh+f3795vUHhHlDgYWiYhsUEySwtpdICIiIrJJ6YEttVoNAChWrBj+/vtvNGzY0KR2tCsgnzp1yuC26QExAGjUqJFOQRhbbcsY2ll+586dy3L7vXv3Yvfu3Vi8eDGeP38urDfm2OnzK3722Wd6n9doNJgyZQq++eYbfPLJJ6LCMhmVK1cOffr0EZYNbUtE5sPAIhGRDVp6/qm1u0BERERkc+7du4dp06ZBo9EAAMqWLYvt27dnq5pxu3bthMfr169HbGys3u1iY2OxYcMGYblLly55pi1jtG/fXggKHjt2DMHBwZlu+/DhQ1y5cgVAWqEZ7WCu9vBzlUq3gvqjR48QGhoKAGjWrJne9iUSCZ48eYLAwEDExcVlmYX47t074bGnp6fBbYnIPBhYJCKyoqA38XrXzzwWZOGeEBEREdk2pVKJ0aNHC1WCPTw8sGHDBlHBE1PUr18f9evXBwBERERg0KBBokAVkBa4Gjx4sDAHYZ06ddCgQYM805Yxypcvjy+//BIAoFAoMHjwYL1DnJ8/f44RI0YImaI9e/aEi4uL8Lz249evX+sEF9OzK52dnVGnTp1M+6M9nH358uU4evSo3u1u3LiBLVu2CMvpr4GILIvFW4iIrOiPC88yfU6t1kAqNX04CxEREdH7aP/+/aI5B6tXr45Dhw4BSBtCq1D8byoZuVyuMzS3TZs2ojn5AGDWrFn45ptvEB0djRs3bqB169Zo1aoVihcvjpcvX+Lff/8VMgbd3Nwwd+7cTPtnq20ZY9asWXj48CGePHmCsLAwdOrUCY0bN0aVKlUgk8kQFBSEU6dOCUHdatWqYdiwYaI2ihcvDolEAo1Gg7CwMAwdOhS1a9dGvnz50KtXL2EYdMOGDQ1W7G7Xrh12796Nq1evQqFQ4KeffkLlypVRvXp1eHp6IikpCffu3UNAQIAQvPzyyy+zHVglopyRaNJzyOm9d/PmTeHXJalUipo1a1q5RzmnVCpx+/ZtYbl69eqws2O8nPIO6diDmT6X8ttXkMuYWJ4VngeIiOcBMoZKpRIN8fT29oZMJrNij8hU3377LW7evJnt/Tdt2oR69erprH/48CGGDRsmDNPVp0SJElixYgUqVKhg8Bi22pYxoqOjMW7cuCznWWzWrBnmz58PV1dXnefGjh2LgwfF17cuLi44deoU6tevD5VKhTlz5qBz584GjxEXF4eRI0fC39/f4HYSiQRdunTB9OnTDQYr6cOg0WiQmJgoLDs5OWVr3tG8Ije+13IjTsQrLiIiIiIiIrJ5QUHmmSqmQoUKOHz4MHbt2oVjx47h0aNHiImJgbOzM8qXL4+WLVuia9euyJcvX55tyxhubm5Ys2YNLl68iIMHD+L69et48+YNlEolChUqhJo1a6Jz584Gi+TMmTMHpUqVwqFDh/Dq1StoNBq4ubnh1KlTUKlUkEgkmRZu0ZY/f36sW7cO58+fx+HDh3Hnzh28evUKycnJcHV1haenJ+rXr4927dqhYsWKufL6iSh7mLH4AWHGIpHtMZSxmDzvK9jbMWMxKzwPEBHPA2QMZiy+3z60TCUi0vWhnQdsJWORd6xERDZKA/7uQ0RERERERLaLgUUiIhvFfHIiIiIiIiKyZQwsEhHZKMYViYiIiIiIyJYxsEhEZKM4BS4RERERERHZMgYWiYhsFOOKREREREREZMsYWCQislGMKxIREREREZEtY2CRiIiIiIiIiIiITMbAIhGRjTr8INzaXSAiIiIiIiLKFAOLREQ2av2VEGt3gYiIiIiIiChTDCwSEdmo48Fvrd0FIiIiIiIiokwxsEhEREREREREREQmY2CRiIiIiIiIiIiITMbAIhEREREREREREZmMgUUiIiIiIiIiIiIyGQOLREREREREREREZDIGFomIiIiIiIiIiMhkDCwSERERERERERGRyRhYJCIiIiIiIiIiIpMxsEhEZCU7boVZuwtERERERERE2cbAIhGRlUz7N8jaXSAiIiIiIiLKNgYWiYis5NHbBGt3gYiIiIiIiCjb7KzdAVuzdOlS/PHHHyhevDhOnTpl0r4XL16En58fbt26hTdv3sDOzg6enp6oWbMmOnbsiE8++cRMvSYiIiIiIiIiIrIsBha1BAYGYs2aNSbvFx8fjwkTJuDEiROi9SkpKXj8+DEeP36M3bt3o127dpg+fTry58+fW10mIiIiIiIiIvpgKRQKyOVya3fjg8XA4v8LDQ3F0KFDoVAoTNovJSUFP/zwA27fvi2sc3Z2hre3N1QqFYKDg5GcnAwAOHDgAF69eoX169fD3t4+V/tPRERERET0vvPx8clxGx07dsS8efOE5V69euHKlSsAgE2bNqFevXo5PgZlT2pqKvbv349jx47hwYMHiI6OhqOjI8qUKYMmTZqgW7duKFy4cJbtPH78GG3atDHp2Lt370bVqlWz2/UPyp49ezBp0iQAup8nAJg4cSL27t0LAJg7dy46depktr78888/2Lx5M/7++2+d5168eIEWLVoAQLZGpZJxGFgEEBwcjP79+yMiIsLkfX/77TchqCiRSDB8+HD069cPjo6OAIDY2Fj4+vpi06ZNAICrV69i4cKFwoeQiIiIiIiI6EN39+5djBgxAi9evBCtVygUuH37Nm7fvo21a9di1KhR6NOnT5Zt0fstISEBw4YNw4ULF1C8eHFrd+eD9sEHFvfv348ZM2YgKSnJ5H0fPXqE7du3C8tjxozBgAEDRNu4urpiypQpyJ8/P1asWAEA2Lp1K3r16oUSJUrkrPNEREREREQfkPHjx+tdr9FoRKPP5HI5JBIJAOD8+fO4ePGi8FyxYsXM20ky2c2bN9GnTx+kpKQASEvaadiwIapXrw6pVIpbt27B398fSUlJmDNnDsLCwjB58uRM27t3757wuFOnTihXrlyWfShatGjOXwhZTFRUFC5cuGDtbhA+4MBieHg4Fi1ahH379mW7jc2bN0OlUgEAypQpg379+mW67bBhw3D8+HEEBwdDoVBgy5YtmDhxYraPTURERERE9KHJ7J5Lo9EgMTFRWHZycoJEIsGVK1ewZMkSYX2tWrUwZMgQc3eTTBAfH4/hw4cLQUUPDw/4+vqievXqou1u376NH3/8EREREdi4cSOqVKmCdu3a6W1TO7A4aNAglCpVymz9J13z5s3TGR5tDSVKlEBQUJC1u/Hek1q7A9awcuVKtG7dWhRULFOmDAYPHmx0G2q1GkePHhWWO3XqBKk08z+nVCpF165dhWXtfYnow3MtNNraXSAiIiJ6r4WEhGD48OFITU0FABQpUgTLli1jkQcz8vHxgY+PD5o3b270Plu2bBGmJXNycsKGDRt0gooAUL16daxatQoymQwAMH/+fKGegTa1Wo379+8DSBtB+PHHH2fnpRCRkT7IwOK6detEv2Z988032LVrl0knnIcPHyIqKkpYbtSoUZb7NGzYUHj88uVLPHz40OjjEdH7ZcPVUGt3gYiIiOi9lZCQgCFDhiA6OhpA2tBoX19fowp/kGVpJ9307dsXZcuWzXTbKlWqoFWrVgCAiIgInDhxQmebp0+fCvf7lStXFobEE5F5fLBDoYG0k9KECRNQt25dk/fVDgrK5XKUL18+y31Kly4NR0dH4VeVO3fuoEKFCiYfm4jyvt23X4qWK7wLRZmY1wgoVhExji5W6hURERHR+2Hy5Ml49OiRsDxt2jTUqFHD6P2PHTuG/fv3IzAwEFFRUXBzc0OpUqXQpk0bdOzYEfny5cuyjbt37+Kff/7B9evXERYWhpiYGEgkEuTPnx+lS5fGp59+iq5du2Ya7PT19cXy5csB/K9i8e3bt7Fr1y5cuXIFb968gUwmQ4kSJdCkSRP07NkTHh4eWfbrzZs32Lp1K86ePYvnz59DpVLB09MTjRs3Ru/evfHxxx9j+vTp2LFjBwDzVspWKBR48OCBsPzll19muU/Dhg1x5MgRAMDZs2fRtm1b0fPaw6CrVKmSSz3NnPa/09atW/HJJ5/g7Nmz2LZtG+7evYvo6Gi4urqicuXKaN++Pdq0aZPpaEftastLly5Fs2bN4Ovri/379yM2NhYeHh6oU6cORowYgSJFioj2ff36NXbu3Al/f3+EhoYiLi4Orq6uKF26tFBR283NzajXdObMGezZswc3b95EVFQUXF1dUbFiRXTr1g0tW7bMcn9TqkI/ePAAfn5+uHz5Ml68eAGFQoECBQqgQoUKaNWqFTp06AB7e3u9f6N0YWFhQsX4okWL4vDhwwBMqwodHx+PvXv34syZMwgKCkJ0dDTy5csHT09P1K1bFx06dDBYNTzjv13r1q3x6NEj7NixAwEBAXj9+jU0Gg08PT3RsGFD9OjRA2XKlDH0Z8wzPsjAYt26ddGpUyd8/vnn2f714tmzZ8Lj4sWLw84u6z+lRCJBsWLF8OTJEwDA8+fPs3VsIsr7IhJShcf9Ao9h5Yk/YKdR47WTGxp2n4+nbp5W7B0RERFR3rVx40ZRFlzXrl3RrVs3o/aNiYlB7969cfnyZdH6iIgIRERE4OrVq9i6dSv++OOPTEe8xcbGYsKECZkGMZKTkxEREYErV67gzz//xOzZs/H1118b7JdGo8HcuXOxceNGaDQa0XMPHz7Ew4cPsXnzZsybNw+tW7fOtJ1Tp05hzJgxohF8QNq96fPnz7Fr1y5MmzbNYF9yU3R0tOj1GDOK0NPzf9fJ+qo/6wsshoaGIjAwEJGRkXB2dkapUqVQvXp1YVh1bpo5cya2bdsmWvfu3TucO3cO586dw5YtW7By5UoULFgwy7bGjBmD48ePC8vPnz9HREQEpk6dKtpu9erVWLFihTBPpfZx3717h2vXruHPP//E1KlT0bFjx0yPl5SUhNGjR+u8d9+9ewd/f3/4+/vj888/R5MmTbLse1YSEhIwc+ZMHDhwQOe5t2/fCsdbt24dli9fblQyV3YdOXIEP//8s5DhnE6hUCA2NhbBwcHYsmUL2rZti1mzZsHZ2TnLNtetW4fFixeLikoBwJMnT/DkyRNs27YNEyZMQO/evXPzpVjFBxlY/OOPP3LcRvocEAB0fikwpFChQkJgUbsNa1AqlVY9fm5IL56T2TKRrZNo1PglYAvsNGoAgGdiNMZe24sfW6RNKv4+fE7NjecBIuJ5gIyhUqmEAIZEIoFGo9EJ0FDelf5vefXqVSF7DEibl2/q1KkG/621n5s4cSISEhKEqsRVqlSBnZ0dAgMDcf78eWg0Gjx69AgjR47Ejh07dOZrVCgU6NOnjzDHn729PRo3bgxvb284OTkhNjYW9+7dw6VLl6BWq5GcnIyJEyfCx8dHJ3Ci3a9FixYJla1r1qyJOnXqwNHREY8ePcLJkyeRkpKCpKQkjB07Ft7e3ihdurTO6/znn38wduxY4Rzp4eGBFi1aoHDhwggLC8Px48cRHR2NadOmiSokZ+ezYuw+GRN0jNlPO3j28uVLne21g43v3r1D165dcfv2bZ12ChYsiP79+6N37945mndT+/i+vr64dOkSAMDb2xufffYZHBwccOfOHZw/fx5qtRo3b95E9+7dsWPHDri6umba1p49e3D27Fmd4zVr1gyOjo7CttOnT8fOnTuF5ytVqoR69erBzc0NkZGRCAgIwKNHjxAfH4+JEyciMjISP/zwg067qamp6N27NwIDAwGknScbNGiAGjVqQKPR4Pr167h8+TJOnjyJ69evi/qc8d9Ae1nf8ykpKejbt6/o36Vy5cr49NNP4ezsjKdPn+LYsWNISUnBs2fP0KtXL+zduxeenp6oUqUKxo0bh9jYWKxevRoAUKBAAQwcOBAA4ODgoPPaMusHAGzfvh0zZ84UlgsWLIhmzZrBy8sLCQkJuHr1Km7dugUAOHToEB4/fozNmzfDxUU8yky77e3btwuf1woVKqB+/fooUKAAQkJCcOzYMcTHx0OpVOLXX39F+fLl8emnn+rtc1bSj5n+f6VSaZXvtQ8ysJgbtCPZ+fPnN3o/7W1jYmJys0smUavVek+ueZ2+X6yIbJlXbAQ8E6NF64bc/kcILL6Pn1Nz43mAiHgeIEPs7OxgZ2eHxMRE47KVFArI586F7OhRSDJkeX3INE5OULVqBcWkSYCNFEMJDw/HpEmThMBZoUKFMH/+fCiVSoM/1qrVauFxQkICvLy8MH/+fHh7e4u2O3/+PEaPHg2VSoX79+/j6NGjOkVKNm3aJAQVPTw8sHr1anh5eekcMygoCEOHDkVUVBSUSiW2bt2K8ePHi7bRznS6ePEi3NzcMHfuXJ1hyf3798fgwYPx5s0bKBQKrF+/XmeoaFRUFGbOnCn8bdq3b48JEybA0dFR2ObHH3/E9OnTce7cObx8+b9pe1JSUnQyHLOSsUp3ZuRyuWi6sHv37glDWjOT/vcF0rI/w8PDhftsjUYjGlo9a9asTNuJiorCggULcOrUKSxcuFAnyGcs7X+nS5cuQSKRYMSIEejVq5dohOTt27cxatQoREdH4+nTp1iwYIHOv1N6oSEgbZi3VCrFkCFD0LFjR9jZ2eHq1asoVKiQ8Lfdt2+fEFR0cXHBrFmz0LRpU1GbP/30E/bv34+5c+dCoVBg4cKFqFChgs7UAGvXrhWCiq6urli4cCFq164tPN+/f39cvHgREyZMEMVDVCqVzr+19g98qampOs8vWbJEuM/Jly8ffv75Z2HIcrrBgwdj6NCheP78OaKiojB79mzMnz8fxYsXR/fu3fHy5UshsOjk5ITu3bsjI+3iPvrek4GBgaL3yNdff43x48eLMhKHDBmCgIAATJ48GXFxcXjw4AEmTpyI+fPni9rS/re7ePEiHBwcMHPmTGFO0HSDBg3Cjz/+KEzVsHbtWlSrVk2n78ZQqVRQq9XCOc5a1z8MLGaT9ptG+2ScFe25AbTbIKIPU4XIF3rXOyhTkWJnr/c5IiIishz5nDmwX7DA2t2wSbL/Dwwopk+3ck/Sgjvjxo1DZGQkgLQA8vz5800u1uLo6IgVK1agePHiOs81btwYX375JQ4dOgQAuH79uk5gcf/+/cLjsWPH6g0qAmnVk3v16oVly5YBEA/fzcwvv/yid67DUqVKYfDgwUKAJOMwbiAteJGe2PLpp59i+vTpOtOCubq6YsGCBejbt68oeJdRQEAAHj9+bLCvCQkJ2LRpk97nypYtKxQ2lUgkqF27NgICAgDonz9Pm1qtFuZXTJeSkiIEFp8/f46EhAThOTs7O3Tt2hVt27aFl5cXNBoNgoOD4efnJ7Rz/fp1jB07Fn/88YdRU5xlZeDAgXqHt1avXh0LFizAwIEDodFo4Ofnh169eqFEiRKZttWvXz/069dPWP7888+Fx6mpqaLRmPPnz9eb+SaRSNChQwfExcVh8eLFUKlU+OOPP/Dnn38K28THx2P9+vXC8q+//ioKKqarX78+5syZg59++snAX8CwxMREYf5OAHqDikDaXImLFi3CN998A7VajVOnTiEiIiJXCzD5+voKPyw0a9YMP//8s97tGjZsiCVLlmDgwIFQqVQ4ceIEAgMDDQYER48erRNUBIDChQtj7NixGDx4MIC0LGu1Wp3pvJt5AQOL2aT9q4QpbwDtX0U5xJGIMgssVn4Xghse5SzcGyIiIspIdu2atbtg02RXr0KR9WZmN3/+fFG2zrhx40wq1pLuiy++0BtUTFevXj0hsPj69WvRcyqVCn369MHLly/x9u1bncyxjLQzIuPj4w1uW7JkSSEYp492QdKMU25pNBrRPH0//fRTprUG5HI5RowYgUGDBmV6rGPHjuHgwYMG+xsbG4slS5bofe7rr78WvZYuXboIgUU/Pz/Url070wIhy5YtE6YWS6d9X62drejs7Iw//vhDp+BGzZo1UbNmTdSrVw8zZswAAFy7dg1+fn5Gz8WZmUKFCukdZpyudu3aaNiwIfz9/aFWq3HmzBn07NlT77YSiQTffvttpm2dPn0ab9++BQBUq1Yty+G03bt3x9q1axEXF4dr164hPDxcKPZz8eJFIbuvSpUqBt9rjRo1Qq1atXDjxg2Dx8uMv7+/MJy9QoUKeoOK6UqXLo2WLVvizZs38PLyQnx8fK4FFl+/fi0M6ZZKpRgzZozB7WvWrImWLVvin3/+AZAWBM8ssOjk5IT27dsbbMvOzg5KpRIpKSmIiYkxas5NW8XAYjZpBwi1U+ezop0SnJN5HHJKKpUarGiUV6hUKtEFRJUqVcwyAS9RrtuWNrykQmSY3qdrvHmCGx7lUL16dUv2Kk/ieYCIeB4gY6hUKiHLSiKRwMnJybj3Sf36wOnTZu5d3iVt0ABOTk5W7cOePXvg5+cnLLdv3x69e/c2ulCndqJIvXr1DL4e7aBjcnKyzraGAkHaUlNT8erVK2FZrVbrtKV9v1izZk2j+5WSkiLa9s6dO0IAqlixYqhVq5bBvn322Wdwd3cXsj8dHBxE7eX0/CqTyUTtffnllzhw4ABOnz4NtVqNSZMm4caNG+jatSvKlSsHlUqFe/fuYf369Thz5gzc3d2RnJwsDGstUKCA0F67du1Qp04dvHjxAm5ubqhUqVKm/ejWrRvu3LmD3bt3AwA2b96Mvn37mvx6tP+d2rRpgwIFChjcvlWrVvD39weQNnQ6fW5AQDzCsXTp0gaD3NpTJlWtWtWoz2H16tWFY9+7d0+Yi/PKlSvCNs2bN8+yrdatWwuBxYz/nunr0tnb24ue1z7W559/nuWxMgtQa48cTT+nazQaJCUlGdwmXfq8iUDa369cuayTOtq3by8EFq9fvy5qT/vfrmLFillW4HZ1dRU+Y1KpNFvnUZVKBalUCrlcDrlcjrJly5r8+bxz545JMS19GFjMJu03aMbKS4Zob5vZpKKWkhtp3rZGJpO9l6+L3l8VIkP1rq/5Ju2XWL6fTcfzABHxPED6SCQSUaAp43KmZs4EpFLg8GGAcyz+j5MT8NVXkEyfDhgZwDOH+/fvi4YvVqlSBZMmTTL+3xcQbffRRx8Z3E/73KJSqbI8Rnx8PJ48eYLQ0FCEhobi+fPnCA4ORlBQkGgUnEaj0WlLe7lQoUIGj6UdlFCr1aJtQ0JChMc+Pj5G/V0qVKiACxcuCP3Q3ue3337Db7/9pne/9PkRixcvnmlVbH1+//13DBkyBFeuXIFGo8HOnTtFBUnSubm5YfXq1aKswHz58gn9s7e3x8cff2xUdWkA6NWrlxBYfPnyJZ48eYKyZcsa3W9A/O9UpUqVLP++2pmqL1++1DkvpStZsqTBttLn6AOArVu3YuvWrSb1+9WrV0L7YWH/S3YoV65clq+hYsWKoj4beu9mfF47oG7s+1EfU8/nGbcJDf3ffVjFihWN6od2oPrly5dQq9VCIM+UzyuQ9r5Np+/zb4z0fdL/b2dnZ5UfVnnFlU3a0ees0ta1aW+bVQSbiN5/mQ2F9s4kk5GIiIgsTC4Hfvkl7T+yKdHR0Rg2bJiQvOHu7o4FCxaIModMpV20IbuSk5Oxfft27N27F0FBQZlWaZXJZEZXsc9JVqj20OissunSWXpYpouLC9avX4/169dj3bp1OoVO7e3t0bp1a0yYMAHu7u7CfbWTk1OO/s18fHyQL18+IcstJCTE5MCitkKFCmW5jfa/QcZh69qyKiajXUAlO6KiooTH7969M/q4QM7eH6Yey1y0/37Gvh7t7TQaDWJiYuDu7q6znamfV2tUcs5NDCxmU5EiRYTH2h+MrKSnoAPI1UlHiSjvcUlNhEei/urwBVMS9K4nIiIiorSsvDFjxgiZVnZ2dvjtt9+EOeOsJTQ0FP3798ezZ89E6yUSCTw9PVG2bFlUrlxZKIyhPQzWXLQzI40NZFoj0CGXyzFo0CD07dsXN27cQEhICJRKJYoWLYqaNWsKiTmPHz8W+ufp6ZmjY0okEuTPn18ILJqSNKSPMdli2sNODQXBs8q8155bsnXr1iZXFq5cubJJ22vLSfBe+/1oTdl5j2ccMpzdbMv3DQOL2VSqVCnh8YsXL4xKXdVoNKIUY+02iOjD456c+YWLW0rOLmqIiIiI3mdLly4V5ooDgAkTJuitYmtJCoUCQ4cOFYKK7u7u6NOnD+rXr4/y5cvrZDGdPXvWIv3SzpCLjY01ah9jtzMHe3t7fPrpp5kWIwkMDBQeV6hQQe82KSkpRk+LoR1MzGkGnTGBSe1MuZwkG2n/u9aoUSNb80Nq9+O///7T6V9mcvL+yM770Ry0R5BqZ28aor2dVCqFi4tLbncrT8q79aytTDu6n5SUhKdPn2a5z5MnT0RzLGrPS0BEHx7XlMznaXJLZsYiERERkT4nT57E6tWrheWOHTuiV69eVuxRmpMnTyI4OBhA2lDInTt3YvDgwahevbreoZHaI9/MmSGoXZQiPXiUlfTXYQkajQZRUVF49OgR4uListz+5MmTwuNPPvlE9Fznzp1Rs2ZNVKtWDWfOnMmyrdDQUKEIDACUL1/e+I7roT3vYWYePnwoPDZ2Lkh9vLy8hMfG/nvFxMTozVotUaKE3v5lJr0QVnaULFlSeGzM3+v8+fOYOHEili9fjmvXrmX7uBlpJ3oZ85qBtII36YoWLWrVgry2hIHFbCpfvrxoLP3Fixez3CcgIEB4XLBgQWFiWyL6MLmmZh5YLJCaCOTxuTaIiIiIctvz588xYcIEIRBXuXJlUfEWa0qvkgsADRs2FAVQ9NG+h8xpVVZDqlatKsxD+PLlyyyDKHfv3sWbN2/M1p+Mfv31V3z66af46quvcODAAYPbvn79Wsj0lMlkaNGihej5/PnzC4FCY4rHaB+vTJkyKFasmKndFzEmmHn8+HHh8eeff57tY9WrV094fPbs2SyLyqampuKrr75CtWrV0Lx5c5w/f154rnnz5sLjY8eOZXnsnGTbamcWnzt3Lsvt//nnH+zduxe+vr6ibNWcDkPWDkoHBgbixQv9c99n7Es6a2dI2xIGFrNJIpHgiy++EJZ37txp8MtArVaLqlq1atWK4/GJPnAFDGQsytUqOCmNrzhPRERE9L5LTEzEsGHDhKw2d3d3LF++HA4ODlbuWRrtueMiIyMNbnvz5k0cOXJEWNaeLy+32dvbo3379sLykiVLDG6/dOlSs/VFH+0AjZ+fn8HszTlz5iA1NRUA8OWXX+rMqfnll18Kjw8ePIgnT55k2tbz58+xbt06Ybl3794m9z2jmzdvGgyWXbhwAZcuXQKQVhU4J4HFVq1aCQHjd+/eYeXKlQa3X79+PSIiIqBUKhEZGSmak7Fhw4ZCYZInT57orcid7sGDB6LgaHb67ejoCAC4deuWaEqDjCIiIoRgnkQiEf29tOezNHbuUG0lS5ZE3bp1AaTFa+bNm2dw+xs3bogCi+3atTP5mO8rBhZzoEePHkJw8OHDh1ixYkWm2y5dulRIO5dKpTaRqk9E1mUoYxHgcGgiIiIibVOnThWGfNrb22PFihU5zjDLTdrz/d24cUMUOEyn0Whw+PBhDBgwQBRMTE5ONmvfBg0aJAShTp8+jZ9//lkI0Gn3Ydq0aUZlkWUmKCgIQUFBRmULpvv888+FuQbv3buHhQsX6gRak5KSMHnyZBw9ehRAWvXusWPH6rTVoUMHYXhxamoqBg0apHfY7p07d9CnTx8kJKRdb1erVg1du3Y1us+GjBkzRu+IxosXL2LEiBFC4HTkyJE5mtPR1dVVVPxn1apVWL58uU5xFLVajR07dsDX11dY98MPP4jmOrS3t8eECROE5VmzZmHfvn06x7x//z4GDRqUowIs7u7uonjImDFjhGCrtrdv32LYsGFCBmqbNm1EQ8e15zeMjIwUDWk31siRI4UA5fHjxzFp0iS982T6+/tjyJAhQgCzRYsWaNy4scnHe1+xeEsOVKhQAR07dsSePXsAAMuXL0dcXByGDx+O/PnzAwDi4uKwbNkybNq0SdivW7duonkuiOjDZChjEQDcWBmaiIiICEDavHqHDx8WlmvUqIGbN2/i5s2bANICdtrBDrlcbnCEWLdu3XK98MJXX30FX19fREREQKPRYNSoUdi+fTuqVKkCZ2dnhIeHw9/fX1TJWqVSQaPRIC4uDkql0qhiI9nh6emJGTNmCMPI//77b5w+fVoI6oWHh+PEiRN48+YNZDIZpFKp8PeUSs2bj2Rvb48ZM2Zg+PDh0Gg0WLNmDY4fP45GjRrho48+wsuXL3H8+HGhqIhcLsfixYtRtGhRnbYcHBywaNEi9O7dGwkJCQgJCUG7du3QrFkzVKpUCUqlErdv38aFCxeEEYdeXl5YtmyZURWdsyKXyxEbG4vvv/8eDRs2RM2aNQGkBZovXLggbNe4ceNcyZAcNGgQ7ty5gxMnTkCj0cDX1xd+fn5o2rQpPDw8EBERgUuXLonmMqxbty6GDh2q01bHjh3h7++PQ4cOQaFQYMKECdi6dSsaNGgAe3t73L17F2fPnoVKpULp0qWNqjORmREjRuDWrVu4evUqoqOj0adPH9StWxe1atWCk5MTnjx5gmPHjgnBQi8vL0ydOlXUhouLC9zc3BAdHY3U1FT069cPTZs2RXJyMvr3729UP2rXro3x48dj7ty5AIA9e/bg9OnTaN68OUqWLImkpCRcvXpVNM1B6dKlhe0pDQOLOTRlyhQEBwfj7t27AICNGzdi586dwvyJQUFBQul6IG1+i4kTJ1qlr0RkW7LMWGRlaCIiIiIAaUUntF25cgVXrlzJdnutWrXK9cCii4sLVq5cicGDB+Pt27cAgMuXL+Py5cs623p5eWHu3LmYPHkynj9/DrVajfv374uGp+a29u3bQ6FQ4Ndff0ViYiJevXqFLVu2iLZxcnLCvHnzMHfuXLx69QpAWuDP3L744gvMnTsXP//8M5KSkvDs2TOhura2YsWKYf78+ahTp06mbVWpUgVbtmzB6NGj8fTpUyiVShw/flzv8N1GjRphzpw5OkOqs6t3797477//cO7cOQQEBIjqLKTr1asXJk2alCsBW4lEgmXLlmHRokXYuHEjFAoFXr58ib///lvv9u3bt8esWbMyDWD//vvv8PDwEIaIBwYGiuY1BNKC+uPHj0ePHj2y3W+5XI5169ZhxowZ2Lt3L4DMP9M1a9bEkiVLRDUu0n377bdYtWoVgLTgbXoAsEuXLqKqz4Z8//33KFSoEGbNmoWYmBhERUXBz89P77bt27fHjBkzhOxfSsPAYg65uLjgr7/+wvjx44V076SkJNy6dUtn22bNmmHBggXCfAJE9GFjxiIRERHR+6Vq1ao4ePAg/v77b5w5cwbPnj1DYmIiHB0dUbhwYfj4+KBp06Zo27Yt7O3t0aRJE2zevBkAsG/fPrMGFoG0gEuDBg2wbds2nD17Fi9fvkRqaiqKFi2KJk2aoF+/fvD09BQVxNFX0docOnbsiLp162Lr1q0ICAhASEgIUlNT4ebmhgoVKqBVq1Zo166dUffTlSpVwsGDB3HkyBEcO3YMd+/eRWRkJOzs7FCkSBHUqlULbdq0yfXhrPny5cOaNWtw4MAB7N69G0FBQUhISICnpyfq1q2L7t27o2rVqrl6TJlMhnHjxqF79+7YtWsXLl26hJCQEMTGxsLBwQHFixdHrVq10Llz5yzfXxKJBOPHj8eXX36Jbdu24fLlywgPD4eTkxPKlCmDr7/+Gt26dTM4d6WxHBwcMG/ePPTs2RN79uzB5cuX8fr1a6SkpKBgwYKoWrUq2rVrh5YtW2YahB05ciQ++ugj7N69G6GhoVAoFPjoo48QHh5udGARANq2bYumTZti165dOHfuHP777z9ER0fDzs4OJUqUwCeffIJOnTqZ/fOZV0k05qxrn8fs2bMHkyZNAgAUL17cpHkhgLQ5Ew4cOIBr167h7du3UKlUKFSoEGrWrImOHTuiUaNG5ui20W7evCmke0ulUiEtOy9LT2VPV716dbMNHyDKTdKxB7H01J8YfvNQptt812YMth7+3YK9ypt4HiAingfIGCqVSpifDwC8vb1zZegj2QaNRiOaY83JyYnFMnOgatWqwhyMly5dEgp7kC5fX18sX74cADBs2DAMHz7cyj36cH1o54Hc+F7LjTgRr7i0dOrUCZ06dcr2/vXr10f9+vVzsUdE9D5zzSIjkRmLRERERJQb1q1bh48++gheXl6oVauWwW2fPHkiBBULFizIoCIRGcTAIhGRhSlVab8IuaYmGdzOLSUeKUoVHOyYTUFERERE2XfgwAE8fPgQAODn54cqVapkuu1ff/0lPK5bt665u0ZEeZx5yzsREZGOl7HJAIACWWUsJicgNDrZEl0iIiIiovdYgwYNhMezZ89GVFSUzjYqlQpr167Fjh07AKQNi8yNysVE9H5jxiIRkYWlz2ybdcZiAv59+AbDGpW2QK+IiIiI6H31ww8/YM+ePYiOjsbNmzfRtGlTNG/eHF5eXpDL5QgPD0dAQADCwsKEfQYMGIBPPvnEir0moryAgUUiIivJKmOxQEoCnitUFuoNEREREb2vChcujI0bN2LEiBF49uwZkpOTceTIEb3b2tvbY+LEifjuu+8s3EsiyosYWCQishLX1ESDzxdISURMstJCvSEiIiKi91mFChVw8OBBHDlyBMePH8eDBw/w7t07aDQaFCpUCMWLF0fz5s3Rtm1bFC5c2NrdJaI8goFFIiIrKZBiOLDolpKAdVdCMPvLChbqERERERG9z+zt7dGhQwd06NDB2l15bwwfPhzDhw+3djeIrIbFW4iILEwDwF6pgKNKYXA7J2UKwuNSLNMpIiIiIiIiIhMxsEhEZGEaDZA/i8ItAOCsYEVoIiIiIiIisl0MLBIRWUF+heFh0ADgpGC2IhEREREREdkuBhaJiCxMAw2cFKlZbuekZGCRiIiIiIiIbBcDi0REVpDPiKChkyIlbdw0ERERERERkQ1iYJGIyMI0GuOyEe00asjVSgv0iIiIiIiIiMh0DCwSEVmYBkA+ZdZDoYG0rEWVmlmLREREOSWVim99VCqVlXpCRESUcxm/xzJ+z1kKA4tERFaQT88ci8kyuc46J2UKdge+tESXiIiI3msSiQR2dnbCcmJi1oXUiIiIbJX295idnR0kEolV+sHAIhGRhWk0Gr1zLL7Ll19nnZMiBQHPoizRLSIioveei4uL8Dg2NtaKPSEiIsoZ7e+x/Pl17yUthYFFIiIr0DcU+m0+V511TsoUaFjAhYiIKFe4uv7vuzYhIQGRkZFW7A0REVH2REZGIiEhQVi2ZmDRLutNiIgoN2mgv3jLO0f9GYuMKxIREeUOJycnyOVyKBQKAEB4eDji4+Ph6uoKJycnyGQyK/eQskuj0YjmG1OpVFYbFkhE1vG+nwdUKhUSExMRGxsrCirK5XI4OTlZrV8MLBIRWZhGoz9jUe9QaCOqRxMREZFxJBIJvLy8EBISIgQXExISRDdolHep1WrhsbWKGBCRdX1o5wG5XA4vLy+rBlDf/78yEZEN0hdYjHTUMxRakQomLBIREeUee3t7eHl5QS7XLZpGeZdGo4FSqRT+41QyRB+eD+08kB5UtLe3t2o/mLFIRGRhGugv3qJvjkVnRfJ7/4VIRERkafb29ihbtiwSExMRFxeHuLg4KJVKa3eLckj735CBY6IP0/t+HrCzs0P+/PmRP39+ODk52cRQbwYWiYgsjEOhiYiIrE8ikcDZ2RnOzs7w9PSERqMRDaGjvEWpVOLu3bvCctmyZWFnx9tdog/J+34ekEqlNhFIzOj9+QsTEeURD9/Ew0lhfPEWlc5aIiIiym0SiYTFW/KwjCM8ZDIZ/z2JPjA8D1gH51gkIrKwSUcewNGEjEWOhCYiIiIiIiJbxMAiEZGFBUck6B8KnUnGIhEREREREZEtYmCRiMgKMgYWlRIpYhycdbZzUqZAzZRFIiIiIiIiskEMLBIRWUHGqtBJdg5IkDvqbOekSMGmay8s1S0iIiIiIiIiozGwSERkBRmrPSfZ2SPRzkHvdqkqVqgkIiIiIiIi28PAIhGRFWQcCp1kZ48EuW5gMR/nWCQiIiIiIiIbxcAiEZEVZAwsJsodkGxnr7NdxsxGIiIiIiIiIlvBwCIRkYVJJEA+hW7GIiQSJGQYDs2q0ERERERERGSrGFgkIrIC3eItadmKiRmGQzszsEhEREREREQ2ioFFIiILk0Bf8Za0gGLGAi4cCk1ERERERES2ioFFIiILSwss6hkKDd2MRQYWiYiIiIiIyFYxsEhEZGEOKoXOuvRMxWSZXLytUndbIiIiIiIiIlvAwCIRkYVlzFYEgCR5WsZixsrQjirdbYmIiIiIiIhsAQOLREQWlrFwC/C/gKJOYJEZi0RERERERGSjGFgkIrIwJz2VnpMyGQrNjEUiIiIiIiKyVQwsEhFZmKOeORbTi7ekZJxjUaWERKO2SL+IiIiIiIiITMHAIhGRheXTM7w5PVMx41BogAVciIiIiIiIyDYxsEhEZGGOat1AYYoQWJTrPKcvw5GIiIiIiIjI2hhYJCKyMAc9VaGThaHQuhmLjnq2JyIiIiIiIrI2BhaJiCzMQU8GYopMjublCmWSscjAIhEREREREdkeBhaJiCxM39DmFJkcC76uhGQ9GYsOSqUlukVERERERERkEgYWiYgszF5PMZYUmR1qFi/AjEUiIiIiIiLKMxhYJCKyMEe1bgZiyv8HFPVlLHKORSIiIiIiIrJFDCwSEVlYQalaZ51S7gDgfwFGbawKTURERERERLaIgUUiIgur55FPZ12raiUAAMkyPYFFZiwSERERERGRDWJgkYjIwvJDpbOuVlkPAECynb6h0MxYJCIiIiIiItvDwCIRkYWdf/BSZ53UIW0otN6MRRZvISIiIiIiIhvEwCIRkYXZ65kzUW2flqnIjEUiIiIiIiLKKxhYJCKyMAc9gUK1gyOATAKLzFgkIiIiIiIiG8TAIhGRhTmolDrrhIxFFm8hIiIiIiKiPIKBRSIiC9OXgZgeUNSXsagvEElERERERERkbQwsEhFZkFqt0TvHYrxEBgBIySRj8W1Citn7RkRERERERGQKBhaJiCwoKkmhd45FpV168Rb9VaHnnXpk9r4RERERERERmYKBRSIiC7KTSuCgJ2NRKU+fY1F/VehFZ5+YvW9EREREREREpmBgkYjIgmRSic6ciQqpDCpp2uk4s4xFIiIiIiIiIlvDwCIRkQVJJbqBwhSZHGqNBoD+jEV9Q6eJiIiIiIiIrI2BRSIiC1JrdAOFKTI51Oq0x/qqQjsqmbFIREREREREtoeBRSIiC3oZm6wzx6J2xmKKzE5nH0c9czISERERERERWRsDi0REFqTRQE9g0Q7qtLgi1FIZUqXi4CIzFomIiIiIiMgWMbBIRGRBGmh0irck29kLGYtpy+ICLsxYJCIiIiIiIlvEwCIRkQXpz1iUQ6XWiJa1sXgLERERERER2SIGFomILCzj0Oa0ORb/t5yxMnTGKtJEREREREREtoCBRSIiC8p8jkUDQ6GZsUhEREREREQ2iIFFIiIL0kD/UGjvws7CcrIdMxaJiIiIiIjI9jGwSERkQRqNbvGWFDs5mpYtJCwnZ5hjMR+rQhMREREREZENYmCRiMiCNEolZBq1aF3hj1xhb/e/03HG4i32GQKRRERERERERLaAgUUiIguSJCfrrHN0dhItp8rsRMsZh04TERERERER2QIGFomILEiSojusWSkXz6mYMWORgUUiIiIiIiKyRQwsEhFZUqpuxqJKLg4kZgwsytUqSDIMnyYiIiIiIiKyNgYWiYgsSJKSorNOZe8gWs44FBrgPItERERERERkexhYJCKyIFWSbmAxSStDcW6bijoZiwCHQxMREREREZHtYWCRiMiC7jyP0FkXHPu/oOG4pmWRqiewyIxFIiIiIiIisjUMLBIRWdDJOy901oUm/W/+RKlUoncoNDMWiYiIiIiIyNYwsEhEZEmpulWhMw595lBoIiIiIiIiygsYWCQisiBpNgOLHApNREREREREtoaBRSIiC5IpdQOLGYc+cyg0ERERERER5QUMLBIRWZBUoRsgTJUyY5GIiIiIiIjyHgYWiYgsyE6pJ7CYIUORcywSERERERFRXsDAIhGRBcmMCCxyKDQRERERERHlBQwsEhFZkJ2CxVuIiIiIiIjo/cDAIhGRBRmTscih0ERERERERJQXMLBIRGRByYnJOutSpRwKTURERERERHkPA4tERBakb0izMRmLHApNREREREREtoaBRSIiC9KXeZhqxByLzFgkIiIiIiIiW8PAIhGRBenLPExhVWgiIiIiIiLKgxhYJCKyIL1DoaWsCk1ERERERER5DwOLREQWZK/WDRAq7TLOsciMRSIiIiIiIrJ9DCwSEVmQvZ4AoUZuL1rOOOciwMAiERERERER2R4GFomILMhBz5Bmz0L5RcscCk1ERERERER5AQOLREQWJNeTebiwSy3RModCExERERERUV7AwCIRkQXpyzysW66IaJlDoYmIiIiIiCgvYGCRiMiCPBwkOuskDg6iZX0ZixwKTURERERERLaGgUUiIguSK8WZhyqJFJDJROv0z7GogEajMWvfiIiIiIiIiEzBwCIRkQUlJySJllP1ZCfqCyw6qJRQqRlYJCIiIiIiItvBwCIRkQXJMwxp1hdE1BdstFcpsCvwldn6RURERERERGQqBhaJiCzkZUyyzlyJqVLdIKJaKoNSIj49O6iU8PV/atb+EREREREREZmCgUUiIgtJValhr84QWNSTnQjoZjI6qBS49DzKbH0jIiIiIiIiMhUDi0REFiKTSuCgEhdvySywmHG9fYb9iIiIiIiIiKyNgUUiIguxk0qMGgoN6MtYVOrdjoiIiIiIiMhaGFgkIrKQdwmpOpmHKXa6xVsA/UOhiYiIiIiIiGwJA4tERBai0mh051jMJGNRdyg0MxaJiIiIiIjItjCwSERkQTpDofXMsSiTSpixSERERERERDaPgUUiIgvRaHQDhKky3aHQZdydGFgkIiIiIiIim8fAIhGRBRlbvIVDoYmIiIiIiMjWMbBIRGQhB+6+1gkQZsxMBIDqxVyZsUhEREREREQ2j4FFIiIL+eXoA0ihEa3TN8fiwE8/ZmCRiIiIiIiIbB4Di0REFqIvOKgvsPh5+UL6h0JrNDrbEhEREREREVkLA4tERBaib55EfYFFiUQCR+d8onVSaGCnVpmtb0RERERERESmYmCRiMhC7PVkLHq659e7rcLOXmcdh0MTERERERGRLWFgkYjIQvRlLLoXdNG7rUqum8nIytBERERERERkSxhYJCKyEHu1bmBQZadbFRoA4jQynXXMWCQiIiIiIiJbwsAiEZGF6AsMquT6A4saBwej9iciIiIiIiKyFgYWiYgsRN9QZmUmGYv58zsZtT8RERERERGRtTCwSERkIfoCgyo9RVoAQMniLURERERERGTjGFgkIrIQ/YFF/RmLSjkDi0RERERERGTbGFgkIrIQfYFBZSZzLCpZFZqIiIiIiIhsHAOLREQWorcqtJ7MxLT1LN5CREREREREto2BRSIiC7HXExhUy3QzEwH9RV30BSaJiIiIiIiIrIWBRSIiC5GrVTrrFJkMhVbpWe+gZMYiERERERER2Q4GFomILETfHImZZSzqGyLNodBERERERERkSxhYJCKykJxWheZQaCIiIiIiIrIlDCwSEVmIvdr4qtD6Ao4cCk1ERERERES2hIFFIiILkat051hUyYzPWORQaCIiIiIiIrIlDCwSEVnAy5hkvUOZ9RVpATgUmoiIiIiIiGwfA4tERBawO/Cl3jkWlZlkLKo5FJqIiIiIiIhsHAOLREQWcPhBOOR6Mg4VdplUhbbnUGgiIiIiIiKybQwsEhFZgEajvyr0mecxerfnUGgiIiIiIiKydQwsEhFZiL7A4osktd5tNfqKt3AoNBEREREREdkQBhaJiCxAA/0Zh8lS/UOhlXqKujjoCUwSERERERERWYv+O1rKtvv372PXrl24du0aXr9+jaSkJBQoUABlypRB48aN0a1bNxQoUMDa3SQiC9NoALmewGCqRP/vOyp7B5119mpmLBIREREREZHtYGAxlyQnJ2PWrFnw8/PTee7t27d4+/Ytrly5glWrVmHWrFlo27atFXpJRNai0Wj0ZyxK9J+GWRWaiIiIiIiIbB0Di7kgNTUVgwcPxsWLF4V1MpkM3t7ecHV1RVhYGF68eAEASEhIwJgxYxAXF4fu3btbq8tEZGEa6M9YVMh0A4hAJhmLHApNRERERERENoSBxVywZs0aUVCxWbNmmDFjBooWLSqsu3r1KiZMmICwsDAAwOzZs/HJJ5+gfPnyFu8vEVmeWqOBXE/GYo1SH+ndXqVnjkV7tQIajQYSiSTX+0dERERERERkKhZvyaHU1FSsX79eWK5fvz5WrFghCioCQJ06dbBp0ybkz58fAKBUKrFy5UqL9pWIrEej0Z9xmM85n/4d7HR/93FQMmORiIiIiIiIbAcDizl069YtxMfHC8sjRoyATCbTu22JEiXQo0cPYfnMmTPQaDRm7yMRWZ8G+gOLCqn+84VEKkVyhmHSDioFeMogIiIiIiIiW8HAYg69fv1atFy5cmWD21evXl14nJCQgKioKLP0i4hsi77iLQqpDOpMqkJLJUBKhsCivuIvRERERERERNbCwGIOpQ9tTpeQkGBwe2WGoYwODroFGojo/aPW6BZvUUhlmWYgSiBBqkw8HNpBqQATFomIiIiIiMhWMLCYQ+XKlRMtnz9/3uD2AQEBwuOiRYvC2dnZLP0iItuigW7GYapMDnUmkUWJnozFtKHQDC0SERERERGRbWBgMYdKliyJpk2bCstLlizB27dv9W577do17NmzR1jWnm+RiN5varVGZ47FVKkdPinppnd7CTgUmoiIiIiIiGybbtlRMtnkyZNx9+5dvH37FmFhYejSpQt++uknNGnSBG5ubnj16hUOHz6MlStXQqFQAAAqVaqEnj17WrXfGYdl50UqlcrgMpGtUGs0kKvF70+FTIZu1T0z+SxqdIdCqxRQKJWAhr8JaeN5gIh4HiAingeIiOcB65BoOK4uV7x+/RqzZ8/GiRMnDA5VlEgkaNeuHaZNm6YzP6O53bx5E2q12qLHJKI0vY9GYNviwaj29rmw7qlrEUSeOqJ3+2PPk/Dl4N6oEfFUWPc8f2G8PnkEdlKJ2ftLREREREREHw6pVIqaNWuavp8Z+vJBcnd3R5MmTfDxxx8b3K5hw4YYMGCAxYOKRGR9OkOhMwx11tagqIPeodD8KYiIiIiIiIhsBYdC54KHDx/ip59+wvPn/8tEcnBwgLe3N5ycnBAeHo5nz54BAPz9/dG+fXv06dMHY8aMgZ0d/wmIPgQajb7iLZl//iUS3ecdVAqz9I2IiIiIiIgoOxjVyqHQ0FD06dMH0dHRAABHR0eMGjUK3377LRwdHUXbLVq0CEeOHIFKpcL69evx5s0bLFy40Cr9lkqlqFq1qlWOnZtUKhXu3r0rLFepUgUymcyKPSLSz+GMP+QZ5vhQSGWoXr263u3jU5S4lrEqtFKBqtWqwsGO73FtPA8QEc8DRMTzABHxPGC6O3fu5HjKPAYWc2jWrFlCUNHBwQEbNmxArVq1dLYrWbIkFi9eDC8vL6xatQoAcOjQITRr1gxt27a1ZJcF72O2pEwmey9fF70HJBLYq8UZh6kyu0zfr3Yq/VWh1XZ2sGNg0SCeB4iI5wEi4nmAiHgesAzOsZgDoaGhOHfunLA8ePBgvUFFbaNGjRJlKK1du9Zs/SMi26HWaHTnWJQaGAoN3aHQcrUKGhULMBEREREREZFtYGAxB65duyZa7tKli1H7ffvtt8LjBw8e4N27d7naLyKyPRpNWmBQm8LAHIuAbsYiADx+GZWr/SIiIiIiIiLKLgYWc+DNmzfC4wIFCqBIkSJG7VehQgXRclhYWK72i4hsj0ajpyq0oYxFCZCiJ/D4MiIm1/tGRERERERElB0MLOaAvb298FihML5aq1Qq/rNLJJJc6xMR2SaNRm1SVWgAUOjJWJQqUnO1X0RERERERETZxcBiDnh6egqPExMT8fTpU6P2e/z4cabtENH7SZqhIjRgOLAokUj0ZixKUhlYJCIiIiIiItvAwGIO1KtXT5R9uGPHDqP28/PzEx6XL18ehQsXzvW+EZFtsVPqBgQVBoZCA0CqnoxFiQnZ0URERERERETmxMBiDri7u6NVq1bC8qZNm3Dx4kWD+2zevBkBAQHCcrdu3czWPyKyHTKlUmedwYxF6J9j8V1kXG52i4iIiIiIiCjbGFjMobFjx8LV1RUAoFKpMGDAAKxYsQKRkZGi7SIiIvDzzz9j9uzZwrrKlSuje/fuFu0vEVmHnVI309BQxqJUIkGqVDdj8cjt0FztFxEREREREVF2GR6HR1kqUaIEli9fjsGDByMxMREKhQLLli3DypUrUbp0aRQsWBBRUVF49OgR1Gq1sN/HH3+MVatWwc6O/wREHwJ9Q5gNBRbt7aR6MxrvhbzL1X4RERERERERZRczFnNBvXr1sGvXLlSuXFlYp1AoEBwcjMuXLyM4OFgIKkokEnz55ZfYvXs3ihQpYq0uE5GFhUfG66zLqip0ip45Fu1VukOqiYiIiIiIiKyB6XK5pFy5ctizZw/Onj2L48eP48aNG4iIiEBiYiLy58+P4sWLo27duujQoQN8fHys3V0isjB9AcGsAov6nndQsXgLERERERER2QYGFnPZZ599hs8++8za3SAiGyNXmx5Y1JuxqKcdIiIiIiIiImvgUGgiIgvQFxA0NMcikEnGop4iMERERERERETWwMAiEZEF6B0KnUVgkRmLREREREREZMsYWCQisgDOsUhERERERETvGwYWiYgsQN8ci1kNhdZfFZqBRSIiIiIiIrINDCwSEVlA7mUscig0ERERERER2QYGFomILCA7gUVmLBIREREREZEtY2CRiMgC9A2Fhr1u4FCbvuIuzFgkIiIiIiIiW8HAIhGRBeir5tysYjGD+6TYMWORiIiIiIiIbBcDi0REFqBvKHTdskUM7sOMRSIiIiIiIrJlDCwSEVmAvsCizNHe4D6cY5GIiIiIiIhsGQOLREQWoG+ORbWeoc7aWBWaiIiIiIiIbBkDi0REFqAvY/H/2LvvOKnqs+/j36nbWVh6RzoIdhQbAvbYu0aNJkbvxJhEH1M00dyJ3TvWaBIVC/YWxYKoURGUKoj03lkWll22t6nn+WNhYPachd2ZOTOz8Hm/Xr6end/MnPPL/cCw+93r+l2GZ98Vi66sTPN1wlQsAgAAAADSA8EiACSBVbAY9sQwFTpIsAgAAAAASA8EiwCQBJat0PupWKy3CBatrgMAAAAAQCoQLAJAEngtz1g0B4d781mesRiQYRgJ2xcAAAAAALEiWASAJLA+Y3E/rdAOc7DoDQUVJlcEAAAAAKQBgkUASALrMxb33QodlrlqMSMUUJiKRQAAAABAGiBYBIAksDob0dhPK7QhyeeKrmr0hoIiVwQAAAAApAOCRQBIglgqFg3DME2GpmIRAAAAAJAuCBYBIAmsKhZD+zljMWxIfouKRYJFAAAAAEA6IFgEgCTwhEKmtf1NhZbMZyx6wwxvAQAAAACkB4JFAEgCbzhgWjP20wotmSsWM4K0QgMAAAAA0gPBIgAkgeUZi+59t0JL1hWL5IoAAAAAgHRAsAgASdA0WPQ73TIc+3+fqWKR4S0AAAAAgDRBsAgASeAJR5+xGHC6NKhT7n7fZ6pYDHHGIgAAAAAgPRAsAkAS5Dmig0W/y62ueRn7fE9BtoeKRQAAAABA2iJYBIAkaOeMDgObBoZWXrriCCoWAQAAAABpi2ARAJLA3eSMxaDTtd/3nDmki/zO6AAyMxRQaY0voXsDAAAAACAWBIsAkATuYCDqsb9JJaIVr9spn9v8uj98sDhh+wIAAAAAIFYEiwCQBE0rFlvSCi3JVLEoSd+sKErIngAAAAAAiAfBIgAkQaAhun3Z14JWaMm6stHbJKQEAAAAACAVCBYBwGZfri4xhYEB5/5boSXrysaMUMDilQAAAAAAJBfBIgDY7M+frjQFiy05Y1GSfBbBojdMxSIAAAAAIPUIFgHAZnkZblMY2NJg0ep1GUEqFgEAAAAAqUewCAA2G9w5R54YW6GpWAQAAAAApCuCRQBIgoRWLHLGIgAAAAAgDRAsAoDdDEOecChqyR9PxSJToQEAAAAAaYBgEQBs5gyag0AqFgEAAAAAbR3BIgDYzG0xbCWuMxapWAQAAAAApAGCRQCwmcsiWGxxxaJFAEnFIgAAAAAgHRAsAoDNLCsWWxgs+txULAIAAAAA0hPBIgDYzGURBAacrha9l4pFAAAAAEC6IlgEAJs5A1at0OZKRCtWLdNULAIAAAAA0gHBIgDYzKoV2qoS0YrV8BYqFgEAAAAA6YBgEQBsZtUK3eLhLVQsAgAAAADSFMEiANjMaip0S89YpGIRAAAAAJCuCBYBwGaWrdDxnLEYJlgEAAAAAKQewSIA2Mw6WIzjjMUgrdAAAAAAgNQjWAQAm20trTattbQVmopFAAAAAEC6IlgEAJut2lpmWourYpHhLQAAAACANECwCAA2s5ri7He28IxFp9VUaCoWAQAAAACpR7AIADbzhEOmtRZXLLqpWAQAAAAApCeCRQCwmVWFYYvPWLSoWPRQsQgAAAAASAMEiwBgM8tWaM5YBAAAAAC0cQSLAGAzb9gcBAYsKhGtWE6FpmIRAAAAAJAGCBYBwGaekPmMRatKRCthp0tBR/RHNRWLAAAAAIB0QLAIADbzhi3OWHS17IzFcQM6mqoWqVgEAAAAAKQDgkUAsJnlGYstbIV2OBym6sYMgkUAAAAAQBogWAQAm1kPb2lZK3Tja5tULFqc2QgAAAAAQLIRLAKAzayCwJZOhZbM5zFaBZUAAAAAACQbwSIA2CyeVmjJHELSCg0AAAAASAcEiwBgs0PyzCFiSysWLxjRjYpFAAAAAEBaIlgEAJt5LM9YbFmweOaQzqbqRioWAQAAAADpgGARAGxmFSwGWtgKnZfhls9NxSIAAAAAIP0QLAKAzdxBc4VhSysWDcN8HiMViwAAAACAdECwCAA2s5oKfe7hvVr8fs5YBAAAAACkI4JFALCZx6Ji8aYxg1v0XkOG/E2CRSoWAQAAAADpgGARAGzmDkZXGIYcTo0Z3KVF7zUMc9u02whLoVDC9gcAAAAAQCwIFgHAZu4mFYYtPV9RkgyZW6EbL+KPc1cAAAAAAMSHYBEAbOZqUrHYdBjLvhiGYRlEfrhgU9z7AgAAAAAgHgSLAGCzmpq6qMetqlg0ZDpjUZI+Wbgl7n0BAAAAABAPgkUAsFEwFDZNcQ60pmJR1hWOhs8X79YAAAAAAIgLwSIA2OiL1SXyhpu0QreiYlGSfG5zxaLbYtI0AAAAAADJRLAIADaqD5orFlvdCm1RsUiwCAAAAABINYJFALCRy+EwB4utaoU2LKdCewgWAQAAAAApRrAIADZyOS2CxVZULOZneixfT8UiAAAAACDVCBYBwEZup0OeOM5Y7JjjbaZi0R/33gAAAAAAiEfrJgjEoby8XOvWrVNhYaEqKipUV1cnp9OpnJwc5efnq1+/furfv79yc3OTtSUAsJ3L6TAPb2lFK7RkHUQG6pkKDQAAAABILduCxWAwqFmzZunLL7/U3LlztXnz5v2+x+FwaNCgQTr++ON12mmn6ZhjjrFrewCQNE1boQOtnQptUbHYyRWOa08AAAAAAMQr4cFiaWmp3nzzTb399tvauXNnZN0wDEmN4eHej3evGYYhwzC0evVqrV69Wi+//LJ69eqlyy+/XFdddRWVjADapMKK+riGt0jWFYu5ToJFAAAAAEBqJSxYLC8v13PPPac333xTPl9ji97e4eFuhmEoIyNDeXl5cjqdqq+vV21tbeS1e7+nsLBQjz32mJ555hldffXVuvHGG5WXl5eoLQOA7Xq0yzC3QiegYtHL8BYAAAAAQIolJFh888039fjjj6u6ujoqGOzYsaNGjx6tYcOGafDgwRoyZIgKCgrk8UT/kBwMBrV9+3Zt3rxZS5cu1aJFizR37lzV1NRIkmprazVhwgS9/fbbuuWWW3TNNddEKh8BIK35zQFga4NFq9d7gkGLVwIAAAAAkDxxBYtbtmzR73//ey1atCgSKHbq1EkXXXSRzjjjDI0cObJlm3C71atXL/Xq1UsnnHCCpMaw8fvvv9fkyZP12Wefqbq6WpWVlXrggQc0efJkPfDAAxowYEA82wcA+/nN05v9TnMF4r5YViyGqFgEAAAAAKSWM9Y3fvDBB7rwwgsjoeKhhx6qxx9/XNOmTdPtt9/e4lCxOW63W8cdd5zuvfdezZgxQ3/96181YMAAGYahRYsW6dJLL9V7770X1z0AwG4Oq2AxARWL9bX1Me8JAAAAAIBEiDlYvOOOO1RbW6vevXvrH//4h9577z2dffbZcrsTP2g6IyNDV155pT755BM98sgj6tu3r+rr63X33Xcn/F4AkFAWLcuJmAq9dFNpzFsCAAAAACARYg4Wc3Jy9Ic//EGffPKJzjjjjETuaZ/OPfdcTZkyRXfccYeys7OTdl8AiInfZ1rKycls3SUspkh7Q0HV+jhnEQAAAACQOjGXF3722Wfq3LlzIvfSYi6XS9dff73OOeeclNwfAFrKETCfhXh4v06tuobPba5YzAgF5AuFlRPzzgAAAAAAiE/MFYupChXTbQ8AsC9WZywaHm+rrtFcxSIAAAAAAKkUc7AIANg/R8AcLIZbGSxanbGYEQrIMGLeFgAAAAAAcbMlWDzrrLP03HPPqbi42I7LA0CbYV2xaA4K9+W8I3qb1ryhoAyRLAIAAAAAUseWYHHjxo16/PHHNX78eN1444367LPPFLA4ZwwADnh+82ef4W1dxeL5R/YxrVGxCAAAAABItZiHt7REKBTSjBkzNGPGDLVr107nnXeeLrzwQo0YMcLO2wJA2nAEzcFiuJUVi+4s8xRpL8EiAAAAACDFbKlYvPPOOzV8+HBJkmEYMgxDlZWVev3113XZZZfpvPPO08SJE1VWVmbH7QEgbVi1Qrf2jEWr1mmGtwAAAAAAUs2WYPG6667Te++9p08++UQ33nijunfvLmlPyLh27Vo9/PDDGjNmjH71q1/pq6++UigUsmMrAJBSDqtjIDytKxYPezNMa95wgBMWAQAAAAApZetU6AEDBuj222/X119/rZdfflkXX3yxcnJyIgFjMBjU1KlTdcstt2jMmDF6+OGHtXr1aju3BABJZTkV2h1/xWJGMCiDXmgAAAAAQArZGizu7bjjjtMDDzygWbNm6dFHH9WYMWPkcrkiIWNZWZkmTpyoCy64QJdcconeeOMNVVVVJWt7AGALy6nQrRzeIodDPld0lSMViwAAAACAVLN1eIuVjIwMnXPOOTrnnHO0c+dOTZkyRV9++aW+//57BYONZ4YtW7ZMy5cv18MPP6xTTz1Vl156qU444YRkbxUA4ua0qFg0vK0b3iJJfqdHGXudq8gZiwAAAACAVEtaxaKVjh076tprr9XLL7+s2bNn65FHHtERRxwhqfE8Rp/Pp08//VQ33HCDzjjjDE2cOFG1tbWp3DIAtI7ffMai0crhLZJMFYsZTIUGAAAAAKRYSoPF3VauXKmXX35ZL774ohYtWiSHwxH5b3er9JYtW/Twww9r/PjxmjRpUqq3DAAtsrqo3LQWS7Dod0VXOXpDQRk0QwMAAAAAUijprdC7rV27Vh9//LEmT56soqKiqOd2DyQYNmyYTj/9dP3www+aNWuWQqGQKisr9ac//UmLFy/W//7v/6Zi6wDQYl0zHKa1eoerVdcoqmpQbyoWAQAAAABpJqnBYnFxsT755BN99NFHWrVqlSSZppoWFBTo3HPP1cUXX6yhQ4dG1ktKSvTmm2/q+eefl9/v11tvvaUjjzxS559/fjL/JwBAqziD5lboXp3zWnWNHTU+y4pFAAAAAABSyfZgsaamRp9//rk+/vhjzZs3T+FwWFJ0oOh2uzVmzBhdfPHFGjt2rNxu87Y6d+6s3/zmNxoxYoRuvvlmSdIbb7xBsAggvfnMw1syszNbdYlg2LA+YzGujQEAAAAAEB9bgsVgMKjp06fro48+0rRp0+T3N/5g3bQ6cciQIbrooot0/vnnq6CgoEXXHj9+vPr27atNmzZp7dq1Cd87ACTSWoszFt2ZrQ8WTRWL4aBC9EIDAAAAAFLIlmDxxBNPVFVVlaTGMHH3EBZJat++faTVefjw4TFdv3v37tq0aZMpqASAdJOtkGnNm9W6YDFkVbEYDKiWj0AAAAAAQArZEixWVlZGhYkul0snnXSSLr74Yo0bN04ej2c/V9i3nTt3SpIGDRoU914BwE4dLT5lOxfktuoazVUs1sSzMQAAAAAA4mTbGYuGYWjQoEG6+OKLdf7556tjx44Ju/bNN9+snj17qn///gm7JgDYYVtplWnNkZHRqms0d8YiAAAAAACpZEuwePXVV+uiiy7SiBEj7Li8zj77bFuuCwCJtLWyXo6gxfRmr7dV18nPdMvvjK5YzAgFZYTphQYAAAAApI4tweLdd99tx2UBoE25/8s1GmVVWdjK4yCuPbqXprnNH9dGwC8pJ8bdAQAAAAAQH2eqNwAAB6rZm8rlCcdfsZibYa5YlCT5/DHuDAAAAACA+Nl2xmJThmGovLxcfr9f4XC4Ve/t0aOHTbsCAPs4JHlD8QeLkuR3mT+uHX5fDLsCAAAAACAxbA0Wa2trNWHCBE2dOlXr169XKBRq9TUcDoeWL19uw+4AwH6WwWIrW6ENwzwVWpLkZ4ALAAAAACB1bAsW161bpxtvvFHbtm2T1PiDMQAcTBwOydukFTrgdMnjbN0pFIYh+ayCRV9DPNsDAAAAACAutpyx6PP59Nvf/lZFRUWSCBUBHJwccpgqFv3O1v8+x5B1K/SOsppYtwYAAAAAQNxsqVicMmWK1q5dK4fDIcMwdPjhh+uKK67QsGHDlJubK2crq3UAoC1yOGQa3uJ3uVs9x9kwrIPFl2eu1XGnHxfHDgEAAAAAiJ0tweLkyZMjX1944YV68MEH5XA47LgVAKQ1U8WiRUC4P4YMy1boeWuLY94XAAAAAADxsqV0cMOGDZIkj8ejP/3pT4SKAA5KVlOhA7G0QhtSg0WwmBFieAsAAAAAIHVsCRZLS0vlcDg0dOhQtWvXzo5bAEDaczgcpuEtsVQshg1DPjfBIgAAAAAgvdgSLObkNJ4glpGRYcflAaDNSNTwFqtW6MwgwSIAAAAAIHVsCRb79u0rwzC0ZcsWOy4PAG1CYyt0dPgXS8VilselBpfXtE7FIgAAAAAglWwJFsePHy9JKi4u1vz58+24BQCkPYdDFq3Q5srD/cnyuOSzCCQzg/6Y9wYAAAAAQLxsCRavuOIK5efnS5Ieeugh+f388Avg4ONwOOQJhaLWYmmFliR3dpZpLaNJmzUAAAAAAMlkS7CYn5+vv/71r5KkZcuW6aabblJhYaEdtwKAtLWoqDIhw1skqVNBnmmNVmgAAAAAQCrF9hOupKeffnq/rxk4cKDWrFmjuXPn6swzz9TQoUM1bNgw5efnKyvLXH3TnFtuuSXWbQJAyviCYdMZiwGnK6ZrhbzmMxYzQ1SDAwAAAABSJ65g0eFw7Pd1u18TCoW0fPlyLV++vNX3IlgE0Bb1ys8yT4WO4YxFSQp6MkxrGUyFBgAAAACkUMzBoiQZhmHr6yW1KLwEgHTkCAflNsJRa7G2QltVLNIKDQAAAABIpZiDxVGjRiVyHwBwwGk6uEWKfXhLyKJiMZNgEQAAAACQQjEHi6+++moi9wEABxyPRfAXa8Vi0KpikVZoAAAAAEAK2TIVGgAguYNB01og1lZoD8NbAAAAAADphWARAGxSXlVnWov9jEWL4S0hc3AJAAAAAECypH2w6PdTkQOgbXJatCoHYjxjMWwRLHo5YxEAAAAAkEJxTYVuKcMwVF5eroaGBoUshhlIUjgcVjAYVCAQUF1dnUpKSjR//nxNmTJFM2fOTMY2ASChvBYVhTEPb/F6TGuZQX7xAgAAAABIHVuDxcWLF+tf//qXZs+efdBUHoZCIf33v//VF198oaVLl6qkpEShUEidOnXSiBEjdN555+nUU0+V05n2xaIA4mQZLMbYCj2ibxfTWgYViwAAAACAFLItWPziiy906623KhwOyzCMmK/jcDgSuCt7LV68WHfffbdWrlxpem7r1q3aunWrPv/8cx1xxBF67LHH1LNnzxTsEkCyWLUqxxosnnNoV/lc7qhzFQkWAQAAAACpZEuwWFNTo7vuukuhUMgyGNy91jRw3Pu1GRkZGjx4sMaNG2fHFhNu9uzZuvnmm1VXt2dYQ+fOndWnTx8FAgGtWLFCgUBjCLBw4UJde+21euutt9Sli7kKCcCBwRtOXMViXoZbPpcnKljMtDjDEQAAAACAZLElWPzggw9UWVkph8MhwzB0+umn68wzz1SnTp304YcfatKkSXK73XrmmWfkcrlUUVGhlStXatKkSdqxY4ckKTc3V08//XSbCN42bdoUFSr26NFDf/nLXzR27NhIWFpVVaWnnnpKr7zyiqTGCsZ7771XTz31VMr2DcBe1mcsms9KbAmHpAaXV+1UH1mjYhEAAAAAkEq2HPQ3a9asyNdXXXWVnnrqKZ177rkaPXq0LrjgAkmNZxEahqHjjz9eZ599tm677TZ98sknGj9+vCRp586d+stf/mLH9hLunnvuiYSK/fr10xtvvKFx48ZFVWC2a9dOf/7zn3XNNddE1r744gtt3Lgx2dsFkCSeBFYsSpLPFR1KMrwFAAAAAJBKtgSLq1atary406mbb7456rmRI0dGBpd89913Uc/l5eXpiSee0ODBg2UYhqZPn65FixbZscWEWbJkiWbMmCGp8X/v3//+d3Xv3r3Z1//2t7+V1+uV1NgKPm3atGRsE0AKJHJ4i8PhUIM7OljMsLg+AAAAAADJYkuwWFVVJYfDob59+6pz585Rz+Xk5KhXr16SGkO5prxer37zm99EHk+ZMsWOLSbM+++/H/n6wgsv1GGHHbbP17dr10633367brrpJv3+97/XyJEj7d4igBSxChYDTldM13LIXLGYEQqoxke4CAAAAABIDVvOWKyvbzwDrLnzEfv376/Nmzdr9erVls+PHTtWubm5qq2t1bJly+zYYsLsXXF4+eWXt+g9119/vT2bAZBWrIe3xHjGosOiFTrk16crd+iyw3vEdE0AAAAAAOJhS8ViXl6eJPPU59369OkjSSovL1dlZaXpebfbrd69e8swjLQ+g3D79u0qKiqSJGVlZe23WhHAwcV6eEuMrdCyaIUOBrR0e3VM1wMAAAAAIF62VCx26NBB5eXlkQnPTfXu3Tvy9dq1a3X00UebXpObmytJqq5O3x+ad58lKTVWYbpcjS2OhYWF+uCDD/T1119r69atqq+vV5cuXXTsscfq0ksv1ZFHHpmqLQNIokSesShZtULTBg0AAAAASB1bgsVDDz1U69ev16ZNm1RcXKyuXbtGPb+7YlFqPGfRKljcvn27pOarHtPB5s2bI1936dJF4XBYL7zwgp566in5fD7Tazdv3qz//Oc/uuiii/S3v/1NGRkZyd5ylGCw7YcSoVBon4+BVPKGA6Y1v8sd09+9UCioBrc3ai0z5FcoFDog/i7Hg88BAHwOAOBzAACfA6lhS7A4evRoffzxxzIMQw899JAef/zxqOeHDh0a+frzzz83nTm4atUqFRYWyuFwKD8/344tJkRpaWnk6+zsbN1777164403ImsDBw5Ux44dVVpaqnXr1kXWJ02apM2bN2vixImRCdHJFg6H037idiyWLl2a6i0AER6Lf8j8TndMf/e21QYVaFKx6AmHVLytSIsW1ce8xwMRnwMA+BwAwOcAAD4HksOWMxbPPvvsSCD42Wef6cc//rGmT58eqarp2rWrBg0aJMMwtHDhQj377LOR9+7YsUN/+tOfIpWKw4cPt2OLCVFVVRX5+ttvv42Eiqeddpq+/PJLffLJJ3rllVc0ZcoUffnllzrllFMir//+++913333JX3PAJInocNbZG6FliRPwFwVCQAAAABAMtgSLGZnZ+uXv/xlJBxcsGCBfvGLX2jhwoWR1+w9QfmJJ57Q2LFjdfHFF+u0007T8uXLI8+deeaZdmwxIfx+f+Tr3SHjFVdcoaeffjrqHEmp8VzJZ555RmeddVZk7Z133ml2MjaAts/qjMWA0xXj1czDWyTJHSRYBAAAAACkhi2t0JJ0/fXXq7CwUK+99lpkbe+zFa+88kq9//77WrFihRwOh7Zv367i4mIZhiGHwyFJGjJkiM4//3y7thi33fvcrXfv3rrrrrtM67s5nU7dd999mjFjhmpqamQYhl577TXdc889ydiuaS8jR45M+n0TLRQKRZU3jxgxIjJEB0i1D0PWZywefvjhrb5WQUW9vrCoWOzWPj+m6x1I+BwAwOcAAD4HAPA50HpLlixROByO6xq2BYuSdNddd+mUU07Rc889p2XLlqlLly6R5zwej5577jndcsstkfPGdlc4GoahQYMG6ZlnnpHbbesW45KdnR31+Morr9zvmYl5eXn60Y9+pHfeeUeSNGvWLNv2tz/p/H/bWLlcrgPyfxfaJutWaHdMf0bzsrxqcJk/XzzBAH/mm+BzAACfAwD4HADA50By2P5/4ZNPPlknn3yyampqTM917txZb7zxhr744gtNnz5dO3bsUPv27XXyySfr3HPPTfs/ADk5OVGPjzrqqBa974gjjogEi1u2bJHf70/ZEBcA9jAMQxkWbcp+Z2xnLHbKyZDPZf5MDNQxuAUAAAAAkBpJS+5yc3Mt110ul84666yoswfbig4dOkQ9LigoaNH7OnbsGPW4oqIiqpoTQNtXHwhZViz64viFic/ijMX66rqYrwcAAAAAQDxsGd5ysBg0aFDU472nRO/L7unYu6V7ZSaA1nM5HcqwOGPx9EN7xnxNy1bogN/ilQAAAAAA2C/piVZxcbGKi4tVWVmpdu3aRYYO1NfXy+v1tqmDNYcMGRL1eOPGjTrssMP2+77t27dHvs7MzFT79u0TvTUAacBqKvTfzt//Z0RzfBbDW9xBgkUAAAAAQGokpWJx8+bNuueeezR+/HiNHTtWV1xxhW666SY9/fTTkdd89dVXOvHEE/XYY4+puro6GduKW0FBQVS4+OWXX7boffPmzYt8PXz4cDmdFI4CByKvRcVit875MV/PKlj0+AkWAQAAAACpYWuiZRiGnnzySZ199tl68803VVRUJMMwIv/traioSBUVFZowYYLOP/98LVmyxM6tJcwFF1wQ+Xrq1Klau3btPl+/bds2ffXVV5HHZ5xxhm17A5BaVq3QimNQU4PFGYtuWqEBAAAAAClia7B466236plnnlEoFDIFiQ6HI+pxYWFh5Ott27bphhtu0Lp16+zcXkJcdNFFys9vrEAKBAK64447mq249Pv9+uMf/6hAoDFsyM3N1cUXX5y0vQJILqtW6HiCRetWaIvwEgAAAACAJLAtWHz66af1+eefRx6PHDlSd999t9566y3L15933nk6+uijZRiGHA6HqqqqdMcdd9i1vYQpKCjQnXfeGXm8ZMkS/fjHP9acOXOiXrd+/Xr97Gc/09y5cyNrt956aySUBHDgaVqx6HO5pSa/VGmNBrc5lHT7G2K+HgAAAAAA8bBleMv27ds1YcKEyOPbb79dN9544z7fM2rUKL3++ut67bXXdP/990uSli5dqunTp+uUU06xY5sJc9FFF2njxo165plnJEmrV6/Wddddp27duql3796qrKzU6tWro95zwQUX6Nprr03FdgEkSUaTikW/06OMOK7nc5k/sreXtmwaPQAAAAAAiWZLxeJ//vMf+Xw+ORwOXXbZZfsNFfd2zTXX6Lrrros8njJlih1bTLjbbrtNDzzwgDp06BBZ2759u+bNmxcVKrrdbt1888166KGHUrFNAEnUdHhLKI42aMm6FVoNvriuCQAAAABArGypWJwxY4akxnMUf/Ob37T6/TfddJNee+01hUKhNjPERZIuueQSnXbaafroo4/01Vdfaf369SorK5PH41G/fv10/PHH66qrrlLv3r1TvVUASdC0YjEcZ7Bo1QrdyW1YvBIAAAAAAPvZEiwWFhbK4XBo4MCB6tSpU6vfX1BQoD59+mj9+vUqLi62YYf2yc/P17XXXkubMwDTGYtBq4rDVrAc3sJUaAAAAABAitjSCl1ZWSmpMSCMVefOnSU1TlIGgLao6VTogCe+YLHBKlj00woNAAAAAEgNW4LFvLw8SXsCxljs3LlTkpiaDKDNMlUsWrQyt4bPbQ4Wd5ZXx3VNAAAAAABiZUuw2L17dxmGoTVr1sQULm7btk3r1q2Tw+FQjx49bNghANjPHCwmvhW66TmOAAAAAAAkiy3B4oknnihJCoVCevHFF1v9/n/84x8yjMaBBMcdd1xC9wYAyWJqhY4zWGxwmSse8wyCRQAAAABAatgSLJ5//vlyOhsv/fzzz+vzzz9v8XufffZZTZo0KfL4nHPOSfj+ACAZTBWLnjhboS0rFgMWrwQAAAAAwH62BIsDBw7URRddJMMwFAqFdNttt+mOO+7Q3LlzVVJSYnp9XV2dpk2bpp/+9Kd64oknJEkOh0NnnHGGhg4dascWAcB2iW6FbrB4vzfIgCsAAAAAQGq47brw3XffrZUrV2rZsmUyDEMffvihPvzww6jXzJs3T6NHj1Z1dbXC4bAkRVqge/furXvuuceu7QGArRp8QeWHQ1Fr8bZCW1YsBqlYBAAAAACkhi0Vi5KUmZmpF154QSeffLIMw4j6z+FwSJJ8Pp8qKioUCoUigaIkDR8+XC+99BIToQG0WaXlNaa17XEWFwadLoXliFqjYhEAAAAAkCq2BYuS1L59e02YMEEPP/ywhgwZElnfO2TcW5cuXfTHP/5Rb731lnr27Gnn1gDAViFfg2mtXV52fBd1OEzt0FQsAgAAAABSxbZW6L1dcMEFuuCCC7R582YtWLBAmzZtUlVVlQKBgPLz89W1a1cdeeSRGjZsWGToCwC0ZaF6n2ktJ95gUY3t0Nl7VSl6Gd4CAAAAAEiRpASLu/Xp00d9+vRJ5i0BICVC9eaKxbA3I65rntCvg+mcxVwF47omAAAAAACxojwQAGwQ8pkrFg1vfMNb/n7ucDW4vVFrOWGCRQAAAABAaiS1YrE1Jk6cqFWrVsnhcOiBBx5I9XYAoFXWbi3T4U3WjDgrFo/vV6BVTSoWwxaVkQAAAAAAJEPaVizOmDFDkyZN0qRJk1K9FQBotVyFTGulCSguDDUJJzM5YxEAAAAAkCJpGywCQFvm8PtNa50L8uK+bo3DFfU4K0ywCAAAAABIDYJFALBBaVm1aS0jJyvu6wY90WcseoMEiwAAAACA1CBYBAAbfLV0q2kt3CQUjIUnOzqczAiaKyMBAAAAAEgGgkUAsMH2neaKxapw/B+5xU0KFDNCTIUGAAAAAKQGwSIA2CDDYqhKyBt/xWKDK/oaLiOsZYXlcV8XAAAAAIDWIlgEABtYBYtNz0eMhc/lMa3936dL474uAAAAAACtRbAIADbwWrQoh93mULC1/C63aW1LMRWLAAAAAIDkI1gEABtYtkInoGKxwW2+hjvAABcAAAAAQPIRLAKADew6Y9GqFdoTMN8LAAAAAAC7ESwCgA2sWqFDFtWGrdVg0U7tCVKxCAAAAABIPoJFALBBUisW/QSLAAAAAIDkM08BaKEPPvgggdswKy4utvX6AGCnZE6FpmIRAAAAAJAKMQeLd9xxhxwORyL3AgAHDMup0J74p0JbDm8JcsYiAAAAACD5aIUGABtYVixanI/YWlYVi96AL+7rAgAAAADQWjFXLEqSYRiJ2gcAHFAsh7ckoBW6wTJYpBUaAAAAAJB8MQeLX331VSL3AQAHFKuKxXAChrdYtUJ7OWMRAAAAAJACMQeLPXv2TOQ+AOCA4rVshY4/WKy3uEaGn1ZoAAAAAEDyccYiANggmcNbqFgEAAAAAKQCwSIA2MCqFToRZyxaVSz6q2vjvi4AAAAAAK0Vc7D46quvKhwOJ3IvrWIYhl577bWU3R8A9iWjScVi0OFU2OWK+7pWwaLb3xD3dQEAAAAAaK2Yg8X7779fF110kebOnZvI/bTIvHnzdMkll+j+++9P+r0BoCWanrHod8V8pG2UBpc5WMwMmqsjAQAAAACwW8zBYqdOnbRq1Spdf/31+uUvf6k1a9Ykcl+WFi5cqBtuuEE/+clPtHz5cnXs2NH2ewJAaxmGYWqF9rk8cjoccV/bqmIxizMWAQAAAAApEHOw+NFHH2nMmDEyDEPTpk3TBRdcoF/84hf6+uuvZRhGwjbo8/k0efJkXXnllbrqqqs0a9YsGYahUaNGadKkSQm7DwAkyrqddaZWaJ/Lo1MHdor72tbBIlOhAQAAAADJF3NvXkFBgZ577jm99dZbeuyxx1RVVaXp06dr+vTp6tKli0499VSdcsopGj16tDIyMlp17crKSs2cOVPTpk3TV199pbq6OkmNVUBZWVm67bbbdO2118qRgOofAEi0khqfMi1aoft2yIr72lZToWmFBgAAAACkQtyHfl155ZU6/fTT9fDDD2vy5MkKh8PasWOH3nzzTb355ptyuVzq27evBg8erEGDBqljx47Ky8tTTk6OXC6XGhoaVFFRoaKiIm3atEnLli3T5s2bI1WPu/9fh8Oh888/X7fddpu6d+8e77YBwFZWFYuJYFWxmEkrNAAAAAAgBRIyTaBjx476v//7P91444168sknNXXq1MjE6GAwqPXr12v9+vX67LPPWnS9vVupXS6XzjjjDP3P//yPhg4dmojtAoCtHA6H5RmLiUArNAAAAAAgXSRmTOkugwYN0tNPP60tW7bojTfe0CeffKIdO3ZEBYW725f3rkTc+/FuPXv21Pnnn69LLrlEvXr1SuQ2AcB23iYVi4maCv30pUfI/6Rb3vCe6zO8BQAAAACQCgkNFnfr3bu3/vjHP+qPf/yjFi9erNmzZ2vRokVat26dioqKFAjsqeQxDEMej0d9+vTRgAEDdNRRR2n06NFUJwJo0+yqWLxgRDc1uD3y+vcEi03PcwQAAAAAIBlsCRb3dthhh+mwww6LPDYMQzU1Naqrq5PD4VBOTo5ycnLs3gYAJI1D9gWLGW6n6t1etfPXR9aygj4ZhsFAKwAAAABAUtkeLDblcDiUl5envLy8ZN8aAJJm71ZlKXGt0C6HQ1XujKi1rKBf63bWaWAnfkkDAAAAAEgeZ6o3AAAHHMNQRtCeikWnw6GGJtfKDAZUWss5iwAAAACA5CJYBIAEcwSDcip6IFWigsVsr8s0GTor6BNN0AAAAACAZCNYBIBEC5irB/0utzI9rrgv7XI6VG/RCs3xigAAAACAZCNYBIAEK95ZZVrzuTxyOROT/jW4za3QTpJFAAAAAECSESwCQIJNWbjFtOZPUCu0JIuKRR8ViwAAAACApCNYBIAEW7Kx1LSWqKnQkkxnLLqNsByBQDOvBgAAAADAHgSLAJBgLoszFhM1vEUyt0JLksvvS9j1AQAAAABoCYJFAEgwV9BcPZjYYDHDtOZqaEjY9QEAAAAAaAmCRQBIMJffeip0ojRthZYkp68+YdcHAAAAAKAlCBYBIMHcQXtboa2CRV91bcKuDwAAAABAS9gSLH766aeaOHGiSkvNAwwA4EBn3QqduIrFBpc5WPx+bXHCrg8AAAAAQEvYEiy+9957evjhhzV27Fg999xzdtwCANLWCd2yTWv9u7dP2PWtKha/W7UtYdcHAAAAAKAlbAkWV69eLcMwFAqFdNRRR9lxCwBIW4d1zDStnTC4e8KuX+8xB4t5YXOVJAAAAAAAdrIlWKyoqIh8PXz4cDtuAQBpyxkwn7GYmZuVsOtbtULnGsGEXR8AAAAAgJawJVjs0qVL5Ou9Q0YAOBg4LaZCGxZVhrGyaoUe3TkjYdcHAAAAAKAlbAkWzzvvvMjXEydOtOMWAJC2LIPFjMQFf1bBYpbFJGoAAAAAAOxkS7D4y1/+UieeeKIMw9Crr76qBx54QGVlZXbcCgDSjlUrtOFNXMVig0Ww6PL7EnZ9AAAAAABawm3HRTdv3qzf//73ysnJ0X//+1+9+uqreu211zRgwAANHTpUBQUFys3NlcPhaNH1brnlFju2CQC2sKpYVAKDRauKRaevIWHXBwAAAACgJWwJFs8999xIaOhwOGQYhgzD0Jo1a7R27dpWX49gEUBb4gpYVA9mmCdFx8oqWHQ11Cfs+gAAAAAAtIQtwaIkGYbRqvXmtLSqEQDShSMQMK0ZGTa3Qvs4YxEAAAAAkFy2BIujRo2y47IA0CasKSzTmCZrDq+9w1tctEIDAAAAAJLMlmDx1VdfteOyANAmdLPIEMM2n7E4d1WRjkrYHQAAAAAA2D9bpkIDwMHMGwqa1np2yU/Y9RtcVCwCAAAAAFKPYBEAEmxdUZlpLSMrccNb/n6ZuTYxI8gZiwAAAACA5LJteEtziouLVVxcrMrKSrVr106HH364JKm+vl5er1culyvZWwKAhAmHDcuKRW9OVsLu0b1bB9NaFsEiAAAAACDJkhIsbt68WRMnTtS0adO0bdu2yPpJJ52kCRMmSJK++uor3Xfffbr88st14403Ki8vLxlbA4CEWl1aI2/IPBXam8CKRXkyFJZDThmRpaygX4ZhyOFwJO4+AAAAAADsg62t0IZh6Mknn9TZZ5+tN998U0VFRTIMI/Lf3oqKilRRUaEJEybo/PPP15IlS+zcGgDYwulwKDNoDhadOdkJu4fhkBrcnqi1zKBfYaOZNwAAAAAAYANbg8Vbb71VzzzzjEKhkClIbFpVU1hYGPl627ZtuuGGG7Ru3To7twcACed1OZUZim5LDjqckjtxBeKhsKF6d/To6aygX2GDZBEAAAAAkDy2BYtPP/20Pv/888jjkSNH6u6779Zbb71l+frzzjtPRx99dKSVr6qqSnfccYdd2wMAW2S4naaKxQa3eYpzPMKGVN/kmo2t0Am9DQAAAAAA+2RLsLh9+/bI2YmSdPvtt+vdd9/V1VdfrSOOOMLyPaNGjdLrr7+uu+66K7K2dOlSTZ8+3Y4tAoAtGluhoysWG1yeZl4dm1DYMLdCh6hYBAAAAAAkly3B4n/+8x/5fD45HA5ddtlluvHGG1v83muuuUbXXXdd5PGUKVPs2CIA2CYzZHfFIq3QAAAAAIDUsyVYnDFjhqTGcxR/85vftPr9N910k9y7ziNjiAuAtsZUsehObMUirdAAAAAAgHRgS7BYWFgoh8OhgQMHqlOnTq1+f0FBgfr06SPDMFRcXGzDDgHAPk2HtzS4EluxaMgwtVczFRoAAAAAkGy2BIuVlZWSGgPCWHXu3FmS5Pf79/NKAEgvdg9vYSo0AAAAACAd2BIs5uXlSdoTMMZi586dkqT8/PyE7AkAksXu4S2dcrymVujMUEBGOJzQ+wAAAAAAsC+2BIvdu3eXYRhas2ZNTOHitm3btG7dOjkcDvXo0cOGHQKAfewe3nJCvwLLa4br6xN6HwAAAAAA9sWWYPHEE0+UJIVCIb344outfv8//vEPGbta+o477riE7g0A7Na0YrGgQ25Cr+9xOU0Vi5Kk+oaE3gcAAAAAgH2xJVg8//zz5XQ2Xvr555/X559/3uL3Pvvss5o0aVLk8TnnnJPw/QGAXbaV1chtRLckVxquhN/HqmIxWFub8PsAAAAAANAcW4LFgQMH6qKLLpJhGAqFQrrtttt0xx13aO7cuSopKTG9vq6uTtOmTdNPf/pTPfHEE5Ikh8OhM844Q0OHDrVjiwBgi+emrzKtFfkdCb9P987m82e374j9XFsAAAAAAFrLbdeF7777bq1cuVLLli2TYRj68MMP9eGHH0a9Zt68eRo9erSqq6sV3jV0YHcLdO/evXXPPffYtT0AsEWw1nzOoc+d2OEtklRtMRDmuzXbdNiYhN8KAAAAAABLtlQsSlJmZqZeeOEFnXzyyTIMI+o/h6Oxesfn86miokKhUCgSKErS8OHD9dJLLzERGkCbk2uETGsNrsQOb5Gk3t0LTGvvzl6X8PsAAAAAANAc24JFSWrfvr0mTJighx9+WEOGDIms7x0y7q1Lly764x//qLfeeks9e/a0c2sAYIt2CprWGmyoWAxmZJrvU8MZiwAAAACA5LGtFXpvF1xwgS644AJt3rxZCxYs0KZNm1RVVaVAIKD8/Hx17dpVRx55pIYNGxYZ+gIAbdERBebqxLz2iZ0KLUkBT4ZpLTMYSPh9AAAAAABoTlKCxd369OmjPn36JPOWAJBUhcUVprXhfTsn/D6Lyv06u8laVtCX8PsAAAAAANAcW8oDn3jiCS1evNiOSwNAWutlLiRUnTPxrdAlIZdpLSvoT/h9AAAAAABoji0Vi88884yeffZZderUSePGjdP48eN1wgknyOtN/AADAEgnDp+5arBHl8QPompwmz9PaYUGAAAAACSTra3QJSUlevfdd/Xuu+8qMzNTJ5xwgsaPH69x48apoMA80RQA2jqnr8G05sjKSvh96i0GwmTTCo0DQH0gpC0V9eqc41WHbH4hCQAAAKQzW4LFcePGac6cOaqvr49Mfq6vr9fUqVM1depUOZ1OjRw5UuPHj9epp56qAQMG2LENAEg6p0XFojLNE5zjVe8xX5MzFtHWbdhZp/NenKvlxTXqmO3R29ceo/GDOqV6WwAAAACaYUuw+O9//1uBQEDz5s3T9OnT9c0332jDhg2RkDEUCmnRokVatGiRHn/8cfXu3Vvjx4/X+PHjdcwxxzAZGkCbVVVZY1ozMiwOXoxTVn6eaS0nQLCItu2fszZoeXHj36GddQH95fOVGj/opBTvCgAAAEBzbGuF9ng8OuGEE3TCCSfozjvvVGFhoaZPn67p06fru+++U0PDnnbBLVu26OWXX9bLL7+sdu3aacyYMRo/frzGjBmjnJwcu7YIAAk3Z9U2XdVkrdaZ+HbOOrc5rMwmWEQb99j09VGPZ20s16Uvz5M/aOinx/bWRSO7p2hnAAAAAKzYesbi3nr16qWrr75aV199tXw+n+bOnatvvvlG33zzjTZv3hx5XWVlpSZPnqzJkyfL7Xbr2GOP1QsvvJCsbQJAXEJ19aa1NTVBHZvg+9R5zMFiTsB8viPQ1r2/ZLskafKKYn30s2N17vCuKd4RAAAAgN2SFizuLSMjQ2PGjNGYMWMkSRs3btQ333yj6dOna968efL7/ZKkQCCgWbNmpWKLABCTzJDftBa2oRW61uKMRYa3oC0LhML7fc0v/rNYhX85PQm7AQAAANASKT/MsKGhQUVFRdq5c6dqa2sVDoflcDjkcDhSvTUAaLXMYMC8mJH44S1WFYu0QqMte/LbDft9TVEVVbkAAABAOkl6xaLf79f333+v7777TnPnztWSJUsUDAajXrN7yIskZWVlJXuLABAzq4pFw4ap0LUu87mNBItoi6oaAsr2uPSHyctTvRUAAAAArWR7sOj3+/XDDz9EgsTFixcrENhT0bN3iChJXq9Xhx9+uEaPHq3Ro0fr8MMPt3uLAJAwlhWLNgSLYUm17gzl7NX+nBOkmgtthy8Y0vVvLdS7i4qUl5GSk1kAAAAAxMmW7+TnzZunuXPnRoLE3WcmSuYg0eVy6dBDD9Xo0aN1/PHH66ijjlKGDeeRAUAyZAbNFYtjD+2V8PtkuJ2q9WRGBYvZAZ+CobDcrpSfcgHs16vfF+rthUWSpMqG4H5eDQAAACAd2RIsXnvttZEzEpsGiQ6HQ4MHD45UJI4aNUq5ubl2bAMAkm5Qnsu01rEgL+H3uXP8oMZzFvcaQp0TaFDIMFIzlQtopcenr0/1FgAAAADEydafP3eHillZWbrkkks0fvx4HXbYYQSJAA5Y2WFzK7QjK/Gt0Ocd2lVrmwxwyQ76FDaaeQOQZlbsqEn1FgAAAADEydZgcXfVYkNDg9544w199913UZWKeXmJr+IBgFTy+M2t0E4bhlBluF2qc0cHizkBn8IkiwAAAACAJLElWLznnns0a9YszZ07V+Xl5ZIaqxfXrFmjNWvW6NVXX5XT6dTQoUN13HHHafTo0TrmmGOUnZ1tx3YAIGk8TSYzh+WQw2PP73BqPdGVkNkBKhZx4NtW1aDu7RJfBQwAAACg9Wz5affyyy/X5ZdfLklasWKFZs+erVmzZun7779XfX3jgWChUEjLly/X8uXL9dJLL8nlcmnEiBGRoPHoo4+W1+u1Y3sAYBujIXoyc4PbI4/TnmEqdZ6mFYsNqg2HbbkXkC563vOFwo+cl+ptAAAAAJDNrdCSNGzYMA0bNkw/+9nPFAgEtHDhQs2aNUuzZ8/W0qVLFQw2ToIMBoNatGiRFi1apOeee04ej0eHH364Ro8erV/96ld2bxMAEqK+ui7qcYPbK7t+RVLbJFh0G2GF/X4pm1/K4MC2pqRGgzpzXjMAAACQakkdHurxeDRq1CiNGjVKv/3tb1VTU6N58+bpu+++0/z587V8+XKFQiFJkt/v17x58zR//nyCRQBtRmYw+ozFBpdX7XedN5toTc9YlCSjplZqT+CC9LamJL7BLduqfASLAAAAQBpIarDYVG5ursaNG6dx48bJ5/Np+vTp+uc//6lVq1bJ4XBEpkoDQFuRGYqeCt3g9simXFF1HvM5c0ZdrT03AxLork9XxvX+MN8fAAAAAGkhpcHi8uXLNXPmTM2aNUsLFiyQf9c0VYddP4UDgM0ymgaLLq9tn2nWFYt1Fq8E0su7i7fF9f4QwSIAAACQFpIaLG7dulWzZs3SrFmzNGfOHFVUVESea1qdOGzYMI0dO1bjxo1L5hYBIC6mVmi3x7Z7NZ0KLVGxiPQXDMU/YIjp5wAAAEB6sDVYrK6u1pw5czRz5kzNnj1bmzdvjjzXNEjMzMzU6NGjNW7cOI0dO1Zdu3a1c2sAYIvMoLli0S5Np0JLUriGYBHpbera0mafO2fdPP1s6RcqaKjWpnZd9NCxl2plx96m19EKDQAAAKQHW4LFxx9/XLNnz9ayZcsUDu+pTGgaJnbr1k2nnHKKxo0bp+OPP14ZGeYfkgGgLckMJbNi0fyZ+eq3q/W7s8bbdk8gXs/O3mReNAw9+O0r+uO89/ZaXKZLV8/U9Wfdqv8MOSnq5SFKFgEAAIC0YEuw+Oyzz1oOX3E4HBo5cqTGjh2r8ePHa+jQoXbcHgBSxlSx6LaxYtHijMWZS7fod7bdEYjf2p3mqtpfLPq0SajYKDvo1+tTHtWaDj20qEv/yDq5IgAAAJAebGuF3h0qZmdn66STTtLYsWM1duxYFRQU2HVLAEitUEjecDBqqcGV3DMWs4M+2+4HJMKSbdVRj3tU79RD377c7Os94ZBe+uxJjbrmMYWcLkm0QgMAAADpwpZgsXfv3pEW52OPPVYej30/WANAuqipqlVukzVbKxYtWqFzAg223Q+ww5/mvqt2/vp9vuaIkg26bNUMvTXsFElSaa1/n68HAAAAkBy2BItffPGFHZcFgLS2ZMMOHd9kzWdjxaJVKzQVi2hL8htq9JPlU03rX/U5TKduXhy19v++/1BvDR0jORz6+TuLVFLj1x/HD0zWVgEAAABYsHUqdFNVVVVasGCBduzYoYqKCjmdTuXk5Khnz54aPny4OnXqlMztAEBCuf3mUM/OikWr4S3ZAYJFtB3XL/tKuU2qbN8dfIKu/tHvtOaF/1Hf6pLI+jHFa3VC0QrN6jlcknTnlBW6flRvdc1j8BsAAACQKkkJFqdPn64JEyZowYIFpoEuexs2bJiuu+46XXDBBcnYFgAklDtgbs9Mfis0wSLajqtXTDetPXnU+Qq63PrHUefp0ekvRj334xXfRIJFSXr8m/V66Jxhtu8TAAAAgDWnnRdvaGjQ7bffrl/84hf6/vvvFQ6HI8GiYRimr5cvX6477rhDP/3pT1VVVWXn1gAg4dw+i4pFhrcAlvpVbtcxxWuj1hZ36qtZPRqDwhdHnCafK/r3n5eunilXOBR5XOOLHpYEAAAAILlsCxaDwaBuvPFGTZkyxVSl6HK5VFBQoPz8fDmde7bgcDhkGIbmzJmjG264QT6LH9IBIF25LKoFba1YtDhjkeEtaCsuXjPbtPbOkJMlh0OSVJmZq0/7HR31fJf6So3dsiTymOnQAAAAQGrZFiw+8sgjmjdvXuRxnz59dNddd+nTTz/V0qVLNWvWLM2dO1dLlizR5MmTdccdd6hPnz6SGisYly5dqscee8yu7QFAwlmesZjkisUsWqHRRpy/dq5p7b1BJ0Q9fmfISabXnLN+fuTrMLkiAAAAkFK2BIuFhYV67bXX5NhVdXDJJZfo448/1jXXXKNDDjkkegNOpwYOHKjrr79eH3/8sS677DJJjeHi66+/rm3bttmxRQBIOJdVK3TSz1ikYhHpL8dfr+O3rYpaW1HQS6s69opamzxglAJOV9TamRsXRL6mYhEAAABILVuCxQ8++EDBYOO5R2PGjNH9998vr3f/P1x7vV7de++9Gjt2rCQpFArpvffes2OLAJB4DeZQr8FtX8Vi9w45pjPoOGMRbcEphUvl2eusREn6b78jTa+r8WZrxl7DWiRpWFmh+lYWS6JiEQAAAEg1W4LFmTNnRr6+8847W/3+O+64I/L17NnmM5gAIB0tWFdsWmtw2Vex+MIVR5jOWWwXNE+mBtLFrI1lkqTTNi0yPfdF3yMs3/N5v6NMa2du/EGS9OJ3m03nOAMAAABIHluCxS1btsjhcKhv377q169fq9/fr18/HXLIITIMQ2vXrt3/GwAgDSzbWGJas7MVeuyAjqZzFnNDVCwifV356veSFDWARZICTpe+6XWo5Xs+t6hkHFO4NPL1K/MLE7hDAAAAAK1hS7BYUVEhSerWrVvM1+jSpYskqba2NhFbAgDb5StoWrNzeIvH5VQoKytqLZszFpGmPlq2XYWVDcrz1emwko1Rz83rOkg13mzL9y3u3E9lmblRa2MKl0m7KhV/+vZCO7YLAAAAoAVsCRZzcnIkSVVVVTFfo7q6WpKUm5u7n1cCQHpo7wiZ1nw2nrEoSQ3e6IpFpkIjXT0/Z7MkafS2VXIqun15Zs9hzb7PcDj1bZNzFnvV7FS/KvPRAwAAAACSy5ZgsVu3bjIMQ6tXr44pXKysrNTq1avlcDgilYsAkO42bSs3rR01oKut96xwRLdaZ/qoWER6mryiMQg8oWiF6bl9BYuSNKOnuU16TOGyxGwMAAAAQMxsCRaPOeYYSY1TnV944YVWv/+FF16ITJUeNWpUQvcGAHYJ1NWZ1k4a1sPWe1Y2GQ6THfQpEArbek8gHidsNQeLs3sM3ed7rM5fPKFoZcL2BAAAACA2tgSL559/fuTr559/Xp9++mmL3ztlyhQ9//zzkcdnn312QvcGAHbJDAZMa+GMTItXJk7TqdBZQb92VJoDTiAdOIywRhVHD2Vb0767SrLb7/N9P3Tpbzqv9OjtDHcDAAAAUs2WYPHwww/XiSeeKMMwFAqF9P/+3//TXXfdtc8Jz2vWrNGf/vQn3X777QqHw3I4HBo9enSk+hEA0l1m0G9aC3szLF6ZOE2nQkuS6uptvScQqwEV29XeFz2UbW73wft9X9Dl1sIuh0StjSzdpAyLv3MAAAAAksdt14UfeOABXXjhhaqoqJBhGHrvvff03nvvqXPnzho4cKDatWsnqXHAy5o1a1RaWipJMnZNeezYsaMefPBBu7aXdHfeeafef/99SdKDDz6oiy++OMU7ApBomSFzxWIow95gsd5jcf26Wkmdbb0vEItjtq8xrX3fdWCL3vt914EavW115LE3HNRhJRs1r/tgvfTdZv302D4J2ycAAACAlrEtWOzatatef/11/fznP1dRUZGkxtBwx44dKikpiXrt7jDR4XBIknr06KF//etf6tatm13bS6rp06dHQkUAB64Mq2DR9opFq2CRVmikp6OL15nW5ncd1KL3Wr3umOK1mtd9sF4gWAQAAABSwpZW6N369++vSZMm6Wc/+5ky9qraMQwj6r/dsrKy9JOf/ESTJk3S0KH7Psi9raiurtbdd9+d6m0ASAKrtky7KxabnrEoSZsKS229JxCro5ucrxiWw9TiLEnvX3+MTujXIWptXjeLYHFXBeSsjeaJ7AAAAADsZ1vF4m75+fn6wx/+oFtuuUXfffed5s+frx07dkRapNu1a6fu3bvrqKOO0rHHHqvc3Fy7t5RUDzzwgIqLi1O9DQBJYDW8xf6KRfMZi89+uUInnDvG1vsCrWYYOnLH+qilFR17qdabZXrphSO666GvokPIlQU9VevOUE7QF1lrGlQCAAAASC7bg8XdsrOzNXbsWI0dOzZZt0w5WqCBg0tmyGJ4i8dr6z3rLFqhtxRRsYj08umKYvWpLlG+P7pNf2Hn/s2+J7RXR4MkhZ0uLeg6QCdvXR5ZO3TnFmUHGlTnyZRhGJEjVQAAAAAkh62t0Aezqqoq3XXXXZIkj8ejrCxzRQaAA0vTisV6t1eyOeiwOmMxe6+KLiAd3PflGo0s2WRaX9qpr2ltSOccSVIwbJiem9+kHdplhHXErirIV+YXJmKrAAAAAFohocFieXm55s+frylTpmjatGlau/bgbVF64IEHtGPHDknSTTfdpIKCghTvCIDdspoEeg0uj8rrze3RiWR1xmJOgGAR6WX2pnKNLN1oWl/S2Rws3ji6cS0YsggWLSZIH7OrHfqnby+Mb5MAAAAAWi0hrdCLFy/WU089pdmzZysUCkU916VLF1177bW69tprowa4HMimTZumSZMmSZIGDx6sX/ziF/rggw9SuykAtstqMryl3p2hPu3trVa2OmMxm2ARaWTmhjJJ0ohSc8Xikk79JEnPXXaYvttcoVMGdNSPj+wpSQqGw6bXWw1wOXp7Y7CY6aYJAwAAAEi2uIPFf//733r66acVDoejJjzvVlxcrEcffVQffvih/vWvf6l3797x3jKtVVVVRaZAu91uPfjgg/J67T1jDUB6aNqCXO/2qmOOx9Z7Wp2xmBNosPWeQEvV+oIa/8wsSdLIJsFiRUaOtuR1kiT9/Li++vlx0dWL7bPMf3fWte+mKm+W2vnrI2tNrwsAAAAgeeL69f4777yjJ5980lSluDeHwyHDMLRmzRr9/Oc/V01NTTy3THv33XdfpAX6hhtu0IgRI1K8IwDJ0rRisc6TIYdsPmPRbVGxyBmLSBMvfLdZgZAhTyigoWXRZyAu7dhnn2eQPnr+oaY1w+HU0o7RAeSwsi1yh4KJ2TAAAACAVok5WKypqdGjjz4qh8MRCQ9Hjx6tv/zlL3r22Wf1z3/+U7/5zW/Uq1evyHs2b96sf/7znwnZeDqaOnWqPvzwQ0nSgAEDdMstt6R4RwCSydwK7ZXT5iG1VCwina0uqZUkDSnbKk84+peQSy3OV9zb6D4d9D/Hm1/T9H0ZoaAGVRSpIWhunQYAAABgr5hboT/77DNVVlbK4XAoIyNDjz76qE499dSo15x66qm66aabdPfdd2vSpEkyDEPvv/++br311gPuvMXKykr95S9/kSQ5nc420QIdDLb9Co+m1bL7qp4F7GYVLHrCYVv/rllNhc4J+A6Iv98txedA+nKo8YiUfZ2vKDX/79FTFwzX/542UD3u/Wqv95nDxpElm7SiYx9NWrxV5w3vGueu0RbxOQCAzwEAfA6kRszB4ty5cyNf//73vzeFipEbuN269957tXTpUq1Zs0ZVVVVauHChjjvuuFhvnZbuu+8+lZSUSJKuv/56HX744Sne0b6Fw2EtWrQo1dtIuKVLl6Z6CzhIldSFNL7J0JQ6d4ZK1q5RRrl9v2So8ZiHw+T56w/Iv98txedA+ijbWSnJ+hzEvQPC1vx53TuQ3G1k6Sa9o5N1ySsLNO+qHq3fKA44fA4A4HMAAJ8DyRFzK/TKlSslSTk5Obr88sv3+Vq3262rrroq8njZsmWx3jYtffXVV/roo48kSf369dNvf/vbFO8IQLLNKaqTNxxddVXv9tp8wqJU7TUHi7l7DbYAUmn3n3+risWlu4LFq4fmtOqaVhWLI0o3tnZrAAAAABIg5mCxpKREDodDffr0kcez/6mnRx99dOTrzZs3x3rbtFNRUaH//d//ldQ4qOb+++9XZqZ5mAKAA1y9+VzDeneG2mfENSNrv2q85s+b3ADBItKDa1ey2LRicUtuJ1Vk5kqSrh2au9/r9MhxRb4uz8rT1tyCqOeZDA0AAACkRsyt0HV1dZKkvLy8Fr2+Z8+eka+rq6tjvW3a2bsF+pprrtExxxyT4h21jNPp1MiRI1O9jbiFQqGo8uYRI0bI5XLt4x2APZZsW2Baq/dk6IoTj7Z4deIYbxapxpOp3L0GtuT569P+OIZE4nMgfXUtWqXcxUvVr2pH1PqSXQNY7jtrsMaPHrDf69xSsV5/+nTVnvd36queNWWRx/0ri5Xrr1ONN/ug+rOPPfgcAMDnAAA+B1pvyZIlCofjG4IYc7AYCAQkqUXVilJjy/RutbW1sd42rXz55Zf6+OOPJUm9e/fW//t//y/FO2odtzvm/+9PWy6X64D834X0lxkMmNbq3d6k/Hm0ChYP5r8HfA6kD4/bqcHlRab1FQW9JUn5WS37O/L7cYNU5QvpoalrJUlLO/XTWRt/iHrNoaWbNbfHUP7/HpL4HADA5wAAPgeSJeYePcNonPTocLTsBLG9X3cgTOapqKjQX//6V0mN/9vuu+8+ZWdnp3ZTAFLG4/eZ1urdyZkM3/ScxTx/vVYUHziV4Wi71pXWaWhZoWl9RcdekqQLDu3Wouu4nA498KNh+v62MZKamQxNOzQAAACQdES3MXr77bcjLdBZWVmaMGGCJkyY0OzrS0tLI1+/9NJL+uSTTyKPH374YXXq1Mm+zQKwncdndcZiaoLF3ECD/r2gUPefPSwp9wea886iIt1jESyu6tAYLPZqbx4+tC9H9sxX3YM/0gk/W2d6bnewaBhGi3/pCQAAACA+BIsx8vv9ka/r6uo0Y8aMFr939erVWr16deRxQ4M5kADQtnj95r/Hde6MpNzbqmLx5XkEi0it3Z0Ng8u2mp5bWdBLi24/JabrZnpcWtGxt4IOp9zGnvNgdk+eXlhUpSN75sd0bQAAAACtY++4UgA4SFi3QtsfLHbM9lhWLAYPgCMn0Lb95M3GMxCbtkLvzMzTzux2GtGtZcPfrPjcXq1t3z1qbfd9FhdVxXxdAAAAAK1DxWKMfv3rX+vXv/51i18/fvx4bd3aWLXx4IMP6uKLL7ZrawBSIFWt0H86bZBq3okOFl1GWDUVnLGI1Hp9wVY5wyHT8JaVBT0ltfyM5uas6NhbQ8v3VEN2ry1XfkNNXNcEAAAA0DpULAJAAmQF/aa1Oo/9FYtXH9lLNV7zOXV5/nrb7w3sT5/qEmWGoiemryropXOGdYn72qt2BZR7G1pWqGDYiPvaAAAAAFom7orF4uJiffDBB7a+58ILL2zV9QEg2Wav2KpRTdZGDW7ZxNt4dMnLMLVCS1IuwSLSwFCL8xVXdegpZwKGq6wo6G1aG1ZWqCe+Wa8bjusT9/UBAAAA7F/cweKaNWt05513tvj1hmG0+j0EiwDS3apNJaa1zp3aJ+Xe1R4qFpGemp6vKDUObnEmYGjzyoJeprVhO7doYnG1wmFDzkTcBAAAAMA+JbUV2uFwtOpMpd0TJQEg3WUFzcNbapPQCi2Zp0JLUl6AYBGpN6SZidDxnq+4+zrN3e+pmRv4HgIAAABIgriCRcMwbP0PANoKqzMWA97kBIs13kzTGhWLSKXS2sagfUiTisWA06UN+V0TUrFYnZGtrbkFUWvDyrZIkm77cJne/MEcagIAAABIrJhbob/66qtE7uOAN3Xq1FRvAYCNrILFYIY58LOD9RmL5inVQLLc9uEySdKQ8uhwb2377gq63Ak5Y1FqPGexZ01Z5HH/ymJ5gwH53R799O2F+vFR5qpGAAAAAIkTc7DYs6d5GiMAHKyyA+ZW6GCGOfCzA2csIt28vmCr8htq1L22PGp9d/tyooLFVQU9ddrmRZHHLiOsQRVFWtaprwIhOh8AAAAAuyX1jEUAOFBZtkJncMYiDl6DKraZ1lZ3aPylZLy54hmDO0uyngxtNTAGAAAAgD0IFgEgATIthrf4Uzm8hYpFpNjA8iLT2poO3SVJ9YFQXNe+6fi+kqQVHa0nQwMAAABIDoJFAEiAbItgMZCkMxZraIVGGhpoUbG4tn0PSdKDPxoW17UvHtkYUO5rMjQAAAAA+xEsAkACNG2FDjmcCro9Sbm35fCWQL2CoXBS7g9Y6V+53bS2tn1jIDisa15C7rEtp0CV3uyotd2ToQEAAADYj2ARABKgabBY7/bGf5BcC1lPha6XI0n3B6wMLI+uWKxze7Utt0Nib+JwmKoWh5YVymEQqgMAAADJQLAIAAnQdCp0vdubtHvXWpzlSCs0UqXWF5RkboVe1767DEfiv+1oes5idtCv3tWlkiTDYDI0AAAAYCeCRQCIk2EYlhWLyco0wk6Xat3R4SLBIlKlxh9Srr9O3eoqotbX5XeTJP3kaPO5iPFY1aH5AS6byvl7AAAAANiJYBEA4jRvS4VpeEutJzOp1VJN26EJFpEqobChARXm8xXX7Tpf8aUrj0jo/awmQw8tK5Qk7azzm54DAAAAkDgEiwAQpzs+WaGcQEPUWp3b3J5sp6bBYm6T/QDJsnhblfVE6A7dNen6UQk7+/PhcxonS1tNhh62K1icsmJHQu4FAAAAwBrBIgDEqSEYNp2xWOvJUDJPd6NiEeni/SXbTINbpMaJ0OcN75qw+/z8uD6SpPX53eR3uqOeG7IrWPy+sCJh9wMAAABgRrAIAHFyOWRqha6zGKhiJ4JFpIsaX9C6YrF9dzmdiZtU3iHbq1vH9FfQ5dbaXW3Wuw3b2RgsMrsFAAAAsBfBIgDEyWuElBEKRq0luxW6xmPRCk2qghSYvKJYA5oEi36nW1vyOiX8Xn8/d7gGd87RyoKeUetd6ivVob464fcDAAAAEI1gEQDilB0wD4hoHN6SvD00rVh0GWH5qmuStwFgly65GabhLevzuyrsdCX8Xi6nQ3eMH6RVFucsDinfmvD7AQAAAIhGsAgAcWraBi1J9Z4MGUk8ZbGmSbAoSd8u2pS0+wO7FW0vV++a0qi1tR26N/Pq+IUNQ6uaVCxK0pAygkUAAADAbgSLABAnd32daS2ZrdAXjuhmqliUpNenr0zaHoDd+lcWm9bWtbcvWDQMaVUHi2CxvFANwZBt9wUAAABAsAgAcWuoMrcc13oydUr/jkm5//+eMVjVHnOwuHQNFVtIroZASAMrikzr6/LtCxYlWbdCl23VF6tLLV4NAAAAIFEIFgEgTs568wTmOo9Xpw3unJT7H94jXx26dDCt5wWYDI3k+nTlDuuJ0Da2QhsyVJGZq+Ls/Kh1WqEBAAAA+xEsAkCcRnf2mtbq3BnK8iR+WEVz8i2CxVx/Q9LuD0jS3Z+ttA4W23fX9cf0tuWe4V1HmTZthx5YsU2ucEihMNPRAQAAALsQLAJAnIblmj9Kaz2ZSd2DLzPHtJbnp2IRyWUY0oDy6GAx6HBqU7vO+vXJh9h0z8bgsGk7tDcc1CGVxXp7IZWLAAAAgF0IFgEgThk+c2VgnSd5w1skqSGLYBGpt2JHjalicVO7LnrzZ8fryJ75zbwrPsbuisVmJkM/PXOjLfcFAAAAQLAIAHGbv8o8rCKZU6ElqcGqYpEzFpFknlBAfaqjB6asbd9dR9sUKkrS7kbnVR3MA1yGlhVqzqZy2+4NAAAAHOwIFgEgTluKdprWkt8KbZ4KTcUikq1f5Q65jHDU2rr23eV0Omy7Z3hXyeJKq4rFctqgAQAAADsRLAJAnLKDPtNasisWfdnmisVcgkUk0QdLtzU7EdrGXDHSCr0xv6v8TnfUc4PLCu27MQAAAACCRQCIV04gHc5YzDat5QXqFQiFLV4NJFY4bOjiifObnQjtdNiXLI7p31GSFHK6tKZD96jnhpY1VizuHvACAAAAILEIFgEgTtkBc8VibZKDxXKnufU611+vTeVULcJ+i7ZVSZJlsLiufTd1zbXv78NhPdrplF3h4qoO0e3QXeor1b6hRk/N2GDb/QEAAICDGcEiAMTJqhX6ltMPTeoeyl0ZCiu6KizfV6dQmEot2G/GhjJJ0oAmwWJYDq3P72brGYuS9NlNx0mSVltOhi7UrR8us/X+AAAAwMGKYBEA4mRVsXjp8QOSuofRh3RUVUZ0O3R7X60MESzCfs/M2ijJXLFYmNdRy+4+y/b7Z7hdWnvneK0ssJoMzQAXAAAAwC4EiwAQJ6tg0Z2Xm9Q95HjdqsiIHuCS76sVR8shGVbsqJErHNIhlcVR62vbd5fXlZxvNfp3zDG1QkvSkHIGuAAAAAB2IVgEgDg1bYUOyyFHhvnMQzv9aFgXVVpVLBIsIkl6V5fIEw5Fra1r310um9ug97bKomJx8K6KRX+QQUYAAABAohEsAkCcmk6FrvNkyJHEMEWS+hVkW1Qs1tEIjaQZWJ78idBNVWTmqjg7P2ptdyv0e0vM+wMAAAAQH4JFAIhT04rFWk9GUsOU3UzBor9ORjCY9H3g4GQ1EXpth+5KcsZuaoceWLFNrnBIv/94eXI3AgAAABwECBYBIE5Nz1isc2co+bGiVNkkWJQkR3VVCnaCg4mxq9/eMlhMcsWiJK1u0g7tDQd1SGWxiqoamnkHAAAAgFgRLAJAnHKaBoueDKWgYNEyWNyxdUfyN4KDyoKtlZKkARbB4vr8bkmvWFxZYDHAhcnQAAAAgC0IFgEgDoUV9aYzFms8WXKkoGax6fAWSXr5y6VJ3wcOLhPnbZFkrljcltNBtd4s5Wa4k7qfVR3MA1yYDA0AAADYg2ARAOJQXONTbpNgsTZFFYtNz1iUpI0btid/IzioZHtcchhhDaiI/rO2tn13SZLHldxvNawqFodSsYiDRI0vqPlbKuQLhvb/YgAAgARIbhkBABxgspwO0xmLjRWLyWcVLLb31aRgJziY9O2QrZ7VO5UZCkSt7w4Wk21jflf5nW55w3sGFw0uo2IRB74vV5fogpe+U30grE45Xn35P8frsB7tUr0tAABwgKNiEQDikBPyyykjai1VFYtWZyzm++qSvxEcVJwO68Et61IULIacLlOoOaScikUcOMJhQw9NXaMTn5qhn729UKW1Ps3aWKYznpuj+kBYklRa69e9X6xO8U4BAMDBgIpFAIiDq85cEVjrzZIjBcmidcVibdL3gYOLwyFTG7SUuopFqbEdenjZlsjjrnWVat9A9S4ODE/P3KA/TVkpSZq9qTxyzmlT7y0xB/4AAACJRsUiAMTBUWeuCKz1ZKSkFdqqYpFgEXZzOhzNVCx2S8FuGq22nAxNOzQODC98t7nFr11RXG3jTgAAAAgWASAuzlpzFVSNJytthrfkEyzCZvWBkAZYBIuprFi0ngxNOzTappIan+7572o98NUaVTUEtGRby8PCR6avs3FnAAAAtEIDQFwcteaKxRpPphwpqFns2buLaY2KRdjtto+W6fsmwWJpZp4qM3OTvpeO2R7trAs0MxmaikW0PXX+oI587BsVVTVIkl6Y2/JqRUl66bsteuHyI2zYGQAAQCMqFgEgDvXllaa1Wk9mSioWtzkyTGvtGN4Cmxlhw9QKvbZDY7Vi5xxvUvfy0pVHSpJWFZgrFgeXbdWOap9pHUhnr8wvjISKkrShjM90AACQXggWASAOi1YXmdZqvJkpOWOxOOBQnTs6yKFiEXbrWleh3EBD1NruNujbxw5I6l7OHNJZlx3WXRWZudqRlR/13NCyrepz35dJ3Q8Qi+nrSnXZy/N147uL9Pg36+O+nj8YTsCuAAAArBEsAkAcvl1qnsbZWLGY/GgxZBimAS4Ei7CTYRiW5yuu2xUs/uqEfkndj8fl1Ns/OUaSTO3QAyu2KRQIqKSGqkWkj0AorLs/W6kznp2tv3y2UouKKnXqM7P13pJtemHuZq0pjf8z/MKXvlM4bCRgtwAAAGYEiwAQh4yG5s5YTL5gyDANcGF4C+y0bHu15UTo3RWLORmpO8p5dZN2aG84qH6VxfpkxY4U7Qgw+9t/V+v+L9foyzWluu/LNTrysW+U6Azws1Ul+qHIfGwHAABAIhAsAkAc/FXm6ZypOmMxGDZUmZEdtUbFIuw0d3OFZbC4LoUToXezHuCyVWV1/hTsBrD2wFdrknKfj5cVJ+U+AADg4EOwCABxyPU3mNZqvKlphXY4ZFGxWCcZtMDBHiHD0IDy5isWU+XHR/bUqg7mAS5DygvlcfGtDw4+Yf4dAAAANuG7awCIQ07AIlj0ZKZgJ9KxvdurIiM3as0bDsqoY4ooEi8cNlRYUW+qWKz0Zqs0q12KdtXo7tMHa5VFxeKQsq3yMcgCAAAASBiCRQCIQ9NpuFJjK3QqOB0OVTVphZak75ZuTP5mcECrqA/orAlzdN8XqzWoSbC4tn13yeFQt7yMFO1O6pjj0Yb8rvI7o894HFJWqP4dzX9HgANdgOEtAADAJqk7VR0ADgDpVLEYNszDWyRp++Zi6bhDU7AjHKjeWLBVX64pVUFDtekcz91t0Ef2zE/F1iQ1dv+HnC6tbd9dw8v2TG4fUr5VJbSEoo06dtsqXb/sK51UuFzda8tVmZGtRZ0P0TtDTtJ/Bp+okNPV7Hu/XF2iB380LIm7BQAABwuCRQCIQ7ugz7SWqorFUwZ0Mg1vkSR3VVUKdoMD2S2TlkiSBlRsNz23rkPqB7fsLs5aVdAzKljsWlepG5+brnMev1yZnuZDGCCddKqr1L++/LcuXTMrar1jQ7X6VxbrorVzdNect3XjGb/WnB5DLa/xfSFToQEAgD1ohQaAOAxtkuP5XG4N7tE+JXu55uiepjMWJcldQ7AIe1hOhM7vloKdRDN2VSVan7NYqPeXmPcNpKORJRv0/au3mULFpg7duUXT375TP1/8eZJ2BgAA0IhgEQDi4KiLbgOt9WTqtR8flZK9DO2SZ1mx6K0mWIQ9rILFtelUsWg5GXqrrnnjhyTvCGi9w3Zs0NR37lLvmtIWvd4TDum5L/6pX/0w2eadAQAA7EGwCABxqC+PDu1qPJnyulL30Wp1xuLWLcUp2AkOBgOsgsVdZywO62qunk2WDtkeSdYVi0PLCpO9HaDVutfs1CeT/qaODdWm5xpcHn3XbZB2ZFmfY/rk1Am6cM1s0/rUNaUqqjSfCwwAABAPzlgEgBg1BELKDdRHrdV6MpWbkbqz26yCxaUrtigUNuRyOlKwIxzIBpZHB4t1bq+25RRIkn5ydO9UbEmSlOVx6fpRvfXhN+ZQZnDZ1hTsCGg5Zziktyb/XT1rykzPvTF0jG4dd6NKs/PlCof0q4Wf6OFvJiojFNzzfhl6dcpjOvrax7W6YE/V7mnP7gkbN/75VPXpwIR0AAAQPyoWASBGgZChnED08JYaT6a65GakaEdSpUWw2N5Xo4+Xm4dsAPFq2gq9tn13ydEYYB/Wo10qthQx4bLDVZ6VZ6rqGlLeGCx+X1iRgl0B+/fbBR/r5K3LTesPHnuprvnR7SrNbvwzHXK69I+jztfZF/9Vte7of3dygj698ckj8oQClvcY8OBUBULhhO8dAAAcfAgWASBGYcNQnj+6YrHGmyV3CisDrSoW83112lReb/FqIHZ5vjp1qY+eNLuuferPV9xtd4Vu03boQeXb5AqHNHHeFqu3ASk1ZGeh7pv5mmn9xRGn6c8nXRsJ7vc2rc9h+vE5v1NY0c8dtWO9bvv+I8v7hMKGvl1vrogEAABoLYJFAIhROBRSbiD6vKpqT1ZKW46thrfk+2oV3jUlF0gUq/MV0ylY3G1VQfQAF284qH6VxZq1kVAFqfXF6pLoBcPQ8//9h7KC/qjlZR1761en/sIyVNzt44HH6YHRl5nW7579lnpVlVi8Q1qxw3xUAAAAQGsRLAJAjIzaWtNatTdLjn388Ge3Gk+WQo7oj/Z8X53IFZFolhOh0zFY7GAe4LK7HRpIlWXbq3Xmc3Oi1i5dPVMnFq2MWgs6nPrpWbfK5/bu95r3jL5S33cZELWWE/TpsWkvxL9hAACAZhAsAkCsqqtMSzXerBRsZC8Oh6kdukNDjcIEi0iwthAsntCvg1Y2qViUGidDE7YjFVYUV+vM52Zr5CPTotbdoaDun/Gq6fUPH3up5ncb1KJrB11u3XzaL00t0ZeumaVTNy2MdcsAAAD7RLAIALGqqjEtVac6WJRUlpkb9bhjQ7UMUhQkmGWw2CG9gsWnLxppOmNRkoYwGRopYBiGTn92jr5YXWp67qbFn2tQk79TW3I76f7jzO3N+zKv+2C9MPJ00/o9M19X0zS9vN56sAsAAEBrECwCQIz8lZWmtVQHizef0E87s/Ki1jrWV1GxiIRresai3+lWYW5HSdKtY/qnYksmR/TM14b8rvI73VHrg8u37uu4OsAW7y3epqKqBtN6dqBBd895y7T+lxOvVoMnw7S+P3ee/BPtzIz+d+D4bat05sYF0df/bJWmrzOHnAAAAK1BsAgAMZr2w0bTWo0nM/kb2cvJ/Qu0M7Nd1FoHX61CoVCKdoQD1YCK7VGP1+d3Vdjp0smHFOh3pwxo5l3JF3K6TC3aQ8sK9cPWKip5kVSPTl9nuX7Dki/UtS76F1WLO/XVq8PHxnSfsqx2euSYi0zrf5v1hqlq8Z7/ro7pHgAAALsRLAJAjP4z0/wDWaorFt1Oh6li0WWE5aqsSM2GcEDKCvjUq2Zn1NraDt115pDOmnbzCeqRn9qAvamm7dBd6yrVvqHGPJUXsNHczRWmNXcoqP83/wPT+p9P+onCTlfM93r6yHNUkhX9S6Zjt6/RjzbMj1r7el3032MAAIDWIlgEgBhlNlhPhU4ll9OhsiYtcJLkqShLwW5woOpfud20tq59d+VnelI6Fb05q60mQ5cV6tXvC1OwG2CPK1d9q77V0QH3D50P0Sf9j2nVdfq0j/63p9abpb+Putj0ut/Pe7/1mwQAANgHgkUAiFFPh/ng+1QHi06HuWJRkjzlFcnfDA5YA8utJ0I70y9TlKRmJkNv1ZxN5SnYDbCLYVgGfX8fdbGaHgI6/eYT9nmpu08fbFr71xE/UnF2ftTaKYXLdPT2NU22wZEAAAAgdgSLABCjHF+daS3VwWKm22k6tF+SvJUEKEiMhkDIeiJ0++5ypmG1oiSttJgMPXznZq3bWaf1O82Vx0AynLHpB40s3RS1tj6/q94dclLU2uE92umkQwr2ea0bjutjWqvzZOqfR5xjWr/1+4+iHk+ct6WlWwYAADAhWASAGGX7zdM9qz2pDRZP6FegnU3O1ZKkDIJFJMgbP2y1DBbXpXHF4vKO5tDl0J2bJUmPf7M+2dsBJEk3/zDFtPboMRcp1ORsxa9+cXzMRww8c/jZqnd7o9YuXz1Dvar2tF/f8M4ivbOwKKbrAwAAECwCQIxy07BiMTfDbVmx2Cdk3isQi5+/s0gDK6JDiKDDqU3tOqdtxWJ1RrY25XWOWju0tDFY/OfMjSnYEQ52fSuLde76eVFr5Rk5mnjoqVFr/ofPUUF2dDDYGqXZ+Xp1+LioNU84pFsWfhK1duVr38d8DwAAcHAjWASAGOX4601rqQ4WJWnsseaztjr5qlOwExxoVpfUSJIGl0UHixvyuyrg8uiCEd1Ssa0WWdqpb9TjvtUlyrP45QCQDDct/lxORZ9tOHHEaar3ZEStuV17vlV/9tLDLK919VHmVv+9PXHU+aa1ny79Ut5g9DnB5XX+fV4HAADACsEiAMTIumIxOwU7ibbRaQ43V67YZPFKoHVe/b5Q2YEG9a4pjVpftesMw/MPTd9gcXnH3qa14bvaoYFk8gYDumHJF6b1fx9+9j7f97Nj++jes4ZErTkc0vWjzH+297ayY2992u+oqLXO9VW6YN3cqLUnv92wz+sAAABYIVgEgBh1NqKrO0IOp44a2DVFu9njq7KweXHnzuRvBAecLI9Lg8rNZ7Gt6dAYLLrS9ZBFmSsWJWlEKcEikmNHtS/y9cVrZqlLfWXU85/3PVJrO/TY5zVcTof+fNpgld5zpv506iD95OhemvyzY3XqoM77fJ8kPXfYWaa1Gxd/HvV4a5X53GAAAID9IVgEgBhl1EdPk632Zumnx5nDi2QLZmabDuvv2FCtjWW0fSI+gVBYgy2CxdX7CURS6cwhjaHLsk7ND3AB7Pbw12sjX/906Zem5/91xI9Ma4M751heqyDbq/vOHqqJVx2ps4ft+WXWQ+cMa/b+n/Q/RkU50ZOlT9u8SAP2+vscDFn8UgoAAGA/CBYBIEbu2pqox9WeLI3p3zFFu9nj4pHdTQNcOtZX6+X5W1K0Ixwo5m2u0JCyQtP6qg491b1dhsU7Uu/pi0bq5EMKtKKgt8KKrqg8tJQjApAcu6eP964q0ambF0c9tzW3QFP6H2N6z60n92/VPa47preO69Pe8rmgy62XRpxmWv/5Xi3Z5fUB0/MAAAD7Q7AIADFoCISUF4ge3lLtzVI6dIKeO7yrdmaZg8Ww0cwbgBaasnKHZSv06g499fM0qNa1MqBTjqb/6kTde/GRWt8++qiCQ3c2hu0NgVAqtoaDRNleQ1F+snyqaWjLq8PHKeR0Ra19+6sT9YsT+rXqPl3zMvTNr07UmjvGq+RvZ2rFH8bpD+MGRp5/YeRppnD9+mVfyhNqDBSnr+PIDAAA0HoEiwAQg7cWFimvyVToGm+mcrzuFO1ojw5ZHnPFYkOVwgbJIuLXtBW6xpOpotwC/e/p5mnk6eTyw3toacfo8LNHbZk61FcrEOLvBuzz3JxdlbGGoeuWfWV6fuKhp5rWTjykwLTWEh6XUwM65ahjjldDuuTqoXOGqVNO49EYG/O76b/9joh6fde6Sp2/7jtJ0pDOuTHdE2hLDMPQ8u3VWrqtSgbfFwFAQhAsAkAMXpi7yRQsVnuz1CXX28w7ksfpkKliMTvoV11lTTPvAFrIMDSkfGvU0uoOPfTCFUfImQ7luvvgdDi0vJlzFl18NwQb/WPXtOWTti7XwIrtUc/N6j5Uqwt6Ra395uRDEnr/R84bHvl6wmFnmp7fPcTluy0VqmqgHRoHrlDY0JWvfq8Rj0zTYY9O18UT5ynA2aIAEDe+lQaAGHiNsLKD0VOhq7zZcjhSH66EwlJZZjvT+qTpS1OwGxxIOtdXqr0vemjR6g491RZqPvIz3Vra0TpYXLytOgU7wsFi+66J0FZDWyaOMFcrPnD20ITef+9KxI/7H6ttOR2inj9t0yL1rC6VJHX963+p4sIBa/amMr27eFvk8YfLivXt+rIU7ggADgwEiwAQg/wm5ytKUmVGdgp2Ypaf5TZVLEpSu5qqFOwGB4qiygYNLjOfr7imQw+1hRwiJ8NtORl6ROkmPT59XQp2hINJjr9el62eGbVW5/bqnSEnRR7/buwANTx0jrITfKSGa69q4qDLrZcPHR/1vFOGrl4xXZLkC4b1zGyGGqFtKqnx6dklVXryh0qtLg/IF4w+P/eV+ebhYy98tzlZ2wOAAxbBIgDEIK+hzrRW7U2PYLF3+yzTGYtS4zmLQKyemrlBQ8otJkIX9JTXnfpK3ZZY1aGXgo7ob32G79wSVcECJEJZnV/nvTBXzt99LEm6ZM0s5QYaol7z/qDjVZWRE3n8f+cOl9ed+G/NmxbSvzp8nOk11y6fqt2/IfjV+0toD0Wb4wuGdOw/Zur5pTV6bWWtrv6sRMc8OVPrSvdU2Vc1BE3vK6/zm9YAAK1DsAgAMcisN59XWJUmwWKWx2VZsdixnnZPxG7WhjLT4BapsRX69EGdU7Cj1vv1qUO1pkOPqLURpVRnIfFu/2iZPlmxI/L46uXTTK+ZeOhpSdmLu8n5pys69tH8rgOj1g7duUVH7lgfefyHycuTsjcgUS59eb62Vvmi1laV1OqJb9c3845GbaDgHgDSHsEiAMSistK8lCat0JK00+KMxY4NBIuIncfl1CDLYLGHurXLTMGOWq9HfoaWNmmH7lxfpc51FanZEA5YL+/Vctm1tlzjtyyJen5zXid93WdkUvYyrEuecjNcUWtWVYs/WT418vWTuwbOAG3B94UVUUH+3v45c6NqfI2VimlwDDYAHJAIFgEgBjkWrdDpUrEomadCS1QsIj4el0NDyqInQm/Pbh/VypnuOmR5tdxigMuI0k36ak1JCnaEg8Hlq2bIZUS3Fr895GQZe7Xl/79T+tt2f6/bqWcvPTxq7a2hJyvgjA4br1rxjdwhc6sokO5e/G7LPp9v9+dPVR8I7fM1AIDYESwCQAwyas0hXZU3KwU7sWZ1xmKnes5YROy8CmtgRfRZhKubtBWnu3OHd9HSTn1N64eWbtHpz86RP8i5cki8K1d+Y1p7c+iYyNedcrx65LxDbd3DVUf21EtXHBF5XJLdXp/1OyrqNV3qK3XGph8ij5/4Zj0TotEmvLvIXE3f1IvNDGnhjzgAxI9gEQBi0NPhM61VplHlllXFYgGt0IjD0rnL5A1HVzOt6dAzRbuJTaecDPmHDTetH1a6UZI0e1NZkneEA90hFdt1/LZVUWsrCnppYZfGCsUfDe2ior+cnpS9uJqctWg5xGXZ15Gv/99Hy/TmD1tNrwHSyTfrdqq0dv8DWH49aakmLy9Owo4A4OBDsAgAMdiyxXyWTzq1Qv/o+MEKK/qHSFqhEY8h5eaAYVVB2woWJenFP12qBpcnau2wksbz5CrqaQNFYl25ylyt+NbQMZLDoSN7ttPknx8ntys5346HwtGlWR8POFYVTX4hdsG6ucpv2DOc7IW51lVeQKrV+oL6/cfLNfbfs1r+Hr+5HdqQoeJqn/45c4Oenb1RZUyJBoBWI1gEgBiMyDS3TKbT8JYHzh2h8szcqLWufoJFxKa01qfBFsHi6g49NLBT+lTqtoTT49aSJu3QI0s3yRUOyWA+KBJgU9meM3ivXPmt6fndbdAnHdIxaXuSpHOGd4l67HN79e7gE6PWMkMBXbp6T1Dz9bqdSdkb0BK+YEjfbS7XFa/MV96fP9Wj09fFfc3yuoAGPviVfj1pqX753hKN/dcs1fn5JRMAtAbBIgDEYFCGOVj800VHWbwyNXq1zzK1Q+fXcsYiYnPze0s0uMxqInRP/fw48zCUdOZ0OLSoS/SgjKygX4PLtypMrog4vb6gUEMebmwnHlGyUSNLN0U9P6/rQK3ddTap25ncEbWdcjL065MOiVp7Zfh40+uu3Ws6NJAulmyrUp97v9Tof8zQu4u37f8NLTS/sDKqknHp9mpNI1AHgFYhWASAGDirzSHdYUN6pWAnzSvJahf1uEtdJcMpEJP/LN5mqlgMOZxa176bfj92QIp2FRuX06GFnQ8xrR++YwODKhAXwzD0v5+vkj/U+Dl7lcXQlrf2GtrS9MzDZHjywhHq3T4z8nhmz2Fan981+JQTKAAA4PlJREFU6jVjti5Xv8rtkccNTNNFGrj3i9UqacFZionwnwQGlwBwMCBYBIAYFFmcsejIz0/BTppXnN0+6nG+v05fL92Sms2gzRtaVhj1eEN+FwVcHjkcyQ9H4uF0SAu7mIPFI0o26LNVJSnYEQ4U1b6g1u/c1QZtGLpiVXQbdFgOvT3k5MjjM4d0Tub2Imb9+iSN6t2+8YHDodeGmYe4/HjFnlD05fn8u4HUS2bYN3HeFl3+ynzV+miJBoCWIFgEgFaqqA+onb8uaq3GkymXx52iHVnbkdPetDZjzsrkbwRtXp6vTr1qolvDVhT0TtFu4pPlcWlx536m9cN3bGBQBeLi2Gtg1nHbVql/ZfQE2um9R6gor/FcxSN6tNP4gZ2Sur/deuZnae5v9wScrw0fa3rN1SumSbsqeH/53pIk7QywVlkfSPo9/7N4mx6cujbp9wWAtohgEQBaqaohoHxfdLBYmZGd9POy9qdpxaIk/ffbpcnfCNq8YWXmiqUVHdtmsOhwOFTjzdba9t2i1o/csT4SpACx2PufgB9btkE3hnknH1Kgb351YsqrfY/dVbW4tkMPzek+OOq5YWWFOmpH/IMxgNaqbgjqlflb9OzsjdpR7ZMk3fphbN+7OIz4jn95ZvbGuN4PAAeL9CqvAYA2IGzIVLFY5c1Wdpq1hFoFi13rKpK+D7Rt9YGQhu80B4vL22iwuNvCzv01sGLPOXJd6ivVrbY8hTtCW7f7nwBXOKTLVs2Iei7gdOm9QSdIkj782bHKzUj9t+APnztM4/49W5L0+rCxGr1tddTzV6+YrgVdB6ZiazhIBUJhnfbsbM3bUiGpsVr26YtG6uX5hft+o6TuNTv1o/Xf6/RNP+iwko3qVleh9r5aVXqztS2ng5Z07qvP+h2tKf2PUXFOhxbtp6xuT6Xkjmqf/jVro3bW+XXt0b10bJ+WXQMADgap/64GANqYsGGYKharvNnKS7eKRYtW6K61FUnfB9quUNhQzp1T9H+WwWIfdcvLSMGuEmNRl0N06ZpZUWtHlGxI0W5wIHDuShbHblmibk1+ifN5vyNVtmuglitNfgl1yoBOuu/sobrr05V6Z8hJevzr5+Xeq8LrypXf6A9jrlfI6ZI/GJbXTaMT7DVzQ1kkVNztlkn7bsUftW21bp8/SZesmS2XRYVivr9O+f46DS3fqstWz1LQ4dTbQ07Ww8deoqUWx2JYCYcNnfbsbC3dXi1JevG7zZrzm5M1snu7/bwTAA4OfIcAAK1kWFQstpVWaCoW0RqzNpZJkoZZBIsrC3rqL6cPNq23BReO6KaFnfub1g/fsUF/nLxcoTAt0Wi5V+Zv0eCHpuqIx6ZLkn68YrrpNW8OPSXydTr9U3H7KY1/D0qy2+vzfkdFPde9tlzjNy+WJL3yPQNcYL8Pl23f/4t26VG9U299/LDmvvE7Xb56pmWoaMVthHX1yula/Mpv9Pzn/1D7hpp9vn7upnLN21IRCRUlqT4Q1usLtrZ4rwBwoCNYBIBWMhoalBmKPki8yputrmlWvUWwiHj9YfJySdLwndFDTTbndVKNN1vZXlcqthW39647RousBriUbNDfp63jXC202Mod1br+rYVaW1qr1SW18gYDumjtnKjX1Lm9+mjAsZHHzjRKFjPce/4Ovz7sFNPzV6+YJkmatZFjAmC/Fv1OxzB0w+L/asVLN+vy1TPjut/Pln6ppRNv0dnr5zf7muOfmqHjn5phWn9sOmeQAsBuBIsA0FqVVealjJyUH8TflFUrdBdaodEKDodD2YEGHVK1I2p99/mKF4/snoptxc3hcKgwr5N2ZuZFrR+xY70k6bk5m1KxLbRBd326MurxmRsXqL2vNmrtowHHqdabFXmcRrlilA8Hjla1Jytq7eI1s5UdaFB1QzBFu8LBJLyfAVrZgQZN/OwJTfjiaeUF6pt9XWlmnmb2GKqP+4/SzB5DVdrks35vPWrL9PGke3XH3HdbNcCLunYA2IMzFgGglRwV5sqNioycFOxk32o8Wapze5Ud9EfWqFhEazgd0pAyc7vXio591D7LkxYDKGLmcGhhl0N06q5WT0kaXF6k7ECDlmxL4b7QpizeVh31+IpV35pes3sa9G4OpWeyWO/J0PuDRuu65V9H1nIDDbpg7Vz1Ov3QFO4MBwN/MKypa0qbfb5bTZmmvP+3Zs/CrXN7NfHQ0/TSiFO1oOsAGY499TMOI6xjtq/VDUu/0HXLvlJGKDood8rQAzNe1aGlm/XTs36roGv//7al6y8IACAVqFgEgFZyVFaY1ioy0y9YlMNhaocmWERruBwOUxu0JC0v6K3nLz88BTtKrEWdD4l67JShkSUbU7MZtEmuvcKF7F0h3N4qMnL0Wb+jo9bSOZB4fdhY09qPV0zX0zM3KMzZo7CJPxjW2RPmaMUO6/MOB5cVauabf2g2VHxxxGnqd+MLuuW0X+j7boOiQkVJMhxOzes+WL84/VcacMMEvT9wtOV1rl45Xe98/LC8wYDl83tL118QAEAqECwCQCttWl9kWnMXdEjBTvavaTs0wSJa49sNZRpuORG6d1qHIy3x59MGaWEX8wAXJkOjNYJ7hW3nrpunnKAv6vlJA0fL7/ZErTnT7NiMvU3tc5i25UT/e3bmxgXKrSzT1+uaryYDYjFvc4V+PWmJMu/4RF+v22n5mmE7N+ubt+40HckhSVtzCzT28gf08zN/o9Ls/Bbdsyivoy49/05ddc7vVOPJND1/4bq5eu+jB/cbLrb1fwMBIJEIFgGglRYsM1dwrQ16LF6ZWp1yvKaKxYKGGsnvt34DsJeSmsaAxGoi9IqOveV1te1vIcYO6Gg5wOWIHQSLaJlaX1DrdtZFHlu1Qb/dpA1aktI4V1TY6dJbQ8dErbmNsK5YOUOnPztHhRXNn2sHtMa0taU66Z8z9M+ZG5t9zcDyIn357t3qUl9pem5q75E66ton9E3vEa2/ucOht4eO0YlXPayN7bqYnj5nw3y99NkTcuxj0nRDMKwQVbwAIIlgEQBazV1t/ga3IiM3BTvZt1tOPEQ7LCZDr1m2PvmbQZvz/q6DBoeXRQeLRTkFqsjM1WmDOqdiWwnjdDi0oqC3fE3O0jpyR+OkT3+w+R8oAUn6YNn2yNftfLX60YboybIlWe30VR/zkQHpNujr2N7tox6/ZtEOvXs6dJ/7vtSaEut2VaA1np65QYFQ88Fcn6od+vLdu9S91nyu9avDxursS/6qEovvcVpjSedDdMJV/6dluwaS7e2qVd/q0Wkv7nOgy+sLCuO6P5AqDYGQjFYMKwL2h2ARAFopu7batFaehmcs/n7cAMvJ0J9OX5L8zaDN+XJ1qTKCfg2o2B61vqJjL0mS1922v4U4okc7BV1uLenUL2r98JIN8oQCKqujshf7du0bP0S+vnDtHNNAiP8MPlEhpytq7e7TBydlb63xyxP6RT3+oUt/LS+IDlqO275ag3YNcvrdx8uTtTUcgFbuqNbIv0/T+0u2N/uarrXl+vLdu9Sn2tx+//jRF+j6s29VwGXuFHntqiNavZ/tuQUaf/n9lhXsty74SL9a+Emz773+rYWtvh9gp/2dhVvnD+qSifOU9+dP1e/+LzVtLUdcIDHa9k8FAJACObVVprV0rFjM8rhU0a6jaf3zb5amYDdoS3ZU+/Tekm0aXL5VriatYCsKeuvxC9r+hNgO2V5J0vxuA6PWM0JBjSg1H3cA7G359ibToFc2Pw36yQtH6KFzhuk/1x2jv56RfsHidaN665MbjtXNuwNGh0OvDz/F9LqrV0yXJH28vFi/+3iZNpXVmV4D7Mu0taUa/n/TtKzY/Ava3TIDPn3wwf0aWGEOHp8+4hzdfsrPTMNZRvVury13n6bLD+8e075KstvrzEv+prXtu5mee2zaCzqpcFlM1wUSbXtVg258d5Euf2W+Zm4oi6w3BEL6yRsLlPfnKRrx9681b3OF5fuf/HaDJi3drlDY0JaKBv349QVULiIhCBYBoJWqi80HjFdkpF/FoiTtzDUPlWGAC/Zn4ENfSZKG7TS3eS3v2FvnDuua7C3ZZn7Xgaa1UdvXaHu1z+LVQKOX5+85IqBTXaVO37Qw6vnC3I6a0XO4JOmWE/vpD+MG6uKR3dOuDXq3s4d11SPnDY88fmOoOVj88cppkbbQx6av19h/z5IvGErWFtHGVTcE9aPn5+7zNQ4jrImfPaHjtq82PffSoafqt+NvtDykdM5vTlLP/Ky49rcjp4POvviv2pEVPQTGEw7pnY8fVo9q6+EygF3K6vyauaFMWysbz7Y1DEOnPTtbL8zdrP8s3qZT/jVTq3cdTfHktxv02oKtqg+Etby4Rpe/Ol+rS2r0yvwtmr+lInLNv09bF3WP7dU+/XvWJq3fWZu0/104MBEsAkAr5fvM//hWpGErtCQVZZqnJHatrUj+RtCm1PgawwLridB95DpAxmH+z/F9Na/bINP6McVrNWEuVYto3t4/nF2yZpbcTSp73xlyUqSqKl3DxKb2rlnZlN9V3/YcHvX8wIrtOm7bqj2vKa/X1DW00aFlnpm9UQ37Obv2nplv6PLVM03rbw05WTeecYupUnG3vf+OueL467auQw+df9FdprN3u9VV6N2PH7KcFP1Ik6AGSITFRVUa+cg0nfzPmRr2f1/r0xXFmr2pXMuL95xxGzakOz5ZIUl6/JvoP4ebyus19OGvdf1bCzX6H9/qlV2/DKuoN/8ZvmXSEg16aKpenmf+ng9oKYJFAGil9r7og+sDTpc6djIHeOlgU0aeaY2KRbTUsDJzuLa8Y29ltvHzFXe7aXRfLe/YR/Vub9T6MdvXaMKcTSnaFdoa6zboMRavTG9Nz+Z63WKIyzW7hrjstmCreZgZYGV16b4roq5cMV1/nvuOaf3bnsN1/Vm3KtzkvNLm3HuCuVPjzCEtHzb2Xfch+vX4/zGtH79tlR6Z/qJp/Q+Tl2v4/32tB75ao2CIoV9IjKdmbtC2qsbOiRpfSA9NXatVO8yDsz5Y2nhkwI6a5s+FDhuN54E6f/dxs68xDOmv/11FWzRidmD8ZAAASdS+ScViRUaOurWLrwXHLsccM8S01oVgES3UtGKxJKudSrPz1a1dZop2lFiDO+Uo5HTph879o9ZHlG6S29eQol2hLelRvVNjmpy/ti6/m2WLfbpr+uPku4NPlN8ZXbl1xcpv5W4ypAZoiX0Vug8uK9RzX/zTtL4uv5suPv9P8rvNg1p22/a/Z0Q9PqlHho7u0vjLIodDuu/soXrj6qM0qsn0c0m6+qieltd8/rAz9dxhZ5rWb1n4ic5ZN8+0vnJHje76dKX+uKt6DIjXC026Jr7dUGZ79fum8nrTEHRfMKTPVu7QpCXbVN3AZz+a597/SwAAe2vfYA4WM9K0gsuXnSefyx01rZSKRbSEJxTQ4PKiqLXlHXs38+q2KbTrO+j53QbphG0rI+tuI6zDSzaozh9UtpdvldC8y1bPkLNJJPf20JMj58BNuOzwVGwrJuEmP1GWZ+Xpk/7H6KK1cyJrnRqqdebGH/TJgFHJ3h7aOGczoUhmwKe3J/+fcgPRv8ypyMjRuRf9RTuz21m+7/pjeuu+s4eqa15G1HqW26l/juuoNRUBHT1yuIZ2a+wo+fZXJ2rB1koFQmGt21mnbnkZOm1QJ72+YKvl9X8z7iaNLNmo4/dq/5ekFz9/Uodd95SKc8yVkY9/s16Pnt/2h5shtZqrGkzGKTQhw5BTDhVW1OtvX6yOCjhHds/TNzefqPys5oN+HLzS8ydhAEhjVhWLnjQ9cy4/26vi7PZRa11rKyzPWAH2NqRsqzzh6MEMKzr21m9PPiRFO0o8hxr/3jadDC1Jo7av1b9m0Q6NfbvSqg16yMmRr284rk8ytxMXq59lrdqhr27SDg20RHPB4mPTX9DhJRuj1sJy6Ipz/6BVHXtZvueNq4/Si1ceoR751tXzLqdDQwu8Gthpz/nXXrdTo/t20Mn9O+r6Ub111tAucrua/1HY7/boinP/oLLM3Kj1zvVVmvjpE3IYtD3DHte88YPlenMFi/tqcW6tAQ98pYZASKP/McNUNblkW7UmryhO2L1wYCFYBIDWMAx1aHLGYkVGjrxpWrH4k6N7mYPFugrV+mlnwL4dVrrRtLa4Uz/99uT+5he3UXmZbo3u28GybfXo4jX6w+TlpnPncHDbXF6nSyY2tkIeUrHdNL12acc+Wtq5Xwp2Fr9Mj/nfsU/6H6OKjOjhZBesm6s8X50kaV1pnQKcK4cWWFlcbVq7bNUM/WLRZ6b1B0Zfpi/6HWl5nVtOOkRXHmndwpxohe06639O/5Vp/cxNP+i3C6zDHNpFEY+NZXV68wfrKtpf/meJ7fcvrGzQmH/OVFGV9XEw177xg/z7GcKEg1N6/iQMAGkqVFcf1VYsSeWZuWk7zOKEfh20vUm7Tuf6Ks1ezW8csW8jS8zVeos791O/guwU7MY+z192uFYV9FS1J/qc1GO3r5EkPT1zQyq2hTR16cvzNWnXYflXrDJXK7499GTTWluR4XaZzpzzub16b9AJUWtZQb8uWjtbkjRx/hZ1++t/NWPDzqTtE23T1+ui/4wMKC/ShP8+ZXrd9F6H6m/HXxV5HPr7udrwp1P17KWH6ZMbjtUTSW41fm/wiXpxxGmm9Qe+fUVDdhaa1k97dnYytoUD1Cf7qAisC4SafS6R5hfueyjXGc/NJkCHSXr+JAwAaeqL79aY1qoyctQ3TcMWt8upotyOpvWJH32Xgt2gLRlpUbH4o8tOTf5GbDa8W54Mh9PUDj2srFDtG2p064fLmnknDjaV9YGoH7gsg8UhbTdYlKQXLj9CfztziH527J4W7teGjzW97url0yJfl9cHdOsH/D1B837/8fKox95gQG9N/rva+euj1kuy2unqH/1Oob0mQDscDvUtyNaNo/vq7GFd5UzB0TO/HXejVnfoEbWWGQroxc+flLPJkSHztlRohUV1JtASu49oSWffrC9Tv/u/pFodUQgWAaAVJkwxn3tSlpkrl82T2uJRmGcOFivWUoUFaztr/ZKkw5qcebWhXRd169UlBTtKjjndzRPUj2tyaD8Obl+vK418PWznZtO5cPO7DtTaJuFDW+N1O3X36YP1/OV7hs580+tQbcntFPW6UzcvVveaPRVoC7buu8IFB5el26q0uKgqMoTi0enrop7/+zcv6egd60zv+8nZt6lor+9ZfpMmZ/rWerN09Y9uV9AR/aPz8dtW6bbvPzK9fuQj07S9mVZSYG+hsKH/rtqhF7/brK2V9UkZ0JII5fUBnfHsnP2/EAcNgkUAaIXsGvMPT2WZec0eSp4OtlpULPaqpm0N1srrAyqor1Kvmug/I0s69VPoAD5v0CpYPL6IYBF77F11de3yr03Pt/VqxeYYDqfeGHZK1JpThn684psU7Qjp7OfvLNJhj07XEY9N17Vv/KA3FkS3C1+0ZpZ+/cNk0/seHnWJPj/k6Ki14/qYJy+nyvfdBunhYy81rd878zVTS3TYkK5903oAB7BbKGzI84fJOmvCXP38nUXqfe+XeuV7c3t9upq+fqc+XVF8QH9viJZzp3oDANCWOMrLTWtlmbk6vU/75G+mhQotgsWeNQSLsFbZENDIUvP5iks691PHA/ibxzk9qFjEvq3b2TiwxGGE9eMV06OeC8uht9rw+Yr789rwsfrjvPei1q5f9qUePebC5keV4qCzorhaL363Z5LsGz9s1Rt7DaLoV7ldL3xuPldxZo+huvvEq03ryfiTdctJh+jpGdFdHIcUZGtDWZ3ptfeOvkLnr5sb9W/k7pbok698SOG9Wri/WlOqUNiQq62UoCHpHplmrtqds8n8c0ZreUIBDS0rVO/qUvWs2akeNWXKCfjk2FVBHHC5VJKVr+05HbSqoKdWFPRWvScjpnud88J3OumQAn3xP6OV4Xbt/w04YBEsAkAruCusgsU8XTyyewp20zKFeZ1Ma02r0QBJemNBoa554wfd0szglrM9B+43jSXZ7bW2fTcNrNgeWTtu+2o5DM4QQrRTtixVn+rSqLWpfQ7T1iaftTneA+fvy7JOffVD50N0ZMmeAObQnVt03LZVmttjqCTpujd/0D8uHKH8LE+qtokUe3jq2maf84QCenPyI2rvq41aL8vM1Y/P+b2CLvOPpVaTyhPtNycdov8sKtL2ap8k6cEfDdMfxw9Uaa1PXf73v1Gv9bs9+ulZv9Wc138n917/NuxuiX501EVRr29sBSdYhLU7p6xIyHX6VO3QqZsW6eSty3TEjg0avnOLvOGWD1cJy6Elnfvqm14j9N++R+qLvkfI72755/iMDWWasmKHLkrjn4VgP1qhAaAVChrMB3Ife0T/tP6NtFUrdM8mPxQDhmHoD5Mbv8k9zGJwy+JO/XTmkM5J3lVyvPbjIyVJs7sPjVpv76vVsJ2F+mJ1SSq2hTRl1QZtNeDkptF9k7Ab+3TNi65geXHk6abX/HzJF5GvX/2+UPd8sdr2fSF9hY3mq9of/PYVHbfd/Ofj+rNu1ZZ25n9bXE6Hxg4w/2I00QZ2ytGi20/R29cerVm/Pkl/HN84yKtTToZ+N3aA6fULug5stiV6cFnbaWNF2+UwwjqxcLmemDpBq174H22c8HO98N+ndP2yqTqiZEOrQkWp8WiLw0s26tc/TNbHH9yrHf++RhM/fVwnFi6X9vF3em+XvDw/lv8pOIAQLAJAKxQ01JjWBg/unYKdtNzlY4aqypsVtUYrNJqq84dUtOuw+ZFNhlI0uDxa26G7urfLTMHO7Pfjo3rpVyf205weQ03PHV+0Umc+N0dT1/x/9u47KqpriwPwbwq9996kSEdUEMXeUewx1sSWosb2jDFGEzWxJLZo1BiT2DVGY++9oGJD6SiIUqRL723K+wMBL3cGUZCh7G+t9xZzzp1hG2Dm3n3P2ZuS8QRQKi/FqOi7jLEivjyO23YGULEr2F5fFdM7W2CVD/v3qTkJ/ZpZV/Efh54o4TFXsYyJug3VsuotoxtvxTRKbKTpEYvFCE+V3A3Z98VDzH98ijX+a4dhOGvtKfE5m4Y5QbORVr/qqSpgtJsxvCyYNR3XDHaA/yxvfNbJnDG+wmsMwnSZNw4UheX4+/JWWuVOJBKLxRCKxFUNjcR1TNi98QLwSo7Exht/I/6vabh9eBHmBJ2BbU5Kg8eqXlaMT5/cwO3DixC8bw7GP70JXo3u55JsuhWDIyHJ7/5vIy0CJRYJIeQdSFqxqGrUtDvlzuhsgcQaHT2peQupqbJ8IkcsgnONGosROuYQclvOtk5J3IzVJTZw8XpdZ7Hvn/eQnEtdPluryuL0Q188gHpZMWPupI0XCuSVK45bNwRPFvbCtlGuUGzmpQP0VBUQs7gPlvdvCz6XgxxFVRyz7cI4RrW8BB9H3ZFRhKSpEInEGLP/MYKT81hzZnnp2HNxE2v8gaEdvuv2KWvczVgdBat98JW37DtCczgcdLbUxsduzG7vlVuia3aJ7pb0BDODz1c9DkjIaYwwSROXmleC3n/cg9zCs3Bd74enafnose3u258IQKs4H3MCTyNs7yzc/Xch5gaeadRyRq4Z8Thw/ldE7PkKo57517qCcf7pCIzZ/xiTDwU3Wnyk6aAai4QQ8g60itkrFju1Y2+VaUr0VRXwVFUbjlkJVWPGhVkoKi6FstL7FWsmLU/lFjab7BSoCEoZc6F6lnDQV5VFWI1GJK74dxbyFRj/fq+UyKqvf7ryDNs/cpVFeETGLkW9AgBMeHqTNXfAsRcAYEYXy0aMqHFYaitjaX875JaUY+OtGOx06YcJkczGNdPCrmCXS38ZRUiagrvxWTgayl45xRcK8O/ZdazdHjkKKhjr+w3KeewViUHze7DGZE3SFu9AAxus8xiJ7x4eZYz/fHsfzrbxQLyGAby3+iPxh34w1miZq/1J3Wzwi4FfTEUyMCItH07rbr71OR4pzzA76Aw+enYXisLyOn+vAjlFhOhZIli/DSK1TZGkqoMkVR3kKKhAzOFADEBZUAr9olxY5abBMTMBHVOj4ZkaXesWarvsZBw5swY3zFwwt9fnCNezlHrs/seJEInF2DWmHeR4tI6ttaDEIiGEvIOaKxZLeXyoaavLKJq60VOVx5UaTQXkREKsO/YAiyd2l1FUpKmpvGxyf8XeyhiqZwkt5ZbdkKGblTaEXB4CDG3RMzG8atwpMwHaxXnIUlLHX/fjKbHYCqXmlcB350PoFeVgYGwgc05ZE1cs2gEAHA1abvLd01wTAOBn5owXGoawzq1uctQ5JQqOGS/xRNdcyrNJS3YyPAUj90iur7bC/x90eePmTKWpA+YgXsOANX5jRucGj68hdLbQljj+U+exGP78PhzeqK2oWl6Cvy5vxYCPfgI4HJiuuALR+iGNFSppgjb4sbs/S8IRizDkxUPMf3QS3ZOe1Ok5ZVw+bpk64apFO1y1cEOwnhWjO3ldKZWXom98MD565o+R0fdYN5gr9UoIQ9D+efit/RB87z0RJVK6Sf8TmAQLLWWsbOYlQUjdUQqZEELeQc277lmKahVFtZowBT4PSWrsBi4nLj6iOiikSuWKDEmJxSB9azgYqDV2SI3KXl8V/e304G/iyJrzTmqYzo2k+bkXl4U2q68BAMZG3mZ0ggWAQ/bdq8oEtOSVGZVbQcUcLnY792XNTwuvbuJCnyutR7lQJHXb48DYx/g24BhrfIu7L07ashOIKwa2RTcr9rlKU6CmyK9q6vKmUr48Pus/G6IanZ/7vQzB1Df+JiJfSa49SZqnUoEQT9Pyq0pkSHPhaRq8t7y9VIRieSm+DLmAp7tn4uSp1W9NKpZzeThv1QFTBsyF4Yx96D96BdZ6jkKggc17JRUBoFhOAWdsOmHSoPkw/XI35vT6ArHqkks98cQizH98Co8OzEf7NOmd4Fdfi4boLf+NSMvRcs+ACCHkA6i5YjFLsXmsUKlZYxGoqLOYXlAmg2hIU1SdWGTfWQ/Wt8IUj6bdpKi+OBwOTk31wC1TJ9Zc98QIGUREmoJf/WJQIqhIJk6U0A16/+tt0ABg3EKbGwEVfx+qChUXrHuc+kBYo7bcxCc3IC+o2K6ntvgCBEJqYNEaRL0qQF4Je/ukcX4m9l7YyBp/ZGCDb7pPYY0X/TwIS/ragcttujdqfx7kIHH8nokDtrT3ZY2v99sN49f1rMfuD2TNk+bpxvMM6C+7DKd1N2Gw/BL6br8Hz023sOBMBEoF1Q1OknNLMHxPAO7FZ0t9LeXyEsx/dAIxOz7HH1f/gF12cq3fO0TPErN6fwnD6fvgO3IZ9jr3Qc4HuA7JVVTF1va+aDt1O6b1n41EVckJf8esBNw7+A0W3/9PatMi/sKzKKfPg1aBEouEEFJHYrFY8orFZiBJwkmBaUEGSgRv7/JGWgexuOL/aq5YfK5pCAdbE3Su0S2zJVLg83DfpC0radK1jluSSMtzLKyiblzbzER41FiZEaFjhiD9NgAAQzUF+Ng37UZe9XVisgcAIFlNBxes2jPm9IrzMPTFAwBAUbkQvf6oW2MC0nxFvsrHpah01jhPJMTBc+ugV8xs5JIrr4yxvt+gjN98y2oo8iVfOi/p+gliamzt1iwtxLarfwBiMUJT8hAqobENaX4++y8E+aUVyfSsonJcf56BR4m5+NUvBmuuv0B0egE23YpB7+13US6UvFpPubwEXwecwIsdn2O9324YFuVI/X5FfHnsdO6HTuPXw/2T37DNfTCylRrn2kPA42O3Sz84TNmG1Z1Go5THrqInJxJipf8BnD6xElrFklfmKnx7DgceJ0qcIy0HJRYJIaSOykvKoFFWxBhrNisWJWyFNinIxN046XdSSesiElf8TtS8GAzUt8bm4S7gNPEt/w1FWVsLga+TRZU6pD2HSo1OwKR1mRxxjTV2wKFXVSmM45M9wGvCq60aQh9bvaqvdzqzm7VMC6ve+ulPny0t1pPUfFisvALHtTfxzVn2TZdl9/6VuJXzi/6zEKNpxBpX4HObTRmBvm/8DbypSE4Rn/efxRofGvMQYyNvAQDa/eqHrlvv4HFizocMkXxgsVlFUueWX45C2zU3MP90BJ6lF7LmFctL8XXACcT8/TnW3doNg6Jcqa+VqqyJH7wnwPyLXfh8wGwEGNnJrPRSobwSvu/6CZwm/w4/Cbs6AGBw7CME/DMf7dIk15P89N8g7HuUIHGOtAzN412cEEKagFeJqayx5rJicaSPB2vMJD8Tt153qSMkt6Qc7SWcEAbrt0FxeetZ2VouFOF2jRNnvliEzsnsBgSkdeCJhPj0yXXGmAgc/ONQ0b22YLUPvFrBit43nWvTEanKmoyxAfFBsHnLVj7SvEWk5sNry20k5JRInO8TH4zF94+wxre7DcSRtl0lPufLzhbNJin/82DJ26EB4Ia5G/5yHcAa33z9L+i9XpF2Ny4bQ3Y+fGttPtKycEVCTAm7gme7pmPdrd3QL5aeUHyibYbP+s+C1ec7sMprDLKUmk6DyBhNI/QZvRLfdJ8icfVim9w0+B/6FiOfSV6x/sPFSHx3/ilWXHmGfAklFEjzRolFQgipo3tB7KRLdjNZsWjb1hwlPOb2I9OCzGazSoB8eFvuxEps3BJoYN3U+xM1qHKhGLdN2Hfku9F26FYn/vXKlEExj2BUyFyBd8WiHRLV9XB2mieU5dkXWC1VZZ05AY+PPc59WPMzg89XfX3i9TZy0nLse5SAglLJN5oMC7Jw4PwGcMFMmgXrWeF/PT9jHT/UyQAHxrvj1yGSV0A1RU6Gajg1hX2jttLC7pNZ9eh0S/Lx2/W/qx6n5pfidAT7RjVpOgRCEQpKBazGI+/cmEoshu+LhwjZNwc7L2+BaYH0m/mPDGwwbNgSuEzegl0u/VHKl3+f0GulrshHR1ONer2GiMvDBo8R8JjwKyK1TFjzSoIy/HdmDeY/OvG6xk61hJwSrLn+HMsuRaH7Nn9q9NXC0BUlIYTUVUYGa0isy26K0hSlF5Wz6iya5mcgt7hcRhGRpuZ3/zi0k9gRug08zDQbPyAZKReKcEdCZ+hu1MClVbkWnQ6r192g3+zuWqmyM3J7k/pdpDU383tUlwn403Ugqx7p5IhrUC6vWM328f7HSC8obdT4yIe17qbkbY4VdRXXs7Z25sspYYzvQolJkn3j3DG+vWmTbtgiyRAnQ9yZ5S2x3mKeggqm95vJGh8bdRvDou9XPR619xFuPmefUxLZC0nOhcPaG1BfcgE9tvkjObd6dW5mUd0bHnZMjYbf4e9w+uRKOGVK3wIcYGAD3xE/wHPCBpyx6QQx5+3pmZszutQ6L1o/BFe/ZHZedzFSQ85KHzyc173W59b1zzFczxKdJmzAUVt2LFyIsd5vN7Ze+xM8keQbESHJedj1MIGSiy0IJRYJIaSO1PJzWGPWbc0bP5D3kJBTzKqzaFKQSfVOCABUdXBtX6MjdJKqNtKVNaEox5NFWDIhEgOZyuoI12H+bXdKfVbV9Za0fL9cr2jUYliQhcExjxhzmYpqOGnjBQDQUGq+jSjehxyPCwstJQBAvIYBzrbpyJjXLC3EhKc3AQBCkRgGyy+zVv2Qlucn/3/QMzGcNT6930xEa7NXNU31NIe6YvP92+liqY3gr3tg6wgXXP2yM4Y6VTduOd/GA/sderKes+3aH9B8owFg7+33KKnSBC0+H4kXmRWr1f3jsrH5TmzV3IR/3t7dW78wGzsubcb9fxbUutMhwMAGg0csRacJG3C+jcc71U/sbq2D30e6SJxzMqgo0dTLRgd/j3ZDR1MNDHbQr2q+Jc1aX0cU/TwIt77yxkof+zqtbMxXUMbHQ77Fwu6TWTeZAGBmyHmcOLVKao3qz4+EYNCOB62q3E5LRonFBvbgwQMsXboUQ4YMQadOneDk5IROnTph+PDhWLlyJZ48oa1UhDRXctlZrDEru+aRWOxmpc1asagsKIN2ieQObqR12eofB+3iPJjnM1dQBOpbyygi2dkzth0A4I4pc9WikqAMnVOozmJrIBaLcS264m/hkyc3wBeLGPP/OPREGV8OHA6g1IqS7pUc9KtLgPzebjBrfmbwecYWuCOhVHexJRsUE4DvHh5lje907od/X9chremvj1w/dFgfnJ2eKmZ6W6K3rS4UapSV+V+vz5CmzEzMGBVmY8PNnYyxC5GvPnic5N3U/JmsvVFxk0koEuPKM+mrTOWE5Zj/6ASids3A1PCrrJIAlZ5pGWP0kG/RacIGXGjT8b0bsszoYonA/7FXHx76pAMAgMPhYFonczyc1x1npnVCGx2VWl9vQU9rKMrx0MVSG4v72MJ/dlfM696m1ue8/kZY7zESI4YtRiFfgTXtG/MIl48uldox+lJUOi1yaCEosdhAEhMTMWHCBHz66ac4fPgwnj17hpycHAgEAuTk5ODp06fYv38/RowYgfnz56OgoODtL0oIaVIkJRbFOuxuy03RIAcDJKixuxla5tFJLQG2+seig5TGLa2Nr2PFypPrZuwL3z4vQxo7HNLI8ksE6LntdeF5sRhTw6+yjtnpUrENOurb3o0ZWpPx5kqzaxZuiKpRZ8stPQ5d31ips80/rrFCIx+QpG3t5nmvsO/CRtZ4sJ4VZvf+QuLrvPiuT7Pb/vw2kzzMGI+zlNQxq8901nFTIq6hf1z1qrcfLtLNqubg69MRUFp0Tup837gghOydg/V+u6FRJrlrdKqyJmb0nQHnSVtxzM77vROKi/vYVn3dzkQDRT8PQuS3vRDydQ8U/jwIToZvbyq5tJ8d4/FwZ0PWMXI8Ln4d6oSZXSzrFNdZa0/0GPszUlTYjcw6p0Thxn+LYVCjVnGlGcfCqnbOkOaLEosNIC4uDqNHj8ajR9VbZeTk5ODk5AQvLy/Y2tqC88abx7lz5zBhwgRKLhLSzMRHS7ij1kxqLPK4HMRqGLDGrXLTZBANaWpiMovgkRrNGn9s0PpWLKoqVDTiuCEpsRgfgjkn2dv9SMsx6VAQbsdW3ETyTnqKttlJjPkAAxuE6VkBAGx0a18B0lINtNev+lrM4WJbu0GsY95s4lL535M0byfCmQ1H5ITlOHxmLbRLmNczefJK+HjItyiRY65e2jzcGWnL+8NKR/mDx9rYetnowrNGLeJjdt4S68/9efl3qL5OPgUl5TVGeKSeNt6KgUBCSQe9ohzsO78Bl48tg32Nz4pKhXwFLOsyHrbT/sSfbj4QSOimXBfG6oo4OKE9VgxsyxhXlOPBTk8VLkbqdV5BP7ebFUa6GEJNgQ8vCy2s82XXla60qLcNuliyk4WSBBrYoPP4dYjQMWPNuWbE49ahRTCXsqDheBg1NGruKLFYT0KhELNnz0ZWVsVJE4/Hw6xZs3D//n0cP34ce/fuxdmzZ+Hn54fhw4dXPS8yMhJLliyRUdSEkPcheJXOGhPrsFcBNlWUWCS18Uh9xhp7aGgn4ciWz0BNAZnK6gh6nUCq5JEajb3XIvDzNXYSljR/pQIhTr6RPPks7BLrmF0u/QAA7ibqjRZXUzPe3QTG6opVj/c69UaBnCLjmFHRd2GaV/2Z6U/JxWZJLBbj5vMMbL0Ti+lHQxlz6/12o5OEz42pA+biuZYxa3xWVyvoqbK3SrYESnI8XJ/RmTU+u8+XyFJUZYxZ5Kfjl1v7qh4rfnsOcVmSV7mRxhOXVVT39ymxGFPCruDJ7q8w8amf1MMO2neH/dQ/sKLzWBTKK71XXB1NNbCsvx3ilvTBWHcTxmKl96WlLI+jkzyQu8oHd2d3hXUtN8lMNZVw+ytvHJvUUeoxb3qpro+uY9fgloQmeLY5Kbj97yK0zUxkzdF26OaPEov1dPz4cTx7Vv2h+ssvv2D27NlQVWV+iBgYGGDNmjWYMmVK1djFixcRHBzcWKESQuqhpFwI3WLmnWURODBrYySjiN7dKz32iT4lFklBqQAQi+FZY8VigqouUlW1ZRSVbH3X2wYAcN3cjTHOF4vQIzEcSy5EIi2fut22NAJh9YoU7eI8jIm6w5gv5svjUNtuAFpnbcVK8nwuHs3rVvU4T0EFBxx7Mo6REwkxN/BM1eN9j+misTnq9Ntt9N5+j7VSe3TUHcwOOss6/rf2Q3Dcjr1Kb6pn86hHXR/K8nz8M6E9YyxNRQvzen3OOnZmyHl0T6j4b1omFKHb7/6NEiOR7MDjRNivuVGnn4NdViKuHfkeOy9vgY6UOuVBelboPuZnTBy8AElq9dvZ9HBedyzr3xZ8nuzSNhwOByNcjDCwbd0WU+QqqsJn1I84b9WBNWdWkAG/w9+hXY3yO+cjX+Hr0xGIzaQke3NFicV6OnXqVNXXXbt2xdChQ2s9fv78+dDXr95Ccu6c9HoNhJCm43lGISuxmK2oCgWF5nP3fe6EHhCBeafTkhKLrdqN5xlQX3IBJgWZMKpR+ybA0EZGUcnehPamACrqx9VUWWfxeFhKo8ZEPjzeG3XfpoRfg6KQ2QX8UNtuyH29+mi8u2mjxtbUGKor4unCXjBSr/gM3Ow+hHXM52GXoF5aCAD4+/7LRo2P1F9wUi4eJeayxl3SY7Hr4m+s8XtGbbGw+2SJr8VvYTUVpfnYzRirfOyrOqcDwAGHnhITLDsub4ZSecUNqqTckkaLkTCJxWJ8+m8Qyt5S448rEmL+oxMI3jcXvRLCJB6TpaiK6X1nwmPir7hj6vQhwpWps9M64c4s77d2mAaAYjkFjBi2GIfturLm9Itzcf3I9/BKZtYY3XgrBs7rbyCjkG7cNkeUWKyHsrIyBAZWF+D19fV963Pk5eXRtWv1H1hYmOQ3JkJI06KhJMdKLGYoqUOe33xOlid527A6Q9OKxdarqEyAITsfAgA8JWxnC3i9DbpOXQFbGB0VeQDAbRNHlHOZK9N6v6zYDhiczL7gJs1b5XpFjliE6SEXWPN/vFFLUFKx+9amrb4qYhdXNLKJ1DHD6TaejHn1smJ8EcreTk6aPoFQhPYbb7HGtYvzcOLUaqgImBf+mYpqGOu7EOU8OdZzAKCtfuuoR8rjcvBdH1vELulbPcjhYHrfmcirsRXWJicVq+7sr3r87dknyC1m3swgH8716Ay4/+oH3jfslbc1tclJwfX/lmC9327WDadKBxx6wGHKNvzlNhAibsOsaO9r27TquHO5HHSx1MYwZ0OMdzdhzSvXWMlfzpPDhMFfY4dLf9axmqWFuHx0KXrUSNIWl4ugv+wyBv19H0m5xQ37DyAfFCUW6yEpKYmxWsnaum5F7jU1Nau+zs6W3B2JENK08DgcCYlFNchxm8/bKIfDQayGPmPMMu8VNvs9l1FERJb2BCSiqFwIABIbtwQY2sJATQFzu1qx5loDLSU5FMor4b4Rs1C6S0a81M6GpHn7LzgZANA/LgjWucxC8gEGNnhkWN2N01iDWVOwtZLnV38GbvAYzpqfE3gGcq8vxNtt8ENgYk4jRUbqwz+OXWuOJxLi0Nl1aFPjhqQIHEwcNB8J6tK3SX7pZdHgMTZ1E9tXJ14S1fWwsPsU1jHzAk+jX1wQAGDdzRdwWX8ThaWCRouxtSouF2L4nocISX5L8xyxGF+GXEDwvrno/kan+zfFaBhg4Kjl+HTQ10hX1pT6Uot6v9suEB6Xgzndmu6N3R8HMM+NlOV4SFvOTiCKuDx80e8rbOgwnDWnWl6C88d/xIDYx6y5i1Hp+Op4GEpen6eSpq/5XBE3QVZWVggKCsKjR49w7tw52NnVrch9UlJ11ygNDY0PFR4hpCGVl0Pr9ZauShlK6uA2s+09MZrMVTaKwnKs+feOlKNJS/Yyp/pOsKTE4iNDG4TM7wEL7ZbXwbMuto1yAQBcM2dvhx4QF8gaI83f50cqtrm/bbViR1M6d3vTV96WAIDbJk54UKPhk2lBZlWtytCUPEw5HNzI0ZF3cTg4CRP/CUSvP+6x5tbe2oO+r0tBvGlJ109wScJW30pTPM2gLP9+nXCbsyV9mX8Lf7v2x3UzF9Zxey9shF5RDgAgMbcEdmuuQ/CWbbmkfm4+z0BBae0JK9O8dFw8tgx/XP0DquXsreoCDhdrPEbBZdJWXLZsL+EVqrmbqGNOVyt0s3p73eo7s7yxZYQzAv/XHb6O7KaLTYW1rgr2jXOHtY4yHA1UcXxyR6go8HFtOruJETgcfNNjCpZ1Gc+aUhKU4dTJVRgezX7POR2RBr1ll/BPYCJKBUKcCEvB7ocv8YpqXDdJlFhsAGpqarCxsYGi4tvvXhcUFMDfv7owbF1XORJCZIubzb57n6nU/LqCxqmzT1La5NB26NaoMifOEYvQMZW5ajVSywR5CirQV2s+NUQb2iiXisZMlyzdWXM+MY9xJ4a63LY0ApEYZnnp8I15xBjPVlDB4bbVzUr2j6/9IrK1+XmQQ8UXHA42dBzOml8QcBwQV2w0D0vJx7P0gkaMjtTVnoAEjDsQiINBSay5iU9u4H+PT7HGD9t1xRrPURJfz9tSC1e+9MLOj9s1dKjNQlt9ZiNPMYeLzwbMRq4882adYVEOdl7aXPU3kpJXiu8vRjVanK2BWCzGjgfx8Nx0C747HuBefO27Dj6OvI3QfXPQPz5Y4nyEjhm8JqzHd90noViu9vMkLSU5rPJxgKG6Im7M6IL8VT6IWdwHVhJu2trrq6KLpTa+8raCi1HTv8aY2MEU0d/1Qfg3vdC/bcWOKKnJUw4HKzqPxYIe7JW78iIB/juzBuMkdNguLBNi5rEw+Pz9AKP2PsK0/0Lg+dttpORRXdKmhhKLjWznzp0oKKg+oerVq5cMoyGE1NXL5+yOlhnNMLEYq8FOLFrlUWKxNapsVGGXlQyNMmYXvodGdVuB35JVdmAMMLRFhqIaY65/fBCepVKNxZak4PX2wy9CL4EnZq4W2uPcF8VyCvhjlAsSfujLShi0dqoKfAyyr7ioPG7bGTE1PmdcM+Ix+I1kbWZhWaPGR+pm54N4ieMdUqPx1+WtrPEQPUtMGzgH4FTv3Pi0gymOTeqI2MV9cHtWV/SxrVsX2Zbq95HMFYpxGoaY2XcG6zjfmEf4Kri6oefm2zEfPLbWIiGnGIN2PMAXR0LxKDEX5yNfYeVV9i4NAFAqL8Vfl7fi0Ll10KyxSwmo2Pa/ruMIdJy4EYEGb9/aHL2oN55/1xsDX78/crkcqCjwYamtjKhv2TmAzzo1/+7pHE7tO7l+7TgCM/tMZ43zxSLsP/8rpoZdZs3llwpw80Vm1eOXOcU4EpJc/2BJg2p969JlKDQ0FH///XfVY0tLS/Tu3VsmsRSVCWG/5vp7P99KSwlnpkrvCPXN2ae4EJX+3q8PAL2tdbB5uPSOWqP2PUbUqwKUllafoCpc8WOc4LzNNA8z/K+79Pph7TfdeWuXsLdZOcBOapH3pNwSDNjxsF6vDwAHxrVDO2PJSa47sVmYfjy83t/j7ledoa4ouSj3vseJWHuzfidBusryuDnDS+r8j1eicSS0fl1YPUw1sHsMe1tjpSmHQxAgoQMiABgF3seNGmMZSuqsv6PRrkZY1s8W0vT84z4yiup3UbWwZxt82kFyR9K8knJ0+Z29naCSvqTEYm4ajH+8DHXF6o+E7SOd0VXKXcfg5DxM/Df43YKW4NJnnjCRUqfsZHgqvr/EbigikVgs8X1AnsdF4Dx2N7pKG2/FYmcAO2H8LtrqqeDYp9K3gM05GYHrb5wMvQ+ftnpY5+sgdX7IrgDEZr97gevKi/tOqeyVEQGva8kJBBXJFucN7CL+72rtYPuq5ENNMZlFGLrnkcS5d3Hkk/ZwkJL0uRadgbmnJddIksZAVR5pBWW4bOmO8ZHV/w20SgvhlRyFrbdfYHrn6tphOx68xKY7ce8VeyUTdUVc+txT6vySi1E4FVG/mwHeFlr48yP2lrxK4w8GITQlv17fY2J7EyzqJX1XRuetd5Ffz1piP/S1wRg3YwCAUMjc1paaV4y+fwfU+bUSc4qhWF6KL0Ivsua2uw4EAEzzqHjfrfy7CEjIwZT/Qt8r9jfd+LIT9FQlr3o5HJKMFVfrVwdXTYGPe7O6SJ3/5cYLHAhkr1J7F0qvay2KuDxs7DAMW67/xZhfdu9fnGvTEeBwMHrfI6gqvPslyDAnA6wa2Fbq/IC/HyKpnqtY5nW1lHpxXyoQosNv/hLn3sVvQx3RR0pThqevCjB6f/1LLZye3BFtdCSXsTgf+QoLz1V3Yy0tF0EoFiNRQmdi4/xMnDi1mtWwIkNRDSOGLUaRHPMzfLa3BdyM1bHtbjy23ZOcqKyr97rWkHI+IE2drjXS2QmmuhKKxKyxfx16YEBcID59wjyrXOe3G36mzgjXs0SJQASTHy9DTbFufyd0rcGWU1yO/BIBigV1u45zyojHobNr4ZQp+bzwuaYhJg+ch7smjnWOwUKz4n298jMDYF5r2OoqI7OwHKVCEVTkePjrfjz+uv/2v5umfq3xNtvbDUKRnAJ2XtrCuJHHhRg7Lm+FcnkZtravvSnu12eeYNvdOMmTb7wPbOutwzo/qPRO1xpStJRrjT29NSBXzyWHlFhsJImJiZg5cybKy6s/mBctWgQ+XzY/ApFYjGf1+KAsLSlFSAi7zkqlJy+z8Cy9fid3RvJChIRIv+iITM5CdE6N+fx3u0iJiE1EiIb0wr3PXuWjrJ5lTsKjY2EllHwRmFwgqNfPoep7PI0CJ11e4lxYckmDfI/QsHCoyUt+x4l4XlDv75GhWFzr79TT+Bw8Sy+SOl8Xqpzy2r9HUgaepUv+IG5XmMMaS1PWZP27n8YnIyREepyRabnIKqnfL1XE83iE8CV/gOSXiWr9WRRKSCxa5qYhNb8UqW/ULAmLjIZanuSkX3hGWcP8ToVHIENV8ntgeEzR+3+P1+8D8lzU+vOOiM2r979DXF77e+HThPq/F1ooCRESIv0EMTIlB/Hv+N73pi7Jkayxh6/rpFX+2xri5x3xLAYmpZJvDsTllTfI9wh7EomyFMkXJeGJxe/9PS5YdWAkFgHAJ+4x5pxyhHx+GjoYVFw8RMTk1/vfkV9UUvvna3w2nqXXr1OiNk9Q6/eITMrEs8z6dSd9EpuEEG3pW16j0vJQUM6+6H4XEdFxCIHkm5gRT56+88/is6c3oVejSdcVczdEa1c0Yaj53ywsrbTB3gt1lSR3EY2ILqz391CV49T+OxWbW+/v4aBd/Xe3y7kfltz/D4av68YBQMe05xgU+wjn23ggOa8UwLvXyHoSn4KQEOnvp5GpOUgprF+h/4iYlwhRlLxNslRYv3PnSuHPnkO3SHIiNyq7od4LnyBfXfJ7YUR83d4LVcqKcebETzAtYJ5vCDhcjBmyEHEa7ESW+FUMQtI5iIip/+drg1xrvOWz8b2uNd7RAHNFXHrJjHN27y/hnfSU0SRKUViOf8+tg9f49SiUV0JKfilS6lhLjq416kEsxmdhl/Hbjb+hJJB8rvV7u0H4tvtkViL9bST9/kq71igsE+JVHVdzN/VrjbrY59QHxXwFHDi/AXIi5vv25ht/QVlQirVSyiwAFUn7usQgEIkRHi456V2va43XWsq1hkisDqB+fQNoK3QjSElJwaRJk5CeXn3yO3nyZNoGTUgzol/EXsn4Srn5FfBPVtVGKY+ZzLPKpa3QrVmXpKeMx0V8eQTpt8EI69bZtEWSS5btIapxwjXwdRfD6dfrd5eYNA0csQjzHp9mjW/qMEwG0TQ/vDf+PIrlFLDeYwTrmKX3DlXVkSNNG1ckxL/n1sE9PZY1t6DnVNyQ0NTq9146b90G2RoZqPAx2EqJMZavoIyJg+ZDwGFeijtlJuDPK7/T30kjUS8txMFz6/HXld8lJhVfKWlg4KjlmN1n+jsnFcnbHWnbFaOGfse6LgGAX27vxY/+/9DfQjNCicUP7MWLFxg3bhwSExOrxrp27YoFCxbIMCpCyLvSL85hjb1S1mz0OOpLzOEiXp25HZUSi62XRkkBnDNfMsYCDG0h4PEx2lZFRlE1PRnKGlXbwyu1fxUDo9creaKy6re6j8jegLggOGYxtytFapngohU1aqmrHzppVn293c0Hr5SYN988U6MxkDqqNwsbb+5kNTECgJ3O/bDZfQhrfEEHdXgatt5mX2/zpYsaa+yBsT2WS+iSOz7yFmYGn2+MsFq1jqnReLz/fxgbdVvi/FVzN7T79Le3dnwm9XPW2hNDhv+AIj57NewP9w9jvd8uSi42E7QV+gMKDAzEzJkzkZ1dvaXCy8sLW7duhZyc5O0JjYXL4cBO7/0vGq20lODmJr1WnWPCU8QX16/GooOZDtzcpNc9sQ95DA6/Ro1FBfl3qrHoZGUKNzfpNRbtbuTXu8ais60V3KTUPdHNLYHd/fov63d2aAs3KXVP8tWzYPek/nVPXF2cpdY9CREkwi6x/jUWa/udcngVDbvc+tVYdDDRqP17RIagQCy5xqKBhK3QRVo6rL8jBwsjuLlJr3tif7e43nVPnGws4OYmve6J3S3ptdGepRciRsMAdtnVRY9NCzLBFwrQxrD6ItDF3hZuUmosipPzYBdcv62YAODq7CS1xmIsLxV2Me9ZY/H1+4A8j1vrz9spNxZ2GfWve1Lr71RsBFLK6reizdFcD25u0mss2j8OgILiu/88nqUXwiuFXV/xrrEDOppq4KOeHavG7K7Wv1GJk10buEmpsaiWWQS7h/WvsejiaC+1xmKGcgbsIt+txiJQUZM4MbcEF63ao1Mq83dycMwj7HAdADUjc7jZ68Op5CXskuPeJ/QqJuqKtX++pkQhuqB+NwMcTLXg5ia9xqJ9RBDKuPWrsehoZQI3N+k1FtveLqx3jUUnW0u4vVFj8c3tTk6ODrDzr737cEJOMYrLKz7j50noeLupwzCIX68oGthWj/VzKUvIgV1Y/Wssujo7Sa2xGIlk2MXXv8Zirb9TWS9gl12/Gov2Rmr4YYQ7NPRiseBsJIrkFLHeYwTW3trDOG7pvX9x0bI9wOGAA8D2Hc5FHS0M4OYmvcai/cOHUKtnjUWnNuZwc5NeY9HuhvTyOXXlbGcDNyk1FuVfFcDucf3KvgCAi6Oj1BqLSQqvoP44BHlS/v5mB57B7KCzrPGr5m6Y0XcG6zxbR1kOswZ0gLF69ee5U2E87NLqX2Pxna81pJwPSFOnaw25+p2nO1mZYmAXK+D0BdbcL56j0CMhDP1eMrc5/npzJx4bWOOBsX3VmImGIlTkJZdMoGuNCiKRGLHZxRJrW1biiEX43+NT+Pn2PtYWXKBiq//yLuPxi+coiLiS/3vXha+DvsTf39quNeqqqV9r1PS2rcBXLd3hM2o5zh5fAbVy5vns/MenoCwoxVd9pld9HkvC53JgoaVU0ZjwjfcBPpcDZ2dn8Hjsn+U7XWtI0VKuNbgNsNqcIxZTCvhDOHPmDBYvXoyysuo/6h49emDz5s1QVJTNUuqgoCCIRBUn0FwuF+7u7jKJoyEJBMw6UW5ubjKrW0latpM2Xhj+4gFjLDjmFdpZNa+Oh67rb2LmgTWYHsJsUGA7dTui/v4CXG7z28ZE7wPvh7vgDH7yP4Dv7//HGB8y/Acs/W0+PMw1ZRNYE1MuFEHh23PomBqNh/98zZg7Z9URQ0YuxempnvB1ZNcvJY3nXd8HFp59gvU3XwAAnNPjELpvDmM+U1EN5l/sQrFcRcLv4dxu6Gim2fCBt0DcBWcAAMrlJYj9+zNW3UrfET/gfJuKphzCdb60fbaRJOYUw3zl1VqPGfXMH4fPrAUXzMvDCB0zdB27BrmK1TdufB0M4GCgiimeZrDXZ6/Ik4WmfD5Q+XdRk25RLh7v/x/MCjIY44mqOvCcsAGpqhU3eRX5XKT/OAAq79H4qKWLTi/A7oAE/HK99pswOkV52HNxEwbHSr6R+VJNFxMGLYC/ad0atIx2NcIKH3tcjkrHnJPMxOrJKR4Y6iQ52dvaKHx7FuXCt6ecPFKe4eKxZdCS0JH7UNtumDxwHsr4tS/OKv5lEHgQN9n3gaaqIfJEtBX6A9iyZQsWLFjASCoOHToU27Ztk1lSkRBSPzVrLGYrqMDVQvKKg6ZsemdLxEgouG6TkwIR3WdqdTpLaNwSZe1MScU3yPG46GOri8cG1khU1WHM9X0ZDNWyolpXR5CmJy6rqCqpCAD/k7BacbubT1VSsUcbHUoqvoNdY9oBAIrkFLGhI7vW4i+39oL3eqVQUm4JHr7MRnk9d4eQ2pULRW9NKvaOD8GB8xtYScU0ZQ34jljKSCoCwAqftljj69hkkopN3f7xki/UM5Q18PGQhSjjMhMfpgWZOH56NRTLKxq4lAhE2HyHXfOyNRGLxdgbkIB2G/zQc5s/QpPzkJpXAu+t/m9NKnZPCEfw/jlSk4qnrD3h/slvdU4qdjDVwLohjrDTU8WsrlbIW+WD5f3b4tMOppRUrGFO1zaMx50ttGClzV5RHWBkh94fr0K6Entl7Nio27hwfDk0SmrfiXAstH6728j7o8RiAyovL8fChQuxdetWxviXX36JtWvXUqackGasZo3FNGXNZrm6b2IHEzzTMmaNt81OAuVGWheeSIhOKcwtIE+1TeHu2kbKM1qvS597Qczh4pRNJ8a4glAAn9hABCfXf6s4aTxHQqpLQZjkZ2DCUz/GfBmXj9/bDap6PMSJVqO+i8keZlVf/95uENJqNDpzznyJSRHXAADmK6/Ca/Md2K+5gZfZ9d8CTNjisorQ6TfJdeQqtU97jhOnVkNByNweXcyXx9DhPyBeg/4G6utjN2N83cMaRurssgcPjO0xv+c01rhXyjPsuLylqsbckguR4C44g5PhrTN58jgxF1MOByM0JQ+3YrIweOcDHAtLQUYt3ZS5IiGW3T2Ia0e+h0lBFmu+lMfH3F6fY8SwJchWqj1J7mmmickeZohb0gf3ZneFuVZ1ckxVgY+l/e2wZ5w7JRVrWN7fDmPbGUNDkY+uVtrYN84dW0c4Szw2RL8Neoz5Gckq7HJMvRLCcOvwdzDNk15ubfW16AaLm7wbSiw2kLKyMsyaNQunTlXf9ebz+Vi5ciXmz59P2zwIacaKygQwKGQmDppjR2gAUJbjIUqLXTPFPisRYan1rx1Fmg/X9DioljPrkd0ztkdPm+a3EvdD43I5uD69M07aeLHmhj2/j0236ldjljSutILSqq8XPDoBeREzmXLIvlvV9kMA8JFSG5S8XaG8En7qPI41/uPdg1B+4/0nNqsIW+7ENWJkrccGvxcITpb++W6blYTzx35k1TYTcrgYN3gBAozsJD5PQ0otPCKZHI+LdUMckbS0P/77pANrflu7Qdjj1Js1Pj7yFpY8YJYsGbnnEe7FsZNkLZ1njQR5Um4JZp+QXtvROD8TV4/8gGX3DoEnZq+KjtY0Qpdx67Cl/ZC31ugf084Y9+d2w64x7WCupQw+j9IodaWiwMfBiR2QvdIHt77yhrWuCnwcpN+siNQxQ/exP+OFhB1WLhnxuPvvQrhI6FgPAAJaJSEz9BfRAAQCAebMmYObN29WjamoqODPP//E6NGjZRcYIaRB/HMnmnXC3Rw7QgMAn8fFC01DlNcoSG2XlYS9jxKlPIu0RN5JT1lj/sYOUgv+t3Y9bXThZ+qMbAVms4nBMY9QVFj/ZkakcYhEYux//V6nV5SDz0MvsY5Z5zGy6uuPXI1gL6UhEKmbv136I0rLhDFmUpCFeY9PM8Y2+L0AaXi/+8dJnTPOz8SlY8ugX8xedf1Fv69wWsLNFABwNVKHpYStjKRuPnJj7xwBh4Ppfb/CHWN2s7YV/v/gk4jrjDHvrf5IyqXPHmkGxQQgaP9c9EyUnHg84NADHT7ZiCAD6U3GKo10Mawq8UAazhdeFlLnYjSN4D1uDQIMbFhzpgWZ8P/3WwyPvseae1ujGPLhUGKxAaxbtw43btyoeqytrY39+/eja9euMoyKENJQ7gawO+emN9MViwAg4PFZdRbts5IQkUIrFluLTbdi0F3CyfZdYwf0sqYVi9IIeHycfd10opJGWRF6JYSBeuE1D4svRCL99ba5eY9PQ1nA3EJ3wsYLmh3b4fRUT9z6qgsOTmhPu07qScDj47tun7LGFwYcg15RDmNs8+0YDN35EIvPP0WpgN2xlbwb/1jpq9oMC7Jw7cj3sMx7xZpb1G0Sdrv0k/g8Uw1FnPvMs8FiJNXK+HIYOWwxYtXZq6R3XtqMwS8CGGNmK67idkz9usE2F2veUkOxkrygHBtv/I2zJ1awGkcBQCFfAVMHzMGnPvNRIP/25PisrlY4OskDSnLv3yGaSDbZwwz8WspKvVLRQu+PV+GcVUfWnGp5CY6f/hlL7/4LTo3VqPKLLuDki0IIRGKUCcUoLBOwnk8aHiUW68nPzw979+6teqyhoYF9+/bByclJhlERQhrSkzD2Nse0ZrpisVKkNnP1iHFhFhSL6C5fazH/VDh61EgspiprQmhnB3k+nRrU5pSEFTwfR93BT1eeSTiaNDVrb1RcnGqUFGBm8HnW/OpOo+FtpQNfRwN0tdKh7W4N5KSNF/yN7Rlj6mXF+Pn2PsbYvFMROPs0Db9cf475p580ZogtTm5xObr97i9xTrcoF1eO/oC22UmsuV87DMPaN1btvql7G21Ef9cbJhpKDRorqZahrIGhI35AnjzzvzFfLMJ/Z9fAO5H5d/HL9edIyCnG3/fjcTHyVYtsJhaTWYjvzrN3WdRkm5WEu/9+g7mBkjtwh+pawGPir9jj3PetW58BYPtHrtg0lK7pPxQvCy1c+kLyquhKhfJKGD58CXY6S77Rsfzev/jvzBqolDFX7656mIvOh1PQ93gqtJZewdTDwXSz6gOjs6V6EAqFWLVqVdUqBQ6Hgw0bNsDW1lbGkRFCGpJBYTZrrLnWWAQAEw1FPKuxLQ0AjNNeyiAaIguOmQmsO/l+ps5wMqTunm9z0ao9CvnM4vsjou/h5/MRMoqI1NWf9+Kqvp4VfA4aZcxmIZcs3PHY0BbtjNkdKcm76V2zViuHg4Xdp7COmxp+FZ0llGUAgD/uxn2AyFqP009SJY5rF+fhytEf4JSZwJrb59gL3/SYIjXpcukLLyjwaeVWQ5jZxVLqXISuBUYPWcTqFK0kKMPpkyvgnlZdNuBC5CtYrLyKL4+GYtCOBxiz/xHispp/I6SiMgEOBSXhz3txmFNLHUUAgFiMSeHX8PjA/9D+leSax9vdBsJr/HpE6pix5lYMbIvx7szz4qtfdsYXXhbNslFjc9LLRhfPFrFri75JyOXh8/6zsKTrRIjA/nmMir6H+wcXwDGDfR1TLKjI0+wJSMDFSOlNX0j9UZvierh48SLi4+OrHispKWHPnj3Ys2dPnV9DV1cXa9as+QDREUIailEheytRioRuZc3F9lGuOHGHnVhUiqEVV62BSCRGz4Qw1rifmTOE7Nrm5A3WOsp4kQmctvbEuKjqIvJapYXoHx8EsXgEbZttosRiMVZeregWqVpWhLk16vsBwGqvirrYDgZUU7G+pne2wPXnGYyxeyYOOGzXFWOe3WGMb7v2BzpO3AghlxJWDSWzsAzzT7FvdmiUFODiseVwS49jzR2x64JpA+ZAzJG+7oSSig1n/RBHKMpx8auf5ETYFUt3TPKZh3/ObQAX1asQtUoLcfXI9+j/0U94bMhezHI8LBXHwyqSyoK1vs0yMSYSieG78yFuvnj7Nm+10iJsu/oHJkT6SZzPVlDBF/1n4Zidt8T5blbaWNK3okHRlhHOeJFZBHNNJeirsbt3kw/DRlcFS/ra4udr0ZC64JbDwc+dPkaYriUOnN8A9RorFJ0yE/Dwn/mY0/sL7HLuJ/HmyIg9ARCu86XztA+EVizWw8WLFxmPi4qKcOfOnXf6X0BAgJRXJ4Q0BSXlQhgVsFcspqpoNn4wDcRcSwmR2uzO0PpJcbhR40KQtDxLLkaiR6LkxKKI6gTWqrLQ+GH7bqy5sZG3YPPzdYRRrdImSSgSIym3ogvxvMenoVuSz5i/ZeKI26bOAAA34+a7Ir2p+MjNGJe+8IKtbkWzo/HuJtBQ5OPrntOQL8fc4umWHodZQWdlEWaLdDg4CXrLLiGzqJwxrl2ch6tHfkDHNHatulPWnpgwaEGtyV0TDcUGj7U1U5TjYf0QJ2T+NABqCpLX+hy27465vT9njWuVFuLK0aXwSKn9hvCaG3WrS9jUhKTk1Smp2PNlKEL2zZGaVPQ3tof7p79JTSpqKclhWf+21Y+V5dHRTJOSijKwYqA9Mn4aiOff9Ya7ifRdA2etPdF5/Do812R3jFYWlGHH5a04eG49tCXU1wSA1deikVlYhqmHgqH5/QV4/XYbIcns5lXk3VFisR5iYiTfYSKEtBxXozNgWMROLKaoNt8Vi86GaojSYicW22YlYtrh4MYPiDSq7f6x6JHAXMnySkkDT7XNIKTEYq0me1Rsobpo2QE5NbpDD3v+AGlpWfjqODtpS2Tv6asCABXJla8fnWTNr/IaAwC4M0vyBSh5d/3s9BC1qDdE64fgwIT2mOppjmQ1HSzvMo517I93D8KooHU0ofiQyoUijDsQyBrXL8zGjf+WoMMrduft81YdMMb3Wwh4tW9km95ZegdX8v60lOVx9cvOGOnCTpQAwO/uvvix81jWuGZpIS4fXYquidLLcCy5ENlgcX4IKXklOPckDWn5pVVjIpEYg3Y8qPV5iuWl2Hjjb1yX0nxIBA5Wen2MnmN+xksJjXAqRX7bC71tqWFdU6GpJIc2Oirwm+mNw590kHrcUx1zdBq/AZcs3CXOj426jfA9szD0+X3W3A8Xo6C37BL2PEpAXokADxNy4P7rLRwLTW6wf0drRVuh6+HcuXOyDoEQ8oFFZxTASsKKRUNbcxlE0zA4HA54+rrIUFRjrNppm5WEuOziWp5JWgLj5FjoFzPvzvqZOQEcDhSocUut1BUrTpvK+HI4YeOFKRHXquZUBKXwfRGA/+TYqxmJbD18mQ2vzRXbbxcGHGfVVvQzdcIVi3YAgC6WzfemUVP3sZsxNt6KwRZ3X0yKuAbXjOpyQuplxfj96naMHLaYsYVNJBI3y62csiKpC7RJfgauHpHcqOWKuRs+GrIIZXy5Wl93RhdLfNPTpsHiJEwe5po4OskDux++xLT/QljzP3YeB44YWHr/EGNco6wIl48uxac+/8PRtl0lvnZiTjFMNZtes53zT9MwYk8AyoViKPK56GimiTu1dDGv5JHyDHsvbIS9hN9nAEhS1cYnPvNx09z1ra+lp0orE5siVQU+RrsZ40VmIRafl5wcz1ZSw+CRS/Hdw6NYfvdf8Gp0hjYsysHJU6vxj30PfNNjClLfsiBk0bmnuBuXjfSCUvg6GmK0mxFEYkAgEkGex0VGYRl0VeTB4XAgFIkRm1UEDUU+/Q69ga4gCCGkFmIxYFSjeUumohp+HS39TlpzsOPjdoiq0RnaNicFXBF1TGvJIl/lo0cCuwi6n6kLAGCqZ/NNmDcGBT4PA9vqAZC8HfqTJzcaOyTyFpmFZVVJRaOCTIlbbr/3/gTgcBAwj5LCH5KOijwAQMDj46s+M1jzw188YP0N6S27VNUkkdQuu6iMtWLaIjcNfoe/k5hUvGruhhHDl6BErvrCuOaqRD6Xg6wVA/H7SBfI042nD26ok+RVi+BwsNx7PJZ3Zq/2VRSW49DZdZj3+JTEp5qvvIqHL7ORlNu0bhz/dPkZyoUVf9slAtFbk4qK5aVYdXsf/P9dKDWpeLqNJ9p9srlOScX+dnrvHjRpVG+7mSHi8rDKawx6f7wSiao6Eo+ZEOmHyN0zMO/xKfCFAqmv9SKzCBtvxeBAYBLGHngM3jdnIbfwLJQWnQfvm7MwWH4ZFiuv4sbzDPT78x7sfrkOi5VXceBxYr3+jS0JfUIQQshb1GzekqqiCU8zTdkE00D62uqyOkMrCcpgnk8d01qyntvuos9L9mqIm2Yu8DTTRF/aEvRWZ6Z1wo6P3XDdzBVpNbrDD4wLhGHB21dckMaz6XZ12Zol949AWVDGmD9v1QH+po4AgA6mmo0ZWqtj/saqKX9TR+xy7ss6ZvP1v2CaV/05lF1cjsAkqn/1piep+TgTkYqCUgHEYjF+vBwF7oIz0Fl6qWrLPwA4p8fhzqFv0SY3jfUaZ9t0xJARP6BIrrpuoiKfi60jXPB1D2uoKfBhqqGIA+PbQ1Op9tWMpOHoqMjjwuedpM7/1GUcvveeyBrnQoxfb+7E9iu/Q6HGexwAeG2+A7MVV7HmumxqLgqEItyLy0JEaj7CU/Kw9GIkHibk1Pn5feOCELpvNr57eBR8MbvLXJ68Eqb1n43hw5cgU1l6fb5KinwuFvWmFbhNHY/LQfEvg9563G1TZ7h/8hsOtZV8c1C9rBi/3tyJoP1zMTz6XsWqkfeQmFuCPtvvVdX/LBGI8Om/QSgpp0UZAG2FJoSQWolFYhgW5jDGUlS04cRr3vdl+FyOxAYu9lmS7wKTliEzrxi9X4YyxtKUNfBUxxT5MzpDWZ5OC96Gx+Vgqqc5PvsvBP849MT8N1aJ8MQiTHx6Ewk5H8OsCW49a43uxFQketvkpOCzsMus+R9eX6QfndSxUeNqjeT5XHzb26YqufF1j6noFxcMs4LqpmEaZUXYeWkzBnz0U9WW6H8Ckyjp+5r7r34ISa5uSrB3XDv8eJndwKN7QjhOnloFzdJC1txR2y6YMPhrlPOYCcPgr3uAy+Vg3RBH/DLYAVwOqHuqDBi+pXHIaq+Pkamkhq3X/mRt//wi9BLc015g9NBFEmsLfnf+Kb7ytoSqlGYx9SUWiyEUicHlcKpKGBSWCjBoxwPcrsM255r0inKw4eZOTHwquTkLANwwc8HUAXMQr2FQ62sJ1/kiIacYwcl58DDThJE6NSNqDhT4PKz0scf3b6kXmqmsjvG+3+C4bWf8fm079CQ0b3HKTMDx0z/jkYENlnUZjwtWHSR2j35X04+GYs84yfUeW5PmfWVMCCEfmDgrE/Ii5tL5FBUtGUXTcHhcDp7qmLHGXdLjUFgqfasAab7+uBuHjqnR0KpxoXnFoh3EHC4lFd/DXqferLHJ4ddgseIKEnKa1raz1sovpmJlwVq/3az38v/svBFkYA0AcDV6+yoXUn8/D3LAd30qVgrlKqpi6sA5rGP6vQzBV8HVdcw33YrBhpsvIBK17i3RcVlFjKQiAEz6N5h13Khn/rh0bKnEpOI/9j0wzvcbVlKxYLUP7PRUqx7zuBxKKsqIvb4q3lZW9E83H4wYthiFfHYS0iPtOR7v/x8GvwiQ+NzV16IZj8ViMV7llyK/pH7nfjnF5Ri+OwDy356D3Ldn0WbVVegtvQi1JRfeOakoLyjH1wEnELVrhtSkYjFfHvN6fYa+o1e8NakIVCTJzbWUMdTJkJKKzcy8blYY7mwIHpfz1u70R9t2hfPkrdjv0FPqMR3TnuPciZ8QtncWPg+9CKXyUqnH1sU+2g4NgBKLhBBSq2eh0ayxtBaQWORwOAjVs2SNu2TE4frzDPYTSLOWWVhRe6tffDBr7urrphXk3YXpWeGxvjVjzDErAR6p0bBYeVVGUZFKRWUVF8o9X4ZiZI3ukAIOF8u6TKh6LEcNQhrNKh8HrPSxBwBcs2iHbW7srW7r/XahQ2r15+83Z5+g3a9+SMkrabQ4m5ojIW/vWvpV0FkcPrMWChJqif3lOgCTfOZByOUxxmMX96EbS02IAp+HnwbaVz220lbGxmFOrOPOWnui15jVrJIcAKBTko8zJ1dg18VN0CgpYMz9cv05uAvOYPvdOLzIKMSovY9g+ONlaHx/AcsuReHPe3Fot8EP/f68h6dp+azXlmbng5c486Ri271YDMRlFyOzqLzOz6984qhn/niyZybW3dotMTkOALdNHNF+4iZsbj8UYg6lM1o6ZXk+jk/2QO7KgXj5fV987lV7PfB0ZU1MGjQf3cf8jBAJ1zqVnDIT8OeVbUj4awr+uLIN3RLDwZGw1Z7UDf0lEkJILdpxi1hjLWHFIgAkqushR0GFMeaWHocTYakyioh8KKter1CQlFi8QonFetnj3Ic1JmnLLWk85UIx2m28DdXFF8AVCfHrzZ2sY/50G4gonYpyEEbqCk2ya2pLtriPbVXtvoU9JuO5JrNphYJQgCNn1kCruDqxEZ6aD9MVV3DuCbtmYEsnEonx7bmnUud5IiG2XNuOLdf/AhfslZ3LO4/D9L4zIaqRVNw20gUW2soNHi+pn8V9bPFgTjecmuKBoPndMbdbG4jWD8Fvw50Zxz0ytEWHiZtw18he4utMjriOsL2zMSz6Pquu3MzjYbD95TpOhlef86248gwzjoUhNCUP16Iz4LTuJsoEIvjHZmHtjee48qyi/mlJuRCpeSUoFVTUlhOLxfjm7JP3/weLxegdH4Lbh77FkTNrJNYFBYAsRVV81n8Weo5ZXfX+XdNQJwPY6THPbX8dyk7MkuZHWZ4PDoeDSR3ZO64kuWPqhI4TN2JG3xlIqqUrtHZJAb4MvQi/w4sR99dn+OvyVoyOugOdIvZ2aiId3Z4ihJBaJDyJYY2V6r19y0VzcP5zL4QeskD3pOqTQfusRBy8H4NdY9vJLjDS4DbdioFaaRG8UqIY4+E65kiR0kmP1M2/9t2x3m8XY4XQ+Kd++KbHFAQm5qA91YZrdIeeFeJJWsUqnSnh19AuPZYxn62gguWdx1c9Xt6/LXi0YrHR+c/yhtO6myiSU8QnPvNx6/B3kBNVF8G3zHuFvRc3Ytjw76tWJYnFFcmPwY4t43NYmpJyIf64F4fo9EIMdzZERiG7IUcljZICHD67Fv0l3DgScriY2Xc6/nYdyJqb0N4E07tYNmDUpCF5mGuyxmZ2sURKXgl+eaMJS7KaDnqNWYV1fnswJ+gM6zmmBZk4cXo1rpm7Yn7PaQjTs3qnOBQXnWM8VlPgo6BMUJWntNZRxotM9k34OhGL0Tc+GEvvHULXZOmJcwA44NADX/echnRlTanHZP40AFrK8ghLycP4A4F4kVmIES5GmOZZ+wo30rx0sdTGKh97bPB7AXkeF9rKclWf+TUJuTz86eaDvY69MT30IhY9OAr9YukNwcwKMvBZ2OWqG8QxGgYI0bNCmK4l4tX1kKyqjRQVbWQqqSFJjRoevokSi4QQIkWpQAhuMruZiZe3s4Sjmx9jdUX46VkyEotyIiEcshJkGBX5UHomhDEu2gHgimVFsem7s7vKIqQWIUtJHcdsu2B85K2qMRVBKT6NuIGOm1SQvWIgNKiraqMpFYqxObhilYFaaRFW+u9nHfNT57FVnUO7WWnjcy+LRo2RVHAwUIOFlhLis4vxwNgeC7tPxsYaq0t9Yx5h8YMjWOU1pmrsYUIOOv12G7+PdEFHM81GjrpxTPo3CEdCUwAAf96Pl9rE1Do7GWdOrIB9NvtcpZgvj3GDF+C0jZfE5xpTnblmh8flYPUgB6we5IBjockYve8xAKCcJ4d5vT/HbVNH/HFlG3RL2FuY+7wMReD+/+GAQw+s8fwIkRLqbNdFfo063O+TVFQQlGH8Uz/MCToDt/S4Wo99rG+Nr3tOwy0z6efeGop8JPzQr6opjYuROsK+6fnOcZHm47s+tvi2lw04HCA5rwRmK2ovP1Mip4BNHYbhL9cB+OTJDcwJPAOHrLfXRmyTm4Y2uWkYUaOcCgCE6FlijO9CPJPQDLM1oq3QhBAixanwNJjmZ7LGPTu3jMSiuiIfIRLuXLu+5SSPNE/944NYY1cs2iF4fg94WbSM7f2y8oeEGnEzQs4DYjFsf7kug4hap9xSET65mF71eIX/PzAoYq5MiNIywbZ2FT8vHpeDv0a7NWqMhClmcXUpgd/aD8V/dt6sY1b4/4MxbyTuASAgIQfDdwe0yIYuhaWCqqQiwNrBWsUn5hEeHFwgMamYpqyBPqNXSk0qAsBYd5N6x0pkZ5SrMWZ1ZZ7DHbPzhvPkrTgh5efOE4sw6ckNPNnzFY6dWo2uiRHSf8EamliMdmkv8OuNHXj511TsvLyl1qRioqoOPvX5Hzwnbqg1qQgAycv6f7BO16Tp4r5uMmWioYTdY9rV6WZJkZwi/nTzgfPkrfAZuQxHbbughPd+N3/d0uOw6cbf7/XclogSi4QQIkVBmQDGBezEotjISAbRNDxleZ7EBi5u6bF4lV+/Dmmk6QhNzgPEYvjEPmaMl3H5uGXqBFdj6ob7Pi583qnqa38TB4TqMle9OWQlomdCGDIKy6qaiJAP68rLYsTmVfy3bp/2nNFZuNKCHlOrOuLGLO6DtvqqrGNI42F0HuZw8Hn/2YjSYie89lzchG6J4Yyx5LwSXIp69aFDbHTr/V7UOs8VCbHizgGcO/ETtEvY2/9C9CzRacIG3DeWXHcPAD7rZA436oTe7G0ezk64vVLRwqih32HCoK9rrQk+4vl93Dr8HZ7t+hLf3zsE6+y3Nwd6VxyxCB1So7Hs7kGE7JuDwAP/w7zA09Arll67LktRFT94T0DbqdtxwLGXxOYsawY7AADGtDNG3iofKMnxWMeQ1mWShxkSfuiLM1M963S8mMPFJasO+HjoIhjO2IcpA+bivFUHFPHl3+n76lEdxiqU2ieEECnkeBzWisV0JXVwlVpGkX+BUIxwXQuIwGEUe3dJj8O2u3FYPqCtDKMjDeWjfY/gkJXAKoZ+08wZPVyo7tD7GtBWH/qq8nhVUAZwOPij3SD8cfUPxjGzg87iprkrVBdfwKN53aje4gf2W1DFCT5PJMSfl38Hr0Z3xwuW7XGuTceqx2bUsKVJSFveHwbLK+pZ5Sso46Ohi3D34EKolRdXHaMgFODkyVXwHreWsYXz+fvWdmuibjzPwI+Xn0md1y3KxcFz69H3ZYjE+VPWnpg46GsUykv/3X66sBcl1FuQIY4GVd2Yq3A4+NehB85Ye2DRw2OY/+gkFIWSOzTb5KTip7sH8dPdg3iuaYjLFu1xw9wFQfptEKth8E5dlxXLS+GU+RKdk6PQOfkpeiRGwLgwq07PzVRUw8YOw7DF3Rf5CrU3FFrQ0xrf9LKpc1ykdeBwOBjkoI+VA+3w/UXp76M15SmoYK9zH+x17gN5QTm6JD9F35chaJ/2HG7pcTAqzJb63F0u/Roi9BaBEouEECIFn8uFSY0Vi4mqOtBoIUX+dVTkUSSniOdaRrB74061a0YcBlx5RonFFuJ5RiG+eRHAGj/XxgM/DaSfcX0kLe2Pv+/HY+bxMPzj0ANrbu2Bell1MmTY8wewyU7Gcy1jfHIwCBELe8kw2pavRFhxg+Sr4HPo8Iq56quYL49ZfaYDnJbx/t2S6Kkq4H/d22DjrYpmaRG6FhgzZCFOn1gB/hvJYa3SQlw8tgy9Pl6N2NddpOeeDMfck+EI+boHnA3VmCsgmwGhSIw1N57jdkwmnqTlIyGnROqxPRLCsP/8rzCVsJMCANZ6jMTirp+wOj9XGudugkW9bSip2MJ82dmCnVh8rUBeGd93/QR/u/TH0nuHMPHpTVat5TfZ5KTCJuc8ZoacBwDkySshUtsUySraSFHVRpaiGgRcLgRcHvgiIbRKCqFVkg+jwmzYZifDLD9DYlfy2kRrGmGL+xDsce6NAvm6dShvbn/npPFwOBws7Gn9TonFN5Xx5XDT3BU3zV2rxvSKcmCbnQyjwmwYF2TBoCgHHLEYN81ccMWiXQNF3vxRYpEQQqSQE5bDsCiHMZakpgNNtIwTGjkeF+2M1RGqa8lILBoU5cKglrtzpPl4mlZRwH1wjKTEYkdsMtFo7JBaFB6Xg+ldLLH8chReFQC7nftibmB1V04uxJj/+CRm9p2Jp68KUFQmgLI8nXp9CJW19kzyM7Dizj+s+Z+8xlYlo0jTs2GoExb1tsHzjEJ4b/XHRasOmNl3Bv668jvjOPP8DNz4bzEjuQgAbhv84G2phbW+jlh/8wUyi8rwuZcFJrRvekX1i8oESM4rhb6qPNbeeIHV16JrPV5eUI4V/gfw9aOTEpM2efJKmDZgDo5JqE9Z6f6crvA0p1q6LVEfW10MaKuHS1EV9WVHuxohPrsYDxNyqo6J1zDAtIFzsazLeMx/fAqfh16CiuDtJW/Uy4rhmVr77+f7EHC4uGjVHn+6+uB8mw7vtCrSUE2hweMhLc+cdupVjdzqK11Zs9Zu5KQCnd0SQogUJS/Z3cKSVHXRjtcyEosA8Ghedyw/ZomPou8yxqmBS8uw/3EitIrz4Z0cyRh/om2GGE0juuvfQNxNNHApKh2b2g/FV0HnGKusJkVcx9IuE5ChrIEW2GdCJgpKBTgWmgJVBR5GOBvhQGAiJh8KBsRi/HV5K2MLLQCE65hjQ8fhMomV1J2eqgL0VKuTBjtcB8Ay7xUWPzjCOK4yudj741WI0ayueewflw3vrf5Vj2/FZMFMQwndrXU+fPB1FPWqAEN3PUR0RmGdjnfIfIkD5zbAPT1W4ny4jjk+Grqo1q6kHmaalFRswRT4PJyb1gkhKXmQ43LgZKiGojIh1JZcYB2bqK6H+b0+w/Iu4/Bx1B1MirjGOj/4kAIMbHDQoQcOOvR470TN/B7WDRsUaZHGtVVBcHoZbiVVrwLnczl4sbgPLFbW3kGavB9KLBJCiBR/HbuHiTXGklS1YdqC6nJxuRyJDVzap9VePJ40D4eDkzEwLpBVa+7NOnOk/r7ytsKlqHTEaxjgiJ03xkXdrppTEpThq+Bz+LHL+EZrvtnSiMVibLkTi/NPX8FMSwlnIlIralsCMNFQRFJuxYXD52GX4BMXyHr+9H4zIeAxT3k7mWt+8LjJ+7nweSf4/P0AAPC990QYFmZjajjzQtA8PwN+h7/D4BHLEKpvJellAAC7A142qcTir7de1CmpyBcKMC/wNH68exBKgjKJx+x36IkZ/WaiSI7ZCdVWVwV7x7lj76MEaCrJYRHVomvxuFwO3N/YgaCiwEfM4j5os/qaxOPzFFSww3UAdrgOgG1WEoa+eIj+cYHonhQBBWHDNRvLVFTDbRNHnGvjgfNtOiBF9d3/FvvZ6eKXwY7wj82Cm7E6urVpOn/PpOnicznY0F0bd5JKcDmNB11VBfwy2AFG6ooImNcNHptuv/1FyDuhxCIhhEhhlJfBGktU05VBJB9WoD777q9H6vvVJiFNS2xWEVa+eMgaP2vtARMNRQnPIO9jkL1+1dcbPEYwEotARROXjR2GYb3fC3zeybxF3ZxoDNvuxmHeqQiJc5VJRaucVGy4uYs1/6frQNw1cWSNT+tEjYuaqgFtq/+eKjpFzwIAVnLRpCALtw8twljfb3BBys2SA4FJ2D3WXer3uhT1CsfDUtBGWwWzu1o2WKmCC0/TEJych57WOlBV4OPhyxy4Gavj7/sv3/rcjqnR+OvyVrSTskoxX04J83p9ht3OfVk1Q69+2Rm9bSvOU7wsaJVia2aprYxZXa2w9Y7k36NK0dom2KA9Ahs8RkC5vASdUqLQ7lUs3NIr/meanwmdkvxaX0PI4SJWQx/PtEzwXNMYQfptcM+4LZ5pmdSrru3PgxywsJc1OBxm4pSQuupqooivBrmBz69+b+9gqgnR+iGwX3Mdz9LrtnocAHpZ6+DGC3aNWxtdlQaJtbmjxCIhhEhhlp/OGkt6j7utTV2imi6SVbQZnfs6pT7Dq/xS6FMtm2ZNXlCOQbGPGWPZCiq4a+yAGxPbyyiqlofL5WCdryO+OfsEgQY2uG7mgt4JYVXz2iUFmB10FisUVLDiyjNsGeGMr7ylr7IiTDsf1J6M4YqE2H1xE1TLmY0vYjQM8E2PyVWPu1lpQ0dFHoMdDDDV0wykeRBzuPi8/yyIwcG08CuMObXyYpw+uRLzen2G39sNZiUxhCIxbr3IlLhq8cLTNPjueli1kvhuXBZOTfWsd7xb78Rizsnwd36ealkRfvI/iNlBZ1mrzCvdNbLHp4P+x9gC/qbKpCIhALB5uDNScktwLCylTscXySnihrkbbpi7McYVBGUwLMyGWlkx+CIh+GIRxACyFNWQraiKXAXld6qT+DYcDnB2qid8HAwa7DUJqWnFQHuMPfC46jPA1UgdoSnMuowXPu8ELSU5mGkqwUhdEfNOhWPzbWayfkkf28YKuUmjxCIhhEhhkcdOLMar68kgkg+Mw8FDQ1sMf/GgasikIAu/nnmA+eO7yzAwUh8peSXo+zIYGmVFjPGzbTwg5PLQ1arlJcll6X/d2+Cbs08AAKu8PmYkFgFg/qOT2OLuizwFFSy5EInPOplDgS+5eythCk6uvQD7/Men0D3pCWNMBA6mDJxb1WV0z9h2+KSDKdUVbabEHC6+6P8VBFwevgy9yJjjiUXYcv0veCc9xfR+M5GnwFw90vOP6hrCqgo8tDfRQLc2OghLyWOUJzjzJA25xeXQUJKrV6xfn5G8ulYankiIqeFX8KP/QVbDuEoCDhc/dR6LnzuNhlBK1+fYxX3eNVTSCvwzoT2sLkbidEQqlOR4CHnL+6kkpXx5xGt8+CSfp5kmpnUyRydzLbgaq3/w70dat9FuxtBTkceduCy4G2ugr50uFp17imOhKbDSVsaOj91gq6fKeM40T3P87h8H4eui2RqKfIxwocZwACUWCSFEKjMJicWXai0wsQggwIiZWAQA/8MX8L9x3ehCvJnaHZCAUc/ussaP23aRQTQtH5fLwacdTLHvcSJumLnilokjI9mlVVqIuYFnsKLzWOSVCHA9OoNWYzQAr+RIrLqznzW+qcNQ3DZ1BgAs6GmNTzvSCsXmhMflVF24VRJzuJjRdwbi1PXx8519rOeMjboNz9RnGD94AR4atZX4ugWlQtyKycKtmCyJ83mlgvdOLF6PzsDt2EyUC+tYTFUsxsC4QKz12w3nTOmrcoP0rPBF/1l4bCh9Vcy/E9vDQlv5XUMmrYA8n4u1vo5Y61tREqJcKMLR0BRM+Iddj/ZDmuxhhpDkXAQlSU5smmooYu84d7TVV5U4T8iH0NNGFz1tqld6bxzmjI3DnKUe72KkjpOTPfC7fyxUFfj4trcN1BXrdzOqpaDEIiGESFBUJoBF3ivG2CslDfRxbZkXpw8M2RdhninRCE3Jg5sx1bVpjpafDUdKjfqKBXKKuGTpjiV9advGh7BlhAsU5Xj46348lncZj+tHvmfMz390EtvcBiFTWR0bb8VQYrGetIrz8e/ZdZATCRnjT7TNsKTrJ1WPR7lI3jZKmq7/dW+D9TclNBHjcLCm00eI0TTE3gsboSgsZ0y3yU3DnX+/xVZ3XyzrMh75Cu+WbPv27BP0ttXFVA9zcLlvv6kmEIrw8/XnWHYpqu7fRCxGr4RQfH//P/SqsbL5TUV8eSzrMgGbOgyVukpRTYGPzzqZY7Srcd2/P2nV5HhcjHM3wRg3Y/AXnm2U72muqYRdY9oBqGjGte9RIoKTc/FlZwvwuVy8zC6Gu4k6tJTlGyUeQupjsKMBBjvS+VtNDVcMgRBCWpA/78fDPJ/ZvOWluh7GtDORUUQfzowulnhkaAMRmBdRnqnPcDS0bnV5SNPy1fEw9EgMZxVcP2/VASVyCvicGld8EGqKfGz/yBUAcNPMBX6mTox5jbIiLL1/CABwNToDBssuISK19qL4RAqxGLsv/gaLGrVwS3l8TBw0H6X86gtUPo9WXTc3S/vZ4SNXIyjLSU6oHWnbFb0+XoUEVXZNQb5YhHmBp/F090yMfeoHjpR6hZIcCk7GF0dCseBs9WrjMoEIqXkl+NXvBdr+ch16Sy/iYGAiAODHK8/qnFTkiEUY/CIAtw99i2tHfqg1qXjR0h3Ok7dig8cIqUlF4TpfZK0YiA1DneqUBCXkTVwuB597Nc65wOYR1SvAOBwOJnmYYeMwZ9jrq8FGVwW9bXUpqUhIM0crFgkhRIKomFRWUualmm59mts1Wcv72+GPu3GI1DaFY1ZC1XjH1Oc4nFtUyzNJUxSSnIs/7sZhW7TkbdAdTTVgrkVb5j44Dgffe3+C24cXMYanh1zAFndfPNcyRnphGTpuuoVbM73hYa4pmzibqfmPT2JoDLvj+f96foZgA2anez4lXZodVQU+/vu0I8RiMTgcDh4n5mDAX/eRVVS9QvGBsT3cP92EHZe2sEp5AIBxYRYOnt+AbwOOYaXXGBy37VznBhObbsVAVZ6Ho6EpiHxVwJqfeDAI9+Kz8bt/3FtfS6OkAFMirmFm8DnY5KTWeuxTbVMs7D4F59p0rLWb7lRPc3A4HFDOnNTHD33t4B+bhSdp7N/xgW31cDGKXRJIms86mSOrqAzHw1KhyOeivakGisqE2DvOHS5GVC+RkJaOEouEECKBdWEma+yluj606lo7qRnRU1VAwLxueHjRlpFYVCsvRuK9IGAMdQ9uTvY/TgRPJMSI6HuM8RKeHM636YA91L2u0fibOuKEjRdGPL9fNSYnEuLn23sxeuh3AIBSgQg/XIzExS+8ZBVmkxWRmo8FEhph9IsLwppbe1nj/9l5Y7ubD2ucz6UNOs1VZY3fDqaayPhpIPjfnMGbpRezlNQxcthizAw+j/V+u1hbowHALT0OR86sQYSOGba7+eAfh57IUXx7HbeVV6Nrna8tqSgnLMfA2EBMeHoTQ188lBjXm14paWB5l3HY4dIfAl7tl2eD7PWx1teh1mMIqQtTTSWELeiJl9nFMNFQBJfDQW5JObSU5SEWi5GSVwo5HgfF5UJYrrrGev7cblYY6WKEbm2oGRwhrR0lFgkhRAKdTPaqgpfqevBqoUWlLbWUsdPQDpMjrjPGDZ8GV60YIc3Dr34xGBAfDIOiXMb4JUt3FMgrYyjVhfngfh/pgq+OV2xzXNRtEnxjAhh1AEdF30O/uCBcsXQHAFx+VvdVIa1BVlEZ5p4Mxz+BSaw526wkHDq7Frwa21ufaxrii/6zJK7yMlRT+GCxksZ18XMv9P/rPnOQw8E298G4aNUeW679CZ84yU0pnDITsOX6X1jntxsnbLxwysYLly3d65RkrAu9ohwMjA2ET+xjDIgLhFZp4Vufk62ggs3th2Bjh2GsbtZvGuliiKOTPOjzmDQ4DofDaPxTuSWZw+HAWEOxanz7R66YfjS06rGjgSp+HepEv4+EEACUWCSEEIms8iV3hFbgt8yVL0pyXDw0smONeyc9xbTDIdg1tl3jB0Xe2V/34wEA45/6seb+te8BAODzWubvcFMyo4sllOV4mHI4GNHaJvjLdQC+Cj7POGbrte1wnbSFUQuQVJhyKBhnnqSxxjVKCnD65EpWwqaYL48xvt9KTMwMdTKAjgr9N24pelrrYJC9Ps5HvmLNxWgaYfDIZRjx/B423tjBqpNcSVFYjnFRtzEu6jaEHC7uG9khwNAOQfptEKxvhXh1feTJK0vdiswTCWGR9wq22clom52EjqnR8EqJeus25zelK6ljU4eh2NrOt04NZg6Mr9g5QEkcIitfeFnAUE0Bv/vHQltZHmt9Hen3kRBShRKLhBAigU5qImssXl0PCi00KaMsz0eoriUK5BShWl5SNd49MQLTHiVg4zAnaCjJyTBCUhfTj4ZCubyEsfUWAPLllHDG2hPayvQzbCy+b6wMXd55PMZG3mbUbbXNScE3AcexsvNYWYTXpElKKsoJy3Ho7Dq0zWavYpzWfzaCXtdV/LOPDsqEYjzIU4KpphK+pw7oLQqfx8XJKR54mJADgVCMnn/UqCXL4eCEbRect+qIaWFXsOjhUZgWsEubVOKJRfBOjoR3ciRjvJCvgFQVLZTw5SDg8iACB+plxdAqLYBGaRFrxWxdBeq3wVZ3Xxxq2w0lcnVbSbvSxx6KUprYENKYhjoZYqiToazDIIQ0QZRYJIQQCRIDw+FaY+yFphGsdVtw0ws5OfgbO2BAfFDVkHVuKkzz0hGemg9vK20ZBkfqaujzB4zkMAAct/VCsZwCvu3aRkZRtT5vrpLLVFbHom6T8PeVrYxjFj84giN2XRGlY4pzT9IwmLapQyRi17HliEXYeWkz472p0upOo3HIoUfV4/b6FcmaLwe6gs+n09yWiM/jootlxefRJx1Msf8x+0ZgKV8e29wHY4dLf0wNv4Kvgs/BKTOBdZw0KoJSWOfWfQVibXIUVHDEzht7nPrgnrF9rU1ZahriaIC5Xa0aJA5CCCHkQ2mZS28IIaQeCkoFMEpnrorJVFSDm6MFFPgtd9XAKh97+Jk5s8Z7JIajXPh+qzNI48ksLAMAjI9kb4M+6NATALC4j01jhkTesMulL+4ZtWWMKQrLsefiJvBEQgzZ9RAXnqbhd/9YhKfkyShK2Sur+V4jFmO9325MlLC9/5S1J37wnlD1WEOeTmtbm+0fueJ/3aXfMCnjy2F7u0FwmbQVXcatxU7nfsiTV/rgcWUqquEf+x74aMgiGE3fiy/7z8I9E4c6JxUN1RRw+QsvnJrqCRUFSpATQghp2uiTihBCaohMy4ddjZUKLzQN8UVnCxlF1Dg0lORw0pSdWOyZEA6BhFVEpGk5HZEKg8JsDIhjrupKVdbEdXNXfNrBlOorNrKRLoY4HlbxXiLmcDGz7wwEHJgP/hvbKDulPsOCgBNY0+kjDN75EADA53JwcooHBjm0rhWMpQIh2v3KTCAueHQC/3t8inVssJ4VPhk0H2JO9e90Gb1PtTpKcjxsGOqEDUOdkF8iQGJuMdw2+LE/szgc3De2x31je8zsOx3eSU+rmqw4ZSa899bmSjkKKrhvZIcHRm1x2cIdD4zsIOK+/UZkbxtdmGsp4Z/ARPC5HCzt1xafdTKHtrIc1a8jhBDSbFBikRBCalDIyYJ6WTFj7IWGIcw1P/wqB1nicoBHhjYo5CtARVBaNd49MRzPacVik7fo3FNMjrjO6D4MAP+17QYhl4cpnmYyiqz1muZpjpPhqajMcYTot8HPnUbjh/uHGcf9ePcgrli2Q6BBxYpSgUiMLXdiW11isc/2e3iWXt2YZXbgGay9tYd1XIyGAQaNXIYCeWZpijIhJRZbMzVFPhwU1eA3swu+PfcUd2KzJB5XzpPDTXNX3DR3xbc9pkC5vASu6XFwfxUDm5wUGBZkwbgwC/pFueCLhJATCcEXCZEvr4RsBVVkKakiRUUb0VrGiNY0RqS2KZ5pGzOS3HWxe0w7TPKoeF/eOsIZPC6nRe+KIIQQ0nJRYpEQQmqQi33BGovRNMJoc83GD6YRcTkclPPkcNfYHv1ehlSN2+ak4NfLgfBx8JFhdKQ2iTnFSC8oxdTwq6y5Xc59AQA9rHUbO6xWz8fBAFe/7Ize2+9Vja30+hhDXjxEu/TYqjF5kQCHzq5Fh4mbqjrEXopid6ZvScRiMU5FpCI1rxTDnQ2xOyABd+Oyq+ZnB57Bbzf+Zj3vlZIGBo76Eamq7JqvnzurfdCYSfPQ2VIbt77yrnp8IiwFo/Y+knp8kZxi1WrGxjDSxRArfexhr1/9+6osT5dkhBBCmi/aE0UIITX8vu8aa+yFpmGL30bKfb3tys/MhTWXd5n934Q0DQKhCOYrr8I76SmrY26AgQ1C9a1wbXpnGUVHetrowkCtuvtrOU8OkwfOQxmXmUiwyUnFX5e3AuLqVXe5xeWNFmdjm30iHCP3PMLM42Ew/ukKllyo7sorLalYIKeIwSOX4rmWMWtOX1Uew6xbcHMt8t5GuBgh5Osebz+wEVhoKeHwJx0ZSUVCCCGkuWvZV8mEEPKOEnKKoZPC7hxZatHyuzJW5k39JNRZ7P0yFEVlgkaOiNTF0dAUAMC08MusuV0u/QAAvWxotaIsfdPTmvE4VN8Ki7pPYh035tkdLHh0oupxrz/uQtACyxDkFpdj29049oRYjB/uHZKYVCzkK2DIiB/w2NCWMb6kry3W+ToiYI43dJVoGymRzMVIHWt9HRv9+450Maz6erKHGR7M6QYel2onEkIIaVkosUgIIW/YeCsGbWo0bgGAEKWWn5jp/Tr5FGBoiyK+PGNuQFwgdj14KYuwyFtMORwMjZICjI7yZ4wX8eXxr3137BrTTjaBkSozuliyxja1H4rTbTxZ47/c2otBMQEAgODkPPjseADx61WMd+OyYPPzNah8dw5zToajTNA8k45fHg1ljXFFQvx+bTt+vHuQNVfIV4DvyKWs1dSeZppYMdAeX/e0hpG64geLl7QM0ztbMBJ9H9rxyR1xdJIHROuHQLR+CHaNaQf9N1YvE0IIIS0FJRYJIeQNZQIRrHNSGGPFfHm8UmPX82ppTDSU8GVnC5Tx5XDd3JUxZ1qQib93nJVRZKQ2pQIRJkdcYzTcAYCjdt7IU1BBfzs9GUVGKinJ8VC+1hcLe9mgm9Xr9xIOB1MGzkW8GvPnw4UYB8+th9urGADAtegMeGy6DbFYjMmHghGTWYTichG23onFqQj2TZCmLiwlD/+FJDPGFMtLcejsOswIucA6XlpSEQCOTOr4weIkLY+qAh9HPu2IvFU+KP5lUK03XXzs9ZGyrD8Ea31R+PMgFP08CMv7t0VPa506fa+dH7thuLNRA0VOCCGENG1UKZgQQt7A53FgncO8WI/RMMC8nrZSntGybBvpgoFt9XEhuCN8Y5jF7n1iA/EyuwjmWlTHrCnhiEWYGXyeNf63ywB4W2rBWINWcjUFPC4Hvwx2AAAcDk7CuAOByFZSw4hhi3H70CJGYli9rBgXjy1Dt7Fr8FzLGIFJufjzXjyeZxQyXnPM/scY7cauN9jUlJQLoSjHQ6lAiJnHmKsVTfPSceLUanR4xW6alSuvjKEjvsftGuUZ2hmrI2Bed9pSSt4Zh8OBqkLF5c9kDzNM9jBDXFYRojMK0clcEyryfBSWCaCuKFf1HCVuxRb7pf3tsBR2OBmegpF7mJ+Pi3rb4GLkK2gqyWHFQHt4W7X8m5GEEEJIJUosEkLIG5RLi2FYlMMYe65phC+8zGUTUCPjcDjoaKaB/1m1Z835xD7CfyEpWFCjXhyRnXtxWRgQFwTbGqtsg/Ss4G/igLTJHjKKjNRmiKMBzDWV8DKnGMEG1pjsMw9HzqxhHGNQlItLR5eix5ifkaiuh5nHw2QU7ftLyy/FR3sD4B+XDR1lOeSXClH2Rs3ILklPcOz0zzAoymU9N1lFGz6jliFMj1nf9rs+Nljevy0lFUmDsdRWhqV29Q2zN5OKkgxsqw9PM008TMgBAEzuaIbVgxywepDDhwyTEEIIabJoKzQhhLxBK5XduCVG0wi6Kq2nLhKfy0WchiGeapsyxr2TnmLV0YcyiorU9Cy9AN5b/TEriL1Ffau7L8DhQE+19fzeNifK8nzELO5T9fiYnTe+957IOs4q7xX8Dn8HSwl1XyvFZBZi18OXeBCf/UFifV/XotNh9ONl+MdVxJVZVF6dVBSLMffxKVz/73uJScUoLRN4j1tTlVS01FJC4g/9IFo/BKt8HCDHo9NXIjuKcjzcnuWNc9M8cWNGZ+wc4ybrkAghhBCZohWLhBDyhpBbQayxFxqNV+y9KeC/Xgl0waoDHLISq8fFIvR9GYIXGUNhrasiq/AIgLisItivuQG7rEQMin3MmMtUVMO/9t3xWafWscq2ueLWWHG3utNo6BflYk7QGca4Vd4r3Dy8GANG/YQoHWayHwCc191EyesmLmt9HWW2otg/Ngtb/WOhrsjHj/3bYuJB9nspAOgV5WDXxc0YHPtI4ryfqRNGD1mEDGUNABVbyCMW9oKSHHV8Jk2HHI8LHwcDWYdBCCGENAl0y5cQQt5glJ7EGnuh2boSixqKFfeczluxGyMMinmEiLT8xg6J1PD3g3gAwIJHJ1lzO136oUROAZuHO7PmSNNi8mb9Sw4H/+s1Dfsce7GOM8/PwN1/v0GPBPZ26JI3OkOvu/G8qoM0AJQLRXiUkIOc4vKGDfwNafml8Nx0C91+98fh4GT8ff8ljH+6grT8Utaxg18EIHjfXKlJxW1ug9DvoxVVSUUA6G6lTUlFQgghhJAmjBKLhBDyhrbZkhKLrauzI5/HxZK+trhj4oh8OSXG3NAXD/HRjnsyioxUWnfjBQwLsvDJk+uMcQGHi23tBgGo2K5HmrbPO1kwHos5XEwbMEdiclGrtBCXji7D9ODzwBvJwzelF5ah1x93IRKJ8SKjEDY/X4Pnb7ehv+wS/gtOlvic+hq04z4eJbK3M79JrygH/5xdhzMnV8CokL1lu4zLx5f9ZmJW3+kQ8JibaWjbMyGEEEJI00Zna4QQ8ppQJIZD5kvGWCmPD1M3exlFJDsrBtqjjC+Hi1bujHGdknz0SgjDixrdaUnjEojEmBt4BgpCAWP8X/vueKmuj50fU82v5uD7vrbYPNwZllrVCXwhl4epA+Zgp3M/1vHyIgG2XduOfRd+hUpZscTXvBWTBf7Cs7D95ToSckoAVPy+fH0mAkKR5ISkNNlFZfgnMBGXol4xVkICQJlAhHNP0hCUlCf1+TyREJ+HXsST3V9hXNRticdEaxrBe9wa/O06UOL8MOfWtWKcEEIIIaS5ocQiIYS8dvN5Opwymc1bIrVNMdiVXdesNXAzVsdRu66s8dHP/GH7y3UJzyCN4XZMJtRKizA95AJrbr3HCADAIKr91SxwuRzM6mqFF4v7oIulVtW4iMvDF/2/wqpOH0t83sSnfgjdO1vi1mhpknJLILfwLD7aG4CzT9Kw/3GCxO3KlVLySuD+6y18cjAIPn8/wJyT4VVzq64+g+KicxiyS3ozp35xQQjcPw9/XtkGnRLJ5RP2OvZCh0824rGhrcR5OR4HUzzM6vgvJIQQQgghskDNWwgh5LXV+2/hWilzJd4TbbNWW9+rs4UW9rXpiCK+PJQFZVXjw6PvYWaf6Xj4Mhue5lq1vAJpaMXlQvTYdhdLgs5Ao6yIMXfeqgPC9KzA43KgoywnowjJ++BwOLg2vTMOPE5CemEpFp+PhJjDxQ9dJyJGwwDbr26DnEjIeI5V3ivc+G8Jdjn3xeKun+CVSt3+Fo+HpeJ4WEWXaQM1Bdz5yltiM6Z9jxLxMqd6VeTv/nH4yNUI+x4nYvfDBNbxAACxGD0TwrDkwX/o8zJUagzpSuqY0/sLHLbvzhh3NlTDUCdD5JcKIMfjYH53a9rSTwghhBDSxFFikRBCXuM9fcIae6pjBnM+R8LRLZ8cj4siOUWct+qIj6LvVo3rluSjZ0IY9j+2ocRiI9NdehEaJQWYL6FpyzqPkQCAZf3twKe6dM2OAp+Haa87eQcm5uJoaAoAYLdLP0Rqm+Lw2bUwLchkPW9q+FWMenYXGzoOxxZ3X+Qqqtb5e6bll2LPowT4Ohhgz6ME7HjwEl0stDDAXh/fX4hkHd/rD8n1VXkiIQbHBOCbgOPwTmY/7037HXpifs/PkKmszpoL+boHOJzW+X5LCCGEENJc0ZUHIYS85pjFXoUToWsOB301GUQje//r3gYAcNTOmzX38TN/3HzOTnKQD+dEWAqKy0WYG3gGWjVW1t4ycYSfqTO+7mGNJX0kbyslzcfGYU6w169OEN4zcUD7TzbhvFUHicdrlBXhp7sHEff3Z1hx5wAMC7Lq/L1WXY1G5y138Oe9eAhFYtyOzZKYVJTELC8dP9w7hJi/P8fJU6trTSpGapnAZ+QyTBo0X2JScaWPPSUVCSGEEEKaIVqxSAghrzlmshOLT7TNGbXPWhNLbWXM6WaFnWXFrO3Qo575Y3YSJRYby/XoDIza+wiaJQX43+NTrPnlXcbDXEsZ64Y4yiA60tBMNJQQvqAn+AvPVo1lKGvAd8RSTA2/gl9v7oS6hOYtGmVFWPLgPyx6eBSXLdphn1NvnGvTEQXyyg0TmFgMm5wUDH3xAB8984dXyrO3PiVDUQ0/dhmHP10Hsjo+V/Ky0MJiSogTQgghhDRLlFgkhJDXHDOYHaHLuHw81zJq1atoNg1zRnBSLs616YjRz6q3Q2uVFmL48/sITe4HV2P26iPSsH64WLESbNHDo6zaijfMXHDT3BUli3rLIjTygXC5HGwa5oR5pyKqBzkc7HLpj0uW7bHm1h6Mj7wl8bk8sQg+cYHwiQtEOZeHe0Ztcc2iHR4Y2SFCxxxJqjpAHd7XNEsK4JTxEi4ZceicHIleCWESt2NLkqOggs3uQ7Cpw1DkvGV79p6x7er0moQQQgghpOmhxCIhhACIyShgbYWO0jbBzO42Moqo6bg50xu+V/swEosAMDXsCtr92h2i9UNkFFnrIBaLcS8+G+Z5rzAn8AxrfnmXcQAAeT5VN2lp5nRrgy6W2niWXoCJB4OqxpPUdDFx8AJsd/PBCv8D6JEYIfU15ERCdE96gu5J1TVkcxRUkKCmiwwldWQoqaGMKweuWASeWATN0kIYFmbDsDAH+sW57xzzKyUNbOowFNvaDUKeArspTKUFPa0xwtkQ7iYa1KCFEEIIIaQZo8QiIYQAuH33CSaVFDDGnmibYeNQJxlF1LRcsmyPZBVtGBdW127r8zIUFrlpSMsvhYGaggyja7nySsox+VAwAGDlnf1QFJYz5i9auuO2qbMMIiONpaOZJjqaaUJTSQ6+Ox8y5u6YOqHXmJ/RLTEcS+7/h/7xwXV6Tc3SQmjWqNNZX36mTvjTdSCO23ZBGb/2ruS9rHXw44C2UKKEIiGEEEJIs0eJRUIIAZB8L5A19kTXHFxu690G/SYhl4d9Tr2w6OGxqjEuxJgUcR2Hgntjbrc2MoyuZXqZXYQ+2+/hRWYR2qc9x8Snfox5IYeLhd2nAADW+VJtxZaut40uulpp404suzHLbVNnDPzIGU4Z8ZgUcR0Tnt6EUWH2B48pXMccx+y64HDbbojUMXvr8X4zu0CBz0UHU03w6L2VEEIIIaRFoMQiIYQASHkQxBp7UocL5dZiywhnbM7qy0gsAsCU8KuwOfExJRY/gP2PE/EiswgcsQhbrv3Jmt/r1BvhepboY6uLed3pv39LpyjHw5UvvXA7Jgv9/7ov8ZgIXQss7DEF33X7FH1ehsAn9jH6xIfAOfOlxOPfVY6CCm6ZOOGmuQsuWravUzJxsIM+vu5hjR7WOq26Xi0hhBBCSEtFiUVCCAHgJOHCO0LHXAaRNE2DHQwwW9sEt00c0e2NWm0W+ekY9vwBCkt9oaJAHykNpaBUgB8uRgEAJodfQ+eUKMZ8IV8BS7tMAABc+bJzo8dHZEOBz0NfOz2s83XEN2efSD1OyOXhsmV7XLZsDwAwKsiER2o0nDJfwinjJdpmJUGvOBd6xXlQeqPbOwCUc3lIU9ZEqooWklS18UTHHOG6FgjTtcATHTOIuO+2ffmfCe2hrlj71mhCCCGEENJ80VUgIaTVi8ksRLtXMYyxMi4fzzWNZBRR06OvKg8A+Mt1ACOxCABzA0/D47f+eLKwlyxCa3FeZBTC9pfrAACt4nz8cnsv65g1nqOQrKYDLwutxg6PNAFfeVtiT0ACItLy63R8iqoOTtvo4LSNF2tOqbwUXLEIQg4XIg4X5TwexJyGaQR0fHJHSioSQgghhLRw1EKSENLqnQxKgFt6LGMsVM8SAh7de6mkLM9HL2sd/Ne2K1JUmMmsbklPoBIahDXXn8soupZlq3/17+Ka23uhV5zHmI/WNMI6j5EAgE3DqLlQa6Qox8P+8e6s8c4WWpjY3uSdXqtYTgGF8kookVNAGV/uvZOKKvI8eJppokcbHewf7w7BWl8Md6abM4QQQgghLR1dNRNCWr0rJ/wwv0a33SD9NhjiaCCjiJqmK192Bn/hWWxrNwgr/P9hzM0NPI1PDW3xsZsxrHSUZRRhy/Db7YrEYt+4IHwWdpk1P6f3Fyjly+MLLwt4mtOKxdbK1Ugd5ppKeJlTXDW2oKc1PMw0cSAwqU6v0c5YHcHJeW8/EMBoVyMUl4tw9mla1ZiWkhySlvaDInV3JoQQQghptWjFIiGk1TN+HsEae2xgg9ldrWQQTdPF5XKwZ2w7/Ok6EMV8ecbcmKg7sMhNw66AhmkS0dqplBXjryu/s8aP23jhklUHAMBUT2ou1JpxuRxc/KIThjsbwsNME1tGOGOEixFMNZWwysf+rc//yNUIgfN74K/RrrUel7NyIETrh+Dwpx2x42M3DGirB1UFHga01cPThb0oqUgIIYQQ0srRikVCSKvXIe0Fa+yxgTV+a6Mtg2iatgntTTH5kAb+cejJWE0nJxJiyYMj+ELDAL4OBuhEtf/eWXhKHuaeDAcArPfbDcu8V4z5bAUVzO7zZdVjJwO1Ro2PND32+mo4PtmDNf5dH1t0b6ODM0/SYKGlBDNNJSjwuehrq8vqzPxZJwsYqCrg/sts/HYrFkXlwqq5LSOcGTUS9dUUcOFzdp1GQgghhBDSelFikRDS6rV/xawNWMblI0zXEgp8WolTE49bkZRY33E4poRfBU8sqpqbFHENqzt9hOWXoyj58I4yCkvRY9tdZBeXY+Szu/gy9CLrmK97TkOKqg4A4OdBDtSFm9TK20ob3lZ1uzkyxMkQQ5wMsWKAPfY8SkBYSh6meZrD2Uj9A0dJCCGEEEKaO7oqIYS0bgIB3NLjGEPhuuYo41MnU2kme5hhTwDwr303THzqVzUuJxJi8YOj+ELDEKUCISVm60gkEqPLFn9kF5fDPO8V/r68hXXMJQt37HHqg7uzu8JUQxGmmkoyiJS0dFwuB1M9zWUdBiGEEEIIaUaoxiIhpFV7cfsRlARljLFAAxsZRdM8bB3hDABY6TUGwhodZCdFXINdViL+qWPzCAJ03HQLzzMKwRMJceDcBmiVFjLmMxTVMG3AHPRrqwcvCy1KKhJCCCGEEEKaDEosEkJatZVrDrHGHhtYyyCS5kNZno8jn3bAM21THLTvzpiTEwmxzm83PvsvBEVlAhlF2HyEp+RVdeX98e5BdE1+yjpm6sC5SFbTwSofh8YOjxBCCCGEEEJqRYlFQkir1iHtOWvssYEN1BWpUkRtRrkaAwBWdB6Lci5zy/OQmAD0iwvCpH+DZRBZ85GaVwLXDRVbyT+OvI3FD46wjtnsPgRnrT0BAB3NNBszPEIIIYQQQgh5K0osEkJatY5p0YzH5VwewnQtcHNGFxlF1HykLuuP51rG2Oruy5r79eYOnApOQP8/78kgsubhy6OhAID2ac+x+9JvrPlgPSt8230SgIpmLYQQQgghhBDS1FBikRDSav10MhAd0l4wxkJ1LVHKl0c7Ew0ZRdV86KspAABWeI1BhqIaY84pMwELHp3A1egMFJTSlmhJzjxJg2FBFk6eXMWq85krr4yxvt+glC8POR4Ho92MZBQlIYQQQgghhEhHiUVCSKt18+AFyImEjLE7po60DfodjHc3QY6iKpZ6T2DNLb13CG0zEzFqbwBG732Ev+/HQywWyyDKpkMoEuOny8/AXXAGaqVFOHVyJUwLMpnHcLgY5/sNnmmbAgCC5/dAGx0VWYRLCCGEEEIIIbWixCIhpNXqlvSENXbHxBG7x7Rr/GCaKXlexcfI364DEKjfhjGnKCzHjsubcS0yDcfCUvDl0VD87h8ngyibjqWXIrH8chQUy0tx6uRKeEio8bmw+2RctOoAALj4eSc4GKixjiGEEEIIIYSQpoASi4SQVqtrYgRr7I6JI4Y5Gcogmubpm14VHbSFXB6mDZgDAYf5seKdHIlvA45VPd4d8LJR42tK7sVl4edrz8EXCnD47Fr0TAxnHbPbqQ82dhgGAFjU2wb97PQaO0xCCCGEEEIIqTNKLBJCWieBAJ1TohhD0ZpGyNPUAZfLkVFQzY+DgRqmepoDAEL022Ct5yjWMT/5H4R3YsXq0KCkvEaNrykoKBVgx4N4eG/1B18owL4LGzEkJoB13A0zF8zoOxPgVPz+rfKxB4dDv4uEEEIIIYSQposSi4SQVqns0WOolpcwxu6YOGLfOHcZRdR87fjYDQt6VqxcXOE1BhE6Zox5nliEg+fWQ6eoIqn4y/XoVlNrUSQSw22DH744EgoFQRmOnv4FY6Nus457YGiHYcOXoIwvBwCY7GFGSUVCCCGEEEJIk0eJRUJIq3Rl90nW2G1TJ/jY6zd+MC3AN68Ti6V8eYz1XYhivjxj3qwgA8dOr4a8oByLz0fiQGCiLMJsdA9eZiM2qwiqZUU4d/xHDI15yDomTNcCg0YuQ4G8Msa7m+DnQQ7YPspVBtESQgghhBBCyLuhxCIhpFUqueHHGrtj4ghleeoI/T40leSgwK/4SInQtcC8Xp+xjume9ATbr/4OiMXY/TChsUOUibU3nsOwIAvX/vsevRPCWPPPNQ0xYNSPyFZSQ+jXPXBgQnt829sG8nz6eCaEEEIIIYQ0fXQFTQhpdcQCAXokMBtnpCpr4rmmkYwiav7keFxM72yB327HAgD+dhmAHgnhGB95i3Hc5IjrSFLVxQ+ciRAIReDzWl4C7WR4CkbueQQA6JAajYBTq2BSkMU6LlzHHAM++hGpqtroZa0DZyP1xg6VEEIIIYQQQuqFEouEkFbn8qFLGFCSzxjzM3XG6sEOMoqoZdgwxAkPXubgfnw2wOHgs/6zYZ2Tik6pzxjHLXnwHwrlFCD/bcXj0a5G2DzCBQZqCjKIumHNPRmOLXcqkqtjn/ph5+UtUBKUsY57aGiLQSOXIUupIpm4wse+UeMkhBBCCCGEkIbQ8paKEEJILcRiMfz/OMgav2TVHjM6WzZ+QC0Il8vByckeMNNUBACUyClgxLDFSFDVZR27+s5+LL7/HyAW40hoCmYcC23scBvcyD0B2HInFkrlpfjjyjYcPL9BYlLxhpkL+o5eUZVUBIBO5lqNGSohhBBCCCGENAhKLBJCWpXbMVnoHxfEGr9s4Q4NJTkZRNSy6KspIGh+D8zoYgkASFXVxuCRS5GlqMo6dqX/AWy8uQMcsQgnw1NxODgJcVlFjRzx+xOLxdjxIB5fHAmB56ZbOBmeCtdXsQg4MB9fhl6U+Jxdzn3hM3I5CuSVq8Zeft8XPC51gCaEEEIIIYQ0P7QVmhDSqgRGxGNWShRjLFTXAslqOjKKqOXRVpbH7yNd4GmmiSmHgxGuZ4mBo37E1SPfQ72smHHs3MAzsMh9hUk+/8O4A4EAgM3DnTGrq5UsQn8nnX67jUeJuQAAeUE5fgg4hsUP/oOCUMA6VsjhYkGPKfit/VCAU5FEnNvNCr8OdQKHQ0lFQgghhBBCSPNEKxYJIa1K8cXL4ItFjLHLlu3x61AnGUXUck3yMEPBah8AwKPXNQXz5JVYxw1/8QD3Dn4D+8yKTtFzTobjWGgywlPyIBaLGzVmacRiMQpKBRCJKuL5Lzi5KqnYLTEcQfvn4se7ByUmFTMV1TB45FL81mFYVVLx3uyu2DjMmZKKhBBCCCGEkGaNViwSQlqNA48ToXfnBmv8omV7HPUwk0FELZ+yPB8eZpoISMjBXRNH9Px4NS4cXw6DolzGcY5ZCXh84H/4tttkbHUfjNH7HgMAxrmb4MB4d5km4M49ScOQXQ+rHjsbqiE8NR822clYeWc/Pn7mL/W5181c8KnPfMaK2BOTPdDJgmoqEkIIIYQQQpo/WrFICGkVCksF+PRgIPrHBTLH+Qq4Y+IITaqv+MGcnupZ9XWwgTW6jV2DaE0j1nFKgjJsvvEXbh7+Dk4Z8QCAf4OS8MnBIDxJre7inVFYir0BCbjwNO2Dr2gsE4gYSUUAyI6Oxdar2xGx5yupScVyLg/fdf0U/T/6iZFU3DrCBcOcDT9ozIQQQgghhBDSWGjFIiGkVbgbn42Oac9hnp/BGL9p5oIyPiUVPyR9VXmYayrhZU5FfcXnWsbwnLAB/5zfgEGxj1nHd096gqB9c7HTpT9WdxqNg0HAwaAk/DXaFd3b6MB+TfWq0zndrLB+sH2DxisQijDvVAS23Y1jjDtlxOPrRycw4akf5ERCqc9/YGiHL/t9hVB9Zp3IOd2sMNWTVsYSQgghhBBCWg5KLBJCWoVn6QX4SMLqslM2nbB+iKMMImo9OBwOlg9oiy+PhqBcWLHCMFdRFUOHf4/v7/+H7+8fZtW95ItF+DL0IqaEX8VOl37Y0HE4vjjCfu3Nt2Ox+XYsbDT4GGmrgo9slCEWixGUlIvHiTkY724CZXn2R11Ici4uRL6CmaYSRrsaQ57PxY3nGTgRnoqtd2KrjlMsL8Wo6LuYGn4VvRLCav135skrYXHXT7HdbSBEXB4AYJiTAca0M8FYd5N3/c9GCCGEEEIIIU0eJRYJIa3CX/ficPzZXcaYkMPFSRsvxHhZyCiq1mOyhxm6t9HG5ah0zDxekaATcXn4qcs4XLJ0x/4Lv8ImJ5X1PHmRADNCLmBGyAVcM3fFTud+OGXjhWI5BcZxz3MFWPsoF2djivDk0MWq8S+OhOLnQQ6Y190KCnweisoEcNvghxeZRVXHfHIwiPFaSuWl6B8XhGEv7mP48wfQLC2s9d8m4HCxw7U/fuw8Dmkq1bUTb3/lDW8r7br/RyKEEEIIIYSQZoYSi4SQVoEXEgLrXGbiys/UCRnKGlBVoLfCxtBGRwXTu6hgYgdTPErIQe/t9wAAD4zt4fbpFnz38Ai+CTgusbMyAPR5GYo+L0NRzJfHDTMXnLfqiJtmLojUNqlaIfgkq5z1vO/OP8V3559KjUupvBTt016ge1I4uiVGoHtiBJQFZXX6Nx217YIlXT9BtHb1isQ/RrlgsocZFPi8Or0GIYQQQgghhDRXdDVNCGkVPoq+yxo7ZueNpwt7ySCa1k1VgY+eNrq4P6crvDbfAQAUyylgqfdE7HPsjeV3D2Js5G1wIbkxi5KgDINiH1fVZyzkKyDQwBpR2qaIV9fDSzU9ZCipo1BOEUVyChADUBSUQ1FYBu2SApgUZMK4IAvWOSlwzoiHdU6q1O8lSRmXjwOOPbGh43A81TGvGnczVsfWES60SpEQQgghhBDSalBikRDS8onFGFVjG7QIHJyw8cLv+qoyCop4mmuh8OdBGLzjAW6+yARQ0dhl4uAFWN3pY3x//zA+jrrz1qSfiqAU3ZKeoFvSkw8ab4KqLvY698Z2Vx9Gp+cNQx0xs4slrVAkhBBCCCGEtDqUWCSEtHihp6/BNTuJMXbHxAFabcylPIM0FiU5Hg5/0gGDdzzAo8TcqvEnuuYY7/sNFnf7BFPDr2JK+FWYFGQ1enz5cko4b9UBe5z74IpFu6ot15XCFvSEk6Fao8dFCCGEEEIIIU0BJRYJIS1aYakAd5dtgGuN8aN2XbFxmJNMYiJMeqoKeDC3GxJzS1BUJoTD2htVc3EahljqPRE/dh6HfvHBGPriAQbFPIJ5fsYHi+e5piFumLnipI0Xrpu7opQvL/m473qjjY7KB4uDEEIIIYQQQpo6SiwSQlq09RfDMTfyNmOslMfHQYfu2GirJ6OoSE0cDgdmmkoAgJRl/eHz930EJ+dVzQu5PFy06oCLVh0AsRjOGfHomvQEHdOeo0PaczhlvARfLHrn75uiooVwHXNE6FrggZEdbps4MbY5V9JUksO5aZ7wstBCqUAERTna9kwIIYQQQgghlFgkhLRoz/46AM3SQsbYaWtPZCmpg8flyCgqUhsDNQUEzu+Bk+EpGLnnEfsADgfhepYI17OsGuKJhDAuyIJF3iuY5WdAvawIyuWlUCkvAQCU8OVRwpNHgbwiklR1kKyqjSRVHeQo1l5jk8/lIHZJH5hoKFWNUVKREEIIIYQQQipQYpEQ0mKJxWJMCb/KGt/t3A/353SVQUTkXQx3NsK87m2w6VZM1VhHUw180dkCewIS8CghF2XCilWKQi4PCep6SFBvmFWoi3rb4LvetlBTpI9JQgghhBBCCJGGrpgIIS3WvsM38cnLUMZYoqoOLlu0w3lzLRlFRd7FhiGO+MzTHGkFpehsoVW1WvCzThYAAP/YLHT73b9e3+Pql53R01oHHA6QUVgGRT6PEoqEEEIIIYQQUgd05UQIaZHisoqQu3YjuBAzxvc79oKKkoKMoiLvisPhwNFQDY6Q3HnZ20obEQu64/fLQdBR4mGwpRKcXFxwIyYHewMSYKmtjHHuxmhvqln1nJS8Emy6FQMOh4Ove7SBnmr178ObXxNCCCGEEEIIqR0lFgkhLZL70lNICL/CGBNyuNjh0h8zuljKJijyQdjqqmCKU3XiUYHPg6+jAXwdDSQeb6SuiDW+jo0VHiGEEEIIIYS0WFxZB0AIIQ3twONEfBZ2BaqvG3dUOmnTCbGahljtYy+jyAghhBBCCCGEkJaDViwSQlqcdVcicSboDGt8U/thuDGjM7jUDZoQQgghhBBCCKk3WrFICGlRxGIx3P3Owjw/gzEeYGADfxMH9LDWlVFkhBBCCCGEEEJIy0KJRUJIizL938f44d5h1vimDsOg8LqjMCGEEEIIIYQQQuqPtkITQlqM5NwSiPbshXVuKmP8uaYhjth5I35xHxlFRgghhBBCCCGEtDyUWCSEtBizDz/Gr/fZqxV/6jwOvR2MYKSuKIOoCCGEEEIIIYSQlokSi4SQFiG/RACLf3fDIj+dMR6pZYKD9t3hP6CtjCIjhBBCCCGEEEJaJkosEkJahG933cTPd/9ljf/YZRxEXB46WWjJICpCCCGEEEIIIaTlouYthJBmTyAUof32ddAoK2KMB+lZ4YidN4582kFGkRFCCCGEEEIIIS0XrVgkhDR7XSZtwv2wK6zxub2/QDszbYxyNZZBVIQQQgghhBBCSMtGiUVCSLO25kIEdl7aDC7EjPFDbbvhjqkTSud0lVFkhBBCCCGEEEJIy0ZboQkhzdbL7CKU//QTXDLiGeNFfHks7D4Z8d/3hRyP3uYIIYQQQgghhJAPgVYsEkKarVGzt+Peg6Os8eVdxiNRXQ9mmkoyiIoQQgghhBBCCGkdaCkPIaRZmrv3Dg6dXQe+WMQYv2fUFr92GIbFfWxlFBkhhBBCCCGEENI6UGKRENLsCIUidF+1ENa5qYzxEp4cpg6YCxGXh3HuJjKKjhBCCCGEEEIIaR0osUgIaVbEYjEW9f4Mo6LvseYWd/sUUTqm2P6RK5wM1WQQHSGEEEIIIYQQ0npQjUVCSLPxJDUfi6f/guO39rDmTlp3wqb2Q3FoYgd83M648YMjhBBCCCGEEEJaGUosEkKajU++2Ylb5zaACzFjPE5d///t3X18zfXj//Hn7MKu2Mzmaq7HRvj4VEL4UMpFhJKLkFB9IiFURDUlkchFhJKSPq6vIvpQPiSSKVERLRO25WLGsM2uzs7vj/28v+eYbefsnO0Mj/vt1q3365z3+/V6nZmX1557vd8vPdXxBX07tKVah5V3Ue8AAAAAALi9cCs0gJvCgkVfacvaCfLLSrd6PdXDSz27jNVD90YQKgIAAAAAUIxYsQigxJvy4X814MX+Crl6Odd7/TuN1v5KdfVjv7tc0DMAAAAAAG5fBIsASrRGA+fq6zWRqpxyMdd7Y/81QOvrttCp1x50Qc8AAAAAALi9cSs0gBJpz4kLurfvNO1cOe6GoeK0Jo9q2j3d9ecrbVU10McFPQQAAAAA4PbGikUAJYrZbNaojYd1duFn2r71fflkZeQ6Z17jThrbeqASJnZUeT8vF/QSAAAAAAAQLAIoUV7bdEgVprylWVGrb/j+vMadNPyBZ/X3hPaEigAAAAAAuBDBIoASY+7y7/TQS0PU6u8jN3x/crOeeq3lEzrwYhtVKutdzL0DAAAAAACWCBYBuFxapkmD+76hmZtmKSgtOdf7JrdSGn3f05pzVxdFv9JWdYL9XNBLAAAAAABgiWARgMukZ5n0wGtrNHrtLH12bO8Nz7nk5avHH35ZW2vdrStvPyS/0gxbAAAAAACUBPyEDsAlXlx7QJkfLNDm7/+jgIzUG55zIKSW+jz8sjzr11f2y/cVbwcBAAAAAEC+CBYBFKvVB+O1YsJcTdm1ROEX/87zvDl3PqwxrQcqLDRIO4beW4w9BAAAAAAAtiBYBFAsTiSm6Pl/v6tX967S2tNH8zzvjG+ghrQbqo11mmtRr8Ya1LR6MfYSAAAAAADYimARQJHJyMrWvJ3R2jvzE43dt0abE/7K9/yFjdprbOuBSvL2l2naw3JzcyumngIAAAAAAHsRLAJwqrRMkxJSMjR3+XfyX/Kpnvnta41MuZjvNYfKV9ewB4bou2oNVbOcjxLHP0CoCAAAAABACUewCMApUjOy1GPBbvlt26Inft+hycd/krs5O99r4v2DFNminz5r0FbRr7ZT7fJ+xdRbAAAAAADgKIJFAIVmNpv17e9/a1rkQj1+9DutOLZXZTOuFnjdOZ8Azby7m+bc9bBSPb11ekJ7VSxTuhh6DAAAAAAAnIVgEYBdzGazThz5S2+Nnq3Ox39U+xMH9VVmwWGiJMX6B2v6PY/q40bt1eKOUCU+3VSlPdyLuMcAAAAAAKAoECwCyFOWKVtRp5J0If6Mfl25Wf57dqlN7CH9I+GEPpHZ5nr+V/0fWtD4IW0Ia6Ysdw9lT+9ShL0GAAAAAADFgWARgMFsNut4QrJO7D2oJfPX6Z4zf6pl/O+6N+GEutgRJErSee8yWnrHfZrf+CFFB1XV/McaadGdoSrr7VlEvQcAAAAAAMWJYLEIxMTEaMWKFYqKilJcXJyysrJUoUIFhYeHq0uXLmrXrp08PPjSw7WyTNk6cfqips7fpLQDv6jR+ZO662yM7jnzp8IyUvVAIeq84umjL+o00/L6bbStemMNallbR3s0dnrfAQAAAACA65FuOdmcOXO0YMECZWVlWb0eGxur2NhY/e9//1PDhg01bdo01a5d20W9xO0mMe6Morb/pM9X7VT4xb/V4PxJNTx/SuEX47WwgJ2bC3LWN0Bf1WqizbXv0X9r3S35+ihlSmcn9RwAAAAAAJRUBItONGnSJH3++edG2cPDQxEREfLx8VFMTIwuXrwoSTp06JD69++vVatWKTQ01FXdxS3EfOmSTv32p56d9ZWqXjmvGpcTFJZ0WnX+/3/l066ok6ROTmgrs5S79lWqqx3V/6FNte/Rj5XqyuxWSkPuraGL3RrKy6OUE1oBAAAAAAAlHcGik2zZssUqVOzQoYMiIyMVHBwsScrMzNS6des0ZcoUXb16VefPn9fw4cO1du1aubm5uarbKMGyMzJ18lisdkb9oX0//aGLJ+MVknpZFa4mqUryBYVeSVTV5POqduW8ymZcVQ1JW4ugH5ml3PVjxbraWa2hvq3WSN+H1leqp7fahQdr8SMNFRHiz/cwAAAAAAC3IYJFJ8jMzNTUqVON8v33369Zs2apVKn/W7nl6emp3r17KzQ0VIMHD1ZWVpYOHz6sTZs2qUsXdsi92ZmyzboWraWbsuXtUUpukpIvp2jL/r+UeOa8Lp89L7+UZP15LE5JZxIVmJ6swPQUBaanKCA9RQHpqQpKu5ITHqYmKSgtWbVkVi1JA4vxsxwtF6p9lcP1U8W62le5rn4JqaV0Dy91qldB73Wur4aVyxZjbwAAAAAAQElFsOgE33zzjf7++29JObc/R0ZGWoWKllq1aqXevXtr6dKlkqRPP/2UYNFB2ReS5H75stIyTLqYXUoXUjKVbTIpJS1DV9OyVN7XQ77uboq7kKLYiymq7O+lfScu6KtDp3VHUGmlplxV88p+Kp2dJW+TSdsOx8srO0tepv//X3bm/x2bsuRtypBvZrp8M9Pll5WW8//MdPlmpcsvM01+mWnKysyQb1a6/M3Z6uHqL1AeznuX0W8hNXW4fHX9FlJDh8rX0KHgGrpS2lfxke30qJeHyngzRAAAAAAAgBsjNXCCr776yjhu0aKFqlSpku/5lsHi4cOHFRsbq2rVqhVpH29F5owMbWzQRt1i9sndYgOSkDzOr2lxfJ+kMXmc18cpvSsZrnj66M9ylRUTWEkxgZV1LLCyjgVWUXS5KjrjV05Bfl768YXWGlbe19VdBQAAAAAANxmCRQeZzWZFRUUZ5ZYtWxZ4TUREhEJCQpSQkCBJ2r59uwYMGFBkfbxVHX5jmrof2+vqbrhMllsp/e0fpDj/YMWVKa+4MsE5//nnHMcEVlKCT4Dk5qZHG1bS6+3CVa+Cv7w93V3ddQAAAAAAcAsgWHRQfHy8Ll++bJQbNmxo03URERFGsPjbb78VSd9udUmn4l3dBadL9vRWgk9ZnfMNVIJvWSX4BCjBN0DnfAOU4PP//+8boDO+5XTGL1DPt66je6oFqkY5H3WrHqjSHoSGAAAAAACgeBAsOujEiRNW5erVq9t0XdWqVY3jU6dOObNLtw3/pwYqedWn8s9Mc1kfsuWmVM/SSvEsrRRPb6V65Pw/xbN0zuse3kr1LK0rXr5KKu2nJG8/XfLyVZK3X065tL8ulc5577K3n/5RNUh3VQ1Qm7DyurdGOVUL9JG7m5tKlWLXZQAAAAAAULIQLDro2qpDSSpVqpSCg4Ntui4k5P+eBGhZB2z3z7ZNtWX1Vu2cvkjBVy8r281N2W6lrvv/dceyfj+zlIcy3C3+M8qeFsfXXvc0yikeOeGhvL3V+85Qda5fUXdXDVQFL3eV9/NShilbV9KyFOTrKfdSbnJzIxgEAAAAAAC3FoJFB126dMk49vPzy3M36Ov5+/vfsI7ilJWV5ZJ2nen+js0UUtXPKDds2FDu7q69HdicbZKnmxTk4y6Zs2UyubQ7wC3PdN1fsuvLAG59jAMAGAcAMA64BsGig9LT041jb29vm6/z8vIyjjMyMpzaJ1tkZ2frl19+KfZ2i9qhQ4dc3QUALsY4AIBxAADjAADGgeJh2/I65CkzM9M4tnW1oiR5ePxfpnsrrBwEAAAAAADA7YVg0UGWt91mZ2fbfJ1lmOjp6enUPgEAAAAAAABFjVuhHeTj42McW94WXRDL259Lly7t1D7ZolSpUmrUqFGxt+tsJpPJanlzSXjGIoDixTgAgHEAAOMAAMYB+/322292LZK7EYJFBwUEBBjHKSkpMpvNNu0AnJycbBwHBgYWRdcKZHk79q3C3d39lvxcAGzHOACAcQAA4wAAxoHiwa3QDqpYsaJxbDKZdPHiRZuuS0hIMI6Dg4Od3i8AAAAAAACgKBEsOqhGjRpW5djYWJuui4uLM45r1arl1D4BAAAAAAAARY1g0UGhoaFWtzIfOXLEpuuOHj1qHNerV8/Z3QIAAAAAAACKFMGiEzRr1sw43rNnT4HnHz16VOfPnzfKzZs3L5J+AQAAAAAAAEWFYNEJ2rdvbxzv2LFDZ8+ezff85cuXG8dhYWGKiIgosr4BAAAAAAAARYFg0Qnat2+vChUqSJIyMjL0yiuvKCsr64bn7tq1S6tXrzbK/fv3L5Y+AgAAAAAAAM5EsOgEXl5eGj16tFHes2eP/v3vf1tt5JKVlaVVq1Zp+PDhMplMkqTw8HD17Nmz2PsLAAAAAAAAOMrD1R24VTz66KM6cOCAVq5cKSknXGzfvr0iIiLk7++vmJgYXbhwwTg/MDBQs2fPlocHfwQAAAAAAAC4+ZBqOdGbb76pcuXKadGiRcrMzFR2dvYNd4kOCwvT7NmzVbt2bRf0EgAAAAAAAHAcwaITubm5adSoUeratavWrFmj3bt368yZM7p69aoCAgJUv359dezYUV27dpWXl5eruwsAAAAAAAAUGsFiEQgLC9PYsWM1duxYV3cFAAAAAAAAKBJs3gIAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbm5ms9ns6k6geOzfv9+qXKrUrZErZ2dnG8e3ymcCYB/GAQCMAwAYBwAwDtjH8uslSXfffbfddXg4qzO4+Vz/DXQruBU/EwD7MA4AYBwAwDgAgHGgeBDfAgAAAAAAALAbKxZvYywLBgAAAAAAuD05Y1Unz1gEAAAAAAAAYDeWrAEAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALt5uLoDuD3FxMRoxYoVioqKUlxcnLKyslShQgWFh4erS5cuateunTw8nP/tefr0aa1YsUK7d+/WyZMnlZaWppCQENWuXVudOnVSp06d5OPj4/R2AeRW3OPAb7/9ph49eth93dKlS9WkSROn9QNA/mbPnq158+YpNDRU27dvL5I2mA8AJVtRjgPMB4CSJyoqSps3b9aBAwd07tw5JScny9/fX5UrV1aTJk3UvXt33XHHHU5v98KFC1q9erW+/fZbHT9+XCkpKQoKClL16tXVoUMHde3aVQEBAU5v91bjZjabza7uBG4vc+bM0YIFC5SVlZXnOQ0bNtS0adNUu3Ztp7W7YsUKvfPOO7p69Wqe59SsWVPvvvuuGjdu7LR2AeTminFg1apVev311+2+jh8kgOLz66+/qm/fvsrMzCyyYJH5AFCyFfU4wHwAKDni4uI0duxY/fTTTwWe27lzZ02cOFH+/v5OaXvbtm169dVXlZSUlOc5ISEhevvtt9WmTRuntHmrYsUiitWkSZP0+eefG2UPDw9FRETIx8dHMTExunjxoiTp0KFD6t+/v1atWqXQ0FCH2128eLGmTJlilN3c3FS3bl0FBgbqxIkTOnfunCTpxIkTGjBggJYuXaoGDRo43C6A3Fw1Dhw5csQ4rlGjhqpVq2bTdfyWEigesbGxGjp0qDIzM4usDeYDQMlWHOMA8wGgZDhx4oT69OmjCxcuGK95enoqPDxcZcqUUWJioo4dO6Zra+E2b96smJgYLV261OFwccuWLRo9erRMJpPxWq1atRQSEqL4+HjFx8dLkhISEvTcc89p3rx5uu+++xxq81bGikUUmy1btuiFF14wyh06dFBkZKSCg4MlSZmZmVq3bp2mTJlirCJo0KCB1q5dKzc3t0K3e/DgQfXt29cYNO655x5NnjxZ1atXlySZzWZ98803ioyMNAKNSpUqacuWLdwGBTiZq8YBSXr88cd14MABSdI777yjRx991KH6ADhPdHS0nnnmGZ09e9Z4zdkrlZgPACVbcYwDEvMBoCQwmUx65JFHFB0dLUlyd3fXc889p0GDBlmFhmfPntWMGTP0xRdfGK917NhRs2fPLnTbsbGx6tq1q1JTUyVJ4eHhmjp1qtWt1nv37tX48eONgNHPz0///e9/VbFixUK3eytj8xYUi8zMTE2dOtUo33///Zo1a5YRJkg5v53o3bu35s6dazxX7fDhw9q0aZNDbU+ZMsX4IaJBgwb6+OOPjR8ipJzVCu3bt9fixYvl5+cnSTpz5ow+++wzh9oFYM2V44DZbNYff/xhlOvVq+dQfQCcZ8OGDerVq5dVmFAUmA8AJVdxjQPMB4CSYd26dUaoKOWE/MOHD8+1ErFixYqaOnWqBg0aZLy2ZcsWHTx4sNBtz5w50wgVQ0ND9dlnn+V6fmPz5s21bNkyVahQQZKUkpKiuXPnFrrNWx3BIorFN998o7///ltSzm2PkZGRKlXqxt9+rVq1Uu/evY3yp59+Wuh2f/nlF6tB5/XXX5e3t/cNz61Xr56ef/55o/zZZ59ZLY0G4BhXjQOSdPLkSWMC4enpqbCwMIfqA+C4s2fPauzYsRozZky+zzt0BuYDQMlUnOOAxHwAKCk2bNhgHLdq1Updu3bN9/zRo0cbIZ+Uc1t0YZw9e1Zbt261qjcoKOiG51aqVEmvvvqqUV63bl2+z2O8nREsolh89dVXxnGLFi1UpUqVfM+3DBQOHz6s2NhYh9sNCwvTnXfeme/5PXr0MFZJXbhwQfv27StUuwByc9U4IFk/T6lWrVry8vIqdF0AHDd//nx17NjR6tam2rVra8iQIUXSHvMBoOQp7nFAYj4AlAQZGRn6+eefjfLDDz9c4DVeXl5q1aqVUf7tt98K1fbWrVuNzSPLlCmjDh065Ht+u3btjOAxKytL27ZtK1S7tzqCRRQ5s9msqKgoo9yyZcsCr4mIiFBISIhRLuyzVX744Qe72g0ICFDDhg2N8o4dOwrVLgBrrhwHJOno0aPGMbc9Aa63aNEiY9WQJPXs2VOrV69WjRo1iqQ95gNAyVPc44DEfAAoCeLj41W6dGmjbOvK4cDAQOP42rOQ7WU5H2jatKk8PT3zPd/d3V333nuvUWY+cGMEiyhy8fHxunz5slG2nKjnJyIiwjguzG8kMjMzdfz4caNs666OjrYLIDdXjQPXWK5Q4AcJoORo2LChPv/8c02aNMnhHR7zwnwAKNmKYxy4hvkA4Hq1atXSgQMH9NNPP2nz5s0KDw+36bprG6lIhd+l3fIZq7bOByzHCuYDN+bh6g7g1nfixAmrsuWD0vNTtWpV4/jUqVN2txsXF6fMzEyjbOtvPx1tF0BurhoHrrH8QSIiIkJHjx7V2rVrFRUVpbi4OGVlZSk4OFiNGzfWQw89pHbt2jm8CzWAvDVt2lTdu3fXAw88UOR/15gPACVTcY4D1zAfAEqOMmXKqEyZMjadm5ycrO+//94oF+b5qBkZGcbz3qXCzQfOnj2rtLS0PJ/TfLsiWESRS0hIMI5LlSpltQNsfixvgbSsozDtXl+fre0mJiYqOzs7zw0mANjGVeOAlPN8tHPnzhnljz/+2Oo2iGvi4+MVHx+vr776Sg0bNtTMmTNtDkAB2GfevHnF1hbzAaBkKs5xQGI+ANzMFi1apOTkZKN8//33211HQkKCzGazUbZ1PnD9zy0JCQmqVq2a3e3fypgdochdunTJOPbz87N5Um55K4RlHYVpV5LKli1r03WWvzUxm81Wt28CKBxXjQOS9eoE6f+ereLj46N69eqpadOmqlmzptU5hw4dUs+ePfX7778Xqk0AJQfzAQAS8wHgZvXrr79q4cKFRrlmzZpq27at3fU4Yz4gifnADbBiEUUuPT3dOLZnybDlLm0ZGRkOtWtP29c/wPX6egDYz1XjgJT7Bwl/f3+NHj1ajzzyiPz8/IzX4+Li9P7772vDhg2SpKSkJA0dOlTr169XuXLlCtU2ANdjPgBAYj4A3Izi4uI0dOhQq0eavPLKK/LwsD/Kuv7fccsNZPJz/e7xzAdyY8UiipzlIGDPLUSWg8W1LeHtcf01trZ9/SBlMpnsbhuANVeNA5L18x3LlSunNWvWqF+/flY/REg5z0959913NXz4cOO106dPa8GCBYVqF0DJwHwAgMR8ALjZnD59WgMGDLB6pMnAgQMLdRu0lHs+4O7ubtN115/HfCA3gkUUOcu/iNnZ2TZfZ/kXv6Bt4G/k+h8cbG37+gGnMG0DsOaqcUCSJk2apH379mnt2rVavny5atWqle/5zz//vO68806jvHLlykKvlgTgeswHAEjMB4CbSUxMjPr06aO4uDjjtVatWumll14qdJ3XzwdsDQivP4/5QG4EiyhyPj4+xrE9y4Yt/+G2dZlyXu3a0/b1E4bCtA3AmqvGgWsCAgLUsGHDAn+IkCQ3Nzf179/fKF+9elX79+8vdNsAXIv5AIBrmA8AJd/PP/+sfv366fTp08ZrzZs319y5cx0K9a6fD9j6i4LC3kJ9OyFYRJELCAgwjlNSUqx2YsqP5a5PgYGBDrV7fX22tuvh4ZHrYa0A7OeqcaCw7rrrLquy5e1TAG4uzAcAFBbzAaB4ffnllxowYIAuXrxovNamTRt9+OGHuYJBezljPiAV788kNwuCRRS5ihUrGscmk8lqkMiP5bMUrt/i3d52Jen8+fN2txsUFCQ3Nze72wZgzVXjQGGVL1/eqlzYHakBuB7zAQCFxXwAKD5z5szRSy+9ZLWSsGvXrpo3b55dmz/mJSQkxOp2aFvnA5bnubm55RoXQLCIYlCjRg2rcmxsrE3XWT5PwZbbFa5XpUoVq6XShWm3Zs2adrcLIDdXjQOFdf2tEdc/2B3AzYP5AIDCYj4AFL3MzEyNGTNGc+fOtXp98ODBevfddwu1A/SNeHl5qXLlykb51KlTNl1nOW+oUqVKrl2iQbCIYhAaGmq1XPjIkSM2XXf06FHjuF69ena36+npqfDwcLvbtTyvfv36drcLIDdXjQPx8fGaNm2axo0bp2effdaqvvxcHzxYTkIA3FyYDwBgPgCUTBkZGRo2bJg2bNhgvObh4aFJkyZp9OjRTr9boGHDhsaxreMA84GCESyiWDRr1sw43rNnT4HnHz161GrJcfPmzYul3aSkJP3+++8OtwsgN1eMA2azWR9//LHWrVunnTt3avfu3TZdt2vXLuPYzc0t1zOWANxcmA8AtzfmA0DJk5WVpREjRujbb781XvPz89OHH36onj17FkmbTZs2NY6joqKUnZ2d7/kmk0lRUVFGmfnAjREsoli0b9/eON6xY4fOnj2b7/nLly83jsPCwhQREeFwu4cOHdKhQ4fyPX/VqlXKysqSlPNw1xYtWhSqXQC5uWIcqFq1qkJDQ43yunXrZDKZ8r0mOTlZ//nPf4xyq1atFBQUZHfbAEoO5gPA7Y35AFDyTJs2TTt27DDKQUFB+vzzz9WqVasia/PBBx+Uu7u7pJxnJ37zzTf5nr9161ZduHBBUs5KSsv5BP4PwSKKRfv27VWhQgVJOcudX3nlFWPCfr1du3Zp9erVRrl///6FbvfOO+9UgwYNjPK4cePy3P3pyJEjmj9/vlHu1auXUx4SCyCHq8aBHj16GMcxMTFasGBBnudmZmbqlVdeMUJPNzc3DRkypNBtAygZmA8AYD4AlBw7d+7UZ599ZpQDAgK0ZMkSq3+ri0KlSpX0wAMPGOW33347z8UOp0+f1uTJk41y+/btc20IhxwEiygWXl5eGj16tFHes2eP/v3vf1s9tyQrK0urVq3S8OHDjd8ghoeH57kMum3btoqIiFBERITatm2bZ9tjx441ns0QHR2t/v37Wz1PwWw26+uvv9bAgQOVmpoqKWfHqMGDBxf+AwPIxVXjwKBBg6xWKbz//vuaNGlSrp2pjxw5okGDBln95vKJJ55QkyZN7P+wAIoN8wEAzAeAm4fJZNLbb78ts9ksKSe4f++991S3bl2H6u3fv78xDuR3p9OoUaNUunRpSdLZs2fVt29f7du3z+qcqKgo9evXTwkJCZIkX19fq59jYM052+sANnj00Ud14MABrVy5UlJOqNC+fXtFRETI399fMTExxjJjSQoMDNTs2bMd3gWqWbNmGjVqlGbMmCFJ+v3339WtWzfVqVNHQUFBOnnypNVvKby9vTVr1iyVKVPGoXYB5OaKccDHx0cffvihnnjiCSUlJUmSPv/8c61YsULh4eHy9/fX6dOnc+0M9/DDD2vcuHGFbhdAycJ8ALi9MR8ASoYtW7bo5MmTRtnHx0eLFy/W4sWLba4jODhYU6dOLVT7tWvX1qRJkzR27FhlZ2crLi5O/fv3V/Xq1VWpUiWdPn3aauFDqVKl9Pbbb6tatWqFau92QLCIYvXmm2+qXLlyWrRokTIzM5WdnX3D3RnDwsI0e/Zs1a5d2yntDh48WH5+fnrvvfeMVQjHjh3LdV6lSpU0ffp0fiMJFCFXjAN169bVmjVr9PLLL+vAgQOScm5zOnz4cK5zvb29NWTIED377LPGM1gA3BqYDwC3N+YDgOtt2bLFqpyammrzhkrXWK4+LoyuXbvKy8tLEyZMMH7RcOrUqVy/WAgICNBbb72lDh06ONTerY5gEcXKzc1No0aNUteuXbVmzRrt3r1bZ86c0dWrVxUQEKD69eurY8eOxl90Z3riiSf04IMPatWqVdq5c6fi4uKUnJwsf39/hYeH68EHH9Rjjz0mf39/p7YLwJqrxoFq1appxYoV+v7777Vp0yYdPHhQ586dU3p6uoKCglStWjW1adNGXbp0UeXKlZ3WLoCShfkAcHtjPgC41vHjx13dBUlSx44d1bx5c61evVrbt2/XyZMndenSJfn6+iosLExt2rRR79692bTJBm7maze2AwAAAAAAAICN2LwFAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYzcPVHQAAAChKbdu2VXx8vMP1LFmyRM2aNXNCj4Dik56erh49eig6OloDBgzQ+PHjjfeioqL05JNPGuU//vjDobYiIiKM42HDhmn48OF21zFnzhzNnTvXaX0qyIgRI7R161Y1b95cn376qUqVYt0FAAD24F9OAAAA4BY1ZcoURUdHKzg4WCNGjHB1d0qcsWPHytvbW3v37tXHH3/s6u4AAHDTYcUiAAC4bVSoUEHh4eGFujYgIMDJvQGK1nfffafly5dLkkaOHCl/f38X96jkCQ0N1aBBgzR//nzNnj1brVu3Vr169VzdLQAAbhoEiwAA4LbRsmVLvfPOO67uBlDk0tLSNHHiRElSeHi4HnvsMRf3qOR69tlntXr1ap0/f14TJkzQ8uXLuSUaAAAb8S8mAAAAcIv58MMPFRsbK0kaNWoUQVk+fH19NWTIEEnSwYMHtWbNGhf3CACAmwczDAAAAOAWkpiYqMWLF0uS6tSpo7Zt27q2QzeBXr16KTAwUJI0d+5cpaenu7ZDAADcJAgWAQAAgFvIRx99pNTUVEk5gRkKVrp0aT3yyCOSpLNnzxrPpgQAAPnjGYsAAACF8Morr2j9+vWSpAULFqhNmzZasmSJVq5cqbi4OJUtW1a1a9dWx44d1a9fv1zXp6Sk6IsvvtDOnTv1559/KjExUV5eXgoJCVGTJk300EMPqUWLFnb16YcfftDatWv1888/69y5c/Lz81P16tX10EMPqVevXvL399d//vMfvfXWW5KkYcOGafjw4VZ1rFu3TuPGjZOUs7HF9u3bC2y3bdu2io+Pl5SzC3H37t3zPT8+Pl7r16/X7t27FRcXp6SkJPn7+6tKlSpq0aKFHn30UYWFheVbx5w5czR37lxJ0uuvv64nnnhCGRkZ2rBhg7Zs2aKYmBidP39eZcqUUa1atdS2bVv17t1bZcqUKfDzXLNv3z5t2rRJP//8s+Lj45WZmamAgACFh4erTZs26t69u8qWLWt1zcSJE7V06VJJORv+7N69W15eXgW29dlnn2ny5MmSpJo1a2rr1q0299NScnKyVq9eLck6LHOEyWTSqFGjrPo0YMAAjR8/3uG67WX5514Y+X1/9urVy1jpuWTJEj355JPcQg4AQAEIFgEAAJzgtdde09q1a43y+fPndf78eUVEROQ6d+PGjXrnnXeUmJho9Xp6erquXLmi48ePa9WqVWrevLmmTp2qSpUq5dt2YmKixo4dq127dlm9npSUpKSkJP36669atmyZ3n//fQc+oeNMJpNmzZqlxYsXKyMjw+q9ixcv6uLFizp8+LA++eQT9erVS+PHj7cplJOko0eP6sUXX9SxY8esXr9w4YIuXLig/fv3a9GiRZo+fbpatmyZb12nTp3Sq6++qn379uV679qf6549e7RgwQJNmjRJDz74oPH+o48+agSLly5d0nfffWf1fl42bNhgVUdhbdiwQSkpKZKkZs2aObybudls1rhx46xCxYEDBxrh860kLCxMderU0bFjxxQfH68dO3bogQcecHW3AAAo0QgWAQAAHLR+/fo8V5h17drVqjx37lzNmTPH6rUqVaqoatWqSk9PV0xMjJKTkyVJe/fuVc+ePbV48eI8V/AlJiaqb9++OnHihPGap6enIiIi5O3trWPHjikpKUmxsbF6+umnnbKCrTAyMjI0dOhQq/DTzc1NYWFhCg4O1uXLlxUdHa2srCyZTCYtX75c0dHR+vjjj+Xr65tv3SdOnNDcuXN18eJFSVL58uVVu3ZtpaWlKSYmxrgt+MKFC3ruuee0fv36PL+eR48e1YABA5SUlGS85unpqfDwcPn6+urEiRNKSEiQlBOGjhgxQjNmzFDHjh0lSY0aNVJ4eLiio6Ml5YTIBQWLMTExOnz4sCSpVKlSDv0Zbdy40Ti+7777Cl3PNRMmTLAKPQcNGqRXXnnF4XoLq3r16mrVqpXN5//www8ymUySclZw3nHHHfme37p1ayOc3rhxI8EiAAAFIFgEAABw0LVQsVOnTho2bJgqV66sY8eOadu2bfrHP/5hnLd582arUPHuu+/WuHHj1KhRI+O1jIwMbdq0SVOnTlVSUpLOnTunYcOGac2aNfLz88vV9rhx46xCxZ49e+rFF19UuXLlJEmZmZlav369pkyZogsXLhi3eha3SZMmWYWKPXv21LBhw6xWY166dEmLFi3SwoULlZ2drf379ysyMlLTp0/Pt+7PP/9cUk7o9Nprr6l169Zyc3OTlHNr8Jw5c4zPnZ6erjlz5mjWrFm56klNTdXzzz9vhIru7u4aMmSIBg0aZHUL9bZt2/Tmm2/q3LlzMplMevXVV3X33XcrJCREUs6Kw6lTp0qSduzYoStXruR7C/YXX3xhHLdo0aLAFap5OXfunH755ReruhwxZcoUrVy50ii7OlSUpG7duqlbt242nTtz5kzt3r3bKE+cOFH16tXL95qWLVvqk08+kSTt2rVLGRkZNq+aBQDgdkSwCAAA4ARt27bVjBkzjEDrH//4h1WomJycrDfeeMMoP/DAA3r//ffl4WE9HfPy8lL37t3VuHFj9enTR5cuXdLx48e1cOFCjRw50urcPXv2aOfOnUb5qaee0tixY63O8fT0VK9evVSnTh0NGDAg1y3IxeGnn36yCqjGjBmjp59+Otd5AQEBGj16tCIiIjR69GhJ0pdffqnHHntM9957b75tVK1aVatWrTIC1Wv8/f01btw4JSQkaPPmzZKknTt33jAwWrx4seLi4ozy9OnT1alTp1xtPfjgg6pcubL69u2rtLQ0JScn6z//+Y9GjRolKWeV6nvvvaesrCxlZGRoy5Yt6tmz5w37bTab9eWXXxrlxx57LN/PmZ+oqCiZzWZJko+Pj2rUqFHouq7dsn7Njb638rNx40YdPHjQ7nZPnTpl9zU3smHDBi1YsMAoP/XUUzatBK1fv75xnJKSol9//VVNmjRxSp8AALgVESwCAIDbxvr1640NV2y1ZMkSNWvWrMDznnvuOSNUvJE1a9bo8uXLkqQyZcpo8uTJuUJFS2FhYXrhhRc0ceJESdLy5cs1ZMgQeXt7G+dY7lxbrVo1I9i6kbvuukvDhg3TjBkzCvwszrZo0SLj+O67775hqGipc+fO+vrrr7VlyxZJ0ieffFJgsDhixIhcoaKlPn36GMFiamqqYmNjrW6Hzs7Otgo/O3fufMNQ8ZoGDRqoS5cuxkYpX3/9tfH1Dw4O1r/+9S/t2LFDUk44mlewGBUVpdOnT0vKCVZteR5jXixXK9apU6fQG4989NFHmj9/vlG2N1SUcgJCZ4WE9tq/f79ee+01o9y6dWu9/PLLNl1bvnx5lS9f3nj+6S+//EKwCABAPtjmDAAAwEF+fn5q2LBhvudYPoPx/vvvV2BgYIH1dunSRe7u7pJyNmKxXAGWmZlpdZtn9+7dC7xls2/fvvLx8SmwXWdKS0uzugXa1o1JLFeX/fDDD0pPT8/z3FKlShX4LLw6depYla9cuWJV/v3333XmzBmj3KdPnwL7+OSTT+rll1/WvHnz9MEHH1i9Z/k5f/zxR6u6LVk+v7Bz584O3XYbExNjHNetW7dQdSxZskTvvfeeUS5MqOhKcXFxGjZsmLEyt3bt2poxY4ZdIWt4eLhxfP1mQAAAwBorFgEAwG2jQoUKVqGBLWzZVTc8PDzf4CIjI0OHDh0yynltHHK9smXLqnr16vrrr78kST///LOaN28uSVabkkiyaVVVmTJldNddd+n777+3qX1n+PXXX5WZmWmUbf3slkFtZmamfvvttzw/Y9WqVeXv759vfWXLlrUqW/bpWj+v8fT0VOPGjQvsY3h4eJ7fT9fC46SkJGVnZ2vTpk165plnrM5JS0uzCpwd2Q1aktVt3OXLl7f7+tWrV2vy5MlGOTw8vNCh4rBhwzR8+HC7r5szZ47mzp1bqDaTk5M1ZMgQXbhwQVLOn/n8+fPzfb7ljVh+7Sy/pgAAIDeCRQAAcNto2bKl3nnnHafXGxQUlO/7Z86csXq24cyZMzVz5ky72zl79qxxHB8fb/VezZo1baojIiKiWIPFkydPWpVtWQl4I+fOncvzPVtWf15b+XlNdna2VTk2NtY4Dg0NdXjDDi8vL3Xp0sXYWGbjxo25gsVt27YpJSVFUs4KQ8tnchbGtV2xJdkdpklSZGSk8YxGSYqOjtbWrVvVoUMHh/pVHEwmk0aOHKk///xTUs6f98yZM23+e2HJMqS23B0cAADkxq3QAAAADipotdylS5ec0o5lPcnJyVbv2Rok5fccwqJw7bmSjsov4LF87mRhWX49CxPK3YjlCsQ//vhD0dHRVu9b3gbdvXt3h9u7evWqcVzQ9+SNXAtbLW+Xf+utt5z2/VuUpkyZYnXL/ZgxY9SqVatC1WX552+5KhgAAOTGikUAAAAHFfT8tqysLKtyo0aNbLrF+nqWzwksXbq01XuWK83y4+hKPHtd/9kLG/ZUqFDBGd3JU34b7xRWgwYNFBERoT/++ENSziYuL774oiTp/PnzxspRDw8Pde3a1eH2LD9DYTduefzxx9W1a1f169dPZrNZCQkJmjJlSpGs9HWWZcuWGStDpZyQduDAgYWuz3J1a2G/jgAA3C4IFgEAAIrY9c/3Gzp0qNq2betQndcHk1euXJGvr2+B112/0jE/toaV+W2scv1nnz17dqFW0xU1y35ev7GLI7p3764pU6ZIkjZv3mwEi1999ZVMJpOknF2Lg4ODHW7Lz8/PWNmZlpZm9/X9+vXT66+/Ljc3N/Xq1cvYJXv9+vXq3Lmz/vWvfzncR2f7/vvv9fbbbxvlf/7zn3rzzTcdqtNylaKfn59DdQEAcKvjV3AAAABFrGLFilaryU6fPu1wnTVq1LAq27p77alTp/J937Kf129wciPZ2dn53ipbsWJFq7IzPntRsOxnfHy8TZ9dklauXKnvvvtOf/311w2v6dKlizw8PIx6jxw5Iinn+YrXPPbYY4503WD5rMnCPBswMjLS+PN/6aWXFBISYrw3YcIE43mQJUVMTIxGjhxprIqtVKmS5s6d6/CqXMvv58KsLAYA4HZCsAgAAFDE/P39VbduXaO8d+9em67LzMzU+PHjNXPmTK1cudIqPKxSpYqqVKlilH/44YcC6zObzdq/f3++51iGMrYESXkFatf885//tAorbf3sx44d0/jx4/XBBx/oiy++MHb6LSqWu0Bf24W6ILGxsYqMjNS///1vdezYUTExMbnOKV++vFq3bm2Ut23bpsuXLxt/DkFBQWrTpo0TPoFUvXp14/jvv/92qK6yZctq/PjxRjk+Pl7vvfeeQ3U608WLFzVkyBDjGZ7e3t764IMPrMLQwrL82hVm8xcAAG4nBIsAAADF4L777jOOt2/fbrULcV42bNigtWvXasGCBYqMjMwVXHXs2NE4XrduXYG3Oe/atUtxcXH5nmO56i01NbXAgGrz5s35vh8UFGQV2i1dutSm1YAfffSR1q5dq/fff1/jx4/PtYuzs91xxx1WtyOvXr26wGssP3tQUJDCw8NveJ7lisT//e9/2rlzp7HKrmvXrvL09Cxst62EhYUZx9fvxl0YnTp1sgo9ly1bpp9++snheh2VmZmp4cOHW62+nTx5sho2bOiU+i2/drVr13ZKnQAA3KoIFgEAAIrBE088YQRIWVlZGjlyZL5BYFxcnKZPn26UK1eurPvvv9/qnCeffNKoMzExUZGRkXkGcImJiXrjjTcK7GdERITVCkPLTTGud/ToUS1atKjAOp966inj+K+//tJbb72V7/Mbt2/fro0bNxrl9u3bO+UZhPnx8PBQnz59jPL69ev13Xff5Xl+fHy81Wfv0aNHnht9tGnTRkFBQZKkI0eOaOnSpcZ7ljtHO+quu+4yjv/44w/jGY6OmDBhgvHsTrPZrFdffTXfZ2oWh8jISP34449G+fnnn1fnzp2dUve5c+d07tw5o9ykSROn1AsAwK2KYBEAAKAYVKxYUSNHjjTKhw4dUq9evbR7926rkM1kMmnjxo3q27evLl68aLw+ZsyYXM+Oq1y5sl566SWjvHnzZg0ZMiTXasioqCj16dNH8fHxBfYzODjYKqD69NNP9dFHHykjI8N4LS0tTcuXL1efPn2UlpZmPEMwL+3bt7dasbly5UoNHjw413Mhk5OTNX/+fI0YMcL4mvj6+mr06NEF9tsZBg4caNz6ajabNWzYMC1evDjXRih79uxR//79jdtwQ0JC9Mwzz+RZr6enpx5++GGjfODAAUk5u0bXq1fPaf1v2rSpEQqnpaXp6NGjDtcZGhqq4cOHG+UTJ05ozpw5DtdbWAsXLtS6deuMcrdu3TRixAin1f/rr78ax4GBgapfv77T6gYA4FbErtAAAADF5JlnntFff/2lNWvWSMrZfOLpp59W+fLlVatWLWVkZOjkyZO5NkN59tln1alTpxvWOXDgQB0/ftzYwXfnzp367rvvVLduXZUrV05xcXFGoOjl5aWAgAAlJCTk28/Ro0frySeflMlkktls1nvvvaeFCxcqLCxMmZmZ+uuvv4znL95xxx365z//qWXLluVZn5ubm959910NGjRIhw8fNvq5c+dOVa9eXZUqVVJSUpJOnTplFeJ5enpq+vTpVs8OLEr+/v56//33NWjQICUmJio9PV1TpkzR7NmzFR4ertKlS+vkyZM6c+aMcY2Pj49mzZpV4CYfjz32mJYsWWL1Wvfu3Z3a/8DAQDVp0sRYzbd79241aNDA4XoHDBigL7/8Ur///rsk6ZNPPtFDDz3klLrt8ccff2jGjBlG2cPDQ+7u7ho9erTS0tKUlZVl0yrN/FbZ7tq1yzhu27ZtnqtQAQBADoJFAACAYvT2228rIiJCc+bMMVa8JSYmKjExMde5/v7+evnll/X444/nW+fEiRNVtWpVffDBB0pLS5PZbFZ0dLTVOYGBgZo6daoWLVpUYLDYpEkTzZgxQ6+//rrRx8uXLxsr7a657777NGXKFH3yyScFfu6AgAAtW7ZMkydP1po1a4wA6NSpUzfcqbpGjRqaPHlysd+KGhERoVWrVmnMmDHGBiupqak6ePBgrnNr1qyp6dOnq1GjRgXWW69ePdWvX9/YFdrLy8tqFaOzdOvWzQgWv/32Ww0ePNjhOt3d3TVx4kT16tVL2dnZMplMGj9+vNauXVvgalVnSkpKsrrVPysry2r1ojNYBovOvE0dAIBbFcEiAABAMXvyySf1yCOP6IsvvtD333+v6OhoXbhwQdnZ2QoICFBERIT+9a9/qVu3bipXrpxNdT777LPq3LmzVq1apW+//Vbx8fEymUyqWrWq2rVrp379+ql8+fI2PRNRytkYpmnTplq5cqV27NihkydPKjU1VSEhIWrUqJEeeeSRXM98LIi3t7cmTpyop59+Whs2bNDevXt16tQpJSUlycPDQ8HBwWrQoIHatWun9u3b57r1u7hUrVpVy5Yt065du7Rlyxbt379fCQkJSk9PV7ly5dSgQQN16NBBnTt3tquP7dq1M4LFtm3bWm2U4ywPPfSQpk6dqitXrujAgQOKj49XaGiow/U2atRITzzxhLHq8ujRo/roo480dOhQh+suKfbv32+s7q1Vq5buueceF/cIAICSz82c35OzAQAAcEvp37+/9u3bJ0kaNmyY1fPzULSeeeYZY0XcokWL1KpVqyJpZ9q0afr4448lSSNHjtRzzz1XJO3caiIjI41HCkyaNEk9e/Z0cY8AACj5eGgIAAAAUMTOnTunPXv2SJKqVaumli1bFllbAwcOlI+PjyRpxYoVysrKKrK2bhVJSUnGTuSVK1dWt27dXNwjAABuDgSLAAAAQBFbsWKF8VzJPn36GLs3F4WQkBANHDhQknTmzBn997//LbK2bhWrVq3S1atXJUkvvPCCy27DBwDgZkOwCAAAABSh7du3a+HChZJyNrHp3bt3kbf5zDPPqEKFCpKkefPm2bRb8u0qOTnZ2ICoQYMGrFYEAMAOBIsAAACAE3311Vfq0qWLBgwYoA4dOui5555TRkaGJGnMmDHy9/cv8j74+/trwoQJkqTjx4/riy++KPI2b1aLFy/WxYsX5e7urrfeekulSvEjEgAAtuJfTQAAAMCJqlatqujoaO3du1cnTpwwXu/du7d69OhRbP148MEHjdV3s2bNUnJycrG1fbM4c+aMsVP64MGD1aBBAxf3CACAmwvBIgAAAOBEtWrVUuPGjeXr6ys/Pz81btxYU6dO1cSJE4u9L2+88YbCwsJ07tw5zZkzp9jbL+kmT56s1NRUNW3aVMOGDXN1dwAAuOm4mc1ms6s7AQAAAAAAAODmwopFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHb7f9YcbXhhj/QbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime, limit_k=500)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAP2CAYAAABAH8s+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADxPklEQVR4nOzdd5QUxdrH8d8GkCQiglkxAiqCGMCrXF5FxZwwcM3hGjBnMaJiIJjwqhhRTIBiFiOgomBARQmC5CiS4y4LbJj3j96d3dmdmZ3Q3dXh+zmHw/TsdPUzHaufqa7KiUQiEQEAAAAAAAAIvVzTAQAAAAAAAADwBpKFAAAAAAAAACSRLAQAAAAAAABQjmQhAAAAAAAAAEkkCwEAAAAAAACUI1kIAAAAAAAAQBLJQgAAAAAAAADlSBYCAAAAAAAAkESyEAAAAAAAAEA5koUAAAAAAAAAJJEsBAAAAAAAAFCOZCEAAAAAAAAASVK+6QCQnd9++y1mOjeX/C8AAAAAAEAYlZWVxUwfdNBBaZdBsjBgqu8UAAAAAAAAQKpohgYAAAAAAABAEi0LAycojyFXbSEZlO8EID2cBwBwHgDAeQAA54H02PHEKclCn8vNzY3uCLm5uWrfvr3hiLJXUlKiiRMnRqf3339/5eezqwJhwnkAAOcBAJwHAHAeSN/vv/8ekyfKBClZAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAAAAAAAAoBzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAciQLAQAAAAAAAEgiWQgAAAAAAACgHMlCAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAID7Fi6URo60/gcAAIBnkCwEAACAu775RmrTRura1fr/229NRwQAAIByJAsBAADgrocfltats16vW2dNAwAAwBNIFgIAAMBdo0fHTo8aZSYOAAAA1ECyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAcq4lC5966im1atVKXbp0cWuRkqR3331XrVq1UqtWrTKaf9KkSbr33nt13HHHqX379jrggAN07LHH6uabb9aYMWMUiURsjhgAAAAAAAAwI9+NhUyaNEkvvfSSG4uKsWjRIvXr1y+jeYuLi/Xggw/q7bffrvG3efPmad68efr000/VqVMn9enTR9tuu2224QIAAAAAAABGOd6ycOHChbr66qtVXFzs9KJirFq1SldccYXWrVuX9ryRSEQ33nhjTKJwiy22UNu2bdW+fXs1atQo+v7YsWN10UUXZbQcAAAAAAAAwEscTRbOmDFD5513npYvX+7kYmr4559/dNFFF2n27NkZzf/KK69o1KhR0elzzz1X48aN0/DhwzVs2DCNGzdON910k/LzrYaZc+bM0V133WVL7AAAAAAAAIApjiULP/roI5199tlaunSpU4uIa+zYsTr99NM1Y8aMjOZftWqVnn322ej0Oeeco/vuu09bbrll9L169eqpR48e6t27d/S9kSNHasKECZkHDgAAAAAAABhme7Jw6dKl6tmzp26//XYVFRXZXXxC69atU9++fXX55Zdr9erVGZfz7rvvqrCwUJLUpEkT3X777Qk/e8YZZ+iII46ITr/66qsZLxcAAAAAAAAwzdZk4XPPPafjjjtOH374YfS9PfbYQz169LBzMTUMHz5cxxxzjF599VWVlZVJkpo3b65bb7017bI+//zz6Ovjjz9eDRo0SPr57t27R19/99132rBhQ9rLBAAAAAAAALzA1mThoEGDYpJlZ511loYPH64WLVrYuZga3nzzTa1ZsyY6ffTRR+uDDz5Q27Zt0ypnzZo1mjZtWnS6U6dOtc5z6KGHKi8vT5K0ceNG/fDDD2ktEwAAAAAAAPAKR/osbNOmjd544w099NBDMSMHO2233XbTM888o2effVbNmzdPe/7p06crEolEp/fbb79a52nQoIF23XXX6PTkyZPTXi4AAAAAAADgBfl2FtahQwd169ZNRx11lHJycuwsOql9991Xl1xyiU466aToCMWZmDdvXvR13bp1tcMOO6Q0384776y5c+dKkhYsWJDx8gEAAAAAAACTbE0WDhw40M7iUtanTx9bylm+fHn0dTotE6t+tmoZAAAAAAAAgJ848hiyX1Xt93DLLbdMeb6qj1qvXbvWzpAAAAAAAAAA19jastDvNm/eHH1dr169lOerW7du3DJMKCkpMbp8O5SWliadBhB8nAeAYItXAa1eh+E8AIDzAADOA2aQLKyiuLg4+jo3N/VGl1X7STSZrCsrK9PEiRONLd8pU6ZMMR0CAMM4DwDBclCc92qrw3AeAMB5AADnAXfwGHIVeXl50ddlZWUpz1c1QVinTh1bYwIAAAAAAADcQrKwiqqPHm/atCnl+ap+dosttrA1JgAAAAAAAMAtPIZcRZMmTaKvCwoKUp6vsLAwbhluy83N1f77729s+XYpLS2NaVrcpk2bmFafAIKP8wAQPu3atYuZ5jwAgPMAAM4D6Zs8eXJaT8vGQ7Kwiu222y76euXKlSnPt3z58ujrZs2a2RpTuqr2nxgUeXl5gfxeAFLHeQAIvtqOcc4DADgPAOA84A4eQ66iRYsW0dcbNmzQihUrUppv4cKF0de777677XEBAAAAAAAAbiBZWMW+++6rnJyc6PS0adNqnaewsFALFiyITrdu3dqR2AAAAAAAAACnkSysolGjRtp3332j0z/88EOt8/z000/RZ8Hz8vLUoUMHx+IDAAAAAAAAnESysJpjjz02+vrjjz9WUVFR0s8PHTo0+vqwww5T48aNHYsNAAAAAAAAcBLJwmrOOOMM1a9fX5K0YsUK9e7dO+Fnhw8fru+//z46feGFFzoeHwAAAAAAAOAUzyYLu3TpolatWqlVq1bq0qWLa8tt1qyZLrvssuj0+++/r1tuuSVmdOSNGzfq+eef13333Rd9r3PnzurcubNrcQIAAAAAAAB2Y7zpOHr06KHJkyfr22+/lSSNGDFCX375pVq1aqW6detq5syZWr9+ffTzO++8s/r162coWgAAAAAAAMAenm1ZaFJ+fr6efvppnXnmmdHRkYuLizVlyhRNmDAhJlHYvn17DRkyRE2bNjUVLgAAAAAAAGALWhYmULduXT388MPq3r27PvjgA/30009aunSpNm/erKZNm6pt27Y66aST1LVrV+XmknMFAAAAAACA/7mSLOzWrZu6deuW1jxff/111svt2LGjpk+fnlUZbdu2Vdu2bbOOBQAAAAAAAPA6msQBAAAAAAAAkESyEAAAAAAAAEA5koUAAAAAAAAAJJEsBAAAAAAAAFCOZCEAAAAAAAAASSQLAQAAAAAAAJQjWQgAAAAAAABAEslCAAAAAAAAAOVIFgIAAAAAAACQRLIQAAAAAAAAQDmShQAAAAAAAAAkkSwEAAAAAAAAUI5kIQAAAAAAAABJJAsBAAAAAAAAlCNZCAAAAAAAAEASyUIAAAAAAAAA5UgWAgAAAAAAAJBEshAAAAAAAABAOZKFAAAAAAAAACSRLAQAAAAAAABQjmQhAAAAAAAAAEkkCwEAAAAAAACUI1kIAAAAAAAAQBLJQgAAAAAAAADlSBYCAAAAAAAAkESyEAAAAAAAAEA5koUAAAAAAAAAJJEsBAAAAAAAAFCOZCEAAIBJf/8tTZ8uRSKmIwEAAABIFgIAABjzxBNSixZS69bSySdLGzeajggAAAAhR7IQAADAhIIC6e67pdJSa/rTT6UvvzQbEwD4zcSJ0oUXSj16SP/8YzoaAAiEfNMBAAAAhNJ779VsSXjeeVYSEQBQu3/+kTp2lDZtsqa/+kqaNUvKpU0MAGSDsygAAIAJJSU13ysqcj8OAPCrfv0qE4WSNHeu9Nln5uIBgIAgWQgAAAAA8J8PPqj53m+/uR8HAAQMjyEDAAAAAMJlzRrpqaek4mLp2mul7bc3HREAeAbJQgAAAABAeJSWSh06SDNnWtMvvyzNni01bGg2LgDwCB5DBgAAAACExyefVCYKJWnpUmnQIHPxAIDHkCwEAAAA7LJ5s9Srl9StmzRwoBSJmI4IQHWff17zvaFD3Y8DADyKx5ABAAAAu9xyi/TMM9brDz6QcnOlHj3MxgQAAJAGWhYCAAB4Ba3Q/K8iUVjhqqvMxAGEFedReNWsWdLw4dLUqaYjAWpFshAAAMCEnBzTEQCAv3EehV+MHi21ayedfbbUvr3V8hzwMJKFAAAAAAAATrnvPmnDBuv15s3SnXeajQeoBclCAAAAAID/8Mgx/GLcuNjp6dPNxAGkiGQhAAAAACAYeDQZALJGshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAABAP9GAJA1kgWAgAAAAD8J9P+CUkoAkBSJAsBAAAAAOHGwCgAEEWyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAcvmmAwAAADYqLZVGj5by8qQuXeiwHQAAAEBaaFkIAEBQlJVJXbtKxx4rHX201K2bFImYjgoAAACAj5AsBAAgKMaMkb7+unL6ww+lP/4wFQ0AAAAAHyJZCABAUPTuXfO9AQNcDwNZoCUoAAAADCNZCAAAYAL9SQIAAMCDSBYCAAAAAAC4LRKRvvhCeu89aeNG09EAUYyGDAAAAAAA4LYLLpDeest6vf/+0o8/Sg0bmo0JEC0LAQAAAABBQd+v8IvZsysThZI0ebLVwhDwAJKFAAAAAAD/oe9X+Nk779R8r2dP9+MA4iBZCAAAAAAAAEASyUIAAAAAgB/xyDEAOIJkIQAAAAAgGHg0GQCyRrIQAAAAAAAAgCSShQAAAAAAAO7iMXp4GMlCAACCjIooAFPWrpXOP1/ac0/pnHOk1atNR4Qw4LoHP+MxenhEvukAAACATahgAvCS3r2lt96yXs+ZIzVvLv3vf2ZjQrBket0joQgASdGyEAAAAID9nngidvrpp83EAaSCH9wAIIpkIQAAgB/8/bfUpYtUv750xBHSokWmIwIAAEAAkSwEAADwgwcflL75Rtq4URozxnrEEwAA+BOPw8PDSBYCAAD4wQsvxE6/9JKZOOCuUaOkQYOkBQtMRwIAcBqPw8MjGOAEAAAA8KLevaX77rNeN2kiff+91KaN0ZAAAEDw0bIQAADABFoPIJmSkspEoSStWSP162csHAAAEB4kCwEACAr6vgGCY/Xqmu+9+ab7cfjNkiXSl19Ks2aZjgQA0kddDh5BshAAgCCj9RqAsJgwQdp/f+m446zHtd97z3REAAD4EslCAAAAAP73+OPSihXW602bpF69zMYDAOniR154BMlCAACCjMdZAITFkCGx01OnmokDAACfI1kIAEBQ8Gs0/OyMM6SbbpIKCkxHAgAAEGr5pgMAAAAA9P771v/z5kkffGA0FAAAgDCjZSEAAAC848MPpcJC01EA8Cu63wCArJEsBAAAgLds2GA6AvPoVgCoHccJ/IzENjyMZCEAAAAAAIBpJMDhESQLAQAAAAD+Q8ssAHAEyUIAAAAAQDDQMgsAskayEAAAAAAAwI8WLZKGD5cmTDAdCQKEZCEAALDMmSO99po0bpzpSBB2PFoIAAg6O651EyZIbdtKZ58tHXKINGhQ9mUCIlkIAAAkafx46YADpIsvljp1kp55xnREQLiRMAUyw7EDP0v3Mfq+faXVq63XZWXSLbfYHxNCiWQhAACQHnxQWr++cvr6683FAgBAKjLtn5CEIoJi+PDY6bVrzcSBwCFZCABAkKV6QzRiRGbzAU5ggALWAeA2jjl4AfUveATJQgAAgoIbHX9hewEAEF7UA+Bh+aYDAAAAAGLQsgIAYIdIxBr0Y8YM6fjjpSOPNB1RJa518DBaFgIAEBYLFkg//EB/NgAAwBsKCqSPPrLqJ064/Xbp8sulRx+VjjpK+vxzZ5ZjF1obwiNIFgIAEAbvvy+1bi0dfrjUrp31CzsAAH5Gyyx/W75cOugg6bTTrPrJnXfav4zHHqt8HYkwgBuQIpKFAAAERbKbpt69paIi6/X8+dILL7gTEwB7LV1qOgIAsMfrr8f+eNm3r7RunbPLnDXL2fLtVFgoTZokLVtmOhKEEMlCAACCrOJxlokTY99/4gn3YwGQvTfeMB0B4B08sulvt95a871x49yPw4tmzpQOOMB6GqRlS+mLL0xHhJAhWQgAAAB4TaIkyG23uRsHAMB9AwdWtoJcu1Z64AGz8SB0SBYCABBkI0dKO+xgOgoAAABUlaz7mAEDYqd/+snRUIDq8k0HAAAAHLRkiekIAAAAkAoerYdH0LIQAAAAAAAAgCSShQAAAAAAAADKkSwEACAoeHQlGBYssPqaXLTIdCQwKVlfVgAS49gBgKzRZyEAAICXtGkjrV8vbbWV9PHHUufOpiNyHzf7AFLBj2TwM6518DBaFgIAAHjJ+vXW/2vXSn36mI0F5pAEAYDw4dwPjyBZCAAA4FVffGE6AgDwLlpmIWjYp+ERJAsBAAAAAMFAyyz4Rbx9deFC9+MA4iBZCAAAAG/hZh8AAMAYkoUAgPTMmSOdcIJ00EHS88/b87jEF19IV14p9e0rFRdnXx7gByTEAAAILx45hocxGjIAID3dukkTJ1qvr7pK2mMPqWvXzMv74gvp+OMrp2fOlF54IbsYAfgbN1AAMsX5AwCyRstCAEDqpk+vTBRWuPLK7Mq85prY6VdekUpLsysTAAAEHy20ka3iYql/f+nqq6XRo01HA3gGLQsBAKlbsaLme/PmZVfmnDk13ysry65MAPA7kiCAc2h96F1un/uuuEIaPNh6/fzz0siR0lFH2buMxYvtLQ9wAS0LAQAA4KxJk6SDD5Z22EHq2dN0NABQEwn68Nm8uTJRKFlJ5BtusHcZZWXSYYfZWybgAloWAkC6Vq6UPvhA2mYb6bTTqFwCQG0uukj64w/rdf/+RkMBAHiYm60+i4pqvvfnn/Yu45NPpPnz7S0TcAHJQgBIx5IlVuuYv/+2pi+5xOpjD/ACEtfwooULKxOFAACEya+/Jv4bj8PDw3gMGQDS8cILlYlCSXr1VSuBCHgBlU540YYNpiNw1vjxUqdO0iGHSB9/bDoaIFhmztQu/fpp5yefVP7q1TX/znUPABxBy0IASMf999d8b9w46YwzXA8FAGDYpk3SMcdI69ZZ06eeal/ZJEEQditXKq9DB21bUCBJ2mrMGGn2bMNBAUA40LIQAAAgLD79VDr/fOnOO4Pf4s8Nb75ZmSgEwuiLL6zuWTp2lMaMsbfsAQOUU54olKR6ixYp5/PPYz9D9xuAP739trTjjlLz5tYo1PAcWhYCAFJHpRzwr9GjpZNOqpz+6y9rsCZkbtYs58rmfAuvW7ZMOvFEa7RXSeraVVq+XGrc2J7y33mnxls5P/xgbwteAO5bvdr64bKkxJq+6irr/LHHHmbjQgxaFgJAkMyeLb33npUE8DMevwuudeukW26RzjtP+vpr09GEy3XXxU5/+CGt4gBkrk+fykShJG3eLD39tLl4AL8Ja313wIDKRGGFe+81EgoSI1kIAEExerTUtq105pnSAQdIn3xiOiKgptNOk554QhoyRDr6aGtwCDcNHSrtsIO07bbSoEHuLtu0adNqvrd2rftxpCKsN1CAn0yaVPM9v/9YCdiN61lNixfXfG/ePNfDQHIkCwEgKO6/v7IPsk2bpLvvNhoOUMOCBdI331RORyLSrbe6t/zly6ULLrBGMF++XLrsMmnhQveWH1Y8TgskNny4tPfeUuvW/MgHhA3XR3gYyUIAyJZXLvRjx8ZOT55sJg4gkXiJue+/d2/5jz8ulZbGvvfAA+4tHwCqWrxY6t7d6vty+nTpjDOsvrwAADCMZCEAAAiHeMlKHnvxJq/8CAM46aGHYh9RLC6WnnzSXDxBwWOfAJA1koUAkK3//Ee65hpp1SrTkQQHiQI4gf2qJm6qs/Ptt6YjgJ9Nn17zvepPCSA5zuvwM67B8DCShQCQreJiaeBA6bjjTEeCsOOmKX0mK+psL//76Sfnymb/CL6qIwlXqNqvq1eUlVlxjR3rveSG1+JB9jj3AZ5AshAA7PLLL9KUKaajcBYVuGApLjYdgbvi7b/caHqTye1SWirdc4+05ZbSrrtKo0aZiwXB5ocBlkpLpWOPlbp0kf79b+ncc01HVDvqKkhVGOsA//uf1LChdY176SXT0cDDSBYCgJ1mzzYdgbPCWKkKsh9+cHd5pm/gTC8f/vDNN9LDD0sFBVYy57zzag6MA2Ri1izrh8WSkuzL+v136ZVXpD/+yL6sZMaMiU2YDxsmTZ3q7DIBOGPePOmGG6QNG6xr3JVXSkuXmo4KHkWyEADgPSQl3RHvETgg7P7739jpZcukr74yEwuC4/HHpVatpA4dpP/7P2nt2szLev99q5z//lc65BDpww9tC7OGu++u+d5TTzm3vFrkvPwydQQgU/fdFzsdiUh9+5qJBZ5HshAAAACosGBBzffWrXM/DgRHUZF0//2VP9D88IP00UeZJ71uv72ydWJJiXTbbbaE6TlxWoPnrFolvfmmgWCAAFi8uOZ7y5a5Hwd8gWQhAAAIr7C3UAn79/cytk1wjB5tPfJX1UUXZd41QvUuT2bNyqwcr0t0DFx4YWbzwR/CtP3C9F3hOyQLAQBAODDACQATEp1nvNKP6pdfSpddJvXuLW3alF1Zbp9TvbIO4U/sP95Bfcxz8k0HAAAAQsJ0pdz08sOK9Q541+jR0nHHVU7/9Zc0ZIi5eNxCYgIAkqJlIQAAcIcXb868GJNXfPWVdM450k030WefCcmSrP37uxcHpH/+kU47Tdp3X6u/wM2bTUdU0z//ZDbf9dfHTg8davWxmCk//zjg59jhXdQzUsPx5zm0LAQApI4LebhEIsHa5jyGXFOi7fvjj9Kxx1ZOT5kijRzpTkxe5LX95IEHrCRPvXqmIwmHq66yBiSRpGnTpF12ka67zmxM1e24ozRihHTiienNN3VqzfcKCqT69TOLI94ACgUF0ltvSXXqSOedJ22xRWZlAwBcQ8tCIBMrV0pr15qOAgCCLRKRhg+XBgyQ5swxHU0wJUqC3XRT7PSoUfGTADBjwwbp559NRxEeFYnCCtVb43nFSSeZjkD6+mvpzz8rpzdtkg4+WOrRQ/rvf6Ujj/Re8h3+MHeulRCfO9d0JN53++3Su++ajgI+R7IQSEdpqXTllVKzZtK220oDB5qOCAgmbiQgWQmrs8+2/j/ggNgbUFgefNCZG6d4iahMH3PkeAbC5fHHK1+/+640fXrl9I8/SmPG2Lcszi/esWiRdPzx0u67S9dck93j7NWNGiXtv7908snW/2Fu6Z6KRx+VzjpLeuYZ05HAx0gWAukYO1Z68UXr9ebN9OOEmqi0Aoml80jzhg3SU09VTq9fLz3yiP3L9/sx26uXlUidN890JPby+3bxk3/+kZ5/XvrgA2+u97/+krp3l848U5o0yXQ0SMWrr1a+jpesGDrUvVjgnmuvlb74wroeDRwoPfecfWU/+KBUWGi9Liy0umJA7bzWXQJ8hWQhkI4ePWKnN2+WBg82EgoQaEHqJw+Z+fvvmu9lO0JnUPerdeu8PeBFUNd7EMydK7Vta/XJ162bdbPvJUVF0qGHSu+8I733nvV6zRrTUdmHYyN7rEPvqP64/i232Ff2d9/FTo8bZ1/ZTmMfhU+RLATSsWpVzffsbGKP9EUi0m+/Sb/+6o0WEVQIECReOKacFpTvaGcLDoTHk09KK1ZUTg8c6K1k3CuvxPYRXVQU2+IYALIRlDoA4ACShQD8KxKRLrzQ6jj7kEOsvs246AOpC1tyO4iPIWcrne/v5v7itX3TxH5S2zqwI6ann6753oUXSt9/n33Zdvjpp5rvVW9h5AdhP89kymvngTAqKpJmzJBWr3ZvmUHb7smOf7fPDZyLkAaShQD8a9o06c03K6fffVeaMMFcPGEQtAocAPts2CD16SPdcYc0e7bpaPyttDR+Is8Nn3wi/d//MZKmG/xw4+6HGONZtMjq5+5//7NGZEb65s61fpBv1Uraay9p9GjTEQFwEclCAP714IM137vzTvfjiGfqVKlDB2vU7GuukTZuNB0RUJNfbwKDwqvJ98WLM5vv2GOlu+6S+vWT2reP3+8kUnPDDdbgNbV5803pmGOkiy6Sli+3b/mRiDWSZtVRbJE5rx7rifgt3uqWLJHatbOOoRtukE48seZnuP7VbuBAqz4rWV0x3Xef2XiQPb8f23AVyUIAweKVi+Dll0u//GLdvA0cGNsC0s+oXCMbpo/PoD+G3LCh1Ldvdt+prEzq1Cn9+f74Qxo7tnJ6/XrpsccyjyNI2yVdkYj07LO1f+6rr6QLLpBGjZJef91K7tmtfXtpzBj7y4V/mD5vZ2LQoNh+xkePlqZMSX3+wkKrdXRBgf2x+Un1c7ifBhUJqp9/tvpt9WN3DLUJ83Xfo0gWAoDdCgulH36Ife/yy83EAqCS0ze9c+daXSEUFzu7nEQ2bLBaV0+enHkZX3xhfY90/fxzzfcGDrT+92OyoTovfoc+fWKnx4yxWlTZqajIe62JvHZDuWaNdPHF1kjNDzwglZSkPq8X9ysp9XXsdPx2tmytnuhKFPvkyVKbNtZjt/vuS/c28JbDD5duvNHqKmLwYNPRZM6r5z7EIFkIAHZL50YB8XntZjCs7N4OXtyudsX0zDPS3ntLBx1kVeJNjih7yy2pf7b69//9d3tjgbucGITAZMtCP9xQXn219NprVsL8/vul559PfV4/fL9knDynV22pnIzd67B/f2nePOv1woU1k/KASaWlla+vucZcHAgFkoVAOrx4owvv8XvlHwgqp47NzZule+6prMT/+KP03nvOLCsVCxaYW3Y8Qbh2BuE7wBlDh8ZOX3edmTicku2+n+n8117rbPmJVO82hoF+kC2nRkPesMHeWNzklTiQFMlCIFskhgAg3MaOldaujX3vssvMxAIAXpdK3XniROfjgDeRSAon7qk9h2QhgGAxXcGIRJJf7L79VvrgA6tfQ8BuXq9opROfW9/FjnOG6fNONry4TcLOz/sTgseJ4559HDCD6zjSQLIQgH959YKXKK7rrpOOPFLq1k06+ODYkfr8wqvrHEiFU/svN77Jcd6AnTjenGfnMcvxDy9j/wQSIlkIAG555pnK13/9Jb31lrlYAKeUlEiLFknr15uOJDVBTDwE8TsBfub2MVlWFjsQggn//W/N7hmAMCIhCZ8iWQgAdkqnQnD99c7FAdgh3RvcJUukf/9b2mUXaffdpZEjY//+7LPOLTsV8Y7PsD+G7OfYUVMYtic33sm9+abUuLFUp450111W4jAbme5Tr7wi3XBDdsu2E/sNAKSFZCGQrTBUzJEeKqTwC7v31UGDpJ9+sl6vXCn17Bn79+qjTLrN7WNz8WLpzDOlQw+1EqV+uF4kW0dhPrf5YdvBf5w4pi6/3OoXORKR+vSRfvnF/mWk6rXXnF9GmM9LQLq4liEN+aYDAHyFCgkAJHbPPbHTv/9uPZac7+HqhpMV5+7drZGSJennn6Wdd5ZOPdW55dmBGwnAfm7WHzdujJ2+9trsEoZBrftyrvOPGTOcK9uN/YB9DT5Fy0IgHZzsvc8L2yioFWs3eWE7wh5eOh7cjqUiUVjh0kvdXb7d3Dwuw3wOCPN3Dxs3tvXixc4vIyi8dL0Ks+rb4Y03zMQRROzjSAPJQiBbnHTN8eq692pcCD6SDN7m1gjoJvaDZMvknAg7cZ5zF+sbgBs413gOyUIAQOq46Q+XMFTcGOAk9c9y/Htf0LZR0L5PUKSzXfx8fkRiv/0m9ehhdT9SUGA6Gv8K6/HBud0XPNyJEAD4VFgv/IDXOTUasteYqIQnW2Ym65gbCYSBX/fzimM60/jt/N5BPId73bRp0r/+JRUXW9PjxknffGM2JgC2o2UhAP+iggi/iESkp5+WzjpLeuQRa9APL/DyMeTETbRTN+ZeXo8IF/ZF2M3uHwLgf716VSYKJenbb50dhAT24ZhFGmhZCCBYTP9Kz0UY8Tz1lHTTTdbrd9+V1q+X+vSxfzmm938/4pj1pjBvFz9/9zFjpMsuk1aulG64wXQ08Co79/FUr3tXXik1ayZ162bfssPq3Xdrvjd9uvtx+IXXz+nUHZEALQsBBIvXL8h+x/rNTEWisELfvmbiMCEnR/r9d+nll01H4lyF2AuP4lWVzXGaLCZuKJBMaan0n/9Is2ZJq1dL999vOiLv8PO1M9vYvXTeOOMM6fvvTUeBdPn5+PEDrw2KBs8gWQjAv7xUAQUQ34cfSh06SJdfbjoS51DpTY5zdTiMHi0tWWI6ClTnpy4d3HDddYn/5taI9bDHnDmmI/AfLx+7Xo4tpEgWAoCduNDZg+SLN9ixHW6/3Tt9NMbDvhaL9YFMrV5tOgL/8WqdYfLk5H/383li4sTEf5syxb04kL2WLaVnnzUdRe283u/nmDGmI4BHkSwE0uGFEzq8j/0EqDR7tukIKnnxsV8gKDgOgqNLl8qEoVcTmkBpqXTvvbGDrSC5WbNqvvf337SqRVwkC4FsUYlCmBja33NGjpTatZPatLEea4U9OH8BqXEzEZbNskjYobpM94levbKbH+GSSX1i/fr471ff55KVvXq1NH584r+z/1a69lpp3rz4f3vsMVdDgT+QLAQAeFpuQYFyTztNmjRJ+vNPayTDf/4xHVb2Nm82HYG3UcHPHOsuc7RQ8T4/7N8lJdKGDVJZmTXtxx9mkv0w58fvA2/ZuFE66CB7yvrlF3vKCbIZM5I/sp3s8XyEFslCAMHih5sIpGXbYcOUUzWxFolIDz1kLiC7tGxJBddtnB9qymSd/Pab9MYb1s1HkPzzj9Spk+ko/MuJ48uvSal99pEaNpQ6d5YWL078OTe+3+LFUs+e0nvvOb+seJw+7/p1H0lVaamVuH333WD9mDFsmDRzpj1l3XST9MILmc3rxv6T7Bhwa//1W715yhQrgUm9zSiShUB1JSXSnXdKzZtbjzzWdjPPScycoFcQw2z1atX95x+ptFT1Fi6s+fepU92PyW7z51vnGi8Lw/nND+eRsjJp1Ch3llXb+njzTaljR+nCC6UDDpC++Sb7Mr3i5ZeTP84GpKqiX7Bx46SnnjIbiyT17y+deWb6g0Gce278enC21wY7zwlBvk5FItKxx0qnny6ddZaVfC4tNRtTjx6Zz7t8uVXv6dlTuuOO1OdLZRvfeGNmMZnef9xavh8SzRXr4sorpf33t+oY55xjfhuFGMlCoLpPPpH69pVWrLAeeTzvvMqTlF9ueACfy9tzT+1/8slqedVVylu71nQ4zhk92nQE3uWn863TFdnTT5eOOSb1zzu17nJypFtuqbxZLSpKrV8zv1T0K76Ln/npuAmL/v0T/83tY+Paa9P7/NChlY9Sw30//xxbT/jpJ+mLL8zFIyVuwVfbuae42HrsuG9f65hYujTxZzM5j23cmP48yeTmWona5cvtLReWRNt4xgzpxRcrp99+23qaAUaQLASqO//82OmZM62m0ABck1NSIknacsIENRk71nA0gGEff2w6gkrLlsVOc3ymZuBA6ZBDpFNOsVoVJ+OX5Gp1fo0bmSM57aznnqv5nlcHoqjt+B82TIr3pIhXRSLSV195o2VwmPTpU/O9nj3djwOSSBYCNW3YUPO9ggL344A/RSLcMPlBcbH1OOUrr0iFhaajgd957Zg3MZqul5MGixZZj/D9+9/Sa69l9h0jEWndOumKK6x+DXv3Tu9xwGuukX791Xp64cwz018+KnnteEtFopi9fNwk49e4/SY/v+Z75T+m+s5nn5mOIDMPP5z+PKWlVr++zz4rrVplf0xO+Owz6xpnWryWzLRuNibOGQhAQn6soAJ2CsINQiRiPdI5Zow1/dhj0u+/S1tsYTYuOwRh+wCSvdfb00+3EnWS1RJy552lo45Kv5zrr7eSjZLVF12TJpnF8+uvVuvCFi0ymz8Zk/UU6kjp8/s6yzR+v39vtwQpWRgm3bpVPhHQt690/PFm40lVhw5WF1x5eeZieP11M8tdt856zH+HHaz+EiGJloVA9rg59xYqoLEWLTIdgff8+GNlolCSpk2zRhkEMuXn60DQz5mzZ1cmCitcdVVmZVUkCivccENm5UjSmjWZzxt2fj7egiKd8wbbK3MkC/1nxozYrkMWLZJeeinx5710DZ4+3Wr9HjYLF0rt21t9VLZrJw0YYDoiz3CtZeFTTz2lgQMHaqeddtLXX3/tyDL++ecfDRs2TGPHjtX8+fO1ceNGNW/eXHvssYdOOOEEnXDCCapfv35KZQ0aNEj9k3VIHEdeXp6mBmGETsAvqIDWrm1baeRIq1NpWN56q+Z7AwZYgxmFTW2VVC9VYu3g1PcJ2nqym8lzdfU+FiWrL2LYj2ty+lhn2QvyOoyXLPTqqLZObgc/beORI01HkJ0PPpBOO8355Xip3jRokDRnjvU6EpHuussaDCre8RcyrrQsnDRpkl5KllG3wbBhw3T88cfr+eef15QpU7R+/XoVFxdr8eLFGjt2rO666y6ddtppmjhxYkrlkfQDyk2fLl1yiXTZZbV3yu42L11oKnitQrN6tfUIBID4vHbM2oGkaHqKiqSHHjIdhT1efNHcdgrq/oFg8sP+SstCix+2FbL3449mlvvAA7HTRUXeu+c1xPF06cKFC3X11Ver2MFfQQYPHqw+VUbOycnJ0d57760mTZpo3rx5Wlb+q/K8efN00UUX6a233tJ+++2XtMy//vor+rpt27Zq3LhxrXHkmXy+H84K60Vq3Trp4IMrB3j5+GOrOX3dumbjSiaIN/7ZCuIjtmE9JmvDejEjSOs92Tn00kvdi8NNJ58sjR6d/DNuXls2bcp83v/9T9p1V+mWW+yLx2u8crzNnCntuGN2Zfi1zpJO3F7ZXn4U794ynYGVwP4XBH49TwaAo8nCGTNm6LLLLtPy5csdW8Yff/wR87jwIYccokceeUS77rqrJCkSiWjkyJHq1auXVq9eraKiIl199dX64osvEj6SvGnTJs2dOzc6PWDAAO20006OfQfYoKzMerRw8WKrU9m99zYdUTA880zsSNDLl1uje/33v+ZiAqTYPgeROSpg3Eiksw9MmOBcHNW5tV1mzKg9USjZH0/19b55s3TffdaPO7NmZVf2rbcGJ1no5XNUy5bS7run9lkvf49MZHs8BG19OIX1lJ5IxGqdtmmT1Lmz2YE6vIZ9CRlw7DHkjz76SGeffbaWLl3q1CIkSX369FFp+S8s++23n15++eVoolCyWhl27dpVgwcPVsOGDSVJS5Ys0WvVO6muYvr06dEyGzduTKLQD3r0kC68ULrjDunAA62RnJC9L7+s+d7Yse7H4TdBTj4E+bsh+LxWWfZCPGE/pidPNh2B5ZFHrC4jsk0UmhTGfalK44KMhHGd2Y11WLtffpFuvFHq18/6YSKoLr1UOvxwqUsX6eijzfTvSFdmCBDbk4VLly5Vz549dfvtt6uoqMju4mNMnDhRf/zxR3T63nvvVb169eJ+tnXr1rrmmmui06+99lo0IVhd1UeQW7VqZU+wcM66dbGjTBUU2N/3kBdu6ADAbW7dhPXuXfM9zrvBwbasqfqxVb3PJIQDxwac9ttv0mGHSU89ZTWqOPdcZ5ZT276czr5eWirdeadUp47UrJn04YepzTd4cOXrb79NrdW43Z57Lr3PJ6pnpZro/Pvv9JYHpMHWZOFzzz2n4447Th9WOaD32GMP9ejRw87FRH322WfR13vuuafat2+f9PNnnnmm8ss7il21apXGjx8f93PTpk2Lvm7durUNkcJR8TogHTbMmWXx66X3sY2cxY0NnHDffVZ3ElWleyzPnm3dFCXr/J3zQ+2cWEesdyA+v15T/Rp3GN11V+x18b33pBUrzMWTirFjrZbWJSXSypWZPzF2/PHW93WTXde7b75J7XM775za57gOIwO2JgsHDRqkDRs2RKfPOussDR8+XC1atLBzMVE/Vhkx5/DDD6/181tttZXatGkTnf4mwUFYNVlIy0LUyi8VpjVrrF8Td9pJOukkackS0xFlzy/rHkDtshnU4bHHrP7DDj5YOvJIaf361Oe14zxCJdy/64DriH3c2gf8uK8lijmT897GjdnFEjQcw8l99VXN97zeGq1vX/vKOvvs5H83fT5JtP8GdUCxCl4/br0en0sc6bOwTZs2euONN/TQQw+pUaNGTixCxcXFmjNnTnS6ttGNK1RN/k2O009NJBLR9OnTo9O0LERg9OsnDR1qDQLz6adW834A8LsNG2JbJo4da43cDvPcrmw/9pjUqJHUtKn05pvuLjtdbq6bSMTqg3j4cOt4gXek20fl5s3Sv/7lTCzpqEiwcEONCsOHJ/+76aSc36xcaToCwN7RkDt06KBu3brpqKOOUo7DF49FixapuMqz/Km2Xty5SlPdBQsW1Pj7/Pnzo60j8/LytNdee+m7777TJ598ot9//13Lli1TnTp1tN1226ljx446/fTT1bZt2yy/DTwv2QXOLxe/6r/SDR4svfqqkVACzS/7g1PWr5cWLZJ23FHaaivT0YRPGG/cvviiZgLk/POl885zLwY/H/fVY/fKPpTuOp06VbrtNut1YaHVKuOkk8zF4yWXXCJVDOy3777WaKGNG9u/HLfWUfV9dONGa5s3aeLO8k366COpSn/tvlWxryxdKv33v9Lvv0v//rf0/POpb8fCQql88Ep4QNX+AuFfXqkDwBNsbVk4cOBAHX300Y4nCiVp+fLlMdPNmzdPab6qn1u5cqXKqvWRVPUR5AYNGuiCCy7Q5Zdfro8//lgLFy7Upk2bVFBQoNmzZ2vIkCE666yzdOutt8Y8fo0A4wTq7xsmt4R1HU2aJLVpY92Mtm4tJegXFrBVWI83P3Bz2/TsGTtdXCwNHFj7fEG/ri9YUJkolKykqlP9Opvw/ffS7rtbgyAceaTpaBLLppuFqvr3t6ccu6RyjCc7xu6803raZfFi6e2303v89PzzU/9skHDNCxa2JzzM1paFblq7dm3MdOMUfyHdcssto68jkYjWrVunJlV+wao6EvL69eujjypvvfXW2nXXXVWnTh0tWLBAy5Yti37uk08+0axZs/TGG2/ElG9CSbKO3X2i+ijViUatjiopibsjZ7ouEpZVUqI8SdWrPKVlZYr4YL1nso7ifd+ysjKVeeT75paV1fjFoywScTS+2k6apaWliiTYJ+Ox85hNtkzblpPkeMvt31+5FS22lyxR2SOPqOzdd2stMtMLUcx3KixU7s03K2fUKEX22UdlL7xg9c8ZR7z9JlJWplJD+42d+0BuJJLer4BHHqnSUaMU+b//i79di4ut0QhTlE2losayUjy355SWKi+Fz0kJtn0kkvG2z/niC+W8/bZyJk2qca5MpGpciWLPVqLvlOz6Fo2prCztmEpKSuLOF5GsOEpL0943SkpK0qoP5M2fX/N6tXSpymrZj1LdBqU2b6vq693uCnn0+73/fs3tcsstKi3vD8vOa1Wq+04657zajtm8225TTkUfzN9/n/XyEsl6+9TWb1o1iWLOi0RSPtekWnYm362irpXKNScSJ+aKumR+9Sdc+vVTyUMPpRbXhx+qZPXquHXV2pSUlMTdt5J93oR46zd6Xk1RKuf9dOZNV8W6S7t+4rDoNk3h+pTO9k93nZUl2A8jSn+/TqQkxWO1Ih437vPSOf7KIpH08wNpyOYYCTrfJgs3VfuFrl69einNV6faTU/1cqq2LJSk3XbbTXfccYc6d+6svLzKKtCECRPUt29fTZw4MTrfzTffrJdeeinl72C3srKyaDxBMmXKlKR/rzdrluL1WJnpujgoznuzZs1SYcOGaltSouq3zf8sXqylPljv8b5XbeuoZUGBqqe/V61erfke+b67rV6tbaq9V7B+vWY6GF+89VjV3HnztH7yZCUfm72SncdsstjsWk6DmTO1T4LyD3rrrZj3cj/6SL+nsNza1mkiVb/T9q++qp1eeUWSlLNggdZcdpnmJmihsMvKldq22nubli/Xn4b2Gzv3gVbLlindnoLLzjxTk778Mm6MkyZPViTF66uU+baMt6wtFi5Umzifq76+msybpz1T+Jwk7bJiRY1tv6GoSH9lsA22/OUXtbzqqrTnqxrX1gsWaI+0S6jd5s2bNSXOd4q3ff766y9tqvJ0xPb//KP4afbEJk6cqGaLFql6hzCRSEQTJ05U3b//1v5pljl16lQVr1oV816y+sA+GzeqQbX3li9frtWzZyte79MV2yHR/lPdggULtHsKn0vVjBkzVFSlRUk2x048K/77Xy255BI1/ftv7Vrtb1Xri6kud+Jvv6npyJHKKS7Wqq5d454Xms6fn9I6Suec12L1ajWr9l5BQYFmVMT/88+2Li8Ru7dPbRLF3LqoSNk+eFu97Ey+28qVK7Vg4kTtXVCg2pprFBYW1rguVcyfrG6aSlzTR47Unps2KfWrVOUy4u1byT7vqkhETT/9VLs/+miNP23auDGt+kq89ThjxgwVZThvuirW3e5r1qipDeXZpSKuvPXrdUCKn01Fuuts2bJl2j7O+/GS7JmaOHFiyuvfrfu8XVetUmrPhUoFhYWaWe36X1t+IB3xttm0adO0OZ3B8gLKSwn+tFTP8OfmpvZV8vNj86PVs9Lz5s2Lvm7fvr3ef/99HXnkkTGJQkk68MAD9eabb6pTp07R97777juNHj06pTjgM0F/TMmvPLhdmn30kfY/9VTTYTjHg+tcknZ69tmY6aajRqU1f72FC+0Mx5hGkyalPU+dNWu01dixDkTjjLx167TFvHnKyWREUBsf99nFa48DIr6QPuK1/euvq+WVV9pW3t7XXqvd771Xu/XurX0uuEA5mzfbVna9OXO047PPqvmwYbTk8Itsjyub6hLN33vPlnK8ZutRo7T7/fc7t4CQnhcBSaqzZIlaXXqpDuzQQa0SjTrt0fsdt/m2ZWH15GD1vgcTqZ5krN7S8Msvv9SyZcu0aNEi7b777mqYpOPcunXr6tFHH9XRRx+twsJCSdLrr7+uo446KqVYAARPkwSPQcEHSkqkfN9eFrOSX61rDy9rc/rpyl+7VhtbtNCsAQOyLzDDCmH9uXOzX3bA5VYZiA7uazBjhhqVd6eTrca//hp9XX/uXG09erRWHX981uXWmzNH+1xwgXLLn/RpNHGi5vbpk3W5CIdcl/qM3+rbb7Vxzz21aZddXFlei969E/+RRB8clOPW/mVwP97xpZeiP65n8iN7mPj2rqh+/fox05s2bVLdunVrnW9ztV9Ct9hii5jpnJwcbbfddtpuu+1SiqNp06Y66aST9Pbbb0uSfvvtNxUVFdWIzw25ubnaf/90H/TxntLS0pimxW3atKnRsjNGglal7dq1sy2mvfbaS2rXLm4cO+y4o7a3cVluqm0d5TWq+UBj0623VhOPfN/crbeu8V6jRo1qfq9IRDn9+yv3wQelevVU9tRTirg5UmoSdu6nriwnQWuSROU7+f1qKzvR33O3qf7wevnn991XMnDudmsfSGaXBDdAbfffX2pQ/eFOZ7Rt2zZ2/cc5/0iVic168+dr32++UeTww+N+Lt56zW1W86GzBvXru7oNqi4rZ+pUR5ZRt27dlL9T61atpJYtK2PaPt4DUcm1a9dOOQkeB23Xrl1GI+/uu88+Kt1pp5TrA3nV6nOSNajdNnvtlTguSTkpJn13tTlJ0LJlS6ltW1vLjGfrKk/MVMjNzc16n9/t/fe1yx13xLyXk+Kja1WXnduvXzRRKElNR45U48GDpW2tDgNym9Z8cK5Rw4Zpxe+Fc2y6EsWcZ8M1yo71sU2zZtq6XTvlJjhPV9UwzjVkm2220dY21Buabr21cuIc+7Vp165d3DpkInvdeqsi9eur7J13FDnuuLSXl668osQPCW9Rr17W27Bly5aSy/XPdNa3G6LrcM2a1D/rgG0TDNJq54Cx6ezv23z6qbb68EPblp1IvHN7Io0aNVKbNm3Syw8kkf/RR7V+Zp999rEGz/KxyZMnp9ygLhHfJgu32mqrmOmCgoKUBhcpKCiIvs7Pz7dlQJIDDzwwmiwsLi7W4sWLteeeqfSAY7/qj1kHQV5eXvLvleBvdq6L/Ly8hMvJS/I3r8tkHeXm5irXK983TqI4NyenZnyTJ0v33GO93rRJeVdcIZ12mlTtPGKCW8esbctJ83hz8vvVVnbCvyf4gSE/P9/IseyF83aiCpeb66TGeTaF5eb+739S586Jy/v6a2ndOum446xEZJxtn5OT4+o2iFlWhhXd2uREIil/pxrbOMVuXWqUYfM+FK/MpPWBODdWya5X0XJSjC3P5pak+XXquHJsxbvdzFH25524ZaS4P+fn50vr10u33SYNH17z7/PnSzvuaE3YcMx64RybrnT2c9vKTkP02EohnnhJj5SOzRTjyER+fn7a57qcoiLl9e4tnXRSRsu0ix3Hr6vX9orleOyxznSuAU6eQxLtw3a28MtP8ViNfn7lSinFhlMZS+P4y83JqVFPrTU/kKVk9/5h4ts+C6u3/FuxYkVK8y1fvjz6umnTprZk7ZtVa6lQfaRmAA5J9UJ6222x05s3S889Z388QNCkU1k19UhJouVeeaV09NFSt25Shw5W0jCd+cOiej3IYzd0Kcs07i++SO1zDz6YWfmmubl/p7Osa6+VXnjBuViCyo7jMxKRRoyQXnxR+vvv7Mszye3z1S+/uLs8p/j1PB9EVRoyecaECaYjgEf4Nlm44447xvQ3uDDFzukXLVoUfb3bbrvZEkv1EZWT9XMI+EpQKhPxzg8rV7ofBxBURUXSOeeYjiLWSy9Vvp4yRXr77eCc02oTlu9pBxJWmfn9d6vF7lVXJU7EJ/P665kvO8wJfju++223SSefbP2gkunjlWHeBoCdBg6M/75fruOrVlkNMN58U6o2cCz8z7dtK+vUqaOWLVvqzz//lGQNb33CCSfUOt+0adOir/fZZ5+Yv40fP16jRo3SypUrtX79ej3//PMpNW+vmqjMycnR9hn09wMgA365kMIfuPnJ3KefWsk4E1I9D1x/vfTf/zobS5h59fjhOuGcL7+0/l+6VHr/fbOxIHWPP1752u8/nHr1vIOaOBeblc6xcsIJ0pAhtf8IvGqVdMABlY0yhg+XUugPUJL39wevx+cS37YslKSOHTtGX//www+1fn7NmjWaWqUz8UMPPTTm74sWLdJrr72mESNGaMyYMTGdaCbzfZXRT/fee+8a/SkiANavNx0BAHjXWWdlX0b1iplbN4EVy33nHeuR5RtvDNc53671bPfIx+nGlejzJBOc98EH1mjydq3r2m7SuIkzr2IbZLot3NpXEtljD+m11+yJwY84L6I2554rzZmT/DODBsU+vfXxx9L06c7GBVf5OlnYtWvX6OspU6bUmtx75513VFJSIskaIOWwww6L+fshhxwS04fh8DidLlc3ZcoUjRs3Ljp98sknpxQ7fOa446QnnjAdBew0cKDUrJnVifo775iOBl7ADahZJm9ePv1U6t7dSno89ZR0wQXuLNepfc7Euhw50v1lwju8/PjZxRdLjz3m7RiDzMlra05OZuXbPGARUuDVBKVX47JbJsfJ3Xcn/3vv3jXf++qr9JcDz/J1srB9+/bab7/9otN33nlnzGjHVU2bNk3PVRnQ4Oyzz1a9evViPrPLLrvEtDZ877339NNPPyVc/vLly3XLLbcoUn6Sadq0qf7zn/9k9F3gA7fd5v/HNVBpwwZre/7zj3TeedLq1WbiSOfmZeNGadw4acYM5+JBOCWqRIalEn3llbHTH30kFRaaicWvPvnE7PJJ9scX7xgO27p67TWrDnfHHaYjCack91LIQFiuy2G3caPpCKz+nr0gbNcsD/FssrBLly5q1aqVWrVqpS5duiT8XM+ePaOtAWfMmKELLrhAf/31V/TvkUhEX331lS6++GJt2LBBktS8eXNdWf3GoNwdd9wRHYa7tLRUPXr00FtvvaXNmzdHP1NWVqbRo0ere/fumjdvXvT9Bx54QI0bN874O8PjyspMR+ANpiopK1darX0OO0zq39/e7VFSYq6/tRS6UJAkLVtmjejaqZO0zz7S0087G1eQUemoKew3H/FGBC2vM8AGHHPBZ2LU5XSX+dhj9scSVplugwqcEwDvC3vdEP4d4KRCx44dddNNN+mJ8kdEp06dqlNPPVV77bWXmjZtqvnz52vp0qXRz9erV08DBgzQlltuGbe81q1bq0+fPurZs6fKyspUVFSk3r176/HHH1erVq2Um5uruXPnamW1Fma9evWKeSwaLqLC4RwvrdtLL7X6wpCkH3+Uttsu/ucyvbAtWZLZfNm6+mpp8uTaPzdsWOXnysqkBx6wRqHMT+M0Pn26NGqUtNde0rHHZhZvkFEpCj67+9UDvM6P57WqdQ8v1UNgnxdekJ591nQUAOx2/fXWPdrZZ5uOpKayMumNN0xH4Su+TxZK0pVXXqmGDRvq8ccfj7YenDVrVo3Pbb/99nrsscd08MEHJy3vlFNOUbNmzXTHHXdEE42FhYWaMGFCjc9ut912uvfee3XMMcfY8E2QET9WhJGesrLKRGGFiy+WLrwwtflT2UdSGPncEevWpfa5G26InV65Upo0STrwwNTm/+kn6aijKltLPfKIdOedqceJzCxaJL36quko/MnuJEFZmfTii9mVUVwsPfRQsB6rC8o1NNH38GqyyatxZcOufSko+6QTvLLf2BFHjx7ZlyGxv2Rq8WKrW5tWraQddjAdDYKke3frSbCddzYdSaxLLpFefz21z3rlXGtYIJKFknT++efr6KOP1jvvvKMxY8Zo0aJFKigoUKNGjdSyZUsdffTROuOMM9SoUaOUyjvssMM0atQojRgxQt98842mTJmiVatWKScnR9tss4323ntvHX300Tr++OPVsGFDh78dEHJUBONL50J2//2xj1XedRfJQqctXSq1ayetWmU6kmBL9fxQpTuRGOkcRw89FL9Db68JwjnTju+QkxOMdeEHrGek6+WXTUfgT3Yca2PGSPfdJ61dKzVpYv0g/+9/Z19uMiRf/Cebfe3++711jK9YkXqiEFGuJAu7deumbt26pTXP119/nfZytt9+e11//fW6/vrr0543nrp162YUOwB4zpdfmo7A++yuyP7vf6klChcssEbmbtDA3uWng0p8avyQKDQh1RbSbvNyAsut2Px4bKcas5e3r1PC+J2TYX1kpl8/K1EoSWvWWNNOJwsRLtOnm44g1rRppiPwJc8OcAIArqLCGR5ubevyvnRr1aKF1KZNan1XOiXROnHzuPjmG45Dv/rwQ9MRpJ8UKyy0EvVB59YxFYm4uyyggh8T4qb980/s9KefmokD3lbbuTabc7FT5/FJk6QPPog/cB3SRrIQQGJBqZBTkbRPonU5Z467cTjBzv09EpE2bkz983PnSn372rd8u3zzjdVf5rPPOj8i/EknSddea70uLraSOang+K7J7XVy0UXuLi+edI/fffaxEvWmmNxvg3JtRzD9+Wfqnw3j+T+M39lJrE9nmLjODB5s9eXerZvUtq0UZ7wJpIdkIYBg8dtNUFAqKQccYDoCb+nXL/15hgyxP45snXqq9Tj1tdfWHNlu82b7RxceOFD67DOpZUurv0eTgnJshlmybbhwoXtxmOTWfuzm8eLWskpKrK4HTjnFneXB0qaN9MADqX02jOfpVOq5S5da11IevUSFgBwrORs3avtBg5R7xx3SzJmxf7z9dqm01Hq9apX06KPuBxgwgRngBIADvH5h8Xp8YbJ+ffK/r1ghffuttNNO0r/+5UpIRvlt8JhUjqX33rP+j0SsG7kHH5Ty81N/3DpVJ55ob3lhlM2PJl45r9r1w49Xvo8pfnwM2St9Ft53n/TII84uA/H16WM6Av+aOFE65hhp+XKpTh3T0SDI0rm+lpRIPXtKTz8tbbONtMUWGS1y7+uu05a//25NPP+8lRDfZRdrevny2A8PGyYNHZrRckJfdyhHy0L4Hwcz7OC3Fol+MmeO1UrsrLOkww7jJsDvpk61koVlZVbrQpsGFfOcsJ4Twvq93bZmjXWj8+ablS0hnBBve1JvSo0XE4Vh2XabNpmOwL+efLIyaWJ36/9MnHOO9QNqUZHpSMLN7Wt79eV99ZX143JxsbRkiTR/fupllZ/36s+cWZkolKzuavr3t14vXZpePLWhLiSJloVA9sJScfMzTvhmPfOMtHhx5fRdd0m33CLVrWtP+Zs321NOxbG8YoXV3+BOO4Xn+E7nGLnjjthpp/syhLPmzpVatTIdhTOefFI6/XTTUcRXdeTRt992bjlePIdle87mmu4dXty/wu6110xHEGvYMNMRIFN2nmsvvDDrIhrE68904ECrtWK3blmXj5poWQjAv7hh8L6yMuuGvTo7Rymz6zHYSMQayGPHHa1HGs45x75EZJAsW2Y6AqRj9WrrF/xErdeOP75yP//tN+m55+yPwWRC4ZZbzC07VSNGOFe2F0cofuut1D9LMgqI5dQxHYlY1wnq1rBD9XP3ypXOLWvBAumHH5wrP8RIFsL/uKihqkxvLNiPnJGX5/wy0u0fMNE+Ulgo3XZb5WM7b78tjRqVXWx2mD9fOuIIqXlz6dxzpbVrK//29tvS/vtLhxwijRuX+TL8fEPOsZvY++9Lu+4q7babdNRRiT83ZIj04YdSx47SokVuReeOX34xHQGqq63rAq/0WQiEyX77Wf0Qd+liPSYaFpxHMpds3bm5Xqv3VQjbkCwEECxc9J3l56RSbd59t2afOhdckH45q1bZE0+FW26RxoyxHo8eOtQanViyRoH7z3+kKVOkX3+VTjjB3uWGnZ/39YrBJm6+WSoosN4bMybx53/+Wbr1Vmf7zkPwpXr9rdgnsy0njLy2bkzH4+fztNdUjJz87bfSgAEmI4FXmD6+TeLcIolkIYB0hfnCgWBv/3iPHK9bl345FaMG26V6eb16Wf/fc0/s+5nEiuAaOTK9DsRnz3YulkwE+VwTRGwvmMB+54x+/UxHAC+YPl06/3zrh8eqT7WEAT+eSiJZCGQvyBUVr/+q4vX4vC7I+24m7Nqfrrgi83nfe0867TTpmmus0VKTmTAh8+Vk6qSTpPHj3V9uMn4+DzgV+4IF0rHHOlN2JjjXmBNv3a9f7+8boYrvxH6FMGK/h5veesvqe/yUU9Kbz83+cp2oS736qv1l+hDJQgCQqHzBG/vAmWdKH31kje529tmJP1dcLM2a5V5cFT791P1lOs3PyUZYVq+WJk82HYW/fPSR/WXadQ6tekyaOj5Xrzaz3NpwvorF+oApkYg0aJB06aXW4HheqEMmk+2x8t130pw59sTipg8/tPpl3rAhvfkeesiRcPwm33QAAFCrIFcG58+XHn5Y6tBBOuYY09GEW7yKnsl9b+TIxJ02X3ihu7Eg2Jy+yXH6ODrnHGfL97NE6/6CC6Ru3dyNJRPJ9k2nWkd++631w42XlJVJTzzBgD0Idp3YT55+WrrhBuv1q69aPzBU7x4maObPl/bYo3I61X3RyYHTaovh9NOdW3YI0LIQ/mf6oml6+fC/e+6RunaVBg82HYl7vP4LrFckGixl2DB34wC8avVq6csvTUfhXYnOtem2sshmWXbLyZH++Uf6v/9zpvwHHpBWrnSm7FRNmWKNGn3//VJhodUFxG23mY0JQKWKRGGFe+81E4dXVfQDPm6c1KaN2ViQMVoWAkgsTAkdL3zXHj2kiy92b3lO9fORDi891uqFfQCAJdXjkYF9knOz3yg3Pf20c/2nfvutM+Wm45BDpI0brdeffGKmj1q/MF2PcRt1FaRr+nRnyk22L/72m/X3vn2zHxwlbMe4h9CyEEB6TJyw06kY+bkStWmT6Qjcd+ed7i8znX0k0f5eUiJ9/rk0alRseWVl2cVWnZ/3Z8AOJSXaceBAtTnlFOUdcYRzNz1B5ceBTFautAaKOv30+K1GIxGpTx97lvXGG1L37larIC9dgysShRKJwmRIIgC1O+igxE+qOOnbb6URI9xfLmxDy0IA6fFS8iLslUQT39+uZVaU46VBCVLdt0tKpC5dpO+/t6a7dbNGMZakW291JjYklu05iT7APG3rUaO0wyuvWBOLF0sXXST99FPlB8J+HajNggXuLOfhh+1b1okn2v/DSzxDh8b2/7p4sTVgAQAESWGh9MUX2Zfz8svSEUekft19/fXsl1kbL92XBhAtC+F/nCScE6absIceqtmqoKTEuimdNs1MTKkoLbVaWJxwgulIwmPUqMpEoSS9/740aZL1+sknzcQEZOPXX01HkNAe1TuM//lnadmyyumhQ90NCPH162fftnAjUShJl1wSO12RlEbqvFBPLC42HQEQDkOGSO+8Y275ic43XjgPBRTJQgCoUPVGZ/16qXNn6V//kvbd10omek0kIvXvL911l/VIbCbzI3333VfzvXbtnOlsn20EN/z2m7Pl212RLyqy/i8rk+64w96yER5eeuwYmYlEpDlzTEfhLuoF9iLRlJ6LLjIdQU0cE44hWQgAFaq2MvjkE+nHHyunH35YKihwP6ba3HWX6Qj8x6mK4XffOVMugPj+/NN0BABMCms3Eps2WU+9LF/u3DLCum6RXDo/stidxCMp6DqShQCCL5OLy3nnxU5v3Ch9/LE98cCbvFgJOeAAd5bj51/W/Rw7EqvtePztt5rnaQDhUtEFSJj8/bd06KHWUy977CF99JEzyznqKGfKBeyUk0M90EEkC4FscYKq3caN0k03SR07StddJ23Y4NyynEz4uLGtS0ulF1+UHnjAbF+J69ZZ2+qUU6zRIu3mxcRcvJhMH9+bN7uzHC9uD9NMb/sgsXv/WrDA6iLCSwMkwT2cr7yDbeG+zZulP/6wXhcUSHff7cxy1q93plyvYR8GEmI0ZPgfN3Te17u3NGCA9Xr8eKluXenxx42G5FmXXlo5eli/ftb6atPGmWUlqyBdeGHlr9WffCJtuaV02mnOxAFk47LLTEcAtz34IIMahFlJiekIAO/480/rR/l69UxHAsRy4x6dZK+jaFkIID2ZnJT79ImdfuIJe2KJx8kLkxsXpIpEoWR14t+7t/PLrG7jxpqPtVQkZIKcnKfC4U9r1piOIHPsc5kZOdJ0BDCJvtSAWEGumzmNUdCdY3cdh9GQXUeyEEBinHzNGz5c6tLF3WXG67x45Up3Y/CKsBwDYfmeXvP776YjcMc335iOAACAWGVlUq9epqNAbWqro/LDq2NIFgLZ4gTlfX5PhATxRtvP28TPsSdCZbkmN87tjz7q/DJMmzw5dqR5AAC8YOFCZ/tRB3yOZCEApMpriWE7klaffmoNFNClS2qtnLy2DuyU6ncL4jpYsMB0BAiqO+7IbL4gHmcAAPjd8uXSrFnWoIxuSlQvCOKP+B7BACfwP24onOPHdWtHzPEeww2iOXOkk06qnO7SRVq61Fw8AILns89MRwAAAOzSooXVr7oXkCh0FC0LAaTHSyflVGNJN4G4cWN2y/OLe++NnV6zRho61EgovlBSwgisYRK04x0AACBbXkkUwnEkCwGkx4+tDYMq223x448135s1K7syU2WqBejo0bEjTqeisFA6+2ypbl1pr72k8ePTXy4AAEET5h9VioulH36Q/vrLdCTUzRFekUi4z0MOI1kI/zN9gjC9fCcF+btlIiyVsbFjTUeQmq5d0/v8vfdKRx8trV8f/++Jtu+bb1qjUkci9O0HAEDYrVkjdeokHX64tO++Ut++piMCvMfu+6ZE96VhuT8zgGQhAIRVvIvrb7/F9mNYnZcSyN99J/36a2qf3bhReuih5J+Jtz5ycqSnn04/NgDZofIPJ40YYToC+NmHH1Y+ZRCJWPULk6PqeqluBiAwSBYCQFjFuxn//HP348jG6NGpfW7+/MzKLyqS/vwzs3kBAN4zcKB08snx/3b33e7GAn+65JLY6cLC2n+QBMLGrSQ2yXLHkCwEwuymm/wxYEM6LUycbI1CS5dgY/sCQPBdc03ivz3yiHtxIFj69JEGDzYdBeAdr71mb3nU011HshAIswEDpC+/NB1F5pz6JSnRxWjpUmeWF0b8CggAgL9x8x7rhhtMRwAET7J7Bu4nHEWyEAi78883HYF/pNo/nlu4QHKjAv8ZOdJ0BAAAJ6xbZzoCIFy4D3AUyUIg7NauTe/zYT4pDxtmOgJ7hXlbxsP6gBtuv910BAAAAP5CIwnX5ZsOAMgaN/jO4aQMp9h13LKPwm/++MN0BP7AtR1A0K1ZIz39tNV/eMuW0vLlUufO6ZfD+TIzrDcgKZKFQLZIVpjDRd597O8AAIQbdYHslZZKHTtKM2bEvp/P7TkAb+AxZPgfFRYgM0FIttr5HYKwPuAPb71lOgJA2n130xHAr7heZm/EiJqJQkkqKXE/FsDPyAU4hmQhkK0gV5i8/t3cHg3Za7KN0y/fEwia226TyspMR4GwmzfPdARAeH32mX1lkSzJDOvNX7hvcR3JQgDp4cIaXoWF/v3Fu6DAdATwGyfPdf/8I915p3PlA4AbqBNmjnUHwONIFgIAUtOokdShgz1l3XKLlTDJVqqV7Zdfrv0z/GKJqvbf39q/jjlGWrbM/vL797e/zCDheAQQZCQLgfRwzLiOZCGA9PjtBq6oSPrrL9NReJPJbfnhh9KBB2ZfTqrf4fnn7SsL4bB4sfX/qFHSgAFGQwEAT+GmPXusQwAeR7IQQGJer8isXVv7Z849N70y//xTuuGGzOJxm9e3T22WLDEdAZCaPn1MRwAA3sGPa9nzex0OcAvHijGMzQ7Av957L/nf16yxWrCl4+CDpY0bM40IfsbNDwAAcIOdCRDqLwgzkomOoWUh/M/0BZITlLcsXVr5euXK9OcPU6LQ9LFjB44/AADgN9RfzGrXTtptN9NRAJ5GshBAsJSWmo7APWFKbCaSSsLz88+djwMA4H2vvmo6gmDIyZGmT5dGjzYdibdNnCi9/35lH7hVkSw0a9Ik0xHADkFo+OBhJAvhf1xskUjQ940zzjAdgT9cdZXpCBAEf/9tOoJwWbtW2rTJdBQImksvNR1BcFxxhekIvOmtt6z/e/eWDjjAqqvtv7/0+++xnwt6HRVwC8eSY+izEEBwBf3iEe+XatQ0f35qn+PXSSTTtq3pCMLl0EOVt912pqMAEM/GjdJ335mOwpsuucRqtda/f+V7q1ZJjz4qDRliDe72+efSl1/at8yg13eBRHJyqL87iGQh4BfjxllJjyOPlHbYwVwcfjohU3lKzk/b0g2sDySzapXpCEInp2oftAC8o6TEdATeVVwcmyisMHSo9OCD0r/+JS1f7n5cQBBRd3cUjyEDftC/v9Spk3TeeVbrlmnT3FmuV5JtXAicwXoFAABwx5NPkigE4BskCwGvKy2VevasnF6xQnriCXPxeB0JMGSKfQcAgNp55cdkv3n2WWfKpf7innnzpOuvNx1FKOWUlSX4A+cjp5AsBLxuzZqa7738sjvL9krlI9MRjrl4JOeV7euU6p2J1ybo6wMAADtQv0IYrVsntW8vPf206UhCqcXDD5sOIXRIFgJIjxMVxO+/l15/XVq4sObfVqyQjj46s3KpzIbbxRebjgAAgODhxzWE0cCB8RtxwFk5Oe51wYUYDHACwKxHH5Vuv916vfXW0rffxo46+tpr1uAuqcrJkUaPlmbNkvbe29ZQ4TOTJtk72iAAAADC6b33TEcQWjlffJH4j249cRdCJAsBmFNWVpkolKTVq6V+/aS33qp879Zb0ytzzpzMWyIieI47znQEAAAEC09uAHDL4sXKffTRxH9/6in3YgkZHkMGkB47Hz3ZtKnme0OG2Fc+kuMxolisDwAAalf1R10gLKgnmjFxonIYRdwIWhYCXmfy19t0l/3339KwYVKzZtL550t5ec7EBTiBSiAAALXLdOA5AIBvkCxEuEUiVku2BQukU0+V9t3XdET+tWCBNULYqlXW9Jdf0krQ60iOxWJ9AAAAIBOjR5uOALAVjyEj3G66yWoBd9dd0sEHSxMmmI7Iv554ojJRKElDh0qLF5uLB+Fw552mIwAAADBnyRLTEYRDbT8qn3uuO3EALiFZiPDatCm2Q9SiIqlXL3Px+F28zmV//939OIBM0bIQAAD4Tb9+1v8bN5qNI6jGjo1tEJHIsmXOxwK4iGQhwiveSf/TT92PA4A3kCwEAAB+88kn1v8jRpiNI6j+/W+pbVtpyhTTkQCuIlkIZMvkACRVTZ4sjRwpFRQ4uxwSKsHBtgQAAAiGs84yHUFw/f23tHmz6SgAV5EsBLwulWTkE09I7dpJXbtKBx1kX1+B2SZCkyWjNm3Krmxkb80a0xF4C8lTAADgN6Wl0i23mI4CQMCQLIT/eaVlnynFxdI991QmOmbMkAYPTq+MdH4pGzrUWue77y6NH5/ecqr617/o2wMAAADIxpIlVsMBALARyUL4X9hbA/31lzU4S1V3351eGVtsIV1xRc2k4ciRieeZN0+69tr0llPV779Lb72V+fyA3cL+wwMAAAAAiGQhwswvSUa34nzpJenzzyunv/669nl++UUqLMx8mekmNQEnlZWZjgAAAAAAjCNZCKDSeedVvk611SAJFgRFaanpCAAAAADAOJKFQLYiEauvkG7dpP33l+66y+pH0I5yH31U2mab7MtKVdVWgtOmubdcwAsef9x0BAAAAABgXL7pAIBAuPJK6eOPrddTpki77CJddVV2ZU6dKt1+e/axAQAAAAAApIiWhYAdKhKFFa6+OvsySRQCAAAAAACX0bIQyJZTI6guWOBMubXp08e+QVX8MogMAAAAUJvnnjMdAQC4gmQhgFh33WU6AgAAAMB77Hh6CAB8gMeQ4X9Otezzi7B/fwAAAAAAYBuShQCyw6PGAAAAAAAEBslC+B/JKgAAAAAAAFuQLAQAAAAAAAAgiWQh4H+0rAQAAAAAADYhWYjwIslmnyVLTEcAAAAAAABsQLIQyJaXRyNes0Y691xpxx2dW8agQVKLFvH/RkIWAAAAAABfyTcdAAAHPfqoNHSos8u44w5p82ZnlwEAAAAAAFxBy0L4n5db9rkh2fd/5BHnl0+iEAAAAACAwCBZCAAAAAAAAEASyUIge071yxf2FpMAAAAAAMB1JAsRXsXFpiNIjsFBAAAAAACAy0gWwv8yTaq9/ba9cQAAAAAAAPgcyUKE1x13mI4AAAAAAADAU0gWAnAOj1IDAAAAAOArJAsBv2MgFAAAAAAAYBOShYBXpZoEpPUeAAAAAACwCclC+B8t64Jr5kzTEQAAAAAAECokC4FsOdWyLwgtBrP9Do8+ak8cAAAAAAAgJSQLATine/fs5n/pJXviAAAAAAAAKck3HQCAANu8Wfrzz/Tnu/9+6fffbQ8HAAAAAAAkR7IQgLNefDH9eR54wP44AAAAAABArUgWwv+83rffu+9Kf/whde4sde2a+nwM3AIAAAAAAFxGn4VAth55JPHfnnxSOuss6eGHpWOPlYYOtX/5iZKKPXvavywAAAAAABBoJAuBbK1YkfhvN98cO92jh7OxVNW/v3vLAgAAAAAAgUCyEP7np8d1161L/bNef7w6VfPmmY4AAAAAAACkiGQhAGd9/LHpCAAAAAAAQIpIFgJe5acWkwAAAAAAIBBIFgJ+F5THlQEAAAAAgHEkCwEAAAAAAABIIlkIAAAAAAAAoBzJQsDvSkpMRwAAAAAAAAKCZCH8L+x99l1xhekIAAAAAABAQJAsBPyspET65RfTUQAAAAAAgIAgWQj/y8kxHYE5xcWmIwAAAAAAAAFCshDwgsJC6x8AAAAAAIBBJAsB0/r1k7baSmrcWHrgAdPRAAAAAACAECNZCJi0cKF0xx1SaalUVibdf780c6bpqAAAAAAAQEiRLARMeuSRmu/de6/7cQAAAAAAAIhkIWDWmjU131u92vUwAAAAAAAAJJKFCLIPPjAdAQAAAAAAgK+QLIQ/jBwpHXyw9W/kyNTm6dZNeuutmu+vXi2ddpqt4aWlXj3pX/+S5s41FwMAAAAAAEAcJAvhfStXSiecIP32m/XvhBOkVatSm/e//6353jPPSB99ZG+M6di0SfrpJ+mee+L/PRJxNx4AAAAAAIByJAvheblPPimVlFS+UVIiPfZYajNv2lTzvV697AksW0OGmI4AAAAAAAAgRr7pAIBaTZ1a871p09yPwy0jR0rNmlktKmtDK0QAAAAAAGAjWhYCXpRKohAAAAAAAMBmJAvhT7Sos+TkmI4AAAAAAAAECMlCeB8JMQAAAAAAAFeQLAQAAAAAAAAgiWQhgmDZMtMRAAAAAAAABALJQvhT1T4L+/UzFwcAAAAAAECAkCyE99XWZ+H337sThxcVFpqOAAAAAAAABAjJQvifn0dGzmbwlr/+ktq1sy8WAAAAAAAQeiQLAZOySXQ+9ZS0eLF9sQAAAAAAgNAjWQiYtHZt5vM+/7x9cQAAAAAAAIhkIWDW55+bjgAAAAAAACCKZCEAAAAAAAAASSQL4VdV+/rLZpAQAAAAAAAARJEshPeRDAQAAAAAAHAFyUIAAAAAAAAAkkgWwq94DBkAAAAAAMB2JAvhfbUlA6smDgEAAAAAAJAxkoXwP5KFAAAAAAAAtiBZCO+rLRnIY8gAAAAAAAC2IFkIAAAAAAAAQBLJQvgBLQcBAAAAAABcQbIQ/jRihOkIAAAAAAAAAodkIfyroMB0BAAAAAAAAIFCshDel+gx5BdeSP53AAAAAAAApIVkIfxryRLrf5KFAAAAAAAAtiBZCAAAAAAAAEASyUL42bvvShs20HchAAAAAACATfJNBwDUKtFjxvPmSR07plbGmjXS7bdL8+fbFRUAAAAAAEDgkCyE90Uiif82ZUpqZVxwgTRihD3xAAAAAAAABBSPISP4NmwgUQgAAAAAAJACkoXwvmxHOy4qsicOAAAAAACAgCNZCAAAAAAAAEASyUIAAAAAAAAA5UgWAgAAAAAAAJBEshB+kG2fhQAAAAAAAEgJyUIAAAAAAAAAkkgWAgAAAAAAAChHshDex2PIAAAAAAAAriBZCO+LRLKb/9tvbQkDAAAAAAAg6EgWIvgWLjQdAQAAAAAAgC+QLAQAAAAAAAAgiWQh/IA+CwEAAAAAAFxBshAAAAAAAACAJJKFAAAAAAAAAMqRLIT3ZfsYMo8xAwAAAAAApIRkIQAAAAAAAABJJAsRBqZaFi5fbma5AAAAAAAAGSJZCDhlwQLTEQAAAAAAAKSFZCGCb+ZM0xEAAAAAAAD4AslCBN9LL5mOAAAAAAAAwBdIFiL4Nm0yHQEAAAAAAIAvkCwEAAAAAAAAIIlkIfzA1GjGAAAAAAAAIZPv1oKeeuopDRw4UDvttJO+/vprR5bxzz//aNiwYRo7dqzmz5+vjRs3qnnz5tpjjz10wgkn6IQTTlD9+vXTKnPSpEkaPny4fvnlFy1dulSRSETbbbed9ttvP5166qnq3LmzckhmIR72CwAAAAAA4DOuJAsnTZqklxweZGLYsGHq27evioqKYt5fvHixFi9erLFjx+rFF19U//791a5du1rLKy4u1oMPPqi33367xt/mzZunefPm6dNPP1WnTp3Up08fbbvttrZ9FwAAAAAAAMAExx9DXrhwoa6++moVFxc7tozBgwfrvvvuiyYKc3Jy1LJlS3Xo0CEmiTdv3jxddNFF+vPPP5OWF4lEdOONN8YkCrfYYgu1bdtW7du3V6NGjaLvjx07VhdddJHWrVtn87dCFC30AAAAAAAAXOFosnDGjBk677zztHz5cseW8ccff6h///7R6UMOOURfffWVPvnkE73xxhv67rvv9PTTT2vrrbeWJBUVFenqq6+u0QKxqldeeUWjRo2KTp977rkaN26chg8frmHDhmncuHG66aablJ9vNcycM2eO7rrrLoe+IQAAAAAAAOAOx5KFH330kc4++2wtXbrUqUVIkvr06aPS0lJJ0n777aeXX35Zu+66a/TvOTk56tq1qwYPHqyGDRtKkpYsWaLXXnstbnmrVq3Ss88+G50+55xzdN9992nLLbeMvlevXj316NFDvXv3jr43cuRITZgwwdbvBp+LRExHAAAAAAAAkBbbk4VLly5Vz549dfvttydtvWeHiRMn6o8//ohO33vvvapXr17cz7Zu3VrXXHNNdPq1116LJhmrevfdd1VYWChJatKkiW6//faEyz/jjDN0xBFHRKdfffXVNL8BAAAAAAAA4B22Jgufe+45HXfccfrwww+j7+2xxx7q0aOHnYuJ+uyzz6Kv99xzT7Vv3z7p588888zoo8OrVq3S+PHja3zm888/j74+/vjj1aBBg6Rldu/ePfr6u+++04YNG1KKHQAAAAAAAPAaW5OFgwYNikmWnXXWWRo+fLhatGhh52Kifvzxx+jrww8/vNbPb7XVVmrTpk10+ptvvon5+5o1azRt2rTodKdOnWot89BDD1VeXp4kaePGjfrhhx9qnQchwcAsAAAAAADAZxzps7BNmzZ644039NBDD8WMHGyn4uJizZkzJzq93377pTRfq1atoq8nT54c87fp06crUqWfuVTKbNCgQUwfidXLBAAAAAAAAPwi387COnTooG7duumoo45SjsOtqhYtWqTi4uLodKqtF3feeefo6wULFsT8bd68edHXdevW1Q477JBymXPnzo1bJrKTW1Cg3GHDTIcBAAAAAAAQCrYmCwcOHGhncUktX748Zrp58+YpzVf1cytXrlRZWZlyc3NrlJlqedU/Wz0uZGfPJAPMeN6UKaYjAAAAAAAASIsjjyG7Ye3atTHTjRs3Tmm+LbfcMvo6Eolo3bp10ek1a9bE/Vxtqj5qXT0uZC5/xQo1jjMIjW9cdJHpCAAAAAAAANJia8tCN23atClmul69einNV6dOnYTlbN68Oe3yJOuR5XhlmFBSUmJ0+XYoLS2VJNWllSYAAAAAAHBREPIq2fJtsrD6xqt4lLg2+fmxX7kiMSUppg/EVMurXqbJnaqsrEwTJ040tnwAAAAAAAA/I6/i48eQqyfzysrKUpqvejKvakvDvLy8tMurXmb1losAAAAAAACAX/g2WVi/fv2Y6eqPJSdS/THhLbbYIvq66qPHqZZX/bNVywMAAAAAAAD8xLePIW+11VYx0wUFBSkNSlJQUBB9nZ+fHzNPkyZN4n6uNoWFhXHLcFtubq72339/Y8u3S2lpqWZ89ZX2uv5606EAAAAAAIAQadeunekQsjJ58uS0npaNx7fJwu222y5mesWKFdphhx1qnW95lUEzmjZtqpycnLhlrly5MuVYqpbZrFmzlOdzQvU+Gf1q93vvVZ3Vq02HAQAAAAAAQiQoeZVs+PYx5B133DGmf8CFCxemNN+iRYuir3fbbbeYv7Vo0SL6esOGDVqxYkVKZVZd9u67757SPEhixQo1okNRAAAAAAAA1/k2WVinTh21bNkyOj1t2rSU5qv6uX322Sfmb/vuu29MS8NUyiwsLNSCBQui061bt04pDiRR5bFuAAAAAAAAuMe3yUJJ6tixY/T1Dz/8UOvn16xZo6lTp0anDz300Ji/N2rUSPvuu29aZf7000/RZ8Hz8vLUoUOHWucBAAAAAAAAvMjXycKuXbtGX0+ZMkVTpkxJ+vl33nlHJSUlkqwBUg477LAanzn22GOjrz/++GMVFRUlLXPo0KHR14cddpgaN26cUuwAAAAAAACA1/g6Wdi+fXvtt99+0ek777wz4SjG06ZN03PPPRedPvvss1WvXr0anzvjjDNUv359SdagKb179064/OHDh+v777+PTl944YVpfwcAAAAAAADAKzybLOzSpYtatWqlVq1aqUuXLgk/17Nnz2g/gzNmzNAFF1ygv/76K/r3SCSir776ShdffLE2bNggSWrevLmuvPLKuOU1a9ZMl112WXT6/fff1y233BIzOvLGjRv1/PPP67777ou+17lzZ3Xu3DmzLwsAAAAAAAB4gO/Hg+7YsaNuuukmPfHEE5KkqVOn6tRTT9Vee+2lpk2bav78+Vq6dGn08/Xq1dOAAQO05ZZbJiyzR48emjx5sr799ltJ0ogRI/Tll1+qVatWqlu3rmbOnKn169dHP7/zzjurX79+znxBAAAAAAAAwCWebVmYjiuvvFL33nuvGjRoEH1v1qxZGj9+fEyicPvtt9fLL7+sgw8+OGl5+fn5evrpp3XmmWdGWy0WFxdrypQpmjBhQkyisH379hoyZIiaNm1q87cCAAAAAAAA3OX7loUVzj//fB199NF65513NGbMGC1atEgFBQVq1KiRWrZsqaOPPlpnnHGGGjVqlFJ5devW1cMPP6zu3bvrgw8+0E8//aSlS5dq8+bNatq0qdq2bauTTjpJXbt2VW5uIHKuAAAAAAAACLmcSCQSMR0EMvf777+rrKxMkpSbm6v27dsbjih7JbNnK3+vvUyHAQAAAAAAwsbnaTI78kQ0iQMAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkILyofgRoAAAAAAADuIlkI7/F5Z6IAAAAAAAB+RbIQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIbyIAU4AAAAAAACMIFkI72GAEwAAAAAAACNIFgIAAAAAAACQRLIQXsRjyAAAAAAAAEaQLAQAAAAAAAAgiWQhAAAAAAAAgHIkC+E9DHACAAAAAABgBMlCAAAAAAAAAJJIFsKLGOAEAAAAAADACJKFAAAAAAAAACSRLAQAAAAAAABQjmQhAAAAAAAAAEkkCwEAAAAAAACUI1kIAAAAAAAAQBLJQgAAAAAAAADlSBYCAAAAAAAAkESyEB6UM3Om6RAAAAAAAABCiWQhvGX1auUdd5zpKAAAAAAAAEKJZCG85amnTEcAAAAAAAAQWiQL4S0ffWQ6AgAAAAAAgNAiWQgAAAAAAABAEslCAAAAAAAAAOVIFgIAAAAAAACQRLIQAAAAAAAAQDmShfCWSMR0BAAAAAAAAKFFshAAAAAAAACAJJKF8JqcHNMRAAAAAAAAhBbJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoXwGkZDBgAAAAAAMIZkIQAAAAAAAABJJAvhNYyGDAAAAAAAYAzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEN6yaZPpCAAAAAAAAEKLZCG8Zdo00xEAAAAAAACEFslCAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAAAAAAAAoBzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAciQLAQAAAAAAAEgiWQgAAAAAAACgHMlCAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAAAAAAAAoBzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAwGt22cV0BAAQWiQLAQAAAADecdll0pgxihx+uOlIACCU8k0HAAAAAABA1EsvSZJKR49Wfr16hoMBgPChZSEAAAAAwHvy8kxHAAChRLIQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAACAINp2W+nQQ01HAQAA4DskCwEAABA8ixZJP/5oOgoAVd16q+kIAAApIFkIAHY64gjTEQAAAHhTnTqmIwAApIBkIQAAAAAAAABJJAsBwF6RiOkIAAAAvKljR9MRAABSQLIQAAAAAOC8nXYyHQEAIAUkCwEAABA8OTmmIwAAAPAlkoUAAAAAAOfRXQsA+ALJQgCwEy1ZAAAAAAA+RrIQAAAAAOA8flQFAF8gWQgAAAAAAABAEslCAAAABBEtmAAAADJCshAAAAAAAMCE/HzTEQA1kCwEAAAAAAAAIIlkIQAAAADADXQPANTEcQEPIlkIAAAAAAAAQBLJQgCwVyRiOgIAgERLDcCLqCcBgC+QLAQAAAAAAAAgiWQhAAAIgg4dTEcAAKgNLX4BwBdIFgIAAP8bOFDae2/TUQAAAAC+R7IQAOzEL+aAGQcdJM2YIY0ebToSAE5r1sx0BMgU9SSgJo4LeBDJQgAAAAQPN1/m/Pe/zpZ/0knOlg8AQMiRLAQAAABgn3r1TEcAryKJDwC+QLIQAIAweucd0xE4IxIxHQEAAJk57DBpiy1MRwEAJAsBAAils84yHQEAIGxoWZjYjTdKn35qOorUMagYEGgkCwEAAADYh4QQkL4nn5SaNDEdRep22sl0BAAcRLIQAAAEB0kKVGBfCC62LQAAjiJZCAAAgoM+CwHAcu21piNAJuIlw6++2v04AIQayUIAsBOJCgB+0aiR6QiQSLNm0g47mI4ic15u+XfaadKKFaajcF7XrtLdd5uOoiYv7xte1qaN6QhqYlsCgUayEAAAIIwmTDAdARLJzZV69zYdhXdlk6R4/32pXj37YvGizz6TvvxS2n5705EgE/zwDMADSBYCAACE0W67mVlu8+Zmlus3l11mOoLg2WUXK9EY9BZRXk42BX3dO4X1BsBlJAsBwE5U5gCzvHyTDISF09dCrrUImpNPNh0BAMQgWQgAAAD3hD3Rc9xxpiNwXti3sWleXv9ejs2khx4yHQEAxCBZCAAAgoMbUXgdrV+B5Lp0MR2B+9q2Tf53zhuA/U480XQEnkayEAAAAEB4BP1HBb8nlho2NB2BWYn2z7w8d+OAe4J+TvKic8+VBg82HYWnkSwEAADB4febZLf8+9+mI0CQceOLbIT9PJ7o+w8d6m4cgCQ1amQ6Avudc4701ltSs2amI/E0koUAAPjBCSeYjgBB8txzJHRMCUMipHVr0xGEm5ePbS/H5mU5OdQDYMZTT5mOAIaQLAQAAAiT0aOl/fYzt3ySBcF2xBHSRRdJW27p3DLYhxBGYX88O8w++MDMcq+6Sjr9dDPLhnEkCwEgHZ06mY4AqOnJJ01HAD8xPXgAiZ5ge/xxqV496euvrcThYYdJX3xhOipLxb4X9H3QyUQtAPeddpqZ5XIuCbV80wEAgK+ccYY0dmziv4fh8TJ4T8uWpiMAYCc/XUuGDpU+/lhauVK67jrpwAOt9w8+WPrmG2eWGfRkXzZ22UU6/HDTUSTGtgP8g+M11EgWAgDgB9deK332mekogOz5KRHmhBtukL76ynQU9tlpJ2nIENNRoMKbb3KD7zfnn286Am/KzZXKykxHAYQWjyEDQDrCfpMLc7p2Tfw3bgwB/zj2WKlDh+Sf4ZhGJl5/Xerc2XQUyeXkSE2bJv/MAQe4Eoon7L23dOedpqPwnm23lX78UXr+eX4oBQwhWQgAgB/k5VkDUyA5Evrwurw86fvvpWHDTEfiXzk51iPP6ao4P5CMNeuFFxL/rU4d6eab3YvFpMWLpUmTpH33zb6s//u/7Mvwkpwc60eVK6+s7NoAgKtIFgJAOmq7weAGxD+aNDEdQfrq1jUdAZA9zpPWsdy9u+ko/C0srbH22MN0BPY780xpxAgr4fvcc9K4cVayq3Nnq5/Lrbc2HaE7dtjBGgzIDiZ+KONcHnxB3cb8sJwS+iwEAITTvfdKt9xiOgr/ycuTSktNR4FE9t9fmjzZdBQIExM3k8cdZyVawuD116VOnUxHYb8TT7T+Vfj2W2OhwINI5gDG0bIQAAC/SHRT7ubNelhu0P0qiEkFYNttK1/vtZd0yinmYnGbl0c2zkRQWyqFkVcTerX1CYvURSLBPGaD+J0cQLIQABBOiSoKPXu6G4cfefkR7oYNTUdgVl5e6p/1c2V5yy1NRwA3/fGH9dhxr17S+PHp7efx+HnfB8KgTp3M5mvQQHrgAXtjiYcRrIONH8YlkSwEgPR49VdU2Of2201HkJhX9r/hw2On99lHGjDAerR7/HgjIUUdeqi0005mY0BydiRqBg3KvgxYrrkmu/ndSLztsIP0yCNWEiAs/dkFFYna2mVyrc80ueZVu+2W2XyTJlndFDjl0EOlSy+VnnnG3nK9elx4Na5s1XaMeflewEUkCwEACKvOnTOb76ijrNEsDzzQqpR/8ol0ww1S797mO+PPzZVefTX1z2e6DmBWUG9gTOjYUdpuO9NRuKNivykrMxsHYLd+/dxfppPn4UzL3nNPe+Oo7scfrR+rttrK2eXArG22MR2BJ5AsBIB0cIPqHXvvnd38iX5V9OM2zjTm/v0zX94VV0i//SZ9/nls5dwL6++YY1L/7HXXORcH4BfZtNbzwjGfLq+00q5NgwamI7CfH/cXt2Wyjg48UDrvPPtjMaXqMco+k9hzz0nPPms6iuBhn5NEshAA4Fe5WV7CqAhYLYqGDUtvHr/cZKfi9NODtx8Eafv4yWGHmY4gc4k6sL/ggtTn95v69aV27UxHUTset0d1J50U//2cHOmNN9yNBeYddlhqLcMbN858GX48x9cmaHU/h5AsBAA7BfGC6lXZXuipKFj8nOTIFjfiZthx7HntXDtunOkI7Bf0c+QTT0jNm5uOIrn//Md0BPYL+n7ltLvvTvw3t9etk+dh9pPUnXpq8r//73/S2rXSrbemX3ZQt4PX6hAeRbIQAOBPYbzQO1FpS/dm2c8Vxy22qHx9223+GSghnVa0ftg+fojRND+d3/y6Pbt0kebPl5YvNx1JfJ06mY4AXnTooaYjgNfk56f2uTvvlM44w9lYECgkCwEgHX66gQu6vDxnym3SxPkOsr2kXj3p5ptNR+GOX36R+vSRhg410xk8LHacR/2aoLLD9tszUqNd6teXmjWzr7yTT7avrExQRwkGv2zHMJ+H7fbCC5nNl842aNpUevfd9JeR6v64++7plw1PI1kIAHai4uSeunWlI4+0v9ycHOnhh60kml9ku9899lhmFUi/2X9/6Y47rEf7OFbhZcn2z333lXbayb1YasOxZGnSROrZ03QUCKqwHWdNmpiOwF3dulmD1DjBreRzmLu1CSiShQCQjrBV1rzu5ZcznzdZ5al7d2nWrMzL9pucHB5Ngb+E+Vy81172lxmW9enUTfMJJ0hTpkiHH+5M+anyw3b0Q4wwr29f0xG4q1Ej6ccf05/P6URgOsfrgw86FweMIFkIAPCvPfawWhg6wUstd/yEG0HUhn0kO716mY4A1R17LNeMMJgxw9yy/fJocqb69q3sXqZnT6sFddg4VZ91S5AeQ6aeIolkIQB4w+GHSxdfbDoKf3FjNORrrsluGYCXURn2p5128lbigP0omOugY0dnyvXTuqqasDr7bGnvvaWttnJ+uX5aR3bp2VNatUpavdpKHIZxHQAeQ7IQALxg7Fjp1VdNR+EvbtwsP/SQdMEFsaPomrTttjXfa9mSSjUqOdXnkdewz9sr3vk0iOs4iN/JKYy6aw2KNXSo9PHH0rBhpqPxnmuvtbe8xo3j91XIcZudbAYEZN2HGslCAIC/OVmRadJEev11aepU55aRjr33lg46KPa9554zE4vX7bNP7PQxx5iJw03bbCOdd57pKGrnpVZxMOuxx6SddzYdBdzkp+RDgwbWgFgnn+yvuN1ievRvpLZf5pLyQWbYcwAgHdzkwrQPP7QGIzn8cOm116QuXUxH5E0PP1zZInTLLaV77zUbjxt+/NH/fR5Vs/KEE0yHEA7xbjjdSI7cckswbmSpG8BOftmf8vPprsUPsjmX+2VfhCPyTQcAAPCQpk2tX9IXLTIdifPy07gEullZys2VysoS/33nnaV333UvHr86/XTpjz+kv/6S2reXWrQwHZGz/vMfq+WpH6Rx41LmlS4AwmibbaxBpObMMR0JgsTvLfRMxe/V9VavnukIUJtsf5AhYRhaAfgpDwBc5NXKmp2C8B1vvDH53+vXtzor9yKTLQUbNza3bCe0bi2ddlrwE4V+E4RzjGl23rwlKisnR3rkEet8mQzbE/G89JLpCJLLND4SJ/CbbM7RQT2/X3dd8r9znEsiWQgA9vL7xcVPj4Mlq8C0apV83j59pEaN7I3HLo89lv48dlXmHnss+30gqBVLeAv7mTu6d5dmz5YmTjQdCdyW7TF22WX2xAGLV+uXnIu9z091ezd07Sr961+mo/AF9hwAQKXBg01HkLpkFefaKtU33GBvLHZ55x2pXTtzy7/8cum336QXXzQXA2riZix8vJAYqIhhhx2ktm0Tf479E2Hixv7up2PKC+cqJMdjyLE++6z2Y8xPx6CDSBYCgJ38fHE59ljp6KPNVQquu0566CEzy/aK00/PbD4797sDDrAe3QX87PDDTUfgLDvP0zk5/r52wV/Y1wB30bIwVl6e6Qh8w5EBTmbPnq1hw4bp559/1qJFi1RSUqJtt91WLVu21Mknn6xjjjlG+el0LJ+icePGacSIEZowYYKWLVum0tJSNW/eXAcccIBOOeUU/d///V/KZQ0aNEj9+/dPa/l5eXmaOnVqumED8JOg/bomSaeeKvXqZSWJTFYo+vSRGjaU7rkn+7JSuRlJZ1u6td2duInaaSfp77/tLxfecuqppiNwV7JjcvvtrfOJn7mZUAnidQ1wSr9+0pVXOrsMPx2TJH+9jz4LkSHbM3ZPP/20nn/+eZWUlMS8v3DhQi1cuFCjR49WmzZt9Oijj2qPPfawZZlLly7VrbfeqvHjx9f426JFi7Ro0SKNGDFCBxxwgPr27avdd9+91jJJ+gEIjVatpAMPNB0FgGyceWb68wRxVM8lS6Qtt7RGdQ+yZMmE3XeX5s51LxY/3UwecIDpCPzj8MOlAQPsL9dP+0s855xjrZdp09xdrlfXm1fjQiVaFiJDtiYLH3roIb3xxhuVhefnq1WrVqpfv75mz56t1atXS5KmTJmiCy64QO+884522mmnrJY5f/58nXfeeVq+fHnM+3vuuaeaNWumpUuXat68eZKkP/74Q2eccYZeeuklHXTQQUnL/euvv6Kv27Ztq8YpjBCZR5NWIPiCWCkK4nfyK69sC6/EAUttrUwefVRy4IkNT0u0j263nbtxeBH10cT69XOmXD+1BEvFrrtm3i1G0G25pfTrr9aTEHBn36dOkh36LESGbKtZfvHFFzGJwmOPPVa9evVSs2bNJEnFxcV6//331adPHxUVFWnFihW67rrr9N577yknwxNAUVGRevToEZMoPOKII3TXXXepRYsW0fdmzpyp+++/X7/++qsKCwt11VVX6eOPP9b2228ft9xNmzZpbpVfZAcMGJB1UhMpatFCmj/fdBSAv9x0k/Tkk5XTp50mffihqWjck+zakaxic+ONtofiaVSyg2/rrU1HAMnq9/XLL01HYZ8g3iC2bm06Am+7/HJpiy2ku+8m6ZxM0Fsuwz9SqeNRD0SGbGmTWlxcrH5Vfqk78sgjNWDAgGiiUJLq1Kmj7t2765lnnon2V/jnn39qxIgRGS/3rbfe0pw5c6LTZ599tp5//vmYRKEk7b333nr11Vd1eHln12vXrtWDDz6YsNzp06ertLRUktS4cWMShW7q1Ml0BID/3HyzdOih1utWraQk5zdPS7cyU3Ejm858++0nXX99+vP5uc9CtyuJfquUduxY+2cOOcT5OMLEjn3Eif0s21aJd99ttTqCvbbYwnQE4fHCC9LTT1v9fjrFK9eIICbD7bbXXqYjgB2yaVnIAFihZkuycOTIkVq8eLEk69HjXr16KTfBTtmpUyd17949Ov3qq69mvNwhQ4ZEX++xxx7q1atXwlaKdevWVd++fVW3bl1J0qhRozRz5sy4n636CHKrVq0yjg8Z4GQEpG/nnaVx46TCQmnKFKlNG9MRedcvv1j9eQEVdt5ZqlIviWv8eOn4492JB+YMGhQ7nW7y8N//liZPlj74wL6YTPJKnez11+0p59ln7SkHqbvjjtjpunWtQbeC4JRT3F2eieTmDz9IN9zg/nJhryoNuIB02JIs/Oyzz6KvDzvsMO24445JP181Wfjnn39q4cKFaS9z3rx5+rvK6I4XX3yx6tSpk3SebbfdVkceeWR0OlGrxmlVOqxtzeMKAKry6i/RubnWYzF29FvmlRtEJ3i9hUqm6z7TR7JhGTJEeuaZ5J95+mlavwfd8cdLjz8u7bOPdMQR0vDh6ZfRooXVFYTTvHRcO3XN6NRJ+t//pLPOyr6s/fazBqZwSlCum5l8j2TdIFx5pdX/YUXZffsGp3/VRx4xHYHzmjVzZpCbdHnpfOeE/ffPfN7a1s1OO0lV8h+OLCOIgnJOz1LWycJIJKKff/45Ol3xqG8yrVq1UvPmzaPTX3/9ddrLnV+tX7uOqTxGJKlNlRY3v/zyS9zPVE0W0rIQAODrilImsYetkpSbK11wQfLP7Lmn9P337sSD2tm9j771lrUf3HyzNHWq9M03VrcOfhSE4/f++63j7brr7Pk+48c727enn68Rmdp3Xyv5N3Fi4s/stpv19xEjpN9+s/pYDor99nN3eVWPA6//8InU1atnne+c0K6d9N57jIaMjGW95/z9999at25ddLpNio+/VU3CTZ48Oe3lVl2mJG2X4qMiTZo0ib6eFmfI+0gkounTp0enaVnosiBUcBFsYdhHw3jT47attrK3vGT7ZRj2WTt4eT3VFpuXY/eqyy+vbOF09NHuP1LoJdme8/2w/zEghf0uvVTq2VPaZZfkn2vSRDrxRKl9e1fCCoVXXomdNpmE9erxn0VXZ67680+pWzdnyv7jj9T6ZU7Gq9sXrsi6Hfi8efNipnetaGpei5133jn6esGCBWkvt379+jHTmzdvrvFePIWFhdHXGzZs0Jo1a2ISiPPnz9eGDRskSXl5edprr7303Xff6ZNPPtHvv/+uZcuWqU6dOtpuu+3UsWNHnX766Wrbtm3a8QMIKBJt3uDV7XDiiVaC4uGHk/ctefPN0hNPVE736JG8XAZVANJzzTXSffdJ69ZZLQj91vLCjXOcV8+jYXHssaYj8Kf//EcaNsx0FM4691xrtOqvvrJaeN54o/3LuO8+fyeKLr5YuuQS01HUbo89spvf6W3EdSDUsk4WLl++PPo6Nzc3ZgTkZKo+hly1jFTtsMMOMdPTpk3ToRWjgSZRvTXh8uXLE7Y2bNCggS644IIaLR83bdqkgoICzZ49W0OGDNHJJ5+s3r17qwG/WgKA+5zo588pCfrKreGee6S//7YGrjnkkNpHuD7oIGvglrlza/7Nz5V9ZKZbN+n9901H4X077ZR8sIWw3CQx2qX3NGxoPYKN9HTvLg0eHPxkoWR919oG58rURx+Fu7U1YoXlWogasv4Zde3atdHXDRs2TDgKcnWNGjWKW0aqWrdurcaNG0enh6fQCfX69es1evTomPeKiopipquOhLx+/fpoonDrrbdWu3btdPDBB2vbbbeNmeeTTz7Rueeeq/Xr16f9PQB4wNCh9pUV74bL7kdOYY90Kj9uV5S23tq62Vm40Er61PZDXE6O1edaor+5KZvl1ZYUdVKQkiWPPSYddljtnzP1nYO0rp0Sppuzxx+v+d6FF7ofRzbs2l6XXWa1iPrtN+oOmejVi/78avPdd9ao7ckG1UgnUdiwYfYxAfCkrFsWbtq0Kfq6Xr16Kc9Xt27d6OvNmzenvdy8vDyddtppev311yVZIxsfccQROvnkk+N+PhKJ6L777lNBQUHM+9WXXb3l4W677aY77rhDnTt3Vl5eXvT9CRMmqG/fvppY3qnvtGnTdPPNN+ull15K+7vYqaSkxOjys5VbWmrPEN1AGkpOPDHlk2Fpaanykvy9LBKpsQ+XnXCCcmtJSFYcu5mclOMd9+mUUxaJqKxKGXmSTNzKl5SUSCUlKcceiURUWlKivEikRryJtlNJSUnl44YJlhX3PJpGXMlULTvlZafqkEOU16CBcsq70qgQUfztmXRZSb5v2X/+E7O/1FBcnPG6KrnpJuWuXq3cqo9gpzpvtte/JN+5tu3mtETbsEJpaakiVb//LrtIY8ZI33+v/C5danze9Pcp+7//U255/S1TpWVliY/xahIea7XtM6WlKa+f6stNNl8q6z8iqTTJOSonybWotv2lutKSEuXGOY+WlZXFHOtJj48Ujr+E2+G445R3yCHKKR94sOyii1S2yy4Zl5kwRhvKSaTqMZhNWSXPPVdlIv3jtMa5IM140tmPS8vKkn5nu+5JStM9DlO8XtdWn4uWl0S2+02i8vO22ko51Z68K83Lq7FtM4mp5F//spYR55iXpLJzzqlxjU967J9/vvJtGKAj0zpJsnKcuL7ZXX6qx1xJsjprOvXZJMuIp+IeIZV5EsXoNams89KSkpSOt6DLensWFxdHX6faqlCS8vMrF53pxeSKK67Qxx9/rDVr1kiSbr/9ds2YMUOXXXaZtqrya9z8+fP1yCOP6Ntvv1WDBg2ifRLGi7lqH4zt27fXoEGD1DDOLyYHHnig3nzzTV111VUaO3asJOm7777T6NGjddRRR2X0fbJVVlYWTV761W6rV2sb00EgdCb+9ZcOSvGzixcvVrKuvAsLClS997jVa9bUul9XHLupxhFv3qrSKWfZ0qX6u0oZ+xcXq26Szztl0uTJitSrl3LsRUVFmjZxotrHqfAuWrxYLeLMM3HSpGirppyNG3VgvM/EWZ91Fy1Skt/gU1a17HjfM9tz+AFxEiibN29WvHYWyZaVt3atDkjwt8ldu6okyby5BQXKtBv7iX/9JZ17rlrMnKlmn3yS3rxZrrvcoqKEcde23VK1rkMHNR4/PosS4lu4cKFWxvn+jWbNUrzxfLP9PpM/+kh7X3ut6i1cmPRzib7v8s2bVXbxxdph8OAMlm6ZO3eu9orzfqrnwxkzZqgozvtV5a9apXYpxlN9uS1OOUXNPv641s8mWv8lpaWaNHFiwvPEdosXa+c4f5OsH/JT//ne2n+227hR1Xv+Xr58uRalEOuMWbNUlF/7LUXSc97TT6vx+PEq22ILFRx4YPIRdmspM57azg/ZHNeSVTdYlsV1vEKiOFMtc8GCBVpVrYx04qm+/GTz1vad7bwnSfU7TJ8xQxuLi1P6/KJFi+LWE6pyer9JVH7je+7R3jfcEJ0u22ILTWrdWmUprNPaYqpY5j4bNypeB1qzOnXS+hT3g4kTJypv3bqE9YV0JFvX+atXZ3Quznb7uFF+qsfcxATXg+nTp2tjaWlax+AuZ52lbVN4KlOSlixdquVTpqS0/hPF6DWprPN459IwyroRV9XWdmVlZSnPVzVBWKdOnYyW3bx5cw0YMEBblDc3Lysr04svvqjDDjtM3bp100UXXaTjjz9eXbt21bfffqv8/Hw9+uijMWVsUa2p+pdffqnvvvtOQ4YM0cCBA+MmCivUrVtXjz76/+3deZxO9f//8ec1m7GM0WTs6wxGiFCSpFS2DylLiT5Ki9KiQqHlQykkP5UPaftWH6nPp1JUH0rRHlGhxMcWLRQiEaIxy++PY85cZ2auubZzXedaHvfbzc11zpzrfV7Xct7nnNf1XqZbtnkhyF/KATiALnExx2VzF77cunV1zNuMjxHK7vciLyPD1vLiSW6tWtp38cX2F+xEl1Uf9vnzTTd5/Nsvt9yiH8ePt2U/kWjnbbdpf7duISu/ICUMP+mE871PStIfnTrpcPv20XlOjsaYY1GU1hclHerQQfu7d5ckFSQlaeftt6vAh4k87VDg4xj8vwwfHuJIIt+h005zOoSA6p5fbrhBv3ftGoJgnPP9fffpj9NPt628Qup0STYkC91nIHbvkuyNe/ffkgk7f5x11lmaN2+e6roNUJ2Xl6cNGzZo5cqV2r59uySpbt26ev7559W2rbXdQMlkoMvlUs2aNdW+fXtl+HBDlJGRoT59+pjLq1evLjUOIgAgyrlc+mncOKejcNxxtwnB4L/dw4bpx3vv1ZYnntB3/+//hX6HDt84/1XPU9s3w76BAwMvPMKTAvnp6fp+6tSQlf9bnz4qCPDH9pIKXS5ujFCmWE4IFUTw2IaFycn6fvJkrVu8WOuWLNHeSy91OqRS9gwdajyI47rjlxEjnP8eBXAuzK9WTdtLNKCKdnnVqmnrnDlOhxFzgu6G7N7d98iRIyosLJTLh0rDfezAakHefLRp00ZLlizRwoUL9d5772nTpk06ePCgMjIylJWVpT59+qh3796qWLGivvvuO8tz3WdlDlS7du30yiuvSDK6Zf/yyy/Kzs4Oulx/JSQk6NTyBquNAgm0WIED2rTxtXODVKdOHY9/K7j1VlUuo8n6ST7Ucf7EYOdzJalGjRqq7lZGYjharJShdevWkh+/nFesWFFt2rSRq4whMOp6mOG0TZs2xRe2Jcb2s2xT9h+Un5OjxCBaC3n7rIL9LMsaDiTZw4Vsufvav7/M1Yk33+w9xgAmLSsZU8JJJwX83IB5+D7YUrakgquvVvOicZWLWiPccYfX5xVmZnr8PIrUb9BA9cqK0cNnEezrOeWUU5Toww1SqxYtylyfWb26Tg4yhsaNG5e53tfX1qxZM8nbtr/+6nM8nvZb2KmTXCtWmMsFN97oU4xJSUketytaX/jQQ9KYMaX+XsGPMcQlqUG9ekoo4zmZmZk+fU4+vZce2HFsRcJ+6tSurdo27CPYOBs0aKD6dl5PPP648jt0UGIZScM6deqU+5rtes/z8/N93jYnJ0fyUO+4K2zUSPVvv12F06bJdeSIx+1C/b0J1/e/rH0merjeatKkiU/H86mtWxuTm5wYDsyuuMpUYvzGgMtxU9CjhxLefdfncsssv00bFZxzjhJatvS7HEnKf/ppn+P1tF1OTo7UqpVfzylSWLWqXH/8Ue42tWrVUg0fX58T3+ciWY0bq7BEozBPfImzYYMGauDg67HDt99+61fP37IEnSysWbOm+Tg/P1+///67Ty3y9rod9NW9zfLog5SUFA0aNEiDvEwhv2XLFvNxenp6ud2MfVUy/kBmd7ZLkg9jxkQ0P8a9BOziz3HjPvSCRUaGEsaMka66qtSffBnPNZhjN9jjPiExUQkRUHckJSVJfsThcrk8vnZPn1NSUlJxstBDq5xy388guwF5+6yCrsObNi011pcrI0P66Sf/9uXhbwk1a3r/rtjxXQ7gXBD0e1fO84Mue+1aJZx2WkDdOVw+JH4SExPLjr+84yAIluPI23ZlsKPOSfTw/DL3eckl0htvWLfLyvL+XfUjRo/v6cSJ0mWXGYnbRo2UMHKkT6/dVU6Z5vrRo6X//U969lnrc/1s6eOpvkxISPApVn/r7lLPDYNQ78fjMeinYOMMNo4y93/ddVIZycLEhITQ1psB8PW76HrySSWlpUmzZknXXFN+eSHk2HskeazDfX0Pk1JSjO1seg3lvheerr39LcdNwj33SCtX+v0DZ6nyfUhOl9KihTRwoBKvvtrn96/c84E/50N3I0ZIDz9c7ia+ngd82t+AAdLrr/tUlr8S/fgu+vIdsatOj3ZBZ2YaNrQODbvDy2DXRXbu3Gk+9vTrcCisX7/efJyTU9aw3/4r2f3ajgQkgCizbp3UoEHw5UycGHwZwYrw7n0oR8kuGOnpUjBdPeNJKLtSBTOuUSR28fI1pkiJ/f77Jfek6xVXSAG0Xg1I9+7S5s3SmjXGeeKUU+wtv6wf3O2qw6PtcwbK+y4OGyZ16ya9+KLUo4ex7uqrwxJW1Js1y7rcsWPQP5467pxzpG+/dWbfGzYY5yWSUfbh3iUkgk4W1q1b19KNeOPGjT49b9OmTebj5s2bB7z/w4cPa/v27T635vvkk0/MxyWboH7xxReaMmWKxowZo+uvv97nZpvuCVKXy6VatWr59DyUgQMdTvDnRsfTd9RDt1dJ/rWSuu8+acEC37e3A8dd7OjYUXrwQSktzfhO/vvfUiDdyp2++b/sMmf3Hy6hmOzEXSiPbafrDX++o61bS19+Kd1zjzR7thTELMwBqVlTatvWOC7tFspj1enPOBIVDSUQCtGefIl0zz8vvfee8WMB/Du+hw2Thgwxridycqw/TDp9vRCMKJ24ziKa339EPFv6fJ555pnm4xVu47J4smnTJu3bt89c7tixY0D7HTJkiNq3b69evXppgQ8311u2bNHWrVvN5a4lZgHauXOn5s6dq0WLFunjjz+2tEIsz6effmo+btq0qWUcRwCQyyWNGuX79v36hS6WeBGvN7kJCUZC5I8/pJ07pb/9zd7yw3VR2qNHcK3xosWUKVzoh0urVkYi/eabY6s1R7hbEca7xESjxXZJgXwOJX8sCHcSG/BVlSrSSy9Jf/0lbdpk/PiB+GD3uYE8SVSxJVnY/cTU7pL04Ycfas+ePeVu/5///Md8nJ2dHXB34CZNmpiPly1b5nX7J554wvLcdu3aWf5+xhlnWMZ5mT9/vtcy169fr+XLl5vLF4XyF8d4wMUqIl2g39EZM4xxpe680954QL3hjZ1jwYYrCZuQIC1fXrrrUyg58T1q0UJ6//3QtTAM1ecVr8n4aEGdGB3mzpWuv97oGvvUU1IEznhbLvd6oFcv69/OOSe8sSB6/OMf/j+HOs1Zdp7zJ0+2r6xQ4jsnycZkYY0aNSRJubm5Gj9+vPLy8src9tNPP7Uk4YYWTbsegF5uJ6avvvrKkrQr6bXXXtPbb79tLo8YMaLUAND169e3tHJ8/fXXtXLlSo9l7t27V2PGjFHhiQMoIyNDl19+ud+vA0AccLmMQbQj8SQZrydEPwbMjmrh/nztuqisVEm65RZ7yopkXbuWmnwjZnj6LsRrnYPo5+m7G8h3Oj3dSBK+956RNIzm4+Kuu4pbDFWpElhCCNHJ37H6J00KTRyIDmVMluTRLbeUOXEkwseWZGFKSopGjx5tLq9YsULDhw+3jOWXl5enV199VSNHjlR+fr4kqVmzZrrUw69o559/vnJycpSTk6Pzzz+/zG06duxoGXdw1KhRpVoY/v7775o+fbruvfdec12XLl08tgAcP368OUNOfn6+RowYoZdeekm5ubnmNgUFBXr//fc1aNAg/fDDD+b6+++/X1WrVi2zXAAICRtmk48Y4b5RSkkxEjXunn46vDE4JVyTO0STaL5Rj7bY7UgoR9trDpVIaOXJZ4FzzpHWr5fefdf4v1u30O+zrEnlYmEMunCx67hNSjKGPwmlSKjnIlW0vTcpKUZPK180acLwDA6zbdCWfv36ae3atXrllVckGQnD7t27KycnR1WqVNG2bdu0f/9+c/tq1app5syZQU0Z73K5NGXKFA0ePFh//PGHDh48qJtvvlm1atVSw4YNdfDgQW3fvt2S6GvZsqUeeeQRj2U2b95cU6dO1bhx41RQUKCjR49q0qRJmjFjhnJycpSQkKDvv/9ev/32m+V5EyZMsHTHBhCj7OzSGayEBOmf/3Q6iuhS8uL4mWeMFp/btxuzBl95pTNxhZu3i0s7W88U+eMPiR/U4CdXtN0IRQJ/j1NP73E0vPe33SbNnFm8XLGidPSodZtp00IfRzS8V3Yr+T2rV8/4Fy533SWNHSsdOmQs33yz0aoR4ffgg1KHDkaiONSJw3j26KPWMdBr1JBOOSX0+7W7frvmGunaa71vV1TH1K4t7dplbwzwia13vffff79GjBih5ORkSUYLvI0bN+rLL7+0JAqzs7P14osvKisrK+h9NmnSRHPnzlUDt1+Xdu/erVWrVmnTpk1motDlcql///568cUXleZlNrq+ffvq2WefVc2aNc11R44c0Zo1a/TVV19ZEoU1a9bU7NmzdQUzawHx4fTTpZNPtq4Ld2u0++83bo4+/VQaPDj48gK5CJgyJfj9RoLsbOnjj6UdO4yLsAoVnI7IfuFu9eNpf6GYCRaAPYKpJ5xsWXjTTcUJqsREY5zTu+4q/nvTpvZ2YysspCVlpGjRQvr6a2NM6JdfDu8Ytyitb1/p1ludjiL6XX21578NHiy1bm08TkoyunRH05A6gdadvrZEhO1snQ7O5XJp1KhR6tu3r1577TV99tln2r17t44ePar09HSdcsop6tmzp/r27auUlBTb9tuiRQstWrRICxcu1NKlS7Vx40YdPHhQqampql+/vs444wwNHDjQr4lUOnXqpGXLlmnRokX68MMPtX79eu3fv18ul0snn3yymjZtqgsvvFC9evVSZX/HagAQvZKSjFYKN90k5eZKnTsbLdLCqWNHKZQtmX05mdONFbEmkhMA3mILd6umSH6v4L9o/jybNZO++Ub68kujC2qLFsb6Pn2kvXulCy6gtVksy8qS3IbCghddujgdAbyZOlV6/vmy/1azprRqlZEkz8w0fvCOBz16KH/aNCWOG+d0JHHH1mRhkezsbI0bN07jgvhAP/jgA7+2r1Chgi6//HJbJxhJSUlR//791b9/f9vKBBDlXC6j6XzPntKBA1JOjpFA9FVZ24ZqJlRflbxRjMfuVLAP3x94E83JqUjTu7f08MPWdTfcYO2qFusyMqQePazrOnUKzb747hajro8+M2Y4HQG8cevZWKbUVKPRQDTyt84oqm8TElQ4erRUXm6paIIl2CqCBt8CJF14odMRAL6pW1dq2dK/RKFknPjcZ0ROS2PWQCASxGISIJQ3804nCmLx8wrEOedIZ5xRvFy7tm9jQbkL9rPkswAiW+/e0uLFxlA6sHIfY5G6rDSXKzpaZ599duDPbdmy9LpYmkAyCCFpWQgErH9/pkhH7Lv7buPmbvt2I0HubzcCLmYARINYHAM00rhcxrirTz0lHTsmXXdd+McHjbfP+f/9P+N9dtevnzOxAL5YtKj0ulBcS0bj9ekDDxiz7m7aZLRQPv98pyOKPJE+5vQLLwT33XviCWsX/Tp1jCEsQMtCRJggZscGokq3bkZXsXgZbwSRJdDZkJ3wxBNOR+Aslyvwll+hbP3ny3eE2a/Do2JF6fbbpfHjA28NUbIrsyTdeKP35zVtavyLJ4MGWVuiXHml1KhR8fJDD4U9JCAiON3i3FfuE7G4XNKwYcZx27WrYyFZXHSRdfmmm0Kzn8aNfd+25OSOkSTYbtmdOxuTHDZsKJ12mrRggZRAmkwiWQgA0cfui7FQTpbilHBfsN5yS3j3549ISvwFYsgQY5ZFyRjQ+9FHQ7OfaH6fIjn2UE0CFy03pdHigguk884rXh461Jg8xJunn47s718oVKliTKgyf770zjvSv/5l/fs111iThwAixz/+IU2f7nQU5bvvPiNxJUmtWoVuEp9hw3zvYhzLYwK6XMYPbj/8IK1dK515ptMRRQyShQAQTdLS7J3Nrm1b6w2iryLhRr1OHeP/SLhRvfVWqVat4uVIvxCNJlWrSm+8If3xh7Rjh9EqF9EjK6v0OvdjtmSiBc5ISpKWLZPef1/69FNp7lzfnhfI+SOaFX13K1aUBg40JjsreQ7KzDRmK33hhbCHF5T27Z2OANEuEq4NvZk0SUpJcTqK8rVrJ23cKP3yi7R6deh6IaWmGj94nH66kZQsi5PX2JFwfR/n6POJyEKlgGh3773SRx9Z17l3dwiGy2X8IpqaGlw5nTsbYyWmphot4iLluCsnjsIKFeTKz5fy8opXRlJCrmlTad06Y+yw+vWNXyXvvNPpqAzRcPHujcsV+jFzIuU4iBZ2fa+GDpV275Zef91oreXrfvi87JeYyHhddklPN77bV15pT3l16hiJA28CvT5IS5Puvz+w5zolFs5tgCcVKxr/Qq1z5+Jzb/360s6dodtXqM7bXA+EDC0LAcBOXbtaxzy56CLjF0I7/O9/9iSgatWSJk6Uxo0LXRdBu510kvR//2d0l0hJkaZOlVq0cDoqq8xMo6VJLHdf4IIsugR6M92pk71xlCchwaiLvvjCuGnxFd9FxJNnn7UuN29uzG7rLj29eMgGf3z9tbR1qzFjLuIHyVYAXpAsBAA7JSRIS5cazfrfe8/oPmnXTW3z5vaU402k3oRfdZV06JD011/GQP7eDBoU+piiQSCfZ6R+B+JVuD+Pjz+WTj01vPuMRBwHiBTduxut6bOzjWT+/PnGkAxFszJXrizNmRPYzNRt2kg1a9obL6JXMEnEUCUgSWyGR6S9z76egyMt7hhCshCRhQtzxILERGMco27dInM2LW8n1Vg46RYWGgnFk04qXvfYY46FgygQqecfJ+JKSjKGKihPKC7iI63ucTKecO6bRFHkS0iQ7rhD+u47aflyY3yx5GTpmWeM8Vz37jUmgwJ8FannPDtdc411eehQZ+KIZvHwPYFHEXgXCwBACdWre/6bpwuZ006TvvlGevFFacUK6bbbQhJawB5+2Lp86aXh23coExGhTnJEWkIpEvg6m6Gdgvkc/Ln54EYl9Hr2dDqC6BGJ4/qlpYVnbLNIE0grSsSXu+82Ws5KRmv5e+91Np5oFs7hSRAxSBYCiB+0nrBPmBM2+bNne/5jebHUry9dcYV01ln2B+VNyVl7r7rKujxypJHAzMmRLrlEmjUrNHGQbPFNpL5P3o619HTp4osDe240iNcJTsL5+iKxBXwkatJEatnS6Sji0vapU60r6tSROnRwJphYF0zdE2nnnOxsYzbhw4eltWulZs2cjih6PfCAb9tNmOD5b5H2/YBXXB0gssT6xT+cFU8nqZKt1qKdv8m+SKhL7rpLqlbNeFynjnT77da/p6YaXaM3bZIWLoydZHYkvPfxIj3dmPggJcXpSPwTrwlARLcXXuA76pADXbpo30UXSZIKMzKkp58myR1PgjnuEhONMT0TE+2LJx41amSMx3722eUPU3LddVJWVtjCQmglOR0AACAExowxuuhEWtfbQEXjTUHXrkYi8McfjRYpGRlOR4RYs39/5B8bJFcQK/guW4XxB9jCChX048SJ+umuu9S6bVslpaaGbd8ATujZs3jYCk/1Yf36RivOk0+W8vLCFxtCIsKvMAEAAUlIkG69Vfrb30JTfqTfNEVKK9KaNY2uUtGWKIz0zzcUovE1hzJRaNcxFCnHIhCsaKwjYkxhSooxARPiC+eR6FK1qjGDe0n+1qHUuY4jWYjIQqUQv0aOdDqC+BGpx1mgcUXq64lXXNTbKxLHj3K5pOHDg3s+AMA51MOIFf5c65wYzgC+IVkIIDI88og0dap05ZVORxL7SOYgmsXjDU5ystMRlDZihJSZGfr9ML4hYlHr1k5HAG+aN3c6gujj7fqyvMnq4LxYvT+45x6pVSupXz9jvFP4jGQhgMiQlCSNHy/NnRt4Gbfeasx8e+aZ9sUV7bihRlkCvSAM5fepUaPQlR3tXnrJ6QhKq1ZN+uYb6b77yu5uFAjqK8SLOXOcjiB4sX68Tp7sdATOCEXC6IILpGnTpBtvtL9shJaTx7ld+37wQenbb6UFC6RatewpM04w6AMiS6xfeCC0Zs40/t+9W6pd29lYopkvx2Gs/voYi6KhXk1Kkv7f/3M6ishVNKB4pCg6/mvXliZOlN5/X3rvPWdjAqLFzJlSp05OR4HyPPKI1L+/01HEjmXLQlNu+/bS6tXFyxMmhGY/3sycGTsTCgJuaFkIwDc33xy6stu2tbc8fjUKDolAeEow+vLd8Dc5ed550sqV0oAB/j0vnlSs6HQEgfOnPgnVtoGKhkR7sIp+ZENoDBtmXb7iCqMXRDx8t6IZXZADE+7rxylTjFbuknEvEcxYusEYMcKZ/dot0q7/fe21EGlxxxCShQB8M2ZMaMpNTDR+wQXsxIWDc/x974cPN1oHwH7BHAf+tGbMySm97tJLPW/vT6KEpEpopKZKQ4ZIV1/tdCTRI5Dv4l13SS1aGI+bNzfGzooVnGcRLp6+a927S9u3S999J33+uVSvXnjjKpKS4sx+wyGc5+CGDYsfDxwoZWf79jzqopChGzIiCzcF9srIkPbvD76cm26SGjcOvpySxo2T+valOw4MkTiOHkKPz698Tr0//oxDWK+e1KePtGiRsVyhgjGWoR2cnOAklm9Ajh51OoL40KyZtHatdOiQlJYW20mFWBIP56XmzaWvv3Y6iuCddJLxD5GlrAnQTj65/Od8/bU0f76Unm4kC+E4WhYCsc6OLrlTpwZfRkmVKkkPPUSiEIgmkXADFcsJnEhS3mdd1t9ee82o00ePlr74org1lV37DGZbwEkpKcZNMonC+HTJJaG5jg6WpwlcgqlbQ3V+Dmd9P3p0+PYVy8r6wfDee8t/TrVqRm+Tyy6TEvxIU3FdGDIkCwF4V7Wq0xEAnnGR4D/eM9/FUrfBUKpQwWgtPmOG1Lq109EA9iNBHT/sPEcuXCi1bGlfed6UHFpg8OCyt8vKCn0s0eimm6SmTf1/XixM0mbn975RI+M9SUqSkpOlRx8NXTdxrmlDhmQhIgsXYvbi/URZ4uGkyne/WKS/F5Ee3403Oh1B4AI51u3uzhUP9Q0ARIq77ipOTubkeG/NZSdf6/uSkyaOHGl/LIHKzjaGDpg2zb/nXXddaOJxWjDXaGPGSMeOGcNe3H67bSEhfEgWAt74M8h7JIqkE7DTQjHuYqSLpETMTTeFb18kKIITzPemSpXS6y68MPDynBbrs6uXvMF55pnix48+Gpp9RlK9BACxpGlTI9m1b5+0bl1gQ0KE2n33Sf36SXXqSP37SxMnlr99uK/pKlf2v4V8enpoYol2iYnGv1Dimj9kSBYC3kT7Tc2NN0o1ajgdRfhdfHHpdf6MfwH7XXRRaMqN9mM0mvjyXicnS6NGFS9XqCA9+GDoYgq1WP9+Pf64NGmSNHSoMbD4gAHFf7vqKufi8ibWPxcACFRycuDjZIYj8VK9urRggfTzz9Lrr3uf+AKAI5gNGZGFi3/7nXSS8ctirLeOKSkeE6RliaZf26Ip1mjSo0fpdRMmBFaWr5/RjBlS+/bSDz8YSeLyfqH3t97nPGGvlBTpH/8o+2/hnmGSzxaIHpdd5nQEiDRM4hPdateWdu+2rktLcyYWRASa2QDxoGZNqWJFp6NApAj1Dfk114S2fPinWTNrS9v69aVrrw3tPl0u6YorjMlBmOzCOZGagPcUV6TGC6C0hg2djgCRJi1NOucc67p//cuRUIIWj+ejxx+3LqemSsOGORKKX+LxswoTkoVAvKAiRTg0aSLdcYfTUaCk11+X5s2T5syRvvlGyshwOiJEM1qPRL7+/Z2OAEA8ev556dxzjdlwx42ThgxxOiL46swzpTvvNB5XqiQ98UTZ41DboeRwUaEe1xABIVkIALDPN99Ip5xS9t98TVj362dZ3N+9e5BBQYmJ0t//boxh6kvXUrqDBqZ9e6cjsCqrRXmSnyPQPPecdblNG6OrUjCi5fsVLXGWZdIkYyZU2Ceavw/BuuEG6/LYsc7EgciXnS199JH0/ffSQw8Z4yciOiQkSA8/LP31l3TgQGhbFd5zj1S1qvHY5ZL++c/Ay6JBTMiQLAQA2KdSpcCfW3SyHz9ehSfG2MzNzNTuK68MvCzYK55vln0xdap0+unWde6TvZQnkO+5N+ecU3r81lde8a+Myy83ZkxOTTVm2Xz6afviCwbfxfK1bCmtXy8tW+Z0JIgFDz4oDRxotBb7+9+lu+92OqLIEEyCA5Etns8xKSmhT/KecYbRwOCFF6Tly6Wbbgrt/hAQJjgBvInmk0U0x47QsSORFspkXIcOyv/2W21+/33l1qqlAm9dIPieR7dI//z8ia9bN+MX+cGDpcOHpawsacQI3557553GRbOdEhON5N6wYcWtBHr39q+MihWlZ54x/oVapH8Xok1SklS5stNRIBZUr27Mlg6ra66R1qwxZvbNypK+/trpiIJHPYxwadTI+BcsGgiEDC0LAW+ogIqVNasqIluoLvoCOS78eU61ajrWpIn3RCEQafr0kbZskb76yrhxbNbMt+e1alV2K8Rgj+GLL5Z+/VU6csQYS6pCheDKA+IVSRSUVLmyUa8ePCitXet0NEB84l49ZEgWAvDdvfcaXdGAUIiGJEZZY4BddVX440Bkq13bGL8wLc2/54WqFVhycnBDBAQjmi/inYw9mt83INrFc2KYugfACSQLgVhmd6uszp2ldevsLTNUuNiJLlOmGAMrR7rq1aWhQ4uX09Lia+ymrCz7y/T3poxjO/rF8404olfNmk5HgFCYO9e6XLWq1LWrM7EA8B/XhSETBXdmiDeFTJ1un//7P/vLtGNsCadwgxq57ror8OeecUbpdXXrBl6eN88/Lz37rDR5stHtyNduptHE07HCzNQIt3i9CSg6BmOxfolG550n1avndBQIhUsukc4913icmGic26OhpwNCK17PPYAbJjhBxCl45BEl3nab02HEhqKLH8BudiZeg/2ePvKI1KZN8XL16sbFf6gkJhqDmsejeEy4FxbG5+uOdPHymTz2mDEOZkGBsTxxoqPhxJXLLzcmLKpd25gNGLGpalXp/felDRukatWkBg2cjgglkbgDHEHLQkScwkibOj1ab0hmzDBmQkR0mj7dutynjzNxRIPWrY1ZZFu0kDp0kN5+m+9+NPG3jg1lnfzYY9blLl3C2z2eG6LSovUcbJdevaSPP5b+8Q/ppZf8TxbynQpcnz7GLLePPy6ddJLT0SCUEhONawkShUD04TwXMtxNISLl1qyplD17nA4DcM6NN0qbNkmLFxuTasya5XRE/rn/futN7dixnk/mdiQDhg61jiUIBOLaa6XVq40EQXa2kSRwWrQny7iID17nzsY/AADgWcWK0tGjTkcRM0gWAuX5+9+l/fudjgJ2iaab1sqVQzPmZLjcdZeUny+tWGGMKXjffdLSpWVvG02fC2JblSpGK9UXXnA6ktgW7QlQAED4cM5AedzvI556SrryyuLlZ54JfzwxhGQhUJ777pNuvdXpKAITzSfWDh2kL74Iroxofv2xIDnZaF0IIDjxnkx38vVzHgEAILK5XycMHWrMXL9ypdFYoVcv5+KKAYxZCHiSlmZ0Q4sVdt1whWO26vvuC/0+EH6M+RQ9SJI4I97fd39ef7y/V9Hoiiusy4MHOxOHr/iOIR7xvUe0695dmjCBRKENSBYCnhQNah/vrTpKCsdg/5Fcudet63QE0euss5yOAJGIGxMgPowfX/wjbFaWMVxFJOP6D/EoEr/3kRgTIgffj5AhWQjEqnivOEPx+nv0kOrUsb/ceOFyGZO1AChbLNbbZR3ztWuHPw44r1Ur6dtvpZ9+ktavl0491emIAACAByQLAW9o9RI7gv0sX3/dnjhiQaBJjTPPtDcOINYV1Vtz5ljXR8t4utOmWZcrVpSGD3cmlngUadcwFStK9esb/wMAEKxY/KE1QjDBCRCrSt4gRNoNQzSqXNnpCGIT3834xufvmxEjjAviZcuMFln33ON0RL7JyTFmJ7zvPik1VZo1i7oUAADYg2RhyNCyEBHp9wsvdDoEbmARu7ydVJ95JjxxIHJR/0Uel0u66SZpwQJjpvGUFKcj8t3110u//CJt3y717m1PmeH4jnIDAgAA4hTJQkSk3Vde6XQI3CwjNgTyPT7/fOmCC8rfhpto2MXf7+jJJ5de17SpPbEAQBGuAwEAcYxkISJS3skna+8llzgdRmwhuQNfpaRI770XPd0cEV9q1ZK6drWuKzmeHwAEK1aum265xekIgOBkZJRe169f+OMA4gzJQkSsY40aORtAtP+i3K6d0xEgmiUkMBkJ7FfWEBOB1PWvvSZdd53Uq5f08stllxtu558ffBmxkpywkcvTe8J75RveJ4waJWVmOh0FELgKFaQ77iherlxZmjDBuXjgiMLERA9/4DwXKiQLAU+KkoXRmjTs0sXpCBDtQnHy5YQe36ZPty63aSO1bet/ORkZxtiab78tDRpkT2y+evbZ0uvq1ZOmTAnN/qL1HBQIf15rPL0vQDCysqR166SrrnI6EiBwDz8szZ8vzZghrVkjnXaa0xEhzH68996y/8C9RcgwGzIQq7iRgsQJFJHltNOkJUuk2bONsQcfesjpiPx3zTVStWrSp58ayc6//U1KS5MqVnQ6svjCOQ7wXa1a0rXXSnPnOh0JIsmQIdK//21d16SJM7F443JJAweGb39cP0ec3y66SI3uv9/pMOIKyUJErki5EeBkEZ343Dxz8tiKlOMa5Qvl59Sjh/EvmvXvb/xDbKO+AuCP3r2lxYuLl6dNcy4WX9x7r/Tmm9KRI8bykCF0WUf04Z4vZEgWAp5wkxB7+EwNvp5UOfkCAAD45p//lA4elDZtMlqd33ST0xGV75RTpNWrjbF/a9UyxgIGgBNIFiJyRXNi5667pLp1I2sGumh+P+0Sj8kvPncA0aJKlVKrCipUcCAQAAhAVpYxREU0ycmRJk50OgogcPF4fxcmTHAChMLf/27MJhtJ4q0iJUkWvPK+M7y/AOxWxiQxu665xoFAAABAVIi3e9wwirBsBuDG6WREsLMhR1qyEIbnnrMuDx/uTBzxihM6AE9atZJuvdV47HKp4O67dbxWrbK3dfoaAQAAIIaRzQBC5fLLnY4AZRk2THr6aalfP+nuu6VZs5yOKHKFK7HHTX/k4TOBE1wuaeZMadcuafduFTDrYWRJKjF6ET+KAohVXAeVr1o1R3a7v1u30isjdQbvGMBZHhGrMNor6fR0pyOIL77OOOdyGa0JFyyQJk+WGA/Ls/KShbQQBBAqtWpJNWo4HQVKevrp8pcBAPFhzhzr8lNPhWW3u4YPt45lPHCgVLNmWPYdj5jgBPDEjmRlhQrSX38FX060+vvfpRUrpO3bQ1P+qadKW7ZIF10k3XBDaPYBAIhP4fhRZM6cyJ8xtcjVV0u1a0urVkkdOki9ejkdEQCEBj+Kl2/wYOOHvRUrpPbtpZ49w7LbY1lZ2jhvnk5ZvVoJtWtHz/kzSpEsBMItM9OYJXnRIunLL52OJrTmzTP+f/zx0MwMvW6d/WUCABAuI0ZIjzwiffed05H4pmfPsN0UhlW3btLSpdZ1jRo5EgoARIWuXY1/YXYsK0sF/fopoeTQGLAd3ZABT+xoWVjWr1KTJkkTJjg21kPc4BdBz3hvgMjEsem7aB+qpIjLJV13XejKr1gxdGXHkocfti43ayZ16uRMLAAARACShYAnsXIjgmLx+JkG85rLS1wkJgZeLgDfxWO9Bfu0aVO6hdwrrzgSSkQ77TTpv/+VLrxQuvRSo5VhrB17mZml12VlhT8OAPa78krr8gUXOBMHYgrJQiCUYu1Cs8hLL1mXc3KciQPeBdNSydNzc3Kk+vXDHw/CJ1brLsAfsXAcuFzSc88ZYw26XNL110sXX+x0VJGpTx8jSfjqq1KDBk5HY7/mzY3ksbsnn3QmlniTllZ63cknhz8OOC9UE0PddpsxhqAkVa0qjR8fmv0grpAsROSKhYv0WNW/v3TjjcYELo0aSc8+63RE8Eewx9asWfbEAQCBcrJ18+TJ1uWrr3YmDl917Sr98otUUGDMWOk+kyTiy8KFUu/e0umnG0mLCy90OqL40KWLkbB398ILzsSC8OvRQ2rSRBo7VrrqqtDso107af16aflyaeNGjm3YglEhEbmiOVlYXuupor9F8+tLTTVmcJwzp3jd7bdLjz1WvNylS7ijgt08fY+7dTO6awUimr/3ACJHx45Gy5zffite99xz4dn36NHS3r3SBx9IrVsbE5QA0aBxY2OCPYRXQoIx6d+wYdK+fdLIkVL37k5HhXBZsiQ8+zn5ZMZaha1IFgKe2JHUiKfEyC23SO++a/yaVb26dP/9od1f+/ahLR90GQYQuZKSjEkpbrxRys01Ws/17x+efaemSo8+Gp59AYgNF1wg7djhdBQA4DOShYhcsZ5oi7VETHa2tHq1tHOnMYh2qGd7njkztOUDQLjF2nkh1K65Rvrb36SDB40uXky8BACwA+djgDELAY+KkpWBJC0jMdEZjpNexYpS06alE4WVKpXetqxZ+bw56STpkkuMLrBnn+3/8znxG3gf4E0k1mHxis+ifLVqGZMukSgEADjpnHOcjgCwFclCRKzCWLhBat689LqMjPDH4bRBg0onDAOZFOWJJ4zBufv08b5tLHx/7BBp7wOJSgAAAMSaceOcjgCwFclCRKzj1as7G4AdswW6TwAiGS3jwjGm0j//Gfp9+KNSJenxx42Wh5I0YoR07rmh3SdJqeCF6z2MtIQmEEmoywAACK9Ark3POsv+OAAHMWYhItZBp5ty25HAOPNM6aGHpGnTpKpVpaeflpKT7Svf3WOPSWvWGLMQX3ONvWXbYdgw6bLLpLw8471wAkkp//gyqzcA+1BHxacqVUqvC2SoDgAAAJuQLETkipTxh4JJiiQkGE3Sw9Es/bbbyv97JNyEljV2oT9C+Rrq1pV+/jl05QMAoku4fhS58kppzBjpr7+K1z35ZHj2DQAAUAa6IQOAJD33nNMRRB5aDwLhxTEXn9LSjKE6UlON5dtukzp1cjYmAIB/IqFhBmAjkoWAJ8FU+NzwRZ8LLpAeeECqWVNq2dLpaCIfF0Sxjc83cvBZOCec7/2110q//y4dPmwMK5LAJToAAHAOVyKAJ0UJv1i5UYuFBGYoX0NionTvvdLu3dL69aHbTzTp2bP0uieeCK7MWPgeAkAopKZKlSs7HQUAgOtVgGQh4sikSU5HAIRfr16l15WVBCzLSSdJd9xRvNyqlTRokD1xAYCPdl17rXXFaac5EgcAAB6RYESMIVmI+DF2rHTnnVKHDlLFik5HA4THsGHWWTVr1DDW+Wr6dGnFCmnxYumLL4wEYjBipaUugLDZ26+fjmZnGwtVq0oPPuhsQAAAADGO2ZARPypUkB5+2Hg8d673hEmokxokTRAOqanSmjVG0s/lMhLmFSr4V8ZZZ5Vex6+nAMLkeK1a2vjCC2qdlqak2rWl6tWdDgkAACCmkSwEQsGXRCDJltDi/S1Wr540c6bTUSCa8GOGM6i3PCqsUEE65RQpiUtXAACAUKMbMoD4QQIEQLSh3gIAAECYkSwE4gU3nAAAAAAAwAuShYAnsZZco3sbIgHfQwAAAACIaCQLEZ9iLREYL4JNNJGoikwcjwAAAIgUrVqVXnfVVeU/h/sMxBiShUAocLJwHgkoAEAwEhOdjgAA4ISGDaU+fYqXK1WS7rnHuXgABzClHOAUklmIZiTEYxv1EyBlZEinnip9+23xun/+07l4AADh8/rr0uzZ0t69RqvCpk2djggIK1oWIj6R6IhO4UxgXH65dfmBB8K3bwBAZJg1S6pVy3jcp480dKiz8QAAwiMlRRo9Wpo6VWre3Pv2/NCKGEPLQsAbTxV/mzbSN9+ENxaEz4wZ0sGDRouSCy+Ubr/d6YgAAOF27rnSTz9JublGNzRuBgEAQBwgWQgE6pVXfPuVCc4ItvVonTrS22/bEwsAIHolJxv/AAAA4gTdkIFA9Osn5eQ4HYV/nn7a6QicR4sQAAAAAADKRbIQ8CSYxFIkJqX695fatnU6CgDR4tRTrcv/+IczcQAA4I8RI6zLl1ziSBiIM4yJjxhDshDwJlYq/rQ06fPPpXfecTqSwMXKZwFEg8mTjXpDklq1kq67ztl44gF1HAAE7447in/watxYmjjR2XgAIAoxZiEQTypUkHr2LPtv6enGhB6ALy68UEpKkvLyitc984xz8cB+F10kffedtHevlJ0tpaY6HVF8isSW6gAQybKzpdWrpQMHjB+9OH8BgN9oWQh4U96NWiy1tFm6VKpSxekoEC0qV5YmTChebtdOGjjQuXgQGjVqSC1bcqMFAIguyclSZibnLwAIEMlCxKezz/a+jS+tOcaMKXt9NHYlO+MM6ZNPnI4C0eQf/5C++Ub68ENpxQqpWjXvz4nGYwMAAAAA4gjJQsSnJk2kPn2CL6d58+DLAKJZ69bSeecZXdwDRTdLAAAAAIgYjFmI+LVggfTcc8Z4Jhs2SPPmOR0RAAAAAACAo0gWIn4lJ0s33GA8/vLL0snC0aPDH9NZZxkzFhepVElKTJQOHQp/LNGuaBZXd1Wrhj8OAPAV3fQBAIhOlSqVXle7dvjjAGxCN2RAMsbr69q1eLlxY+nvf/e8vR03dGV1vaxfX1q40Ojaefrp0pIlZZ944N2dd5ZeN21a+OMAgGDQTR8AgMhXsaJ0ySXWdU895UgogB1oWQgUefdd6aWXpKNHpSuuMGZ7lcJ/o3bJJaVPNOES6a1a/Imvbl1p8mRjEo6CAiN52LJl6GIDAAAAEL/mzZPuvVf68Ufpssukiy5yOiIgYCQLgSLJydKwYU5HURqtSgJ3993SzTcbycKTTnI6GgDwX6T/iAMAAAxVqkiPPeZ0FIAt6IYMeBPIjRoJvtAI5H1NTydRGEnuvrv0ugcfDH8cQCTi3AEAAIAIQLIQCAQ3dEBgWraUhgwpXr7kEqlDB8fCAQAAAABY0Q0ZABBeL74o3Xab0T38zDNJvgNF6HIMAACACEDLQiAUfLnhGzmy9LobbrA/FiDSuFxGa8KOHUkUAt5wjAAAACDMSBYCgbCj9UePHtIZZxQvn322dN55wZcbDG5KAQAAAACIa3RDBrwJVQItMVH67DPp9deNfQwYICUEmL93HwMOAAAAAAAgQCQLASelpEiDBwdXRnKyNGqUf8+55BLpjTeKlzt1Ci6GcGE8LwAAAAAAQopuyEC027BBOv10/55z553SSScZjytXlv7xD/vjAgAAAAAAUYeWhUC0q1HD/+d06iStXy/9739S06ZSw4b2xwUA8A+tpwEAABABSBYCkS5UYybWqWP8AwBELiaeAgAAQJjRDRnw5sILS6+74ILwxwEAAAAAABBiJAsBb667TsrIKF7OyJCuvda5eEKJLnAAAAAAAMQ1uiED3lSsKH31lTR1qrF8993GOgAAAAAAgBhDshDwRePG0tNPOx0FAAAAAABASNENGUBk6tCh9LratcMfBwCEy3nnlV43aFDYwwAAAEB8I1kIIDL985/W5YYNpXPPdSYWAAiHXr2kZs2Kl9PTpZEjnYsHAAAAcYlkIYBiLpfTERQ780zphRektm2l88+X3nknsuIDALslJEiffy6NHy/dfrv09dfSSSc5HRUAAADiDGMWAohcQ4ca/wAgXmRkFE+oBQAAADiAloUAAAAAAAAAJJEsBCKft663dM0FAAAAAAA2IVkIRLvCQqcjAAAAAAAAMYJkIQAAAAAAAABJJAuB4LVrV3pdZmb44wAAAAAAAAgSyUIgWDNnWpd79ZJq1LCv/Ouus68sAAAAAACAcpAsBILVubO0ZIk0eLA0Zoz06qv2lj9ypHTSSZ7/bucEJ4x/CAAAAABAXEtyOgAgJvToYfwLherVpW++kZ58UpoyJTT7AAAAAAAAEC0LgehQv740ebLTUQAAAAAAgBhHshAAAAAAAACAJJKFANzZOf4hAAAAAACIOiQLAQAAAAAAAEgiWYhYk5kptW7tdBQAAAAAAABRiWQhYktKirRqldNRAAAAAAAARCWShYg9qalORwAAAAAAABCVSBYCAAAAAAAAkESyEIh+zGAMAAAAAABsQrIQAAAAAAAAgCSShUD0KyyMzLIAAAAAAEDUIVkIAAAAAAAAQBLJQgAAAAAAAAAnkCwEAAAAAAAAIIlkIaJRcrJUubLUoEHpv8XjzMB2vuZ4fP8AAAAAAICJZCGiz19/SYcPS9dd53QkAAAAAAAAMYVkIQAAAAAAAABJJAsBAAAAAAAAnECyEIh2SUlORwAAAAAAAGIEyUIgmsybZ13u1k2qWNGZWAAAAAAAQMyhSRKiV2Gh0xGE3+DB0s6d0vz5UqNG0uzZTkcEAAAAAABiCMlCxBaXy+kIQisxURo/3vgHAAAAAABgM7ohAwAAAAAAAJBEshCAu3js2g0AAAAAAEwkCwEAAAAAAABIIlmIWEPLOAAAAAAAgICRLARQLNYniAEAAAAAAOUiWYjYQrILAAAAAAAgYCQLAQAAAAAAAEgiWYgIt79bN6dDAAAAAAAAiBskCxHRdg8bpsJq1YpXPPIIXY0BAAAAAABCJMnpAIDyHM3JUf5XXylp+XIpK0vq3NnpkAAAAAAAAGIWyUJEvoYNpezs0usLC8MfCwAAAAAAQAyjGzJiC12UAQAAAAAAAkayEAAAAAAAAIAkkoUAAAAAAAAATiBZCKAY40ACAAAAABDXSBYCAAAAAAAAkESyEIA7JogBAAAAACCukSxE9KLLLAAAAAAAgK1IFiK20DIOAAAAAAAgYCQLAQAAAAAAAEgiWYhYQ9dkAAAAAACAgJEsRPSiyzEAAAAAAICtSBYCAAAAAAAAkESyENGMLscAAAAAAAC2SgpVwdu2bdPLL7+sVatWaefOncrLy1ONGjXUrFkzXXTRRerWrZuSkuzf/fLly7Vo0SKtWbNGv/76q/Lz85WZmanTTjtNffv21bnnnut3mevWrdP8+fP15Zdfas+ePSosLFTNmjXVsmVLXXzxxerSpYtcdImNDHwOAAAAAAAAAQtJsnDWrFl68sknlZeXZ1m/Y8cO7dixQ++//75atWql6dOnKysry5Z97tmzR3fccYe++OKLUn/buXOndu7cqUWLFum0007TQw89pMaNG3st8/jx43rggQf0yiuvlPrbDz/8oB9++EGLFy9W586dNXXqVNWoUcOW1wIAAAAAAAA4wfZuyA8++KBmz55tJgqTkpLUsmVLnX766TrppJPM7davX6+hQ4fq559/DnqfP/74owYMGFAqUZidna0zzzxTjRo1Mtd9/fXXGjBggFavXl1umYWFhbr99tsticIKFSqodevWatu2rapUqWKu/+yzz3TVVVfpjz/+CPq1AAAAAAAAAE6xNVm4ZMkSzZs3z1zu0aOHPv74Yy1YsEAvvfSSPv30U02aNEkVK1aUJO3bt08jR45UYRBjzx09elQjRozQ3r17zXXnnXee3nvvPb399tt64YUX9O6772rRokU6/fTTJUlHjhzRjTfeqN27d3ss97nnntOyZcvM5SFDhmj58uWaP3++Xn75ZS1fvlyjRo0yu1Jv375dd999d8CvA4gIzZqVXnfrreGPAwAAAAAAOMK2ZOHx48c1bdo0c7lr16567LHHVL16dXNdcnKyBg0apNmzZ5tJtg0bNmjRokUB7/ell17S9u3bzeXLLrtMTz75pBo2bGjZrmnTpnr++ed19tlnS5IOHjyoBx54oMwy9+/fr8cff9xcHjx4sCZOnKi0tDRzXWpqqkaMGKFJkyaZ65YuXao1a9YE/FoAx1WuLN1xR/FyjRrSbbc5Fw8AAAAAAAgr25KFS5cu1S+//CLJ6Ho8YcIEJSSUXXznzp01aNAgc/n5558PeL///ve/zcdZWVmaMGGCx8lGUlJS9NBDDyklJUWStGzZMm3durXUdq+99pqOHDkiSapWrZrGjh3rcf8DBgzQeeedZy4H81qAiDB9uvT229Kzz0rffCPZNK4oAAAAAACIfLYlC99++23zcadOnVSnTp1yt3dPFm7YsEE7duzwe58//PCDZczDYcOGKTk5udzn1KhRQ127djWXy2rV+M4775iPe/XqpUqVKpVbpvtr+eSTT/Tnn396jR02CKL7Orzo1Uu65hqpVi2nIwEAAAAAAGFkS7KwsLBQq1atMpeLuvqWJycnR5mZmebyBx984Pd+f/zxR8vymWee6dPzWrVqZT7+8ssvLX87cOCANm7caC537tzZa3kdO3ZUYmKiJOnYsWNasWKFT3EgBDy0KgUAAAAAAIB3tiQLf/75Z8tMwO7JuPLk5OSYj7/99lu/91ty9uGaNWv69Lxq1aqZj90Tg5K0efNmy4QrLVu29FpepUqV1KBBA3M5kNcCmw0caF1+5BFn4gAAAAAAAIgiSXYU8sMPP1iW3RNn5alXr575+KeffvJ7v0WzKhfJzc0tta4sReMRStKff/6pAwcOmAlE99eSkpKi2rVr+xRLvXr19P3330sK7LXAZo8/bnRT3rjR6FJ7881ORwQAAAAAABDxbEkW7t2713yckJBgmQG5PO7dkN3L8FXJRN7GjRvVsWNHr88r2Zpw7969ZrLQPQ73+LwJ9rXAZjVqSK+95nQUAAAAAAAAUcWWZOHBgwfNx5UrV/Y4C3JJVapUKbMMXzVv3lxVq1Y1uyPPnz/fa7Lw0KFDev/99y3rjh49aj4+cOCA+TgtLc3nWIJ9LXbJy8tzbN92yc/PL3e5SEJBQal+9IWS8mPgPQDina/1AIDYRT0AgHoAAPWAM2xJFv7111/m49TUVJ+fl5KSYj7Ozc31e7+JiYm65JJL9MILL0gyZjY+77zzdNFFF5W5fWFhoSZOnKjDhw9b1rvv2/1xOF+LHQoKCvTNN984su9QWr9+fZnra+/erZJzbufm5mp9DL4HQLzzVA8AiB/UAwCoBwBQD4SHLROcHD9+vLhAH1sVSlJSUnGuMtAWcddff71lwpKxY8dqxowZpVr3/fjjjxoxYoQWL16sSpUqWf7mHrOTrwU2YDZkAAAAAACAgNnSsjAxMdF8XFBQ4PPz3JNqycnJAe07MzNTjz32mG644Qb99ddfKigo0NNPP63nnntOOTk5SktL06+//qrt27dLMpJ606dP181uE15UqFAhIl4LbOA2kzUAAAAAAAD8Y0uy0H0GYvcuyd64d9d1T9j566yzztK8efM0atQo/fzzz5KM5N2GDRss29WtW1cPPfSQsrOzLesrV65sPnbveuzPa3HfNpjXEoyEhASdeuqpjuzbTvn5+Zamxa1atbIkcYsk1KpVal1KSoratGkT0vgAhJ6v9QCA2EU9AIB6AAD1gP++/fZbvxq/lcWWZGF6err5+MiRIyosLJTLh+6g7mMHunclDkSbNm20ZMkSLVy4UO+99542bdqkgwcPKiMjQ1lZWerTp4969+6tihUr6rvvvrM8130mY/c4So5tWJ4jR46UWUa4uXeHjhWJiYllv64yuom7FJvvARDvPNYDAOIG9QAA6gEA1APhYcs7XLNmTfNxfn6+fv/9d2VkZHh93t69e83H1atXDzqOlJQUDRo0SIMGDSp3uy1btpiP09PTLS0L3V/Lb7/95vO+7X4tAAAAAAAAQLjZMsFJw4YNLcs7duzw6Xk7d+40Hzdu3NiOUHzi3oQ1JyfH8jf31/Lnn39q3759PpXp/prD+VoAAAAAAAAAu9iSLKxbt66l6+3GjRt9et6mTZvMx82bNw94/4cPH9b27dtLzYDsySeffGI+Ljm+XYsWLSxdqH15LUeOHNFPP/1kLgfzWuAHJjMBAAAAAACwlS3JQkk688wzzccrVqzwuv2mTZssrfY6duwY0H6HDBmi9u3bq1evXlqwYIHX7bds2aKtW7eay127drX8vUqVKmrRooW57MtrWblypTl4ZGJiojp06OBr+LCbD2NlAgAAAAAAoGy2JQu7d+9uPv7www+1Z8+ecrf/z3/+Yz7Ozs4u1R3YV02aNDEfL1u2zOv2TzzxhOW57dq1K7VNjx49zMdvvfWWjh49Wm6Z7q+lU6dOqlq1qtc4AAAAAAAAgEhja7KwRo0akqTc3FyNHz9eeXl5ZW776aefav78+eby0KFDA95vr169zMdfffWVli9f7nHb1157TW+//ba5PGLEiDJnbR4wYIAqVqwoSdq3b58mTZrkscz58+fr008/NZevvPJKv+IHAAAAAAAAIoVtycKUlBSNHj3aXF6xYoWGDx9umfgjLy9Pr776qkaOHKn8/HxJUrNmzXTppZeWWeb555+vnJwc5eTk6Pzzzy9zm44dO1rGHRw1alSpFoa///67pk+frnvvvddc16VLF1100UVlllm9enVdd9115vKCBQs0ZswYy+zIx44d05NPPqmJEydayuzSpUuZZQIAAAAAAACRLsnOwvr166e1a9fqlVdekWQkDLt3766cnBxVqVJF27Zt0/79+83tq1WrppkzZyopKfAwXC6XpkyZosGDB+uPP/7QwYMHdfPNN6tWrVpq2LChDh48qO3btys3N9d8TsuWLfXII4+UW+6IESP07bff6qOPPpIkLVq0SO+++65ycnKUkpKirVu36tChQ+b29erV07Rp0wJ+HQAAAAAAAIDTbGtZWOT+++/XiBEjlJycLEkqKCjQxo0b9eWXX1oShdnZ2XrxxReVlZUV9D6bNGmiuXPnqkGDBua63bt3a9WqVdq0aZOZKHS5XOrfv79efPFFpaWllVtmUlKSZs2apYEDB5pdlY8fP67169drzZo1lkRh27Zt9e9//1sZGRlBvxb4gdmQAQAAAAAAbGVry0LJSMiNGjVKffv21WuvvabPPvtMu3fv1tGjR5Wenq5TTjlFPXv2VN++fZWSkmLbflu0aKFFixZp4cKFWrp0qTZu3KiDBw8qNTVV9evX1xlnnKGBAwf6NZFKSkqKJk+erEGDBmnhwoVauXKl9uzZo9zcXGVkZKh169bq06ePunfvroQE2/OuCASzIQMAAAAAAATM9mRhkezsbI0bN07jxo0LuIwPPvjAr+0rVKigyy+/XJdffnnA+yxL69at1bp1a1vLBAAAAAAAACINzeEAAAAAAAAASCJZCAAAAAAAAOAEkoUAAAAAAAAAJJEsRDRLTCy9Lilkw3ACAAAAAADEPJKFiF4jRpSe/fiJJ5yJBQAAAAAAIAaQLET0qlVLcp9t++KLpS5dnIsHAAAAAAAgytFnE9Ft6lTpmmukY8ekVq1KtzQEAAAAAACAz0gWIvo1bep0BAAAAAAAADGBbsgAAAAAAAAAJJEsBAAAAAAAAHACyUIAAAAAAAAAkkgWAgAAAAAAADiBZCEAAAAAAAAASSQLAQAAAAAAAJxAshAAAAAAAACAJJKFAAAAAAAAAE4gWQgAAAAAAABAEslCAAAAAAAAACeQLAQAAAAAAAAgiWQhAAAAAAAAgBNIFgIAAAAAAACQRLIQAAAAAAAAwAkkCwEAAAAAAABIIlkIAAAAAAAA4ASShQAAAAAAAAAkkSwEAAAAAAAAcALJQgAAAAAAAACSSBYCAAAAAAAAOIFkIQAAAAAAAABJJAsBAAAAAAAAnECyEAAAAAAAAIAkkoUAAAAAAAAATiBZCAAAAAAAAEASyUIAAAAAAAAAJ5AsBAAAAAAAACCJZCEAAAAAAACAE0gWAgAAAAAAAJBEshAAAAAAAADACSQLAQAAAAAAAEgiWQgAAAAAAADgBJKFAAAAAAAAACSRLAQAAAAAAABwAslCAAAAAAAAAJJIFgIAAAAAAAA4wVVYWFjodBAI3OrVqy3LCQmxkf8tKCgwH8fKawLgH+oBANQDAKgHAFAP+Mf9/ZKk9u3b+11Gkl3BIDKU/FLEglh8TQD8Qz0AgHoAAPUAAOqB8CAlCwAAAAAAAEASLQtjDk1yAQAAAAAA4pMdrS8ZsxAAAAAAAACAJLohAwAAAAAAADiBZCEAAAAAAAAASSQLAQAAAAAAAJxAshAAAAAAAACAJJKFAAAAAAAAAE4gWQgAAAAAAABAEslCAAAAAAAAACeQLAQAAAAAAAAgiWQhAAAAAAAAgBNIFgIAAAAAAACQRLIQAAAAAAAAwAkkCwEAAAAAAABIIlkIAAAAAAAA4ASShQAAAAAAAAAkkSwEAAAAAAAAcALJQgAAAAAAAACSSBYCAAAAAAAAOIFkIQAAAAAAAABJJAsBAAAAAAAAnECyEAAAAAAAAIAkkoUAAAAAAAAATiBZCAAAAAAAAEASyUIAAAAAAAAAJyQ5HQBQZNu2bXr55Ze1atUq7dy5U3l5eapRo4aaNWumiy66SN26dVNSEl9ZwGlLlizRbbfd5vfzPv74Y9WqVcvj39etW6f58+fryy+/1J49e1RYWKiaNWuqZcuWuvjii9WlSxe5XC6f91dYWKhly5bprbfe0rfffqvffvtNFStWVM2aNdWxY0cNGDBAzZs39/t1APFo5syZmjNnjurWrasPPvjAr+d+/vnnev311/X111/r119/VVJSkmrVqqW2bduqX79+Ov300/0qLzc3V4sXL9Y777yj//3vfzpw4ICqVKmi2rVrq0uXLhowYIAaNGjgV5n79+/X/Pnz9dFHH2n79u06cuSIMjIy1KBBA/Xo0UN9+/ZVenq6X2UCsSaQemDSpEl66aWX/NpPgwYNtHTp0nK3CcU5/siRI1q4cKGWLVumzZs369ChQ6pWrZrq1KmjCy64QP369VONGjX8KhOIZqtWrdLixYu1du1a/frrrzp8+LB5vj399NPVv39/tWjRwufyouFan3qgmKuwsLDQ6SCAWbNm6cknn1ReXp7HbVq1aqXp06crKysrjJEBKOnRRx/Vk08+6ffzPCULjx8/rgceeECvvPJKuc/v3Lmzpk6d6tMJes+ePRo1apRWr17tcRuXy6Vhw4Zp9OjRSklJ8f4CgDi1bt06DRkyRMePH/crSXD48GGNGzdOy5YtK3e7vn37asKECUpLS/Na5rZt23Tbbbdp69atHrdJTk7WrbfequHDh/t007Fs2TLdc889OnDggMdtMjMzNXnyZJ177rleywNiUaD1wOWXX661a9f6tS9vycJQnONXr16tMWPGaNeuXR63qVy5su69917179/fa3lANNu5c6fGjRunr776yuu2vXv31qRJk1SlShWP20TLtT71gBXJQjjuwQcf1Lx588zlpKQk5eTkqGLFitq2bZt+//1382/Vq1fXq6++qrp16zoRKgBJ119/vT7++GNJUrNmzXz+dW369OnKyMiwrCssLNQtt9xiSSZUqFBBOTk5SkxM1NatW3X48GHzb1lZWXrllVdUtWpVj/vZv3+/Bg0apJ9++slcV61aNTVp0kRHjx7V5s2bLT9M9O7dW4888ohPrwGINzt27NDgwYO1d+9eSfI5SfDXX39p6NCh+uabb8x1lStXVrNmzZSfn68tW7bo2LFj5t/OOOMMPffcc+VezH///fcaPHiw5bogMzNTjRs31oEDB7R161a5X9YOHz5cd9xxR7lxLlmyRKNHj1Z+fr65rnHjxsrMzNTPP/+sn3/+2VyfmJioOXPm6LzzzvP6+oFYEmg9UFhYqHbt2unPP/+UJHXo0MGnG/YaNWpo6tSpZf4tFOf41atX65prrrHUSXXr1lXdunW1d+9eff/995bt77vvPg0ePNjr6wCi0Q8//KDBgwdr//795rrk5GQ1a9ZMaWlp+u233/Tdd99ZzrfNmzfXSy+9VGbCMFqu9akHSiNZCEeV7M7Yo0cPTZgwQdWrV5dk/AqxYMECTZ06VUePHpUktWzZUq+//rpfTZQB2Oecc87Rr7/+KkmaN2+eOnToEHBZzz77rB5++GFzeciQIRo9erTZwujYsWP617/+pVmzZpkn/W7dumn27Nkey7zhhhv00UcfSTIuRu666y5deuml5jAGe/fu1ZQpU/T222+bz7nnnnt05ZVXBvw6gFi0ZcsWXXfdddqzZ4+5ztckgXvXQ5fLpZEjR+raa69VamqqJOmPP/7QrFmz9MILL5jPGTZsmO66664yy8vPz1f//v21adMmSVJ6eromTZqkHj16mNcDO3bs0L333quVK1eaz5szZ44uuOCCMsvcsWOH+vbtayYymjVrpmnTplm6VK1cuVJ33323mTSsXLmy3nnnHdWsWdPrewDEgmDqgR9++EE9evSQZCQb1q5dq+Tk5KDisfscf/jwYfXq1cu8rqldu7amTp2qs846y9xm48aNuuuuu7Rx40ZJRsOGV199VS1btgzqtQCRJj8/X5dccom2bNkiyfiR7MYbb9TVV19tSQTu2bNHjzzyiN544w1zXc+ePTVz5sxSZUbDtT71QNmY4ASOOX78uKZNm2Yud+3aVY899piZKJSMC4tBgwZp9uzZ5sG/YcMGLVq0KOzxAjB+ySs6kUpSTk5OUGU9/vjj5vLgwYM1ceJES1fE1NRUjRgxQpMmTTLXLV26VGvWrCmzzE8//dS8eJCkhx56SIMHD7aMd5qZmalHH31Ul1xyibluzpw5ll81gXj35ptv6rLLLrMkCHz13Xff6eWXXzaXx4wZo5tvvtlMFEpS1apVdc899+jmm28217300kvauXNnmWXOnz/fTBQmJSXpySefVM+ePS0/HNavX1//93//Z7m4nzFjhqXVoLtHH33UTBTWrVtXc+fOLTX2UseOHfXvf//bbEF95MiRcm9ggFgSTD0gybyplqTs7OygE4WhOMc/9dRT5nVNWlqa/vWvf1nqEEk65ZRT9OKLL6pZs2aSpLy8PM2YMSOo1wJEogULFpiJQsk4xkaOHFmqxWDNmjU1bdo0XX311ea6JUuW6Ouvv7ZsFy3X+tQDZSNZCMcsXbpUv/zyiyTjwn/ChAlKSCj7K9m5c2cNGjTIXH7++efDEiMAK/cL/zp16gQ14P9rr72mI0eOSDK6DowdO9bjtgMGDLB0/fNUB8ydO9d83LlzZ/3tb3/zWObEiRN18sknS5J+//13LVy40J/wgZi0Z88ejRs3TmPHjjVb9Ptr3rx5ZoIuKytL1157rcdtb7nlFvPC+/jx43rxxRfL3M69BeKAAQPUrl27MrdLTk7WtGnTzKTEtm3bzGET3O3Zs0fvvvuuuTx69OhSwyQUqVWrlu655x5zecGCBeWObwhEOzvqAUlmgl+SLROK2X2O/+uvvyxjqA0fPlyNGjUqs7wqVapo8uTJ5vLy5cu1efNmf18CENHefPNN83Hnzp3Vt2/fcrcfPXq0ZTiixYsXW/4eDdf61AOekSyEY9ybBXfq1El16tQpd3v3ZOGGDRu0Y8eOkMUGoGzuycJgWhVK0jvvvGM+7tWrlypVqlTu9u51wCeffGK2CCpy8OBBrVixwlweMGBAueVVqlTJchG0ZMkSn+IGYtUTTzyhnj17WroVZWVlacSIET6XUVBQYEnC9e/f3+MPgZKUkJCgyy67zFx2f26RTZs2adu2bebywIEDy42hZs2a6tq1q7lc1rH97rvvmt2d0tLSzK6SnnTr1s1MJubl5XmdtAWIVnbUA0XcrxmCTRaG4hz/2Wef6eDBg5KMusjbhAWtW7e2dDnkugGxJDc319Kar0+fPl6fk5KSos6dO5vL3377reXv0XCtTz3gGclCOKKwsFCrVq0yl88++2yvz8nJyVFmZqa57OssbADsY9eF/4EDByxluV9oeNKxY0clJiZKMsY3cb9YkKQvvvjCbM3kcrl8qlfct1mzZo15sQDEo2effdZyYX7ppZdq/vz5atiwoc9lbNq0yTIBiS/Htvtx+Msvv1haI0myjEGYnp6uU0891a8yP/roI5Ucovvzzz83H3fo0MFr98jExERLl6QPP/zQawxANLKjHihiZ7IwFOd493qgWbNmlvsMX8qkHkAs+fnnn1WhQgVzOTs726fnVatWzXzsfv6Plmt96gHPSBbCET///LP++OMPc7lVq1Y+Pc+9JVPJXy4AhJ5dXYo2b95suXn3ZXDgSpUqqUGDBuZyyTrAPbZ69er51EXa/TUUFBRow4YNXp8DxLpWrVpp3rx5evDBB8uc2bA87sdhcnKymjZt6vU5jRs3toxnWN6xfcopp/g0wZn7sX3w4EHLjImSLN2GfB2c3L1MrkEQ64KpByR7xziWQnOOD7Ye2Lp1q/766y+fngdEusaNG2vt2rX66quvtHjxYnOIEG+KJgCTZDkuo+Van3rAsyTvmwD2++GHHyzL7pVCeerVq2c+LnnhDyC0/vrrL33//ffmck5OjlavXq033nhDX331lXbt2iWXy6XMzEy1b99effv2LTU4cBH3OiAlJUW1a9f2KYZ69eqZMZSsA9zL9LUFRGZmplJTU3Xs2DFJ0o8//qhOnTr59Fwg1nTo0EH9+/fXBRdc4FNCrizux2HdunUtA4574nK5VKdOHW3fvl2ScRx6KtPXY9v9eqGozKLn5ubmmmMmB1rmnj17dOzYMUuSE4gFdtQDkrVVYWZmptLS0vTOO+/onXfe0bp167Rv3z5VqlRJtWvXVqdOnXTppZcqKyvLY3mhOMe7X9MEUg/k5eVp586dPrfAAqJBWlqaZQKS8hw+fFjLly83l92PhWi51qce8IxkIRyxd+9e83FCQoJlBuTyuDcLdi8DQOht3rzZ0vT//vvvtzTdL/Ljjz/qxx9/1IIFC9S5c2c9/PDD5uDCRdyPX1+a+5e1bck6wL0Fgz9lnnzyyeavotQriGdz5swJugz3Y8h90HNvqlevbiYL7Ti2MzIylJiYaNZZ7mXu3bvX0trB1zJLXqvs3btX9evX9+m5QLSwox6QrMnCpKQk9enTp1RjgYMHD+rgwYPatGmT5s6dq6FDh+rOO+8s80cGu8/xBQUF2r9/v99lllUPxGKSAPDFs88+a5lh2H284Gi41qceKB/dkOEI97ECKleuXO7g5+7cu0EwthgQXu5N/wsLC81EYVpamlq2bKkOHTqobt26lud89tlnuvTSSy2teCRZZhL19ddLqfw6wH3ZnzLdt3UfHgGA/wI9tt23tePYTkhIsAyk7n5slyy/atWqfsdYskwAVu7Jwl27dpmJwszMTLVr105t27a1jHWWn5+vf/3rX7rhhht0/PjxUuXZfY4/dOiQ+WOCRD0A+GvdunV65plnzOVGjRrp/PPPN5ej4VqfeqB8tCyEI9z79fvThSclJcV8nJuba2tMAMrnfuEvGRf8Y8eOVc+ePS3H5pYtWzR9+nR98sknkoyxTG666Sa9+uqr5nbux69ddYAd9UqsjjkChEs0HNslj3P3Ad19La+scgAUKzlR0amnnqpx48bpjDPOMNcVFBTos88+05QpU8yugJ999pkmT56s++67z/J86gEgcuzcuVM33XSTJbE/fvx4S6tgrgeiHy0L4Qj3isXXVoWSLBVQXl6erTEBKF/JcULefPNN9e3bt9QJs1mzZnr66ac1YMAAc93GjRv18ssvm8uhqAPcl/0ps2jWtbLKBOCfQI/t8o5D92X37QIts2T5vpZZcjv31ggAiuXm5mrnzp3mco8ePfSf//zHkiiUjDqiS5cumj9/vk455RRz/csvv1wq2Wj3OZ56AAjMrl27dNVVV1m68w4bNszSBVmKjmt96oHykSyEI9wPsIKCAp+f535AJycn2xoTgPI9//zzWrFihV599VXNnTu31DiE7lwul+677z5Lt+QXXnjBfByKOiDQMt1P8NQrQHBCcRy6l+nPBbn7tu4/apS8wfC1zJLbUV8AZUtJSdHatWv14Ycfat68eZo2bVq5x0taWppmzJhhHpuFhYWWawbJ/rol0Jt96gHEs23btmnw4MGWHwM6d+6sO+64o9S20XCtTz1QPpKFcETFihXNx/4023VviuxrM2EA9jn55JPVpk0bn2Y0S0lJ0eWXX24u79ixw5zVzL3rgD91gPu2JeuAUJQJwD+Remy7Jwvdr0Ek34c1CbS7EhCPEhISVKdOHXXo0KHUMVeW7Oxsywyl7jOsSvbXLSW7MPpaJvUA4tWaNWt0xRVXaNeuXea6jh07avbs2WUmyyL1eoB6wHckC+GI9PR08/GRI0cssxKWx322JfdBkQFEpnbt2lmWi7oyux+/7se1N0eOHDEfl6wD3OsVf8qkXgHsE+ixXd5xGMixXVBQoD///LPMMt3L86fMkttRXwD2cr9m2L17t+WG3O5zfFpamqWVMfUA4Nl///tfXXXVVfr999/Ndeeee66eeuopjz8GRMO1PvVA+UgWwhE1a9Y0H+fn51sqnvK4j41QcspyAJGnZFflolnM3OuA3377zefyyqsDAi3TfdvMzEyfnwegtBo1apiP/TkO9+3bZz4ueRwGcmzv37/f0kXJvczMzEzLzYH7vn2N0eVylTsUAwD/lTyvu8+mavc5PiEhwbLsa5kl6wvuRxDrZs2apTvuuMPSCr9v376aM2dOuZOMRMO1PvVA+UgWwhENGza0LO/YscOn57mPj9C4cWNbYwJgv5LN9CtXrizJWgf8+eefPt+su9cVJeuARo0amY+Lujt78+uvv+rYsWNllgHAf+7H0M6dO33qOVBYWKiff/65zDJKLvt6bJe8rnAvIyUlxTKUQiBl1qlTp9TkTgCC4+maQQrNOd79WiSQeiA5OdkyNjMQS44fP66xY8dq9uzZlvU33HCDHn74YctEJGWJlmt96gHPSBbCEXXr1rU01924caNPz3OfGa158+Z2hwXAg02bNmnatGkaO3asrr32Wp9/eXNP8EvGDbYktWjRQi6Xy1zvSx1w5MgRy0m8ZB3QsmVL8/GPP/6oo0ePei3Tfb8ul0s5OTlenwPAM/fj8OjRo/r++++9Pmf79u2WJIH7rKglyyw5Q6on7sd2enp6qQv5Vq1aBVVmyRgBFFu2bJkefPBBjR49WmPHjvX5ee434FWrVlWVKlXM5VCc44OtB5o0aRKzExsgvuXm5uqWW27Rm2++aa5LSkoyj2v3a3hPouVan3rAM5KFcMyZZ55pPl6xYoXX7Tdt2mT5RaJjx44hiQtAaQcPHtRzzz2nN998U5999pm++OILn573ySefmI/T0tLUrFkzSVKVKlXUokUL82++1AErV640uxUmJiaqQ4cOlr+3b9/e/JUzPz9fq1at8lqm+35btGhRaiwzAP5p2rSpMjIyzOXPP//c63PcJzI46aSTSl3Iux/re/fu1datW72W6X5su19vlFXmqlWrvM6qWLJO4RoE8Gzjxo2aN2+eFi9erLfeesvnFkWfffaZ+bh9+/aWv4XiHO9eD2zYsEF//PGHX2VSDyAW5eXl6dZbb9VHH31krqtcubKeeuopXXrppT6XEy3X+tQDnpEshGO6d+9uPv7www+1Z8+ecrf/z3/+Yz7Ozs6mBRAQRq1atVKlSpXM5fnz53t9zu7du/XWW2+Zy71797aME9ajRw/z8VtvveX110H3OqBTp06qWrWq5e9Vq1a1nLBffvnlcss7cuSIJb6ePXuWuz0A71wul7p162Yuv/rqq+Um4goKCvTqq6+ayz169CjVYqFZs2aWrkjeju1du3ZZbnJ69epVapsLL7xQiYmJkoyxh5YuXVpume+++672798vyWhd4X4NA8DK/ea7sLBQr732mtfnvPfee9q+fbu53LdvX8vfQ3GOP+uss5SWlibJ6HLpLc5vvvlG//vf/8zlsuoWINpNnz5dH374obmckZGhefPmqXPnzn6XFQ3X+tQDnpEshGO6d+9uDoSem5ur8ePHKy8vr8xtP/30U0tyYujQoWGJEYChcuXK+tvf/mYuL1++XG+88YbH7Q8fPqzbb7/dvCioUKGCrr32Wss2AwYMMGdQ27dvnyZNmuSxvPnz5+vTTz81l6+88soyt7viiivMxx9++KEWLFjgscz77rvPvPmvVKmSBg4c6HFbAL4bMmSImfDbtGmTHn/8cY/bzpw502wpmJCQ4PH87n5sv/zyyx5bKBw/flzjxo3T8ePHJRlDH1x44YWltqtVq5YuuOACc3ny5Mkef7TctWuXpkyZYi53797dMsg6AKsOHTpYxgV7+umn9d1333ncfvv27ZowYYK5nJWVVWZC3u5zfGpqqmX97NmztXnz5jLLO3TokO655x5z+bTTTlObNm087h+IRh9//LHmzp1rLqenp+uFF16wdP/1RzRc61MPeEayEI5JSUnR6NGjzeUVK1Zo+PDhlvFK8vLy9Oqrr2rkyJHKz8+XZLQw8KcJNAB73HbbbeYvb5J0zz33aPbs2Tpy5Ihluy+//FKDBw/W2rVrzXWjR49WgwYNLNtVr15d1113nbm8YMECjRkzxjIe4rFjx/Tkk09q4sSJ5rouXbqoS5cuZcZ4/vnnW7oc/uMf/9BTTz1lGQ9t3759GjVqlOWXxptuusnSdRJA4Jo3b65+/fqZy7Nnz9aUKVN06NAhc92hQ4c0efJkPfnkk+a6QYMGqUmTJmWWOWjQILN1YV5enm6++WbNnz/f8iPjjh07dN1111m6Jd15550eJyIZNWqUKlSoIEnas2ePhgwZUmqIhVWrVumKK64wZ2esVKmS5doFQGkul0t33323uXzkyBH9/e9/1+LFiy0tjY8fP66FCxdq8ODB+v333yUZkwVMmzatzMkTQnGOv/76682/HTlyRMOGDdPSpUstkzNt2rRJQ4cONX/YSExM1Pjx4/16T4BIl5+fr8mTJ5vffZfLpRkzZqhp06YBlxkt1/rUA2VzFfoyTR0QQhMmTNArr7xiLickJCgnJ0dVqlTRtm3bzF8DJKlatWr6z3/+o6ysLCdCBeLeypUrdf3111tOyKmpqWrevLlSUlL0008/affu3ZbnXHvttR4HOC+66XfvMpicnKycnBylpKRo69atlgRDvXr1NH/+/HITe3v27NEVV1xh+eEhLS1NTZs2VW5urjZv3my2OpKkrl27as6cOZYu0gCKLViwQHfddZckY4KyDz74wOtzDh8+rKuuukrr168311WsWNEcQmTz5s2W7kinnnqqXnzxRaWmpnosc8uWLRo6dKgOHDhgrsvIyFB2drYOHTqkLVu2WBIRV1xxhaW1UlneeustjRs3zvK8Bg0aqFatWtq1a5elHklISNCMGTMsrayBeBFIPfD0009rxowZlnXVqlVT06ZNlZeXp23btlnGB0tOTtZjjz1WZmvgIqE4x3/++ecaMWKEZcbUWrVqqUGDBvrtt9+0bds2y/ZFk70BsWTx4sWWH8MqVaqkdu3a+VVG9erVNW3aNMu6aLnWpx4ojWQhHFdYWKjHHntMzz77rOWgLik7O1szZ84M6tcNAMHbsGGD7rzzzlInzZLS09M1ZswYDRo0qNztcnNzdf/99+v1119Xeaektm3baubMmT51/9u1a5dGjx6tNWvWlLvdwIEDNXHiRI8tjwAEliSQjNaDY8eO9bp9165dNX36dEvLZU82b96sMWPGlDvJSWJiooYPH67bb7/dpxkblyxZookTJ1qSkCWlp6frgQcesIy/BMSTQOuBRYsWadKkSTp48GC522VnZ+v+++/XGWec4bXMUJzjv/jiC40bN06//PKLx21SU1M1duxYSzdIIFaMHDlS7733XlBleKobouVan3rAimQhIsa2bdv02muv6bPPPtPu3bt19OhRpaen65RTTlHPnj3Vt29fbuiBCJGfn69ly5bpvffe07p167Rv3z7l5eWpevXqatSokc4//3z17t3br66969at08KFC7Vy5Urt2bNHubm5ysjIUOvWrdWnTx91797dr9Z/hYWFWrp0qd5++20zxoSEBNWsWVPt27fXZZddptNOOy2AVw/El0CTBEU+//xzvfXWW/rqq6+0b98+5efnq3r16mrbtq369evn96DpeXl5+u9//6t3331XGzdu1G+//abk5GTVq1dPZ555pi6//HKP3Zk9OXDggObPn68PPvhAP/74ow4ePKhKlSopOztb5557rgYNGsRQBYhrwdQDhw8f1htvvKFPPvlEmzZt0oEDB5SYmKjMzEy1aNFC3bt314UXXujXdX4ozvFHjx7VggULtHTpUn333Xc6cOCAKlSooIYNG+rss8/W5Zdfrrp16/pVJhAtevfuXe7Yor7wVjdEw7U+9UAxkoUAAAAAAAAAJDHBCQAAAAAAAIATSBYCAAAAAAAAkESyEAAAAAAAAMAJJAsBAAAAAAAASCJZCAAAAAAAAOAEkoUAAAAAAAAAJJEsBAAAAAAAAHACyUIAAAAAAAAAkkgWAgAAAAAAADiBZCEAAAAAAAAASSQLAQAAAAAAAJxAshAAAAAAAACAJJKFAAAAAAAAAE4gWQgAAAAAAABAEslCAAAAAAAAACeQLAQAAAAAAAAgiWQhAAAAAAAAgBNIFgIAAAAAAACQRLIQAAAAAAAAwAkkCwEAAAAAAABIIlkIAAAAAAAA4IT/D6Q+Qjf553HDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Still imperfect, but this is a _very_ high count rate case. In more typical cases, the correction is more than adequate:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 2957.61it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAARHCAYAAAAMUaZ5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT1/8H8HeYypAhCi4cKLi31l21Vq11VG217rrqqNa9Z62rdbSuqrVqXXXv0boXOHDjQFCQKQICYSOB5PcHP+43l4SQhERQ3q/n6dN7b+495wSTOz4553wkCoVCASIiIiIiIiIiIiIjMSnoBhAREREREREREdHHjUFIIiIiIiIiIiIiMioGIYmIiIiIiIiIiMioGIQkIiIiIiIiIiIio2IQkoiIiIiIiIiIiIyKQUgiIiIiIiIiIiIyKgYhiYiIiIiIiIiIyKgYhCQiIiIiIiIiIiKjYhCSiIiIiIiIiIiIjIpBSCIiIiIiIiIiIjIqBiGJiIiIiIiIiIjIqBiEJCIiIiIiIiIiIqNiEJKIiIiIiIiIiIiMikFIIiIiIiIiIiIiMiqzgm4AEREArFu3DuvXrwcANG3aFLt27cp3mTNnzsTRo0cBAD179sTy5cvzXaYxvHjxAnfv3kW/fv3Uvj5o0CB4e3sDAMaNG4fx48e/z+aRDnx8fHDw4EHcuXMHkZGRUCgUcHZ2Rq1atdCjRw+0adMGEonEKHUHBARg3759uH37NsLCwpCRkYHSpUvD3d0d3bp1w+effw4zM90u+zdv3sThw4fx8OFDREVFwczMDC4uLmjQoAF69uyJxo0b61Reeno6Tp8+jX///RfPnj2DVCqFjY0NypQpgzZt2qB3795wdXXVqcxXr17h8OHDuHv3LkJCQpCQkABLS0s4OTmhfv366NixI9q3b2+Qv/v69euxbt06AIb7Lhq6zEOHDmHOnDkAAD8/v3y3DwAUCgWGDh2KmzdvAgB27tyJTz75ROvjjfG9iIqKwokTJ3DlyhWEhIQgNjYWxYoVQ/ny5dG0aVP07dsXbm5uWpcnlUpx5MgR3Lx5E/7+/pBKpQAABwcH1KhRA23atEHPnj1RrFixPMtSKBRo1KgRkpOTdXpPEyZMwNixY3U65mNWVK99YWFh+Oyzz4T1ixcvonz58vku9969e3jz5g2+/PJLta+3b98e4eHhAIBly5ahV69e+a6TjMPQ12ZdGPp8rlAocOHCBZw4cQKPHz9GTEwMihcvDmdnZzRr1gy9e/dG9erVdWpjZGQkDh48CG9vbwQGBiI+Ph5mZmZwdHREnTp10L59e3Tp0kWre6LY2Fg0b95cp/oB4Ndff0WPHj10Po6oKGAQkoiogKSmpmL9+vXYsWMHunbtmmsQkgo/mUyGn3/+Gfv371d5LSgoCEFBQTh9+jRatWqFZcuWoXTp0gatf926ddi0aRMyMjJE20NDQxEaGoqLFy+idu3aWLFiBapUqZJneUlJSZgxYwYuXLgg2v7u3TsEBAQgICAAhw4dQvfu3TF//nzY2trmWWZAQAAmTJiAFy9eiLbHxcUhLi4Oz549w9atW/Hjjz9i5MiReT7EpKSkYNmyZTh48CAUCoXoNZlMhqSkJAQFBeHYsWOoWbMmfvvtN1SqVCnPdubm+fPn2LRpk97Hv48yw8LC8MsvvxisvGx79+4VApC6MNb3Yvv27Vi7di1SUlJU6vP19YWvry927dqFESNGYNKkSTAxyX3gj0KhwO7du7Fq1SqkpqaqvB4REYGIiAhcunQJ69atw9KlS9G2bVuN7QsODtY5AElkLHFxcVi5ciUOHz6MH374oaCbQ/lgjGuztoxxPo+MjMSkSZNw79490fb09HTEx8fD398fu3btwnfffYfJkyfDwsJCY3kZGRlYt24dtm7dCplMplJmSkoKwsLC8O+//2Lt2rVYvXo16tatq7FMX1/fPN8HEemGQUgiogKydOlSHDhwoKCbQfmkUCgwceJE0UOBpaUlPDw8YGpqihcvXiApKQkA4OnpiSFDhmD//v0oUaKEQepfvHixqOewmZkZPDw8ULx4cQQEBCAuLg4A8OTJEwwaNAgHDhxAuXLlci3v3bt3GDZsGB49eiRss7a2hru7OzIzM+Hv74+0tDQAwIkTJxAREYFt27ZpfDh49eoVBgwYILQFAEqVKoXKlStDKpXixYsXUCgUkMlkWLVqFRISEjB16tRcy0tLS8OwYcPw4MED0fYqVaqgVKlSSElJgZ+fH9LT0wEAz549w9dff409e/bAw8Mj13JzI5PJMHPmTJWHmvwwdJmxsbH4/vvvkZCQYJDysoWFhWHFihU6H2eM74VCocCiRYvwzz//CNtMTU3h6uqKUqVKITIyEsHBwQAAuVyOP//8E/Hx8Vi0aFGuZS5btgw7duwQbXN2doarqysyMzMRGBgo9IqMiYnB6NGjsWzZMvTs2TPXMpUfWu3t7VG7du1c91Wmay9gIm1MmTIFXl5eBd0MyidjXJu1ZYzzeWxsLAYOHIiQkBBhm729PapWrYrU1FT4+fkhIyMDCoUC27dvR1RUFFavXp1reXK5HJMmTcK5c+dE2ytUqIAyZcogPT0d/v7+wo9XoaGh6N+/P/7880+0aNEi13KVz+fOzs6oVq1arvsqM/SPzUQfEwYhiYgKiCEDGlRwtm3bJrox79+/PyZPniz0QEhLS8Pff/+NdevWISMjA4GBgZg9e7Yw/UB+/Pfff6IAZKdOnTB//nw4OTkByPqMHTlyBMuWLUNqairevn2L8ePH4/Dhw7n2NPzll1+EhxyJRILx48dj+PDhwjDUhIQErFu3Djt37gQA3LlzB6tWrcKsWbPUlpeZmYmJEycKAUg7OzssWrQInTp1EtoQGhqKuXPn4tatWwCALVu2oEGDBqIhicqWLVsmCkB27twZ06ZNEw1ZTE1Nxa5du7B27VrIZDIkJiZizJgxOHPmjFZDapVt3rzZ4L0hDFlmREQEvv/+ewQEBBikvGwKhQKzZ89W6XGoDWN8L7Zs2SIKQHbq1AnTpk1DhQoVhG3Pnj3DnDlz8OzZMwDA/v370bZtW7Rv316lvDNnzogCkNWrV8f8+fPRqFEjYZtcLseFCxewaNEiREdHQ6FQYN68eahRo0auQwSfP38uLLdv3x7Lli3L9T0RGRvvNT4Ohr4268IY5/NZs2YJAUhLS0vMmjUL33zzjTBEOjo6GkuXLsWZM2cAAKdPn0b9+vUxePBgteX99ddfogDkJ598gjlz5oh+eJTJZDh69CiWL1+O5ORkyGQy/Pjjjzhz5kyuQUPl63SfPn0wbtw4jX8rIsobE9MQ0Udr+fLl8PPzg5+fX6GdD1Ibu3btEt5HUZkT60MRGxuLDRs2COv9+vXDggULREOgihUrhtGjR4t6Y50/fx7379/PV90ymUw09LZdu3b4/fffhQAkAJibm6Nv375Yv369cGP/9OlTnDp1Sm2ZL1++xL59+4T1KVOm4IcffhAF7UqUKIE5c+aIhvXt2bMHYWFhass8ePCgEJQxMzPDpk2b0LlzZ1EQtEKFCvjrr79E8y6tWrUKmZmZKuW9evUKBw8eFNb79OmDNWvWqMyZVrx4cXz//fdYs2aNsC08PFx4QNNWYR+G7enpiZ49e8Lf398g5Sn7559/cPv2bZ2PM8b3IiwsTJg7E8h6CF6zZo0oAAkANWvWxI4dO+Di4iJs27Jli0p5crkcK1euFNZr1KiBvXv3igKQAGBiYoKOHTti7969cHBwAJD13VM+Niflh1Z9et4SFYRLly4J9xqcD7JwMca1WVvGOJ9fv34dV65cEdaXL1+Ofv36ieZoLFWqFH777Td89dVXwrY//vhD6HGpLCEhQXRNbd26NbZt26Zy/jU3N0efPn3w999/w9LSEgCQmJgoen85Kf+opOvclESkHoOQREREejp06JAw95u9vT2mT5+e6769e/cWzSW3ffv2fNV9/vx5vH79GkBWcG/+/Pm5zn3XqlUr9O3bN8+6d+3aJQT+qlSpguHDh+da/7hx4+Du7g4gKyize/dutfspB/169+6Nhg0bqt3P3Nwcv/zyC8zNzQFkzSF59epVlf1OnjwptNHe3j7PXh6fffYZOnbsKKyfPn1a4/7KZDIZZsyYIfQkMsT8WoYqMyEhAcuXL8fIkSNFw9wNJTQ0VAi06Tp1gDG+F9u2bROG11evXh1z587NtTdviRIlMHr0aGH9wYMHiI+PF+3j7e0tJOEAgIULF8LKyirXdlaoUEH0cO/l5ZXr3105CMmHViLKL2Ncm7VljPO5cg/0Vq1aoUuXLrmWuWDBApQsWRJA1vym2QknlZ0/f15oo7m5OX7++WeNSWfq1q2L/v37C+v//fef2h893717h1evXgnr/FGJyDAYhCQiItLTv//+Kyx/8cUXGoMYAESBwGvXruk1zDVb9hAlAGjRogXKli2rdd1Pnz5FaGio6HW5XI6zZ88K67169dKY0MPExAR9+vQR1pWPzfb8+XPREOGvv/5aYxudnZ3Rrl07Yf2///5T2Sd7yDaQNdQ1r785ANGw7ufPnwvBrLxs2rRJ6AXx1VdfoUaNGlodZ+wyDx48iM8//xzbt2+HXC4HkNVrRNM8mrpQKBSYM2eO8PmcOXOmTscb+nshk8lw8uRJYX3OnDkwNTXVWGbnzp0xcOBAjBs3DrNnz1Z5wFT+HJUrVw7169fXWB4g/hzJ5XJhyLey2NhYREVFCesMQhJRfhjj2qwLQ5/P4+PjcePGDWG9d+/eGsuzsrJC9+7dhfW87gsaNGiAMmXKaCwTEJ/PpVKpyj0RAPj5+QnXDhsbG4NkqScizglJRIVYUlIS/vnnH5w9exYhISHIyMhA6dKl0aRJE3Tt2hXNmjXTePzMmTOFX0x79uypMiT7yJEjQi+qYcOGYcaMGZDL5fjvv/9w+vRp+Pr64u3btyhevDjKly+Ptm3b4ttvv0WpUqXy9b7U/ZJ69OhR0a+7fn5+wvKgQYPg7e0NIOsX7pxDstetWyfMu7Nw4UL069cPKSkpOHnyJE6ePImgoCAkJCTAyckJ1atXR9++ffHpp5+Kynj16hX27dsHT09PoXdd+fLl0aZNG3z33Xdav+fY2FgcOXIE169fx6tXrxAXFwcrKyuULl0an3zyCbp3755nJsIPhVQqFfV4atWqVZ7HNGvWDKampsjMzERaWhpu3LiBDh066Fy3QqEQDZNt2bJlnsd4eHigVKlSiI6OBpA19G7IkCHC68+fPxf17NLm/SjX+/r1azx//lwUdFF+MLCzs0OdOnW0KjN7XqcrV65AoVCIerzFxMQIy25ubnmWB2T13lAmlUrznDTe19cXmzdvBpAV4Js9e3a+54IyVJm7d+8WkqUAQIcOHbBw4UIEBgbmq33ZlIdht2rVCr1798bs2bO1OtYY34t79+4JCXcqVaqEpk2b5lmmg4MD5s2bl+vr0dHRMDExgVwuR9WqVfMsD1D9HKnrCan83l1cXFSOeR8CAgJw9OhR3LlzB0FBQUhKSoKNjQ0cHR1Rr149tGnTBp06ddIYyA0LCxM9pKu7hubHzZs3cfjwYdy/fx9RUVGwtraGq6srunTpgj59+sDa2lrnMg19/ZHL5bh8+TK8vLzw4MEDREdHQyqVwtzcHCVKlICrqyuaNGmCnj17qkwLkJuUlBQcOXIE586dg5+fH5KTk+Hk5ITatWujT58+aNOmjc7vW52c/37Z1q9fL9wvlCtXDpcuXRJea9++vdA7eNmyZSpDspXvqbZs2YI2bdpAKpXiyJEj+O+//xAaGoqUlBQ4OzujTp066N+/v8r0Bk+ePMH+/fvh7e2NN2/ewMzMDJUqVUKHDh0wcOBArXuGh4eH4+jRo/D09ERYWBikUilsbGxQtmxZtGjRAj179tT6+lDYGeParC1jnM+9vb2FwJ5EItHq/qVly5ZCr8r79+8jPj4ednZ2wutv376FRCKBQqHI1/m8UqVKom3KQ7E9PDxy7X1vTD4+Pjhx4gTu3buHsLAwpKamwtbWFk5OTmjYsCHat2+vck9PVNgxCElEhZKPjw8mTJggBMSyBQUFISgoCAcPHsSnn36K5cuXw9HR0SB1hoWFYerUqSoZd9+9ewepVIonT55g27ZtWLBggWiOmsLGx8cHU6dOFbLEZgsPD0d4eDguXryIPn36YOHChTA1NcWOHTuwYsUKlcnr/f394e/vjyNHjmDz5s15Prz9/fffWLt2rTAkJlt6ejqkUin8/f2xa9cudO7cGT///HO+s0MrB5HzQ93Dljb8/PygUCiE9Vq1auV5jJWVFVxdXYXhPY8fP9YrCBkeHi7Kgqxt9l0PDw8hCPn48WPRa8o32+bm5lplgKxcuTKKFSsmZOR8/Pix6EFHucwaNWpodQOvfHx8fDxCQkJQsWJFYdvZs2fx7t07REZGah2oyDknlvLDizo5M1cvXLgwz2PyYowyK1WqhKlTp+Lzzz8HAIMEIZWHYdvY2GDx4sU6HW+M74XyvGKffPKJTu3JzZIlS/DTTz8hOjoaGRkZWh2T83Ok7hxWkEOx5XI5VqxYgb///lvoIZtNKpVCKpUiMDAQR48eRaVKlfDLL79o1QPUkGJjYzFjxgxcu3ZNbft8fHywe/du/P777zqVa+jrj6enJxYvXiwaiplNJpMhJSUFb968gbe3NzZv3owRI0Zg4sSJGs9xN27cwPTp04VzcLaIiAhERETg/Pnz6Ny5M3788Ucd3nnBuXr1KmbPno23b9+KtgcHByM4OBinTp3C+PHjMW7cOGRmZmLNmjXYsmWLymfzyZMnePLkCQ4fPozt27drDOhmZmbi999/x99//63Soz0uLg5xcXF4+vQptm3bhj59+mD27Nn5zg6t/ENvfuzcuVOv85cxrs3aMsb5XPn9lC9fXqvroHLb5XI5nj59KspovX37dqSnpyMqKkrjMGxlhf18/u7dO8yZM0c0CiBbbGwsYmNj4e/vj3379qFWrVpYvXq1ShCVqLBiEJKICp3w8HAMHz5cCLI4ODjAzc0Nqamp8PPzEx4Yr169ikGDBmHXrl35DkTGxsZi6NChQqa+EiVKoGrVqlAoFAgICBDakpKSglmzZsHZ2VmUREMX2b8k+/v7C8P2SpcuLczhkx9+fn5YuXKlMHF3mTJlUKFCBcTHx8Pf31+4mTxw4ACqVasGmUyGX3/9FUBWdsLq1avD1NQU/v7+QhmxsbEYP348/v33X7XDcLKHbh4+fFi0vWLFinBxcUFKSgr8/f3x7t07AFlDaV68eIEdO3bku1dpQQoKChKWLSwstBr+A2TddGffnGd/3vJTNwC4urpqXXe2nHUrl1muXDmtbuQlEgnKli0rBL9yBr6Vy1QOJGrbxuwycx5raWmp9XsGxMPRypUrJ0xIn5s//vhDeFDq2rWrXoFiY5ZZs2ZNDB06FF27dtX6gUsbObNhT58+XevPdTZjfC+Ue4YrP4DfuHEDJ06cwIMHDxAZGQlLS0tUqFAB7dq1Q79+/fK8LpiZmen0/nIOa6xSpYrKPjmT0kRFReHIkSO4du0aAgICkJycDHt7e7i7u6N9+/bo3bs3ihcvrnUbNFm6dCl27dolrBcrVgxubm4oUaIEpFIpQkJChCBdUFAQhg4dKlwL3ofY2FgMGDBAFCw3NzdH9erVUaxYMQQEBCA2NhZhYWEYMWIEbGxs8izTGNefM2fOYNq0aaLgdOnSpeHq6gpzc3PEx8fj5cuXQhAsIyMDmzZtgq2tLUaMGKG2zAsXLmDChAmiMkuWLIkqVaoIbZTJZEKPwvwqVqyYcK/x+PFjYU5UV1dX4dypnMRMVzdu3MCuXbuE9+Pq6goXFxe8fftW9O+7bt061KhRA15eXtizZw+ArB833N3dIZfL8fz5cyFQFhoaigkTJuDw4cNqg7np6ekYO3Ysrl+/LmyTSCRwc3ODk5MTEhIS4O/vj4yMDGRmZmLv3r3w9/fHX3/9pdW0HYWVMa7N+tRtqPO5PvcFpUqVEgVVg4ODRUHI7PbpMlxa+XxerFgxlCtXTmWfnOfzkJAQHD58GF5eXggKCkJaWhpKliyJmjVromPHjujWrZvBrskTJ04U9VS2sbFBlSpVYG1tjZiYGISEhAh/j6dPn2LgwIE4fvy4MH8mUWHGICQRFTrZw4GyM/1169ZNGDYWGxuLFStW4MiRIwCyMgYuXLgQa9euzVedx44dA5D1UDBr1ix06dJFqPPdu3fYsWMHfvvtN8jlcsjlcqxevVqUoVcXW7duBSAe2tSyZUuDDHXbu3cvgKweUosWLRL96v78+XOMGDFC6IXx22+/ITU1FRKJBKNHj8b3338v3KinpKTgl19+EbIxvnnzBidPnhTN9ZNty5YtogfAzz77DFOnThU9oKempmLfvn34/fffkZaWhoCAAEyePBl///13nnO75cbZ2VmroUHalKMP5d4sugRTlffN2SNGn7pNTEy0fpjUVLfyel5DlZU5OTkJDzo5y1SeG0/bv5Gjo6MwlEtdmbq6efOmMJ0BkDXkUJOnT5/izz//BJB1PpgzZ06+6jdGmcuWLct3m9TZvXu38Ldq3ry52u97XozxvVAOyjg7OyMyMhLz5s1TSVyUmpoKqVSKx48f4++//8aCBQvQtWtXXd+CWrGxsaIED+7u7mofeJV7+dy5cwc7duwQHhSzRUdHIzo6Gl5eXti0aROWLFmS7+F02T39sv3www/4/vvvRdlz3717h3/++QcrVqxAZmYmUlJSsHr1amzcuDFfdWtr3rx5ogBV//79MXHiRKEnVGZmJs6ePYtFixYhLi5ONOVAbgx9/Xn79i0WLFggBNfc3d2xZMkSlZEAqampOHDgAFatWiUEOP/8808MGTJESK6V7fXr15gxY4ZQpr29PRYsWIDOnTsLc/tJpVKsXbsWe/bswdOnT/N833lxcnIS7jWUp3Tp3r27ypQu+sgeGlu/fn3Mnz9f1EPu5s2bGDt2rOjHjKSkJFhYWGDatGno16+f8DeKi4vD3LlzceHCBQBZ50ovLy+11/bFixeLApDffPMNxo0bBxcXF2FbfHw8tm7dKvS4vHfvHubPn68xm31eXF1dDXKvoW/Pd2Ncm/Wp21Dnc33uC4Csa2f280F+7wsCAgJw6tQpYb158+aicyWQ9QOH8g9gp06dwk8//aQyv/CbN2/w5s0bXLp0CZs2bcKKFSvyPe3QlStXhACkiYkJ5s+fj6+//lp0bklMTMTmzZuxZcsWAFl/k40bN2Lu3Ln5qpvofWAQkogKJSsrK+zcuVMlaYOjoyOWLVsGa2tr4YHr7NmzuHfvnsrcQ7qys7PDvn37VHpYWVpa4vvvv0diYqIQSPDx8UFkZKTeASxjKlOmDPbt2wcHBwfR9urVq2P69OmYNm0aAIiSTgwdOlS0r5WVFRYuXIiHDx8KD9U3btxQCUqEhoZizZo1wvrAgQPVzsNWvHhxDB06FLVr18bQoUMhk8ng7e2NI0eO4JtvvtHrfbZs2VKruYSMRfkBWZcMx8q9e3Jm7NWW8nHW1tYaJ6nXtm5934/yvjnLVF7XtkwTExNYWVkhMTERAETDznUllUpFN+Tm5uaieTBzSk9Px8yZM4Vgwfz58/Pdy9oYZRpDSEgIVq1aBSDr+6/rMOxsxvheKA/3TElJQf/+/YWhdMWLF4e7uzssLCwQGBgozBmakJCAqVOnQiqVYuDAgfq8FYFCocC8efNE701ddtqcmVSzh5GbmpqiYsWKKFWqFBISEvDy5UthWH50dDTGjBmDRYsW5Zm4SZPseVQBoF27dmqH9FpaWgrn3+x/6+vXryMlJUWlp1j58uVFD+D5dffuXSHQBACjR4/GpEmTRPuYmpqiS5cuqFatGvr27asytDonY1x/9u7dK5xzbG1tsXXrVrWBn+LFi2PIkCEwMTERvivx8fHw8fFRuRdZv369MLKgWLFi2LFjh8rQTnt7e+HcsG7dOo3vu7CoVasWduzYoRK8ad68Ob7//nthSH32e1+1ahU6duwo2tfBwQErV65Ehw4dhO/5jRs3VIJ+d+/exf79+4X16dOnq/0O2tnZYfLkyfDw8MDkyZMBACdPnkTv3r31Hr3So0cP9OjRQ69jDcEY12Zj163pfK7PfUHOffNzX5B9TVaegkhdD+bg4GBRUp3sQL65uTkqV64MBwcHxMXF4eXLl8IUA0FBQRg0aBDWrVuXr/ldlXtpDhgwAP369VPZx9bWFlOnTkVCQoLw3Th79iyDkPRBYHZsIiqUJkyYoDFr7PTp00VDJ7J7AObHd999p3GIZ86bAEM+oBnSjz/+qBKAzPbZZ5+JhjmVK1cu16CMRCJB27ZthXV1Q4d37NghBFcqVKiQZxbdJk2aYPDgwcJ6dm+KD5HyfFQ5H8I0UZ6fStsszTll97wxZN3GeD+GaKdyGbpIT0/Hjz/+KJr3adCgQRrnG/vjjz/g7+8PAOjUqRM6d+6sV93GLtPQsodhp6amAgCmTp2qdxZQY3yOlB84lyxZgrCwMFhaWmLWrFm4ffs2Dhw4gN27d8PT0xMbNmwQetcoFAosW7YMd+/e1eu9ZPvtt99EAbS6deuKsrVmU86kCmSdQ4cMGYJLly7h33//xc6dO3Hs2DHcunULEydOFHq1ZGZmYuHChflqp3Lvorz+7b7++ms0bNgQ3bp1w8iRI1Wy1xpD9mgDIKunvqbeeNWqVcOECRPyLNMY1x/lZFrffPNNnj3PcgbVIiMjRevp6emi7MIjR47UOLfc2LFjtZp3rzCYMWNGrt/xnNNNNGrUSOVvla148eKiAKG6e43sXp3ZZakLQCr78ssvRefabdu2ady/MCvIe42P7b4g+1rn4+MjbOvUqRMaN26ssq/yUGwgK/g4YcIEXL9+HSdPnsTOnTtx8uRJeHp64rvvvhPurdPS0jBp0iSVaXN0oXw+VzdMXNmAAQPQpEkT9OrVC3379lXpeU9UGDEISUSFjpWVVZ694ywsLETJRK5duyaaPFsfud0gZytbtqyot0h2T63CRCKRaHwf1tbWol5Ybdq00diLTrmnp7r3e/78eWG5a9euKsPQ1FFO6hMQEGCQ+a8KgvKv6Nr2RAQgmi9I24QY76NufctUHs6Ys0zldV2G3WsqUxvp6ekYN26cKIN4vXr1hJ4x6jx9+lQY1pQ9XDK/jFGmMezatQt37twBkBWo6d+/v95lGeOzqfwQm5CQAHNzc2zZsgXfffedaH5PExMTdOjQAfv27RMyn2ZkZORrqos//vhDyGgOZPW0+u2339S+N+WhxiYmJvj9998xe/Zs0XBRIKuX0JgxY7BlyxbhfctkMixdulTv65hyHUePHsWjR49y3dfR0RF79+7FypUrMWHChHzNDagt5aHzvXr1ynPetN69e+cZoDDG9WfPnj24ffs2Dh48qDJCQJ2cw0lzBgC8vb2FIK9EIsnz3sbExERtr6fCxtHRUWOSlZw/9rRr105jeZruNdLS0kTDsHv27KlVG5X/rW/evKl34KqgGePabOy6NZ3Pldff5/tRKBSYP3++KNFLhQoVcu31r9yr3dLSEjt37sTYsWNVfuTPnsZJeZqUpKSkfE0BoHw+37Fjh9oEWdk8PDywe/duLFu2DOPGjdMpsEtUUBiEJKJCp0GDBlplvVX+5TJ7onh9mZubq00ykJNy9ryc2aQLg7Jly+Y5mb/yDUrlypU17qv8gJ8zo2V4eDjevHkjrLu5uWnVxmrVqonaoJz59kOifEOc82+jifLNszYPze+rbn3LVO75panMnPMoaVumrplNk5KS8P3334uCHmXLlsW6dety/XvnHDI9d+7cfE/ubowyjSEkJASrV68GkHVuWLJkiVZZzHNjjM9mzvaMGDFCYwCkfPnymD59urD++PFjPHz4UOu2ZFuxYoVouK+5uTnWrFmTa0/Dr776Co8ePcKpU6ewf//+PHu9Nm/eXNSj6+nTp7h3757O7QSyevNk/52SkpLQt29fDB8+HDt37kRAQIBeZRpKcHCwqGePNlOn2NjYoHbt2rm+bszrj729PerWrauxF6RMJsPjx49FPfQA1fNcdnAfyPpcajOFS7NmzfLcp6BVrVpV4+s5AyH5udfw8fER3W9p+2+t/PnJ/vf6EBnj2mzsut/3vUZeZDIZpk6digMHDgjbSpQogQ0bNqjNig1k9Uq+d+8ejh8/jgMHDqBhw4Ya6+jZs6doDuLz58/j9evXOrUzW6dOnYTliIgIdOvWDT/88AMOHDigktWb6EPEOSGJqNDRJhgIqN7URkRE6J3ls0SJElr9IqvvzdP7omuQI6+ApaZgRM4hU1OnTsXUqVN1qh9QHb72ociZ8EFbyvvmlaU5N8rZdHWpW7lHWc66jfF+ihUrJswHpm+ZugQho6KiMHr0aFFiBxcXF/z9998aH/43bNggDJlu3749unXrpnWd77NMQ1MoFJg1a5YwDHvSpElaZyvNjTE+R1ZWVsKQbIlEotUcj926dcPixYuFXmheXl6oX7++Vm1JT0/H/PnzhcRhwP8CkHnNK1esWDGdrkMDBw4U9bT09PRUOzQwL25ubhg1ahQ2bdoEIOvf1tPTE56engCyepq1aNECrVu3RuvWrXN98DYG5QAkoH1GXDc3t1yHqL+v609CQgKePXuGkJAQhISEIDQ0FK9evUJgYKBWP0Qqv3dt33f58uVFmYALo/d5r5Ezs7O+PUVzfg4/FAV5r2Gs+wJDl6lJUlISJkyYIJwLgaz5FP/66y94eHhoPNbGxkbj9Ak5DRo0SJTwxsvLS695z9u0aYOuXbsKZclkMly4cEGYFsTV1VU4n7ds2VJ0T0j0IWAQkogKHW0fjnJOaK3vxNuAbvPSFGa63mjmp8dTfv7ehijHy8vLIPM8DRs2TK8EN9nDPYH/TbyvDeVkC8pl6EI5y2ZycjIUCoVW/5bK7cxZt77vR1OZdnZ2wuvalimXy0Vz1Gn7N3r+/DlGjRol6h1VoUIFbN++XeM8kE+ePMFff/0ltPenn37Sqj5NjFGmMezcuVMI8jRo0EA0X56+jPG9sLa2FoKQFStW1Gr4sIWFBWrVqiX0RFMeKq2JVCrF+PHjRRnVixcvjjVr1uQ7g7U6pUuXRoUKFYRhwTkDLrqYOHEiSpcujd9//10lcUNkZCSOHj2Ko0ePwtzcHK1atcLIkSPzndBNG9nJgrLlFZDKpimbsLGvP5cvX8b27dtx584djT84mpmZaRwaGhsbKyxr+74lEglsbW0LdRDyfd5r5CcJiTJtsq2rc/z4cZw4cSLf9U+bNk2ngFY2Y1ybjV23pvO58vfa2O8nPDwco0ePFn4QBLKSIW3ZsgV16tTRum5t1a5dG+bm5sIPFPk5ny9fvhyVK1fGli1bVM4F2T+K7Nu3D8WLF0f79u0xZswYvTtiEL1vDEIS0Qcr59xZH0sgMT/yc6Ovq5wPXk2aNNHr13ZNASJNIiMjRb9s6+vLL7/U6zjlnnU5H7I1iY6OFpb1nYtNue7MzEzExcVplXFZU93KQw91eT/KmYtzzo/m7OyM8PBwncqMjY0VPfTnLFOdS5cuYcqUKaLgZY0aNbBlyxaNx6enp2PWrFnCZ3nWrFl5JqLIizHKNIbg4GD89ttvALICCkuXLtVpfq7cGON74eDggIiICGFZW8rfCW0CEK9evcLo0aNFCQXs7e2xcePGPIfi5YeTk5MQhMxPcE0ikWDAgAHo2bMnzp8/jwsXLsDLy0sly7RMJsPly5dx+fJltVmqDU3fqUs09YI21vVHJpNhzpw5OH78uNr9rays4Obmhlq1aqFRo0Zo3bq1xuHTxnjvhUFB3mvkzJytLX3PwyEhIQa51/j+++/1Os4Y12ZtGeN8rm+Zyvtq834ePXqEsWPHiv4O5cqVw19//aX1iCtdmZmZwd7eXnj/+Tmfm5ubY9y4cRg0aBD+/fdfXLx4Ebdv31bpPZqamorTp0/jv//+w7x58z6IOWWJGIQkokIn5wNTbnL+Ov4+h5eR6t973rx5eQ5t+ZgoD61LSUnB27dvtQoqKidCyGueLG3qzi5TmyCk8lxCOeuuVKmSaD9telcqFAohyJizjOz17DnX1GU8VSdnooicZea0Z88eLF68WBS4bNWqFdasWZNnz6Nz584JPSRMTU1x6tQp0VCqnPz8/ITlEydOiOYZzO7lYowyjWHr1q3CMGxra2ssWbJE62NXrFgh6s2iPC+eMb4XVatWxbNnzwDolhBMl8RI9+/fx5gxY0TByvLly2PLli1Ge2DNpvxQqc18yHmxsrJCjx490KNHD2RkZMDHxwe3b9/GjRs3cP/+fdHfZdOmTahevTq++OKLfNebm5zXioSEBK2GD2rqJWWs68/q1atFAchy5cqhR48eqF+/Ptzd3eHi4iI6L+aVIEN5xIYun11deoh97HL+W2tzbv+YGOParC1jnM+V26LtfUFUVJSoN2Be7+fChQuYPHmy6Nxaq1YtbN68We+ArLaUp70xxPnczs4O3377Lb799lu8e/cO9+/fF87njx8/Fu59MjMz8dNPP6FmzZqoV69evuslMiYGIYmo0NF20uWciWjyO5cZ6SbnHHsRERHvNQjZq1cvUYb0961mzZqQSCRCj1xfX1+0bt1a4zHJycmim259A0zlypWDvb29EDDx9fXV6qbz+fPnudZdq1YtYTk1NRWvXr3KM/gSGBgousmvUaOGSplHjhxRqVsTX19fYdnOzg7lypXLdd+NGzfi999/F2375ptvsHDhwjyz7wLih4XMzEydertkD4fKlt3LxRhlGoNyO2NjY3Vqp6YED8b4XiifV8LDw5Genq5VTzHlofk5M1Qr8/LywtixY0UPuXXr1sXGjRu17q2sUCiwZs0axMTEICYmBh07dhRl582NXC4XBQvKlCmjVX3aMjMzQ8OGDdGwYUMhyLp7926sX79e+DfasWOHUYOQrq6uovWAgACtErRoGspojOtPVFQUdu7cKax/+umnWL9+vcbPWl49nZTvS7RNnieVSg023PxjoO7f+n0OOx0/fjzGjx//3urLyRjXZm0Z43yu/H6Cg4ORmpqa548SyvcFEolE43f92LFjmD17tiiRTbt27bBq1Sqtg4KJiYnYsmWLcD4fOHCgVj1wpVKpqIOEoc/nlpaWaN68OZo3b46JEyciMjISmzZtwj///AMg6zq0c+dOrFq1yqD1Ehkas2MTUaHz6NEjlaHW6ty4cUNYLlOmjMaHTDK8atWqiXp53Lp1S6vjYmNjMXPmTKxduxaHDh0SPYB/SGxsbFCzZk1hXfnzmJtbt24Jv1qbmpqiadOmetevnB1Ym7qfP38uGpaUcwhhtWrVRL0pb968mWeZXl5ewrKDg4PKg4Hy+4uOjsaLFy/yLFP5vWjKgPznn3+qBCAnTZqExYsXaxWAJOMwxveiRYsWwnJqaqroc5ebxMRE0Txguc3/5e3tjTFjxogCkB06dMCuXbt0mi5BIpHgxIkTOHDgAC5evIgzZ85odZyPj48o4KRPUpq0tDRcu3YNO3bswMKFC0Xf85zs7e0xbtw4UbIEbYNj+qpUqZLO55aMjAw8evQo19eNcf3x9PQU9WycOXNmnsFu5eAIoJqwrkGDBsJyZGSkVnOT6psh/WNVv359Uc8/bf+tX758idmzZ2PDhg04duyYaH7OD4kxrs3aMsb5vFGjRsI1OjMzE7dv386zTOV6a9asmet8sadOncKsWbNEAch+/fphw4YNOvVKLFasGLZt24ZDhw7h8uXLuHjxolbHeXl5iZ5f9DmfJyQk4PLly9i6dSvmz5+vcUoHZ2dnLFiwQDSvubHP50SGwCAkERU60dHRuHz5ssZ9EhISRJlLO3ToYOxmGdz7nFPJGExMTNCmTRth/ejRo1pNIL9r1y4cPXoUGzZswJw5cxAXF2fMZhpVp06dhOUTJ04Iw1tzs3fvXmG5RYsW+ZpCoGPHjsLy5cuX88zyqly3m5ubykOJRCLB559/LqwfOHBAY0IGuVyOAwcOCOudOnVS+Uy7u7uLhmLt27dPYxsjIiJw5coVYT233lkXLlwQ/dJvamqKZcuWYfTo0RrLz6lXr17w8/PT+j/lh6lx48aJXssOmBqjTGNYvny5Tu1UtnPnzlxfAwz/vahZs6ao59OWLVvy/KFq3759wsObubk52rZtq7JPeHg4fvjhB1GPob59+2LdunV6zTGs/G/p5eWl1Q8s2dmsgawAYV69jNSRyWQYNWoUli5dir179+LSpUt5HlO1alVh2dzcXOc6dZHz3HLkyJE8hxufO3dOY9DIGNcf5XnsAO3mENy1a5doPefw7ObNm4s+z8o9LXOT13lSVx/6vYajo6Oop/+ePXu0mmvzzz//xOHDh7F27VrMnj1b4/WsMDPGtVkXhj6flyhRQvQjaF6f9+TkZFFioM6dO6vd7/Hjx5g5c6bobzNhwgQsXLgwz+k4cjI3Nxf9gHDmzJk8z1kZGRlCQjog6xyrHMDVVkREBEaPHo1ff/0V+/fvFyVJy837PJ8TGQKDkERUKGnqzZGZmYl58+YJDw+mpqYGyer6vilPop9zoukPxbBhw4RlqVSK6dOni4Z55vT48WPR/HF169ZF7dq1jdpGY+rdu7cwjOjt27dYtGhRrvsePHgQ169fF9bz+5nt2LGj8JCcnp6OmTNn5jo/2fXr13Hw4EFhfdCgQWr369+/v/Cw8vz5c2zYsCHX+tesWSP0bDQxMcm1zAEDBgjL+/bty7UnhUwmw4wZM4SHy7Jly6r9cSEyMhJz5swR1iUSCX755ZcCHZpPYsb4XgwZMkRYvnfvHv78889cy8z52e3SpYvKPGCZmZmYOnWqKHDVt29fLFq0SO8EPV9//bWwnJGRgfnz52ucM3Dbtm2iH9y+++47reZKzMnW1lbU42bz5s0aA3gKhQLnzp0T1vV5UNbV0KFDhV6Fb9++xfz583MNpERGRmLp0qV5lmno60/OjLvKn0t1Nm/eLPrRBFBNRFOsWDHRZ3ffvn0af2Q9fPgwrl27prFeXX1s9xqvXr3Czz//rPGHiEuXLokCVx07dtQ7EVxhYIxrs7aMcT5Xvi+4fPmyMG2LOgsXLhTOZ1ZWVqLzbLbk5GRMmTJF9P2bPHkyxo4dm2u5eVGuRyqV5nlOWr58uTB3MQCMGjVKr+Cvu7u7aBqa3377TeP39t27d6Lz0Ps4nxPlF4OQRFQoRUZGok+fPirDTkJDQzF69Gj8999/wraxY8eqzDn1IVB+4Hn48OEHOQdU7dq10b9/f2H98uXLGDRokMowuvT0dOzZswdDhw4VbqZMTU0xa9as99peQ3NycsKIESOE9SNHjmDKlCmiLI5paWnYtGkTFixYIGxr06aNqBdPTh4eHsJ/uT1AWFhYYPLkycL6jRs3MHLkSNGE8BkZGThw4ADGjx8vDE9yd3cXDcVUVr16dfTs2VNYX79+PZYuXSpKqJCYmIglS5aIenD17dtX9Eu8sr59+wq9ITMyMvDDDz/g4MGDouBMaGgoRowYIRqWNW3aNLVDIX///XdR8pBRo0ahW7duauumgmGM78XXX38t6j2zevVqzJ8/X9QDWC6X48yZMxg8eLDQW8fW1lZt9ueTJ08KSZOArOzKym3RR+PGjUW9dz09PTF8+HAEBASI9ouOjsb8+fPxyy+/CNtq1aol+pvpSjlIExYWhhEjRsDHx0dlv8jISEyaNAl3794VtikHyZTLUD4PzZw5U++2AVnJKZQDAqdPn8aYMWNU5oD29PREv379VHolqmPo60+LFi1EQYOFCxeq7VX66NEjjBs3DqtXr1Z5LSUlRWXb999/L/TkVSgUGD9+PLZt2yYKLKSmpmL9+vWYO3dunu9bV8r3Gjdv3tQYqC2sOnbsKOrNvH//fowaNUpl6GlSUhI2btyIH3/8UQhSWllZia6VHyJjXJu1/Y4b43zevn17UU//efPmYfPmzaLvxNu3bzFp0iRRMHns2LFqk/Bt375dNIds165dMWrUKLV1a6tbt26oX7++sH748GFMnDgRERERov1CQkIwbtw4Ua/o9u3bo3v37nrVK5FIMHz4cGH98ePHGDNmjMp1BACCgoIwcuRI4b2bmJh8kJ0yqOjhpElEVOi0adMGd+7cQXh4OL777juULVsW5cuXR3x8PPz9/UW/fnfu3Dlfv3QWJHd3d2H59evX6NKlC6pVq4bExERs27Yt1zlvCptZs2YhNDRU+PX74cOH6NOnD1xcXODq6oqkpCQEBQWJHs4kEgnmzp2Lhg0bFlSzDWb06NF4/Pix8Ev0qVOncPbsWXh4eMDCwgIvXrwQPSiUL19eFHzIj549e+LBgwfYv38/gKxAZMeOHeHh4QEbGxsEBASIekTZ29tjzZo1GudMnDNnDvz9/fHkyRMAWUkrDhw4IAzf9vPzEw3HqlOnjsYAhYWFBdauXYtBgwZBKpUiJSUFc+fOxerVq+Hm5ibM3afcK2rAgAHo0qWLSlkRERGiBxIg6/OmfMOujV9++eWD7hXzITD090IikeC3337D8OHDhd4m+/fvx+HDh1G5cmU4ODggMDBQ1IPe3Nwcq1atUpscYPPmzaL1pKQknRMBDRs2TDQXFwAsXrwYoaGhwvfn1q1b6NKlC6pUqYLSpUtDKpWqfN6rVauGLVu25GsYXbt27dCrVy+hR9HTp0/xzTffwNnZGRUrVoSpqSmio6MRGBgoqnvgwIEafxAxpJEjR8LX1xdnz54FAFy5cgVXr16Fu7s77OzsEBoaKjzgFy9eHI0bN86zN6Ihrz8VKlRAnz59hPOpVCrFmDFjUKpUKZQvXx5yuRyvX78WBUjNzMzg4OAgbFMXPLWwsBA+u5GRkZDJZPjll1+wYcMGuLu7Q6FQ4Pnz58J5tWnTpvD39xf92JIfyvcaT548QefOneHq6op3796Jhs4WZhKJBL/++iuGDh2Kp0+fAgCuXr2Kq1evwtXVFS4uLpBKpQgJCRHN72pubo6VK1d+kD9U52Toa7MujHGfs2LFCgwYMAChoaHIyMjA6tWrsWXLFlSrVg3p6enw8/MT9Wxs166d2mt9amqqyrQI4eHhOt8XTJs2TZREx8TEBGvXrkX//v2FH0v+/fdfnD17FtWqVRO+9zmDg02bNlX7A4Uu+vXrhwsXLggjR7y8vNClSxdUqFABZcuWBZCVeC1n8q5p06blGnQmKkwYhCSiQqdmzZoYPHgwpk6dCqlUitevX+P169eifczNzTFs2DBMnDhR76FzBe3zzz9HzZo1hQfqt2/fCg/Qz58/N+p8cIZkYWGBzZs3Y+3atdi+fbvwS/abN29E2WmzlSpVCgsWLBDNcfQhMzMzw7p16/DTTz/h8OHDUCgUkMlkwoOCsgYNGmDNmjVqf8nX108//QQHBwds3boVMpkMcrlcJVkCkDUP5Jo1a/LMqmljY4O///4b06dPF3oBpaam4uHDhyr7tmvXDitWrMhz/jx3d3fs3LkTU6ZMEYaJxcbGqgwZNTU1xciRIzFx4kS15Vy4cEFleKu2SQqUKT+kknEY43vh6OiInTt3YsmSJTh27BgUCgUyMjLUJjwqW7Ysfv31VzRp0kTlNT8/P5UEIeq+M3n58ssvVbbZ2Nhg586dWLx4MY4ePSr8aBYYGKg2KUn37t0xe/ZsODg46Fx/TosXL4adnR127twp9HyOjIxUO1+slZUVRo8ebdQM7DmZmZlhzZo1WLlyJbZt2wa5XA6FQqEyr6idnR1WrlwJb2/vPIOQhr7+zJ07F4mJiaLEQtHR0WqDi25ubli8eDEuXrwozAWn3MNUWbVq1XDgwAGMHTtWCKIlJSWJeuMCWUk71qxZY9De3X369MGePXuEAG94eLgwX2lYWBjKly9vsLqMyc7ODv/88w+WLl2KQ4cOCZ/xkJAQUTbmbBUrVsTSpUv1Sg5SGBnj2qwtY5zPnZ2dsWvXLkyePFn4HiQmJqp8J4CsnvALFixQe79/8+ZNlYD9gwcPdHh3WdSdC52dnXHw4EHMnj1bmEZBLpernQvZ1NQUAwcOxKRJk/SaVkOZiYkJNm7ciHnz5ol+eA0NDRWNdsnm4OCAKVOm5DrKhaiwYRCSiAql1q1b4+TJk9i9ezcuXbqE8PBwSCQSlC1bFq1bt0afPn1ECS8+RObm5ti1axc2bNiAS5cuITIyEhkZGShVqtQHNzTb1NQUkyZNwoABA3Ds2DHcuHEDgYGBwo2ho6MjatSogXbt2uHLL7/UKUvhh8DCwgJLlixB3759cfToUdy6dQuRkZFIT0+Ho6Mj6tati65du6Jjx44GD5pLJBJMmjQJ3bt3x6FDh+Dp6Yk3b94gNTUVdnZ2qFGjBjp37ozu3bvnmek1m62tLTZu3IibN2/ixIkTuHv3Lt6+fYvMzEw4OTmhQYMG6NmzJ1q1aqV1Oz08PHDs2DGcPHkSZ8+eha+vL2JiYmBubo7y5cvjk08+wbfffqvxV3xtMstS4WGM74WtrS2WL1+OIUOG4MSJE7hx4wbevHmDpKQklChRAjVr1kTHjh3x1VdfiebCU2bsz5G1tTWWLVuGESNG4NChQ/D29kZYWJjQRmdnZzRv3hxffvmlQefENTU1xcyZM9G3b18cP34cd+/exatXr5CQkACJRAInJye4urqibdu26NKli1aJV7IZKrmJRCLBtGnT0KNHD+zbtw83b95EeHg4TE1NUa5cObRr1w4DBw6Es7OzVgkZAMNef7J7Lfbu3RtHjx7Fw4cPhXOftbU1ypYti+rVq6Nt27bo0KEDTE1NIZfLhSCkv78/fHx8ULduXZWyXVxccOjQIfz33384ceIEnjx5AqlUihIlSqBq1aro0aMHvvrqK52TaOTFzs4OBw4cwPr16+Hp6Sn82Fm6dGm8ffv2gwlCAllzbC5atAjDhw/H8ePHcevWLYSEhEAqlcLMzAxOTk6oVasWPv/8c3Ts2FHra96HwhjXZm0Z43xepkwZ/PPPPzh//jzOnDkDHx8fvH37FiYmJnB2dkajRo3Qp08f0bDonIx9Pnd0dMSmTZvw6NEjHDt2DPfu3UNERARSU1Nhb2+PMmXKoHXr1ujatWueP/LqolixYlixYgW+++47nDx5Eg8ePEBwcDCSkpJgZmaGkiVLomrVqsL5/EMZPUUEABJFXukFiYiIiIioyDlz5gwmTZqEwYMHixJCEREREenjwxzDSERERERERpU9FYouvSaJiIiIcsMgJBERERERiWRmZgpzI7Zu3bqAW0NEREQfAwYhiYiIiIhIkJiYiOnTp+Pp06do3bq1KGssERERkb4YhCQiIiIiIoFcLsft27fRtGlTrFq1qqCbQ0RERB8JJqYhIiIiIiKRsLAwlCtXzmCZsYmIiIgYhCQiIiIiIiIiIiKj4nBsIiIiIiIiIiIiMioGIYmIiIiIiIiIiMioGIQkIiIiIiIiIiIiozIr6AZQ4XTv3j3RuokJ49VEREREREREREWRXC4XrTdq1EjnMop0EFKhUODatWs4ceIEHj16hLdv38LExAQuLi6oVasWunXrhlatWhklAJecnIyjR4/iwoUL8PPzQ2JiIuzt7VG2bFl89tln6NmzJ0qXLm3wevWV88NGRERERERERESkrSKbHfv169eYPn067ty5o3G/+vXrY+nSpXBzczNY3ffu3cOUKVMQERGR6z7W1taYO3cuevXqZbB6dZGzJyQRERERERERERGgX0/IIhmEDA8Px8CBA/H69Wthm5WVFTw8PGBubo7AwEC8fftWeM3Gxgb79u1DtWrV8l33vXv3MGzYMKSlpQnbypUrh3LlyiE6OhqvXr0S7b9w4UL069cv3/Xq6mMcjq3cm/NjeD9EpDueB4iI5wEi4nmAiHge0J0hhmMXuSCkXC7HgAEDcP/+fQCAubk5Jk6ciEGDBsHS0hJA1jDts2fPYsGCBZBKpQCA8uXL499//4WFhYXedSclJeGLL75AVFQUAKBMmTJYtmwZmjdvLuzj6+uLWbNmwdfXFwBgZmaGAwcOoFatWnrXq48HDx4IHzATExM0aNDgvdZvaBkZGXj06JGwXq9ePZiZFenZCIiKHJ4HiIjnASLieYCIeB7QjyHiREUu3Hvx4kUhAAkAP//8M0aMGCEEIAFAIpGgc+fO2Lx5sxARDwsLw4kTJ/JV9+bNm4UApK2tLf7++29RABIAatSogd27d8Pd3R1A1pdj1apV+aqXiIiIiIiIiIioIBW5IOTBgweF5bp166Jnz5657lu/fn18+umnwvqFCxf0rvfdu3fYv3+/sD5y5EhUqlRJ7b42NjZYsmSJsO7l5QU/Pz+96yYiIiIiIiIiIipIRSoIqVAo8ObNG6F345dffpnnMcrzQAYHB+tdt6enJ+Lj4wFkdVvNK+FM3bp1RUOw//vvP73rJiIiIiIiIiIiKkhFKggpkUhw4sQJ3L9/H4cOHUK3bt3yPCYhIUFYtra21rvumzdvCsvu7u4oVapUnse0bNlSWL58+bLedRMRERERERERERWkIjnzZvHixVGnTp0890tPT8f169eF9Zo1a+pdp/Jwam2TzFSvXl1YfvHiBd69eyeau5KIiIiIiIiIiOhDUKR6QuoiPT0dc+fORXh4OICsIdRDhgzRu7xXr14JyxUrVtTqmPLlywvLGRkZCAsL07t+IiIiIiIiIiKiglIke0KqI5fLhUCfp6cndu3ahZCQEOH1BQsWwM3NTe+yY2NjhXVthmIDgJOTk2g9Ojpa7zbkV0ZGRoHUayiZmZka14no48fzABHxPEBEPA8QEc8DBYdByP+3bNky7Ny5U2W7i4sLZs+ejU6dOulddmJiouhDXaJECa2Os7W1Fa0rz0/5Psnlcjx69KhA6jaWJ0+eFHQTiKiA8TxARDwPEBHPA0TE88D7w+HY/+/169dqtzs4OCAqKgppaWl6l/3u3TvRurbzOlpYWGgsh4iIiIiIiIiI6EPAIOT/e/v2LapXr45mzZrB3d0dJiZZfxpfX18sXrwYPXr0QEBAgF5l5xzKbGpqqtVxOfdjF2EiIiIiIiIiIvoQcTj2//vnn39EQb/o6GisX78e+/btAwAEBQVh6NChOH78OBwcHHQqW99gYs79zM3NdarXUExMTLTKJl6YZWZmirpY165dW+tgMBF9HHgeICKeB4iI5wEi4nlAP48fP4ZcLs9XGQxC/r+cH7hSpUrhp59+Qvny5bFy5UoAQGRkJDZs2IC5c+fqVHaxYsVE69oOq9Z3GLcxmJl9XB8VU1PTj+49EZFueB4gIp4HiIjnASLieeD94V85DyNHjsS5c+fg4+MDADh27Bhmz54tDNfWhq2tLUxMTISIcVJSklbH5dzP3t5e6zqJiIiIiMjwFApFvnuCUMFRlxVXIpEUUGuIqCAUhfOAiYlJoXxPDEJqoUePHkIQMjExEUFBQahSpYrWx5uYmKBUqVKIjIwEAMTExGh13Nu3b0XrTk5OWtdJRERERESGkZGRgfj4eMTHxzNZ5AdOoVCI1gMCAgrlgzoRGU9ROQ+YmZnBxsYGJUqUgJWVVaF4jwxCasHV1VW0LpVKdS6jYsWKQhAyJCREq2NCQ0OFZXNzc5QrV07neomIiIiISH9SqRRv3rxReWilDxeHXRJRUTgPZGRkQCqVQiqVwtzcHK6urrCwsCjQNn38f3UlgYGBOHjwIMLCwhAREYFdu3ahePHieR6Xnp4uWi9RooTOddeuXRve3t4AgOfPn2t1jK+vr7BctWrVAktMQ0RERERUFCUnJyMiIqKgm0EGJJFIRMGHwtAziIjer6J4HpDJZAgJCSnwQGSRCkImJydj27ZtwvrNmzfRvn37PI97/PixsGxubo4yZcroXHfTpk2Fup8+fYqEhIQ8g5k3btwQlps1a6ZznUREREREpJ+MjAyEhYUJ66amprC3t0eJEiVgZmZWJB5aP0YKhQIpKSnCemEZokhE709ROA9kZmYiJSUFCQkJSE5OBvC/QKSbm1uBvd8iFYSsXr067O3theHUe/bsyTMImZKSgsOHDwvrn3zyCaytrXWuu3nz5rC1tUViYiJkMhkOHTqEYcOG5br/o0eP8OzZM2H9iy++0LlOIiIiIiLST3JyspCARiKRoEKFClqNoqLCTaFQwNTUVFg3NTX96IIPRKRZUTgPmJqawsLCAvb29oiNjRWmB5TJZEhJSdErrmUI2qd4/giYm5ujd+/ewrqnpydOnjyZ6/4ZGRmYOXMmoqOjhW0jR47Uq+5ixYrh66+/FtbXr18PPz8/tfsmJiZizpw5wnr9+vVRr149veolIiIiIiLdJSUlCct2dnYMQBIR0QfJ0dFRFHRMTEwssLYUqSAkAIwdOxbOzs7C+qxZs7B582akpqaK9nvy5AmGDBmCs2fPCtu++eYbtcOiZ86cCQ8PD+E/5WEbyr7//ns4OjoCyPpl9bvvvsP58+dFk1w/f/4cgwYNwosXLwBkRa9nzpyp/xsmIiIiIiKdZQ9fA1BgPUaIiIgMQXk6wIIMQhap4dgAYGNjgz///BODBw9GfHw8ZDIZVq9ejY0bN8LDwwMWFhYIDw9HeHi46LgOHTpg4cKF+arb0dERq1evxujRo5GWlobY2FiMGzcOLi4ucHV1RUxMDAICAkTHTJkyBQ0aNMhXvUREREREpD2FQoHMzExhvVixYgXYGiIiovyxsrISljMyMqBQKApkCHqR6wkJZM0NeejQIdSvX1/YlpqaiocPH8Lb21sUgLSyssLkyZOxfv16g6Rwb968ObZs2YKyZcsK2968eQNvb29RALJYsWKYP38+hg8fnu86iYiIiIhIe9lzQWZTnjuMiIjoQ5PzOpbzOve+FLmekNlcXV2xf/9+XLt2DadPn8bDhw8RFRUFmUwGe3t7VKtWDS1btkSvXr2EIdSG0rRpU5w5cwZHjhzB+fPn8fLlS0ilUlhaWqJixYpo2bIlvv32W5QrV86g9RIRERERERERERWEIhuEzNamTRu0adMmX2UsX74cy5cv1+mY4sWLY8CAARgwYEC+6iYiIiIiIiIiIirsiuRwbCIiIiIiIiIiInp/GIQkIiIiIiIiIiIio2IQkoiIiIiIiIiIiIyKQUgiIiIiIiIiIiIyKgYhiYiIiIiIiEhrMpmsoJtARB+gIp8dm4iIiIiIiD5uT548wYEDB3D37l28fv0aCoUCTk5OqFOnDrp06YIOHTrAxES7Pjqpqak4ePAgzp8/D39/fyQnJ8PBwQFubm7o0qULvvrqK1hYWLz3st4HuVyO/fv348aNG1i3bp1Wx6xZswZ//PEHSpcujevXrxu5hURUmDEISURERERERB8lmUyGxYsXY//+/VAoFKLXwsLCEBYWhn///Rd169bF8uXL4ebmprE8Pz8//PDDDwgNDRVtj4qKQlRUFG7evIkdO3Zg9erV8PDweG9lvQ+RkZEYM2YMnj59iqZNm2p93OXLlwEAbdu2NVLLiOhDwSAkERERERERfZSmTp2K//77T1ivXbs26tSpAxsbG4SEhODq1atIS0uDj48PhgwZgv3796NcuXJqywoNDcXgwYMhlUoBAE5OTujYsSNKly6N0NBQnD9/HgkJCXj58iWGDx/+3sp6X4KCgvD06VOdjomMjISvry8ABiGJiEFIIiIiIiIi+ggdP35cCECamppi+fLl6NatG1JSUoR9pFIppkyZggcPHiA6Oho///wzNm3apLa8WbNmCUHD1q1b4/fff4eNjY3w+pQpUzB+/Hjcu3cP0dHRWLBgAf766y+jl1WYZfeCtLS0RIsWLQq4NURU0JiYhoiIiIiIiD46ykG7cePGoXv37ir7lC1bFmvWrIG5uTkA4MqVK3j9+rXKfp6enrhz5w4AoGTJklizZo0oaJi9ffPmzShVqhQA4Pr167h7965Ryyrsrly5AgD45JNPULx48YJtDBEVOAYhiYiIiIiI6KPy+vVrvHjxAkBWL8h+/frluq+zs7Mw56JCoYC/v7/KPocOHRKWhwwZAmtra7Vl2draYvjw4cL60aNHjVpWYfbu3TvcunULAIdiE1EWDscmIiIiIiKij0rZsmVx7949BAYGIiYmBg4ODhr3T09PF5aze0Vmk8vl8PLyEtbzCqi1bdsWy5cvBwBcuHABixcvhkQiMXhZ+rpz5w6OHz+Ou3fvIiIiApmZmXB0dEStWrXQrVs3dO7cWZQpfN26dVi/fr2oDG9vbyFw27RpU+zatUulnps3byI1NVV4H+pcuXIFp0+fxsOHDxEVFQUAsLe3R7Vq1dCyZUv06tULdnZ2+Xq/RFR4MAhJRGRAvpGJ+P16IKzMTTGnQzU4WVsWdJOIiIiIiiRra2vUqVMnz/2eP38u9Jq0tLREjRo1RK8HBwcjISFBKDOvTNWVK1eGvb09pFIppFIpAgMDhazbhixLV9HR0Zg5cyY8PT1VXouMjERkZCQuXbqE7du3Y/369XB2dtarnmyXLl0CALi7u6sk1UlISMCECRNw48YNlePevHmDN2/e4Pr161i/fj1+/vlndOnSJV9tIaLCgUFIIiIDiUx8hya/X0eKLBMAcMY3Cs9ntMv3r9VEREREZHgKhQKenp6YP38+FAoFAGDQoEFwdHQU7ffq1SthuXz58lqVXbZsWSHxTFBQkBA4NGRZuoiLi0P//v0REhIibGvSpAkaNmwIc3Nz+Pv74+LFi8jMzISPjw8GDx6Mw4cPw8bGBi1btoSVlRVCQkKwb98+AECFChWEIe5lypRRW+fVq1cBqO8FOWXKFCEAaWdnh3bt2sHV1RUAEB4ejgsXLiA+Ph5JSUmYMmUKypUrh3r16un8vomocGEQkojIQFZdDRACkADw4m0yzvpFo3P10gXYKiIiInofZJlyLDrvjzO+kUhJz8z7gCLEysIUXWo4Y/7n7jA3Ldi0BKGhoThy5AjevHmD+/fvIzg4WHitd+/emDJlisox0dHRwnJuAbecnJ2d8ezZM5XjDVmWLhYuXCgEIB0dHbF27Vo0adJEtI+fnx+GDh2KmJgYBAUFYcOGDZgxYwYaNmyIhg0b4vbt20IQskyZMqL5KnPy9fXFmzdvAKgGIR8+fIhr164ByOrp+c8//6gEfmfPno3Ro0fjzp07kMvl2LhxY65Zy4now8EgJBGRgRx8pJpJ8VZwHIOQRERERcBP5/yx9OKLgm5GofUgPGsI8s+dqxdoO+7evYuNGzeqbB85ciQmTpwomgsxW2JiorCsbYbnYsWKqT3ekGVpKygoCP/99x+ArCQ9GzduRP369VX28/DwwK+//ioEFw8cOIDJkyerzJGpjcuXLwPImt+xQYMGotcePnwoLH/77bcqAUgAsLGxwbJly9ChQwcAwLNnz5CZmQlTU1Od20JEhQezYxMREREREeWTd0hcQTeh0LsdXPB/o9evVX80BoAtW7agc+fOuHnzpspryklrlAOCmijvp3y8IcvS1vnz54Xl9u3bqw1AZmvVqhWaNm2K5s2b48svv0R8fLzO9QFZCWcAoE2bNiqBXeVA4v3793Mto0KFCjh+/Dhu376Na9euMQBJ9BFgT0giIiNS/P//bwfHYdudEJSytsSs9lVhbcnTLxER0cekqasDLrx4W9DNKNQ+qag5Q/X78MUXX6BLly5wdHREfHw8Hjx4gI0bNyIoKAihoaEYMWIENm7ciDZt2gjHqOsdqQvl+cENWZa2rl+/Liy3b98+z/3VZbrWRUxMDB4/fgxA/XyQTZs2FZbPnj2LwYMH45tvvkHLli1VekVWr16wPWeJyLD4FExEZCC53RL6vE5A6w1eyJBnhSRvh8Th/Kjm769hREREZHQLOrpDIgHnhFRDeU7IglalShWkpKQAAJycnNCjRw906NABw4cPx8OHD5GRkYHZs2fj4sWLsLS0BABYWVkJx797906retLS0oTl7HIMXZa2IiIihGV3d+P/G1y5cgVyuRxmZmZo3bq1yuseHh74+uuvcejQIQDA7du3cfv2bUgkElSvXh3NmzdH69at0bhxY1hYWBi9vUT0/jAISURkZPP+ey4EIAHg4ou3eBWTgsolrTQcRURERB8Sc1MT/Ny5eoHPeUi6s7GxwcqVK9G5c2dkZGQgOjoaFy9eRJcuXQCIA4epqalalakcOCxRooSwbMiytPX27f966NrZ2el8vK6yh2I3bNgw1/YuXLgQTk5O2LZtmzDEXKFQwNfXF76+vti2bRusra3x2WefYdiwYahRo4bR201Exsc5IYmIjEihUODks0iV7QExyQXQGiIiIiJSp0KFCqhXr56wnj2cGMjKTp0tKipKq/IiI/93/1eqVCmjlKWtjIwMnY/RV3p6Ory8vACoH4qdzdzcHJMmTcLVq1exYMECtGnTRiVRT3JyMk6cOIFevXrhr7/+Mmazieg9YRCSiMhA9Jmjh4iIiIiMRy6Xi3oSalKmTBlhOSkpSVhWHsIcHh6uVVnK+1WuXNkoZWlLufejvolmtHXnzh0kJ2f92K4pCJnN0dER/fv3x5YtW+Dt7Y09e/bgxx9/RIMGDYR7a7lcjhUrVuDevXvGbDoRvQcMQhIRGZFCx+1ERERElH/Hjh1Dp06dULduXSxYsECrY6RSqbDs4PC/JDrOzs6wt7cX9gkKCtJYTmBgoBDss7Ozg6urq1HK0laFChWE5ZcvX+a5/7FjxzBnzhxs2rQJz58/16muy5cvAwBcXV3h5uam07EWFhZo3LgxfvjhB+zbtw+nTp0SBYaPHz+uU3lEVPgwCElEZCDsCElERERUONjY2CAoKAgymQyXL1/OszdkUlIS7t+/L6zXrVtX9LpyVulLly5pLCs7EAcArVq1UhktY8iytNGoUSNh+dq1a3nuf/ToURw6dAi//fYbgoODhe3a1J09H+Snn36q9nWFQoE5c+bgm2++QePGjUVJc3KqWrUqhgwZIqxr2peIPgwMQhIRFQCFgn0hiYiIiIylVatWsLW1BZA1BPnvv//WuP+qVatEWbNbtWoler179+7C8rZt25CQkKC2nISEBGzfvl1Y//rrr1X2MWRZ2ujRo4cQQDx37hz8/f1z3ff58+fw9vYGkJVEp2XLlsJrJib/Cx9kZqpmgH/58iVCQ0MBAO3atVNbvkQiQWBgIHx8fJCYmJhn78aYmBhh2cXFReO+RFT4MQhJRGREjDUSERERvX/FihXD999/L6yvXbsWR44cUdnv3bt3WL58Of755x9h27Rp01CsWDHRfs2bN0fz5s0BANHR0Rg1apQoQAZkBcxGjx6N6OhoAECTJk3QokULlToNWZY2qlWrhi+++AIAIJPJMHr0aLXDrIODgzFhwgTI5XIAwMCBA2FjYyO8rrz85s0blUBkdq9Na2trNGnSJNf29O3bV1hev349zp49q3a/+/fvY/fu3cJ69nsgog+XWUE3gIjoY6HL4BjGJomIiIiMa9iwYbh//z4uX76MzMxMzJo1C7t27cInn3wCKysrRERE4Pr160KgDwBGjBiBr776Sm15ixYtwjfffAOpVIr79++jc+fO6NSpE8qVK4fXr1/jv//+E3o12tvbY9myZbm2zZBlaWPRokV4/vw5AgMDER4ejl69eqF169aoXbs2TE1N4efnh0uXLiE9PR1A1nD0cePGicooV64cJBIJFAoFwsPDMXbsWDRq1AjFixfHoEGDhKHYLVu2hIWFRa5t6d69Ow4dOoQ7d+5AJpPhxx9/RK1atVCvXj24uLggNTUVT58+hZeXlxDo/OKLL/QOwhJR4cEgJBEREREREX10zMzMsHbtWvzyyy/Ys2cPFAoFnj17hmfPnqnsa21tjZkzZ6JPnz65lufq6oodO3Zg3LhxCA0NRUJCAg4ePKiyX/ny5bFhwwZRQhhjlqUNW1tb7N27F9OmTcO1a9eQmZmJK1euCIFDZe3atcOvv/4KS0tLlTK6du2KkydPAoBwvI2NDbp3744HDx4AyDsrtomJCTZu3IiJEyfC09MTAPD06VM8ffpUZV+JRIKvv/4a8+fP1+NdE1FhwyAkEZERKdjnkYiIiKjAWFhYYN68efj222+xf/9+3L59G69fv0ZaWhrs7OxQrVo1tG7dGt988w3s7OzyLK969eo4ffo0Dh48iHPnzuHly5eIj4+HtbU1qlWrho4dO6JPnz4oXrz4ey1LG/b29tiyZQtu3ryJkydP4t69e4iKikJGRgacnJzQoEED9O7dWzQPZE5Lly5FpUqVcOrUKUREREChUMDe3h6XLl1CZmYmJBJJrklplNna2mLr1q24fv06Tp8+jcePHyMiIgJpaWkoUaIEXFxc0Lx5c3Tv3h01atQwyPsnooInUTA7Aqnx4MEDYS4QExMTNGjQoIBblD8ZGRl49OiRsF6vXj2YmTEGT4blvvwSXr5NFm2b9VlVLLv4UmXfMyM+Qefqpd9X0wg8DxARzwOkvczMTFHyDnd3d5iamhZgi8hQFAqFkIAGyEq+ok/GaSL6cBXF84AhrmuGiBPxrouIKJ8u+EfjvH+0SgBSk9lnfHEvTIoJravAxpKnYiIiIiIiIvq48cmXiCgfjj2JQK+/7+b6em59zR++TsDD1wk48TQSt35s9dH/8kZERERERERFm0lBN4CI6EM2/uiTfB1/J1SKW8FxBmoNERERERERUeHEICQRUT6Ex6flu4zrr2IN0BIiIiIiIiKiwotBSCIiI2LmLyIiIiIiIiIGIYmIiIiIiIiIiMjIGIQkIjKi3BLT6LoPERERERER0YeMQUgiIiIiIiIiIiIyKgYhiYiIiIiIiIiIyKgYhCQiMiKFFmOtFUxfQ0RERERERB85BiGJiIxoxZWAgm4CERERERERUYFjEJKIiIiIiIiIiIiMikFIIqICxuzYRERERERE9LFjEJKIiIiIiIiIiIiMikFIIiIiIiIiIiIiMiqzgm4AEdGHSKFQ4NiTNwXdDCIiIiIiIqIPAoOQRER6mH/WD0suvDBIWZwSkoiIiIiIiD52HI5NRKQjuVxhsAAkERERERERUVHAICQRkY4y5Oy7SERERERERKQLBiGJiHQkkRi2PIWCQU0iIiIiIiL6uDEISUREREREREREREbFICQRkY4O+0QUdBOIiIiIiIiIPigMQhIR6eDk0zfov+d+QTeDiIiIiIiIdCSTyQq6CUWaWUE3gIjoQzL2yGODl8kZIYmIiIgMz8PDI99l9OzZE8uXLxfWBw0aBG9vbwDAzp078cknn+S7DtJPeno6jh8/jnPnzsHX1xdSqRTFihVDlSpV0KZNG/Tt2xelSpXKs5yAgAB06dJFp7oPHTqEOnXq6Nv0IuXIkSOYNWsWANXvEwDMnDkTR48eBQAsW7YMvXr1Mlpb/v33X+zatQt79uxReS0sLAyfffYZAKBcuXK4dOmS0dpRlDEISUSkg/D4tIJuAhERERFRkfbkyRNMmDABYWFhou0ymQyPHj3Co0eP8Ndff2HSpEkYMmRInmXRxy05ORnjxo3DjRs3UK5cuYJuTpHGICQRERERERF9dKZPn66yTaFQiIZjmpubQyKRCOvXr1/HzZs3hfWyZcsat5GkswcPHmDIkCF49+4dAEAikaBly5aoV68eTExM8PDhQ3h6eiI1NRVLly5FeHg4Zs+enWt5T58+FZZ79eqFqlWr5tmGMmXK5P+N0HsTFxeHGzduFHQzCAxCEhEVOAXHYxMREREZ3PDhw1W2KRQKpKSkCOtWVlZCENLb2xu///678FrDhg0xZswYo7eTtJeUlITx48cLAUhnZ2esW7cO9erVE+336NEj/PDDD4iOjsaOHTtQu3ZtdO/eXW2ZykHIUaNGoVKlSkZrP6lavny5yhDtglC+fHn4+fkVdDM+ekxMQ0REREREREVaSEgIxo8fj/T0dABA6dKlsXbtWpibmxdwyz5eHh4e8PDwQPv27bU+Zvfu3YiOjgaQFUDevn27SgASAOrVq4dNmzbB1NQUAPDrr78iLU11WiW5XI5nz54BAEqUKIGKFSvq81aISEsMQhIRFQJyObtDEhERERWE5ORkjBkzBlKpFEDWEO1169ZpldSE3q+zZ88Ky0OHDoWbm1uu+9auXRudOnUCAERHR+PChQsq+7x69UroGVurVi3R0HwiMjwOxyYiKmALzvph+aUX8Chlg539GqB2mRIF3SQiIiKiImPWrFl4+fKlsD5v3jzUr19f6+PPnTuH48ePw8fHB3FxcbC3t0elSpXQpUsX9OzZE8WLF8+zjCdPnuDff//FvXv3EB4ejvj4eEgkEtja2qJy5cpo1qwZ+vTpk2tgdN26dVi/fj2A/2VufvToEQ4ePAhvb29ERUXB1NQU5cuXR5s2bTBw4EA4Ozvn2a6oqCjs2bMHV69eRXBwMDIzM+Hi4oLWrVtj8ODBqFixIubPn4/9+/cDMG7GcJlMBl9fX2H9iy++yPOYli1b4syZMwCAq1evomvXrqLXlYdi165d20AtzZ3yv9OePXvQuHFjXL16FXv37sWTJ08glUpRokQJ1KpVCz169ECXLl1gYqK+75hy1uk1a9agXbt2WLduHY4fP46EhAQ4OzujSZMmmDBhAkqXLi069s2bNzhw4AA8PT0RGhqKxMRElChRApUrVxYyi9vb22v1nq5cuYIjR47gwYMHiIuLQ4kSJVCjRg307dsXHTt2zPN4XbJj+/r64vDhw7h9+zbCwsIgk8lgZ2eH6tWro1OnTvjqq69gYWGh9m+ULTw8HNWrVweQNbfn6dOnAeiWHTspKQlHjx7FlStX4OfnB6lUiuLFi8PFxQVNmzbFV199pTF7es5/u86dO+Ply5fYv38/vLy88ObNGygUCri4uKBly5bo378/qlSpounP+MFgEJKISAvvMjJxLyzeaOWnyuR4+DoBA/65j0dT2hqtHiIiIiL6n61bt4p61/Xp0wd9+/bV6tj4+HgMHjwYt2/fFm2Pjo5GdHQ07ty5gz179uCPP/7IdZhvQkICZsyYkWvAIy0tDdHR0fD29saff/6JxYsXo1u3bhrbpVAosGzZMuzYsQOKHJOPP3/+HM+fP8euXbuwfPlydO7cOddyLl26hClTpojm0ASA4OBgBAcH4+DBg5g3b57GthiSVCoVvR9thk67uLgIy+qyYKsLQoaGhsLHxwexsbGwtrZGpUqVUK9ePWFotyEtXLgQe/fuFW2LiYnBtWvXcO3aNezevRsbN26Eg4NDnmVNmTIF58+fF9aDg4MRHR2NuXPnivbbvHkzNmzYIMyrqVxvTEwM7t69iz///BNz585Fz549c60vNTUVkydPVvnsxsTEwNPTE56envjss8/Qpk2bPNuel+TkZCxcuBAnTpxQee3t27dCfVu3bsX69etRrVq1fNeZmzNnzuCnn34Sek5nk8lkSEhIgL+/P3bv3o2uXbti0aJFsLa2zrPMrVu34rfffhMlzQKAwMBABAYGYu/evZgxYwYGDx5syLdSIBiEJCLKQ3h8Ktr+cQMBMSl575xPjyMSkZKeASsLnp6JiIiIjOnOnTtYvXq1sF6/fn2dgmozZ85EcnKykJ25du3aMDc3x6NHj3D9+nUoFAq8fPkSEydOxIEDB1Tml5TJZBgyZIgwJ6GFhQVat24Nd3d3WFlZITExEU+ePMGtW7cgl8uRlpaGmTNnonr16hqDLKtXrxYyfDdo0ABNmzaFpaUlAgICcOHCBbx79w6pqamYOnUqPDw8ULlyZZUyzpw5g6lTpyIzMxNAVgKYzz//HE5OTggPD8f58+chlUoxb96895YpWp/5OZUDba9fv1Z5XTkIGRMTgz59+uDRo0cq+zk4OGDEiBEYMmSIweYJXbduHW7dugUAcHd3x6effopixYrh8ePHuHbtGuRyOR48eIB+/frhwIEDKFEi99FS2b3ycmrfvr2oJ65yr1UAqFmzJpo1awZ7e3vExMTAy8sLL1++RFJSEmbOnIm4uDgMGzZMpdz09HQMHjwYPj4+AP6Xobx+/fqQy+W4d+8ebt++jYsXL+LevXv6/okAZP0bDhs2DA8fPhS21apVC82aNYO1tTVevXqFc+fO4d27dwgKCsKgQYNw7NgxuLi4oE6dOpg+fToSEhKwadMmAICdnR2+//57yGQy2NjY6NSWvXv3YuHChcK6g4MD2rVrB1dXVyQnJ+Pu3bt48OABAODUqVMICAjA7t27Ndazb98+4ftavXp1tGjRAiVKlEBISAjOnTuHpKQkZGRkYMmSJXB3d0ezZs10anNhw6dcIqI8bLoZ/F4CkNk4PSQREdEHSCYDFi0CTp8GUt7ffcMHwcoK+PJLYP58oJAkeomMjMSsWbOEIFupUqWwdu1a0VDOvCQnJ6NSpUpYs2aNMLwz25UrVzB27FhkZmbi2bNnuHLlCj7//HPRPjt37hQCkC4uLtixY4fazMy+vr4YNmwYYmNjkZGRgf3796v0blN28+ZNODg44LfffkPz5s1FrwUGBuK7775DZGQkZDIZdu7ciQULFoj2iY2NxU8//ST8bXr37o358+ejWLFiwj7Tpk3DjBkzcPnyZbXBPWOws7ND8eLFkZqaCgAICAhAjRo1NB6jPMw+LS0NiYmJsLW1BZDVYzT77w8AixYtyrWcuLg4rFixAlevXsX69ethZ2eXn7cCALh16xYkEgmmTZuGYcOGieajvH//vjBP6atXr/Dbb7+p/Dspu3LlCkxMTDBhwgR88803MDMzw61bt0TDsA8ePCgEIG1tbbF8+XJ06NBBVI5CocChQ4fw008/QSaTYeXKlahXrx4aNWok2m/r1q1CANLOzg7r169H06ZNRft4enpiwoQJKj0GdbVmzRohAGllZYVly5ap9OB9/fo1hg4diqCgIMTFxWHp0qVYu3YtqlWrhmrVqiEsLEwIQtrY2GD48OEqPXzz8vDhQ9FnpFevXpgzZ45KgPHq1auYOnUqEhIS4Ovri9mzZ2Pt2rW5lnvz5k1YWlpi+fLl6NKli+i1SZMmYfjw4fD39wcAbNu2jUFIIqKP3ZILLwq6CURERFTY/fQTsGRJQbei8Pr/3kH4+eeCbQeyeiBOmzYNsbGxALJ62K1Zs0arORKVFS9eHH/99RcqVKig8lrbtm3RrVs3HDt2DADg7e2tEoQ8fPiwsDxnzhy1AUgAqFGjBoYNG4aVK1cCAB4/fpxn23755ReVACQAVKlSBT/++CPmzJkDALhx44bKPhs3bhQCR61atcKSJUtUErbY2dlh3bp1+Pbbb9UOc8527do1vHih+V46KSkJW7duVftatWrVhOG8EokETZo0wbVr1wAA+/fvF/VKy0kul6sM301LSxOCkK9evUJycrLwmrm5Ofr374+vvvoKFStWhEKhwPPnz7F//36hHG9vb4wfPx7btm2DmVn+wynjxo3D8OHDVbY3bNgQ69evx6BBg6BQKLBv3z4MGzZM7Wct25gxYzB69GhhPTspD5DVc3HNmjXC+po1a9CyZUuVMiQSCb755hskJibil19+QWZmJtasWYOdO3cK+yQlJWHz5s3C+ooVK1QCkEDWZ2f16tX4/vvvNfwFNEtOTsbu3buFdXUBSAAoW7Ys/vjjD3Tt2hVyuRznz59HVFSUylyY+bFq1SrI5XIAwOeff45ly5ap3e/TTz/Fxo0bMXjwYGRmZuLs2bN4+PChxnlmZ86cqRKABIDSpUtj9uzZ+O677wBA6BWd2zyhHwIGIYmIiIiIiPIrx7yApMb/Dz0taL/++qsocDZ79myVnl7a+OKLLzQGhVq0aCEEIXP2FszMzMSIESMQHh6O6OhoISFGbpR7WiYmJmrct2LFivj0009zfV25J1VUVJToNYVCgX///VdYnzJlSq4Zo83NzTFt2jQMGTIk17rOnDkjJB3JTXx8PH799Ve1r/Xs2VM0p+C3334rCkI2bdpUbfAGAFauXCnqCQkAGRkZwrLyUGxra2ts374d9erVE+3fuHFjNG7cGC1atMDMmTMBALdv38b+/fsxYMAAje8rL6VKlcKoUaNyfb1JkyZo06YNrl69CrlcjgsXLmDo0KFq95VIJBg4cGCuZV24cAHR0dEAsoboqwtAKhs8eDA2btyIhIQE3L59G2/evBHm17x+/brQG7Vu3boaP2uffvopmjRpgjt37misLzdXr14VhtTXrFlT4xymbm5u6NKlCyIjI1GxYkUkJiYaLAgZEREBb29vAICJiYnwWchN48aN0aVLF5w8eRJA1mc1tyCklZUVvv7661zLatSoEczNzSGTyfDu3TtIpVI4Ojrq90YKgQ83fEpERERERFRYGCkj8EelEAwjPHLkiKgHYu/evdG/f3+9ymrYsKHG15UzWSv3uAMAU1NT9OrVC+PHj8eiRYs0Jj1JT09HUFCQsK4cSFMnZyAtp5IlSwrLaWlpoteePHkiBKvKlSuHmjVraiyrWbNm7zUg8tlnn6Fdu3YAsno6Tp48GfPnz8eTJ0+QlpaG5ORkeHt7Y/To0di6dSscHR1hZWUlHK883L5z5844f/48tm/fjt27d2v8u/Xs2VMUKMqt56Yuvvjiizznl1TuPZsdfFWncuXKGv8dlJMn1apVK8+2mZmZoW7dusL63bt3heXr168Ly23bts2zLG0yZOdGua727dvnuf+qVauwe/duLFmyBG5ubnrXm1P2nI1AVuC1fPnyeR6jnIk9Z/IqZTVq1NA4DYSFhYXQexeASkKhDw17QhIREREREeXXggWARMI5IdVRnhOyAD179gw//fSTsF67dm2N8+zlRTmYp45yYDF7fkVNkpKSEBgYiNDQUISGhiI4OBj+/v7w8/MTZc3NmfE6JycnJ42vKycqyR5emi04OFhYdnd3z7PNQFYvTXXDugFg+fLlWL58udrXPDw8AGQFO3PLDq7OypUrMWbMGHh7e0OhUGD//v2iZCvZ7O3tsXnzZlFiFeV5Lc3NzeHq6gpXV1et6h00aBAOHToEAAgPD0dAQEC+Al3Z2bg1UU5ApGnuTU09cgHx3Ji7d+8WDXHWhnLd4eHhwnLVqlXzPDbnfKm6iIiIEJa1/TwaQ0hIiLCs7ftRnq/09evXyMzMVPtjQ17fV0Dzd/ZDwyAkERERERFRfpmbZ813WAjmPCRVUqkU48aNE3oROTo6YsWKFTolosnJ2to63+1KS0vDvn37cPToUfj5+eUaYDQ1NdUqkAlA1PNPV9m9IAFonXzFwcFB7/r0YWNjg23btmHbtm3YunUr4uPjRa9bWFigc+fOmDFjBhwdHZGUlAQg6++Sn38zDw8PUWKckJCQfAUhtQk+Kf8bKP/b5KQpczaAfCeHiYuLE5ZjYmK0rhfI3+dD17qMRfnvp+37Ud5PoVAgPj5ebW9VXb+vef0IUdgxCElEREREREQfLblcjilTpgg9uMzMzPDLL7/onIjG0EJDQzFixAjRUGsga34/FxcXuLm5oVatWsJ8lflJ8KEt5R6X2gY9CyIoYm5ujlGjRmHo0KG4f/8+QkJCkJGRgTJlyqBBgwawt7cHkJVBO7t92XMa6ksikcDW1lYIQmYHN/WlaQh+NuVeb5oC5nklyVEewt+5c2fRUGttaDOEOzf5CfQrfx4Lkj6f8Zw9FnObW7WoYRCSiIiIiIiIPlpr1qyBp6ensD558mS9EtEYkkwmw9ixY4UApKOjI4YMGYLmzZujWrVqKr2jrl69+l7apdzzLiEhQatjtN3PGCwsLNCsWTNRsh1lPj4+wnJuw2jfvXsHU1NTrbJdKwce89szT5sgpnIPPOU5RnWl/O9av379XBPcaKNUqVJCxnNteljm5/Ohz+fRGLKD2oC4V6gmyvuZmJjAxsbG0M36IDExDREREREREX2ULl68iM2bNwvrX331Fb799tsCbFGWixcvwt/fH0DWcMwDBw5g9OjRqFevntrhmcrDUo3Z81B5jr/sQFNest/H+6BQKBAXF4eXL1/mmSUcyPo7Z2vcuLHotd69e6NBgwaoW7curly5kmdZoaGhSFGa71V5vkZ95Mzcrc7z58+F5YoVK+pdl/K8l9r+e8XHx6vtDauclEW5fbkJCAjQqj51lOe61Obvdf36dcycORPr168XJdPJr0qVKgnL2rxnQJx9vUyZMnkmISoqGIQkIiIiIiKij05wcDBmzJghBO1q1aolSkxTkO7fvy8st2zZMs/EIsrZeY2ZmKJOnTrCvImvX7/OM+Dy5MkTREVFGa09OS1ZsgTNmjXDl19+iRMnTmjc982bN0IPUlNTU3To0EH0uq2trRBU1CYxjnJ9VapUQdmyZXVtvog2gc/z588Ly5999pnedX3yySfC8tWrV/PMsJyeno4vv/wSdevWRfv27XPNUn3u3Lk8685PL17lHsuasoNn+/fff3H06FGsW7dO1As2v0OhlQPYPj4+CAsL06ot2Qq653VhwiAkERERERERfVRSUlIwbtw4obeco6Mj1q9fD0tLywJuWRblue5iY2M17vvgwQOcOXNGWFee38/QLCws0KNHD2H9999/17j/mjVrjNYWdZSDOYcPH9bYK3Tp0qVIT08HAHzxxRcqc4B+8cUXwvLJkycRGBiYa1nBwcHYunWrsD548GCd257TgwcPNAbWbty4gVu3bgHIyo6cnyBkp06dhOByTEwMNm7cqHH/bdu2ITo6GhkZGYiNjRXNIdmyZUsh6UpgYCAOHDiQazm+vr6iQKo+7c7OaP7w4UPRtAo5RUdHC4E/iUQi+nvpmqk+pwoVKqBp06YAsn4EyC3je7b79++LgpDdu3fXuc6PFYOQRERERERE9FGZO3euMOzUwsICGzZsyHfPNUNSnp/w/v37oiBjNoVCgdOnT2PkyJGiwGNaWppR2zZq1CghYHX58mX89NNPQjBPuQ3z5s3Tqndabvz8/ODn56dVL8Rsn332mTA34tOnT7Fq1SqVoGxqaipmz56Ns2fPAsjKYj516lSVsr766ithiHN6ejpGjRqldujw48ePMWTIECQnJwMA6tatiz59+mjdZk2mTJki6uWa7ebNm5gwYYIQZJ04cWK+5qAsUaKEKLHRpk2bsH79epXEL3K5HPv378e6deuEbcOGDRPNzWhhYYEZM2YI64sWLcKxY8dU6nz27BlGjRqVr+Qyjo6OGDRokLA+ZcoUITCr7O3btxg3bpzQs7VLly6i4evK8zHGxsaKhtVra+LEiUIw8/z585g1a5baeT09PT0xZswYIdjZoUMHtG7dWuf6PlZMTENEREREREQfjYsXL+L06dPCev369fHgwQM8ePAACoVCFBQxNzfPc6hm3759DZ5U4ssvv8S6desQHR0NhUKBSZMmYd++fahduzasra0RGRkJT09PUUbvzMxMKBQKJCYmIiMjQ6tEKvpwcXHBggULhKHs//zzDy5fviwEACMjI3HhwgVERUXB1NQUJiYmwt/UxMS4/ZwsLCywYMECjB8/HgqFAlu2bMH58+fRqlUrlCxZEq9fv8b58+eFhCnm5ub47bffUKZMGZWyLC0tsXr1agwePBjJyckICQlB9+7d0a5dO9SsWRMZGRl49OgRbty4IQyBd3V1xdq1a7XKbJ0Xc3NzJCQk4LvvvkPLli3RoEEDAFlB6Rs3bgj7tW7d2iA9L0eNGoXHjx/jwoULUCgUWLduHQ4fPoy2bdvC2dkZ0dHRuHXrlmjuxaZNm2Ls2LEqZfXs2ROenp44deoUZDIZZsyYgT179qBFixawsLDAkydPcPXqVWRmZqJy5cp49eqV3u2eMGECHj58iDt37kAqlWLIkCFo2rQpGjZsCCsrKwQGBuLcuXNCYNHV1RVz584VlWFjYwN7e3tIpVKkp6djxIgRaNmyJTIzMzFixAit2tGoUSNMnz4dy5YtAwAcOXIEly9fRvv27VGhQgWkpqbizp07oqkWKleuLOxPWRiEJCIiIiIioo9GfHy8aN3b2xve3t56l9epUyeDByFtbGywceNGjB49Gm/fvgUA3L59G7dv31bZ19XVFcuWLcPs2bMRHBwMuVyOZ8+eiYbIGlqPHj0gk8mwZMkSpKSkICIiArt37xbtY2VlheXLl2PZsmWIiIgAkBUkNLbPP/8cy5Ytw08//YTU1FQEBQUJWcaVlS1bFr/++iuaNGmSa1m1a9fG7t27MXnyZLx69QoZGRk4f/682iHErVq1wtKlS1WGdetr8ODBePHiBa5duwYvLy94eXmp7DNo0CDMmjXLIMFdiUSCtWvXYvXq1dixYwdkMhlev36Nf/75R+3+PXr0wKJFi3INdq9cuRLOzs7CMHUfHx/RPIxA1g8A06dPR//+/fVut7m5ObZu3YoFCxbg6NGjAHL/Tjdo0AC///47HB0dVV779ttvsWnTJgBZgd7sYOHXX3+tNhmUOt999x2cnJywaNEixMfHIy4uDocPH1a7b48ePbBgwQKhVzFlYRCSiIiIiIiI6D2rU6cOTp48iX/++QdXrlxBUFAQUlJSUKxYMZQqVQoeHh5o27YtunbtCgsLC7Rp0wa7du0CABw7dsyoQUggKzjTokUL7N27F1evXsXr16+Rnp6OMmXKoE2bNhg+fDhcXFxEyX60DebkV8+ePdG0aVPs2bMHXl5eCAkJQXp6Ouzt7VG9enV06tQJ3bt3F+YT1KRmzZo4efIkzpw5g3PnzuHJkyeIjY2FmZkZSpcujYYNG6JLly4GH1JbvHhxbNmyBSdOnMChQ4fg5+eH5ORkuLi4oGnTpujXrx/q1Klj0DpNTU0xbdo09OvXDwcPHsStW7cQEhKChIQEWFpaoly5cmjYsCF69+6d5+dLIpFg+vTp+OKLL7B3717cvn0bkZGRsLKyQpUqVdCtWzf07dtX41yb2rK0tMTy5csxcOBAHDlyBLdv38abN2/w7t07ODg4oE6dOujevTs6duyYa8B24sSJKFmyJA4dOoTQ0FDIZDKULFkSkZGROk3V0LVrV7Rt2xYHDx7EtWvX8OLFC0ilUpiZmaF8+fJo3LgxevXqZfTv54dKotA0kysVWQ8ePBC6nJuYmAhdwz9U2V3ps9WrV89owxfo42My9eR7rS9hyRewseTn09B4HiAingdIW5mZmcJ8ggDg7u5ukOGXVPAUCoVoPjgrK6t8Z84t6urUqSPMGXnr1i0haQmpWrduHdavXw8AGDduHMaPH1/ALSqaiuJ5wBDXNUPEiXjXRUSkwX/Powq6CURERERE783WrVtRsmRJuLq6omHDhhr3DQwMFAKQDg4ODEASkUYMQhIR5eLR63h0+Ut1Xh4iIiIioo/ViRMn8Pz5cwDA4cOHUbt27Vz3/fvvv4Xlpk2bGrtpRPSBM27qKiKiD9j0U88KuglERERERO9VixYthOXFixcjLi5OZZ/MzEz89ddf2L9/P4CsoZmGyOBMRB839oQkIsrFef+3Bd0EIiIiIqL3atiwYThy5AikUikePHiAtm3bon379nB1dYW5uTkiIyPh5eWF8PBw4ZiRI0eicePGBdhqIvoQMAhJRERERERERACAUqVKYceOHZgwYQKCgoKQlpaGM2fOqN3XwsICM2fOxIABA95zK4noQ8QgJBEREREREREJqlevjpMnT+LMmTM4f/48fH19ERMTA4VCAScnJ5QrVw7t27dH165dUapUqYJuLhF9IBiEJCIiIiIiIiIRCwsLfPXVV/jqq68KuikfjfHjx2P8+PEF3QyiAsPENERERERERERERGRU7AlJRGRgrglRKJcYgzBbJ4SW4PAUIiIiIiIiIgYhiYjUkKbKdD6mddgTrLqyDY0jXwrb7jhXxaR2I3CjXE1DNo+IiIiIiIjog8Lh2EREOZzxjYTjvP90OmbY43O4vH+OKAAJAE0iX+LK/tkY6aNbeUREREREREQfEwYhiYiUBMemoOtWb52O6fbyNv48twEmUKh93Uwhx8bzG9Ht5W2tyvv7TqhO9RMREREREREVdgxCEhEpWX75Zd47KXFKiceWc+tzDUBmM4ECu/5djbKJMXmWOf3UM8jlmssjIiIiIiIi+pAwCElEpGTzzWCd9v/12naUTo0XbXtnaoZ/KzVEmqm5aHuJ9FSsufxnnmWmZcgRm5quUzuIiIjIcExMxI9JmZmZBdQSIiKi/Mt5Hct5nXtfGIQkItKTR0wYBj27orJ90BeT8WXvhRjw5RSV13q/uIlWYU/fQ+uIiIhIXxKJBKampsJ6WlpaAbaGiIgof1JSUoRlMzMzSCSSAmkHg5BERHqac3s/TBVy0ba9Hq1xyKMVAOBotRbYWvtzlePm39yXZ9kKjsYmIiIqUNbW1sJycnJyAbaEiIgofxISEoRlW1vbAmsHg5BERHpwTo5DXz9P0TaZiSlmtx4s2jajzRDEW1iJtnUIeYSmEX4ay6+14gqevkk0TGOJiIhIZzY2NsJyfHw8UlNTC7A1RERE+omNjRX9mFaQQUizAquZiOgDNvzxeZjLxfNq7KzZHsF2zqJtscVLYG3Dbph3a79o+w8PTsO7jEeu5b9NTses0744Mbyp4RpNREREWrO2toaJiQnkcjkUCgVCQ0Nhb2+PEiVKFOhQNsofhUIhmhstMzOT/5ZERUxROA9kZmYiJSUFCQkJogCkubk5rKysNBxpXAxCEhHpSqHA8MfnVDava9BV7e6/N+yOKXePwirjf8lm+vh7YmrbYYi2ss+1mlO+kfluKhEREenHzMwM5cuXR0hICICsB7qYmBjExMQUcMsov+Ty/02nU1DJGYioYBXF84C5uTlcXV0LNOBaNP7SREQG1CzCD5UTokTbbpSpDp/SldXuH1fcFnurfyraZpmZgYFqktoQERFR4WFtbY0yZcp8dD1kijKFQoGMjAzhPwUn4iYqcorieSA7AGlhYVGg7WAQkohIR98+v66y7e/an2k85o/6XVS2DfC9YqgmERERkZHY29ujatWqKF26NCwtLQu6OWQAysEHIiqaisJ5wMzMDA4ODnB1dYWbm1uBByABDscmItKJRCHH1/5eom0yE1McrtZC43EPnN3g41QRdd8GC9saRgWi1ttgPHWqaJS2EhERkWGYmZmhZMmSKFmyJBQKhWgYH31YMjIy8OTJE2Hdzc0NZmZ8LCYqSorCecDExKRQ9uL/uP7KRERG1igyAGWTY0XbzlVsgLjieWcY212zHX699rdoW2//GxqDkK9iUlC5ZMFNHExERERiEokEpqamBd0M0lPOYZempqb89yQqYngeKDgcjk1EpIOuAXdUth2p1lyrY/dWb6OyrVuAt8Zj1noGatcwIiIiIiIiokKMQUgiIh18GagahDxTpbFWx4bbOuGOc1XRtkZRASiX+DbXY9Zcf6VbA4mIiIiIiIgKIQYhiYi0VCpFikZRAaJt3i7VEGntoHUZp9yaqmzLqzckERERERER0YeOQUgiIi19GvpEZdt/lRrpVMYJBiGJiIiIiIioCGIQkohIS5+GqQYhr1SorVMZj0pVRoitk2hb+1Af2KSn5KttRERERERERIUZg5BERFpqE/ZUtP7O1Ay3ynjoVohEgpM5ekNaZmagU9CD/DaPiIiIiIiIqNBiEJKISAslUxJQ522waNttF3ekmVvqXNYJt09UtnV+dV/vthEREREREREVdgxCEhEpkUjUb28TrjoU+5qOQ7GzXS1fG8lm4uBl29DHepVFRERERERE9CFgEJKISAufhj5V2Xa1vH5ByHQzc3iVqyHa5hb/BhUSovUqj4iIiIiIiKiwYxCSiEgLbXIkpZGZmOJm2ep6l3elQh2Vbe1CffQuj4iIiIiIiKgwYxCSiEiJutHY9mlJqBsdJNp2x7kaUsyL6V3PZTVBSA7JJiIiIiIioo8Vg5BERHlo+sYfJlCItl2rUCtfZd51qYYEi+Kibe1CHgMKhdr9X8WkIFSamq86iYiIiIiIiAoKg5BERHlo/OalyrabZfQfig0AmSamuF5OHMismBiNyvGRKvuOPPgIbssuouLiC5h52jdf9RIREREREREVBAYhiYiUSNSkx24UqRqEvOtSNd91aTsv5NbbIcLyr5dfIjg2Jd91ExEREREREb1PDEISEf0/uVyBTLnqcOicQcjX1o6IsCmZ7/ouu6oGIT8NfaJmT7FfLqsGRYmIiIiIiIgKMwYhiYj+3ww1Q51LJ8fBNfGtaNtd5/z3ggSAh6UqQ2ppLdrWPOJ5nselZ6qfN5KIiIiIiIiosGIQkojo/626GqCyrVGk6rZ7BhiKDQByE1PcdnEXbasqfYNSKVKNxynAICQRERERERF9WBiEJCLSoLGa+SDvObsZrPxbZT1UtjV77Wew8omIiIiIiIgKAwYhiYg0aKg2CGmYnpAAcLOsapZtbYZkExEREREREX1IGIQkItIgZ0/IUBsnRFo7GKz8nMOxgbx7Qio4GpuIiIiIiIg+MAxCEhHlokxSDMolxYq23TXQfJDZ4ovZ4GnJCqJtTd68gKk806D1EBERERERERUkBiGJqMjKlCtwIygW/z2PQkp6hsrrDSMDVbYZcih2tltlxEOyrTPeoW50kMHrISIiIiIiIiooZgXdACKigqBQKDBgz30cePQaAFC3TAmVfWq/DVbZ9qB0FYO35WZZDwx/cl60rfnr53iQWwIcDscmIiIiIiKiDwx7QhJRkfQsMkkIQAKAT0SCyj61YlSDkI+dKhq8LTl7QgJAMyanISIiIiIioo8Ig5BEVCSdehaZ5z51cvSEjLewQpitk8Hb4luyPKSW1qJtTd6oZuXOpmBXSCIiIiIiIvrAMAhJREVSZh4pps0yM1A9Nky07YmTKyCRGLwtCokJ7uaYa9IjLhy271IMXhcRERERERFRQWAQkohIjarSCFhmipPVPDXCUOxs99XM/9gwKsBo9RERERERERG9TwxCEhGpkXMoNmCY+SD//ra+2u05e0ICQKNI9UOyd9wNQ6osM99tISIiIiIiInpfGIQkIlJDXWbsJ/kMQo5uXhF11GThBoB7aoKQDSNz7wnZd+e9fLWFiIiIiIiI6H1iEJKISI1aaoKQT0u6qmzr7FFKq/LuTGyNP3rXRU1nG7Wvv7JzRmwx8WuNNAQhT/lG4nV8mlZ1ExERERERERU0BiGJqEjKK71M7ZgQ0fobK3u8tbJT2e/A4MYayzE1keDod03QqLw9AMDSzBTDP1ENZkIiwf3S4nkh80pOEyJN1Vg3ERERERERUWHBICQRFUmacmMXl71D1bgI0TZ9h2J7/tASPWq7iLZt+aYe3i7qhBPDmoq2q0tO0yAqMNeyFXlk+CYiIiIiIiIqLBiEJCLKoUZsKExyhCmfOqnpvaiFTyo6qN3uaGWBrjWdRdvUJadpHPlCr3qJiIiIiIiIChMGIYmoSNI0HFtdUhpDZMZWR3mOSF2T0xARERERERF9KBiEJKIiSdNA5uqxYSrbnqlJSjPiE1eNwcyvcgzDVsfW0kxY1jU5DQdjExERERER0YeCQUgiohzcY8NVtj13LK+ybVKbKhrLmfKp6hyPOdUobfu/FTXJaarFvYaVjFmwiYiIiIiI6MPGICQRFUmaejB6xImDkFHF7SDN0UMRAGo426psU9aysmOe7ejboKxo3adUJdG6CRSo9VacqZuIiIiIiIjoQ8MgJBGREhN5JqpKxZmx/RzLqezXPJeEM7oqW6KYaD1nEBIA6kW/MkhdRERERERERAWFQUgiIiWVEqJgmZkh2ubvIA5ClrcrhvW96gAAJJq6VGrBNEcBj0pVVtmnbnSQ2mMVnBSSiIiIiIiIPhBmee9CRFR0eKiZDzJnT8jguR0gyW/08f+Z5PgpyNexAjIkJjBTyIVtdd4GqT02PD4NL98mw62klcHaQ0RERERERGQM7AlJRKQk53yQAOCXoyekIQN+ZjmikOlm5ipJcOpFB6nt9vjt7ntwX34JfXbegyxTrvI6ERERERERUWHBICQRkRJtekIaUmVHK5VtOYdk279LRoXEt7mWcfhxBC6/zP11IiIiIiIiooLGICQRkRL3HD0hZSamCLRzyXX//PaKNDVRPf6xHslphh94lK92EBERERERERkTg5BEREpy9oQMtHNBhqlxp88tU8JStP5ITRAyt+Q02VLSMw3YIiIiIiIiIiLDYhCSiIokdR0Ybd+loGxyrGhbzvkg3wcftUFIzT0hmSibiIiIiIiICjMGIYmoSFKT50VlKDYA+OcxH6QhUtTkbEuEtSOii5cQbcurJyQRERERERFRYcYgJBEVSU/fJKps0yYz9nshkaj0hqwmjUBx2bv33xYiIiIiIiIiA2AQkoiKHIVCgX8eqAYc3WNfq2zTNzP2980q6nVcNp8cGbJNFXLUignJdX+Fuq6dRERERERERIUEg5BEVOS8TkhTu91NGqGy7YVDWb3qmNbWTa/jsvk4VVLZVi9K87yQRERERERERIUVg5BEVOSkZ6jvNegWLw5CJpkXQ6SVvcay1CW4AQA3J2t9miZQm5zmbVC+yiQiIiIiIiIqKAxCEhH9PzfpG9F6gL1L7lFGA1IXEn1WsgIyJOJTtKYM2RyMTURERERERIUZg5BERABs36WgVGqCaFuAnUsBtQZ4Z2ahMh9l3egg9Wm9iYiIiIiIiAo5BiGJiKB+PshA+zIF0JL/eZQjOY3Du2SUS4pRu29CWsb7aBIRERERERGRXswKugEF6fbt2zh9+jQePHiAqKgoJCUlwcbGBmXKlEHjxo3Rq1cv1KxZ02D1xcbGonnz5jof9+uvv6JHjx4GawcRqXKLf6OyLcA+756QEhhvuPZTJ1eVbbViQhBu66R2/3cZmbA0MzVae4iIiIiIiIj0VSSDkGFhYZgxYwbu3r2r8ppUKoVUKoWvry927dqFL7/8EosWLYKNjU2+6/X19c13GURkHDnngwQKdjg2ADwtqSYI+TYE5yo1VLv/xRdv0aWGs7GbRURERERERKSzIheEDAoKQr9+/RAbGytsMzc3h7u7O2xtbRETE4OXL19C8f/zrp0+fRoBAQHYs2dPvgORykFIZ2dnVKtWTavjSpcuna96iShv6oZjBxTwcOxn6oKQMSG57v8gPJ5BSCIiIiIiIiqUilQQMjMzE+PHjxcCkKamphgzZgyGDh0qCjBGRkZi9erVOHbsGADg+fPnmDNnDtasWZOv+pWDkH369MG4cePyVR4RGU6VHMOxZSamCClRKs/jTE1Uh2NXdrQySJsC7ZyRamaB4hnpwrYaMaEGKZuIiIiIiIjofSpSiWmOHDkCf39/YX358uUYP368Sg9HZ2dn/PLLLxg6dKiw7b///sPDhw/zVf/z58+F5erVq+erLCIyrJzDsYNLlEKmSd7zK5qaSNDZQxysHNlMtQejPuQmpnjuIM6QXTMmlBmyiYiIiIiI6INTpIKQx48fF5ZbtWqF7t27a9x/8uTJoqHQp0+f1rvud+/e4dWrV8K6h4eH3mURUf4oIA7iWWTIUCHxrWhbgJ32Q7F39W+I75pUQJMK9pj3uTumta2qW3s0BBVzJqexS09B+RxtzbbqaiDiU2U61U1ERERERET0PhSZIGR6ejru378vrHft2jXPYywsLNCqVSth/fHjx3rX7+fnh8zMTACAjY0Nypcvr3dZRGRYlRIiYaqQi7YFapEZO1tJawts61sftye0xk+dPNQO0daXb8kKKttymxdSmipDkzXXIcuUq32diIiIiIiIqKAUmSBkeHg4LC0thXU3NzetjrO3txeW4+Li9K5feSi2h4cHJBLDBSmIKH/UZsbWIQhpTOoyZNfUMC/ky7fJOPjotTGbRERERERERKSzIpOYpnLlynjw4AESExMRGRmpdU/E8PBwYdnOzk7v+pWT0nA+SKKClXP0s9ogpA7DsfOrmFnuc0+qC0JqypANAHvuh6N/Q/a2JiIiIiIiosKjyAQhs9na2sLW1larfZOSkuDl5SWsa9t7Uh3lIKSHhwdCQkJw+PBheHl5ISgoCGlpaShZsiRq1qyJjh07olu3bjAzK3L/PEQFwi0+QmXb++wJOa2dG8YffaL2tVdqMmTXzCMISURERERERFTYFJnh2PrYunUrkpKShPV27drpVY5CoYCfn5+wfurUKXTu3BmbNm3C48ePkZiYCJlMhjdv3uDSpUuYOXMmvvzyS/j4+OT7PRCRqpxpYCrFR6rso8uckPnVu04ZuNoXV/uaPhmyNSW6ISIiIiIiIioI7GqXCx8fH2zZskVYr1SpEtq3b69XWcHBwUhJSRHWvb29AQDm5uaoXLkyHBwcEBcXh5cvX0Iuz0ooERQUhEGDBmHdunVo06ZNPt6JYWRkZBR0E/IlOylQbutUtOT8PFdKiBKtR1rZIcW8mNpj+9YrY/Dvg5OVGbx+aI4KSy6pff2pkysaRL8S1kukp6JC4luEliildv+opHcf/HfWGHgeICKeB4iI5wEi4nmg4DAIqUZYWBjGjh0LmUwmbJs5c6bew6OVh2IDWcHHsWPHol+/fnBwcBC2x8TE4M8//8SOHTugUCiQlpaGSZMm4fDhw6hUqZJedRuCXC7Ho0ePCqx+Y3jyRP3QVyoaQhOVAnQKBSrFi4OQr+yc1R5nKgHaOKYb7fvQ080KRwNSVLY/U5ucJiTXIGQ5C9lH9501Bp4HiIjnASLieYCIeB54fzgcO4eIiAgMGTIE0dHRwrbvvvtO76HYAPDq1f96MFlaWmLnzp0YO3asKAAJACVLlsSsWbOwbNkyYVtSUhJWrlypd91EpEp5sLJDWhLs0sWBv6AS4iDkjMZ2GFjdGps/K4mmLpZGa1f3KlZqtz8rWUFlm6bkNCYSicHaRERERERERGQI7AmpJCAgAMOHD0dExP+SVLRq1QpTp07NV7ljx47F4MGDERYWBiDv7Ng9e/aEp6cnTp06BQA4f/48Xr9+jbJly+arHUSkKudQbAAILlFatP51Nev30pbaThZqt6vNkP2WyWmIiIiIiIjow8Eg5P+7f/8+xo4di7i4OGFbs2bNsH79epibm+e7fBsbmzyDj8oGDRokBCEBwMvLC998802+26EPExMT1KlTp0DqNpTMzExRF+vatWvD1NS0AFtEBal4dDJwKiv4WClBNSlNkJ04CFmvXr330i4AwN7XKpvUZ8gOzbUIR0dH1Kv3YX9njYHnASLieYCIeB4gIp4H9PP48WMhj4m+GIQEcPLkScyePRvp6f97wP/000+xdu1aFCumPjmFsdWuXRvm5ubCvJTBwcEF0o5s+s6HWViZmpp+dO+JtGdm9r8LTM75IAEgKEdPyIL+rMhNTOHrWB4NowKFbUKGbDVDryUmJgXe5g8BzwNExPMAEfE8QEQ8D7w/RX5OyHXr1mHq1KmiAGT37t3xxx9/FFgAEsgKetjb2wvr8fHxBdYWoo+ZuuHYOeeELAxyzgtpK8vKkE1ERERERET0ISiyoV6ZTIY5c+bg+PHjou2jRo3CpEmTICkEiR2UA6PW1u9nTjqij5lCoUCqLBMKpcw0FdX0hAzOJet0QdI1QzYRERERERFRYVIkg5Dp6ekYP348rly5ImwzMzPDwoULDT7v4v+xd9fRUZxdHIB/u3EngiTBJTjBnSLFXUtL8RbaUoXSlkIp7Ye0QIFCKe5aoLgluENIIAlEiLu7y9r3R5qQ2ZlNdrO+uc85PYe8MzvzFnY3M3fue29eXh727t2LjIwMZGRkYObMmejfv3+1r8vOzkZubm7Fz87OziqdFyG1jU9cNqYffYHorEK42r7Ncm4mVRMyycoexSbq64BdnWYOlojKLGSNBzuwO2S3yYyHZ7NumpgWIYQQQgghhBCilFoXhBQKhfjqq68YAUgrKyts27ZNruCgoszNzXHgwIGK2o7Ozs5ynefx48eQVErX6t69u8rnRkhtMvcf34rgXnxOcdmgRMKqCSldD1LTmjvKCEI6NmSNtclM0MSUCCGEEEIIIYQQpdW6mpAbN27E3bt3K352cHDA0aNH1RKABAATExN06dKl4udr164hPz+/ytcIhULs27ev4ueWLVuiXbt2apkfIbVBsUCEoBT2586hOA82giLGmLaDkLJE2jWAgM/s2NYmk7tDtg5UkyCEEEIIIYQQQhhqVRDy/v37OHz4cMXPdnZ2OHLkCNq3b6/W806dOrXiz9nZ2Vi3bl2V+//+++8ICgqq+PmTTz7RiRqVhOgrceUikJVwNaWJsdNuEFLWJ11oZIywOi6MsTaZ8Zz77veKVfGsCCGEEEIIIYQQ5dSaIKRIJMLatWsrljjzeDxs2rQJrVq1Uuq4s2bNQuvWrSv+4zJu3Dh07ty54uezZ8/im2++QVJSEmO/2NhYfPHFFzh69GjF2JAhQzB+/Hil5kgI4Sa9FBtgd8Z+p7mDpqZTrTcOroyf6xfmwL4oj3PfwlKhJqZECCGEEEIIIYTIpdbUhPTw8EBMTEzFzxYWFjh06BAOHTok9zGcnJywfv16hc/N5/Oxbds2zJgxA/HxZZlL169fh6enJ1q1agV7e3ukpaUhIiKC8bqePXti8+bNCp+PEMIkIxESTaWa0gBAtFQm5Me9mqhjSjJVlfQc4sBVFzIeT13bssZfxOdgQHNHVU6NEEIIIYQQQgipsVoVhKyssLAQjx49UugYrq6u1e8kQ/369XHmzBksX768oialWCxGSEgIa18jIyPMnDkTixcvhoWFRY3PSQipWrMcjiCkVE3Imd3YgT9tCXbk7pDNFYQUimVEXgkhhBBCCCGEEC2oNUHIyMhIbU8BDg4O2LVrF/z9/XHhwgW8ePECSUlJKCoqQp06deDs7IwBAwZg7NixaN68ubanS4jBkBWOa8JVE1LLjWl4MqtCAm9kZEISQgghhBBCCCG6rtYEIa9evaqW41au3ygvd3d3uLu7q2E2hBBFNMlNY/ycZGWPEmNTLc2meiH27GxsCkISQgghhBBCCNEHtaYxDSGESGuUl874OdamrpZm8lZVNSHzzCwRb82s80hBSEIIIYQQQggh+oCCkIQQg8fVmMampBB1SgoYY7G2ThqaUc1JL8lunpMCU6FAS7MhhBBCCCGEEELkQ0FIQkitJJ0FCQDxupAJWc126SCkkUSMVtmJ6psQIYQQQgghhBCiAhSEJITUSo3z0lhjsTbaz4Qc2KLqOcjbnIYr+5MQQgghhBBCCNEWCkISQgyehKM/diOOIGScDmRCvt/ZBebGsr+aqUM2IYQQQgghhBB9REFIQkit1DiXvRw71lb7QcgmDpbwWNAbEzs0wOSODVjbgx05gpAZFIQkhBBCCCGEEKLbjLU9AUII0YaGnJmQ2l+ODQDvtHDEOy3KumDzl15mbEuyckCuqQVsS4sqxigTkhBCCCGEEEKIrqNMSEKIweOqj9hYqjFNiZExUi3tNDQjJfB4rCXZbTLjwZOItTQhQgghhBBCCCGkehSEJITUStI1IeNsnCDh6cdXYrBUENJKWIKGeRlamg0hhBBCCCGEEFI9/bjjJoQQFeJJxGgklQmpC01p5BUiR3MaCSSQUItsQgghhBBCCCE6goKQhBCDJx2Kq1eYAzORkDEWqyP1IKV1cbVljQU7NGKNSQchh+1+hmZrb+OMf6La5kaIopJyi3EpMBkBSbnangohhBBCCCFEwygISQipdaSzIAEgniMTcmonZ01Mp0oLejVhjUnXhASAtplxrLHY7CLMOP4SmYWlapkbIYrwT8yB+6b7mHjQG123PMBhb/Z7lhBCCCGEEGK4KAhJCKl1GueyO2PH2r7NhGzpZIX3O7tg99ROmpwWp0/6NMGvI1ozxiLqNICAb8QYa52ZwPl6kViCK0EpapsfIfLadC8C6QVlAXGhWIIfrgZpeUaEEEIIIYQQTaIgJCHE4EnXRpRuSgMwa0KGLhuCEzO7wd7SVO1zqw6Px8PKYW6MMaGRMcLrMLM0pZdjV5aWT5mQRPuOvWQGylPpfUkIIYQQQkitQkFIQojBexKdxfi5Mcdy7Fg9akwDsJdkOxdkwa44n3Pf3BIh5zghhBBCCCGEEKIpFIQkhBi0ry4EYNyB54yxhpyZkLrZmEaWEAdX1pisbMg/H0SqezqEEEIIIYQQQkiVKAhJCDFYKXkl2P4oijXeOJeZCZltZoU8M0tNTUsluDpkt5URhMyjTEhCCCGEEEIIIVpGQUhCiME6/zqJc1y6O7a+ZUEC3B2yZTWnIYQQQgghhBBCtI2CkISQWsVEJECDAmaNSH2oB9nJ2ZbxM9dy7NZVNKchhBBCCCGEEEK0iYKQhBCDxeOxx1zzM8AHs1t2nK3uZ0J+0qcJ4+dcMyskWjkwxqrqkE2INhSUCHHaLxGHveO0PRVCCCGEEEKIlhlrewKEEKIuPI4opHQ9SEA/lmN/1rcpnKxMcTc8HbuexgAoy4Z0Kcis2KdFTjKMRUIIjeirnWifQCTGiL3PWN3pCSGEEEIIIbUTZUISQgwWRyIkGnF0xtaH5dgAMM3dBTumdKr4WXpJtolYhOY5yZqeFiGcnsVkqTwAKRJLqt+JEEIIIYQQopMoCEkIMVhcy7EbcwQh4/QkCCmNqzkNLckmuuJ8gOoC4pEZBei19SEsf7yK4bufIr2gRGXHJoQQQgghhGgGBSEJIQaLx5ELybUcO1YPakJy4Q5CcnfIHrrrKTbeDYeYMsmIhoglir3XfOKyMWD7I7T87Tb+dyMUkkqvX3jmFbzjsiEQSXArLB0/XA1W9XQJIYQQQgghakZBSEJIrdIwjxmEFIOHBGtHLc1GOSH28nfIvhNeFrjZ/CBS3dMiBACgSAxSJJZgzD4vPI7OQmRGIX65EYJ//BIrtt8JZ35uDz6nRjeEEEIIIYToGwpCEkIMljzLsZOt7CEwMtHQjFQr1rYuioxNGWOtZWRCltvnFaPOKRFSIy/jc5BWUMoY2/UkWjuTIYQQQgghhKgFBSEJIQaLuzENM6NKujN2ZxdbNc5ItSQ8Pisbsk1WfJUpaKFpBeqeFiEAAEUWY+cUC1hjD6MyOfYkhBBCCCGE6CsKQhJCDBZPKhXSqrQIdUqYQTjpIOTPw93UPi9Vkg5COhTno25RjpZmQwghhBBCCCGEcKMgJCHEYElnQrrmZ7D2SaxUD3JR36aY2MFZzbNSrRCO5jTVLckmRBMkCjamIYQQQgghhBg2CkISQgyWdE1IriBkvM3bIGQTewt1T0nl3jiwm9O0kdGchhBNUncMMr2gRL0nIIQQQgghhKgUBSEJIbVGwzx2ELJyZ2yxHiZuveHIhKQgJNEFArFYrcevt+oGphzypoxLQgghhBBC9AQFIQkhBkvRTEiJQq00dEMoRyakWxYtxybat/dZrNrPcT4gGfufq/88hBBCCCGEEOVREJIQYrB4UlUhuYKQlTMh9TGhqtDEHLFSzXUoE5Jo2sPIDAzf/RT9tz/Cab9EFJYK5XqdKrIY93tREJIQQgghhBB9YKztCRBCiLqwMiE5lmMnWjlU/FkPY5AAypZkN85Lr/i5WU4qzISlKDE21eKsSG2RWViKUXu9UCgQAQCexrzAlfk9NXZ+r9hsjZ2LEEIIIYQQUnOUCUkIMVjVdcdON7dBsYlZxc/6Wlsu1J65JNtIIkbL7CQtzYbUNhcDkisCkEBZRvHRF/Jl4+rpR44QQgghhBBSAxSEJIQYLJ5UKmRDqSBkQqV6kABgZ26i9jmpA1dzmtaZVBeSaMab1HzW2K2wdI49ZaNYJCGEEEIIIYaPgpCEEINVOQRpLBKifkE2Y3u8NbOW4sQODdQ/KTWgDtlE1xjxpfOQuQlV1JI+MadYJcchhBBCCCGEqA8FIQkhtUKDgizwpfKtEq3L6kGaGfOxYWw7NKxjoY2pKY07E5KCkER75IxBYtG511Vuzywsles4Tdbewub7EfKdlBBCCCGEEKIVFIQkhBisyquxpZdiA0D8f12lM1ePxNJBLTQ1LZVLtHZAngkzgNo6i5ZjE+2R7kwvy4HnsVXWYv3w+Eu5jiMSS/DT9TfIL5GvKzchhBBCCCFE8ygISQgxWJUDIdJNaQAg4b9MSAsTI43NSS14PIQ4MJvTtMmMp64fRC9UtSLbMyQN2UUCuY5TLBTjtH+iimZFCCGEEEIIUTUKQhJCDBYjEzKP3SgjwdqRNaav3kgFIW1Li+BckKml2RAiP4lEgoj0Apnb8xTIbhSIxKqYEiGEEEIIIUQNKAhJCDFYlReEuuazA3Lly7ENQai9K2uMOmQTfSAUS6qsDTn+wHO5j0XJv4QQQgghhOguCkISQgxW5UxIF87l2IaUCUkdsol+8orNqnK7f2Ku3McKTs3HweexeF7NMQkhhBBCCCGaZ6ztCRBCiCZIL8cuMDZDtpmVlmajetxBSMqEJLovNrtIZcf661EUgLLu3Pvf64w5PRqp7NiEEEIIIYQQ5VAmJCHEYPF4lRvTMJdjJ9g4MlMl9YizrRlrLMzeBWKpjsStKROSqJlEIkE4Rz3HxNxiuY8RlJKvyikBKGt2s/hSoMqPSwghhBBCCKk5CkISQgxWRUhOImF1x47X46XYkzo4s8ZKjE0RbVePMdY6izIhifrkFgvwzt+PcT4gWanjrL8TrqIZMcnbVZsQQgghhBCiGRSEJIQYrPJER8eiPJiLmAEJfa4HacTnzuCUXpLdNDcVFoISTUyJ1EJHfOLxOJpqLxJCCCGEEELkQ0FIQojB4v8XhZTOggSARD0OQsoSwlEX0o0jG5KadhBV+F1NGYyEEEIIIYQQw0RBSEKIwWpgU1Y7sWF+OmtbvI3+BiFllbIMsXdljbXmaE7zw5VgVU+J1EKK1H3UlkdR7AcQhBBCCCGEEO2gICQhxGBVlQlZvhz778kdNTondeLukM1uTnM/kgIzpHYYtOMJXsZna3sahBBCCCGEEFAQkhBiwO5HlAXbGuaxg27xNk4AgA+6sLMHdZ2snt5vHLgyIalDNqm9xBJg2VXK/CWEEEIIIUQXUBCSEGKwvrsSBEBWJqQDAKCOhYlG56ROqZZ1kGVmxRjjyoQkRFkSiUTbU5DbrTB2OQZCCCGEEEKI5hlrewKEEKIOGQWlFX92kQpCCnl8pFjW0fCMNIDHQ4iDK3onhVYMuWUlgicRQ8KjZ05EOQKRGId94uCbkIuTvuxao4QQQgghhBBSFQpCEkIM0kHvuIo/Sy/HTrJygJhvpOkpqQxPVmcalNWFrByEtBKWoGFeBuJs62piasSAjd3vhZuhlFVICCGEEEIIqRlKjSGEGCShWFzxZ+nl2PrcGbs6IfbyNachRBH+iTkUgCSEEEIIIYQohYKQhBCDxPuvfYuloBj2JQWMbeWdsfWV7DxIIISzOQ0tnSXK8QxJ0/YUCCGEEEIIIXqOgpCEEIMUll4WeHTJz2RtS9TzIOSA5g4yt71xoExIQgghhBBCCCG6h4KQhBCD4x2bjQPPYwEAzgVcQUjZQTx9MNytLmzMuEv6RtRpAKFUE5rWWRSEJMqpKvuWEEIIIYQQQuRBQUhCiMH5/U5YxZ+5MiGTrOw1OR2VszQ1xuulA/HdoBasbQIjE0TUcWaMUSYkUVZVzZAIIYQQQgghRB4UhCSEGJzzAckVf3YuyGJt1/cgJAA0trfE+rHtOLeF2DPrQrrmZ8K6tFAT0yKEEEIIIYQQQjhREJIQYtCcuTIh9Xw5dnWoOQ1RpZfx2djyIELb0yCEEEIIIYToOQpCEkIMGmdNSCvDDkJScxqiKhcDktFz60Mk5ZZoeypKWXY1GBKJRNvTIIQQQgghpFbj7mxACCEGQno5drGRCbLMrbU0G83gzITMokxIorjtj6MgNoDY3Ya74bAzN8aP77bS9lQIUZmCEiHC0gtQx8IEIrEETlamsLMw0fa0CCGEEEJkoiAkIcSgOeczg5DJVvbAf002jn/YVRtTUjuuTMjWlAlJauB2WLq2p6AyK66/oSAkMRgR6QUYvc8LYekFFWOWJka4vqAXBjR31OLMCCGEEEJko+XYhBCDJr0cu3JTmg+6sDMGDUGmhS3SLGwZY22kakIGJOXi78dRuGNAQSaiGgUlQtwNT0dCTpG2p0IIkWHX0xhGABIACgUi/OIZoqUZEUIIIYRUjzIhCSEGy1xQAvsS5k1aooE3pSn3xqEh6iYEVfzcKisRfLEIYr4RAKDH1ocoEYoBAH9OaI+vBjTXyjyJbglJzcegnU+QkqffNSBlWeUZAjNjPj7r0wT2lqbang4hNbbpPnezqLsRGRqeCSGEEEKI/CgTkhBisKTrQQL/Lcc2IJ/1bco5HmrPzPI0FwnQJDet4ufyACQAfHMxUC1zI/pny4NIgw1AAsDqm6H46fobdP/zIQQicfUvIETDJBIJ/nwQiZ5/PsDkQ96UkUwIIYQQg0JBSEKIweLqjJ1kYJ2xN4xpi9nd2DUgqUM2qYk9z2K0PQWNiMosxCm/RG1PgxCW8wHJWHIpED7xObgQkIwZx15qe0qEEEIIISpDQUhCiMHiyoQ0tOXYVmbGOPRBF9Y4BSEJqdppCkISLUnKLcZ7R3zQZ9tDbHsYCYnkbQv6j075MfZ9GJWJtHzNZycXlgpx2i8Re5/FGHR2NCGEEEI0i2pCEkIMlks+VyakYS3HliXEgd10p3VWAseehGhHk5wUTIjwQp+EN2iRkwwrQTEKTMwRZVcPXs6tcalFL4Tbu6jt/FeCU9R2bEKq8uHxl7j3X+1Gr9hsuNqZY0qnsvd6TrGQtX9usRB1rc3kPn5EegFaOFnVeH5isQRj9z+vmOPaW2F49lV/NLA1r/ExCSGEEEIACkISQgxYbViOLUuUXX2U8o1hKn57Q9uaMiGJDuieHIZfnpzA6KgX3NtTwjEt9An+uH8Q15p1w5re0/HMpY2GZ0mIemQVllYE98rN/cevIgipCmFKBiF9E3MYc4zNLsLZ10n4vF8zVUyPEEIIIbUYLccmhBisBhzLsZOsa0cmpIhvhDB7Z8YYLccm2mQuKMGWu3vx/Pi3MgOQ0kZHvcCTk9/j1OXf4VCUq/I5JeYUq/yYhFSloFQk11hlkiq3qt7N0DTW2B/3uLtxE0IIIYQogoKQhBCD5ZzPDEIK+EZIt7DV0mw0T7ouZP3CHNQpztfSbEht1jYjFi+OLcbXLy/X6PXTQp/A/8hXGBzrr9J5NVx9E/HZ1H2Y6LbIjAIc9o6Df2KOXPtXrjGpKsVC6iZPCCGEEOVREJIQYrBcpJZjJ1vaQ8KrPV97ofYcdSEpG5JoWM+kEDz450e0reK9l2VmhVB7F2SY28jcxzU/E57/rsKswDsqnd+B53EqPR4xbCVCEX7xDMGHx1/iH1/F6+zyeLK3pRdwN4AZudcL8075ocvmB9j9NLracwjFEryIz8bfj6PwMj5b4TkSQgghhKgL1YQkhBgsZ6nGNLVlKXY57g7ZCfCi+npEQwbH+uPihbWwFrCXPRcYm2FH59E41OFdBDs0KovOSCRomZ2Ej17fxCK/a7ARMLMUjSViHPb4Ew7FedjabYJK5vjLjRD8PNxNJccihu/zcwE48DwWAHDSNwF8Hg/vdZa/niMP3FHI/BIhBv79pNrX/3Y7HJ/0aVrlPrNO+iL3vwY3PB5wbEZXfNCF/VCKEEIIIUTTak9KECGkVjERCeBUnMcYqy2dsctxByEpE5JoRqfUKFy4sI4zAHmvYQd0mLsdPwych2DHxm/Tw3g8hNu74Md35qDZgr34p/UAzmNvubcfn/pdU+f0CeFUHoAs9/EZP5Uc91ZYGoJTqy+XEStH+YDcSh22JRJg7a1QueYQlpaPp9GZKOFYeq2OJd6EEEIIqX0oE5IQYlDKG000KMhmbUuyrh2dscuFOLAzX9yyFF8+SIiiXPIycOX8/1iZjADwW8+p+Kn/zGpLI2Ra2GLGmKW40bQLdt3cwej0DgB/3dmDRGsHXGrZWyVzlkgkOOmbgBfxOejfzAGTOjpX/yJS6+WXiJCcW4xSkRiN7S2r3V/WcuzJh3xUPLO3glLyUSIUwczYSOY+fz2KwuKLARBTrJEQQgghakSZkIQQg/KPX1mQzSU/g7Utyap2BSFzzaxY2Z+UCUnUzVQowMULa9CQ4zP47cD5WDFgtvy1WXk8HOowFOMn/YQCYzPGJiOJGCev/oHuyWFKz/nHa8GYcfwlZp7wxZYHkZhy2IeV8UaILK6rb6Lp2tuY/48fxNVE8aooCalWZ18lASjLdgyRyrgUiMT49UZIlQFIXlXFLAkhhBBC5ERBSEKIQfEMSQUAOBdksbbVtuXYAHtJdsvsJBiLhDL2JkR5vz88jG6pEazx5f1nYUv3iTU65o2mXTFyyq8oMjZljFsIS3H68nrYF+XJeKV81t8Jxym/RMbYx6dV24mbGK7ylcqHfOLwLJb9u0cXzDzhi9knXqL1+rtou+EuPjrtV7HE2j8xF5mFgipfT8uxCSGEEKIKFIQkhBgUv4RcALKCkLUrExJgL8k2EYvQLCdFS7Mhhm5k1At88/ISa3x/h2H4vedUpY79uGE7fDj6W4ilcsma5qbisMcW8CTsOnaEaNpX5wOQkleC9474oM36O/j6QgBKK9VY1GZG4bGXb8txHHweh9dJygXvCSGEEEIURUFIQohBSSsoBQA4F2SytiXWspqQABBiz64LSUuyiTo4FubioMefrPHHLm3w2dDPZBfDU8CFVn3w7aD5rPGxkT5Y4nNR6eMToqyCUiFmn3yJf18lITStAH89isLqSo1hVBGCFIhUE3D/6foblRyHEEIIIUReFIQkhBgkl3x2EJKWY5ehICRRhw0PDqJ+YQ5jLNvMCjNHfwuhker64G3tOh6n3fqxxlc/PoY2GXEqOw8hNSEBcDM0nTG2+2mMSs/x6w35ul1Xp1RFwUxCCCGEEHlREJIQYjDyS97WOmwgtRxbxOMj1dKu4ufhbnU1Ni9toiAkkYdILEFQcs2XZr4TF4B5gbdZ458OXYQYu/rKTI2Nx8OC4V8i1N6FMWwuEuCgx1YYiUUqO1VmYanKjkVqB67SiekFb99HqliNvfeZaoKaEpRNlnrOEEIIIURTKAhJCDEIYrEEY/Z5VfzsLJUJmWppBzHfqOLnlcPcNDY3TZjcsQHneKxtXVYzD7esBM59Se30JjUPTdfeQoc/7tXo9aZCAXbe2sEaP+3WD6fbDFBydtzyzCzxwZjvIJTqst0rORRLfC6o7DyqyjgjRJXSClQTHM8pEuJ1Ui6yqmlKQwghhBCiKhSEJIQYBP+kXDyMeht4dJGqCZko1ZSmXzPDqg9pZmzEOS7h8VkZY20z47nTdUittMojBAk5xTV+/ed+V8veU5XkmFpi8eCPlZ1alXzrt8DvvdjNblY9PYlGuWkqOcdfj6JUchxSe1T3zapLWYfP47Lhvuk+hu95pu2pEEIIIaSWoCAkIcQgPK4UgDQSi1C3MJexPcnasOtBVnVf+8aeuSTboTgfTkW5MvYmtc2ZV0k1fm2d4nys8DrNGl/RfxaSrB2VmZZcVveejldOTRhjlsJSbL63T+3nJoSLpJoHPIWlqisXoEmp+aWISC/Q9jQIIYQQoucoCEkIMTj1C7LBl8pHSbYyrMxHRYQ6sDtkt85kLsn2isli7UNIdVY8Ow2H4nzG2Mt6zbHLfaRGzi8wMsHHI76CWCoMPyXsKYZHv9TIHAiRxz6vGBz2jsNKjxBtT6XGPvn3lbanQEiNlQj18wEAIYQYGgpCEkIMjnMBdcauTJ7mNB+eoIANUUyTnBR84XeFNf7dwHmM+qvq5tOgFfZ2GsEa33pnL4xFQo5XEKI+svIgF555hXmn/HD0hf42BrsTnl79ToTomICkXHTYeBdWP17DsN1PqeEYIYRoGQUhCSEGxyWfHYRMtDbsTMiq6ozJE4SMzChU9ZSIgVv57BTMpIJ8V5t1x93G7hqfy4r+M5FubsMYa52VgI8Cbmp8LqR2M/Ryu0d84rQ9BUIU8tFpfwSl5EMsAW6Hpet1NjIhhBgCCkISQgyOcwF7abGhZ0I2d7SSuU26MQ0AtM7S32wcon3NspMxO/AOY0zE4+OHd+ZqZT6ZFrZYPmA2a3zVk5OwKi3SwoxIbVVdTUh9t/omdYwn+kMikcA7LpsxtvNJtFLHFIjESr2eEF2TVyzER6f90GHjXcz/xw+5xQJtT4kYOApCEkIMQuVMQO7l2IadCflhV3bdx3IFphaIs3ZijEnXhCREEcu9zsBYwrwRO9Z2IIKcGmtpRsDBDkMR6NiIMdagMBuLX1zU0oxIbWTYIUgggrLmSS2VmleCwTuewGLZVXTdfB9hafnVv4gQPfDrzRAcfB6HoJR8HPKJw8+elC1M1IuCkIQQg1NdJuToNvU0OR2NcKtrjV1TO8HF1pxz+xup5jTNc1JgKqQnnURxTXJSMDuInQW5tvd0Lc3ovznwjfDjgDms8e+8z8OpMEcLMyLEMBUJqMEH0Q+qTExedjUY9yMzIJYAfom5+JQaNREDsfl+JOPnbQ+jtDQTUltQEJIQYhAqX2g6c9SETK4UhPy4t/aytdRpYe8miFs5lHNbiFRdSCOJGC2zkzQxLWJgvvc+BxMxMwhxvO1AhHMs+9e0K8174KFrO8aYjaAIPz07raUZkdrGwFdjAwA6/nEPCTlU5oDULoek6qHejcjQ0kwIIUS/URCSEGJwpDMhUy3sIDQyBgBc/agnJnZw1sa0NIIno0NNiAN7uTbVhSSKcijKxZzA24wxEY+Ptb3e09KMpPB4nHUpP/W/jsa5qTU65Ki9z/A4iv1ggxAuEoNfkF3WyGyfV6y2p0FItQz/00gIIfqHgpCEEINQVU3IJOu3WZCj2tbX1JR0ijwdsgmpzievPGApLGWMnXHrhzCOILe2PHNpg3MtezPGTMVC/PD8bI2O5xmShpF7nyGzsLT6nUmtVxsyIQHg1xvUoIbolmvBKVhyKRBHX8RBLK4lH0RCCNFDFIQkhBgUvliE+gXZjDFD74wtD64gJDWnIYowFQrwhe9V1viWbhO0MJuq/dR/FsRgZgXPD7gJl7yaLZ8rKBXhUmCKKqZGDByFPgjRvCM+cRi7/zn+fBCJOSf9sPz6G21PiZAaCUrOw+AdT9Bh413sfBINSW15skVqFQpCEkIMSt2iXFbXXkPvjC2PBGtH5Jswm9ZQJiRRxPshD1ilDh66toO3s5uWZiTbG8dGON26P2PMTCTEdz7nanzM4JQ8ZadFiEG6GZqGhWf8sfZWKEqF4upfQIiKbbwbwfh519NoAJAZwJl4yAc5JfReJbpFIpFg4iFv3I/MQFBKPj4/9xr3qfYoMUAUhCSEGATef1lPXE1pkqwpCAkeDyH2zCWzrTMTas/aQaIciQSLX1xkDetiFmS5db2mscYWvvJEfalAqrxk1VslpLLa9pV6OywNI/Y8wz6vWKz0CMHHp/20PSVSyzyIyECg1EOi3GJhla+59iYNf/rmqHNahCjseWw2wtMLGGOLzr3W0mx0h1Akxj++CVhzKxR+CfS5NQQUhCSEGITyZgDSmVoALccuJ70k2660EA0q/X3NP+WHsLR8TU+L6IEhsa/gnhbNGIuwa4BLLXpqZ0JyCKjbFGdb9WGMWQhL8a3PBe1MiNQKtaExTWVfXwhg/HzsZQKKBSItzYbURj97yl56XdWn8UoUdXgnuiWtgF17+k0qXZd/du41Zhx/iZ89QtB72yM8iqLsUH1HQUhCiEGRbkoD0HLsclwdsisvyT7kHYchu55CIKIlSoTp65eXWGNbu46HmG+khdnIj6tr92d+1+BYmKvwsSgRkhC2oBT2DXIhBSGJGmUXCbD2Vig+P/caDyMz8CCSfd0HAB5vUhGfXazh2RFCVKmwVIj9XrEVP5eKxNj3LLaKVxB9QEFIQohBceFYjp1Iy7EBACFczWmymM1pEnKK8VDGBT2pnRrlpmF01AvGWJaZFQ52eFdLM5KfX/0WuNy8B2PMSliCz/3YDXaqQzFIIo/athybC/0dEHUat98LKz1CsPNJNIbufipzv9H7vNDit9s1OsfeZzGw/vEazH+4io13w2s6VZkKS4UITcunpiOEga4z2LKL2KUVjrygmvb6joKQhBCDUFETkpZjy/SmmkzIchEZBQhLy8fDyAyUCCmjpbb76PVNGEk1ezrQYRgKTC20NCPFrOk9nTX2ud9VmAtKtDAbYuhqU0ih6+b7KjlOTpEAX18IwIg9T7H1YSQFZohM4ekFeBz99jpPIFL9eyUtvwSfnX2FQoEIpSIxfrgarNJSNWdfJcLxZ0+0WX8X7pvuIzmXsjUJIbWLsbYnQAghqtSAIwiZTEFIAEBYHReIwQO/0m1ya44g5EqPN0jNL6tL066+Ne4t6gsnKzONzZPoDiOxCB8F3GCN7+k0QguzqRlvZzfcadQRQ+LeFnevW5SL2UF3scd9pNzHoeXYRB61KYDml8hd1kDRupizTvjiSnAKAOBmaDqM+Tx83q+Z0vMjhicmq1Dt59jyIBJiqbdw6/V3VXJssViCz8+9Rsl/XeQDkvOw+UEkNoxtp5LjE6KPBCIxCktFsDI1grERM0euttVZri0oE5IQYhAyi8qCZtLLsTPNrVFibKqNKemcYhMzRNvVY4y1yUxg7VcegATK6n0d8aFlD7XVmEhvuEp9pu426ogwjqxaXbap+yTW2JIXF8CTyF//lEcLpYgcalEMUiUEInFFALJc5fpfRP+JxRIcexGP7y4H4WZomlLH0sTnK52jOYiqZBSWMq6xAOCPexFqOx/RL5p82CkQibHjcTQ+13L37eCUPLhvug/7lR7osfUhIqS6gxPDREFIQohBuBxYdhMj3ZgmkZrSMITYM4NHjXPTYFHNstTVN0PVOSWiBZ4hqfjqQgB2PYmucr8Fr/Q7C7KcR7OuCHRsxBhzy0rEuIjnWpoRMVQUg1QMVyM0WRmWRD/9cDUYs0/6YtP9CIzY8wwnfdkPP+V1xCdOhTPjZsRXXySIHlIQXfHZ2df44vxr7KzmOlDdVt8MregA7p+Yiw33FK/BGpSch5F7nqH9hrtYcyu0Vq1I0FcUhCSEGATvuGxAIkGDgmzGONWDZJJuTsOHBG5ZVd8Q5BSzi0IT/XX2VSJG7fXC9kdRWFTFE/DGuakYJdWQJs3CFudb9lH3FFVOwuNjc7eJrPFvfS7IfYx1t8Pg/OsN+CbkMMYvByajyZqbqLfKk+rZGTCxWIILAUnV7qfOLCp9cS88A0KO4CKpnaSDHHuexsjc9+yrRPCXXobb73fgx/Fde+xlzQOYXObdSENSwdtrnCfRmdhdxfykjdr7DIk5xcgtFuB+RDoyC6v+/NNvB1IVVYa/xdI1BSoRisQ48FzxjPN74ek4+yoR+SWquy/4xy+R8fNeBTtfSyQSjN3vhRuhaQhOzcfPHiE4So1rdB4FIQkheq/8pt+xKA+mYuYvxiTqjM3whqNDdrsM9WcWEN2x55l8N1gfv77BqB8KAIfbv4tSYxN1TEvtjrcdhGTLOoyxAQlB6JX4Ru5jpOSVYOCOxxD9d3FfWCrEB8deIi67GOkFpVh8MRCByXmqnDbRAfklQlgtv4bJh3y0PRW98N7RF5h2xAdisQR3w9MxZOcT9Nn2EP/8lwEnkUiw5UEE3t35BF+cC9DybIk63QpNQ6GA2eDufmQG6q3yRN+/HuF10tus10uByZh2pOzBV3h6AbpueYB3/n6M7CIBAGDCQW+Vzy8gQ4ANPmXBzuwiAfpvf6zQ6z1D0jBwx2M0XnMLg3c+hcuvN+HxJlXm/rIeUs096Ys8euBLVOBBRAbarL8D2xXXseCMP2e2eakcD4mWXQ3G91eCkPRf46RvLgZgyK6nmHbkBbr/+QAZGnrgVt1z3dC0AkRnFTHGFHmQQLSDgpCEEL2X8d+TZ5eCDNa2pErLsbdMaK+xOemqQMfGrLH2GVR/qza5GZpe7T58sQjzAm6xxvd2HK7SuXw1oBm6utqhmYMl6lioN7hZamyCv7qOZc/h5WWFjpNfIoLJ91dwKzQNB73jWDfYSy8HKTVPolsSc4phu+J6RSMJIp+LgSm4G5GOMfu8cC8iA16x2fjwxEv4JuTg78fR+PZSEO5GZOCQBpbXEu24E5aOkXufcW5LLyjFs5gsTDn8NrA/kSPI+CgqE7/eCFHbHAHgUWJZSZpFZ1/V6PURGYXI/S+AWCoSY6UH94MtkViC94+94Nx25EU8Nj+g2pC1HU9GUcghO5+g2dpb+PZSIEqEIs59gLL32NQjPghNK0ChQIT9XrGcD57lWbCx4W44/rgXgS6b7yMhpwjbHkZVbAtNK8CRF7rx3Z1fyg7eP41hNykluoWCkIQQvScUlf02debojJ1k/XY59tcDmmtsTroq0IkdhGyXTkFIwjQ01p/VkOaOGhrSTOrQAD6L30HE8nfxRb+mKj02l12dRqHAmNnpfWrYEzjnsx9gVGf+KT8k57HrqYZRUXWDois3Wvpo3j9+KK4UvJVIgEPecdhHjWdqhYPesawu09LC0wuQll+CFI7v0nJbH0ZppMyF9LLQmnoRn8M5/jgqEw8iMzm3AcCvN6j+NuF2LyIDMVlF2PIgssqlxsEpeaySIJWDhzWRml+K2Sd8WePfXqIHrqTmKAhJCNF75ZemzvkcQUhqTMOQbW7NatZDmZC1R4GcdXxmBd5ljR3oOEzV08E7zR0r/uxsa67y40vLsrDBsXaDGWMmYhE+8fdU+FjxOcWc9VKpJqThSMgpwvJr8i/XJ0zxOcWssbvh6XiVRI1naoPjctZvDErJg/ume1Xu47DSQwUz0jyxWILnsVm4HpyCj077aXs6REedf50E519vYPQ+r2r3XXimLGNXIpHgpG8CvrkYgHOvy+oVF3Nk7HM9GFX0KuVuhOIPalWlurnSJZd+oiAkIcRgSHfGBqgxDZcgqS7BzXNSYF5Nh2xiGH6RI9PCpqQQk8KfMsZyTS3U0pCm8tKjuT0aVbGn6mzvMoY1tvCVB0xEAo2cn+iPMfuoezoh6rbtYRRS86uuL6fuBnnRmYVqOe6Cf/3Re9sjjNn/HBEZ6jkH0W+FpULMOuFbZTYwlzW3wvDh8ZfY9jAKUw/74O/HymU81kSJUISX8dmIzaL3NlEMBSEJIXqv/CmYSz47CJlIjWlYgqTqQhpJxGhdTYdsYhj+elT9RerU0MewFDJvCP9164ciEzMZr1ANCxMjtR6/XKBTE9xu3Ikx1qAwG9NCFWtIQAzb66RcytgjRAPOByRrewoYvV/1TW9iswpx8DmVcyBVO+ITz6otLY9dT6OZPz+JkTsrUFXZg322PUL3Px/C7fe7OOStnfc6ZULqJwpCEkL0XtR/T7AbcNWEpOXYLIFO7IwzWpJdO8jTEXF20B3W2JF2Q9QxHa3Z3pndoObLl1dUcmy6HjYMCRxLiQkh8rkZmqbtKSgkXMVZiv6JObgdVn0TOELSCxXvMv0qMRdJuczMycCUPIg0HJHzSyx7UFcqEuNnjzcQV1cEtgaoxI1hMtb2BAghRFnltVCkl2PnmFqqPXtLFy1+pzm2PIiUuZ2zQzY1pyEAmuYkY2B8IGMsyrYeHjZsp6UZqcflFj0QbVsPTXNTK8Z6JYeiR1IovJ3d5D4Odx9LYghkNCnVHokEzXJS4J4WBeeCLNQtzAEPEpQaGSPNwg7hdZwR5NgIqVSChOiAA89r9zVFty0P0K1hHW1Pgxioz89xd3IfvPOJXK+XqOFxaXxOMaKzCtHc0UrlxyaGh4KQhBC95/GmLJAg3R27ttaD/LxfU5z2T5SZySO9HBsA2lEmJAEwM+gea+xYu8GQ8Axr4YSYb4Sd7qOw/uFhxvgXvlcwx3mJlmZFdIkuxCAtBCUYHeWDKaFP8G6sP+oWVb88/I29K+40dsfp1v3xsGE7nfvs6lxwl6jFKRV1mtZXYgngHZet7WkQHVQqFOMnjze4H5EBdxdbOFiaKnyMx9HslV8AUMLRmIaLut6b7x15gV1TO6F7ozoVY0d84nDSNwEN61jgl+FucLWzUOk51RFQJepHQUhCiN4LTs0HJBJWTcjaWg+yuaMVgr8fjGcxWRi+5xlre3mHbJdKmaPtMqhuUa0nkWBWELsr9hGpbtKGYn/HYfjl6UlYVKp/OT3kEb4bOE+pbDJaOWQYeFqMljXMTcNXvlew4JUn7EoVWybaJisBbbISsMj/GqJs62Fn59HY5T4S+aaWapqtYl4n5Wl7CkTN/BJytD0FQnTWxnvh+ONeBADNBaovByZjXPsGFT8fUFOt0pcJORi6+ymilr8Le0tTXAhIwtx//Cq2e8dmw+/bgQodk66pDJNuPR4lhJAaqlNSAHOp7ra1uR6ktZkxhrrVlbk9UKpDdovsZOqQbcBKhWIUVVP4vFdSCFplJzHGHru0QYS9izqnxjCne0ONnSvTwhYn2jAvhk3FQix85Sn3MSiry3Bp45+2TnE+Nt/dh/D9n2Cpz3mFA5DSmuWmYsODQ4je+zGWPztN3/FEIzbdj9D2FAjRWSs9QjR+zv1S5RGex3JnUqpCbrEQm+6XlYTa78U876ukXERRl3gCCkISQvRcecFi6XqQAJBcS5djyyPIibkkmw8J2mTGa2k2RJUKS4X45mIAhux8gv/dCMWxF/FwWuUBqx+vVfm690MessaOarghzZf9m8HWXHOLNP7qwm5Qs+DVDRiJFe9UWY6WBhGFSSSYE3AbYfs/wTcvL8FULFTp4R2K87Hm8TEEHvoc48PZ2fG66Ek0+3c60Q/HXyZoewp6a/aJl0jNo4cF2iKRSHA1KAV7nsUgPrtIrteIxRLs94rF5+deV9So1zWXAlMYP6v7KmXd7TAAwNXgVNa2E76qvdegTEn9RMuxCSF6y+NNKj47W1ac2TmfozO29dsgZIcGNhqblz7gbE6TEQu/+i20MBuiSt9dCcbOJ9EAgHsRGXK9hi8WYVrIY8aYgG+Ef936qmROZsZ8uWoVdW1YB8HfD4br/26q5LzVeVWvGR64tsM7CUEVY43y0zE60geXW/aq9vW5xaoNFhHdoaks1/oFWdh942+Mj3xe5X6Z5ta41dgdz53dEGLfEClWdSDk8WEhLEWjvHS0zYzDgPhA9E18w1oVUK5ZbiouXFyH420G4st3P0G2ubU6/pdU4sDzOPRtWntXM+ibIz5x+PtxNPJK6DtRGcdeJiA+pxh3PlPN716imGVXg7Hxv6XSDpYmePxFf7SuV/X35LJrwRXLq3c+icauqZ2wsHcTtc9VGUKR9iJ3Kz1CsGKo/A0AKcZomCgISQjRS6VCMaYffVFxwevCkQmZWGk59se92EG32kxWEJLov/IApCLeiQ9kfYZuNOmCTAtblczJ0sRI7oLpzrbmKjmnvHa5j2IEIQHgk1cecgUhD3lTLVVDIBZLsOFeOLY+jIK9hQl2T+0EngYWZPeLD8LpK+tZTdUqu9K8O3Z0HoPbjTtBYGTCuc/TSn+2KSnEtNBHWPDqBnolh3Lu/+Gb+xgYH4APxnyHxw3bKfO/oDYHnsdi33vu2p4G+Y9EIoFEAvD57M/Fk+hMRt03opx7ERkoFohgbmKk7anUKkUCUUUAEgAyCwX4434E9k6r+ntoz7MYxs+7n0brZBBSIpFU1DqOlTPLUxkHnsu+p9j7LAZ25iYY176+2udBdBMtxyaE6CWf+GzGE3fnfHYQMum/xjRHPuiCL/s309jc9EGQVE1IAGiXTgGV2oprKfY/bQao7PgfdtNcrUdFnWvVF2lSwdaRUS/RNCe5RsejpUH652FUBpZfe4OUvBK8Sc3H9KMv1L6s/lO/a7hzZoXMAOTl5j3QYc52jJ/0MzyadZMZgJSWZ2aJAx2Ho8+MjRg6dTWeOrfm3K9hfgbunFmBL19epjctqdJJ3wQ0W3sb9X/xxJpboRVlcMp9fSFASzMzXEIxfSY1jWv5tXRNQy7SKyJ8E3LLHmzdDcew3U/x3eUgFJQI8TQ6E0d8tHed3XnzfSTlFkMgku+BsLI+Pu0vc9sn/77C+8deYNx+7hUA//gmoLBUvqxq+qToJwpCEkL0UmEps2Yb141c0n81IWd2a6jVTqe6KMfcGglS3cPbZVImZG1kIhJgSugTxliRsSkuypEJKEubSsuX2tSzxtBWTjU+lrqVGpvgUPt3GWN8SLDg1Q0tzYho2qKzrxk/J+eV4EZImnpOJpHgtweHseP2Lphw1B6NtXHCyCm/YMKklazavQrh8XCniTv6f7Aes0ctRoqlHWsXE7EIW+/uxZ6bfytVB5UYruTcYsw68RKx2UXIKBTgZ48Q3A1nlvl4EU/dsFWNngvot433IrDsajBuh6Vj0/0I2Ky4jn7bH2s1Y/h1Uh423A2Hp7p+t9XAnfB0zvEZx19i9D4viMUS+iwYKApCEkIMQgPOICTVk6qK9JLs5tkpsKDuqbXO0Bh/OBbnMcauNO+OfFPLGh/z4ef9sGtqJ+yc0hEPP+8Ha1Pdrv6yp9MI1tj8gJswkVFbryp0vax/glPzWWOZRYr/21fHSCzCQY8/8YP3Wc7th9sNRqc5f+FG064qO6eEx8exdoPRYc7f+LcVd525j1/fwLmL62ApKFbZeYlhOB+QDOmkPOnlp4QYAlUmK+z10s3PyNaHUawkDl31IDKzygccniFlTW+kM7OJfqAgJCHEILjkM5/M55uYI8/UQkuz0Q9BjtQhmwDvv3nAGjvV+h2ljuloZYqFvZvgkz5N4WhlqtSxyq0cJn8hc0VF2LvgRpPOjLH6hTmYGO6ltnOS2oX/XwByTtBd1rYSI2MsHPY55o1ajFwzK7WcP8PSFu+N+wELh32OEiP2Q4Fxkd64deYnOBbmquX8RD8l5rID06f9E8Ffehn8pZdhseyqFmZFiOqpcr1UZEahCo+mWvq0MOzjM34QiLmXj4/d/xzesdmanRBRGQpCEkL0kvRzL+nl2ElW9vr1m1YLuOpCUnOa2sVcUMIKtOWaWuBas24qPY+JkfKfxV9HtMaVj3pi+6SO+G10WxXMimm3+0jW2Cf+11V+HqIfRCqsycaTiLH3xnbMDL7P2pZhboMh09ZiH0c2rsrxeNjXaQQGvL8e8daOrM29k0Jx7/SPqFuYrf65EJ2RXSTAiuvBWHIpEFEKBk/kbThGFKPumrSEjW4ZdM/rpDyZS9hFYgkOabHGJlEOBSEJIfpPIuEOQpIqcXbITqcgZG0yKvoFbATMYuwXWvZGsYmZSs/Tt6kD6kplRB7/UPElp6Pb1seifk3RwrHmS8Vludy8JxKlSjgMiXsNNwWzg2llkGFQVedznkSMXTd3YF7gbda2aNt66P/+ejx1VX1QvSo+DVqh7wcbEMj5ICoON8+spIzIWkIikaD/9kf47XY4/nwQiS5b7iOjoFTb0yJE43gqzYXUXdOPvtD2FBTyLIa7eRsA7HwSTeF6PUVBSEKI3rMpLYK1VC0rqgdZPc4O2ZQJWatIN6QBgFOtVdcVu5wRn4dtkzrA2swIADC5YwNMaF9f5edRhtDIGPs7DmONL3zlqdBxEnOLcTUoRVXTInpu9ePjWPCa3eQoyrYeBk7/DSGO2ukcH29bFwPeX48Hru1Y2zqlx+DmvythX5TH8UpiSG6HpSMo5W1N1NxiIbY8iNTijAhAD7O0oSaZkDdDdafJCyH6hIKQhBC951yQyRpLsqYgZHVyzK1ZS/LaZdDShtrCTFiKcRHejLFsMyvcauKulvNN7+yKxJ+HI+WX4TgzuzsslWhWo65lU/s6DoeIx7w0mhN4B+YKNmyafNgbWYWUTaSL/BNz8fmddEy/loqjwflqLWo/7/VNLPc6wxqPsamLIe+tRZxtXbWdWx7Z5tYYMfV/uNy8B2tb57QoeJ5dBetS3a1tRpRzLzwdw/c8Y40ff/k2+5uCYdonFktw2DsO31wMwO6n0RCrsFQEUc5+L3pwT0hNUBCSEKKXKscgpJdiA7QcW17SS7Kb5XB3yKaAiuEZFuPHWop9sUVPCIxM1HZOazNj1LU2U7oLZT1r9nJxt7rKN/SIs62Lq826M8Yci/MwNYydMVoVgUiCS4GUDalrRGIJxh30wfOUUkTmCLHNLxfnA9Tz7zQkxh+7bu1gjcdbO+Ld99Ygxk43MoFLjE0xbdwy1vseALqnhOPMpfU16hJP1EMslqikXmmJUIQJB705t1HgUfsq/xMsvRKEeaf8sO1hFD47+xrG319BRHqB1uZmqGpyVXLaP1Hl8yDy4/Ho+0pfURCSEKL3nPMpE1KW2d2qXuoXLLUkmw8J2maysyH7/vVIpfMi2jcl9DFr7KxbPy3MRHF9mtijnjWzxuSmce0xrp3ygR2uBjWf+ineoOZ1MtXU0zUv43OQnMd8yLJHDZksbTLi8O/l32EiFjHGs8ysMGzqakTWcVb5OZVRamyCqeOXwaNpF9a2ETG+2HtjO93p6YBrwSmo94snTL6/goVn/FEiFFX/IhkeR2Uhr0SowtkRVXrn78e4G54OiUSCXU+iWdt/uREC79hseLxJRZGg5u8D8hY1pjEshaX0/abLKAhJCNF7LlzLsSkTEgCwcpgbmtpbyNwub3OakLQCpOUrtiSV6C4TkQATIp4zxvJMLHCzSWftTKgazRyYjWiMjfjwXNgbo9rUQxdXW/w1qQPGtKuPM7O74/L8nmhcR/Z7vjqeTbsg2rYeY6xv0ht0SItW6Dib70ciIIkCkbokq4id0X0nPEOlN582JYU4f3Ed6pQwM5VK+caYPGG51mpAVqfE2BSTxy/H7cadWNtmB93FukdHND4nv4QcBCZTXUqgLANywRl/ZBaWZaXu84rF1eDUGh+P67NQjjoza19Ach7e3fUUlwJTUMzRgfz4ywT02vYQo/d5odfWh8ik1SrVKhGKsOleBJZfC0ZoWj5re3UrNO5HpOOj03748VowknOLq9yXaN+ovV6ssdxiAe6GpyMklf3vTzSLgpCEEL1U+RLZOZ+9HDuRMiEBAC2crBD+47sI+n4QHC3Zy2wDndhByA7pMZzHuhWWrvL5Ee0YEvuKFSS53KIHSoxNZbxCs77s34zx81+TOrD2cXexw9WPe+HF4oH4vF/Z/qbGfIxpVx9eXw+AvUXNlpWL+UbY13E4a/yTVx4KH+vPh1E1mgNRLYlEgvOvk3BQRsdrlcUgJRLsu7ENrbMSWJsWDv8c9xt1VNWZ1KLYxAyTxy+HX91mrG3Lnp/F3IBbGp1P1y0P0PGPe/j83GuNnlcXPY3JQlIu80GgMl1u5SmJIRZLEEAZ3Vq15FJgtfsEJOfhpC/7O4cwTT7kg++uBOH3O+HotuUBIjOY10BVfSKuBadg8M6nOPg8DuvvhKPn1odUm1MH8CD7ocnDqEy8Snz7/RWVUYgumx/g3V1P0fGPe9jnxX2vQzSDgpCEEL3XgLMmJAUhy/H5PLSpZwMzYyPWtgCOIGTH9GjO4whE7KfxRPNS8kpwLThFqSfxUzm6Yp9166vMtFRqy/j22DaxA77s3wyeC3tjdFvFllnXtzGD37cDa3z+Ax2GQsBnfl5mBt2DpUCxv/MDz6lovS6Y948fphz2wSk/9dbvWvziIqZxfLbW9H4PR9q/q9Zzq0qemSXGTP6ZlQ0MADtv7UDvxDcan9POJ9GIyqjdDXK4ltyqojYkF4kEyCkSoN/2R1TbVsuiMuV73395PkDNM9G8EqEIN0JS4RmSimIll5xHZhTg+pu3mcMFpSKsux0u9+vH7meuHInPKYZvYo5ScyKq8SpRdra8d1x2xZ/3P4+t+DwJxRL87BHCakwnFImx6V4EPv33Fa4G0XefOtW8NaWCsrKyEBERgfj4eGRnZ6OwsBB8Ph9WVlaws7ND06ZN0bx5c1hbW2tqSoQQAyHdHbvYyATZZso3qTA07i62SJQKXOWbWiLSrj6a57z9ZdtRRiYk0b5boWkYd+A5SoRimBrxcXF+D4xo/TZYIJQjUGwkFmFCOLMjaoGxGTyadlP5fGuKz+fhi/7sbCxFNFJiSXaytQMuteiJKWFPK8bsSgsx/c1DHOw4TKl5Ec1KyCnCkRfxVe6jilhO//hArH9wiDV+tVl3rOo7Q/kTaFCStSNGTf4Fj/75AY7Fb2/wzERCnLu4Dj1mbkaCjZNG57TxXjh2TGEvFSc1U10e5P7nsfCKzdbEVIgKnX2ViJ+uvwGfx8PGce1YD/ASc4qRUyxA67rW4PN1twhiiVCEEXue4UFk2fV9v6b2uPlJH5ibsB+my+MVR2mUA89jse8994qfFS3L8SyGnQBBNEssAb44LztTvnKW5LrbYYxtyXklyCpiNl1bcjkYu56VPTze8ywGF+b1wPj2DVQ4Y1JObUFIoVCIJ0+e4NatW/Dy8kJsbPXZADweD61atUKfPn0wdOhQdO/O7tRHCCHSXKQa0yRZ2VOFaQ6f9W3KeBJc7rVTE0YQ0jU/Ew5Fuci0sNXk9Igc1twKRcl/9aFKRWKsvhnKCELeDE2r9hgD4wLgVMx8cnyteTcUmbA7TlfHzJhfMR9dNKtbQxytJgAly55OIxlBSABY+MqTgpB65m54htrP4VCUixNX/4CxhPlZiLKth9mjFkPC07+FRyGODTFl/I+4+e9KRoOdBoXZOH9xHd6Z/huKa/CdUVO7nsZg28QOMDbSv79LfZOSX4Kll4O0PY0asSkpRPOcZDgV5cKxKA91Sgog4vFRbGyCYmNTpFraIdKuARKtHfTyc1mVhJwiTDvydon+pEPeSP1lBOz+K02y43E0vrkYAKFYgqGtnHBubg9Ym2ksH0khDyIzKwKQAPA4Ogt3wtMVXhWhCJ6ChTkMMfvU0FTXT016e3kAstyis68pCKkmKv/mSU9Px8mTJ3Hq1ClkZLy98CtPdy2vQVI5/ZXH40EikUAikSA0NBShoaE4fPgwGjZsiPfeew8ffPABZUgSQmRyllqOTfUguY1uw15eBwABTk1ZTUo6psew6pdRXFf7Kl+UA8CTaOZ7f/5p/2qPMTWMoyt2q5p1xT4zuzvGH2C+d+Z2byRjb837YXDLGgchbzVxR4RdA7TISa4Y65UcCvfUSPjXa66qKRJ9J5Fg180daJjPDHYWG5lg6vgfkWVho6WJKe9Bow74ashC7Ly1kzHePSUc+278hZmjv9XoL4ZbYekYKeP3GADklwhRKhLDwVI3atuqkqr/mvlVHFAg0o9adzyJGF1TIjAi2hfdk8PQKT2a8UC1KiVGxgir44KnLm3wyLUdHjZsh2g7/Q42rLnFzPQSiCTY+jAKPw93Q4lQhOXXgyH8L+37Vlg6LgUmY0ZX3WyUdZijfu/B53E1CkKm5Zfgw+Mvq92PrnENj7LfZNKrx4jqqOwRUFZWFtavX4+hQ4dix44dyMjIqAgsVg44SiQSmJqawsnJCfXq1YONjQ2jOHLl18THx2Pz5s0YOHAgNm/ejLw86pBHCClTXh/GQlACu1JmzRyqB8lN1tKbV3WbssY6ptGSbH2Ukld1B3O+WIRJUtl9xUYmuNZc8aXY2yd1xJi29TCydd2KMWM+D/N66k4Qsl0DGyx+p2YBQwmPr5IGNUUCEfKKhTWaA1Geum8s5wfcxNQwdh3IL4d8At/6LdR7cg3Y7T4Ku9xHssZnvHmAJS8uaHQuc//xlbltn1cM6q7yhNPPnvj4tL9cpSlqM30NuPAkYgyN9sWh61uQvHM2vI9/izWPj2FihJfcAUigrLRAh4xYLHh9A4c9/kTkvoV4degL/PzkJNpm6Gct391P2ddt5c1XboelI1fq99DME7I/T9rGtcKCqy6qPOaf8kORoPrvAz39SJAqnHgZX2XtXP143GKYVJIJefLkSWzZsgV5eXmMgKOjoyN69+6Ntm3bws3NDa1bt4aDgwNMTJgdK4VCIZKTkxEbG4uAgAD4+/vDy8sL+fll7dMLCgqwd+9enDp1Cl988QVmzpwpV1c3QojhmnDQGwC7HiQAJFvZa3o6eu21UxPWmKzmNES/9UsMRv1CZjF1j6ZdkW9qKfcxejexx+Mv+lX8Hj4zuzt2P4tBXHYRpnRyRv9mjiqds7KaO8r//ybtYId38b8nxxnLUWcE38d378xDgal8NSetfrxW8eczs7thSieXGs+HKE6dV4utMhOw9c5e1vgpt/7Yb0DL9r8evABtM+IwMJ7Zqff3B4fxzLk1nri208g8UvNLOccLSoT4+kJAReDiwPNYfNDFBe+2qsu5vz5SdKmooXHOz8An/p6YE3gbTfKqLztSEx0yYtHhaSx+eXoSPvVb4u/OY/BPmwEoMdbfzNq0grLPTG1o5CyRSBCTVQQXW3OYGpflWQlFYlwNZpch4kKxBcPzIDIT31wMwF+TOla/M9EopYKQcXFx+O677+Dv718RfHRycsKkSZMwfPhwdOwo3z+4sbExGjZsiIYNG6Jv37LunEKhEC9evMCVK1fg4eGBvLw85OTkYN26dbhy5QrWrVuHFi30/wkzIURxZ/zfdjiVrgcJAEnWb4OQm8Zr5uZIn4XZu6DYyATmorcFmrmCkJmFAhx8HgtHK1OMa1efLtj00JTQp6wxRbpibxjbDh/3asz4t7cyM8aSgYb5+zjVyh7nW/bGe6Fvl7DblhbhgzcPsK/TCIWPN+3IC7xYbIUurnaqnCbRAiOxCEevb4aVkJl9HGvjhM+GLdLfVDMOAiMTTBu3DM+Pf4umuW9v6I0lYvxzZSO6zvoT6Zbae0//45fIynT6+LQ/olYM1dKMdJ++vDubZSfje+9zmBt4C2YizWWUd08Jx0HPrdjw4CB2u4/Elq4T9LK0QmhavranoBEpeSUYufcZ/BNzYW1mhBMfdsPYdvVVkun2b6V7DqJ/dj+NwZbx7Tm3SXfHJppT4yDkhQsXsHr1ahQWFkIikaB9+/b4+OOPMWzYMBgbK59gaWxsjF69eqFXr1746aefcP78eRw9ehQRERHw9/fH1KlT8dNPP2HKlClKn4sQol+mH31beFu6HiQAJFqVZWKtGdUGX/Wn2m3VEfGNEOTYCF1TIyvGOqTHgicRMwq3L774Ngtmfs/GjK6CRA9IJKyu2KV8Y1xp3kPuQywdpH/BRmWvMfd0GskIQgJlDWpqEoQEgEPecYwgZF6xEE9iMtHE3gJt6unfTa6uU9fDku+8z6FnMrMGmxg8zB61BNnmhlfHPN3SDpPH/4gnJ79nPLBqmJ+BY9c2YfTkVRDza9a5VllcyzTTZGRNEv3gnJ+BNY+OYVbQXVbDJ1kSrB3wyqkpAp2aIMHaARkWtsgyswYPEpgLS2EpLEGjvHQ0z05Gy+wkdE8Jh4Ww6vdJ3aJc/PTsNL56eRl/dp2ALd3GI0ePPt/lGZD6EnSuSk6xANseRiKrSID3O7uidb23/w4b74XDP7GsA3Z+iQifnX2FMW2HVvv//eHxl4jJKsT0zq5IzecuZ/NepXsOon+EYgmKdbiBYm1V42jhsmXLAACNGzfG0qVLMXw4u26SqpiZmeH999/H+++/jytXruCvv/5CTEwMVq5cSUFIQmo5ruXY5ZmQy99tpenp6K3XTk0YQUhrQTGa5qQiqg53ofYDz2OxdlQb1LfRXHdUohz3tCjWMra7jTrq1Q2VNtxt3BFhdZzRKjupYqx7Sji6poTjZf2WCh/vanAKtk7sAACIyijEwB2PEZ9TVvx87ag2+JG+t1RKHTffbTNiserpSdb4772m4kGjDmo4o27wq98CXw9ZgN03dzDGh8f44adnp/G/vh9oZV5ccWaJgVX7khVLvxSYjCfRWejX1B7jKnVx3fYwEtsfR8PGzAjrRrfFiNbMhj66upLBXFCCJS8uYtnzf2EtqLopRJ6JBTybdoFHs67wbNoVCTZOCp3LRCRAl9RIDIoLwKSwp+iVHCpzX9vSIvz87B986XsZv/SdgR2dR0OkpaC7Iqqqh6dtEolEoffh4+gsPP6vGd/Wh1Hw/noAWjhZAQA2349k7JuQU4ysIgHszE1Yx6nspG8CAHaTP2JYglK4+4ro7qfD8NW4MY2VlRW+//57XL16Va0BSGljx47FtWvXsGzZMlha1rzOEyHEMDjnsy8ckqgmpMICnJqyxqqrC/koKqPK7US3TJTKggSAiy17aWEm+kXC42MvR9bjJ/6KNajhsutpdEUAEgDW3AqtaLpFVEPlXYXFIuz33MZaGupbtxl+6aOdIJwm7e04AkfbDmKN//z0HwyN1k6jC656ibVlld3Eg97YcDccEw56469HUQCAe+Hp+OZiIMLTC+CbkIuJB72RVcjM+CtvWKJLhkb7IvDQ51jz+FiVAch7DTtgzshv4PzZYbw3fhkOdByucAASKCsz8Ny5NTb0nII+H/6Bpgv24YcBcxBpJ7sDs31JAbbe3YuXR7/B4Fh/hc+paWIVfRDuhKVj/ik/rLgejDQZGYPyEojEWHjGH/YrPdBl8334xGWz9qnuezu7SICTfglKzYPUHr23PeIcH7jzGT69nQ7vZOXe00RxNQ5Cenh4YP78+awmM5pgZGSEuXPn4vr16xo/NyFEt3BmQlJ3bIVxdcjulBZd5Wtqy02evrgeXHVn0PHhXqyxSy3kD0L+Mry1wnPSBap4mx5q/y5KjJiLRz548wA2JYUKH6vyvdXGexGMbUUCMeKyi2oyRaIh37y8hN5JzIwpAd8I80d+DaGRSvo96jYeD58NW4RAx0aMYT4kOHJ9C+oWZmtsKoHJeVh9MxSHfeJY22rjr6edT6IBAHu9mN2dS4RiXKn0++FxVCa+uchsMqRNdsX52Oe5DTfOrkKzXO4mIiIeH8fbDESn2dswZPo6HG0/BIUm5iqdR6xtPWzsOQVu83dh7KSVuNlYdsmZjukxuH1mJQ5f2wz7Iu4sK10g+u9CTVZQz+33OzjC8fmp7El0JkbsfYZD3nH47XY4Ru59plQtve2Po7DPKxa5xUL4J+Zi6mGfGh1v492IKrdfC07F4ku68z4nuicioxAvUkux+EEGMovpAbAm1TgIWbeu9jvO6cIcCCHa5SzVmKaUb4wMPSwerm1cHbI7pMdU+ZraeJOnq46/jMeY/c9lbm+Sk4IuaVGMsecNWiHRRr5O1o3qmGNh78ZKzVGfpVva4VzLPowxa0ExZry5r6UZEXmpsqtwq8wErH58nDX+e8+p8K9Xe+oPF5qYY9q4ZciXCgI1KMzGoet/gidnDT9l+CXkoPe2h1jlGQJvjkyqEqEY04/4IDZL8QcFukied/Gb1LImJHfC01nbEiplXK++KXvZsaaVZT9+gfkBt2Tuc6ztQLSZtwOzxnyLAI4Hpqom5hvhWvMeGDFtNfq//ztuVRGMnBV8D4GHPsfEMHbTN11Q3XLs8PQCzP3Hr8oGNoe84xjH8U3IRVBKzRvebHvIvBaJzS6C0XdX0H7DXfgn5sh9HKG46u+Z2Sd9sf1RVJX7EAIAJSLgbhx39rVAJMbxl/FYdzsMAUm5Gp6Z4apxEJIQQnSBdGOaZKs6jGYqRD7JVvZIN2cGbztWE4T87XZYlduJ5iw6+7rK7RMi2FmQ8i7F/qxvU/gtGYgGtqrNOtE3e9xHssYW+ntQSrCOU9VybJ5EjH03/mI1snjl1ARrer+nmpPokTeOjfDpsEWs8VHRL/H1y8tqP/8hnzgUlFaduXLmVRJG72N/9+mjEpHqArs3QtOq30nNjEVCrHt4GB5nf4ELx4oWAHjq3Bq9Z2zE7NHfIsLeRcMzLPPEtR2GT1uNd6etxiuOh7VAWfD93KXfcOTaphplx6tTan4p+m9/hEmHvKvcb9nVYMbP8dlFOOITh2cxWdgnlVkLQKmM/Zgs7tcGp+bjq/MBSM4txr+vkjj3ITVjKhTAtqQAtiUFsCkphIWghK5dpETlCjnH55/yw6wTvvjp+hv02vYQ3rHZmp2YgVLLupGRI0di8uTJmDBhAurXl11XgxBClCUdhKSl2DXE4+FV3aYYEvc2mOWWlQhzQQmKTbibz/gl5iK3WADbagp/E/XLK+G+eCrHtRT7Yove1R63e0M7/DWxA/h83WxioEn3G3bAG3tXtMl6W4eqS1oUeiSHwdvZTe7jVFeIn24LVMszRDUBl4WvPDEgIYgxJuTxMX/k1xAY1c7vwBNtB2FojB/mBt5hjP/+4DDuNewAv/ot1HZu6WwqWYJS8uETl43ujeqwtmUXCZCQU4y29ax1+jtOIpFgyiEfbU9DZRrnpuLklY3okxTCuT3LzApLBn2Mw+2HqL6oaw3dbeyObrP+xGd+1/Hrk+OwL2HX1JwZfB99EkPwwdjv4NNAdxqMydN05VWlDK8X8dkYsvNpldcV6vpneRiVicmH5Xuvl5cvaVTHQj2T0SMmIgE6psegS0okWmUnonl2MlpkJ6FuUS4civNgydEFvtjIBBkWNki3sEW0bT2E13FBmL0LXjs1gW+95jKv/Wub4y/fXvMVCcTY9zwGPRrX0d6EDIRagpDR0dHYsmULtm7dir59+2LKlCl49913tVI/khBiuMyEpXAsZtbioaY0VVsxtBXW3uLOYAxwYgYhjSRitM2Mh28VN5JesdkY5kalMXSZfVEe3oln1kUKq+OMIKmabtLmdG+ILRP0PwCpTO0qBh4PezuNwKb7BxjDn7zyUCgIWc4zhLv2GVGdJZcCceA5O4tHUfUKsvDbwyOs8Y09JteoQ7oh+WrIQvRLCGZ0jzcVC3Hi6h/oPmuLyuv29fjzAaIyFcs2i80uYgUh93nF4NN/X0EsATo52+LmJ71R11o3b7oDk/NQKGfDKv5S9WehKuOduACcufw76hZxL2s837I3Pn/3UyRb694DZRHfCNu7jsXp1v2w7c4evBf6mLVPi5xkPD75PVb0n4VN3SfqzcqcyIy3n6m/H0dX+2BTnVcFz2Lk71TdedN9PPuqvxpno5vMBSUYkBCE4dG+GJAQCPe0KFaztGqPIRLANT8TrvmZcJeqAS/k8fHaqQmeurTFjaadcbdRJ+SZUUNgANj7LBa7p8ou0UDko9ZvRpFIhEePHmHx4sXo378/1qxZg4CAAHWekhBSizQoYF+oJOnghasu+bxvU7StZ825jasuZHUdslXVeZGoz5goHxhL1Wi72LJ3lakMOWtG4eD7XVDHgh4eVna4/RAUS2W9TX/zELYcWTGy8AC8jM/GOBk1PMPTda9rrS57EZ+N2Sde4rOzr5CSx+xw+eeDSJWcY+P9g6gj9W/8xt4V/+vzvkqOr8/yTS0xY8xSlPKZeQ1tshKw9c5elZ/vRXwOMgsFCr1G+kFEqVCMxRcDUV7m7lVSLnY+qbr8iDbdCmPXeFSURAIUC0RYell7jTo+9buGm/+u5AxA5plYYPaoxZgy/kedDEBWlmplj/fH/YCp45YhxdKOtd1ELMKGB4dw5dz/4CAj2KqLypvbHfKuulENUH1Gv6ZkFQmw4V7VDWoMRZ3ifMwNuIWrZ39B5t8z4Hl2Fb59cQE9k8MUDkBWx1giRpe0KCzyv4YLF9chfceHuHvqR3zx8goa5HOXT9B3uvGOrj3UEoT88ccf0a5dOwBlv/glEglycnJw/PhxTJs2DePGjcOhQ4eQmWmYb2JCiGZIL8UGKBOyOg1szfFq6SD4LnmHta0mHbKJ7psQ/ow1drGartg25rWgy28NZFrY4l+3vowxK2EJZgbdU+g4h33iIZTRMECXmkboupjMQvT96xGOvUzA7qcxGLTjcUXAKS2/pJpXy2dwrD9mBd9jjS8a+hlKjE1Vcg5lLerbVKvnf9GgFX7qP5M1/lHATUwNeaSFGVUtPL2AVU/ylxvcS4N1gURFRRq+vhiAzfdVE5hXhIlIgJ03d2DH7V0wEbMzOn3qt0S3WVtwrN1gnVl+LY9zbn3RYc7fuNy8B+f2UdEv4X1sCdxTNf93XhOLzr3GH3IG9GT9K0kkEoSllZVAqNzMJrtIgM33I7Dtoer/LvZz1Kw0FMYiISaEPcPF86uRvHM2Dnhuw6jolzAXKfYgRlkmYhEGxgdi2909iN89D3dOLcecgNtltSUJqQG13GXMmTMHc+bMQUREBC5cuIArV64gKSmp4sIwPDwc69evxx9//IGBAwdi8uTJGDRoEIyMjNQxHUKIgXLheBpHNSGrZ8Tnwd2F/fQ+0KkxxOCBX+mGh4KQ+s1cUIKRUS8ZY6kWdnjq0lpLM9I8Vefq7uk0EjODmV2xF77ywI7Oo+W6gQ5LL0BYFR07vajoudxW3wqDQPT2XzgkrQD3IjIwuKUTZzMFRZkKBdhxaxdr/Ei7wbjXuJPSx1eVQS0cseNJtFbnsKn7RAyN8cPwGD/G+J6bf+O5sxtibetpZ2Jg91/Qt/x9VS04UMVnQlF1ivNx7uI6DIrnXgm3vfMYfDtovt7WVc2wtMWEiT/hS98r2PDgICsjrVluKh6f/B4Lh3+BE20HaWeScorJKsL3V4Kq3xGyf9V9eT6g4ruoTxN7eCzoDWMjHrpuvo9oGQ1pCJtrXjo+87+OeQG3OBMu5JFhboN4G0dkmNsg09wGhZVqPJoLS+FQnA/Holy4FGSifqH8Xcn5kGBQfAAGxQdg8719ONJ+CHZ3Gok31ZT4MVRRGYUwNeahnrUZ+DwejPS8hJGmqDXVoUWLFvj222/x7bffwsvLCxcvXoSnpycKCsqWtAiFQty5cwd37tyBg4MDxo8fj0mTJsHNTfHaSoSQ2seZo6Ni4n/LeCZ2aKDp6ei9QhNzhNm7oHWlxhudUyPL7oD0KDuhtskoYBccL/du7CtYCZlPqi+36Akxnx761dQj13YIcmiEdplvl6x1So9B76QQPHNpo8WZ1Q6lQjG8YrNgY2aMM/6JrO3+ibkY3NIJIhVEbr73Psv4PgTKmmZ8N3Ce0sc2NBIeH3NGLYb/4a9Qr+jtDW2dkgIcv/oHBk3/DSL63tEqTVdPaZibhmvnfkWHDHbws5RvjM+GfoaDHYdpdlLqwOPhr67j8NC1HU5e/YP1nWEpLMWxa5vRIzkMSwfON4jPAY8jFzIqo5DxMORpTBbOByRBIJJQAFJO7dJjsdTnHD4Mvs+ZNcxFyOPDr15z+DRoCe/6rfCqblOE13FGjjl36SUu1qWFaJmVhHaZceiRHIYeSWHolhpe7TJv+5ICfP3yMr5+eRm3Grtjfc8puN3YXS/vGW7FKfYeFYslmPuPL45Valxjb2GC1SPbYFG/pox9BSIxTIz0oz6spmhsvVWvXr3Qq1cvrFq1Crdu3cLFixfx+PFjiERlH7DMzEwcOnQIhw4dQrt27TBlyhSMHTsWtra2mpoiIUTPVLUce/VICgbUhG+95owLaKfiPLjmZyDBxkmLsyJVCauihuBErqXYLateil0bfT2gGZYMbIEma25VvzOPhz3uI/Dn3X2M4QWvPCkIqWZ5xUIM2/0Uz+OyZe6jqqWrLbISsdzrDGv8xwFzkGZZRyXnUIXRberpzP1eipU95o38GlfP/48x3i/xDVY8O43/9f1AK/PSt8zHYoEIIrEEVmZlt2n6WHq5fXoMrp/9BQ3zM1jbki3rYMr4H/HUta0WZqY+fvVboPvMzdjvuY2zac3XLy+jdWY83h/7PXLNrLQwQ9Xh+s658l9Nyco23Y/A66Q89s6EoVfiGyz3OoNxkd5y7Z9g7YDLLXrCs0lX3G3cUen3U76pJfzqt4Bf/RYVGbsWghK8Ex+AEdG+GBPpzWg+xmVorD+GxvrjeYNW+L3nVFxs2UtvGjMBQHqRuPqdKnkSk8kIQAJlNUq/OP8ao9vWQ1MHSyTnFmP60Rd4HJ2JLq52ODWrG5o76vdnX1U0/s4wMzPDmDFjsGfPHjx48AArVqxAr169YGRkVFE/MjAwEKtXr8aAAQOwZMkSPHnyRNPTJIToAWeu5dj/ZUK2b2Cj6enonZ5S3UIBwL9uM9ZY51TZS0eJ9snq/swXizAugtn8pMDYDLca166ufvLcwJsZG6FRHQu5j3mk3RAUSdUDnB7yEHbF+YpOjyjgYmBylQHIypSKy0kk2H57N6vu1lPn1tjbabgyR66WtVn1WVIfdnWFs60ZZnZ1xYV5PXSmSQQAXG/eHVu7jmONr3x2Cn0T5FvqWZvtehIN+5UesFlxHUsvB8r8ftdl78QF4OE/yzgDkD71W6LHzM0GF4AsV2BqgffHfo/v35kLEUcAZmS0Lx6f/B5Nc5K1MDvV4frGKRWygzgByRSArEqHtGhcOL8GT09+X20AMs3CFn91GYv+7/+OxgsPYNHQRbjYqrfaAtpFJmbwbNYNSwZ/jNbzd6HLrD/xW8+piK6mtEbP5DCcu/QbXh3+EhPDnurnU5RqJOcW452/Zcen5v3jB4lEgqWXg/AwKhNiSVlTtUVnX2twlrpNq+FpR0dHzJo1C4cPH8bTp0/xxx9/oHPnzgDKbqpKSkpw/fp1fPTRRxg+fDgOHTpUsZSbEEKkl2OLeHykWVD2tLz2TGMHo/zqcQQh02QXEjfAawu9I+ufoHdSCGNZJAB4NOuK4kp1gWoDeeIzisZwss2tcdqtH2PMUliKWQo2qJFlwPZHuByo3zep6rDlgWa6oE4LfYwRMb6MMSGPj8+GLlJrZkdzR0uE/DCk2v2OzuiKhJ+H48iMrjDWwSVePwyYCz+pB1pGEjGOXdusUCd5VdGX31PZRQJ8fTEAJf8Fczbfj4R3XLZeZXKOjXgOz7M/s7rJA8CV5t0xaPo6w19ZwePhjx6TMWryKmSYsx+It8+Iw7Pj36F34hstTE415P2dqS+fPU1rnp2Eo1c3we/I1xgf+bzKfW82dsd7Y79Hw08O4ushC/HEtZ3mMwx5PPjXa44VA2ajxcd7MGryKlxo0Ysz0F6ufUYczl36DU9OfoeBcYYVfGv1+50qt9+PzECj1bdwwpeZKXkjNE2d09IrOnHl8ubNGxw+fBgHDhyAv78/eDxexX/l2ZFxcXFYv349hgwZgvPnz2t7yoQQHSC9HDvZqg7VulNAJxdb7HuPGYj0q9ectZ87ZULqpYnhXqyxS9V0xTZEw93qVrtPxxpkTu/pNJI1tvCVh0ruuh5HZ2HyYR+EplFmZWVp+bLrn5Y74hMPiURS4+xAS0Ex/rh3gDX+V9dxeMXxkEaV/prYAc625gq/TnfyIMuUGpvgwzHfsrKFm+am4m+ORj/67lFUBgZsf4R2G+5iqxzdf0uFYrxOymVlju15FsNotAQAX18I0JtsyKkhj3D20m+cdeT2dRyOSRNWoNBE8fe3vrrVtAu6z9yMV05NWNvqFeXgzukV+ECqyZm+4KoJSapnXVqI3x8cQtDBz/Hhm/uMRpCVlfKNcbD9u2g/dztGTFuNf1v315nmTRIeH57NumHyxBVoumAf1vR+D1lVZGP2TgrF3dMrcO3sKrRPj9HgTNWnoLT6ep2JucUamIn+0lhNSGnh4eG4fPkyrly5gsREZmHx8l+2bdu2xbBhw+Dr64snT55AJBIhJycHy5cvx6tXr7Bq1Sql5+Hl5YWrV6/C19cXqampyM/Ph7W1NZydndG9e3dMnjwZ7dq1U/o80jIzM3HmzBncu3cPkZGRKCgogIODAxo3bowRI0Zg/PjxsLNjd68lhLzlnM8MQlJnbMVNd3fBx6f9K35OsbJHsmUdNCjMrhirKhNSh1YB1lqc96cSCSZI1YMU8vi42ry7ZialQ9rUs8akDg1wPkB2ZuG4doo3snrq0gavnZqgY6WL6g4ZseibGIwnrspfN4jEEhx9EU/1bRXkn5hb5b91dX54fhaN8tMZY/HWjlil5nqGn/VtilFt66v8uC0cLTGklRP2PtNsZ+Rgx8ZYMugj7Ly1kzH+4Zv78GjWFcfbDdbYXGpSJzSzsBR1zE3Ar6bTaZFAhDH7niOvpCzwtvhiINrUs8aI1txLFn3isjFy7zNkFgrgYGkCjwW90f2/0ijlx6gsrYrGY7pkVuAdHPDcBiMJe0nuL30+wP/6vF8rLxhi7OpjwPvrceLqHxgT5cPYZi4S4Pi1TWiZnYTVvafr1d+PHk1VJ/AkYswKuovfHh6pstt1nokFdrmPxNau45Fo46jBGdZMgo0Tfu43Ext6TMYn/p5Y/OIiXDiahgJlpQiGxnyNnZ1HY1XfGchWoHEOMTwazYRMSUnBgQMHMHHiRIwbNw579uxBQkJCRbajRCKBvb09Zs+ejQsXLuD8+fNYtGgR9u7di3v37mHRokUwNTWFRCLBP//8g0uXLtV4LvHx8fjwww8xe/ZsnDp1CqGhocjOzoZQKER2djaCg4Nx9OhRTJo0CUuWLEF+vuqyEW7duoVRo0Zh8+bNePnyJbKzsyEQCJCSkgJvb2+sWbMGY8aMwf37+vl0jBBNMBYJWUtNy5vSEPlZmRnjr0kdGGPSS7JbZifLXEKXnFvCOU40Z5VnCGusbWYcq4j4w4btkVkLyxXweDz8M6sbbn3SB2dmd+Pcp5o4g6wDY0+nEazhha88a3Awbo8iuS/mSdU+OuVXozydpjnJ+M77HGt86cD5yDe1VH5iMpgb87F+TM1r5FUVEAj4bhA6OWvnc7+700hc4Mi+/vv2LjTL1s1yA5mFpRj492M4/ewJ19U38SCCXdewsluhaazg4d5nsrN9frwWjMxCwX/nEmD5teCKbbISHlWRB6nOXMqF/h447PEnKwApBg+fDFtU1pCoFket8swsMWHiCs5aqQDw65MTOOC5FSZSNWh1WS3+51SYe2okHp/8Hoc8tsoMQBYbmWBztwlo/vFe/DBwnl4EICvLN7XEph6T0OLjPfhs6GdIsOZOCjGWiPGl7xWE7v8EC155gC9nB3BieNQehMzPz8fZs2cxd+5cDBkyBBs3bkRISEhF0BEAjI2NMWTIEGzfvh0PHjzA8uXL0aYN88l/3bp18dVXX+HPP/+sGDtx4kSN5hQdHY1p06bBx+ftEykTExO0b98evXv3RqtWrRjLeK5evYoPP/xQJYFIDw8PfPXVV8jOzq4Ya9asGXr27AlXV9eKsbS0NHz22We4d++e0uckxBA14PhFnkxByBqxNmUmxfvXZS/J7pQWzfnak1L1Tojm3QlPZ41RV2wmEyM+hrRywpROLlXu92kf9rK5qhxrOwiFUktO3wt5BPsi1RTjVySD601qHgbveIKG/7uJry4EQChSrNOjIckpFmLFdcXrrW28f5DVjOZ+w/Y43bq/qqbG6fy8HrA2q/nipKqWRpoZa7FECY+HBcO/RKLUKgXb0iIcu7YJxhzLdtVB3tXM8dlFWHc7DA+jyoL/KXklmH/ar8rXJOexH8RdCmR3CS53O4z5fX0rjP39XRkPqqmr9/udMOUPwuGbFxex69YO1riQx8es0Uuwl6NsRW0k5hth8eAFWPTupxBy1NGbG3gH18/+ojfNzfj/3ScXlAix9WEkNt2LQHax/gRRNcFCUILfHxyC97El6J0UyrmPkMfHvo7D4TZ/F5YO+ggZlvr9oLjE2BS73UfBbf5uLBswR+YybafiPOy+uQPPj3+LPgnBnPsQw6aW5dhCoRD379/HpUuXcO/ePZSWli0lkK5p0rp1a0yaNAnjx4+Hg4N8yyiHDBmCJk2aICYmBuHh4QrPTSQS4csvv0RmZtkFhpGRET777DPMmzcP1tZv04JTUlKwefNmXLhwAUBZ3coVK1Zg69atCp+zXFxcHH788UeIRGVRfzc3N6xfv56x3PvZs2dYvnw5EhISIBKJsGTJEly/fh3166t+iQ4h+ozraWLif0/ezI11otyt3pC+v+FsTpMahUcN27PGqciybhofzi50frEW1oNU1NcDmmPXU/lrFuWYW+NU6wGYF3i7YsxcJMDsoDvY2m2COqYo05RDPghOLbuB3f4oCk3qWODbQS00OgdVEIrEeBCZifSCUgxzc4K9pWn1L1KBITH+mBL2lDEm4vHx9eCFak37mdC+vsylu/JqWEd36+xlWNpizqhvcPPfnxnjfZJCsPLZKazq96GWZsbWc+tDVlAxMqMQdX66ju8GtcDyd1uxao2qMsOQ66FDcl4Jfrym/E16fonqM46Wep/DhgeHWOOlfGN8MHYpzrfqq/Jz6rtdnUcjoo4zTl9eD7vSQsa2IXGv8fjkDxgz+WfE2On+fd/T6Ez02/5Y29PQScOifbHz1g40z5H9QOJmY3csHrwAQU6NNTgzzSgyMcOGnlOwp9MILHv+L75+eYmzVmzX1Eg8/ucH7HIfiR/7z0YOLdGuNdRyp96vXz988cUXuHHjBkpKyn6Zlwcg69Spg5kzZ+LcuXO4ePEi5s6dK3cAspyzszPjmIo4d+4cQkPfPo34/fff8eWXXzICkABQv359rF+/HvPmzasY8/DwgJ+fn8LnLLdlyxYUFpb9wnF1dcXhw4dZ9SZ79+6NEydOoF69sgvSgoICbN++vcbnJMRQSXfGBt7WhFw7mmqoKcOPIxOy6g7Z+lE0v7Zwzs9Ar2TmU3e/us304qZGW8rjCq3rKX4BvNudq0GNp0rSl+Q9REZBaUUAstyOJ9FKn18b5v7jh6G7n+L9Yy/QbcsDJGmguLuRWIQ/7+5lje/pNELtzWhUoYuLHVo5yW4MoG23m3TGH90nscaXe51B//hAtZ9f3k8iV1YjAOQWC7HSIwTX36TKdRyumPW510mYfeKlnDN5S54GCNrwzYuLnAHIImNTTJqwnAKQVbjZtAv6f7AeMTbspmntMuPw7MRS9JCROacr7oanUwCSg2NhLg5f2wzPs6tkBiAj7epj0vjlGDH1fwYZgKws29way96Ziw5ztuNii54y9/vU3wNBhz7H1JBH1FK9llBLEDInp6xOW/mNqZGREQYNGoRt27bh4cOH+Omnn5Rq9pKRUVafpVWrVgq/9uLFixV/7t+/P8aPH1/l/kuWLKkICAJlS7NrIiUlBZ6eb+tELVmyRGbwtUGDBlixYkXFz+fOnWMs3yaEcGdClteEtLfQTOaMoZAOIobZO7OWmFbVIfuPexFqmRepmfERHFmQtXgptro9b+AGv7rMQFXbzHgMSFA+uCLvpbiAY+l1VGYhx566LTqzECcqlXiIzipilHxQV0LiZ37X0SGD2bgl09waK2uYpWdnrtm+j3w+Dzc/6S1zu5kOrA5Y0X8mXtZjPuAykohx9NpmvVmCupsjS1qeh3CXApMx9bAPjr2sunyJvtx7f+57BZvv7WeN55uYY+yklbheCxugKSrQqQn6zNgIn/otWdvqF+bg7unlmBDGLquiK1Z6sGtR13bjwr0QcPhzzAq+x7m92MgEP/edgfZz/8bFVr1rVWHNCHsXTJr4E0ZNXoU39q6c+zgXZOH0lQ24dGE1GufK98CH6C+1XZVIJBK0atUKP/zwA+7fv49du3Zh+PDhMDFRvr38okWLcPr0aezbt0+h15WWluLly7dPIceOHVvta0xNTdG//9taQK9fv1bonOU8PT0hFJalIdvY2GDECHYx+8qGDRtWEaQUCoW4detWjc5LiKHJKSqrOeOSz5EJKaMQMqma9H2PmG+EV3WbMsY6ZMTIrN+1z0uzXVdJ1aS7YgPAhZayAxQErCWWCr6Ys0HNp37XlZiRYvQkdlGt+xxNQNbcUk8tu3JOhTn49clx1viqvjNq3MjJ3UXzdb0a28tunDNSyeXeqiAwMsGMMUtRYGzGGG+Sl4ZdN3doLAIX91/dx5qQrucor8/OvqrR63TRQn8P/HVnD2s8z8QCI6f8gruN3bUwK/2UbO2AQdPX4VJzdoaYpbAUZy/9hq9fXNSf6HQtZVtSgP0eW3Hx4lrUL8zh3Oduo45wn70Na/q8jxLj2pso4dmsG9znbMN378xDvgl3GZGxkT4IPPg5FvtcgBE1rjFYaglCfvjhh/j3339x+fJlzJs3D46Oqu3wNGrUKHTq1Im1hLo6CQkJMDN7e/HTooV8tZLq1KlT8eesLO6uVtV5+vRtnaGePXtWG4w1MjJCnz59Kn6+e/dujc5LxGZ9BgAA/fpJREFUiKHZ+rAsI4+zJuR/y7FpebDypJvTmImEaJMZz7lvWDp352yiOgKRWK66YDYlhRgSy3xYFm1bD/51dX9Jqa6Y3LGBwq853nYQ64J6atgTNOB4WEJk4/rmzi5Sb7OD1Y+Pw76E+R322qkJdrmPqvEx/5zQQdlp1cjWiczz7p1WFhBqWMcC3w7Ufn3QUIeGWDz4Y9b49NBHmBN4R23nPflfBmJ8dhE6b7pf44ZqXM8quC43BCIJ4zokKZd7mTfrWDWalebMf32DswlNvok5Rk9ehSeuNV/lVlsVmphj8oQfsa0Lu3M2HxJsubcf2+7soS7COmpQ7Cv4H/6KURe6skxza8wf8RXenbYGYQ7cGYC1jcDIBJt6TEK7uX/LXKJtJSzBpvsH8PTEd3BPlV0OSh8la6DEjD5QSxBy5cqV6NBBOxdgVWnWrBl8fX3h4+ODq1evws3NTa7XJSS8vVixs7Or0blDQt6mrbdvz27uwKVyh/CaZmASYmi848qCjw2kakKKwUOKVR0tzEj/cd1EcTanSZO9JJuo10nfBKy/U30ztpHRL2EqZmasXm7Rs1Yt+1HW35M7KfyaPDNLnGg7kDFmIhbhk1ceSs1F3gcq9NylZjqnRGDBK0/W+NeDF0DEr3lXaWUzIT/r27RGr/uyfzOcmtUN3w1qgfNze+CjXm/rjW0c1w7RK97Fy8XvQLih+pVA6rKv43CcbdWHNf7Xnd1okZWolnNeCS6rzfbnw0hkqTmoXe5ZjPxJC/cj0hGalq/Tn+PZgbex58bfrPFCY1OMnfQzHjekAGRNiflG+GbIAnwz+GOIOTrdf+F3FecvroNVaZEWZke4WAhK8Oedvbhz5ic0yeNu0Hiy9QC0nbcDhzoMpWswDvG2dTFpwgpMGb+sIolEWveUcHgfW4J1Dw/DXCDfwxxdd/Z1kranoBO0XyRGC2xsbNCyZUuYm1ffTTA/Px+PH78tvCtv9mRlpaWlSEx8e2HVpEkTuV7XsGHDij+npKSguJgi54SUX6Q75zMv8NMsbStuGnX4Ol4ncXXklK5xBwCdDexppD6Z+4+fXPuND/dijVFX7OpVvj2ob2OGYW5OCh9je+cxrLGFrzxhItJM0IMoSCLB1rt7wZf6/jvj1hf3GiseiK5MqeX9ANaNagNrs5oFQae5u2D92HaY0IGd0dvY3hKdXe3A52vxhpjHw8JhXyDemrlKylpQjOPXNsks+6EKm+8r9zuMMxNSxr4rrr+R+7iDdz5Fm/V3seFu9Q+atOGD4Ps44LGN9VkpMjbF+Ikr8aCR7iWe6KNtXcdjyvgfWTW5AWBcpDfunVpO2fU6oEdSKF4c/QZf+V7m3J5uboOp45bhw7HfIc2yjmYnp294PJxv1Rft5v2NHe6jOYPwxhIxlj0/C/8jX2FQrP6XtrgaJLtjem2iscrZEokEWVlZKC0thVjMLqBeFRcXFzXNqnr79+9Hfv7bgtmDBw9W+BhpaWmMbIa6ddnd0Lg4OTFvgtLS0tCoUSOFz6+swlIR2qyv+TKZZvYWuDy/h8zt310JxvUQ7qdI8hrSwhHbJsrOMJ182Aev498Grcxu3lf4qdRHPRph8TuylzR2/fMRSjmaAyhizQg3TOS4cQCAhJxijNjHbjihqGMfdEZnGVkaj6Iy8em5AKXP8eTzPrA15y45cORFPDbcq/mNQGha2bI5F6lMyKRKT9EuvE5U+mK+R0M7HJwuu7bRvFP+8I7nrv0ir2mdnLFqmOwGW4N2PkN6YalS5/h+UHPM7taQc1tusQB9/35aUWezstd1m0IMHuOmo6ogZGFxKUw5mh/4JeZi5kk/xScuxfPjnnC1435wdCEgGT95ytFJUiJBScnbv8/K3wOmRny8/Ka/rFdiy4Mo7PeOU2zSUlrXtcLZ2d1kbv/qQiDucNTEk5exSIjRUT6MsSwzKzxoKF/2fWVVfecv6tMEi/rKfpjWYdMDhc8nbcOYNhjdhruOXWRGIcYf8uHcVlNCoRBC3tv3enq+4k/cA+o2xd1GHTE47u3KBeeCLEwNfYKTUlmS8noRn1Plv4WrrTk8F/SEUEbg5ocrgbgYqNwFb78m9tg9taPM7TNO+OJVUp5S55jZ1RXLBreAWMS95ND5F0+YGfPlXtYqj/ffPMCAhCDGWJGxKb4bOF/pY5fXAJfHrbB0zn9jJ0tTFJYWQcwR5ZJ1/FP+iVh9S77ffWbGfJQIlbtmqaksCxvMHrUYt86sZPyO6Zkchl+fnMCKAbNVfs6efyr/vVRQwrwe/qZ/U9wO5/7OLhUqd+2sK6aFPMKR61tYAcgSI2NMmrAcd5pQDUhVutiqNwZN/w2Xz/+PVV+wW2oEnp1YirGTfkaAVN1uon4mIgF+enYaP3qdgbGE+7vzUvOeWDj8c6T+1yiTyCfXzApfDP0Ux9oNwu6bf6NjOrsJWKvsJNw58xP2dxiG7wbOQ7a5YmX5dMXgFo4yf4frw70GABwaYgcTJVMZ1RqELCgowN69e3Hnzh1ERkZCJOPisio8Hg9BQUHV76gGr169wt69eyt+btq0KYYMGaLwccq7hZeztZVvmY6NjQ3j59zcXIXPrQpiiaQi8FMTJcUl8Pf3l7k9KDYToWnKZXk6m4rg7y/7oj8kKQsxeZW25yn+pD0wKh7+drL/DUJT81Cq5PV8QFgUmom4bxgT84VK/TtUnCM4BLw07qLIrxOLVXKOV68DYGPK/e0UGJ6v9Dn4YhHqSV2cJVZqSpOYnoPQNOWCd9Y8QZXv2+CEdKXPERyTCH9/2R1s36TkILNYuTdVYHgM/I25f9nklYpl/lsUmpgjxMEVbSvVgeyaGlmWisoRwD9wyxt9nNlBwoD0UtW8pwICkW7N/SsrILKwZueo9D1gykeV/96BUblK/39IBFV/FwbHKfddOCAhkFXb7lqz7hAaKf6rvqr/18DIWPhbZdfotfIKDI2Eawn3kpXoXIFKzlGungUfbwJfM7LX8gpqtuxte5cxjCAkAHzhe6XGQchioezPKADkFRbD398fqYXc11dBMUkITVNuCZ+DkbDK9+2bhAyEZiiX7RkUlQB/h3zExnF/H6bkK/ddK81SUIwNDw6xxjd2n4xYW+WbuFT19yWtoFSk8PtZ1vEDwwpU+tlQp3uNO2FDz8lY9vwsY/yH52dxo2kX3G8kO/BdEz5KPjQEyrIeK//9BkbG4txr7gB8bn4+QjPUl9WpCZPCnuD41T9gJBVwKeUbY/L45bjRtKuWZmbYfBq0Qu8Zf+Dquf+hXSYzINE4Lx0P/1mGaeN+wK2mXbQ0w9qnfXoMDl/fUnYdzCHX1ALfDF6AQ+3fpaXXSnjm0gbdZ27Gd97nsfLZPzDjeMD6UcBNjIn0xpfvfoKzrfrq3d93UlIi/P254wn6cK8BAGKJLcCRtaoItS3HjoiIwLhx47B7926EhYVBKBRCIpHU6D9tiI+Px6JFiyAQvL2wXrZsGYyNFb+ZKylhPrmv3BynKqamzECR9HEIqa3qFeawLoqT6amjyr2ozyw/UaekAC2yuQND/koGZInyJoSzM6Uvyyj6TcrwAHzWyZa1fLam17SXWvRCrA1zFUOfpBB0S1Zvh2eimB+9/kXDfObDmVgbJ6zvOUVLM6qdVvWdAe/6LRljfEhw/Oom1ONoPqdPuDJY9cm4cC/8c2UjK+NLwDfCtHE/4Hrz7lqaWe0QY1cf/T5Yj9scpSHsSgtx9fz/MP/1DS3MrHbhi0X41vs8fI4tlhmAvNuoIzrN+YtqP6qIwMgE63q/h86ztuGBjGZXDQqzcebyepy/uBaueekanqFy6B1SRi1ByJKSEnz99dcVdRD1rVNtUlIS5syZg7S0t0uE586dW6Ol2AB72YyRkXx1fqT3q0kmKSGGiKszdpKMosak5l5K3RwCZUWiudyNp5q1WiWRYHwEsx5kKd8Y15vJXpJR2y3rbofLE+pjbHNL1rZRTS1qdEwR3wg73Uezxr/wvVKj48lLv66ytKtZdjK+9TnPGv9u4HwUmcj3kJiohsDIBB+OWcrqLO9SkIlj1zbrdUdgkR5/KEdF+uDM5fUwkfr7F/L4+GDMd7jckuoMa0KOuTVGT16FQ+3Zq/BMxCLsu7Edax4dBU/G0mCinGbZybhzegU2PjjImZFXZGyKbwZ/jKHTVqskg54whTg2xODp6/Dp0EXIMWVfpwHAhIjnCDz0OT71u0afAz2jluXY165dQ3h4OHg8HiQSCdzd3TF9+nS0bdsW1tbW4PN1tx9OREQEPvroIyQlvc326d+/P5YuXVrjY0r//8obTJTez8SEu8aeuvF5PLjVtarx65vZW8DdXXbNmHZxwYgpUq4mZNtGjnB3l133rLWfD0pFlWpCmpkq/LSqfbOGcHeXXRPS7W6e0jUhO7RqBncZNSGdcorh9kz5ZVYd2raW2bkzzzYTbkHK14Ts1LGDzJqQ/sJ4uMXXrCZkdpEAqfmlcOEozJ1UKRPS2dEObpC9zFkebV3tqnzftn3jj3yJcsu72jZxhru77JqQbZ4UKV0Tsn3LJnB3l10T0u1BHoQiCSIz2X9f0pmQANAtJQKn2rzDGo/MEaJjx06shgeSxFy4+Snf0bFTh/Yya0JGGSXDLbIGNSErfQ+YGvGr/PdunxMFt3Tl67RU+Z6KCkRSKTM7K6dIINdS1I7p0Wiam8oYu9uoI/LMuC/cqlPVd3775o3h7i67JqTbLeWXPbZ3aw53GTUhbTIK4fZc+ZqQH7zTCW3rcdcUSrNMwza/mp1jX8fhWPX0JMwrNaR5P+Qhvhs4H+mWdjU6JsD9b+Jqaw53d3fE5xQBF9mlPNo1cUZYvnI1Ids2tIe7u+ylsW0CfVHKV64mZLtmrnB3bwE/QTzgla3Usaqz8f4Bxr8NANxr2AFn3Pqp7Bzu7u7ASXanZ2M+D0KpFDkXWzNYm3FfjueVCDnrYMr6HnmDRLjFKFYPOSarSGu1IQEg3N4FXw1ZiAOe2xjjQ2P98fPTU/il3wwtzaxqTlYmaN+8MeAfyLk9JEs/l2IPjfbF2Uu/wVTMnL+Ix8fM0d/inFtfLc2sdhIYmWD+iK8RadcA/3tygrV9udcZNMtOxvyRX6OEo6ENqQGJBAtee2LTvQOwFnA/YH/eoBXmjFyMEEfu62ttc6trhejMIqXvS7VNwuNjj/tIXGneA3/d2Y1J4c9Y+9iWFmHH7V2YEXwfC4d/gTeOmu+foQhXVxeZ8QRt3Wsoiq+CjF+eRA1pih999BEeP34MHo+HCRMm4LffflO6U6AmvHz5EosWLUJW1ttgVe/evbFr1y5YWNQsKwIAgoKCMGnSpIqfL168iDZt2ij8ugsXLqBt27Y1nocifH19KxoI8fl8dOmi33VHhEJmTSt3d/caLa0n2tVx4z0EpuTh41ee2HPzb8a2yeN/xIVWfQAAe6Z1wse95OtCT8p8fNofB57HMsasSwuR/dcHjIL0dxp1xND31nIeY26PRjgwvbM6p6kUffweOPA8Fh+frr6+3E9P/2HdoHz+7qfY2ZmdlScP8R/javQ6Q8Jfyt35Uh77PbZiXuBtxtiK/jPxW6/3anzMqv5N4rKL0GTNLYVeo4sOPo/FR3K832vq3Rg/3Pz3Z8aYiMdH11lb8Lqu7IeMihL/MY7z/ZO7dhT6/vUIAcllQduOzjZ48kV/WMkIQp7xT8T0oy84j68qPf98oJJ6iUqRSHDAcyvmBjIbuYjBw6gpv+CmDta+c7Y1Q8LPw5X6ntA1A+Ne4+q5X2EpZD74EoOH2aMX40TbQdqZGAEAfBh0F/s9/2IFiAHgoWs7TJqwHJkW8vUdINxc89Kx98ZfGBnty7ldwDfC6t7T8VuvaRDx5VvZqA3iP8bBfdM9vFayaZyumRT2BNtv7+ZcEQeUNcxa2+s9rO85BQIj7SRvVWfz+Pb45p3m2p6GUlQRJ1JLSmJUVBSAssy95cuX60UA8vLly5gzZw4jADlw4EDs3r1bqQAkANjZMTMfKnfbror0fnXq1FFqHoTou8CUsl+m3Mux32ZC6lkFCJ2wdxq77lC+qSVCHFwZY91SImQueTjkHYeMAqoNqUry/vYcH8FRD7J5jxqdc7GeXxzpgr+6jGWNfeZ3HSYi5Rq4kJozFgnx5929rPHdnUaqNABZFWszYzz4vB8OTu+Mg9M74/6ifjIDkLKPoZkb3/T/jdDIeQAAPB6+ePdTBDg2ZgzzIcGxa5t0suaXKju164J+8UG4fH41ZwBy/sivKACpA463G4zhU/+HTI6uwAMSgvDk5PdolZmghZkZAIkEM4Pu4vXhL2UGIAMdG6H3jD+wps/7Oh2ALGeI90LnW/VFu7l/Y2/H4ZzbzURC/O/JCbw4uhh9EoI1PDv56EFYTCPUEoRMT08Hj8dDmzZt5O4ErU1//fUXli5ditLSt794x48fjx07dsDcnHv5nyLq1q3LWJKdni7fxVTl/Xg8HhwdHZWeCyGGgHM5tjXVhFQGj8dDnybs5j7SS7LtSgvRIjtZ5nHepMr3kIXIR56HeK556axanS/qtUC8bd0anXNuD91eyqIP/Oq3wCMX5sqFhvkZeC/kkZZmRBb5X0P7DOYyp0xza/yspuW+vaW+T2d3K1u2V8fCBHN6NMKcHo1Qx6LqTI3+zdi/11YNa626SYL7O+bTPk3gYKnZpZ2FJuaYNm4Zqz5k3aJcnLyyEcYcNdmIavRMCsHV879yLj39dNgiHGn/rhZmpTq7p7IfsuqrB406oN/7GxBpV5+1zS0rEc+Pf4vxHEtWiWz1CrJw9tJvOHJ9C+qUsMteicHDpm4T0X3mFvhylCkimpVjbo1Phn+Bwe+tRai9C+c+HTJi8fifH3Dw+hY04Lhn1CaKQZZRSxDSyqqsbpG8XaC1RSAQ4Pvvv8f27dsZ45988gk2bNigsmV6pqamcHZ2rvg5Nja2ir3fiot7e7Hs4uLC6pZNSG3VoID9CyXZslImpCYnY0C4/t5ecDSn6SajOQ0AiA3x0auOG8eRBXmJGgdo3bau7CWzS3wuKJWeEJich0PecVh7KxSHvOOQV1wWmNG3BoCa5lSYg1+enGSNr+w3U23LF3dO6Ygm9mUrabq62mHt6OrL8EhztjXHgt5vswNbOFriw66uVbxCcbr03glxbIiFwz5njfdPDMa6R0e1MKOq5Zfof2C0a0o4PM7+AttSdu3mL4Z8gn2dNJgRqwZOVqZY0NuwyvOEODZEnxkb8czZjbXNrrQQFy6uw5pHR/W6sZOmTAl9jNeHv+SsNQgAEXYNMGj6Onw3aL7e1dzUoa92tbjfqCM6z9qKdb2mQSAjM3VO0F2EHPgM3z8/C1MhrUTRJWoJQjZp0gQSiYQRRNM1paWl+OKLL3Dx4sWKMWNjY6xZswZLlixR+RLyDh06VPz5zZs3cr0mOPhtGrGmakESog+kl2Onm9ug1Fg3a3/oO64gZPdk2UFIQ7/o0TR5fhNJd8UGgEsteqp+MrVMfRvlHqSeb9UHUVIdM7ukRWFI7KsaHW/Xk2h0/OMe5p/yw0qPEMw/5Yfhe55CqOeF5zVh7aOjrAyXV05NsEeNARZ3FztELn8XGf8bAZ/F78DVrmalfXZO7oRnX/XHxXk98HLxQDSwVX6Fji77p+1A7HQfxRpf6nMe7wff18KMZGuz/q62p6CUTqlRuPHvz5zZX0sGfYQdXcZoYVaqw+MB2yaW3X8l/jxMY6UMNCHNsg7enbYWZ/+rhS5tudcZXDv3KxwLczU8M/1QryALJ65sxJnL61G3iPvvaKf7KHSevRWPGspufKrLMpRsbKkPik3M8FP/Weg+czOeN+Bu9GkjKMLvDw/j9eEvMDbiudZvVPShTKEmqCUIOWTIEABASkoKfHyU72CpakKhEF999RXu3btXMWZlZYXdu3dj2rRpajlnz55vbwi9vLwqinnKIhKJ4OX19sayd+/eapkXIfrIOZ8ZhKSl2OrjW685xFKhsK6pETL3p0xI1boTXnX5DpuSQgyJfc0Yi7atB38latzR5VGZpQOZy67qWJhg1XB25oksIr4R/uw2gTW+5MWFGs3nJw/2A0yv2Gx4xWZr+5paZf58GKnyY3ZJicBHr2+yxr8eslAldb3aSHVYb1/fpuLPPB4P9koua+bzeejZ2B7j2jeAjbnqG2np4g3RkkEf4UU99rLHfTf+QucU2b9/NC0xl7tzrj5olx6Lm/+uhEMxu4TKsgFzOL+7NCF6xbs48oHyjYg2jW+H+4v64v0uZZnDDWzNkbtWsUZt3w7U7aW3RSZmeG/cD/it51TO7cNj/OB79GsMquGDL4MkkWBuwC0EHfoc74c85NwlztoJI6b8is+HfoYCU+X6QmjT1Y9rz4qY13Wboe8HG7B40Eeskh7lWmUn4dKFNbh36kf0TQjS8Azf0r3fuNqhliDk9OnTK5qx/P7774xai7pg48aNuHv37dNLBwcHHD16FP3791fbOYcOHQojo7KL3fT0dNy8yb4grszT0xOZmWVLTo2NjTF8OHcBVkJqG55EjAaFUkFIK2btLV1aXqbvCkwt8MahIWOsaxXNacT0V69SR1/EV7l9ZPRLVqfMyy16UuVrFVjUrykmdmgAPg+oa2WKIx90wXeDWmBShwZyH+NAh6HIMrNijI2OeoF26fKVZakss5B7KdHN0DSZrykRilAk0N6SPIlEgrjsImTKkZERkV6g+k6eEgm23tkDvlSxidNu/XC/UUeVnGLd6DYwMSr7vJka8fHbGMNZuWJqxH2b0NLJinNcVUqMTfHeuB9Ynx1LYSnOX1yHuoXZaj2/oWuTEYdbZ37izAD7ue8MbOg5RQuzKtPQzgIfdnVFV9e3TT2bO1oqdIx3Wzlh8Tst0L9ZzWvpLxvSEutGt8HA5rpdj1/C42PFgNmYNH45ckzZf08N8zNw68xKrHl0tNbXVW2RlYgb//6MA57bOIPvAHCo/RB0mrMNN5sqHwjXti6udvjxXfZqJkMl5htha7cJaDNvJ45W0UjrnYQgPPpnGS6cX4MOadEamx9hUksQ0s7ODr/88gsAIDAwEAsXLkR8fNU3Uppy//59HD58uOJnOzs7HDlyBO3bqzfVukGDBnj33beFndeuXYuUlBTOfZOSkrBu3bqKn4cPH4769dkFiAmpjZyKcmEiVedGOghJakZW8JarOU3LrCTuY1BFTo0ax7EU+2KL2vP0W50sTIxwbm4PZK0ehaRVwzG2XX1Ymhrj7Fz5u44XmFpgT6eRrPGaZkNykUB2HVy7FR6wXn4Ny64Ga/zhTEGJEBMPeqPJmltotPomjr6oukTPLzdCVD6HD948QP9EZofMQmNTfD9wnkqOv3KYGyZ2cIb31+/g8Aed4fPNAIxtZzjXaz0a2bHGTI34CF02BOI/xuHyfPWVfYiq0wAfjP0OIh7zVqVJXhrOXPqdOs3XUPv0GNw9vRwNOAK5a3q/hzV93tf8pKTweDw8/KIftk/qiC0T2uPFN+8o9PqPezWufqdKHMzZt8NdXe1gYsTHtQW98H5n7uYXuuRiq97o+eEmVod5oKzL/HKvM3hwahmaVdFY0FCZiAT4wetfvDryFYbG+nPuk2Jph4kTlmP+yG+Qw9F9XF+tHdUWb34YrO1paFSijSPmjF6Cvh9sgDdHSaly4yOfw+/I1zhz6Td0Sw7T2PwoR6BMjdd1SDdz4dKyZUuEhYXBy8sLI0aMQJs2bdC2bVvY2dnBwkL+9OYvvviiptNkEIlEWLt2bcWFOI/Hw6ZNm9CqFXcNAXnNmjULz5+/bQwQEsJ9Ib148WLcv38fJSUlSElJwYwZM/Dbb7+xlmr/+OOPSEsry2ywtLTEkiVLlJofIYZEeik2wF6OTYmQqvWyfgvMCr7HGOuWEo4wB3aDBMqE1BxjkRBjIpklT7LNrPBAyfpFurg8U5uUXQL7V5exWPLiAuPhyYfB97Ci/yykqPkBSul/9SI33A3H9M4u6OLKDiqpy8XAZFwOKnvYWiQQY8nFQHzQ2RXGMrLrknJLVHp+q9IibHhwkDW+occUxErV6qyJLq62+HVEWafqTi626OSingY36uZqZw5vqfiw3X9du/kc3wUTK2UCj2lXH/N6NsLB5+qpAX+jaVcsGzAHG6X+Hd9JCMKfd/fh86GfqeW8hqpTahRu/ruSMwNyY/dJ+Lnvh1qYFVP5W87CxAiL+jWtct/vB7fEhrvMGtVn53THpI7OMl4BjG1bH1eCmUkgn7vbYrVXdsXPpkZ8jGhdr2Iev41ui3/8EuX/n9CSMAdX9JmxEbtv/o0Zbx6wtvdOCoX/ka+wvP9s/N1lNCQ8teQi6ZQRUS/w5919aJ2VIHOfI+0G49uBHyHDUj+/w6vD9T1eGzxzaYPeH/6BuQG3se7REdQvzGHtw4cEU8KeYkrYU9xs7I7fe03F3Uad1BopFNGNEgAlg5Dy3KiU7yMSiRAUFISgIMXX4KsqCOnh4YGYmJiKny0sLHDo0CEcOnRI7mM4OTlh/fr1NTp/8+bNsWbNGvzwww8Qi8WIj4/HrFmz0LhxYzRo0ABJSUmMZj58Ph9r165Fo0aNanQ+QgyRM0dn7CQrqgmpTj712Q9quqVE4J+2A1njVBNScwYkBMJeqqHAtWbdIDRSfd04UnOJNo440eYdzAl6WwbGTCTE535X8XO/mSo5hzwfu8UXA3BvUT+VnE8eM0/4Mn7OKBTgQWQmhrRy4txf1df8Pz7/F675zN8X0bb1sKHHZKWP3dnFFi8Ws7//9NEnfZrgQgAzO2rGf3X02jewwcMo5t9hu0o1LwGAp+YKV5u6T4R7WiRmSjWl+cz/OkLtXbBVS7UL9U2XlAjc+PdnOBazSx5s7ToOP7wzV+9SdL4d2By3QtPwMiEHFiZ8HJvRtcoAJAD8b2Rr3AhNq3hAM6yxOcY1s4DQyhF7veLgYGmCjWPbMR4+NXFQbDm4NhWYWmDm6G9xq0lnbLuzB9YCZt1Sa0Extt3dg+khD7Bg+Jd442iY95jNspOx+d4+TIh4LnOfKNt6+HTY5wax9LoqqlgF0cTeAjFZRSqYjWZJeHwc7DgMZ1r3wzcvLmGpz3nYlnL/fwyL9cewWH+8cmqCXe6jcKzdIORzlDhQ1ot4djC0NlLqTkXRN3VNPgSqzMjw8PBg/FxYWIhHjx4pdAxXV3bmjyLGjx8PU1NTrFq1CtnZ2QCA2NhYxMYy60PZ2dlh9erVGDFCfZ0bCdFHLvlcQUipmpCamkwt4VevGcTgMeqqdUvh7pAtpid8GjOe4+L6Ei3F1klbuk1kBCEB4DO/6/i951QUyiiirmpp+dqvzy0Qi1EsEMHchN0Qhq/C+Efz7CR863OeNf7dwHkoNlGu6zlQVrfOULzb0gkzurjihG9ZptBXA5qhQ4OyQOP8no2x62kMY/8Pumh4aSqPh4XDvkCbzAR0l/q9s+neAcTZ1MU5t76anZOe6Z4cBs9/f2Y9tAKAP7uOx5JBH+lMAFKR+7661mbw/mYAYrKK4GxrBjPj6htNdXa1w7Ov+uPYizhI8jLwnpsVeDwefh3uhjWj2so8f5t61niTyqwj+HGvxujTxB6FAhG+PB8g97zVjsfDoQ5D8dilLU5c/QPdOJoJ9kt8A9+jX2N17/fxR/dJKDU20cJEVc+xMBfLn5/BIr+rMJNRA1PE4+PPruOxqt8Mjf3+1SZlL8vndm+EA+93Bn/pZdVMSAvyTS2xps/72Ok+Gj8+P4NFftdgLqOkR6f0GOy4vQvrHxzGibYDcaDDUHg3aKWy78hTfok4rILmW/quxkHIHj3kr4mkKyIjVd91sSZGjhyJ3r1748yZM7hz5w5iYmKQk5MDS0tLtGjRAgMHDsT06dPh4EDZXYRIcy7gWI5NmZBqVd6cpl3m20ztrqkR4ItFEEt1l7U1N4wLWZ0nkWB8OLMeZCnfGB7Nuip9aN24FTUsr+o1w83G7hhWqR6VY3EeFr7y1FgX2uBU7kL8mjRmX9l7tqmDJX4a6obE3GI0tDPH9M4uKs2o++PeAdYN6J1GHXG2FQWrpBkb8XHsw65YP7YtTPh81LN5G6Tt3qgONoxth413w2HE52HVcDe0qsusl6aJ2FWxiRkmTVgO72NLGLUM+ZDg2LVNeNfKHk9dDachkCr1TnyD62d/gV1pIWvbxu6T9DIDsjIej4emCmYqdna1Q4f6VvD3Z9YHrCoAasSxzdbcGPN6ltVg1Kkg5H/CHFzRd8YGrH10DEt8LrAadJmJhFjz+BjmBt7C0oHzyx5i6ul7wVJQjMUvLmKp93nO93q5F/Va4NNhi/CigXKl2HRZAxvmgzZlVyjN6KpcApYuybC0xdJBH+HPruOx1OcCPn7tCUsh9wNaG0ERPnnlgU9eeSDCrgFOtRmAs636wq9eM6VKGQjE3I09a5saByGPHj2qynloxNWrV9Vy3Jr8XdSpUwcLFizAggUL1DAjQgwX13LsRKmakOWdSoliqrpO8W7QkhGEtC0tQpvMBAQ5MYugW5pWn4lAlNcxPRrNclMZY/cadUCumXq71pKa29RjEiMICQDf+pzHDvfRSmehyNsQ6pN//bF7qjsKS8sCdJamml26X56REZlRiPmn/CrGrwSlqOzed1i0LyZKNWwS8fj4ZvACld1gK1snVBe5ysjuXDqoBZa80xw8nnbrxSbYOGHCxJ9w9/Ryxk2juUiAixfWoN8HGzjrFNdmw6J9ce7iOlgJ2fVW1/Wahp/6zdTboBORj8DIBN8PnIcLLXth743taJvJbhTbMjsZFy6uw83G7lg+YLZeBeisSwvxib8nlry4wJmkUC7d3AbLB8zGgQ5DWQ/PDc3C3k0YP1OVJLZ427r4ZsgCrOn9Hr7yvYwvfK+iDkemeLkWOclY7nUGy73OINmyDq4364bbTdzxxKUNom3rK/Q9WltrdEoz/Iq0hBCD0oAzE5K5HHtka+WbDhCm586tWWO9k96wxjTdgddQSCQSxGcXQSCS7wnphHB2V2xaiq3bbjTpghf1mJ3mXfMzMSfotsbmsPdZLGafeAmbFddhv9IDm++zl+kpqyYlGf59lQTPkDSlz20mLMX227tY4zvdRyGgblOlj19ufk/DrKMmC5/PkxmA1OTtlLezGz4Yw+6Y7VSch2vnfkX9KoIQtc20kEe4fH41ZwDy1z7vUwBSBSpf7nzzTnPtTUQOT1zboeusP7G213sQysjiGhbrD+/j3+LchbXomBal4RkqxqkwB78+Po7ovR9j44ODMgOQIh4f2zuPgdtHu7Gv0wi9DEDyecBwt7qwlePhV0dnG6wa7sYYUzYT0pC/JtIt7fBzv5losmA/vh68AMEODat9TYPCbMwLvI1j1zYjct9CJOyeiwvn1+D3B4cwO/A2+iQEo0lOCsxkZFiqsvSMPjO8R7mEEIMmXRMy28yKUeNr8TvN0bCO4dTr0qSqLlO8nN1YY72SQnGg43DGWEYhd40VIltqXgnG7PfCi/gc2Job45+Z3TCyTT1kFsqu4TeOsx5kT3VOkyiLx8Nvvabh38u/M4a/f34OBzoMg0iJmyNF7jGOvSyr/ScQSfD9lSDM6OKKBrbK18XKLRZgzklfeIakVdQU1LTvvM+hVXYSYyzD3Aar+s5Q2TlGtamHAc0cVXY8Q+RkZYr0AvXUIL3cshe+GrIQf0sFm1vkJOPGvz9j8HtrkWlhmF1u5bXQ3wM7bu1kLb8FgJX9PsTa3tO1MCv9Vl0gZvE7zXHweSxyirnrEOqCEmNTrOw/E/+69cXum3+jZ3IY534TI7wwMcILV5t1x5ZuE3CnsXq7BSuic0oEPn3lgQ+D7nEG2Cu71LwnVgyYhUCnJlXup8vufNoHnV3tUMfCBEKRGL22PYRvAru7fbnZ3RqxHhhpu1T7tE7OOPMqqfodtSjPzBJ/dR2Hv7qMxTvxgfjU/zomhz2Fqbj6z7NzQRbGRz7H+Ej2dXmOqSUKTMwRbVsPOzuPwvF2g9XezE1f6HwQsrS0FKamptqeBiFER0g/7aycBbljckd82rephmdUO7xyaooiY1NYVHqy1zM5lLXfwjP+iFoxVJNT03sb70VUdMvLLRZi9D4vZPxvBLpsvs+5v0teBnpINWh4Wa854m3rqmQ+FhxNQ4hqnG/VG0EOjRilDVrkJGN6yEOcaDtI4/MRS8ref5vGt1f6WL/cCMXFwBQAgI8Wuj82z07Ccq8zrPFlA+Ygy0K5oOhHvRrj0z5NIJEAXVztYESpDFVSd0b8zs6j0SQ3Fd97n2OMd0yPgcfZXzB02v/Zu+/wqKqtDeDvmZLee28kpBNaQiihS5MmTVG4gopiVyxgwd676KcIFhQUroiIeFFUkN5Beu+BhISS3jNzvj9ChkxJMpnMmZkk7+957nNn9mnLkExZZ+29Xm2bS1OIIp7dvhSvbV5kcPMTfe7Ch11HWzamVqzub3mohyP+ndEHC3ZmokKlxttrDTfvswX7/KLQ/fZ38Z9D/+DNjd9qrbNa181nduHmM7uwzzcCXyYPwuK43lZJ8HuVFWLc8S2YcuhvpGfrf+7UtTkoDrMypmBzSIIFopNWe18XeDjWLNeikMtqfs8aSEIaEuNr3dfCJZO74PHz+RBFESO+3oFrtlysIAjYEJqEDaFJ8C4txNgTW3DrsY3ok3nQ4E2dxrhXlsK9shRBJdeQnn0MZ9z9sSc8SYLAWx6LJCFFUUReXh7Ky8uhUqkM7qNWq1FdXY2qqiqUlpbi8uXL2LVrF1atWoXNmzdbIkwislEFZVV4/o+jgCjqrQlZdz3IlKC2Xf0gpWq5Arv92qFX1hHNWNKV83CuLEOJ3Y3K03N5ZdYIr0VafSwXa05cwfsGpsS+s+4UMvPLDR438pT5pmLX7YoLAJFeTojwYiWxVERBhre6jcN3v3+oNf7M9qVYHNfb5MXOLzej6qxuxe2i3Rfw8cbTcFLK8eKgWPSP8THqHKIo4qMNVmz+J4r4eO18vW6XWwNj8XVy82+KyAUBXUI8mn2e1shQgZQlCm+eyfgPQgsvY+KxjVrjXXNO4refX8GQcS+3ic63tRSqasz9+zPcdfBvvW3Vggz3DH4Y3yUOsEJkrYMxhYARXk54aXDN0jW2nIQEat6Lvk0agJ9jumPWjp/wyJ6V9VYWplw+i0/WzsP7677GynapWBbTA39EdkG+g4vB/c0hsPgqhpzZg1tObsXgs/9CqTacP6hrp380Xku/FSvbpdlM5WatATE+WHPiSrPPMzU1DL9ev9lniKH/bEelHFNSQ7FgZ6b+RiPUVu49mhGJjzc2fZq+IAhID/dsfEcbc9XJDfNShmBeyhAEFl/FsNO7MfTMLgw8vw9ulU3/riODiNRLJ/BvBJOQgMRJyP379+Ozzz7D1q1bUVkpzbQMImr9xn+3C3+fuALP8mK9jqd1KyFTQz0sHFnrkhzohp2Z+fVu3xHYXisJKRfV6JpzEutDky0QXeuycHcm7ly8t97tDX2BMTQVe0W0aUnIqWmhiPBywpK9FxHu4Yg5tyRbtflEW7AkNgMvb/5eq7FQ4tVMjDmxFcva9zTpnFOW/GtyPFWqmpTR7gv5+M/iG+cZ/tV2ZM6+Cd7Ojc9GmbZ0v8nXN4fRJ7fh5jO7tMZUggwPDLy/WV0sa/FPomkssTSwKMgwZehjcK0qw/DT2v/2vbKO4PdlL2H4LS+gyL5pnZNbIvfyYvy08i0MOK//d1guV+LW4U9jpYnvEZYU6tG6k8bq90ZA9uRKa4ehpcjeCc9l/Acfdx6BWTuWYfq+3/Vu5tSyU1dj7ImtGHtiK6oFGTaGJGJ9SBK2BMVhe2Cs6X9rooiQoitIzz6G9Oxj6H9+Pzo2YU3Kv8JS8HbaOJuaNq7rnm5hJiUhdf9zBsb4oGOQG/ZmNa0a8pXBsQaTkF/f2lGrSVxD7ukWjm93XUB+mQ1XMkok28UbX3UYhK86DIJSVYUuOafQI+sIumcdRbfs4wgpvtroOVSCDDsC2rMxzXWSJSH/+usvPPbYY1Cr1c2alsEvQ0Rt26ebzuDv62/cQQY6Y19yvlEJqZCz11Zz3J0Wiq93nK93+3YDzWm6ZR9nEtIEn285Z9JxLpWl6J+p/UXznKsv9vlGmnS+eD9XDIjxxWtD40w6npquWq7AO2lj8fnfn2uNv7hlMZZHpzd54fzMvDIcv1x/V8dG47m+YNQ3O7S/oJRXq7H8YDbu6dbwelpXSioafN2QmnNlGT76Z77e+KedbsY+P9tuFtEaGFrfqr5P/e19neHjbIeyKhUOZBdpfvdMVSVXYvyIWfht+St6CbiMi4fx99LnMWTsy82ejm/LIgou4befX9Va4qFWoZ0jRo6ejQ2hlq+8eSQjEp6OSrz8Z8PTZ+3kMlReb8j2dL9oS4RmNq2pEV+usydm9LsH73W9BQ//+xvu3f8HPBvoFqwQ1eiXeQD9Mg8AANQQcNbdD8c8g3HCMxhZLl646uCKa44uqJArIYiAABEulWXwKSuCT1khwopy0f5aFtrnXYRPeVGT4q2UKbAspjs+7Doau2y8m7edXIZbOwajtFKFjzaexoFs4/9bdV9dne0VWPdAD6w6kovbv9+jv389aZP6flMndwkxOgmZGOCKvTN6449jlxHm4YhbF+5GUYXtroEqlSq5EtuC4rAt6MbnZreKEsRfzUT8tQsIKbqCwJI8BJTkwbO8GC5V5bjs6Iavk2/C1uB4uDC1BUCiJGRxcTGef/55qFQqg0nE2jHdF++6+9rb26N9+/bo16+fFCESUQtQUlGNR345qHkeWKyfhKw7HZuap3uEF94YFodnV+l3vQaAbQaSkGnZx6QOq1Xads60Lq5DzuzRqwY2derR+A6BCHJv3ZUntmpB4gA8u20pQotvVEYkXT2PCcc2YUl8n6ada5dpU6xq1VY1rDmh3536hBHJzYNN+EIlhdnb/ouwIu0KkyxnL7zQ4w6zXYPfGZqmvuTM0Zn9tZ6boyqsQmGH0aOewx/LXkTPLO33rtSck1i79DkMHvsycp1b3nTAxvQ7vw+Lf3sPfmX6a7BecPHG8FtewH4/025QNdfjGVFYe7Lhyq+PRydhSKwvNpy+hpQgN3S14dksTW0mMTUtVOvGzpBY86zZLLUsV2880/tOvJY+AVMOrcEDe1ch/tqFRo+TQURUQQ6iCnIw9Kx+csxcTrkHYH6HwfgmaQAuO3lIdh1zmpYeBgCYmhaGqWlh+HzLWTyz6ggqqtW4Nz0cn2wyXPUZ6GYPf1d7vXE3ByVu6xSMhbsv4PejuVrbvJ3M30ej7sfLME8n3Jtec2OSSyPfUGjvjO1Bcdge1PgNfVZC1pAkCfnLL7+goKAAgiBAFEXcdNNNGDx4MHx8fLBixQosX74cCoUCc+fOhVwuR35+Po4ePYrly5cjN7fmj8nFxQWffvop/Pz8pAiRiFqAzWe1k466TWkA7enY1Hyz+sfglT+Po7xarbct09UH2c6eWv8O6dnHa+be1XlTlT25EpM6B+OL8Smwl8vw5toT+GD9abg5KDBvfApuat8yPozbotEnt+mNmTIV+8fJXTAyMcAcIbVJ/q72yClquDNnQyoUdngjfbx+NeTWJVga26tZnbKb6s/jlzH8y+04ZmQ15Zaz1/DqX8ehkAl4fWi8xNE1LOHKeTy+e4Xe+BN972oT03BtQXPWhBwa56f3JdoUJXaOuHnMi/jfzy/rJSJTLp/FlsVP4+ZbXsQx75BmX8smiCKe3vkzXt+0EHJR/716j18URo6ejSxX63RxfyQjEuFeDf/9jUz0x3+6hMDdUYkYX+nWFrSWxzOisPbEFZzLK4Ovsx2eHWjb1Xq6Suwc8X+dhuP/Ot6M1EsncOehtbjt2AZ4lRdbPJZLTh74MTYDP8T3xo6A9jY75bo+D+g0zLy/RwSmdQtDlVqEo1JuMAnp5qDAdxM7NTgj9P4eEVqvn3KZgOEJ/k2KzdI/yZb1LycN/gxqSJKE3LJli+bxxIkT8eKLL2ptX758OVQqFURRRPfu3QEAQ4cOxT333IOZM2di7dq1uHr1Kl544QXMnTtXihCJqAXQTYQZTkKyEtLc6v3MIwjYHtAeo+s0RgkquYaQoit6nZkX7bkIEcB93cMx+4+aasm8sircvmg3sl8cxKnzJrCrrsLw0zu1xvLsnbE+pGlT7d4YFodxKUHmDK3N+XhUEm7/fjeaM5v066SBmLljGSLqrA0Zm3cRtx9Zj4WJ/Rs40vxWGZkIulxcgb6fbdFMo9145hr+O7mLlKHVSxDV+Pzvz/QaFvwdloL/xmaY91ot7Euvtdkb+freI8LTLElIoKYSZcjYl7Hil9fQ//oU0VpRBTnYvORpjBn5rFWmJpuTW0UJvv7jY4wxcEMKAFZGpeL2m5/UahhnaYrrJVL1/d2UvjkM9gpZs/6u4vysn7hs6OU/KdAN+5/oi/P5ZQh0s4eXBBVqFiEI2BnYHjsD2+OxfvegZ9YRjDi1Azef3oXYvIuNH28ClSDDzoBo/BHRBb9HdsFu/3ZNXqbE1inkMiga+E/KeuEmONk1nKa5Od4PT/Vth7lbz8HVXoF3RyTU+3tmK0sH2EYU1sXPEzUkSUIeO1bzhVMmk+GBBx7Q2pacnAyZTAZRFLFjxw5kZNz4oOjq6oqPPvoI48aNw/Hjx7F+/Xrs27cPKSkpUoRJRDZO9z0zyMB0bFZCWtb2wFitJCQAdLt0XC8JCQDf77mIfTqLZ18trYLTM6vwwchEPNAjAjLO5zDaAAMd+Va2S0O13Pi3cnuFTO+uPDXdhI5BCPFwwM7MfLjZK3D3j/uafI4quRKvpU/Al39+qjX+wtYlWBzXu0n/rlLR/bD81tqTWuv4FZZXY+h8/W7tljB93x/IuHhYa6xSpsBDA+4ze6UMX6XqZ+hnE+HlBB9nOxzJvVE19d3ETvrHmvnfqcTOEcNveQE/rXwLw87s1trmVV6MP396AdNvegALkprfMd0aOuecxA//ew/t87IMbp/TaQRm9L3L5hM2Dsqmx/f8wBi89vcJADXTQD8clWjusBpkyq+qq4MCiQGtZz3SarkC60OTsT40GU/2vRv+JXlIzzqGHllH0DH3NGLysxFWeBmyJqSaShV2OOEZhOOeQdjtH4NtgbHY7d/Oqkl0czPld8eYKbuCIODt4Ql4Y1g8ZIJ0yS2+/5kXv/bUkOQTbmFhIQRBQHh4OHx9tb+YOjs7IyQkBJmZmThw4IDesXZ2dnjkkUfw0EMPAQBWrVrFJCQRAQACDDSmyXZhEtKStge21xtLzzpWb1ffg5f014urVot45JeDuFJSiZcG668zSYbdYqDyZXl0d6OODXZ3gFIm4MNRSXBzUJo7tDapR4QXekR44cRl06enfZfQH7N2/ITo/EuasXYFl3DXwb8xL2WIOcI0q60mrmVqbiGFl/HWhm/1xt9NHYPjXq1kym0LEe3jrDfWNdQDk7uEYPIPe3ChoBx3dg3FuA6BevtJ8V2sXGmPMSOfxderP8btRzdobbNTV+Pr1XPQI+soHu5/LyoULaM6TaZWYebOZXhpy2K9yl+gJpEz/aYHsSjBcuvo73m8N05fK8W4b3fVu485/31fHhyLOD8XHLtcgkHtfdEz0vqzYGykuMxqcpw9sSImHSti0jVjDlUViCjMhXdZEbzLC+FVXgzF9d9ZEQLKlHa44uiGK45uyHV0x0VXb4gCZ8Y0h9yIrJazgapKJ6W8pc1sbxX4I68hSRKyrKymUqO+9RyjoqJw/vx5HD9uuGNa37594eLigpKSEhw6dEiKEImoBRB17qbqTscuUjqi2I7rfpnbvPEpmPzDvwa37QqIhhqC1p3utEsNd7+sz1c7zjMJaSSZWoWRJ7UrzkoVdvgzQr+6yJDM2TdJERahedUH1XIFXuk+Ed/9/qHW+EtbfsD38X1srhrEJqZ0iSI+W/M5XKu0q4KPeQbjtfQJklySX9TqNyElCDP/dwSqOhWyd6WFokuIB048M6DBY6X6uVYqlJg8bAbOuAfgue0/6m2/58Cf6JxzEhNGzMRpD/3kqC2JuXYRX62eg15ZRwxuP+UegLEjn7F4A5qUIDfENjIlOsZXP0H9YM8Ik64nCAJu72y9Gwx8CTBOudIeR71DrR0G6fB2tkOvSC9sOnOjmGPBbR2NOtZQApNMx8Y0NSS59eDqWlN6Xt+H1bCwmi5ReXl5KCjQ7+imUCgQGhoKURRx9uxZKUIkohZIdzo2qyClMaqBhiXFdk446BOmNdYl5yQUOh2bjXGxoLzJx7RVPbOO6HVA/T2yC8qU+p0TybKa+3Hyh7jeOOyl/aUtoDQfT+z6pZlnbr53/jmJxf9Ks+6XqW47ugHDT+tXX9076EHJKtu4hlP9QjwcsfiOzkj0d0W0jzM+H5uMLiEeRh3b1I7DTSEKMszuNQn3DHoI1QYqrTrnnsbe7x7FA//+D4KB5i7WZlddhdlbl2D/dw/Xm4BcGZWK1EkfWKUDtiAIcFTKDU4trP361y3MEzF1KmUVMgF3dm2ZCSq+BFBL98MdnTEq0R+dg93x3ogEjElu/AZMhKcjuoa6G9wWa0JDKf4Z8bWkliRJSE9PT4iiqOl0rSs09MYb0MmTJw3u4+JS84tdVKQ/lY+I2gat+xiiiECd6dhZbEojCRd7Bf7Tpf6Kgx2B2tWLTtWVSLms392PzGfMia16Y79EpxvYkyzNQdm8j1JqmRzPZPxHb/zJXcvhb6AZl6VN+mEPTl6p6Zxt7UJI79JCfPzPfL3xuSlDsLGJDZrIfMalBOHAU31xfFZ/3Nc9wujjLPFl7OvkQbhp/Ku45OSht82lqhyfrv0Cfy+djaj8bOmDMYYoYvCZ3fh34aN4ecsPsDdwg69CrsCTfaZi9OjnkO9g3QYt8X71r3kolwlYM707HusdhcldQvDHtHR0DfWwXHBmdHdauN7YTe3118Imaqr7ddbpjvFxNmnd1MaEeDhi+dQ07Hq8N2b0aQeZTKj3BpuznRyRXk74toEO3Y/2jmpyDDYwl8LqeFOzhiRJyMTEmsWCz507h5ycHL3ttZWQAAyuCwkAly7VrI9kE1N/iMjq3CtK4FRdqTXGpjTSUSrqf3vYEhSnN9ZLp0EE1e/01ZKmHSCKGH1Cez3IKpkcv0WlmjEqMlWQm4PBdfGaYmW7NKwP0W604FJVjpe3/NCs85qDKALf77lg7TAAAB+umw/fMu1mV5kuPpiZMUXS6/IrgzQs9XNdH5qMzpM/wobgBIPb+2UewMEFD+HNDd/CraKJr89m1DnnJP76aTZ+//llxF8z/De33yccaXe8jw+63mK1tfRGJfobvW+IhyM+GJmIbyd2Qv8YHwmjktYtyQHwc7lRaR3j44wBEv33ZNjAepdkOc8NiEFyYE0y38NRic/GJls5IqDojWE49ewAZER517vPmOQAjE6qf+aUIb7OLWMdXimxMU0NSd690tNrqjNEUcRbb72ltz0u7sYX2NWrV+ttP3bsGC5cuABBEODubrgEmIhav7q3IHTXgwSAbBd+UJNKQ++Rmwx8ket50fB0MdJ3Pq+s8Z3q6Jx7CuFFl7XG1oZ2QIGVK2CohiAI+GVKKvq180aEp4lrOAoCnupzl97w3Qf+QvzV882MsPkOG2gwZWljjm/BpCPr9cYfGHg/iuy5NnBLZMmKkEsuXhgw4XW8nToWagPvcA6qKszcuQzHv5qOh/b8BseqCovF1v3iEfz8y+vYtWgGBpzfb3CfakGGd1LHoNsd7+OAr+WnX9d1V9qNYpK2UtQT6OaAzQ/1wouD2uPNYfFY/0APOJq5Wi3axxkLbuuIaANraVLL1diyE0HuDtg7ow/OPT8QuS8NwoCYllFha6+Q4+cpqcicPRB5rw7BxE7BjR7TUCV0fCNrzLYWXBOyhiRJyKFDh2qSh3/88Qduv/12rF+/HtXVNVMK/P39ERMTA1EUsXfvXnzxxReaY3Nzc/Hss89qKiATEgzftSSitkV3PUgAyGIS0ipOegQix0n7BlGvi4etP1ezhTCmk2FdhqZiL48xris2WUZCgCvW3N8Dp58baPKX8l0BMVgcm6E1JhfV+OCfr6z+t7V0fzYKy6usNpUqoPga5v71f3rji2Mz8L92TasIDnV3wCMd3dBAsbcefmeQRrC7g0Wvp5LJ8UzvO9H7tjdx3DPI4D5+ZQWY8888nJt3F17e/D18S/MlicWxqgITj6zHhsUzsXnJTIw+tb3efbcFtkfXSR9iVu8pVunoPTY5EK8OicWU1FD8elcaRjSwbjTQeqdctvNxxouDYjGzfzQC3Mz7uzuzfzSOz+qP/3QNtfbLPTXRj5O7NPscgiAg1MMRCnnL6xQe7O4Id0clFt2u3yjxjs7aiclXBuvPpKrl69I2qiQDXbmWOyBREtLJyQn333+/JpG4Z88eTJ8+HXv37tXsM2HCjQ6GH330Efr27YsxY8Zg4MCBOHz4xrS+wYMHSxEiEbUwQSX6SchsrglpHYKgVw0ZUJqPqIJLVgqoZWlqEvIWnSSkGgJWRHczZ0hkRs35AvlcxmRUyLU7UQ4+9y9uOamfiLa0V/86YZ0LiyLm//kpfMq1qzFzHd3xWP9pTT7dqWf6YXK8C+6M1666CPNwrPdvkzlIadwc7wf7pmSDzWRLcAI6Tf4YH3YZBVU9U5p9yoswe9t/ceGLqfjt55cx6fA/cK0obdZ1narKMez0Tny5eg6y5/4H3696v96mMwBw2dENDwyYjl63vW2V5jO1nO3keG5ge3x9a0cMTzB+KjYZj4nHlkvZSOIwzNQZEi2MIAhYO707XO1rPsOEejhg9k3ttfaJ9HbCuA6GG+KY8jcwNS0U39zaEevu79H0g63E14VJSACQrOf6lClTcOHCBSxatEgzVnctyNtuuw0///wzjhw5AkEQcOnSJeTk5EAURc30jNjYWIwcOVKqEInIxtVdEzawkUrIV4bE6m0n0zVW+bM5OAFjdZJjvS4exmmPxrvttXWKJiQh465m6q0NtiUoDjlcD7VVOusegDmdRuCpXcu1xj/850usjuiMUqVlK8fqen/9KXQNsfwSOdMOrMbNZ/S7YU8b9BAuG2g2YqzJ8S44cq0KWy9VINjNAd9N7IT/HcnBu+tONSNaago3ByVWTE3FkPn1VwFKpUxpjyf63o1vEgfgvfVfY9C5vQb3U6pVGHZmN4ad2Y1qQYbd/tHYFJyA7YHtcdIjEKc9AlBorzN9VhThUlWGsMIrSL5yFslXziE96yh6XTwCO7V+oxldpQo7fNhlNN5JHWMTSw2wElh6dT/vPtQzAgt2ZloxGmqKxv4+zD1t35b1jfbB5ZcH4/S1EsT4uBi8sTeuQxB+2q/fCMyYHKSHoxL5ZVUAAHcHBT4ZnQQnOwUKro+1BHw5rSFZEhIAnn/+efTp0wfz5s3DoUOH4Ofnp9mmVCoxb948PPTQQ9i3bx+AGy/AoigiJiYGc+fOhUIhaYhE1EIYqoSs2x37yT7tLBlOm2doXcheF4/gu8QBVoimZWlKJaShCjhOxW7dXu1+K24/uh7BdW68hBVdwbPbl+L5XpOtGJnlReVn4/11X+uNf500ECubWQ3srJTh477eiI5PhJujPQRBQKdgd4NJSHazlM6gWD/seiwDXT/aaJXrH/SNwJCxL2PI2T14a8MCdLhyrt59FaIa3S4dR7dLx7XGi5UOKJcrUaFQQiaK8CovMtjVujHFSgfM7zAY73cZjSzX+htCWFpDa9qlhnngoM6asWEebaPyy5zqJmA6BbvD3UGBgvKm/w6R5bk7MFdRl51Chjg/13q3i/WkG9VGlELufDQDr685AYjAswNj4GRX87PnW3TLI/lfTUZGBjIyMlBcXKy3zdfXFz/88AP++usvrF+/Hrm5ufDw8EBGRgaGDx/OBCRRG1f3/chQJWS2S001mJuDAg5t6E6jLdjrG4kShT2cq28s3t+THbKNIm/Cp6VbdLpiA8DymHRzhkM2ptjOCU/2uQuL//ee1viTO5fj24T+OOHV+OLvUrHkjEG5WoVvf/8QLlXlWuNn3PzweN97zHYdZzuFJsno6qBAUoCrXlKFWjlBwB+RXfBHRGcMPrsHT+5aXm+DGENcqsr1fk+b4qKLF/6v482YmzIU+bbYcKyBt6y708LwzY4bVXsyARifwhkRTVX3864gCPh5SioGzLX+MhzUOHuFHDP7R+PttSetHUqL1lgOsp23E9r5OOPrWztaJB6pMGFaw2JZPhcXw2+qcrkcQ4YMwZAhQywVChG1QLrdsYuUjii2q5mmxLV0zK+xbn7VcgW2B7ZH/8wDmrH4axfgU1qAK06Wn7LZkhhbCRlaeBldc7Q/1P7rG4mz7g03BaCW77+xGZi2f7XW35eduhqfrfkcN417tU18in1py2L0zDqqNaaGgDuHPi7pFFVD7yet/6dtXTbzFi4IWB3ZBasjuyAl9zT+c/gf3Hp0o8GZGM1VqrDD8ujuWJjYD3+HpUAts90bqT7O9TeM6BHhhQ9GJuL99afgqJTjlcGxCHZnJWRT6VaHNXHpaLKAT29JxkPLD+iNCwDeGBqHdt5OuHep8Tcv2qr6vrM19j7wy9Q0s8diDY19v2orWGpIRDar7huSbnfs2ipIsp7NwQlaSRIA6JF1BL9Gs1KvITIjE0icit2GCQIe6X8f/l34KJRqlWZ4wPn9mHZgNeZ3sM6N290XCixynYFn/8Uz25fqjb/fdTQ2hSSafN4eEaa9b7SBnC/p2OcXhSf8ovBU7ynoc+EgRpzaiV4XD6NT7mnIRbVJ5zzuGYQ/wzthdURnrAtNQoldy0jW6Xa41fVY7yg81jvKQtG0TryZbvtu7xxsMAkpEwQIgoDRSQFMQjaDfwPdsVfd0w2JAfVP8WZir+WxeBIyJycHOTk5KCgogJubG1JSUgAAZWVlsLOzg1xuu3cCichKRBGBOpUIddeDrG99ETLdLckBmLet/rWxgPrXhWQSsmE5RRWN7wRgzPEtemNMQrYdh33CMKfTCDyx+xet8XfXf4M/Irog083XOoFJLLD4Khat+gAyndf1vb6RmN1zUrPOPa1beKP7jEsJxKE/tadj946ynfX5yLLUMjn+CUvBP2E131dcK0qReukEYvKz0C7/EiILLsGzvBj2qio4VNc0R7jq6IqrDq646uiGo14hOOAbjoPe4chzrP9LtK16ok87dAh0s3YYrV6kl3HV3f6u9kZ/hiDzmdI1FB6OSoPbam9SeTnawc/FDrnFlZptTM7r8zPQHTo50BWvD43HikM5etsOP923wTUmTfVwr0h8sumM2c/bGE8nw79HbY1FkpDnz5/HggULsG7dOmRn3+iG1KtXL8yfPx8AsGbNGrz22muYMGECpk2bBlfXlvdGTUTmVXtn2L2iBE7VlVrb6nbGJvPrE+WNlCA37MsqrHefbYGxUAkyraoQrgvZODtF43dsg4quotfFI1pjxz2DcMg7zOD+96aH477u4ejy4QazxEi24cWet2P0yW1oV3BJM+ZWWYYv/voUw8a81OpK9GRqFRat+gB+ZdoVl0VKR9w6/GlUKpr34d2YpRAe6RWJDzecRuH1phBR3k4YHu/frOtSw1pSFViRvRPWhqdgbXiKtUMxq3u6hWHbuTwcvFQEuUzA8wNj8EivSHg61V+dRE236PZOmPTDv1pjcpmAsR2MW0fz5Kz+2JGZz/UiLeSVIbEIdHXA1NTQevepfVuRyQR8NCoJ/1n8L6rVIqJ9nPE4k5B6+rbzRrC7Ay4W3FhH97MxHZAQ4IrHe0fhww2nNeMfjUo0KgFpykehaB9nVLw5BD4vrEZRleXehF4c1N5i17JlkiYhRVHEnDlzMG/ePKjVak33a0OysrKQn5+P+fPnY+XKlZgzZw6Sk5OlDI+IWghD6zFdcr4xra4lfYFpKRyUcqyd3h1dPtyAs3llBvcpsnfCPt8IdM698YGhS84pOFZVoEypf6eTjDf2xBa9SrCf2vds8JNWp2B3uNjLUVyhqncfkl6HQDfsz64/ed8UpUoH3DP4Yfzz43Na40PO/osph9ZgQdJAs1zHVry18Tv0y9Sf7jb9pgfM0pDHmHXWPJ3ssOfx3vhww2nYK2SY1T8aMi7QRq3cI70i8fHoJOy+kA8/F3u097XBBjmtwJjkQNzX/Rq+2HpjpsmPk7sg0M3BqOOd7RXoF+0jVXhUx6tDYvHcwMYTRkKdz2W3dQrGsHg/nL1WhsQAV6PXAG9LZDIBv0xNxQPLDiCvrAqP9IrULJXy/shEvD40Dv9eLICfiz3a+ThLFkeQmz0EQcDSm/2w8Ggxvj9aItm16orylu6/qSWRSXnyxx57DHPnzoVKpdJLQAo6X6QuXLigeZydnY27774bp06dkjI8IrJxtdOsA4vz9LaxElJ6nk52ODarP54fGFPvPpt1pmTbqavRLfuY0ddo6OZUWzbu+Ga9sR/b92r0uLljO0gRDjXBp2OSzHq+9aHJ+CxlmN74R//MR7u8LLNey5puP7IOT+5arjc+P3kQFsf3Mcs1BsQYN4U9ytsZn9ySjPdGJMLHmTdUpMa3Aevq184biQGucFTK0SvSmwlICTko5fh8bAeo3xuh+d8tyewmbovuSjM880SXbp7RzUGJDkFuTEA2oEuIB7Y/moHjs/rjoV6RWnkhB6Uc3SO8mpSANOUnPSqxpsmjt6Mcj3WyTEPN0UlsLFlLsiTkp59+itWrV2ueJycnY/bs2ViyZInB/UeMGIEuXbpAFEUIgoDCwkLMmjVLqvCIqAUxVAlZd01Iko5SLsMrQ+Kw+/HeBrcbWheyb+ZBo8+/aM+FxndqY4KKriJDZ1r7Mc9g7PeNaPTYcR2CJIqKjNUzwgsfjkpEmIf5mk7M7H0nzrr5aY25VZZh8f/eg931dehass45JzH/z0/1xvf7hOPRftPMdh1/VyYUierqGeGJv+7rrlccQtSWRXg6Gl2dyqYoLc+88R2gkEtai0eNkOSnf+nSJc1ajwDwxBNPYOnSpbjjjjvQsWNHg8ekpqbi+++/x/PPP68ZO3jwINavXy9FiETUguh2xgaA7DqVkKyikF59FYvrDXSq7ZdpfHfAOxfvNTWkVmvcCf0qyMamYtfi90jrEwQBj2ZE4ezz5psqXWLniHsGPaw33jXnJN7a+K3ZrmMNfiV5+HnFG3DUWff3moMLxox6FuVc2oFIEgNjfPDP/T243ACRjhcGxRq9L/98bNf/jUlG9ouD8OaweLg7KODpqMR7IxJwjxFN6qTAX5UbJElC/vTTT6ioqIAgCBg/fjymTTP+LvakSZNw5513ap6vWrVKihCJqAWozXvpdsYGWAlpK3KdPXHAR/vNvFv2cThVlddzBDVm/LFNemM/xva0QiRkS9aGp+Dt1LF644/t+RUjTm63QkTN51xZht+Wv4qwoita4ypBhluHP43THpym2BaI4J1Ea+gZ6cVqIBtlr5DrjUV4mq+6nrS9PjROM316aJwfbu1o/KwSVhFbX33/BPf3iIC/qz1m9o/GlVeGIPflwZjRp51Zrz01rf6mRVQ/Sd55Nm2q+QIlCAIeeeSRJh9/7733QqGo6Zlz4ID+AuVE1LYEGqyErNOYhl9gJNfQT3hdqHYTMTt1NXrqdHYm4wQXXUHPrKNaY0c9g3HAJ8Ko4/lRuHWb3fMObAmM0xtf8MdHiLl20QoRmU6hqsaPK99G15yTetue7j0Fa8I7Wj4oIiIb0CnYDc522olIcydP6IYn+7bD1VcG49zzA/G/e7rBUamfBK4PKyFbBrlMkGSdzkHtjVtrGuBspbokSUJeuHABgiAgOjoaPj5N7+Dl5eWFsLAwiKKInJwcCSIkopagNvGlOx27SOmIYjsnywfUhjU05X1tqH4zlKZMyaYbDDWkWRrbi59cWqhYX/N2QayWK3D78CeRZ699Xs+KEqz85VV4lhWZ9XqSEUV88df/YejZPXqbvkvohw+7jLJCUGQt3k52emMRno4oeG0o9j9hnqZEpI9r2dkue4UcC27rCC8nJWQCMCY5APd0a7hRSnKga5OuUfzGUPSKbD2zitJCPRrdp6EclJuDEqGNrOXcPdxTb4xrDVuf1NWooR71rw86JNav3m1UP0mSkAUFBQBqkomm8vWtySpXVlY2sicRtTY7z+fjp31ZOH65GAAQWKLdHZudsW3L+tAkqHW+zPQ7zyr2uvJKK5FX2vj72fhjBpKQ7Y2fiq2Qy9DOWztBf2fXEKOPJ/Oa3iPC7Oc87+aHuwY/qjfePi8LS1e+BYWq2uzXNCtRxDsbFmDqoTV6m9aGJuPemx5i0r2NaefjjC4h2t1JvxifAlcHBac6Sog/Wts2tkMQcl4ajGuvDsFPd6bCoZHqvLeGxUMpN/4f1clOgQ0P9kS3MI9mRmp90T7O2PZoRqP7/XdyF4Pjxv7U3h2RoPV3MzopAF4GbqJQ6+GolOGv+7rXu93dUWn0uXjj5wZJkpCurjV3YmqTkaa4evUqAMDd3TIt04nINszZeBrpn2zEhIW78fKfxwFR1OuOne2sfSeSjWmk19DPON/BBf/6RWmNdc05CbeKEomjsn2iKOLRXw7C98XV8H1xNR5bcbDen2VI4WX0yNaein3EKwQHfZq2gPa7IxI0X0QCrq+FQ9bxcM9IPDcwBon+TatQacyKmHS8mTZOb7x/5gF8tmau7b4oiiLe3rAAT+5arrdpv084xox6FpUK4z/QU+vx85RUjE4KQLcwD8wfn4KBMTUzqeprikbGs1dw3ceWSi4T4OZg3Gvi0Hh/bHskA3Y663wOj/dv8LikQDe9MVd7hfFB2oBAI6sRx3Ywfq1HQ3pEeOHv+7rjrrQwzL6pPb6/o3OzzkfmYY7UXoBT/Un+9r4uBsebkvQnbZK8KwUGBkIURZw4ccKkRGR2djZOnToFQRAQFNS8FwsiajnUahEzfj2k9f3Zo6JEr2sqKyEtr7F1N3XXhZSLamRcOCxlSC3C9vP5+GTTGahFQC0CczaewdqTVwzuO+7EFr2xpe2bPhV7dFIgcl8ajG2P9MKZ5wYgzs+8CTAynkwm4NUhcTjwVF9M6Wrexcuf7zUJy2L0787fc+BPvL5poVmvZRaiiLc2founDCQgz7v6YNiYl1Bob97p69RyhHo44ucpqdj6SAbu7hbGCkgzen9EosHxsEamnlLL0ynYHddeHYypaaEI93TELUkB+HJCSoPH3J2mP827KY1ZbMGHowz/jhurKa83/aJ98OWEFLw8OLZJa0eSbZvQvumfP2q/r3YONq5ojm9rN0iShOzZs2bqmEqlwtdff93k4+fMmaO589mtWzezxkZEtqu8WgW1Tq7LUGfsbJ3O2KyTsL61YVwX0pAFOzP1xl7+87jBfQ11xV5qYldsd0cl0sI8DXbYpNZBFGS4c+jj2O2n36zgmR0/4dltP1ohKsNkahU++udLPL3zZ71tlx3dMGzMS8hy9bZ8YGTzIr24/nNz2MlleKBnBFbdo/19yt1BgYmdgq0UFUnJyU6BryZ0xJnnBmLZlFT4NVIlmB7uibdvjoePsx2C3Bwwf3wK2nmb94aQlOsmDo71RScjk0DUOpkjuTcx1vTf+Y9HJxm1H3OQN0iShBw5ciRksppTf/nll1i9erXRx37xxRdYvvzGXfKbb77Z7PERUcuh25QG0O6MTZbR2Iy4jSEJqBa031L6nWcSMruw3Kj9ovKz0T37mNbYYa9QHPJueCF6ajkaqyY2RanSAaNGP4+LBqrDX9u8CC9u+cHqU7Mdqirw39/ewSP/rtTbdtnRDQPGv4bDPvw9J8Oc7RV4rHdU4zuSQS8Nbg8AGBLnh4W3d0K8nwu6hLjjf/d0gx2nabcZ741I0Hp+b7r2Mi9P9YvGpRcHIXP2QNzdSAMcU5x5doDZlyWp9dvd3ZpdOc3kEClkAj4eldD4jgb0iOD30qaS5N0nOjoat9xyC0RRhEqlwuOPP45Zs2Zh+/btuHz5st7+paWlWLduHaZOnYqPPvoIQE1Z9KBBgxAXFydFiETUQug2pQGALGdOx7a0xtIYxXZO2BkQozWWcvksvMoKpQvKxoiiiHnbziHy9b+R+M4/+OfkFaw8nGPUsbcfWa839iO7YrcqCRJ9Acty9caQsS/jqoP++V/cugQf/fMlBFEtybUb41NagDVLn8fYE1v1ttUmIA/6Rlg+MGpR3h+RgBVTU60dRotUtxHCHZ1DcOjpftj5WG/0iODnqLbk0YwovDIkFn3beeOhXpF4f4R+skUmEzTJPHN/9HBQyuHpJM16v/KGWl4bMKi9r9ZzV3sFP2rVkeBveP1D0lf73UgQBLx1c3yj+3OZkRskuwU2e/ZsJCbWrM8giiJWrFiBKVOmoHfv3pp9du7cifT0dKSmpuL+++/Htm3bNNOwQ0ND8corr0gVHhHZIEMvzoYqIbNctKftcd1626C7LqQMIvpcONjocWevlaKsSiVVWBZzILsI03/aj3N5ZTiSW4wxC3Yad6AoGkxCfh/fx8wRkjXd3yMCjkppPnYd8gnH4HEvo8BOf+rqI/+uxM8r3oBLZakk165PWvYx7Fw0Q6/CFwBynNwtnoCc3IVd4lsqQRAwIjHA2mEQ2Yy547SXwLmnkepFuUzA8wPbY+39PTBndBKcG2k8E+Tm0OwYbdX9PSK0ko4P9Ixo08mh5wbeKCCQCcAHI5u3vqY1mKvrtKHvk8ae29zrfrd2kiUhHRwc8NVXXyEjIwOiKGr9r/YPvaKiAvn5+VCpVFrd7xISEvDNN9+wMzYRGZ6O7cyyd0szpkOpoXUhB53d2+hxUW+sQcf31+NobpEpodkElVpE1482aI0VlFcbdWzn3FOIy7uoNbYtsD1OebasheGpYS72Cvx9X3dkREpTgbTHPxpDxr6EPAPNXUad2oEtPzyN+KvnJbl2XTK1CjN2LceGJc8gvEh/9ssxz2D0mPiuRRKQtRUyPs52eJxTeomolZjWLQxzRifh5ng/PNm3HeYYuSadsYYnNNxRWyojmnhdUzq/j0oKwMYHe+KFm9pj6X+64I2hbXvW5SuDY7Hw9k54fmAM1j/QE4Ni/awdUotR97uRn6s9/rlfv1lgXW04161H0sVAPDw8MH/+fLz99tuIjY3VjNdNSNbl5+eHmTNnYsmSJQgO5mLJRG2NodfmAEONaXTWhJRirTXSZsxPeHNQPMoUdlpjg8/uMapU9cSVEry//rSJ0VnftKX7UK3bVclIdxiogvwhrm8zIyJb1D3CC+sf7IkYH2m6QG8PikO/CW8gx0n/Jm7S1fPYtWgGpu9dJdn07JhrF/HPj8/hvfXfwE6tn4TfGJyAnhPfxhmP5le1/XRn10b32fN4byyfkop9T/RBRzYuaDN+vSvN2iHYDH7pbZ0EQcBDvSKx8u5ueGd4AhzM3KXZw1GJnmZe566hX0W5TID6vRFYMrkL3BwartKs68VB7U2KpUeEF14aHIuxHYLadBUkUPO7dEfnELwyJA49JbpJKjVb+Se0k3OdXWNZ5Cc1atQorFixAn/++Sfeeust3H///bjjjjswYcIETJs2Dc8//zyWLVuGf/75B1OnToWdnV3jJyWiNkG3ErLQzhHFBqYckvWVK+2xLkT7bnxEYS5ir12s5whtX22XvkpLClkF5Qa7YBtDplbh1qMbtcaqBRn+G9fLHKGRjXpneAIUTVzHylj7/SKRcdvbOOapfzPXsboSn62Ziw1LZiEl13xJf/fyYryz/hsc+PZhZFw8bHCfH+J6Y9C4V3DN0c0s1xyTHIhNDzXcPT450A2jkgIQ2IqnFrYl88enGLVf76iW+UWayJb8d3LjN3qM8VCvSAA1zZHq82TfdgAAR6Ucq+7pZvSMgdvZ4Z0sRHctUVPYSK7UJhh/q8EMwsLCEBbGDohEZLwgnUrIbANNabgmpPSSA4xLHKyO7IyhZ/dojQ05uxvHvI1bj624ohoujaxVZGt2ZOo3TzJWv8wDer/jf4V3xGUnj2ZGRbZsVFIAdjyagSd+PYR/Tl01+/lPegah++3vYvFv72LwuX/1tvfMOordCx/Hj7G98Ea38SZPjfYrycPD//4PD+79HzwqSgzuUylTYEbfu/FZx2FmK1e4OZ7Txdqiu7uFwdtZiTELdjW4n7nWB7N16+7vgZvmbUWVSoRSLsBOLkNJZctfX5lsQ1MqEhvy3ICaNQcndgrGa38fR1lVw5X4Pa7PGJA9uVJvW7inI87llQEA9s7ogzBPFiWQZZJ741OC8Odx7SVm+PXTdKwZJSKboff9VBT1umNnubDCwRpcHRRaa6oFutkb3O/3iC56Y0PO7DGwp2FdPtyAIiPXUrQVzUmCG2pI8wMb0rQJHYPd8fOUVCRK1DU738EFw8e8gJe73waVoP9xTwYRtx3biP3fPYKNi5/Gfft+R1hhbqPn9SktwMQj6/HzL68jc95deG77j/UmIA97haLnxLfxWaebzZaAtJPLMKNPTdVM20g1UV2jkwIxNjnQ2mHYhN7tvFH+1s0ofXMYKt4eDkcDU3L5N0LWlDl7IPxdaz4vRng54c97G14zrzEnnxmAsreGQfXucHQIalpV/atDYhvfiUiHs13N66oxH2Eam9rf1qf+12Wz5SYLFizAsWPHIAgC3njjDWuHQ0RW4FFRAsfqSq0xNqWxnvdHJmJQrC8uFVbg5gQ/+L34p94+JzyDcNrdH1EFOZqxPhcOwrGqAmVKw4lLreOvlOD7PRcwvUeEOUO3SQ5VFRh7YovWWInCHr9Ep1spIrI0d0clNj/cE/87kos7vjc+WW8slUyOl3vcjr/CO+Lb3z9Cu4JLBvfrmXUUPbOOAgDOuPnhsHcYzrr7odDOCSqZDO4VpQgpuoLEq+fRPi+r0etWCzK83/UWvNRjIioU5lli5/2RCfB1tkdGpBfCvWqqX2T8QE8GtKVfC0EQzL4eIJFUekZ6ob2vM45fNnzjqjFymQC5rGm/73KZgBduao+Z/aJNuibZPrlMQKiHAzLzyzVjpkzVzzCwlMfM/vX/3rg7KJt8Daphs0nITZs2YdOmTUxCErUhulOoDHfG1n+DmJoWKllMpG1wY13zBAGrIzrj/n2/a4YcVFXoc+Eg/ojUr5I05OW/jlslCalWi9ifXQhnOzmifZwN3rHML6vC8gPZ8HBUYnRSQLPuag4/vRNulWVaYyuiu6HEztHkc1LL4+agxMROwZIkIWttCU5A8p2f4OmdP2PWjp/goKqqd9/IwlxEGlERWZ/fIzrjib5346i3eV+XH+/dTm8sOdAV9goZKqqlabRDtonN6Aw3QNBt+EnUHJbM5Uv5q/v7Pd0w0Azr+ZHtEgQBrwyOw10/7oUo1jRWeqKv/meGxiT5u+Cm9j746/gVAECwuwNu7RgEAOgd5a23//MDY5oWZ5Mjar1sNglJRBRooDO27nRsmQBMTeVas7bkD50kJFAzJdvYJKQ1vkiVVlZjxFc7NOvz3d0tDPPGddBKMl4pqUDqRxs16xFN7hKCbyd2MvmahqZifx/f1+TzETWkXGmPV3pMxIKkAZi5YxnuOvgX7FXmW/pgdXgnvNVtHNaHJpvtnI1xslPg7Zvj8diKQxa7Jtk+c33Ra+fthFNXS810NvNaPKmzUftx+h+ZSmkg0d0lxB27LxQ067xS/ka+OzwBT/2m3RwtPZwzqNqCO1ND0bedNw7nFCE93BOeTk2fhSEIAn6ZmobfDufgWmklRibeaGwX7eOMscmBWHYgGwAQ5uGI2zqyMZKpuCYkEdksw5WQNz5MDI/3x89TUvkBw0p6RBj+uf8TloxKmfY9rsFnja/yskYxx2+Hc7UahHy1/TyO5hZr7fPV9kxNAhIAFu6+gAv5ZSbV5HiVFWLYmd1aY5cd3fBXeEcTzkZkvPNufnhw4P2Iumc+XuhxO065B5h8risOrpjTaQQ6Tf4IQ8e9bNEEZK1HMqKw67EMi1+XWj9brisc2kCnYSJzsFPIMCLBX2vs7jTbvuk/uUsIYn2dNc+fHxjT4podkunCvZwwNN7fpARkLUelHONTgnBf9whNArLWD5M64/dp3bDw9k7Y9XgGgtwd6jmLYbwndAP/KonIZui+OBtKQma53CiH//XuNKlDogY81TcatyzYqTdebOeEjSEJGHB+v2YsNu8iIvMv4YxH4wmPyyWVEEXRohUcczad1hv7+UA2nqvTNOSZVUf09llz4gpcTeggefuRDbBTa1eh/RjbC9Vyvi2TZWS7eOO17rfhtfRb0Tn3FAae24c+mQeQePU8woquGDzmkpMHDvmEYVtgHFZHdMK2wFib+J31dWl8vVlqPRq7UWWOt45xHQKRV1aF0zZYCRnm4WhwHUhbTppSy7Tw9k54+c/jOJpbjOEJ/rivezge+PmA0cdbet1eP1d77HysN9adugpfZzt0Y5ECmZFSLmtwWapon4a7tTMHeYP1PzkSEdVDtzM2wO7YtmRUUv0JxdURnbWSkAAw9Mzumi65Rkh+bx3+vLd7k+8ymupSUYXeWLmE68xNOfS33tjChH6SXY+oXoKAPf7R2OMfjXfSxgIAnKrK4VtaAOeqCijUKhTYOyHPwQWF9s6NnIyodXi8dxQclXJ0/nCDtUPRI2vCN1l+6aXmcHNQ4v2RiY3ud3RmPyzdl4XZfxzTjAW5OSDA1bgbROZchsfFXoHhOhWcRJbg42yPO7uG4NtdF6wdis3jdGwishm6n0ECS67q7cPu2C3DHxH661XdfFq/arI+h3OK8d76U+YMqUGmfv415bCU3NPonKtdeXnIOxQ7AtqbFgSRmZUqHXDO3R+HfcKw3y8S59z9bToByURL22Jorbq6zFFFL5cJSAlyw1s3xzf7XE01PL7hBMoUroNNVmSoKZKdXIbHe0fhlqQAyGUCwj0d8cMdnQ3+LXKdUmrN5o9PwYqpqQa38Xf/BiYhichm7M3SXuw6sFi7ErLQzpGdg1uIgz7hOO/qozU24Px+uFYYP7Xtow36U6QtyZiPCqbcvZ96cI3e2ILEgVwspo3zdFRaOwSiFuHFQY3fsLmza4jJ53dSypES5AZBEPB0v2iTzzM2OVDzWCk3/vX9m9s64ok+7TA41hdv3RyPUI8bMwKc7eSY2CnI4HFsjk2W8OwA7Y7AXk5KhHo4wslOgWVTUlH0+lCcfnYAerfT7yZM1Nop5DKMSAzA3d30bxaFevA7bC0mIYnIZjy5UrujXZBOd+wsZ07FbjEEAb+266Y1ZKeuxlCdZizmcvJKCQZ9sRXJ767DhxtONTk5aOpUIBHAd7syjd5fqarC7UfWaY1VCzIsSuhr0vWp9Zh9EythTcX8fdsS7++K6d3D690uAHhtaJzJ5587rgPsFfprLhrDSSmHQibg9aFxWHpnV+x6LAN/3puOrQ/3Mrj/PTpfVNt5O8Hb2Q7vjkjA79PS8XS/aKx/oCdm9InCvenh+Of+HojxdTE6Hv5tkLk9khGJXpE1n8dd7OWYNz4F8jprBDgo5U2u+GL+nFqbF3Q+0ylkAmb0ibJSNLaHSUgishnn8upUyYmiXmOabK4H2aIsj0nXGxt9cpsk15rw3S78feIKDuUU4YlfD2PVkdxmn7Puh+jyKpXBfUQR+PVQjtHnHHFqJ3zKi7TG/hfVFTlcZqDNu6NzsLVDIGoxPhvbAcdn9UeHQDetcXcHBezkMgS7O+Kd4QkGj3VroJnYMwOiMamLaVWUPSM8UfzmMFS+MxzPXK8W6xzigYHtfeFQT1Lzmf4xiPSqaWbgoJDho1FJevtEeDnhvRGJmDuuA7qGepgUG5G5eDgqseHBnrj4wk248vIQjKlT8WsM5sWpLQj1cMS3EzsixN0B4Z6OWDypM7ya0bW7tWESkohshlDno4lHRQkcVFVa21kJ2bJsDE7ENQftio1hZ3bBrrqqniNMc/JKCfZmFWqN3f3j3iado7G78OtP669PWnNc0+7fTz2o35BmQeLAJp2DWidfF3uUvDkMEzsFI87P+Eon0n7voLYj2scZH4xM1Fqj7pGMKMiuV2XVVmvVlRHpBVf7+pOQ9nLTKiAB4OPR+gnExkR6O+H4rP448GRfXHllMG5uRkON6T30q0MzIjkllqQR6OYAOwVTCUT1mdwlFOdn34Qzzw3E2A6Gl9Foq/jKQUQ2o+7sDd0qSAC4xGqxFqVarsBvUdqLM7tVlqF/5v56jjBNfpl+UjO3uLLZ562b1rhSYvh8TZnFHVh8FUPO7tEay3V0x/+iuhp9jif6tEO3MA/jL0otiqNSju/v6IzDT/fDz1O6ItrHdpvBENmC/jE+2P14b3w4KhGr703HS3XWi+wW5oHUOpWD7g4KLP1PVzw/MMbAmWo09cZSrbnjOqBTsHu920M9HLWmrALAoxmRAGqa4CQGuMLJrv7kqDEe7RWltbZs93BPpPL9glqoh3tFaj1/roG/WyJqWZr3bkdEZEZ1P54HFetXnmVxOrbNcVDIUF6trnf7L9Hp+M/hf7TGRp/chj8iu0gdWpNYojv2XQf/hlzU/lktSuiLarnxb8Vc36vtGJ0UiNFJgZA9udLaodg8/l20bYkBrkgMcNUbFwQBa6Z3x0cbT6O4QoXp3cPh52qPOzqH4NlVR5Fn4AaWKeL8XHBvev1rVAKAq4MCD/SIwCebzgCoaUQ1rVvDxzSVn6s9/p3RG/O3n4eLnQIP94ow6/mJzGF4gj+O5BZrjekuqwAAbwyNQ6VKjd2Z+egZ6YXnBjAJSdRamJyE/OWXX8wYhr6cHOPX2CKi1qHuGnyBJXl625mEtD1vD0/Ao78crHf7nxGdUKawg2P1jUrCkSe34/6B90MUGi/Gf2/dKTzZt12D+0iVgKh73vqSlMY2tJGpVZi2f7Xe+DdJTZ+K3d7XBdvP52uNBbrZN/k8RC1FfCPT090NrPE3iWtsEgAXewWeH9heb+zscwPh/vzvevubckPK2LegD0cmYlRiAM7mlWJwrC+C3c3fKTXM0wmvDjG9KQ+R1P7TNRQfbjiNanXNH5u7gwIjDCxD4GyvwOdjO1g6PCKyAJOTkLNmzWpy5ysiooacuXajMY2h6djZXBPS5iQZqD6pq1TpgD/DO2LUqR2asYDSfKRnHcPW4PhGz//S6mN4oEd4s6epNaaxKXj1bTf2C+vQM3sQVnRFa2xTUDwO+TS9EubutDAs3H1Ba2xiJyZcqPV6rHfDHSWd7BSYmhaKb3bUdKpXygXcY+YqM2pdXB0UCPd0xLm8MotdUyYT0D/Gx2LXI7JFiQGu+PWuNPzf5jNwUsrxdP9ouNdZRoCIWj9OxyYim3AkR7tjcFCJfhKSlZC2x5gk3C/R3bWSkABwy8ltRiUhS6tU+N+RXIxPsfyCznWbXdRbCWnkue7br19xM7fjUBNiAjKivDCzfzTmbDwNhUyGF25qj/a+bGRCrY8gAOOSA/Gfro13K/5ibAf0j/bBySslGJHgj84hHtIHSK2OiStzEFETDInzw5A4P2uHQURW0qwkpLHT0IiIGvP9notazwMMJCGz2ZjG5rjYN95J9LeoVKgEmdZ6iGNObMHTvacYNZe6rErV4HZz1OSbvCakEceFFeZi2OndWmNXHFyxLKaHSdcUBAFvDovHS4PaQyYIUMrZY64183e1R05RhbXDsLh/Z/RGuKcTPIyskFHIZbijc+PJSqJa5prPxYlhRERExjM5CblmzRpzxkFEbdyFfO0pUbrTsQvtHFFiZ/71k6h56nYerc9VJzdsCElEv8wDmrGoghykXTqOHYGxjR4/ZcleqNQiJnUJsWjCzZg1IY1x7/7VkOnU1yxIGogKhZ0JMd0Iyl7ReAKYWr5708Px6l/HrR2GxSllMqMTkETmYqjAYnRSAH45eMkK0RAREbU+Jichg4O5/hQRmY/ux37dJGQW14O0SYIgYGCMD/4+caXB/f4bm6GVhASAiUc3GJWEBIC7f9yH73ZdwNr7u+utR2yO9YkbyzHWt72xtSSVqircdeAvvfF5HQYbFxi1ec8PjMHl4grM3XrO2qGY3ZTUUDzYMwKpH23U28bqMpKas4G1hg29n3wwMhFnr5Vib1ahwfMIZqupJCIiav04h4uIbI8o6nXH1l0P8pUhxiWvSHqr703HtxM7NtjF+qf2PVAl067cm3BsE2Tqhqda17X+9FVsOZsHURSRX1ZlcrzG0q6ENK0xzeiT2xFQmq819ldYCk56mrbGJRMzbY9SLsNnYzug6PWh+HZiR/x0Z1drh2Q2X9/aEZ2D3Q1uC3RzsHA01NY83ke/4ZGhLr0RXk7YM6NPveeZmhZq1riIiIhaMyYhicgm1E3yeJYXw0GlnWSq2xn7zq4heLRXw91SyXIEQcDkLqF4Z3hCvftcc3TDn+GdtMYCS/LQ+8KhJl1rxNc70O6NNfCa/Qe6fbwR2YXlJsWsy+Q1IRvZ/ujuX/XGTGlIQ+Rsr8DkLqEYkxwIN4fW01dQEARse6QXFLIbGfbbOgZxKjZJbnRSAGJ9nTXPb2rvU29SvD7+rvaYxk7sRERERjM5Cblw4UKo1erGd5SIKIpYtGiR1a5PROZVN5ljqDP2petNaYrfGIpvbusE11b0Jbyt+G9cht7YxKMbmnSO/LIqnM2rWT90Z2Y+nv/jqGQT4eqet75k48/7s+s9Pi37GHpkH9Uau+jihZVRaWaJidqueeNSrB2CWaWFeWLTQz3xaEYk3hmegG8ndmr8IKJm8nKyw9ZHMrB4UmesvCsNv96VBpmsaa+ye2f04ecRIiKiJjD5XfP111/HTz/9hGeffRbdunUzZ0yN2rlzJ958800cOXIEkyZNsui1iUgadSvRgouv6m2/6OoNAHAysIYTtQwr2nVDmcIOjtWVmrFxxzfjkf73mtSkBQC+2ZEJTzNUTNW3tmNJRTWWHcjGgz8fMLh9/Wn939Vahqog/6/jzaiW83eYmmdCxyAo5AL+OJqLeH8XFJZX4+U/W3bzmrQwT6SFeVo7DGpjPByVuLWj6evc+7vamzEaIiKi1s/kb0I+Pj44duwYpkyZgr59+2LGjBmIiYkxZ2x69u7di08++QRbtmyBKIrw8fGR9HpEZB3BRQaSkC7eVoiEzKnI3gm/RXXF+ONbNGOeFSUYeWoHlsb2Mvm8H6w/bY7w9JRXq5H28UYcyS1u8rHBRVcw/vhmrbFShR2+6DCkWTFxTUiqNSY5EGOSAwEAZVUqHMstxpK9WVaOioiIiIiofiZPx/7111/Ru3dviKKIdevWYdSoUZg+fTr++eefehfwN0VFRQV+++033HbbbZg4caImAZmamorly5eb7TpEZF11XzUMVkK6sDt2a/BdwgC9sTsPrZH8umq1iG92ZuLNnfn481wZRFHE0dxiFFxvcGPobeunfVkmJSAB4KF//weFqL1kyXeJ/ZHn6GrS+Yga4qiU44dJXbBmendrh0JEREREVC+TKyG9vLwwb948LFmyBB988AEKCwuxfv16rF+/Hn5+fhgwYAD69OmD9PR02Ns3bapCQUEBNm/ejHXr1mHNmjUoLS0FULMOpKOjIx5//HFMnjwZAktCiFqNujcvgov114RkJWTrsDqiEy45eWh1jB589l8EFl9FtoT/xs/9cRRvrz0JAPj5ZCme2wIA2ZDLBHw+NtngMccul5h0Laeqckw7sFpv/ONOI006X10CV4WkBrSk347Xh8ZZOwSiJhkY44O/T1zRPH+4V6QVoyEiImqZmr0w1W233YabbroJb7/9Nn777Teo1Wrk5uZi8eLFWLx4MeRyOcLDw9G+fXvExMTA29sbrq6ucHZ2hlwuR3l5OfLz85GVlYVz587h0KFDOH/+vCYhUfv/giBg5MiRePzxxxEYGNjcsInIxmg1pjFQCZnFSshWoVquwPfxffHE7l80Y3JRjUmH1+HdtLGSXXf+tnMGx1VqEY/9cgj2CpMnBui589BaeJVrV1CuiuyCY94hDR7XOdgdp6+VYkC0D6J9nTVJUyJj2XpHaQeFDOXVanQIdMOdXUOtHQ5Rk7w0OBYHLxXhUlEFEvxd8AiTkERERE1mltXxvb298c4772DatGn4+OOPsXbtWk3n7Orqapw+fRqnT5/GH3/8YdT56lZEyeVyDBo0CPfddx/i4njXnKgtCNKphMx1dEeV3La/XJPxFiQN0EpCAsCUQ2vwbuoYyRY9vFZaVe+20ioVSqtUZrmOQlWNJ3f+rDf+cefGqyB3Pd5b63n/aB8MnrdNa+z+HuHNC5BatZQgN2uHUC9/V3vsfDQDl0sqEe/nAgel3NohETVJjwgvHJ3ZD1dLqhDoZs/fYSIiIhOYr/QDQExMDD799FOsXr0aU6dOhZ+fH4CapGLt/2rV97x2LDg4GPfffz9Wr16NDz/8kAlIolauoe7YXA+ydTnkE46d/tFaY/HXLqD3hUNWish8Jh7dgMjCXK2xg95h+Cu8Y5PP1bedN25qf6MB28O9IhHs7tjcEKkVEwQBAc3s1vvpLYaXJ2guURQR4uGITsHuTN5Qi+XmoESktxN/h4mIiExklkpIXaGhoZg5cyZmzpyJ/fv3Y+vWrdi3bx9OnTqFrKwsVFXdqEgRRRFKpRJhYWFo164dOnfujPT0dCYdidqY2hsQClU1/EoLtLZddOV6kC3F2und0X/u1kb3+yZpIFJztKcbT9/3OzaEJkkVmuRkahWe2b5Ub/ytbuNMqvBUymX4/Z507MjMh6NShpQgd3OESa1cSpAbLh27bPLx/aKleb01Y89CIiIiImqhJElC1tWhQwd06NBB81wURRQXF6O0tBSCIMDZ2RnOzs5Sh0FELURgSR5k0P62mu3MSsiWIiPKuATG9/F98faGb+FaVaYZG3tiC/xL8pDj7ClVeJIac2Ir4vIuao2d9AjAf2MzTD6nTCYgPbxl/jzIOqzZnGbVPd0w7MvtBrcxB0lEREREZp2ObQxBEODq6gp/f3/4+fkxAUlEAG58QdWdig2wM3ZLIpcJePvm+Eb3K7J3wvcJfbTGlGoV7j7wl9liGf/tLnR4bx2eWXXEbOeslyjiWQNVkG+njoNK1vi0Pf9mTqElMhdTKxYf7x3VYMGvyFJIIiIiojbP4klIIiJDar+fMgnZdnyeMlRv7N79f0CuNk+TmGUHsnHwUpFFukzffHoXOl4+ozWW6eKD7xL7GXW8XKKGPNT2CFb4XeoR4YkZfaIarMJkCpKIiIiImIQkIpsgXv+KajAJeX1NyB/u6GzRmMg0fdv5NL4TgAO+kdgUpF01GVZ0BWNONL6mpE0RRbywdbHe8LupY4zu6u7tzO7vZB7jU4KadXxTkoU9IjxR+uYwbHigJ4LdHa2SACUiIiKiloNJSCKyKcFFhioha9aEvLVj875ck2V0CXFHzwjj1jH8vOMwvbEndi1vUV0sxh3frNdkJ8fJHV8m32T0OaTqSExtz4gEfwS5OZh07PgOgU3af3r3CDgo5ZDJapKPTEESERERUUOYhCQim1Cbcwoqvqa37aKLN/5vTDKrbFoImUzA79PS8c2tHRvdd2n7nsh00a6cTLt0AhkXD0kUnXkpVNV4fdNCvfF3U8egXGn8Oo89Ith8iczD29kOmx7qiRcHtW/ScV5OSjw7MKbBtRtTgtw0j2N8nDFBp+oyNdSj3mMf6BHRpHiIiIiIqPVhEpKIbMKqo7kAgKAS7SRkuVyJaw6uGJ/StAodsi4XewXuTA1tdL9quQIfdxmhN/7Ezl8kiMr87j74F2Lys7XGzrv64P863tyk88hlTLCT+UR4OeHFQbHoHOxe7z6ejjeWAHhuYAzOPz8QKUH17w8Amx/qiU9vScbHo5Ow67HesFNof4x0d1TiiT7t9I5zUspxe+fgJv5XEBEREVFro7B2AEREAFBRrQagvybkRRdvQBDg48zuwa3V/OTBmL31v3CvLNWMjTy9A4lXzuGQT7gVI2uYU1U5Xti6RG/8pR63o0JhZ4WIiLQ9f1MMxn+3Gyq1fnXjvzN6I6+sCoGuDvCr0529vjrI14bGwclOgQd6RjR4zXdHJGBYvB/2Zxfi1NVSqNUipqSGIs7PtRn/JURERETUGrASkohshyjqrQmZ5cJpqq1dkb0T5ncYrDduqNmLLXls968ILMnTGjvoHYbvEurviO2klEsdFpHG6KRAnHqmv8FtLvYKpAS5ayUgG3Jn1xCjr9sv2gePZkRhzugkfDomGV0bmKZNRERERG0Hk5BEZDPcK0rgXF2hNXbRxdtK0ZAlfdx5BCrk2sX5449vQfLlM1aKqGGBxVcxc8cyvfHnek2GWlZ/ojHI3bSGIUSmCvN0atL+9S0JGezuaIZoiIiIiKgtYxKSiKyuthFCsIGmNKyEbBsuuvrgy+RBeuOGpjvbgrc3LIBrVZnW2KageKxsl9bgcQ01/SCyJK5CSkRERESWxiQkEVndvxcLAOivBwmwErIteTNtPMrlSq2xsSe2onPOSStFZFjGhYOYdGS93vjTfaYCjXRwt5Prv+2mcaoq2RCx3lUhiYiIiIiaR5Ik5O+//44FCxbgypUrUpyeiFqZBbsuAGASsq3LcvU2uDbk++u+qn+OqIUpVVX4ZM0XeuMLEvtjW1Bco8eHeDhgUHtfrbG7u4WZLT4iYwmNJMyJiIiIiMxNkiTksmXL8Pbbb6Nv376YN2+eFJcgolbk3LWarshMQtJbaWNRqtNZus+FQ7jl5FYrRaRt5o5l6HDlnNZYgZ0Tnsm406jjJ3YKweJJnfFQr0jc1N4Hn9yShHuYhCSJJfrrd6Z2VBr+CGgj+X4iIiIiaoUkSUIeP34coihCpVKhc+fOUlyCiFqR2i+9QQbWhLzoyjUhW7K3b45v0v7ZLt54v+steuPvrF8Au+oqc4VlkoQr5/H8th/1xl/qMRE5zp5GnSMpwBWeTnaYMzoJq+/tjgd7RrIijST30ehErZUC/tMlBPYKdmonIiIiIsuSJAmZn5+veZyQkCDFJYioFaldgyzIQCVkljMrIVuyaenhuCUpoEnHvJM6BlnO2snndgWX8PRO/W7UliJXq/DV6jmwU1drje/yj8annYYbfx4ZE45keQNifLF6Wjru6x6ON4fFY/6ElHr3ZSEkEREREUlFkiSkn5+f5nHdhCQRkSG1lZC63bEvO7qhUqE0cAS1FB6OSiybktqkY0rsHPFcr8l6489t/xFxVzPNFVqTvLh1MbpdOq41ViWT4+7BD0MlM76iLClAf1oskSUMbO+Lz8d2wMz+0VAaaJBERERERCQ1ST6FjhgxQvN4wYIFUlyCiFqRHZn5APTXhMxy4VTstuq7xH7YHtBea8xeVY35f34CQVRbNJY+mQfw7LaleuNvpo3HAd/IJp2LyR+ydSIXhSQiIiIiiUjybej+++9Hz549IYoiFi5ciDfeeAPXrumv9UZEBABXSiqhUFXDvyRfa5xNadouUZDh3kEPokqnyrBn1lE8sesXi8XhV5KHhas+gExnkuq/vpF4o9t4o88zISUIea8OMXd4RERERERELYZCipOeP38eTz31FJydnfHnn39i4cKFWLRoEdq1a4e4uDh4eXnBxcXF6MX4H3roISnCJCIbElCSp5foyWISstWwk8tQqWpaBeMB30i8kzoWz23Xbgbz+qaF2BicgO1BceYMUY9ddRWW/fomQnQqdEsU9pg4/CmjlwqY0ScK741IlCJEIiIiIiKiFkOSJOTw4cM1CUZBECCKIkRRxIkTJ3Dy5Mkmn49JSKLWT3cqNgBc5HTsVkMuA6Bq+nGvpU/AmBNbEH/tgmZMqVZh8f/eQ5dJHyLPUaI1FkURn635HD2zjuptenjAfTjuFWL0qQSwGQ21HEkBbnBUylBWdeOmwVtN7HJPRERERGSIZItT1SYeddcWqjtuzP+IqG3QbUoDcDp2azI6KdCk4yoUdrhj2BOokGvfM4sozMWyX9+EXXWVOcLT88qW73HXwb/1xr9N6IcFiQMkuSaRLbBTyPDK4DjUTlaJ83PBf7oYn3QnIiIiIqqPJJWQqalN64RKRG3XD3tqKtyCmIRs1aZ1C8Pify+adOxe/3aY0fce/N+auVrjfS8cxNerP8bkYTMgCua7p/bEzuV4ftuPeuPbA9pj+k0PAkYuJVLL25kd3qlleaJvOwyK9UVOUQW6h3vC2V6Sj4tERERE1MZI8qly4cKFUpyWiFoZURTx1G+HAdQ3HZtJyNaib7QP5o9PwbSl+0w6/vOUoeibuR/jj2/RGr/96AYU2znigQHTodZpYtNkoojZ2/6Ll7f8oLcpy9kLY0Y9gwqFXZNPe3/3iObFRWQFyYFuSDatgJmIiIiIyCDJpmMTETWmuEKF7MIKAEAQk5Ct3t3dwkw/WBAwdchj2Okfrbfp3v2rsXDVB1CqTJ+arVRVYe7fnxlMQF5zcMHQsS8i28TfR3dHVkISERERERExCUlEViPW6YatWwlZIVfgqlRNR6hFKlU6YMQts3HGzU9v28RjG7H+v88gouBSk8/bLi8LmxbPxL37V+ttK1Y6YNiYF3HAN9KkmB/rHWXScURERERERK2NxZOQOTk52L9/PzZu3Ih9+25MyysrK4NKZULrVCJqser2ntJtTJPl7KVZe89RyfslVCPX2RNDxr5ssHN6evZx7Fn4OB7es9KoqkinqnLM3roE/y58DKk5J/W2F9g54eYxL2BHYKxJsTooZJjZT79yk4iIiIiIqC2yyDf78+fP45VXXkH//v3Rt29f3Hrrrbj33nvx6aefavZZs2YNevbsiQ8++ABFRUWWCIuIbIUo6lVC1p2KfU+3cEtHRBJ5ok+7Zp/jhFcwMm57Cyc9AvS2eVSU4ON/5uPINw/gme0/IjovSyvbrVBVo3POSbyz/huc+nIaXt7yA1yqyvXOc9HFC71vexMbQ5JMirFbmAd2PtYb/q72Jh1PRERERETU2kja7lAURcyZMwfz5s2DWq2GWLfsSUdWVhby8/Mxf/58rFy5EnPmzEFycrKU4RGRleUW16wH6VZZqpcIqpuEfHd4gkXjIunc3yMc768/1ezznHUPQO9b38IvK15H2qUTetujCnLw+qZFeH3TIhQpHZHl4gWFWoXg4qtwaKRKcntAe0wYMROZbr4mxzd/fAoSA7icABERERERUS1JKyEfe+wxzJ07FyqVSi8BKVyfZlnrwoULmsfZ2dm4++67cepU87+oEpHtWn6wZv0+Q52xs1xrkpBKuQA7BadjtxZR3s5mO9clFy9k3PYWPugyqsH9XKvKEJt3Ee0KLjWYgFRDwFtpY5Fx21vNSkASERERERGRPsm+2X/66adYvfrGIv/JycmYPXs2lixZYnD/ESNGoEuXLhBFEYIgoLCwELNmzZIqPCKyAZ9vOQsACNJZDxKAwTX/iHRVyZV4su/duGncK9jnG2HyeTYGJ6D77e/i2Yw7US2XdJIAERERERFRmyTJN61Lly5h/vz5mudPPPEEpk2b1uAxqamp+P7777Fo0SK8/vrrAICDBw9i/fr16NOnjxRhEpGVVatrKqQNVULWTscWIOhtI9K1Jrwjukz6EHccWY+H/v3NYKMZXSpBhj/DO+LzjsPwW1SqphGSOSjk/L0lIiIiIiKqS5Ik5E8//YSKigoIgoDx48c3moCsa9KkSbhw4QIWLFgAAFi1ahWTkEStVO0qDaFFV/S2XXDxsXA01NKpZXIsTOyPhYn9EZ2XhdEntyHpyjkkXM2EW2UpqmRyFNo5Yb9vJHb5R+P3yC6aaf/mFuPjIsl5iYiIiIiIWipJkpCbNm0CULPu4yOPPNLk4++9914sWrQIKpUKBw4cMHd4RGRjQor0KyEvXE8OmbE4jdqQk55BeC91jNWuL5fxF5eIiIiIiKguSdaEvHDhAgRBQHR0NHx8ml7N5OXlhbCwMIiiiJycHAkiJCJbkFVY0xE7RKcSUg0BWVwTstX6eHSStUOQlJ2cjZSIiIiIiIh0SVIJWVBQAKAmmWgqX19fnD59GpWVleYKi4hsVEixdhIyx9kDVXIlAHBFyFbo4V6RSApwxdHcYvSO8kbye+usHZJZiRCtHQIREREREZHNkSQJ6erqiry8PE0y0hRXr9ZMz3R3dzdXWERko3TXhMx0vVFBzenYrVO/aB/0i26d636KzEESERERERHpkWTOWGBgIERRxIkTJ0xKRGZnZ+PUqVMQBAFBQUESREhEtsKpqhxe5cVaYxdcpGkWQmQJzEESERERERHpkyQJ2bNnTwCASqXC119/3eTj58yZA/F6KUm3bt3MGhsR2ZZgg01pfDWPBU7IphZGZCkkERERERGRHkmSkCNHjoRMVnPqL7/8EqtXrzb62C+++ALLly/XPL/55pvNHh8R2Q7dqdjAjc7YRC0RU5BERERERET6JElCRkdH45ZbboEoilCpVHj88ccxa9YsbN++HZcvX9bbv7S0FOvWrcPUqVPx0UcfAQAEQcCgQYMQFxcnRYhEZCN0m9IA2tOxuSYktTQshCQiIiIiItInSWMaAJg9ezaOHj2KQ4cOQRRFrFixAitWrNDaZ+fOnUhPT0dRURHUajWAG9PYQkND8corr0gVHhHZCEOVkJl1pmNT6+dqr0BRRbW1wzDJR6MS8diKQ1pjN8f7WSkaIiIiIiIi2yVJJSQAODg44KuvvkJGRgZEUdT6n3C9tKmiogL5+flQqVRaa2glJCTgm2++YWdsojYgxOCakKyEbEta8r/xtPRwONvJtcbu6x5hnWCIiIiIiIhsmGRJSADw8PDA/Pnz8fbbbyM2NlYzXjchWZefnx9mzpyJJUuWIDg4WMrQiMhGhOhUQqohIMvFS/OcjWlav5b8L+yolGPlXWnoGuKOCE9HvD40jpWQREREREREBkg2HbuuUaNGYdSoUTh//jz27NmDc+fOobCwEFVVVXB3d4e/vz86deqE+Ph4TUMbImobdNeEzHH2QJVcaaVoiJqub7QPdjzW29phEBERERER2TSLJCFrhYWFISwszJKXJCIbp7smZN2mNEDLnqpLxhH4j0xERERERNTqSVJ2+NFHH2H//v1SnJqIWhGnqnJ4lRdrjWW6+lgpGiIiIiIiIiKSiiSVkHPnzsUXX3wBHx8f9OvXD/3790ePHj1gZ2cnxeWIqAU6mluEYANNaS7qJCFZI9f68d+YiIiIiIio9ZN0Ovbly5exdOlSLF26FA4ODujRowf69++Pfv36wcvLq/ETEFGrdCy3GAnvrEN/nanYACsh2yJDs7HfHZ6A/jE+OJpbjE7Bbkh4Z53F4yIiIiIiIiLzkSQJ2a9fP2zbtg1lZWWaDthlZWVYu3Yt1q5dC5lMhuTkZPTv3x8DBgxAu3btpAiDiGzUgz8fAKDflAYwtCYk6+TaIhFAp2B3dAp2t3YoREREREREZAaSJCE///xzVFVVYefOnVi/fj02bNiAM2fOaBKSKpUK+/btw759+/Dhhx8iNDQU/fv3R//+/dG1a1d2yCZq5daerEk+6jalAYBMV1+t50xBtn7uDkpcK63SGtP9d4/ydsLpq6WWC6oOO7kMlSq1Va5NRERERETUWkiW7VMqlejRoweeeeYZ/P777/j7778xe/Zs9O7dGw4ODhBFUfO/zMxMfPvtt7jzzjvRvXt3PPXUU/j9999RUlIiVXhEZANCDKwJecHV28Ce1Jo93U+/Gn5InJ/W87ljO1gqHD1L/9PFatcmIiIiIiJqLSxWchgSEoI77rgD8+bNw/bt2zFv3jxMmjQJYWFhWgnJgoIC/Pbbb5gxYwbS09Nx9913WypEIrKAimqV5nGITiWkGgKyXLTXi+Vs7NZvbIdAtPd11jwfleiPBH8XrX36R/vgzWHxlg4NQM3UcCIiIiIiImoeSRvT1Mfe3h69e/dG7969AQBnz57Fhg0bsH79euzcuROVlZUAgKqqKmzZssUaIRKRRP48dlnzWHdNyBxnD1TJlZYOiazMx9keOx7NwF/HL8PDUYneUd56a4HKZAJm9o/GoUuFWLTnopUiJSIiIiIiIlNZJQlZV3l5ObKysnD16lWUlJRArVZrvnzWriFJRK3HvT/t1zzWXRNStykNwDUh2wo3ByXGdghqdD9rNCoKcXew+DWJiIiIiIhaG4snISsrK7F7927s2LED27dvx4EDB1BdXa21T93ko6Ojo6VDJCIJ1aaQnKrK4VVerLUt09VHb/9541MsEBW1FAn+rs0+R6iLHJnFqsZ3BDAgxgedQzyafU0iIiIiIqK2TvIkZGVlJf79919N0nH//v2oqrrRBVW32tHOzg4pKSlIT09Heno6UlKYgCBqTWoL2YINNKW5qJOE7BXphaE6DUqobbutYxCe/+MoVOqa9w5BAPbN6INYPxf8eewyRny9o9FzfNLPG6NX5hp1vWndwgEASyZ1wW2LdpseOBERERERURsnSRJy586d2L59uybpWLvGI6CfdJTL5UhMTER6ejq6d++Ozp07w97eXoqwiMgGCNdrIXWnYgPalZB/39cdvaO8oJBbrH8WtQDhXk747+QueO2v46hWi3i6XzSSAt0AADcn+Dd6/NhoJwS7GPfW9+tdaRh+/ZwhHpySTURERERE1BySJCEnT55c77qOgiCgffv2mkrH1NRUuLi4GDoNEbVCsuuVkLpNaQDtNSH7x+hPzSYCgDHJgRiTHGjSsbNSPQAA/UMdsDazvN79Hs2I1CQgAYBLFBMRERERETWPpNOxaxOQjo6OGDt2LPr3748OHTow6UjUhtVOxzZUCXnBwJqQROaikN1oajM92RXrLpRDXU9y8eFekVrPRTALSURERERE1BySJiFrqyHLy8vxww8/YMeOHVoVkK6uzW8wQEQtS+107BADa0LWTseekhpq0Zio7Yl0V2LNfd0wd1smXOwV2JWZj31ZhQCAu9LCEOXtbOUIiYiIiIiIWhdJkpCvvPIKtmzZgu3btyMvLw9ATVXkiRMncOLECSxcuBAymQxxcXHo1q0b0tPT0bVrVzg5OUkRDhHZkNpKyBCdSkg1BGS5eAEAZvWPtnRY1Ab1jPBCn+iaxkdqtYjNZ6/BXiFDWpin3r6cjk1ERERERNQ8kiQhJ0yYgAkTJgAAjhw5gq1bt2LLli3YvXs3ysrKAAAqlQqHDx/G4cOH8c0330AulyMpKUmTlOzSpQvs7OykCI+IrKh2QqzumpA5zh6okivx5rB4tPflkg1kWTKZgIwo73q3MwlJRERERETUPJJOxwaA+Ph4xMfH46677kJVVRX27t2LLVu2YOvWrTh48CCqq6sBANXV1di3bx/27duHefPmQalUIiUlBenp6XjwwQelDpOILKBKpcbZvJobEbprQtY2pZnUJdjicRE1Jshdvzt21xB3K0RCRERERETUMkmehKxLqVQiNTUVqampePTRR1FcXIydO3dix44d2LVrFw4fPgyVSgUAqKysxM6dO7Fr1y4mIYlaiYW7LwAAnKrK4VVerLWtdj3IYHdHi8dF1JhoH2d0C/PA9vP5mrGPRydZLyAiIiIiIqIWxqJJSF0uLi7o168f+vXrh4qKCqxfvx7/93//h2PHjkEQBE13bSJqHT7eeBoAEGygKc1FdsYmM5AJqLfjdXP9elcaZq06gpzCCtzbPRzdI7ykuRAREREREVErZNUk5OHDh7F582Zs2bIFe/bsQWVlJYAbXbWJqHU5kF0EQH8qNnBjOjZRc9zdLQzzt52X5Ny+Lvb4akJHSc5NRERERETU2lk0CXnx4kVs2bIFW7ZswbZt25Cfn6/Zplv1GB8fj759+6Jfv36WDJGILEC3KQ1wYzo2UXPMGZ0EPxd7vP73CWuHQkRERERERHVImoQsKirCtm3bsHnzZmzduhXnz9+oTtFNOjo4OCA9PR39+vVD37594e/vL2VoRGRhheVVmscGKyGZhCQzsFfI8eqQOIR6OGL6T/utHQ4RERERERFdJ0kS8sMPP8TWrVtx6NAhqNVqzbhu4jEgIAB9+vRBv3790L17d9jb20sRDhHZgOOXSzSPDSchOR2bpMWVPoiIiIiIiKxHkiTkF198YbCxjCAISE5ORt++fdG/f3/ExcVJcXkiskF1E0AhOklINQRc5JqQRERERERERK2WZNOxaxOQTk5O6NWrF/r27Yu+ffvCy4vdRInaorpFaOGFuVrbsl08USVXWjYgIiIiIiIiIrIYSZKQoaGhmmnWaWlpUCqZXCBq6zRd70URYYXalZDnXP0AAB+OSrR0WERERERERERkAZIkIf/66y8pTktErYBHRQlcq8q0xs67+QIA7ugcbI2QiIiIiIiIiEhiknbH1lVYWIg9e/YgNzcX+fn5kMlkcHZ2RnBwMBISEuDjw+64RK1V7XTssMLLetsyr3fG9nFmcyoyD6VMvwtNmIejFSIhIiIiIiIiwEJJyPXr12P+/PnYs2ePXrOauuLj43HnnXdi1KhRlgiLiCyodjZ2WJF+ErK2EpLIXAbF6v9OPdknCsA1ywdDREREREREkEl58vLycjzxxBOYPn06du/eDbVarUlCiqKo9/jw4cOYNWsWpk6disLCQilDIyILE67XQhqqhDzvyiQkmVewuyMe7x2leZ4W6oHxHQKsGBEREREREVHbJlklZHV1NaZNm4Zdu3ZBFMUbTSkAyOVyuLm5QaVSobi4GCqVCkBN4wpRFLFt2zbcfffdWLRoEeztOT2TqDVgJSRZ2vsjE/FgzwhcK61Cp2B3iGqVtUMiIiIiIiJqsyRLQr733nvYuXOnJvkYFhaGyZMno2fPnoiMjNTsp1arcfr0aWzatAmLFy/GuXPnIIoiDh48iA8++ADPPPOMVCESkQU1tCYkKyFJKlHezojyrnlcrbZuLERERERERG2ZJNOxL1y4gEWLFmkSkGPHjsXKlSsxadIkrQQkAMhkMkRHR2PKlClYuXIlxo8fD6Bmivb333+P7OxsKUIkIgtTX18OVjcJWaR0RJ6DC+7sGmKFqIiIiIiIiIjIEiSphPzll19QXV0NQRDQu3dvvP7660YdZ2dnh1dffRWXL1/GunXroFKpsGzZMjz00ENShFmvjz/+GJ999hmCg4Oxdu1as577wIEDGDduXJOP+/7779G1a1ezxkJkKaIoouMH6wHoT8c+7+YDCAIyasvViIiIiIiIiKjVkaQScvPmzZrHpkynnjVrlubx1q1bzRKTsfbv34/58+dLdv4jR45Idm4iW7XxdE1HYoWqGkHF2t2Ja6diX+9TRUREREREREStkCSVkJmZmRAEAeHh4YiIiGjy8REREYiMjMSZM2dw8uRJ8wdYj8zMTDzwwAOoqqqS7Bp1k5Dh4eEIDQ016jh3d3epQiKS3IcbTgEAgouvQgbtbGMmm9IQERERERERtXqSJCHz8/MBAAEBASafw8/PD2fOnEFJSYmZomrY8ePHcc899+DyZf2mGeZUNwl5//3345ZbbpH0ekS2xGBn7NpKSLAUkoiIiIiIiKi1kmQ6trOzMwCgsLDQ5HMUFRUBAFxcXMwSU0NWrFiBCRMmICcnR9LriKKIY8eOaZ7HxcVJej0iW1HbpMpgZ2xWQhIRERERERG1epJUQgYEBKCgoADHjx9HYWEh3NzcmnR87bGCIMDPz0+KEAEAOTk5+OCDD/DLL79Ido26zp07h9LSUgCAUqlEu3btLHJdImtbcegSACDcUBKSa0ISERERERERtXqSVELWdnFWqVT46quvmnz8V199herqagBAamqqWWOr9fnnn2PIkCFaCcioqChMnz5dkusB2lOxIyMjYWdnJ9m1iGxJbYLR0HTsc6yEJCIiIiIiImr1JElCjhw5UvP4yy+/xO+//270satWrcKXX36peT506FCzxlbrq6++0lQlAsD48eOxdOlShIeHS3I9ADh69KjmMadiU1sUqlMJqYaAiy7eAMAVIYmIiIiIiIhaMUmmY6ekpKBnz57YvHkzVCoVZsyYgc2bN2PKlCmIjo42eMyJEyfwzTffYPny5RBFEYIgID09XVNVKZWkpCTMnDkTaWlpkl4H0K6EZBKS2iLdSsgsFy9UyyV5GSIiIiIiIiIiGyLZt/833ngDo0ePRn5+PkRRxLJly7Bs2TL4+voiOjpas05kYWEhTpw4gStXrgCoad4CAN7e3njzzTelCg9paWkYM2YMBgwYoGmaIbW6ScjY2FgcPXoUy5Ytw/bt23HhwgVUV1fDx8cHKSkpGDp0KG666SaLxUYkOVFEWOEVraHa9SCJiIiIiIiIqHWTLAnp7++P77//Hvfccw+ysrIA1CQYc3NzcfmydjVUbeKxNuEWFBSEzz77DAEBAVKFh88++0yycxty7do15Obmap5/+eWX2Lp1q95+Fy9exMWLF7Fq1SokJSXhww8/RFhYmCVDJTKrKpUaAOBRUQLXqjKtbXU7Y4vsTENERERERETUakk6DzIqKgrLly/HF198gR9++AHl5eUA6k82ODo6Yty4cXjwwQfh7u4uZWgWV7cKEoAmAeno6Ijw8HC4ubkhNzcXZ8+e1exz8OBBjB8/Ht988w0SEhIsGa6e2kZBLZVKpWrwOUnnWkklACDMQGfsTFcfzWO1Wt3if8/ItvF1gIj4OkBEfB0gIr4OWI/ki7G5u7vj6aefxkMPPYQdO3Zg165dyM3N1UzTdnNzQ2BgIDp37oy0tDS4uLhIHZJV6CYhXVxcMGPGDIwePRrOzs6a8QsXLmDOnDlYsWIFACA/Px8PPPAAli9fDk9PT4vGXEutVmPfvn1WubZUDh48aO0Q2oz8ipoX9PDCXL1tdSshMzMvYJ9DnsXiIuLrABHxdYCI+DpARHwdsByLdYRwcnJC37590bdvX0td0qbUrXD09PTE4sWLERkZqbdfSEgI3nnnHYSFheGTTz4BAGRnZ2Pu3Ll45plnLBUukdnUFj7rNqUBgHNufhaOhoiIiIiIiIisQWbtANqK1157DTt27MCyZcvqTUDW9eCDD6JTp06a5//9739RWVkpdZhEZle7+IKh6dh1G9NwRUgiIiIiIiKi1suslZB5eXk4deoUcnNz4eTkhJCQEERHR5vzEi2au7u70WtdCoKAyZMn499//wUAlJWVYffu3ejevbuUIRokk8mQnJxs8euak0ql0iqxTkpKglwut2JEbUdOUQWwPAehRVf0ttWdjh0SEoyUlHBLhkZtDF8HiIivA0TE1wEi4uuAaQ4cOAC1Wt2sc5glCbl//3588skn2Lp1q96Cnn5+fpg8eTImT54Me3t7c1yuzejcubPW87Nnz1olCQkACoXFZu5bhFwub3X/TbZKLq9pNqO7JmSx0gH59jfWQxUE/puQZfF1gIj4OkBEfB0gIr4OWE6zp2N//vnnmDhxIjZt2oTq6mqIoqj1v5ycHLz//vsYN24cMjMzzRFzm+Ht7a31vKCgwEqREJmudpp1uM507LNufoAgWD4gIiIiIiIiIrK4ZiUhf/zxR3z88ccNtjMXBAGiKOLEiRO45557UFxc3JxLtim6a0DW7aJN1FIsP3AJ9tWVCCq5pjV+1l27KY3IVSGJiIiIiIiIWi2T602Li4vx/vvvQ7heySSKItLT0zFo0CAEBwejuroax44dw/LlyzUVkOfPn8f//d//YebMmeaJvoW4ePEifvjhB1y7dg1Xr17FjBkzEBcX1+hxupWjgYGBUoVIJJkXVx812JSGnbGJiIiIiIiI2g6Tk5B//PEHCgoKIAgC7O3t8f7772PAgAFa+wwYMAD33nsvZs+ejeXLl0MURfz888947LHH2tT6kKIo4ssvv9Q8T0tLMyoJuXHjRs1jQRD01ogksnVvrDmBq6VV6KyzHiQAnHXz13oushCSiIiIiIiIqNUyeTr29u3bNY+feuopvQRkLYVCgVdffRUxMTEAgMLCQuzdu9fUy7ZIISEhCA4O1jz/+eefG5zCDtRUmi5atEjzvFevXvDy8pIsRiJzyyutxEurjwEAIgpz9LbrTscmIiIiIiIiotbL5CTk0aNHAdSsUzhhwoQG91UoFJg4caLm+aFDh0y9bIs1btw4zeNTp05h7ty59e5bVVWFWbNmISenJnEjCAKmT58ueYxE5vTNzkxUq2vKGyMKDFVC6q4JSUREREREREStlclJyMuXL0MQBISFhUGpVDa6f5cuXTSPz58/b+plbVL//v0RGxuL2NhY9O/f3+A+U6dO1aqGnDNnDl577TXk5eVp7XfkyBFMnToVf/31l2Zs0qRJ6Nq1qzTBE0mkNgEJAOFGTMcmIiIiIiIiotbL5DUhS0tLAQCurq5G7V83AVdUVGTqZVssR0dHfPHFF5g0aRLy8/MBAAsXLsSSJUvQvn17uLi4IDs7Wy9BO3z4cDzzzDNWiJioeYQ6j3WTkMVKB1x11H7tELkoJBEREREREVGrZXIlZFVVFQAYVQUJ1EzbrlVSUmLqZVu0mJgY/PTTT+jUqZNmrKqqCocOHcL27du1EpAODg547LHH8M4770Aul1sjXKJmEYQbacgInSTkWTc/QBB0DyEiIiIiIiKiVsrkSkhRFCEIglaioSF192usKUtrFhoaiiVLlmDz5s347bffsHfvXuTm5qKiogJeXl4IDQ1Fnz59MGLECAQGBlo7XCKT1f7F21VXIbj4mta2c276TWmc7Ux+OSIiIiIiIiIiG8dv/TrGjBmDMWPGNOmYtWvXNvk6PXv2RM+ePZt8HFFLUXvfIazost42Q0nIm+PZLZuIiIiIiIiotTJ5OjYRUUNqk5ARBTl62866ayccXxkSiwA3B0uERURERERERERWwCQkEUniXF4ZAP31IIHra0LW8VTfdhaJiYiIiIiIiIisg0lIIjK7ovJqzNl4BkA9SUh3f0uHRERERERERERWxCQkEZndH8duJB7DCxquhLRXyKCQ8aWIiIiIiIiIqDVrdmOanJwc/PLLL5IeM3r06Cadn4is69dDlzSPw3UqIUsU9rji6KZ5fl/3cMhlAoiIiIiIiIio9Wp2EvLEiRN45plnjN5fFMUmH8MkJFHLIoo3HutOxz7r7nejaw2AD0YkWiosIiIiIiIiIrISi86BFAQBgmB8xZNYN5NBRC1G7V+uXXUVgoqvaW0763ZjPchekV6QsQqSiIiIiIiIqNVrViUkk4REZEjta0No0WXIoP06ca7OepBTUkMtGhcRERERERERWYfJScg1a9aYMw4iakVq046GOmOfc/PVPL6jc7CFIiIiIiIiIiIiazI5CRkczOQBERlWWyQdYagztvuN6dj2CrmlQiIiIiIiIiIiK7LompBE1DbUTsc2VAl5ts50bCIiIiIiIiJqG5iEJCKzW7o/GwAQZigJ6c4kJBEREREREVFbwyQkEUlGtxKyVGGHy47uAICn+0VbIyQiIiIiIiIisgImIYlIMrprQp518wcEAQAwiU1piIiIiIiIiNoMJiGJSBJ21VUILr6qNVY7FXvnYxlICnSzRlhEREREREREZAVMQhKRJMILcyGDqDV25npn7C4hHlaIiIiIiIiIiIishUlIIpJEVMElvbHT7gFWiISIiIiIiIiIrI1JSCKSRFRBjt4Yk5BEREREREREbROTkEQkiah8/UrIM+7+SPB3sUI0RERERERERGRNTEISkSQiDUzHrl0TkoiIiIiIiIjaFiYhiUgSutOxLzu6ocjeCaJYzwFERERERERE1GoxCUlE5ieKiNRJQnI9SCIiIiIiIqK2i0lIIjI7r/IiuFeWao2d5lRsIiIiIiIiojaLSUgiMqsnVx4y2Bn7jEdNJSRnYxMRERERERG1PUxCEpHZ5BRV4IP1pw13xnarqYQUuSgkERERERERUZvDJCQRmc2G01cBAFEGOmOf9uB0bCIiIiIiIqK2iklIIjKbkkoVAP3O2MCNxjSsgyQiIiIiIiJqe5iEJCKzmbftHAAgQicJWSWT44KrDwCAs7GJiIiIiIiI2h4mIYnIbLadywOgPx37nJsvVDK5NUIiIiIiIiIiIhvAJCQRmZVCVY2wwstaY7VTsYmIiIiIiIiobWISkojMKrToChSiWmvsrPuNpjScjU1ERERERETU9jAJSURmZbAzdp1KSJGLQhIRERERERG1OUxCEpFZGU5C+hvYk4iIiIiIiIjaCiYhicisInU6YwPAaY86lZCWDIaIiIiIiIiIbAKTkERkVpH5BpKQWtOxLRkNEREREREREdkCJiGJyKx0p2Pn2Tsj38FF8/yWZHbKJiIiIiIiImprmIQkomarrFZD9uRKAECUznTsMzrrQf6nS6jF4iIiIiIiIiIi28AkJBE127AvtwMA3CpK4F1epLWt7lTsscmB6BDkZtHYiIiIiIiIiMj6mIQkomZbe/IKAKBdvn5n7LqVkEPi/CwWExERERERERHZDiYhichsovOz9cZOegZaIRIiIiIiIiIisiVMQhKR2UTnZ+mNnfAIskIkRERERERERGRLmIQkIrOJzjNQCelxoxJShGjJcIiIiIiIiIjIRjAJSURmozsdu1yuxEVXb83zjEhv3UOIiIiIiIiIqA1gEpKIzEY3CXnKIwCiUPMyMyLBH+19na0RFhERERERERFZmcLaARBRy1atUgMAnCvLEFiSp7Wtdir2K0Ni8XTfaAiCYPH4iIiIiIiIiMj6WAlJRM3y6+EcAEC7/Et6205dT0KOSPCHnYIvN0RERERERERtFbMCRNQsmfllAPSnYgPaTWmIiIiIiIiIqO1iEpKImkV2fYo1k5BEREREREREVB8mIYmoWWpXeTSYhPSsSULacyo2ERERERERUZvGzAARNUttJWQ7nSRkpUyBTFdfAEC4p5PF4yIiIiIiIiIi28EkJBE1i+x6KWR0nnYS8oy7P1QyOQDAgZWQRERERERERG0aMwNE1CwP/HwADlUVCC2+ojVedz1IQRB0DyMiIiIiIiKiNoRJSCIy2cHsQgBAVEGO3rZTbEpDRERERERERNcxCUlEJuvw/noAQHR+lt62E9eb0swfn2LRmIiIiIiIiIjI9jAJSUTNZrAz9vVKyEldgi0dDhERERERERHZGCYhiajZ6ktC7ng0A/YKuRUiIiIiIiIiIiJbwiQkETVbO53O2NWCDOfc/NA11MM6ARERERERERGRTWESkoiaTbcS8qy7H6rlCitFQ0RERERERES2hklIImoWu+oqhBVd0Ro7yc7YRERERERERFQHk5BE1CwRhTmQi2qtsVNMQhIRERERERFRHUxCElGzxOTpN6VhEpKIiIiIiIiI6mISkoiaJTbvgt7Ycc8gK0RCRERERERERLaKSUgiapbYaxf1xo55BlshEiIiIiIiIiKyVUxCEpFJdl/IBwDE5GVpjVfKFDjr7m+FiIiIiIiIiIjIVjEJSUQmeXn1cQBAbJ52JeQpjwCoZHJrhERERERERERENopJSCIyyW9HcuBaUYrAkjytca4HSURERERERES6mIQkIpO1z9NfD/I414MkIiIiIiIiIh1MQhKRydrrrAcJMAlJRERERERERPqYhCSiJimvUuHBnw8AqKcztheTkERERERERESkjUlIImqS73ZfwOdbzgIAYgxOx+aakERERERERESkjUlIImqS6T/t1zzW7Yydb++MXCcPAIC9gi8vRERERERERFSDWQIiMo0o6q0JecwzGBAEAICPs501oiIiIiIiIiIiG8QkJBGZJKj4GlyqyrXG6k7FFkVLR0REREREREREtopJSCIySWzeBb2x43Wa0ng7Ky0ZDhERERERERHZMCYhicgkulOxAeC4540k5Ize7SwZDhERERERERHZMCYhicgksdf0O2Mfu56E7BTshtFJAZYOiYiIiIiIiIhslMLaARBRyxRjoBLypGcgAGDzQ73goJRbOiQiIiIiIiIislGshCQik+iuCXne1QelSgcAYAKSiIiIiIiIiLQwCUlETaZUVSGyIFdrrHY9yCmpodYIiYiIiIiIiIhsGJOQRNRk7fIvQS6qtcZqk5B9orytERIRERERERER2TAmIYnIaIt210zBbp+n35TmuFcQAMDFnlOxiYiIiIiIiEgbk5BEZBRRFPHCH0cBAHEGOmPXVkL2i/axaFxEREREREREZPuYhCQio4gicDavDAAQdy1Tb/tRr5okpIudwqJxEREREREREZHtYxKSiIwi1nkcf1W7M3apwg7n3PwsGxARERERERERtRhMQhKRUURRrH2AeJ1KyKNeIRAFvpwQERERERERkWHMGhCRUdTXc5DBxVfhVlmmte2IV6jmsSBYMioiIiIiIiIiagmYhCQio4jXJ2THX9VfD/KI940kpFLOlxUiIiIiIiIi0sZsAREZpXY2dvy1C3rbjniHWDgaIiIiIiIiImpJmIQkIqOor2chEwxVQtaZjk1EREREREREpItJSCIyytHcYgBAnE5TmiqZHCc9Aq0REhERERERERG1EExCElGjRFHEqG92AgDir2pPxz7hEYRqucIaYRERERERERFRC8EkJBE1al9WIS4WlMO7tBB+ZQVa27geJBERERERERE1hklIImpUTnEFACD+mv56kEe5HiQRERERERERNYJJSCJq1EM/HwBgOAl52JtJSCIiIiIiIiJqGJOQRNSgimoVTl0tBaC/HiQAHPG6MR07wtPRYnERERERERERUcvBJCQRNaikUqV5rNsZWw0Bx+okIe9MZVUkEREREREREeljEpKIGnTqSqnmccJV7STkWXc/lCntNc97RXpZLC4iIiIiIiIiajmYhCSiBv3wb80UbOfKMoQVXdHadkSnKY0oWiwsIiIiIiIiImpBmIQkogZ9teM8ACDumv56kEfrTMUGAOYgiYiIiIiIiMgQJiGJqEEqdU1qMd5AEpKdsYmIiIiIiIjIGExCElGDqq8nIROuntfbdsRbdzo2ayGJiIiIiIiISB+TkETUoCrV9STklUy9bUc4HZuIiIiIiIiIjMAkJBHVq0ql1jxOunpOa9sFF28UOLhojbEQkoiIiIiIiIgMYRKSiOq16cw1ADWdsaMKcrS2HfAJ19uf07GJiIiIiIiIyBAmIYmoXutOXQUAJBpYD/KQgSQkEREREREREZEhTEISUaOSrpzTGzvoE6Y3xjpIIiIiIiIiIjKESUgialSygSTkAZ8IvbFoH2cLRENERERERERELQ2TkETUqMQr2tOx1RD0OmNnRHqhva92oxoiIiIiIiIiIgBQWDsAIrJd2YXlAPSnY5/0DES50l7z/P2RCbg7TX96NhERERERERERwCQkETXgy+3n4VNagIDSfK3xup2xxyQH4PHe7SwcGRERERERERG1JExCEpGeNScuY9u5PACGm9Ic8r6RhBTZjYaIiIiIiIiIGsEkJBFp+XzLWTz48wHN8ySd9SAB7c7YzEESERERERERUWPYmIaItNRNQAJA8pWzevvU7YwtshSSiIiIiIiIiBrBJCQRNUi3M3a5XImTnoGa50xBEhEREREREVFjmIQkovqJIpKuaq8JecQrBCqZvO4uREREREREREQNYhKSiOoVVnQZbpVlWmMH63TGBpiEJCIiIiIiIqLGMQlJRPUy2BlbJwlJRERERERERNQYJiGJqF7Jl/WTkAd0KyG5KiQRERERERERNYJJSCKqV+JV/SQkp2MTERERERERUVMxCUlE9epw+azW80I7R2S6+miNMQdJRERERERERI1hEpKIDLKrrkL8tQtaY/t9IgBB0BpTyLSfExERERERERHpYhKSiAxKuHoeSrVKa2yfX6TeflPTQi0VEhERERERERG1UExCEpHG1ZJKzeOOl8/obd/rG6U3NjDGV9KYiIiIiIiIiKjlYxKSiDSO5hZrHnfMNZCE1KmEPDqzH1zsFZLHRUREREREREQtG5OQRKShlN9Y37GDTiWkSpDhkHeY5vldaWFo7+tisdiIiIiIiIiIqOViCRMRaSjl1+9LiKLedOyjXsEoV9ojytsJH4xMxIgEfytESEREREREREQtEZOQRKTx78UCAEB4YS48Kkq0ttWuB/nP/T0Q6uFo8diIiIiIiIiIqOXidGwi0rjnx30AgBQDTWn2+0YAAAS9LUREREREREREDWMSkogA6HTGNtiUpqYSUmAWkoiIiIiIiIiaiElIIgIA/H40V/PYUCXkPk0lJLOQRERERERERNQ0TEISEQCgsLxa87hj7mmtbVnOXsh19gTASkgiIiIiIiIiajomIYkIACBCBAC4lxcjsjBXa1ttFSTANSGJiIiIiIiIqOmYhCQiAIBYk4NEhytn9bbt84vUPBZYCklERERERERETcQkJBFpMdiUxjdK85gpSCIiIiIiIiJqKiYhiQgA8MH6UwAMN6XZq1UJabGQiIiIiIiIiKiVYBKSiHAhvwxn88oAACk6lZClCjuc9AjUPGcSkoiIiIiIiIiaiklIIsKvh3IAAEpVFZKuntPatt83AmqZXPPc28nOorERERERERERUcvHJCQRIb+8CgCQdOU87FXVWtv2+kVpPWdjGiIiIiIiIiJqKiYhiQgqdU1r7C45J/W27fKPtnQ4RERERERERNTKMAlJRPhow2kAQFcDScjddZKQU7qGWiwmIiIiIiIiImo9mIQkauMqq9XIK6uZjt0555TWtnK5Eoe8wzTP7+rGJCQRERERERERNR2TkERt3J/HLwMA7Kqr0OHyWa1t+3wjUS1XaJ73ivS2ZGhERERERERE1EowCUnUxj218hAAIOnqOdiptZvS7OZ6kERERERERERkBkxCErVxBeU1iceulwytB9lO89jH2c5iMRERERERERFR68IkJFEbJooiLhVVAKinM3bAjUrIe9PDLRYXEREREREREbUuTEIStWHrT13VPNZtSlOmsMPhOk1pAt3sLRYXEREREREREbUuTEIStWFbz+UBqGlKk3zlnNa2vb6RUMnkmueTu4RYNDYiIiIiIiIiaj2YhCRqw9SiCABIvnJWrynNnjrrQX4wMhFuDkqLxkZERERERERErYfC2gEQkfWsPnYZANDV0HqQ/jEAgP/dnYah8f4WjYuIiIiIiIiIWhdWQhK1YZvOXAMAdNFZDxK40Rnbz5VrQRIRERERERFR8zAJSUTocumE1vNShR2OeIdaKRoiIiIiIiIiam2YhCRq4+yrK5F09bzW2F7fKK2mNEREREREREREzcEkJFEb1zH3NJRqldZY3aY0RERERERERETNxcY0RG1MTlEFnv7tMNafugoASM8+prfP9sD2lg6LiIiIiIiIiFoxJiGJ2pjx3+3SNKQBgLTs43r7bA+MtWRIRERERERERNTKMQlpwMcff4zPPvsMwcHBWLt2rSTXyM7OxpIlS7Bp0yacO3cO5eXl8PX1RVRUFIYNG4Zhw4bB0dFRkmtT21VSUa2VgAT0KyGvOrjipEegJcMiIiIiIiIiolaOSUgd+/fvx/z58yW9xpIlS/DWW2+hrKxMazwrKwtZWVnYtGkT5s2bh3feeQcpKSmSxkJtS3m1Wuu5X0keIgtztca2BcYCgmDJsIiIiIiIiIiolWNjmjoyMzPxwAMPoKqqSrJrLFiwAC+++KImASkIAtq3b4+0tDT4+flp9jt79izuvPNOHDp0SLJYqO1Ri6LW824GpmLv4HqQRERERERERGRmTEJed/z4cdxxxx24fPmyZNfYu3cv3nnnHc3z1NRU/Pnnn1i5ciUWLlyIDRs24JNPPoGnpycAoKysDA888IBexSSRqXRykAab0mzjepBEREREREREZGZMQgJYsWIFJkyYgJycHEmv8+abb0KlUgEAEhMT8eWXXyIsLEyzXRAEDBo0CAsWLICzszMA4NKlS/j2228ljYvaDt1KyLRLBiohA2IsFQ4RERERERERtRFtOgmZk5ODmTNn4umnn5a82nDfvn3Yu3ev5vns2bPh4OBgcN+4uDg8+OCDmufffvutJnlJ1Bx/nbhR6StTq5CWfUJr+xGvEBQ4uFg6LCIiIiIiIiJq5dpsEvLzzz/HkCFD8Msvv2jGoqKiMH36dEmut2rVKs3jdu3aoVOnTg3uP27cOCgUNX2Drl27hh07dkgSF7UtL/95o/Ix4WomXKu0k+/buR4kEREREREREUmgzSYhv/rqK5SWlmqejx8/HkuXLkV4eLgk19u6davmcc+ePRvd393dHUlJSZrn//zzjyRxUdty+uqN33lDTWm2cz1IIiIiIiIiIpKAwtoBWFtSUhJmzpyJtLQ0ya5RVVWF06dPa54nJiYadVxsbKxmCveBAwekCI3aMENNabYHsBKSiIiIiIiIiMyvzSYh09LSMGbMGAwYMACCIEh6rQsXLqCqqkrz3Nhqy5CQEM3j8+fPmz0uatu66SQhSxV2OOAbYZ1giIiIiIiIiKhVa7NJyM8++8xi17p8+bLWc19fX6OOq7vf1atXoVarIZO12Rn01Ew/7LmgeexaUYqEq5la23f5R0Mlk1s6LCIiIiIiIiJqA9psEtKSCgoKtJ67ubkZdZyrq6vmsSiKKCwshIeHhzlDM1p1dbVVrmsuut3F21q38SqVGpN++FfzPO3Sccggau1jaD1IhUxAlKdDi//3JwL4OkBEfB0gIr4OEBFfB6yJSUgLqKio0Hru4OBg1HFKpbLB81iKWq3Gvn37rHJtqRw8eNDaIVjUmYIqrec9Lx7R22dbkH4S8vZYZ5w+ekiyuIisqa29DhCRPr4O0P+3d++BPZaP/8dfO9psjNmc5nzYaKQQPii1nEoooo9TqL5RIXQQlT5JpOQQpUJJ5XyIUpRIDqEckuNytuU4hpmd378/9nO3e++dt/dh2/Px131d7+u+r2vM7d5r131dAPcBANwH7IcQ0g7SzyLL6SvV7u7mvx7SeeRVsnnSo1pFHrRqs7Vy/X8/r1xCzzQsreCy3CIAAAAAAED+kTDYQfrQMSUlJUfnpQ8v08+MBPLCLSVZ/0m3KU142cq64FPWKLeu7KUQf77fAAAAAABAwSCEtANvb29TOT4+Xp6entmel5CQYCqXKFGiQMeVU66urmrYsKFD+i4oycnJpinWDRo0kJtb8dmE5e99ZyWlbpDU6OIJ+SbGmT5POwtSkoKCgtSoUc52cQcKi+J+HwDAfQAA9wEA3Afy6q+//srxpLrMEELagZ+fn6kcExNj2nQmMzExMcaxu7t7js6xlfSvhhd2bm5uRe5rysriP88ax60zeBV7S9BtprKLq2ux+vNB8VTc7gMArHEfAMB9AAD3AfvJ2eKEyJcKFSqYypcuXcrReRcvXjSO/f395eLiUqDjQvGx6sB54zij9SDTh5AAAAAAAAAFiRDSDipXrmxaz/HMmTM5Oi8iIsI4rlGjRkEPC8XEtbg0O2NbLLo7whxCXvD2099lK5vqLOk2sgEAAAAAAMgPQkg78PDwUHBwsFE+dOhQjs5L265+/fpZtAQyt3jvP8Zx7eizqhgbbfp8S1B9Kd0s27A6AfYYGgAAAAAAKCYIIe2kefPmxvG2bduybR8dHa2DB/+dsdaiRQubjAtF34vf/vt91DrSOgDfmu5V7AfrlVf9Cr42HxcAAAAAACg+CCHtpH379sbx/v37TTsxZWTJkiVKSkqSlLqxTcuWLW06PhQ9B89d16s/HNL1+CSjLqNNaTZXCTWVlw9oyvqjAAAAAACgQBFC2smdd96p0NB/w57Ro0ebdr9O69ChQ5o1a5ZR7tmzp7y8vGw+RhQdB89d113Tf9XEn4+a6tNvSnPDvYT2BtY0yq+E1VEJdze7jBEAAAAAABQfhJAFICwsTCEhIQoJCVFYWFim7UaNGmXMMAsPD1e/fv10+PBh43OLxaIff/xRAwYMUGxsrCQpMDBQgwYNsu0XgCJn/Ppw3UxMMdUFxF5VvSuRprrtlUOU5OZulB9vWsUu4wMAAAAAAMWLe/ZNUFCaN2+uESNGaMqUKZKkgwcPqmvXrqpTp478/f116tQpnT9/3mjv5eWladOmqVSpUo4aMgqpRWk2o7mlVUbrQVb+dz1IL3dX1SvP9xoAAAAAACh4hJB2NmjQIPn4+Oj99983ZjsePXrUql3FihU1efJkNW3a1N5DRBF1b8RfVnVbgv7ddf2nQf+x53AAAAAAAEAxQgjpAH379lXbtm21ZMkSbdq0SREREYqJiZGvr6+Cg4PVtm1bde/eXb6+7FCMgnPvGXMImejqpt8q1zPKrWr623tIAAAAAACgmCCETKdbt27q1q1brs7ZsGFDrvupWLGihg0bpmHDhuX6XCC3ysVeU6OLJ011v1eoqxue3pKkamW8HTAqAAAAAABQXLAxDVAMtInYb1W3sdrtxrGbq4s9hwMAAAAAAIoZQkigGLjvzD6ruo1VGxrHJT3c7DkcAAAAAABQzBBCAsVA+vUg493ctS3NepDjOobYe0gAAAAAAKAYIYQEirjyN64oNOqMqW57pRDFeZQwysGBbIIEAAAAAABshxASKOLuPWO9HuQvaV7FliRvD24FAAAAAADAdkgegCIuLMP1IP/dlKZGWW/V9C9pzyEBAAAAAIBihhASKOLSrwd5091T2yv9uwbk6ieaycWF3bEBAAAAAIDtEEICRVjl61EKvvKPqW5r5fpKcPcwyg0qlbb3sAAAAAAAQDFDCAkUYfdl8Cp2+vUgAQAAAAAAbI0QEijCwk5ntB4kISQAAAAAALAvQkigqLJY1P7UHlNVjIeXfq9Y10EDAgAAAAAAxRUhJFBE3RZ1RkExl011G6reriQ3d6PcvWElew8LAAAAAAAUQ4SQQBFz4Nx1SVKHk7utPvuxxp2m8v86hFi1AQAAAAAAKGju2TcB4MwSklI067eTunQjQf2aVFGrmVskSe1P7rFqmz6EDK1Yyi5jBAAAAAAAxRshJFDI9fzyD60+cF6S9Pb6vyVJXonxuifygKndcb8KOlqG168BAAAAAID98To2UIidib5pBJBp3R15UN5JCaa6H2vcKbm4GOXX2rJBDQAAAAAAsA9CSKAQ23/2Wob1Ga4HWd38KvYTzarZZEwAAAAAAADpEUIChdjvZ65mWN/u1F5TOcnFVRuq3W6UA3w8VcO/pC2HBgAAAAAAYCCEBAqxdzcetaqrfD1KDS+dMtX9VrmerpXwMcqlSrAcLAAAAAAAsB9CSKAQc3dzsaprf8p6V+yfqt9hKrtanwYAAAAAAGAzhJBAIeaRQZrY/qR1CLmuRmNT2cWFFBIAAAAAANgPISRQiHm4mf8JuycnWW1KE+VVSrsq1DbVEUECAAAAAAB7IoQECjGPdK9jt/rnkMrG3zDVratxp1Jc3Ux1TIQEAAAAAAD2RAgJFFInomJ1JjrOVPfQsd+t2n1X6y6rOldSSAAAAAAAYEeEkEAhdODcdd05dZNV/UPHzSFkkour1tZsYtWuSRU/m40NAAAAAAAgPUJIoBCatOFvXYtLMtXVvRypkCuRprrNVUIV7eVrdf64DvVsOj4AAAAAAIC0CCGBQuir3ZFWdZ2P77SqW1OraYbn1yxXssDHBAAAAAAAkBlCSKCIyGg9yG9rNXPASAAAAAAAAMwIIYEioExcjFpHHjTVHSkbpL/9gxw0IgAAAAAAgH8RQgJFwAMndsndkmKqy2hXbAAAAAAAAEcghASKgE7HM3gVuzavYgMAAAAAAOdACAkUch7JiXrgxC5T3WUvX20Nqu+gEQEAAAAAAJgRQgKFzKnLsaZy2Ol9Kht/w1T3Q40mSnZ1s+ewAAAAAAAAMkUICRQyNSf8bCo/Gr7Nqs3Kuv+x13AAAAAAAACyRQgJFCK7I6JNZbeUZHU9ut1Ud8O9hH6o2cSOowIAAAAAAMgaISRQiDSdttlUbnNmvwLirpvqfqjZRDc9SmR6jeplvW0yNgAAAAAAgMwQQgKF2KN/b7WqWx7cMstzXrq3jq2GAwAAAAAAkCFCSKCQck1J1iN//2aqi3Pz0JpaTa3alnBP/afeISRQ/ZtWscv4AAAAAAAAbnF39AAA5E2rfw6pQuxVU926GncqxrOkUa5drqS+7N1YjSqX1pXYRFX287L3MAEAAAAAAAghgcIqo12xlwe3Mo5HtqmlyZ1DjbK3n5tdxgUAAAAAAJAer2MDhcSN+CTj2MWSom5/m0PIBFd3fVvrLqP8ZLNqdhsbAAAAAABAVgghgUJixtYTxnHryIMKirls+nx99Ua66uVrlOtXKGW3sQEAAAAAAGSFEBIoBBKSUjTm+8NGuc+hTVZtltfNeldsAAAAAAAARyGEBAqBhXsijWPPpET1OLLF9Hmcm4eWB/8bQk7qVN9uYwMAAAAAAMgOISRQCCzb949x/MCJXSobf8P0+be179K1Ej5G2dXFxW5jAwAAAAAAyA4hJODkEpNT9PPfl4xy78O/WLVZUO9e+w0IAAAAAAAglwghASdmsVjUfd4fiktKkSSVjr+hzsd+N7W57OWrH2o2MdVVL+tttzECAAAAAABkhxAScGJ//nNN3x06b5S7h2+TV3Kiqc2y4FZKcPcw1XW6rYJdxgcAAAAAAJAThJCAkzp9JVaNp/5qqut92HpX7K/q32sqT+58m7w93Gw5NAAAAAAAgFxxd/QAAJglp1g07qdwvfVTuKm+8vUo3Xf6L1PdqVKB2hr0707Yx0bfr5rlStplnAAAAAAAADnFTEjAyYxfbx1ASlL/gz/LVRZT3YL6bWRxSf1nvKx/UwJIAAAAAADglAghASczZ8dpqzoXS4qe+Gu9Vf1Xt91rHD8cWtGWwwIAAAAAAMgzQkjAyURejbOqu/fMX6p99ZypblulejpUrppRdnV1sfnYAAAAAAAA8oIQEigEnvzrJ6u6uQ3bOWAkAAAAAAAAuUcICTiR+KRkqzr/m9fU/e9tprrrHt5aEtLaXsMCAAAAAADIF0JIwIlM/fW4VV2fQ5tUIjnJVLeo3t264eltr2EBAAAAAADkCyEk4ETGfH/YXGGx6Km/frRqN6dhezuNCAAAAAAAIP8IIQEn1uxcuBpeOmWq2xdQXb9XrOugEQEAAAAAAOSeu6MHAEBKTrHoenySVf0ze7+3qpvbsL3kYt4J27+kh83GBgAAAAAAkF+EkICDrdp/Tk8s3qsrNxNN9eVvXNF/j2w21cW5eejr+m2srjH94QY2HSMAAAAAAEB+EEICDpSUnKIBi/boapz1LMin962z2pBmYb17dNm7tKnu1bZ11adxFZuOEwAAAAAAID9YExJwoCMXb2QYQLonJ2nwn2ut6mfc+ZBV3X+ql7XJ2AAAAAAAAAoKISTgQEkpKRnWd/97myrfuGyq+zXoNu2tUNuqrcVik6EBAAAAAAAUGEJIwIEyCxCH7v7Oqm5G484ZX6MgBwQAAAAAAGADhJCAk2ly7m+1PHvYVHfGN0Df1GmRYXsLUyEBAAAAAICTY2MawE5SUiz6MfyiTl2JVceQ8qruXzLDdiN2rbKqm3XHA0p2dcuwPREkAAAAAABwdoSQgJ0M/Wa/Zm07KUny83LXpmdbWbWpGX1Ojx3ZYqqLc/PQ7IYdMr0uEyEBAAAAAICz43VswA6uxSXq0+2njPLVuCTN3Xnaqt1Lf6yQm8W8Wc380DBFlSxt8zECAAAAAADYCjMhATuIvBqn5BTzlMUZW05oxpYTRrnCjSsasP9nU5tkF1e9e1e3LK9d3tez4AYKAAAAAABgA8yEBJzE8F2r5ZWcaKpbEtxKx8tUyvScyqW91KxaWVsPDQAAAAAAIF+YCQnYgYtL1p/7xcXomT+/t6qf1OxRUzn8lTBtOhalz38/rYqlSmhch3pyc83m4gAAAAAAAA5GCAk4gWf//F6lE26a6tbUbKp95Wua6qr4eenJ5tX0ZPNq9hweAAAAAABAvvA6NmBjFotFeyOvZfp56fgbeuGPb6zq30k3C1KSvDzcCnJoAAAAAAAAdsFMSMDGRq4+oOmbT2T++R+r5B8XY6rbHHSbtla5zVT3aY/bbTI+AAAAAAAAW2MmJGBDUTcS9MGWzAPIgNirGrFrlVX9/1r2sqqrWMqrQMcGAAAAAABgL4SQgA3tPH1FFkvmn7+yc5lKJZrXgvy52u3aWK2RVVtLVhcCAAAAAABwYoSQgIMEXb+kZ/da74j9Wqu+GbYnggQAAAAAAIUVISRgQ1kFh69tXyKv5ERT3epazbSjcr2Mr0UKCQAAAAAACilCSMABGlw8qaf++tGq/vXWfTI9x8JcSAAAAAAAUEixOzZQwOb9fkZPLN4rSfLxdLNuYLFo2sbZcrOkmKoXhtytvwJrZnpdZkICAAAAAIDCipmQQAFatf+cEUBK0o2EZKs2jxz9TWFn/jLVxbl56LXW/bK8NhkkAAAAAAAorAghgQL0yLzfs/zcKzFek3/5zKp+StOHdaJMxSzPTUkhhgQAAAAAAIUTISRQQCb8/He2bV7Y9Y1qXrtgqov09dfEZo9mey4RJAAAAAAAKKwIIYECcC0uUW+sO5Jlm5rR5zR6x1Kr+lfu7q8bnt7Z9sGakAAAAAAAoLAihAQKwE/hF5Wc1evSFos+/WmmSiYlmKq3Vaqnr+vfm6M+SnuxjxQAAAAAACicCCGBfLJYLOoxf1eWbZ7Y/5PuP73PVJfs4qrnw/5PcnHJtg9vD1e1qV0uX+MEAAAAAABwFKZWAfm0/9z1LD+vFBOlyZs+t6qf3rizdlWsm+W5fl7uCvQtoWldQ+Xt4ZavcQIAAAAAADgKISSQR0v//Edvr/9b+85ey7yRxaIP13+sMvE3TNXH/CpqbKs+WV7/58H/UZta5eTqmv1MSQAAAAAAAGdGCAnkwdFLN/TYl1m/gi2lvob98LEdVvVPt39OsR5emZ7n5uqi++oE5GuMAAAAAAAAzoIQEsjE7ohoTd98Qr4l3PVGu2CVL1XC+KzP17uzPb9+1Gl9sOFTq/o5DdtrY7VGWZ67flCL3A8YAAAAAADASRFCAhk4fSVWLWdsVUJyiiRp1raTWta/qTqGBGpP5DX9fiY6y/O9EuO18Lv3rHbDjvAtp5fuGZDpeR1CAvVmhxA1q1Y2v18CAAAAAACA0yCEBDIwccNRI4C85dEv/lD98r5qULFUtue/v+kz3X7plKku2cVVfTq9oKtevhme06dxkL7s3TjvgwYAAAAAAHBShJBABpbvO5th/aELMTp0ISbLc3sd2qRn/vzBqv6tFo9pc5UGmZ5XNyDjcBIAAAAAAKCwc3X0AABnlNcNqZuc+1tzfpxhVf9LlQYa36Jnpue5uEi9GwflrVMAAAAAAAAnRwgJZMDVJfcpZKWYKK1cNUHe6daBjPIqpX4PjlSKq1um537+2B2qE+CT6z4BAAAAAAAKA0JIIAO5DSFLx9/QmhXjVCUmylSf7OKqXp1eVGSpgEzPfbNDiB5vWjVP4wQAAAAAACgMCCFRrGw4c1Pdvj2vam9v0KQNRzNtl5vXsT2TErV89UTdcfGE1Wcvthmo9TXuzPJ8iyXnfQEAAAAAABRGbEyDYuNKXLLGbL2iZIskJWv094fUrFoZ+Xm567kVf+l09E39944gvfvQbTmeCemRnKgl307S/af3WX32eej9mt64S7bXSCGFBAAAAAAARRwhJIqNjRFx/z+A/Nfs7ae0aO8/Rnnqr8cVHOij09E3s72eR3KiFn33nroc32n12brqd2pQu+dSd5zJBiEkAAAAAAAo6gghUWzM2X/dqi5tAHnL+PV/Z3stn4SbWvLtJD1wcrfVZ39UqKMeXUYpyS1n/7yIIAEAAAAAQFFHCIli4dSVm7p4MyVHbSOvxmX5eUDsVX278i01Pxdu9dmBclXVqdtYxXiWzPHYmAkJAAAAAACKOkJIFAtL950tkOvccf6YVqyeqBrXLlh9dtC/qu7vMV4XS5bJ1TXvrZ35ztkAAAAAAABFASEkioUzOVjjMUsWi/of2KAPf56lkkkJVh//GVhDHbu/qQs+ZXN12XrlfXVPLf/8jQ0AAAAAAMDJEUKiWNh/zno9yJzyv3lNs9Z/pB7h2zL8fFOVUD3c9VVd9fLN1XUndaqv/k2rqoS7W57HBgAAAAAAUBgQQqJY2HziSq7PcbGkaOD+9Xrn1y8UEJdxiLmg3j16ssMwxbt75uraz7WqoZfuq5PrMQEAAAAAABRGhJBAehaLOh/bqTe3LdAdF09k2CTZxVWj7umvKU0ellxccnV5bw9XDbiragEMFAAAAAAAoHAghAT+P7+4GPU+/Kue2fu9GkSdzrTdGd8A9X9guH6pdnuu+2gXHKB3H7pNjSr75WeoAAAAAAAAhQohJIqtkolxCr10Wq3+OaR2J/fo/tP75JmSlOU5C+rdoyH3D1Z0Dtd/LOHuqvc7h6qUl5va1CqnamVLFsTQAQAAAAAAChVCSBQLpeNvaPiu1epwcrdKJ8Sq3M3rqhgbnePz/y5TSUPvH6QfazTOUfv5ve7Uicux6hJagVmPAAAAAACg2COERLEwbeNsDTiwIdfnnStZRhOb99Cnt3fI1eYzfZtUyXVfAAAAAAAARRUhJIqFdqf25qr9gXJVNavRg/q8QVvd9CiRq3OX9GuSq/YAAAAAAABFHSEkioU/A2sqKOZylm3O+AZoZd3/aGlwK20Nqp/rXa9v6dawUp7OAwAAAAAAKKoIIVEsDOz4vKZunKOW/xxWkqurYjy8dbpUoI6Xqai95Wtqa+X6OlamUp6Dx7RcXfN/DQAAAAAAgKKEEBLFwsWSZdS304s27+fOoNI27wMAAAAAAKCwcXX0AICiZGy7EEcPAQAAAAAAwOkwExIoAGF1AjS7RyPVLFfS0UMBAAAAAABwOoSQQAH44f+ay8ONicUAAAAAAAAZITUBCgABJAAAAAAAQOZIToB88i/p4eghAAAAAAAAODVCSCAXXm1bV480qGiqe7ZlDccMBgAAAAAAoJBgTUggF97qWE834pP0+roj2h0RrfvqBOi1tsGOHhYAAAAAAIBTI4QEcijQx1OS5FPCXVO6hDp4NAAAAAAAAIUHr2MDmfBwczGVv32ymYNGAgAAAAAAULgRQqJY6FS/fK7Pmd61gUq4p/4TGXFPLd1VtUwBjwoAAAAAAKB44HVsFAtPN6+qHw5fUIol5+cMbllD/e+qqpQUi3xK8E8FAAAAAAAgr0hWUCw8UK+8ZrcN0LZ/4lSztLte7NxCbu7uqvzmj7p4I8GqfZ/GQZIkbw83ew8VAAAAAACgyCGERLFxe4Cnbg9I3VzG1dVFbq4uWv1EMw37Zr/+OntNcUkpCvTx1N21/PXBww0cPFoAAAAAAICigxASxVrz6mW14/m7HT0MAAAAAACAIo2NaQAAAAAAAADYFCEkAAAAAAAAAJsihAQAAAAAAABgU4SQAAAAAAAAAGyKEBIAAAAAAACATRFCAgAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE0RQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANgUISQAAAAAAAAAmyKEBAAAAAAAAGBThJAAAAAAAAAAbIoQEgAAAAAAAIBNEUICAAAAAAAAsClCSAAAAAAAAAA2RQgJAAAAAAAAwKYIIQEAAAAAAADYFCEkAAAAAAAAAJsihAQAAAAAAABgU4SQAAAAAAAAAGyKEBIAAAAAAACATRFCAgAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE25WCwWi6MHAeeza9cuU9nVtfDn1SkpKcZxUfh6AOQe9wEA3AcAcB8AwH0g99L+mUlSkyZNcn0N94IaDIq29N9shV1R+3oA5B73AQDcBwBwHwDAfcB+iHsBAAAAAAAA2BQzIZEjTE8GAAAAAAAongpixihrQgIAAAAAAACwKaa3AQAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE0RQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANgUISQAAAAAAAAAmyKEBAAAAAAAAGBThJAAAAAAAAAAbIoQEgAAAAAAAIBNEUICAAAAAAAAsClCSAAAAAAAAAA2RQgJAAAAAAAAwKYIIQEAAAAAAADYFCEkAAAAAAAAAJsihAQAAAAAAABgU4SQAAAAAAAAAGyKEBIAAAAAAACATbk7egBAdo4dO6ZFixZpx44dioiIUFJSksqXL6/g4GB17txZ7dq1k7t7wX8rnz17VosWLdKWLVt06tQpxcXFKTAwULVq1dKDDz6oBx98UN7e3gXeLwBr9r4P/PXXX3r00Udzfd7XX3+tpk2bFtg4AGRt+vTp+uijjxQUFKQNGzbYpA+eBwDnZsv7AM8DgPPZsWOH1qxZoz179ujChQuKiYmRr6+vKlWqpKZNm6pbt2667bbbCrzfy5cva+nSpfrll190/Phx3bhxQ/7+/qpWrZo6dOigLl26yM/Pr8D7LWpcLBaLxdGDADIzY8YMffzxx0pKSsq0TYMGDfTee++pVq1aBdbvokWL9M477+jmzZuZtqlRo4beffddNWrUqMD6BWDNEfeBJUuW6PXXX8/1efzQAdjPvn371Lt3byUmJtoshOR5AHButr4P8DwAOI+IiAiNGjVKf/zxR7ZtO3XqpHHjxsnX17dA+l6/fr1effVVRUdHZ9omMDBQb7/9ttq0aVMgfRZVzISE0xo/fry+/PJLo+zu7q6QkBB5e3vr2LFjunLliiRp//796tevn5YsWaKgoKB89ztv3jxNnDjRKLu4uKhu3boqU6aMTp48qQsXLkiSTp48qf79++vrr79WaGhovvsFYM1R94FDhw4Zx9WrV1fVqlVzdB6//QTs48yZM3r22WeVmJhosz54HgCcmz3uAzwPAM7h5MmT6tWrly5fvmzUeXh4KDg4WKVKlVJUVJSOHj2qW3Ps1qxZo2PHjunrr7/OdxC5du1ajRw5UsnJyUZdzZo1FRgYqMjISEVGRkqSLl68qGeeeUYfffSR7r333nz1WZQxExJOae3atXr++eeNcocOHTR27FgFBARIkhITE7VixQpNnDjRmJ0QGhqq5cuXy8XFJc/97t27V7179zZuMHfddZcmTJigatWqSZIsFot++uknjR071gg/KlasqLVr1/IqFlDAHHUfkKT//ve/2rNnjyTpnXfe0SOPPJKv6wEoOOHh4Xrqqad0/vx5o66gZ0DxPAA4N3vcBySeBwBnkJycrIcffljh4eGSJDc3Nz3zzDMaOHCgKWA8f/68pkyZom+++cao69ixo6ZPn57nvs+cOaMuXbooNjZWkhQcHKxJkyaZXvfevn27xowZY4SRPj4++uGHH1ShQoU891uUsTENnE5iYqImTZpklO+77z5NmzbNCB6k1N96PPbYY5o5c6axDtyBAwf03Xff5avviRMnGj9whIaGas6cOcYPHFLqLIj27dtr3rx58vHxkSSdO3dOX3zxRb76BWDmyPuAxWLRkSNHjHK9evXydT0ABWfVqlXq2bOnKXiwBZ4HAOdlr/sAzwOAc1ixYoURQEqpvxAYOnSo1QzHChUqaNKkSRo4cKBRt3btWu3duzfPfU+dOtUIIIOCgvTFF19YrTfZokULLViwQOXLl5ck3bhxQzNnzsxzn0UdISSczk8//aR//vlHUuqrl2PHjpWra8bfqq1bt9Zjjz1mlD///PM89/vnn3+ablCvv/66vLy8Mmxbr149Pffcc0b5iy++ME3PBpA/jroPSNKpU6eMhw0PDw/Vrl07X9cDkH/nz5/XqFGj9PLLL2e5PmNB4HkAcE72vA9IPA8AzmLVqlXGcevWrdWlS5cs248cOdIIBKXUV7Pz4vz581q3bp3puv7+/hm2rVixol599VWjvGLFiizXjyzOCCHhdL7//nvjuGXLlqpcuXKW7dOGDwcOHNCZM2fy3W/t2rV15513Ztn+0UcfNWZfXb58WTt37sxTvwCsOeo+IJnXf6pZs6Y8PT3zfC0A+Tdr1ix17NjR9HpVrVq1NHjwYJv0x/MA4HzsfR+QeB4AnEFCQoJ2795tlB966KFsz/H09FTr1q2N8l9//ZWnvtetW2dsjFmqVCl16NAhy/bt2rUzQsqkpCStX78+T/0WdYSQcCoWi0U7duwwyq1atcr2nJCQEAUGBhrlvK4F89tvv+WqXz8/PzVo0MAob9y4MU/9AjBz5H1Akg4fPmwc8+oV4Hhz5841ZiNJUo8ePbR06VJVr17dJv3xPAA4H3vfBySeBwBnEBkZqRIlShjlnM5ILlOmjHF8a+3m3Er7PNCsWTN5eHhk2d7NzU3/+c9/jDLPAxkjhIRTiYyM1LVr14xy2of6rISEhBjHeflNR2Jioo4fP26Uc7q7ZX77BWDNUfeBW9LOfOCHDsB5NGjQQF9++aXGjx+f750uM8PzAODc7HEfuIXnAcDxatasqT179uiPP/7QmjVrFBwcnKPzbm0SI+V9t/q0a8Lm9Hkg7b2C54GMuTt6AEBaJ0+eNJXTLgKflSpVqhjHp0+fznW/ERERSkxMNMo5/a1qfvsFYM1R94Fb0v7QERISosOHD2v58uXasWOHIiIilJSUpICAADVq1EgPPPCA2rVrl+/duAFkrlmzZurWrZvuv/9+m/9b43kAcE72vA/cwvMA4DxKlSqlUqVK5ahtTEyMtm7dapTzsp5rQkKCsT69lLfngfPnzysuLi7TdaWLK0JIOJWLFy8ax66urqadcLOS9jXMtNfIS7/pr5fTfqOiopSSkpLp5hkAcsZR9wEpdT23CxcuGOU5c+aYXsW4JTIyUpGRkfr+++/VoEEDTZ06NcdhKYDc+eijj+zWF88DgHOy531A4nkAKMzmzp2rmJgYo3zffffl+hoXL16UxWIxyjl9Hkj/c8vFixdVtWrVXPdflPF0BKdy9epV49jHxyfHD/BpX8dIe4289CtJpUuXztF5aX8bY7FYTK+QAsgbR90HJPOsB+nftWC8vb1Vr149NWvWTDVq1DC12b9/v3r06KGDBw/mqU8AzoPnAQASzwNAYbVv3z7Nnj3bKNeoUUNhYWG5vk5BPA9I4nkgA8yEhFOJj483jnMzbTntbnUJCQn56jc3fadfnDb9dQDknqPuA5L1Dx2+vr4aOXKkHn74Yfn4+Bj1ERER+uCDD7Rq1SpJUnR0tJ599lmtXLlSZcuWzVPfAByP5wEAEs8DQGEUERGhZ5991rSsyiuvvCJ399zHXun/H0+7OU5W0v48ktF1wExIOJm0N4zcvMaU9saSlJSU637Tn5PTvtPf0JKTk3PdNwAzR90HJPN6lGXLltWyZcvUp08f0w8cUup6L++++66GDh1q1J09e1Yff/xxnvoF4Bx4HgAg8TwAFDZnz55V//79TcuqDBgwIE+vYkvWzwNubm45Oi99O54HrBFCwqmk/UebkpKS4/PS3iTSz0bIifQ/ZOS07/Q3p7z0DcDMUfcBSRo/frx27typ5cuXa+HChapZs2aW7Z977jndeeedRnnx4sV5noUJwPF4HgAg8TwAFCbHjh1Tr169FBERYdS1bt1aL774Yp6vmf55IKdhYvp2PA9YI4SEU/H29jaOczN1Oe1/8jmdKp1Zv7npO/3DRV76BmDmqPvALX5+fmrQoEG2P3BIkouLi/r162eUb968qV27duW5bwCOxfMAgFt4HgCc3+7du9WnTx+dPXvWqGvRooVmzpyZrwAw/fNATn+pkNfXuIsTQkg4FT8/P+P4xo0bph2pspJ296syZcrkq9/018tpv+7u7lYL0QLIPUfdB/KqcePGpnLaV7gAFC48DwDIK54HAPv69ttv1b9/f125csWoa9OmjT755BOrEDG3CuJ5QLLvzySFBSEknEqFChWM4+TkZNMNJStp134ICAjIV7+SdOnSpVz36+/vLxcXl1z3DcDMUfeBvCpXrpypnNeduQE4Hs8DAPKK5wHAfmbMmKEXX3zRNEOxS5cu+uijj3K1sWVmAgMDTa9k5/R5IG07FxcXq/sCCCHhZKpXr24qnzlzJkfnpV3/ISevTKRXuXJl03TtvPRbo0aNXPcLwJqj7gN5lf71jPSL1gMoPHgeAJBXPA8AtpeYmKiXX35ZM2fONNUPGjRI7777bp52ws6Ip6enKlWqZJRPnz6do/PSPjdUrlzZardsEELCyQQFBZmmLB86dChH5x0+fNg4rlevXq779fDwUHBwcK77Tduufv36ue4XgDVH3QciIyP13nvvafTo0Xr66adN18tK+pAi7QMLgMKF5wEAPA8AzikhIUFDhgzRqlWrjDp3d3eNHz9eI0eOLPC3EBo0aGAc5/Q+wPNA9ggh4XSaN29uHG/bti3b9ocPHzZNe27RooVd+o2OjtbBgwfz3S8Aa464D1gsFs2ZM0crVqzQpk2btGXLlhydt3nzZuPYxcXFak0oAIULzwNA8cbzAOB8kpKSNGzYMP3yyy9GnY+Pjz755BP16NHDJn02a9bMON6xY4dSUlKybJ+cnKwdO3YYZZ4HMkYICafTvn1743jjxo06f/58lu0XLlxoHNeuXVshISH57nf//v3av39/lu2XLFmipKQkSakL17Zs2TJP/QKw5oj7QJUqVRQUFGSUV6xYoeTk5CzPiYmJ0VdffWWUW7duLX9//1z3DcB58DwAFG88DwDO57333tPGjRuNsr+/v7788ku1bt3aZn22bdtWbm5uklLXevzpp5+ybL9u3TpdvnxZUuoMzbTPE/gXISScTvv27VW+fHlJqVOuX3nlFePhPr3Nmzdr6dKlRrlfv3557vfOO+9UaGioUR49enSmu2AdOnRIs2bNMso9e/YskAVwAaRy1H3g0UcfNY6PHTumjz/+ONO2iYmJeuWVV4yA1MXFRYMHD85z3wCcA88DAHgeAJzHpk2b9MUXXxhlPz8/zZ8/3/R/tS1UrFhR999/v1F+++23M50YcfbsWU2YMMEot2/f3mqzO6QihITT8fT01MiRI43ytm3b9H//93+mdVaSkpK0ZMkSDR061PjNZHBwcKZTscPCwhQSEqKQkBCFhYVl2veoUaOMtSTCw8PVr18/0/oPFotFP/74owYMGKDY2FhJqTtnDRo0KO9fMAArjroPDBw40DT74YMPPtD48eOtdug+dOiQBg4caPqNaN++fdW0adPcf7EA7IbnAQA8DwCFR3Jyst5++21ZLBZJqSH/+++/r7p16+bruv369TPuA1m9QTVixAiVKFFCknT+/Hn17t1bO3fuNLXZsWOH+vTpo4sXL0qSSpYsafo5BmYFs3UQUMAeeeQR7dmzR4sXL5aUGkC0b99eISEh8vX11bFjx4ypzpJUpkwZTZ8+Pd+7YTVv3lwjRozQlClTJEkHDx5U165dVadOHfn7++vUqVOm3354eXlp2rRpKlWqVL76BWDNEfcBb29vffLJJ+rbt6+io6MlSV9++aUWLVqk4OBg+fr66uzZs1Y75D300EMaPXp0nvsF4Fx4HgCKN54HAOewdu1anTp1yih7e3tr3rx5mjdvXo6vERAQoEmTJuWp/1q1amn8+PEaNWqUUlJSFBERoX79+qlatWqqWLGizp49a5ok4erqqrfffltVq1bNU3/FASEknNabb76psmXLau7cuUpMTFRKSkqGu1TWrl1b06dPV61atQqk30GDBsnHx0fvv/++Mbvh6NGjVu0qVqyoyZMn85tOwIYccR+oW7euli1bppdeekl79uyRlPqq1YEDB6zaenl5afDgwXr66aeNNWMAFA08DwDFG88DgOOtXbvWVI6Njc3xZlG3pJ3VnBddunSRp6en3njjDeOXEqdPn7b6JYSfn5/eeustdejQIV/9FXWEkHBaLi4uGjFihLp06aJly5Zpy5YtOnfunG7evCk/Pz/Vr19fHTt2NG4KBalv375q27atlixZok2bNikiIkIxMTHy9fVVcHCw2rZtq+7du8vX17dA+wVg5qj7QNWqVbVo0SJt3bpV3333nfbu3asLFy4oPj5e/v7+qlq1qtq0aaPOnTurUqVKBdYvAOfC8wBQvPE8ADjW8ePHHT0ESVLHjh3VokULLV26VBs2bNCpU6d09epVlSxZUrVr11abNm302GOPsSFVDrhYbr1cDwAAAAAAAAA2wMY0AAAAAAAAAGyKEBIAAAAAAACATRFCAgAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE0RQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANiUu6MHAAAA4AzCwsIUGRmZ7+vMnz9fzZs3L4ARAfYTHx+vRx99VOHh4erfv7/GjBljfLZjxw49/vjjRvnIkSP56iskJMQ4HjJkiIYOHZrra8yYMUMzZ84ssDFlZ9iwYVq3bp1atGihzz//XK6uzOUAACC3+N8TAAAAKOYmTpyo8PBwBQQEaNiwYY4ejtMZNWqUvLy8tH37ds2ZM8fRwwEAoFBiJiQAAEA65cuXV3BwcJ7O9fPzK+DRALb166+/auHChZKk4cOHy9fX18Ejcj5BQUEaOHCgZs2apenTp+uee+5RvXr1HD0sAAAKFUJIAACAdFq1aqV33nnH0cMAbC4uLk7jxo2TJAUHB6t79+4OHpHzevrpp7V06VJdunRJb7zxhhYuXMhr2QAA5AL/awIAAADF1CeffKIzZ85IkkaMGEGoloWSJUtq8ODBkqS9e/dq2bJlDh4RAACFC08ZAAAAQDEUFRWlefPmSZLq1KmjsLAwxw6oEOjZs6fKlCkjSZo5c6bi4+MdOyAAAAoRQkgAAACgGPr0008VGxsrKTVcQ/ZKlCihhx9+WJJ0/vx5Yy1NAACQPdaEBAAAsKFXXnlFK1eulCR9/PHHatOmjebPn6/FixcrIiJCpUuXVq1atdSxY0f16dPH6vwbN27om2++0aZNm/T3338rKipKnp6eCgwMVNOmTfXAAw+oZcuWuRrTb7/9puXLl2v37t26cOGCfHx8VK1aNT3wwAPq2bOnfH199dVXX+mtt96SJA0ZMkRDhw41XWPFihUaPXq0pNRNOzZs2JBtv2FhYYqMjJSUuhtzt27dsmwfGRmplStXasuWLYqIiFB0dLR8fX1VuXJltWzZUo888ohq166d5TVmzJihmTNnSpJef/119e3bVwkJCVq1apXWrl2rY8eO6dKlSypVqpRq1qypsLAwPfbYYypVqlS2X88tO3fu1Hfffafdu3crMjJSiYmJ8vPzU3BwsNq0aaNu3bqpdOnSpnPGjRunr7/+WlLqZkZbtmyRp6dntn198cUXmjBhgiSpRo0aWrduXY7HmVZMTIyWLl0qyRys5UdycrJGjBhhGlP//v01ZsyYfF87t9L+vedFVt+fPXv2NGaQzp8/X48//jivsQMAkAOEkAAAAHb02muvafny5Ub50qVLunTpkkJCQqzarl69Wu+8846ioqJM9fHx8bp+/bqOHz+uJUuWqEWLFpo0aZIqVqyYZd9RUVEaNWqUNm/ebKqPjo5WdHS09u3bpwULFuiDDz7Ix1eYf8nJyZo2bZrmzZunhIQE02dXrlzRlStXdODAAX322Wfq2bOnxowZk6MAT5IOHz6sF154QUePHjXVX758WZcvX9auXbs0d+5cTZ48Wa1atcryWqdPn9arr76qnTt3Wn126+9127Zt+vjjjzV+/Hi1bdvW+PyRRx4xQsirV6/q119/NX2emVWrVpmukVerVq3SjRs3JEnNmzfP967uFotFo0ePNgWQAwYMMILqoqR27dqqU6eOjh49qsjISG3cuFH333+/o4cFAIDTI4QEAACwk5UrV2Y6c61Lly6m8syZMzVjxgxTXeXKlVWlShXFx8fr2LFjiomJkSRt375dPXr00Lx58zKdGRgVFaXevXvr5MmTRp2Hh4dCQkLk5eWlo0ePKjo6WmfOnNGTTz5ZIDPj8iIhIUHPPvusKSh1cXFR7dq1FRAQoGvXrik8PFxJSUlKTk7WwoULFR4erjlz5qhkyZJZXvvkyZOaOXOmrly5IkkqV66catWqpbi4OB07dsx4Nfny5ct65plntHLlykz/PA8fPqz+/fsrOjraqPPw8FBwcLBKliypkydP6uLFi5JSg9Nhw4ZpypQp6tixoySpYcOGCg4OVnh4uKTUwDm7EPLYsWM6cOCAJMnV1TVff0erV682ju+99948X+eWN954wxSQDhw4UK+88kq+r5tX1apVU+vWrXPc/rffflNycrKk1Jmht912W5bt77nnHiPIXr16NSEkAAA5QAgJAABgJ7cCyAcffFBDhgxRpUqVdPToUa1fv16333670W7NmjWmALJJkyYaPXq0GjZsaNQlJCTou+++06RJkxQdHa0LFy5oyJAhWrZsmXx8fKz6Hj16tCmA7NGjh1544QWVLVtWkpSYmKiVK1dq4sSJunz5svG6qb2NHz/eFED26NFDQ4YMMc3yvHr1qubOnavZs2crJSVFu3bt0tixYzV58uQsr/3ll19KSg2oXnvtNd1zzz1ycXGRlPp68owZM4yvOz4+XjNmzNC0adOsrhMbG6vnnnvOCCDd3Nw0ePBgDRw40PQa9/r16/Xmm2/qwoULSk5O1quvvqomTZooMDBQUupMxkmTJkmSNm7cqOvXr2f5Gvg333xjHLds2TLbma+ZuXDhgv7880/TtfJj4sSJWrx4sVF2dAApSV27dlXXrl1z1Hbq1KnasmWLUR43bpzq1auX5TmtWrXSZ599JknavHmzEhIScjwbFwCA4ooQEgAAwI7CwsI0ZcoUI/y6/fbbTQFkTEyM/ve//xnl+++/Xx988IHc3c2PbZ6enurWrZsaNWqkXr166erVqzp+/Lhmz56t4cOHm9pu27ZNmzZtMspPPPGERo0aZWrj4eGhnj17qk6dOurfv7/Va9D28Mcff5jCrJdffllPPvmkVTs/Pz+NHDlSISEhGjlypCTp22+/Vffu3fWf//wnyz6qVKmiJUuWGOHrLb6+vho9erQuXryoNWvWSJI2bdqUYbg0b948RUREGOXJkyfrwQcftOqrbdu2qlSpknr37q24uDjFxMToq6++0ogRIySlzn59//33lZSUpISEBK1du1Y9evTIcNwWi0XffvutUe7evXuWX2dWduzYIYvFIkny9vZW9erV83ytW6/N35LR91ZWVq9erb179+a639OnT+f6nIysWrVKH3/8sVF+4okncjTDtH79+sbxjRs3tG/fPjVt2rRAxgQAQFFFCAkAAJDOypUrjc1kcmr+/Plq3rx5tu2eeeYZI4DMyLJly3Tt2jVJUqlSpTRhwgSrADKt2rVr6/nnn9e4ceMkSQsXLtTgwYPl5eVltEm7g2/VqlWNECwjjRs31pAhQzRlypRsv5aCNnfuXOO4SZMmGQaQaXXq1Ek//vij1q5dK0n67LPPsg0hhw0bZhVAptWrVy8jhIyNjdWZM2dMr2SnpKSYgtJOnTplGEDeEhoaqs6dOxubwPz444/Gn39AQIDuvvtubdy4UVJqkJpZCLljxw6dPXtWUmoIm5P1IzOTdhZknTp18rypyqeffqpZs2YZ5dwGkFJqmFhQgWJu7dq1S6+99ppRvueee/TSSy/l6Nxy5cqpXLlyxnqtf/75JyEkAADZYBs3AAAAO/Hx8VGDBg2ybJN2zcj77rtPZcqUyfa6nTt3lpubm6TUTWbSzixLTEw0vWrarVu3bF8b7d27t7y9vbPttyDFxcWZXsPO6aYraWet/fbbb4qPj8+0raura7Zr99WpU8dUvn79uql88OBBnTt3zij36tUr2zE+/vjjeumll/TRRx/pww8/NH2W9uv8/fffTddOK+16i506dcrXq7/Hjh0zjuvWrZuna8yfP1/vv/++Uc5LAOlIERERGjJkiDHjt1atWpoyZUquAtng4GDjOP1GRwAAwBozIQEAANIpX768KWDIiZzsLhwcHJxlyJGQkKD9+/cb5cw2RUmvdOnSqlatmk6cOCFJ2r17t1q0aCFJpg1XJOVotlapUqXUuHFjbd26NUf9F4R9+/YpMTHRKOf0a08b6iYmJuqvv/7K9GusUqWKfH19s7xe6dKlTeW0Y7o1zls8PDzUqFGjbMcYHByc6ffTraA5OjpaKSkp+u677/TUU0+Z2sTFxZnC6fzsii3J9Cp5uXLlcn3+0qVLNWHCBKMcHByc5wByyJAhGjp0aK7PmzFjhmbOnJmnPmNiYjR48GBdvnxZUurf+axZs7JcjzMjaf/s0v6ZAgCAjBFCAgAApNOqVSu98847BX5df3//LD8/d+6caS3GqVOnaurUqbnu5/z588ZxZGSk6bMaNWrk6BohISF2DSFPnTplKudkhmFGLly4kOlnOZlVemtG6S0pKSmm8pkzZ4zjoKCgfG9G4unpqc6dOxub5qxevdoqhFy/fr1u3LghKXXmYto1RPPi1u7gknIdvEnS2LFjjTUlJSk8PFzr1q1Thw4d8jUue0hOTtbw4cP1999/S0r9+546dWqO/12klTbQTrtLOgAAyBivYwMAANhJdrPwrl69WiD9pL1OTEyM6bOchk5ZrZtoC7fWwcyvrMKgtOtk5lXaP8+8BHgZSTuz8ciRIwoPDzd9nvZV7G7duuW7v5s3bxrH2X1PZuRWMJv2lf233nqrwL5/bWnixImm1/5ffvlltW7dOk/XSvv3n3a2MQAAyBgzIQEAAOwku/XmkpKSTOWGDRvm6DXv9NKua1iiRAnTZ2lnsGUlvzP8civ9157XYKh8+fIFMZxMZbWpUF6FhoYqJCRER44ckZS6Qc0LL7wgSbp06ZIxI9Xd3V1dunTJd39pv4a8bkrz3//+V126dFGfPn1ksVh08eJFTZw40SYziAvKggULjBmnUmqgO2DAgDxfL+2s2bz+OQIAUJwQQgIAADiJ9OsRPvvsswoLC8vXNdOHmNevX1fJkiWzPS/9DMqs5DTYzGrTmPRf+/Tp0/M0S8/W0o4z/aY1+dGtWzdNnDhRkrRmzRojhPz++++VnJwsKXX35oCAgHz35ePjY8wYjYuLy/X5ffr00euvvy4XFxf17NnT2C185cqV6tSpk+6+++58j7Ggbd26VW+//bZRvuOOO/Tmm2/m65ppZz/6+Pjk61oAABQH/MoOAADASVSoUME0S+3s2bP5vmb16tVN5Zzu4nv69OksP087zvSbt2QkJSUly9d1K1SoYCoXxNduC2nHGRkZmaOvXZIWL16sX3/9VSdOnMjwnM6dO8vd3d247qFDhySlrgd5S/fu3fMzdEPatTHzspbh2LFjjb//F198UYGBgcZnb7zxhrF+pbM4duyYhg8fbsy2rVixombOnJnv2b5pv5/zMmMZAIDihhASAADASfj6+qpu3bpGefv27Tk6LzExUWPGjNHUqVO1ePFiU9BYuXJlVa5c2Sj/9ttv2V7PYrFo165dWbZJG+DkJHTKLHy75Y477jAFmzn92o8ePaoxY8boww8/1DfffGPseGwraXfDvrUbd3bOnDmjsWPH6v/+7//UsWNHHTt2zKpNuXLldM899xjl9evX69q1a8bfg7+/v9q0aVMAX4FUrVo14/iff/7J17VKly6tMWPGGOXIyEi9//77+bpmQbpy5YoGDx5srDnq5eWlDz/80BSc5lXaP7u8bGwDAEBxQwgJAADgRO69917jeMOGDabdmDOzatUqLV++XB9//LHGjh1rFXJ17NjROF6xYkW2r1pv3rxZERERWbZJO5suNjY22zBrzZo1WX7u7+9vCvi+/vrrHM0y/PTTT7V8+XJ98MEHGjNmjNVu1gXttttuM70SvXTp0mzPSfu1+/v7Kzg4OMN2aWc6/vzzz9q0aZMxe69Lly7y8PDI67BNateubRyn35U8Lx588EFTQLpgwQL98ccf+b5ufiUmJmro0KGmWb0TJkxQgwYNCuT6af/satWqVSDXBACgKCOEBAAAcCJ9+/Y1wqakpCQNHz48y9AwIiJCkydPNsqVKlXSfffdZ2rz+OOPG9eMiorS2LFjMw3roqKi9L///S/bcYaEhJhmLqbd8CO9w4cPa+7cudle84knnjCOT5w4obfeeivL9SY3bNig1atXG+X27dsXyJqJWXF3d1evXr2M8sqVK/Xrr79m2j4yMtL0tT/66KOZbmLSpk0b+fv7S5IOHTqkr7/+2vgs7Q7a+dW4cWPj+MiRI8aak/nxxhtvGGuNWiwWvfrqq1muAWoPY8eO1e+//26Un3vuOXXq1KlArn3hwgVduHDBKDdt2rRArgsAQFFGCAkAAOBEKlSooOHDhxvl/fv3q2fPntqyZYspkEtOTtbq1avVu3dvXblyxah/+eWXrda6q1Spkl588UWjvGbNGg0ePNhqluWOHTvUq1cvRUZGZjvOgIAAU5j1+eef69NPP1VCQoJRFxcXp4ULF6pXr16Ki4sz1jzMTPv27U0zQRcvXqxBgwZZrWMZExOjWbNmadiwYcafScmSJTVy5Mhsx10QBgwYYLx+a7FYNGTIEM2bN89qk5dt27apX79+xqvAgYGBeuqppzK9roeHhx566CGjvGfPHkmpu2fXq1evwMbfrFkzI0COi4vT4cOH833NoKAgDR061CifPHlSM2bMyPd182r27NlasWKFUe7atauGDRtWYNfft2+fcVymTBnVr1+/wK4NAEBRxe7YAAAATuapp57SiRMntGzZMkmpG2s8+eSTKleunGrWrKmEhASdOnXKaqOXp59+Wg8++GCG1xwwYICOHz9u7GS8adMm/frrr6pbt67Kli2riIgII3z09PSUn5+fLl68mOU4R44cqccff1zJycmyWCx6//33NXv2bNWuXVuJiYk6ceKEsV7kbbfdpjvuuEMLFizI9HouLi569913NXDgQB04cMAY56ZNm1StWjVVrFhR0dHROn36tCnw8/Dw0OTJk01rHdqSr6+vPvjgAw0cOFBRUVGKj4/XxIkTNX36dAUHB6tEiRI6deqUzp07Z5zj7e2tadOmZbuBSffu3TV//nxTXbdu3Qp0/GXKlFHTpk2NWYJbtmxRaGhovq/bv39/ffvttzp48KAk6bPPPtMDDzxQINfOjSNHjmjKlClG2d3dXW5ubho5cqTi4uKUlJSUo9mfWc3e3bx5s3EcFhaW6exWAADwL0JIAAAAJ/T2228rJCREM2bMMGbSRUVFKSoqyqqtr6+vXnrpJf33v//N8prjxo1TlSpV9OGHHyouLk4Wi0Xh4eGmNmXKlNGkSZM0d+7cbEPIpk2basqUKXr99deNMV67ds2YwXfLvffeq4kTJ+qzzz7L9uv28/PTggULNGHCBC1btswIi06fPp3hjt3Vq1fXhAkT7P46bEhIiJYsWaKXX37Z2DwmNjZWe/futWpbo0YNTZ48WQ0bNsz2uvXq1VP9+vWN3bE9PT1NsyMLSteuXY0Q8pdfftGgQYPyfU03NzeNGzdOPXv2VEpKipKTkzVmzBgtX74821mwBSk6Otq03EBSUpJpVmRBSBtCFuSr8gAAFGWEkAAAAE7q8ccf18MPP6xvvvlGW7duVXh4uC5fvqyUlBT5+fkpJCREd999t7p27aqyZcvm6JpPP/20OnXqpCVLluiXX35RZGSkkpOTVaVKFbVr1059+vRRuXLlcrSGo5S66U2zZs20ePFibdy4UadOnVJsbKwCAwPVsGFDPfzww1ZrVGbHy8tL48aN05NPPqlVq1Zp+/btOn36tKKjo+Xu7q6AgACFhoaqXbt2at++vdXr5/ZSpUoVLViwQJs3b9batWu1a9cuXbx4UfHx8SpbtqxCQ0PVoUMHderUKVdjbNeunRFChoWFmTYBKigPPPCAJk2apOvXr2vPnj2KjIxUUFBQvq/bsGFD9e3b15jNefjwYX366ad69tln831tZ7Fr1y5j1nDNmjV11113OXhEAAAUDi6WrFb7BgAAQLHUr18/7dy5U5I0ZMgQ03p/sK2nnnrKmGk3d+5ctW7d2ib9vPfee5ozZ44kafjw4XrmmWds0k9RM3bsWGNZg/Hjx6tHjx4OHhEAAIUDi5cAAAAATuLChQvatm2bJKlq1apq1aqVzfoaMGCAvL29JUmLFi1SUlKSzfoqKqKjo40d2StVqqSuXbs6eEQAABQehJAAAACAk1i0aJGxDmavXr2MXaxtITAwUAMGDJAknTt3Tj/88IPN+ioqlixZops3b0qSnn/+eYctBQAAQGFECAkAAAA4gQ0bNmj27NmSUjfoeeyxx2ze51NPPaXy5ctLkj766KMc7RpdXMXExBibK4WGhjILEgCAXCKEBAAAABzg+++/V+fOndW/f3916NBBzzzzjBISEiRJL7/8snx9fW0+Bl9fX73xxhuSpOPHj+ubb76xeZ+F1bx583TlyhW5ubnprbfekqsrP0oBAJAb/M8JAAAAOECVKlUUHh6u7du36+TJk0b9Y489pkcffdRu42jbtq0xq2/atGmKiYmxW9+Fxblz54wd4wcNGqTQ0FAHjwgAgMKHEBIAAABwgJo1a6pRo0YqWbKkfHx81KhRI02aNEnjxo2z+1j+97//qXbt2rpw4YJmzJhh9/6d3YQJExQbG6tmzZppyJAhjh4OAACFkovFYrE4ehAAAAAAAAAAii5mQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANgUISQAAAAAAAAAmyKEBAAAAAAAAGBThJAAAAAAAAAAbIoQEgAAAAAAAIBNEUICAAAAAAAAsClCSAAAAAAAAAA2RQgJAAAAAAAAwKYIIQEAAAAAAADYFCEkAAAAAAAAAJv6f98wUzxB3G13AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 300\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime, limit_k=250)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAAP6CAYAAACAYPNiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZzTdP7H8XeH4ZBTUUTxBgXkFA9g1XVXRVTWYwXEn4r3fa7KCqILKh6ICuuxIooHiCCKgqAIgoIiKIJyyw1yCQwDAwMDzDAz7e+POKWd6UzTNmmS9vV8PHjQZJJvPk2Tb9JPv/l+fYFAICAAAAAAAAAAsEGG0wEAAAAAAAAASF0kIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG0yk7WhV199VYMHD9YxxxyjadOmJWuz+vTTT/XEE09IklasWBHz+osWLdKYMWM0d+5cZWVlKRAIqH79+mrevLmuvPJKnXfeefL5fKbLCwQC+uabbzRhwgQtXrxYO3bs0CGHHKL69eurffv26tKli5o2bRpznAAAAAAAAIAb+QKBQMDujSxatEjXXXedCgsLk5qA3LRpk6666irt3r1bUmwJyMLCQj3zzDP6+OOPK1zu3HPPVf/+/XXkkUdGLTMrK0sPP/ywfv3113KX8fl8uvnmm/XII4+oSpUqpuMFAAAAAAAA3Mj2BOTGjRt17bXXKjs7W5KSloDMyclR9+7dtWbNmuA8swnIQCCg+++/X998801wXtWqVdWkSRNVqlRJq1atUl5eXvBvDRs21Mcff6zatWtXGM8111yjDRs2BOcdeuihOvnkk7V//36tWLFCRUVFwb/94x//0KBBg0zFa7XSCdKMDJ7UBwAAAAAASEd+vz9s+owzzoi5DFsfwV65cqVuv/32YPIxWbZs2aI777wzLPkYi/feey8s+XjdddfpkUceUa1atSRJ+fn5GjZsmF5//XUVFRVp7dq1evzxx/W///2v3DJ79+4dTD5WrVpVvXv31tVXX63MTOMjyM7O1vPPP6+vvvpKkjRx4kSddtppuvHGG+N6D1YqfaABAAAAAAAAZtnWtG38+PHq1q2bsrKy7NpERDNnztRVV12llStXxrV+Tk6O3njjjeD0tddeqyeffDKYfJSkatWq6e6771a/fv2C86ZOnap58+ZFLPOHH37Qd999F5x+4YUXdO211waTj5JUr149/fe//9U///nP4LzBgweHtbQEAAAAAAAAvMbyFpBZWVkaNGiQPv/8c6uLrtDu3bs1ePBgDR8+PKEWe59++qn27t0ryXhEumfPnuUu26VLF02ZMiWYXHz//fd1+umnl1lu+PDhwdfnnnuuOnXqVG6ZTz75pH744Qft2LFDO3fu1Lhx43TDDTfE+W6skQqPYIceE6nwfgDEjnoAgERdAIB6AAD1QKyseDLW0gTkm2++qbffflv79u0LzmvYsKE6duyoIUOGWLmpMGPGjNHLL7+sXbt2BefVq1dPN910k15++eWYypo0aVLw9aWXXqrq1atXuPw111wTTEDOmDFD+/btC1snNzdXP/74Y3C6S5cuFZZXvXp1XXHFFXr//fclSZMnT056AjIjIyN4cGVkZKhNmzZJ3b7VioqKtHDhwuB0y5Ytw1qfAkh91AMAJOoCANQDAKgH4jF//vywPFE8LE3zvvvuu2HJx6uvvlpjxozRCSecYOVmyvjwww/Dko8dOnTQuHHj1KpVq5jK2bVrl5YtWxacPvfcc6Ou0759e1WqVEmS0TdkaLJRkubMmaPi4mJJxgjX55xzTtQyQ5eZN2+ecnNzTcUPAAAAAAAAuI0t7UxbtGihESNG6Nlnn1XNmjXt2EREJ554ov73v//pjTfeUL169WJef8WKFQodFLx58+ZR16levbqOP/744PTixYvD/r58+fLg62OPPVZ16tSJWmbTpk2Dr/1+v3777beo6wAAAAAAAABuZGkb07Zt26pz58668MIL5fP5rCy6Qs2aNdMtt9yiyy67LKFms+vWrQu+rlKlio4++mhT6x177LH6/fffJSk40nWkMs22BK1Xr56qVaum/Px8SdL69et19tlnm1oXAAAAAAAAcBNLE5CDBw+2sjjT+vfvb0k52dnZwdextKAMXTa0DEnatm1bXGUefvjh+uOPPyKWCQAAAAAAAHgFvWyGCO1HslatWqbXC33MvHR/jaHTsZQZuuzu3btNr2eHoqIiR7efqJI+OMubBpD6qAcASNQFAKgHAFAPOIUEZIgDBw4EX1erVs30elWqVIlYhiQVFBQkXGZoGcnm9/vDRodKBUuWLHE6BAAOox4AIFEXAKAeAEA9kCy2DELjVYWFhcHXsQwrHtrvZOnWgqHTsZRZMrJ2pDIBAAAAAAAAryABGSI06ef3+02vF5ogrFy5siVlhjYBLl0mAAAAAAAA4BU8gh0i9BHpWB57Dl22atWqtpeZTBkZGWrZsqVj27dCcXFxWJPqFi1ahCWGAaQ+6gEAEnUBAOoBANQD8Vi8eHFMjeoiIQEZ4tBDDw2+zsvLM73e3r17I5YhSXXq1ImrzNBlS5eZbKGPmKeCSpUqpdx7AhAb6gEAEnUBAOoBANQDycIj2CHq168ffL1jxw7T62VnZwdfH3HEEZaUGbpsvXr1TK8HAAAAAAAAuAkJyBAnnHBC8PW+ffu0fft2U+tt3Lgx+Pqkk04K+9uJJ54YfL1hwwZT5W3btk35+fkRywAAAAAAAAC8hARkiGbNmsnn8wWnly1bFnWdvXv3hiUWmzZtGvb35s2bB1+vX79e+/fvj1pm6HZ9Pp+aNGkSdR0AAAAAAADAjUhAhqhZs6aaNWsWnP7xxx+jrjN79uxgR5yVKlVS27Ztw/5+xhlnBPsSKC4u1s8//xy1zNDtNmvWLKwfSQAAAAAAAMBLSECWcvHFFwdfT5gwIWqLxY8++ij4+uyzz1bt2rXD/l67dm21b98+OD169OgKy9u7d68mTJgQnL7kkktMxQ0AAAAAAAC4EQnIUrp06aJDDjlEkrR9+3b169ev3GXHjBmjH374ITh94403Rlzu+uuvD76ePn26xo4dW26ZTz31lHJyciRJ1atXV9euXWOKHwAAAAAAAHAT1yYgL7jgAjVp0kRNmjTRBRdckLTtHnHEEbr99tuD02PHjlWPHj3CRqXOz8/XkCFD9OSTTwbnnXfeeTrvvPMilnnBBReoXbt2wek+ffrorbfeUkFBQXDe9u3b9fDDD4e1frz33ntVt25dS94XAAAAAAAA4IRMpwNwo7vvvluLFy/Wd999J0n68ssv9fXXX6tJkyaqUqWKVq1apT179gSXP/bYYzVgwIAKy3zppZd0/fXXa+PGjSoqKtKgQYM0dOhQnXLKKTpw4IBWrFihwsLC4PLnn3++brvtNlveHwAAAAAAAJAsrm0B6aTMzEy9/vrr6tq1a3BU7MLCQi1ZskTz5s0LSz62adNGo0aNitpSsX79+hoxYoROP/304Lw9e/Zo3rx5WrJkSVjysWvXrnrttdeUkcHHAwAAAAAAAG+jBWQ5qlSpoueee07XXHONxo0bp9mzZysrK0sHDhxQ3bp11apVK1122WXq2LGj6UTh0UcfrVGjRmnq1Kn66quvtGjRIm3fvl0ZGRmqX7++zjjjDHXr1k2nnXaavW8OAAAAAAAASJKkJCA7d+6szp07x7TOtGnTEt5uu3bttGLFioTKaNWqlVq1apVwLCV8Pp86duyojh07WlYmAAAAAAAA4FY84wsAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAC4y/r10tSp0ubNTkcCC5CABAAAAAAAgHtMniw1by517Ci1aCH9+KPTESFBJCABAAAAAADgHv36SXv3Gq937pQGDHA2HiSMBCQAAAAAAADc46efwqcnTHAmDliGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAN5RXCy9/LJ0yy3SRx85HQ1MyHQ6AAAAAAAAAMC0Xr2kgQON18OGSYWF0o03OhoSKkYLSAAAAMCM/fulDRukvXudjgQAgPRWknwsccstzsQB00hAAgAAANEsWya1bi2dcILUrJk0f77TEQEAgBJ+v9MRIAoSkAAAAEA0L70krVplvN6wQXr2WWfjAQAA8BASkAAAAEA0778fPj12rDNxID3t3CmtXGl0AwAAgAeRgAQAAAAAt5o2TTr5ZKlJE+mMM6S1a52OCACAmJGABAAAAAC36ttXyskxXi9bJg0e7Gw8AADEgQQkAAAAALjVrFnh06VHfgUAwANIQAIAAAAAAACwTabTAQAAACBBP/wgLV0qnXuu1Ly509EAAAAAYUhAAgAAeNlbb0l33228rlpVmjRJOv98Z2MCAAAAQvAINgAAgJfdf//B1wUF0uOPOxcLAAAAEAEJSAAAAC8rKgqfnj3bmTiAePz2mzR6tLR8udORAAAAG/EINgAAAIDkGz9e6tZNOnBAqlZNGjdOuuQSp6MCAAA2oAUkAAAAgOR77DEj+ShJ+fnSE084Gw8AALANCUgAAAAAyVf6set585yJAwAA2I4EJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGCbTKcDAADAcUVF0oQJUiAgXXmllMnlEQAAAACswjcsAEB68/ulCy6QfvjBmP7rX6XvvpMyeEgAAAAAAKzAtysAQHr77ruDyUfJeD19umPhAAAAAECqIQEJAEhvr79edt5rryU/DgAAAABIUSQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgDSWyDgdAQAAAAAkNJIQAIAAAAAAACwDQlIAEB68/mcjgAAAAAAUhoJSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAybF/v7RmjbR7t9ORAAAAAACSiAQkAMB+q1ZJbdpIJ58sNW4s/fij0xF5T16edMst0tFHSxdeKG3Y4HREAAAAAGAKCUgAgP1eeUVascJ4nZUl9evnaDie9Npr0rBh0tat0rRp0sMPOx0RAAAAAJhCAhIAYL/Bg8Onv/7amTi87IknwqfHjnUmDgAAAACIEQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQDeVlwsDRok3XmnNG6c09EAgLfNnSu1aCHVqyf17i0VFjodEQAASAEkIAEA3tajh/Fv6FCpc2fp00+djggAvCkQkK67TvrtN2n7dumFF6SJE52OCgAApAASkAAAb3v11fDpO+5wJg4A8LrFi6XVq8PnXX+9M7EAAICUkul0AAAAWGrXLqcjAJAuXn9d2rJFuvZaqWVLp6NJ3J49Zeft25f8OAAAQMohAQkASG+BgNMRAPCqBx80/h80yOg7MRWSkAAAADbgEWwAAErz+ZyOAICXFBRIffs6HQUAAIBrJa0F5KuvvqrBgwfrmGOO0bRp02zZxpYtWzR69GjNnDlT69evV35+vurVq6eGDRuqU6dO6tSpkw455JBy1x87dqx69+6dcBwrVqyIOL9fv34aOXJkTGUdf/zxmjp1asIxAQBiQKtIALH6/HOnIwAAAHCtpCQgFy1apKFDh9q6jdGjR+uFF17Q/v37w+Zv3rxZmzdv1syZM/X222/rxRdfVOvWrW2NpTxLly51ZLsAgArQ2hEAAAAAbGV7AnLjxo269957VVhYaNs2hg0bpv79+wenfT6fTjnlFB166KFat26dtm3bJklat26dbrrpJo0cOVLNmzcvU079+vV17rnnxrTt7OzssBaP55xzTsTlAoFA2HJt27ZVlSpVopZ/5JFHxhQPAAAAAACAq/34ozR2rHTiidI990iVKjkdEWxmawJy5cqVuv3225WdnW3bNhYsWKAXX3wxOH3WWWfp+eef1/HHHy/JSPxNnTpVffv21c6dO7V//37de++9mjx5cpnHsc8555xyE4iR7N+/X9dcc01wulGjRnr11VcjLrt+/Xrt+3MUwcqVK+u9995T5cqVTW8LAAAAAADA82bMkM4/X/L7jelFi6S333Y2JtjOtkFoxo8fr27duikrK8uuTUiS+vfvr+LiYklS8+bN9c477wSTj5LRGrJjx44aNmyYatSoIUnaunWrhg8fnvC2n3766WCrxmrVqunVV19VrVq1Ii67bNmy4OtGjRqRfATSydatUr9+0osvSnv3Oh0NAACR0SUFACAZevQ4mHyUpKFDpQMHnIsHSWF5AjIrK0u9evVSz549y/THaLWFCxdqwYIFwek+ffqoWrVqEZdt2rSp7rvvvuD08OHDg4nLeHz99dcaN25ccPqxxx7TKaecUu7yy5cvD4sFQDkKC6U9e6QEzk9Xyc2VWreWnnxS6tVL+utfGeAEAAAAQPr65Zey82zOH8F5liYg33zzTV1yySX6PGQUwIYNG+ruu++2cjNBX331VfB1o0aN1KZNmwqX79q1qzIzjafOc3JyNGfOnLi2m5ubq6effjo43bZtW/3f//1fheuEtoAkAQmU47ffpJYtpdq1pfbtpfXrnY4ocW+9Jf3ZD60kaf586fvvnYsHAAAAAIAkszQB+e677wb7OZSkq6++WmPGjNEJJ5xg5WaCfvrpp+BrM3031qlTRy1atAhOT58+Pa7tDhw4UDt27JAkValSRc8++6x8UR5ZIQEJmNC3r1QyWNMvv0gDBzobjxWGDi07b+rU5McBAAAAAIBDbOkDskWLFhoxYoSeffZZ1axZ045NqLCwUGvXrg1ORxrVOpImTZoEXy9evDjm7a5YsUJjxowJTt98881RE6w5OTnBkbhLxwAgxNix4dOvv+5MHAAAAACS74cfpObNpQYNpJdeCu8nEICnWToKdtu2bdW5c2ddeOGFUVsEJmrTpk0qLCwMTpttZXnssccGX2/YsCHm7b788svy/1kJ1qtXz9Tj5aGtH+vVq6datWpp0qRJmjRpkhYtWqTt27erevXqOvroo3X22Wfr6quvVsOGDWOODYAL5OYafTweeqjTkQAAAADeUVwsde16sPuinj2lv/xFOvdcZ+NKVfn50kMPSR9+KB17rPH/mWc6HRVSmKUJyMGDB1tZXIWys7PDpuvVq2dqvdDlduzYIb/fr4wMcw1B582bpxkzZgSn77zzzuDI2hUJTUBmZmbqsssu07p168KWyc3NVW5urpYvX67hw4frhhtu0KOPPhrssxKAB/TvL/3nP8Yvtb16SS+84HREAAAAgDdMnhzed7ok3XOPFMeTizBh9Gijv3rJ6Abr9tulkEF+k46BOlOeZ7Nbubm5YdO1a9c2tV6tWrWCrwOBgHbv3q1DTbZUGjJkSPD1UUcdFXXgmRKhCcgtW7YEX9erV0/HHXecAoGAfv/9d+3atUuSVFxcrGHDhmn16tUaMmSIKleubGo7dikqKnJ0+4kqPdp5IqOfw16RKiTPHH9//KHMxx8/OD1ggIquu06VJJVuD+73++X3yvuyiJ2frZmyK6oHMgKBMv2R+AMB131Gnj4/YCuODfMSuScwc9Ps+f1eXJzU44lj1xz2k7X4buBevqwsVSo9c8kSjnebZN5yS/iMhQtVtHGjdPTR9m87wryioiIp5LOOVvclUjdSDzjDswnIgoKCsOlq1aqZWq90Mq90OeVZuXKlvg8ZufaWW25RlSpVTK27fPnysOmWLVuqV69eOuuss4Lz/H6/Zs6cqeeff16///67JGnmzJl67rnn9NRTT5najh38fr8WLlzo2PbtsGTJEqdDQDnOiDDPK8ffcS+9pCNLzcu7/35VKyhQ6dopKytLmz3yvqxi52cbT9mh9UDD3FwdVurvu3NztcZln5GXzw/Yi2MjfrHcE0Taz6V5fb/XWL1akYZKtOt9ceyaw36yF98N3KPuxo06KcJ8jnd7RKpbli1cqAOlW6EmadtLlixRcUiDsWh1n5V1I/VActgyCE0ylM5sm32MuvQjzWYz3aNGjQq+rlmzprp27WpqvQMHDmjTpk3B6YsvvlgfffRRWPJRMuI/77zzNGbMGJ166qnB+aNHjy6TwATgPhn79pWZV2nvXgciQax8PO4BAAbqQwAAYBPPJiBLJxz9JkfHKp24NPN48/79+zVhwoTgdJcuXUyP7l2lShXNnz9f06dP14gRIzRgwIAKt1mrVi0NHDgw+P4CgYA++OADU9sC4EI2D8gFm/C5AQAAAEkT4P475Xn2EexDDjkkbLqgoMDUI9EHDhwIm65atWrUdb799lvtDWnJ1KVLF5NRGjIyMtSgQQM1aNDA1PKNGjXS2WefrZkzZ0qSZs2aFdP2rJSRkaGWLVs6tn0rFBcXhzWpbtGihSpVKtO7CFyqdevWTodgSsZhpR/ilWrWqCHt2VNmfv0jj1Q9j7wvO9n52ZYuu6J6IKNOnTLr165TxxPHnhdihDM4NiKz+57A8/u9nJb7yXxfnt+HScJ+ih/fDdzLV87jsxzvyXPqqadKJ5zgyLZbtmghRbgvDxXtWDB7rFAPxG7x4sWmG/6Vx7MJyDqlDsy8vLywAWbKk5eXF3ydmZlpap2JEycGXzdv3lxNmjSJIdL4nH766cEE5NatW1VQUGAqWWqHVBuJu1KlSin3nlKZZz6rCN1A+Mr5FS8jI0MZXnlfNrLzs41Wdlg9EOFzypA88Rl55vxA0nFsmGP1PYHn93s58Vv6vr77Tnr/fal+ffu3lcLYT9bhu4GLJKMOQoUyMzPL/RzcsO1ox0K8xwr1QHJ4dg/XL3XTsn37dh1tYrSm7Ozs4Ou6deuWmyAokZ+frx9//DE43alTpxgjjc8RRxwRNr1r164y7xkAYAEe9wCA5Jg7V7rgAvqaBACUxbUh5Xm2D8gGDRqE9aW4ceNGU+uFDghz4oknRl3+559/Vn5+fnD6oosuMh9kAkqPzl2jRo2kbBcAAMsFAtJrr0ktWkgXXiitXOl0RAAisfsHmUcf5QsmAESyZYt0+eVSo0bSPfdIEQa4BLzOsy0gK1eurMaNG+u3336TJC1btsxU68Rly5YFX4eONl2e2bNnB1+feOKJOiHG/hC++eYbzZ49Wzk5OcrMzNSLL75oar3QhGrt2rVND3oDAIDrTJki/etfxuvffpM6d5ZC+t0BkCa+/97pCADAnf71L+nLL43XQ4ZIJ54o9erlaEiA1TzbAlKS2rVrF3wd+ph0eXbt2qWlS5cGp9u3bx91nXnz5gVft2rVKsYIjYTniBEjNHHiRE2YMEHbt283tV5J/4+SdMYZZ8S8XQAuUF4rD1p/IN3ccUf49G+/Gf8AAAAgjRkTPv3YY87EAdjI0wnIjh07Bl8vWbIkbBSjSD755BMVFRVJMgaxOfvssytcvrCwMNjCUjJGRopV27Ztg68DgYA+/fTTqOtMmTJFa9euDU5fccUVMW8XQJKV99ga/QsCUqRuUnJykh8HAABAadu3S126GK0Or79e2rXL6YiAlOTpBGSbNm3UvHnz4HTv3r3DRrkOtWzZMr355pvB6W7duqlatWoVlr927VoVFhYGp1u2bBlzjG3btg3ra/Ltt9/W6tWrK9xm3759g9MNGzYMS7QC8BhaOwIAAADROfXD/X/+I40dK61fL40aJT33nDNxpDsabqQ81yYgL7jgAjVp0kRNmjTRBRdcUO5yvXr1Co5kvXLlSt1www1avnx58O+BQEBTpkzRzTffrH1/duRar1493XXXXVFjWLNmTdj0cccdF/P78Pl8evzxx4PTe/fuVffu3TVx4kT5/f7g/MLCQo0bN07XXnutdu7cKcno53LAgAEMBw+kmhdekJo0MW50AAAAkPo2bJDOO0+qVUv6xz+k7GynI0KJt94Kn375ZWficAMnG0/QcCPleT6z1a5dOz388MMaNGiQJGnp0qW68sordfLJJ6tu3bpav369srKygstXq1ZNr7zyimrVqhW17NARsyVjMJh4/O1vf1OPHj00cOBASdLOnTv1yCOPqF+/fjrllFNUVFSkNWvWaPfu3cF1KleurFdeeSWuficBOCDWC+bKlVLXrsaId/Xr2xMTAAAA3OGJJ6QffjBef/WVNGBAeie6AKQd17aAjMVdd92lPn36qHr16sF5q1ev1pw5c8KSj0cddZTeeecdnXnmmabKDR0wpkqVKqpatWrcMd55550aOHCg6tSpE5y3a9cuzZ07V/Pnzw9LPjZq1Ejvv/++OnToEPf2ALhAtMcIAgEe8QAAuEe6PP7288/SiBFSSJ/rgO0+/DB8+s/GKQhBCzggpXm+BWSJ7t27q0OHDvrkk0/0/fffa9OmTcrLy1PNmjXVuHFjdejQQV26dFHNmjVNl1nyyLYUf+vHUJdddpn+/ve/6/PPP9eMGTO0fPly7dq1S5UqVVK9evXUrFkzdezYUR06dFCVKlUS3h4AD1i1yukIAABIH2+/Ld19t5HoqFVLmjJFat/e6agAAEh5SUlAdu7cWZ07d45pnWnTpsW8naOOOkoPPvigHnzwwZjXjeTZZ5/Vs88+a0lZJWrWrKnu3bure/fulpYLAAAAIIp//etgK6s9e6RnnpEmTnQ2JgCGdGmFDaSplHgEGwBcixsp9+NxHwBIH/n54dNffeVMHAAApBkSkABgFxJb3kXiGEA64roFAABsQgISAKxAwiqyWbOk8893Ogq4EYkOAFbZvVvatEkqKnI6EgAAUA4SkAAAe+zcaSQfv/vO6UgAAKnqq6+kE06QjjvOuOZkZzsdEQAAiIAEJADAHgMHSoWFTkcRH1rnIRn27pU++0yaNo1jDu7gxdb8//63tGuX8XrmTGn4cEfDAQBP8+J1AJ5BAhIAYI9ff3U6AnO40YITcnKkM86QunaVLrxQeuABpyMCvGfnTmnZsvB5jz7qTCwAEsc9GZDSSEACgJ24kQIiS/dzY8QIacWKg9NvvMGjo0Cs/H6nIwCA1MITGbARCUgAsEK8F+t0T8IA6eqhh8rO++abpIfhKgsXSqefLtWvbzxWe+CA0xEBAIBkIfmZ8khAAoBdSC4CgHk33yzNny9t22b0IfvZZ05HBFQsO1u68Ubpgguk99/nyzMAABUgAQkAAABn/fGHtGBB+LzrrnMkFDhs+3anIzDvmmuM7hSmT5duvdUYkRsAAEREAhIA7BII0BoCAMzYt8/pCOAWH3zgdATmbN9uJB5D3X679dvZssX6MgG34ukhIKWRgAQAK3DDBMSG5DzgPm64lvXo4XQE5uTmlp23dav127n66sjzt283+o1dtcr6bQKAE9xwDYKtSEACgJNIwgAAgEj++EOaNSvy31q1ki66SGrRQho9OrlxAXbhvhhIaSQgAcBO/JIHAADikZNT/t9KHs0+cEDq2zc58QAAkAASkAAAAAC8hx/5DDyG7V2dO0tZWU5HAbgDLWBTHglIIBk2bJAuvVRq0kTq3VsqLHQ6IgAluNkBkCw5OcbIyY0bS7fdJuXlOR0RADPy86X586VNm6wtd9w46Z57rC3Ty/hRAUhpJCCBZLj9dmnyZGnlSumFF6Thw52OCG6RyjdaXn5vXo4d3kUyPPU99pj0ySdGi7X33jPuCQC42+bNUtu20umnSyefLI0caW3548ZZWx4AuBQJSMBuhYXS1Knh8+64w5lYcFBBgTRwoPT44zy6FCo3V3rgAemqq6TPPnM6GgBILUOHhk8/95wzcQAwb/hwafFi43VBgfSf//CDEQDEIdPpAICU5/c7HQEi+ec/jVapkvTaa8aN5UknORqSK1xzjfT118brzz83kucdOjgakmsUFRn7xueTLrlEyuA3PMAytDoG4FaPPx4+vW6d0W/jUUc5Eo6nrVkjvfWWVLu29PDDUo0aTkeE0kiuw0YkIAGknzVrDiYfJWnvXql/f+ntt52LyQ127DiYfCxx333SihXxlZdKNzB+v5GI/f57Y/rii6VJk0iaJCJV9l1enrRvn1SvXuq8JwBAxajvY7dli9SmjbRnjzE9caL000/OxgR34bxKeTTfAJB+FiwoO6/0Y3FW8dKFNCen7LyVK5MfhxuUTp5+993B5KNkJGpnz05qSJ6Tny+9+GLZliOpZNw46ZhjpPr1pcsvP/ilCrFLpR8sAABlvfxy+HVy9mzpl1+ciwfuw71AyiMBCQBIb2aSxAMGlJ332mvxb/OLL6Rbb5WefVY6cCD+ctzsH/+QevUyWhdH4vWbTL9fevBBafduY3riROnTT52NCUBq8Xo9CYQaMqTsvJ9/Dp/20g/3SCm+sWONJ7+GDKHutRGPYAMAkEwTJ0pXXHFwevVqadgwx8KxxbJl0rRpTkdhryVLpE2bwufdeqt0yy3xl8kXLyA2Tp4zqfAF9ccfpeuuM+qyG26Q3nhDql7d6agAIKnqfvWVKvXte3DGH39IzzzjXEApjBaQAAAk0z33hE8PHy4VFzsTi13S4ZGqwkKnIwCAxNx5p7R+vXENGjZM+vhjpyMC4LQ0/DH0hNLJxmefdSaQNEACErBbGlbiACqwcWPZeX5/8uMAAMTP6/d3mzZJv/0WPu/WW52JBQAclMGPyklDAhJA+knml4Zoj2i56QuMm2LxglR4/A5wC+ofxMNr9XBxsTHgW0GBs3EEAtLbbzsbAwAg7ZCABADYg4QCEBsrkylnny01amQMApRqj/i7XVaWNGuWtHWrvdspLjY+35NPls49V1q6NPEyqbfts3Wr9Pe/S4cfbpybP/7oXCwPPUT/ZnAn6qD05rUflRAzEpAAYJdAIPqNFBda7+ImGW7200/S2rXS449LkyYlf/t//CH17Ck98YS0Y0fyt++UH3+UmjUzEoLNmkk//GDPdn7+WTrmGOPzXbPGSHj+3//Zsy1YY8gQaeZM4/Uff0i9ejkTR2Gh9NprzmwbiIb7YiClMQo2AFiBZBQAt7r5Zmn79uRtLy9POu20g9scPVpauVKqVCl5MThl0CDjEVtJ2rlTevll6a9/tXYbS5YYCc6iovD5ixdLK1ZITZpYuz1Y4+mnw6dLkpHJtm+fM9sFgGj4PpXyaAEJADBw0Y8Nv9LDK5LdAnHo0PCE59q10uefJzcGp3z2Wfj0hAnWb+M//ymbfCyxe7f12wMAALAACUjAbiR1AHczk0jkPAbM++STsvOmTEl+HKlq/HinI3CPVKqbd++WHntMuusuacECp6NBNPwIGTv2mTfwOcFGJCABpB87vrBwsU4tqfSl1glmzgfOGYQyczxMmiS1bCm1aGFPy0KkjptuklatcjqK2HTsKA0YYIxO3a6dtHo19SRSH/dbQFohAQlEUlAgDR8uffCB8RqIBzdVAGCNnBzpiiuM/g9/+0266ipp2zano0od69dL332X3L5C7fTBB9JZZ0n79zsdiTkLFxoDC5U4cKBsn5FAKiqdZC/v3nnpUunbb6U9e+LbzrJl0sSJxmj0cC9+dEl5JCCB0oqLpXPOMTrtv+kmo6N3vz/+8qhI05vTSUi/3+grjOMwMey/2Jg57p0+N+Au0Y6HgQPD+z30+6UXXrA3pnQxfrx06qnS+edL//iH09FYJzdXeucdp6MwZ8mSsvM+/JB60s34bGIXaZ999pk0dWr0+6yWLaUOHaQ2baQNG2Lb7qhRUuvW0mWXGeXMnx/b+gAsQwISKG3yZOnXXw9O//KL9/quys2VhgyRRowov6N6uIOdN7CrV0tnnCFVriz95S+x37AliqQdAKusXFl23ooVyY/Dbr//LvXsKT31VPwtfWL17LPeaSkYqxkznI7AfUicIRaBgNE6166k3fTpRvcDd95Z8XIljUHWrJHeey+2bTzxhFRYaLzevl0aNCj2OAFYggQkUNqQIWXnDR2a/DjitXu3dNpp0j33SDfeaDyyhvT01FMHO7L/+WdaC8XC7CNBAGCVbduM6/dLLxmP3/7tb8n5IeeXX+zfRiriRzakuuJi6fLLpfbtpdNPj54kTMQ770ibNplbNtbuCdatC5/+8MPY1gdgGRKQgN2SnbgYPjz8QjtpkrR4cXJjgMHpLycjR4ZPv/mmM3G4HclFxMPp8xup57//NX5ELDF/vjRrlnPxAEgNGzZIF14oNWgg3XqrlJdnbr1Zs4x+E0sMHSqtXWtPjJL0xRf2lQ1v4J485ZGABLxszx7pX/+Srrzy4K95zz9fdrkvv0xuXOmIC2ZZ7BPzSGZVLDfXGKRhxw6nI/G2wkLp3XelV19lX7pRpMcKSUC6F9c4b5g61XgiJJ2TW//6lzRtmrRli/T++9Ibb5hb76GHys575RUrIyuL8wp22bdPys93Ooq0RwIS8LKbb5Zee02aMEG64QZp3DinI4KXcdMXG5KGybFggdSihfFoatOm7knIePF8uewy6fbbjS+VrVpJO3c6HVFiOAfdbfZsY8CHo4+WnnvOeJzT7TZskF5+2RhFO5EBCOEOI0ca/Qs+/bTRJZHZxJsdBgxwbtuffx4+/dhj5taLdA5kkD6Ax/j9Uo8eUo0a0mGHeatrtRREDQJ4VUGBNHZs+Lzbb3cmFgCJ8WIyqyJWJoYGDTrYL9T27VL//taVnU4WLw4fUG3zZm7CYZ9AQOrWzRjdeetW6T//MVpgWc3KunPtWmOk3EcflW66yfiRNxWl2vWmIvfcEz59//3OxLFzp3EOeA0JSCSbHT8szp17cOCh/HyjHgjt7gRJRQ0CeNWBA2Xn5eQkPw5ULJ1u9NMNn21yjBgRPh3aH1Wq2b7dvrInTy4776WX7NteMnAOutesWdLGjeHzbrvNmVjMeukladeug9MjRhgDAzmJVr6JSdZI8tEMGyYVFTkdReysTkByPMMJDzwQPn3gAD/AOogEJFAaF8fUl8wvrdGOJ443uMmcOdKDDxqtDAsKzK/Tpo10/PHSwIHmH1vk2C8rnhviRPajmz4DkompJdLj/aUTkm4zZEjZeb/9lpxtu+m+BNaL1GjACyJdz6mrU1+q1RFZWWXnmR2ICZbLdDoAwBO42AJIdfPmSeecc7CVxpw50fuV9fulzp2lP/4wpv/9b+mss6gz47VkiX1lR/pMQr9k7NtnDIJSXCzdcotUu7Z9sUQSzxeeVPuSFEk6vEcA7hSp/rHzEWzqOyDl0QISQHqYONFo1WXXABbx3jS5KVHjpli8INVulB9/PPwRsc8/j/744fTpB5OPJe66y/LQYIGKzm+/30g+P/CAMUDNGWeYbwGbLOlQP6XDewRSRardA0RCH5DpiWsRbEQNAqSadLghitVrrxmjvz7+uHTeedL48cnZLhfw1JEOn+XXX5edF+2RyUh9Fi5fbk08sF/J9WLKFGO08RKrV0sff+xISPCQQEB6912pSROj5fPPPzsdEQArWZ2ATId7KQAVIgEJmOHGpF4sF/F0v+D/618HX/v9RmfgyeDG4wZlmfmc+CzhdRU9gh0p2fjuu/bGA++bP1+6/XZp5Urpl1+kyy83HuGXkldn2r2dzz5LvQH+0v2eEObRAhLJxv12yqMGAUrjxgzx4LhJLWY+Tz7zxLD/ksvr+5svJe7z0EPh09nZ0hdfOBKKbd54Q2rdWlq/3t7tWHl879tnxP3aa+4ZBRre5IVBaPx+6fnnpfr1pWbNpJkznY4IXsA9hWNIQAKlUSHBSm67UUumVH/v1BXlY9/Ez66RGSONAsnnhETMnVt23pYtxv/Jqv+TsZ1Nm6TBg8vOd+P54/dLZ58t3X+/8fTHmWd6dwRmt0v1exwp+YPQxOP776UnnjD6rF62TLrmmsiJU6SOTZtiWz4dzlUPcVkNArgUFRci8fulgQOl004zRo9FODd+OYsXdQCSpVYt6d57wwcEqojZ82zAgPjXdYN0PQe99BmlshdfjH/dwkLpu+8qXsaq43vSJGnhwoPTK1dKn36aWJmrVkmzZ8efyCwqknbvNvYDvMWJR7A//DC25e+4I3x682Zp2jTr4oH7tG4tLVnidBSIEwlIwG58eUhd48dL//53+M0+ACTqzTelGTOcjsJa0a6F6ZpgDMU+SD179kjnniudf35868d6DzlqVNl5778f37Yl6ZVXpKZNpb/8xWhZuWNHbOv//rsxQFGdOlKrVtLSpfHHguSz+hHsaMfzhx9KEyfGVuaaNWXn7dwZWxnwlpwc6aWXnI4CcSIBCQDxuukmpyMAnGXnFxG3szv+226zt3zJ+58B3Csdji0z9d/48dKcOfbHEguz9faBA9JTTx1MQv36a+ytKQcMkBYsMF4vXy716xfb+nBWsh/B/ukn+8pGavngA6cjQJxIQAJAvOjcPXWVvum2+8u0W7+sxxsXLbkSt22b/dtI5nFnxzHh90tTpxqPnZp9ZN3N3FoPSNLkyU5H4E033OB0BPH7+WcpNzd83t13x1bGW2+FT3/8cWIxwXlurqeSLTtbuuQSKTPT6I5pxQqnI/I+jq+URwISQOqaNUs68USno6iYmxI1boolmdL1fVuBG0VYJZ5j6euvpY4dpU6dpAsvlIqLrY/LabHWT3adkz172lMurPP5505HgFTD/VHFXnnFuA4VFxvdMfXq5XREgOuRgASQuu64Q1q/3ukokArS9SY8Xd93uqgoWeW15PKMGdK33zodhfVi/Rx+/dWeOBYvlvbvt6dslC+WOvimm6SCAvtiARDu+efDp8ePdyYOq3nt+g9PIQEJlOaVSpfEQMXWrZOWLXM2hkAgdT6nxYula6+VbrzR6FQe1kqV4ySd8JkdVFAgPfSQdMQRxuiU8+c7E8czzzizXatYcUy98UbiZViB8yP5du+WPvus7Hyv3NcCdhgzxukIAITIdDoAAC4zb57044/GaIXnned0NPGjFYB1cnKktm2l/HxjevJkadMmqUoVZ+OCe/GFN3ns2texJJA++UR69VXjdayj5CI1JasOINEJp6TDdc7q95js83XoUOnOO5O7TQAVogUkUFo638x++aXUrp30wAPS3/4mvfee0xF5m5ljyU03sOXFO2jQweSjZHS6PWpUcmJyMzd9dk5J5/rSbsk4vqzaxo03WlOOHTZskC69VGraVHriCamw0OmIgLLcWJdyjYPXkXwEXIcEJICDHn00fCTR++93LpZUEe0GPitLGjFCmjYtOfHEY+rUsvN+/jnxcp1+RD4WP/zgdATm/fqr9N//SlOmOB0J3M5NCQa7EjC33Wa02l6xQnr+eflGjLBnO0CJZIxg7wWLFzsdgXu4McFshlfjhne56b4EtiABCeCg5cvDp+lw3n6//mq0HrrwQqlvX6ejMW/IkOjLRLtx7d/fmljsFghIe/eWnR/6/lauNJKUkZZLpsmTpfbtpUcekS6+WHr9dWfjAUok+qUini/CBw5I33wTNqvSXXclFgcq5rYvj07EM2xY8rfpNps2SWed5XQU7uG28wIAHEICEgDc4plnwh91NiMQkL76SvroIykvz564ypPo9rzSEmnt2or//tZbUrNmRp+pZ54p/fFHcuKKpHQr5gcfdC6WaGhZ4TwvfSmOJ9biYuvjSDY3fUaffx4+ne7ncHmfTa9e1pVlxefvxDHUvz99caMsN9VnSF1WPKUF25CABLzK7488P9LF3ctfEu66S7rsMmOQAy+Kdd9v3Bjb8rfeKv3jH9J110mnny7t2hXb+on48MPkbctO0W6IK0oK+/1Gy9WSRMfy5dIHH1gXW6yWLLG2PDu/LPBFpGLJqLdT7TPw8rVOcn/8jz7qvWPG7fvUzRLZd6NHWxcHAMTi3HONLq4q4rVrWQohAQmU5pUK6YsvnI7AWuU9uvr229LEidI110TuizCdbdwY/qjXqlX2JAXL+xKSyo/omx1AaP36sv19Pf64PTG5UXn7iS/9yZPINauidb04+qlXrt9e9ccf0pYtB6fZ395Q+tyjfrYG+9G9+GzSW1FReDdPHA+uQgISMMONFVfp/hq9LBCQzj8/+nL33GO+TDd+Zlb76quy83r0SH4cSF3RziMSEPZJ5r5Nh/oyxGFTpypz+3anw/CmaMdlmh1LKY36HVYpKjL65AWS5fvvnY4A5SABCcB5P/0kzZ0bfbk1a8yX6YYbZzfE4KR0f//wlnXrpJEjpTlznI4kebx0jlqY2GrYu7eaXXutqkXr3xXuZ9Vx8dNPzm3b6rIAN/nkE6luXalq1eQ9OeOla5skzZjhrm6NqI9gIxKQgFel0sVh+nSnI0A8vHaDZzUrz8Hrr5f+/W9pzx7rynSS3cfGk09aW2/MmSO1bi11726MIv7229HXSYXjv+Q9pMJ7iVHlnTtVf+RIp8NAea64wngyIlJLfzv89a/J2U66SKV7VMSvoEC6447UubexwwsvSH/7m3TDDU5HUr78fKl3b+mf/zQGXqR/cCSABCRgNypSWK2wUHr11fhG2qwI/fnFxspze8wYaeBAqXNn68pMZf36SRdeKI0da015zz0n7d5tvA4EpIcesqZcLzN73i9bZm8cJcycbzHWVUeMHx9nMIgq0frxiy+k774zBlmrqMsZq+rhVBgxvTzchzovGfdR27dL991n/KD544/xlxMISJs2STk55f+9PLt2Gf2Tl5xPn39+8NqKsoqLjcSe25T+jB980EiUjh8v3X239P77zsQVC+o91yIBCZhBJQY3ufFGI0GSm+tsHCQmyxfvl9lvvjEGekB0gYB0//3WlDVhQvh0Kg+wFMqKa9vDDydehl2oo6znxP2QG7+gexnnRWq66CJp8GBp1CjpvPPi6yt+/36pSxfpuOOkBg1iux8ZO9ZY7/jjpY4dpZ07pby82GNIJ7t2OR2BOUOHhk/fdpszcSAlkIAEUk2kLwfcbDrH6n2fkyONHm1tmdGkYwI+0fd80UXxJyE3b05s28lk1fFdUCA9/bR0663SpEnm1wsdkTfVJOO8s2IbX3+deBlmcB0zxy37yco4pk2zriyYP+/T8dpvF7v35a+/SgsWHJwuLpb+85/Yy5k4URo3znhdUBB5mUjndiAgPfLIwYTjtGnJv1cF4AkkIAEz3HJDHy9uIp0Rz3ET7bPauDG+WEJt327cGM6YkXhZFfHKeWPHSM/TpxuPD9pt4UJ7y09W3XHrrdJTTxmP9XTqJE2ZkpztpgKv1O9eiRMVc0O9HghI77wjnXii1KyZ09HYi/PGvaz+bBLpBiBSa8fPPou9nG7d4tv+mjXS+vXh8+69N76ykBw//ij9979OR4E0RAIS8JpAwGgK369f5L+74cuBG6Trfoj2vn//XWrVSrr2WqPT66eeir9MvhhVvL/LO0etZFUfiE4qKDAeGQtl1aPVdkr1OsaL53fpmL34HhKVDu956VJjYIv162NvMZ4O+8cqqV7Huc2RRyZv0KXyxHt+pHIfqqlozBhj4K1HHnE6EvtQf7kWCUjAa+bMke680+ko4FX/+1/4Y6tPP22Mbiel9sX6t990+Bdf6JB4+kSqCF9mIzNzLJXsu337yv5t1Spr43EbMyOCJuN8LPkMUvnc95JIXQq4rY654gqjb7fyJGNk9X//276yAafk5Ei33y75/U5HUjG31UmI3YMPuvc4s+r44jh1LRKQgNc8+KDTEcAsN178Bg0qO+/33+MryytJi8mTValtW5349NM69aabdFiy+qxLBaGf8ZQp0rBh0tatB+e58Rh3uwMHpDPPdDqK5Iu3voiUoLZ6G24wYIDTEZgzb5701lvGa6f295Il5pf1Sh3l5WMX1tmyRZo1y+korMNxnbh164yB8qz8YTb0Ps5tHn647OP8SCkkIAGvmTPH6Qi8wS1fOtwSRzrr3Vu+AwckSb7iYh37yivOxuNFjz0mXXyxdMstUuvWRn9PFTFz3KfrF5NPP5VWrnQ6CoOb6qfyjodEHsf3yjG2e7fUt6/TUZjHqNQGN50/SB0lT6XEIpnHolfq1VTRsqV05ZVG90lfful0NPb76CPptNOk3FynI4FNSEACgJu48cbO631Aho4MKalKdrYzcdghGZ/B/v3hrbO2bTvYcbkVx6sbj3k7vfuuueXceH4VFxt9lE2cmLw+v95/PznbcdJHHxktYxFZIueCV+qX8t6jk/Gnw35PllTfH6n+/pxUMrJ4fr705JPOxpIsu3ZJb7xh7zbceI+VJkhAAqVRIcFK3JS5X7znvF11hduOmbVry86LdmMYTwsOxCfR4/C118wl+QIBY4Tyf/xDuuwy6aKLrO1Dym3X3t27pXvukS680Ei429lfVlGRfWU7xcp6bM8eaft268qzituOWbjX3r3WleX3G/1533//wRZxbrtvcFqq7o9585yOIHnGjEls/dD6OVWPB48iAQmY4aWKK9INsZfid9rAgVLVqlKNGsZo40hPtOxLTM+eTkfgXm47Lv71r8jzS8c5e7bRD2iJ6dOl77+3Ly6n3XWXNGSING2aMVJopUpOR+QtVifnSvqddJNffnE6AjgpWl1eVGT0u/3ww1K/ftZt99FHpQceMH4IvPxyaezY+Mr57DNpx47Y14t0bpOMB2ASCUjADC6s3hPPl/xVq4zRNQ8cMAY+uPtuKdmP63rpWHNbIiXZfL6K94GXPsvyxPse6LunfF49byL1nfrii0kPwxaffy41bWr8+/xzY97o0U5GdFAq1CNW+M9/rCnHyv3plUEBOYaccfvtUo8ekevORJQeTPCuu+Irp2tXo1/BSE85eMHs2U5HgGg2bpQef1x65hmjJXsyefVeKw2QgARKo8JKX088ET7t90svv+xMLF6QLl9qkv0+02W/Wi03V5o8WVq40OlIUoPVx2EgYPygU9KfVazsujZnZ0tdukgrVhj/unZN/g9PXpXudZUbHwuHO+zfLw0fnpxtbd8e/7m4ebPxOHeiyqufS/XBbalzzz34gxGsZUXdvnOnMZhM//7GIGvnnhtbuXwfT1kkIAGgxJYtZefxBQNulgoJACtuMjdskNq0kS691PjfzSOdp+tN9dCh0pFHSg0aGCOBx8qmYz3jpZfC+3csLk5+y04r31txsfT001L79tLNNxud+SdTuh7fiXLjYG+JfJbpfhwk+7xLRMmgcmbF8tm+/npsZceiuNh4vD0Sr9wbuTXOjz4y7qM2boy/jDfekHJyDk4vWmR03YK0RwISsNMvv0jNmjkdBWBOun9hiJVdN45btzofQ4mCAmnx4vL/nsgxY2Xs77wj/f77wXJ797Z/YI9440/382zPHqP/slgGdXnmmfhG3Tazr1evNjfPTu+9V/7fAgGjNVVhobmyli+XnnpK+vlnowXWffdZEiLSUCJ1dDITK4GAkexo395owbx5c/K27Rbpel1Zt87pCGK3erX0/PNGvW/n4GaJ6NPHSO62bi2tWRNfGZEGt0tmAjK0Doq3PsrONuqUxo2Nbrn27bMmtjSX6XQAgOtYedN0yy3e7VsFB82ZY3SAf/jhRj9UtWs7HVFypeCNrW/MGOPzvOiixAqqqL6Id7+9+KLRsbwbnHtuxX93w6/3Z58t/fRT+Lz8fOOX+5NOciamdBHv5791qzR3rtSu3cF5FZ0vffvGtx03HJ9mzJ9f/t/69jX+1a9vtEo5//zYyh41Sho5MrH4YvH++0bLSyBZxo83RoSWjMR7dnZyBsjySv1itXR931ZYsUI688yDXZH84x/OxhPNzp3SSy85s203fPfo0cMYrEkyxgk45hgjOYuE0AISMCOeSnDDBmnJEutjSUV2XGSsukFatkw65xzjl8qXXpI6dYptfavfmx37Kt4yrYqlsNBo4ZPEm9pK110nXXyx8Yum28Ty6JYbbtCcVjr5aJWPP7anXKs/s2SdN1bHbUcL1VQ+H7KyjJajbleSWDbbYhPJl4w6o6LRlbt2NQZoycqyZlu33BI+PWMG/bjCnZ57Lrwf5IkTnYvFrLfecma78+ZZV1fFe28wYkT4dLw/hiIMCUjALvv3Ox3BQSUV765dRsuEtm2NStTuRxTNcvOvqT/9FL6fZs2Sli51Lh47xLv/rfjcJk+Wjj5aql5duu46ae/exMuMxdtvx/bIc6hUTnZA6tfPnnITOW62bDF+kX/kEemPP6yLCd7w22/x11eBgDRunNFdQUXJISssXmy0SnMjN99v2CXZ7zk7u+JtfvaZ9O67UocO1mwv0o928Q525VWpdl+aqkontNJNrHXRjTfaEwcclbRHsF999VUNHjxYxxxzjKZNm2bLNrZs2aLRo0dr5syZWr9+vfLz81WvXj01bNhQnTp1UqdOnXTIIYeYKuvdd9/VizF2Ql6pUiUtNXEB+Omnn/TZZ59pwYIF2rZtmzIzM3XUUUepTZs2uuqqq3TmmWfGtF0kwZgx0quvSg8+6P6kQ0WV+/33H3wUa+5c4xHUf/0rOXGlkhUr3Nu3p9uPz9Luvvvgl+HRo41BRMzecEyeLN17b+Ix/Pxz2Xmh51GyBweIpdxU+DLt1mPWbV/oDhyQzjjj4GBZH34orV8vZfBbclqJpy9MyWhxVtLX5JNPGn1UH320dXGV9uGH9pUdS52RCnWk17z9trnlliwxurhp29beeJyQ7OPu+eeTty23XrNhmDXLeHrr3HOlpk3t287evcZ9e7Vq0jXXSJml0kpWHCd2XkfgmKTctS5atEhDhw61dRujR4/WpZdeqiFDhmjJkiXas2ePCgsLtXnzZs2cOVOPP/64/vnPf2rhwoWmyjOTSIxVXl6e7rvvPt1888364osvtHHjRhUUFGjv3r1as2aNPv30U11//fV69NFHtWfPHsu3jwQ99JC1v+iXd3Pi90u5ucbgD1Zvq3Q/UA89ZN023IYbpNiVt8/s3Jfr14dP33STufUKCqRu3Q4OPOIUjjPEKt5jZtSog8lHyWhlFKmT93RGsimyrKzwgW42b5aGDEm8XKfqPz7n2MT7OcW7n2N5THHVqvi2EU2yjpG8PKl7d6lKFemUU4zEfqJKf16BgDGadOfOxgBTTuP8c6+33jISj3fcIZ1+utEdgV3OOMP4Yat7d6NLo9LHBccJymF7C8iNGzfq3nvvVaGNfcEMGzZM/fv3D077fD6dcsopOvTQQ7Vu3Tpt27ZNkrRu3TrddNNNGjlypJo3b15hmcuXLw++btWqlWqbGHSiUqVK5f6toKBAt956a1gCtEaNGmrcuLGKi4u1cuVK5efnS5ImTJigLVu26L333lOVKlWibhdJdMst0j//Wf7fc3KMQWdOOCF6WcuXS6eeGj5v+3bjV6Rp06QGDYw+yKINAlEaCRGkg1GjjNF04axE6huv11V2951a+uZ90qSyy3zxhXTbbfHFYQUrv2DwZcU+P/5Ydl6/ftLTTyc/FiCVfPDBwR/3V682nsqYMyexMkvXhW+8YTyBJRndKADlKRmMSTK6AuvTx74BmVasOPh62jTjybporZm9ft8HS9iagFy5cqVuv/12ZdvYEfCCBQvCHpU+66yz9Pzzz+v444+XJAUCAU2dOlV9+/bVzp07tX//ft17772aPHlyuY9jFxQU6PeQVjWvvPKKjjnmmITiHDBgQDD56PP59MADD+i2225TtWrVJEm7d+/W66+/rg8++ECSNHfuXA0cOFC9e/dOaLuwWEWDQ8yda4xcm5VlPNoc7RH+SP0vDh1qVOKS0ULh3/+WZs+OO1ykIL6kG/78YSntOXk87N8vffKJc9tHcnnxi0OyW37Bfbx43MI77rsvfHruXOv7n/TC4FNuO8/cFk+ylP5uaWcLyNI+/jg1u1OA5Wx7BHv8+PHq1q2bsqwa4awc/fv3V/Gf/eE0b95c77zzTjD5KBnJvo4dO2rYsGGqUaOGJGnr1q0aPnx4uWWuWLEiWGbt2rUTTj6uXr1ao0ePDk736NFD9913XzD5WLKdJ554QveFXMhGjhypTZs2JbRtJNHAgQdH9NuxwxgxOVaPPx4+HalvOgDJRTIisnbtjP5x4SyvHp92fEGMp8x0/aIKb9i4MfEy4q0jODfiE28/rUCqi3cQtXhEq/e8eu+UAixPQGZlZalXr17q2bOn9ts8CvDChQu1YMGC4HSfPn3CknqhmjZtGpbcGz58eDDJWFro49dNmjRJOM4RI0YEt9WwYUPdVsHjUvfff78aN24sSSosLNSHdL7qHR9/HD4dchxVaNMm6ddfpX37rI8J9kjVm3IvvS8vxRorrwxCs3ixNeWk8mcZSbq9X7PYL/bx+52OwFrpdKxceaXTEXiTk9dGn8+67XvlRz63JXO2b5c++sjpKNJbpHr6nXeSH4eUXtcMD7A0Afnmm2/qkksu0eeffx6c17BhQ919991Wbiboq6++Cr5u1KiR2rRpU+HyXbt2VeafIzTl5ORoTjl9dCxbtiz4ummCo0f5/X59/fXXwenOnTsro4IRKzMyMtStW7fgdOi6SEGjRxudVp95pnTWWU5HA6u57YYslbBvvS9dP0OzN8LcMMMqkfqATFfpWu/goL/+1d4B7Kysu0v6fkRs7rlHuu4657a/Z4/Rb/P8+c7FkA7mzXM6AsTB0gTku+++q30hrbiuvvpqjRkzRieYGZAjDj/99FPw9TnnnBN1+Tp16qhFixbB6enTp0dcLjQBmWgLyOXLl2vnzp3B6XNNDCgS+l42b94c1iITCfD7dei338r33ntSyGfimEDA6Bz4z8GHZMPI60Fu/yLr9vi8JJFHEK3+YmbH57pkidHhu53ni2RN7BzXzkqHREM6vEckbtAgpyOAF6Vq/TJzpjJ69ky8nIqu8VZd/5P5yGoiuN856I8/pDZtpE6djJGoo40JkKqSUX+cf375f+OYdC1b+oBs0aKFRowYoWeffVY1a9a0YxMqLCzU2rVrg9PRRrUuEZpQXBzh8bFAIKAVIaM6JdoCMjR5WLlyZZ1yyilR1znppJPCHiWPFCdid+KTT6pRr16qdNdd0mmnGc3znbRnjzFintW8eMPolphT4WIVCEi//Wa+CwA3KhlRsrQJE6QzzpC6dzdGnkTi/H7p5ZclEz/iwSLxjoLtxvppyhSnI6iYmWuLW64/ZrnxOED8nn3WSFBYPXCJnUaONB4NdnNfh1HO64yQp/UAS733nrRmzcHpxx+XDhxwLp5Utnu30xEgDpaOgt22bVt17txZF154oXw23yBt2rRJhYWFwWmzrSyPPfbY4OsNGzaU+fv69euDrTgrVaqkk08+WTNmzNAXX3yh+fPna9u2bapcubLq16+vdu3a6aqrrlKrVq3K3d66deuCr4855pjgI+AV8fl8atCgQTDBun79elPvDeWrvHWrDp806eCMDRuMEacZZRzxMnMz4cQXxfx8KaSltyWS/T66dzdG8rvppvD5vXu76yYuFTq4HjFCevRRp6OwR58+0rBhUuXKTkcSjgSS+/EZmeNUHeeFutWsPn2cjiB23bsb/3fsKE2eXPZ8Seb5Y8ePratWSffeawwseccd0v33x7a+V+sPOx9LTyd9+4ZPFxdLK1ZILVs6E49TnD4PQq8Tka4Zzz6rSoMHq/4NNyirpE5DUljaAnLw4MHq0KGD7clHScrOzg6brlevnqn1QpfbsWOH/KU65g59/Lp69eq64YYbdMcdd2jChAnauHGjCgoKlJeXpzVr1mjUqFG6+uqr9e9//zvs0fPy4jzyyCNNxShJRxxxRMQyEJ9av/xSdmbpEadLpNKNbSrLy5N69JC6dZPGjUvutpcssT7JV8KJ469km1bX3Ym8l5tvLjvP7seu01Gk/ZwqRo2S3nrLvvK5VgDwArvqqilTpF9+kTZvlh55xLgn27zZnm2V5/XXrS+zSxfpm2+MgdYefFAqrz/+8varlYPQJEthodS+vdNRIB20a2c8zTRxotORyJeTo2NffVWHhDz9CvtZ2gIymXJzc8Oma9eubWq9WrVqBV8HAgHt3r1bhx56aHBe6CPTe/bsCT7+fNhhh+n4449X5cqVtWHDBm3bti243BdffKHVq1drxIgRYeVL0q5duyJuO5Y4S7/XZCsqKnJ0+4kqb7RzKfJ7ywgEKszMR9wf27fHfDIVFRWZWqf09qKtE5BUOo1U7PcrUM72QsuP9ne7+Px+VTK5bEk8Gddeq4wvvzRmjhmj4q++UuCii0IXjPkzCfj9ZfZdxOWeflo+E/sl8OcNaCxpvaKiIqP13598o0Yp4777pP37FXj8cfmvvNLyiju4zXL2WSAQiPgeiouLFahgP0Q7l0zFFSKW9x3tuI7GHwjIX1JGOfvFL8lfwXEWCARUHGH/mDmHza7nLy4+GGc5y1R0Djt5ExA8fqLUTQnF+MADKjIxEF5526iw/jNRp0aSIXO//pY+DiKdT/5AQP7CQls+x4DfH3X7iShd18VTZ5dW5pwzUWYgQqLA7/db+143b5YKCqRjj034PZq9dzBblhTfOVZUVKRKiu36lqiSeCv5fKa3G1aXG4XEvf9iuSZZUn9ZpMx5EaXOKIndV1wc9d7M//bb8n3xhXxZWca2Ro2SL4ZHs0vuT+OVOXhwxPlFFVxbIsZREvPy5cos1fVV4PbbIx5v5Z2LRcXFCR1nofdWVtQXZsopHjVKlUK+21a4bKTPrLjYFcd6LMycz9Gu52bfc6zHY9SyYogn0vJ2fFZ+vz+sri33+vDnIMCByy+39foRWu9Fu2YcF0M/yV7Pi7iB1+qKoIKCgrDp0D4TK1K51KNYpcsJbQEpSSeeeKIee+wxnXfeeapU6eBleN68eXrhhRe0cOHC4HqPPPKIhg4dGrb+gZDHBc3GKElVqlSJWEay+f3+4Hv0srrlzI/03k7es0d1Kigr0jqn3HOPzKXAD1q9erXM9DC6cMGCsJZpZ0RZvqioSKUfONyyebOyFi6MuG7o+4n491Lbt8NRW7boGJPLLly4UBl5eWpTknz8U+Fdd+m3kJaQVdevV6xtFPP27pWZnwnMJB8lae/evcrIz1f1GGJYvny5Cv4cmChj7161vuMO+f6sA3zPPKMNPp9OjKE8M1asWKH8AwdUOTtbkTqUKG+/bN68WdsqqB9O3r27wnMpmtLnWrRjv7x1Y1mvxO7cXK35s4xqq1crUi/Dubt2adOyZSrvoZq8vDytjLB/osWTn5+vpSbXy9q2TZujncMVfEbx7BurrF69WnmHHqqMvXvVJsLfS+JONEYz17DytlHRutVXrdKpUdapNXeuTnzqKWXu2qVt3brpj/vuU8Pdu3VY1IiMm+fQsk7aubPMtWzP7t1as2iRTjdRXqzy9u4NO35P2rWr3GtpPFavXq29NWoEp6ts2lTuuWRW6Zh9BQVR982ePXt0aKl5u3Nzy8xLRKXjj5evuFg5F1+c8D5cunRpxHo6HomcYwsXLlSbcn6csktJvC0PHFCVKMuWyN21S2tDz+OiorjrlFiuSVbVX1YofV6UV+eWKIm95urVijYUp+/dd+ULSeL7Yhw0Zf2GDdqZwPeM8vbv8uXLVbB3r+n9v2TJEklSjQULytyb+/74I+I6v/32m1pHmL9o8WJl7t4d93m6Zs0a7fnziT2rrn/Rytk+ebLqmyxz69at2lrqM6u6YUPM99xOM3M+R7t/MPv5rFi5Uvl+vyX1Qaz3dJGWt6Neys7O1qaQbTUvKFBFmQ+fza2ED+zcqSV/xtOioEBVK1i26saNpstNhbyI02wZhCYZSmefMzLMvZXSfTCWbh0X2mdjmzZtNHbsWJ1//vlhyUdJOv300/Xhhx+GjWo9Y8YMffvtt2HLhfZTaTZGSWHbI9PubpV27VLtuXOdDsM2h6xa5XQIZVSK0Fl7tRguHl5xxPjxyij1A8RxAwcmPxCn+3FxWNw3SWm+30zz2qNqZvn9OrFPH1XJylJGQYGOGjFCtWfPdjoq8zh+LVPSIqxueY9ywj6pWr+4RKJJBLuTEHaqnJPjdAhwkC/kOz7cp+off6juV185HQYi8GwCsnQyr3RfjuUpncwr3SLy66+/1owZMzRq1CgNHjxYNUJ+nS+tSpUqeumll8KW+aDUyKyhiUSzMUrhidHSMcJdKu3d63QI0SXwRfLYV16xLg7EpNKePWXn2Xi8BUg4xMbDX5xgv5rz5qnK9u1h80568klrE3ucswDgiGbXXWdPwQ7U62af7MFBh06f7uj26371lU564gkd/fbbJEPLcdzLL4d39QJX8Owj2IccckjYdEFBQdhjy+Up/Thz1arhDXJ9Pp/q16+v+vXNNUSvW7euLrvsMn388ceSpF9//VX79+8Pxhf62HXpx70rErps6RiTKSMjQy09PmpXcXGxNpd6XLdE69ZlH57IiNKfaJl1TPY/WtrJjRqZWq5169Yx3YxEGmn96AYNdFSE9xosvwK19u+PukyifA0amF62devWUt3ID7GFxVk9lgefDTVr1ox5nYrUqF5diuGHB0lq2rSp1MR46CnDZD2UqCZNmkinnipt2RLx7zXL2ZcNGjTQ0RUcG9HOpWgSOe4SPWZr16lzsIxyzr86hx6qWqdGegjXUKNmzbjiqFa1qun16terp3pRlrX7/I3XySefrEDr1tLu3RH/blXcCR1HrVqVX/+Wc8Nfsj1fhFbZmbm5qlPHXMcEPp/vYOw7dihz6tQyy9SqVUutWln1QG64mjVqhO27jMPMPDhu3sknnyyFfjYx9JNdnpqlz7k/u7OoSK0I9VRtk5+RE5pVUOfEKtE61hfDkz1WKIm3kon7/RJ1Djss/H0m8EU9lv3lpnq3zLUowo+boYJ1WEg/9nY5/vjjdZwN+6ppkybSKaeYXr5FixZGoxELfuRt1bKltHNn3Os3atjQuDZawOxxeOSnn5ou86ijjlL90uXGcc/tNDP7pqJlKv3rX6a31aRpU6l5pM58Yte6dWv5PvpIlUJG2z4qEJC/nP5Qk1UX1R85Uoc/8UTwvKvkYP6iRObu3TotK0sZFsbiprrdCYsXL46pUV0knk1Alr6Bz8vLMzXIS17Io5uZmZkxDQxTntNPPz2YgCwsLNTmzZvV6M/kUugAN3kRHhs1E2doGU6IlNBKFRHfW5RkX5l14tw/ZvdrZmZmTAnISI+zVMrIKDfOaHH4fD77j4EYvsRk7t1b7si9YXGW6jbBDJ/Fvzr7fL6Yf8nOrFz54GeVpC93wW2W8zmXt18qVapU8fGf4P5M5LhL9JjNkJRRUkY5ZWX4fMqooIV6hs93sIwY+AIB0/FnZGRE3YZb6/Dg8RNn3WRWwsdRecdxtLjLqYMyTJ4XvtCy+vQpt6x4jjFT2y9d91tcP4bVdVLc19JQYfvMZJmR6jezn5ETrDyfEzo3nn1W2r/fslhMbTOOeMucIwm0XI9l+26qd8OuZ1LU8yJaHWalqPcRccqs4NpSXhyxrlPhthPYd1buEzuOw4jfKTz4tJ6ZfVPhMrE2DrHyM73jjrB5GUOHKuPtt8tfPkky27aV1qyRjjwyaduMplIMg2KZ4aa63as8+wh26RaK20s95lSe7Ozs4Ou6detaknA44ogjwqZDR60+MuQE3LFjh+kyQ99PvT87IkaSpOJjlan0np5/Xpoxw+ko0kt59WS048rFX+It4fPFfm6l0rmY7uI9vuNZr9QAd2HsOqZ++EEKHQ021c9nr7Dyc/jLX6Rrrolv3aefti4OwKz166WLLpJOOkl66CHry7fi/OI6n3q2b5f69ZOee05KQsvgqGJ4qjKp8vIkJ/qqTxTnbFJ5NgHZoEGDsL4RN5ocgGLTpk3B1yeeeKIlsZR+tDq0T8jQbWzatEkBEwd4IBDQHyEjrlkVJ9KEF78kxlLxv/iifXHYIdbPw0sXwZEjpaZNpdNPN5IV6cauz8qL53AivHTMW8HKz9fufXfWWVKMo9rCQ2bPlj75xOkokivd6ptEuHFf3X239M030rp10quvlr+c07Gn23U8leXnS23aSE8+Kf3nP8Z1sbiYz7g8o0YZ/7tp/7gpFng3AVm5cmU1btw4OL1s2TJT64Uud2qpfnTmzJmj559/Xj169NCdd95p+vn20OSnz+fTUUcdFZxuHtLfw/79+/X7779HLW/t2rVhSc3ScQLwiF27Yu4D0lGxXqDnz5dWrDD+v+wy9/4im8qc/pKF1FZQIL3wgj1l5+aG97dmR6Iz3vOD8wqJWr9emjDB6ShSz+TJTkeAdPPhh1JIAyatXi2NG+dcPF7BdRTl8GwCUpLatWsXfP3jjz9GXX7Xrl1aunRpcLp9+/Zhf9+0aZOGDx+uL7/8Ut9//72WLFliKo4fQlr+nHLKKWH9U55yyimqGzJgxk8//RS1vFmzZgVfH3bYYcYAEQDsZ/XFcunS8EcYU9nu3UaLSFhrzRrpwgtj6kwfLmc20e+Wm3e7vmhdeql0xBHSe+8Z7/X88xMvM55WDrSMgFndu0tDhpg7N1u2lK680v6YYC3qg+jccm1KVHa2tHBh1EGZgi36Qo0fH9uxwnEFBHk6AdmxY8fg6yVLlkRNGH7yyScq+nMo9jp16ujss88O+/tZZ50V1ifkmDFjosawZMmSsITh5ZdfHvZ3n8+niy66KCyGilpW+v1+fRLyOMzFF19s+cAY8BinL/RObx/2K/mMy/uszdZBJrvCQAxuukmaNs34xR2pgWv6Qfn50gMPSJMmSQcOOBMD1ziYNXKkdM890muvRV82WlIjmUof42ZHek5GXZWq9WEi9Uqq7hO3adxYOu00qXVrqaInKadPT1pIsIGZ84lzLqk8nYBs06ZN2CPOvXv3Lnek6WXLlunNN98MTnfr1k3VqlULW+a4444LaxX52Wefafbs2eVuPzs7Wz169Aj261i3bl393//9X5nlrrvuumAScfny5XrjjTfKLfPVV1/VqlWrJBmjm95www3lLguPS+aXnnSsWFOhJYzXvhh7Ld6KOHkslOzH3Fwp5AcupJkDB6QYBq/zrH37pCeecDqKcG67FsBd7Bj8JFm2bpXOOCP6crNmSSENPTzHyfuRRLft9nupVKkfSwaT+f136fXXY1vX4pGVU1KqHCdm+P0cEzFwbQLyggsuUJMmTdSkSRNdcMEF5S7Xq1evYHJv5cqVuuGGG7R8+fLg3wOBgKZMmaKbb75Z+/btk2SMKn3XXXdFLO+xxx4LDq9eXFysu+++WyNHjtSBkF/m/X6/vv32W11zzTVat25dcP7TTz+t2rVrlymzadOmuuqqq4LT//vf//T8889rT8ivo3v27NFzzz2nIUOGBOddc801Ovnkk8t977BJsi78dm3H7TcuQCqp6AYr0Zuv/PzE1kfiEqlPy3vaIZbjolkzY6CQVLd/v9MRAOlhxAhp8+aKl9m2Tfr736XCwqSE5CrplDTBQSGNlEzx+2M7Vp5+Wrriiti24VVu+x4aCESPKZGYP/hAqlVLqlxZevxx971/F8p0OoBEtWvXTg8//LAGDRokSVq6dKmuvPJKnXzyyapbt67Wr1+vrKys4PLVqlXTK6+8olq1akUsr2nTpurfv7969eolv9+v/fv3q1+/fho4cKCaNGmijIwM/f7779pRqlVC3759wx4JL+2JJ57QypUrg4+JDx8+XJ988kmwf8cVK1Zof8gNeMuWLfXYY4/Ft1Ngv4kTpUceMVqo3HprfGVwk3MQ+yI1cNFFPLx63ESL++67I8+Ppb7btk168cWKY/Dq/gOSraBAGj7c6SiSL7TO6dkz+vIvvCD92WVV0uXmGj++HXkk94ZewmdVsZDu1VLeH384HUFyTJ4sXXvtwZa0ktS/v/TPf0pt2zoVlSe4tgVkLO666y716dNH1atXD85bvXq15syZE5Z8POqoo/TOO+/ozDPPrLC8K664Qu+++67q168fnLd3717NmzdPv/zyS1jysX79+vrf//6n66+/vsIya9asqWHDhoW15ty/f78WLFigBQsWhCUfzz//fL3//vtlHhGHS+zeLXXuLK1cKa1bJ/XtG185XKztxZdy68R7rKb7ZxDp/Vu9T9J9H7vVnj3lj+oc6/nEaJvAQZs2xdbfcEkd6fdLf/2rVM4TUAiRzK4/Qq9hDz0kHXqodNRRUrduRsLYinJhLfYtonHbMWL1d+4DB8omH0s88MDB1zt2GPdwc+dau32P83wLyBLdu3dXhw4d9Mknn+j777/Xpk2blJeXp5o1a6px48bq0KGDunTpopo1a5oq7+yzz9Y333yjL7/8UtOnT9eSJUuUk5Mjn8+nww8/XKeccoo6dOigSy+9VDVq1DBVZq1atfTmm2/qp59+0oQJE/TLL79o+/btKi4u1hFHHKE2bdroqquu0rnnnpvIrkCiolVSb77pXGf5SC/JSlJH247bbiTcxI59E0uZXv5svBB7u3bS889LIYPJmbJpkz3xlJbMH7LS6UczNx+b6fQ5lDZ6tHTLLfGtO2UKXwLdbO5c6dVXD05/+ql0ww3efGw1HVum834RKtVbQY4bFzn5KB3s4mLNGum88w5Ov/yy1KNHUsJzu6QkIDt37qzOnTvHtM60adNi3s5RRx2lBx98UA8++GDM60ZSpUqVuGKP5i9/+Yv+8pe/WFomkmjDBqcjSK5kfNnhQn4Q+8I7+KxS3y+/SJdcIm3ZYjwSaIV0TiCVx6p9snKlc9uG/fr2jb9v3HfftTYWL4n1WjVnjj1xVCTSI4tXXpnYdXbbtvjXdRJ1kjfwOZXPTQOy2PE55eREX+Z//wvvb/fRR6V//UvKTJn2f3FLiUewgaTKsOi08UrywitxwnmljxVuzpAK/H6jXx+435Yt0tdfx7YO1zjvWLUq9nW4DqWOWM7VrVul226LfRscL9Gxj5zdB1995dy2Yd4rr4RPBwJSdrYjobgNCUggVslOQFrx5YibBe9w42flxpjcINp+Yb9VrGT/OJUACgSMASlOPz36sosW2R9PPFIleWbl+4ixX+aMCROs2zYAdzj/fOnLL52OIj5erNe530mehx92OoLovHgMI2loAwqUFq3StCoBCXtxM5R83HBYy8z+ZJ/Hb84c6eabnY4CVgt9fJTzA3C3VL1XS9X3JVGvlnDqM46nqxEnuOUcKCpyOoKD3LJPHEYmBYiV2ysPbgxSB5+lc0L3fUWfg9vrA5TvX/9yOgJrJKuesPNY5zwyj+sC0lUyjn0r6qKlSxMvA4A1rr7a6J4FrkELSCBWtIC0Hl8+ncUX2vjYtd84H5Lj55+djgAA7Mc1Prnat5duvdXpKAwff8w9hV3Yr+Xz+dxV7+zbl7xtbdpU/t84ZiSRgARi58UE5Ny5UsOGTkcBr+KCaR2rH6s289kUFEhVq5ovE5HNmCG9955Uv77Up0/F+z7evwEAvO+99+Jf18prxP/9n3VlleAahmjclHx0E/aLJBKQQOzcnoCMdGPw8cfJj8NpVPLJxz63lpmbfDP7fNIk6Z//TDgc23jhuPn1V2NQA7//4PSAAc7GBPt44ZgE0kFWlvGjj+SdR7ABAOVyeSYFcKFKlZyOILn4IpZcTuxvp0cjLk9+vjRkiPTaa1JurtPRlOWGLypmPjO39nXotuOtIrm5B5OPkvTtt9KGDc7FU8JL+7AiqfI+ksEN9Q68xe3HTEXn/9NPJy8OmEN9bXD7eeU09k9Z7BNJJCCBsqJVDlZVHlRCB7nlZobPJDKz+8Xqz/Hvf5fuucdIoJ12mrVlWyEQiP6ely2TrrhCuugiado08+XCWqtWSZdfLv31r9K4cdaUuX595PlXXSV9+KE12zAjkUf9YpFO9WM6vVfASYWFUufO5f/9zTeTF4vkjnOfewD3c8NxAsv4OOeSikewgdKiVUJWPYJttrKjUoxPPDcH7OvInNovoYOErFsX27qLFhmPycabuLTi5rKoSPrb36TsbGP622+l1aujr8dxaK1AQOrY8eAxNHOmtGCBfdv7/HPjX7Ikq4UrxyUAq02fntz6EvYgIYdQjAQfGeeJJBKQQOzc3gck4BZOXmjPPNNoWZFp82Wuovf4ww/h04GA9OST5ssm4WON6dPLJrB79Ei83Hg/HyvPi1S5mU2V9wH3oR519z4YPtz8sm5+H0gvHIsV+8c/nI4ALkYmBYiVVV+U7Lp4WV0uXwyd4/V97+QNWmGh8X9RkXMxRPL999GX8frn7jaRHpX+9tvkx4HyccwDgDdQXxv3t27bD6H9VCMmAas/yxdesLa8FEMLSMArAgFpxAino0A6cqoPSESXCvs8Fd5DLKx8v+m272L1xRdORwAAsXFbYqu0SNcdrkXOu/RSpyNAid69nY7A1UhAArFy6iL78stSz57ObNtubr/ZSqbQfeGWG7pVq5yOwFlu+RwAJ3mtnp48Wfq//3M6Cutt2uR0BN7iteMW5eNa7C4FBdJ//ytt3Sr95S9OR4MpU5yOANFwPZJEAhJwTqyVkFPJR274wBde9/Ly+cmNGErY8SPHHXfEv66bz6s+fZyOAF61a5fTESTmk0/s3wbXJfOuvVYaN854/eqrzsbiBI6VlMEo2MlFH5BAadEqoWnTkhMHko+bCbgBN0LeEG994bV6ZsMG+7dhR1+tqfrDyddfOx0BJKm42OkIYrN0qdSqldNRxG/fPumWW5yOIjm8cA+wbdvB5CMAc7x2/2cTEpBArEqPbBsvL9xgIPm8fFx4Ofby7Nsn5eVZV14q7iO3Y58n7oMPnI4AcJevvnI6AvMCAemNN6SNG52OJH4jRhwcXM4ue/dKDz9s7zbM+P5747FmN4s0uFs68fm8m0zyektoeB4JSOC776Rhw5J/Y5bqX4oXLZLatZNOOEF65hnvtRYAXnlFOvRQ6a9/jfx3u89hr97cmlWy/1K9LkwFffp463jkmILdvNbCdvBgpyNITDKSJvfcI82YYf92onnuOal5c+mnn5yOBKnovfecjsDbvvxSuvdep6PwNPqARHobMEB67DHj9WGHGb86uu1Lltu+SG3bJo0dKx1+uNS1a/n76//+T1q2zHjdt6902mnS5ZdHXtYt79EtcXhVKu2/7GypRw/J70/+tkvOqVTan7BHso6RZDyGbaXVq52OAICVdu60fxsjRti/DbNycozBJ91q0SKnI0C89u93OgJvK++7LEwjAYn0VpJ8lIybmwEDkrdtuxKddn4h3bxZOuOMg4+G3Hyz9P77ZZdbuvRg8rHEjTcm5wYSsMKPP0ZfJp5z2Mw6JB6BxNjRpyS8zep7Lrf9WF0RL8VantdeczqC5Bs71ukIyvf4405HAFim8o4dydlQKtTFFuARbCDUyJFOR+Bu//tfeL80w4ZJWVlll8vNLTuPPkcAc6xOQG7YYDxy47VHBt0uXQahAVIBP+x4165dtNpym23bnI4AgEeRgER68PIXvvx8Z7cfetPev3/Zv8+Zk/g2rPp8unaV/vY3afRoZ+PwKqu/oKX7/nST224zRkBdutTpSA6yakAvwGrUXYjGS8eI15OvyRgEa+VK+7eB1LFrF33bA3EiAQmU5rYbtTPPlNauNb+8G26K5893ZruffWZ0IH7ttdKsWc7EYCW3HYvR5OdLU6ZIc+ca05MnOxuP3QIB6eefnY/BrJ07pRdftC+WWD35pNHHpt3HudfOo1gks753w7UlWVL5mEk3fJbe16eP7ZvI6NvX9m0ghXz9tfTtt05HER/qRDiMBCTSgxsrW7MxrVwpvf66vbFYqbBQuu8+p6OQHnjA6QjSz6uvShdfLLVtK/XunR79sMX6pcXquijW8oYPt3b7iZo50+kIYJYbr6N2Saf3CkC+zZudDgGwh5sGV0p36fRDbgVIQAJe8Morzm071spyzBh74ohVXp7TEcQn9Iuvly9UL7zgdATJsWKF0xF4W6T+Yr3CDUkqN8QAAADc6fbbnY4ACEMCEoC11qxxOgLEysuJTifZtd/4PKxl1/4s6WoAQPqhngbgBQcOOB0BSnDdkCRlOh0AkLbsarni9hYxfr/0zTdGnB06SJUqOR2RuzhxcXL7MeNWdp/DfC7uNmqU0xEAiKbkmsoXPwCAk7ivl0QCEkCiYqlMAwHpiiukiRON6Q4djI6cqZCRLvglGlbauTN52yKBAy+z+j7DS+cD91gASlAfwGE8go304KUbRbex8kI1efLB5KNktIT84QfrygfcLpaBedKl3mIU7PjNm+d0BKnpyy+djgCAzRo9/LAqb9vmdBhws/37nY4ASDkkIAGnpEtyIVSnTmXnpctgJYDk/CjY6YgO2NMP5wXsduedTkeABB36ww864ZlnnA4DbvbvfzsdAZBySEACSEzpRGo8X/zSMRmL9GTm/Ig3ebJqVXzruVWfPk5HYA+v1nck9QBv8mqdU8LG+Ov89JNUXGxb+fC4wYOdjgBIOSQgkR744gQv4rhNT/F+7v/5j7VxOO3ZZ5PbxyEAAKgY96be5vUfJOB5JCABp3ABRyQcF6nNzI1fyTITJkRfNvR42bw5vpjc7OOPnY4AJbz0pcVLscJev/3mdATO474iOuoM855+2ukIkAjqA+ew7yUxCjbSRLWNG50OAQBi+5Lz0EP2xDB6tDR8uHTMMfaUH6uKbsj4UgggEcuWGf9Tl6AiJAbMY18BSAAJSKQ+v19Hv/uu01Ekj9M3BrHe5E+eLP31r/bEAniZXaMvXnutPeUitTl9bQHilZ3N8QsAgAvwCDZSnm/SpNhW4CY1Nqm0v9K1hUTJ+06lzzIZ2F+IR7rWM4BT8vOdjgAAAIgEJNJBqo0Mm4rckshxSxwlkpWouP126d57U7MPQbdx2zGG5PvgA6cjiA+JUwBOyM21t3yuywCQNCQgAaek6g1PPO8r1Ubv9ZqZM6U335TatXM6EsQqVesRuA/HGgAA3sa13Dnse0kkIJEO3Hqy2xWXE61UDhyQfvlF+v335G8bcIobWoR9+KHTESSuorrQrfV3OuKzALyJcxcA4BIMQgOU5oakgpfk5EjnnGMkIDMzpcMPdzoib+P4Qyxyc6V586Q6dYyWrAAAAADgQrSABJCYTz4xko+SVFQkZWU5G4/XvfOOMTK4RKsFt4vn8zGTYI613PPPl047LfZYgFRF3YlQb79t3J8AAABH0QISKI0vLrGJdZRxVGzgQONf795SpUpORwOrmalfYq2Ddu+OLxYASAfPPut0BAAAQLSABFKP1QnUdErIuum99u8v5ec7HQXgrHvucToCAPA2unYBUMJN33WQlkhAAkCJH35wOoJwf/zhdASoSDwJYr4Iwqv40gJ4E+cuADiPulgSCUgAAOJT0ldnLMwkINMtSckNGQDASVyHACApSEAi9bn1psKtcQGwz44d0ZdZu1Z64w37YwFSVbol8QEkhntypAu6d4LDSEACgFtxQ5y+7r/f6QiAcF5K6k2Y4HQEAAC4D9dHOIwEJFKfW780kVwCAHiFl65Zjz3mdAQAvMRL9RuQiKVLnY4AaY4EJFBasm5COnZMznYS5dYEbjr4+munIwAAAAAAJIIfOiSRgEQ64GQ3Z9GiyPPZf87ZudPpCAD7bdjgdAQAkLq4jwMAuESm0wEAruP1Fn/x3GgGAlKXLuX/fedO6bvv4g4JAMp17bVORwAASGckaQEgKUhAApDmz5dWr478t6VLpVNOMTd6LwDEYts26fffnY4CAAAAgM14BBupj181o4uWXCT5CMAOe/Y4HQEAIN15/eknAPAIEpBAusvN5cYLAFAxfswDvMnvdzoCAAAkkYAEyvL6l6xYk4n79pGABABULCfH6QgAxOPnn52OwNWqbN3q/Xt/AO5HPSOJBCQAAHAKP354x6RJTkcAAJY7Yvx4p0MAgLRBAhKpj18boiMJAAAAgDRz9Pvv810Bqe3yy41B/wAXIAEJpDufjwQkAAAA0hMJSKSyL7+U+vVzOgpAEglIpIN0S65xEwUAAAAAkKQ33nA6AkASCUikAxJyAAAAAADACeQkJJGABMpKtxaTPIINAACAdEViAACSggQkUFo63oSQgATgBOoeAAAAIC2QgARAEgCAM8aPdzoCAEC64z4YAJKCBCRSXzq2aIwFN10AnDJtmtMRAADSnO/XX50OAUCq27LF6QhcgQQkAAAAAAAAYIf33nM6AlcgAQmkmnhafNIKEgAAAAAA682f73QErpDpdACA7XgEu2KnnUaTcAAAAAAA7ECDH0m0gARA8hEAAAAAANiIBCRQGi0mAQAAAAAALEMCEqmP5s4AAAAAAACOIQGJ1JduLRpJuAIAAAAA4A7plpMoBwlIoDQSeAAAAAAAAJYhAQkAAAAAAADANiQgkfrSrblzur1fAAAAAADgaiQggdJI4AEAAAAAAFiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpBIfTxSDQAAAAAA4BgSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIINXQ5yUAAAAAAO7Ad3RJJCABAAAAAAAA2CgzWRt69dVXNXjwYB1zzDGaNm2aLdvYsmWLRo8erZkzZ2r9+vXKz89XvXr11LBhQ3Xq1EmdOnXSIYccYro8v9+v6dOna+rUqVq4cKGys7OVn5+vWrVq6bjjjlPbtm119dVX64QTTjBVXr9+/TRy5MiY3tPxxx+vqVOnxrQOAAAAAAAA4BZJSUAuWrRIQ4cOtXUbo0eP1gsvvKD9+/eHzd+8ebM2b96smTNn6u2339aLL76o1q1bRy1v2bJl6tmzp1auXFnmbzk5OcrJydHChQv13nvv6brrrlOvXr1UuXLlCstcunRpbG8K1qC5MwAAAAAAgGNsT0Bu3LhR9957rwoLC23bxrBhw9S/f//gtM/n0ymnnKJDDz1U69at07Zt2yRJ69at00033aSRI0eqefPm5ZY3f/583XzzzcrPzw/Oq1atmho3bqxDDjlEWVlZWrdunSSpuLhYI0aM0O+//6633npLmZmRd2kgENCKFSuC023btlWVKlWivrcjjzwy6jIAAAAAAACAW9magFy5cqVuv/12ZWdn27aNBQsW6MUXXwxOn3XWWXr++ed1/PHHSzISf1OnTlXfvn21c+dO7d+/X/fee68mT54c8XHsvLw83XfffcHkY7Vq1fTvf/9b3bp1U9WqVYPL/f7773r++ec1Y8YMSdLMmTM1aNAg9ezZM2Kc69ev1759+yRJlStX1nvvvRe1xSQQlz17nI4AAAAAAOAWS5Y4HQFg3yA048ePV7du3ZSVlWXXJiRJ/fv3V3FxsSSpefPmeuedd4LJR8loDdmxY0cNGzZMNWrUkCRt3bpVw4cPj1jeO++8ox07dkiSMjMzNXToUN1www1hyUdJOumkk/T222/r4osvDs774IMPtHnz5ojlLlu2LPi6UaNGJB+TKdZHsHlkGwAAAACQKh56yOkIAOsTkFlZWerVq5d69uxZpj9Gqy1cuFALFiwITvfp00fVqlWLuGzTpk113333BaeHDx8eTFyGmjBhQvB1ly5d1LZt23K37/P59NRTTwWTk4WFhZoyZUrEZZcvXx4WCwAAAAAAgO2+/dbpCABrE5BvvvmmLrnkEn3++efBeQ0bNtTdd99t5WaCvvrqq+DrRo0aqU2bNhUu37Vr12AfjTk5OZozZ07Y3zds2KA//vgjOH3ZZZdFjaFu3bo67bTTgtOLFy+OuFxoC0gSkC5n0yjtAAAAAAAA6cjSBOS7774b7OdQkq6++mqNGTNGJ5xwgpWbCfrpp5+Cr88555yoy9epU0ctWrQITk+fPj3s73/88UfYo9Ynn3yyqTgOPfTQ4Otdu3ZFXIYEpIN8PqcjAAAAAAAASFu2DELTokUL9erVq8LHlxNVWFiotWvXBqcrGtU6VJMmTYKPbZdurfiXv/xFixYt0s6dO5WVlRWWWKzIpk2bgq9r165d5u85OTnBkbhLYkAS0acjAAAAAABwAjkJSRYnINu2bavOnTvrwgsvlM/mVmebNm1SYWFhcNpsK8tjjz02+HrDhg0RlznssMN02GGHmSpv48aNWrp0aXC6UaNGZZYJbf1Yr1491apVS5MmTdKkSZO0aNEibd++XdWrV9fRRx+ts88+W1dffbUaNmxoavsAAAAAAACAm1magBw8eLCVxVUoOzs7bLpevXqm1gtdbseOHfL7/crIiP9J9Ndff12BkGz2+eefX2aZ0ARkZmamLrvsMq1bty5smdzcXOXm5mr58uUaPny4brjhBj366KPBPisBAAAAAAAAL/Jsdis3NzdsOtKjz5HUqlUr+DoQCGj37t2mH7UuberUqRo/fnxwun379hEfBQ9NQG7ZsiX4ul69ejruuOMUCAT0+++/B/uPLC4u1rBhw7R69WoNGTJElStXjis+qxQVFTm6/YRFGO0cAAAAAADAboFAQMVez6tYwLMJyIKCgrDpatWqmVqvdDKvdDlm/fbbb+rZs2dYub169Yq47PLly8OmW7ZsqV69eumss84KzvP7/Zo5c6aef/55/f7775KkmTNn6rnnntNTTz0VV4xW8Pv9WrhwoWPbt8JR27bpGKeDAAAAAAAAaWfvvn1a4fG8ihUsHQU7mUq3yjP7GHXpR5qL42gdt3z5ct16661hI3737NlTzZo1K7PsgQMHwgapufjii/XRRx+FJR8lI/7zzjtPY8aM0amnnhqcP3r06DIJTAAAAAAAAMArPJuALJ1w9Pv9ptYrnbiM9fHmX3/9VTfeeGPwcWlJ6tq1q2688caIy1epUkXz58/X9OnTNWLECA0YMKDCbdaqVUsDBw4Mvr9AIKAPPvggphgBAAAAAAAAt/DsI9iHHHJI2HRBQYGqVKkSdb0DBw6ETVetWtX0Nr/55hv16NFD+fn5wXmXX365+vXrV+F6GRkZatCggRo0aGBqO40aNdLZZ5+tmTNnSpJmzZplOkarZWRkqGXLlo5t3xImBygCAAAAAACwUo3q1dW6dWunw0jI4sWLTTf8K49nE5B16tQJm87LywsbYKY8eXl5wdeZmZmm1pGkd955RwMHDgzb4V27dtUzzzyT0Cja5Tn99NODCcitW7eqoKAgpmSplbw+Ere/VNIZAAAAAAAgGXw+n+fzKlbw7CPY9evXD5vevn27qfWys7ODr+vWrSufz1fh8oWFhfrPf/6jl156KSz5eOedd+q5556zJfkoSUcccUTYdOgj34iNb9Ikp0MAAAAAAABIW55NQDZo0CCsL8WNGzeaWi90QJgTTzyxwmX37t2rO++8U2PGjAnOq1Spkp588kn16NEjtoBjVHp07ho1ati6vVTmW7TI6RAAAAAAAADSlmfbgFauXFmNGzfWb7/9JklatmyZOnXqFHW9ZcuWBV+HjjZd2u7du3Xrrbdq8eLFwXnVq1fXoEGDdP7555uO85tvvtHs2bOVk5OjzMxMvfjii6bWC02o1q5dWzVr1jS9TQAAAAAAALhAIOB0BK7g2RaQktSuXbvg6x9//DHq8rt27dLSpUuD0+3bt4+43N69e8skH+vVq6cPP/wwpuSjZCQ8R4wYoYkTJ2rChAmmHxUv6f9Rks4444yYtgkAAAAAAAC4hacTkB07dgy+XrJkiZYsWVLh8p988omKiookGYPYnH322RGXe+yxx8KSjyeccII++ugjNW/ePOYY27ZtG3wdCAT06aefRl1nypQpWrt2bXD6iiuuiHm7AAAAAAAAgBt4OgHZpk2bsKRg7969w0a5DrVs2TK9+eabwelu3bqpWrVqZZb76KOPNGXKlOD0McccoxEjRui4446LK8a2bduG9TX59ttva/Xq1eUuv3btWvXt2zc43bBhw7BEKwAAAAAAAOAlrk1AXnDBBWrSpImaNGmiCy64oNzlevXqFRzJeuXKlbrhhhu0fPny4N8DgYCmTJmim2++Wfv27ZNkPE591113lSkrLy9PgwYNCk5XqVJFb775ZpkRt2Ph8/n0+OOPB6f37t2r7t27a+LEiWGjahcWFmrcuHG69tprtXPnTklGP5cDBgxguHYAAAAAAAB4luczW+3atdPDDz8cTBwuXbpUV155pU4++WTVrVtX69evV1ZWVnD5atWq6ZVXXlGtWrXKlDVq1Cjt3r07OF2zZk3Tg8aUaNKkiXr27Bk2729/+5t69OihgQMHSpJ27typRx55RP369dMpp5yioqIirVmzJmzblStX1iuvvKJWrVrFtH0AAAAAAAC4xJ+N5tKd5xOQknTXXXepRo0aGjhwYLCVY6THnI866ii9/PLLOvPMMyOWM3ny5LDpnJycsMFgzDhw4EDE+XfeeacaNGigfv36KTc3V5IxKM7cuXPLLNuoUSM9/fTTOuuss2LaNgAAAAAAAFyEUbAlpUgCUpK6d++uDh066JNPPtH333+vTZs2KS8vTzVr1lTjxo3VoUMHdenSRTVr1iy3jNCBX+xw2WWX6e9//7s+//xzzZgxQ8uXL9euXbtUqVIl1atXT82aNVPHjh3VoUMHValSxdZYAAAAAAAAgGTwBQKkYhFu/vz5wf4pMzIy1KZNG4cjShDNnQEAAAAAgBPat5d++snpKBJiRZ7ItYPQAAAAAAAAAPA+EpAAAAAAAAAAbEMCEgAAAAAAALADPR9KIgEJAAAAAAAAwEYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAADs4PM5HYErkIAEAAAAAAAA7MAgNJJIQAIAAAAAAACwEQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAOzAKNiSSEACAAAAAAAAsBEJSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAAA7+HxOR+AKJCABAAAAAAAAOzAIjSQSkAAAAAAAAABsRAISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAADswCrYkEpAAAAAAAAAAbEQCEgAAAAAAAIBtSEACAAAAAAAAdvD5nI7AFUhAAgAAAAAAALANCUgAAAAAAADADgxCI4kEJAAAAAAAAAAbkYAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAAB2YBAaSSQgAQAAAAAAANiIBCQAAAAAAAAA25CABAAAAAAAAOzg8zkdgSuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACwA6NgSyIBCQAAAAAAAMBGJCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAIAdGIRGEglIAAAAAAAAADYiAQkAAAAAAADANiQgAQAAAAAAADv4fE5H4AokIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAADswCjYkkhAAgAAAAAAALARCUgAAAAAAADADrSAlEQCEgAAAAAAALDH/PlOR+AKJCABAAAAAAAAO9ACUhIJSAAAAAAAAAA2IgEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYJjNZG3r11Vc1ePBgHXPMMZo2bZot29iyZYtGjx6tmTNnav369crPz1e9evXUsGFDderUSZ06ddIhhxwSU5mLFi3SmDFjNHfuXGVlZSkQCKh+/fpq3ry5rrzySp133nny+XymywsEAvrmm280YcIELV68WDt27NAhhxyi+vXrq3379urSpYuaNm0a61sHAAAAAAAAXMkXCAQCdm9k0aJFuu6661RYWGhbAnL06NF64YUXtH///nKXOfHEE/Xiiy+qdevWUcsrLCzUM888o48//rjC5c4991z1799fRx55ZNQys7Ky9PDDD+vXX38tdxmfz6ebb75ZjzzyiKpUqRK1TDvMnz9ffr9fkpSRkaE2bdo4EodlYkgQAwAAAAAAWMr+1JutrMgT2f4I9saNG3XvvfeqsLDQtm0MGzZMTz75ZDD56PP51LhxY7Vt2zYsMbhu3TrddNNN+u233yosLxAI6KGHHgpLPlatWlWtWrVSmzZtVLNmzeD8mTNn6qabbtLu3bsrLDMnJ0fdu3cPSz4eeuihOvPMM9W8eXNlZmYGt/3+++/rscceM78DAAAAAAAAAJeyNQG5cuVKXX/99crOzrZtGwsWLNCLL74YnD7rrLM0ZcoUffHFFxoxYoRmzJih119/XYcddpgkaf/+/br33nsrbCn53nvv6ZtvvglOX3fddZo1a5bGjBmj0aNHa9asWXr44YeDScO1a9fq8ccfrzDO3r17a8OGDZKMZOZTTz2lWbNmaeTIkRo7dqy+++47derUKbj8xIkT9cEHH8S+QwAAAAAAAAAXsS0BOX78eHXr1k1ZWVl2bUKS1L9/fxUXF0uSmjdvrnfeeUfHH3988O8+n08dO3bUsGHDVKNGDUnS1q1bNXz48Ijl5eTk6I033ghOX3vttXryySdVq1at4Lxq1arp7rvvVr9+/YLzpk6dqnnz5kUs84cfftB3330XnH7hhRd07bXXBhOYklSvXj3997//1T//+c/gvMGDBysvL8/EXgAAAAAAAADcyfIEZFZWlnr16qWePXtW2MrQCgsXLtSCBQuC03369FG1atUiLtu0aVPdd999wenhw4cHE5ehPv30U+3du1eS8Yh0z549y91+ly5d9Pe//z04/f7770dcLjTZee6554a1dCztySef1OGHHy5J2rlzp8aNG1fusgAAAAAAAIDbWZqAfPPNN3XJJZfo888/D85r2LCh7r77bis3E/TVV18FXzdq1ChqJ5hdu3YNtjrMycnRnDlzyiwzadKk4OtLL71U1atXr7DMa665Jvh6xowZ2rdvX9jfc3Nz9eOPPwanu3TpUmF51atX1xVXXBGcnjx5coXLAwAAAAAAAG5maQLy3XffDUvAXX311RozZoxOOOEEKzcT9NNPPwVfn3POOVGXr1Onjlq0aBGcnj59etjfd+3apWXLlgWnzz333Khltm/fXpUqVZIk5efnhyUbJWnOnDnBlpY+n89UnKHLzJs3T7m5uVHXAQAAAAAAANzIlj4gW7RooREjRujZZ58NGzHaSoWFhVq7dm1wunnz5qbWa9KkSfD14sWLw/62YsUKBUKGRjdTZvXq1cP6nCxd5vLly4Ovjz32WNWpUydqmU2bNg2+9vv9UUftBgAAAAAAANzK0gRk27Zt9cYbb+jTTz9V27ZtrSy6jE2bNqmwsDA4bbaV5bHHHht8XTIqdYl169YFX1epUkVHH320pWWajbFevXphfVmuX7/e1HoAAAAAAACA22RGX8S8wYMHW1lchbKzs8Om69WrZ2q90OV27Nghv9+vjIyMMmWaLa/0sqXj2rZtW1xlHn744frjjz8ilgkAAAAAAAB4haUJyGQq3S9i7dq1Ta1Xq1at4OtAIKDdu3fr0EMPlWT0ARlpuWhCHzMvHVfodCxlhi67e/du0+vZoaioyNHtJ8qzBzkAAAAAAPA8r+dVrODZ3ExBQUHYdOgjyxWpXLlyueUcOHAg5vIk43HtSGWULj/eMku/12Ty+/1auHChY9u3whlOBwAAAAAAANKW1/MqVrBlEJpkKJ09LnmMOprMzPCca8kI1ZLC+pQ0W17pMkvHFTodS5klI2tHKhMAAAAAAADwCs8mIEsn8/x+v6n1SifzQltEhib9zJZXuszSLSzjLTM0MVq6TAAAAAAAAMArPPsI9iGHHBI2XVBQEPbYcnlKPyJdtWrV4OvQR6Rjeew5dNnQ8uwqM5kyMjLUsmVLx7YPAAAAAADgZa1bt3Y6hIQsXrw4pkZ1kXg2AVmnTp2w6by8PFODvOTl5QVfZ2Zmhq1TMhhN6eWi2bt3b8QySscZS5mhy5YuM9lKP7YOAAAAAAAAc8irePgR7Pr164dNb9++3dR62dnZwdd169aVz+eLWOaOHTtMxxJa5hFHHFFunLGUGbpsvXr1TK8HAAAAAAAAuIlnE5ANGjQI6xtx48aNptbbtGlT8PWJJ54Y9rcTTjgh+Hrfvn2mk5qh2z7ppJPC/ha6jQ0bNpgqb9u2bcrPzy83TgAAAAAAAMArPJuArFy5sho3bhycXrZsman1Qpc79dRTw/7WrFmzsBaRZsrcu3dvWGKxadOmYX9v3rx58PX69eu1f//+mGL0+Xxq0qRJ1HUAAAAAAAAAN/JsAlKS2rVrF3z9448/Rl1+165dWrp0aXC6ffv2YX+vWbOmmjVrFlOZs2fPDnbEWalSJbVt2zbs72eccUbwWf/i4mL9/PPPUcsM3W6zZs3K9HcJAAAAAAAAeIWnE5AdO3YMvl6yZImWLFlS4fKffPKJioqKJBmDw5x99tlllrn44ouDrydMmBC1xeJHH30UfH322Werdu3aYX+vXbt2WKJz9OjRFZa3d+9eTZgwITh9ySWXVLg8AAAAAAAA4GaeTkC2adMm7BHn3r17lzvS9LJly/Tmm28Gp7t166Zq1aqVWa5Lly465JBDJBkD2/Tr16/c7Y8ZM0Y//PBDcPrGG2+MuNz1118ffD19+nSNHTu23DKfeuop5eTkSJKqV6+url27lrssAAAAAAAA4HauTUBecMEFatKkiZo0aaILLrig3OV69eoV7Ldx5cqVuuGGG7R8+fLg3wOBgKZMmaKbb75Z+/btk2SMKn3XXXdFLO+II47Q7bffHpweO3asevToETYqdX5+voYMGaInn3wyOO+8887TeeedV+57CX1cvE+fPnrrrbdUUFAQnLd9+3Y9/PDDYa0f7733XtWtW7fc9w4AAAAAAAC4XabTASSqXbt2evjhhzVo0CBJ0tKlS3XllVfq5JNPVt26dbV+/XplZWUFl69WrZpeeeUV1apVq9wy7777bi1evFjfffedJOnLL7/U119/rSZNmqhKlSpatWqV9uzZE1z+2GOP1YABAyqM86WXXtL111+vjRs3qqioSIMGDdLQoUN1yimn6MCBA1qxYoUKCwuDy59//vm67bbb4tklAAAAAAAAgGu4tgVkLO666y716dNH1atXD85bvXq15syZE5Z8POqoo/TOO+/ozDPPrLC8zMxMvf766+ratWuwdWVhYaGWLFmiefPmhSUf27Rpo1GjRkVtqVi/fn2NGDFCp59+enDenj17NG/ePC1ZsiQs+di1a1e99tpryshIiY8HAAAAAAAAaczzLSBLdO/eXR06dNAnn3yi77//Xps2bVJeXp5q1qypxo0bq0OHDurSpYtq1qxpqrwqVaroueee0zXXXKNx48Zp9uzZysrK0oEDB1S3bl21atVKl112mTp27Gg6UXj00Udr1KhRmjp1qr766istWrRI27dvV0ZGhurXr68zzjhD3bp102mnnZbAngAAAAAAAADcwxcIBAJOBwF3mT9/vvx+vyQpIyNDbdq0cTiiBP3ZihUAAAAAACDpPJ56syJPxDO+AAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwTaYdha5Zs0ajR4/Wzz//rE2bNqmoqEhHHnmkGjdurMsvv1wXXXSRMjOt3/SsWbP05Zdf6v/Zu+8oKaq0j+O/nkSOMuQ4hCGDIIiICAYQBVYBQVQUE4uBdcEAhgVERZDFsCbWuIoYAGH1RUXBsAgqBhBRGaIgoCSBIUia8P7RTtE907mruqq7v59zOHT1VN16urrqVtXTt+5dsWKFdu3apfz8fGVmZqp9+/bq37+/zj777IDLz5s3T3fddVfUcaxdu9bn+5MmTdKsWbPCKqt+/fpatGhR1DEBAAAAAAAAdjA9C/jEE09oxowZysvL83p/69at2rp1qz766CO1bt1a06ZNU1ZWlinr3Llzp26//XZ99dVXJf62bds2bdu2TQsWLFD79u01ZcoUNWrUyJT1huunn36yZb0AAAAAAACAXUxNQD7wwAOaOXPmycLT0pSdna0yZcpo48aN2rdvnyTphx9+0LBhwzR79mzVqVMnqnVu2bJFV1xxhXbv3u31fuPGjVWtWjXt3LlTmzdvliR99913GjhwoJ577jl17NixRFk1atRQt27dwlr/7t27vVo8nnnmmT7nKyws9Jqvc+fOysjICFp+9erVw4oHAAAAAAAAcBJXYWFhoRkFLVy4ULfeeqsx3bt3b40fP17VqlWTJJ04cULz5s3TQw89pCNHjkiSWrVqpbfeeksulyuidR45ckQDBgzQpk2bjPd69Oihu+++Ww0aNDDeW79+vSZOnKhvvvlGklSpUiW98847qlmzZkTr9Vz/kCFDjMRi48aN9eabb6pChQol5t28ebN69+4tSUpPT9fKlSuVnp4e1fqtsnLlShUUFEiSUlJSdOqpp9ocUZQi3L8AAAAAAACiZk7qzTZm5IlMGYTmxIkTmjp1qjHds2dPPfbYY0byUXIn3YYMGaInn3zS6P/xxx9/1IIFCyJe76xZs7ySj4MHD9aMGTO8ko+S1LRpU7300ktG68Tc3Fzdf//9Ea+3yH333WckH0uXLq3HH3/cZ/JRktasWWO8bty4sWOTjwAAAAAAAICZTElALlq0SL/++qsk92PX48ePV0qK76K7deumIUOGGNMvvfRSxOt97bXXjNdZWVkaP36839aUGRkZmjJlivHY8+LFi7V+/fqI1/3BBx9o/vz5xvS4cePUtGlTv/Pn5OQYr5s3bx7xegEAAAAAAIB4YkoC8r333jNed+3aVbVr1w44v2cC8scff9TWrVvDXufmzZu1fft2Y3r48OFBWxVWr15dPXv2NKYjbX2Zm5ur++67z5ju3LmzLrvssoDLeLaAJAEJAAAAAACAZBF1ArKwsFDLly83pv0NwuIpOztbmZmZxvTHH38c9nq3bNniNX366aeHtFzr1q2N119//XXY65Wk6dOn6/fff5fkbln5wAMPBO3HkgQkAAAAAAAAklHUCcjt27frwIEDxrRngi+Q7Oxs4/Xq1avDXq/nOiX3CNahqFy5svHaMykYqrVr12rOnDnG9PDhw0v0OVnc3r17tWvXLmPa87MDAAAAAAAAiSwt2gI2b97sNV2/fv2Qlqtbt67x+pdffgl7vWXKlPGaPn78eIn3fDl8+LDx+o8//tD+/fu9kpLB/POf/zRG/snMzNTIkSODLuOZ6MzMzFSFChX0/vvv6/3339f333+vPXv2qGzZsqpVq5a6du2qSy+9VFlZWSHHBAAAAAAAADhV1AnI3bt3G69TUlK8Rr4OxPMRbM8yQlWrVi2v6TVr1qhLly5Blyve6nH37t0hJyBXrFihJUuWGNMjRoxQuXLlwlpnWlqa+vbtWyJxm5ubq9zcXOXk5Ojll1/WsGHDdMcddxgjhgMAAAAAAPj0/PPS9dfbHQXgV9TZrdzcXON1uXLl/I5+XVz58uV9lhGq5s2bq2LFisaj2HPmzAmagDx48KA++ugjr/eOHDkS8jpnzJhhvK5Zs2bQgWeKeCYgf/vtN+N1Zmam6tWrp8LCQv3888/av3+/JCk/P1//+c9/tGHDBs2YMSPo4DpWy8vLs3X90SKFCwAAAABIZHnnn8+9r4PFe17FDFHvn8eOHTNely5dOuTlMjIyjNfHjx8Pe72pqam6+OKL9corr0hyj2jdo0cP9evXz+f8hYWFmjBhgg4dOuT1fqjrXrdunf73v/8Z09dcc43XZwgkJyfHa7pNmzYaO3asOnXqZLxXUFCgpUuXavLkyfr5558lSUuXLtWDDz6oiRMnhrQeKxQUFGjVqlW2rd8MHe0OAAAAAAAAC/30009qVa6cUj26nYNzxHtexQxRD0Jz4sSJk4WF2PpRktejxZFmgkeMGOH1+PSdd96p6dOnl2hRuWXLFo0cOVLvvvuuypYt6/W3UGN+7bXXjNfly5fXoEGDQlru+PHj2rZtmzHdu3dvvf76617Jx6I4unfvrjlz5qhFixbG+2+88UaJBCYAAAAAAECRQpdLuwYPtjsMwK+oW0CmpqYar4sGZwmFZ9Ix0keMMzMz9dhjj+mvf/2rjh07poKCAj377LN68cUXlZ2drQoVKmjXrl3atGmTJHfSc9q0abr55puNMkqVKhV0PUeOHNE777xjTA8cONDrEfJAMjIytHLlSu3YsUPbtm1TmzZtAn7eChUqaPr06erbt68KCgpUWFioV155RZMnTw5pfQAAAAAAIPn8kZ1tdwiAX1EnID1HnvZ8HDsYz0efQ0kC+nPGGWdo5syZGj16tLZv3y7Jndz88ccfvearU6eOpkyZosaNG3u9H8ogMh999JHX6NkDBw4MK8aUlBTVrl1btWvXDmn+xo0bq2vXrlq6dKkkadmyZWGtz0wpKSlq06aNbesHAAAAAACBtWrZUq4/x5WA87Rr187uEKKyevXqsBod+hJ1ArJSpUrG68OHD6uwsFAulyvocp59MYY6CrU/7dq108KFCzV//nx9+OGHysnJUW5urqpWraqsrCz17dtXF110kcqUKaMNGzZ4Les5Grc/7777rvG6VatWyo7BrwodOnQwEpA7duzQsWPHokrURoORuAEAAAAAcK60tDQpjG7xEFvkVUxIQNaoUcN4nZ+fr3379qlq1apBl9u9e7fxulq1atGGoYyMDA0ZMkRDhgwJON+6deuM15UqVQraAvLo0aP6/PPPjekLL7wwukBDVHyb7N+/32tbAwAAAAAAAPEg6vR4gwYNvKa3bt0a0nKeA7M0atQo2jBC9sMPPxivQ2nJuHz5ch09etSYPv/88y2Jq7jij7OH8qg4AAAAAABIQi6X+x/gUFG3gKxTp44qV66s/X/2NbBmzZqQnm33HNm5efPmEa//0KFD2rVrl0455RSvx8H9WbJkifE6lDi//PJL43XDhg1LJFyDWbx4sb788kvt3btXaWlpevjhh0NazjORW7FixZAHvQEAAAAAAACcxJQOAk4//XTjtefjyv7k5ORoz549xnSXLl0iWu/ll1+ujh07qk+fPpo3b17Q+detW6f169cb0z179gy6zIoVK4zXbdu2DTvGNWvWaObMmXr33Xf1zjvveH3uQIr6f5Skjh07hr1eAA7Xs6f01FNSr152RwIAAAAAgKVMSUD28riB/uSTT7Rz586A87/++uvG68aNG0c8qEuTJk2M14sXLw46/zPPPOO1bIcOHQLOf+LECa/RtFu3bh12jJ07dzZeFxYWau7cuUGX+fDDD7Vp0yZjun///mGvF4DDffyxdNNNPCYBAAAAIHqFhXZHAARkWgKyevXqkqTjx49r3LhxysvL8znvZ599pjlz5hjTw4YNi3i9ffr0MV5/8803WrZsmd95586dq/fee8+YHjlyZNDRujdt2qQTJ04Y023atAk7xs6dO6thw4bG9LPPPltiJO7i6xw/frwxnZWV5ZXgBQAAAAAAAOKJKQnIjIwMjRkzxpj+/PPPdcMNN3j1Y5iXl6fZs2dr1KhRys/PlyQ1a9ZMl156qc8yzznnHGVnZys7O1vnnHOOz3m6dOni1Y/j6NGjS7SE3Ldvn6ZNm6Z7773XeK979+7q169f0M+1ceNGr+l69eoFXaY4l8ulu+++25g+fPiwrrzySr377rsqKCgw3j9x4oTmz5+voUOHat++fZKk9PR0TZ06leHagUTGL5UAAAAAosWTVXA40zJbl1xyiVauXKk333xTkjsJ2atXL2VnZ6t8+fLauHGj9u7da8xfuXJlPf7441El11wulyZPnqyhQ4fqwIEDys3N1c0336yaNWuqQYMGys3N1aZNm3T8+HFjmVatWumRRx4JqXzPkbol92AwkTj77LN12223afr06ZLcSdExY8Zo0qRJatq0qfLy8rRx40YdOHDAWCY9PV2PPfZYRP1OAgAAAAAAAE5hSgvIIvfdd59Gjhyp9PR0SVJBQYHWrFmjr7/+2iv52LhxY7366qvKysqKep1NmjTRyy+/rPr16xvv7dixQ8uXL1dOTo6RfHS5XBowYIBeffVVVahQIaSyPQeMycjIUKlSpSKOc8SIEZo+fbrXSN379+/X119/rZUrV3olHxs3bqyXXnpJ5513XsTrAxAn+KUSAAAAgBm4t4CDmfpsr8vl0ujRo9W/f3/NnTtXS5cu1Y4dO3TkyBFVqlRJLVq00AUXXKD+/fsrIyPDtPW2bNlSCxYs0Pz587Vo0SKtWbNGubm5Kl26tOrVq6dOnTpp0KBBYQ9288cffxivI2396Klv377q0aOH/vvf/2rJkiXKycnR/v37lZqaqszMTLVs2VK9evXSeeedZ+r2AQAAAAAAAOziKiykAzJ4W7lypdE/ZUpKik499VSbI4oSvwLBiYqq3gsukD74wN5YAAAAAMS3HTukpUulQYPsjgS+xHnqzYw8kamPYAMAwhTnJyIAAAAAAIIhAQkAAAAAAABY4c/BmpMdCUgAAAAAAADACv372x2BI5CABAAAAAAAiHeMf+BMpUvbHYEjkIAEgHBkZdkdAQAAAACURP/ycDASkAAQjo0b7Y4AAAAAAIC4QgISAGLthhvsjgAAAAAAgJghAQkAsXTJJdLkyXZHAQAAACDR0AckHCzN7gAAIKnMm2d3BAAAAAAAxBQtIAHATnQUDQAAACBatH6Ew5GABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAADEO/qBhIORgAQAIBbuusvuCAAAAJCoSD7C4UhAAkC4Kla0OwLEo0aN7I4AAAAAiaqw0P0PcCgSkAAAAAAAAAAsQwISAIBY4LEYAAAAWInrTTgYCUgAAAAAAIB4RvIRDkcCEgDC9cIL5pVFPy3Jg+8asNfjj9sdAQAAQNIiAQkA4broIqlrV7ujAACE429/szsCAACApEUCEgDCVaaM9L//SZ9+anckiCc8FgMAAAAgSZGABIBIpKVJZ59tdxSIJzyCDSS+Hj3sjgAA4BQVKtgdAeAoJCABAAAAMzzyiN0RAACcItZPv/C0DRyOBCQAALHARSGQ+Bo1sjsCAEAy43oTDkYCEgAAAM41dqx74K+ePe2OBAAAZ6PLHzhYmt0BAACQFLggBCIzZYr7/x9+kNq0sTcWAACcimtNOBwtIAEAAAAAAMxkR0KQR7DhYCQgAcBO/FIJAKGJh/qSG7/gWrSQbrjB7igAIPFwDoLDkYAEkJweftjuCAAASD5jx0ojRtgdBQAgWQ0fbncESYsEJIDkdMcddkeAZFO+vN0RAPEtHlpAAgBgJ1pBBvfMM+aUc9VV5pSTREhAAgAQCwMG2B0BENhpp9kdQWDRJCAHDTIvDiS+fv3sjgBAIrAjGciPdcGVLh19GSR6I0ICEgBipWXLku9xkZA8SpWyOwIgsM8+szuCwMqVi3zZmjXNiyMQbkgSQ3q63REAAKzQpIk55Zx6qjnlJBkSkAAQK2eeaXcEsEuvXnZHAMS/Jk3cA5hEgh97nMXpiVqnxwcAvjip7uraVRo8WOreXTr7bLujOSktTZJU0LevzYEkJxKQABArvi4KnHShAGuceab01FN2RwEEFw/10Suv2B0BAADO5ZRzeZ060ptvSv/7n3T55XZHc9KfP0gWPP64Dpx+us3BJB8SkAAQL2L1CCHM07attHSpeY97AMnO6f1UIjS0SAUA2Kl+fa1/6ikdr1498jI4l4WNBCQQD6ZOtTsC2K1iRVrRAUCkYnWT4JSWJ4gO3yOAeJWdbXcEbk5NzplVv3OeiAgJSACwU6gn5x07GEU5HtWvb3cEADwUduxodwgAkDwi7bc3UdiRhGve3N3/IqxHEjJsJCABIFYuvDDyZcuUMS8OxM7DD9sdAQAP+dOn2x0CACSPlSulKVPsjiL5vPeedPvtdkfhTGYmhZ3aytPBSEACQCxkZ0v9+tkdBWIt2X/5B5zmzDPtjgCS81uNOD0+IF6UKpXcfZjbVZdUqiRNm2bPuouceqq96w8VScSYIgEJAFa7/35p+XIphSoXAGzBDQbCQQISAKIzatTJ14l4DuY8ERHuhgHAavfe6/4lEgCcjIvp6LENE0Mi3iwDdknWevH66+2OwF4VKtgdgW/F98dI6/tk3a+jRAISAJxu1iy7I0AyadDA7ggA85FQcha+j/h10012RwDEhxo1Yr9OpybFrIirXTvpoovCX47zj61IQALxgIoyuQ0ZYncESCZr19odAQAAAOw2Z47dEfj33XfSggVRF+OiBWRMkYAEACfLzpZSU+2OApE491y7IwCca8wYuyMA/OPGEjBPsjakSIR6ZNAgqW5du6NAAiEBCQBOlggXL8koNVWaOtXuKADnmj498iRk377mxmIm6mwkuhtvtDsCAECcIgEJAHZK1l+FE1mNGtJnn0kdO9odSWRIoMDpHntMatnS7iic4eab7Y4gMk6vZ5wen51at7Y7AiB+2NEPJOBgJCABIJ6MGGF3BAhmxgzpjDPsjgIIX7wkXRo3lpYtC2+ZRP2x5x//sDsCAIAvLpf07LOxXydig20dERKQAJLX5Ml2RxC+Dh3sjgBIXlWq2B0BAADxJZkTNWedJY0aFbv1JeqPbVZim8UUCUgAyevqq92DvMSTZL6IA4BIxeoGgzo6uKws59/w8T3GXk6OtHy53VEA5kpNlf71L2nNGrsjQRGzzj+cJyJCAhJA8qpdW/r2W+mTT+yOBEA84GLTOfgu4lOTJlK3bnZHAadyemIaCIfneapcOfviQGDUOzFFAhJAcitXTurRw+4oECN7zz/f7hDgVBkZwech6QVEpmZNacgQ6aOP4uM4iocYEw3bPHFZneAZNcqZ+4/n53ZifMmK78JWJCABIJ5w0ozagU6d7A4B8YpfyePX7bfbHYE14uWcsHCh9MYbUv367mmnx82xDsSPf/1LuuACu6NwBqfXrU4UaX3Pto4ICUgAAADEl3Av/Js2tSYOAOYh8YtEQoLKmahnbEUCEgCcjIsXIDYeecTuCOxHfRO9WG9DbqSswbGARLd2bez6Y+V4iu9tYEbsDj5XuaJpAengz+VUJCCBeBDPJy0AiAdXXhl8HupiIDlwrCORtWwpNWsm0S82ELnLLrM7grhEAhIA7MQvZ7Fn9Y1lKIOZwHkqVbI7AiB5cO6DLyR+Y+Pxx+2OIDlEuz9Hcj3JMRScWdvo2mvZ3hEgAQkASC5W3/hmZVlbPuzDhaZz8F24sR2sUa2a3REkJxLTsVFUb1B/xE642/pf/5IOHrQmlnAl2nFp1ucpVy7xtk0MkIAE4gGVW/x66im7I0CsNW9udwTRidUNSbVqJ2/yy5aNzToBs9xwg+/3uaEPjdO30/XXS6VL2x0FgESRnx/e/KVK2f9ETY0a9q4/VgLdZ0+YELs4kgQJSACwyqxZ0k032R1FcO3b2x1BzPzmL2mA2DvvPGnLFmn3bmnRIrujCY3TkyaIjaeekp55xrzyUlKkW281rzwnqlzZ7gjCU7689PLLdkcBWIsGDtbyvGbIy4vNOs38TlNTzSsrXq+fbrvN7ggSDglIIJmdcordESS2yy8PPo8TvoMXXrA7gpg5yuPRzlK2rLsVZEqcXI7E6wV0IrLru6hUyf3Dkpk3Zldemfj7VoMGdkcQvsGD7Y4gNurWNbe8ihUjX5aEWGwken3jFJ7784kT9sURrWTeXypUsDuChBMnV/wALFG1qt0R4MEH7Y5A6tDB/bhZgtt9ySV2h4B4l+g3x8l8k2E3pyXokv3HGjO+j6IkdWZm9GVZZf366BKGvgwfbm55QCI4fjw26+E8DocjAQnAfsk8+mx2tjRxov8WYMUvJLiwiNiRJk3sDgH+xMt+3a2b3RHA6SLdl2+4QSpTxtxYnMzJyfy6daNvlT17trRypfTf/0rff29KWKbbtk0y+7zYsmXk3228nAcSgZOPv0TiuU9Hmujv0cOUUBAAx0NMkYAEkplTKtwrr5Q+/dTuKOwzYYJ06JB0yy12R5LQ9vzlL3aHEB9i9Th0+fKxWY+ZJk2yOwLnuvZauyOIXw0auEfT/O9/7Y4EkjRiRGTLNWzoHrhm1CjpL3+R2rRx/1+zpqnhmaJJE6lOnfCXq1078N+jua4sLHTOdSlgtvr13U8chevuu3kM2Mn44SRsJCCBRFC7tvvCN57FYzLCTGXKMOKmxQqLti8XC4GlpkqXXWb9eu699+TreLnpjPd61krjxsV2fYlyHKelSaNHu1/36mVvLLHk5O8v0th+/lk6ckT617/sH73WCi6X9MQTdkcBMxTt404+DsMVD59l7lypTx+pbVvp8cdDW+b886WffpKGDrU2tmQW7Q8nCAsJSCARbN/uvvANVzycrKPxz39yYkBJZu0TnTqZU06zZuaUY6YXXrB+5D+n9XkH2GHOHKlKFbujQCIyo3ubcuWkefPcXcV8/LE0YID7/auuir5swExOvN4vfp/VqJH03nvSqlXS3/4Wejl16/IotpnGjrU7gqRGAhKAuewezbZVK+muu6Q337Q+gWK2UC6erLrAcuKFm9M98og55dx/v1SqlDllmaVsWXcCf8eO2MSW6D+GAL5UqiRdfHF0ZXDswJ/27aMvw+WSLrnE3VWMZwLkyiujLxvw9NlndkcQPie2SuScEFyxp3xc3APFFAlIAOYZNMj9C3nz5vbFcMEF0uTJ0uDB9sWA2HvqKbsjiNzgwdIPPzhz5NAaNaTly6Wzz7Y7Emfgwt6/WF/AO/W7iHVcVm13p25fhM6MfcPffnDKKdGX7QuJgOTUv3/kAyLddZe5sYSDetI+0XSJU7asaWEgfCQggWRm9oXenDkkKqLBhUxk3nxTuukmu6OITpMm0nnn2R2Fb+3aSbNm2R0FYoE6KDgztxHb25n4Xk4Kd1tEs+3iabu7XO6++cxoZWqHeNrWwfz1r3ZH4F8ibWenefZZuyNAhEhAAjCf037Brl/fezoRO4ePVrxeJGVm0toVcIJ4rUNgD6ddJ8A3f8d1oO/PSd/ta69ZU27TptKHH0orV0rXXGPNOhDcsGHO7k/aScdCJMyMP9qynnrK3cilRQv3AD6R/mjPtYrtSEACcLa//CX6Mh57zLtvymeeib5MK8T7hQoQKadcENaoEfjvaWmxiSNc8+e76znALE45JmGvWO8HZgyc48mq5FSiHB/9+5d8z44WhZEOxFW5sqlhOErxfSzUe4Ty5c2PxQlatJA+/dQ9Ivjf/mbuMRjN/VfXrubFkSRIQALw75JL3ANRlCkT3nLhnhQCVfxTp4ZXli+XXCItWyZNn+7uo/Laa6MvM1ZidZEbr8nPeI3bTNnZ0vXX2x1FYnj66cB/d9pgQUVq1ZJuvdW+9dvRBYJTEwCxjKtvX+duh2DiNe5kY+b1XCjLtmplbz/iVkpNtTuCktq1k3r3PjndsKF09dWxj2PChOjrBCfWKbGOacoUZ+5niYwW0GEjAQkks2Anxosvdo8k3bp1TMLxKTvbnHK6dJHGjJF69jSnPMApqlSRnnvO7igSw4ABvluESO4fMOCtXDn3Y1D33mt3JMmjXj33/zVrSvfcY916+HEHUmQJlGhapblc0htvSJ06SXXrSpMmRV5WtAJ9Ds/tEuqx4tT+IhcskF5+2f0D3HffSRUqmL+OYPtRo0bWlBvPIqmDx441NwYnbV+zYvFVTjTnu9Klgz89Ay8kIAEgnjjpYsCOX8kBq/nrV8iqUV/j2aFD0qJF7haYJKxi44cf3P/WrHH/sAbzOek8Gw0rR8EO5G9/i25d7dpJX30lbd0q/eMfkZVlhkcfdScXzDBjhjnlWCEtTbrqKunGG81/BL5IoH3RrEYOyX4OSk+3ruxEqROtEukI7kmKBCQAZzDrwiHScqZN857u1y/6WMIVbxdPd95pdwT2SqYLMqv3zWTalk4WT9+DXbHa3YdwxYrux1QTue8zu8XbudhKkYyCnZlpbevcWBk+XNq+3Zyykr2fuIKC4PNEctzVrBn+MmYKdnyYeZ6K5bqKOKkuNCuWatXMKQcRIwEJwL+ik5mTTkBWuekmacQIqU4d6ZxzpCeesDsiN6tvsiNtqSBJLVuaFwfgFPFY38VjzDbaOmZMZAt27uz/Ef0i8ZTERfIKdT+NdH+++ebIlnOaqlV9v+9Z54Za/zqpboh1LKEkICORKPuZGaz4Tou6/EgkL79sfplcg4WFBCQA+znhoqxsWenf/5a2bZM++si6kROd5vzz7Y4ARZxwHCSaBQvsjiB5xNH++/uFF+pIqH2O1a0rffGF+1HzpUvd54pkYPUNVaSj3sJ8gQYaTOFWESbIz7em3IoVrSnXCSJpfWy2okeLnZBgi+bzFdVx11wjnXtuyb874fMlkTS7AwAAx+rSRfryy5PTdjxSxEkxMDuTHnGUcIma1Z/VqoGuzHw8i2MxYeRXrqw1M2eqwjffqNFppymtW7fAC9DXovmysqRTT5VWrrQ7Ejz+uOTvGIi07o/382MiJ7bsEEoLyHjfZ3wx8zMFuwZx+vazM75du6Tjx/23aI4W14dh4WctIJmF+su2009qVnnwwZN9hZx6qvTXv1q7vkTZzn372h0B4k2gFjixcMYZ9q4f4YuyviwsXVoHunWTTj9duvbaADMm6Y1FLM5Hc+dKvXtbv55wxcO5eNw488o64wzpiit8/y0etkUgkba0/ec/Q583HuuIQN+rFd+5VY9g2y3ej49kUb58wOSjKx6P4ThGAhJIVt27S6VKWVP22LHhL2PWSdzMi4FzzpE2bJB+/tndEjKcvlAiaTFj5wnQzHW/9VZ4F+9w4wLIPvG+v3ITFJ277rI7AueJxT6VlSUtXGj9ehLRgw+6+6oeMUKaPdv9aGE4PM83KSnSq6/6LsPfflC3bnjrs0skcdarJ91wg/mxxAsrrkWsegTbE+dB8zlpmzopFkSFBCSQjDp3dvd3GEykFyFDhkS2nBNVqiQ1bChlZIS33H33mbP+eDzhZmRIt90Wm3WRtIMZPEco9bdPOflYdMJxEEkMHTuaH0ckivq5MkM4+0ks9qly5axfB6zrRsKflBTpllvc13KXXmpOmb76RfW3j9aoYc46nahdO7sjsF6szhm1arn/T9QWkFZy0nndCdc/TtgeMAUJSCAZLV8uNW9ubpmjRp18XaaMNGOGueWHyiknqF697I4gNE7ZXk519dX+/+aECzLJOXHEq1B/XEiGYyXW+9LgwZEvy34fXJs20ksv2R1F4nO53P0oxjtfdVyg4yxeRiAeOtTa8j1/wIK3J590/x+LFpDJcI4OhHNi5JJ934kxEpCAmcwc8CAWzOzQuHgLElpdxBcuXHx75hn/f+OCxflC+Y7Y980RyXZMYyxES33+udSihd1RJL6PPnJ32RJPfB2vvvrirVzZfxmB+u510vlx0iSpffvQ5w+lLvOsu4YPD21wCydtk1id9wYMcP+fqC0grdyOThgF20mc/PmcdGzHAcuu/DZu3Kg33nhDy5cv17Zt25SXl6fq1aurWbNm6tevn84//3ylWXDhuWzZMi1YsEArVqzQrl27lJ+fr8zMTLVv3179+/fX2WefHXJZL7zwgh5++OGw1p+amqqffvop6HxffPGF3nrrLX333XfatWuX0tLSVLNmTZ166qm65JJLdNppp4W1XjjExInS3/8uHT1qdyT2ozIOn53JEqd/XzfdJD39tN1RIBE5fd9PdHXrStu22R2FPaze96I5XyTzcRHuduvZ05o4zPDoo9Lo0aHNe/310t13S3l5J98L9CNcvGjSRFqxwj2Y4KpV5pTpuY+UKuV+sui++9wt/V5/3Zx12MWs68znnjv5OpQWkFaNUGyGm26S1qyRPvkkvOXMvGZ3cgIuFE4+pzg5tgRkSQvIJ554Qv3799crr7yitWvX6vDhwzp27Ji2bt2qjz76SH//+981ZMgQbdq0ybR17ty5U8OGDdO1116refPmafPmzfrjjz907Ngxbdu2TQsWLNCIESM0ZMgQ/fzzzyGVGUoiMVyHDh3SzTffrOHDh+v//u//tHXrVh07dkyHDx/Wxo0bNXfuXF1xxRW64447dPDgQdPXD4sNHiytXSt98YXdkSBRFL/gcNpJslkz7+lbbrFmPU89JY0ZY03ZThHpxaXT9oni6te3O4LE5/R9oDjPYzneYg8m3m8Sw2Fm35lmeeUVuyNwjsJC94/iofZPWaWK9PDDJ1v3XX99bB8vtuLY8ezDLsXCB/+aNJFmzpRee826dcSzzp2Dz5Oebl7/6Wa7/Xb7z1VmPrWWTGLxdKITz4UOZnoTxAceeEAzZ848uYK0NGVnZ6tMmTLauHGj9u3bJ0n64YcfNGzYMM2ePVt16tSJap1btmzRFVdcod27d3u937hxY1WrVk07d+7U5s2bJUnfffedBg4cqOeee04dg3R+npOTY7xu27atKlasGDSW1NRUv387duyYrr32Wq3y+PWtXLlyatasmfLz87Vu3Tod/bPl3DvvvKPffvtNL774ojLCHfwC9iksdN9sx8sNNycrROuf/5SuuEI6eFBq1Uq64w7r1uW0Lg6S6fiJ5jwUb9vJ10AMVmveXPK45khI55wjffutdNZZ0rhx0ZcXb/uVL2Z8Bqu2Q7BymzZ1j5p8993WrD9SyXojGOj76tdP+uGH0MoZPdrd9/GJE8EHmrE7IRNM48ZShQrRlzNwoPTWW9GXk2w898mzz5ZatpSCNe4ZP14680zpvPOsjS0cN9/s/7rASechK2OpV0/65RfryrfSiy8GnyfaumzSJOnVV6MrI4mYmoBcuHChV/Kxd+/eGj9+vKpVqyZJOnHihObNm6eHHnpIR44c0Z49ezRq1Ci99dZbckV40Bw5ckQjR470Sj726NFDd999txo0aGC8t379ek2cOFHffPONDh8+rBtvvFHvvPOOavq5oT127JhXS8nHHnss6kTp1KlTjeSjy+XSqFGjdN1116l06dKSpAMHDuiJJ57QK3/+evv1119r+vTpuuuuu6JaLxAXnH4haxenb5d+/aQNG6Rdu9wX+4H6hIpHTrq4tFNmpvvxtZUrT773+OPSrbfaF5NZin/HffvaE4cZ7rpLeuih2Kzrggu8p4PVVR995Pt9px9jTo8v0Ha3MvYVK6R33rGufNjHrkdhzbzeKVXK3ZrOjGPA434yYQTaLgEa00S1vs8+k045Jfi8555r/voj8d137laZLVv6n8dJrRKtXNfjj0vx1j1cdrY0YoTUu7f162rUyJ3ovPZa69eVAExri37ixAlNnTrVmO7Zs6cee+wxI/koSenp6RoyZIiefPJJo//HH3/8UQsWLIh4vbNmzfJ6lHvw4MGaMWOGV/JRkpo2baqXXnpJZ555piQpNzdX999/v99y165dq/w/+6uoWLFi1MnHDRs26I033jCmb7vtNt18881G8rFoPffcc49u9hhVbtasWdqWrH0j4SSnJ6Gk6GKMh88H/6pXdz/iFSfJx8OhPo4Gb8895x7Qonx590Xd5ZfbHVFgjRuHNl/xi3YrH9OzmpWDung+NeJySR7XfFGh/reWVdu3fHlrynWCgQPtjiCwGTPsjsDNqcn5L790d4d0xRWRLe/UzxUr2dnWlFu1qrVd6Zj5vQ0YILVr5518dPp+YWUXBh06uMc5SEtztyqOh+v9nBz3/hbCNZ3LjPPkNddEX0aSMO0qe9GiRfr1118luR+7Hj9+vFL8fOHdunXTkCFDjOmXXnop4vW+5tHXRlZWlsaPH++3NWVGRoamTJliPNK8ePFirV+/3ue8no9fZ5tQEc+cOdNIaGZlZem6667zO+8tt9yiZn/2q3bixAm9SpNeBOL5a4uVj7+Gy64TdaLdzDr9gieWTPpud155pQrT000pK6l07Oh+fOrgQenf/3beBWinTt7TTrlJjxdXXx347wsXuhPPAwe6WzO2bev9d6vqKn+JTqfWjU6NywqJ+FkvvbRk38ZOE+AewqdEuy4K5vTTE7PVYqyYdVyHut85cf/0dT8V6zid9DSGyyVNmODumuHAAef/AA1HMy0B+d577xmvu3btqtq1awec3zMB+eOPP2rr1q1hr3Pz5s3avn27MT18+HClB7mprF69unp6jFbnr/XlmjVrjNfNmzcPOzZPBQUF+uCDD4zpAQMG+E3OSlJKSooGDx5sTHsuC3hJTfUeGfjmm6Ugx17MOPGCAoknggvl/EqVlP/xx1KvXjFfd1KKVV0wf747edCtm/Sf/zjnMa5QRLsvFSUDo9nWEycG/nu1au7E89y5sRv197TTpKuuis264lWwfSdRB7eyisfTSo5lRktnzl8IxKrHVq3c78yss7p0CW0+qz7PyJFSrVrWlB2vLNx3joT6xAxMYUoCsrCwUMuXLzemix5zDiQ7O1uZmZnG9Mcffxz2erds2eI1ffrpp4e0XGuPx+++/vprn/N4JiCjbQGZk5NjDL4juVuABuO5DX/99VevFpmA4b773P3cFGnQQFq1yt0R7vPPR19+UWUfSqUfzYnBzJMKF9XhifftFekFZ5cu0gcfSHfeaW48sE+dOtLs2e5+pq6+2r1vm3lD4tSEzL33SuXKRVfG0qVSw4amhBM2X9t11Ch3a9tly5w3+FQ8iff6PdbOPju2XTB43AdZIlCdZXV9Fsm+x/7qHE493yWDceO8G5eEiuMnYr9wLxBTppxlt2/frgMHDhjTrUPsX8szsbd69eqw1+u5TkmqEWy0tj9VrlzZeO2ZaCxSWFiotWvXGtPRtoD0TB6mp6eradOmQZdp1KiRV/+QkWwfJKlq1dz93pjZ+ocLkcQXD99xIlxc3XST9/Sjj9oTB+JbkybSnDnuZGuA/qzjVvXq7v5Goxl9PR44uU5zcmyJovjorG3bulsYRzIISKDvy6rvMh6uG6ySzJ89WcXqO+/ZkwR+jB1u21a/0YdjzJjSW/nmzZu9puvXrx/ScnXr1jVe/xLB0O5livU/dfz48RLv+XL48GHj9R9//KH9+/d7JSW3bNmiP/74Q5KUmpqqJk2aaMmSJfq///s/rVy5Urt27VJ6erpq1Kih008/XZdcconaFu8LyYPn9qlTp44xAE8gLpdLtWvXNgbYKd7aEzZo3Vr64Qdzy7zmGimUPlA5qSQHOy5ouYj2L9j5JJLjcvp0qWxZafVq6ZxzpL/9LbLYnCBR6qV4PAYqVZIGDSr5fqTfiZ3fpdNjDrR/3HGHNG3ayelEeowrUY5vJ7vwQvc54fnn3Y9bPvOMu//JL76Qvv7a3d/a3/9ud5ThScT9ximfKT3dvU/Es3g83wZiVRcYvrRvH7t1JZuUFO24+mrVimJcEoTOlBaQu3fvPllgSorXyNeBeD6C7VlGqGoV6xvBV2tGX4rPV3zdnn8vW7ashg0bphtuuEHvvPOOtm7dqmPHjunQoUPauHGjXnvtNV166aW6/fbbjaRlcZ7lV69ePaQYJXltx0i2D0x2ww12R4BkVPyCIp4uMP79b7sjiM5zz5lfZunS7oTFwoXux7/jecRlmCfcm7J4qgeCiecb0hEjTg52kZHh7hYlnO8mFo/BRrqOeP5e4kVKinuU1p9+cg/sVDT4TadO7tbyIXYt5UjxvP84tX79/HPz7kWc9BmdFIuTnX568CQkImbKSNgIiSktIHNzc43X5cqVCzjAiqfy5cv7LCNUzZs3V8WKFY1HsefMmaMuQTqNPXjwoD766COv944cOeI17fnI9MGDB43Hn6tUqaL69esrPT1dv/zyi3bt2mXM93//93/asGGDZs6cqQoVKniVt3//fuN18b8F4jlvJNvHLHl5ebat2wym7OSS8vPzFeyhmLy8POnP7RXKegsKCkL6FSC/oMDnuvMLClTo7/vJy/MbQ9F3mlpYqECn/fz8fBXm5QWdz3PeIq4QtleRgoICFeTn+4w3L8Dn8FtWDPfZYNs4HCk+9ofCwkLlR7hdQ1H0vaUUFob9i1TQz3jxxUp99lm5vv024vgkqeDcc1WQlyeXj+OgUDK2Tzj7SX5+viQpJT/f5+fOf/ttFV54oXT0qP/v+MQJv/tsJCL9bov2EbPqupDjD3GdhZLP+qP4eqKN32fcfuoVT4Uul9cx5i+WomPFrO3sFUMIdWzx+YvHLPmuQ0IRyrkr6H4RZNv4Wz5VJfeP/MJC/+c2Y6bg362v9Rcd+yeLcU/7K8uzjimhYUPp22/dfS/XqeNuARnGPuKr7GDLltiOwc71Ee6z/o5bz7LDqbMC7T9mHlN5Ye4XnnwdV6GUFUqdGdG5IoxzTKDrB59/U4D9OkQBr1ki2O/yTpww6iFPYZfjr64JsZ4tKCz0uo4Md/v5+85CWX/hGWfI9cUXPv+W17699PTTSjPhx9G8/Hyf27pISv36UbdSKn5fIIV2nSuF/p17ftfBrmML27aV6/vvwy63iK/vL9h9XMD7NAW+1vDpww+V8tBDSvHRfY+vaxl/6wiVv3sqf9fOxXlux2jvXwLts5Feixe/HvC53hDupwPFEW5MycCUc/6xY8eM1579FgaT4dG3z/Hjx8Neb2pqqi6++GK98sorktwjWvfo0UP9+vXzOX9hYaEmTJigQ4cOeb1ffN3FW0g2bNhQ48aNU/fu3ZXq0S/LihUrNGXKFK1atcpYbsyYMXqu2InBs/xYbh8zFBQUGJ8vXnU0qZztv/6qYJ0L/LB6tfL/fJw/lPXu3btXobQX/u3XX1XXx/s7fvtNO/x8Pxm//aY2fsor+k5bHD2qsgHW+8uWLdq7apWa//GHgg1xsP3XX7XbI5aqv/yiRkGWKbJnzx79vn69WviJNZzvcPeuXdoWw33WX2yRHDd1d+9W8Z5sjxw9qjUeZZ2ydasahl2yfz///LNyV61SgxD3RU+hfEbXk0+qwxlnRBbcn3KuuUZHVq1SDR/HQV5enr7/M45w9pMf/uxOoc6uXSo+xMWRRo30U5060qpVch0/rg5+ytiwYYN89RAcaZ1Z5ZdflBXBcof/+ENrwzxOAgk1ftfRo363jafjx4+rlI/3i68n2vh9xV123Tqf9YqnwsLCkGLZunWrfjdxO3s6dvSoQr86kP44ckQ5Pj5vrZ07VTuC9W/YsEGH/xzIJtI6rdQvvyhQD+D+lm9z4oSK9/QY6NxmKCgI67vwt/6iusBfWSdOnNDqYLFUqiQdOuRORAYoq7j8/Pywj4Pi86fu36/2fub9/vvvVWrrVrUKMR5Px44dC7hPrlq1SlW2bAm5zgq0/5h5TG1Yv95nvRyKQ4cOaV0E9VIodaavcoItVy6Mc4yvc/jhw4e1dtUq1d65U8XH0z127Jh+jPJaqc6ePSXOn0ePHtVPq1Ypbc8etQuzvJycHB3z8TRZuPuHv+3a4siRgNe8RQ7k5mqjRxl1d+0qcW129MgR/eRnPb7iXbtunRoeORLwWvp4jRraOmCAGvtJQK6K4FrHn40bNuhQgEYx6QMGqG2Ug1lu3bZNvxfbRr6uc4v2GU+hfkbP77rJwYOqFGDe1ZMnq23fvmGXW6TZoUMqvsX27tsX8Nr5t99+084w676NmzbpYKBj84or1NFHAjIvP9+4Hg62jlDt37dPP4dY3/jiuR2rbd+uBlHEsnHDBh2qWNHn3yKpX0MV6D402vN3sjLl2a8THv1RhNr6UZJXX4iRZoRHjBjh1X/jnXfeqenTp5doMbhlyxaNHDlS7777rsqW9T79FI/Zs8/GU089VfPmzVPPnj29ko+S1KFDB7366qteo1ovWbKkRAvLSLeP5/rImMMSoTY35/GImDjUoWQ6Z3/PnrFZuUWPHhSmp+twi2ApoMCORDkQWNhC3BaFHBdIFPHYB2SsOD2+QCyKfY+fH/phsmR7JDCejjULYv3ptde0v0cPHasdyc9I5joRRpdh8SLPI19gGgfts/lhPGUZMgd9PkfFgqiYkoD0TJQVFBSEvJxnUi09PT2idWdmZuqxxx5TqVKljPU/++yz6tq1qwYMGKCrr75affr0Ua9evfTpp58qLS1N0zw7DJeMZYt88MEHWrJkiV577TU9/fTTKlfO/+9VGRkZmjZtmtc8RS0yi0S6fTybBUe6fYCoUNnH1P7u3XWsTh1jOr9cOe267DIbIzIJ+1FS23feeXaHAAfbcs89XtOFKSnac/HF9gQTa3FYN+ZVqKAdV19tdxhwgmRLkFosv1IlyeXS5vHjLV9XQv6AGmx/TKDPfKxW8TbNFiVY/YlkW1Jf4E+mPILtOfK05+PYwXg+Vlw8CRiOM844QzNnztTo0aO1fft2Se7k5o8//ug1X506dTRlyhQ1LjZKYfEEo8vlUo0aNVSjRvFG4r5VrVpVffv21ZtvvilJ+vbbb3XkyBFju3g+dh3O9vGcN5rtE42UlBS1aePvQd7kUieEXyRbt24tnXJKyGVWrVIlpPlq+Vl3zZo1VaOdn4dcApyI2v25TGqQUX7r16+veu3aKbVs8IdW6tSurdoesbj+7Ds1FNWqVVPVJk0CxhqqzMxMnRLmMlYIN27D11+r4OGHpWPHVHjrrWpdrL6Ktj/F4ho1aqTCdu2UUrVq2MuG+hmD7Wehrsfl4zhIS0uLaFu3bt1aqampSvHxK3/pMmVOlhmgzm5q0j5bxPXTTxEtV65s2cj3Nx9CLqtY/8lFCps2lWv9evfrMmVUbcoU6dVXI19PiHyWF0L3Ja6UlJBiqVe3rur6ma+wTBm5/GyPUJQK8xgp67mPekipWfyByNA0adNGCrINgm6jIOcJv8u3aKGC//s/pSxeLEkq/Pvf1eqccwKvS5LC+EHXc/35+fnGY9fSybrAn/T0dNP31SKpqalhl11i/j17/M7btm1bKcL61+9153ffqXl9d4c0rhAHf5TMP979aeKnXg5F+XLlIooz0s8WdLnDh0Neztc5vNyfn8fXea5U6dJRfycpHoOJFjHOn7/9FnZ5zZs3l6L4/or4+1ypIXaDVbFSJa8yfH7OMLdfdosWQa+FjPLatZNGjvT/dxM0adw4aJ0fLV/nTDO2pSev78nP47lF2rZtG1G5RXzdCwW7j6tVu7ZqhvnZGmdlqTDIMikXXSQVe0Te37VgwaBBSpk7N6wYilSuUiXk+sYXz2Vdy5dHFEORxq1ahbXPhrJPeV0P+EmQBion6vN3HFq9enVYDep8MSUBWanSyR4XDh8+7O5MPYTMuGdfjJWjzNq3a9dOCxcu1Pz58/Xhhx8qJydHubm5qlq1qrKystS3b19ddNFFKlOmjDZs2OC1bKaPyjBcHTp0MBKQJ06c0K+//mokOj0/W/H+JwMxc/tEw/NR+WSWGsLj82mpqVIY2yvUR/L9rTs1JcX/+gLEYXynQY7T1DA+T4lYAtzQFZeSkqIUP+sJd/8LVFYsRXzc1Kol/dm3i89vPYztGgrjO45gNOaQP2OUvzob6/GRXHFlZ0e0rVNTU93L+fjcLs91Buig2t96I/7uI1zOlZJiaj0dcll+5nMtWyZNniwdPizX6NFK82jVG9F6QuSzvBCOF6/v23iz5OjBgepDV06OtHWrNG6ctHRpqCG7XXCBXFu3hrWIq1493583klHVs7KU1rFj0OM06PcVZFv7XT4tTfrgA+mbb6SyZZXSunVoj+eE2ZrC3/qNusAPn/uHSSIpu8T8wc71kdYrfvaHtCyPXh/DOB/F6loymvW4XK6Ilg9pmSuv9P4h5okngi8XzjnG17ms6PMEO89FKlC5kW5HE/YTv58rxGuREteRPvbzgNvv+eel668/Od2ggdLatIm6jjX1PB/m/UokfJ4zA+2nEfBaLtpzWLB5fZSfEqQODHif5m+ZUL6bcLbjpElShAnIFJfL9z1ViNcaaUGOI8PYsdLUqYHL6tIlrPsJs46XQOVEff5OUqZsBc+Wgvn5+dq3b5+qhpAZ3717t/G6WrVwhz8oKSMjQ0OGDNGQIUMCzrdu3TrjdaVKlQI+Yh2q4vF79kFZ3eOXx99//z3kMvd4/KptRpIUUYrkxs5qTn6cIMpWb0AJl10m/e1v0oEDJ997/HH74nHy8WenzEwjiR4XfH2P4T4qVL+++1+4Pxb27y8984zUq1d4y02ZEt78/jRsKP3nP/bvyykpUufO9saQiHwk0k0v32mcGJMkPfWU+7pozRrpggukG2+0OyJYZfBg6e23pf/7P/cAVf/6V/D98pJLYhNbEScdJ3Y/mlu+vHsQsSLFulKLe/76Yb/5Zne9FEisvptTTw3890aNnLXPIiqmJCAbNPAe02jr1q0hJSC3bdtmvG7UKNTxcqPn+ehNdna2KWUWf7TaM6nZsGFD4/W2bdtCaiFaWFhoPE5evAzYxOSWZ2Gx++QciX79pIoVvZNFQDRKlZJmz3bfuB06JN11l+Rj4J6wxOOx5RTJdjFoxed9++3wlxkzRor22uXss6VPPgn9M117bfB5km1/AMJRsaL07LPhLRPt+alo+Yzi48xLCvFx5IjXGQkz6pA77oi+/GbNoouhQgV33f777+6kcygNXf7xj+jWGS/MPE94tsaOxssvS889J23ZIg0ZIl1+uTnlStadF824dn3yyeAJyFgJtp16945NHIgJU5p01alTx+sR4TUh9gmTk5NjvG4exSinhw4d0qZNm0qMfO3PkiVLjNfFn8X/6quvNHnyZN12220aMWJEyM+4b/V4fMrlcqmmx6OCrVq1Ml4fOXJEP//8c9DyNm3a5JXUbBHlKLIwQSgtIMM90UR7YorVDV8k6ylVyn1iK+ozZfhwU0NCHCnWj2VUeveWNm2Sdu2SRo+25hiwK5ES6QUlSdTohLr9Qpkv0n0nnO9wzJjI1uHpuuvCi/Vvf4t+nWYj4Wkt6pX4Euh4uOmmkn9/8klr12nHIBXly0uBBnDxUf7e3r1V6NnAIDVVuvPO6OKQ3J+/WrXQko81awZvAYaSiifPIj0n1Ksnvf++9NNP0oQJ9jY4iUYsz4lmnx843yQV054pPf30043Xn3/+edD5c3JyvB4x7tKlS0Trvfzyy9WxY0f16dNH8+bNCzr/unXrtP7PzvElqWfPnl5/37Ztm15++WUtWLBA//vf/7xaSwby2WefGa+bNm3q1S9m06ZNvVqEfvHFF0HLW7ZsmfG6SpUqprXURBSsOCEleoV75ZXuRNG+fdJLL/mfjxvJ0Hn8oGGKM84wtzxfHnzQ+nXYgf3W+SL9jvhuvSVAx+kJy+wkUDiceA3jxJjsVqOGOzFXtD8MHSp17Rp9uU7b1s8+605ChiGvcmVt/Oc/VdiqldS6tbvlYhiDSYbF3/Yy80faZHLBBXZHYB+nHXuJgG0aM6YlIHt59F/0ySefaOfOnQHnf/31143XjRs3jjjB5jna3eI/R1AM5JlnnvFatkOxx/c6derk9Xj0nDlzgpb5ww8/eCUM+/Xr5/V3l8ul888/35iePXt2wJaVBQUFmj17tjHdu3fvkAb1QRimTw9/mVBaQCZa5RXOfudv3nLlgveLlmjbzUqnny55jkyflhZe61LP72LkSPcv9JK130Hjxu7HW4BYo24BAGniRGnzZmn9emnWLOtaeRVdC8ZJ3Vvocin3rLOU/9130urV0kUX2R1SbMT7feU555hXlpXbIpbbOd6/UyQNUxOQRYOtHD9+XOPGjVNeXp7PeT/77DOvxN6wYcMiXm+fPn2M1998841XIrC4uXPn6r333jOmR44cWSKxV69ePa/WmG+99Za+/PJLv2Xu3r1bt912mwr/PNFWrVpVl112WYn5Lr/8cmNdOTk5eipAnwuPP/640UozJSUlqu0DP7p1C3+ZeG2Sj8Tickkffyzdcou7hennn0seP8QE9d137v5u3n1Xevppy8Is4frrpU6dwl9uwgTzY/HkcQ4xXHfdyddc0PmXKNvGzM9h9013onwnoaJ7Gvv3OVjH7O+2fn339UKy1RNW4LgLzuxtVDReRK1a0v33m1t2vEm0/S/Y5ylVKjZxICZMS0BmZGRojEe/RJ9//rluuOEGr74R8/LyNHv2bI0aNUr5+fmSpGbNmunSSy/1WeY555yj7OxsZWdn6xw/v3R06dLFqx/H0aNHl2gJuW/fPk2bNk333nuv8V737t1LtFQsMm7cOGOY9Pz8fI0cOVKzZs3S8ePHjXkKCgr00UcfaciQIdq8ebPx/n333aeKFSuWKLN58+a6xGOEsyeffFKTJ0/WwYMHjfcOHjyoBx98UDNmzDDeGzJkiFcrT9jIiaNgJ9oJCKGpVk164glp5szwk3pVqkhXXSVdeGHsb0IiGbH67rvNj8NTz55S+/Ynp2vUkG64wdp1+sNNobPFQ30bDzGaacIE6wbTSBQxHOTREahHT0q2+iACLiv79oW5vvpK2rpVWrfOdxcCVvejHUn5sTwGE3k/DTS4FOKOKaNgF7nkkku0cuVKvfnmm5LcSchevXopOztb5cuX18aNG7V3715j/sqVK+vxxx83kn2RcLlcmjx5soYOHaoDBw4oNzdXN998s2rWrKkGDRooNzdXmzZt8koetmrVSo888ojfMps3b66HHnpIY8eOVUFBgY4cOaJJkyZp+vTpys7OVkpKin7++Wf9/vvvXsuNHz/e61H04u655x6tW7fO6Ffy5Zdf1uzZs43Hz9euXasjR44Y87dp00bjxo2LaLvAAk5MQAaSyCcimC8W+0sk/U36Gr3TTC6X9Nln7tagR49Kf/2rewRLIJElSmJiyBCpSxepYUO7I3Eml8vdJ96tt578AahKFXe/zKEsC3uFc5wmwvcVzmcYMkT6837TQIto3y64QFq40Pu9KAZ/jUo0556MjJPdBjlFsH32mmtiE4dVnHKtUKeO9etIhDo0TpieUbnvvvs0cuRIpaenS3K3FFyzZo2+/vprr+Rj48aN9eqrryorKyvqdTZp0kQvv/yy6tevb7y3Y8cOLV++XDk5OUby0eVyacCAAXr11VdVIcgNZv/+/fXCCy+oRo0axnuHDx/WihUr9M0333glH2vUqKEnn3xSV1xxRcAyy5cvr//85z9erTmPHDmi7777Tt99951X8rFnz5566aWXVJpf9q0RSdI7mQehmTbN7ghgtXjZF61Qvrx71Mvx490tIJE4zNyvY31xWr++u6uF4v7s7gZ/atDA7ghCY9V5NJT98tFHpXnz3CMfr1ol1a1rTSxFhgzxnh471tr1mYUb0PgxaZL3tXynTt5PM4So0AnfudXXX3fe6d3/9zXXWDfQjqdQt63Z8zlJZmb4y8Tj5wTCYGoLSMmd5Bs9erT69++vuXPnaunSpdqxY4eOHDmiSpUqqUWLFrrgggvUv39/ZZjYsqVly5ZasGCB5s+fr0WLFmnNmjXKzc1V6dKlVa9ePXXq1EmDBg0Ka7Cbrl27avHixVqwYIE++eQT/fDDD9q7d69cLpdOOeUUNW3aVOedd5769OmjcuXKhVRmhQoV9Mwzz+iLL77QO++8o2+++UZ79uxRfn6+qlWrplNPPVWXXHKJukXSRyF8yn/6aaXedJMxXdiqlVw1a4ZfUCIOQhPqL4lnnmltHJJ5J9x4+w7MwMWKdZJxfwpVoux3Tv0cgwe7W+TOnSvt2OF+b8oU6c8feJEAYrXvuVySRzdAlpsyxf2o5KpV7m4ubr89duuOBvW9vcLZ/s2aufvAfvppd6ve8eOdEVcgdp1rmjRx9/89d677R9bLL4+8rKpVJY8GRUmF+sE6Tti2ToghSZiegCzSuHFjjR07VmOj+NXz448/Dmv+UqVK6bLLLvM5CEykMjIyNGDAAA0YMMC0MiXpjDPO0BmRPI6IsBUOHaq98+er6qJFOp6ZqZQnnohsxz/1VLNDC51VFy3Tpwf+XEWVcWqq+xfUhx+2Jg7PdSF8yfaYFhJT06buEVqdyo46qkkT6fvvpU8+cbda89XvFeCPXfV9w4ZSgEEhEaJWrUq+d+ONsY/DqTp1kl56yZ51O+1aqmdP93miuHr13OcOl0u67bbYxxVLdnwndu0Hdt8z2b1+xLU469QOiED58vp58mR9++WXWv3uu9JZZ0VWTrNm5sZltVBODu3ahf5oVLAWoJyMkGycdgMS7555xvwyI/2OYr1cIJmZ7taQoSQf2SeBxFG1qnTddd7T8dKa1J9OnaS//c3uKJzFjOvnYcNK9oFZqpT04IPOPy/E6v7Bqu1gRRddkXD69xwoPqfHDlORgERycLncfcXE20AywUR70na53I9KHTrk/+9mrQvOxsArsNu557pHdjeTFfVW377e0y1bRr8+X4/H0tox8Zmxf1asGP4yZiWAuGm03nPPSa+/Lj32mPuR9nD6znfiddtXX50cEKk4q/cnH4PUHI+kSyYnqllT+uYb6eOPpW+/df9bv96dmHSSRKwznn3W3PKceNyaYcgQ/2MwJOpnhk8Jlo0BbBavFWiIfZjGhUS8uDGTv33UiYME+Hr8LJF16GB3BOGx4li78krzyzTb3Xef7NC/VCnpgQciK+eVV06+HjPGux5u2FD6y18ijRBOZNW5KT3df/3tb50jRki1alkTD8zlckmXXeYeydzqwYMS3YMPek0WlCqlPZF2sRXJ9b7V9whly7ofxe7Qwf2vXj1r1xdMvN4T+ePv81x7rbRggTNicbJKlaR77w1/ueefNz8W2IoEJGCWhg3DH+0sHk8gSEx16rgvzp3USnjiRLsjiK3sbHcrQMSWryRNpUol3ysa/OWMM9z9Mr7zjvv/SAb3OOMMqX//k9NVq0orVrgTQ6NGSV9+6axjEdGz8nz/0EPhzV+pkrs1XSD8mBf/+A69NWrkbmWflaXC5s218Z//VEHZssGXs3o7ci9gjki3YzTbv2jfuOiiyMswSzwc7xMmhL/M1VebH4cvHIcxw9UtYIaiVjBWVf5OqBTj4cSG6Nx9t/T7785I/P3wgzRokN1RxL7PmgULpKlTzS8X4fFsnShJZcp474/16kn9+oXfN/Czz7qTi0uWlExyNmsm/fvf0r/+5R6pFPHrllu8p4cM8T2fWXVIJOVkZkqjR/v/e/v2EYdjmm7d7I4AgQS6NnXqNeOVV0obNyp/9WodYDBQxCsn3BfGwqWX+n9sO5YeecTuCBIKCUggWv/3f9KGDdIVV8R+3U69wLNTspyUIxVsn6lc2d0ay2516tgdgT1Kl3aPOF88gYHYOv9894Wv5G75OG2a+/G2aDVrJp1+ujMuqBGaSM6zd94pdenift26tXTffebGFAtNmti7/tNOM79vNcQO12Iwm1X3PKGW6/R9Opb3hGavy9+2dco2HzjQ7ggSClfAQLQ6dJBq145s2URKIEbzWRJpO9ihqD86mC/QxU+yPyIbD8dtpBevpUpJb74pTZ/ubv1YrZq5cSGx1asnLVsmnTjhTmCnpLh/rIy1eDhG/fn6a7sjQDDR7F9Vqkj79nm/l6yD4TklyRKKeIo1XoVyXJUpU/I9M34khW/cZ5kqye+ekLTMPIHG8wU+EsPw4b4vRuJZPFzktm0rVa/u/d7TT8c+jmB1UDy2vnICl8udSIqn5CPnI+dISXEnsuPxh4rrr7c7gshxDJzk5PPoSy95T3frVvJ8itA5+buOlUiP/VC3nZPqlnHjSr43ZUrs1h+r/c1J2xymicOrIiCBFBa6RzZ0Kir++FCunPTCC1L58uaUx4VsaFJT3YM/ZGS4p7t0kQYPtjcmX8aP59dbp0jkG+ysLPazROGEfoAjlaznr3i7XuvfX3rqKXeXFAMGuFucAwhN/fruftuL3HST+0fxeJWs9XaSIgEJ2G3KFOn2292j306aJJ1yit0RxR4nnugNHSodPGh3FMnn2mulTZvcoyEvWWLP8ZsMx89VV0W2XKxvylu39v+3tm2lFi1iF0uspaZK999vdxTmM+v4suM4jWT/b9MmefvgRey4XO6kyZdfSm+9FXlXRnYx83g2oywnJqCdGFM0nHat9eCD0q+/Stu2uZP5iba9kbBIQAJ2K13aPcDB4sXSP/7B4ARAvKlTx33Tnp5udyT+Oe3COVz33y+ddZa7j6Ps7NCXi/Xnvv12dyLOU3a2e8Tst9+ObSx2uOUW6fnn7Y4ifjj5htEpsY0da3cE8Cfezyuhcsqx4ATRfueJts/YvW/UqmXtD0aJ9n1Fyu7vOcGQgAQQmmCVLyep+BDKSZQTrTNVrSpdeKHdUZwUy/2kfn13C9PDh6WFC80t28zPccop7vg6dXL/++gjKSdHeucdqWFD89YTLSvraye28rzuOrsj8C3ez5uxiP/BB6V//tP69Ujx/304QSJeP1i9XyTiNpNi37cix2/iccp36pQ4EgQJSCCeJUuF+NBDoc97+eXWxZEIkmWfSUQNG0p169odReIx++bvvPOkr75y/zvnHHPLDoY+GE8q2hZ160p/+5utoUhK3CSD1VJTpdtuszuK+MT53jpmHs/J/j0l++cH+0CSIQEJJKpEqszHjpVmzZK6dg083/nnS6edFpuYkp3VnV1XqGBt+aEiaYB4cu217pGX7eSUY2btWumbb6TVq+O7c/5YC+fawSnftScnxhQLTvnciXTtabZE3TaPPBJ691HR7KfR7uPRLm/F93fqqSXfq1XL/PUADkICEohWNCMPO/1ixDM+O2N1udwtG6dM8f33mTPdIyi+/75zLsITWWqqNH26tetwSl+oTj9GAU8VKkjPPuvuKzPZVa8udexIq1DAKlxvwUns2B+jXee//uU93bZt4MHsgARAAhKIlp0tteItOdK8uTXlXnmlNHhwycEfYJ5y5aRXX5XGj5c++8z9mKlVrrnGurKTlRUX5vFw8xlKHRlv9WgwV10lHTxodxSJI9b9k11/fWTllysX2XLFBfq8jRubsw4gGfk7thLtHITQdesmvf661L27NGiQtGCB3RGFxux9lmMgqTikiQkQY1R0oTE7wfDkk9YmrmAdl0u64gq7owDMr5fOOsvc8pwghd+X44KvfblNm8jKevFFaciQk9NXXhlZOYHEw7VTPMSYKAJta1+tsM1KkgN2sKpuuewy9z8noj6FBUhAAk4T7/0vBXLuuXZHgHjbZ5IVF33mCGV/v/NO6+NwGuqBxDN4sHTsmPTf/0pNmkgTJ0ZXXqLuI6VLS0eP2h1F4irabypVcg/C9fHHJ//28sv2xGQFp52jE/V4dTq2u7ViPZAfYoKfyIF44O8EF48nvg4d7I4AwdSuXfI9vjckqmrV7I7AGoMG+f+blTfPvrrauOEG69Znlm7d7I4gesOGSW+9JU2dKpUpE11ZTkuwmOWss5JnsDq7v8PXXnO3yj3jDHdfdwMG2BtPpKy+1rb7ewqHnbHG03aCOZzSJVM83m87GAlIwCr9+plXlhNOulZWvlTszvKXv0innOL93mOPxW79Ttjf7RYPx4RdMfoaVKRpU9/zJvO+dMcdUtWqsV9vlSre/RhWrhwfrUz/+U+7I3Bz8j6bCPWSyyUtWRLZsk7mxNhr1JDeeEP6/HNp1ChnxojouVxSs2Yl34/1AGBOrjsRWNeuJd8bOtTdYj1GXOw/MUMCEskpFhdB990XWQuEeL1Ai0XcnBxiIy3N3RF2hw7uxM5zz0nt29sdFeBWqZLUt6/3e089FXl58VrnBtO5s/TDD/as+9ln3a2fHnlEWrXK/Uiw051+Oo97Sclxni1TRho+3O4ozOWU780pcSQbu7f7jBne01WqSBdfbEsoYQt129m9je0Qq+ujxo3djR+KVKsmTZ8em3Uj5khAIjnF4iRy6qnSmjXWriMZT4aIjS5dpG+/ldatc7dmStQkDeLT669Lo0e7HzOeN086/3y7I3KmWrXsWa/L5W69MHq0VL++PTFE4uyzrSt7+PCSgwO9+KJ16wsF9XpwDz1kdwSRs/r7Zf8xRyJcy595prvhRfnyUp060qxZUnq6uetgf0tsc+e6Gzw8/LD0/ff2Xb/AciQgASvFsOl4yJzymBngj5MuMtMSZKy2RLjB8VS+vLt13Zw50iWX2B0NEFxmpjshW6RHD/sT54lWL4SiQoXw5h85kjrGn2Tcf5LJLbeUnPb3naekSOPHSwcPStu2SX36WB9fcSTc41tamrvBwx13OC/5SF1nKhKQQLK56qrQ5w3nZBuLyjleTv79+9sdQXK66y7zy0xNdQ/sgJLi4XjkohHRMnMf+uc/pe++k5YtkxYvduaPlPFwXAfjqz+6Ig8+6P9vvr7rypXdrawRmkTYf6wSb+ejiROlgQPdLRoHDHBP+xLtd273dgk1frvjtIO/z3zhhbGNAwmFBCSQbDIz7Y7At0Q6sT/8sN0ROJe/wULMMHasdPnl5pf73HPmlxmpRDpOnIJtilhq187d4X5qqu+/O7nVdbwcK//6l/+/ZWe7/0+GRFm8fF/Jzqnf0ymnuB+L3bZNeuutkoMTRsKJx10029+JnycWBgyQsrJOTteoYV8sZnHqcZiASEACVgpWmVHZJaaiGxyU9M9/nrzBLt4fWrQqVXL3O/T11+aWW6qUueWZregCuG7d4PMkm2T93DBPrPehK64wv++0SITyuWO5bXr1Cn3e3r3dgyAlE+o6xAPuexJDaqr7Wvsf/3A/ffTdd3ZHhDhCAhLJKRlOgPH0GeMpVkSnf39p+XLp6aelpUuls84yfx3Juj89+6zdESBeJOsxEg8qV5YmTbI7Cud54IHwfgzq0cOyUADHiecEdKxij+dt5ERVq7rPVZMnSzVr2h1N9ALtH+w7piIBCSA0ZlW+VOLo0EG68UbpjDPsjiQxFCWTLrgg+rKGDo2+jHhDnQSnGTdO+vZbe9bt1OR0p07SV19JLVvaHQlgLs5B5rC67nJq3QjEGRKQgJUS6aLC6hNvIm0rJ2M7xzerf6FNtFZD3DAgXtWrZ/064u180Late6RdOMO555Z8Lxl/xIoW56nYqVOn5HtVqkReXrzVoYADkIBEckqUEwYXLQAAIBJcQyQ2q7/fCy7w7vO6ShXp5putXScQqcJC6fnnvd9r105q1syeeBKNv4HV4gXnw5ghAQnEszJl7I4gtjg5AED0EuVHuERm13cUznqdfE52cmxWsGN/SUmRvvhCuvde6Y47pFWr3IPBIXHZeVwF28dDOQZ695aeeMLdmrpXL/fo3qEK9tn/8hfv6SuvDL1spwrn+37xRe/pu+82NxYkjDS7AwBs4ZQLUyvj4AYT8copxyfCV/wCHEB8atu25Hvnnx/7OMLFtU9sVaki3X+/3VHEt3i/5onVMRftdiosdMd6yy3uf2bw/Ox33eUeZHHHDql+fen2281ZR7y46iqpdGnpo4+kNm2km26yOyI4FAlIIF5UrSrt3ev9XqCTvlMvaJwaF+zBzWJ8mzbN3fJFkipUcLeEcRLqGyAyAwZItWpJv/3mnk5Ndd7x7UvRMR+rc0vHjrFZD5wlknML1zuJ7fTTpTVrpF9/lerWlSpWtDui2Bs82P0v0XDsmooEJGAls25+4+EmOprKmYo9djIy7I4AThbusXj77e4b8I0bpZ49pcaNrYkL5oqHcwrsUbRvpKZKS5e6H6M7csQ9MnfduvbG5kSPPWZ3BLCaWdeoVta71OnOULmy+x8SS/nyUosW7gRzkYcesi+eOEcCEgjFNdfEbl0k42CVq66S0tPtjsJ6XIiX9PDD0ogRweeLZNv17On+50TUpwiHk+qOWMQS7PjIypLeeMP6OMLhpGP6/felbt3sjgLxzkn1jh1i9fnNeIQbyWvqVHe/ngcOSJ07S8OH2x1R3GIQGsCXiy8++bp8+cg70nXShXK0gn0WTszO1bCh9MAD0nPP2R1JSew3sXHZZe5fb4tccUVyJKOBaCXSeRyBhXs+uuACa+IwC+fX5BEv/TAmWn2aaJ8nmQXbt/v1k37+Wdqwwf10QM2asYkrAdECEskpJUjuffZsacYMafduadgwqUkTa+LwdeJK1gvGZP3csfD889K559odRei4oDNfhQrSN99I//d/7h9VLrxQevNNu6OyHvUKAF8S7TyTaJ8H8cMp+16w8z3XA4hW1aruf4gKCUgkp9q13UnFDRt8/z09XRo1yvo4Qj0ZOuXkDiB+lS0rDRkSeB7qGsBbIt+0JmJrpqKYypYt+bdSpWIbCxKD1XVAItcxiS5evrtrr5VefPHk9A03hLZcqPMBYeARbCQnl0uaPj05RygLhxNvLoBg2G+dz1dyALAbdUfibINKlUr2TTtzpj2xxEK8JEISRaIcJ/Ek2DbnO/Fv/HipSxf3NjrjDOnee4Mvc/rp0nnnWR8bkg4JSCSv/v2lX36xOwrrJOLFKBcXQHwqPpCX5y/xAGCFWbOkgQOlTp2kRx+VBg06+bdEvEYqjmsm6yTD/uPL2LEl3zvnnNCXt3O7ZWSYX2a8HGMNGkhffCEVFEiffy7Vr+9/3ldecf9Ys2RJ8C7LgAjwCDaSW6VK1pafrBcoVmF7AvHpmWekOnWkdevcHXkHexQcSHZ2ne/sWO+oUdITT5ycjmbANM/4a9WS5s4Nfdl4SSaEimsmc1i9X8TT9zRypPTUU9KOHe7pCy6QWrWKrsxYHHf33COlplq/nkQwbJjdEdiioEyZkm9Wrx77QJIACUgAQGKJp4t5O8VyO5UqJd1/f+zWh8A4RiA5J+E2fbpUrZr0ww/S+edL111nd0TxxynfJRJbtWrSqlXuFnIVK0rDh9sdUXDz50t/+Uv05XDeTGgFZcuqoE8fpbz//sk3n3/evoASGAlIwErBLgitPJmZfTFaq5a55cEagwaVbPHRtKk9sUSKizz7cBMLINbS0919lIWC8wNgr+rVpdtuszuK0AwaJF18sXXlc82UUApeeUUp997r7qLtssvcT+zAdDzYDyA0115r3cARhYWcxM1y333eI3326RO4rxe78b2Hh5tvAPCPcwoAIBKVK0szZkjvvSdddVX4yyfp4+vhIgEJxLNYJiPKlpVmz5YaNYquHG4OrNWypfTVV9Lf/y5NnizNm2d3RLAaxxTCxT7jGwl+52PfRbyKp6eenIj6GU73xBN0IRICEpBAorLiRH3RRdKmTe5+X+Bcbdu6R/y86y6pdGm7o4HVuCj3j22DaCXyjT3HBwCEhvrSHGee6T09bpw9cVihUiV3v5Fvv213JI5GAhKIZ3bdGEVzEuYEDkTOzGOeYxFAcYmccE021PHWMXPbJvv3FOrnd2Ld5MSYnO7BB0+OLt2+vXTjjbaGg9hjEBoA9uMEDjgDxyKQ3JI9GRKvqLutEw/bNl6O23jYlrDW2WdLGzZI+/ZJNWtKGRl2R4QYowUkYKXq1QMPABLqBYPTLiysuIBw2mcEACCRRXsur1q15HuNG0dXpp24DgHgD/WDeSpUcN8fJ2rykUR7QCQggdtu854ePNi8sl0u96jE6enhLQMkCysu6LhIRDiSsc7lGIEZzj3X3YLF03PP2RNLuJLxuIe9/O1z1Mfxi3oECBsJSOCOO9wX0ampUocO7r4p/Ln7bu/pu+4KXv7w4VJOjnsUaUSHi7TkwAVdbHA8ubEdgMikpEizZ0vNmknVqkkPPOB+vA5IJHacI4oP1DFxYuxjABAZrisDog9IoEYNafHi0OadMEEqKJC+/FLq0iX0C4KsLKlr15LrIdECAIBzcSMR2FlnSWvX2h0FEFtWX78//LB06aXSr7+6j7GRI61dHwDECAlIIBwZGdJDD9kdRWi4aQIQiMtFPQF4SrYfBTn+Exvfb3zw9T117Spt3Cj98YdUqZL7Ka1Akq3u8uXss6X33vN+r3hL0mhccon03Xfe7511lnnlA0mCR7ABOzn94pALGgAAYs+u6wPO+/GJ7y3xlC7tHugpWPIRbjfdJJUvf3K6YkVpxAjzyh81yj14SpH69d1JSQBhoQUkECuhXhyaddPBxSjiVbTHAPs+ijj9Rx44C/sL2wAIRSTHCcdWdNsg2LVd+fLSV19Jkya5550wwdz+96tUkVaskKZPdz8Rd/fdJIeBCJCABOIBCRU3tkPi4Tu1DzdDQHCJXEfF42cLFnM8fiY4m9X7VLKfi83cvi1aSK+/bl55xTVpIj3zjHXlA0mAR7ABAIkl2S/mo5GMN++J/pl9jUpct27s4wBiIVnr/2T93ACAuEICEgAAIFE98oj3dL160nnn2RMLAACeQk2ek2RHvGBfDYgEJJCoqPwAJLv0dLsjsF+HDtJrr0mnneZOPH7wQeK3+kTi4trGN47p+FWlit0RxA77KZD0SEACdgrnQvqFF0q+N2yYebH06FHyvfr1fc/bvXvJ9xo2DG09HTqUfK9pUy5KgFhLhhv5Tp2kGjUCz5MM22HoUOnrr6VFi9x9ZMH5kmG/BCA9+qjdEQBAzJCABGIl2gRb797SWWednB4zRqpePboyPRV/TK9ZM6lLF9/zPvyw93StWlK/fqGtZ8IE7+ly5aTrrw/tZosbMsBaifZDQGqq9Pjj7noGgLdkPqf27l3yvYEDYx8HcNpp4c3vq8FAgwamhAIAViMBCcSLMmWkjz+WliyRVqyQpk83t/xTT5X++1/pnHPcF+Effug/GdGihTR/vnTGGVKvXtLixVJKiNVJ3brSggVSx47u5T/8UCpb1rSPEXNDh3pPjx5tTxwAfBsyRNq+3f0PQGIL9UeUAQO8kzbVqkk33GBNTEg8ZiXv//a38H/4++c/vac7d5aaNzcnHgCwWJrdAQAIQdGFTlqadytIs/3lL+5/obj4Yve/SFx0kftfInjgAWnDBmnlSvej6XfeaXdESGTJ3GIpGpUquf8B8SIWrZETrcVzONLSpG++cf+Ym5cn/f3vtJSGb047Tjp2dPflO2OGlJkpPfig3REBQMhIQAJO47QLHQSWlSV99ZXdUcQvEmoAADtUqyY99JDdUViH86s5nLgde/Vy/0sm3B8hXvj6wbtmzdjH4VA8gg0AcJZoLzKdeLNgFi7Azcc2BRJHItf/gVCPxRbbG4A/3btLtWt7v/ef/9gSihORgARi5YorSr43aFDs4wAAf7ipQjLz1QfgM8/EPg4peRNpwVBHJZ86deyOwBy+WtvedFPs4wBgrZQU6bXX3E/JVawo3XOPdO65dkflGCQggVi57DKpUaOT09nZkfehCCQybrwB2KF2bWnUqJPTPXtK551nXzwApCee8E48P/qofbFE47zzvEewvuIK970AgMRz9tnSxo1Sbq57vIA0ej4swpYAYiUjwz169b//7b6QGjlSSk21OyrAXrRmgd1IeMPTv/4lXX21dOSIdMYZiX2e9tVPVWZm7OMwE+eUxHPJJdKnn0r/+5/Utm3ogyU6TVqatHix+7NkZEjdutkdEQDEHAlIIJYqV5bGjrU7CgDwjWQc4B5lNhnccot0//3uUaCLTJ9uXzyAP927u//Fu9TU5H4Ukx8IgKTHI9gAAABAsqla1d3is1Qpd2Jg3DipfXu7o4JZ+EHJOmzbyHh2cVHkySdjHwcA25CABBA/mjQp+V68PooDOBGtE4DkcuON7j6qDh92D5JBHeBb377e0057VJ3vzTpsW/PUq+dueV2kTx/prLNKztepU8n3MjKsiwtAzJCABBJVIv46W6eOdNFFJ6czMtwd+wJApLi5hBPF8hxeqpRUpkzs1heP7r3XPZqp5H6Mdto0e+MB4tUTT0irVknLl0sLFvgenOOf//Tuf/eWWxK7P14gidAHJID4Mneu9Mgj0s6d0vDhUuvWdkcEmK9ly5Lvde4sFRTEPhYAiBctWlhT7umnS99/706aNGvGo+pANNq2Dfz37t2lpUult9+WGjWSrr8+NnEBsBwJSMBpErHlYiiaNSv53l//WvK90qWlu++2Ph7ATtdc4x6w6uBB97TLJf3jH9J999kbVyw8+qg0evTJ6alT7YsFQPwYO1YqX9668hs0cP8DYL0uXdz/ACQUEpBAPEiGRwQrVZJuukl6+mn3dNWq0u232xsTYJfSpaVPP5XuuEM6flyaMEGqXdv69Tqhrrn1Vvejjl984W71ScsHAEVq1PD9/qJF0nnnxTYWJ6lTp+R7vvrNBgDARiQgATjHk09KPXtKO3ZIF18s1a1rd0SAfTp0kD76yO4oYs/lkq691v0PADyddZa7FeKWLSff++wzqVs3+2JyghtvlMaPl44dO/neQw/ZFw8AAD6QgATgHC6XNGiQ3VEASCbJ2u0FEI9cLumdd9xPTPz+u7vF9Jln2h2V/SpUkObMkf72N3er+YkTaQFpllNPLfle796xjwMAEgAJSCAecIOMRFWuXMn3SpeOfRwA3K65RnrppZPTjz9uXyyAL23bugeogLd+/dz/YK6BA6VataTffnNPp6fTFzkARIgEJOA0TuiDDYiVKVOk99/3fm/cOHtiQXKizvX2r3+5fwT48UepVy/p5pvtjig51aghZWZKu3effG/CBPviAZJVaqr0+efugeCOHHFfo9SsaXdUABCXSEACAOzTpo07wfHUU+7pu+6KfpTRZG4xfOON0jPPnJy+447wlicZh/LlTw4GBvukpEgPPOB+1Dg/3/04Lf2iAvZo2FCaOdPuKAAg7pGABADYx+VyDz50113uG+5ateyOyNmCJVcffFDat0/6+mt3v2j33hubuACYb8QIqXt396Ofp53m7ucPAAAgTpGABADYr04duyNIDFWqSK+/bncUAMzSvLn7HwAAQJxLsTsAAAAQIh6RBgAAABCHLGkBuXHjRr3xxhtavny5tm3bpry8PFWvXl3NmjVTv379dP755ystzfxVL1u2TAsWLNCKFSu0a9cu5efnKzMzU+3bt1f//v119tlnh1VeQUGBPvnkEy1atEirVq3S7t27dfToUVWoUEH16tVT586ddemll6pBiP2VTZo0SbNmzQorhvr162vRokVhLQMAAAAAAAA4helZwCeeeEIzZsxQXl6e1/tbt27V1q1b9dFHH6l169aaNm2asrKyTFnnzp07dfvtt+urr74q8bdt27Zp27ZtWrBggdq3b68pU6aoUaNGQctcs2aN7rzzTq1bt67E3/bu3au9e/dq1apVevHFF3X55Zdr7NixSk9PD1jmTz/9FPqHAqKVzANxAAAAAAAAxzA1AfnAAw9opscIYWlpacrOzlaZMmW0ceNG7du3T5L0ww8/aNiwYZo9e7bqRNnv15YtW3TFFVdo9+7dXu83btxY1apV086dO7V582ZJ0nfffaeBAwfqueeeU8eOHf2WuXLlSg0fPlxHjx413itdurSaNWumMmXKeJWZn5+vmTNn6ueff9a///1vvy07CwsLtXbtWmO6c+fOysjICPr5qlevHnQeAAAQggce8B6Yp1w59+jCAAAAACxlWgJy4cKFXsnH3r17a/z48apWrZok6cSJE5o3b54eeughHTlyRHv27NGoUaP01ltvyRVhn1ZHjhzRyJEjvZKPPXr00N133+31WPT69es1ceJEffPNNzp8+LBuvPFGvfPOO6pZs2aJMg8dOqSbb77ZSD6WLl1at99+uwYPHqxSpUoZ8/3888+aPHmylixZIklaunSpHnnkEd15550+Y92yZYv++OMPSVJ6erpefPHFoC0mAQARKF3a7gjgVMOHSy+/LK1f7+5P84EHJM7FAAAAgOVMGYTmxIkTmjp1qjHds2dPPfbYY0byUXIn3YYMGaInn3zSaCX4448/asGCBRGvd9asWdq0aZMxPXjwYM2YMaNEn4xNmzbVSy+9pDPPPFOSlJubq/vvv99nmc8//7x+//13Se4WnM8995yGDRvmlXyUpEaNGunZZ59V7969jfdeeeUV/frrrz7LXbNmjfG6cePGJB8BwCrt20vFzgP5r75qTyxwljp1pBUrpEWLpO+/l/7+d7sjAgAAAJKCKQnIRYsWGYm3tLQ0jR8/Xikpvovu1q2bhgwZYky/9NJLEa/3tddeM15nZWVp/PjxfltTZmRkaMqUKcZjz4sXL9b69etLzPfOO+8YrwcOHKjOnTv7Xb/L5dLEiRON5OSJEyf04Ycf+pw3JyfHeN28efMAnwoAEBWXS3r+eamoC4vrrlPhX/5ib0zxIhlG2S5fXjrvPKl1a7sjAQAAAJKGKQnI9957z3jdtWtX1a5dO+D8ngnIH3/8UVu3bg17nZs3b9b27duN6eHDhwdtVVi9enX17NnTmC7e+vKXX37xKrNv375B46hatarat29vTK9evdrnfJ4tIElAIiaSIZEA+HPeedKOHVJ+vjsZyWPZAAAAAGCbqBOQhYWFWr58uTFd9JhzINnZ2crMzDSmP/7447DXu2XLFq/p008/PaTlWnu0ePj666+9/rZ9+3avR62bhNgxfeXKlY3X+/fv9zkPCUgAiDGXS/LTGh8AAAAAEDtR35lt375dBw4cMKZbh/hIU3Z2tvHaX6vBQDzXKUk1atQIaTnPZKFnUlCSzjjjDH3//ff68ssv9fbbb3vNG8i2bduM1xUrVizx971792rXrl3GtOdnB0o47bSS79WrF345hYXRxwIAgNNdeKH39Nix9sQBAAAAv6IeBXvz5s1e0/Xr1w9pubp16xqvf/nll7DXW6ZMGa/p48ePl3jPl8OHDxuv//jjD+3fv79EorFKlSqqUqVKSHFs3bpVP/30kzHduHHjEvN4JjozMzNVoUIFvf/++3r//ff1/fffa8+ePSpbtqxq1aqlrl276tJLL1VWVlZI60cCevhhybN7gCpVJI9uCwAAgIeHHnKPbL5+vXTWWdKtt9odEQAAiIWsLMljYGIx2K+jRZ2A3L17t/E6JSXFa+TrQDwfwfYsI1S1atXyml6zZo26dOkSdLnirR53794dcktHX5544gkVerQ08+xj0tc609LS1Ldv3xKJ29zcXOXm5ionJ0cvv/yyhg0bpjvuuMMYMRxJpEULadYsafJkqVw56V//oiIFEBv0HYt41Lat9NNP0okTUqlSdL0AAECyeOQRaeBAd7/vkvTMM/bGg4Cizm7l5uYar8uVK+d39Oviypcv77OMUDVv3lwVK1Y0HsWeM2dO0ATkwYMH9dFHH3m9d+TIkbDXXWTRokV6++23jekuXbqoVatWJebzTED+9ttvxuvMzEzVq1dPhYWF+vnnn43+I/Pz8/Wf//xHGzZs0IwZM4IOrmO1vLw8W9cfrfyiysjPtCMNHuz+VySS7yAvz+cBHu/fJxCJaOsBpxxLKQUFJfpOKSwsVH4Esfj6TPn5+SqkjkC8Sk+XCgrc//yIy2sCAKaiHgCcc20btYsukv73P7m+/FJq316FZ58d0r0z9YA9ok5AHjt2zHhdOoxRRjMyMozXx48fD3u9qampuvjii/XKK69Ico9o3aNHD/Xr18/n/IWFhZowYYIOHTrk9X4k65bco3ffeeedxnR6errG+ulzKCcnx2u6TZs2Gjt2rDp16mS8V1BQoKVLl2ry5Mn6+eefJUlLly7Vgw8+qIkTJ0YUoxkKCgq0atUq29ZvhR9++MHuEGKi1C+/yFePrIn2fQKRCLce6OjjPTuOpfq//67MYu8d/uMPrY0gFl+f6ZdfftFe6ggkkWS5JgDgH/UAkpFTrm1NUbq01KOH+3WEn4F6IDaifkblxIkTJwsL45EXz0eLI820jxgxwuvx6TvvvFPTp08v0aJyy5YtGjlypN59912VLVvW62/hxFwkJydH1157rf744w+vdbds2bLEvMePH/capKZ37956/fXXvZKPRXF0795dc+bMUYsWLYz333jjjRIJTABAbP3RtKnX9I5hw2yKBAAAAADiT9QJyNTUVON1QYBHXorzTDpG+ohxZmamHnvsMZUqVcpY/7PPPquuXbtqwIABuvrqq9WnTx/16tVLn376qdLS0jRt2jSvMoqWDdW3336rq666ynhcWpIGDRqkq666yuf8GRkZWrlypT755BPNnDlTU6dODfh5K1SooOnTpxuJ0cLCQqOVJwDAHr/dcIMK/jxfHKtTR3sGDLA5IgAAAACIH1E/gu058rTn49jBeD76HG4S0NMZZ5yhmTNnavTo0dq+fbskd3Lzxx9/9JqvTp06mjJlSolRqsuVKxfyuhYvXqzbbrtNR48eNd7r16+fJk2aFHC5lJQU1a5dW7Vr1w5pPY0bN1bXrl21dOlSSdKyZctCjtFsKSkpatOmjW3rN0N+fr5Xk+rWrVt7Jc4Tlp9R4du1axfjQAD7RV0PtGungkGDVLB9u1JbtlTzihUtiDK4lFNOKfFeubJlTTuu6zdooHrUEUhgSXtNAMBAPQD4lkz3idQD4Vu9enVYjQ59iToBWalSJeP14cOHVVhYedmghQAAOFZJREFUKFcIo2h69sUYzSjUkvtAWbhwoebPn68PP/xQOTk5ys3NVdWqVZWVlaW+ffvqoosuUpkyZbRhwwavZT1H4w7k+eef1/Tp0702+KBBg3T//fdH9Bh3MB06dDASkDt27NCxY8eiStRGI9FG4k5NTU24z+STn8+YFJ8dCCKieqBRI/c/O3XqJD3/vNdbrh49TDuuU1NT/dYdQCJKmmsCAH5RDwBuyXwcUA/ERtRbuEaNGsbr/Px87du3T1WrVg263O7du43X1apVizYMZWRkaMiQIRoyZEjA+datW2e8rlSpUtAWkCdOnNB9992nOXPmeL0/YsQI3XbbbZEHHETxbbJ//36vbQ0ASEJXXy2NGyft2+eezsiQ7rjD3pgAAAAAIIiom+41aNDAa3rr1q0hLec5MEujGLYo8Wxmm52dHXDew4cPa8SIEV7Jx9TUVE2YMMHS5KNU8nH2cB4VByRJIbREBhBnSpWSPv9cGjhQ6t9fWrZM8vFYdkiyskq+5/FUAwAAAACYJeoWkHXq1FHlypWNQVnWrFkTUt8BniM7N2/ePOL1Hzp0SLt27dIpp5zi9Ti4P0uWLDFeB4rzwIEDuvbaa7V69WrjvbJly+qRRx5Rz549Q45v8eLF+vLLL7V3716lpaXp4YcfDmk5z0RuxYoVVb58+ZDXCQBIYM2bS3PnRl/Oc89J5557cjozU+rTJ/pyAQAAAKAYUzovPP30043Xn3/+edD5c3JytGfPHmO6S5cuEa338ssvV8eOHdWnTx/Nmzcv6Pzr1q3T+vXrjWl/icTDhw+XSD5mZmbq1VdfDSv5KLkTsjNnztS7776rd955x+tzB1LU/6MkdezYMax1AgAQ1NlnSxMmSBUrSvXrS6+9JtH5NgAAAAALmJKA7NWrl/H6k08+0c6dOwPO//rrrxuvGzduHPRRaH+aNGlivF68eHHQ+Z955hmvZTt06OBzvnHjxnklHxs0aKDXX39drVq1CjvGzp07G68LCws1N4RWKx9++KE2bdpkTPfv3z/s9QIqLLQ7AgBOlpoqTZwo5eZKW7ZI551nd0QAAAAAEpRpCcjq1atLko4fP65x48YpLy/P57yfffaZV5+Kw4YNi3i9fTweFfvmm2+0bNkyv/POnTtX7733njE9cuRIn6N1v/766/rwww+N6Tp16mjmzJmqV69eRDF27txZDRs2NKafffbZEiNxe9q0aZPGjx9vTGdlZXkleAEAAAAAAIB4YkoCMiMjQ2PGjDGmP//8c91www1e/Rjm5eVp9uzZGjVqlPLz8yVJzZo106WXXuqzzHPOOUfZ2dnKzs7WOeec43OeLl26ePXjOHr06BItIfft26dp06bp3nvvNd7r3r27+vXrV6K8Q4cO6ZFHHvH6XM8880xUo0+7XC7dfffdxvThw4d15ZVX6t1331VBQYHx/okTJzR//nwNHTpU+/4c3TQ9PV1Tp05lOHgAAAAAAADELdMyW5dccolWrlypN998U5I7CdmrVy9lZ2erfPny2rhxo/bu3WvMX7lyZT3++ONRJddcLpcmT56soUOH6sCBA8rNzdXNN9+smjVrqkGDBsrNzdWmTZt0/PhxY5lWrVp5JRk9vfbaazpw4IAxXb58+ZAHjSmSnZ2tO++80+u9s88+W7fddpumT58uyZ0UHTNmjCZNmqSmTZsqLy9PGzdu9Fp3enq6HnvsMbVt2zas9QMAAAAAAABOYmrTuvvuu09VqlTRCy+8oBMnTqigoEBr1qwpMV/jxo31+OOPKysrK+p1NmnSRC+//LJuvfVW/fLLL5KkHTt2aMeOHV7zuVwuXXLJJfrHP/6hsmXL+ixr4cKFXtN79+71GgwmFJ7JTk8jRoxQ7dq1NWnSJOXm5kqS9u/fr6+//rrEvI0bN9Z9992nTp06hbVuAAAAAAAAwGlMTUC6XC6NHj1a/fv319y5c7V06VLt2LFDR44cUaVKldSiRQtdcMEF6t+/vzIyMkxbb8uWLbVgwQLNnz9fixYt0po1a5Sbm6vSpUurXr166tSpkwYNGhR0sBvPgV+s0LdvX/Xo0UP//e9/tWTJEuXk5Gj//v1KTU1VZmamWrZsqV69eum8884zdfsAAAAAAAAAdrGkc8HGjRtr7NixGjt2bMRlfPzxx2HNX6pUKV122WW67LLLIl7nd999F/GyoSpfvryuvPJKXXnllZavCwAAAAAAALCbKYPQAHCgwkK7IwAAAAAAACABCQAAAAAAAMA6JCCBROVy2R0BAAAAAAAACUgAAAAAAAAA1iEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJJCoGAUbAAAAAAA4AAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEkhUWVmSy+X93j332BMLAAAAAABIWiQggUSVni5NmXJyumFDacQI28IBAAAAAADJKc3uAABY6M47pXPPlX79VTrrLKlyZbsjAgAAAAAASYYEJJDoOnZ0/wMAAAAAALABj2ADAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuQgAQAAAAAAABgGRKQAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuQgAQAAAAAAABgGRKQAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuQgAQAAAAAAABgGRKQAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAACSL/v29p4cOtScOJBUSkAAAAAAAAMli3DipenX369q1pdtvtzceJIU0qwreuHGj3njjDS1fvlzbtm1TXl6eqlevrmbNmqlfv346//zzlZZm/uqXLVumBQsWaMWKFdq1a5fy8/OVmZmp9u3bq3///jr77LPDLvP777/XnDlz9PXXX2vnzp0qLCxUjRo11KpVK/3lL39R9+7d5XK5Qi6vsLBQixcv1jvvvKPVq1fr999/V5kyZVSjRg116dJFAwcOVPPmzcOOEwAAAAAAIKAzzpDWrJF++UVq2FCqXNnuiJAELElAPvHEE5oxY4by8vK83t+6dau2bt2qjz76SK1bt9a0adOUlZVlyjp37typ22+/XV999VWJv23btk3btm3TggUL1L59e02ZMkWNGjUKWuaJEyd0//3368033yzxt82bN2vz5s1699131a1bNz300EOqXvQLQpA4R48erW+//dbr/ePHjys3N1fr1q3TzJkzNXz4cI0ZM0YZGRlBywQAAAAAAAhZ1aruf0CMmP4I9gMPPKAnn3zSSD6mpaWpVatWOu2001SlShVjvh9++EHDhg3T9u3bo17nli1bNHDgwBLJx8aNG+v0009Xw4YNjfe+++47DRw4sEQCsLjCwkL9/e9/90o+lipVSm3bttWpp56q8uXLG+8vXbpUV199tQ4cOBCwzL179+rKK6/0WnflypV12mmnqVWrVkaL0MLCQr300ksaN25c0M8OAAAAAAAAOJmpCciFCxdq5syZxnTv3r31v//9T/PmzdOsWbP02WefadKkSSpTpowkac+ePRo1apQKCwsjXueRI0c0cuRI7d6923ivR48e+vDDD/Xee+/plVde0QcffKAFCxbotNNOkyQdPnxYN954o3bs2OG33BdffFGLFy82pi+//HItW7ZMc+bM0RtvvKFly5Zp9OjRRtJw06ZNuvvuuwPGetddd+mXX36R5E5mTpw4UcuWLdOsWbM0b948ffrpp7rwwguN+d9991298sor4W8UAAAAAAAAwCFMS0CeOHFCU6dONaZ79uypxx57TNWqVTPeS09P15AhQ/Tkk08aibsff/xRCxYsiHi9s2bN0qZNm4zpwYMHa8aMGWrQoIHXfE2bNtVLL72kM888U5KUm5ur+++/32eZe/fu1VNPPWVMDx06VBMmTFCFChWM90qXLq2RI0dq0qRJxnuLFi3SihUrfJb52Wef6dNPPzWmp0yZoqFDh3r1g5mZmalHH31UF198sfHe008/rUOHDgXYAgAAAAAAAIBzmZaAXLRokX799VdJ7seux48fr5QU38V369ZNQ4YMMaZfeumliNf72muvGa+zsrI0fvx4vwPCZGRkaMqUKUa/iosXL9b69etLzDd37lwdPnxYkvsR6TvvvNPv+gcOHKgePXoY0/4+y8svv2y87tatm1dLx+ImTJigU045RZK0b98+zZ8/3++8AAAAAAAAgJOZloB87733jNddu3ZV7dq1A87vmYD88ccftXXr1rDXuXnzZq8+JIcPH6709PSAy1SvXl09e/Y0pn21vnz//feN13369FHZsmUDlun5WZYsWaI//vjD6++5ubn6/PPPjemBAwcGLK9s2bLq37+/Mb1w4cKA8wMAAAAAAABOZUoCsrCwUMuXLzemix5zDiQ7O1uZmZnG9Mcffxz2erds2eI1ffrpp4e0XOvWrY3XX3/9tdff9u/frzVr1hjT3bp1C1pely5dlJqaKkk6evSoV7JRkr766ivl5+dLklwuV0jbx3OeFStWKDc3N+gyAAAAAAAAgNOYkoDcvn271wjQngm+QLKzs43Xq1evDnu9xUedrlGjRkjLVa5c2XjtmWyUpLVr13oNitOqVaug5ZUtW1b169c3pot/lpycHON13bp1ValSpaBlNm/e3HhdUFCgH3/8MegyAAAAAAAAgNOYkoDcvHmz17RnMi6QunXrGq+LRocOR9Fo2kWOHz8e0nJF/TtK0h9//KH9+/cb056fJSMjQ7Vq1QqpzECfxbPM4oPj+JOZmanSpUsb08VbewIAAAAAAADxwJQE5O7du08WmJLiNfJ1IJ6PYHuWEariycHirRn9KT6f57o9X3vGF0ygz7Jr166IyiwaiMZXmQAAAAAAAEA8SDOjEM/+CcuVK+d39Oviypcv77OMUDVv3lwVK1Y0HsWeM2eOunTpEnCZgwcP6qOPPvJ678iRI8Zrz9aQFSpUCDmWQJ/FczqcMj3nLf64eSzl5eXZtm4zFPW/6W8aQOKjHgAgURcAoB4AQD1gF1MSkMeOHTNeez42HExGRobxOtTHpz2lpqbq4osv1iuvvCLJPaJ1jx491K9fP5/zFxYWasKECTp06JDX+57r9nxt1mcxY/t4lhFLBQUFWrVqlS3rtsoPP/xgdwgAbEY9AECiLgBAPQCAeiBWTHkE+8SJEycLDLH1oySlpZ3Mf0baym7EiBFeg8rceeedmj59eolWiFu2bNHIkSP17rvvqmzZsl5/84zZis/iOR1OmUUja/sqEwAAAAAAAIgHprSA9EyUFRQUhLycZ1ItPT09onVnZmbqscce01//+lcdO3ZMBQUFevbZZ/Xiiy8qOztbFSpU0K5du7Rp0yZJ7kThtGnTdPPNNxtllCpVytLPEmmZns2AI90+AAAAAAAAgJ1MSUB6jkYdzqPCno8qeyYBw3XGGWdo5syZGj16tLZv3y7JnRD88ccfvearU6eOpkyZosaNG3u9X65cOeO15yPS4XwWz3mLfxYryoyVlJQUtWnTxpZ1myU/P9+rSXXr1q29ksIAEh/1AACJugAA9QAA6oFIrF69OqwGdb6YkoCsVKmS8frw4cMqLCyUy+UKupxnX4yej1FHol27dlq4cKHmz5+vDz/8UDk5OcrNzVXVqlWVlZWlvn376qKLLlKZMmW0YcMGr2U9R6b2jKN4X5GBHD582GcZkvf2CadMM7dPNDwfL08EqampCfeZAISHegCARF0AgHoAAPVArJiyhWvUqGG8zs/P1759+1S1atWgy+3evdt4Xa1atajjyMjI0JAhQzRkyJCA861bt854XalSJa8WkJ6f5ffffw953YE+S6Rles7rmSQFAAAAAAAA4oUpg9A0aNDAa3rr1q0hLbdt2zbjdaNGjcwIJSSeTW2zs7O9/ub5Wf744w/t2bMnpDI9P3Pxz9KwYUPj9S+//BJSebt27dLRo0d9lgEAAAAAAADEC1MSkHXq1PF6RHjNmjUhLZeTk2O8bt68ecTrP3TokDZt2lRi5Gt/lixZYrxu166d199atmzp9fh4KJ/l8OHDXonF4p+lVatWxustW7boyJEjQcv0XK/L5SqRKAUAAAAAAADigSkJSEk6/fTTjdeff/550PlzcnK8Whd26dIlovVefvnl6tixo/r06aN58+YFnX/dunVav369Md2zZ0+vv5cvX14tW7Y0pkP5LF9++aXRGWdqaqo6d+7s9feOHTsa/Qnk5+dr+fLlQcv0XG/Lli29+pEEAAAAAAAA4oVpCchevXoZrz/55BPt3Lkz4Pyvv/668bpx48YRt/Br0qSJ8Xrx4sVB53/mmWe8lu3QoUOJeXr37m28fuedd4K2WPT8LF27dlXFihW9/l6xYkWvBOsbb7wRsLzDhw/rnXfeMaYvuOCCgPMDAAAAAAAATmVqArJ69eqSpOPHj2vcuHHKy8vzOe9nn32mOXPmGNPDhg2LeL19+vQxXn/zzTdatmyZ33nnzp2r9957z5geOXKkz9G6Bw4cqDJlykiS9uzZo0mTJvktc86cOfrss8+M6auuusrnfFdccYXx+pNPPgnYWnPixInau3evJKls2bIaNGiQ33kBAAAAAAAAJzMtAZmRkaExY8YY059//rluuOEGr8FZ8vLyNHv2bI0aNUr5+fmSpGbNmunSSy/1WeY555yj7OxsZWdn65xzzvE5T5cuXbz6cRw9enSJlpD79u3TtGnTdO+99xrvde/eXf369fNZZrVq1XT99dcb0/PmzdNtt93mNSr10aNHNWPGDE2YMMGrzO7du/v9LJ6Pqf/jH//Qv//9bx07dsx4b8+ePRo9erRX68ebbroppBHFAQAAAAAAACdKM7OwSy65RCtXrtSbb74pyZ2E7NWrl7Kzs1W+fHlt3LjRaNknSZUrV9bjjz9u9I8YCZfLpcmTJ2vo0KE6cOCAcnNzdfPNN6tmzZpq0KCBcnNztWnTJh0/ftxYplWrVnrkkUcCljty5EitXr1an376qSRpwYIF+uCDD5Sdna2MjAytX79eBw8eNOavW7eupk6dGrDMadOm6YorrtDWrVuVl5enRx55RM8995yaNm2q48ePa+3atTpx4oQxf8+ePXXddddFsFUAAAAAAAAAZzCtBWSR++67TyNHjlR6erokqaCgQGvWrNHXX3/tlXxs3LixXn31VWVlZUW9ziZNmujll19W/fr1jfd27Nih5cuXKycnx0g+ulwuDRgwQK+++qoqVKgQsMy0tDQ98cQTGjRokPGY9okTJ/TDDz9oxYoVXsnHU089Va+99lrQloo1atTQzJkzvfqdPHjwoFasWKEffvjBK/k4aNAg/etf/1JKiulfEQAAAAAAABAzpraAlNxJvtGjR6t///6aO3euli5dqh07dujIkSOqVKmSWrRooQsuuED9+/dXRkaGaett2bKlFixYoPnz52vRokVas2aNcnNzVbp0adWrV0+dOnXSoEGDwhrsJiMjQw8++KCGDBmi+fPn68svv9TOnTt1/PhxVa1aVW3btlXfvn3Vq1evkBOFtWrV0muvvaZFixbpvffe0/fff689e/YoJSVFNWrUUMeOHTV48GC1b98+wi0BAAAAAAAAOIersLCw0O4g4CwrV65UQUGBJCklJUWnnnqqzRFFJy8vT6tWrTKm27VrF9Vj/wDiD/UAAIm6AAD1AADqgUiYkSfi+V4AAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMq7CwsJCu4OAs3z77bde0ykp8Z+nLigoMF4nwucBED7qAQASdQEA6gEA1APh8txektSxY8ewy0gzKxgkruI7WrxLtM8DIHzUAwAk6gIA1AMAqAdihTQvAAAAAAAAAMvQAhJB0RwZAAAAAAAgOZnRSpQ+IAEAAAAAAABYhqZtAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuk2R0AYKWNGzfqjTfe0PLly7Vt2zbl5eWpevXqatasmfr166fzzz9faWkcBoDdFi5cqFtvvTXs5f73v/+pZs2afv/+/fffa86cOfr666+1c+dOFRYWqkaNGmrVqpX+8pe/qHv37nK5XCGvr7CwUIsXL9Y777yj1atX6/fff1eZMmVUo0YNdenSRQMHDlTz5s3D/hxAMnr88cf19NNPq06dOvr444/DWvaLL77QW2+9pe+++067du1SWlqaatasqVNPPVWXXHKJTjvttLDKO378uN599129//77+umnn7R//36VL19etWrVUvfu3TVw4EDVr18/rDL37t2rOXPm6NNPP9WmTZt0+PBhVa1aVfXr11fv3r3Vv39/VapUKawygUQTST0wadIkzZo1K6z11K9fX4sWLQo4jxXn+MOHD2v+/PlavHix1q5dq4MHD6py5cqqXbu2zj33XF1yySWqXr16WGUC8Wz58uV69913tXLlSu3atUuHDh0yzrennXaaBgwYoJYtW4ZcXjxc61MPnOQqLCwstDsIwApPPPGEZsyYoby8PL/ztG7dWtOmTVNWVlYMIwNQ3KOPPqoZM2aEvZy/BOSJEyd0//3368033wy4fLdu3fTQQw+FdNLfuXOnRo8erW+//dbvPC6XS8OHD9eYMWOUkZER/AMASer777/X5ZdfrhMnToSVeDh06JDGjh2rxYsXB5yvf//+Gj9+vCpUqBC0zI0bN+rWW2/V+vXr/c6Tnp6uv/3tb7rhhhtCupFZvHix7rnnHu3fv9/vPJmZmXrwwQd19tlnBy0PSESR1gOXXXaZVq5cGda6giUgrTjHf/vtt7rtttv022+/+Z2nXLlyuvfeezVgwICg5QHxbNu2bRo7dqy++eaboPNedNFFmjRpksqXL+93nni51qce8EYCEgnpgQce0MyZM43ptLQ0ZWdnq0yZMtq4caP27dtn/K1atWqaPXu26tSpY0eoACSNGDFC//vf/yRJzZo1C/lXwGnTpqlq1ape7xUWFuqWW27xSlCUKlVK2dnZSk1N1fr163Xo0CHjb1lZWXrzzTdVsWJFv+vZu3evhgwZol9++cV4r3LlymrSpImOHDmitWvXev3YcdFFF+mRRx4J6TMAyWbr1q0aOnSodu/eLUkhJx6OHTumYcOGadWqVcZ75cqVU7NmzZSfn69169bp6NGjxt86deqkF198MeANws8//6yhQ4d6XRdkZmaqUaNG2r9/v9avXy/PS+UbbrhBt99+e8A4Fy5cqDFjxig/P994r1GjRsrMzNT27du1fft24/3U1FQ9/fTT6tGjR9DPDySSSOuBwsJCdejQQX/88YckqXPnziElAapXr66HHnrI59+sOMd/++23uvbaa73qpDp16qhOnTravXu3fv75Z6/5J06cqKFDhwb9HEA82rx5s4YOHaq9e/ca76Wnp6tZs2aqUKGCfv/9d23YsMHrfNu8eXPNmjXLZxIyXq71qQdKIgGJhFP8Uc7evXtr/PjxqlatmiT3ryXz5s3TQw89pCNHjkiSWrVqpbfeeius5tkAzHPWWWdp165dkqSZM2eqc+fOEZf1wgsv6OGHHzamL7/8co0ZM8ZoCXX06FH95z//0RNPPGFcSJx//vl68skn/Zb517/+VZ9++qkk9wXOXXfdpUsvvdTowmH37t2aPHmy3nvvPWOZe+65R1dddVXEnwNIROvWrdP111+vnTt3Gu+FmnjwfOzS5XJp1KhRuu6661S6dGlJ0oEDB/TEE0/olVdeMZYZPny47rrrLp/l5efna8CAAcrJyZEkVapUSZMmTVLv3r2N64GtW7fq3nvv1Zdffmks9/TTT+vcc8/1WebWrVvVv39/IznSrFkzTZ061etxsi+//FJ33323kYgsV66c3n//fdWoUSPoNgASQTT1wObNm9W7d29J7gTGypUrlZ6eHlU8Zp/jDx06pD59+hjXNbVq1dJDDz2kM844w5hnzZo1uuuuu7RmzRpJ7sYSs2fPVqtWraL6LIDT5Ofn6+KLL9a6deskuX94u/HGG3XNNdd4JRd37typRx55RP/973+N9y644AI9/vjjJcqMh2t96gHfGIQGCeXEiROaOnWqMd2zZ0899thjRvJRcl+sDBkyRE8++aRRofz4449asGBBzOMF4P7FsejkLEnZ2dlRlfXUU08Z00OHDtWECRO8HsMsXbq0Ro4cqUmTJhnvLVq0SCtWrPBZ5meffWZckEjSlClTNHToUK/+YzMzM/Xoo4/q4osvNt57+umnvX59BZLd22+/rcGDB3slHUK1YcMGvfHGG8b0bbfdpptvvtlIPkpSxYoVdc899+jmm2823ps1a5a2bdvms8w5c+YYyce0tDTNmDFDF1xwgdePkfXq1dPzzz/vdcMwffp0r9aNnh599FEj+VinTh29/PLLJfqy6tKli1577TWjpffhw4cD3hQBiSSaekCScaMuSY0bN446+WjFOf7f//63cV1ToUIF/ec///GqQySpRYsWevXVV9WsWTNJUl5enqZPnx7VZwGcaN68eUbyUXIfY6NGjSrRsrFGjRqaOnWqrrnmGuO9hQsX6rvvvvOaL16u9akHfCMBiYSyaNEi/frrr5LcNxPjx49XSorv3bxbt24aMmSIMf3SSy/FJEYA3jxvJmrXrh3VoAxz587V4cOHJbkfm7jzzjv9zjtw4ECvxx791QEvv/yy8bpbt2668MIL/ZY5YcIEnXLKKZKkffv2af78+eGEDySknTt3auzYsbrzzjuNJw/CNXPmTCPpl5WVpeuuu87vvLfccotxMX/ixAm9+uqrPufzbCk5cOBAdejQwed86enpmjp1qpHo2Lhxo9FlhKedO3fqgw8+MKbHjBlToouIIjVr1tQ999xjTM+bNy9gf5FAvDOjHpBk/GggyZRB38w+xx87dsyrT7obbrhBDRs29Fle+fLl9eCDDxrTy5Yt09q1a8P9CICjvf3228brbt26qX///gHnHzNmjFdXTO+++67X3+PhWp96wD8SkEgonk2iu3btqtq1awec3zMB+eOPP2rr1q2WxQbAN88EZDStHyXp/fffN1736dNHZcuWDTi/Zx2wZMkSo+VSkdzcXH3++efG9MCBAwOWV7ZsWa8Lq4ULF4YUN5ConnnmGV1wwQVej1RlZWVp5MiRIZdRUFDgldgbMGCA3x8XJSklJUWDBw82pj2XLZKTk6ONGzca04MGDQoYQ40aNdSzZ09j2tex/cEHHxiPelWoUMF4TNSf888/30hQ5uXlBR1YB4hXZtQDRTyvGaJNQFpxjl+6dKlyc3MlueuiYINKtG3b1utxS64bkEiOHz/u1eqwb9++QZfJyMhQt27djOnVq1d7/T0ervWpB/wjAYmEUVhYqOXLlxvTZ555ZtBlsrOzlZmZaUyHOvoeAPOYdTOxf/9+r7I8L1786dKli1JTUyW5+4vxvACRpK+++spodeVyuUKqVzznWbFihXEBAiSjF154weti/9JLL9WcOXPUoEGDkMvIycnxGiQmlGPb8zj89ddfvVpNSfLq07FSpUpq06ZNWGV++umnKt6N+hdffGG87ty5c9BHQ1NTU70ex/rkk0+CxgDEIzPqgSJmJiCtOMd71gPNmjXzus8IpUzqASSS7du3q1SpUsZ048aNQ1qucuXKxmvP83+8XOtTD/hHAhIJY/v27Tpw4IAx3bp165CW82xxVfwXFgDWM+txqrVr13olBELpwLls2bKqX7++MV28DvCMrW7duiE9Hu75GQoKCvTjjz8GXQZIdK1bt9bMmTP1wAMP+BzRMhDP4zA9PV1NmzYNukyjRo28+ocMdGy3aNEipEHoPI/t3Nxcr5EyJXk9MhVqB/KeZXINgkQXTT0gmdtntGTNOT7aemD9+vU6duxYSMsBTteoUSOtXLlS33zzjd59912je5RgigZpk+R1XMbLtT71gH9pwWcB4sPmzZu9pj0rmkDq1q1rvC5+MwHAWseOHdPPP/9sTGdnZ+vbb7/Vf//7X33zzTf67bff5HK5lJmZqY4dO6p///4lOnAu4lkHZGRkqFatWiHFULduXSOG4nWAZ5mhttTIzMxU6dKldfToUUnSli1b1LVr15CWBRJN586dNWDAAJ177rkhJfl88TwO69Sp49UpvD8ul0u1a9fWpk2bJLmPQ39lhnpse14vFJVZtOzx48eNPqgjLXPnzp06evSoV+IUSARm1AOSd+vHzMxMVahQQe+//77ef/99ff/999qzZ4/Kli2rWrVqqWvXrrr00kuVlZXltzwrzvGe1zSR1AN5eXnatm1byC3FgHhQoUIFr0FiAjl06JCWLVtmTHseC/FyrU894B8JSCSM3bt3G69TUlK8Rr4OxLNJtGcZAKy3du1ar8ce7rvvPq/HFops2bJFW7Zs0bx589StWzc9/PDDRgfQRTyP31AedfA1b/E6wLOlRThlnnLKKcavt9QrSGZPP/101GV4HkOeHdMHU61aNSMBacaxXbVqVaWmphp1lmeZu3fv9mqVEWqZxa9Vdu/erXr16oW0LBAvzKgHJO8EZFpamvr27VuiAUJubq5yc3OVk5Ojl19+WcOGDdMdd9zh84cLs8/xBQUF2rt3b9hl+qoHEjHxAITihRde8BpZ2rP/5Xi41qceCIxHsJEwPPteKFeuXMAO6j15PgJCX21AbHk+9lBYWGgkHytUqKBWrVqpc+fOqlOnjtcyS5cu1aWXXurV2kiS1wiyof7KKgWuAzynwynTc17PriEAhC/SY9tzXjOO7ZSUFK/O7j2P7eLlV6xYMewYi5cJwJtnAvK3334zko+ZmZnq0KGDTj31VK++4/Lz8/Wf//xHf/3rX3XixIkS5Zl9jj948KDxA4VEPQCE6/vvv9dzzz1nTDds2FDnnHOOMR0P1/rUA4HRAhIJw7OfhHAeX8rIyDBeHz9+3NSYAATmeTMhuW8i7rzzTl1wwQVex+a6des0bdo0LVmyRJK7b5ibbrpJs2fPNubzPH7NqgPMqFcStQ8XIFbi4dgufpx7drofanm+ygFwUvHBpNq0aaOxY8eqU6dOxnsFBQVaunSpJk+ebDwGuXTpUj344IOaOHGi1/LUA4BzbNu2TTfddJPXjwXjxo3zar3M9UD8owUkEoZnZRVq60dJXpVaXl6eqTEBCKx4vytvv/22+vfvX+Ik3KxZMz377LMaOHCg8d6aNWv0xhtvGNNW1AGe0+GUWTTanq8yAYQn0mM70HHoOe05X6RlFi8/1DKLz+fZagLAScePH9e2bduM6d69e+v111/3Sj5K7jqie/fumjNnjlq0aGG8/8Ybb5RIYJp9jqceACLz22+/6eqrr/Z6lHn48OFej19L8XGtTz0QGAlIJAzPg7agoCDk5TwrifT0dFNjAhDYSy+9pM8//1yzZ8/Wyy+/XKJfR08ul0sTJ070eiT7lVdeMV5bUQdEWqbnRQP1ChAdK45DzzLDucj3nNfzh5LiNy2hlll8PuoLwLeMjAytXLlSn3zyiWbOnKmpU6cGPF4qVKig6dOnG8dmYWGh1zWDZH7dEmkCgXoAyWzjxo0aOnSo1w8M3bp10+23315i3ni41qceCIwEJBJGmTJljNfhNFn2bIYdahNpAOY55ZRT1K5du5BGssvIyNBll11mTG/dutUYzc7zsYlw6gDPeYvXAVaUCSA8/9/e/cdkVf5/HH/dEEgIYgzTqVMTUSMrfyy0H9NphpbNzWWhEtnmj1plKSRYLk1LN3NussipW21lmyaGitkSnJSSqDVbLhNUbGYFFCqEtzi4ke8fzNO5brh/gNyfr+Dz8de5zn2di2PrvM913udc13WrXtv2BKS9DyL5P6VLW4dqAbejoKAg9e7dWwkJCc2uuZbExsYaK9PaV9aV2j+2uA/f9LdN4gBuV8ePH1dycrLKysqsfWPGjFFWVlaLCbhbtT9AHPAfCUh0GlFRUda20+k0VqP0xr7Kln3iagC3ppEjRxrlG8O47dev/br2xel0WtvuMcAeV1rTJnEFaD9tvba9XYdtubavX7+uq1evttimvb3WtOlej3gBtC97n6G8vNx4yG/ve3xkZKTxNTRxAPBsz549mj17ti5fvmztGzdunDZt2uTxBUNH6OsTB7wjAYlOo2fPntZ2Q0ODEcy8sc81ERMT0+7nBaB9uQ/TvrF6nT0GXLx40e/2vMWAtrZpr9ujRw+/jwPQ3N13321tt+Y6rKystLbdr8O2XNuXLl0yhmfZ2+zRo4fxwGH/2/6eo8Ph8DoNBYDWc7+v21fRbe97fFBQkFH2t033eMHzCDq7Dz/8UG+++aYxWmDq1KnasGGD14VgOkJfnzjgHQlIdBr9+/c3yhcuXPDrOPt8E/fcc0+7nhOA9uc+RKFr166SzBhw9epVvxMA9ljhHgMGDBhgbd8Y6u3L33//rWvXrrXYBoDWs19Df/zxh18jHBobG/Xnn3+22IZ72d9r271fYW8jNDTUmEaiLW327t272QJcAG6Opz6DFJh7vL0v0pY4EBISYsx1DXQm9fX1Sk9PV1ZWlrH/pZde0gcffGAsFtOSjtLXJw54RgISnUafPn2MT5VPnTrl13H2FfGGDh3a3qcFwIPi4mKtWbNG6enpmjNnjt9vCO0vDaSmh3ZJio+Pl8PhsPb7EwOcTqfRMXCPAffdd5+1ff78edXW1vps0/53HQ6HhgwZ4vMYAJ7Zr8Pa2lr99ttvPo85d+6ckXiwr4br3qb7yrie2K/tqKioZg8Hw4YNu6k23c8RwH/279+v999/X6mpqUpPT/f7OPtDfbdu3RQREWGVA3GPv9k4MGjQoE67+ARub3V1dXrttde0e/dua98dd9xhXdf2PrwnHaWvTxzwjAQkOpXRo0db24cPH/ZZv7i42HhzMmbMmICcF4Dmqqur9cknn2j37t0qLCzUsWPH/Dru4MGD1nZkZKQGDx4sSYqIiFB8fLz1mz8x4MiRI9aQyuDgYCUkJBi/jxo1ynob29DQoKNHj/ps0/534+Pjm80NB6B14uLiFB0dbZWLiop8HmNfbOKuu+5q9nBgv9b/+ecfnTlzxmeb9mvb3t9oqc2jR4/6XE3TPabQBwE8O3XqlLZs2aK9e/cqNzfX7y+fCgsLre1Ro0YZvwXiHm+PAydPntS///7bqjaJA+iMXC6XXn/9dX377bfWvq5du2rTpk169tln/W6no/T1iQOekYBEp5KYmGhtFxQUqKKiwmv9rVu3WtuxsbF8qQT8Dw0bNkzh4eFWOTs72+cx5eXlys3NtcpTpkwx5l2bNGmStZ2bm+vzLaY9BjzyyCPq1q2b8Xu3bt2MTsC2bdu8tud0Oo3zmzx5stf6AHxzOBx64oknrPL27du9JveuX7+u7du3W+VJkyY1+7Ji8ODBxjAsX9d2WVmZ8eD05JNPNqszceJEBQcHS2qayyk/P99rm/v27dOlS5ckNX0FYu/DADDZH+gbGxu1Y8cOn8fk5eXp3LlzVnnq1KnG74G4xz/88MOKjIyU1DTc1Nd5/vzzz/r111+tckuxBejo1q5dq4KCAqscHR2tLVu26LHHHmt1Wx2hr08c8IwEJDqVxMREa7L6uro6LVmyRC6Xq8W6hw4dMhIeKSkp/5NzBNCka9eueuqpp6zy999/r127dnmsf+XKFS1cuNDqaHTp0kVz5swx6jzzzDPWynmVlZVauXKlx/ays7N16NAhq/zCCy+0WC85OdnaLigoUE5Ojsc23333XSuhEB4erunTp3usC8B/s2bNspKIxcXF+uijjzzWzczMtL5oDAoK8nh/t1/b27Zt8/glRX19vTIyMlRfXy+padqHiRMnNqvXq1cvPf7441Z51apVHl+ElpWVafXq1VY5MTHRmAgfgCkhIcGYZ23z5s06e/asx/rnzp3TsmXLrPLAgQNbTPK39z0+LCzM2J+VlaWSkpIW26upqdHSpUut8vDhw/Xggw96/PtAR/Tdd9/p008/tcpRUVH67LPPjKHPrdER+vrEAc9IQKJTCQ0NVWpqqlU+fPiw5s2bZ8z/4nK5tH37di1YsEANDQ2Smr6EaM3n3wDaxxtvvGG9IZSkpUuXKisrS06n06j3ww8/aObMmfrpp5+sfampqerXr59RLyYmRnPnzrXKOTk5SktLM+aXvHbtmjZu3Kjly5db+8aOHauxY8e2eI4TJkwwhlu+88472rRpkzG/XGVlpRYtWmS8EX3llVeMYaMA2m7o0KGaNm2aVc7KytLq1atVU1Nj7aupqdGqVau0ceNGa19SUpIGDRrUYptJSUnWV5Aul0uvvvqqsrOzjReXFy5c0Ny5c40hWYsXL/a4WMyiRYvUpUsXSVJFRYVmzZrVbHqJo0ePKjk52VqVMzw83Oi7AGjO4XDo7bfftspOp1PPP/+89u7da3wRXV9fr507d2rmzJm6fPmypKYFHdasWdPiAheBuMfPnz/f+s3pdOrFF19Ufn6+sYBWcXGxUlJSrJclwcHBWrJkSav+mwC3uoaGBq1atcr6f9/hcGjdunWKi4trc5sdpa9PHGiZo9GfpQSBDmbZsmX64osvrHJQUJCGDBmiiIgIlZaWWm8tJKl79+7aunWrBg4c+P9xqsBt78iRI5o/f75xkw8LC9PQoUMVGhqq33//XeXl5cYxc+bM8TgJ/Y1Egn24ZEhIiIYMGaLQ0FCdOXPGSFr07dtX2dnZXpOFFRUVSk5ONl5mREZGKi4uTnV1dSopKbG+jpKk8ePHa8OGDcbwcAD/ycnJ0VtvvSWpaRG5AwcO+DzmypUrmj17tn755Rdr35133mlNn1JSUmIMxbr//vv1+eefKywszGObp0+fVkpKiqqqqqx90dHRio2NVU1NjU6fPm0kN5KTk42vqlqSm5urjIwM47h+/fqpV69eKisrM+JIUFCQ1q1bZ3wNDtwu2hIHNm/erHXr1hn7unfvrri4OLlcLpWWlhrzrYWEhGj9+vUtfrV8QyDu8UVFRXr55ZeNlXJ79eqlfv366eLFiyotLTXq31iQD+hM9u7da7xgCw8P18iRI1vVRkxMjNasWWPs6yh9feJAcyQg0Sk1NjZq/fr1+vjjj41A4S42NlaZmZk39RYGwM07efKkFi9e3OxG7C4qKkppaWlKSkryWq+urk4rVqzQl19+KW+3uREjRigzM9OvoY9lZWVKTU3V8ePHvdabPn26li9f7vELKQBtSzxITV85pqen+6w/fvx4rV271vjC2pOSkhKlpaV5XYgmODhY8+bN08KFC/1aqfObb77R8uXLjcSmu6ioKL333nvGfFbA7aStceCrr77SypUrVV1d7bVebGysVqxYoYceeshnm4G4xx87dkwZGRn666+/PNYJCwtTenq6MQQU6CwWLFigvLy8m2rDU2zoKH194oCJBCQ6tdLSUu3YsUOFhYUqLy9XbW2toqKidO+992ry5MmaOnUqSQLgFtHQ0KD9+/crLy9PJ06cUGVlpVwul2JiYjRgwABNmDBBU6ZMadWw5hMnTmjnzp06cuSIKioqVFdXp+joaD3wwAN6+umnlZiY2KqvFBsbG5Wfn6+vv/7aOsegoCD17NlTo0aN0nPPPafhw4e34V8P3F7amni4oaioSLm5ufrxxx9VWVmphoYGxcTEaMSIEZo2bVqrJ7Z3uVzas2eP9u3bp1OnTunixYsKCQlR3759NXr0aM2YMcPjUG5PqqqqlJ2drQMHDuj8+fOqrq5WeHi4YmNjNW7cOCUlJTFNA25rNxMHrly5ol27dungwYMqLi5WVVWVgoOD1aNHD8XHxysxMVETJ05sVT8/EPf42tpa5eTkKD8/X2fPnlVVVZW6dOmi/v3769FHH9WMGTPUp0+fVrUJdBRTpkzxOlerP3zFho7Q1ycO/IcEJAAAAAAAAICAYXIqAAAAAAAAAAFDAhIAAAAAAABAwJCABAAAAAAAABAwJCABAAAAAAAABAwJSAAAAAAAAAABQwISAAAAAAAAQMCQgAQAAAAAAAAQMCQgAQAAAAAAAAQMCUgAAAAAAAAAAUMCEgAAAAAAAEDAkIAEAAAAAAAAEDAkIAEAAAAAAAAEDAlIAAAAAAAAAAFDAhIAAAAAAABAwJCABAAAAAAAABAwJCABAAAAAAAABAwJSAAAAAAAAAABQwISAAAAAAAAQMCQgAQAAAAAAAAQMCQgAQAAAAAAAAQMCUgAAAAAAAAAAfN/cGh1t95OpsoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## New dead time model function\n", + "\n", + "Stingray versions >2.0 introduce a new formulation of the dead time modeling, which includes:\n", + "\n", + "1) Using detected rates, not incident (which means, the rates that the user can actually measure!)\n", + "2) Allowing for background rates (e.g. the events which produce dead time but get filtered away during source selection or other filtering processes)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mnon_paralyzable_dead_time_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mfreqs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mdead_time\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mrate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mbin_time\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mlimit_k\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mbackground_rate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mn_approx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Calculate the dead-time-modified power spectrum.\n", + "\n", + "Parameters\n", + "----------\n", + "freqs : array of floats\n", + " Frequency array\n", + "dead_time : float\n", + " Dead time\n", + "rate : float\n", + " Detected source count rate\n", + "\n", + "Other Parameters\n", + "----------------\n", + "bin_time : float\n", + " Bin time of the light curve\n", + "limit_k : int, default 200\n", + " Limit to this value the number of terms in the inner loops of\n", + " calculations. Check the plots returned by the `check_B` and\n", + " `check_A` functions to test that this number is adequate.\n", + "background_rate : float, default 0\n", + " Detected background count rate. This is important to estimate when deadtime is given by the\n", + " combination of the source counts and background counts (e.g. in an imaging X-ray detector).\n", + "n_approx : int, default None\n", + " Number of bins to calculate the model power spectrum. If None, it will use the size of\n", + " the input frequency array. Relatively simple models (e.g., low count rates compared to\n", + " dead time) can use a smaller number of bins to speed up the calculation, and the final\n", + " power values will be interpolated.\n", + "\n", + "Returns\n", + "-------\n", + "power : array of floats\n", + " Power spectrum\n", + "\u001b[0;31mFile:\u001b[0m ~/devel/StingraySoftware/stingray/stingray/deadtime/model.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.deadtime.model import non_paralyzable_dead_time_model\n", + "non_paralyzable_dead_time_model?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "10000it [00:00, 25078.61it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPYAAAP9CAYAAAAO5OMUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3gUVdsG8Hs32fRKCSWUBKR3CKGpVOmIgPjCB0SkKEiVjiAoXTqiIgJKkypSpXcSOgSQQCgJ6ZX0vvX7I2bcyW6STbJpcP+uy8spZ2bO7O6Q5NnnnEei0Wg0ICIiIiIiIiIiojJFWtIdICIiIiIiIiIiovxjYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMMi3uC86dOxd//fUXAGD58uUYOHCgUc+fkpKCw4cP4/z583j27BmSkpLg4OCAqlWromvXrhgwYACcnJyMek0iIiIiIiIiIqLiVqyBvStXrghBvaJw7949TJ8+HeHh4aLt0dHRiI6OxsOHD7F582bMnz/f6AFFIiIiIiIiIiKi4lRsgb2kpCR88803RXb+e/fuYdSoUUhPTxe2OTs7w9nZGdHR0Xj16hWAzIy+uXPnIiMjA0OHDi2y/hARERERERERERWlYgvsLVu2DJGRkUVy7uTkZEydOlUI6lWpUgXLly9Hu3bthDZPnz7F3Llz8fTpUwDAkiVL0LRpUzRq1KhI+kRERERERERERFSUiqV4RlEPwd28eTOioqIAALa2tti+fbsoqAcADRo0wO7du1G3bl0AgFKpxJo1a4qsT0REREREREREREWpyDP2EhMTMX/+fACATCaDqakp0tLSjHb+jIwM7N+/X1gfO3YsXFxc9La1sbHB0qVLMXjwYACAl5cXnj17hnr16hmtP7m5d++eaF0qZVFiIiIiIiIiIqK3lVqtFq23atUqX8cXeWBv2bJlQjbd559/jiNHjiA0NNRo5/f09ERCQgKAzEBZXkUxsobf+vj4AABOnz5dbIG97LK/eURERERERERERIYq0pSxy5cv4/DhwwCAunXrYty4cUa/xo0bN4TlunXromLFinke06FDB2H50qVLRu8TERERERERERFRUSuyjL3ExEShCq6pqSmWL18OMzMzo1/n2bNnwrKhhTDq168vLL948QIZGRkwNzc3et/y8iYMxdXOOnwT7oeoJPF5IjIePk9ExsFnich4+DwRGc+b9DwVdjRnkQX2lixZIgzBHT16NBo3blwk13n16pWwXLNmTYOOqVatmrCsVCoREhKC2rVrG71v2UmlUuENk0qlaNGiRZFfsygplUo8fPhQWG/SpAlMTYut0DLRG4XPE5Hx8HkiMg4+S0TGw+eJyHjetOfJ29tbFCvKryIJa168eBFHjx4FANSuXRsTJ04sistArVYjNjZWWDdkGC4AVKhQQbQeHR1t1H4REREREREREREVNaOHNBMSErBgwQIAmZHGohqCCwBJSUlQqVTCup2dnUHH2draitYTExON2i9DKZXKErmusWi/9vrWichwfJ6IjIfPE5Fx8FkiMh4+T0TGw+dJzOiBvSVLlggZcCNHjkSzZs2MfQlBRkaGaN3QefKyBxqzn6c4qNVqUerom+Dx48cl3QWiNwafJyLj4fNEZBx8loiMh88TkfG87c+TUYfiXrhwAceOHQMAuLi4YMqUKcY8vY7sGW8mJiYGHZe93dse3SUiIiIiIiIiorLHaIG9+Ph4LFy4EAAgkUiwdOlSWFhYGOv0ehU0QJe9nUwmM1qfiIiIiIiIiIiIioPRhuJqD8EdPnw43NzcjHXqHGUPHBo6pLagQ3iNSSqVokmTJsV+XWNSqVSilNfGjRsbnDVJRGJ8noiMh88TkXHwWSIyHj5PRMbzpj1P//zzj1AVtyCMEtg7f/48jh8/DgCoXr06pk2bZozT5snW1hZSqVR4AZKTkw06Lns7BwcHY3fNIGW5HLM+JiYmb9w9EZUUPk9ExsPnicg4+CwRGQ+fJyLjedufp0IPxY2Pj8e3334LIHMI7pIlS2BlZVXY0xpEKpWiYsWKwnpMTIxBx71+/Vq0XqFCBaP2i4iIiIiIiIiIqKgVOqS5f/9+YQiupaUltmzZgi1btuTYXjuo9vvvv+Pvv/8W1r///vt8B9lq1qyJyMhIAEBQUJBBxwQHBwvLMpkMzs7O+bomERERERERERFRSSt0YE8ulwvLqamp8PT0NPjY58+f4/nz58J6enp6vq/fuHFj3L59GwDg6+tr0DFPnz4Vlt955x0WzyAiIiIiIiIiojLHaFVxS4q7u7uw7OPjg8TExDyPuX79urDctm3bIukXERERERERERFRUSp0xt6kSZMwadIkg9t36dIFoaGhAIDly5dj4MCBhbp+u3btYGtri6SkJCgUCvz5558YNWpUju0fPnyIJ0+eCOu9evUq1PWJiIiIiIiIiIhKQpkvG2JhYYGPP/4Yv//+OwDgxx9/RIcOHVCvXj2dtklJSZg3b56w3rx5czRr1qzY+kpEREREVFppNBqo1WphXaVSifarVCpIJJLi7hbRG4HPE5HxlOTzJJVKS92zW6oDe3PmzMHhw4eF9QsXLqBatWo67T7//HMcPXoUsbGxSElJwciRI7Fo0SJ069ZNeMF9fX0xZ84cvHjxAkBmOeQ5c+YUz40QEREREZUyGo0GqampSExMRHJyMpRKpc5+bX5+fqXujxmisoLPE5HxlPTzZGpqChsbG9jZ2cHKyqrEn+VSHdgzVLly5bB27VqMGzcO6enpiI2NxcSJE1G5cmXUqFEDMTEx8PPzEx0zffp0tGjRooR6TERERERUcuRyOYKCgqBQKHJtZ2r6Rvy5QFQq8HkiMp6SfJ6USiXi4+MRHx8PmUyGGjVqwMzMrMT6U+aLZ2Rp164dtmzZgqpVqwrbIiIicPv2bVFQz8LCAgsWLMDo0aNLoptERERERCXK0KCeRCKBqamp8F9JZyQQlWV8noiMpzQ9TwqFAkFBQZDL5SXWhzfqKwN3d3ecPHkSf/31F86dO4eXL18iPj4e5ubmqFmzJjp06IAhQ4bA2dm5pLtKRERERFTsNBqNTlDP2tpaGE5kYmIiapuamiqsl4bhRkRlFZ8nIuMpyedJpVIJ01ikpKQA+C+4V7t27RJ5ros9sHfx4kWD265YsQIrVqzI1/ktLS0xbNgwDBs2LL9dIyIiIiJ6o6WmpoqCepUqVUK5cuX0ttVoNKJAn4mJCQMRRAXE54nIeEryeTIxMYGZmRkcHBwQGxuLyMhIAJnBvdTUVFhbWxdLP7S9MUNxiYiIiIgod4mJicKytbV1jkE9IiIiyl25cuVEgbykpKQS6QcDe0REREREb4nk5GRh2c7OrgR7QkREVPZp/yxlYI+IiIiIiIqMRqOBUqkU1q2srEqwN0RERGWf9s9SpVIJjUZT7H1gYI+IiIiI6C2gVqtF69rzExEREVH+Zf9Zmv1nbXFgYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiIqdQqEo6S6UeaYl3QEiIiIiIiIyzF9//YW5c+fm2U4qlcLMzAy2traoVq0aWrRoga5du8LNzS3HYzZu3Igff/wxz/PKZDLY2tqiUqVKaNSoEXr06IG2bdvC1DT/f14+efIEFy9exI0bNxAeHo6YmBhIpVI4OjrCyckJ7u7ueO+999C6det8n7u4JCYmYtu2bbh48SLCw8ORlpYGGxsbuLq6Yt++fSXdPaJSSa1WY//+/bh+/To2btxY0t0p0xjYIyIiIiIiesOo1Wqkp6cjPT0d0dHR8Pb2xm+//YZ3330Xq1evhqOjY4HPm5GRgYyMDLx+/Ro+Pj44cOAAatasiUWLFqFt27YGnScoKAgrVqzAhQsX9O5PTU1FaGgovL29sXnzZrRo0QJz5sxB8+bNC9TvopKQkIBBgwYhODhYtD0+Ph5KpbKEekVUukVGRmL8+PHw8fGBu7t7SXenzGNgj4iIiIiIqAyyt7fHF198oXefRqOBXC5HXFwcbty4gRcvXgAAPD09MXz4cBw6dAgWFhY5nrt69eoYOnSoznaVSoX09HS8fv0az58/x8OHD6FWqxEYGIhPP/0U3377rd7jtL169QrDhw/H69evAQBmZmZwd3dH3bp1YWdnB4lEgtjYWPj4+OD+/ftQq9Xw9vbG8OHD8dNPP6Fjx46GvkRFbvv27UJQTyaToWfPnqhVqxbkcjlcXFxKtnNEpVRAQAB8fHxKuhtvDAb2iIiIiIiIyiAbGxuMHj06z3YajQbbtm3DqlWrAAAvX77ETz/9hOnTp+d4TJUqVQw696tXr/DNN9/gzp07AIBFixbB3t4evXv31tteLpfjiy++EIJ63bt3x7fffovy5cvrbR8YGIi5c+fi3r17UCgUmDhxIo4cOYLatWvn2bfi4OvrKyyPHz8eEyZMKMHeENHbiMUziIiIiIiI3mASiQRjxoxBv379hG0HDhyAXC4v9LldXV3x+++/4/333weQOVR3wYIFiI+P19v+xIkTCAwMBAA0adIE69evzzGoBwA1a9bEb7/9hnfeeQdAZmDw559/LnS/jSUlJUVYbtq0aQn2hIjeVgzsERERERERvQWGDx8uLMfHxxttKJxMJsPq1avh5OQEAEhKSsLmzZv1tvXy8hKWP/roI5iYmOR5fgsLC0ycOFFYv3LlCjQaTSF7bRza/TAzMyvBnhDR24pDcYmIiIiIiN4CWVlvWSIiIox2bnt7e3z++edYsmQJAGDv3r346quvdIJd2pl8qampBp//3XffhYmJCWxsbODg4ICUlBTY2NgUqs+xsbE4ePAgPD094efnh8TERFhbW8PZ2Rlt2rTB4MGDUatWLZ3jcqpM7OHhISy7u7tj165d+e5TYGAgDh06hBs3buDVq1dIS0uDnZ0dKleuDHd3d3z44Ydo1KhRnudRqVQ4f/48Tp8+jUePHuH169eQSCSoUKECmjVrhp49e6Jbt26QSCR6jw8JCUHXrl0BAM7Ozrh48WKu15szZw4OHz4MAFi+fDkGDhwo2t+lSxeEhoaiTp06OHHiBO7evYt169bh8ePHsLKyQu3atfHxxx/jo48+Eh2nVCpx5swZnDp1Co8fP8br169hamqKSpUqoWXLlvj444/RqlWrPF+PR48e4ciRI7h16xYiIyORkZGBcuXKoWHDhujWrRs+/PBDyGSyPM9jKKVSiePHj+P8+fPw8fFBbGwsZDIZKlWqBHd3dwwcOFBvhmdKSgreffdd4dk4duwY6tWrl+u1QkND0bVrV2g0GtjZ2cHT0xPm5uY67Qr7GmT1o1OnTti8eTPS0tJw4MABnD17FgEBAUhISICjoyOaNm2KDz/8EN27d9f5fOmrvH379m3h3Pqem6ioKBw6dAienp54+fIlkpOTYWNjgwoVKqBFixb44IMPhIzhtxUDe0RERKXY08gk+MWk4j3XcrC3NN4vnERE9PbJ/ke2qalx/xzs168fli1bBrVajbS0NNy9exft27cXtalcubKwfPjwYQwfPhxWVlZ5ntvW1hY+Pj45BqLya9euXVizZg3S0tJE2+Pj44Vsxh07dmDYsGGYPXu20V8rfbZv347Vq1dDoVCItsfGxiI2NhZPnjzB9u3b0b9/fyxdujTHIMzTp08xa9YsPH/+XGdfcHAwgoODceLECTRq1Ajr1q1DzZo1i+R+cvLw4UN89tlnwlDw9PR0xMbG6lRUfvToEWbOnImAgADRdoVCgYCAAAQEBOCvv/7CwIEDsWjRIr2vR2pqKr755hucOHFCZ19ERAQiIiJw8eJF/PLLL1i3bh0aN25c6Pt79OgRZsyYIQw5z5KRkYHk5GT4+flh79696Nu3LxYvXiz6/FtbW6NHjx5CkPTEiRN5BvaOHTsmZI726tVLJ6hXFK/BkydPMHnyZJ1q0FFRUTh//jzOnz+Ptm3b4ueff4a1tXWe58vJyZMnMW/ePJ0vAbKe05cvX+LgwYN49913sWHDhkIH+8sqBvaIiIhKqd9uB+GLPx9BpdagorUZvCa9i3cqFPyXIyIiers9ffpUtF6jRg2jnt/BwQENGjQQhvh6eXnpBPY6d+6MP//8EwDg7++PYcOGYcKECejYsWOeGVPGCuqtWrUKW7duFdYrV66MTp06oUqVKkhISICnpyeeP38OlUqFnTt3wt/fH5s3bxaCe02aNMGsWbMAZGYmZgU3hgwZIrymVapUyVefTp48ieXLlwPIvM927dqhSZMmsLGxwevXr3H37l3hdT169ChsbGywYMECnfM8evQIn376qRAIMTMzw/vvv4/69etDo9Hg6dOnuHbtGhQKBXx8fDB48GDs3LkT9evXz1d/C0qhUGDWrFl653fs06ePsHz//n2MGjVKCLyam5ujY8eOqFu3LjIyMnD//n3cu3cPQGYGZUZGBtauXSs6X2pqKoYPHy68blKpFO3bt0eTJk1gbm6OkJAQXL58Ga9fv0ZQUBCGDRuGbdu2wc3NrcD3d+PGDYwbNw7p6ekAAEdHR3Tu3BnVq1cXXnMvLy8olUphvsk//vhDFIwbOHCgKLA3bdq0XD/7x44dEx1b1K9BWFgYxowZg5iYGDg4OKBLly6oUaMGEhMTcfXqVbx8+RIAcPPmTSxevBgrVqwQju3QoQOsrKwQFBSEffv2ARBX4NZ+bry9vTFjxgyoVCoAQIsWLdCyZUs4ODggNjYWDx8+xP379wFkVvuePn16jlMAvOkY2CMiIiqFNBoNvjv7DCp15jew0SlyrLz0Er8OblbCPSOit41CpcaKywE45xeLVLmqpLtTaliZmaB3g0pY8EFdyEzKxtTlO3bsEJarVq2aZyZQQbi6ugpBhOyZVgDQtWtXtGrVSgjKPHnyBBMmTICNjQ3at28PNzc3tGrVCvXr1y+SLLmTJ0+KgnpffPEFJk6cKBoyPHv2bBw+fBgLFiyAXC6Hp6cn1qxZg9mzZwMA6tSpgzp16gAALl++LAT2evfujTZt2hSoXz/88AOAzMDLxo0b0a1bN502O3fuxNKlSwEA+/fvx5dffokKFSoI+5OTkzF+/HghqNe4cWOsX78e1atXF53n1atXmDx5Mp4/f46EhARMmDABx44dK1RmlaGyPhONGjXC/Pnz0aBBA4SFheHatWtwdXUFkJnZNn36dCGo16RJE2zYsAHOzs6icx0/fhyzZs2CWq3G33//jQ8//BCdOnUS9i9cuFD4LNapUwfr16/XGY6enp6OVatWYffu3UhPT8fUqVPx999/w97ePt/3FhUVhWnTpglBvf/7v//DrFmzYGlpKWrn5+eHKVOm4MWLF/jnn3+wdOlSLFq0SNjfunVrVK9eHcHBwQgLC8O9e/dyDLT9888/8Pf3BwDUqlULzZs3F+0vitcgKxO0f//+WLhwoehzM2vWLKxcuRK//fYbgMwg9IwZM4TPacuWLdGyZUvcunVLCOzlVIH7xx9/FIJ68+fPx4gRI4R9Go0GqampuHDhAubMmQOVSoXLly/Dx8fHoKHqbxoG9oiIiEqh5AwVguPTRdu23gpiYI+Iit3yy6+w6mpg3g3fQt6hiQCAxT2LJ9upoNLT07FmzRqcPXtW2Pb5558XybW0K9zGxcXp7JdIJNi0aRO++OILeHt7C9uTk5Nx9uxZoY9WVlZo3rw52rRpg06dOhklo0ypVGLdunXC+qeffopp06bpbTtgwADIZDJMnz4dQObQXQ8Pj3xn4hkiISEBr169ApAZfNEX1AMy5/A7e/Ys7ty5A4lEgkePHqFLly7C/t9//x2vX78GkDkv3vbt22Fra6tzHldXV+zYsQP9+/dHVFQUQkJC8McffxTZZyI7e3t7/Pbbb3BwcAAA1K5dG7Vr1xb2Hzt2DGFhYQAysym3bdumN8jUr18/vHjxQsjS2r17txDYe/r0qZDJ5uDggO3bt4uCoFksLCzwzTffIDQ0FJcuXUJ0dDR27dolKtZiqK1btyI2NhYA0LdvXyxcuFBvu9q1a+PXX39F7969kZaWhj///BNjx44VArASiQQfffQRNm7cKLweOQX2tLP1BgwYINpXlK9BixYtsGLFCkil4i81JBIJZsyYgTNnziA0NBRqtRo3btwQVeQ21IMHDwAAdnZ2osI/2rp27YpevXrhxIkTMDExwYMHD97KwF7Z+GqJiIjoLROdkqF3e6pcWcw9IaK33d2QxJLuQql2K1A3eFVckpOTsW3bNr3//frrr1i7di0mTpyIDh06YOfOncJxnTt3xpAhQ4qkT9rZSfoCe0BmYGfPnj2YP38+KlasqLdNamoqrl+/jnXr1qF///7o06cPjh8/Xqi+PXjwAEFBQQAAGxsbTJkyJdf2ffv2RcuWLQFkDiE9dOhQoa6fE+3KwKGhoYiMjMyx7cqVK3Hx4kWdoB6QmR2VZfLkyXqDelnKlSuHyZMnC+v79+8vSNcLpF+/fkJQTx/tAPTo0aNzzZ77v//7P9SuXRudO3dGw4YNhe1Z2WAA8L///U9vQEvbhAkThGXt19FQSqVSGGIOIM/AYNWqVYVhsyqVSuezPWDAAGH47ZkzZ3TmXcw67u+//waQmenZv39/0f6ifA3+7//+Tyeol8XExATu7u7CelRUVK7nyklWxm5ycjKePXuWY7vJkyfj7NmzePToEYYNG1aga5V1zNgjIiIqZVKVcpwOfg7YxALp1oDyv3lX/glPQpuajiXYOyJ627hVs8Ml/5ILXpV2JflvckJCAlauXGlwe6lUiiFDhmDu3LlGm68uO+2503L6wz9r34gRIzB06FDcunULly5dwvXr1+Hn56e3/cuXLzFjxgycOHECa9euLdCw0Rs3bgjLHTt2NOgcffv2FebxunXrVoEyufJiY2ODRo0awcfHB8nJyRg0aBA8PDyEufG0Va1aVe85QkJChCHBJiYm6N69e57X7dWrFxYsWAC1Wo2QkBCEhobqDHctCrlVsVUoFKL3KXvwMrvKlSvj5MmTOttv374tLBuSwdWwYUNYWVkhNTUVQUFBiIqKgpOTU57HZfHx8UFKSgqAzGzTrGHFuWnVqhX++OMPABCGpmfJqsx88+ZNxMfH4+rVq0KV4iyenp6IiYkBALRv3x6VKlUS7S/K1yD7kN/sypUrJyxnDU3OL3d3d5w9exZqtRrDhw/HsGHD0LVrVzRu3Fj071eFChVgZWVVZP+mlQUM7BEREZWw59HJ+MkrACZSCSpUe401T88jXp4GSU1AowGQ4ASE1wHUpvAOTWBgj4iK1dxOrpBAwjn2stGeY680MjU1hbW1Nezt7fHOO++gWbNm+PDDD3MMDBlLYuJ/GZ65ZYxlMTU1RYcOHdChQwcAmRVg7927hzt37uDWrVt49uyZUPETyJzTbsqUKaJ58gyVla0HwOChvQ0aNBCWs1cANaZZs2ZhzJgxUCgUiI6Oxpo1a7BmzRpUqFAB7dq1Q4cOHfDuu+/mmOGo3beaNWsaVGnYxsYGNWrUEOa9CwoKKpbAXrVq1XLcFxMTI2SnWVlZ5do2JyqVShjaDECUmWiosLCwfAX2Xrx4ISynpqbme/7K0NBQnW0DBgzAzZs3AWTOJ5g9sJdb0Yyifg3yyv7TztzVfn7zY8qUKbh+/TqSk5ORlJSEX375Bb/88gvs7e3h7u6O1q1bo3379kX+b1pZwMAeERFRCYpKykDnTdcRnpgBOL2CJCZItF8iAeAQBY15KhDQDA/COCSOiIqXzESKb7rWwvJ+jd/qjIjSyNnZGRcvXizpbohkZRABef/xr0+5cuXwwQcf4IMPPgAAREZGYs+ePdi1a5eQEXXt2jWcOXMGPXr0yNe54+PjhWVHR8O+JNNup328sbVt2xa//vorFixYIArSvX79GsePH8fx48chkUjQokULDB48GB999JEoI1J72LOh95bVNiuwV5T3py23obVZcwTm1S43CQkJBQ4mZcnva1HY107f8T169MCiRYuQkpKCS5cuITk5GTY2NgCAlJQUXLhwAUDmHHTZ52Us6tfAkMBxloL245133sHOnTsxb948UUXvhIQEnDt3DufOnQMA1KtXD4MGDcLQoUNFRXDeJgzsERERlaCFZ59lBvVsXkNSMSjHdhLLZGiqvMCL6Eo5tiEiIippjx8/FpaNMYl9pUqV8NVXX6Ffv34YMWKEUJzg+PHj+Q7sFSTAoFarheWiDmy3b98eZ86cgaenJ86fP49r164hPDxc2K/RaHD//n3cv38fBw4cwNatW4VAT0FlVR0Fch86nZf8vLbacwpmp1QWfi7h7Of4/PPPc53TTx9DhtJq034dnZ2d8z3Xm7m5uc42S0tL9OrVC3/++SfS09Nx7tw5oUDG2bNnharBvXr10jm+JF6DotCoUSMcPnwYd+/exZkzZ3Dt2jWdatvPnj3DsmXLsHfvXuzYsUNnSPLbgIE9IiKiEhKbKsfmG4GAVAlUfZ5ne4lDFEJSQ4qhZ0RERPkXGBiI6OhoYT37PFzbt2/HsWPHEBMTg48++ghfffWVwed+5513MGbMGGFOwZzm4suNdgZYToU9stNuZ2dnl+9r5peJiQk6duyIjh07Ash8TW/fvg0vLy9cvXpVyFr09vbGihUrsGTJEgAFu7fsbXO6P0OCdhkZ+ot+5Zd2H7SHdedH9ky/nj17FnmlVO1+W1tbY/To0UY574ABA4SiHCdOnBACe7kNwwVK5jUoKhKJBK1bt0br1q0BABEREbh16xauXbuGa9euCZmFr169wpw5c/D777+XYG9LBqviEhERlZBTvv9WCSsXBolMXO1MowE0at0f08FmT6DSyh4gIiIqLQ4cOCAsV6xYUVQZE8gc2ufj44OIiAhh7rD80J63rCDZZdoZSL6+vgYd4+PjIyzXqFEj39csrJo1a2Lw4MFYv349vLy88NFHHwn7jh07JmQUuri4CNsDAwORmpqa57kTExMREvLfF4ba96edVaddECUnBa18ml3VqlUhk8kAZA431c5YzMmaNWuwePFi/P7774iJiYG5ubkoa0t7/rvcZGWDFkTNmjWF5cDAQINes/T09DzfJzc3N+G9vXnzJhISEhAdHS08P7Vq1dJbyKIkXoPiUrlyZXz44Yf47rvvcObMGXz22WfCvuvXr+daVfpNxcAeERFRCVCrNXgWlQxIVEB5PVl4IQ2A522hUcpEmzNMk3Eo8FEx9ZKIiMgwr1+/xsGDB4X1jz/+WGfIZVbGDQA8ePAAjx7l7+eZ9hC8unXzX7TEzc1NWL5y5YqQ/ZabU6dOCcu5VXMtjKNHj2LUqFHo1KkTNm3alGM7S0tLzJ07V1jPyMgQMu6cnZ2FIgIqlQpnz57N87qnTp0SsvEqV64sKpxhYWEhLCckJIiGJGcnl8tFc6AVhoWFBRo2bCisX7lyJdf26enp2L17N3bv3o0VK1YIw6W1g8qnT5/O87q+vr5o164dmjVrht69e+c7wNWiRQshIJmRkYHLly/necy6devQokULtG3bFgsXLsyxXVYwV6lU4tKlSzh9+rTwfmRl8OlT3K9BfuQ1rP3q1av4/PPP0a1bNyxYsCDHdjKZDBMmTBAV6mFgj4iIiIpUukKFkXu9IZt9AkvOvwDsoyAxzZatl2oHJFYEVDIgykXnHOt9rhZTb4mIiPKmUCgwY8YMJCQkAMjM1hszZoxOu3bt2okyy2bOnGlwpldcXBx+++03Yb1///757mfr1q2FrLTk5GRs2LAh1/YnT56Et7c3gMxARL9+/fJ9TUPI5XJ4eXkhPDwcf//9t1AVVh/t4iTm5uaiQhmDBg0Sln/44QckJSXleJ74+Hj89NNPwvqHH34o2u/g4CAUSFAoFLlmWG7fvt2gDEFDab+327ZtE+aS0+fPP/8Uru3m5oZy5coBEL8Wly9fhpeXV47n0Gg0WLVqFYDMQKGdnZ1wHkNZWlqid+/ewvq6detyfU0CAwOxb98+AJmfbe1gZnbahVLOnz8vBG2lUmmuz0Fxvwb5oZ1xqz0/YRZTU1NcuXIFwcHBOHfuXK7DstPS0kSfkbdxjj0G9oiIiIrRgYdh2HkvBMJ0NQ4Ruo2iawD495vM+MrQKMQTIt+KDoJPnJ7jiIiIipm3tzeGDRuGGzduAMgcwrlkyRK9RR2kUimWLFkiVK4MCAjAwIEDcfDgwVyHLt64cQPDhg1DaGgoAKBTp07o1KlTvvtqYmKCqVOnCus7duzA2rVr9V772LFjmDNnjrA+YsQI1K5dO9/XNESvXr2EjKMXL15g/vz5erMJk5OTRdlL3bt3FwVIhg8fjooVKwIAQkNDMXLkSFGF3SyBgYEYOXKkkNnk7OyMsWPHitpIJBK0bdtWWF+yZImoYi2QGQzau3cvfvjhh/zecq4GDRqEatWqAQCCgoIwYcIEvdljV65cEYJRADBu3DhhuV27dujQoYPQz8mTJ+P8+fM650hNTcXChQvh6ekpbJsyZUqB+v3ll18KwVB/f3+MHj1a71DiFy9e4PPPP0d6ejqAzGG8uWXeValSBe3atQOQWRH63r17ADKLreQWxCqJ18BQ2v8+RERE6AT32rZtKwThY2Nj8dVXX+n9DCgUCixatEgoFtKyZcu3MrDH4hlERETFaMM1//9WzFIhsRZ/A6mRWwDJWt+QaqRAbBWgUoCo3W8vbmONu/jbdSIiImMJDw/Htm3bdLar1WqkpqYiIiICjx49wsuXL4V9pqam+O6773INurVu3RobN27ExIkToVAoEB0djfnz52PZsmVo06YNatasCUdHR6SnpyMyMhJ37twRBadatGiB9evXF/i++vTpgwcPHmDnzp0AgM2bN+Po0aPo3LkzKleujISEBFy/fl00B5+bmxtmzpxZ4GvmxcbGBrNnz8b8+fMBAEeOHMHly5fRqVMnODs7QyaTITg4GJcuXRKCGxUqVBAFKYHMLLsNGzZg9OjRSEtLw+PHj9G7d2907NgR9evXh0ajga+vL65cuSJkBVpbW2P9+vV6C2eMGTMGly5dgkajgZ+fH7p3746ePXuiWrVqiI2NFSqUSiQS9O7dGydPnjTK62FhYYENGzZgxIgRSE1NhZeXFz744AN07doVrq6ukMvluHv3Lm7fvi0cM2LECLz33nui86xevRr/+9//EBQUhOTkZEyYMAGNGjVC27ZtYWNjg9DQUFy8eFEUMBo3bpwQRMsvFxcXLF++HNOnT4dSqcT9+/fRo0cPdOzYEfXq1YNcLsfz589x5coVYSht1uufFezOycCBA+Hl5SUEA7O25aW4XwNDOTs7QyKRQKPRIDQ0FF9++SVatWoFS0tLjBgxAlKpFAsXLsTYsWOhVqvh6emJrl27onPnzqhevTosLS0RHBwMT09PRERkftltZWWFr7/+ukj7XVoxsEdERFSMvEO1Anl20boN4itByNYTtlWGxikA2tOR7Pd/gFWt+0IqYfI9EREZX3BwsFCB1hCNGjXCvHnzDJqHrlOnTjh69ChWrFiBq1czp5dITU3FpUuXcjzGwsICY8eOxdixY2Fubp5jO0PMmzcPzs7OWL9+PdLS0hAREYG9e/fqtJNIJPjss88wbdo0Yf60ojJ48GCkpKRgzZo1kMvliI+Px5EjR/S2rVu3LlavXi1ktWlr1aoV9u3bh6+++gr+/v6Qy+U4d+4czp07p9O2cePGWLt2rajwQ/ZzLVq0CIsXL4ZcLkdKSgoOHTokamNlZYVvvvkGdnZ2RgvsZfVt7969mDJlCgICApCcnIyjR4/qtDMxMcHYsWN1gpwAUK5cORw4cABz5swR5rzz8fERFUTJYm5ujqlTp2LUqFGF6nfPnj1hb2+P2bNnIzIyEhkZGTh79qzeOQ9dXFywdu3aXIfhZvnggw9ga2srDK+2s7NDt27d8jyuJF4DQ9ja2qJv3744fvw4gMyhwpcvX4aNjQ2GDx8OiUSCd999F6tXr8aCBQuQnJyM1NRU/P3333rP5+zsjBUrVqBJkyZF3vfSiIE9IiKiYmRtZoIU+b/DDWxjdBvE6xk+oDTPzOKz/e/b1PC0RNyMCkL7Si5F01EiIiI9pFIpLCwsYG9vDxcXFzRq1AhdunRBy5Yt85wQX1vt2rWxZcsWPHnyBOfOncOjR48QEBCA2NhYpKenw8bGBuXLl4erqys6d+6Mrl27onz58ka7j5EjR6Jv3744cOAAvLy88OrVKyQkJMDMzAwuLi5o27YtPv744yIbfptTn7p27YpDhw7h9u3bePXqFZKSkiCTyVC+fHk0adIE3bp1Q8+ePXUKk2irX78+Tpw4gVOnTuHcuXP4559/EBMTA5VKBScnJ6E4QteuXfOsLvzJJ5+gXbt22LNnD65du4bQ0FBIJBJUrVoVHTt2xNChQ1GtWjW9QzwLq379+vj7779x4sQJnDt3Dj4+PoiJiYGpqSmqVq2Ktm3bYujQoXjnnXdyPIejoyM2b96Me/fu4fjx47h79y4iIyORmpoKGxsbuLq6ol27dhg8eLBQfKSw2rVrh/Pnz+Po0aO4dOkSnjx5gri4OKjVapQvXx4NGjRAjx490Lt37zwz9bKYm5ujd+/e2L9/P4DM4duGBrhL4jUwxLJly+Di4oITJ04gPDwcGo0GDg4OiImJQYUKFQBkZti2adMGf/31Fzw9PeHv74+EhARIpVI4Ojqibt26eP/99/Hxxx+LCr68bSQajTDLDxUxb29vIeVWKpWiRYsWJdyjwlEqlXj48KGw3qxZM5iaMlZMVBB8nt4eDVdegm9UMmCaAUk98UTUmnRrwM9N/4EOEZA4PxNtmtaoI1a5F81E3mUZnyci/VQqFZ4/fy6s161bN9fggEajEU3+bmVlla/ADRH9h88TkfGUpucpvz9b9SlsrIjjd4iIiIqRNOt3Dn3ZeokVhEULUylW99MampFUHtm/itvx3Nv4HSQiIiIiojKDgT0iIqJilJCeWbUL1vG6O5P+G2LkaCXDtI61Mb9bncwNKhmQ4iBqHqNIxMtEcYU6IiIiIiJ6ezCwR0REVIwS05UANIB1nGi7RikD0m2Eddm/c95YmWml8mtXy/3X6RBfnW1ERERERPR2YGCPiIiomKjUGiRlKAGLZEhMleKdKQ7QroYrM8lctpJpB/Ycdc55MpiBPSIiIiKitxUDe0RERMUkOSOXYbgp4qCdmYmejL0Ma2gU4upp1yL9oVSrjNlNIiIiIiIqIxjYIyIiKiaJWYE9qwTdnckOotXy1pkBPFHGHiQ6WXupKjm8Y0KN2EsiIiIiIiorGNgjIiIqJglpCgAawCpRtL2iuQ2gsBBt++aDugCyZewBQKqDznmvRfobs5tERERERFRGMLBHRERUTBIzlIBZGiSmCtH296vUgker6sL6B3UroOs7FQBkz9gDkGKvc96rEa+M31kiIiIiIir1TEu6A0RERG+LhDQFYJmos729kwumdGqO8e1doFCr0b5mOUil/xbPyJ6xp7CARmEGiUwubPKM9Idao4ZUwu/riIiIiIjeJgzsERERFZPEDKXOMFwgM7AnkUjQpqZu1Vtrs+w/qiWZFXQdooQtcfI0vEh8jXr2TkbuMRERERERlWb8ap+IiKiYJKQrAYtk0TZTiQmal6ua4zE6Q3EBIM1OZ9Od18GF7h8REREREZUtDOwREREVk7g0OWCRItrmal0BZiY5J9DrDMUFgDRbnU13ohnYIyIiIiJ62zCwR0REVExeJUdDIlWLtjWyzzlbD8ghYy/dBhqNRLTpzuugQvePiIiIiIjKFgb2iIiIismr1GidbbkNwwVyyNjTSIF0a9Em75gw+McmFap/RERERERUtjCwR0REVExCM3QDe62dquV6jIVpDj+qsw3HlauVqLv+BJZfeFHg/hERERERUdnCwB4REVExCZW/Fm/QAO0rVc/1GIlEon+Hnnn21OaJWHjmGYLj0wraRSIiIiIiKkMY2CMiIioGKrUKiZI40TZzlQ3szC0KdkI9lXFhmQSlWoPfb7OQBhERERHR24CBPSIiomJwOyICkKpE2yrJyht0bKNKutl5yLCCRpXtx7hlIgDAOzS+IF0kIiIiIqIyhoE9IiKiYnAqwF9nW33bKgYd6+EmnofPzsIUgARIzxbwM08FpEr4xaQWtJtERERERFSGmJZ0B4iIiN4GNyN1h8e2q5z7/HpZZnSqjSp2FrgbEo/OtSsgIV2BkfseZM6zZ50gtJNIAI15Cp5HmyFDqYK5qZ6KukRERERE9MZgYI+IiKgYPEuK1NnW06WWQcdKJBIMb1UNw1tlZu79E5455BbpNrqNLVIgT7PHP+FJcKvuUNDuEhERERFRGcChuERERMUgSiEunAGFOVpWNmyOvezqO9nA3FQKpFvr7rRIAQBEJGUU6NxERERERFR2MLBHRERUxBIy0iGXiOe9s5PYw9SkYD+GZSZSNKlsC8itoFFLxDvNkwEAqXKVniOJiIiIiOhNwqG4RERERez0qwAgW/ythmXBsvWyNHe2x92QBEBuJWTpAfh3WYMUubJQ5yciIippc+bMweHDhwEAy5cvx8CBA4vsWiNGjMDt27cBADt37kSbNm2K7Fr5kZiYiG3btuHixYsIDw9HWloabGxs4Orqin379hXonHK5HFeuXMHVq1fx4MEDxMTEIDExEdbW1nB0dISrqys6dOiALl26oGrVqka+IyIyNgb2iIiIitilIN3CGU3LVy7UORtV/rcibrq1KLAnMVFBI8tAqoIZe0RERGVZQkICBg0ahOBg8e8R8fHxUCoL9gXe6dOnsWrVKoSEhOjsi4+PR3x8PF69eoWLFy9ixYoVGDJkCCZNmgR7e/sCXY+Iih4De0REREXs/uswnW0dqxlWETcnDStpBfayM0/mUFwiIqIybvv27UJQTyaToWfPnqhVqxbkcjlcXFzyfb4dO3Zg2bJlwrqTkxPc3d1RvXp1WFlZISMjA2FhYbh9+zZCQkKgUCiwa9cu3LlzBzt27ICDg4OR7oyIjImBPSIioiIWmBoDmIi39XJ1KdQ5Gzj9WxE3Q39lXGbsERERlW2+vr7C8vjx4zFhwoQCn+vGjRtYvnw5gMwg4fz58/HJJ59AKtWd71ej0eD06dP45ptvkJSUBF9fX0yaNAm7du0q8PWJqOiweAYREVERS0KiaF2qMoOzjV2hzulsb5G5kENl3BRm7BEREZVpKSn/TbXRtGnTQp3r559/hkajAQDMnj0bQ4YM0RvUAwCJRIJevXrhp59+gkSSOUnw7du34eXlVag+EFHRYGCPiIioCCnUKmRIU0TbLNR6suzyKesXbSjNoFFmS8A3T+FQXCIiojIuKxAHAGZmZgU+T3p6Ou7duyesDxgwwKDj2rRpg/fff19Yv3TpUoH7QERFh0NxiYiIitDLxNeARCPaZgfjTEAtlQBqjQTIsAZME/7bYZ6KJLncKNcgIqLSJat6q62tLe7evQuVSoXjx4/j6NGjePHiBRISElCxYkU0bdoUw4cPh5ubm3BsdHQ0/vjjD1y4cEEonlCjRg188MEHGDlyJGxs8v7iycvLC8ePH4e3tzeioqKgUqlQvnx5NGrUCF27dkW/fv1gapr3n5lyuRyHDh3CqVOn8OzZM6SkpKBChQpwd3eHh4cHGjdunK/XJSIiAgcOHICnpyeCg4ORlJQEOzs7uLq64v3338f//ve/Yp0jLjY2FgcPHoSnpyf8/PyEqrOVK1dG69atMXToUNSuXVvnuL/++gtz587V2e7h4SEsu7u752tYbGJiIlSq/77wS09PN+i9BoB3330XN27cgL29PdRqda5tk5OTcfjwYVy+fBnPnj1DfHw8LC0tUblyZbi7u+Ojjz5CkyZNcjxe+94HDBiAFStW5Hq9Ll26IDQ0FABw4cIFVKtWTdgXEhKCrl27AgCGDRuGBQsW4ODBg/j9998RHBwMR0dHNGnSBGPGjEGLFi1E501MTMRff/2Fixcv4vnz50hKSoKFhQVq1qyJdu3aYciQIahePfe5kjUaDc6dO4czZ84IlYclEgkqVqyIVq1aoW/fvujQoUOu5yAyFAN7RERERcgnLkJnWzkT4wT2Nn/cDGMPPgTSbQDr/wJ7EgkQIY81yjWIiKj0io6OxqRJk+Dt7S3aHhoaitDQUJw5cwZz586Fh4cHrl27hhkzZiA+Pl7U1tfXF76+vjh+/Dj27NmD8uXL671WcHAw5syZg7t37+rsCwsLQ1hYGM6dO4eff/4Za9asyXXoaFBQED7//HO8evVKtD08PBxHjx7FiRMnMGnSJANfBWDz5s346aefkJGRIdoeExODmJgY3L17F7/++ivmz59vcLZaYezatQtr1qxBWlqaaHtW1VlfX1/s2bMHw4YNw+zZsw0KhBZGhQoVIJPJoFAoAAB//PEHpkyZYtCxI0aMEAUVc3Ly5El89913Op8vhUKBxMREPH/+HLt370bfvn2xaNEiWFvrmUqkCGUvHBIZGYnIyEiMHDlS1O7w4cNYunQpkpKSRNuTk5Ph4+MDHx8f7Ny5E7Nnz8bw4cP1XiswMBBfffUVfHx89O4LDAzEX3/9hQ4dOmD16tUoV65c4W+Q3moM7BERERWhBzG6gb3K5o5GOffwVs74434ILseE6+yLVsQb5RpERFQ6qVQqfP7553jy5AksLCzQrVs3uLq6IioqCpcuXUJUVBTUajW+//57WFpaYvHixcjIyEDjxo3RoUMHmJmZwdvbG56engCAgIAALFmyBOvWrdO5VnBwMIYOHYro6GgAgFQqRfv27dGkSROYmprCz88Ply9fRmpqKoKCgjB8+HBs2rRJb0ZSQEAAhg4ditjYzC+gLC0t0bVrV9SuXRtJSUm4cuUK/Pz8sH79ejg65v3zcsGCBdi/f7+w3rBhQ7Rt2xYODg6IiYmBl5cXXr58ieTkZMyZMwdxcXEYNWpUgV5zQ6xatQpbt24V1itXroxOnTqhcuXKiImJwY0bN/Dy5UuoVCrs3LkT/v7+2Lx5sxDca9KkCWbNmgUA2Lt3r1AVd8iQIahRowYAoEqVKvnqk1Qqxfvvv48LFy4AADZt2oTXr1/Dw8MDderUyfVYYeqPXOzduxfffvutsO7o6IjOnTujRo0aSElJwd27d4Xg84kTJ+Dn54fdu3cbnDVYWK9evcKBAwd0tleqVEmU0bp9+3ahwAgAlC9fHp06dUK1atUQExODa9euITAwEHK5HIsXL4apqSmGDBkiOufz588xYsQIIcBpZWWFLl26oFatWlCr1Xjx4gWuXLmC9PR0eHl5YfDgwTh48CCDe1QoDOwREREVIZ+4SJ1tzhb6syHyy9zUBBfGtcMeXwd43Hwu2hevjjfKNYiINGoFUu6vRHzIeWiUqSXdnVJDYmoFK9decGgzHxITWbFfPzU1FU+ePEHjxo2xadMmODk5CftiY2MxZMgQBAYGQqlUYv78+ZBKpViyZAkGDx4sOs++ffuwcOFCAMCZM2eQkJAAe/v/MstVKhW+/PJLIahXvXp1/Pjjj6hfv77oPFFRUZgxYwZu3bqFjIwMfPXVVzh69KhOEGrRokVCUK9+/frYtGkTqlatKuyfOXMmtm3bhtWrVyMuLi7X1+DgwYNCUM/W1hYrVqxAt27dRG00Gg3+/PNPfPfdd1AoFFi9ejWaNWuGVq1a5Xrugjh58qQoqPfFF19g4sSJMDMzg0ajQWpqKr766iscP34cS5cuhVwuh6enJ9asWYPZs2cDAOrUqSME2y5fviwE9nr37o02bdoUuG+TJ0/G9evXkZaWBo1GgwMHDuDAgQNwcXFB+/bt4ebmhpYtW+Y7aPjgwQMsWrRIWB84cCDmzZunE7S7cuUKZsyYgcTERDx9+hRff/01fvjhhwLfT35cv34dANCnTx9MnjwZTk5OePLkCSIiIoTApa+vL1auXCkcM2jQIMyfPx9WVlbCNoVCge+//14YBr1ixQp0795dCMqlpaVh0qRJQlCve/fuWLx4sc4Q8MjISEyfPh137txBSEiI8JknKigG9oiIiIrQ84Qo0bpGZQJnK+MMxQX+rVxXywW4Kd6emK0SLxFRQaXc+x6pD9aUdDdKJXn0AwCAY/vvSuT6VlZW+Pnnn0VBPQAoV64cPv30U1HAZcSIETpBPSAzE+z3339HQEAAVCoVnjx5gnbt2gn7jx49iufPM788srOzw44dO+Ds7KxzHicnJ2zZsgWDBw/Gs2fPkJCQgE2bNon6cOPGDaGyqp2dHbZs2aLTd6lUirFjxyIuLi7XYIdcLseGDRuE9Q0bNujNEJRIJBg8eDCSkpLw/fffQ6VSYcOGDdi5c2eO5y4IpVIpynb89NNPMW3aNL1t+/XrB2tra8yYMQNA5tBdDw+PfAfV8qN+/fr44YcfMG3aNNEw04CAAAQEBGDPnj0AMrMBW7dujfbt26Njx455ZpKtWbNGmHvvgw8+EGW8aevYsSM2bdoEDw8PqFQqYe655s2bG+cG8+Du7o41a9YIgTztTD0A2Lp1qzAPYadOnUTDdrPIZDJ8/fXX8PHxwf3795GWloY///wTn3/+OQDgwIEDCAgIAAC0bt0a69evh4mJic55KlWqhF9++QW9evVCVFQUPD09cefOHbRu3dqYt0xvEVbFJSIiKiIajQZBqdnmupNbwcHSuJkd5cytIFWJq+WlSpJyaE1ElD+K6Ht5N3qLpUfcLrFr9+7dG5UqVdK7r0GDBqL17EMGtb3zzjvCclY2XZajR48KyyNHjtQb1Mtibm6OOXPmiI6VaxVzOnv2rLD8ySef6AT1tE2YMEGULZXd+fPnhSzCFi1a5FmIwMPDA3Z2dgCAW7duISJCd6qMwnjw4AGCgoIAADY2NnnOYde3b1+0bNkSQGYm2KFDh4zaH33ef/99nDx5Eh9++GGO8/qFh4fj2LFjmDNnDt577z1MnjwZfn5+Oba9fTvz8y+VSkXvvT5ubm7o3bu3sK49hLqoDR8+PMdhxQqFApcvXxbWv/rqqxzPI5VK8emnn6JBgwbo2bMnKlasKOzbt2+fsDxu3Di9Qb0sNjY2ovn9jhw5kvdNEOWAgT0iIqIiEp2ejFRVtuq0GZawN3JgDwAs1OIhLxnSFCjUqhxaExEZTlbR+EMW3yQWld1L7Nq5FajQDjhYWVmhVq1aObbVLmSgXYAiIyMD9+/fF9Z79eqVZ5/at28vzI2Xnp6OBw8eCPuuXbsmLHfu3DnX81hbW+carLt165aw3KhRozz7ZWpqKnq99BUBKYwbN24Iyx07djSoOETfvn2FZe37KUpOTk5YtWoVrl27hiVLlqB79+45zmWoVCpx5swZ9O/fH3v37tXZr33PTZs2FVWlzUlJ3DOAXIdeP3jwQMhidHZ21hlmnl3Pnj1x5MgRbNiwQSjG8vr1a/j7+wttDPlMavfJ2J9HertwKC4REVEReZkYo7tRbgEHC+MH9qzUtkiFVpaFRAO/xBjUd8g5G4KIyBDWrWYDEgmUnGNPRHuOvZKSU7YeIC56kJWplhOpVH++R2RkpJBxZ2lpCVdXV4P61bBhQ2HIbVBQENzd3aHRaBAe/l+xp9q1a+d5nvr16+PcuXN69718+VJY3r17N3bv3m1Q37KEhYXlq31esrL1AOQZGMqinVWZNZdecSlXrhwGDx6MwYMHQ6PR4OXLl7h79y7u3LmDmzdvIibmv99hFAoFvv32W9ja2ooCc4W957CwMKhUqlwz24zB0tISFSpUyHG/9mehbt26BbrGixcvROtt27bN1/HG/jzS24WBPSIioiJyPSxUd6PcEvaWxv/xayexw+ts23wTohjYI6JCk0hlsHGbB6v3lxpUIZOKj4WFhUHtCho4ySoCAAD29vYGv//aGWBZ54iLi4NSqRS25xVszH6e3PpWEHkV5sgv7f4YUs03e7vC3k9hSCQSoWjH0KFDodFocO/ePWzduhWXLl0S2i1duhQffPABzM3NART+njUaDRISEoq8ImxenzXtIKYhn0t9Cvv+yeVypKam5jr8nCgnDOwREREVgZ+9AjD3+n0g+xfEcssiydhzNHHQ2eabEAmgsdGvRUREpUNRB1o1Gk2BjssqQgDknA1oCDMzsxz3aQcJe/bsmeuwZH0MGSqZHwV5rbKKTgBF/17mh0QigZubG9zc3LBt2zahWmxsbCw8PT3RtWtXAIW/56xrFZSh189pPsEs2p+lgtL+zNva2mL8+PH5Pkde/STKCT85RERERvbXP+GYePgfwDkNOr+uFlHGXkVTByDb77c+cZFGvw4REb097O3/q+KekJAAjUZjUCBGOxvO1tYWQGamlkwmg0KhEM6XV6ZWYmLOFd61+9a8eXN89tlnefarKGn3x9BsQO12Bc0UM8SoUaMQGRmJmJgY7N69W1QsJS+jR4/GkSNHhMrIfn5+QmDPwcFBaFeQe5ZKpbCxsdHbzpCgnfZ8kIWh/drn9pkz9BxqtRqjR48udL+IDMXiGUREREY28/iTzAWzNNF2jcoEUMmKJGOvvJktNGrxj3Xf+CijX4eIiN4eVatWFbLm0tLS8OrVqzyP0Wg08PX1FdZr1qwJIDMzS7uirnabnORUjRUAatSoISxnBZ3ykpCQIMqsMibt+QcNuTcA8PHxEZa178fY/Pz88PLlS8TFxRWoSIP2vHPaGZguLi7CckHuuUqVKpDJ/vudSPvc2tWU9ZHL5UYbTq392mvP3ZgThUKBKVOm4Pvvvxcq4WZ9zgEgJSXFoDnz5HK5ULSDqDAY2CMiIjIipUqNV7H/Ti6fLbAHuSUASZFUxbUyMwUyxPOyPE+MLvAwKiIiIjMzMzRr1kxYP3nyZJ7HeHl5CfONyWQyNGnSRNjXpUsXYfn06dO5nkepVMLT0zPH/W3atBGWr1y5kmf2llwuR58+fdC0aVN06dJFVKHXGNzc3ET9SUlJyfOYU6dOCcu5VW0tLO2+7d69O9+/G2gHdLWDfNrnffToEUJCQvI8V273bGlpKSzHxsYiN48fP9YZ1ltQzZo1E4bBBgcHi6rb6vPw4UOcPn0av/32G/744w8AmYE97WI2Z86cyfO6+/btg5ubG1q3bo1x48YV4g7obcfAHhERkRHJVf/+kmmigMQ025wt8sxfWC1Mjf/j19rMRCewl6zMQFhqwYaUEBERAcCgQYOE5e3btyM0VE9hqH/J5XKsXr1aWO/evbsoWKNdUfXw4cO5Ztrt27cPkZE5TynRo0cPWFtbA8gsfrBp06Zc7+O3335DdHQ0lEolYmNj8z0nX15at24tZH4lJydjw4YNubY/deoUvL29AWRmM/br18+o/dE2dOhQYfnFixdYsmSJwceePn1ayLKrWLEi2rVrJ+yrXr063N3dAWQOP12xYkWu57p//74osPfhhx+K9lepUkVYfvToUa7ZbHm93/lhbW2Nbt26Ces//fRTru137twpLGsfp/2sbNmyBVFROY+ciIuLw6+//gogc/hvQavxEgEM7BERERlVhvLfwF72bD0AkGdWLyyKCbKt9AT2AOBJfITRr0VERG+Pvn37CkGHpKQkjBw5Uu+wy+joaHzxxRd4+vQpgMw5x6ZNmyZq06hRIwwcOBBAZhBwzJgxoqGZWY4ePZpnkMjOzg6ff/65sP7LL7/gxx9/FObwy6JWq7F//35s3LhR2DZq1CjRnHjGYGJigqlTpwrrO3bswNq1a/UOKT158iTmzJkjrI8YMQK1a9c2an+0ubm5iYJ7u3fvhoeHBx49epTjMWlpadi6dStmzJgBIPN3l6+//lo0dBYApk6dKlRdPnfuHObOnYvk5GSd83l6emL8+PHCUOhu3brhvffeE7Vp2LChMG9famoqvvnmG533Mz09Hd988w2uXr1q4N0bZvz48cK9nThxAqtWrdK5tkajwU8//SRk49nZ2WHYsGHCfg8PD1SsWBFAZrD5008/xYsXL3SuFR4ejvHjxyM6OhpA5lyFJT1HJJVtLJ5BRERkRHLVv8Nb9Ab2LNG8atFMjm0l0x/YuxAYhA+c6xXJNYmI6M0nk8mwceNGDBkyBHFxcQgKCsKAAQPQvn17NG3aFKampvD398fFixeRmpoqHLNixQpUq1ZN53xz587Fw4cP4efnh8jISAwePBgdO3ZEo0aNoFAocP36dSHg5Orqmuu8fl988QX++ecfnD9/HhqNBhs3bsShQ4fQqVMnVKpUCdHR0bh586Zo3jR3d3d8+eWXRn6VMvXp0wcPHjwQMro2b96Mo0ePonPnzqhUqRJiYmJw69YtUaaim5sbZs6cWST90bZgwQKkpKTg2LFjAIBbt25h8ODBqFatGtzd3eHk5AQrKyvEx8fD398fd+7cEQ0nnjNnDnr37q1z3latWmHWrFlYvnw5AOCvv/7CpUuX0KVLF1SvXh1paWm4c+cO7t+/Lxzj6uoqtNdmamqKzz77DOvWrQOQmdX46NEjdO3aFY6OjggJCcGFCxcQHx8PBwcHNG7cONfh2vlRv359zJs3D99++y0AYOvWrTh58qTw3sXHx+Py5cvCMF2pVIrFixejQoUKwjkcHR2xYcMGjB49GmlpafD390f//v3RoUMHNG7cGBKJBH5+frhw4YIQNJTJZFi5ciUcHR2Nch/0dmJgj4iIyIgylP9Oyp1DYO+zTkUzOba1mYkw1FfbzYi8J28mIiLKjYuLC/78809Mnz4dDx48gFqthqenp96gSs2aNbFmzRrR3Hra7OzssG/fPkydOhVeXl5QqVS4ePEiLl68KGo3dOhQvPPOO1i8eHGO/ZJIJPjhhx+wdu1a7NixAwqFAmFhYdizZ4/e9v3798eiRYuE+dSKwrx58+Ds7Iz169cjLS0NERER2Lt3r96+f/bZZ5g2bZpOFlxRkEqlWLlyJd59912sW7cO4eHhAICQkJBc58arVasW5s+fjw4dOuTYZuTIkahQoQIWLVqEhIQExMXF4dChQ3rb9u/fHwsXLhSGUWc3duxYhISE4ODBgwCA0NBQ0dBXAMLre/z4caMF9oDMz5ydnR2+/fZbJCYmIiwsTJhDT5udnR2WLFmCHj166Oxr1aoV9u7di2nTpsHf3x8qlQpXr17Vm2Ho5OSEFStW5PraEhmCgT0iIiIj+i9jL11n3+YP22Csm6vOdmMwM5HqDewFpeQ++TQREZEhqlWrhv379+PSpUs4ffo0vL29ER0dDYVCgXLlyqFRo0bo0aMHevfuLVTSzYmdnR22bduGc+fO4fDhw3j06JGQhdWkSRMMHToUHTt2xO7du/Psl4mJCWbOnImhQ4fi4MGDuHnzJoKCgpCYmAhzc3M4OzujZcuWGDRokNHn1cvJyJEj0bdvXxw4cABeXl549eoVEhISYGZmhho1aqB169YYOnRokQ6/1UcikaB///7o2bMnLl++DC8vLzx9+hRhYWFITEyEWq2Go6MjKlasiGbNmqFr165o166dQYHQvn37olOnTjh48CCuXr2KFy9eID4+HqampqhWrRrc3NwwcODAPN8DExMTLFmyBB999BEOHjyIO3fuIDo6GlZWVnBxcUGPHj3wv//9D9bW1jh+/LixXhpBnz598N5772H//v24evUq/Pz8kJiYCAsLC9SuXRsdO3bEkCFDUK5cuRzP0aBBA5w4cQJnzpzB+fPn8fDhQ8TGxkKhUMDBwQH16tVDly5d0L9/f9jY2Bj9HujtI9GwXF6x8fb2Fir3SKVStGjRooR7VDhKpRIPHz4U1rWrCRFR/vB5enP4RCShyerLgKs3JFb/Fa6wNJEhacSyIplfDwD++iccH++4C9S9CYnsv8qAthIbxI/8tkiuWVrxeSLST6VSiYYA1q1bV5gbSx+NRiMMrQQAKyurIvs3jOhNx+eJyHhK0/OU35+t+hQ2VsTiGUREREaU01Dcd+wqFOkvHJ1rl4etuSmQIc7aS1anQKFWFdl1iYiIiIio5DCwR0REZERylQaQqiAxFVdSc7XNeciGMThameHKl+11huNqJBoEJHE4LhERERHRm4iBPSIiIiPKUKoAme78eq42RRvYA4Dmzvaoaa17nReJr4v82kREREREVPwY2CMiIjIiuUqjN7DnUgyBPQCoauGos80nNrJYrk1ERERERMWLgT0iIiIjylCq9VbErWmjG3ArCq62FXS2nQ0IQpqC8+wREREREb1pGNgjIiIyohyH4hbxHHtZ6jtUQPZ69xeCgtF+oydep2ToP4iIiIiIiMokBvaIiIiMKKehuMWVsVfD3hpQWIg3mqXhYVgi9nqHFUsfiIiIiIioeDCwR0REZET6huJam1jA3swyhyOMq4qdhU5lXMjSAYkaTyKTiqUPRERERERUPBjYIyIiMiK5Sq2TsVfJ3K7Yrt+2hiPMVFaibRIJAFka0jnPHhERERHRG4WBPSIiIiNKyEiHxFQp2lbF0qHYrm9rYYphjevo7jBPQ6qcgT0iIiIiojcJA3tERERGFJGRoLOtqoVDsfZhYL1auhvN0pCmUBdrP4iIiIiIqGgxsEdERGRE0XoCe9WsHIq1D3XsKupuNEtHmpIZe0REREREbxIG9oiIiIwoWp6os626dfFUxM3iYuMICSTijbI0pHGOPSIiIiKiNwoDe0REREYUq9QN7LnYlCvWPpiZmKK6tX22jemcY4+IiIiI6A3DwB4REZERxSmTdLa52BZvxh4A1LItL94gS0eqQqm/MRERERERlUkM7BERERlRgjJZtK5RmqKchWWx98M1W2BPItUgWZ1a7P0gIiIiIqKiY1oUJ9VoNLh69SqOHTuGhw8f4vXr15BKpahcuTIaNWqEfv364d1334VUary4okajQatWrZCSkpKv46ZMmYIvv/zSaP0gIqK3V1RSBqIViZCYaG1UWMDcpPi/R6tlqzv8NwXJeloSEREREVFZZfTAXlhYGGbNmoU7d+7o7PPz84Ofnx+OHTuG5s2bY9myZahdu7ZRrhsYGJjvoB4REZEx9d1+HRKbbMNd5RYwMy2JwF55nW3pEv6cJCIiIiJ6kxg1sBcaGorhw4cjLCxM2GZlZYV69epBJpPB398fr1+/BgA8ePAAn3zyCfbt24c6deoU+tpPnz4Vlh0cHNC4cWODjqtRo0ahr01ERBQQm4q7EZGQvJNth8IC5qUksCeXpkKj0UAikeg5goiIiIiIyhqjBfbUajVmzJghBPVkMhmmTp2KESNGwNzcHEDmcNkzZ85g4cKFiI+PR3JyMsaNG4dTp07BzMysUNf39fUVlrt06YLly5cX6nxERET5EZGUAcjSdXcozGFWIkNxdQN7GrM0DNpxF30aVMIo9+oM8BERERERlXFG+0vjwoULuH//vrC+ePFijBkzRgjqAYBEIkHPnj2xefNmYX69kJAQHDt2rNDX187Yq1evXqHPR0RElB8yEwkgy9DZLlVZwERa/AG08uZWkGX//k6WjiOPIzD24EP8fie42PtERERERETGZbTA3sGDB4Xlpk2bYsCAATm2bd68OTp27Cisnz9/vtDX1w7s1a9fv9DnIyIiyo90hVpvYM9MVfwVcYHML9NspbbZOvNfRuHKSy+LuUdERERERGRsRgnsaTQaRERECFl4ffr0yfMY7Xn1AgMDC3X92NhYREVFCesM7BERUXFLU6j0B/ZQMoE9AHA0sROtS0wVgDSzuMfzaBbSICIiIiIq64wyx55EIsGxY8eQlpaGly9fomrVqnkek5iYKCxbW1sX6vra2XqVK1eGg4NDoc5HRESUX2kKFWAqDuxp1BJYSCxKqEdAOZkd/BTZNpqlA+k2JdIfIiKi/JgzZw4OHz4MAFi+fDkGDhxYZNcaMWIEbt++DQDYuXMn2rRpU2TXyo/ExERs27YNFy9eRHh4ONLS0mBjYwNXV1fs27evQOeUy+W4cuUKrl69igcPHiAmJgaJiYmwtraGo6MjXF1d0aFDB3Tp0sWgv+2pbDBkyjKpVApLS0s4OTmhfv366NKlC/r06QMTE5Ni6KHxdOnSBaGhoQAyp42rVq1aCfeoaBm1Kq6lpSWaNGmSZzu5XI5r164J6w0bNizUdTkMl4iISlqavqG4SnOYl0DhjCxOZvZAaraNsjQG9oiIiMqAhIQEDBo0CMHB4nlx4+PjoVQqC3TO06dPY9WqVQgJCdHZFx8fj/j4eLx69QoXL17EihUrMGTIEEyaNAn29vYFuh6VLWq1GikpKXj16hVevXqFU6dOYcuWLVi1ahVjLaWYUQN7hpDL5Zg/f74QPZVKpfj0008Ldc7shTOioqLw119/4erVq/Dz80NKSgocHBxQt25ddOnSBYMGDYKlZckNjSIiojdPqlypG9hTmEOlLpn+AEAlcz2/hJvpqdxLREREpc727duFoJ5MJkPPnj1Rq1YtyOVyuLi45Pt8O3bswLJly4R1JycnuLu7o3r16rCyskJGRgbCwsJw+/ZthISEQKFQYNeuXbhz5w527NjBkXFvkCFDhqBGjRqibWq1GnK5HAkJCfD398eNGzegVCrx/PlzjBo1Cvv370f16tVLqMeUmyIP7KnVaiiVSoSEhMDT0xO7du1CUFCQsH/hwoWoXbt2oa7h6+srLGf9o5OeLv7DJTo6GtHR0fDy8sIvv/yCpUuXigp4EBERFUZ0egok0mxRPIU5UuQF+0bdGKpaOuhuZGCPiIioTND+O3f8+PGYMGFCgc9148YNLF++HEBmkHD+/Pn45JNPhHnytWk0Gpw+fRrffPMNkpKS4Ovri0mTJmHXrl0Fvj6VLr17985zuLm/vz8+++wzREREICYmBsuXL8fPP/9cTD2k/CjywN7y5cuxc+dOne2VK1fG119/jR49ehTq/BkZGXj16pWwfv/+fQCAiYkJatasiYoVKyIxMREvX76EQpE50VB0dDTGjx+PRYsW4eOPPy7U9QujoOnTpYVKpcp1nYgMx+ep7AtLjdPdqDBHilxVYv/eVzG3hUYDSCRaG2VpwmJ6hhymJThUuKjweSLST6VSQaPRAMicI1uj0Qjr+mTfl1tboqKg/ZnL6/Na2q9VkOcpJeW/QldNmjQpVJ9++ukn4fhZs2bhf//7X6796NmzJxwdHTFy5EhoNBrcvn0bnp6e6NChQ4H7QMaRNSS2atWquHjxYoHOYchn3NXVFd9++y3GjRsHALh48SJCQ0NLxbyLeT1PJfFvR9b/lUplsf+8LPLAXlhYmN7tjo6OiIqKQnp6OiwsCj6x+LNnz0S/sEskEnh4eGDUqFGoXLmysD05ORm7du3CTz/9BIVCAZVKhW+//RYuLi5wc3Mr8PULSq1W4+HDh8V+3aL0+PHjku4C0RuDz1PZ8zwySHejwgJKtabE/r2Pi0gDFOaAmdYQYa2MvVv3H8LG7M0L7GXH54lIzNTUFKampkhNTc3XhOhpaWl5NyIyIu2/8+RyOVJTs08cazxq9X9Z9xkZGUV6LcCw50n7i0GNRlPgPqWnpwsJMEBm0M6QczVp0gQdOnSAp6cnAOD8+fNo0aJFgfpAxleYz4Shn3E3NzeYmZlBLpdDo9Hgn3/+KZVDsrM/T9qBtfT09CJ9nlUqlTBSValUlsjvnUUe2Hv9+jXq168PBwcHxMbG4uXLl1Cr1Xj69CmWLFmC3bt34+effy7wcFx/f39hWSqVYt26dejZs6dOOxsbG4wfPx7NmzfHmDFjoFQqoVAosGzZMhw6dAgSUToDERFR/sSp9fzCoDAv/o5oMTcBILfUE9jTAJAgTamBjVkJdY6IiApk7NixuHfvHmxsbHD16lWoVCqcOnUKf//9N/z8/JCYmIjy5cujcePGGDJkiCgQ8/r1axw4cACXL18WEjCqVauGzp07Y9iwYbCxybu40s2bN3Hq1Ck8fPgQr1+/hkqlgqOjIxo0aIBOnTqhV69eMDXN+89MuVyOY8eO4ezZs3jx4gVSU1NRvnx5tGrVCkOHDs13gcXIyEj89ddfuHHjBkJDQ5GUlAQ7OzvUrFkTHTp0wKBBg4q1AERcXBwOHz6Mmzdvwt/fH4mJibCxsUHlypXRunVrDBgwQO88eceOHcO3336rs/3zzz8Xllu1aoUtW7YY3JekpCRRkDQ9PR3W1tYGHduuXTvcvn0bdnZ2eWbAp6Sk4Pjx47h27RpevHiBhIQEWFhYoFKlSmjVqhX69euX6/uqfe/9+vXDd999l+v1+vTpg/DwcADAiRMnRJlkYWFh6Nu3LwDgk08+wZw5c3DkyBHs2rULoaGhcHBwQKNGjeDh4YFmzZqJzpuUlISjR4/i6tWrePnyJZKTk2FhYYFq1aqhTZs2+Pjjj+Hs7Jxr3zQaDS5evIgLFy7gn3/+QUxMDKRSKcqXL4/mzZujV69eaNu2ba7nKA2kUimsra0hl8sBiAPg+iQkJODEiRO4d++e8BlIT0+HjY0NKlSogGbNmqFXr15o2bKlQde/d+8eTp48CW9vb0RERIj+venZsyc++OADvcPJDT33pEmThGncunfvjiVLlhj071dpU+Q93rNnj+ibwOjoaPz4449Cae6AgAB89tlnOHr0KBwdHfN9/o8++gg9e/ZEcHAw0tLS0LRp01zbt2vXDqNHj8bmzZsBAD4+Prh3716JZO0REdGbI1GdDmT/vaLEA3sSQCHOipdINNDIMgCFBVKVHFZHRFSWvX79GjNnztTJDA8PD0d4eDguXLiA6dOnY+jQobh+/Trmz5+P+Ph4Udvnz5/j+fPnOH36NLZt24Zy5crpvVZoaCgWLFgAb29vnX0RERGIiIjApUuXsGXLFixbtgyNGzfOsd/BwcGYMmUKAgICdM7z999/4/Tp0/jiiy8MexEA/Pbbb9iyZQsyMsRFrGJjYxEbGwtvb29s374dM2fORL9+/Qw+b0Ht27cPP/zwg86871lVZ319fbFnzx588skn+Oqrr4o8kFC+fHnIZDJhaqoDBw5g/PjxBh07ZMgQDB06NM92Z8+exYoVK3Q+XwqFAklJSXj58iX279+Pnj17Yv78+bCyssr3fRTGnj17sHr1amE9KioKUVFR+L//+z9Ru+PHj2PVqlVITk4WbU9OToavry98fX2xd+9eTJ06FUOGDNF7raCgIMyZM0c0R2KW1NRUBAcH4/jx42jbti2WLl1aoDhIcYmLi0NcXOZ0M1KpFHXr1s2x7b59+/Djjz/qzY7L+uy/fPkShw4dQvfu3bFo0SKYmen/hvn169dYuHAhbty4obMv6727cuUK/vjjD6xZswYVK1bM1309ePAAU6ZMEZ7RXr16YdGiRfnKYi9Nijywl/2FqVixIr777jtUq1ZNeLAiIyPx008/Yf78+QW6hoWFBerUqWNw++HDhwuBPQDw9PQs9sCeVCpFkyZNivWaxqZSqURppo0bNy6zDwJRSePzVPbJn9wAsk+lp8wM7GX/Jri4JNnFAo91/wCDLA1QWKB6rXfQzLn4sheKC58nIv1UKhX8/PwAZE5fY2VlleuzodFoRMObLC0tOcqlFMjKTlGr1Zg6dSqePHkCCwsLdOvWDa6uroiKisKlS5cQFRUFtVqNdevWwc7ODkuWLEFGRgYaN26M9u3bw9zcHN7e3sIwy8DAQKxduxZr167VuWZISAhGjRqF6OhooQ/t2rVD06ZNYWpqCj8/P1y+fBmpqakICQnB2LFj8fPPP+udjy0rsSM2NhZA5ueqa9euqF27NpKSknDlyhX4+fnh559/FgU8zMzM9AaDFixYgAMHDgjrDRs2RJs2bYQRY15eXkLW1cKFC5GSkoJRo0bl+LoCgLm5eYEDT6tXr8bWrVuF9cqVK6NTp06oXLkyYmJicOPGDbx8+RIqlQp79+5FcHAwfvnlFyG416pVK8ycORNAZqAkqyrukCFDhIqkVapUyXf/3n//fVy4cAEAsHXrVsTHx8PDwyNff0fnZN++faIsQ0dHR3Tu3Bk1atRASkoK7ty5gwcPHgAATp8+jcDAQOzatUsnQ1Q7yGNiYpLnPWr/e2RhYSFqrz3dV0hICA4fPqxzfKVKlfDuu+8K59mxY4dQYATIDIh26tQJ1apVw+vXr+Hp6YnAwEDI5XKsXLkSVlZWOsG958+fY+TIkUKA08rKCp07d0bt2rWhUqnw4sULXL16Fenp6bh58yY+/fRTHDhwIMeAel73X9DPqaGfce1gaPfu3XMcablt2zasWrVKWG/QoAHc3d1Rvnx5KBQKBAUF4fLly0hISACQGQiuWbMmpk+frnOuuLg4jBkzRlR01c3NDS1btoRMJsPz589x8eJF4fe9zz//HIcOHRJ9nnL7bDx69AiTJ08WApADBgzA0qVLC5z5p1KpIJVKIZPJIJPJULt27Xz/3vnPP//kmQ2ZmxLLMRw7dizOnj2LR48eAQCOHDmCr7/+usAvZn44OTmhevXqwj+SgYGBRX5NfcpiimduTExM3rh7IiopfJ7KniR1imhdo5YCqsz3sKTeS1tLs8yhuNmZpQOpQIb6zftZpA+fJ6JMEolE9MdO9vWcKNQqrPC5jPORfkhVyYuyi2WKlYkZeldvgG+afwCZtPi+PMh6z1JTU/HkyRM0btwYmzZtgpOTk9AmNjYWQ4YMQWBgIJRKJb755htIpVIsWbIEgwcPFp1v3759WLhwIQDgzJkzSExMFA1ZValU+PLLL4WgXvXq1fHjjz8KE/hniYqKwowZM3Dr1i1kZGRg2rRpOHr0KKpUqSJqt3jxYiGoV79+fWzatEk0hHLmzJnYtm0bVq9eLWQKZd139s/rwYMHhaCera0tVqxYgW7duonaaDQa/Pnnn/juu++gUCiwZs0aNG/eHK1atdL7uuZ0LUOcPHlSFNT74osvMHHiRJiZmQnzoX311Vc4fvw4li5dCrlcDk9PT6xduxazZ88GANStW1fIirpy5YrwN6shVUxzM3nyZFy/fh1paWnQaDQ4ePAgDh48CBcXF7Rv314InGR/v/Ly4MEDLFq0SFgfOHAg5s2bpxO0u3LlCmbMmIHExEQ8ffoU8+bNww8//CBqk9/3ILf22svXr18HkDl0d/LkyXBycsKTJ08QEREhxB98fX2xcuVK4ZhBgwbpZBYqFAp8//33QnXg77//Hj169BCCcmlpaZg8ebIQ1OvevTsWL16sMyddZGQkpk+fjjt37iAkJASzZs3Ctm3bcr3XnO6/oF+25HSsUqkUskp3796NS5cuAfivkIa+Y8LDw7Fx40ZhfeHChTqZkEDmUO3Zs2fj3LlzADKf36lTp+r8jvbdd98JQb1y5crhhx9+QOvWrUVtfH19hS8IAgMD8fPPPwvPUNb96btXHx8fjBkzRsjI/OSTT7Bo0aJCfWmVdWzW/01NTYv9C+US/S23f//+QmAvKSkJAQEBqFWrVrFcu0KFCsI/kllRYyIiooJKzhbYyxwCW7KZLZamJoBcT4Eqs8wMnOQMVoslorwt97mM1U+vlnQ3SiXv2FAAwKKWunN8FwcrKyv8/PPPoqAekPnH8KeffioKuIwYMUInqAdkZoL9/vvvCAgIgEqlwpMnT9CuXTth/9GjR/H8+XMAgJ2dHXbs2KF3fjEnJyds2bIFgwcPxrNnz5CQkIBNmzaJ+nDjxg14eXkJ59qyZYtO36VSKcaOHYu4uLhcgx1yuRwbNmwQ1jds2KA3Q1AikWDw4MFISkrC999/D5VKhQ0bNmDnzp05nrsglEol1q1bJ6x/+umnmDZtmt62/fr1g7W1NWbMmAEA2LVrFzw8PPIdVMuP+vXr44cffsC0adOQlJQkbA8ICEBAQAD27NkDIDMbsHXr1mjfvj06duyYZybZmjVrhEyjDz74QJTxpq1jx47YtGkTPDw8oFKpcObMGTx48ADNmzc3zg3mwd3dHWvWrBGCL9lH7G3dulWYQ7BTp05YtmyZzjlkMhm+/vpr+Pj44P79+0hLS8Off/4pzH944MABYXh569atsX79er0BnkqVKuGXX35Br169EBUVBU9PT9y5c0cUvLp69SpevHiR6z0lJyfn+IzUqVMH77//fo7Henh45HpubQMGDMCsWbNyHDJ84sQJYUhr586d9Qb1AMDa2hoLFy7E+fPnodFoEB8fj6CgIFEMKCAgAKdPnwaQ+cXspk2b9H5G6tWrh8WLF2PChAkAMl/7adOmQSaT5Xgfvr6+GDVqFBITEwEAQ4cOxcKFC9+ITPQSDezVqFFDtJ59PH5R0p5/wdCJQ4mIiPRRqdVIQ7bqdv/OrzeiVbUS6FEmS5kJoMghYw9Aijz72GEiIl33YkNKugul2s3okhn9A2RmcVWqVEnvvgYNGojWc5oPDADeeecdISCRlU2X5ejRo8LyyJEjcy0aYG5ujjlz5uCzzz4Tjp0/f74wxPLs2bNC208++UQnqKdtwoQJ2Lt3b47VLM+fPy9kEbZo0UJvUE+bh4cHNm3ahMTERNy6dQsRERGoXLlyrsfkx4MHD4QsIxsbG0yZMiXX9n379sWePXtw//59KBQKHDp0CBMnTjRaf/R5//33cfLkSaxatQonT54UVd3NEh4ejmPHjuHYsWMwNTVF165dMWXKFL1DMMPDw3H79m0AmQHZOXPm5Hp9Nzc39O7dG8ePHwcA7N+/v9gCe8OHD88xgKNQKHD58mVh/auvvsrxPFKpFJ9++inS0tJQs2ZN0dxuWXUEAGDcuHG5Zm3Z2Nhg5MiRQpbgkSNHRIG9kydP6h0+rC0hIUGUZahtwIABuQb28sPf3x83b95E79699e5v2bIlZs2ahdDQ0BzbZKlYsSIqVKggPLvZ5zLMyuYDgC5duuT6+WjXrh3c3NwglUrh6uqKhIQEVKhQQW/bFy9eiIZIjxgxosBTwZVGRgns+fv74+DBgwgJCUF4eDh27doFS0s9f0hkk1VZJYudnV2+rqvRaLBhwwbExMQgJiYG3bt3x0cffZTncWq1GqGhocJ6UX4zQkREb77wtERokK0QhcIcZiZSTHrXtWQ6BcBSljkcWKMygcREKztPlhnYY8YeERmiVblquBTpX9LdKLXaVqxZYtfOrXCgdsDBysoq15FR2okO2gkQGRkZuH//vrDeq1evPPvUvn17ODo6Ii4uDunp6Xjw4AHc3d0BANeuXRPade7cOdfzWFtbo0OHDqI/9LXdunVLWG7UqFGe/TI1NUXTpk2FOQXv3r0rVE01Bu1J/jt27GhQ8kjfvn2F1/fWrVtFHtgDMjMrV61ahblz5+LChQu4evUq7ty5Ixr2nEWpVOLMmTO4ePEi5s2bp1NEQ/uemzZtimrV8v4ys2/fvkJgT/s9LGrZh15re/DggZDF6OzsrDPMPLuePXuiZ09xlu7r16/h7//fv5OGfCa1+3T37t082xvTkCFDdBKtgMyh9ykpKQgJCcGdO3cQGRmJhw8f4quvvsKZM2ewevVqnay4Vq1a5fr6avPz8xNVV84q6JJF+9+ILl265Hm+X3/9FUDmv3E5BW79/f0xd+5c4TP+4YcfvlFBPcBIgb2UlBT89ttvwvqNGzcMehP++ecfYVkmk+U7wCaRSHDs2DEhSKdUKg0K7D169Eg0/JYVcYmIqDCCU+J1NyrMcXPyu2hegsUp7C1lkJlIoVBYACZaQ4VlWRl7DOwRUd7mNuoECcA59rLRnmOvpOSUrQeI55jKK4Eip3nOIyMjhWQMS0tLuLoa9mVVw4YNhSG3QUFBcHd3h0ajQXh4uNAmp0n4tdWvXz/HwN7Lly+F5d27d2P37t0G9S1LWFhYvtrnRXui/7wCQ1m0syqzpokqLuXKlcPgwYMxePBgaDQavHz5Enfv3sWdO3dw8+ZNxMTECG0VCgW+/fZb2NraioKhhb3nsLAwqFSqIp+PzNLSMsdMrqx+ZMmt6mtusg+bbdu2bb6Oz/55XLFiBVasWKG3bb169QBkBiEvXryYr+tkMWTORqVSiT179mD58uVQq9U4ffo0ypcvjwULFuR6nEqlQkBAAIKDgxEcHIygoCD4+fnhyZMnOgFkjUb8xbj2vxEFfS+ymzp1KlJS/vs9+N69e0hJSXmjRm4aJbBXv359ODg4CGmNf/zxR56BvdTUVBw6dEhYb9OmTYFeWHd3dyFF1cvLC6GhobmmhwPAL7/8Iiw7ODjgvffey/d1iYiIsugL7NmbWpdoUA/IHIrbr2El/BVvAVj89wuNRKaARqLiUFwiMohMaoJvmnTF8jb93oi5iN4k2pU/c1PQwIn2VEn29vYGv//ac3FlnSMuLk409NOQ0Vo5zemVvW8FoS9DrTC0+5Nbv7Xpe51KgkQiQZ06dVCnTh0MHToUGo0G9+7dw9atW4XiCQCwdOlSfPDBBzA3z5xupLD3rNFokJCQUKCKsPmR12dNO4iZ31GEWQr7/snlcqSmpha4ym1RMDU1hYeHB1JSUrB+/XoAwJ49e/Dpp5+iZk3dTOUbN25g165d8PLyEubcyy6rkEVOFWBfv34tLGsX8SmMrKCeubk5MjIyEBoaitWrVwtFg94ERgnsyWQyDBo0SJi40dPTE8ePH0e/fv30tlcqlZgzZ44wrhrIrJJbEB9//LEQ2FMqlViwYAE2b96cY/W73377TfSP08iRIw0aNkxERJSTW2EROtusUDq+Bdz1fy0Rcvgx7qTEiHfIMpDMjD0iojKtqAOt2bNpDKU91C6nbEBDZM3Np492kLBnz565DkvWx5ChkvlRkNdKO7hRmoLmEokEbm5ucHNzw7Zt24R53GJjY+Hp6YmuXbsCKPw9Z12roAy9fk6xgSz65hrML+3PvK2tLcaPH5/vc+TVz5Li4eGBzZs3CxWVz58/j9GjRwv71Wo1Fi5cKFSo1mZrawtXV1fUr18fzZo1Q4cOHTBs2DDR1GjajPFe6DNu3Dg0a9ZMeF/27t2Lnj17FqrSdGlitE/Ol19+iRMnTiAyMhIAMHfuXISFhcHDw0MUOHv8+DGWL18uGkM+ePBgvamqc+bMEU0YeeHCBZ1x+25ubujVqxdOnToFIDOoOHr0aCxYsECU3h0dHY2NGzdi//79wrZGjRphzJgxhbxzIiJ6m2UoVdh87zlgK95uIykdgT1LmQn+17AW7tzxEe+QpTNjj4iIcqWdMZOQkACNRmNQIEY7G87WNvMHpKOjI2QymTCnliGZWlnVK/PqW/PmzYWCHSVFuz+GZgNqtytoppghRo0ahcjISMTExGD37t145513DD529OjROHLkiFAZ2c/PTwjsOTg4CO0Kcs9SqRQ2NjZ62xkStNOeD7IwtF/73D5zhp5DrVaLAl9lnbW1NWrWrAlfX18A4iHYQGZF4aygnkQiQb9+/dCrVy80atRI73QBaWlpOtuy2NvbCwlgCQkJqF69eqH7P2HCBEyePBkAhNiRRqPBvHnzcPz48Tci0ctogT0bGxv8+uuv8PDwQEJCAhQKBdauXYtNmzahXr16MDMzQ2hoqE5ktlu3bvj2228Lde0lS5YgODgYjx8/BgChYkutWrXg5OSE+Ph4PH/+XPTtQJ06dbBly5ZcyyETERHl5bRvNFI1qcj+Z46tSekI7AFATRs9fziZpbN4BhER5apq1aowMzODXC5HWloaXr16lWsRDiAzIJMVAAAgDNmTSCRwdnYWqu/6+vqiffv2uZ7Lz88vx301atTAw4cPAUAIOuUlISEBNjY2RTKnm/b8g9r3nxsfn/++dNNXyMBY/Pz8EBGRObrg7t27+QrsAZlznWW9xtoZmC4uLsJyQe65SpUqor/Htc+dvdBmdnK53GjDqbVfe+25G3OiUCgwY8YMVK1aFTVr1sSQIUNEQ1NTUlIQFhaGqlWr5noeuVyOjIwMIfhdmmm/N1lDsYHMe8gauQkA06dPz3U0plKpzDV4Wr16dSGw9/LlSzRu3DjXfp04cQL379+Hi4sLOnfurHeux4EDBwrL8+fPx/Xr15GQkIDg4GCsWbPmjSikUfC8aD3q16+PP//8U1SSOC0tDQ8ePMDt27dFQT0rKytMmzYNP/74Y6FTTm1sbLBz504MHDhQ9A1SVllmX19fUVDvww8/xK5du1C+fPlCXZeIiOhmUBwgE39jrFGawkaW8/Ch4lbTRs+8N7J0pDJjj4iIcmFmZoZmzZoJ6ydPnszzGC8vL2G+MZlMhiZNmgj7tOdhP336dK7nUSqVQgVbfbSH0F25ciXP7C25XI4+ffqgadOm6NKli6j6pjFoF2S8cuWKaLL+nGSNOgNyr9paWNp92717d76H0L569UpY1i5ooH3eR48eISQkJM9z5XbP2plTsbGxuZ7n8ePHOc7Tll/NmjUTYhLBwcGi6rb6PHz4EKdPn8Zvv/2GP/74A0BmAFs7O+3MmTN5Xnffvn1wc3ND69atMW7cuELcQdFKT08XAvKAOBDq7+8vml8we+Xk7O7cuSMabpv9PdT+TFy9ejXPvh0/fhxHjhzB+vXrERgYmGf7ChUqYNasWcL67t27i70icVEwamAPyHyT9+/fjy1btuCjjz6Ci4sLrKysIJPJULFiRbRv3x4zZ87EhQsX8MUXXxhtLgFra2ssX74cf//9N0aNGoXGjRvDwcEBpqamKFeuHBo0aIBRo0bh0KFDWLVqlcGTexIREeUmXaECTLNNEKw0h6WsaCu85YeL3sBeBqviEhFRngYNGiQsb9++Pce5sYDM4Nnq1auF9e7du4uCNdoVVQ8fPpxrpt2+ffuEaZ706dGjh1B8MSYmBps2bcr1Pn777TdER0dDqVQiNjY233Py5aV169ZCwCM5ORkbNmzItf2pU6fg7e0N4L/hi0VFO9jy4sULLFmyxOBjT58+LWTZVaxYEe3atRP2Va9eHe7u7gAyAzQ5VXHNcv/+fVFg78MPPxTtr1KlirD86NEjJCUl5XiuvN7v/LC2tka3bt2E9Z9++inX9jt37hSWtY/Tfla2bNmCqKioHM8RFxeHX3/9FUDm8F9jVYAtCgcPHkRqaiqAzM9q1lBsQDezMreArFwuF+ZrzJJ9Tr3+/fsLMaKzZ8/m+m/E8+fPce/ePQCZiWMdOnQw4G4y6zRkTQWn0Wjw9ddf51jso6wwemAvy/vvv4/vv/8eZ86cgbe3Nx4/fgxPT0/8/vvvGDNmjEGVb1asWIFnz54J/2WfX0+f2rVrY/bs2Th06BBu3boFHx8f3LhxA0eOHMHs2bPzTOUkIiLKD7/YJEhkCvFGRekK7JUzt4KNqbl4o1k6kpmxR0REeejbt68QdEhKSsLIkSP1DruMjo7GF198gadPnwLInHNs2rRpojaNGjUShsXJ5XKMGTNGNDQzy9GjR/MMEtnZ2eHzzz8X1n/55Rf8+OOPwhx+WdRqNfbv34+NGzcK20aNGmW0iptZTExMMHXqVGF9x44dWLt2rd4hpSdPnsScOXOE9REjRojmhzc2Nzc3UXBv9+7d8PDwwKNHj3I8Ji0tDVu3bsWMGTMAZAZ0vv76a52prKZOnSoMbT537hzmzp2L5ORknfN5enpi/PjxQpGJbt264b333hO1adiwoTBvX2pqKr755hud9zM9PR3ffPONQdlc+TF+/Hjh3k6cOIFVq1bpXFuj0eCnn34SsvHs7OwwbNgwYb+HhwcqVqwIIDPY/Omnn+LFixc61woPD8f48eOFIacODg75miMyKz5y8eLF/N1kAZw4cUIUrO/bt68oAFurVi1RkZuVK1fq/cwHBgbCw8MDT548EW3PPt9enTp10KtXLwCZQ57HjRun99+bwMBAzJo1S8j4GzZsWI7zNeqzePFioap4YGAg1q1bZ/CxpVHpLLtCRERURjyPiwWyJ8QpLGAqLV3V7VxsHPE4Xqt6ryydGXtERJQnmUyGjRs3YsiQIYiLi0NQUBAGDBiA9u3bo2nTpjA1NYW/vz8uXrwoZPXIZDKsWLFCb2LG3Llz8fDhQ/j5+SEyMhKDBw9Gx44d0ahRIygUCly/fl0IOLm6uoqGgWb3xRdf4J9//sH58+eh0WiwceNGHDp0CJ06dUKlSpUQHR2NmzdviuZNc3d3x5dffmnkVylTnz598ODBAyGja/PmzTh69Cg6d+6MSpUqISYmBrdu3RJlIbm5uWHmzJlF0h9tCxYsQEpKCo4dOwYAuHXrFgYPHoxq1arB3d0dTk5OsLKyQnx8PPz9/XHnzh3RcOI5c+agd+/eOudt1aoVZs2aheXLlwMA/vrrL1y6dAldunRB9erVkZaWhjt37uD+/fvCMa6urkJ7baampvjss8+EIMupU6fw6NEjdO3aFY6OjggJCcGFCxcQHx8PBwcHNG7cONfh2vlRv359zJs3T5j/f+vWrTh58qTw3sXHx+Py5cvCMF2pVIrFixejQoUKwjkcHR2xYcMGjB49GmlpafD390f//v3RoUMHNG7cGBKJBH5+frhw4YIQNJTJZFi5cmWxjyg8efKkUKMgO7lcjsjISNy8eVP0/FWvXh1ff/21qK2NjQ0++eQT7N69G0BmcLd79+7o3LkznJyckJCQgCdPnuD27dvCEHDtIjraw3izLFq0CL6+vvD390doaCgGDhyI9957D40bN4aJiYkQ1MwKIDZu3BgTJ07M1/3XqFEDEydOFIKWO3fuRI8ePdCyZct8nae0YGCPiIiogNRqDQKT4/QE9swRlWycSm3GUtNWHNiTyORITMp9YmoiIiIgs0jCn3/+ienTp+PBgwdQq9Xw9PTUG1SpWbMm1qxZI5pbT5udnR327duHqVOnwsvLCyqVChcvXtTJPho6dCjeeecdLF68OMd+SSQS/PDDD1i7di127NgBhUKBsLAw7NmzR2/7/v37Y9GiRYWe4z038+bNg7OzM9avX4+0tDRERERg7969evv+2WefYdq0acVS0FEqlWLlypV49913sW7dOoSHhwMAQkJCcp0br1atWpg/f36uwxxHjhyJChUqYNGiRUhISEBcXBwOHTqkt23//v2xcOFCYRh1dmPHjkVISAgOHjwIAAgNDRUNfQUgvL7Hjx83WmAPyPzM2dnZ4dtvv0ViYiLCwsKEOfS02dnZYcmSJejRo4fOvlatWmHv3r2YNm0a/P39oVKpcPXqVb0Zhk5OTlixYoXBQ0iNad++fflq/+6772Lp0qV6R17OmjULISEhuHz5MoDMjER9z6BMJhPmEszKoH38+LFoCDOQWUl77969mDlzJq5evQqVSoXLly8L59f2/vvvY/HixaKCHob67LPPcPLkSTx58gRqtRpff/01jh49WqBzlTQG9oiIiAooPCkdGZJ0nYq4UJghPLGUBfasdb8JjlfqDpUhIiLSp1q1ati/fz8uXbqE06dPw9vbG9HR0VAoFChXrhwaNWqEHj16oHfv3qKhefrY2dlh27ZtOHfuHA4fPoxHjx4JWVhNmjTB0KFD0bFjRyELKDcmJiaYOXMmhg4dioMHD+LmzZsICgpCYmIizM3N4ezsjJYtW2LQoEFGn1cvJyNHjkTfvn1x4MABeHl54dWrV0hISICZmRlq1KiB1q1bY+jQoUU6/FYfiUSC/v37o2fPnrh8+TK8vLzw9OlThIWFITExEWq1Go6OjqhYsSKaNWuGrl27ol27dgYFQvv27YtOnTrh4MGDuHr1Kl68eIH4+HiYmpqiWrVqcHNzw8CBA/N8D0xMTLBkyRJ89NFHOHjwIO7cuYPo6GhYWVnBxcUFPXr0wP/+9z9YW1vj+PHjxnppBH369MF7772H/fv34+rVq/Dz80NiYiIsLCxQu3ZtdOzYEUOGDMl1arEGDRrgxIkTOHPmDM6fP4+HDx8iNjYWCoUCDg4OqFevHrp06YL+/fvna/hocZBKpbCwsICtrS1cXFzQqFEj9OzZU1REJztzc3P88ssvOHXqFI4dO4bHjx8jPj4eUqkU9vb2cHV1RatWrTB48GBUrVoVT548EQJ7p0+fxuzZs4VhsVkcHBywZcsW3LhxA8ePH8e9e/cQFRUFpVKJChUqoHnz5ujbt68wV15BmJqaYsmSJRg8eDBUKhVevXqF9evXY/bs2QU+Z0mRaPJbEocKzNvbWxgDLpVK0aJFixLuUeEolUqhxDwgriZERPnD56lsuuoXg04H9kNSWVw9TRPQFDbKCkhcqjtkpaSs+ecyZt09IdpmG9EC8XOH6T+gDOPzRKSfSqUSDQGsW7euMDeWPhqNRhhaCWROTm6swndEbxs+T0TGU5qep/z+bNWnsLGiIiueQURE9KYLS0wHZHoy8xTmmPxureLvUC5q2upm7KVoUvS0JCIiIiKisoKBPSIiogKKTpEDprrz1JmozTG8lXMJ9ChnLja6Q0ZUpunIULKABhERERFRWcXAHhERUQFFJ2foZOxJNSa4Ou591HeyLaFe6acvsAdZOhLTlcXfGSIiIiIiMgoG9oiIiAooM2NPHNhzsXVEO5ecJ1QuKeXNrWCavWaWWTqSMhjYIyIiIiIqqxjYIyIiKqDopAydobjVbexLqDe5k0gkcDDNVnmNGXtERERERGUaA3tEREQFFJaSBIlUXFy+urVDyXTGABVkduINpnK8Tk0vmc4QEREREVGhMbBHRERUQBHpiTrbnK1KZ8YeADiZi/smkQCvkuJKqDdERERERFRYDOwREREVUIw8WWdbVSs7PS1Lh6pWDjrbApJji78jRERERERkFAzsERERFYBKrUGyOkVne9VSnLFXXU9gLzglvtj7QURERERExsHAHhERUQHEpMihyVY4AwCcrUtvxp6rjW613vC0+OLvCBERERERGQUDe0RERAUQnSIHZBk620vzHHvv2JfX2RYl150nkIiIiIiIygYG9oiIiAogIDYVyJaxJwFQ2dK2ZDpkgJq2dtCoxT/6YxUM7BERERERlVUM7BERERXAT16vdDL27EytYCo1KaEe5c3OQgbILUTb4lW6BUCIiIiIiKhsYGCPiIgon55EJOH0s2jAVBzYK83DcAHAzsIUUIgDe6maVMhVyhLqERERERERFQYDe0RERPl0xT8GkKghMRUHxGrb6xanKE3MTaWQKi10trMyLhERERFR2cTAHhERUT6lylU62XpA6a6ICwASiQQWGiud7YHJcSXQGyIiIiIiKiwG9oiIiPIpXakCZHKd7aV9KC4AWMFaZ1sAA3tERERERGUSA3tERET5lKFU683Yq2JVujP2AMDBRLdqb2BybAn0hIiIiIiICouBPSIionxKV6p1KuICZSNjr5K5bvCRGXtERERERGUTA3tERET5lJmxVzaH4laxsoVGLf7x758YU0K9ISIiIiKiwmBgj4iIKJ8yynDGXnkbc0BhLtrGjD0iIiIiorKJgT0iIqJ8ylCqdDL2LE1ksDezKKEeGa6CtRmgEPczIi0RCrWqhHpEREREREQFxcAeERFRPunL2KtqZQeJRFJCPTJcBWszQC4O7KmhQWhKQgn1iIiIiIiICoqBPSIionxKU6h0quKWhWG4QFbGnrnO9sAUDsclIiLDKBSKku4CERH9i4E9IiKifEpWZUAi1Yi2OVuXjcBeeSvdobgAEMh59oiIKA/JyclYvnw5tm7dqnf/xo0bUa9ePdSrVw8bN24s5t4REb2dGNgjIiLKp0Rlss62spWxpxvYux4aVgK9ISKisuLmzZvo2bMntm/fDqVSWdLdISKifzGwR0RElE/JmlSdbVWt7EqgJ/mXOcee7lDcI88CS6A3RERUVty5cwfR0dEl3Q0iIsrGtKQ7QEREVNakqtN0tlUtSxl7SnNoNBJIJP8NJ47KSIBarYFUWvoLgBARUek0adIkTJo0qaS7QUT0VmHGHhERUT6lafQF9spGxp61mQkAiW4BDVkGUhWqEukTEREREREVDAN7RERE+ZSBshvYk0j+zcjTCeylIzFdXvwdIiIiIiKiAuNQXCIionySS9N1tlWxLBuBPYHCAkCCsCqRahCQlIiq9lYl1yciIsrTiBEjcPv2bVhZWcHb2xvPnz/HqlWrcPfuXchkMtSsWRO9e/fGZ599JhwTHx+PI0eO4Pbt23j27Bni4+ORkZEBa2trODk5oUWLFvjwww/h5uaW4/W0/fjjj/jxxx8BABMnThSG327cuFHvdn38/Pxw4MAB3L59G6GhoUhNTYWDgwNcXV3x/vvv45NPPoG9fdmY5oKIqCQxsEdERJRPSmmGaN1EI4OFqayEepN/g5tWwcHwVzrb/RJi0L5a5RLoERERFURwcDBGjBiB+Ph4YdujR4/wzjvvCOu7du3C2rVrkZqqW/gpPj4e8fHxeP78Ofbv34/evXvj+++/h5mZWZH1OTU1FStWrMCBAweg0WhE+6KjoxEdHY3bt29j8+bNmDt3LgYNGlRkfSEiehMwsEdERJRPqmyBPXONRQn1pGAmveeKg3/c19n+Kjm2BHpDREQF9fXXX4uCeln69OkDANi2bRtWrlwpbG/QoAHc3d1RoUIFyOVyBAcH4/Lly8I5Tp48iWrVqmH69OnCMUOHDkWnTp3g5eUFLy8vAECHDh3QoUMHAECLFi0M7m9GRga++OILUQZggwYN0K5dO9jb2yMsLAyXLl1CVFQUkpKS8PXXXyMiIgITJkww+BpERG8bBvaIiIjyQaPRQGMiDuxZoGwF9t51LY9BDVzxV+Jz0fag5PiS6RARlWoalQIJJ5cj4sk5aOS6WV9vK6mZFWya9UHF/gsgKYGs7dTUVNy+fRvVq1fHwoUL0apVK8TExOD06dNo164dwsPD8cMPPwjtFy5ciP/7v//TOU9KSgpmz56Nc+fOAQAOHDiAKVOmwNQ080/F3r17C9fLCuy1aNECo0ePznefly9fLgT1LC0tsWzZMuH8WTIyMrB69Wrs3LkTQObw3oYNG6Jz5875vh4R0duAgT0iIqJ8eJ2WAkjFQ4cspZYl1JuCa125Ev5KFG8LTY0vkb4QUekW//cyJJ5eVdLdKJXSA70BAE6DFpfI9U1NTbF161a4uLgAAKysrDB27FgAwIkTJ5CenjknbOfOnfUG9QDA2toaCxcuxPnz56HRaBAfH4+goCDUqlXLqH0NDAzEwYMHhfXVq1ejW7duOu3Mzc0xb948ZGRkYP/+/dBoNFi9ejU6duwIqZS1H4mIsuO/jERERPkQlJKgs81GWvYKTtSwcdTZFpGhe29ERPKAuyXdhVItze9miV37vffeE4J62bVs2RKzZs3CsGHDMGbMmFzPU7FiRVSoUEFYT05ONmY3AWQGGpVKJQCgbdu2eoN62mbMmAErq8yfry9fvsS9e/eM3iciojcBM/aIiIjyISj5zQjslbMwh0ZhBolMLmyLzkjM5QgieluZubgh3fdSSXej1LKs3bbErt2yZcsc97Vq1QqtWrUy6Dx+fn5QqVTCukKhKHTfsrt5878AaK9evfJsb2dnh/feew9nzpwBANy6dQutW7c2er+IiMo6BvaIiIjyIURPYM/OtOwF9mzMTQGFOaAV2ItVJEGj0UAikZRgz4iotHHo8zUkEgnSOceeiPYceyWlevXqBrdVqVQICAhAcHAwgoODERQUBD8/Pzx58gRxcXGittmr1RpDUFCQsNygQQODjmnYsKEQ2NM+noiI/sPAHhERUT6E6hmKa29qUwI9KRwbM1NAYQEgSdiWoVEgXp4GR/OyF6gkoqIjMZHBod8CWP1vBQP/pYy9vX2ebW7cuIFdu3bBy8tLmHMvO4lEAolEArVabewuCrSr9zo66k4HoY92O33Vf4mIiIE9IiKifIlIS9LZ5iizLoGeFI6Nucm/gT2xwOQ4BvaIiMoIExOTHPep1WosXLgQBw4c0Nlna2sLV1dX1K9fH82aNUOHDh0wbNgwhIaGFllfC5IFqD08mIUziIj0Y2CPiIgoHyLSdQN75czKYGDPzBSQm+tsD0yOQ/PyziXQIyIiMqatW7cKQT2JRIJ+/fqhV69eaNSoESpVqqTTPi0trUj7Y29vj6ioKABAXFwcatSokecx2kOEbW1ti6xvRERlGQN7RERE+RCVLWNPozKBnZlu5ltpl1PGXlBKnJ7WRERUlsjlcmzbtk1Ynz59OsaOHZtje6VSicTEoi2g5OLiIgT2nj59imbNmuV5zJMnT4TlmjVrFlnfiIjKMuYzExER5cPrjGwZe0ozWJjmPBSqtLKUmUCi1D8Ul4iIyjZ/f3/RnHRDhw7Ntf2dO3egVCqFdX1z7RV2fkXtirYnT57Ms31iYiK8vLyEdUMr/BIRvW0Y2CMiIjKQRqPBa3mKeKPSDOamZe/HqUQigTV0hxAHMLBHRFTmyeVy0XpsbGyubVeuXCnaph3ky6I9x5323HeGGjBggDAn4K1bt3D+/Plc269du1YYHly5cmVRYJCIiP5T9v4SISIiKiGJinRkqBXijUozWJTBwB4A2JqZQ6MUz8oRxMAeEVGZV6tWLZiZmQnrK1eu1An2AUBgYCA8PDxEQ14B/fPt2dj8VwG+IEU2qlevjo8//lhYnzFjht7MPblcju+//x579+4Vtn3zzTcwNeUsUkRE+vBfRyIiIgOFp+oWziirGXvAvwU0FBaAabKwjUNxiYjKPhsbG3zyySfYvXs3AODcuXPo3r07OnfuDCcnJyQkJODJkye4ffu2UK1WJpNBocj88kp7GG+WatWqCcvHjx+Hra0tKlWqhDp16qBLly4G9WvevHl49uwZHjx4gLS0NHz11VfYsmUL2rVrBzs7O4SHh+PSpUuIjIwUjhk7diy6detW0JeCiOiNx8AeERGRgcLT9Ewsriibc+wBWQU0zAHL/wJ7rzNSkKLIgLVMt2IuERGVHbNmzUJISAguX74MAAgPD8eePXt02slkMowbNw4AsHHjRgDA48ePMWjQIFG79u3bw8XFBQEBAdBoNPjjjz8AAJ07dzY4sGdubo4dO3bgu+++w+HDh6HRaPDkyROdjEEAsLa2xsKFC9G/f3+D75mI6G1UNlMMiIiISkB4qp7AntK87GfsZROUEl/8nSEiIqMyNzfHL7/8gnXr1qFz586oWLEiZDIZzM3N4eTkhDZt2uDLL7/E2bNnMXHiRFFw7vTp00hPTxedz8LCArt27cKgQYNQqVIlyGQyWFlZ6R3imxsLCwssX74cR44cgYeHB+rVqwd7e3uYmJjAwcEB7u7umDFjBs6fP8+gHhGRAZixR0REZKAIfRl7SjNYyMpoYM/cFEjUzcwLTI5DA4dKJdAjIiLKy65duwxuK5FI0Lt3b/Tu3TvPtg0bNsSzZ89ybePk5IRly5bluH/SpEmYNGmSQX2rX78+5s2bZ1BbIiLKWdn8S4SIiKgE3AmP0t2oNIO5Sdn8cWpjZgLIdTP2OM8eEREREVHZUDb/EiEiIipm/4Qn4s8ngbo7FGawlJXNOfYcrGQ5DMVlYI+IiIiIqCxgYI+IiMgAf9wPhcpEPN+QRi2BpYk5Gle2LaFeFU4VW4vM4hnZMGOPiIiIiKhsYGCPiIjIAFFJGYCpeIJwidIc+0e4wdq8bE5ZW8XOHFDJoFGLfx14GK1nyDEREREREZU6DOwREREZIFWh0gnsuVd1Qt+GZbfIRBU7CwASneG4vnGvoVSpS6ZTRERERERkMAb2iIiIDJAkz4DERCXaVs3avoR6YxxVbP8N6MnFw3FVJhm4FRRbAj0iIiIiIqL8YGCPiIjIAPGKFJ1tVazsSqAnxlPF7t+AXraMPYkECEyJL/4OERERERFRvjCwR0REZIBEVarOtiqWZTuwV8lWf2AP+H/27js6rupaA/h3p/dR75Yty12uGIwBg03vEOqj10ASAgklBdIbARJCCqQQAqEn9OrQwWAbsI17L7LVexlN7/f9IXvkq3tlq0zT6Put9dab2becLZPRaPacczZQzwYaRERERERpj4U9IiKiQXBF5YW9ItPo7IZ7gFa9/88Apc64Hhb2iIiIiIjSHQt7REREg+BVKOyN9hl7MUH5jL1Gb08KEiEiIiIioqFgYY+IiGgQ/PDLYqN9j70YhaW4LX4W9oiIiIiI0h0Le0RERIMQFHyyWEkGFPaOLs8CwjqIoiCJdwSdqUmIiIiIiIgGjYU9IiKiQQirApLngiggV29KUTbxc/sJEwEIsn32usOu1CREREkjimKqUyAiIhrV0uG9lIU9IiKiwwhFooiqg5KYQTBAJYz+t9ELZxXjmvllssKeK+pBVIymKCsiSgSVSvo7KxwOpygTIiKizND/vbT/e20yjP5PJERERAnmC0UAjXTGnkkwpiib+NKqVfjnJXNkDTSiiKLFx1l7RJlEEATo9X1FfKeTS+6JiIhG4uD3Ur1eD0EQDnF2YrCwR0REdBjdvgAEjfTbOLN69C/DPUCnUUETkRcqa93dKciGiBLJbrfHHjscDvh88v1DiYiI6PB8Ph8cDkfs+cHvscmkScmoREREo0idW94h1pZBhT0AMMIEd79YrbsbxxRMSEU6RJQgdrsd7e3tEEURkUgEtbW1sNlssFgsMBgMUKvVsXMPnHNAJBJJyUwEokzA1xNR/KTy9RSJROD3++F2u+F0OmN77AmCwMIeERFRuqpXKOxlaS0pyCRxrGqLrLBXxxl7RBlHo9GguLgYzc3NEEURoiiip6cHPT3y33MAEI327bWZin2DiDIJX09E8ZNOrydBEFBcXAyNJjUlNhb2iIiIDqPBI//Am6M1pyCTxMlWW9DcL1brYWGPKBPZ7XZoNBo0NDRIPhj1J4qiZFNwrVbLGUZEw8TXE1H8pNPrSaVSoaysDGZz6j4bsLBHRER0GM1eeROJPH1mzdjL1VllMe6xR5S5zGYzKisr4fF44Ha74fF4JMuaDuj/wYmIho+vJ6L4SeXrSa1Ww2w2w2KxwGw2p2ym3gEs7BERER3Glo4OWazAYEtBJomTZdBDDOkgaIOxGAt7RJlNo9HAbrfH9gQSRVEygy8cDmPLli2x55WVlSn/8EI0WvH1RBQ/qXw9qVSqtJtty98kREREh7ByXxc+qmmCkC2NFxnlM9xGM5teA3j1wEGFvTp3N0RRTLs/XogoMQRBkDXPOJharZYcJ6LB4+uJKH74epLijp1ERESH8NeV+wBNUBITRaDIlFmFPatBC4QMkpg7HER30JeijIiIiIiI6HBY2CMiIjqE/25okhX2ENbCqsusvXFsBo2ssAcAe3o6U5ANERERERENBgt7REREA4hN89cEpAfCepi0mTXdP9uoBYLywt5HNQ0pyIaIiIiIiAaDhT0iIqIBNDsDAERAE5IeCOtg0mVWYe/kyXlASC+Lc8YeEREREVH6YmGPiIhoAHu7PIAmCFnviLAu42bszS/LwmkV42TxBq8j+ckQEREREdGgsLBHREQ0gOoOr3x/PSAjZ+wBwK1HT5PFWgM9KciEiIiIiIgGg4U9IiKiAVR3euT76wFAKPNm7AFAockMMayRxDqCrhRlQ0REREREh8PCHhER0QD2dnoBrdKMPT0s+swr7Cl1xu0Os7BHRERERJSuWNgjIiIaQJ3Dp7gUd25BHkw6jcIVo5tVr5E10PCLAXhCCrMWiYiIiIgo5VjYIyIiGkCPP6RY2PvrefNTkE3iKc3YA4BaT3cKsiEiIiIiosNhYY+IiGgATn9YsbA3v6ggBdkknlmnhqBU2HOzsEdERERElI5Y2CMiIhqAUmEvV2+CTp15y3ABQBAEGGGSxVnYIyIiIiJKTyzsERERKRBFEc5AWNY8o9hoS1FGyWERzLJYnduR/ESIiIiIiOiwWNgjIiJS4AtFEIlGAbW0sFdosqYoo+TI0sh/Pu6xR0RERESUnljYIyIiUuD0hwF1GIJKlMQzfcZett4EMSr986COS3GJiIiIiNISC3tEREQKnIEwoAnI4sXGzJ6xZ9drgaC0gQb32CMiIiIiSk8s7BERESkYqCNusSmzZ+xZ9RogpJfEmrxOBCPhFGVEREREREQDYWGPiIhIwUCFvcIMn7FnNWiAkHTGnggRDd6eFGVEREREREQDYWGPiIhIgUuhIy6Q+TP2bAqFPYDLcYmIiIiI0hELe0RERAqcgZDyUtwMb55h02tke+wBQI27KwXZEBERERHRobCwR0REpGDgPfYyfCmuwh57ADvjEhERERGlIxb2iIiIFCgV9gwqLSwaedErk3ApLhERERHR6MHCHhERkQJnQF7YyzdYIAhCijJKjiyjFgjrIEalPydn7BERERERpR8W9oiIiBQozdgryvD99QBgXqkdgACEpTMTaz2OlORDREREREQDY2GPiIhIQZfPC0EdkcQyfX89AJicZ0aJzSBroFHvcSAqRlOUFRERERERKdEk4qaiKOKzzz7Dm2++iY0bN6KjowMqlQpFRUWoqqrCueeei0WLFkGlin9d0ePx4LXXXsOHH36InTt3wuVyISsrCyUlJTj55JNxwQUXoKCgIO7jEhFRZukIumWxcWZ7CjJJLkEQcOKkXDzXIp2xF4pG0Ox1oXQM/BsQEREREY0WcS/sNTU14Qc/+AHWrFkjO1ZdXY3q6mq8+eabmDt3Ln7729+isrIybmOvXbsWd911F5qbmyXx9vZ2tLe3Y+PGjXj00Ufxk5/8BBdeeGHcxiUioszTGfAA/fpklJgzfykuAJw4KQ/P1Ss30GBhj4iIiIgofcR1ylxjYyOuvPJKSVHPZDJh3rx5WLBgAfLy8mLxDRs24NJLL8Xu3bvjMvbatWtxww03SIp6paWlWLBgASoqKmIxj8eDe+65B//5z3/iMi4REWWmnrBHFhsLe+wBwIxCq3JnXA8baBARERERpZO4zdiLRqP43ve+h6amJgCAVqvF7bffjquvvhp6fe+UB1EU8d577+HnP/85HA4H3G43vvnNb+Kdd96BTqcb9thutxu33347/H4/AKC4uBj33XcfjjnmmNg527dvxz333IPt27cDAH7zm99g9uzZqKqqGva4RESUuZxhryxWZMz8PfYAoNCiB0J6WZydcYmIiIiI0kvcZux99NFHWLduXez5r3/9a3z961+PFfWA3n17zjjjDDz66KOx/fUaGhrw5ptvjmjsRx99FG1tbQAAq9WKJ598UlLUA4Dp06fj2WefxZQpUwAA4XAYf/jDH0Y0LhERZS5XVF7YKzaNjRl7hVadrHkG0LsUl4iIiIiI0kfcCnsvvfRS7PHs2bNxwQUXDHju3LlzsXjx4tjzDz/8cNjjBgIBvPDCC7HnN910EyZMmKB4rsViwb333ht7vnLlSuzcuXPYYxMRUWYKhCMIwi+LF4+RGXsmnQZmlQmiKI2zsEdERERElF7iUtgTRREtLS2xWXhnn332Ya+ZPHly7HFtbe2wx16xYgV6enoAACqV6rBNMfovv3333XeHPTYREWWmTk8I0AYlMQEC8gzmFGWUfEUWIxCWbpNRxz32iIiIiIjSSlwKe4Ig4M0338S6devw8ssv49xzzz3sNU6nM/bYbB7+B6Uvvvgi9njKlCnIz88/7DXHHXdc7PEnn3wy7LGJiCgzdXiCgEZa2DOrjFAJce05ldYKrXpZA41adzfE/tP4iIiIiIgoZeL6CcVoNGLWrFnIzc095HnBYBDLly+PPZ8xY8awxzx4Ke1gG2FMmzYt9nj37t0IBALDHp+IiDKPUmEvSzN2ZusByg00POEgugLyvQeJiIiIiCg1kj71IBgM4ic/+QkaGxt7E1CpcO211w77fvv27Ys9Hj9+/KCuKSsriz0Oh8NoaGgY9vhERJR5Wtw+CJqQJJart6Qom9QosOrZQIOIiIiIKM1pEj1ANBqNFc9WrFiBZ555BnV1dbHjP//5z1FZWTnse3d1dcWeD2YZLgDk5eVJnre3tw87ByIiyjz79u/derCiMdI444DeGXvywl6NuxtH5JUpXEFERERERMmW8MLefffdh6effloWLyoqwo9+9COcfvrpw763y+VCJBKJPbfZbIO6zmqVfjg7eL+/ZAqHwykZN14O/rdXek5Eg8fXU3qpdXbJYsVGy6j/vT0U+WaNbCkuAOxzdqT9vwNfT0TxwdcSUfzw9UQUP3w9SSW8sNfU1KQYz87ORltbG/x+PwwG+YyAwei/N55eL/8AokSnk3b5S8Uee9FoFBs3bkz6uIm0ZcuWVKdAlDH4ekqtna2NsndIncefcb+3D8Xb4VOcsbeudjc2hgb3RVq64OuJKD74WiKKH76eiOJnrL+eEr7HXkdHB6ZNm4aFCxdiypQpUKl6h9y+fTt+85vf4Pzzz0d1dfWw7t1/xoBarR7Udf3PG+vVXSIikuoK+2WxMoMxBZmkTq5BrbjHXnOQzTOIiIiIiNJFwmfsPf/885JCWnt7Ox555BH897//BQDU1NTg+uuvxxtvvIHs7Owh3Xu4Bbr+52m12iGNS0REma0nKi/slejHVmEv36gCRDXEsAaCpu+LtJagJ4VZERERERHRwRJe2OtffMvPz8cvf/lLlJWV4cEHHwQAtLa24q9//St+8pOfDOne/ZfwDnZJ7XCX8MaTSqXCrFmzkj5uPEUiEcmU15kzZw561iQRSfH1lD5CkShcX66UxU+YPR/jLUP7Amo0mxaOAG+937scV+OOxdujAcyZMyeFmR0eX09E8cHXElH88PVEFD+Z9nravHkzotHosK9PeGFvIDfddBPef/99bNq0CQDw+uuv40c/+lFsqe5gWK1WqFSq2D+A2+0+zBVQPC8rK2vQY8aTRpOyf/6EUKvVGfczEaUKX0+p8XlNF/7vmbXosXkg9DtWZs2GRj12/ptoNBrkmXXoCBkAY9/7ZlfQC78YgUWb/C/FhouvJ6L44GuJKH74eiKKn7H+ekr4HnuHcv7558ceu1wu1NTUDOl6lUqF/Pz82PPOzs5BXdfR0SF5npeXN6RxiYgoM935xlY09vgBTVAS14ha6MdQUe+AUrtBsTNurbs7BdkQEREREVF/KS3slZeXS547HI4h32P8+PGxx3V1dYO6pr6+PvZYq9WitLR0yOMSEVFmCUeiWF3v6H3Sr7CnE4fXvX20K7EZFBtosLBHRERERJQe4jL9YO/evXjppZfQ0NCA5uZmPPPMMzAaD7/JeDAo/eBks9mGPPbMmTOxevVqAMCOHTsGdc327dtjjydNmsTmGUREhED4wL4WoqywZxTGVuOMA0rsBqBRobDnYWGPiIiIiCgdxGXGnsfjwRNPPIH3338fmzdvxhdffDGo6zZv3hx7rNVqUVxcPOSxFyxYEHu8detWOJ3Ow17z+eefxx4vXLhwyGMSEVHm8R8o7KnDEFSi5JhpjBb2Sm3KS3HrOGOPiIiIiCgtxKWwN23aNEkDiueee+6w13i9Xrzyyiux50cffTTMZvOQxz7mmGNgtVoBAKFQCC+//PIhz9+4cSO2bdsWe37mmWcOeUwiIso8/nCk90G/2XoAYFGbkpxNeiixG3q74vbDpbhEREREROkhLoU9rVaLiy66KPZ8xYoVeOuttwY8PxwO4+6770Z7e3ssdtNNNw1rbIPBgIsvvjj2/JFHHsHOnTsVz3W5XPjxj38cez537lzMmTNnWOMSEVFm8Yf2z9hTKOxZx2hhr9RmACIaiBHpnwucsUdERERElB7i1jzjlltuQWFhYez5Pffcg0cffRQ+n09y3pYtW3Dttdfivffei8UuueQSxSWxd999N6ZOnRr7v4aGBsWxb775ZuTk5ADoXRZ83XXX4YMPPoAo9i2l2rFjB66++mrs3r0bQG875Lvvvnv4PzAREWWU2FJchcJelnboM8ozQandAECQzdrjHntEREREROkhLs0zAMBiseCf//wnrrnmGvT09CAUCuGhhx7C3//+d0ydOhU6nQ6NjY1obGyUXHfKKafgF7/4xYjGzsnJwUMPPYRvfvOb8Pv96Orqwq233oqioiKUl5ejs7MT1dXVkmvuuusuzJs3b0TjEhFR5uhbihuQHcvWWpKcTXoYn71/b8GQATB4Y/FmrwvBSBg6ddz+jCAiIiIiomGI24w9oHevvZdffhlz586NxXw+HzZs2IDVq1dLinomkwl33nknHnnkEWg0I/9gcMwxx+Cxxx5DSUlJLNbS0oLVq1dLinoGgwE/+9nPcOONN454TCIiyhyxpbha+Yy9XN3YnLGXZdTCqtfIGmiIEFHvcaQmKSIiIiIiion7V+3l5eV44YUX8Nlnn2Hp0qXYsGED2traEAqFkJWVhcmTJ+O4447DhRdeGFs+Gy8LFizA//73P7z66qv44IMPsGfPHjgcDuj1eowfPx7HHXccLrvsMpSWlsZ1XCIiGv0O1Twj3zA2Z+wJgoAJOUZsVmigUePuRqUtLwVZERERERHRAQlbQ3PCCSfghBNOGNE97r//ftx///1DusZoNOLKK6/ElVdeOaKxiYhobBmoeYYYVSFLZ0xBRulhQrYJmxvkhb19zi6gROECIiIiIiJKmrguxSUiIhqtBpyxF9bBpFMnP6E0MT7HJFuKCwC/XLYJzU5/CjIiIiIiIqIDWNgjIiLCIbrihnQwasduYW9CtlHWFRcAGr0O/PPL2hRkREREREREB7CwR0REhP1LcYUIBHVEeiCsg0Ezdt8uJ+SYgLAOYlSQHtD5sbrOkZKciIiIiIio19j9pEJERHQQfzii2DgDYc7YAwT5clxtAI09XIpLRERERJRKLOwRERFh/4w9LQt7/U3Jt8CiV8uX42oD0IzdfxYiIiIiorTAwh4RERGAQCTKGXsKLHoNfn7qVAj9CnuCIKIn7ElRVkREREREBLCwR0REBADwhw61FHdsv13etaQS314wVRZ3Rd0pyIaIiIiIiA4Y259UiIiI9vOHo4AmID8Q1o/pGXsHHFFYJIt5RW8KMiEiIiIiogNY2CMiIsKBwp7CjL3Q2F6Ke8B4S7Ys5hdY2CMiIiIiSiUW9oiIiKC8FFcUAUS0Y34pLqBc2AurfYhExRRkQ0REREREAAt7REREAICA0oy9sA6AACPbv6LMZJcHtX54g5HkJ0NERERERABY2CMiIgKwf8aeVqmwBy7FBaBTa2ASTNKgNgBPMJyahIiIiIiIiIU9IiIiAPCGw4A6JA3uL+ypVEIKMko/drVFGtD54Q6wsEdERERElCos7BEREQFwhb0Q+tfv9hf2qFe2RlrYE1RRNHhcKcqGiIiIiIhY2CMiIkJvYU+GhT2JXJ1NFtvn7EpBJkREREREBLCwR0REBABwiz55MMTC3sEK9fLCXq2nOwWZEBERERERwMIeERERAMArKs3Y0yc/kTRWbJB3xq33OJKfCBERERERAWBhj4iICADgF/3yYFib/ETSWJk5WxZr8jmSnwgREREREQFgYY+IiAgAEIBSYY8z9g5Wbs6SxVoDPclPhIiIiIiIALCwR0REBAAIqZQKezpcd9S45CeTpnKNRoj9ZjG2B5wpyoaIiIiIiFjYIyIiAhBWBSTPxYgGOUY9vn3chNQklIZMWjUQNEhinSEnRFFMUUZERERERGMbC3tEREQAouqgNBDSYdNdSzC/LCsl+aQjs04DhKSFvYAYQmdAofEIERERERElHAt7REQ05kUiUYhq6Yy9fIMFJXbDAFeMTWadfMYeAOxzdaYgGyIiIiIiYmGPiIjGvBafB4JKupzUJBhTlE366i3syf9d9rq6UpANERERERGxsEdERGNejdMhi1nUpuQnkuaUluICwD43Z+wREREREaUCC3tERDTm7VMo7GVrzclPJM2ZBliKyxl7RERERESpwcIeERGNeTUuhyyWr7cmP5E0p1YJ0ItG9G+Cu72rPTUJERERERGNcSzsERHRmNfgdspiRSYW9pQUWY2y5bifNzXh3R1tKcqIiIiIiGjsYmGPiIjGvGafvLBXYrKlIJP0d/LkfNlyXFHrxwOf7EpRRkREREREYxcLe0RENOa1+V2y2HiLPQWZpL+vzSySdcYVBGBrZ0eKMiIiIiIiGrtY2CMiojGvM+CWPBejKpRYLCnKJr2dMjkPuqhRFu8IyWc9EhERERFRYrGwR0REY54j7JEGwjpkm3SpSSbNGbRqnDqhXH5A50cwHE1+QkREREREYxgLe0RENOa5Il5pIKxDlkGbmmRGgR8umikPan1wBkLJT4aIiIiIaAxjYY+IiMY0XziEoNivIBXWwW7UpCahUWB6dr48qPOjxxdOfjJERERERGMYC3tERDSmKXXERUgHm56FvYHk6E3QC/1mNGr96PFzxh4RERERUTLxUwsREY1pTV55YU8PAzRq+XdfEW87Aq1rEPG0IhrohqA2QG0phTarEtrcKgiCkIyUU04QBORq7WgKHtQJV+dDj58z9oiIiIiIkomFPSIiGtPqXA5ZzKwyxR5HvG1wbvonPHteRahjy4D3UZuLYZxwOqxV18NQckwiUk0rhXppYU/QhNHscQPIS11SRERERERjDAt7REQ0pt27bAuglsZsGhMivg50f/4LuLc9BTESOOx9Ip5muLc+CffWJ6EvOQ7ZC38CY/nJCco69UqNWVjvksb2OrsATEhFOkREREREYxL32CMiojGrtsuL7d1dsvgS9WY0PD0brs3/HFRRr79A00q0vHom2t65BhFvWzxSTTvjzTmyWK2nOwWZEBERERGNXSzsERHRmFXn8AGaoCz+7fCfEfV1KFwxNJ6d/0XD03Pgq/1wxPdKN5W2XFmswcvCHhERERFRMnEpLhERjVndvhCgkc7I04oRZIt+xfP1RQtgHH8qdPmzodLnQAx7EOrZB3/dx/DVfQQx7JVdE/V3ouX1c5B93G9gn39XxjTYmJol30uvNdCTgkyIiIiIiMYuFvaIiGjM6vaGZDP28kUP+pfeTJMuQNaCu6EvmKd4H/vcbyPi74Zr06PoWfcnRP39lveKUXSv+BHCzlrknvhnCMLonzA/LTsPoggcXKfsDLGwR0RERESUTKP/kwUREdEwdftCUGmlM/YKop7YY7WlFIXnv47Cc14YsKgXO9eQjawFd6Psms0wT7tC8RzXpkfR8f6NEKPhkSefYvkmAxDWS2I9EdcAZxMRERERUSKwsEdERGNWp6sDojoiiRWKvYU9ffFClFz+BUwVZw3pnmpTPgrOeBL5ZzwJQWOUHXdvfw4dH9wEUYwOP/E0YNKpIQQNkphb9CA6yn8uIiIiIqLRhIU9IiIak0QxikkNv5LF86MemCZ9DcUXfQCNuWjY97dMuwLFl34KtblYdsy9/Tl0r/jRsO+dDgRBgC5qksREIYpmL2ftERERERElCwt7REQ0JnV//jOYgptl8WL7OBSc+RwEjV7hqqHRF8xF8SUfQ2MdLzvWs/Yh9Kz784jHSCUTzLLYXldnCjIhIiIiIhqbWNgjIqIxx7vvHfSs+R1aVRbZsanzboKg1sZtLG1WJYovVS7udS3/Iby1H8RtrGSzqayyGAt7RERERETJw8IeERGNKWFPM9rf/zoAoE2QzzgrsebEfUyNdRyKLlwKlTFPekCMov1/VyHkqI77mMmQq7HJYvtcXQpnEhERERFRIrCwR0REY4YoRtHx3tcR9bUDANpVJtk5JUZ5sSoetNlTUHT+m7KGGtFAN9revhTRsD8h4yZSpS1XFtvW3Z6CTIiIiIiIxiYW9oiIaMxwbXkCvrq+pa+tgnwpbokpMYU9ANAXHYm8Ux6VxYMdm9G9/O6EjZsoU3NyIEalf0rs6ulIUTZERERERGMPC3tERDQmhD3N6F5+jyTWppIuxRVEFXL08ll88WSZdhns8++UxZ0b/wbv3rcTOna8VeSYgKBBEqv3dKcoGyIiIiKisYeFPSIiGhM6l92BaLBHEmuEXfLcKBghCELCc8k+7l4YSo+XxdvfvwkRb1vCx4+X8dkmICQt7DnCHnjDwRRlREREREQ0trCwR0REGc+77x14d78qizcK0sKeVZ3Y2XoHCCo18s94Eip9tiQe9Xeic9kdSckhHibkGIGgURZnZ1wiIiIiouRgYY+IiDKaGAmh67PvyeKO8ZcjohYlsSyNvEtuomis45B36j9kcc+ul+CpfjNpeYxEmd0IQaGwt9vJffaIiIiIiJKBhT0iIspozo1/R6h7tySmMuZj+/jbZOfm6uXNNBLJPOkCmKddIYt3fvwdRPyOpOYyHDqNCrkauyxezcIeEREREVFSsLBHREQZK+LrgGPVb2Tx7GN/hT2+qCxebExcR9yB5C5+ECpjviQW8TSha8Xo6JI73pIji23tGj37BBIRERERjWYs7BERUcZyrL4f0YBDEtPlzYa16jrUunpk55eZ5bPPEk1tzEPukj/K4u4tT8DXsDzp+QzV3PwCiKK04chTm3bjtc3NKcqIiIiIiGjsYGGPiIgyUtjVANemR2XxnMUPQlCp0eSVF/YqbFlJyEzOPOUSmCaeK4t3LbsDYjSSgowG7/QphUBQ2hkXOh9ue20LwhH5rEgiIiIiIoofFvaIiCgjOVb9FmIkIImZJp4N47glAIA2v0t2zZQs+bLSZBAEAbknPQxBJ10KHOzYBNeWx1OS02CdMiVfXtjTBtDk8qKm25eapIiIiIiIxggW9oiIKOOEHNVwbXuyX1RA9jG/jD3rCrpl103PyU1sYoegsZQge+FPZfHuz3+OiL8rBRkNTpZRi2JDliQmCAC0PrS7A4rXEBERERFRfLCwR0REGcex+j4gGpbEzFMugS5/duy5M+KVXhRVocya3K64/dnm3AJtzjRJLOrvhOOLX6Uoo8E5vqxMHtT50O4JJj8ZIiIiIqIxhIU9IiLKKCFnLdw7npcGBTWyj/mZJOQTpctE1VE9VKrUvi0Kai1yFz8kizs3PYpgx5YUZDQ4V82cLA/q/Wh3s7BHRERERJRILOwREVFGca79o2y2nmXaFdBmT5HEgoJf8lyPfvvEpYhx/CnyRhpiBF0rfpyahAZhsj1PHtT50O7hUlwiIiIiokRiYY+IiDJGxNsG15Yn+kUF2I/6gSTiDgYgqvoV/1SmBGc3eDmLfw9BrZfEfDXvwNewPEUZHVqFJQcqCNKgzscZe0RERERECcbCHhERZYye9X+BGJHOxDNNvgC6nKmS2G6HvBmFXWNOaG5DobVPhG3ut2Xx7hU/giiKKcjo0HRqDcrMWf2CPnRwjz0iIiIiooRiYY+IiDJCNOSBa9M/ZfGso34oi+3slhf28vSpbZzRn/2oH0Cls0tigZZV8Fa/maKMDm2Krd9yXK0fbR6/8slERERERBQXLOwREVFGcG9/DtGAQxIzjj8N+oJ5snP39HTLYkVGW6JSGxa1IQf2I78ni3d//lOI/fYQTAeT+u2zJwhAo1f+70xERERERPHDwh4REY16oijCueERWdx2xHcVz1/f2i6LlZrSq7AHALZ5t0FtLpbEQl074N7+bIoyGtgkq7yBRluwJwWZEBERERGNHSzsERHRqOer+xChrh2SmDZnGozlpyie/3lDiyx23LhihTNTS6U1IetoeTdcx6rfQoyEUpDRwCr7L8UF4Ig4U5AJEREREdHYwcIeERGNes71CrP15t4KQRBk8W0tLrT6XbL4yRNKEpLbSFmrrocma5IkFnbWpN2svUm2XFksqPbCG0y/ZcNERERERJmChT0iIhrVQt274Kt5RxJT6bNgmX6l4vnrm3oAbUAS00CNHL0pYTmOhKDWInvhT2Rxx+r70mrW3kSLvLAHnQ9tbnbGJSIiIiJKFBb2iIhoVHNu+JssZp15A1Ras+L57kAY0EiLTbl6i+LsvnRhnvJ/0GZPlsTCzhq4dzyXoozkDBotbOp+/+Y6H3a2u1OTEBERERHRGMDCHhERjVrRoBuubU9Lg4IK1jnfGvAaXygqL+zpLIlIL24ElRpZC34kiztWpdesvXJTjjSg8+P/nlmDDk9A+QIiIiIiIhoRFvaIiGjU8ux6CWJIOiPMVHketLbxA17THfBDUEcksUKDNSH5xZN5qtKsvX1w73g+RRnJzcotlDwXBBHOiAdL/vY5wpFoirIiIiIiIspcLOwREdGo5dryuCxmm/3NQ17TEZA3zigy2uKWU6IIKg3sC+6RxR2r74cYjShckXyzcwvkQZ0P21rdWFPvSHo+RERERESZjoU9IiIalYIdmxFoWS2JaewTYRi35JDXdQble74Vm9J/xh4AWKZeJu+Q21MNz55XU5SR1CRbvjyo8wEAWt1cjktEREREFG8s7BER0ajk2vJvWcxadR0E4dBvbV0Khb1Skz1ueSWSoNIg66i7ZfGerx6EKIopyEhqkk25My4A+ENciktEREREFG8s7BER0agTDfvh3t6vI6yghqXq2sNe6wh5ZLFya1acMks8y7TLoLaUSWLBtvXw13+cooz6VFqVCnt+AIAvlB7LhYmIiIiIMgkLe0RENOp497yGaKBbEjNVnAWNufiw1zqj8sLehFFU2BPUOtiP+K4s7vjqwRRkI2XW6lFi6rdf4f4Zez7O2CMiIiIiijsW9oiIaNRxbXlCFrPOunFQ17oj8sLeRGv2iHNKJuvMG6HSS3P2132EQOu6FGXUZ5I1TxrQ+QCInLFHRERERJQALOwREdGoEnJUw9/wqSSmtpTCOP60QV3vFX3SQFSNLIMxXuklhUpngW2OvPtvz1e/T0E2UpU2aWFPUImANgBfmIU9IiIiIqJ4Y2GPiIhGFfeO52Uxa9W1EFSaQV3vh1fyXBXWxyWvZLPNvRWCRlqQ9Ox5DSHHnhRl1GugBhqcsUdEREREFH8s7BER0aghiiLcO/4ji1umXz2o66NiFAHBL4lpooa45JZsalM+LFXXSYNiFD1r/5iSfA6YbMuXB3Ve7rFHRERERJQALOwREdGoEWhZjXC/GWn64mOgzaoc1PXtfg8giJKYThxdy3APZj/idkBQS2LubU8j4mlNTUIApigV9vScsUdERERElAgs7BER0ajh3v6cLGaZfuWgr2/09MhiRozewp7WXgHzlIslMTESgHPzP1OUETDJlgcBgjSo88LPwh4RERERUdyxsEdERKOCGAnCs+slaVCllRW2DqXRKy/smYTRW9gDAPv8u2Qx56ZHEQ37Fc5OPKNGi3HmLGlQ7+NSXCIiIiKiBGBhj4iIRgVvzXuI+jslMVPFmVAbcgZ9D6XCnkVlHnFuqaQvmAtD2WJJLOptg2fniynKCJhq77ccV+uHOxRMTTJERERERBmMhT0iIhoVPArdcIeyDBdQXoprU4/uwh4A2ObdJos51/8FoigqnJ14U/oV9gQB6A47U5ILEREREVEmY2GPiIjSXsTvgHfv25KYSp8F04SzhnSfBoXCXpbGMqLc0oGp4mxo7NIGIsGOTfA3fJqSfKYqNNBwRFnYIyIiIiKKNxb2iIgo7XmrX4cYCUhi5skXQ9Doh3Sfr1raJM9FEcjSju499gBAUKlhm/ttWdy5/i8pyAaY3H8pLgAnC3tERERERHHHwh4REaU9z66XZTHztMuHdI+tLS5s7eyQBsN6mPXakaSWNqxV10LQ2SQx796lCDn2JD0X2R57ADyCK+l5EBERERFlOhb2iIgorUV8nfDVfSSJqS2lMJQeN6T7/O3zGkDbr4FDSAejVj3CDNODSmeFdeYN/aIinBv+mvRcxpmzIIjSPzH8Kk/S8yAiIiIiynQs7BERUVrzVr8BiBFJzDz5YgjC0N7CXtpUD0EdlgbD+owp7AGAbc4tQL9/F9fWJxHxO5Kah0pQwRCV7l0YVLuTmgMRERER0VjAwh4REaU1t9Iy3CkXD/k+JnNYHgzpYcqgwp7WPgGmyvMlMTHkgXvbU0nPxQRpYU9Uh9AV8CY9DyIiIiKiTMbCHhERpa2Itx3++k8kMbW1HPqiBUO+l9GgUNgLZ85S3APs874jizk3PQpRjCY1Dxtsstiunvak5kBERERElOlY2CMiorTl2fO6wjLciyAIwpDvFVb75cGQHkZtZr0V6kuOhS5/riQWduyBr/aDpOZhV8sLezt62hTOJCIiIiKi4cqsTzNERJRRPLvly3AtUy4Z1r16IgrNG0K6jFqKCwCCIMA251uyuHPj35OaR67aLott72Zhj4iIiIgonljYIyKitBTxtMLf8KkkprFNgK5w/rDu544o7O8W1iMiisO6XzozT/0/qPTZkphv3zsI9exLWg75uixZbCeX4hIRERERxRULe0RElJZ6l+FK94Ub7jLcaFREQPDJD4T0aHYGhplh+lJpTbBUXdcvKsK16dGk5ZClM0EMayWx3U4W9oiIiIiI4omFPSIiSkue6tdlMfNwl+H6QxA10gKeGNEAohpLKnOHdc90Z5t9MwBpEdS19UlEwwoFzgQwalVA0CiJ7XF1wBsMJWV8IiIiIqKxQJOIm65atQpLly7F+vXr0dbWBrfbDYvFguLiYhx55JG48MILMWPGjLiN19XVhWOOOWbI1/3ud7/D+eefH7c8iIgoPiL+buVluAXzhnW/Lm8I0AalwZAOE3NNOHZCznDTTGvarEoYJ5wOX827sVjU3wXPzpdgrbom4eMbtWogYAJMzlgsLEYw/68fYO23T4NJl5A/QYiIiIiIxpS4zthraGjAlVdeiWuuuQYvvPACdu3aBYfDgXA4DIfDge3bt+OZZ57BBRdcgDvvvBNutzsu427fvj0u9yEiovTg2/c/IBqWxEyV5w9rGS4AtHsCQL8Zewjr8cVti6BWDe+eo4FyE42/QUzCvoJGrVo2Yw8Adjra8fqWloSPT0REREQ0FsTt6/Kamhpcfvnl6OrqisW0Wi2mTJkCq9WKzs5O7NmzJ/ZhYunSpaiursZzzz0Hi8UyorEPLuwVFhZi8uTJg7quoKBgROMSEVFieKrfkMXMk4Y/w7q6pxv9a4ILSwqRb9EP+56jgXHC6dDYJyLcszcWC7atQ6BlDQzFCxI7tlbVO2OvP70PO9ri88UeEREREdFYF5fCXiQSwW233RYr6qnVanzrW9/C9ddfLynatba24qGHHsLrr78OANixYwd+/OMf489//vOIxj+4sHfppZfi1ltvHdH9iIgodaJhH3w170tiKmM+9MVD33LhgH3OblmsyGgf9v1GC0FQwTb7ZnQtv1sSd236e8ILewaN8ow96L3o8ATlcSIiIiIiGrK4LMV99dVXsWvXrtjz+++/H7fddptsJl5hYSEeeOABXH/99bHYu+++iw0bNoxo/B07dsQeT5s2bUT3IiKi1PLVfggx7JXETBPPgaBSD/uete4eWWyc2Tbs+40mlqrrIKgNkph710uIeNsSOq5B09s8Q7bqV+/p3fOQiIiIiIhGLC6FvTfe6FsytWjRIpx33nmHPP/OO++ULINdunTpsMcOBALYt29f7PnUqVOHfS8iIko9b/Wbspi58tDvK4fT7JUX9iZYs0d0z9FCbciBedpl0mAkCNeWfyd03PHZJkCUd8aFzotOL2fsERERERHFw4gLe8FgEOvWrYs9P+eccw57jU6nw6JFi2LPN2/ePOzxd+7ciUgkAgCwWCwoKysb9r2IiCi1xGgY3r1vS2KC1gxD+ckjum9bwCWLVdrGRmEPUG6i4dryOMRoJGFjHj8xB0eW2WX77AnaEFq93GOPiIiIiCgeRlzYa2xshF7ft/l4ZWXloK7LysqKPe7ulu99NFgHL8OdOnXqsDsmEhFR6vmbPkfU3ymJGSecDpXGMMAVg+MIeWSxydk5I7rnaKIvmAd90dGSWNhZA1/tBwkbU6tW4aNvHovzJk2UHWsLDf99n4iIiIiI+oy4sFdRUYH169fjq6++wtKlSzFlypRBXdfY2Bh7bLcPfwPzgxtncH89IqLRzbtHoRvuCJfhAoAzIi3siVEBE0fw3jMaWWffJIu5Nj+W2DENGlw0dZIs7og4EzouEREREdFYEZeuuABgtVphtVoHda7b7cbKlStjzwc7y0/JwYW9qVOnoq6uDq+88gpWrlyJmpoa+P1+5ObmYsaMGTjttNNw7rnnQqOJ249NRERxIoqifH89lQbGCWeN+N6eqFfyVZYqood+jL0XmKdcgq5Pv4dowBGLeff9D2FXAzTWxG1jMT2rQBYLatzwhSIwaoffEIWIiIiIiOJY2BuKxx9/HG533/46J5544rDuI4oidu7cGXv+9ttv45e//GVsz70DWlpa0NLSgo8//hj/+Mc/8Pvf/x6zZ88eXvJxFA6HU53CiPT/d+7/nIgGj68nINi+AWFXrSSmL10MUWMZ8e9Lv+CTPNdEDaP+d/DQaWGadiXcG//aFxIj6Nn8OOwLfpywUSeZFZY8671YUd2BEyflJmRMvp6I4oOvJaL44euJKH74epISRFEUkzngpk2bcMUVVyAUCgEAJkyYgKVLlw5rFl1NTQ1OP/10WVyr1aKiogLZ2dno7u7Gnj17EI1GY8cNBgMefvhhnHDCCcP/QYZh/fr1kjyIiKiPseafMNZLO7V6Kr+PQMmFI7qvOxLCSVtflsRM3gIsWziyhhyjkcpbg6y1l0tiEV0Beha8AgiJ+67vxI2vwSP4Y8/FoAHYfTReOrsAE2xja+YkEREREdFAVCoV5s2bN7RrEpSLooaGBtxyyy2xoh4A3H333cNeGnvwMlygt6D33e9+F8uXL8dbb72Fp59+Gm+99RZWrFiB6667LtZYw+/344477kBNTc2wfxYiIoovbdcKWSyYu0jhzKFpD3llMYOoVzgz80VNExCyzZXE1ME2aLu+SOi4uap+W3Vo/YAQwZvV8qYmREREREQ0eEkr7DU3N+Paa69Fe3t7LHbdddcNexkuAOzbty/2WK/X4+mnn8Ytt9yC7OxsyXm5ubm45557cN9998VibrcbDz744LDHJiKi+FEFWqHx7JbEwtYZEPXy/dmGqj3kk8XMMI74vqNVoPhrspi++fWEjlmskRb2BAGA3oe398n/2xARERER0eAlZf1LdXU1brzxRjQ3N8diixYtwve+970R3feWW27BNddcg4aGBgCH74p7wQUXYMWKFXj77bcBAB988AGamppQUlIyojyGQ6VSYdasWUkfN54ikQi2bNkSez5z5kyo1dwInWg4xvrryb3lMXT3i+XMuBgVc+aM+N5rdwWBfdJYoSUHc+Jw79FIjExDU+3DiPo7YzFd9xeoqsiGxlaekDHn9rRjVe1eaVDnRbfTkpD/DmP99UQUL3wtEcUPX09E8ZNpr6fNmzePaNu2hBf21q1bh1tuuQXd3X0f2RYuXIhHHnkEWq12xPe3WCyHLegd7Oqrr44V9gBg5cqVuOSSS0acx3BkWndetVqdcT8TUaqMtdeTv/Y9WcxSeXZc/g1q3U5ZLF9vG1P/vhIaDaxV16Jn7UMHBUX4djyF7GN/mZAhq7ILgdp+Qb0XapUAUVBBq07sAoKx9noiShS+lojih68novgZ66+nhP4l/dZbb+Haa6+VFPUWL16MRx99FEZjapZBzZw5U1JQrK3t/0mDiIiSKRr2wV//iSSmNpdAlz83LvevdTtksUKDVX7iGGKdeaMs5tryb4iRkMLZI3dSucJMQL0XkaiIfV3yPRCJiIiIiGhwElbYe/jhh/G9730PwWAwFjvvvPPwt7/9DQaDIVHDHpZGo0FWVlbseU9PT8pyISIiwF+/DGJYuteaqeLMWMOjkar3OGSxUpM9LvcerbTZk2EYd5IkFvG2wLvv7QGuGJlpOTkwCP0aluh7C3q729lAg4iIiIhouOJe2AuFQvjBD36ARx55RBL/xje+gd/97ndpMT3y4GKj2WxOYSZEROTd944sZqw4K273b/ZJv8ARw1rkmlL3BVO6sM36uizm3PRYQsYSBAHz84ulQZ0XgIjdHSzsERGNxIbGHsz6/TIYfrgUVz+/Du5AONUpERFREsW1yhYMBnHbbbdh2bJlfQNoNPjFL34R933sXC4XHnvsMXR2dqKzsxNXXXUVFi1adNjrHA4HnM6+/ZaKi4sPcTYRESWSKIrw7vufJCao9TCWnzTAFUPXFnBJAyE97IaR7/E62pkqz4PKVICoty0W89d9iJCjGtqsyriPNy2rECvbamLPBZUIUefDrnZ33MciIhpLvvXKJmxt7X2ve25dI44os+OOEw79e3z53k78+J0dCEdF/OzUKThj2si70BMRUWrEbcZeOBzGd77zHUlRz2w249FHH01IcwqDwYAnnngCL7/8Mj755BN89NFHg7pu5cqVEEUx9vzII4+Me25ERDQ4oc6tiLjqJDFD2RKotPGZTe0Lh+Dqt8y3t7CX+tnjqSaodbBWXSeLu7Y8npDxptsVPjTqvWh1BRIyHhHRWOAOhLGqziGJ3fXmtkNe4/SHcNa/VmHFvi58WduN855YjRanP4FZEhFRIsWtsPf73/8en3zSt/l5Tk4OnnnmmUHNohsOrVaLefPmxZ7/73//g9t96G/9w+Ew/vWvf8WeT5o0CTNmzEhIfkREdHj9Z+sBvfvrxUuDwv56nLHXp7eJhnQvQ9fWpyBGgsoXjMC0LOXCXocn/mMREY0Vbe6hfzny9FcN8AQjsefhqIhHVtbEMSsiIkqmuBT2Pv30Uzz11FOx53a7HU8//TSqqqricfsBXXzxxbHHDocDv/3tbw95/v33349t2/q+wfrGN74Rt83ZiYho6JT314tfYe+z+iZ5MKyH3cgZewCgtVfAOP5USSzqa4dnz+txH2u6vVAe1HvR6WVhj4houNrcyr9DQ5HogNesquuWxT7Z0xG3nIiIKLlGXNiLRCK49957Y8tbBUHAH/7wB0yePHlE97366qsxderU2P8pOffcczF37tzY81deeQW33347mpubJefV1dXh1ltvxTPPPBOLnXTSSTjvvPNGlCMREQ1fxNeJQPMXkpg2dwa09oq4jfHC1n3yIGfsSVhn3SSLuTb/S+HMkSm3ZMGs0UmDeg+2tbpx/hOr0cmZe0REQzbQjL3abp9inIiIMs+Ipyy8++67qK2tjT03Go148skn8eSTTw76Hnl5eXjggQeGPLZKpcJf/vIXXHHFFWhoaAAAvPPOO3jvvfcwefJkZGdno729HdXV1ZLrFixYgIceemjI4xERUfz4at8HROmMAtOE+M3WA4A6t0P2FZYuakSxVR/XcUYz08SzoTaXIOLpm93ob1iGYNdO6HKUv1gbDpWgQlVWIVZ31PcF9b2dcd/a1oo/frYXvzlzWtzGIyIaCwYq7FV3ejApT3m/WqX1SqJCjIiIRoe4FPYO5vV6sWLFiiHdo7S0dNjjFxYW4qWXXsKPfvSj2B5/0WgUO3fulJ2rVqtx1VVX4Y477oDRaBz2mERENHKK++tNPDuuYzjCbqDfJLFr5kyCWc+luAcIKg2sM6+HY9W9krhryxPIPWHoX7odSlV2saSwJ6iiEHV+IGjEbz/azcIeEdEQDbQU98zHVuGfl8zGDUeVQ6WSlvICYfky3S9ru3Hswytw09HluO6ocdyuiIhoFBnxJ5u9e/fGI48RycnJwT/+8Q9s3LgRr7/+OtauXYvm5mb4fD5kZWWhuLgYxx9/PM455xxMnDgx1ekSEY15YjQMX837kphKnw198cK4juOOeqTjisAj586P6xiZwFp1PRyr75PMoHRvexrZx/4SKo0hbuNUZSnts+cBgvyyjYhoOA7VPOPmlzahxxfGXUsqJfH2AbY++LK2G1/WdqMy14wTKnPjmicRESXOiAt7S5cujUceMgfvhzdYc+bMwZw5cxKQDRERxVOg5StEA9LNu43jT4Wgiu9MuoAg3WNIBz10as7W609jK4dxwhnwHTSLMurvhHfP67BMuyxu41RlF8mDeg/gyovbGEREY8nn+7oOefwn7+6QFfYO10n3vo93s7BHRDSKxKUrLhER0VD4at+TxYwVZ8R1jGA4iojaL4mZBeX9hgiwzfq6LBbvJhozlQp7hr5ZlZ5AOK7jERFlsgc+3oOvGnoOeU4gHIUvFJHEBlq+e8B7O9tHnBsRESUPC3tERJR0vtoPZDFT+alxHaPB6YagkRaK7GpLXMfIJMYJZ0BtKZPE/I2fIdi1I25jFBttMKv7NS7Re2MPB1oeRkREUu3uAH7xvnxPcSU729yxx5GoiE4vf9cSEWUSFvaIiCipIr5OBFq/ksR0+XOgNivsvzYCWzs7ZLFcHQt7AxFUGlirrpPFXVueiN8YgoAKc740qPMC6N3b73DLw4iIqNfnNd2KTTCUrGvqRqvPhY3tLVi6uw6iEMZI+uC6/GH8Z30jlm5rhSiyny4RUapxoyEiIkoqX91HkiYNAGAcf1rcx9nV0ymLFRlscR8nk1hnXg/H6t8qNNH4VdyaaEyzF2KLsyH2XFCJEPU+IGA+7PIwIqKx5l+ravH4qjrkm/W4/+zpmFFkBQB8Uds9wBUiYHQBlm7A2APovbhpy6fAlr4zhOmAGFEDARPgtwCebMCdDUQP/9HQ6Q9h/h8/Q3Vn72zrq44oxdNXHDHSH5OIiEaAM/aIiCiplJbhJqKwt88p/9BTZs6K+ziZRGMdB+ME6V6HUX8XvHtejdsYc3KK5UF97z57nLFHRNRn2Z4O3PzSJqyqc+Dt7a2Y+eAy/GX5Xjj9IXxZ269phtYPFOwDpnwJYeJ6CAU1EKzdEHTKv1cFdQSCyQUhpxnCuG3AtJXAuC2AtQOAiIc+rcYNL2zA8+saJLPy/ruhKVbUA4Bn1zVie6srET8+ERENEmfsERFR0oiiKCvsCVoLDCXHxH2seo98Q/EKa3bcx8k0tlk3SbrjAoBr8+OwTLsiLvc/qqBEHmRhj4gIALB8byeWVXdibokNyxU63t7+xlY8uaYeG5qcvQGdD8ivBeytEIThjysIAGydgK0TYtCA7y1vARyFeHJNPdzBCG5eOB4A8PiqOtm1T69twH1nTR/+4ERENCIs7BERUdKEOrcg4mmSxIzjlkBQ6+I+VrNPXtibnJUb93EyzYEmGhF333JZf+NyBLu2Q5cz8g9uc/MUCnuG3tkfXIpLRGPZa5ubcfHTX+Fw29ZtaHICqjBQUAPkNI6ooKdE0PmB0l0Q8+qAlkn4zQe7cOOCcqhVArp9Idn51R0ehbsQEVGycCkuEREljbfmfVksEctwAaAjKF0aJIrAlCzO2DscQaWGdeb1srhr8+NxuX++wYJsrUka3D9jr50z9ohoDHt4xb7DFvUAAJZOYNIaCLmHL+qJQT1EVw7E7iKInaUQu0og9uRD9FkgRg99saD3Qxi/BQ32NTjqkQ/wh2XV6FDoXr7xwOxBIiJKCc7YIyKipFHcX29CYgp7jrBbGgjrUGQ1JmSsTGOtuh6OVff2a6LxDLKP+01cmmjMyyvBx817+gI6HyBEuBSXiMa0ZdXypk8SQhQo3Asht/GQp4nuLKCnAHDnAGH9Ie8nmnoAa2fvUl5NWPk0axc2hD/Ghs/qAV+B7PjuDg/a3QHkWw4xFhERJQxn7BERUVJEQx74m1ZIYpqsSdDaJyZkPHdUujRICOmRZdQmZKxMo7GWwVRxliQWDXTDu/uVuNy/KqtI8lwQAOi9aOdSXCIiZZoAULF+wKKeWlD1zsrbfRRQOwdwFB+6qAcAoqq3I27LJGDXMRAbpkEMKH8BJmjCEMZtB0p29hYY+9nAWXtERCnDwh4RESWFv+FTICIt3JgStAy3J+BDRJDOPDALZqhVcd6IKINZZ31dFnNu/ldc7j0ju0ge1HvhDCjPFiEiynThiLxYFmN0AhPXQTC6FQ+fUDAJ6869C2iaCgRNiucclqgCegqBPUdBbJwKMaz8RZiQ3QJUbAA0fkm8rts3vHGJiGjEWNgjIqKkUFyGO/7UhIy1pqVVFisx2RMyVqYyjj8damu5JBZoWolg57YR33tmllJhzwOnn4U9IhqblJpSAOjdT2/CRgha+YxmMaKBunEGPjjjZszMLYxTJgLgKAJ2L4DYVax8htEFTFwP6PsKjXUOFvaIiFKFhT0iIkoKb8170oBKC0PZ4oSMtby+WRabnJWTkLEyVSKbaFRlK3wANbCwR0Rjl1JTCtjagPKtEFTy2XyixwZUz8ckXQU06t6PdGdNk+9/dzjXHTkOdy5W2BIjqgGap0CsnQkxJJ+9J2iDvTP3TA4AQF23d8hjExFRfLCwR0RECRfq2YuwY48kZihdBJXOkpDx1rXJZ+wdUTD0DzxjnbXqOkBQS2Lu7c8gGh7ZzAy7zohx5ixpUO9BMBJFIBwZ0b2JiEYjWWHP1gaUbYcgyNvkil3FQM0cIGTA+Oy+PfF+feY0TMztXYo7u9iGheMP3wneZtTg1uMqBj7BnQvsnQ/Ra5MdEtQRYPwmwNaOmi4fPNxOgYgoJVjYIyKihPPVJG8ZLgDscnTJYseVlSRsvEylsZQqNNFwwBOHJhqzsqVLvARdAFCHOGuPiMaUaFTESxub8O1XN/cFrR37i3ry88XmSqB5Mg58jPOH+mbzzSu1Y+v3l6Dl56dhze3H41enTz3s+CpBQJFVD5tBI4kvnpiLxy+d0/skrAdq5kDslm+jIKhEoGwbPu3Yjvyfv4d7/rddcZxgOIqfvbsDc//wKa54di3a2QWdiChuWNgjIqKE89W+L4slqnEGAHQGXbLYzLy8hI2XyayzbpLFXHFoojEnR6HQqvfgLyv2QRTlM1SIiDLRrz/chf97Zi22tOx/3zJ3AWXbZEU9UQSExulAVxmAvoOnTJG+t+k1ahRY9dCqVThlSj7euelofP3octx31nR8+7gJsvGPLs+CQavGHSf0LcctsRnwj4tn47qjxuGFq+fj5oXjcURJNtA0BWLbeNk9BAFA2Xb4Ta144OM9+LS6Q3bOY6tq8ZsPd2NTsxP/3dCEW17ZLDuHiIiGR3P4U4iIiIZPjAThq/9EElObi6HNm5WwMT1iv71+RAGFBmvCxstkxvGnQm0tR8RVF4sFmj5HsHMrdLlVw77v7ByFTdkNbtz74W6oBQG/GMRMEyKi0SwUieIPn1b3BYzO/XvqSb/cEEUBqJ+BO444Gn9duQ/+cO8sPUEALp9XesgxTp9agNOn9m5FUdPlxd8+r8GB707yzDqcX9U7C+/np03FSZPy0OwMYFFFDkrsBgDAJXNKcMmcEgTDUXzz5U14br0KYsSAcNFOSfFREACxbBtQPwNvbm3F4kppwfG217ZInr+yuRmiKEJQmpZIRERDwhl7RESUUP7mLyGG3JKYsfyUhP4xHxKke8DpYYRaxbe84ehtonGDLD7SJhqzsxVm7Bk8AID7Pt49onsTEaWjd7a3YtoDH6P81x/g75/XYF1DD9yB/fuKav1A+RZZowxRBNAwDXDlYUahBc9cMQ+T8syYkG3EE5fOxcRc86DHn5Bjwts3LMAJE3Nw2pR8vHvT0TBo+/ZRPX5iLi6dWxIr6h1Mp1Hhicvmwnff2fDd/XVcnH0y+k+uFgQA47bjleqtg8rHE+SeqkRE8cAZe0RElFD+uo9ksUTur+cJhBDV+nFw2dAqDP6DD8lZq66D48tfA2LfhzD39meRveheqDTGQ1w5sMm2PGgFDULiQXvqGXoLwKGIiFAkCq2axVgiygwufxiXP7cuto/ot1/djGvml/UeVIV7i3qakPzCpimAs3fGXZZRiwtmFeOi2cPfM/bM6YU4c7pCZ/JBUql6311PL6nCy5ubIfZbNiwIIupta7GmbSGOKigHAPT4FH4uAN2+ECx6fhwlIhop/sVMREQJ5av7WBYzlp+csPF2dTtkMx6ytInpvjtWaCwlME08WxKLBhzw7Hpp2PdUq1QYZ8yVBvUeAL1TQNq4sToRZZD/bGiUNQd6em0DALG3Ucb+GcsHE5srAUfftgVZRm2i0xy0U6fkQe0uABqmy2buQRXBWR88jo3trdjT4cHmFqfiPbq8QcU4ERENDQt7RESUMNFADwKtayQxXf4cqE35CRtzW5d80+4CnS1h440Vyk00RrYcd5JFOmtEUImArnd/xFYXC3tElDk2NysXt1C4D4JV3sld7CzZ3yijT3YaFfbKs0145dojMd82GWiU74naFfRg3iuPYMrv38MJf/1c8R7dXuWZfERENDQs7BERUcL46pcBonT2XCJn6wHArp5OWazElJXQMccC4/hTobFKuyEGmr9AsGPLAFcc3jSbwnKw/bNWWNgjokziC0XlQWsHhLx6WVh0ZQMtk2TxdJqxBwDnVRVhze0nYMON/wextUJ2XND7gHFbAUHhZ0fvUlwiIho5FvaIiChhfPXyZbiGBBf2apzdsth4S3ZCxxwLBEEF6yylJhr/GvY9lRto9O6z1+rmEi0iyhzeoHQZLrQ+oHSn7DzRbwIaZgCQNpgyaFQotOoTmOHwzSq2YpF1DsROeYdewdwDFO3BgW0WDsbCHhFRfLCwR0RECSNrnKHWwVByXELHbPA6ZLFJtpyEjjlWWKquA1TSjc7d259DNOQd1v3m5w/cGZcz9ogok7R7DvqyQogC47ZDUEuLfWJEDdTNBKLyhhLfPq4CxoM62KYTQRDw5g1H49zcYyD25MmP5zQDOU2y+O1vbIH9x++g/Ncf4O1trclIlYgoI7GwR0RECRF21SPUvUsSMxQfC5XWlNBxW/w9stjULPkHDRo6jbkYponnSGLRYA88u14e1v1KLVaIwX4zUGIz9ljYI6LMUe/w9T0prIZgdMlPapwGhHo7ja/6zvH4w3kz8MvTp+Ldm47G786ZnqRMhyfLqMVr1x6NAucciD6FhlVFewCzdEa9OxCBKxBGQ48f1/5nvXxWIxERDQoLe0RElBC+uk9kMWP5SQkftzMk/bAkhjUYZzcnfNyxwjrz67KYa8vwluNa9RrAL/0AKGiDgDrEGXtElDFEUewr7Fk6IeTKZ6+JHWWAq/dLqFMm5+Go8izccUIlfnrqFJw2tQCCIMiuSTcqlYCKLAtQNxNiSCc5JggAyrYDGr/itd2+EN7e1paELImIMg8Le0RElBC++o9ksUQ3zgAAZ8QtDYQMyDPrlE+mITOOPwUam3ST9EDzlwh2bB7yvXQaFRBQKLoa3CzsEVHG6PaFeptnqINAicK+el4bsL/5hFmnxr1npvfsvEMZl2UEwnqgvgpiVFqMFDQhYNy2AZtp1HQPb1sHIqKxjoU9IiKKO1EU4a+TNs5Q6ezQFRyR0HG94SACkBaEhLC+d2YYxYUgqGCdKW+i4RxuEw2/wpItg4eFPSLKGL2z9USgZBcErbRhhBjWwNo2CytuPR6vX38U9v7oZBxVnpWSPONhXFbvUmL4bEDTVNlxweQCCvcqXhuMKBf8iIjo0FjYIyKiuAt1bkXEK90I2zBuCQRVYjf+rvc4ZDEjzKNiCdNoYqm6Nn5NNPwKM/b0bu6xR0QZY1+XF8hqgWDrlB9snozvHjMdx07IwXlVRci3pGfn28Eqzzb2PekphNglb5Ik5DYCNvmy23Z2QyciGhYW9oiIKO58/WbrAclZhlvr7pbFLAL314s3jbkIponnSmJi0AnPrpeGfK/TKsohRvv9OWLwoNMbRCQqjiRNIqK08PrOWqCoWhYXHQWAswCnTM5PQVaJUZ5llAZaKiF6rfITS3YCOo8k1NSjvP8eEREdGgt7REQUd756pcJe4htn1CnM2LOrFZZ60ojZZt0ki7k2Pzbk+9x23EQI/ffZ03sgIgqHL6R8ERHRKHHXm1vwdONHENQRSVwM6oHmyQCAWcUKha9RSjJjDwBEFdAwA2JYOstbUEf377fX9+/yyuZmRPmFDhHRkLGwR0REcSVGQvA3fCqJqa3joMmanPCx6xRm7OVoM+cDUzoxlJ8EjX2iJBZoWY1A+8Yh3efsGYW4ZMoUSUxQiYDegy4vl2UR0ejz5Jp6nProF5h830f448YvIFil702iCKBxGhDtLXZlmzKnwZNsxh4AhAxAw/Ten/sggsELFEn32zv3idUQ+59IRESHxMIeERHFVaBlNcSQdHmNcdxJSdnnbp+rSxYr0LGwlwgDNdFwbX58yPc6pXyiPGhwo8vLGXtENLos3daKG17YgI92d6Da4VBcgouuUsCblezUkiLPrMPEXJP8gCcHaB8vCws5TYC1I/b8nR1t+Gh3h+w8IiIaGAt7REQUV766j2SxZCzDBYB9zn6zIqIC8gws7CWKdYZCE40dzyPar7B7OEfklMqDRjdn7BHRqPOf9Y19T4r3QNCEJcfFoB5oq4g9v2yuvLnEaCYIAn53zgzlg+3jIXrs8njJTkDT1zDpQxb2iIiGhIU9IiKKK8X99cYlp7BX7+23FDdkQJZRm5SxxyK1uRCmyvMkseE00ajKLoJa6N9Aw4Uu7rFHRKPM+sae3gfWDgj2dvkJzVOAaG+HeJUA/Oy0KfJzRrkLZxXjz1+bqXBE6F2S23+/PU0YKN0BoHcJ7sp9Ct2DiYhoQCzsERFR3EQDTgSaV0liurxZUJsLEz52JBpFs88pDYb0sBk0yhdQXCg20dg0tCYaerUGE0x50qDBgzY3OyQS0ejhCYSxo90NqMJA8W7ZcdFRiMfOPBFXzy/D2dML8L+vH41pBZk5q3yS0nJcAAjrgaapsrBgcQB59QCArxp6EAhHZOcQEZEyftohIqK48TcuB0TpH+OG8pOTMnaLz4WIGJUGQwbYDZyxl0iGcSdCY69EuKdvH6lA6xoE2jZAXzB30Pepspeg2tMWey6ootjtbAcwKY7ZEhElzqZmZ2+DiMIaCFrpVgJiWIu7Z5yOG48ux41Hl6cmwSSyHupLNVcexK5iCDnN0njBPsCThYDPhrUNPTh2Qk5ikyQiyhCcsUdERHHjq0vdMtxahY64nLGXeAM20dgytCYa83PLZLGDC31EROlufaMTMLiBnEb5weZJWDKhKPlJpYhVr/zeW2o39D5oqYTol87qEwQAZdsBVRibmpzyi4mISBELe0REFDe++n6NM1RaGEoXJWXsOo9SYc8AOwt7CWetuhZQSWdGunc8j2jQPeh7HFM0TharD7CwR0Sjx5r6bqB4N/o3gRddOcgJl4ypGWgDFfZ+eur+PQVFde9+e1HpP5ag8wOFe9HQw60YiIgGi4U9IiKKi7CnGaHObZKYoXghVDpLUsavG3DGHpfiJpraVABz5fmSmBh0wbPrxUHf45jCcQf2TY9pC3MDdSIaHURRxJuNGyGY+s00i6pQEZiN/1x1JCwDFLsy0UCFvbOnF+Djbx6DUybnoVCXixJflewcIacZn7btQrc3CFEUFe5CREQHGzvvLkRElFC+uo9kMUN5cpbhAsDbe+rkQc7YSxrrrK/Ds/tlScy5+THFZbpKTFod1CELIrq+WX496EZUjELVv2MuEVGa+bKhHd22neg3WQ+/mH8Kfjr3tJTklEoDFfbyzDqU2o1YMqm3YZIoijj7g3/hvcadkvNWBr5A7i/D+Nr0cXjuyiNg1KoTnjMR0WjFv5SJiCgu/Ir76yWncQYArG1tlQe5x17SGMYtgSZL2ugi2LoWgda1g76HOWKXPI8KEexxctYeEaUvbzCMu97ciuNefBaCJiQ5lqe14fszT0xRZqml1yh/zNRrpAU6QRDwr0WXQhWVzq4XtCGgeBde39KMFzY0JSxPIqJMwMIeERGNmCiK8DV8KokJOiv0RUcmZfxAOAIfvNKcQjpAVMGm51LcZOhtonGjLO7c+PdB3yNbJd9/al1nw4jyIiJKpF99sBt/XL0RyJYXn34771wYNGPzPUjov9HgIZSY7Jgcmiu/h70DsLdh2Z6OOGZGRJR5WNgjIqIRC/dUI+Kql8QMpcdDUCVntlxzjx/Q9ttoO6QHAC7FTSJr1bUQ1HpJzLPzRUR8g5t1V6zNlcXWdrCwR0Tp66+f7wWK98gaZhh8BbhhxtyU5JQujiyTzsI+e3rBgOfOs06G2JMvP1C8G6/tqIlzZkREmYWFPSIiGjFf/TJZzDguecuPdnf3QFBHpMGQAQBg0nFfnmRRG/NgnnKpJCZG/HBtfXJQ11eYCtB/n/RVbfXKJxMRpVg4EoVH3yJrmCFGVVignT+kWWuZ6I7FlVCrev8N9BoVbj9h4oDnltkNQPPk3tn2BxHUEbjytqLDwy65REQDYWGPiIhGzF+/TBYzlC1O2vibO9vkwf2FvbH+wSrZbHO+JYu5Nv0TYjSicLZUZY4dCBolsY3dTeyKSERpaXenCyjcKz/QUY4jCouSn1CauXxeKVZ/93g8edlcbLxrMU6erDAjb7+yLCMQ0QKNU2XHBIsDBX9+Elc/vw4bm3oSmTIR0ajEwh4REY2IKIrw99tfT2XIgS5/dtJy2OVQWOoZNCRtfOqjLzoSukLp3oph5z74at497LUTc0yAzyqJucN+7HWxgQYRpZ8Ht3wKQReQxMSgHugoQ1WRdYCrxpZ5pXZcc+Q4TMm3HPK8Mvv+92xPDsSuEvkJhXvx3JbdmPfQZ1i6TaFZFhHRGMbCHhERjUioazsiXukf2YayEyAIyXuL2efukgdDLOylitKsPefGfxz2uoocE+CXf/hb08HluESUXpq8PfhP3RfyA60TAVGNqkIW9obiiFI7VAcm2LdMhBiQvocLqihQugOAiL+sUJglSUQ0hrGwR0REI6K0DDeZ++sBQJPPIQ8GDbh1UUVS86Be5imXQGXMk8R8te8h5NhzyOsqcuUz9gAW9ogo/fx03bsIiCFJTPTaAGfvctMZLOwNyfgcU98efKIaaJwm23NVMLmAvHpsa3UnP0EiojTGwh4REY2Ir/4TWSyZ++sBQEfQKYstLCnCPSdNSmoe1EulMcBadZ0s7tz0z0NeV2IzQBu0yz7MrWmvi2N2RETDt6PNhdmPvIUnd62RH2ypBCBgcp4ZVnZkH7IHz63CprsW4xvHjAd8dqBjnPyk/Bo0+jvwwMd7EI5Ek58kEVEaYmGPiIiGTRSj8Dd8JompTYXQ5kxPah7OqPTbeyGsw+e3LkaxjctxU8U662YA0sYl7q1PIhryDniNWiVgQpYFCJgl8VXt9bj3o51w+kMDXElElHhOfwgn/eNzbMGG/r/eIDoKAJ8NAPCDE/ml0nDNLLbhzGkFvU/aJ0D0S98PBJUIlO3APe9sxY/f2ZGCDImI0g8Le0RENGzB9o2IBrolMcO4JUntRCuKIgKCtFhkEM0DnE3JorVPgGni2ZJYNOCAZ+d/D3ldhUIDjbAYwU8/XodFj6xENMoOuUSUGr/6YBdaxEYIZmlnVjGq6t1bD8CntxyLG48uT0V6GaPkwJdyogpomAYxKv2bQjB4gPxaPPUVt2kgIgJY2CMiohHo3w0XAAxlS5KaQ7vfDVEVkcRsqkN336PksCo20fg7xP5rbQ8yIccUm/UiYXJhS4sLa+odccyQiGhwPIEw/vb5XqBIoXFDxzggrMediyfi+Im5yU8uwxTb9H1PAhagfbz8pLw6tEU60OUNJi8xIqI0xcIeERENm69+mSxmHLckqTls7myXxXK1CoUhSjpj+cnQZEmXpAXbNyLQ/OWA15TYDIBXYdN5Y+8+iku3t8qPEREl2NZWF/zWRgg6vyQuhnRAxzhoVAJ+duqUFGWXWUpsBkwvOOgLuo5yiP3eFwQBQOkObG5xJDU3IqJ0xMIeERENixgNw9+4XBJTW8dBY5+Y1Dy2dckLe4UGe1JzIGWCoIJt9jdlcefGvw14TaFVBwTMvUvbDmZ07T+uV7iKiCixtrY5gPxa+YHWCkBUo/nnp8Fm0CY9r0wkCAIe/7+5mJJvhk6twgkTc3u75PZ7XxD0Pty35f0UZUlElD5Y2CMiomEJtK6DGHRJYsay5O6vBwA7HR2yWJkxK6k50MAsM66BoDFJYp7dryLiUZ5511u4EwBfv+XUeg8gRKBV808XIkq+Z2u/hKCRNvAR/WagpxA2gwa5Zl2KMstMC8dnY8cPT4L/gbPxv68fDQRNvUXUfj7o3ICX92zD7z7Zg398XoNAOKJwNyKizMa/jomIaFj89Z/IYoZxi5OeR42rSxarsHKPo3ShNmTBMu0KaTAagnPzY4rnF1n3b5ruU1h2ZXTDG+SHNiJKrna/GyucG+UHWisACLjjhOTOVB9rTDpN74OuUojuLNnxyz9+Hne/sxm3vLoZ5z2xOrnJERGlARb2iIhoWHwKjTOMSW6cAQD1XofkuSgCk+zZSc+DBmabI1+O69r0T4jhgCxeaNm/1FapgYbRCU8wHO/0iIgO6b6NHyEM6e8e0WMH3Dk4a1oB7lpcmaLMxo4TJuYAEICmqRAjasmxqNYPFFUDAD7Y1YHNzc4UZEhElDos7BER0ZCJ4QACTSslMU3WJGhs5UnPpTXQIw2E9CiyGpOeBw1Mlz8bhtITJLGItwXu3S/Jzi207l/O5lNqoOGCN8QZe0SUHBsae3D+M5/h4W0rZcfKAzPgue9svP31o2HRa1KQ3dhy5+JKaFQCEDIALfJCqpDdAlg6AQBvbG1JdnpERCnFwh4REQ1ZoHUNxLBPEjOWJX8ZblSMoisk3ecPIQNyTdzrKN3Y5t0qiznXPwxRFCUxk04Dq14DhAwQw/0+LBtd8HApLhElQZc3iEWPrMRbHasQRVRyTHTmYk72OBi16gGupng7r6oIa24/HmqVADiKILpy5CeV7ALUIXR6gslPkIgohfj1EhERDZlPcX+9JUnPo9XnRgT9Cj0hA/K4iXnaMU08FxrbBISdNbFYsG09Ak2fw1B6nOTcQqserkC4dzmutW8PRUHnR2fAk6yUiWgMe2NLC7yqHsAubfQjigDaKlBZYY77mKIYRcTdiJBjL8LOGkR8HYj6OxH1dyPi74IYCfQmIEYBiIBKA5XOCpXODpXeBpU+GxprKTTW8dDYyqE2l0BQZU7xcU6JHRvvXIw5D32KSNMUiJVfQdD0LZEWtEGIxbvxeU0+Wpx+FNkMKcyWiCh5WNgjIqIh89cvk8UMKZixt0+hcQaCBnYnTEOCSg3b3FvQ9dkPJPGeDQ/LC3sWHfZ0eHqX41ql/40bAm0Jz5WIaGe7ByjcB1mjd0chEDBjZpHCdgFDEA26EGhdh2DbWgRavkKwcyvCPXt7i3fxotJAa6+ELn82dHmzev9/wTxozMXxGyPJZhRZceHMIry0qRlongyM2y45LtjbsaZ+F0p+5cCtiyrwl6/NTFGmRETJw8IeERENSTTkhb9llSSmzZkOjbko6bnUuOWFPV3UxOVRacpadT26v/gVxJA7FvPueR0hZy20tvGxWKc31PtAYZ+95jALe0SUeKvaayD0+2JBjApA+wQAwGlT8od0v2jIC3/jcvhqP4Sv7kOEOrcBEA973YhEwwh170Soeyc8u/r2NNXYK2EoPQ6G0kUwlC6Cxl4JQVbBTF/HVeT0FvacBRB7OiDY26UnFO8GvHY8smIfrjqiFAvK2VCLiDIbC3tERDQkgeYvgIh0/5pULMMFlAt7WWpLCjKhwVDp7bDOuAbOjX/rC4pRuDb+HTnH3x8Ljc82YkebG/DKO+N2RDuSkSoRjWGiKOKr4DpA2+9AVykQMsBm0KAs6/BNmiKeVnj2vArPnjfgb1ohe+9MlXBPNdw91XBvexpAb6HPVHEmjBVnwlB6PFSa9F7CWpl70DLo5skQTT0QtH3/toImDLFkF1A3E5/t7WJhj4gyHptnEBHRkPjql8lixpQV9rplsXydvBhE6cM299uymGvLE4iG+vbOO79q/+zPqBai3yQ5t0foQjjKBhpElDhv1W+DVyt9fxEjaqCjt/P7NxaOV7oMABDxd8G56TE0v3I66v41Hp2ffBf++o/jVNQTAEENqLSAWtf7PA7CPdVwbngEra+djbpHi9G29HJ4dr+KaL8mWemiMu+g94WIFmiaIjtHsHYBWS3Y1+VNYmZERKnBGXtERDQk8v31BBhKT0hBJsCeHunsLVEEikws7KUzbfZkGCvOgm/f/2KxaMAB97ZnYZvzDQDAZfNK8Y8varGp2dnbQMPQ98EsKkSwqasZR+SVJT13Isp8kWgUP1yzVH6gYxwQ0cKgUeGGBeWSQ6IoItC0Es7Nj8G7+9Vh7ZOnMuRCmzMN2qxKaOwTobVPhNpSArUhB6oD/9dvJp0oRiGGPIgGehAN9iDi7UDYVYuwsw5hVx3CjmoEOzYjGnAMOg8x5IFn9yvw7H4FgtYCU+V5sEy7HMbyU9KmEUdFjgmCsL+RCQC4cyF2F0HIbpGeWFSNbV2Tkp4fEVGysbBHRESD1rvZ91eSmC5/NtTG3KTnsqq2GysamqRLpUIG5JvTewkRAfZ5t0kKewDg3PAwrLNvgiCokGXU4vPbjsOXtQ6c8kIz0O/D2hdtNSzsEVFCPFu9Fruc0r08xZAW6CzDyZPz8N3jJ2JqQe+WD9GQB66tT8K16Z8IdW1Xup0ylQb6ogUwFC+ErnA+9IVHQmObMOR97gRBBUFnhUpnBVAGKLwVi6KIiLsRwY5NCLStR6Dxc/ibv5DsdToQMeSGZ8fz8Ox4HmprOaxV18I641pobOWHvTaR9Bo1rHoNnP6+jrhoqYRo7oag6yuqCuoI1gS/RFRcApXAhWpElLlY2CMiokHzN64AROkySMO4E5OeRygSxTlPrEK43C9diBQ0YPZkzthLd4ZxJ0GbO2P/5vG9Qt274Kt5H6aKMwAAJp0GJ03Ow3RrCXZgl+T6z9tr8W0sSmrORJT5ApEwfrH+PfmB9vF45vIjceURvV8oRHwdcG74K5wb/46oX6E7uwKNfSKME06HsfwUGMsWQ6VPznuVIAjQWMugsZbBVHEWAECMhhFs3wR/w6fw1rwHf+NyIBo65H0irjo4vvw1HF/+BsYJp8M680aYJp6Tsll86v5F0KgGJ5sW4ePwR5KwT9eFv2xdAVV3GXa0uXHR7GKcPHlojU+IiNIdC3tERDRoivvrlS1Oeh5bWlzoDLggqKQdBXO1Ntx2XEXS86GhEQQBtrm3ofOjb0niPev/EivsHZCjyYIY1kDQ9M3M+KK1JhlpEtEYIYoiNjQ58YfNn6LO45AeCxiA7mLMKLQi7G5Ez5rfw7X13xAHsf+cxjYB5skXwTz1Uujy56ZN51lBpYG+8AjoC4+Aff4diAZd8NV9BO/epfBWv4loQL5/bR8Rvpp34at5FxpbBWzzboW16rr9swaT5+I5xXjsyzpJ7GfHLUDTigbsiOyUxL+/eikie44Agib844tavH/zQpwyxK7GRETpjHOSiYho0PwNy6QBQQ1D6fFJz6PDEwR0fln8m0dOhVnP76xGA8v0K6AySNeN+es+RKB9oyRm1mp699k7SK2nGw98tgUtTvn/BoiIhqLTE8SZj63C/D9/jOfrv5Cf0FaBmVlhlFffi4Z/T4dz498OWdQTNCZYqq5D8f8tR9n1O5Fz/H3QF8xLm6KeEpXOCvOkryH/tMdQfnM9Cs9/HZbpV0I4TLEu7NyHrk/vQt2/KtD52Q8RdtYd8vx4unKedDuGkyblYVFFDi4oPBZiQNqxOCpEgNIdAHq/DHxwWXWy0iQiSgoW9oiIaFAi/i4E2zZIYvqCI5K2nOhgnZ4goJN/sJqRU5D0XGh4VBojrLNvksWd6/4keW7WqQGv/H9j9yxbjfl/+gzNLO4R0Qg8+Gk13t/VDuTWQ9BIl6OqfCbchk/wkvVGONf9CWJk4N832twq5J74Z5TfVIv8U/8JQ/HRaV3MG4ig1sFUcRbyT/83ym9uQP7p/z7sF3hi0Annuj+i/t9T0fbutQgOZb/BYTqhMhdv3rAAl80twfeWVOK/Vx8BQRAwJdcGNE7ra6yxn2ByAfm1AID3d7XDEwgr3JWIaHRiYY+IiAbF3/AZDnzbfYBh3JKU5NLlDSkW9iqtyW/iQcNnm3MLoNZJYu6dLyDsaog9N+nUgNcuv9jYg2ZnAC9ubEp0mkSUwd7b0Qaog0Bug+zYH8Jv4nbbi9CJXoUrexnKlqDwa2+j9Kp1sM35FlR6hd9Xo5RKY4Rl+pUovuQjlF6zGfb5d0JlzBv4AjECz47/oPHpuWhbejmC7ZsSmt85Mwrx/FXz8btzZiDPrAfQ2zEXPhvQodDgI78WMPYAAD6p7kxobkREycTCHhERDYq/4VNZzJiCxhkA0OlVXoo7kYW9UUVjLoJl+lXSYDQM54ZHYk9NOjXgs8pmX8DkBAA8/VV9grMkokwVjkSxvc0N5NdCUEclxxaG63FOdNsAVwKmSV9DyWWfo/ji92GacNqonJ03FLqcqcg5/n6U37gPeac/AV3+nEOcLcKz+xU0PnckWt+8CIG29UnLsyLH1PugfTxEn0VyTBAAlG0HVGG8s6NNfjER0SjFwh4REQ2Kr/4TaUClhb7k2JTk0qVQ2LNo9MjVm1KSDw2f/YjvymLOzY8hGuidVWHSqgFRDfilH9BgcANCBDo1/5QhoqERRRHPrm3A2Y+vQkDwANnNsnO+7/8cSqU6Y8VZKLliNQrPeRH6oiMTn2yaETR6WKdfhZIrVqPoovdhmnj2Ic/37n0LTc8fjdallyHYtSPh+ZXYDL3vC6IKaJgGMSp9jxB0AaBkF1bWcMYeEWUO/jVMRESHFfG0ItQpnbmgLz4aKm1qCmnd3hCglS7FrbDkZvyMiUyky5kOY8VZkpgYdMG15QkAgFm3vxlKv+W4gkoEjG5MzDUnJU8iyhz3f7wH1/xnPT7Y1QEU7JN1WD89tAdzIq2SmKFsMYov/QxF578OfcHcJGabngRBgHHcEhSe9xpKr9kMy8wbAJV2wPO9u19F4zNz0f7BzQltsqFSCZiQs795RtAMtFTKzhHs7dji2w1fKJKwPIiIkomFPSIiOiyf0jLcssUpyKRXi9cNQSPd+Hqy/RD7/lBas8+/SxbrWf8wxEiodykuoNhAA6YefjAjoiH795reJfwl5n0Qstolx1RiFHf6+7rjdqrLUHjeqyi66H0YShYmNc/RQpczFfmn/APjrtsO65xvQVDrlU8Uo3BvfRL1T81A57K7EPEmZjlsbDkuAHQXQ3TK/z6IFu6G+ecv4/Jn16LNFUhIHkREycLCHhERHZbS/nqGFO2vBwDNfocsVmnNSX4iFBeG0kXQFUqXtEXcDfDsehHe4P7C3QCFPTc7GxLREIiiiOoOF663vIVJpStkxy8ObUNltBuuqBH3O67Gu5PfhGniOZwRPggaWznyTvwzyq7fCdu870LQGJVPjATh3PAw6v89Dd2rfotoaODmJMMx4eDCHgSgaQrEkLRRk6COAmXb8cLGBtz55ta4jk9ElGws7BER0WH1319PUBtgKDo6RdkAHSGnLDbRxhl7o5UgCLDPv0MW71n7RzT17F9yHTZADBqkJ5h64A6ysEdEg+fq2Itn836BU3M/wHKttHOqXgzjO/5VeMN7PE5peRiPub+GCflZqUl0FNNYSpC7+Pcou34nrHO+NeASXTHkhuOLX6DhqZlwbX8WohhVPG+oJDP2ACCi7d1vr18TJsHoBgr24dXNzQhH4jM2EVEqsLBHRESHFHY1IOzYI4npS46FoBlgqU0SOKMuWaySHXFHNfOkC6CxVUhiwY5NODvroL0d+++zp46gM9KVjPSIaJQTRRGurU+h88UFONqwFb8zHCc75wL/btzddgfu7LodHdFsAApFIho0jbmodwbftVtgmX4loNiOpHeGdsd7N6DpP8fC17B8xONa9Rp50JsNdJTLwkJeA/zGNuxoc494XCKiVGFhj4iIDsnXsEwWM45bkvQ8DohGRXgh/wOchb3RTVBpYDviO7L4AtczfZ1vPXbZ8S6hXRYjIjpYxNuGtrcuQscHNwEhFz7QTMRGTZHkHEM0ivLxP8PywLxYzKRVY1axNdnpZhytvQL5p/8bpVevg6nyvAHPC7atQ8vLJ6P1rUsQ6t497PGOKJW/V3zzmPE4N38BRK/Cf8/SnXhvXx32dXrR7PTDEwjj36vr8O/VdfBzH1ciGgVY2CMiokPy1y+TxQxlS5KdRowzEIaok3bEFSCgzCz/Q55GF+uMa6HSZ0ti4caP8dllZpw0KQ9H502QXePWcMYeEQ3MV/8JGp89Et69bwMAwhDwB8OxsvOuqTwJPz11fqwopBKA35w5DTbDwJ1eaWh0uVUoPPdlFP/fcuhL5P8NDvBWv4GGZ+ag89PvIxroGfI4C8qzMKPQIondtqgC95w0FWiYDjGilhwT1GF8f8MrqLz/A5T+6gNYf/wObnxxI258cSNO+OtKRKL91vASEaUZFvaIiGhAoijCV79MEhO0FugL56ckHwDo9AQBrV8Ss6ks0KjUA1xBo4VKZ4F1zjdk8fFN/8CH3zwGn3/jVOhE6T57QX0XonHal4mIMocYjaD7i1+h5ZUzEPG2xOKvaaejWi1ttmRTm/GHRafBpNNg9XePx6rvHI8995yM20+YmOy0xwRD8dEovuQTFJz9H9kWDDHRMJzr/4z6p6rg2vrkkPbfEwQB79y0ENceWYZzZxTivZsXYnqhFQvHZ+PsSeOBxmnya4wuoLBaFv+qoQdvbWuRxYmI0gkLe0RENKCwcx8irjpJzFC6CII6dTMYWtw+QBuQxPK0nK2XKexzb4WglhbvvLtfQ7BrOwRBQC7ypReow9ja3ZrEDIko3YXdTWh59Qw4Vv0GQN9sKz/U+LNB3vjpqvLjYNL0dk1VqQQcVZ7Vr7MqxZsgCDBPvghl12xCzvEPQKVTfh+PetvQ8cHNaPrvIvibVw36/uOyjPj3ZfPwxg0LcOqUvveNpy+fh1OLp0HsKJPnlNsE2Npk8R+8vX3Q4xIRpQILe0RENCClZbip3F8PADZ3tkPot/92sSErJblQ/KlNBbDOurFfVETPmgcBAMXqQtk1HzXtkcWIaGzy1ryPxueOhL/hU9mxZ3Wz0aKS7rEmBoy4tPyIZKVH/QgaPezz70DZ9dthm3MLICjPvg+2foXmF45H+3s3IuwZ/gy6bJMO7918DM7JWwjRa5OfULIL0HkloT0dnmGPR0SUDCzsERHRgPovwwVSu78eAGzvln+bPpGNMzKK/Yg7AJW0q6F7x/MI9dSgXF8kO//T5r3JSo2I0pQoRuFYfR9aXz8XUV+H7HgrrPiDbpH8wrYKFFoN8jglldqYh9wT/4TSq9fDOOGMAc9zb38GDU9VoWftHyFGgsMeL89kAOqnQwxL32sEdQQYtw0QpE0zurzDH4uIKNFY2CMiIkWiKMpm7Kn0WdDlz0lJPgdUuzplsalZeSnIhBJFYyuHZfpV0qAYQc+6P6JEnwsxLF0K/nn7PogiNzcnGquiASfa3r4U3Z//HAcvvT0gYp+Bs8N3IKSWTvcWfVbAmYdcky5JmdLh6HKmoehrb6Lw/NehyZqkeI4YdKFr+Q/R+OwR8Na8N6xxso1aIGwAGqfLjgkGD1C6Ewf/b2nFvi5EoyLfa4goLbGwR0REikLdOyUbjgOAoewECCluUtHg7ZbF5ubJZ3HR6JZ15PcASD+Eu7c8gXy1A/BK92LqCLix2ymfoUNEmS/YtRNN/z0O3uo3FY8bq76ONyr/je5sp/xgawUEQUCWkZ1v042p4iyUXbUe2cf9BoLWrHhOqHsXWl8/F61vXoiQQ9744lBi/83dORDby2XHBXs7kFcfe/7Iin2Y+NuPoP7+27j6+XXwBsNDGo+IKJFY2CMiIkVK++ulehkuALQHe2Sxo4pY2Ms02uwpME++SBITIwEc4XwO8Mg3Wf+ocXeyUiOiNOGpfhNN/z0Woe6dsmM+UY/bO29H2ftn4vtrPoagknZVFd3ZgCcbWQYt1CpBdj2lnqDRI+uoH6Ds2i0wT7t8wPO8e99GwzNz0LXyp4gG3YO6d/bBxdy2CRDdWfKTCvYBlt5VAh/u7kCdwwcAeG5dI55b1zjon4OIKNFY2CMiIkW+hmWymHHc4uQn0k9PxCV5LoR1yDUaU5QNJZL9qB/IYlO7/guzV75s7s/rNyQhIyJKB6IYRfcXv0TbWxdDDLpkx2vDRbiw9T685TseUa0XyG6W36S1AgDgCUbkxyitaCylKDjjKRRf8gl0+XOVT4oE0bPmATQ8NRPuHf857JJZ6SxNAWiYATEo3WtREACUbZc10wCAHy5lp1wiSh8s7BERkYwoRuGvl3YUVBnzoc2dmaKMekXFKPwqaXc6vai8RIdGP33BXBgnnCmJaaJeXKtdBjEi3fB8l6cBe9oHN1ODiEavaMiDtqWXwbHqXsXjHVmL8bXWB7ArPL43UFAj66Qu9uQD/t7uuFML+B4yWhhKj0PJ5V8g9+S/QWVQbpoV8TSh/d1r0fzSSQi0rR/wXtn9l19HtEBdFcSo9ONxbzONrYBKuvTW4QsN74cgIkoAFvaIiEgm1LEFUb+0SYWxbDGE/p+OkqzZ64QoSJdT2VXWFGVDyZC14Iey2A2WpVB7pP/dBW0Qv16+IUlZEVEqhN2NaH7pJHj3vK54PGvBPfiw7GE4RUtvwODq3SvtIKIoAG0TYs9nFPI9ZDQRVGrYZn0dZddthW3OLYCg/HE20LQSTc8vRMdH30ZEoUuy4r6KAQvQOFU+psHb2ykX0r8/Wpz+Yf0MRETxxsIeERHJ+OqXyWKGcUuSnYbMbz7bLIvl6+T7rVHmMJQcC0PpCZJYttqNheEG2bmft+9NVlpElGSBtvVo+s9xCCrMwhJ0VhSc8xKyj/0l2jwHZlaJQKHC74TuIiBoAgCoBOCmo8cnMGtKFLUhB7kn/gmlV66BoWygbUJEuDY/hoYnZ8C54W8Qo32z7mQz9g5wFkBsHycLC5ZuoHgPDu6UW/X7ZVjX4Bj+D0FEFCcs7BERkYxfcX+9JUnP42B7Oz14dK18T5tSY1byk6GksivM2rtD9a4s1hRR2EeLiEY9z57X0fziiYh4mmTHNFmTUHLZSpgnnQ8A6PAEew+YuyFYHJJzxagKZ+ctwEvXzMcvTpuKr24/ASdNzkt0+pRAurxZKLrofRSc/R+orfLutgAQDTjQuex2ND53VOyLy0N2Qm6rgOjKkYWFnGYgt+9LpW5fCH9Zvg8AsKPNhXs/3IX/rm887P5+RETxpjn8KURENJaI0Qj8DcslMbW5BJqsySnKqNeKfV2AzieLT7LmpyAbSiZj+SnQFy1AoGV1LDZXaIQ5HIFHo47F/LoueIJB6FX83pIoE4iiiJ6vHkT3yh8rHjeULUHBOf+F2tBXhGlzB9A7W2+f/ILOMvzh+nmYkm/BRbMTlDQlnSAIME++CMYJZ6LnqwfR89WDECPyZbKhzq1oeeU0mCdfBNtC5T0a998RaJgOsWIDBIN0X18U7gWCRsDVWxB+em0DvnvCRCz8y3KEIr0FvTX1DvzhvKp4/XhERIfFv3yJiEgi2L4B0WCPJGYYtyTl++u5AmHFwt6i0pIUZEPJJAgCshb+VBoDsCTSb5mdOoJv/e8LzpYgygBiJISOD785YFHPUnU9ii54W1LUA4B2dxCwt0EwSpvpiGENfnPUqZiSb0lYzpRaKq0J2cf8DKXXbIJp0gUDnufZ/Qo6np+L26wvQo+A8klRDVA7E2JI2oU91inX6IzFHl6xL1bUA4B/flmLYFi6Hx8RUSKxsEdERBK++k9ksVQvwwX2F/b0/Qp7YQ0unKG89IYyi3H8adAXL5TElkTkM3Ke3bEZj6ysTVZaRJQA0aAbrW9eCPfWfyscFZBz/APIO+UfENQ62dE2jx8oqJHFT7TPx92Lp8U/WUo7WvsEFJ7zAooueg/a3BmK54gRP263v4D3i76LM4xf4OC982LCBqBuprxTrioKlG8GdL2z+Z5cUy857glG0MTGGkSURCzsERGRhL/+U1ls4I2pk8fll8/Ym5lbCI2ab2VjgSAIyF74M0nsmHC9/ERLN17YKN+Hi4hGh7CnBc0vnwxf7XuyY4LWjIJzX4Z9/h2Ks8hFUUSrdh8EnbSoMt6chfRAMAABAABJREFUjf9ddAFUqtTOPKfkMo47EaVXfoWcJX+ESp+leE6Zph1/zX0Q/8n/KWZrd8tP8Ft7l+X2q/sJmjAwYTOgUS7gNbOwR0RJxE9DREQUI0ZC8DetkMQ0tgnQ2itSlFGf1oCz91vyg0yyctPzscRQfjL0JcfGnheJHlRGuqQnGZ1Y3dAvRkSjQrBrJ5pfOEGx863aUobiSz6BufJc2bG/LN+Lo/70GXJ/vhSR3BrZ8V/PPxN6NbcWH4sElQb2ud9G2bVbYZ11E3o3cpBboN+O1wrvxh9z/ohSdVssPiF7/356rZXye2sDvcU9dUh2jDP2iCiZWNgjIqKYQOtXEEPSjaLTYbYeADT7HbLYZBsLe2PJYGbtCSoRMEn3iCSi9Odv+hzNLy5G2FkjO6bNm4mSy5ZDXzBXduzFDU24/Y2tWNvQA4dlb+9MqoPkqrNx+UT5dTS2qE35yDv5ryi54kvJF0T9nWdagQ+KbsMP7U/DKnhw9oxCFNv0QGcZxPZxsvMFvbd3Wa4qIok3OQfYu4+IKAFY2CMiohh/wzJZLB321wOA9qBDFqvKLkh+IpRShnEnQl+6KPb8OKXluGYH/GE20CAaLTy7X0XLK6cj6pfPtjWMOxEll3wCjaVU8doHl+3pfaAJALkNsuNnZi+ESuBHHuqlL5iH4ks+Qf4ZT8Eh5CufI4Rxs/UNfFz0bRzleRHPXjaz90BbBcTuItn5gsnVW9wT+op7nLFHRMmUkDnpq1atwtKlS7F+/Xq0tbXB7XbDYrGguLgYRx55JC688ELMmKG8kelIdHV14aWXXsKyZcuwd+9eeDwe5OTkoLy8HKeffjrOO+882O32uI9LRJQpfPXLZDFDmhT2uiI9shU0M3JY2Btremft/Rwtr5wKADg63ACVGEX04A/ulm70BKMwaNQpypKIBqtnw1/RtexOKDUvME+7HPmnPqbYJAMANjU58VXD/hm6+bWy7RpEdxaOmTox3inTKCcIAizTLodbWIQnX/gRbrK8AbNKXojLUbtwfMcD0Hz+Cpad9T2c+L9ciE1TIKpDEGyd0nuaeyCWbwHqZgKiGrva3Hh8VR2MWhUunl0CnYbFZSJKnLgW9hoaGvDDH/4QX331leyYw+GAw+HA9u3b8cwzz+Dss8/Gr371K1gs8Wk5/+GHH+LHP/4xHA6HJN7a2orW1lasWbMGjz76KO69914sXpwey8qIiNJJNOxHoOkLSUybPXnAWRLJ1hN1Av3qNFPsyt+2U2YzjlsMQ9li+Bs+hQ1BzIq0YaOmbxaFYHSj1utFocmawiyJ6FBEUUT3Fz9Hz+r7FY/bj/w+so/7NYRDzLZ7fn1j7wOdF8hulp/QWoE8sz4e6VIGOn7qOOCqP+H59TfgVN+/ML7jFQiIys4LO/ZgnOObeL1gIh5yXo5PG2ZDHL8Fglm67YNgccSKe69tacFrW1oAAE+srscH31gouy8RUbzE7auDmpoaXHLJJZKinlarRVVVFRYuXIjJkydLulctXboUV155Jdxu94jHfvfdd/Gd73xHUtSrqKjAggULUFra94G0vb0d3/rWt7Bs2bIRj0lElGkCzasgRqTfWBvKlqQmGQUeSN8vVBEdrFpDirKhVMs6aK+948O1suOrXQof8okoLYjRCDo/vlW5qCeokHviX5Cz6N5DFvUAYHurq/dBwT70b5Ir9uQDfhsq88xxypoy0fETc/Hbi07EiVc9h6Ir1mADFgx47kzdXjyRdy/+m/cLzGtRQ/TKvzwSLA6gfKtkWe7HezrwrVc2wx0Iy84nIoqHuBT2IpEIbrvtNnR19e6LoVarceutt+LLL7/Eq6++iqeeegpvv/02Pv30U3zta1+LXbdjxw78+Mc/HtHY9fX1uOeeexCJ9P7ynDJlCl577TW8++67eOaZZ/Dxxx/jqaeeihX4IpEI7rzzTrS2to5oXCKiTKO0v166LMONRKMIqrySmC7CD2tjmbHseBjGnQQAWKxQ2FvOwh5RWhLDAbS9cyVcmx+THRM0RhSc8yJsc755yHv4QxH85J0deGtbK2B0QrB3SMcQBaCtAgvHZ2NuiS2u+VPmMhXMwrm3fYaGo55H0DbwtlFH6bfj5bxf4K/ud2D0a2XHBUs3UL4FUPUV8v75ZS0WPLwSoQj3fyWi+ItLYe/VV1/Frl27Ys/vv/9+3HbbbbJltoWFhXjggQdw/fXXx2LvvvsuNmzYMOyx//jHP8Lr7f2wV1paiqeeekq2f9/ChQvx/PPPo6Cgdy8mj8eDRx55ZNhjEhFlIl/Dp7KYMU064tZ5uiEK0uUxJpHLLMe6nON+DQCYHWlFVtQnObY33Ia39nqULiOiFIkG3Wh582vw7n5Vdkylz0bRhe/BXHneYe/zh0+r8duPdgMQgcJq2fFjbDPwyNkL8MHNCyUrhogOR6NW4fjjLsaU69Yi79R/Qn2I7UjO0K/DisAjGBeSr0ATLA5g/CZAHYrF9nR48Wq1B/es6MJ177fjkZU1iEZZ6COikYtLYe+NN96IPV60aBHOO+/Qb8h33nlnrMgG9C7LHY7W1la89957kvvm5OQonltUVCSZHfjqq6/K9uMjIhqroiEvAs2rJDFtbhXUpvRoTrHb2SGL2VTx2aOVRi990VEwTboAaohYFK6THBM0YTy8swGiyA9NROkg4utAyyunw1/3keyY2lyC4ks/hqFkcPuQ/fTdnb0PrB0QzE7JMbNGh1fPvhi3HDcBZn1C+gTSGCCo1LBWXYey67Yj54QHoTIq7+lrRwCv+Z7D9Ei7/B4mFzBhQ2/H5v0eXOvEh/V+bO0M4c63tuPNbS2J+hGIaAwZcWEvGAxi3bp1sefnnHPOYa/R6XRYtGhR7PnmzZuHNfZ7772HcLh3irPVasXpp59+yPNPPfXUWOEvHA7jww8/HNa4RESZJtD0ORANSWLGNFmGCwC7euR/MOeo2eWcgOxjfwlRUOEEheW43dpOVPdwTyOiVAu76tH84okItK6RHdNkTULxpcugy60a1L1aXfuLJEIUKNwrO/79WUtQaOSMbooPlcYA+xHfwbjrd6Jj8g/gisq3AckSA3ja8xqqIm2yY4LBC1Ss723wouDh5fvinvOLG5pw9fPr8OsPdiEYljcDIaLMM+LCXmNjI/T6vm5TlZWVg7ouKysr9ri7u3tYY3/xRV/3xgULFkCrle9xcDC1Wo1jjjkm9vyTTz4Z1rhERJnGVy//fZhOjTN2OOR/LOfpspKfCKUdXc406KZcjeP7zdgDAFi68GVzQB4noqQJdu1A04tLEOreKTumy5+LkkuXQWufMOj7fV7Tu6c3cpog6Ps1fIIRd1alxxYSlFlUOguOOvs3GHf9Djgm3QY/pM27skU/nnW/iqPCjbJrBV0AqNgAmHpkxz6p7oxrni9vbMJlz67Fc+sa8fP3duLW14Y3gYaIRpcRF/YqKiqwfv16fPXVV1i6dCmmTJkyqOsaG/t+6dntw5t1sXNn3x8IVVWD+5Zv2rRpscfDnSlIRJRp/LL99QQYyk5ISS5KdvbIl+IWsrBH++Uf+1PYoiHM6DdbQjC6sOJA10wiSrpA61o0v3QSIq562TFD6QkovvjDIW/5sLKmq3ffsjz5LN35urkwa/UKVxHFR3Z2Iead8wdMvmkXrHNvhaDuK/BZEcS/Pa/jxJB8Fp6gCUEYvxGwyxs4BsIRWWy47v7fdsnzf62q45YURGNAXPbYA3qXwk6aNAkGg+Gw57rdbqxcuTL2fLCz/A4WDAbR1NQUez5+/PhBXVdWVhZ73NraCr/ff4iziYgyXzTgRKB1rSSmK5gLtSE7RRlJiaKItW3SDqdiUI8sAz+8US+9vRxPu8/E4lC/D/oCsMnfwg81RCngq/8EzS+fiqhP/sWMqfI8FF7wNlT6oXes/aKmG8ivhaCRLrMXfRYcZZ067HyJhkJjLkLekocw7obdsM+/C4K2d4muARH8zbsU5wd3yC9SiRDKdsBUuB1A3/vSrvbBNXra2uLCuY+vwpK/rcSbW5X35tvbKV/yG+ByXKKMl5IdZR9//HG43X3dg0488cQh36O9vV3yh3p+vvKGpv3l5eXJ7jNu3Lghjx8PB/YHHK0ikcghnxPR4KXy9eSr/xQQpePpS05Im99Rn9d0whFxQdLYMGiESaNKmxwp9f7huhB/tP0Sf+/3/WKBdSdanD4U29kZk2iohvve5K1+HZ3vXQdEg7Jj5ulXI/vEvyIKDaJD/B0ejYrY2NEClDfJD7ZOhL1Sw/cFSi59LmzH/BrmubfDvemvcG38O7TBHvze9z5yRB/+rZ8nu8SX14bZ5l1QNU3CBv8MbGh0YHq+6ZDDhCJRnPyPz9Hm7n1Nfba3CxfOKoJOLeCyuSU4a9rAM1+7PH4UWFLzZWinJ4hNzS5U5plQnmVMSQ6UmViLkEp6YW/Tpk147LHHYs8nTJiAk046acj36emR7lFgsw3uGz+rVbqZrtPpHODMxIpGo9i4cWNKxk6ULVu2pDoFooyRzNeTce/L6P+nVlOoHLVp8jvqTxuaIPSfXx40wt3Vho0bfSnJidLPseUF+LLzGFitAbiEvg8wHrMPn6xei6qCoc8MIiKpwbw36VrehHn3AxAgnyXkK70CXbnfQv3mrUMad0N7AK2eCMbbNPDm7IGgks7CFV05gCcbnq42bNw4uNlPRHFnOB/C/JOhb3oZoZoX8GP/clREu/FLwxJE+v0hs9mYhQkTduOvzhfw0VsLcf/SEzExNwc/PMoOo0a+qG59WyBW1Dvg1c29s/Ze2NCMh5fk4Ohi5ZVzqzZsQbk1+fN5dnaHcNsnnegORKFXC7j32GwsLjv86j6i4RjrtYi4LcUdjIaGBtxyyy0Ihfo6L959993QaIb+iyYQkG6GfXADj0PR6XSHvA8R0VijdUiX4YpQI2Sbk6Js5D5p65IHg0bFP3xp7LqhyoqPcD7mB6X7F/WoDGhqfTVFWRGNLYaG52HZfZ9iUc874dvwTbwN0unXh/fYZhdu+rATP/nCgauX74Fgky7tFUUALb3b+th0nJlLqSVqLPCXX4fv4d/4YdctONLTgyc8b8Aqyj9z1qizcVfWYkwv+AIvWm/Aop4H8cCHK/HqbjdWNfdtF/VOjRc3fzRwkw0RwB/WOREdYNsJTyg1S3Gf3e5Gd6B37EBExONbuectUaIk7VNRc3Mzrr32WrS3t8di11133bCW4QLyZaxqtXpQ1/U/b6xP2SSisU0I9UDt2S2JRazTAY05RRnJmUwKe6EGjDBp+AGO+oy3afDMWeNQqZ8kO1bt3wEh2J2CrIjGCFGEseZRmPY9LD8EFTyT74F/3FVDvq0/LOLZHQe27xGBwr3yk7pLgGDvMkarjl/4UHoIilq87D0ZZ7b+EY+1XIt7OjeiPOKQnRcQNPiR6RT8zLwYZ5pX4C/mH+Dk+muwY+0/8MKGnWj2hPHLL+XX9bfPGcaGdvnSdwDwhFKzz+y7tdJVFdu7QtzzlihBkjInt7q6GjfeeCOam/s2P1+0aBG+973vDfueKpX0jXuwBbr+52m12mHnMBIqlQqzZs1KydjxEolEJFNeZ86cOegCKxFJper15K1+A52Q/pGVPeUMVMxJnxl73i9XyINBE/KLSzFnTnnyE6K05s8txL+X/QnRg2YFLdOMw2+9byD7qD+mMDOi0Wcw702iGIXjs7vgrn9SfgOVDnmnPwlT5deGNf6WFhe84f2fH+xtEEzSGT9iRA209TXQO2LGFMwZnx6Nn2hsM69dAyAAQMDywDwsb52Hyu69mDpuG3YarLLzX9dNx2pNKe73fohj0YA77C8ArhfQtHUOLjUdjf95j0WPKL/uYG83K//dmF86HnOqCuPwUw3Rf+R7YVZMq4LdkJrP38kmiiLe29UBVyCMs6blw6xLSXuDjJVptYjNmzcjGh3+7NqE/69r3bp1uOWWW9Dd3fdN+cKFC/HII4+MqKhmNEp3hAoGlb+h6G+4S3gTYThLkNOZWq3OuJ+JKFWS9XoKNcuLZubyk9LmtSyKIlzo90FOFICgAVMKrGmTJ6WPI0qKYfLp4Db1bfuxV52DTduew/HzboEuZ3oKsyMa3fq/N4nRMNrfvxmeHc/LzhW0ZhSe+wqM5UPfS/sA5/5lfBAiQME++Qkd5UCkb5udPKuB7wuUFopt8kYR1cGJQHUFdHnVCBc0QOy3LL1JZcM1lgtxRWATfuhfCTNCKAlsxG+yN+JnWU/gi8AsvOtdiA/9R6Erapfd/7O9CluXAHCHokl/XTj9IcV4tz+KXEv8ctnQ2IOHPq2GTqPGT06ZjAk5h25CEo2KeHjlPry1tRVT8s349RnTkGvWHfKa4bryuXX4z/rG/2fvvsPjqK42gL8z26t6r25y7w0XbIMB07shoSShJQQIoSRAQhJSSCCQSvIBAZIAIaF308HYYGMM7r3KVu9d2r5zvz9WljSalS3Lkkbl/T3PPtKee2f3CKyyZ++9BwAwLtmJr354MpyWwffzSQgBKEEoQQ9EKHJTgi0QQW+H+x6IkLftcygBiHDrTQkCSrDD/QDQYUyEA5FxJQgIBUIokaZ+Qulwv/UGpTWfMIQIw2nKgi/rWwi5pwz7WkSffuVvv/02fvrTn6qKbosXL8YjjzwCq/XEDs6MiVH/MOvYZfdoOs+LjY09oTyIiAYzb9Gn6oBsgiV9vj7JRFHjCUAxt0D1p2/ABqfFhPm5XJVBWi6rESFvLmBXbzH/xJCDcavvRsZFb+mTGNEQo4R8qHr3Snjy39aMyZY4pFz4Nqxpc3r02I2+IGRJQnlT6xvyiUWQzOo350XAAtRkqmJxtr55gU50vG5ZmIunNxRFGZEQqB4NeBKBzN2QTNrFKf+zTMHnphz80rsKi0MFAACzFMJi62Ystm7G/eIf+DowHh965+IT7ywUhyOr8Rp80TtCN3YR70slDVGOUQFQ1ezH6MTeOe6lqtmPk/9vLVoCkR157++pxKF7l8Jk6HpL/rMbi3H7m5HmPSsPVKPeG8T/rprZK/l0tL2ssa2oBwB7Kpvx2vYyfGtWVq8/19GIkB9hfy0Ufz0UfyOUQCOEvwFKIPK54m9oiyuBBiiBJij+BohAAxR/E5RQC0TQEym0DUBmFMLYtAsNM5/XOxXd9Vlh729/+xv+/ve/q2Lnn38+HnjggV6ppCYlJUGW5bblitXV1ce4App5kiQhISHhhHMhIhqMwi0VCNbsUsUsaXMhm47+bmd/2l5ZC8nY6V1fvx0ffnce7NzSQF3INmRgHzoV9kwjcEPBq/Aceg/2EWfplBnR0KAEmlDx9qXwdX5zCIDBnorUi9+BOfH4j5wRQuCXH+7Dgyv3I6QIOMwGwOQDEqMUSCpGAkL9Aj7Wxt8LNDDMyIzFDSdl48kvC6NP8MQCB2dCZOyF5NKutCuSY3Cd4wIsDebjXu9nyBaNbWMGScFJlp04ybITv4j9F/KD6Vjtm47Vvun4yj8Bfqh3pDX6+7+wV9xVYa+le7vsuuOxLwrainoAUNrow6qDNTg9L0k173CtB1f9bxPWF9YjrKiPn3lhSymeWD6111fS/WNdgSb23MbiHhf2hBAQgUaEvVUIe2uh+Gqh+GoQPvLR2+G+tz0ugkO/S7gcrIMcqDr2xCGu13/7BYNB3HvvvXjzzTdV8e9973u4/fbbIR1nJ6yumM1mpKWloaQkUgkvLOzih2YnRUXtfxikp6druuQSEQ0X3uLVmpgtc0n/J3IUX1eUaWLLcnNwEs9QoqMY7U7CXp8dktXTFttkSEONZIPyye0Y+Z1TIRn1O4qDaDAL+2pR8fp58Fd8rRkzunORevF7MMWO6tFj/+KDvfjtx+1F+WZ/GMjMhySrzx0SLTFAY1Lny2ExDt7zlWjo+celU/GNaRlY+vg6zViG04CSZjNQOAkitgJIPQDJoF0V9YlpJD43ZuO7/o34rn8j7NAW6UaaSjHSVIprXO/Aq5ixITAeX/knYL1/IrYHRuO5jcWYnxOHJaMT++TrjKa43hs1Xt2psFdY58FvP9mPYEjgR0tGYULq0c8R7OihTw9oYp/sr9YU9u5asQtfHO66gdam4gYsGtX9xT4f76vC6vwazMuJw9njo59duKdSu5vw4/3VKK73wmyQ8be1h7CpqB7LRphw5QQz7OFahD0VCHsqo3yshOKpgAhrOysToJiToFhS9U5Dd71a2AsEAvjBD36AVatWtT+B0Yhf/vKXWL58eW8+FYDIAYlHCnt79uzp1jW7d+9u+3z8eJ6zQ0TDly9KYc+ataT/EzmKbTXlmtj42GQdMqHBZGKKE+/sSgA6FPYUScYqYy4uad6Nhk1/Qeycu3XMkGhwCreUoeqt8xGs2akZM8WPQ+rF78HozOjRY++pbFIV9QAA9npIMeqVGEIAKB+FFJcVFU3tL3SvncNmSjTwnDI6EbeePAKPfK4+I/KS0Q48sqURgATUpwLNsRAZ+yA5tQWogGTE361z8bx5Mr7n34ArAtthRfStkTY5gJOtW3GydSsAwCfM2OzPw1v/G4ctY07GDy64BAZ73/8dVdLY1Vbc9sJeMKxg/t/WorR17svbSlH4s9MQZ29feKMoAk98WYDPD9ViTnYsblkwAgY5slDIE9T+NzAb1IuIAiEFr2zTvknc0VdF9V0W9grrPLjnnd04XOfFZVPT4bIYccPLW9vGkxxmjElyYES8HQ+cPR5pLgs2Hy5B/uFtmGOuQ5KhHkmGOiTK9Ug0NODDx36LREMDzpLrcZWhAeYdITTuABqjPvswIBshyWZIBnPkc8kASHLbreP9yAKx9jFARrMhA76Mb0IYnXp/JbrrtcJeKBTCrbfeqirqORwOPPLII1i4cGFvPY3KnDlz8MEHHwAA1q9fD0VRNN1yOwqHw1i/fn3b/ZNOOqlP8iIiGgw6n68nGaywps7VKZvodtdXamIzk9J0yIQGkwsnpuCh9QlAknr73semkbgkuBv1Xz0A5/grYXRldvEIRNSZ7CtFxatXINyobWJhTpmJ1AvfhsHW8xVBr2/v/EaOANK0K3JQlwb4XHj8G1NQ1ujD+3srMS7ZhfvOyOvxcxP1pT+fPxFZMTbc//E+NPhCOCfXhm/kHSnstQpZgYLJELHlQMoh7TEkAGpkO35nW4R/mGfj5sB6XB7YCUsXBb4jrFIA86w7MM+6A6h4BYVP/BBGVw4sqbNgTpkFc+IkmBMmwuDMaNtZ1+IPoajBi8wYW4+3qBbXd7UVt70Y/9bO8raiHgC0BMJ4ZkMxbls0si321zX5uPOtyLExz28uQaMvhJ+fngdPIPr24rImPxRF4OVtpSht9GHEMZppAMC97+3GnYtHanYWCiHwnRe2YNXBGsgI42BRPpIMdVhijRTqkg2thbvGOiS11KPk6UY0oxYJ8OGTQbqATDJYIVnckM2tN5MTkskOyWSHbLRDMh753Nb2uWS0QzZ1GjNYANkEyRAp2kmyGTCYIR2JyWbAYIIkdV27OZZQKIStW7cee+Iw0WuFvYcffhifftr+IjE+Ph5PPfUUJk6c2FtPoXHaaafhd7/7HcLhMKqrq/HRRx9h2bJlXc7/4IMPUFsbOcPAaDTijDPO6LPciIgGslBzCUL16hdMlvT5A2574sHmKqDTiQlLc7gqg45uZmYMjH43QiGT6sXRGmM2fDDAGvKg9vO7kXz2f3XMkmjwkFsOwb3jVoQD2jOtrRmLkHL+a5At7hN6jnWdt8rFlUGyqs+HEmEDUJkLAJiXE4dklwU3zs89oecl6muSJOHOJaNww5xMbNu+DTZjpJixIDcOa1X/7iWgPg1oTIRIPgzElyLaKVY1Bht+bVuCh82LcKb3MG4Pr0Y6mrqdT6ipAKGmArTsf7X9mc1umBMmotk2Go/vtmNLUwL81iw8cvXZmJlz/G+oljR0sRW3w4q9d/do37x9dkORqrD36NrDqvE/f5aPn5+eh+1l0b/e0gYfvvfqNvxz/bGP6TIgjFi5CQlSI/744tO4cYYT4ZYKhD3lCLeUo7m+FHc0HcSDaXWIlxthkJRjPqbuDGYYrAmQrfGRj7bWj5ZYyJYYyGZ3h8JdDOQjnx8ZM5hR0xLA6vwajEl0YHLaif1cp/7TK4W91atX45lnnmm7HxMTg2effRZjxozpjYfvUmpqKpYuXYoPP/wQAPDb3/4W06ZNQ0qKdq97WVkZfve737XdP+OMM6LOIyIaDnxFqzQx2wDbhlvV7EejaFR1xDUrVqQ6uNyejk6SJHxrvAv/qksA4tpXAXklEz4z5uCMUD5a9r0M7+QbBty/e6KBxtC0G64dt0MONWjGbCPORvI5z0M22k7oOYQQ+KKgQwMBQxBI1q4MRGUuEI6825PsGlhvRBEdi91saCvqAcB9p4/B8v9s0nazVUxA+RigLg0i7QAkh/Z7DwC8BhmvO0fidTEKqc0SzvPl43L5K+QatceYHIsINMJftg4mrMMPLEBb/43XgUJHGozuXBhjcmF0ZsLgSIXBngyDPRUGRzIM9hTIljjVirfuNM8QUepkcofHEELgYI1HNV7vDcIXDOOrovq2mAQFDskHl+zBwQMFqJJbcIrVA7fcgli5GfFyI+LlRsTJDbAYPRDGIEKGMHwGGY2yBU2SGQfqLfjupxY0InLfK5kQQjwC8UkIQkYQBoQkGSHIMECBQQgYoUBG5KNNBOEUATgQhEv4I5+LINzCjyTRgiTFg0ThQZJoQYzwo7tdB3yGWBT6nKgJx6JaiUFNOAYhUxzuPmtOh+JdpJAHczz21wlkxNoQYzN18xnU9lU1Y94ja1DnDUKWgMcumYIbTso57scJhRVUNgcQZzfBZuLZp/3hhAt74XAYv/3tbyFEpMOMJEn44x//eMJFvauvvhpfffVV2/29e/dGnXf77bdj9erV8Pv9qKiowBVXXIEHHngAc+bMaZuzfv16/OQnP0FVVeSMDrvdjjvuuOOE8iMiGsy8Ras0MesAa5zx8f5KwKx+xzfdGq9TNjTYfGeCE+99loJyqF/gvG8ajTNC+QCAmlW3IeOKryEZevYHMNFQ5yv+DO7tt0AKezRjjrGXI+mMf/XK98++qhbUejpsPUwqgGRUFzuEzw7UpgMAvj2L2+hp8FsyKgF77z4Vz2wowt3v7NZO8DuBw1MhnLVA8mFINm1DBgCAJFDuEnjSlYsn/OPgaHRhjrcaSw27MMeyE6NMpSeUZ7ilDOGWMvjLtE1A2sjG9lVgZhd+Fg6jLsGKZmGHX5gQFEYEhRGBMhP++Bcn7BYrxvhCuMXlgwRAlhRIEDC1SKhd+xF8gSAqGhrw29gCWKQArFIANskPqxRA8Qu/w9TaeqxKbYJbboFT8sIgKWiABcWyu+1WIrtQJruwVXKgSk5HlTQGQUn/IpNRhBGr+BEfDsAVUmANSTAGzFCCNvj9bjQGYlETjkOt4kaoi3LNp5/FobLZj0UjE3D+xBSclB2HUx9Zhz2VzXBbjXhq+VRcOjU96rVfF9ajusWPU8ckahoOPfDJftR5Iz+LFQHc98FeXD83+7gaoBbVe3HRv7/GppIGZMRY8fK3ZrHpXT844cLe+++/j4KC9nbONpsNTz/9NJ5++uluP0ZiYiJ+//vf9+j5R44cifvvvx933303FEVBcXExrr76amRnZyM1NRVlZWWqTriyLOO3v/0tsrJ61mqaiGgo6Nw4QzI5YUmZqVM20a04eFizBWVKwiA9tIT6nc0o46XFeThl+06E5fYCwSemkfB7DbAgjGDNLjRs/itiZ/1Ix0yJBiZP/juoeucbkKJ0YnRN/i4STvkrJLnnL5Jb/CFsLWtEhtuKLws6bEe0NAPxJdoLykcBkGEzyfjxktE9fl6igSTZZcFZ45KjF/YAABLQnAA0x0O4aiIFvk5b1FWzLT54knxYBeBT7xyg6Uy4a82YrpRiqvkgzk0uwRhpLxSvdlv9CVFCUHy1UHyRlbczTACOVvP3A5AAxGiHGlobbscC+EaHTRoeGFEsu/FpQwxKTG4UWdJR0qGQ1yQNjlW8IcmAaoMd1Qa75rgZoBlC8QD+esBv73BzAAErgMiKzyM/M/NrPHj6a/V5wo2+EL75301wW42YmRkLi1FuOyvxnnd2t3UTHpfsxPpbT4bL2l4SemZDseqxypv8KG7wISu2+6uyH151EJtKIqtMSxp8+Om7u7Hy+/O7fT31TK8U9jryeDxYs2bNcT1GRkbPumcdcf7558NsNuO+++5DfX09AKCwsBCFheq99TExMfjNb35z1HP4iIiGumDDIYQaD6ti1oyFA27V0vryEsChjp2cwVUa1H1WgxHjTanYEW7/Q7VFMuMzYw5Ob121V//lb+AYcwlMMSP0SpNowGne8wKqPrwWULQH1MfM+jHiFtx/XCs4Oiuo9eD0J77EgeoWWIwystteNAogfb/mTR3RmAC0xCMr1oq1tyxE5nG8yCQa6OLs3fn7S8J3xk2HENNgjqvFfw6th99Se/QrbE2ArQlNAFaHTFjdPAWfmM7C35bNx7qN+2Fv2Y+zUmsQ6z+AYM1OeGv2wCC0TTv6iwKgSnKgSHajUI5BoRyDIjkGRbIbRXIMqmTHMR9jKJBkBbA1R24dCEUCAjbA51Tfwtp/P2FF4MwnI01DzQYZf75gIi6ZnIY/rT7YNmdPZTOe3lCEHyyM/P3T1bmIuyqajquw9/c16mMUVh2s6fa11HMnXNjLz8/vjTxO2JlnnomTTjoJL7/8MlauXImCggI0NDTAbrdj1KhRWLx4MS6//HLEx3MbFxENb51X6wED73y9Fn8Ih1tqNIW9yfFcsUfHZ7Y9Ezua1O9Av2ca3VbYEyEvalbeipQL3zqhQgXRUNG47QnUrPwBAKEZi5n3G8TPvfuEn+PxLwtwoDqy6sgfUrC/9XPEVkCyN6rmCkUCKkYBAIt6NCTFWo9d2Lv3tDH4zZnj2u7/A0uxrbYUN3zyLr5u3BcpBh2FZAwCsZXYhUos/WgzRFgGfC7cXenGLxZdi0qjEX/fUYocVGO0sRSZxkpkGSqRaazA7LgGxIRKIELRCz/d1QQzymUnKmQHyiUnymVn28ciOQbFsht+qdd6e/aYpAAQBghFhhAyIGRASJHbkdPxJAFARD5KApDDgByCJGt/bvZaXrIArJ7IDe2NR0TQAnidgM8B+FyRj0FrW66BsII73toJRQiEFHV+9763GxdMTGnr/hvN7opmLBubfEK5B0IKWgIhWE2GEz5zb9WBavx97SE4zQZcnB5ChlP/fzMDwQn/V3jnnXd6Iw+N//znP8d9TWxsLG644QbccMMNfZAREdHQ4C36VBMbaOfrbSiuh2L2aA4XHhdzYn9Y0PAzz5WKf9UbIBnCbbGO23EBwFvwAVr2vQTn2Mv1SpNoQKj/+iHUrf2ZJi4gwTP6x8iaeWevPM/vVx7QBg1BICXKgoHqbCBgw8ob57GoR0OS3Xz0QofdZMAtC7SryqfEp2PNxdci5hdvwWevAGIqIDkaozyClmRQAEcDgmjAz7e2vvk1FjikSDgUMgOhTCA4CggbMcUZh3PHpqOuvgmxsg8JJj/e3LQPcrAJDtkDh8mPkfFGhBFGaZMHAaHAIxvQLJtQL1lRL1tRK9nQImn2nfYLOSxDCpmgBC1QQlYgZIZNssHrNQAhE6AYgbCx9aMhUszrdnsLNSEpbUU+l11CU8gLGAPamykA2eyLzD9BkskPmPyAu70wJ8LG1mKfE/C64Pc58fzmYs21zf4w8h78FIFw13nsqojegbjWE8DP39+LkgYvrpmdjQsmpaLZr13lDQDn/+srfLivCg6zAY9dMgVXzezZDpwtJQ04+6n18IUi+X6w24A3zkuGUeYbsyxvEhENI0II+IrUK/ZkSyzMSVN1yii6dQV1gFl9WLtFNiHTEeUwFqKjSLGZgKYEILb93e0WyYw1xmwsDbVvF6lZfSdsOWfAYOUBzzT8CCFQt+anaNj4R+2YZEBL3i8QSD6jb5NIPhRZVdTxuQNWoDpyLvaMTP78p6HpaKvFY20mPP2NaUjpogu0ySDj5JwUfLTPANSlQ5i8QEwl4K7uutnG0XKRBWD2R26ttgfLsH3HLvXEGCCyraJ1a8WRb13rcT/lCRMhU+T8uWDrLdDxowVhESmc3ndGHq6ckYkmfwhjEh1Y/uwGfLC3qpeTkYGwjJlpiVhx3Vxk/uYjhJXoq/iWT03Dny7Jw4oDBfjem+sBsw8weQGLB7B4VG9IHi/JEAKc9ZFbqy/CBiA3Uug7UvBDwHbUoh4Q2bLb0a7yJtz/8T68sKW9KctbOysQazN1WbD7cF/kv3NLIIxvPb8Zt76xA26LEb9aNhbfnt393gffeWFLW1EPACo8YeypDWJSoj5F44GEhT0iomEkWLcH4RZ1dzRrxskndAB6X1hzqCbyh00Hee4kbpWk4xZvNQCNSarCHgC8b5uCpU3thT3FU4m6Nfci8bRH+ztFIl0JJYTqT25C886nNWOSwYqmcfcjGL+gV54rrAj8YdVB7YC1EYgr08bLRgOtL8pdFr5soeFl652LMTHFBfkYq5FSnB2KfkEbUJ0DVOdAGP2Asw5w1gDOuhMqFOlJKHLkbLm2gp1NVciLMVswOc0Nv6Tg64r6qI8xJtGBOxePamsiAQCn5yX1uLB36ZQ0vLItys+sViPi7UhxWXD93Gz8Y11B1DmLRyUize7GaRmjgIbDnUYFhDHQWuRraSv2wdoSKdr1gGQIA46GyO3Is4QN7Wf1HSn4+e3ouGJxZ3kT6r1BvL69DEFF4Fcf7kVZo7apUr03qDlfryv13iDqvUFc8+IWnDI6Adlx9mNe83VhPbaVaVek1vhOfNXjUMDfkEREw4ivMMo23OxTdcika6Gwgs8KyyHlqv8A5fl61BMWgwR3KAmNYfV23A8MI3A/2rfjAkDTjqfgHH8FrBkL9UiVqN8pIS+q3r0SnvwVmjHJ7ELiOa+gptrda8/30KcHcO97ezpFu2qYkRjpBnokH76xQ8NMbpz9mEU9AEhxRV8m9/fzZsFqknH9S1sBCAiLB7A1AvbGyEeLR/N9pwchAITMrcW61qJdW/HOFtkue5StsTcvGIH7z4qcP7ipuB53rdiNlQfau/4mOcx4/qoZqqIeAFwzOwuPfXEYB2vUbyR3x4PnjMfXRfUoqIt+7uCI+Eih6tGLJyMjxopfvL9XM2fpmEQAQIor2mozCQhZIreWjjsJBITJD1ibERfvx8LxZqwpK0R96PhXZwJdFPsUubXQ5wR8LtR5nYj/+Xvo6fbkY1l1sAbfmqUu7PmCYdz8+nZ8drAGC3Lj8fB5E/D+3sqo1zcFWNgDWNgjIhpWvEUrNTFb1ik6ZNK1LaWNaEYjz9ejXpPqtKOx03Zcj1DwN+U0/Ej+QDW36qPvIuPKDZBNx373mGgwC/vqUfH2xfCXrNGMydYEpF60AoaEqUD11l55Pn8oHKWoByCuVLNlUCgyUD6q7b7FKPdKDkSDidPSvd0UXW3TjbebcN6EFPxp9UHsqmgG/I7IrT4tMkFSIMze9lVhZh9gbD2vzRg44RV+QkiRs+tCptaPFiBobv3YejsSQ9ff44tHJmDxqARcNDkV0//0mWZ8Yqqr7fMZmbH4+MZ5ACK7PwrrvFgyKhHpMdriZ5zdjE23L8YnB6rwxLoCfFFQh0afejWcw2xAS0D732FkggM7frQEW8sasfDvazXjRwp7kiTh6hmZUQt7oxMj25jt5uglme/MyoI3FMaLWzrutJHaViouyUnFq6fNBgBU+1qwpbYE5z73CQKmSDdkydKzZieSrESKvx0aGUWKfa3NOVoLfvDZcbT/b91V0uDTxK5/aSv+t7kEAHCwxgOLSYZJjv5cjSzsAWBhj4ho2BBKWHO+nsGRBlP8eJ0yim71Qe02XAAYG5ukQzY0FKQ4zdhXrd2O+2/DHHwv/Blccvsfv6H6A6hb+3MkLNGeNUY0VIRaylDx+rkIVG/XjBlcWUi96B2Y48chFOrZlq9o3thRrg0aAkDKYW28Kqe1q2MEC3s01D1y4STc+saOtvsXTkrt9irV1KMU9hwWIz787jwse+JL7OzcBEHI7cU+aP/GEq1NICCHAUPrxyPNHqQO58YpcmTLvNLaQVaRgbAJUAwAJExMceHy6en436YS5CU58OjFU5DgMGHSw6uOuVrukslpePnbs9ruW4wy/CF1IWdCijPqtQtHJADaniMqLqsRF05Kw4WT0hAIKTC0rpD8eH8VmnwhnDkuGe5731NdMzElUkh0WIyYnxsf9XETHO2r8NLcVritRlXR8No52cf8/zs3Jxbfm5eL566YgSl/WIXdnc66WzI6se3zRKsDp6Xn4ZS42rbtxUIOAdbmyM3WFPnYw1WakWJfU+TWSihSZGWl3956cwABO+C3tR2h0B2eoLpw+tnBmrai3hFPflnY5fVNQRb2gN4osRIR0aAQqNwEJdCgilmzThlw25tWHqjWNM4AuGKPei7ZaQGa4yNnyXTgczbht41XaeY3bvk7vMWf91d6RP0qWH8AZS8uiVrUM8WPQ/plq2GOH9frz/v010XaYOpBzXlRwm8HatQHsJsNfMlCQ9sNJ2XjR0tGYVyyExdMTMHfLprU7Wu7KuwdKS6lx1ix8fZFOGd89/+Oevob0yKFuZAlUqzxuiNbQpsTIremxPZbSzzgiYms4vI7IttnFSOObN28ZEoafnZaHnbddQreuGYO0mOssBgN+OqHJ+PBc47+5vIlU9JU9x8+d4LqfrrbivHJLvQGs1GGQZZgkCUsG5uMS6emw2kx4qoZGap5Pz8976g5yRKwoEPBz2yUccei9hXITosBP106+pj5pLkjb24YZAmf37IA35ye0VaUO3lEPG6Ym625ZsGIDoVGxQh4YoHaTKBkPHBwNrBnIUT+NIiyURB1KRA+R2QrdA9IsoBk9UCKqYaUXAgpazekURuB8WuAMeuBnG1A2j4gsRBwV0a2fxsCANRPWOtRN02Keg7rUTQFevgFDDFcsUdENEx4C6Ntwx1Y5+v5gmGsOlgNpKsLe7IkYbQrsYuriI7OZTFGVhE0JgFx7auGJFnBK8apON83GfOtHYscAtUf3YCMqzZCNjn6P2GiPuKv3IzyN86D4tGeVWRJnYuUC96AwZYQ5coT4w2GsepgjTrorIEUG+XMpNLRke/XDmKsfMlCQ5vFaMBD507AQ52KRN3R5VZcW/uqMbNRxsvfmoWlj6/DuoI6AJHtot+elYVffqjdJnr1zEwIAXz3la0IhqMXTs4el4xYm0mzuqqjiyal4iddFLHi7Gbcdcpo3HXKaGwtbUCTP4Q0lxV3rdiFw3UeXDY1A8unpquu+d68HKw5VIuXtpYiwW7CE8unwNzHK3ofv3QKMmJt2FvZjIsnp2H5VHWx8do5Wfjr5/kobt1Set3cbM3W31+ckYdFI+ORX+vBueNTkNzF/7OO3B3OBIy3m/HfK2fg8UumoKTRi7FJzqhvzN80Pxf/WFcQdXsrgEix1hsTuR0hhSGsLe2r+qxNgNUDSepZwUySENnWbY6eg1Dk1m3YZiBkxidNZXhwWyXizQ5sK/JhxeFiwGKM5Bo2tq387Aq34kbwtyQR0TDhLdI2zrBlD6zz9dYcqoU3qADWFlV8tCsRVqNJp6xosAsprX+c1qeoCnsAIGIqcU/xTXg35XY45fY/QkMN+ahb+zMkLPlzf6ZK1Ge8RatQ8fYlEIEmzZgtZxmSz32hzwrZaw/VqrfPyWEgbb9mnqhPBjxxmvixVvUQDWdH24rbkdVkwIrr5uDV7WVo9IVwzewsfFVUH/VaSZLw7dlZWDIqAW/uLMdtb+7UzJmc7savzhiLS6em4eKnN0R9nKe/MR0W47G3ZU5Nby80vfqd2V3OMxlkvHD1TDx12VTYTIa2rbN9yW424oGzu/4ZFGc3Y8ePl+DtXRVIdJhxRl70o2OWjE7Eki4e4/q52XhqvXq76dhk7RZjl9WIcdauVyjG283Yd8+peG9PJdJcFix57IsuC7NthCGyItPboVGSpEBYmgFbh628lhZI8omvjpNkBbB4IzcA+5Uq3LtxX/v4yCgphg2RN3yE1OGjBPicKAuPBKD9vTHccF07EdEwoIS88JeqD/c1xo6G0ZWlU0bRvb+3EjAEIRnVy/InxKbolBENBcvGtq729MRABDu9AHLUo0SKwYMN39Zc17jl/+At1h7UTTTYtBx4HeVvnBu1qOcY902knP9an65O/Xh/tTqQfAiS2a8KiZARKB8Fm0nGWePatwxOz3DjvAnsik7UlQR7tK6qgDvKStc4uxnXz83BHYtHIc5uxvQOBbUjMjqsNsuJt+PWk0fi8UunaOZdMT0DZqOMCyeldVl8724DkOPltBj7pajXXW6rCVfOyMSysck9OuLm5gW5qq/nvAkpbVtxj5fNZMDFk9MwLze+59uUhQz43EBdOlCWB+TPjGzjPTgDojQPojYNoiUGItQ/b7pLhjAkYxCSKQDJ7INk8Ua2AcdWYqdjM5rDwWM/yBDHFXtERMOAv3QdRFj9IsqWvVSnbLq2vqAu0pmtk0lxfFFHPXfu+GRkxlgj22QakoHE9rO+JCmyau/5mtNxpm0dFlq3qa6t+uBaZFy5AQZrbD9nTdQ7Grc+jppVtwFCu13JPe0HiF/8MCSpb9/r//RAh8KerRGIj7J1r3w0EDbjLxdNwvVzs/Hx/mp4AmGcNS65z7faEQ1mchcFru4UmJJdFszLiWvbngsAt52sXTJ15fQM/HHVQeyvjvyNdsX0DExOa1/hNT7K6rLu5kCRFYtf3LIQz2woQnqMFbcvirJsrQempLmwraxREx+b5MDeKu3f2x39dOkY/Gn1QfiOrLYWcms3XBeA9u3IwhAELC3ITQUCxmZIFg9KfHWAydejRh3HK2TwoyzQfOyJQxwLe0REw4C3KNr5egNrGy4AFNR5oxb2JsSysEc95zAbsemORXjm62L8+KNmVWEPABBTCdRk4Sd138ea7Lsggu2rmsJNhahZeQuSzvoPX6DQoCKEgrq1P0PDhj9EHY+b/xvEzL6rX/5dHykGAAqQvk/zYk80xwENyXhi+RRcPzcHAHB6F9vZiEjrlFEJ+LTDOZbzc7u/NfHxS6fgmhe2YH91Cy6YmILvzcvRzHFYjNh0+yKs2F0Bt8WIM8epG3GM66KwR903OzsWs7Nje/UxI8VX7Rsp501Mxd5jNKmYmx2LT26ch6e+KsS/v4rS/OiIsAnwxGLv986BqbXRkfyjtwEICJMfMHkBsw/nTYuF2xXC2/sPozHsAYyByLbcEySFTUg22U/4cQY7FvaIiIYBX2Hn8/UkWLOW6JFKl0JhBaWNPiBV2xF3Yhy34tKJSXRYcOeSUZBl4M6deyB1OMdRsjVDWFpQ6k+Gdd4D8H52i+raln0vwTbiTLjGazvoEg1EIuRH1Uc3oGXvC9pBSUbi0kfhmnRtv+QSCiuo97Zuk0osVn3vAa0HqZeOASD1WndLouHmtkUj8fmhWoQUAYMs4YdRVt11ZXKaGxtuX3TMeQ6LEZdPy4g6NiLeDrvJAE8w3Ba7emZm1LnUfxaP0jZDkiTgO7Oy8MrWUhyu83Z5bZzdhHm58ZiXG49TRiXiW89vPupzmTTdyyUgaI3cPMCNo+bgrPEpuCj/K7y5pwKAgJDDgDHQegsChiBgCAFyKHIWq6HDR0kAktL6sfVznwOG2iy4p0Xfjj6csLBHRDTEhX318FduVMXMydNgsMbrlFF0pY0+KAKaFXtGSUaemys3qHdMTHEBa5OB1EPqgZgKoHIkDsZegtGjPoLn4Juq4ZpPfwhr+nyYYnpnewxRXwn76lG5Yjl8xas1Y5LBgqSznoVj9EX9lk+tp7WoZ/YASYe1EypzgaANAJCXxC7URD1x3sRUbLhtEb4qqsOMjBjMyIzt1+c3GmTcevIIPLjyQOS+LOH6udn9mgNpzcmOw3Vzs/HP1sYc8XYTHjh7PCakuvCbs8bh2he3dNlcI9bafn7eBRNTEWsztb9J0wNHujfHO44U4SRAMQIBIxDoesXdH8+fgDvf2tXleAiA71gNQoYBFvaIiIY4X/FqzdlKtqxTdcqma4X1XgBCU9jLi0mC2cBfV9Q7pmfEAA3JECmH1NsBYyuAylyc/OgX2HbLw3CXf41wS2nbsAg0oeq9byNt+UpIBnZopoEp1FiI8jfPR7BG+yJItsYj5fzXYE2f3685VbcEAIjIFtxOHRWF1wnURFb1XDI5DUnO6N09iejYpqS7MSXdfeyJfeS3Z43D1HQ39le34KxxyZjZz8VFiu7J5VPx4yWj4A8pGJfsbFtZd+WMTJyUHYft5Y1RuxrHdeiq7LIasebmBfjdJ/vxv81RzkjthrbCnu34VtctGZV4zDmNARb2eBItEdEQ5yvqvA0XsGYPvMJeUb2vtSNuSBVnR1zqTUlOC0bHJgAt6vOHJFMAcNUCAH63pgZJy/6ludZfvh716+/vlzyJjpe/aitKX1wUtahndOci7bLV/V7UA4AaTwCIL4HkaFDFhQBQmgdAwq/PHItnr5je77kRUe+RJAmXT8vAz07LY1FvgMlLcmJymluzXXZUogMXTkqLek2cTf0m5oRUF567cgb+7+LJx3w+h1nbDTnJ0VrYsx/fm6MTU459RENT4MTP6hvsWNgjIhrivIWfqAMGM6zpC/RJ5igK67yAVds4YyIbZ1Avm57uBuqi/LuKLQcAvLClFNasUxAz8w7NlPqvHoSn4KO+TpHouHgLPkbZy6eqVpkeYU6egbTLP4M5fmy/53WoxoPFT30MpBzSjJ0ePx0rv3MGlD+ch5+dlgebSftCkIiI9NHVz2S39di7aP5w3gTV/XPGt3c3N3bRxbkr3emK3sjCHgt7RERDWai5BMG6vaqYNfUkyAOwe1RRfRcdcdk4g3rZ6CQH0JQIEer0x6mrBjD6AQC7K5oRN//XMCdN63S1QNX730aoqbhfciU6lqZdz6L8zfMhAk2aMVvuWUi79GMYHfq8QXLdS5uBjL2azocZ1ni8ce5lWDL62FusiIio/3XVMd3QjU7q18zOxt2njsa4ZCfOm5CiWuUXVHp/26zF0Pfd3Qc6FvaIiIYwb9RtuKfokMmxRQp7UTricsUe9bILJqYCQgYa1EVjSULkrD0Aq/NrIBnMSDrrWUgm9YH+ircale9eARHu+SHSRCdKCAW1a+5F9YfXA0pIM+6adB1Szn8VstmpQ3ZAvTeIVfVbIdkbVXEhgJ9POA82I8+qJCIaCDp3MD53fNdvqltN2hKStdOqOrNRxgNnj8euu07Bm9fOQXZc+4KCoz12Z79aduyV5ukOA8bG8fcJC3tEREOYr1Bb2LNlLdUhk2MrbtCu2DPLBox2c0UH9a7ZWbE4eUT8UbbjCry7O1LgM8ePQ+LSRzXT/GVfonbNT/s4U6LolGALKt/5Bho2PBx1PG7+r5Cw9FFIsn6Nhz4qOAwka7fgojoLC1Nz+zsdIiLqwj2njsboxMibmJkxVty3LK/LuaeOToStU3GvO+fuHTE5zYUzxyapYokOMyQJWDgiHmfkJSEnzoZr52TjtpNHdvk4MzNj8K3xTvz7jMTj3t47FLHNIBHRECWEgLdopSommV2wpM7SKaOjq/UEgBR1YW9sTDJMMs9dot4lSRLeuGY27nzbgaer90Gyt29hlCxeCHsD3tktYXtZIyanueEc9034Stehadvjqsdp3PxXWNPnwTHm4v7+EmgYCzWXoOKtixGo3KwdlI1IPO0fcE24uv8TA9DoC+KVbWVo8gfxh4LXtF1wfXagKheJjuPrikhERH1nfIoLW+9cjPJGP5KdZjgsXZeJ3FYTfn56Hu59bw+EAE7KicPyqendfi5JkvD2dXPx5s5y+EMKLp6cCoMkIaQIWLs41+8HC0fgb2vUbxStuGYWig/s7vbzDnUs7BERDVHBun0IN6tb0lszTtZ1BcfRNIRaIBnCqhg74lJfibOb8feLJuGZh9cD9k5nk8WVAZ5Y/OXzfPzzsmkAgIRFD8Nf8TUCFRtVU6s+ugGmhPEwx4/vp8xpOPNXbELFWxdHbZIhW2KRfO6LsGXpc9zCO7sqcO2LW1DVEgASCyClVKnGhQBQMg4QsqbbIhER6ctmMmBEQvfO4L7n1DG4eHIa6r1BzMiIgdFwfBtBDbKEiyeru/Eaj/I+/g8WjsA/1xfCE4y8TrhiegYSHGbwtON23IpLRDRE+aKcr2fLOlWHTI5NCIEmNGriPF+P+pLdbMTZ6ZMglE5/DrmrAEMAXx6uawtJRguSz34esiVONVUEmlDx5sUI+2r7I2UaxloOvI6yl0+JWtQzxo5G+jfW6FbUK2v04ZJnNkSKetYmIKlAO6kqB/C5AOC4XwQSEdHAkpfkxJzsuH75eT460YGtdy7Gr5aNxRPLp+CZb07v8+ccbPhblYhoiPIWfqKJ2bIHZmHPH1IQNms74k6MY2GP+tYLV8zFZPsoVUySBRBXhopmvypuislF0rJ/aR4j1HAQle+wmQb1DSEE6r96EJUrLocIeTXj1swlSP/GGpjiuj4Tqa+t2FWBQFgBpDCQuVu7BdfrAKqzdcqOiIgGu1GJDvz89DxcPzcHBp6pp8HCHhHRECSUMHzFq1Uxgz0FpoSJOmV0dI2+kKZxBgBM5FZc6mMOixH/Pv0c7UBcGWo9ATzzdRHOfWo9bn5tO+o8AdhHnoPYuT/TTPcVrUTt53f1Q8Y0nCjBFlS9eyXqvvhF1HHnpGuRetEKGKzx/ZyZ2rqC1tWtqQchWdTFR6FIbVtwiYiIqPcNzIOWiIjohASqtkDx16ti1qwlkKSB+Q5Xo19b2DPAgJGuBJ0youFkRmIm5iXlYF1V+/ZByeyHcNXgmhe3tMUKaj1Ycf1cxJ70MwRqdsJz4HXV4zRu+T+YEibBPfm6/kqdhrBgQz4q3r4UweodUUYlxC/6PdzTfzggfq6vL6gDXNWQ4su0g5UjAL+z7e4V0zP6MTMiIqKhj2+dERENQd7ClZrYQD1fDwDqvQHAqi7sJRpjYZD5a4r6x/fHL9AG49XNZ97dU4kGbxCSJCNp2b9gTpyiuaTm0x9E/f4jOh7ego9R+r95UYt6ksmJlPNfRcyM2wZEUa/eG8Tu2hogfa9mTDTHATWZbffNBhnfPSmnP9MjIiIa8viKiYhoCPIWaQsL1gF6vh4A7KmvgiQrqlimNVGnbGg4ujR3CpwGmyomOesBs0cVq2oJAABkkwPJ578K2ZakfiAlhIoVl8FftbUv06UhSgiB+g1/RPkb50Lx12nGje5cpF+2CvaR5+qQXXTrCmqBjD2QjCFVXISMQMlYAJHi47njU/D1bSdj0SiuxCYiIupNLOwREQ0xSsgHf8laVcwYMwom98BdJbGzXrt9a6QjKcpMor5hMRhxWuJk7UC8ugNpVYeGGiZ3DlLOfQmQTao5ItCIijcuQKixsE9ypaFJCbag6r2rUbfmJ4BQNOPWrFOR/s11MCdpV4rq6S87P4sUwTsrHQuELG1337hmNianufsvMSIiomGChT0ioiHGX/YlRNinitmyTtEpm+7Z21SpieW52BGX+tflObMgRKdgbDkgt69Eqm5dsXeENWMBEk97TPNY4ZZSlL9xLsK+2r5IlYaYQO1ulD4/Hy37Xoo67p5xe6RJhm1grXbbUF2ETxq+0sRFbRrQ1L7q+oGzx0NmF0MiIqI+wcIeEdEQ4y38WBOzZg/swl5+i7awNyGGHXGpf01OTFIVIwBAMoRVq/a+/+p2PPzpATT52ot9rgnfQuy8X2oeL1i7BxVvXQIl5NOMER3RvOd5lD4/H8Ha3ZoxyWhD0pnPIGHR7yHJA6PnnRACn+fX4EfvbsXZ7/8bQlJXw00hB/4+/0KYDZGXGaeNScRti0bokSoREdGwMDD+QiAiol7jLehc2JMGdOMMACjyVqnui6AZWa4YnbKh4SrFZQGqMwF3tXogviTSAEDIKG304e53duPVbWVYd+vCtuYFsXN+gnBzCZq2P6m61F+6FpXvfAMp574EyWDury+FBgEl5EPt6js1/2aOMLpykHzeS7AkT+/nzLrW7A/hmpc24c2d5UDWTkjuRtW4UCScaj0ZN80bhW9MzUKdJ4hRiQ6dsiUiIhoeuGKPiGgICXurEajcrIqZU2YMuO1bHTUEvKgPN6uDPifcVr73RP0rzmYCvG4Ij0sVl0wBwK1eVfpVUT22lrYXNSRJQsIpf4V95Dmax/UeeheV710NoYQ0YzQ8BesPouzFRV0W9SLn6X0xoIp6APDYugK8ubMCSCiG5K7RTqgYibNHjAIAxNvNLOoRERH1Axb2iIiGEG/hSgDqbVG27NP0SaabttVqG2fA54DbwsIe9S9JkpDutgHVWdrBxGJ0/t46UN2ivl42Iums/8KSOkdzuefA66j68DoIJdybKdMg1HLgdZT+7yQEqrZEGZUQO/dnSL3oHRjsA6+B0Gf5tYC9AUjJ14yJhkSgNgPzc+N0yIyIiGj4YmGPiGgIiXa+3sAv7JVqg1yxRzoZmWAHmhIh/FZVXLK2AI46Vay8yY/OZJMdKRe8AVPCRM1Yy57nUf3JTRBROp7S0KcEW1D18Y2oXHE5lECDZly2JSLlohWIm/cLSLJBhwyPLb+hAcjcBalTHwzhtwGlYzEhxYXpGTxGgYiIqD+xsEdENEQIITTn60kmB6xpJ+mUUfdsrYuyYs/vgIsr9kgH18/NBiBFztTrLLFIdbe0MXpTDIMtEakXvwdT3BjNWPPOf6Nm5Q9Y3Btm/BUbUfq/OWje8a+o45b0+ci48mvYc07v58y6L6SEkW/bGNma3oFQJKB4AqAY8b15uW3nThIREVH/YGGPiGiICNbtRbi5WBWzZi6GZLTolFH3bO+0Yk8oEqyKA0YDf0VR//vWrCysuG4OUJ8KEVIXlyVnPWBrP1evrIvCHgAYHalIvfgDGN3abqBN259E1QfX8sy9YUAoYdR//TBKXzwZwbr9UefEzLwTaZd8BKMzo5+zOz53790CpdOqVQBA+RjA5wQAXDY1vZ+zIiIiIr5qIiIaIrTdcAFb9lIdMum+sKJge125Ouh3IMY6sIuRNLSdPT4F/7tiNlAbpUiRVND2aVcr9o4wujKReskHMDi1q/9a9vwPle98EyKk3c5LQ0OoqRjlr52JurX3AlGKuLItESnnv4b4kx+AZDDpkOHRfbK/Ck+tL0RpcwgP7t2Pz4P7NHNEfQpQlwog0nwm2cnOz0RERP2N+5yIiIaIqOfr5Qzs8/UONFXDGw6qgz4nG2eQ7i6flo5q35m4dedTkAzt22YlVy2EtQnwuVDacOyinCkmF2mXfICyV05HuEW9OtVz8E1UvH0Jks99CbLJ3utfA+lDCIHmPf9F7ao7oPjro86xZZ+OxGVPwehI69/kuuk3H+3DfR/sjdyxtAAjNkHqdOyf8NmB0jEAIltvxyY7uQ2XiIhIB1yxR0Q0BIhwAL7i1aqYwZkJU9w4nTLqnq464sbZBt7qFRpeJEnCLfPyMNU6XjvYumrvWCv2jjDFjUHaZSthdOdqxrwFH6L89bMR9tacSLo0QIRaylD59sWo/uDa6EU9gxnxi/6AlIveHrBFPV8wjN+vPBC5YwgCWTtUxW0AEGEDUDQREO3VvrxER3+mSURERK1Y2CMiGgJ8ZV9CBFtUMVv20gG/euLLiiJt0OfE2eNT+j8Zoih+NHkxhKL+c0ly1wDWZtR5g/AGw916HFPMSKQtXwlTXJ5mzF/6ReQMtvoDvZIz9T8hBJp2P4eSZ6fCk/9O1Dmm+PFI/8ZaxMy4FZI0cP8E31jcAE8wDEAAmbshWdQFbCEAFI8HAupVpnnJzv5LkoiIiNoM3L8qiIio27wFH2liA30bLgB8UHBIE5udnIF7Th2tQzZEWldMGYFFsZO1A4mRVXtHa6DRmdGVibTlK2FOnKIZC9UfQOmLi+Ar/bLHuZI+Qk3FqHz7kq5X6QFwTbkR6Vd8CUvS1P5NrgfWFbQ2yEjJh+SM0iyjMhdoTtCEc+NsfZsYERERRcXCHhHREOAt/KRTRBrwjTMA4EBTpeq+CFrw9/NnwGzkrycaGCRJwvNnXQCroVOH3JhqwNqE4vruF/YAwGBPRuqlH8GSOlczpnirUf7q6WjZ98oJ5Uz9QyhhNGz+O4qfnQJP/oqocwzOTKRcuAKJpz4C2ThwC18N3iDqPAEAwJcFtUBcGaTEYs080ZgIVGdHfYy8JK7YIyIi0gNfORERDXJhbw0CFRtVMXPyNBhsiTpl1D17qusQNHhVMbeIwaysGJ0yIoouze7GDXknaQeSD2FTScNxP57BGofUSz6AfdQFmjER9qPy3StQu/ZnEEr3tvlS//NXbkbpiwtRu/oOiGBz1DnOidcg8+rNsOee0c/ZHZ/ffLQPCb94H4n3fYB73tmNT8sOAGn7NfOEzw6UjMWRZhkdTUhxYkYGf3YTERHpgYU9IqJBzlu0EoBQxWzZA38b7sv79mliU+MzBvy5gDQ83TXlFFjkTqv2XHX449cbu7ji6GSTHcnnvAD3jNuijjd8/RDK3zgPYW91jx6f+oYSaELN6h+j9Pl5mjdUjois0nsbSaf/A7JlYBe78mtacN8He6GIyNl5D63dirrELZAk9e8UETICRZOwJDcZ509MwU+XjsHD507ApFQXlo5JxAtXzYQs82c3ERGRHozHnkJERAOZdhsuYMs5XYdMuq+mJYD7PtsAqVOPjCUZOfokRHQM6fYY3DrhZDy841NVvMS6C/KP3sL1c3PwndlZmJLmhsNs6FaBWpINSFj0EEwxI1Cz6nZAqDuP+go/Run/5iH53BdhSZnRq18PHR8hFDTvfg51a36GsKe8y3nOSdci4eTfD/iC3hFPfFnYfscQAHJ2QDKoV4oKRYp0wA3Y8IfzxmNGVnzb2J1LRvVXqkRERNQFrtgjIhrEhBDwFnysiklGO6xp83TKqHvO/9dXgFW7fW153lgdsiHqnrunnAITTKqYZG8CXDV4an0hFv59Ldz3vocL//01GrzBbj+ue+r3kXL+a5DMbs1YqKkAZS8tRsOmRyA6Ff6of/hKv0TpCwtR/eH1XRb1TPHjkbb8UySd9vigKeoBQGlD63EIUhjI3gnJHOXMyNI8wBMLABjHc/SIiIgGHBb2iIgGsWDdPoSbClUxa+YiSEaLThkdW3G9N9J10dqkihsUEyYmDOxzAWl4i7PYsSxhpnYg5RA6bod/e1cF4n7+Pq787ybUd7PAZx9xNjK++QVMCRM0YyLsR+1nP0L56+ci1Fza0/TpOIWailH5/rdR9tIiBCo2RJ0jGayIm/8bZFz5NawZC/o5wxNnNMgABJC5G5K9UTMuqrKBhtS2+2xsRERENPDwtzMR0SDmi7YNd4Cfr1fc4APkECSLemVIqimR5+vRgPeXhWdABM2qmGTxAHFlmrnPby7BXz7L7/Zjm+LykH75Gjjylkcd9xV+jJLnZqDlwOvHlzQdl7C3BrWf34PipyegZc/zXc6zZZ+OjKs3I3bO3ZAM5i7nDWQSAKTvg+Su0YyJhiSgMrft/sWj7f2WFxEREXUfC3tERIOYt/AjTcyWs1SHTLqvosmvWa0HAOeM4FlNNPCNiHfj1rFLtAPJhwBZuzrv1x9pm8QcjWx2Iums5xC/6GFAMmjGFV8tKldcjsp3r0Sopeuz3uj4KYFm1K3/HYr+PRYNG/8EEY6yLRWAMWYkks97BSkXrYApdnD/3Frv3QwpTvvvSHjcqg646Q4Drh7PbbhEREQDEQt7RESDlAgH4S1arYoZHOkwxWu38g0kFc1+wKY9X29p1ggdsiE6fg+fvBSWsLrIIRlDQHJBrzy+JEmImfFDpF/+OYyxo6POadn3MkqenYLG7U/x7L0TpAQ9aNj8NxQ9PQ71634JEdBuSQUAyeRE3MLfIfPqrXCMOn9QrzB+d3cFJj31X+wWOzVjwmcHCich2WFD4b2n4pkzEvHi2cnIdLLnHhER0UDEwh4R0SDlL18PEVQXyGw5pw34F5uRFXvawt6MhEwdsiE6fibZgJnGKF1q40sBc4smLITQzu0GS+osZFzxFVyTros6rvjrUfPJTSh7eSkCVdt69BzDmeJvQP3XD6HoX2NQu/pOKJ7KLuc6J3wbmd/ZhdhZPxrQZ5h2x57KJpz3ygrskjdrxkTQDBROBsImnDshFakuCyYkmGE1DuzfK0RERMMZC3tERIOUtyDKNtzsgb0NF2gt7NnUW3HdJitGOON1yojo+M1LHA3RpP43K0kCSD2Ijo00AKDuODrkdiabnUg87TEkn/cKZFv05jL+0rUo+e9sVH30XYSaS3r8XMNF2FuNui/uQ9E/R6Nu7c+geKu6nGsbcTbSr/waSWc8CaMjtct5g8m9a9ZCZOxG5/eARNgIFEwBglYAwBl5STpkR0RERMeLa+qJiAYpzyAt7BU3NgNmryo2PT5jwK80JOrIZTEC5aMgnHWRgl4ryVUH4aoBmtqLcGWNfsTbT6y5gmPU+bCmz0ftZ3ehefdzUWYINO98Gi17X0TMzNsRM/NOyGbXCT3nUBOo3o7GLY+hec9/IULeo861pC9A/IL7B2Wn26P5sGQv3qpfqS3qKRJQOBHwO9pi83Pj+jk7IiIi6gkW9oiIBqGwpwqBio2qmDlpGgz2ZJ0y6r5D3kpIVnVsVhK34dLgMjsrFgjYgZoMILFYPZh6AGiJA5RI84vyJh8mpp54kc1gS0TSsn/BOf4qVK+8BaH6A5o5IuRF/frfoXHLY3BPvwXuaTfDYB2+q2GFEoLn4Fto3PIofCWfHXO+OXEK4hb8BrbcM4fEmw1NvhCue2kLPtlfjZQUL/Kd66FI6jMZhZCA4gmAJ1YVz4y1IRQK9WO2RERE1BMs7BERDUKRbrjq7X623GX6JHOcygPVQKfCHs/Xo8Hm1NGJyIixoqQqByK2ApKxfbutZPZDJB0CKiKNL8qb/L363LbsU5Fx1UY0fPVga/dW7eMr/jrUf/kbNGz8M9xTb4R7+q1DZitpdwQb8tG86zk07XoG4aaiY863pM5F7Jx7YBtx9pAo6B1xy+vb8cq2MsDWgDrrdkgirBoXAkDxONUKUyIiIhpceMYeEdEg5Dn8oSZmHySFvXqpThNjYY8GG7NRxjvXzQWUyJZcjYQSwBo5S7K8sXcLewAgG22Im/8rZHx7Bxzjruhyngg2o2HDH1D0z1GofPcqeIs/73Ezj4FOCTShaeezKHv5NBT/exzq199/zKKeNfs0pF7yEdIu/wz2kecMqaLe9rJGPLepGLA1ADnbIRnC2kmleUCjdqX3H88f2N3ViYiIqB1X7BERDTJCKJrGGZLZDUvqXJ0y6j5fMIygqREdXzobYcRod4JuORH11JR0Nx4+dwJ+vEJEVu0524vWkgSI9H1A/gyUNfn6LAeTOwfJZz4N//RbUfv53fAVr44+UQmiZd9LaNn3EkwJE+CadB0cecsH/So+xd8AT/4KtOx/Dd6CD6OuXtSQjXCMuQQx038IS+qsvk9SB6Gwglte2w5hqweyt0MyKJo5omw0UJ+miSc6zLh2dnY/ZElERES9gYU9IqJBJlC5RdPF0Za9FJLBpFNG3XeorgmweFSxJEMCZIkLyGlwirebAEhA6RiI0Rsgye0FFMnWDJFQjIqmvl+RakmZgdRLPoSvaCXqv3qw6wIfgGDNLtSuvhO1n/0Y1szFcOQth2P0hTB00XV3IBFCIFS/H57DH8J7+AN4iz8FwoFuXWuwp8I15Qa4Jl8Po0Nb0BpK/rg6H59X5EdW6slRinoVI4DaDE3cZJCw+Y5FiLEN/N8nREREFMHCHhHRIOM5/L4mNli24X5SdFjTjTHbmqRPMkS9IMHR2u02aAOqcoCUQ+oJyYdwoCnKVt0+IEkSbNlLYcteCl/pOtR/9SC8h9/r+gKhwFf0KXxFn6Jm5S2wpMyGLed02HLOgCV1FiRZ/z8ThRAINRXCX7oWvpIv4C38GKGG/ON6DEvGQrgnfxeOMRdDMpxYd+LB4i8bN3Rd1CsfAdREX5G36fbFyIix9XV6RERE1Iv0/4uNiIiOi7dAe76eLecMHTI5fp+WHtLEZiVm6ZAJUe+I67iyqToTIqYSkrWlLSTJAhuUL1HdshiJDmuUR+gb1vR5SL3wTQSqtqFx2z/QvOd/EMGWri8QCvzl6+EvX4/69fdDNsfAnDob1tTZsKTOhiV1Tp933RZCINxShkDVNgSqtyFQuQW+si8Rbi4+9sWdGFzZcE24Cs7xV8EUO7oPsh24ntu/GRXxGyHJ2rMURflIoCbyMzfJYUZYCNR6Io1frpmT1Svdm4mIiKh/sbBHRDSIhH118Jd9qYqZEibC6BoczSe21ZdoYmfnDK8X3TS0mAwdt5HLQMlYiJGbVCtTFWsTkv/+JH429XTcc+po2M399+eXOWkKEpf+H+IXPoDmPf9F47Z/IFiz65jXKYEG+Ao/hq/w47aYbE2AKS4PprgxMMXlwejMgMGeAoM9GbI9GbIlBpLBAinK1nohFIigB2FvFRRvDcLeKoQ9FQg1HEKw4VDrx4NQvNU9/lplezIcoy6EI+8SWDMXR81jqHhzRzl++/E+GA0yfrVsLE7Pi6x8/ue+9bhx7StdFPVGATWR3xVLRiXgte/MRozViI3FDTAZJExNj+nXr4GIiIh6Bwt7RESDiK/wE0Cot1YNlm24AFDgq1D/5gkbcWrO4ChKEkUzKdUFm0mGN9j6felzRbbkJheoJyYV4v41m1BY58XT35ze73nKFjfcU78P15QbEajaGmmksfdlhJoKjn1xK8VXA3/ZOvjL1h11nmSwQDJYAUmGCPshlACghE70S4jK4MqGfeQ5cIy5BNb0BZBkQ588z0ByuNaD5c9uQEiJFO8ueeZr7PzxKXipaD3u2rAi6jWXpyzCd0+ej9d2lGNskgPfPSmnrSg9Kyu2v1InIiKiPsDCHhHRIOIZxNtwf7hiE8JGryrmCMfBbBz6L8Rp6HJajPjBwpF46NMD7cGqbAhXDSRbc1tIkgRE5m78Z7Md/1g+BRad/t1LkgRL8jRYkqchbsFv4S//Gp4Dr8Fb8BEC1dt75TlE2N+97rQ9IBkssGYsgi33DNhyz4Apbhykzgd3DnGvbS9rK+oBQLM/hEveexEbfTs0c4UAUJqHm5csxIIR8VgyeuA3SCEiIqLjw8IeEdEgIYSA97C6sCeZHLCmL9Apo+7bW9mMv23YBilHHc+xpuiTEFEvevCc8Th1dALOfHJ9a0QGSsZBjFSfcyZZvBBp+3CgqgUT09z6JNuBJEmwps2BNW0OcPKDCLWUwVvwMbyFn8Bfth6hhoN6pwjZGg9r+jxY0hfAmr4AluQZkIwWvdPS1cr9HbYrSwqQsQcbfVWaeUKRgOLxQFMSxiY7+jFDIiIi6k8s7BERDRLBmh0It5SqYrasJYPiRe6aQ7WArUkTnxbHbbg0NJwxNhkLcuOw9nBdJOB3AJUjgFR1B1cpthKP7fkSf08beCttjY40uCZcDdeEqwEAYW8N/BUb4C//CoGanQjW7UOo7gBE2Nfrzy2ZHDDGjIApLg/mxCmwJE2BOXEKDK6sYbci71j2V7c2QTEEgawdkByNmjkiLANFk4CWOABAomPg/54gIiKinmFhj4hokPAc/kATs+UMjvP19lU1Azbti89bZkzWIRuivvGn8yfhG89txKFaTyRQkwnhqIPkqlPNe6pgJb5fNwUT41J1yLL7DLYE2HOXqc7xFEJBqKkIoYZ8hFsqEPZUIuyJfBTBFoiwDyLkj3wUSut5e2ZIsgmS0QrZlghD6022JcLoyoYpZgRkWxILeN3Q4A1GCnsmL5CzHZLFq5kjQkagcDLgjawKnZ8b199pEhERUT9iYY+IaJDovA0XAGy5A2/VTzT7q5o1K/aSTDGYm8mtuDR0zM6Oxb57TkVYESis9yLvwZWRLbmjNkIyBdrmBUUIZ73/L2y56DbEW+06Znz8JEmGyZ0Dkzvn2JOp120qaQDs9UDWTkhGbUMSEbACBZOBQPu/q0umpPVjhkRERNTfWNgjIhoElEATfKVrVTFT3BiYYkbqlNHx2VlXCSlO/SL01MwROmVD1HcMsgSDLGFEfGthJWwGisdD5G5FxwVpJb5aJD7xF+R558JpNuGXy8bi3AksdFPXhBD46441QO42SJLQjntcQOEk3L5gHFYfrEF5kx8XTU7FjfNy+z9ZIiIi6jcs7BERDQLeolWAElTFBss2XEUROOytADrtBpublK1PQkT9wCB3qOJ5YoGqXCD5sGqO5KrFPt9OoGQELnnmaxy+9zSkua39mSYNAIoiIMtH34YcCIdw65dv4O26LxFtx7JoTASKx8FpNuOP50/so0yJiIhoIJL1ToCIiI7NG+18vdzBUdgrafQhaNGerzc7kYU9GtruXDyq/U5VNkRTvGaOlFQIuKsQDAu8u7uyH7Mjvb26rRSJv3gflnvewV0rdkEI7So8ACj1NOD0D/6BJ/d9GXVcVGcARRMAYYBR5p/2REREww1/+xMRDXBCCHgL1OfrSQYrrJmLdMro+OyvatE0zpAhYXpChk4ZEfWPu04ZhWVjk1rvSZEtuX6bdmLGHsDW2N7tlIY8TyCEa1/cilpPEGFF4A+rDuLj/dWaeX/bvBFjX34YayoOacaEIkGUjAUqRgOILOM7Z3xyX6dOREREAwwLe0REA1ywdjdCjYdVMWvGyZCNUQoEA9D+mkbA2qyKZduSYDOadMqIqH8kOS1474aToPzhPPzi9DxAMQKFkyDCBtU8SVaA7B3YXFmmU6bU3z49UIMmv/rc0btX7Gr7PBgKY+GLz+GHm5+HR/FprhdBM3B4KlCv7qz8vXlsakJERDTcsLBHRDTAeQ69p4nZRpylQyY9s7WmFJKs3mI2NY6r9Wh4+eWysXjzmtmRbqXF49F516VkDGJ1eBUqvE3RH4CGlHpfUBPbUtqIQEjB71bthOWxB7DOsyX6eXpeF5A/A/DG4Icnj4DdZIBBlnDPqaOxcERCP2RPREREAwmbZxARDXDeKIU9+yAq7O1sKtXETkriqhIafs6bmIqVN87DqY+vA8pHAWkHVeNBgwcL33ocN6Sehyun5SAjZnCsyqXj5w8pUePfenslXqpaCckZiDouatMi/3aEAYkOM/50/kQ8dO4EKELAYjREvYaIiIiGNq7YIyIawMK+OvhK16piprg8mGJHdXHFwHPIq91eeHrmSB0yIdLfktGJ+M2ZYxHvGwFRnakZz/dU4J7tL2H8wx/jUI1HhwypP9S0dCrcSWEg9QBern8fkklb1BOKDFE8DijLA0SkgLdwRDwkSYLJILOoR0RENIyxsEdENIB5Cz4CRFgVs404W6dsjp8QAlVKlToYNmFaUpo+CRENAPeeloeKXy7Db6afDdGQpBmXHI1oTtmKX368K8rVNBTUeDpsxbU2AqM2QkooiTpX+OzAwRlAQ4oqvnCEtssyERERDT8s7BERDWDew9G24Q6ewl5hSx0Csvrgd0coDlK0g6OIhhGDLGFcshMoGQfRHKsZl5z1+E/lB6hs9gIAQmEFlU1++IJhzVwafL4urAMggKTDwMjNkCzeqPNEfUrkPL2AQzN2Ms/TIyIiIvCMPSKiAUsoYXgOf6CKSWY3rOkLdMro+H1RcVgTS5K1K5SIhqOZmbGAkIGiSRA52yDZG1XjkrMOqf/+I2Yo87Gv0odmfxhZsVa8dPUszM2J0ydpOmE3v7Ydn5YcBkbug2RrjjpHhA1A2WjMcOVhk2jUjE9Jc2NGZkwfZ0pERESDAVfsERENUP7yr6F4q1UxW85pkAwmnTI6fqvK8jWxEVZuwyUCgNx4O8YkOgDFABRMhvC4NHMkZz02GT9Hcyiy8rWo3ocfr+AW3YHIFwzjZ+/twdLHvsCvPtwbdXXluoIqPHbwE2Dkpq6Lei0xwMFZ+OeyZXj8kqmqzrgmg4Rzx6fgxatnwiBz5TMRERFxxR4R0YDlOfyuJmbPHTzbcAFgbacVe0KRMC4uVZ9kiAagM8YmYX91C6AYI8W93G2ago9kb4LI3QoUTAZCFqw5VIviei8yY9k1V29CCLywpRT5NS1YX1CPFbsrAACfHqxBWBG4emYmPtpXjaxYK/L9xbh3y1uQEqM3RRGKBLlqJE5yTsJ3LsjGd2ZnQZIkbLtzCV7dVoacOBsumpwKt3XwvLlDREREfY+FPSKiAcp7qPP5ehLsuct0yaUnmoI+7G2sUAd9LmS5nfokRDQAnZGXhP9bezhyRzEBBVMgsrdDsjep5knWFoiRm4DCSYDPhez7P8YpoxJQWO+Fy2LEr88chzpvAIGQwMWTUxFnN/f/FzOEhRWBz/NrYDLImJ/bfk7onW/vwl8+065MBoD7P96Pv605hIZwM5CSDymmCuhikZ3wOrH58u9haoJ2RfPEVBcmpmpXcxIREREBLOwREQ1IoeYSBKq2qmKWlFkwOFK6uGLg+bKyEAqEOuhxI9Vl0SchogHo9LwkZMZYUdzQ2mQmHCnuufP2oNFQo5ormQIQuVuA4vFAcyI+Pdg+fv6/vmr7/KFPD2DT7YvgsPDPvN6gKAJnPvklPtnffjTCE8un4OxxKfjHusNdXyiF0eA6DCQWQZKVqFOEIgNVOVgaPy1qUY+IiIjoWHjGHhHRAOQ7/L4mZhtxlg6Z9NwXlYe0QU8M0tws7BEdYTUZ8OH3TsKikfFtsfnZSTh81R3IMmRo5ksGBcjeCSQWAp0L5632V7fg3T2VfZXysPP6jjJVUQ8AvvvyNmT+5iN4g9EKdgKIqQDGfAUpuaDrol5zLHBwFlCdjUS7tfcTJyIiomGBb+USEQ1A3gJtYc8+YpCdr1d5WBv0uJEdx3PBiDoal+zCqpsWoLDOg6qWAGZkxECSJFybdhZ+uX0FpLhy1XxJApByCMLWCJSMi5zP18nl/9mI8clOTEpz99NXMfSEwgp++OZOPPbF4e5fZK+PbLvttJW6IxEyAuWjgIYUHNmb643SaIOIiIioO7hij4hooFH88Bd9qgoZHGkwJ0/TJ58eCCsK1lcWqmLCbwPCZmTzwH+iqLLj7JiZGdt2fltunAMozYMoHxF1vuSuAUZuBKzRi0iz//o5Dla39Fm+Q917eyq7X9SzNQI5WyGN2NplUU8IQNSlAgdmAw2p6HjgXkWT/8QTJiIiomGJhT0iogHG1LAZIqTummjLPROSNHh+ZG+vK0NzqNMLVY8bSQ4z7GYuFifqjkgRXAJqsiEKJ0TOY+tEsviAEZujbs31hxQ8ub5Qcw1p7a1sxgubS3CgQyH0s/zaY19oaQGydkAauRmSs77LaaIlBsifAZSOBcLaxibLxib3JG0iIiIibsUlIhpoTLVfaGL2QXa+3sv792iD3hjkxtv7PxmiQSqr4+rWpiQg3waRtTNSzOtAkkVka66zJrI1N9h+3UOfHsCD54yHLxhGaaMP6W4rrCZDf30JA1YgpMAXCsNtNWHFrgpc+swGBMKRs/DuWDwSN88fgXUFRynsWRuBpCLAVQ2pi063ACACFqBiFNCYiC5b4gL41qzMHn4lRERENNyxsEdENJAIAVPtWnVMNsGWvVSffHropf27tEGPGzlZ3IZL1F2ZsZ0aKvidQP5MiIw9kW24nUiORojRG4CqHKA6E0c2ZmwtbcAF//oahfVejEyw461r5mBCqqsfvoKB6d3dFfjOC1tQ3RLAhZNSUVjnbSvqAcCfVufjT6vzo1wpAEddpMvtUVbnAYAZZvxixlI0l6Xigf3RHitiZmYMfrJ0DEYmOHr41RAREdFwx8IeEdEAInsLYPCVqmLWzMWQzYPnRbgQAgd9pZA6/IYRIRPgtyMnjiv2iLrLYoyysk4xAkUTIRKKgeRDkdV6HUiyElm9F1MJlI4BvDGY/qfP2sbzazz4zcf78PxVM/s6/X4lhIAnEIbFKMNo6PrYAn8ojBte3orqlgAA4I0d5V3ObSMpgLsKSCiGZGs+eh5hGajNxL2zTsNPpk5A1Sg/nv6qBGWN7UcTGGUJ9581DnedMrp7XxwRERHRUbCwR0Q0gJhrPtfEBts23I8LCiAZg+pgSwwACTnsiEt0XE4ZlYBPD7avzpuW7sbzV83EH1cfxPqKbBQ4NqMJDZrrJGsLMHILREMSUDFCtT33xS2lQ6qwV9Hkx2XPbsDnh2oxKsGOF6+eiRmZsZp5lU1+fJZfoyqyHZXJB8SVAnHl2p9pnQhFAurSgapsIGzGSZlJAIAkpwW7fnwK3ttTiTS3BeOSXbAYZcTaTMf7ZRIRERFFxcIeEdEAYqqNVtg7W4dMeu7pXTu0QU8sACA9xqodI6Iu/XDRSKzOr4HSujDvtkUjMTbZiSeWTwUwFb7QMvxi8/v44/bPAElorpdiqiBc1UBtBlCd1da4oazRh1SXpa0D72D2+08P4PNDkfPwDtZ4cMdbO7HqpgVt44oi8LuV+/GrD/chrGj/G6kJwFkXKei5ao56fh6ASEOTurTI1udQ+8+3yWnuts9jbCZ8Y3rGcX9dRERERN3Bwh4R0QAhBWphbFQXxUwJE2CKHaVTRj2zpiLKeVItMQCAGRkx/ZwN0eB2/sRUrP/hyfjicB1mZMRgwYh41bjVaMJDs8/Dnv12rKj/POpWUUkWQGIxRHwpUJsOVGch49cfId1txWvfmYU52XFdPv+B6hb84PXtOFjjwWVT0/GrZWNhkI+/GNjoC2JLSSN+9v4e7K1sxnkTU/HXCybCYWn/U/StneX491eFSHVb8fPT8rr9RsBfPlP/zPksvxbeYBg2kwEPfXoA97yz+9gPYmkGYiuAmEpIpsAxp4uQMVIsrc0AwtrVdykuS7dyJyIiIjpRLOwREQ0Qptq1kKBeTWIfeZ5O2fRMKKygJFSu+u0iQkbA78C3Z2WyKy5RD8zMjMXMKFtLOxrnTsOKTTMiZ+8lFUAyhDVzJFlpLfCVAA0pKK3NwFlPrkfxL06HLUqnXCEEvv38ZqwrqAMA/O6T/RiZYMe1c7KPK/9Xtpbi+pe3otEXaov966tCTEhx4o7FkTcuvjhciwv//XXb+LbSRnx+8wLIRykieoNh/PKDvVHH3t9TCZNBPnpRz+SLnJ0XU3nMs/OOsMEOT3laZJWeEr278KRh3JiEiIiI+h8Le0REA0TU8/UGWWHv9X35EEb1ahfZG4t3bzgJp+cl6ZQV0dCX6DADkICaLKA+BSL5MBBXFnUrqSQLIK4ciCtHXUsMHA+U4qKcifjjeZNVxfeSBl9bUe+Iv605dFyFPW8wjJte264q6h3xo7d34dwJKchLcuKpLwtVY+sK6rC5tOGoBc1ffrAXD686GHXskmc2RL/I3AK4qwF3dbeLeQAgmuPwrZFzYGhJxL9rio869xen53X7cYmIiIhOFAt7REQDgBL0wFT/lSpmsKfCkjpLp4x65rk9OzWxb+RNxBljk3XIhmj4cJg7rB4Lm4GyPKA2AyIlH5KrtsvrJEcD4GjA68F9+PSFL/HSBWcjRknET9/dg0/2V2vmby1txB9WHURVsx+zsmJx6ZS0o57Tt+ZQbVsH2mgm/2EV3rp2Dp7eUKQZe3tnBQIhBQAwNztOtXpPCIFnolyjIYcBe33k3DxnLSSL99jXHHmOsAGoT41sXw7Yceq8cdhZ3hR17s0LclHvDeLCSam4eHJat5+DiIiI6ESxsEdENAD4i1dCUtSdGu0jz4EkyTpl1DOb6gqATq/xvzN+kj7JEA0jwXCUphB+B1A4GcLaCCQXHL3AZwihwVaEZR/+A3LIgnBzPOCMB1riAKHecnrXil1tn//p/Im4bdFIVLf48eKWUiQ6zFg+Jb2tCLexuP6Yed/82vaoY7/+aB9+/dE+AMB5E1LwxjWz24qIBXVeVDZHKRhKYcDWBNgbIsU8W2NkhWI3CQGgOS5S0GtKUH3tKS5Llx11/3rBpKNuGyYiIiLqKyzsERENAN5D72hi9lGDaxuuEAIVSgXQoQYgKUacmp2jX1JEw8T4FGfXgz53a4GvCUgoAdyVRy12KUY/pPgyIL4MQpEiXa1bYgBPDOB1qYpdT3xZgHk5cTj7qfWo8wYBAG9MK8fzV82EEAIPrjxwzNzzazzHnPP2rgq8t6cS28uaUNzghckgAxCA2QtYmwF7I2BrBGzNkKJ0Bz4W4bNHinkNyUAoeuMLt8WIeLu2UQYAFvWIiIhINyzsERHpTChheA+9p4pJRjusWafolFHPbKuuQNigXs2ShGTIg2zVIdFgtHR0IjJirChp8HU9yecCSsYB5SMh4sqA+NJjdoCVZNG6jTVy1p4QAHzO1psDe1rsWPJEHfx+I44s131xSymafCE0+kNRz9Y7bnIYMPlw7ovvARYPYGkBrC3AeE+kIUgPCa8TaEyM3AIOAMClU9LwyrYyzVyLUcaEFBfya49dhCQiIiLqTyzsERHpzF/+NRRvpSpmzT4NstGmU0Y989KBXZrYBFeWDpkQDT9Gg4z3bzgJk/+w6tiTw2agOgdjpHHY7y0CYisBV023imSSBMDWHLm1CgCAIgNBS9vt3dp8IGwE4oyRj4oBEBIAqfUjAEkBZKX9oyHYegsBxiBg8gMmHyRjsAf/RbSEkACPG2hqLeYFrZo5f79oMsoafVh7WN005NaFIxBjMyGsaFcDmgxcrUdERET6YWGPiEhnnvy3NDHbiHN0yOTEfFqm7U65OHWUDpkQDU8TU11Y9f35WPLYF0edJ0vAQ+dOwB2LR+H17WWRDrJyCMJVDcRUAY76414JJ8kKYPFGbgOI8NsjZ+Y1x0W2Eitd/+l74aRUJLssWH3TAlQ2+yFJElYfrEGqy4JFoxIAAKeOToQkta5cbPXYJVP6+ssgIiIi6lK/Ffb++te/4tFHH0VGRgZWrlzZq4+9fft2XHrppcd93X//+1/MmjW4Ok4S0dDjyV+hui8gw5p7pk7Z9IwQAtsbC9WxsBHLcnP1SYhomHJYDF2OLR2TiKtmZGJGZgwmp7kBRIpZ183Nxj/XFwINqZGbFIZw1AOu2kgnWfNRtvcOIEJIkS3CHnf7LaRdlReNySDh7lNGA4icl5fqjlx32bR01bzMWBuundP63wvAuGQnvtFpDhEREVF/6pfC3rZt2/Dkk0/22ePv3r27zx6biKgvBev2I1i7RxULuSfDYEvSKaOe2VFXDo/otFKnJRaTUtz6JEQ0TCU7ozd+GJlgx5PLpyI33q6KS5KEJ5dPxTWzs7Dw72sjQWEAmhMiNwDC6MeFc+zIzQhixeH9ONBccVydZvuCUGTA54h0/vU78J1J4/H0Z/WaDr5H/Ovyafj+q9vgD7WvRHz127Pgshixq6IJZ41LxpikozQg6eCJS6fgiukZaPAFcda4ZFiMXRdTiYiIiPpanxf2ioqKcNNNNyEY7J3zUaLpWNjLyclBVlb3znSKiYnpq5SIiLql82o9AAgmnKxDJifm3aI9mliqlAqHhSc+EPWnrFgb5uXEYV1B+xlxD5w9HreePAI2U9cFqPm58Sj9xekY99CnmoYX01OS8Ow5C+C0GHFhYg2WPLYWwuxtbWLhAcwewORrPRMv0KOutNGYYEbAa249t88KBKyRj35H5HO0n233w5nT8fTqz6I+TqrLgsumpqHBF8RdK3YhGBZYPiUN509MhUGWcFre8b2RIkkSThmdeCJfGhEREVGv6dNXXPv27cP111+PqqqqvnwaVWHv+9//Pi666KI+fT4iot7Skv+2JhaIH3yFvdfytSunT0sfo0MmRPTKt2fh7hW7UNLgw3Vzs/HN6RmQpGM3eEh1W/Hi1TPx03d3wxdUcNHkNJw5Lgmzs2LbVqWluS0AJCBgj9yaOj+KgDAGAEMIGXEGPHrZBNT7vbj5ja1oDgQjtThJABCAkCNNN4Qcaa4RNgBhE26YPRqPnDcdz35dgu+9su2YedtNBkxMcUUdkyXg+atmwG424ocnj8SVMzLgDSrIih1czYmIiIiIutJnhb0333wT9913H7zevj1EWQiBvXv3tt0fN25cnz4fEVFvCXur4S9VH3IftuVAsWfrlFHP+MMhbK3vdL5ewIqLxo7QKSOi4S3NbcWzV8zo0bXLxiZj2djkoz52NBaj3LrNVQJCFiBkwa8WTcV52ZGfZ80LEnHza9u7lcOomDhYDEbMzort1vyZmTEwGmR8b14O/rGuQJVT9a+WqVYOJzqib1UmIiIiGqzk3n7AiooK3H333bjrrrv6vKgHAAUFBfB4PAAAk8mEUaPYgZGIBgfPoXcBoe48GRiE23DXVhxGEOqte1JLLJaM4lY1oqHG2cX2+vvPVL+xGmM14qJJqW33vz8/Fzt+tKRbz5HqihTfpmXE4OLJ7Y8xOc0Ft1X7/NfNjRQPb56fC5OhfWXiNbOzeBwAERERDXm9+tfOY489hieeeKKt0AYAI0eOxBlnnIHHH3+8N5+qTcdtuCNGjIDZbO6T5yEi6m2eA29qYsH4hTpkcmIe37ZZExtjy0KcnT+PiYaLK2dkQJaBhz89CIfZgL9cMEnzM2BCqgvzc+PwxeG6Lh4l4khhDwBe/tYsvL+nEgBw8sgE7K5oxrdf2Iz91S0Yk+jArQtH4KoZmQCASWlubLtzCV7eVoqcOBuunJ7Zy18lERER0cDTq4W9f/7zn6qi3vLly3HPPffgww8/7M2nUdmzp/3Adm7DJaLBQgk0w1vwkTpmikPIPUmnjHru49L9Hc+whxDArTOm65cQEfWpxSMTsDq/RhVLcVlw+6JRuH3R0XdO/GrZWCx/diPqvV03VUt1tW/3lSQJZ41Pabs/OzsWu+46pctrxyY78bPT8o71JRARERENGX2yP2HSpEm4++67MWfOnL54eJWOK/ZY2COiwcJb8AFE2KeKBRIWAVLXXSsHolpfCxpQq4oZAy5cN5PHIhANVdeflK0q7N2xeGS3mnMAwNIxSdh3zykoqvchzWVB+q8/0sxJcfEcPCIiIqLu6tXC3pw5c3DxxRdj6dKl3f4D70R1LOyNHTsWe/bswauvvor169ejuLgYoVAIiYmJmDp1Ks466yycfvrp/ZYbEVFXWg68oYkFE5f0ex4n6rX8ParVegAw2prZ1kGTiIaeK2dkwiTL+HBfFSalunDzgtzjuj7RYWlrYjE7KxZfF9W3jdlNBiQ6uI2fiIiIqLt6tbD36KOP9ubDHVNtbS0qKyvb7j/11FNYt26dZl5JSQlKSkrw7rvvYtKkSfjzn/+M7Gz9u06GQqFjTxrAwuHwUe8TUXQi7Icn/11VTDLHIhgzs+3+YPl+ev3QTk1sTnzuoP/5RoMbfz/1vYsnJePiSa3dc4WCUEg5+gVd+OXpo3HOvza03b9iejqEEkYPH456Gb+XiHoPv5+Ieg+/n9QGdauwjqv1ALQV9Ww2G3JycuB2u1FZWYnDhw+3zdmxYweWL1+Of//735gwYUJ/pquiKAq2bt2q2/P3hR07duidAtGgYKpdC1ewSRXzxZ4EyKa2+4Ph+0kIgS8qD6hjiozxinHI/XyjwW0wfD8NV8kA/rYkHiuLfMh1G3HZiBB/fgxg/F4i6j38fiLqPcP9+2lIFfacTifuuOMOXHjhhXA4HG3x4uJiPPLII3jzzUgHyvr6etx00014/fXXERcX1685ExGZq1dpYoGEJf2ex4kq9DehER510BODcaOt0S8gIoripDQrTkrjzw0iIiKinpD1TuBEdFyJFxcXh1deeQVXXnmlqqgHAJmZmXjooYfwgx/8oC1WVlaGxx9/vL9SJSKKECGYaj5Xh2QrgnFzdUqo59Y2lWpiJk880h08X4+IiIiIiKg/DOoVe/fffz9+/OMfo6ioCA6HAyNGjDjq/Jtvvhlr1qzB5s2bAQAvvvgi7rzzTpjN/X9IsyzLmDx5cr8/b28Kh8OqJa+TJk2CwcAX9ERH4ytehapQgypmH3EWMqbOGnTfT3d/+JUmNt6eg+nTpvV/MkQd8PcTUe/g9xJR7+H3E1HvGWrfT9u3b4ei9PyA4UFd2AOAmJgYxMTEdGuuJEm4+uqr2wp7Xq8XGzduxLx58/oyxS4ZjYP+P7+KwWAYcl8TUW/zHXpbE3OOuUjzi2igfz81B/34vPKQKib8VsxLyxjQedPwNNC/n4gGC34vEfUefj8R9Z7h/v00qLfi9sSMGTNU9ztu5yUi6ktCKPAceFMdNJhhH3G2PgmdgPeL9iIkOr2r1JyAWVk8t5SIiIiIiKi/DLvCXkJCgup+Q0NDFzOJiHqXv+wrhFvU59LZsk+DbHHrlFHP/XztF9pgczxmZHZvBTURERERERGduGFX2AsEAqr7nRttEBH1Fc/BNzQxx+gL+z2PE9XiD2Kft1AVE4oMoy8WE1NcOmVFREREREQ0/AzaTcglJSX43//+h9raWtTU1OCOO+7AuHHjjnldUVGR6n5aWlpfpUhE1EYIgZYDb6iDkgH2kefqks+JeG3/QcCkfpMELbGYkhIHs3HYvV9ERERERESkm0Fb2BNC4Kmnnmq7P2fOnG4V9j7//PO2zyVJ0py5R0TUFwJVWxFqyFfFrJmLYLAl6pRRz72Sv0MbbIrHJSfxjRIiIiIiIqL+NGiXVmRmZiIjI6Pt/muvvYZwOHzUa5qbm/Hcc8+13V+4cCHi4+P7LEcioiOGyjZcAPiqLl8Tm5cwGj88eYQO2RAREREREQ1fg7awBwCXXnpp2+cHDx7E448/3uXcYDCIe+65BxUVFQAiq/VuvPHGPs+RiAgAWva/ronZR52vQyYnpsbXgspwlSom+e347LtLYTcP2kXgREREREREg9KALeydeuqpGDt2LMaOHYtTTz016pxrrrlGtWrvkUcewf3334+6ujrVvN27d+Oaa67BRx991Ba76qqrMGvWrL5Jnoiog0D1DgRrd6tiltS5MDozurhi4HqjYCcgCVUsTU6HQZZ0yoiIiIiIiGj4GtTLK2w2G/7xj3/gqquuQn19PQDgP//5D1544QXk5eXB6XSirKwMhYXq7o3nnnsufvKTn+iQMRENRy37X9HEHHmXRpk58L1wYJsmNjdutA6ZEBERERER0YBdsdddY8aMwSuvvILp06e3xYLBIHbu3In169erinpWqxW33XYbHnroIRgMBj3SJaJhRgiBln0va+KOMRfrkM2J8YaCWFt9QBUTIRNOSR+pU0ZERERERETD26BesXdEVlYWXnjhBaxduxYrVqzAli1bUFlZCb/fj/j4eGRlZWHx4sU477zzkJbGro1E1H8C1dsQrNuvilnS58PoytIpo577uHQf/EpIHWxKwIQUtz4JERERERERDXP9Uti7+OKLcfHFx7c6ZeXKlcf9PAsWLMCCBQuO+zoior4SfbXe4NyG+2bhTm2wMRHjkp39nwwREREREREN/q24REQDVWQb7qudotKg3IYbVhS83amwJ8Iy3OFEpLosOmVFREREREQ0vLGwR0TURwKVmxFqOKiKWTMWwuhM1ymjnvui8jCq/S3qYHM8xifFQJLYEZeIiIiIiEgPLOwREfWRqNtw85brkMmJe7NwhzbYxG24REREREREemJhj4ioDwgh0LK/0zZcSYZj9EX6JHQChBCa8/WEANAUjwkpLn2SIiIiIiIiIhb2iIj6QqBiA0KNh1Uxa+ZiGBwp+iR0ArbXlSG/qUYdbIkFFBOmZ8TokhMRERERERGxsEdE1Ceah9A23Gf3bdIGmxIBANMy3P2cDRERERERER3Bwh4RUS8TQkHLvlfUQckAx+gLdcnnRAgh8O+9mzrFADQmIs1tQaKDHXGJiIiIiIj0wsIeEVEv85etR7i5WBWzZZ0Kgy1Rp4x6bnXJYdQrjeqgJwYIWTA1jav1iIiIiIiI9MTCHhFRL4veDfdSHTI5cY9s+1obbEwCAMzNievnbIiIiIiIiKgjFvaIiHqREIq2G65shH30BfokdAKEEPisek+nGIDGJNhMMr57Uo4+iREREREREREAwKh3AkREQ4mv+HOEW8pUMVv2aTBY43XKqOc21ZSgLqzdhnvNjFG455TRSHNb9UmMiIiIiIiIALCwR0TUq5r3Pq+JDdZtuC8f2qKJxfjT8c/LpvV7LkRERERERKTFrbhERL1ECfng2afehisZrHCMulCfhE7A6gPV+L8d6vP1hACmuUbplBERERERERF1xsIeEVEv8R5+D0qgQRWzjzwXsmVwdY9dd7gWZzz3ETxoUQ+0xGJGapI+SREREREREZEGC3tERL2keU+UbbjjvqlDJj0XVgRueX07gs5y7WBjEianDa4iJRERERER0VDGwh4RUS8I++rhOfSuKiZb42HPXaZTRj3z5s5ybC5pAGIqVXEhJDh9qThvQopOmREREREREVFnLOwREfUCz4HXgXBAFXOMuQSSwaxTRj3z8b4qwFkLyRhUxaXmOPzfhTOQ4BhcXw8REREREdFQxsIeEVEviLYN1znItuECwN7KZs1qPQC4Y+o8XD0zS4eMiIiIiIiIqCss7BERnaBQUzF8xatVMYMrG5b0+Tpl1HO7qusBd7Uq5jZZ8esFC/VJiIiIiIiIiLrEwh4R0Qlq3vsiAKGKOcdeDkkaXD9iX91WigqpBJKsqOKX5E6BzWjSKSsiIiIiIiLqyuB61UlENAC1RNuGO/4KHTLpuVUHqrH82Y1ATIVm7KpRM3TIiIiIiIiIiI6FhT0iohMQqNmJQPU2VcycOAXmhIk6ZdQzf197CDD6AUe9Kh5vcmJR6kh9kiIiIiIiIqKjYmGPiOgERGua4RiETTPWFdQBsRWQJHX87PQpkAfZlmIiIiIiIqLhgq/WiIh6SAgFLXte7BSV4Bx7uS759FRxvRdljT4gtlwzdtOEOTpkRERERERERN3Bwh4RUQ/5S9ch1FSgilkzF8HoytQpo575sqAOsDdAsnhV8RRjIuamDq6vhYiIiIiIaDhhYY+IqIeadz+niTkH4Tbc9YX1QJx2td59sxf1fzJERERERETUbSzsERH1gBL0oHnfy6qYZLDAPvoinTLquS8KKwB3lSpmN5jwzZHshktERERERDSQsbBHRNQDnoNvQgQaVTH7qPNhsMbplFHPhMIKNjTthyQrqvjyEVPhNlt1yoqIiIiIiIi6g4U9IqIeaNr1H03MOf5qHTI5MSsPVCPoLtXEr8ubq0M2REREREREdDxY2CMiOk6hpmL4Cj9RxQyONNhyTtMpo5754nAtzvzPx5Bszap4qjkO85Nz9UmKiIiIiIiIuo2FPSKi49S8+78AhCrmHHcFJNmoT0I9dNsbO6I2zbhixCxIkqRDRkRERERERHQ8WNgjIjoOQgg0735WE3dOGFzbcA/VeLChtAaIqVAPCAl3TJ2vT1JERERERER0XFjYIyI6Dv6y9QjW7VfFLCmzYU6YoFNGPfP6jjIgtgKSIayKjzZnI83h0ikrIiIiIiIiOh4s7BERHYfm3VGaZgyy1XpAa2EvTts04y+LlumQDREREREREfUEC3tERN2khLxo2fuSOmgwwzH2Mn0S6iF/KIz11YchWT2q+MTYFJyZNUanrIiIiIiIiOh4sbBHRNRNnoNvQQk0qGKOkefBYI3XKaOe2VraiFBssSb+/fEL2DSDiIiIiIhoEGFhj4iom5p3Rmua8S0dMjkx7x8sAlzVqphVNuOqUTN0yoiIiIiIiIh6goU9IqJuCDYchrfwY1XMYE+FLed0nTLquVeKNqLzwryLs6bCZbLqkxARERERERH1CAt7RETd0LzraQBCFXNOuAqSbNQln57yhoLYE9yvid8zbbEO2RAREREREdGJYGGPiOgYhBJG085nNHHXxGt0yObE/Hvf1wjLAVUsVknCxPhUnTIiIiIiIiKinmJhj4joGLwFHyLcXKKKWTMXwxQ3uDrIKkLBn3Z8ponPd03RIRsiIiIiIiI6USzsEREdQ9OOf2lirkmDb7Xeu8V7cKhF3TRD+G1Ylj5Op4yIiIiIiIjoRLCwR0R0FKGWcngOvaOKyZZY2EdfpFNGPffnHau1wZpMjE9x9n8yREREREREdMJY2CMiOorm3c8BSkgVc467ArLRplNGPbOpuhiryg+qYiJkAupTMC6ZhT0iIiIiIqLBiIU9IqIuCCG62IZ7rQ7ZnJg/7FilDdamw2k2I91t7fd8iIiIiIiI6MSxsEdE1AVfyecI1R9Qxcwps2BOGlzNJg431eKlQ1tVMaFIQG06xiY5IUmSTpkRERERERHRiWBhj4ioC0Nltd4dX7wHAaEO1qcCYTMmprj0SYqIiIiIiIhOGAt7RERRhL018Ox/VRWTjHY48y7TKaOeKfU04O2STqv1BICaTADA6WOTdMiKiIiIiIiIegMLe0REUTTvehYi7FfFHHnLIVvcOmXUM/dt+BiKpKiDjUlAwA4AOGtcsg5ZERERERERUW9gYY+IqBMhFDRuf1ITd0/5rg7Z9FyVrxn/yf86ykA2AGDRyHjE2839nBURERERERH1Fhb2iIg68RWu1DbNSJ4Oc8osnTLqmb/u/BxBEVLFRGMC4HcCAG44KUePtIiIiIiIiKiXGPVOgIhooGnc9g9NzD3le4Oqe2y934s/bv9MO1CdjdGJDlw9MxNXTM/o/8SIiIiIiIio17CwR0TUQai5BJ78FaqYbI6BY+zlOmV0fLaUNGBraSOeLfocARFUjYnmOPxk/gz89qzxOmVHREREREREvYmFPSKiDpp2/AsQYVXMOeEqyCaHThl1TzCs4JKnN2DF7grAEADGbIVkUM+x1OXixnm5uuRHREREREREvY9n7BERtRJKKFLY68Q1+QYdsjk+z2woihT1ACCxCJJBXZwUzbH4vzNPRlasTYfsiIiIiIiIqC+wsEdE1MqTvwLh5hJVzJqxCOaECTpl1H3v7a6MfGL0A/GlmvGYxjG4ZnZWP2dFREREREREfYmFPSKiVo3bntDEXFO+q0Mmx0cIgXUFdZE7iYWQZEU93hSPk1NHDKrmH0RERERERHRsLOwREQEI1u2Dr/BjVUy2J8Mx+kJ9EjoOBXVelDf5AZMPiCvTTqgcgbk5sf2eFxEREREREfUtFvaIiAA0bn1ME3NN/A4kg1mHbI5P22q95EOQZKEaEw1JgM+JM/KSdciMiIiIiIiI+hILe0Q07Cn+RjTtfEYdlGS4Jw/8bbgA8FVhHWBtghRbqYoLAaAqBzfOy8Hs7FhdciMiIiIiIqK+Y9Q7ASIivTXtehYi2KyK2UddAKM7W6eMjs/28kYg9aAmvjx7On5z3rnIS3LqkBURERERERH1NRb2iGhYE0JB49ZHNXH3tFt0yKZnNjfkQ0pqUMXsRhP+PP9cpNtZ1CMiIiIiIhqquBWXiIY17+EPEKo/oIqZE6fAmrFQp4yOT2WzF3XufZr4nZOWIN0eo0NGRERERERE1F+4Yo+IhrXGLf+nibmn3wJJknTIpvvqPAF8WVCH10o2QrJ4VGMO2YYfTVqiT2JERERERETUb1jYI6JhK1C7B96CD1Ux2ZoAx9jLdcqoe9YdrsWyJ79Ec8gHjP4KUqef5N/IWACnyaJPckRERERERNRvuBWXiIatxq2PaWKuSddCNtp0yKb77vtgL5r9YSD5ECRjSDUmfHbcOO4knTIjIiIiIiKi/sTCHhENS4q/Ac27nlUHJQPcU76nT0LdpCgCH++vBqxNQFyZZtxUNQYTU106ZEZERERERET9jYU9IhqWmnb8CyLYoorZR18Aoztbp4yOTVEE/vxZPgABpB1A52MARUMivjt5GixGgy75ERERERERUf9iYY+Ihh0RDqJhy981cffUm3XIpvse/PQAfrxiFxBTAcneqBoTiozrck7Bn8+fqFN2RERERERE1N/YPIOIhp2W/a8i3FSkipmTZ8CasVCnjI6u1hPAgysP4A+rDgKGIJCar5kz1TQRT1w4Z8B38yUiIiIiIqLew8IeEQ0rQgg0bPqzJh4z47YBWxT71v824909lZE7KQchGYOq8RjZhTXf/OaAzZ+IiIiIiIj6BrfiEtGw4iv+DIHKzaqYwZUNx5hLdMro6PZWNrcX9Rx1kOIqNHP+c+pyOEzmfs6MiIiIiIiI9MbCHhENK1FX602/BZLBpEM2x/b6jtbOt1IYSNuvGU9RMnFO1oR+zoqIiIiIiIgGAhb2iGjYCNTuhvfQu6qYZHbDNfFanTI6tjd3lEc+SSqEZPGqxkTYgMcXXKxDVkRERERERDQQsLBHRMNG46ZHNDH35OshW9w6ZHNsh2o8WF9YD1ibgMRCzfjvZ52L88dl939iRERERERENCCwsEdEw0K4pQLNu59TB2Uj3NNu1iehbnjqqwJAUoCMPejcF8Poi8WdUxfokxgRERERERENCCzsEdGw0LjtMYiwXxVz5C2H0ZWlU0ZHFwor+PdXRUDSYUhWj2pMKBKuzzodssQf4URERERERMMZXxUS0ZCnBJrQuOVRTTxmxm39n0w3+EIKfvjWLpSHqoDEIs34yPBE/PqU6TpkRkRERERERAOJUe8EiIj6WtP2J6H461Uxa9YpsCQPvOJYSBH47ic12F3nA0Zpt+DOTsjG52dfDZPRoE+CRERERERENGBwxR4RDWki5EfDpr9q4rGz79Ihm2P7vMSH3bVBIO2ApguuRTbiP4u/yaIeERERERERAWBhj4iGuKbd/0G4pUwVM6fMhDXrVJ0yOro38z2AuxJSXLlm7NfTz8KYmCQdsiIiIiIiIqKBiIU9IhqyhBJCw4Y/auKxs++C1HmP6wAQVgS21TcA6fs0Y1Z/Au6YfLIOWREREREREdFAxcIeEQ1ZLftfRajhoCpmihsL+6gLdMro6D4p8qApZRckQ1gVFyET4monswsuERERERERqbB5BhENSUIINHz9sCYeM+vHkAZYgUwIgauf34IXy7ZASmrSTigZi2/OHNn/iREREREREdGANrBe3RIR9RLv4fcRqN6mihlcWXCO+4ZOGXXt9R3lePHATiCxUDMmqjOB5gRcOiVNh8yIiIiIiIhoIOOKPSIacoQQqP/695p4zIzbIRnMOmR0dC/tOghk7kbnY/+E14mYxjzcffYYzM2J0yc5IiIiIiIiGrBY2COiIcdX9Cn8pV+oYrItEa5J1+qUUdc8oQBer/8EkjmkiouwjMsSl+KFm9gwg4iIiIiIiKLjVlwiGlKEEKhbf78mHjP9Vsgmuw4ZdU0Ige+ueQUhc5Rz9UrH4qI8nqtHREREREREXeOKPSIaUnzFq+EvWaOKyZY4uKfepFNG0X2yvwr3b1yFz7ybNGOiOhMZyMLZ41J0yIyIiIiIiIgGCxb2iGhIqf/yN5qYe8YPIVvcOmSj5gmEcP/H+/HgygOAvR7I3aY9V68lBqgYiZdvngGXlT+iiYiIiIiIqGvciktEQ4a3aDV8JZ+rYrIlFjHTbtYpI7UHVx6IFPXMHiBrJyRJqMZF0AwUTcDL5yRjVlasPkkSERERERHRoMHCHhENGfVRztZzT78VsiVGh2y0XthSChiCQPYOSMZOzTIUCSiaiBy7HTkurtQjIiIiIiKiY2Nhj4iGBG/xZ/AVr1bFZEss3NNu0SkjtVBYwaG65shKPYtXO6FsDOB147I8B6TO+3OJiIiIiIiIomBhj4iGhPovo63W+wEM1tj+T6ZVKKwgGFYAAK9uK0M4dQ8kR4NmnqjOAurT4DJJOHuErb/TJCIiIiIiokGK+72IaNDzFn0KX/EqVUw2x8A97Qf6JARgxa4KXPfiFlS1BCKBpEOQkis182KDaairGIEEuwk/n+2C08T3W4iIiIiIiKh7WNgjokFNCIG6tb/QxN3Tb9FttZ4vGMYNL29tL+rFF0NKLtTMG2lPwdZLfgCvH7AbgV07tvdzpkRERERERDSYsbBHRIOa99A78JevV8VkSxzc03+oU0bAuoI6VDT5I3diKiClHdTMEQEL/rbwm7AbzbAbgVAopJlDREREREREdDTc80VEg5YQCuq+uE8Tj5l1p65n6+XXeCKfOKuBjD2acRE2AoWTMTs9uZ8zIyIiIiIioqGEhT0iGrRa9r2MQLV6+6rBngL3tJt1yghQFIE/rT4I2OuBrN3o3OBWKDJQMAnwOxBvN+mSIxEREREREQ0NLOwR0aAkwkHUrfuVJh475yeQTQ4dMopY/uwG7G4uAbK3Q5IV1ZhQJKBoIuCNwYyMGEidq35EREREREREx6Hfztj761//ikcffRQZGRlYuXJlnzxHWVkZXnjhBaxZswYFBQXw+XxISkrCyJEjcfbZZ+Pss8+GzWbrk+cmov7VvPs/CNUfUMWMrhy4Jl2nU0bA14X1eD1/L5C9DZKhU1FPACgZBzTHAwAun5auQ4ZERERENJSJcAjB2iIYnIkw2Fx6p0NE/aBfCnvbtm3Dk08+2afP8cILL+DBBx+E1+tVxUtLS1FaWoo1a9bgiSeewEMPPYSpU6f2aS5E1LeUkA91X96vicee9DNIRosOGQF1ngBO/8/7UYt6AICyMUBjMqZnuHHZ1AzcsXhU/ydJRERERENWsK4URX8+F76CzTC4EpHx/RfgnLhUt3xa9qxG8/YPYM2eBvec5dytQtRH+rywV1RUhJtuugnBYLDPnuPpp5/GAw880HZfkiSMGTMGsbGxOHz4MCorKwEAhw8fxre//W3897//xcSJE/ssHyLqW01bH0W4uVgVM8XlwTn+yn7NQwiB3RXNiLWZMOuJt9GYsilqUU+UjwTqIiv0Nty2iH/UDGDBulJUPH8HAuX74Zp5ERLPvQeSgQ3kiYiIaOCr/eDP8BVsBgCEm6pR+cKP4PzNZl1yadz4BoofuajtfrDyIBLP+4kuuRANdX36amXfvn24/vrrUVVV1WfPsWXLFjz00ENt92fPno3f/e53yM7OBhB54f3RRx/hF7/4Berq6uD1enHTTTfh/fff57ZcokEo7KtF/VcPauJx834JSe6/AowvGMayJ77E54dqAUctkL1Tc6Ye0FrUq8lqu8+i3sBW9vSNaN7yNgDAV7AJxrh0xC26Vuesek+g6hACZXthGzkHBme8rrkIRUH9Z/+Er2AznFPOgmv6ebrkEaovR7ilFua0cZDk3jl6WCgKRMADyeLg9zwR9YuwtwnhpiqYEnN77WcZDT417/1Bdd9XuAWK3wPZYu/3XGrf/5P6/sd/Y2GPqI/02avgN998E/fdd59ma2xve+CBBxAOhwEAEydOxFNPPQWr1do2LkkSzjjjDGRnZ+OKK65AS0sLysvL8cwzz+DGG2/s09yIKEIJ+NDy/+zdd3QUVRsG8Ge2b3rvBZKQ0LtSRKoUEZAiooJiAxEFBUGwoSL2z46KFRUVpAkqqIAIgvTeWygppPey2TrfHytDNrtJNskmEHh+53DYmblz5+5m787MO7cc2wCFdyi0TTtJ60VRRMmxv2ApyYN7y35OBRryd70Biz7fZp0qqCPcmo10dbGr9O4/Z61BPa9MIPwEBJlol6ZiUI+ubhaDTgrqXZLz2+vXTGCvcM9KpC64B6JRD7m7H6Kf2QRNZJt6O55oNqH40O8QlBq4t+xnd6OZueJ55PxmbW2ft/FT+A2cBoVnIDTRHeDeZmCDBMTy/vka6d9NhmjUQxvXHVEz/rAbj6j40B8o2P4jlIFNofAMQN4/X0GmckfQ6Nfg3ryXXZ5lSYeQMn8UDBlnoI3vgcjHlkHhE1Lv76WxEC0WQLQAMjmDntc5ffopFB/4DargZvBoP4TfhzooPvQHUj69G5bSfGiadEL00+shd/etdj+LQQeIYoMEfUSTARlLZqJo/y9QR7RG6H0fQ+kfVe/HvZaYCjKQ88c7EI16uLfuj/wtC2HMOgfvbmPhN/BJCDK5w/2MealQhzRr0LKKJiNKT22xWWfKT4OpKBsKz4AGLQs1vNLEnSg+9Ds0ke3g2Wk4f98bgMsDexkZGXj33XexatUqV2dt5+DBgzhw4IC0/MILL9gE9cpr3rw5HnvsMal137fffosJEyZALnf8A0hXH9FirvSE1RAshjJYygoh9/CvczksZcUwFaRD4RsBmcrxd7ayMuT++R6MORfg1fUeuDfvWady1IUpPx0WfTGUQbFV/libSwtwdk5HGLPOAgACbn8BQSPnAgDSvn4Y+f98DQBQhTZH0xe2VXkhaiw4h8KDn0jLFr0ICIBvjzcgCPX/dDqjSI9/z+fihkgffLnjAuB7EQg9DUdvX0yPAbIjgHLbZvau/bh6pWd2wJhzAR5tb4Vc6+UwTfGhP5C3+UsovEMQOPxFKLwCa328K8WsK0La1w+j5PhGaCLbIfShr6AKiG6QYxuzz9utM2ScgakwE6WntkId0cbuwthckgcADr+3Jcc2Qp92Eu4tekMd1qJeylwTmcuegWjUAwDMJbnIWvUyIqcsr5djiSYjzs27CWXndgMAPDuNQOTUlZe3iyLy//7MZp/cP9+TXgff/Q78B02Xls2lBRDkCsjUrpvx2mIoQ8aSGdJnojuzDflbvob/gCekNCXH/0bSO7c63D/107sR+8ZJKRBoLs5F5ornkbfxUymN7tRWZP/2GkLGfeiyclfFUlYMs64QSt+ra3Ie0WREwY7FKNr/C4r2rAAAuLcZhIhJP9g80Ck68BvytyyE0i8KAUOfgcIryOn8s39/+7+biLYIGjXPqaBGTa4rig+vQ87atyAoNQgY9jzc4ro6tV9VjLkpyFo5B+bSfPj1nwr3Fr3rnOfVTp96DNm/vYGCbYts1l+6NhBNBhTt/wWiyQi3+B5Q+l97D8eM+WkQTQYo/aMcXj8Zc5JQemYHNJFtnDp3iKKItO8mw1KaDwAoO78XWavmImTse1Xul732f8ha8RxEixkBQ5+Vrs2cJVosNWoZmPPne8hdb/0tNGafR5ooIviut5H39+eQuXnDv//UK96SvC6MOUko2vcLVMFx9fJwSrRYcOGt/tCnHAYA6bMEgLIL+1GWcgQhY993uK8pL6XBA3v61KMO1xvSTtoF9kzFOYDF7PRvvk1+mWeRt+lzCEoN/PpPgcLDv1blrS8Wox6WkrxG9YCv+OhfKN7/C9RR7eDdbSxkypqNX1586A+ba6egO99AwG2zXFa+kpNbkLvufQhqDwjNRkP0CnVZ3o2ZSwN7n376KT7//HOUlpZK62JiYjBgwAAsWLDAlYcCAKxdu1Z6HRsbiw4dOlSZ/o477sC7774Lk8mE3Nxc7Nq1C926dXN5uci1TEXZSP3kLuuNfpPOiJi8BKqgmMrTF2Yia/UrMBdkwKf3BHi07u8wncVQhtKT/0AZEA11aAIAQJ92EoJMAVWwbQCm9NS/SPlkDEx5qdDGdkXk1J+h8AmBKIqwlBZApnaDoFA59X5Kz2xHyocjYSpIhyq4GSKnr6nyZGsqykbu+g8hGvXI/etjiPoSAEDe5i/R5JnNcIu/SUprzE9D6fFNUIXEQ9Oko81FhWgyoGD7jyg9sx1lZ3fBYiiFb59J8B80zalyl5fzx3vI+GkmYDHDo/0QRE79udJxyHLXfygF9QAge/UryN0wHwG3zZaCegBgSDuB7DVvIfjO1x1lY33P2+ZANOkhCAIMF0ww51pbyaV9+hhC7v0I7i371vi9ANaLYlPeRYhGHVTBcQ7T7E8twN3vL0Or0kN4ThmL8yEKCMHnHOeXFosBubmYWzwX6rIcrND0x+dBk/FIt9oFqDJXvojs1dYLbpnGA1FPb4BMqYHu7C5oY7pAE9UWpae3Iem9IYDF2oK55Mg6NH1pN+Ru3k4fx1ScA13iTqiC46AKigUEWb09YdNd2I/0RVNgyr8In14PI2CItWtG6oJ7UHzgN+t7OPYXkt7qb/c+RLMJotmIsuRDyFw6G6aCNPj1exx+/R+vU5kMmWcdrj/9VBOIBh0gVyBk7Afw6zcZoigi/dvJyPt7AQSFCoEj59pctGT/9gYyl1nfk0zjgaiZ6+AWd/l8ozu7GwXbf4AqKBY+Nz8AmcajTmWvjCiKKLuwH7qzu2BIP2WzrWjPihrfmAH/tbgCKt1Pn34aJUc3SEE9ACja+zPKkg5CNBuRvuhx6BJ3VnmMrJ9fhE+vCZBrPZG+eIY16CeTI/jON6CJ7oj07x6DqSQHfn0nI2DY87XqdqZPOQzLf4HZSzJ+eBLeXe+Wbi7K/0ZVZMpPQ8mxv+DVaThEUUTq5/ei+OBau3S56z+q18CeWVcImdodOb//D5lLZwOCAM8OwxA0+g2oQuLr3CXPYtSjcNdS6C8eh1fH4dDG3ljjPC4unIiCrd/YrCs5/AfOze2CqKf+gCo4FqWntiL5g+HSb5gucQeaPL/VqcBb7sZPkLX8Oet+p7bCoitC+CPfVZq+NHEn0r58EIacC/C56T4EjpyLjB+nofTMdrjF90DIPe9D7u4DAMj65VVkrXjeZv/ig2vg0X4Igse8BaV/FHLXfQhDZiK8bhwNdVhLlJ7aAm2zm6p8KCFaLLjwRl8YMk4DAIoO/IrY147V6ObbkHEGglIDpV+E0/tcSYW7V1hbDZsMdtty/3wffgOeQNI7g1F2dpd1pUyOgGHPI2jES9bffYvZ6RtM3bm9yFn7FiCTw3/QUza9Ba6krNXzkLXqJcBihleXuxA+6QebOlp66l9ceHsAREMpIFcgYtKPcGvRB4U7FkPhEwrPTiPt6rQh4zSMWbbXI7nr3kfw3e9U+TuduXSWtfUsrNdmnh2GQdu0s1PvI3P5c8j58z3Itd4IfeBzp4ZSyFo5x2a5+OAaFB9cIy2XHP4DTZ7fdlV0I9ad24Os1a9AkMkROPwlaKLawlSUjezVc2HMSYJX13vg3eVOKb0+9RjOvtgJorEMgO1DbEeEnEQIeRdgjouCwrv6h7CGzLNImX+HFNRzpGDrN1B4BzvclrdxAQSVG9xiu1R7LMB6P6RL3AFt0xugDm/p1D4V6S7VY7u8T9jcu2StfgVZq14GLGb49nsMoffNt9tHFEXruaFCS29TYRbOzesOc0EGAKBw5xLEvnrE4T2JKIow5aZA4RuGzGXPonDPCmgi2yJ0/KeVfm51lff3Z0hbNAWwmODT436EPvTVVd9yrfjwOmtQ7r/fBn3qUYTc/U6N8sj+/W2b5dwN86Fp0hkFWxZC7hkI/0HTYcpPgyhaoI3tUqPPJP/f73Hxi/sA0XoPqDq8Afr7fgauYOOfq4UgiqJ9/7Fa6ty5M4qKiqTl0aNHY/bs2Vi3bh2eecZ6gxMeHo6NGze65HjDhg3DyZMnAQD33XcfnnvuuWr3GTNmjNTKb/z48Xj22WddUhZn7N+/H5b/bohkMlm1gcirnclkwsGDB6Xldu3aQaGo5Ie0IB0Kr2AIMhlKTvyD/M1fQOEdAr+B06ptWZD6xQM2NwSenUcicsoKablw93Jk//oaIJMjcMRcZP384uUbSkGGpi/thjqspU3LOFNBBs6+dANMucmAICBk7AfQnd2Fgm3fAwD8+k9FyLgPpPRnX+yMsvN7pWX/wTMRMOQZpMwfjZJjf0HhG47wid/BYtRD4RkAbcwNsBh0EM1Gu9ZV5+b1gO70v9Kyd4/xCJ/wDSoqPvQHCrZ9j4LtP1T62bg1740mz/wNAChLOYoLr/WEuSQXAODeegAiHl0MuYcfzCX5uPDWLTbv4ZLIJ1bDs+MwANbWC7nrPkDRwTXQRLRB4PCXpJsb6bMrzsHpJ8OlVi7SZ3LrDATd+YZ0EyZazMhaNVcKSDlLE93hvy4F02wu7srS9yDpnS4wZVsAB5POAoB3t7GAIIN3j/HwaNUPoigi7+/PULhzCUpPbAYAaGO7IGzCt1IwV3d2N9K+m4yyc3sAAD49H0LYQ1/a5f3AK+9h6plZUMMICwTMSRiAfd7h6Jd9Btkqd6wLjIdepgBSE6DK98Ne/eMQitKl/T0f/AGh7fsh7ZtHUHLyH7jFdUPYw99Ireps6pMuH5F5uyGYDVAGROPiF/dX/oEJAiIeX4G8jZ+g5OgGm01e3e5BxKTKvz+A9eK+7NxuyN39cHHhBJhyL09Kog5riYBhz8O7291V5uEs/cUTyP5lHiz6EhTtW2WzLWLKCogmA1I/tT+WR7vBiHxiNQS5Alm/vma9Ofjv5r+86Nkb4d6iT5VlEC0WGHOTAbNJuuj07DQCunO7kbVyDkpPbKr2fSiDYqGJai+1PLokcvoaeLYbDN25vTj3ku3NkTqiNWJeOQBBJkdZylGce7GjdHPrdeOdiHjsp2qPWxVzaQFyN8yH7vS/EFRuCBz+IjSRbaw3kStfqHS/mFcOQhPV1unj6M7tRepn42BIOwGP9kMRNGoe9GknoG3SEQrfCCT9byBKT/5Tp/dySej9n0Ed0Rrn591UZbqomevg0bo/RIsZFl0hZFpvmC2Was9PRft+QfIHtzvMU+4djMDhLyH920erPLb/rTPg1rw3Uj6+03ojXomEBYV2XXwvEc0mp7qllp7ZgZKj66GJag+P9kMAABk/PIHcjZ8CZpPDfdxb9kPktF8hGvXIWDIDujPb4ZbQE0Fj3qq0PBWlf/+E1DJEUKoRPXtTjVqrGTLO4MzTVQSr5ApETV+L3HXv2wVGI59YBXVkW4gmg/SbXZ65OBcXv34YRXt/rpCnEs0/zYdM7QazrhDFB9agLPmgNZirL5HOB1UJHPEytLFdkfS/gZWmEdTucIu/GSWH/3D4vqJnbYR7ws0O99Wd3Y1zL9sGSX37PorQ8Z84TF+eKIq4+Pl4qdWb34AnEHzPe7W+YSzcu8r6IMJiRuDIufDuehcAa4tVXeoxXFDFAe7WFjaVXesB1geIJcc2QhQtcG/ey6aFre7cXpx/tYcU+HBE2+wmm+ujS4LveQ85a9+CKT8NXjfeibAJ30Km0qD46Ib/HmY2g6WsGLoz26Hwj4LPzQ/g7JwO0oNQyJUIn/ANvLvdc7msoojCnT9Bd243PFr1h0fbQTX+3KpiLsmD7uwuKHzDoYloDcB6Dkx8tqV0QwoAkdPXwrPdrTDrCmHKu4j076ei5Oh6abvcMwCi2SS1xvNoeyvCJy+Rri1FkwHnXunu8PpOHdkW/oOegnf3cXbBsqzVr9gF2gBrHffpNQEhY9+vNKhefHidbb2QK9B0zk5om3Ss9POo9nfgP9r4Hoh8YlWtWl1V1wLXXJJvfage0qzSdKLFjLKkgzj34uVAsKDSoukLO5C5bDaKD/0urVeFxCP4nvfg2W4wUhaMReH2Hy/vo9Qg7s1TKDn2F0TRIo0B7dZxBI79+CJUW6ytKeXeoYh5eU+V90JmXSHOzIqXgld14T94JoLHvFVlmuJDfyDp/aHW84ogQ8SUFfDqNLzGx7r41cPI/+cr+zLcOgPBd1kDP/r000icnWBTJ5o8twVu8T2kZWNuClI+HgPdmW3QNO2MiMk/SQ08sn5+2RooLyfqqd/t6rM+/TQuvNnPet9XgVvzXoie/bfLA2761GNIfK6NFCADgMBR8xAw+GmYirNRuGMx9GknofSPgtInDJroDtBEt3eYV2niTmQunQWLrhB+A6fD56ZxlR7XXJwLmZtPpQFyU3EOcta+DXNhJnx6PQy3Zt2lbaIo4tycjihLOnB5B5kcCR9lOmxNay7JR9bquTDmJkMb0wVK/yi4JdyM008432vAs/NIRDy+3O7zv/QbXXpiE7QxXeDd4z7oU47i7Avt7PLQ3/ElLGHtqzw/NQZ1jRXVS2CvdevWmDVrFm680XrBsnLlSpcH9oxGIzp06CDNtvvmm29i+PDh1e43Z84c/PST9QaqY8eOWLx4cZ3L4qzrKbBnLslH1qqXUbRvldS9Te4djJC73sHFrx+WLuw00R3RdM4OmEtyYdYVQhXY1OYpi0VfghMTbVuyCEo1mn+hg6gvQfZvbyD711edKq97q/6ImLwEcg8/XPx6AvI32wdvymv64i5oY26AubQAJx/1sdseOPwlu5OJDZkcEGQIGDJbemqnv3gCic/Yd6to+e3laiiKItIWPoL8zV849b5i5u6HJro90r55FHl/27aMdYu/GdHPbELSu7c5vvEAoApNgFtCL+gSd8CQcdraMqmcJs9tgaZJJwgKNQSZDIW7VyBl/h0O8/LtMwnq8FZwb9kXpYk7kPbVQ069B0fCJn4Hn5vuBWD9TJI+aIOS/Y6b9duRKxH99AaUHPnTGvStwC3+ZjR57h+YCjJwekaM3Q159LP/wD3hZohmEwr+XYQLBzdDuefbKg/5R2ACZng8jZAC4Fvj/xBedNwujTqijd3T1qYv7Ya2aWeUnNuLxFXvQlSooTi6CoIuz27/2oh59Qg0EfazgFuMeqR9PcGuO5QjQWPeQsDgmXUqhyHjDM6+2AkWXaHD7R7th8BSWmA3HsslXjeMhjauGzIWT3e4HQC8uoxBxOQlDreJJiNEiwmpC8baBwEayKXvdOpn99l97mEPL4TCLxKayLY2Xagt+hLk/PEeDGkn4NlpODw7j7K7+DHrCpH4bGubC1aFdwgin/zFLnBQUci98+F3y2NOlV8URZx9vp3jFgNyJbQxNzq8Ka8tTdPOUHgF27TocMSn1wT43/oUkj8YDkPaCSj9o+A39DkkFcthCWoJxcEl0B7/GQqvIITcO18KSuWs+xAZPzxRZd7Vkbv7SQ9TqhL5xGpAEKAKiZcCVKLFjKzVr1gHOreYEXTHqzbdj8srOvg7kt8bYnODoPSPgjEnqdpjhz28EKWn/7U55/kNmg7v7uOgCmhq9/DmEtFsgik/Daefira56QKsN7TG7PPQNOmM8EnfQxnQBPmbv0L+1m+g8AxA0Og3oA5rbv3tfnugTaDCEYVvOEx5qVWm8en5IMIesr1JTF0wrsqHX+5tBkGXuEMKijQ0VWgCYl8/DktpPmRqDwgKpbQtb9OXSFs4wW6f8tcDlSncvRwp80fbrIuc9hs8299ml9Zi1KNw+48oPbMN2rhu8Ok+zqaHgakgA6efir78sE6uQLO3E5G/9Vsp8CPK1dDf8yNE32i0a9cOusO/o3DnT1AGNoVPj/uhCo6FaDIi6b0hKDmyzpqNux+C7nwDvr2t7/HC/26t9DqkpkLu+9g6XtuPzvc4EJQaxL56WGqVX75VNQCowlpArvWCJqo9AoY+azP2myHzLAS5wmadRV8KQamRbp5FUYS5MBNyryAYs8/jwpu3SL0V/PpPRfA97yH9+6nI++tjm3L59n0UHu2H4OJn9zr1W3JJ0J1vwv/Wp5D0zmDpM69M8F3/g/+tT9msS3r3NoctjC8Jn7wE3l3GONx28euJdteoqtAExL56BBAtNt8vi1EPi64QBdu+r/L8XZ7CJxRN5+yAIFfBmJcKzX8Bw+L9v0J3dhfc4ntA5u4LTURrKXicuXIOcv98DzI3XwTcNgtlF/ZBNBnhN/BJaJt0RNGBNUhdcA8sukKoI9og4vFlUHiHQJe4A+qINlD6hqFw7ypkLH7KppeJM8InL0HqJ3c59958I2DMvwih3G+59033wX/QUyg58TfU4a2hTz6Ewj0roAqKRdAdr6H40FqkLZxYozJVSiZHs3cuQOkXXmmSsy/dID3sBi7/jtU08JX4XNtKWxgqg2Kh8AyEaDKg7MI+m23uLfsh6un10vFSP7tXangBAJ4db0fkE6sgWsw4/oB9ECfg9hcQcNtsFOxcAmPmWXh1vQsXv7jfYfD7korBxPJEixkF276HIf00vLvdA5m7L7JWvICSo+uhje0Kj3aDoU85AlVIPHx63A+LoRRF+3/FxS/G25yzneHd/V4EjnrFprW3pawYZ55uBlPB5cYCEVN/htzDH3KtFwyZiVCHtYTc3RcpH9+J0pP/QO7hD99+k+HbeyJKjqyHTOMBjw7DIMiVOD/vJugSd1gzkisRM3c/ZBoPXPz8vkofzIZN+AY+PcZbPw9RRPHBNUj79lGbxgB10eS5rTatOEWzCRe/nmDX0l/m7mvX0wIADP1fgrnFEAb2XBnYmzx5MkaOHIl+/frZVP76COydO3cOgwZdjsYvWbLEqTf/+eef4513rM1JAwIC8O+/rrsJqc41Gdg7cACys5shGEvRYuhkqL38YcpPx4U3+0F/8ZhT+SiDYq0nUVGEoNRA2/QG+A2aDq9Ow1G4axlSPr7Tbp/Y148j+aORMFy0D55Uxb3NIEQ8+iNOTnZuDA//W2fAs/NInH+le/WJq9Dk+X+hTz1a6Ym52QcXofAKgiCTo+jAGusNXA143TAahbuXOdym8AmDKf9ijctckUzjgcARLyNzxQtVtkwBAAiC3Y1gTWlju8AtoSeKD/8J0VIGQ+qp6neqgWbvpaBo3yqkL7Lvvhk4/CV4dx+L1M/HQ3dmm0uP60jA8BeRu+6Dern59L9tFoLvtJ9FuOLT5SrJ5Ih785RNF3hRFFG8/1fo047Ds8PtUIc1l7aZi3NRemY7ZGo3aGO6QFCqcW5uV5sLRYfkikpbHjnL64bR0KefhHurWyDqS1F8+HcYsy/UKU9XUUe1Q/RTf+DUE5WPBSIoVAgY+hwCh1tvqFO/uB8FWy8Hlf1vnYGgMW/ZnGNz189H+vdT7PNSqu1a1jqijesGdVhLeLQdhMK9P0PhGQifmx+Awi/CptVEWdJBnH2hvTNv9aolqN3RZNZGGPNSkb7oMZjy0xq4AAJCH/wSXp1GIm3hRNvfbUFA2ENfI+/vBTDmpcKj7WAoPANRcnwjdGe211uRNDE3wi3+ZmjCW8Gr692QqTQo2LEEGT9Os7mRqIxnx9sBCHatcNVR7WBIO1llC62ainh8OUqOb4QhMxGeHW5H+g9T6/yb0VDkHv4Ivut/8Ow8CvqLx3B+ruNWj3FvnYGlrAhlF/bD7b9Wb6LFbNOi5/zrfexaF2uiO6Lpy3uk3wZzSR4yls5Gwbbvbc7Z2rhuiJr2G8qSDyHv7wUo3GnfWtiz8yjrA5ByN6WmlsNg7D0b0QV7kPnD1HJvzNoazlSUhYwfnrTLy6vLGBizL1y+kXQVQVbjm2bPzqNgLsmFMfu8XdfV8mRuPoie9Rc00R2Q9tVDyN+yEADg228yvG68E2kLJ8KQfgoyN2/43Pwg/Ac+iQtvD4Ah7SRUoQkQDTqngu7SW1FqXFpPHElYUAC51guiyQBLWTHOv94L+pQjVe7j3mYgDBePw71Vf3h2GoHiQ2thzEmShstwRFBp4TfgSQTd8Sp0iTuR8vGdDltJ1ZTCL8IuiCCotIietREWfTGS3nI87I7M3Rex8w7j3CvdKi+HXImAwTMdPgi+0tya94ZFV4CyC/tdlmf4pB/h2Wk4CncthUVfCq8bRkHhFQRTcQ7SvnoIRftW2+0T+/oxqMNa4FLYQBAElKUcRfavr0I0Gayt1/97aGbMTUXaN49U+1CuKqrgZpC5+cCQcdrhtXHCgkKUHFlXaUOD2rjUeraitG8n24ydWxWvG0ZDn3a82rrlDLl3sDVgp/W2O7/WhmfH4fAfMrvSc09VtPE94Nl+KLJ/eQWWsuI6l6Wi4LvflYaGMhVkIGPxU1U+tKvIeOMEmLo+wsCeKwN7lamPwN6uXbtw7733Sst//fUXIiKqH2Pk559/xuzZswFYf5SOHTsGWQON5VDxj9WmTf3NRtgQzGYzTv5vGBSnrE8KlcHNEDFzPTIXPY6Sg5Wf9J0iCAh7bDmylj8LY/pJu83qyHbQJx90sGP11E06QV/FU5v6INN4wqIvqfIiVOEXBd8BU6E7vR3Fe1dUmo5cI/iBL1F6dD2KdtWtC2Rj4N17IhQ+4YBogczNGwrvEKQtuKf6HStQR3eA7y1T4dltLDK+mYjCck/SFP7REI06CAoNTLnlbmjkSsBiqnOg93oTNmUltHE3IfHJULvfDVVEGwhyJTRNOiFwzNvI+HYSinY6bqlYJ4IM/sNfgv9/4x/m/DIPOatfdv1x6Krh1vIWeHQeiczvJl/polAFyuBmCHvcem1w4YXKu8/7DngSPv0eQ/bKFyr9XVCGJFgfqJqNLiufoHKr/qFfI6IMikPAqHlI+9S5lliNgfXvnthoguHOUAY0hbZ5L5vrEaqad++JMGaeRemxy8O3BN7zHkoO/YHSI3863MdvyLMwF2ej4J+vIPcMgleXMcjf9PnlOi9XwKfvY9A0vQGF275DaTWtSK9KgoDY99P/G/NYgKBQQp98EBcqDK3SmGkTekF3svqhKBqae7shCB6/AJk/TEXxvp9rfM9gan4bjANeRuvWrRv1xKiHDx++PgN769evx+OPX25ps3v3bnh5OZ4psrwNGzbgsccudzvauXMnfHx86lweZ5QP7F0TijOh/XqwzSpR6+uyLoRE9cniHwdZzpkrXQyiOjE16w9Z1knI8p1vHVJT+uEfwxLVBerF4yDLOlFvxyGiqlkCm8PiHwPFicq7UBIRUd2ICjVMXSZCyD4Dxcnfq9+BrihzWAcY7nBuCKvGojaBvUbbVlGvt+1epNFoKklpS6lU2ixXzIdqQO0FUa6CYL48uxmDetRYMKh39TN2fxzyIz9DVlj12FvXM8XpqscucwX1qsdgDuvAoB4RAFHjDaGs4IocW5Z1gvWQiKieCSY9lP9+dKWLQU4SCus+5NS14MrPJ15LJpNtM3Jnu9NW7HdtNtvPrEhOUmpgbln99PZEV5qh1wyY4/q5JK9vIjqhQOvjkryoapaw9jAMeQeiQn2li3Ldk1+s+fg+ovza/buJwtV3+WTxqnww9CvNHFn1JC6O0pubOp5N9koy9ngSFt8mV7oYRHaM3R6Fsbv9mMFEdHUztRgKU4L92H7kPKE406VDSzRWjbbFXsVAnrNdXCsGBCu24Gso18oYe0f0UyA/tR6C3vFMlxW5teqPsrM7Hc6MGTrpR+SuebPGY+cF3PkWfPs9hqyls5D/1/wa7XstC77/M2T//CLMVQx+ropoDWP6aYgmxy1XPTqNhPfNDyD1/as7gKsIaAKlbwS8ez6IzCUzYCk3s5x3z4cQfN/rKNr7M9LO/FWn4zzeajg6dpuEju1vQNnZXRDkSqS8fUtdi+8UuVcQzMU5gKXqhxGqiDZQh7eq0ZhrfkOfg6U0H5omneHWoi+KD/4KhXcoMn94AqY818x4VZGgUMG93VB493wQFz8aAdFksEvTovsgKLyDYbqxJ84+GeYgl6tHTQc/l7n5wH/4izCkHkPBP1/VeBD4q5mg1CDq+e0o+OdL5FeYARIAvPs+Cu8eD0Ad3goWfQlSP7wdZfU4OYQrqZt2RvDYDyEoVEh67Wa7WcRdTRnQFMbsygf5BwDIFQgc/SYsZcXIWfVivZXFu9cEBI37CKXH/0bqu87fhEQ+uwXa2K5IeedWmzGdqhLUaTD8hz6HnF9fRU5Vs8+XEzZ1FS5+ONzpctVGdLseKNJfRFFa9dcpIQ8thMWouyrGK5S5+UAd0Qa6SmYddyVB5QavHuNR4ORg866mieuOsgqTXsm0XpXOyH6JZ9d7ULTDyQmlnBQy8Xtk/fgkzMXZLsvT0TjRPv2fQNBd/4NoNuH0toa7DhbUHhD1rhlIX+4VhICR85DxTd1nf5V7BsJclOWCUtWM76CnoGl6A/L+fBf6lMP1en7QxHaFNv5mmAvS4dnlbqS+N7j6na4gj47DoU89CmPGaQgKFTRx3WFIOeLSuuHMxH1yr2AIcgXMpQXQNL0BMBuhO73VdWWoQBkUC2NmYqXbfW+dicA7XoO5NB+JUwJrdYymb5+DaChB6YnN0MTciMJ/v0P+Bte0NnTmt7M8uU8Y1BGtoQyKdXgOiJi5HnKvYGQtfRqlLpolHQAEiBCK0tGqx63XzBh7tdFoA3tardZmWa/XQ6VSVZL6MoPB9uZRrb5yLQoa86wtErUHzDE9oThe/WQZbs17ocnT66QZlbJ+fgk5a98CBBmCRr8G3253w7NVP6R+eg9Kjv0XgJEr4Nt7IooPrnE4s6Vnx+EIHDwDgiAg9N4PIVdrkbP2bQCAwi8S2iYdUZZ0EMbs8y57y/VBpvWCR+uBlc5sWxte7W6DV7vBOPdKd4czganCWiBmzk6YS3JhyDiDgm2LkP/P19J2zxvuQOTj1vLkRLVHWdKBWpdFFdochjTH3YfUEa3hc/ODyPhppl3QSu4jQBEsh2gQIagFuLcYjqBbv0HKJ3ej+MCvAAD/wU8jeMybl4/lH4nkD4ZD1JdAE90BIXe/A7lCAZ9Ow5HlHeLULI+V6dvjWTzf/QZrudsNQp2GKJUroQ5u5tzs0XIFmjyzGRAEGDIT4RZ/M+RaTwCAWVeIjB+no3DPcqiCmyHswa9gKspyOrAn9w5G8Mi5EMo9LNHcYh2HVOUbhvOv9azRUzBtfA+ogmLhFtcN6T9OdziYetMXd0Ed3hIytTsAwDjiZWQue8YundovDIIgQOEbCpnGw24mLkHtjth5h3BmdvM6Panz7jEeJUfWVTlDqne3sVXO0OXRfgiKdi936njKgGjEvX1W+sxDx32A/M1fOZzZtq5k7r6wlNgOkeDe6haUntri1Iy5NT6exhPhjyyCe5P20B22b0Gmie6A8PGflFvhhsAhzyD5g+FXPLipDmuJ0Ac+Q/4/X0uzYF4SOHIu/Ac/DZny8jVD88+KcO6V7ig7u6vWx5R7BsBc5PjGJmDY8/Ab8AROPW5/sa8KawGPVrdAGRQHzw5DoQpsiuzf7Ge/roqg0iJ65jpo47ohf/OXyP7tjUrPlZqYGxEy5i3IVWp4tujtMI1H+6HS7zIAu9m0wyd8g8yls5ya6U4TmgCFQgG/Xg8jd83r1X5XVaHN4d1xGOraGce9VX9omnRCzhrHn6U2oiXKEqufqA0AfG8eD0EQIJiNyPjhiWrT+9z8AELu+xglxzbCVJgB95b9oAqIxrl5PaA7/a/DfZSBMdZJMKrh1XkkfPs9hvPzbqr32Vejpv8Gubt/1YE9QUD4o4uR+onrJ6YIGfMWCnYsRt7GTyAotQga/Tr8B0yFqTATpsIsFGxbhJw1b9rso4m5EZGP/oDS/lNw/pVuLimHd7ex8LtpLDziuqJgx4+Qu/vBo81AiGYjzr3cBZayIimtT68J0MbcgLSF1Qe1wsZ/igtv94el1NodXFBp4X/LY9Z7CoUC3jfdh4J/v3PJe4AgQ9T0NSjcvRwlR9dD06QTAm6bjdLTW6HwDoVnx2EAgIIdSwBBgEfrARBUWhRs/Q4Zi6dXmq1b/M0oS9ovndPlnoEIn/QDtDFdkLPqJZjyHddkhRPXcHLPADR7LxlJb/VHqYNAtsIvAtGzNkKXuBPZq+fCkHG62o/Bt88keLQfguT3h1V6nlL4RSJkzFsQZDL4dh0DAEhbNAV5GyoPtJrDO0FrKan0+rgiZWAMwid+C0GhhqZpZ2kGbAAwjnkLmT89bbdPxGNLrbNc7/8FGYufcur34pIWX+mRueIF5K7/sNLfjcCRrwAWM7JWv1xpUE0b2xVh9y+A3MMfZRf2Q+EbLs3yXXzoD2SvedNulu/yPNreCm1MF6jCWgAQkfb1w3bXg7GvHYWgdoegUMGUl4r0RVNsZuKWuXkjZNxH8LnpXpv9dGd349zcrrW6/giq5DO/xH/wTASPeQv5/yzExa8edJgmYNA0KBQKKLwCHG73vOEOWEryUHZhP8zlGi1cEvX0BmiDmgAA3CJaAQDUfuEo2vGjtTFAHYU99BWK9q1GwbbvnUqf8MHloXMcnQPcotpC4RWEkiadahTYa/GNBcfvr7qnhFCSDblcfm3EV2qp0b5zb29vm+Xi4mJ4enpWu19x8eUfAoVC4dQ+VDVzTG+Hgb2YVw4i+aORMGYmQuEThuC7/gcA0okoaOTLCBjyDAS5AoLc+lVUeAUh6un1KLuwH4aMM3CL7wGlbxhSPs1zGNgLHPGylJ8gCAge8xZ8ej0MS2mBzUmvqgtjO4IMkMkh13jCXJrn1Mw8cq8gBA57HqJoQcYPT1aaTqb1QszL+1BycjPSvnpIWh8y7kP49BiP4iPrkb/1Gyi8guHT80GoApog75+vAdGCvL8+sbkAafLcVhTuWgrdud3QVWjtItN4QOFrDYrEvLIf+f8shCCTwafXwyi7cACW0ny4txkImVINmdoNSr8IaKLaw1JWjOKj66Ft0hkhd78r5ed/2yykfnq34/fuHYyQsR/CkH4KHm1vhTq8JbJWv4KSo9axv9ziuiNw1DwUH/gVOes+gNzNB4Ej58KQdgKi2QSvG++EXOsJz463w5R/EQrvUBQe/A6FB1+DoPzvosVNgKDQIqDfu5Cp3RH55GroU49CpnKTbhov8Wh1CxI+zoEpNwXKoJjL3w+FEl7dxiL3j3ccvo85TYdh7rlfKv3bLXYbgJkd29usEwQBglJtd9OpjeuGoDvfxIXXelaan1//KfC68U4kvdVfusA3h7aDud2dEN0CENeiNfJ+nQeLvgT+t86AOqw5AEAdmmD7+Wu9EPbQlwh76Evb/AdNR+6f7wOwBj/dm/dC0jv2rWy8Oo+yCeqV5xbXFdFPb0D2b6+h5LDjmdIuUQXHIWLKSmgiL7dEzl3/EfSpR23ThSZAG3ODzTqfXg8jc+Ucm+Ccpkknm4tWn5sfQO562yeQYQ99BVVQDIJGvYLMpbMrLVv4I98j9csHKg3+Kf2jEPrgl0hbOBGmPMfj+QXf8x5E0YLCHYvtNwoCAoc+h+KDayufFVKQSReOIfd+bPOZy1RaeLQfAuGnGTbfpcCRcyGaTSg+8BvKLuyr9P1VxrfPJISM/wR5f32C9O+nAqIFCt9whE9chKL9q5H2zaQa51mR3DMQUU+thSooDsa8FCh8QqHw8AcAuDkIAAWNft1unWeHoYiZuw+lp7dB26QTZO4+SJyVYJeuOqEPfG5zY2zs/jjMTXpYA+OaEqR/Md4mfeDIV1B04FeYi3Pg128y/AZOgyAIUAY0hT79FHSn/4U6og2ipq+B0j/S7niCTI7oGX8gbdHjKNzufEuf0PsXwK1FX6gCmwKiBabCLCQ+1xqW0nwpjdwzAH63PA6FZ4BdKwRBoULc6/YPBNxbDwAcBMgduXSD6BbfAwDg2+cR+PZ5BBZDGQp3LUXGj9Mgmg3wuvFO+PSeCE1UeymoKVM5HtM4ZNyHyHL3RcG/30FQqBA0+g2b32elXzjCJ30PuVcQcv98r8ryqYKbSfuEjl+A9MXTYSkrhnvz3tK5pTz/QdMhCAJ8ej5o84BKKtt9H8O376M49/KNKDu3B4C1ZVnAsOeQtfw56/vSeiFk3IeQewag9MQmm5tCAFBHtoUqtDmUvtUH9gJHzZN+v/z6TUbJkXUoPrimyn28uoyBTKWFZ/vbbNYHDJ6J5A8cXL8IMkTN+B2ZPz2Non2rAQCa6I5o8twWlJ7ZjpQPR8BSVgRVSDyC7ngNCu9gxLy8F0X7VsOQcRr6i8ft3mN5nh1vh1uLPtI1jShTwHDrG3D7912YKwm8+PZ5BO4t+kAURXi0G4zig44n+fAbOB3eXcbAs+NwZPzwJAp2LoZM4wWfm+6Fe+sB0CXucPibLnPzgaU0H24JPRHx+HKcmhJkl0YVmoDQ++Yj+M43IJpNkLv7ALBeXyq8gqAeNQ/FB9dCn3JY2sfrhjsAANpYa/DAcPG4TZ5Bd74BdXhrZPw0E5bSAvj2noiAoc+i+OgGGDJOwT2hF8yl+Sg5ugElJzdDG9MFQXe8ai1PcCwCb3/BJr+QcR8i/YcnYNEVwufmBxA6/hMIcgVUIfEoO78Xbs17Q+7uh6R3B9uUxaPDMGhjbkDkE6uR/curEI1l8B8yG+qQZlKa4LvehmgyoOzCPri36ANlUBwyf5rp8O9wSfjkJfBoMwgXv7gfRftWAQAEpRrhk36ER9tB8Gg7yCa9Nta2a71vr4dslv1ueRw5a9+qNAjnc/MD0Db7AkX7VkHpGwHPTsOlB32RT65G1so5sBh0gEyG0mPWCRcVPmGIeXkv9OmnUHr8b7g174nM5c9DV6F1ZsCw5yFTquHV9S67wJ7COwRxb56GTKWBOqQZ1KEJOPdy9cMEyLRe8Gx/G1p8bcTpJ8Mdvq+AIbPtrqV8ej5YdWAvri8CO/bGxfkjq3/QJggIm/CN9JtdkSayncP1qpAECDIZvDoNh2eHYTDmJiN71cvI37YIgICAwTPhP/hpnHoi1KaFoXf3cRAUKgSPeRMBQ2ZDd34fRJMBKR+NlIJ8ysAY+A98EjKNB7x73IeCrd8hy0EL66ZzLt+jVLz+u/T9Ei0WFB/6HZayImii2iP9xydhyDgD7+7jEDj8RZvrQaV/FC680Vcqh+cNd0Ad3vLydp9Q6ZiGrHMwpJ2EW8LN0nesPG3MDYh8cjXy/voExYcqmSRDJrdreODesh/8B06DpTQfRXtXOXxI797S2qPHp+cD8Ow0AqenR9kE9P0GPAGlT+jlw/z3+1ae3y2Pw715LwCAxaBD3qYvUHJ0PUSzET43jYdHK/thhpQ+oYh78xSK9v8ChV8Eivf/itz1H9ql8791BvK3flPpw0UAUAXHI2zidwi57xPAYsKFtwei7NzuStOXF3D7HGSvnistqyNaQ+Fl/c1WR1Y+s3tF7q362/z9K2Pxdu6h27Ws0c6Ke+HCBQwYMEBaXr58uVNdWz///HO88471xj4oKAhbttR/t4RLys+KW5uZTq42JpMJBw8eBExl0CwcBkF3+UlC4B2vInDos7AY9TDlWm/2ZGq3Wh9Ld24vLrzRx+YH0avbPYiYVP2TfwAoObmlyiALYH2aEzvvMOSegYDFBJnGA6b8dJiKsqCOaA3RUIrMlXNQdm4P3NsMhEebQdZmz1Ht4N6yLwBAtFiQ9O5gKQji1eUuhN73MQp2LYUpPw3eXe+WAjTFh/9E6eltcEvoCfeWfav90TLmpiLr5xdhKsyAb59H4Nl+iLStYPuPSF0wVlr27fcYQu9zXXcM0WJG0tsDL7ekLCfqqd/tLvrqwmIoQsq3bWAusb1x8Ok6B75dn69T3gU7f3LYQuAf3xg81m4EhqUfxasn7J8gpcv8Md7ndSS/N8FuW8r8O+1aWobe/xncW92CMzNj7dLL3f3g1qIPwh74HHIPP5SlHEXxwTWQeQbhnLal9QICQLt27er81MlUmAlBoYbczRsWox6np0XYnMAVPmGIeeUAFF7VN/83FWTg9IymNhd+/oOfRsDQZ2HMTYEqKNbuhj9zxQvI/mWezbqwCd/Cp8d9dvlnLJ1t04oieOz78B9wuZWLPv0UEme3kIJjMjdvNHs3GXKtJ0RRRFnSARguHrepB5e0WGiCIe0kCnYuQdm5PXYXbzGvHoYmojVEkxGi2YgTE+0v/lp+e/lUaTHqcf61nlJLLb+B0xByz7vI+/tzpH032e4CMHDkXHjdeCdKT/4Dt/geUIe1sMsfAPI2fYnM5c9CNBsRMOQZBNz2tHS8Ew/bB1PCH10Mzw5DYcxLhS5xFxSeAXBvMxCG9FOQqdyg8IuQflf0F0/AmHMBbgk9IVNZW7wXHfwdxft/Qd7fC2zy1Ta7Cb69Hkb22rcgmgxQeAbCVJgBY9Y5yN394NPrYfj2mwxD2glootpD4R3s8P2IooiUj++UWjJ63XgnwicvceoCLfGF9tAnOT8sgzIwBnFvn0HRnpUoPfkPVE0645ymhTUoBqBt61ZIeauv9BDEs/MoRDy+rMqyWMqKIdN4VHtsURRx9vm20KccsVkvKFSIenoDdGe2o/jwH9BEtkPgyJch13rZ5aE7txeZy2bDXFrw3w3Dk9LnmrnyRZuLY99bHkfovfbdbERRxLkXO6HsQuXjIXp3H4egMW9B4eEPQVF5LwdRFAGzsdI0KZ/cjcJyrYKVgU0R93YiBEGAqSADglwJuYef47xNBmT//j/okw5C26y7w4dhCQsKbD4n0WKRbpoN2ReQ8eM0lCUdhNzDD95d75aCsvqLx3F2TgfpJtmz0wiEPvC5NUAKwFxagJw/37MGZ/pOgjo0Afq0kyg7vw9uLXpLN1mixQJTQToKdy9DwbYfoPS1PpxUBcchb/NXSPv6Ybsyu7ceAH3KEXh2GIaQcR/YfXbG3BTozu1B3ob5EFRa6E5vk1pgeHYagYjHl1f6kKVw93Lk/vUJdIk7rL/BgoCgO99CwOAZ1uD/4T8gmgxwb3WL9LlZyophyL4AdViLSvPVp51E4nOtAXOFcavdfNB0zg6oQxNQeGwTzu78E5bobhC9w9G2VUuYUg8jf8tCu9+Opi/vhbZJR+tnXZKHvM1fwpSfBrm7H/I2fQZTbgq0sV0QOXUVFD4hDssEAKVndti1nAse+wF8ez0Mi74Ecg9/CDKZ3fdQ4ReBZu8mVX89lZ+Gi5/fZ/17dRqB4Lv+J12j5qz70KaFpUzjgbh3zksPLERRdOo3rDpmXREEmbzKa2OzrggF/36Hsgv7oPAJg//gmQ5/P6oiWizIWvkCCnYsgTq8JfxvnYkLb90iPehS/BcEkGk8IIoiivathjH7PLw6j4TSP6rW769o32prS2wHmr60G9qmnZ3Kpyz5MIw5SXBv0dsuMFPxGOqwloh5ZT8EhQrm4lycnhkjtWwEgMgnf4Fnh8tDy5hLC3DyUZ9qy+A3aDpC7rbeO+b9/TnSvn1UuhbRxnWHb99J1kCYg+9FxrJnrdc2FVqEWYJbQz9qAdp16gKxMB1lyYeQ/O5tdvsDAAQZQsZ9CL//elM4YirIwKmp9nWq+WdFDs9jFqPeeq/z32eau3EB0r991Ho4lRax8w5BFRxnt1/x0Q3I2/Ax5J4BCBjyjM3DG4u+FCcfD7C5TqzJvVpN6BJ3oXD3Mij9o+Bz8wNOnaudYcxNhaBUQ6bUoPjIOljKiuHRbjAylz2L/M2XZ12NnParzX1Y0cG1Nn8/hW844t46LV1vAUDJsY24+OUDMOYmw6PdbYh4bJnNdXPO7+8gY8kMaVnm5o3491MdBiRroizpEM7O6WDzHRRUboh97QiKD/8p/d0dSfg0H3K3y42pLEY9inYvR/7Wb1By1H5ojfLXyqbCLKR8NAqlp7ZA4ROK8EcXS0FKU2EWTk+PrD6gLZMjavpaeLQZgJRP73H8cB2A8aYpMHUa75J7pyuprrGiRhvYMxqN6NChA4xG64npvffew+DB1Y8vMGfOHPz0008AgBtvvBGLFi2qc1mcdc0G9gDIzm+D2+bXYS7MsF6gTl4itcJzFWN+GvK3LIQh/RTUIQnwGzC1Rj92psJMnJpifwMq9w6G0jcCoQ9+AW103f8moiii9NRWCHIFtLFdXXIB6MwxC3f+hKIDv0IT0cbaeqGKm7ZaHcNiQenJzcha9TJKT2wGAHh2HomIx5ZVetNQGzn/PI3Cfe/brJN7RiHivkOQKWsfHE4rLMP+/bvQ5OtedtsWh7XHa/H9EFxWhA07PrfZdlARj4nec9G7VRP8+lAXu31LT23F+VcvD/IuKNVo9r/zkHsF4szMOJuubcFjP4D/gKkOy1e+PgGuCexVVLh7BS5++QAsZUXQxnVD+KOLoQqIdnr//H8WIv2HqbCUFcO721iEPvSVTdfEiow5STgzu7l0kaeObIumc3Y6bPEjmk3I3TAfusQdcG/RFz69J9jVnYKdPyH719cgKDUIHvOWdIFQXtI7g20Cd97dxiJ80uUuBKLZhPOv95Za8Hp3H4fwR2zPA2eebgZDxuVZkz07jUDk1JW25bWYUXpyC2Ru3ja/G+aSPORu/BTZq16GaDJAHdEa0U9vqDT4Zfc5mAyATA5BZjtGSMVAlyqshbXriQt+X0RRRPGh31F86Hco/aPh23uCzYWcbdkUNarvoiii7Pw+AKJdK8yq5P/7PS5+fm/1Cf8T8dhSeN04Wlp2VJ/kAlB8ZD1kSjXcWvRx6W9zWcoRpH8/Faa8VCi8guHRYRg82t4KzX9dY+rCoi9F1s8vouTEZmhjbkDQ6Ncrvbk3l+Tj4sIJDruFK3xC0eS5rXatnGtDd2E/kt68xRqYkisRMekHm8+/JjKWPYuc3y635NTGdrVp4VFThqxzKNy9AqrApvDsPNLl5+DS09twft5NNuvKD11RE4bMsxBNBqhCE5xrkaAvQVnyISi8gl3ydwSAgm0/IGvVyzAVpEPu7guPtoPh2+cRaKLbA6j83KS/eByJz7eTAkQe7W5D5LRfK30fFkMZLPpiyN197X7fKhJFEWfndJB+8+Qe/oh764zU+u4SXeIunH+jj9RSOvT+BfDt80htPobLx7aYkbpgLAp3LYXMzQdhD34Fr84j6pTn1ab48Drk/P4/CCotgka8LP2tXc2QdR5nZjS1W9/885I6PewvL+/vz5G/9RsoA5si+K7/2bSAKtr/K9K+fdTaKrv/FATd+abd9/PY+OrrXfTsjXBv0UdaLks5AuOlYVEqeYBRnvm/4TDMxbnQXTyBxIvZEIOaAzKFzbWeo7I0eW4L1GEtnTqOo/3LB1qqozu3F/qUw/Bod5tTD3wdyfrlVWStsD6EF5QaNHn2H7tWeo2RxahH7roPoL94HF6dRsCjw1C771L2mjeR99cnkHsEIGTch3CLv8kuH9FkgGg2Orx/NeuKcOGtW6xjeCtUCLn3Y/j2tn+IVBu5GxdYHxwby+AW1x0Bw1+Ee4L13kV3fp/1wfhn4+z2q+z7Y8g6hzMzbM9BgSNfQeDttg0wRIsF5pJcyNTuNkFOACjYvhjpi6dBNJbBvWU/KP2iYC7JhU+P8YAgQ1nyQbg37w1NlLU1qu7cXpx76fIDAbfmvRDyyI84euocoLTeVzCw10gDewAwcuRIHD1q7eY1ceJEPPXUU9XuM3r0aBw6dAgAMH78eDz77LMuKYszruXAHgC0bdMaMqPO7sLrapKz7gOb1gGObuqpeoas8xBNeqhC4l1602TIOoTUH7sAom2Lp6DbFsO92aha57vjQh6GfrUT+SVlOJhtf4H+dmwvfBdpPVm8cWwNbsu0jndSImhxu+98pMsD8f09HXBPR8fNvDOXP4fstW9BUKgRMu5D+Pa0jqVRfPhPpH42DuaibHh0GIaIR3+sNBjdEIE9wDomn7k4F8qA6Fr97cy6IkC0OAz8OFJ6ZgfyNn4KhVcQ/AY8CaVf/c7cWZZyBCkfjoQh4zQ0Ue0R8cQqu+ClaDGj5PjfkCk10Da7ye5zyPv7M6mbqqBUI/rpvxxeoFXFmJMMU2EG1BFtqgx+Oqtg51Jrd3jRAggComb8CY/W/euc79VKFEVk/DgNeZu/hMIzEEq/SJSe2QZBJkfgyLlwb9kPaQsnwpiXCp+eDyFo1DybgGND1aerkWixIHF2c5uhG3x6T0TI3e+4rFUDYG0hoju/F+qQBKiC7VsnO8ti1CPt64dRuGcF1KHNETZxkUsCovVFNJtw+qkml7vtCwJi5u6Xbj6uNVXVpbILB5C/7XsovIPh22eSNParK5h1hcjdMB+ivhS+fSdB6ef4/GvIOofSE5uhCmsBt1j7h2+1ZSrOgVzr7fKH1Nebugab6qq6FpbVBfZUwc0Q+8bxaoPRzqqqPiW9fzuK918eEkam9ULCp/lOX6ulfTsZeeXGNfO5+QGEPWw/NEF9EkURJUc3wJB+Cu6t+0MdEt+gx2/sRIsZ+ovHIffwtwlSN4SLXz5oM76wZ8fhiHzi50rTJ707RBpiQlC5Ie6NEw6HLalOTVpBFx9Zj/x/voLCJwyBt78AUe15TV3r1TVW1HjfOYAuXbpIgb1t27ZVG9jLz8/HsWOX+8B37dq1Xst3vRFk8qs6qAdYxyoQ9aUoOvAbNFHtHI73RNVTBTZxeZ6iaEH2xil2QT1t9AC4xY2sVZ4mswWv/nUaL687ZV0hd3wxeVFzufXLM0EP419dMvwt+fhd3RPp8kB8OLw17mpfeUAq6I5XETjiZUAQbC7+PNoMRPz7qbAYdE4HwuqbXOtV4648tvvX7MbNLa4r3OIa7rdWE9Easa8fg1lXALmbj8OLcUEmh0erymcz9u3zCNQRbaBPPQr3Fn1rFbRQ+kfW6gKnMt5d7oQ6JB66c3vg1ryXzZhK1yJBEBAy9n0Ej3lLaiUomowQLSbpqW/M3JqPO3g9EGQyhD2yCGlfPghjfip8bn4QwWPecnmAQuEdDM92dZ+JUaZUI/yRRQib+F2DtHCvK0GuQNSMP5CxZCYspfnwGzjtmg3qVUcT3R4h9dTaS671QuDQ6h++qwKbWserdLFLXW+pbnxufsAmWBDgxN/Ular7TfEb9JTN2Mtyz0A0eX4r8jZ8bJ2Y5NYZLgvqVcev76M2gT3f3hNr9JsYOMI68UjpyS3QxNyIwFHzqt/JxQRBsD50vIYfPNYnQSaHJqL1FTl2wO0voCzpAMou7IcqrIU0TmhlIqasQP6mz2EqyoLPTeNrfc1bk++4R+v+Ng+1TSZTFamvP406sDdgwAB8/bX1ScSRI0dw5MgRtG5deWVYunSp9AXw9vZG9+7dG6ScdPUQZHIEDH0GAUOdG2CcGk7xsUXQp9l2vxLkavj3eb/WN3svrTuF1/46DUAEPHOA0NM4WhKMVsUZNukuqr0gmpRAajzE4gD8orF9wvh4j+pvGiq7aRYUKshd3C2aqibIFXW+KXNr1h1uza6uc4Qmun29dZm6WpUfUkBQKCFAeQVL03i4xXZB7OtHq094FWkMQb1LNBGtET2jkoHWiUgSdOebsBh0KDu/B27N+8D/tllXukg2/PpPQeGupTDlJgMyOYLueBXqkHiEjPugwcvi0XYQomf/jaIDv0Ed2hw+PR3PpFoZhVcQIp9YVT+Fo2ueKrApmr602zq+sNq92oeBMqUafv2nNFDpyBmNOrDXoUMHtGrVSmq198wzz2Dx4sXw8LDvanL8+HF8+unl5sl33nknNBrHM7sRUcMyl+Uid6t9sNW780wofewH73VGZpEe725OBJRlQMgZCF7Wad8XNOmKj46sltKlqr1wwtISONMcHgoNimHbYnB239odn4iIiOh6pvAKRMRkxwPeXw1UAdGIfe0odIk7oPSPgjq05jOyu5J7i95wdzCjPFFDEGTyq6aHEdWc60a8d7G+ffsiISEBCQkJ6Nu3b6XpZs2aJT3lPXXqFO69916cOHFC2i6KItatW4f7778fpaXWwXUDAwPxyCN1G1yXiFwnb+vzsOhsp1tXeMfC+4aZTudhMFnw4ZazeO734zh0sRCDvtyGMu8LQNxuKagHAJv8Y/FZdFfkKLU45RaA2f6PwpzaBkPiI1D46mCMbHN5VjGNQoaHbqz9rHBEREREdPWSaz3h0br/FQ/qERHVRaNusQdYx9mbNm0a3n33XQDAsWPHcPvttyMuLg5+fn64cOECMjIud7vTaDR4//334enpugF+iaj2ylK3oujIl3br/Xu/B5lC62APq3M5pXhr0xnsSsqDTBCwN6VA2vb69j1A6BkIPiX2OwoC5je9CR/5DwPS4gGjtavf6gets3b9OLYTvtqVhPQiPcZ1DEdsQN2mmSciIiIiIiKqL40+sAcAjzzyCNzd3fHOO+9IrfLOnDljly4kJAT/+9//0LlzZ7ttRNTwLKYyZG+YZLfeLW443JoOqnS/Er0J3T7agsxig+0GpQ4IOQvBK9vxjgBEowpIjwUKAwFYW/u2DfWSWv6qFDI82r1Jjd8LERERERERUUO7JgJ7ADBu3DjccsstWLp0KTZv3oyUlBQUFxfDw8MD8fHxuOWWWzBq1CiH4+8R0ZVRsOt1GPNO2awTVJ7w7/VOJXtYLTuUZhvUk5mAwCTALwWCzPHMtwIEJCia4fjxQMBi+9PXxK/yloFEREREREREV6sGCeyNHDkSI0eOrNE+GzdurPFxQkJCMHXqVEydOrXG+xJRwzJkH0b+nrft1vvd9CoUno6nTF+w7Ty+2HkB+1MLrSsEC+CTDgSdh6AwVnqsOPdgLOozBplZagw7uMtue7SvW+3eBBEREREREdEVdM202COixkO0mJG9fhJgMdmsV4d2g2fbiQ73WX8qC5NXHr6UA+CdaQ3oqcoqP45ZgbCyBBwdfx8UMjmytHqH6dhij4iIiIiIiBojBvaIqMEVHvgY+ozdtivlKgTc8ikEwfFk3Qt3JQEQAc8ca0BP42BijP+IIoDcMCCrCebdcQMUMjkAINBD7TA9W+wRERERERFRY8TAHhE1KGPBWeRtm2O33txqOlT+LR3uszclH0sSDwFNkyC4FVWZf1uvaESXtUaGSoE7bg3D+M4RNtujfbW4kKezWRfhranhuyAiIiIiIiK68hjYI6IGI4oWZK+bANFUarP+lDES4zZ2xui8QwCAUW1D0SvGH3PXn8S8XduAwCQIUZW30AMApdEDD0T3wicDeksz3Dry2uAWGPvDPmk5xFON9mHedXhXRERERERERFcGA3tE1GAK989HWeoWm3UWUcCzeY8ixyBgwfYLAIAF288hKCIfmZozECJ1jrKSiAYNpib0wf9u7g2FXF5tGca0C8M/Z3PwxY4LCPJQ46s720GlcNz9l4iIiIiIiOhqxsAeEdW7T/49j992bMV78mehqrDt6+Ih2G9IsC7IjIBvOuCXiiyVHpW3uwNEowrIioavPhIv39fTqaAeAMhkAj4d1RYfj2gDmayqIxARERERERFd3RjYI6J6te5kJqb+fAA/Bb4Bldxgs+2MMRzvFtwNqEoBv1TAJx2C3FJlfqJRBUVeJJrJ4qHSKvDGHS3grVXWuFwM6hEREREREVFjx8AeEdWrtzcl4mHPX9BRfcpmvUmU4dGyCdBHnYLgmVttPqJBDWRH4uuBg3Bvx2jIGZgjIiIiIiKi6xwDe0RUL0xmC1796zSSz+3DR8FLpPW5ggYrlS3wmaIr8nxyq+xuCwCiXgtkR2FC8xvw7v2t4a7mzxYRERERERERwMAeEdWT7/am4PV1R7Aq+D2oBBO2yyPwk6oV/lTGwShUPx6eWOoJ5ETggeYd8dWkDg1QYiIiIiIiIqLGhYE9IqqxwjIj3vvnLPJ1RgxpGQwfrRLtQr2gkMtgMlugkMuweH8qJvktxib3QDym6oXzct9q8xVFAIWBQE44oPPCuI4R+GRk2/p/Q0RERERERESNEAN7RFQjoihi4Oc7sDMpHwDwwZZzAACtUoYIby3O5BWgeUwZ0k0H8HdINEShSfV5muVAXiiQGw4YNejXLADTesbg1uZBEASOpUdERERERETkCAN7RFQjR9KLpKDeZRbo1Lk4rc4A4rNxQmYBVACqGUFP1HkAeaH4X8/eCHJzR1K+Dne0DUV8oEc9lZ6IiIiIiIjo2sHAHhHVyJ7kfOsLwQK45wFe2YBnNgSFyan9RbMcKAiyttAr80SHcC9M7hoHjbL6cfeIiIiIiIiI6DIG9ojIRkaRHn+cyES7MC+0D/cGACRml8BTrcDhjHw8tHYjEJYFeOVAkDsXzAMA7zIgP7eZNahnUWD+iDbQKmUY2SaUQT0iIiIiIiKiWmBgj+g6dCy9CDmlBnQM94a7+vLPwOG0Qtz4wRboTZbLieVGwCMX8MwBPHIhRJudPk6opQi3G07Au8gLGU1ewcLEZHhpFPh4ZBuM7RjhyrdEREREREREdN1hYI/oOmG2iFh1JA3P/X4Cp7JKAADtwryw9uEu+HJnEvam5OOXoxkAREBd+l8gLwdwK0RN5q9wFw0YZDyD4YYT6GJOQYopCGvjV+Cr4e3x0fDWkMsEqBVsoUdERERERERUVwzsEV0HdEYzbvtyJzYl5tisP3ixEOFz1wMyE+CeD4TmWVvlqcpqlL9okaGjPgsPWnait+k8tLB20TWJcpxr9SFeG3gjAMBNxZ8cIiIiIiIiIlfhXTZRIyOKIoRKmtDtTcnH6iPp8NIocVuLILQI9gQATFp+yDaoJ1gAbaF18guPPEBbVKNWeQAgmmVAsT9QEIi7xd2Y5/ODXZqgXm/g/o4ja5YxERERERERETmFgT2iRmTHhTxMXHYQqQVluLtDON6/vRUUchkA4N9zuej96TaYLSIA4OnfjuHtIS3RJ84fi/YlAdoiwL0AcCsA3PIhyC1VHcoh0aQAiv2AwkCg2BcQ5WijPIOXQ74DRNu0bjFD4dVhap3fMxERERERERE5xsAe0VWuRG/CV7uSkFGsx+t/nZHWf7LtPPzclJg7qDkA4NNt56WgHmQmQFuImbvWAEcKgOZFEGQ1D+QBgJvFE57GYKRf9ABKvQBcbtrnKyvEd+HvQ24y2uyj8IxGwIAvK21ZSERERERERER1x8Ae0VXKYLLgr9NZuO2rXZWmmbfhNPzclNiTkYYfz54AQooAt0JAU/OutZeIFgEo9QaK/PHJgN54pFNzHLhYiC4fbIGpXLM8Ocx43+89eJnSbDOQKRF024+Qa3xrVwAiIiIiIiIicgoDe0QN7GJBGR7/+TD2pRSgX3wA3hvWCl4apU2a3Un5GLNoD87n6ewzkBus4+O5FQHaIkw/9S8EuQlCRO3LJOo8gBIfa/faUm9AlOP+zpGY1LkFAKBDuDd+GNsRb2w8jf2phQCAp30Wo4fmkF1efj1ehzrkhtoXhoiIiIiIiIicwsAeUQOb8etRrDqSDgBYuCsZoZ4azLu1ubQ9vbAMQ7/eicxiPaAqA9TFgLYY0BQD6hIIKn2dyyAa1ECJL8a3aINH2rRDer6IbtF+eO73E9hwKgs3x/jhjdta2Owzul0YRrcLAwAUnVyO7N9/tsvXPX40vDpMqXP5iIiIiIiIiKh6DOwROSmrWI+UgjI0D/KAVimX1ouitXtqxfHk9CYzlDIZZLLL63NLDVhy4KJNugXbz+OxnuFILMrC8YJMfHHgGDIDUoCIEghys0vKLpa5WVviXfpn1KBZgDs+6tsTHmoF8F9rvy/vbFdtXobsI8jZMMFuvdK/FQL6f85x9YiIiIiIiIgaCAN7RE5YezwDd3+/D0V6E+IC3LFuYlcEuKvwwJIDWHkkDfEB7ritZTB2XMiDn1aFUG81lh9Mg0UU8UL/eEzvFYuVhy7ijh+3Ae6lgPrSvxLkqkoRsXSDzfEE99qXVRQFoMwDo2IScGt0M3y8Pg/7k6xdeke3DcUj3ZogT2fA4BbBNgFKZ5jLcpHx250QjSU262VqHwQPXQaZsg4FJyIiIiIiIqIaYWCPrlt5pQbsTMpHpI8WrUI8cTitEO9tPgu5XMCsPnGIC7gcpHrql6Mo0psAAGeyS/Dm32cQ5aPFisPWiSNOZpXg5OazAERAYbB2oVXpAJUOM/YdxgcpQIouF0KCyeXvQ9RrAZ3n5X9lHoAox7v33IJIHy3uTxCx9VwuFHIB3aJ9a92iTjQbkfnbXTDln6mwRUDgoO+g9Imr+5shIiIiIiIiIqcxsEeNwr6UfPx1Ohs3RvmgV2yA3fby3WF3J+Vj6qrDyCjS45FuTTCrr33AKSVfh54f/ytNTvFMvzh8uu0C8nVGAMA3u5NxalZfNPHTIr1Ij5NZl1qoiYDciM/2H4FaYwT8SgGl/r8gnjWYJ8gs9sczAKhZ4ziHRKMaKHP/L4jnZf3frLRL56NVIsJbAwCQyQT0jPWv23FFETl/T0VZyib7Y3V7EW5NB9UpfyIiIiIiIiKqOQb26Kr369F03L5wt7T8xeh2eKhLlLT82fbzeGX9aShkAl4emICX1p3EhUsBu7XH8b9NZxDrb+0qO7tvHJRyGab/ctRmxtnX/zoDCBZAaQAUBpgVBsQuWITmYUpkG4qA6CJrAE+plwJ3BgD1NZqcKAqA3s3a+q7M/b//PWyCeG/e1gKCIGBPcj4MZos0IQcATOoW7dKx7gr3f4SiI1/ZrXeLGw6fG2e77DhERERERERE5DwG9qhe5ZYaUGa04K8zWWgd4oUO4d7436ZEfLjlLII91fhweGt0a+JX6f6iKGLmb8ds1v1v0xk81CUKB1ILcM8P+3Ais1ja9sBPBy4nFCyA3IgccwlycrKwa9sZrE07iO6xHliecQIIN1q7zf73T1DYd5M9CQAqQFDV8YOo9P0BMGitQTy9+3////dalKFjuDf0Cgss7iJMWhGns60tB5sFuGNC12j4aC8H+jaezsavx9LRNtQL4ztHuqyMped+R+6Wp+3Wq4I6IHDgQgiCzGXHIiIiIiIiIiLnMbBH9WLdyUw89csxHM0oktYJAnBLswCsP5UNAEgpKMNtX+3CF6Pb4uN/zyOzWI9IXw1iAzQY3T4ETQM02HQ2E6eK0gB3MyCz/jtpMuHRTaX4as85mGQmIMwEyM2AzATIjYDcBCiMDrvE7jIDu04Bgn1v3nolmuWXA3gGt8sBPIMWEGVo6ueGfdN64qtdSfj5cBoifbSY1K2JXRfaPcn5yCzWo09cgN3EF32bBaBvM9e+MUPWIWT+Pg4QbT9LuXsogoeu4GQZRERERERERFcQA3tUJ1vTi/Dq6RMolhciIXEHov20SCnQYV9qPqABEC0CgghAhCiIWG8EECNaW9MJFuTLLBi9cxOgsgD+FhwXAOQBn/59+RhCrP1xPz93BvCvv66wtSGalNZAnUHz3//lXpuVuFTaXjH+UPoI2HA6W9r3/dtbwVurxPResZjey8Eb/k/nSJ96fheXmQqTkL5qGERDkc16Qa5B8NAVUHhGNFhZiIiIiIiIiMgeA3tUa3qjCTPOb4HFuwAAcKjE+g8ABM8rWLB6IIoCYFRX+KexfW2pvjp1CPfCrw/dCA+1AgcvFmBXUj56NPVDi+Cr6wMzl+UhfdVQmEsu2m0LGPgV1CGdr0CpiIiIiIiIiKg8Bvao1vZn5cDiVnCli1EnokUATGrApARMKsf/jGrr/9W0D/zf0JYY3CIIwxfuxqn/ZtHtHOGN7VNvxsnMYhTpTegc6QO5zJpPuzBvtAvzru+3WGOiSY/MX++AMfe43Tafbi/BI370FSgVEREREREREVXEwB7VWqsAb8gsClhk9pNOXAmCKIPFpLB2ezX/97+p3Ovy/18K2lnkqE2HXneVHI/3aAqDyYI2oV64t1OEFLDb/URPfL8vBUq5gLEdretbhlxdLfIqI4oWZP35AMpSt9ht82z9EHxufOYKlIqIiIiIiIiIHGFgj2rNU6XBjKCueCtlP6ApkdaLIgBRACD89//lZQHCf9tlgEVm83/7UF9kFBqRVmCosF0BmOXWIJxFYf3/v+WmPp5Y88BNiPH1hFImx3v/nMWcP06i1GjGXe3DMLRVCI5lFOH1v07DIlb/nl4ZlIAgDzUsooh7OkQgs1iP7BIDboj0gUwmILtEjzPZpWgX5mU3eYX0uWgUeLR7kzp+ug1PFEXkbpqOktPL7bZpmw6Gf9+PIAhX06iGRERERERERNc3BvaoTu4Ii8TJFE+sOlqMyy3fHAd/hrQIxsr7O+N8ng4+WgVWH8nAK+tPQSEX8PrgFhjdLgxmi4h3Nyfii51JSMrToVesH57uE4cvdiRh6UH78d5+vPMmNA/wlZan94rFhC7RMFos8HNTSeuHtw7BDe/bt0Ir75Fu0Xi2XzOb4JWnRoHYgMszvwa4qxHgrnbik2l88rbNQeHBT+zWq4I7IWjwDxBk/LkgIiIiIiIiuprwTp3qbESsG1YlltqtT3ymHyYuP4i/z2TjhkgfvD+8FRRyGeL+C5Q91CUKD3WJstlHLhMws08cZvaJg8UiQvZf91Z/NxV+O5aBUqNZSjv15qboEu2Lijw19l/rThE+KHz1VjR7YyMyivTS+rgAd7wyKAGhnhr0jPWv3QdwDcjf8z8U7H7Tbr3COwYht6+GTOnuYC8iIiIiIiIiupIY2KM6a+GnRK9wDTanlgEAVHIZNkzqiqb+blj/SLda53spqAcA7cO9ce65fvhhXyoyivVoE+KJuzuE1yg/D7UC+6b1RN9Pt+FkVgn83ZT4YnRb9IoNqHUZrwWFhz5H3tZn7dbL3YIRMuI3yN2CrkCpiIiIiIiIiKg6DOxRnQmCgJe6+WBnqTcu5OtxV/sw9Gjq+tZvgR5qPNkzpk55hHppcHRmHyTmlCDMSwN39fVdBYpPLEbOxil262VqX4SMXAulT9wVKBUREREREREROeP6jmqQy3goZZjeMwYKxdX/lZLJBDQL9LjSxbjiShJ/QdafDwKwnVVEUHogZMRvUAW0uTIFIyIiIiIiIiKnyK50AYio4ZWcWYXMNXcBotlmvSBXI3jYz1CH3HCFSkZEREREREREzmJgj+g6U3J6JTLX3gNYTLYbZAoE3bYE2sheV6ZgRERERERERFQjV3+/SSJymZJTy5H5+712LfUAAYEDvoZbzG1XpFxEREREREREVHNssUd0nSg+udRxUE+QIXDg1/BofteVKRgRERERERER1Qpb7BFdB4pPLEbWnw8AosV2gyBD4MCF8Gh+95UpGBERERERERHVGlvsEV3jCg8uQNYf9zsI6skROOg7BvWIiIiIiIiIGim22CO6RomiiPyd85C/4xX7jYIcQbcugnv8HQ1fMCIiIiIiIiJyCQb2iK5BomhB7qbpKDz4if1GmQJBg3+Ae9yIhi8YEREREREREbkMA3tE1xjRbEDWuodQcvInu22CXIOg2xZz9lsiIiIiIiKiawADe0TXEIuhCJlr7oHuwp9222QqbwTf/jM04T2uQMmIiIiIiIiIyNUY2CO6RpiKUpCxejgM2YfstsndghE84jeoA9tdgZIRERERERERUX1gYI/oGqDP3I+M1cNhLkmz26bwaoqQkWuh9Im9AiUjIiIiIiIiovrCwB5RI1eS+Auyfr8PoqnUbpsqoA2CR/wGhXvoFSgZEREREREREdUnBvaIGilRFFG4/0Pk/vM0ANFuuyaqH4IGL4Zc49PgZSMiIiIiIiKi+sfAHlEjZDGVIefvqSg++o3D7Z6tH4J/nw8hyJUNWzAiIiIiIiIiajAM7BE1MqaiZGT8NgaGjD0Otgrw7fEavDtNhyAIDV42IiIiIiIiImo4DOwRNSK65E3IXDsWFl2W3TZBoUXgoG/gHjei4QtGRERERERERA2OgT2iRsA6nt4HyN3yDCCa7bbL3UMRPHQF1CGdr0DpiIiIiIiIiOhKYGCP6CpnLstHzl+PouT0Cofb1WHdEXTbYs58S0RERERERHSdYWCP6CpWlrYTWWvHwVR0weF2r3aT4dfzLQhyVQOXjIiIiIiIiIiuNAb2iK5ComhBwZ7/IW/biw673gpyDfz7zYdny/uuQOmIiIiIiIiI6GrAwB7RVcZUko6sPx9AWdJfDrfLPaMQPGQp1MEdG7hkRERERERERHQ1YWCP6CpScnoFsjdOgUWX7XC7W+wwBPT/HHKNXwOXjIiIiIiIiIiuNgzsEV0FzGW5yPn7CZSc/MnhdkGuhl/Pt+DZdhIEQWjg0hERERERERHR1YiBPaIrrPTsGmRveBTm0nSH25W+8Qgc/APUge0auGREREREREREdDVjYI/oCjGX5SL3n1koPvZtpWk8Wo6Hf5/3IVO6N2DJiIiIiIiIiKgxYGCPqIGJooiSEz8i55+nYdFlOUwjcwtCQN+P4R53ewOXjoiIiIiIiIgaCwb2iBqQMe8UsjdORVnyxkrTuDcbBf++H0GuDWjAkhERERERERFRY8PAHlEDsJjKULDnfyjY/SZEs95hGpnGH/59P4RH/OgGLh0RERERERERNUYM7BHVI1EUUXpmJXK3PANT4flK07nFjYB/nw+gcA9puMIRERERERERUaPGwB5RPdFn7kfu5hkoS91SaRq5ZxQC+nwAt5jbGrBkRERERERERHQtYGCPyMVMxReRt/0lFB/9FoDoOJEgh3fHJ+DT9QXOeEtEREREREREtcLAHpGLmHU5KNjzNgoPfALRXFZpOnVIF/j3mw91YLsGLB0RERERERERXWsY2COqI4u+EAX73kfB/g8gGooqTSf3CIdfj1fhnnAXBEHWgCUkIiIiIiIiomsRA3tEtWTRF6Lw0AIU7H0XlrLcStMJCi28Oz0F785PsdstEREREREREbkMA3tENWQuzULBgY9QdOBTWAwFVaZ1T7gLfj1ehcIzsoFKR0RERERERETXCwb2iJxkKkxCwb73UHTka4gmXZVptU0Hw7fbi1AHdWig0hERERERERHR9YaBPaIqiKII/cV/UXjgY5ScWQWI5irTayJ6wbf7XGjCujVMAYmIiIiIiIjousXAHpEDFpMOJSd/QuH++TBkH6o2vTqkC3y7vwRNZF8IgtAAJSQiIiIiIiKi6x0De0TlGLIPo+jotyg+/gMsZTnVptdE3QKfG2ZBE9GTAT0iIiIiIiIialAM7NF1z1yWj5KTP6Ho2DcwZOx1Yg8BbnHD4XPD01AHd6r38hEREREREREROcLAHl2XLCYddOd+R8mpZSg9uwaiuazafQSlOzxa3Auv9pOh8mveAKUkIiIiIiIiIqocA3t03RBNepReWPdfMO83iMZip/ZTeMfCq92j8Gw1HjK1dz2XkoiIiIiIiIjIOQzs0TXNXJKB0vN/oPTcGugubHA6mAdBBm2TQfBqOxHaJoMgCLL6LSgRERERERERUQ0xsEfXFNFsgD5jD3RJG6E79zv0GbtrtL/Stxk8Wt4PjxZjofAIq6dSEhERERERERHVHQN71KiJZiMMWQehS9mEsuRNKLv4L0RjSY3ykKl94dZsBDxb3gd1aDfObktEREREREREjQIDe9RoiKIIc3EK9Gk7UZa+G/r0nTBk7HNq4ouKBJUX3GOHwT1+NLRR/SDIVfVQYiIiIiIiIiKi+sPAHl2VLIYiGHNPwJB9GIbsI9L/lrKcWucpcwuCW5Nb4RY7FNroAZApNC4sMRERERERERFRw2JgjxqcKIoQDYUwlVyEuSQdpuJUmArOw1SQCGP+WRgLEmEpzXTJsVSB7eDWdDDcYoZAFdyJk2AQERERERER0TWDgT2qG1GEvOQMFEVHUYRtkMEI0WyAaNZDNOlg0RfAos+HWZ8Piz4flrJ8mEvSIJpK66U4Cq+m0ET2hjayNzSRvaFwD62X4xARERERERERXWkM7FGduJ19H5qLSwEA+Wca+OCCDEr/ltCEdIE6tCs0Eb2g9G7SwIUgIiIiIiIiIroyGNijWjOXZkpBvXonyKD0iYMqoA1Uge2hDu0CdXAnyFSeDXN8IiIiIiIiIqKrDAN7VHsyBUQIECC6LEtBoYXCOwZK7xgofOKg8m8FVUBrKP1bQKbQuuw4RERERERERESNHQN7VGtyjR900Q/D7cIXTiRWQa72hUztBZlbMBTuoZC7h0HhEQq5eyjkHhFQ+sRA7h7KCS6IiIiIiIiIiJzAwB7VSVnUg9AHD4Wi5DRi4hKgULkBMhUEuQqCQgOZ2hsytQ8EuQaCIFzp4hIRERERERERXTMY2KM6E9WBMKoDoYlsB4WCXykiIiIiIiIioobAPo9ERERERERERESNEAN7REREREREREREjRADe0RERERERERERI1QvQ2IlpiYiCVLlmDnzp1ISUmByWRCUFAQ4uPjMXToUPTv39+l47EdPnwYd9xxR433++GHH9C5c2eXlYOIiIiIiIiIiKgh1Etg76OPPsKCBQtgMpls1icnJyM5ORl//fUXWrdujbfffhsxMTEuOebx48ddkg8REREREREREVFj4PLA3rx587Bo0aLLB1AokJCQAK1Wi8TEROTl5QEAjhw5gnvvvRdLly5FeHh4nY9bPrAXHR2NyMhIp/bz9vau87GJiIiIiIiIiIgamksDe3/88YdNUG/gwIGYM2cOAgICAABGoxErV67E66+/Dp1Oh+zsbEyZMgUrVqyAIAh1Onb5wN6jjz6KESNG1Ck/IiIiIiIiIiKiq5nLJs8wGo148803peU+ffrg/fffl4J6AKBUKjFmzBjMnz9fGl/v6NGj+O233+p0bFEUcfLkSWm5efPmdcqPiIiIiIiIiIjoaueywN769etx8eJFANbut3PmzIFM5jj7Hj16YMyYMdLywoUL63TsCxcuoLS0FIA1eBgbG1un/IiIiIiIiIiIiK52LgvsrV27VnrdvXt3hIWFVZm+fGDv6NGjSE5OrvWxy3fDbdq0KVQqVa3zIiIiIiIiIiIiagxcEtgTRRE7d+6Ulm+66aZq90lISEBgYKC0vHHjxlof/8SJE9JrdsMlIiIiIiIiIqLrgUsCe6mpqSgsLJSWW7du7dR+CQkJ0uvDhw/X+vjlW+wxsEdERERERERERNcDl8yKe/78eZvlqKgop/aLiIiQXiclJdX6+OUDewkJCThx4gRWrFiBnTt3IiUlBSaTCQEBAWjXrh1uvfVW9O/fv86z8BIREREREREREV1JLgnsZWVlSa9lMpnNTLhVKd8Vt3weNZGbm4vMzExp+csvv8T27dvt0qWmpiI1NRVr165F69at8d577zkdgKwvJpPpih6/rsxmc5XLROQ81ici12F9InIN1iUi12F9InId1idbLgnsFRQUSK/d3d0rnQ23Ig8PD4d51ET51noApKCeVqtFdHQ0vLy8kJmZadOq8MiRIxg9ejQWLlyIli1b1uq4dWWxWHDw4MErcuz6cuTIkStdBKJrBusTkeuwPhG5BusSkeuwPhG5zvVen1wS2NPr9dJrjUbj9H7lZ681GAy1OnbFwJ6HhwemT5+O4cOHw93dXVqfkpKCDz/8EKtXrwYA5OfnY/Lkyfj555/h6+tbq2MTERERERERERFdKS6ZPMNoNF7O0MnWegCgUFyOK9a2W2r5lni+vr5Yvnw5xo4daxPUA6zj+b311luYMmWKtC4tLQ0LFiyo1XGJiIiIiIiIiIiuJJe02JPL5dJri8Xi9H7lg3lKpbJWx543bx5mzpyJ5ORkuLu7o2nTplWmf+yxx7B161bs378fAPDTTz/hqaeesmk92BBkMhnatGnToMd0NbPZbNPktXXr1jbfBSJyHusTkeuwPhG5BusSkeuwPhG5zrVWnw4fPlyjWFpFLgnsabVa6XX5brnVKd/9Vq1W1/r43t7e8Pb2diqtIAi49957pcCeTqfD3r170a1bt1ofv7bKt1i8Fsjl8mvuPRFdKaxPRK7D+kTkGqxLRK7D+kTkOtd7fXJJV9zyQbWSkhKIoujUfsXFxdJrHx8fVxTFKR07drRZLt+dl4iIiIiIiIiIqDFwSWAvODhYem02m5GXl+fUfllZWdLrgIAAVxTFKf7+/jbLtZ2Rl4iIiIiIiIiI6EpxSWAvOjraZjk5Odmp/VJSUqTX1Y2N50oVZ+CtONEGERERERERERHR1c4lnZDDw8Ph4+OD/Px8AMDx48fRrl27avc7ceKE9Lp58+Y1Pm5qaip+/PFH5ObmIicnB9OnT3cqn4qBx9DQ0Bofm4iIiIiIiIiI6EpySYs9AOjSpYv0etu2bdWmP3HiBLKzs6Xlrl271viYoijiyy+/xMqVK7F582Zs3brVqf22bNkivRYEwW7MPSIiIiIiIiIioqudywJ7AwYMkF7//fffyMjIqDL94sWLpdexsbFISEio8TEjIiIQHh4uLa9cuRJms7nKfYqLi/H9999Lyz169ICfn1+Nj01ERERERERERHQluTSwFxQUBMA6ht3s2bNhMpkcpt2yZQuWLVsmLd977721Pu4dd9whvU5MTMSCBQsqTWs0GjF79mwp6CgIAiZNmlTrYxMREREREREREV0pLgvsqVQqTJ8+XVretm0bJkyYYDOenclkwtKlSzFlyhSpZV18fDxGjx7tMM++ffsiISEBCQkJ6Nu3r8M0DzzwgE2rvQ8//BDz5s2zm5n3+PHjeOCBB7B+/Xpp3bhx49C5c+eav1kiItbevYcAACFOSURBVCIiIiIiIqIrzCWTZ1wyYsQI7N+/Hz/99BMAa3BvwIABSEhIgIeHBxITE5Gbmyul9/HxwQcffACFovbF0Gq1+OyzzzBu3Dhp8o5FixZhyZIliI+Ph4eHB9LS0pCUlGSz35AhQ/DMM8/U+rhERERERERERERXkksDewDw8ssvw9fXF1999RWMRiMsFguOHz9uly42NhYffPABYmJi6nzMZs2aYfny5Zg5cyb2798PwNrt9ujRo3ZpNRoNJk2ahIkTJ0Iul9f52ERERERERERERFeCywN7giBg2rRpGDZsGJYvX46tW7ciPT0dOp0O3t7eaNGiBQYNGoRhw4ZBpVK57LiRkZFYsmQJ/v33X/z22284cOAAMjMzodfr4efnh8jISPTq1QtDhw5FaGioy45LRERERERERER0Jbg8sHdJbGwsZs2ahVmzZtU6j40bN9Z4n5tuugk33XRTrY9JRERERERERETUGLhs8gwiIiIiIiIiIiJqOAzsERERERERERERNUIM7BERERERERERETVCDOwRERERERERERE1QgzsERERERERERERNUKCKIrilS7E9WLv3r02yzJZ44+rWiwW6fW18H6IriTWJyLXYX0icg3WJSLXYX0icp1rqT6Vfy8A0KlTpxrtr3BlYahmKv7xGrtr7f0QXUmsT0Suw/pE5BqsS0Suw/pE5DrXe31q3GFNIiIiIiIiIiKi6xRb7F1Bjb25KBERERERERER1V5dWxxyjD0iIiIiIiIiIqJGiE3GiIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIcWVLgA1PomJiViyZAl27tyJlJQUmEwmBAUFIT4+HkOHDkX//v2hUPCrRdeenTt3Ys2aNdi/fz8yMzNRXFwMDw8PhIaGonPnzhg5ciRatmzpdH6HDh3CsmXLsHv3bmRkZEAURQQHB6NVq1a4/fbb0bNnTwiC4HR+oihiw4YN+OWXX3D48GHk5ORAq9UiODgYXbt2xahRo9C8efPavHWiBvPMM89g5cqVAIDXX38dI0eOdGq/+jg3bd++HStWrMCBAweQmZkJhUKBkJAQdOjQASNGjEDnzp1r/P6I6oPZbMa6deuwfv16HDlyBFlZWTCbzQgICEDr1q0xdOhQ9OvXDzKZc8/0eX6i69mxY8ewbNky7NmzB+np6dDpdPD29kZMTAxuvvlmjBkzBt7e3k7nx/pE14MPPvgAn3zyCcLDw7Fx48Ya7evq6y2DwYA1a9bg999/x7Fjx5Cfny/ds/Xs2ROjRo1CVFRUjfLMzc3FsmXLsGnTJpw9exYlJSXw8/NDVFQUBg4ciGHDhtXod8HVBFEUxSt2dGp0PvroIyxYsAAmk6nSNK1bt8bbb7+NmJiYBiwZUf1JSUnBrFmzsGfPnmrT3nbbbZg7dy48PDwqTWM0GvHKK6/gp59+qjKvHj164PXXX0dQUFC1x83IyMC0adOwd+/eStMIgoD7778f06dPh0qlqjZPooa2efNmTJw4UVp2NrDn6nNTcXExZs2ahQ0bNlSZbtiwYZgzZw48PT2rzZOovhw6dAgvvPACTpw4UWW69u3b491330V4eHilaXh+outZWVkZ5s6dixUrVlSZzt3dHXPnzsWQIUOqTMf6RNeLQ4cO4Z577oHRaKxRYK8+rrcSExPxxBNP4PTp05WmUSqVmDp1KiZMmOBUUH3Dhg147rnnkJ+fX2mawMBAvPrqq+jVq1e1+dUHBvbIafPmzcOiRYukZYVCgYSEBGi1WiQmJiIvL0/aFhAQgKVLl1Z58UjUGJw/fx533303cnNzpXVKpRLx8fHw9PRETk4Ozpw5g/I/pc2bN8cPP/zgMLgniiIef/xxmxOYWq1GQkIC5HI5Tp8+jeLiYmlbTEwMfvrpJ3h5eVVaxtzcXIwZMwZJSUnSOh8fH8TFxUGn0+HkyZM2AY/bbrsN7777bs0/DKJ6VFRUhNtuuw0ZGRnSOmcCe64+N+n1etx77704ePCgtM7d3R3x8fEwm804deoUysrKpG033HADvv76a9480RWxfft2TJ48GaWlpdK6wMBAREVFwWg04vjx4zAajdK28PBwLFmyxGEAgecnup4ZDAZMnDgR27dvl9bJ5XLEx8fDy8sLqampSElJsdnnpZdewt133+0wP9Ynul4kJyfj7rvvRlZWFgA4Hdirj+utc+fO4e6777a59gsMDETTpk2Rn5+P06dP29yzTZgwATNmzKiynH/88QemT58Os9ksrWvatCkCAwORmpqK1NRUab1cLscnn3yC3r17V/v+XU4kcsLvv/8uxsfHS/+mTJkiZmVlSdsNBoO4ZMkSsV27dlKaESNGiBaL5QqWmqhuTCaTOGTIEOk73aJFC/HDDz8Ui4qKbNKlp6eLTz/9tE0dmTp1qsM8v/zyS5t0L730klhYWCht1+l04qeffiq2bNlSSvPYY49VWc6JEydKadu0aSP++OOPotFolLZnZmaKTz75pM1xv/322zp8MkSuN3v2bJvvaHx8vLhixYoq96mPc9PLL78spU1ISBDnz58v6nQ6aXtBQYE4b948m+O+9tprdf8AiGro/PnzYvv27aXvYe/evcWNGzfafL8dfV8ff/xxh/nx/ETXs/nz59t8Dx955BHx4sWLNml27dol9unTR0rTsmVL8dSpUw7zY32i68HJkyfFm2++2eY716dPH6f2dfX1lslkEocNGyalveGGG8Tff//d5pyYlJQk3nfffTZ5btiwodI8k5KSbM6zQ4YMEY8ePWqTZvv27Ta/Cx06dBDT09Od+gxciYE9qpbBYBB79+5tc6Izm80O027ZssXmBPXLL780cGmJXGfp0qU2P/yrV6+uMv3rr79uk37//v0223NycsQOHTpI21988cVK81q+fLlNXnv37nWY7p9//rFJt2bNmkrzLB987NKli12AkuhK2bRpk11Qr7rAXn2cm06fPi22aNFCSvf5559XevwPPvhASteqVSsxOTm5Zm+aqI4efPBB6Ts4YMAAuyBEeXPnzrW5gTp37pzNdp6f6Hqm1+vFjh07St/B8ePHiyaTyWHa5ORksVOnTlLaadOm2aVhfaLrwapVq2wenNYksFcf11uLFy+2CbpXVpcMBoM4fvx4Ke2tt95aaX2fNm2azfvKyclxmC4tLU3s0aOHlPb555+v5hNwPc6KS9Vav349Ll68CMDaxWnOnDmVDr7co0cPjBkzRlpeuHBhg5SRqD6sXr1aet2jRw8MGzasyvTTp0+36d60Zs0am+3Lly9HSUkJAGvXiaeffrrSvEaNGmXTjLuyuvTtt9/alHHw4MGV5vniiy/C398fAJCXl4eff/658jdD1EAKCwvx/PPPA7B2c9dqtU7tVx/npkWLFkldLWJiYvDQQw9VevzHH38c8fHxAKzjKH3//fdOlZvIFQ4fPoytW7cCAGQyGd5++22EhoZWmv6JJ56Qui+JoohNmzbZbOf5ia5nBw4csOkW+8QTT0AulztMGxERgXvuuUda3rRpk03XPoD1ia5tGRkZmDVrFp5++mnodLpa5VEf11vfffed9HrUqFHo2LGjw3RKpRJvvvkmlEolAOuYfJs3b7ZLl5GRgT///FNanj59Ovz8/BzmGRISgueee05aXrlyZZXj8dUHBvaoWmvXrpVed+/eHWFhYVWmL3/zdPToUSQnJ9db2Yjqi8FgwL59+6Tl6gZIBgCVSoUePXpIy4cPH7bZ/vvvv0uvb731Vri5uVWZX/m69M8//9iMoQQABQUF2LZtm7Q8atSoKvNzc3OzCU7+8ccfVaYnagivvfYaMjMzAQATJ06s9KKpIlefmywWi80F3MiRI6ucQVQmk+HOO++UlsvvS1TfLs0cDQDDhw9H27Ztq0zv5eWFp556ChMnTsTMmTPRpk0bm+08P9H1LD093Wa5VatWVaZv166d9LqkpMRmPC+A9YmuXZ9++ikGDRqEVatWSetiYmIwadIkp/Ooj+utEydOIDExUVq+4447qixDcHAw+vTpIy07qiN//vmnNGalp6cnBg4cWGWe/fv3l65hTSZTtROCuBoDe1QlURSxc+dOafmmm26qdp+EhAQEBgZKyzWd7proapCamgq1Wi0tx8bGOrWfj4+P9Lr8hV5+fj6OHz8uLZcPAFama9eu0hPjsrIym4s6ANi1a5f0tEsQBKfqZ/k0+/btQ0FBQbX7ENWXTZs2SS0J4uPjnb4wrI9z04kTJ2zqrDN1tPxxL168WO2spESuUr7FXfkbnqrcf//9eOqpp/Dwww+jU6dO0nqen+h6V3GmzUut7SpTcQb28teLrE90Lfvqq69sAs+jR4/GsmXLEB0d7XQe9XG9tWPHDum1t7e33cOr6vJ01PK2/EQ6N954o9TCrzJyuRzdunWTlv/+++9qy+BKDOxRlVJTU1FYWCgtt27d2qn9EhISpNcVWy0RNQZNmzbF/v37sWfPHqxZs0ZqAl6d8jMjeXt7S69Pnjxpc8Ko7mkwYH3iGhUVJS1XrEvlT2oRERE2x6tM8+bNpdcWiwVHjx6tdh+i+lBYWIgXXngBgLUr7euvv+70zLL1cW4qX5+USiWaNWtWbX5NmzaFRqOpNE+i+pCeni51Q9dqtdW21qsOz090vYuLi7NZ3rJlS5Xp//33X+l1aGgo3N3dpWXWJ7oetG7dGosWLcK8efPg4eFRo33r43qrfJ4tWrSAIAjV5lm+jhQUFNjMNg1Y6/IlztTjink29DUhA3tUpfPnz9sslz/pVCUiIkJ6XbGSEDUmnp6eiIuLszmZVKa4uNjmYq98K7/ydUmlUlU5FlJ5VdWl8nk6+6QsMDDQ5r1cuHDBqf2IXG3evHlSF9yHHnrI6eAcUD/npvJ5hoeHQ6FQVJufIAg2XYBZn6ghlL/ZiImJkVr6pKSkYP78+Rg1ahS6du2Kdu3aoX///njuueewf//+SvPj+Ymud5GRkTbj3L3//vvIzs52mHbPnj02XeHLj7cHsD7Rte3GG2/Exx9/jOXLl+PGG2+sVR71cb1VmzpSvs5VzNNgMEgP0GqbZ0ZGBsrKypzazxUY2KMqZWVlSa9lMhkCAgKc2q98d6fyeRBdy7766iubwZfLj91Qvh6Urx/VqaouXQqK1DTPSwMqO8qTqCFs3LhRmpwmNjYWjz/+eI32r49zU/nl8pPgVKf8sVmfqCGUv+kPCgqCxWLBF198gcGDB+Ojjz7CkSNHkJeXh7KyMiQlJWH58uW46667MHv2bOj1erv8eH4iAp599lnp9zw1NRV33HEHVq5ciezsbJhMJiQnJ2PBggV46KGHYDQaAQAtW7bEuHHjbPJhfaJr2SeffIJbbrnFqRZxlamP663a1BE/Pz+bSXLK55mVlWXT8tbZPCtejzZkvas+PErXtfLjMbi7u1c5sGV55ZvkckwHuh4cOnQIX3zxhbTcpEkT9O3bV1ouPzNSxbFcqlJVXSq/XJM8y6ct352RqCEUFBRgzpw5AKxBuZp0wS2fxyWuOjfVto6WT8vzHTWE8i2J3Nzc8Morr+DHH3+U1sXFxcHf3x/Z2dk2g4n//PPPSEpKwjfffGNT53h+IrK2yFmxYgXmzZuHDRs2IC0tDc8884zDtIIgYNiwYXjhhRfsJsZgfSKqWn1cb9WmjshkMri5uaGoqAiAbR2pmL+Xl1eNy1gxz/rGFntUpfJPdp3pinhJ+QtGg8Hg0jIRXW1SUlIwefJk6QkuAMyePdumaXn5euCquuSK+umo9QZRfZo3b570BPP++++3mV3QWfVxbqqPOkpUH8rfKGzZskUK6t1yyy3YsGED1qxZg++++w5r167Fhg0b0KtXLyn93r17MW/ePJv8eH4isvLz80PPnj2r7XZ30003YcKECQ4DCKxPRFVrDHWkYn0pP0GOs/k5yqc+MbBHVSofqHC2RQQAm4BGxZmjiK4laWlpGD9+vE1T6/vvv9+mGy5QP3Wp/HJN8izf7Jz1kxrSX3/9hV9++QWAtVXrE088Uat86qM+1TZP1idqaOVvaC4F+caMGYP58+cjMjLSJm1kZCQWLFiAQYMGSeuWLl2KU6dOScs8PxFZB98fMmQIXnjhBWm8LrVajTZt2qBLly5o0qSJlHbr1q24/fbb8eabb7rsXML6RNeL+rjeKr9cPl1t86yYv7N5Vkx3aTbrhsDAHlWp/JfTYrE4vV/5ylDd1NBEjVViYiLuvvtupKSkSOt69OiBGTNm2KWtj7pU2zzLn2RYP6mh5Ofn48UXXwRg7cb06quv1uipanmsT3Q9qzi2UWRkJJ5//vlKxzySyWQ2MxeKoojvv/9e2s76RNe75ORkjB8/Xho8X6PR4JlnnsGuXbuwfPlyfPfdd/jzzz+xYcMGDB48GID1u/r1119j1qxZNnmxPhFVrT6+z+XzrEkwrXza8q3tKgYcnc2zYrqGrHcM7FGVtFqt9LomTUnLP012tukqUWOyb98+jB07FmlpadK6rl27Yv78+Q5/xMsHMGpSl8qnrViX6iNPovpSvgvuuHHj0Llz51rnVR/nJtYnaiwqjul11113VTtOpaenpxSQAIBt27ZJr3l+ouvd3LlzpXG/1Go1Fi5ciPvvv9/u4VNkZCTee+89TJo0SVr322+/4bfffpOWWZ+Iqna11pHy59Hy15mA80Ot1LYLryswsEdV8vb2ll6XlJTYzA5TlfIzg/r4+Li6WERX1K+//orx48cjLy9PWterVy989tlndieCS8rXg/L1ozolJSUO8wBs62dN8mT9pIa2YcMG/PrrrwCsN0bTp0+vU371cW6qbR1lfaKG5u7ubrPcsWNHp/Zr37699Do5OVm6UeH5ia5nycnJ+Oeff6TlSZMmVVunpk2bZjM+7Jdffim9Zn0iqlp9XG/Vpo5YLBaUlpY6zLN8fjXJs2K6hqx3DOxRlYKDg6XXZrPZJpBRlfLjjVWc9pmoMfvoo48wY8YMmyc3w4YNwyeffFJlt8LydSknJ8fp41VVl2qbZ/m0zk7fTlRb+fn5eOmllwBYuxDOmzfPrsVRTdXHuSkoKEh6XZP6VH6GUtYnagi+vr42y35+fk7t5+/vb7N8qYUSz090PduzZ4/N8h133OHUfnfddZf0+vjx49J3l/WJqGr1cb1VmzqSm5tr0xW4fJ6BgYE23XHLH9vZMgqCYHferU+K6pPQ9azirFDJyclOXUCWH3OsadOmLi8XUUMzGo147rnnsHr1apv1jzzyCKZNm1bp2EaXlK9LpaWlyM7OdironZycLL2uWJfKD+SclJRUbV4AkJmZibKyMod5ENWHn376Sbph0Wq1+OKLL/DFF19Umr78RdHChQuxZs0aafnNN99EQEBAvZybyteFlJQUiKJYbb0WRRGpqakO8yCqL82aNbNZLj9LblUqDgZ+abB+np/oepaZmSm99vb2tgk6VKV58+Y2y6mpqfD392d9IqpGfVxvNWnSBPv27QPgfB0pX+cq5qlSqRAaGiodszZ5hoWFVTtMhisxsEdVCg8Ph4+Pj/RU9/jx4zZNzytz4sQJ6XXFEx9RY2MwGDBlyhRs2rRJWqdQKPDSSy9h9OjRTuXRsmVLCIIgdRk8fvw4br755ir3KSkpsTmRVKxLrVq1kl5fuHABOp2u0q7Alxw/flx6LQgCEhISnCo/UW2Vb91aWlqKrVu3Or3vqVOnbGbvvHSTUh/npvL1SafT4dy5c4iJiakyv7Nnz9qMp9KiRYtqy0BUVxV/t8+fP4+2bdtWu196err0WqPRSF2EeH6i61n5G+/ys3VWp+Lg+pcCE6xPRFWrj+utVq1aYeXKlQBsr/WqUr6OeHt7Izw83GZ769atpcBebfJs6GtCdsWlanXp0kV6XX6w5cqcOHHCpsVF165d66VcRA3BZDJh6tSpNkE9d3d3fPbZZ04H9QDAw8MDLVu2lJadqUs7duyQmojL5XLceOONNts7deoktbgwm83YuXNntXmWP27Lli3txpAgaixcfW5q1qyZTau/7du3V5vnv//+K7329fXljRM1CD8/P5vv2oYNG5zab/fu3dLrli1bSoEJnp/oehYSEiK9Li0txblz55zaLzEx0WE+rE9EVauP663ydSYrKwunT5+uNs/ydaT8NaWjPHfu3FntDL4V62ZDx0AY2KNqDRgwQHr9999/IyMjo8r0ixcvll7HxsbyRocatbfffht///23tOzn54dFixahR48eNc5r4MCB0utffvkFOp2uyvTl61L37t3h5eVls93Ly8vmpLFkyZIq8yspKcEvv/wiLQ8aNMipchPVxZQpU3Dy5Emn/5V/Yvr666/bbIuIiJC2ufrcJAgC+vfvLy0vXbq0yos4i8WCpUuXSssDBw6stisJkavcfvvt0uuNGzfizJkzVaZPS0vDX3/9JS2Xrz8Az090/erSpYtN67uffvrJqf1WrFghvW7WrJnN+FysT0SVq4/rrfj4eJsu7NXVkbS0NJtGG7feeqtdmltuuQVyuRyAdZiY9evXV5nnn3/+idzcXADWnl0Vz7P1jYE9qtaAAQOk8SYMBgNmz55tN07LJVu2bMGyZcuk5XvvvbdBykhUHzZv3oxvv/1WWvb29sZ3331n04S8JkaNGiV1ncjOzsbcuXMrTbts2TJs2bJFWr7vvvscphs7dqz0+u+//5aaoTvy0ksvSSccNzc3pweIJroa1ce56Z577pEuFk+cOIGPP/640uN/8MEH0hNhmUzG8x01qBEjRkgtcIxGI2bPno2ioiKHaQ0GA2bNmiV1M/Tw8MDIkSNt0vD8RNcrPz8/m0Dcd999V20LokWLFtm0IBozZozNdtYnoqrVx/VW+TqyZMmSSlvLGo1Gm3NiWFgYbrnlFrt0ISEh6Nevn7T86quvVvoQOS0tDa+99pq0PGDAAJsJPRoCA3tULZVKhenTp0vL27Ztw4QJE2wGhzSZTFi6dCmmTJkCs9kMwBo5r0lXRaKridlsxquvviqNkSIIAt555x27QctrIiAgAA8//LC0vHLlSjz11FM2szeVlZVhwYIFePHFF6V1PXv2RM+ePR3m2bdvX5vm4y+88AI+++wzm3EosrOzMW3aNJunt5MnT3Z6JkWiq1F9nJuaN2+OESNGSMvz58/Ha6+9ZhMwKSoqwquvvooFCxZI68aMGYO4uDiXvTei6vj5+eGZZ56Rlg8fPox77rkHO3bssEl39uxZPPjggzbdg5588km7bnk8P9H1bMaMGVIrObPZjAkTJuDjjz+WgmOXZGVl4eWXX8a8efOkda1atcLdd99tk471iahq9XG9NWbMGKnVnslkwmOPPYZly5bZPPRNTk7Gww8/bHNOnDlzZqWTXEybNg1qtRoAkJGRgXvuuQe7du2ySbNz506MHTtWmijOzc3N5vq0oQjipbtWomrMmTPHpnm6TCZDQkICPDw8kJiYaHPy8/HxweLFi6sdCJPoarVmzRqbH2U3Nzd07NixRnkEBATgzTfftFl36URTvvm3UqlEQkICVCoVTp8+bXNSi4iIwLJly6q8KMvI+H97dxMS1RrGAfzJGqhgkCJIMPtgaNGiSIKkVdgipCIKog8kWhVthCiwXVIugiTKTbt27sqCCaKShCCoIFpIESMWtDLJssEwGArvIhru9OE45dQ9199veTjnMGfxznPO/5z3fUaitbW1JNBIp9OxevXqKBQKkcvlShaEbm5ujkuXLn238DP8F2zZsqW4WPHZs2e/+7LoWzNdmz58+BCHDh2Kp0+fFrctWLCgOHU3l8uVTKtau3Zt9PT0xPz58yu7UJgBFy5cKHnoifjylUFDQ0Pk8/mS5jMRX6bwnjt37ofnUp+YzR49ehRHjx6NiYmJ4rZUKhWrVq2KRYsWxdjYWAwNDZVMGVyxYkX09PT8sJOu8cRscu3ateLLpvr6+ujv7y97TDXutwYHB+PgwYPF5moRX16EZTKZGB8fj8HBwZIx3NraGqdOnZryd2az2Th58mTJccuXL4+6uroYHh4uGY81NTVx/vz52LZtW9nrn2mCPaZtcnIyLl68GJcvX56ya1Qmk4nu7u7f+rIJ/ra2tra4c+fOb53jZ4WtUCjE6dOno7e3N6b6C25sbIzu7u5pfco9PDwcx48fL7Z6/5k9e/ZER0fHH22/DpWoNNirRm0aHx+P9vb2sjemzc3N0dXVFel0uuw5oVp6e3ujq6srxsbGfrrPvHnz4siRI9HW1jblQ776xGw2NDQU7e3t8ezZsyn3mzNnTrS0tMSZM2e+Ww/v34wnZotfCfYiqnO/lcvl4sSJE1M20Jg7d24cPnw4jh07Nq31kW/duhUdHR0lgeG3amtro7Ozs2Rq/58k2KNiL168iKtXr8b9+/fj9evX8fHjx6itrY01a9ZES0tL7Ny5UxEh8bZv3152MfJyyhW2gYGBuH79ejx8+DBGRkaiUCjE4sWLY926dbFjx47YunVrRW9ZJycno6+vL27evBkDAwMxOjoaNTU1sXTp0tiwYUPs3bs31q9f/1vXBNVWabD3VTVq04MHDyKbzcbjx49jdHQ0Pn/+HEuWLInGxsbYvXv3LzXRgWrI5/ORzWbj7t278fLly3j37l2kUqlYuXJlbNq0KQ4cOBANDQ3TPp/6xGx279696OvriydPnsSbN29iYmIi0ul01NfXx8aNG2PXrl0VNQc0nvi/+9Vg76uZvt/69OlT3LhxI27fvh3Pnz+Pt2/fRiqVimXLlkVTU1Ps37+/4iVU3r9/H1euXIn+/v549epV5PP5WLhwYWQymdi8eXPs27fvr057F+wBAAAAQAKZcA8AAAAACSTYAwAAAIAEEuwBAAAAQAIJ9gAAAAAggQR7AAAAAJBAgj0AAAAASCDBHgAAAAAkkGAPAAAAABJIsAcAAAAACSTYAwAAAIAEEuwBAAAAQAIJ9gAAAAAggQR7AAAAAJBAgj0AAAAASCDBHgAAAAAkkGAPAAAAABJIsAcAAAAACSTYAwAAAIAEEuwBAAAAQAIJ9gAAAAAggf4B1g3OAEDAFmEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rate = 1000\n", + "tmax = 10000\n", + "deadtime = 2.5e-3\n", + "dt = 0.0005\n", + "segment_size = 1\n", + "import copy\n", + "source_fraction = 0.65\n", + "\n", + "def split_between_source_and_background(times, source_fraction):\n", + " times_shuf = copy.deepcopy(times)\n", + " np.random.shuffle(times_shuf)\n", + " times_source = np.sort(times_shuf[: int(source_fraction * times.size)])\n", + " times_bkg = np.sort(times_shuf[int(source_fraction * times.size): ])\n", + " return times_source, times_bkg\n", + "\n", + "\n", + "times = np.sort(np.random.uniform(0, tmax, rate * tmax))\n", + "times_dt = filter_for_deadtime(times, deadtime)\n", + "\n", + "times_source_dt, times_bkg_dt = split_between_source_and_background(times_dt, source_fraction)\n", + "\n", + "source_rate = source_fraction * rate\n", + "\n", + "pds_source_dt = AveragedPowerspectrum.from_time_array(times_source_dt, gti=[[0, tmax]], dt=dt, segment_size=1, norm=\"leahy\")\n", + "\n", + "model_source_nobkg = non_paralyzable_dead_time_model(\n", + " pds_source_dt.freq, \n", + " dead_time=deadtime, \n", + " rate=times_source_dt.size / tmax, \n", + " bin_time=dt\n", + ")\n", + "\n", + "model_source_corr = non_paralyzable_dead_time_model(\n", + " pds_source_dt.freq, \n", + " dead_time=deadtime, \n", + " rate=times_source_dt.size / tmax, \n", + " bin_time=dt,\n", + " background_rate=times_bkg_dt.size / tmax, \n", + ")\n", + "\n", + "plt.plot(pds_source_dt.freq, pds_source_dt.power, label=\"PDS of source events\")\n", + "plt.plot(pds_source_dt.freq, model_source_nobkg, zorder=10, label=\"model of Source\")\n", + "plt.plot(pds_source_dt.freq, model_source_corr, zorder=10, label=\"model of Source+Back\")\n", + "plt.plot(pds_source_dt.freq, pds_source_dt.power / model_source_corr, zorder=10, label=\"ratio\")\n", + "\n", + "plt.legend(loc=\"upper right\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'PDS / model')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAQgCAYAAAA35bgJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9eZwdRbn//5klG0lYZZFdRKImmIsiIC73J/LlKlevioJXr6KoFxQVxQXEC4IriMIVRfAKKJtsUQRZEyAhEJYEskz2fZtkkskymcw+c5b+/TE5J2ep6q7qruquPufzfr14kenTXfV0dXctTz1Lg+d5HgghhBBCCCGEEEIIISQlNCYtACGEEEIIIYQQQgghhOhApSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYQQQghJFVRqEkIIIYQQQgghhBBCUgWVmoQQQgghhBBCCCGEkFRBpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYQQQghJFVRqEkIIIYQQQgghhBBCUgWVmoQQQgghhBBCCCGEkFRBpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYQQQghJFVRqEkIIIYQQQgghhBBCUkVz0gKQ+mDu3Lllfzc2Up9OCCGEEEIIIYQQUq/k8/myv9/1rndpXU+lJkmEyheXEEIIIYQQQgghhBBVaC5HCCGEEEIIIYQQQghJFbTUJIlQC+7npdamtXA/hCQJvydCzMHviRAz8FsixBz8nggxRy19T1G9eKnUJLHQ2NhYfFkbGxtx0kknJSxRNLLZLFpaWop/n3jiiWhu5udESBj4PRFiDn5PhJiB3xIh5uD3RIg5au17mj9/fpmuSJd0q3QJIYQQQgghhBBCCCF1B5WahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVzUkLQAghhBBCCCGEEBKFKS1tmLZyOyYeOh7fet+b0NTYkLRIhBDLUKlJCCGEEEIIIYSQ1PLXeZvwhfvmF//evHsAv/7Y2xOUiBASB3Q/J4QQQgghhBBCSGr56kMtZX/fMHNNQpIQQuKESk1CCCGEEEIIIYSklsFsPmkRCCEJQKUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBU0Zy0AIQQQgghhBBCCCG1QPdAFt9+dDFmrevASYfvi1s+9Q4cNHZk0mIRUpNQqUkIIYQQQgghhJCawvM8NDQ0xF7vtdNX4c7XWgEAq3f0Yv99RuD/Pj05djkIqQfofk4IIYQQQgghhBBigOumry77+7ZXNyYkCSG1D5WahBBCCCGEEEIIqSk8L2kJCCG2oVKTEEIIIYQQQgghhBCSKqjUJIQQQgghhBBCSE1BQ01Cah8qNQkhhBBCCCGEEFJTePQ/J6TmoVKTEEIIIYQQQgghhBCSKqjUJIQQQgghhBBCSE1BO01Cah8qNQkhhBBCCCGEEEIIIamCSk1CCCGEEEIIIYTUFAypSUjtQ6UmIYQQQgghhBBCagqPDuiE1DxUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgipKeh+TkjtQ6UmIYQQQgghhBBCagrqNAmpfajUJIQQQgghhBBCCCGEpAoqNQkhhBBCCCGEEFJTePQ/J6TmoVKTEEIIIYQQQgghhBCSKqjUJIQQQgghhBBCSE1BQ01Cah8qNQkhhBBCCCGEEFJTUKdJSO1DpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYSQmoLu54TUPlRqEkIIIYQQQgghpKbw6IBOSM1DpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYSQmoLu54TUPlRqEkIIIYQQQgghhBBCUgWVmoQQQgghhBBCCKkpaKhJSO1DpSYhhBBCCCGEEEJqCo/+54TUPM1JC+AaN910E2655RYcccQRmD59upU6tmzZggceeACzZs3Chg0bMDAwgIMPPhjHHXcczj77bJx99tkYM2aMcnnZbBbTpk3DU089hUWLFqGjowOjRo3CYYcdhpNOOgn/8R//gZNPPtnKvRBCCCGEEEIIIYQQEjdUapawcOFC3HbbbVbreOCBB3Ddddehv7+/7HhbWxva2towa9Ys/OlPf8L111+PyZMnB5a3YsUKfP/738fKlSvLjg8ODqKrqwsrV67Egw8+iH/913/Fz372Mxx66KFG74cQQgghhBBCCHEN2mkSUvvQ/XwPra2tuPjii5HJZKzVceedd+Lqq68uKjQbGhpwwgkn4JRTTsEhhxxSPG/9+vX44he/iCVLlviWt2TJEnz+858vU2jut99+OPnkk/Gud70L++67b/H4zJkzcd5552Hbtm2G74oQQgghhBBCCHELep8TUvvQUhPAypUr8dWvfhXbt2+3VseCBQtw/fXXF/9+97vfjV/+8pc4+uijAQzH+3jmmWfw4x//GLt27UJ/fz8uvvhiPP3000JX9P7+fnznO99BV1cXAGDs2LH4n//5H3ziE59AU1MTgGG39ClTpuC6667DwMAAtm7dim9/+9u4//77rd0nIYQQQgghhBBCCCG2qXtLzUcffRTnnXce2tvbrdZz7bXXIpfLAQAmTpyI22+/vajQBIatNs866yzceeedGDt2LABg69atuOuuu4TlPfjgg9i4cWPx2ltuuQWf+tSnigpNAGhubsZnP/tZXHfddcVj8+bNwyuvvGL8/gghhKSb9u5B/Oc9c3H672fhdy+uZXB9QgghhKQajw7ohNQ8davUbG9vx+WXX47LLrusKr6laVpaWrBgwYLi31dddRVGjx4tPPetb30rvvGNbxT/vuuuu4rK0FKmTJlS/PeHP/xhnHbaadL6P/KRj+CEE04o/v3ss8/qiE8IIaQO+Px98/BQSxte3bAL33l0Cf62cEvSIhFCCCGEEEKIlLpUat5666348Ic/jEceeaR47LjjjsPXvvY1K/U9+eSTxX+/+c1vxkknneR7/qc//Wk0Nw9HBujo6MCcOXPKfu/u7kZfX1/x749+9KOBMrzlLW8p/nvDhg1KchNCCKkPugYyeG7VjrJjX3pgfkLSEEIIIYREh04nhNQ+danUvOOOO8qUgueeey6mTJmCY445xkp9pe7e733vewPP32+//TBp0qTi3zNmzCj7ffz48ZgxYwbmzp2LBx54wNdKs0Ah9iaAons7IYQQAgB9Q9UeAf2ZfAKSEEIIIYSYgUpNQmqfuk4UNGnSJFx++eU45ZRTrNWRyWSwdu3a4t8TJ05Uum7ChAlFl/VFixYJzxk3blyg1ScAdHZ2Yu7cudoyEEIIIYQQQgghhBDiInWp1DzllFNwzjnn4EMf+hAaGhqs1rVp0yZkMpni36rWoEceeWTx34WEQGHo6enBd7/73aJl6tixY3HeeeeFLo8QQgghhBBCCHEdlww1Pc+zrnsgpB6pS6XmLbfcEltd27dvL/v74IMPVrqu9LydO3cin8+jsTE4WkA+n8fQ0BA2bNiA559/Hvfcc09RhubmZtx4443Yf//91W+AEEJIzePSpJ8QQgghxASeQ/7nngdQp0mIeepSqRknu3fvLvt73333Vbpu/PjxxX97noeuri4lZeQ3v/lNPPfcc1XHjzvuOFxzzTU49dRTleq3TTabTVqESFRmpBdlqCeEqMHvKXlkfXLa++p6hN8TIWbgt0SIOZL6nrK5nDNzmUw2i6ZGajVJdDg+lUOlpmUGBwfL/h49erTSdSNGjPAtR0ZbW5vw+IEHHoi2tjZks9liZvWkyOfzaGlpSVQG0yxevDhpEQipGfg9xc+OfvFkqNb66nqE3xMhZuC3RIg54vqelixZgvYxTbHUFcSClhY0U6lJLFDv41NdZj+Pk8qdIRUXcgBVikdV7XtHRwcmTZqE0047Dccdd1zx+Ouvv44f/vCH+OxnP4tt27YplUUIIYQQQgghhBBCiIvQUtMylUrMfD6vdF2lMrTSclPGjBkz0NS0dzeqtbUVv/71rzF16lQAwMKFC/HVr34Vf/vb3zBy5EilMgkhhNQ2DoWcIoQQQggxgkvzG5dkIaSWoFLTMmPGjCn7e3BwUEmZODQ0VPb3qFGjlOorVWgCwFFHHYXf/e53+MlPfoL77rsPALBixQr89a9/xQUXXKBUpmkaGxtx4oknJlK3KXK5XJmZ96RJk6ranhCiBr+n5GnrGgAeba86Pnny5ASkIVHg90SIGfgtEWKOWL6n+6vDsL3t7W/HEfuphX+zLcs73vEOjGymoyyJTq2NT4sWLVI2/hNBpaZl9ttvv7K/e3p6ypIAyejp6Sn+u7m5WekaP6644grMmDEDW7ZsAQA8/PDDiSk1gWr3+rTT1NRUc/dESFLwe4qf5iZxe/M5pB9+T4SYgd8SIeaI63tqbo7/u5VlXG9qbkJzc3oVT8Rd6n184laBZQ499NCyv3fs2KF03fbt24v/PvDAA9HQEC2o8MiRI/GRj3yk+PeqVaswMDAQqUxCCCGEEEIIIcRFknD5ltVJ93NC7EClpmUOP/zwsniYra2tStdt2rSp+O9jjz3WiCxHH3108d+e52H37t1GyiWEEJJuPHCmTQghhBASlbxEe8mZFiF2oFLTMiNGjMAJJ5xQ/HvZsmVK15We97a3va3st5aWFvziF7/A17/+dXzxi19UlmVwcLDs73333Vf5WkIIIbULrQcIIYQQUmskMb2R1SlzSyeERINKzRg49dRTi/9++eWXA8/v7OzE0qVLi3+fdtppZb9v2bIFd999N6ZPn45XX30VK1asUJJj0aJFxX8ffPDBVUmMCCGEEEIIIYSQWiAJRSLdzwmJFyo1Y+Css84q/nvx4sVlmapEPPTQQ8hmswCGEw2dfvrpZb+/+93vLgsE+9e//jVQhq1bt+LZZ58t/n3GGWcoyU4IIYQQQgghhJBgZCF9qNMkxA5UasbASSedhIkTJxb/vuKKK8qym5eybNky3HrrrcW/zzvvPIwePbrsnIMOOghnnnlm8e+//e1veO2116T19/X14Tvf+U4xMdCIESMSzXxOCCGEEEIIIYTYhImCCKl9qNSMyBlnnIEJEyZgwoQJvtaPl19+eTGD+cqVK/GFL3wBy5cvL/7ueR6mTZuGL33pS+jr6wMw7CJ+0UUXCcu77LLLsM8++wAAcrkcLrzwQjz44IPIZDJl57366qv4zGc+g/nz5xePfeMb38Cb3vSmcDdMCCGEEEIIIYQ4ThJ6RFmiIEKIHZqDTyEmOPXUU3HppZfixhtvBAAsXboUH//4x3H88cfjwAMPxIYNG9De3l48f/To0fjtb3+L8ePHC8s74ogj8Ic//AEXXXQRhoaG0NfXhx//+Mf49a9/jRNOOAGNjY1Yv349tm/fXnbd5z//eXz961+3d6OEEEIIIYQQQkgdIrXUpAM6IVagUjNGLrroIowdOxY33HBD0Rpz9erVVecddthh+M1vfoOTTz7Zt7zTTz8d999/P37wgx9g7dq1AIDu7m7MnTu36tz9998f3//+93HuuecauBNCCCG1BKfZhBBCCKk1EnE/lx3nZIsQK1CpGTOf//znceaZZ+Khhx7CzJkzsWnTJvT09GDcuHE44YQTcOaZZ+JTn/oUxo0bp1TepEmT8Pjjj2Pq1KmYNm0aFi5ciJ07dwIADjjgALz1rW/F+9//fnziE5/A2LFjbd4aIYSQlJJEdlBCCCGEkFpDbqlJCLEBlZolnHPOOTjnnHO0rpk+fbp2PYcddhguueQSXHLJJdrXimhqasLZZ5+Ns88+20h5hBBCCCGEEEJImknC5Vua/ZwbyIRYgYmCCCGEEEIIIYQQUlMkoUfM01KTkFihUpMQQgghhBBCCCGpxCUrSJksDolISE1BpSYhhBBS53CiTQghhJBaI4npjTRREG01CbEClZqEEEIIIYQQQghJJdLkPAns2spliVcOQuoFKjUJIYQQQgghhBCSSlzSF9Iik5B4oVKTEEIIqXM4/SaEEEJIWpHGsYxZDgDI58XHaalJiB2o1CSEEELqHE60CSGEEEKiI4+pSQixAZWahBBCCCGEEEIISSVSRWICmkR59nOqNQmxAZWahBBCSJ3D+E+EEEIISSvS5DwJzG9oqUlIvFCpSQghhNQ5NB4ghBBCSFpxaXOW2c8JiRcqNQkhhJA6h/NsQgghhKQVlxSJMgWrS4pXQmoJKjUJIYQQQgghhBBSUySh1Mw7pGAlpB6gUpMQQgipcxi8nhBCCCFpxaVZjDRRUMxyEFIvUKlJCCGE1DmcaBNCCCEkrbikSOQ+MSHxQqUmIYQQUudwAk4IIYSQtOLSPEaa/dwlIQmpIajUJIQQQgghhBBCSE2RhCLRpaRFhNQDVGoSQgghdQ4zchJCCCEkrUitI2OVYpi8Q67whNQDVGoSQgghdQ6tBwghhBCSVlyax8jdz2MVg5C6gUpNQgghpM7hRJsQQgghaUXmcZLE/EaetIiTLUJsQKUmIYQQQgghhBBCUok0jmUCikRaahISL1RqEkIIIXUO59mEEEIIIdGRK1gJITagUpMQQgipc5LIDkoIIYQQYgKXrCOliYI41yLEClRqEkIIIYQQQgghJJW4pDB0SBRC6gIqNQkhhJA6h/NvQgghhKQVqaVmrFL418m5FiF2oFKTEEIIqXNoVUAIIYSQWiMJC05p9nPOtQixApWahBBCSJ2TRHZQQgghhBATuKQwlFtqOiQkITUElZqEEEIIIYQQQghJJTKFYRJqRHmioJgFIaROoFKTEEIIqXM40SaEEEJIWnFpHiOTxSUZCaklqNQkhBBC6hzOswkhhBBSayShSGSiIELihUpNQgghpM5JIpA+IYQQQogJXLKOlCcK4lyLEBtQqUkIIYQQQgghhJBU4pK6kJaahMQLlZqEEEJIncOJNiGEEELSitQ6MoEZTj4fe5WE1DVUahJCCCF1Dj2i4uf11k48MH8zWjv7kxaFEEIISTVS68hEYmoy+zkhcdKctACEEEIISRZOtOPl/15Zj4sfXgTPA/YfMwLPXnQa3nnk/kmLRQghhJCISON70i+GECvQUpMQQgghJEYuf2JZcdHT2Z/B9TPWJCsQIYQQkmLkisT4cclqlJB6gEpNQgghpM6h9UC8dA1ky/5+qKUtIUkIIYSQ9OPSPEYe35MQYgMqNQkhhJA6h9YDhBBCCEkrUkvNBCY4eYdkIaQeoFKTEEIIqXM4zSaEEEJIrZGM+zktNQmJEyo1CSGEEEIIIYQQkkpcUhjKrUbjlYOQeoFKTUIIIaTOoUsUIYQQQtKKNI5lAtMbTqkIiRcqNQkhhJA6h/NvQgghhKQVefbz+Gc4UvdzTrYIsQKVmoQQQkidw4l2fNAqlhBCCKldXFKwElIPUKlJCCGEEBIT1GkSQgghZpENrUmMufLs5/HKQUi9QKUmIYQQUufQeiA+2NKEEEKIWVxSGDL7OSHxQqUmIYQQUue4tBiodeh+TgghhJjFpTiW8uznHP8JsQGVmoQQQkidUw/z7Ewuj+6BLPIyv7CYqIOmJoQQQmLFpTiWUlf4WKUgpH5oTloAQgghhBCbzN6wC+fd8zpaOwfwwTcfhPs//y4cMn5UIrLUgwKZEEIIqVdkFpkc/wmxAy01CSGEkDqn1mNq/uDxpWjtHAAAzFizE//36obEZKn1tiaEEELiJhWJgjj+E2IFKjUJIYSQOqfWrQdmreso+/vqqSsSkqT225oQQgiJG6l1ZMxyAIydSUjcUKlJCCGEEBITXOoQQgghZnFpbHXJapSQeoAxNQkhhJA6h/Ps+HDFgmMwm8PNs9ZjR98QvnTyUZhwyLikRSKEEEKM4lb283jlIKReoFKTEEIIqXM40Y4PV9r6U3e+jieXbwMA/P7FdVjwvX/F8W8Ym7BUhBBCiD6ujK2AX/Zzh4QkpIag+zkhhBBS59TyRNsVy8gCLkizvqOvqNAEgL5MDr98blWCEhFCSHj6hrLY0TuIvCxDC6l5ZPOYJOY3eWY/JyRWqNQkhBBCSM3i2iLCBXkWbemqOnbna60JSEIIIdF4alk7jv75szjk6mn49ztmo7M/k7RIJAFccvmWyhKvGITUDVRqEkIIIXWOC4o2W7h2a7VsFUsIIXHieR6+8+gSdPQNKzKnrtiOe+duSlgqUu9IrUY5/BNiBSo1CSGEkDqnlufZzrmfuyUOIYSkli1dg1i1o7fs2CWPLE5IGpIkLllHymXhBIAQGzBRECGEEFLnuKb4M4lrd+aaPCbZ3Z/B9x9filXbe/DvbzsU3/vXN6OxsSFpsQghNUquhscuooc0OU8C74hclljFIKRuoFKTEEIIITWLa4uIWlYgX/zwItw/fzMA4IW1Hdh/zAj892nHJCwVIaRW4ZYJKeDS2MqEVYTEC93PCSGEkDqnlqffsiykSeGCNA0NdlQBBYVmgYv+ttBKPYQQAgCWujKSQqTWkbFK4V+nC+M/IbUIlZqEEEJIneOY3s8ort1aLbc1IYQQUu/IM7FzAkCIDajUJIQQQuqcWp5ou3ZvTBRACCFmaKADOtmDXJEYrxyAT/bzmOUgpF6gUpMQQgghNYtjOk3n5CGEEELSjlSRmESiIIcUrITUA1RqEkIIIXVOLc+zXbs3LmoIIcQMjKlJCrg0tspiebvmOUJIrUClJiGEEFLn1PI827V7c0wcQgghpGZhoiBCah8qNQkhhJA6p5Yn2q7FsHTBUiOMcdOji7fig7e8jE/+ZQ7W7Og1LhMhhOjiQHeqzNqdvbhv3ibM29SZtCg1iUuvAt3PCYmX5qQFIIQQQgixhWuLCBfE0ZVhYVsXPnnna3v/3tKN1VecgQb6fhJCEkTm5usas9btxNm3z0bPYA5NjQ2447zJOP/ko5IWq6aQbRgyURAhtQ8tNQkhhJA6xwXrQVu4tuh1TBwlfvD4krK/13X04YW1OxOShhBChklLd/rzZ1ahZzAHAMjlPVz+xLKEJao9XHL5TuM4T0iaoVKTEEIIqXNqef7t2r25lKFVlWdW7qg6tmFXfwKSEELIXlzuN0uZtnJ72d/t3YMJSVIbbO0awBfum4cP3foy7p+/OWlxqshL3c/T8b4Skjbofk4IIYTUObU8z3bt3vxibcXlzW2iGnqeE0KSxrX+ncTDOXe9jlc37AIAzFizE4eNH4Xxo8RqjSQUiVJX+JjlIKReoKUmIYQQQmoW5xIFSY675iZPCCGuw16z/ti4q6+o0Cxw8d8XyjcMY5BJtU4O84TYgUpNQgghpM5xTfFnEtcWETILjpxrggbQSFNNQkjCcDOo/tjZl6k6tmJ7r1PzGLmC1R0ZCaklqNQkhBBC6pxaXhe6dm8yeWQxuFylUqXJWGGEkLhht1N/jGgUb6j5hXaJG3ns7JgFIaROoFKTEEIIqXNqeZ7t2r1J3c/TptUkhJCEYa9ZfzQ3ue8lIE0UFK8YhNQNVGoSQgghpGZxzYKwZiw1K9zPHWtmQkgd4Fr/TuwzolGsvpDGsUxAlShNFMT3lRArMPs5IYQQUufU8kTbtTuTLbDijKmpGg5zIJPD6h294jIMykMIIWFI22YQiU6T1P3cHZfvGp5SEeIkVGoSQgghdU4tT8BdSyQht9R0S85Nnf349ztmY9GWbuHvlYpRt6QnhNQDTLxSP2RzeUxZuAUrtvUIf3fpTWD2c0LihUpNQgghhNQsri0ipDE1HRP0jjkbpQpNAGhApfu5W/ITQmofdjv1ged5+Mjts/Hcqh3611qQJ7BOxtQkJFYYU5MQQgipc2p5ou3avcmUf/l8zIIE8JNpK31/V3VhJ4QQW1CpWR/M3bQ7UKEpz36eQExNZj8nJFao1CSEEELqnFqeaLtmQSiTJs6Ymiao1GmmS3pCSC3gmoU7scN98zcHnuNSKAJ59nN3ZCSklqBSkxBCCKlzanmi7dqaNy0xNYOgpSYhJGnS1WuSsEhyA5Uht9Q0K4sKLiUtIqQeoFKTEEIIITWLa2sImQI5bVl8GxoqY2omJAghpG5hv1MfNKVsF02aKChWKQipH5goiBBCCKlzanlh6Nq9yeTJxajVNLE8rHY/d6yhCSE1D/ud+qBJwVTTpeQ8LsX3JPGSy3u4bvoqvLB2JyYfvh9++m8TMHpEU9Ji1TxUahJCCCF1Ti1Ps11b9MrWNDNW78D/O+FgHLn/mHgFCknKDGcIITUIdUT1QaPCgONSch6pLDHLQeLnxplrcNXTKwAAz6zcgcFsHjd9YlLCUtU+dD8nhBBC6pxath5wza1bJs5XHmrBxF8/j2krtsUqT1gaQPdzQsLgeR5unrUOH7ntVVzyyGL0DmaTFim1pC0WMQlHlJiaSZDPJy0BSYrLn1hW9vfvZ61LSJL6gpaahBBCCKlZ0qSw7R7M4lfTV+OsCYckLUogtNQkJBx3vb4JlzyyGAAwdcV2dPYN4e7PvTNhqdJJenp3EgUl93Pp8fjfEqksfGEJsQItNQkhhJA6p5bn2a7dW5CSdcaanTFJEo3qmJqEEBW+/OCCsr/vnbc5GUFqACqJ6gMV93MZTmU/50hJiBVoqUkIIQmQzeXx13mb0TuUw+feeQT2HzMiaZFIHVPLC0PX7s0xcUJTnf28Vu6MEJIW0tzteJ5X1Y8SMWlzP6elJiHxQqUmIYQkwH/8eQ6eXrEdAPDr51ej5Xv/in1HU7FJkqGWrQdcuzcuagghxAxpjqnpeQzjoUqkREGmhVFAnv08XjkIqReo1BRw00034ZZbbsERRxyB6dOnW6ljy5YteOCBBzBr1ixs2LABAwMDOPjgg3Hcccfh7LPPxtlnn40xY9QzoObzecyYMQPPPPMMWlpasH37dgwMDGD8+PE46qijcMopp+Dcc8/FMcccY+V+CCHqLNrSVVRoAsCGXf246/VN+Nb73pSgVITUJkktIjZ09GFUcyMO23d0uTyOKVlNwcUaISRu0tztpFn2uFGKqelQg8qU7Q6JSEhNQaVmBQsXLsRtt91mtY4HHngA1113Hfr7+8uOt7W1oa2tDbNmzcKf/vQnXH/99Zg8eXJgecuWLcNll12GlStXVv3W0dGBjo4OtLS04M9//jM+97nP4fLLL8eIEbQIIyQp/rlka9Wx66avolKTJIZLiwHTxH1v2VweFzy4AH+dtxmNDcAvPvI2XH7G8YnJYwu6mxNCkibN/dCw7DTVVEHFUjOblygSE3hH5O7n6X1fCXEZJgoqobW1FRdffDEymYy1Ou68805cffXVRYVmQ0MDTjjhBJxyyik45JC92U7Xr1+PL37xi1iyZIlvefPnz8d//ud/lik0R48ejXe84x049dRTceyxxxaP53I53HPPPfja176GbDZr9sYIIVXk8x6un7Eab/vVdJxx68tYsa0HgHhyxnkOSZJafv/ivrUX13Xgr3sSf+Q94Kqnl6OjbygxeWxReR+1cl+EkPSQ5n4nzbLHjUpMzaFcXng8GfdzWmoSEidUau5h5cqV+K//+i9s3749+OSQLFiwANdff33x73e/+92YNm0aHnvsMdxzzz144YUX8Pvf/x4HHHAAAKC/vx8XX3xxlUVngZ6eHnzjG9/AwMAAgGFl5pVXXok5c+ZgypQpuPvuuzF16lQ8/fTT+MAHPlC8btasWbjxxhut3SchZJjHl7Xjh08sw4rtvXh+zU78571zAYhjKHGiQ5Kklt+/uGOuff3vC8v+zuY9/HlOa/FvFyw1TCSnqGxXB26LEFJnpLnfSbPscaNiqTmUFSs1k4CJggiJFyo1ATz66KM477zz0N7ebrWea6+9FrlcDgAwceJE3H777Tj66KOLvzc0NOCss87CnXfeibFjxwIAtm7dirvuuktY3u23346dO3cCAJqbm3HbbbfhC1/4AkaNGlV23pve9Cb86U9/wr/9278Vj919991oa2szen+EkHK+/OCCsr9b2rqwZkev8FwXFB2E1CJxf1pdA9WeEKUWJLXypbPLIoQkTaoTBdXMaGAflZiagzJLzQSaOcWvJSGppK6Vmu3t7bj88stx2WWXSa0hTdHS0oIFCxYU/77qqqswevRo4blvfetb8Y1vfKP491133VVUhpbyz3/+s/jvT33qUzjllFOk9Tc0NOCaa64pKjwzmQymTZumexuEEA06+qpDWXQNZul+TpyjlpXqcS8cRbWVfvG10tTV7uc1cmOEkNSQ5v40zbLHjZL7ucRSM4mxSZ4oiA+dEBvUrVLz1ltvxYc//GE88sgjxWPHHXccvva1r1mp78knnyz++81vfjNOOukk3/M//elPo7l5OI9TR0cH5syZU/b7xo0bsXnz5uLfH/3oRwNlOPDAA/Ev//Ivxb8XLVqkIjohxCANEIeF5zSHJEktv39xLxxFCuLSfYxaWcjWsiKckLjh9xSONCuJ0it5/Ci5n0ssNZNA9jnzMyfEDnWr1LzjjjvQ19dX/Pvcc8/FlClTcMwxx1ip75VXXin++73vfW/g+fvttx8mTZpU/HvGjBllv2/evLnMzfz444+HCvvvv3/x352dnUrXEELMIZuXcUFDkqSWX7+4b03Ulg0lWxlpXoSXUplotpbfIUKIm6S53+G8Tx0V9/OhnCz7uWlpgpHG1IxVCkLqh+akBUiaSZMm4fLLL/d13Y5KJpPB2rVri39PnDhR6boJEyYUXdYrrSrf8573YOHChdi1axfa29vLlJV+bNq0qfjvfffdV+kaQog5GtAgdj9PQBZC6oG4F46i2hpr0lKz4u9kxCCkJvA8+aYnkVO5uZImamUsiAMV9/NBlxIFydzP+dAJsULdKjVPOeUUnHPOOfjQhz5kJAuoH5s2bUImsze2nqo16JFHHln898aNG4XnHHDAAcVs6UG0trZi6dKlxb/f/OY3K11HCDGLqMtJ88ScpJ9asR4UEb+lpsj9vNRSU60M23OTqNTyO0NI3PBrCkea+6H0Sh4/UdzPnbLU5EMnxAp1q9S85ZZbYqtr+/btZX8ffPDBSteVnrdz507k83k0NoaPGPD73/++bLH1wQ9+MHRZhJBwOK6nIHVKLU+0Y4+pGfS7gkC2rbZMlF1lqVnLLxEhlhn+fjhB0CXN3U6aZY+bJhWlpjRRUPzIEwURQmxQt0rNONm9e3fZ36pu3+PHjy/+2/M8dHV1KbuZV/LMM8/g0UcfLf592mmnKbvB2yCbzSZWtwkqs9GLstMTIiKbywFe9cTL87zUfxdh4feUPLI2r4V3MiO5B1v3JlzLePlifVmF93swk8GIpnCbmCrfUzYb/Xlncrmy802USYhLxDk2ZbNZwKvbVAehkfWnaeh3MtkMUiCmMaJ8T55g3lzJQEbcmPmKsSoOchKr0VwCspDksfHMuXYqh0rNGBgcHCz7e/To0UrXjRgxwrccVZYsWYLLLrusrNzLL788VFkmyOfzaGlpSax+GyxevDhpEUhKWLliBdraq7/lbDZXc99FWPg9xU/rpl7h8Vp4J1fuGBIet3VvosnrlrY2tLR0AQBWbQ8eyxe0LMTIJjNWW6LvaW3bgPBcnTbZsGEDWhr2eqLsHhQv4mrhHSIEsDs2tSxciGaVwIGkjNVbovdlSbFo0WKMG1m/imyd76l1Y1/gOZu2tAuPb2htRcuIncp1maC9vUt4vHXTZrS0dMYqC0meOPqjel87UakZA5ULHFUX8ubm8scTRgO/fPlyfPnLXy7L9H7ZZZfh7W9/u3ZZhJDoNDSIHczokkKIHWKPqRnxd8B+jF0TxTNRECHmoCtyOMK229xtg7i1pRsNDcDF7xiPkw4ZZVYwBfjI1VFpK4fyBPHZEhIz9bs9FCOVSsx8Xq3XrVSGVlpuBjF37lycf/756OzsLB779Kc/jfPPP1+rHEKIORogjmfHCRBJklpeULug1GzQzH4ui8flEu5L6Bae5+GZjf24a2k3Vndmgi8gdQW/p3CEabeuoTy+OWMnWnYMYcH2IXxjxk70DMWvEeMzV0dlSMzIdgPZ0ITUPLTUjIExY8aU/T04OIiRI0cGXjc0VO4yN2qU+i7is88+i+9973sYGNjrlvGxj30MP/3pT5XLsEVjYyNOPPHEpMWIRC6XKzPznjRpEpqamhKUiDjJ/W1VhyZMmIAtzR3A3KVlxxsaGjF58uS4JHMKfk/JM7t/I/D67qrjtfBO9m3YBTyzo+q4rXtrfLgdQLlnxZFHHIHJk48FAHSt7QCe83eFmzhpEvYdrbeRWUDle2obtQ2Y2VF1bVmbCPqvUo486ihMnnxk8e8dvUPAw1v9y6xjrnhqOW54aQsA4LYlvXjuwlNxytH7JysU8cXa2CT4tk488USMHsFxTxelvqyCq6etLLPqy+SB6bvH4aoz32JDxGEEz3zixIk4cJ/g9WCtEOV7aslsAmZ3+p4zfv8DAFS7qR951JGYPPkoHVEj84bNy4FlPVXHDz/88OJcgNQogm/dxjyo1tZOixYtUjb8E0GlZgzst99+ZX/39PSUJQGS0dOztzNsbm5WugYAbr/9dtxwww1lL8anP/1p/OxnP4uUPd0kla71aaepqanm7onYYURzM5oECUA8eHyH9sDvKX4aJGNDLTyHxkbxJK+pqQkNFlKMi4xCGhsbi23ZqJAAqLGp2Vjbi74nWZvo1NnYWF5uc7M4RE4tvENRyeU93DBzXfHvwWweP3l2FaZe+J4EpSK62Bybmpub0dyc3gVpUoTpyxZtqVY2LWnvsfZsPYmZYZPBfj6N6HxPsjlKKRmJPqRyrIoFydyioWQuQOqHOJ55va+d6vfOY+TQQw8t+3vHjh144xvfGHjd9u17A/AfeOCBgYuvTCaDn/zkJ5gyZUrZ8QsvvBDf+973NCQmhNhiOKZm9becAm9TUsPU8vvnSXzPPE+67ohWn6C6xpKKXHA/NxNT06v420ChNUp/plrh+8zKauthUr/w8wmHqb7SZv8lK1s2NpFqVFpqSBJUM4l2lj9zQogNqNSMgcMPPxwjRoxAJjMcQ6m1tVXJ/XrTpk3Ffx977LG+5/b29uKb3/wmXn755eKxpqYmXHnllfjc5z4XTnBCiHEa0MCYmkTIQCaHK55chpfWdeCdR+6P33zs7Rg3Kp5hupYXV7LFRd7z0ChM2xUN0SK7LKamQhk5y5mCZJZDOlSKSKUmIeEx8U3WI2loNZnilY9cHZW2GspJlJoJtLOsSj5zQuzghi9yjTNixAiccMIJxb+XLVumdF3peW9729uk53V1deGLX/ximUJzn332wR/+8AcqNAlxEGH2c0506p5fPrcKN724Dq9v2o0/vboBP3pqedIi1QQuWEyUWmerWWpaFMYQtawIJyRuOAcIh6l2s2G1XyAN/bnrqIw3MqVmEsg2KThuEmIHKjVj4tRTTy3+u1T5KKOzsxNLl+5NJHLaaacJz+vt7cWXv/xlLFq0qHjs4IMPxr333osPfvCDESQmhNigoUGW/ZwTnXrn58+uKvv75lnrJGeap5YX1HFbyYjKLbfUDK44He7n5sskhBAd5OFF3OmR/EKgEDVU2mpQ6n4eP9JE7HzmhFiBSs2YOOuss4r/Xrx4cVm2KhEPPfQQstksgOFEQ6effrrwvB/+8IdlCs1jjjkG999/PyZOnGhAakKIDUTxcTnRIUlSy6+f7N5sKQ5Fi5nSL16lWvvu5wbKiF4EIWQP/J7CkQblkVTGeMVINUoxNV2y1JQd50MnxApUasbESSedVKZovOKKK8qym5eybNky3HrrrcW/zzvvPIwePbrqvPvvvx/Tpk0r/n3EEUfgnnvuwVFHHWVQckKISTwPaGRMTeIYLlm1mMYJ93PNmJq2LTVNkK9YqdfyO0SIKboHssLj/HzCIet3dPtQm+1f2VfurZMPXRWVtpJaaibQzny2hMQLlZoGOOOMMzBhwgRMmDABZ5xxhvS8yy+/vGihtXLlSnzhC1/A8uV7Y6Z5nodp06bhS1/6Evr6+gAMu5JfdNFFVWX19PTgxhtvLP49cuRI3HrrrVWZ1gkhbuHBk2Q/5wSIEBvE7Z4oqq+hLPu5ivu5UZGqMBHuorIE9mCE+DN/825M/PUM4W8MQRMOeSI4+TU242eKkFrtxSpFukldoiAHNlMJqSeY/TxGTj31VFx66aVFZeTSpUvx8Y9/HMcffzwOPPBAbNiwAe3t7cXzR48ejd/+9rcYP358VVn33Xcfurq6in+PGzcO119/vZY8EyZMwGWXXRbybgghYeBEh7hILb9/YRa9UQh0P1cqIwXu57X80hiGbUUA4PoZq7Fp90DSYtQUcYcXCQOzn0dHyf1cYqmZBHL3cz50QmxApWbMXHTRRRg7dixuuOGGojXm6tWrq8477LDD8Jvf/AYnn3yysJynn3667O+Ojg7MmjVLS5ahoSGt8wkh0ZG6n3OeQxKklt8/F2JblbmfOxBT0wSVC/VafoeiUgtWeOs7+jCyqRGH71cdDomo8eCCNulv/H7CEWajOO62lsfU5ENXRc1SU5ZxPH7k2c8JITagUjMBPv/5z+PMM8/EQw89hJkzZ2LTpk3o6enBuHHjcMIJJ+DMM8/Epz71KYwbN05axtq1a2OUmBBiElGiIEKSpJYXV/LFhSX3c0F9pSEn3HA/d6OMesG2EqW9exCLt3bh+IPG4pgD9zFadj7v4UsPzMe98zajoQH4yb9NwJVnnmC0DsLvKSwyK0hZHEsZNqdl0jGID10ZlfFaHlPTtDTBpCGBFSG1BJWaFZxzzjk455xztK6ZPn26dj2HHXYYLrnkElxyySXa1wLAggULQl1HCEkWD3Q/Iep4nkcleETk7ol26hO6nzuWKMhEH1RZRi0rxqNis2Ve29iJs29/FTv7MthnRBMe/MK78O9vNxdf/aX1Hbh33mYAwwvya6auwIWnHoNDxo8yVgfhvCAspvp3q4mCGHYoFtzKfh7vZioh9Q4TBRFCSIx4Hqc0RJ24vJBreT3tQubZspiaCtVat9Q0EVOz5N9Ltnbj9N/rhcCpJ2y+aze9uBY7+zIAgL5MDtdOX2W0/O88urjs77wH3PrKeqN1EBKWMNnP494nlMfUrOGB1zCREgUlMOuWhkXgIyfECrTUJISQGBm21ExaCpIWsvk8mhqbrNdTy++kC5lny7KfK5yftpian79vHlo7mQBFhsrT9DwPvUM5jGxqxMhmdZuD++ZvLvv75fW7NKXzp3swV3VM5uapQz7v4Z9Lt6I/k8fHJx6KfUbW9pIkKImJ+1+8m7jQvwdBBVd0aiZRUKxSkFqksz+Dvy1sw/iRjTjO89BIby4AVGoSQkjsuJSVs1Zo7x7E40vb8cZ9R+Ejbz2kZly2MzkPo2IYqWv5jZRnP0/KUlMlpqZl93MTZewpZH1HH1raugyUWLsEPc6ewSy+9MB8PLxoK94wdiTu+dxJ+LcJh8QjXACintTE+3Pu3a/jH4u3AgDefug4zPn2+2tasdk7lPX9ndOCcEhjajrUoFJLzZjlSDMq4+agzFIzgYZ26PUjNcTO3iG8839nFjeR/+2YMfj56QckLJUb0P2cEEJixPM4kTXNup19mHzD8/jvKS346B1z8N1/LklaJGNkU2Cx5zrOZT9XON9+TE1zZXQP+itrSLD74wMLNuPhRcMKvh29Q/jmw4uccU0V7Q9FFW3p1u6iQhMAlrb3YErLlmiFOk7vULXFaykMTBMOFzatgmDSmOioWbuHv9Y0DDlAbHDHnI1lXjFTN/Rja6//2FIvUKlJCCEx4sHjpMYwt7y8Htt6hop/3/TiOnQNZBKUyByZmALf1/I76ULm2TKlpkK9DuU7kFK7b4x5gp75hVMWlv29Zmcf1u7ssyiROkJLzYgfz4MtbVXHrpm2IlKZrtOX4cLTBlKlpk8fGvdwx6Qx0UndFMUhBSupHX74xLKqY6+3DyYgiXtQqUkIITHiefElf6kXbpi5purYsvaeBCQJjyyZTVyWmrX8Ssqz48bpfl4aU9MF9/Po5btkCeU6YZoq46eViRFRKI+oT742goPoEWipyc8pFGmIXUhLzehEGbOS2LSVKrL5zIlhNEJw1zS1G7yGEFJT5PIe/jxnI7b1DOKzJx2B4w4am7RIoWCioHhIm8IlJ5E3NqVmuppLCxdc0nQtNdPkfk6CYVMFU+vvE2Nq2iEV2c8l47gHoHcwi+amBoxqtp8QMM1E+T6S+LSYHIrERVNjPW4TVkOlJiEkFZx//3zcvyfL6/Uz1mDupR/A8W9Iq2KTsxrbpK2FZcrLuNzPaxkXLCbKEgUpnJ8Ga272Y+rUcniHMAjjdNb4+xQcU5OEQdZXurSxKZPkqw8twAtrOzB+VDNuP28yzp18eKxypQmHHqcScgvilN1InZHJ5XH11BWYumIb3nbIeNz0iUk4aOzIpMXypZk6TQB0PyeEpIBt3YNFhSYwnJjiuumrE5QoPJ7npW5ylkZcWtCokM0l7X6ervbSwYVFb6kLr4qCK2f5uZvMfk6CCdNUrrSvOKZm1DLrbxUWpNQk4ZCNXS5tDMnGmhfWdgAYntN+/e8LuYnpQ5THmURfKk8UZK4Oz/Nw68vrcdTPnsFbfzUdz67cbq7wOuWWl9fjuumrMX9zF+6bvxnf+sciI+Xa3NhspqUmACo1CSEpYGl7d9WxP8/ZmIAk0fGQPoVbGklbE2cl8fNkyk7TpK29dJAmCopRhjJLTSfczxlTM07S3FRxWVWmuY1UCHY/r/EGsIQ8UZBee9psfRVROvoymLaCSikZafs+4gh7s2hLN77x8CJs3j2Aldt78em7X8dglpsnUbj00SVlfz+woDqpXRhsvr6MqTkMm4EQ4jyNcQdAsojn0c0sDlI2/5XG1HQlWUiaMbXojUJpH+aC+7kRS03V89L2MVogjBLQlWYTWVVGttSsnSFdmT66n1shDYmCVPvA/gwVUjIiWWom8DZI30uDHfv3HitXwHUNZHH/fDNKOBKOJOY7TfU4oAqgUpMQ4jyNNdRTeZ47i9VaJm1WZMm7n9curi16VV5NmZLbJVRFTMGtWKVrIIMfPLY0aTFCE9d6qdZfE2Y/t4Nsc8qlOYDqMO6OxO4RKVFQAg0bh3Jr0ZauqmNbuwes10vkJJGYkpaawzBRECHEeWot/pZLk+1axaV4WirIlJfxuZ+nrME0cCELaamliIrVSBqyn6vKWLtvlhofu2MOXlzXkbQYRon6TIUu7TX+ogQnCqrxBrCErNVcmgOoPtta/waikLbvI6nN1FpbL6UNeSxVD+II1dFhTM1hqNslhDhPLfXXHpgoKA7SpjiWZj+Pyf3cZGst3dqN0256EW/8yTR859HFicd4kieScPcdse0ab2KBqG6p6W4722b1jt7QCk1XWk2sgHRFuvTAREF2kIYX0XxHbU4zGUUmOmmz1JSN4WYTBZkri5iBjyQ5qNQkhDgPY2oSXdLWxrJs13FZaprkq1NaMKe1E+3dg/jdi+tw37zNicqThDuQnwxqiYLsyWIK5ZiaVqVwm9U7ekNfK+sTagFhRvUaf1OCEwXFJEiNIXtvXGpPdat2h4TWIJ/38OsZq/H+m2fhggfmo6NvyHgd0WJqxo/cUtOcNKL3qpaMQNJIEvNNl/q6JKFSkxDiPDWk02T285hIm0JAbqkZl/u5mXI6+zN4dcOusmNfeajFTOEhiSNgv44MKrXajqlponjV9qvn7i7KO+bKOCFMFBS1zFoa1BUJdj8ffl9Wbe/Bup198QhVA8iGSN3vx6rSQfU8Nz55be6euwmXP7EML63fhbte34QLp5gf89NmHR5H2BtRUfXYt7pEGjZZahXG1CSEOE9tWWrS/TwO4kqwYwp5TM2Y3M8NNVcmJnl1kC1uk3pFVBZn6YipqVhXSq2PTBDlzl1JFhVX/EtHbtcaQZmtc3kP//XXeXhgQRsaGoAfnnE8fvGRt8UkXXqR9ad+/VPcU0pXNihs8eUHF5T9/fCircbriGSpmUD7S5VbJusQFFY7qyV38DxPWVmczLyytvsXVWipSQhxnhrSaQKo70W+LgOZHH7+7Ep88+FFeG1jp/J12ZQFsZLJG1/2czP1NDno+yR3B4rRUrNECJVa06CTZ/KLYKLcuytdmI0v2r1ewj69g/5KzVnrOvDAgjYAw+/Nr6avRmtnfxyiOcX2nkG8vL4DW7vUsjjLEwW50/Ew+3n9kZylprnyyTA6z0ymQLc532S/MQwtNQkhzlNTlppIh8LCFc67ey4eX9YOAPjTqxvw2nfej8mH7xd4XdpiUcrc5eNyPzdFk4PfqgvuQGXu5yoxNa0nCjJQBhfqgdSCpaYIG5K5e7dmCIqp+cvnVpX9nfeAm2etw68++nabYjnF7A278LE/z8GO3iEcMGYE/vGld+MDbz7I9xpTiYJsoh6qwx2Zo6Jj3aZWXoRrjUmhjn8WbDOIynJwCpZ68p6HRsWtuBr6hFMHLTUJIc7joPFXaDyvtiauNmnbPVBUaALDVovXTF2hdG3tuJ8nG1Pzdy+uxbl3vY7rpq+KzRXeNPJFb7xyFFDZsbcfUzN6+YUSgrrneu7vkoqpabLNbWQ/r8eM6kExNUVKz209g7bEcZIbZ67Bjt7hJDO7+jP49fOrA68Js2kV96uWsumIEUy3cdqyn0tjeVuuQxQDmURD5/uVPneL72CND53K0FKTEOI8tWWpSedzVUSZgx9d0i44s5qaUWrG5IMqa63vPLoEAPD3RVvQM5jDzz/y1ljkMYncDSxO93Pxv2XYfn1NFF+wJg0qq54n3JEsNSO8BHkPaDI0bAoTBUV8pvW48A5Sau47agSAcpfr3QP+1p21xpSFW8r+fmLZtsBrZEOkS5aa6tnPawfT95K2mXMcr58wpmb9da3W0elLpBa6poSJuew0QUtNQojz1NoY7dBc22miWKu5mLDGD5lFZiY2S83geirdI4XlmBDGMHFYTOigptR0sSXLUZXQ/TuxR6SYmi5bahorvaTMGn9RgtzP9x1dbWeyuz9jS5yaQR5TU35N3Iof5VAdNfQNmN40jOZ+Hn/DxhNTU+B+bq54sgedR+aSVXC9QaUmIcR5TMblSRrPS4fCwgWitFPaLDVlCty03YeLLqTy7LgxWmqWTDtVao1ipaeCiVsvlBHsfh69rrQSZTEdZV/G9SaPS1HqEoMBD1So1KwzS80wuNC/B+GSLHFheghLWwvKs5+bjKlZfayW1kuuoBPjXO5+nrY3OH1QqUkIcZ5aGgyGY2omLUU6iDIpTpsyUCZvXBan6WotPZKIceRXl0p/Zt/93ERMTTX383pc0BdIylLT9Tavx2V3kNX9+FEipSYtNYNwoX8PQj37uUNCR8T0vURZByTxLsieuVFLTZFS01zxZA9aMTWlCaIMCSMs3GLZKYJKTUKI89RSf20qpmbXQAZdNb7giWKtljqlpkR5Gdd9mJpwudjqScQ48kOlXteVUoDOQr1+iRRT05FFvGiRXEsbjXERtEElih1OS81gZH2lS31oLSkrVTGeKCiha0PXGcO8Q/SO11IOAlfQi6lpURAJ9de7iKFSkxDiPA7NTQEA7d2D2LirL9S1Ud3PPc/DpY8uxv5XPo1Drp6G/31hTeiyXCeaUjNdMTVlRjyxKTVreFokz34eo/u5J/63DNuymXE/Hy6E2c/lRMp+HilRkMmYmoJEQTbKrPH3JMhSUzRm0VIzGHn/rluOvfdPdTpSS5+A6TEsbW2TlBsydZrm0XmX5WEHiG2o1CSExEYml8dPp63E5+6di7tea1Ue3F1SuFw/YzWO+Ok0HPuL5/CF++aFUrxFmdO83robN724DgAwlMvj8seXob17MHyBDhMtUZA774wKMiVs2hIeubjwcME90Sv7d3DF1mNqxlhGXM08kMlhIOOfYTpuorxjUbow+5aaFsqMVqTzBG1QicastI1jQezuz+Bnz6zE1VNXGJu3yFrIJUtN5ezn7ogcGfOWmtGMAeJGmijIZB0GyyJy9NzP9Y6boJb6jShQqUkIiY3vPLoE10xbgQcWtOGCBxfg3nmbkhZJi119Q7jyqeXFAe6v8zbjhbU7tcrwEG1y9vNnV5b9nc17uOnFtaHLc5l6ShQky37umvt5kPWYSxsQBRKJceSDmqWmfTmioux+HsO93PD8Guz7P09h3I+exM+eWRl8QUxEufVIFv0R6q2Elj9myASY68k2sGrFgjWf9/Ce38/C1VNX4GfPrMS/3DgTvYPR3etNJQqymWClNp6gHqbvOVr28/iRWuwJDu/qG0JH35B+HYKyXOuuN3X2Y93OcJ5trqAzr7U5d5PNv+uxfxFBpSYhJJBV23swY/UO7O6P5gp168vry/6+4IEFSte5Mqe/Y05rlZLp639fqFXGsPt5eBlEE5+tXTVqqRnF/TxlFi4y5WV87udqFBbmPYNZ3DO3Ff9YtCWSm2wcuOF+vrculVrtu59HL98VS/vNu/vxg8eXIpv3kPeAq6euwKrtPVbrjIMo/Z9993Pzz9SVcd4GubwXeH9DkjGrd8gt6+OwPLGsHcu37f0u27sH8efXWiOX64IlfhDKlpqW5YgT4+7nRkuzj6ql5tVTV+ANV0/FwVdPxY+eXKZXh6BVXNqEumbqChzzi2fx5mufw/n3zXN+rihDJ5qVPJZq9HuXbYyls1XNQ6UmIcSXO19rxaTfPI8P/fEV/MuNM7F6R6+xstOWaGIwW7246BnUW3B4CF7c+CHKkNptwNrBRaJlP0+X27bM1T627OeKbZ3JeegZzOLk376AL96/AJ+663X8571ztcuJE+miNyEZVJSBBYXWxl19+OETy/CzZ1ai22DSEDMxNeOry49fPre66thPprlhrZlU9nPbbR7Z/Vyw8Haw6zCGSj8uG7N29upbcLnIE8u2VR3769zo3jqyod4l/Ym6VbtDQkfEuPu5I+E4VFF55ut29uFnz6yE5w3LeN301VipsSEnqsOVREFbuwbw82dXFtv+3nmb8cqGXckKFRK9mJqS4wbewaFs7fQPNqBSkxAixfM8XD11eTGu04Zd/bjt1Q2JyOEqurtvw5OX8PdTT0rN+sp+nqylpipDuTweWLAZK7fv3dz428ItWLHHAsfFT1Ue4ygZYVXdz3f0DuJfbnwB189YjaunrsD/d+tLxmQ2UYpqGbabWWS9vjOEK58NolhnRNnPsP1mRy3fkXV3bKj047L4ma68y1GxZVUm+8Z0NwVsjgcuz2FtYd79PF1tKA97s/f4z5+r3ny7ZuqKSHW40rf+4eX1VUrXSx9dnIwwETERU9ME0hAmKfs2bEGlJiFEylAuj9bOgbJjv36+drNtB2Eq5lKU4Wfc6DpSatZVoqCE3c8V2zqT83DV09WT7n8s3mJaJGPIF70xylBSl6r7+e9nrUdnSciP+Zu7MGtdh3nhQuKKS6XIpc0Va5WkLDWNup9bLr8eULHUlJ2zs682MqAL4/8Z+E7DhBeJu3dIm1eSCUwrIaOUlkR3pWKx19VfPXfv0vDIENXR4EhUzX5B0r4+xxL5qaIz3snONfEKDmXpfu4HlZqEEOeppQ7bQ7QFIS01qxGti9Lmfp509nPVN3Iol5coOfTKiRN5bKv4pC2tS9VS8/bZ1VbxuonJpPLE6n5ut51Fmx+NbqzrIr1hUTZ1jGY/F7Rl1NhoooV32iyxdFDZZMtI2jRqLHNXECtg7JTrdzwJlOMPuyR0RExvGkZLFBR/w4bNfh5Vz+/Ifp4kiZEjwmmi8/bIldnR30HZGFFD3UYkqNQkxHEWbN6NO2ZvxPzNu5MWJTFcnujpyuZ58piaKoNeGpSaK7b14OzbXsV7fvci7p+/OXQ5qpNikVWWa27bQch0l65lP8/k8uJ4eHsKcFExIdtESErvrbLAkin0zVmLR39OqmVYt9QUVNDkiFYzyvfgsqVmlNAgQB3G1FTobGQhSGqlXcSWmtHLlffv8paL2qZD2TyeX70DC9u6lM5P2XTECKYViUkoJqMgz35u7j4cnG4VEW5iuDEsa6OziWdzDiyz1CTDVK+OCSHO8MjiLTjv7rnI5j00NzbggS+8C+ec+MakxYqdtA3cQefLrsnlPTQ3+Y/640ZWd9s9Dik1Pc/D2bfPxrqOPgDAf/11Ho4/aCzeffT+2mWJFs6iSVFjA1Dp1JI2pabcUtOt+8jkPKES2S0py5Fb8sRoqemJ/y0jDe69riQKErWVM+7nEa6NFFPTp+LVO3rx7UcWY3vPIL52+rG44N1HaSvLHeuWnEfNUrO2F6zCmJomypW6n+uVo/oN7O7P4Mz/ewVzNw0bGvz4/52Aa/5tgu816qE6aufDcmkIcylRkG1RnBn7HB6XdTERU9OI+7lkUuDSt5YktNQkxGEue3xZUTmTzXu44ollsdbPjrIcU8Ox1LJAob1FFkjdmhnYbTJrXUdRoVng0n+GCw4uaqcmwaRI5NKSPqWmWN7YLDUVp1xDubzQtbewHnex1eWW0THKIPm3jLyPRbcJTJStGnLA9kJdtPnhiKFmctnPfX77xF/m4Knl2/D6pt346kMtviENBjI5vLR+V9XxyJaagmO1PN+IkiioltvFSEzNmBMFPbJ4a1GhCQC/mrEa3QFxEFUlqaVn7Zb7efzIEwXZrdeRoU/4/FOq09SMqSk+buK5S8eI6EXXBFRqEuIwq3f0lv29quJv27jSUbqye21iQP7cvfOwcVe/8DeVgVM0UZLt3iVBa2f1vb0sWBSrIFZWCJSaopiaDrWJCrJFby4m6x0t93PBtLnw7rq4KHMhUVApKotn2evb0TeE7zy6GF9+cAEWRAhJYuLWld3PrVtqVh8TbX4kQbTs5+bdzxe2dWFpe0/ZsW8+LN502tk7hFN/96Jx2QCxMsuVcd4GURIF1Uq72OoHwlhqRukdLnhwQdnfg9k8nl6xzfeaNFjem8alREFJkJSHiCNDn/AuXdls1EXn+7X5fF1a67kI3c8JIVJciY/niBhCdNtoV38GjyzeKvxNZaHocFMYR5Qoo0mwFSeaKKXNUlP27F1zPx/KeamLh+dEoqA9QnQPZNHWNRh4ft4TS3fjzLXFf983bzNWXP5BHHPgPqHliUKhiKCibLey0P3ckdWTbUtNXWug9p7qd29Je7fw3L8tbMOiLeLfoiQxqkdU+vG0jVnaiCy37BS753h87Rn0rdZl9nPT5UVKnBZ/yyblIeKKUlMUh7IuEgVZnG/GlTg0rdBSkxAixZV1iyNiWB+QVSa+rjwTGSbFE7WHyFKzFhIFhXE/f2ldB6au2GYkeLhqa2Uk2c+LiYKc+Vr34oT7uQfcM7cVh14zFdfPWB14vopCayiXx8+fW2VCvHAU3c8DFvSWv0WnY2pGuHWV9YvcSi16m3/974ukv9mwPHN9bIuCSrxMqaVmjbSLMKamiURBkv4lzilAUF2uGAjEiek+Im0tmDZ5TSO6f0eGZSmy71TPUlNWdgiBKmBMTX+o1CSESHGlnzQ5Icznvciuc7ZQssxx5qmIMTm4ip6TKKaoUKnpmIVjKQs278bpv5+FCddNx82z1sHzPB+lpngSc/HfF+L9f3gJH7ltNt538yz0DUVLFqX6jQ3l8kIruGJ8RQebXSZSnC6BQ7k8vv3IEgwoKqBVu6j7520OJY+JO1dPfmEX0TzfEUPNSPeuNh5oHpeU+dK6Dtz68nrlkAaMqamHyniUkbRpDTeLkY1iaf8e4zwv6HtQttSsoY/A9K2kLaam7P2z7rmgMMV4bMlWfOsfi3Dry+utfScubzbKkDWFThQom/NKxtT0h+7nhBApJvtmFyZrf1/Yhq881IKugSy++b434caPvR3NIn9mDYwq8ZTcDSXX5j2hwi/NCJWaqjE1Hc0k63kePvGX17BxT+zRSx5ZjMmH76uV/bxt9wD++MqG4t+vb9qNx5a24zP/ckR4uRTPk2U/dzlmmNRFN0YZZm/sRGd/Rvn8nOcp9Zlh1wgmHlehiED3c8sNrZpQLAmijHsq44Hsu9Ot9wO3vATPA0Y0NeCRL70bH3nbof6yRY6pGeny1BHFUrNWEL2SJt4DU9nPoxCs1FTcAHJ3GNXGuPt5lGsTaFebFnth6i0wpaUNn7lnbvHv9R19+NVH325eDtH3brwWs8iTuGpYalr0DGJMTX9oqUkIkWLSKjDpXdahbB7/PWUhuvZkqbx51jpMX71DqwzbC7EoljldA+oKk7Qg3ulVO89V9/MX1u4sKjQLfPMfi6SupqL7uG9+tXXeNx6Wu4qaZEjmfl7xf5ewmY1SlSbNvkPVeiJJ5dDekAMB51l+K1y2CLFuqWlIoVMoJ5PzcMWTywPPtxFT03UvhCioxNSUZz+vjXYRvc9mYmrKNq3ia7egb7VGHqEWxhMFpawR5ZupnvDftustUDlX/PXza4zLALgd61qGbHNCZzyV90fRoaWmP1RqEkKkGLXUjHKtATkeX9ZeZSn1lYdaohdsEBXjQtmEpaCsTRqTkzRxoqDqSZFoIuJagp0C23qGqo4t2tIttdSMy+JUK/u5KFGQV/i/e+0uz34en6xjR+k5xqhOosO6b5r4TtVdKiNXpS1HgyOzW9sxNeWWmuHrXbilK/CcqAYjovfWwa7DGCpWmLKNuFppFtF9NBjYfJC6jFpqOJFeJkjJ70qojjgx3f7RDCPib9mwlppRQzIE3emO3uo5qA2E33ssNYdHOp5qvD82xzHG1PTHkWkfIcRFTPaTkTIXGpCkZ7Ba6bd590Dkck22kZL7ueR4l+D+0o5IWSl2fa6+1lVLTRkyeUXKWRsTQ9XWkrmfu6jMLOBCoiBd8p6nJJ8b7ucBVkrRq/JFtZ9IG9Fiatptdbqf6+HqJlvSmHE/j3fTStS3mIupGUYiNzEeUzPKtQm0q7ROy7K48g6J5HDcUNPIBoncMyj6g6n1ECVRoVKTEBILSY+zJibPtsfjKO6GzlhqGnzQosmBqqWmqzE1ZcgSScSlnNVKFCQMAVAox6BQhkhobVGGrhLIhnuvaZTdzy3fi9MxNSO8ZSrvjG7mZ1NPwo77ee0SpR9PQVeghK37kBVrS6kpmoMEZj+v6bdbjOl7dnnjVIQJq78wuPKuCcNNODIuy5C7n+tYatqzuB+Sbo658cyThkpNQogUk5OISK4jBsQwkWXTNirrHrlS042YmtaznysmqUmbpaZMSSDamU3yzjI5T/gt5QMUXEkuSOK25BHXpX++yiVhezWTlpqmzguLqG1dsQiJ0s6RLDUtv9s2sp/XMlEsbFxRUkTFljuqNK6sZpOrtrJqXO8wsrjyrG+cuQb7/s+TOOiqp/HXeZtClWHc/Tyha03XaT1RkBuvkLABXBmXZUgTBWn0JTabXzaOuPLIk4ZKTUKIFJMdZZTJmjODtACTi0eVhaKsHXuGcsbkcAWRYrLSSsLzPLH7ecrc/WRK2PgsNdXOG5LF1Ay4Lkkdc1KLi1J0FajqiYLCxtSMTkHGpLOfu+x+HuXWo8TUtP29RVVqinB5nI9KJoEOsD+TQ3/GnXmBaK5k4jOVW8TJiWIxpuotUkqasp8va+/G9x9bip7BHHb1Z/DlBxdgV98QPM/DP5dsxZ9e3YAtXcGhm8wnCjJanHWSkjfOzVo/xInB3BiXZcjdz3UsNfWO68CYmv7oRa4nhNQVRhMFRbHUNLAEN+J+rlFImAldFPdzVwY1k2KIFHqV6wnZJCSTMvfzXET386ivt+pzkycK8ldw5fKecDEYB9JvJsb9bd3+QNW9N7ylZvR7L5QQqNRMIPt5Uu9aJVHaOdJ4IGlzU60SdeHsiM45NiJZamo2ted5+OETy/Dr59dgVHMjbvjYRFz83mND128KsaVm9BdBaqnp03BRvkuxt4j/NY5Mz5T48dMryv7O5Dzc/NJ67Ogdwu9nrQMAXDl2JF695H047qCx0nJM33PaDCNsZsH2rdeRl00khiPDshQT7ueycwezeby4difeMHYk3nbo+FDyMTazP7TUJKSGWLSlCx+85WW888aZuGdua+TyTC5Gk+6K47bcCWOYoeR+Lr026RY2jyguZqWyQnbfrrqfy95CWQzQuAKDq8fUFCcKKsbUlLyhScaIlC9645NB3/3ccz6GmKp4SWQ/d2XxFCn7ucLFutnPTT0KOzE13X7foxDneDRv8278+vk1AIYX0t95dDF2xpTxOAlMzYlUu4xwiYIULTUVZbDJxs7+qmMrt/cUFZrAcAbtm15cV3VeKabnpNFCWMXfsnIDBLuyhCndhkxpjKkZxupb9dz3/P5F/OstL2PSb57H9TNWa8sG+Fhqhiqt9qBSk5AaIZ/3cPbtszFz7U4saOvCF+9fgLmbOiOVaTTpS8KB8m0NpTLRwkwSlNzPLQahdg2xpWb5k5S1Wdrcz2Xiqi6G47rbjDRRkL8ENtxVVZErfuKTSdv93FOMqRk2+3m4yyrK8Mr+Lz3PulIzuJ9IiiivfZSYmvbdz6NdL1rcOq7Dj0SclppXPbW87O9s3sPNL/kroOLAVjZkeczk6GWLELqfB8XUTNG73Sy4v0VbuquOlSo5RZj+nlPUhADMKMjCEKbd4won4spmowwz7ufic7f1DO35HfjFs6swECI0CLOf+0OlJiE1wjOrtmPz7vI4N9/755JIZRp1P0/o2gJxZz8PZ6kZZRHrxpTPdozRStevtFlqyshKJiuxxdRUPG8olxe6DBYeg5/7eVLINx7ik0H3/lW/5yQTBalmvLfdzC7H1FRzIZdYN0eIqWmiH/Zz4V+4pQuzN+xCLu/h1pfX48qnlmNhW1fkOmuVKG6Dule29wxWHdvZl3wiQVuWW6Y2llXPDrOppyqLC9b5ou9e5knih3GlZhRLTXNiqNcptdS0XG+Iu7UxPRN/7+brMYlsc0Ln9Vdpy+7BLF5a36Fe6B5k2c8d6DacgDE1CakRNnVWB+5+cZ1+p1mKyX4ymutI9PrjDlBta2JR7zE1KyfcsoV/6pSaEnlVd2Yjx9RUbK5MzvNNFCQrJln383gteUzUlc97Ss8kSXcuVxbqYktNq1Uqo6LUjGIdYtPNvLEB8LMl+cAtL+HDEw7BY0vbAQA3zFyDl7/1Ppx0xH6BZYseT7p6bD3ijPE8orHaXsUFCx/Ru2riMw2TLCtKvxnO/VytbBe+AZGlZpj5lMl7+ePL6/HnORtDX59MTM3g4zbkClOmDaMIUYnOJwoyEFNT9dQwbeFCP+4ytNQkpEawsbY1uRgNo+R7bMlWnHDddJz5f69Ert/W2t9kvL4o2c9dsdQUEbbtxUrN8r9l9522wT/x7OeK3+ew+7kopqb/9aXv9gtrduLivy/Etc+twlDW/nOSLy7i+2bCuJ+rENpS08C9BymyK8+zhTCmpiNaTZXnKHs3VMYDXYWozmsoSohSSibnFRWawHD8xqsrkozIcN1ixzSRLDU1+46RzdVLO1kstqRReQ+C7j9MoqAoiCwZgz5VVVlcmMeZUmqaupdV23tw8cOLjJQVJ9JQUQHtErVvDNPuVpSaok0Mx/t9qaWmRvOozq3CtAVjavpDS01Capio41SSlpqd/Rl8+u7XjWV7MzGW6gxCdZv93KAcoozgVTE1a8T9XKbAcC3b4VBATE25K+3w8VnrduKMP75cnCQu2tKF+z7/LiuyFnAjUZCuUlNtahw6pqaBey8YnwX1dbYX6um31Ay/USVfOOudLyKMC//jy9qDT5LgguutLaKMR7pXjqzc+QOQiWHzKIiwGyme59/PyUq1FlMzxKae6qvtwicgjBkaxlLT0L1cWREjNgxJJCFTsdSMs14/bOx5iPpzV8LCyJC95jrvj81vWC4fAWipSQjxIcmYmn95bWOgQkcn+VDcY2m9xtQUEbbpRXGcKidFNRNTM6L7eVT03M/1k3wUlM+XPb6s7Nt4YEEbegazqmKGQjYhjTdRkN75qotIW+7nKm2jOtG33cw2Y2p29A3hwikt+NgdszGlpU37epXHKHvWKvsZupaaOu+hwIvZGCLx0tVj6xGn58DIpup3XxaLLU7E7ufB32mgJXgIS80ofb9ow8RU9nMXpi3m3M/N3Mzqnb1GyokbqQLK8jN2xf1cdP9uqzTNjJs246HX8safCWipSQiRYnJ3U7czbhXECK0k73loVBwarC3+ZcdDNJ3KusdmDDUTmHxnajGmpuw11HE/tzGxUS1xOFGQ/HpZOYVF36sbdlX9tqs/g3Gj7E1HXPhmbLmfhyWsokB0TmBZKgJFQNRWQa7Tqpx391xMX70DAPDEsm04cJ8R+NBbDtaQTcVSU3I8QjgSE5tfNq1q3Oyd7RHN/VzvfFfdz0W3oe5+Lj/RRKgFHcJkP1cVxYXNadH9hVHKmxrDTMRhTCSmZkLPMlw8fxtzyuoyHTfUlG5OaMXUVDwvTFuYXG/WIrTUJKRGcHys0B5mx41sCjxHJ/lI3O7ntuLayJOeuDuqhVUoi7OfB58DhMvWGQeyx5S0+7nq65PNeUJLlaKCS3p/fnXbvUcXrJvDZD9XaZfw2c+j33tRkR1QVDKJgqL3+O3dg0WFZoFv/WOxVhlR3M9VxjddayCd19CUYliE6J1weAiLTBRLTV0lhcj9PI7YxWFQUmqGPMHv24uyyW0zpqYL34AxS00XbmYPSUgiV0BZnu+EstQ0L4cw1rXjWs0oG4wFbCYKIv5QqUmIo+gOfDYsEY26n2uWNV7BcktnII57LA3TdCqLWNd36kzKoWKpKU8U5EiDKCJTwsaZNVeFobCJgnxdASOL5YtsQhrnN6Od/VzVhSlsTM2IvwMaC3Wls8IjThQUvdydvUNVx5Zv69EqQy1RkOy4+U0unY1AV+KS1gJxeg6MECk1XbDUDNnhBm6aSJMnhqoukFDZzxWb34XN6WZB55l09vM0kpSHSDgvMQuWmgJBHNdpGnE/t5koyESs7FqG7ueEOIoLfZRJEXStDVTcUVUH4q6BDK6fsUarflVMWk5GSRTkwmQYkLiYhSxLNJGu3N2UW2q60R6V6Lqfe97wPZYqc61sYGhkPxdVX/gOZOUkaTkb50aAqf7AxiJDB6WYmgXr3IB3x3pMTYcTEkSy1FT4ZLQtNTXeK5FFmikcGa5iIxMlUZDmpSOE7sPJN7hIApXv9OFFW3D//M04dPwoXHv223DQ2JHl5cY8JwoTU1NVEhfmcaYSBZka8k2ENEpC6aObxE3198B6Q1wTV0xNV8ZlGbL3XKd1bE51k+8d3IZKTUIcRXeQsTFUmJwI6BY1blSw+7nSgjHv4T2/m4VlmhY2InTcBUK5gKjE1JQmPdGvLy7CzmNEir7KZy6ba+fyw+67tmKpmsZPCZvJ5dHUuPd7sBJTU7HI4Zia8kRBodzP1aoOTZyLXlN15T21dgnrwhRs/aRQxp6zbC/SghAp6my6Tuug0qdHy34uOS6tK1ieAoypaY5o7ud6jBDE1HTB4l8kQukbJhvXPvfXecV/r9zeg+cvfm/Z73FuWgEy9/MAS01HrNpVcC1RUFoxkUk7XL1hDCrMyyESw41RWU6UsbiATUtNeZ0EoPs5Ic7iQieVpPv56GaFmJoKI/Hjy9qNKDR1CTOxUHI/lypNtKtzHpF1nwdgR+8g5m3qxK6+Id82S9raTQc/WWOxslGsIiOLqRlwXZLPQjeZShRMuC/5lVNJaPdzA4pI1S4uiUWciQWDiTJUnqNM36ViVam7CHMlUVC9EaelZFpjaqq8mi+s7UBrZ3/ZMRPvumr9gPi7MBVT0wHds3BDKIxS3qWN9iREUTFAsCFXKPdzGxu8grtzfUyJEgqmgM2YmlLrX+2SahNaahLiKNqWmhbGCpMdpW5ZKrevoih4ZPFWzZr1MGkloGSZIz1ud1gbzObQ0ZfBAWNGYPQIucLZpBWhaB49a10H3varGdjZl8Eb9x2FGz42UXp9Nu9BQTfuBH6WECrx0OKySM3k88K6Cu+u1FIzwRWOPA6R+br8LId1y1GRz9ZTV+lPCreUtKWmSF8Ud2I4GVHczyONBwa+Q5sxNV1SeMRBLoK2SndMHVmZTQ/AkBPu52asGbd2DeKo/cfsLTdGS3xArPQLdD9XFMUJ93PB+xNmT9KFeymQhCiJxdQMk/3cwqazqEjHdZo+2c/Vy1A91WRMTTIMLTUJcRQXjMxMdqDau+YKQ4OKosCkhZj97OfB58hj9mlXp8zybd046cYXcMRPn8GJv3kei7Z0aV0f1kVWFodxZ18GALClaxA3zJTHSnUhjpgqQe7ntlGdCA9lA7KfS67z+w5tT9RkxVtxP5cmrdCrS7XfCp8oKPoiPCiO6t667CJqWxN1mshOGvQYfzV9tfT7Vum+bFpqho2puXZnL/ozOd9z6s01NcpYpNtNCS01nUgUVH2s9BtTvc3Kd1jev/vJEt66ux7dz8Pgwr2Eob17EB+7YzYOu2YqzrnzNezoHQxVjnzDyb9loir+whlURKtTLEcaLTUl46ZGAyl72SiXGAyVncNQqUmIo9jYOdPF5MJDt9NVs9QcPimf93DjzDU484+v4OK/L0TXQKZ4TlIJY8LUqqLICDtRisL109cUs/6u2dmHnz+zUnqucOFiMKZmJXM37fa5PvmFXCUyi0pfpWYM77Dq6zNsqVl9PDD7uZ9S09LyJ5vL40+vbsBvX1grqdc8cvcl3XJUJ8ZmY2p+5aEF6B3MKsbUVK3L7vsrVGomP3wCCH6OVzy5DP8reT8jxdSUvYcaXWLYBejx107HSTfOxAqfsC+uPJ+4iGNjqsBIQUxNJ5SagmO67ueAQKkZQoEv+kXd/bz6WJAFtGr/74J1o248Yt2EOF1Defzq9U5c9mIHnly+TVe8UOi06lVPL8cTy7ZhW88QHlm8Fb94dlW4OhUsNa3kQghxTVyJghzXafrEQVVHPSyPPsn3Dm5DpSYhjuKATtNsTE3N7ljl7MJE8i+vteL7jy3F9NU78MdXNuDivy8qnpNNaDIff/Zz7eqUufP11rK/pyzcIj1XuHAJWW82oqWljkI7k8tjU2c/ugeykeoMi39MzfJ3OMmuYSgrSRRU+L/kBfVb9Nlax33mnrn42t8W+tRrYSIvdV/Sq2s4UVD8T/ovc1px77xNetnPA061fRei+k20nRn38+BzbnpxnfC4yiaX7L0yYTEcxWBr5fZe3PiC3Iq+3oiU/Vzz/BGNbsbUFFpHlv6ueKeVTSlVRPhaauqdX4o4O7j/NcqKDgfm/c0C93M/5Mo78Q8/eLEDf1vVhxmbBvCJO+fipXUduiJqc/OsdfjtC2uVNhdun72x7G9Z/xxEUtboYeY1jKk5jNz9XL19VM8Ms0ZkTE1/qNQkxFFqLqamtqWmyoJu+P8XP1yuuLhv/ubiv21bapqM16fkfi49XnvDWtRnp3p92+4BvP/ml3D0z5/Fm699DtNX7YhUbxj8vvc43OhVa8jkzbuf27AS2LirD/8IiKdro2swFVPTvvu5nK+XbAr5oexSafn1dTkhWJR3Wy0ep95xncVrWPfzAre9ulH6m7tPzA6Rsp8baCwXLDWDUL3Pyu89lKVmhI0QcaKgIEtNVYVt8l+GtqWm5LjIKry1sx/ztg2VHfveP5do1ReW7/5zCT5377xY6gLCKdtt1ut/TUyWmsZrMYuJRI+qSuUwTZ587+A2VGoS4ii2Jjee5+GO2Rvxkdtexdf+thC7+zO+5xqr18L5hcmtSOlTsNA0uQOpMyCHyn6u4n4ujfmiXZ0VTL62UZ+dqlLz/17dgDmtnQCAHb1DuOLJZZHq9UPXVQuoXhBbcVlSbOuhrH+iIBn+Sk2lqrV43ScsQQEbXazcQk6vnLznWU0UFPS8lWJqVvxffp7dqbiobU08WxNlRBnHo4wHJiz6bVrV2A5J4BpxhsERfW8uxJcWSVA6loS1cJIq1fwsNQVXqT4i8aaeKaWmmgw20Y2pqWMtvqWrOj5lYe4lw2RX8fdFW7CtO1yMTF3CzPXM1Kt/jY31g0gOm8nnTGAi+7nqN/ydRxfj+48tQbuB97HOhlMpzH5OiKPoTm5UY6s9vGgL/ntKS/Hvrd0DeOSCU4TnmrXU1CtNJ6amiP5MHuObGiO7MIclnKWmyiJWcly/utgIHVMz4rNTtY75WUWM0NcCJtlRkMfs8bHUjCOmpuJ5MkvNKNnPrVgJKMWnjcc6Yfi4Xl3KMTVDflzBikiFMgKe+d7zlEQKja1EQSbeyyifrsq1uv2JTqxu1xegaSJSoiDd0D2C012w1BTJVdp9qb6blafJFfialpqK33uo7OdKJbuh7Nd1P5cqNQOed1Ks7ejDIeNHWa9H1y3fWL1hsp9bsdSsLjPsfCUuZPNULfdzxXPnb+7C/M1dmNLShjVXfAjNggRv1WVLjitLV9vQUpMQR7E18H3loZayv/+5pB2DWXGmUqMxNTXLipr9vG9P9lXr7ueGLLOGr1FRxIS/Nm1ETfSTVJIoP8KEK0hFTM09Qsm+B79v1Yb7cBSFULR6o0+Kh89XO8/WGkFtU0mtLNt9kzhRULIKyb1lWLbU1Bx/dO4pqvu5H+71zHaJ0/1cdLoLlpqib6HRiKWmzFJQjug31fpF30XQXCNNlpr6iYLEx03di+kxzlR29yBkt++ipaaVmJqptNSUbQaql6Hbkq2dA3h4kX+opL1l6/d19QSVmoQ4iq4+R3Xg7xIkQsnkPOTzntWM67olR11U9w2ZV2rq7DKGUUqrrHuScmlRxaQyPnJMzSjWMZYaVO6qJSeWmJqKVWTyeQjyUAQ+9bjdz1XeQxvP2NQCL5dXcz8PS6B1pUr7KZ7rYgwxFZJWjEaJqRkmYVcldt3Po5dhe85ikjis7QuInr0LlpoiyhIFhdwkkSrwNeM4q9Yv+i6ClZpqZbuwOd0sGuB90HE/d0GnFZtSM8Rcz0i9Ia6Ja4NX1aMwKWR9hk7zhPmEn1m1Xf8iUgWVmoQ4SpyTm2umrcDIyx/Hvv/zFO58bW+ma5MKKm1rAyWlpvyk/qKlZlLZz8NcE7+l5oLNu3HOna/hU3e+hkVbukKVUYrQ5SjkRCaqUjNako5IVUsJU6yKlU/UqaKqXJmcJ6wr2P1cXmZcQeorsfGIzVlqqp0fOqamAUWksvu5qlAGuerpFZH7MyOWmhEKUVFAypOkSOTRUmoqn6pNlLmF53m4eqp4zuIq2SiWmpbPj4sgucJmP9f9BoavCV9/GEtN1c/OhWen4AVbRlIJccISl1JTZcPJRhOF2YyzMQcTldjguNZJNk/Vi6mp35aq76S0aEe/tbhx/PUipH6J0wDhxplrkfeGXbZLkwcZdT/X7HVVBgYn3M81LWX8iDumZtdABu+7+SU8sngr/rF4K07//Sz0DFZb8uognMiEjakZWakZ5dqYLTV9qoslpqbi/WZyeaGlyl73czFxZz9Xs3IzW+/O3iE81NIm/E3XxV7d/dzOAk2leuWFekIT7lNuehEbOvpCX28mpqbdjRVdS009paabVjUL2rrws2dWCucsrhKlD7cRjzwJgmIshrXUDLPRK5qPRmm3IK+QVGU/11T66cQ0DTNemW4S3ZihYUlK/xSmfDshgFJoqWkipmaIepWVmtLjyfcbLkClJiGOktTkZiiXx22zNwJIOqZmMEru5wZdd/Wyn+uXr2SZI4upEuJh/faFdUXlLwD0DuVw9+ubtMsJIuzaOOpEK5pCIWalpl+iIAUrn7h6Cw/i5xmY/dzndyvu50qWhubqW7uzF5NvmIlv/WOx8Hdt93PPszpRDbSu1FAKm7LAMs1gNo9fTl8V+vqkEwWpZT+XHJfJo2EwqBtbT4coTXvZ40vL/h7K5fF/r26IKJFdosTU1MXVBa6oTylzP1csx1aioCgu4kEeQWmKqamreAoTUidJ4tqsCRsqKqp4YcatuOZgju6TFZErNdXLCDO2xWU9XOtQqUmIo+gOTCa7xM6CpabBMnXLUrl9P0VJQVlnIwC2CqEyECrF1JRcG+I2p6+ujuMyZ+MupWvjyNJZk+7nUssq+TWxxNRUPc8TLwqKlpqyWH5OWmqaq+/WlzegrWsgkjxhzg/vfh7t99JzgvqCJI2P7omwSWNCbNsbK7qLMC1LTZuJgiI0bmtnf9Wxjj7HLTUjZT/XwwXFmCqllnuqc4rqmJr6SjXRb6r1i04z5n7ugKWmKa8qcSii5ImriZN6krL7e2JpO66TbPLF5n5uvBazyOapOmFkwrSlqnW0SU+9WqQ5aQEIIWJ0J6Y23BBNTrC0XagUumm1mJp2u3upkjGEYUaUmJphHlXvUHXW+31GNildm/cAkRePyXcmSfdze4mCJPX5XFNp5SN264mGesyvgJiakuviThSkFFPT4DO+YeYa39917zGfV3smSVo+pClOXBhMhGO2bqkpOy7bXNB452Py0qwLYs1+7ugHFyRWWEvJMBu9omvULUVFlpr+V6fJUlMX3RAYSROXJbNcAWWmfp1ERDe9uBaXPrpEWpYVpaagTDffiL2EmZ9HObeAanIuuadeiEprECo1CXEUFzopPxEeXLAZTy7bhhMOHovLPng8RgREF9edrClZaqrE1DTpfq6xyAtTq1piCPHxMJMSkVJz3Ci1YSGX95R3F8MnCoqmVXDTUlO/4Mp4bHZchdStVEQbKEFX+7ufxzOhrjrHeK1ynLPUDCheyX0f/orsvWXZaelsLo/XN+22UjaQlpiaelZqOn2H1eznEa4VSeWqAqWA7c3VUlxtiyDLPVVlT+W8T/qu+7S5UOESYZMmaANC9Ym48Oz0Q0VJrNtEz9uBjZK4mjhM/HS98sXHReX7KTQBWzE1q4858Hr7YiSmZoibjOp+7nizxgaVmoQ4SpLu5wVkIjy0oA2fvXde8e/WzgH88dPv8C9Ls9tVOVsppmZi2c/1hxm1jM16i1g/REmBxipaambzeYwURDAxObhGVUi7mShIfNxvIlSw8tnU2Y/fz1qHXz/vbxVok2H3c/Hx0v9XEr/7uco58U0FdbNgD8fUDCashX6gy7iSpXyhrIC6VIXSoHcwi7Nvn40X13VYKH0YE+9HFCVFlJiaJhZnVpWaEdolzKZK0kRKFAQPA5kchnJ5jB/VHPjN+yn5bIYUCELUp4RJFFRp9BomKZboF9U5ahj3c3UrVLXzbKIrgmyK7cCtCImrjW27CsuVpnbWHrqILTVdfSuGkbqfa4gdZmiL6n5OhmFMTUIcxYUsiLIB6L+ntJT9/SeFIP36LlTBFziR/dygO4CK4sO2pebYkeV7XfIYieIyhdYYYRMFRfwGXLTUDJX9POeheyCLk26caU2hqXq7ec8TKjuK7udhlJoW9h2UQjnE2MXqvst5T9H9PKQ8wdaVCmWoWjZZaOcnlm1TUmhG0cuZENv2xopuf6LzrdnUfyU/u4mXKO7njy7eijf+ZBr2v/JpfO6v89A3VL0ZWYrs2Q/FmKxIhNhSs8H3dxHVMTUl9WmU4VeOyrWBSk3Fwl2Y9+tiUrkWB3HJZXJtkMt76M/kyuZRJhM0xbWx7OgrUcRELOowY76ypabj7Zc0VGoS4ij6MTXNyyDrx7sFFn5hy4pyfmGgGSlwfbcRU1PHjTrMjqSS4kNq6addnUSpWW6pKWs+HQvYsK9msomC7MweZKX61ZbZk913p8VkGDqud+Ls5/7X+b3bNpJ5qZSoW+vWrgF85u7XcdpNL+LGmWs0g8fr1ZX04lbHanx9R5//eRbu5Qv3zws+KSJJu5/bCEeiFVPT0YysYvfz2MXQIkqioBfWdmD3wPCc68EFbfjnknbf82Vzj8FswkpN0cGGgN8FVMXUlLo/+1hqChUuUSw1/dtW9d5ceI3149+LccHqVERcYkktNTXbd9X2Hrzzf2di7BVP4tSbXsS6ncPjrQkF3N5rtC8JRPhdOvpOFDDifh7iJqOOta6Pf3FBpSYhjpL0ohYwO/7olqVyfmHXcsyI6q5sr/t5Mu0YptooLrNh3heR5cY+I8qVmjILO9ni2JR7ST7vRR6oo1gArt7RG61yCTJFmK/7ed7DA/M3W5GnWL+G651fTDtZObG7nyt8TLr1nn//fExZuAVzWjvx/ceW4qGWNnV5dC01FTuQsJtZQeKoWHV5HnDtc6tw8cOL/M/TEUwR1RhgYeP5AsknCooUUzPigteTWGSbIsonLxLLdbdGk33c5/7qr9CXVZW4UlMgWLn7uao1Y2W5aueVXSM49tL6XfjYHbMxdcU23/pF75q5REFuv8ci5BaD1cdduL242jjMBraInz2zEou2dAMA5m3ejWv3ZDCXzyU1K4CdmJrCjQPH+2lZO+i0aZj2V7XUdL39koZKTUIcJcldzsJEM9Hs50oLuuH/jx5RHQcyNvdzQ7uxgP/EorWzHzfPWoe/Ldwirk+7NjGVC0aZ8lIn3mWYuH8mnluUyetpv5uFP7y0LrIMlYSRKJPLOxFgHxieVIVKFOSznk4u+7l6eb2DWTy7akfZsS89sMCoPKUMx9QMviis0i6o7IFMtRV3JZ39Gfxk2srguiw8X1WFW5RFQOKWmlGyn0eUx/PsWmrW2+IsTmWO7BkPJu1+LjhW5n6uWE61pabaeWXXSH57Ytk2fOS22VjY1uVTf/WxoPmQ8neX7CMalkHzfJ2ENS4obeMSQWXDSWWdcO+88g3t22dvBOBnWKAP3c+HkVu/qpcR5haVlZqyby1EnbUIlZqEOIoTg3+CZaksegqD+phmuaWmyR1IHcVSOEtN8UWrd/TiX26YiUseWVxU1lZdK6mwZzCLC6e04LhfPItP/GUO2rsHfWWoFEE2Wdd1Gd7ZO4TP3P06jr/2OVzwwHx0Dfi7UptI8BT10V89dQWGDFu3hImDlMl5VhKBldWv2FaeJ461FxhT06cCOxNqBYWQRrX92ervTidGnW6iINXTbSm7Vay6Nu0eULPoNCFQBTatCAuYkDvKqx0lpqb8uFrdHuzG1Kw34lTiympK2lJTROlnrG7NWP63dKHvc7tBNf3wiaXya0PE1FQP7+LAvF9TBJ1ETWHmZKZbJK4Wliug/CVQ7XbDJJ3ULSsKQktd89UYxYQnXJj5rHKiIM3j9QaVmoQ4im6/GMXNLg5sxtQcI7DUHMgMz2ijBOhXYSCbx5yNu6qOh1nMyiYWN85cg139/kpAWXW/fXEtbp+9Eet39eOfS9rx/ceWaJWja6kpu+8fPbUMUxZuwdqdfbjr9U24dvpqXzmSttQEgI6+DOZt3h1ZjlJ0rBoKZGxk0qmsX+M8oaWm51+Of6KgZJSaWnGSIoq4vXdI6/y8pxZ+wZb7+YBBBYgNpbXqfUdyP3fcUtPzPNz1Wqvkt3BlFsh7ntU5RST3c4FcDuwB+xKnfO66n0f7vUB1oiDZRqGfpaZ/HU+v2C6/VnAsaJM3TdnPdUmbpWbS7uemMJkoyIb7uWja6mryqALy7Od254rKiYIM1lmLUKlJiKPoDrwmd3gL3avJjlJXPpWzCwPQPiOTcz8HgPfd/FKVu1KYiZNsQP3jK8HZ5WX1/fjpFWV//3Wef2zGynK0Y2oKDjcAuO3VjWXHfhWg1DQxyTIxeTVtqSmb1AVaalq2TFNPkuBJEgX5X+8fU1Opai3UEt2oE/ek0cYio5Sg0k0qQOy4n5svsxITjyBasjL/36+dvrrKNbGA7FId93ObRCnedFf42sZOfOyO2fj4n+egpc3sJlaBOLsPuaVmcEgJm4jkagj4XUSV+7nkQt2YmqrYdD93QemnK4KOci3M3Znu6uNqYulcz1D9uvGUw5QVhXRaauodFxFmLa7ufu56CyZLc9ICEELEqAwy2VweM9bsxOjmRisDtU6Zw8oOecdsaqJUfs7w/0XZz20kCpLdXTbv4cqnluOfXzmleCxMrVEmFqaef5X7uaT9dNo1zCLUjKVm5CKMW0mGcRlSsTaOK+amB/G7Vjgku4+43c9VJpYuTxCV3c8tWdMZVWpaWMrE4X5uxlIz/LVB1l9XPrXcp16ZxYla3baVK6a/vbCl7eobwgduean4vk9fvQNbrz4LY0eZXR7Fa6kprmwoQgZ2E1hLFBQi+3kU74Aw7ueqL6gLQ5K2AYJlS03TTRKbUlPzuC6yqWll+SrfFWNqDiNXFNu21FSzMXS8+RKHSk1CHCVojjSUzeNDf3wZL63fBQAYJYgrGRWdyY3n+StWdDtjlYGhYM0kOjVOS00AeHxZe9nff1uonhm5QDSrHjP3WfnMpZaasiyBRqRww/0csGCpGaKFMjnPumWaqlSeJz45kvu5hU9URRdtO/h7FPKe2psS3v3cv/QBg1Zddiw11W48iu7ThNyR+vRIihdJmaqWmrCjjDaBMPt5yHb+7YvryhT4vUM5/Gn2Blz6gTeHFU9IrDE1JVUlbqkpkKssUZCqwr3iu4jbUlNUX1AM8DRZauqiE4cwhkg6gcTmfh5iA1sH2aZX5feh4vVhJaamQD7X325pm2oIHqYtoyblc3WsjhsqNQlxlKCBd+qKbUWFJmDWsqZgcakz9uY9D40+VkPa2c8VOum9yUmqz+3PmE8UpMrfF7bhxplrta+LEv5T9y5lC5zKppTG1NSx1FQ+M1z5MsxYapp9f1R310sZyuVjcD+Pdn2g+3nMlppKiYK0Nm3i7UfULTXDEVS8yZiaNlpOZw2Qy3v43xfWYmHbbvx/x78BF7z7KKXvyYilZoRm1E3GVlavzGJaNaZmXi2ma1hcWYK9sr6j6tjcVvMu6LFaakqOJx5TM+LvBSpf4TDWVVH6c1F9QfOVsEmQkkDfq0pSjvBY8jfoJ4Gpcd733TNSg7rbv8o7ZSWmpnDzO1w97d2D+MVzqzCQyeF7//pmTDhkXETpxJhIFBTmHgXOhpKy9Y7XG1RqEuIoQWPMd//pn/DFBDr9pKkJa/F8HUtNwbmyLOFRUNUrffMfi0OVbzP+WiU9gxKlZsXf0uznMktNQ6NrUIwqFUwoJUwnmgoTB8l2squg+qvOFXzNhddBVo6/pab5GZlKiXr3HC/WY2oGFG82pqb5e9FR8v/PU8tx/YzhGL73ztuMoWweXzv92MDrXI+p6UcY67Wy62H3na+3RVictyt75xJXagott/YeC2vNKLvKmqWm4Fhg9nPVslP4YcgUlaJ7cUNp6zcXMVVHuN90UA1lpLI5FtccLEwt+byH9/zuRazf1Q8AuG/eZmy48kwcNHZkJPnEdUmOW54rqja/A5+P0zBRkICbbroJEyZMwBlnnGGtji1btuB///d/8alPfQonn3wyJk2ahA9+8IP4yle+gr///e/o7+83Us9ll12GCRMm4Atf+IKR8kh8mIjtERWTcUR0LVZUqvYbaAoxNZOgvXsw1HU/fWYlnl0pz7rph+570TOYVSrHiKVmCCvDKFZKxTIUZAxqt4zhOGSy0vwsGDJ5z2IeYn38duBl9xF/oiCVibz5ek0xnP08WEBbBrwDBjeF7Lifq59bUGgWuPjhRUrXuZ793A+5okddceSqgkWY/TwBOXSId94mPp64UlN0zBP/24/KuUGYUAtRHofQ/TwwUZBa2S6MSboi6CiCXHCv91V2GwvjFO43HWThSSqPqoQxiWsOFqZ5H1vaXlRoAsMGKze+sCaKaFLk7ufm1sI2SP6rcgMqNStYuHAhbrvtNqt1PPDAA/jIRz6CP/7xj1i8eDG6u7uRyWTQ1taGWbNm4Uc/+hE+8YlPoKWlJVI9zz77LB599FFDUpO4CTIzt9mJFbOfa1wT5FZiJft5UZFSjQ1LzTg460+vYuaaHdrX6U5KuqVKzfK/ZQtrmVLT1HsZFKNKBZWJSJDiYMgBS81sHJaaGk9OOFkNuMZPSR2X61MltoO/R0G1vrCJgoKKd9/93L6a38Qzj/Jqm46xvKGjD2t29Cpd73lmnpuNDMBxJUVLK/LEOTELUoHomXuSf/tROV6EUeBHcYMWlRu0CaseyzZ59YSuYk/uBl19POl3EPBvY3OWmn4KdTOVyC01y/9OzFLTZ/Nbh5cFIUL+sWhrGJECMeF+HioZluIlNsbTWoJKzRJaW1tx8cUXI5PJWKvjzjvvxNVXX120xGxoaMAJJ5yAU045BYccckjxvPXr1+OLX/wiliwJ52K8cOFC/OAHPzAiM0kG1XgpNtFyzww4V7fT1cnY5xdTU4eX13fguumr8MTSduHvcQ0c339sqfY12paaEkvWylJkyku5+3n1sVAxNY24nyvUE3CScUvNEMVlcp71hbyOXH4WGHL3c7/yorfxjt5BXD9jNW59eT0Gszml78Hkpo1pkk4UZNb93FhRRVRvO8p3k2pLzYpLv//YErzpl8/h2VVqG2bGrIlkC2/D35PrizoX5m0uWMlVUm6pqSZflVIzxEI/kqWm4Fig+7lifS4o/XSRiWxKqWUa3/dCw5XeD50wH2GRKSsr7yG5mJr6m98i4nxjVBXFfti8x+S/HrdhTM09rFy5El/96lexfXs4108VFixYgOuvv77497vf/W788pe/xNFHHw1guNN85pln8OMf/xi7du1Cf38/Lr74Yjz99NMYM2aMcj1z5szBxRdfjL6+PuP3QOIjaAIax9xAK5FGxN9L6R3M4s9zNgae55v9XNP9/LElW/HJO18rDmr/+/GJ+Pb7jys7J64BZe4m/UQFQkWTz0RF7n5e/rfcUlNd6RFGsWDCQtKEpabJeJae58knoj5iZHJ5p9zP/WJlyZWa9qwjugYymPTr57GtZwgA8NCCNpzxljcEXqe3+x5avFCoVmfrvTCa/dxCz9mo6H8eZZw0o9RM5trSNl+7s1c7cd2w+3n4+kvLaRK5i0coW/TkXV/sxanLkVWVtFJT1A+UHlOVrnIMlX0n/snpFCsTICo2lx8O1yALtZOm7Oe6Esit29SOxY1fG8vky3tAk8Zg6zfmBT1i1XBNqu2eXPZztWMuIWsrrZiaoSw1HW+YlEBLTQCPPvoozjvvPLS3i62zTHHttdcilxteKEycOBG33357UaEJDHdkZ511Fu68806MHTsWALB161bcddddynXccccduOCCC9Dd3W1WeBI7QUGgbXaChTFVy3orcKdarbCBTA7v/N8XsGJ7sJucnyJlIJtXiiVT4PuPLS1r80sfrbaSdnncEU2iBn0Ucj1DEqVmRTmyhYFtj+ghVyw1Dc32fvfiWoz54ZP48dMrhL8HxtS0nf1c41xxTE3/a2xmP7/5pfVFhSYAzFy7E0u2Bo+BJvs30yi7n4d8L4LKd91SUyemZliSThQULfv53n9fN321/EQJw+7nJvpg8w+f7uf+yC0145WjkiAlh+qrYsRS07D7uUgulWsqcXmOKUM1Yc3wucnfoJ8I0jiVmnL7v3tmUA1lpBZf3PxzCdrEcBEz2c9NSaNettutGh91rdRsb2/H5Zdfjssuu8xYYh4ZLS0tWLBgQfHvq666CqNHjxae+9a3vhXf+MY3in/fddddRWWojPXr1+PCCy/E9ddfj2xWrKwgyTOUzePl9R1Yvi14wR3kfh5HJ2bS5F61qPvmb8YqxbhfQTuQfkq9SlTrdBVRU/gpJlRjasrcwGWWmqYmLUMGlCoqE5Fg9/PocrR29uM7jy7xtT4NstQMIqrSU2fSLnYr8sr+X4lNS81fPLuy6tgzCgm3dKqNe9KoaikX9qkHFW1UqWmspL2oxtSM8lmYslRM4trS7znMs3x1wy6rMUVdXoSZli1uKxx5TM1kW11Ye6lSU7HlK4dD2VXW3M8l1/rNJdTdz5P/MnRFkCqVFY/FjZ8Mst905yi+dRh6xjJnqSrDBAXhbbifi27TVDW29rXklrriHzK5PP7w0jpcM3VFMV51mHtUvYQxNf2pW6Xmrbfeig9/+MN45JFHiseOO+44fO1rX7NS35NPPln895vf/GacdNJJvud/+tOfRnPzcHSAjo4OzJkzR3heNpvFz3/+c3z0ox/FzJkzi8dPOukkfPaznzUgOTHFrr4hvO/mWXjfzS9h4q+fr8rIWomJ2B5R0XI/DzhVVe5fPLtKuc5iHD/ZJN7wQO3yLuMdszfiw396FU8u22tx7pfBuHdQLaam3FJTvS3CKNzccT+P/sx/9ky10q0Sv1oyOfvZz3XuUtSuhQl2OPfzaG3cn6l+V/YbHRxdx3bw9ygk3dMs3mLO28OGUiceS00Tlorhr42y0Iw69H3sz3OU42/6ymHI8ikIl9334hBtV98QHlm8BfM374ankY06aUrnVKoRbVSzn0dxAfZDVq6fUlPd/TyUSEbRnefqrFXCzMlNfz/+7udmNgR8EwVplSRH3VJTpSwDAimUGc4124Awiui6n3/mnrn41j8W46fPrMRJ/zsTa3f2hlonOjx8pYq6VWrecccdZTEnzz33XEyZMgXHHHOMlfpeeeWV4r/f+973Bp6/3377YdKkScW/Z8yYITyvr68P99xzTzG5UXNzMy666CLcfffdOOiggyJKTUzy90Vb8PqeWImeB/z82ZW+yWx0MgqaJkxGXVPZz3ViuRVjasoUKcYXTkaLM860ldvx0TvmoKVt+D37+6It0nPlsR3Vdnml2c8Fh8PoH4woNRWKCLLUNCHH1q7BSNerWGrGuaj3SxQkw6b7uYj9x4wIPEfL/Tzmb1+1TWwlCnp8mblwPDaaTnWMCpsdHkg+UZDpuH9JYHoMBsTP1JX7FWFbtDU7ejHpN8/jnDtfx8m/fQF3vt4qliNpS82gjW/FcirnJKrKnfK6zH+X/kpNtbKTfkZh0FEEOqG09XsvNC31TNahi7Rv9RTPKyE+9/PkyeU93Dt3E/7w0jrs7B0q+03el1Qfb+3sxyOL92Zh7xnM4drpq0M9X9X+SHaWC+3qAnWr1CwwadIk3HPPPfj5z3+OcePGWakjk8lg7dq9QdonTpyodN2ECROK/160aFHg+aeffjr+/ve/47vf/S5GjhypLyixyoVTFpb93TOYw8w1O6Xnm7J8DEPRlVSjDlPyDgisrmQUY2pKfg9SWNUq10xdgVteWo9v/WOx8HfPx7W18rDMzVyeebEameLFb9c+NkvNgHNMuOGqyOHrfp53Lfu5fLIqK8am+7mI0SOaAs9x2lJTsbrQMTVDXRUOG00Xh6WmCbGTstQsS8CSoKLEhvu57b7QdPG22//ml9Zhy56NM994gQlPh4Tjhlf6bzUBqyw1NeoT1auLTE6/5Inq7udhJDKLvvu55LjisSBMf+9+MoRRkIvL8avfzEOW960VSn+lREHmXzzR+BWmGtPP/9N3vYbz75+Pb/1jMf7lxpllik2/RFGVLNrSVXXsjtkbQz1d1XZJ4Z5HrNRt9vNTTjkF55xzDj70oQ9ZT8CwadOmoiUlAGVr0COPPLL4740bxZmgGxsb8cEPfhAXXHABTj311GiCEqcIGlzjsNjUqcFUtnYdJVJhcisr22RcOCA9u2GPLmnH8wEKc9XJm0y3KIu1qUM272GkRDthRpmoIEPAfZjIAq2yU+6bKCiXx+hmfyVd5JiaGm+3aO3mBXyLvpaaFlZyKmWa3LRJG3Hej40Fk2r28ygYsdSM5ELup5TxL9cF5QhgTkkQhCO3K8S2bDe9uE7pvKTjNYqq9yT/9qM6UZD4vKdXbMe5d72O/zv3HThwn3JDjygtId+4k1+j2vYbdvUFn+QQTyxtx4H7iL0i3E0UpL/Bqh9T045CvRTlObyBzf0wBCWUzObyyOQ9jG5u9J2/mhRt1fYePLpkrxfK5t0DuG32BvzwjLcA8HM/rz4uk9jkO/7y+g681tqJU47aH+859kBj5dYqdavUvOWWW2Kra/v28oQFBx98sNJ1peft3LkT+XwejY3lxrXjxo3DH//4x+hCkkQIM7jGMSUouHdpLfoDf1crTEeJFDR46Fh9qpAW16DmxgbsHpAnDPPg58ZQ/os0pqaGm4aMbD6PkRKHAVpq7iWT86DgTR0JU5aa0mtittRUUySr48JiTEQaEkHbaLo47luaiMHzlDcRorqfy+oK9ozYe0KSb66NMDqilnd5bHZFNBf7sLL3VFG8SsXDzr4hyZnDIXjedNA+uP6jby87biMshK+lpmLZK7b34n+eWoZffORt+oIZQqdlPvbnObjsg8cLfwsTpiYOwlhRGnU/1ypJjux1q5RVKaam2aUSAIml5p67X7SlC5+5Zy6Wb+vBe445AA+d/y4csd8Y5bLD7uGL4kT/ZNrKolJTHkpBJINYiHDu59XcP38zPn/fPHjesGfKX//rndL30+XxL07qVqkZJ7t37y77e99991W6bvz48cV/e56Hrq4u7L///iZFS4y0Z2ivzEYflJ1eWk4+L22LjOx4JosRDWqZcYFwbZ3P55DNZpHNqV+byWSRzcojWmQlyspK+XQUHJnssJyygahnUD7ZldXvK1vAyG/yvY5S1oimBl/X+6FMRvrO5nLl7+RgRizHYCYrlFHURrL5x8BQBiMby7+f7qE8fjVjNe6au1kqvyrZXC6wHQeGMv6/Z4LLCJYjmoJtKJcPnrR4XiQ5dSZFTy7fVnUsn/d8+4xMzr+vMz0mKGX8VHg/CgxJzkt+LKt+7irjU1BfZhKddlZFfVEjfg9U5MlK+sihTBZNipaiUS1gMpms0Co1G7DpU9qP27CEVmVwKIvsqGorc5lMKs9FdKUXsv8T9Xul8zITc72MAWv/SrLZLBa0dWHept3BJxeuKfkOPc/DlIVbsWxbD858y0F4bwxWQKJ5Wi6/97nJ5ryVlN7HHXNasXn3gO/5v3l+DX754RMCZamqRyKPbKwcGJKPYzmN/va66atx4SlH4Yj9RitfY5Kc5oayLOmpqN+X9Vt+367p/stvXjgkme8OZbLIjlDXpPm9y6V9leje8vngviybzUrryFVcP5jxn+MCanNlXcQJJYdlu+KJpVi+rQcA8MqGXbhhxmpc/1GxIt8TZD7zvPBrWxF7+3tJuC1B+3iSssKMEaLyv/vo4uI6P+8BP3pyGd7xRrH+qNDSYXURtQKVmjEwOFieJGL0aLWBasSIctOcynLSSj6fR0tLS9JiGGXxYnHswiDWrl2LloE28W+b+oXHFy1aiNHNjRgaClbYAQjV1lvb29HS0ofVW9XfucVLFmN/weKlwOp2cVlR3oVNm9vQ0tKF/n5JWy1dHliGX/2Vv23a3BO6LF2ilNUYsBfc0rIQmzb3Cn/bvKdNC6zeLF4wrN+wES2N1bueW7dWZ03OSCZVCxYuxn6j9irCs3kPX5i6HZt7tgrP12Vj6ya0jN7le87qTv8J39ZtOyI/165uhUzSPousnr5+jM77f4uZbDaSnEoy+tA/OIiWlhZpn7GzY5dUvtbNm9HSor44L0WmvO/tC3bj27Fzp3Kbyd6TpMeyvt6+QBlE49OOnZ2WJKpmQ2srWkbIw2GEIaOwYQUAeckiReW5bdwofofmL2jBiCa1BW5vbzR30vktLWgWKDUzARslm0q+qY5d/n2gTRYvWYKtY6rnBe3t1fHIALXn0if4tnfsCNdP9/RUj+mdnZ3SssLM9YYMhGqp5HdPvIrLZ+2CTtEbWzejZUwnAOCOxd3446LhPv/a6atxw/sPxPuOsKtEGxionkt07No7LqzYFax8AYD2PWPyQNbD9/6pNleofJ6DA8FzW9k7MCBZiy1eshSd48XL6t1d6uOr5wFXP/IavvUvagYwptm2Tfxt6tK6aTNaWjrLjm3cKJ6r+327AwPia8Lit+7a2S9WCi1aXD5XDaJrSK4Y7u/vL97v7q7qeU9X1+7AvqylpQXLt4vHwNJvCgDW7Q7+rja3taGlJdocsBLRZs7uri60tLTgyeXlHqy/nbUe/3WU+H62batuo4GBgVD9/aZN1eser0Qn0b5dPA8VzRXXSea6mzaL3y0/WgVrlfae8vZY19GPY/aReT4ME1YXUSvUfaKgOKjUvle6kMtobi4fHOtdA19vJOt+XqhMvbagU20YixR2AmVFm15MpMXCvzlgvZ2HenB3mUWDbDNfp40qrZie3diPzT3m+jklt5uAcwYNvLgqRfidks171v1to95l0HP3s1iL8l3JFg8qUQPqOaZmrBhouxUdGTy0shcLtg8vJOJIFJSXuSJqlBH11qUx3izXawrpPCaCgGkIuVCKjWfxuwVdWgrNYTn2XlBQaALDz+jGeeE2lfTqD/hdM1HQS20D6MuGa90oz0Qmpp8ouu6hgxYU4XEjzH7twEDq734uO64nt28dhppAVSaV8crO+qz6mAf9BHgmRQsaO7TczyVlJP+G1y+01IyBSiWmqttXpTK00nKT1DZSpVOMPaZOVUHjlA2xi9nPJYUPuZItIWaGXSP9lUiqLSObW9+5tBt3L+vBQWMaccW798ex+w4PJ6LTZYN/pWL06Q1md+RVJn1B7qEZAzpWlbb2EyObj2Ehb+pT0ZgUqvwWhEypqVKkjnIqPmdtPcLGloqzZ4ya1O6ltgF874UO5Pbo9q88dX/l+47y3ORJIzyofpFRhyBZXelJFGS+TNGzD6sDikPJYqOKjd36A5Pfs2g1uJkoQ5goqOSYajMV7iMT4eWKpNSUHPdNhhehvrQiag4X2sHv2ZtKFOQ7/9YtSoLqhpGKysGm0Ukpngf0ZJIbnIJq1tmEMzknV20RF/QCLkOlZgyMGVMe/HZwcBAjR46UnL2XSvfiUaNGGZUrKRobG3HiiScmLUYkcrlcmZn3pEmT0NTkn50Y91ebpL/pTW/C5LceIjx9ZcMW4KVdVccnnXgixo9qRvMTO4H+YBeayZMnB8pRyWGHHYbJk49H+5jtwPMdgecDwNsnTsRh4+Xv6PZ9dgAzql0Qw8hX4JBDh+Uc9dwLQFd1fJUjj3kTAH+3x3e84x3DAZ8F9RZ/28PzXeuA+XLXnOK9aNxDYFkhyttn1Eh0CFy9Ckw6cRJe7NkILKi+l0MPOwyTJ7+5+PfKhi0Aqt/DwiJoQzfw07n9mPud9w1fv30VsKjcjWXkyJFAf7U8J7ztbTh6/zHF78n0xOqNbzwCkycf63vOUGsnMLXajb7A6LHjqt9RTca8/AoAf3dZv1tvaGrG+PHjgHb5uzyiuTmSnONmzwa2qX3rwvpHjMTkyZOxTdJnjBu/37B8gnf5sDe+EZMnHxeq3r4NuwBsrzrePHIkAP+YSwcecCAmT1Ybi/KbdwNPV9dj8psPw7ixY6ueu8r4dOCqRQDiybR75JFHYfLko0Jf/6XpLxaVVh6AG+d349gDxgC7/cOBAEBDQyOAaoWNyrcyu38j8Fq1BdvEScNjsAojn3sRQLCcMiZOOhHjBHX1DGaBKXLX2zeWfFP7L10AGN4wUmXCW9+KYw/cp+r4wW0rgGXV7aLyXMbOehnYWf5c9tf4lksZ/9qcqn71gAP2L8oRaq5XQd9QDpiyRVs20xx++OGYPPlNw38I+quo41wQo559Aegu75P3239vW2c37fYdiwsUnvUyrw14pVOp7sp7Gzn1eQD+34SsPUY8NQOiPuXNx5+AyYeLXcbHzp4NQH18PeigN2Dy5LcHn2iBN2xeLvw2dTn0jYeja/x+GDeqCScdsR8AYFG2FUBn1bl+797oGbMAmHONPvbYYzH57YcKf9u0ux94tL3q+Nve7r++qWR7zyDwcHU5ADBq9Oji/e67YC6wuTxG+X777Rc4/588eTI61+wEnqueE5Z+UwDgtXUJ5y6lHHLooZg8+S2+5+jiPbQFlTPb8ePH48g3TwBQPXbJ3oFDNi0Hlq8rOza6pA11eLV/A/B6+djR0NhYLOuANYshmhftf8ABmDz5HWXHOsftFK5pD3vjG4VrKz+OOOIITJ58TPlBwXMfv+++gCQkGBBufHKJRYsWRYr3TqVmDOy3335lf/f09JQlAZJRGuunublZ6Zq0UOlan3aamppC3VNjo/w6WZiC5qZmNDc3K+/shJGrqakRzc3NaGxU7xyD2kB6P1HehYZhORske2aZfPBeWlNTszARg+i3hoDQESbf6yhljWjyl7OpqXnPYr+ahsbG8rol55WyaGs31ncO4vg3jBW+M1KrqobyuozvNjY2BLajF3B/Qzkv8nONqqzN5D00BpimeYj6LUXbd85juJ1kEypf+SreAx06B8QWRkptrvB+FGiQ9IVJj2WNCvcg6puD+jKTVPUpmixpL19g9w7l0KQov8ydTEUeWRv5jduVRO3SGiR1NQa43Za2uWqmdhs0SuYFMpmUnosoG7zitSplNfr0R2Hmek2uRI4K6GeT6MtK+y/V+aaH4WuaNRbvlfemMteQtYdsbPHv5zS/wQb1sck0srmhLpc9sTem/SXvfxN++/FJ8CRR7/zu1XT/5fecZO+g7nffFPDRF995Yf+z99nLLMmbm5ulc5KGindHZaz3IszBZAjdzBuA7oxYaSWrv0GwPmtoCLm2DZjHebJ3TfA9NjdL+p8Q76vqHEm2Vi0QVhdRK9TvncfIoYeW7wjt2LEDb3zjGwOv2759787KgQcemOjElMSPPKbm8A9xmJvruGYFJmeOKIuIgruPrOxBhcB6ec9Do2TC6febywQlsch7ntQltPI5ZhV3zboG1IL8l1I56TH9jqiIHpSZfEAlOGOQHFGVmgrZSKP2B1GvL4aCkPzuF0dJJROtjI4+8XunkjFVkFRTfq6j7j2yDZ0gorqE69VlHtWYmlG+PWk8YY2XIcq77Xd90H0Vrnt6+TY8sCAZK+JhOcTHjff1Bgv0AKze0Yuv/W0hWjv78aE3NuJLbx+nnPFeVJ4LJB2SQBhjr8z9XE3AwpwkypIoSlvILpUlrRuuT69CV94ZU/zuxXXo7MvgLW+ottqOG79HIfvN5PPTKco/bI9sbCg/ruZ+bv6Nk33vnf36a4VKws57RJTeumyeKnY/F8tgc66omguhXqFSMwYOP/xwjBgxopgBuLW1Vcn9etOmTcV/H3vssbbEI44iG2QKh8N0YioL/bK6tM71P9tGR19MFCQpfECQfa+6DPXfXFVsVCLKlltK3lNfbCro0wDs3U3XUZZULgJ0lAUqqEzUgupUUYwH1hFxNZnJeYELOJ1J6Q3Pr8HVU1dgZHMjfvvxiTj/5KMiK7mK/VKIRUEkpWa/2K1f5V3SuWcbk34ThI6pGePt2IhbqHrfUd5r/5ia0cpQRfYeB8ngecD6jj6cffvsaAJExMZ3I9rgD9vHyt6jz/91Hua0dgIAVu0Ajt63Gf/v6DHikwNwpetIug8T9QOlx1TFK+xDRlFsROkXpImCLG3cxY2tDa+7524KPikG/O7OVExNv+etta7yKUc2NlQeVpkLmX4/ZWtND8AuyUa0DBfmKqL2kRnAhhG36plpKFf9jtcbzH4eAyNGjMAJJ5xQ/HvZsmVK15We97a3vc24XCR5/AdX+aAQFtWBK8xUMTBRkIVet9Dxy0pWUUj5Bnev+C0t40bQZN/zPOnzqDyuulgs1Kizo1m5CDD9iqiI7rcQAcwoNaNOGDP5fPAzVSxrWXs3fvD4UvRlcujsz+C/p7RgV59/vE8VghZCthIFdfaL42aqKOP1LCbc/PpDL+tjXSiYLzMoHEMBK5aaGl1CZEtNSV2BSk0AV09dEaluE+guzkLXY7DArV0DRYVmgZ+8uit0eXFaRfvhYh/mSf7tR+GdimKpGaUpggwOhL9p1pFklnDXXhPT34+fcYesLm2DEL93wdCmmFxxWH5c5bs3bcXt9410Sry6vvHwouFY0Qmio9SWW2rqN2blFUM6kwzB9fUKlZoxceqppxb//fLLLwee39nZiaVLlxb/Pu2006zIRZLFr/OLECtXXqZmz6fTNwd15DY63aDs5yquw36TFVcWAbqT96AQOnlP/jwqj6suFgsy6rRYpUIxrokVMPy+/nnORnztbwt9y1Cx9g2WI9r1GYXUvqp1XPnU8rK/MzkPB/14Kl5YGz5JUGn9OjvdKr8FIVOaqIRNMGFx1zuYjWyJW+vYaB11paZ5iyyt9ybiuyG11Ax4vfOehxfX+ifJi4OgMDphED35sN+gqHm7BQvrQcVhwPO86rAqjnQPSXdToupL20b1uyoqNQ3LEvVa/zFOr46kn1Ut429MondcXoeZBygPE+UpZ+pW6RtNz2HkVqSe1FLz1pfX44onq42+TEbeCypL1g6ib1tWVltXcALfSirnzUOStasrG2SuQqVmTJx11lnFfy9evLgsm6KIhx56CNns8MRqv/32w+mnn25VPuIe8p0ur+z/OuhaM+icHVS03GzevEKjwEDGtPt5MgOK6gK+QLBVn6fsxhAUc7KyTp3Bv7Js063r975fP2MNvvpQC9Z1+GeAdsFSEwi2KFWtY2OnnSzIQcob/5ia4euVTfKC2mv42uj1jP+fp/Du376gUZJZwsbajjWmpoWqVMMb2rDI0lkARl0rqsZNq8Tz3FCM2HE/rz5mclEetqjfPL8Goy5/AuN+9CR+P2td8bgDjwFAvJu0+byHbd2D6C1REIuqL+2H1N3P9yg1E7LUDLVx58LHqIhrkpqMnwj4P3u5h5zm2snndJ2S/BSXqt58apaaZp+6X3grmaUmAPzhpfXV11h+IUufrU4Ma9m67NaX14eQoRyZpaZ03aZdY21CpWZMnHTSSZg4cWLx7yuuuKIsu3kpy5Ytw6233lr8+7zzzsPo0aOty0jiJ8yOYeFwmI5edWJVjI+oUclbrpuO9/zuRSzYvFv4u6yk0ip0FybFmJqS3wcVTPh1LMiSGjh08xMExl/Mq7tQaVtqCk6XiVNpTWc+ro/8N9GOsAhXlJpB7ig2Q0uokPc8PLWsHf9+xxzJ7/JroygkwsQ3C7pWhN+7tKCtS70gw6QipqaFnlN3oycMZmJqRrt3ueVIcL0uWHWEcdUNQnStSffzMO22dmcvLnt8KbJ5D4PZPC59dDE27x7eQErSlbgUG94/Ijr6hnDWn17FYT+ZhmN/8SymrtgGQNwOpYdU232v+7m9mJp+RYex5tN9A1z4dmsVfw8e2TV6dfidXvbOBxqDyBWXcoVn+Q8qnsymde5+YUdkIYN0sDX8q7YpoL8u00HX/ZzdxTBUahrgjDPOwIQJEzBhwgScccYZ0vMuv/zy4iC8cuVKfOELX8Dy5XtdAT3Pw7Rp0/ClL30JfX3D1kMHH3wwLrroIrs3QJxENTu1DiYH5kqyeQ+zN3bi03e/HhgQXlZHv4JlZSnF7OeSsgcyUZWaWuJYQ99S0x8Pfjt+lRMiPWVZlERBptd+JpSJKorxIExYEcncUQqo3mqUhaAfmbyHCx5cIP3dlvu5rGlVLIzjVE7VMzaaLgadppbVhryMqDLIjvsX7IqlpnRxG6FM0bUmFXZhuvxfP7+m7O+8B/zyudWGJDJDXIqyO19rxfTVOwAAO/sy+N4/lyjN/5QtNQ282DYsNcNYAMrr0DrdKK4o4W3hb0wi6/M1DS5843b6Uzq2+fX/8iRy1ecGYdr93M/iVTf7ue23sdQSWGcT0VYGdgAYyuqNm9wEGYbZz2Pk1FNPxaWXXoobb7wRALB06VJ8/OMfx/HHH48DDzwQGzZsQHt7e/H80aNH47e//S3Gjx+flMgkQYJiUYXpwrTdz0NUsnZnH17dsAvvOfbA8rIUrtVVahbj+El+V7Gy83c/t6t0U8W4paYnHwKr3M8VJzuFs4SWmhKBqmJqKtWkjglFlIpiPAhFD35fMgGrdtV7tbW73DWQhZ+9Yt6TJ6eK5H4ucxFWaA+dal1QEIkI+zjjvB0bCuE4LDVlYuu5n0e7d50YX6V4Buo2gY7liyqiNglrqSl6jcK0W3t3dRy11l17LDW1S7NDXH3Y9x9bWvb30vYedPRlJDE1vZJ/q5VfeNZRFDGRYu2GKFNbqal1tllceV8LmFbY+PU9cktNc88vMP+AJ/53pTzSREEVh5PIfu5vqemv1PQ8z9rmu7A+Jffz6uNBuQvCygD4uZ+79nW6BZWaMXPRRRdh7NixuOGGG4rWmKtXV+/mHnbYYfjNb36Dk08+OW4RSYz47uwGTNjCdG66LqphJxPbe6uzKUstAz2vWKO2pWYh+7mkbJUkL3ru58kMKLoL+OBM9OrxeFQXDkGhAETYTxQkPq7z7Qzl8pEnWSYmjEHJglTbLs7JYik5z4w7byWyK027n7u6Ex7e/Ty++7FRk03XrwImrHaifvuyzQwV93MXFPE2FKuiMs3G1NQva8yIpqpj/XvmH66sQ5NUcmfz8jjeBXTdz1U3XIV1RWiKMOOYbn0ubEjESZyKLB1DhgK6j8Pv/KCiSn/3k0c1CZtK2LG45t55z8OuAKVmNu9hRJOddyHoHdMZ801KWGWpyeznoaBSMwE+//nP48wzz8RDDz2EmTNnYtOmTejp6cG4ceNwwgkn4Mwzz8SnPvUpjBs3LmlRiWX8JnGqme10iMsFRrTAUFGiqWQrVylTpzzfCU5MMaiC0FVqBlmoDlvNiX+risej+BIEKZhFZCsG7rjcz3Xfs6FcHqOaqxetynIYmDFmDMXUjEMZJCKf94y5dpUSxZrORPbzpDGdRMEGNtbn8cTUFAuuYxUY9b15cW0HugayePdR+5ctyFTcz12w6giKDV51XEG5IVRqGrzXMM9sVHO12U5hk9aVDZEkFWXDSvbq+ssVOGplFfr2SLGYA373ewPDeBy4On5U4nkeVmwT53uwW288IUWAcOsuk9nPA5X7pdbLknNk35OofBVPIfOJgsTlvbR+V+C1A5k8RjQlEx1RNs0WPX+bn7TUUlNyvgNDvRNQqVnBOeecg3POOUfrmunTp2vXc9hhh+GSSy7BJZdcon2tKt/61rfwrW99y1r5JDq+lpqGdgxLiSv2cNDktex4yQ/67ucFRZpk8Rkxrl5a3c9VkspIY7ZW/K2a/bww6GtlP6+y1DQ9sRIf7x3SC1Q+mI2o1DRwW0MGLDWHsnm8rDCptIGfIt1G9nOlazUuddVyJrSlplkxAuoyX1sc61/pAldjHI363lz0t4UAgM+/8wjc/bl3lpQbXK8Lr6zuPEZFuSG697AKLpEcxiw1M65Zag7/PwlldzYvthxWcbWtpKDAjmapGbAp4PNbGA+QNMTU7M/k8Mm/vIZpK7fHXnfe89AY0wadvxWlmY1X3zrKlJZBin55/2ky+7npmJpRyhvI5jA+QD1lL1GQ+Y13FaosNSWGF66MJa7CREGEJIhfxx80YIXp2/QH5nA9qEinJg8Uv/d4v2b8wkI9Mikrs2uL0EkUlNR4YtpS09d1pWqXV+2uQ1lqViYKUr9UCdmz7RvSU55Hjatpxv086Jn617G7P4PTfz8rshxhyftMwm1YaqqgZanpqKlN6JiaMd5OWifiUivgBCx87523Gcvau0vKDVbKuKCI113chl2Am3U/179mzAiRpeZwn+3AYwCwtw9LQp6hbF6swNlzaEvXAOZv3q1UVhyWmv7XysYxn2t0K7TwjHoGs2jbPSAdyx5dvDURhSYQryVrGIta7URBfqEISv8dUtGf9+TjUHX282DZ43I/V0HXkyoqpc2lswlnsh+tLIru5+GgpSYhCRLFXSVMhxrXbrHQUlNBiRbeUlP8u8pOfpj4OnGjuysZlCk77/k8j5DZz/fG1FRvM/sxNSVKTc33LGoGdBP3lQkoJKiOhxdtwTzFRaMNcj7uUtEsNeO51o2ewBxx3o+NbjSORbALMTVLuX7GavzlP08CoOLC6IbLq6o1UdDxoDLDtrOpREEiS82Bovu5GwQlVrTJUC4vceH08I9FW3D+/fPRq7jZWHBaUNm0lhH0iP3dz8XHzSYKMvuUnlzWjs/fNx+d/Rmccfwb8ND578KB+4wsO+dzf51ntE4dTIaPCMI/UZC6Usu3jgjnKSnZ4Ek9BiqvUHn3jCcKilDegOb83CTyjPLqa9owVL53Ms8sV0KZuAotNQlJEP/dPP9duDBdm+7OdtjuUzQwqJSlrdQsWB5ISg9KrlJahvC3KvfzZAYUbUvNIKs+yDNRVx5WdfHa69oWXGaByvcxrt1i1cVTgSDL1yBMTNiDLDUB//fzKw+1RJYhCr7u5xbdCE1d64KCSERSiZ90sNF0cUzuTSjhTQ4ZOjE1h0OMJI+uq65Kewndz40uMPWvEScKKlhquvAkgsP12GQolxf2854H/PjpFVpjciHmY5S9xigtEKZf0K3PtMLk0keXFLNOT1+9A/fM3WSuAgPE6QnhV5MpS01/9/PSf4vWSp7w3HJ51DfdVL4T031ClOdZaakZZ3+lE1PV5AhbWZKu+7kjQ0zi0FKTEEt4noc/vrIBz6/egclH7Cc8x0/ZoboLp4N6huQ9dYWsTMtSs+TfYS01Zajs5Ps+g4qfkho3mjSDagYnCvJZbFb8raoIL7qfi8qUtHFa3M8jKzUNTNhV3FHyHmApaWRk8nlzC4bya0NfqnWtK1bblYR3P3fDMiYs8Vhqio/rfM8m35vGMqWm/7mez6I3TnRjarrhfq5flmiI7nfMUtOr+H+cZHJiS/2c52FJSVgFFXb1Z3DN1BU4cJ8RoeWxEfLEpKWmyW93e88QVu3oLTt26aNL8O33H2esjqjEuWno17SmvEl8EwWVKi1Fv5cc9FNcqoaQSiSmZiRLzeC5btgEiUFXyZSxcY+luomCyDBUahJiiVteXo9v/WMxAGDKwi3Cc8JMgqL0rXF1zE8s3YZDxo3C/3vLwWjcM9sPsjwFQsTU9AplSH5XKC4V7uea5wfH1PRJFFRxWHVyEsYKJLlEQWaV57avB4ChbHAZec9Dk6PZsP2ydSbmfl4LSs1UJAoyTxzPw0TSCLNKTfVyPci/tzix4R0iVI4lrNQU1e9eoqDCGB1/3UO5vPDZBoXKkfHL51bh8jOODy1PoPu5T8cqu9SvSN3X06TlcQqM+f291gy/r2HqsmWpGZRUVfqu+WxaVR5Vcz8PPEWLaDE1g+fntqwk5e7ngusMtlllWTKlpmycc2SISZzQSs3zzz/fpBxSGhoacNddd8VSFyEmKSg0/fBTugVbYpiZePvWEbKrfKilDQ+1tOHstx6Cx75yChoaGuzG1JT8bjxRUEIjh677eRC+MTUrftB2P9eQo/L5GJ+8SmTXjakZXakZ6XIAapaariyeReR83GGj7OpHcj/XeFtdbdsGNGD5tm585p65WLSlGx9880G46z8nJy1WGTbazrRliQgzlpqGhEGlpaZ/wXlP7u0RJ6oeAcXjIRfgJmPyhXlmonFSJfxNnOwdo+OXaygrjqmpmxCjQDbv4YH5m0PLE6UNpJtzPi+O7jiVjRjHuxRdT58kiHMDxl/5bMaYRDUUgajc0nfFz1JTquAKYZhgPKamQfdzHTr6hrB4SzeOPXAMjj5gH+3rdcKlmGyxyv5IW6np1lCTGKGVmnPmzLEey8nzvFTEiyIkLKEsNeGvyKvk/Pvm4VPvOBwfn3SYvgtFxI7yyeXb8FprJ045+gCl3W1dpWZQxm21REHqzyA5pabZ8vyseCqPKruf7ylP5x3LViz6TK/BZffYO5TVLMeOHKZxwTJLhpvZz3XOdbdt/+fJ5Vi0ZdiFc8aanbhp1jr85+H+18R5OzaUKLEoNaWuaBplWLPU9D/Xzxo/TuRKgvBt66L7uV/9LjwHAMlmP8/lhe0qS4ihgs4zr1xPRmkDuTWf/Brd1zMoMaAODg9dRZxJFCQ5rm+p6afg9q8vSOlZOK6qgFPZ3DI9nkYZ91QSBYncz5ds7ca//elVtHUNYMyIRtz7uXfikye+UaGsvdjwJlKhylJT4pkV53eSRiIlCvI8z+p/hNQ6cbif3ztvMz5552t4Ymm78kBTOM3EV/i7F9ftKTP4fnTdz4MybqslCgouv0BSixPjlpp59cmbdvZzjR3NqpiahptXJrpuTE0X3M9dqicMfu7nXkIJH2ojURDwj8Vby47dMHNd4HXxxtQUHx/K5vHA/M34W0ubtmVSHJP7tFtqutAd2NhINZn9XESYBb7f++jCcwCCPVtsMiSJqamSAE+GjgWiSa+bMIov3fczSrtU4opS3Y84rcrDhJzSj6np99veX8WWmiryaBgmhLR+j4JJS03Vkv7w0jq0dQ0AGF5L/uyZlUrXlZYvk1ucJ8LedyWz1NT1fKg3QltqfvOb3zQpByF1iV/HH9R56fanFz+8EE9+9TSlc/fWEb2r9Cr+X/373l8ymjOboIEzsvu5A+57gPmYSB78d4BLUXU/97OaVbWkNR/XR1ygdkzNiO9BXO+Rq4o3YNhKSG7hEl7waO7n6risMHYdUctlc3mc/vtZmLd5NwDgjOPfgGcuOk3ZO0e1X4qCTBnw02dWYtSMRpx69AH40YeOR3OT3D7AqKVmiRInqE/x4EZ/oBsDTEUBI3Q/N3izoZSaPs/DgccAoMT9PIG+LJPLC9/ZKC76ekrN8njTQe+ZX8lhPA50m1y3f1vW3o075mzEgfuMxKUfOA5jRjTtlcuReawffm1nfP7rp9SUtJVr2c89H5kqj6vF1DTbJ9iOqSnij69sKPt7QVtXlYW237u0oaMPszd2Cn8Lin0alcqydN3PyTBUahKSIL5xVwL6Lt3d19bOAeUOsTDQmug+i2WpWGBoTr72TtLFv6u5n/v9Vv5jUnoN8xaM8ren8rhfnKjyMsXX+1Gl1DS8/JNaasYcUzMulxGX9W45T56tM5JSM/SVevW62rZh5YrzdkQLt8eXtRcVmgAwffWOYqgSFZKMqTl99Q4AwFPLtyHnefjJv00QnjfsdWROHq1EQT6WPHGin/08XJkmw1eGKUu2gZrLu+N5lnyioOqKw8bUBIAmDW2Xybmcn6JJtf4gdJS9a3f24uTfvlD0dJqxegeeueg9oetOgihrIV1UM5NHkUF1fSY6q9xSU3ydTvZzlbHSeEzNCOWpZD9XZSiXx6jmpsDznljajs/cM1f6e2UT3jO3FV+8f0FE6fZSOUbIEqjJY2q6/43HQST3c0JINMK5n4efmCq7nxfr0q9DWpbCZEF3YC1aB0p+jx5Ts/zvpIYN0+5Dec+TKisrB0cT2c9l8ltPFGTKUjOqUjOm3VWXFy/+MTWjlBtBIapxqcttG4Y4b0dU1fUz1lQdu332RuUy41FqBtfh5+Jmuo213c/NVh+KoNjgVccVGs12TM1wlpqysSbrzIZImI1HUwzH1BQfD4uOpWbl8wn7uvi9nzpzySBUvIwKXDd9dVnopudW7cCKbT3Fvx15/XyJM1ZgmNinuuN/pERBZf+Wz5lUreDV4hQHn6NDlPmSSm4F1f2M7kG1+Pk/f3alr7FD6d3s7s/gvx9aqCaAIpWtNSh1P0/D15wcVGoSkiD+7udmdgxVypTVYUKZVihLNkfzJP9WwU+RBkTfoXRlADG9fvd8FryVx7XdzzXksO1+Lnsv9GNqRpODMTX3WAcbWjCUEsniRuNcV71+wvbRccZZE7udVh8c4ePGXUkciaVd++51EwWZrj9MFmWTsej2lumgUlNySc9gzhmlUqKWmlnx+xhFqanzfldvUPtfK1OahHFdVqmvEh1LTdFm0IK2vVbwKu2UtKWXqkeQCVST+JSiHxvYr469v4neCxVLTb/+vcowIQlLzYSyn1fSMxg81/c8T+p2XqD0/fy/VzdE6rfEMpT/LbXUlG4SEiCC+3kYNm/ejHnz5qG9vR27d+/GUUcdhfPOOw8AsGXLFuzatQtvf/vb4xSJkEQJs2MYpfNS7YeLSk2DPaVUiVZSibalZsAkXSlRkO8zKP8xqYmf+Xg3cpe4MK4rhTJL/69CZfZz85aa4uNxW2rGNV93VfEG2LPUjHLLOgspVxXGQWL1Z/N4esV2HLbvGJx81P6xyFSJaOEm6ptHNIW3vLJB1P7etIg6lpoebFiKArrRzuTucuLz1eK/CeoxeLNhypIluuoZymJEoyP2IwY3q3WRWWpGiak5qKH8MOV+7neZWUvNaM+oVBSVe1WxjrNJmOQ9YQnzDLVjavr9FvBsypSePnMm1TVi6mJqGnQ/V7XUDKK0fbb1DBop048hSb+oG6O63rCu1PQ8Dw8//DD+8pe/YM2acnej973vfUWl5ssvv4wrr7wSkydPxhVXXIHJkyfbFo2QxImS/dyu+7m5Hf297vLBnbFJFw/AQKKgqt39ZDC9OPWgPiFSV2ruuV5D1uqYmmaRPVvdCbyrCq1KXJYzl5cvpdNgqelw00rpGMjhoud2Yn3XcHb0a86agB+fdQKAmN3PhcoMgaWmhvInyZia6teblVHP/dx8+zSgAbqjoGqG3uJxheJFSkdXs5/3DGax/5gRUUUyQpClZmVSDZNkcnnhHDCKxZOeUrP877Bvi7/7uU/9mu9U1OznuvNqFYs2m5hMshSlLmNKTZ/Tt/cO4UdPLsOh40cJ3//yZycvX9Wbz3T281zeww0z12DOxl04/dgD8e33H1dlxR/NUtPcu9hTodQMK1bpdTbmHlWWmpqJgtI4P7WBVaXmzp07cemll+K1114DsHfAFA0KbW1t8DwPCxYswH/913/hqquuwmc+8xmb4hGSOGGynxcIs9uu734eHa/i/7K6Kv+tgpmYmn6/hWuBpsYGowOf8V3UvHpMM9XYTmHczysnW6YtYeWWmnq7ty5bQJbi8sTGL45rtERB8ShEXVUY+0n1zMZ+rO/a+67/9JkV+N6/Hoexo5rjTRQkOCaatOtYasaR/Ty6hbZppWZp2f7n2nhdQ3ifh3DbVCmz+iSj7uchGk+mg+oZzGG/0Y4pNaW/AxqfoBZDOXFiE5mbpQrRLDX9n3GDJP+5f6xEH8Wcb23VRLFgBcrvV+V11vVeMY3fN2fcUtP3GeodD1MHMBwHVeVaeUxNH/fzynMVPhOdPu/nz67ET6YNx5J+eNFWDOXy+OEZb6mSLyyV7udRHn+lpWbYNUbp/dgIfVP5nOXu5+brriWs+UR0d3fj/PPPL1NoAsCoUaMAoGo3sK2trXg8m83iJz/5CZ577jlb4hHiBGEUalEW8aoDV1ERaWAyoWNZqrsuCYqpqbLw1VEsqzaHTlZOFYzHmoQ8vmG1+7lamX5WILK6Kt3PTd+n7Nnqx9RMx0zCZTn93KWiKCSi3HKUmGxp4Ddzu8r+znvAnNbO2OUQ9c9i93OdmJppUGoaEmQPuomCTBNmWNONDa4itmiRblKpGcoLRlJ/z1DWGdfAvd4U5jeXghiUWF9FsdTUubZKqRmyTr/5t8kNcp1EQUH1qXwaPZobvabxtdQ0XJffo5BuvGr2L5E2W0uu9ctFIHv9K2VVstTUuL+CQrPAj55cXl1eFKWmSqIgxbJ6Kub6oROElfxbFmokClEtNckw1pSaV111VdHdvLm5GV/5ylfw2GOPYf78+cLzL7vsMnz961/HyJEj0dDQgHw+j2uuuQb9/f22RCQkccK4XERyP1eOqem/o69D0ZVdZhlYOoBr3lSQdaDKAHD33FZc8eQy4W/VE2E1+cJYtPhhI96Nsvu5Yt3F+KaiwOeSayon7nG5n+vH1DQhjX1cljPveb6ZPEMT4VqdS11VGOtuPBX7zBjvR1RTRjAYjXQupma06xO11LSgSpNZr/khjwEWXrEmGpOStmCRKaGSdustJchS0+Y3JbOqjFKljlKz8tSwn2YYhRigf58ZkzE1FfqCpC01/dYmpl/LMApUfYMLvfPLZCh7drLyNSw1DbufqxBF76eSKEhV3O6BSvdz9fWJ7Lo4NlRl4Sd0w7nUG1aUmgsXLsTTTz+NhoYGjB49Gn/5y1/wgx/8AG95y1uk8VoOOOAAfPvb38a9996LcePGAQB27NiBxx9/3IaIhFhld39G6bwwLhdROi/1mJrmUbEM1B0rguI4qkwMb3t1I34lcQWJ4n5uEtNjqOejYArrfl44TUfWSkta0/cpe359jKkZO7m82P0QiCZ3XNe62rK6cgUpNmwgaubIlpqpiKlpRo4CWomCLDRPmHw3fjHhdI6XlylQaia8oyPNfj6UTTyzdIGg+dL01TuwcVeflbp1XMVtlFnujm1nzPB1Tde11Izsfi7+t4zK2INxU6Y0ynvY2TtUtNgz/f34lWZqjhJF5tIr/WJ8msx+blpRF2VeZrKvqHY/D1dO6TLIgqFm1TupmyiIDGNFqfnYY48V//3tb38bJ598svK1J554Ir7zne8U/37++ecNSkaIfV5e34G3Xj9D6Vz/3cmARYuOUHtQdj8PmPzqUCwr4HcgvKWmjKhuApXPR9n93LBS04alpqr7n677uc6LWZUoyLhSU3xc2/08knt0fJMQl6c7fpPwpLKf6zyaKO+ASyQxKRZnP48WU9M19/PHl7bjo7fPxpcfWIBt3YPa16tQptQMeI53vtZqtG4gnKWmftbgcFZFYd/rMPckQlb/UDbvTL+8d0NDLNFH75iDt1//PB5f2m68bhXrK110HrlujElZqAW/a8O6posQWbLroJJBu5TELTX3iLitexBn3PoyDr56Ko775XN4Yc1O8+GXQiifdUWINi8Jflc9Tz4GVh5VaT/TY1WU8dms+3mwpaYKZeEcrCQKKi9THlNTpsg2LlIqsaLUnD17NoDh+Jmf/exnta8/99xzsc8++wAAli0Tu4US4io/e2Yl2vcsaoIIs+u7N5u4tmjKk4Mgl3EdCiWoTBZMWx1FTSYRNg6T6Vj7NtxvpM+j4rDqYrEw2ArdOyRFVFlqGl7+ueB+HqcOyWXFm58iPVr2cztWN9Xnhq7GKtobQQY3rFRRttTUMAXsGrBvWaT6bs3ZuAv/8ec5eHL5Ntz5eis+esfwHNi4UrOkeZJ4H8MlClLcPSueH1ymaEwK29amxhyZR8NQLu/MgjMo+zkw7MVw7XOrjNdtMqNxGEpfmUgKJ8U6qn/Tq1UnUZBIAatiqVn6HSUdU7Mwf7xt9ga8uK4DALC1exCXPb7UQgJJ/XWXyezngdcq1Jv35Na8YebwxtcYkbKfVyQKiiBHlaVmyHJKn0PUeLciKuXSzn5uWJ60YkWp2d7ejoaGBpxwwgnFxEA6jBw5Esceeyw8z0NHR4cFCQmxx9QV25XPjeJ+HmYSr5393EBPGaSELZ2w6C/QC2WLr4uu1Ax3nekBxrSyz/NRMFXWpex+XnhnNOTIWU4UJBM9TvdzGxMgGa4q3oAgS80ISs3QV4a39HEJXWP0vTE1LQgjQVRV1OzncaDaRpc+uqTs79c37cbK7T3KMaxVKbXUTOJtbAyRKUj2fqqGP1H9PQ7LXT+klpo5eaiXuFGd172yYVeEOsSFD2biGwdFlCpZ7Lmfy3/TrVJn7ir6KkvfOdn7V2otn7yl5rCMVz29ouz4nNZO85aaCnJUH9etI8pGbWk5snM8H0vNynm1glIz6lqpKjlR+LKULDUVh6LKmMbhLTX3/jvqulJEpVhMFBQOK0rNQnKfgrVlGMaOHWtKHEKcJZyl5vD/w0ziVTvEMAqqIFTKChuMW3aZcUtNxeJMr69ML46Hk7aIqdrlVbyXfFFZUn2BrLaqREGm202q7NZr0ChyRY2NpYOrijcgKKZm+HKj3HItxNTUfeZBLqg2EIko6pubwwRttIhq24qUQG27B4x/j00aMTVtYDL7uYyg01WszpJAprx10lLTah3i44M2AtFpoGupKXvV/Z5lWIWnCFmiEBGizYbS6mTTnVJr0MRjakYIxaWLn1Jb9ouu0i/KnL20Jl9LTVmm9qo5fLDsyglBJXVWWmJHyn7uYEzN0sviGGvk7ufWq041VmaQBxxwADzPw5YtW0KX0do6HA9o//33NyQVIe4R1l3F8zy77ucBFpA6FEpQ8UILn8lX/Lt5paZaeXG5UYfFg3rsIF33cx1Jq93PzSJrN91JSTRLTSo1gYL7uWQSHiVmaegrNWNqOtq2puMQ2yCpfjMqKk213+hm4fGRzY3GN2kayrKfJ6DUDHGNPJmF7Pxw5fn1L3EgUwoMZV1Sag7/X6WdwralbMPQRqIgHUqfjynX4EpMZvDWstQUfJivtXZi7qbOPUkhxZRag1VatMWNX39mPomNz2+G3HujWWoGv6sePGX3c5MxNWUWhP0VlthR5hlhQlXInlvvYGVMzepzVG7ddvbzyvdF2/3ckTEmaawoNd/0pjcBADZu3Ij169drX79w4UJs3boVDQ0NOO644wxLR4g7+HX8cvdzucVTELrZz824nxfKDO6M9S01C4o0M8qrSsJebXqAsaHsU81Kq+1+rjFpSCpRkK7RSBQFQtSA/zq4Pq+RTQajWWqGv1gvpqabrauvoB/+f9Lu58LzHGtilWc+bpRYqTmqudF8TM0yS02jRSvREMJUUzrOSM4PUgb4z5kUhbKAb0zNmGWRoWOpKVtUByG15NIM+WKaskRBEZ6Ir7GBz3W6dUa11Lx99ka8+7cv4r/+Ok8q81CZ+7kbMTVFmPZ28euWZT/FGlOzbE0knzMpu58bjKkpsyDszxi01AwRqkI2z6621AwnV2kbxuN+Lnvuas+8XrGi1Hz/+99f/PcNN9ygdW0mk8Evf/nL4t/vec97jMlFiG1MWoBJd+i88Mo61ev2KiKjUyhLvrjZ+4NrVkeVkwHV2sxnKzc/qVNdVKrOrQvPYs3OXmU5bFsxSi01tV12w8tA9/O9yN2lxMe3dA3g3Ltexym/fQE3PL9GODmPcsdaMTWTNTSSovtuhrGojorqaxnn+6tkrRah/FFN5pWaTaWJghLQ4JlMFKSaqE61PCDcfEA3+/lAJodLHlmM4699Dv9++2xs3NW3p27x+cPu5270yzobGmEUC4C8j7eR/VyHOLKfhwkn5Xe+6jfu910+sKANC9p2C38rVVC5ElNThGnLOP8s9WY2XqNIXHqt3KLdk35rldeotF90S83y9ydKtImqREEKsskSa/UMVSpbw8lUep2NdWdliYypGQ4rSs1PfvKTxZiYzz77LH7xi18glwvuMHt6enDJJZdgwYIFAIazp3/yk5+0ISIhVhjUNJv3dz8XH/d8duiC61NUahaynxvoP/eWFTwA69Zn2+qo8hmo1mNaHhuxJk1nP897Hn7w2FLM3tipLIdthZ+p+GupcT93VPFWQPa8Ze17/v3z8fdFW/D6pt34weNLMWVhW/W1Edq3FmJq6r7LSUyKdRPUxYGSS57CSTKZGxsarFoOJrG2CZcoyGxf61ecbF7UM5jFyu09keIGFhRHf5q9ETfPWoe1O/vw1PJt+PYji4fr9k0U5AY68XTDuos7q9QsqT5aYjp9hRgQzkJMde4QpJj/2TPibPalipOkE235zV1Mz6HCrLvitdQMNvTwM24J436u2k/L+oXK7zvK+xTG/Vxm2VxpqRk+UdDe65KNqSl55jaFSRFiv5mIHHjggfjWt76F6667Dg0NDbj33nsxc+ZMfOxjHytzJx8YGMCqVavQ1taGV199Ff/4xz+we/fwjlJDQwMuuOACvOENb7AhIiFWkJmMywjnfh6+U1WPqVmoy1xXKSup9Hj47OfhZAoi7ABoWhwbMTWl70LFcVX38/W7+nHzrHUqRZaVnc97uHb6atw0c6tSPTqI2i2MEiySpSZjahaRtYWo2+wZzOK5VTvKjp1//3x85l+OKDsW5Y5rwf08rHV7nNZjqjXFqagbvn9/ZYCKPNKwKrBjYV8gPYmCxMcVh58qfOdMgt8WbN6NT/zlNWzs7MeR+43GIxe8G+88cv+S+lQVR8N8//HlZccfXdLum4nYrZia6vOlMIoFQP58dDf8TaNrqSktJ2TczDB9WyaXx8jmYNujoPxqsr6i1Lot6fHNtAW2H76JgkJakFcSTXEu/ndl+VKlZpW3VbAsyu7nypaa4e+/Mj6nCjJLzSr381ASlV9nJaZmRZGydlYNG1avWFFqAsCXvvQlrFy5Eg8//DAaGhqwceNG3HLLLcXfPc/D66+/jv/4j/8oO1aI2fP+978fl1xyiS3xCLGC7u522J1d6+7nRRlCVVNellf+fz+0XXQKC3RL+1RVlpqK9ZgeYIxbfuZ9LDX33GNrZz8unNKCFdvV3MllCk1A/i7nPA8z1uzA1dPElgRREX1fYSYkqbHUdHxiI1OQi5QRop130cQ1mkWE+rlJL/pk+D3zBlRP4uPIgFyJqgI1VvdzhXNU5JGd4nnhY1+r1JVMoqAwMTX1lASR3M8Fv/1qxmps7OwHAGzaPYDrpq/GQ+ef7F+JAD8X36FcXtrPh41NaYOiZ4vCuWEtK2XtkHSioFKxonw5ftfqhloIwpSlpuzXMkvNhF9T35iappWaPr8Zs9TUOrviWoV+3vPk7VJtqami1FSTWPYdm1Rq9imEQqh852VtUWmdb8JS04aHWWUfQffzcFhxPy/wy1/+Et/97nfR1NQEYO9Da2hoKCovvQo3SM/z8LnPfQ5/+MMfQgUlJyRJdCew4dzP5VYBwfWpKuXMLXyLClJpoqCS71+zxrgtNZXdz01auNrYFYTfDvDw/y+c0oKpK7Ybr7uUbM7D1/620Fr5om8ozAQ5mlIzzkRBbk94ZN2jqH1VXV1tJX2oPjd0NVbxGwtEipgk3AxVa4xX0apwjko5kuN5z46FfWn5cRPOUlNP0Eju54IfH1xQHrLibwu3aMlTwE+p2T2YlS42M7m8M/3y3g3mYHnCxtSUJgpKWfZzmaLQ38pP73gQqkkGg75L2Vq6dL2S9Kad7ncdBb9blX2r2jE1DYU4kBXjZ6lZeJa5vIdMLq/UfqptLFvjfvDWV/DxP8/B5t3DG0hR5hlDuXyZ+7VKUaru52HFKoupaWlNVoqu1ycZxpqlZoELL7wQZ599Nu688048++yz2LpV7GI4btw4fOADH8CXv/xlTJw40bZYhFhBFgdDhrPu56FKl5QVoHgsPe5pZ6UOKZRy+XbbOe6ySssMsiowqdCUNWM272HNzj5j9VQitNQMo9SMsB6LN1FQbFWFQrZIE8mtrAiLcM867eVKso9K/PqopoZq1/697uc2pSpHta54LTXNWK/4Wbybdz/fW14SSogwiYJkGxky6YNuy6//tqmw97OG6xnMyWNq1pn7uTSmZkglqSnMZT9Xq0PleBAyl9pKgjYAVSw1kx7f4kwU5JvQSWPj1Y8oEitZakK+Ye4BeHTxVlzw4AJ09meU6vR7rzv7M7jyqeXY0jWAtx82XnreY0vbkcnl8eR/nxZZEd09mMVBzSMBqLVlRlJff2Y4xFXjnsEr9JqupHwriYIqitQNk+XIEJM41pWaAHDkkUfiyiuvxJVXXom2tjZs2LABXV1dyGaz2HfffXHooYfiLW95Cy0zSeox6X7uFzsjbJ+qaqWms6MfWFZFmbLfh/+tV19xga4vlhLV7udqmJwg2phsDicKktRnqU4R9rOfVx8LpdSM0B6yyZYNkra2CEInUZDqOxjljmvCUtNHsOHFbvnvhXVsnNZjqjXFm/08+ByVzQy5JU20zRBZmaJ/x0WYREHa2c9DlgeEc6FVdakPstT0cz93pevQCT1hOlFQ4jE1S24nUsgS30RBeseDKG3LTC6PX81YjSVbu/H/TjgYF7z7qOKaOezKeShrV1Gjg58Sx/Sw4FecbrgMaR2R3rHgcvyyn2fzHi6c0qKs0CyUJ+PTd72O6auH45v/Y7F/7PunV2xHLi+3IlWlZzCLg8aODJStgMxSs3B9IwreweHkKXM/j+Fb0a3B8al/bMSi1Czl8MMPx+GHHx53tYTEgq77ud8OpI2YmqoTS6/i/yZQsczQjqkZu/u5fUVLtQwGC9uD5/k/D9PtKVsLW1dqCsoPF1MzvAyxWmq6E75NiKztRe2rntTMjtVN9bluzhr9lZrVx2z3mSKU+804ZVI4J1KyB8+CpWaJ1MnE1NTHz9JI5/y9v8t/s6mY8dPn9vi4nw/l5PGr46YYU1NBnLDu4q66n5dbagYje95+bSd/18M9/1JFzQ8eX4rfvbgOwN6QCl8+5WgAwRbUsnsp9ZxIetMu3iRxPr9JjpsOo+GHypoon5d/a2tDeD/J5G3bPVBUaOqUFdW6ttRtXKUov7VE+WZgOLlKr7KxbqnsI3THDDdGmOSxGlOTkHpDd3fbz91anjU0/IChGqcjyGVchyCrzygLtb2Wmna69LBjl8k1jI3Fa95nwe3B/AApdz+3u9Ax5n4e4RkwpuZeZJNBoaWm4r1EmV/qTBwd0UtU4Xf/zsTUVKwy3oVtcGUq4kg3h2D+flTcEm3SGML/XD8WXVB5fovX8t+yBrOf+C2Wugez8uznTlpqBks0kDHrfp58oiAzGwI679/e4+HqKm3LgkKzwNf/vjcWeWj382ypUjPZtzTOcSncM9RUMkWZl5TG1JTlIoDcUjMMsq5yS/eAdll+8T5VKVVqitq+8pUPstQsEFaqspiaMbifuzJmpI3YLTUJqWX0EwXpD66eF75TVY35WVREGuhaC2VIF3+e+N8q6FgehKHKUtNONVoymMCDTzgAKxZGYurB/ZzZz/ei436uqguO8qrWgqWmn1wiHVThGcR5N5V1yZRNzrmfqyg+ZYvgPJBvsNePJpIoKMQ1MmWFPPyJ/435xtSs+K1fEsexNMaa6hzHT5/bM5SWmJrD/7dpqSnbxItzHBRRWn0khZPPtVJX4ZD37hdTs/Q3E4mCknY/f3xpOxZs7oqlrlDPUHdzRu90qQx+IQ1MPjNTbvfDZUVXUpdZaiqc7/et7Ogdwv5jRmDcqObwMTVLrosjUZB2uANjkqSb0ErNm2++2aQcvnzzm9+MrS5ComDS/dxGoqBBRfkKpZu11Aw+V9tS0/JqQTf7+U+mrcCH3vIGozLYuMV8Piimptn6dvQOCY/bds0WWmrG7X7OmJpFZAtesfu52r3UffZzzZiaBZfDJN3PZeNknDKpPE8lpab0uGf8nSmzNkvghQwT914mp9RzI+C2fN3PKy7uk1gbDubyGNPY5F9RBX733j0QEFPTkb6j8CxUxAmbKChp5ZiMUrlUxgyp+7nPNXLvqnD4WZ+VEibWLVDuuZX0Y7t99sbY6vKPi6q+8epbhyH3c79+0uTc0mSSq+GYmtHk6Rna2/8oxdT02QU/+ufPYsz/z953x8tRle8/s+XWJDe9956Q5NIkIYTQQVCQXkTAL0UQREERRCkiKiBYEFB+ooAiKB0UBemht0AaENJID+nt3ty+8/tjM7uzs6fPOTOze+fJJ5+7u3PmnPecOXPKe573fdMJ3HXiFOV+XqDUjKBPzVirmYUvpWZQgX1ipWaMUoF8oCC1a8rm58JMzd2LXx1KzdxfupLWgbJPTXmxhOBVuvHKueH5Rbjh+UVaZTDiUxPsk9mgzJi3NYs7MldB52NqRntlI2d+LoaYqUm/RmRqhrB79ZZImyejF/2cnw+tPW0b+GJni6xYTIgweExCJfq56pyuct07tu9qpSg12zOoTsspNVnm5w2tLJ+amci4Bcn70+XLoxqtPGxGJg0FJqi+5gzzCjEHTlvy3ChwmZqU36Nkfh4kVPZdQTLnCl1ykdOwAgWpQFe9AeCT9Ttx5TOf+JJnZ7OcT00WUxPIsva/99QC/N9+Q5TkcetMjfjU9FSyM72POuHLp6Zt28L/Re4hXY8Ro5QQjPm5unmwqHy2568OsMydSZ9FkPOpaWisOO+RuXhr+RYjeYvClE9NKsPIprM4dWPdDr2bfi9IG02VE2Q/axhRtoUORD1QEF2pSfpNrNF1bR5MlmMSrAMukhLKWfwHub7yFhUJpaZAUSJpmihswIxt4+MvdkpKJS5PuQYK4tWK1d+91xpb24np3P1PNPo5O1BQB92nZntw8ykPMus63dHPw0YQ5ue6fWo6awfeup3Xh8UCBUXzuZkAa+6jXQorUBDVvYnt32+lG7S8VOox7fdv+BWnwPxcZMASGXd2trTjaU70dhrca0UjPjW93wNUopcTlJmaX/rSl7hp1q1bh9WrV8OyLNi2jaqqKkyaNAmjRo1CXV0dKioq0NDQgBUrVmDu3LnYsmVLjv154IEHYty4carixYgRCmQXgqzBkaagsKGmmAHE5cubjPsfKp0sRDY38qyO4jx049In52P25Qdlywlh4WeiRNtmmLUYKjMM6DM/V2+RIDd5UWEE0UBrC9I4KNrkgUU/j+xmXU6p6bgACLI23n5Jm4eClYkPIbM3CkPEBvDp+gY5oSTkCSVQkIJ1lrRPTU612EzNwu8083OVIDjOu1STThblu5MZ/Tw6J015piY/re7o52FDR7AQ3r0iB/cycOZL3rqdG/2covRsbXcrauRkK2WwnoYuxbQvxblAuTaCMj/XVoQUGlrZgYKALNP4ppcX47MNDUgKmhHQDiF5CD5QkFwZMQkwC2Wl5gMPPMC8vmDBApx33nmwLAs1NTX43ve+hxNPPBFdunQhpu/o6MD//vc/3HTTTdi4cSPef/99nH322ZgxY4aqiDFiBA6dTE2qubYNfLZRbbMkztTcvfhVKsWTF8dEvOBUUrLEPFNTRTIxfLRmB7Y1taF7dToUxkXwTM3ymSCjEf08uLaM6H4yB6lAQQEwNWUUlVFtW5ZcSYISKhcoKMD6FDE1aYGCAtxYi4xxfqMkf7xeM1OzIH+tWQtBxeMUfVOuxgxi9RHvvVTzcwUNjlP32opipWZDK8enpnRpZpA/BOZLpOpTM7pMTZdSU+C9pikCg4x+7hyY8JSa/EBB5N/d+4HOxNRkPQ/aJWmfmlKpPfcKKOAzGb1MTdlx2jREAgV958n5gflijQMFlQZ8mZ/TsGvXLlx++eXYvn07evTogYcffhhnn302VaEJAMlkEscccwwee+wxDBw4EE1NTbjiiiuwYcMGEyLGiGEE7pNPEaj4dlm6uREn//UDqXIcCCs17cK/OkA9xRbwH0NDUAuxIE2IvTCj1GQxZ6NjLucX2nxq+nj8poMhuRH1jQltMUhWaorl6VfxZCJtkGAHCir+rS0EpcPHX+zEH95cjpcXbwJA9+0crE9NPvw0VSaT9S2mE4Wb3eCfo6ipthuyDGdeF2Can3t9atICBbn6n2g7OnXvUlnsi5PH1IzKIaEUU1PRp2Z0mZrkz7Jgm5/Tflcr0GHV89btPAZ1rNQsBOt91BUF3FegIBF5oPcAgWp+HtLWZ2cLO1CQBbXgUqqPxd08QRzcdKLXUSuMKDUfeeQRrFq1CpZl4dprr8Xo0aOF7+3Xrx9+9rOfAQC2b9+OBx980ISIMWIYgVbzc8qoducbn0uV4UaboNLVzv3VN7KKDNLyfmuCYRXmGKHGSyqGiUUFS3Fp29FlpcmC1J9UFiT+mJoB+tSkbaoi8kBlop+Lm5+ryyPTLNFowWIwzc8Jv7XnxrLgavT2iq34zpPzcfj/exu/f30ZlSkXZBuL+dRUl2jFtl1opDAFVVGw2Q1hs5lQ2DHIKgl4Lc40PxdlaiqYVrvNz71oZPrUjBBTc3e1xczPy4upKRv9nAY1P/hqZYkyNdWjn+fzNcE+iyrYimnxg1fVMmTupeWTsfWuLVkkhzDQ0CIXKMg0TEc/9641pM3PdQpTwjCi1Pzvf/8LAOjZsye+/OUvS98/Y8YMDBgwAADw8ssva5UtRgyTCCJQ0JvLt0qV4UYYTE2eglRkAmchiDW0w24qF5+amQzDHQCi75tRFESmppJPTXUZAvWpSalbVDYsNNbqmu3NWLBuR8FvwQQKEkdUmSxspmbxZtdhnYdVncue/jgagYI0RT+nYemmXeo3UxC2T00VpibVpyYlPT/6OaMsQaamW2EnHCho99+KVPG2aWdLO3Vsa+2IjuVDjqkpkLazRz+n6QmDZGq25Zia7Pv50c/JCa577jNU/+g/mHHnG1i2Wf94FVUw3X4xlIhyZcilL5ChIB/avikg8/OQXme3UlOXb3xAfb3oLi4Qn5qyRURz2A0cRpSaK1asgGVZGDlyZC7wjyyGDBkC27axdu1azdLFiGEOsgwAFfNzPxBVaurcMNl2lq1w6ytLqdf9lBuEuRPNXDIImNi82qCz94KMfm4asU/N4GVggSXHlF/PwhX//jj3nZbS+/z8MTXFb45IExaBJteP39yCbS3F41YU+gI1UFCAopmwHHCDplDzg8K5Unv2XAjGYiiA7gAbrPG7SKlpgKlJkq+hpZ3O1OzIROaQMG9+zpdHxe8oUBrm56YOwuiRqtXKas8xNdljiar5eTbvDN5avhVLO5FSk/U4dCmm/bzzQj417fIOFMTzqfnRmh2EX/nw5RZg970m1lDeHKM5ikYfxnxqAkBLS4tyHtu3bweQDSAUI0apQJapyY5+rn9YE17M2wV/fMGGjW/+8yPqJq/wVFI+/yDMe53nGsZEE3igIJTPhBoFpWaQ/lhpckZlo8lbDP7utWVYviW7fqDVxdue/qKfSyg1I9KGXtDq8MLKZmxvJSg1QxzLHESBqSnyOP08ctUoqyyIMHhMQi1QEP3wjPg7p2dKmZ8L+NQUhVN1ktx8n5rSxRlBPlAQHy2K/TdIdysykA0UJJJP8TXy76oKruv+9xm+99QCfLhmO/G646NYjTrUecF6/PRxSV8Z3Htdn2nrjoxmpiadUR/O4LXTkPm5n6yc9WsUfWpGZIoJHUaUmn379oVt21i4cCF27pR3lL5mzRosWrQIlmVh0KBBBiSMEcMM9Jqf+5WmGNLRzzXMJtub2/HPOXTGte1zsRmErqE1RJNNE2XaNsOnmR2Omb0JRMH8PEhdGK2sUlFqZmzgzjc/3/2ZriRww0/NZPbf0WjBYsg+25xPzRDfcbpSMzgZPly9Det3sg/e/bRRk6L5LgvuDW6pmJ/blGagMpA4zca0bvHcq1OpySq/oZXuU9O2874Rw4YjhZhPzU5ufk75Xc0fI788EhZuaMAdb3yObz06j3j98P/3Nu57b6WA+XkMN1T2XcFGP+fnY0Pvu0Zb94f1OjdwAgWpwk99nAP12KdmdGFEqbn33nsDANra2nD77bdL3WvbNm688cbcA95///21yxcjhinoND83cUImakad86mpocwveBtH12eVuSIY8/PwpgxTTE2WU/tymSCjwNRUvVUnKyoyPjUFtIhLNzUCoLebV0EQnPl5NNrQC9lnGwUFC+1wLUhF61f+8h7G3fIy/vvpemoaP1NLs3GmpvbsuVAzP6fPM8TfNTI1aYGaVBR2tuevGzua25jjkOxhtynkfWryO4/jU3PdjmZc/7/P8MuXFmNnczvnrugcoHmhz/xcgalpcFz77lMLlAMFdVawngbt+coSkHWYOQMMRXnG1n6AsKGhlSlLkDDF1PQDZ+1kYj3tzVGaqRmRNgobRpSaJ554Yu7zgw8+iN///vfICIwIjY2NuOKKK/Dqq69mhUskcPrpp5sQMUYMI1AxP/9g1Ta8vXxL0eRhYm0o6idJ5kSfBxmzTRXFQRDMgLz5efAzh4nq2WCdAJeTT83i39SUmn5kULu5Iik/PdOKogWxCBoicji+vWhtXszU9LF5kEgbVaWmbN90FMth1iYKTE0A2NHcjp89v4h63c8zN2J+7hInHPNzfYGCaIiqT00nZ1K7b2tiK/v8MEN1wlmLiTE1O7CjuQ17/noWbnxhEa55diFm3PUGV8kRVaamu2/4eXfYfvD1MjVF0NjawWViRuVQMypgs21pvwfHnFu+tQlrtjdl86Ee/ug/QFixtdivahR8auqN8aCeV6tRpmbh96iuN6MOI0rN/fffHwceeGCu8/zxj3/EV77yFfzpT3/C7NmzsXnzZrS0tKClpQUbN27E22+/jd/+9rc46qijcpHTLcvCueeei9GjR5sQMUYMI5BdvM5athn73f46DrjzTRx/3/tCJ3R+IM7UFF/88sBbUImYWjDzD1KpGeA8o/MZeJHJ2HTfQXZ4fnR0g6RQVzM/97MJUrs3nZRXIESfqcmXw4nCSuuf3jEsKIVzRPfq0uOfwzYIs0tEwaemg/dWbaNe88XUNKDIco/LpcPUJP9Oe9S8eunxqSmvcM5ZrxCK5x1mR0ap6dRBIG1LewZ/eW8lNjbm2Vvz1+3Ei7v9ONIQVaWmrPk5DUyliCaFmCx4TM2osmfDAtv8nLIu1liGCOp/PQsbG1oYinL9TM3lW5qI5YSBBk6goDDgrJ3MEE1sz3fZ+2MAQMpUxrfccgvOPPNMfP7557AsC8uXL8dvf/tb5j22bedOgo866ij84Ac/MCVejBhG4MfM6N+frMfry7Zg5qheAEz51BTLNMfU1DBU8hZUBRs1hUoHydQMEradNUE2Fv2csQCPqK9/aegyP/ezKVC9M8vUlNt8Rz1QkIhy1VFECDM1DbFuvIiIXtg3cj41Q5SBGv2c9FuIDe9n/jPB1HT31zA2mypmrnQlgdzv+fzo17zjXJMBpqZKn4ic+blA32luz+Ded1cV/f7cwg04Ymwf6n1RmWu8kDU/p7GSWfeS+vqO5jas3FqsLNKJBIeeFNVnEhpYemldTE2fTb5lVxvueONzjOvbhZq/dqUmgakZ1vTb3J5BJmMjkbC0rgH85BRk0M9yWW8GDSNMTQDo2bMnHnroIRx22GGwbZv730E6ncZll12GX//616ZEixHDGNp8nshf9Z9Pcp/NRD8X22g51P+SYGoGMPo77LAg5xlnERVHP1dHKZufpxXMz6MeKEjUn+O2pjZG9HN/J9pulINPTVkEuTCnoZkyD5HaOMxm93O4Y8b83M3UDL5hlPz8So49Ws3PKc9Ayafm7qxVhtJSZGo2t3cQlWWkfrdqWxMO/eNb6H7Ns7jwMXJQm7ChLfo541F62+bFRRsx6pcv4dC731YuTwS8AF5RZc+GBbZfVDozUqoMDU3+u9eXMeXRva5bvoVkfh7moaIjQ2giFMDk4ZTfZi6T5alvGGNqAkCPHj1w11134YMPPsDTTz+NWbNmYcOGDdS0RxxxBP7v//4Pw4cPNylWjBjG4Hfx6nbUbMT8XFCp8K+P1+OaZxciqWJv5gGfqZmHSp3L1vx8918T1cvY9IW9zbhWaiAyNRWqFkagoLTCu0eTMyqbGpFAQQCweGMjUhTz+2Kmpro8MveWyzsRhejnNOV2WN3UYYQU/e6jjcyYn+cRRluprAY+3dCA38xaihE9a3D8pP45BhzLVxwLMpGLTfjUVOkS0VFqOu8+P21zWwa1FUlCHsVpr3l2IV5dutmveEYRRqCgq//7KTbvavNRmhh4S4WoHGpGBUwPAlSmpmQZcsnJedhseXSv61YQGMVh9pzsGsXSuu/yk5fJIIvunMtlrRkGjCo1Hey7777Yd999AQArV67Ehg0bsHnzZrS1taFr164YNmxYrMiMURbwe5KzZZdbqelXmmLIyPfLlxbjpMkDfJfJK7KQfaKSfxBKzeAnmZwPLwPLCtu26b7Oysajpk6mpg9mh6pSU2OgoKj41BQdfjY0tKB/t0riteJAQf7gdnvDQrnsC9tCOKDxgqbcJi3mgxCzw7aR8KjsFm1swKcbGpTzNB4oKIQOqRIoaMEXO3HFv7MWKFcfNhq/OHoCAPpz5Y21TPNzYZ+aKkpN9cOAlg79fUEFUkrN9g50qSQpNYtvfmD2at+ymYasT01aT2fd622b2au3C0jmH7zXMiqHmlGBkk9NWaWmhgnWthk+iWFrX9dFl6kZjf4bFFNTpbrls2vzh0CUmm4MHToUQ4cODbrYGDECgd8T+e3NbufI5EHKstQ3pLKmh4/PX6dWkAsyE6/KQiCIBduZD36Ig0f1CnTiyJmfG5hH+UxN/WWGATJTU0WpqS6D6uK2QkOgoLaODH76/Ge45eUlSjLoRodgZ7ZB74M6fWoC2Wcr0tTlcnoehQ0uTQbSz0G0e0fGRtqlv7nqmU9w66tLfeVpxqemvwNAv/BruHHTS0vws6PGI8nwk+bH/Nyr6NXJ1HSmfpVmjwpTU+agtLktQ/ShGoHhQwnufuNnHcdSsITFtuIGCiqTuUsXWK2hK/q5jvckY9t08/OMfkLH8q27ig55w3zfbR9jLg1+FKQmmZpuqJQSv+FZGPOpGSNGZ4RORh9tMqlUYHA5CGNxLWd+rj9/XTjmz++GZH5ugKnJWNbbKJ9TP1LbtSu8o6XC1PSWdd/7q3DTS0sisxEVVaixFvNFPjV91k302UalDf0iF/08RBnoSs1wmJpuedbtaMZts/wpNAGgqc2A+bmbqRmCokIlUJAXPL/ePGWQqFIJABpb24npaD5dWXDyVmJqRkSpKcPUbOkgKzXbMxm8sGgjHvpwNXY0mzet1oWCAwEfj4PVdA/PWYvaq/+DW19ZEuhakfdWqqx5yhlM83PKE5b2qalh5mId7rYZYDs0tWWwo7lwzIxCoD6dc52f/WJrRwafby5ms+qAu7+UywF6GAiMqfnOO+/g5ZdfxuzZs7FhwwZs27YNyWQStbW1GDRoECZOnIiDDjoIBx98sJKJS4wYUYBOejptIPfzekQlCqcbfjdqQZ1Cz127Y3dE6mDgTGwmapfJMHyalRVTs/i3wJmaik8wrYGpeVHEgjaIKjVZZlfeMczvgldcqVkeL0UUfGrS+gFJpCDEdG907n57hZYyjZifuz6HEihIY1406XlDBOu6t00aDfjULIdAQSJ9J8vULP79nndW4p53VgIAhveoxuzLZ+oU0Rjko5+Tf+c1XVNbBlf951McM6GfsGx+wdszx0zNQsj45eX9ToOOJpc53NUFb1+JBFNTowx+LFVOe2A21u5o1ieMC7bk+FScgS5JShvGlZoLFy7EtddeiwULFuR+cxbTbW1taG5uxpYtWzB//nw8/PDDGDp0KG688Ubst99+pkWLEUM7dCxeHfo/7SDOz6Achm9IHvz6EgnSCfqqbcWOtE1BZgMiC5uRr22XC0+TYn6u4lPTRx9TvVVFgR71vYsoY8SGTVW6tbbr9qkplq58mJrhK1ho/YDM1DTf8O45Vdd8YiJQUOjm5xoCB/I2qrxqsRQ0Xp+j6xtaiOm8Y4gIMhy5WYiOUlP8oLTDtrmBIpdvbcIvXlqsQTLz0Bb9XPDenzz7qXIZsuC9llFwORIlsFqD9njlmZr+Ydv0fEzN4956RsGnps41gB8FvymFJoCCB63mUzMGYNj8/LnnnsPpp5+OBQsWZDfKNnmjkmMk2TZWrFiBc889F0888YRJ0WLEMAIdTEiH/m8iknEUoyC6JyyVCTTIBZsKe04VTlOYiX7ONj8PIwiFCUQhUJDqBkrN/Dzaz000+nlGgqkZlPl5uZgE5ZiaIcpAM50j+9Q0LAzMzCEm5tqwzc91zH68ZuGan7N8arru3djYSmUzKSmcHaWmwpsTHaVm9q9I1+nI2ELuBn4za5lPqYKBtujngjcv3xLcATiXqVkm6zldYD3DKAUKas/YePijNcRrppia3qk5XKamrV2GqC7jCszPFUaoiFYrcBhjas6ZMwdXXnklWltbcwNu7969MXXqVIwZMwbdunVDR0cHtm/fjsWLF+P999/Hli1bYFkW2tvbcd1112Ho0KG5qOkxYpQCdCxeNzS0oK46rW1yjToKN2ry9we5YAvU/NyAP5lc3jbH/Fx7ieEgCoGCgmRqRn3vIm5+Tvf6WuRT02dvFW2zqLetKCIR/ZyyIbNhY/HGBmzZ1Ya9B9chnUwEE/28RB5u4QFg8OXr8AyViyJO9V3Hvp913X1p9Xa6Uonn15OVt0q7/+Gt5fI3GUCeqSlWiXJyBCYb/ZwG0baLkr1LzNQshEr08zACBQHAK0s3E3835UrMW88w50YT5uelgM5WX50wotS0bRvXXHNNTqFZW1uLH/3oRzj++OORSpGLbGtrw1NPPYVf/epXaGhoQHt7O66//no888wzsY/NGCUDHRPN+oYWjOnTpWw20TzYBZ+jztQMTqnpx9yNnzfdV0/W9Fd/mWEgq7wtjOYYNFNT9V4dPjWjBimfmpShNCymZtTbVhR5pmZ49aH1g/veW4X7318F2wamDu2O5y6YhoqU+THXzSCO8nKz0FVL8M9PR6Ag3rzG65eiConV2+imgu7DZ9EqOTmXMmNbJlBQuUE2+rkFYM32Jqzc2oQJ/bqie3UaQDQPt3h9MlZqFoLVXHTzc/H8m9s68OP/mnU/YIyp6ck2TKWmSRdcUYNfK4xO0ERCMLJa/N///oclS5bAsix07doVDz74IE4++WSqQhMA0uk0TjnlFDz44IPo1q0bAGDZsmV46aWXTIgYI4YRqPhq8mL9zqwfqM44RkWdqRlkWXnTC/1lZmy64jLL1Cyf3qdjkeYrUJDivelEOZqfiyoQ6XUpUmr6lEmcqRntthVFWwQ2uKx+4DTzuyu34fH56wJRIkXAzagQMjb5c1DQY37uKNXJ4D1uFtPefRDC8n+tFCgot8GWvjUyaGrL4NIn5+O0B2aHLUrgKDA/F3iGm3e1YcKvXsEBd76JKbe9io+/2Cl8r0w6HeC+M6XcaQ2Atb7VwdS8+PH52O6JIq4bJqKfA9HyqTnulpfx6pJNnUJhV0DuUahvJ2giIRhRaroVkT/84Q8xbtw44XvHjh2LH/7wh7nvzz33nFbZYsQwCR3m51/sVmqWyyaaB/emVaXKQUZ2DPLEu6U9g40NLWhu0794sUFf2Nkor1O/InMaJfPz0mBquouK4kZGVCa68TnQ2l54xW9fFVWaRa811dAeAfPzDsEN2fmPzMXq7Qad8+9GAVPTeGnq8Ot/2i90MDV5YvPqxbruvsLqN26fmuLNyFbGlgruenN5bo3ZmVAYZEvsKTa0ZN0UrN7ejDve+ByA+IFvkO9nHN1cDqIuLAp+l2ji+z9YJSWPCswxNf2vl3Xhi50tOOsfH6GpTd5dSKmhYB8cohylDiPm5/PmzQMA1NbW4vjjj5e+/2tf+xpuvvlmNDY2Yv78+ZqlixHDHHSYnzsOxsslWAsP7lqqLASDVN6IBjrRgb1++1qOtasbmQx9YVdO0c8BPT6C/LDFVO9UMbu9+In5uPvtFZgyoCvmrdupWLI5iEbstBlMTS9Dwe/mUZipWSJsPh4cpmaY77jM4dD4W14xKEkW7o1blN0d+fU/7Rc6moZnAs1VejLeQ/dYsIbpU1OBqen8jRVIJYmMT6XBn95ZgbtPnhJJpm4UDzCjDNY7TGvKqJFMTEU/91YziK712Dn74ukFX+CB2auLrq3Z3ow1ARxsRgkR62olBSNMzU2bNsGyLIwePRrpdFr6/nQ6jdGjR8O2baxfv96AhDFimIEOpebnWxoBlLaZkwz8+hIJkj1p6nSUBF0Kzf5dK4t+y/rNZDE1y6fzFZmfBx4oSO1m1aBU89btwN8/XIN563Yo3W8S4ubndPcIXhcfsU9NOdCC9AQqQ8Qmtyi0iQjc43I40c91+tSkzz8ssMZv96XY/DyGG7Lm5zQIM/sD7CdRG0+jDlZr7WxuI/4etSY25UYmDJ+aFoBEdM8SA0GB+blK9POI9c+wYESp2d6e9SWhotB04OfeGDHCgo7Ds2WbdwEon000D+4BXMn8PFCmZuk9k9qKZNFvGZttZlN6taTDy3hWeUf9vIuqt6YUzM+jDnHzcxmfmv5661X/+RQPzF7F3ayWy3jsMF3DrI4plokqSmVcDz1QkIYdg9/3TDhQEIPd06LQ/5w7ysuOofNAX/Rz+fJMo1TGr6iAxvZ+efEm/PWDYrYgEL35X0f8BhLCiH6esCwtB2aljMK5XeF+faKUNIwoNbt37w7btrFixQrlPJYvXw4A6NGjhyapYsQwDx0T37Itu2DbduROBk2hlJiapbh4TBGOQFn9i6VQKkWEHShI9V5VpmaUIRX9nMbU9LDq/HbV+99fhXP+MQc3PL+ILZO/YiKDKEc/Dwul4pPOLWXpBgrKbshfWbqZeJ3vc5N+zX1pQwPd0qHZ5aNN2KQ+xzAVTF8GKLWq9qmtoF6TjX5OQxTdQsXm53KgPX9mxPKINXE5BQpKWIi2M+sAYFM+x5CDkV3ThAkTAAAbN27Ee++9J33/O++8g40bN8KyLIwZM0a3eDFiGIOOCWBHczu27GorK8WSKJSinwd6Ih4thpEIUgR6TcZmmP8xTH9LEd73SOUZ+mNqqt2b7sxKTYZ7BC/LT1dX/dkLbKVmuYzHth3+Jjhq5t5ueaK8t1q7oxlnPfQhvvynd/DE/HWBl68jUFBbRwYz7nyDep1rfs7ou26FEyudipsgJ7dYfxRd9O1S7GrHgTbzc83pdCBqh0RRB+35v7dqG/Ue0fk/KAa9qTlUh7smWViWpcVfc7lApQ/FFgRZGNk1HXjggbnPP//5z9HY2Ch8b0NDA37xi1/kvs+YMUOrbDFimIJOduWyzbsiZ6JnCgW0e4X7g9ygB+lTUxdIZsys6NK2XV5slGJzGoU8fPQx1VvTZehkSNinJiOQVZH5eUCdtZz2je2ZTKjveNQ24YWBgkIUhIOXFm/Cgx+uwfOLNqKxNfiIsDra5r8LN+CD1dup1/2Yp4syWVUUXE6ycvI3XW7oR/Af7sBvoCAAWLqpEXfujoLOQ7A+NTvHXkEXVA4oSfe0tmfw99mr8cDsVWhpz47HQT13U/vDIqZmAF0rYenx11zK8Bv9PJ6WsjCi1Dz++OPRtWtXAMDixYtx3nnnYfVqsp8KN1atWoXzzjsPixcvBgB069YNJ554ogkRY8TQDp2DyrItjUVmluUKt3ot+tHPS++ZkMzPMzZdUWejvMwfwg4UpHqC2rmZmvQ+WGR+7k8kYUTR7FAV7R3hsrGjNo5GjTkaVehgav5m1lLmdV7XYCsrxdYSKuuMOFBQ9CGq1FRl3U++7VU899lGobRBdpNOwn/QBpVn433vMxkbB/3hTZz9j49wzj/mYMadb6IjExxfzhTBIhSmJqJ9mBgECszP4zlGGSkTmdbW1uLKK6/EtddeC8uyMGfOHBx99NE49NBDMWPGDIwaNQp1dXUAgO3bt2PJkiV444038PLLL6OjI3vaYVkWvvvd76JLly4mRIwRQzt0Dv7LtzR1TqamQhO+s3KrPmE4CNtsUwVkn5r0hV028nTp1ZMGHY7P/Zgeq/vULL9VnnCgINumBwrSHP3cjRcWbUSf2grsOaiuWCZ9xYSOtgyLq20eUWMWFTA1OzljhAVdPjVZ4PVLJlPTdqej59GRsfH28i24552VeH6RnJKqM5n5ldKbkExY6F5NDzCrw/y8WSI4S5BrqKiNp1EH6dHwnpf36itLN+Hdldty32ev3o4XFm3E4WN6+xdQAKZ8anrbIZBAQYl41i20WOw8c4xuGFFqAsApp5yCzz77DH//+99hWRba2trw/PPP4/nnn6feY9s2rN3q+lNPPRVnnnmmKfFixNAOnT7XdrV1KPl9KkUUmozJt+HvXxczB+qsIDM16Uytsot+roWpqd4isU/NPEQPajI2vc29i3md4+5Rf3oHAPDzo8fjx4cV+vMuF5+aQPib4MgxNSMmTzmD9x7xXjOmT82CCNf0dNub2zHzD29JbthtIflihINeNWkkGS5b3Ez7IJQGQXaTePySA2kM4gcoK0xw91vFgZDvevNzHBaUUjMgpmYwgYJin5oF5ucKTR6PAFkY3TVdc801uPLKK1FdXQ0g/9Ds3Uwg57/7Wjqdxo9+9CPccMMNJkWLEUM7dJ5otXVkOo2Zk9/o5zHYIAcKojO1skFaTEsVHPQwNf2Ur3ZfugyZmnKBgsjX2rxMTb9CEfCz5xehqa3QZ2E5jcdtYZufR8zcu72THCD6haVh58mb4/2YnxcekLLzkZ0HnOTlNA7wUEpV7dulEiw31B0+lQayCHJ8LUULojBBai1eC4q6nwnquZsivejwQS+LbPDz8lvvqkLldS6nPZsfGKeCnHvuuXjxxRdx0UUXYY899iAuihKJBCZOnIhvf/vbeOWVV/DNb37TtFgxYmiHznWFjJlLOSEemPWDGCjIpvdXm8GSK0WEb36udm9FGTI1xc3P6e1W5FPTQFdt7cjgA08k1HJ6J9oD9P1FginTOVW4u1RnZ4ywYFn+24drfu4jUFDGQ5LQic5ofl5Kbmj61FYw1SK6op+LIljz89J5TlGAivm5aBMHNT4EFigoZmoGAncrl9K4GzUYMz93o2fPnrjssstw2WWXYdeuXdi8eTO2bt0KIBsMqG/fvqipqQlClBgxjEHn4O9lCZUzCgMFhShImULa/BylxdDgIfRAQYr3kp5bqUM4+jmjfwYV/dybbTmtM8P21xy1TbjbHL+zb65Y0ONTk2N+zrmfdTBiMphPZwwUFDFCNRN9ulQymcSF0c9LqGICiNp4GnUQzc8V7iEhuOjnwZifBxEoKBv9vHOj0Kemwv3aJCltBKLUdKOmpgY1NTUYMmRI0EXHiGEUOk1AWtqixWQxidj83CyIgYJAX9jbdnmdFHrNhkqFqanD1DNqEDY/ZzCJvQo5Uz3V+36U09jUngk3GFjUzM9j800xWFbWSNBPa/HNy/0wNbN/TfbtcpobeSgltwy9o8bUNF9EDrFSUw6k5+/3sEU2nV8ExdQMYm7MWgCU33pXBu71ppJPzXgIABCA+XmMGJ0FOsf+pvbOxNQkf46hB2SmJsP8vMx4DEUnzwErNVXvLMclnmiAGhv0Nvc+vqAWc+W0b2zrCPcdj9omPGryRBUW/G8+uVGGOY+CtZd38jbC1PT87QxoK6H3om+XSibLujBQkHnEPjWjC9LsJxsoiJp3QA/e1LtZHCjISDEFSFixR003ymsHFiwCY2o2NjaioaEBHR3yypqBAwcakChGDL3QubBo7kzm565FgKgz7hjiIAUKcgdpK75WXqd+RSfPAZufqzM11cuMKmSYmrSU3n5ragHofWzlxNSMzc8L4Z67y/C1ixR46ySu+bkAU9PEu9oZzc+jxqhmoXdtBXa2tFOvu/tEEGN5rJiILog+NTn3iLqBDixQkKG4C971VRAK89inpsf8PB46lGFUqfnJJ5/g3nvvxTvvvIPNmzcr5WFZFj755BPNksWIoR96fWqWjtmPX7hbrZwUB1EBKVBQhqG4LHulpsKr5UfZXk5t6RcyPjVpY4H3V1Nrbm+25fQcbYRbH1HGblBYvrUJzW0dqEonwxYl0rA0+D7jmp9zErDWCI4iyYhS0/lbTgMBB1EL6MVCZSrRaaOfx5ADaXzwM+64EZj5eWBMzdj8PAj4tViMh5ssjCk1H330Udxwww3o6OjoVIuAGJ0XOh0qN3cm83P3CVV4YpQtiD41mUqj8jJALzY/l9+okdaPyzY3Yt2OFuw5sBtqK+lTqerasxwNckSHSJbSLawAPuV04GLbsfm5G9c8uxA3PP8Z7jttz06/uWJBR8vwnjyXqcnoO3mfmlIiCSPs9yZomApGYgIJjmIkE/A6s3RarvOB9Gz8jksOglonBOZTM6jo58ZLiTbsgkMX+TaP9WxZGPGpuXDhQtxwww1ob6ebAsSIUW7QuU9r7kRMTTcittctC9B8atLNe8uLZaDD8bk3j3vfW4kJv3oFB971Jr50++tYva2Jeq/qNrgz61Z4SnfWd1Mop7Epy9QOr0JRVJa0ddj4zpMLSsrkNmhYGswEuQE5OM3Pjn7uMDWlxRJC2AznoBE1RjULPBPWjE+lgSw6Uz8pNdg28NjctRj0s+fR+7rncMcbn2v0qalBQAGYi35ue74bKaYA2QMJ8+VEGQVMzXjsUIYRpuZf//pXtLe3w7IsJJNJnH766TjssMPQt29fVFZWxifhMcoSOn2PdKpAQQEvNjsbkiSfmrDpTDiUFyutiKmpULUCf1wZGz/932e5ReXCDQ342+zV+PFhY4j32or7ws48S7ICWXlhjpVV+L2c3omwqxI1pqaDbU1tWMk4oOjssOAwyNWfH+89emzeWlx8wHDq9bB8arrz7yyI4uEDDYkEe850z8PBMDVLp+06G7Y1teGsf3yElt1+Kb/31AJMHdqdeY93TKGpMQIzPzfG1Cz8Hkj087K0S1JHbH6uDiNKzffeey/3+frrr8cpp5xiopgYMULF2+ua8asPtqO5w8b1Td1x9IT+2vLuvD41QxOjbEGPfk5hwpWZiZ13UabG1Mx/XrujGau3Nxdcv+bZhXSlZszUlEZW6U7rn9605mRglVvKyIRufh7d+S0OVmcWvEf/6tLNeGv5Fkwf3pN4nc3U3F2GoZe1nMYAEUT18IGEpBRT07w8na2vlBI+3dBQ9NuP/vMp8x7vq0B3jxPMg28Nyvw8iEBBidinpt9AQfFwk4UR8/ONGzfCsiz07ds3VmjGKEs0tXXgyte3YnVDBzY1ZXDpU59gwRc7teXfuaKf5z+XExsqKiArNelKjXIzsdNtfi670SuhfWFkYDOYmt6fTW0iypmpefm/PsayzbtCKz/KDLAgfIiVKiwNZoIi79Gtryxh3M/P29QTjK4q3gxMscFMIOuXj+VTM1iLoFJSCMcAFm9qZF6X8QceBMyZn3u/B6DUjH1q+t8Hx8MNAENKzerqagDA8OHDTWQfI0bo+HBNlqHpxguLNmrLv6kzKTXdn+OBWTtI0c9ZfjNtu7xMp3Q4Pncv9GSVoqqLws58cp1h9MFyChT0jb0Hac9TBO+s2BpKuQ6ivOFnPefxfbugKyMoWLlDx9ZT5NE//fF6jLv5ZXzvqQVFayEmUzNXRjD+5sodUX5PvUhYFif6ef5zENUqJYVwDP66LnI+NQ1ZO3gV/kEc8lno3JZJQOF6t3RG3ejBiFJz6NChsG0b27dvN5F9jBihgzTO6zQZb27vPAsi9yTa2TYNQUA++nl5KZd1+Ahyt5XsIk+1LTvzGi/bP+nX3AhqzNC9Ee7bpQLf2Gew3kxLBEGYtKmCJdt+Q7rjjL3CUURHApb/cUn0fV28qRF3vPE5/vjW8oLf2T41s9dMeTeIcLc1gigzqr3gRz8PVmlQSm0Xg6/AF1ZqBqSSCoqpqeoTXgY8lnVng1L0cwNylCKMKDWPOuooAMDixYuxfv16E0XEiBEqkgRFUavG4D6dSanpRmfbNASBFClQEJOpSQ8iVIrQbX7Ouj+TsXHTS4ux/+9fxzn/+Agbdrb4YGoq3VYWsEH3bVhkfm5QBpPl2HbnZuNGFazNbSKg57X3oDqcvufAQMqSQVDm525c8e9PCr6H6VOzs61PTLHBTCCRYKtF3PNJbH4ewws+U9P7XcySpNSgw7JJFnH0c49PTZX7tUlS2jCi1DzllFPQu3dvZDIZ/OIXvzBRRIwYoYLEfmvVeHIWZSaLbhSYn8dDs3bQfWoymJpl9ByKo5+bMz+/9/2V+MmzC/Huym14YPZqXPLEfOWW7Mwn10yfrwGZnwfBCO28Tzi6YCkjrEQwm69kwsKDZ+5tviBJBGV+zoIIU9PU7NXZyHelpKDhKUYyPpUGsiglhXAM/rrQux4gMSU7MqVPCAgl+nnsUzN2w6YJRpSadXV1uO2225BOp/HCCy/g0ksvxapVq0wUFSNGKCArNeNFjAoKHSSHJ0e5gmh+Do5PzTJ6DrqZmqzbr3l2YcH3x+evi31rKSAbKIimdLc934OB7qjYNmJ2QhTBel+DMpLL+hiz0KUyGUBpcgh7+8kyh3TeUHPRz8toYiwzyAUKMi9P3FVKC+2cEwvv9E9SWrd2lD4dwDt2BhMoKLZacc8tKr0oHm+yMObxfNq0abj//vvxrW99Cy+++CJeeukljBw5EiNGjECXLl2E87EsC7/85S9NiRkjhhLI5uex8kIFBQ6S45FZO0h9NWPTlXOfb9mFQ+9+27BUwUGLUtP1arczGBgbGlqFfhNBZ17j8ZTuhd8NKTA8300cuIStIIpRDJavsqA3X0GZu4siCuIwmZq7X1JTh6OdjalZSkhYFgiednLI+FQaxChv8Jia3nUkab/X1pEp+T2MjvWyLHS4NSkVnDxlAL48vi/Of2Ruwe8xU1MPjCk1t27divvvvx8NDQ2wLAuZTAZLly7F0qVLpfMKWql5++234w9/+AMGDRqEl19+2UgZ69atwz//+U+88cYbWLFiBZqbm9GnTx+MHDkSxxxzDI455phcFHlRzJs3D48++ijef/99rF+/HrZto1+/fthjjz3wta99DTNnzuz0pyG6QFIUtcSMLCXETE2zoAUK6iwLe68OUs38PH+PrIP2L3a2SJcHdG7TZF4gK9Z3fTJ4y9HM1LTtTrOQLyWwmJqJgMzknH4Rte4RhSi1TJ/Gjk9NQwuJeLMZXSQ4Qazcr3X8HGN4IetTk2SZ19qRKflVdbHvUPNlBjWvRgF11Wmcu99QXPLEfLQQFOMdGRt3vblcOt9S73e6YESp2draigsvvBDz58/PKdEsy1I6wQhaCTdv3jzcc889Rsv45z//iZtvvhlNTU0Fv69duxZr167FG2+8gT/96U/41a9+hfr6em5+bW1tuPHGG/Hwww8XXVu+fDmWL1+O//znP5gxYwZuuukm9O3bV1tdOiuI5ucxU1MJzqhQ6iecUQXZp6b6wr5rZQo7W9p9ShUcvMoxFQf+BUpNSV9Z61WVmmFrD0IEi0nsHSeCGjbMMDVjRA1tzEBBwSj13OvmKCEKjBrWoZRz8GBqSIhXeNFFMmEJRz8PwqQ2RmlBh0/N1o5MySvMvfUMJlCQFfq8EhRo1XSa+TtPzsf/e3tFYPKUG4woNZ9++mnMmzcvp8hMJBKYOHEihgwZgqqqKhNFasGqVatw8cUXo62tzVgZ999/P2666abcd8uyMGbMGHTv3h3Lly/Hhg0bAGSVkeeccw4efPBB7LHHHtT8bNvGZZddhhdffDH3W2VlJcaNG4dkMonFixejoaEBAPDGG2/gnHPOwcMPP4xu3boZqmHnAElRxNoMxeCj1BcDUUUqSQ4UpLqw/+j7M/Hasi244fnPsGJrE/+GkKHD8bn7FlmmpqoCuJOs8YiwbTozspipGczAIfu+WBZ7TIt9akYTrMNJy2IrTnTBKYGwzAgVUeDTCDE1jUU/jxcpUQWP7RW0wtiMzwABAABJREFUT80YpQVenxBharZ1lL4FVCiBghCNuSUI0KwwbNhobc8oKzTjMS0LY0pNB1/60pfwq1/9CgMGDDBRlDYsWrQI559/PjZu3GisjDlz5uBXv/pV7vuXvvQl/PKXv8TQoUMBZBWUL7zwAq677jps3boVTU1NuPjii/Hcc89RTdHvvffeAoXm17/+dXz/+99H165dAQDNzc24//77cccdd6C9vR3Lli3Dj3/8Y9x5553G6tkZkCI472lp7whBktKHczIYbxjMIE3oq1mlkRpG9qrFyF61eGXJJjwwe7U/4QKA7kBBceAf87BhF7kNyF3zmkcZehxeZbRst0lYFpfl0FkW8qUEFpObZ+KqC5E1P7fC77OsdUJ+LWGqbDP5xvCPqEU/j1Fe8I475crUDCdQUGdiajpWGIW/2zawtUmdUFfqynRdMBL9fMWKrKa5srISd9xxR+QVmk8//TROPfVUrF+/3mg5N910Ezo6soqvPfbYA3/+859zCk0gywI48sgjcf/996O2thYA8MUXX+Cvf/0rMb8tW7bgrrvuyn0/44wzcP311+cUmgBQVVWFiy66CD/72c9yv73wwgv48MMPtdatsyFJeHNa2+NBRQXOnBlvGMyAbH5u+158JUtkFVKk1FTyqZn/zGJqknztqqJEmtcIMgyle1BMzdMemI2731qeL0ey3/C6gm137mccVbDcSwS9+Yqa+TkQTp91v3thMjUfXNhgJN8Y/hG16OcxygviTM3SRhhMzYQVvaB4ppA/sCyub2OruluvUu93umBEqbl9+3ZYloUJEyage/fuJorQgvXr1+Oqq67ClVdeWeTfUjfmzp2LOXPm5L5fe+21VFP88ePH45JLLsl9/+tf/5pThrrx2GOPobGxEQDQvXt3XHnlldTyTzrpJBx88MG57/fdd59kDWK4QWJqkia5GHzkfGrGw7IR0MzP/cIyMnvoR/EiTSUPMZ+aPavT8plT0EnWeESwAgUVpzUnx+X/+hg7mrOn57JrexGlf2d+xlEFL/p5ELA8f6OCsORpdrkEYI3fef/cZuR4dPEuMxnH8I2sYoR+vZCpGa81Y8ihmKlJCRRU4hrzYqam+TKtgCwgogCqT00Aja2xtadfGNmW9unTx0S2WvHHP/4RX/7yl/HUU0/lfhs5ciQuuugiI+X997//zX0eNWoU9tprL2b6k08+GalU1jvAli1b8N577xWlefbZZ3Ofjz76aNTU1DDzPO2003KfX3vtNezaFS/QVEEMFBQrNZUQMzXNgqRc0dHWJcvU9G1+Tr+/TqdSs9Ms84phg654LwoUZFCOlvYM7n9/FcCQhwYe88BG537GUQXLvYQVWPTzbCmJiDnVDKr+XjS35Td7LKa9E/U8dmXT+ZDg+Lt9ecmmXP+Iu0cMWXj7TCvJ/Ly9/MzP40BBepEPAlj4u237VGqWeL/TBSNKzQkTJsC2bSxbtozIMIwC/vKXvxQo9U455RQ8+uijGDZsmJHy3n777dznAw44gJu+rq4OkyZNyn1/5ZVXCq5v27YNn376ae77jBkzuHlOmzYNyWQSQNbX5ltvvcW9JwYZJKVmSxz9XAnOqXkm1moaAWnBoMOkpFTMRYqYmr7Nz+nvuc5T+hJpXiNguUfw/m56ze0sNKV9agqsrjrzM44qWIcWFoIxCY+ZmoV4Z8VWbG5sBcCeu5wr8VKi84EXKAgAfvLcQgDx/j+GPLzKPqL5eab0OcBeQ6RgzM/ZriPKCbm5vUipacfm5xpgRKl5wgknAAB27NiBf//73yaK0IZJkybhgQcewM9//nN06dLFSBltbW1YtmxZ7jsrmrkb48aNy32eP39+wbXPPvusYAMtkmdNTU2BD09vnjHEQfKdFzM1/SEelM0gmSheLug4fY0YiYiKIJmarCAjKvjF0eO15lcqsG0GU7Pou9mRw1l8yiqseUxm27Y7yTK+tMByL5EijKUmkPO7FbEOYlnh+Pn8yl/ew7hbXsaspZuYLEznWqmbgMaQBy9QEADc8vISADGTN4Y8hMzPy4Cp6RU/iHfFEnh3WfjDiZMxrk+tPoEMguZT00ZxcMoY8jCi1DzssMMwffp02LaNG2+8EfPmzTNRjC/st99+uOuuu/DYY49hv/32M1rW6tWr0daWj2olygYdPHhw7vPKlSsLri1fvjz3uaKiQjgYEyvPGOKIzc/14Yy/f4jj/vIevtjZErYoZQmSE24dp686g+KYhPZAQQylh06lpgXgnH2HaMuvlGCDESjIa35ueM3tLD6lfWoKvB9RDATT2cELBBbEI3P6XNTY8GGZnwPAll1t+PmLi9lMzdiVTaeFjAlrqSueYgQPoUBBmUzJ+2vVQQKQhV/z80kDumLuDw7GxhuOwmuXTNcnmAHQzM8BoKFF3bK5tHudPhgL9fCrX/0KY8eORWNjI8444wz8+Mc/xqxZs7B27Vq0traaKlYYf/jDH3D44YcHsqnYuHFjwXdRn6PudJs3b0bGtZl25ynjw9Sd1itXDHEQlZpx9HNlPPPpelz21IKwxShLkDbindr8nFP3Dy+fiaHdqwvzcN3DUnqwTNNlYVkWBtZV4aEz99aWZ6kgk7GLzKAchMEkUClHzKdmjKiB9Q5nWe/BPbVS7h8Hj+qFe0/bU2ue89buYPvUtGOfmp0Vou/m0wu+wNn/+CgAiWKUE2wAjS3teOaT9fhg1TbiOrCtwy75A5UwAgUlfAYKsmChIpVAr9oKVO52sRdVUAMF2f6YmvGUl0XKRKY/+MEPAAD9+/fHokWL0NHRgSeffBJPPvmkdF6WZeGTTz7RLWKg2L59e8H3bt26Cd3XtWvX3GfbtrFjx45cNPlt27YR0/HgNrH3yhUk2ttLnGZN2HHHTE1/+O/CDWGLUJawM5ndCpb8rNfOYBvy4Ly7VonMom3t7QXjDU+pOalfLQbXVWHltqb8Pbady6OljTx2tbe3a2VqZjIdaG9vR9eKEgkzrxEdmQzaKf64M65nAZg/oXaeg2x3T/JW6XY27xjRAjP6OWzYdhDzfLaPR06pmckIM2osANDcVhsbWzGG8XwymQza29vRVurryxjSsDMdQv3thPvfD0CaGOWGdTuasddvZ2HJJnaA3abWNub1qKO9vaNgfeVnryCKjo4OXy5D7ExeZjvqayo7Q5zbM3YGO5rUCX9O60U1jk1QMKLU/M9//uOi2OYfXWf1c9PSUmhWW1VVJXRfOl0YSdedj5vtKpofkDVVJ+URJDKZDObOnRtK2TpRqCaKESOaWLVyRdEx3o6djUp5HT+qJvfubt4c3qGIDD5fvgJzM3mFeTNn3Js7dy6adhW2T1tbe67eK1Y1UO9r8eHo24uVK1ZiLjbi83XN2vIsFWzYsAFVKbL2ZNeupoL5w/SyYt26dZg7twEdkovljg52X+jo6MDixYv9iBbDAFra6c954/r12BWARUZjQwPmzp1b4LYoCti0aRM6BBWGDQ07sUqzi6NuFRZ2NpDHXwDYtHkL5s6di8+2hG8NFiNYLF68GGs3xi6MYphBY2sHV6EJAPM/WRiANOawctVqzK3amvve0Mivs1988vHH+GKd2p4EAJYuWYLqbVndxuKIj/2bNm3C3LlzkfEoHxsaGrFk5Rrf+S9Y0LktHo0oNYHOq8AkwctKTIiERQWQShU+HrcG3r3YFc3Pm2fJsyVDRjIBxAHPY0QdJNOOjKI6/tQxeWfcpcIfzHjYkyKEai8byX1LO2NuM6HviBxbKwDYoJs9Bb22cNpfOvq5SJrO+HAjDgYRUPl5JS12vkWw/JVnCtlxUew4N2FZ2uW37cKxuPi6Y36ut9wY0UcCxcE3YsQIGrqDRQYN7/gamPm5j1fXfW/U/ZTTop8DQFPsws43jCg1//a3v5nItmThVTpmBOncXqWjm7mZdPmNEM3Pm6eXCRpDDknLQnvM1YwRcVgo3lyqLFQu26sbxvTIjxlRXzw4KF6k0Ss/olt2SvQqpNy30A4ybnp/G1qkNBds5KMkdj6w9JbuS0EoOJ1+Lq3UjH1qlh2yvrTl+1wqAchYhUW1X1gQ33xa0O93OQP2e+gMzTGnovOhRJYjMcocrRrXgGHAO3YGEv0cfn1q5lEqZAsvbACNPpSa8ZyXhRGlpulo4qWG6urCoBMtLS0FZuA0eM3DKysrc5/dJude83YW3Gnd+QWJRCKByZMnh1K2LnR0dCD16DrExi4xoo7Ro0Yg+d52wGVWWVlVDUDOtHHKmOGorx+U+95v3WfAp3RTwKhg8JChBXLjyQ0Ailnq6aSFW46bjPpJ/dHt/feADZvzF60E6uvrAQC91i8CsLPo/ieW6DXTGT5sGOqnDMCmmk3Aq1u05h119O7dB1XpBIDi/lVVVZ17FpmMDfxznVFZBgwYgPr6kcDD66RWjlWVFcCuJur1MX26YOzYscD/NukQM0YAGDxoICobW6XHvXQyiRYJrWbXrl1RX1+Pqv+9CjTS+1DQ6NunD1Kr1wAt/IP07nXdMGzYIOCtrdy0orCsBCoqq0Cbu3r06In6+iloWrEVeCF+rzoTJowfh40VW4DZpeEWJ0Z5YsjwkQA2c9NFFQMHDkR9/fDc94qXXwdpHaYTU6ZMxtu7VgJzP1O6f/y4sagfVAcASH6xE3guukGQ+/bpg/r6CUg9vRFw+V+tqalFZZcqAP72EZMmTSogvZUa5s+fL0XU88KY+XmMPOrq6gq+NzQ0CAX3aXD5DkqlUgX3OAGDvOl4aGzM+61w5xE0vKb1pYiomYbFiEFCOpksYsyoMDVTyWTBe5uUcHsRJiwrUSC3N3ruwG5VuPXYiZjcvysmDcgGcUsmvO1l5/LoCIhH5bR3KlW6CxRlJCzAovQvKz9/8II+6UBy93OQjn7OmSDuPHEK0p3x2ZYw0qmk0riXSiYAiCs1E5aFVCol5VooCFiJhLCJbzJhae/fGY75+d8/XINzvjQE1en4vepsqEinkCrhzXyM8kBQ60NjSBSul4MwP69IpXztJ9KpVE7mdMR1C4lktn2LeomV9duqCucxJT37tM6GaK2YyhT9+vUr+L5pk9gJ8saN+dOGnj17Fph7uvPcvFn8VMidZ+/evYXvi1EMr+IjRowoIpmwikzFvYo9EXjNu0rF3MurjPIqwib264Iz9hqUU2gCxWaTze0ZnPfIHCzd1Ig2EaecGpA3Py+RhtaIjE03LXf/HJR/Tdu2FaKf05/bdUeMxf7DepTMOxQji6RlKT2zQ0b1kkofVdcTMnUnuT3xi4xtcw8yjvzTO/h8i/ngFjGihYTiuxkjhk60lHigBe96ORDzc8ufOyv3ej3q23JnPe+tr20DDS0+lJqx/TmAWKkZCAYOHFjgv3LVqlVC961evTr3efjw4QXXhg0blvu8a9cuYUWpu+wRI0YI3RODjGTEB88YMQBywAYVhpu3u+v2l2YK3qp6dZKkwwlS3e57bxX2u/117GgONsBaiTSzVti2zQgUlP8clE9+lfUi7dDrtmMn4qdHjUMiYXVKhXUpI6XwzHrVpPGNfQZL3ZPf+EjdZhwWxBVHiYR+v8sZm//O2zZwzbOlHYE4hjyySs2IvTAxOh1KXqnpET8IF6EJy99KyP3aR31fwjqw3NmivreIVZpZxErNAJBOp7O+s3bj008/FbrPnW7ChAkF1yZOnFgwgYvk2djYiJUrV+a+jx8/XkiOGGQkI/L2RHwMjxEykoniBYOKMsi7YSiVblfE1PR8JzHqaCy7rU1t+PO7K4nXdMNp71JpZ52wbcCmLNO2NLXi/ZXbsGFnCzWNTqiFhqEzBtyL7njsLi1kWe9y97z7vQNRlZJbLESZqSmqODIS/Rx8piYArNgaHT+kpYKTJg8IWwRfSPpUjMSIoQMlr9TkWDaZgOUz+nlpMTXJsAE0tAZLmChHREQtU/6YOnVq7vNbb73FTb9t2zZ88sknue/Tpk0ruN6lSxdMnDhRKs933nkn54A1mUzGAZ18gmVeGCS6VXZe/xkx+EhYxaeXOpiapcKK4C3SSCe7UXBl50hVIs2sFRkGU3PdjhZM/f3rmPCrV/DqUvMO+S1LzQSLxhhwL7o74aMtaZAOiFioTicwslet9FjppI4a60RGGtK84xcZW811Sgw+xvXtErYIvpDwqRiJUXo4ecoAtNzyFfTtwg+8GxRaAnJPZAredVcQ5ud+XUcUrKkiPgjkyAoeMW3b9sXUjJFFBLZunQNHHnlk7vOCBQuwYMECZvpHHnkE7e3ZDl5XV4fp06cXpTnqqKNyn//1r3+hqYl9Ov2Pf/wj93n69Ono1q0bI3UMHqJifl5XleYnitFpQVowtCsoNb0b1Ih0fy7cVSX5nSExrqOgTOjMPjVt8BfTW5vacPNLSwKRR2VhTzM/L2Rqdr5nW8pISpq4JigbGFFErXtYEmw4E84VRHxqxlBDqfuIj915dD4kExbSyQRqIhQYrDVmakoja37eSXxqOut67T41/UhVPoiVmgFhr732wh577JH7fvXVV1Ojln/66af44x//mPt+6qmnoqqqqijdSSedhOrqagDZ4EM/+9nPqOU/+uijeP3113Pfzz77bOk6xChEVJiaddUxUzMGHcmERYh+3jkDBZGqTWRqRqBuUfWrFwRsW2yRNmuZeaYmoOaugdaH3M+zEz7akkZK8iQzp9SULCfveqJ0e4gJpqZtB7PJ7oyIynpWFdn+FrYUMYKEs0aoqYiOUrPUzc+9o2sQw60Ff+vcKPrUHNmrhvi75fnrwK/5eTwrZhErNTXg0EMPxbhx4zBu3Dgceuih1HRXXXVVbrG6aNEinHXWWVi4MO/Q3LZtPP/88/jmN7+JXbuy0Rv79OmDCy+8kJhf7969cf755+e+P/HEE/jBD35QEA29ubkZd999N66//vrcbzNnzsTMmTPVKhsjh6j41IzNz2OwkPVtZsD8vEQ23O6qkpS5ZKVmdOoWIVG0YfrwHszrNuxAzJ5EYFnykSUthkIn9qlZupD120djZXDv89wfFcj4Pkso+B8VgYqVQQw+ZBX2UUMcKKjzwZmXayuiswdqLXnzc7YPehOwLH8HvFFiar5/2YHY/vOj8eKF+xOv04aoxtb2mG2pAdEZCToBpk6dissvvxy/+c1vAACffPIJvva1r2H06NHo2bMnVqxYgfXr1+fSV1VV4Xe/+x26du1KzfOiiy7C/Pnz8eqrrwIAnnnmGfzvf//DuHHjUFFRgcWLF2Pnzp259IMHD8Ytt9xipoKdDFFZA3aLzc9jMJAkmJ+rLFTKgalJ2g+T6hEFpWY5m5/z2lckynGQkJUlxfC9WOj/SVmkUPHWpTMw/Y43whYjcMgGClJnahbeHxVYEB+PSIdpOtBW4kqDqKL0mZrlOFPGEEGUzM9LnalZFP3c8ELMCT7n50AiSj41UwkLXatS2LKrlXidZoHV2Kpueg7ETE0HEeGadR5ceOGFuPbaa1FTk6cmL1myBO+9916BQrN///7485//jH333ZeZXyqVwh133IGTTz459zK3tbVhwYIF+PDDDwsUmnvttRceeugh9OzZU3OtOieisgisq4rPJmLQkUgUn14qMTW9PjWj0f25KDA/J0z90TU/zyIKsugGr05Z8/NoLNMsWNKs0TQj0lQBU7NEt+E9a9IY16c2bDEKEIRPwJSk3z5HJNmxMqquJ+QUumbGrrYonXaUEUrep6YEiziGGfSoDpZg4YwEkTI/L/FDF+9ax7TFDM0cWwZRYmo6oI1FNLKCX+VxRJbLoSPWhoSAb3zjGzj88MPxyCOPYNasWVi9ejUaGhrQpUsXjB07FocffjhOOukkdOkiFo2woqICv/jFL3DaaafhySefxDvvvIP169ejtbUVPXv2xJQpU/DVr34VRx55JBJRCOtbJoiK+XnXWKkZg4EkwQm3HvPz0oD75JlUbdIiKAoMqXyUxPBl0Q1e+2bNz6NR72z0c7l7Ukk686BczM+j8I64kbQsdBjmK6gzNdXaKlotvDv4j6BQWT9p+mvQ3hHv3kwgKutZVfiNoBzDPwbVVWFrU1vg5dZGSKkZBwqSg99gekDhPBn2uiR/IEmWg+Zahmc9N6Z3LRZvavQrXtlDWRty+umn4+CDD8bMmTMxceJEnTKFihNPPBEnnnii1D0vv/yydDn9+/fHd7/7XXz3u9+VvpeGKVOmYMqUKdryi8FGVMzPu8Y+NY3gjhMm4fnPNuLfn6znJ44wsmaAhb+p7AuLzc8j8gJwUGB+TligkeoRhdNeHSfYUQVXqZkB7ER0lBeyrFGW+Xk5BAqyEMzmYXiPaizf2iSUNoh3luTKgwVlpmZUzc8lFbpmmJqlrTSIKqJieaSKhFW6zPdyQb+ulVjwxU5+Qs2Izc/1wbtENk2M93vwB2T9N3vzCwu84vNBAAvBa+co7ElKAcrakDlz5mDu3Lm4/fbb0atXLxx44IE46KCDMGPGDGGGYYwYpYyoLAKrUtGZ0MsJo3rVIpXYFLYYXBw5tg8unTECf/tgFR6dt67oesIqVtwpRT/3TMPR6P18bN6VZw6Qah1VpqaDCImiDVzz8wgxNQE1n5o0FDI1o1NHGViWhSCMPmRMYoN4Z5MMZTUJtA0M/77Cv1GCqEimfGrGgYLMoPTNz80o0WOIgzXvmYCzjK2OElOzzMzPg/Cp6f6rggKfmv7E8Q0eGYH2O4lw4QbfuikG4EOpOWTIEKxatQoAsGnTJjz11FN46qmnkEwmseeee+YibI8fP16bsDFiRAlRYWpWpUvcbiiisKzSWOgfMbYPvjKxHx6es4Z4PZkgMDUVFirePKKk+GPhV68sQTpp4cYvjy+p6OedOVCQbZv35SQDWVlSiQR1kR6lBbgqKpJmFFZeyJQRmE9NCZnUfWoW/o0KsiblgmkTZuSP0LBQVojKIb0qkpLvZgz9CGvdFJuf64N3eDUd/Tw3R/rKw8XUjMh2mOtT03Odt8bkrW/ieTELZaXmCy+8gM8//xyzZs3Ca6+9hg8++ACtra1ob2/H7NmzMXv2bPz2t79F3759cyzO6dOno7Y2Ws7lY8RQRVQUXjFT0wwsBH/yrAKeqWKCEFmwMwUKAoBfvLgY39x3CHrVVhRdIz1iKwILI5rvnXIA77XK2DYSEWFqWlCMfl6mPjX36NcVQ3vUBGPuLcXUNCjIbsgyNVVN66LqT1dGHgvBKL5j6EEqKqf0isian8cIE0Evl53Aj1EyPy/1QGZexqDfw+VLDhiOu95cTr1edj41OeXnfG564xxwmjmeSsXgyxnfiBEjMGLECHzzm99EU1MT3n77bcyaNQuvv/461q5dCwBYv349Hn/8cTz++ONIJpPYe++9cdBBB+Gggw7C6NGjtVQiRowwEJU1YGUqAhqYMoRlWZFRXLOQU2pSZCUyNZXMz9nfo46fv7gIvz5uj6LfSQqHsBdGgFuxEbIgBiBiShOV6OeAvCxpxuRQyNQsrYfbvTqN/3dK1m93IObeUqzIaMkDqDM1vfdHBRbE+2zCig5rJgYfpc7UjAMFhY+EZaF3bQU2NbYGWm6Uop+XOlPTq5P1a37O20PlmYvqL29h9POQlZq5v2Q5VJmaIsE1Y2iMfl5dXY1DDz0Uhx56KABgyZIlmDVrFmbNmoUPP/wQ7e3taG9vx/vvv4/3338ft912GwYMGIADDzwQM2fOxPTp01FdXa1LnBgxjCMqG46qWKlpBAmrRJiauydP2uIhYRVPiGpMTe/36LeNG1ub2ogmGiRWZhQee978vPwgYn4eFZ2mZVlqTE1GfvnP6nKFgc9/fBjqqtMAgvNhKYog3tlsVHvx9KoslDxLO1odRLbupaa078wohQNcFuL+Fj4SFnDvaXviuHvfC7TcaDE1o6/UfO6CqXht2Rb0qk3jB//6pOCaV7nml3jKWyfkrRl8lOFaw0dlBOCZn3vBV2r6FKiTwFjY5NGjR2P06NE477zz0NDQgLfeeguvvfYaXnvtNWzYsAEAsHbtWjzyyCN45JFHkE6nse++++Z8cY4cOdKUaDFiaEFUFF4xU9MMLFhU9mOUkDc/J19PWsVLfZWFStSYmoPrqrB6e7Nw+o6MXVI+NR1ETbGhAzwGV8a2jUfdFEXW/Dz2qQkEH7k9KTG1BaGUSUoqTnisDep9ET7QEB2OsodpZmWJoQ+lr9SM+1vYSFgWjh7fFz8/ejzueWcFVmxtMlqeMy3XVhhTZUijFJiah4zujSPH9cWyzY1MpSYveI0IeAxwHebnkWJqcoq3PH8d8IgmYderVBDISNClSxcceeSROPLIIwEACxcuzPninDNnDjo6OtDa2oq3334bb7/9Nm655RYMGjQIM2fOzJmqx4gRNcian/eoTmNrUxs/oSRipaYZWCXD1MyCtnhIJPT4NouaT80RPWsUlJrFv5OqEYUFBG3xUw4QMT+PilIzK4ukUpNpfl66TE23ci6IAx+Z9zCw6OcybMWEKlMze0PUph8ZlS7Jl3OM6CI2P4/hF4ndLpt+fNgY/PiwMaj7ybPY2dJuvNwomZ+Xgk9N510nzZlu8XUEa+TNYc5lP/O3+86w50zegSTNXzav24hYN8UISKnpxfjx4zF+/HhceOGF2LlzJ15//XW89tpreP3117F582YAwOrVq/GPf/wD//znP/HJJ59wcowRI3jIDp73nFqPA0f0RL+fPq9VjjhQkBlYyDKuog5ncmSZn+tY7Bebn/vP0w9klfkZSkRtMlNTWSxtKG+fmuzrtg1EJE6QEmuUZX5ewNQssYfrFjeQwDxRVGpKpFc1rdPhZ8wEZMSxYuZcSaHUmZqWFb33pbPB24VMPw5nWo6S+XnUmZqWlT9sI73y7qWOjsjnvHFFf/TzaIwBtLEoR1bwXOYzNdnlxTrNLELnbHft2hXHHHMMjjnmGADAggULcizO+fPnRypYQIwYbsiebGeVZPoH3JipWQzL8n9yZVmlsdDnnXQmLU1MzaLv4bZNhYxtKoAtu1qJDuxJjzhaTM3wZdGNhGXhwBE98frnW4jX7QiZn2eVmrLm54LRz31JFjwKGRHBKBHF0xoUZDdYz5WEfKAg+bWC+29UIKM4Smiad2IEg1JY69Dg9MvSrUF5wKtQCup51EaIqdnaEW2lpnsPSmRquhZefoME0cogXdcVKCjsMYA3CtGYnP4DBcUAIqDU9GLSpEmYNGkSLrnkEmzduhVvvPFG2CLFiEGE7CbKlJIsVmoWozKZQLPPE1MLVmmYn+8Wkc7U1GOW5Z1Uw96vyvb7D1ZvR/2vZxX9HiZTs64qhe3NZPMsWpTEckDCsnDbsXtg6u9fJ17P2IAVkVWabcubwqcZk0OBX8oSfraBMDWlAgUFoGSVVJz4DYIQtf4hV/foyR+DjlJY69Cgwy9fDP8oXiMG80BY5uff/NIQ7Gxux+Pz1wUiS1tHRBYuFLjJOGTzc5dPTQ1V4Zqfa2Fquj+HOwio1odvfq4kTqdDpLUhPXr0wLHHHhu2GDFiEJGSHDwTlhklWRz9vBgVGtokkSgNP1M8/2vJhKVlQiwyP/efpS/oeMYAeSMUxMLoxMn9cfCoXtx0YbezCSQs4EtDu+PBM/fGvoPriq7bkGdHmgLNbQELbPNzN6ugtJ6uFfDmQWb8DSRQkKRPTR6Lnnofw+dZmLAkDshipmZpoRTWOjQkc4cHpVuHckCR+bnh8hxLTpb5uRXw4UrUmZrJAqZm8XW3ck0HU5Nvfu7/QCJotzgioNXHGaNkFf6xT00xxNqQGDEUITt4WjDjo7EqQv5kogJZ02QSLFjMgB9RQY6pSTV31bPY9+YR9oa1UpO9adDRz+uqUvjo+zPx6Nn7shl9OWV19PugLJyF7hl7DcI73z2w6LqtoEg0BXXzc/K1kg4UxGF56IbMHBs1c3hAfcOmg71iCqIyZZWaRkWJoRGlbH7uiF7CVSgLBG3Nk/OpyTE/D7JbtEVcqck1Py9gapo3P9dhkRSp6Oe864pze9j1KhXESs0YMRQhb35uGVk4xkzNYugwybes0mAvOBLS+pYxpmbITZPW1O/JPjW1ZE3ExH5dUT+wDhaHuV3u5ucOSPXL2HZkTp5tG8hI7lNYz7UgUJCiTGHBLW8Q/VLO/NygILvBUlaT4JxhSis1nb8Re/llpLE0HabF8I87TpiEZ87bD71rK6hpSlupqcZ+iqEX3tY3z9TM/mX51LRgBRo85rONjYGVpQL3e05ee+U/BxMoyD/LOkoHxbwAn/m5XS7fUh6fg0SsDYkRQxEqgYJMjEtRivwXFaQ1NHSWWRv9icTphrSTvKxPTT3tUfi9PJiapLYxuQh2Z81aqKgufkoBvAjgNkqdqZmgvh+FC/DSerhBm3nJsBN0sPN5yEY/l1G0Ohs2OfA2RmHBCcgigpipGR2kEhaOmdAP3ztwBDVNKRzg0pA7PAhXjE6P0Hxq8szPA5FCHmHsL2SYmjpIp7wq5oPp6SkjKmsq2jpBVb44+rkYYqVmjBiKkLVMTuzeEOieyKpjpWYRdPhbNMWs1Q1nkqQHCtKjgIgaU1OXT82gmZruRY0QUzOyS3J1eBd23r5k29FZpGUUIrGnknRGn/v3Unuy7r4YhDmUzFzZsyZtUJIskhI+JQH16Ofe+6MCOYVubDIXFTjPgfU8AjgTMIY4UFA0YHn6UFCPg2V+biE6ii4vwgjyyvOp6V546ThY5h2W5HxM+ijD+3zDnDd5RVuev6KIfWqKoYSnsRgxwoWsUtMZeGOlpnmkNfgutVAalH9HQtriIWt+roOp6VFE+c7RH3QtCIP2qVnI1OTXIaLrcV8oYnR4rmdsW9rk2xRUWKMspniUTKVkUcjUNC+86PibTlroWpkyLA07ABQJqhu2/MYnWh1EhvWUkFQAxzCHnN9txvtUCmsdGlQZ0TH0InCfmrun5YpkQsjqJWrQ+c4lLOC8qUP5ZXL8TxYyNc371PR78OfOQ7RMk+C5jbIU6xszNcUQKzVjxFCE7IQksrCUhWWFc9oXdaQ1BPgpFfO5nPk5pRvo2lxGjqlZooGC3IoKVhV0nGBHFbxFaKQCBWUUop8nE4zo5/nPYb9DsnCLG4z5uVi6njUVgSgAs9HP5diKgI9AQQqsUJPIsp4E08ZMzchAJOiciSCWJAyuq9Kepw7FiE6oilEK600WiqKfB/Q8LMuimqBnx6FAxOCiOp1/x3565Dit4+P4vl1wzyn1TBcTQPCBgrg+NRP6mZphDgO8dXveAksO8VwqBvNH2zFilCnkzc/1MzXTiURJ+H0MGqyo0qIolU2ZM4lSmZqWHqZmWP6SaKjQFJmeVA2Tr5Q7b9ZGUvVEtxTAY3REQ52ZhZL5OUP5VcDULDGVddDRz0UPAHtWpwMLXCRTjGoQBCe1TBsnExYyHdF5c2KmZnSQP1CnpwnKp6aJcSNvXq89a2lUphJoz9hKQVai9g7LgmeBoRsnTO6f+0wjMljQ41NeB97/3kw8v2gjRveuxVcn9sPtry/TlrfT9rw5k2d+XhAoKACfms5lnQcB2baI5nukuubjmp9HtL5BI1ZqxoihCGmm5u6/WpWayWAj+5UKRJmakwd0xfx1O4nXSkap6TA1KbLqcpRexNTUkKcfVKb0uF2gL4rMQN6nZvmhiNGBwkWobUdniaYSKIg1N5QyU9ONKAUK6lkTkFJT1qemw0KRZmrKs1eSloU2w2+NZYlvyWKfmtGBiJI8KJ+aJsaNKDE1u1amsL25DR0K90ZZGSOCIM3PB9dV4et7D8qXRUmna/2rAxP7d8XE/l1z33W+CzmlJqfRC5iaBAEKzM81MDX55udqB38OiIE+w2RqcsYiFSsMgG6Jl0PpDhtaEdutxoihCHmfmtm/KY2rRx2MxHKEiGny8B7VmPuDg/Ho2fsQr1uIxsk/D46INEWKpYmp6c0hzP3Dt6YN08bUJJufa8maUl7+M1Op6ZixlEAflIW3zb3NkLGj4/g861NT7p4sU5N8rZCpWVpwyxuEAkGYqVlTYViSLFJJ2ejn2b+qLSXTxEH4RLQg/txLxX1LZ4DzzNhKzYCYmgbKcWSPQnfrUpFUVtDoYsuGtWYgH1bqx/cPGokPvz+z4GCbNS5F9XBF5xzqtL0MU5OU0r3WCcT8XFHJ572/8Lfwnrfl+Uu/Licjn6kZA4iVmjFiKENaqckxE1YBKyBFZ4aMT006w1GPMtA08tHPWWn0lZP7HtIWondtBS6fObJkAwW5sxbZSJaaibIIvBtbb3M/v2gjnl+0MUCJ6FBhaoowcIHobrZoCFpc0bmyR3U6kLdEdu7ObWBU75OoVSBKTRmWqlWeY1cpInfwyVJqBuX/0ECeUYp+3q0qrazM1/UOB/UsvQiKqXnTMRPQu7aysCxKWot1MWSYYGry1hSF5uccpqaWQEHs6ypWCYX5F98ZhXGABktxrIq3+mII3fx869atsG0bPXv2DFuUGDGkILtwcAYlvebn8bkECTLRz6lKTZTGROKIyFrMlDpTc0zvWtx98hSs2taEI8b2wYBuVXhr+RYteZOqYTb6eT5vIfPzEuiDsgiK0aEDGYWgRWlmoCAXUyK61SbCrZwLRIkoOAB3q05jR0u7UhmphIV2wc1bksHAJUF1HMm5FJGY3oPwrS1jymlJMjW7V6exralNSa4YbDj9iPU8AmNqGvGpmf0bhXmka2VSuY66nkFYZuzF87oZkPZetCa3IuzbVydTUzSrwkBBxdfdSx3ReZGFTsfU5NTHAvs6DTFTUwxalZq2bWPJkiVIJBIYNWoUNd2qVatw991348UXX8SOHTsAALW1tTjwwANx7rnnYvLkyTrFihHDCGT1iXnzc51KzYjO1iFDpl1YZqJRYlLNGNETb3xerMhzRGQp2fUwNQu/B902h4zuXfDdJFPTpILAnTPb/Lw4fbkgSN9bfmHb2QjoMhA3P49wxSMA0YPD7lUprFYsI50UV2omJJR62fSKSk1OBFUSgmBnyZrey5ga96yJlZqmkLMSYjyPoAJOmvGp6bDU9Octiy6VKanDCDd0yZ9KWGhVcerpE0HM6xZlXKH6MCTIFRWYYGryquqeJ0jt8tKSTbBtG5YlPi+KlkdCXm5/cyUpzzCQZ55S+qOy8paj1Iy1mgA0mZ83NDTgtttuw7Rp03Dcccfhtttuo6Z96aWXcNxxx+GJJ57A9u3bswEBbBsNDQ147rnncNppp+HWW2/VIVaMGEYhb4qWTW+CqRmFxVyUIMNgZQXYicpiqFtVCj85fAzxWk6pKRicRBXeSTrIliE9BhG/qSIgbUB0HjwUleeqDOuZqZqplAK81Y7Ke0aCbvPzcgkUFITsluAr3t2H+bnMXCHL+lEed3NsD/EMTI5ZboiKlLDkVPY9qtNK8sTgI8f8jYDfQZPRz6MwnnatTKkzNTVVICjWrRfF0c/1y0GbW2klybDLg4bO9hH13+yO6UDqbtua2nDpkwsAAO0d/jVlvDnMEpSbBtL6Pcr74fyBpZyQUa5TlOCbqfn555/jW9/6FlavXg1798J/27ZtxLQffvghLrvsMrS1ZU9jLcvK3QMgp+C899570djYiJ/+9Kd+xYsRwxhUAwWZ8KmZTFjIaJiAygUiCi+ntWiThcW4FiTuPGEyTpjcHwO6VRGvO5MjS1YdGwnv4iHsDYQupiapGiZZK8Lm587fsBvaAEqJqZlVasrdwwooU8qBgtwIgmUqzNSsVo9+Lns4IvM+qgZFySuhxO8JhKlpiT93WUuHuqo0kglLix+3GIVwngL7EC3b30w3f7mbn3epTClLoUsZGRTr1osi83MDYlCVmoyyorq+MMPUZGfq3rc6h3TeM9s/vLUc1x85Fu2yJioE8Kro90CC6FNTLSstyK/bKdct9nUaeGNDPGtm4WtXuGPHDpx33nlYtWpVwe9bt24tStve3o6rr74abW1tu18kC1VVVTj//PNx55134he/+AWmTZsGIKvcfPjhh/H888/7ES9GDKOQJYo5g6/OU1SHZRKWY/CoQlugoAhoNWeM6ElVaAJiTE0dtfDmEXaXqyhV83NX1ikBO7Xwe6B+FDM6ogsVn5qpRIK7qPV+LjUEIbuoAiTL1FQTSFqpaSgt+X7xHIKKfi6TVkopm8gGAHHQozqNM/ceJFFiDBry0c8ZaRCMux1V02xmnhFiau47uLtyO+pq/9CYmt4AgAbKoK2Z6Oa+0XIj5YZOsUSZmt6+QWub5z7bgA4NNs28Ovo9kAg60CcPPOapBfZ1Grh1irWaAHwyNX/zm99g7dq1Ocbl3nvvja9//evYZ599itI+/fTTWLFiRS5tTU0NHnjgAeyxxx65NCeddBL+8Ic/4Pe//z1s28Ztt92GI444oiyZKjFKH9Lm5zn2RfF9FckEWjvkT8VSLqZmjDxSUiaFlN8RDaYmT0HrXDUeKCgA0yIZVOoyPye0jckAXO4+xWPOZNNHoBNqRimZn9vazc9dTM0I15uHICQXPVyoq1Jfysr6pZYzP1dkajomahK3BxMoSNz8PpGQ799XHDwKU4d2x/Ktu3DQyF54ZO46PPjhGgVJY7ghskbIu9sxuzs2ytQMeDitrUhiV1tHjunWozqNc/cbguv/t1ApP13LjvDMzwu/m5jfaHVjreNLd5YVh+h75VUK0+7auqsNQ+rMKzVV5rrC+4sRBTIKDeqMVPb1WKeZhfJKcMuWLXj88cdzg9b3vvc9fPvb36amf+yxxwAg54D2wgsvLFBoOrj44ovx9ttv4/3338eqVavw+uuvY+bMmapixohhDNLm54xrVWk1paazIYuVmoVIS7RH1H1q8hRsOQawaaWm93uATUMqSh9Ts/g3s0zNfN5s8/PosE90o7TMz+VNMtNJusq/wKemslSdA6LzWqDm55LBclSg4mcsakzNrPm5TN7ZxAeO7IUD0Wt3HhIFxqBC1JojiPY2UUSOqRngiNqjOo2/nbEXqtNJ/PzFRahIJnDTVyagKu0j+rmmiTA883Pz87qST82ILjB07i+EAwV5pjvaQcZlT3+Mg0f18i0X750UZZjy7uf9FhR463ZVX/lhk0hKBcpKzddffz1nSn7EEUcwFZqbN2/GnDlzcizNqqoqfOMb36Cmv+CCC/D+++8DAF555ZVYqRkjkpD3qZm9wSZMIFWpBHYoyOAovMJaxEQVcoGCaL9Hw2yFp6AV2bDoMPnyNkWQLUPSKWnzqRmw+bk7a6ZS0+diL8ooYnSEI4YQ1AIFJagbqUKmpi/Ryh6ir+GoXrU+AgWZZ2rKypZj1kmMQ4H51BRlakqwOp28SXnE8A+R6OBBHeKaKMNZ+wS1DJ7z/YMwvGc1ulVlg1sdOqZ3wXVVppguhllY7qiCcCuj4lMzqtsjnWKJmnF7mZqstnl16Wa/YnHhN/o52admeA887zOTrXyXlZEXNDFmamahvCt84403cp8vvPBCZto333wzFxDIsizsv//+qK2tpaafOnUqKioqAADz5s1TFTFGDKOQZUawkqsqaHKBguLFfwFk2Dd0XzzRULbwGIkigYJ09I+i6Och9zlt0c+JTE1z5ufudhQxP6e18zHj++Jre/TTKltQ8C5Eo6y8sBWYmsLm55EYYdQQxPsvMsees+/g3UxNNXnMuppQk0nlQCOw6OfCgYL8v9dRVUaUGpxmZK0Dsj7E9ZZLcgtx8Gj/7C8v/CpGZDG4e1VOoUmCqhRBRT+vSCYwfXgPLWW5EYT5OZ2pSVcihb1WpUGnmbQoA9Dbx0yuvSyLTOLxpgHU3xnyYZhiZhrAKzq/rpfLl/ecNLg/LQsoT2GLFy8GAHTr1o1oRu7GO++8AwA5xeYBBxzATF9ZWYlhw4bBtm2sXr1aVcQYMYxC3vycfkNlKqkkQy5QULz6L4BcoCDy7xbMOLWXBdenpghTU4tPTc933zlKlE34TRdTk+xTM3ympgNWiqgu1nkoLfNzNZ+atCq5f49yvXkIQnbeuHXTMRNwzyn1vsowGijIZxvJvN+BMDUlai8beIaUMsqHHaUEpxlZShQL+vvQmXsPxvi+XXLff3jwKHSvpisDVeHXhFUWvHZSNj8PKPr50B7VeOM7M/CVCX21lOcgikxNy4ru0aGMXIeN6Y1bvjIB9QO7Ea+L+pUtMj83uMexwFe2mYh+HoV5g77+s5jXaYi3+GLw5VPTsiwMHz6cm3b27Nk503Mgy8TkoXv37gCAxsZGVRFjxDAK2YGTlVw16ImjfInNzwshwr5xJltm9PMITI5pzqrDkZAdKMi/HN4swm4aXUxNUj2i4VPTSU/Lp3QXOt4uHWXlrFr0c7rprbvu0a01H0HIztvkf+eA4bmgcOo+NWXncf8HZtwyBNj3XgQTKEjG/FxWARzNzWk5wGlbNlNTf3v36VKBDy47EC8t3oRetRWYPrwnfvHiIq1lAMFHP+e9a6qvYlBMzY7dpge61X3FTE2t2QNgBAqipLcQ3XWSzPv23AXTkExYeGL+OmZevByLzc9NHuDz8/bvU5M0byhmpgGm1rL8toypmoAPpea2bdsAgGlGDgCbNm3KRT0HssrK0aNHc/Pv6OgAEO3NTozODVmimDPQkvbHyubnMVOTCCmmJqXps4uh8NtVB1NTR/+ImsmwPvPz4noE5VOTbX7O3qjJMqGihCAYHbqQZWrK3cM6VCmb6OeB+N/jXHclUJVG1vxcppwgzc8jFygo4Z+pWcKvR6SQP/hkpZEL7CSCZMJCTUUKx+7RP1+OgYcq6k9QF3jvmup7r4s1x1u/ZHLu4PSU5yBcpiZ/LRU1yIjlVJs2X+WZmuxMvX3XuPk5Z+2UX+cqvjOE28J83iJkhOxfORm55udSuZUvlIfQqqoqAEBraysznRPwB8g+xH333Vco/02bNgEAampqFCWMEcMslAMF6VRqOj41Y6VmAXjsRjdYPjWj0Kyim27j0c+9p/C+c/QHfebnxb+lDPrZk2ZqMvtn2E9BDd5qR7keNoCMpFYza35OrlOhT80YNGSZfmYYUW4EEShIFvmNkfj9gSg1LfE+m9Awf0Zh/i0H5MzPOdYcusdh0prExCMNmqnJV2oq5hsQUzMwpaaBB0Lzd85SIkV1GJE69NmdlnaYL8rU9M53JttGiqmpKAjpvijMGywfr+6/ouDVKfapmYXyzq1nz56wbTunfKTh3XffBQAp0/OGhgasXbsWlmWhb1+9Pj9ixNAF2QUIK7VvpmaElQJhoCIl3h5Rj37OO3XPm9HT02gxP/cqNQNsGtLiOKpMzZ8cPgZ/PGkyozx3OfQ6WJzFXlSU7iooPZ+acvekkgzzc9fvUav3Dw8eJZzWtOiWxY+erYP1Ku1TU4FdIwtLcIPqRjDm5+IRzePo59GBs8HmWQboDFxCK8/EI3XkDmo+5K23VcciXQcTPPmc+Ux3cxWZn2vOH6AHRKOVFWWLFpkDIge0QzhRxX5VujB+g8l3xgKfQajqY9JB1Hxq8ooWDejkRVT7cNSgvCscPHgwAGD16tVoaGigpnv11VcLBvjp06dz83799dfR3t4OAEI+O2PECAOypiLOa0CKBqcamMS5L2ZqFkKEqcljL1gIX2mU9c3HUWru/ms8UFDEop/rYmqSauEnUNCPDhnNVFa6n4WIPoUlSdjPQBWlZH5uZ9R8atLgfo+i9PzO2mcwLpg2jHp9n8F1AUoj5pNRB+tV3vxcnl0j+5id5DLjdtQONrPzp0RbEdo13sjpgTMcsc3P9a93yExN/c9U1PRWW3mGmJq6+jvvgKND9pROEEEcVtLqRveNH73DQwcyB0QOaHsb52fe+1VdpNQ01zgJKx9LhZ4m+1fd/DyYgxNRcMkIivny9vgxUTML5V3hjBkzAGR9Xz777LPENO+88w6++OKL3Pfhw4dj5MiR3LwffPDB3Of6en+RLWPEMAUJMiAA9uTBUoIwZdi9IYsDBRVCRinFZsKF264iLCJnzcBUamroH1EzP6c9Y+kTUELbqL6PAJulBxS2G5Op6ZxgR1jproqiCJxR3XUgewilNVBQRKtqgf1O/+TwMYXpDdfDAv9ARwfrNYpMzXxh4kmD8qkpqpTSYekQ1XelVMFmahowPw+KqanAbDaJsKOfi5uf622xogCABp4I7fCGpUSKSr/wQrR93HWjrnsJaUmo8pABdLOz3RDpXn5Z1qT7DOnspUCrTl7pKVdhrvm5VG7lC+Wd28EHH5z7fPvtt2P9+vUF1zOZDO644w4AWdNzy7Jw3HHHcfN9+umn8cEHH+S+H3bYYaoixohhFDrNz1WVkrFPTTJk2DdRjn4uopx1mL9sf1kalJre7yF3OdqiQPa9JPrU9PE+pRIJ5rvufhZMRp+z+KFeD79/qqK0zM/lF8msPmByE+EXtOfwjb0H4fhJAwrTGpZFxCejjk25bPRzGfgOFBQ1paaMQjchl76zmZ+/f9mBgZXlDF+s9rQs/WxfolJTawm7y1FkRJuCuk9NPeXzlZrZv7qbKxCmpqT5eVaOiHQMD1SYmrRnK6rYL2ZqismggoRlCZifO39V58ri+0wxkUXAqwdvXU8Ddy6MtZoAfCg1hw8fjpkzZ8K2bWzevBmnnHIKnnjiCSxduhTvvvsuLrjgAsyePTvX4bp164YzzjiDmeczzzyDa665ZrffHgtTp07FiBEjVEWMEcMoZCcDVqAg1Q1J7FOTDCFlIMcXZRSYcCLK2RxTk6nU9C+Ld/EQVKTRbFnikFVI6vapmbA4i2jXJdoC3Z2MxUAIu3+qopTMz7M+NeVWjKzxJ6rPzLLo7/SwnsEHbExY9GBLJKg2q2xQMJly/PvUFM8giDVAlj0rllaWqUlUapqL12YUIvPH6F61AUiShTN+sfqIkejnQZmD5xQF0RhclaOfB2R+HlygIL35A/LRz7OHv/rl0AHR5+2Wn6vU5ORZnfYwNQ2+o0JMTZ8HEqTmCFWpmTuQpCnf1epbzgd8OpHyc/O1116LE044AY2NjdiwYQN+8pOfFFy3dvtTsCwLV199Nbp3716Ux8KFC/HRRx/hqaeewrx583L+F1KpFK688ko/4sWIYRSqTE3ScKvM1Ny9eY7NzwshY1JIXwyFP5GIMTWzYAcK8l8Pbw5RnWNlDwhIqf28j7xFdMGpO5M5w1ZsWDzlaYRRFP08wuOXGlOTbjod9phCA0thRfSNZ7ge2f4tk97fHGqiHL/Rz2VeC9YBiS5kFd+CaSGnACaljeq7wkM6aaE9CjaQu5E7wGUsiyxL/zhMWoaZGDeCDhTEQ/TNz7N/dSuBiwMF6X8g1OjnlPSy80iQUGJqUtcVu/Pk5FWVCjhQEGcYFJWbfn/xnR0RCAXO6o+s6zTE5udi8KXUHDJkCO6++2585zvfwbZt2wDko5w7Ck0AuOCCC3D88ccT87j44ouxbt263L3OfVdffTUmTpzoR7wYMYxC+qSFsaCs8ZgEiCLH1IzKai4ikFFKsaOfaxJIESIBj5xxltUHdPSPUmHX6WBqygYP8ZbNJGq6ronIygzuENWHwEGp9CUg+37J+9Skm59Hua402YIyI3VDOnq2YjnSPjVl0ioKpWR+HrHBQPb5kRCtGokjq3jJMNME+bic8Ytpfs65roKgxo2gAwXxoCqGrnW8aKCg8mJqktNbEFtHhwHRxy1kfi6w9gSKmZom2c0i44lqML18GcW/hWt+7u86Dby2jJWaWfh+0/fdd1/861//wimnnIKqqqrc77ZtY/z48fjtb3+L73//+9T7e/bsWRAdK51O44YbbsCZZ57pV7QYMYxCdnBiTR41FYpKzdinJhE62DQWwmeQyTA12dHP/cvibaaobCC8kFZqEmZBVaamwyJgvevurP2Zn5eyT83C71HtS4DD1NQX/Tyyz4zBaAkq4Ic3/yBaymSgIKdfqx5aSpmfBxUoSNhkkh/oqSBvQtrIvisciMzbQZpKZwRc1Jgw0yUzvPWWAZRPoCBd7c874MiZn+spLodipqZ+0MY51vvUrcoXf8sYxIOu5T/TmZpieQXK1BTI26/rCNJ9YbLkeUra/HVZ8oUvsToNtLzpffv2xY033ojrrrsOS5cuRWtrKwYNGoRevXpx7+3duzcAoKamBkcddRS+/e1vY8iQITrEihHDKGTXLaz0qkpNR4kSNZZGKSHagYLEfWoGHijId44SZcswlqTNz4vTqys1+afO7vLYm0znL52ZUKoLnVJiamZ9asrdk0oyop9HkzTCdLcRxvwirxRTK0eWlS2z+XLac1jPGkwZ0A3z1u0QLMO5X1yuIFzQyB0WSuZNzCPKIwMdIn0qyKqJrBEsznUVBB79PCLdRT1QkJ4K8NZApphskWRqWupKTcvim0/7gWg/cY+7NKJFnq3MzqsoUJDBeSMbKIjdgL59ahKG2jCZmg7oPjUL/4qCy9QMv8qRgNbji3Q6jfHjx0vd86Mf/Qg//OEPMWLECCSiutqPEYMA2bnAGZRswuiTTiaQTlpo61ALSBEzNQsh0xq0tNlFvgZhfECEReQsGlgLYh39w5t92G1DA83nEg3E6OeK/ulySk3B8liy8nzvmNiEBgWv3FHtS0B2sZiRXCSnEvQgN1F9ZkyfmiE8IN74e+Lk/p708jJaFtnvH+8eUbjl/+sZe2Kv37wmWIY8myMwpqZgWh2b5SiPCyykBQQPsmq5QEEcn5rBRD/XX3NRhU5QKBmfmpobrPiwUv8DkTc/t9CtMq1UVlUqgaY2thsJPxBnvec/U+uf+8vOM9BAQSJpfL67JPllLWt0glcN1frG5udiCF2LOHz4cIwaNSpWaMYoOehgIrihYqKW96kpfWtZQ2rjSWm7rPljuKtkmSjurD5gJPp5VHYQHsi+C0SfmorzkfM+Mhkxrmts83P2CbZlhd071VFa5ufyTE0WUyuqSk2APt6Rxg/TvS/BGX9vP36ShjIs6UMQmVq7n3X9wDq8f9mBUmXIlBUMU1N8bpWVhpRv2O5fVCHyLAJlau7+y2ZqWtpZ5MGbn0ejvygzNXUpNUXNzzU3V/G8rjd/gKXUoys7VZmadVVqylBRXH3YaKF0Qj41BRmPVV6mpsFXJpGwBAIF+Xt3iT41w1RqcqqhXE/u2ByrNYEIKDVjxChVyA5OzmBHGnosALUV8hNvPvp58at88pQB+OmR46TzLAeIPBuH4Ug3Pw+fKRJp8/No7B+KIM/ULK6Ib6Ym43YR/0husBbrUVaQsVB65ucKTE0qcySaYCmsiBspwxVhBZr517n7YVBdtW95EhZQK+n6ReaVU309VdgcQSgA5ViqkusjwgMMe/5VhYg7oSAPckSCCZqYT4IOFBREfxndu5abRvXZ6mp/3vrFnE9N8w8gRVkTs4pWV2qa9cX5lQn9sO/gOm66gjUjT6nJyStqTE2/LGuiT01Ji0ed4O098xZYchUu1bV+0IiVmjFiKEJ2jOENYip+NdMMn5odGTuyiifTkNp4Un7PRj8PtwFFzNjEAgVpUGp6T+F95yhRtsGAGaSmUfapmeSfOrufBascEcVGqTKZvHrnsN8zFmyoBQpijStRhAX6Ox0U48qbP60I0u8q8iQsC+P7dpG/USJ/N2RFlOkrQfk9VTGZFMuXlEc03xUeRA6og6xZRuDg04J+pSDZp6b+midzh4lmWtXt5unnX+a7WAvdpyaXqZn9q938PACNAk1fy5orulVGk6mZTibwxndmcBWb7udErf/utp8+vCczryADBWV9arKRs0hSLqP4tzCZmjw44sqbn7OvR7jKgcLIMcSaNWvw6quvYs6cOVi2bBm++OILNDY2or29HV26dEG3bt3Qt29fTJ48GVOmTMGBBx6ILl3MLSxjxDAB2fnbGZRog4+a+bmz2Cq+1mHbJct0CBLs6OfByuJFVVqEqclmnAJ63BN41TRRNRmW93Vb/JvRQEGua0LRzxnXS/X9DiKggC5kMpAPFMQ8YPApkEHQ3umgfOO5wQoURPpZRZ6kZWFy/25S9/gJliN6L8/1BAmBmJ8rBEnyA51KzYQl/x6rQoT9G+SYl8mtEehpjDA1A6qkyejnQ7tX41/n7of3V23DnoO6YZ/B3YXlkUVQPjUd6G6vQJialEU5y02PMlOz2nzU9IpUAidMHoAPVm8XSs9jau47pDumDeuBd1ZsJabzBgoyOY+LdIc8U1NNDlKfCzNQENf83KmvZL68sTTWaWah9Y197bXXcM899+CDDz4o+N0dGGXbtm3Ytm0bVq1ahdmzZwMAqqqqcPjhh+P888/HuHGd01w2RulBmqnJWVAqMTV3a6tIE317hx1ZxZNpyNQ6ytHPe1RXcNPkmZr0NHo2mIXfo9CzDh/TGy8u3lTwm2xdiebnqj41E45PTbHy2NHP2eyTKPRPVZSUUlPJ/DxBfW5RZdey3G2EEiiIIY8uJBLAsB7V/IQu+JlbRO9V2fgEEijIEpdJT/RzuTxYSCUSaO0wF/TDDSGlZoAzqLPHZ5uf659PgjM/lz8EEM8bmDKwG6YMFD/8UO23uvp7WIFDg1iPJCkHwVQ3PQC6KTIuTTM1HfBWF+5AhbQ1o/uRv/CtaTjzoQ/xr4/XF6WrSnnMzw0SNxIWOTCuG7l1LuX6l4Z0x9y1O6hjN2k9FWbwc94boBIEEChdq4WgoaU779ixA5dccgkuvPBCfPDBBwWdmNehbdtGU1MTnnnmGZx44om48cYb0draqkOsGDGMQt68isXKsqR9ewHs6Oedmanph02TywPhTyTdqwsXVSRxcoGCGLLqMT+PniLqhqPGFSzSfnnMeC1mj77NzzlmfiLlWJ6/pOsReARK8FY77PeMBZVAQakk3R9kVMdkZvTzEMzPWT41ST+rmp/LKpllylF91s5tUubnQUU/FyxGdtNGSq+zRkEGUxQyPw9wHBCx5siud/SWS9I/mVI8AmYUxSrvVckwNTU3VxBzm3T0cwvoqmh+rqoMlQVPT+I+VOUxNQGgtjKFaw4fS0znZWqa9anJDxSUdx1Bvj6wWyX+esaejDJKC6ry8pTPMVMzC99MzS+++ALnnHMOVq5cCdvOM8Ns20Z1dTWGDh2KAQMGoLq6GqlUCjt37kRDQwM2bNiAlStXFuTV0dGBhx56CB9//DHuvvtudO/e3a94MWIYg+zgxEuvZH7u+NQkKTUzdmSiQQYNmVqzFkNhKyB61HiUmiievHgBjwA9ZmDeHKLQt/Yf3hOzL5+JFxdvwuheNTh6Qj889OEaqTxI7abKpsuZnwuWJxKQiN0/w38GKiilQEEqPjVZvnCj8N6QkGXhkWULhakJBvtGkwJM5f2ReX6qB0F5NodwUQFFP/d/WCgDnazmLPvePFPTsoqDcYSNjMDBp2Xpf8+Dclthkqmp0iaqcqhYa5Egut7T3VzBmJ9T5gTGPclEljTS2NohVZbpQEEOuExNVwIRpWb2Ozmv4kBBPOnUIWV+zpjrT9tzEBKWhdMemE29PyoQNj+XlJv3bsU+NbPw9ca2trbi/PPPx4oVK3KLnZqaGpx66qk4+uijMXnyZOYiaPv27Zg7dy6eeuopPP/882hvb4dt25g7dy4uvfRS3HfffUilghlUYsSQhSp9nDb2qJmfZ/Mk6UbiQEFioPvUDN+8t0cRU9Mqmr2Eop/r8Klpsb+bBKusCf26YkK/rrnvOszPnTJlFwqyPjV5m8zsX8ZzLdH3u9jXYDhyiEDJ/DzJChTkXyZTkGGXmq4Gk6mpiQHm1OuWr0zAVf/5VOgeP0xNUYVO3vxcvLAg/BdakDE/l5OHlFzn/BuE0hfImneKrA2DHAbyB5/0NCbWO+RAQVqLAJCvl4lHrNImqu2oyij0QrSvi+5hDhjeAx+t2YFdbWylYBCvGE2pR3XTs/tNq6tKSys1vZZSpsBbXrgviyp1ae1RFSBTUyRQkDNv8awyaH0r7D2aF7x3SjUwUtTqGVX42ureeeedWLJkCSzLgm3bOPzww/HCCy/gqquuwpQpU7gPt66uDjNnzsRvfvMbvPTSS5gxYwaALMvzgw8+wP333+9HvBgxjEL25XFeh/OnDi26dviY3kVmASJwfGrSzc/jgZAHWhslrPAVED0JTE0vnEUD61GXevRzGegIFASo1S/P1GQpIvPX2IGCeIuj6Ppn5KGYqRndemRslUBBDJ+aER2TWQqroJQTbiQstusFHXA2VN+ePhwDulUK3SNTtl/fsVJMTQHWd5CQVmoS89AjC5A/ADaNmnRS6LkF6e8856KG6VPThPk5YdzQW0Q2z5xiRH/uKocFKmN8RTJRFJlaFboDBXWpTOGnR/HjXUSRqemIpBIsSCdTkzW/8JSaQubnnt9pXcDrU9MkhJiaHCIA73A/quspGlSZmqVVy/Cg3Lt37tyJ++67L9fRvvGNb+DOO+9Ez549lfLr168f/vznP+Pss88GkFVs3nPPPbF/zRiRheqg9K1pw9DLpazac2A3HDSqly+fmiTlRtb8vHNCpt5RNu8tZmoWp+H54wH0bFa8iqew24YGWXMxWmqV+qUEAgW5s2UFJOKbsURZFciGqKlUFGDb8ubnTF+pEa2rZdGjjQcVxdgNljxk83MF5cPu59SlMoX5VxwsLJdw/ortlmeniN8fCFPTEq+/vAK3+Aadc0xQLhSq00khuYN8ozLCPjX1ShXUYYjl+asTKlYuKl2tS2VS2zwoztQUz/OKg0fhuiPIfhodRDP6efZvNwUWrE6fmr8/fhL1ms3hM7qXHyKBgrLfxeZO2bWNDBKWhE9NynUeszFq6ylT4nDNzw2VW2pQVmo+99xzaGtrAwDU19fjJz/5iRaBfvSjH2HixIkAsgGIZs2apSXfGDF0QzVQUPfqNOb+4GBcc/gY/Pzo8XjtkgNgWZYvn5qkRUx7xjYa2S7K0LHxjEJ0aW/0c9LGXWRNosWnpsX+HhVIm59LOp5noSLFZ4y4i2Oan3PKMrEJDQrF5ufRrUfGtpGRdMWXStBVbFGuq0z0cx0qdRZ7hsWUJ/2s0qzuW3rWVGBgtyqpe3goNj8XgwqbI5hAQeJPXYtPTY1VCsr8vDqdFGqjIIeBTM5FDT1NYNHPDVRcxFpFFUExNbtUpLS1je6xwMltZK8aZrpwAwWxC69UYCjqYmpedehonDRlIPW6FqZm0UGx2MOgBBXXAgt8hW3e/Jy9DqdVJ2prYC4ZIfdXcp/CSR771MxCWeXhVjZefPHF2gbjRCKB888/P/f9jTfe0JJvjBi6Idvj3YPSwLoq/OzL4/Hjw8agy+4TRH8+NYul6dSBgiSqzY5+rkUcZRQFCiLIIzKX6Zj4/ZpS+oGO50lPT1lMKbw7ziED6053vn5MRk2YCwaFUgoUpORTM0H3BxlVWKD3eVOMq+/PHEWXx6Kr0HS1bYUnJLbuZ1Z8ECTIoFLwuxWIUlNqHJaTh5Rar0/NYE54ayoEmZpRMz9H6Zqf5/PWn7tSMDEFMXQyNcXNzwXT5RRP7HRBKJjoSj1yeufn5nZ57Z0un5pHjOnDvM4PFORSagozNUUky+4TTUFEBj5T08lL7rlHFSpBAAG+q6lYp5mF8iy/fPlyAEAqlcL06dN1yQMAOOSQQ5BMZhU8ixYt0pp3jBi6ILso5SVXYmpyfWpKZ1kWkGPT0DfOYZ8CFpmfE9I46x2WpFoCBRV9j2bnkg8UJPc7CxW72QAsEdz5+jVTDrt/qqJoAR7hgSqjYH4eRrRwv8iaFpOvmVJOsPwcJhjykKAiT0VKPhKsScWetwwppmYQ5ucQlylqgYKCND8Pc1geRWDTHTkuq1Rhmp8bWO8E1eZ5xYf+vFXqoMrU1NX+wqxkze0VKlOTkt7ZpzVxghyRoIupyXusPBdSBebngkxN0a7UYZDiZ1kWDhzRi5kmwZnrckpA6v1mO50sw1/EF777ryhKcEkZCpS3ups2bYJlWRg8eLD2COXV1dUYPHgwbNvGmjVrtOYdI4YuSJufc4YxP0xNmvl5lE0dTUKm3tTJFFbo5vtFgYIIsjrmHd6ohm4YCRQU0a6l671UabM059QZKOyb7OjnvMVR+O4RVOFVYka5FrZtSwcKKlV/pzSZTSkn0kn6AJtgtCHpispcV5H09kN+Hn4OzOQ3MuJ38J6RFr/KUgrdYMvjIag4StWpRKjj8nlTh2JI97wbheMn9cfo3rUAeIGCLO3veVA+NfPm5/ozV2kSNZ+aKW1tI3rAIVpeXhHDGWMC0LzImp87v6ooNVWCt7JkoIHP1Mx/1m9+bpapOWVgNxw8iq7YzDM1ac/V+cu+bgoXHzAcvWsr+Al3g2t+zqkPDaW61g8aylv2xsZGAFAODMRD7969AQANDQ1G8o8Rwy9kXx7efF9bIX844EzwRKZmJw4UJAN29PNwW7Crx7k5y6dmv66V2GdwXcG1v56xJwBNPjU9ZUe1b+liaqo0maOkYS3u3ZcSDDNlbvFWdBXLPITpykAWKkxNIFjzUh3IBuYhXzOlEGIxNS2w2Bvk9LLwmp+LBPiS89dMzoMHFTYHj1GiS2Ela7Iqnm8xdM6/Qc3lNRViPjVNoWdNBeZ8/yD84cTJ+PvX98KjZ++bu8ZbBwRjfm6udUzkHBhTs1LMbYEIdJuf59Jzkkcx+rmDpjZ583Nd9eEzNTnXXWpPulK38Luo7CYDBTn969kLpmJo92pimrxPTXIeTj1otTHd54b1qMa8HxyEO0+YLJSeJ42qtCJ7OJGgseUOZaVme3s7AKCqiu9YXQVOvs3NzUbyjxHDL2THUt4i30+gIJpPzbCVcmFBjk1DycMKnwnn7TNkpmYefzl1T+w1qBt611bguweOwKn1WefkZpiawbWNzOJbXqmp7wTYUdKwbvWWR1usiJz4lqpJimikziggo8DULEVklYiUAx5DAT8qOUxNur9bPfAyRdmHEezNF+seB8JKzVxZ4oXxmZo65gBxX7GqgRT95MFCUGNMdToZqjsNC0CPmgpcNH04vr734IJ+QXvdnKYp1ejnzmbeRN5qgYLky8man8vfR4Lu6Oe5Ax1OukDMzykHYbwDsG/sM1i6LF39ibd+5QXTEWNqsr/TYJSpuXu8qUwl8b2ZI4hpRH1q0pWe6vKJon+3Klx8wHAcNY7tG1UEPHN6GsK2GiwVKDeTM4kkDLW08+BjzXOMqEJ2UOKl9xUoiOhTM9oMKJMQqXfeFyV94xy15rt85sii3w4amTftmDKwG2ZffhA23HAUfve1SahMZfuUFlNAzveoQH4zTfldJVBQ0vGpSb9X9US9KJ9SNj/3aZYbJGxJpqaz8I1Knab0Fgt2wFKSm/KpyYpIa1mSTE0FgYrNz+mwBNIU3aPYSM5tMmMZl6mpha0vjqgFCgpqUyga/TwM0IIlqfQ3EZCUqCbbRrW7DKqrwm3HTiReUwsUJH9PbWVSG4tVnKkphlzgMi7T13zPpx4CU9fx2d8vnj5MuixdtfHL1BQLFGQxv9PzFkqmBPcz4QUh5JmX0y3qzPY5eTYzO33e4kNODpF6xtoyH0rNGDE6O3QpTxz4CRREitLXp7aiZJlcfpFV+IilZZkfR01pdOmMEejl8rN58KhemDKwG/c+HaaHxUxN31kagSxLRi9Tkx/9vHjxSU7HdTgewf4pCu/CPMrVkIl+Pq5PLW79anZzHIU6PXxMH/zliD6oFTwwCzr6OUupmfWpKb6BVfOp6Y1+zs9DzvzcqzQVVDbkmFHiZfGUlrrmANFcdKw9SpapGeK7z6omrQ84fVo7U5N0GGLwOagqBRMWMLiOYh6rZH4uL0MYTE3dCCZQEEUxzzkAG9qjBv/8xj5SZYm8D10rU6hOs1UpXKUmpwylQEGcPB2YDRRE/uxGLlAQLQ/O/aaHdWmLTMHrsmOVkFIz1mpCb4SfGDE6EXQ7+hXdeLrhMDUvmDoU1z63EG0d+VHttmMnYv4XO6XzLAdYVnbyz3TwR3maEixrfq5bMn/o06USc39wMO57fyW6VqZw4f5ip8+6TA8LvkeUjyL7zOjRz+Xr57yPzCiznu/0jSa/vKj1T1F49yVRVs5mfWqy09x72p74xt6DkGKYU4cBy/OXl5b2GEwoJ1IJC70YDvilmZoKMshEP3fGWplyVH1qqqTnKV+0KDVhCT93aZ+ahORao58HptQMN1AQa16mH6A51zUrNUmHIVpLyMIZnlW7eLZfk6+pBQqSv6lrpb7o58JMTcHixM3Pzfd7qvk5Jb3795kj5WKAiFSnriqF644ci0ufXICWdrLfTq75uYQyirbE8D7ydkEKpmg6FbhlorUAz6dm2NHPdUN13STySsc6zZipGSOGMmRfHt6YpGR+vls70KOmYre5cfb7pTNGYOrQHiWr9NAB4QiQjGth+sa66tDRxN8H1lXhJ4ePxXcPHJkzL+fBBGsmyLWETFnafGpK5ZJFRc78XLw81fKzSqjSfMFLyfxchKmZSlhFCs0oKP0tzobBm5a68TAwDg6qq+L41GRsVDWJUxwoiJxxTTqJqw4hj8csqPbzvLmneFl883PxvGiQG4cl8ya0jt5AQdqyYqI6nQyVpc0qmxbhPG/iqVcW8mGI3jIK81ZXGOgc+9QCBaW0uUgQX/vKKT952YYaKEigbO8hFg8WLPz0yHHMNMmEhfOnDsOmG46i58MRTcbNnqj5OU3B6kXGoFKzwPycInfe/JyWB/t+0+O6bPa8Z52vj1y+paa8DQsxUzNGDEXoZl2wTPFocEeP/fb04Th7n8HI2EDXquyrHYWNdRiwIL4YZU0WQWyEzps6FIeN7o3/9/YKzFq2GQAwvm8XfFuQhSkCLUxNT18qF4W5ToaGSKAgb3k8k0BWPqX6DIoDqES3Ijb4TE3iMyT9FHA1ZRlYvI0HKW9VDOlezRyjExadFUg2P5eXwRt9nZbF7MtnYvDu6K0mD1hycuSUTOL3B8HUBMTrr2POKUXz85qKJNqbw+PM8GqZtCx0eDg9zvuk+/AiqEBBubxV77NYTE0Vpaa8DF0qkmgWVETxwDvg+MXR4wGomNayb/AWa8IcVjT6d/73/IW0pNbYsoCL9h+GFxZtwJvLtxLTOP2jtjLrPoC0VuA1s0wziQYKElXgmjQ/F2Jq5gIFsZ+rTosqGbj7j0hTmfOpKZe+s8K3UnP9+vV46qmnNIhSnG+MGFGG/AkOb0EgP2p5o7fWVha+0hHWFRiFY34uAlayIDZCtg2cvtcgnL7XIKzb0Yy1O5qxR7+uqFLwsUqDGZ+a9Dz/b78huO+9Vb7LDAJ0n5oK72NChakpXUy2DE2BgiwreF88YbJ+ZZGxbS6bQTjarA6BJMDzV+WGxUhnwnR3cF0Vs90syL0bKhIW+9QsTnPx9OEY17eLqxzxkrwpxU23yfezEIz5uTikxyZCcr2BgoJ5+6pTSexEeyBlkcDrY6mEhdYO7z3Zv8GYn/srgzVfqYqfsBgHOgqZqqwdulSm0NrRKn0fCax3PZmwcM6+QwDIMMd3/+XcEEigIJpSk5Le/bv3EIuHhAX07VqJVy8+AJsaWzHghueZ8iQsi2jVwesPMusvUabqqF41GNenFp9tbMz9RvIpajL6uVsmWhNwzc8dqwWqf+3SQr4+coh9aorBt1Jz8eLFuPrqq3XIEiNGSUGX7z4Hw3tUo2+XCmxoyC9srj5sNG56aQn1Ht5murNS1i1Y3MXotUeMBcBjappvP7fCZEC3KgzoVqW9jCCjn0/s1wV9aiv9F6gI2Ymd52dMBs7pOGvj5r2ibH5u6XIrYBk9raeVWfg90OKlkMnwo5+TxuEoDL35zShfGMtisJZJUYx91m9w92pq0AfAYWqSr5F+1xEoiPQuFh/mSBeTv1cynV7zcx0HIOIqKR2BFHW+Q0Gan4fptoYHFus6CPNzv7BAZ7apKkxZ/VrFJFyJqVmZxLYmPe3FUmrO+f5BGFiXXWPqtpAI1/ycnN79u5cEwoPTPsmEhX5dK1GRTKC1o5BN69aTZutPUGpyyrEluJqiTE3LsnDf6Xvhm//8CGt3NOPc/Ybi+En9i+4zGf28kKlJOTTYnYjad5wDPuraxGyf0517nqkpq2CP7pwSJcTm5zFiKELaET5neEwlE7jhqHG49MkFaM/YmNivC7657xBfSs2oDYM08wzd4DE1x/apxRl7DcqlpSGIvUkQCiUjgYIYJ6u651+Z7GQWiAD9PVZZLKWdBRpj7ey95idQkI5NScICOvjJtKJoAR65kSqPj9fvRJ8u9IA2gDgjKfCFqeWUK5hcgq3ktyZZ83OWLObZGemiQEH8ZyZTtqpCVCUadSDRzyFTB9m8zb4vQQUKqqlIhjqa8cpm+9TUK7kJ83MSG8756o+pSb6m0m+UfGpWpLStm1gy11XJb/t5wVoc6PIJygJVqSnw1smOgd7UpNsLmZqUfDjF1laIPxNRn5oAMG1YDyy86lBmfmEzNROcvsWzWjBvfq43raq0caAgMfhSaso4t40Roxwho6QTGfAu3H84DhvTB+t3tmCfwXUF0czJ5bMzDWKRIQPRiOS6yvJi70F1uHTGCJw0ZQC67DbVZymGglBCmFxUODBhesjzgRMWwmRqOkwANlOz8JrqQthi3CsDGrvAJIp9agZavDReXbqZeV3Y/DzgejrDv9him57IRKCgId2rfDA19ShZRczPi8sWz9/v85a5nRYV2IEuVxWi6Kw+NUOPfs4pmsgqh7wSXQQmfPGaOIS2QB//AvOpWZnSdrjHGq/d1REtzUkXBfNz2pwhw+oXhUhQR/dvPBNqGi6ZPhy/eHGR0F6SztRUq2j4PjV3X+e0Ha1+pOYY3bsWSzY1Fl9QgO4Dd56SlgYh83N5ccoOykrNl156SaccMWKUJGQGJtFJZ3TvWozuXQsAaOtg+2biscmixoAKSoFiWeQTzeMn98c5XxoinE8QTE2eaasOaDE/t9jf3b9Hq9exQfepKZ+XWPTzwu+0k3feu2tZenxqhmEpKRoBvlQgykgKejyWYWCxkpCjGPury+C6arZPTcY4Qvpd7X3lHzB4x2c/z1A42rDzN4pMTcE6yL7TpORx9HN58MpmjVWW5kNwE+OGRTBAd76pRz+nH6CovDcqctRo9KHOGldFlHA08OMCyOWnAjpTkwxf47XAmtfrU1MkHy/6dq3EL4+ZgJ88u5BLchA1PxeFUaam+zPt/coxNdltR1d6FuP2r+2Br/zlPTEhNULkEeR8ako+LyGmZqzVVFdqDho0SKccMWKUJGR0dCpzDnOjKTDKRU1XEJQJmAWLaNooO4EHoWw5eHRv42UYMT+npfNpfn7YkCq8tKpZ+X7ZeZ3u01K+EiLRz3Up9CzoZGoGi2Lz89IGmf1UjKCbWtUpvRcmGFeD66qwvZl+aMeMfq6pHb0+1kjvgnfKkGJqelpJ9F4VNgc3UFDAfU/apyYxD41KzYC0mjXppC+5X/n2/rjrzeV4bN46pft58xZZ0Ui/5gekNZjfElgiqubNOkBRU2rKy1CVTmhjzTGZmu7PgoKKjkehBgoyMFd4byXVz/3O+Dkgv/KQ0Th/6lDc994q/PCZT6jpZMzPRWCWqelWoJPly0U/p4ifC3ZIvV584egJ/fC3M/bC32evxuzV27B5V5u40B7IWWaI78ll9xcmrGXKEREzTo0Ro7Qg8wKpzDls5Qj//qgxoIIamGlMzagpNXvWpHH2PoONlgGYqYcphYOoKS8Nsms0WmkqYjhKElZ7ey8pm59bukw8dSi8/ZUZsWFKGqLKAFKqHx48Sq8w7vJyGwK+fKyxUbdvvIHdqtC3SyWHUcRyDUFSssoLVGR+TkjjdbMURF/NmdxJLDC4gYJ0MDUZjDYvosYiD+pAtTrtz6dmbUXK1/28aoZufu6zCNY7qpo36wBFpQ+qtGN1OqnNaof1rhcomrSURs7bFGSZmn7g7RM8n5oybEISetZUoH83dpBN3UxNk+w+d3vQ5MszNSl55A5m5ZS539hnMJ771jTcd/peQrLS4M5d1l8/MT8fYxQfMVUzVmrGiOEDMmYmKiYpsiaBRfdLl2gWgSk1KWXJnkqaEreuKoVz9xuK9783E1UazY5oMNHurBz9mPykAu60NMWBygLdMWdl3erNl8o8EChPxx4iDLant82jdvgiC5I/Q1KVSL/dcNQ4/OCgUZg5sidOIEQn9QOnOJFn3MZSamp+Pj/78jgkEhbb/Hz3P+I1wbblodinZnEmOrcJoiKqsDm4TE0tSk2JOijk7YVOdqVKgBQV+PWpaXooZAcKkstr38F1GNCtEldQDmbIAcbIhZyzr9jhLpupqdZ4TKamwgNR6bb9ulRqU2ry3HqQPrMgajIbqvm5T4UiCd6iyD412dcBub0f73CKdj2Kayj3+8iLfk59fpyxiecyI0iCo9CaXdn8nH9DrNLUHP1869atWLp0KTZs2ICamhoMHjwYo0eP1llEjBiRQpiMcJFNStQmuiBN4IhKzYxcHqZM1v5y2p44cfIAI3mTYKIaJhaRAD/gBQ+yAex0+tQUCxQkWj5bAF0+NXUoO2QjqHcGpqZoNOeqdBK3HjsRALBscyOeXPCFNrlyplsCadsYgyMrSrks/vGNvXHanoN250uXjBWRmKjUVJClwnOCotunpldO2X4uk57rU1MHI1sirezcSX5fpLJg4pT6gXhU0aRbBn59arJYgyLg3clyJSE7n7x32czc59teXSpWFqWI3x8/GRWpBD5d34B+XSrx+Hzys2LOrYrNxnKZU5GSH/x47Ti0ezV2tLRjW1PWLPaaw8egIpVARnJ9SgPrXVeyGBM8ZAmEqUlZH9IPwPQdMChHP5coU9U3chTXUAWBgijy5aKf09bBufvlnrs3f1W4b+dtLUSKyr9Lcoh9aopBi1Jz3rx5uOOOO/D222+jo6Nwa9O3b1+cddZZOOuss1BZyaZVx4hRajA9j/iNzB21iS4483MLtx27B467t9BZ9LemDZXKx5S4QT8WE4tNljLQT3EkpqbJfkzLWqXItAhT09OpVJmaFjSZjvvOQT4AWJFSU4MM5HKKfSKaACuKtxu8x+X18agLIv2klaHUJN2vyooa37dL7jObUWQ+rJKXqanbp6YXwj7sGPLQEAxTU1zhJu1Tk6io1tcDTq4fiH1eWYLZq7dry5OEdDLha93AUuaLgPd8iObnu+/RfYhLkoVWQteqFP7fyfUAgAXrdlCVmqyhVnU+TFh0ubxjhFh+bDkm9e+Ku06cjOcXbcTQHtU4alxfAPr8G7IOhv2Yn0eDqSkZ/dzzXWZN4B1/eD41qWtJmcMprm9k8vWoEViAwvefJl2OqcnJg3ad1+f89kkpa0yBN4qnpKUhis83ivC9gv7jH/+IM844A2+88Qba29th23bB//Xr1+PXv/41Tj75ZKxatUqHzDFiRAamxxlW9mJMTX2ysHD/6Xuim4B5l8zA/PBZ++Bf5+6Hr07oJy2PBeCocX1wwPAeud/O2mcwRvaqlcynPCaSYJma6q1mwT+jSFugIAU50gl+9HPSIlsFlhWdQEGychQFCjI0kAZ1iCJsfs55M/z6k/WC52TfjfaOYHxquvsbe/MtxwZX6UPF5ufFabx6BplSlMdBzkaOBF5fD/oAJGo+NQHg3P3kDjVVkO236oL7ZhZxrpNZ5U7ZvorWBnagG9Y1NViMZ6bC1OTJYVnAsJ41uGDasJxCEyhmhZMwuK6Km4bJ1CyQQ+6QhZc6kEBBVKUeOb03ucyaoMj8nHCvUPRziZ6p6hs5Ku+uG4VMTbKAzhTMm+tp7yGvz0VVGShtfi4wDMVETZ9KzUceeQS33357ETvTDcuyYNs2Fi9ejPPPPx8NDQ1+iowRI1Iw7ZSWyfgSGBRNKQu8OHZiP6FpW2ZBUVuRxFcn9sPRE/ryE3tgWVnGxCvfno7/fWsaZl08Hfefvqd0PjxxDxvTG9cfORbn7jcUj52zr3T+QSFIn5q+WJoheHmmLXpUmsxZeLEWUqLRz3ntaAmkEYEOdo60T82iNvAtglA5piAcKIiTLK3ZP0d+M8rPl2l+ThD8qHF9fMlEy9dBwqK7VyAywBSaztvepPK8wQFMmgZ708kUxdsM6+pZsnXwk6/u97dnTVprfiRk+62/+/3UmtdkrAOYIMZLkSJEfUI6sBnXRJA1+SdfU2JqKh4wiDAIP7nyECy9+jD86FC6a7eyDhREMz8XLFvm0FwkUJC7zrTnrpWpWUo+Nd1KTUqafKAgdtvRlPl8pqbZQ6KCtAb35LFPTTEom583NDTg17/+de4B2baNadOm4cgjj8SgQYPQ3t6Ozz77DE8++WSOobly5UrcdddduOqqq/RIHyNGyAjVp6bAIBeUeCYWFJUpxz+hgjy770olEzhirNrmG+BPJFWpBK4/chwAoKlNxqtgsAg0+jnjGg9pDS+UrAUX/YRfXhZHftadoswBka2tFp+aOhhcsqfOnvSmGNFBRTwmRxQuBk+atEy4awHklBUC2bLMz0l99NDRvTFlQDfMW7dDUqZ8Xiyz/Sx7inJN8DcehKKfe5rFpMLJm05noCAdrwLrmXghOzaRxlvNrwN61VTozZCAhOVvXPbL9OT1GRZTM4jxUqRurHGB1baq7WaB/l5XKBw08ZYxNDE7BLSaXSpTuf80aA8U5CieuKw4sfz8QDb6ufd9SCUtoF2sLG+eRPPzhPu6WD4s8MaOUjI/L1CgU8TjBwrKXuhdSx67TfdJd/a8t1OkKMvzV1gOyfSdFcpLhueeew7bt28HAFRWVuKuu+7C/fffj69//es46KCDcNhhh+Hiiy/Gs88+ixNOOAFAVvH5xBNPoKWlRY/0MWKEDNNMSNYCNUqBgkQVWTKMwaqU+ajgPPDZcvkElRIn+kGvP4yYn9N+98E0oTE1ZXL0Mqt4kFGc8JALFMS4WZSlyO17DCabDEKJfu5Jb+p90K0UoYFsnk1Q0nAqqp+pyVeyO2iTNj+38PolB6C2Qm6cdmfF8/0mE/1cBV6TNrJPTS9TUzx/bx+QHRmlGD5BKKQk5Nfx7pUqU9OP1DoDW5DAGquCUEqJFMFaSpkQkRWcyUSgINpVEaVmvgz6NVHzfdGemj9k4cgUQAeSjn7u+V1mnBTx/V3oU9O/wlHl/c2WIVxEYHCLRKtXLlAQJw/LstCVoMg3z9TUvCZz3iWfa2YiYqqmulLz3XffzX3+4Q9/iMMOO4yYLpVK4cYbb8SYMWMAADt27MCcOXNUi40RI1IwPY/IKEdk79cJ0XJkfMZV+rBF1lVvmYknkbC0+8TTBSPm5xqVgQ5SCUtaKemFPFNTn+KkQiH6OW2RzSveQnR8asoqVERN8P0iqEMd0feeJ45owCFRyCygZc3PgWxwjx8fNkZJJla+gHNQRrtGUsxIiQFA0KemQNk0qPY+Rw6ZsYxrfq6JkS1af2mmpoY8eOgZCFPT32ETK2iNDrBY5UEopUSahs3ULP7Nb3wdi9HmaoGCeOWRE4j41HTAGjvZbj2EiygC79mFy9QUW0fJrIW99SUzNS3XdbF8WOAyNSndMfJMTcrzyTM1+evwod2ri66zDmMBvQfb3DW5wCOQOWh2IzY/F4Py4164cCEAoLa2FqeeeiozbSqVwhlnnJH7/vHHH6sWGyNGpGB6HmFlL7LWCo6pKVYObUFxav3Aot/G9pEL6lMgT0jKXD+KWJMwYn7OYFGpFhctn5rylRCLfu6/HKeM6DA1/aU3xtQMaCAgsp8I6XjS6GZqOl1NpBnaGCwhJnNKUmT3uMFSxLEYb6QyVRgVYtHP1ZmaXoje69SlPUNXNHsRRFAsmRKiMja5EQxT018fYfl3FAHvVlbQr2CYmvxCmExDA2O6bp+avDrSrspEP2e9XywGvPs28fGo8K+KTLpAddcjWLQM8cCbkutTU8MBOU882ejvYUKkr+V9alLycH0e2qNYqblmexNTBp3Md775Ob8sVXHiQEFiUN5Cbty4EZZlYejQoUin+QuFffbZJ/d55cqVqsXGiBEpmF4EshZw0fKpKVYWrb2+PX0Yulfnx5HvzBiBblXpXN7S8sjfogSvbFWdSalJPZVWL0uLT03J9LQiVURxzM+lAgUpLtL9RJkXKV8qD59MTdrdfg42suX4ul0YRPYTSfHGM0u0LL3KKcv5w8+ztV3Op2a+CNln7/rM8f3G8turA15/eUSmpsadgqjcjhwySo4glJqAvCJEFKSa6p63SOaLuuGXqem3ylzzVUKCvPl5AIpxgSKYPiEJv9k+X1IWA1nloFrVp6aE9TlTycELwJaTQ7w4IQQSKEjWp6bngh+mJgnu/GQsC2goW5+alDSiPjUBYAiBqbliK1up6dcti+5WzVvPyN0XlH/4UofyDL9r1y4AQNeuXYXSDxo0KPd5586dqsXGiBEphKnCElFGBMZYFExHW1CM79sVc74/E//6eD0G1lXhhEn9/ckT0gRQmUoCaAulbBYC9akJNdYUAKQ0nHTLbnDoihP5OjhKEtad3ms0UgVfARaOQpImi1SZAmzVXjVpLLzqUPzoP5/iV68sUZIrzEBBJIikSiUsKd9qIuWJiMdiarKDc0jK5LkhlbDQTig7G3BFJl85OYD8IYS7TC90MjVF4RTB8AhQhCBcn8iw8GXHFdK4rbtKQawLEgkNTE0f5fPqSIx+7ipbFKrPRmR6DtqNT9DRz2lPOCPlU5NehnigIMF5y2HTcdIHY35OYyrS1o6Fv/vxqUl6Ou78dDA1eUnp5ufiZQQFkb7mDEe0NnLXaxiBqblym1mmpgxEirI8f0UhZH4eUzXVlZptbdmNuwhLE8iaqTtobGxULTZGjGjB8HjJyl5kcg7M/FywGPopIzC0Rw2+M2OERqnMw1ubqJqfB+pTU2Lj60U6EbwJhQ4/SA7UAgXJMQ8K7xWVjA4dPcNEoKD8RkpZrEB8xAHigYJE6pJOWmgRjM7KgyOWSLkqPjVV4M2JrtRkmZ/TFTMyEDE/L/apKQ5vdrJKBBnlduQCBekYm0qQnWJBg09NP0xPznUyUzNftii8BwKiEGEfs83PSb/56ycW6O1WkZLPWzn6uSbzc+FAQYJVyyliOOlDZWrS1nGe77qZmgWWB4Iy+CmTHihIre0n9uuCT9Y3KN3Lg0X57EaOqUn1iZr/nWS5M6Y325rHr09NmbFFSKkpeEDghUi3jXWaPohmzqmq7CINADo6OlSLjREjUkgY1mqylSP+7tcJi3HS7YbuCZkqj9bcGOV45O5c5ufqyjgadDA05M3P/Z+uOxDxqSlqDsUr34Ke56pjISSrNBc1P+dd4yFMpiapZJHnldbo2T7PCuCX28pQajLNxCVl8rYBq//LjDEqig1vZGNSDl72lNQmB+L9nAQZn5osP3q6YFnidZA9UCCbn0tlEQn4DfTjW0GnoBRx+qnMOK7q/1eEjcjzteuFX/NzlssAtUBB7LahXZUyP2cUwXqO7kuyT5CXPhCmJqXfiRYt51OzMC2pmxWan9PmMpnDIHZa3ebnv/vaJKX7RFBgfk4RLxf9nKYQdv3+lQn90Ke2MNjb1ZxAhf6jn+ehgwlpef6KIoruBaKIaO7AY8QoEYTqU1Og8OACBYmBxdTUCZ3VlslrysBu+grWCBP9lM5wVA90kNYwI8kuPGiy1lbIGzJUqPjUVGwsi7ERCxr+AwUVZyDDMhQtxxRElQEiddFpepn3lcdPy4siyitDPH3hd1p9WSahurq916embqamF7LMKBklRyBMTYkiZKUhjdtRGd9k4NunJsweyrL8/8rIrXr4ItKnRc2ndYFlXWJEqUm5LhP9nMnUZFxzly08HuXmYvYNgQQKklQcih4ik+BNahOOXoSinwuXKKDUpM6XEoW4cNiY3rj75ClqN3Pgrgo3+jktD9fnqnQSfzhpci7g2zn7DsZXJvRlyhDkwVjYgYJirmas1IwRwxfCXHOLTM5BiSfaDipMTRXmgp4QKiLlFOKGo8Zh+G6/L327VBhbLMjCxIaXbi6i3u9SCQtDuhQrE2WUxbqYmrd+daJkTi7zc0Ya7zXanokbQdXS8377ZbkA8u+btz+ShoWcmY6PWgYVPEU0UJAIVM06ScixAgSEYZmfi5Shmp4V+IG60SH1F0k5gOCjn4vCKUPK/Jzrx88/LFjC87Ge6OelqdT0IzZLwSZ0P+dJi7L4ePC+t1ccPKrg+yUHDCfe59f8XOTgQRb6o59zrlMSyCiKeSb6OgMgit4i+76qkH2lAwV5rsishb1jHZGp6UoTRPRz6h5Kca1jWRa+NW0YhnSvUrqfBRGmZi76uaCy+qQpA7H62iPQdPMxuO/0vXbHMRCTQQXu23lrZZGinP4oK1bsU1MMsVIzRgwfCDVQkMAgFxxTU0z1QF9o6ZVTK1NTopyxfbpgydWHYdmPD8Pa647Et6YN0yeIDwQb/Vw9z1QCOGF0Dao9lM2fHjlOPVMOaH1y/2E9cNqeA6XycqK3szb+3sWn6kLYgp5TaB3rIGmmpucG1ujhj6kZzPhHNukshpD5uUYzYsvzlwWW+TmzDJ/PnrVJkwnipfKoi8zPCXl49YoySnZvfuJMzWxCkq9RGrhKTU3dSlzB4b8sE2cS95xSrz9TF2QDXBXfr28TTgJJKeQoz6WYmh5l37WHj8X/7TcE4/t2wVn7DMaNXx5PvE+EjZi1QqBcE5ZQHNkDQnLO3jFCBKrm5989cIREGezyRZREsgeGvNSy/V5JqUkzPxdcj8r0cW9KsosMt1KTlo+6ItULWaWuKEwoxCzKZze4TE3Chap0kqvMdGB6PC1IK5Gf7LsnpNSUyrE8oRwoqFywdOlS/POf/8S7776L1atXo729HX379sXYsWNx7LHH4ogjjkAqpb+Z3nzzTTzzzDP48MMPsWHDBnR0dKBPnz7Yc889cdxxx+Gggw6Syq+trQ3//ve/8eKLL+Ljjz/Gli1bkEqlMHjwYEydOhUnn3wyxo8nLzJiqCMo1gbvhJB1bxAQLYc2MLMWQ6TTsXTSwtP/tx/+9sEq/HPOWrHCFWHRHgAFiYSF4T1rct9/dOho3PxyYfTmqUN7aJNPTCb9ebKVvWodL52wUJ1K4N//ty+u+u9naO3I4KdHjsOQ7sVRD2mQZR5S+2TCwkNn7o3rjhiLPW59VSgvFaamr0BBOnyQalgJycpRlJxwu4xCTrgcQ6BFZPVCRBytTE2J+quan8vCKxI1mi1YLi6Kf1Ppx15mFDlffUxN0Y1MjqkpWCm/fhxFIcc4kpOIZNppIlDQGXsNxPOfbcCj89ZpzxtgK+NFYMEfO513J0n57Sga5ZSahWm7VqXwl1P35N4namKdSiSIBy0XTR+Oa55dWPDb/31piFCeNGSDM5GveV1UCOXHGcJp/WNI92r88OBRuPXVpfwyWNZNyNaJF71C3PzcEkovvw6wIKuKYc0XIr/L+B721pfoIsPtU5NmvSQ1brKv6/apaRIFbUMRL6fUNHSI4XcNWBhYy38bW0UfxFCK/qXDQKdWat5xxx24++670d5eGGp01apVWLVqFV566SVMmjQJt956K0aOHKmlzPXr1+OKK67Ae++9V3Rt9erVWL16NZ555hnsueeeuPnmmzFiBP/kbvbs2bjyyiuxevXqgt9bW1uxaNEiLFq0CH//+9/xta99Dddeey26dOmipS4x/C0+xcsgT/uRMj8XTMdSIMniy+P7oldNBVGpGVy9+SVdcsBw3Pf+Kqzf2QIAOGufwRjQTb+pBwvBBgpSL8s5hZ45shfev2ymUh7SPjVZ1ywLE/p1Rf+ulfhi9/NjQSRQUFGgFEGzm+Lr0VnI+o1+Trq/lMxXWebzhb/x89LqU1MirbL5uaS43vRMn5oMFxc64I1srNu0tUh3Lym4qPk5i5mlExZkFCFyedPG7YQl51uUh5qKFB4+e1/8ubkdddc8qy/j3fDL1LQsfxpqXj8gzTdO+/oxPxeFaOyrZAJErdxXJvTFo3PXYu7aHQCAvQfV4ahxbL96PLAsjUQZYW6oMjUB4JavTsRF+w/Hq0s34bxH5iqVkV8bFL44Rb6smVIS8uXcEQRTk+XLXaxMGaVmYVqyT02XbFRXQuJQdR8RhtLrpMkD8Ph8+uGQWyTa88n5TtegECbnr69h+ObnAntyRXli83Mx+FZqrl+/Hk899ZTRe44//nip/EXw85//HA888EDueyqVwrhx41BdXY2lS5di69atAIAFCxbgrLPOwiOPPIJBgwb5KnPFihU488wzsXHjxoLfR40ahd69e2P9+vVYvnw5AGDOnDk46aSTcM8992Cfffah5vnCCy/g8ssvR1tbW+63dDqNcePGoaamBp9//jk2btwI27bx1FNPYf78+fjb3/6G3r17+6pLjCzCPD0RKTsw83PBTZWKnx+2Ka/8PbJgK7349w+qq8bc7x+ER+etRa+aCpxaL2fSrANmfGpSfvexJ9MSKEgyvYhCXfQ9ygdmYW84CssXyro4n0COVMQgHyio8AZSc+XMdHz03aDGZ6ICk5RO4InpND+XqX+boubIrxkVa5NGNylUUxh7UexTsziNVwkTRJdyypBRagbR16Uiv0szNclIWJZUABVRdK0yw+lgKeNF4Pcx8u5nmZ/LRT9XDRQkztQEijWgqUQCb106Aw99uAaWBXx9r0EFc3htRRKNrTyOYiGyYw257kpMTc4tvFdjRK8arNvJJp/w1swiB22i76iTisvUlHznZbtQkumShAxvej9+toPwqUnybXnIqF758hTiEpjCJQcMxwert2HF1ibi9QKfmpQ8+ExNf/XyzdSUuF8kqei75IVIPWKdpgal5uLFi3H11VcLp7dtW/oe3UrN5557rkChedRRR+G6667LKfra2trwxBNP4KabbkJTUxM2bdqESy+9FI8//rjyBqupqQkXXXRRgULz4IMPxo9//GMMG5b3u7d48WL89Kc/xQcffIDGxkZ8+9vfxr/+9S/079+/KM/Fixfjhz/8YU6haVkWzj33XFx00UXo1i0bWMO2bbz22mu4/vrrsW7dOixduhSXXHIJHnroISST8ieQMQoRjPm5RZxNhZiaQW3qBdPpnpCpCxml3Myhb9dKXHLAiNDKD9SnJuMaDzpZaqIQOxyQy5OVXJipySvDKmWmZuF35sGBvDg5BBUoSBQizaQaVZhcnnj9z9lXzYRTmqnp+U71EWbJbWdU9F5epSapxOJAQeYVVk4Roj41s+bn5vu6BXPl0JmaFkppu+ZXwWwxlPmi97NAOsTTYX4uClKXJrUXy3dgdTqJ86YOJV7/zXF74KLH58G2gapUAs3tfGooa6xRCxTEbhuRluM9C170c7L1g7wcgHh/lA8UJPdus9aHoubLuteYIoo7mTmjf7cqHD2+L55duGF3/sAvj5mQu043PxcuQhsm9uuKuT84CI/OXYcLHp1bdN0tKq0JcoGCKGWEzdTU3ay5w3oDPjVjINg4J6JsLgc6orJ60dbWhltuuSX3/ZBDDsHvfve7AuZiOp3GaaedhjvvvDPnT/Pjjz/GM888o1zugw8+iGXLluW+n3rqqbj77rsLFJoAMGbMGNx333044IADAADbt2/HjTfeSMzz1ltvRVNT/oTk5ptvxpVXXplTaALZNj/ooIPw8MMPo2/frInGnDlz8Pe//125LjHyCOIFop5wCTEjgxkI/S56lJWaGk5G/aBUphkTCx4ZFpUoFHzyF0F23hBZXPg1sXXD+yxCDxSkJfq5ZHpP5UhtoHqizcs3KBDZpwL3mVDs855wVSqBHxyk5mLH77Onm5+Lb1RVIRIoyNt2MmV78xNmRu1Op5OpqaPN/CrcVMssJSR8HjZZhhXUpIOejpxSUzwf1cMXkp9YUnvRDqR4TXvBtGF445ID8JdT6zHnB2KxCZg+NZUCBbGvC5mpcq6zDuySCbJS02+/4t0tb7Ehl56p1BQ0X/bF1CT85s7Pj390Nx49ex9cfdhofPNLQ/DSRftj6rAe+TI0Rz/3A8sCulWlMXVod+L1QoUvWT7zPjWDaxeRovIWSHJ5x0pNMfjaQtq2bfS/CbzwwgtYuzbrgy+VSuG6665DgjI5z5gxA6eddlru+3333adc7kMPPZT7PHLkSFx33XV0c4eKCtx8882oqKgAALz44otYvHhxQZrVq1dj1qxZue8nn3wyk9Har18/XHfddbnv99xzDzo65Ew0YhQjGKYm+XeRQS4w5Z4gq0bF/JwEZ3jQNY/XVhSylt0LFVYbBuHHTAdMLHhYi0jVxbMOhY60+blAkbILCla/8F7x4yNKx0JHx0zrVwyiAlDxRNuNUJWaBLlF3kOd5ucsHD2+L648ZDQu3H8Y3vvegRjao4Z/kwZ4m4CqvAB5Yw7om9fSnrJJ5RUzNdXLE73VSScaKEhE2Rh1riPJXx2gV/ERBLLkDR/3G1Y8kdrHcbEgM17u0b+rhFR5kBT1pDHAz3Pcf3hP/N9+QzG2j1j8AIvhzEWFqenHp6ZoHqzmSSZofp7Z32lw2oZ70CrL1JRsWmafECzajysmkl6iUKlJvk+2yJqKFH5x9ATce9qeOGiUmKs4v2sdlfnBKVPEJQCXqUmd6/3Vy7/5eT4DXhuJTNeq47uIMj72qenD/Pyll17SKUdg+O9//5v7PH36dAwcyPZvd9ppp+HBBx8EkGVrrlq1CkOGyJlpLV++HGvWrMl9/+Y3v4l0Os28p2/fvjjkkEPwv//9DwDwzDPP4PLLL89df+uttwrSn3/++Vw5Dj/8cPTs2RNbtmzBxo0b8e6772L69OkyVYnhQZjLZ5FBLmqnO/RNqrgSqPCank3vXSdOxjf/OSf3/Y8nTZbLIOIw4lOTcbKqWpwWn5qSE7vIO+LXvLrgmueiKnPAsiwjUe1VYGIjLrqRYuYbreFPqJV0Rj9noUd1Gjd/ZQI/IQeymw5vcqqZaYI1xuh5sN53j+hT04dSU3VD5twWvUBBwfvxlR17UwlL2GxfN5z+42fdVZFM+Bzz2DeTAwXxmZoVycJo5DccNU5JPpJPTZJMqkxNFSQYY42SUpMb/ZyfBy+NHvNzybFb89svuy5VMj8XPEQTgbJPzQBGzTDOcqzceMe+DtDXPjmmJq0MJcny8Evo0N2s+cN6OcQ+NcWgrNT0GzQnDNi2jXfffTf33THxZmHcuHHo06dPzhfmyy+/jHPOOUeq3BUrVhR8nzp1qtB9kyZNyik133//fWqeffv2FYqSblkW9thjD7z++usAgPfeey9WavpEEErD7IRIMtkRuTda0N1e1MlUsuZn7zsEA7pV4e3lW/GlIXU4ekI/T17k6SJqShMajJif0373UVYqhAbVscEoSs/of94rfvzJ6lgs6zjd9c/ULM5A1UynIA/1W32DzD7lS2TE/Jxo8qknb9lsvH1WKfq5Ltk9GZGej7fpfAWBkbxVlKnpN+K2KEwOz2yfmuJIJS2gXYNACsgzl8TS/+mUKfjWo/Ny36cP7+E7gBGvbLb5OfnmHtVp3H/6nvj+vz5GW4eNn315HIb3VGN2E31qEpSAdJ+aBg5owVBqpuTL4zM1/deB9b6nEgkyUxPe8U6wMA1zMQnS0dJVzM8F5xsRkIYod3aiilUTCCNspFOiCFmFG/2cIr7fPWOQyl6hvYREWjeiRlCKKsyE/4so1qxZgx07duS+T5o0Sei+cePG5ZSa8+fPly7XXSaQNQUXQffu3XOfP/30U2qeovkBQF1dHTXPGPII0/w8SoGCRKGbWabTp+YRY/vgiLF9pPKKWPNSYWJCZJ1Kq5amg6kpCxNm3qzkotGfRcrQ4lNTw/mu3+5F3oAV/i01kOQWqUtQTE1dzD75xXnhd7r5OZsNbgJCB4W+lOxiNzvpulSILdH9RtwWRdbM3VA5VKWmXDbZqNnhuFZyxnbR+eIbew/G3LU78OjctRjWowZ/OrkegL/+zbuXaH6ec+dDVzwcu0d/HLtHccBSWZCYmqRy6QHEfItALJ+WrVqgIL8J+IeNTKZmgnzdu/4WNj839MrLelpJMTYQoqbf/piaPPNz+lxmGmEwNfPjHfm6uzloafJMTTPvu+9AQRK3C5mfW+z6+pEjZmoGHCgobCxfvrzg+9Ch5Oh5XgwePDj3eeXKldLlVldXF3xvbW0Vuq+xsTH3edeuXdi2bRsxT9H8vHk6vkVjqCOIeYRWRpQCBQFig64ueZzBm5ZbULUuFZ+aJqJAs06lVdtFj09N8aldtDid0c+9TaNaZZbPQd04diL74My3+TmRqWlRr4nnq3yrEYjIE5RPTX1MTdnFuRhzhqVoMPVcrz50TNFvN355fGHZEvmpiunUTzR4EyvQiV9ZvHkE/U7JjnFeP6lBIsc6EkxflU7ijhMm44ufHoV3v3cgJu72U2nU/JwR/Zy2TtA5z4gqNVmHHbrBWrNUKgUKYkupoznZSk2LaHZbxNSULFP3ux+E+bnfMt3gBwoi3xfEPiEMJl/emoY/bvD2sbr8kbJkUIHuw0InN3nrLz5in5qdTKnpsC0BIJFIFEQ8Z6FPnzx7y52HKAYMGFDwXZQh6U3nLtud5/Lly9Hc3CyU58KFC4n5xVBDmCZfUQoUJArd7UU7uNW5iIhYEyrBjPm5/k1H0BtS0QWPzkBB3rz8+N3TsZCtTie5ac6fOhQnTu5vbOFJuj23YPaXdaQgUhfVqMKyCIup6U1OY9+wFA2mNokT+3fFN/bOu1b62h79sB8lsqsKhJlRu/8O7VGD648cm7tvQl9y4JNs9HPzb4rJzbm2QEEBHQqQIMvUDAMkxRAv8KLOQ1GXW84cSNnTmZr625Z1gKIyHuswP+cdzjIDBVmWUKAgUeT8W2v3qSmXnvVui65Hayv56x0ZuJWkIgFzTCEM/+pcpqb7M6Vt8tHPzbSd/0BB+c9hKg3Fxr1Yq9mpzM+3b9+e+1xbW0uNeu5Fly75haQ7D1GMHz8e3bp1y5mMP/roo5g2bRrznp07dxYFY2pqasp93m+//XKfW1pa8PTTTxdEaifhnXfewbp163LfRRWhJtDeHpLTI01wIsfLLBJ019mybG6emYAi3PutG+t+O0NYBe++p4NSv/b29kD6mG1nSqIvZzLsfpBOWmjrYE+I3np2dMg/Mx4cUgTtuYogIxEkImGJ9l2xPJ28Moy2yXR0FJSZoOTNfbczGe5zFcGho3phY0Mrtja1UdN0rUjgn2fuBQCo+NGzRddJZlkseOtmEe63dqezbbW+lJVL+VYpkJ5VB+EdsAT6W2B6fZs8f3xz38G4/4PVue8XTB3ClFm2D2YyHWhvF2C32DZsSt4dHcXjO6m9eSDV6y+nTMbF+w9Fh21jvyHdi8YimbHJzhTOD6wxk3bfTw4dhYumDkHGtvHR2h346r0fFKVPWEAHp1/peBey76PcWCiKjgy5P+piagYxTzvzicg7wZTHx8Pyzi9eWIz5hjbWis+TfLQT3h9S/jRGHend9wvbtqnvdSbTAemhhTdnCawbWWtbXhl2poPIWEqgsJ1F32VnPOL1a2+d/ChmSUhaFr3dKO2R8YzBVx8yEg/PKbRSPHJsbzy/aFPRvUX1IVXH9Sxp71a2z+pVphaL4W8vIruGA5x60feZFvJjOq3v2JmO3X2LXL5NWaeIwu8euMM1noq0kch73d7eLj3Gi64d/OydygGdSqnZ0tKS+1xVVSV8X0VFRe6zjKm3g2QyieOPPx5/+9vfAGQjmR988ME49thjielt28b111+PhoaGgt/dZU+cOBETJkzIsTlvu+027LPPPhg9ejQxzx07duCnP/1pwW/u9ggSmUwGc+fODaVs3UhInCOp1tmmDPYNO3Zw81y8la6o0Im5c+eivY0/6O7Yvo16Pw2rVjcW/2jbmDt3LlbsIJf52cKFaOyqZ3hjTWTbtm4rib7c2MZeZN86owcum7WFmcZbz6Z2cp47d+7A2rVqY4vDzliwYIHS/QCwy3X4w8XufsRDq+BY6eS1rYW+sFi2bCm6N+SVRlu3bGPmRcP6L77AksRWIblY2L51M67Yqwt+8d427Gon9/WlS5eg645Kah4tkgdk3rpt2lR8WNjS0oK5c+fii3U7pfJ2o1mmL/gA6Vmt30CoU3ML97k27NimS6wcmgjPZ+vWLURZThrYjtm90/hkcxsm967A1/q3MmVeQxqfGVgwfz5qXM5zmxobiOk2b96ExYt3Ea998smn2FxTuElcv34HMS0LtHqld/+ft7XY3dDqneIbrFWrV2FuZX5cbaaMmV6sXLUKc9Obi37/fB35PevoaMe8eex+tWuX3HMiYfHixdi2lfy8vJCdF7duIfdHnrK2OD15zRPEPG3b2bXtqlX8cYclz5bN25RlWLZsGXrvWkO9vmkD+T2ZO3cuVq8kv2/t7W3a2m/jF8X9p9oq3hO0tpD7+sKFC9HQRe/Wdcf2bVi8aBHxmkq916xhv2tbKH3djcWbyXtN577la8ntYwGYN28eUbmSyXQUlCs6t27ZPVcs2cTe/xatEXex3wPZA4v2Vvr8uZnyzqxauRJzrUKrxJPH1OCx3XPLCaNqUJsgy+kti9SmGzesx9y52bx2NZKf+yeffIzumhmiXixdsgQ12yr4CSloa5PfKy6YPx9VqQTWNZLH6C2bN+fakDZ3Lfz0E2yoSlL3WV+sW4e5c8XmHBJ2tKofigPAyhUrMNfeAABooKxVHHR0tHPf64ULP8XOLilqf6VBZE9kC6YrZ3Qq83P3SyvK0gSAVCo/gaqeGHzrW98qCPxz5ZVX4te//nUR83PFihW46KKL8J///Ac1NYXRBd0yW5aFK664IkdJ3rFjB8444ww8/vjjRYPTu+++i9NOOw2ff/55QZ7JpNlBtjMgXPNzgXsly+pVlYDJuVdGCSyUHy07jcVE15BMHDwznwMGVmF0ndxGgdX0qmZOQQcKEjVl0xkqwHtF2aempccczAJw5LBq/O+E/vjNzJ7UNLw8dEPWPx0JEbYCpSIo61lan+5fm8K9R/TBO6cPxD2H90a/GvaEIG1+7klPi8PB9Kkp+BsLQ7sqTnQSBfWpViuDWm+a7zLGNZ3wM7YrlynN5jIjhwiCnL5Ulz4sn4LUQEEaR/ivjqwpekZXf6l7UTraczTxeC1YWvt1EPMlbd3g/K4z+rmpV0rnuy2T11X7dscTX+2LJ77aFz/er7uwcpUb/ZwunbhwigjDlTAv6I0l0Db56Of8PFTgd0zWPd9Znr+y97EQ+9TsZEpNtxIvI2FP4FZkptNppbL79OmD3/3ud6isrMyV/6c//QnTp0/HiSeeiHPOOQdHH300jjzySLz66qtIpVK49dZbC/Jw7nUwY8YMXHbZZbnvO3bswI9//GNMnToVp59+Os466yzMnDkTZ599NpYtW4Y+ffrg6quvzqV3M1BjRBe8yYAF2Ynuqn3r8P296+RukoCuCSI6gYICKsgnRDa88nXRv4TTESjoy8Oqi37rmqZs1kQX9bKKG8Y1b5nqgYL0oiploZbSTrzS/Dtz93d/FEFaYIqN2cE0Rlhjl3cDxPLHRQ1GRvhNZj2ftIBL9+wmcQe7bAA4aXThIXTv6gT2H+BlN4s1uky9s+n5+fasElvuf5fRLipd5sBBdIa3G7Tnp2KiGhZYCiXd+Ml+5HUar/os2fwcoIuiW0UCl9R3yymojhpWjb36Fu9FaIcdRpSamjPltZdIeTwFBe2dd1z4EA9+PD+aUKyYzI/l21U2ryFdUxiy25rLT/8u9KlJTlMKy5uxPeR1G069RHxq0hqH73/WH3S+2zqUhup+bWOIoFOZn7sjhsuYXrvNvr2KRRnsv//+eOCBB3D55ZdjzZqseUh7ezs+/vjjgnSDBg3CzTffjFGjRhX8XltbW5TnRRddhF69euGXv/wldu3KUuAbGxvx0UcfFaTbb7/9cPPNNxdQo0n5BYFEIoHJkyeHUrYudHR0YMGCBcKT4eFjeqG+vl6prMTj6wEUm7P27NGDm2fyi53As+IBoUaNHIGNDa3A+9ulZKyvr0f635uAFrZ5Su+ePYAVxaYerHp82LoKeK9Ynvr6enTdvAt4ZkPRtYkTJmB4z5qi31WQfHw9QPFTIvIMooDW9gzwyDrq9fr6elS/+gawjW6O5K1nc1sH8GhxnnV1dRg4sCfwkbw5qMPUnDRpkjKT/PpxbXhw8Sxs2ZVlrI/pXYt9B9fhHx4/SgCQTCSEnl8Np20cOHlt3dUGPPEFMc2YMWNQP6xH7nvfFZ8Ai1dQ8wIA/KNY9gEDBmDM2N7A//wFfOvXty/q67MRnnd+vgV4qdjsdeyY0XmZCbLU1NQAW8THDG+b912zEFj4ecFvVVVVqK+vx8Bty4C5nwnn7UatpFyqIPWh3is/BT4rNEerrq7m9rfeS+YDy8hmoKrIrlsKrUz69O6N+vo9fOf9QcsqqfmifspkVLmCU/Wc9yGwZn1Rur59+mDc2IHA/4p9ne2xx0QM6FboQqjfhsXAgiXc8r97wHB8Y59B2HOgmlKzbssu4N/Fc85R9SNx9J4WfvP65+helcZvj5uAvQYVKp5oY6YXQ4cORX39oKLft3bZDLxS/H5WVVRk+xXh3QSyAYYOHD8AL69azC37hhOnoiH9Ke59f3XRtXHjx6HHF0uJc7gXTj//dZ8dmHHXW2jl+GzuTplLK/+7BWgSd29RU10F7Cg2EyS+d5T2UkUqlUJ9fT1WpNYDr7Ndg7DGgT6ffwwsKXZ9cPY+g7BmezO+vtcgHDG2N37+3stFaUaPGoX6Ub2oeQ/etgyYVzye1tfXY0liHfBmsdzVVZVa1zn19cCVX21Bc3sGQ7sXH0ICQLe33wE2FcsyceJEDOtBvocIgWfcs0cPjB8/krhWVqn3nLbVwHvzqdd79+qF+vpJzDxaVm4DXige+xx5ttSSx4JUMpldzz0/C2gsnEfSu/unA9G51ZGXJpNXNgfVr70JMFxgySoTu9bWUJ9Hn+XkddTw4cNQP2UA4Y48+n+xCPiEP2YkntgA7zw6aOBA1NePAADUffAesL74mUyeNAk9atQIUUQQ+vT4sWNRP1idkHJHv53Y+3dvSN2zZ/0UpJMJrNvRDDxNnsPr6ycCADbXbiL21/rJk9CtanfbEOo1cOBA1NePlJLLjcbWduAx8lpcBMOHD0f9pP4AgC7vvANspO9xk8kUd90+ceJEDO1eTe2vNEyePJlbDxv+9k5RwPz586VIh150KqVmXV3+hW9sbIRt20In3G7flm4TchXU19fjueeew5NPPonnn38eCxcuxPbt29GzZ0+MHDkSX/3qV/GVr3wF1dXVWLKkcIHujsLuximnnILDDjsMDz30EGbNmoUVK1agqakJ/fv3x8SJE3HiiSdi5syZsCwLr776Kje/IOA26S9l0LrPpTNG4K8frMKO5nZ0rUzhR4eOVa4zrY+mkwlunhWSZVamU0il5B0Np1IpoSOoFOX4nVWPRII8QKdSKVSkyfelUiltfYxVrUSC/wyiACtB31BaVra9eCem3nqmKWeHCctSnlQdpmYymVRu155dUvjo+wfhjjc+R2Uqge/PHInLn/6YmDaRsITKSQq4KzlkVK9cXhVpentXePqmyDthWcWnxIlEAgkNixd3H6Y9N977JHuK7M2L1L7W7nR+FmhBmOQClPGLsGNLWPz+lqRRlHyhWJakprFLxpUPAKTTKaRS+WeaptQ3yZjf0oT+KCrHBfsPxx79uwpKSy6bhFQqhW9+aQjOnTacfq/gm5KijH8pyrvAGsdqK5J45ryp+PuHxUpKEupqqvDn0/YiKjXTyaTQWAjk34l9h/bEO989EHv/9jVmeovybsgyl2sqUhjSvQqrtuUVoVceMjqQedp5v9Mp/pjFHE8pbXz/GXvnPq/fSSZm8ObOCopsqVSKul4UGbdkMbA7Oz/auEB7N/wglUwgnaS/1/L5sZ+/yLqRNrc799H6WHL3WEB6b7zjhOiYae2+L8Xp19468dzjyE7PrD1Pwkd/Ed2XZAh88nQqnz9tbMzOeWbHH79l1A/qjv938hTc9NJiLN8q5os8nUpl3x3aM3H18xTl/apMp5ly+12nVNj+1oDu/iOynuTJ6qxdaP2VdR8PNvztncoBnarm/fr1y33u6OjA1q1b0bMn2YeYGxs35k/vevfu7VuOiooKnHbaadxo5Ytcjqvr6uqYzMqePXviO9/5Dr7zne8w81y8OH9SP3DgQEGJY9BAG5YOG9MbVxw8Cp+u34kJ/bpiCOU0WgS0cZRlisG7l4ZUwsKXx/WVu0kCupUMoZufB1SOXzBNzpy/0ibWdB846j419bTokO7V+NVXJ+a+U32FCQrKS1aZSuBnXx4vlN5bpqq5sQl9nbJpjE9hyL6qsnn6yTnM95NkqiTSTKVmfi6bj7d+NJcTlsUwa/MhvClztiCeGn0co9/z9P/thxG99FgtAGr13HNQHU6ZMgCPzqOzVGmmfbJTggXgp0eOw4WPzUN7xsaQ7lU4b78hcpkoIrFbWL/jocjddFcE7PtY60aV/mUKrHFBNyzN+fJ0hTrWwbRn5ZhDk31qsr/T4Kz1dPjwVinfgYr5uUgZwj41OS5lwtyP+H1HLcvCBdOG4YJpw3DUn97GC4Ro8MVlWgV/i/Mkf3aDt4/1+65EzbWR5fkrfJ/IDbFPzc6l1Bw2bFjB91WrVgkpNVevzp9YjxgxQrtcNLijWI0bNy6yeXZmsJQlQ7pX+1JmOqAvXvmjnOwGOZVIYGBdFf5vvyG4771VAIBBdVVYs51v/qVz8cBDzqcmddOrpRguysqnpuQ0K+RHRxIpU16eKUKJLnho/TadtPDLoyfgyHF9MHlA3pyV1ZbeA1qRwwkSLFiB+fjhJfG7cGQpAP28YyfXD8R7q7apZ+ADpEcT5BgZVDmy44Y3NU15kQ0URNksSZXoydfnGOMnoIFoW8nOa6xn6VzSM1aot3xCcZBQue//9huK/Yf3wOptzdhncB161ATjP16XT02hvkSdf9k3swMF0X4PfqFDmxdNsO8Tlu5AQRxFjYYyaO3j/E5kanp+E21LU49ffn/CH+dUoLoGy5abv1dEuWcKOt/RuioxU3mnSNqc6paJJp1pn5p+fSy7b9e53pYmkZTKZjNkdCql5qBBg9C9e3ds27YNAPDpp58K+UtZuHBh7vP48eMZKdloaGjAhg0b0KtXrwJTeBpeey1vrkOS07ZtbN26FRs2bMCYMWO4ZnqbN28u8N9ZCr4ASxVBnA6ZYmoCwJ9PqcfJkwdgW3M7jhjbG32vf15FRN/y8EBfRMQTgBcJC8gQlUcOu0QuP/rmXv08X0egIBKo/UT4fvLvJ0wagB8cPKro91JialoFn9UW5f6Zmmz3CCr40pDuOJjhW840bMIKWIypaUAWQvvqKsfvuEGbx1iKBj/dTTfbKJevD0VUUTrK7ypMOp21taD+rvPGOXqgIEml+e7k4/t2xfi+6m4GVMBjLgUBXtGsOZbK/guB7lRBMc80Iomld1zQEShItQyWUtP7k6wYuru1bHZMpSbtd41zLvHwtSAf+lxmGjrLqK0Qc/ljcca7grUlp7/S4PcQ0m+76GcnK673BdLERM1OFv0cAKZOnZr7/NZbb3HTL1y4EJs25WnY06ZNUyr361//OvbZZx8cffTReOKJJ7jpFy1aVGAqfsghhxRcb2pqwpQpU7D//vvja1/7WoHilYZnn30254C1pqZGuS4x8gjiZJu2iRA5gZJeNCQdBZeFoyf0wxl7DULXSn1nHx0krZoCnHoFYQrImoRMbZBNgMp88PwVBXURKZmPGylDzanCcCq8X26zx1qnee8JO/q5CRavLMibBUup7O/MGIG7TpyMWRdPD5VJTTZV4wsUlAJB18GPbC7e6tH8kFmWGQWGbxYdNV9987EsG1SEqakD/pTJapA2Pzf80n9n+jBMHkBWljqy+hVBaExWVPizzc9pvwc/kHarIq87TYiim6nJZZ8JFEY6FBMpI2d+ThhWvXfIHrLoJyXIpWczNWljJr8QYfNzgtrIfWsQ+xEadC4bZNnxInMibR3HPQDw2Xr+x2J/99PyM3GgECs1O6FS88gjj8x9fuWVV7B+fXHELjf+8Y9/5D6PGjVK2WR79OjRuc8vvvgiN/0f//jHgnv33nvvguvV1dUYNCgfHZOXZ0tLC+69997c9+OOOw4VFcGY5JQzeKelOkCfMPj36jDv8Gsy50Zzm3wQImaZASwXWPViMcyiBp5pjOxmkLWpUt1Y6vKp6QV1syZYHvU9p7YBa+NYeE2IcU35PTDzc+7CUz94Zjq03787YwS+PX04qtJJjOld7If6gmlDNUnIRobE1BS4Lzjzcz35yI8bhenp5ufyyj2V8uXvp/zuK1exvFSYQM4cqWOu8qNo5vU3mhJH12GbLvzmuImY+4ODif1AF1NT5G66awb23UympsIhnSnQDtNNrPl0H6DoMKmt5PjioZXhPF9SOxWbnwsIgvyYqbvlZfNLMWh7tLx0zrmsw9dsPhQZAnh/dJYhazHlx6cmbz7WcUAU1JmMyAybPyCQVRyHMAiXIDqlUrNv32wglNbWVvzoRz9Ce3s7Me3rr7+ORx99NPf9rLPOUi736KOPzn3+4IMP8Oabb1LTPvbYY/jvf/+b+37RRRcRX4Avf/nLuc8PPfRQAaPUDdu2cd1112HNmjUAgMrKSpx//vnSdYhRDDpzwnwZJs3P/eTBQnN7Rks+zuQR5iKi1MA/EZUDVeHgY/pN+w/mTYRf33yyygRWvt7noG5+bulRVBTkSSuLJ4s/GYj+Jzkn2iJt360qjW9PH5773qM6jSsOKnYX4Adf32sQ8XdynfgNZcT8XJE1GgToDHKL4be3+AKP2ZS/1x/oLhpE5mN/B4TUd4GxktfK1IT6BjEo8/OgQJJKR3AzankW+zvvdwdqgYKCfwZ11WS/fmaYmnoZvjrMz/ccWIfBdVUFv/3tjL3yZVDe+bz5Ob9caX/ImhvfsoCrDxWfj1kBo/2IpmvODdMdls53VNYPpci4oSqejlr5aRvtinzFOUKIqVk6HBtj6HRKzYqKCnz/+9/PfX/rrbdwwQUXYNWqVbnf2tvb8cgjj+DSSy9FR0eWWTZ27FiccsopxDwPPfRQjBs3DuPGjcOhhx5KTDNt2rQCH5aXX355Ebty69atuPXWW3HNNdfkfps5cyaOPfZYYp5nnnlmLiL6tm3bcO655xZETAeAzz//HBdddBGeeuqp3G/f+c53MGRIMNEgyx0JKqU+GpOYSqAgL3TWpEmBqcmqAkuxpgvR3FLJg64E2j3Jaqqon3xSht4bv2Z1dGUC/4TaC++mUtWRua6WEmJq+rzOA5nV6PRL2hhLkcXz+50nTMIjZ+2D24+fhDk/OAhj+nTxJasbPWvSuILgUxXg+9+iIapKHBr8SstmalLK9LWB9SexH6am37ZSYmruvhT2hke13VV9apoGaVzKBwoy08cK0ijmzVJq0uaiMHxqdqMyNfXDz0EsMT8NB8iJhIU/nDQFPXYrd0/fcyBOnNw/f53zrEQCBYnC1NNPWBZ+esQY/PGkyRjkUeCSwGZqyq/F3HKIgHX4yioriLdH57ohxdIeE8sm/17QNqq+JDXUy8/w5S6fN4WaXAOI3BfrNDtZoCAHJ5xwAj766CM8/PDDALKKzSOPPBLjxo1Dly5dsHTpUmzZsiWXvnv37rj99tuRSqk3l2VZ+OUvf4kzzjgDO3bswPbt23HJJZegf//+GDZsGLZv345ly5ahtbU1d88ee+yB3/zmN9Q8+/TpgxtuuAE//OEPYds2PvvsMxx33HEYPXo0evbsiQ0bNmD58uUFDIaTTz4Z3/rWt5TrEaMQVBalxgmGlpMfs1Ua/ARqEZm0mtv0MDXzZVJ+18lOYWQW9kZRBvRootm/+qIhq7e/KfNzWcVYcTq5zR7rXSgKFKR4tGhZ+gMr0d8ndjkmmAhiTM3iF7Cto/A3y7Jwcv1ArbLVVaVwzyn12H94Dwyqqyam4fnfoqHklJo+xaX14WzAMdr7pQ7f5myU37X60ZbcoLNK1nrAZ/nYnCqOc34DRZgCqRVyTE1DfUzHvexAQXK/mwQtArOpuaZdk793QI9PTQD46sR+WHv9EWjrsFFbkSy4j6qAzq3nSOWyv/Ogu+Wza0ULF+4/HP26VuLE+z9gpk/R/P2ANTbypRYdY0iHr+52Djf6ub68GM1MBK1+bpnCZ2qa36wJmZ9bhX9FITZmlNCG1BA6pVITAG644Qb06NEDf/nLX9DW1oZMJoNPP/20KN2oUaNw++23Y+TIkb7LHD16NP7617/ie9/73v9n777Dq6jyPoB/b3pvkBAIEEggoRdRujQVQQEFRIq6ll2RVdHFBjawoMKy7uorq+y6ropdEJQF14LYC4pYWZAmECJVILRA6vtHzHAnd3q5M3Pn+3keHu5MZs6cO3fKmd+cgh07dgAAdu/ejd27d4uWCwQCGD16NO6++24kJSUppllfi3PmzJk4fvw4amtrRQMM1UtKSsLUqVNx1VVXmf4edIrsA46FBXEzAwXp7fBZqtBgZSHyRJW1fWrK7edwlcG9dAtRa65rXU1N4/UedL4g1sxsTU29D3tKp511zc+Brs3SkZsaj91HThpKA9BW6Fdbwuyho1SrUUuBOdjRCunuZKx0eosM1UCp5HfSVLveaK4U8iIxz6rNmL1uKA22JV9T0/h9yuz3NtPPp9Z9pfeYt2qgoNnD2yn+3VywTXltuReEumtq6lraOKlsnaqpacP2QrYv/zJAiVK50U3Nz2UHCrJhW1GBACqrrXvhbkWfmvXiY6IhVWnV0OjnBvNhNBCjNd26vKgnbtfo51oroajd09VaQ9nJynP0wk65ePTjn01vO/h7G82dFV/LVE1N85sXp1d/Lunt+sHifEQq3wY1A4EApk2bhlGjRmHx4sX45JNPsHv3bpSXlyM9PR3t27fHsGHDLB9Qp0OHDli+fDmWLl2Kd999F+vXr0dZWRkSEhLQokULnHHGGbjooot0DUg0cuRI9OnTBy+99BI+/vhj/Pzzzzh+/DhSUlLQpk0bnHnmmRg7diyys7Mt+x5UJyyjn+vctpZ15Ujd3K28mFrVp2a9sAwUZPsWwsPqPjVl0zGRULhramrNq9zLAbnCsNKDZcN1tBSoA4FASIk6gACiowL42wUd8YdXv8OxCmMvDMTNp4ztJ7OXO+U+NeUftP92QUdMe2OdMC8tIQadcqVHJraSlsNU6jvZMbib08xeg+Wbn8unLDVfa5+ael/0adm20nzRMiYDr0ZqnNf/SW7vZCTG4lB5JXq1zMBVZyh3SxSoq6ppiNGBgpTWa56egJ1lJ0TzBrdprDdrhtQdneI8n+pT0+QxpuWeoHN+PcU+NWVeKjpTUzN8o58HAFRaWlNTZXuWBGpkyiT1QU2JTIQOFKTxemTRcR2aH33LGxr9XFM+rPleTvbxb+U5OqCgEbrnpeGb0sMat61+XzJaOcaKY85Un5pBq+ZnJuIT7bFe6fQMdvelZXkvtRy0i2+DmvUKCwsxffp0TJ8+3XAaq1at0rV8fHw8JkyYgAkTJhjeZkONGzfG1KlTMXXqVMvSJHXyNSosDGqqvJE1sq4cMwMFaVnOSJ+aUuov3npq8thB64O0G8gH4Or/t2afBWC8EKcy4KdhdvWpKd/8XCEvDdYx+3JifLc8DC3KxvxPt2HW2z+pJ6YjbTs8PKpDyLwaiQdKtcJfVCCAS09rjie/2I7/7TkKALjjrLaIj7FptKkG21ZjfPRzAxnysLCPfm58VeV0LUzYypqaSn9rlZmItTcNxKHySuSlJyBWQ1V5o9/Tjj41Lz+jBR7/dBsOllcCABJiojBtgPlWVfVOb56ONTvLhOlbe6QLn6VratYHlMxtV+obNzwX5Ms+ymkrNz9XDpSFk1xNTTtERQVQYeELd/WamhYEauQGCqo/BiU2EdL8XOc2La+pqTNtpRdSZvJmqk9NUR6MB1bNsvaZM4CPru2Hxz/bhpPVNSjISsKlL36jsLx8OsJnw3kxuGIQq/bNvecW44W1pbJ/1/ZiU/uy4vXU1/DO06h9fB/UJDJDNtgRhqCaloKm7oGCDDQ/P7ut9poRRvrUVAwQhaEQ4bGKU7JkB7WpDx5ZtB0zwVGr+4isJ5eq2T41jfShFFJT0+B3Dk4mMykOLTOk+3ZUT0e94Gn2IeyRCzpiTckh9G2VhWv65GvMl/LfowJAo+Q4fD1tAD75+QCapMSjU9M0U/nUys7alHakbbQpvBZmk5E7/tMSYuVrvpg4Hs3mNxwvMmW3LVdr2cTDfkZiLDJkRpq2kmpNTdn15FdMio3G5zf0x73vbERldQ3uPLstMpOsa1n1z3FdMXnRd9i09wgGt0jAqIJT11ipXNUHmuxoQdIwRfn+ZpW37ZnRz2X71LR+WwEA2Smhx02HJsYGlbO7ZQMg/5vUl6G0DBSkucKCvqxpJm5+rs5If7BWdvkiVYkhOHkzeTDL6k0kx8fg1sFtAADvbdqnuKyW5zCj+bPia1nV/LygUTLmj+6Mu97agEO/vUgLpqlPTeNZUcWgJoOaRKbIFgLD0KemloKm3guo0uiCUhonx+Huc4o0L291n5qyQRgra81Yl5Sj1JrGWLXPAjC+z+waE0I++Kgtp2r9V+lJ17I+NUO2aSgZXW+X5ah9hxvOVK49pVQDQj4gXfeX+JhonNU2vF2raGp+LvGltPzW3mt+bo7cg2pGYoyu4JDWAr1to59bec/R2cxcufl53R+talVg1yi2ctlTWis6KoCi7BS8cMlphvKkpmNuKj67vi++++670HxJZEyoqWlT4NwKRkY/d1efmtbnJSpQF7BoWDP372M6G0xPOY/WBGqkUznVp6b127V6z0cF97mo4RgzNPq5lnxYNEBqOCpZaMlHuNPW0oLA+H3D0Gqy+dC/ffG61/ZrhWv7tcLvX/0WT39ZYji9cLUm9BsGNYlMUHvgtnMbmgYK0ltTU8fN/cdbBqFpWryumhHlVo9+HoYHTCVeejMWjiZRQN2+Nxxgs+l309ucM3R9mQcIhQwHAtoCW0bL01qbI1pBLWmzm5auAVFf+JNex8lm2lquq2q1OmTTduloz3LMFs7lHlTTE2Jtub6bf7CXe3C1/55v5AWnW56djJ6vSgEHu1vERAcCkOtqUer3tuqaJJV2SNNhg+eGYm03V/WpGcaamr8l+vqVPXHLf9Zh1+GTuLp3SwwsNNY/q3qfmua/hKGBghoeQxqvWadefFu78/Ump9ynpvFtaK6pqfJ3+eu2tvTNqLXxaUS95rHMPTEg/Vnftu07V8wwHKSt/9+GPHmoNzTbMKhJZIJswcLKoKbcQ72Gh18rCw0NdWgwIIeWNU9UVaN9TgrW7z0qzBtc2EjzNhsKS5M/hW146Sai3qemNdvRmky7nBRsCDoOACA51p7f02yzOmM1pKQLwQ1ryhhufh4ybf5NuPyDgUpA3OTBo1hT00W1h05tW30Z6RHdrX8R5TSzuZU7/jMSYnUNhqI1H96oqSk939B1yOLDyWh6avtd7qFc6bvZ/QIgKiqAGpn3sEo1NSssHElb2F6DI9xoAMXI6Odu6lPTjpzUf71m6Ql48dIeFqSndr80vQnZ3/FUn5pSQXdjL0IDDf63SkDmsxwjo59rYW7081OfzbYIMsPOZxGjuRcPFGQ+DaOsGijICsLzlrXJ0m88VieAyF2crEWkbdRkfWna1adhvQeGt8d9w4oR+1vfnclx0arN15UKBPIPvRYGlS1LyVlq/dNZ9T0DgYCmQtzDI8UDxgxqnoBEm0YKksuN2T41lR72tDYh1dSNhIZ8yi3TPke5XzAt54raEmYLfkoFctnfzsGqmppqakrMs7LWiFuY/e3lm5/bVFPTZH7lryVW3nPUa75o3bZSrvQ+bNfW1lrygCudttx68iuGo+9yOUpBzRMmB50xc71XW1Wq3/R6ZgfUs5LcoFV2BIisH9VbJahpxTZkfizF5ucN5unNh9W7Xm/Qy0h5S0uWzRzfoibWDkZU7KxfYUUtS+PdLJk/6Mx1LyAz32PlNL9gTU0iE5x8wAnXQEFWaZoWj9/1aI6c1Hh8k5OK/+05gtOap6OgUbLhNMNRa0aJhypqyg8UVP/m0NJjVt3w9k2w+PLT8co3pWiRkYALm5Rbtv2G1AZJUiO3axQL2XJ5aZCYFQMFKW3vd6e3wOs/7sLqHYdU09EbTLGKVC0ttRrEnmx+blHaeintX6cp9qmpo+aL1mux6aCmiYdns4zUOLfyum7mfqdeU1NuPfl1nKhBWE+p+bmRARHFaWtYxmCtMCM1Nd30osWOrFj9/dSb65rfhpHm54Zratp0sxCXPdQZqampaaAgE8HIgOizcyeKVX0mSzH6vaJ0/r6S27bxXIkKQLZ7kVPbt/Z+L1QiseFQ8VLLQbswqElkQngGCtK3bdG6Oreld6Ag0bYkNnb3OUVo2zgZh8orMb5bM2SnxAOoa7resPm6EU52zO01arVawt38HADGdG6KMZ2boqqqSnIwBqvIBhg1Hu5qI43KrxNaymj4IG64T82GzRFl8piTEoePruuHnw8cR7u574emY6JWUD2zD4VKo3PLjvhs4oC94vQWeGaN/k7eT21bfRnpmprWv4hymtkHOdnm54mxOHKySmabxplufi4338KfTW8tPLVuMAAgKS465G8ZifofAcJ9eHqzpqa1AyLKbU9yOZW/e2X0czl2ZMXqoJ1qn5pW1D5TbX4utd0G0zq/t+VNcXUub1+fmtZ8sXAF//vkZ+Lz7QdF8zITtY9toJfhmppBv7DxNMxTamlVU20sEmi89upv/9vwlMqYJpufE5kiW4MrDLXeZFrniOi9WVt9U44OBHBpj+a4vn9rIaBpJfmCjHsK4W4h3/xc/L9ZgYB7aoHVs6tPTSOFbMtGP2+wmnzAI4DY6CgUZacgKyl08AVRTQPZY0QlIG7y6FHuU1N6HTPXqpsGFqBVZqLh9bU0Z5IeJEpD2ga/122D24imJ3c2/9JIC7uan6fEyY9+bqr5ufFVFbcdjsEBjdXUrPt/cu/8kH392GhjozsbUV6pHOiTq2mk9N2c7IJCasv1WW1isqyjpfxi9Jsrv4jTN98Jdo1+bm169r9AVnvRqmWgIK1OlRGtDv4GB73U0zYy+rnefOgVvGq4gv9/HtFBdMxO6NYMqTJ90FrB6NcS19Q0Ws614gWA9Hwt3a1Z/YuqlWvNYFCTNTWJTJG7xYbj5mZ1n5rRUdr6QtTDihH5lHIUjuYebgvQGaXWibl1NTXdt8PMBsbkvpNyIVtayEBBRoOaDadN1FRQ3ZZazROT21DqgF9vgEeLTk3T8P0tg9Di/ndRdkK6NqASLduuMTr6ucHvdc/QIsTHROGrHQfRs0U6hjc6duqPkoMWWcNsOnI1x6KiArqC7FrzEY6mlObT0hfMVa6pWffHrKQ4zDm/PaavWI/qmlpc3bslerfM1J83g7/4UZlat/UMNT93tKZm6Lbrz90BBY3QPD0BO8tOGExbYp6GZZTm11OqqSn3Nyeb+TdkT01Na9MLS5+aMonoan6ucVvCvdji/aTlhWowpe6x9NZuD2bm8BYHNY2no0e/1ll4/4998dI3pWiRkYibBxbauj0rApJurampun0dZRAt1Mq1ZA6DmkQmhKNjdTM1Q/Tkw+wgQXYFs5TComq1D62gPPq5d96NqTXVt+yYDbgvsCn/3bXl09qamuI/aGkCX5dP5WPNaK02O2sFaSXZ52P9/zY1iUyJj0GHJqkhzbi0MNz8XMOeNHoZjo+Jwr3nFgOA7d05WMlYP2mh87Reic0+eMqeZ+aS1ZSWmZqaAHDTwEJccUYLVFXXIifVWG1Co6fdYZWgphzF5udmyywB4/2QSW25PjtRUQGs+EMvTF36A7775bChFych22uwQfnjUHmfGOtT0z3382q1TvAMsPr7qTY/t6T2mXKgRqpcoTUwLkdp8b9d0FFfYtDf56LSsWum1ZZVv384W4idWdAIZxY0Csu2jF5m3dOnpsy5YlEN3XpangdtPUa88zhqGzY/J7KBlqbhWpkZKEjP5dPukc/toLdGi5+pHS9W7TI3Nj+XDxJoW1+umaNizQGNfUEarqnZ8CHX4MsPvbUl1NIwQrlPTWlWXK6MF9bVV1SqfWo2bSle7XJD+cWA9d/J7AsXMw/Pprchs7ye0c+zkuIMBzTNvMM7YjCwlyzRF2g9s+UsM7+Y1C4P/h06N03DB9f2w/e3DLIlX0Zranpl9HMAuGdosWg6PzMRaTY0s7X626ldC6zYnmyt2t+2Ld38XDxP80CJKsvNHt4O1/drrSktcbr6GHoBpiFdMy9HgveNBx+hNDF6bwtezYo0jFKr1ay4fYtfYqq9rDfDipaRXsegJpEJTtbUNFN1XoodQU27KzLKF2Qs3P8Kf/PSLUS2Vmug/n+L3la7rJYmYL4GitxSirVeZO6uVvWp2ZDRQr2Wzas+pJlufy6RppC29CpW7Dej+dZUU9Pg6Ofhaurplhio8sAl0vPNZN18TU1z6WYkhvZrq5XcyxWl2t7Wjn5ea3jfq9XUlCsrNEtPkF3H0ebnEvMkA0lG0pZYSXsASpmXRj//fa8WaJeTAgCIi47CfcOKbQkGhL+mpn3bONX8PPRvDe9JWvOhVka846y2hu5beoNeys3PZYJPml4kqi8jv93gdFxyU7WY8QBeIOiz+TSMMjLQp7B9HZvX1Oqp/lzSnizpwObnRCY42VxH26AT2vNhuvm5A1dpo7UVrNgGYH/Q1kpqzc+t2mWBgPtu2GaPEyOFIsl+/wKhBR+j14qGx57xmprqBU/VwKjK39VINj8PiP9vyMmamloKr8ZHPzeQIQfZed3XUytS67XYbH7la1FqS3jeiA64ZvF3UGpFq/c81FNT0ymHVWpqyv1+eQpBTdMj2Ztofy7dp2boctY1bW0wLbuc8vaMvERwqk/NvPRErJ02AN/+chhNU+ORn5Vky3asvobpuedavQ2lPjUbHul6c2H1USAaKEjD8kZqaurNh17Ba0ZoTNOagYIMl7WMrSeXj2CmauhKlkE0ND//7Yix41jx0OOobVhTk8gEs7U2zGzD6oGCYqxsM2+hM1tnhcy78+y2ALzb5NIJ8jU1rb3JBuC+38VsjWrZPjV1dlwvtT0tp52Z2pRq62pL23waegmFP43N+M1sQy+jzc+tfhGllZsLu8cq5EfFtqP/SrPXJrNdnvy+V0t8eeOZeOnS09C5qfQI9Xr7kVUcKMjiw8no/jtisE9NpaCmkwPYSG3ZqhGntVyXZI9DlfWURz937iW9nITYaPTOz7QtoAlEWE3NQP3fjR9DIcsJy2taXDO9AUEjfZhr68da2xd7blJ30XR8TBRGdsjVnY7XROxAQVrOEZ3zVdOz8RDxUiUbu7gzikHkEWaahmvfhvGCZjhrakqx4hpb2DgZF3RsIkznpMThur6tFNex8pu4sTm1Eep9atpTo8QN5M8hc+vrHf1cqhBluKamhu3VzdeevvyDsr3HjpH+J61pfm5sPS3HjeTo5xY+YJnlxHXt7LaNQ+ZJBbuSYuv6UdRTw1p7rWtty8mx4iHntOYZGN8tD60ypQM1emuWK/2WdgYi9EiNV24YJtcfWF5aouw6pgcKMrOu5Esra7ah6UWTgXQBtZqa5u6TXhX2mpqWBDWVyyTSzc/NbdPqe4be/aB07BodKBHQfnyP6pCL3vmZwvSMIW2QGtTHa6SeJ5bU1LQgMGqUHc3PzQZp7Sh/MabJ5udEpshdllzTp6aO7Shd4C/r0RzPfb1TmP77mM6mtqXXot+djoVf78Sh8kpM6p6H3DT52htA+AJrkTT6uXU1Nd0XBratpqbOB0Spxa06j4020zaTtlWkA4DK27bzwdCK9aSbn2tJW39+3Cw3NR67j5xEekIMpg9pE/L3oxJBzZT434KaMmmaedCxa6AgI8eS3Lmvt1zRIlM+8OeWq/GfR3TA6Ge+kv27kebnZvvUNLO6dPNz615ahW5PeVptfj2lF3Gyx6Mb31RayPqammovAe3bRn2/u5pqamrcll2/v96gl+JLZNkXPlryoe37pSbE4MNr++LLHYeQkRiLjrnimvZuudZazXgA79SKdr5AViN3XdPSOtGKSgFSy0T4JdUxDGoSmSAfLLFuG3JJaRsoSHtGlAI080d3RnJcNDbsPYph7XJwTe98zelaISY6Clf1bKl5+XCMROs16gMFWbMdN+4vM2/x65bT/6ZXahWpc9bumnnqTceDCp5yy6hsw45RF9VGP7eiNrydBW3JgYI0BTVteIPv4MuXH28dhE37jiE/M1HyZVReemhArs9vtWH0XMfD1aemlenqPYTlFp/UPU9+HQu/b1QgYDi9c4uzMaJ9Eyxfv0fXenY2P6+7LxjsU1NinnXNz6Xmieca7QZB6TnebX1qhovV307PPdco2dHPo+Tz0PA+rb38o295rYKTM9383EQ+9BzfsdFR6CfRJRYQeS8k6xn9WuKgtdFtm9+pal01GGG8T8369Y1vm+Sx+TmRCWqdddu7bWuWqadUYEhNiMHjY7tg1R/74rbBbWRHYW3IqYdpK/d+pNx71GphWPU9A3DfDdt8TU3957nWh16rLhVG+57Usnm13aQ06IkWSqub7TpAidE0DNfU1JJ2hJXKspLi0Cs/U7Z2/cVdmwrNzevNHdEBgD0PiaYHlzH5giSYXE1DuWM+NSEGsQ2exFplJuL0Fhmy2zD6bRu2xmiZkYi2jZMNplbXN+IbV52BDdMHi5pw1pO7BqTExyAtQbr+hZNBBMnm5xLnrqGgpo01kb00+nm4eLOmpvT8+t9XW5+a+rZpZ/BXS9rKL5GNX5etOr61Phd5jdHrkej3tSANo8w8p5upAayUnh1HiocaDtomworPROEld2Gytvm5zAVZR1V3LSLpbXzYmp+HZzOWUO/nyZqdFjBRm8cuZvqlrVtfer7eQrbR5uda2NlM2+7mh0qD6sht2WzT07q0jaWh5eFF+juprxe2PjWtCqabTCgpLgavX3kGOjRJQeusJDx1cVcUZafUpW1D0d9sivIPOfpTljuO5FJKjI3GuC7NhOm46Ci8dGkPxW0Y/X0mds/DWb/1gZoSH42HR3X47dpuIuAWCKAoOwUtJGpfKr0AzZMJiDtZZtF6ftvV/NzockpNeM2+/PMqq79eOAYKkn0uEJqfa0hD4zXLrtplUTqvmUZqaoazH+sIeoQSMfq19I5ub+W2xfmQnm8qqGkwY3aWpb30PGoXNj8nMkHu+uSW5ud6KBV2/UzpHuSlN2OqfWpatB03luvUmt4bXV9vIdvK5ucNjz2jhfrgZIy+lTZbI1up/0n5a6wFQU2DSRgeKEhTrRE3nkH2OrsoGz/eOjhkvh27wmya8i8y9aclX1NTfp1/j++GXvmZ2HbgOMZ3a4aeLTMVt2G0mJCRGIu3r+6N0sMnkBofg4zE2Lq8GUtORLLpnsLyeekJWL/3aMh8J/vUlMqvZQMFGVhH67rKzc/NvfzzqvDX1LRvf9aXMaSbxzbIh85sWB2QEdfkU19esWWMiTKe3a1lvM54AM/aNIwyM1CQXSK9n2KnMKhJZEI43mzb+VAfzMkLvNWsLFxESkElnH1qum2fmX35YKRQJFULSyodbTWuVRfR1Ezbrl/FbGxfKSgq26zeguuVnQMFSdFWa8RQ0oo89O5FxI7j1ezDhHwzR/3pyl6TFb55XEwUpvZvrXkbZq7FUVEBtMiQH4QoXHJT4yXnOzn6udQ1S7pPTf1bkVrFqnPByOjnXm7Fc8dZbfHge5sUl7H624WjpqYcPc3PtbIrvwHRZ/WN6B2YUSvW1FRmuEWLqKamwTKTBb+NXFlRU9lbrrsZUzmyqfm5DWl6DatmEZkgd2EKRyHQ+pqa9jzsOSF8zc+9cxuRH2k3IPrfCi46FACYr4Eit5TS6IlS60j9BNbVEpCZH/Qd1Y5Wo/0FStVK1EO6/8n6GifS65jp5P3UNozRNlCQxPY01RoJz8njslNUktuuI4BSjWj95Ps5NpCYDKv3oZb07jirre40lC4hGUlxkvMdrampufm58W0E01q+UltOaZ/J3c68HKy5pk8+ujZLAwBk/lbbuCHrzxHlBO3cnfXleKnfrOEhqzUfp8qI1hK9cNWQuN6BGbWma11Q08MnigLDtSyDPht9VrJij9rT/Nxczux4cvRSy0G7MKhJZEJYamrq3LZRMVZECVwicr6JddSOyXA/fIWT/DmkLa9GampKrWLn6OdGa6Nq2bpqE3aThakaiZGG1PrUtGK/yaVxZc8WyE6WDqRo3bZk83NNedKwkE+48lpi4uE5dB37v1+492BBoyRc1bOF4jJSeVJ66JULRjnZY4725ucGamqa+NXU1oyJjkK334J89e4bVgwgMpuft8hIxBc39MfGGUOw+fYhQjcKdlKvqWnf/jzVp2boNkKbn+vLhxMvSILpHZixbr76Ruzu19zrjH6t4OPL6GCSdjY/N/O7m82W2YoAJI3Nz4lMsHNkXrVtuK2mppu48WHYaerNzy0q2EH9hn/zwEJLtqWVWn+iquvL7DzlPjW1BTAtK1DrnC+5rIUBG7Pqj0cn+tS8pnc+nrq4G37YdRhdH/4w5O/pMqMxB5PuJ1Q9z3YEELxaftZzaoSr1rzZQceCydeet47lgQiZ+V/c0B8nq2rQtVka0hKUA0d67zVyQU3TNTVN7Gntzc8Nb8IQLdubc357THphLQ4cr0Svlhn4Q8+WACJ39PP4mGi0aZwctu2pHVd27k59AwVpI5QRLc55cGpmuthR+ls4+9T0cvBfidFng+D9ajSIZ8UxZ6RP/FPb9xKPFvQsxKAmkQmygYQw1NS0YvTfYHYMFBQJl1il3eylYIHaA7SVfWoq6dE8HVP7t7JmYxqZDYzJnoOKfTxJLG9h88SGQRwr+/oLSUM1L+YorW/niyO1mvYdm6SifU6KaJCShJgoXNAxVzVtpRHdlfPkrWK0nbl1W9+8Soz8bGYHMNPC+sE9pNMrbJSMRgq1m82QDWo6Ofq5xDyruhcx06emlnNmaHEOtt5xFg6VV6JpWgJif2t37tfRz62mtruc6lMztMygL22r8623z0WlJcy81GWfmsqM19Q89dlwUNPOmppa+tQ0ESxXYsezo4ceR23DoCaRCU7exNw2UJCbyr2W1nRR+JuXbiKytRWFt/DWCEC+ILBr1lBkJcUKD1HhIlsDRWM2DI1+rvEBV1O/PloK/LIPpMrraTmG1QIjZgtokv1PNvi/ISsCGnEyx2H9142KCmDllD748/ubsXn/MTRNS8BVPVuiU9M0yfWCSdUc1FZTU3URV7HzGuime4oaI1mVHf3c0oHuwkPPbyW1qNI1JDPJnqBmOPrUtGygII3JaF0uLSE2pEZtJA4U5Ea2BjXra2paVK6oW84e+mtqGvubGtbUVGa0vkvw/jBaRrRij5q5rskHy6VeGmhnS1DTSw+kNmFQk8iEcNzC5O6TVseFIqv5udM5cJ9w9fMUCMgXlZvIjGJrN7n82NqnplTzczv71JSbL6oNYTANlfWURi/XIikuOmReSnxd8cTO5ueJsaHbBcTft2laAv52QSfdaRvdJeFqfu6FLjr05NDpWp3GRj+3pxaIXWkB5q+lgHSelE4X2T41zTY/NxPUlJgnGdQ0vglb0lHchsEXYySmfp+1b4cqNT83HFiq7wrGaKZk6D2ulPab/CCHWl4kWlX2tSQZ1zE8cnnQZ+N9aprfqWYGCpJjuqamp6rEeAcHCiIyIRyFPbkbiuV9atowUJBTb44sbf6vkJbZYE44yfcraW2B1Y3lOrlaC1rzKncIKHXZILWOVM0so+ex1k7/rbhMqJ1OZs+Cu84OHS35nnOL6rYt8ytZ8b0S5IKaFlw/tDZPNbKMm9iZXT2/g9MPCUZ+t3DUgAtXsNfOrXilT02p5Ixk0cy3MrWuhf3FkjzHmp+HlBn0pW19VxZBnzUsr3S5lMuatnSt+V6Rep4Y/VrB+8No83NruhnSXymhntkWCHLY/NweDGoSmeDs23Nrt27+ASEyRUo5RbZPzYD4f7MCAfftM2dqakqlo21eSFpalpGdf+ovaoUeo/0HmS2gtc1OwS2DTg0edeOZrdEuJ1VxHSsCQlI1RAFrCtJSI7presDyWlTTRl7aFUYCZOHpU9O6tJTS82LzcyVGXuRI19TUn0czwSM77r2RGqypF65zRPi7tZsTqS+TaNmG5pe6hnOjPV0tx7xi83MD69Rj83NlRr9V8O5wtvm59HwzXT+ZzZcdAUgGNdn8nMgUJ5vwWT9QUGTekKmO2gjg1tXUDDjeFLQhs6O6ygY1FWo3a21qbnfTJysesNR+Tytqyf15RAdMG1CA2lqgWXrCqW3b+FInMVamT00Ljl+jo59bfV2vy4uxAKvTvNBEvp6RrKrVnreC1XtQ/iFP+5akflelVg/yAwVp3qRMPuT/pnZ9MToQmFFazwU7zhk7rkl+Zud1rT5QI93Fg7mBgqxumRR8vpgth5jZpVa9HInUs8T46Oen1uvQJAXZyXHYd6xCmPe3Czratm25fAQzc12TvIcZTo2swpqaRCaEpfl5mGpqxtgweIvTTQKtoLSXvfTt1I4W6/rUtCQZS8kH/LQ+KErPVyoUSf1FqvBstGDV8Nizopm20doOVj3rNE1LEAU0lfJkxbU3Sbb5ufm0NbZODeG12h4ey65tjOwGtdrzVghXYNjOspBc37d2BtuMpC117sZGB5DRICg7pU++YjpSW3ayVp3RgUL8Su2cs/OMFIKamgYXNFf+UTOsXY5yujr3hGJNTRMviCxrfh6h54nhmppBn2Oio3DvucVC5ZmuzdIwsVueehoW/DSmBgoyWFkAAPq2ypT9my1dl3npgdQmEXoKEoVHOB4X5PvUtHY75kc/j8yn20j5XmqBPetqarov0GG+pqb0fOXRzzXW1NRwHmtqfi73+6rWsjSvdVaSBalIkzv/rKhdoWWgIKOkRz9XX89rFeY91K2wrYw8GKvVnreC5TU1TTzkKVE6jOzq61FpbbXzUOr8llonEAjgofPaCX/LTY3H1P6tlfNl4mux+bnz1F8g27dtpWB8SJ+aGtM0WnP8poEFSIjR1u+4mTIOwObndjLcp2aDHTulbytsmD4Yn0/tjy9u6I8cDQOHWrFH5crYdvepOXtYO8QHHf8Pj+ogfDY6cJKShJjIPP70YPNzIhOcrKlpdX9S4Ri0gJyjVuizrk9N9x1H8rX9tOXVSPNz6ZqaEvOsqiErNz+gvozUslrSrnd+hyZ4Z+M+7D5yUmVJ/cz+dkrkampakbZ0Tc3w1RpR48LT1NOM7E8bGkeECNfvrOe6L7WkkeC42TKLUp6NNT+XXueaPq3QOz8T2w+Wo3fLTE0P8w1p3b12dP3CoqG17B39/LdtSGwi3O+fspLi8OWNZ2Lg45/hYHllyN/Fzc/N3RvNvGyxrAsgS1JxHytGP69X0CgZBY2StadhZ/NzM6OfS8xreH4NatMYq284Ex9s2Y92OSkYWqxcc9mMnMQotMuU7qbFT1hTk8iEcDww2PlQH8yOPjUjoRaP0l7x0veTb55T/7/+318qyUDAfYU7uTe12h8Upekd/dzOPjXlWJG+luZ0717Tx5brob19atrY/FwqXQ0lLq81YWNwtI6lfWpauFOt/n1kX57oSUMy4KL/Zmo6qKnwN7XzUDKoqZCfrs3SMapjrqGAptMiqU9NW5p9NhCvUDsRsLmmpp6BgrSWf35bzsie69Q0Dc9N6i6drs68dM5Nk/2bmUAxRz9XZvRrWbE7LKmpKVcxSEMGzdQABoAuzdJww5kFIQFNq7pmy0qKxXmtEvGvcxqzYhIY1CQyxckBUdw2UJAfL6eeCmqaXkD7dtxWtpM7T2M1RpCMjH6uNYDp9EBBmtJW+XtNLdAxNxXvTO5tfmMat21Jn5oyo59bsc9qJC4OTtXU9NJ1yiinv6OR303uHm7lEWB1GcWKpuBNUhNC5jVPT9SdFzuf4VRrampsfm6EZC1vm/s/VBKpwRq7ZKfEo0fzdNm/27k3lZufNxgoSGNOzP78ZgNDADBtQAFSE+QblxptZQKw+bkao9/KmhfqppOQ735KU/NzuXu0uYxZVV55+ZLuuLdPJpoms+E1wKAmkSmR1PzcjoGCIkGklFPU+tS0O7jmJLlTJVZjHzRGgppSf5EcKMjgaaf1ASU472rlKKOB0foHfDte8jjTp6Y9B3E4m8JReBn51eRraprLi11pWbWdmwcWhJy/9w0r1r3NE5U1utcJppRnK5ufW0FrynbkwGu1x93gXxd3lf2bnedkfZc4WoLg4bo2tGks3dw4N+nU/VcuL+e1y8F/r+6Fh0cpj5QtHzgN336I1IpyhmtqWrFtC1IxUn4/tX17WPUONkIPOcN4qyIyISxBTQtGNdbClubnlqcYfpFy05A7jurnWtanJgKu61dTLj9xGiOKcg91SoE16ebnUvO0FKyMF8zV1tTyS6kONlSrnAcz7Gx+Lt+npumkTYx+bn7bFH5Grnlylx8rg+pWH05makTVy06Jx5PjuiIjMRYp8dF45IKOqv2szTm/vWi6cXIc8jP11+7USn2gIP3rhIMd916+aNGva7N0/OOiLpJ/s7N8pFhTs2E+NKZpNrdts1Nw88BC0byWqdHo1+xUjW25bfzu9BY4V0NfhGrdKxlZV69IPU2M7h/31NSUnm+qT02T+XK6ZUmkYn1VIhPCcQ8zW1NzYvc8vPRNqepy5kc/N7W6J1nVL0pYqNTCs+rnc2WfmjIZUuv7qp7c91GuqRn6N6lCnlU1ro3XsgxaVi7wrTENO353uTSt2G2JsdK/vxUPOVP7t8bn2w+K5l1yWp7qerY0P5eY52TXKXZw+v7j3pqa1u4Y+fNR33auOKMFrjijheblLz+9BZ75qgQb9h5FVACYeU6R6dYlSjlW697HzpqaZkoVdpwGkdSnZjhZ8QJAL6FPTYmNhIx+rvN3NZPveSM74Jo++fho8z6U7izBgLwEpMSdOn/NXqfka2oaX1evSA3+G/1W7ulTUzoVTX1q2nQOW9W3b4QecoYxqElkgpMXFK030AeHtwtLUHN4uxxs3PezaN5pefL9ClF4qR0uSn8fVNhIeh14ozauXABHc01NI31qahzp3LqRN+VqdAeCljGa9imPj+mMa5f8IPr7ucXZBlPWsG0T/SGpke1T03TKwJjOTdE+JwXr9x4FAPRrlYkBBdLnUTA31PbyIqdrPhjqUzMMP3a4Die7y0JNUuOxdtoAfLH9IJqmJaA4J8V0moqjn6v8NtJ9aloU1JTqj1dj0uxT0z2MviQ0Q08AWnNNzd/SNHuJbdM4Ga0y4vFd7K+a13HyuNcrUs8To18rEmpqyp/D7vitI+3ltFlsfk5kQlQYLihyW9D6QJSflYQbz2ytupzZB6wZQ9qKgkTN0hIwpnNTU2m6waMXdnI6C5ZQbX4u8/eYqAAePK+95N/k0nPJ/V4gd2ibDWoqNj+XrKmpPW96WTFQkJY0JnTPQ6fcVGH6poEFyEqK070tzXmSme/20c/jYqLw5Y1n4h8XdcHT47vhvSl9NRWEvfZgxEJ1HSM/Wzhqalp9PKn1zWynhNhoDGrT2JKAphrV5ueSNTXtyQvg7HkWSS9awhmMkK/lZV8elMokRoOS4dhjsjUtta5vYl9b1vVSBJ0nwYwer9YEJM0nYqZPTbtY1qdmhB5zRrGmJpEJ4bigyA6UoWPjWm4MZpsYNUmNx+c39Mef39+MhJgo3HtucVhqothtSJvGGNKmMVZt3h/yN6drB+mh9jAq9/dPru+Hni0zdWzHfb+5XJY0Nz838CAv9SfpgYKM7S+t/WNZ87b8VBoZibFYfeOZWLVpP7KSYtGnVVZQHqz/7eX71DSftlxQ06pAUHJ8DK7una9rHTuCmjf0b4XbVmwQzTuvvXo/ZaSdkV9Nvk9N67jwcuwaSrtGffRz/etoZar5uR01NSOgHFfPqmafZthaU7O++bkN+chMjA2ZN8yiVhpm94mZF0RWlVu89kJSK6Onv2tqasp8AU01NWWD5ebUuOA6FIlYU5PIhPAMFGR+25qCmhZ8me556Xjp0h54ekJ3tMxMMp2eG8RER+Htyb3RJDU+5G9eui2p/bpSf4+NDugKaNan47baW6YHCjJQspJaQyodTQMFSSyitX8sO36JxNhonN+hiSigWZcH67elpVm9UXIDBTl59NpxT7nyjOZolnZqUIaBBY1weosMS9KO0Oc43aytqWndTrX653Hbtd0u6jU1pZqf25QZ6GiGa8Pvwz41jTFb+9AIe5qf1/2fEBuNP/ZtJcyPj4nCvee20545xbyYq7VuZl9bdXhHUOxfxOj9yIrdYefo51rK/7LHlUt+a7fkwy1YU5PIhHBcT+RqE+kJQmpZ1Mmq+G4XHRXAgNZZWPT9LqezYpjaG0crR4B0241Wtvm5xpqaRk4NqX0glY5VD4xWFL6ceAgzyor9Jj9QkOmkDbOjtkd6Qiy+u3kgnl1TgqTYaFzVs6VlabPCQR1DfWqG4UWE1YeT267tZih9F0drapo4p+zpU9P6NP1A9kWjjSdRTLR8y5uGgXgj+Xjswk44o0UGdhwsx4WdctGlWZqhfGqlNY9m9qlVv0YkXRuDGf1arqmpKZNGfEwUhrfLwX837NWdptlgq1XlJr+8ZNSKQU0iE8JxE5OqIQjoC2pqueFHQlPxcHNDUyat1N6EW1awc+FNVi5PZpufK9E60rmW085MbYNwFixtqakp970suF4lxNjb/NwIqQGmrNAoOQ43DSy0J3GytKYmhYdSuUitPGTr6OcSaWuuVWdJDsR4nForHDU1rexLMjitqKgArjijhaG8WZEX2fVl01VPOEOiWX3/1lkSSyqL1PPE6NeyYndYsUflfpeoAPDcpO64edk6vPbDLhw9WR26fZt+U+88OXoLm58TmRCOEyhHJqip5waq5fmfTYyUubGvSD3UOlI38vWk9kkg4L6afXYNFKREag3J5ucWvUxQGwhKUxqyNce0pWJHjF9uy1bsNrl9H2k1Ne3ksezaxsjLHNk+NV28T12cNd2UvouR89CuFxKAnhdL1v9Cdn6vSOZE01U9AwVpDpSH4aQ320rETN+HCbHRuLLnqUBtdFQAD+kYHLOe1+7dWhkOalqybfOpyJ0SUYEAspLi8PSE7vjo2n7S25fNl7k8WVUhJkIPOcNYU5PIhHAEunLlamrqCmqypqbfqf261jY/d9exJN+nprZ8WlVYtbX5uQtqatpBbtt2voRxdqRhd507pI2lfWpaePx5qDGBqxgpDrnh3GVNTf3sut7LBtrsDGrW19T02E8m31Rf4/om++T850Vd0bVpGnYcKsfYzk1D+gvXIlIfoYyeH5aUPU2noFRT89R8veeqln7ulVg2+rlF6UQKBjWJTAjHTaxJilzzc+1paKqpGal3ZBt56XlRrdBo1a/vxqPIbE1NI99J6tgw2vxcOv2G/WNJLxfOPjVtaX5u40BBstt0tKamc9v2MqevxYZq9pl8kNfC6vu6215YmWGmT03pdUxkJkjDazvg7IsWtuKxlp2/pWJNTY2DCzbk5K+vdV+ZPUSjowK44cwCU2m4seslKzja/NzGFjnBs/X+dmazpScA+qcB5o5LP2GjAiITwnELk6upqa/5ufqyHChImdfL9WrNKKz6foGA+4p2cvnR2qemkQdcrX2uaQk6aHn4sLOpm5OBDPkaqPZt08maSZEUQLhvWLHTWQgbI7+a3Llv9Ah4clxX0fTgwkZIkBlo0KjIOTqVGRoczqK9I9mnptYaazb8QJFeU9MujtTU/O3AldpEyEBB9mVDN7N5sbP8o1WkPkIZ/VrW1NQ0n4bc7xJ8/7WkUoANv3+rzERc0zs/rNv0MtbUJDIhHBeU3DQrBgpSX4Y1NfXzUtM+tT41pQogRr5fQGFbTpF7U2vn6OdStW2kzjHrmv2br9Fopl8qu9g5UJDsNm1LWZ2d3yucOjdNxZU2DCjhVsaan1ubh8t6NMdP+47ite93oXVWEv45rou1G4gwSg/MTtbUNMOOV4pu+F5eZEU/13qdan6u5WWptjTD8VLTbFBJrXwbDpFy77aKa2pqmigby3drYO55SW3RdjkpeHp8N7RvkoK0hNCBrNTy51cMahKZ4GTzc6trakZSDSE7SL75drzRo3ZqBVPp72dkOwZWsplcljQ3PzcS1LRxdFwpsjUVVNbT0mG52X6tzJBL09Y+NR08hiPluWj1DWdaXkvQzYwcM7I1NQ0egHExUfjziA7484gOhtbXwo3Xd6Osb35uUU1NE+vaUlMzUi5KYSYfqLNvf8Yo9BMeOlCQtnyE49c3+0LVbJ+cVojUs8TJpxxrgprq8/Vuxmy2amqU92pKXDR65Wea3Ir/sPk5kQnheEuSIxvU1J6GlmVZblXm9b7E1JrnWNb83IXvDuUeNm1tfi6Zju5kTLPiuPVb83Nng5puO3uUyeXWTwFNwOI+Nc1mhjRR2s96+iyvZ+vo5xYvp0ckvfB2w2vosNTU1JKPyPlZTfcHbgWv3bvtZkVLNiv2qLaBgvQFxe3+qctOVGlajoecGIOaRCaEI0gh10RWT6BBU5+aGkeCJm9SexNuVSjSjTdZuTxpralppLBaI1Gis/LhMLTTf+nl1K5RwdcR94Wj5Qu19tZ6dW4/8MHIm4z8anLXAzcfAm68RtjB0ZqaJqIB9vSpaX2afqD2ItkOegYK0ioc1yM9zXyll7MyN8bwPLGeFS/UzTU/t4faqVh2olJTOjzkxBjUJDLBKxcUTX1quqFU4DGe6lNTbr7lNTXdV6tVrvCiPaipf5tWNj/XVOtCtv8ud/0WeskdS3b2AVxZXWNb2mr4YGRMaryzvSkZuebJ/dYuu3yKuDlvenmp+bmT91S+aDFGtvaXraOf12879G8Nu0vS3rTbXJ7MbEN7DWVzQVEruK3caxUnn3OsKA/Z0/zcXMbUXlxpralJYgxqEpnglXuYpj41+TStyOt7x0ifmqppymzHbeeFXHa0Nj83UliVDGraObiNBc203fa7AUo1Na1Jv1laQsg8J5tOM4BgzJQ++Yhx8B5mqKam7OjnPAbCQXmgIP3puaFLDDsCKywaWsvWmppC83MNtdBc9LuazYobBjnkeWI9a0Y/l6mpqWn0c3taU6jFiU9WaXuxHqmBdKMY1CQyIVw3scdGdxJNj+mcq2t9DhREsjU1f/uLkZujVw4ZR2pqShRbbH3olZvvkd9Ijnyw1pov1nCE6HOKGiMjUX60SbvxwciYrKQ4PDyqo2Pbd7JmXzh5MMuy3FpT0ww7csAX3sbIl7nso6f5ufaBghx8WaQ1mG9yfSu44fy3g1R56MqeLVTXs2Ig1XANFCS7fZ3ztVKr/Xpm6yxN6UTmEWccg5pEJoTrBPpDr5a48+y26Nw0FeO7NcOCi7qorxREy8XbqwXX4uzksGxHujmPd6h1eG1p83NrkrKMbJ+aMdpyamigIBPNz4sMHNPyb5SVtxncDMau2hKm0pTJlVUPEMPb5WDhxO4YWpSN3/dqiZcv7WFJukZF6oNROEzt3xp/GWnfyN9KjPxs8qOfm8wMmZagsRZ/MKuKUFL3DiebCvOaZIwTg4zU/1ZatuGmn1W+qb659cPJo49QqqKjAnjwvHbCdKOkWNw8oFB1PW8NFCSzfZt+U7WA76yhxZrSccFh7yrOdkJE5HHhupHGx0Tj/mHtcP+wduoLS9A0UJBH78h/GdkRFz7zFapr6m4SDWu1WkVq73irT03lQqNVv34g4I4CZjCzo58b+TqSAwXJnGNzzm+PGSvWA6grGP9lpLjGmWRAPaTWhTRRv0Eu+13MsOolTCAQwKU9muPSHs0tSc8srwUQ3HZMOdW3ppG9INunpqmc2MvNedNL6bvMHaE/OG5dn5qh9w7NA6bY8At57ZrkFk7086iUcsOjSnuXBkZzo53pF6qy88N37LrtXmilGUPaom9+FrYfOo4hbRojLz0xLNsN10BBeo8Tu37rTrmpmNKnFQa3aWRL+pGOQU0iE7xyC9M0UJBHg5rnd2iCT6/vh4+3HkDnpqkYWpzjdJZcSe0YsKympgsPI9mamjaOfi6djvT82wa3QdvGyVi35wgGFTZC/9biAo1kQL3BtHyfUqf+YGZUXadY0Veol0Tq94p0RvrLla+p6d6DwM15s8rvejRHj+bputdzQ/DPnpqa1qfpJuH+2ezcXP11SNuLUK2Bcvvp7dNQ+/oGM2RApJ8nAwobAQhvsM2SmpoyxXzxC3+57ZurQSxHqijeJz8Tn07tbzJlf2NQk8gEr9zEIn2goJ4tM9GzZWbYt+ulIJHsm2wdHctr2477hrlwpk9N7fkAgNGdm2J056b6N/Qbo8G/4IcGFzyTh7C7T023sXMwKT9w6rAwVlPTngcmMm5Ct2Z4ZmJ3Q+va2fzcSV4uGzrJiUCb1S1vnGa6T03LcqIuUsskTrKmT03j5X+7zuEaqS5GDKTph5eMerBPTSIf0NSnJi+Oirx+81Drsyiia2rKzNca1DQSppUqtNj5cOhEU7dwkMt9pD5oR+jXChunXqkY6lPTg+em93IsT+raWNjYeB/d1jU/D6U1ZTt+HwZrjHGiSbTST9WwWwPtzc/t//3N7hM3lHOcz4G7WNKnpiVBTen5OSnxp7ZjfjOmuSEPXsegJpEPaCmUsuAa2WT7b/ttvlW/fgDuC2zK9qljYwRJqhavraOfyzaf0ZOGy344yOcpUoN/vA57k5GHcrVrMtlLSxNdPeSaOYaTHdfwSLrW3nlW25B5Q4uyw5oHe2tq1jc/V9+Im35Ws+UXN1xLee+2nhUvAOR+l9zUoKCmzlYTZn9qK0aGB9x1DruBC27BRN7lslZCsrQUSr06UJCTvPL7A+o3Yakbv5Hm9YGA+xqgO1EAkVrDyppZDX8buZTVHrSt7ELBjl9d9ntF6ANEpH6vcHFq9xm5fcr2qemy62ewSDo8rf4qltXUNNE0kTU1lf2hV0s0T08Qps9vn4P2TVJt2ZYVLxqVTO3fOmReTkqc7PIhfWpqHnzKfvLBI415lAtKhfHYdcNLjUhjZ/PzJkFBTb3bl7pH63lOkLrGG7nORtCl2RLsU5PIBLf1fSRHy409UptzWsXre0etebJlzc+tScZSZg/taqm25CokCy12Nj+XfdMcUF3m1LLuw4GC3M3u7PZqmYHVOw4J031bZdq8RWOMPDzL9qnp4mPAzQFXK5ipQWNn8E9z83MbshBJQc3MpDh8e/NAvPRNKVLjYzCpe55t27I70HZdv1Z49btfsOfISQDAQ+e1R4zGLnUAZ48pq8k39Q9nHjywozzGij0qV6bKTIw1vB3T54RFfWqSGIOaRD6gqU9Nrz1Nu4BXgtqAeq0BywYKCrjv5mz2IcJATNPS5udmmpKF87S2o1aE3HEZqdcrN3YBoMTuS+CsocUY++xXKK+sQVJsNGaeU6S4vFN7z8h25WtqUjhYfa5ZN1CQ8bPKlubnEVYDLSspDtf1C63laDW7A21F2Sn49qaB+GDLfrTISETfVlm6tuGmW43ZWq0c/TwyWXE909L9lPzxo337ep6hLGt+Hgh4qsWg3RjUJPIBTaOfu6mE40KS/W956Hai1jeMdTU13fe+2mxh08jvLDlQkMGdPKJ9EzyzpkQ0r2OuuMmclkKZlU3Nw8Vvo5+T2LB2Ofj2poH4cfcRdG6ahjYqA7k4FRQ2slk39AOnl5vzZgVTfWraOVCQgzs+wn/ysLPyp2ySGo/x3bTVNjV6aIejRCdfq1Xj+i44SlkmcScz5X89LybMNj83cgzziBOLsPdvROHllRCBlpttTDQvj0rcUGgyQ7XpsYGvJ7VP3FiuM/vbVdfoX0eqgGO00DtzaJGoYJafmYhhxTmiZWS7F1BJO/i4cOdvJ40PEO7QtVlayLw/9Gpp6TbaZqdgdOemqgFNJ1nZ/JzCQ/rB1DhbB4KzL2myid19ahrZtmgZFx1VZnOip+9Du/B6LmZFpQ+79mjDMSTku+eSXt+WVkk8fExjUJPIBK8ENbVcK1lTM7KpvXG06tcPwH03Z7MPmzUSr1XVvqNVHYEDQKusJHx4bT9c0LEJLjktDx9e2zekf85IrdEoV3jU0XUY2ahFRiIu7JQrTKfGx2DGkDaO5cdLR7ts83MXn7PuzZl+d50TOhL2RI213qTYOVAQeY9aP+bhFjK4oAdOZq1BSbWWSOHghf1pl9FBZYB6hY3c8RLyYHllyLzsBgNq6f3tzLZ6kqyNbyAdPx9zUtj8nMgHtPSJlKthJDjyLrU3jlYVtN14kzXfp6ZEUFNlHekmhMbz0K91Fvq17in7d6OF+uDCmZtqbtRjTU33e+WyHvjnF9ux/1gFLuvRHAUOPsx46bCQbX4e3mzo4uaAq17jujTDn1dtwbo9RwDUjYTdRaLmsVa2DhQUObvd98LxW0qOzhwy+rm2tMLRzZLZPjGdrBVbz899at57bjGWr9+Dyuq6Y+X89jlonpHocK7q7D1aETIvO1n8vCtf6cOeH1W6ogSbn5vFoCaRD6gVts9rl4McBjV181KNCrXmyVbeHN0WHLNj9HO1c0q6pqa5fBgRvE0vBiQitQZqJImNjgrLwBuRRq51BA/t8EiIjcaXfzoTS37YhYSYKFzYqamp9Kz63bzUVzfJc3/zc/cwW2Z0Q5nTz2WSTk3T8MUNZ+KZr0rQJDUeNw0ocDpLgv1HT4bMa1hTUw6bn3sLg5pEZngkqiV3s+3SNA3D2uXg7rNDm2FRAx6/4ajdMC17IKt1383ZbH6kBv1RK8Ba9SZWK0tGbzSZPTu+nVye2F0GSfHSYSF3DXHDA7oc9+bMmMTYaFxyWnNL0rKz+bmbjwmSJt96wqHm5y7JhxT7Rj8P33d00e50RPe8dHTPS3c6GyGS40NDXfmZSaLpcP92OSmhlYiapSXoTsdN57AbsFcqIh+QqyH27MRumHN+e8mLPqnzRki7jlrznkh+aDL7sCn1kGmkT0c797Ds6KE2btNJfm7qRZFBrk9N8iZbBwrioRIxwvFTjuzQJGTeXR6svOCt5uc8Sa1mxTPW1P7iViSBAHDHWW0azNNXfjbbp+atgwpDjtl7hhbrTodHnBiDmkQmeCWoJd/0mJdEraTueWZvbOGk1meModHPTfaDFC5msyNV61K1+blUPux86JWZH5xPtePVZT8bAPlrVMOBkogAb93TZPvUdPFXcHPenBapQQ3WBjJGNlASht3ZvkmqKLCZn5mIy09vIc6H/dnQzGyfhnpHr7ZDpJ7/XtetWRqu69cKQN09986z2mru99uua19uWgIWjO2ClPhoJMZG4W8XdETrRknqK5IiVs8iMsErIS0vPjy5jZcelqWoFbAjuU9Ns6oNBDVrJNqs27lfjAaY3f7AKt+nZnjzQd7g8sNZRHb08zDnQw8v7d9ws+qa5JVyJSkzG6gza8kVZ+Dlb0tx9GQVxnfLQ3pirDgfLjqXzZZD3PBdXJAFkhAIBPDY6M646+wi1NbWIleimbfe386KcvPVvfNxde98U2m44bh3EwY1iXxArlYTr4f+ofZbuz24ZUb9iIxGSdXUVGs6Gv6amsbOcbfXNpbLP/vUJK+T7VOTx7YnWfW7SV2TeUh4j9MtWaKjAor9xbrp5bN8/6PhWd8KUWz76mpNFAbDdUP3BUa46Rx2A56CRCa0TosNmXdZD2s6nbeSfE1NXhDNcHc4SEztpi11jBj5frUK23JKldRIPzrU1ITOU/uKRpqsm6FllHC1892N1wO5PLGpF0nx0lHhyZqars6ds2ztM9nB/c5f3Fpu2Z9euIVq71PT+S62WCbxLjd0X2CE2/MXbgxqEpmQmxyN/s1Ovf1JjI3CHWe5rzNuo7W46BSv3zzkb9om+tQ0k6EwqpSKSurQNju0/51zirJ1p2PvQ6/M/DD+SHZsS76vUOu3Rd7nxsC8HB7DkcWqQ8/Jl6X/d2En0XROShw6N01zKDfe5oZ7shKXZAOA+X3ihn3NoCaRs9j8nMikP/fPwsdH07H/eCUuP70FinNSnM5SCPapSeEc/dxth5XZwub57ZugWVoCfjl8Qph3/zDlkQqlWnXb2vzcgqasbvvdAPl9xpGjyevkulBw833ZzXlzmhM18a02sXsenv96J74sOYTY6ABmD2/Ha61Bbqg96BXyLYm07Ss3NB/mr+pdTncVYZTLsxd2DGoSmRQbHcC0Aa0RE+Pe04lvEO3h8u4IRdT71LRwWy473ro2TUPTtHjsOnxSmPf0+G6a14+OCmDVH/vgtuX/w9GT1bh1cCHaZiu/vJBqfu7E6OdeJzv6ucuOMXIHLx0V8n1qhjkjOrg4a46zat84Wa5olByHj6/vh//tOYKspDi0yEh0LjMRyi3nt9ZyWjiOR7PNf90QKGaZxHrh2qOyNX115MCJ6zYPOTH3RmGIyDKsqWme1K7yUExTodaA+P9gXgraKomKCuD/LuyEq175DkdOVuGCjk0wtktTXWkUZafg9St7al5ecqAgB0Y/D6Y2KJAbrwda+gol8iL5PjV5bHuRnc3Pw3lExEZHoWuz9DBuMTK5vfaXS7JhCfl9Hc4+NcO2KQoTt5yrpA2DmkQ+ID/6Oa/YWuWkhI6cl5eW4EBOjFHrc8jKwp8bj6qxXZrh3OIcHK+oRnZKnO2F3fA3P7cvbSexT03Sw0vngRdfNrqtFr6bOP3SitzFitpfdnLTMWW2+bgrmp+7aH9GiviY8Az9YsV9zYnf3y3XErfgQEFEPuCGTrS97k8DWofUrHngvHYO5UY/tT6LrDwU3HpcpcTHICc1PiwP5rUS9W3sHShIPXUvBiTYpybp4aVCvjdHPyc5Hry8ko3k+7kOc0ZkuCUfgNIzirZMuqErDy+Wr9zkmQndRNNdmqaheZi6v5B/AaEdm587j0FNIh+QveGHOR9e1jg5Hv+4qAtS4qMRHxOFP4/ogCKVfhXdRO3mx5ujtaRrarq7Jo/ZNPIzk0LmDSvWP0p8MLl9xubn5HU8hiOLZc3PI6XfF5LklrPeTS+AzJaN3PBN3JAHL7u4azNc0ycfyXHRKM5OxpPjujqdJdVuu8hd2PycyAfk32Ly0qzHVT1b4qqeLZ3OhiFqHbFbO/o5jyupgYLsrFzohj3eJDUeF3RsgjfW7QEAxEQF8MB57U2lyebnpIeXbmnyzc/d+yVcnDXHWXXfk3wh5oorPOlhtvah3bRmw8kQu/nm5+Hb1y75WT0rITYaT4ztgifGdgn7tvX+dm557cRDToxBTSIfkH14Cm82yEFqfQ6xQGatcD+YWtInkAX5e+nSHnj4wy3Ydfgkfnd6c3TPMzfgBJufkx5KR8VDJgPsVvNi83OSxz6TKZgb+nn0CrNdZJkdPd0KfPHgXV49V90SXHULBjWJfMAN/c2Qs9RqDfihT81wkhzB1uGamrmp8dh/rEI0LyXe2mJAQmw07jy7yNI0pbDpLunRt1UmrjyjhdPZEPHifZkP7vKs2jN8UI1sbjm/NdeCtDUXv23D5Ea8GpQid9AbFOdx5U7sU5PIB9xSiCLnqNXks64/MB5vgFxNTWc9PrazaDohJgqX9WguTLvxd5MrbLKiJkmRO4Y/+GNf5KTGW7KNKxoER89u29hQOtGy/XW59+B24zXCLWztM9m2lMkusoESl/yaWo/XcATZze4rN+xRXhuJnMWgJpEPyA8UxLuwX6iN7mfkgUxqFalRv/1IcvRzh5sn9s3Pwg1ntgYAJMZG4e9jOlteU9Nqct+LNTVJj5ho64q7fzqzAHnpCQCAzMRY3H5WW0Pp8BCOLJbV1ORAQRFBtpaXS857l2RDkebm5y6o9e6F/UnS9PbJyiu0O7n7aYaILCE/IEF480HOUStgG6n5xqC4PKnnUjsDcVp+i6ioAB65oBMeHN4OUYEAEmKjG6ThPnJ5Yp+aJCUcg3B0aZaGH24ZhC2/HkOL9ETDNUDd8CCul4uz5jjLWjtIps097zVm+4m0m1vyAVjQ/Fw2XRd9SXItt5+rpI3vg5pbtmzByy+/jNWrV2Pnzp2oqqpCTk4OioqKMHLkSJxzzjmIibF+N3366adYvnw51q5di71796K6uhrZ2dno1q0bRo0ahYEDB+pO88svv8Trr78upFlRUYHMzEwUFxdj8ODBGDNmDBITEy3/LuR+8jU1yS/UmvdYGaBkRRPp0c+drqlZLynOO7d+uYcS1tQkKeE6KjISY9GjeYYtafPI9iZbB4KzLWUKN7f8lm56KW16oCAX9H3IAGrkUWvhRu7inScbGzz22GNYsGABqqqqRPNLSkpQUlKC9957D506dcK8efNQUFBgyTb37NmDW265BV9++WXI33bu3ImdO3di+fLl6NatG+bMmYPWrVurpnnw4EHMmDEDH3zwQcjf9u7di7179+Ljjz/GE088gT//+c/o27evFV+FPMTtzWDIfmq/NY8Fa0nWtuFDr25y34sVNSlSufla7Oa8+c11/Vrh759uE6bPLc52LjMUQr7czZOoIbNBSTc84/BX9S6ek5HBt31qzp49G/PnzxcCmjExMejYsSNOP/10ZGZmCsv9+OOPuOyyy1BaWmp6m9u3b8fYsWNDApqFhYXo1asXWrVqJcz79ttvMXbsWHz99deKaR45cgS/+93vRAHN2NhYdO7cGT179kROTo4wf9++ffjDH/4gGfykyCY/yiov5H6h9ibcyiOBNTVlBgpySU1N+TTcdz2QyxKbn5MUFx7CurnxPKzn5rw5zcrB9rS48cwCdGiSAgBomhaPWUOLrckAWUK+dYw7RNKp7IZapwmxvg2peJ5Xm5/zWUvMlzU133rrLTz33HPC9LnnnouZM2eiceO6ESwrKyuxZMkSPPTQQygvL8f+/fsxdepUvPbaa4YLdOXl5ZgyZQr27dsnzBs0aBDuuOMO5OfnC/M2bdqEe+65B2vWrMGxY8fwxz/+EcuWLUNubq5kug899BA2btwoTF900UW45ZZbRIHZd999F3fddRcOHTqE6upq3HzzzXjnnXfQqFEjQ9+FvEe2T83wZoMcpPYmmw+r9rNzD0fq78eBgkgPNzzckj9Z16emtq5L2jROxpo/DcCeIyfRKDnO9YO+UR233Lpckg0ASv0La8ul3oFe7JCWEIsBBVn4aOsBYd6zE7uFbftkvUgtV0cq371WqKysxNy5c4XpwYMH45FHHhECmkBdTcfx48dj/vz5Qn+a69atw/Llyw1v94UXXsDWrVuF6YsvvhgLFiwQBTQBoG3btnj66afRr18/AEBZWRnuv/9+yTT37NmDpUuXCtOjR4/GAw88IApoAsA555yDf/3rX8J3OXr0KJ555hnD34W8hwEA4s3ZefYOFOSONKwm91DCipoUqdx8aLs5b05z4qVVQmw08rOSGNB0ITcE2pRoLY7UhqE6mNm+C91S0+6ZCd0xtCgb7XJSMGtoESZ2ywtvBsgQPh5FBt8FNd9991388ssvAOqanM+cORNRUdK7oX///hg/frww/fTTTxve7osvvih8LigowMyZM2ULKXFxcZgzZw7i4uIAACtXrsSmTZtClvvss89QU1MDoK7AM23aNNntd+7cGcOGDROm2QTdX+Sbn4c5I+QYdnjtPLc3P3cj1tQkPSLhsIiE7+BHVr04ZJPCyOCGfh6VuOlFt+nRz10yGGqrrCS8Nbk3/nfbYMwaWoyYaN+FWTzJiq4inLhuS9Xq9zPfnW1vvvmm8Llv375o1qyZ4vLBQc1169ahpKRE9za3bdsm6pPziiuuQGxsrOI6OTk5GDx4sDAtVUt09+7dwufGjRujSZMmiml27dpV+Lxz507VfFPkcPsbY7IfO62PbFacy248FOSyxD41KVK5+b7sxmuEW9haU9PGtMkeru9TU+tyDp70mkc/tzcbFOHc/gKCtPFVULO2tharV68WpuubeCspLi5GdvapEQVXrVqle7vbt28XTffq1UvTep06dRI+f/XVVyF/T01NFT4fP35ctYlA8Cjv8fHxmvJAkYE1NSlcBWzWMpFna/PzCD2X5R6oGNMkKZFwWLj5XHZzwNVpVv1uSXHRIfNS4kPnkTd57UVyeJqfy5VPTfap6bF9Td7FQ815vgpqlpaW4vDhw8J0cNBQSXHxqREFf/jhB93bDd4mANUalfUyMjKEz+vXrw/5e5s2bYTPx44dw9q1axXT+/TTT4XPhYWFmvJAkYEDBVE4b7hsEiHN1ubn9iXtKLnvxebnJCUSHmK9/w0in1SZKjnOmn4tbx4YWj6fe34HS9Km8JFvIeUObrpUmm5+7vJaseRu8t1zaT+CHGl+zkctEV8FNbdt2yaabtmypab1mjdvLnzesWOH7u0mJiaKpisqKjStd+zYMeHz8ePHcejQIdHfe/XqhaKiImH6gQcewPHjxyXTWrFiBT755BNhetKkSZryQJFBvqYmb/l+YUdH6jx89HH76OdurIUl97WiefARhR1PuzovXtJDNN2xSSraNE62JO0WGYm4+5wiYV9f27cVujZLsyRtCh+3DF4jx033e7P7is2HyQy9xw+PK3fyVVBz3759wueoqCjRiOdKgpufB6ehVdOmTUXTUrUupTRcruG2A4EA7r//fiQlJQGo6/Nz3LhxePvtt3Ho0CFUVlZiy5YtmDt3Lm699VZhvTPPPBPDhw/X/T3Iu1hTk+Q7Urf+KODbQ2l2vkTw27ksM74f+VwknAd82eh+ozvn4pZBhWicHIfOTVPxzMRulqZ/77nF+GXmUOy8+xzMH9OZx0QEcctP6ZZ8KDE7+jmRGXLHFZ9x3MmathIeUVZWJnxOTk6WHfW8oZSUFMk0tGrXrh3S0tKEZuiLFi1C7969Fdc5cuQI3nvvPdG88vLykOW6deuGRYsW4d5778WXX36JzZs344YbbpBMMzY2Fpdccgluvvlmzd/dLsH9e3pRdXW14rTbyOWvuroKVVXsq8kPamqkj4Fa1KKqqgo1MseI3nO1pqZG9niTS8tr55NRNTXVtl375Pq90rO96mrpZZ28XssdCzXV9u1LLwreF345n6TIXee8dKxUV1Wh1qWdxtbW1EjO99L+1UPuXAoAeHBYER4cdqq1lNX7oFFitC3pUnjIXYuqXXLv0npfqKmpsSy/cudTdY10+aVaY5mpWmFfE6lRfGapDY2X1EjcBwOB8F+r/VzWk+KroObJkyeFzwkJCZrXi4uLEz5rbToeLDo6GhdeeCEWLlwIoG4k80GDBmHkyJGSy9fW1mLWrFk4evSoaL7ctnNzczF48GD8/PPPijVJhw0bht/97nei7+OEmpoafPfdd47mwWo//vij01lQtPOo9IV23bp1yExgUNMPdpZId01RdugQvvvuO+yQ+bvSuSp1Yy8tLUV6+V7daQVz+/lkVMmOHfgO+mv7m6HnWnu8Ujpg4eT1Wi5P/1u3DqlxrK5ZT+k3itTzScrPv5yQnO+lMsf333/n2pp5JQbuE5HET+cSmbN5v/Qz208bfsKJX5x//P61XFsAZGdpKb77Tn+FHi3qz6camZeyP/30E6p2x6qms+e49Hfxy3WJzDlZLX38ff/994iWeMFYWnosZF51dfhjGxs3bULL1FPXEr/fn3z1RFBZWSl81lNTMSbm1AFjNAo/efJk0cA/t912Gx5++OGQmp/bt2/HlClTsGLFCqFZuVKev/jiC5x77rmYO3euENBMTk5G9+7d0bNnT+Tl5QnL/uc//8Hw4cPxr3/9y9B3IO+SO9pd+txENpDvCFv572TMsPzEkHkF6c4/yChx4/VALk8urchGZJpbA5pEZB5P71Bq5VOj6xOZ4aZzNVoiLwlSM33M3U9YFouOPlUjTaqGkZzgQGZsrPobIynZ2dl45JFHcM011+DkyZOoqanBP//5T/z73/9GcXExUlNTsXfvXmzduhVAXSB13rx5uO6664Q04uPjRWl+9913mDx5slADNSMjA7fffjtGjBghCsRu2LABc+bMweeff46TJ09i3rx5OHLkCKZNm2bou5D3yAcAeEH0PYsPAY58Xuf3nVKxsqQcVb/daro0jkVhurH7h5/Jj34e1mwQERFpFimjnzuZXwY1KRy8cPzc3zcTd3x6UJhunxWLnCS2tAzmq6Bm8CjkwU3R1QQ3+24YWNSjT58+eO655zBt2jSUlpYCqAuYrlu3TrRcXl4e5syZg8LCQtH85ORTIyvW1tbijjvuEL5HZmYmXn75ZbRq1Spku+3atcO///1v3H777Xj99dcBAP/4xz8wcOBAnHbaaYa/j1FRUVHo3Llz2LdrperqalE1706dOomC5m6TdagcWBbaJLhzp47ISnK2OwIKj//V/gJ8cShkfmZGJrp27YrvqnYCq0P/3rVrV9k0o17bA0Dc7CevWR7atsgA3t2vOS2vnU9adAXwaUEZnlxdgsykWMwYXIjUeJtvuS/9EpoPhd+voeMV1cCi3abSsFp5pUyeunRBYqy3jxFZEr+jmuDfKBLPJ612J+wDPjwQMt/JY1iRyXM23L6t1H+f8DI/n0tkTmXJIeCd0HJQ+/btUNgoOXSFMNt39CSwdI/qcs2a5aFr11aWbFPxfHp5V8jyxe3aoX1OSsj8hnYdPgG8EfpdIvW6RNaqqKoBXg09/rp17SrZcuLTY9uBr8UtbaOiomw93jp2qsHxhC14fm0pmqUlYMHYTmjbKDGi7k8//PCDrkqHDfkqqJmeni58PnbsGGprazU18wnu2zK4CbkRXbt2xVtvvYWlS5finXfewYYNG1BWVoasrCwUFBRgxIgROP/885GYmIjNmzeL1g0ehX316tWiv99+++2SAc16UVFRuO+++/DVV1+htLQUtbW1eOqppxwJagLiJv2RIDo62tXfKS5WOm+xMTGuzjdZJ0bmRhcVFUBMTAyio6T/rnR8SF0+o6KjESWzLa3HmtvPJ63OyG+EM/IbOZoHPfsxRqYs4eRvEVsrfY+Oj41FTIyvetBRpPQbRcr5pEVMjLlrjxu4Oa9yXTe5Oc9W8tO5RObIHSduKXfHxmrrUzMqOsq2/KqdT7Ex2s63WJll3LCfyf1qA9KFX7nWudHR4b8PxsQA9w1vj/uGtxfmNewS0e/3J1998yZNmgifq6urcfDgQWRlZamuFzz4TuPGjU3nIy4uDuPHj8f48eMVl9u4caPwOT09XVRTc82aNcLn5ORkDB8+XHW78fHxGD16NObPnw8A+Oyzz1BTU+P4SOhkvyiZ4D377vIPs30WETmBfWoSuQc7FyEyJ+CSUpdb8qFEax75LENEvopm5efni6ZLSko0rbdz507hc+vWrS3Nk5LgKsXFxcWiv+3de6opcX5+vuYRzdu1ayd8Pn78OA4ePKiwNEUK2aBmmPNBzpHt38niwmBtbS1qZUayJHdz44OB3EON3DWN/I1HRfjxVCQKJV/mCm8+5LglH1aIoK9CDuDxExl8FdTMy8sTNR9fv369pvU2bNggfA4OCup19OhRbN26NWTEczkfffSR8LlhPw3BQczgPj/VNKyV6caHWLIeazWRXHDIzKHhhTf95G1ufzAkd2GZxl5S76u4x4lCub11jFvyoUTzYEZe+DLkWiw3RAZfBTUBoFevXsLnzz77THX5DRs2YP/+Ux099+7d29B2J02ahB49emD48OFYsmSJ6vIbN27Epk2bhOnBg+eqMGAAAGB7SURBVAeL/p6bmyt83rFjh6jfTyVbtmwRPsfHxyMzM1PTeuRtDAyQ2m9t5bHAAoI3ufFXk30w5DFGFHa1Eg3QeS4SacfTRTvNo59znxL5nu+CmkOHDhU+v//++9izR3nkt5deekn4XFhYGNIMXKs2bdoIn1euXKm6/BNPPCFat+GAPn379hU+V1RUYOnSpappVldXi5br06cPC6M+Id/8nL+/X8gHh6zfFpufk1V4jyI9eLQQkRvI3bvcck9zSz6swGcZMsOKo0fqhR+Fly+Dmjk5OQDqgoEzZswIGT2q3scff4xFixYJ05dddpnh7QYP5LNmzRp8+umnsssuXrwYb775pjA9ZcqUkJtPhw4dRE3S//rXv4pqdkqZN28etm7dKkyrDVREkUN+oKAwZ4QcI1tbN7zZIBdz4/XAhVki8i2+ryLSJlKanzt5zmsNvLqx7ELeweMnMvguqBkXF4ebbrpJmP7ss89w9dVXiwYNqqqqwquvvoqpU6eiuroaAFBUVIRx48ZJpjlkyBAUFxejuLgYQ4YMkVymd+/eoiDktGnTQmpsHjx4EPPmzcNdd90lzBswYABGjhwpmeZdd92F2NhYAHWD/lx88cV4/vnnQ5qi79ixAzfeeCOefvppUZ7l8kqRR65PTV7H/cPttQaIiMzi5cxeUvEN7nKiUG7v9skt+VCiufm5rbkgUsfaws6LcToDThg9ejS++eYbvPLKKwDqAptDhw5FcXExUlJSsGXLFhw4cEBYPiMjA48++ihiYozvrkAggAcffBATJ07E4cOHUVZWhuuuuw65ubnIz89HWVkZtm7dKhr0p2PHjvjrX/8qm2aXLl0wZ84cTJ8+HVVVVTh+/Djuv/9+zJs3D61bt0ZaWhr27t2Ln3/+WbRe165d8Ze//MXwdyHvYU1NCudPzco8ZBVeo0gPPljYS6prEZ6jRNq55RqlNR9eOL/5cp7MsOL4YfNz5/mupma9e++9F1OmTBFqOtbU1GD9+vX46quvRAHNwsJCPP/88ygoKDC9zTZt2uDZZ59Fy5YthXm7d+/G6tWrsWHDBiGgGQgEMGbMGDz//PNITU1VTHPEiBFYuHAh8vPzhXknTpzA+vXrsXr1alFAMzo6GpMmTcLzzz+P5ORk09+HvIODbRCbn5MatzxsBeM1St3Cid2dzgL5mBuvG0ROkzsv3HJL05oPZ5ufa1zO3mwQifCe506+rKkJ1D0oTZs2DaNGjcLixYvxySefYPfu3SgvL0d6ejrat2+PYcOGYdSoUYiLi7Nsux06dMDy5cuxdOlSvPvuu1i/fj3KysqQkJCAFi1a4IwzzsBFF12ka0CiHj164L///S/efvttrFq1Ct9//z3279+PiooKpKeno2XLlujVqxfGjh2LFi1aWPZdyDui5Nqfk2+oFbDdUtAmInUxUQFU1dRiSJvGuKBjrtPZcQ2vXccaJcXi1+OVTmdDM/apSaQNXySbF0m1SSlysFamO/k2qFmvsLAQ06dPx/Tp0w2nsWrVKl3Lx8fHY8KECZgwYYLhbTYUHR2N8847D+edd55laVLkYJ+aJF/A5lFAdfhg4A2/79USs84pQtmJKrTLSUE0X1p51oKLumDcwq+F6T8NMN8qyE6SfWry8CPSzC2tD9yRC2uwHEtO4zHoPN8HNYn8gH1qUrh+ar6/JLJf84xENHc6E2Ta2C7N8MaVUfjvhr1ol5OC6/q1djpLurEYQRTK9aOfuyUjCjQ3P/fAd6HIxtqbzmNQk8gH5AtXLAn4hWztABOHQEp8NI6crBLNi4kKsImiR/Fq4A5/GdkBt/znf7J/5+8kz4vXnpEdczHSI10IeHH/EjlBrszllgCcW2qMKuHo5+RGfHZ2J98OFETkJ6ypSfKDRRlP86mLu4mm46KjcOlprD9GZMYlpzVHcbb8YH7JcdFhzA3RKVK1UViOIAplR5nLSlqz4YUaaG7Zp+QPXjgn/IhBTSIfYIflZEefmkPaNMbYzk0B1PXbev+wYqQnxiKJQRdP8kLNDT9okhqPNX8agOW/74l/jusS8vdbBhU6kCtv4CEcfqy1QqSdW84XL1wrtTc/98CXISJbsfk5kQ/IN4NhQcAv7Pil42Ki8OrvemDrr8eRGBuNZukJAIBuzdKQn5mI7QfLhWVfuayHDTmgYN2apeHbXw4L05eeludgbsiM5PgYnNe+CWpra/HdL4fx90+3IRAAZp1TjLz0RKez51psHm0v7l8ibWRfJHus2O1kEFbrMwrHyqNwcsuLCRJjTU0iH+Nl2T/s6t8pEAigsHGyENCsn/fUxd3QNC0eUQHgmj75GNWxibkNkaq7zylCQkzdbT07Oc71IymTukAggMdGd8auWUOxe9ZQzBxa5HSWiES8FqQhCge3t5DSGpjxQlNbBpmIiDU1iYh8INwF7CFtG6N05lCbUicpozs3xQ+3DMLWA8fRpWkamqTG61qfjwXupfe3JLKD+8MbRO7mlhZSLsmGIs0DBXnguxCRvRjUJPIxFgT8w+2d1pM1Chsno7Cx/CAzRERG1Uq0P+c9hCiUXO1Bt5wubsmHEs19atqbDSLyADY/J/Ixt7wxJvvxtyY1PESISC82/SQK5fY+NSOpTBhJ34WIjGFQk4jIB2RravKBlIgihBf6f/My7l0ibdxe5nJHLpRp3Vde+C4U2TiInvMY1CQi8gG31xog57G2AxEpkXpw42WDSDu3nC9uyYcSzc3PPfBdiMheDGoSEfmAWv9Obqk9QERE3sE7B1EouZeEPF+00z5QEPcqOYuHoPMY1CQi8gHecImIyAw27yfSxu2DM2oNBLJZLRF5AYOaREQ+IF/AdkkJm4iIXE26+TnvIURa8XzRjvuKvILBf+cxqElE5AOyfWqGNxtERORRkkHN8GeDyPUipczlZFzRa/uKiJzDoCYRkQ/I9qnJUiMRRQjWlgg/3kOIQkVKmYvXVCJ1XjuvIxGDmkREPsAbLhEREZFzOCijdiy3klcw+O88BjWJiHxAtikUS41EFCH4XGEvqf3LOwhRKPkyV3jz4WXcV+RGPC7diUFNIiIfkG0KFeZ8EOl1yWl5oun7hxU7lBMif6uVqI7CF2NEoWQHZwxrLojIaqyV6U4xTmeAiIjsx1oDpEXnpqn4YdcRYfrWQYUO5qbOwyM7oryyGj/sOoKz2jbGtAEFTmeJXIqXM3vxWY5IG7aOMY9N9YlIKwY1iYh8QK1oyHI2AcCsocX43Yvf4HhlNQobJWFy73yns4Sc1HgsvvwMp7NBHsCgm704+jmROV47X5yslcZyKbkRj0t3YlCTiMgH5GoH8N5MwcZ0boqe0zOw6/BJtMtJQWoCiwlERER6yJa5WOgiIrIcn1aIiHxAtn+n30rY5xZnh/xt/ujONuaI3Kp5RiKaZyQ6nQ0icplaibqwDNIQhVIrc3mFk9n11p4iIidxoCAiIh+Q7d/pt/8bJ8fjhjNbC/Pb56RgYvdm9meMiIg8y2tBGiLSztnm57y2EJE2rKlJROQDWjpcf+SCThjTqSkOllfinKLGSIrjLYKIiOqwT00ibRiPI4pMrTJDWzINLGzkQE4oGJ9YiYh8QOvo5wN4YyYij6p1slqRD0jtXQZviEJx5G7zuAfJjc4tzkFeegJKy04I8+ae38HBHBHA5udERL4g3/ycxUYiIiIiqzDYbx73IblRVFQAb1/dG0OLstGrZQYW/a4HujRLczpbvseamkREPsCyIRERmcGasET+khgb7XQWiFynQ24q3prc2+lsUBDW1CQi8gG5Dtf5JpyIIgVDbvaSbH7OV2ZEISLhrIiPicJlPZo7tn1eW4hIKwY1iYh8QK5oyCIjERFpITlQEG8iRCG8OnJ3UXYyACAuOgp/HdURqQnONer06C4kIgew+TkRkQ/IDxTEUiMRRQZezcKP+5wocvzzoq7okJuCuOgopCXEOp0dIiJNGNQkIvKBKAYviSjCsfk5EbmBV0tcgQDQODne6WwA8O4+JKLwY/NzIiIfkG1+zlIjERFpwObnRNp49bxwU77dlBcicjcGNYmIfEB2oKAw54OIyC4cnNtetRJ1YTmYB1EorwbkeD4TkRcxqElE5AOsqUlERGYwaExE4cI+34lIKwY1iXziwk65oumuzdIcygk5gWVDIop0vM7ZSyqmyX1OFMqrNR7ddD67KCtE5HIMahL5xG2D2yAjsW4kw4SYKMwaWuRwjiicZEc/Z7GRiCIEaxLaq3FyXMi8VplJDuSEyN3cFBzUw6PZJiKf4+jnRD7ROz8TP9wyEN/9chhtGyejbXaK01miMJILXnq14E1EROF15RktMH35/3CiqkaY99cLOjqYIyKykpuafLsoK0TkcqypSeQjeemJOK99EwY0fUi+piYREZG6lPgYPDuxOxolxSIxNgqzh7dDN3ZlQxTCq2UrN+WbLYmISCvW1CQi8gEWDYmIyKxxXZthXNdmTmeDyNXcVONRDzdl2015ISJ3Y01NIiIfkCtge7XgTURERORGXi1ZsXYkEXkRg5pERD4gV0xl8ZWIIkUtRwoiIjLMTe+5XZQVInI5BjWJiHxAtk9NlhqJiIiILMOylXlsSUREWjGoSUTkA2xSRESRLi0hNmRednKcAzkhIj/zapnLq3HE7nniAcsGFjRyKCdE5AQGNYmIfEB+9HOPlmCJiBro2yoTLTISRPOemdDNmcwQEXmMm0qEevJy37ntkBBTF9ZIjovGXee0tSdTRORKHP2ciMgHZPvUdFMJlojIhEAggOcnnYbfv/od9h09iWv7tcI5RdlOZ4uIfMarZSs3NfnWk5XzOzTBtzcPxLrdR9ClaRoKGyfblzEich0GNYmIfIB9ahKRH5xZ0AgbZwxxOhtE5GNeLVp5Nd8AUJSdgqLsFKezQUQOYPNzIiIfcNPbdyIiIiJyFzcVFVluJSKtGNQkIvIB2ebnYc0FERERUWTzajyO/awTkRcxqElE5APyzc9ZgCUiIiKyilfLVh7NNpEpuanxoumWGYkO5YSMYlCTiMgH5N6+s/xKREREZB2WrYi846+jOiLqt5M2OiqAv4zs4GyGSDcOFERE5AN8+05EREREclhUJD+a0D0PrbKS8PXOQzijRQZ6tsx0OkukE4OaREQ+INunJkuwRERERJbxatnKq83miczqnZ+J3vkMZnoVm58TEfmAXEGVncITERERWcerZStv5pqI/I5BTSIiH2BNTSIiIiKSwzIhEXkRg5pERD7AgioRERGR/bxa5vJqvonI3xjUJCLyAbmCKsuvRERERNbxatnKq83micjfGNQkIvIBuYIqO4UnIiIiso5Xy1YezTYR+RyDmkREPsCamkRERERERBRJGNQkIvIBBi+JiIiI7OfVMpdX801E/sagJhGRD8g1hWJTIyIiIiLreLVs5dVm80TkbwxqEhH5gFwxleVXIiIiImKRkIi8iEFNIiIfkO9Tk0VYIiIiIqt4tcajR7NNRD7HoCYRkQ8weElEREREclhWJCIvYlCTiMgHZGtqsvxKRERE5HssExKRFzGoSUTkA7J9aoY1F0RERETkRiwTEpEXMahJROQD8jU1WYQlIiIiIiIi72FQk4jIBxi8JCIiIiI5LCoSkRcxqElE5ANsfk5EREREcvgCnIi8iEFNIiIf4EBBRERERCSHRUIi8iIGNYmIfCAgU1SVm09ERERE/sEX3UTkRQxqEhH5AAuqRERERCTHqRfdibEMSRCRcbyCEBH5gGyfmgx2EhEREfmeU2XCJ8d1FU3fMqjQmYwQkSfFOJ0BIiKyn1zn74xpEhEREZFTZcJJpzVHXHQU3tm4Dx1zUzG1X2uHckJEXsSgJhGRD7CmJhERERG50UVdm+Girs2czgYReRCbnxMR+QCDl0REREQkR65VDxGRmzGoSUTkA7LNz1mAJSIiIvI9lgiJyIsY1CQi8jEWYImIiIiI77mJyIsY1CQi8jEWYImIiIiIZUIi8iIGNYmIiIiIiIh8LMD2O0TkQQxqEhH5GAuwRERERMSamkTkRQxqEhH5GAuwRERERERE5EUMahIRERERERH5GN9zE5EXMahJRORjLMASERERUYDNd4jIgxjUJCLyMRZgiYiIiIglQiLyIgY1iYh8jAVYIiIiImu1zkoSTY/t3NShnGjH99xE5EUMahIRERERERFZ5IHh7RAbXRclzEyMxW2D2zicI3UBvuomIg+KcToDRETkHL6VJyIiIrLWhO556NI0DZv2H0OP5ulonpHodJZUsUxIRF7k+6Dmli1b8PLLL2P16tXYuXMnqqqqkJOTg6KiIowcORLnnHMOYmKs302ffvopli9fjrVr12Lv3r2orq5GdnY2unXrhlGjRmHgwIGK6y9ZsgS333676Xz89NNPptMgIu9iAZaIiIjIeh1yU9EhN9XpbGjGIiEReZGvg5qPPfYYFixYgKqqKtH8kpISlJSU4L333kOnTp0wb948FBQUWLLNPXv24JZbbsGXX34Z8redO3di586dWL58Obp164Y5c+agdevWlmyXiEgKmxoRERERERGRF/k2qDl79mw899xzwnRMTAyKi4uRmJiILVu24ODBgwCAH3/8EZdddhleffVV5OXlmdrm9u3bcckll2Dfvn2i+YWFhWjcuDH27NmDbdu2AQC+/fZbjB07Fk8++SR69OgRklaTJk3Qv39/Xdvft2+fqGZmv3799H8JIiIiIiIiiihsvUNEXuTLoOZbb70lCmiee+65mDlzJho3bgwAqKysxJIlS/DQQw+hvLwc+/fvx9SpU/Haa68hYPBqX15ejilTpogCmoMGDcIdd9yB/Px8Yd6mTZtwzz33YM2aNTh27Bj++Mc/YtmyZcjNzRWl169fP11ByfLycowfP16YLiwsxKOPPmrouxBR5GABloiIiIiMPucSETnJd6OfV1ZWYu7cucL04MGD8cgjjwgBTQCIjY3F+PHjMX/+fKE/zXXr1mH58uWGt/vCCy9g69atwvTFF1+MBQsWiAKaANC2bVs8/fTTQsCyrKwM999/v+Ht1rv33nuFWpoJCQl49NFHkZrqnT5eiMgeLL4SEREREcuERORFvgtqvvvuu/jll18A1DU5nzlzJqKipHdD//79RbUbn376acPbffHFF4XPBQUFmDlzpuzbsLi4OMyZMwdxcXEAgJUrV2LTpk2Gt/32229j6dKlwvSMGTPQtm1bw+kRUeTgW3kiIiIiYpGQiLzId0HNN998U/jct29fNGvWTHH54KDmunXrUFJSonub27ZtQ2lpqTB9xRVXIDY2VnGdnJwcDB48WJg2Wku0rKwM9957rzDds2dPTJgwwVBaREREREREFHk4eCQReZGvgpq1tbVYvXq1MK2lT8ri4mJkZ2cL06tWrdK93e3bt4ume/XqpWm9Tp06CZ+/+uor3dsFgIcffhi//vorgLoaoLNnz2bNLCIS8GpARERERHxEJCIv8lVQs7S0FIcPHxamg4OGSoqLi4XPP/zwg+7tBm8TqBu5XIuMjAzh8/r163Vv96effsKiRYuE6SuuuCKkD08i8jcWYImIiIiIRUIi8iJfBTW3bdsmmm7ZsqWm9Zo3by583rFjh+7tJiYmiqYrKio0rXfs2DHh8/Hjx3Ho0CFd2/3LX/6CmpoaAEB2djamTJmia30iinxsakRERERERERe5Kug5r59+4TPUVFRohHPlQQ3Pw9OQ6umTZuKprXWumy4nJ5tr127Fh999JEwPXnyZCQnJ2ten4iIiIiIiPyBXZQRkRfFOJ2BcCorKxM+Jycny4563lBKSopkGlq1a9cOaWlpQjP0RYsWoXfv3orrHDlyBO+9955oXnl5ueZtLliwQPicm5vrusGBqqqqnM6CKdXV1YrTRF5RU1Pt+PnI84nIOjyfiKzBc4n8prqqCrVR9gQ2eT4RWYfnk5ivgponT54UPickJGheLy4uTvistel4sOjoaFx44YVYuHAhgLqRzAcNGoSRI0dKLl9bW4tZs2bh6NGjovlat71x40Z8+OGHwvSVV14p+g5Oq6mpwXfffed0Niz1448/Op0FIkN2bN+O72r3Op0NEZ5PRNbh+URkDZ5LFOm+//67sNXW5PlEZB2/n0++an5eWVkpfNZaSxMAYmJOxX6N1miaPHmyaOCf2267DQ8//HBIzc/t27djypQpWLFiBZKSkkR/05rnF198UfickpKCiy66yFCeiSjysaUREREREbH5ORF5ka9qakZHRwuf6wfQ0SI4kBkbG2to29nZ2XjkkUdwzTXX4OTJk6ipqcE///lP/Pvf/0ZxcTFSU1Oxd+9ebN26FUBdIHXevHm47rrrhDTi4+NVt1NeXo5ly5YJ02PHjhU1nyciIiIiIiIiIvI6XwU1g0chD26Kria42beWwKKcPn364LnnnsO0adNQWloKoC5gum7dOtFyeXl5mDNnDgoLC0XztQz0895774lGTR87dqzh/NolKioKnTt3djobplRXV4uqeXfq1EkUNCdypZd+CZnVqlUrdO2U60BmTuH5RGQdnk9E1uC5RBFNokzYtWtX2zbH84nIOpF2Pv3www+6Kh025KugZnp6uvD52LFjqK2t1VTNPrhvy+Am5EZ07doVb731FpYuXYp33nkHGzZsQFlZGbKyslBQUIARI0bg/PPPR2JiIjZv3ixaN3gUdjkrVqwQPnfs2BHFxcWm8muX4Cb9kSA6OjrivhP5Q4wLj12eT0TW4flEZA2eSxRJ7jirLR58b5Mw3a1ZWliPb55PRNbx+/nkq2/epEkT4XN1dTUOHjyIrKws1fX27dsnfG7cuLHpfMTFxWH8+PEYP3684nIbN24UPqenp6vW1Dxx4gQ+++wzYfq8884zl1EiinjsPomIiIjIX67u1RJv/Lgb6/YcQWp8DO4b1s7pLBERGeKroGZ+fr5ouqSkRFNQc+fOncLn1q1bW54vOcFVirXUuFy9ejVOnDghTJ9zzjm25IuIiIiIiIi8KT8rCV/+6Uxs/fU4clLikJ1ivIs1IiIn+Wr087y8PFHz8fXr12tab8OGDcLndu2Mv8U6evQotm7dGjLiuZyPPvpI+Kylj5MvvvhC+NyqVauQIC4RUUMBsKomERERkd8kxkajY24qA5pE5Gm+CmoCQK9evYTPwU215WzYsAH79+8Xpnv37m1ou5MmTUKPHj0wfPhwLFmyRHX5jRs3YtOmU/2cDB48WHWdtWvXCp+7dOliKJ9E5C9sfk5ERERERERe5Lug5tChQ4XP77//Pvbs2aO4/EsvvSR8LiwsNDzwTps2bYTPK1euVF3+iSeeEK172mmnKS5fWVkpGkW9U6dOBnJJRH7DmCYRERERERF5kS+Dmjk5OQCAiooKzJgxA1VVVZLLfvzxx1i0aJEwfdlllxne7vDhw4XPa9aswaeffiq77OLFi/Hmm28K01OmTFEdpX3r1q2orKwUpjt37mw4r0RERERERERERG7mu6BmXFwcbrrpJmH6s88+w9VXX42SkhJhXlVVFV599VVMnToV1dXVAICioiKMGzdOMs0hQ4aguLgYxcXFGDJkiOQyvXv3FvWLOW3atJAamwcPHsS8efNw1113CfMGDBiAkSNHqn6vLVu2iKZbtGihug4RkdoLEyIiIiIiIiI38tXo5/VGjx6Nb775Bq+88gqAusDm0KFDUVxcjJSUFGzZsgUHDhwQls/IyMCjjz6KmBjjuysQCODBBx/ExIkTcfjwYZSVleG6665Dbm4u8vPzUVZWhq1bt6KiokJYp2PHjvjrX/+qKf3gEdoBIC0tzXBeicg/GNIkIiIiIiIiL/JdTc169957L6ZMmYLY2FgAQE1NDdavX4+vvvpKFNAsLCzE888/j4KCAtPbbNOmDZ599lm0bNlSmLd7926sXr0aGzZsEAKagUAAY8aMwfPPP4/U1FRNaQcPZhQXF4f4eI5iR0TqWFGTiIiIiIiIvMiXNTWBusDhtGnTMGrUKCxevBiffPIJdu/ejfLycqSnp6N9+/YYNmwYRo0ahbi4OMu226FDByxfvhxLly7Fu+++i/Xr16OsrAwJCQlo0aIFzjjjDFx00UW6ByQ6fvy48Jm1NImIiIiIiIiIKJL5NqhZr7CwENOnT8f06dMNp7Fq1Spdy8fHx2PChAmYMGGC4W02NHv2bMyePduy9IjIH1hRk4iIiIiIiLzIt83PiYiIAwURERERERGRNzGoSUTkY4xpEhERERERkRcxqElERERERERERESewqAmEZGPsaImEREREREReRGDmkREPsY+NYmIiIiIiMiLGNQkIvIxhjSJiIiIiIjIixjUJCIiIiIiIiIiIk9hUJOIyMfY+pyIiIiIiIi8iEFNIiIfC7ABOhEREREREXkQg5pERD7GmppERERERETkRQxqEhERERERERERkacwqElE5GOsqElERERERERexKAmEZGPsfk5EREREREReRGDmkREPsaBgoiIiIiIiMiLGNQkIiIiIiIiIiIiT2FQk4jIx9j8nIiIiIiIiLyIQU0iIh9jUJOIiIiIiIi8iEFNIiIiIiIiIiIi8hQGNYmIfIwDBREREREREZEXMahJRORjbH5OREREREREXsSgJhGRjzGmSURERERERF7EoCYRERERERERERF5CoOaREQ+FmD7cyIiIiIiIvIgBjWJiHyMIU0iIiIiIiLyIgY1iYh8jBU1iYiIiIiIyIsY1CQiIiIiIiIiIiJPYVCTiMjHAmyATkRERERERB7EoCYRkY+x+TkRERERERF5EYOaREQ+xqAmEREREREReRGDmkREREREREREROQpDGoSEfkYK2oSERERERGRFzGoSUTkYwG2PyciIiIiIiIPYlCTiMjHGNIkIiIiIiIiL2JQk4iIiIiIiIiIiDyFQU0iIh9j63MiIiIiIiLyIgY1iYh8LMAG6ERERERERORBDGoSEfkYa2oSERERERGRFzGoSURERERERERERJ7CoCYRkY+xoiYRERERERF5EYOaRERERERERERE5CkMahIR+Vit0xkgIiIiIiIiMoBBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIyMdq2akmEREREREReRCDmkREPlbLoYKIiIiIiIjIgxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIfY5+aRERERERE5EUMahIREREREREREZGnMKhJREREREREREREnsKgJhEREREREREREXkKg5pERD7GLjWJiIiIiIjIixjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIfKy2lr1qEhERERERkfcwqElERERERERERESewqAmEREREREREREReQqDmkREREREREREROQpDGoSEfkYe9QkIiIiIiIiL2JQk4iIiIiIiIiIiDyFQU0iIp/ITIwNmZcWH+NAToiIiIiIiIjMYVCTiMgnnp7QTTTdpWka2manOJMZIiIiIiIiIhMY1CQi8okR7ZvgwfPaoU3jZJzZOgsvXXqa01kiIiIiIiIiMoTtDomIfCIqKoAZQ9pixpC2TmeFiIiIiIiIyBTW1CQiIiIiIiIiIiJPYVCTiIiIiIiIiIiIPIVBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT2FQk4iIiIiIiIiIiDyFQU0iIiIiIiIiIiLyFAY1iYiIiIiIiIiIyFMY1CQiIiIiIiIiIiJPYVCTiIiIiIiIiIiIPIVBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT2FQk4iIiIiIiIiIiDwlxukMOG3Lli14+eWXsXr1auzcuRNVVVXIyclBUVERRo4ciXPOOQcxMdbvpk8//RTLly/H2rVrsXfvXlRXVyM7OxvdunXDqFGjMHDgQN1pnjx5EitWrMDKlSvx008/Yf/+/QgEAsjJyUG3bt0wevRo9OnTx/LvQkREREREREREFE6+Dmo+9thjWLBgAaqqqkTzS0pKUFJSgvfeew+dOnXCvHnzUFBQYMk29+zZg1tuuQVffvllyN927tyJnTt3Yvny5ejWrRvmzJmD1q1ba0r3448/xj333IOdO3eG/G379u3Yvn073njjDQwaNAhz585FRkaG2a9CRERERERERETkCN82P589ezbmz58vBDRjYmLQsWNHnH766cjMzBSW+/HHH3HZZZehtLTU9Da3b9+OsWPHhgQ0CwsL0atXL7Rq1UqY9+2332Ls2LH4+uuvVdNdtmwZrrnmGlFAs1mzZujZsyc6dOiA6OhoYf4HH3yAK6+8EsePHzf9fYiIiIiIiIiIiJzgy6DmW2+9heeee06YPvfcc/Hhhx9iyZIleOGFF/Dxxx/jvvvuQ2JiIgBg//79mDp1Kmpraw1vs7y8HFOmTMG+ffuEeYMGDcI777yDN998EwsXLsTbb7+N5cuX4/TTTwcAHDt2DH/84x+xe/du2XTXrFmDGTNmoLq6GgBQXFyMF154Ae+//z6ee+45LF26FB988AFGjBghrPO///0P//d//2f4uxARERERERERETnJd0HNyspKzJ07V5gePHgwHnnkETRu3FiYFxsbi/Hjx2P+/PlCf5rr1q3D8uXLDW/3hRdewNatW4Xpiy++GAsWLEB+fr5oubZt2+Lpp59Gv379AABlZWW4//77JdOsrq7GrFmzhIBmt27d8PzzzwtB0Xo5OTl4+OGHMXjwYGHeyy+/jKNHjxr+PkRERERERERERE7xXVDz3XffxS+//AKgrsn5zJkzERUlvRv69++P8ePHC9NPP/204e2++OKLwueCggLMnDkTgUBActm4uDjMmTMHcXFxAICVK1di06ZNkt9l8+bNAIDExET87W9/Q1pammwebr31VuFzeXk5vvjiC0PfhYiIiIiIiIiIyEm+C2q++eabwue+ffuiWbNmissHBzXXrVuHkpIS3dvctm2bqE/OK664ArGxsYrr5OTkiGpWStUSXbJkifD5D3/4g+p3KSwsxB//+EdMmTIF06dPR/PmzbV+BSIiIiIiIiIiItfw1ejntbW1WL16tTBd38RbSXFxMbKzs4W+MFetWoXLL79c13a3b98umu7Vq5em9Tp16oS3334bAPDVV1+J/nbixAl8/vnnAIBAIIBx48ZpSvNPf/qTpuWIiIiIiIiIiIjcylc1NUtLS3H48GFhulOnTprWKy4uFj7/8MMPurcbvE0AaNKkiab1MjIyhM/r168X/e3HH39ERUUFACA/P19zmkRERERERERERF7nq5qa27ZtE023bNlS03rBzbR37Nihe7v1o6jXq6ioCJkn5dixY8Ln48eP49ChQ0Kg86effhL+VlRUJHzevHkzlixZgk8++QS7du1CVVUVcnNz0a9fP4wfPx5t27bVnX8iIiIiIiIiIiI38VVQs74JOQBERUWJRjxXkp2dLZmGVk2bNhVNr1+/Hr1791Zdr2HtzH379glBzeC+PZs0aYKTJ0/ikUcewTPPPIOamhrRelu3bsXWrVvx4osv4sorr8TNN98sOzgSERERERERERGR2/kqqFlWViZ8Tk5O1hzYS0lJkUxDq3bt2iEtLU1ohr5o0SLVoOaRI0fw3nvvieaVl5cLn/fv3y98jouLw4033oj3338fABAdHY22bdsiPT0du3btEmqXVldX41//+hdKS0vxt7/9TXb09XCoqqpybNtWqK6uVpwmIu14PhFZh+cTkTV4LhFZh+cTkXV4Pon5Kqh58uRJ4XNCQoLm9eLi4oTP9f1Y6hEdHY0LL7wQCxcuBFA3kvmgQYMwcuRIyeVra2sxa9YsHD16VDQ/eNvB/XQuWrRImL744otx4403imqhrl+/Hvfccw++/fZbAMB///tfdOjQAZMnT9b9XaxQU1OD7777zpFt2+XHH390OgtEEYPnE5F1eD4RWYPnEpF1eD4RWcfv55Ov2iBXVlYKn/U0v46JORX7NVrDcPLkyaKBf2677TY8/PDDITU/t2/fjilTpmDFihVISkoS/S04z1IBzmnTpuH+++8PaVbfvn17LFy4ED169BDmPf744zhw4ICh70JEREREREREROQkXwU1o6Ojhc8N+51UEhzIjI2NNbTt7OxsPPLII4iPjxe2/89//hN9+/bFmDFjcPnll2P48OEYOnQoPvjgA8TExGDevHmiNOrXBRDSdPz000/HlClTZLcfHx+Phx56SAiMlpeXY/HixYa+CxERERERERERkZN81fw8eMTx4KboaoJrRQYHFvXq06cPnnvuOUybNg2lpaUA6gKm69atEy2Xl5eHOXPmoLCwUDQ/OTlZ+NywFuell16quv38/Hz06dMHn376KQDg008/DVsT9IZB5EgYqCj4O0XC9yFyEs8nIuvwfCKyBs8lIuvwfCKyTiSdT8HfRU/lw3q+Cmqmp6cLn48dO4ba2lpNg+UE920Z3ITciK5du+Ktt97C0qVL8c4772DDhg0oKytDVlYWCgoKMGLECJx//vlITEzE5s2bResGj8IeHOAEgNNOO03T9rt16yYENbdu3Wrqu5hh5GB1s0j7PkRO4vlEZB2eT0TW4LlEZB2eT0TW8fv55KugZpMmTYTP1dXVOHjwILKyslTX27dvn/C5YX+VRsTFxWH8+PEYP3684nIbN24UPqenp4sCmZmZmaJltXwPAGjUqJHw+eDBg5rWISIiIiIiIiIichNfBTXz8/NF0yUlJZqCgTt37hQ+t27d2vJ8yQkexaq4uFj0tzZt2oimjxw5oum7BA+WFDwAUrh5vYo0EREREREREREZZ7amqa+Cmnl5ecjIyMChQ4cAAOvXr0fXrl1V19uwYYPwuV27doa3f/ToUezduxeNGjUSNYWX89FHHwmfG+azYZDz559/1hTU3LNnj/A5NzdXdXmrBI+8TkREREREREREZIbvqsv16tVL+PzZZ5+pLr9hwwbs379fmO7du7eh7U6aNAk9evTA8OHDsWTJEtXlN27ciE2bNgnTgwcPFv29ffv2ov49V65cqSkfX331lfC5U6dOmtYhIiIiIiIiIiJyE98FNYcOHSp8fv/990U1F6W89NJLwufCwsKQGpJaBTcX1xKAfOKJJ0TrNhwIKDY2Fueff74w/dprr+HXX39VTPO7777DDz/8IEwH7wsiIiIiIiIiIiKv8GVQMycnBwBQUVGBGTNmoKqqSnLZjz/+GIsWLRKmL7vsMsPbHT58uPB5zZo1wgjkUhYvXow333xTmJ4yZYrkKO2TJk1CbGwsAKCsrAx33nknKioqJNM8fPgw7rjjDmG6efPmGDJkiO7vQURERERERERE5DTfBTXj4uJw0003CdOfffYZrr76apSUlAjzqqqq8Oqrr2Lq1Kmorq4GABQVFWHcuHGSaQ4ZMgTFxcUoLi6WDRT27t1b1C/mtGnTQmpsHjx4EPPmzcNdd90lzBswYABGjhwpmWabNm0wZcoUYfr999/HVVddJRpgCAC+//57XHLJJdi8ebMw74477nB0oCAiIiIiIiIiIiKjArW1tbVOZ8IJM2fOxCuvvCJMR0VFobi4GCkpKdiyZQsOHDgg/C0jIwMvvfQSCgoKJNMaMmQISktLAdQNRrRq1SrJ5TZv3oyJEyfi8OHDwrzc3Fzk5+ejrKwMW7duFdW07NixI5599lmkpqbKfo/q6mrceeedWLp0qWh+ixYt0LRpU+zduxfbtm0T/e3aa6/FjTfeKJsmERERERERERGRm/k2qFlbW4tHHnkETz31FCorK2WXKywsxKOPPoq2bdvKLqM1qAkA//vf/3DjjTdix44dsssEAgGMHj0ad999N5KSkjR9lyeffBJPPPEEjh8/LrtcYmIibr31VlxyySWqaRIREREREREREbmVb4Oa9bZs2YLFixfjk08+we7du1FeXo709HS0b98ew4YNw6hRoxAXF6eYhp6gJgCcPHkSS5cuxbvvvov169ejrKwMCQkJaNGiBc444wxcdNFFhgYk2rNnD9544w28//77KCkpwaFDhxAfH4/CwkIMGDAA48ePR3Z2tu50iYiIiIiIiIiI3MT3QU0iIiIiIiIiIiLyFt8NFERERERERERERETexqAmEREREREREREReQqDmkREREREREREROQpDGoSERERERERERGRpzCoSURERERERERERJ7CoCYRERERERERERF5CoOaRERERERERERE5CkMahIREREREREREZGnMKhJREREREREREREnsKgJhEREREREREREXkKg5pERERERERERETkKQxqEhERERERERERkacwqElERERERERERESewqAmEREREREREREReQqDmkREREREREREROQpMU5ngMhLtmzZgpdffhmrV6/Gzp07UVVVhZycHBQVFWHkyJE455xzEBPD04oiz+rVq7FixQp888032Lt3L44ePYqUlBQ0bdoUp59+OsaMGYMOHTpoTu/777/HokWL8NVXX2HPnj2ora1FkyZN0LFjR1xwwQUYMGAAAoGA5vRqa2uxcuVKLFu2DD/88AN+/fVXJCYmokmTJujduzfGjh2Ldu3aGfnqRGFz++23Y8mSJQCAhx56CGPGjNG0nh33ps8//xyvvfYavv32W+zduxcxMTHIzc1F9+7dMXr0aJx++um6vx+RHaqrq/HOO+/g3XffxY8//oh9+/ahuroajRs3RqdOnTBy5EicddZZiIrSVpeD9yfyq//9739YtGgR1qxZg927d6O8vBzp6ekoKCjAmWeeifHjxyM9PV1zejyXyC8effRRPP7448jLy8OqVat0rWt1eauiogIrVqzAf//7X/zvf//DoUOHhGe2AQMGYOzYsWjZsqWuNA8cOIBFixbhgw8+wNatW3Hs2DFkZWWhZcuWOPfcczFq1Chd1warBWpra2sd2zqRhzz22GNYsGABqqqqZJfp1KkT5s2bh4KCgjDmjMg+O3fuxPTp07FmzRrVZc8//3zcd999SElJkV2msrIS999/P1555RXFtPr374+HHnoIOTk5qtvds2cPpk2bhq+//lp2mUAggCuuuAI33XQT4uLiVNMkCrcPP/wQkydPFqa1BjWtvjcdPXoU06dPx8qVKxWXGzVqFGbOnInU1FTVNIns8v333+Puu+/Ghg0bFJfr1q0b/vrXvyIvL092Gd6fyK9OnDiB++67D6+99pricsnJybjvvvswYsQIxeV4LpGffP/995g0aRIqKyt1BTXtKG9t2bIFN954IzZt2iS7TGxsLG644QZcffXVml4qrFy5EnfeeScOHToku0x2djYeeOABDBw4UDU9OzCoSaTB7Nmz8dxzzwnTMTExKC4uRmJiIrZs2YKDBw8Kf2vcuDFeffVVxYIzkRds27YNEydOxIEDB4R5sbGxKCoqQmpqKn799Vds3rwZwbeRdu3a4YUXXpAMbNbW1uL6668X3bzj4+NRXFyM6OhobNq0CUePHhX+VlBQgFdeeQVpaWmyeTxw4ADGjx+PHTt2CPMyMjLQpk0blJeX46effhIFe84//3z89a9/1b8ziGx05MgRnH/++dizZ48wT0tQ0+p708mTJ3HZZZfhu+++E+YlJyejqKgI1dXV2LhxI06cOCH87YwzzsC///1vPjySIz7//HNce+21OH78uDAvOzsbLVu2RGVlJdavX4/Kykrhb3l5eXj55ZclAyi8P5FfVVRUYPLkyfj888+FedHR0SgqKkJaWhpKS0uxc+dO0Tr33HMPJk6cKJkezyXyk5KSEkycOBH79u0DAM1BTTvKWz///DMmTpwoKvtlZ2ejdevWOHToEDZt2iR6Zrv66qtxyy23KObzrbfewk033YTq6mphXuvWrZGdnY3S0lKUlpYK86Ojo/H4449j0KBBqt/fcrVEpOi///1vbVFRkfBv6tSptfv27RP+XlFRUfvyyy/Xdu3aVVhm9OjRtTU1NQ7mmsicqqqq2hEjRgjHdPv27Wv/7//+r/bIkSOi5Xbv3l172223ic6RG264QTLNf/3rX6Ll7rnnntrDhw8Lfy8vL6994oknajt06CAsc9111ynmc/LkycKynTt3rn3xxRdrKysrhb/v3bu39k9/+pNou88++6yJPUNkvRkzZoiO0aKiotrXXntNcR077k333nuvsGxxcXHt/Pnza8vLy4W/l5WV1c6ePVu03QcffND8DiDSadu2bbXdunUTjsNBgwbVrlq1SnR8Sx2v119/vWR6vD+RX82fP190DF5zzTW1v/zyi2iZL7/8snbw4MHCMh06dKjduHGjZHo8l8gvfvrpp9ozzzxTdNwNHjxY07pWl7eqqqpqR40aJSx7xhln1P73v/8V3RN37NhR+7vf/U6U5sqVK2XT3LFjh+g+O2LEiNp169aJlvn8889F14bu3bvX7t69W9M+sBKDmkQKKioqagcNGiS60VdXV0su+/HHH4tu0MuWLQtzboms8+qrr4puem+88Ybi8g899JBo+W+++Ub0919//bW2e/fuwt9nzZolm9bixYtFaX399deSy3300Uei5VasWCGbZnDgtVevXiHBWSKnfPDBByEBTbWgph33pk2bNtW2b99eWO6f//yn7PYfffRRYbmOHTvWlpSU6PvSRCZdddVVwjE4dOjQkCBMsPvuu0/08Pjzzz+L/s77E/nVyZMna0877TTh+Lv88strq6qqJJctKSmp7dGjh7DstGnTQpbhuUR+8frrr4teGusJatpR3nrppZdELx3kzqeKiorayy+/XFh2+PDhsuf8tGnTRN/r119/lVxu165dtf379xeWveuuu1T2gPU4+jmRgnfffRe//PILgLpmfTNnzpTtaL5///4YP368MP3000+HJY9EdnjjjTeEz/3798eoUaMUl7/ppptETfpWrFgh+vvixYtx7NgxAHVNhm677TbZtMaOHStquiB3Lj377LOiPJ533nmyac6aNQuNGjUCABw8eBBLly6V/zJEYXL48GHcddddAOq6dkhMTNS0nh33pueee05oXlRQUIDf//73stu//vrrUVRUBKCu77Tnn39eU76JrPDDDz/gk08+AQBERUVh3rx5aNq0qezyN954o9Bkr7a2Fh988IHo77w/kV99++23oqbgN954I6KjoyWXbd68OSZNmiRMf/DBB6KmrADPJYp8e/bswfTp03HbbbehvLzcUBp2lLcWLlwofB47dixOO+00yeViY2Mxd+5cxMbGAqjrg/PDDz8MWW7Pnj14++23hembbroJWVlZkmnm5ubizjvvFKaXLFmi2P+mHRjUJFLw5ptvCp/79u2LZs2aKS4f/OC4bt06lJSU2JY3IrtUVFRg7dq1wrRah/AAEBcXh/79+wvTP/zwg+jv//3vf4XPw4cPR1JSkmJ6wefSRx99JOozDQDKysrw2WefCdNjx45VTC8pKUkUmH3rrbcUlycKhwcffBB79+4FAEyePFm2wNiQ1femmpoaUeF1zJgxiiNFR0VF4eKLLxamg9clstuSJUuEzxdeeCG6dOmiuHxaWhpuvvlmTJ48Gbfeeis6d+4s+jvvT+RXu3fvFk137NhRcfmuXbsKn48dOybquw/guUSR7YknnsCwYcPw+uuvC/MKCgowZcoUzWnYUd7asGEDtmzZIkxfdNFFinlo0qQJBg8eLExLnSdvv/220E9tamoqzj33XMU0zznnHKEMW1VVpTr4kdUY1CSSUVtbi9WrVwvT/fr1U12nuLgY2dnZwrTW0c+I3KS0tBTx8fHCdGFhoab1MjIyhM/BBd1Dhw5h/fr1wnRw8FNO7969hdoCJ06cEBVqAeDLL78U3nIGAgFN52fwMmvXrkVZWZnqOkR2+eCDD4RaJEVFRZoLxXbcmzZs2CA6Z7Wco8Hb/eWXX1RHnyaySnBNy+CHPSVXXHEFbr75ZvzhD39Ajx49hPm8P5GfNRxNub6WpZzgwXgAiMqKPJco0j311FOiwPu4ceOwaNEi5Ofna07DjvLWF198IXxOT08PeXGnlqZUrevggcN69uwp1OyUEx0djT59+gjT77//vmoerMSgJpGM0tJSHD58WJju1KmTpvWKi4uFzw1rqxF5QevWrfHNN99gzZo1WLFihdDsQU3wCHjp6enC559++kl0s1SrCQDUvW1v2bKlMN3wXAq+oTdv3ly0PTnt2rUTPtfU1GDdunWq6xDZ4fDhw7j77rsB1DUff+ihhzSPIG7HvSn4fIqNjUXbtm1V02vdujUSEhJk0ySyw+7du4WuFxITE1Vraarh/Yn8rE2bNqLpjz/+WHH5Tz/9VPjctGlTJCcnC9M8l8gvOnXqhOeeew6zZ89GSkqKrnXtKG8Fp9m+fXsEAgHVNIPPk7KyMuzYsUP0959++kn4rOVcbphmuMuEDGoSydi2bZtoOvimq6R58+bC54YXCCIvSU1NRZs2bUQ3UjlHjx4VFXaDa3cGn0txcXGKfZ8FUzqXgtPU+oY0Oztb9F22b9+uaT0iq82ePVtodv773/9ec2ASsOfeFJxmXl4eYmJiVNMLBAKiZu88nygcgh+0CgoKhFpeO3fuxPz58zF27Fj07t0bXbt2xTnnnIM777wT33zzjWx6vD+Rn7Vo0ULUr+UjjzyC/fv3Sy67Zs0aUdcPwf1rAjyXKPL17NkTf//737F48WL07NnTUBp2lLeMnCfB513DNCsqKoSXh0bT3LNnD06cOKFpPSswqEkkY9++fcLnqKgoNG7cWNN6wU38gtMgimRPPfWUqLP54L5ags+D4PNDjdK5VB8Q0ptmfQfyUmkShcOqVauEgbgKCwtx/fXX61rfjntT8HTwgF9qgrfN84nCITjokZOTg5qaGjz55JM477zz8Nhjj+HHH3/EwYMHceLECezYsQOLFy/GhAkTMGPGDJw8eTIkPd6fyO/uuOMO4VpeWlqKiy66CEuWLMH+/ftRVVWFkpISLFiwAL///e9RWVkJAOjQoQMuvfRSUTo8lyjSPf744zj77LM11YSUY0d5y8h5kpWVJRoULDjNffv2iWpda02zYXk0nOeeemiYyKeC+2BJTk5W7MQ3WHA1dPbjQn7w/fff48knnxSmW7VqhSFDhgjTwSPgNey/SYnSuRQ8rSfN4GWDm/AShUNZWRlmzpwJoC4gqafZeXAa9ay6Nxk9R4OX5f2OwiG4FllSUhLuv/9+vPjii8K8Nm3aoFGjRti/f79o4ISlS5dix44deOaZZ0TnHO9P5Hf5+fl47bXXMHv2bKxcuRK7du3C7bffLrlsIBDAqFGjcPfdd4cMAsRziUidHeUtI+dJVFQUkpKScOTIEQDi86Rh+mlpabrz2DBNu7GmJpGM4Df6Wprf1gsuLFdUVFiaJyK32blzJ6699lrh7T0AzJgxQ9ScIvg8sOpcsuL8lKq1Q2Sn2bNnC2+ur7jiCtFIslrZcW+y4xwlskPwQ9LHH38sBDTPPvtsrFy5EitWrMDChQvx5ptvYuXKlRg4cKCw/Ndff43Zs2eL0uP9iaiu1taAAQNUm5n269cPV199tWTghOcSkTovnCcNz5ngAcG0pieVjp0Y1CSSERyk0VoTBoAomNNwlECiSLJr1y5cfvnlouYFV1xxhajpOWDPuRQ8rSfN4KYWPD8pnN577z0sW7YMQF1t5htvvNFQOnacT0bT5PlE4Rb8MFcf4Bw/fjzmz5+PFi1aiJZt0aIFFixYgGHDhgnzXn31VWzcuFGY5v2J/G7Dhg0YMWIE7r77bqFvvvj4eHTu3Bm9evVCq1athGU/+eQTXHDBBZg7d65l9xGeS+QndpS3gqeDlzOaZsP0tabZcLnq6mrNeTGLQU0iGcEnZk1Njeb1gi8EsbGxluaJyC22bNmCiRMnYufOncK8/v3745ZbbglZ1o5zyWiawTdYnp8ULocOHcKsWbMA1DXfe+CBB3S9TQ/G84n8rGFfZi1atMBdd90l28dZVFSUaITa2tpaPP/888LfeT6Rn5WUlODyyy8XBglJSEjA7bffji+//BKLFy/GwoUL8fbbb2PlypU477zzANQdp//+978xffp0UVo8l4jU2XFMB6epJ5AYvGxwLcuGwVataTZcLpznHoOaRDISExOFz3qqTwfXItBaXZvIS9auXYtLLrkEu3btEub17t0b8+fPl7yBBQdv9JxLwcs2PJfsSJPILsHNzi+99FKcfvrphtOy497E84m8omE/fhMmTFDtlzY1NVUIyADAZ599Jnzm/Yn87L777hP6+IuPj8fTTz+NK664IuSlW4sWLfC3v/0NU6ZMEeYtX74cy5cvF6Z5LhGpc+t5EnwfDS5nAtq7FzLabN0KDGoSyUhPTxc+Hzt2TDQKmJLgEaAzMjKszhaRo/7zn//g8ssvx8GDB4V5AwcOxD/+8Y+Qm2C94PMg+PxQc+zYMck0APH5qSdNnp8UbitXrsR//vMfAHUPhjfddJOp9Oy4Nxk9R3k+UbglJyeLpk877TRN63Xr1k34XFJSIjyk8f5EflVSUoKPPvpImJ4yZYrq+TRt2jRRX9D/+te/hM88l4jU2VHeMnKe1NTU4Pjx45JpBqenJ82Gy4Xz3GNQk0hGkyZNhM/V1dWiII6S4P4FGzdubHm+iJzy2GOP4ZZbbhG9sRs1ahQef/xxxaa0wefSr7/+qnl7SueS0TSDl83Ozta8HpERhw4dwj333AOgrtns7NmzQ2qa6WXHvSknJ0f4rOd8Ch6JmucThUNmZqZoOisrS9N6jRo1Ek3X107j/Yn8as2aNaLpiy66SNN6EyZMED6vX79eOG55LhGps6O8ZeQ8OXDggKj5e3Ca2dnZoibowdvWmsdAIBBy37VTjPoiRP7UcATAkpISTYXn4D4GW7dubXm+iMKtsrISd955J9544w3R/GuuuQbTpk2T7cusXvC5dPz4cezfv19TwL+kpET43PBcCu64fseOHappAcDevXtx4sQJyTSI7PDKK68ID2yJiYl48skn8eSTT8ouH1wgfPrpp7FixQpheu7cuWjcuLEt96bgc2Hnzp2ora1VPa9ra2tRWloqmQaRXdq2bSuaDh4NXUnDgQ/qByfh/Yn8au/evcLn9PR0UbBFSbt27UTTpaWlaNSoEc8lIg3sKG+1atUKa9euBaD9PAk+7xqmGRcXh6ZNmwrbNJJms2bNVLuGsRKDmkQy8vLykJGRIbzNX79+vajJhZwNGzYInxve+Im8pqKiAlOnTsUHH3wgzIuJicE999yDcePGaUqjQ4cOCAQCQjPZ9evX48wzz1Rc59ixY6KbaMNzqWPHjsLn7du3o7y8XLb5e73169cLnwOBAIqLizXln8io4FrNx48fxyeffKJ53Y0bN4pGaa5/SLPj3hR8PpWXl+Pnn39GQUGBYnpbt24V9Z/Uvn171TwQmdXwur1t2zZ06dJFdb3du3cLnxMSEoRmcbw/kV8FBxyCR2RW03AQkfqADM8lInV2lLc6duyIJUuWABCX9ZQEnyfp6enIy8sT/b1Tp05CUNNImuEuE7L5OZGCXr16CZ+DO5aXs2HDBlFNm969e9uSL6JwqKqqwg033CAKaCYnJ+Mf//iH5oAmAKSkpKBDhw7CtJZz6YsvvhCaRURHR6Nnz56iv/fo0UOoaVNdXY3Vq1erphm83Q4dOoT0GUPkFVbfm9q2bSuq7fn555+rpvnpp58KnzMzM/ngSGGRlZUlOtZWrlypab2vvvpK+NyhQwchMMP7E/lVbm6u8Pn48eP4+eefNa23ZcsWyXR4LhGps6O8FXze7Nu3D5s2bVJNM/g8CS5TSqW5evVq1ZHaG56f4Y6BMKhJpGDo0KHC5/fffx979uxRXP6ll14SPhcWFvIhjzxt3rx5eP/994XprKwsPPfcc+jfv7/utM4991zh87Jly1BeXq64fPC51LdvX6SlpYn+npaWJrphvvzyy4rpHTt2DMuWLROmhw0bpinfRGZMnToVP/30k+Z/wW/KH3roIdHfmjdvLvzN6ntTIBDAOeecI0y/+uqrigXYmpoavPrqq8L0ueeeq9p8isgqF1xwgfB51apV2Lx5s+Lyu3btwnvvvSdMB58/AO9P5E+9evUS1bp85ZVXNK332muvCZ/btm0r6ouP5xKRMjvKW0VFRaKuG9TOk127dokqrAwfPjxkmbPPPhvR0dEA6rpGevfddxXTfPvtt3HgwAEAdS36Gt5n7cagJpGCoUOHCn3MVFRUYMaMGSH9MtX7+OOPsWjRImH6sssuC0seiezw4Ycf4tlnnxWm09PTsXDhQlGzCT3Gjh0rNBnav38/7rvvPtllFy1ahI8//liY/t3vfie53CWXXCJ8fv/994WmF1Luuece4WablJSkuUN8Ijey4940adIkoaC8YcMG/P3vf5fd/qOPPirUBIiKiuL9jsJq9OjRQu2ryspKzJgxA0eOHJFctqKiAtOnTxea16akpGDMmDGiZXh/Ij/KysoSBSEXLlyoWmvsueeeE9UaGz9+vOjvPJeI1NlR3go+T15++WXZmtKVlZWie2KzZs1w9tlnhyyXm5uLs846S5h+4IEHZF+g79q1Cw8++KAwPXToUNHgReHAoCaRgri4ONx0003C9GeffYarr75a1BFuVVUVXn31VUydOhXV1dUA6t6Y6GmeS+Qm1dXVeOCBB4R+kQKBAB5++OGQARr0aNy4Mf7whz8I00uWLMHNN98sGqXvxIkTWLBgAWbNmiXMGzBgAAYMGCCZ5pAhQ0RNJu6++2784x//EPU7s3//fkybNk305v7aa6/VPGIukRvZcW9q164dRo8eLUzPnz8fDz74oChYdOTIETzwwANYsGCBMG/8+PFo06aNZd+NSE1WVhZuv/12YfqHH37ApEmT8MUXX4iW27p1K6666ipRk7g//elPIc1ReX8iv7rllluE2pHV1dW4+uqr8fe//10IDNbbt28f7r33XsyePVuY17FjR0ycOFG0HM8lInV2lLfGjx8v1NasqqrCddddh0WLFoleeJeUlOAPf/iD6J546623yg7oM23aNMTHxwMA9uzZg0mTJuHLL78ULbN69WpccsklwqCYSUlJovJpuARq659aiUjWzJkzRc0yoqKiUFxcjJSUFGzZskV088/IyMBLL72k2ukvkVutWLFCdENKSkrCaaedpiuNxo0bY+7cuaJ59TfZ4CYPsbGxKC4uRlxcHDZt2iS6oTdv3hyLFi1SLJTu2bMHl1xyiSiYk5qairZt26KiogI//fSTqAP8wYMH4/HHHw/p6J7IDYYMGSJ0zP7QQw+F1ChryOp709GjR3H55Zfjxx9/FOYlJiYKzdV/+uknUXPCzp074/nnn0dCQoK+L0pkgb/97W+iBz6grnZJixYtUFZWJhpoC6hrtv7nP/9ZMi3en8ivVq9ejSlTpuD48ePCvNjYWLRu3RqZmZk4ePAgNm/eLGoim5+fj+eff15yxHSeS+Q3S5YsEV605eXlYdWqVarr2FHe2rhxIy677DJhIEmg7iVgYWEhjhw5go0bN4rO40suuQQzZ85UzOeyZcswffp00XotW7ZEbm4udu3aJTono6Ki8PDDD+O8885T/f5WY1CTSIPa2lo88sgjeOqppxRHCCwsLMSjjz5qqkYbkdOmTp2Kd955x1Qacjf1iooK3HvvvXjttdegdPvp3r07Hn30UU3NF3bt2oWbbroJa9euVVzuoosuwqxZs2TfSBI5TW9Q045705EjR3DbbbepFsoHDx6MefPmITU1VTVNIru89tprmDdvHg4ePCi7TExMDCZPnoypU6cqBjl4fyK/2rx5M2677TasW7dOcblAIIBhw4bhvvvuC+n/MhjPJfITI0FNwJ7y1k8//YSbb75ZcbCg6OhoXH311fjTn/6kqT/0t956C7NmzRIFSxtKT0/H/fffL+rSIpwY1CTSYcuWLVi8eDE++eQT7N69G+Xl5UhPT0f79u0xbNgwjBo1ijdR8rzzzz9fdeAFNWo39e+//x5Lly7FF198gT179qCiogJZWVno0qULRowYgaFDh+p6w15bW4t3330Xb775Jr7//nvs378fUVFRaNKkCXr06IGLL74Y3bp1M/WdiOymN6hZz4570+eff45ly5ZhzZo12L9/P6qrq9G4cWN0794do0ePNjRgGJEdysrKsGzZMrz33nvYunUrDhw4gNjYWLRq1Qp9+vTBxIkT0aJFC83p8f5EfvXhhx/i3Xffxdq1a7Fv3z4cP34cqampyMvLQ8+ePXHhhRfqGgSV5xL5gdGgZj2ry1tVVVX4z3/+g7fffhvr16/Hr7/+itjYWDRv3hy9evXChAkTdHcbdOjQISxatAirVq3C9u3bUVZWhqSkJBQWFmLgwIEYP368o909MKhJREREREREREREnsKOJoiIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT2FQk4iIiIiIiIiIiDyFQU0iIiIiIiIiIiLyFAY1iYiIiIiIiIiIyFMY1CQiIiIiIiIiIiJPYVCTiIiIiIiIiIiIPIVBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT4lxOgNERERE5G5DhgxBaWmp6XQWLlyIXr16WZAjIiIiIvI71tQkIiIiIiIiIiIiT2FNTSIiIiLSLCcnB0VFRYbWTU9Ptzg3RERERORXDGoSERERkWb9+vXDnDlznM4GEREREfkcm58TERERERERERGRpzCoSURERERERERERJ7CoCYRERERERERERF5CvvUJCIiIqKwmzFjBpYuXQoAWLBgAQYOHIiFCxfilVdewc6dO5GWloaCggIMGzYMl1xyScj6x44dw+uvv44PP/wQmzZtwq+//oq4uDhkZ2fj9NNPx/Dhw9G3b19defr888/x2muvYe3atdi7dy+Sk5PRsmVLDB8+HBdffDFSUlLw/PPP4/777wcAXH/99Zg6daoojSVLluD2228HAOTl5WHVqlWq2x0yZAhKS0sBAA899BDGjBmjuHxpaSmWLl2KTz75BDt37sShQ4eQkpKCZs2aoW/fvhg9ejQKCwsV03jssccwf/58AMDdd9+NSy+9FBUVFXjjjTfw1ltvYcuWLdi/fz9SU1PRunVrDBkyBOPHj0dqaqrq96n35ZdfYvny5Vi7di1KS0tRWVmJ9PR0FBUVYeDAgRgzZgzS0tJE69x333144YUXANQNLPXJJ58gLi5OdVvPPvssHnzwQQBAq1at8Pbbb2vOJxEREXkTg5pERERE5Li77roLr732mjC9f/9+7N+/H8XFxSHLLlu2DHPmzMGvv/4qmn/y5EkcOXIEW7duxauvvorevXtj7ty5yM3NVdz2r7/+iunTp+Pjjz8WzT906BAOHTqE77//Hi+++CL+7//+z8Q3NK+6uhqPPPIInnnmGVRUVIj+dvDgQRw8eBDr1q3Dv//9b1x88cW44447NAUEAWDDhg24+eabsXnzZtH8AwcO4MCBA/j666/x1FNP4S9/+Qv69eunmNaOHTtw55134ssvvwz5W/3v+tlnn2HBggWYPXs2zj77bOHvo0ePFoKaZWVl+Oijj0R/l/PGG2+I0iAiIqLIx+bnREREROSopUuXigKawUaNGiWanj9/Pm699VZRQLNZs2bo2bMnunbtipSUFGH+F198gXHjxmHLli2y2/71118xadIkUUAzNjYWnTp1wumnn46MjAwAQElJCX7/+98LNSrDraKiAtdccw3++c9/CgHNQCCANm3aoHfv3ujQoQNiYurqK1RXV+Oll17CFVdcgePHj6umvW3bNlxxxRVCQLNRo0Y444wz0LlzZyQlJQnLHThwAH/84x8V9+eGDRswbtw4UUAzNjYWHTt2xBlnnIHs7Gxh/sGDB3HDDTfgrbfeEuZ17twZRUVFwvSyZctU879lyxasW7cOABAVFYULL7xQdR0iIiLyPtbUJCIiIiJH1TcVPu+883D99dejadOm2Lx5M1auXIkuXboIy61YsQKPPfaYMN2jRw/cfvvt6Ny5szCvoqICy5cvx9y5c3Ho0CHs3bsX119/PRYvXozk5OSQbd9+++3Ytm2bMD1u3DjcfPPNyMzMBABUVlZi6dKleOihh3DgwAE888wzFn97bWbPni0KvI4bNw7XX3+9qBZqWVkZnnrqKTz55JOoqanB119/jZkzZ+Ivf/mLYtrPPfccAKBly5a46667MGDAAAQCAQDA0aNH8dhjjwnf++TJk3jsscfwyCOPhKRz/PhxXHfddTh06BAAIDo6GlOmTMGVV14para+cuVK3Hvvvdi7dy+qq6tx5513okePHkLAc/To0Zg7dy4A4P3338eRI0cUm72//vrrwue+ffuq1swlIiKiyMCamkRERETkuCFDhuCvf/0rCgsLkZSUhC5duuCmm24S/n706FHcc889wvRZZ52FhQsXigKaABAXF4cxY8bgxRdfRHp6OgBg69atePLJJ0O2+dlnn+HDDz8Upq+66irMnj1bCGgCdbUM/7+9+4/JqorjOP5BAVFR4oeahohTwCSnU9fa/K1JTMIcOBmUTIPsx4gMyi3bXNkPW6NIm+l0lMuEME3FcK0ZBaiIaTqjSNIIhCQNIzSGINAfjLvngs+PEoMn36/N7Tn33ufcc8C/PpxzvkuWLFFGRobc3d3V2traXVN22PHjx5WdnW20V61apVdffbVLeOfl5aWUlBRTiLl//34VFRXZfYe/v7927typWbNmGYGmJHl6euqFF15QRESEcS0/P7/L9ndJ2rZtm6qqqox2WlqakpOTuwSS999/vzZv3iwPDw9J7b/bjz76yLi/cOFCY9VpU1OTaSVnZ21tbdq/f7/Rjo6OtjtXAADw/0CoCQAAAIft2bNHISEh/+hfcXGx3X6ffPJJU5jW2a5du1RfXy9JGjRokF5//XUj+LqRMWPG6JlnnjHaWVlZamxsND2TlZVlfB45cqSeffZZq/1NnjxZSUlJdudxK2RkZBifp0yZooSEBJvPR0REKDw83Gi///77dt+RnJxsCnM7i42NNT43NDTo/Pnzpvutra2m4DUiIkILFiyw2l9oaKgiIyON9hdffGF89vPz04wZM4y2ZWjZWXFxsS5cuCCpPdR15PxNAADw/0CoCQAAgB41cOBA3XPPPTafsaxmPWfOHOOsS1siIyPVt29fSe1Ff06dOmXca25u1qFDh4x2VFSU3aI6cXFx6t+/v933dqfGxkbTtnNHi+BYnitZVFSka9euWX22T58+mjdvns3+xo4da2pfuXLF1P7hhx9UU1NjtC1DUGvi4+P1/PPP67333tPGjRtN9yzn+c0335j6tmRZICgiIsLhwkgAAMD5caYmAAAAHDZ06FBTIRdHdGwDtyY4OFh9+lj/W3tTU5NKSkqM9pgxYxx67+DBgxUQEKDy8nJJ0rfffqv77rtPUntxGcsiOlOnTrXb36BBgzR58mQdPnzYofd3h9OnT6u5udloOzp3y5C4ublZ3333ndU5+vv7mwos3cjgwYNNbcsxdYyzg5ubmyZOnGh3jMHBwVb/L3UE13V1dWptbdVnn32mxMRE0zONjY2msJuq5wAA3F4INQEAAOCwadOm6Y033ujWPn18fGzer6mpMZ3hmJ6ervT09H/8nt9++8343LmKeWBgoEN9hISE/KehZkVFhantyArIG7l48aLVe46seu1Y8dqh89miltvR77rrrpteMenu7q7IyEijiFFOTk6XUPPgwYP666+/JElBQUGmolIAAOD/j+3nAAAA6FH2Vgn++eef3fIey36uXr1qumerurYlW+dO3god54jerI6K5DfSUbDnZlj+PB39WdpjufLyzJkzKisrM9233HoeFRXVLe8EAADOg5WaAAAA6FG2tp5L0vXr103tCRMm2N3SfiOW50L269fPdK+trc2hPv7rMxs7z3369On/qp+hQ4d2x3CsslXk6d8KDQ1VSEiIzpw5I6m9YFBqaqok6ffffzdWzLq6umrhwoXd/n4AANC7EWoCAACgV+t8nuNTTz2luXPn3lSfnUPRK1euaMCAAXa/13mFpy2OBqW2ivh0nvv69evtrmztCZbj7FxE6GZERUVp3bp1kqTc3Fwj1Dxw4IBaWlokSTNnzpSfn1+3vRMAADgHtp8DAACgVxs2bJhpJeCFCxduus9Ro0aZ2mfPnnXoe5WVlTbvW46zczGdG2ltbbW5vX7YsGGmdnfM/VawHGd1dbVDc5ek7OxsFRQUqLy8/IbfiYyMlKurq9FvaWmppPbzNDtER0ffzNABAICTItQEAABAr+bp6amgoCCjffToUYe+19zcrNWrVys9PV3Z2dmm4HLEiBEaMWKE0S4qKrLbX1tbm06cOGHzGcvt6R1FbGyxFuZ1mDRpkikodXTuZ8+e1erVq7Vx40bt3btXly9fduh7/5ZltfOOauv2nD9/XmvWrNFjjz2m8PBwnTt3rsszvr6+mjlzptE+ePCg6uvrjd+Dj4+PZs2a1Q0zAAAAzoZQEwAAAL3e7Nmzjc95eXmmatvW7Nu3T7t379bmzZu1Zs2aLqFZeHi48fnTTz+1u7W8sLBQVVVVNp+xrCTe0NCgX3/91ebzubm5Nu/7+PiYAsMdO3Y4tApyy5Yt2r17tzZs2KDVq1d3qVbe3caPH2/aAv7JJ5/Y/Y7l3H18fBQcHHzD5yxXYn755ZfKz883zhpduHCh3Nzc/u2wAQCAEyPUBAAAQK/3yCOPGOHV9evXtXLlSpshZFVVldLS0oz28OHDNWfOHNMz8fHxRp+1tbVas2aN1fCvtrZWL730kt1xhoSEmFZWbt++3eqzP/74ozIyMuz2+eijjxqfy8vL9corr9g8rzMvL085OTlGOyws7JafOenq6qrY2FijvWfPHhUUFFh9vrq62jT3xYsXWy0YNWvWLPn4+EiSSktLtWPHDuOeZYV0AABweyHUBAAAQK83bNgwrVy50miXlJRoyZIlOnTokCnga2lpUU5OjuLi4vTHH38Y11etWtWlcvnw4cP13HPPGe3c3Fw98cQTXVaBFhcXKzY2VtXV1XbH6efnp8mTJxvtDz74QFu2bFFTU5NxrbGxUVlZWYqNjVVjY6NxZqQ1YWFhppWq2dnZevzxx7ucA3r16lVt2rRJycnJxs9kwIABSklJsTvu7rBs2TIFBgZKat+qn5SUpG3btqmxsdH03JEjR7R06VLV19dLkoYMGaLExESr/bq5uenBBx802idPnpTUXh193Lhx3TwLAADgLKh+DgAAAKeQmJio8vJy7dq1S5J07tw5JSQkyNfXV6NHj1ZTU5MqKiq6FN5ZsWKFFixYcMM+ly1bpp9//lnZ2dmSpPz8fBUUFCgoKEje3t6qqqoywkx3d3d5eXnp0qVLNseZkpKi+Ph4tbS0qK2tTW+99Za2bt2qMWPGqLm5WeXl5cZ5m+PHj9ekSZOUmZlptT8XFxe9+eabWr58ub7//ntjnPn5+QoICNCdd96puro6VVZWmgJENzc3paWlKSAgwOZ4u4unp6c2bNig5cuXq7a2VteuXdO6deu0fv16BQcHq1+/fqqoqFBNTY3xnf79++udd97pUo2+s+joaH344Yema1FRUbdkHgAAwDmwUhMAAABO47XXXtOLL76owYMHG9dqa2t1/PhxnT592hRoenp66uWXX1ZqaqrNPteuXavU1FR5eHhIal9lWFZWpuLiYiPQvOOOO/Tuu+9q9OjRdsc4depUvf3226Yx1tfX6+TJkyopKTECzdmzZysjI0MDBw6026eXl5cyMzMVExOjvn37GtcrKyt17NgxlZWVmQLNUaNGadu2bZo3b57dvrtTSEiIdu7cqSlTphjXGhoadOrUKRUXF5sCzcDAQG3fvl1Tp0612++4ceN09913G213d3fT6k0AAHD7YaUmAAAAnEp8fLwWLVqkvXv36vDhwyorK9Ply5fV2toqLy8vhYSEaMaMGXrooYfk7e3tUJ8rVqxQRESEdu7cqa+//lrV1dVqaWmRv7+/5s+fr4cffli+vr4OnYEptRchuvfee5Wdna2vvvpKFRUVamho0JAhQzRhwgQtWrSoyxmf9nh4eGjt2rVKSEjQvn37dPToUVVWVqqurk6urq7y8/NTaGio5s+fr7CwsC7b7f8r/v7+yszMVGFhoT7//HOdOHFCly5d0rVr1+Tt7a3Q0FA98MADioiI+EdjnD9/vkpLSyVJc+fONRVlAgAAtx+XNlunjAMAAAAwLF26VMeOHZMkJSUl6emnn+7hEd0+EhMTVVhYKEnKyMjQ9OnTe3hEAACgJ7H9HAAAAECvdvHiRR05ckSSNHLkSE2bNq2HRwQAAHoaoSYAAACAXu3jjz9WS0uLJCk2NlYuLi49PCIAANDTCDUBAAAA9Fp5eXnaunWrpPaCSTExMT08IgAA0BtQKAgAAABAr3HgwAFt2rRJPj4+qqmp0S+//GLcW7VqlTw9PXtucAAAoNcg1AQAAADQa/j7+6usrKzL9ZiYGC1evLgHRgQAAHojQk0AAAAAvcbo0aM1ceJE/fTTT3JxcdHYsWMVFxenRYsW9fTQAABAL+LS1tbW1tODAAAAAAAAAABHUSgIAAAAAAAAgFMh1AQAAAAAAADgVAg1AQAAAAAAADgVQk0AAAAAAAAAToVQEwAAAAAAAIBTIdQEAAAAAAAA4FQINQEAAAAAAAA4FUJNAAAAAAAAAE6FUBMAAAAAAACAUyHUBAAAAAAAAOBUCDUBAAAAAAAAOBVCTQAAAAAAAABOhVATAAAAAAAAgFMh1AQAAAAAAADgVP4GuqZ5jCjR59YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_source_dt.freq, pds_source_dt.power / model_source_corr, zorder=10, label=\"ratio\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"PDS / model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function is also used internally in some timing products, to easily correct the spectrum, through the method `deadtime_correct`. Please note that the example below works a little too well because, in our simulation, dead time is constant. In general, this correction is appropriate for relatively low values of _constant_ deadtime, while we recommend using the FAD correction from `stingray.deadtime.fad` for variable dead time and high count rates." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPYAAAQACAYAAABiT9ddAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3hUVf7H8c8kmfSE0HuTKkXAQlEUBbsiirirq9ixFyyroCh2UBH7rthWwa5YKBZAUYoI0ov0ngAhhfQ2mczvj/xyzWRu+tTM+/U8++zcM7ecjFyG+8n3nGNxOBwOAQAAAAAAAAgoIb7uAAAAAAAAAIDaI9gDAAAAAAAAAhDBHgAAAAAAABCACPYAAAAAAACAAESwBwAAAAAAAAQggj0AAAAAAAAgABHsAQAAAAAAAAGIYA8AAAAAAAAIQAR7AAAAAAAAQAAi2AMAAAAAAAACEMEeAAAAAAAAEIAI9gAAAAAAAIAARLAHAAAAAAAABCCCPQAAAAAAACAAhXn7ghMnTtTXX38tSZoyZYpGjx7t1vPn5ubqm2++0aJFi7R9+3ZlZ2crISFBbdq00YgRI3TZZZepRYsWbr0mAAAAAAAA4G1eDfZ+++03I9TzhDVr1uiBBx7Q4cOHndpTUlKUkpKiDRs2aMaMGZo0aZLbA0UAAAAAAADAm7wW7GVnZ+uxxx7z2PnXrFmjG2+8UQUFBUZb27Zt1bZtW6WkpGjv3r2SSiv6Jk6cqMLCQl111VUe6w8AAAAAAADgSV4L9p577jklJyd75Nw5OTkaP368Eeq1bt1aU6ZM0ZAhQ4x9tm7dqokTJ2rr1q2SpGeeeUYnnHCCevfu7ZE+AQAAAAAAAJ7klcUzPD0Ed8aMGTp69KgkKS4uTh988IFTqCdJxx9/vD766CN1795dklRcXKyXXnrJY30CAAAAAAAAPMnjwV5WVpYmTZokSbJarYqKinLr+QsLC/X5558b2+PGjVOnTp1M942NjdWzzz5rbC9fvlzbt293a38AAAAAAAAAb/B4sPfcc88Z1XS33HKLmjRp4tbzL1u2TJmZmZKkkJCQahfFqDj89scff3RrfwAAAAAAAABv8Giw9+uvv+qbb76RJHXv3l233Xab26+xYsUK43X37t3VvHnzao857bTTjNeLFy92e58AAAAAAAAAT/PY4hlZWVnGKrhhYWGaMmWKwsPD3X6d8kNpa7oQRs+ePY3XO3fuVGFhoSIiItzet4rWrFnjtB0S4pUpDgEAAAAAAOCHSkpKnLZPOumkWh3vsWDvmWeeMYbg3nTTTerTp49HrrN3717jdceOHWt0TLt27YzXxcXFSkxMVJcuXdzet+pU/I8HAAAAAAAA1JRHSsZ++eUXfffdd5KkLl266K677vLEZVRSUqL09HRjuybDcCWpWbNmTtspKSlu7RcAAAAAAADgaW6v2MvMzNTjjz8uqXSoqaeG4EpSdna27Ha7sR0fH1+j4+Li4py2s7Ky3NqvmmoIQ3HLVx02hJ8H8CXuJ8B9uJ8A9+BeAtyH+wlwn4Z0P9V3NKfbg71nnnnGqIC7/vrr1a9fP3dfwlBYWOi0XdN58ioGjRXP4ykhISFO/8Ea2lDchvbzAL7E/QS4D/cT4B7cS4D7cD8B7tOQ7qe6hJRujTV//vlnzZkzR5LUqVMn3Xvvve48vYvi4mKn7dDQ0BodV3G/8lV/AAAAAAAAQCBwW7CXkZGhyZMnS5IsFoueffZZRUZGuuv0puoa0FXcz2q1uq1PAAAAAAAAgDe4bShu+SG411xzjU4++WR3nbpSFYPDmg6presQXncKCQlR3759vX5dd7Lb7dq8ebOx3adPnxpXTQJwxv0EuA/3E+Ae3EuA+3A/Ae7T0O6nTZs21Ws4sVuCvUWLFmnu3LmSpPbt2+v+++93x2mrFRcX5zRvXU5OTo2Oq7hfQkKCu7tWI2Fhbp/i0KdCQ0Mb3M8E+Ar3E+A+3E+Ae3AvAe7D/QS4T7DfT/UeipuRkaEnnnhCUukQ3GeeeUbR0dH1PW2NhISEqHnz5sZ2WlpajY5LTU112m7WrJlb+wUAAAAAAAB4Wr0jzc8//9wYghsVFaV33nlH77zzTqX7lw/V/ve//2n+/PnG9vPPP1/rkK1jx45KTk6WJB04cKBGxxw8eNB4bbVa1bZt21pdEwAAAAAAAPC1egd7RUVFxuu8vDwtW7asxsfu2LFDO3bsMLYLCgpqff0+ffpo1apVkqRt27bV6JitW7car7t27criGQAAAAAAAAg4blsV11cGDhxovN6yZYuysrKqPeb33383Xg8ePNgj/QIAAAAAAAA8qd4Ve3fffbfuvvvuGu8/fPhwJSUlSZKmTJmi0aNH1+v6Q4YMUVxcnLKzs2Wz2fTVV1/pxhtvrHT/DRs26K+//jK2L7jggnpdHwAAAAAAAPCFgK/Yi4yM1JgxY4ztN954Q9u3bzfdNzs7W48++qix3b9/f/Xr18/jfQQAAAAAAADcza+DvQkTJqhHjx7G/xITE033u+WWW9SkSRNJUm5urq6//notXLhQDofD2Gfbtm0aO3asdu7cKal0OeQJEyZ4/ocAAAAAAAAAPKDeQ3H9QZMmTTR9+nTddtttKigoUHp6uu666y61atVKHTp0UFpamnbv3u10zAMPPKABAwb4qMcAAAAAAABA/TSIYE8qnWvvnXfe0cMPP6xDhw5Jko4cOaIjR4447RcZGamHHnpIV199tS+6CQAAADQoDodDJSUlvu4G4NfsdrvLtsVi8VFvgMDmy/spJCTE7+7dBhPsSaUr5H7//ff6+uuvtXDhQu3atUsZGRmKiIhQx44dddppp+nKK69U27Ztfd1VAAAAICA5HA7l5eUpKytLOTk5Ki4u9nWXAL9XfpooSdq9e7ffhQNAoPD1/RQWFqbY2FjFx8crOjra5/ey14O9X375pcb7Tp06VVOnTq3V+aOionT11VdTkQcAAAC4WVFRkQ4cOCCbzebrrgABJyysQdXVAD7ly/upuLhYGRkZysjIkNVqVYcOHRQeHu6z/vj14hkAAAAA/IPNZiPUA+rIYrEoLCzM+J+vK3yAQOZP91PZd2NRUZHP+sCvDAAAAABUKzEx0WnYbUxMjDEMKTQ01Ic9A/xf2RD2Mv4wfA8IVL68n+x2uzEdRW5urqS/w70uXbr45L4m2AMAAABQLZvNZjywtGzZUk2aNPFxj4DA4XA4nALw0NBQgj2gjnx5P4WGhio8PFwJCQlKT09XcnKypNLvyLy8PMXExHilH+UxFBcAAABAjcXExBDqAQCCXpMmTZyCvOzsbJ/0g2APAAAAQI3Fx8f7ugsAAPiF8t+JBHsAAAAA/F50dLSvuwAAgF8o/51YXFwsh8Ph9T4Q7AEAAACoMRbKAACgVMXvxJKSEq/3gWAPAAAAAAAACEAEewAAAAAAAEAAItgDAAAAAAAAAhDBHgAAAAAAABCACPYAAAAAAACAAESwBwAAAAAAgIBhs9l83QW/EebrDgAAAAAAPOvrr7/WxIkTq90vJCRE4eHhiouLU7t27TRgwACNGDFCJ598cqXHvP7663rjjTeqPa/ValVcXJxatmyp3r1767zzztPgwYMVFlb7x9K//vpLv/zyi1asWKHDhw8rLS1NISEhaty4sVq0aKGBAwfq9NNP1ymnnFLrc3tLVlaW3nvvPf3yyy86fPiw8vPzFRsbq86dO+uzzz7zdfcAv1RSUqLPP/9cS5Ys0bRp03zdHb9AsAcAAAAAkFT60FxQUKCCggKlpKRo3bp1ev/99zV06FBNmzZNjRs3rvN5CwsLVVhYqNTUVG3ZskVffPGFOnbsqKeeekqDBw+u0XkOHDigqVOn6ueffzZ9Py8vT0lJSVq3bp1mzJihAQMGaMKECerfv3+d+u0pmZmZGjNmjA4ePOjUnpGRoeLiYh/1CvBvycnJuv3227VlyxaddNJJvu6O3yDYAwAAAIAg0qhRI916662m7zkcDhUVFenYsWNasWKFdu7cKUlatmyZrrnmGs2ePVuRkZGVnrt9+/a66qqrXNrtdrsKCgqUmpqqHTt2aMOGDSopKdH+/ft13XXX6YknnjA9rry9e/fqmmuuUWpqqiQpPDxcAwcOVPfu3RUfHy+LxaL09HRt2bJFa9euVUlJidatW6drrrlGb775poYNG1bTj8jjPvzwQyPUs1qtOv/883XcccepqKhInTp18m3nAD+1b98+bdmyxdfd8DsEewAAAAAQRGJjY3XTTTdVu5/D4dB7772nF198UZK0a9cuvfnmm3rggQcqPaZ169Y1OvfevXv12GOP6c8//5QkPfXUU2rUqJEuvPBC0/2Liop06623GqHeueeeqyeeeEJNmzY13X///v2aOHGi1qxZI5vNprvuukvffvutunTpUm3fvGHbtm3G69tvv1133nmnD3sDIJCxeAYAAAAAwIXFYtHNN9+skSNHGm1ffPGFioqK6n3uzp0763//+5/OOOMMSaVDdR9//HFlZGSY7j9v3jzt379fktS3b1+98sorlYZ6ktSxY0e9//776tq1q6TSYPA///lPvfvtLrm5ucbrE044wYc9ARDoCPYAAAAAAJW65pprjNcZGRluGwpntVo1bdo0tWjRQpKUnZ2tGTNmmO67fPly4/Wll16q0NDQas8fGRmpu+66y9j+7bff5HA46tlr9ygpKTFeh4eH+7AnAAIdQ3EBAAAAAJUqq3orc+TIEbedu1GjRrrlllv0zDPPSJI+/fRT3XfffS5hV/lKvry8vBqff+jQoQoNDVVsbKwSEhKUm5ur2NjYevU5PT1dX375pZYtW6bdu3crKytLMTExatu2rQYNGqQrrrhCxx13nMtxc+bM0RNPPOHSfu211xqvBw4cqFmzZtW6T/v379fs2bO1YsUK7d27V/n5+YqPj1erVq00cOBAXXLJJerdu3e157Hb7Vq0aJF+/PFHbdy4UampqbJYLGrWrJn69eun888/X2effbYsFovp8YmJiRoxYoQkqW3btvrll1+qvN6ECRP0zTffSJKmTJmi0aNHO70/fPhwJSUlqVu3bpo3b55Wr16tl19+WZs3b1Z0dLS6dOmiMWPG6NJLL3U6rri4WD/99JN++OEHbd68WampqQoLC1PLli114oknasyYMTVafGHjxo369ttvtXLlSiUnJ6uwsFBNmjRRr169dPbZZ+uSSy6R1Wqt9jw1VVxcrLlz52rRokXasmWL0tPTZbVa1bJlSw0cOFCjR482rfDMzc3V0KFDjXtjzpw56tGjR5XXSkpK0ogRI+RwOBQfH69ly5YpIiLCZb/6fgZl/TjzzDM1Y8YM5efn64svvtCCBQu0b98+ZWZmqnHjxjrhhBN0ySWX6Nxzz3X582W28vaaNWt04oknSpJOOeUUffTRR07vHz16VLNnz9ayZcu0a9cu5eTkKDY2Vi1atNBJJ52kCy64QIMGDaryMwoUBHsAAAAAgEpVfMgOC3PvY+TIkSP13HPPqaSkRPn5+Vq9erVOPfVUp31atWplvP7mm290zTXXKDo6utpzx8XFacuWLZUGUbU1a9YsvfTSS8rPz3dqz8jIMKoZP/zwQ1199dV6+OGH3f5Zmfnggw80bdo02Ww2p/b09HSlp6frr7/+0gcffKBRo0bp2WefrTSE2bp1qx566CHt2LHD5b2DBw/q4MGDmjdvnnr37q2XX35ZHTt29MjPU5kNGzbohhtuMIaCFxQUKD093WVF5Y0bN+rf//639u3b59Rus9m0b98+7du3T19//bVGjx6tp556yvTzyMvL02OPPaZ58+a5vHfkyBEdOXJEv/zyi9566y29/PLL6tOnT71/vo0bN+rBBx80hpyXKSwsVE5Ojnbv3q1PP/1UF198sZ5++mmnP/8xMTE677zzjJB03rx51QZ7c+bMMSpYL7jgApdQzxOfwV9//aV77rnHZTXoo0ePatGiRVq0aJEGDx6s//znP4qJian2fJX5/vvv9eijj7r8EqDsPt2xY4c+/fRTDR06VK+++mq9w35fI9gDAMCPbU3O1u60PJ3euYkaRbnvN8IAANTU1q1bnbY7dOjg1vMnJCTo+OOPN4b4Ll++3CXYO+uss/TVV19Jkvbs2aOrr75ad955p4YNG1ZtxZS7Qr0XX3xR7777rrHdqlUrnXnmmWrdurUyMzO1bNky7dixQ3a7XTNnztSePXs0Y8YMI9zr3bu3xo8fL0maPXu2EW5ceeWVxmfaunXrWvXp+++/15QpUySV/pxDhgxR3759FRsbq9TUVK1evdr4XL/77jvFxsbq8ccfdznPxo0bdd111xlBSHh4uM444wz17NlTDodDW7du1dKlS2Wz2bRlyxZdccUVmjlzpnr27Fmr/taVzWbTQw89ZDq/40UXXWS8Xrt2rW688UYjeI2IiNCwYcPUvXt3FRYWau3atVqzZo0k6euvv1ZhYaGmT5/udL68vDxdc801xucWEhKiU089VX379lVERIQSExP166+/KjU1VQcOHNDVV1+t9957TyeffHKdf74VK1botttuU0FBgSSpcePGOuuss9S+fXvjM1++fLmKi4uN+SY//vhjpzBu9OjRTsHe/fffX+Wf/Tlz5jgd6+nP4NChQ7r55puVlpamhIQEDR8+XB06dFBWVpaWLFmiXbt2SZL++OMPPf3005o6dapx7Gmnnabo6GgdOHBAn332mSSpXbt2GjNmjCTnv5PWrVunBx98UHa7XZI0YMAAnXjiiUpISNCxY8e0adMmY9GeZcuW6YEHHqh0CoBAQbAHAICfen/VAd361UbZSxxqHhOu5XcPVddmdf/tJQAAdfHhhx8ar9u0aVNtJVBddO7c2QgRKlZaSdKIESN00kknGaHMX3/9pTvvvFOxsbE69dRTdfLJJ+ukk05Sz549PVIl9/333zuFerfeeqvuuusupyHDDz/8sL755hs9/vjjKioq0rJly/TSSy/p4YcfliR16dLFWJV3+fLlRrB34YUX1nlI4GuvvSapNHh5/fXXdfbZZ7vsM3PmTD377LOSpM8//1x33HGHmjVrZryfk5Oj22+/3Qj1+vTpo1deeUXt27d3Os/evXt1zz33aMeOHcrMzNSdd96pOXPm1KuyqqbK/kz07t1bkyZN0vHHH69Dhw5p6dKl6ty5s6TSyrYHHnjACPX69u2rV199VW3btnU619y5c/XQQw+ppKRE8+fP1yWXXKIzzzzTeH/y5MnGn8Vu3brplVdecRmOXlBQoBdffFEfffSRCgoKNH78eM2fP1+NGjWq9c929OhR3X///Uao969//UsPPfSQoqKinPbbvXu37r33Xu3cuVObNm3Ss88+q6eeesp4/5RTTlH79u118OBBHTp0SGvWrKk0aNu0aZP27NkjSTruuOPUv39/p/c98RmUVYKOGjVKkydPdvpz89BDD+mFF17Q+++/L6k0hH7wwQeNP6cnnniiTjzxRK1cudII9lq2bGkMYy9fvfjGG28Yod6kSZM0duxYl74sWLBA48ePl91u16+//qotW7bUaKi6vyLYAwDADzkcDj21YIfsJaVDJFJyi/Tir7s0Y0w/H/cMAGrGZi/RUwt36Putycorsvu6O34lOjxUFx7fUo+f013WUP9dz7CgoEAvvfSSFixYYLTdcsstHrlW+RVujx075vK+xWLRf//7X916661at26d0Z6Tk6MFCxYYfYyOjlb//v01aNAgnXnmmW6pKCsuLtbLL79sbF933XW6//77Tfe97LLLZLVa9cADD0gqHbp77bXXOg0ldpfMzEzt3btXUmn4YhbqSaVz+C1YsEB//vmnLBaLNm7cqOHDhxvv/+9//1Nqaqqk0nnxPvjgA8XFxbmcp3Pnzvrwww81atQoHT16VImJifr444899meiokaNGun9999XQkKCJOegVCqtQDt06JCk0mrK9957zzRkGjlypHbu3GlUaX300UdGsLd161ajki0hIUEffPCBUwhaJjIyUo899piSkpK0ePFipaSkaNasWU6LtdTUu+++q/T0dEnSxRdfrMmTJ5vu16VLF7399tu68MILlZ+fr6+++krjxo0zAliLxaJLL71Ur7/+uvF5VBbsla/Wu+yyy5ze8+RnMGDAAE2dOlUhIc5/71ksFj344IP66aeflJSUpJKSEq1YscJpRe6aWr9+vSQpPj7eaeGf8s4991yNHDlS3377rUJDQ7V+/XqCPQAA4F65RXYdyHCev+edPw4Q7AEIGE8u2KHnft7p6274rXVJWZKkp8/3zlDG8nJycvTee++Zvme325WTk6M9e/ZoxYoVysnJMd4766yzdOWVV3qkT+Wrk8yCPak02Pnkk0/08ccfa8aMGUpJSXHZJy8vT7///rt+//13vfzyy+ratatuu+22OgUEZdavX68DBw5IkmJjY3XvvfdWuf/FF1+sjz/+WGvXrpXNZtPs2bN155131vn6lSm/MnBSUpKSk5PVsmVL031feOEFORwOtW7d2iVU+e6774zX99xzj2moV6ZJkya65557NGnSJEmlFYDeCvZGjhxphHpmygfQN910U5XVc//617+0aNEidejQQd27dzfay6rBJOmf//ynaaBV3p133qnFixdLKv0caxvsFRcXG0PMJVV7fJs2bTR69Gh9/PHHstvtmjt3ru644w7j/csuu0xvvPGGHA6HfvrpJz322GMuQ9Xtdrvmz58vqbTSc9SoUU7ve/Iz+Ne//uXy569MaGioBg4caAwnPnr0aJXXrUxZxW5OTo62b99eabj/4IMP6s4771SbNm28MhemJwV27wEAaKDScl3nkJGkouIShYf5b3UHAJRZdcA8nMHfVu73zWeUmZmpF154ocb7h4SE6Morr9TEiRPdNl9dReXnTqvswb/svbFjx+qqq67SypUrtXjxYv3+++/avXu36f67du3Sgw8+qHnz5mn69Ol1Gja6YsUK4/WwYcNqdI6LL75Ya9eulSStXLnSI8FebGysevfurS1btignJ0eXX365rr32WmNuvPLatGljeo7ExERjSHBoaKjOPffcaq97wQUX6PHHH1dJSYkSExOVlJTkMtzVE6paxdZmszn9dypfkWimVatW+v77713aV61aZbyuSQVXr169FB0drby8PB04cEBHjx5VixYtqj2uzJYtW5SbmyuptNq0bFhxVU466SR9/PHHkmQMTS9TtjLzH3/8oYyMDC1ZssRYpbjMsmXLlJaWJkk69dRTXcJgT34GFYf8VtSkSRPjddnQ5NoaOHCgFixYoJKSEl1zzTW6+uqrNWLECPXp08fp75bmzZvX6fz+iGAPAAA/lJZnHuxtT8lR39bxXu4NANTewA6NtWhnqq+74dcGdWzs6y64CAsLU0xMjBo1aqSuXbuqX79+uuSSSyoNhtwlKyvLeF1VxViZsLAwnXbaaTrttNMkla4Au2bNGv35559auXKltm/fbqz4KUm//vqr7r33Xqd58mqqrFpPUo2H9h5//PHG64orgLrTQw89pJtvvlk2m00pKSl66aWX9NJLL6lZs2YaMmSITjvtNA0dOrTSEKN83zp27FijlYZjY2PVoUMHY967AwcOeCXYa9euXaXvpaWlGasCR0dHV7lvZex2uzG0WSqtXqytQ4cO1SrY27nz76rmvLy8Ws9fmZSU5NJ22WWX6Y8//pBUOp9gxWCvqkUzPP0ZVFf9V75yt/z9Wxv33nuvfv/9d+Xk5Cg7O1tvvfWW3nrrLTVq1EiDBg3SqaeeqtNPP71Of0b8FcEeAAB+YGtytkIsFnVvHiOLxaK0PJvpfpsOZxHsAQgIk8/tLotFzLFnovwce77Qtm1b/fLLLz65dmXKKoik6h/+zTRp0kTnnHOOzjnnHElScnKyPvnkE82aNcuoiFq6dKl++uknnXfeebU6d0ZGhvG6ceOahbHl9yt/vLsNHjxYb7/9th5//HGnkC41NVVz587V3LlzZbFYNGDAAF1xxRW69NJLnaqWyg97runPVrZvWbDnyZ+vvKqG1pbNEVjdflXJzMysc5hUprafRX0/O7PjzzvvPD311FPKzc3V4sWLlZOTo9jYWElSbm6ufv75Z0mlc9BVnJfR059BTYLjMnXtR9euXTVz5kw9+uijTit6Z2ZmOs3Hefzxx2v06NG68sornRbBCUQEewAA+JDD4dB1n67TR2tLf+N63cnt9P4/+1c6FHfj4Wz9y5sdBIA6soaG6Onze/pkDjkEns2bNxuv3TGJfcuWLXXfffdp5MiRGjt2rLE4wdy5c2sd7NUlYCgpKTFee2r4cplTTz1VP/30k5YtW6ZFixZp6dKlOnz4sPG+w+HQ2rVrtXbtWn3xxRd69913jaCnrspWHZWqHjpdndp8tuXnFKyouLi4zn2o7By33HJLlXP6manJUNryyn+Obdu21dVXX12r4yMiIlzaoqKidMEFF+irr75SQUGBFi5caCyQsWDBAmPV4AsuuMDleF98Bp7Qu3dvffPNN1q9erV++uknLV261GW17a1bt+rZZ5/VJ598og8//LDS+SkDAcEeAAA+9PWmw0aoJ0kfrk7UPacfV+lQ3L+OZHurawAAeMX+/fudFsKoOA/XBx98oDlz5igtLU2XXnqp7rvvvhqfu2vXrrr55puNOQUrm4uvKuUrwCpb2KOi8vvFx3u+0j40NFTDhg3TsGHDJJV+pqtWrdLy5cu1ZMkSo2px3bp1mjp1qp555hlJdfvZKu5b2c9Xk9CusLCwxtesSvk+lB/WXRsVK/3OP/98j6+UWr7fMTExuummm9xy3ssuu8xYlGPevHlGsFfVMFzJN5+Bp1gsFp1yyik65ZRTJElHjhzRypUrtWLFCv3666/Gn+G9e/dqwoQJ+t///ufL7tYLs28DAOBDV8xc49K28VCW0nLNh+Km55sHfgAABKovvvjCeN28eXMNHDjQ6f2MjAxt2bJFR44cMeYOq43y85bVpbqsfAXStm3banTMli1bjNcdOnSo9TXrq2PHjrriiiv0yiuvaPny5br00kuN9+bMmWNUFHbq1Mlo379/v/Ly8qo9d1ZWlhITE43t8j9f+aq68guiVKauK59W1KZNG2P119zcXKeKxcq89NJLevrpp/W///1PaWlpioiIcKraKj//XVXKqkHromPHjsbr/fv31+gzKygoqPa/08knn2z8t/3jjz+UmZmplJQU4/457rjjTBey8MVn4C2tWrXSqFGjNHXqVC1dutRpNefff/9dycnJPuxd/RDsAQDgI2sSM0zbZ61JVFJWvul7zFMFAGhIUlNT9eWXXxrbY8aMcRlyWVZxI0nr16/Xxo0ba3WN8kPwunev/byGJ598svH6t99+M6rfqvLDDz8Yr6tazbU+vvvuO914440688wz9d///rfS/aKiojRx4kRju7Cw0KhWatu2rbEwit1uN+Yfq8oPP/xgVOO1atXKaeGMyMhI43VmZqbTkOSKioqKnOZAq4/IyEj16tXL2P7tt9+q3L+goEAfffSRPvroI02dOtUYLl0+VP7xxx+rve62bds0ZMgQ9evXTxdeeGGtA64BAwYYgWRhYaF+/fXXao95+eWXNWDAAA0ePFiTJ0+udL+yMLe4uFiLFy/Wjz/+aPz3KKvgM+Ptz6A2qhvWvmTJEt1yyy06++yz9fjjj1e6n9Vq1X333ee0UA/BHgAAqLXle83/4fPLrlS988cB0/fybQR7AICGwWaz6cEHH1RmZqak0mq9m2++2WW/IUOGOFWW/fvf/65xpdexY8f0/vvvG9ujRo2qdT9POeUUoyotJydHr776apX7f//991q3bp2k0iBi5MiRtb5mTRQVFWn58uU6fPiw5s+fb6wKa6b84iQRERFOC2VcfvnlxuvXXntN2dmVT/uRkZGhN99809i+5JJLnN5PSEgwFkiw2WxVVlh+8MEHNaoQrKny/23fe+89Yy45M1999ZVx7ZNPPllNmjSR5PxZ/Prrr1q+fHml53A4HHrxxRcllQaF8fHxxnlqKioqShdeeKGx/fLLL1f5mezfv1+fffaZpNI/2+XDzIrKL5SyaNEiI7QNCQmp8j7w9mdQG+UrbsvPT1gmLCxMv/32mw4ePKiFCxdWOSw7Ly/P6c9IIM+xR7AHAICXFRbbtSYxQ3/sr/lcNmXybZX/5hsAgECxbt06XX311VqxYoWk0iGczzzzjOmiDiEhIXrmmWeMlSv37dun0aNH68svv6xy6OKKFSt09dVXKympdC7bM888U2eeeWat+xoaGqrx48cb2x9++KGmT59ueu05c+ZowoQJxvbYsWPVpUuXWl+zJi644AKj4mjnzp2aNGmSaTVhTk6OU/XSueee6xSQXHPNNWrevLkkKSkpSddff73TCrtl9u/fr+uvv96obGrbtq3GjRvntI/FYtHgwYON7WeeecZpxVqpNAz69NNP9dprr9X2R67S5Zdfrnbt2kmSDhw4oDvvvNO0euy3334zwihJuu2224zXQ4YM0WmnnWb085577tGiRYtczpGXl6fJkydr2bJlRtu9995bp37fcccdRhi6Z88e3XTTTaZDiXfu3KlbbrlFBQUFkkqH8VZVede6dWsNGTJEUumK0GvWlE7/cuqpp1YZYvniM6ip8n8/JCcnu4R7gwcPNkL49PR03XfffaZ/BoqKijRp0iRjsZATTzwxoIM9Fs8AAMCLUnMLdf7bK7U2KbNOx+dRsQcA8GOHDx/We++959JeUlKivLw8HTlyRBs3btSuXbuM98LCwvTkk09WGbqdcsopev3113XXXXfJZrMpJSVFkyZN0nPPPadBgwapY8eOaty4sQoKCpScnKw///zTKZwaMGCAXnnllTr/XBdddJHWr1+vmTNnSpJmzJih7777TmeddZZatWqlzMxM/f77705z8J188sn697//XedrVic2NlYPP/ywJk2aJEn69ttv9euvv+rMM89U27ZtZbVadfDgQS1evNgIN5o1a+YUUkqlVXavvvqqbrrpJuXn52vz5s268MILNWzYMPXs2VMOh0Pbtm3Tb7/9ZlQFxsTE6JVXXjFdOOPmm2/W4sWL5XA4tHv3bp177rk6//zz1a5dO6WnpxsrlFosFl144YX6/vvv3fJ5REZG6tVXX9XYsWOVl5en5cuX65xzztGIESPUuXNnFRUVafXq1Vq1apVxzNixY3X66ac7nWfatGn65z//qQMHDignJ0d33nmnevfurcGDBys2NlZJSUn65ZdfnAKj2267zQjRaqtTp06aMmWKHnjgARUXF2vt2rU677zzNGzYMPXo0UNFRUXasWOHfvvtN2MobdnnXxZ2V2b06NFavny5EQaWtVXH259BTbVt21YWi0UOh0OHDx/WfffdpwEDBig+Pl7XXnutQkJCNHnyZI0bN04lJSVatmyZRowYobPOOkvt27dXdHS0Dh06pCVLlujQoUOSpOjoaD3yyCMe7benEewBAOBFH61JqnOoJzEUFwDg3w4ePGisQFsTvXv31qOPPlqjeejOPPNMfffdd5o6daqWLFkiqbRqaPHixZUeExkZqXHjxmncuHGKiIiocb/MPProo2rbtq1eeeUV5efn68iRI/r0009d9rNYLLrhhht0//33G/OnecoVV1yh3NxcvfTSSyoqKlJGRoa+/fZb0327d++uadOmGVVt5Z100kn67LPPdN9992nPnj0qKirSwoULtXDhQpd9+/Tpo+nTpzst/FDxXE899ZSefvppFRUVKTc3V7Nnz3baJzo6Wo899pji4+PdFuyV9e3TTz/Vvffeq3379iknJ0ffffedy36hoaEaN26cS8gpSU2aNNEXX3yhCRMmGHPebdmyxWlBlDIREREaP368brzxxnr1+/zzz1ejRo308MMPKzk5WYWFhVqwYIHpnIedOnXS9OnTqxyGW+acc85RXFycMbw6Pj5eZ599drXH+eIzqIm4uDhdfPHFmjt3riRp2bJlWrZsmWJjYzV27FhZLBYNHTpU06ZN0+OPP66cnBzl5eVp/vz5pudr27atpk6dqr59+3q8755EsAcAgBc9tXBHvY7Ps9nlcDiqnTwYAAB/EhISosjISDVq1EidOnVS7969NXz4cJ144om1+k7r0qWL3nnnHf31119auHChNm7cqH379ik9PV0FBQWKjY1V06ZN1blzZ5111lkaMWKEmjZt6raf4/rrr9fFF1+sL774QsuXL9fevXuVmZmp8PBwderUSYMHD9aYMWM8Nvy2sj6NGDFCs2fP1qpVq7R3715lZ2fLarWqadOm6tu3r84++2ydf/75LguTlNezZ0/NmzdPP/zwgxYuXKhNmzYpLS1NdrtdLVq0MBZHGDFiRLWrC//jH//QkCFD9Mknn2jp0qVKSkqSxWJRmzZtNGzYMF111VVq166d6RDP+urZs6fmz5+vefPmaeHChdqyZYvS0tIUFhamNm3aaPDgwbrqqqvUtWvXSs/RuHFjzZgxQ2vWrNHcuXO1evVqJScnKy8vT7GxsercubOGDBmiK664wlh8pL6GDBmiRYsW6bvvvtPixYv1119/6dixYyopKVHTpk11/PHH67zzztOFF15YbaVemYiICF144YX6/PPPJZUO365pwO2Lz6AmnnvuOXXs2FHz5s3TkSNH5HA4lJCQoLS0NDVr1kxSaYXtoEGD9PXXX2vZsmXas2ePMjMzFRISoqZNm6pHjx4aPny4LrnkknoH/v7A4ihbzgYet27dOqN0NiQkRAMGDPBxj+qnuLhYGzZsMLb79eunsDCyYqAuuJ+CR8iDc+t9jvypFyoirPJ/mAc77ifAPSreS1FRUbJYLOrevXuV4QAAVw6Hw2lRhOjoaH5JB9SRP91PdrtdO3b8/Yv7unxH1jcrYvEMAAC8KDai/g/DeUUMxwUAAABAsAcAgFe1axRV73PM25qs/el51e8IAAAAoEEj2AMAwItCazhMICY8VG9fcYLpe9d9ul69XlysuVuOuLNrAAAAAAIMwR4AAF6UVWir0X5xEWG6eVBHPTKim+n7+bYSPV3PhTgAAAAABDaCPQAAvCi7sGbz41lDSyv7osMrn5NvdWKmWAMLAAAACF4EewAAeInD4VBWQc0q9qyhpV/RUdaqv6pzWUgDAAAACFoEewAAeEm+za6SGhbYhZcFe2FVr6KbmltU324BAAAACFAEewAAeElNh+FKNRuKKxHsAQAAAMGMYA8AAC8xG4Y7/ozj9L9/9ndpv/D4lpKkKCvBHgAAAABzBHsAAHhJdmGxS1t8RJj+0b+NGkWGGW1hIRbdO7SzJCmaYA8AAABAJcKq3wUAALhDVoFrsBcXEaYoa6gW336qHv1hm2z2Ej16dje1io+URMUeAAAAgMoR7AEA4CWmFXv/X6nXv20jzb95kMv7zLEHAAAAoDIMxQUAwEuyTIK9uIiqf8cWZa36qzotj2APAAAACFYEewAAeEl2JUNxq1LdUNw0KvYAAACAoEWwBwCAl1Q1FLcyLJ4BAAAAoDIEewAAeEndhuIS7AEAAAAwR7AHAICX1Klij8UzAAAAAFSCVXEBAPCSrDrMsRcZVvXv4JJzCvXAnC36358HFRcRqtcu7atRfVrVq58AAAAAAgMVewAAeElSZr7TtsUiNYq0VnmMxWKp8n2HQ3p5yR5l5Nt0MKNAN3y+Xhn5tnr3FQAAAID/I9gDAMBLtibnOG13bhKt8Goq8morI9+mT9clufWcAAAAAPwTwR4AAF6QXVCsxMwCp7bjW8R65Fq/70v3yHkBAAAA+BeCPQAAvGB7So5LW48aBns3D+pQq2vtTc+r1f4AAAAAAhOLZwAA4AVbj2a7tB3fIq5Gxz5/0fHKKSzW6sRMndmlqdrER+qphTsq3X9Xam6d+wkAAAAgcBDsAQDgBduOulbsHd+yZhV7jaPD9ck1JxnbP+9MqXL/ozlFOpRZoDaNImvXSQAA4HM2m01Wa9WLawFAGYI9AAC8oOLCGZLUs45z7J3QOr7aff5KzibYAwDUyNGjR7VgwQL9/vvv2rlzp1JTU1VUVKSYmBi1atVKffr00bnnnquhQ4cqLIxHSE85cOCAnn32Wd14440aNGiQr7tjWLlypa699lpJ0sCBAzVr1iwf9whAefytDACAF2w8nOW03TIuQk2iw+t0ruaxEWoZF6Hk7MJK98kpKq7TuQEAwSM5OVnTp0/X/PnzZbPZXN7PzMxUZmamtm/frtmzZ6tTp0565JFHNGzYMB/0tmH74IMP9NJLL6moqEg33nijr7sDIIAQ7AEA4GFZBTbtSXNe0KJfDaruqnJC6zgtrCLYy7eV1Ov8AICGbdGiRXrooYeUm/v3vKwdOnTQySefrNatWysyMlLHjh3T5s2btXr1apWUlGjfvn269dZbdffdd+vOO+/0Ye8bnp9//llFRUW+7gaAAESwBwCAh20+4rpwxglt6hfs9WkVr4U7Uit9P6/IXq/zAwAaru+//14PPPCASkpKfwnUq1cvTZgwodLhnwcPHtQTTzyhZcuWyeFw6LXXXlNcXJwxPBMA4Dshvu4AAAAN3YZDWS5t/eoZ7PWoZn6+PBvBHgDA1c6dO/Xwww8bod4FF1ygzz//vMo53dq3b6+3335b5513ntH24osvav/+/R7vLwCgagR7AAB4mFmwV5MFMKrSo3lMle/nE+wBAEw88cQTxpDP3r1768UXX1R4ePVzvoaGhuq5555Ts2bNJElFRUV6/fXXPdpXAED1GIoLAICHbT/qvCKuNdRS5xVxy3RvXk3FHkNxAQAVrF69WqtXrza2J02aJKvVWuPjY2Njdf3112vatGkKCwtTUlKSiouLTVfK3b17t7744gutWrVKSUlJysvLU0JCgjp37qwzzjhD//jHP9SoUaNKrzV27FitWrVK0dHRWrdunXbs2KEXX3xRq1evltVqVceOHXXhhRfqhhtucFq19aGHHtINN9yg9957T5999plSUlLUrFkzDRgwQHfccYe6dOnidJ2MjAx98cUXWrp0qfbs2aPMzEzFxsaqffv2OvXUU3XVVVepVatWNfp8srKy9PXXX+uXX37Rjh07lJ2drcjISHXs2FFDhgzRqFGj1LZtW6djevTo4XKe8kOcZ86caVpN6c5+r169Wl988YVWr16to0ePKiYmRt26ddOll16q0aNH1+gcAHyHYA8AAA9Lz3eeDLt1XKSsofUrmm8VF1Hl+1TsAQAq+vbbb43XXbt21Yknnljrc1xxxRXq27ev+vXrp6ioKJf38/LyNHXqVH3xxRdyOBxO76WkpCglJUWrVq3SjBkzNHHiRF1++eXVXvPgwYMaO3asMjIyjLaNGzeqa9eupvtPnTpVH374obGdlJSkQ4cO6f7773fab/bs2ZoyZYqys53nwj127JiOHTumjRs36v3339fdd9+tW265pco+fvPNN3r22WddzpWTk6MtW7Zoy5YtmjlzpsaPH68rr7yy2p+5Ku7qt91u15NPPqnPP//cqT0jI0N//vmn/vzzT3311Ves0gv4OYI9AAA8LKug2Gm7UVT9v34tFkuV7zPHHgCgomXLlhmvhwwZUqdzJCQkaPDgwabvFRYW6tZbb9WqVauMtuOPP15DhgxRo0aNdOjQIS1evFhHjx5Vdna2HnnkER05cqTaFXYfeeQRp1CvzEUXXeTStnLlSv32228u7f3793eqlpsxY4amT59ubHfq1Emnn366mjdvrszMTK1atUqbNm1SUVGRXnrpJSUnJ+uxxx4z7d8HH3ygKVOmGNtNmzbVmWeeqXbt2iktLU1Lly7V/v37VVRUpBdeeEFhYWFOFYaS9Omnn+rgwYOSpCuvvFIdOnSQJOP/PdHve+65R4sWLTK2BwwYoEGDBslqtWrz5s1asmSJ1q1bV+nxAPwDwR4AAB5WMdiLj/D81y/BHgBfc9htylj5jPL2/iBHcZ6vu+NXLGHRiu58gRIGTZIltOZDYesjKytLhw8fNrbrUq1XnSlTphihXlRUlJ577jldeOGFTvsUFhZq2rRpmjlzpiTp9ddfV69evXTWWWeZnjMvL0+rVq1S+/btNXnyZJ100klKS0vTjz/+aBpOloV61157rW688UbFxcVp3bp1xmIhkrR8+XK9/PLLkiSr1arJkydrzJgxLr80W7x4sf79738rOztbH330kU488USXMHHbtm164YUXjO3LL79ckyZNUnR0tNFms9k0depUffTRR5Kk6dOn6+KLL1bTpk110003SZJ+/fVXI9i78MILTYffurPfc+bMMUK98PBwPf/88y7/rbZs2aLbbrtNR48edekLAP9BsAcAgAc5HA5lFVao2It0z0Pcixf30r/n/WX6XoGtxLQdALzl2Mqnlblqqq+74beKUtZLkhqf+qRXrnfo0CGn7ZYtW7r1/Pv379eXX35pbE+bNk1nn322y34RERF69NFHVVhYqM8//1wOh0PTpk3TsGHDFBJiPk1FWFiY3n33XXXq1EmSFB0drXHjxlXal0svvVSPPvqosX366ac7vT9t2jRjmPDjjz+uK664wvQ8Z511lp599lndc889kqTXXntNF1xwgVM/3333Xdntpb9MO/PMM/Xcc8+5nMdqteqRRx7R5s2btX79ehUUFGj27NnVDu+tyF39djgcTlV/EydOdAn1pNLFVd555x2NGTNGNputVn0F4D2sigsAgAflFdllL3GeYyg+0j2/V7txYHu1bRRZyXWLTdsBwFsKj/zp6y74vYIjq6rfyU1yc3Odths3buzW88+bN0/FxaXfPYMHDzYN9cp78MEHjaq2Xbt2ac2aNZXue/rppxuhXk2MHTu20vc2bNigv/4q/aVYixYtKg3Hypx33nnq1q2bJGnfvn1au3at8Z7NZtOvv/5qbN93332VnickJET/+te/1KNHD51zzjnG6sI15c5+b9q0yajebNGihf75z39Wep6ePXuaDnkG4D8I9gAA8KDMAteALc5NwV7j6HD99e+zNOtfA1zey6diD4CPRbQ6xddd8HuRrQZ67VqhoaFO2+6uwPrjjz+M1xdccEG1+8fHxztV0q1cubLSfWszbDg6OlrHH398pe+Xv07v3r2rnbO24vXLB5Dr1683FrBo27atevbsWeV5zj77bH366ad6/vnnddlll1V7XU/1e+nSpcbr008/3eXPRkXnnntubboKwMsYigsAgAdlFbo+OLlrKK5UGhJefWI73fPNZh3L//tazLEHwNcaD3pMFlmYY89E+Tn2vCU+Pt5pOz093a3nP3DggPG6qmCtvF69eumnn35yOb6i9u3b17gfbdq0qTKo2rVrl/F68eLF6tGjR43PLZWusFum/PDm7t271+o8teXOfpd/XdnKwuVVF1gC8C2CPQAAPKjiwhmS+4bilhcdHuoc7BUR7AHwLUuoVY1PfdJrc8ihau3atVNoaKgxH1xqaqpbz19+1dqaDvMtv5/ZqrdlGjVqVON+VAwwK6rqOjVR/vi0tLQaX7e+fNlvdw/bBuBeBHsAAHiQ2VBcd1bslYmyOlcn5FOxBwAoJzw8XD169DDmaVu9erVGjhxZp3MtWLBAHTt2VPfu3Y0hoWWLOtRGWcgoqdKFMyTXYcRVCQur+hG3/DWHDBnisrBGdTp27Gi8LptT0Bvc2e/aCg8Pr/OxADyPYA8AAA/KKnAdihsf4YGKvQrBHkNxAQAVnXbaaUawt2zZsjqdIzc3V/fff79sNpsaN26sKVOm6KyzzlKjRo109OhRSdKxY8fUoUOHas917Ngx43VcXFyd+lNb5SvUunbtqptuuskt58rKyqpXv2pzrfr2u3nz5sbrmlQCevpnA1A/LJ4BAIAHmVXseWIobpTV+Sudij0AQEWXXnqp8ToxMVGrV6+u9Tm+/fZbY+GNjIwMYz698qvWbt26tUbnKgsZpfpVlNVG+cBxx44dNTomOzvbdLGR8ucqPwdeZWw2mx5++GG9/PLL+uyzz2p0bbNr1bff7dq1M15v27at2vPs2bOnRtcD4BsEewAAeMiS3Wl6dtFOl3ZPDMWlYg8AUJ2uXbvqjDPOMLanTJlSq9VxMzMz9dZbbxnbZ599tlq1aiVJOuWUv1dB/v7776s9V1ZWlpYvX25sn3TSSTXuR30MGjTIeL127VqlpKRUe8x1112nE044QcOGDdPs2bON9n79+hlDfw8ePFhtALZp0yYtXLhQs2bN0scff+yzfg8fPtx4/dtvv6mgoKDK8/z666+16isA7yLYAwDAA55csF1n/vd37U13XQnSU4tnlJdXZK/TfEcAgIbt3//+tzFn2ubNmzVhwoQahXsFBQUaP368Mdw2PDxc9913n/H+ZZddZsyFt3LlSi1atKjK802fPl35+fmSpFatWjkFg540aNAgo2LNZrPphRdeqHL/uXPnasuWLSopKVFycrL69+9vvBcTE6Ozzz7b2H7zzTerPNenn35qvD7nnHOc3is/j2BJSYlH+929e3djFd+srCz997//rfQ8R44c0eeff17ltQD4FsEeAABu9vn6JD25oPJhMo08MhTXOdgrcUg2O8EeAMBZ9+7dNWnSJGN73rx5+uc//6k//vij0mNWr16tK664Qr///rvRNmnSJHXp0sXYbt++vcaMGWNsP/jgg6aVe0VFRXr++eedQq7HHnus2kUv3CU0NFTjx483tufMmaPJkycrL8/1F3GLFi3S448/bmyPGjXK6WeWpNtvv11Wa2kl/rx58/Tiiy+6BKUOh0P/+c9/9PPPP0sqnU/wX//6l9M+sbGxxuvExESP93vSpEnGwiczZszQu+++6xIoHjx4UOPGjWOOPcDPsXgGAABuNmF+1XMLxXthKK5UOhw3PIzf4QEAnP3zn/9UQUGBnn/+edntdm3ZskXXXXedOnTooEGDBqlNmzayWCxKTk7WmjVrnOZ0CwkJ0YQJE/TPf/7T5byPPvqotm/frvXr1ys/P1/33Xef3nnnHQ0ZMkTx8fE6fPiwFi9erOTkZOOYcePGOVW9ecPIkSO1ceNGzZw5U5L02WefacGCBRo+fLjatWunY8eOae3atdq0aZNxTNeuXfXYY4+5nKtnz5569NFH9cQTT0iS3n33XX3//fc666yz1LJlS2VkZOjXX381humGhIToscceU7NmzZzOU37eu2nTpikpKUlWq1XnnnuuunXr5vZ+Dxo0SLfccotmzJghh8OhF198Ud98842GDRumuLg47dy5U4sWLVJhYaE6d+6svXv31uWjBuAFBHsAALiRvcSh/cfyq9zHE0NxI02CvXybXQlR7g8RAQCB77rrrlOfPn307LPPasuWLZKkAwcO6MCBA5Ue0717d02ePFknn3yy6fsRERH68MMP9eSTT+qbb76Rw+HQX3/95bRIRpmYmBhNnjxZo0aNcs8PVEuPPvqo2rRpo1dffVX5+flKT0/XV199Zbrv6aefrhdffNGpqq68q666SvHx8XriiSeUlZWlQ4cOmc6hFxcXp8cff1wjRoxwee/yyy/Xxx9/rKKiImVkZBjDY6Oiooxgz939vv/++9W0aVO98MILKi4u1q5du1wWAencubPeeOMNXXTRRabnAOB7BHsAALhRkd11XpyKIj1QRVdxjj2pdJ49AAAqc9JJJ+nrr7/W6tWr9fPPP2vz5s3au3evsrOzVVxcrNjYWLVp00b9+vXTeeedp8GDBxvDNysTGRmpKVOm6LrrrtPs2bO1cuVKHTlyRDk5OYqLi1P37t11xhln6PLLL1eTJk289JOau+GGG3TJJZfoyy+/1PLly7Vnzx5lZmbKarWqRYsWGjBggEaNGqUhQ4ZUe66LLrpIp59+uj7//HMtWbJEu3fvVlZWliIjI9WlSxcNGzZMl1xyiRo3bmx6fLdu3fTRRx/pzTff1MaNG5Wdna3Y2Fjl5OR4tN/XXXedzjjjDH300Udavny5USnYoUMHXXDBBbr22mtN5/wD4D8sDmbW9pp169YZfymGhIRowIABPu5R/RQXF2vDhg3GdvlVoQDUDvdTw5GRb1OTx36scp+SaSPdft1JP2zTcz87r8D7+mV9dOdpnd1+LX/H/QS4R8V7KSoqShaLRd27d3ea6B9A9RwOh9N8eNHR0dWGpADM+dP9ZLfbnaYrqMt3ZH2zIibeAQDAjYqKq/6tdo/mMR65bpTV9Sv97m8261BmgUeuBwAAAMD3CPYAAHCj6obiXtyrlUeuazYUV5Lmb002bQcAAAAQ+BiXAgCAG1UW7J3euYlO7dxET57bwyPXDa1k+MGOlFyPXA8AAACA7xHsAQDgRmbB3r/P7KLnL+7l0etWtvptdmGxR68LAAAAwHcYigsAgBsVFbuuSRXugVVwKxrQtpFpe3I2c+wBAAAADRXBHgAAbmRWsRfhhWCvT6s43Xu66wq4R7ILPX5tAAAAAL5BsAcAgBsVmqyKGx7q+a9bi8Wil0f1Ucu4CKd2gj0AAACg4SLYAwDAjcwq9rwR7JXp3TLOaftIdqEcDtfhwQAAAAACH8EeAABu5Otgr1WFir3C4hJlFrCABgAAANAQEewBAOBGRWZDccMsXrt+xaG4kvTJ2iTlsjouAAAA0OAQ7AEA4Eb+VrEnSXd9s0mDXluqo8y3BwAAADQoBHsAALhRkd11PjuvBnvxrsGeJP2VnKNP1yd5rR8AAAAAPI9gDwAANzIbihsR5s2KvchK39t2NMdr/QAAAADgeQR7AAC4UaGPh+IO7tBY8ZFhpu8V2Oxe6weAhstu5+8SAAAk1+/EkBDvx2wEewAAuJH54hne+7qNiwzT22P6mYZ7BSZ9A4DaysvL83UXAADwC+W/E8PCwmSxeG/RvDIEewAAuJH54hne/YL/R/82Sn3yPJf2fCr2ALhBVlaWr7sAAIBfKP+dGBcX55M+EOwBAOBGvl4Vt0xYaIjL3H4EewDcITc3V+np6b7uBgAAPpWenq7c3Fxj21fBnvkkPAAAoE6Kik1WxfXiUNzyoqyhKiw3/LbAxlBcAHVntVpVXFwsSUpOTlZOTo7i4+MVHR2t0NBQH/cO8G8Oh8NpLi673e6TIXtAQ+DL+8lutysvL09ZWVlOoZ7ValV0dLRX+lARwR4AAG5kVrEX4YOKPUmKsoYoI//vbSr2ANRHu3btlJSUJJvNJqm0cq/8Qw2AqpWU/P1vBF9MsA80JP50P1mtVnXo0MFnYT1/mwAA4EaFPl48o7zIMOcKmnwq9gDUQ9mDi9Vq9XVXgIDjcDhUXFxs/M/hcK3wB1Az/nQ/lX03hoeH+6wPVOwBAOBG/jLHnlRasVdeQTEVewDqJzw8XF26dFFeXp6ys7OVnZ1tDM8FULXy9woBOVA/vryfwsLCFBcXp7i4OEVHR/t8WD3BHgAAbuRfwR4VewDcz2KxKCYmRjExMWrVqpUcDofTkCgAroqLi7V582Zju0uXLgoL43EcqAtf3k8hISE+D/Iq8shP7nA4tGTJEs2ZM0cbNmxQamqqQkJC1KpVK/Xu3VsjR47U0KFD3ToO2uFw6KSTTqr1PB/33nuv7rjjDrf1AwAQvFbsS9eMFftd2sPDfPPlH8mquAC8wGKxsHgGUI2KQwVDQ0O5b4A64n5y5vZg79ChQ3rooYf0559/ury3e/du7d69W3PmzFH//v313HPPqUuXLm657v79+5m8FwDgMw6HQ2M/XWf6nr9U7DEUFwAAAGhY3BrsJSUl6ZprrtGhQ4eMtujoaPXo0UNWq1V79uxRamqqJGn9+vX6xz/+oc8++0zdunWr97W3bt1qvE5ISFCfPn1qdFyHDh3qfW0AADYfydaetDzT93wV7JktnuFwOPxu+AAAAACAunFbsFdSUqIHH3zQCPWsVqvGjx+vsWPHKiIiQlJpNcNPP/2kyZMnKyMjQzk5Obrtttv0ww8/1HsFkW3bthmvhw8frilTptTrfAAA1EZVw1z9ZfEMSRr9wZ8a2buVbjilPQEfAAAAEODc9qTx888/a+3atcb2008/rZtvvtkI9aTS+TfOP/98zZgxw5hfLzExUXPmzKn39ctX7PXo0aPe5wMAoDZCQ8xDsrAQi0Iqec/TKg7FlaTvtiTr5i826H9/HvRBjwAAAAC4k9uCvS+//NJ4fcIJJ+iyyy6rdN/+/ftr2LBhxvaiRYvqff3ywV7Pnj3rfT4AAGqjsNh8RUhfVetJUoRJxV6ZKT/v9GJPAAAAAHiCW542HA6Hjhw5YlThXXTRRdUeU35evf37XVcQrI309HQdPXrU2CbYAwB4W2VDccPDfBfsmVXsldldyXyAAAAAAAKHW+bYs1gsmjNnjvLz87Vr1y61adOm2mOysrKM1zExMfW6fvlqvVatWikhIaFe5wMAoLYKbJVV7PluHruKi2cAAAAAaFjcuipuVFSU+vbtW+1+RUVFWrp0qbHdq1evel2XYbgAAF+rtGLPh0NxzRbPAAAAANBwuDXYq4mioiJNmjRJSUlJkqSQkBBdd9119TpnxYUzjh49qq+//lpLlizR7t27lZubq4SEBHXv3l3Dhw/X5ZdfrqioqHpdEwCA8goqmWPPl6oaigsAAAAg8Hk82CspKVFxcbESExO1bNkyzZo1SwcOHDDenzx5srp06VKva2zbts14/eeff+rDDz9UQUGB0z4pKSlKSUnR8uXL9dZbb+nZZ591WsADAID6qKxir7J2b4j04fx+AAAAADzP48HelClTNHPmTJf2Vq1a6ZFHHtF5551Xr/MXFhZq7969xvbatWslSaGhoerYsaOaN2+urKws7dq1SzabTVJpyHf77bfrqaee0pgxY+p1/fooLi722bXdwW63V7kNoOa4nwJfXqHNtD23yO6zv+8jqpnfr6jIppAQ380B6CncT4B7cC8B7sP9BLgP95Mzjwd7hw4dMm1v3Lixjh49qoKCAkVGRtb5/Nu3b3f6j2ixWHTttdfqxhtvVKtWrYz2nJwczZo1S2+++aZsNpvsdrueeOIJderUSSeffHKdr19XJSUl2rBhg9ev60mbN2/2dReABoP7KfDsOZBt2l5Q7Lu/748eqnrl2z/XrQ+Kqj7uJ8A9uJcA9+F+Atwn2O8nj/9rPjU1VT179tTgwYPVvXt3hYSUXnLr1q165plnNGrUKO3evbvO59+zZ4/xOiQkRK+88ooeeeQRp1BPkmJjY3X77bfrnXfeUVhYaZ5ps9n03HPPyeFw1Pn6AABIUqH/TbFXbcVefjHffwAAAEAg83jF3ieffKLQ0L8n705JSdEbb7yhzz77TJK0b98+3XDDDfruu+/UuHHjWp//0ksv1fnnn6+DBw8qPz9fJ5xwQpX7DxkyRDfddJNmzJghSdqyZYvWrFnjk6o9AEDDUeiHIVlNgr3af/MCAAAA8BceD/bKh3qS1Lx5cz355JNq166dpk2bJklKTk7Wm2++qUmTJtXpGpGRkerWrVuN97/mmmuMYE+Sli1b5vVgLyQkRH379vXqNd3Nbrc7lbz26dPH5b83gJrhfgp8jQ5slZRj+l6/fv2825n/lxaTKi1Jr/T9jl27q1fLOC/2yDu4nwD34F4C3If7CXCfhnY/bdq0SSUldR/+4/FgrzLjxo3TggULtHHjRknSt99+q0ceecQYqutJLVq0UPv27XXw4EFJ0v79+z1+TTNlQ4IbitDQ0Ab3MwG+wv0UeArslVfs+eq/ZWxkeJXvF9otQfHnjPsJcA/uJcB9uJ8A9wn2+8mnM2aPGjXKeJ2dna19+/Z57drNmjUzXmdmZnrtugCAhqmw2P9W44qyVv2by9yiwF6dHQAAAAh2Pg32OnTo4LSdkZHhtWsXFhYar2NiYrx2XQBAw5Rv87/VM6pb8TbP5n9hJAAAAICac0ut4p49e/Tll18qMTFRhw8f1qxZsxQVFVXtcUVFRU7b8fHxtbquw+HQq6++qrS0NKWlpencc8/VpZdeWu1xJSUlSkpKMrZbt25dq+sCAFBRQSUVe+PPOM7LPflb9RV7BHsAAABAIHNLsJebm6v333/f2F6xYoWGDx9e7XGbNm0yXlut1loHbBaLRXPmzDFCuuLi4hoFexs3bnQafsuKuACA+iowqdhLiLLq5oEdTPb2juoq9gj2AAAAgMDmlqG4PXv2VEJCgrH98ccfV3tMXl6eZs+ebWwPGjSoTkNiBw4caLxevny5UyVeZd566y3jdUJCgk4//fRaXxcAgPLyTYa1rrvvDPVq5btVZ+Mjw2SxVP5+HsEeAAAAENDcEuxZrVZdfvnlxvayZcs0d+7cSvcvLi7WhAkTlJKSYrSNGzeuTtceM2aM03kff/xxFRdXPhn4+++/r8WLFxvb119/fY2GDQMAUJWCYueKvVZxEerYJNpHvSkVHR6mi3q2rPR9Fs8AAAAAApvbFs+444471LLl3w8PEydO1IwZM5Sfn++03+bNm3Xdddfpp59+MtquuOIKDR482OWcEyZMUI8ePYz/JSYmuuxz8skn64ILLjC2ly1bpptuukm7d+922i8lJUWPP/64nn/+eaOtd+/euvnmm2v/wwIAUI7NXqI/D2Y4tVU3v523fHz1iRp/xnFqnxDp8h6LZwAAAACBzS1z7ElSbGys3n77bV177bXKzMyUzWbT9OnT9d///lc9evRQeHi4kpKSXIbKnn322XriiSfqde1nnnlGBw8e1ObNmyVJf/zxhy688EIdd9xxatGihTIyMrRjxw6VlPxdTdGtWze98847slqt9bo2AAAXv7fSpa26+e28JS4yTNMv6a1bBndQrxd+dXqPOfYAAACAwObWp46ePXvqq6++Uv/+/Y22/Px8rV+/XqtWrXIK9aKjo3X//ffrjTfeUFhY/fLF2NhYzZw5U6NHj5al3GRCe/bs0R9//KFt27Y5hXqXXHKJZs2apaZNm9brugAAbDyUpYU7Ul3a/aVir0xMuOt3LcEeAAAAENjcVrFXpkOHDvr888+1ZMkSzZ8/X+vXr9fRo0dls9mUkJCgbt266bTTTtPo0aPVpEkTt103JiZGU6ZM0c0336yvvvpKq1atUmJionJychQfH6+WLVtqyJAhuuiii9SnTx+3XRcAENy+3nTYtD3S6h8Ve2WiTYLGfII9AAAAIKC5Pdgrc8YZZ+iMM86o1zmmTp2qqVOn1uqYLl266OGHH67XdQEAqKlCe4lpu/9V7Ln2h8UzAAAAgMDmX+UEAAAEmJScItN2f5ljr0xEWIhCLM5tDMUFAAAAApt/PXUAABBg9qXnmbb7W8WexWJRdIWqPVbFBQAAAAIbwR4AAPWwJy3XtL2okiG6vlRxAQ0q9gAAAIDARrAHAEAdFdtLdDCzwPS9o5UM0fWlivPs5RQyxx4AAAAQyAj2AACoo4MZBbKXOEzfO5JlHvj5UlyEc8VeDotnAAAAAAGNYA8AgDraW8n8epKUnFPoxZ7UTMVgL7uQobgAAABAICPYAwCgjqoK7544t4cXe1IzsSZDcR0O84pDAAAAAP6PYA8AgDpKzTWfRy8mPFRX9Gvj5d5Ur2LFXnGJQ4XF/rfIBwAAAICaIdgDAKCO0kyCvRHdmmn1+DPUqUm0D3pUtZgKwZ4kZbOABgAAABCwCPYAAKgjs4q9d67opx4tYn3Qm+pVrNiTpBzm2QMAAAACFsEeAAB1lJbnGuw1iwn3QU9qxizYo2IPAAAACFwEewAA1FHFir2IsBDFVFigwp/ERrj2jWAPAAAACFwEewAA1FHFYK9pdLgsFouPelM906G4RQR7AAAAQKAi2AMAoI4qLp7hz8NwpUqG4hYQ7AEAAACBimAPAIA6cDgcLhV7/h7sxTLHHgAAANCgEOwBAFAHeUV2FRSXOLX5e7BnPhSXVXEBAACAQEWwBwBAHVSs1pOkpgEY7FGxBwAAAAQugj0AAOogNc8k2Iu2+qAnNRdrsmIvwR4AAAAQuAj2AACog+1Hc1zaAnIoLsEeAAAAELAI9gAAqCWHw6E3lu9zaff7YC+SYA8AAABoSAj2AACopT8PZuiP/cec2iwW6cwuzXzUo5qJDTcL9lg8AwAAAAhUBHsAANTSqgMZLm1X9W+rNo0ivd+ZWggPC1F4qPNXP3PsAQAAAIGLYA8AgFoqKC5xabvulPY+6EntxUY4L6BBsAcAAAAELoI9AABqqcjuGuw1Mpm/zh9VXEAjp4hgDwAAAAhUBHsAANRSoUnFXkRYYHylVgz2MvMJ9gAAAIBAFRhPIQAA+JFADvaaRFudto/l23zUEwAAAAD1FRhPIQAA+JHCYteVZCNCQ0329D9NosOdtrMLi1VkElQCAAAA8H8EewAA1JJZxV54mMUHPam9isGeRNUeAAAAEKgI9gAAqKVCk8UzAnUoriSl5Rb5oCcAAAAA6iswnkIAAPAjZkNXA2cormuwl55PsAcAAAAEIoI9AABqKZAXz2hqMhQ3LZehuAAAAEAgCoynEAAA/IhZsGcNDZQ59kwq9vKo2AMAAAACEcEeAAC1VDHYiwgLkcUSGMGeWcXeukNZPugJAAAAgPoi2AMAoJbMgr1AYbYq7hvL9uqL9Yd80BsAAAAA9RE4TyIAAPiJiqviRoQGztdp0xjXobiSNPmnbV7uCQAAAID6CpwnEQAA/ERhsd1pO9Ar9iRpe0qu7CUOL/cGAAAAQH0EzpMIAAB+IpCH4kZZQyt9L7eo2Is9AQAAAFBfgfMkAgCAnwjkYK8quUX26ncCAAAA4DcaxpMIAABeRLAHAAAAwB80jCcRAAC8yDXYq3x4qz+6tE8r03aG4gIAAACBhWAPAIBaCuRVcSXptiEdTdup2AMAAAACS2A9iQAA4AcCfSjuuT1a6PpT2ru0E+wBAAAAgSWwnkQAAPAxh8MR8MGeJJ3euYlLW04hQ3EBAACAQBJ4TyIAAPiQze5waQvEYC8mPMyljYo9AAAAILAE3pMIAAA+VLFaTwrUYM91wQ8WzwAAAAACS+A9iQAA4EOFdteqtvAGE+xRsQcAAAAEksB7EgEAwIdMK/YCbFVciaG4AAAAQEMQeE8iAAD4UFFxw5hjLzaCij0AAAAg0AXekwgAAD5kNhQ3Isw1JPN3zLEHAAAABD6CPQAAaqHhLJ5hMhS3kIo9AAAAIJAE3pMIAAA+1HCCPSr2AAAAgEAXeE8iAAD4kFmwFx6Ai2dEhIUoxOLcxhx7AAAAQGAJvCcRAAB8qKFU7FksFpfhuAR7AAAAQGAJvCcRAAB8qKEEe5LryrgMxQUAAAACS2A+iQAA4COFdpNgLwCH4kquC2hQsQcAAAAElsB8EgEAwEcaUsVexQU0CPYAAACAwBKYTyIAAPhIQw72chiKCwAAAASUwHwSAQDARwqLXavaGkqwR8UeAAAAEFgC80kEAAAfsJc49MSCHS7tgRvsOc+xV1hcInuJw0e9AQAAAFBbgfkkAgCAl9lLHLpy1holZxe6vBeowV5cRJhLW0a+zQc9AQAAAFAXgfkkAgCAl324+qBmbzps+l7ruEgv98Y9WsRGuLSZBZcAAAAA/BPBHgAANbDqQIZp+4U9W+i4ptHe7YybtIxzDfZ+2ZXqg54AAAAAqAuCPQAAaiDPZMXYly7ppW9uOEUWi8UHPaq/lnHhLm33fLtZT5nMIwgAAADA/xDsAQBQA/m2Epe2u07rLGto4H6VtqpkCPGUX3Yqk7n2AAAAAL8XuE8jAAB4UZ7N7rQdGmIJ6FBPklqazLEnla6Ou/5Qppd7AwAAAKC2AvuJBAAAL8mvEOxFW0N91BP3aWUyxx4AAACAwEGwBwBADeQVOQd7UdbA/wptGhOukEqmB8wptJu/AQAAAMBvBP5TCQAAXpBf3PAq9kJDLCpxmL+XVei6WAgAAAAA/0KwBwBADVRcPCOqAQR7Vckm2AMAAAD8HsEeAAA14DoUt4EHewUEewAAAIC/I9gDAKAGXBbPCG8YwV7rePMFNKjYAwAAAPwfwR4AADWQZ2t4i2dI0mNndzdtJ9gDAAAA/F/DeCoBAMCDSkocKix2nmOvISyeIUlXn9hOfVvHubQT7AEAAAD+j2APAIBqVByGKzWcOfbiIsO0/K6hLu05BHsAAACA3yPYAwCgGvnFJsFeA5ljT5JiwkMVYnFuy2LxDAAAAMDvEewBAFCNiiviSlJUWMMJ9iwWi2IjwpzaGIoLAAAA+D+CPQAAqpFvK3Fpayir4paJI9gDAAAAAg7BHgAA1ai4Iq7UcObYKxNPsAcAAAAEHII9AACqYb54RsP6CqViDwAAAAg8DeupBAAADzCbYy+6gVXsxUUS7AEAAACBhmAPAIBq/L7vmEtbQxuKW7FiL99WomK769yCAAAAAPwHwR4AAFX4bXeqnliw3aW9oS+eIUk5JpWKAAAAAPwHwR4AAFX47+/7TdsbesWeJCVlFvigJwAAAABqimAPAIAqfLHhkGl7Q59jT5IGvbqU4bgAAACAHyPYAwCgEg6Ho9L3GtqquI1Mgr08m11rEjN90BsAAAAANdGwnkoAAHCj9Dxbpe9FW12DsEA2tHMT0/ZDWQzHBQAAAPwVwR4AAJXYm55X6XsNrWJvaOemOt0k3MsuLPZBbwAAAADURMN6KgEAwI32VRnsNaw59iTpkbO7ubQR7AEAAAD+i2APAIBKVFWxFx3e8II9s5VxCfYAAAAA/0WwBwBAJfYdy6/0vYZYsUewBwAAAAQWgj0AACpR2VDcVnERijcJwQKdWbCXU2j3QU8AAAAA1ATBHgAAlUjJKXRpC7FIj53TXSEhFh/0yLNiI1yrEKnYAwAAAPxXwys3AADATcxCrQ0PnKnereJ80BvPM6/YI9gDAAAA/BUVewAAVCK7wjDUAW3jG2yoJ0kRYaGyhjpXIlKxBwAAAPgvgj0AACpRMdQyq2hraCr+jAR7AAAAgP8i2AMAwITD4VBOEcEewR4AAADgvwj2AAAwkVtkl8Ph3BaMwR6r4gIAAAD+i2APAAATZpVqsUEY7FGxBwAAAPgvgj0AAEyYBVrBULEXGxHqtE2wBwAAAPgvgj0AAEwEa7BX8WcsLC6RzV7io94AAAAAqArBHgAAJrILCPbKULUHAAAA+CeCPQAATJhW7EU2/GDPbB5Bs5ATAAAAgO8R7AEAYIKhuH/LKWJlXAAAAMAfEewBAGCCYO9vDMUFAAAA/BPBHgAAJrILXavU4iqsGNsQmQ7FJdgDAAAA/BLBHgAAJqjY+9uxPJsPegIAAACgOgR7AACYCNZgr22jSJe2Pw9meL8jAAAAAKpFsAcAgIlgDfYGdUhQiMW5bdneNN90BgAAAECVCPYAADCRE6TBXnykVf3axDu1rUnMVC7z7AEAAAB+xyNPKA6HQ0uWLNGcOXO0YcMGpaamKiQkRK1atVLv3r01cuRIDR06VCEh7s8Vc3Nz9c0332jRokXavn27srOzlZCQoDZt2mjEiBG67LLL1KJFC7dfFwDQsGQXOAdZIRYpOrzhL54hSUM7N9W6pCxju7jEoZUHMjS8WzMf9goAAABARW4P9g4dOqSHHnpIf/75p8t7u3fv1u7duzVnzhz1799fzz33nLp06eK2a69Zs0YPPPCADh8+7NSekpKilJQUbdiwQTNmzNCkSZM0evRot10XANDwVByKGxsRJovFUsneDcvQzk30+rK9Tm1bj2YT7AEAAAB+xq0lc0lJSbr66qudQr3o6GgNGDBAAwcOVLNmfz8QrF+/Xv/4xz+0c+dOt1x7zZo1uvHGG51CvbZt22rgwIHq3Lmz0Zabm6uJEyfq008/dct1AQANU8VgLxiG4Zbp3CTapS0lp8gHPQEAAABQFbc9pZSUlOjBBx/UoUOHJElWq1Xjx4/X2LFjFRERIal0iO5PP/2kyZMnKyMjQzk5Obrtttv0ww8/KDw8vM7XzsnJ0fjx41VQUCBJat26taZMmaIhQ4YY+2zdulUTJ07U1q1bJUnPPPOMTjjhBPXu3bvO1wUANFwZ+Tan7UaRwRPsNY9x/U4+mlPog54AAAAAqIrbKvZ+/vlnrV271th++umndfPNNxuhniRZLBadf/75mjFjhjG/XmJioubMmVOva8+YMUNHjx6VJMXFxemDDz5wCvUk6fjjj9dHH32k7t27S5KKi4v10ksv1eu6AICGKy3POdhrGl33X0AFmuaxrj9rai4VewAAAIC/cVuw9+WXXxqvTzjhBF122WWV7tu/f38NGzbM2F60aFGdr1tYWKjPP//c2B43bpw6depkum9sbKyeffZZY3v58uXavn17na8NAGiYiopLXIbiNom2+qg33hcdHqaYCguFULEHAAAA+B+3BHsOh0NHjhwxqvAuuuiiao/p1q2b8Xr//v11vvayZcuUmZkpSQoJCal2UYyKw29//PHHOl8bANAwHaswDFeSmpgMT23IWsRGOG0zxx4AAADgf9wS7FksFs2ZM0dr167VV199pZEjR1Z7TFZWlvE6JiamztdesWKF8bp79+5q3rx5tcecdtppxuvFixfX+doAgIYpzWTYaTANxZVc59mjYg8AAADwP26dCTwqKkp9+/atdr+ioiItXbrU2O7Vq1edr1l+KG1NF8Lo2bOn8Xrnzp0qLCx0mgsQABDc0vII9ipW7KXn21RsL1FYqNtm8QAAAABQT17/13lRUZEmTZqkpKSk0g6EhOi6666r8/n27t1rvO7YsWONjmnXrp3xuri4WImJiXW+PgCg4UnPMxmKG0Rz7ElSswoLaDgcrguKAAAAAPAtt1bsmSkpKTHCs2XLlmnWrFk6cOCA8f7kyZPVpUuXOp87PT3d2K7JMFxJatasmdN2SkpKnfsAAGh4TCv2gnyOPUlKySlUyzgq3AEAAAB/4fFgb8qUKZo5c6ZLe6tWrfTII4/ovPPOq/O5s7OzZbfbje34+PgaHRcXF+e0XX6+P28qLi6ufic/Vv6zN9sGUHPcT/4lJbvApS0hIiTg/96ujaZRrv9EOJyZr57No33Qm9rhfgLcg3sJcB/uJ8B9uJ+ceTzYO3TokGl748aNdfToURUUFCgyMrJO5y4sdJ7Iu6bz5IWHO1ddVDyPN5SUlGjDhg1ev64nbd682dddABoM7iff2rrP9Rc+KQf3akN28EzdUJCe59K2+q+dapIbeJ8B9xPgHtxLgPtwPwHuE+z3k8fn2EtNTVXPnj01ePBgde/eXSEhpZfcunWrnnnmGY0aNUq7d++u07krVk6EhobW6LiK+wV7ugsAcJZVVOLS1ig8uBaNSIhw/XmPFfJ9CQAAAPgTj1fsffLJJ05BWkpKit544w199tlnkqR9+/bphhtu0HfffafGjRvX6tx1Degq7me1BteE6ACAqmUWugZ78SZBV0PWNNL1l2Vp+a6fCwAAAADf8XiwVzF8a968uZ588km1a9dO06ZNkyQlJyfrzTff1KRJk2p17opDeGs6pLauQ3jdKSQkRH379vX6dd3Jbrc7lbz26dOnxlWTAJxxP/kX+x8rJf09z160NVQDT+zvs/74QousAumnxU5tJVGN1K/fCT7qUc1xPwHuwb0EuA/3E+A+De1+2rRpk0pK6v4LdI8He5UZN26cFixYoI0bN0qSvv32Wz3yyCPGUN2aiIuLU0hIiPEB5OTk1Oi4ivslJCTU+JruFBbms4/fI0JDQxvczwT4CveT7xTY7NqV5jy/XNMYa9D992iTEKMQi1Ti+LstOacoID8H7ifAPbiXAPfhfgLcJ9jvJ5+OKxo1apTxOjs7W/v27avV8SEhIWrevLmxnZaWVqPjUlNTnbabNWtWq+sCABqm33anqvNzP+tQlvOquE2iwys5ouEKDbGoRaxzRfvhbO8vNgUAAACgcj4N9jp06OC0nZGRUetzdOzY0Xh94MCBGh1z8OBB47XValXbtm1rfV0AQMPz4Ny/lGwSXsWEB25pf320jq8Q7FUIPAEAAAD4lltqFffs2aMvv/xSiYmJOnz4sGbNmqWoqKhqjysqKnLajo+Pr/W1+/Tpo1WrVkmStm3bVqNjtm7darzu2rUri2cAAFRsL9GaxEzT9yLDgjTYi4vUOmUZ2ym5RSq2lygsNLgWEgEAAAD8lVv+ZZ6bm6v3339fCxYs0KZNm7RixYoaHbdp0ybjtdVqVevWrWt97YEDBxqvt2zZoqysrCr2LvX7778brwcPHlzrawIAGp7C4sonrI0MC84gq1W88yJVDoeUnMNwXAAAAMBfuOVJpWfPnk4LUHz88cfVHpOXl6fZs2cb24MGDVJMTEytrz1kyBDFxcVJkmw2m7766qsq99+wYYP++usvY/uCCy6o9TUBAA1PQRXBXpQ1SCv24l1XjT/CPHsAAACA33BLsGe1WnX55Zcb28uWLdPcuXMr3b+4uFgTJkxQSkqK0TZu3Lg6XTsyMlJjxowxtt944w1t377ddN/s7Gw9+uijxnb//v3Vr1+/Ol0XANCwVFmxZw3Oir3WcZEubYezCPYAAAAAf+G2J5U77rhDLVu2NLYnTpyoGTNmKD8/32m/zZs367rrrtNPP/1ktF1xxRWmQ2InTJigHj16GP9LTEw0vfYtt9yiJk2aSCodFnz99ddr4cKFcjgcxj7btm3T2LFjtXPnTkmlyyFPmDCh7j8wAKBBqSrYiwjWOfZMKvZYQAMAAADwH25ZPEOSYmNj9fbbb+vaa69VZmambDabpk+frv/+97/q0aOHwsPDlZSUpKSkJKfjzj77bD3xxBP1unaTJk00ffp03XbbbSooKFB6erruuusutWrVSh06dFBaWpp2797tdMwDDzygAQMG1Ou6AICGo6DYXul7UcFasRfvWrF3iGAPAAAA8BtufVLp2bOnvvrqK/Xv399oy8/P1/r167Vq1SqnUC86Olr333+/3njjDYWF1T9fHDJkiN555x21adPGaDty5IhWrVrlFOpFRkbq8ccf10033VTvawIAGo6qF88Izoq9to1cg73ETII9AAAAwF+4rWKvTIcOHfT5559ryZIlmj9/vtavX6+jR4/KZrMpISFB3bp102mnnabRo0cbw2fdZeDAgfr+++/19ddfa+HChdq1a5cyMjIUERGhjh076rTTTtOVV16ptm3buvW6AIDAV9XiGcE7x16EQkMsspf8PbXFwWP5VRwBAAAAwJvcHuyVOeOMM3TGGWfU6xxTp07V1KlTa3VMVFSUrr76al199dX1ujYAILgUVjkUNzgr9sJCQ9QmPkIHM/6u0juQQbAHAAAA+IvgLEEAAKCCqofiBu/XZYeEKKftgxn5TotTAQAAAPCd4H1SAQCgnCqH4gbpHHuS1KFxtNN2bpFdM1cnKj2vyEc9AgAAAFCGYA8AAFVdsResq+JKUvsKFXuSdMPn69XnxV+1NTnbBz0CAAAAUCZ4n1QAACinoIo59iKDdI49SWqf4LoyriQdyS7U23/s93JvAAAAAJRHsAcAgJhjrzIV59grb/vRHC/2BAAAAEBFwfukAgBAOVUPxQ3eir0OjSsP9vam53mxJwAAAAAqItgDAEBSgY2KPTPdmsUoIcpq+l5cRJiXewMAAACgvOB9UgEAoJxCexXBXhBX7EWHh+nZC3rKGmpxeS+3qPJ5CQEAAAB4HsEeAACSCmyVh1TBvCquJN1+aiftnDDcpT2vis8MAAAAgOcF95MKAAD/r+rFM4K3Yq9Mh8bRGtyxsVNbHhV7AAAAgE8R7AEAoGqG4gbxHHvlRVcYkkzFHgAAAOBbPKkAAKBqFs8I4jn2yjML9hwOh496AwAAAIBgDwAASUVVDMUN9jn2ykSHOwd7DkfVQ5gBAAAAeBZPKgAASCoornxYKXPslapYsScxHBcAAADwJYI9AABUdeWZNdTixZ74r6hwk2CPBTQAAAAAnyHYAwBAVQd7FgvBniTFmAR7uQR7AAAAgM8Q7AEAIKmAueKqxVBcAAAAwL8Q7AEAIKmwijn2UKri4hkSQ3EBAAAAXyLYAwBAVOzVBBV7AAAAgH8h2AMAQFXPsYdSVOwBAAAA/oVgDwAAEezVBBV7AAAAgH8h2AMAQFIBc+xVi4o9AAAAwL8Q7AEAoMor9q49qZ2Xe+K/YkyCvdyiYh/0BAAAAIBEsAcAgCTzxTMSoqy687TOPuiNf2IoLgAAAOBfwnzdAQAA/IFZxd6GB4apfUKUD3rjnxiKCwAAAPgXKvYAAEHP4XC4BHsje7Uk1KuAij0AAADAvxDsAQCCXpHdtVovMoyvyIqo2AMAAAD8C08tAICgZzYMN4Jgz4VZxV4+FXsAAACAz/DUAgAIetmFriu7xkQwDW1FVOwBAAAA/oVgDwAQ9DLzXYO9eII9F+GhIQoNsTi1McceAAAA4DsEewCAoJdZYHNpaxRl9UFP/JvFYnEZjjt/61F9vDZRDofDR70CAAAAghfBHgAg6GUWuFbsNYqkYs9MzxaxLm1jP1mnl5fs8UFvAAAAgOBGsAcACHqmFXuRVOyZOb9nC9P2masTvdwTAAAAAAR7AICgl0XFXo1ddLx5sLf1aLaXewIAAACAYA8AEPTMhuLGE+yZOrldglrEhru02+zMsQcAAAB4G8EeACDoMRS35kJCLJo4opvpe4XFrJALAAAAeBPBHgAg6JkvnkGwV5m7T+tsWtGYXej6OQIAAADwHII9AEDQyzar2ItiKG5lQkIsuv6U9i7tZnMVAgAAAPAcgj0AQNAzq9iLiyDYq0q8yedDsAcAAAB4F8EeACDoZeY7V+xFW0NlDeUrsirxJkOVCfYAAAAA7+KpBQAQ9I7mFDltMwy3emZz7GUxxx4AAADgVQR7AICg9sGfB7UlOdupjYUzqmc2FJfFMwAAAADvItgDAASt3MJi3f3NJpf2RibVaHBmNgdhlskiJAAAAAA8h2APABC0tiRnK7fI7tJuNswUzkyH4jLHHgAAAOBVBHsAgKCVkW9eYZaZT0BVHebYAwAAAHyPYA8AELQyK6kwCwu1eLkngSc+glVxAQAAAF8j2AMABK3KKvbO69HCyz0JPGYVeyyeAQAAAHgXwR4AIGgdqyTY+9eAtl7uSeAxWzwjm4o9AAAAwKsI9gAAQcusYu+7G05Rl2YxPuhNYAkPC1FEmPM/I7IKWRUXAAAA8CaCPQBA0DIL9vq3beSDngSm+ApVe8yxBwAAAHgXwR4AIGiZLZ6REOm6KATMVZxnj2APAAAA8C6CPQBA0KpYsRcaYlFsRKiPehN4KgZ7LJ4BAAAAeBfBHgAgaFUM9hIiw2SxWHzUm8BTsboxJbdIDofDR70BAAAAgg/BHgAgaLkEe1EMw62Nto0inbYLi0uUmlvko94AAAAAwYdgDwAQtDIKCPbqo33jKJe2Axn5PugJAAAAEJwI9gAAQYuKvfpp38g12DtIsAcAAAB4DcEeACAoFRbblW8rcWpjRdza6WBWsXeMYA8AAADwFoI9AEBQysh3XcG1ERV7tdI+waxir8AHPQEAAACCE8EeACAoVRyGK0kJUWE+6Eng6mAa7FGxBwAAAHgLwR4AICiZB3tU7NVGoyir4iKcw1AWzwAAAAC8h2APABCU0vOKXNoaE+zVWsWqPSr2AAAAAO8h2AMABKVUk2CvWUy4D3oS2CouoJGUWaCFO1J81BsAAAAguBDsAQCCUlqu61DcptEEe7V1YrtGLm3nvf2Hpv6y0we9AQAAAIILwR4AICilmVTsNaVir9aGd21m2j7l513KK3JdeRgAAACA+xDsAQCCUlquSbAXzRx7tTWkY2PT9uzCYh3MKPBybwAAAIDgQrAHAAhK6XmuQ3GZY6/2Iq2hOrubedWeWVUkAAAAAPch2AMABKXUChV7kWEhig4P81FvAtvNgzqatlf8jAEAAAC4F8EeACAoVawmY369uruiX2ud2aWpS7vZcGcAAAAA7kOwBwAIShVDJ1bErTuLxaLJ53Z3aadiDwAAAPAsgj0AQFCqWLHH/Hr10ywmwqUtzWQeQwAAAADuQ7AHAAg6eUXFyreVOLWxIm79mH1+VOwBAAAAnkWwBwAIOmaVZE2o2KsXszkK01kVFwAAAPAogj0AQNAxW9SBOfbqxxoaovhI51WFqdgDAAAAPItgDwAQdA5nFbi0Mcde/VX8DFkVFwAAAPAsgj0AQND5bkuyS1u7RpE+6EnDUrHqkYo9AAAAwLMI9gAAQaWouERfbTzk1BYRFqJzujf3UY8ajooVe+n5NpWUOHzUGwAAAKDhI9gDAASVpXvTlF5h8YyLj2+pRlGsiltfFVfGtZc4lFngulAJAAAAAPcg2AMABJWDGa7z613at5UPetLwmK2Mm5xT6IOeAAAAAMGBYA8AEFTybXaXNlbEdY/2CVEubVuTc3zQEwAAACA4EOwBAIKKWbAXZeXr0B1OaB3v0nb5h6uVnE3VHgAAAOAJPMkAAIKKWbAXGRbqg540PGbBniQN+89yFdtLvNwbAAAAoOEj2AMABJWCYteAKcpKsOcOLeIi1CouwqV9R0quVh3M8H6HAAAAgAaOYA8AEFQYiutZXZpGm7YfZRENAAAAwO14kgEABJV8m2vFXiQVe24zuGMT0/ZCk0pJAAAAAPVDsAcACCpU7HnWpX1ambabBaoAAAAA6ocnGQBAUDGrHIti8Qy3Oa1zE53aqbFLe4FJoAoAAACgfgj2AABBxXRVXIbiutUz5/d0aTNbtAQAAABA/RDsAQCCSsVgzxpqUWiIxUe9aZjMglKzQBUAAABA/RDsAQCCSsWAKYpqPbeLDHP95wUVewAAAID7EewBAIJKQYVFHAj23M/sM2WOPQAAAMD9CPYAAEElv9g5YDKrLkP9mH2m+VTsAQAAAG7H0wwAIKjkU7HncWZz7FGxBwAAALgfwR4AIKi4zrHHV6G7mX2mhVTsAQAAAG7H0wwAIKhUrByjYs/9IsNYFRcAAADwBoI9AEBQqTgU1yyEQv1YQy2yWJzbKi5aAgAAAKD+CPYAAEHD4XC4LJ7BUFz3s1gsiqoQmBYUU7EHAAAAuBtPMwCAoGGzO+RwOLcxFNczIisEpgXMsQcAAAC4HcEeACBoLN+X7tIWGcZXoSdUHOLMHHsAAACA+/E0AwAICvvT8zTirRUu7ZFU7HlExSHOzLEHAAAAuB/BHgAgKHy4OtG0naG4nlGxYo859gAAAAD3I9gDAASF15btMW0n2POMinPsVVyNGAAAAED9EewBAIJCo0iraTtz7HlGxc+Vij0AAADA/XiaAQAEhfjIMNN2KvY8o+Lnyhx7AAAAgPsR7AEAgkJsuHmAV3GRB7iHy6q4xXY5HA4f9QYAAABomHiaAQAEhZwi86GgrIrrGRXn2HM4JJudYA8AAABwJ4I9AEBQOJZnM21njj3PMBvizDx7AAAAgHvxNAMACArp+UWm7VkFxV7uSXCIMAlMWRkXAAAAcC+CPQBAg2ezlyin0LxaLN9GFZknmA1xLuCzBgAAANyKYA8A0OBl5JsPw5WkUX1aebEnwSPKpGLv5aV7dCzPvHISAAAAQO2FeeKkK1eu1Pz587Vu3TodPXpUOTk5io2NVevWrXXyySdr9OjR6tWrl9uul56eriFDhtT6uBdeeEGjRo1yWz8AAP7pWCXB3pX926h781gv9yY4mFXsvbZ0r77eeFib/32m4iOtPugVAAAA0LC4NdhLTEzUww8/rNWrV7u8l5GRoYyMDG3dulWzZs3SRRddpKeeekqxsfV/oNq6dWu9zwEAaLjSTRbOGN61mT6++kQf9CY4VLYoSWJmgb7edETXn9Leyz0CAAAAGh63BXv79u3TVVddpfT0dKPNarWqe/fuiouLU1pamnbt2iWHwyFJmj9/vnbv3q2PP/643uFe+WCvZcuW6tatW42Oa9GiRb2uCwAIDGbDPy/r20oWi8UHvQkOZqviltmdluvFngAAAAANl1uCPbvdrrvvvtsI9UJDQ3X77bfrhhtucArtkpOTNX36dH377beSpG3btunRRx/Vq6++Wq/rlw/2/vGPf+iuu+6q1/kAAA2L2VDcxlEMBfWkyir2JPMKSgAAAAC155bFM77++mvt2LHD2J46daruvvtul0q8li1b6vnnn9cNN9xgtP34449av359va6/bds243XPnj3rdS4AQMNjFuw1iQ73QU+CR1ho5dWQVS1mAgAAAKDm3BLsfffdd8broUOH6pJLLqly//vvv99pGOz8+fPrfO3CwkLt3bvX2O7Ro0edzwUAaJjMKsSo2POsdo2iKn0vnZVxAQAAALeod7BXVFSktWvXGtsXX3xxtceEh4dr6NChxvamTZvqfP3t27fLbrdLkmJjY9WuXbs6nwsA0DBlFrgGewkEex41rEtTdW4SbfoeQ3EBAAAA96h3sJeUlKSIiAhju0uXLjU6LiEhwXh97NixOl+//DDcHj16MBE6AMBFVkGxS1ujSLcuDI8KoqyhWnbXaXr2AtcpMqjYAwAAANyj3k81nTt31rp165Sdna3k5OQaV8wlJSUZrxs1alTn65dfOIP59QAAZrILXYO9eII9j2sdH6mJI7pp/tZk/b7v71/iUbEHAAAAuIfbnmri4uIUFxdXo31zcnK0fPlyY7umVX5mygd7PXr00IEDBzR79mwtX75c+/btU0FBgZo2bapevXrp3HPP1ciRIxUWxsMcAASTihV7oSEWRVlDfdSb4NMkynmhkowCm+wlDoWGUGUPAAAA1IdPEq733ntPOTk5xvZZZ51Vp/M4HA5t377d2J43b56efPJJY869MkeOHNGRI0f0yy+/6K233tKLL76oE044oW6dBwAEnKwKc+zFR4QxdYMXNYl2ns/Q4Sid95CViQEAAID68Xqwt3HjRr3zzjvGdqdOnTR8+PA6nWv//v3Ky8sztletWiVJslqt6ty5sxo3bqxjx45p165dKikpkSTt27dPY8eO1euvv64zzjijHj9J/RUXuw4NCyQVA9SK2wBqjvvJszIrVOzFR4QF/N/BgSTBZNjzYz9s1SuX9PJIwMr9BLgH9xLgPtxPgPtwPznzarCXmJioO+64Qzbb35UTEyZMqPPQ2PLDcKXSQO+OO+7QVVddpcaNGxvtaWlpevvtt/Xhhx/K4XCooKBA9913n2bPnq1OnTrV6dr1VVJSog0bNvjk2p6yefNmX3cBaDC4n9wrLTvPaTtctgb3d7A/K8zKdmn774oD6hGeo9PaRHr8+txPgHtwLwHuw/0EuE+w30/1XhW3pg4fPqzrrrtOKSkpRtv1119f52G4krR3717jdUREhGbOnKk77rjDKdSTpKZNm2rixImaMmWK0ZaTk6Np06bV+doAgMCRaytx2o6xeu3rD5Liw80/78WJBV7uCQAAANCweOXJZvfu3brqqquUmJhotA0dOlQPPvhgvc57xx13aM2aNfruu+/0xRdf6MQTT6xy/8suu0wXX3yxsb1w4UIdOnSoXn0AAPg3h8OhXJvDqS3Gyvx63tQo3Pzz/m53nmk7AAAAgJrx+FDctWvX6o477tCxY8eMtsGDB+uNN96Q1Wqt4siaiY2NVc+ePWu8/9ixYzVv3jxje/ny5briiivq3Y/aCgkJUd++fb1+XXey2+1OJa99+vRRaCirTAJ1wf3kOblFxbI7Dju1tW3eRP369fNRj4JPclSKtGK1S3tseKhH/jtwPwHuwb0EuA/3E+A+De1+2rRpk7EuRF14NNibO3euHnnkERUVFRltw4YN02uvvabISM/PqWOmT58+slqtxjx/+/fv90k/JNV5bkF/FRoa2uB+JsBXuJ/cJy/PdZGMRlFWPl8vahJj/p2fa7PLLosiwjz7DzHuJ8A9uJcA9+F+Atwn2O8njw3Fff311/Xggw86hXqXXHKJ/vOf//gs1JNKw7SEhARjOzMz02d9AQB4XlaBa7AXH1H/inHU3PEtYhUR5vpPDodD2pee74MeAQAAAA2D24M9m82mhx56SG+88YZT+6233qoXXnjBL1LU8mFjTEyMD3sCAPA002Av0vffRcGkUZRVT57Xw/S93Wm5Xu4NAAAA0HC49cmmqKhId999t3799de/LxAWpieeeMLt89hlZ2frnXfeUVpamtLS0nTNNddo6NCh1R6XkZGhrKwsY7t169Zu7RcAwL9kFdpc2gj2vO+hs7oqMixE47/b4tS+O40FNACgPlJyCvXvuX9pZ2quxvRrrXuGHqfQEBaJAoBg4bYnm+LiYt1zzz1OoV5MTIxee+21GgVutRUZGan333/fmCuvdevWNbrO8uXL5XD8vTriySef7Pa+AQD8h/lQXII9XxjetZlLGxV7AFA/N32+QfO2JkuSVuw/plZxkbpqQNsqj8nIt+nN5XtVXOLQHad2UvPYCG90FQDgAW4bivviiy9q8eLFxnaTJk00a9Ysj4R6kmS1WjVgwABj+/vvv1dOTk6VxxQXF+vdd981trt27apevXp5pH8AAP/AUFz/0blJtEvbkaxCH/QEABqGwmK7EeqVuX/Olkr2LmUvcWjwa0v12I/b9eSCHRowfYkKbHZPdhMA4EFuCfZ+++03ffjhh8Z2o0aNNHPmTPXu3dsdp6/UmDFjjNcZGRl67rnnqtx/6tSp+uuvv4ztW2+9VRYLZeoA0JBlFZoFeyye4QsxEWGKrLCIRlpeUSV7AwCqk5Lj+ndocnbVvzBZsP2odqT8XS19KKtAX2087Pa+AQC8o97Bnt1u17PPPmsMb7VYLHrppZfUrVu3ep137Nix6tGjh/E/MyNHjlT//v2N7dmzZ2v8+PE6fNj5i+nAgQO66667NGvWLKNt+PDhuuSSS+rVRwCAf8srKta93252aWcoru80iQ532k4n2AOAOkvNNf87tPzUQxV9ui7Jpe2tFfvc1SUAgJfV+8nmxx9/1P79+43tqKgoffDBB/rggw9qfI5mzZrp+eefr/W1Q0JC9Nprr+lf//qXEhMTJUk//PCDfvrpJ3Xr1k2NGzdWSkqKdu/e7XTcwIEDNX369FpfDwAQWD5cnWjazlBc32kSbdWhrAJje11SljYfzlKf1vE+7BUABKaUSoK91NyiSufNY8QSADQsbgn2ysvLy9OyZctqdY62baue3LUqLVu21JdffqlHHnnEmOOvpKRE27dvd9k3NDRU11xzje677z5FRUXV+ZoAgMDw884U0/aEKIbi+krTChV7knTyK0v1w7hBOstkcQ0AQOUqq9jbm55XqwUxqijwAwD4uXoHe3v27HFHP+qlSZMmeuutt7RhwwZ9++23WrNmjQ4fPqz8/HwlJCSodevWOv3003XxxRfruOOO83V3AQBekp5nc2nr3yZereMjfdAbSKUVexUV2Uv0n+X7CPYAoJZScszn09ubnqeBHRqbvmc2TDe3yK70vCI1jrJS0QcAAabewd78+fPd0Q8X5efDq6l+/fqpX79+HugNACAQmQV7H199og96gjKNTSr2JGn2JiZuB4Daqqxi76qP1mr2xsN647K+ahHnXLmXabJa/MbDWWr2+E8ac0JrfXjVAEVZQz3SXwCA+7llVVwAAPxRxRVX+7WJ1/Et43zUG0hSU5OKPQBA3VQ2x54kfbXxsJ5Y4Do9UWVhYNkxX/OLFgAIKAR7AIAGq+KKq2bzu8G7Kq6KW15VqzgCAJw5HA7NXH2wyn3eWrHfpa2qYE+SHpz7V736BQDwLoI9AECDlG+zK99W4tRmNr8bvKtpTOX/DbILXYeHAQDM3fH1JpfvOTNZBc7TUlQX7CVnm8/bBwDwTwR7AIAGqWK1niQ1Jtjzuaoq9lJyqn7YBACUOpxVoHf+cK3GM7P9aK7x2mYv0bF81/lnAQCBi2APANAgmS2cUVWoBO9oElV5uFpdFQkAoNQf+4+ppIazF2xLyTZeu+MXKEXFJfplZ6rWJGbU+1wAgPqr96q4AAD4I7OKPebY872mMVVU7BHsAYCTRTtS9MGfB9UsNlwPn9VVreMjJUl/Hsyo8Tmu+3S9ft6Rqh+3H9XRegZ7eUXFGvaf37UmMVOSNP6M4zT9kt71OicAoH6o2AMANEhpphV7DMX1tar+G1CxBwB/W5OYofPe+UOfrEvSa0v3qtOzi7ThUGmgVptgT5JmrkmsVaj3x/5jevuP/dqVmuvUPnvTYSPUk6RXl+7RnrTciocDALyIij0AQINkVrFHsOd7Vc+xx4TtAIJbVoFNu1Jz1aFxlL7edFjlFwu32R0aMH2Jbh3SUb/vS/doP059fZkkyWKRfrltiIZ1aSZJevePA077ORzSx2uT9Ng53T3aHwBA5Qj2AAANktkcewzF9b0oa6i6N4/RjhTXCg+G4gIIZpsPZ+mi91bqYEaBmkRbTb/HJGnGipotmuEODof0wJy/tPq+MyRJiZkFLvvsTMnxWn8AAK4YigsAaJDSTEIiFs/wD8+c39O0naG4AILZS7/t1sGM0uCsslCvMuf3aO6JLkmS1iZlavnedBXY7GpuMk/qtqMEewDgS1TsAQAapPR85tjzV2P6tdHe9gnq/NzPTu2pblitEQAC1YerE+t0XPuESN1z+nH6cXuKm3v0t9PfXK7w0BAV2Utc3ttwOEuFxXZFhIV67PoAgMpRsQcAaJDSTSv2CPb8Rccm0Woc5fzfIyWXOfYAoLYeOqurOjeJ9vh1zEI9qXTuv42Hsj1+fQCAOYI9AECDVHEOt0aRYVQT+JmKQWtmQbGPegIAvuUov0pGLQ3t3ETNY3071cS+Y3k+vT4ABDOG4gIAGpwCm13bKkzm3bd1vI96g8rERTj/MyS7kGAPQHDKK7LX+djOTaIVG+7bx7rEzHyfXh8AghkVewCABuev5GzZS5yrH04g2PM7BHsAUMpsXtiaaBptVXykVSEhljod764pKhIzXFfLBQB4B8EeAKDB2XAoy6WtXxuCPX9TMdjLKSyu13A0AAhUZiu510T5ufUePLNLrY//Z/+22vjAsDpdu7ykTII9APAVhuICABqcDYcJ9gJBXKTzP0NKHKXD0WIi+OcJgOCSlle3YK9FbITx+tkLeiohyqp1iZk6s2tT7UzN1WtL91Z5fHioRY0rqdrr0TxG2yvMV1uZVQeOaV96njo2jpLFUrfqQQBA3fAvZwBAg7PliPPqfCEWqU+rOB/1BpWJNQnwsguLCfYABI1ie4ne//OgJv+0vU7H5xT9PYWBNTREj4zoZmzvTs3VlxsO6XBWoUIspb88qSjEYlGruEi1iovQkey/Vya/dUhH3Tyog85+a0WNFjbadyxfxz33s644obU+veYkl6HBuYXFemDuX5qz5Yh6tYzTu//op05eWMkXAIIBQ3EBAA3O0ZxCp+22jSIV7eOJxeGq4lBcSXpj+T6G4wIIGo/8sE23fbVRydmF1e7bwmTl2yv6tal0/y7NYrT5wTM198aB2vDAmXr+ouNd9jm3R3OFhlj0+mV9FBFW+mg4pGNjPX/R8TqpXYK2Pzxc3988SK9d2qdGP8+XGw9r3tZkl/b//L5Pb/+xX0eyC/XLrlTd/c2mGp0PAFA9nnIAAA1OWq7zJORNo10fhuB7ZsHecz/vVFiIRU+c18MHPQIA77HZS6odKlve7ad20qtL9yrj/xfaCA8N0RUnVB7sSVLj6HBd1KulJKllXLieWLBd+bYSSVKXptE6u1tzSdLlJ7TR+T1a6Eh2oY5rGm0Mp20RF6Hze7aQw+FQaIhFn6xNlCQt33es0msu2pmqS3q3cmp7eP5Wp+35W4/K4XAwbBcA3IBgDwDQ4KRXmKuoCcGeXzIL9iTpmUU7CPYANDhrEzM08futyiuy6+Hh3dQiNlxF9pIaH98hIUo/3DxITy7YLrvDoUdHdFeLuIjqD/x/zWIitHr8GXp5yR5FWUM1cXhXhZYbMhsTEaYulfy9bLFYdPupnXT7qZ0kSZN/2q6nF+4w3XfB9qM16k9ukd10SgYAQO3wNykAoEHJt9lVUOz8oNSkkonB4VtxEaGm7SWO0nmnwkKZMQRAw1BYbNcF76xUyv+vfnvJ+6t019DOtTpHoyirBnVsrO/HDa5zP45vGae3r+hX5+PLtGsUWel7h7IKVFLiMObZyyk0n6MvI99GsAcAbsC/mAEADUrFaj2Jij1/VVnFniSl5dkqfQ8AAs3sjYeNUK/MG8tqPgxXkhpF+k8INrxrM1U2ijan0K6dqX+vprs7zXxl3bIhxQCA+vGfbwcAANwg3SQQomLPP1UV7B3NKVTLWgwxAwB/tupgRr3PkRDlP99lXZrFaOZVA/Tkgh3aleoa3N3z7SbFhodpZ2qu8mx203NkFBDsAYA7EOwBABoUKvYCR3XBHgA0FPmVhFu10SjSf4I9Sbr6xHa6+sR2+mVnqs6escLpvYU7Uqs9PiPffIguAKB2GIoLAGhQzIZwUrHnn+KqGFaWkuMa0AJAoCqw1XyRjMo09dPvsqGdm6htFXPuVYahuADgHgR7AIAGxbxizz8fhoIdFXsAgkVmPYedDjuuqRr7afV5eFiI5t44UG3iaxfu7U3P04wV+/TZuiTZSxwe6h0ANHwMxQUANChmc+w19dOHoWBXdbBHxR6AhuNQZkGt9r/+lPbadDhLJQ6HBnVorCfP6+GhnrlH/7aNtOre09V96i+VzqlX0eSfthuvv9xwSLOvP8VT3QOABo1gDwDQoJgvnkGw54+qCvZScqnYA9BwJGXVLth77x/9ZKls2Vk/1aZRpDo0jtK2ozm1PvabzUe0Jy1XxzWN8UDPAKBhYyguAKBBYShu4IgJD630PebYA9BQFNtLlJxd819WPHZO94AL9cq0q8Nce2W+23LEjT0BgOBBxR4AoEExC/YaRxHs+aP/Y++uw9u4sj4A/0bMssxsJw4zM3PTNmVmbre0Tbndft0yt1tmSplSTMPUMDOT7ZhBtsU83x+KZUuaEdgyn/d59tl6ZjS6jm3NzLnnnhPqwZVq7BFCOosyox3hSsjJxQLkJSgxs1cSHp6a1zoDawGZWnmTX+twUZ09QghpCgrsEUII6VQCl+IqxELIxPyZYaR9oow9QkhnURymvt7QDA223TsJAkHHzNJrLCOu6Rl7NldktfkIIYT4o6W4hBBCOpXAwB4tw+2YKGOPENJZnNRbQu6/ZXROpwjqAc1bihvNcmVCCCENKLBHCCGkUzHY/AN7cbQMt127ZFAa5/Y6mwtOt6eVR0MIIbG34ZQ+5P5hmdpWGknLa85S3DIK7BFCSJNQYI8QQkinYrC7/L4O1XmVtL2HpvVAqlrKua/WGtzhmBBCOpL/LD6M9zbmhzymX4q6dQbTCjKbsRT3r4PlMRwJIYR0HRTYI4QQ0mmwLAtjQGBPI6PAXns2PDMOBx6cgknd44P21VBgjxDSAa08Vombf9yDuR9vxvMrj4U9XtWJJqCak7Hn8rC47rtdMRwNIYR0DRTYI4QQ0mnYXR443f5d9Shjr/3TKSSY3jMpaHuNhQJ7hJCOZcMpPWZ9tBmfbS3EkiOVbT2cVhevEKN7gqLJr/9qRxE25odeukwIIcQfBfYIIYR0GoHZegCgpoy9DkHHUQuRMvYIIR3N59tOg2XDH1dvRs/ElhtMG2AYBi/O7duscyw/2vUCooQQ0hwU2COEENJpGGwcgT3K2OsQdBzdiymwRwjpaPaU1EV1/PPNDIK1RxcPTsfr8/o3+fWbC2piOBpCCOn86GmHEEJIp8GVsaehwF6HwJmxR0txCSEdiMvtwYEyY8hj/j2pO3YV1UFvdeDeid0xIiuudQbXynomKpv82m2na8GyLBiGieGICCGk86KnHUIIIZ0GZex1XNxLcR1tMBJCCGma49Vm2Fwe3v2PTu+B587qfBl6XFRSYZNfq7c4cbzKjJ5JqhiOiBBCOi9aiksIIaTT4MzYoxp7HQItxSWEdHR7S0Jn6/VJ7jqBquZ2+t1eFN2SZkII6coosEcIIaTTMHA1z6CMvQ5BJ5cEbaPAHiGkI9lbagi5f0JuQiuNpO2pJNzX3muGZ0b0+sIaayyHQwghnRoF9gghhHQa3Bl7wZlgpP3hWopbSzX2CCEdyJZC/qYPN47KRrcERSuOpm3xLcV9YEoerhia4bft/AGpQceVGGwtMi5CCOmMKI2BEEJIp2C2u3D7z3uDtqubUeeHtB6JSACFWAiL0+3bRhl7hJCOwuZ0Y8Mpvd+2TK0Mr8/rD51CjGk9EttoZG2DL2MvQyvDN1cNw9Oze2NPqQEpKikGp2ugeXyx33E/7inBpO7xmNojEfGK4IxuQgghDSiwRwghpFO49/cDnNspY6/j0CnEsNRRYI8Q0vFsKqgJapwxt28KLh6c3kYjaltKCfekWtyZa3JeohJ5jTrnamQivwZY5UY7LlmwAzk6OTbePQFpGlnLDpgQQjowWopLCCGkU/hsayHndqqx13EELsetpcAeIaSdKzXYcNbHmzH9g01B+6b37FpZeo2JhNyPmQIBw7k9gydwV1BjxVc7imI2LkII6YwosEcIIaTDM3PU1qunocBehxEY2KOMPUJIe/fk0iNYeqSSc9/UHl2nWUZzpWv5M/L+OFDWiiMhhJCOhwJ7hBBCOrxyk513n1pGgb2OQqfwD+wZbC643B6eowkhpO19soU7W7xHohKJSmkrj6Z9mdnLP2MxVEdcvow9ACiqpUYahBASCgX2CCGEdHjlRv7AnkxEl7qOIkEZXCA9VNCWEELakjPExEPfZFUrjqR9emJmLySd+VzP0cnx4JQ83mPTQmTsFdZaQ2bmE0JIV0dpDIQQQjq8UMEfhuGu50Pan+w4edC2ghorMrTB2wkhpK2FyiTrTYE9TOiWgMMPT0VxnQ258QqoQpTGCJWxBwDqxxfj5XP64ZrhmUhRd+1MSEIICURpDIQQQjq8UBl7pOPI0SmCtuXrLW0wEkIICa+ghv/zqQ8F9gAAOoUEA9I0IYN6QOgae/Ue+usgsp9djs0FNbEaHiGEdAoU2COEENLhlRsdbT0EEgM5Ou6MPUIIaY9CfT5RYC86g9I0ER3ndLN4ZfXxFh4NIYR0LBTYI4QQ0uFV8CzFvX5EViuPhDQHBfYIIR1JqM+n3kkU2ItGj0QlbhgV2TV7d4mhhUdDCCEdCwX2CCGEdHhcgb1MrQwPT+vRBqMhTZWplUMQUBKxMMRSN0IIaW0utwefbCnA44sP4eMtBZzHJColnM2ASGifXjoEa/81Duf1Twl53Cm9BSV11CmXEELqUfMMQgghHR5Xjb1jj06DVCRsg9GQppKIBEjXyFDU6IEtv8YKq9MNiVAAYWDUjxBCWhHLsrj++934dldxyONuGEnZ4k01sXsCSg12/H6gPORxmc8sx+JbRmN27+RWGhkhhLRflLFHCCGkwwvsipuXoKCgXgcVuBz3cIUJmscXQ/no33h/Y37bDIoQQgAsOVwRNqj3wty+ePasPq00os4pNcKut08sPtzCIyGEkI6BAnuEEEI6vMCMvZQIHwpI+8PVGdftYeFwe3DPb/tRyVNPkRBCWhLLsng8TCBpXv8UPDytB8RCesRqjkiv4duL6uB0e1p4NIQQ0v7RVYcQQkiH5nB5UGdz+W1LVlFgr6PK0Mp497k9LH7eW9qKoyGEEK+CGmvYpg0PTqG6rrGQFSeDTBTZY2ohNVgihBAK7BFCCOnYaqzOoG3xCipa3lGFC8rW2YJ/3oQQ0tKOVZlD7l94/QiM7xbfSqPp3BQSEW4ZkxPRsSeqQ/9cCCGkK6DmGYQQQjq0arMjaFuCQtwGIyGxkKQKHZRNoKAtIaQNnNKH7tB9Tt/QnVxJdP53Xn9M6BaPghorxuTEYdK7GzmPO1FNndMJIYQCe4QQQjo0vTU4sEcZex1XuIw9l4dtpZEQQkiDUIG9mb0SIaK6ejHFMAwuGZwOAHCFqKN3otqMnUW1eGd9PjRyER6b1hPJVGeXENLFUGCPEEJIh6a3cC3FpYy9jio5TMaexeFupZEQQkiD/BCBvRtHZbfiSLqeUEHTNcer8da6U75Jn9XHq7DrvskQCJjWGh4hhLQ5mloihBDSoVFgr3MJl7FndVFgjxDS+k5xLPmc3jMR7180EJeeySwjLee8/txLnXcW1/llcu8rNWJTQU1rDYsQQtoFytgjhBDSoXHV2KOluB1XuBp7lLFHCGkthyuMeGXNCQgZBltP1/rtG5SmwfLbxrbNwLqg/8zshS2FtSgz2sMeu/xoJTUyIYR0KRTYI4QQ0qFx1dijBgsdl1QkhEYmgsHm4txvcVJgjxDS8uqsTox5az3vZ1G3eHkrj6hrG54Zh0MPTcW8z7Zi3Sl9yGOpezohpKuhpbiEEEI6NFqK2/mEWo5LGXuEkNbw+4Ey3qAeAOTGK1pxNAQAtHIxPrl0MERh6ucdqzS30ogIIaR9oMAeIYSQDq2GAnudTqgGGlbK2COEtIJjVaGDQ32SVa00EtJYzyQVLhiQGvKYvw9XIO/5lfh6R1ErjYoQQtoWBfYIIYR0aNUW/6W4UpEAcrGwjUZDYsHh8vDuo8AeIaQ1cDXLaGx6z6RWGgkJNDJbF/aYU3oLbvhhd8huxoQQ0llQYI8QQkiHpg8I7CUoJGCY0Mt0SPtmCrHclpbiEkJaw8kQASGGAfISaCluW4m0vqHbw2LRofIWHg0hhLQ9CuwRQgjp0AJr7NEy3I7vqmEZvPuoeQYhpDWcrOZfinvl0AyaQGpD3aKob1hQY23BkRBCSPtAgT1CCCEd2ula/5t2Cux1fJcNyYBczH2LQhl7hJCWZrK7UGEK7rhe77Ih/JMPpOVFE9grpMAeIaQLoMAeIYSQDollWXy8uQAe1n97vIK/8QLpGHokKrH5nol4YEpe0D7K2COEtLRTIZbh3jgqG2f3TW7F0ZBAcXIxNDJRRMcW1FCNPUJI5xfZJyIhhBDSzjzw50G88c/JoO2pamkbjIbE2sA0DV4+px+WHK7A/jKjb7vVyd9YgxBCYuEkR+OMp2b3xm1jcpBM15g2xzAMDDZX0PahGRrsLTXC3WjGj5biEkK6AsrYI4QQ0uFUmux4c11wUI9hgKuGZbbBiEhLUQR0OKaMPUJIS9t2ujZo2/BMLQX12pFxucGdca8YmomzevtnU5YZ7dhfasD09zci4+lluOe3/XC6aYKIENK5UMYeIYSQDud4lTloCS4AfHbpEIzvFt/6AyItRiHxD+yVG+0w2lxQR7gMixBCwjHYnPh2ZzH2lBrQI0GJ73YV++1nGGB4ZlzbDI5wOqtPMjbm1/i+FgsZXDciE/kcy6hnf7wZpQY7AOCd9afQPV6Bf0/q3mpjJYSQlkZ3xYQQQjqcwE64AHD+gFRcNzKrDUZDWlJgxh4AaP+zGLeNzcHtY3MwOF3bBqMihHQWxypNmPXR5pBLNsfm6JBC2Xrtys2jc/D1jiIcqTSDYYCXzu6HJJUUOTp50LH1Qb16Dy86SIE9QkinQoE9QgghHU6NNTiwd9mQ9DYYCWlpgRl79T7cVIAvt53Gnvsno2eSqpVHRQjpLF5ecyJsHbbzB6S10mhIpFLUUmz/9yTsKKpDmkbquw7k6MJ3zHW6WVSbHUhQUrMtQkjnQDX2CCGEdDhcgT2dXNwGIyEtTc6RsVfP5vLgl32lrTgaQkhnsylfH/aYs/pQF9z2SCkVYVJegt/kDlfGHpdVx6taaliEENLqKLBHCCGkw6nhWIqrk9PMe2cUKrAHAB9tKmilkRBCOhun24Ojleawx/VIDJ8FRtqHSAN7y49WtvBICCGk9dBSXEIIIR2O3uoI2qZTUMZeZ8S3FLdehlbWSiMhhHQma45X4eudxXBxdWJqJF0jg1QU+nOItB/JKimkIgHsrtCdb7k6HxNCSEdFgT1CCCEdTi1nxh4F9jojruYZjWVHUE+JEEIa+3hzAW77eW9Ex3aLjywDjLQPAgGD7Dg5jlWFzsQ8UGaE3eWmoC0hpFOgpbiEEEI6HK4ae3EU2OuUwmXs2ZzuVhoJIaSzeHv9qYiPzY2nyYOOJpLluC4Pi7Fvrce7G07BHSZrkxBC2jsK7BFCCOlw9Bb/pbhamQhCAdNGoyEtyekOvZzK7KDAHiEkOvvLjBEfS4G9jifSTO7dJQbc/et+PLHkcAuPiBBCWhYF9gghhHQ4gRl7tAy38yoz2kPut1DGHiEkCnZXdJ8ZubTcv8OJtIFGvU+2FIJlKWuPENJxUWCPEEJIhxMU2KPGGZ1WuKCt2eFqpZEQQjoDrq7qoWRHGSQibS9ZJYnq+CqzAyUGWwuNhhBCWh4F9gghhHQ4gQ9m8YrobuJJx3HdiKyQ+y20FJcQEgU9T2BPIhTg7L7JQdv7JKtaekgkxpJV0qBtvZOUGJ6p5X3NnhJDSw6JEEJaFHXFJYQQ0qFYnW7YXP5112gpbufVO1mFx6b3xPMrj0EoYIKKnFONPUJINLiaLwHAf2f3wkUD07DsaCWcbu/nzNw+yciKo4y9jmZ6z0SopEKY7A3Xh+fm9kWlyY4dRfs4X/PtzmKsOFYFmUgAp5vF4sPlAIBnz+qD8wektcq4CSGkqSiwRwghpEPhWkZFHXE7t2fP6oMHpuTB7WFx/udbsSG/xrePauwRQqLBFdib2C0ej0zrCQDY/u9J+GLbaaSqpbh7QrfWHh6JAY1MjDfPG4C7ft0Hq9ODq4Zl4Lz+qXC6PXhq2VHO2q3f7irmPNdV3+zEkYenIZMCvISQdowCe4QQQjoUrocyytjr/OqDtwqJ0G87ZewRQqIR2FUdAO4c3xDAG5imwWvz+rfmkEgLuGFUNi4elA67241EpXdprlAgxLsXDsTFC7Yj0l4ZVqcHL685gbfOH9CCoyWEkOahGnuEEEI6FK6HMmqe0XUoJf5zknaXJ2h5LiGEcCkz2LDmRHXQ9ni6hnRKapnIF9Srd8HANGy+e2JU5/luZ1Esh0UIITFHgT1CCCEdSjnHEpokZXChbNI5KcTCoG3UQIMQEs6X204j97mV+GLb6aB9NDnUtYzMjsOlg9MjPr46yk7KhBDS2iiwRwghpEMpNwUH9lLUFNjrKgKX4gJUZ48QEprN6cb9fx6Aw+3h3B8vp87qXY1WHl1FqsIaSwuNhBBCmo8Ce4QQQjoUroy9FBUF9roKrsCe2eFqg5EQQjqKvaUG6ENkXVHGXtejlUX3M99UUAOWZcFGWpyPEEJaEQX2CCGEdCjcGXuUbdFVKLky9mgpLiGEg+dM/c0dRXW8xzAMoJFSP8GuRiuL7mf+0aYCdH9+JYQP/oVrv90JC00oEULaEbqKEUII6VAquDL2aClul8FVY+/Kb3Zi532TIBLSfCUhBFh6pAJPLTuK7adrIRMLYLLzB/91cjEEAqYVR0fag/pO65Fa3ajpytc7izEpLwE3j86J9bAIIaRJ6A6YEEJIh1Ju8u+KGycXQyoKDvaQzimwKy4A7C8z4qnlR9tgNISQ9qZAb8F5n23D5oIauDxsyKAeAFBT7a4p2qW4gR7482CMRkIIIc1HgT1CCCEdSmCNvRQVLcPtSrhq7AHAcyuOococnM1JCOlaVp+o5m2SwUUmosehrijajL1ABhstxSWEtB90JSOEENKhBAX2aBlul8JVY6/e+xsLWnEkhJD2qIKjDmsoI7PiWmYgpF2LtsYeIYS0ZxTYI4QQ0mEcKDPC4vRfVkUdcbsWrhp79dafqubdRwjpGqrMjvAHNXLJ4PQWGglpz5q7FBcALvh8K/SW6H7fCCGkJdBUBSGEkA7BZHdh4KtrgrYnU8ZelxIqY6+wxtqKIyGEtEfhAntD0jW4YGAa9pUacG7/FFw9PLOVRkbakzh58x+Dfz9QjsHrTuG/s3sDANweFsI2bsTCsh4Y9rwPy8m/INb1Qvz4ZyGQqNt0TISQlkeBPUIIIR3CymNVnNtpKW7XwldjDwAKa61gWaqET0hXFi6D6vm5fTGnT3IrjYa0V7HI2AOAp5cfxYNT8nDDD7vx895S5Ojk+PaqYRibGx+T80fLdPBr6NfcBwCwFa6Ex1aD5LMWtMlYAMBRtR+2on8gThwAeeakNhsHIZ0dLcUlhBDSIZTz1E3K0MhaeSSkLXF1xa1ndXqiXoZHCOlcQn0GXDgwlYJ6BACglsYuv+WjLQX4eW8pAKCgxop/LdzXZpNM1Wv+7fe1+cj3bTYWa+EqFH87GtVr/o2yn2fAsPejNhkHIV0BBfYIIYR0CCY7dwe6uX1TYvYezpqjKPlpGgo/zkHVqnvgcdHSzvZGIgx965L61DKcrqWfGyFdFV9gr3uCAm+dP7CVR0PaK0EMl8ze/8dBv6/3lBhQY3XG7PzRYJ2m4G1uWxuMBDDsfgfwNPw7GHa93SbjIKQroMAeIYSQDsHscAdte/P8ATFdilu16h7Yi9fDbS6Fce8HMB34MmbnJrGRqJSE3M+ywHMrj7fSaAgh7Q1XYO+9Cwdi090TkK6lDG/SOsoM0XVnbkmsw9gm72s5+Zff186aI1Qug5AWQoE9QgghHQJXYG96j8SYnZ91O2E7vcpvW/Xqe2J2fhLMZSyC9fRaeOyGiF+TopZiQrfQtYtWHafuuIR0NXaXG24PG5QpdU7fFNw+LhdJ1EGdtKIyY/sJ7HnaKLDHpa2CjIR0dhTYI4QQ0iFwLcVVSfkbKUTL46iL2bnaI9bjRt2ut1G5/DaYj/3S5rPmlpN/oejLASj7ZSaKvuwPR/WBiF/72w0jcdvYHPRMVHLuz4+wOy7LsrCcWgzj/s/gtlRE/P7heJxmOA0FYN1U74+Qlub2sLj+u13QPr4E4of+QuBHW7gs387CoT8Ey6klUU2UkPCm92zaBGKpsW2Wv3Jpi8Cex2nm3O626Vt5JIR0DdQVlxBCSIdg4cjYC9VIIVoee23MztUe1Wx4HHU7XgcAmA58jqQ5X0LV54q2G8/mZ8C6LAAAt6UctVtfRPJZX0X02niFBO9fNAhmuwvqxxdzHsOyLBgmdA0l/T8PwrDrLQCAQJ6EjCs2QaTJ9jvG47TAUbETQmUanDVHUbfzTQgkKujGPwtJfJ+gc9pKNqPir0vhtpRBnNAfKfMWQqztFtH3RQiJ3pvrTmLBjiLe/fHK2HQ/bc+M+z9D1co7AdYNoTINaZeuhljbva2H5Yf1uGHY+wEsJ/+CJL4vdOOehkCiauthhTU0QwuPh8XqE9FlgrfUUlxnzVF4HCaIE/qibsfrcNWdgrLXpVDkzoLHxR1M5Kq719Lc5lLO7R6bHtDmtu5gCOkCKLBHCGlxzppjMB5cAKEyFZqBt4ARemfPXcYi1Gx6Ch6bHpohd0KePa2NR0raM5OjhTP27J07Y68+qFevduuLLRrYc9blw7D7HTBCCbTD50Mob8h6YFkWjopdfsebj/yA06VbIEkciISpb0Kkzgz7HkqpCBlaGYrrgh9mrC4WCjF/YM/jMMHYqEOfx1oJ48EvoRvzhG+by1SM0p9nwlUbXLPPXr4DWTceAyPwv5Wq2fh/cFvKAADO6gOo2/k/JE59M+z3QkhXwrqdqN3yLMzHFkIUl4fEqW8FBdUjOg/L4uPNBSGP6ewZeyzrQc2mpwHWO/nlNpfCsOttJEx5o41H5s906Gvo19wHALAVroTbpkfynC/adEz3TeqON/45Gfa4H64djpH/W4eCCLPBgZbJ2NOvexR1O14L2m469DVSL1gEcUJ/zte1Rcae21zGvd1GpTI6O7etFtWr7oQ1fxnEiQOQNPvTdjfR0Bm1SGBvy5YtWLRoEXbt2oWKigqYTCaoVCqkpaVhxIgRuPDCC9GvX7+Yv69er8dPP/2ENWvW4OTJkzCbzYiPj0d2djZmz56NefPmQavVxvx9CWltLOsBw3SMlfTOulMo/noYWLd35tJ2ejVSzv0ZLOtB2cI5cNYcBQBYTi1C5rV7Idb1asvhdmisxw1n9QEIZDqI1FltPZwmYT1u1G57EdZTSyBNHQXd+GcgECsABNfYEwqYsB1So9GZA3tcs/hO/aGWez97HUq+HeXLgjQf+xWZ1+0HIxCe2V/L+TqXIR8uQz4YoRTJZ38b0XvdPjYHTyw5ErTd4GChCJGo46g+ENQpsHbzM36BPeO+TzmDegDgNhXDVrIR8sxJDees2g9b0Rq/44x73qfA3hkO/RFULbsZzpqjUHQ/BwlT3/TL2GE9LjgqdkMgT4g6y9FpKIC9eD3ECf0gTR4a66HD47TAfPQnMAIRlL0u8U1QNZdDfwSswwhJyrAOc11vLsupJahcer03cwfegvqVbgfSLvw76nPtKKrDkUruJX/1Ontgz2Othttc4rfNsPvdsIE9w75PoP/nQcDjQtzY/yJuxP0tOUzo/3nI72vz4W/Bzv48bGZ1S7plTDYWbD+Nagt/B1u5WIhEpRTvXzQIcz/ZEvG58/UWfLerGAqxEGf3TYaomfcrLmNR0ASdD+tB1aq7kTLvF87dbRHYc/Fl7FkpsNfZGXa9BfPRnwAA9pIN0P/zEFLO/Tlm52dZD+xl28AKFd6OaW34GdKexDSwV1RUhIcffhjbt28P2ldbW4va2locOnQIX331Fc4++2w8/fTTUKlik4K9YsUKPP7446itrfXbXl5ejvLycmzbtg0ffvghnnvuOUyePDkm70lIU7EeF1iXDYxYEdWNvK14PSqWXA+3qQiqPlchccYHYIRts8TE47SAdTsglMWFPM6w6y1fUA8ALCf+gNtSAZep2BfUAwCwHtRufw1JMz+MeAxuSwVY1gORMjXa4XcorMcF89Ef4TKchiLvHEg4ZmQ9TgvKFp4Fe+kmgBEiftLL0A69uw1G2zyGXW+idtNTAAB72RZ4nCbf74Q5IGNPKRHG9IGAN9hkPA1L/jJIk4dCmjIssnM5Lajd/AycNYeh6HEhVH2vbtOHF7elnHN7JMtVm8Kw90O/f09X3QnYSzdDljEeAOCxVoV8vfnYz2DdX0QUPHlsek8s2F6EY1X+D/cGhwepyuZldNZueTbkfkflXl9gz7DnfVSvvrdZ79dcHpcNjEDsC6C2F05DAWo2/AfmIz/4tpkOfQVJ4gBoh3szeDx2A0p/ngFH5e4zn2GvQDv0rojObyvdirKFs8E6zQAYJM78COr+18Vs/KzbgZLvxvqC4YZ9HyPtklXNDsTVbPovarc8DwCQZUxE6oWLYxYwbK8af8+N2QpXgHXZ4TKXwnTwCzBCKZS9Lwub5fHTnpKQ+wEgTta+luJ6XFYADAQi7g699rJtsBWvgyRpMOTZ08Oez2UO/28Q9BpTCapX3e3L8qtZ/ygU3c/mLC8QKx57TdA2/dr7Ydz/GQRSLRKmvQ1l3rwWe38ufZLV2PvAFKw+XoUcnQJWpxuzPtrsd8yNI70TpVpZ6MfmybKdOEe+AQWuFHxkPB8L95Vh4T5v1trcPsn486ZRzRqrvWwrAP7auK7a47Cc+JNzX3vK2PPEuMaeYe9HqN3yPBihFPGTXoayx3kxPX9ztdR9VkvxOEyoWnkHLMd/g1jXG0lzPockcWBU5wi8d7Kc+CNm42NddpT9ejZsxf8AABQZl8PSvW3vvdqLmE0N5ufn45JLLvEL6onFYvTv3x9jxoxBz549/X6pFy1ahKuuugomU/PX/C9ZsgT33HOPX1CvW7duGDVqFDIyMnzbKisrcccdd2DNmjXNfk/Seli3E3U7XkfZb/NQs/HJiIqRs6wHrJt/9i1azpqjKPlhEgreT0bl0huadYF0VO1D8VdDUPBePEp/mASX8XREr2NZFpXLboHbWAiwHpgOfQXjwQVRvz/LsjAf/w2GPR/CHebhmo/xwAIUfpiGwg+SUbnsFrCe4Npn9Qy73w3aVv7nxbAVrQ3abjrweUTvz7Isqlbfi8KPMnH6k1xUrbiDt65IW3GZilG59EaU/XouzMd/a9a5qlf/G5VLrkfNxidQ8t04OCr3Bh1jOvCFN6gHAKwb+nWP8M6Wtgcs64Hp8Heo2/k/uEzFZ7axqAv4fTEdXOBramCy+/+eaSXeukK1216ByxT9g00gvoy905/3RvXKO1Dy3RiYDjdkkdXtehsFH6aj8ONcmM7MTNarWnEb6na8BsvJRahadhMsx39t9viaw23mDuyFC7A1Vd3O4Aw1S8FSsG4HDHs+QNXKf4U9h+NMEMV44AsUftoDp7/oB8vJRfA4TKjZ/Ayq19wPR9V+MAyD28bmBL3e4PCEPH9Mag55vNcZ1uPmDFb43qsVGpUY9n6Ewo8ykP+20nutbOPmKPVYlkXl31f7BfXq6dc97Ptv4/5PvUE9AGDdqNn4RMRZtIZdb54J6gEAi9ptL4U83m2tQtXqe1H+x0UwH/8dAGAr3YK63e/CXr7D71h7+Q4UfpTll+FqL9kIW6F/B+1ouS2VqN32su9rW/E6mNv4c6KlmQ5/H/LvxGUsQNkvs1C75XnUbHwSxQuGhL3POVLJ/3esZswQw4kePE122oJh78co/CANBe9oUP3Pw0F/p5aTi1Dyw0To1z2CsoVnwbAn/GSn28R9rQ/VpMB44AtfUM83tp1vhf8GzrAWrkT5HxehcukNcNYcC3s83727Yfc7YF0WuM2lqFp2CzyO1q8Fl6aR4cphmRjfLR5TeyTinL4pAFhkCcvwf2NEyIn3rhrQysRQMFYkCOrAwP/6Mk66F58lPocLlWtwn/YHvBTvfy/z9+EKfLS5oFmfy3zNKBoz7HmfczvrbIPAHs99WeDvpfHgVyh4PwX57+pQtyO65eOO6gOoXnU33OYSuAynULn4GrhtwQHk4NcdRN2ut2HJXxrV+0XLdPQnFH6Uify3Ne3quhyKYfe7MB/5AazbDkfVXlStik2SAOtxw+MwNfv53LD3fV9QDwBkxd+Dsceu+VlHFpPAntvtxt133w293vuHKhQKcdddd2Hz5s1YuHAhvvzyS/z1119Yu3Ytzj//fN/rDh8+jMcff7xZ73369Gk8+uijcLu9F6devXrh119/xZIlS/DVV19h1apV+PLLL30BPrfbjfnz56O8nPshh7Q/hj3vQr/uEVjzl6B26wvQb3gi5PHmE3+i8MN05L+tROWK28F6gutyAd7AgqNqP9yWyrBjqF5zP+ylm+Gx18J06BsY9kaeVRZIv+EJX6aavWxr2IuYrXg9Sr6fgMIP0+CqO+E/rpV3+H3ttlbDcvIvOKr2BZ3HbalA7dYXkP+mFBV/XYrq1Xej6MsBvA/8fDwOE6rX3AvW5a0zYjr4JawFy6I6h710c9CSjHqRXPQcFTthrL95YT0w7v8U5X9cyPuzjkQk7+usOQrj/s9gL98Z9tjyPy+G6dDXsBYsRcVfl8JWsjnsa7i4TMUw7muoA8a6rDAeXAB72XbvQ2jZNgCA+VjA8guPE6ZDkS1l9L3EZYO16B846041aazRqFp+KyqXXAf9Pw+haMEguAyFcFTuhjsw0M26YTryI4DgjL0Xlc+jasXtqNnwOIq/GtLsrqa8XXEb/V5Vr7oXHocRjqr90K+9Hx5rFdzmElQtu8X3/izrgeVMsMD3/a5o+FtlWQ/qdr6Joq+Hoey3eXDog5eRxpK9YhdMPA/HLhN/wfnm8FiDP1eF8iRULrkO1avv4QzsB3JU7oGz5hiqlt8Kt7EQrtrjqFh0BUp/mobazc/AsPttbxZV7QnEK4KznCqt/BMOAH8g18WTZcB57JkHF7elnDcr0vtetRGfsymcdfmoXnMfWIfRm/289YWGIFkzuS2VqFxxO0p/ngXDvk+jfjBx1hyBvYx/+Vp9UKB2+yt+21mnGbaSTRG9hzkgsO6qPX4mK4pbxd9XwbjnfVhO/omKvy5B1ap7UPrDJOjX3IeS78f7AmzOmmMo+XEyZ6ZR2a9zUbfrbTiqD6Dkh0ko/CgL1Wvug6NqP8xHfw77OWotXO732QJ4J3Gi1REeFIEzdeA2PhnymLqdb8JlyG94jduGqmW3wMmxHJ5lWfx9qBx/HOD+u5uv+Rbb0m/AwcwrkFv2abPGHituczn0a+f7mgYZdr4Be6n/34ZhzwcA2xA0Mux+B46qfdCvfwx1O97gDO7wNSlw1nCXEfDuOxq0zVG5J6Lvw6E/jLKFc2E5+SdMh75B+R/ng3WFbhTR+OfKx2OvgeUkd8ZZaxEKGPx2wwgcnPAz1qTdieuKzkPVqnsAAOqqFViXdju2pt+IzxOfhZpp+Fncova/5s9TrIeM8f83ueOXfTjvix3wsCyEpiMQV62FxxFZB2PT0Z9QteymsMe5z0yUBrKc+BOOqv0RvRfg/RkbD34VVbf6oLFYwmfsuS0VqFpxOzz2GrBOM/TrHoaj+mDE7+GdHGn4DGTdNlhOLQr5GlvJZpR8Oxr6tfej/LdzUbv1xYjfLxpua7X3e7NWgnXbULv1hYYJ+HasZqP/c7a9ZGNUnbb5kj0q/r4SBe/Fo+DDVJiO/Ahn3Sk46/Kjuoaxbifn86PQkh/xOTqzmAT2Fi5ciKNHGy4QL774Iu6+++6gZbYpKSl46aWXcMMNN/i2LVmyBLt3727ye7/xxhuwWLwXyIyMDHz55ZdB9fvGjBmDb7/9FsnJyQAAs9mMd955p8nvSVpX4B+wYbf/z471uGEpWA7r6TVgXXZUrbzDd9Ew7f8MlhP+F1vgTP2n78ah+OthOP1pHkyHv0fdzv8h/x0t8t9LgHF/Q+YYy3pgLfCf0alZ/xhYloVh70coXXgWqlbeFdEMEQBYT/nXkAn8fvzG6TSj7PfzYC/bypu6Xv+B6Kw5iuKvhqL8jwtR/M1I1G5/teEYlx1lv54TdFPtselh2Pdx8DndTt4PZmvB0kaZEV7lv5/HmR3mttXyfm987KVbeN/bWXscNVueR9Xy24L22QpXwHp6Nf95K3ahbscbQbNz9VlihR+kIv+9BNTxzFhbT69G0VdDULXidpR8NwbGg/zdOx1V++EIyPqo2/n6mfOsRe3WF2AtWhfRxcx8NLheimHXWyj5ftyZh9AJMB35EbbidUHHRZMl5jKXoejLASj7eQaKPu+Nwo9zUbfrnbA369FiWRZuSyVMh75u2OYwwrj/U95U/fpjzQ43eooK8Ub8G/gl+RGMETY8EHnstU3KYG0skuCLx1EH44EvYDr8nd921mXx/S2xDlNQ7TaPvcaXVWo9tRj6fx6Es2o/rPlLULn4mpg9nHucFr+/n5rNz6Lk29F+weHGXMboAnus24G6HW+gasW/YDnl342W9bigX/coCj7ibnph2PV2cAA6BEflXtRufSHg/W1+ASvWbYfp0DeI5yim93+banGgmj/Dm++BquSbkRE/ALlNxfA4zajZ+H+hj2tm0JmP9fRqlP1+Poo+7+XLHqxX8u1o6Nc96vt9cFurYSvdEjKLh0vlsptg2v8ZbEVrUL3yjqiX1ISr5Vj89TBYCpZzZo9GEmiwlwWXfwEAN8fvtsdlhUN/GLaAa4Vx7wfwPRyyHt91wHz8VyDEKgH92vtR8t042Es3w20ph2H3uyj+ehgq/r4SxQsGwVq4kve1LBucUeqJoqh87fZXkf+2BgXvJ8KwN/g6Hg3W44L5+G8wH1sY09UOjdlOr4bLEDrYadzPFYBjYTm1BNX/PIyKv6+C5dQSAMB3u4pxzqdbOc9z+NYU3Kn5BWLGDQFY1Kx7pMUzcyJhPLjArzQJ4M0+aSzwftNZcwQl341H3fZXoV/n/TcIxLcU11kbHLyrx7U00F6+Dfp1j4T9/DMfW4jGwRRnzTGYOe61/ccSvkGF91z8Y24tzspdkOZ/7/vauPcDWE+vhmfLQ4gTeDMKJ8r24ELlGt8xk2S7g86TKgz+e15ypBJVh7+Cdtf1UB96BKcXDAp7HXYZi1C5pHmlBWzF61D89TBvk5UwLPlLUfzNCFQtuwnF34z0ZTVHi2+SrHHzDOPBBUHXrrqd//P7mmVZGA8sQOXyW2HY+7HfZ6flWPB9rqv2RNA2t02PymW3oGjBYJT+OMnv77Bu+2shVx41lenwd97JtsbbDn7Nc3R4Dv0R2Ct2cV47YiXU81ek3BwTu0DDMwnrMKJy8dUo+rw3ij7vheqV/4r4Hthy6i/O7Yyr9TN926OY1Nj7/feGP/gJEyZg3rzQ9RHmz5+PRYsWoaLCe6O7aNEiDBkyJOr3LS8vx9KlDRfA+fPnIz4+nvPY1NRUPP7447j3Xu8a7IULF+L+++9HXFxc1O9Lmo5lWRh2vwPD7vcgkOmQMPk1yNLH8h/P9QHT6ALAetwo+2WWL6ghUCTDE/AApV/3GJQ9L/LbZtjzHhwV3qwr1m1D5ZJr/fZXrboT8m5nQaRM5X3YNx/9EdWrvPV/bFgJt7UCidPeBQRi3rpzHqeF93ttjGVZGPe8j+o1/w57rNtUBJE6C4a9HzfMjrEe1Kx/DGJtdyh7XgjTke95szdqNz8N3Zj/eM9lrULF4mthK1zhratw1leQJg/x/x54lkkULxiC9Cs2QhyXBwBw1p1EyfcTIvp+Gyv9cRKkqaORMm8hhIok33Zn3UkUfzMyKKjYWPmvZ0Os6wX1wFuhHXYPPA4jajb+X9ByYN2E5xE34gHf91+75TnfPv0/D0DRbU5QE4+azc/4ZVfUbHwSsoyJMB/5HkJlqreG2pnumFw3ppbjv8F0+FtULrnety1x9mdQ97066FiBrQw1676FgGFhORWumDjrLX7NwV62FS5jUcjuoh6HEa66U6jd8bp3mfcZbnMJ9Gvnw3Lqb6Se/2dManYZD34F/fpHg/5GAaB26wuQpo3hfJ2jYifs5TvAOo34OflRqATcy65r1j/m+7mGw7Ie2IrWAQwDWcZEuI2nI86q1K/lLjBuK1oHjAZcZu4Zc3vZNsgzJwYtlXFU7oZTfwiShKY3lXLb9NCvewTmw98BjADxE1+GstfFqN0WeibaHWXGXvWa+b4goXH/J0ie+y0kSYMgVKbDkr+Ys1tfvUgyNhpzVO6JKPBYu+VZ6Obdybnv5e11+HJ2Euc+vow9t6UcxV8Pg2YI9zkbc5lLUP77BUENM4LPWQHE9w57vlBsJZtgLVwJSeIAKPLOg6vuJMp+mYNQNZfqdrwGWdYUCMQqlP95ETw2PQSKZKTO+w3S1BFh39Ntq4U1f4n/Obe/GlUNo3AP9KzbzpvJZS/nDtrVMx39CZUcgQ7Am40q1vUE63HBcmoxTAc+g6VgechAne99Szag7PfzOSdMgsbPkxnIuu2o3fJ8RDXSomWv3IOa9Y95v3DbUL3mXshzpjep6yDLsihbONf3OyxNHYW0S9eCEQhhr9gFu/4EGIcWrIT7/jqQy1AIlvVArM312954wpR/MNwPrPq1833/bT76E9IuWYUnlthwjnw9xsv24KCjG3RCI86Wb0CdKA0JJWMQGLYv/20ecu8x+67TLOuBcd8nsFfshCJ7BhQ9L4p5HSyXsQhCRYqvFrJTH5yJ5KxuCHzzPdw2niiynvobjqp9vppXbmuVry5toKqlN8JlKIR2+Pygen58wYG6Ha/DsPtdZFy9g7eZmYWjvIhx/6dQ9b6U83gAcNVFFtir3fIclD0vjLqmVywFZlECQNnCs4J+P/8v7jM4WDG+M8/kPE+uqBTDJYdhZyUweLzLwbc6+iGj4ktfao3AVoET619H77N4mmIAMO77OCi7t6lqt78MzdC7IJTx/z3XbX+t4XPS40LdtqbVrePLJPVYGyaXuDNH/cvNGPa85+umbDrwBTw2PeJGecs4BE6iegX/HddseAKmg19yj8dRB2ftsZjXl7SXbAzaZivZ4H1PpxnGfZ/AVrwesvSxkCQPhTi+D0TKNM5z6Tc8gbozJSZkWdO89+VNrLHu0B9BzfpH4LZUQTPkDqj6XOnb56zhXkHirDnCWWPaUbUfVSvvhMtUBGXeeVAPuAEeR/gl440Z938K9aBbg5pesSwLw663YCtaC1nGBKgH/yuoVEY9xk2BPSAGgT2Hw4GdOxuWpZ1zzjlhXyORSDBhwgQsXLgQALBvX/CywUgsXboULpf3g06tVmP27Nkhj585cybi4+Oh1+vhcrmwYsUKXHzxxU16bxIZlmW9SzXzl0KcOBDSlOEND8V13rTczOsP8RYQdjUKNPid1+0AI5TAcvJPvxtvroCBy3AK+nWPQpF3LmTp4wAg7HIQeFwwHfwKcSMf5K1BVbs5oDDo8d9QePw3MCIFtCMe8GaDeNzQDrsXIk02gMizNkwHv4ooqAd46/+I1FmcWRHV/zwERd48VAUs2Q3Eetxg3XbU7XoLtsIVALwf4tVr5yP9Ev86QnwXEo+9Bsb9nyF+gjdIZtjzQZPrd9nLtsCw9wO/7pSmgwtCBvXqOWuOQv/PAxDH94a1YDlnjT/DzjehHX4/HFV7/YJ69ayn1/jd0HrsdbAXr/c7xm0q8mbJnGHJX4KUs70zvHx1UAJr5dRsfBKqPlf5P0y4bVDvuxMmW+Q14/hungBv0IgvsGcr3oCKv68M+Xpb4QoY938GzaBbIh4PF2ftcVStuD1oZraxUHXyDHvex0SBijeoFynjgQWo2/kGnIHLSxhhUL2haNlOr0LF31fDfPRH7v1FayHPnMi5dL05gT23rRalP0z2uyHzLpc3hw1iRJOxx7qdQZl/FX97bwiFqgzeh/KmclTuASNShD1OINEiXi7G+Yo1GCw5hm32fvjb6m3ScVDvRJXZDnv5drDKRIjjevheF24JFNdnRyCuG3cuHiv3Z7/HbvDWZ/Q4oep3ra8DdCDLqcUo/+MC37+xbnz951b4WW79ukcglCf5sr49lgrUbnsJKef+FOaVgKs2uHaWvWwL7OU7YStaC2nqKF9DFD6RdF928ATwLCd+R9GX3gd83dgnoezlf89W1ygzPZDLeBqsx4XSH6ecKTofncDs+qawFa8D63H5gkmNsVEsbQpkPvy9/waPC6ZD3/hdMyNlL9vqF5j2fr0WjuoDvvs1rVgHw6D34VEE17JsrHrtgzDs8tbXVPa5AokzPvTd39kCrqHNod/+OkbYsvBiwplJEr8SesUw7Ob6fWJhPb0aihxvEKZ287O+Au+m/Z8hceYnUPW7OiadiVmXHWW/z4Pt9GowIgWSz/4eim5z4LYGZ8sKZPFwW6ugX/847Gce+sMp/no4Mq/bD1FcT1QuDp3JVbvpvwDrDvrdCNWZlHXbYdz/OeInvsC5XyDVBm2zl28H63by3iM6IwzsAUDZb/OQcdU2COWJEb/GbdPDfPQXCKQaKHteFPQ357ZUovqfB+HUH4ay54XQjngwKJAbclKd5/r2rO5DKBnu4P6nicH1JGvcKqgF/pP8kiPvACECe9YIJhgi5nbAqT8CYYikisCJKnv5NrAed9QTvPy1H6tgr9wDoVTH/e8a8HMJvBbX7XoTcaMe5i23EPis5Q3ih85qdlTuiSqw53Fa4KjaD0l8b86/B4C71IlTfwiVy2+DvWS9rwxF/coyRiRH8txvoOh+TsB5iv2udbbTq2A5+SeUPS8MOr/19GpYTvwBcXxfqPvfEPT3yLIeVPx5oe+9K5dsgTiuJ6SpI2Ev38lbJimwjibrccFy4g9ULLrct82buNO0FZH2sm1Bgb3arc/7Ji0sJ/+Cx2nmXRIscEUXTOysmh3YKy4uhlQq9S2HzcvLi+h1jTPlamoiW8IYaNOmhnXqo0aNglgcOnItFAoxduxYLFrkXXu/evVqCuy1ELe1ChWLrvCvo8SxBMttKobt9Boous3hPA9fSr7HXgehIikoXZtP3Y7XULfjNaRe8DdkEc6e188uct2IecfGPavBuiyo3dyQ6m468j2ybjwKgVjJG9hrfDPktlSiavnNEY0R8N5MKXucz3lut7HQu/QtzExf0Rf9OJfI2IvXw22rgVCmaxhriCYVddtfgbLXxZAkDPBrMtAUtZuf8bsRNR7gnmnjYzrwBawFKzj3uS3l8Nj0nLOyQEMaOcuyMB36CrWbg4N/gSzHFsJZlw9GKOatgxJYW8NtPA176SbI0sfBqT8MxYnXIa5aC6Ejdsv2HNUHg24SAO/fVvkfF0S0/FT/z4NQ97sWjEja5HHU7fhfyKAeEHoZmunw97hCkcG7v16o7mP2su2oWn4LOIMhzQzq1eML6gGALUQQyFF9CMqewds9TgtqtzwLp/4QFHkXQN3/2qBjLCd+C/48Yj0RZchEU2MvVMYdX12f5vDYa4EImicIZDpoTn6A1+LfBgBcq1oCTY0Z35tneQud778dFTsPA2CgG/dfxI169Mz5mx5YiRbX57PHYUTpLzPhqNgFADDs/QAZV+3gfHgy7vvE7wGoZkPk9Ymd1QcQ+JfHVaKC87UcgT0AKPmuIbu2PiBSu/lZGPZ+AIFEi8Rpb0OeMwNAcPZFtOp/tysWX42s9LEQqbyfA6zb6fu341K17GZULYv8WtpSnDVHOYP2fDU9WdYTNrhkKQheVmotWMEZ2GNZFpYTv8NauArS5KFQ9b/e7zPSsOe9oNfUbnke9sqGf1uBsway0l9hyfs3AMB0+FuYj/8GcVwPaEc8CKFMB3vZdl9QDwDMh7+Dx16HlHkLATBw8wS3m8J+6i88o4s+i9xRscsX2DMd+sZvX9Xym1G14jZIEvoj+ezvINZxfCBHqG7nG77l3qzLgoq/r0TWjcc4r3ECsQJVy2+LurZc2a/nIGnOF95ajWEE3k8B/B1L69XteI03sMe11I51GGEv3867CiewRnQoblMxjAe+RNwI/+x4e8UuOCp2Q5Y1BWJtt4bjbTUo/nq47zqk/+dhSJKHeCfXRz4EeeZEVC690bfM2VGxE4xYCW1AVnbNhsdDThbweTQu8jIgOiF3ZpHbUgFnzVGINDmo2fhfmI/9ApE2F0mzPgViXEcz1PWat/as8XRQFm4oHpeNszYpADjKd6Dkm5EAI+AM7DGNKoWxLAtXwDJQj7UKrMcFJ08tPre5FCzrgfnoT3CbyyBJGhR2vI7KPUDvyzj3sSwL66lFcBkKIc/1dl8v/XkmPPYaCKRx0I17Gm6bHmJtLpS9LwfDCOCsOwV7KfcqEL5GgazLiool1yHz6l2+hBAA3gZ8AfeotVtfgLLnhWDdTngcdRDI4mHNX4by3xtWTZqPLUTKuT/DWXMEjFgFSXxvOMp3BAXp6na8DkWPC7yr13gC2I3vBViWRcWiKyK+j4hEYDNHl7kMdQG1D2s3P+OdhOdAGXtezQ7sdevWDbt27YLRaER5eTkyM/mXfDVWXNzwoaLVcke6wzlypOFBpn///hG9pk+fPr7AXlMzBUlo9X/wkRRHB7wPGLaiNWDddijyzoc8a7Jvn5OnqLzHXoParS9GnC1Rr2br80hqlLERinH/p9BNeB4eW/O6RnqslTAd+hby3Fko/WkK9zH2Wt+y02hqUAHwpSV7eDo8RtLoI1Tdm8IPUqDqew1Ufa6ALHt62C6FJd+OhlCdzZk92RT1gZpIuyPWC/fv6DLk897c1D+E12z8P1/qeyTspZug3/CfyAcJoPTHKUia8wUql98GmTu29ewA8BY+1q97OOKC/qzLAlvZVsgzJzZpDCzLhp0tBRA6I9PjwABJ+KYeHls1BLIEvwdXt7UKlvwlqFp+KyLJcGopjso9vDPMtZufhuX4b5DnzETcqEd8M8BVy2/1BQstJxcBDAN1v2v8Xss3AcI3+dAYVx0yPtHUWImd8D8vgTQOzj3+jRee032IeYp1UDB2JDjqHyhZ1Gx6Csrel0Gs7c7fLKUFVK++F/oNT0Cs64WkWR9DktAftdte9gtMOasPwlqwFPKs6XDb9X5LclqioHzZb+dBHN8bcaMe9Zu8AeofZP5GTUBmOhfD7re91+Qz2U8eaxUql96IrBu9dbdi1cQDrAfW/GVQD/DWaXZGEShoS5YTf8BWshEiVQbkuXN8n0181zSPpRJCZUrIc7LO4M8Rl6GAc2JD/89DvoCbEd7PC7+ADcfEn61kfdADnqzkB1jy/g3Lid9R3aikhOXkIqRetBTmk8G1F62n/obp0Nfe5cgxWkpYT8xEPxnj1B/xNtliWe77HtYNR9VelP16DjKu2QmBWAl75R7U7XgdDCOEdvh8SBIHwF6xC666kxCqsiBNHQGGEcBasAK2ko2Qpo+FKWCCh3WaYNj9DlyGgqC3tJdtC9l4h4/LkB9VsxWPvc4vsyiS92RZFqzTDIHEv2a628h972Q69A08ThPkmVPACMXeoPLxhXBUH/Jev6JQs/5ROMq3w22p8AajBWJULr3BL8ChGXIXdGOfhPnIj373c25zCaynvCsArEWrkXnt3qBMef2a+7zdrUs2QZo8BKp+1zYpqBcrhRy1aZ3VB1G14g4wwuDmUM3hChHY42v646o9HlVgz81T99EPTxDJXr4NttItkMT35b2HdRlPw16xm/u9LeWoWnEHbwCNS932V6Eb/xznxHDN+sd8ZUYYsRKs04L6exOPvRbVq+9pGHvpVngcBr860tFgHUaU/3kRUs7/AwKJFgKxgjO71lG5B6f+1/B7IUkeFnSPZju9CgXvNSy51o54EOKEvkHnMh/7xdt0McSqC2fNMV8JG0fFjpgG9QAAgbVHd/4vqB4pAN5JeKqx5xWTGnuAdymsWq2O6FiTyYQNGxrSzSPN8mvM4XCgpKThQyMnJ/TygHqNA4/l5eWw2WyQybiXgZIIsW6/TBxr/tKIg3qAf7Fkw+53IUkeBt24p6DInc37wGo8uACG3W9HPVR78XpYoyigXPz1cMSN5K5fFg3D3ve9H/I8N7Zum94X2IvkYbwxW+FKVK34V9CMVr3AJaRNYTr0FUyHvoKy16WwFoSfHXbzLKGOVvlfl8JauBLS1FFgeQKXTeWqO8V7c1MflDRGcVMAoMnFjRvX3Ys1rhlNj8MUdSFxp/5QUGDP4zDCZSqBWNs9ZK0PR9VetFZArfDjbDAiOWSpY8CC9S0tbw881sqQkxGOqr1wVO2F+cTvyLx2L8B6YD6+0O8Y/T8PQdX7Mr8b/XCZF6F4C2qPgDi+N9QDboTl1BII5fHQDL0HArHf+rY2CuyFxxc4Gi3lmM1nPTDsfh8Jk1+JerKguViHAY7y7ahedQ+S5n7NOWlQs/kZVCy6EqzLAnnOLCjy5sG4/7MWGY81f7H3f4UrkDD5dYi03SDWeO+lKhdfEzL7tDFH5R7oA5pcuC1lyH8nsnvCaJiP/gxbyUa4TMUQSDUxP39LaNxYRTv8fsRPfAG20q2o28G99M5lLoFQmcKbfeyti8pRHN5cApehwPfw7TKXofLvq2Er/sfvuLodr0PZ6xIwIhmM+z4O6igMIOQDniXg98KpP4TKJdeB5am/2x6yJuuZDn0F6+nVYWuLugynULv5GWhHPIjSH6f67j+sBSug6HkBjI3qpEoSB0HV9yro1z0c8pxcZT+AyAJsfKIJmjuq9vuWzbMeN2+B+8a8jYT2Qpo6CklnLYDlxF+wFq7gnRQx7vsIxn0fQZoyEmmXrkHt9le8S4GbqH6Clq/WpWH3O2DdDtgruOtuAQDcDhh2vQ2ue5D6332LqQiWk9xF+duao3K3N7Mthurvfd2WSnhcFt/nvttSgZJvR3G+xll73JeF7Rub/jAMO98E67ZDM+ROSFOGA/BmVpZ8O7pZYyz9IfREssuQz5utai/b2qTyC/q185Ew5Q2/bR6HEXWNnjfDlQTiyoCOlqNyD05/7P2ZSFNHR1TmpL5ufCh1O16DZvC/OPeFa1rj1B9C6c8zYvJMySXwfizaiQAK7HnFLLAXjU8//RQmU8MPYOrUqVGfo7Ky0q/IbFISd3HsQImJ/vUaKisrkZWVFfX7Ey9J5QooTrwOxm1Gjfk2JE19DXXbXwn/whAcFTtR/tu5SL9iM29tnoiKMPOoabRMNhy3qYi33kA0nGE6jFnzl0Ag1UKkTOWdLQvFuP+Tpg4tKpE+6MVKfYFmW4jOgk3lNBTwBvacNUdRueyWmGUdtiWn/nBQbRRbycaosycCA4SWU0tQsfgqsA4jJIkDkXLBXxDKkwBGiNrNz8B89AeItD2gHXo3nBxZCi3G4wLrMEa0PKktVC69MewxrtrjsBasgFjXI+jn5LFVw3T4e78luW5z0x8MgUYBxUYP+DUbn0TC1Deh6n89BCI5gPYb2IuWYdebMB36OqoOpLFkK16HysXBS6oB+HXTthYs46zHGGvOqv0o+2UWAEA37hkoe17Y6p/1kWqvf9eRqtvxGgRSbVC358ZKvh0NadoYbyAmfTxUfa8EGAGkyUMh1vUKubTZXrbVF9jTr5kfFNTzYlG5/Ga4ak/wNv7gIzQegPVEcBfKwC7D7VmkDYMM+z6BSJPrN6notpT5BfUA7+enfl3zlpu3BtPRHyHLGA9nXT4cFTsiCxZUeb8ve9lWFH0eef0xe/k2GA9+2aygXqSM+z7ibfLhOybKUi7tTozr17qNRajd/ipqNvwHYD1Q9roUSWd9hapVd/O+xll7HCzLwm0uASOQAIwAZQvn+v6eLCf/QvqVWyDWdoP+n9BB7lhwVB2IKNEgGoa9HyJuzP/5ZbDby7ZG1HCppdjLuEsGNQnrafJEIeuytlhQDwDcZ5Zte5xmGHa9E3WSCy3F9Wr1wN7evXvx8ccNS7Jyc3Mxbdq0qM9TV+cf2dVoIpu5DcwqNBhar8ZOoPrGHx2V01oD5dHnwHi8NddMe96GNHUkbAF1xJpKv+EJX/egQJ4IZhr5RPtazlTgGNP/8yBqNv0XCbO/gpOjTTuJPUftSd7GAY6qfd609E6AddthOPg1FD0v8WV5WQqjfwgz7HkPtrJt0Ix4ELKsGahcdjNYhxGA99/r9Mc5gEDkF4hy1hyDNX9xk8cuy5kDW8GS8Ad2IKEalTRm1x+FhyfJsWr5zTAd/h7ipEHQjHgYrmZk7IVSvfpeGA58iZRL1oFhGDj13PXWOqK2CurViyarvTXVbH4Kbp7MKwLIsr0ZC9ydGCPTOIOPT31tJmvBUl9dMDBCxM/4JGR5kMrFV8NhOA31kLthCfHZG26ykY92d/vJvmtprMOAuoAgXkdm3PN+UFCyJVWv5M4MagmhlpYCiPmKj47OVrYV5hO/+QKG5qM/QpZ7dlAH9MbsVftR9tu5sBUsAyOSQyDV+S239dhrUbP1ZeimvBW2S3wsNO6UHTMeF2yV+yFNa6gTaS0N3Zm9o2FdlvAHtQG3tQYOUyUq/5jnnXiIEnOmeYbbHZt62R0Vw/L1Vm8BRUVFuPzyy1FZ2RBY+eCDD5qUsbdr1y5cfnlDJ5bFixeje/fuYV934sQJzJ071/f1d999h2HDgts3t4Rdu3bB44ntrEtbYuyV0G2d57fNLU2B0N687BFCWoNDNwZiw14w7vZ5kWspHpEGAlfTJzRYCGFPuwCy0p9jOCpu5u7zIStdCKE1v8Xfq71xS5JhT78EivzQnVltaRdCUrUaAmfTmlBFwjDoA7i0g6HddhGEUXRrJqSzsSfNhLhmGwSu2jZ5f7csAy5Vb0irVoU8zhE/HhJ9ZB1WCSEkVjySRAgczatN3pasGVfCmnMzAAYQyqA6+Agk1e1zIq6zccaNgLi2aYFUl7IXDMM6eGZuAIFAgKFDh4Y/sPFrWmgsQUpLS3Hdddf5BfWuv/76JgX1gOBsN6Ewsu5Ygcd19chuc7CSeHhEcX7bKKhH2iNz93vhliT7bROZjnS5oB6AZgX1AICBu1WCegDAitWwpc0Lf2AnJHRUhA3qAYCsdGGLBvUAQKxfB3gcENiiywx0y6nMBWkatywDbmnoBhJtgRWpwYoUbfb+QlsxJPrwTcMoqNf1mHs8AlPv/7b1MEgX15GDegAgL/4W8RunQbf5LMhOL4DIyN28I5Ys3e6BNePKFn+f9q6pQT0AYNyhax92Fa0S2Dtx4gSuuOIKFBU1LHubMGECHnjggSafUyDwH3qkAbrA48Ri/oLvJAxGCGfC+LYeBQDAnnxWWw+BtGPOhMnwyNL9tjU1GFI39EuYu98Lp2ZgLIZGQmBFatjTL0G+J7LmSKRlCG0lEFpPg0HkGeduWSbcsuAuf/U8QiWMfV+EOa/5zYnaAsu0v3sHtzy7xd/D3H0+XOp+Ub3GI9LC2C+62rtuRXcYhrRM05DmYEUasMK2C+wB8JU/IaQeCwHsybPhkSS09VAI6RQYjw2K/PdbPFDpESphy7gcrmY8U3gkSXBL0wAAbmlqrIbWIhwJU2FLvSDm56XmGV4tXmNv586d+Ne//oWamoaH6DFjxuCdd95pVlBNLpf7fe1wRFbY0m73r5cmlUqbPIbmEAgEGDiwYwcG3G43jlRPgrQ8us41vBghbxvrUERxPZF5yc8o/iQDrL02NmPpBFQDb4Np34fNOgcjUkAz4kHUbX4qRqNqOYxIAXHCADjKgzthDRg1G3rjQlgMu5v1Honn/oasnFkALgHgbXpS9deFzTpne6DodRkkqaMgSRoKSepouE1FsBethX7lrS36vgJFMpR9r4Vxx6uc+/P6DIM0bTgGLfsfFilifyPQ1nRT34Vh+4twG0+39VBCklSthrRuW1R9jXUDroSz7iSsHPFzeY8LETf+RYjUmWBZFkXvNq/hUqsSShE/9R0Ilemo/P3sth6NjyiuJ5RpY2E+tKBF36f3nP/CenIEqpdEnl2QcdVWMCI5Sg5GHsSNS85B3sip0JtugvnApxG9RpI8vEm1eaKRlt0HFtcROMzhG8loxz0HRY8LULogukAoaRvybufAeqp9dkYNRxyXh8HDRsOp16CsA5cHFicMgLO6afUf2wN59/Mg7zYXtRv/06xa4JH6zjQTDlaMJdYx+C45fO1O4k8g1cFjb9kVD+FI43tg8JAhsJdYUMHdLzIkRiRH9i35AACPpQwCRSqK3tcBnrZr+CHNmg5p2lgYtj4btC+5/7lQD7odFb+eBXtx7JY4M24TwLIYMHBgxKs426N9+/Y1q2xbi2bs/fnnn7juuuv8gnqTJ0/Ghx9+GBSYi5ZWq/X7unGX3VACj4uLi2vWOJpDJBJ16P8JhUK4tNHVJ8y4ZjdSzvsdqn7BHQETZ3wAkTr6zBzNoFshFouhGdh1ijpHQpETvimNQKqDIm8eBDLuWd6sm45D3fuSWA+tyRQ9uIM7SXO/Qc6dNUg9b2HQPmnGBIjFYsiShzT7/eXJg/z+BiTq9PAviiFxQn8wQhnkuXOQevEK5NxRCWm6f9asQJYAacrIqM6r6nk+dMPuhjLrzL+VrhvUfS+L5dADMNBNeB6ZV+2Abti9ABjOo8TKBAiFQpwyAA62TZq4t5ikOV8gbvAtSL90DeKnvNHWwwkr2uLj6r5XQCTVcu5LnvUJZLpciESiDpU1L00dheybTkI74Dqous2EdngLFO9uRKBIRuLMj8MeJ0kehtQL/oRQ3rRsHVXfqyI6TqzrDbFEBrEyMeJzqwfcDJmuGySqFIgT+kf8OpE83vv7oeHP+gwkz50Z8bFNJVIkQChRhz8QgCyxH2TxPSI+t7zbXMSNeQI40+RIqEyP6WeDQJ4Us3OFI89u+Z9FNBJnfIC40f+BPHcO7zHJc76APGd2bN935kcQyP3/XhhR855/uAgkau89SRR/L7GgHnATZFkNJZWEynTIc2Y1+XzyrMmxGBY0w/4dk/P4MJEFClS9LoB24A3Iuuk4Ui9eiTphy5QTOOVMw7+r/43/1N6Op+tuwlZHf2ywcSeLlLoS8J6haRPQQnXsymlst/fBUzU3YbejJzzdLkP2rcVIvzx2JQPKpf1wUj0LgpTRIY9LnPUpMm8uwJ5hf+G/yu9hF0T2ed4UAlk8Pkn4IuQxkrieZ54nmpZpJ07oB7FYDLFYDKk2y/v/qdE9A8RS9u1lSL9oMRLGcQeaxcpkbwxBruPczydh+nsh9zOsG/DYIBQK2zw+0pz/NVeLBfbefvttPPDAA36ZdPPmzcN7770HmUzW7PMnJSX5LcetqoosVbbxcQzDICGB0tabgxWp4BHHR3y8WJsHRbezkDDlDYi0Dc1OJElDoOx9GRKmvQUw/r+WQkWIDzuBGKp+1wAANEPvASNWRvcNdGICqQ668cGzJY0lTH8HKef+jJzbuTt1CmTx3p+ToG2CKoxQivTLNyDrphPIvdeGlHN+QPpV2/yPESuhyJ0DhmEgVCRDlj3Db7+6//UAAEnS4GaPR6jwr9MnVLZeDShp2lhkXrMLuXcbkHr+H5BnToJAqkXijPf9/kbiRj/mezCMlCgu+OFTIJI3+QZd1fdqxI3+D+/++EkvI27EAxAqUyBUpkCSyH1DKpDGQW9xwu7ywMkR2BMoUpE0p/nFcvkC29Fgoqy7JY73ZvGI1FnQDrkTyj5XNHsM7YU0fTwkCf3BSLi71QskKr+vZdnTW2NYEUm9aDnndln2dKReuBhCRZLftpYk1nSDUMl//VP2ugTJ5/6C9MvWQaztDgFPIDUUZa9LkDjz44i+l7jRjwEAhLLIr/nMmZ81wzBInPZ2xNdogTTO+15RBKMUzQgoREog0/m+p3DEup5RnZsRiKEb8wRybi1B2mXrkHXjMaj6RBZ0jYQ8q2k1raOl7H0Z5LnhA2QtNaEhGvKw3zVQqEiFqu810I39P6Se/wfEut6cr2MkakgSIw8+R0KRNw+Z1+xG/OTXkDjrE+TebUbSHO6sWrGuV0Tn5Pq9qn9t/d9NLElSRviCwoxEjdQL/kbKvIVIv3IrEme8j9QL/kbqxSuRdslqZN18CqkX/NWkSQ9Fj/MhTQ0dlImUPMznWfzEl5Bx7R4IlZFNzspzZ0PZK/wktzi+L4Az90+ZE6FM7BPR+aPxr+oHMKP8Hfxpnei3vcoTx3n8AtNcvGa4EoWJ0U/Sp5z7c9iEC6EqM6J7qB/MM7DAPBcXVbyIyiFvQahIgjR1JDSDI+uenDD1TaRfuQWpF6/k3P95+XDMPHQbZhY8Bc3IRzmPkefMhqrv1fj1OIsL/7Djy70m/GIYy3lsLDiVeXhhjwpHnfwBUmma93deIE/mPSbUdVPMcf8uz4ndxIqq37VRPQMKeO776gnPTHRE+1klSQif+U7LcVsgsOd0OvHQQw/hnXfe8dt+22234eWXX45JNBIAJBIJ0tLSfF8XFhZG9LrTpxuWPKWnp0Miie4BmASLpq4PI/IufRZI1Ei7aBnixv4X8RNfRMr5f0AgkkHR7SwkzvgQjNAb/BXreiP14mW8Fw1J0mDfQ4ZImYqkmR9DqEgBI5RBO3w+cu+xIvWipc38DmNLIOWepQjKzIgyOBP8PlqoB97Me+Miy54OZd55DV9nTvHbL9b1BsMIwAhELXKz6HufxAHeB2aV/0yzNHUU0i77B9LUkRCps8CcCfhKkwYjYeqbECrTIYrrgeS530DQKIMiaeZHUPa6BJLkYdCNf9b3YCRJGtTssTIBPxNhiAsx38+5qeJGcd+oSOL7IP2qLUg+50ekX7kF2qF3Q9EtupqTYm0e53bt8PuiHmf2LaeRNPszaEPMmIs0uX5fS1K4M38FUh2K6qwAABeCZ8zVfa+COL75N86SGGRzRvpQ5js+YNwiZRrPkc0jy4xNBkQ4irx5ECpSIc+ZhaTZ3tpoAnFwZgojDg6KaIfeDQjOZO5FmBkRqQJXCnbauR/kA8VPfg3yrMmQJAZ/VqResMjvcwYA5FnTog7eNCZJHgbduKch4vn7E2lzeQN76VduQfLcb6DMOxeM0PtvFzi+SGhHPABGIPI+nF+4hPf3WD3gJih7e7N4BVFkBkqTGzq6yTImIOf2yBps1V/XI/33ZYTSsEEBacaEiM4lkPAHSAXSOAjEkf07izTdACBosomP50xWrECqgSxtNBihGEJZHISK5k8gieP7Qj3otlaZpEuY/DpEmvCrL7RD7oRm6L0xf3912jCknv8X5N3mQtnzYqRdstL3NwKAd8KKYRjeSaamkKaPg1AWD6EiGdqhd0Pd71owQjFEHFlQ0tRR0Ay9J6LzaoYFB83U/a8DcOZ7SBke9VgFsgTeAE7cyIeRffMppF++Adm3nIY8ZwYU3c+B9Mx1kxEIIc+cCFnGeDCMN/teFBf671aSOMjvHleWNRVJsz+HNH0s+DL4oyFJHMibbSbLmAT1gBshie8b8T2OQKxC4qxPoRlyd8jjAoPGKmnov7dSV3STijZWgn9s3F0yq93cn1t1rBIAg42pTyJh6tvcJxZwZ85LEgYg7fJ/IM/lv6eUZ01B8txvQt6LPVVzExZaGiYWqs0NST8JU/+HzBuPQdH9HN7Xa4b9G5rBd0CaPBSydO5A3ElXBgDgeJUZ+1PvRsbVO6AZeq8vKCZKm4A32Ycw/p0NuPzrhpING+xNfzYINWYAOGHTAWBwQ9UTKHFxZ7rLzqy64ZuY0454ENm3FCLlfO4yAVzZ0eoBNwTdZzeVLGMiUs75CfJucyM6nglzjWkI7EX3jFQ/GR7yvamBRmwDew6HA3fddRd+//133zaRSIRnn30W8+fP933gx8qAAQN8/3348OGIXnPoUMMC9r59+8Z0PF0VX+fDwIcjZR//mjwiTTZ0ox+Ddvh8iBo9vKj7X4fMG48i/cotyLh6JyTxfXgDS7I0/xt5Za+LkXXzKeTcVYv4iS+CEQghTY7+JqcpEqa+GVHauqrPFUFBLMA7K6Ib9wxEmlxI08Yg7eJVyL69ArpxTwctt6wX6oZfINVBKItH2iUroR0+H9qRDyH7ltPIvOEoMq7egdQL/vYLVGmG3InGN1Ter8+cS8Q/WyRNHYX4SS9DPfBWpF60DFk3nfDNWgLepRlpl6zy+x60w+cjafbnSJz1CdIvWw959nRk33wS3f7tQO69dmTfXo70y9f7PRQ2phl8B7JvyUfW9QehCLjYiNSZSJ77DTKu3Iy4kQ+BEXgDBUKZLuTMo0DBH6TjwwjFYDgepmXZMxA/5bWwr1d0PzdomzXzGtQN/QKa0U+g/ueh7HkR5Ln82SgiZRqUPc73/Xspe13sl/nKCKVQ9b2G87VCRWpQBlU9efZ0qAfdHvb7qKcacKMvi5GRqHlnGcXx/sEDvp+zQCRDcZ23UDxXxh4jVkCs69XspU2SxIGQJIcuK6AbF7rOZDTBDnFCPwhE/pnrrMfFeWyoG+pIxE96OSjrmS9I3FSK7mcj5dyfkX1rIVIv+AtirTeg4bYF167hClQpus1FxpWbkTjjQ6RfviFspnE0ppW9h0sqn8cBR7eQxwnVWd6/GwCKnv7LljTD7vNNLDTGCIRIvXBJ1J8dSWd9jZw7a72fUaMegaoP97J3cVxP3oCvSJUR1XtyUeSd5/vbYxgG8uxpSL9qm98DASOUIeumk0ic8b7v30DAk7GnHeFfQ08gS4Aiz7+rdeDkCB+BLA4AIEufAGEE36tI19MveBNIqEj1BpDDUPa8GLoJz/HuZxhhxAHU+vFoBt8R0fGsw8i5nS/DDPA+dAVKmP5+UDkGZc8LIM+ciPRL10I96LYWm6wTabpBqEiCSJsb0fGqPlf4BRWEqgwcGfkX3jJcGva1z9TewLldqkyEPGsKUs/7DclnfxsUHA6VzSJOHMC5XZI8FNK0hoCCUJWJrJtOIO2SVUic8SEyrz+EjGv3+H5WQlUmEiZz3wNIkgYFfSbHT3oFmkG3IvXCxdCNexrpl2/gXU6qyJ3ldz1XdD8HsqyG0itxIx/y/ZtyTaRwnjNvHjKu2Rk0sSLW9YQibx4YoQTS1JEQiCPLTA8XkJdlTEDm1TsRN/ZJJM76BKkX/A2BWAmxJgfaUQ/zvi5u9GNIPvs7aIbeg/iJL3IeI9J0g0iVDkk89zNe6sXLfEEUgSyy4AIjUUEgkkET5jMk0n+fekWeDGy3Rz45ucE2EFaWe9VbtYc7MGTweO/Dam0uyPrfguxbTvt/hgtE0I3hXmHBCMUQKdOQev7vyLmjinOpuiRxAOTZ05BxzR6oB9zEeZ6fLf7ZwlVm//pvQlU2tua9h8Mjfkfi+Yv97rcEimRoBjfchzICEefk2wlXw3Vi2dFKSBIHImHyK8i+OR9ZN5/Ca5I38NLGWmwu8L8vWW4dhR9MkU2+BCrOexRMiFVlBQ5vEKvMnYDrq57gPOazY1ocqTDxxkiEihQIJGoocmch+/ZyqAbc6Pu7VvW9Cqo+lwe9RqRMQ/qVW72ZtVdsCr3yLQyBVANF97ORet5vSJn3a5PP4zufL7AX3QoD4Zl7glAoYy+GzTNcLhfuuecerFmzxrdNqVTirbfewoQJkc2SRmvUqFFYutSbjbVlyxZ4PJ6gbrmNud1ubNmyxff1mDFjWmRcXY2HJ2Mv+exvoV//OGxF/0CSPBTx45+J+JwiZapfsI/vA4CrjkDgbIFAqoFAGgdPhI015NkzwcIDSUJ/mA59A4+tGoxIAdZl4X1N3KhHoRl8B0yHvwtbCF/Z50oIZDrUbml4eNCNexoMwyBu1MOIC7ipiRv1CDRD70bhxzlgHQbf9sSZn0DZ80K4zaUo+jJ4+YjwzA2LOC7P7waILx9G2eM8pF26FrbifyBJGgJFo0CSUJEMl7GA+4WMICg7K+Oa3XAZCgDWDZG2GxhGgLSLV8BevgMCqZr3hgvwPmAKI7zZipYkeTDn9yGQ6pB28UoUL4h+tp5hREFNBUSa7LBZHSJtd2iG3g3LyT9925yagbDm3u79Nx18KbQDbgDrtnGm2oci1nZH4syPUbvpaYARQDf+GbBOE0yHvgoehy70uROnvYW4kQ9Bv+FxmA9/x3ucPHsmEia+7PuaYRgIlWlw1foXmWfESojj/AN7oYJqDYE9jt9cjwsCsRKaIXehbjt/Awb1oNtg3MvfSIZhBEiZtxD69Y/BXryB83dE2etSSJIGw3z0J5gOfRO0P5rliVzZjNKUEUHbNEPuRsKU12DJX4ry34KDwPwYQCBE3MiHIU0eCt34p1G18k7A44RY1xvqwXcAjMDvM6ipBBItdOMjPw9XtgpwJrh6JlvGbSlr0li0w+9H3Y6Gh+lvTA2fYU6O2x1V32ug7HUR3JZKKHLn+ILScSMeBFg3bMXrIU0dGTIQKlJnIfmsb1D2S2RLXyTJw6Dq7R+0UOSdh9otz/ttY0RyKHtfGlSfqx7nbDcbWcFloSIVssxJSJz+bvB5RXKkXrgYddtfBeu2QzPsXojUmUHHcJHnzoY4rgdqt78CgViF+EmvQMAR3JfnzIa1IHQmff33xwjFSLt0Deq2vQzWZYV64K0o++0cv2shgDATeAySzvoKsvSxEMiT/IraK/tcCfPhb8+8lxTa4fdBkjgIrrqTqNvxuv9ZhDJIEgfCEmbsAPyCQIruZyNu9H9QuyV0wJpvZYIsawpsxf9w7tMMuxes2w57mbdplFCZBlXvyyBLG4XKJdfDUX0A8tw5vsw4aepISFNHImHqW3BU7UXJt6ND/t7Ejfk/1G5+GgDAgoG595PQ6X+Ds3I35/HiBO+1XZLQHyJNLlyG/JDfszRlGNIvWwfzsV8gUmfCmXct5v53FW5Ucf+OrbcNQjdRCf62jsMC01l4Iu7zoGPC3T/IMicFbavPvJHouIMskqQhSJjyOoz7Pwc8Tih7XwqRKgMidRZkjTJBM67eAbe5DAJFEu/fCSMQIeX831G99n54bHpohtzty0KSZ0/3LSMV63rBcuIPuOpO+l4rUudAqMpA0uxPoRl6F+BxQ5Iy3C8ooOxxATKu3gGn/hCkycNRs+kpzmt/YwKx0hs86HEeLMfO1CoWiJAw7b0mJWWEC+wJ5IkQ63pBN/rxoH3x456Guv+NYF1m2IrWoXrNvwHWA5E2D+pBt0OkTIWy50VgWRb6dY8EvV6W7Q0iieP7wFqwzG8fI1b6TdJEet2uv58L9bulGXJX0DZJfD/YCrmXjgIAo8jE/0pH4f2El6EW8D9j1Ftt4/+cq+LJ2KsP7L2y5gS+2lGE9y4aiDnn/YHarc8DHhe0Ix6EQKpBzcYnQ763QKqBesD1/p/dAhGUPb0TYgzDcJZ1AQBLQDCy2tIQ2GNZFvM+24q/D1cAAIZnKrHp7ochy5oOl7EA8szJECqSUWqwYW+pAf1S1Igf/RgqFjUEtI46s5DvapgEk4ka7hcFUi0YiQZvbdjJOTY3hHis9g7opryJyxXea1+k9yAjPi9DtvJ1vD3RiQH7rwvaf8za8PvF9/O58/fDAA5DKhLgIEf8rXH5DxujhnTC20ic/j5Ytz1ogtjvdbI43+eaOLE/3IXB35M0dTTsZVuCtjfWeGmtPGcWRHE9gu7royE8c52LNggeCcZtjfk5O5qYBfZeeeUVrF692vd1fHw8PvnkE/TvH9t6FY3NmDEDzz//PNxuN6qqqrB8+XLMns1f12Pp0qXQ6/UAvJmEs2a1fD2WroAvY0+s64WUc3+KyXuIVOlwVAR/KEdaj0OSPAy206vCHqfqexWSZjfcKMaPfw4sPBCI5LDkL0PFosvBOk0QKlKgHfEg3JYyiOP7QtX3agDeIFz57+f7nTNp7jewHP8NbksF1ANvgSxtFKQpw8AIpbCXbYE0fTy0YZZgCMRKxI9/DtVr5wMeJ2SZU6DseSEEEhUEEu4bKK5MsnBk6WMgSw8OeGtHPoSKv7jrc7DO4JsRhmEgDpixZwRCyNJGRT2mWOJb8iaQxkES3xvaEQ+gbjt3h1Y1X9aFIDjgJJTFQyANXWdCO3w+5FlTkHTW1zAd/ApCTQ5OKy/wy7QLfKCOhrrfNVD3a5jVt/LcXEqThoQ9l0idCVn6BM7AXvbtZRCIVZyZOEKpDoF5aJKkwb4syoZt/EshCmq8F2quwAzr9t4c6sY/C1nmJFjzl8CwOzhYoep7DWTp42A8uIDzJptlWYhU6Uie8wVc5lKc/jg4s1MgS4Ci21wous2FNH0Cqlf6/z7oxj4Ja8EK3g5rqRevgL1kI6SpIznr/yi6zQUjVjU0qRCIfNkBQp4HflXfq5E0+zM46/JhPvYLhIokqPpcCdZpAcu6fQ8h6v7XQ5Y5BW5zKaTJw8CIpIgb+Qg89joYdr/Dee5wkmZ/7m3UkjaGdyZV1ftyGPe877ctjuNBLlAkSy64xI16FG5bNewlG1Ap7Y/Xd57v2/e58Ry8meBf00s94EbIMoKzoRmht9ZZpMIuPVFlwm0qAiNRc2Z+SpOHQtn7MpiP/OA9XpmG5LnfQhJiaRNXdhpfJl2g7FtDly4Rx+Uhccb7IY/hIlKmQZ45CeoB3JlU9XTjn4az9phfwCJQ48ClWJPjF4TUDp+P2k3/bThWlgDt8H8D8K4UcFTt9TtX9m0lvsYiKef+hOo198FjN0A7/D5oBt0K64Ab4aw+BHnuTIjP1P6Nn/gitMPuQ/F3Y+E2FQHwZrELpBoIIsiCavx7zjAC6Mb+H+JGPYLSn2fCXrqJ8zXaYdzLUjVD7oKtZEPwZ5dQAln6eMgvXg7TgS/gcVqg7n89BBIVJIkDkX7VdgAsd7Ypw0CaNBjiuJ5w1hzhfF+hIhVxox+HMK4PTh9cBWfCBLhVvZEy/X4w9kqc/jQPCJjWqv+dZQQiJM1ZgOpVd8FtrYLbXOJ3XOO/A2nKMEjPlGP4aLN3UsXNMQXpZIW4rip08AEI/3cgECugGXYfDDsbPg/qazXXl4sJJEkaBIFYCe3Q4OBNY4xQApEmfHkaafJQpF8S+p5UINUi/bJ/ULXyTlhO/AGBIgmJMz9sKEvCk+kOeH8O9T8L9aDbYDryHcCTFQ4AzJkAQdLsL2BIGQFXXT6UvS5pcjMLoSI1ZAAgsF5xoPr7R0lCf8iypsJtLoE0bYxfsJQv4Cg/E7jleg/W6b9UL9LPzPoghHclgiqomZSi+9mcE0CaoXfCsJtn+SuAblkDsSl/IKaXvY0Jsj14Pf4t3mOtHgmWWvkTUsJl7AFAmdGOO37Zh1OPTUfqeb/5tntctqDXKXteFLRNkeft+ms99bd30njMk36/7+I47nvswOXVjTP2dhXX+YJ6ALCjqA5Lj1Ti7H6jgDPPDOtPVeOcT7fCYHNBKRFi4XUTMHLc0zAe+ALrK+T4b83Nfu9RGZAReLI6fNB0W4kFt116D7TDvM9jrMsO07GfwDqMePNUX1ydzx0zKDRLcd4SKU5w3K4frWu4N6hj1djv6I4Bkobr3n9qbvX9t93FPcFS/3v88eYC/Pv3/bA6PbhlTDbevzDyJcR8AWZZxgQ4a46G7AzcuDQFIxQj44rNMO7/FHU73wz6XA8UP/El6Nc1JKtIMyb4PmMjTbYBwtTab8Stiq4kTmcUk8De2rVr8eWXDQXMtVotFixYgJ49m157JhKpqamYPn06li3zzsg899xzGDJkCFJSgpcnlpaW4vnnG2bEZ82axXkciZ5HHvxp1pSgUiiqftfCctK/voBY19uvAUcocaMeQVkEgT1lb/+UZkYk9V0qFLmzkHn9AbhqT0Kc0J/zYVaeMwuS5GG+IKQsaxqUPS+GKqDoLiMQIW5U8ExjKJrBt0GRdy48jjpf/TvfviF3+gU0JCkjOG/mm0rR/WxIEgfCUbUveGczawG2JiFv9ov3wsW3tFkg1UEz6FbOfQxHTTBGKOHN2FP1uxayjEm+BwlV70uh6n0pXC4XCvfsCfs9NJVIzf2woR50S0Svr19e2RgjlIac8XbbqjnOE/w3KxDJIcuYCFvxOt+2+k6dWwu9NxzfmmbjkTj/rAN5jnf5BMMwUOTOhjR5KGdgT6TOhCxtFFR9rkDRl/3hrDkWcETDwykj5M6yaJw1rOpzBep2vOZ7aFH1vQpiXS8kTH8HlX9zF7uXZ07yPXBwn1+DlPN+R82G/4B12xE36lHfww3fMl/JmaCsWJuLuBH3N3wPHEFlsTbXL9jOiKRImPI64ie/ioo/L/b7fBUq05F+xUYY938KwBt0NO77FM7aYxBI46Dufz0U3c/m/V7qSdPGQJ4zy5c1Ic+Zzbl0MFAkD8ZcBFINkmZ+BADQ2eyo3d6QrbHMOgqnXcnIEnkfIKSpoyBNH9ek9wkk4vjbqJc482Moe14Ep/4QROps3oY7SXMWQNX3anjsdVB0P9sv063xNQXwLuXmouxxPqpX3R0yu7wlRbJkFvAGJDKv3QeP0wxX3UmUfBf8sCoIsexGN/oxyDImwll9AAJ5AuTZM3xBbN24p1D+R0P3dFnWVL9uwbL0cci40j9Dge9vU6hMQeY1u2EpWOqtH5np/d3lW4qbOPMjOKoPQZl3rl8WVz1GKPFmrpdtASNSwHz0J1+GqaLH+ZBlTeE8r1AWh9QL/oY1fzGqVt4Jt6n4zL/D477vjWu5rzfwETrbStX3KtRs5O5emDDtTe9na4/zYTM3/I4zAuGZSafAXPWGuoKAd6Iw4+rtAABH9UFULr0BTv1hyHPnQD2Ie6Jsy5nPezljD9oXmPXDJ5LllfHjnoZY2w2O6gNQ5M72q5Ul1vUMukaECrK3JKEiGSnn/gSP0wxGpGhS9pwsbRTSr9gEy4k/zwReWFQuud7vGGUvbxaxQCRD3IgHmj1uhmGQMPnVoInuenz3Ylwk8b2BeO7l6Jqh98Cwq3EwjIE8yztxxrVcM/AeP9KluDjz786cWaFSn33LCGVIu2QlbxdSsbY74qe84b2uBwQVnar+YNJmIS/BgRPVwGorfzae1SPBU7U3Qc8TvAP4a+w1DuwBQLnRjgPlRgzPjPNtE4hkUA+4Gcb9n/i2rfDMxC9fbMPoHB3um9QdYqG35nbKvF/hrDkKgVgRlIHPH9gLGGujjL1Ptwavcnpp9XGc3a/hWvniyuMw2LyBabPDjWdWHMM/dz6Cym534aqXVge9vrTOhlXHqnDDD7tQYrBDKQlfu/ezrYW4YWQWxnfz3tMyIinUfa+G0ebCc98uxbCEXPST5PuOD+w0/INpBi5TrfDbdsTpfy/zoP4uvBT/LrKE5fjTOgE/msMvAWZEClSbHbj3t/2wnQn+fby5EBcPSsfMXpE1l+K7Z5CmjgSEYtRt5V7WDiAoSUEg1UA7/D4IZDpULed+LqqnHngz7OU7YDnxB0S6Hkho1DApVImJQKGW5wMAy4hhyZsPVhx9A7HOptmBPbfbjeeeew4s673AMwyD1157rdlBvWuuuQZbt271fX3kCPeM4n333Ye1a9fCbrejvLwcV155JV544QWMGtWQGbRlyxY8+uijqKz0Lr9QKBSYPz/6jk2Em1ueA48kEQJHQ8fh+HGRL7uNhLLH+Ug+92fUrH8MzpqjEKoykDDtnYhvcuRZU5By3m+8NxmAt4aKPEyRa5EyLWSRe0YgQvpl/8By4g9AIIKi+7kxrS0pUqUDCG6GoRl6L6yFK+HUH4ZAFo/4GNaoArzfV9rlG1C39QXUbn3Bb1+0Acq2xDdL7OvAqOC+SGZcs+vMvz0HjsAe63Hzdk5MmvUJ5/aWJtLkQqhMg9vc0AFZ1e/akMuiG5OkDAcjkoN1NaS6J0x9M+RrBDIdUBc4Du46h7oJL6Diz4vgtpRDpM6BdsSDcLk92HSmHsoP5hm4U/Mz1ALv+4viekAW0OWRb/a9cV039eB/Qb/Gv2B242YjvMunGv0dC8QKZFy9A5aTf0Eg0fpqNql6XQJF7lkoeD8JYN2+4wNrj/GRZ06E/LK1weMP0TyouRhGgKTZn6Ny2U3erBCpDglT34RIle6XtSZtQkF2hmGQct7vsBWtAVgWsuxpEX0exmJSQioSYla2HMsKvb8vDkhwTvmruFCxFilaFV64+JmYfTaLVOl+AUzAu5RWN/a/UPW7Bgwj4H3w8x1/JjjNJW7EA6j4u6FGLdeSL8AbcEqY9jaqlnHXOQIaHuCbS5oxAfbi9f7vH8XSGkYohlAYB4GYu/xBuCVy8syJvkCb3/Zuc5E440OYDn0DkSYb8RNe4Hh15ARSTfDEHE/GXn0H9lAYodgX9JOmDIN64E1g3Q6I4/uG/H1kGAaKbnORdf1h2IrXQahMhYSnHlw01INuQ+22l4KCDoru50DRqLkWF7GuF5w1R/228QXlJQn9ggKqXLYW1AIADJ7g36XAh2QAQdckgP8z3P91Ur+6XY1phz+AqhW3NZxPqoM0rW1L93AtaY+GNGkwpGeuFx6XDaK4Z30TU/Kc2b5GGLGk6DYXKef/hfLfghsMCKLodh2KZtBtMO7/1Pf7qx54i2/yRJ41FUJVhi8QDgQHwCMt4M82Wq6uG/t/kKYMg7P2BOS5s8MGfbVD7oR2yJ1gWRauuhOwVR7EiaIauFV9AIEIt4xOwSN/H4GJ5f69na+/B2usw1DHhk6Y4M3YY4N/d4pqbRgekJORMPV/EMf3grPmGBYZh+OGtUkAyvDr/jKYHW48NdsbiGEYxhts5cCVbHHaFXzf3bh5htXpDtofuK1xRh8ArD+lB8uy2FvqX5KhXmGtFTf8sAuna72ZiPVBwXCu/34XDj88DUJBw2fxlsIaONwePF93Pd6Mfx0JQgN22XviC5P/5ObnprP9AnsHHN1w1OX/mXXUlYMLKl4Gn5frrsJD2oZSL4xIAUniQHy9q9QX1Kv3yurjEQf2lN3PgX7t/X6TfpKUEd7P+R4X+BI3uAJ89/1diCfPy0GSyj+bub7JZSgCiRrJc7/m3KfIm8eZ/QqcqWmaMhIuQwHk2dOgCVHrO+mCpThSqfYF37u6Zgf2lixZgoKChnpEcrkcX3zxBb744ouIz5GYmIiXXnqpSe/fvXt3PPvss3j44Yfh8XhQVFSEa665BtnZ2UhNTUVpaalfJ1yBQIDnnnsOWVnhmxyQCAlEMPd4CNoTL8Jj10PR/RyoBtwY87dR5s2DMm8e3NZqCCTqiItw15Olc9d6lCQOhCRpEOLG/F/QEsGmYIQSXxH21iLW5iLjym1wGk5BqEiNqMhotAQiGXTjnoKz7hTMR74H4A32KHLnxPy9Wkq4jD2+Nu28QT14Z/cD09GF8gQwPF3G2gojFCN+4guoWvEvsC4LJCnDET+J/wYjkFCmQ/zEl84sB3dB0f1cqPoF1xRpTDPotqAZPVWfKziPlaWNQub1B+EyFUGkzoZArMT207UwO7w3eAZWhXnlr+KlHmsxs0+mt5tnQACIb0lk4+PUfa9B7aanfUsPxPF9/DvHRlrcXyQPeuAHAIFEhbiRD/kC4AJZPFT9ro3onHz4MqBjEdgDvL//yef8BI+9FoxQGtPaJ4xAyLn0OByRtnvIpZqBuBoSXdtPhdVFVjjP3A+bWCUWmOdCZhfgeQH3krumSj77e9RuexFuUylU/a8LmZ0ZLWWvi5GqSIG9ZAMkycP86p8GUve7BiJ1NnfNP4Eo4kYO4WiH3IWKRoE9bRMnePgaXjS1uQPDMFAPuCHscuDmYELUNYpWtPVTGZHUl6kcC0KZDumX/YPaba+AEYig7H05RKq0iLrDakc8iKrlDRnfAqmOs35dpIw2Fw5WeBuILLGOxf/FfQYx0/CA/2qdfza0VCRA/OTXUL3yX75t9ZnezaHqexUsJ/+E5eRfYMQqJEx9o9mBtfZEIJIh46ptMB/9BYxYDmWPC8O/qIn4Ar1CReQZe6GIdT2RcfUuWE78DpEqw6/xESOSInnud6heOx8eey00Q+4MCtAKI+3M6fEPNIXrhsqFYRiI43qAUeXCbWhYnXHfxG7I1inx0mruZctHndlhg3oAf2DPyBEkL6oLrkXGCCW++r+PPb0MQEPW7Curj/sCe6EIxErIc8+CNX+xb9v7xuDfryqzA3tLDNApxFyJv355xlyBP8C7rPifk3rOfdtO14YdK5cT1RYcrjChf2rDv3f9uTbZB2Jy2fvQCsyocMfBE1Au4JgrG9dU/h+uVi1FjVuNNwyXB3wn4f1inoorlMt9Kws+t1yAusX5cLmD/5FWHKvC/jM1BwFAcCYYuf5UNX7fX45+KSpcNyILAgEDoTIFyXO/Rs2mp8EIJVDknQfN0Lt8z9GqXpcAvS7hDOx9uqsWpc69+OX6gMnJCAJp2wprsexoBQamaTCvv/9yWoFYiZTzfoN+3cNgXTbEjXoU8pxZ8Nj1EKlzOJ/HdeOfRc2GhkYvjEgOSdJQoOpE2LF0FTEJ7DVmsViwfv16nqO5ZWQ0r7vbvHnzIJFI8OSTT6K2thYAUFhYiMJC/zoyWq0WzzzzTMg6fKRpnAkTkT75FghYR4s1PqgnjKL7ZGN8Nc/SL9/IW1elI2FE0lZZLpI050uoB9wA1mWFPHtG1AHWtsSfsXcmsMfxMBmu42Xc6P+grKhRlhUjhLL3ZRDKkyBUpMBtKfft0k14nuMMrUfV50rIs6bD46iDSNMtZBdJLprBt0PZ+1J4HEaIeTLvGlP2vBh121/1ZXWo+l0LsY6/BoZA4t9YZf0p/5u2QncqLIOfR/wo/qWasswp3gyxMwI7nAqkGmRcvR2GPe+DEUqhGXqvX+AvFllcunFPQZYxES5TEeQ5M5vdwZS3W1oMA/gt2bSmKXRjn0TlktCB48a4skd768R4Z2oCblvpvyTc5vLgZLUZPZMi6xgZCYFEFfNM6cb4MtQ4x8Jzrcu4YnPIepbRUPa8ECnn/QFr4QpIEvpD1T/yn1Ug3YTnUbP+Md/X0vTx7fq6Epjd1tFJEgci+awFUb9O2etimI/9Amv+EjBiJeInv9qsANj2olqcWfwDvUeLF+quwyPaBZAwLiwwnYUdDv/7m/+d1x/q/nPAOgywnFoCcULfmKwWYYQSJJ/7C9yWcghEirD1cjsigVgJdf/mTThF9D48je+E8ug6iYci1uby1qeUpY9BxhUbeV/bHu79GYbB5UMzkJegBBYG7zd5wmegAoCN5f5eXByP+kV1wTX16nk8LEoN/kvhbS4PrE435OLwyQ+J099B9Zr5cNYewzsFffGLeWrQMf+c1GPI62shFDBwe4KDVtuL6lBYY8G207X4bT93I4sT1WYsOlTOua85dpfUoXeS0ntPJGB85QEAwMrKYHXzT+xstA/GRnvTJ1yrPDqcXf46xkr3ocKtw15nT6DiFO/xg15rePY4q08yrhiageu+3+X7HF18uALfXT0cQgHjzc47E5CutTrx+LLjqDI7cNuYHIzIiuN9Dzsk+HV/WdDPnxEFB4wbb1t6pAJnf7IF9T/el87uiwen+k9kSMBPsAAAgS5JREFUyTMnIeMK/5qzoe5rVf2ugWHP+74sXM2QOyHgWR3VVTU7sHfyZOQz6i1pzpw5GDNmDH766SesWrUKBQUFqKurg0KhQF5eHiZPnozLLrsM8fGRdy4k0WGEUghF7XtWUyDRwuPwXxvYHi7sHQnDMJBnBV+oOwK+5R/1AT1pysigrokJYbLaZJmToOp3HUwHvwQYIXTjnvIt19aNfxZVq+4E3A5IEgdBHSbDrTUIlSm8db4ier0sPvJOchIV0q/cCmv+EggkGsiizNzaXBBc0Le+/gmfuNGPo6JyNzz2WggVKYgbGVybQ6TOQnyIIKsib553OX39Ocf+N/JBnxHLrBoAUPW/AaYDDY19tMM7dzkJZa9LYDnxJ8zHfvbeLDIC35IN9aDboR54E6pX3gmXuRTqATdC0W0u53mGJUtxzxAN3trtv2TndK0tpoG99oQvczVWQb16im5zoOjW/IxtzeB/wVl9AOajv0Ac3xuJ05vW0KW1cC03U/S4gOPIzs2bcfE73KZiMGJFVJ3B6+0vNeDPg+XIS1Ci1OgfbPjSdDZ+Mk+DCG4YWP+/1fsn5+HGUdlgBAJoh8+P+echwzAQKVPDH0hCalx43297O5pEioSqUSOylhIn5/7cNnIspW2u4lr+7qHFBu6g3/EqMwamhQ9yi9RZSDn3J9RYHHj5/0J3EOcK6tXLfY6/mzAAfLCxIKKmGNG65ttduObbXUhSSvDf2b0570NbkpmVY4Ut+kaDiw9XYHHAkuWf95ai7/KjGJGphVoqwuS8BDAMg3M+3YKN+d7v6/OthTj00NQQ90PeieXAn788ayoYsdJvoithWkOjmOdWHEPjH++HmwuCAnvREinTkHH1Lljr695mTYbLFdky666i2YG9RYsWxWIcQb76KnRrdi5xcXG45ZZbcMstkRWDJ11P/ORX/ZaOqAfw1yIinQ9fDb36WWVGJEXi1DdRueJ2sA4DlD0vhiLMMhWGYZA062Poxj0FRiD2ew91/+sgz5oKt7USksSB7ToLpaUIxAooezZtqU/gcooEhRg9E0Pf5MqzJiPz2n1wGvIh1vVqUhZa/KRX4bHVwlF9APLcWdAOuTPqc8Ra/ITnwDoMsJfvhCxzErQjO05ty6ZgBCIkn/0t3Na3wIjkEIiVcJ5ZmlvfgCX98shWByTIgmv2VZiCi/N3FuL4fhAq0/1KBCTO+KANRxSaQKxA0uzP/TrSt2ey9PG+Tsf1uLoddwUMwzS5e/uWghpMfm8jHG7ubpAAYOGoO/bNVcNwxdDmZUGT1sHw1qyNXXO3lqbIO69VVsNoZWJw5QKbPQ0ZYuNzdfjhmhFwsyzS1FJ8tu00Sg02fLqlEEV1NvxinoKLlGt8x/9lCe76Dngz9vaU1OGxvw/DaHfhvkndccHANHg8LO7/4wDna45WmiIK7NX7Zmdx+IOa4dtdLXv+SrMDdy7kaBjYAiZ1j8f+MiP0FmfMz/3M8oY6qNePzMKDU/J8QT0A8LDAx1sK8fI5/SDNOQv2goZl1DvsDcuvA3/+AokKurH/hX7dIwDrhixjkt+9fuCKm5PVFrAs2+xVMUJZHFS9L2vWOTqzmHTFJaSjUPW7BqzHBeupvyBOGIC40Y+39ZBIK+JbJtR4Ca6y18WQd5sL1m2PKijEV4dPpMlucpfPrqzKbMcpvf9s7MisuIhuCpqblSjW5iLtkhXhD2xFQnkiks/+rq2H0eoa18Xk6qgcCV0XC+wxAiESpr6BymU3g3UYIe82N2ZNM4j33zf1wsWoWf8IPHYDNMPubbOuqR3ZOxtOhQzqccnRyXHRQP4GZqR9iWXzuNaUce0+OKsPgBHJIG+lOtJauQhfmyfhAuU/vm0V7jg40VAy5daxOUjXNgT6bh3jLYkyqXsCpn+wCe8aLkY/8Sn0lRTgmDMTbxq4P/ePV5lx1sdbUGb0Xgc3FdRg532T8NWOIvy8t5TzNUcrg8OOG07p8eyKo7C7PHhgSh7m9vXed72z/hTu+W1/lP8CXVO8Qow1/xqPz7YW4uYf94R/QTN8se00UtXBq9ReXXMCVw7NwHNHJuJp6UrIGAccrAifGOf5jjnC8fPXDrsXih7ng7XXQZw4wBewr2+oGsjqdKOw1gqtTIw0TfNq1X69owivrz0BlUSIm3sJ0T+h6yVOcKHAHulSGEYAzcCboBlImXqkQeByEYFYAcSwgQCJ3vbTdUHbQtUBIYRPvDS4LlCFycFxZOeh7HEB5NkzwTrNECiSO+wDdnslie+NlHm/tvUwOrSmZPSsun0cJKKOk+1FgktbqAfdFuLo9kGkTOXt/NpSpCIhvjKfhdnyLVAIvAG3D40NS/y7xStwySDuCeSpPRLRPUGBk9VpOK/iFSgYGyysDG5w18QLrLHn9rD437qT+OsAf826Y5VmVJsd+OdkNeLk3tUT53y6BXVnOs5uKqjB1nsnYmCaBv9b1z7KdPEZkq6Bwe7C6GwdvmvhzL/5k7vj9bX8/x71q1CSVa1TFurXfdyB22Fv/AOgN3aIXsNA8Qkcceb4dfU9WhHcvRYAKtkUPLisGkW1m3DDqGxcNyITNVbuzMMxb63H/jIjhAIGr57bD/dM6Nake5N/TlT71RLcU8xgyQWpkAjpPocCe4SQLo+vwDNpO1sLa4O2jaTAHmmCrpaxV08gUQFUWJp0IskqysroaHTjnoJTfxjOmqOQpIyAdsQDbT0kPwnT3kH1qrt8X0tTR7XZPeEeRy+cU/4axsj245QzHVsd/SETCTAlLwEvndMPshDNK3onqXCy2gI3hE2qy/f51tMh9/9zqhrj31nPmbkHAHaXB08sOYzPLhvSIrXvYuX9iwbitrG5vq9tTjd+5WnQ0VxjcnT4v5m98P7GfFid3NnJfZO9XW1TWimwx5V511i+Kx35ruAA8tEq/9cdKjfimeVH8f3uhpIf607pcefCvbhhJPcqpf1l3q7nbg+L+34/gMf+PoR4hQRPz+6NG0I0xQt08YLtaJwUaHSyOKh3YEgS1cynwB4hpMsTSNThDyKtqnEnsnoU2CNNoZMGB/aqzA0Ze063B24PG/KhiRASGyzL4rMwQQQ+Sik9tnQ0koT+yLhmD1iXFYxIDkbQvj5nVX2vhqNiN8xHf4JIm4uE6e+26XgK3GkoMDcsNz/yyDRkxYXvjNvSQe9IgnV/HChHYpiGGS1lbI4OY3J0cLMsvtlRhGqOenVjcnS4eXSO37aZvZKaHNi7YVRWyIBojk4OjUyMZ8/qg/v/OMh5zMTu3qZDzfn5ZcXJcLqWv9NxLBypMMHp9mDF0Uq4PCzu+W0/CmqCm7BYnR68tzE/onNanR4U19lw0497MK1HInLiw6+U2lxQ43f/Vq/Ozt+IpSuhKyQhpMtjWXdbD4E04vGw2JjvX3g3RydHajNrcpCuSSxkECcTodbW0D3tt/1lWH+qGkabC9d9vxtVZgeuGpaBjy4ZDDkF+AhpMe9uyKf6W10MIxCCaafZwwKxAokz3kPijPfaeiictLLIHtWTeDK+3r5gANI0Mlz85fZYDqvdmdYzEc/M8dY6nT+pO55dcQyfbCn07e+RqMRXVwyFUOC/XPPq4Zn4fNvpoGZtkXhuTh/sKzFge1Fw6RgAyNF5A1X3TcpDdpwclyzYEXTM5LwEAEBSEwN7fZJVOPjQVCw/WokNp/QYkRWHC77YFrLjcFPUWJ2QPtwyDVMBYO3JalwbENjzeFi8tPo41pyowvjcBNw/uTuWH63kfL2JJyOyq6HAHiGkS9GOeAB121/12yZNGtxGoyFcDpQbfXVb6k3oFt9GoyGdQZJK6hfYA4A5H22BxdkQ1P9mZzFm9U7CNcOzWnt4hHQJbg+Lh/7izlwJRyKk2nqk61FJIntU56vRppOLcV7/VAxK02BvqSGWQ2s2AePtyhqJCwemYkpeIi4dnI7Up5YF7e+T3BA4ztYp8NElg/HRJYNxpMKEUoMNQzO00MrFQa9TSUVYf9d47C424KudRfh5TwnqbE6/pbNxcjFqOerGpWpk2Hj3BJQYbMh9bmXQ/lxdQ6bl8Mw4zu+r25lgloLn53zb2BywLPDR5gLO/b2TvMuuZ/ZKwsxeSd7xykScGYvt2ena4Oy/R/8+hFfWnAAALD9aBbvbDaOdOxHD6KDAHkCBPUJIF6MZdDsMez8E6/DWelD2ugRCRXIbj4o0tv6UPmjb+FwK7JGmS1ZJcCygRkzjoF69uxbup8AeIS1k9fEq2FxNewCTUtMM0sm9ck4/PNgo8D27dxIEgsgaAvAt5dTJxRAKGCy6eRSmf7CJt0ZeSxMJGDwxsxe+2VmEPskqvHvhQMQrJOjz0qqwy0jn9knGz9eNDHlM7yTujNDeySr0Tg6dLSoWCjAyOw4js+Pwv3n9Ud/PYf0pPQw2FybnJUDz+GK/1ygl3sx+kVCAbB33ElJNo2zLVLUUcrHAL2B45dCMsM0jBqSqcef4bnj7ggEY8MqaoPsYrqZymXHyDhfYc7j9I7zHKk14be0Jv20vrDzO+3qjk5biAgBdJQkhXYpIk43Mq3dBN+4ZJM74EElzFrT1kEgArsAeZeyR5khURrbMxWh3hT+IENIkX+8oavJrqeMh6exuG5uD60dmIVEpwfhcHd46f0DEr+XN2FN4r30ZWjl2z5+MYRmRNwZ5YW7fiI8N587xuXhiZi8cfngafrthFDK0csjFQmy5ZyIen9Ez5GvP6Zfi9/VTs/07FmtlIvRLic1Sb4GAAcN4/zexewLO7pcClVSEcwPG8Pq8/n5fPzGzV9C5RmfrfP8tEwv9mkoIBQwemtoj7HhS1d6fq1gowOo7xmFmr0Tfvp6JyqCagQAwo2dS2PO2N4GddF9cfTzibE4AMFHGHgDK2COEdEEiTTbiRj3c1sMgHFiWxerjVX7b4uRi9EuhBiek6SIN7BFCWgbLsvj7cEWTXy8VUe1L0rmppCJ8dtmQJr2WL2MvXtGw/FQmFmLZbWMw8NU1KDV4O8PLRAJcMyITH28uDHrtA1PyYLA7Q2ZKTegWDw/LYmN+cMOzer2TlPjPjODAF+BdzvrMnD54alZvLD5cAaPdhQytDHcu3If8GgsuHZyB60f6Z9H/e2J3LNxXij0lBogEDF6Y25d3KWusfHDxIMh+24/DlSZcMCAN143wH9ONI7Pw8urjsJ/JSJ7RMxF5if7did86fwBG58ThZLUFlw5OR98I7mvjFQ0/13StDEtvHYuDZUYU1VkxLjceKo6GQjeMzMK7G041OTu6LdRaGhpimO2usF2aA9FSXC8K7BFCCGk3DpWbUGa0+22bkpcQ8XIUQriUGlq2YxwhJLSD5SbOboaRCny4J4Q0CFVjr7F4hQRLbxmDV9acgNPtwf1T8nCy2sIZ2BMKGDx3Vl9M7p6AH/aUcAZb+iSr8OycPnh/Uz6eWnaUcwz/3DkeCWEm1wQCBmc3yorb+8AU3mPVMhG2/3sSdpfUIUUlRWYEXYObK00jww/XjuDdnxOvwO75k/HJlkIkqSS4e0K3oGMEAiZkqY8eiUocD1hqyzUp2S9VjX6p/EHBfqlqbLl3In7aUwKVVIRHFh3iPba9qM/YW7D9NOb/cSDq19NSXC8K7BFCCGk3VgZk6wHA1B6JHEcSErmpeQn4+zB3NzVCSMtbe6K6ya+VigS4h+NBmRDixddVNY6jYcSANA2+vGKo7+twDTpm9U7GrN7JyNLK8fRy/+DdOf1SkKyW4slZveFweziz+xIUsc+YFwoY3oYUbaV3sgqvnNuvya9/YW4fv865PROV6N/E1SoD0zQYmKYBALyz/hSK6tr35OaiQxV4bc0JvxqT0aCluF5UY48QQki7sfZEcGBvOgX2SDPN7UsNcghpS1yf7Xzm9knG6Sdm4NYxObhmeCa23DMRyWrujCRCCP9SdXEE3aR7JCqDAoA3jc4OOu6yIelo3OshVyfHrF4N9dx6JXLXuaMVF5E5r38qHpraA4lKCQamqbHgiqEx+bfrz5PdJ46gbum0Jt5/N6WLeVODegBl7NWjwB4hhJB240hF8DKEvjEqiky6rp6JSnx+2RD0CKh5QwhpHVsKayM6bnC6BguvH4kMrRwfXDwIX14xFIPSNS07OEK6MKGAwWPTGxpYqKRC/GtcbtBxfVPU+OOGUZjeMxHnD0jFHzeOgkzcEFDsmUTX1+YQCQV48ey+qHhqNvbcPwWjc3ThXxQBvhrVZ/UJP+F565gc3DImO6IgIACUPjkLJx+bjrrn5nDuf/Xcflh8y+iIzhUNqrHnRYE9Qggh7UZxQC207vEKMAzN9pLmu25kFo4+Mg33T84LeZzN6W6lERHSNbAsi3KTPfyBAJ6Z0wcSET2eEBKtO8fn+n1946jgrDs+D0zJw9p/jcMnlw7G3vunYChP99yz+6Vg+W1jsfD6kRiQ5h9w70WBvXaJL2Nvbt8UhLu9jpOL8OHFg1H11JyI6pwmqyTIjVfwZpBmauWY3TsZ03vGdiWOyUmBPYACe4QQQtoJs92F2oCW95lxsjYaDemswmWA1tlcrTQSQroGq9Pt6xYZTpqGltwS0hT/mdEL5/RNQZxcjFm9kvD07N5RvX5i9wTcOCobufGKJr1/gkKCfgHX1//M6MlzNGkt8/qnQCH2D7RlaGW4eliG31JqLvVLtNUyEa4fET6wF24ivr57czxH7cfmMDlZeFhajkuBPUIIIe1CYLYeAKRrW77bGela+iaHDuytO9n0Iv+EkGB6izP8QQA0MhHvsjFCSGgpain+uGkU9M/MwZJbxyBd27oTowzD4H/nDUDSmU6uo7PjcOd4anrT1hKVUiy6eRSm5CVgXK4OD0/rgd3zJ0MhEeHDiwfhrD7JQYG/elpZQwBuYvd4zOzVvEy7pDPdm+MU0QX2frp2eMj9HhawuCiwR11xCSGEtAtFtcGBvcxWvjElnd+gNA0EjPdGkMulX+3AOo0M47vFt+7ACOmkIg3s/WdGL8h5HjAJIe3fjF5JOPHYdNTZnEhRSSFqQhMFEnuT8xKx6o7goFy2ToFFN4+G0+2B9OFFQfsbN1VhGAaLbx6D5ccq8fKq41jdhE7n9UFfnTy6TsmD0sLXWaXOuJSxRwghpJ0oqrMGbaPAHok1pVTEW3Om3qtrjrfSaAjp/PQWB+8+hgHumdgNO++bhAemhK5/SQhp/1RSETK0cgrqdSB83ZO1Mv8cMIGAwezeybhsaEbYc3LVXEzwBfaiy9jrnhC+fqPBQRl7lLFHCCGkXSiuC87Yy6DAHmkBA1I12Fdq5N3/+4FysCxLjVsIaaZSgw1nfbIlaPu7Fw7EpO4JSFVLfQ97hBBC2g8ZTwa1Who+hPTfWb1x5Tc7fV9fMTQDQoH3niraW6v614VipAYaFNgjhBDSPhRxBPYyqcYeaQHdE8IXBz9SaUKfZKr3RUhz3PTDbs7GGekaWdjMWUIIIe1PJHG5y4akw+xw448DZeiRqMR/ZzU0c7G1QBBOLqSJWMqRJYQQ0i6UcCzFpYw90hLO6pMc9pgNp2paYSSEdF5GmwtLjlRy7ouPsng6IYSQlnP1MP/ltXND3CeJIsigYxgGN43Oxu83jsJr8/pD3WhZ77n9UyIe11MRdHfOVAnRS0fXFArsEUIIaRcCM/YSFGLeZQCENMfYHB1GZ8eFPGbtiarWGQwhnVR+jYV3X7yClt8SQkh78dDUHsjVeVfJpGmk+L9ZvXiPndYzEeKADLl3LxwY8XsNSddgSl6C37b6unvjc3WY2SsROTo5bhyVjX9P7M57nnE5OtzQT4XPZyVGFGzs7GgpLiGEkHahxurfOTFZJW2jkZDOjmEY/HbDKNzxy178tr+M85if95bi1XPtSFbT7yEh0TDbXfCwwCl9qMAeZVcQQkh7MSBNg30PTEGxwYZUtRQaGf9ndLxCgrsndMPra08C8DbKuHxIesTvxTAMlt46Bj/uKYHN6cHlQ9IhFgrgZlnezuizeydhaUAG+IIrBqOm4GjE79vZUWCPEEJIu2C0ufy+jqQ4LyFNlaKW4rPLhuC3/Us499tcHry/KR9Pzgq/DIQQAhhsTjy++DA+3VIIG0ddvcYosEcIIe2LUipCryRVRMe+em5/XDAgDVVmB2b2SoRCEt09u1gowFXDMiM+/qnZvf0CexO7xSM7To6agqjetlOjpyZCCCHtgtEeENiT0SWKtKw4uRjDM7XYUVTHuX/xoQoK7BESAZfbg6nvb8SuYkNEx0tFVGaBEEI6svHd4lvtvUZl6/D3zaPxyZYCpGlkEdXe62roqYkQQkibc7k9QRkelLFHWsNnlw3BDd/vxkm9BbUBy8GLDcGdmgkhwZYfrYw4qEcIIYREa06fZMxp1NTD5XKFOLrroeYZhBBC2lxgth5AgT3SOgamabD9vknQPzMH03sm+u2rNDnAsiyqzQ7YnO42GiEh7d/mwtq2HgIhhBDSZdFTEyGEkDbHFdhTUWCPtLLAhi0OtwcT392Ajfk1SFCI8fVVwzC7dzLPqwnpurafrm3rIRBCCCFdFmXsEUIIaXNGe3A2FGXskdaWqJQEbduYXwMAqLY4cc+v+8GybGsPi5B2jWVZbIsisPf0HKqNRAghhMQSBfYIIYS0Oe6luFRcnbSuJFVwYK+xY1VmlBvtrTQaQjqGghorqsyOiI49f0Aq7hrfrYVHRAghhHQtlA5BCCGkzVGNPdIeJHFk7AWqsTqRqpG1wmgI6RgizdY79sg05CUqW3YwhBBCSBdEGXuEEELanIkCe6QdSAqoscel2hJZZhIhXUUk9fUytTIK6hFCCCEthAJ7hBBC2hxl7JH2IDnMUlwAES85JKSr4ArsBX5+v3B231YaDSGEENL10FMTIYSQNkddcUl7kKQMn7H3xOIjqDY7cfXwDEhFVAeSdE2Hyo1YdrQS2XFybC+q89vXJ1mFDy8ehNt+3osyox23jc3BlUMz2mikhBBCSOdHT02EEELaHGXskfYgXPMMADhQbsQtP+3BD7uLsey2sa0wKkLaD6fbg3v/2IcPNuWDr0H0yKw4TOyegIMPTW3dwRFCCCFdFC3FJYQQ0uYosEfagziZOOJjVxyrwsEyYwuOhpD256PNhXh/I39QDwCGZ2pbb0CEEEIIocAeIYSQtme0u4O2UWCPtDaBgIFEGPmt0ZFKUwuOhpD2Z/mxqrDHjMrWtcJICCGEEFKPAnuEEELanMnGkbEno/plpPX1T1VFfGwlNdIgXUxxnS3k/qw4GUZmxbXOYAghhBACgAJ7hBBC2gFaikvai0sHR17kv9QQOshBSGdTHOZ3/roRWRAKmFYaDSGEEEIACuwRQghpBwIDe2IhQx1HSZuYP7k7XpjbN6Jjy4z2Fh4NIe2H3c2iyuwMecwV1P2WEEIIaXUU2COEENLmAgN7lK1H2opYKMDD03rg0ek9wh5bToE90kVUW92YvbAs5DFiIYOeicpWGhEhhBBC6tGTEyGEkDYXuKSRAnukrT0ytSd2Fxuw+HAF7zG0FJd0Vvl6C+b/cQDHq8wYlwjsqXLA7ArRChdA93gFRFE0nyGEEEJIbNCTEyGEkDa1o6gW+TVWv20qCV2eSNtSy0RYdPNoaB9fzFkDEqCluKTzuumH3Vh9ohoAsD90op5PD8rWI4QQQtoETasRQghpU3f+si9o25AMTRuMhPx/e/cdHlWV/3H8M+k9IYUACS2BhN4FRARRRLGLKNbVXTtW0BVdu6Ku+ttV14ZtrbuiiKsoKIIUQYoC0ntoCYRUkpBeZn5/INdMMkkmyZRM8n49j88z99xzz3yDObl3vnMKarv/jMQ6zx09XiaLpf5RTICnOVpQaiT1GiORxB4AAG5BYg8A4DZb0wv0S2qeVZm3l0l3je7unoCAGv40NF7tQ/xsniurNCuvpP7NBABP82uNv8n26hFFYg8AAHcgsQcAcJv//Ha4Vtlfz0jU8C7t3BANUFvXyCBtnD5W/54ySH1iQ2qdZzouWpuaX7bYKzbU37GBAAAAu5DYAwC4hcVi0ewaiT2TSbrjtG7uCQioQ4ewAN1wSmfdcEqXWufS8tlAA54vvaBUh/NPrHW6romJvSFx4Q6MCAAA2IvVyQEAbpGWX6qDNTbNGJcYrbjwQDdFBNSva7vav5vr0/J0dlKMG6IBHOPB+Tv0wtK9kk58sdKUxN74ntGssQcAgJuQ2AMAuIWtD49n9Yx2fSCAnUZ0iahVNndzuh48s6frgwEcYHdWoZHUk6TXfz5Qb/3HxvdQaICf+ncMVUSgr/79S6piQ/11/9i6N5kBAADORWIPAOBypRVVuva/G2qVn9I5wvXBAHbqHBGoTmEBOlLwx/Tb9Wn58rr/G82c2EvXDI5T18ggN0YINM6s1QcbVf+Sfh00KP6PNVBZDxUAAPdjjT0AgMtd+cl6lVSYa5UPI7GHFsxkMmlUN9uJjEe+26nuz/4on79+owfn71B5Ze3fb6ClySps3OYvPaNJXAMA0NKQ2AMAuFTm8TLN25ZRq7xndLAiAn3dEBFgv5Fd6x+hZLZILyzdq4AH5+ut1QdksVhcFBnQeL5ejfso4O/j7aRIAABAU5HYAwC4VGp+ic1ypuHCE1zSr4PddW+fu0XvrD3kxGiA5vH2Ntld95yubGwEAEBLRGIPAOBSmcdtT/368/DOLo4EaLyEqGC9e8VAu+vf/802J0YDNE9JeZVd9YJ9TLquV4iTowEAAE1BYg8A4FJZReW1yq4bGq+zesa4IRqg8f4yvIsSouxba6ywzL7ECeBKZrNFK/blaM2hY3XWCfDx0rLbRurpUyP0+fntlRzJUgkAALRE7IoLAHCpzMLaib0/n8JoPXiWxKgg7cspdncYQKOVV5p1+us/69fUvHrrnZEYpVHd2ik4nw0zAABoyRixBwBwqUwbuzDGhPi7IRKg6bpHBttdt7SCUXtoOT7ZkNZgUk+SJiS3d34wAACg2UjsAQBcKtvGiL32IX5uiARouk5hAXbXtZXMBtzl5wO5dtU7tYEdoAEAQMtAYg8A4FI1kxxeJikyiMQePEuwn7fddW1NPwdcpbzSrC3pBcovqZAk7cwotOu6gZ3CnBkWAABwENbYAwC4VM3EXlSQn7y9TG6KBmia8/u011+/3W5X3Yw6doIGnG1PVqHGvblaRwpK5ett0pSBnbT6YN0bZlQX4OutyspKJ0cIAACaixF7AACXqrkrbnvW14MH6tU+VJf262BX3Qym4sJNbvp8k44UlEqSKqos+mTDYbuuiw+3f6o5AABwLxJ7AACXsVgstUbssb4ePNWcPw1Tn9iQBuuxxh7c4aeUHK3Yb996ejX946K+Do4GAAA4C4k9AIDLFJVXqaTCbFXGjrjwVF5eJt00omuD9ZiKC1crrzTrvm+2NenaMQmRmtS/o4MjAgAAzkJiDwDgMlk2NhGIYcQePFi7QN8G67B5Blzt/5anaH1afqOvm9irvZbcNop1TwEA8CAk9gAALnPgWHGtsthQRuzBc0UG2ZPYY8QeXOvdNQebdN3LF/eVF0k9AAA8Cok9AIDL7MwsrFWWFN3wGmVASxVhx4i9dal5KqmockE0gFRYVqkDx0oarNetXaCGxIUbx9PHJqhnDH+PAQDwND7uDgAA0HbssJHY623H5gNAS+Vjx+im/NJKnffOWj1xTpLGJka7ICq0doeOFeu1nw/Ix8ukqaO6KT4i0Di3N7uoVv1+HUK19ehx43hsQpS+vXG4gv19lJJdJF9vk7q0C3JJ7AAAwLFI7AEAXGZX5nGrYy+T1DM62E3RAM2XZOcIp+X7cjTuzdV64YI+uv+MRCdHhdbseGmlhr28QtlFJ9ZunLs5XRumjVGw/4nH+s3pBbWuuX1UN/WIDtYXm48oOSZEd57WXX4+JybuJPI3GAAAj8ZUXACAS6w+kKtFu7OtyrpHBinA19tNEQHNFxXspysHdbK7/vNL9shstjgxIrR2X2w+YiT1JGlPdpH++9thSdK8bUd1w+yNta7pGR2ss5Ni9NbkgZo+NtFI6gEAAM/HiD0AgNMVllXqjDdX1Srv1Z5puPB8H101WMM6R+j+b7Y3WDenuEKHC0rVudrUSaAxFu3OqlV26xeb9drP+7Ul/biNKxgZDQBAa8bXdQAAp1u4K1MVVbVHKSWT2EMr4OPtpeljExUfHmBX/T1ZtddAA+x1sI6NMepK6kkikQwAQCtGYg8A4HR7s4ttlp/ePcrFkQDO89dxPeyqtzur9iYygD3MZovNNfTq0yM6WF52bPICAAA8E1NxAQBOl5Jje5fGC/vEuiEawDnuGt1dQ+PDtTe7SAE+3rryk/U26+2xsWspYI+9OUUqKq9q1DUju0Q4JxgAANAikNgDADjd/tzaI/Y2TBvDKBK0OqO6RWpUt0jlFpfXWeeln/bpWHGFHjm7pwJ9vRXo662IQF8XRglPtfFw40brBfl66z52YQYAoFUjsQcAcLqUGiOUEqOC5OPNahBovSKD/Oo9/8G6VH2wLlWSZDJJM8b10LPn9XZFaPBgaw8dq/e8l0kqfPY8bT16XFuPHte5yTHqEGbf2o8AAMAz8akKAOBU5ZVmHcqzXuw9ISrITdEArjOgY5hd9SwW6e9L9mrzkcaNxoLnyykq16FjttcgtWXNwfoTe+EBvgrw9dawzhG64ZTOJPUAAGgDSOwBAJzqUF6JzDU2xE2ICnZPMIAL3T6qa6Pqr9if46RI0BK9unK/Oj75g7o986OmfLROVTX/UNZQVlml9Wn59dYxsboBAABtDlNxAQBOZWvjjEQSe2gDbh7RVZVmi2atOqhtGccbrJ+SY//ILXi2Y8XleuDb7ar8PZk3Z3O6pmw7qkn9O1rVW30gVwt2ZmpgxzDFRwSqvMpcb7vXDo13WswAAKBlIrEHAHCq1BrTcCWpe2SgGyIBXMvLy6Q7TuuuO07rrnnbjuryj9apoqruUVn7bCTB0TotTclRWaV1km7a11uNxJ7FYtEj3+/Ucz/uNc5HBtW/wYrJJN0yonGjRAEAgOdjKi4AwKkyjpfVKuvIuk9oYy7q20E7HhhXb52UbEbstRWlFVW1ylLzSmU2W/Tt9gz5zZhvldSTpNziilrXvHZpfw3oGKae0cF674pB6tMh1GkxAwCAlokRewAAp8ooLK9VFhvi74ZIAPdKiArWkttO1ZmzVts8vy+3SCnZRTp6vEwjukSwc3QrVlppe0rtyyv26f5vttvVRnSwn24f1VVTT+vmwMgAAICn4YkRAOBUmTZG7MWGkthD23RGj2g9eU6yQv1rf7daUmFWz78v0emv/6yB/1iu/JLaI7TQOhyzMfpOkh7+bqfdbYzs0k4mdssAAKDNI7EHAHCqmlNxg3y9FWIjqQG0FY+enaT8ZybqiQnJddbZkVmoF5btrfM8PFtuSe2RzJJqrbtXn5Hd2jkqHAAA4MFI7AEAnCqz0Dqx1z7Ez02RAC1LYnRQveef+3GvLJa6N9uA56prxF5jjOpKYg8AALDGHgDAyTJqJPaYhguc0Ce24Y0Ozpq1Ws9M7KVdWUX6YVem+nUM031jE+Tv4+2CCOEMvxw6plmrDzarjZhgPw3vEuGYgAAAgEcjsQcAcJqKKnOtnRxJ7AEnDOgYpohAX+XVs5bespQcnfbaz38UbDyizMIyvXxxPxdEiMY6VlyulJxiJceEKDSg9mN2fkmFJry9xq627h2ToMFxYbr+041W5dHBfnr78oEK8uMxHgAAkNgDADhRzWm4ktSeHXEBSZK3l0lnJEbpq61HG3Xdv1bs10sX9WXjhBZmzcFjuujfvyi7qFwxwX76/paRGhwXblVnzuYjKiitbLCt83q111PnJCvI11sZx8s1Z9MRdY8M0rVD43VmjyiSegAAwMBTAQDAaWpunCExYg+oblyP6EYn9iTpmR/36MFxPbTl6HEF+3krKSbECdGhIXuzi3Tnl1u0L7dYe7OLjPKsonI98O12TezVXp9tPKKi8kolRgXrm+0Zdba16NaRCvP3VZd2gVZ/J+8/I1H3n5Ho1J8DAAB4LhJ7AACnsZXYY8Qe8IcJSTFNuu6x73fpse93GccTe7VXiJ+3yqvMmj42UacnRDkqREg6mFus134+IF9vk+44rZviwgMlSTd9vlE/7cu1ec2Pe7L1455s43h7RmGd7Y/q1k5n9Wza7wIAAGjbSOwBAJwmo7C8VlksiT3AkNw+RFNHddMbqw5Ylf967+m656utWnXgmF3tfLcz03i9YGemUh46S/ERgY4Mtc0qKK3QKa+sUHbRib9nf1+yV1MGddJfhnepM6nXWO0CfR3SDgAAaHu83B0AAKD1OlJQWqusA1NxASuvXtpPX//5FE0e0FGnd4/Up9cO0dD4CJ3SOaJJ7VVUWawSfWg6s9miF5amGEm9kz7beETn2LkJhj1C/fmuHQAANA1PEQAApzl0rKRWWWdGEQFWTCaTLuzbQRf27WBVHh/e9L5y6xeblRQTrLGJ0c0Nr80qqajS5A/XuSRJmm/HhhoAAAC2MGIPAOA0aXnWiT2TSYoLD3BTNIBnaW5fOXPWam1NL3BQNG3PV1uPumzkY5aNHcQBAADsQWIPAOAU69PytKDGh+IOof7y8+HWA9gjPqJ5iT2LRXpl5X4HRdO6peaV6LsdGTqS/8fyAasOOGb9PHtcMSjOZe8FAABaFz5dAQAcbldmoU7918pa5Z2bMbUQaGviwprfX95be0iSZLFYZLFYmt1ea7R4d5b6vLBU57/3i3r+/Ue9/8shHS+t1Ia0/Ga1e80Q+5J1Pl4mXT2YxB4AAGga1tgDADjc66sOqNJcO4nQpR2JPcBencIds9HMwdxiXfvfDVp98JhO7x6lT64ZrLg2nGRfn5anqXO3KDWvRH8a1lmrDuSqqLxKklRSYdaNn2/SjZ9vatZ7XD8sXu9fOVg9o0P0xA+76qx3cd9YPTCuhzqxRAEAAGgiEnsAAId7rY7pf/FsnAHYzd/H2656gb5eCvT1Vm5xhc3zZ7+9RnuziyRJy/fl6KlFu/XW5IEOi9OTVJktuvY/G7Qr68S/xwtL9zrlffrEhkqSbh/VVW+vOWi1Q7ivt0kvXNBH95ye4JT3BgAAbQuJPQCAQ9W3CHznZq4ZBrQ1PaKDjaScJMUE+2nZ1FF6cWmKNh7JV/sQf714YR/dMmeT1h7Ks9lG9esl6Z01h1pVYq+iyqx/LE/R9zsz1a9DmGZO7KWIQF+bdbceLTCSes7Ut8OJxF5MiL+2P3CGvtuZqQ6h/urfMUz+3l4K9ucRHAAAOAZPFQAAh1qWklPnudgQx0wtBNqKB8Yl6pY5m43j6WMT1Ts2VP++cpBVvcggv0a1a7FYZDKZHBGi27295qD+tmCnJOmnfbkqrqjSv6cMsqqzIS1Pj36/q1m73A6JC1dZpVnbMo43WPfkiD1JCgvw1RQ2xwAAAE5CYg8A4FBL92bXea5X+xAXRgJ4vhuHd1F4gK9+2pejUzpH6Lqh8TbrRQXZHqFWl/GzVuu07pH66xk9FBpQ/+Pgot1Z2ptdpAv7xDZrOr3FYtFXW49qZ2ahJvZqr0Fx4VbnK6rM+uVQntqH+KlnjP1/K/5vWYrV8Qe/purdywfKy8ukg7nFennFPr2yovm7A/eMCdbharvm1qcLyw4AAAAXIbEHAHCoukbs9esQqsE1PsgDqJ/JZNLlAzvp8oGd6q3XrpEj9pam5GhpSo4O5Bbro6uH1Fnv8YW79PSi3ZKkv36zXeunjVFyIxP0x0sr9fKKfXp84R+bSDy+cJcW3TpSYxOjJUkFpRUa/drP2nr0uLxM0gsX9NH0sYkNtp1bXK6Dx0pqlR/KK1FEoK9OfXWljh6ve3mAxogO9lNRWZVddb28WsdoSAAA0PJ5uTsAAEDrkV5Qqp2ZhbXK7x2ToB9vO7XVTP0DWpqoRib2Tvpkw2E9+v1OHc6vnRwrqajS/y37Y3OJ4ooqPd+EzSau/e8Gq6SeJFWaLXp37SHj+I1VB7T16IkprmaL9PB3O5VTVF5vu6sP5Cr6sYU2z5337lr1fmGpw5J6khQT7K92doyMfGR8T4e9JwAAQENI7AEAHMbWaL0nJiTrnxf1VQzr6wFOY0/CqS7PLN6jxGeX6J01B42yjONlmrftqEoqzFZ1P/g1tVFtH8gt1jfbM2ye+8+Gw3pi4S6VVlTptZUHrM6VVZr1w+6sett+5LuddZ7bmVmoDAcm9SSpfYhfnZtynHRB71hNG8NutwAAwHWYigsAcJif9tVO7I3rEeWGSIC2pbljYcurzLr7q626qG8Hfbw+TX9bsEOVZovNun1eWKoqs0XDOkfo5YvrT9qv3J9b7/s+9fs03yMFtdeu+2hdqrYdPS6LLLpjVHd1Cv9jV+3ySrOW1rNRjzPEhPgp/bjtxF7BMxMV6Ostb6bgAgAAFyOxBwBwmG1HrXeL9PU2aXiXCPcEA7QhdSXhGqOs0qxXVuzT35fUP9325HT7PdlFCvX30azJA/RTSo5mrT6gyCA/PXZ2ktqHnkj2bTyS3+D7nkzu1bRwV5YW7joxau+DX1O196GzFOjrLUnaerTA7p/LUaKC/NSujhF7If48UgMAAPfgKQQA4DA7MqwTe0nRIfL38XZTNEDbcUGfWE2ft63Z7TSU1Ktp3rajGtWtnW6YvdEoW3UgV+unjVFJRZX+uXxfs2OSpPSCMr3+8wFtPJyvtPwSlVc1P5HZWGEBPg1OxQUAAHA1EnsAAIfIKixTTnGFVVnv2MbtngmgaXpEB2tir/b6bmemS9/36PEyq6SeJG08UqCuMxfrWEmF7Yua6IFvtzu0PVuePa+X/rag9tp9HUL91b9jmLbV+PICAADA3dg8AwDgELZ2w+3VnsQe4Cpf//kUXda/o111Q/y99fl1QzV5gH31Gystv1RF5VVOaduZ7h+bqL+f31uDOoUZZe0CfTVr8gD5envJ16v2o3OnsIBaZQAAAK7CiD0AgEPsILEHuJWPt5fuGdNdc7ek11uvU1iAPrl6sM7oEa2OYQH6YnP99duKPw2Nl4+3lx4Y10MPjOshSSosq5S/j5d8vU8k9M5OipGvt0kV1aYCv3xxX7fECwAAILkwsffKK6/ojTfeUFxcnJYsWeLQtrds2aLJkyc3+rr//Oc/GjZsmENjAYC2ytaIvd6xoW6IBGi7gnzrXtNy6qhuuvv07uoYGqDQgBOPgKd1j9RLF/fVQ/N3qLTSXG/b08cmOGzNPEfr1T7E5t+ghvh4mVRptigm2E8PndWz1vmam2JEBfvpiQnJeuT7nbJYpIm92uuSfh2aHDcAAEBzuSSxt3nzZr3zzjtOa3/Hjh1OaxsAYJ9Nh613vzSZpOSYYDdFA7RN0cF+NsuHxofr4fE91dHGtNF7Tk/Qpf06aPA/f6pzXbxHz07Sk+ck65TOEbrqkw0OjbmmMQmR6tchTG+sOmD3NVcNjtPjC3fVef79KYN0+9zNVsnLr/98inq1D1FKTrFGdm1n98YYD53VU9cMiVNhWZV6x4bIZDLZHScAAICjOT2xl5qaqqlTp6qiwrELKFdXPbHXtWtXde7c2a7rwsPDnRUSALQp5ZVmrTl0zKosKTpYQX6s+AC4Upd2QRreOUK/pOYZZe9eMVDXD+ssb6+6E1Bd2gVp61/PUPLzS1RYZr02Xp/YEN0/NlGSFBvi36h4TuvWTi9e2FejXl1p9zWdwgL02qT+Kqms0vu/pNp1zQV9YutM7MWG+uvygR1VXFGlaV9vU3mVWdcOidP5vWPl5WVSz5jGLxnQpV1Qo68BAABwBqd+4tq9e7duuukmZWVlOfNtrBJ7t99+uy699FKnvh8AwNr6tDyVVFhP4zs9IcpN0QBt29wbhun+b7brcH6p/jK8i64fFm/XqLKOYQH69JqhmjF/u0orzbqwT6wu6BOrMQlRxhpzHcLsT+wlxwTrpztOU0WVRaH+PjpeVmnXdTG/Jw+HxIXrfTWc2PPz9lLfeqb9f3zVYAX5+ej2Ud109eA4lVWa1T60cQlKAACAlsppib2vv/5ajz/+uEpKSpz1FpIki8WiXbv++Ia2V69eTn0/AEBtP+3LrVU2hsQe4BZx4YH69NqhTbr2/D6xOr9PbJ3nO4TavwPsn4d3kclkkp+PSfec3l0zF++x67r2ISemE9eXrKtuQMdQ+fl4aUxCZK2/RdlPnaPIoD+mJ4fbOd0WAADAU3g5usGMjAzNmDFDDzzwgNOTepJ08OBBFRcXS5J8fX2VmJjo9PcEAFj7YVdmrbIxCZFuiASAM4UH2P5O+LZTu1ode3uZNGVgJ+P4qXN7af6Nw+16j/a/j9g7PSHKrnU6L/5984q/1dj84tzkGKukHgAAQGvk0BF7b775pt5++20j0SZJCQkJmjBhgmbNmuXItzJUn4bbvXt3+fnxAAcArrQ3u0hLU3Ksyrq1C2QNKqAVqmtK7z2nJyi9oFRfb8uQl0l6dHySukZa/w2Y2DtWkUG+yi2uf93l2N+nyXp7mbTiztP0rxX7VVJh1s0ju2jNwWO6Zc5mlVedmPp/7ZA43XN6giTp7KQYzb52qD5Zn6aukYF66pzk5v64AAAALZ5DE3vvvfeeVVLv8ssv14MPPqgffvjBkW9jZefOncZrpuECgOu9u/ZQrbKrhsS5IRIA7tI9Mkhf3nCKdmcVKdDXq87E/vSxiXrku502z53UvtoGHdHB/nrq3D+e75JiQnRGYpTS8kvVMzrYWI9POpF0vGJQJ10xqJMAAADaCqessdevXz/NmDFDw4fbN+WiOaqP2COxBwCuN397htWxySTdNLxrHbUBeLr7xibqH8tTjOOxCVHy8zmxukty+/p3mH3ozB5KiAzSpvQCdYkI1B1fbqlV5+Qae3Xp0i6IEcEAAAC/c2hib/jw4Zo0aZLOOussu3Zfc4Tqib3k5GTt3LlTc+fO1dq1a5WWlqbKykpFR0dr4MCBmjhxos4++2yXxQYArV1FlVm7sgqtykZ2aafuUXzoBlqr6WMTtOZgrn4+cEyJUUH6v4v62H2tyWTSlYPjdOXgOFksljoSe+xYCwAAYC+HJvbeeOMNRzbXoNzcXGVm/rFg+7vvvqvVq1fXqnf48GEdPnxYCxYsUL9+/fTSSy+pS5curgwVAFqlPVlFqjRbrMoGdApzUzQAXKFjWICWTz1NxRVV8vfxkq930/ZiM5lMuuO0bnr95wNGWVJMsIL9vB0UKQAAQOvnlKm4rlJ9tJ4kI6kXGBiorl27KiwsTJmZmTpw4IBRZ+vWrbr88sv1/vvvq08f+79hdobKykq3vn9zVVVV1XsMwH6e2p+2pOfVKusVHeTxf9/g2Ty1P3maAG9JFrMqK81NbuOhcQn6cU+WdmYWKcTPW8+f14v/Xy0IfQlwHPoT4Dj0J2utKrEXEhKi6dOn65JLLlFwcLBRnpaWpn/961/6+uuvJUl5eXmaOnWq/ve//6ldu3Yujfkks9msTZs2ueW9nWXr1q3uDgFoNTylPy3derxWmX9hpjZtyndDNIBtntKf2qoPxoVpf0GQ2gd5K6w8XZs2pbs7JNSBvgQ4Dv0JcJy23p+aNneihag+Eq9du3b64osvdM0111gl9SQpPj5eL7zwgu666y6jLD09XbNmzXJVqADQKu3Pr6hV1j3co78zAuBi3l4m9YjwVZifRz+WAgAAuIVHP0HNnDlTv/zyi+bOnatPP/1U3bt3r7f+HXfcocGDBxvHn332mcrLy50dJgC0WvvyrafchvmZFBXg0bcWAAAAAPAYHj+sIjw8XOHh4XbVNZlMuu666/Tbb79JkkpKSrR+/XqdeuqpzgzRJi8vL/Xv39/l7+tIVVVVVkNe+/XrJ29vFrwGmsIT+1NZZZUOfrbIqqx/pwgNGjTIPQEBv/PE/gS0RPQlwHHoT4DjtLb+tGXLFpnNTV+z2OMTe401ZMgQq+MDBw64JbEnST4+reuf39vbu9X9TIC7eEJ/2ppha0fc8BYfN9oeT+hPgCegLwGOQ38CHKet96c2N18qKirK6jg/nwXeAaAp3lpzsFbZwE5hbogEAAAAANqmNpfYq7mmXs2NNgAADXvppxS9tdpGYq8jiT0AAAAAcBWPHat4+PBh/fe//1Vubq5ycnI0ffp09erVq8HrUlNTrY47duzorBABoFWqrDLr6UV7apWbTFK/DqFuiAgAAAAA2iaPTexZLBa9++67xvHw4cPtSuytWLHCeG0ymWqtuQcAqN/urCLllVTUKu8ZHaxgf4+9rQAAAACAx/HYqbjx8fGKi4szjr/88ktVVVXVe01hYaE++eQT43j06NGKjIx0WowA0BptSi+wWT42McpmOQAAAADAOTw2sSdJkydPNl6npKRo1qxZddatqKjQgw8+qIyMDEknRuvddtttTo8RAFqbjYdtbzr04LieLo4EAAAAANq2FpvYO/PMM5WcnKzk5GSdeeaZNuv8+c9/thq1969//UszZ87UsWPHrOrt2LFDf/7zn7Vo0SKj7Nprr9WwYcOcEzwAtGKbbYzYy3higrpHBbkhGgAAAABouzx6MaTAwEC99dZbuvbaa5WXlydJ+vjjjzV79mwlJSUpJCRE6enpOnTokNV1F1xwgR566CE3RAwAnm/TEevEXvfIIMWE+LspGgAAAABou1rsiD179ezZU1988YUGDx5slFVUVGjbtm1au3atVVIvICBA9957r1544QV5e3u7I1wA8GjZRWU6erzMqmxgpzA3RQMAAAAAbZtHj9g7qXPnzpo9e7Z+/vlnffvtt9q4caMyMzNVVlamyMhIde7cWWPHjtWFF16ojh07ujtcAPBYu7OKapX1iQ11QyQAAAAAAJck9iZNmqRJkyY16polS5Y0+n1OO+00nXbaaY2+DgBgnz02EntJMcFuiAQAAAAA4PFTcQEArrM7u7BWWVJMiBsiAQAAAACQ2AMA2G2vjRF7PaMZsQcAAAAA7kBiDwBgt93Z1om9yCBfRQX7uSkaAAAAAGjbSOwBAOxisVhqrbHHNFwAAAAAcB8SewAAuxzOL1VxRZVVGdNwAQAAAMB9SOwBAOyyJb2gVllye0bsAQAAAIC7kNgDADSorLJKz/64p1b5gI5hbogGAAAAACCR2AMANMBstmjKx+v184Fjtc717xDqhogAAAAAABKJPQBAA+ZuSde8bRm1ysMCfNSlXaAbIgIAAAAASCT2AAD1MJstmrl4t81z3SODZDKZXBwRAAAAAOAkEnsAgDqtPXRMW9KP2zw3oks7F0cDAAAAAKiOxB4AoE4bDufXee683u1dGAkAAAAAoCYSewCAOm3PKLRZfuupXXVhn1gXRwMAAAAAqM7H3QEAAFqunRnW03C9TFLmk+coMsjPTREBAAAAAE5ixB4AoE7bM61H7PWMDiapBwAAAAAtBIk9AEAtC3Zk6LRXVyrjeJlVee/YUDdFBAAAAACoiam4AAAry1Oydcn7v6rSbKl1rndsiBsiAgAAAADYwog9AIDBbLbovnnbbSb1JKkPI/YAAAAAoMUgsQcAMMzfkaENh/NtnosI9GUnXAAAAABoQUjsAQAMi/Zk2yw3maS3Jg9QWICviyMCAAAAANSFNfYAAIY9WYW1yjqG+euNSQN0cb8ObogIAAAAAFAXEnsAAMOe7CKr467tArX/4fFuigYAAAAAUB+m4gIAJEmlFVXal1NsVZYUE+ymaAAAAAAADSGxBwBQTlG5Ih75vlZ5j+gQN0QDAAAAALAHiT0AgP6xPEXlVeZa5YzYAwAAAICWi8QeAEA/1rEbbs9oEnsAAAAA0FKR2AOANq680qxfU/NsnkuKYSouAAAAALRUJPYAoI3blnHcZnmf2BAlRAa5OBoAAAAAgL1I7AFAG7eujtF6708ZLC8vk2uDAQAAAADYzcfdAQAA3Gt9Wn6tsg3TxmhQXLgbogEAAAAA2IsRewDQxq1Py7M69vfxUt8Ooe4JBgAAAABgNxJ7ANCGlVVWaXN6gVXZwI5h8vXm9gAAAAAALR2f3ACgDVuXmq+KKotV2dDOEe4JBgAAAADQKCT2AKCN2nykQKe//nOt8qHxrK0HAAAAAJ6AxB4AtFH3fr3VZvmw+AjXBgIAAAAAaBISewDQBmUeL9PyfTm1ygN8vNQnNsQNEQEAAAAAGovEHgC0QQt2ZspiqV1+xcBO8mHjDAAAAADwCHx6A4A2aP72jFpliVFBev6CPm6IBgAAAADQFD7uDgAA4FoWi0XLUrKtyqKD/bRzxpny9jK5KSoAAAAAQGMxYg8A2piDx0qUU1xhVTYuMYqkHgAAAAB4GBJ7ANDGbDicX6tsaOcI1wcCAAAAAGgWEnsA0MasT8urVTY0Ptz1gQAAAAAAmoXEHgC0MRvSao/YGxJHYg8AAAAAPA2JPQBoY36rMRU3ISpI7YL83BQNAAAAAKCpSOwBQBuSV1KhzMJyq7KBHcPcFA0AAAAAoDlI7AFAG7Inq6hWWc+YEDdEAgAAAABoLhJ7ANCG7MkurFXWMzrYDZEAAAAAAJqLxB4AtCF7sm2M2COxBwAAAAAeicQeALQhe20l9mJI7AEAAACAJyKxBwBtxJH8Uv1nw2GrshB/b3UI9XdTRAAAAACA5iCxBwBtwGsr9yv+6UW1yntEBctkMrkhIgAAAABAc5HYA4BWbn9Ose79eqvNc0nsiAsAAAAAHovEHgC0cq/9vF9mi+1zYxKiXBsMAAAAAMBhSOwBQCtWVFap9345VOf5c3vFuDAaAAAAAIAjkdgDgFZs8Z5sFZRW2jwX4OOlhCh2xAUAAAAAT0ViDwBasW93ZNR57rZR3VwXCAAAAADA4UjsAUArlVNUrvfW2p6G2zkiQI+M7+niiAAAAAAAjuTj7gAAAI5XUWXWuDdX1Sof1ClMz1/QR2MTouTnw3c7AAAAAODJSOwBQCtRWlGl//52WBuPFGhDWp62Hj1eq87dpyfo7CQ2zAAAAACA1oDEHgC0AvklFTrllRXam11UZ50e0cG6bmi8C6MCAAAAADgT87AAoBV4a83BepN6kvTdTSPk7WVyUUQAAAAAAGcjsQcArcBPKTn1nu8cEaDE6GAXRQMAAAAAcAUSewDg4SwWi35Nzau3zimdI1wSCwAAAADAdUjsAYCHO3isRFlF5fXWGUZiDwAAAABaHRJ7AODhGhqtJ0ln9WAnXAAAAABobUjsAYCHW2cjsdclItB4feupXXVKlwjXBQQAAAAAcAkfdwcAAGie7RnHa5Vtum+sMgvLVGWxqFf7UDdEBQAAAABwNhJ7AODhdmYWWh3HhwcoPNBX4YG+booIAAAAAOAKTMUFAA9WWlGl/bnFVmW92oe4KRoAAAAAgCuR2AMAD7Y3u0hmi3VZMok9AAAAAGgTmIoLAB6mosqsvy/Zq5X7c5ReUFbrPCP2AAAAAKBtILEHAB5m5uI9enrR7jrPk9gDAAAAgLaBqbgA4GE+/e1wvedJ7AEAAABA20BiDwA8SElFlfZmF9V5vmu7QHUKC3BhRAAAAAAAdyGxBwAeoqSiSlM+Wl/n+UBfL82aPEAmk8mFUQEAAAAA3IU19gDAQ9z1v636dkeGzXO+3iYtuvVUjeoW6eKoAAAAAADuQmIPAFq47KIyPb1oj/79y6E667xycT+SegAAAADQxpDYA4AW7tr//KYfdmfVef7bG4frvN6xLowIAAAAANASsMYeALRgu7MK603qSdLEXu1dFA0AAAAAoCUhsQcALdj8OtbUO+nspGg2ywAAAACANorEHgC0YAt2ZNZ7/v4zergoEgAAAABAS8MaewDQQuWVVOinfTl1nt9y/xnq2yHUhREBAAAAAFoSRuwBQAv12cbDqqiy1HmepB4AAAAAtG0k9gCghfpoXVqd524a0cWFkQAAAAAAWiISewDQAqXll2j1wWM2z0UE+uqe0xNcHBEAAAAAoKVhjT0AaGGWp5Xo/k+X1Sqf2Ku9rh4Sp3GJ0eoUHuD6wAAAAAAALQqJPQBoQTKKq/Twqjyb56aO6qbz+8S6NiAAAAAAQIvFVFwAaEEWHSxRWR0bZvSJZbMMAAAAAMAfSOwBQAsyf3+xzfJAXy91bRfo4mgAAAAAAC0ZiT0AaCFKKy1KLay0ea57ZJC8vEwujggAAAAA0JKR2AOAFsBstuiLPUUqq7J9vrCuEwAAAACANovNMwDAzcorzTrv379qyd6COuvccmpXF0YEAAAAAPAEjNgDADf7fNMRLdmbU+d5k0maPKCjCyMCAAAAAHgCRuwBgJst2ZNd57lR3drp/jMSlRQT4sKIAAAAAACegMQeALjZd7sybZbfOKKL3rl8oIujAQAAAAB4CqbiAoAbVVSZday4wua5sQlRLo4GAAAAAOBJGLEHAG5QWFapjUfyVVBaqfIqc63zkUG+mtirvRsiAwAAAAB4ChJ7AOBCuzIL9caqA3p15f5663105UBFBfu5KCoAAAAAgCcisQcALjJ/e4Yu/PcvDdb7YEK0JiTFuCAiAAAAAIAnY409AHCRF5ftbbBOiK9JPSN8XRANAAAAAMDTkdgDABfZdKSgwToTuwXKz9vkgmgAAAAAAJ6OxB4AuEBeSYXySysbrHdJYrALogEAAAAAtAassQcATvLroTxlFpZpcFy4bp+7ucH6E7oEKqkd03ABAAAAAPYhsQcATvDY9zs1c/Geeuu8emk/9W4fqgU7M9Q1IkCD/XJdFB0AAAAAoDUgsQcADpZbXK4Xl6U0WK9buyCd2TNaZ/aMVmVlpTZtynN+cAAAAACAVoM19gDAwVbuz1VZpbnBet0ig1wQDQAAAACgtSKxBwAOll5Qale9ru0CnRwJAAAAAKA1I7EHAA5ksVj03tpDdtUN8Wc1BAAAAABA05HYAwAH+vPsjVqXlt9gveGdI5wfDAAAAACgVXPZcJFXXnlFb7zxhuLi4rRkyRKnvEd6erpmz56tlStX6uDBgyotLVVMTIwSEhJ03nnn6bzzzlNgIFPfADjH5iMF+mh9ml11rx4S5+RoAAAAAACtnUsSe5s3b9Y777zj1PeYPXu2/v73v6ukpMSq/MiRIzpy5IhWrlypt99+Wy+88IIGDhzo1FgAtD0Wi0X/t2xvg/VGd4/UlYPidPuori6ICgAAAADQmjk9sZeamqqpU6eqoqLCae/xwQcf6LnnnjOOTSaTevbsqYiICB04cECZmZmSpAMHDuj666/Xf/7zH/Xt29dp8QBoWywWiy7/aJ2+3HK0wbrLbh8lLy+TC6ICAAAAALR2Tk3s7d69WzfddJOysrKc9h4bN27UCy+8YByfcsopevbZZ9WlSxdJJz5wL1q0SI899piOHTumkpISTZ06Vd9//z3TcgE0y6xVB/T2moPam1OkwrIqu64hqQcAAAAAcBSnbZ7x9ddf64orrlBGRoaz3kKS9Nxzz6mq6sQH6r59++rdd981knrSidF7EyZM0AcffKDg4GBJ0tGjR/Xhhx86NS4Ardv3OzM19cst2nikwO6kHgAAAAAAjuTwxF5GRoZmzJihBx54oNZ6d462adMmbdy40Th+9NFHFRAQYLNur169dMcddxjHH374oZEQBIDG+teKfY2+ZmxClBMiAQAAAAC0VQ5N7L355ps699xz9dVXXxllCQkJuu222xz5NoYFCxYYrxMTEzV48OB660+ePFk+PidmH+fm5uqXX35xSlwAWh+z2aKnF+3WmNd/1p9n/6bvdzW8xEC7QF+r4wfP6uGs8AAAAAAAbZBDE3vvvfeeiouLjePLL79cc+bMUdeuztn9cfXq1cbr0047rcH64eHh6tevn3G8dOlSp8QFoPV5fulePb5wl1buz9WH69IarP/kOcnaOWOc/jK8i85OitbHVw/WhKQYF0QKAAAAAGgrnLJ5Rr9+/TRjxgwNHz7cGc1LkioqKrRv3x9T4ezd5TY5OdmYvrtlyxZnhAaglSmrrNI/lqfYXX9YfLgePTtJkvTuFQOdFRYAAAAAoI1zaGJv+PDhmjRpks466yyZTM7d+TEtLU0VFRXGsb2jAuPj443Xhw4dcnhcAFqfr7dmKLe4ouGKv+vXIcyJ0QAAAAAAcIJDE3tvvPGGI5urV1aW9fpWMTH2TXGrXi8nJ0dms1leXk7bHBhAK/Daz/sbVT8+wvYmPgAAAAAAOJJTpuK6Qn5+vtVxWJh9I2RCQ0ON1xaLRQUFBYqIiHBkaHarrKx0y/s6Ss1dhdllGK3NxiMFOu31Vaqostg8H+jrpZIKc63yUD/vRvdv+hPgOPQnwDHoS4Dj0J8Ax6E/WfPYxF5ZWZnVcUCAfSNkfH2td6ms2Y6rmM1mbdq0yS3v7Sxbt251dwiAQ928KNtmUu+6XsG6ODFYsUFe+jG1VE+sybM638WSo02bCpr13vQnwHHoT4Bj0JcAx6E/AY7T1vuTx85BrTkaxt7ptD4+1rnMtp7ZBWBbSaVZm7PLbZ67ODFYXcN8FODjpQldAtUj/I+/K+PiA9QjwtfmdQAAAAAAOJLHjtirmcgzm2tPh7OlZkKw5gg+AG1PYblZ/0spVqXZokt7BKmw3KKbFmfL1gTcwTF+6hr2x59OX2+TPjonRiuOlMrf26RTO/q7LnAAAAAAQJvmsYm9wMBAq+OysjL5+fk1eF15ufUIHH9/93wI9/LyUv/+/d3y3o5SVVVlNeS1X79+8vb2dmNEQONlHC/TGbPWKCWnWJL0zcEKhQb4KKfU9pcFH143Qr3ah9QqHzakeXHQnwDHoT8BjkFfAhyH/gQ4TmvrT1u2bLF7sJotHpvYCw8PtzouLCy02hijLoWFhcZrHx8fu65xlprTgj2dt7d3q/uZ0LpZLBZdN3uTkdSTpNT8Uinfdv2Ft4xUv04RLomN/gQ4Dv0JcAz6EuA49CfAcdp6f/LYNfZiY2OtjrOzs+26Lisry3gdGRkpk8nk0LgAeI7lKTlalpJjd/2h8eENVwIAAAAAwEU8NrHXqVMnq/XxUlNT7bouLS3NeN2tWzdHhwXAgyzfZ39ST5Iigxqe7g8AAAAAgKt4bGLP19dXSUlJxvGOHTvsuq56vd69ezs8LgCeY+PhOubc2jAkjtF6AAAAAICWxWMTe5I0YsQI4/WqVasarJ+Xl6ft27cbxyNHjnRKXABalsoqs2Z8u139Xlyqa/6zQekFpZKk3w4X2N3GJf07OCs8AAAAAACaxKMTexMmTDBeb9261WpXFFs+//xzVVZWSjqx+caoUaOcGh8A96syW3TuO2v14rIUbc8o1Ke/HdatczYrNa9Eh/JK7GrjnOQY3XladydHCgAAAABA43h0Ym/w4MHq27evcfzQQw9Z7Xpb3Y4dO/Tmm28ax1dccYUCAgKcHiMA90nJLlLnpxdpyV7rzXW+3ZGhrjMX293OdzePVESgb8MVAQAAAABwoRab2DvzzDOVnJys5ORknXnmmXXWmzFjhrGz7e7du3Xddddp586dxnmLxaIffvhBN9xwg4qLiyVJMTExuvXWW537AwBwu5s+36Sjx8ua1cYpnSMcEwwAAAAAAA7m4+4AmmvEiBGaNm2a/vnPf0qStm/frosvvlg9evRQZGSkDh48qIyMDKN+QECAXn75ZYWGhrorZAAusPpAbqN3vV0/bYyGvvSTVdnto7o5MCoAAAAAABzH4xN7knTrrbcqODhY//jHP4xReXv37q1Vr0OHDvq///s/DRs2zNUhAnCyzONl+tt3O5V5vEwX9+ugGfO3N3xRNfNvHK7BceH69Nohuu2LzcovrdSk/h101eBOTooYAAAAAIDmaRWJPUm69tprNX78eH3++edavny50tLSVFhYqJCQECUlJWn8+PG67LLLFBIS4u5QATjA2oPH9OQPu7T2UJ5KKqpUWmk2zn27I6OeK2uLDfXXxN6xkqQpg+J0Qe9YlVWZ1S7Q15jqDwAAAABAS+OSxN6kSZM0adKkRl2zZMmSRr9Phw4ddPfdd+vuu+9u9LUAPEducbkmvL1Gx8sq7b7muqHx+nZ7ho6VVNQ61yUi0Oo42N9Hwc2OEgAAAAAA52qxm2cAQF3mbk5vVFKva7tAvTV5gG45tavN8zUTewAAAAAAeAISewA8xtzNRzTxnTW69YvNjbpu4S0jFeDrrTMSo2ye79yOxB4AAAAAwPO0mjX2ALRuqw7k6vKP1jf6usFxYUqKObG25tD4cJt1GLEHAAAAAPBEjNgD4BHeXXuoSdfdeVp343V0sL/NOp0jAprUNgAAAAAA7sSIPQButT+nWCUVVUqKCZaPt+3vGsxmiz74NdWu9j66arAW7srUrsxCXT6wk244pbPVeZNJslisr+kYRmIPAAAAAOB5SOwBcJtnf9yjx77fKbNFOjspWm9eNkC5xRUa0DFMfj5e2n70uOZtP6q/LdjZYFsh/t669/QEXTs0XtcOja+z3quX9Ned/9tiHIf6+2hAxzCH/DwAAAAAALgSiT0AbpGWV6Inf9gl8++j5xbtzlaP55ZIknpEB2vGuB66639bVFppbrCt964YqGuGxMvPp+HVBf4yvLM+23hYK/bnysfLpL+f31sh/vwpBAAAAAB4Hj7NAnC6kooq/bArSx1C/TWiaztJ0k/7clRRZbFZf292kW6es8nu9k9PiLIrqSdJAb7eWjZ1lHZkFKpdkC/TcAEAAAAAHovEHgCnyiup0JB/LteBYyVGWVJMsCrNtpN6jTV9bIJ6RAc36hqTyaQ+HUId8v4AAAAAALgLiT0ATvXqyv1WST1J2p1V1OT2RneP1HtXDFRxRZWCfL3VMyakuSECAAAAAOCRSOwBcBqz2aLHF+5ySFvBft6ae/0wTUhu75D2AAAAAADwdCT2ADhFbnG5znl7TbPbiQry1afXDtWQ+HBFBvk5IDIAAAAAAFoHEnsAnOKln/ZpfVp+s9rw9jLp46uHaHxSjIOiAgAAAACg9SCxB6DR0vJK9NjCXcorqdCYhCj1jA7WGYlRCvLzVnZRuaKD/bRoV1az3qNTWIA+umqwzuwZ7aCoAQAAAABoXUjsAWgUs9mis99arV2/b4Dx1dajxrkgX28VV1SpT2yItmcUNqpdfx8vlVWaFR8eoPemDNKYhEj5+3g7NHYAAAAAAFoTEnsAGuW3I/lGUq+m4ooqSWp0Uu+z64bq9O6RyiwsV5/YEPl4ezU7TgAAAAAAWjsSewAa5bfDzVs3r6YLesfqsv4d5eVlUoewAIe2DQAAAABAa0ZiD4CVKrNFm47kKzkmRMH+1n8i9uUU6ZY5m5v9HuEBPpr3l+Hy8/bS8C4RMplMzW4TAAAAAIC2hsQe0AZVVJklSb41prwezi/RmNdXaX9usSQpISpI+3JOvG4f4qfMwvImvZ+/j5duGdlVb6w6oIgAH82aPECnJ0Q14ycAAAAAAAAk9oA2pKyySnM3p+uhBTuUWViu64bGa9ZlA7Q5vUDr0vL0z+X7jKSeJCOpJ6nJST1J+tOweL1yST+9ckm/ZsUPAAAAAAD+QGIPaCP+tWKf7v16m1XZu2sPaePhfK1Lc+y6ebGh/so4XqbIIF/dPqqbHh2f5ND2AQAAAAAAiT2gVbFYLCoorVSAr5f8fbyN8tm/Ha6V1DvJkUm9EH9vrbxjtPp1CFX68VLFhvizwy0AAAAAAE5CYg/wIGazRV9sTteRglKd2ytGvdqHGueOFZdrysfrtXhPtvx9vDSxV3v986K+Cg/w0XWf/ubUuAZ2CtMNp3TWxF7tlRQTIkmKCw906nsCAAAAANDWkdgDPMhdX23Vm6sOSJKeWuSrH287VYPjwiVJr686oMV7siVJZZVmfbX1qL7aelT3nN5dVWaL02Ia3zNaP9x6qtPaBwAAAAAAtjFHDmjhFuzIUN8XlipgxnwjqSdJeSUVuuPLLbJYTiTtlvye1KvplRX7m/ze5ybHKOvJc/T25QPqrHPNkPgmtw8AAAAAAJqOEXuAG+SXVCg1r0QJUUEK8rPdDVcdyNVTP+zWD7uz6mxnzcFjCnpogUL9fZRd1PRda23pER2sBTePlCTdMKyz5m5O18Jd1rF0jgjQZQM6OvR9AQAAAACAfUjsAS62Yl+OLvtwnbKLytWtXaAW3DzCaq08SXp15X7d+/VWWeyYQVtWaVZZZdOSeiO6RKh/xzBtPXpcIX7e+nFvtiwWyWSSHhnf06jn4+2lr/58itYezFNpZZXS8ktVUlGlqwfHKcSfPyMAAAAAALgDn8gBF3vg2+3G6LoDx0r0zOI9+vjqIcb5DWl5mj5vm11JveZ6+txeGp8UYxzvyizU0r3ZGhofoVO6RFjV9ffx1pjEKOcHBQAAAAAA7MIae4CddmcVav72DOVUm/JqNluUVVim0oqqWvWzi8p0tKDUqmz70eNaeyjPquw/Gw4rLa9EFVVmSdK/f0l16mYXkhQR6KvHzk7SWT2jrcqT24fotlHdaiX1AAAAAABAy8OIPcAO/9mQpj/P3qhKs0XRwX5advsodQjz16QPftVP+3LVIdRfp3eP1Ob0AkUG+cnfx0vLUnJkMkl3je6uly/up/fWHtLNczbZbL/LzMXy8/bSoE5h+iU1zyExL586SqO7R+ofy/fp+SV75OPtpb+f11vXn9LZIe0DAAAAAAD3IrGHNquorFJLU3LUrV2g+nUM09b0Ar20Yp98vEyaMa6HEqKCJUkWi0V/W7BDlb+PossuKtf/LUtRXESAftqXK0k6erxMczann2zZeA+LRfrXiv0K9ffR35fsrTee8iqzw5J6kpQUEyKTyaT7z0jU/WckOqxdAAAAAADQMpDYg0c4dKxYP+3L1eC4cPXtEFpv3a3pBbr/m+3KLCzTrad21a2ndqtV50h+qYa/skJHfp8q+9BZPfTmqoPKK6mQJH25OV37Hx6vEH8fHc4vVWqe9ZTaD9alyt/H/pnszyzeY3ddR2gf4qf2IX4ufU8AAAAAAOBaJPbQ4q3Yl6OzZq1WpdkiHy+T/nvNEE0e2Mk4P397hp5fulc+XiY9PL6nps7doj3ZJ0bN3T53i+ZsSlfHMH+d3ztWUwZ1kslk0kMLdhhJPUl67kfr0XQ5xRUKe/g7PXhmDx09XmYzrrJKsxN+Wvu9dHFfJUYF69fUPPl5m/TYwl3GhhvTxybKZDK5NT4AAAAAAOBcJPbgdGazRal5JeoQ5i9/H28t3JWpt1cfVEyIv/52Vg91aRdU7/XTvt5mTIOtNFv0zI97NHlgJxWUVujZH/fqhaV/JOWWpeTUun7J3mxJJzap2JVVqBuHd9HH69Psir2h6bPOdk5yjIrKq2S2WGSS9POBY5KkvrGhumFYZ4UH+uqCPrGSpAv7dNCCnRka0DFM5/WOdWPUAAAAAADAFUjswSkyj5fp0YU79eXmdOUUn5jeGhPsp0fOTtJfv9mu8t93gP1pX46W3j5KH65LVXZRubq2C1Tf2FCN7h4pH28vbUkv0IbD+VZtbzpSoEPHijX+rTXam11U673r8+QPu7VgR6ZjfkgHigsP0N6HztQn6w/r4/Wp6hIRqNtGddOobpFW9bamFyi7qFyndmsnfx9vq3MDOoVpQKcwV4YNAAAAAADciMQemqWk0qzZu4pUWGHRw52L1bN9mPZmF2ncm6t0ON96XbqsonLd89VWq7KdmYXq+OQPtdod1ClMC28Zqad+2G3zfS/696+NTuqd9KsDN6hoiqSYYJkk7cr6I/6Z5/aSv4+3bhzRRTeO6FLntf06krgDAAAAAAAnkNhDs9yxNEdbsn/fcCJlpX68bZSmfrm5VlKvsTYeKVDsE7UTfidtTi9oVvvuEhPsp2W3j1KHsAD9sCtTK/fnakxClM7qGe3u0AAAAAAAgIchsYcmO5RXYiT1JKmwvEoj/rXCjRG515+GxuuMHtG656utOl5WKUmKDvbThmljtPrgMeWXVujSfh0VFXxit9oJye01Ibm9O0MGAAAAAAAejMQemqxDiL/C/EwqKLe4OxS3CPL1Vo/oYA3oGKrnL+ijjmEBkqQ+sSH6v2Upv+/Sm6T4iEBdHhHo5mgBAAAAAEBrQ2IPTebn46Ub+4bqpd8cMy02MshXucUVDVesxtfbpK//PFzn9mqv9IJSXfjeL1abbYzvGa2Dx0q0x871+AJ8vHR6QqQsFmnamATtzi7S0eNlumZwnLq2C9LCXZlal5avc5JjNK6H7emzw7u00+d/GtaonwMAAAAAAKCxSOyhWa5KDtb8/cXanVfZYN2oIF99cs0QrdiXqwBfL83+7bC2ZxRKksYlRumbG4drb3axJn34q/blFBvXXT6go347UmBzs4wnz0nWub1OTGftGBag1XeP1sfr05RfWqFrh8QrJsRfkvTg/B16YeneeuNrH+KnjdPHqsPvI+8kaWKNOpMHdtLkgZ0a/FkBAAAAAACcjcQemsVkMumSHsF6YV1+rXODOoVp45E/RvM9NiFZ5yS31zm/rys3Y1wPLdiRKR8vkyb2ai8vL5MGdArTzgfGadHuLB04VqJxPaLUq32oXly6VzPm77Bqv2OYv+4e3d2qzNfbS38ZXntX2ScmJCnAx0tPLaq9y+6AjmGKDw/QK5f0s0rqAQAAAAAAtGQk9tBsZ3cJ1Cu/5aus6o+y207tqjcuG6DlKdlalpKjYfEROq+39UYRvt5eurhfh1rt+Xh7aWLvWKuyO07rpkN5JXp37SGVVZrVKSxA39w4XEF+9v0KB/h664lzkhUd7Ke7v9pqlN8wrLP+feUg+39YAAAAAACAFoLEHpotwt9L9w8N13O/5stskfp3DNWz5/WWJI1NjNbYRNtr0TVGkJ+PXr20v166qK8KyirVLtBXJpOp0e1MHdVNFWazFuzI1ICOYXrynORmxwYAAAAAAOAOJPbgEJckBuu2s4cqvbBCgzqFycfbyynv4+PtpcggvyZf7+Vl0rQxiZo2JtGBUQEAAAAAALgeiT04TGyov+LaBbs7DAAAAAAAgDbBOcOqAAAAAAAAADgViT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5ksFovF3UG0FevXr7c69vLy/Lyq2Ww2XreGnwdwJ/oT4Dj0J8Ax6EuA49CfAMdpTf2p+s8iSUOHDm3U9T6ODAaNU/N/nqdrbT8P4E70J8Bx6E+AY9CXAMehPwGO09b7k2enNQEAAAAAAIA2ihF7buTpw0UBAAAAAADQdM0dccgaewAAAAAAAIAHYsgYAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IF83B0APE9KSopmz56ttWvXKi0tTZWVlWrfvr2SkpJ04YUX6uyzz5aPD79aaH3Wrl2r+fPn67ffflNmZqYKCwsVEhKijh07atiwYZo0aZL69Oljd3ubN2/WnDlz9OuvvyojI0MWi0WxsbHq27evLr74Yo0ZM0Ymk8nu9iwWixYvXqx58+Zpy5YtysnJUWBgoGJjYzVy5Ehddtll6tWrV1N+dMBlHnroIX355ZeSpOeee06TJk2y6zpn3JtWr16tuXPnauPGjcrMzJSPj486dOigwYMH69JLL9WwYcMa/fMBzlBVVaUffvhBixYt0tatW5WVlaWqqipFR0erX79+uvDCC3XWWWfJy8u+7/S5P6Et2759u+bMmaN169bp6NGjKikpUXh4uBISEnT66adrypQpCg8Pt7s9+hPagldeeUVvvPGG4uLitGTJkkZd6+jnrfLycs2fP1/fffedtm/frry8POMz25gxY3TZZZepS5cujWozNzdXc+bM0bJly7Rv3z4VFRUpMjJSXbp00TnnnKOLLrqoUX8XHM1ksVgsbnt3eJxXX31Vs2bNUmVlZZ11+vXrpxdffFEJCQkujAxwnrS0NM2YMUPr1q1rsO7555+vp556SiEhIXXWqaio0NNPP63PPvus3rZGjx6t5557Tu3bt2/wfTMyMjRt2jStX7++zjomk0k33HCDpk+fLj8/vwbbBFxt+fLluuWWW4xjexN7jr43FRYWasaMGVq8eHG99S666CI99thjCg0NbbBNwFk2b96sRx99VDt37qy33qBBg/TPf/5TcXFxddbh/oS2rLS0VE899ZTmzp1bb73g4GA99dRTuuCCC+qtR39CW7F582ZdffXVqqioaFRizxnPWykpKbrnnnu0Z8+eOuv4+vrq7rvv1s0332xXUn3x4sV6+OGHlZeXV2edmJgYPfPMMxo7dmyD7TkDiT3YbebMmfr444+NYx8fHyUnJyswMFApKSk6duyYcS46Olqff/55vQ+PgCc4cOCArrrqKuXm5hplvr6+SkpKUmhoqHJycrR3715V/1Paq1cv/ec//7GZ3LNYLLrzzjutbmD+/v5KTk6Wt7e39uzZo8LCQuNcQkKCPvvsM4WFhdUZY25urqZMmaJDhw4ZZREREerRo4dKSkq0a9cuq4TH+eefr3/+85+N/8cAnOj48eM6//zzlZGRYZTZk9hz9L2prKxM1113nTZt2mSUBQcHKykpSVVVVdq9e7dKS0uNc6eccor+/e9/8+EJbrF69WpNnTpVxcXFRllMTIy6dOmiiooK7dixQxUVFca5uLg4zZ4922YCgfsT2rLy8nLdcsstWr16tVHm7e2tpKQkhYWF6fDhw0pLS7O65oknntBVV11lsz36E9qK1NRUXXXVVcrKypIkuxN7znje2r9/v6666iqrZ7+YmBh1795deXl52rNnj9Vntptvvln3339/vXF+//33mj59uqqqqoyy7t27KyYmRocPH9bhw4eNcm9vb73xxhs644wzGvz5Hc4C2OG7776zJCUlGf/dddddlqysLON8eXm5Zfbs2ZaBAwcadS699FKL2Wx2Y9RA81RWVlouuOAC43e6d+/eln/961+W48ePW9U7evSo5YEHHrDqI3fffbfNNt99912rek888YSloKDAOF9SUmJ58803LX369DHq3HHHHfXGecsttxh1+/fvb/nvf/9rqaioMM5nZmZa7r33Xqv3/fDDD5vxLwM43oMPPmj1O5qUlGSZO3duvdc449705JNPGnWTk5Mtr732mqWkpMQ4n5+fb5k5c6bV+z777LPN/wcAGunAgQOWQYMGGb+HZ5xxhmXJkiVWv9+2fl/vvPNOm+1xf0Jb9tprr1n9Ht56662WI0eOWNX55ZdfLOPGjTPq9OnTx7J7926b7dGf0Bbs2rXLcvrpp1v9zo0bN86uax39vFVZWWm56KKLjLqnnHKK5bvvvrO6Jx46dMjypz/9yarNxYsX19nmoUOHrO6zF1xwgWXbtm1WdVavXm31d2Hw4MGWo0eP2vVv4Egk9tCg8vJyyxlnnGF1o6uqqrJZd8WKFVY3qHnz5rk4WsBxPv/8c6s//F9//XW99Z977jmr+r/99pvV+ZycHMvgwYON848//nidbX3xxRdWba1fv95mvZ9++smq3vz58+tss3ryccSIEbUSlIC7LFu2rFZSr6HEnjPuTXv27LH07t3bqPf222/X+f6vvPKKUa9v376W1NTUxv3QQDP95S9/MX4HJ0yYUCsJUd1TTz1l9QFq//79Vue5P6EtKysrswwZMsT4Hbz++ustlZWVNuumpqZahg4datSdNm1arTr0J7QFX331ldUXp41J7DnjeevTTz+1SrrX1ZfKy8st119/vVF34sSJdfb3adOmWf1cOTk5Nuulp6dbRo8ebdR95JFHGvgXcDx2xUWDFi1apCNHjkg6McXpscceq3Px5dGjR2vKlCnG8fvvv++SGAFn+Prrr43Xo0eP1kUXXVRv/enTp1tNb5o/f77V+S+++EJFRUWSTkydeOCBB+ps67LLLrMaxl1XX/rwww+tYjzvvPPqbPPxxx9XVFSUJOnYsWP63//+V/cPA7hIQUGBHnnkEUknprkHBgbadZ0z7k0ff/yxMdUiISFBN954Y53vf+eddyopKUnSiXWUPvnkE7viBhxhy5YtWrlypSTJy8tLL774ojp27Fhn/XvuuceYvmSxWLRs2TKr89yf0JZt3LjRalrsPffcI29vb5t14+PjdfXVVxvHy5Yts5raJ9Gf0LplZGRoxowZeuCBB1RSUtKkNpzxvPXRRx8Zry+77DINGTLEZj1fX189//zz8vX1lXRiTb7ly5fXqpeRkaGFCxcax9OnT1dkZKTNNjt06KCHH37YOP7yyy/rXY/PGUjsoUELFiwwXo8aNUqdOnWqt371D0/btm1Tamqq02IDnKW8vFwbNmwwjhtaIFmS/Pz8NHr0aON4y5YtVue/++474/XEiRMVFBRUb3vV+9JPP/1ktYaSJOXn52vVqlXG8WWXXVZve0FBQVbJye+//77e+oArPPvss8rMzJQk3XLLLXU+NNXk6HuT2Wy2eoCbNGlSvTuIenl56YorrjCOq18LONvJnaMl6ZJLLtGAAQPqrR8WFqb77rtPt9xyi/7617+qf//+Vue5P6EtO3r0qNVx3759660/cOBA43VRUZHVel4S/Qmt15tvvqlzzz1XX331lVGWkJCg2267ze42nPG8tXPnTqWkpBjHkydPrjeG2NhYjRs3zji21UcWLlxorFkZGhqqc845p942zz77bOMZtrKyssENQRyNxB7qZbFYtHbtWuP4tNNOa/Ca5ORkxcTEGMeN3e4aaAkOHz4sf39/4zgxMdGu6yIiIozX1R/08vLytGPHDuO4egKwLiNHjjS+MS4tLbV6qJOkX375xfi2y2Qy2dU/q9fZsGGD8vPzG7wGcJZly5YZIwmSkpLsfjB0xr1p586dVn3Wnj5a/X2PHDnS4K6kgKNUH3FX/QNPfW644Qbdd999uummmzR06FCjnPsT2rqaO22eHG1Xl5o7sFd/XqQ/oTV77733rBLPl19+uebMmaOuXbva3YYznrfWrFljvA4PD6/15VVDbdoaeVt9I53hw4cbI/zq4u3trVNPPdU4Xrp0aYMxOBKJPdTr8OHDKigoMI779etn13XJycnG65qjlgBP0L17d/32229at26d5s+fbwwBb0j1nZHCw8ON17t27bK6YTT0bbB04hvXLl26GMc1+1L1m1p8fLzV+9WlV69exmuz2axt27Y1eA3gDAUFBXr00UclnZhK+9xzz9m9s6wz7k3V+5Ovr6969uzZYHvdu3dXQEBAnW0CznD06FFjGnpgYGCDo/Uawv0JbV2PHj2sjlesWFFv/Z9//tl43bFjRwUHBxvH9Ce0Bf369dPHH3+smTNnKiQkpFHXOuN5q3qbvXv3lslkarDN6n0kPz/fardp6URfPsmeflyzTVc/E5LYQ70OHDhgdVz9plOf+Ph443XNTgJ4ktDQUPXo0cPqZlKXwsJCq4e96qP8qvclPz+/etdCqq6+vlS9TXu/KYuJibH6WQ4ePGjXdYCjzZw505iCe+ONN9qdnJOcc2+q3mZcXJx8fHwabM9kMllNAaY/wRWqf9hISEgwRvqkpaXptdde02WXXaaRI0dq4MCBOvvss/Xwww/rt99+q7M97k9o6zp37my1zt3LL7+s7Oxsm3XXrVtnNRW++np7Ev0Jrdvw4cP1+uuv64svvtDw4cOb1IYznrea0keq97mabZaXlxtfoDW1zYyMDJWWltp1nSOQ2EO9srKyjNdeXl6Kjo6267rq052qtwG0Zu+9957V4svV126o3g+q94+G1NeXTiZFGtvmyQWVbbUJuMKSJUuMzWkSExN15513Nup6Z9ybqh9X3wSnIdXfm/4EV6j+ob99+/Yym8165513dN555+nVV1/V1q1bdezYMZWWlurQoUP64osvdOWVV+rBBx9UWVlZrfa4PwHS3/72N+Pv+eHDhzV58mR9+eWXys7OVmVlpVJTUzVr1izdeOONqqiokCT16dNH1157rVU79Ce0Zm+88YbGjx9v14i4ujjjeaspfSQyMtJqk5zqbWZlZVmNvLW3zZrPo67sdw2nR9GmVV+PITg4uN6FLaurPiSXNR3QFmzevFnvvPOOcdytWzedeeaZxnH1nZFqruVSn/r6UvXjxrRZvW716YyAK+Tn5+uxxx6TdCIp15gpuNXbOMlR96am9tHqdbnfwRWqjyQKCgrS008/rf/+979GWY8ePRQVFaXs7GyrxcT/97//6dChQ/rggw+s+hz3J+DEiJy5c+dq5syZWrx4sdLT0/XQQw/ZrGsymXTRRRfp0UcfrbUxBv0JqJ8znrea0ke8vLwUFBSk48ePS7LuIzXbDwsLa3SMNdt0NkbsoV7Vv9m1ZyriSdUfGMvLyx0aE9DSpKWlaerUqcY3uJL04IMPWg0tr94PHNWXHNE/bY3eAJxp5syZxjeYN9xwg9XugvZyxr3JGX0UcIbqHxRWrFhhJPXGjx+vxYsXa/78+froo4+0YMECLV68WGPHjjXqr1+/XjNnzrRqj/sTcEJkZKTGjBnT4LS70047TTfffLPNBAL9CaifJ/SRmv2l+gY59rZnqx1nIrGHelVPVNg7IkKSVUKj5s5RQGuSnp6u66+/3mqo9Q033GA1DVdyTl+qftyYNqsPO6d/wpV+/PFHzZs3T9KJUa333HNPk9pxRn9qapv0J7ha9Q80J5N8U6ZM0WuvvabOnTtb1e3cubNmzZqlc8891yj7/PPPtXv3buOY+xNwYvH9Cy64QI8++qixXpe/v7/69++vESNGqFu3bkbdlStX6uKLL9bzzz/vsHsJ/QlthTOet6ofV6/X1DZrtm9vmzXrndzN2hVI7KFe1X85zWaz3ddV7wwNbQ0NeKqUlBRdddVVSktLM8pGjx6t+++/v1ZdZ/SlprZZ/SZD/4Sr5OXl6fHHH5d0YhrTM88806hvVaujP6Etq7m2UefOnfXII4/UueaRl5eX1c6FFotFn3zyiXGe/oS2LjU1Vddff72xeH5AQIAeeugh/fLLL/riiy/00UcfaeHChVq8eLHOO+88SSd+V//9739rxowZVm3Rn4D6OeP3uXqbjUmmVa9bfbRdzYSjvW3WrOfKfkdiD/UKDAw0XjdmKGn1b5PtHboKeJINGzbommuuUXp6ulE2cuRIvfbaazb/iFdPYDSmL1WvW7MvOaNNwFmqT8G99tprNWzYsCa35Yx7E/0JnqLmml5XXnllg+tUhoaGGgkJSVq1apXxmvsT2rqnnnrKWPfL399f77//vm644YZaXz517txZL730km677Taj7Ntvv9W3335rHNOfgPq11D5S/T5a/TlTsn+plaZO4XUEEnuoV3h4uPG6qKjIaneY+lTfGTQiIsLRYQFu9c033+j666/XsWPHjLKxY8fqrbfeqnUjOKl6P6jePxpSVFRksw3Jun82pk36J1xt8eLF+uabbySd+GA0ffr0ZrXnjHtTU/so/QmuFhwcbHU8ZMgQu64bNGiQ8To1NdX4oML9CW1ZamqqfvrpJ+P4tttua7BPTZs2zWp92Hfffdd4TX8C6ueM562m9BGz2azi4mKbbVZvrzFt1qznyn5HYg/1io2NNV5XVVVZJTLqU329sZrbPgOe7NVXX9X9999v9c3NRRddpDfeeKPeaYXV+1JOTo7d71dfX2pqm9Xr2rt9O9BUeXl5euKJJySdmEI4c+bMWiOOGssZ96b27dsbrxvTn6rvUEp/giu0a9fO6jgyMtKu66KioqyOT45Q4v6EtmzdunVWx5MnT7bruiuvvNJ4vWPHDuN3l/4E1M8Zz1tN6SO5ublWU4GrtxkTE2M1Hbf6e9sbo8lkqnXfdSafhqugLau5K1RqaqpdD5DV1xzr3r27w+MCXK2iokIPP/ywvv76a6vyW2+9VdOmTatzbaOTqvel4uJiZWdn25X0Tk1NNV7X7EvVF3I+dOhQg21JUmZmpkpLS222ATjDZ599ZnxgCQwM1DvvvKN33nmnzvrVH4ref/99zZ8/3zh+/vnnFR0d7ZR7U/W+kJaWJovF0mC/tlgsOnz4sM02AGfp2bOn1XH1XXLrU3Mx8JOL9XN/QluWmZlpvA4PD7dKOtSnV69eVseHDx9WVFQU/QlogDOet7p166YNGzZIsr+PVO9zNdv08/NTx44djfdsSpudOnVqcJkMRyKxh3rFxcUpIiLC+FZ3x44dVkPP67Jz507jdc0bH+BpysvLddddd2nZsmVGmY+Pj5544gldfvnldrXRp08fmUwmY8rgjh07dPrpp9d7TVFRkdWNpGZf6tu3r/H64MGDKikpqXMq8Ek7duwwXptMJiUnJ9sVP9BU1Ue3FhcXa+XKlXZfu3v3bqvdO09+SHHGval6fyopKdH+/fuVkJBQb3v79u2zWk+ld+/eDcYANFfNv9sHDhzQgAEDGrzu6NGjxuuAgABjihD3J7Rl1T94V9+tsyE1F9c/mZigPwH1c8bzVt++ffXll19Ksn7Wq0/1PhIeHq64uDir8/369TMSe01p09XPhEzFRYNGjBhhvK6+2HJddu7caTXiYuTIkU6JC3CFyspK3X333VZJveDgYL311lt2J/UkKSQkRH369DGO7elLa9asMYaIe3t7a/jw4Vbnhw4daoy4qKqq0tq1axtss/r79unTp9YaEoCncPS9qWfPnlaj/lavXt1gmz///LPxul27dnxwgktERkZa/a4tXrzYrut+/fVX43WfPn2MxAT3J7RlHTp0MF4XFxdr//79dl2XkpJisx36E1A/ZzxvVe8zWVlZ2rNnT4NtVu8j1Z8pbbW5du3aBnfwrdk3XZ0DIbGHBk2YMMF4vXTpUmVkZNRb/9NPPzVeJyYm8kEHHu3FF1/U0qVLjePIyEh9/PHHGj16dKPbOuecc4zX8+bNU0lJSb31q/elUaNGKSwszOp8WFiY1U1j9uzZ9bZXVFSkefPmGcfnnnuuXXEDzXHXXXdp165ddv9X/RvT5557zupcfHy8cc7R9yaTyaSzzz7bOP7888/rfYgzm836/PPPjeNzzjmnwakkgKNcfPHFxuslS5Zo79699dZPT0/Xjz/+aBxX7z8S9ye0XSNGjLAafffZZ5/Zdd3cuXON1z179rRan4v+BNTNGc9bSUlJVlPYG+oj6enpVoM2Jk6cWKvO+PHj5e3tLenEMjGLFi2qt82FCxcqNzdX0omZXTXvs85GYg8NmjBhgrHeRHl5uR588MFa67SctGLFCs2ZM8c4vu6661wSI+AMy5cv14cffmgch4eH66OPPrIaQt4Yl112mTF1Ijs7W0899VSddefMmaMVK1YYx3/6059s1rvmmmuM10uXLjWGodvyxBNPGDecoKAguxeIBloiZ9ybrr76auNhcefOnXr99dfrfP9XXnnF+EbYy8uL+x1c6tJLLzVG4FRUVOjBBx/U8ePHbdYtLy/XjBkzjGmGISEhmjRpklUd7k9oqyIjI60ScR999FGDI4g+/vhjqxFEU6ZMsTpPfwLq54znrep9ZPbs2XWOlq2oqLC6J3bq1Enjx4+vVa9Dhw4666yzjONnnnmmzi+R09PT9eyzzxrHEyZMsNrQwxVI7KFBfn5+mj59unG8atUq3XzzzVaLQ1ZWVurzzz/XXXfdpaqqKkknMueNmaoItCRVVVV65plnjDVSTCaT/vGPf9RatLwxoqOjddNNNxnHX375pe677z6r3ZtKS0s1a9YsPf7440bZmDFjNGbMGJttnnnmmVbDxx999FG99dZbVutQZGdna9q0aVbf3k6dOtXunRSBlsgZ96ZevXrp0ksvNY5fe+01Pfvss1YJk+PHj+uZZ57RrFmzjLIpU6aoR48eDvvZgIZERkbqoYceMo63bNmiq6++WmvWrLGqt2/fPv3lL3+xmh5077331pqWx/0Jbdn9999vjJKrqqrSzTffrNdff91Ijp2UlZWlJ598UjNnzjTK+vbtq6uuusqqHv0JqJ8znremTJlijNqrrKzUHXfcoTlz5lh96ZuamqqbbrrJ6p7417/+tc5NLqZNmyZ/f39JUkZGhq6++mr98ssvVnXWrl2ra665xtgoLigoyOr51FVMlpOfWoEGPPbYY1bD0728vJScnKyQkBClpKRY3fwiIiL06aefNrgQJtBSzZ8/3+qPclBQkIYMGdKoNqKjo/X8889blZ280VQf/u3r66vk5GT5+flpz549Vje1+Ph4zZkzp96HsoyMDF1zzTVWCY3Q0FD17NlT5eXl2rVrl9WC0OPGjdMbb7xRa+FnoCU488wzjcWKn3vuuVoji2py9L2psLBQ119/vbZu3WqUBQYGGlN3d+3aZTWtqn///vrkk08UEBDQuB8UcICXXnrJ6kOPdGKUQefOnZWfn2+1+Yx0YgrvCy+8YLMt7k9oy9auXavbbrtNxcXFRpmvr6+6d++udu3a6dixY9q7d6/VlMGuXbvqk08+sbmTLv0JbcmXX35pfNkUFxenJUuWNHiNM563du/ereuuu87YXE068UVYYmKijh8/rt27d1v14WuuuUaPPfZYvXHOmzdPM2bMsLquS5cu6tChg9LT0636o5eXl/7xj3/ovPPOa/DndzQSe7CbxWLRyy+/rPfee6/eXaMSExP1yiuvNGtkE+Bud911l3744YdmtVHXja28vFxPPvmk5s6dq/r+BA8ePFivvPKKXUO509PTNX36dGOr97pMnjxZjz/+uEu3Xwcao7GJPWfcm44fP64HHnigwQfTcePG6cUXX1RoaGiDbQLOMnfuXL344os6duxYnXV8fHx0yy236K677qr3Qz73J7Rle/fu1QMPPKBt27bVW89kMuncc8/VU089VWs9vOroT2grmpLYk5zzvLVr1y7dd9999W6g4e3trZtvvln33nuvXesjf//993r88cetEoY1hYeH6+mnn7aa2u9KJPbQaCkpKfriiy+0cuVKHT16VCUlJQoPD1fv3r117rnn6qKLLuImAo93/vnnN7gYeUMaurFt3rxZ//vf/7RmzRplZGSovLxckZGRGjBggC644AJNmDChUd+yWiwWLVq0SAsWLNDmzZuVnZ0tLy8vxcbGaujQobriiis0aNCgZv1MgLM1NrF3kjPuTatXr9a8efO0bt06ZWdnq6qqStHR0Ro8eLAuvfTSJm2iAzhDfn6+5s2bpx9//FH79u1Tbm6ufH191a1bN5166qm66qqr1LlzZ7vb4/6Etmz58uVatGiRNmzYoKysLBUXFys0NFRxcXEaPny4LrnkkkZtDkh/QmvX1MTeSY5+3qqsrNQ333yjhQsXaseOHcrJyZGvr6/i4+M1YsQIXXnllY1eQiUvL09z5szRkiVLdPDgQeXn5ysoKEiJiYkaO3aspkyZ4tZp7yT2AAAAAAAAAA/EhHsAAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA/0/JEtEDfNmwtgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pds_source_corrected = pds_source_dt.deadtime_correct(dead_time=deadtime, \n", + " rate=times_source_dt.size / tmax, \n", + " background_rate=times_bkg_dt.size / tmax)\n", + "\n", + "plt.plot(pds_source_dt.freq, pds_source_dt.power, label=\"PDS of source events\")\n", + "plt.plot(pds_source_corrected.freq, pds_source_corrected.power, zorder=10, label=\"Corrected\")\n", + "\n", + "plt.legend(loc=\"upper right\");\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/Deadtime/FAD correction in Stingray.ipynb.txt b/_sources/notebooks/Deadtime/FAD correction in Stingray.ipynb.txt new file mode 100644 index 000000000..3a0cc90e1 --- /dev/null +++ b/_sources/notebooks/Deadtime/FAD correction in Stingray.ipynb.txt @@ -0,0 +1,371 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fourier Amplitude Difference correction in Stingray" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from stingray import EventList, AveragedCrossspectrum, AveragedPowerspectrum\n", + "from stingray.deadtime.fad import calculate_FAD_correction, FAD\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dead time affects most counting experiments. While the instrument is busy processing one event, it is \"dead\" to other photons/particles hitting the detector. This is usually not an issue if the count rate is low enough, or the processing time (_dead_ time) is small enough. However, at high count rate dead time affects greatly the statistical properties of the data, to a point where a standard periodicity search based on the periodogram/power density spectrum (PDS) cannot be carried out.\n", + "\n", + "The Fourier Amplitude Difference (FAD) correction is described in [Bachetti & Huppenkothen, 2018, ApJ, 853L, 21](https://ui.adsabs.harvard.edu/abs/2018ApJ...853L..21B), and is able to correct precisely deadtime affected PDSs if we have at least two identical and independent detectors. This is common in new generation X-ray timing instruments, often based on multiple-detector configurations (e.g. NuSTAR, NICER, AstroSAT, etc.).\n", + "\n", + "In the code below, we calculate the PDS of light curves without dead time, after applying a dead time filter, and after applying the FAD to the dead-time affected dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_events(length, ncounts):\n", + " ev = np.random.uniform(0, length, ncounts)\n", + " ev.sort()\n", + " return ev\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:01, 98.20it/s]\n", + "100it [00:00, 134.62it/s]\n", + "100it [00:01, 80.61it/s]\n", + "100it [00:01, 52.97it/s]\n" + ] + } + ], + "source": [ + "ctrate = 500\n", + "dt = 0.001\n", + "deadtime = 2.5e-3\n", + "tstart = 0\n", + "length = 25600\n", + "segment_size = 256.\n", + "ncounts = int(ctrate * length)\n", + "ev1 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "ev2 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "\n", + "pds1 = AveragedPowerspectrum.from_events(ev1, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2 = AveragedPowerspectrum.from_events(ev2, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot = AveragedPowerspectrum.from_events(ev1.join(ev2), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs = AveragedCrossspectrum.from_events(ev1, ev2, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us apply a deadtime filter to the events generated above, and calculate the corresponding periodograms" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:00, 154.30it/s]\n", + "100it [00:00, 167.20it/s]\n", + "100it [00:00, 133.60it/s]\n", + "100it [00:01, 67.74it/s]\n" + ] + } + ], + "source": [ + "ev1_dt = ev1.apply_deadtime(deadtime)\n", + "ev2_dt = ev2.apply_deadtime(deadtime)\n", + "\n", + "pds1_dt = AveragedPowerspectrum.from_events(ev1_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2_dt = AveragedPowerspectrum.from_events(ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot_dt = AveragedPowerspectrum.from_events(ev1_dt.join(ev2_dt), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs_dt = AveragedCrossspectrum.from_events(ev1_dt, ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The FAD method relies on averaging out many values of the difference between the Fourier transforms in the two channels in *contiguous frequencies*, and **it works best when the frequency resolution is very high** compared with the distortion of the power spectrum due to deadtime. \n", + "\n", + "For example, in NuSTAR the effect of deadtime appears above $\\sim10$ Hz. We want to calculate the correction on a Hz-by-Hz basis, so that the correction is adequate. The frequency resolution from the FFT is `1/segment_size`. \n", + "\n", + "Therefore, **the `segment_size` should ideally be some hundred seconds** to have some hundred bins in a Hz. The smoothing length should be of the order of the number of bins in $\\sim1$ Hz (in this example 2Hz)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:33, 2.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "results = \\\n", + " FAD(ev1_dt, ev2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen above, all power density and co- spectra have been corrected accurately in their basic property (the white noise level). See Bachetti & Huppenkothen 2019 for more information.\n", + "\n", + "Note that this can also be done starting from light curves:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:34, 2.93it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Calculate light curves\n", + "lc1_dt = ev1_dt.to_lc(dt=dt)\n", + "lc2_dt = ev2_dt.to_lc(dt=dt)\n", + "\n", + "results = \\\n", + " FAD(lc1_dt, lc2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n", + "\n", + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb.txt b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb.txt new file mode 100644 index 000000000..e4097583e --- /dev/null +++ b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb.txt @@ -0,0 +1,665 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on fake data)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'2.2.dev64+ga4a8b8a0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# import some modules\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import stingray\n", + "stingray.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# choose style of plots, `seaborn-v0_8-talk` produce nice big figures\n", + "plt.style.use('seaborn-v0_8-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate a fake lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Array of timestamps, 10000 bins from 1s to 100s\n", + "times = np.linspace(1,100,10000)\n", + "\n", + "# base component of the lightcurve, poisson-like\n", + "# the averaged count-rate is 100 counts/bin\n", + "noise = np.random.poisson(100,10000)\n", + "\n", + "# time evolution of the frequency of our fake periodic signal\n", + "# the frequency changes with a sinusoidal shape around the value 24Hz\n", + "freq = 25 + 1.2*np.sin(2*np.pi*times/130)\n", + "\n", + "# Our fake periodic variability with drifting frequency\n", + "# the amplitude of this variability is 10% of the base flux\n", + "var = 10*np.sin(2*np.pi*freq*times)\n", + "\n", + "# The signal of our lightcurve is equal the base flux plus the variable flux\n", + "signal = noise+var" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the lightcurve object\n", + "lc = stingray.Lightcurve(times, signal)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAKOCAYAAAD6VwfUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgeElEQVR4nOzdd3hT5fvH8U+6KZSyVymUvfcQEGSIiiIOFBUVFRT3wD1x4t7r6xYc4ED5iQoiggzZe+/RMsoutIXSmfz+QCpt0zZJT3JOkvfrurwsyck5d9LTk3M/435sDofDIQAAAABA0AoxOwAAAAAAgLlIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAAAQ5EgMAQB+LSEhQTabTbNnzy51W5vNJpvNZshxExMTZbPZlJCQYMj+AAAwE4khAAA+NG7cONlsNt10001mhwIAQL4wswMAAMBXNm7caHYIAABYEokhACBoNG/e3OwQAACwJIaSAgCCRklzDJctW6aBAweqUqVKiomJUY8ePTRp0iSX5hLa7Xa98847atWqlaKiolSzZk2NGDFCBw8eLLBdnz59NHz4cEnSV199lR+Ps6Gl2dnZ+vDDD9WrVy9VrlxZUVFRatCgga644gpNnTrV5fdVXPxnPp6Tk6OXXnpJrVq1Urly5dS+fXv99ttvstls6tWrV7Hve/HixbLZbE4T7nXr1ummm25SvXr1FBkZqapVq2rgwIEuzQUFAPgePYYAgKA3ffp0DRo0SNnZ2WrTpo1at26tpKQkXXHFFXrggQdKff2wYcP0yy+/qE+fPmrSpInmz5+vsWPHaunSpVq2bJkiIyMlSQMGDFBubq7mz5+vRo0aqWfPnvn7OPPnlJQUDRgwQEuXLlV0dLTOPvtsVa1aVbt379aff/6pI0eO6KKLLjLkvdvtdl1++eWaOXOmevfurdatWys7O1sXXnihatSoofnz52vnzp1q0KBBkdd+/fXXkqQbb7yxwOPffvutRowYoZycHLVr105nnXWWkpOT9eeff+qPP/7Q//73P91+++2GxA8AMIgDAAA/Vr9+fYckx6xZs0rdVpKj8Fff8ePHHbVq1XJIcrz++usFnvvll18coaGhDkmO+vXrF3hu586d+ftr0qSJY9euXfnPHThwwNGgQQOHJMdXX31V4HVjx451SHLceOONxcZ58cUXOyQ5+vbt6zh48GCB59LS0hwzZswo9X0VjrOk+BMSEhw7d+4s8tpRo0Y5JDmeffbZIs9lZWU5qlat6ggJCSnw3leuXOkIDw93xMbGFolz4cKFjkqVKjnCw8MdmzZtKvb9AwB8j6GkAICg9tNPP2n//v1q166dHnrooQLPXXrppbriiitK3cd7772n+Pj4/H/XqFFDd955pyRp1qxZbsWzcuVK/f7776pSpYomTZqk6tWrF3g+JiZG5557rlv7LM3LL7/sdKjsDTfcIEn65ptvijw3depUHTlyRH379i3w3l966SXl5OTo7bffLhJnt27dNHr0aOXk5OiTTz4x9D0AAMqGxBAAENTmzp0rSbrqqqucPn/ttdeW+Prw8HD179+/yOPNmjWTJCUnJ7sVz7Rp0yRJgwcPVqVKldx6racuvfRSp4936NBBbdq00fbt2zV//vwCzzkbRmq32/Xnn38qNDRUgwcPdrrPc845R5K0aNEiI0IHABiExBAAENT27t0rSapfv77T54t7/LRatWopLKzolP2YmBhJUlZWllvx7Nq1S9J/iaW31ahRQ+XKlSv2+dOJ3+lEUDo1B3LKlCmqUKFCgQTwyJEjSktLU15enipVqlSguM7p/7p06SJJOnTokJfeEQDAExSfAQBAKraqZ0hIyW2opT1vVByestvtJT5fUlIoSdddd50effRR/fjjj3rvvfcUGRmpH374QdnZ2Ro6dKjKly+fv21eXp4kKSIiQkOHDi1xv9WqVXPxHQAAfIHEEAAQ1OrUqSPpv566whITE30YjVSvXj1J0pYtW1x+TXh4uHJycnT8+HFVqFChwHO7d+8uUzy1atXS+eefrz/++EO//vqrhgwZUmw10mrVqikqKip/DuHpaqwAAOtjKCkAIKidXqfvxx9/dPr8d999Z+jxIiIiJEm5ublOnz///PMlSZMmTVJqaqpL+zyd3G7evLnIc9OnT/ckzALOHE66detWLVq0SPXq1VOfPn0KbBcWFqb+/fsrLy9Pv/zyS5mPCwDwHRJDAEBQGzJkiGrUqKGVK1fq7bffLvDcb7/9pokTJxp6vLi4OEnSxo0bnT7fsWNHDRw4UEeOHNGVV16pw4cPF3g+PT1dM2fOLPBY3759JUkvvvhigYRz+vTpRd6TJy699FLFxsZq2rRpevPNNyWdWrvR2bDXp59+WmFhYbrzzjudJod5eXmaNWsWxWcAwGJsDofDYXYQAAB4KiEhQUlJSWrRooUqVqzodJuYmBj99ddf+YlM4a++adOm6ZJLLlFOTo7atm2rVq1aadeuXVqwYIHuvfdevfvuu2rSpEmB4Z2JiYlq0KCB6tev73S46ezZs9W3b1/17t1bs2fPzn88KytLCQkJ2r9/vzp16qRWrVopPDxcZ599toYPHy5JOnz4sC644AKtWLFC0dHR6tWrlypXrqw9e/Zo5cqV6ty5c4F9bt68WZ06ddKJEyfUuHFjtW/fXomJiVq+fLkeffRRvfLKK0XiLC3+wm699VZ99tlnBY7ZtGlTp9uOHz9eN998s7KystSoUSM1b95cFStW1IEDB7Ry5UodPXpUH330EYvcA4CFMMcQABAQiuuBk6TY2NgSXztgwADNmzdPzzzzjBYsWKDt27erdevW+uGHH1S7dm29++67hhVLiYyM1LRp0/Tkk09q4cKFWrlypex2u3Jzc/MTw2rVqmn+/Pn6+OOP9d1332nBggXKyclRrVq1dNFFF2nEiBEF9tmsWTPNnTtXTzzxhBYsWKCpU6eqXbt2mjx5stq0aaNXXnmlzHHfeOON+Ylht27dik0KpVMFa7p27ap33nlHM2bM0N9//62QkBDVrl1bPXv21KBBg1xaHxIA4Dv0GAIAUIIXX3xRTz31lO666y598MEHZocDAIBXkBgCAILe/v37lZubq7p16xZ4/M8//9TgwYOVkZGhxYsXq2vXriZFCACAdzGUFAAQ9JYtW6ZLLrlEbdu2VUJCgkJCQrRlyxatX79ekvT444+TFAIAAho9hgCAoJeUlKSXX35Zc+bM0f79+3X8+HFVrlxZnTp10u23365LL73U7BABAPAqEkMAAAAACHKsYwgAAAAAQY45hl5gt9uVnJysmJgYp4v/AgAAAIC3ORwOpaenq06dOgoJKblPkMTQC5KTkxUfH292GAAAAACg3bt3F6m8XRiJoRfExMRIOvULqFixosnRAAAAAAhGaWlpio+Pz89PSkJi6AWnh49WrFiRxBAAAACAqVyZ3kbxGQAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAAAQ5EgMAQAAACDIkRgCAAAAQJAjMURQczgcOnI8S3l2h9mhAAAAAKYhMURQe+qXdeo0ZoZuGrtEDgfJIQAAAIITiSGCVm6eXeMX75Ik/bP1sNbsSTU5IgAAAMAcJIYIWoVHjx4+nmVOIAAAAIDJSAwBAIDLMnPy9NncHfpx2W6G4ANAAAkzOwAAAOA/3py+WZ/9s1OSFBZi0+COdU2OCABgBHoMAQCAy04nhZL0zoytJkYCADASiSEAAPDIvtSTZocAADAIiSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMhZMjF8+eWXNWTIEDVs2FA2m00JCQkuv/bRRx+VzWZThQoVnD6flZWlp59+Wg0aNFBkZKQaNWqkMWPGKCcnx6DoAQAAAMC/WHIdwyeeeEJVqlRRx44ddezYMZdft2rVKr311luqUKFCsYvuXn311Zo8ebJGjBih7t27a+HChRo9erS2bdumcePGGfMGAAAAAMCPWDIx3L59uxo2bChJat26tY4fP17qa/Ly8jRy5EhdeOGFSktL07Jly4psM3XqVE2ePFkPPPCA3nzzTUnSLbfcokqVKumtt97Srbfeqh49ehj7ZgAAAADA4iw5lPR0UuiO9957Txs2bND7779f7DYTJkyQJI0aNarA46f//e2337p9XAAAAADwd5bsMXRXUlKSRo8erWeeeUb169cvdrulS5cqLi5O8fHxBR6Pj49XnTp1tHTpUo+OX7t27QL/ttvtHu0HAAAAvrUv9aRmbTqkHo2qKqFaebPDAUwTEInhHXfcoYYNG+qBBx4ocbvk5GS1bNnS6XNxcXHas2ePN8IDAACABTkcDl39ySLtSslQ5ehwLXz8XEWFh5odFmAKv08Mv/vuO02bNk3z5s1TWFjJbycjI0ORkZFOn4uKilJGRoZHMezbt6/Av9PS0hQbG+vRvgAAAOAbqSdztCvl1P3f0Ywcrdubqs4JVUyOCjCHJecYuiolJUWjRo3SzTff7FLRmOjoaGVlZTl9LjMzU9HR0UaHCD9STCFbAAAQoAp/9+fZuRlA8PLrHsPnnntOJ06c0MiRI7Vt27b8x0+ePCmHw6Ft27YpMjIyf05hnTp1tHfvXqf72rt3r+Li4nwSN6zBZjM7AgDwrZw8uz6du0Mns/N0R59GKh/p17cBQSM71679qZmKr1JONr68AHiJX38jJCUl6cSJEzrrrLOcPt+kSRO1atVK69atkyR16dJF48eP1+7duwsUoNm9e7eSk5N1ySWX+CRuAADM8PXCJL3+52ZJUlZunp4c6HzePazD4XBo6GeLtDzpqK7sVFdvDGlndkgAApRfDyV99NFHNXHixCL/tWzZUlFRUZo4caLefvvt/O2HDh0qSXrnnXcK7Of0v6+77jpfhQ4AgM+9/uem/J8/+2eniZHAVcuSjmp50lFJ0k/L98jOUEcAXmLJHsNvvvlGSUlJkqRDhw4pOztbY8aMkSTVr19fw4YNkyR1797d6es/+OADJSUl6corryzw+MCBA3XxxRfrrbfeUmpqqrp3766FCxfqiy++0PXXX6+ePXt68V0BAGCuzByWU/I3KSeyzQ4BQJCwZGL4xRdfaM6cOQUeGz16tCSpd+/e+YmhJyZOnKgxY8bo22+/1TfffKO4uDg9//zzeuyxx8oUMwAAAAD4K0smhrNnz/ba66OiojRmzJj8HkgAAAAACHZ+PccQAACYxyYqZAJAoCAxBAAAHnGIQigAEChIDAEAABCUaNoA/kNiCAAAAABBjsQQAAAAkGSzMW8WwYvEEAAAAACCHIkhAAAA4GMpJ7K1avcx5ebZzQ4FkGTRdQwBAABQFMVSAsPB9Exd8PZcHc3I0dCu8Xp5cFuzQwLoMQRgbQ6HQ4/9vEadx8zQ+MVJZocDAD7FjDffcjh8k3r/snKvjmbkSJK+W7LbJ8cESkNiCPwrkFph/1y/X/d9v1JzthwyO5QyW7HrmL5fuluHj2fpyf9bZ3Y4AACUWfKxTLNDAIpgKCmCVqC2wqZm5OjO8SuUZ3foz/X7teaZCxQR5r9tQFsPpJsdAgAAQMDz37tFAE5tPZiuPPup/s/MHLvSMnNMjggAAABWR2IIAAAAAEGOxBAAAABByVfFZgB/QGIIAAAAAEGOxBAAAB+w2x2as+WQtlBQCbAsmy1QS9MBpaMqKQAAPvDOzK16b+ZWhYfaNOXeXmpaM8bskAAAyEePIQAECLvdoR+W7tL4xUnKzbObHQ4KeW/mVklSTp5DL/y+weRoAAAoiB5DAAFneVKKjmfl6Zwm1YJqWNDXCxP17G+nEo60k7m6o08jkyNCcVJOZJsdAvzUqWIpwXNdgzVk5uTpaEa2aseWMzsUeBE9hjBdnt2hpyev0wVvz9Wvq5PNDsfvBXt9tb82HNAVHy3UjV8u0Rfzdpodjk+9Om3zGT9vMjESBAsbCYrXBVPjFnxn2rp96vXa3xr1/cr8tY+LcyAtUz1fnaXuL/+tD/7e6qMIYQYSQ5hu8Y4j+nphkjYfSNeTk9aaHU7ACbZbirf+2pL/85gpG02MxPdO5uSZHQIAwA/c/u0K7U45qV9WJeuvDftL3Pa7Jbt0+HiWJOmN6VtK3Bb+jcQQpluedDT/5/SsXBMjQSDYuC/N7BAAAPAbSxOPlvj8+mS+V4MFiSH8WmZOnuylDIEAAHiHI+gHrxvnZHaefl6+R8uTUswOBUCQIjGE3/pl5V61fXa6er8xS/tST5odDgAAHnvm13V6cOJqXfnxQq3efczscIIGTRvBa9vBdH2zMFFH/h0mCxJD+LFX/tik7Dy7dqec1NcLk8wOBwAAj/24bI8kyeGQxs4PrsJZVnKq6mvgHAfOnczO0+UfLtDoyet181fLzA7HMkgM4bf2p2Xm/zx3yyETIwEAwDgH0ujBALxp5qYD+XUtVtFDn4/EEPgXrXcAfMVKl5sPZ21Tz1f/1idztpsdCmA6lgcJDqUt0RGsSAwRtAL14m+lG04A1nbkeJZe/3Oz9hw9qZf/2KS0zByvHetkdh43YwBgYSSGAAAEqYPpBYcsHjvhncTwi3k71eLpabrsw/nKymW9TQCwIhJDAJYWoB27QFB54fcNkqS1e1M1acVek6Pxb/S5AvAWEkMAAOAz2w4eNzsEv0LbmG+dzKFHG+6x2x3KzbObHYYhSAwBAEARdrtDr03bpCs+WqAZGw6YHQ7gE4/+tMYnxymtzkFmTp5uGrtEZ700Q3+Z/PdH7YLiZebk6fL/zVfTp/7Q+MX+v3QaiSFMF6jXm03707RoxxGqnfrIJ3O2q/ETU80OAwgYy5KO6n+zt2t50lE9+rNvbpYBs525FJaZfly2W7M3H9KBtCyN/Jp19oy0ZGeK7vt+lSH7+nHZbq3ekyq7Q3ry/9YZsk8zhZkdABCIFmw7rOu+WCyHQ3ryohYaeU5Ds0MKeC//scnsEICAsnjHkfyfj5zINjESIPgs3pFidggByeFw6I5vlxu2v0370w3blxWQGMJ0gTh/4t2ZW/OHXrw4dSOJIQC/1+XFGaoRE2l2GEGBolu+w6Ce4GJ30NBVEhJDwAtW7zlmdggAYKhD6Vk6VGh5C09wIw4j5dkd+mLeDh1My9KdfRurSvkIs0PyO/xN4jTmGAIBpvCcxjy7Q9sOpis7NzAqZnmDw+HQoh1HtGl/mtmhBJXxi5N069fLtCwx+IZMWfU+zGHZyADnflm5Vy9N3aTP5+3Ui1M2euUYOXl2HT5e9kYRt9BrDBOQGCIgMOymeMPHLVX/t+bq8v/Nl93OTZ8zn/2zQ9d8ukgXvvuPFmw/bHY4QWH7oeN68v/WafqGA7ry44VmhwP4rSU7U/TQxNWatm6/2aGY4sNZ2/J//nnFHsP3n5Nn1+X/m6/OY2bozembDd8/rGN/aqZST+aYHYapSAwBP5GZk6clO1N0LMO9sfHrk9Py/79hHz1izrw09VThGodDem/mVpOjCQ5ztxwyOwSo5Ea1X1aVvhC9jW4NU+XZHRr59TL9tHyP7hi/3JChvv4mLTO3xOd3HcnQh7O2acWuox7t/491+7Vu76nvzvf/3lbK1sbhL8u3Ji7brW4vz1S3l2ZqQ3Lw3iuRGCIgBMP4+LvGr9BVnyzUBe/M1fGskr8Ii3PCw9cFkzV7Us0OATBd4uET2n7ohNlhoBQnc/LyezgcDmmNn81vP5aRreRjJ722f4fDoZvGLtHrf27WNZ8s0hEPhoN6Mz5fO5ieqYPpzpfjsNsd+njOdj360xrtTsnwcWTme3XaqQbikzl5+mjOdpOjMQ+JIeAnZm46KEk6kJalOZvpbQHgPdPWB+ewRLP830rXh0AGSkPozsMndM5rs3T2q3+79f7dkWd3aMfhUw0c2Xl2/bPVOlMFfL3G8ezNB9XtpVM9YnOcjNj4a+MBvfLHJv2wbLee/MX/1+Nz1+Hj/43Gmrc1eO+xSAwBPxTsY+D9TUZ2rtIy+Z0BcO7+H1YX+1ygzqF/7rf1SsvMlcNR8vs3Up4fzbO3GfyLf/3PzbI7Ti3X4Gyu5DcLk/J/Zqh/8CIxRLF2p2RoxLiluu/7lV5NRHYeYbgSAtf2Q8fV89VZ6jxmhmZtPujWa+dtPawuL87QJR/MK3b4jy/l5Nm1P9X8OODfqHwKSdoSYAuDW936M+bNOZsyQeVySCSGKMHDP63W35sOavKqZL3vxYIck1aUXuDAF7hVgTc8+X9rlXIiW9m5dg0fu9St174ybaMOpWdpzZ7UAq25ZkjPzNF5b81Rt5dn6oXfN5gaC6yDJM87ArWX0B/xq5C4QypeoJ0fJIYo1qId/60t9vm8nSZG4l8cDocyc8xreePybS3LkzyrhCcpvxKe5FqFSG/6Y91+JR45VZDgC64HAAKEVRs3Ai3hgH8gMYRPLdh+WOe8NkvDvljscWVNq1uw/YjZIRRry8HjZocAP7XrSPBVqQNwytET2Rauau1+Yjd780Fd/clCfRzE1ScBZ0gM4VPXfrZYu1Iy9M/Wwxo3PzB7HSYu213scwu2HdZlH87Xc7+tN2Wx+dF+VmnM4XDorw0HzA4DMJyvKxK6yhdhTVqxV+uTWRbGX0xZs0+dX5yh3q/PCphlDG4au1SLd6bolT82aesBazaYMpzYO6x67bUKEkOY5u9N7hXiCATXfr5Yq3Yf09j5iZq9Jfjev7smLt+jGRv5nBB47EF8c5J6MkeXf7hAiYcpPOYP7pqwQnl2hw4fzw7I+cVLdqaUvhEQJEgMAZPMZi3CUr02rWhJbX9jY6aIoQ6lZ+nO8ct11/gVOvzvYtUv/L5BbZ/9U+/O8F6RLKOduWaWmcw6P7Pz7Pp5hXfWrgsmvu79WLfXv3t6Pfm06Lnzb5k5eRr9yzrdNHaJth10rRLu0YwcrdjleX0Af0ZiiIDAhTswnb7xR+Dx9E92zJQNmrp2v6as3aeXpmzUnqMZ+mLeTqVl5urtGVuKnQeVm2fXrM0HtfWANUrkN68VY3YIpmM9VuMF53dhYL7pwHxXvvfjst36ZlGSZm8+pFu/Xu7y6678aIHW7DnmvcAsisQQAFCs/amZuvazRfpg1jazQ5EkTV6VnP/zpJV7dSCt4LqKJ7KdJ4av/LFJw8cu1YXv/uP3vR4AYCSrVmY1woTFu/J/3uHG8HW7Qxo3P9ELEVkbiSHgB5gsDbM88+s6S1fanbC4+GJPZzq95E6u3aEvWW6jVPRWWJdVbuLXJ6dq0PvzdPO4pfT+BgCrnFdWciA9s/SNAgyJIeCHgnO4kG8YnoP7+e/qz/XWrgrryTy1xCMUPYH/sOr1fuRXy7R2b6pmbjqo/812f0SBzapvzCL4fGAGEkMEBDrU/mOVzyLP7tD+1ExTluUAAH/mraJAxzKytT451ZDrcnLqf70p/7dib5n3Z1Xe+l2Q+AWGQPs1khhC0ql5RHeOX64Hf1yttEyGhFhdWZO/6ev369avl+m31cmlb+yhW79epm4vz9R9P6zy2jG8IdAu8q46mJ6pJHrSYCF/rN2nhyau1rJElhNwVUnfDftTM9Xnjdka+N48vTAlkJadCIzGx5QTpyoV7z12UmPn79QWixTKkpyfV1m5eRo+dom6vDhDf67fX+Lrc/LseuH3Dbpp7BKvz/G22x3anZJBo7SHSAwhSXri/9Zq6tr9+nnFHr3nRyXf4b7MnDzdNWGFpm84oHu/X6ljGcaXzU88fEIz/12n8rfVyflfeLCmFbuOqucrs9T79dmauMy1OXsITFa5ldqfmqk7xq/QT8v36NZvlnOTZ4CJy3brWMapht+xFi2qkWd36PN/duit6Zt1vJgKw0azypk14J25yszJ0/WfL9Zzv23Q+uS0As8fz8rVB39v1Q9Ld1mi7sBPy/do1uZDOpSepdu+Kbna5x/r9uuLeTs1e/MhPfPreq/GddO4per12ixd8+kiS3xO/obEEJIKLjb/uY8KM5j957pqt7XWqHE4TrVyfTZ3h1db1I5mZCsnz/HvMaXEIxmGH6Nwr/PJnDzDj1EWdrtDy5OO+iRh9VUH5L7Ukx6/9r2ZW5WdZ5ckvTptk1EhWVpmTp52p2SYduPA/UrJlpzRS5hyIls5druJ0QQGT671uXkFP3dvn7Y/LN2tMVM26r2/t+mNP/1/HduSFL72HEzP0vjFu7SzmMqZL03dqDemb9GjP6/V72v2uXWs7Fzj/36W7nS9J//Hpf81OC5P8t6916H0LM3dcmqN6CWJKW5VIcUpJIawHE9ahtcnp2l3intfet8sTHL7OEY68zvhqwWJavPsdPV6bZZenLpRQz5eWGKVt83707Rpf1qxzxthfXKqPpy1zeUFYf3J07+u0xUfLdD5b88tdt27jOxcfTp3uyat2OMXrY6P/LTG49f+s/Vw/s9WWXjdm/LsDl324Xz1em2Wnv89kIbUua+sQ6e9Nf+qsCNBcF5aUeGKxHYvXwvfnrEl/+dxCxLLvD8jovXl9ILUEkbwnLnswoduLh/00MTVHsdkBF9VPM3KLdgIfTK7bI3Sm/en69Vpm7R4h3UrcxuNxBCmcTicL2De+41ZRdYmc8UoN+eypWcWTAh2GdRz5smE8ud+W19g2MzJnDwtKuFC9NXCJF347j+ascE7FSMzc/J09SeL9PqfmzX0s8XKs/gwLncTt28XnfqCPXw8S98t2eV0m1f/2KSXpm7SAz+u1tS1Jc+fkE6dPx/O2qYVu8zpiT4zuUPJVu9J1ab9pxo8rDqkDgUN/YxhYc54+xPx9WgPZ/cEKMrdBrxfvVhPwBP+8ns+fDxbH83eruu/WOyVaTdWRGIIp1bvPub1Y6zafUydx8wo8vjulJP6dpH7vXllHZ7w4tSNSj7m+XC8snCWd5WWjDkc0i1fL/NKPBv2peUnqofSs3TkhLUv4pk5ng+TKW446Vdn9Ci//3fJ824dDoduGrtEr/+5Wdd8ssgyX3p2u0PLElN00ElDy6rdx7Q8KQCLenhwp+zs2nH0RLY27ktzaQTDyew87U8NvvWuysqdPC/pSIYOplvj78poRja8BWvxrDKhwcHnvjBxLVlPfts5eQ4tS7TW9CNvITGEU5d+ON/U45u1oPb/rQzcktvuKNwyX9bhYv7e0n+olBvSPLsjfy5Ddp5d887ovTPqRs2T38ELUzboyo8X6ry35+roiWwdSs/S+uRU/bXhgC77cL6u+GihaS3JVirVfs2nCwvM0dxzNEO9X5+lC9/9R6+VMs8pPTNH578zR91enqmP52z3dqhBzdvDGM3y9cJEnxwncBcwt861BK75aLb/XSsD9a+nMBJD4AxW6ekpC3e//H9bnaxnf12v7YeOGxaDr+YdWZVVht6eHiaZejJHT/2yTn1en6WB783TyDN6mu/9bqVJ0VlHTp5Df50xLHvC4l1K+3eoeWnJ3lcLErU75VRS+cofrhfusVBe7JTV4wskr00L7CIrgK8EaNuRT5EYImgdMjAJzM2ze7VXzJsXuy/m7dS4BYm673sSBF/4xke9A4VNWbtPJ8o4ET+QnVm1z51GkiQvVPVF8LDbHU7n8ZWUmHPza6xcizTkmY3zChKJIdxw0bv/6OZxS4ssReCPdqdkaM0eY5aEmLp2n9o+N13nvT3X6Vwuf7Fub5rSMnP06+pk7U/1/55Tqxo9eb1HxZUABJ6PXBh+7A8jMMyd/1m2jOZ/fjisMZgcSs9SyolsjZ2/U/3enK1PLDZk3x/+Pt0RZnYA8B8b9qVpw740fTJnux6+oLnZ4ZTJraUsxuqOl//YqIzsPG07eFzfeFA0x0qGj13q1TWGgpGzL43N+9NVs2KUCdEAJXN35ENZ5q0xXFV63YO1+g4fz1LdytFeiKZs1u1NVeu4WLPD8Gue/jXZ7Q5t2JemWrFRqlYh0tCYiuOLeeJzthzSLV8tzV97WZJe/mOTruxUV1V99D6DDT2GcJvVyh57YuM+49YAPD2/SJJmbjzo8uu+WZSk8YutlUh6Kyl0dq+5YtdR/bB0lzJ9XA7dn61PTtWUNfss+ZmlnswpdmHmYHQoPUujvl+pxyetUbqTURaeDNuav+2wRv+yTssSA6Oa7Ordx3TLV8v02dwdLm1fXAVhX9t2MF0/LtvtVjx5dofW7kktdt1Ud/R5fbY27/dgfVkPzrnCt/4lnbcexeRjVi+E5mp4hXOyV6dt0sXvz1Pf12e7vaazK8ct66fmaa/ajV8uKZAUnraPKtBeQ2IImOjJ/1tnyZv8siqpITEnz65Vu4/pyo8W6NGf1+qpX9b5LjAXWPW+YVdKhi79YL7umrBCT0+21meWciJb/d+ao75vzHZ74eVA9faMLfplVbK+W7JbX85LLPP+0jNzNHzsUn2zKEnDxy5VTp7nS7ScKdfJTZfRilvyY/WeVM3YeEAvTt3o0hJJVhjyd+R4li75YL4e+WlNgSJOpRn1wyoN+mCeLv1wfpmLU+XaHXri/9aWaR+ecuhUcrX1gHlJ4MH0TP25fr9SM3wzrcVKFZSL88m/jSvpWbmaUMzavO6y2x36ct5OPT15XZmnPwRuRdzAQ2IImCwQ5my6KifPrsH/W6DLPpyfv3bjT8v3lPkmN1i+dE4XSfhx2R6TIynok7nb85f08GRonNFST+bo5+V7TO3BmLD4v5uzt2dsKfP+thxIV/a/fyfpWbk6ZtBN8ZS13h0BYrc7dO3ni0rd7syqsMVJtECP9MxNB5XxbxEnd0ZY/PbvSJttB49r7tZDZY5jy7+JmRkNWe/M2Krz3p7r+wNLyszJ08XvzdNt3yzXdV+Ufl4Fox0GVRifveWgnv99g75emKT1yQVHWaVn5gTd8l4Z2bm65atlOue1WS5dr/wViSEAn5m6dp/W7i1a9OfuCStMiKZsko6c0NcLE5V0pOjN6pn3an7Q2Fxme84YTm0F93y3Ug9OXK1LPpin5GPWis1qth0seBNpdzj08Zztemmq60tvlGTu1kNatCMwhr5K0kkDKvumnfReY6AvCmG8O3Or149RnJW7juUXulm3N03HDRiaC+dKWmswGJdY+W31Ps3YeEC7UjL0wu8bzA7Hayg+A8Bn9hx1fpP+53rzWt8KN7i7ksjl5tl15ccLdSg9S9UqRGreo329EpuvBFruOnfLqR6ZrFy7fludrNt6N/LasQIt8f95xV5DF58u7m8e8ERWbsHEfM2eY+YEEgRKGkLr74X2PPH3pv/uU3Z5MI/TX9BjCBjM9PvE4BhV6VOFvx+TUjLyh04ePp5VZC07X5wDk1bs0fxth31wJP9S+PRPz6RHwR1GJoXwvRKH1Xv5wmTGV8+1ny1mHUIvCQ20Vi+4hMQQANxUuLKdGXMcH/hxta77fLHmbCn7fCUzcM/hHqsWRTKKN89ju92hG75cooaPT9Hn/7hWAdUqDh/P0jtGDd202DnkzjUg8fAJXfz+P7pp7NIiz7k73/ZYhnvVbYP1UhUaUvZ3nptn10/L92j+tiMGRPSf09dDu92hN6dv1vCxS7RiF0ttGYHEEG4v3RDoNyhl4a2bXT5y/+XtmwqqgBb0/ZLdZofgFdMDuNiBJK3dm6pdR7wzPGvW5oOau+WQ7A5pzJSNXjmGtzw+aa1LFVut4KGJqzXwvX+0eIexSYAkPfzTaq3bW/Zlphw61cvoLSeycrXj0HGXlsVwtoWrjYy+SFaNuJ/5aPZ2PTRxddl3VIy5Ww/p/b+3adbmQ3piUtFKvc7eA/ewJSMxhFf/aIPN+uQ0HXWzNbI4VmqlDKbendw8h8bN3+nVYxj5veTJmlWFBdL3pBEVQH3B3b8pf+vp8sSXXvq7225QlUajuHNjanb1w8LzzEqLfX1yml6YYnxhjqWJxvQGncjK1QYD1zE+08nsPLV65k/1e3OOXvWwOIvRSUtunl3/t9KzKtZG9Bi++Zd3r8e/rd6X//OmYqpQkwi6h8QQRcoQW4FZeYgRFd1mbXY+JMrqC+vilOw8u579LXArjqF0VvxTDbZpVEHUFuVnSj8RjejZM0rhv2Vv/m1f9uH8/J8/nmONubrv/71N9//gWuN/4Y8mEOYY+uJaHgAfUwEkhnBbVq4xCyu7auO+NN345RI9PXldkYpk/uTwcWN6Ev2Rty/OJe1/2BeLfb5kQZDdw8MDVkw+rcTpMDsLfGZGNfBt3JemKz5aUOzz/2w9rEs+mGfIsVA2rt74bz7g3rqpvsgnyrK0iLtrLFMhNjCQGMJtp6sx+spzv63XnC2H9PXCJP26yruLMXtTWRdxN4ov1rmyUgvaP1sPa/Qv60w7fkklvwF/54vrSSC6edxSLU8qeXjkmj1F13wtCyNSWncaOO12h/7Zekg7Dxdd6xXWl1C1vFvbD/10kZcigS+RGMLyzlwcefziXT4//po9x/TYz2s0Zc2+0jf2hAVawQPdzE0Hvbr/Ae/84/ZrMrJzNfqXdXrgx1U+b2wx2p/r95sdgqFcyeXTM3N0y1fL9OMyz+bvLN5pfIEOT/hTYmfVS+Xh41matGKPDqZnuvya5FTXty1RoQ/ll5XJuue7laUmnb7w2p+bNeyLJbrgnblKOkJy6Ctm/U2fyLbeiC5vtsv+s/WQci3S4G8kEkN4xJNKiBnZZV9PzNvz9HLtRf/Ib/9mub5fult3TVhhSKEPV9kd0pYD6W5/bqV9Qt5aWiHlRLYyc6z3xWBVY+cn6ptFSZq0Yq/e8vIEfU/Y7Q6Xfp/7Uk96tI7Y1gPWKgjirp+W79GMjUULg7h6o2CVOYNmLLXiD9Izc/TNwkQtKGWtUIfDoas+WagHflytIR8v9N1c8mIO8+vqZP22OrnEYapn2pd6Ug/8sEovTtlg+FSN0/PssnPtev1P14qxFL6P/3n5Htk9+GP5celuNX3qD13z6UK3X4uy+WHpLg187x99Mc97RdzMuG4VHv0z7IsleuTnNT6Pw9tIDOERVy/ypz3xf2vV8uk/vRSNcexOvtTPbNmd5+GC4p4kxY9NWqPz356r/m/OUdpJ98b6l8QbVWi/X7JLncb8pXPfnKMjx/2798sVRtz7vTn9v7+h75b4vie8JHa7Q8O+XKzmo6eVuu309e5XTdydkqFvFiV5EpopFmw7rDlbDhW46f95hfOewq8X+s/7shqrFOiy2x1q8+x0jZ68Xtd+vrjE5SL2HD2pHYdO9YYlHcnQtoOlN3j46qb20Z/WaPziJOWVkFi9PHWTJq3cq8/+2akflnpvqRdXq3UXjvTBiav19cJEt4/3yM9rlJ1r14pdx9x+rbvSMnN01/gVXj+Oq8xs7MnMydOjP689VZ32d98XcfPmJcRZ5+OkFXu9d0CTkBgGiT1HM/Tgj6v11vTNPu/6zsrN0wQThoAu2Zmi0b+ss8Sipxe/P0+5ee5dsdIzTyWTyamZhg7VM3qhWUl6bNJaORzS3mMn9eGsotXYrNwr4Y0vkjPL4xc3ksUqPUbO/LPtsFfOE+nUsLter83yyr6dcfXcW7s3VdnFFNa69vPFuvHLJS4NZXe30czbHA6Hko+d9KjXJVC4O7RufKGGmq9KSEwKJ12e9J57yw/LduvJ/1unsSUsA/Lr6v/m7b8zY6t2HDpuuXPllWmbTD1+aWfPR7O3a8paY6aauPrJW3XqursFa/yJtf4qvIfEMEg8/9sG/bxij977e5sm+7iAi7sJkREyc/J01ScL9c2iJF3x0QLl/LuWz0eztxsypNVdOw6d0Mrdnieo+9MMmo/iA5sPpPnVvCXXuPd+Ppq9XVvdrFBnJd4cMv2cRZcCmbwqWXd8u7zEbV75o/Qb1JMWG05949il6vHK37r+i8Wm9MhZ4Qb28An3RjG8XigROZbh3ze7r/77fkr7/aecyFa/N+cUGB7nzV+fq+dGZo5xjdne+Aswo+Eb8BYSwyAx/YxFcj/34rhvqzhzOI/DIf24bLfu/2G1Xp22Sa+6cHPnDcezfJ+QGsnhcGjn4RMa8/sGzd7s3WIuVufKDc2LUzd6PxAZc+Pmy3v331Zbt7LwzE0HSxxRcTwrVwfTM306lzbP7tC6vZ5Vp9yfmqm5W06tq7pg+xHt8uEcaSv5ZM4Ot7ZPy/Tva3VhOW42zv603LOCSiU57sJnunLXUR8sbVT2AyQdOeFxA3Oe3aE3/tysO75d7nR5C4uMpvZbhetEBF4jtfeFmR0AfM+oCeY5eXaFh/pH28JTZyxX8JUfzgEy+8ti4rI9emP65vxhU5/P26klT56rGjFRLr3e4ZBe/3OT02Gmnjh6IlsVy4UrNOTURd+K36VHTxQ/p8Yqc6l8ITvXrs/n7VBOrkO39W5odjilKu030/XFmapSPsLpfGRPJR05oSU7U3RB61qqGBVe4LnHJ63xuPJp4QQ2w0nVwE37rdmz7e7t3J6jGXpp6kZVqxCpxy9soXIRoV6JK3j+co21ek+q9qWe1L3frVR2rl3vXNOhyDaX/8+1gjll4WqSnJqRo9jocKfP9X59tupVidafo85RuYhQt3rFp6/frw88KN4H17zpQiG3Kz/2/nnmz/zjrh6W1OXFGR63ZPurN/7crFUlFCIIVK9O21RkLo07y3ds2p9WalJ4ZrK0/dBx9X7d+Ty092duVYcX/tK5b87WMRcLGpgqyBssx87fqdembdbbM7Z4VM24rLzRYpxyItuw4YWZOXka9P48PfzTGo38almR54tLCo+cyNLhUgo9rXZhwemkI4HRi/jAD6s1de1+fb0wSS2enqabxy3VwfRMDftisVv7cbbkRHpmjoZ+ukhnv/K3Fm63xjIjRvD1tIrnft2gpYlHtXpPqh74cZVPj33apGKKRhX24ez/rlXO1qLdlZLhUdGw771Y4Oe0P9cf0F0TVmjvsZNeP5bVFL4vcTbH3Oj1QQPtK57EEB47lpGjO8aXPCfHKoxq3D9yIlvXfrZIJ328Xs/uo/5987YhOc2t7R+auLrYG9bTLYKJRzJ8Pl8W7juzcMT7f1u/pfz8t+dqv1FrzLngz/X784cuLt6ZUsrW/xnwzj86+5W/taSY1+Tm2XXf96uMCLFERhaWchTzsyuWJBb8HGZuOqjer83WP1udV5I+mJ6p31YnK/WMis/LElPU69WiDVJLE49q4Y4j2nvsZIFpGf6mcIKT7uMhs9POKKK20gfVQp3Z6kLVWEn6dG7pw4/3pZ5KvNxJDIwcaVCSKWv2uT1txp9GsrgTqpWL31kRiSHKZHfKyRJLYQeijOw8bT3o2+FX/lYSuawFJ1y9aXA2RwO+Vdrv2o/uNSRJOw+f0GqDW5RLUlwlVFdk5dp16zdFexkl6UB64C8bU5riCgHZ7Q5d/uEC3fPdygI9ineMX6GsMvw+pFNL9+wqpRfWX/4mHA5uqf3Zrxaez+2PXL2tOd1g4K9IDFFmd0+wzvo9ZRUIE5X95aYDQNn5e8VMM6zacyx/mN2aPan5vYaHDEimv1qYpMEfzS9Twu8Od1I3d3qEth08rnNen6WRXztveAgWGdm5+VVdi+NsqKmnXP19BsK9ii+Y8Tk98IPxa0X7EokhyuyPdfsNn+uV53Dox2W7dVsxreGBJNDyOBLTU05/DHx9wwycd8XLKZS0lWUInbOc4PDxbG3xwWiGzJw8r11v/zdrm3an+HfPhxE+nr3dadEmTwX692MwJqxrC9XaWLjDv+chU5UUhijr8JvCVu46ZtochDMZOebeW18IWw6k645vlysyLFSfDOvknYNYnC+XD5DK/rsMxgJG7pi8aq8+nrNDvZpU02MDmiskxP9vNry5NmSw2LgvTdd8ulANqpXXM4NaKSrcO5VHjfDr6mS1jov12v7Ts3LV+pk/FRPlndu4SSvLNn3B1/PwveW9MsyL/r+Ve9SwWgW1i69kXEBBZNN+92oTeFtxHcPr9lorzrKixxA4gz/OqLh7wgptP3RCG/alafTkdaW/wATe/lSnrdtf+kYW8s6MrWaHUIDRv5+yzjt+5Kc12rgvTZ/O3aF2z03XjkOuFYywsif+b61Pj2eFheW9YdGOFH23ZHeB+VObTVxyo7j1aV0pXlJWuXaHjlp0KPGgD+aZHYLXnW4gLO5P7f4fVmvwRwu0Pjm4qrcb5fsl3q/giqJIDIPY35sO6OM5xqwrVxL/S7W8w1ufw5YD/900z958yEtHcY+vb0qXJbpezdETVr7JNnJ+i1E+8KCVfX9qprb9W9TpzBEI6Vm5emP6ZsNiM0tx1TELm7nxgEaMW6oJi90vhV8aC54qBZzZE19aqD+cUfbfzHlww8cuNe3YVrbNheqfVh92eOmH88u8jzy7Q98ucmPtZAvdMKWUsBavkTJz8pSb55s5uSgdQ0mDkE3Syl1HNWJc4M/fg/9Z68OKkJJrvcSH0k+tGVetQqTb+7di4uZtb8/Yovv6N3HrNee8NkvZeXa9cFnrIs9NXbtf6Zk5iolyvuB0SfxtFMDdE1bqZE6e/t50UL2aVPN4P85uul+f5v8J9mlnDvPfZeIw3YMeFKwxa56Zf/0lmG+1i0P+S7vEG1HUyAwzNx10+zXujhaZsmafRv2wUnGVyumnO3q4/B3r6lGM/PoN9Pmhp9FjGKS+XWRsa/T1ny/2WRU2fxVo6UFJF8lZmzzrufxkznbLDkF6Z8YWt1+zcV9agXXS/IU7X6ZGndfZ/7YYvzJ1o9PnH/jRvyu9OXMwreh6iWcusbBhn7FzVzy50TNDemaO4QXNSpNDjwV8wN8aqtz1x7p9pW90hrsmrFBOnkOJRzL03kzjp1gESzJnJBLDIJWeaezN6taDx/VLGSerI3C8/mfB8t6uJg8vu7kgry+d2ZjiSuJ0PCtXV360wIsRGceT5M5bBX9OFFO04i8PFxb/28NGCl94vwyFLUpjlY5qd4cLrtp9TF1enKHRk9e7tL3dg/mseYXuFh0OafEO7w5HP9O8ba4NK/Y2bpqN4vs/Nqv8fRf2+xr3EsMzuVtwMPnYSf3GWo2GIzGEYVbvOWZ2CJD5i6s6HFLhezUr3H/0e2O2Fmz33Q3ZjkMnik1ynMnNs2t5UooOphftRbKipFIW8baKjQb3urki1cWCIHuOGvMZ5ubZiy2C4m3OEr+yFB96f+ZWZea41ns3YfEuNXxiqtvHuPazxUUeO3Tcd393/0cjKoph1nelkRXYfeG539brovf+yR9p4gtWTcaNRmIIBJivFiaaHYIl7Th8wukNoVU8/et6XfHRQp375hzTk3uUTdeXZri0nVG3Yj1fnaW2z/6pH88oyGLWPcyjP61Rs6f+0EMTPRv66+pw17TMXMMqvX72zw4dzwqM5RXgOyn/Dnd2b+i9dbMLI65Hvnp3K3cd0zGLVuT1dySGQIAJtDV1gsXpKpTpmbmauGyPqbGYfXx/Z/S6rqXZn5Ypu0N6ZZq5Q7EPpmXqh2W7lWt36Kfle7Q/1b1euM1uLAq/3cAlTP43e7ue+9W1oav+zM86hSxv0oq9WrjdvcXMA32OodXYbJz37iIxBHyEaxNctfeo6z2Ge4+dNHwY0CoXq/GVxErFPNIMnlNtVQXKy5vQMZGWWXA4q7tz2ZfsdH2en9FvL7eMa2/COrq+6FqPvRHe/muLhfsA4QuBluyTGMKv+PrPr7j7bSOHgwRDa5Yr77Esn4OvPsJbvlqm9s9P188rrDVHaM4WEwusFDOO6hMfrJHqqlkWrcZpZK8XUJpgmSPlyRIinlri5TV0YR1WHgZsJBLDIOWNG+nxi3dp8ipr3TADRpqx8YCOZeToo9nWSXokaefhE2aHUMQb091f3iPYRId7bylhK9zEpGXmWKrn2Nde/3OT9h5jvnCgK7232fW/xa+DuEbAsZMFl6hxZwQBjMMC90Go8HAfI933/Sr1aVZDseX+W4jayGFupV1ev1mUpLf/2qIKkd49tQNt6ACsZfWeYz5fxw2+FxURanYIXnXFRwvNDsFUH87arjlbDun3e3qZHYolBUoPZoEh3GXkakVeq1qWdNTj1+5OOamdh0+oQbXyOpCWafg6rnANPYZB6FB6VpnKiZcm2cQW0qcnr1PKiWztSrFeKf3tBwNr2JjRZ9DhE74b/mN1m/ana8A7/5gdRoloHDGGLVDujuGUVYqB3fLVUlO/m3GKUe3kgXrVGDd/pyRp9mZrDv8PBpZMDF9++WUNGTJEDRs2lM1mU0JCgtPtMjMz9dlnn+nSSy9VQkKCypUrp4YNG2ro0KHauHGj09dkZWXp6aefVoMGDRQZGalGjRppzJgxyskJjuIEp/1t0Tk3ZWXl+XrjFiSaHYKhDhUzj2PhDveqtJ2WZVZLqUXPmf1p1l7PcPbm0uc1ZuWyBIBZyDdxphkbD2ppYsHeHBp3YDVr96ZKknLyLHhuBsk11ZJDSZ944glVqVJFHTt21LFjx4rdLjExUbfeeqt69uypm2++WXXq1NGOHTv00UcfadKkSZo2bZr69u1b4DVXX321Jk+erBEjRqh79+5auHChRo8erW3btmncuHHefWNAAPl4zna1rRuri9rUNjsUmOCVPzapc/3KJW5zZZAPJSwrT+5DDh/PUrUKkYbHUpI5Ww5p3d5UdaxX8vkAAH7LgrmqN1gyMdy+fbsaNmwoSWrdurWOH3c+BK969epauXKl2rdvX+Dx6667Th06dNDDDz+sZcuW5T8+depUTZ48WQ888IDefPNNSdItt9yiSpUq6a233tKtt96qHj16eOdNwVDZPl4nrDArFHawgjvHr9DmMQPMDgMmGbsgUd0aVi32+dOtvyhGKUMcPLkPGfy/BZr9UB+fXaGy8+y6aewSORxS7dgoHx313yG4Vh4iAgB+yJJDSU8nhaWpWrVqkaRQklq2bKnWrVtr3bp1BR6fMGGCJGnUqFEFHj/972+//dbtWFE6IydT2x2nksIfl+02bJ8om7lbDpe6zckc7w4pDPb7Q7Pe/7GMbJpILGZXSoYSj/i2Su3p82+fmwvaA8Fgx6HjuuDtuRrwzlztOGS9CtKSlJ3nEEt5QrJoj2FZ2e127du3TzVr1izw+NKlSxUXF6f4+PgCj8fHx6tOnTpaunSpR8erXbvgUDq73b+rShnpgR9WadJK45awWLs3VU2f+sOw/aHsdh4uvajOF/N2ejUGvs/KhsW9TeKliYB2hyPgi9p4s4AafCPpiPWKxHnDDgsuJ1TYd0t2mR2CVwT4ZdArLNljWFYff/yx9u3bpxtvvLHA48nJyYqLi3P6mri4OO3dyxp8RjjdepxyItvQpNBKmLQP+F6iH9xgAQACT3Yxa7IG2oilgOsxXLBggR544AG1a9dOTzzxRIHnMjIyFBnpfFJ+VFSUMjI8a73at29fgX+npaUpNjbWo30Fkoxs762XGEhIMgHXpHu4BqtVhzimnfReNWwayoHAFegjAoy8K+IOyz0B1WO4fPlyDRw4UHXq1NGUKVMUFVVwInx0dLSyspyX2M/MzFR0dLQvwoQf4YISeOwMQQs6r/yxyewQnNp5+IRLQ7EBINBMX7/f7BDgRMAkhitWrNB5552n2NhYzZo1y+mQ0Tp16hQ7XHTv3r3FDjNF8ChmpEARVCX1X91enml2CEC+D2dtL/a5275Z7tE+X/h9o455sTcS7lmwrfQCXUCwubWE61uWlwvWoXgBkRiuWLFC/fv3V0xMjGbNmqX69es73a5Lly7au3evdu8uWNFy9+7dSk5OVufOnX0RbsDz5xEOpydgr9ubqlmbD8oRaIPHoYPpzkcN+DM75ynOMGfLIb3yx0azw8C/bvl6WekbmYDLhv/Kys3T4h1HdDwrsKbsrNh1TDM3HtC7M7eaHUrQ8vvEcOXKlTrvvPNUoUIFzZo1Sw0aNCh226FDh0qS3nnnnQKPn/73dddd560w4UdW7T6mSz6Yp+Fjl+qj2cW35gNW8fMK84o8+XNDUCD7c/0Bs0PAvzKy6f2AsQ4fz9bVny7SFf9bEHAN2Dd/tczj+eQoO0sWn/nmm2+UlJQkSTp06JCys7M1ZswYSVL9+vU1bNgwSVJSUpLOO+88HT16VPfee68WLFigBQsWFNjX5ZdfrvLly0uSBg4cqIsvvlhvvfWWUlNT1b17dy1cuFBffPGFrr/+evXs2dOH7xJW9dQva/PX83nzry3mBhNEzFoyIRC+UjfuSzPluDbZDF2ntDQUagKA/2w+kK5Vu4+ZHQYCiCUTwy+++EJz5swp8Njo0aMlSb17985PDHfu3KkjR45Ikp599lmn+9q5c2d+YihJEydO1JgxY/Ttt9/qm2++UVxcnJ5//nk99thjXngnwcnfG6+OnmBujhnu+Naz+VSSAq7F1F/M23ZY85g/BQCmOUmPNAxkycRw9uzZLm3Xp08ft28Io6KiNGbMmPweSHjH4h1H9MT/rTU7DI8wNM4cm/anmx0CAABA0LJkYgj/d/Wni8wOwWMhZIZuoUIrfGVXimdrzQIAgg/3J+7z++IzgNF8nRdm+XCOFuDP7p6w0uwQAADIZ1Z9BG8hMYTh/L1AhK97DPu8Mdunx0NBn87dYXYIAAAApiMxhOH8vVWfkaQAAAAINiSGMNzOwyfMDqFMyAsBAIHOv8f24LTk1EyzQ7A0qpa7h8QQKITiM+6xwtBh8yMAAMD3Hpq42uwQEEBIDIFCXMkLF+5g7bbTko5YoFIkmSEAAECZkBgChbjSY/jS1E1auydVe45aICkyWcqJbLNDAAAAQBmxjiHgoRenblBcpWizwzDdH+v2mx2CpqzdZ3YIAAAAfo0eQ6CQw8dd6wHLyXPo5xV7vBwNSpN0xL+LHQEAgMDx/ZJdflv0hsQQKMTV2jOUqLGG3SknzQ4BAABYjFm1BB+btFZLE4+ac/AyIjEECjmUnmV2CAAAAPBTPy3fbXYIHiExBDzEqhYAAADWlJ6Zo+2HzJlukpvHUFIgqNgYTGq6CYt3KSs3z+wwAACAxbz6x2azQ/A7JIYA/Nrrf3LhBwB3+WtxDMBVSxJTzA7B75AYAp6iw9ASNu1PNzsEAAAAv0diCHiIvBAAAACBgsQQAAAAAIIciSHgIaqSAgAAIFCQGAIeoiopAAAAAgWJIQAAAAAYxU/7DkgMAQ8t3nnE7BAAAAAAQ5AYAh6yswQUAAAACvPTe0QSQwAAgCDD+vYACiMxBAAAAIAgR2IIAAAAAEGOxBAAAAAADDJ36yGzQ/AIiWEQ+GZRktkhAAAAAEHh8PFss0PwCIlhEPh11V6zQwAAABaydm+q2SEAsBgSwyCwNPGo2SEAAAALuXP8CrNDAGAxJIYAAAAAEORIDINArybVzA4BAAAAgIWRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEMAjabzewQAAAAAFgYiSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAaBNXuOmR0CAAAAAAsjMQwCxzJyzA4BAAAAgIWRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEOY8Twzlz5ujiiy9WjRo1FB4ertDQ0CL/hYWFGRkrAAAAAMALPMrcpkyZossuu0x5eXmqV6+emjVrRhIIAAAAAH7Ko2zu2WefVXh4uKZMmaLzzz/f6JgAAAAAAD7k0VDSdevW6eqrryYpBAAAAIAA4FFiWKFCBVWpUsXoWAAAAAAAJvAoMTz33HO1cOFCo2MBAAAAAJjAo8Tw1Vdf1fbt2zVmzBg5HA6jYwIAAAAA+JBHxWeee+45tWrVSs8884y+/PJLtW/fXpUqVSqync1m0xdffFHWGAEAAAAAXuRRYjhu3Lj8nxMTE5WYmOh0OxJDAAAAALA+jxLDnTt3Gh0HAAAAAMAkHiWG9evXNzoOAAAAAIBJPCo+AwAAAAAIHC71GM6dO1eS1LVrV0VFReX/2xXnnHOOZ5EBAAAAAHzCpcSwT58+stls2rhxo5o2bZr/b1fk5eWVKUAAAAAAgHe5lBg+/fTTstlsqlatWoF/AwAAAAD8n0uJ4bPPPlvivwEAAAAA/oviMwAAAAAQ5DxaruJMCxcu1MqVK5WamqrY2Fh16NBB3bt3NyI2AAAAAIAPeJwYLlq0SCNGjNDmzZslSQ6HI3/eYfPmzfXFF1+oW7duxkQJAAAAAPAajxLDlStX6txzz9XJkyfVu3dv9enTR7Vq1dL+/fs1a9YszZ07V/3799e8efPUvn17g0MGAAAAABjJo8TwySefVE5OjiZPnqxBgwYVeO6ZZ57R5MmTdeWVV+rJJ5/UlClTDAkUAAAAAOAdHhWfmT9/vgYPHlwkKTzt0ksv1eWXX6558+aVKTgAAAAAgPd5XJW0cePGJT7fpEkTT3cNAAAAAPAhjxLDLl26aPXq1SVus3r1anXt2tWjoAAAAAAAvuNRYjhmzBjNmDFDH330kdPnP/zwQ82cOVNjxowpU3AAAAAAAO9zqfjM888/X+Sxvn376u6779Y777yjXr16qWbNmjpw4IDmzZunrVu3asCAAZo+fbrOOussw4MGAAAAABjH5nA4HKVtFBLi2VREm82mvLw8j17rz9LS0hQbG6vU1FRVrFjR7HCU8BiVYQEAAABfSXxloNkhSHIvL3Gpx3DWrFmGBAYAAAAAsB6XEsPevXt7Ow4AAAAAgEk8Xq4CAAAAABAYSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAgpzLieFHH32kffv2eTMWAAAAAIAJXE4M77rrLsXHx6t79+567bXXtGXLFm/GBQAAAADwEZcTw7lz5+q+++7TwYMH9dhjj6lFixZq1aqVRo8erWXLlnkzRgAAAACAF7mcGPbs2VNvvvmmtm/frlWrVunpp59WRESEXnzxRZ111lmqV6+e7rvvPs2aNUt2u92bMQMAAAAADGRzOByOsuwgMTFRkyZN0uTJkzV//nw5HA5VrlxZgwYN0uWXX67zzz9fUVFRRsXrF9LS0hQbG6vU1FRVrFjR7HCU8NgUs0MAAAAAgkbiKwPNDkGSe3lJmauSJiQk6IEHHtCcOXO0b98+ffLJJzrrrLP0/fff6/LLL1e1atV0xRVXlPUwAAAAAAAvMXS5iurVq+uWW27RlClTdOjQIX333XcaNGiQZs6caeRhAAAAAAAGCvPWjitUqKCrrrpKV111lXJycrx1GAAAAABAGflkgfvw8HBfHAYAAAAA4AGfJIYAAAAAAOsiMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDlDl6vYunWrpk2bpujoaF111VWKiYkxcvcAAAAAAC/wqMdwzJgxio+PV0pKSv5jf//9t9q3b69Ro0bp1ltvVceOHQs8DwAAAACwJo8SwylTpqhRo0aqUqVK/mOPPfaY7Ha7nn32Wd12223avn273nvvPY+CevnllzVkyBA1bNhQNptNCQkJJW6/ePFi9e/fXzExMapYsaIGDBigVatWOd02OTlZN9xwg6pXr65y5cqpc+fOmjhxokdxAgAAAEAg8CgxTExMVMuWLfP/vXfvXi1btkx33HGHRo8erf/973/q06ePJk2a5FFQTzzxhP7++281atRIlStXLnHbRYsWqXfv3tq5c6eef/55Pffcc9q6dat69eqltWvXFtg2JSVFPXv21KRJk3THHXfo3XffVYUKFXTVVVdp7NixHsUKAAAAAP7OozmGR48eLdBbOH/+fNlsNg0aNCj/sc6dO+vTTz/1KKjt27erYcOGkqTWrVvr+PHjxW577733KiIiQnPnzlVcXJwk6aqrrlKLFi304IMPavr06fnbvvLKK9q5c6d+/fXX/Fhvvvlmde/eXQ899JCGDBmiChUqeBQzAAAAAPgrj3oMq1evrr179+b/e9asWQoPD1e3bt3yH8vJyZHdbvcoqNNJYWm2bdumpUuXasiQIflJoSTFxcVpyJAhmjFjhvbv35//+IQJE9SoUaMCCWxoaKjuuecepaSkaOrUqR7FCwAAAAD+zKPEsF27dvr111+1bt06bdu2TT/88IN69uypcuXK5W+TmJio2rVrGxaoM0uXLpUkde/evchz3bp1k8Ph0PLlyyVJ+/bt0969ewskr2due+b+3FW7du0C/zVp0sSj/QAAAACAGTxKDB9++GEdO3ZM7dq1U7NmzZSamqoHH3ww//m8vDzNnz9fnTp1MixQZ5KTkyWpQG/haacfO92z6c62AAAAABBMPJpj2Lt3b/3+++/6/PPPZbPZdN111+nCCy/Mf37BggWKi4vT5ZdfbligzmRkZEiSIiMjizwXFRVVYBt3tnXXvn37Cvw7LS1NsbGxHu0LAAAAAHzN4wXuL7zwwgLJ4Jl69eqllStXehyUq6KjoyVJWVlZRZ7LzMwssI072wIAAABAMPFoKOmIESP066+/lrjN77//rhEjRngUlKvq1KkjyfkQ0NOPnR4m6s62AAAAABBMPEoMx40bV+wC8qetXr1aX331lSe7d1mXLl0kSQsXLizy3KJFi2Sz2fLnOdauXVtxcXFatGiR022lU0tsAAAAAECw8SgxdEVmZqbCwjweqeqSxo0bq3Pnzpo4cWJ+cRnpVKGZiRMnql+/fqpVq1b+40OHDtX27dv122+/5T+Wl5en999/X5UqVdJFF13k1XgBAAAAwIo8ztxsNpvTxx0Oh3bv3q0//vgjf/imu7755hslJSVJkg4dOqTs7GyNGTNGklS/fn0NGzYsf9t3331Xffv2Va9evXTPPfdIkt5//33Z7Xa9+eabBfb72GOPaeLEibr22mv1wAMPKC4uTt99952WLl2qzz//XDExMR7FCwAAAAD+zOZwOByubBgSEpKfDDocjmITw9McDoceffRRvfzyy24H1adPH82ZM8fpc71799bs2bMLPLZw4UI99dRTWrx4sWw2m3r06KGXX35ZHTt2LPL6vXv36rHHHtMff/yh48ePq2XLlnr00Ud19dVXux1ncU5XJU1NTVXFihUN26+nEh6bYnYIAAAAQNBIfGWg2SFIci8vcTkx7NOnT34yOHfuXNWrV08JCQlFtgsNDVWVKlXUr18/jRw5UqGhoe6/Az9HYggAAAAEL39MDF0eSnpmL11ISIiGDx+up59+2uMgAQAAAADW4NEcw507d6pSpUoGhwIAAAAAMINHiWH9+vWNjgMAAAAAYBKPq5Lm5ORo8uTJWrJkiY4ePaq8vLwi29hsNn3xxRdlChAAAAAA4F0eJYbJyck677zztGnTJpVUu4bEEAAAAACsz6PE8MEHH9TGjRs1dOhQjRw5UvHx8V5fzB4AAAAA4B0eZXPTp0/XOeeco/HjxxsdDwAAAADAx0I8eVFmZqbOOusso2MBAAAAAJjAo8SwdevWSkpKMjoWAAAAAIAJPEoMH374Yf3666/asGGD0fEAAAAAAHzMozmGNWrU0KBBg9SjRw/dd9996tSpU7EL3p9zzjlliQ8AAAAA4GUeJYZ9+vSRzWaTw+HQCy+8IJvNVuy2ztY3BAAAAABYh0eJ4dNPP11iMggAAAAA8B8eJYbPPvuswWEAAAAAAMziUfEZAAAAAEDgIDEEAAAAgCDn0VDSkJAQl+YY2mw25ebmenIIAAAAAICPeJQYnnPOOU4Tw2PHjmnLli06efKk2rVrV+wSFgAAAAAA6/AoMZw9e3axz6Wnp+v+++/XggULNGnSJE/jAgAAAAD4iOFzDGNiYvTpp58qLCxMTz75pNG7BwAAAAAYzCvFZ0JCQtS3b1/98ssv3tg9AAAAAMBAXqtKmpmZqaNHj3pr9wAAAAAAg3glMdy0aZMmTpyoxo0be2P3AAAAAAADeVR8ZsSIEU4fz83N1e7duzV//nzl5eXpzTffLFNwAAAAAADv8ygxHDduXInPN2/eXA8//LCGDx/uye4BAAAAAD7kUWK4c+dOp4+HhISocuXKqlChQpmCAgAAAAD4jkeJYf369Y2OAwAAAAACgsPhkM1mMzsMt3itKikAAAAAwD+UKTGcOHGiBgwYoJo1ayoyMlI1atTQgAED9OOPPxoVHwAAAADAyzwaSupwOHTDDTdowoQJcjgcCg0NVbVq1XT48GFNnz5df/31lyZPnqzx48cbHS8AAAAAwGAe9Rh++umnGj9+vDp27KgZM2YoMzNT+/btU2ZmpmbMmKFOnTrp+++/1yeffGJ0vAAAAAAAg9kcDofD3Rd17dpVhw8f1vr161WuXLkiz588eVKtWrVStWrVtGTJEkMC9SdpaWmKjY1VamqqKlasaHY4SnhsitkhAAAAAEFj58sXWaL4jDt5iUc9hhs2bNBll13mNCmUpHLlyumyyy7Thg0bPNk9AAAAAPgt97vezEdVUgAAAAAIch4lhi1bttQvv/yizMxMp8+fPHlSv/zyi1q0aFGm4AAAAAAA3udRYjhixAglJiaqT58+mjVrlvLy8iRJeXl5mjVrlvr27aukpCSNGDHC0GABAAAAAMbzaLmK2267Tf/884++++479e/fXyEhIapSpYpSUlJkt9vlcDh01VVX6Y477jA6XgAAAACAwTzqMbTZbBo/frzGjx+vfv36KTY2VikpKYqNjVW/fv00fvx4ff/990bHCgAAAADwAo96DE8bOnSohg4dalQsAAAAAAATUJUUAAAAAAzkh6tVuJ4Y5ubm6vzzz9egQYOUk5NT7HbZ2dkaNGiQBgwYILvdbkiQAAAAAADvcTkx/OGHHzRz5kwNHz5c4eHhxW4XERGhm2++WdOnT2eeIQAAAAD4AZcTw59++kn16tXT4MGDS932sssuU4MGDfTDDz+UKTgAAAAAgPe5nBguW7ZM/fr1c3nHffr00fLlyz0KCgAAAADgOy4nhgcPHlTt2rVd3nHt2rV1+PBhj4ICAAAAAPiOy4lhVFSUTpw44fKOT5w4ocjISI+CAgAAAAB/lZPnf0U4XU4M4+PjtWzZMpd3vGzZMsXHx3sUFAAAAAD4q+NZuWaH4DaXE8PevXtrwYIFLs0bXLFihRYsWKA+ffqUJTYAAAAAgA+4nBjeddddkqQhQ4Zo48aNxW63adMmXXnllbLZbLrzzjvLHiEAAAAAwKvCXN2wZcuWevLJJzVmzBh16NBBV155pfr166e6detKkvbu3auZM2fq559/VlZWlp5++mm1bNnSa4EDAAAAAIzhcmIoSc8//7zCw8P1wgsvaMKECfruu+8KPO9wOBQWFqbnn39eTz31lKGBAgAAAAC8w63EUJJGjx6tYcOG6csvv9T8+fO1f/9+SVKtWrXUs2dPDR8+XAkJCUbHCQAAAADwErcTQ0lKSEjQ888/b3QsAAAAAAATuFx8BgAAAAAQmEgMAQAAACDIkRgCAAAAQJAjMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAABgoKxcu9khuI3EEAAAAAAMdCg9y+wQ3EZiCAAAAAAGiokKMzsEt5EYAgAAAICBosJDzQ7BbSSGAAAAAGCguErlzA7BbSSGAAAAABDkSAyBYvRvUdPsEAAAAACfIDEEnHjtirbq0aiq2WEAAAAAPkFiCAAAAABBjsQQKIbD7AAAwALKR/hfZT0AgPtIDAEAQLHKRfjfWlwAjDP2pi5mhwAfITEEAADFstnMjgAA4AskhoATDgaSAoAk6cbu9c0OAUGiTmyUHjivqdlhAEGLxBCWEl/F/xYDBeC5L27srPpVo80OA8WICAvR9d1IDOEbCx4/V/ee28TsMODHWtSuaHYIfo3EEJby8AXNzQ4BgI91SahidghBpVqFCJe3/fLGLqoU7fr2AAD/RWII013ctrYkqWnNCrqwdS2ToznFJibVwDh1YqPMDsHSHr6gmSnHbVWHlmUAKA3Ta4IHiWEQuL5bPbNDKNF713TQP4/01a9391R4KKckAk/1iiSGJalp0ucTX5khrAAAnMZdeBB4+PzmGtrVusmhzSbFV4lWVDhrZQHBpk1crNkhFHFBq5pmhwAAfok5fv6NxDAIxEaH6+XBbcwOwxDPX9rK7BAAGOT9oR1Uw4K9qa3rWC9ZNZKDUWEAvGTSHT1MLSTIRKCyITEEiuHg7gnwqkHt6pgdglPRkcYv6D6Myp4AggDrnvo3EkMA8DYaGSypuBuY8hHGD2uvHhNp+D4BwGqoFeHf+O0BBunVpJrZIQAAAJji4+s7KTSELkN/RmKIAhgCAACAewa2qW12CIDpzmtJ4S5/R2IIj5BAAnBFw2rlNfzshDLt4+c7uhsTDOAlV3eJV0yU8XNTnRlxdgN9cWNnnxwLkPxrNgT3p2Xjm6sY/EaozaZcF64A0eGhOpGd54OICvKnixMAaXjPBkrPzCnTPipHRxgUjWu8UXwGMMrTg1qaHQKAAEWPIQr44NoOZodQrG4Nq5gdQokCPWl9+IJmbr/mwfOaeiESwLt6N61udgjwMwF++QcsY1T/Jpp4e3d1Sahsdij5osJD1KBaebPDMITfJ4bHjx/XSy+9pDZt2igmJkbVqlVTjx49NG7cuCLLDSxevFj9+/dXTEyMKlasqAEDBmjVqlXmBG5B717TXhe0quXz49pc7Pd/6Hz3ExOc0qFepTLv447ejdx+zdVd491+TUSY31+WnIqhF8pvxJYLN3yfVhrd5E4Sw7AsNxTzwdasSEVamKujAfcAVjGqf1N1SaiiN4a0MzuUfOuevUAzH+htdhiG8Os7MLvdrgsvvFCjR49Wly5d9Oabb+qpp55SXl6ehg8frsceeyx/20WLFql3797auXOnnn/+eT333HPaunWrevXqpbVr15r4Lqzj0vZxLidpvhYRGqLOCRbvMbRwm3HDahXKvI8QH1Uae3ZQK58cx5cckh67qLnZYZjGVsa0KK6ydxZLtujlzlLaxVcyOwS/dX//pjq7cVVL3cDCWN/c3NXsEFxSp5J5C84Hg7DQEJ/dI3mbXyeGixcv1rx583Tvvffqyy+/1K233qpRo0bpn3/+UYMGDfTJJ5/kb3vvvfcqIiJCc+fO1f3336/7779fc+fOlc1m04MPPmjiu/BPPk8g3Tzc3X0beycOuMWThKC0U+vG7tZdKLykMt3Xdq2nTvWtM/TFn0SGhbIcjEkq0NPtsfv6N9H4W7qpVxOGJgeqsxtxXXJmZK+GXj9GoE/fMYtfJ4ZpaWmSpDp16hR4PCIiQtWqVVP58qfG+27btk1Lly7VkCFDFBcXl79dXFychgwZohkzZmj//v2+CxzwM01qlL3H0SiNLRRLYSUNJbHZbDqrgTV6vXs29r+bGV99dlb5HVkBQyABuON00+jVXdyfRmIUb0wFcFXL2hVNO7ZR/Dox7Nq1qypVqqTXXntNEydO1K5du7Rp0yY9/vjjWr58uZ599llJ0tKlSyVJ3bsXLXnerVs3ORwOLV++3OM4ateuXeC/Jk2aeLwvb6oew5e8NwVy61Xl8r6tCulL9apEmx2Cz70+pK3PjuVvg2vevrq92SHAB7yx3EPTWjGG79MIl3eIK30jL3r7aobSms0Xo7wGtq2dP5wyMizU68crTkkjd1A6v04MK1eurF9//VVVqlTRVVddpfr166tFixb68MMP9fPPP2vkyJGSpOTkZEkq0Ft42unH9u7d67vATfLhtR0V5gd/MOc2r1Hsc67exFt5vh+s5cHzg69yalnn/FmVES3FzMUJfJFhITq3RU2N6m9sI+695/63P6P37a9euryNLu9Q1+wwUEauNHy/f411q9rDdX6dGEpShQoV1Lp1az300EOaNGmSPv/8czVu3FjXXnut/vrrL0lSRkaGJCkysmiPWVRUVIFtPLFv374C/23dutXjfXlT1wZVNOOB3vrr/nPMDqVEd/crfn6glcvIB3KPoaesnqD3bVZdNWKizA7Dcmw2aWSvBgUeqxRt3vAcV/RpVl2/39PT7DDwr+YW7T070y0Gz4Pq3bS6frq9uz4Z1kn39LNOYli4QrsvWXnov6cq/3st7NqgSsAUHDECn0Vg8OtZ5WvXrlWPHj309ttv6/bbb89/fOjQoWrdurVGjhyp7du3Kzr6VC9TVlZWkX1kZmZKUv42gS7BD9ZZCQ910l7x7/eazy48XN+Cgq+WxmhV59S8A2unyf/Z+fJASdJn/+zMf+z0cLSx8xPNCKlUl3eIU3wQDgv2prL0LH94XUeN/mWdHA6pfGSYZmw8YGBkxvBGYR2rV89G2U25t5fW7EnV2Y2rmh0KYDi/7jF8++23lZmZqSFDhhR4PDo6WgMHDlRSUpISExPzi9M4Gy56+jFnw0wBwAj39w+M4aq3ntNQnT2orGr1nmNPDO1az+wQPObtHqSYqDA1ql5BE0Z203e3dlPFKL9ug0YQc7YGcJ1K5TSgdS3FRFl7FAXgCb9ODE8ndXl5eUWey83Nzf9/ly5dJEkLFy4sst2iRYtks9nUqVMnL0aKYMBSBNZhpfXpzmlaXTUqBsZw1dqx5fTTHT0UHWFeYQEjlaVHrFoF7xVk+vmOHqoT67/nzH3nWmcYJVAWV3Ssq65UKoakZwa1zB/9E8j8OjFs2bKlJGncuHEFHj927JgmT56sypUrq3HjxmrcuLE6d+6siRMn5heikU4VpZk4caL69eunWrVq+TL0gPDCpacWIrfZTl083dG/RU1J0u29GxkelyE8aFAfeU5DxVfx38IV/lCYyB+9eFlrs0OABZU0X7pT/cp+PSSxWoWC8/kDr784cFTxcsVpM+c34j9mfLufOb+0YlRYmYuDVYgM01tXuV/htkXtivr4+rJ3/pQLD1XTmtafO11Wfp0Yjho1SlWqVNFjjz2mYcOG6eOPP9ZLL72kDh06aN++fRozZoxCQ0+1bL/77rvKyspSr1699M477+idd95Rr169ZLfb9eabb5r8TvzT9d3qa8LIs/Tb3T3dXvvrsxs6adMLA/TYhc29FF3Zuft9FlsuXL/f08s7wZTRnX1LT8DnP9ZP57es6fQ5T79U/KH6pZHDHGs66Rlk3huc6ZLACAOzWGlEgb96+IJmZodQqnHDu5gdQsBy5W/o3WvaK7ZcuGIiwzR2eFd9f2u3Mh1z4eP9NPiMTghXv7nv6ttIA1rT+eMqv04M69evryVLlmjYsGGaNWuW7rnnHr3yyiuKj4/Xzz//rDvvvDN/2x49emj27NlKSEjQU089pdGjR6tx48aaO3eu2rVjjR1P2Gw29WhUTa3jYj16bVS4/w1HK1dazBZtHG1UvfTKcDUrRql+Ve8mMQPb1C77Tix8V1cuIlRPDWyR/+/CC8nTeA7A10q77ER6UITrrr6NvTqc2gh9mtXQWJJDr/jh1qLrghfWqk6sFj9xrpY+1V+d6ldWi9oVy1Td2hdrMcLPq5JKUqNGjfTVV1+5tG337t01c+ZML0eEQNalQRVt2Z+u/WmZTp+3cpGN+CrltDvlpFePUTs2SvtSnX82kjT87ARNWbuvxH34+6X/ll4NVb9qea3dc0zDuieYHQ7gc9y/BYdqFSJ1+Hi22WGUyJOktwjrfq2bpkO9SqoUHa5jGTklbmeFDgB/GLlkJX7dYwj4WmRYiH6/t6e+vKmz2aG47fEL/+vJOr30QGFGLBDubUZf4r3xpXFey5p64Pxmqh5TdO3UYMQXs38mS57GHIw94/48l660yO/sY9FaAPAZ/z274S4SQxgiOtL8VqEztarj/vBWV1WrEKm+zWo4fc7K9wYDWtXS85e20h19GunZQa2cbjOsW4Jvg/KAhT9ieJG/DyOqU8l/C1PBv5X1e6l5bf+txEijlHfwqQYuEkMY4pym1cs0dtwdY1yo8nhBq1qKK8uNmKct5Z4f0etCQmy6oXuCHh3QXLHF/K5io8P18uA2RR73duU6+FZZc6xAuSm4pmu8z47Vv2XN/Dm8Zq+BWLhqKALLxW0NmMuNgOLn7WqSzP/eCYTP0BUkhpBU9gpjFaPCNeVe31TkvO6sevrshs76ekRX1S5mra/QEJvmP9ZPia8M9ElMp/nzcKLTajn5TB8Z4Fn1WCvPuXRHw2rlzQ7BbxRe9sTKX6ZnN6pW7HOlrUvq7tuqEBGmv+7vrbkP99VLl5u7hMkrV7RVMK9Oc1Fr6yVOZxatctWZDQyXtKujwR3j9NiFzYsd0WI1xVXBthIrX78AbyAxhHo2rub2HAJn18oy9dCdue9SLsQ2m03ntaypc5pWN70FqbDASIMK+un27mpgUGLkqy9ZIw9zV99GmnqfMY0eVcpbfw5ncVwdkvXj7UWr1VmxgaB5rRiFFMqOLmrzX0nzD67toFvPaWjoMSPCQlSvarRsNpupw8471a+sX+/u6bPjWanBrFJ0uO6w4Jy567vVL/BvV76TR/Vvogtb19LlHeL0wqWt9dZV7XV770YKLXReW+fTL+jTGzrrNoP/xoDC0w6MvO+w0rXMW0gMoR6Nq1pq/k7zWhVVy8l6cP4gEK8Zrix1EcgaVa9gWGW1oV3rqeq/w3KjwgPz8tuxnv+uz9ekxn+LF9eOLacnLnK/F8coZy4O7Q2eLDNkBWVZIqFahUgtfbK/mpyxSLVVllyICg/VG0PaqW3dWD0zqKUeGdBc7eMrlfiamhWj9NH1nfT21e0LTA+wYkNMsLutd0MNP/vUVA54VzAkb94UmHcmsITCQ8pcFRpi00QnvQ6AJMsOgevbrHqp28REhevP+8/RT7d31/OXGjOcsLKP5vbCt246O8GwnnqcEh0RqvDQgrc9N/e0To/VlZ3q6te7e2r42Q3MDgUGq1o+Qs8MamXJ3mp/YYX+Cyt1ongLiSG8VrWrLOsHxVfx7kLrrnDW6lpaQ1RxLbXxVcrp+m7mFpwIFO3qVlL5iFM9eFbqWX5jSDuXtqtWIVKdE6ooxKAvGE/nf+KUM4tmdW1QxcRICqoYFa5po3wzb7s4VrwFMnoEg1V6DJ0JhHtQ+m7gLfQMegeJIXwuvor7cxF9PjSmlMMV22pUzOv+eaSfmtfy35LfVlIuIlQ/3t5djw5orgkjz3K5wmPXBlX09YiuBR4z8nulKpUe/dJLl7dRi9oVdWP3+urWsKrZ4RQQGebdZYBu7F6/9I0spl0pwytLEgiJliuMbuwNko/NqUDJPcr6O3SWhPnLZ9PGT4fNm4XEEEW8e017r+7/4QsCt4ejpOukn1xDjQ3US2+6VZ1Y3dGnkRpWr6BHB7hWUffH27rrnKalD/eEtXR3M1m7uad7w/AualNbf9zXS89d2rpI0Y5A98D5zXR1Z+OX7DAqAbu/f9MCFbO/vKlz0CR3RvJlz8rgjnE+OxbM409DKo0agRYsa2KSGKKIS9rV0dibuig81Ng/goFtamvqvb10Sbs6hu7XK9x866ffk7Pv33ouXJRiosLcO6APuXP9L/3+o+znVOE9VIqOMKwirtPjBcd3gVt8eVPwyQ2d3Nq+rEvvBJPYcuF69cq2ZodRxMwHe2vGA71177mNdXvvRnrrqnb64sbO6te8ph+1sPmPsxu51/jy0PlNi33O3YJNCX4wj3ZQ+//uWXy1XjOM987V7fk+dwGJIYqw2Wzq27yGHr/Q2Ip8zWrFqGWdwBxO2SXhVCVGZ0NeHyrlRrV6TKTOM2E9pzNvoG/rbU4BhkvbF20k8OTC7Y9zDYyKOZC/57o2qKKKUe7diBlVQdbbalQs29Dj5rViSt/Iokqb15dQtbwa16ggm82m0BCbBnesq3NbWH/Nu5J4s/GqrJ67xL1CWLf0cv/7ovBIpP9d11HSqR7GFrVP3Rc8dqH5o4mcrcN6Vee6urpzvLokVNY3I84yKbJTxYnObe4fa1R6g6s9dsU1XF7WIU4LHzvXyJCKqBbj/1NKSAxRLP+71fY+d5OWRwY0s2wP6c09G+j+/k11d9/Guu/cJv89YWKmYUbPaTCWdrdJ+mRYJ1UtH6GejYtf5N2441kvffVGW0I5N5LSS9vHqX5Vz4c4Xdref4bsFf6ovxvZrcTtrTCk94mLzE9SPFX4e6q0U71e1WitffZ8Xdmprvp7KQG/tH2cFj1+rlaMPk+bxwzQRW1qSzo1j/bXu8/W6qfP1+29S67YWdrzZ/rw2lOJp7sNMEue7F/ksciwUL16ZVtNvL2H2tT1bL6auw1cztzTr7G+uKlLmfcTzGrFerdg3Znrcg7pVNerx/IWEkP4dde61ca5VylfsCW88KLFxfHmjfNrVzgfKhYVHqr7+jfRQxc0U3SEZwlZw+rWHwYE5y5oVUvLR5+nb28xrwXcW74e0VXREaE+X+6hpJvGwpeqqPBQTb23lz4Z5t5QWV/y1vU1LLT4W4+KBjYOvXi5Z0vCtKsbq1vPCa5lBWKiwvXGkHb6/MbOhu73zAaYWrFRqlI+okhRpfDQkALrMBbn3nMbu3zcgW1PJZ4N3bwGeGP5n9hy4bqgVa0y7aN9fCXVrxp437f+mjwV5+zG1fT5DZ319MUt9cwlrcwOxyMkhgh4dc5oIeqa4KVy9P/eQEWGherLmzrr/JY19b/rOhZoJSzpFstbvVZfj+iqq7oYV1yizxlr9VWKDrdcFUdPWLE3y9cubP3fTcsIL6yh5ute2XOaVte6Zy/Q3w/2tkTvU3HKR4apiYEL2UeFW+Mr3Soju687q2DD3AAnN+cWCdUpq3yO7vDmX5snDZhmNx6PvamLpo3qpcrlzV0WxezPoTiPXdhcF7RyrZfa1boXpW11b79TDQxGNkKdqX/LmhrRs4EqRFq3dkRJrPEtAnjR+9d20MVta+uly9uoXbz3yxb3a15Tn97QOX+ojJna1a1k6P5euLS16lWJVpXyEfrShSEtZt3XvHtNB5OO7J/uP6+pWsdVVNeEKhp5jvPE0KL3Ffk6xFcu8O+QEJtsNpuiyrCeqr95zE/WtPTlnOBPhnXK7z2+6ewErx2ntHdk6t9PGT9uP8xPLaNv8xqqHWvd+aVmq1ohUp8MK76X+uELmqlZzRi9dmXbEkcauOP+85pq8l1na8YDvd16XXSkf8xfLyv/TGfhF6zSQtWpfhV1qn+qp/DFKRucbmOzFW2ddevepQw3Ov7UKhxfJVpzH+mb/++flu9x6/WlnRJGnTED29TWPd+tNGhvga9pzRj9fo+5i6k748r50KdZdQ1oVUv1ipmv9+41HXTL18uMDcyiLm0fp2d/c36NC1YXtKqlNc+cr9B/GwqCQbMzChPZbMbP2bTax1itQqQOH88yOwxDDetWX98sSjI7jHxm3abc1bex7urr+hBiV9hsNrfXQ61VMUrnt6ylmRsPGhqLFQVPUypMZ+UEyGLfc/kKF7Mwq3poccr6ublTrMMdvr5xeWqgsRV8rc6VJVhO8/ZQ3Y+v76RrutYr9vn+LWvq8xuMnTclnZoXBc/EGFCIw5ni/u7DQkPcSgot/FXlkmY1Y3RPv8ZqWbuiXruirSw8mrrMRl/cUhNv7252GIZ6ZEAzPTOoZYHHrJaMWyEcX/2djhveRb/f21MRYSFOfw/urp1rdXyzQeUjgqN73KqcXWh+u7unEl8ZqA3PX6C1z56vG7rX1/Xd6hnecmaGXk3+q4J5tUHzH83sCXhjSLuA+2IojTtFIKygvxeWg7morflDxf1V9TKUdL+47X9VnquaPG/Lqmw2mx48v5mm3tdLQzrH+32iK0nxVYoOx4yJCtPNPRv4vMiUt3VNqFLisMm+Z8z1R1FGnu9f3tRZfZrVULUKp65ZV3QsWiwn0L7/SQyDVLeGp4ZWlgsP1QWtPaiWZYXmIi8y++2drm5os9kUExWu5y9trTGXtXG/5LXZb8SJ169sp7v7Ntb/ruuoDvUql/4Cizu7cVWPEtO4yv4772RAa+skRZEmzSFsVN24ojH+qrilTrzZTtOmbqyev7SVLmlXp0hFXV9e7q7ubFxRL3/lbBSQtxrpvrjRnGUayjLiwVsjSd4b2kEvXd7GrdfUrFhwmYZXBrdRbS8v3eCPCjc29WtesFGxR6OqevSMudx1K5cLuM+RxDBIfXx9J70xpJ1+vfts1Yjx35PaW0UMAqGF1apqxUbpoQuaeVycp2p5/19AVpK6N6yqsxp4qUquH+rq4WdhZm/x6QY2M1hhaJmra8S5c5l25fd5Q/cEvTe0Q/7C6Kcl+LDn6Oqu3k8MnX0Ud/X1/TIaZp9ql7avo6Y1Y4o8bnRxNaPXHB5STONBaY1Zpf0JxESF69qz6qlaBdd7zId2jc+vWnxlp7q6pms9/X5PT5dfHyy6lFK53maz6Y4+jTTjgXP0yIBmmnBLt4Cbu0xiGKQqRUfoyk511cTJxRY4U1laTKMKrVdVqVzZ5hY9M6ilS+tdGcl78yBt+mpEV6/s2x89cVELtYnzftVgBJbHLjzVet8mLlaXtY8zZJ9Wvc0b2Ka2bunp/jxzX83v/25kN68f49NhnRQWYlPl6HA9f6mx68S9PLhoL1xZltopbnmFFy7zbH3Nsqhftbym3XeOvryps8frexbmy+rC7vDF32/jGjG6s0/jYoue+TMSQ/g1d1tqLHod81uFP87WcQVb8GOjwzW4w6mbtf4taqihC8PvSkpEh3thjT1nTs+DrBETWWQoiZFCDGhpDJTGyvbxlfRboRbsQHlv8J7bezfS2mfP1//d2UNhLq5zZgRvNRiV5MPrOpq+Hl5Jujfy/rq257eqpaVP9tc/j/Zz6fukJF0SCk5lKB8ZZmjvT3HX96t8PAy50r+NqQnVyqtf85qKDKOuBIrHchWwrDqxUUpOzZQk9WlWw+RoTjnPC0UsAsnTF7fSyl3HdOxkjt77dy3BN69qp8cvalHmQhHemK9RXDvBp8M665+th9S+XiVFBOI6eCRcZeoJKGGnvngJCvFWldPCujesqoU7jqh7w6qq6+YcYU8aJWnIPKXw5cqo5Nibn+/lHeIUZULjgTOP+sn6prAGEkMYqmXtitqwL02SdH23+vp4znaP9/Xohc113/erFBkWonv6uV4F0VuV6ga2ra1BbT2fgxBhQnl7X/e41KsarTmP9FVWTp6q/lvFy2azuVyF0Flr7SfDOulkdp7h8z9KUi4iVOe38qAok5e0j6+kVbuPmR2Gx85tXlOvTdtsdhgog9hy4Uo9mWN2GMZzIzkYN6KLth44rqY1Y5SVm+e9mAxmZn7plQYYi1v6ZH+35v952zUGVP/2l0aKWhWjVCGS1KYsArApHGb64NoO6tGoqga2ra07yzhJ/tL2cVr8xLla8kR/tXVxknmn+pX16hVti33enUSp8HXww2s7qlxxS3u4sOM+zaubkhx6k7N3XSEyLD8pNMJ5LWrqsg5xCrHoYlzeXqfv8g5x+vj6Tl49his8LQ4jFVxw21MMKzVXmEX//nwpMixUreNiA3MUgUE4S04tx+KLgiSuJmveiMWq1+NvbznLsrH5C9JqFOvM9eZc1bB6BU0wcAJ64RLLpfn5jh6GHdstLlyha8RE6fvbumnJzhS98scmHwQFV1i9RbtxjQqmzGeSTvXWvjx1ozrWr6zzWjCM2lMxftqCfUP3+qVu06tJNf2z9bAPovG9iNAQZefZJbFmIsxFrlNU4duu0BCbGtco27xTq98P+ALNXihW05oxGn1xS/VpVl3f3+r9amPBoGO9yrq9t+/LjQc6M6uj+eKLJDY6XP3/TczK0nPnrgta1dLsh/vqravau9RjW7iYQ6Bz9bR7d2h7vypp3q95DQ3tWk83dE8oddv3h3Yotvqivxs7vIsiQkMUGRaij4eVrdfezF+/VatH+gNvjwiBcfhNGcM/mzHhMzf3bKCbe/qmEqSVcIEJHlb/4j/dc//x9R214/AJJVQtr6ZP/WFyVEWVCw/V/ec1NXSfVv/duMqblW294cubXF9MvFJ0hK47q77GLUjMf6zwSI+mNV1vxS9LAhVqcPZ1duNqmvdoX8kmv17v19/5U6MKzEPzhzFIDAGTefMrLzyEQQH+6KYeCdqdkqFuDavmr+0XFhridJFnjxjwDRpik+z/7ueNIe00qF1tp2XQmZtWMiM7c8y6fw4t9DvuXL9gz/GNPRL0fyv3asfhE3r+EmPXnjvTVZ3j9cb0zcrJc6iHQUsn1HB1OgN3pc7xucBP8FV1CokhEKCu7FS3+GI5JeDa6DvFDUPt1rCqnvXiDbQRRl/cUq9O26T28ZU0sE3BpLBLQmUtTTyq6IhQDWxb2+nrmxtQkAbWFFaoyFZMVLj+uO8cnczJU2w57y0tUbl8hH66vYeWJqboio51vXYcf9OzcTX9vmaf4ft1dv2ic88IfIi+MvzsBI2dnyhJeviC5lq1+6i5AVkAiSGgUy3apy8OvmZEg2qbuFit3ZsqSYqrVE5/jOqlij5a28sKGGrke8PPbqAbuyc4nXv46bDO+n1Nss5qWFXliym88u6/61zCPxTuFXRXRFiIT6p5touvpHbxlbx+HCOvOc8MamnYvpwZ3LGu5mw5pA370vTsJa00fOxSt15fuPhVoAzxLm4B+mDhScOxP+jTrEZ+Q0hcpZLXGx3Vv6kcDikyPETDz07Qfd+TGJIYwqvKhYfqZM6p9Z7axceaHE1RPRtXU2y5cN3br0mBxNDfRr9c0q6OqsdEavP+dI2+uEWZkkJfv/foiFBlZJ86R85r6V9zsaygpJu0c5pW19wth7x27OIK0lQuH6FhJRQuaVm7oiFLWJi9cLOZ95W+Xvrm1nMaasyUjT49plkubOO8l9sbnh3UUtd3c1799dL2dfLXL21Zu6LHx4gIC9FHZVjypnujqqpSPkIpJ7LVLr5SwCzXce1Z9bQkMUWSb4t6WYVZ1a69bWCb2pqx4YA27k/TExe1KHHb2HLhlh+d42skhvCqFy5rrfdmblWXhCo6u7H7y19427e3nCVJyrP7WypYUHRkqFsFI9xSws1vyzqe36yc9s3NXXXX+JWqWiFCjwxopuRjmQUPH9yNumVyf/8mXk0Mva2k3/03N3dVTwteU9zlyfldLjxUV3auq+d/32B8QMUY2rWeNu1P10/L9xiyv9OJhtV0TahiyILgrrrp7OKLu13Zqa7mbT2sxCMn9NTAkm9wval8ZJh+v6enVu0+prMb+f5vzltfARe1qa01e1KVeOSEHjq/mZeO4j2+/W60/j3S6Y+jXERomasIBzMSQ3jVlZ3q6spOzPUIVIPa1dFXCxK19eBxPXyBZ1+snepX0aInzs3/d7Xykbqhe33N3nxII89p6PNhov1b1PDp8bypQ71ilo8IgGS7V5PqZXp9FT9cl658RKieuaSVOtar7POh4uUjw/TGkHaGJYZNa1bQoh0phuzLSD/e3t3sEPLFRIXrC281+LmpTqVyqlPKsDx/ExEWoqedDOOtVTFK+9NONVCe3diYIkaBxmaz+UGqCE+QGMIjAXBfWSp3qgVW9GJBBSurGBWuP0edo4zsvGLnkrkrJMSm5y9tbci+TnMnaX3liraGHtsTZZ3PhdLddo7/rSdaPjJMV3X2XW9WMOjBjb+hYqLCVTk6XEczchQealOrOOtNISnNx8M6afyiJPVsUk31q5Y3OxxJZW8Ig2vOblxNf64/YHYYpiIxBDzUp1l1zd58SNUqRKpvc9/1Ml3ctrZXKsx5ymazGZYUekuj6q6vo2b0WmjuigwLCfj5Lp58xNUrRBoagy//ZkvC2uPmqls5Wm8MaadZmw5qRM8Es8Pxe6EhNo0b3lWTVyWrf8saXq1C6y3t4yupvQ8KGJXmm5u76qGJq5VQtbxu6RV860lXKOW+IrLQXNcoA+ZMXtU5XnM2H9Km/ekac7mxDdT+wtp3c4DBqrl4c+nKfevH13fSssSjal47xqfDukb1b6Idh05ow740nx0T0jVd4vX90t1ePUaXhMoafXFLv7yZ8rbzW9XSG9M360Balga1q2N2OJJI6rzBjGYZX0x56FCvsvYcPenVY1iFEZVh29WN1eo9pypt39AjoexB+aFeTapr8RP9i32+rNcfM65f7epW0hwX572XVuQovkp0gX/XrVz2oc5R4aGWGb5tlsAoLYWg5e767Ze2j8tvhSpufTVXRYWHqmeTai4nm0ZpXCNGU+/r5dNjBip3vhjv7tfYabGTSuWMm6t2R59Galu3kmH7CySx5cI1/f7emnzX2XrrqnZmh+PUxe18V80S/uW2cxoGTDVPX/jwuo66sXt9vX5lW7Wr63/DUeHc3f0a50+VeOIic6tKwzmuUvBrN55REr9Xk9KrpdWKjdK0Ub00dngXvTnEmjeXZmN2m3N1K0fr21vOUnShtZ8CdS0oKyg85DS2XLjaxVdSuI+XanCVlef/hf17M3Zh61omRxKcWsfFau7DfVW/anTpG0N1K0fruUtba0jneNapDSBdEqpo+v3n6Oc7umtkr4ZmhwMnGEoKv3ZN13pasydV+1Mz9fiFrpXzrls5WnUrW+fLma88c7lb6OXzGzvrpi9PLRD91Yiu3ggJfsqIOS4lKcv98S93na1N+9M1gMTQNLVio9S8VoySjmSYHYohwtwdshOgLmhVM79gScPqZS9WE+h5sDtz/uF7JIbwaxUiw/Te0A5mh2G6khY5R8naxMUqJjJM6Vm5qh0bVer8vh6NqmnuI31ls0k1K0aV6dhGzfF4dEBzvTptkzE7Q0BqHRer1n5YIRLW9fylrXTlxwslSSNKWI8x0N3Tr4n+2XpYmTl5esTDZZusrkXtsq9Z7C4Hk7hNQWIIIKiViwjVT3f00JwtB3V+y1oKcaEHsVZs2RLC4niU4Nuk23s3VOu4ihr2xRLXXsP3rYXwywgmgXSv2zmhisbe1EV7jp3UVZ2Dd73i1nGxWvpkf2Xn2lXZD9dHdUX9quX18AXNNHXtPt16DkNAAxmJIQC/d07T6vpuyS5JUs2K7hcDalYrRs1qxRgdls/YbLaAXOcqOsL8r6i2dWO15t/qiAAKssqyL2YrHxmm8r6tQ+dzd/VtrLv6NjY7DHgZA8QBFZ3nFxMVJkeQtuT747se2auBKkeHy2Y7NawykFrlg81N/5amDw2x6dEB5g/LeuSC5qocbc3lQ5686L951Tf3bGDakPLmftyo4qno8FBVq3CqdygsxGaJde8AoKzMb44FLCAkxKaejatp3rbDqh4TqV5NqmvH4RNmh2UJ/jARvmH1Clr0xLnKzLYrNjpcdnvBzNAf3oNPWfjzeHJgC3WsX1kJVaPVuIb5CUfPJtW0YvR5avD4VLNDKeKGHvWVmZOnzNw83dmnsXLzzGkRuahNbX21MFEbktP04PllS+b9pQJlSIhNY2/qqp9X7NG5LWoE7BBCAMGFxBD412c3dNaypBS1qF1R5SN996dB55YxIsNCFRkW3EtHdG1QRUt2ppgdRpmEh4boEossYH9accmK2ctmRIaF6p5zm+T/OzUjx6fHj/n3Olk+Mky/3d1TmTn2oFq+pU3dWLVhjT0AAYShpMC/ykWEqleT6j5fsB4win/0tUi1Y8uZHYIhru9WL//nno1LX0c1EPT7d06ZzSZd3eW/92+z2dxKChnujWD22pVty7wPszvX29WtZG4A8AoSQwAF+EtyAf/y+IXNJUnlwkP15EDX1hy1uvNb1tJD5zfV4A5xeuGy1maH4xNvDmmnpwa20Pibz1LLOr4vYe/v/CEfvqfffwVGBneMMzGSwDWkU11d0dG/K7k+f2krVY4OV1iITZ8M62R2ODAIQ0kBIIB9MqyTbvtmudlh6LbejdS9UVVVrRCpuEqB0WMYEmLT3f2alL5hCer42WdRuXyEbulFufpA0cpJcn9770Y6npX777p8zU2IKvDZbDYNaldbP6/YU+S5cuGu9byb3evesHoFzX2kr3LyHKrCHNuAQY8hPOIvBQKAYHdBq1r6+Y7uZochSWpbt1LAJIVGiY4IkwtLZwKGefjfRdhtNjldfqB8ZJieGdRKLw9uS1EdH2tVp6LPqvyGhNh0W++yNfLERIWTFAYYegwBk3FPCAS3C1vX1pS1+8wOA0Hizj6N1CG+kiqXj1CL2gwHtoovbuysbg2r+rTh/fELW+j+/k3VfPQ0nx0T1kaPIQD4MRoW/N91Z/1XxKVXk+AoYgPz2Gw29WhcjaTQYro0qOLTiuinRbk4dBXBgR5DoBhmj993ByN7PVMxytxLYGRYiOKrlNPulJOKDAtRt4ZVTY0H5ujeqKpeu6KtNh9I14ieDcwOB4APhPDFDQsiMQQQcAp/33aIr5T/8/kta2r6hgOSpOu61fdhVEXZbDZ9NbyrJq3Yq/4tawbVGnD4j81m01Vd4kvfLgj6hwP9HcaY3BgF6+hQr5KiwkOUmWNXzYqRqhDBuQHzcRYCKCA0ACph2Gw2jb/lLI1bkKgLW9dSjYpR+c+9ckVbta+3S01rxKhT/comRnlKw+oV9NC/xSC8pXmtiooIC1F2rl0xUWGqHB18xQKGdauvbxYlSZLu79/U5GgQrJ0lo85tqt9WJysnz6Ebu5vbMBXMru5cekOMt8VEhev7W7tr9uaDGtimtkIC4LvXSH40aCugkBgCKKBDvcoqFx6qkzl5qhMbpRgT5jwY4ezG1XS2k0XHq5SP0J19ilbiC2TlI8P09Yiu+nP9fl3Sro7CQ4Nvevmo/k2UkZ2nqPAQ3dyL4ZowR72q0Zpyby/tOHRC/VvUMDucoBNXqZyevaSV+jSrbnYokqT28ZXU/owRLVb0/KWtzA4BPuSfd3wAvKZCZJgm3t5dc7ce0oBWtViaJEB0a1g1qOcwVq0QqTevamd2GF4VGsrfqj9oWjNGTWv6ZkkCFFS/arTOa1nT7DAsr1x4qK7pGq/WdWJ1eYc4s8OBD5EYAiiidVysWsfFmh0GADdUiAxTj0ZVtWD7Ebde98B5TfXWX1skSe8P7eCN0Irwp+JeQLBZ8Fg/1rAMUiSGABAgqsdEmh0CTDZueFdtOZCuxTtT9MLvG1x6ze29GykmKkwVIsN0cdvaXo4QgNWRFAav4JtoAliMGesWITA9fEEzRYWfuqzfd24Tk6OBGSLCQtQ6Ljb/PHD1NcPPbqAhneMZOg74CWd/qlVI6FBGJIaACS5rXyf/5zt6NzIxEvi7MxsW6lctr7/u760fb+uuUf1JDOF/elukKAhgdYWHY/doVFVfj+iqW89pmP/Y3X2Dp9BavSrRZocQEOiqAEzwxMAWKh8ZphoxURrcMU6Ldro3JwjBrX+LGpqx8aBqVYxS/xYFCynEV4lWPF+Q8DNVykeoWoUIPTagudmhAH5pwshukqT4ytFKz8yRzWbTrb0blvIq/3ZLzwb6fN5O2WzSbTSyG4LEEDBBjZgovXh5G7PDgJ/68LqOWrj9iFrHxSoijIEf8H8rRp9ndghAQIiNDtfLg9uaHYZPPHphc3VOqKI6laLUtm4ls8MJCCSGAOBnIsNC1acZa6ABAIJXeGiIBrSuZXYYAYWmZiAAUC4CAAAAZUFiCI9QuA4AAAAIHCSGAAD4gcY1KpgdAgAggJEYAgBgUa9feaqIRIXIMD17SSuTowH8G6Od/Efh5TjgGxSfAQDAooZ0jlfXBlUUHRGm6jGRZodjGO75AMB6SAwBALCw+lXLmx0CACAIMJQUAAAAAIIciSFQDAcD3AHAK5jqBQDWQ2IIWEDDagwVAwAAgHlIDAELGNI5XlXKR0iSRvZqYHI0AAprcEbjTdcGVUyMxDUMeAAAuIviM4AF1KwYpdkP99H+1Ew1rs5aZYDVfHhtR93y1VKFh4Xo1SvaFrvdTT0SNG5Bou8CAwDAICSGgEVUjApXxahws8MA4ETLOhW14PFzS93uyYEttOfoSc3YeMAHUQEAYByGkgJ+qmbF/9Y069+ypomRADgtPDREg9rVNjsMAADcRo8h4KfG33KWvl20S72bVVe1CoGz8DUAAAB8j8QQ8FONa8To2UtamR0GAAB+ISKUgXJASfgLAQAAPkXRVPjK0K718n9+9MLmJkZiXZFhpAM4hR5DoBiUewcAwL89M6il2sTFqmH18mpeq6LZ4VjSIwOa64XfN0iSRvVvYnI0MBOJITxiMzsAAACAUkSFh+ras+qVvmEQu7F7fYXYpJw8u27skWB2OJLE78wkJIYAAABAkAoLDdHwsxuYHUa+DvUqabhFEtRgQ2IIAAAAwHQfX99JA1rXMjuMoMVsUwAAAMCPVCkfYXYICEAkhgAAGIjCVQC87e5+jfN/PrPyqr+zUcTCVAwlBQAAAPzIJe3qKD0zV4fSs3RzL+vMD4R/IzEEAACA37qhe319vTBJUvBUs7TZbLq+W32zw0CAITEEAACA37qzT2MlHsmQw+HQXX0bl/4CAE6RGALFCAlhoDsAeANXVxipVmyUvh7R1ewwAL9H8RmgGNd0iVfYv8lhz8bVTI4GAFzXr3mN/J9joqzXBkx9HgCwHut9WwAWUbVCpH66o4eWJaboio51zQ4HAFxWp1I5fXhtR83ZclA39aAwBQCgdCSGQAnax1dS+/hKZocBAG4b2La2BratbXYYAAA/wVBSAAAAAAhyJIYAAAAAEORIDOGRelWizQ4BAAAAAaRl7YpmhxDUSAzhspcHt5EkRYaF6KV/fwYAAAA89cG1HdQuvpIev7C54ul4MBXFZ+CyoV3rqV3dSoqJCuMPFwAAAGV2cds6urhtHbPDgEgM4aaWdejiBwAAAAINQ0kBAAAAIMiRGAIAAABAkCMxBAAAvuUwOwAAQGEkhgAAAAAQ5AIiMUxJSdFDDz2kxo0bKyoqStWrV1ffvn31zz//FNhu8eLF6t+/v2JiYlSxYkUNGDBAq1atMidoAEBActAdBgDwQ35flTQpKUl9+vTR8ePHdfPNN6tp06ZKTU3VmjVrtHfv3vztFi1apD59+iguLk7PP/+8JOmDDz5Qr169tGDBArVpw7p8AAAAAIKT3yeG119/vXJzc7VmzRrVrl272O3uvfdeRUREaO7cuYqLi5MkXXXVVWrRooUefPBBTZ8+3VchAwAAAICl+PVQ0rlz52revHl65JFHVLt2beXk5CgjI6PIdtu2bdPSpUs1ZMiQ/KRQkuLi4jRkyBDNmDFD+/fv92XoAAAAAGAZfp0YTp06VZJUr149DRo0SOXKlVP58uXVtGlTffvtt/nbLV26VJLUvXv3Ivvo1q2bHA6Hli9f7nEctWvXLvBfkyZNPN4XAAABz2Z2AACAwvw6Mdy8ebMkaeTIkUpJSdFXX32lL7/8UhERERo2bJjGjh0rSUpOTpakAr2Fp51+7Mz5iAAAAAAQTPx6jmF6erokKSYmRrNmzVJERIQk6bLLLlPDhg31xBNP6MYbb8wfXhoZGVlkH1FRUZLkdAiqq/bt21fg32lpaYqNjfV4fwAAAADgS37dY1iuXDlJ0tChQ/OTQkmqXLmyLrnkEu3fv1+bN29WdHS0JCkrK6vIPjIzMyUpfxsAAAAACDZ+nRjWrVtXklSrVq0iz52uUHr06FHVqVNHkvPhoqcfczbMFAAAAACCgV8nhl27dpUk7dmzp8hzpx+rUaOGunTpIklauHBhke0WLVokm82mTp06eTFSAACQz2F2AACAwvw6MbzssssUExOjb7/9VsePH89/fN++ffrll1/UtGlTNW7cWI0bN1bnzp01ceLE/EI00qmiNBMnTlS/fv2c9joCAAAAQDDw6+IzlStX1htvvKHbbrtN3bp104gRI5Sdna2PPvpI2dnZev/99/O3fffdd9W3b1/16tVL99xzjyTp/fffl91u15tvvmnWWwAAAAAA0/l1YihJt956q6pVq6bXXntNo0ePVkhIiLp3764JEybo7LPPzt+uR48emj17tp566ik99dRTstls6tGjhyZOnKh27dqZ+A4AAAAAwFx+nxhK0uDBgzV48OBSt+vevbtmzpzpg4gAAAAAwH/49RxDAAAAAEDZkRgCAAAAQJAjMQQAAACAIEdiCACAgSpHR5gdAgAAbiMxBADAQOc0qa6WtStKkq7qXNfkaAAAcE1AVCUFAMAqQkJsmnRnD+09dlINq5U3OxwAAFxCYggAgMGiwkPVqHoFs8OwrKoVGG4LAFbDUFIAAOBTI3o2yP/58g5xJkYCADiNHkMAAOBTXRKq6KsRXZV4+IQGdyQxBAArIDEEAAA+17tpdfVuWt3sMAAA/2IoKQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAAAQ5EgMAQAAACDIkRgCAAAAQJAjMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkAszO4BA5HA4JElpaWkmRwIAAAAgWJ3OR07nJyUhMfSC9PR0SVJ8fLzJkQAAAAAIdunp6YqNjS1xG5vDlfQRbrHb7UpOTlZMTIxsNptPjtmkSRNJ0tatW31yPAQ2zicYifMJRuJ8gtE4p2Akq51PDodD6enpqlOnjkJCSp5FSI+hF4SEhKhu3bo+P6YkVaxY0afHRWDifIKROJ9gJM4nGI1zCkay4vlUWk/haRSfAQAAAIAgR2IIAAAAAEGOOYYAAAAAEOToMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIZ+zm636+2331bz5s0VFRWl+Ph4Pfjggzpx4oTZocGitmzZoqefflrdunVT9erVFRMTo/bt2+vFF190et5s3rxZl112mSpXrqzy5curV69e+vvvv02IHP4iIyNDDRs2lM1m0913313kec4plCYlJUUPPfSQGjdurKioKFWvXl19+/bVP//8U2C7xYsXq3///oqJiVHFihU1YMAArVq1ypygYUnHjx/XSy+9pDZt2igmJkbVqlVTjx49NG7cODkcjgLbcj7hTC+//LKGDBmS/32WkJBQ4vbunD/Jycm64YYbVL16dZUrV06dO3fWxIkTjX8TbrI5Cv9VwK/cd999eu+993T55Zfrwgsv1MaNG/X++++rV69emjFjhkJCyP1R0GOPPaYPP/xQl1xyibp166bw8HDNmjVLP/74o9q2batFixapXLlykqTt27era9euCgsL06hRoxQbG6vPPvtM69at0x9//KH+/fub/G5gRQ899JA++eQTHT9+XHfddZc++OCD/Oc4p1CapKQk9enTR8ePH9fNN9+spk2bKjU1VWvWrNEFF1yga665RpK0aNEi9enTR3FxcfkNEB988IEOHjyoBQsWqE2bNma+DViA3W5X7969tWDBAt14443q1q2bMjIy9N1332nJkiV65JFH9Oqrr0rifEJRNptNVapUUceOHbV8+XJVrFhRiYmJTrd15/xJSUlR586ddfDgQT3wwAOqW7euJkyYoDlz5ujLL7/U8OHDffH2nHPAb61bt85hs9kcgwcPLvD4e++955DkGD9+vEmRwcqWLl3qOHbsWJHHn3zySYckx/vvv5//2JAhQxwhISGOlStX5j+Wnp7uqFevnqNp06YOu93ui5DhR5YvX+4IDQ11vPnmmw5JjrvuuqvA85xTKE3Pnj0ddevWdSQnJ5e4XZcuXRwxMTGOPXv25D+2Z88eR0xMjOO8887zdpjwAwsWLHBIcowaNarA41lZWY4GDRo4YmNj8x/jfEJh27dvz/+5VatWjvr16xe7rTvnz8MPP+yQ5Pj111/zH8vNzXV06dLFUaVKFUd6erpxb8JNdCf5se+++04Oh0OjRo0q8PjIkSMVHR2tb7/91pzAYGmdO3dWbGxskcevvvpqSdK6deskSSdOnNCvv/6qPn36qH379vnbVahQQbfccou2bNmipUuX+iRm+Ie8vDyNHDlSAwYM0ODBg4s8zzmF0sydO1fz5s3TI488otq1aysnJ0cZGRlFttu2bZuWLl2qIUOGKC4uLv/xuLg4DRkyRDNmzND+/ft9GTosKC0tTZJUp06dAo9HRESoWrVqKl++vCTOJzjXsGFDl7Zz9/yZMGGCGjVqpEGDBuU/FhoaqnvuuUcpKSmaOnWqcW/CTSSGfmzp0qUKCQlR165dCzweFRWl9u3bc4MFt+zZs0eSVLNmTUnSmjVrlJWVpe7duxfZtlu3bpLEOYYC3n77bW3atKnA0NEzcU6hNKdviOrVq6dBgwapXLlyKl++vJo2bVqgsfP0eVLcueRwOLR8+XLfBA3L6tq1qypVqqTXXntNEydO1K5du7Rp0yY9/vjjWr58uZ599llJnE8oG3fOn3379mnv3r3533mFtz1zf2YgMfRjycnJqlatmiIjI4s8FxcXp8OHDys7O9uEyOBv8vLy9MILLygsLEzXXnutpFPnl6QCrV+nnX5s7969vgsSlrZz504988wzevrpp4udoM85hdJs3rxZ0qmRLykpKfrqq6/05ZdfKiIiQsOGDdPYsWMlcS7BNZUrV9avv/6qKlWq6KqrrlL9+vXVokULffjhh/r55581cuRISZxPKBt3zh+rn2thph0ZZZaRkeE0KZRO9Rqe3iYiIsKXYcEPjRo1SgsXLtRLL72kZs2aSVL+8C1n59iZ5xcgSbfffrsaNmyoBx54oNhtOKdQmvT0dElSTEyMZs2alf/9ddlll6lhw4Z64okndOON/9/e3cdEXcdxAH8fJ4rHHecZM+7ORFdnpRikHBRoSgU6KAiLmSVKIfaAVmjZw3IdpTWXjaZATag/0GkbWmE5KxZjREJOJ6TLzq7uTiWGwiH04IHAtz8cl+fxdIHdwb1f229sn+/397vPb/sM+Nzv4buKtURDJpfLERYWhuTkZMTExMBms6GgoACPPfYYysrKEB8fz3qiYXGnfry91tgYjmIymQznz5/vc8xutzvmEA1k06ZNyM/Px5o1a/Dqq6864r2109HR4bIP64uutnv3bpSXl6Oqqgr+/v79zmNN0WB634i8fPlypy81VSoVkpOTUVJSAqPRyFqiITlx4gRiYmKQl5eHp59+2hFfvnw5wsLCkJWVhV9//ZX1RMPiTv14e63xVtJRTKPRoLm5uc/iamhoQHBwMK8W0oAMBgM2b96MJ554Ah9++KHTWO/D+n3d0tAb6+tWCPItHR0dWL9+PRITExESEgKTyQSTyQSr1QoAaGtrg8lkwsWLF1lTNKipU6cCAEJCQlzG1Go1AKC1tZW1REOSl5cHu92OtLQ0p7hMJkNSUhKsVissFgvriYbFnfrx9lpjYziK6fV69PT04MiRI05xu92Ouro6REZGeigzGg0MBgNyc3OxatUqFBcXQyKROI3PmTMHEyZMQE1Njcu+tbW1AMAaI1y6dAkXLlzAwYMHodPpHNuiRYsAXLmaqNPpUFxczJqiQfW+TK33ZVhX641NmTIFer0eAPqtJYlEgnnz5l3HTGk06P1Hu7u722Wsq6vL8ZP1RMPhTv2o1WpotVrH37xr5wIe/jvosYUyaNh+/PHHAdcx3LVrl4cyI2+Xm5srAIj09HTR3d3d77xHHnlE+Pn5ibq6Okesd805nU7HNedIdHZ2itLSUpetsLBQABBLliwRpaWlwmg0CiFYUzQwm80mFAqF0Gq1Tmt5/f777yIwMFDMnDnTEYuMjBQKhUI0NDQ4Yg0NDUKhUIj77rvvf82bvNMLL7wgAIitW7c6xVtbW4VarRYqlUp0dXUJIVhPNLDB1jF0p35efPHFftcxnDRpkmhvbx/x/IdKIoQQnmtLabjWrVuH/Px8pKamIjExEadOncL27dsRGxuLiooK+PnxojA5KygowNq1azFt2jS89dZbLjVy4403Ij4+HsCVtXmioqLg7++PnJwcBAUFoaioCCdOnMDBgwexePFiT5wCjQIWiwUzZsxAdna20/IVrCkazM6dO/HUU09h9uzZePLJJ9HZ2YkPPvgAjY2N+PLLL5GQkAAAOHz4MOLi4jB16lSsW7cOALBjxw40NTXh+++/R3h4uCdPg7yA1WrF3Llz0draiscffxyxsbGw2WwoKiqCxWJBQUEBnn32WQCsJ3K1a9cux2MRO3bsQGdnJzZs2AAACA0NRXp6umOuO/XT0tKCefPmoaWlBevXr4dWq8XevXtRWVmJ4uJiZGZm/o9neQ2PtaQ0Irq6usS2bdvEzJkzxfjx44VGoxE5OTlO37QSXW3VqlUCQL/bwoULneb/9NNPIjk5WSiVSjFx4kQRGxsrysvLPZM8jRpms1kAENnZ2S5jrCkazP79+0V0dLSQyWRCLpeL+Ph4UV1d7TLv8OHD4t577xWBgYFCLpeLhIQEcezYMQ9kTN7KZDKJlStXCq1WK8aNGycUCoVYsGCB2L9/v8tc1hNdbeHChUP+X0kI9+rn3LlzYsWKFeKGG24QEyZMEHfeeaf45JNPrvMZDY5XDImIiIiIiHwc7zMkIiIiIiLycWwMiYiIiIiIfBwbQyIiIiIiIh/HxpCIiIiIiMjHsTEkIiIiIiLycWwMiYiIiIiIfBwbQyIiIiIiIh/HxpCIiIiIiMjHsTEkIiIiIiLycWwMiYiI3GAwGCCRSFBZWenpVNyyYMECREREQAjh9r719fXw8/NDcXHxdciMiIi8ARtDIiLyWRKJxK1ttDWDvUpLS1FdXY3NmzdDIpG4vX94eDgefvhhbNq0CX/++ed1yJCIiDxNIv7LV4dERERjgMFgcIm9//77aGtrw/PPP49JkyY5jWVkZEAul6O5uRnTpk2DTCb7fxIdBiEEbrvtNvj7++PkyZP/+ThHjx6FXq/Hli1b8Nprr41ghkRE5A3YGBIREV1l+vTpsFqtMJvNmD59uqfTGbby8nIkJCRg69at2Lhx47CONWvWLPz1118wm83w8+NNR0REYwl/qxMREbmhr2cMLRYLJBIJMjIycPr0aaSmpkKlUkGpVCIlJQUWiwUAYDKZkJaWhuDgYMhkMiQmJuK3337r83NaWlqwceNG3HrrrQgICIBKpUJSUhJqa2vdyvejjz4CACxbtsxlrL29Hbm5uQgLC4NCoYBCocDNN9+MRx99FMePH3eZv2zZMpw5cwbl5eVu5UBERN6PjSEREdEIMZvNuPvuu9HW1obMzEzExsbiwIEDuP/++3Hq1ClER0ejubkZGRkZWLRoEQ4dOoSkpCT09PS4HGfu3Ll49913odVqkZ2djdTUVNTU1OCee+7BF198MaR8hBCoqKiARqNBaGioy9iSJUtgMBgQFBSErKwsPPPMM4iKikJlZSV++OEHl+PFxsYCABtDIqIxaJynEyAiIhorqqqqsG3bNmzYsMERW7NmDYqKihATE4PXX3+9z7GysjKkpqY64itXrsS5c+fw6aefOsW3bNmCqKgoZGVlwWKxICAgYMB8jEYjLly4gAcffNBl7OTJk6ipqcFDDz2Ezz77zGmsu7sb7e3tLvvo9XrHeRIR0djCK4ZEREQjZMaMGcjJyXGKpaenAwAmT57sMrZixQoAV5aD6FVXV4fq6mqkpaU5NYUAoFar8dJLL6GpqQnffvvtoPmcOXMGABASEtLvnIkTJ7rEpFIpVCqVS1ypVCIgIMBxXCIiGjt4xZCIiGiEhIeHu7yURa1WAwDuuOMOlzGNRgMAaGhocMRqamoAADabrc+3pv7yyy8AgJ9//hlJSUkD5tPS0gIAfTZ5s2bNQkREBPbu3Qur1YqUlBTMnz8fkZGRGD9+fL/HnDx5Mpqamgb8XCIiGn3YGBIREY0QpVLpEhs3btygY5cvX3bEbDYbgCvP8Q30LN9Q1hPsvRpot9tdxqRSKSoqKvDmm29i3759ePnllwEAQUFByMjIwNtvv43AwECX/S5dutTnVUYiIhrdeCspERGRF+ltIN955x0IIfrd3njjjUGPNWXKFAD/NpvXUqlUyMvLw9mzZ3H69Gns3LkTOp0O27dvx9q1a13m9/T04OLFi47jEhHR2MHGkIiIyItER0cD+PeW0uGYPXs2pFIpjEbjoHN1Oh2ysrJQVVUFuVyOzz//3GWO0WiEEAIRERHDzo2IiLwLG0MiIiIvotfrERMTgwMHDuDjjz/uc05tbS3+/vvvQY+lVCoRERGB+vp6dHR0OI2ZzeY+11BsbW1FR0cHZDJZn58LAHFxcUM5FSIiGkX4jCEREZGX2bNnD+Li4pCZmYnCwkLo9XooFAqcPXsWR48ehclkQmNjY5/N27WWLl2KY8eOobKyEosXL3bE6+vrsXTpUuj1etx+++3QaDQ4f/48ysrKcPnyZcczh1f75ptvIJVKkZKSMqLnS0REnscrhkRERF4mNDQUx48fh8FgQFdXF0pKSpCfn48jR45gzpw5KCkpQXBw8JCOlZmZCX9/f5SUlDjFIyMj8corr0AqleKrr77Ce++9h6+//hp6vR6HDh3Cc8895zT/jz/+QFlZGR544AHcdNNNI3auRETkHSRCCOHpJIiIiOj6Wb16Nfbs2QOLxfKfXxxTWFiI7OxsfPfdd5g/f/4IZ0hERJ7GxpCIiGiMa2xsdLxcJi8vz+397XY7brnlFtx1113Yt2/fdciQiIg8jc8YEhERjXFqtRq7d+92vFVUIpG4tb/VasXq1auRkZFxfRIkIiKP4xVDIiIiIiIiH8eXzxAREREREfk4NoZEREREREQ+jo0hERERERGRj2NjSERERERE5OPYGBIREREREfk4NoZEREREREQ+jo0hERERERGRj2NjSERERERE5OPYGBIREREREfm4fwBLjL0f1S65EQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], title=\"Lightcurve\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Zomming in.." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAKOCAYAAADHxWayAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxN0lEQVR4nO3daXgUVfr38V+HkISQEIIokBAIiwuLyC57iIKKCIJsoiKy6bjgAiMwKoLIqDjijjuIgiCDojACCiIIyo4o8hcRlCACIrKHkISQel74dEtId9LpVHdXdX8/18WlqaquPpWcWu469znHYRiGIQAAAAAATBIR7AIAAAAAAEILgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAhICOHTvK4XB4/e+2224LdpEtbcWKFXI4HOrYsaPXn5k+fXrAfre33XabHA6Hxo8f79X2zvqxYsUKU74/NTVVDodDGRkZpuwPABB6IoNdAABA6V1zzTVKTU0tcpsjR45owYIFkqTq1asHoFTA3zIyMlSrVi3VrFmTABUAwgCBJgCEgDFjxhS53jAMde/eXZLUrFkzjR07NhDFCis9e/ZUq1atlJCQEOyiFPLuu+8qKytLNWrUCHZRAABhgkATAMLAE088oU8++USJiYn64IMPFB0dHewihZyEhARLBpmSCDABAAFHH00ACHHLli3To48+KofDoZkzZ3pMsd2yZYtuvvlmJScnKyoqSlWqVFHPnj319ddfe9z3H3/8oZEjR+qiiy5STEyMKlasqA4dOujdd9+VYRiFtnf2LZw+fbq2bNmiHj166LzzzlOFChV05ZVXauPGja5t3377bTVr1kzly5fXBRdcoDvuuEPHjh3zWJavv/5affr0UVJSkqKiolS1alX17dtX3377bZG/m/T0dMXHx6tixYq64oortGzZMo/bF8VTH82zlx87dkz33XefUlJSFB0drTp16uixxx5TXl6eT9/praL6aO7fv19Dhw5VtWrVFBMTo3r16mnSpEk6c+aMV30xFy1apPbt2ys+Pl4VKlTQNddco2+++abANuPHj1etWrUkSbt37y7QX9hdfVy4cKG6d++uqlWrKioqSklJSUpPT9eLL77o9XFJnvuSnr38v//9r9q1a6eEhAQ5HA4dOnRI0dHRKl++vE6cOOF2vzk5OUpMTFSZMmW0d+/eAusOHjyoMWPGqEGDBoqNjVV8fLxatWqlt956y+05AQChikATAELYb7/9pv79+ys/P18PP/ywrr32WrfbzZs3Ty1atNCsWbN0/vnnq3fv3qpdu7Y+/vhjdejQQa+++mqhz/z0009q0qSJnn32WZ06dUrXX3+9WrdurfXr12vgwIG65ZZbPD5Yb9iwQa1atVJGRoY6d+6sGjVq6IsvvlB6erp+/PFHjRgxQnfeeafOP/98XXXVVTpz5ozeeOMN3XDDDW73N2nSJLVv317z5s1TSkqKevTooerVq2vu3Lm6/PLL9b///a/QZ2bMmKHOnTtrxYoVql+/vq699lodOnRIV111lebNm1eC37J3jh49qtatW2vOnDlq1aqVOnTooL1792r8+PG66667TP8+b/z222+6/PLLNXXqVEVEROj6669Xamqqxo8fr379+hX7+ddff13dunWTJHXp0kUXXHCBPvvsM3Xo0EE//fSTa7vGjRurV69ekqTy5ctr4MCBrn+9e/d2bWcYhoYNG6brrrtOCxcuVK1atdS7d2/Vr19f27Zt03333Wfq8T/99NPq16+f8vPz1bVrVzVr1kyRkZHq2rWrsrKy9MEHH7j93IIFC3T06FF16tRJycnJruXfffedGjVqpEmTJunkyZO66qqr1Lp1a/3www8aNmyYbrnlFlPLDwCWZgAAQlJubq7RunVrQ5LRqVMn48yZM26327dvnxEfH29IMl577bUC6+bNm2eUKVPGiIyMNL777rsC65o3b25IMgYOHGjk5OS4lv/4449GUlKSIcl45ZVXCnxm4MCBhiRDkvHCCy+4lufn5xu33HKLIclo0KCBUbVqVWP79u2u9Xv27DEqV65sSDJWrFhRYJ+ffPKJIcmoUaOGsWnTpgLrFixYYERGRhoJCQnGoUOHXMt/++03o3z58oYkY+bMmQU+88wzz7jKmJaW5vZ35s7bb7/t+n24Wy7J6Nmzp3Hq1CnXurVr1xplypQxHA6HsWvXLq+/y/l7HDdunFfbp6WlGZKM5cuXF1jerVs3Q5LRq1evAuXavn27Ua1aNVe5zy1bzZo1DUlGTExMgb9Hbm6u0aNHD0OSMWjQoAKf2bVrlyHJqFmzpsdyOn/3KSkpxjfffFNgXV5enrFgwQKvjuvccnoqf9myZY3PPvus0Oc+/vhjQ5LRsWNHt/u97rrrCtWdkydPGqmpqYYk49lnny1wvv32229G06ZNDUnG1KlTPR4/AIQSAk0ACFHDhw83JBnVq1c3/vjjD4/bPfbYY65g1B1nUDNkyBDXsi+//NKQZFSqVMk4fvx4oc84g6s6deq43Vfbtm0Lfebbb791BTZvvvlmofX333+/IckYP358geUtWrQwJBlffPGF2/I7fw9nB7bOY+7SpYvbzzRr1sz0QDM+Pt7t36Fr166GJGP69Olef5cZgeauXbsMh8NhREdHG/v37y/0mVdeeaXYQHP06NGFPrdhwwZDkpGamlpgeXGBZm5urnHeeecZkowvv/zS5+NyV05P5b/jjjs8lqVy5cqGw+Ewdu/eXWDdH3/8YURGRhrx8fHGyZMnXcunTJliSDJuvfVWt/vctGmTIclo0qSJV8cGAHZH6iwAhKD3339fL730ksqWLav//ve/Ov/88z1uu3LlSknSwIED3a4fPHiwJOnLL78s9JmePXsqPj6+0GduueUWlS1bVj///HOhPmySdNVVVxVaVqdOHa/W79u3z7Xszz//1IYNG1S5cmWPc1526NBBkrR27VrXMuex3HzzzW4/448Ux2bNmrn9O1x88cWSCh5XIKxatUqGYahDhw6qWrVqofU33XRTsfvo0qVLoWW+Hs/GjRt16NAh1a1b1/U387cePXq4XV62bFn1799fhmFoxowZBdbNnj1beXl56tOnj2JjY13LFy9eLEnq06eP2302adJEcXFx+u6775SdnW3OAQCAhRFoAkCI2bZtm4YNGyZJeuaZZ9S6desit3cGgs7BWs5Vu3btAtt585nIyEjXSKfuAk1383jGxcV5tT4nJ8e1bNeuXZL+CjgjIiIKDDLj/Od88D948GCh8nsaGKm4OUl9kZKS4na5M1A/+7gCwfk7qFmzptv13oyi6+6YnMeTm5tbovL8+uuvkv4OVAPB07FLf794OTfQfPfddyVJt956a4Hlv/zyiySpW7dubuthRESEMjMzlZ+fr0OHDpl5GABgSUxvAgAhJDMzU7169VJmZqb69eune++9N9hFcisiouj3nMWtdzpz5owkqVKlSq5BaTy55JJLvCucn3h7TIHmcDg8rjPr71TacvgqPz+/yPXlypXzuK5Zs2Zq0KCB/u///k/r1q3T5Zdfrm3btmnTpk1KTU0t1OrqrIvdu3dXYmJikd/L9EIAwgGBJgCEkKFDh2rbtm2qV6+e3nrrLa8+k5ycrB9//FG//PKL2rZtW2i9s6Xm7NE1nf/vXHeuvLw8VwvV2Z8zm7NFLTY2VtOnT/f6c8nJydq+fbt2797t9piLms4jVCQlJUn6uyXxXMePH9eRI0cCVh5nC/jZo9UWJyoqStJfL1jOlZeXp/3795eqTLfeeqtGjx6td999V5dffnmB1sxzA+OUlBRt375d9957r6688spSfS8AhAJrvl4FAJTYCy+8oDlz5qh8+fL68MMPC6SiFsXZMuN8iD7X22+/LUlKS0sr9JmPP/7Y7VyD7733nk6fPq06der4NdBMTk5Ww4YN9dtvv2ndunVef85Z/lmzZrld/95775lSPitr166dpL/6qx44cKDQ+tmzZ5v6fc6g0NOcoc2aNdN5552nHTt26KuvvvJqn85gefv27YXWLV++vNTzk95yyy2KiIjQnDlzlJ2d7aoX56bNStI111wjSR6nRAGAcEOgCQAhYM2aNXrwwQclSW+++abq1avn9WeHDRumuLg4ff7553rzzTcLrFuwYIFmzpypyMjIAmm4HTp0ULNmzXT48GHde++9On36tGvdjh079PDDD0uSRo4cWZrD8sqECRMkSf379y8wYJFTbm6u/ve//+nHH390LRsyZIhiY2O1cOHCQgHV888/r40bN/q30BZQu3ZtXXvttcrOztbw4cML9BHduXOn6/dqlvPPP19RUVE6cOCA25bSsmXLasyYMZL+GqRpy5YtBdafOXOm0Hyo6enpkqRXXnlFf/zxR4HyDx8+vNRlTkpKUqdOnXTo0CE9+OCD2rNnj9q2bVtg4Cqn22+/XdWrV9frr7+up556ym2f2x9++MEvc7QCgBWROgsAIaBPnz46ffq0EhMT9dlnn+mzzz4rcvvKlSvrmWeekSRVq1ZN77zzjvr376/bb79dr776qurVq6eMjAytXr1aDodDU6ZMUaNGjQrsY9asWUpPT9f06dO1bNkytWnTRsePH9cXX3yhnJwc9e/fX//4xz/8dsxOPXv21KRJk/Svf/1LHTt2VP369XXRRRcpJiZGe/fu1ebNm5WZmanFixe7+mlWr15dr7zyigYNGqSbbrpJL7zwgmrXrq0ffvhBW7Zs0fDhw/XSSy/5veyl9dZbb+nTTz/1uH7GjBm68MILPa5/9dVX1aZNG82dO1erV69W27ZtlZmZqS+++EJdunTRpk2b9Ouvv7paI0ujbNmy6tq1qz766CM1adJEbdu2Vbly5VS5cmU99dRTkv56MbF161a98847atKkiVq1aqWaNWvq4MGD+v7773XgwAEZhuHa54033qhnnnlGW7duVYMGDdS2bVsdO3ZM69atU48ePZSdna3du3eXqtwDBw7UkiVL9PLLL7t+dic+Pl6ffPKJrrvuOv3rX//Ss88+q0aNGqlq1ao6evSovv/+e/3666/q16+fbrjhhlKVCQBsIcjTqwAATKD/P9+ht//czWX47bffGv379zeqVq1qlC1b1qhcubJx/fXXG6tWrfL4vQcOHDAeeOABo27dukZUVJQRHx9vtGvXzpg+fbqRn59faHvn/I9vv/12kcfhjqd5Kp02bdpkDBw40EhNTTWio6ONChUqGBdffLHRp08fY+bMmUZmZmahzyxZssRIS0szypcvb8THxxtpaWnGkiVLjOXLl5s+j6anco8bN65Ec2Iaxt+/x+L+bd682TCMoueb3Lt3rzF48GCjSpUqRnR0tHHRRRcZEydONLKzs42oqCgjIiLCOHXqVIHPeJqf0snT3/HPP/80hgwZYlSvXt2IjIz0WBfnzZtnXH311cZ5551nlC1b1khKSjKuuOIK4+WXXy607YEDB4xBgwYZF1xwgREVFWVcfPHFxn/+8x/jzJkzxc6j6an8Z8vKyjIqVKhgSDJiYmKMo0ePFrn94cOHjccff9xo3ry5ER8fb0RHRxs1atQwOnToYDzxxBPGzp07i/1OAAgFDsM469UgAACApK+//lrt2rVTgwYNtHXr1mAXBwBgM/TRBAAgTOXl5Wnz5s2Flm/fvl233367JM+pogAAFMWSgeaTTz6pPn36qHbt2nI4HF5NnD1jxgy1bdtWFSpUUFxcnBo2bKjHH3+80HbHjh3T8OHDlZycrJiYGDVo0ECvvvqqaNgFAISb7OxsNW3aVLVq1VKXLl3Ur18/tWrVSg0bNtQPP/ygDh066P777w92MQEANmTJwYAeeughVapUSU2bNtXRo0eL3X7w4MF655131KtXL9dQ5Lt27So0AEBubq46d+6szZs3a/jw4apXr54WL16su+66SwcOHND48eP9c0AAAFhQTEyMxowZo2XLlmnjxo06evSoYmNj1axZM91444266667VLZs2WAXEwBgQ5bso/nLL7+odu3akqSGDRsqMzPT4+TZU6dO1dChQ/Xuu+9qwIABRe73lVde0d13360XX3yxwLDnvXr10v/+9z/t2LFDNWvWNO04AAAAACAcWTLQPFtRgaZhGLrwwguVkJCgTZs2SZJOnDihuLg4ORyOQtu3a9dOmzdv1qFDhxQTE+NavmrVKnXo0EGTJk3SqFGj/HYsAAAAABAOLJk6663t27fr559/1j333KPHH39czz//vA4fPqwKFSqof//+euaZZxQXFydJys/P1zfffKOmTZsWCDIlqWXLlnI4HNqwYYNP5ahWrVqBn/Pz87Vp0ybFx8e7DXgBAAAAwN8Mw9CJEyeUlJSkiIjADs9j+0BTkubMmaPc3Fw98sgjqlWrlj755BO9/vrr2r59u7744gs5HA4dOXJEp06dUnJycqH9REdHq3Llytq7d68p5crPz1dKSoop+wIAAACA0tizZ4+qV68e0O+0daB54sQJSdLBgwe1dOlSderUSdJffS4Nw9A777yjTz/9VF26dFFWVpakv4JKd2JiYlzblNT+/fsL/Hzs2DFVrFhRe/bsUYUKFXzaJwAAAACUxvHjx5WSkqL4+PiAf7etA81y5cpJkpKTk11BptPAgQP1zjvvaMWKFerSpYtiY2MlSTk5OW73lZ2d7dqmtJzpshUqVCDQBAAAABBUwejOZ8l5NL3lbP6tWrVqoXXOfpNHjhyRJCUmJqpcuXJu02NzcnL0559/uk2rBQAAAACUjK0DzUsvvVQxMTFug8fffvtNknTBBRdIkiIiItS0aVNt3ry5UKvm+vXrZRiGmjdv7v9CAwAAAECIs3WgGRsbq169eun333/XRx99VGDdq6++Kkm69tprXcv69++vrKwsvfHGGwW2ff755xUZGal+/fr5v9AAAAAAEOIs2UdzxowZ2r17t6S/BvrJzc3VxIkTJUk1a9bUgAEDXNs+8cQT+vzzz3XTTTdp+PDhSk1N1aJFi7Rw4ULdeuutatOmjWvbYcOG6e2339aIESOUkZGhevXqadGiRfroo4/0yCOPKDU1NaDHCQAAAAChyGEYhhHsQpyrY8eO+vLLL92uS0tL04oVKwosy8jI0MMPP6wlS5bo2LFjqlOnjoYOHaoHHnig0HwxR48e1SOPPKJ58+bp0KFDqlOnju666y7dfffdpnWSPX78uBISEnTs2DEGAwIAAAAQFMGMSywZaNodgSYAAACAYAtmXGLrPpoAAAAAAOsh0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmMqSgeaTTz6pPn36qHbt2nI4HEpNTfX6s6NHj5bD4VBcXJzb9Tk5OXr00UdVq1YtRUdHq06dOpo4caJOnz5tUukBAAAAILxFBrsA7jz00EOqVKmSmjZtqqNHj3r9uW+//VbPPvus4uLiZBiG22369eun+fPna/DgwWrdurXWrFmjsWPHaufOnZo+fbo5BwAAAAAAYcySgebPP/+s2rVrS5IaNmyozMzMYj9z5swZDRs2TF26dNHx48e1cePGQtssWrRI8+fP14gRIzR58mRJ0tChQ1WxYkU9++yzuv3229WmTRtzDwYAAAAAwowlU2edQWZJvPjii/rhhx/00ksvedxm1qxZkqT777+/wHLnzzNnzizx9wIAAAAACrJki2ZJ7d69W2PHjtW4ceNUs2ZNj9tt2LBBycnJSklJKbA8JSVFSUlJ2rBhg0/fX61atQI/5+fn+7QfAAAAAAgFlmzRLKk777xTtWvX1ogRI4rcbt++fUpOTna7Ljk5WXv37vVH8QAAAAAgrNi+RXP27Nn69NNP9dVXXykysujDycrKUnR0tNt1MTExysrK8qkM+/fvL/Dz8ePHlZCQ4NO+AAAAAMDubN2iefjwYd1///0aMmSIV4P4xMbGKicnx+267OxsxcbGml1EAAAAAAg7tm7RfOyxx3Ty5EkNGzZMO3fudC0/deqUDMPQzp07FR0d7eqTmZSU5DE9du/evR7TagEAAAAA3rN1oLl7926dPHlSl19+udv1F154oRo0aKCtW7dKklq0aKH33ntPe/bsKTAg0J49e7Rv3z517949IOUGAAAAgFBm60Bz9OjRuuWWWwotHzdunH755RfNmDGjQF/J/v3767333tPzzz/vmkdTkp5//nlJ0s033+z3MgMAAABAqLNkoDljxgzt3r1bknTw4EHl5uZq4sSJkqSaNWtqwIABkqTWrVu7/fzLL7+s3bt3q3fv3gWWd+3aVdddd52effZZHTt2TK1bt9aaNWs0depU3XLLLWrXrp0fjwoAAAAAwoPDMAwj2IU4V8eOHfXll1+6XZeWlqYVK1YU+/mNGzcqMzOz0Lrs7GxNnDhRM2fO1P79+5WcnKxBgwZpzJgxKlu2rBnFd406e+zYMVWoUMGUfQIAAABASQQzLrFkoGl3BJoAAAAAgi2YcYmtpzcBAAAAAFgPgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADBVZLALAAAAAARaZk6ecvPyFRUZobhoHokBs3FWAQAAIKyM/mCL5mzc4/q5X/MUTerdKIglAkIPqbMAAAAIG5k5eQWCTEmas3GPMnPyglQiIDTRohkmnOkhkkgRAQAAYcv5POR2eXSACwOEMKKNEOYMLkd/uEVLfzhQYB0pIgAAAAD8hUAzRJ3b9+Bcczbu0dhu9WnZBAAAAGA6+miGIHd9D9zxlDoCAAAAAKVBoBmCPAWQLVMrBbgkAAAAAMIReZNhYNnINFWpEKPcvHw1fXxpsIsDAAAAIMTRohkGEmOj6IsJAAAAIGAINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGCqyGAXAAAAhI7MnDzl5uVLkqIiIxQXzaMGAIQjrv4AAMAUoz/Yojkb9xRY1q95iib1bhSkEgEAgoXUWQAAUGqZOXmFgkxJmrNxjzJz8oJQIgBAMNGiCYQAZ6oaaWp/I30PCCzn+eZxXXQACwMACDqevACbOzdVjTQ10vcAAID5eLFfMqTOAjbmLlUt3NPUSN8DAABmG/3BFjUc95maPr5UDcd9ptEfbAl2kSyPQBOwMU+pakWlsIW6YtP3AAAASoAX+74h0AQAAAAAD3ix7xsCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYComgAEAAIAtOOcxlMRchggLdq7z9ikpAAAAwtboD7YUmmKiX/MUTerdKEglAvzL7nWe1FkAAABYmrt5DCXmMkToCoU6T6AJAAAASytqvkLmMkQoCoU6T6AJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADCVJQPNJ598Un369FHt2rXlcDiUmprqdrvs7Gy9+eabuv7665Wamqpy5cqpdu3a6t+/v7Zt2+b2Mzk5OXr00UdVq1YtRUdHq06dOpo4caJOnz7txyMCAN9k5uTp8MlcHT6Za5vhzAEEBtcHAFYWGewCuPPQQw+pUqVKatq0qY4ePepxu4yMDN1+++1q166dhgwZoqSkJP3yyy969dVXNW/ePH366adKT08v8Jl+/fpp/vz5Gjx4sFq3bq01a9Zo7Nix2rlzp6ZPn+7fAwOAEvDnRM2ZOXnKzctXVGSE4qIteSsAfOKs25JCun7bfSJ3AKHPklffn3/+WbVr15YkNWzYUJmZmW63O//887V582Y1bty4wPKbb75ZTZo00YMPPqiNGze6li9atEjz58/XiBEjNHnyZEnS0KFDVbFiRT377LO6/fbb1aZNG/8cFACUQFETNY/tVr9UD8/nPqDycIpQES7Blz+vDwBgFkumzjqDzOKcd955hYJMSapfv74aNmyorVu3Flg+a9YsSdL9999fYLnz55kzZ5a4rKGC9BvAWvw1UbO7B9Q5G/dw3sP2igq+Qq1+h8JE7ggfPGOGr5B85ZWfn6/9+/erSpUqBZZv2LBBycnJSklJKbA8JSVFSUlJ2rBhg0/fV61atULfbyfh8gYYgOeH0Ny8fCk6wIUBTFRs8EX9BgKOZ8zwZskWzdJ67bXXtH//fg0cOLDA8n379ik5OdntZ5KTk7V3795AFM9SwukNMAAAAAKDZ0yEXIvm6tWrNWLECF122WV66KGHCqzLyspSdLT7V5oxMTHKysry6Tv3799f4Ofjx48rISHBp30FGm+AAQAAYDaeMRFSgeamTZvUtWtXJSUlaeHChYqJiSmwPjY2Vjk5OW4/m52drdjY2EAUEwAAAPBKuIykjNATMjX1m2++UefOnZWQkKDly5e7TZFNSkrymB67d+9ej2m1AAAAQKDRxxF2FhJ9NL/55ht16tRJ8fHxWr58uWrWrOl2uxYtWmjv3r3as6fgCbtnzx7t27dPzZs3D0RxAQAAgCLRxxF2Z/tAc/PmzercubPi4uK0fPly1apVy+O2/fv3lyQ9//zzBZY7f7755pv9VUwAAADAa0xjA7uzZOrsjBkztHv3bknSwYMHlZubq4kTJ0qSatasqQEDBkiSdu/erc6dO+vIkSO69957tXr1aq1evbrAvnr27Kny5ctLkrp27arrrrtOzz77rI4dO6bWrVtrzZo1mjp1qm655Ra1a9cugEcJAKVH3x0AAGBFlnwimTp1qr788ssCy8aOHStJSktLcwWau3bt0qFDhyRJ48ePd7uvXbt2uQJNSZo7d64mTpyomTNnasaMGUpOTtaECRM0ZswYPxwJAPgPfXcAAIBVWTLQXLFihVfbdezYUYZhlGjfMTExmjhxoquFFIBvaEkLrqL67oztVp+/BwAACCqeRIAAcwZodg7OaEkLPuYnA4KPF25A6fnjPOLctAZ+60AAnRug2TE4oyUNCE+h8JLMTLxwsyYCDHvxx3nEuWkdnH1AgLgL0OwYnNGSBoSfUHhJZiZeuFkTAYa9+OM84ty0FttPbwLYhacAjSHKAViZp5dk4TyPH9NOWA9zTtqPP84jzk1rIawHAFgOaZrWUeRLMjIYYBFk28BOwiXFOzSPCjBZuFwQACsgTRMAYLYjWbmWeIYLpxRvnpaBYoTTBQEItlDpywwAsJYrJ38pqfAzXCAbE8KtD2loHQ1QAt5cWMLtggAEG2maAAB/OvsZLtCNCeGW4s1TMsKStxeWcLsgAACAgug+Y1+d61fR0h8OFFqem5evTNGY4G8+/wa//PJL/ec//9H69et15MgR5ecXfiB3OBzKy2OkL1gLrZRA8RiMBwDoPmN3k3o10nP9InTgeLYrddaJxgT/8+npYeHCherRo4fOnDmjGjVq6OKLL1ZkJA8isAdvLyyZOXk6kpUboFLBCnhr/RcG44EvTvphCgnOSQQTL6ZDQ1x0pHJjo4JdjLDk0xkyfvx4lS1bVgsXLtRVV11ldpmAoHP3BhOhjbfWf2EwHvjCH9dMzkkEGy1ewXP2i6tweclklVFxzeTTkWzdulU33ngjQSZCkqc3mAhdvLX+G4PxoKT8cc3knATCW/unlxf4ORxeMnkaFdfOInz5UFxcnCpVqmR2WRBiMnPydPhkrg6fzFWmH1Kq/MXTg3bn+lUCXBKUlK/pzsW+tQbgkbtzpLTXS85JAGebs3GPrZ4lSyOUjtWnV4JXXnml1qxZY3ZZEEJCKeVp2cg0VakQo9y8fC39YWmwiwMPSHcGrGHVqHSVj47kegnYkJUHggvFzJqiRsUNBT61aE6aNEk///yzJk6cKMMwzC4TbK6olCc7vqFJjI2y3MUWBZHuDFhHea6XgC2N/mCLGo77TE0fX6qG4z7T6A+2BLtIIW9Sr0ba+tjVWjYyLdhF8Quf7gaPPfaYGjRooHHjxmnatGlq3LixKlasWGg7h8OhqVOnlraMsBk6zyPQikp3dvemEAAA/I2B4IInlEfF9anmTJ8+3fX/GRkZysjIcLsdgaa1nczJU+6Z0GiaB85GujMAIBjsOiUPA8HBH3yq/bt27TK7HAiCc0f0AkKFM935cB7zoAIA/MsZXI7+cEuhLBq7jk8BmMGnQLNmzZpmlwMAEILs+nYfMJuVB1mB74obiI70U4Qzaj1c6M8GwExWGH2aQBdWcO65QCtXaPB2IDrSTxGuvLrjrly5UpLUsmVLxcTEuH72RocOHXwrGQKG/mwAzFbU6NOBertvhUAXYJCV0OWpX2PL1Epan3E4wKUBrMerK1zHjh3lcDi0bds2XXTRRa6fvXHmzJlSFRD+R382AGYL9ujTgQp0aTFFccweZCUzJ09HsrhfW9HZL+6bPs6L+1DBOec7r+6Ijz76qBwOhypXrlzgZwAArCgQgS4tpgi04voDIrh4cR96OOdKx6tAc/z48UX+DABAOLFCajDCi7f9ARF+yKzwD8650qMmAgDClq8PaMFODUb48VTnGMgvvJFZ4T9FXefhnVIHmmvWrNHmzZt17NgxJSQkqEmTJmrdurUZZQMAwG94QIOdMZCf+Y5k5dqqRZDMisBaNjJNUWUimIe+BHyugWvXrtXgwYO1fft2SZJhGK5+m5dccommTp2qVq1amVNKAABMxAMa7I7+gOa7cvKXkuzzwonMisBKjI0KdhFsx6c76ebNm3XllVfq1KlTSktLU8eOHVW1alX9/vvvWr58uVauXKlOnTrpq6++UuPGjU0uMgAApcMDGgBPnC+cQgV9OBEsPtW0hx9+WKdPn9b8+fPVrVu3AuvGjRun+fPnq3fv3nr44Ye1cOFCUwqKwDuZk6dK5Xl7A9iN3dK/ANhHuAQtodI/jy4CCCafrg5ff/21brjhhkJBptP111+vnj176rPPPitV4RBc7Z9ezsUIsCG7pX8BsIdQDVpWjUpX7pl817UzVNBFAMEW4esH69atW+T6Cy+80NddI0iiIgtXhzkb9ygzJy8IpQFQWpy/wN8yc/J0+GQu54SPigpa7P47LR8dGZL974rtIgD4mU+vMlq0aKHvvvuuyG2+++47tWzZ0qdCITjioiPVr3lKoRsJ/ZUA6/M0xQHnLyCN/nBLgfMjFFrhAo1+zQBKyqcWzYkTJ+rzzz/Xq6++6nb9lClTtGzZMk2cOLFUhUPgTerdSKtGpQe7GABKaFKvRtr62NVaNjIt2EUBLOfclzCh0AoHBJMzQ4AsARTFqxbNCRMmFFqWnp6ue+65R88//7zat2+vKlWq6MCBA/rqq6+0Y8cOXXPNNVqyZIkuv/xy0wsN/ypPzj5gS3HRkcoNwfQvwBsnS/iwSysc4JtQ7asL83kVUYwfP97juh07dmjHjh2Fli9evFiffvqpxo4d63PhAAAAiuPuwReA+RhgKDBO5uQp94z9+9F6VRuWL1/u73IAAACUmKcHXwDmo69uYLR/OjRiL68CzbQ0+vwgfJQ0/QoIZ+Eypx6sy92Dr6fBsQAAgcMTAXCWc0cmBHwVDgEY/XRgRatGpat8dKSW/rA02EUBAFPY9eVZ6D35AKXg7iR2N78oUBQrBWAnc/JUqbz5AwQV108nFJ398iDYmQ/OsoTqS4zSYEA7AKFi2cg0VakQo9y8fFu+PONqjKCxQ4tPv+YpliwXrMtqAyW0f3q5X4LccJsI3EqDzZxbFlqRASA0JcZGKS46UofzcoNdFJ/wBI2gsFKLjyerRqUrpVJssIsBmwn2QAnuWuAZDbB0rDTYjLuy+PPvm5mTpyNZ9nzAAQAEFzmBCLiiWnysNOkv6Vewo7joSPVrnlJoeSi2MgaKlX53nspiRhmdE7A7r8OjP9iihuM+05WTvyz1vgEA4YcnaQRcsFt8gFA3qXcj3XNF3ZAZHh3+d26WSddG1bRwy/4glggAYHdet2i++uqr2r+fmw4A2AEt8vCWuywTgkwAQGl5HWjefffdSklJUevWrfX000/rp59+8me5AAA2dSQrN+ijssJ73qTdLhuZplWj0gNQGjhTmM9OYwYAO/L6lffKlSv10Ucf6eOPP9aYMWP0r3/9S5dccoluuOEGXX/99WrevLk/ywkAsAn69IWexFjzp8hBYXYYKA8AvOV1i2a7du00efJk/fzzz/r222/16KOPKioqSv/+9791+eWXq0aNGrrvvvu0fPly5edbZ+AEAAAAq/PHQHnnDvAEAIHkUyeeRo0aqVGjRho3bpwyMjI0b948zZ8/X1OmTNHLL7+sxMREdevWTT179tRVV12lmJgYs8sNwM/sMM8prKNz/Spa+sOBYBcDsC2z56ZlvlUAwVbqJ8fU1FSNGDFCI0aM0MGDBzV//nx99NFHev/99/Xuu++qXLlyuvrqq/Xhhx+aUV6gWM4AieDId6RvoaQm9Wqk5/pF6MDxbFJngSAL9HyrAOCOqVeb888/X0OHDtXQoUOVmZmpRYsW6aOPPtLixYvN/BrAI97gll5R6Vtju9UPQolgF3HRkcr1oi/fkaxcXgQBflTkfKtMIQYgQLzuo1lScXFx6tu3r2bPnq2DBw/662sAF09vcOmbUjJmp28B57py8pdqOO4zjf5gS7CLAgAA/MRvgebZypYtG4ivQZgr8g0ubI0BLUITL4IKYloLe8jMydORrNxgFwMALI+8JQCWRjp0aPA0WBCpfH+hX7Q9uPs7wfpO5uSpUnmm6AECLSAtmgACLxRaR0iHDh2TejXS1seu1rKRacEuiuX4Y1oLmM/T3wnW1/7p5aTqA0FAi2aAMFUEAmn0h1sKtR7ZsXXE2wEtTvIwbgveDhYUbortF02LbwHBap3y9Hdiah97YNRdBEKwZz4I9vefK/glCAOkRCHQ3D30hOpNllQ2ILy0f3q5Je6hy0amqUqFGOXm5WvpD0tdy89+8RUVGd6JY8F86HX3AoAXN/CnYHf1Cfb3uxNaT5wWVNxUEaH20A9rC7WbrKfzK9wf7oBQZ4V7aGJslOKiI3U4r+DAQO2fXl7g5871qwSyWJYR7IfeSb0a6dHr8gr9PQB/CPbctZ6+/54r6iryTPCyvkx9GtuxY4deeuklTZ06VSdOnDBz17bFVBGA/7g7h/o1T+EFDhBi3AVrdrmHhmNarVX615fnXhCyrDYORbBnPvD0Pe2fXq7Wk9cEpAzu+HQGTpw4Ua+//rq+++47VapUSZL0xRdfqFu3bsrOzpYkPfXUU1q3bp1rPQD426pR6UqpFBvsYiCA6P8eHmidshdv+9cDvrBSl7QjWblkURXBpzvywoULVadOnQJB5JgxY5Sfn6/x48dr//79eu211/Tiiy9q/PjxZpUVAIrE2+vwYqWHDX9hWoa/cX4DKK5LWqBdOflLSeGbIl8cn0LwjIwM1a//9x9z79692rhxo+68806NHTtWr7zyijp27Kh58+aZVlAAQPAcybJGepJTuEwJwrQMAPC3YHdJ89R6abUU+VWj0i0xnZhPgeaRI0cKtGZ+/fXXcjgc6tatm2tZ8+bN9euvv5a+hICsl4sPhJsrJ3+phuM+s0zQE+yHjUAKteAZAOwqLjpS/ZqnBLsYxSofHalEC0wn5lMeyvnnn6+9e/e6fl6+fLnKli2rVq1auZadPn1a+fmhdbNHcNghPY5+YggXwUpPCidMywAA7llh3uxJvRtpbLf6OnA825U6C/d8ehq+7LLLtGDBAm3dulUxMTGaM2eO2rVrp3Llyrm2ycjIULVq1UwrqF1Z4YSwMztMD2OHQBgwU6i1GFoNA9+EBncvDAD4bvSHW0w7p07m5Cn3jO/3srjoSOVaoMXQ6nx6Sn/wwQd1xRVX6LLLLnMtGzlypOv/z5w5o6+//lqdOnUqfQltbNzCn/TRd9xkSqPY9Lggv+G3QyAMlMaqUenKPZPPW1s/yczJ05Gs3ELLGfjG/ib1aqTn+kW47mMnc3h5AJSGmS9uOBcDw6c7WVpamj755BO99dZbcjgcuvnmm9WlSxfX+tWrVys5OVk9e/Y0raB244gqR5AZBoIZCHt6QAXMVD46UuWDXYgQ5S4bojScKfx2T98PpWtbXHRk0F+IAqHKLlkDZ3evCrdMR5/vRF26dCkQXJ6tffv22rx5s8+FCgWOMmULLbPLCQHrM/sBFUBgecqGkP7q513S9ORzU8rsmr7PtQ2AN1aNSlf56Egt/WGpKfvz1zO6mem+duTTqLODBw/WggULitzmk08+0eDBg30qVChaNSpdk3rZ76YP6ynqARXBFUotMfAvT4Fkv+YpPrVGnvsgY8eRaosLvhEYjPL+t3BrfbITs7oXLBuZpq2PXe23Z/RwDjIlH1s0p0+frtTUVHXv3t3jNt99953eeecdTZs2zefChRL628AsDMRiTbTEoDSWjUxTlQoxpqa8WqEfe0kUF3wfzuMljr8xuN3fwr0lKlwkxkZxffEjv0U/2dnZiowkuAL8bdnINEWViaBjexDRyozScj7seHIkKzfsWvX8EXzDs+IGtws3dggyaXGF1fl89XY4HG6XG4ahPXv2aPHixUpKSvK5YEBxTubkqVJ5hpa2woS8Zjl3PlK78NQSQ79smMU56m/n+lWCXJLAKS74hrmKHdwuzFntek6LK+zA6yt4REREgeBy/PjxGj9+vMftDcPQ6NGjS1U4oCjtn14etik9ochdypZdH6qdLTG5efmmDVSA8OLpRQsPlkDgmT3wjBm4FsAOvA40O3To4Ao0V65cqRo1aig1NbXQdmXKlFGlSpV0xRVXaNiwYaYVFHDn7JQeBmGxL08pW3a9kdLnA6UVFx2pfs1TSMn2I2c6Mq2mKI4dxtmwWosrIJUg0FyxYoXr/yMiIjRo0CA9+uij/igT4JG7C+kDc74NyYvruWmkofwwRFoWUNik3o00tlt9HTie7UqdhXmcv1MyY6yPEb2LZsUWV0DysY/mrl27VLFiRZOLArvw56Tgxb1hntSrkR69Lq/AwDehGGSG2sh/oTKRPBBocdGRyg2hfthW5MyM4dpkTeE8ore3g/340uLKOBcIBJ+uqjVr1jS7HLCJcy/4Zgc/3rxhtkMKS2mE2sh//q4zAFBadpsKJlyE4oje3mYr+TvA9nacC1LMURo+15rTp09r/vz5Wr9+vY4cOaIzZ84U2sbhcGjq1KmlKiCsw90F319vgn0NqkJhqo9QGvkvkHUGALyxalS6cs/kk45sAcVlu4TaiN7eZisFKsD25n5MijlKw6cnvX379qlz58768ccfZRiGx+0INEOLpwt+ad8Ee7ph+BJUhdJUH6HAX3UGgH0Fu/95+ehIlQ/oN1pfMPpA+pLtYucRvYvLVjr7PHB37zQjuHa3D2/vx3bNqkJw+XR1HzlypLZt26b+/ftr2LBhSklJUWQkrRPwzaRejfRcvwgGvEDQMOk1EBhW7X8ezumBwegD6Wu2i51H9C42W6mIYM+swX7cjXNREnbIquJ+bi0+XVGXLFmiDh066L333jO7PAhTDHiBYAnngSbg2dkpfTCHlfufh2t6YLD6QAYz28WOI9iaOTaFt/uyY4r56A+32DKlOpT5VHOzs7N1+eWXm10WhIEjWbmKKsODW7AwylxBoTjQBErv3IeVzvWrBLE0ocNK/c89vUAItz7kodYHsjgEIt6zY4q5u78tLwuDy6cracOGDbV7926zy4IwYKc3Y6Ho7FHmgt1Pygr81Q8G9nbu39+u9SGc00GLExcdqX7NU9y+aArnPuR27gPpDU/nclRkRFDTQnkJ7B/9mqdw/Qsyn377Dz74oG699Vb98MMPql+fjsFAoJzMySt1Cs2cjXuUmZunhVv2F1gebilj7jDpNUJJuKaDemtS70Ya260+4wOcxc59IH3lDEaCeczeTjUC760ala6USrHBLkbY8+mJ9YILLlC3bt3Upk0b3XfffWrWrJkqVqzodtsOHTqUpnwIAeHaQuSPN5Ttn15e4jQ+d7//c4NMyRr9pIIt1OdoRXg6Nx303GwGOyttfzvGBwhfztZbq7R4hVvatr9xP7cGn/4KHTt2lMPhkGEYevzxx+VwODxu625+TYSXcB1V1l9vKEsatJdklDk7jCgH2IlVUtSd6aDuBr+yax9Uq/S38xSs2z2ID3XO1ttgKc1UI7CfcG108ekMe/TRR4sMLkvrySef1DfffKNNmzZp165dqlmzpjIyMjxuv27dOj388MNat26dHA6H2rRpo6eeekqNGzcutO2+ffs0ZswYLV68WJmZmWrQoIFGjx6tPn36+O14EL5vjc14Q2nGxYk3e0DgBWsqD0+jRXoa/MquDz9W6W/nrr8nfcNQnNJONQJrc3bFkf6+JoVjtxyfroLjx483uRgFPfTQQ6pUqZKaNm2qo0ePFrnt2rVr1bFjRyUnJ2vChAmSpJdfflnt27fX6tWrdemll7q2PXz4sNq1a6c//vhDI0aMUPXq1TVr1iz17dtX06ZN06BBg/x5WAgD/nhDGQ43I+a9QqgJ5lQenkaLDIeMhWD1t3P293ROiUOQCW/wEjh0lY+OLNB9Kpz6PZ/NkjX8559/Vu3atSX9NcJtZmamx23vvfdeRUVFaeXKlUpOTpYk9e3bV/Xq1dPIkSO1ZMkS17ZPPfWUdu3apQULFqhbt26SpCFDhqh169b65z//qT59+iguLs6PR4ZQ56+gMJRvRsxjiVBkpak8woEV+tvFRUeS9gh46WROnnLPlO5aWFR6Oqnr1mDJv4IzyCzOzp07tWHDBvXp08cVZEpScnKy+vTpo88//1y///67a/msWbNUp04dV5ApSWXKlNHw4cN1+PBhLVq0yLyDQNgK5aDQbMxjCdjXkaxcZXqZjXAkK9evmQv+6m+XmZOnwydzdfikf8sPhJv2Ty8v9bgdzrT1c5G6bh0+/RUiIiK86qPpcDiUl+e/C/OGDRskSa1bty60rlWrVpo2bZo2bdqkrl27av/+/dq7d69uvvlmt9s699e3b98Sl6NatWoFfs7P52017Km0bxhLOtIu81gCgXEkK1dRZcx9t+x8SPRmMCE7DgRHtgVgfWenrUvhOy+4Vfn0l+jQoYPbQPPo0aP66aefdOrUKV122WUepzwxy759+ySpQGumk3PZ3r17S7wtEK5Km/Jb2pF2mccS8A8zAj1PqWjuXgzZPW2NbAtYTXFponZPyS/NS2Z/pK2bMW85fAw0V6xY4XHdiRMn9MADD2j16tWaN2+er+XySlZWliQpOrpw7YqJiSmwTUm2Lan9+wvOSXj8+HElVi3clG82qwybH6rs/qAULKUZaddOF/Wzzz9S6uwv1FrS/XH9cje6qhnbWpHdH9oRejydU8EaAMsX515nO9evokm9GllyVFZf5i1HYaY/1cXHx+uNN95Q48aN9fDDD+uVV14x+ytcYmNjJUk5OTmF1mVnZxfYpiTb2kGwhs0PRe4eMMnv/4s3D9/hOBcYKXWhxznf79kvD+w80rO/Aj1nmpo38yKXZFsExpGsXF5M25jd00TPvs6eW/ZgB8ruXs6F0svHYPFL7YyIiFB6errmzp3r10AzKSlJkvuUV+cyZ1psSba1umAOmx+Kzn3ADMaF29k6ZpVWVOcIjt68YQyH6VfORkpd6ArUqKH+6C/pjr8CvZLMi1ySbckM8D9nPeDFtH3ZfXRjq5bf7lkYVuW3p+ns7GwdOXLEX7uXJLVo0UKStGbNGg0dOrTAurVr18rhcKhZs2aS/hqwJzk5WWvXri20H+ey5s2b+7W8ZgnGsPmZOXk6khXYt01mDH3trWBe+EZ/uKVQKkmwOUdw9PYNo51SXkvLrHOM1PfwFcjWvZIEesF07nUwHASzdZEX00Bhk3o30j1X1A2bF+eB4Jer248//qi5c+eqbt26/ti9S926ddW8eXPNnTtXjz/+uKvVct++fZo7d66uuOIKVa1a1bV9//799cwzz+h///ufa4qTM2fO6KWXXlLFihV17bXX+rW83jq7dcsKD5/BegAIlxP93N9tuD1shSNS34GCQnFAoeIEu3WRfqhAYeH04jwQfPptDh482O3yvLw87dmzR19//bXOnDmjyZMn+1SoGTNmaPfu3ZKkgwcPKjc3VxMnTpQk1axZUwMGDHBt+8ILLyg9PV3t27fX8OHDJUkvvfSS8vPzC33/mDFjNHfuXN10000aMWKEkpOTNXv2bG3YsEFvvfWW4uPjfSqvmc59ALXCw6eVAp9QGFkN4a241HcrvFyC+UJtsCF/C8V+8p4C50C0Lq4ala7cM/n0lYXfWa0rEILLp6v49OnTi1x/ySWX6MEHH9SgQYN82b2mTp2qL78seDEcO3asJCktLa1AoNmmTRutWLFCjzzyiB555BE5HA61adNGc+fO1WWXXVZgH+edd56+/vprjRkzRlOmTFFmZqbq16+v999/X/369fOprGZy9wDKw+ff7DSyGvzLmXJmR0W9KDlyMpeRbEOUsy84A+MUb9WodKVUss/gfN4qqg+Yv1+glo+OVHm/fgNgza5ACC6fopddu3a5XR4REaHExETFxcWVqlBFTZ/iTuvWrbVs2TKvtk1OTtaMGTN8KJX/ebrRWGkEz2Uj0xRVJiKgaa3OgWkItu3Fn/16SzJRvJ2ES7p4uLJLf8lgC+XUtaIGaOLlEqPi2h1dgXAun87kmjVrml0O2ERiEB6SnAPThCs7pgsHql8vNzEAduPuhUM4DobkTrD7rQabnbN1EFgnc/JUqbz1X1xSmwELs2s/JR6YAMB7XDMLmrNxjzLDsIX3yslfquG4zzT6wy3BLgosrv3TyzX6A+vXk1I9wc6dO1dTp07V5s2bdfToUSUkJKhp06YaPHiw+vbta1YZgbCxalS6K22M9KHCGNACdmGHNEgGKLKuQP1trFxP7ZbJ4wtPrZeBPi+DMYUdSsZdXbHDOC4+lcwwDN16662aNWuWDMNQmTJlVLlyZf35559asmSJli5dqvnz5+u9994zu7xASCsfHWmLVIiSMLNfLwNawA7skgbpHKDo7AGo6CccfM4Xjkt/WOrX77FSPQ3Xl4hFDRAVKFaqB/DMU12x0jgu7viUOvvGG2/ovffeU9OmTfX5558rOztb+/fvV3Z2tj7//HM1a9ZM77//vl5//XWzywtYhpXfBFtJYmxUSA/uUVrnDmgUagMchSM7zQkZ9/9fblUqz3lqFYH6O1ipnpaPjgzKGBBWMKl3I2197GotG5kWlO/3FGRa9ZoVzib1bqRVo9KDXYwS8elqNnXqVKWmpmrlypUqV66ca3mZMmV0xRVX6Msvv1SDBg00depU3XHHHaYVFrCS9k8vJyjwg6JubnYcGKk4Z7cqOY/P3y0ZCCy79rVGeKGeBo/VRqRmOjnrstsLQZ9K+8MPP+j2228vEGSerVy5curRo4feeOONUhXOzs67ZniwiwCTuQuASDcxn6f0kFC+8cVFR7pSX0Lx+ALtSFauospY4218qM4JidBCPYXEdHIwHzXJT2Ival3sNnYZmhh/sUJfinDhnGvO2Xpp1sBInHPhwUr9vOz29hnhiXoKienkYD6fXvnWr19fH3/8sbKzs92uP3XqlD7++GPVq1evVIULdXYZmhh/m9S7kdY9dKXH9fRpMM/ZfcfMuvFxzgEAAASGT0/FgwcPVkZGhjp27Kjly5frzJkzkqQzZ85o+fLlSk9P1+7duzV48GBTC2t3noYmDtRcUZ6CIIKjkqlSIUb9mqcUWk7/FusJ9jmHwKG/NAKNeycAFM2np+I77rhDq1at0uzZs9WpUydFRESoUqVKOnz4sPLz82UYhvr27as777zT7PLaWrCHJnb3/QRHvvFXaifMFexzDoHjHFTpwPHsYlNnrdSHE/Zw7ryW3DsBFDd4IXwMNB0Oh9577z1dd911mjZtmjZv3qzDhw8rISFBTZo00eDBg9W/f3+zyxoSJvVupHuuqBu0ucrODpAIjkrn7AFcYF3BPucQON6O3GilPpywh3NHh+beCaC4wQtRysGA+vfvT0Dpg2B3uidAQrgJ9jkH72Tm5OlIFqPuwpq4dwI4FxluReM3AQAIutEfbPHriM7npj4CCA5eKCHU8BLKM68Dzby8PF177bWKjo7WvHnzVLZsWbfb5ebmqlevXjp9+rQWLVqkiAhylAEAnmXm5Pl92qCS9OEE4B+jP9zCCx8EBQNiBofXv905c+Zo2bJlGjRokMcgU5KioqI0ZMgQLVmyRO+//74phQQAhC5nypG/xUVHKtGLPpwA/MNTkMnDPvzN2Z/ybPSl9D+vf7sffPCBatSooRtuuKHYbXv06KFatWppzpw5uummm0pVQACwClK+AmPZyDRFlYlgACcExcmcPOWeCczLD3+wW/mdD/uH87i2wr8YEDPwvP4Nb9y4UVdddZXXO+7YsaM+++wznwqFwjJz8lxv/U8yByAQcP7uQ4i/0eqIYLL7Cw67lH/ZyDRVqRBj24d9pkmyJ/pTBpbXZ/cff/yhatWqeb3jatWq6c8///SpUCiIPg1AcAWiDyHgCWmFwWf3v0FUZETAUtS9lRgbZdsgU2KaJMAbXl85Y2JidPLkSa93fPLkSUVH88rADASZwN+CMUGypwe0zvWr+OX7/IXUX3ty17cIgWP3flx2L79V2P1lg1nIqkNJeH3lSUlJ0caNG73e8caNG5WSwo0RgLmsMEGyM+UrNy9fS39YGpDvLK1Qy4wIt4edc+dqO5mTZ5sUSbuye2qn3ctvNZ7uPeEk1O4j8D+vrz5paWl67bXXtGnTJjVr1qzIbb/55hutXr1ad955Z6kLiIJaplbS+ozDrp+ZGw6BZJXWsGBPkOxM+bLT4BWhdJ0oTX9ZOw9xT9+iwLJ7aqfdy29FzntPuE6TFEr3EQSG11egu+++W6+99pr69OmjhQsXql69em63+/HHH9W7d285HA7dddddphUUf3ltQDNXXwvnf+3SogL7s9KNtbQP3aSR2pOn/rLeBoruWiVILQTgrbjoSOUyYJkkGjtQPK/vrPXr19fDDz+siRMnqkmTJurdu7euuOIKVa9eXZK0d+9eLVu2TB9++KFycnL06KOPqn79+n4reDg7+wHbTi0qsB9vHt6tOMhEccI9/cfO04e4q2slDRQZ4h4ASmfVqHSVj46kscNLds6mKY0S3V0nTJigsmXL6vHHH9esWbM0e/bsAusNw1BkZKQmTJigRx55xNSCIvSF60loZcX1SbHr/GdFTRput6DZF6E0fciqUelKqRRb4s+RhgoAvivPC7oSCddsmhIf3dixYzVgwABNmzZNX3/9tX7//XdJUtWqVdWuXTsNGjRIqampZpcTYSBcT0KrO7c/pFOotQTZNWgOd+c+7PDCyv74W4WHQPydgzFKOeBJOGbT+HSEqampmjBhgtllAcLyJAyE0t5QQ7n1h5EZQwsvrOzDXf8u/lbhIVB/ZyuMUg6cLZSfp9zhLIPlhNtJGAiebrbB6sh/JCvXMm+TGZkx9PDCyh4m9Wqk5/pFBG30aASOsz+fFPi/c7BHKYd3rPJMAHNxpgFhwt3NNlijFjtHr+1cv0rAvxvhgRdW1lFUOjN/p/BQPjpSlcr7r2/4yZw85Z7x3L+eemZ97l6IM6qt/RFoAmHk3JttoPojenrQtMsN5GROXrCLANgW6czwNzuOoI3Czs1GYQo/71h5ujau8gD8rrjRa60s3KdCAcxAOnNoO5mT59cWS1/YLRWTgYv+whR+JWP1Z5TwqbkAgmpS70ba+tjVWjYyLdhFKRF3F/BwuukDZon7/+mTvgaZPIhbV/unl2v0B1uCXQwXO7aYO1/InsuOx4LAKWq6Niug5gIImLjoSOXafA5Hbvo4t98Q/YgCgxFES8ffgfqcjXs0tlv9oP4t7D6KOAMXwQxWmq6N2ouwkJmT57pw098Ovlo1Kl0plWKDXQwE2dmjpdKPKLB4EPed2YG6uxcsuXn5QR10x6qjiBc3WNHZGLgIvrLiixbrlATwE6vnr8M+ylvo4o3goh9R8PAg7jszA/VJvRrp0evyQmYgHn+2+IbK7wjWZsUXLdZI4AX8iCATAIC/OPvKlqa/rFMovXwLdB9Jq/ShC6RwPOZwFzpXCABAqVh5iHQAwVOS1E87C1RqdiD6FR/JylVUGesEdvSlDjwrBPb8xQEApJgD8CicUj/9mZodyD50V07+0u/fUZRVo9JdLd70pTZPSVK8rTC1XPBDXQBA0Fl9iHQA1sK1oeT82YfOan+P8iamaONvJU3xntS7kdaMbB2IornFXx6mYFRXIPRYaYh0oCSYc7N0ivsdcW2wHiu0XiEwSpriHcy+1ASaISYYOfmk3AGhxYpDpAMlwZybpePu99e5fhVN6tWINEgLcwYgB45nBz11Fv5ll9G3uVKEmGBcWAgygy/Yb++D/f0wlxWHSAdKijk3S+fs3x+/O/uIi45UbmxUsIsBSKKPpmX4OtojD/GQAj8su9W+P9wcycoNmRT1UDkOWJOZU3mEI+fvj98dAF9w5bCA0qSekpMPp2C/vQ/294eTUEqJav/0cnWuXyXYxQBgEqZJCj5PjRBRkRGuezQQCDwFWkBpU0/Jybe2I1m5AWt5DnbOfrC/H9bn7lwg/R4IDYzZYA3uGiEYwAnBQKAZIsjJty5n8E+rDUqjc/0qIfEARxYGELqYJsk66GMLK+DMt5hlI9O0alR6sIuBUvB0Qw2FIAHBM6lXI2197GotG5kW7KKU2qTejbjOAWGCvvrBQx9bBBs1z2ISaZW0PVps4C+hlLkQzHm9APgf0yQBoEUT8INJvf9qfaLVpjCmQgFKj/MIVsc0SQC4GwF+EhcdqZRKsW6n/bCKokam8xemQgFKj/MIAGB13I0APzt32o+TOXlq//TyIJfqL0WNTOdPTIXif8W1eDHEvf1xHgEArIw7EvyONC5rT/sRrJHprPw7CQWe+grbeYh75ucrjPMIAGBVBJow1blTMJDGVZgV+1bxsBqaQqnFi/n5AAChKhhdmQLBnk8cNhfKKW2TejXSc/0imLepCMW1NAFmCpWXCMzPBwDWYsUX53YVrK5M/mbv0ttUKKa0nS1UHmz9KZRamoBgCYWbMAAEkpnBIS/OzRWsrkz+ZP8jsKmiAg3eEIUHAnLY2cmcvKB9N/PzAdbA84r9mB0c8uLcXKH2bEhNCCJPlSlU3xCFav45wle41mkz+kuWpgsB8/MB1hCqzyuhzuzgMNSCI5iHq4BFheIbolDNP0f4Ctc67S7IdAaO3gbfod6FAAgXofi8Eg4IDhEIXAksLBQvAqGYf47wRp0uGFyXJPjmARUIDaH4vFKUcM1mAUqKOzoCLtxuSAh94VynV41KV0ql2ALLShJ8h/PvDoA9hWs2C1BSnBEAAJ+V9/BgRQAJwF+s0KJINgtQPNr4AQAAYBvOFsWzBaNFMS46UpXKMzgZ4AlnBgAEyMmcPI8tgAAA79GiCFgfZyUABEj7p5erc/0qwS4GAIQEq6boWyG1F7ACajwA+Im7h4rSzj8JALA2q6T2AsFGjQcAP/E0VyQAILSR2gvQogkAfjWpdyOtGpUe7GLAj4pKhyNVDghfDBaEcMcdEAD8jAGAQpu7NDmJVDm7oD8dAPgHd0AAAErp7DQ5SaTK2Yi7FHdeEgBA6XEVBWyA1DzA+qw6AiaKR386ADAfT6ghhPSf0EVqHgBfcW/wDv3pAMBcXE1DCOk/oY3UPAC+4N4AAAgG7jIhhvSf0EZqHgBfcG8AAAQad5oQRDACADgX9wb7OpKVq6gy4ZXqHI7HDIQaAk0AAAALu3Lyl8EuQsCF4zEDoYZXRQDgZ4waDKAkwvG6EI7HDIQ6zmoA8DNGDQZQEp6uGaEsHI8ZCHU84QBAADBqMICScF4zDhzPDps00nA8ZiCU8ZSDsEe6DgKFwVgAlERcdKRyY6OCXYyACsdjBkIVT9gIK53rVynwM6mLAAAAgPl4wobtFDewijM10Z1JvRrpuX4RzCUH2/JU/2mZBwAAVsKTCWyntAOrxEVHqlL5KIJMWFJxgaS7+k/LPAAAsBqeTGBLDKyCUOUMJOds3ONadm4geXb9D0TdZ3oWAABQUjyZw7YYWAWhyptAMpD1313wK9GSCgAAPOMJAQAsyGovUsgiAAAAJcFTAkIOaX6Af1gt+IW5uHbCKhj0DAgNtj9jMzMz9cQTT+jSSy9VfHy8KleurDZt2mj69OkyDKPAtuvWrVOnTp0UHx+vChUq6JprrtG3334bnILDb0o7WBAAhCOunbAKBj0DQoOtz9j8/Hx16dJFq1ev1sCBAzV8+HBlZWVp9uzZGjRokLZt26ZJkyZJktauXauOHTsqOTlZEyZMkCS9/PLLat++vVavXq1LL700mIcCk5HmBwAlx7UTVhHoQc8AmM/WZ+26dev01Vdf6f7779dzzz3nWn7XXXfpkksu0euvv+4KNO+9915FRUVp5cqVSk5OliT17dtX9erV08iRI7VkyZKgHIMd2SW9ijQ/ACg5rp2wCuoiYG/WiQp8cPz4cUlSUlJSgeVRUVGqXLmyypcvL0nauXOnNmzYoD59+riCTElKTk5Wnz599Pnnn+v3338PXMFtjvQqAAAAAEWxdVTQsmVLVaxYUU8//bRSU1N1+eWXKysrS++88442bdqk1157TZK0YcMGSVLr1q0L7aNVq1aaNm2aNm3apK5du/pUjmrVqhX4OT8/X+UGTfNpX3ZBehUAAAAAT2wdGSQmJmrBggUaOnSo+vbt61oeHx+vDz/8UD169JAk7du3T5IKtGY6OZft3bvX/wUOMaS0AAAAAHDH1oGmJMXFxalhw4bq3r272rRpo8OHD2vKlCm66aabNH/+fHXu3FlZWVmSpOjowlFRTEyMJLm28cX+/fsL/Hz8+HE1emKVz/sDAAAAADuzdaD5/fffq02bNnruuef0j3/8w7W8f//+atiwoYYNG6aff/5ZsbGxkqScnJxC+8jOzpYk1zYAAAAAgNKx9WBAzz33nLKzs9WnT58Cy2NjY9W1a1ft3r1bGRkZrsGC3KXHOpe5S6sFAACF2WX0cQBA8Nj6buAMEs+cOVNoXV5enuu/LVq0kCStWbOm0HZr166Vw+FQs2bN/FhSAABCB6OPW4enwJ6AHyg5XqKZy9a/sfr160uSpk+fXmD50aNHNX/+fCUmJqpu3bqqW7eumjdvrrlz57oGBpL+GiRo7ty5uuKKK1S1atVAFh0AAFub1LuRtj52tb4Z21nfjO2srY9drUm9GwW7WLZg5sOsu6CfgB+hIBhBHy/RzGXr39j999+vd999V2PGjNH333+vtm3b6vDhw3rzzTe1f/9+TZkyRWXKlJEkvfDCC0pPT1f79u01fPhwSdJLL72k/Px8TZ48OZiHAQCALTH6uG+cD7NzNu4psNzXh9mzpxxjujGECrPPE28xhZ95bP1bq1mzptavX68JEyZo2bJlev/991WuXDk1btxYkydP1g033ODatk2bNlqxYoUeeeQRPfLII3I4HGrTpo3mzp2ryy67LIhHAQCBR3oQEFxmP8wS9CMUBSvo43wyh60DTUmqU6eO3nnnHa+2bd26tZYtW+bnEgGwGoKqwoL1phjA33iYBYrHeWJfPE0ACHkEVe6RHgQAAPyFJwoUQusPQhFBlXu8KQYAAP5A1IBCGHELoSouOlKVykepUvko6jIAAIAf8aQFt2j9AQAAAOArIgd4REodAAAAAF+QOgsAAAAAMBWBJgAAAADAVASaAADLYfRrAADsjbs1AMByGP0aAAB7424NALCkYI5+TYsqAAClw90SAGBZwZr7lBZVAABKh7slAJyFliw4MZ8wAAC+46kJAM5CSxbOFqwWVQAA7I67JgCcg5YsAACA0uHJCQDciIuOlKKDXQoAAAB7InUWAAAAAGAqAk0AAAAAgKkINAEAACzK02jXjIINf2MUdpQWtQQAAMCi3I2EzSjYCARGYUdpUUsAAAAs7OyRsBkFG4HEKOwoDWoKAACAxTESNoKFugdfkToLAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAABEhUpPvbrqflAADYFXc2AAACJC46Uv2apxRY1q95ChOgAwBCDnc2AAACaFLvRhrbrb5y8/IVFRlBkAkACEnc3QAACLC46EgpOtilAADAf0idBQAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAMkKpJfNQAAAIDwQPQTAP2apyguOjLYxQAAAACAgCD68ZM9L96kX375ReclJhBkAgAAAAgrtGj6Sf6p40qMLUuQCQAAACDsEGgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABThUSgefjwYf3zn/9U3bp1FRMTo/PPP1/p6elatWpVge3WrVunTp06KT4+XhUqVNA111yjb7/9NjiFBgAAAIAQFRnsApTW7t271bFjR2VmZmrIkCG66KKLdOzYMW3ZskV79+51bbd27Vp17NhRycnJmjBhgiTp5ZdfVvv27bV69WpdeumlwToEAAAAAAgpDsMwjGAXojTat2+vjIwMrV+/XtWqVfO4XcuWLfXjjz9q27ZtSk5OliTt3btX9erVU6tWrbRkyRLTynT8+HElJCTo2LFjqlChgmn7BQAAAABvBTMusXXq7MqVK/XVV19p1KhRqlatmk6fPq2srKxC2+3cuVMbNmxQnz59XEGmJCUnJ6tPnz76/PPP9fvvvwey6AAAAAAQsmwdaC5atEiSVKNGDXXr1k3lypVT+fLlddFFF2nmzJmu7TZs2CBJat26daF9tGrVSoZhaNOmTT6Xo1q1agX+XXjhhT7vCwAAAADsztaB5vbt2yVJw4YN0+HDh/XOO+9o2rRpioqK0oABA/T2229Lkvbt2ydJBVoznc5OowUAAAAAlJ6tBwM6ceKEJCk+Pl7Lly9XVFSUJKlHjx6qXbu2HnroIQ0cONCVThsdHV1oHzExMZLkNuXWW/v37y/wszMXGgAAAADCka1bNMuVKydJ6t+/vyvIlKTExER1795dv//+u7Zv367Y2FhJUk5OTqF9ZGdnS5JrGwAAAABA6dg60KxevbokqWrVqoXWOUegPXLkiJKSkiS5T491LnOXVgsAAAAAKDlbB5otW7aUJP3222+F1jmXXXDBBWrRooUkac2aNYW2W7t2rRwOh5o1a+bHkgIAAABA+LD1PJpHjhxRzZo1VaFCBf3444+Ki4uT9FefyQsvvFDJycmuAYNatGih7du368cff3S1cO7bt0+XXHKJWrZsqc8//9y0cjGPJgAAAIBgC2ZcYuvBgBITE/XMM8/ojjvuUKtWrTR48GDl5ubq1VdfVW5url566SXXti+88ILS09PVvn17DR8+XJL00ksvKT8/X5MnTw7WIQAAAABAyLF1i6bTvHnz9PTTT+v7779XRESEWrdurXHjxqlt27YFtluzZo0eeeQRrVu3Tg6HQ23atNGTTz6ppk2bmloeWjQBAAAABFsw45KQCDSthkATAAAAQLAFMy6x9WBAAAAAAADrIdAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqSKDXYBQZBiGJOn48eNBLgkAAACAcOWMR5zxSSARaPpB3bp1JUkpKSlBLgkAAACAcHfixAklJCQE9DsJNP0gIiJClStX1s6dO+VwOIJdHFjIhRdeKEnasWNHkEsCK6FewB3qBTyhbsAd6gXcqVu3rgzDUFJSUsC/m0DTDyIiIhQRERHwtwawvoiIv7pFV6hQIcglgZVQL+AO9QKeUDfgDvUC7pQpU0bS3/UjkBgMCAAAAABgKgJNAAAAAICpHEYwhiACAAAAAIQsWjQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0DzHTz/9pEcffVStWrXS+eefr/j4eDVu3Fj//ve/dfLkyULbb9++XT169FBiYqLKly+v9u3b64svvijRd5qxD/hXoOvF+PHj5XA43P575plnzDw0lEJJ6sX69et17733qm3btoqLi5PD4dD06dNL/J379u3TrbfeqvPPP1/lypVT8+bNNXfuXJOOCGYIdL2YPn26x+vFPffcY+KRobS8rRuGYWjmzJm68cYbVbduXcXGxqpGjRrq3r271q1bV6LvPHbsmIYPH67k5GTFxMSoQYMGevXVV2UYhtmHBx8Ful6sWLHC4zXjuuuu88chwkcluZ9MnjxZHTt2VLVq1RQdHa1q1aopPT1dH330UYm+08xrRmSJPxHipk2bpilTpqh79+66+eabVbZsWS1fvlyPPPKI/vvf/2rt2rUqV66cJOnnn39WmzZtFBkZqVGjRikhIUFvvvmmrr76ai1evFidOnUq9vvM2Af8L9D1wum5555T5cqVCyxr1qyZqccG35WkXixatEhTpkzRJZdcossuu0yrV68u8fcdPnxY7dq10x9//KERI0aoevXqmjVrlvr27atp06Zp0KBBZh8ifBDoeuH00EMPqV69egWWXXzxxaU6FpjL27qRk5OjAQMGqHHjxrrxxhtVq1Yt7d+/X6+99ppat26td999V7fcckux35ebm6vOnTtr8+bNGj58uOrVq6fFixfrrrvu0oEDBzR+/Hj/HzSKFeh64XT77berffv2BZZVr17d7MNDKZTkfrJ+/Xqlpqbq2muvVeXKlXX48GHNnTtXN9xwgyZMmKCxY8cW+32mXzMMFLBhwwbj6NGjhZY//PDDhiTjpZdeci3r06ePERERYWzevNm17MSJE0aNGjWMiy66yMjPzy/2+8zYB/wv0PVi3LhxhiRj165dZhQfflKSevH7778bmZmZhmEYxty5cw1Jxttvv12i73vwwQcNScaCBQtcy/Ly8owWLVoYlSpVMk6cOOHbgcBUga4Xb7/9tiHJWL58eWmKjQDwtm6cPn3aWLFiRaHtfv/9d+O8884zLrjgAuPMmTPFft+UKVMMScaLL75YYPkNN9xglC1b1sjIyPDxSGCmQNeL5cuX+3StQeCV5H7izunTp41GjRoZcXFxRl5eXrHfZ/Y1g9TZczRv3lwJCQmFlvfr10+StHXrVknSyZMntWDBAnXs2FGNGzd2bRcXF6ehQ4fqp59+0oYNG4r8LjP2gcAIZL041/Hjx5WXl+d74eE33tYLSapSpYrKly9fqu+bNWuW6tSpo27durmWlSlTRsOHD9fhw4e1aNGiUu0f5gh0vTjbiRMnlJuba9r+YC5v60ZkZKTS0tIKbVelShWlpaXpjz/+0B9//FHs982aNUuxsbEaNmxYgeX333+/Tp8+rTlz5vhyGDBZoOvF2U6ePKns7GwfSo1AKMn9xJ3IyEglJyfr5MmTOn36dLHfZ/Y1g0DTS7/99pukv05mSdqyZYtycnLUunXrQtu2atVKkooNKMzYB4LLH/XibI0aNVJCQoJiYmLUpk0bLV682IRSw9/OrRdm2L9/v/bu3euqR2fjemEP/qgXZ+vevbsqVKigmJgYXXbZZZo5c6ZfvgfmK0nd+O233xQVFaWKFSsWuV1+fr6++eYbNWnSRDExMQXWtWzZUg6Hg2uGxfmjXpztvvvuU1xcnMqVK6eLLrpIL7zwAn13baKounH48GEdPHhQ27Zt04QJE/Tpp58qPT290HXgXP64ZtBH0wtnzpzR448/rsjISN10002S/hqQQ5KSk5MLbe9ctnfv3iL3a8Y+EDz+qheSVLFiRd1+++1q06aNEhMTtX37dj3//PPq2rWrpk2bpttuu828A4Gp3NULM3C9sDd/1QtJio2N1U033aQrrrhCF1xwgXbt2qUpU6ZowIAB+vnnnzVu3DhTvw/mKkndWLRokdavX68BAwYU+9B45MgRnTp1yu01Izo6WpUrV+aaYWH+qheSVLZsWXXv3l3XXnutkpKStG/fPk2dOlX333+/vv32W7399ttmHQb8oLi6cdFFF+nQoUOS/mrR7NWrl1555ZVi9+uPawaBphfuv/9+rVmzRk888YRrYIWsrCxJf/3iz+U8yZ3beGLGPhA8/qoXzn2fa/DgwWrYsKEeeOAB9e7dW3FxcaUoPfzFXb0wA9cLe/NXvZCkvn37qm/fvgWW3XHHHWrevLkmTpyogQMHKjU11dTvhHm8rRs7duzQgAEDlJycrMmTJxe736KuGdJf1w2uGdblr3ohSW3bttX8+fMLLBs2bJiuvfZaTZ8+XUOHDlXbtm1LVX74T3F1Y968ecrOztbevXs1d+5cnTp1SidOnND5559f5H79cc0gdbYYY8eO1csvv6zbb79d//rXv1zLY2NjJUk5OTmFPuPMdXdu44kZ+0Bw+LNeeHLeeefpH//4h44ePVqqkSnhP57qhRm4XtiXP+uFJ9HR0frnP/+pvLw8LVmyJCDfiZLztm7s2rVLV155pRwOhxYvXlzsA6NU9DVD+uu6wTXDmvxZLzyJiIhwfdfChQt93g/8y5u60aFDB1111VUaNGiQFi1apPj4eLVt21ZHjhwpct/+uGYQaBZh/PjxmjhxogYNGqTXXnutwLqkpCRJ7lPVnMvcNT2bvQ8Enr/rRVGcrRJ//vmnz/uAfxRVL8zA9cKe/F0visL1wtq8rRsZGRlKT09XZmamli5dqksvvdSr/ScmJqpcuXJurxk5OTn6888/uWZYkL/rRVG4Zlibr/eTgQMH6vfff9e8efOK3M4f1wwCTQ/Gjx+vxx57TAMHDtRbb70lh8NRYP2ll16q6OhorVmzptBn165dK+mvkaKKYsY+EFiBqBdF2bFjhyT/DSYC3xRXL8xQrVo1JScnu+rR2bheWFMg6kVRuF5Yl7d1IyMjQx07dtSxY8e0dOlSNWnSxOvviIiIUNOmTbV58+ZCLRTr16+XYRhcMywmEPWiKFwzrKs095NTp05J+muQoKL45ZpRoslQwsRjjz1mSDIGDBhQ5HxEvXv3NiIiIoxvv/3Wtcw5X+KFF15YYL7Eo0ePGtu2bTMOHjzo8z4QXIGqF6dPn3Y7Z9Kvv/5qVKpUyTjvvPOMrKwsk44KpeVtvThbcfMlnjx50ti2bZuxb9++Asv/+c9/epxHs2LFisbx48d9Pg6YK5D14s8//yy07dGjR426desaUVFRxp49e0pcfviPt3UjIyPDSE1NNRISEoz169cXuc/c3Fxj27Ztxu7duwssf/nllz3OiRcZGclczRYSyHrh7pqRnZ1ttG3b1pBkrFu3zreDgF94UzcyMzPdzqWdl5dnXHnllYYkY+XKla7lgbpmOAyDcYzPNmXKFN1zzz2qUaOGHn/8cUVEFGz0rVKlijp37ixJ2rlzp1q2bKmyZcvqgQceUIUKFfTmm2/q+++/18KFC3X11Ve7Pjd9+nQNGjRI48aN0/jx413LS7IPBE8g68XRo0dVq1Yt9ejRQ/Xq1XONOvvWW28pMzNTs2fPVp8+fQJ27PCsJPVi9+7dmjFjhiTp//7v//T+++/rhhtucL2JHjBggGrWrClJWrFihdLT0zVw4EBNnz7dtb9Dhw6pWbNmOnTokEaMGKHk5GTNnj1bK1as0FtvvaUhQ4YE4KhRnEDXi6SkJKWlpenSSy/VBRdcoIyMDE2bNk379+/X5MmTNWLEiAAcNbzhbd04ceKELrvsMu3atUvDhw9Xy5YtC+2rc+fOrpanjIwM1apVS2lpaVqxYoVrm9zcXLVp00bfffed7r33XtWrV0+LFi3SRx99pEceeUSPP/64X48X3gl0vWjRooWSkpLUrFkz16izM2fO1I4dOzR8+HC9+OKLfj1eeM/buvHtt98qLS1NvXv31sUXX6xKlSpp7969mj17trZv317ovhGwa0aJwtIwMHDgQEOSx39paWkFtv/hhx+M7t27GwkJCUa5cuWMtm3bGkuXLi2037ffftuQZIwbN67QOm/3geAJZL3Izs42hgwZYjRs2NCoWLGiERkZaVStWtXo1asXbxktpiT1Yvny5UVuu3z58kLbDhw4sNB3/vbbb8Ytt9xinHfeeUZ0dLTRpEkT4/333/f/wcJrga4XI0aMMJo2bWpUqlTJiIyMNM477zyjS5cuxqeffhqYA4bXvK0bu3btKnK7c+uGc/tz70WGYRhHjhwx7r77bqNatWpGVFSUUa9ePeOll14iY8pCAl0vnnrqKaNVq1ZG5cqVjcjISCMhIcHo2LGjMWvWrMAdNLzibd04ePCgcffddxuNGjUyEhMTXfeCTp06GTNnzix0vgfqmkGLJgAAAADAVAwGBAAAAAAwFYEmAAAAAMBUBJoAAAAAAFMRaAIAAAAATEWgCQAAAAAwFYEmAAAAAMBUBJoAAAAAAFMRaAIAAAAATEWgCQAAAAAwFYEmAAAlMH78eDkcDq1YsSLYRSmR9u3bq3HjxjIMo8Sf/e677xQREaG33nrLDyUDAIQiAk0AQNhyOBwl+me34NJp7ty5+uqrrzRx4kQ5HI4Sf/6yyy5Tr169NHbsWGVmZvqhhACAUOMwfHm1CQBACBg/fnyhZc8//7yOHTum++67TxUrViyw7rbbblNcXJz+/PNP1ahRQ7GxsYEpaCkYhqFLLrlEZcuW1datW33ez8aNG9WiRQv9+9//1kMPPWRiCQEAoYhAEwCAs6Smpmr37t3atWuXUlNTg12cUlu6dKmuuuoqTZo0SaNGjSrVvurXr6+TJ09q165dioggKQoA4Bl3CQAASsBdH82MjAw5HA7ddttt+umnn9SzZ08lJiYqISFB119/vTIyMiRJO3fuVJ8+fVS5cmXFxsbq2muv1S+//OL2ew4dOqRRo0bp4osvVkxMjBITE9W1a1etXbu2ROWdOnWqJKlfv36F1h0/flyPPfaYGjZsqPj4eMXHx6tOnTq68cYbtXnz5kLb9+vXT7/++quWLl1aojIAAMIPgSYAACbZtWuXWrdurWPHjmnIkCFq27atFixYoE6dOmnbtm26/PLL9eeff+q2225Tx44dtXjxYnXt2lX5+fmF9tO0aVP95z//UXJysu6++2717NlTa9asUYcOHfS///3Pq/IYhqEvvvhCSUlJqlmzZqF111xzjcaPH68KFSpo2LBhuvPOO9WyZUutWLFC69atK7S/tm3bShKBJgCgWJHBLgAAAKFi5cqVeuaZZzRy5EjXsttvv11vvvmm2rRpo0ceecTtuvnz56tnz56u5bfeeqt+++03zZs3r8Dyf//732rZsqWGDRumjIwMxcTEFFme7du36+DBg+rWrVuhdVu3btWaNWvUo0cPffTRRwXWnTlzRsePHy/0mRYtWriOEwCAotCiCQCASWrVqqUHHnigwLIBAwZIkipVqlRo3S233CLpr+lDnL799lt99dVX6tOnT4EgU5KqVaumBx98UAcOHNCyZcuKLc+vv/4qSapatarHbcqVK1doWZkyZZSYmFhoeUJCgmJiYlz7BQDAE1o0AQAwyWWXXVZokJxq1apJkho1alRoXVJSkiRp7969rmVr1qyRJB0+fNjtqLg7duyQJP3444/q2rVrkeU5dOiQJLkNGuvXr6/GjRtr9uzZ2r17t66//nq1a9dOzZs3V1RUlMd9VqpUSQcOHCjyewEAINAEAMAkCQkJhZZFRkYWu+706dOuZYcPH5b0Vz/IovpCejOfpbO1Mjs7u9C6MmXK6IsvvtCECRP0wQcfaPTo0ZKkChUq6LbbbtMTTzyh8uXLF/rcqVOn3LaCAgBwNlJnAQCwEGdA+uSTT8owDI//xo0bV+y+LrjgAkl/B6/nSkxM1HPPPac9e/bop59+0htvvKELL7xQL774ou65555C2+fn5+vo0aOu/QIA4AmBJgAAFnL55ZdL+juFtjQaNGigMmXKaPv27cVue+GFF2rYsGFauXKl4uLi9PHHHxfaZvv27TIMQ40bNy512QAAoY1AEwAAC2nRooXatGmjBQsWaNq0aW63Wbt2rbKysordV0JCgho3bqzvvvtOOTk5Bdbt2rXL7RyeR44cUU5OjmJjY91+rySlp6d7cygAgDBGH00AACxm1qxZSk9P15AhQ/TKK6+oRYsWio+P1549e7Rx40bt3LlT+/fvdxsMnuuGG27Qpk2btGLFCl199dWu5d99951uuOEGtWjRQvXq1VNSUpL++OMPzZ8/X6dPn3b12TzbkiVLVKZMGV1//fWmHi8AIPTQogkAgMXUrFlTmzdv1vjx45WXl6d3331XL7/8stavX69LL71U7777ripXruzVvoYMGaKyZcvq3XffLbC8efPmGjNmjMqUKaNPP/1UkydP1meffaYWLVpo8eLFuvfeewtsf+LECc2fP1/XXXedUlJSTDtWAEBochiGYQS7EAAAwH+GDh2qWbNmKSMjw+eBfF555RXdfffdWrVqldq1a2dyCQEAoYZAEwCAELd//37XYD/PPfdciT+fnZ2tunXrqlWrVvrggw/8UEIAQKihjyYAACGuWrVqmjlzpmvUWIfDUaLP7969W0OHDtVtt93mnwICAEIOLZoAAAAAAFMxGBAAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFT/D4iKJ6OUKnN5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A power spectrum of this lightcurve.." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 13361.52it/s]\n" + ] + } + ], + "source": [ + "ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKOCAYAAADtdZcdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADh5klEQVR4nOzdd3hUZfrG8XsmPRBC772IBRAQxQYEBHFVUBBwURALP+u6uooFy4odV13FxU5TdC241kVZEAG7Inal996TEJKQZOb9/YEzOWdKMpNMkkPy/VwX15WZOXPmZAgkd57nfV6XMcYIAAAAAIAA7qq+AAAAAACAMxEYAQAAAAAhERgBAAAAACERGAEAAAAAIREYAQAAAAAhERgBAAAAACERGAEAAAAAIREYAQAAAAAhERgBAAAAACERGAHAwXJyclS7dm25XC716tWrqi+nxnC5XHK5XGV6jvVP7dq1dfzxx+vOO+/U/v37K+hqAQCoOC5jjKnqiwAAhDZz5kxdfvnl/tu//PKLunTpUoVXVDP4wmI03yJ9z7ngggtUu3ZtSdKmTZv09ddfKy8vT23atNEXX3yhFi1axP6CEVOLFy9W//791a9fPy1evLiqLwcAqhQVRgBwsFmzZkmSmjdvbrsN53rsscc0a9YszZo1S5988ol+/vlntW7dWhs3btSECROq+vIAAIgKgREAHGrdunX67LPPVKtWLc2cOVOS9Oqrr6qoqKiKrwzR6Nixo+677z5J0vvvv8/fHwDgiEJgBACHeumll2SM0fDhw3XmmWfqqKOO0o4dOzRv3jzbcRdccIFcLpemT58e9lzXXHONXC6XJk+ebLvf6/XqlVde0YABA1S/fn0lJSWpffv2uuGGG7Rz586g88yaNUsul0uXXnqpdu3apauvvlqtW7dWQkKCbrzxRknSgQMH9Pzzz2vo0KHq0KGDUlJSVKdOHZ100kmaMmVKiYFp/vz5ysjIUO3atVW3bl0NHDhQS5Ys0eLFi+VyuZSRkRHyeRs3btR1112njh07Kjk5WXXr1lX//v319ttvh32ttWvXavTo0WrYsKFSU1N1/PHH69lnnw17fHn07NlTkpSbm6vdu3f779+1a5duvvlmHXXUUf7r7tu3r15++eWgdljf3+Hs2bNt92dmZio+Pl4ul0v3339/0Gs3bdpUiYmJysnJsd2fk5Ojhx56SD179lRaWppSU1PVvXt3PfbYYyooKAg6z6WXXiqXy6VZs2bp+++/1/nnn6/GjRvL7Xbr3XfflSTl5eXpX//6l0488UQ1atRIycnJat68ufr27auHHnrIdj7r19Lu3bt11VVXqUWLFkpOTlbnzp310EMPhbwOn7lz5+qcc85R48aNlZiYqFatWunyyy/XunXrwj5nw4YNuv7669W5c2elpqaqbt266tq1q26++WZt3LjR/3n2799fkrRkyRLbmlTr119GRoZcLpcWL16sjz/+WGeeeabq168vl8ulH3/8UZLUtm1buVwubdiwIeT1hFsra71/2rRp6tGjh1JTU9W8eXNdf/31/r/Lffv26a9//atat26t5ORkHXvssXQhAIg9AwBwHK/Xa9q0aWMkmYULFxpjjHnwwQeNJHPBBRfYjn3vvfeMJNO3b9+Q5zp06JCpV6+ecbvdZvPmzf77CwoKzHnnnWckmdq1a5uMjAwzfPhw0759eyPJtGjRwqxdu9Z2rpkzZxpJ5uyzzzatW7c2jRo1MsOHDzfDhg0z99xzjzHGmM8++8xIMk2bNjX9+vUzf/7zn82AAQNMcnKykWTOPfdc4/V6g65z5syZxuVyGUmmd+/eZvTo0aZ79+7G7XabG2+80Ugy/fr1C3reggULTFpampFkOnfubIYPH2769evnf72JEycGPefnn3829erVM5JM+/btzZ///GeTkZFh3G63ueGGG4wkE+23SN9z1q9fH/TY559/7n987969xhhjVq5caZo3b24kmZYtW5pRo0aZs846yyQlJRlJ5qKLLrK9T2+++aaRZC699FLbud955x3/uTMyMmyP/fLLL0aSOfXUU233b9q0yXTu3Nn/93T22Webc845xzRo0MB/nkOHDtmeM27cOCPJXHHFFSYxMdEcddRR5s9//rMZOHCg+e9//2s8Ho/JyMgwkkzdunXNOeecY0aPHm0yMjJM48aNTVJSku18vq+lIUOGmHbt2pkGDRqYCy64wJx77rkmNTXVSDJnnXWWKSoqCno/r7nmGiPJJCYmmtNOO82MGDHCHHvssUaSSU9PN998803Qcz788ENTu3ZtI8m0bt3aXHDBBeb88883Xbp0MZLMzJkzjTHGvPjii2bw4MFGkmnSpIkZN26c/8/DDz/sP1+/fv2MJHPVVVcZl8tlunfvbkaPHm1OP/1089NPPxljjP/fcKivCWNM2K8z3/0333yzSUpKMmeddZY577zzTP369Y0kM3DgQLNnzx7TqVMn06JFCzNq1CjTt29f/7+fl156KeTrAUBZEBgBwIEWLlzo/8HWFxo2b95s3G63SUxM9IcOYw4Hv0aNGhmXyxXyB9O33nrL/0Om1S233OK/f/v27f77PR6PueOOO4wk06dPH9tzfD/k+0JjTk5O0Ott3rzZfPLJJ0GhcMeOHaZnz55Gknnttddsj23atMmkpqYal8tl3njjDdtjTz31lP81AwPj1q1bTd26dU1CQkLQOZcvXx4Uuo05HMa7d+9uJJmrr77aFkg+/fRTf1iJZWC89dZbjSTTqlUr/329evUyksy4ceNs4WzFihX+IPnMM8/479+9e7dxuVymTZs2tnNff/31RpLp2rWrSUpKMrm5uf7HpkyZYiSZu+66y/b59+7d2x9I8vPz/Y/t37/fH5buvvtu2+v4AqMkc++99wb9/S5evNhIMieccELQ10VRUZHt78AY+9dS3759TVZWlv+xjRs3+n9xMWXKFNvznn76aSPJdO/e3axevdr22LPPPuv/JUBhYaH//g0bNvjD4uOPP248Ho/tecuXLze///67//aiRYvC/oLCxxcYrWEzUHkDY9OmTc3KlSv992/ZssU0atTISDLHHXec+fOf/2z72nnuueeMJNOuXbuw1w0A0SIwAoADjR071kgyd955p+3+QYMGGUnmX//6l+3+v/71r0aSue+++4LO5asizp4923/fnj17THJysqlXr57Zs2dP0HM8Ho85/vjjjSR/tcSY4h/yExMTzcaNG6P+vObPn28kmREjRtjunzRpkpFkhg4dGvJ5voAT+AO8L/T+/e9/D/m8//znP0aSGTZsmP++JUuWGEmmYcOG5uDBg0HPuemmm2IWGDdv3mwmT55sEhISjCTzyCOP2K6hfv36Jjs7O+hcvve5Q4cOtvu7detmJJk1a9b47zvuuONM27ZtzRNPPGEkmfnz5/sf8/3df/LJJ/775s6d638vQ1V6t23bZhITE02DBg1sj/sC4zHHHBMUuIwproDecMMNpb9Zls/R5XKZX3/9Nejx119/3R/+fIqKikzTpk2N2+0OCos+Q4YMMZLMe++957/P9+/jsssui+jaogmMgwcPDntMeQPjiy++GPSYr9pep06doH+7RUVF/irxhg0bwl4XAESDNYwA4DAHDhzQf/7zH0nSuHHjbI/5bgeuU/LdH7i+be/evfrwww+Vlpam4cOH++9fvHix8vPzNWDAADVo0CDoGtxut04//XRJ0tdffx30eI8ePdS6deuwn4MxRkuWLNEDDzyga6+9VpdddpkuvfRSPffcc5KkVatW2Y7/9NNPJUkXXnhhyPONHj065P0fffSRJGnkyJEhH+/bt2/Q57BkyRJJ0vnnn6/U1NSg54wdOzbs5xWJdu3a+degtWrVSrfffrsKCwt17bXX+qek+j7fYcOGKS0tLegcY8aMUUJCgtauXautW7f67x8wYIAk6ZNPPpEk7dy5U7/99psGDBgQ9JjX69WSJUuUnJysU0891X8O33s2YsSIkOvnmjVrpk6dOmnv3r1avXp10ONDhw6V2x3840OPHj0UFxenGTNm6LnnntOuXbsieLek448/Xscdd1zQ/SNHjlRSUpLWrVvnfw9+/PFH7dixQz169FDHjh1Dni/U37lv3e8VV1wR0TVF4/zzz4/5OX3OPPPMoPs6dOggSTrhhBOC/u3GxcWpbdu2kqRt27ZV2HUBqFniq/oCAAB2b775pnJzc3XqqaeqU6dOtseGDx+uOnXqaNmyZfr111/9ezL27NlTXbp00a+//qqvvvpKp5xyiiTptddeU2FhoS6++GJbOPINBvnPf/5T6gb11iEtPm3atAl7/I4dO3T++efrm2++CXtMdna27bYvEIQ7b7j7fZ9H165dw76WZP8cfK/l+8E6ULj7I+Xbh9Hlcik1NVXt27fXOeeco6OPPjroGtq1axfyHPHx8WrdurU/MPr2bhwwYICefPJJLVy4UP/3f//nD4cDBgxQ165d1ahRIy1cuFCStGzZMmVmZmrAgAFKSkryn9v3nl1//fW6/vrrS/xcdu/eraOOOsp2X7i/i44dO2rKlCmaMGGCrrnmGl1zzTXq2LGj+vTpowsuuEBnn312yK+1cO+32+1Wq1attGbNGm3ZskUtWrTwX/uyZcui+rrdtGmTJKlz584lPqcsSvq3UF4tW7YMus+3x2eox6yPHzp0qMKuC0DNQmAEAIfxVQ83btzor/JZ+X5QnjVrlh577DH//ZdccoluvfVWvfzyy/7A6Ks4BlYqPR6PJOnYY4/ViSeeWOL1hKr+pKSkhD1+/Pjx+uabb9SnTx/de++96tatm9LT0xUfH69Vq1apc+fOQRNAAz+3QKEqWtbP46KLLlJCQkKJn0dleeyxx8odOsPp16+f4uLitGjRIkmyBUaXy6X+/fvrP//5j7KysmyPWfneswEDBqhVq1Ylvl6o6nNJf/fXXXedLrjgAv33v//VwoUL9dlnn2nmzJmaOXOmzjjjDM2bN0/x8WX/0cN37a1bt/ZPMg2nd+/e/o9LC5flUdL7URKv11vqMeG+7kt7DABiicAIAA6ydu1aff7555IOV6Gs7YiBXn31VU2ePNn/A/iYMWM0ceJEvfHGG5oyZYrWr1+vb7/9Vm3atFG/fv1sz/UFhZ49e8Z0DP/Bgwf10UcfKS4uTh988IHS09Ntj69Zsybk85o3b66VK1dq06ZNtvZJn3DbEvgqUPfdd5+/Va80vmqdbxuFSF8rlnzXEG4LiKKiIn9VzHesJNWpU0cnnHCCvv32W/3666/65JNPdMwxx6hZs2aSDofAN998U4sXLw4bGH1/9xdddFGFtGg2bdpU48eP1/jx4yVJ33zzjUaPHq2FCxdq+vTpuuqqq2zHh/t78Hq92rx5s6Ti98B37a1bt47q67Z169ZauXKlVq1apYYNG0b7KZVZYmKiJAVtaSLJ/7kBgNPx6ykAcBDfD8HDhg2TOTyYLOSfTp06Be3J2KxZMw0aNEj79+/XBx98oJdfflnS4TV5gRWWM844QwkJCZo3b17IH2bLKisrS16vV2lpaUFhUTrcIhtKnz59JElvvPFGyMdff/31kPefddZZkqS33nor4mv0rXF79913lZeXF/T4q6++GvG5ysp6DQcOHAh5DYWFherQoYMtMErFAXDmzJlat26dLRD6Pv7oo4/0+eefKy0tLaiCXJb3rDx69+7tD48///xz0OM//vijli9fHnT/f/7zHx06dEjt2rXzt1+edNJJql+/vr799tuoApdvLeCMGTMiOt4X9EraMzQSzZs3lyStXLky6LH58+eX69wAUFkIjADgEF6v1x/yxowZU+KxF198saTg4TeXXHKJJOmll17yBx/ffVZNmzbVNddcoz179mjYsGEhK12ZmZl6/vnno/qhuUmTJqpbt64yMzODwuErr7wSNoxdccUVSklJ0Xvvvecf+OPz7LPP6quvvgr5vAkTJigtLU2TJk3S9OnT/S2LPsYYLV26VAsWLPDf17dvX3Xr1k27d+/WLbfcYnvOF198oWeffTbiz7es+vbtqxNOOMG/8XphYaH/sdWrV+vOO++UJN18881Bz/WFwmeeeUbS4fDv06lTJ7Vq1UovvfSScnNz1adPn6AW0GHDhqlHjx6aN2+e/va3vwWtJ5UOV1lfeeWVqD6nTz75RB999FHQ10tBQYH//Q81KMkYo+uuu84WnLds2aKJEydKkm2dZUJCgu666y4VFBTovPPO048//hh0vtzcXP373//Wzp07/ffddNNNqlWrlmbMmKGnnnoqqB10xYoVWrFihf+2L6SvWbOmXKHR1zb72GOP6eDBg/77ly1bprvvvrvM5wWASlVF01kBAAEWLFjg3/TcujdeKKtXr/Zvb2HdkzE3N9fUqVPHP5Y/cMN2q0OHDpnhw4cbSSYhIcGcdNJJZtSoUWbEiBGmZ8+eJj4+3kgyeXl5/uf4tkIYN25c2PP+4x//8L/+aaedZkaPHu3fouP22283koL2EjTGmGnTpvk3Hj/55JPN6NGjTY8ePYzb7fbvNTho0KCQ71vdunWNJNOyZUszePBgc9FFF5nBgwebJk2aGEnmtttusz3np59+8j+nQ4cO5s9//rMZMGCAiYuL82/BEO23SN9zwm2hEGjlypX+/RZbtWplLrzwQvOnP/3JJCUlGUlm9OjRIbe9yM3NNYmJiUaScbvdZt++fbbHrfslPvbYYyFfe+PGjbaN7vv27WsuuugiM3ToUNOpUycjyfTu3TvkecPtOejb1qNu3brmjDPO8J/Pt2/gUUcdZfbv3+8/3ve1NGTIENO2bVvTsGFDM2LECDN06FBTq1Yt/9+3dZ9Mn7/85S/+LTl69OhhLrjgAjNq1CjTu3dv//u3fPly23M++OAD/x6bbdq0MSNGjDDDhg0zXbt2Dfl59ejRw7+NyJgxY8wVV1xh/vGPf/gf922rsWjRopDvhzGH985s1qyZkWRatGhhhg8fbk499VQTHx9vJk6cWOq2GqGU9m8wkusCgGgQGAHAIS6++GIjyfzf//1fRMefdNJJIfdkHD9+vP8Hzueee67U87z99tvm3HPPNU2aNDEJCQmmYcOGplu3bubqq6828+bNsx0bSWA05vAeeieeeKJJS0sz6enpJiMjw8ydO9esX78+bGA0xpiPPvrI9OnTx6Smppo6deqY/v37m48//tjMnj3bH6JC2bp1q7n11ltN165dTa1atUxKSopp166dGTRokHnyySfN1q1bg56zatUqM2rUKFO/fn2TnJxsunTpYv71r38Zr9dbKYHRGGN27txp/va3v5mOHTuaxMREk5aWZk4//XQza9askGHRp2/fvkaS6dmzZ9BjL7/8sv9avv/++7DnyM3NNU8++aQ57bTTTN26dU1CQoJp3ry5Ofnkk81dd91l23/TmNID4+rVq83f//53k5GRYVq2bGmSkpJMo0aNTK9evcyjjz5qsrKybMdbv5Z27NhhLr/8ctO0aVOTmJhoOnXqZO6///4Sf3HyySefmJEjR5oWLVqYxMREU69ePXPssceacePGmbffftsUFBSEvMarrrrKtGvXziQmJpq6deuarl27mgkTJgTtK7p+/XozatQo06RJExMXFxe0L2OkwWzNmjVmxIgRpl69eiY5Odl0797dzJgxwxhT+j6MoRAYAVQ2lzFhRtUBAOAQ//d//6dp06bp0Ucf9e9liCPbrFmzdNlll2ncuHExHbwEAIgt1jACABxhw4YNIfd8fPnllzVjxgwlJiZq9OjRVXBlAADUXGyrAQBwhP/+97+68cYb1aNHD7Vp00YFBQVavny51qxZI5fLpSlTpgRNDAUAABWLwAgAcIS+ffvq4osv1hdffKGVK1cqPz9fDRs21LBhw3TjjTf6t6IAAACVhzWMAAAAAICQWMMIAAAAAAiJltRK5PV6tW3bNqWlpcnlclX15QAAAACogYwxOnDggJo3by63u+QaIoGxEm3btk2tWrWq6ssAAAAAAG3evFktW7Ys8RgCYyVKS0uTdPgvpk6dOlV8NQAAAABqouzsbLVq1cqfT0pCYKxEvjbUOnXqEBgBAAAAVKlIlskx9AYAAAAAEBKBEQAAAAAQEoERAAAAABASgREAAAAAEBKBEQAAAAAQEoERAAAAABAS22oAAABYFBQUKDMzU8aYiEbOA4AT+P7Pqlu3rhITE2N2XgIjAADAH7xer/bs2aOmTZvK7aYRC8CRxev1aseOHTH9P4z/CQEAAP6wf/9+NWjQgLAI4IjkdrvVoEEDZWZmxu6cMTsTAADAEa6oqEhJSUlVfRkAUGZJSUkqLCyM2fkIjAAAAACAkAiMAAAAf2DIDYDqIJb/lxEYAQAAAAAhERgBAAAAACERGAEAAAAAIREYAQAAgEqwePFiuVwuzZo1q6ovBYgYgREAAACwWLx4sSZNmhTTveyqo127dumyyy5Tt27dVL9+fSUnJ6tjx4664oortGbNmqq+PMRIfFVfAAAAAOAkixcv1r333qtLL71UdevWjdl5+/btq7y8PCUkJMTsnFVp//79WrVqlc4880y1adNGKSkpWr16tWbMmKE5c+bo66+/1rHHHlvVl4lyIjACAAAAlcDtdis5ObmqLyNmOnfurC+++CLo/hEjRuikk07S1KlT9cwzz1TBlSGWaEkFAACoYfLz8zVp0iR17txZqampqlu3rrp27apbbrkl6NiPP/5YZ555purWravk5GR169ZNzz33XMjzPvvss+rcubOSkpLUqVMnTZ06VbNmzZLL5dLixYv9x02aNEkul0u///67brzxRjVr1kypqak644wztHLlSknS22+/rZ49eyolJUVt27bVCy+8EPI1I72+tm3bKiMjQytWrNA555yjtLQ0paena8SIEdqxY4f/uEsvvVT33nuvJKldu3ZyuVxyuVyaNGlSie/pb7/9ppEjR6pFixZKSkpS06ZN1b9/f82dO9d/TKg1jG3btvW/RuCfjIwM22t89913GjZsmBo2bKikpCR17txZDz74oIqKikq8tsrWpk0bSYcrkFaRvEdwHiqMAADUYJm5BUpNjFdiPL9Drkmuu+46zZgxQ5dccoluuukmFRUVafXq1frkk09sx73wwgu6+uqrdfLJJ+vOO+9UrVq1tGDBAl1zzTVau3atHn30Uf+xjzzyiG6//Xb17NlTDz/8sHJzc/Xoo4+qUaNGYa9j3Lhxql27tu644w7t3r1bjz/+uAYPHqz7779ft956q6655hpdfvnlmj59uq666iode+yxOv3008t0fZK0detWZWRkaNiwYXr00Uf1008/6fnnn1d2drbmz58vSbrqqquUnZ2td955R0888YQaNmwoSerWrVvYz2Pv3r0aMGCAJOnqq69WmzZttGfPHn333Xf65ptvdM4554R97pNPPqmcnBzbfd98842mTp2qJk2a+O+bO3euhg8fro4dO+rmm29W/fr19dVXX+nvf/+7fvzxR82ZMyfsa/hkZWWpsLCw1OMkKTU1VampqREdW1hY6D/3mjVr/OH67LPP9h9TnvcIVcyg0mRlZRlJJisrq6ovBQAA8+Kna02b2/5rznh8sTl4qLCqL8cRdu7cWdWXUCnq1atn/vSnP5V4zLZt20xSUpIZPXp00GN//etfjdvtNmvXrjXGGLN3716TnJxsunbtavLy8vzHbd++3dSpU8dIMosWLfLff8899xhJ5txzzzVer9d//5QpU4wkk5aWZjZt2uS/f9euXSYpKcn8+c9/LtP1GWNMmzZtjCTzxhtv2I699tprjSSzYsWKoOtbv359ie+Rz3vvvRfy3IEWLVpkJJmZM2eGPWb9+vWmcePGpkOHDmbPnj3GGGPy8vJMkyZNTJ8+fUxhof3f6j//+c+g9zecfv36GUkR/bnnnntKPZ/PBx98YHtukyZNzOOPP247JtL3CLFR2v9l0eQSfp0IAEAN9dq3myRJa3blaOmG/aUcjeokPT1dv/32m3799dewx7z11ls6dOiQrrjiCu3Zs8f2Z8iQIfJ6vfr4448lSQsWLFB+fr6uueYa2xq9pk2b6uKLLw77Gn/961/lcrn8t/v06SNJGjp0qFq1auW/v1GjRurcubNWr15dpuvzad68uUaNGmW7z1f1sp47Wunp6ZKkjz76SNnZ2WU+T1ZWls4991wVFBRo7ty5atCggaTD7+/OnTt12WWXKTMz0/a5+qp4vgppSR5//HEtWLAgoj+XXHJJxNd98skna8GCBXr//fc1efJkNWvWTPv377e1ysbqPULloyUVAIAaKrfA4/84v9BTwpGobp588kmNHTtWXbt2Vfv27dW/f38NGTJEQ4YMkdt9uJ6wfPlySdLAgQPDnmfnzp2SpPXr10s6PAQlUKj7fNq3b2+7Xa9ePUmH1w4GqlevnjZu3Oi/Hc31hXs9Sf5Qtnfv3rDnKU2/fv10ySWXaNasWXr11Vd14oknauDAgbrwwgsjnhJaVFSkkSNHatWqVZo3b57tffN9rpdffnnY5wd+rqGccMIJEV1LtBo2bOj/exgyZIjGjh2rbt26adeuXXr++eclxeY9QtUgMAIAUEMVerz+j71eU4VXgsp23nnnacOGDfrwww+1ZMkSffzxx5o+fbr69Omjjz/+WImJiTLm8NfEyy+/rGbNmoU8T6gAFo24uLio7vddk/XjaK4v3HkDz10WL730km655RZ99NFH+uyzz/T444/rwQcf1JNPPqm//OUvpT7/2muv1YIFCzRt2jR/1TPw2h599FF179495PObN29e6mvs27dPBQUFpX8ykmrXrq3atWtHdGyoaxk4cKCmT5+up556SklJSZLK/x6hahAYAQCooQqKLIGRvFjj1K9fX2PGjNGYMWNkjNHtt9+uf/zjH3rvvfc0cuRIderUSZK9ehRO27ZtJUkrV64MCju+qaexFs31RcvaJhuNLl26qEuXLrrllluUmZmp3r176/bbb9d1111X4jkfffRRvfjii7r11lt1xRVXBD3u+1xr1apVrs91+PDhWrJkSUTH3nPPPaVOhi1JXl6ePB6PsrOzbYOPyvoeoeqwhhEAgBqq0FOcEj3lrK7gyOHxeJSZmWm7z+VyqUePHpIOV6EkadSoUUpKStI999yjvLy8oPNkZWXp0KFDkqRBgwYpKSlJzz77rPLz8/3H7NixQ6+++mqFfB7RXF+0fJU133tRmn379snr9druq1u3rtq1a6fc3FzbexLonXfe0W233aZhw4Zp8uTJIY8ZPHiwGjdurMmTJ4e8pry8PB04cKDU64z1GsZwbbC///67Fi5cqA4dOvjDYnneI1QtKowAANRQtKTWTAcOHFCzZs00dOhQ9ejRQ40bN9b69ev17LPPql69ehoyZIgkqWXLlnr22Wc1fvx4HXPMMRo7dqzatGmj3bt365dfftG7776r33//XW3btlWDBg10zz336I477tBpp52mMWPGKDc3Vy+88IKOOuoofffddzGvHkVzfdE6+eSTJUm33XabLr74YiUnJ/srY6G8/PLLeuKJJzRs2DB17NhRCQkJWrJkif73v/9p1KhRSklJCfm8vXv3asyYMUpNTdVZZ50VFK6bNGmiQYMGqVatWnr55Zd1/vnnq3Pnzrr88svVsWNHZWZmasWKFXr77bf1zjvvBO3bGCjWaxgffvhhLViwQOecc47atm0rY4x+/fVXzZ49W4WFhXr66af9x5b1PULVIzACAFADeb1GRZaQ6CEw1hipqam68cYbtXDhQn388cfKycnxB8iJEyfa1sJddtllOuqoo/TYY4/p+eefV2Zmpho2bKjOnTvr/vvvV9OmTf3HTpw4UXXq1NGUKVN0++23q3Xr1rrllltkjNF3331XIYEgmuuLxmmnnaZHHnlEzz33nP7v//5PRUVFuueee8IGxoyMDP3www/673//q+3btysuLk7t2rXTY489VuLavAMHDig3N1fS4f0fA/Xr10+DBg2SdLjKuHTpUk2ePFmvvPKKdu/erXr16qlDhw666aabStwnsqKce+652rJli958803t2rVLHo9HLVq00MiRIzVhwgQdd9xx/mPL+h6h6rlMeVf4ImLZ2dlKT09XVlaW6tSpU9WXAwCowQ4VedT5rnn+2/8Y0U2jerUq4Rk1w65du9S4ceOqvoxq5frrr9fUqVO1ffv2Mgc4ANEp7f+yaHIJaxgBAKiBijz23xfz+2OUV6g1aNu3b9fLL7+sLl26EBaBIxQtqQAA1EDW9YuSFHATiNrixYt1yy23aPjw4WrZsqU2bNigF198UTk5OWGHuQBwPgIjAAA1UEFgYKTCGJbXa5SZV1jVlxFW3ZQEud1Vvx1Bx44d1aFDB7344ovau3evkpOT1atXL02cODHm214AqDwERgAAaqDCgJZUpqSGl5lXqJ73L6jqywjr+7sHqX6txKq+DHXs2FHvvvtuVV8GgBhjDSMAADVQYZG9wuilwggACIHACABADRS8hpHACOebNWuWXC6XFi9eXNWXUiY//vijzjjjDNWrV08ul0uTJk2q6ksCSkVLKgAANVDgGkYqjOHVTUnQ93cPqurLCKtuSkJVXwIiUFRUpAsuuECFhYW6//77Vbdu3SrZO7G6ePfdd/Xjjz8eEaH7pZde0r///W/99ttv2rNnj9LS0tSxY0ddddVVGjt2rOLi4vzH7tq1S7fddpuWLVumLVu2KDc3Vy1btlS/fv00ceJEdezYsdKvn8AIAEANFLiGkSmp4bndLkesEcSRbd26dVq3bp0ef/xxNqqPgXfffVcvvfTSEREYv//+e9WrV0/XXXedGjdurJycHM2dO1eXXXaZPvvsM02fPt1/7P79+7Vq1SqdeeaZatOmjVJSUrR69WrNmDFDc+bM0ddff61jjz22Uq+fwAgAQA0U2JJKhREIduDAAaWlpcXkXDt27JAk1a9fPybnw5FjypQpQffdcMMNOuecczRz5kw9+OCD/n1KO3furC+++CLo+BEjRuikk07S1KlT9cwzz1T4NVuxhhEAgBooaOgNaxgh6dJLL5XL5VJWVpauueYaNW7cWMnJyTrttNP0zTff2I4taT1hRkaG2rZta7uvbdu2ysjI0E8//aSBAweqdu3aaty4sW6++WYVFRUpPz9fEyZMUIsWLZScnKy+fftq+fLlIa+zqKhIkyZNUps2bZSUlKRu3brp9ddfD3nsd999p2HDhqlhw4ZKSkpS586d9eCDD6qoqCjkNa9bt04jRoxQ/fr1VadOnVLfsw0bNmjs2LFq0qSJkpKS1KFDB91xxx3Kzc21nbtfv36SpMsuu0wul0sul0sbNmwIe959+/bpb3/7mzp06KDk5GQ1aNBAJ5xwgh599NGgY9944w2dfvrpSktLU2pqqnr37q233nor6DiPx6P7779fbdq0UXJysrp166Y33nhDkyZNCroe39fC3r17demll6phw4ZKS0vT+eef7w+/L7zwgo455hglJyfr6KOP1nvvvRfyc4n0+lwuly699FJ99dVX6tevn2rVqqUGDRpo/PjxysnJsb2fL730kv85vj+zZs2SJG3evFmXX365/+ujcePGOvXUU/3PcYo2bdrIGKOsrKyIjpUOVyArGxVGAABqIPZhREkGDx6sRo0a6e9//7v27t2rf/7znzrnnHO0fv36clXctmzZokGDBunCCy/UiBEjNH/+fP3zn/9UfHy8fvvtN+Xl5en222/Xnj179Nhjj+n888/X8uXL5Xbbaxy33XabDh48qGuvvVaSNHPmTI0ePVr5+fm69NJL/cfNnTtXw4cPV8eOHXXzzTerfv36+uqrr/T3v/9dP/74o+bMmWM7b05Ojvr166fTTjtNDz74oHbt2lXi57Nx40addNJJysrK0rXXXqtOnTpp8eLFevjhh/XFF19o4cKFio+P15133qnTTjtNDz30kK688kr16dNHktSoUaOw5x45cqQ+/fRTXX311erWrZvy8vK0fPlyLV68WLfccov/uLvuuksPPvigzjrrLN1///1yu9165513NHLkSE2dOlXXXXed/9i//OUveu6559S/f39NmDBBu3fv1rXXXqt27dqFvY6zzjpLLVu21H333ac1a9boqaee0rBhwzR8+HC98MILuuKKK5ScnKynnnpKI0aM0KpVq2zni+b6pMODgc4991xddtlluuiii7R48WJNnz5dbrdbL7zwgiTpzjvvlNfr1WeffabZs2f7n3vqqaeqqKhIgwYN0tatW3XttdfqqKOOUlZWln7++Wd99tlnGjduXIl/p4WFhREFOJ+GDRtGfGxWVpYKCwu1f/9+/e9//9OMGTN01FFHhVyX6LuOwsJCrVmzxt96e/bZZ0f8ejFjUGmysrKMJJOVlVXVlwIAqOEW/LbDtLntv/4/j/9vRVVfkiPs3Lmzqi+hSo0bN85IMtdcc43t/jfffNNIMs8995z/vpkzZxpJZtGiRUHn6devn2nTpo3tvjZt2hhJ5s0337Td37NnT+NyuczQoUON1+v13z9lyhQjycybNy/oNVu3bm0yMzP992dmZprWrVubevXqmdzcXGOMMXl5eaZJkyamT58+prCw0Paa//znP4OuvV+/fkaSufPOO0t+kywuuugiI8nMnTvXdv+ECROMJDNt2jT/fYsWLTKSzMyZM0s9b2ZmZsi/h0DLli0zkszEiRODHjvvvPNMWlqayc7ONsYY8+uvvxpJZvDgwcbj8fiP+/nnn43b7TaSzPr16/33+74Wrr32Wtt5//a3vxlJplWrVrafaX/66Scjydx+++1luj5jjJFkXC6X+frrr23Hnn322SY+Pt4cOHAg6PoC+a7jkUceCXosEr6/p0j/ROOEE07wP8/lcplBgwaZtWvXhjz2gw8+sL1OkyZNzOOPPx7xa5X2f1k0uYSWVAAAaqCgbTWoMMLib3/7m+32gAEDJEmrV68u13lbtGihkSNH2u47/fTTZYzR9ddfL5fL5b/fV4UL9ZrXXHON0tPT/bfT09N19dVXa//+/f4W2QULFmjnzp267LLLlJmZqT179vj/+Ko08+fPDzr3hAkTIvpcvF6v3n//ffXo0SOo6jNx4kR/Ja0sUlJSlJSUpG+++abEttVXX31VLpdL48aNs31+e/bs0dChQ3XgwAF99dVXkqT//ve/kg6vnbNWbLt27arBgweHfY0bb7zRdtv393LJJZfYWna7deumOnXq2P6+ork+n1NOOUW9e/e23TdgwAAVFRWV+F74+L4uFi1aVGqFOJTjjz9eCxYsiPhPNJ555hktWLBAL7/8skaNGuWvNoZy8skna8GCBXr//fc1efJkNWvWTPv37w9qpa4MjmtJXbVqlV555RXNnz9fa9euVX5+vjp06KCRI0fqxhtvVK1atWzHr1y5UrfddpuWLFmigoIC9ezZU/fee6//P7ZIxOIcAAAcSYK31aiiC4EjtW/f3na7QYMGkqS9e/eW67yhWh/r1asX8jHf/aFe85hjjgm6zzc5ct26dZLkX/94+eWXh72enTt32m43atRIdevWDXu81e7du5WTk6Pjjjsu6LH69eurWbNm/muJVmJiop588kndcMMNateunY499lgNGDBA559/vs444wz/ccuXL5cxRkcffXTYc/k+x/Xr10s6PFQlUOfOnfXRRx+FfH7g10K4vy/fY9a/r2iuL9zrSdF9/bVp00Z33nmnHn74YTVr1kzdu3fXGWecoZEjR+rEE08s9fn16tXTwIEDSz2uLE466ST/x2PHjtXEiRPVt29f/fzzz+rQoYPt2IYNG/qvY8iQIRo7dqy6deumXbt26fnnn6+Q6wvHcYFxxowZevrppzV06FBdfPHFSkhI0KJFi3TXXXfpzTff1Ndff62UlBRJ0tq1a3XqqacqPj5et956q9LT0/Xiiy9q8ODB+uijjyL6y47FOQAAONIEbqvB0BtYWfeFszKWSrS1GhgoXBUk3Hkjfc1o+J736KOPqnv37iGPad68ue12ampqmV6rIlx99dU677zzNHfuXC1ZskRvvfWWpk6dqgsvvNA/4McYI5fLpY8++ijs+xcq0EYj3Hkj+fsqy/WV9DUS6dfCAw88oMsvv1xz587VZ599pmnTpunRRx/VrbfeqkceeaTE5xYUFGjfvn0RvY4k/3TTshg3bpwmT56sWbNm6f777y/x2ObNm2vgwIGaPn26nnrqKSUlJZX5daPluMA4YsQITZw40dZmcPXVV6tTp0568MEHNX36dP/eNRMnTlRmZqaWLVvm/4/gkksu0XHHHafrrrtOK1asKPE/s1idAwCAI01QSyqBEVHybQ8R6ofr9evXKyEhocJee/ny5TrvvPNs9/3++++SiitUnTp1kiTVqlWrQgoAjRo1Ulpamn777begx/bv36/t27eHDaqRatasmcaPH6/x48fL4/Fo7Nixeu2113TzzTfrxBNPVKdOnTRv3jy1bt06ZNXVyje1duXKlUFVvJUrV5brOsOJ5vqiVdrP5+3bt9f111+v66+/Xvn5+Ro8eLD+8Y9/6Oabb1bjxo3DPu/LL79U//79I76Osv5CQ5Ly8vIkhf43FO54j8ej7OzsEgcmxZrj1jD26tXLFhZ9LrzwQknSr7/+Kkk6ePCg3n//fWVkZNj+MdauXVvjx4/XqlWrtHTp0hJfKxbnAADgSMQaRpTXUUcdJUn6+OOPbfe/9tpr2rZtW4W+9rPPPmubZJmVlaXnnntOdevW9W9fMXjwYDVu3FiTJ08O+QN5Xl6eDhw4UOZrcLvdGjJkiH744QfNmzfP9tjkyZPl9Xo1bNiwMp07NzfXti2HdLjy1q1bN0nFAWPs2LGSpDvuuEMejyfoPNZ2zyFDhkg6vCeg11v87/+XX37R//73vzJdZ2miub5o1a5dW1Jw2PJNFrVKTk72B9bStqWI9RrGoqKisK20//rXvyQdXq/oE+49+f3337Vw4UJ16NChUsOi5MAKYzhbtmyRJDVp0kSS9PPPP+vQoUM65ZRTgo71velLly619QoHisU5StKsWTPbbes/TgAAqlIB+zCinDp37qyBAwfq+eeflzFG3bt3148//qh33nlHHTt2DPqhPZYaNmyo3r1767LLLpN0eFuNTZs2adq0af620lq1aunll1/W+eefr86dO+vyyy9Xx44dlZmZqRUrVujtt9/WO++8o4yMjDJfx0MPPaQFCxbo/PPP17XXXquOHTvq008/1RtvvKG+ffuWuoVDOKtWrVK/fv00bNgwdenSRfXq1dPy5cv17LPPql27dv7BMyeeeKImTZqkSZMmqXv37ho5cqSaN2+u7du3a9myZfrwww9VUFAg6XDr55VXXqkXXnhBAwcO1LBhw7R79249/fTT6tGjh5YtWxbzrrpori9aJ598sqZOnaprr71W55xzjhISEtS7d2/99NNPuvLKK3XBBReoc+fOql27tpYtW6Zp06apd+/eIddwWsV6DWNOTo5atmzp/7ts0qSJduzYoXfffVffffedzjjjDF100UX+4x9++GEtWLBA55xzjtq2bStjjH799VfNnj1bhYWFevrpp2N2bZE6IgKjb5PR+Ph4/xvq+81VixYtgo733bd169YSzxuLcwAAcCQKWsNIXkQZzJ49W9dff71effVVzZ49W3369NGiRYt0zTXXRDTRsqweeeQRffbZZ3r66ae1c+dOHXXUUXr11VdtP3hLh6uMS5cu1eTJk/XKK69o9+7dqlevnjp06KCbbrrJX7ErqzZt2uibb77R3//+d73yyivKzMxUy5YtNXHiRN11112Kjy/bj9qtWrXS5ZdfrkWLFundd9/VoUOH1KJFC/3f//2fbrvtNttay3vuuUe9evXSU089pSeffFIHDx5U48aN1aVLFz311FO28z7zzDNq3ry5pk+frgkTJqhz58569tln9e2332rZsmX+OSGxFM31RWP06NH64Ycf9Prrr2vOnDnyer2aOXOm+vXrp+HDh2vx4sV69dVX5fF41Lp1a91xxx26+eabY/iZRSY1NVXXXXedPv30U82fP1+ZmZlKS0vTcccdp6lTp+rKK6+0rds899xztWXLFr355pvatWuXPB6Pf7rwhAkTyr0mtSxcpjyNt5Xk+uuv19SpU/XQQw9p4sSJkg7/B3XJJZdo+vTpQdOv1q1bpw4dOuiGG27Qk08+Gfa8sThHNLKzs5Wenq6srCzbGGIAACrbUwtX658LVvlvX9S7tR4a1rUKr8gZdu3aVeL6JqA6GjJkiD755BNlZ2eXOHQGR47S/i+LJpc4bg1joLvvvtufvn1hUSqeYnXo0KGg5+Tn59uOCScW5wAA4EgUuIaRllSg+vMNWbH6+eef9dFHH2nAgAGERYTk6JbUSZMm6YEHHtBll12m5557zvaYbwxyqJZR332hWk1jfQ4AAI5EgfswMiUVqP5eeuklvfzyyzrnnHPUqFEjrVixQi+88IISExN13333VfXlwaEcGxgnTZqke++9V+PGjdO0adOCFuF27dpVSUlJ+uqrr4Ke+/XXX0s6PHG1JLE4BwAAR6Ii1jACNU7Pnj31zjvv6KmnntK+ffuUlpamAQMG6J577lGPHj2q+vLgUI4MjPfdd5/uvfdejR07VjNmzJDbHdw5W7t2bQ0ZMkRvv/22fvrpJx1//PGSDk8imjZtmjp16mSbbpqVlaXt27erYcOGatiwYZnOAQBAdRHUkur8kQYAyumkk06qsC00UH05LjA+/fTTuueee9S6dWsNHDhQ//73v22PN2nSRIMGDZJ0eOzswoULdeaZZ+pvf/ub6tSpoxdffFFbt27V3LlzbVXJd955R5dddpnuueceTZo0yX9/NOcAAKC6CNqHkRIjACAExwXGpUuXSpI2bdoUcu+afv36+QNjx44d9cUXX+j222/X5MmTVVBQoJ49e2revHkR758Si3MAAHCkKSiyB0QPFUYAQAhHxLYa1QXbagAAnOKvr/2g93/a5r/9py5N9eyYE6rwipxh586datKkSVVfBgCUS2n/l1WrbTUAAEDssYYRABAJAiMAADVQ8BrGKroQh4mPjw+5PzMAHCkOHTqkhISEmJ2PwAgAQA1UELStBhVGSapXr5727t0rj8dT1ZcCAFHzeDzat2+f6tatG7NzOm7oDQAAqHiFRUxJDcXtdqthw4bau3evjDFMSwdwxPD9n9WgQYOQ2xKWFYERAIAaiDWM4SUmJqpx48ZVfRkA4Ai0pAIAHM3rNWKgd+wRGAEAkSAwAgAc68Nftuvou+fpT1M+U1ZeYVVfTrVSGLCGkZZUAEAoBEYAgGO99OUGFXi8WrHjgJas2l3Vl1OtBFUYmZIKAAiBwAgAcKyDBUX+j6kwxlbQthq0pAIAQiAwAgAcy5pp8gvY5iCWAltSWcMIAAiFwAgAcCyvZV1dXiGBMZYKglpSCYwAgGAERgCAY1nbJAmMsUVLKgAgEgRGAIBjWSd35hMYY6qwKCAwMvQGABACgREA4FgExooTuIaRvS4BAKEQGAEAjmUNjHkMvYkZY0zQGkb2YQQAhEJgBAA4lpc1jBWiKEQ4ZA0jACAUAiMAwLFsFcZCFtnFSuDAG4kpqQCA0AiMAADHslYY2YcxdgLXL0pUGAEAoREYAQCO5WEfxgoRusJYBRcCAHA8AiMAwLGYkloxQgZGKowAgBAIjAAAx7Iuq6PCGDuFRSFaUlnDCAAIgcAIAHAsKowVI3BLDYkKIwAgNAIjAMCxrINY2IcxdkK3pFbBhQAAHI/ACABwrMChN4YqWEyECoy0pAIAQiEwAgAcyxpivCZ0KyWixz6MAIBIERgBAI4UKsDkFxAYY6Eg1NAbqrcAgBAIjAAARwoVYPKLWMcYC7SkAgAiRWAEADhSqADD4JvYKPIGB0YKjACAUAiMAABHCrXNA3sxxgYtqQCASBEYAQCOFLLCSGCMCVpSAQCRIjACABwpRNek8mlJjYlQgVFiUioAIBiBEQDgSKFaJKkwxkbYwEhbKgAgAIERAOBItKRWnAJP6GDIOkYAQCACIwDAkUIFxvxC9mGMhcKicC2plXwhAADHIzACAByJltSKE64llQojACAQgREA4EihBrAw9CY2wgZGht4AAAIQGAEAjsQaxooTbg2jocIIAAhAYAQAOBItqRWHCiMAIFIERgCAI4VqSc2jJTUmiljDCACIEIERAOBIocLLoSICYywUhmlJZUoqACAQgREA4Egh1zBSYYyJgjAVRi8VRgBAAAIjAMCRQlW7WMMYG+H2YWQNIwAgEIERAOBIoYfe0DMZC+GG3lBhBAAEIjACABwpVLWLfRhjI9waRiqMAIBABEYAgCOxD2PFYQ0jACBSBEYAgCMRGCtO+JbUSr4QAIDjERgBAI4UqtqVT2CMiXCBkZZUAEAgAiMAwJFCrmEkMMZEYRFrGAEAkXFkYHz44Yc1cuRItW/fXi6XS23btg153IYNG+RyuUr88+qrr5b6erNmzQr7/L/85S8x/uwAAJEIOSWVoTcxwRpGAECk4qv6AkK54447VL9+ffXs2VOZmZlhj2vUqJFmz54d8rG//OUvysvL0+DBg6N63WOOOcZ2X+fOnSN+PgAgdrxh1jAaY+RyuargiqqPolCbXIo1jACAYI4MjGvXrlX79u0lSV26dFFOTk7I42rVqqUxY8YE3f/VV18pKytLI0aMUMOGDSN+3UGDBikjI6NM1wwAiK1Q7ZFec7g6lhQfVwVXVH3QkgoAiJQjW1J9YbGspk2bJkkaP3581M89cOCACgoKyvX6AIDyC9cemV8QujqGyIWfkkpgBADYOTIwlkdOTo7efPNNtWnTRoMGDYrquUOHDlWdOnWUnJys448/Xq+88kq5rqVZs2a2P506dSrX+QCgJgmTadhaIwbCrWGkwggACOTIltTyeOONN5STk6MJEybI7Y4sD6empuqiiy7SgAED1LhxY61fv15PP/20xo4dq7Vr1+qee+6p4KsGAAQKNfRGYlJqLIStMBIYAQABql1gnDZtmtxuty677LKInzNq1CiNGjXKdt9VV12lXr166YEHHtC4cePCTmotyfbt2223s7OzlZ6eHvV5AKAm8oQZzEKFsfwKPaGDIXkRABCoWrWk/v777/r66681aNAgtW7dulznSkpK0oQJE1RUVKT58+fH6AoBAJGiJbXiFBaFaUllDSMAIEC1CozTp0+XVLZhN6H4qop79uyJyfkAAJEL1x6Zz16M5RZ2H0ZKjACAANUmMBYUFGj27Nlq1KiRzjvvvJicc/Xq1ZKkJk2axOR8AIDIhat2UWEsv3BrGBl6AwAIVG0C4/vvv6/du3dr7NixSkhICHlMbm6uVqxYEbS2cO/evUHHZmVl6ZFHHlFiYqIGDx5cIdcMAAgvXHghMJaPx2vCrlVkWw0AQCBHDr2ZPXu2Nm7cKEnavXu3CgoK9MADD0iS2rRpo7FjxwY9J5J21G+//Vb9+/fXuHHjNGvWLP/9Xbt2Vb9+/dS1a1c1btxYGzZs0IwZM7R9+3Y9/vjjatmyZQw/OwBAJMKFlzxaUsslsLqYGO9WwR9rGgmMAIBAjgyM06dP15IlS2z33X333ZKkfv36BQXGzZs3a/78+Tr11FN1zDHHRP16o0eP1uLFizV//nz/JNOTTjpJM2fOpLoIAFUkXIUxP8zAFkQmMDAmWQJjuEFDAICay5GBcfHixVEd36pVK3k8pf/GOSMjQybEb08ff/zxqF4PAFDxwgZGKozlErilRnJCnA7kF0liSioAIFi1WcMIAKhewraksoaxXAIrjMkJxT8KMCUVABCIwAgAcCT2YawYBQEtvcnxcf6PWcMIAAhEYAQAOBJDbypGcIWxODCyrQYAIBCBEQDgSEWeMGsYqTCWi3UNo8slxce5/LepMAIAAhEYAQCOFG4ACy2p5WOtMCbEuRXnKg6MTEkFAAQiMAIAHCncABYqjOVTYEmFiXFuud1UGAEA4REYAQCOFL7CSBmsPAqLrBVGl63CSGAEAAQiMAIAHClshZGhN+ViXcOYEOeW2/KTAENvAACBCIwAAEeyhpcEy2AW1jCWT6HXvobRbVvDSGAEANgRGAEAjmRtSa2VFO//mMBYPtaW1MR4t+JYwwgAKAGBEQDgSNaW1FqJlsBIS2q52FtSA9cwVsUVAQCcjMAIAHAka4WxtqXCeKiIwFgegdtqWKek0pIKAAhEYAQAOJJ1T8BaSXH+j6kwlk9BYGAszothBw0BAGouAiMAwJE8luEsgWsYDWvtyqwwYB9G6xrGcFuZAABqLgIjAMCRbBVGyxpGr7FXyRAd2z6M8S7blFQKjACAQARGAIAjecNMSZWk/AICY1lZh97EuwOmpJIYAQABCIwAAEeyDmCpbVnDKLG1RnkEr2GkJRUAEB6BEQDgSOH2YZQIjOVhW8MY2JJKhREAEIDACABwJGt4SYqPU7yldTKfwFhmgdtqxFl+EmBbDQBAIAIjAMCRrOElPs6l5ATL1hoExjIrsqxhTAiYkkpeBAAEIjACABzJOvTG7bIHxnz2YiyzktYwelnDCAAIEF/6IQAAVD5rhTHOLaUkFv+Okwpj2dn3YXTZqoq0pAIAAlFhBAA4kqVzUm6XSym0pMZEYVH4llSmpAIAAhEYAQCO5LVVGAMCIy2pZWYbehNvb0k1BEYAQAACIwDAkYq8xcEmzh2whpEKY5kFrmFkSioAoCQERgCAI1nyYvDQm0JviGcgEoFrGK0VRg9vKwAgAIERAOBI1vV0QS2pVBjLrDBgWw23mympAIDwCIwAAEeyTUl1uZSSSGCMBWuFMT7OrThbhZHACACwIzACABzJtg9jwBpGht6UXUFRQEsqFUYAQAkIjAAARwrah5GhNzFRGDD0xpIXCYwAgCAERgCAI9kDo1spicXfsmhJLbsib8A+jLSkAgBKQGAEADiStdoV53IpOZ6W1FiwtqQmxNuH3jAlFQAQiMAIAHCkoJZUy9Cb/CKSTVkFbqsRZwmMhpZUAEAAAiMAwJGs3ZFB+zBSYSyzwG01bC2pBEYAQAACIwDAkYq8xZUw9mGMncChN5a8yBpGAEAQAiMAwJEseVFuN/swxkpgYIxjWw0AQAkIjAAAR7KtYXQFVBhpSS0z2z6M8fY1jFQYAQCB4qv6AgAACMW6ni7O7VJCXPHvONmHsewC1zC6XdYKY1VcEQDAyagwAgAcyWtJL4eH3rAPYyxYW1Lj3QGBkcQIAAhAYAQAOFJghdG2rUahhy0gysDrNSqyhMLDLanFjzMlFQAQiMAIAHCkoH0YLWsYvUYqYJf5qBV67e9ZUEsqFUYAQAACIwDAkby2wOi2BUZJyi8gMEaryGMPhMFTUiv7igAATkdgBAA4kq0l1eVScqI9MLKOMXqFnuAKI1NSAQAlITACABzJvg+jgiqMBMboBbbxJsa55XKxDyMAIDwCIwDAkUJtq2GthrEXY/QKA1tS412Kc1FhBACER2AEADiOMcY+9OaPUGOtMlJhjF5hUaiW1OLbTEkFAAQiMAIAHCew0OX+o7KYbAmMhwiMUQtcwxjvdtmmpJIXAQCBCIwAAMcJbI30VxgTi79tUWGMnnUNo2/9opuWVABACQiMAADHCRy+4lu7SEtq+VjXMCbEHX5PmZIKACiJIwPjww8/rJEjR6p9+/ZyuVxq27Zt2GMvvfRSuVyukH/eeuutiF9z27ZtuuSSS9SoUSOlpKSoV69emjNnTgw+GwBAtAKDiztUYGToTdSsLakJ8Yd/BHC7mZIKAAgvvqovIJQ77rhD9evXV8+ePZWZmRnRc2bPnh1030knnRTRc/ft26fTTz9du3bt0k033aSWLVvq3//+t0aNGqUZM2bosssui+byAQDlFDh8xdeSal3DmE+FMWrWoTfx7sOBMY5tNQAAJXBkYFy7dq3at28vSerSpYtycnJKfc6YMWPK/HqTJ0/W+vXr9f7772vIkCGSpCuuuEKnnHKKJkyYoJEjR6p27dplPj8AIDrewDWMIYbe0JIavULL+5r4R0uq2zol1Rv4DABATefIllRfWIyGMUbZ2dnyeqP/bvfvf/9bHTp08IdFSYqLi9P111+vffv26cMPP4z6nACAsgsaehOiJTW/kHQTLWuF0d+SSoURAFACRwbGskhPT1d6erpSUlI0aNAgffPNNxE9b/v27dq6datOPvnkoMd89y1durRM19SsWTPbn06dOpXpPABQ04RrSU1JpMJYHrY1jH9swMjQGwBASRzZkhqNpk2b6m9/+5tOOOEE1apVSz/99JOefPJJ9enTRx9++KEGDhxY4vO3bdsmSWrRokXQY777tm7dGvsLBwCEFdgs4mubTGboTbkUhAiMtgojgREAEOCID4yTJ0+23T7//PN10UUXqXv37rrmmmu0evXqEp+fm5srSUpKSgp6LDk52XZMtLZv3267nZ2drfT09DKdCwBqkqKAxBi6JZXAGC3rthqJIbbVoCUVABCo2rSkWnXq1EmjRo3SmjVrtGrVqhKPTU1NlSQdOnQo6LH8/HzbMQCAyhFUYfS3pBZ/26IlNXqhWlIteTGoFRgAgGoZGCX5927cs2dPicc1b95cUui2U999odpVAQAVJ2gNo29KajwtqeUROjBaW1Ir/ZIAAA5XbQOjrxW1SZMmJR7XrFkztWjRQl9//XXQY777evXqFfsLBACEFTQllaE3MVEQYkqqbegNFUYAQIAjOjAePHjQ3zZq9cMPP2jOnDk65phj1KFDB//9ubm5WrFiRdDawtGjR2vt2rX64IMP/Pd5PB7961//Ut26dXX22WdX3CcBAAgSuJbOHWIfxkNsqxE11jACAKLlyKE3s2fP1saNGyVJu3fvVkFBgR544AFJUps2bTR27FhJh6uIf/rTn3T++eerU6dO/impM2bMUFxcnF544QXbeb/99lv1799f48aN06xZs/z333777ZozZ44uuugi3XTTTWrRooVee+01LV26VNOmTVNaWlrlfOIAAEn2CqM10FiH3lBhjF5pLanGHN7X2GW5DwBQszkyME6fPl1Lliyx3Xf33XdLkvr16+cPjE2bNtXAgQO1aNEivfrqq8rLy1OzZs104YUXauLEiTr66KMjer0GDRroiy++0O23366nn35aOTk5OvbYY/X666/rwgsvjO0nBwAolS0wWsILLanlYw2M8SGG3kiH3/v4OAIjAOAwRwbGxYsXR3Rc06ZNNXv27IjPm5GRIROm3aZFixZRnQsAUHGsrZFhK4wMvYmatSU1IURLqnR4HaMjfzgAAFSJI3oNIwCgegrXkpqUUPxti30Yo2etMCaGaEmVmJQKALAjMAIAHMdaYbQWwFjDWD6h1jAGVhgZfAMAsCIwAgAcx5Jr7C2pAWsYwy0zQGilDb2R2FoDAGBHYAQAOE6RpS8y3BpGY6QCD/2T0SgosqxhjD/8vroDfhLwegmMAIBiBEYAgONY19FZK2DWwChJ+QUExmiEWsMYF1hhJDACACwIjAAAx/GEmZKanGgPjKxjjE5kaxgr9ZIAAA5HYAQAOI61LbKkCiOBMTqhAqMrcEoqaxgBABYERgCA44TbViMhzm27zV6M0SmIZB9GSowAAAsCIwDAccK1pEpsrVEehUWWNYzxrGEEAJSOwAgAcBx7S6r9sWRrYKTCGJWQ22oETkmlJRUAYEFgBAA4jrXCGB+QaGolFQfGgwVFlXZN1UGh1/q+/tGSGrSGsVIvCQDgcARGAIDjWNsi3QElxlqJ8f6PcwmMUQnVkuqmJRUAUAICIwDAcby2NYz2x2onFQfGnEO0pEYjdEsqU1IBAOERGAEAjlNkmeYZ2DKZam1JPUSFMRqhAqNkHyxEhREAYEVgBAA4jrXKFdSSaqkw5hIYo1IYYlsNyR7KqTACAKwIjAAAx7EUwoIqjLUTaUktqwLLG5toqTBa32KvVwAA+BEYAQCO4ymhwkhLatnZWlLjw7SkUmEEAFgQGAEAjmPdhzGowmgdesOU1KhYp6Ta1jC6WMMIAAiNwAgAcBxraIljDWPMhFvDaK3isoYRAGBFYAQAOE6JQ28SrS2prGGMlDEm7BpGayj3UmEEAFgQGAEAjmOrMNrzoq3CmEOFMWJFAUHQ2pJqzeSsYQQAWBEYAQCOYw0tcW77typbSyprGCNm3dtSsg+9cVu31WBKKgDAgsAIAHAc29CbgO9UtqE3tKRGzNqOKkkJlrIiU1IBAOEQGAEAjmPbhzFwW41EttUoi8LAwBgXpsJIYAQAWBAYAQCO47H0RbpL2FYjr9DDNhARCgqM1pZUy08DDL0BAFgRGAEAjmNfwxh+Ww2JdYyRKiwKHHpjaUllH0YAQBgERgCA49haUl2B22rYAyNba0QmeA2jtcJISyoAIDQCIwDAcUrchzEpznb7IBXGiFhbUuPdLtv7aq8wVuplAQAcjsAIAHAc+z6M9sAYH+dWkmX9HYNvImMNjAkBo2fjqDACAMIgMAIAHMcaGAMrjJJ9HWMOgTEi9sBof09dTEkFAIRBYAQAOI7XhN+HUbK3peayhjEiBZahN4nxgRXG4o8ZegMAsCIwAgAcxxpa4t3B36qsg29YwxiZEltSmZIKAAiDwAgAcBzb0BsXLamxUOQNHxitbb90pAIArAiMAADHsQ29CdmSWhwYaUmNjLUlNT5gDaM1lHtIjAAACwIjAMBxikoZelPbsoaRCmNkrC2pibSkAgAiRGAEADiOt4RtNSQp1bqGkcAYkZLWMFqXiTIlFQBgRWAEADiOx5JZ4kJWGK1Db2hJjURJ22rY9mGkwggAsCAwAgAcxxpaQg+9KW5JpcIYmQJLCg+qMNrWMFbaJQEAjgAERgCA49iH3tCSGguFRZY1jPHhAyMVRgCAFYERAOA41kmdpbekEhgjUeI+jG6mpAIAQiMwAgAcp/SWVGuFkTWMkShpDaObKakAgDAIjAAAx7FXGIMfr80axqiVtIbRetNQYQQAWBAYAQCOY1/DGPytyraGkZbUiBSVsA+jvcJYaZcEADgCEBgBAI5j3QswLrgjlZbUMih5H0bWMAIAQiMwAgAcp7QpqYFDb2ijLF2htSU1PmAfRqakAgDCIDACABzHGhjdIbfVKF7DaIyUW0CVsTQFlgpjvDv8lFQv4RsAYEFgBAA4jq3CGGJKqrXCKLGOMRIl7cNofYtpSQUAWBEYAQCOY+meDFlhrBUYGFnHWKqSttWgJRUAEA6BEQDgON5SKoyJ8W5b6GFrjdIVlritBlNSAQChOTIwPvzwwxo5cqTat28vl8ultm3bhjwuPz9fL774os477zy1bdtWKSkpat++vUaPHq3ly5dH/HqzZs2Sy+UK+ecvf/lLjD4rAECkSht6IwVOSiUwlqYgwimprGEEAFjFl35I5bvjjjtUv3599ezZU5mZmWGP27Bhg6688kqdfvrpuuKKK9S8eXOtW7dOzz77rN5++23NmzdP/fv3j+p1jznmGNt9nTt3LuunAQAoI2toCdWSKkm1EuOVmVsoiTWMkSgsYR9GW0sqgREAYOHIwLh27Vq1b99ektSlSxfl5OSEPK5Ro0b64Ycf1L17d9v9F198sXr06KFbbrlF3333XcSvO2jQIGVkZJT1sgEAMVLa0BtJqpVUPCk1hzWMpcrJLw7VgWsYrZncwxpGAICFIwOjLyyWpkGDBmrQoEHQ/ccee6y6dOmiX3/9NerXPnDggJKSkpSYmBj1cwEAsWGd1BkXZvGEtSU1l5bUEv2yJUvfbdzvv92iXqrtcVpSAQDhODIwlpfX69X27dvVpEmTqJ43dOhQHThwQC6XS127dtUtt9yiMWPGlPk6mjVrFnRdAIDS2YbeuEMnRuvWGjkExhL9438r/B+3b1RL/Ts3sj1ureJSYQQAWFXLwPjcc89p+/btuvvuuyM6PjU1VRdddJEGDBigxo0ba/369Xr66ac1duxYrV27Vvfcc08FXzEAwCqSCmNqYnFLKttqhPflmj36bPUe/+1bzuys+BKmpJIXAQBW1S4wfvnll7rpppt0/PHH64477ojoOaNGjdKoUaNs91111VXq1auXHnjgAY0bNy7spNaSbN++3XY7Oztb6enpUZ8HAGoaj2ULCHfYNYyWllSG3oRkjNEj84qri8e3TNdZXZoGHediH0YAQBiO3FajrJYtW6ZzzjlHzZs319y5c5WcnFzmcyUlJWnChAkqKirS/PnzY3iVAIDS2CuMoQMjLamlm/frDv20Jct/+7azjraFQx9rwdHDGkYAgEW1CYzff/+9Bg0apPT0dC1atEgtWrQo9zl9VcU9e/aUfCAAIKasm8eHm5Kamsg+jCUp8nj16PyV/tt9OjXUqR0bhjyWNYwAgHCqRWD8/vvvNXDgQKWlpWnRokVq06ZNTM67evVqSYp6eA4AoHwi2YextmVbjYMFrGEM9NayLVq3+6D/9q2Djw57LFNSAQDhHPGB8YcfftCgQYNUu3ZtLVq0SO3atQt7bG5urlasWBG0tnDv3r1Bx2ZlZemRRx5RYmKiBg8eHPPrBgCEZ9uHMUxgtK5hpMJol1/o0ZMfr/bfPqdbM3VtGX4NfZxtDWOFXhoA4AjjyKE3s2fP1saNGyVJu3fvVkFBgR544AFJUps2bTR27FhJ0saNGzVo0CDt379ff/3rX/Xll1/qyy+/tJ1r2LBhqlWrliTp22+/Vf/+/TVu3DjNmjXLf0zXrl3Vr18/de3aVY0bN9aGDRs0Y8YMbd++XY8//rhatmxZCZ81AMDHOngl7NAbWlLDembRGu3Izpd0OHBPOLNzicdbK4ysYQQAWDkyME6fPl1Lliyx3efbIqNfv37+wLh+/Xp/dXDSpEkhz7V+/Xp/YAxn9OjRWrx4sebPn++fZHrSSSdp5syZVBcBoApEMvTGVmGkJdVv0cpd+teiNf7bF57YSu0alvx90M2UVABAGI4MjIsXL47ouIyMDJkofhMa7vjHH3884nMAACqerSU17LYa1n0YqTBK0qa9ubrx9R/l+1bXPD251OqixJRUAEB4R/waRgBA9WMfehP6GLbVsMsr8OjqV5YpK69QkpQY59azY05Q/VqJpT7XVmEkLwIALAiMAADHsVYY48MkRuu2GrkFnqg6TqobY4zufPcX/b4923/ffecdp+Nb1Y3o+bSkAgDCKVdgjIuL08UXXxyrawEAQMYYW5UrLoIKo8drdKio5o73fOWbTXr7+63+2xf2aqU/n9Q64udb14myDyMAwKpcgTEtLU2tW0f+DQkAgNIEBpawU1ItaxilmtuWunrnAd33wW/+291apuve846L6hxMSQUAhFOuwNijRw/9/vvvsboWAACCAkskU1IlKfdQzZyU+uEvO1ToOfye1UtN0DMX91RyQlwpz7KLoyUVABBGuQLjbbfdpg8//FALFiyI1fUAAGq4wI3jw1UYk+LdtjBZUyuMviE3knRWl6ZqWS816nNYM7mXCiMAwKJc22rs2rVLZ511lv70pz/p/PPP14knnqimTZvKFeKb+yWXXFKelwIA1BCRVhhdLpdqJcYpO/9wUDxYUDMDY15h8eedklC2b+v2ltRyXxIAoBopV2C89NJL5XK5ZIzR22+/rbfffluSbIHRGCOXy0VgBABEJHANY7jAKB1uS/UFxppaYcwrKG7FTUksW+MQLakAgHDKFRhnzpwZq+sAAEBScGAJ15Iq2dcx1tQ1jLmWwGjdaiQaTEkFAIRTrsA4bty4WF0HAACSIm9JleyB8WBNrTAWFgfGaIfd+FhbUlnDCACwKtfQGwAAYi2wwhhXUoUxsTgg0ZIqpSaWMTAy9AYAEEZMAuN7772nCy+8UMcff7w6duzov3/58uX6xz/+oa1bt5bwbAAAigVVGOMibEmtoUNvrC2pKWWsMFpDOS2pAACrcrWkGmM0ZswYvf7665KklJQU5eXl+R+vX7++7rzzTnk8Hk2cOLF8VwoAqBGCht6UUGGsbQmMOTV0DWN+oXXoTSxaUst9SQCAaqRcFcannnpKr732msaPH699+/ZpwoQJtsebNGmi008/XXPnzi3XRQIAao7AwOgu4TuVtQWzpq5hpMIIAKhI5QqMM2bMUM+ePfX8888rPT095P6LHTt21IYNG8rzMgCAGqSsFcaauw9jDNYwWn4aYA0jAMCqXIFx9erV6tevX4nHNGzYUHv27CnPywAAapDAwMKU1JJZh96UeUoq+zACAMIoV2BMTExUTk5Oicds3rxZderUKc/LAABqEI+3+GOXSyG7V3zsLak1bw1jkcerAssbVtYKo20fRiqMAACLcgXG448/Xh9//LEKCwtDPn7gwAEtWLBAvXr1Ks/LAABqEGtLakntqBItqdZ2VKnsQ2/saxjLdUkAgGqmXIFx/PjxWr9+vS699NKgSuOePXt00UUXac+ePbrqqqvKdZEAgJrD2pLqLqEdVToyWlILirxatGKX9h0siPm5AwNjakLZhp9b32dDhREAYFGubTXGjh2rjz/+WLNnz9Z//vMf1a1bV5J07LHHau3atSosLNT48eN13nnnxeJaAQA1QJkrjA5tSb15zk/64Kdtalg7UZ/fNqDM6wxDsa5flMqxrYaLllQAQGjlqjBK0ksvvaQXX3xRRx99tHbv3i1jjFasWKFOnTrp+eef1wsvvBCL6wQA1BDWwFLSwBspYA2jQ1tSP1m+U5K0J6dAv23Lium5rRXGOLdLCXElv1/hxFl+GmBbDQCAVbkqjD5XXHGFrrjiCuXl5Wn//v1KT09XrVq1YnFqAEANY53SWUpedHxLqjHGFuoOFcZ2gaB1D8bUhLgSBwSVhCmpAIBwYhIYfVJSUpSSkhLLUwIAahhrhSs+ruRGGGtLaqHH6FCRR0nxsWv5LK9Cj5E1fx2K8USZfOuWGmVsR5WYkgoACK9cLaknn3yy7rzzTn388cfKz8+P1TUBAGowj63CWEpLapI9JOU6bB1jfpH9eiq0wliOwGirMJIXAQAW5aow/vzzz/r22281efJkJSYmqnfv3jrjjDM0YMAAnXzyyYqLc85veQEARwb7GsaSj7VWGCUp51CR6tVKrIjLKpP8gCmmBTGuMOZazp9SjmE6tKQCAMIpV2DMzMzUV199pY8//lgLFy7Ul19+qU8//VSTJk1SamqqTj/9dA0YMEADBgzQCSecEKtrBgBUY9FMSU1JiJPLJfkyptMG3wRWFA8VxrYCam1JLeuEVImWVABAeOUKjImJierXr5/69eun+++/Xzk5OVqyZIk++eQTffLJJ5o/f77mz58vl8uloiJnfRMHADhTNPswulwu1UqMV84fA2+ctrVGhVcYLQG5PBVGayXXmMPDeso6QAcAUL3EdOhN7dq11aNHD+3fv1/79u3T1q1btWfPnli+BACgmrNmqtK21ZCkWklxlsDorF9O5gdVGGMbGPMs54vVGkbp8DrGMu7QAQCoZsodGPft26dFixb5q4qrVq2SMUb169dXv379NGDAAJ1xxhmxuFYAQA0QTUuq5Nta45AkBwbGooqtMOZZKozJMVrDKB3+O4gkrAMAqr9yBcYePXrol19+kTFGtWrVUp8+fTR+/HgNGDBA3bt3p50FABC1aFpSJalWomUvxgJnt6TGvsIYmympgeHQyzpGAMAfyhUYf/rpJ7lcLg0aNEi33367+vTpw2RUAEC5RF9hLP6+47gKY0BALPDENtBat9Uo15RUd3CFEQAAqZz7MP7tb39Tt27dtGDBAp1xxhmqV6+ezjnnHD3xxBP66aefYnWNAIAaJNoKo3VrjRzHBcbKqzCmJJb9d8CBwZxJqQAAn3JVGB9//HFJh9cx+tYwfvLJJ/roo4/kcrnUoEED9e/fX2eccYauvPLKmFwwAKB6s1UYI/i1ZqolKOU6bVuNosAKY6zXMMZqH0b7bRPbywQAHMHKVWH0qV+/vkaMGKFnnnlGK1as0JYtW/T444/L7Xbrrbfe0rXXXhuLlwEA1AD2wFj6t6lalgqj07fVcOoaxqCWVCqMAIA/xGxbjYMHD+rTTz/VwoULtXDhQv3yyy/yeg9/Y0xLS4vVywAAqjn7GsbSj69tWcPo9JbU2O/DWHz+5PIMvQkxJRUAAKmcgXHJkiX65JNPtHDhQi1dulRFRUUyxiglJUX9+/fXgAEDNGDAAJ144omxul4AQDVnrW5FsrWDtSXVaUNvAltSDxXFtgJqDaSpMRx6w5RUAIBPuQJj//79JUkJCQk68cQT/XsunnLKKUpMTIzJBQIAahavpboVuD9gKNahN07fVqOgqOIqjClsqwEAqADlCowTJkzQgAED1KdPH9WqVStW1wQAqMHsaxgj2VbDuRXGoDWMMQ6MeTEKjIFvMy2pAACfcgXGf/zjH7G6DgAAJEkeS1aJLDAeOfswxjwwxqolNaCS62VKKgDgDzEberN9+3b9+OOPyszMVHp6unr06KFmzZrF6vQAgBoi2pbUWtY1jA7bVuNIqTAGBnOmpAIAfModGDdt2qRrrrlG8+bNC3ps8ODBeuaZZ9S2bdvyvgwAoIaIduiNo7fVCNyHMYaB0es1MdtWgympAIBwyhUYd+zYodNOO01bt25V27Zt1bdvXzVr1kzbt2/XZ599pnnz5qlPnz5aunSpmjZtGqtrBgBUY55yDL1x+rYasZySmh9wruRytKQGvs2GCiMA4A/lCowPPPCAtm7dqkceeUQ33XST4uKKv1l5PB498cQTuvXWW/XAAw9o6tSp5b5YAED157UNvSn9+FTLGsaCIq8KPV4lRPLESlCRU1LzAibCWrcXiZbL5ZLbJfneelpSAQA+5fqOOnfuXA0cOFC33HKLLSxKUlxcnCZMmKBBgwbpv//9b7kuEgBQc0TbkmqtMEpSroPaUg9V4NCb3IDAmFKOCqNkf69pSQUA+JQrMG7fvl0nnnhiicf06tVLO3bsKM/LAABqEPu2GqV/m6oVEBhzHDT4JrBtNJYVxsDqZXJC+aqq1vZfpqQCAHzK9d0lPT1dmzZtKvGYzZs3q06dOuV5GQBADWILjKUXGJWaEGdbg3cgv7ACrqpsKnINo7XCmJIQJ1cE6z1LYguMtKQCAP5QrsB42mmn6a233tI333wT8vFvv/1Wc+bM0emnn16elwEA1CDWllR3BC2pbrdL6SkJ/tuZuU4KjMFTUmM1UCZWE1J9bC2pBEYAwB/KNfTmrrvu0ocffqg+ffpo9OjRysjIUNOmTbVjxw4tXrxYr732mtxut+64445YXS8AoJqzDb2JsGpWNyXBHxSdFBgDK4peIxV5jRIiKZ2Wwjr0pjwTUn2s2dzLGkYAwB/KVWHs2bOn3nrrLaWlpWn27NkaP368zj33XI0fP16zZ89WnTp19Oabb6pXr15Rnffhhx/WyJEj1b59e7lcrlL3cfzmm280cOBApaWlqU6dOjrrrLP0448/RvWasTgHAKD8PJaiXCRDbyQpPTXR/3F2nnMCY2CFUYrd4JsKrTASGAEAfyhXhVGSzj33XG3atEnvvvuufvjhB2VlZSk9PV09evTQ+eefr1q1akV9zjvuuEP169dXz549lZmZWeKxX3/9tTIyMtSiRQvdd999kqSpU6eqT58++vLLL9W1a9dSXy8W5wAAxIY3ypZU6XCF0SczryDm11RWgWsYpT8G3ySV/9y2NYy0pAIAKkiZA+OmTZu0dOlSud1unXjiibr44ot18cUXx+Si1q5dq/bt20uSunTpopycnLDH/vWvf1ViYqI+/fRTtWjRQpI0atQoHXPMMbr55ps1f/78Ul8vFucAAMSGpywtqanOW8NojAlZTYzV4BtrhbG8W2pIsg3NIS8CAHzK1JI6YcIEtW/fXqNGjdKIESPUrl073X777TG7KF9YLM2aNWu0dOlSjRw50h/0JKlFixYaOXKkPv7441K39IjFOQAAsRPtPoxSYIXRGYExXOtprLbWyLNsHxKTCqOLllQAQLCoA+Nrr72mf/7znzLG6Oijj1bnzp3l9Xr16KOPas6cORVxjWEtXbpUknTKKacEPXbyySfLGKNly5ZV+DnCadasme1Pp06dynQeAKhJrANX3BFWGK1rGLMcUmEM1Y4qxXANY0HxeZiSCgCoKFEHxmnTpik+Pl7/+9//9Ntvv+n333/XRx99JLfbrWnTplXENYa1bds2SbJVBn18923durXCzwEAiB1bS2qE36WcuIYx1MAbKXYVxtzC4gpjTKakWt5rpqQCAHyiXsP4888/a8iQIRo4cKD/vjPPPFNDhgzR559/HtOLK01ubq4kKSkpeHpAcnKy7ZiKPEc427dvt93Ozs5Wenp6mc4FADWFvSU1ssToxDWM4SuMsVnDmF8Q2ymp1moueREA4BN1hXH//v06+uijg+4/5phjtH///phcVKRSU1MlSYcOHQp6LD8/33ZMRZ4DABA7ZaowOjEwhgmGsWpJtU1JjUGFkTWMAIBQog6MXq83ZDUuMTFRXm9svglGqnnz5pJCt4z67gvVahrrcwAAYqcsU1LTUyxrGB0y9CZcS2rMAqN1SmpiuXfJsm1h4mUNIwDgD2WakuqK8Bt4RTvxxBMlSV999VXQY19//bVcLpdOOOGECj8HACB2yrQPo6XCmHOoSIWeyv0FZijhWlJjtYYx1i2pVBgBAKGUKTA+/vjjat26te3PE088IUlB97du3Vpt2rSJ6UX7dOzYUb169dKcOXP8w2ukw4Ns5syZowEDBqhp06b++/fs2aMVK1YoKyurzOcAAFSsslUYE2y3nVBlrOgpqbFuSaXCCAAIpUw9LNnZ2crOzg752JYtW8p1QZI0e/Zsbdy4UZK0e/duFRQU6IEHHpAktWnTRmPHjvUfO2XKFPXv3199+vTR9ddfL0n617/+Ja/Xq8cff9x23qlTp+ree+/VzJkzdemll5bpHACAimUtDkZaYQwMjJm5hWpYO3j5RGWq6CmpebaW1FgMvSn+mMAIAPCJOjBWxjrF6dOna8mSJbb77r77bklSv379bIHx1FNP1eLFi3XXXXfprrvuksvl0qmnnqo5c+bo+OOPj+j1YnEOAEBseG1TUiMLjAlxbtVOilfOocNbTWQ5YGuNcNNQYzUlNS/WQ2+s+zBWfUcvAMAhyr9KvgIsXrw4quNPOeUULVy4sNTjJk2apEmTJpXrHACAilWWllTpcJWxODAGt6QaY3TXu7/qs9V7dPufjtbZXZuV/2JLUNFrGK0Vxphvq8EaRgDAH8q0hhEAgIpSlqE3Uulba/yyNUuvfrNJm/bl6tH/rSzfRUYg3FpFp65htFUYaUkFAPyBwAgAcBR7hTHy55UWGDfuzfV/vCs7v2wXF4UKn5LKGkYAQCUgMAIAHMUWGKOpMFr2YswM0ZK6+8Ah/8e5hR6ZCg5F4fdhLP8aRmOMcguK/LdjExhpSQUABCMwAgAcxR4YI/82lW6pMGblBg+92Z1THBiNiV1raDgVWWEs8HhlzXSpCeUfSWAfekNgBAAcRmAEADiKxzYlNfLn1bVsrVFahVGyrwGsCOErjOUPjHkB156cWP5v5/Y1jOU+HQCgmiAwAgAcxdoO6Y5iSmppaxiDA2NR0DGxlB+m9TQWFca8gOplamL5K4y0pAIAQiEwAgAcxVOGfRil6NYwSsFVulgL15IaiwpjYHU0FlNSGXoDAAiFwAgAcBTrpvHRBMZo1jBKFd+SesjSkmotlMakwmi59sR4d1TvUzhsqwEACIXACABwlDK3pJawhtHjNdpbyYHRWmFMSypuGY3FlFRrS2osqosSLakAgNAIjAAARylzS2pqcUtqVl6hLfTsO1igwAyUV1h5axjrWMJsrFtSU2OwpYYUOCU1JqcEAFQDBEYAgKPEYuiNMdKB/OJAGLh+UarcKanpMQ6M1pbUCqkw0pIKAPgDgREA4ChlrTBaQ5l0uMroE7h+UarcoTd1kouvLTZTUovDcEqMKoxuN4ERABCMwAgAcBTrpvHR7MOYnBCnpPjiJ2TmFQ++CVVhDNyaItasgTH2Fcbic8SqwhhnyeYe1jACAP5AYAQAOEpZW1Kl8HsxVnVLap2U4qE3BTEYemPdQ7IiKoxMSQUA+BAYAQCOUmQJjPHu6L5NhduLsSoCo3UaaqwrjNbqZayG3jAlFQAQCoERAOAo1vVzUebFsHsxhl7DWLFTUq37MMZ6DWNuBQy9ibMNvYnJKQEA1QCBEQDgKLY1jNG2pKaEa0nNDzq2wltSrRXG1BivYbTuw5gYX8KRkbO1pJIYAQB/IDACABzFPvSmHGsYS2lJrcgpqR6vUaGn+POI+ZTUiqgwWn4iYEoqAMCHwAgAcBRrccsddWC0rGGswqE3+QETWO1rGMv/unkVsIbRWs2lwggA8CEwAgAcpTwtqdZglvXHthr5hR5l5wevV8ytwG01AgOjdUqq10hFnvJVGW1rGGMUGF2sYQQAhEBgBAA4inVLh3K1pP5RYdwTYuCNVLFDb/ID2k6tQVYq/zpGayCNXUsqU1IBAMEIjAAARynXPowhttUI1Y4q2ds6Yy2wwpiWbA+M5V3HWBEVxjj2YQQAhEBgBAA4SqwrjOECY2WtYYx3u4JCXXkrjNahN+zDCACoSARGAIBjeL1G1uJWXLT7MAasYTTGhNyDUarYKan5lj0YkxPilBjwiZS3wmitjibHqCXVms2pMAIAfAiMAADHCAwqUbekWiqMhR6jvEKP9hwo8N9Xv1Zxy2pFVhgP2QKdW0nx9m+35Z2UWhEVRtsaRvIiAOAPBEYAgGMEbucQ747u25R1Ww3pcFvq7px8/+3W9VP9H1dohdESCJPi4+RyuWxVxvK2pOZaBvbEaugNLakAgFAIjAAAxwjcMD7KvKhaiXGKt1TKMnMLbWsY2zQoDowFHm+5t7cIx96SeviTsFYZy72GsbCCh94QGAEAfyAwAgAcIzCoRDv0xuVy2Qff5BXYA6OlwihFvhfjgfxCPfThck3+aEVElcn8EGsMEy2BsTxrGAs9XhV6it+nithWgzWMAACf+NIPAQCgcngDclRclGsYJalOSoL25Bxet5iVW2gbetMqIDDmFXhUJ2DLi1Be+XqTXvh0nSSpYe1Eje/TvsTjA4feSIEVxrK3wwZuB5KaGJtv5da32hAYAQB/oMIIAHCMoKE3UVYYJamuZVLq/qCW1Fq2YyMdfLNyR7b/45+2ZJV6fH7A0BspdhXG/IBrjlmF0UVLKgAgGIERAOAYQS2pZagwWgffbM3MtVX7mtdNtq1xtA6PKUlWXmHxOffnlnq8dY1icryvwhgX8vFoBYbcClnDSF4EAPyBwAgAcIzgoTflqzCu3plje6xh7SRbwMqPcA2jNTBuy8wv4cjg88Z6DaO1JTXO7VJCXPTvUShMSQUAhEJgBAA4RnmH3khSumXozZpdxYGxTnK8khPibPsWRtqSag2MOw/klxr4bNtqxHhKqvWaUxMOb9kRC9a3mpZUAIAPgREA4BgxaUlNKW5J3bD3oP/jRmlJkuxDYiINjNn5xa2rxkg7s0uuMh4KMfTGXmEs+9Cb/ArYUkOyh/PASi8AoOYiMAIAHKO8+zBKsm2rYc2fvsBoHRITyRYZkr3CKElb9ueVeLytJTU+1JTU2FQYYxkY3QRGAEAIBEYAgGMUBVQY48uQGK2B0apRWrIkRd2Sml/oCWpB3ZYZRWCM8ZRU6xrGWE1IlZiSCgAIjcAIAHCMwGErZVjCqPSUMIGx9h8VRltgLH1KamB1UZK2lhoYQ+3DGJspqXmWa66oCiNTUgEAPgRGAIBjWPdhdLtUpoEu1m01rIrXMEbXkpodIjCWWmG0Dr2JD1Fh9JQnMFqG3sQyMFrea0NLKgDgDwRGAIBjWFshyzIhVbJvq2EVag1jbgTbapStwhi8rYZtDWOE23mEkltRLamWnwhoSQUA+BAYAQCO4bUU3txl3C4i/BpGX0tq8ZTUSCqM5W9JjW2FMd829Ca+hCOj42YNIwAgBAIjAMAxrC2pZa0wpiUnKFTW9K1hTI1yDWN2fuiW1JLaNkNXGC1rGAtjNCU1IXbfxtlWAwAQCoERAOAYtpbUMlYY49wu1UkOrjKGWsMYyZTUrNzgwJhf6NW+gwVhn2MdauMLitYK46FyVBitLampVBgBABWMwAgAcAxrZctdxgqjFNyW6nZJ9WsdHoZjnSyaH9EaxtBVyJLaUkNtq2FfwxibltTkGK5htA+9idlpAQBHOAIjAMAxYjH0RgoefNOgdpL/fKkJUVYYQ6xhlEqelFra0JvyrGHMraApqXG2bTVIjACAwwiMAADHsO7DWNahN5JUJyAw+tYvSvY2zkgCY6g1jJK0ZX9JgTHUPoyxmZKax5RUAEAlIjACAByjyFZhLPt5Avdi9K1flOwtqWWdkipJ2zLzQ95vjNGhouCW1IrYhzElhhVG656XXgIjAOAPBEYAgGNYWyHj3WX/FhXYkmoNjLahN4WlT0m1BsZ6lrWRWzNzQx5f6DGy5q3k+NhOSa2wCqM1MJIXAQB/IDACABzD1pJargpj+MAYbYUx2xIYj21ex/9xuApjfpH9nL6W1FhVGK1bgbCGEQBQ0QiMAADHiMW2GpKUXsIaxpQoh95YA+MxTYsDY7gpqYGTV0NOSS0q+xpG2/rIGAZGNy2pAIAQjujAOGnSJLlcrrB/EhKC9+EKlJGREfb53333XSV8FgAAn9htqxF+DaN16E1eoUemlGqatSX1mGbFgXHfwYKQFcrAdtOQFcaiGFUYYzr0hgojACBY7Hb8rQLDhw9Xx44dg+7/+eef9eijj2rIkCERnadhw4Z64okngu5v3759ua8RABA5a6dmeSqMka5hNOZwxS7c8JhCj1cHLaHw6GZptse3ZuapY+PatvsCK4y+yqJtDWM5AqNtDWNMK4zFHzMlFQDgc0QHxm7duqlbt25B91911VWSpCuuuCKi89SqVUtjxoyJ6bUBAKJnrWyVax/GCNcwSocrduGCV3bAhNTGaclqWDtRe3IKJB3eizE4MBaHwcR4t3/6aCwqjF6vsZ0/lmsYrRVdCowAAJ8juiU1lIMHD+r1119Xy5YtddZZZ0X8PK/Xq+zs7FJbkwAAFSdW+zAGBsaGtUNXGCV7xS5Qdr59imp6SoJa1E3x394WYh2jdehNsiUk2tcwli0wBg7USUmM3e99rRVdKowAAJ9qFxjnzJmj7OxsXXrppYqLi+w3r1u3blXt2rWVnp6u2rVra/jw4VqxYkW5r6VZs2a2P506dSr3OQGgOrMNvSlHhbFdw9pq37CWJOnk9vVtQ3CS4wMCYwmDb6zrF1MS4pQY71ZzS2AMNfjG2pKabFljaK0werxGRWWYlBo4pCem22qwhhEAEMIR3ZIayvTp0+VyuXT55ZdHdHy7du102mmnqVu3boqLi9M333yjqVOnauHChfr888/VtWvXCr5iAICPJ0ZDb+LcLr37l9O0bMN+9W5f3/aY2+1SSkKcv7JY0qRUa2Csk3L4W2aLUgOjZYqpJdBZK4zS4a014uOi+71tYLiNZUuqtaDLlFQAgE+1CowrV67U559/rjPOOEPt2rWL6DkzZ8603R4xYoSGDh2qjIwM3XTTTVqwYEGZr2f79u2229nZ2UpPTy/z+QCguvPattUo37nqJCeo/9GNQz6WmhhZYLSuYfRVKW0Vxv2lVRiLA2FiYGAs8ipgmGuprO2zLldwCC0Pa4XRS4URAPCHatWSOn36dEnS+PHjy3WePn36qG/fvlq0aJHy8kLvswUAiL2iGLWklsY65CavsCjscVkhAmOLepY1jFmRt6QmBbTClmUdo7XCmJIQ5x+oEwvWNYxeI9b0AwAkVaPAWFRUpJdfflkNGjTQsGHDyn2+tm3byuPxaP/+/TG4OgBAJLwxmpJaGuvav0hbUv2B0VJh3J6ZHzQgJt8SBK3rJYNaUssQGHMDAmMsBbYA05UKAJCqUWD84IMPtHPnTo0ZM0ZJSUmlP6EUq1evVnx8vOrXr1/6wQCAmIjV0JvSWNf+RdqSWic5ODAWeY12Hzhke84hS4UxydqSGrBe8VBR+NcNx1oNjeUejFLwvpdMSgUASNUoMPraUcPtvbh9+3atWLFCubm5/vuysrLk8QR/w547d66++OILDRo0SMnJyRVzwQCAIJ4YbatRGltLakmBMd869OZwYKybmmCr7m3NzLU9J1xLqtvtUoJlYWbZWlKLnxPzCqMrsMJIYAQAVJPAuG3bNs2bN08nnXRS2KmmEydO1DHHHKNvv/3Wf9+iRYvUqVMn3XDDDZoyZYqefvppjRs3TkOHDlXDhg315JNPVtJnAACQKq8lNdWyf2G0Lakul8u2jnFrZr7tOdYgmBwQ6qzrGMsSGHMLiiuMsZyQKknugJ8ICIwAAKmaTEmdNWuWPB5P1MNuOnfurF69eum///2vdu7cqcLCQrVs2VJXX3217rjjDrVo0aKCrhgAEIp1a8LAFslYslcYIxt6U8eyl2PzuilasytHUvCkVFuFMWDdYmK8W/qjg7Usaxh9rylJdaMdsVqKwIBOSyoAQKomgfGOO+7QHXfcUeIxs2bN0qxZs2z3HXPMMXrzzTcr8MoAANHwxmgfxtKkJlinpEZXYZTs6xi3ZQYGxpIqjMUBsiwVxsUrd/s/Prl9g6ifX5LAgO6N/vIAANVQtWhJBQBUD7ahNxVYYYx86E1x9dEeGIvXt28NCoyh92GU7HsxRlth3JaZp5U7D/hvZ3RuFNXzSxO4RYeHllQAgAiMAAAHqawpqSmWNYwlDb0JW2GsV0KFscQ1jNYKY3RTUpesKq4uNq2TrKObpkX1/NIEvt+sYQQASARGAICDVFpLagQVRq/XBExJLQ6ZzdMtQ29KWsMYEBjLU2FcvHKX/+N+RzUKqgiWV3BLKoERAEBgBAA4SJGtJbXiXscWGMOsYTxwqEjWIlu4CuOBQ0W2YGkNjEkBQ2/KOiW1oMirL9bs9d+OdTuqFDwllZZUAIBEYAQAOIi1qlWRFUZr5S/clNRsSzuqZA+MTeoky3p51irjIcvQm6TACmNc2SqMyzbuV86hw9cZ73bptE4NI35upJiSCgAIhcAIAHAMa0iJr+KWVOv6xYQ4l1Is4S8hzq2mdYoH31jXMeYXhd9WIymhbGsYF68qbkft2aae6iQnlHB02biZkgoACIHACABwDGsbZEUOvUm17cMYOrhZK4x1khOC1gw2t2ytscVSYSxxDWMZK4xLLNtpVEQ7qhQiMNKSCgAQgREA4CC2ltQK3FbDOiU1XIXRui7R2o7q07ZhLf/Ha3bl+D8ucR/GhOjXMG7PytOKHZbtNI5qHNHzohXUkkpgBACIwAgAcJCqqDDmhlnDaG1JrRMiMHZuUrythXV/xBL3YSxDhfFTy3YaTeok6Zhmsd1Owyfw7WZKKgBAIjACABzEY8lQFVphtA69CTMltbTAeJRlH8RVOw/I/BF2S2pJta9hjCwwLra0o1bEdho+LpdL1lNTYQQASARGAICDWKtalVVhLPQYFXqCw5s1MIZqSbVWGDNzC7XrwCFJUr4lCCbHh1/DGElgLPR49fnqPf7b/SqoHdXHuhcjQ28AABKBEQDgIJXXkhpvux2qypidV9yqmp4SH/R4kzpJqpNcfP/KHQfk9Rpbq2lgS2q0U1K/37hfB/7YTiPO7dLpFbCdhpV1KxOG3gAAJAIjAMBBKm/ojb3yF2pSamkVRpfLpc4BbakFAZXKoJbUKNcwLrasX+zZum7I64gla4WRfRgBABKBEQDgIPYKY8W9TmpAYAw1KTUrYFuNUI6yDr7ZccC2flGyVxQP345uSupi23YaFduOKtmruqxhBABIBEYAgIMUWdcwVmCFMSHOrXhLOAo1KbW0CqMkHR1QYbRuqSGVbx/G7Vl5Wr4923+731EVs/+ilfUtZ0oqAEAiMAIAHMQ+9KZiv0VZ21JDtaSWtg+jZK8wrtqZExQ8A4feRLOG8dH/rfR/3CgtScc1r1Pi8bEQZ1vDWOEvBwA4AhAYAQCO4fFWTkuqFLgXY6ihN9EFxrxCj9bsyvHfdrukhDh7lTTSCuPX6/bq7e+3+m9fflq7CttOw4o1jACAQARGAIBjWCdzuitwSqpkn5QaGBiNMaXuwyhJ9WolqnFakv/2z1uy/B8nJ8QFhbzE+NK31Sj0eHX3u7/6b3dqXFtXnN6upE8lZpiSCgAIRGAEADiGp5LWMEpSimV9YV6hvZU0r9CjQk/xtZQ0ndQ6KfWnLZn+j5Pig7/FJllaVMNVGKd/vl6rLZXK+8/vYguaFcma0akwAgAkAiMAwEEsGa1C92GUSm5Jte7BKIWvMEr2ttTACmOg0iqMWzPzNOXj1f7bw3u00MntG4R97VizhnQqjAAAicAIAHCQytqHUSp56I21HdXlktKS4hVOZ0tgtD4vVGC0Vh1DVRjv++A35f2xNUed5HhNPPuYkj6FmKMlFQAQiMAIAHAM+9CbyqswlhQY05LiS1xPeZSlJdUqVEuqvcJof81PVuzU/37b6b99y1lHq5FlfWRlsO3DWPo2kQCAGoDACABwDE9VDb0pDGxJtUxITQ3fjipJRzWpHfL+aCqMRR6v7nn/N//tbi3TddFJrUt83YrgZkoqACAAgREA4Bjeyhx6E2GFsaSBN9Lh4Nm6fmrQ/ckJpVUYiwPjih0HtHlfnqTDLbAPnN+lwiusoVhfkpZUAIBEYAQAOEhRJe7DaJ2SmltgH3Jj21IjueTAKNkH3/iErjAW31fkNf4q3uZ9uf77W9VLVbeWdUt9zYoQxxpGAEAAAiMAwDFs+zBWcIWxpCmp0VQYJalz0+C21OT4kltSpeK21M37LYGxfkqpr1dRaEkFAAQiMAIAHMMaUuLjqq4lNTs/usAYusIYah/G0IFxy/48/30t6wa3t1YWKowAgEAERgCAY3gqcVuN1IRYVhgja0lNDAiMvkmptsBYzykVxiq7DACAgxAYAQCOYa1qVfy2GpFNSa0TQWBs37C24gOut7Q1jFLx4BvbGsYQA3QqC/swAgACERgBAI7hqbIpqSUMvYkgMCbGu9WuYS3bfUmlTEmVDgdGY4xjKozWLmAvaxgBACIwAgAcxJpRKn4fRktgDKowFgfISFpSpeC21FBDb+LcLlslsqDIq30HC2yv37KeM9YweqgwAgBEYAQAOEjVVRjLt4ZRkjoHDL4J1ZIqBe7F6NFmS3UxMc6txmlJEb1eRXBZ3nMqjAAAicAIAHAQW2CszDWMJQTGOsnxisRRgRXGEC2pkn1SakGRV1ssW2q0qJdS4ZXVksSxrQYAIACBEQDgGLZ9GCs4OKUk2FtSzR+vXVDktbWIlrXCGDjgxsdeYfQ6Zv2iFLitRhVeCADAMQiMAADHKKrEllTrGkZjpPzCwxNLrXswSpEHxlb1U21VxfAVxuLXLSjy2iakVuX6RYkpqQCAYARGAIBjWNfNuSv4O5R1DaMk5f4xKdXajipFNiVVOlydO6FNPf/twKmpPo6uMFoyOi2pAABJimxhBgAAlcA6mbMyK4zS4XWMDWQPjKmJcUqIizy53jv0OE1ZuEbHNquj7q3qhjzGtobR49Hm/c7Yg1GS3C6mpAIA7AiMAADHsFa14uMqNjAGbnvhW7dYlgmpPh0bp+lfo3uUeIy1wphf6NVWB1UYrS2p5EUAgERLKgDAQWwtqRVcYXS7XbbBN75JqdnlCIyRsFYYt2Xm6VCR13+7VRWvYWRKKgAgEIERAOAYtpbUSthewtqW6lvDmG3bUiP2gTHRUtlcuzvH/3FSvFsNayfG/PWiYX3PCYwAAInACABwEG9xsa3CK4ySffBN3h8VxhU7Dvjvq5tasRXGtbsO+j9uWS9Frkr4nEtifXmmpAIAJAIjAMBBqrLCmFfo0YH8Qr37w1b/fad2aBDz17SuYVy/pzgwVvXAGylwH0YCIwCAwAgAcBBrG2RlBMaUxOLZb7kFHr37w1Yd/KPSmJoYp+EntIz5a9qnpBaXVKt64I0UuIaxCi8EAOAYTEkFADiCN2DNXKW0pCYUh7e8Ao9e+Xqj//b5PVpUyBpGa2C0quqBN5J9SioVRgCARIURAOAQgfv+VU5LavHvTRet3KXVu4qH0FxySpsKec2kgO08fFo6IDAyJRUAEIjACABwhMCAElfJQ28Wr9zt//iktvV1dNM6FfKaiWEqjE5oSXVbLo3ACACQCIwAAIcIDCjuSvgOlZoQuto3poKqi1IJLakOGHpjbQM2tKQCAERgBAA4RNW0pAYHxoa1k3TWcU0r7DUT44K/9aYmxqleBWzhES3bPowERgCACIwAAIcIHHpT2VNSfS46qVXYttFYSEoIPrcT9mCU7BVGpqQCAKRqEhhdLlfIP7Vr1474HB9++KFOPfVU1apVS/Xr19fIkSO1fv36CrxqAIBVVaxhDKwwxrldGt27dYW+ZqgKoxMmpEr2wBgY4AEANVO12VajT58+uvLKK233JSRE1t7z9ttva8SIETr++OP16KOPKisrS08++aROO+00fffdd2revHlFXDIAwMIJLamDjmmiZukVO3wmKcS6SScMvJEka5ZlWw0AgFSNAmP79u01ZsyYqJ9XWFio66+/Xq1atdJnn33mr0r+6U9/0gknnKBJkybphRdeiPXlAgACeANaIN2V0pJqD28VtZWGVcgKowMG3kj295w1jAAAqZq0pPoUFBQoJyen9AMtlixZom3btmn8+PG2Ftbu3bsrIyNDb7zxhgoLC2N9qQCAAEEVxkpoSW1uqSZ2aFRLp3RoUOGvGW4NoxPE0ZIKAAhQbQLjW2+9pdTUVKWlpalx48a6/vrrlZWVVerzli5dKkk65ZRTgh47+eSTlZ2drVWrVpXpmpo1a2b706lTpzKdBwBqgqoYetOnU0ONPqmVTmpbX1P+3KNSBs+EqjC2dOAaRg95EQCgatKSetJJJ2nkyJHq2LGjsrOz9eGHH2rq1KlasmSJvvzyyxKH32zbtk2S1KJFi6DHfPdt3bpVxx13XMVcPABAUoh9GCshvMXHufXw8G4V/jpWodYwOmbojZsKIwDArloExm+++cZ2+5JLLlG3bt105513asqUKbrzzjvDPjc3N1eSlJSUFPRYcnKy7Zhobd++3XY7Oztb6enpZToXAFR3RVVQYawKgRXGtKR41UlxxrdjW0sqaxgBAKpGLamBbrnlFiUmJmru3LklHpeaevi3uocOHQp6LD8/33YMAKDiBAaUapoXg9Ywtqyf6og9GCX7lNTAii8AoGaqtoExISFBzZs31549e0o8zrdlxtatW4Me890Xql0VABBb1oDidskxISrWAiuMThl4IwW0pFJhBACoGgfG/Px8bdmyRU2aNCnxuBNPPFGS9NVXXwU99vXXX6tOnTo66qijKuQaAQDFrIEx3l1tvz0pObDC6KTAaB16Q4URAKBqEBj37t0b8v67775bRUVFGjJkiP++7du3a8WKFbY1if369VOzZs00bdo025YcP/30kxYvXqyRI0cqISGh4j4BAIAke0WrGudFJcbZh944ZeCNFLiGsQovBADgGM5YZV8ODzzwgL7++mv1799frVu3Vk5Ojj788EMtWrRIvXv31vXXX+8/duLEiXrppZe0aNEiZWRkSDrcujplyhRdeOGF6tOnj/7v//5P2dnZeuKJJ9SoUSPde++9VfSZAUDNYq1oVcYejFUlaA2jkyqMtKQCAAIc8YExIyNDv//+u1566SXt3btXcXFx6tSpkx588EHddNNN/kmnJRk5cqRSUlL0wAMPaMKECUpKStIZZ5yhRx55hPWLAFBJ7BXG6hsYA9cwtqrvpApj8ce0pAIApGoQGM877zydd955ER07a9YszZo1K+Rj5557rs4999wYXhkAIBoeb/HH1XVLDUlKT0lQ2wap2rA3V03qJKldw1pVfUl+1qBOYAQASNUgMAIAqoea0pLqdrs0/dITNffn7Rp0bBMlJ8SV/qRK4mYfRgBAAAIjAMARakpLqiR1aFRbfz2jU1VfRpA4N0NvAAB21XgOHQDgSFJTKoxOFse2GgCAAARGAIAj2AJjNa8wOhVTUgEAgQiMAABHsAbG6rwPo5O5mZIKAAjAt2QAgCN4DC2pVY01jACAQARGAIAjeGlJrXK2KakkRgCACIwAAIewVRgJjFXC+r57WMMIABCBEQDgELY1jLSkVglrTqfCCACQCIwAAIfwUmGsctagToURACARGAEADuHxFn9MYKwacWyrAQAIQGAEADiCl5bUKmfbh9FbwoEAgBqDwAgAcASG3lQ963Ym7MMIAJAIjAAAhyjysg9jVWMNIwAgEIERAOAItpZUvjtVCev7bgiMAAARGAEADmFtgaQltWrQkgoACERgBAA4gnUqJ0NvqoY1qBMYAQASgREA4BDWgBJPhbFKuFzWbTWq8EIAAI5BYAQAOAJTUqseFUYAQCACIwDAEdiHserF2SqMBEYAAIERAOAQHstG8VQYq4Z1SiqBEQAgERgBAA5hbUl1ExirhJspqQCAAARGAIAjWFtS42hJrRLWyq7XsBcjAIDACABwCIbeVL3AtaPkRQAAgREA4Ageht5UucCg7iExAkCNR2AEADiCNTDG8d2pSgS2ArOOEQDAt2QAgCPYAyMVxqoQWNhlUioAgMAIAHAEazihJbVqBLWkUmEEgBqPwAgAcARrOImnwlglAgMjeREAQGAEADiCl30Yq1xgZddLYgSAGo/ACABwBA/7MFa5wJzOlFQAAIERAOAIHm/xxwy9qRpBLalUGAGgxiMwAgAcgZbUqhf4vpMXAQAERgCAI9CSWvWC9mGkJRUAajwCIwDAEayBkQpj1aAlFQAQiMAIAHCEAssiRiqMVSPwbWcfRgAAgREA4Aib9+X6P26anlSFV1Jz0ZIKAAhEYAQAVDmP12jdnoP+2x0b167Cq6m5AltSDYERAGo8AiMAoMpt3pergqLiltSOjdKq8GpqLpfLZWtLtW51AgComQiMAIAqt3pXjv/jRmlJSk9NqMKrqdniLVXGnENFVXglAAAnIDACAKrcGktg7EQ7apXq2Li4uvv1ur1VeCUAACcgMNZgB/IL9fnqPXpq4Wp+iwygSq3edcD/MesXq1b/zo38H3+yYlcVXgkAwAniq/oCUDWKPF71fmihcgs8kqQT2tTTaR0bVvFVAaip1lJhdIwBRzfWM4vXSpJ+2LRf+w8WqF6txCq+KgBAVaHCWEPFx7nVpXm6//b3G/dX4dUAqMmMMbaW1A4ExirVo3U91f1jDanXSEtW7a7iKwIAVCUCYw3Wo01d/8ffbyIwAqga27PydfCPbgeJltSqFud2qW8n2lIBAIcRGGuwnq3r+T/+YXMm+21FKDO3QBPf/kV/f+9X5Rd6Sn8CgBJZq4vpKQlqVDupCq8G0uG2VJ8lq3ariP01AKDGIjDWYNbAmJlbaNs0G+FN/3y9Xvt2k17+aqOeX7Kuqi8HOOJZt9To2Li2XC5XCUejMvQ7qpF8u2tk5RXqh82ZVXo9AICqQ2CswRqlJalV/RT/bdYxRubnLVn+jz9evrMKrwSoHthSw3nq1UpUD8svFWlLBYCa64gOjKtWrdLf//53nXzyyWrUqJHS0tLUvXt3Pfjggzp4MLJqWUZGhlwuV8g/3333XQV/BlXPWmX8flNmyGPW7c7RP+ev1DICpSRp8/5c/8e/bsvS3pxDVXg1wJFvbUCFEc5gbUtdRGAEgBrriN5WY8aMGXr66ac1dOhQXXzxxUpISNCiRYt011136c0339TXX3+tlJSUUs/TsGFDPfHEE0H3t2/fviIu21F6tq6n937cJunw+PRAHq/RZbOWauPeXE37fL0+uTlDTdOTK/syHcPrNdqyL89/2xjpi7V7NfT45lV4VcCRjT0Ynal/58Z69H8rJUkrdhzQ1sw8tahb+vdUAED1ckQHxhEjRmjixIlKTy/eHuLqq69Wp06d9OCDD2r69On6y1/+Uup5atWqpTFjxlTkpTqWtcK4cucBHcgvVFpygv++ZRv3a+PewxW13AKP5ny3Wdef0anSr9Mpdh7IV0HA8IfPVu0mMAJltDfnkPbnFvpvExid45hmaWqWnqztWfmSpMUrd+ni3m2q+Koq396cQ7r7vV/lcrl0z5Bj1Tit5v7SFKhIWbmF+mb9Xv24OVPtGtbSiBNasqbdIY7owNirV6+Q91944YV68MEH9euvv0Z8Lq/Xq5ycHKWlpdWoL86jm6UpOcGt/EKvjJF+2pyl0zs19D8+79cdtuNfX7pZ1/bvqDh3zXmPrDbtzQ2677PVe2SMqVFfN0CsWNcvpiTEqXk6FSyncLlcyujcWK99u0nS4bbUmhgYb/vPL/716juz8vXalScrIe6IXtEDOMa36/dp4fKd+nLtXv26LUvWgf1frt2ryRd0VVJ8XNVdICQd4WsYw9myZYskqUmTJhEdv3XrVtWuXVvp6emqXbu2hg8frhUrVpT7Opo1a2b706mT8ypzCXFudWtZ13/buh+jMUb/+80eGLdm5umz1TV3E+fN+/OC7tuRna+1u3NCHA2gNIETUt019JdRTtW/c/F+jF+s2VvjthL6fPUe23Cz7zbu1xMLVlXhFQHVx2vfbtKo57/S85+u0y9b7WFRkt75YavGTv9WmbkFVXOB8Kt2gdHj8ej+++9XfHy8LrroolKPb9eunW699VbNnDlTc+bM0bXXXquPPvpIvXv31i+//FIJV1z1TmhjHXxTHBh/2ZqlrZnBAcn32+aaaNO+4AqjJH26ak8lXwlQPaxh4I2jndaxoRL/qKblFXr09bq9kg7/QnHDnoP6fVu2CqvpHo1FHq/u/+/vQfc/s3itlqyqub84BWLlrWVbgu5LS4q3TfD/dv0+DX/2S23cy9ZvVemIbkkN5cYbb9RXX32lhx56SJ07dy71+JkzZ9pujxgxQkOHDlVGRoZuuukmLViwoMzXsn37dtvt7Oxs23pLp7CuY/xhU6a8XiO322VrR/W1rUrSwuW7tCs7X43r1Lx1HJvDBMbPVu/W5ae3q+SrAY58BEZnq5UUr97t6+uz1Yd/KfbM4rV6/dvN+m7jPu3JOfxb/5EntNSjI4+vysusEK8t3ayVO4sHMjWsnej/nG9640d9dEOfGvl9ENXDyh0H1LROstJTE0o/uALkFhTpJ8v+rlf1ba+zuzbTcc3rqMhrdNObP+rDXw7/HLpu90ENe+ZLvXhJL1uRA5WnWlUY7777bk2dOlVXXnmlJk6cWObz9OnTR3379tWiRYuUlxdcYatuerSu6/84K69Q6/YclDHGFhiv7tdBDWsnSZKKvEZzQvxWqCawBsa+RxW3an29bp8OFdWMVq1Cj1e/bs2K+vPNK/Doule/1wXPfmn7JuEUxhiZwH4YB3v3h616auFqZeUVln6wgxEYnc+6vca36/dp3m87/MFJkuYs26I91Wx7oay8Qv1z/kr/7XO6NdP0cScqIe5wy/TegwW64fUf5fEeOf9nlNW8X7fr/17+LmimAUpX5NDq+30f/K7BT36qwU9+WmX/dpdt3K+iP/79JMW7ddOZR+n4VnUVH+dWckKcpo7uqav6Fe9WsO9ggcZM+0YrdmRXyfXWdNUmME6aNEkPPPCALrvsMj333HPlPl/btm3l8Xi0f3/133uwYe0ktWmQ6r/9/cb9Wr0rR+v2FJf/z+3WXCN7tfTffn3pJnlrwDfKQNaW1FG9Wvp/eMgr9Dh2n8pDRR7N/mqDpn22Tr9uzSrXDzher9GFz3+lc//1ucZO+zaqVrTnlqzV3F+2a9nG/bpkxrdaY9lKoartyMrXOU99rqPvnqf3f9pW1ZdTqi/W7NGNb/yofy5YpUnv/1bVl1NmB/ILtSM733+7E4HRkayBMZzqtrb9qYWr/dN7E+Pduv2so3V8q7q67ayj/cd8tW6v7v/v75r36w699+NWvfndZv37m03V6gfaD3/Zrmte/V4Lft+pa15dpvm/ERpL4vEaLdu4T5M/WqGB/1yijnd+pDHTvnHUL5S/WrtXM75YL+nwDIZ3vt9aJdfha2+XDi+NChxs43a7NPFPx+jBYV38gxbzCj36y79/UG5BUaVeK6pJYJw0aZLuvfdejRs3TtOmTYvJtMrVq1crPj5e9evXj8EVOp+1LfX7Tfttv0ns2Li2OjaurT+f2Mp/3+Z9efpibc1at5df6NGuA8W/iTu6aZrtfft8deW/H1sz8/TDpv0lVsaeW7xOd7/3mx6Yu1zn/utz9bx/ga6a/Z1e/mqDdmTlh31eKKt2HdD3mzIlSd9u2KdZX2yI6HlFHq9eX1q89jUrr1DjZizVruzoXr8i5Bd6dNXs7/T79mwdKvLq9v/8rG0h1u46yeKVxZuoz/1luw7kH5lVRmt1MTHOrdb1U0s4GlWlTYNaumnQUWqUlqTjmtfRpae21dSLemjQscWD5ZasrD6Bcd3uHL305Qb/7Sv7tFerP742rzi9nc6wBOhZX27Q1a8s0w2v/6hb3/pZd7zzi8568jPd8c4vyj5C/136LN2wTze+8aN/EIkx0g2v/6hftmRV7YWVgcdrKvT/yR1Z+br9Pz+r90Mf64Jnv9JzS9b6/3/7fM0effDT9lLOUDkKiry6+z37DgILft8Z5uiK9fW6ff6PT2nfIOxxF/duoyl/7u6/vWZXju5578j9RemR6ogPjPfdd5/uvfdejR07VjNmzJDbHfpT2r59u1asWKHc3OIKUVZWljye4N/6zJ07V1988YUGDRqk5OSasT6hp6UtNTAw/qlLU0mHf2g4rWPxP+rXv91cadfnBFv229cvtqyXamtL/aySA+PqnQfU/7HFGvbMl3puybqwx31iCRfS4bD2v9926u/v/aaMxxZpXRQTXn8O+EHhiY9XRRSuFq7YpZ3Z9raXrZl5unTm0ioNO8YY3fnOr/rJ8nnlFngcX7X7ZWvx9RYUebVw+a4SjnYua2Bs2zBV8WxV4Fh/PaOTlt45UHP/2keThh6nc7s119ldm/of/3T1nmrTdfLg3OX+VrnGaUm6JqOD/zGXy6XHRh6vZukl/2zw72826cx/fqqPq+iH8fJauztH//fydyoosneR5BV6dPlLS0MOxHOqvTmHNPyZL9R10nw9Mq/8E/ADGWN03b+/1+tLN9tata2cMixwxhfrbf/vStJ3G/dp38HKnUJ68JB9/eLJHcIHRulwl9u4U4q39JmzbIve+aFmLo2qKkf0d+enn35a99xzj1q3bq2BAwfq3//+t1555RX/H+vAmokTJ+qYY47Rt99+679v0aJF6tSpk2644QZNmTJFTz/9tMaNG6ehQ4eqYcOGevL/27vvqCjOrw/g312WpffeEUFRpCmgqCg2rLGXqDEaNcbEEjU9JtYY3/xSrTHRFKPGRFPUWKJiLyiooKAoAirSQaRJZ+f9Y93ZGXYWFqRJ7uccz5HZ2d0Bhp25z3Pvfb75pgW+q5bhz5kpS8gqxq0MZUrNYC/lTcHkIGf2/0dvZiKnqG3VrdSGm45qY6wDXW0thHDWrIxLL8CjZqwF2HU5hb2Y770iHLyXVVbjVrr60eCyShn+qkc6Ss2R5ZKKaqz6R7WLYE2/XlZeLC0MpOz/b2UU4o1d11RuSprL9ov38ec11YvOsVtZTTbqWlUtQ0ZBKa6lPMaR2Az8HZ2K7CLNZ1plMgZxafyUt4M3mj6NViZjkF1Uhod5JY1W68m9cfGwNmqU1yTNp4+HFRQJPXlPKngDGc+riKRHOHFbOQDz7hBPGOjw+wOaGUix9eUA+DiawMFUD25WBuhkZww/J1PYcwLJzMIyzP7lChbujm7Wa8Ozyikqx4yfIpH/NCVXIhbh9dD27O86p6gcM1t4sE9TT8qrMPPnKHZQ8NvTSY1ei3nqTjavJEUkkg/CcwOcqw8e405my5ZhpOeXYl34XZXtMgY4Ed+8Axvc+kVdbTF8HOtuCPnBsE7obGfMfr3077h6DXiTZ/Ncd0mNiooCAKSkpGD69Okqj/ft2xeDBg1S+/yOHTsiICAABw8eRFZWFiorK+Ho6Ii5c+fiww8/hIODQ5Mde2vjaWsEfakWSir4M66OZnrwslf+gYZ1toWFgRSPnlSgSsbgz2upmNu3fc2Xa3Wyi8pw7UE+gttbwESvYR3BUh4pA0ZF6pyXvQlM9bWRX1IJhgEuJD3CSF/7Rjnm2tRcIzM59wlyi8vZxkQKN9MLUVkt/1CWiEU4914/RKfkY3dkCjsjevZuDt4eXHdHYQC4IXBD+O/NTJy6nY1+auqcUh6V4CynvumLCb44Hp/FBpHn7ubi/b9u4MsJvo2STq6piKRHWH0onv3a28EEYhHYG4vl++PQs72Fys1iQ+2OTMGWM0l4mFeCmhMxbpYGOLIoRKPFie8/eoLicn79xtmEXBSUVjb43BYSl1aA7RfvIyWvBOkFpcgsKGPPpbDONvhuWrdn/n1xA8b2VL/43LEw1IG3gwmbeXD6Tg58nUxb9qCe0eFYZeqgt4MJxvoL3wd0cTDBgfm9VbaXVVZj/Ym7+O5sMlsvfuB6OmIe5uPgwt4w1m2ZjpSaUgRYD/OUM4hrx3pjQoATrAx1sOrpMiN3sorwxq5r+HFGILRbaWZAZbUM8369xssgAYAP/rqBrs6mGnW4ZRgGJRXV0NXWYuvouGQyBl8cVa7LGehqhs1Tu8HKSAcMw+BC0iP2c+7Xyw+wclSXZ/yulBKyirBsfxyKy6uw7kV/tLeq/TN01T+3UPp0HVUjXQkCXMxw6mkq+fFbWZgQ4FTb0xtVXfWLQnS1tbBxij9e2HAeTyqqUVJRjXm/RuPvN3pCV7vu5zeViioZDsWmw83S8Ln//KtN6/wr19DPP//MdjYU+nf69GmVfUNDQ9ltnTp1wp49e5CUlITi4mKUl5cjKSkJmzZt+k8FiwAg0RIe4RniZcu7KZRKxBjXTdn8ZkfEAxSUNM0oY0WVrFFSnIrLqzBm00XM3XkVL/9wucGvmcK5gDqZyQNGLbEIvdyVs4znGrA21+3MQnx9PKFejRJupBYgo0b9oVDTnWjOupqd7Y1hZ6KHYd52eCtMGSDGphVolI5SUSVDPGfm2ZwzU7jsQBxKK4SL+ndHpbA1MA6meujTwQqrRnphYCdlgPnXtTR8welI2NRSH5dg3q/X2Bs6S0MpvpvWDWvGeENxT5BeUIZ1J1RHY+urqlqG5fvj8MFfsXjwSDVYBOQBv6Y1sEKzOBXVskZNfUvPL8XUbZex92oqLt/Lw8O8UjZYBOQzsDGN0Ok2MYc7w0gB4/OoLyct/0zC85kazXWRU5s/rqsDxAJBQm10tbXw7hBP7J/XizcbkpJXgl84dZFNqayyGl8cvYMNJ+7Wq9lKtYzBwt3RvM+YRQM92EDilV6uvFmzc3dz8X9HGj/FszEwDIP3/4zFaYHa2scllXj7jxsqmRLF5VX46tgdTN12CUPXnUOPT0+g48f/wmv5UQR8chxR9/NUXutIXCYvI+v9oZ6wMpIP3IpEIkzhZGX9FZ2mcp2sljF494/r8FlxFF8fT9A4e+PYzUyM2XQBl5LzEJdWWOfv4dSdbPzLGWR+d3BHTOL0pTh3Nxdllc3XmIcbMPZoV3s6KpeblSE+HevNfh2fUYg1nIHf5iaTMZj9yxUs/v06xm+5iCsC50hb8VwHjKRxCa1tM5RTo6LAbX6Tll+KWduj1AYLDfXP9XT4rzqGXp+dxN2sZ0vj2BP1kK23uJ5agDMN7Ob3kFPD6MRpztGHk5Z6PjG3Xul6RWWVeGnbZaw7cRcTvo3QODXxqECnOqEPquinDWoAwJ8z8uXtIJ8ZBeSNDDTpcJiQVcSmjopFwKYpXdkUpYd5pdh0KlHlORVVMl667JTuztASiyDREmPD5K7w4xzTplNJ2HnpQZ3H8awqqmR4bcdVNkiWiEXYPLUb7E310MXBBDN6KtfT/OH8PV6QXF9FZZWY/csVbI9Q/b50tcUwkCpHRQ/FatYUQV3DicZKS62qluHN36LrXK5DKJW3Psoqq3lp3rSkxvMptKMyYIx5mI/8kuathdIUwzDYF52GD/6KRYKaa0pWYRmScpTdwXtyBgPrq4uDCfbP74XxnAHWH87fa5bujkv/jsPGU4n48ngCPvo7ru4nPPV/R+J56bgTAxzx5gAP9muRSISPR3Tmdc39JeJ+q0xN/d/RO7zPqNCOVnh/qLLD7dmEHPzC+VyOeZiP4evPYf3JRFxIfIT4jEJkFpax17zHJZWY88sVXqZRtYzBV8eVA539Olqhmwu/UeLYrg6QSuS32kVlVSqf0z+cT8aeK6koLKvCuhN38cP5e7V+XwzDYOPJu5iz4yqecO67zibkqD23yir5dfneDiaY0t0FIR5W7LGVVlbjQmLz9GF4Ul7F64dQV/1iTaP8HDCR07V/x6UHuJXeMp2Jt51PxtmnEwWV1QzWHrn9XC3PVR8UMBIWt+MnAFgZ6cDfSTWIdLMyxJw+yrVxrjx4jPm/Xmu09YbCb2Vh0e8xeFJRjYyCMsz79VqDR76qZQzbPlpB086eNXHXYOR2c+ztobxhyigow9fHE3D9Yb5Gy1ccuJ7OFskXlVfh29NJGh2LYMBYxwxjV86AgJZYhN6cm6GzCXVfKLijzu7Whghub4FpPZSjzd+dTVJZKuPYLeV6bRKxiLc0i55UCz9MD4ArZ0mXZfvjmrxt++HYDNzkXFyWj/RCUDvlRX5JWAe2oUW1jMGHf8c2aFY6Pb8UE7ZE8Ea4O9oYYd+8XohZNgjxq4bw0pOO38rSqJaT+3sI4PxOz93NbZTZ/vUn7iLqvvK8eaWXK7a81A0H5vfiLSlwICZd47/LorJKvL33OiZuicAnB2/h+K0sRKfkszPPYhHQztLgmY+dND9fR1MY68rTtmVM8zf/0oRMxmDVwVtY9HsMdkemYN6ua4I3ddxZD0tD6TPPemtrifHu4I7sTfnjkkpePXdTiEsrwF+cZiB7r6ZqtFTQ71Ep2HpOea0M8bDEmjHeKmnnEi0x1k/2Zwe7KquZFukQXpufL9zjXUt9HU2weWpXzAlx4133Pj0cj9uZhdh0KhHjv72IB49KhF6O9bikErO2K2s3/45O4w0wcDN3FEz1pRjhbcd+/Sun+c3tzEJeOisArDkcr/YaWFpRjfm7o/HFsQSVx8qrZGo7FW87l8x+byIRsHq0fJkKAx0J7+fRXN1SG1K/WNOKkV68e4et59Q3/nsWyTnFausk49IK8PlRfmbU1QePcfL2859pIYQCRsLyrxEwDvayUZuO8/4QT4zyU9bqnbidjQ/+in3mkZXLyY94qYKAvAlPQ1MOjt3MROpjfje3Mwk5SKpnoTTDMLzZEO4Mo4OpHtpbKW92159MxKhNF9B19XG8vvOq2lRBhmFUbh52XUqps+toYnYx7yKlEJdWwLuBzywoQzonbbVm8M/v8JpT5++OOyLo7WAKQH6BVNRNVlYzmLPjKm+kb9cl5fcX5mUDayN+zYiFoQ62zwyCpaE8vVXGAAt/i8a1FNXgt7HsuqwcVQ7rbIOXujvzHjfUkWD5C17s19Ep+Vj0ewyy6rEEyI3UfIzadAG3OU0O+nawwh+vB8PPyRSm+lKIRCIM6mTDruVZVFZV5wivTMbwgt3XQ9uzN+tVMkZwIKE+LiblYgNnpniwlw2WjeiMIV1s4eNoislBTpA+rVcqLKtCuAaNEmQyBot/j8EfV1MReT8P287fw6u/XMHkrZfYfZzN9Vu0BoU0nERLjBBeWqrqTevVB3nYdfkB/o3LwNUHeUh5VNJs66hVVcvwzh838BNnoPBuNr+xm8LFRE6anJtFo9RUWxvr8mZDtp5LbrLUP4ZhsOZQPGp+lC/9K5Y34FlTRNIjLOXMRLa3MsDGKV3V1iYa6kgQwhkoDW9FXZrP3c1h6ywB+UDUjzMCoS+VQCyWd7hV1HqXV8kwcsMFfH70DhvAAMC0Hi74ZpIfts8MwoH5vbBsRGf2sbvZxVi4OxplldVYd0IZuA3tYosuDsKBzxTONSY6JR/xGYUor6rG4t+vo6LGQLu6pUsikh5hzOYLOHRDmYlib6ILf06He6HP/6pqGS/DZXKQMy+zh7s0Tnh8drN0Om5I/WJN+lIJ3gh1Z78+cD1dbefe6w/zse1cMnLr2Xjq2M1MDPjqDPp/eQbL98fx0rtLKqqwcHc0r1RD4fOjd9T+HJ/n2UcKGAnL3EDKq7l4wUd98xaxWITPx/vygo69V1Px2b+116FVVsvw6eF4LNwdjcOxGbwZlbi0AszefgXlArMsOy49aNDM0zY16R31rSXJe1LBawhUc724Kd1daj4FBaWVOBKXidm/XOF9QCrEphXwbv4BeS3ahpOqqZ1c3IuCi4U+ewNfWc3w2lTHPFQGXRYGUjiZ6/Fepw/ngp9dVM4LboTcSFW+tmJE0ERPGx+P6MRuT855gtGbLmDbuWQkZhcjgvN9TxX4Gcm/BwP8MD0Qek8DhrJKGWb9HNUk3c9uZxbyZs9m9m4neFM42MuGt9bagevpCP38NDacuFvnzd7Rm5mY+F0Er4PwSz2c8cP0ABjVaHhhoq/Nq4GtKy31Xo2GN12dzXhdjA9qkNaa8qgEH/wVizWHbiHmYT57AXtUXI5Fv8Xw6k3/N47fiMhUX4qBnZU/lz+u1p2W+nV4Qp03lJSO+nzrWyNg5N4s7Y9Jw7hvI7D07zjM3XkN476NQJ/PT6HzsqMI/fyU2vTQxlBWWY3Xd10TTJ8+elN1sONisnLApmf7hqej1vRan/Zsw5SswnKN/m4a4tSdbN5nruI9i8qrsPC3aFQKZAHdz32C13ddZQMmU31t/DA9sM4GWgM4Nein7mRrlFGjUFRW2SRprA/zSrBgdzRbJ25lpINfZgbBgtMMztZEF2s5NXDcgM3KSAc7ZgVh9eguGO3vgL4drODjaIqZvdthRk9Xdr9Td3IwdvNFtjGQSAQsGdRB7XF1czHjzVbvjkzBuvC7vHKHRQM92GtgaWU1Zm2PQnp+KW5nFuKVnyIxeesl3jU60NUMBxb0xvRg5XGduJ2tkqVy+k4Oey0Si4CF/T14jw/oZM2WluQWlyO6AbXpCVlFeGPXVQxdd06jWcqG1i/WNMrfHtZP60WrZQx+FLjfu/4wH+O3XMQnh+Ix7YdIjc/TapkivVT+9faIBxj37UXcz5UP1q/65xaSc5UD9ws5qdu3M4sEZ/Wzi8owZevl53IdU4ACRlLDZ+N8MMTLFh+P6IzutSykCsgb4Hw7tSuvK9SWM0nYEXFf7XN+j3qI788m48D1dLyx6xqC157Ap4fjcSYhB9N/jETR05thbS0RvpvWjXcj+e6fN+q10Py1lMe8RjCK9SQB+Y1ufRZV5s4uSiVi9kNKYVbvdtg7Nxhz+7aHt4MJasYgQnnt3NlFxSwTIF8i48Ej1RlEBW7AOMzbDt6cdA5uWuo1bv2is6lKYGRroosONsqfb211jGWV1byW4Nz3HOlrj1m9lXV/FdUyfHIoHhO2XGS3uVro17owr6+TKTZP7cre4DwuqcT0nyLrNaunCe7P3N3aEN3bmQvuJxKJ8OlYb95FvrSyGl8eT0D/L05jX3SayoWZYRh8fzYJc3deRVml7OnrAB+P6IzVo7qoXWNwGCdd6djNzFrTUuM46aiOZnowM5BiuI/y+RcSc/G4lgZGN1LzMWbzBeyOlKefjd50AaFfnMZXx+5g0e8xyH56Y6ElFmHdi34w0Ve9aeTWZJ1NyEF2Lb+jI7EZvAEQXydT9Pe0hlGNzrPBjXhzTpofN2DMKSpH/NMGXnezivD+n7Fqn3f/UQk+3qd5jV19FJdX4ZWfong3sHqcWeyaA5AP80p4nUF71rOuqjZO5voY7adspLflTJJg8PYsqqplWHtY2fikm4sZ1oxWprxHp+Tjm3B+KmN2YRlmbY/iLZ/x7dRucNUgPbyfpzVvSRXuAGVt9sekocenJ9BtdTgi7zVeg5CyymrM3XmV/V60tUTY8lI3XjaQwjBvO4zr6sjbNrCTNf59M4Q3c8r10fBOvAFy7gz1GD8HeNioXxZIJBLxZhn3XknFljPKlNlxXR2xaGAHrHvRj/2ZZheVY9SmCxi67hzbyVRhcpATds3uAUtDHfTztIZErMxSiagxOL2H00MgtKM1bGusH2ptpMubcaxPWuqj4nJ8tC8WQ745i8OxmYjPKMTcnVdrXaLjWesXuXQkWnill/LeY3dkCq8so7yqGu/8cZ2dBYzPKOR1Qa7N4dgM3Mvl34fFpRVixIbzWPnPTfwWpfy5zujpiiWDOvAa+X11PIF3LY/PKMSYTRcRkfwIs7ZHIaPg+VnHVIECRsLj7WiCLdO68QKA2hjoSPDTjEC4cVIy//fvHbWd2bjpFADw6EkFvj+bjOk/RuLR0xtdkQj4epIfBnvZYv2L/mz9R35JJRb9Hq3xCBG3eLyLgzE+G+/D1l08qajGH1c0H+XlpaOa6Qmm6ga6muP9oZ74Z0FvXP1oEFaOVKY1Xn+YzxvRLiqr5I1AfTC0E2yM5UFolYxR250zPb+U92E7xMuWV8fGbXzDrV+smW6swJ1lrK2O8XZmETsCrSUW8WaiFY0Qvp/WDWacAOMx54N7SnfnOrsN9vO0xqdjlDc4D/NKMem7iDpTdDX1pLyKt+bk1O7Otaac2Rjr4tDCEHw0vBOMdJUBTnpBGRb9HoMea09g1T+3EJ9RiMpqGZbui8Onh5UjknraWvh+WgBmqZnFVAjrbMNe8AvLqnhdGmvipwXLg/Ze7pZsA6NqGcPrhMd1NiEHL35/if07U3jwqATrTybyas+WDOqAAFfhYLqPhxWbhixj5HU8Qm5nFuKtvdfZr53M9fDzjED8OCMQMcvDcHBBb6x4oTO+mODLG70nzx8bY1104nwmnEnIwZPyKry+6xrbxl9XWwxXC30Y1hgsuHwvr9ZzviGyC8swZesl3s1zL3cL7JwdxH59O7OINzDH3dfORBcuFqqBxrN4o59yHcPUx6U4EKP8/GcYBhcSc7HpVCKvqYqQC4m52HX5gUpzoT1XUnGXs0zN0uGdMCnQiTegtPl0En6PSsE34QkYtekCuq89wStvWDOmC4I1vIG3NNThBRonNEhL3XX5AdufoKJaJjgj1BAMw+DDv2J5GTsrRnoJNvJTWDnKCwM8reFopofVo7yw9eUA3kxkTfJGbf68ex1AHmS/OdBDzbOUxvo7QofTYEbGyeRYPlKe8hrmZYulw5QZOzlF5bz04i4Oxtg1uzvWjvVh74tM9LR5vzPugHJOUTmvno6bGs3FTUs9fqv2TC6GYZD3pALfn01C6BensfNSCq/zd7WMwRu7ruGyQFYVIB/U5tYv+jqa1vp+dZnS3Zn9TCmpqMZOTsnJppOJSMjiZyptOHm3zrRbhmF4Tfy4a0cXl1fx0ts72hixzZTeHtyR/RtPySvB71HyAeqTt7Mw/tuLbMpsdlE59kQ1TZZBU6KAkTwzcwMptr8SxKZGFpVX4ZxA8PH4SQUiOQGNunvoNaO9MeJpOmxne2N8yOlsdik5jzcyp87DvBIc4Ywkze7tBmNdbd7syPaI+xrn63PrIIVGLGsyN5Biek9X9HJXfpB/fvQ22xjowPV0NsVVX6qFiYFOmM9JFdkXnabSQAbgj4rbmejCx9GEd2N/9cFjyGQMKqtlvOCCW+fAxR0xjbyfp7bbbSwnHbWDjZFgvVmYly2OLuqDEA/+bJFUS4zx3TRb32lSoDMWcS6+9x+VYNL3EbXW32jqwPV0Np1TV1uMsV2FL55cUokYs0PccOadfpjWwwXcmDfvSQV+vHAPQ9edQ/DaE7zZSxtjHeydG8y7EKtjqi/ldWOsbQSU2/BGUS+jrSXGEE5aas1BGUB+Ps38OYo958Qi8G7wuXq5W9S6tqpES4yxXZWzJX9cTVWZPX/8pAKv/nKFd45vfTkAZk8vvFpikbwjba92GN/NUXB9M/J84c4ynr6Tgw//juWts/nFBF+cfqcf4lYOxq1Vg3mZKd+E32202p74jEKM3nRBZWDtxxmB6Opsxisn4N5cRyQpb3CD2zdO/SJXeytDXjbB5tOJqJYxOJuQg3HfXsTUbZfx+dE7mLLtktq09zMJOZi67TKW/h2HPv87hS1nklBWWS1fDuK4cvZwuI8dujqbyTMlxnjDwVRejsAwwHt/xuKb8Lu4/jCfF4y8GtIOkwKda75lrQZ2Un6+1RUwbjmThKV/x/HeszGW5gGAXyIe4C/OwNWkACfechZCDHUk+GFGIM6/1x/Tgl01+n2b6Kmm604IcIKLRd0zsib62rzgXeHzCT68tTln9W7Hm40E5INt6170w4F5vXklDApDONlTx25msYPqf0enssGZhYEU/T2Fr0eDOL/HpJwnbDlIWWU1fo9KwZxfrmDUxvMIXnsCHT46gq6rj+PTw7dRVKYsj7Az0WVn8MurZJi9/QovI0aBm44a4GLOBr4NZaKnjclByvuLny7cR1llNW6mF2CzQBPBhKziOmv9T8Rn89J/f5wRiC8n+PIyFAD5/cH6yf7s/ZCnrTEvk2D9yURsOZOE2duv8DravjO4IxYOcMfzhgJG0iiczPV5gYLQTe+J28o6BxM9bVx8vz/eG+LJ63T1/lBPlQ/L6T1defVkXx1PwP4Y4VkNhe0X77OjXrbGuuwH9cucmYwHj0pwWsN1w7ijvjXrF2vD7SqZlPMEf15LVWl2M8rPHoY6EkwKcGIv7DIG+DpcdZaRO0sZ1tkGIpGIN4paWFaFu9nFuJ1RxNaCikWAj5pRvKB25uyoZ0WVDJfuCY8Kcm++fNQU9gPyBg/bXwnCxyM6swMI04JdeGs21uXNAR5Y0F/5YfowrxQvfn+p1jTdujAMw1uyY6Svfb0WuTc3kGL16C448mYfDPGyZWcEFRSdYAGgs50x9s3rpbYBgpDhnOVrjt3KEkxXk8kY3ORcgLmd5UZw6o0vJuUi6n4erj54jItJuVgXfheLfo9hbxykEjE2T+2GI2+G4PTboVgyqAPbtKm9lQG+nuhXZwDHTee6m13MOz+elFdh3q/XeOl9X07whaetcIBK2gZuwBh5Lw/7OTNoM3q68s5RfakEizkDQ5H38ngBW0Odup2N8d9e5DX7mhTghI1T/KEj0YJIJMJgL+XNseLzlGEY3ixnY9Yvcs3jNOlIynmCQV+dwcs/RvLKB1Ifl2K7QI19tYzBp5zmb4VlVfi/I7cR+vlpvLk7mm3ooa0lwnuDldcdEz1trJ+s/m/a3ECKBf3d8f7QToKP14Zbx3gnq0hwYI9hGHxx9I7gOoGZhWXPlJpXLWPwb1wmVnOa3Pg6mmDlKK9GD/gVFE10PG2NEOJhifeGqHZGVWdqjXubWb3bqZxrIpEIq0Z64bU+bgh0NcOyEZ0RvqQvRvmpXxN0UGcbfh1iymMwDIPfOWmTY/wd1AZn7taGvPuwv66lYfPpRIT87xTe+zMWx25l4frTtZ9rNnnRl2rhrUEdcPKtUGyZ1k3ZxK28CtN/jFRpMMirX3QTzmKpr1d6tWOvybnF5dh7NRXv7L3BXvOsjXR477X+ZKLaASqGYXiN30I8LOHrZIpx3Rzxz4Je6MhJPf5oeCd0tOWnIi8e2IE9lpyicvzfkdvsvaiORIzNU7tiXj/3Jjs/m5Kk7l0I0cwwbzt2Dafjt7JQXlXN637FnR0b0MkadiZ6eD20Peb2dUNcWiG0JSLBm0qRSIT/jffB0HXnkF1UjmoZgzd/i8Gj4grMFEidLSqr5OeX93Jlu721tzJE3w5WbCe/ny7cVzvqxpWiZkmNuvg4mmK4tx3bzOSb8LtoZ2nIS52Z/HQkVCoR482BHnj3jxsA5DNFb4QWwMteHhjk1ZihVTQ7MTeQor2VAZtaFHU/DzLOh2EHGyOVNDAFXW0tdHezYNcROpuQg34drVX2485s+TjVHgiJxSLM6t0OL/jY4eHjEvgJLM1SG5FIhLfCOkJbS8yOmqfll2LSd5fw66vd4WZV/wYp11P5DYZe4iwHUh8dbY2wZVo35BaXY190GvZeScUdTtOOAZ7W8pbzan7e6oR1tsWHf8ehWsYgv6QSEUmPeLO/AJCc+4Q3StnFXvl76OFmDgsDKR49qYCMASZsiRB8H2Nd+ah64NNZaVdLAyx8GqDnPamAoa5Eo451HW2N4O1gwp4Xf15Lha+TKe5kypsfcNPcFvR3x1Bv1ZF10rZ0czGDoY6E15QJkNetfjhMNRjp28EKfk6m7CzT1+EJKjN76fml+OH8PehLtRDsZoGuLmZqu+luv3gfK/+5yUuPe3dIR7zetz3vNQd72bLLR1xLeYzsojIUl1Uhq1DZpErTtMz66mxvjAGe1ux1MjlXeBBs8+kkvBjozKsh/usa/7NGIbOwDJmcOuKXg13hXCOdtpuLOZYO64TVh26BYeTp7P08rdGvo7ypS0Nn+DvaGMHBVI9NtTt5OxvTOYOyDMNg5T+38DMnALY30cWTimp2ndeYlHzYefMbsgFARkEp1p9IRFllNTxtjdDJzhid7IxhaShFzMN8/HM9AwdvpLN114B8Fu3bl7o1ecflbi5m+HdRn3o/r6uzGYZ2scWRuEwEuZrjncHCwaZES4wPBP5m1LE20kVXZzO2Z8PRm5kQiUS8z+GJgeqzfEQiEQZ1tmH/LjYKrKlck1Qixihfe7w9uCNsjOV1kX07WOHrSX5YsDsaDCMvOZq27TKm93RFBxsjOJnr8esX6+iToSl7Uz2M9LNnS05WHrjJ63r76RhvmBtKMXazvK9CfEYhwuOzBTOALiQ+4jUPnNdPOcjjbi1fFmt/TBosDHUEn+9soY8p3Z15a3wC8oZK214O4GVWPG8oYCSNZmBn+RIBldUMisqrcP5uLgY8TXUorajGWU5TlbDOyhkVkUjEa6IixMJQB9++1A0zfopk0yBWHbyF3OJyvDO4I3tDwDAMdlx6wN606Eu1MLlGms2Mnq5swHjubi4Ss4vgbq2+YB3gB4yOZvWrbXkrrAP+vZmJahmDjIIyvLHrKvtYFwdj3uzfWH8HbDmdxN5ILNgdjTcHeGCYtx3C45WpJqb62ry1AwNczNmLw9UHj3mjZ+rqFxX6eFjyAsaaSiuqeZ0MfRxMVfYRYm2sC2tj3bp3VGPhAA9ItET439POu5mFZZj0/aUGfeju4swuejuYqJ1x1ZSloQ5mh7hhVu92iE0rwPFbWbA21sWUIOcG3XyZGUjRs70FW0d4ODZDJWDkpvc4meux6Z2A/AZjSBdb7KpljTdbY11snxmkMiIKyP8Ga6vfETK+myMbMO6PSUdHWyOsPniLbfgDyFPWFg9U3z2QtB1SiRg921vgGKdphomeNjZN8Rec2RCJRFg8qAOm/xgJAIi6/xgXEh+h99NMlZvpBZjxUxTb4XHDyUToSMQIcDVDsJsFGEY+G/fwcYn8H2dGW0cixlcT/QRTALs6m8HSUAe5xfL6sOO3snhpki4W+mymR1OY19+dDRgVurmYYUZPV7z7xw2UVsqDqW/PJLG1UWWV1byU09COVnAw1cNvUQ95Nf3GuhJedgbXzN7tMMzbDtpa9f9bV0ckEmFAJ2v25jg8PosXMP5w/h4vWHS10MeuV3tg+f44tnNy9MN8wQGlj/fFCXZX1pdq8TqWK2iJRdgwxR/2Tfi7e1YikQgbJvsjo6AM9qZ6jZqKP9jLhg0Y/72ZicJS5cCNn5MpOtTSlAcABnW25a3DqSARizDS1x493CxgZawDK0MdWBvpwNxAKtjIbYSPPQpLq/Dh3/JmV+kFZVgrMLssX3/RtD7fYq3m9HFjA0ZusDjazx4DnwZ2IR6W7DV2/Ym7GNjJWmWmb+MpZWZXoKuZSmM8PakWXqwj3Xl+f3fsvZLK1m93sjPGD9MDWvW5qQlKSSWNxkRPm7cI7OFY5Yzi2bs57I2krraYl76kqW4uZtjzWjCsOB1KN59Ownt/3sCl5EdYffAW+n5+mg0wAGBigJNKp8e+Hax46Rfv/nED4bey2PrCmiqrZby0mfrMMAKAm5UhJgYoR/e46YuTa3zwSLTEWMRpz52c8wRv/haD0M9P4ztO7eYATxveh3WAqzIojLqfx2uN3VVN/aIC93eRlPNEZS2jWxkF7Ki9VEuMDrbNtwTCG6Hu+Gg4vwnAxO8iNFqIWqGgpBL/3FDu/1KP+tXp1EYkEsHH0RRvhXXEtB4uz3QDwK1vOnozUyUtVajhDdeC/h5s11uplhhGOhJYGurAwVQPI3zs8OcbPQWDxYYa6WvPph8VlFZi6d9xvGBxRk9XbJrqX2ezI9J2hNbITvh6km+tA2x9PCx5n0/fhCewDWAmfXeJtzQNIK+NupD4CF8cS8CXxxPw+5WHuJj0iBcsWhrq4Lc5PQSDRUCeAcGdGfg3LpOXDtuY3VGFdHWWB4daYhECXMywY1YQ/pgbjBd87TGztyu7308X7rFdwX+JuI+Mp//XEsubjK0Z441ji/tgGCed/YNhnWCqrz7939ZEt9GCRYUBnPq3y8l57GDtzfQC3rXY09YIe+YGw8FUjzeIGcNJx1UorahW24StZrAoEgHd25njl5lBTZZK3JgkWmI4mes3et02d3mlh3mlvKVkJtUyu6jQzcUMtpwBXgOpFl4NaYez7/bDV5P8MDHQCf06WqOLgwmsjXXVdv0G5I1ouOU4QhqjfpHL09YYoR3595WWhlLemsrcpS9i0wpwukb32Sv383ApWZnF1dDUUWsjXXw+wQdulgaYFOCEP+YGP/fBIkAzjKSRDfO2Y1tAH7+ViYoqb0glYl6RcYiHFfSkDUsZ6WRnjL9e74mXf4xkWx7vuZKKPQIdT7XEIrzSy1Vlu1gswvSerlj5j7zu4VpKPmb/cgWWhjoY29UBEwMceTOO6fmlvDSnmusZamLRQA/8HZ3Ku6HWl2phpK/qWpcjvO1wLiEHezlrddUM4rhF7gB4jW+4DXqAumcY3a0NYWeiy96QnE3I4QWy3EDF086oQYvsPovZIW7QkYix7MBNMIz8pnHh7mjczSrC4oEd6gxI/rym/Lkb6UrwgsDPvDUY7GWLj/bJ01Ifl1TicnIeO9sC8GcYheojbU10cWxxX8hkTLMEaWYGUgzsZIMjcfwGAka6Enw+3gdDulAa6n/NaH977Lr8AAlZRXhviGed6f6KWcZpP8hnGa88eIyV/9zCrssP2FopkUg+Q3IzrVBlkfOavOyN8d20bnVmgQzpYovdkfLZ+IikR7wU8sZKk6vNipFeWDq8E1sqofBa3/bYdTkF+SWVKK+S4ZvwBHwwtBM2nVIOFk4KdEL7p2n57a0MsXlqNyTnFKOsUobO9s1fJ9zDzZyd9auoluFcQg5CO1pj4e5o9vdlbiDFLzODYG0kD0i43VVvpOWjslrG+1lcvveIfa5UIoavowluZxSxy24pXuMFX3sM97ZTWSriv8jFwgCetkZssxbFLJuethZGqBk84dISi7D5pa745eJ9eNoZY3KQc73q/Gt6PVS+xNjRm5lIyCrC3exi5HE6dL8c3LCykNrM6ePGCwJXj+rCy8QJdDVHsJsF2xF53Ym7CO1oBZFIBJmM4S0B5e1g0qCJDYURPva8uu22gAJG0qjCOtviQ61YVFYzKCyrwoXEXIR4WPI6qIVp0DmyNk7m+vhjbjBe+TmKF8xweVgbYn5/d7XdyyYGOGF3ZAqv5XJucTm+P5uMbeeSsWaMNxs0cdNRzQ2kKouva8LGWBev9GqHbzldu0b52Qu+llgswucTfDGluzO2nkvGv3GZvIBVX6ql0onU1UIfloZS3uwlIE9RcqtjTS2RSIQQD0s26K4ZMMbWMbPVHKYFu8LBTA8Ld8ewI9gbTibiblYxvprkC32p8EcZwzDYxWmzPa6ro9p9W5q5gRQ93MxxIVF+MTsUm8EGjNUyBnHp3MZDpmpfpzln9MZ3c+QFjN4OJtg0patKDRX5b9CXSnBoYQhKK6o1HhTs7W6JABczdg1ZbgqjVEuMb170wzBvO5RWVCPqfh4uJj1CzMPHMJBK4GimB0czfTia6cHJXB+d7Yw1Ov+D3SxgpCtBUVkVqmQMW08HNF39Yk01g0UAMNbVxvx+7vjkaXObPVceoqC0kj0+PW0tLOLMkig0pK67sehI5NcjRQOhE7ezcT4xl1c/9/l4H155go+jfK1ihgHKKmW4k1nEGwQ7z1nip3s7c+yY1R0MwyD1cSkePCqBi4W+Rt3K/2sGe9nyunsC8kF8Te9ZujqboWsdA8z10dvDkjfomVtcjsTsYlgb6TTJORvsZoEZPV3x57VUzOjpKpjqvHCABxswxjzMx+hNF5BbXIGswjJeKuvz2pimKVFKKmlUJvravLbPh2IzEHkvj73giUX8VtwNZWGog19f7cGOAIlFQJCrvLD/9NuhOP60q5g6BjoSHFwQgi0vdcUAT2vecgkyBlj5z012/T9uupOTWcPTCub2ac+O2IlEwJSg2kfY/J3NsHlqN5x6OxQvB7tAV1v+5zq9p6tKUX/NbqkKfs5mGt1Acevlzifm8tJzb6jpzNnc+nva4K83evJSgv+9mYkXv7+kdjmQgzcyeDcuNTvwtjbctNR90Wm48XQ5k3u5xbxUrC4OraPjaL+O1k8HPiSY1bsd/ng9mIJFUq8MEpFIhEUCda5GuhL8MiuI/ZvQk2qhTwcrvD/UE7/NCcYPMwKxclQXvNrHDUO97dDFwUTjwRKpRIz+nqrNvTysDdlZsJbyUg8XXrds7oDMrN7tnqkuvKlw01L/uZ7Oq6V+OdiF9zgAGOlqw8NaGTBE11he43yiMmBUDI6KRCI4meujt4clBYtqcNNSFdStvdgSLA110MPNoskGOEQiEVaM9ELsisF4K0y4oVAPN3MEcTKyrqcWIC2/lBcsdrAxfOaJjbaIAkbS6Lg3vcduZuIgZ4mNoHbmvBSBZ2GoI8HPrwTiyJshuPLRIOyZG4xX+7jBtY4ZNQWpRIwhXezww4xAXPpgAN4f6sku0F5WKWPbgHNnGJ/lQmWir41ds7tjpK89vpzgW2ejHwUXCwOsGtUFUUsH4uRbfdXWBgQKLLTur2FzmN7ulmzQXFRWhZX/3EK1jEFxeRWvLba3hg1vmkoHG3mXMm4h+o3UAmw+rdrVraJKhs+PKmto+nawqrPwv6UN8bKF/tOb7dLKarzyUxTu5T7hdal1MtertU6pOYnFIqx70R83lofh4xGdmz1dmbQNvdwtEMipw1asY9qU6aFCN9fNNbtYG11tLSwepBpAm+lrY05ftxY4orr197Rml3VQLOcEyG+8hTrkAoA/p3t2dMpj9v/ZhWW8WbLe7g1PC/yv6WRnxBtQdbXQ5zXHI8o0eHWTh1ZGOvhktDfV3guggJE0urDONuw6NIVlVby1gIQu0s9CJBKhk51xvdb5E2JtrIu5fdvjbc6o1IHr6Yi6n8dbW6q+DW9q6uJggvWT/TVaNL4mI13tWkfmhGYYuwpsE2KqL+XNMu649ADzf732tOOqfJuORAwPm5ZLfVIwN5Bix6zuvFrE784kq6z3tOvyAzbYF4lQZxF+a2BhqIOvJvqxwfujJxWY9sNlXkq3pl1qmxOl7pBnIRKJ8MUEX3RvZ46Bnazx1xu9mnzdzr4drFSabjR1wxtNjfF34K33BgDz+3vwFnhvTSwNdXh1iYB8QHbdi/5ql7jw4zQ7iuHMMHJnFy0NdeDZiI262jqRSIQx/srMqpd6uNBns4Dg9hb4+ZUgLOzvjlWjvPD9tG44uKA3rn40EJEfDqAgWw0KGEmjM9WX8tJSuW2/hdataU2mdnfmpcqs+ucWHuQpUxpbcyqMl70Jm7aq4FePttWfjfPhXZyPxGVi/q5r7Ned7Y0F625aglQixieju8DSUD5QUFEtw7L9cexyIkVllbwC9jH+Di3SEKIhhnSxxSejvdmvUx+X4uAN5Sy9UMMbQp53LhYG+P21YGybHtiky1ooGOhI0IdTXyXvttk6AkYtsQjvDVUOXjqZ6zVqd+emMKBGiu/7QzzRyU79Z64/J2BMznmCghJ52Qq3frG3uwXN9NTTG/3a44OhnljxQmfM7KW6TjWR69vBCkvCOuLlYFeEedmii4MJLAx1KMCuReu4+yNtznCBYmMve+N6r2HY3CRaYix7oTP7dWxaAeLSlAu+P+sMY1OSd5MzZb9ub2WgsqRIbWyMdfH7a8Ho4aYcXeN2pfNpZYGKiZ42lnKW3LiQ+Aj/PA2svjuTzHZkk0rEausZWqsp3Z2xRCAtDWi5xkOEtDVDOZ18vR1MGq1cojH097TBFxN8MTnICTtndW/16d5jujrC+GlJx6DONoIdyrk8rI1gwKl1jUnNB8MwvBnG3h6UjlpfOhItvNa3PWb0akfBNmlUFDCSJhHmpUxLVWjsdNSmEuJhpbYxT2sOGAHwZna7N6D+x0RPG9tnBgkG/N6NuMhuYxnt58ALcFcfvIXE7CJsO5/Mbnulp2uzzFg0tgX93QVbj1PASEjjGOVnj4kBjvB1MuWt19ZajO/miLVjfdR2+25NHEz1cHBBCLbPDMJ3L3Wrc6ZGSyziLdwenfIYCVnFyOasvcld15kQ0rJaZ3958twz1Zeip7slziYo18QJ82rd6ahcS4d3wpmEbHYtMEB+gbNr5es9zezdDnezi1FaUY03Bdqva0JHooUNk/1hZaTDa3HPXWC7tRCJRPhkdBcM+eYcqmQMcorKMe7bCHbdRRM9bbwR6t7CR9kwIpEIy1/wwqPiChx62jjKw9qwXrPGhBD1JFpi/G+8b0sfRpvhbKFfry7Jfs6mvCUODDnrYXpYG9L6ioS0IhQwkiYzwtuODRhdLPRVivhbs3aWBpjZqx2+O6ucqbI31YWkldTwqWOoI8GGyf7P/DpisQjLX+iM9lYG2B35EMN97Fp0ra/auFsb4dU+buwal9w11eb3c3+uAywtsQhfTfKFjbEuYh4+xrvPQeMeQgjRBLeLd8zDfN56w709aHaRkNaEAkbSZEb7O+DUnWzcTC/EqlFdnrti4vn93fHntVTkFstr4Vp7OmpjE4lEmBbsimnBri19KHVa2N8DB2LSkZavXDPTwVQP0wRSOp83OhItXl0tIYS0BdxOqfkllTh/V5mR1IfqFwlpVVr3dAl5rkklYnz7Ujecfbcf+nZ4/j78jXS1eWtI9aJ6ilZLT6qFFSP5NUhvhXVQ29KdEEJIy7I20uXVlytmGLW1ROjuRksbENKa0AwjIbUY29URVkY6yC+pxDCBRjCk9RjU2Qaze7fDtvP3MNLXHqP9HOp+EiGEkBbj52zKywwBgK7OZtCX0u0pIa0J/UUSUocQSo15bnw0ojOWDu/03KU/E0LIf5G/kykOcdaZBYAQql8kpNWhlFRCSJtCwSIhhDwf/AW6b9P6i4S0PhQwEkIIIYSQZudlbwJtLeUgn4meNq01S0grRAEjIYQQQghpdrraWuhkZ8x+3cvdAlpiyhIhpLWhgJEQQgghhLSIoV2UDeWoWRkhrRM1vSGEEEIIIS1idkg72JnowlhPgv6eNi19OIQQARQwEkIIIYSQFqGtJcZof5pZJKQ1o5RUQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIkLX0A/yUMwwAACgsLW/hICCGEEEIIIf9VinhEEZ/UhgLGZlRUVAQAcHJyauEjIYQQQgghhPzXFRUVwcTEpNZ9RIwmYSVpFDKZDOnp6TAyMoJIJGr29/fw8AAA3L17t9nfm7QddB6RxkLnEmksdC6RxkDnEWksz8O5xDAMioqKYG9vD7G49ipFmmFsRmKxGI6Oji36/gBgbGzcYsdAnn90HpHGQucSaSx0LpHGQOcRaSzPy7lU18yiAjW9IYQQQgghhBAiiAJGQgghhBBCCCGCqIaREEIIIYQQQoggmmEkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAsY2TiaT4euvv4anpyd0dXXh5OSEt956C0+ePGnpQyOt1Nq1azFhwgS4ublBJBLB1dW11v0vX76MgQMHwsjICMbGxhgyZAhiYmKa5VhJ65WQkIBly5ahR48esLKygpGREfz8/LBmzRrBz587d+5g9OjRMDMzg4GBAUJCQnDy5MkWOHLS2ty5cwdTp05Fp06dYGJiAn19fXh6emLJkiXIyMgQ3J/OJaKJkpIS9lo3f/58lcfpXCLqiEQiwX+GhoYq+7aF80jS0gdAmtbixYuxfv16jBkzBm+99Rbi4+Oxfv16REdHIzw8HGIxjRkQvg8//BDm5ubo2rUr8vPza9330qVLCA0NhYODA1atWgUA2LhxI0JCQnDx4kV4e3s3wxGT1ujHH3/Epk2bMHLkSEydOhXa2to4deoUPvroI+zZsweXLl2Cnp4eACApKQk9e/aERCLBu+++CxMTE2zduhWDBw/GkSNHMHDgwBb+bkhLSk1NRUZGBsaMGQNHR0dIJBLExsbi+++/x2+//YaYmBhYW1sDoHOJ1M+yZcuQk5Mj+BidS6QuISEhmDNnDm+btrY27+s2cx4xpM2Ki4tjRCIRM3bsWN729evXMwCYXbt2tdCRkdYsKSmJ/b+Xlxfj4uKidt/AwEDGyMiISU1NZbelpqYyRkZGzKBBg5ryMEkrFxUVxeTn56tsX7p0KQOA2bBhA7ttwoQJjFgsZqKjo9ltRUVFjLOzM9OhQwdGJpM1xyGT58yePXsYAMxnn33GbqNziWjq6tWrjJaWFvPll18yAJh58+bxHqdzidQGADN9+vQ692sr5xFNL7Vhu3fvBsMwWLRoEW/7q6++Cn19fezcubNlDoy0am5ubhrtl5iYiKioKEyYMAEODg7sdgcHB0yYMAHh4eHIzMxsqsMkrVxAQABMTExUtk+aNAkAEBcXBwB48uQJDhw4gNDQUPj5+bH7GRoaYvbs2UhISEBUVFSzHDN5vri4uAAAHj9+DIDOJaK56upqvPrqqxgyZAjGjh2r8jidS0RTFRUVKC4uFnysLZ1HFDC2YVFRURCLxQgKCuJt19XVhZ+f33NzkpLWSXH+BAcHqzzWo0cPMAyDq1evNvdhkVYuNTUVAGBjYwMAuHHjBsrLy9WeRwDos4oAAMrKypCbm4vU1FQcO3YMr732GgBg2LBhAOhcIpr7+uuvcfv2bWzcuFHwcTqXiCb++OMP6Ovrw8jICNbW1liwYAEKCgrYx9vSeUQ1jG1Yeno6LC0toaOjo/KYg4MDLl68iIqKCkil0hY4OvK8S09PBwDe7KKCYltaWlqzHhNp3aqrq7F69WpIJBJMmTIFAJ1HRHPbtm3DggUL2K9dXV2xc+dOhISEAKBziWjm3r17WL58OZYtWwZXV1fcv39fZR86l0hdgoKCMGHCBLi7u6OwsBCHDx/Gxo0bcebMGVy8eBGGhoZt6jyigLENKykpEQwWAfkso2IfChhJQ5SUlACA4DnGPb8IUVi0aBEiIiLw6aefomPHjgDoPCKaGz16NDw9PVFcXIzo6GgcOHAAubm57ON0LhFNzJ07F25ubliyZInafehcInW5fPky7+uXX34ZPj4+WLp0KdatW4elS5e2qfOIAsY2TF9fH9nZ2YKPlZWVsfsQ0hCKc6e8vFzlMTq/SE0ff/wxNm7ciDlz5uCDDz5gt9N5RDTl6OgIR0dHAPLgcdy4cQgMDERJSQk++OADOpdInXbu3Injx4/j7NmzKt0suehcIg3xzjvvYOXKlTh06BCWLl3aps4jqmFsw+zt7ZGbmyt4oqalpcHS0pJmF0mD2dvbAxBOp1BsE0rDIP89K1aswCeffIJXXnkFW7Zs4T1G5xFpKB8fH/j7+2Pz5s0A6FwitSsvL8eSJUswbNgw2NraIjExEYmJiXjw4AEAoKCgAImJicjPz6dziTSItrY2e+8NtK3PJAoY27DAwEDIZDJERkbytpeVlSEmJgYBAQEtdGSkLQgMDAQAREREqDx26dIliEQidOvWrbkPi7QyK1aswMqVKzF9+nRs27YNIpGI97i3tzd0dHTUnkcA6LOKqFVaWoq8vDwAdC6R2pWWliInJweHDh2Ch4cH+y80NBSAfPbRw8MD27Zto3OJNEhZWRlSU1PZpm5t6jxq6XU9SNO5ceNGresw7tixo4WOjDwv6lqHMSAggDEyMmLS0tLYbWlpaYyRkREzYMCAZjhC0pqtXLmSAcBMmzaNqa6uVrvf+PHjGbFYzMTExLDbFOtUeXh4PDfrVJGmkZGRIbj95MmTjFgsZvr3789uo3OJqFNRUcHs3btX5d/mzZsZAMyQIUOYvXv3Mnfu3GEYhs4lol5ubq7g9rfffltlbdi2ch6JGIZhWjZkJU1pwYIF2LhxI8aMGYNhw4YhPj4e69evR69evXDy5EmIxTTJTPh27NjBpuhs2LABFRUVeOuttwDI1z2bNm0au+/FixfRr18/ODo6st0LN2zYgKysLFy4cAG+vr7N/w2QVmHTpk2YP38+nJ2dsXr1apXPGhsbGwwaNAiAfE3PoKAgaGtrY/HixTA2NsbWrVsRGxuLQ4cOYfDgwS3xLZBWYsyYMcjIyED//v3h4uKCsrIyXL16Fb/99hv09fVx+vRpdo0zOpdIfd2/fx/t2rXDvHnzeMts0LlE1Fm8eDEuXbqEfv36wdnZGcXFxTh8+DBOnTqF7t2749SpU9DT0wPQhs6jlo5YSdOqqqpivvjiC6ZDhw6MVCpl7O3tmcWLFzNFRUUtfWiklerbty8DQPBf3759Vfa/ePEi079/f8bAwIAxNDRkwsLCmKtXrzb/gZNWZfr06WrPI6Fz6datW8zIkSMZExMTRk9Pj+nVqxdz/Pjxljl40qr8/vvvzPDhwxlHR0dGR0eH0dXVZTp27MjMnz+fefDggcr+dC6R+rh37x4DgJk3b57KY3QuESH79u1jwsLCGHt7e0ZHR4fR19dnfH19mTVr1jClpaUq+7eF84hmGAkhhBBCCCGECKJ8REIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCSKP46KOPoKenh/T09GZ9X4Zh0K1bN4SEhDTr+xJCyH8BBYyEEEJaFZFIVOu/ffv2tfQhEgEpKSn46quvMG/ePNjb27Pb79+/D5FIhN69e6t9rmIfV1fXBr23SCTCqlWrcP78efzxxx8Neg1CCCHCJC19AIQQQkhNRkZGWLJkieBjnp6ezXw0RBOrV69GRUUF3n777RZ5/+HDh6NLly5YunQpxo0bB5FI1CLHQQghbQ0FjIQQQlodY2NjrFixoqUPg2iooKAAv/76K8LCwmBra9tixzFt2jS89957OHHiBAYOHNhix0EIIW0JpaQSQgh57pw+fRoikQgrVqxAZGQkhg8fDnNzc4hEIty/f5/d79ChQxg8eDDMzc2ho6ODjh07YsWKFSgtLVV5TYZhsHHjRnh5eUFXVxcODg6YP38+CgoK4OrqqpIuOWPGDJX3Ezq+mlJSUjB37ly4urpCR0cH1tbWmDhxIuLj41X2VbzvkydP8M4778DZ2Rk6Ojpwd3fHZ599BoZhBH8+kZGRmDRpEhwcHKCjowM7OzuEhYVhz549AIDbt29DJBJh0KBBgs9nGAbt27eHgYEBCgoKBPfh2r17N0pKSjBp0qQ6962PutKTa/58Fe//ww8/NOpxEELIfxnNMBJCCHluRUREYO3atejduzdmzpyJ3NxcSKVSAMCyZcuwevVqWFtbY9SoUbCwsEBkZCRWrlyJkydP4sSJE9DW1mZfa9GiRVi/fj3s7OwwZ84caGtrY//+/bh8+TIqKirY130WV65cQVhYGAoKCjB06FBMmDABGRkZ+Ouvv3DkyBGcOnUKAQEBvOdUVlZi8ODBSE9Px9ChQyGRSLBv3z68//77KCsrw/Lly3n7b926Fa+//jokEglGjhwJd3d3ZGdnIyoqCps3b8bEiRPh6emJfv364cSJE0hOToabmxvvNcLDw5GcnIyZM2fCxMSkzu8rPDwcANCzZ89n/Anx1fzeFHbs2IHk5GTo6+vztru4uMDBwQHh4eFgGIbSUgkhpBFQwEgIIaTVKSwsFJyd8/T0xIsvvsh+fezYMWzZsgWvvfYab7/w8HCsXr0affr0wT///ANjY2P2sU8++QQff/wxNm7ciMWLFwMALl68iPXr16N9+/aIjIyEubk5AGDNmjXo168fMjIy4OLi8kzfU2VlJSZOnIiysjKcP38ewcHB7GPx8fEICgrC7NmzERMTw3teeno6fH19cfz4cejp6QGQB1IdOnTA119/jQ8//JANfG/duoU33ngDJiYmOH/+PDp16sR7rYcPH7L/f/3113Hq1Cls3boVa9eu5e33/fffAwDmzJmj0fd2/vx5GBsbw8PDQ+0+KSkpatOM8/PzBbcL7f/TTz8hOTkZwcHBWLhwocrjgYGB2LdvH+Lj49G5c2dNDp8QQkhtGEIIIaQVAaD236hRoxiGYZhTp04xABg/Pz/B1xg1ahQDgImPj1d5rKqqirG0tGQCAgLYbbNnz2YAMD/++KPK/or3cnFx4W2fPn06A4C5d++e2ucsX76c3fb3338zAJj33ntP8JgXL17MAGDi4uLYbS4uLgwA5u7duyr7v/zyywwAJjY2lt02f/58BgDzzTffCL4HV0VFBWNra8vY2NgwFRUV7PasrCxGW1ub8fX1rfM1GIZhysvLGQCMh4eH4OP37t2r9XfK/VfzZ1xTeHg4o62tzbi5uTHZ2dmC+8ydO5cBwBw5ckSj4yeEEFI7mmEkhBDS6jg4OCA1NbXO/YKCggS3R0REQCqV4rfffhN8XCqV4vbt2+zX165dAwD07dtXZd/evXtDS0tLk8OuVUREBAAgOTlZcObszp07AOT1hV5eXux2ExMTuLu7q+zv5OQEAHj8+DG77dKlSwCAwYMH13k82tramD17Nj755BPs378f48ePByCfwausrFSZtVXn0aNHAAAzM7Na9+vVqxfOnz8v+Nj9+/fRrl27Wp9/69YtjBs3DoaGhjh8+DCsrKwE91PMDufm5tZ16IQQQjRAASMhhJDnlrqOnHl5eaiqqsLKlSs1eh1FYxcbGxuVxyQSCSwtLRt+kJxjAoC9e/fWul9xcTHva1NTU8H9JBL5Jby6uprdpkjtdHBw0OiY5syZg7Vr1+K7777D+PHjwTAMtm3bBgMDA0ydOlWj11CkyZaVlWm0f0NkZmZi2LBhKC0txfHjx9GxY0e1+yoaGimOixBCyLOhLqmEEEKeW+qampiYmEBPTw/V1dVgGEbtP+7+AJCVlaXyWlVVVYKzVWKxmH28JqGaPMV77N69u9Zjmj59et3fuBqK4DItLU2j/Z2cnDBixAi2+c3JkyeRmJiIF198kVf3Wdd7SqVSNiBubCUlJXjhhRfw4MED/Pjjj+jTp0+t+ytmPK2trZvkeAgh5L+GAkZCCCFtTvfu3VFaWorr169rtH/Xrl0BAGfOnFF57Pz587xZPAVFCia3kYzClStXBI8JUKamNoUePXoAAI4eParxc15//XUwDIOtW7fWu9mNgre3N9LT01FUVFSv59VFJpNhypQpuHLlClatWqXRrOft27chFovh7e3dqMdCCCH/VRQwEkIIaXPefPNNAPLAR2jWMD8/H9HR0ezXM2bMACDvisqdKSsrK8MHH3wg+B6K+smtW7fytsfGxmLdunUq+48aNQqurq7YvHmzYEAnk8lw+vTp2r+xOiiW01i1ahWvRlNBqC40LCwM7du3x7Zt27Bv3z74+fmprQ1VJzQ0FDKZTDBQfhZLlizB/v37MX36dHz88cd17l9eXo6YmBj4+/urTeUlhBBSP1TDSAghpM0JCwvDypUrsXz5cri7u2PYsGFwdXVFQUEB7t27hzNnzmDGjBnYsmULAHlDlgULFmDDhg3o0qULxo8fz67DaGZmBjs7O5X3GDVqFDw8PLB7926kpqaie/fuSElJwf79+zFq1Cjs2bOHt79UKsWff/6JwYMHY8iQIejTpw98fHwglUqRkpKCiIgI5ObmPlMtYOfOnbF582bMnTsXfn5+GDlyJDw8PJCbm4uoqCiYmJjg1KlTvOeIRCLMnTsX77zzDgBo3OyGa+zYsfjyyy9x7Ngx9OvXr8HHzxUZGYl169ZBV1cXDg4Ogo2CQkNDERoayn59+vRpVFRUYNy4cY1yDIQQQihgJIQQ0kYtW7YMISEh2LBhA86cOYO///4bZmZmcHJywpIlS/Dyyy/z9l+3bh06dOiATZs24bvvvoOFhQXGjBmDTz/9FL6+viqvr6urixMnTuDtt9/G8ePHERUVhS5duuDXX3+Fubm5SsAIyFNfb9y4gS+//BKHDh3Ctm3bIJFIYG9vj9DQ0EYJdF599VV06dIFX3zxBU6fPo19+/bB0tISPj4+mD17tuBzZsyYgXfffRf6+voaN7vh6tmzJ3x8fLBz506sWbOGre98FiUlJQDks7yffvqp2v24AeOOHTsglUoxa9asZ35/QgghciKGW/VPCCGEEBWurq4A5Ms/tEXh4eEYNGgQZs+erZJiq6mdO3di2rRpOHDgAF544YVGPsK65eTkwNXVFZMnT8a2bdua/f0JIaStooCREEIIqUNbDxgHDx6MY8eOITo6Gn5+fg16DYZhEBQUxNYyqutg21TeeustfP/990hISBBMISaEENIwlJJKCCGE/AfFxsbi4MGDiIqKwrFjxzBu3LgGB4uAvBZy69at2LdvHzIzM5s9aLOxscGOHTsoWCSEkEZGM4yEEEJIHdriDOPPP/+MV155BSYmJhg8eDC+/fZbmJubt/RhEUIIaWUoYCSEEEIIIYQQIojWYSSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgv4fqndLGBHrpREAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(ps.freq, ps.power, label='segment size = {}s \\n number of segments = {}'.format(3, int(lc.tseg/3)))\n", + "plt.title('Averaged Powerspectrum')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It looks like we have at least 2 frequencies. \n", + "# Let's look at the Dynamic Powerspectrum.." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 4274.61it/s]\n" + ] + } + ], + "source": [ + "dps = stingray.DynamicalPowerspectrum(lc, segment_size=3, norm=\"leahy\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAKOCAYAAAA8vlEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4IElEQVR4nOzdd3hUZdoG8PucSa80pYQSmoKAAgJCpAREcUGKKCgWsGBFXLuogIoorIqVXdelqdh2scEKuCp1VcAIKPopIAgIISgtCQmpc97vD8gsMUPJcE84k9y/vbiudWbyzJmZc2bmnfMUyxhjICIiIiIiIq5gn+oNEBERERERkf/RIk1ERERERMRFtEgTERERERFxES3SREREREREXESLNBERERERERfRIk1ERERERMRFtEgTERERERFxES3SREREREREXESLNBERERERERfRIk1EfJKTk2FZlu+fbdtITExEcnIy+vXrhyeffBK//vrrqd5MV3nsscdgWRYee+yxoN/Hkf/Cw8NRt25dDBgwAJ9++mnQ7ltEREQqnhZpIlJGnz59MGLECAwfPhwXXXQR6tevj6VLl2Ls2LFo3Lgx/vznPyM/P/9Ub2aV07RpU4wYMQIjRozApZdeivj4ePz73/9Gnz598OSTT57qzZMTlJqaCsuysHTpUr/XL126FJZlITU1tUK3S0RE3CPsVG+AiLjPmDFjynxBLCgowOzZs3H//ffjpZdewi+//IK5c+fCtqv2bz133HEHrrzyStSqVSvo99W1a1e89tprvv92HAePPvooJk6ciPHjx2Pw4MFo2bJl0LdDREREgqtqf7sSkRMWGRmJkSNHYvny5YiOjsbHH3+MGTNmnOrNOuVq1aqFFi1aVMgi7Y9s28bjjz+OJk2awHEcfPjhhxW+DSIiIsKnRZqIlEubNm1w1113AQCee+453+VPPfUULMvCHXfccdS/feGFF2BZFm666SbfZddddx0sy8Jrr72G9evX47LLLkOtWrUQFRWF9u3b45///KffWKtWrcK9996Lc889F6effjoiIyPRoEEDXHPNNfjhhx/8/s2R97Vu3ToMGjQINWvWREJCAi644AJ88803vtvOmjUL5557LmJjY3H66afjlltuQVZWVpmYx6tJ+/LLL3HFFVegfv36iIyMRO3atZGSkoLJkycjLy/vqM/VibJtG23btgUAbNu2rdR1c+fOxUUXXYQaNWogMjISjRs3xq233lrmdr/99hssy0LTpk3LxL/33nthWRZiYmJQWFhY6rpXXnkFlmXhoYceKvN3X375JYYMGYJ69eohIiICderUwdChQ/Htt9+Wue3WrVthWRaSk5NRVFSEp556Cq1atUJ0dLTvsQHAt99+i6uuugrNmjVDdHQ0qlevjjPOOAPXXXcd1qxZUypmSX3l1q1b8a9//QudO3dGXFwcqlWrhv79+2Pt2rVHfU53796NMWPGoFWrVoiJiUF8fDw6d+6M6dOnwxjj928cx8Fbb72FCy+8ELVq1fLtj3379sVbb71V6nEuW7YMANCzZ89SdYZLly7Fddddh549ewIAli1bVur6I89uH5ky+fnnn/teZ8uyfM/xkc+BPyVxj3X59OnT0a5dO8TExKBevXoYPXo0cnJyAAD79u3DnXfeiYYNGyIqKgpnnXVWqTO9IiJyEoyIyGGNGjUyAMySJUuOebvvv//eADAATHp6ujHGmN9++81ERESYxMREk5OT4/fvzjzzTAPArF692nfZiBEjDAAzevRoExsba1q2bGmuuOIK06lTJ999vPXWW2ViXXDBBSYsLMycc845ZsCAAebSSy81Z5xxhgFgoqOjzbJly8r8Tcl93X777SY6Otqcc8455oorrjCtWrUyAExcXJz56aefzN13320iIyNNnz59zKBBg0yNGjUMANOrV68yMR999FEDwDz66KNlrpswYYLvMbRt29ZceeWVpk+fPqZhw4YGgNmyZcsxn+c/3seIESP8Xt+7d2/fc1jivvvuMwCMx+MxPXv2NFdeeaVp3ry5AWCqVatmVq5cWSrGWWedZQCYrVu3lrr8nHPO8T2GpUuXlrrusssuMwDMp59+WuryyZMnG8uyjG3bplOnTmbIkCHm3HPPNQBMRESEmTdvXqnbb9myxQAwDRo0MP369TNRUVGmT58+ZujQoWbQoEHGGGP+85//mLCwMAPAnHvuuWbo0KFmwIABpm3btsa2bTNp0qRSMUv25T//+c8GgOnSpYsZNmyYad26tQFgIiMjzaJFi8o8l99++62pU6eOAWAaNWpkBg4caC688EITHx9vAJirrrqqzN/k5+ebvn37GgAmPDzc9OjRwwwbNsz06NHDVK9e3TRq1MgYY8zu3bvNiBEjTO3atQ0A06dPHzNixAjfv59++slMmzbN9OnTxwAwtWvXLnX9kY+xR48eBoC55ZZbjGVZpm3btmbYsGGma9eu5rvvviv1HBxtPyt5XY92+b333msiIyPNxRdfbAYOHOg7Dnr37m327NljmjdvbpKSkszQoUNN9+7djWVZBoB5/fXX/d6fiIicOC3SRMTnRBdpXq/XREREGADms88+811+9dVXGwBm2rRpZf5m0aJFBoDp1KlTqctLFk4AzF/+8pdS1z3zzDMGgGncuHGZeAsXLjS//fZbmcunTZtmAJgWLVoYx3GOel8vvvii73LHccw111xjAJhWrVqZOnXqmA0bNviu3759u6lVq5bfhcrRFmnvvfeeb0H0+eefl7rOcRyzePFik5mZWWb7/TnWIm3Xrl2+BcSMGTOMMcb8+9//NgBMYmKiWbVqle+2Xq/X3H///QaAadiwocnPz/ddd8cddxgAZubMmb7L9uzZYyzLMm3atDEAzLhx40o9hpo1a5qIiAhz8OBB3+Uff/yxL/6Ri3FjjJk3b54JCwsziYmJZu/evb7LSxZpAExycrLfRUVqaqoBYN59990y16Wnp5v/+7//K3VZyb5s27b54IMPSl03ceJEA8DUq1ev1Lbn5uaa5ORkA8A899xzxuv1+q7bsWOHad++fann+Y/PXZs2bcwvv/xS6rr8/HyzYMGCUpeVLLCOdpwtWbLEADA9evTwe/2RMQCYWbNm+b3NyS7S/ngc7Nixw5x22mm+4+TKK680BQUFvuv//ve/H/V4FRGR8tEiTUR8TnSRZozxnW048kvzihUrfGc6/mjIkCF+v1CWLJw6d+5c5m8KCwtN9erV/Z7hOZaUlBQDwPzwww9+7+v8888v8zfffvut78upv0XmXXfdZQCYxx57rNTlR1uknX322bSzCv4Wabm5ueaLL74wHTt29J11yc7ONsYY07NnTwPATJw4sUysoqIi07RpUwPAzJ4923f5Bx98YACYa665xnfZnDlzfAu36tWrm5SUFN91a9euNQBM9+7dS8Uv2Z7Fixf7fSyjR48us0g+cpH2zjvv+P27kjN9+/fvP/oTdYSSfXnIkCFlrnMcxxfvjTfe8F3+17/+1QAww4cP9xtz9erVBoBp166d77Jdu3aZ8PBwExYWZjZv3nxC28ZcpPXp0+eotznZRdqxjoOEhASzZ8+eUtcVFxebmjVrlvt4FRGRslSTJiIBcRwHAErVtHTu3Bnt27fH6tWrS9V37dq1Cx999BGqV6+OK664wm+8iy++uMxl4eHhaNy4MQBg586dZa7//fffMWPGDNx7770YOXIkrrvuOlx33XXYtWsXAGDjxo1+7+uiiy4qc9mR9VjHut7fdvxRRkYG1q1bh5iYGAwbNuy4tz9Rr7/+uq9eKDY2Fl27dkVaWhoaNGiAjz/+GPHx8SguLsZXX30FABgxYkSZGGFhYRg+fDgA+GqjgEM1TrZtY/Hixb7LSv5/7969kZqairS0NF89Usl1vXr18t1+z549SEtLQ61atY7aPr579+4AgJUrV/q9fuDAgX4v79ChAwDgmmuuwYoVK+D1ev3e7o+uvvrqMpdZloWrrroKALB8+XLf5QsXLgQADBkyxG+sdu3aIS4uDt99951vBMXixYtRVFSE1NRUNGnS5IS2iWnQoEFBi32s4+Dcc89FzZo1S13n8XiQnJwM4MSOExEROTq14BeRcvN6vcjMzAQA1KhRo9R1d9xxB2644Qb8/e9/x/Tp0wEcaj5QVFSEESNGIDo62m/MBg0a+L08Pj4ewKERAEf629/+hnvvvfeY89qys7P9Xl6/fv0yl8XFxZ3Q9X/cDn9KBn43btwY4eHhx739iWratCm6du0K4NBiq2bNmujUqRMuueQSREZGAgD27t2LgoICREREICkpyW+cksVEenq677Lq1aujbdu2WLNmDdavX48WLVpg0aJFaNasGRo0aIBevXrhww8/xPLly9G3b18sWrQIQOlF2pYtWwAcWqwdbzTD7t27y1x2+umnH3X/mDx5MtavX4/58+dj/vz5iIuLQ6dOndC7d2+MGDEC9erV8/t3JYuGo12+Y8cO32W//PILAKB///7H3Hbg0POclJTke63PPPPM4/5NMDRq1ChosY91HPi77sjrT+Q4ERGRo9MiTUTK7f/+7/98nf5at25d6rorr7wS9913H959911MmTIF8fHxmDZtGgDg1ltvPWrM8sxbS0tLwx133IGwsDA899xzuOSSS1C/fn3fF/yrrroK77zzzlE78R3vvk529pu/jnkMf5yTxtarVy+sWbMGixcvRnx8PDZu3IhbbrkFAHDBBRcAABYtWoSLLroI//3vfxETE4POnTv7/r7k7FaNGjWOu9Bp0aJFmcuOtkADgLp162LFihX44osvsHDhQixfvhz//e9/sXjxYjzxxBOYM2cO+vXrV+7HfKSS7R8wYACqV69+zNuWLIqD9VqfqGM9Z8dScib8WI51HFT1+YgiIsGmRZqIlNs777wDAGjVqhXq1KlT6rro6GjceOONeOaZZ/DGG28gOTkZv/76K3r16kU72/D+++/DGIM777wTd999d5nrN23aRLmfQJWcFdyyZQuKioqoZ9OOp2bNmoiMjERBQQF27Njh9wxlyRmjP55p69WrF5599lnfIq3kMgBo2bIl6tati8WLFyMtLQ0HDhzARRddVOqxldxXTExMUBaTtm2je/fuvpTJ7OxsTJo0CZMnT8ZNN93kN8Vu27ZtOOecc8pcXtKW/sjnoEGDBtiwYQPuvPNO36L0eBo2bAjg6Km1p1JERAQA+FJUj7R9+/aK3hwRESkH/RQmIuXy/fff46WXXgJwaIaWP7fddhts28arr76Kv//9777LWPbt2wfAf4rk+vXrjzkDqyLUrVsXbdq0wcGDB4865y1YwsLCkJKSAgB44403ylzv9Xoxe/ZsAECPHj1KXdetWzeEh4f7Zm9ZluWb2QUcmuv13Xff4V//+heA0qmOwKEFT+vWrbFjxw6sWrWK+rj8SUhIwFNPPYWIiAhkZGT4TaF8++23y1xmjMG7774L4H81csD/6iLfe++9E96Gnj17Ijw8HEuWLPGlex5PyeKpuLg4oOtPVEkK6IYNG8pc9+mnn55UbBERCS4t0kTkhBQUFGDGjBno3r07Dh48iIEDB/ptTAEcqsXq27cv/u///g8LFixAnTp1qA0OSlLl3njjjVJnCfbs2YPrr7/+pL/cMowbNw4AcOedd2LJkiVlrl+6dKnf4dgMJWcXn3nmmVINXBzHwdixY7Fp0yY0bNiwTIOMuLg4dOzYEXv37sW//vUvtGnTBqeddprv+gsuuADGGN/C+4+LNACYMGECAGDYsGGlGpOUKCwsxL///W+sX7++XI9pypQpperHSnz22WcoLCxEQkICqlWrVub69957D3Pnzi112V/+8hf88MMPqFOnDi6//HLf5TfffDPq16+PV199FZMnT/ZbV/Xjjz/igw8+8P137dq1cfPNN6O4uBiDBw8uMyi8oKDA15CkRMnZu59++snvYy25ftOmTSe1L5cssJ999lnk5ub6Ll+9erVv/xQREXdSuqOIlDF58mRfutrBgwexa9curFmzBrm5ubBtG3fddRcmTZp0zLqUUaNG4eOPPwYAjBw5EmFhvLeb66+/Hs8//zzWrFnja6ZRVFSEpUuXol69ehg0aBA++ugj2v0FYsiQIRg3bhyeeOIJ9OrVC+3atUOLFi2wf/9+/Pjjj/j111+xZcsWJCYm0u+7f//+uPfeezFlyhR07twZPXr0QO3atbF69Wps3LgR1apVwz//+U9fXdWRevXqha+++gr5+fllFmEl/52fn4/ExES0b9++zN9feuml+Mtf/oKHHnoIqampOOuss3DGGWcgKioK6enpWLt2LXJycrBw4UK/dWlH88QTT+D+++/HWWedhRYtWiAiIgJbtmzxnbGbNGmS37TSUaNGYdCgQUhJSUGjRo3www8/4Pvvv0dkZCTeeOMNxMTE+G4bHx+Pjz/+GJdccgkeeughPPfcczj77LNRp04dZGZm4vvvv8evv/6KK664AoMHD/b93bPPPouff/4Zn376Kc444wycf/75qFOnDjIyMvDdd98hISHBl15Z8hy99tpruP/++/HZZ5/h9NNPBwDcf//9OPPMM9GoUSO0a9cOa9euxdlnn41zzz0XkZGROPPMM3H//fef8HM2atQovPrqq1i5ciXOPPNMnHfeedi1axe+/vpr3H///Zg0adIJxxIRkQp2aicAiIiblMxVKvlnWZaJj483jRo1Mn379jVPPvmk+fXXX08oVl5engkPDzcej+eYf1Myu+xoA3mPNlMqIyPD3HDDDaZRo0YmMjLSJCcnm7vuusvs37//qDGPd184ytwoY4yZNWuW34HSR5uTVmLJkiXm0ksvNbVr1zbh4eHm9NNPNykpKebpp582eXl5fv/mj441zPpYPvzwQ9O7d29TrVo1Ex4ebho2bGhuvvnmo87NMsaYxYsX+56HefPmlbm+SZMmBoAZMGDAMe979erVZsSIESY5OdlERkaahIQEc+aZZ5ohQ4aYN9980+Tk5PhuWzInrVGjRkeNN3v2bDN8+HBz1llnmWrVqpno6GjTtGlTc8UVV5gvv/yyzO2PnBH29ttvm44dO5qYmBiTkJBg+vbta7755puj3te+ffvME088YTp06GDi4+NNZGSkadiwoenevbt56qmnzKZNm8r8TXFxsZk5c6bp0aOHqVatmomIiDANGjQw/fr18zv77W9/+5s555xzTHR0tO/5PnIf37Jlixk6dKipXbu28Xg8ZeamHW/WWolNmzaZyy+/3FSvXt1ERUWZtm3b+gaWH21/D+Q4KO92iYjIsVnGHKX9mYjISXjrrbdwzTXXYMCAAWXSzUSCLTk5Gdu2bcOWLVuO2oZfRETErVSTJiJ0BQUFeOqppwAAd91116ndGBEREZEQo5o0EaGZNWsWli9fjq+++gobN27En/70p1LdAUVERETk+HQmTURoli1bhtdeew179uzBNddcgzfffPNUb5KIiIhIyFFNmoiIiIiIiIvoTJqIiIiIiIiLuLImzbIsv5fHxsaWGlwLABs2bMCDDz6IZcuWobCwEO3bt8fjjz/ud8jqyXAcBzt37kR8fPxRt09EREREKjdjDA4cOIB69eodc17oqZSfn4/CwsIKua+IiAhERUVVyH1VJa5cpAFAt27dcPPNN5e67I+DSjdv3oyUlBSEhYXhgQceQGJiIqZNm4Y+ffpg4cKF6N27N217du7ciQYNGtDiiYiIiEjo2r59O+rXr3+qN6OM/Px8NG4Uh12/eyvk/urUqYMtW7ZooUbmypo0y7IwYsQIvPbaa8e83dChQ/H+++9j9erVaNu2LQAgJycHrVq1QlRUFNavX08765WVlYVq1aqhK/oiDOHH/4MTYXs4cQDAOLxYAGDxfhmyoyJosQDAeHmP1RQU0GLRufmMLXH/AAArnPt7kWH+esh+i2S+rtq2wLh42zzxcbRYAOA9kHP8G5WH+74y/A/xM9WO4L4nOYXFvGDkz3vLw3veTDHxcQLwVEvgBQvjfRcpdgqxbN9sZGZmIjExkRaXJTs7G4mJidi2OhkJ8cE905d9wEGjc7ciKysLCQnE10vceyYNAAoLC1FYWIi4uLIfWrm5uZg3bx5SU1N9CzQAiIuLw8iRIzF+/HikpaWhU6dOlG0pWeyFIRxhFmmRZhEXaXDxIs0iL9Is3i9DxiI/b0xVaZFmkRdpFvOLpHu/0GvbAuXebfOQ3y8t1ueVj4sXacTPVJv8vDnU/Ze8SCM+b4b8uUU9HmzusQUcvTzHLRLibSTEM79rSkVyZyItgPfeew8xMTGIj4/H6aefjtGjRyMrK8t3/bp161BQUIAuXbqU+dvOnTsDANLS0gK+/7p165b617x584BjiYiIiIhUJAcGTtD/5+IfbkKcK8+kderUCUOGDEGzZs2QnZ2NBQsWYOrUqVi2bBm++uorxMXFYefOnQCApKSkMn9fcll6ejp/4yzLnWc46Ok7vFBOXh4vGMB9rMyUU4CbhkJ+Ta0w3uHOTmkxRdRw3PQdh3xssVOTiaww3tkDy8P9DZC9zzEx9xFvdjYtFgB4atagxjO5B2mxnELugc887h12Kryb00SZmRHk70feLOLxQHycXvaHlogfrlykrVq1qtR/Dx8+HGeffTYeeeQRvPjii3jkkUdw8OChD4rIyMgyf19SuFhym0BkZGSU+u+S/F4REREREbfzGgfeIP8+4HXxD4+hzrXpjn90//33IyIiAvPnzwcAxMTEAAAK/PzalZ+fX+o2IiIiIiIiocKVZ9L8CQ8PR7169bBnzx4AQL169QD4T2ksucxfKuTJsiIiaIXYzM6CVji5INZ2YUrnYXY0r8WrNzPr+DcqD2aqhxvTaoPFIbcJDi97hj1gXu6cGWoqppf7vJki3mM1xeT9l5guZvnJwDgpxbz3cpv846KTze3uyNxH2O9xdiyvM6Y3s2LmSwWCmboOAHZsNC2Wk8M9q8JNc2aWI4TG2aNDNWnBPZWmmrTgCZkzafn5+dixYwdq164NAGjTpg0iIyOxYsWKMrdduXIlAKBDhw4Vuo0iIiIiIiIny3WLtL179/q9fNy4cSguLkb//v0BHGq1379/fyxduhTfffed73Y5OTmYPn06mjdvTmu/LyIiIiISSoLf2fHQ/yQ4XJfuOHHiRKxcuRI9e/ZEw4YNkZOTgwULFmDJkiU477zzMHr0aN9tJ02ahEWLFuGiiy7C3XffjYSEBEybNg3p6emYP3++6+dXiIiIiIiI/JHrFmmpqan48ccf8frrr2Pv3r3weDxo3rw5nnzySdxzzz2+zo0A0KxZM3z55ZcYM2YMJk+ejMLCQrRv3x6ffPIJevfuHZTtM4WFtEG5dnw8JQ4AoIjbDtZ4eb+MmGLutnkL3VsT4eY2y9Tcfpc/b6bIve3aqdhDxT2819XNLfPdjF1nyMas52Mfp15m/R37PY54rLJr0pycXFosVx/31PdL29Vz3Ut4jYE3yN9Lgh2/KnPdIm3gwIEYOHDgCd++ZcuWmDt3bhC3SEREREREpOK4bpEmIiIiIiInR90dQ5vrGoeIiIiIiIhUZTqTVk52TDRsizOTzDlwgBIHAGDzZi/RkfOVmfn4VgR3vpxz8CA1HpWbG+mQ918rnLePGGYNJFxes2ETjy3y7EYrgjOfEgC/dpT4WJnzMwG4u36UvG1WGG8fMezSQOIsSKeA3E2PWKvFnvPHrNGsMrXKR3Bg4NWZtJClM2kiIiIiIiIuokWaiIiIiIiIiyjdsZycvAI4FinVgJniRUylAAD7iFEHJ8vJ526bcXin1k1eHi0WwE3FpKfFMdOU2Om15P3XFBDjsVOymGmAtntTWNlposwUVod83Lt59Iab083Z73HU8QXk9yQq+v5GHLlDHiHBTFG0o3jjI2xjAS6ubiihxiGhTWfSREREREREXERn0kREREREKhkNsw5tOpMmIiIiIiLiIjqTVl7GAS1/28W/Pjj5+ad6E47KJrbiptd9eYi1WuxtY9ZWGW4LaDs2lhrPyc3lBXPxccpu186sN2K29QbAPbbY20as6XE76nsmfTyAi18HF9egM9/j2O9JzM8G5ogcxxTRYgUT8RvrMe9DgkNn0kRERERERFxEZ9JERERERCoZbwUMsw52/KpMZ9JERERERERcRGfSxC9Xz8Kh1kRwf6dgz4aiYtZWkWtJTCE3v59aW8WshQK/ZoOJOYPQjo2hxQIAk+/e5415bFH3XQSh7pZ57LNrA4m1WnZ8PC0WAFgx0bRY3t9302K5nZNHrI9nfga6uFb5SF5z6F+w70OCQ2fSREREREREXERn0kREREREKhl1dwxtWqSVk+XxwLI46U/0NBQi4yW2+GW2HiYzxdw0OzuGl+Ll6rQ4dgprETlNlJiSZbPTz1zcituyec+bk8trd03n4lbt7GOLnbZHfV3ZreSJnJwcajyb+ZnqYlYYb0QOEITPBpEQonRHERERERERF9GZNBERERGRSsaBBS/IQ+P93IcEh86kiYiIiIiIuIjOpJWTKS6GYdW7EGtTrHDuS2lFRNBisWtTmG3CLXJ7dWq7YHK9BrM2xRw4QIsFAJ5qidR4Tk4uL1Y+8TUFuW6RPPKBWQ/FbiXPbNduisj1Qcw6Q3K9HH0sCHP72PXKbq5xO8j7HHT1mAby/muF876LUGvtjRMSHTMcc+hfsO9DgkNn0kRERERERFxEZ9JERERERCoZbwXUpAU7flWmRdqpREzNMNxO8tT273ZsLC0WAJhC3oOlpj+Amz5pJ8TRYgGANzOLGo+JmiYKd4+QcPLyaLHs6GhaLICc9kROJWa+J1mRkbRYAGCKeM+bh9wyHxHclujevft4wdijEIijNzyJCbRYAODNyqbFYn9uMfG3zaWP1cVjPKTy0CJNRERERKSS0Zm00KaaNBERERERERfRmTQRERERkUrGMRYcE+Q5aUGOX5VpkXYKMdvoUmtJwG17y2w9DAA2sZ6EXpNGrP9wcw0Zs/YD4Nb0ANzaQPaxRUV+HeyoKF6wcG4tFLMmjRkL4I5VYNdngvxYrTDe60p//yWOomG//1I/79nPG7NGk/6ZyvsuwqyTtU0hwJ1EI1KG0h1FRERERCqZkpq0YP9jmzRpEoYMGYImTZrAsiwkJycf929mz56N888/HwkJCYiLi0Pr1q3xxBNPlLldVlYWRo8ejaSkJERFRaFVq1Z45ZVXYIz7Br7pTJqIiIiIiLjCww8/jBo1aqB9+/bIzMw87u1vuOEGvP7667jssstwzTXXwLZtbNmyBdu2bSt1u8LCQlx44YVYu3YtRo8ejZYtW2LhwoW4/fbb8dtvv+Gxxx4LzgMKkBZpIiIiIiKVjBc2vEFOmgvGkITNmzejSZMmAIDWrVsjJyfnqLedMWMGZs2ahTfeeAPXXnvtMeNOnz4daWlpeOmllzB69GgAwE033YTLLrsMTz31FK6//no0atSI90BOkhZp5WRHRcK2ODnSTj659oDIFPNmkVFzygE4zBoLqwpl/DLnfZFnxNjRxFooAE5uLi8YeU6aZfNSQ9i1VdRaF/K2MV8HZu0SwK2pZL73AoDn9NOo8by799Ji2eQZbszPBmYNGcA9tpg1t2z0z/t84mvKfO9lD6eVUkoWaMdjjMGkSZPQvn173wLtwIEDiIuLg+WnZvvtt99GTEwMbrrpplKX33XXXfjggw/wz3/+Ew888MDJPwCSKvQNVURERERE2Jo3b466dev6/lWEDRs2YPPmzUhJScETTzyBmjVrIiEhAdWqVcOtt95a6gyc4zhYs2YN2rVrh6g/NMnq1KkTLMtCWlpahWz3idKZNBERERGRSsZUQAt+cwpb8G/YsAEA8M9//hOFhYUYO3YsGjdujI8//hivvvoqNmzYgMWLF8OyLOzfvx95eXlISkoqEycyMhK1atVCenp6RT+EY9IirZxMsRfGIqW2MNtns7vSEOO5u911Hi0WQE6zYyOnKDKxnzfmCAnmWAWA22KdnS7GTMnyxMfTYgGAN4e3j7BHPlCPLfJ7ucnKpsaDw9tHnHxyu3ZmiiI7Fd4wU2LJ+y8zHrOdP0Dd37iHqYtHs5wiP//8MxISEir0Pg8cODQHYffu3fjss8/Qu3dvAMBll10GYwxef/11fPLJJ/jTn/6Eg4fHQUUeZR+Niory3cYtlO4oIiIiIlLJhGoL/hMVHR0NAEhKSvIt0EqMGDECALB06VIAQMzhH/gLjnLiID8/33cbt9AiTUREREREQkr9+vUBAHXq1ClzXUld3P79+wEA1atXR3R0tN+UxoKCAuzZs8dvKuSppHRHEREREZFKxmtseE2QW/CfwhnQbdq0QVRUlN+F144dOwAAp59+OgDAtm20b98ea9euRUFBQam0x6+//hrGGHTo0KFiNvwEaZFWTqa4GIZZS8bixm0qwa6xKCwkBiO/uxBfB5uc208dXUDGrCED+G3MqVxc0+NqxOeNPVaByXL5cc88Vk0R8b0c5FotN3+mkvdfO4q4z5GfN2r9KLUu2wJO4eJEDomJicFll12Gt956Cx9++CEuvfRS33WvvPIKAKBv376+y4YNG4Yvv/wS//jHP3xz0gDghRdeQFhYGK644oqK2/gToEWaiIiIiEgl48CCE+TKJicIq9XZs2dj27ZtAA41BSksLMTEiRMBAI0aNSo1tPqpp57C559/jquuugqjR49GcnIyFixYgPnz52P48OFISUnx3famm27CrFmzcM8992Dr1q1o2bIlFixYgA8//BBjx45FcnIy/bGcDC3SRERERETEFWbMmIFly5aVumzcuHEAgB49epRapDVs2BArV67EI488glmzZiErKwtNmzbFs88+i7vvvrtUjIiICHz++ecYO3Ys3nnnHezduxdNmzbFyy+/jFGjRgX/gZWTFmkiIiIiIpVMRXRfDEb8ko6MJyo5ORlvvfXWCd22WrVqmDp1KqZOnRrAllUsLdLELyuCOGeKObsG7p5FZnl4tQLsWThWGG+mFnOeFsCvTaFy8Xw5N9fNOOR5M3ZsLC2WKSTXLNq89zj2DDc7Lo4az8nlva7MmZcAeZ8jz0mzPLxjlf3+yz5Wqdw6T5Zdzy7ihxZpIiIiIiKVTMV0d9SCNVg0J01ERERERMRFdCatsiD/ksFM22OnUlDbtZNT2dgpilTEts2WTW6zDG5LaU8CL8XLm5lFiwWAmr7DPE4BwDi89xF2ShZcPEICzP2XOWoAgJOTQ43H5OTlcQO6eLQC9bOB/jiJn4PsNNFwd35NtYwNuPkt6bBD3R2DmxYf7PhVmc6kiYiIiIiIuIgWaSIiIiIiIi7izvPIIiIiIiISMAc2vCE4zFoO0SKtvGwPYHHywZm51uy2zW5uyevqdu3MWgFybQqzjszVtXcAvFnZtFjUGkgyU8xtJe+Jj6fF8uZwR2Uwa9yYI0YAwBTy3pOsyEhaLID/2cCuR6Ui1kO5+nOGjDo6hj2ehViLahPf3yyDkKhJk9CmRZqIiIiISCWjFvyhTTVpIiIiIiIiLqIzaSIiIiIilYwDG45q0kKWFmnlZHk8sEg1aSDOJKLPrTLEeG4+Fe7iuTrsbbPCiDWQxH0XCML+y6yZc/EsPTsqihYLALzZ7q3lM8W814FZ58Lm5m0DyDMNyXW31BmE9P2XVz9qR4TTYgGAU0jctuhoWiyAWx9v8nnHljHcemARf7RIExERERGpZLzGgpf5o/tR7kOCQzVpIiIiIiIiLqIzaeVkx8fCtjlpEA6xTbirW6ITU1AAbjoFs3U24O7XwXjdm6ZEziik7nP015S4bcw0JQDcdDEP9zdA4+XFs2O4aaLMFEX2/ubmlv70bWO+DuQW/Mx0c/YICQ8xHjNlGuC2zXcOHKDFCpV0R28FzEnzqiYtaHQmTURERERExEV0Jk1EREREpJJxjA0nyHPSHDc3hwtxOpMmIiIiIiLiIjqTVk7effthWaT2t8T6D0+1RFosAHBy82ixmK2HAQAeYm2Vxf2dglp3QIwFAI7LW3tTMV9Xw24Tztw2djEfj5Ofzw1IHEnh5tpROi95/yVy9bgBci21Ib4OXmJtFcBvm89kuXSsgmUsIDTK0iSEaZEmIiIiIlLJqHFIaFO6o4iIiIiIiIvoTJqIiIiISCXjIPjDpt2bdB/6tEgrJyssDJbFedqYdRFOHrf+g1pHRu78w5x1wqxzAUCtEWLWMAAg19+R35bJtYFU5NoU5j7CnpfEnhvoVvTH6eLuZuz6O0/16rRY3sxMWiw68mtqR/Fm89Hrix3i+zn5/ZI6d405PzNE5qRJaNMiTURERESkknFgwwlyZVOw41dlemZFRERERERcRGfSysmKCIdlcVKMmGko7FbGnoQEWix2u2BmapwdQRqncBiz7TizXTBwaN9lMYXcVA9TxE0/Y44vMA75tyyHl8ZKb2FOTf8lp8QSnzd2SpYdE0OL5eTxxp8A/JRYaooiO82ZmEpsx8bSYgHuHjfgkN/P3cqOjOTFMhZAnjISDF5jwxvkYdbBjl+V6ZkVERERERFxEZ1JExERERGpZBxYcBDs7o7BjV+V6UyaiIiIiIiIi+hMWjkZrwNjcWojLGJ+NDvf3a1tbwHACufttswaMoBcC8UcgwDu80bfNuLzBnDrPdm1gXYcr9aFepyCW6NJbxPOrJdj1reBOy6DPlbBxbVQlof82RARTYvFHmvDrJejj3xgvgz0cSq85435nuSESAt+1aSFNj2zIiIiIiIiLqIzaSIiIiIilYwXNrxBPh8T7PhVmZ5ZERERERERF9GZtPLyeoOQc33ymHPNAG6ti6dGdVosAPDu3ccLRq6Xg4dYN0OsqwIAU0icRUauiWDXpLnxGC3BrJdj77/G6+K6GcOtI2NiHlsW8z3E5Zi1fABgDh6kxqMi1lRaEeQaXhfXLboW+/1NxA8t0kREREREKhnHWHBMkFvwBzl+Veben5tFRERERESqIJ1JO4WMwztdzk4bYbYdp6YnkrHbXYPZips4ogEATBE3fZKJPQrBjomhxXLy2a3kXfyrI7NNODkVM6xObVqs4oxdtFgAqOm11HRYAHZUFDUe9Vh1cdo0+zOVOfbBFJC3jXmsslPNqe9JxG0zDnM6QNA4FdA4xNH5nqDRMysiIiIiIuIiOpMmIiIiIlLJOMaGE+Rh08GOX5XpmRUREREREXERnUkrJ1NcDMNu207g5HFrepj58+yaCEOsY2DXaTHbZ7PbItvx8bxgRUW8WAAc8mN18vJosey4OFosNvY+Qq/DIaLWkRHboQOgvl8y64EBwCnkHqtu5ubxFlWFHcWtpXaYYxWYYzxcPBLkSF5Y8CK4+3Kw41dlOpMmIiIiIiLiIjqTJiIiIiJSyagmLbTpmRUREREREXERnUkrL8vi5aqTZ8RQEWs26DURxPoPdt2BKXbv4BRTWOjKWADos3Us4iwyQ6xvA7jzEZlzoQBuTVpY40a0WADgTc+gxbLIx72THxr1KQzUGuPwcF4sAE4us37Jve/lbFYY73Xgz5Uk1o8yvzuECC+CXzNW9Z7ViqMzaSIiIiIiIi6iM2kiIiIiIpWMatJCmxZp5WUMAE66EjNVidp62O2IqUqeatVosQDAycmlxbI85Dc+mxePOQYBADzxsdR4XuLr4OoUGZv8Fk5MOy3eso0WCwA1PZw9RsWK5LUdp4/eII9AYY7L8JDbtTNTFO2YGFosgNxKnswUkdPXXYr5mtqmEHDvSyqVhJa/IiIiIiIiLqJFmoiIiIhIJeM1doX8Y5s0aRKGDBmCJk2awLIsJCcnn/DfPvjgg7AsC3FxcX6vLygowPjx49G4cWNERkaiadOmmDhxIoqKyE3uCJTuKCIiIiIirvDwww+jRo0aaN++PTIzM0/477799ls899xziIuLO2pZxhVXXIG5c+fihhtuQJcuXbBixQqMGzcOmzZtwmuvvcZ5ACRapJWX7QEsUktYcttx1yLXfzDryJwDB2ixAG5toCkObtvck8Fu/e4lvw42sUbIKSC34mbWVrFrUZntrtljFcJ422aKub+YMkdSsI8tZg0ZwK3rMeTxLJaHODomL58WC4CrR+5Q9zniawBwazSZ4wEc476zLv4YWHCC3ILfBCH+5s2b0aRJEwBA69atkZOTc9y/8Xq9uOmmm/CnP/0J2dnZ+Oabb8rcZsGCBZg7dy7uueceTJkyBQAwcuRIVKtWDc899xxuvvlmpKSkcB/MSagiqwQREREREXG7kgVaebz00kv48ccf8fLLLx/1Nm+//TYA4K677ip1ecl/v/nmm+W+32DSmTQRERERkUomWDVjf7wPAGjevDnsI7pIZ2RkBPV+j7Rt2zaMGzcOjz76KBo1anTU26WlpSEpKQkNGjQodXmDBg1Qr149pKWlBXtTy8X1i7SDBw+idevW2LJlC0aNGoWpU6eWun7Dhg148MEHsWzZMhQWFqJ9+/Z4/PHH0atXr6Bsjx0RBtsK5wQLJ8UBP32Hipz25N2/nxeMmd7FRk6PcfPIB0/16tR4iOAdW/jtd14suDu1CA4xFZPd1juc+LyxU82Jrd8N8TUAQH+sTi5xvAU5FZ6K/f4bHkGNx0Q9Vr3uHVli2bz9zTIWQM6El8DddtttaNKkCe65555j3m7nzp0466yz/F6XlJSEHTt2BGPzAub6Rdr48eOxe/duv9dt3rwZKSkpCAsLwwMPPIDExERMmzYNffr0wcKFC9G7d+8K3loRERERkVPPMRYcE9wfQ0ri//zzz0hISAjqffnzzjvv4JNPPsEXX3yBsOP8CHrw4EFEHqVmPSoqCgddNs/Q1Yu0NWvW4IUXXsDTTz+Ne++9t8z1Dz30EDIzM7F69Wq0bdsWADB8+HC0atUKo0aNwvr162G5+Zc6EREREREpt3379uGuu+7CjTfeeEINP2JiYlBwlGY0+fn5iCEPsT9Zrm0cUtKl5eKLL8bgwYPLXJ+bm4t58+YhNTXVt0ADgLi4OIwcORIbN250XW6piIiIiEhF8MKukH+nyuOPP47c3FzcdNNN2LRpk+9fXl4ejDHYtGkTtm/f7rt9vXr1kJ6e7jdWeno6kpKSKmrTT4hrz6Q9//zzWL9+Pd5//32/169btw4FBQXo0qVLmes6d+4M4FCBYKdOnQK6/7p165b6b8c5lHzs5BfAsUiJyOT2w1TEOgaLWUsCwBTyEsGZOeoAYMCrEaI/b8RWxvQW/OWYg1LhyGfjqfV85NpAat0MO4vBxbUuVI7LHyexjtdm1o6CO24grE5tWiwAKP59Dy8YsQYSADw1a9Bieffuo8UCAIs4TqXKvIdUIdu2bUNubi7OO+88v9c3b94crVq1wg8//AAA6NixI9566y1s3769VPOQ7du3Y+fOnRgwYECFbPeJcuUibcuWLXj00Ucxfvx4JCcnY+vWrWVus3PnTgDwu+otuexoq2URERERkcqsImvSToUHH3wQ11xzTZnLH330Ufzyyy+YPXs2EhMTfZcPGzYMb731Fl544QXfnDQAeOGFFwAAV199ddC3uTxcuUi79dZbj9ulpaS4z18BYFRUVKnbBOKPrUOzs7NLvdAiIiIiIsI1e/ZsbNu2DQCwe/duFBYWYuLEiQCARo0a4dprrwUAv9l0ADB16lRs27YNl19+eanL+/Xrh0suuQTPPfccsrKy0KVLF6xYsQIzZszANddcg65duwbxUZWf6xZpb775Jj777DMsX74c4cdoUV9S3OevADA/P7/UbURERERExP1mzJiBZcuWlbps3LhxAIAePXr4FmmBmDNnDiZOnIg333wTs2fPRlJSEiZMmIAxY8ac1DYHg6sWaQUFBbjnnnvQt29f1KlTB5s2bQLwv7TFrKwsbNq0CbVq1UK9evVKXXekksuCUQBohUfAYs1JI9ZDMeuNDgXk5W6bAm4eOLNuxpBz1C3m3Cr2thGfN09N7lwzJ/sAN15eHjWea7Hr5YjzkuzDGQ0szuEf39yIWTdjCsnz5dw8E87Lra1ivv969+ylxQLg6lpD7/4sXjD2exLzuw1x2wzxO1IwObDhBLmxRzDiL126NGh/HxUVhYkTJ/rOzLmZq7o75uXlYffu3Zg/fz6aN2/u+5eamgrg0Fm25s2bY/r06WjTpg0iIyOxYsWKMnFWrlwJAOjQoUNFbr6IiIiIiMhJc9WZtNjYWMyZM6fM5bt378btt9+Oiy++GDfeeCPOPvtsxMXFoX///vjggw/w3Xff4ZxzzgEA5OTkYPr06WjevHnAnR1FREREREKZ11jwBrmxR7DjV2WuWqSFh4eXKfID4Ovu2LRp01LXT5o0CYsWLcJFF12Eu+++GwkJCZg2bRrS09Mxf/784Ayyti3eKXNmOhv5sVLT9pixAMAx3HhEFrGltHMSjW/8sWN4KVnFv/1OiwUAMOTXlHg82OTaViePl7bHHiFBT41jYr7Hkfc3aooi+1ggp2W5OrWT+dyxvz8QRxewW/AzUzE9CQm0WAD3/dIUu3jskYgfrlqklVezZs3w5ZdfYsyYMZg8eTIKCwvRvn17fPLJJ+jdu/ep3jwRERERkVOisrfgr+xCYpGWnJwMc5RfyFq2bIm5c+dW8BaJiIiIiIgER0gs0kRERERE5MQZY8MxwU1jN0GOX5VpkVZOdlwsbJvTypza4jcY9Xck9PEAzNx+cltkah0ZuTbFyc3lBWO+BgDsSF4tHwA4xH2O+rwB1OeOWR8EcB+rKSa/J7m43siK4I23cHPNLQCYomJiMO5jZY59oI8HiCLW8uVzP1OZoze8OeT3S+JnNHMMjWUAqMRNgkyLNBERERGRSsYLC14EubtjkONXZTpHKSIiIiIi4iI6kyYiIiIiUsk4JvjdF12eoR3StEgrJ5OXB2NxcqSp+fPFxDoBAMbNRx25joyJOV/OMOfoAdT6Dyuc+9bh5PNm4QCAFcbbPvrrQNx/2cc9tV6OPcONeWyR53NR47Fn1ZFnatnR0bRYDrm2ilmLSq0zBOAcOMALVpVmuFHnIxK3jf04RfzQIk1EREREpJJxKqC7Y7DjV2V6ZkVERERERFxEZ9LKycnLh0NKd2S3H2ZitvY2BeR0MWL6gxXGbf3ObGXMbq/OTMmituEGYMfHU+M5ucRRCGR2TAwtFnXkAxk9G4iZgs1+73XxWBBmWj0AOHl5vGDsFvyxsbRYTh43BdvN+wiMe0sImPsvM63eGHKquYgfWqSJiIiIiFQyDiw4QW6RH+z4VZnSHUVERERERFxEZ9JERERERCoZr7HgDXIL/mDHr8q0SCsny+OBZXFyy6nts5n57gAMs5VxOLeVMbPuC+Q24dTW7+S6L279B7fgiN0S3c1jGthtx5mo9R+FRbRYAHfsgynk7r/McQMG5PdyL7k4kPk+Qm4lz6zRZNcr23G8ejnv/v20WG5HHc9C3d8swL1tBaSS0CJNRERERKSSUQv+0KZnVkRERERExEV0Jk1EREREpJJxYMEJcs2YujsGjxZp5WS8XhjLfScgmTURAGBFuHM2CRuz9k4CR6+/Y9YekGc5WR5ezRG7JMLdxyqvzpBZOwq4vL6YWcPrdsxjlTzoz5uZSY3nWuQ6QxC/bzG/J1nGATQqTYJMizQRERERkUrGVMCcNKMzaUHjvlNCIiIiIiIiVZjOpJWXMWAlGVHbtTvcxCfj4rQnajoFO3WVnCJDRU7bczUXtwln8iQmUOM5Bw7QYhkvdwyCHRlJi2XYKazMWBHckSXMtvQAYMfyWsk7ubm0WABgEfcROvLxQMVMsaWPP+F9phriphlmsCByTAXUpGlOWtDoTJqIiIiIiIiL6EyaiIiIiEglozlpoU3PrIiIiIiIiIvoTFp5WRatRoXZttlTLZEWCwC8Wdm0WHZ0NC0WAMDh5ajTW44T65fYtSnMeE4ut86FX8dARK5fYrZE92aRnzfm60Cu5WO+X1Jb5gPcx1pIbplPfh3YdWRMzJEq9Po2Yv2zHRlOiwUAjkbRiLiSFmkiIiIiIpWMGoeENqU7ioiIiIiIuIjOpImIiIiIVDJOBQyzDnb8qkyLtPIizkljzibxZufQYgGA5eFtG3teErPugI5Yd8B+nKaIV4fD3D8A2hF1REDivDo3z5dzcS2fFcatm2HW8rl59h175iUdc6YWG/G4p7/HEd/PnXzyce/i44Fam008tiwDoIgWTsQvLdJERERERCoZ1aSFNtWkiYiIiIiIuIjOpJ1KzFQldgoKM92RnLZnhfPSH0wxOV/BxelnzFQgU0xMJwSoaaIAuCmK5GPLsom/OpKfN8vDi2eRR294M3nHqqdWLVosAPDu2UOLRd0/AJhidvok79j3JCbQYgHctH/nIHfMCPNzi5rODW5JghXG/Vrp1vIGY0Ij11Fn0kKbzqSJiIiIiIi4iM6kiYiIiIhUMjqTFtp0Jk1ERERERMRFdCatnKywMFgW52mzifn4TlY2LRYAWMSWvK5ur06vhXJvTRqzpbQVGUmLBQBOXj41nh0TQ4vFrk0xYNa4kcdbEGs0rWLeyAeAu/969+6jxQIAm3g8OOwaXvKxCmL9kjczixYLINcrk+uLqfXPbh4LQh5dAOL7iCeB953LmEKA+7UrKHQmLbTpTJqIiIiIiIiLaJEmIiIiIiLiIkp3FBERERGpZAwAB8FNR3Rx8m3I0yKtnIzXC0OqY2LWRdjx8bRYAODk8ObNMPPAAXKNEHuuGbGWz1OtGi0WAHgzM2mxTG4uLVYwOHl5tFj0uT/EGgv2toFYL2cc9350M+vbAHIdGbneiFlfDHC/kLHr5dw6U4vOzbMbyZjvcd4DB3ixQmROmoQ2LdJERERERCoZNQ4JbapJExERERERcRGdSSsvY+DGDFyHeBqfzZtN7lPLTN9hp42EE1Mz9u+nxQJAfd7cnAJ4KCDxGGW3lCa2MGejpiiSU4mpqXHsVEzi/sZsIw8ATiE3LcuOIr4OLj622O9JVgRxPAA7rdPmvZ+zt435WcMczWKbQsDdWf8AdCYt1OlMmoiIiIiIiIvoTJqIiIiISCWjM2mhTWfSRERERETEFSZNmoQhQ4agSZMmsCwLycnJfm+Xn5+PadOmYeDAgUhOTkZ0dDSaNGmCYcOG4aeffvL7NwUFBRg/fjwaN26MyMhING3aFBMnTkRRkfs6dupMmgQfue7LjginxXLy82mxAMAUuLfeiIleQ0ZGresh15Ax6yKo4yjY2K3fCwtpsdgt+O2oKFosajt/AJ6aNajxmKNj6EjjcYLBFBHfM9nHlpvHZRBrUZ083ue9EyIt+EP1TNrDDz+MGjVqoH379sg8xvigrVu34uabb0bXrl1x4403ol69evjll1/wyiuv4IMPPsAnn3yCnj17lvqbK664AnPnzsUNN9yALl26YMWKFRg3bhw2bdqE1157jf5YToYWaSIiIiIi4gqbN29GkyZNAACtW7dGzlFm95522mlYu3Yt2rZtW+ryq6++Gu3atcP999+Pb775xnf5ggULMHfuXNxzzz2YMmUKAGDkyJGoVq0annvuOdx8881ISUkJzoMKgHt/dhIRERERkYAYY1XIP7aSBdrx1KxZs8wCDQDOOusstG7dGj/88EOpy99++20AwF133VXq8pL/fvPNN8u9rcGkM2kiIiIiIhKw5s2bw7b/d+4nIyPjlG2L4zjIyMhA7dq1S12elpaGpKQkNGjQoNTlDRo0QL169ZCWllaRm3lcWqSVl2Xx8sFdPFvHFPPyrS2b+ysLe+4PE3Omi5vrvthz0tio+y+5folZR+Y5/TRaLADw7t7LC2YcXiyA+n7JPraY8Zg1iwDg3UN8TcGtEaLPWyTW8xmQZ7i5GPMzmn3YM+vImDP+bGMBLi4JLuHAgoMg16QFOX4g/v73vyMjIwPjxo0rdfnOnTtx1lln+f2bpKQk7NixoyI274S5+5uWiIiIiIi42s8//4yEhIRTvRn46quvcM899+Ccc87Bww8/XOq6gwcPIvIoPzRFRUXhoMuacakmTUREREREQtrq1avRr18/1KtXD/Pnz0fUHzrvxsTEoOAoZ9zz8/MRQ85kOFk6k1ZexgAgpd2Q2+gy2XFxtFjOUbryBIzZZpn8GlgRvLRTQ279zkTfNmIqG8BNyaK2zgaoj5WankjGPBYA8uvgkPdf5vuIQ84XI6OmFBLHKgCAFcYbzwKHu23MfcQmvr8BgPG6eJ8jHqvMVHO14C99H26wZs0aXHjhhUhMTMSSJUuQlJRU5jb16tVDenq6379PT0/3+zenks6kiYiIiIhISFqzZg169+6N+Ph4LFmyBI0aNfJ7u44dOyI9PR3bt28vdfn27duxc+dOdOjQoSI294RpkSYiIiIiUsmEagv+8li7di0uvPBCxMXFYcmSJWjcuPFRbzts2DAAwAsvvFDq8pL/vvrqq4O1mQFRuqOIiIiIiLjC7NmzsW3bNgDA7t27UVhYiIkTJwIAGjVqhGuvvRYAsG3bNlx44YXYv38/7rzzTnz11Vf46quvSsW69NJLERsbCwDo168fLrnkEjz33HPIyspCly5dsGLFCsyYMQPXXHMNunbtWoGP8vgsY8jFIJVUdnY2EhMTkWoPRpjFyXu3wont2ol1AgAAm9h+2MX1H/TcfmIrbuO499Bk7rsAv37JySV2aHJxK3k25igPU8St6fFUr06L5c3MpMUCwB2nwm5Lzx7lQfxsYI+3cHMdL/Vz0MX17HTMGnSiYlOEpc4HyMrKckVHwz8q+c7a4YO7EBbL/Z7zR8W5Bfhm8AvU5yI1NRXLli3ze12PHj2wdOlSAMDSpUvRs2fPY8basmULkpOTff+dn5+PiRMn4s0330RGRgaSkpJw/fXXY8yYMQgPJ9a1EuhMmoiIiIiIuELJIux4UlNTUd5zTVFRUZg4caLvzJybaZEmIiIiIlLJVETN2KmuSavMtEgrL8fLO/3uEFM9yOkPdnTU8W90gphtbwFuigy79TAz3Yadium4uHU2HTvF1qXoqXHkFEUmb1Y2LRY7zY6ZkmWKXd7am5j+a4rJqcTM1Dh2mjMRPU2UnRLLxPxqw3xNXbx/SOWhRZqIiIiISCVjKmBOms6kBY87KzJFRERERESqKJ1JExERERGpZAyC31DYvf2KQ58WaeVlewCLkw9OrT0gH4VObi4vGLlejtqa3uHW4FjEOjJ2nYAVxmsta3m4J+Gd/HxqPCZmW3qAW7fo5loSer0c8XmzIqJpsQAADrFOq8jlX3mYnzXMUS8A7Ah3tc8+klPI+7ynjxogvw5Mls38/kAcH2EcwL1vv1JJaJEmIiIiIlLJOLBgUbuv+L8PCQ7VpImIiIiIiLiIFmkiIiIiIiIuonTHSsLV9R/EWijA3bOcTBEvSd2OIs9Jy8sjRnNv7Qebm/c39nEP5gxC4rEAkGdDEWvIAG5NJb0Gkr3/MuuX6PMMee9Lbq73pM6DA7eWj11fbIh1ZMz9zRgX7x9H0DDr0KYzaSIiIiIiIi6iM2kiIiIiIpWMYyxYQT7TFexh2VWZFmnlZEeEwbY4qQHMdAp+u3berkEdNUDGTi2yo6NosbzZ2bRYAKijEOgtoMmooxAKyelixBbmVgR3/6W2kiensjFTauyYGFosALCIryk7TZTeXt3w9hHmcQoAxkvcf12d7sj9UsxMUWQfW87Bg7RYzO81ljFqwS9Bp0WaiIiIiEglY0wFDLN2+WjHUKaaNBERERERERfRmTQRERERkUpG3R1DmxZp5eQUFMKxOOd2qa3pyTnqzBa/diR3N2Pmz7Nrq7w5udR4VNScBG4Lc09CAjUetZ6E2fod5FpUcv0Ss37UjuLVZwLc583JI7cJZz5vcXG0WABg8gu48YqIbcwLuNtGrTEmf6YyX1cnJ4cWi80h72/Umkrme7lxVJMmQadFmoiIiIhIJaMzaaFNNWkiIiIiIiIuojNpIiIiIiKVjOakhTYt0srLGACkmrQIXk2aHRtNiwVw6xiYNWQAYMfG0mKxa1PAnA1Fnm9ksfPxibwHDlDjUWsqibPvAFC3zRRxZ7gx51axj3sm5rwkANR6T3a9EfW4dzlXz+Rk7nPE9xAAgOF9blk29wu7cdw5g9AYFaRJ8CndUURERERExEV0Jk1EREREpJLRMOvQdlKLtPXr1+PXX3/Fnj17EB0djdNPPx1t2rRBArmddmVlCnmpGU6ui1u/s9k6AXyq2dWrU+M52dnUeKaQlwbIPrY8zOcuLJEXC4B3zx5eMPZYECJmWifAHeVBT08kp8YxRytQR2WAmxrHTtvz7t/PC0ZOhWdivgaHA3Ljsbh1u6RSKfcibfHixZgxYwY+//xz7PHzgW7bNtq1a4fLL78cN9xwA2rVqkXZUBEREREROTGHzqQFuwV/UMNXaSe8SPvggw/wyCOPYOPGjTDGICkpCQMHDkSdOnVQo0YN5OXlYe/evVi/fj2+/fZbfPPNN3j00UcxfPhwTJgwAbVr1w7m4xAREREREakUTmiR1r17d3zxxRdo3bo1Jk+ejCuuuAINGzY86u0LCwuxZMkSzJ49G2+99RbeffddzJ49GwMGDKBtuIiIiIiI+Kdh1qHthBZpBw8exMcff4y+ffueUNCIiAj06dMHffr0we7duzF58mRs3LjxpDbULazISFgWp3W+KeC1uWfXWIBYY8HOUTd5ebxgzJb5ALUOh12bwmzX7t27jxYLAKxw97ZEZ9d/MGtTmPVBAGDHxdFiOeyxCkTsOkMrPIIWiz1WwY6JocaDw6vFodcvMd/PPbzXFAD1fYT+2cB83ti1WsxxKrG8Y8E2hYB73+Kkkjihb0bffPNNwHdw2mmnYcqUKQH/vYiIiIiIlA9vsu+x70OCQ23yREREREREXCSgRdqECRPw7LPPovAYba6XLVuGCRMmBLxhIiIiIiISmJKatGD/k+AIqBDkscceg2VZmDt3Lj766CPUrFmzzG2WLl2KCRMmYPz48Se9kW5iCgpgLE7OtRVGrMNh130R59cw6zUAwBTz5sux2cTaQPYMITczRdzHyjy26HUzRE5+PjWexdznyHPSrDBOLTDAfw+hxiM/b87Bg9R4bkY97sn7iB0dTYtVlV5TZo2bk5PDi2Xc+z1EKo+A0x0bN26ML7/8El26dMGmTZuY2yQiIiIiIifDVNA/CYqAF2nDhw/HzJkzsW3bNnTp0gVffvklc7tERERERESqpJPKDbjuuuvQoEEDXHbZZejduzdmzZqFK6+8krVt7mRZtHQUakohM3USgB0fT4tl8nmjBgBu2gg7zc4hjlWgtpEHuGlU7DbLZFYkse14ITk1jhmMPUKCidg6G+C2pmenYDOPB0McfwKAPkKC2v6d/D5Cfe7I77/mGDX85UZOiWU+VvZ4ACrie5JlAIRCxmNF1IypJi1oTnqPveCCC/DVV1+hdu3auPrqq/HUU08xtktERERERKRKopx+Oeuss7Bq1SpccsklGDduHDZv3oy6desyQouIiIiIiFQptBy52rVrY/ny5Rg2bBhmzZqFaGJKmoiIiIiInDhj+JUT/u5DgoNayBQdHY0PP/wQd999N1566SVYAeRNb9iwARMmTMCaNWuwc+dOFBUVoWHDhujbty/uv//+MmfoNmzYgAcffBDLli1DYWEh2rdvj8cffxy9evViPazSDLGVDTGvnF3HYHt4udsOsZYEYNcduLe2yo4h1lUB5Jo07rsyu6U0Mx69xoJZR0auN6LXQzERHyuzvg0A99gi1/J54mKp8bwHDlDjUTHfl8h1X26ul2PWtFsR3HpPJy+PF8zwatCNWvBLBQjoyHSco3+xtSwLL7zwAq6++mocDOCL0o4dO5CRkYFLL70U9evXR1hYGL7//nv84x//wLvvvotvv/0Wp59+OgBg8+bNSElJQVhYGB544AEkJiZi2rRp6NOnDxYuXIjevXsH8vBEREREREJaRQyb1jDr4OG2BDxCx44dA/q7Cy64ABdccEGZy7t3746hQ4fitddewwMPPAAAeOihh5CZmYnVq1ejbdu2AA6NBmjVqhVGjRqF9evXB3Q2T0RERERE5FTh5lUEUaNGjQAA+/fvBwDk5uZi3rx5SE1N9S3QACAuLg4jR47Exo0bkZaWdio2VURERETk1DJWxfyToDjhM2lNmjQpd3DLsrB58+Zy/x0A5OfnIycnB/n5+fjxxx/x4IMPAgD69u0LAFi3bh0KCgrQpUuXMn/buXNnAEBaWho6deoU0P3/sfbtWCmegbLCwmmx2DUW3swsXjDy2UxmjZAp4tbgWJGRtFjUuTrgzuVzO+o+wn7eiMcDu17OMA8Hdr0nsZaPPVeSyU5MoMbz7ttPjefmLgHM+Xfsz1TqthVz66EsYqM3h12zqGwoqcJO+JNq69at5Q5+MqmG06dPx+jRo33/nZycjDfffBPdunUDAOzcuRMAkJSUVOZvSy5LT08P+P5FREREREKVujuGthNepG3ZsqXMZc8//zxefvll/PLLL9SNAoBBgwahRYsWyMnJwdq1azFv3jzs2bPHd31JU5JIP2cuoqKiSt0mEBkZGaX+Ozs7G4mJiQHHExEREREROREnvEgrqQk7UvXq1Y963cmqX78+6tevD+DQgu2yyy5Dx44dcfDgQTz00EOIOdyevKCgoMzf5ufnA4DvNkxWeAQsi5OmaCfGU+IAgHfvPlosOvLPLPT22UTGz/4YMHJ7dWaKFzsFkJkKBJD3EXa6DbPFuk3eNmq6o3vbhNNHDRAfKz09kdzSn5kT6+bjnj0ChdpKno15PCg90V2IU6OOeR8SFCHTOOTss89Gu3bt8Le//Q0AUK9ePQD+UxpLLvOXCikiIiIiIuJm7q2e9iMvLw/79h06Y9SmTRtERkZixYoVZW63cuVKAECHDh0qdPtERERERNxAc9JCm+vOpO3atcvv5UuWLMEPP/zg69wYFxeH/v37Y+nSpfjuu+98t8vJycH06dPRvHnzgDs7ioiIiIiInCquO5N22223ISMjA7169UKjRo2Qn5+P1atX491330V8fDymTJniu+2kSZOwaNEiXHTRRbj77ruRkJCAadOmIT09HfPnzw/KIGvj9cKQcvydLGKrWhe312G2pQfIreld/LzZseSaCGJrZDe3MAe49SRuHoVgCsi1VUSu3kfY9XIubq/uZvTHSvzMd06i8Zg/1JpKh/y5xfyuxP5MpdZmM8eCWKrFCqJJkyZhzZo1WL16NbZs2YJGjRods8v8qlWr8Mgjj2DVqlWwLAspKSmYPHlyqTnKJXbu3IkxY8Zg4cKFyMnJQatWrfDggw9iyJAhwXtAAXLdp+iwYcPwxhtvYPbs2di9ezcsy0KjRo1wyy234P7770fDhg19t23WrBm+/PJLjBkzBpMnT0ZhYSHat2+PTz75BL179z6Fj0JERERE5BQLwcXkww8/jBo1aqB9+/bIzMw85m1XrlyJ1NRUJCUlYcKECQCAqVOnolu3bvjqq6/Qpk0b32337duHrl274vfff8c999yD+vXr4+2338bQoUMxc+ZMXH/99cF8WOVmGXNiP3t07969zGW//vortm/fjvPPP99/cMvCsmXLTm4LXaKkBX+qPRhhpO6O3KHM7u14qDNpgbHjed0/AZefSSN3oLPCib9au/hMmpu5+Uyam7uT8s8ukasaiEPFXd0J0M3dScln0uzoKFosJzeXFgsA90ya4Z1JKzZFWGo+QlZWFhISuAPoGUq+szb8x3jq6+uPk5ePX2+eQH0ufvnlFzRp0gQA0Lp1a+Tk5Bz1TFqnTp2wfv16/PTTT6XmJLds2RKdO3fGp59+6rvtAw88gGeeeQbz5s1D//79AQBerxddunTB5s2bsW3bNsTFxVEeA8MJv2t88cUX5b4uGOmGIiIiIiJybKHaOKRkgXY8mzZtQlpaGm644YZSHd2TkpIwZMgQzJo1C7t27UKdOnUAAG+//TaaNm3qW6ABgMfjwejRozF8+HAsWLAAQ4cO5T6Yk3BSw6yrIsu2aItPN5/9ov7C6eKZROxZZNRfJIlnvgDAjo2lxaL/WkpWZep62PtvBCdLAACcw/MqWZhnlk0ut96Iur+xz+B4uF+giCcjYJOzLBzinEp6BkgR8ewt82wmyO/n7B/nyY+VxsVZOKdK8+bNYdv/O3OfkZER9PtMS0sDAHTp0qXMdZ07d8bMmTOxevVq9OvXDxkZGUhPT8fVV1/t97Yl8UJykRaMgdUiIiIiIhIElXyY9c6dOwH4n4t8ZOpjeW/rFu4tGhAREREREdf7+eefK7w+7+DhLqyRfs58R0VFlbpNeW7rFie0SDsynzNQv/32G2rXrn1SMSodZloAu/ECsakJNT8GcHWxuavTRojpGcxGCQA/9dcK46XtwSani1Eb33CPLWa6GDsV02GmKJJTqKhNIcjp4fQGLsyGV17yZwMRu2EQtVEYXJzmzHwPAaifg1YE73PLMjZAfqjBYR3+F+z7ODViDo/bKfCz3+UfTrkvuU15busWJ/TNvkmTJnjwwQfx+++/l/sO5s+fj44dO+LVV18t99+KiIiIiIj8Ub169QD4T1MsuawklbE8t3WLE1qk3XPPPZg6dSrq16+P/v37Y/bs2di8ebPf2+bm5mLZsmV45JFH0KhRIwwYMACWZWHQoEHM7RYRERERkaMxFfTvFOnYsSMAYMWKFWWuW7lyJSzLwrnnngsAqFu3LpKSkrBy5Uq/twWADh06BHFry++EFmkTJ07E+vXrMWLECCxZsgTXXXcdzjjjDFSvXh0tWrRAly5d0K5dOzRq1AjVqlVDr169MGnSJFSvXh1vvPEGvv76a5x99tnBfiwiIiIiIlIFNGvWDB06dMCcOXN8jUGAQ01C5syZg169epUq1xo2bBg2b96Mf//7377LvF4vXn75ZVSrVg19+/at0O0/nhNOVm/QoAGmTZuGKVOm4O2338bnn3+OL7/8Ehs3bvTdJiIiAm3btkVqaioGDx7styVmqDNeLwyr/ovZwpVdvkRsKe1hD2Um5rxT2yIDrh28CYBaSwJyvQa7/o5Z48auv6NiDyom7nN2FLm9er6L26uz63CInEIXj6Mgv8dR675cXBtoyOMtnHziYyXXojLrR5l1hsa4+Lg6Uoh2d5w9eza2bdsGANi9ezcKCwsxceJEAIe6zV977bW+27744ovo2bMnunXrhtGjRwMAXn75ZTiOgylTppSKO2bMGMyZMwdXXXUV7rnnHiQlJeGdd95BWloapk+fjnjy99WTZRlzciuFoqIi7N27F9HR0UhMTGRtl+uUTG9PtQYhzCIV2bp43hfzw7NKLdKYyF9g7Lg4WiyTl0eLBfC/ELm6SQpzppabF2nR0bRYAHmRFs5tpuHmRRr9s4GpCi3SmDPh2DMIqVy8SGP+GFhsirDUfISsrKwK72h4Ikq+szb422PU+a3+OHn52H77Y9TnIjU1FcuWLfN7XY8ePbB06dJSl61YsQJjx47FqlWrYFkWUlJSMGnSJLRv377M36enp2PMmDFYuHAhcnJycNZZZ+HBBx/EFVdcQdl2ppP+pAoPDz/pzo8iIiIiIkJkrEP/gn0fZH9chB1Ply5dsGjRohO6bVJSEmbPnh3AVlU8zUkrJysiAhbpTBq7xS8Ts4W598ABWiw2+q/9zDNM5LMkDvF1oLf1JrOjiL8c2tzXgXkmzWKPByjmnYF02PNmiL/Q0898MdN1mRkWCMI+4hC3j/xYmZjt2gHgJJOWQgc7TZ+J+RpUlddTTilyroyIiIiIiIicDHf/HC4iIiIiIuVmTPBP+umkYvDoTJqIiIiIiIiL6ExaOVkeG5ZFqo0g1n2xO1FRO9CxEX+2odaQAfxue0zMuhlmO38AoO+/vK6dzFhs1PogwNWdAD2JvA5q7HpgJ4/Ybc+QjwUXdym04mvQYgGAd/duXjD2cc98/yWPLGF2/mXWPrN5iF0YjSkEsmnhgidEW/DLIS7+RikiIiIiIlL1BLRIO+DiX0pERERERKq8khb8wf5XhXk8Hlx99dVBiR3QIq1evXq4+eabkZaWxt4eERERERER14uPj0fDhg2DEjugmrTTTz8d06dPx4wZM9C2bVvccsstuOqqqxBHzGt2K+dgHhzLfTUqFrFOAABMEe8xWuz6JSJTxJ5VR5wRQ65vs2NiaLFMIbdmkb2PUGu1yPUf1NqqfPK8L+LrwK7l82Zm8oKR25HZ8fG0WE5ODi0WAPr7iPHy3uOcPXtosQBwayrZ875cXK/s5BJnGrLrWh1eTaU3J5cXy7i4bv8Iljn0L9j3UZW1a9cOP/74Y1BiB/SusXnzZvznP//B4MGD8cMPP+C2225DvXr1cMstt+Cbb75hb6OIiIiIiIirPPjgg1iwYAE+++wzeuyAuzteeOGFuPDCC7F7927MnDkT06dPx7Rp0zB9+nS0bdsWt956K6666irExsYyt1dERERERI5H3R2D7vfff8fFF1+MP/3pTxg0aBA6duyIOnXqwPKThTN8+PByxbaM4eV9LFq0CNOmTcNHH32EoqIixMbG4qqrrsLtt9+Os88+m3U3p0R2djYSExORag9GmMVrnU/j4tQMO5aXZgcAKOKlGTj5xNbZIKcUElNOAcCTVIcWy5u+ixYLAKxw7jQQ5yAvfYf5mgLc9u/sFvx2BHEsCDndkdpKnp16RkzJYqZOAqCPt6CPLXErckqsFcZ7j7OrJdJiAYB37z5aLIs4WggIRkkCR7EpwlLMRVZWFhKIrf1ZSr6zNnhhAuzoqKDel5OXj+13jXftcxFstm3Dsiz8cTl15CLNGAPLsuAt5/sx9ZtR06ZN0aRJEyQkJGDPnj3Izc3FP/7xD0ybNg2XX345Xn31VVSrVo15lyIiIiIi8kcV0X2xind3nDVrVtBin/Qizev1Yu7cuXj11VexaNEiOI6Dpk2b4sEHH8R1112HtWvX4plnnsGcOXPg8Xjw9ttvM7ZbRERERETklBkxYkTQYge8SNu6dSumTZuGWbNm4bfffoNt2+jfvz9uu+02XHTRRb7b9e7dG71798bgwYPxySefUDZaRERERESOQTVpIS2gRVqfPn18Z83q1KmDRx55BDfffDPq169/1L/p2LEj5s6dG/CGuoUdFQHbijjVm1GGRc45toh1ON5a3Pz5gqd5LaoH1vuOFgsAusV8TYv16LaBtFgA4P0zr4mPx3s6LRYAFKdnUOMx2+Y77Db3ROxaPmZ7dXZNGnPMCLM+CODWQLJb8LNrhKjIdV/U9u8uzuBi1pCxWcS6VoBck0Ydp2JpcSKlzJ07F2+//TbWr1+P3NxcbNq0CQDw008/4d///jeuvvpqJCUllStmQJ9Un332GXr27InbbrsNgwYNQtgJfOD1798f9erVC+TuREREREREXMUYg2uuuQbvvvsuACA6Ohp5RzRYqlGjBh555BF4vV489NBD5YodUIurn376CYsWLcLll19+Qgs0AGjdunVQ8zZFREREROQwU0H/qrCXXnoJ77zzDkaOHIl9+/bhvvvuK3V97dq10bVrV8yfP7/csQNapJ155pmB/JmIiIiIiEilMHPmTLRv3x6vvvoqEhMT/c5Ha9asGbZu3Vru2AGlO86ZMwevvPIKZs+e7Te/Mj09HcOHD8eoUaMwePDgQO7CtZy8fDgWae4MMR/f9hBz8QFsv7EhLVZuI+6cnhZ38nLUF/5UjRYLABZa59FihTXi5vb/PKoaL5jNrTNs/sgeajzYxDlYDncGoVPIm/PHnLnmdqaAVxvo6ueNXKdFnS8HcLePWiME6rw6an0buK+DRf68BzGek8edPcrErM+0DADeW3nwqHFI0P3888+47bbbjnmbWrVqYc+e8n/PCeibzPTp07F///6jFsAlJSUhMzMT06dPDyS8iIiIiIiIq0VERCDnOA2ftm/fHtCg74AWad9//z06dux4zNt07NgR69atCyS8iIiIiIicjJJh1sH+V4Wdc845+Pzzz1FU5P/U6oEDB/DZZ5+hQ4cO5Y4dULrjvn37cPrpx27BHeipPdez7EP/COxI3qn3HW80oMUCgDrP5R3/Rico7K8babEA7pl1ZltvtuJt26nxzvwrL9bBFrV5wQBkf8Tt/FrtFl4eipc8HsCyeR9oVhh3/3XyialK7FQ2Ina6GDOVzVONm0rszea29GdijwegpnYyUycB6vHAHm8B4vNmR0fTYgGgpmIaF49TkdA1cuRIjBgxAtdddx1effXVUtft2bMH119/Pfbs2YNbbrml3LEDWqTVqlXL1///aH7++WdUq1YtkPAiIiIiInISLHO4fi7I91GVXXvttfj8888xe/ZsvP/++761z1lnnYXNmzejqKgII0eOxMCB5Z99G9ApofPPPx/z5s3Dxo3+z5Bs2LAB8+bNQ7du3QIJLyIiIiIi4nqvv/46pk2bhhYtWmD37t0wxmD9+vVo3rw5Xn31VfzjH/8IKG5Ai7T77rsPRUVF6Nq1K6ZOnYqNGzciNzcXGzduxMsvv4yuXbuiuLi4zKwAERERERGpAJqTVmFuvPFGfPvtt8jJycGOHTtw4MAB/PDDD7jpppsCjhlQumPHjh3xt7/9DaNGjcKf//znMtd7PB688sorOO88Xjtyt7DPagrbw6kD6Tyb11hlRafNtFgA4EmqS4vlJbbOBgDjEN8R2HUHxLbNdlwcLRYAOL/zakSjyW2Ww5703yk2UD/dG0GLdcY93Jo0at0MuxU3cf+1wgP6eDl6POJjtWJjabEAwNm/nxbLm5lFi+V27PEAzH3OFHC3jVmr5eYREvRtI/UAAAArgtmC34RGC36pcNHR0YgmHe8Bv6PddNNN6Nq1K/72t79h1apVyMzMRLVq1dC5c2fcdtttaNmyJWUDRURERERE3KZz58644IIL0LNnT3Tt2hVRUVG02Cf1s1PLli3x8ssvs7ZFREREREQkJKxbtw5ff/01Jk+ejIiICJx33nm44IIL0KtXL3Tu3Bmek8gC4eajiIiIiIiIVAGZmZlYsWIFPv/8cyxatAhfffUVli9fjsceewwxMTHo2rUrevXqhV69euHcc88tV+yTWqR5vV5s2LAB+/fvh/coueXdu3c/mbtwnczHiuGJ5dRGfNWWOeOImwduwoizSch1B3ZMDC2Wk5tLiwVwZ2A5uQdpsQDAJubjO3v30WIBQNi3vLl8AFCraWteMGJNBADA8GYcGXK9J3WWUxF3lhP1sR7kHlvMWr6qhF236GZOHvE9zlShTg3U+XK8IjLHhEZBmoUKaMEf3PCuFxERgR49eqBHjx544oknkJOTg2XLlmHx4sVYvHgxPv30U3z66aewLAvF5ZxxGPA75BNPPIHnn38eWVnHLnI+2uJNRERERESksoiLi0O7du2wf/9+7Nu3D+np6dizJ7DGbQEt0p5++mk8+uijSExMxLXXXosGDRogLKzq/CImIiIiIuJqxjr0L9j3UcXt27cPS5Ys8Z0927hxI4wxqFGjBnr06IFevXrhggsuKHfcgFZW06ZNQ1JSEtasWYPTTjstkBAhq/pN+xBmcdp7O8SW0qacp1CPx9m2gxeMnJpBTVEkplIA3PEAzNRJADDE14GdwmpycqjxTvtsGy1W85UOLRYAbLyoBi2Wl5x2ysTef2FXkR8CyY+TfaxS38+Z41RAfqzkFFbm8UAdQ3MoIDEWeduY6ebMxylyWLt27fD999/DGIPY2Fh069YNI0eORK9evdC2bVtYJ/E9M6BPg+3bt+Omm26qcgs0EREREZGQUBHDpqtQiaQ/3333HSzLwoUXXogxY8agW7duJ9XR8UgB/URRu3btche/iYiIiIiIVBZ33303zj77bHz22We44IILUL16dfTr1w/PP/88vvvuu5OKHdCZtKFDh+LDDz9EQUEBIiOZHQpFREREROSk6Uxa0E2ZMgXAobq0kpq0xYsXY+HChbAsCzVr1kTPnj1xwQUX4Oabby5XbMsEUKhy8OBB9OnTB9WqVcNLL72Exo0blzdEyMnOzkZiYiJ6hl2GMIvTypyaP0/OA7fCOXV3wcBso0vHzJ93XNwZlVzLx2aF8cYN2NFRtFgA0HZZJi3W6nbc8QB2FO+xOvn5tFh05P3XEx9Pi+U9cIAWy/XY4y2YyO+/FrG5mh0XS4sFAN6sbF4wF48H8FSvTotVbAqxaP/ryMrKQkJCAi0uS8l31kZPPUl9X/fHyc/Htocfce1zcars3LkT//rXvzB58mTs3r274lrwt27dGkVFRdi5cycWLFiAxMREVKtWrcztLMvC5s2bA7kLEREREREJkGUqYE6ae9flFS43NxfLly/HokWLsGjRInz//fdwnEMNa+ID+DEvoEWa4zgICwtDw4YNfZf5OyHH7CYnIiIiIiLiFiWDqxctWoS0tDQUFxfDGIPo6Gj07NkTvXr1Qq9evdCxY8dyxw5okbZ169ZA/kxERERERCqCatKCrmfPngCA8PBwdOzY0TcTrUuXLoiIOLnSoSoyeMadmHUz7DotZjw7OpoWCwBMUSEvGLk2hTobqqrMhQJ/zh99NhTR6lvOocUquojbuCnyix+p8ZgsYpMqU0SeK1lQQIvlOZ072sb72+/UeMzaKvZx72rEuahODnFWKBu7XpmZkXUab0YlvAXAfl44CV333XcfevXqhW7duiE2llsvetLvtj/99BPWr1+PnJwcXHvttYxtEhERERGRk6EzaUH39NNPBy12wK2V1qxZg/bt26N169a4/PLLcd111/muW7ZsGWJiYjBv3jzGNoqIiIiIiLhWRkYGFi5ciHfeeQcLFixARkbGScUL6Eza+vXrkZqaCgC46667sGHDBixcuNB3fffu3VGzZk289957GDBgwEltoNuY4mIY0ul8OyaGEicYmOliTl4eLRYdubmNm8cqULm8Bb8dwUsldg4epMUCuJ2wnnv1r7xgAB5JvZwWy9nGfd4MMaXQzfuvd/debkDyY3VzKjFzdAw1rR7c/dcmp1QZ4nsccxwFwN3f9jzPG/ngPWgDvLdLCXG//vorbrvtNnzyySdlruvTpw/+9re/ITk5udxxA1qkPfroo3AcB6tXr8aZZ56Jxx9/vNQizbIsdOnSBWlpaYGEFxERERGRk6AW/MG3a9cunH/++UhPT0dycjK6d++OunXrIiMjA//973/xySefoFu3bkhLS0OdOnXKFTugRdrSpUsxePBgnHnmmUe9TcOGDfGf//wnkPAiIiIiIiKuNnHiRKSnp+Mvf/kL7rnnHniOaBLk9Xrx/PPP44EHHsDEiRMxderUcsUO6NxvVlYW6tate8zbFBYWlnuytoiIiIiIEBirYv5VYfPnz0fv3r1x//33l1qgAYDH48F9992HCy+8EB9//HG5Ywd0Jq1u3br46aefjnmbdevWBZR/6Xq2B7A4rXSZtVrs+jaT694298zHagrJdQfEHyaYra4PBeTl47PrNWx2HQPx2DION5fD+nYDLdbDfa+hxQKAPam1aLFqvHVyBdN/xDy2PIkJtFgA4M3OocZzNWKtLPs9jlm/xP5MZX7em0LuyB3mmBz2Z6rVqD4tVq37aKFQ7N7STKlgGRkZuOqqq455mw4dOmDZsmXljh3Qt7Y+ffpg4cKF+Prrr/1e/+mnn2L58uXo169fIOFFRERERORkmAr6R5aTk4OnnnoKbdq0QXx8PGrVqoWUlBS89tprMH/4oWjVqlXo3bs34uPjkZCQgIsvvhjffvstf6OOIjExEb/++usxb7N9+3YkJJT/x8GAFmmPPPII4uPj0atXLzz88MP48cdDA1DnzJmDu+++G/3798dpp52Ge++9N5DwIiIiIiJSxTiOgz/96U8YN24cOnbsiClTpmDs2LHwer24/vrrMWbMGN9tV65ciR49emDLli2YMGECHn/8cfz888/o1q0bvv/++wrZ3vPPPx/vvfceVq1a5ff6r7/+GnPmzEHXrl3LHdsyf1ySnqBvvvkGQ4cOxdatW/8XzLJgjEFycjLef/99tGvXLpDQrpSdnY3ExESk2oMRZpHaexuHEwdBSM3IzeUFY6c7ujg1Q+mOgalS6Y4eTro0ANjNGtFiAcCeTsx0R253X2q6Y7VEWizA5emOxM+ZQ/FcnO5IPFbtqEhaLICb7miF8UaMAIAVTnwdHO7+xkx3hM37LlLsLcCiDc8hKysroDMkwVbynbXJo0/BjooK6n05+fn45fGHac/FihUrkJKSgrvuugvPP/+87/LCwkK0aNEC+/btQ2ZmJgCgU6dOWL9+PX766SckJSUBANLT09GyZUt07twZn3766Ulvz/GsWbMGKSkpcBwHw4YNQ2pqKurUqYNdu3Zh6dKleOedd2DbNr744gt06NChXLEDPjI7dOiAjRs3Yv78+VixYgX27duHxMREnHfeeRg4cCDCw7lvIm5hR0fCtjizWJjzl5y8fFosANSD2snnbpuTz5s3w/zCfCgg70OAP4/IxUn07MdKXJDCcOs/TDHvS4z3p59psQDA064mL1ZD4pcrACYrmxbLu28/LVZVw5zRRZ19B8Aifglnfs7QsRfexIWVFcGbVQcAP99wGi1Ws0fX0mIZw/2hUv4nO/vQe329evVKXR4REYFatWqh4PD7xqZNm5CWloYbbrjBt0ADgKSkJAwZMgSzZs3Crl27yt32vrzat2+P9957DyNGjMDs2bPx5ptv+q4zxqBGjRqYOXNmuRdowEks0gAgLCwMAwcOxMCBA08mjIiIiIiIMAWpZqzMfRB16tQJ1apVw9NPP43k5GScd955OHjwIF5//XWsXr0af//73wHAN4u5S5cuZWJ07twZM2fOxOrVqyukP8Yll1yCX3/9FR999BHWrl2LrKwsJCYmol27dhg0aBBiA/xxi5xPJSIiIiIiVUnz5s1h2//LYsnICKzDb/Xq1TFv3jyMHDkSQ4cO9V0eHx+P999/H4MGDQIA7Ny5EwBKnUUrcWTqYzD9+uuvSEtLg23b6NixI66++mpcffXVtPgBLdImTJhwQrezLAvjxo0L5C5cy8k9CMcipT8xa7XI6Q8OucWvW7FTCpm1AvRtI6Z2mmLu/sFM/QVAPbboKbHEeBa53rP6xz/SYvVduYUWCwA+uq03LZa9nJzuyKzTiuTWQrFTCpnHKvvYYtakUeu0QK5/Jj9vDnEfCavFS5kGgMZziWUhxO81jgmROcAGsELsTBoAxMXFoXXr1hgwYABSUlKwb98+/PWvf8VVV12FuXPn4sILL8TBw+9FkX7eM6MOl+wcZH+3OMJ9992HF154wddt0rZt3HvvvZg8eTLtPgJ6F3rssceOel3JlwZjTKVcpImIiIiIyP/8/PPPlMYh33//PVJSUvD888/j1ltv9V0+bNgwtG7dGjfddBM2b96MmMMN8wr8/MiQf7gXQgy5qV6Jd955B8899xwsy0KLFi1gjMGGDRvwzDPP4Nxzz8WQIUMo9xPQIm3JkiV+L8/MzERaWhpeeukl9OvXr9STKyIiIiIiFSQEa9Kef/555Ofnl1noxMTEoF+/fpg6dSq2bt3qayziL6Wx5DJ/qZAM06dPR1hYGBYsWIDevQ9leXz66afo168fpk+ffmoXaT169DjqdQMHDsQVV1yBTp064corrwx4w0REREREpOooWWB5/ZR8FB8exVJcXIyOHTsCONSyf+TIkaVut3LlSliWhXPPPTco27hu3Tr079/ft0ADgIsuugj9+/fHF198QbufoDQOadOmDQYOHIinnnqq8nV+tCxevQuxTTiz9fDhgLRQwf4R52Swnzfm/DD6DCHmbDNyLRR7bpWTw5zzR2znD26LavacP+bz9nGHBrRYAOA5k/hYyXOm7Fje7EYvcdQA4O4aN+bsOwCwwnnHFrve0zA/U8l1hp7TeG3ut17Lnd1Yf/IKXjBi7SiMi0fahLizzjoLn376KV577TU88MADvsszMzMxd+5cVK9eHc2aNYPH40GHDh0wZ84cPPHEE74zazt37sScOXPQq1evoLXf379/P1q0aFHm8pYtW+Lf//437X6C1t2xYcOG1A0VEREREZETFILpjnfddRfeeOMNjBkzBt9//z3OP/987Nu3D9OmTUNGRgb++te/wnO4ec6LL76Inj17olu3bhg9ejQA4OWXX4bjOJgyZQp3w47gOI7fhiURERFwiHMHg7ZIW7VqFaKjeb8uioiIiIhI5dWoUSN8/fXXmDBhAhYtWoR3330X0dHRaNu2LaZMmYLBgwf7bpuSkoKlS5di7NixGDt2LCzLQkpKCubMmYNzzjknqNvJPtvuT0CLtF9//dXv5cXFxdi+fTumTZuGL774otR8AxERERERqRhWBbTgD0b8pk2b4vXXXz+h23bp0gWLFi3ib8RxTJkyBdOmTSt1WXb2oXT1hg0blrm9ZVnYtm1bue4joEVacnLyMVeQxhg0b94czz77bCDh3c0Qzx0Tc5rtBG5ND7Mugj4Lh1jHQB4vR62JYM9Jo2Lm9oNfh0OdW0V8TQHAOXCAF8wmz3AjHhDs/Tcjlfcel7Q9nhYLALz7MmmxPNWq0WIBgDczkxrPjo2lxXJyibWjAPkNnVyLSpy7ZgrInw3E2uxGH+2mxQIAL7UmmLl/WO4uuJegy87O9i3K/mjHjh2U+wjoXWP48OF+F2m2baN69ero1KkTBg4c6DdfU0REREREJBQx686OJaBF2muvvUbeDBEREREREQGC2Dik0rI9gEVKMXJ4KQv0ts3EFtWmuIgWCwC3/Ts5bY+abkPcPwBQU+PsCG4Lc4fcUpq5j9jk8QAgjkLwZmbRYrGxxwPU/2A7LVanRRm0WACwqgevhTn7vdyTmECN5+TmUeMxUVv6k0dvUNN/yWnOP9/blBar+ZTNtFgAuJ+DFdDowXVCsLuj/A/3XUhEREREREROSkBn0po0aRLQnVmWhc2byb+yiIiIiIhIKaHa3VEOCWiR5jgOioqKkJFxKGXE4/GgVq1a2LNnD7yHT+nXrVsXERGlu6IZdmqZiIiIiIhIJRPQIm3dunXo3bs3GjVqhEmTJqFr167weDzwer3473//i4ceegiO4+Dzzz9HfDy31fGpZtkWbYAds3yJWUMGAHZCHC2Wd99+Wiy349ZEkPPnibn9TgG3s5FNHnzvHDzIi0Wu+2LWaLLHA1DrZsg1lWY/73VYmVKdFgsA1k85kxar5bgttFgA4N3NbYnu6roear0y9z2OWRuY06M5LRYANP6I935p2ONUiPV3FnHUgGUcgPhxH1Q6PxKyAqpJe+SRR5CZmYmlS5eiR48e8Byeg+XxeJCamoolS5Zg3759eOSRR6gbKyIiIiIiUtkFtEj78MMPMXDgwDLpjCWioqIwcOBAfPDBBye1cSIiIiIiIlVNQOmOe/fuRVHRsVN2ioqKsHfv3oA2ys2M1wvDas1LPI1viG29AW6KouXhtgtmpmRZYdwpFHZMDC0Wu4U5vc09kZNP3jZmiky4eyeVsI976piGqChaLICbwkpNSwYQt5m3j2T15LVDB4DET7jHFvN9hP3ZwNxHPA2SaLEAwPmNl3Za7e5fabEAoLg/MT3cSx7yS0ybthN5ac62KQRCoZJDLfhDWkCrjaZNm+K9995DVpb/GoH9+/fjvffeC7gLpIiIiIiISFUV0CLt1ltvxc6dO9GpUye88cYb2Lp1K/Ly8rB161a8/vrrOO+887Br1y6MGjWKvb0iIiIiInIcJS34g/1PgiOgHI077rgDP//8M15++WVcf/31Za43xmD06NG4/fbbT3oDRUREREREqpKAE+lffPFFXHnllZg5cybWrl2LrKwsJCYmon379rjuuuuQkpLC3E7XsKOjYFucttfM/Hl6/Qez7oBc98WsJ2HWkAGA98ABXjBW7WNJuKM0+gmEYde3sbt6M8cNEI9TANy6r9hYWiwAALHe08nPp8UCQH3e2Bq+vZUWa+egZFosANj9D268xsO+p8WyySN6mO/nuS1Op8UCgKVfzqXF6tuqJy0WADh5vGOVOWIEAPW4d4ifz44hP85gUU1aSDupb89dunRBly5dWNsiIiIiIiJS5bm3bZmIiIiIiASkImrGVJMWPAHnU3m9Xrz44os477zzkJiYiLAjUtq+/fZb3H777di4cSNlI0VERERERKqKgM6k5efn4+KLL8Z///tf1KxZE/Hx8cjJyfFd37hxY8yaNQs1a9bEE088QdtYN3AO5sGxSDVRFq8Qx5BnkzDrl9xcm0KvN2LWkRHrqgDAFBL3EXZ9EPmxMo8tGO7PhJ6EOFosb6b/MSiBYtePUhni/svcPwAU78ygxar7L3Kty394+xsA3LtpHS3WIxsupcUCgL+2fJsW688b6tBiAUC/9n1osbyZv9NiAYAdx9tHrCJuLbVTyDsemPXsxnBnLQaNatJCWkBH01/+8hcsX74cTzzxBHbt2oWRI0eWuj4xMRE9evTAf/7zH8pGioiIiIiIVBUBLdLeeecddO/eHQ8//DBs24bl51fJxo0bY/v27Se9gSIiIiIiUk6mgv5JUASU27J161YMGDDgmLdJTEzE/v37A9ooV7M9gEVK9SKm7xhi62wAsAy7JzqPHRF+qjfhqAwxtdOTkECLBZDHA7DTE8nsyEhaLHa6LjNF0c3jLcKSG9JiAUDx1l95wVycruvdu48WCwA85GN1SofutFg1uF3u8fCGTrRY8bG/0WIBQDFz5A4xPRHgtqZ387ElEmoCOpMWGxuLvXv3HvM2W7duRY0aNcode+PGjRg/fjw6d+6M0047DfHx8Wjbti2efPJJ5Obmlrn9hg0bMGjQIFSvXh2xsbHo1q0bFi9eXO77FRERERGpLEq6Owb7nwRHQIu0Dh06YMGCBX4XTQDw+++/Y8GCBQENtJ45cyaef/55NG3aFOPHj8czzzyDM888E2PHjkVKSgry8vJ8t928eTNSUlKwYsUKPPDAA3jmmWeQk5ODPn364PPPPw/koYmIiIiIiJxSAeXK3Hnnnejfvz/69++Pv//976Wu++6773DzzTcjNzcXo0ePLnfsyy+/HA899BASExN9l916661o3rw5nnzyScyYMQN33HEHAOChhx5CZmYmVq9ejbZt2wIAhg8fjlatWmHUqFFYv36933o5ERERERERtwpokdavXz+MHTsWEydORMuWLRFxuF17XFwc8vLyYIzBhAkT0KNHj3LH7tChg9/Lr7jiCjz55JP44YcfAAC5ubmYN28eUlNTfQu0km0YOXIkxo8fj7S0NHTqxMtRB3C4joxUS0Zs7W1H82pwAMDJL6DFotdWZWdT41ERfxSg1pCxufzHD2ZtFR2zZoM58oGMWkMG7vuIN8d/FkjAXHw8ONk5x79ROZiiQlosu4D3OQMAVjhvdAwbdaxNDvc1ZbI83Jo0o5q0k6MW/CEt4KrzCRMmoHv37pg6dSpWrlyJffv2ITo6Gqmpqfjzn/+MCy+8kLmd2LFjBwCgdu3aAIB169ahoKAAXbp0KXPbzp07A8BJLdLq1q1b6r8dhzuHTERERERExJ+AFmm//vorIiIi0Lt3b/Tu3Zu9TWV4vV488cQTCAsLw1VXXQUA2LlzJwAgKSmpzO1LLktPTw/6tomIiIiIuI7OpIW0gBZpjRs3xogRIzBz5kz29vh11113YcWKFXjqqadw5plnAgAOHm5nG+mn1XZUVFSp2wQiIyOj1H9nZ2eXqpMTEREREREJhoAWadWqVUOtWrXY2+LXuHHjMHXqVNx888146KGHfJfHxMQAAAr85LTnH55rVHIbJk98HDwWJ7fcyePNX3KIM1jY6NvGnsNCZMfy9jlzRCdTSjxmnRa5BscK486+Y9bN0OuNiDUWhjhrkY58nFL3X3adi4vfk9zMIb/HUeu8Y6NpsQAAxFmm7BMXFnGupCkkvvcC3Pdf4v4RKiqiRb5a8AdPQFXnnTt3xtq1a9nbUsZjjz2GiRMn4vrrry/TRbJevXoA/Kc0llzmLxVSRERERETEzQJapD322GP473//i+nTp7O3p9R9PP744xgxYgSmT59eppV+mzZtEBkZiRUrVpT525UrVwI4eqdIEREREZFKzVTQPwmKgNIdFy5ciNTUVNxyyy145ZVX0KlTJ9SpU6fMQsqyLIwbN67c8SdMmIDHH38c1157LWbOnAnbLruWjIuLQ//+/fHBBx/gu+++wznnnAMAyMnJwfTp09G8eXN++30A3gM5sCxSahbz1Ds7JYu6bdw24VY477EacgtoZmtkZstmANR0G098PC0WABjitgGAKS7iBWO3uSceqpbNPe6NQzzuySmFpsi9YxXsKF66GDs93NUpsS4+tryZWbxgbOxUYubnIPm7iE1MxXQKiZ8LxqFNYxI5moAWaY899pjv/69du/aoqY+BLNL++te/4tFHH0XDhg3Ru3dvvP3226Wur127tq+9/6RJk7Bo0SJcdNFFuPvuu5GQkIBp06YhPT0d8+fP1yBrEREREamSVJMW2gJapC1ZsoS9HT5paWkADrX5HzFiRJnre/To4VukNWvWDF9++SXGjBmDyZMno7CwEO3bt8cnn3xSIaMBRERERERE2E54kTZv3jy0aNECZ5xxBnr06BG0DXrttdfw2muvnfDtW7Zsiblz5wZte0REREREQo7mpIW0E16kXXrppXj00Ucxfvx432X//Oc/8c9//hMffPBBUDbOjayICFpNGr1VLRMz551cE2EKibUu7NbZzDocZn0QAMvDe6yG3MrYMGsFAG6ti4vbtVNryEDeR9jPm4trq6h1ZG5v5294rytzfwP4ta1M9uH5rQxOPm98DwBXt7mnP1YW4nEgcjQnvEjz96Vs/fr1OoslIiIiIuI2OpMW0sitlURERERERORkaJEmIiIiIiLiIgF1d6zKTGEhDKvfqIvnpFnhxF3DxXUC/DlTxFjMWV8AdX8zBw7QYgHg1+G4uH7JzSwP73c7U0yel0SczefNyqbFcj12bSAR+z3OU60aLRZ9H/Ez7zVQVjh3hia1lo89+Yi4/zLfQ2xTCJA/BoPBAv8l8XcfEhzletfQ3DEREREREZHgKtfpkilTpmDatGm+/87OPvRLU8OGDf3e3rIsbNu27SQ2T0REREREyk2NQ0JauRZp2dnZvoXZkXbs2EHbIAkQs+U4AFNQQI1HxWxh7uZUTHJ7auY+YopcPD4CoD5WK4KbFW6KinnByKlsxuve9u8OMcXWjoqkxWKjtvMHYIVx918rOpoWy8nJocUCAO/+/bRY9OeNGI+9j7h55A6TFcPbdy3HExLpjhLaTvhdw3Hce+CJiIiIiMj/WObQv2DfhwSHujuKiIiIiIi4iLo7ioiIiIhUNqpJC2lapJWTFREBywqnxKLWppAxW/zS65eYdTj00QW8582K4OxnvnjEGjcv+zVl1zEwxw0UuLdu0Y6Npcaj1qIyR4yQOfnkmlsXt7ln1yuz68jcyo6Jocaj15G5FLuWmlk37v3td14sQx6RI+KHFmkiIiIiIpWRe38vk+NQTZqIiIiIiIiLaJEmIiIiIlLJlHR3DPa/YNi3bx/uu+8+NGvWDFFRUTjttNPQs2dP/Pe//y11u1WrVqF3796Ij49HQkICLr74Ynz77bfB2agKpnTHcjIFBTAWqX6GWQ9Frv8wzBohdt1XGK9Wi10vx4xnisk578zaFOZcHQShjoH5upL3XyYnL58az7J5j9WKJM8iI9am0Pc3Yk0a+3kzhdz3OOb7rxXO/QrCrDU07M/UYl4Nuh0fT4sFcOsMTTH3ebOjomixnHzu+6UEz7Zt25CamoqcnBzceOONOOOMM5CVlYV169YhPT3dd7uVK1ciNTUVSUlJmDBhAgBg6tSp6NatG7766iu0adPmVD0ECi3SRERERETEFa655hoUFxdj3bp1qFu37lFvd+eddyIiIgLLly9HUlISAGDo0KFo2bIl7r33Xnz66acVtclBoXRHEREREZHKxlTQP6Lly5fjiy++wAMPPIC6deuiqKgIB/10R920aRPS0tIwZMgQ3wINAJKSkjBkyBB8/vnn2LVrF3fjKpjOpJWTFRYGyyI9bcT0M3qbeyJmegzATQOkp2Q5xNbv7HRHJnLLcWa6GBs/NY74icZ+3mzeRwL9eWPGcvH4E3Z6IrsFPzWlm5jCeiggL03fOXCAFgsAN22a/Lwxxw04ubm0WADgFBI/B5lp+sYByJNjQl3z5s1h2/97v8nIyAgozoIFCwAADRs2RP/+/bFw4UJ4vV40b94c48ePxzXXXAMASEtLAwB06dKlTIzOnTtj5syZWL16Nfr16xfQdriBzqSJiIiIiFQyodg4ZMOGDQCAm266Cfv27cPrr7+OmTNnIiIiAtdeey1mzZoFANi5cycAlDqLVqLksiPr10KRzqSJiIiIiEjAfv75ZyQkJJx0nAOHz2LHx8djyZIliIiIAAAMGjQITZo0wcMPP4wRI0b4UiAj/WRERR1uOOMvTTKU6EyaiIiIiEhlE4I1adHR0QCAYcOG+RZoAFC9enUMGDAAu3btwoYNGxBzOE23oKBsV9f8w508Y4ipvKeCzqSVkykuhmHllhNz1K0w7ktJbRccG02LBQDeTGJNBLs2hVgTYbPr5cJ5tYGurtcAqCMp+HUzvG2zwiOOf6NyoD5Wdm0Vk4trINk1ZHTMuh56TSVx29iTN1w81oZZR0b/LsKs4WW+BsxYUkr9+vUBAHXq1ClzXUmnx/3796NevXoA/Kc0llzmLxUylLj800BERERERMorFGvSOnXqBADYsWNHmetKLjv99NPRsWNHAMCKFSvK3G7lypWwLAvnnnsud+MqmBZpIiIiIiJyyg0aNAjx8fF48803kXPEoPWMjAx89NFHOOOMM9CsWTM0a9YMHTp0wJw5c3xNRIBDDUXmzJmDXr16+T0bF0qU7igiIiIiUtkEoWbM730QVa9eHc8++yxuueUWdO7cGTfccAMKCwvxyiuvoLCwEC+//LLvti+++CJ69uyJbt26YfTo0QCAl19+GY7jYMqUKdwNOwW0SDuVmHUzxBoyNpNftqjTLTxxsdR4jp8C1oBjHS58ZWGeNqfXHbDrvoi1KZbNrf+gPlZyXQRztpkdHUWLdSgg73XwZmbRYgHc2kD2seDq/ZeNWRPMbjjA/Lwnfs7Q0WsqXby/SdDcfPPNqFWrFp5++mmMGzcOtm2jS5cuePvtt3H++ef7bpeSkoKlS5di7NixGDt2LCzLQkpKCubMmYNzzjnnFD4CDi3SREREREQqmxA8k1Zi8ODBGDx48HFv16VLFyxatCg4G3GKqSZNRERERETERXQmrZyssDBYFudpc3OKIrPFLzttj5la5ORxt80UF/GCkdssGy8vFciKILd+J6fEMlPtTCHxNQUAwzvu3fwe4mUeCwA3jYo+8sG9rb1NcbB/Rj8Jbh69QT62XJ2iSGSK3Dt6g5mmbxkHcO/br08wui/6uw8JDp1JExERERERcREt0kRERERERFxE6Y4iIiIiIpVNCDcOES3Sys14vTCk2gg7ilc3w677Yub202urXJzzTkVsIw9wnzdq7R0AKyycGo9da1hlEI9VZjt/ADAO8z2Jm0TC3DZ263cnN5caj/q5xa7TIr5nsmvIXD2mIZz3VdDVzxvxc8sYjQaQ4NMiTURERESkkrGMgcX80f0o9yHBoZo0ERERERERF9GZNBERERGRykY1aSFNi7TyMrw93iHOX/IkJNBiAYA3O5sWy46OpsUCAIc4U4tdN8OcccSuO6AipzdYHvJJfZtXW+XmGgsrglzLd/AgLRa1hgwAHN7xwK77Yh6r7BoyKzKSGo9a/0yuu2ViP2/Mzxp6XbZDfB3cXIPOnssnEmRapImIiIiIVDIaZh3aVJMmIiIiIiLiIjqTVk6ehHh4LE66EjO1yHvgAC0WANjx8bRYDnnbrDBiu2B22ggznaIqdUwK56btIS+PF4s9CoGYGmdyXbz/EtMTAcBTvTotljeLl85Nx97f2G3uiTzVE6nxvHv38YIxUwABGKeYGo/JzWNtmJ/3TJZxAPe+pP+jmrSQpjNpIiIiIiIiLuLOnyhERERERCRgqkkLbTqTJiIiIiIi4iI6k1ZOTl4BHIvTZp1Zm0Jvc5+TQ43HxHzemO3QAcAU88YqhNWpTYsFAMW//U6Nx8SuW6TW9ZBrq5h1X+w24cz6JXYtiZNDbE1PHJVxKB7xp2Rym3A7KooazyHuI959+2mxAFCPe3adFvN1MLyPmUOY75fkY4v6ec8euRMKVJMW0nQmTURERERExEW0SBMREREREXERpTuWk/F6YSz3rW2dfHKbZWb6DrmlNDP9jN56mPhYvXv20mIBAFy435awPNwUL+qYhmLutjHTd8CMBe7zxk53NMT3JHbaEzUlK4Kbgs1MTwTg6tRO5uvKzuCivw5MxBRF9v5LHSFB/Qx07+fpkdQ4JLSFxl4mIiIiIiJSRehMmoiIiIhIZaPGISFNZ9JERERERERcRGfSyss4ADj52zaxfbaTn0+LBYBaW2XZ5Joew4vHfA0AwCnk9UY2xcW0WAC5TotcC2WKuT/FMZ87T0ICLRYAeLOzabGMQ/4Jk1nvyd5/iccqe/9l1kKxa3osct2X8RJbrLPbtTNrjMnPGxV724i1WqaIe9wzMY97Y8ijWYJINWOhS2fSREREREREXERn0kREREREKhtjuB1Zj3YfEhQ6kyYiIiIiIuIiOpNWXobXKsfVc1OImLUkAGByc3mxyL8AMevvDMiznIg1QvQZWOQaIVf/ssecG0iu6aFuG7G+DQBMIXmmIRG11iUnhxbL7dg1wcwaTTuKu23M90xmXSsAwMX1VXZMDC0WfZ5sCNCctNCmM2kiIiIiIiIuojNpIiIiIiKVjeakhTQt0srJCguDZbnvabOrV6fGc/bv58UipicC/FQ7JmraHjsV08XPm5vTE+mpmOQ0QCoXdx23o6N5wYgt8wHAOXCAFoueHk5Oq7ejomix6KNjiNjptczW9PR0c+YoD/L7GzNF0QrnPW+WMUDVy56UCqZ0RxERERERERdx8U/rIiIiIiISCMs59C/Y9yHBoTNpIiIiIiIiLqIzaeVkHAPjwn6j3t27T/UmHJ3FLXSxiLUpzFoSOmY7dJBb8JPrZsCsiQCorenZNT1M9NeBWX8XTq6tcnELfjs2lhbLFBbRYgH8fYRZR8asbwPIY20s7m/Ypoi4/7I/U5k1muTjnon5Xm4M9zgNGjUOCWk6kyYiIiIiIuIiOpMmIiIiIlLJaJh1aNOZNBERERERERfRmbTycry0XHVmrYAp4M4msWNiqPGYXF1HRmTHcl8D5vPGrtOywiOo8UwR8Xgg16Yw60lcXS9HjsesqbTj42mxAJe/J5Hrl5i1suw5aez3Edciz5VkzoKkH/fMOlnqsWCFRi2WMcGfQ+riOaehTmfSREREREREXERn0kREREREKhnVpIU2LdLKyY6KhG1xUiocZqtlcrt25+BBXjDytlHjEVu1szk5OdyAzOfN4abXUttTk1HTbVyOm4Lt3lRM+rHlZux0XTdjjt4gpteysccqmCLeY6W/XzJT6ajfRezQSHeUkKZFmoiIiIhIZaM5aSGtCv3EJiIiIiIi4n46kyYiIiIiUsmoJi20aZFWTqbYC2OR8rfJdT1ULq5fotbNEHPxAXAfK7t1NnHbrDDuWwe7jsFDbLHuzc6mxQK4zx29bsZx8aeti9+TmNtm2dzj3pBfUzuK9/5LrX0G+Xggv/9aYeG0WKbQvTW87Hbs1PdL5ueMi+vZpfJQuqOIiIiIiIiL6EyaiIiIiEhlo2HWIU1n0kRERERERFxEZ9LKy7KrxtwZZv1SOGeuXAlmPr7lIc9w8/AeqykmztEDqDUW7Foodo0bu47MrTy1alLjeffuo8ajcnENL7WOjPyeZIH7vDn5xPl35LovOy6OFsvk5dFiHQpIrGFy85kL8lxUN9cZhoLK0jjk4MGDaN26NbZs2YJRo0Zh6tSppa7fsGEDHnzwQSxbtgyFhYVo3749Hn/8cfTq1Sv4GxdEVWC1ISIiIiIioWj8+PHYvXu33+s2b96MlJQUrFixAg888ACeeeYZ5OTkoE+fPvj8888reEu5dCZNRERERKSyqQTDrNesWYMXXngBTz/9NO69994y1z/00EPIzMzE6tWr0bZtWwDA8OHD0apVK4waNQrr16+HFaJnUbVIKy/jAKgCrVfdvEMzUz3YqUXU543XshkATBExTdTlLfipbZvJLcyZ6Tvs9ESbON7CiuCmOVPbtZOPe2pLdHYqMfE1BQAUuzfd0VBTMbmJRtT0dfbnM/OxqjW9EHm9Xtx00024+OKLMXjw4DKLtNzcXMybNw+pqam+BRoAxMXFYeTIkRg/fjzS0tLQqVOnCt5yDi3SREREREQqmYqsSWvevDls+38L/oyMjJOO/fzzz2P9+vV4//33/V6/bt06FBQUoEuXLmWu69y5MwCE9CJNNWkiIiIiIuIaW7ZswaOPPorx48cjOTnZ72127twJAEhKSipzXcll6enpQdvGYNOZNBERERGRysYxh/4F+z4A/Pzzz0hISKCFvfXWW9GkSRPcc889R73NwcNp8JF+0rqjoqJK3SYUaZFWTsYxMBXRb7S8yDnqzHoSm3jQAoAhHnBOXj4tFhD8+tyTQmyNzK7T4td/uLdtM3MkBXtMA/N5c/K5x5Z9+AOXwSkkj7cgYj5OIAiPlXk8kFvJU48HF7e5d/U+Qn7eqDWVxM8tywBw79tIyHvzzTfx2WefYfny5QgPP3p9fkxMDACgoKBsPWr+4c+gktuEIi3SREREREQqmxDs7lhQUIB77rkHffv2RZ06dbBp0yYA/0tbzMrKwqZNm1CrVi3Uq1ev1HVHKrnMXypkqFBNmoiIiIiInHJ5eXnYvXs35s+fj+bNm/v+paamAjh0lq158+aYPn062rRpg8jISKxYsaJMnJUrVwIAOnToUJGbT6UzaSIiIiIicsrFxsZizpw5ZS7fvXs3br/9dlx88cW48cYbcfbZZyMuLg79+/fHBx98gO+++w7nnHMOACAnJwfTp09H8+bNQ7azI6BFWvk5Xl79DDO3n1zTw8zdZs9yssKJuy15posVxpttZsdG02IBgDczixeMWN8GAHYUd5aTk5dHi8We9+VmzJo09nwu6rYx30MAGD/1EIGi729urr+LjaXGY87So8+CJH6mUmtu2cifDcxji8kY9x5XR7JQAS34yfHCw8Nx+eWXl7l869atAICmTZuWun7SpElYtGgRLrroItx9991ISEjAtGnTkJ6ejvnz54fsIGtAizQREREREQlBzZo1w5dffokxY8Zg8uTJKCwsRPv27fHJJ5+gd+/ep3rzTooWaSIiIiIilY0xwe9UWkGdUJOTk2GOcl8tW7bE3LlzK2Q7KpIWaeVkRUbCsjgpbdQUGQ/3dC6zlbEdF0eLBQDOgQO8YOTT4MznzZvFTaegtjAnp6Aw05QAbqqSW9NtAH5KITPN2RQW0mIBgCeRN8rDm51DiwVw9zdvdjYtFgD6exzzCxn7uPfEx9Nisd/j4OUdD8ZLC3U4oHvHDYhUZVqkiYiIiIhUMpapgJo0rfGDRi34RUREREREXERn0kREREREKpsQHGYt/6NFWjmZwkIYF57bdXNLXnZtCrMOh15vxGw/7HALD5g1Fsz6IAAw+eQaN2bbcXJLacvDi8c+ttxcm8IcIUEfD0B8HWxiXRUAGOI4CgAwXt77EvNYAABvTi41nluxnzfqa0ocQwNwx2U4zM8Z4wDcCT4iZbgy3XHSpEkYMmQImjRpAsuykJycfMzbr1q1Cr1790Z8fDwSEhJw8cUX49tvv62QbRURERERcRvLmAr5J8HhyjNpDz/8MGrUqIH27dsjMzPzmLdduXIlUlNTkZSUhAkTJgAApk6dim7duuGrr75CmzZtKmCLRUREREREOFy5SNu8eTOaNGkCAGjdujVyco7eLvnOO+9EREQEli9fjqSkJADA0KFD0bJlS9x777349NNPK2SbRURERERcw0Hw0zKV9hk0rlyklSzQjmfTpk1IS0vDDTfc4FugAUBSUhKGDBmCWbNmYdeuXahTpw5v4wyxCpM5v4Z9upm4bey6L+ZMImYsNgNu3QGzxo0+Z4pcYwHj3k8NU8R7HeyYGFosgFtbxa6T9VSvTotFr9MixqLOgQS//s7NNZWeGrx9xLtvPy0WwJ0Xyq7htWN4+4iTy60LZM4epX5Pog+rEynLlTVpJyotLQ0A0KVLlzLXde7cGcYYrF69uqI3S0RERETklFJNWmhz72mEE7Bz504AKHUWrUTJZenp6QHFrlu3bqn/dhz3/jIvIiIiIiKVR0gv0g4ePAgAiPSTzhEVFVXqNiyeagnwWBGUWA6xXTA7tciK4DxGgJ/uSH2s5Pbq7Lb5VNT0Wu6PFqaY/CMI85c95vNGjkdtKQ1wX1fyseXdT0w/Y7+mbv4lmdheHXD3+y81RZH8mrLTWJlMEXGEBDsFu4i3v1FTJ2FpPpgEXUgv0mIOvxkU+FkE5Ofnl7pNeWVkZJT67+zsbCQmJgYUS0RERESkQmmYdUgL6Zq0evXqAfCf0lhymb9USBEREREREbcK6UVax44dAQArVqwoc93KlSthWRbOPffcit4sEREREZFTy5iK+SdBEdLpjs2aNUOHDh0wZ84cPPHEE74zazt37sScOXPQq1cvbvt9AN7sXFgWt22wGzHzwOmY9SRuriEjs4mtuJ1CZm4/+K8Du9aQiVn3RX7emCMp2HWy9uE6Ywb2tlHjkevlmPXFAPexWja5NpA4tsQ45C+exGOVXffFrG11yH0AqKifC7bS/CToXLlImz17NrZt2wYA2L17NwoLCzFx4kQAQKNGjXDttdf6bvviiy+iZ8+e6NatG0aPHg0AePnll+E4DqZMmVLxGy8iIiIicopZ5tC/YN+HBIcrF2kzZszAsmXLSl02btw4AECPHj1KLdJSUlKwdOlSjB07FmPHjoVlWUhJScGcOXNwzjnnVOh2i4iIiIiInCxXLtKWLl1artt36dIFixYtCs7G/IEdEQbbCqfEYqaNGGKaB11VanfNRE7Zc8ijEKjcPArB5elnTJaHmC7m4tbv9JElLk4TNYXk9HziscreRzw1a9BiGeKIHAAwXvc+b8z3Syuc+/5mR/PSnL3Z2bRYMCFSKlERNWNV5TvZKRDSjUNEREREREQqG1eeSRMRERERkcBZzqF/wb4PCQ6dSRMREREREXERnUkrJ1PshbE4NQPM2hTL4f6UwWyx7omPp8UCuHnl7Px5JlNEriVh1laxc9DZ+f3Ex8qs0wIAw6wNZNfyEWtdrDBO7W4Jah0O+Xlj15Ex0VvJE0dIsI8tJzOLFotd90Wt9yx07/ulnRBHiwUA3v2819STkECLZUwhQCxxCxrVpIU0nUkTERERERFxEZ1JExERERGpbAyCP3RbJ9KCRmfSREREREREXERn0srJeL0wFmdtaw4epMRxO+psEoCaP+/qeTORkbRYQBDmJbkZMUeeXpvCnKnF3n+J8xbdXFNpx8TQYgGAk8udqUXFnBkI8OdeEjFrA21yLbXJyyMGc++pCyc7hxrPjuDVtjK/i3gNr25f5Gi0SBMRERERqWQsY2AFeVEf7PhVmdIdRUREREREXERn0srJCguHZXFOvzPTgTzVEmmxAMBLbGXMbnfNTH9wmO3QAW4qELt1NhF7dIEp5qaO2NHRtFgOOS2ZmZLFTJ0EuGNB2K3fmS3M2a8pfRQCEzndkTlagZ4Sy0Qea0Md00BOOWWPQmAyXuLIB2IJgWVsgPz1ISjUgj+k6UyaiIiIiIiIi+hMmoiIiIhIZWMAcE8K+78PCQqdSRMREREREXERnUkrJ2YLfmY9CbWGjM2Qc/uJOerM2iWAW+tCr9cg1s24upYEgJMfCsUCJ49ZQwZw919PQgItFsBtn+32mko3Y459sGNjabEAwMnL58WqSnWLRK4+FpijWUKkBb+6O4Y2nUkTERERERFxEZ1JExERERGpbAwqoLtjcMNXZTqTJiIiIiIi4iI6k1Zejhcg1aSRS7Vciz2DhTpfrmZ1WiwAMIW8bWPWfrDRa3rYNW4uPriYtaj0uhni/CXvgQO0WHTs/YP4SzW9lo/9OhCfO8OeU8mcCceuISPPq2OyomJosQz5PYk6C5L03Q0ALGMBoVCWpjlpIU1n0kRERERERFxEizQREREREREXUbpjeVkWLyXIzaeImake5HRHOLznrfi332mxAHBfU2LqGQDY0VG0WKbQ3XkezBRbU1xMiwWQ01jZKVkuThMNa1CfFqt4RzotFkAep0JOT7TCwqnxmPuvm1O62Zj7CPs9iZ42TWQxx+QQ9zfLOKGR7ugA4H6V8H8fEhQ6kyYiIiIiIuIiOpMmIiIiIlLJaJh1aNOZNBERERERERfRmbTyMgasyX3MNuaubmHOrjsgbpvNzHcHYIp4tQLseg0nN5cWy47i1bcBAAz3rcjVtS7ENtBubiXPrpcr3r6DFova1hv8GiEm+rHg4lbyzPclJz+fFgtwdbmnu+vlcnn1csy67OAXepGoBX9I05k0ERERERERF9GZNBERERGRykZn0kKazqSJiIiIiIi4iM6klRdxThqzjsyKjKTFAgBTUECNR0X81cbN82HYPNWr02J59++nxQL4NW6GOEsPhluDw5zhBsOti6DWL7Frl4g1bvQaMuJMQyuCV6sMgF4TbEDcf9n7SDhxJhz7M5D4uUWvqWTODyPW2h+KR6yXI873NMa9dail6ExaSNOZNBEREREROeU2btyI8ePHo3PnzjjttNMQHx+Ptm3b4sknn0SunwZoGzZswKBBg1C9enXExsaiW7duWLx48SnYcj6dSRMRERERqWwcBL8RJblz6cyZM/HXv/4VAwYMwNVXX43w8HAsWbIEY8eOxb/+9S+sXLkS0Yc7c2/evBkpKSkICwvDAw88gMTEREybNg19+vTBwoUL0bt3b+7GVTAt0srJjouFbXFO5zsHDlDiAPz0RGpLXnK6DTO1k/68MdNOmSl7ALxZ2dR4TMbLbiVPjEdMZQPAHSERE0OLBZDTf5lpnag6KdiufpwgfzawD/t84nPHTuEipuuyU2IN8bhnjwOyPEr4qmouv/xyPPTQQ0hMTPRdduutt6J58+Z48sknMWPGDNxxxx0AgIceegiZmZlYvXo12rZtCwAYPnw4WrVqhVGjRmH9+vWw2J/hFUh7v4iIiIhIJWMZUyH/mDp0+P/27j04yur+4/jn2VzIbRNwUC6heCkBRRHGkoBcKnS4Vcq1k1K1CBSwVrAF21K1IgEVa1sHp4J1hDKUYXCmCi20ii3eBpFgkSLIVAKxJMhFBLnlQm675/cHJjW/DWr0u8mTzfs1wzDzPE9Ozu6eZzdnz/d7vn3rTdBqTZo0SZK0d+9eSVJZWZk2btyoIUOG1E3QJCktLU0zZszQ/v37tWPHDtO+NTUmaQAAAAC+tKysLHXq1Knun7XDhw9Lkjp06CBJ2rNnjyorK3XjjTdGXNu/f39JYpIGAAAAANEQCoX00EMPKT4+Xrfeeqsk6ejRo5KkzMzMiOtrjx05cqTpOhkF5KQ1Uri0TGHPJuY6EAyatCNJ4dJSs7akKGxRbch0C3Pr0gVVhmUVjHN6LNtzxltnuxq7rZElSZ7h90/GiTOWOZqh0sidrr4Sw8fqWb4GkuIuvdSsrdDHp8zaMmc83qzzFk0/G4w/Zyzvrbi2keFWX0XozFmztgIZ6WZtSbbPm6s2fk0Nx4hlaRZnXJolappwC/4DBw4oPd12bNaaM2eO8vPztXjxYvXo0UOSVP5JLmWbBv6OS/qkrE95Cy+zxEoaAAAAAN+ZP3++li5dqjvuuEP33Xdf3fGUT76Aqmxgs6WKiop617RUrKQBAAAAsSbsJC/KK2nGO1F/Wl5enh5++GFNmzZNTz/9dL1znTt3ltRwSGPtsYZCIVsSVtIAAAAA+EZeXp4WLlyoKVOmaMWKFRFb6ffq1Utt2rRRfn5+xM9u375d0oWdIlsyVtIaywuY5btY1kkzZ1jTRdb5S4Z5X+a5d4b1OCzj5yVJYcP6NZbjQ/b5d5Z5PS5s/F2WZd5XwLb+i6sxzNkwrpcUOnHCtL3Wwvo9zrKOm3mdP8M6aWHrfE9DNR8eN23P9P3XPIfXtDk71kX+oqUJc9IsLVq0SAsXLtTkyZO1cuVKBQKRn8NpaWkaM2aM1q9fr927d6t3796SpNLSUq1YsUJZWVnKyckx71tTYpIGAAAAoNktW7ZMCxYsUNeuXTVs2DCtXbu23vkOHTpo+PDhkqRHH31Ur7zyikaMGKG5c+cqPT1dy5cv15EjR/TCCy+06ELWEpM0AAAAIAY1wUqabNuvrW126NAhTZkyJeL8TTfdVDdJ69atm958803de++9+vWvf62qqirdcMMNeumllzRs2DDTfjUHJmmNFQ7Zbe/t5xm+j5fyLbcLNufjrd89w3IDliGnkuSq/fuaxnfsYNpezfGPzNryc7iutYDh+PUSE83akqSQYei65eOUpHCVcXkLQ2Hj7bG9eLs/afxchsaarx+rj9+TEB2rVq3SqlWrvvD111xzjTZs2BC9DjUjJmkAAABArGmhOWm4gN0dAQAAAMBHWEkDAAAAYk3YyTpnrOHfgWhgktZYnmcXI225RGwdt+3j5WvLHKHQiZNmbUnG2+YbvwaWW2d7CbY5Pa7GOG/G8LkLnT5j1pY1yxwcyTg3xbhMQ9hy6/eEBLO2rJnnkBmXQPFzjpDl+PX1veXjz2fz8iyGZUZazWuAmMEkDQAAAIg1Lhz9jeB8vNFcS0dOGgAAAAD4CJM0AAAAAPARwh0byYtPkOfZ5DO4asNaU9bx0YZ5B4HkZLO2JPs8MlOG+R+Wdc2sBZKTTNsLnzfOczGspeeqjWsIGd6rvq6TZpwLFdc2w6yt0NlzZm1Jkhdnm4djyTwSybIWpHW+nCHzepyWuVrGz5tpDU3j90vL1yEQDNq15aoku/KI0cMW/C0aK2kAAAAA4COspAEAAACxhi34WzQmaY3lwpKM4kd8vJWxZUhLuLzcrC1Jps+br8OUrMPsDENkQlWGobpS6wqX8PN9b/g6WJdpCJ05a9aWr7dXNx4f5uUyDMP0LcPPJClcYhd/5iVaP292YySQkmLWliQpbBgTa/2ZGrC7Vy3HR9gZl8oAGsAkDQAAAIg15KS1aOSkAQAAAICPsJIGAAAAxBqnJlhJi27zrRmTtEZyNTVyfs4psWL5EK2fL8stzK23WbZ8rMZ7Z1vmppiWj5B9jpBle+Eq29wDL2A3RpxxwnYg2W4rbvNcVEPm970hP+dCSTLdSj5c5uMxUllp26Dl8+bjPG/rfDnLx2rZt4Crkvw7fBEjmKQBAAAAsYactBaNnDQAAAAA8BFW0gAAAIBYEzYsG/WZvwPRwCStsQJxkmcUW25Yt8rXtZeMxaWnm7UVMqybIsl22d8wh8HvTOtMWbO8TyU5Z3ivGtYzlKTw+fNmbcW1zTBrS5JC50rtGjN+TS1Z55BZ5kBKPs/ns8y7tX6chjnGgdRUs7Yk23qhoXPnzNqSZPq3jWV+G3XS0BQIdwQAAAAAH2ElDQAAAIg1bBzSojFJayQvIV6eZ/O0Wa6Wx6Wn2TUmKXy+wqwt662MLcMprLd+Nw3bM96C3/k3SsmcZaiSZQiVJMkw/MwyTEmyDbUzDU+U8WM1DgG0DDs1L2+RmGTanp9Dky2fO/PPhrDdGLH8fJZsQ2KtnzdLpiVLXDjqqV6Af+8mAAAAAF8OK2ktGjlpAAAAAOAjrKQBAAAAsSbsJEV5pcsyjBT1MElrpECbRAU8mxyVsOHADpfZbZ0tGedFGG8lH0i2y7EIl5WZtSX5fAvo1sQy/MI6N7DSLqfHWZfe8HHYivNxyRKrqiySbYkRSXJVxjluhjlHpjlCFxq0a8o6985yzBmX3rD8rAm0aWPWliSFK2zz78y0piRvNBsmaQAAAECMcS4sZ/xFY0O/A9FBThoAAAAA+AgraY0UOlciz0swaSu+YweTdiSp5qOTZm2ZswxTknGIonEophdnuBW3n8MdfR5mF0gyDIk1DrcxDRezHiOGr6t5eQDL0Djj9yTL0LhQSYlZW5J8HcJqHwqfbNZWuLzcrC1Jxq+D7cqFF2/zN40UhfdLw/BJy/fegKuSbLMlosO56OeM+fk9poVjJQ0AAAAAfISVNAAAACDWuCbY3ZGVtKhhJQ0AAAAAfISVtGZU8+Fxu8asc4QsGecdWOaTWG7nL9nmy1nGz0u2OT1eol2pAUlylZWm7YUt2zO+t0xzq6y/wTS8V63z5Sxz3Jyz3oLf8D3Oent1y3Iqkq8/a8LnbUvRmPLzFvzWY8SQqzYshWD4nuRctVlbURUOS16Ud19kd8eoYSUNAAAAAHyESRoAAAAA+AjhjgAAAECsYeOQFo1JWiN58fHyPJunzbK2jvlN4uN6STJsL3zetqaLn3N6TMdIyDYvJZCSYtqeaY0j85pwdvH7gWDQrC1JcpY5PXHGeYtV/s2bseTn/CDJNh/VNN/ImGV9Lsl4/BrX+TN9j7OueZloV8PNWfbNhSX/Dl/ECCZpAAAAQIxx4bBclDcOcWwcEjXkpAEAAACAj7CS1kgu7OQ8myVzL8EybMQ2RMY0/Cxg+11AuKTEtD2/st6C33LbZvttvW3HiOW9Zb29sOXr6ud7IWAdLmYYGucFjLfgN3xNTcPgFYWwPcsQRR9/A28dXmsZ9m9dAsW0dIFxeHi4ynCre8Mw0RazBT85aS0aK2kAAAAA4COspAEAAACxJuwko+ivi2IlLWpYSQMAAAAAH2ElrbHCIbP8GT9/9xAuKzNryzQ/yLo945wIy23zA2mpZm1JUujMWbvGDEsNSJIXZ5y3WFlp1pZ5/odl34zvrUDbDLO2nOF7iCR5CYZ5X4avgWR8rxr3zXr8yvA9ztUYfwpavi/5+LNBxqULLPNHrXMqLduzzB31nGsZW/A7JynKuZ+spEUNK2kAAAAA4COspAEAAAAxxnJH8ov+DlbSooaVNAAAAADwEVbSGisQJ3lGce+GNTvMc1NSk83aMs2FkmzrsPj4G6BwmWHtGknxHTuYtVXz4XGztiTJhWxz3ExrwlnnLxnWIAyXl5u1JUmhkydN2/Mt41pOobPnTNuzZF1LzzSvx7oWpGEtMuv73rRenWV+m6RwhV1NuEBSkllbkm0un2V+m3MtISFNn+RWRjsnzb/1Dls6VtIAAAAAwEeYpAEAAACAjxDu2FiGW/BbMt3eV1L4fIVpe6YMn/9AsmEIimxDWkKnT5u1JUmhj+3asw5TcjXVpu2ZhrEalxtwxttnm/Lhe1stL2AXomgeZmcpIcG0OXfeNmw6kJFu1pYrsw3XtSxvYc0zDMX0DEtlSJIzDNe1fg0snzfr8gAtARuHtGz+/UQGAAAAgFbIx18nAgAAAPhS2DikRWOS9gXVLufWqFry48qu8U3iGS5fO2cdymb3WAPOdpc3z7C9kPHzZtk36/HmnG24rmm4o/m9Zdeen+8ta5bj1/I1MGccOmQ9RgJhu50AnbNrS5LClo/V+HUIGD5Wz/A1kGxfB9PXQNbvl3bhjjWq/qRNP/5B+D9N8Tdr7XMBe0zSvqCST7Yx3qoXm7knF2H9N4d/Q/ttH6ttSoR9e5Z4H/1yrO8tH88PWk3f/Jya4uN0YEnSqebuQAtl+dng588Za36+V3Xhb8OMDNscQQuJiYnq2LGjtn7YNH+zduzYUYmJtqWgIHnO718D+EQ4HNbRo0cVDAblGdfYQfPIysqSJB04cKCZewK/YWygIYwLNIRx0fo451RSUqLOnTsrEPDn9g4VFRWqqrJddb2YxMREJRnXyAMraV9YIBBQly5dmrsbMFT7xpqebrdbGWIDYwMNYVygIYyL1smPK2iflpSUxMSphfPn9B8AAAAAWikmaQAAAADgI+SkAQAAAICPsJIGAAAAAD7CJA0AAAAAfIRJGgAAAAD4CJM0AAAAAPARJmkAAAAA4CNM0gAAAADAR5ikAQAAAICPMEkDAAAAAB9hkgYAAAAAPsIkDQAAAAB8hEkaAAAAAPgIkzQAAAAA8BEmaQAAAADgI0zSEJP279+vBx98UP3799ell16qYDCoPn366JFHHlFZWVnE9QUFBRo/frzatWun1NRUDR48WK+++moz9BxNrby8XFdddZU8z9Ps2bMjzjM2WpdTp07p5z//ubp166akpCRdeumlGjp0qN54441617311lsaNmyYgsGg0tPTNWrUKL3zzjvN02lEVWlpqRYvXqxevXopGAyqffv2GjBggFatWiXnXL1rGRcArMQ3dweAaFi5cqWWLVumsWPH6rbbblNCQoJee+01PfDAA/rzn/+s7du3Kzk5WZL0/vvva8CAAYqPj9e8efOUkZGh5cuXa+TIkdq0aZOGDRvWzI8G0fTggw/qxIkTDZ5jbLQuxcXFGjJkiEpLSzV9+nR1795dZ8+e1Z49e3TkyJG667Zv364hQ4YoMzNTixYtkiQtXbpUgwcP1rZt29SrV6/meggwFg6H9e1vf1vbtm3TlClTdPfdd6u8vFzPPvuspk2bpvfee0+PPfaYJMYFAGMOiEE7duxwZ86ciTj+q1/9yklyTz75ZN2x3NxcFwgE3K5du+qOlZSUuK5du7ru3bu7cDjcFF1GM9i5c6eLi4tzjz/+uJPkZs2aVe88Y6N1GTRokOvSpYs7evToZ16XnZ3tgsGgO3z4cN2xw4cPu2Aw6IYPHx7tbqIJbdu2zUlyc+bMqXe8srLSXXnllS4jI6PuGOMCgCXCHRGT+vbtq4yMjIjjkyZNkiTt3btXklRWVqaNGzdqyJAh6tOnT911aWlpmjFjhvbv368dO3Y0SZ/RtEKhkGbOnKlRo0Zp4sSJEecZG63Lli1btHXrVs2bN0+dOnVSdXW1ysvLI64rLCzUjh07lJubq8zMzLrjmZmZys3N1csvv6wPP/ywKbuOKDp37pwkqXPnzvWOJyYmqn379kpNTZXEuABgj0kaWpXDhw9Lkjp06CBJ2rNnjyorK3XjjTdGXNu/f39J4g/xGLVkyRLt27dPS5cubfA8Y6N1efHFFyVJXbt21ZgxY5ScnKzU1FR1795da9asqbuu9jW/2Lhwzmnnzp1N02lEXU5Ojtq2bavf/OY3eu6553To0CHt27dP9913n3bu3Km8vDxJjAsA9shJQ6sRCoX00EMPKT4+Xrfeeqsk6ejRo5JU75vPWrXHPp2Lgthw8OBBLViwQA8++KCuuOIKFRUVRVzD2GhdCgoKJEkzZ85UVlaW/vSnP6mqqkqPP/64Jk+erOrqak2bNo1x0cq0a9dOGzdu1IwZM/S9732v7ngwGNS6des0fvx4SbxfALDHJA2txpw5c5Sfn6/FixerR48eklQXztSmTZuI65OSkupdg9hx55136qqrrtI999xz0WsYG61LSUmJpAt/fL/22mtKTEyUJI0fP15XXXWV7r//fk2ZMoVx0QqlpaXpuuuu09ixYzVgwACdOnVKy5Yt06233qoNGzZo+PDhjAsA5pikoVWYP3++li5dqjvuuEP33Xdf3fGUlBRJUmVlZcTPVFRU1LsGsWHNmjXavHmztmzZooSEhItex9hoXWp3e73lllvqJmjShZWUsWPHavXq1SooKGBctDLvvvuuBgwYoCVLlujOO++sO37LLbfouuuu08yZM/X+++8zLgCYIycNMS8vL08PP/ywpk2bpqeffrreudpk8IbCUGqPNRS+gpapsrJS99xzj26++WZ17NhRhYWFKiwsVHFxsSTp7NmzKiws1JkzZxgbrUyXLl0kSR07dow416lTJ0nS6dOnGRetzJIlS1RRUaHc3Nx6x1NSUjR69GgVFxerqKiIcQHAHJM0xLS8vDwtXLhQU6ZM0YoVK+R5Xr3zvXr1Ups2bZSfnx/xs9u3b5d0YadIxIbz58/rxIkTeuGFF5SVlVX3b8iQIZIurLJlZWVpxYoVjI1WJicnR9L/Nhf6tNpjl112mbKzsyXpouPC8zx94xvfiGJP0ZRqJ1ihUCjiXE1NTd3/jAsA1jznnGvuTgDRsGjRIi1YsECTJ0/WqlWrFAg0/J1Ebm6u1q9fr3//+9/q3bu3JKm0tFTXXnut2rRpo4KCgojJHVqm6upqbdiwIeL4iRMndNddd2nUqFGaPn26rr/+enXv3p2x0YqcPn1al19+udLT07Vv3z6lpaVJko4dO6asrCxlZmbWbS6SnZ2tgoIC7du3r24F5ejRo7r66quVk5Ojl19+udkeB2zNnTtXTzzxhB577DHNmzev7viZM2fUs2dPVVRU6MSJE4qLi2NcADDFJA0xadmyZZo9e7a6du2qhx56KGKC1qFDBw0fPlzShfo2OTk5SkhI0Ny5c5Wenq7ly5fr3Xff1QsvvKCRI0c2x0NAEyoqKtKVV16pWbNm1duSn7HRujzzzDP60Y9+pGuvvVY//OEPVVVVpT/84Q86duyY/v73v2vEiBGSpG3btmno0KHq0qWL7r77bknSk08+qePHj+vNN9+sm9Cj5SsuLtYNN9yg06dP67bbbtPAgQN16tQpLV++XEVFRVq2bJnuuusuSYwLAMaas5I2EC1Tpkxxki7676abbqp3/X/+8x83duxYl5GR4ZKTk93AgQPd5s2bm6fzaHIHDx50ktysWbMizjE2Wpd169a5fv36uZSUFJeWluaGDx/utm7dGnHdtm3b3Le+9S2Xmprq0tLS3IgRI9zOnTuboceItsLCQnf77be7zMxMFx8f74LBoBs8eLBbt25dxLWMCwBWWEkDAAAAAB9h4xAAAAAA8BEmaQAAAADgI0zSAAAAAMBHmKQBAAAAgI8wSQMAAAAAH2GSBgAAAAA+wiQNAAAAAHyESRoAAAAA+AiTNAAAAADwESZpANDC5eXlyfM8vf76683dlUYZPHiw+vTpI+dco3929+7dCgQCWrFiRRR6BgBA82KSBgA+4nleo/61tIlZreeee05bt27Vww8/LM/zGv3zvXv31ne/+13Nnz9fpaWlUeghAADNx3Nf5itMAEBU5OXlRRx74okndPbsWf30pz9V27Zt652bOnWq0tLSdPLkSXXt2lUpKSlN09GvwDmnq6++WgkJCdq7d++Xbuftt99Wdna2HnnkEd1///2GPQQAoHkxSQMAn7viiitUXFysgwcP6oorrmju7nxlmzdv1ogRI/TYY49p3rx5X6mtnj17qqysTAcPHlQgQHAIACA28IkGAC1cQzlpRUVF8jxPU6dO1f79+zVhwgS1a9dOGRkZGjdunIqKiiRJhYWFys3NVfv27ZWSkqKbb75Z//3vfxv8PR9//LHmzZunHj16KCkpSe3atdPo0aO1ffv2RvX3j3/8oyRp0qRJEefOnTunhQsX6rrrrlMwGFQwGNTXv/51ff/739euXbsirp80aZIOHTqkzZs3N6oPAAD4GZM0AIhhBw8e1I033qizZ89q+vTpGjhwoDZu3Khhw4bpvffeU79+/XTy5ElNnTpVQ4YM0aZNmzR69GiFw+GIdm644Qb99re/VWZmpmbNmqUJEyYoPz9f3/zmN/W3v/3tC/XHOadXX31VnTt31uWXXx5xbtSoUcrLy1N6erpmzpypH//4x8rJydHrr7+ut956K6K9gQMHShKTNABATIlv7g4AAKJny5Yt+t3vfqef/exndcfuuOMOLV++XAMGDNADDzzQ4LkNGzZowoQJdcdvv/12HT58WOvXr693/JFHHlFOTo5mzpypoqIiJSUlfWZ/CgoKdOLECY0ZMybi3N69e5Wfn6/x48frL3/5S71zoVBI586di/iZ7OzsuscJAECsYCUNAGLYlVdeqblz59Y7NnnyZEnSJZdcEnHuBz/4gaQLW9zXeuedd7R161bl5ubWm6BJUqdOnfSLX/xCx48f1yuvvPK5/Tl06JAkqWPHjhe9Jjk5OeJYXFyc2rVrF3E8IyNDSUlJde0CABALWEkDgBjWu3fviA01OnXqJEm6/vrrI8517txZknTkyJG6Y/n5+ZKkU6dONbj75IEDByRJ+/bt0+jRoz+zPx9//LEkNTjh6tmzp/r06aNnn31WxcXFGjdunAYNGqS+ffsqMTHxom1ecsklOn78+Gf+XgAAWhImaQAQwzIyMiKOxcfHf+656urqumOnTp2SdCHv67Nyv75IvbLaVbKKioqIc3FxcXr11Ve1aNEiPf/88/rlL38pSUpPT9fUqVO1ePFipaamRvzc+fPnG1x9AwCgpSLcEQDwmWonc48++qiccxf9t2DBgs9t67LLLpP0v4nf/9euXTstWbJEH3zwgfbv369nnnlGWVlZ+v3vf6/Zs2dHXB8Oh3XmzJm6dgEAiAVM0gAAn6lfv36S/hf2+FVce+21iouLU0FBwedem5WVpZkzZ2rLli1KS0vTX//614hrCgoK5JxTnz59vnLfAADwCyZpAIDPlJ2drQEDBmjjxo1auXJlg9ds375d5eXln9tWRkaG+vTpo927d6uysrLeuYMHDzZYo+306dOqrKxUSkpKg79XkoYOHfpFHgoAAC0COWkAgM+1du1aDR06VNOnT9dTTz2l7OxsBYNBffDBB3r77bdVWFioY8eONTiR+v8mTpyonTt36vXXX9fIkSPrju/evVsTJ05Udna2rrnmGnXu3FkfffSRNmzYoOrq6roctU/75z//qbi4OI0bN8708QIA0JxYSQMAfK7LL79cu3btUl5enmpqarR69WotXbpU//rXv9SrVy+tXr1a7du3/0JtTZ8+XQkJCVq9enW943379tW9996ruLg4vfTSS3r88cf1j3/8Q9nZ2dq0aZN+8pOf1Lu+pKREGzZs0He+8x197WtfM3usAAA0N88555q7EwCA1mXGjBlau3atioqKvvSmH0899ZRmzZqlN954Q4MGDTLuIQAAzYdJGgCgyR07dqxuY5AlS5Y0+ucrKirUrVs39e/fX88//3wUeggAQPMhJw0A0OQ6deqkNWvW1O3O6Hleo36+uLhYM2bM0NSpU6PTQQAAmhEraQAAAADgI2wcAgAAAAA+wiQNAAAAAHyESRoAAAAA+AiTNAAAAADwESZpAAAAAOAjTNIAAAAAwEeYpAEAAACAjzBJAwAAAAAfYZIGAAAAAD7yf+bjpdFze37AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.title('Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It is actually only one feature drifiting along time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 0.33333333333324333\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dps.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 1 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_f = dps.rebin_frequency(df_new=1.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 1.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dps_new_f.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAJlCAYAAADXbB2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOGklEQVR4nO3de3QV5b3/8c/sXMlVEAiQNFAgIkUEEWjAcgANQu0PilVQQcyhBcQCXagtNQrIHVvLURdQbbkUK9geOdoDp6hHQfACiSeHVpH2EC4FLCEoyiUJIQnsmd8fmNQ0QTLh2cNk5/1aay9WZk8+z2wy2ck333mesRzHcQQAAAAAPhW40gcAAAAAAF+FogUAAACAr1G0AAAAAPA1ihYAAAAAvkbRAgAAAMDXKFoAAAAA+BpFCwAAAABfo2gBAAAA4GsULQAAAAB8jaIFAAAAgK+5LloKCgo0duxYde3aVcnJyYqLi9O1116rhx56SEVFRXXuP3LkSDVv3lzx8fEaMGCA3nrrLSMHDwAAACD8WY7jOG4+YcuWLVq4cKEyMzOVlpamyMhIffTRR/rNb36jpKQkffDBB2rdurUk6cCBA+rbt68iIyM1ffp0JScna8WKFdq9e7dee+01ZWVlheRFAQAAAAgfrouWi1m/fr1Gjx6tn/3sZ5oxY4YkafTo0Xr55Ze1c+dO9ezZU5JUWlqqbt26KTY2Vnv27JFlWSaGBwAAABCmjM1pad++vSTp5MmTkqQzZ85o48aNGjRoUHXBIkkJCQmaMGGC9u7dq/z8fFPDAwAAAAhTDS5aysvL9dlnn+nIkSN64403dP/990uSbrvtNknSrl27VFFRoX79+tX63MzMTEmiaAEAAABwSZEN/cSVK1dq2rRp1R936NBBa9eu1YABAyRJR48elSSlpqbW+tyqbYWFhQ0dXm3btq3xsW3b2rlzpxITE7nkDAAAoAlyHEclJSVq166dAgH/LpJbXl6uyspKT8aKjo5WbGysJ2OFUoOLlpEjR+raa69VaWmp/vznP2vjxo367LPPqp8vKyuTJMXExNT63Kr/uKp9TLBtW1/72teM5QEAAKBx+vvf/660tLQrfRh1Ki8v19fbJ+jYp0FPxmvTpo0OHjzY6AuXBhctaWlp1SfDyJEjdccdd6hPnz4qKytTTk6O4uLiJEkVFRW1Pre8vFySqvdpiH9eXvn06dO66qqr9C/N7lCkFdXg3C8LtGhuJEeSzh/9xFiWaYHoBp8GdTKztMMXWXWcP5cjEFu7iG4o6zLO37rYxSXmwiyzf12yDJ8jVkSEsSz7rNlzxCQrNtponlPuzV/lGsKKMvc1dc6Z/UFu8tishARjWZJkny42mucY/MutFW32/DXJijT3NTXNOW/2/I1o08pY1vm/1741xeUw+V7unD9nJOe8c07vaZMSExON5IVCZWWljn0a1OGdHZSUGNpuUHGJrfY3HlJlZWXTLVr+2fXXX68bbrhBv/zlL5WTk6N27dpJqvsSsKptdV061lBVl4RFWlGKtMy80QYC5n7BlaFCKhQCho/NkbmqxbFsY1mSFDB0bkiSFTD7A902+XUwXbQYPkcsy2DRYvgcMckyeL5JkmMZ/IuAYZZlrrB1rPPGsiSzx+br73uZPUdMf9+bZPJraprp8zfCx7+LmHwvd0xe2e+oUUwVSEi0lJAY2uO05f//h/oy+pvN2bNndeLECUlS9+7dFRMTo9zc3Fr75eXlSZJ69+5tcngAAAAAYch10XLs2LE6t2/dulW7d++uXhksISFBw4cP17Zt2/Thhx9W71daWqqVK1cqIyNDffv2beBhAwAAAI1X0LE9eYQL1/3VBx54QEVFRbr55pvVvn17lZeXa+fOnfr973+vxMRELVmypHrfxYsXa8uWLbr11lv14IMPKikpSStWrFBhYaE2bdrUKFp3AAAAAK4s10XLPffco9/+9rd64YUXdPz4cVmWpfbt2+v+++/XT37yE6Wnp1fv27lzZ23fvl2PPPKInnjiCVVWVqpXr156/fXXlZWVZfSFAAAAAI2FLUe2wXnAFxsjXLguWkaPHq3Ro0fXe/+uXbtqw4YNbocBAAAAAEmGJ+IDAAAAgGn+XTMQAAAACFO2bIV6mnzoR/AOnRYAAAAAvkanBQAAAPBY0HEUdEI7UT7U+V6i0wIAAADA1+i0AAAAAB5jyWN36LQAAAAA8DU6LQAAAIDHbDkK0mmpNzotAAAAAOrtxIkT+vGPf6zOnTsrNjZWrVq10uDBg/Xuu+/W2O/9999XVlaWEhMTlZSUpGHDhumDDz5o0Jh0WgAAAACPNdY5LYcPH9agQYNUWlqqH/zgB7rmmmt0+vRp7dq1S4WFhdX75eXladCgQUpNTdW8efMkScuWLdOAAQO0Y8cOde/e3dW4FC0AAAAA6uXee+/V+fPntWvXLrVt2/ai+/3oRz9SdHS03nnnHaWmpkqSRo8era5du+rhhx/WG2+84WpcLg8DAAAAPFZ1n5ZQP0x655139N5772nGjBlq27atzp07p7Kyslr77d+/X/n5+Ro1alR1wSJJqampGjVqlDZv3qxjx465GpuiBQAAAMAlvfrqq5Kk9PR0DR8+XM2aNVN8fLyuueYarV27tnq//Px8SVK/fv1qZWRmZspxHO3cudPV2FweBgAAAHjM/uIR6jEkKSMjQ4HAP3oVRUVFDcorKCiQJE2cOFEZGRl6/vnnVVlZqSVLlmjcuHE6d+6cxo8fr6NHj0pSjS5LlaptX57/Uh8ULQAAAAAuqaSkRJKUmJiorVu3Kjo6WpI0cuRIdezYUY8++qiys7OrLxmLiYmplREbGytJdV5W9lW4PAwAAAAIY/v27VNRUVH1o6GaNWsmSbrnnnuqCxZJat68uUaMGKFjx46poKBAcXFxkqSKiopaGeXl5ZJUvU990WkBAAAAPBb04OaSpvPT0tIkSW3atKn1XNVKYidPnlS7du0k1X0JWNW2ui4d+yp0WgAAAABcUt++fSVJR44cqfVc1bbWrVurT58+kqTc3Nxa++Xl5cmyLN14442uxqZoAQAAADwWdLx5mDRy5EglJiZq7dq1Ki0trd5eVFSk//zP/9Q111yjzp07q3Pnzurdu7fWr19fPSlfko4ePar169fr5ptvrrNb81W4PAwAAADAJTVv3ly/+MUvdP/99yszM1Pf//73VVlZqWeffVaVlZVaunRp9b7PPPOMBg8erAEDBmjatGmSpKVLl8q2bS1ZssT12BQtAAAAgMe8XPLYpEmTJqlly5b6+c9/rlmzZikQCKhfv3568cUXddNNN1Xv179/f23btk0zZ87UzJkzZVmW+vfvr/Xr16tHjx6ux6VoAQAAAFBv3/ve9/S9733vkvv169dPW7ZsMTImRQsAAADgMVuWgrJCPka4YCI+AAAAAF+j0wIAAAB4zHYuPEI9RrigaPkK54/UviFOQ1lfumuokTzLXLvPSkw0liVJOnPGXFZMjLksmf06BE+eNpYlSZHp7m6y9FXs458by5Ik+2y50TwrytxbjxVr9hyxz5SZC6usNJclyYqOMhcWMNtoN3psMnu+OefOG8sy/b0VkRBvNM+JiDCWZfZravh9xDH7m5jJ12r6/dI+9qmxrIDpr2kddztvqIChn/cBxzL9FgKfoGgBAAAAPBb0YE5LqPO9xJwWAAAAAL5G0QIAAADA17g8DAAAAPAYl4e5Q6cFAAAAgK/RaQEAAAA8ZjuWbCfEN5cMcb6X6LQAAAAA8DU6LQAAAIDHmNPiDp0WAAAAAL5GpwUAAADwWFABBUPcPwiGNN1bdFoAAAAA+BqdFgAAAMBjjgerhzmsHgYAAAAA3qDTAgAAAHiM1cPcodMCAAAAwNfotAAAAAAeCzoBBZ0Qrx7mhDTeU3RaAAAAAPgaRQsAAAAAX+PyMAAAAMBjtizZIe4f2Aqf68PotAAAAADwNTotAAAAgMdY8tgdOi0AAAAAfI1OCwAAAOAxb5Y8Zk4LAAAAAHiCTgsAAADgsQurh4V2zkmo871EpwUAAACAr9FpAQAAADxmK6Ag92mpNzotAAAAAHyNTgsAAADgMVYPc4dOCwAAAABfo9MCAAAAeMxWQDZzWuqNTgsAAAAAX6NoAQAAAOBrrouWvXv3avbs2crMzFSrVq2UmJionj17auHChTpz5kyt/XNzczVixAilpaWpWbNm6tSpkyZOnKi//e1vRl4AAAAA0NgEHcuTR7hwPadl9erVWr58uUaMGKGxY8cqKipKW7du1cyZM/XSSy8pLy9PzZo1kyS9/vrr+s53vqNOnTpp6tSpatmypf7yl7/o17/+tV5++WV99NFHSk1NNf6iAAAAAIQP10XLnXfeqZycHCUnJ1dvmzx5sjIyMrRw4UKtWrVKU6dOlSQ99dRTioiI0I4dO9SyZcvq/bt166aJEydq/fr1mj59+uW/ii+xYmJkWdFGsgK2bSRHkhQVZS5LkoJBY1FOHR2yy2Lw/82KNLtWhF1RYSwrEG32a+qcOGUsy4o28z1QJWDwfJMkKzbGWJZz7ryxLEmKSEowmmeUbW5CpXPe7P+bArHmsiIizGVJCsSYO9+Cp4uNZUmSU1lpNM/k95YM/r9JklVu7v3X5M8Zyez7iBUw+5dtk+/ndlmZsSzTrC/+4H3ZOU6EVG4kKuSCHtxcMtiUJ+L37t27RsFS5a677pIk7d69u3pbcXGxYmNj1bx58xr7tmvXTpIUHx/vdngAAAAATYyx8u7IkSOSpJSUlOptQ4cOVUlJibKzs/Xhhx+qsLBQ//3f/62HH35YXbt21d13321qeAAAAKDRsJ2AJ49wYeTam2AwqPnz5ysyMlJjxoyp3p6Tk6NPP/1Uq1ev1rp166q333bbbfrd736nxMTEBo/Ztm3bGh/bhlvFAAAAAPzBSNEyffp05ebmatGiRerSpUv19oiICKWmpiorK0u33367WrRooe3bt2vp0qW6++67tWHDBkWZnusBAAAA+BxzWty57KJl1qxZWrZsmSZNmqScnJwaz/3rv/6rduzYob/85S/VK4rdfvvt6ty5sx544AE9//zzmjBhQoPGLSoqqvFxcXFxnXNtAAAAADRul1XezZkzRwsWLND48eP13HPP1Xju448/1rp16/Sd73ynumCpMmrUKEnS22+/fTnDAwAAAI2SrdDfqyWcJk80uGiZM2eO5s6dq+zsbK1cuVKWVXOJv8LCQkkX5rv8s/NfLLV53vSSmwAAAADCToOKlnnz5mnu3LkaN26cVq9erUCgdkyXLl0UERGh//zP/9SpU6dqPLdmzRpJUp8+fRoyPAAAANCo2Qp48ggXrue0LF++XI8//rjS09OVlZWlF198scbzKSkpGjJkiFq0aKHp06dryZIluuGGGzRx4sTqifjr1q1Tp06dGjyfBQAAAEDT4bpoyc/Pl3Rhzkp2dnat5wcOHKghQ4ZIkp588kl16dJFK1eu1KJFi1RRUaHU1FQ98MADmjNnjpKSki7z8AEAAACEO9dFy5o1a6ov77oUy7I0ceJETZw40e0wAAAAQNgKOgEFQ3zzx1Dneyl8XgkAAACAsGTk5pIAAAAA6s+WJVvWpXe8zDHCBZ0WAAAAAL5GpwUAAADwGHNa3AmfVwIAAAAgLNFpAQAAADwWVEDBEPcPQp3vpfB5JQAAAADCEp0WAAAAwGO2Y8l2Qrx6WIjzvUSnBQAAAICv0WkBAAAAPGZ7MKfFDqP+RPi8EgAAAABhiU4LAAAA4DHbCcgO8X1UQp3vpfB5JQAAAADCEkULAAAAAF/j8jAAAADAY0FZCiq0SxKHOt9LdFoAAAAA+BqdFgAAAMBjTMR3J3xeCQAAAICwRKcFAAAA8FhQoZ9zEgxpurfotAAAAADwNTotAAAAgMeY0+JO+LwSAAAAAGGJTgsAAADgsaATUDDEnZBQ53spfF4JAAAAgJCyLKvOR0JCQq19CwoKNHLkSDVv3lzx8fEaMGCA3nrrrQaNG36dlmBQssyslWBFRxvJkSQrOclYliTtn/w1Y1nJPT8zliVJmSmHjGUFrPPGsiRpWPJHxrI2nrzBWJYk/el4a2NZnxy9yliWJHV95KDRPKfsrLEsK66ZsSxJcs6WG80zyYoy95btnDP7vaWSEmNRJt97JSl4uthYVkRCvLEsSZLBr6kkBU+eNphWajBLsiIijOaZZAXM/Q03cHULY1mS5JSY+zoErko2liVJwc9PGMuyy8rM5DjnjOR4wZElO8Srhzkhyh8wYIAmTZpUY1tUVFSNjw8cOKD+/fsrMjJSM2bMUHJyslasWKGhQ4fqtddeU1ZWlqsxw69oAQAAABAyHTt21L333vuV++Tk5OjUqVPauXOnevbsKUm677771K1bN02ZMkV79uyRZdW/qOLyMAAAAMBjVXNaQv0IlcrKSpWW1t0JPHPmjDZu3KhBgwZVFyySlJCQoAkTJmjv3r3Kz893NR5FCwAAAIB6+4//+A/FxcUpMTFRrVu31rRp03T69D8uT921a5cqKirUr1+/Wp+bmZkpSa6LFi4PAwAAAMJYRkaGAl+au1VUVNTgrL59+2rUqFHq3LmziouL9eqrr2rZsmV6++23tWPHDiUkJOjo0aOSpNTU1FqfX7WtsLDQ1bgULQAAAIDHbMeS7YR2In4o8t9///0aH9933326/vrr9dhjj+mZZ57RY489prIvFlaIiYmp9fmxsbGSVL1PfXF5GAAAABDG9u3bp6KiouqHaT/5yU8UHR2tTZs2SZLi4uIkSRUVFbX2LS8vr7FPfdFpAQAAADwWVEDBEPcPQp1fJSoqSu3atdNnn124jUa7du0k1X0JWNW2ui4d+yp0WgAAAAA0WHl5uY4cOaKUlBRJUvfu3RUTE6Pc3Nxa++bl5UmSevfu7WoMihYAAADAY1VzWkL9MOnzzz+vc/usWbN0/vx5DR8+XNKFpY2HDx+ubdu26cMPP6zer7S0VCtXrlRGRob69u3ramwuDwMAAABwSQsWLFBeXp4GDx6s9PR0lZaW6tVXX9XWrVv1zW9+U9OmTaved/HixdqyZYtuvfVWPfjgg0pKStKKFStUWFioTZs2ubqxpETRAgAAAHjOVkB2iC96Mp0/aNAg/fWvf9Xzzz+vzz//XBEREcrIyNDChQv10EMPVa8MJkmdO3fW9u3b9cgjj+iJJ55QZWWlevXqpddff11ZWVmux6ZoAQAAAHBJ3/3ud/Xd73633vt37dpVGzZsMDI2RQsAAADgsaBjKRji+7SEOt9LTMQHAAAA4Gt0WgAAAACPhWJ1r7rGCBd0WgAAAAD4GkULAAAAAF/j8jAAAADAY44TkO2Etn/ghDjfS+HzSgAAAACEJTotAAAAgMeCshRUiJc8DnG+l+i0AAAAAPA1Oi0AAACAx2wn9EsS205I4z1FpwUAAACAr9FpAQAAADxme7B6WKjzvRQ+rwQAAABAWKLTAgAAAHjMliU7xKt7hTrfS3RaAAAAAPganRYAAADAY0HHUjDEq4eFOt9LdFoAAAAA+BqdFgAAAMBjrB7mTvi8EgAAAABhiaIFAAAAgK9xeRgAAADgMVuW7BBPlGfJYwAAAADwCJ0WAAAAwGOOBzeXdMKo0+K6aNm7d6/Wrl2rN954QwcOHFB5ebk6deqkUaNGafr06YqPj6/1OZs2bdJTTz2lnTt3qqKiQmlpabr11lu1bNkyIy/iy1L+YCs6wTaSlRhVbiRHkl7b38FYliTF7jB3Era89zNjWZJ0IKaFsSz71GljWZJUENXXWJYVYbZR2TzN3N8QAt3M/j3i22/vN5oXF6gwlvXyN68xliVJTuU5Y1mBhNrvh5fDLikxlmXFxBjLMs2KjzOaF6isNBhm9heA4Emz73EmRSQlXOlDuKig4Z8NgWaxxrLsz08Yy5IkWeZ+1lgG398kKaJFc3NhlpnvrYBdKZn7EQMfcf2bzerVq7V8+XKNGDFCY8eOVVRUlLZu3aqZM2fqpZdeUl5enpo1a1a9/9y5czVnzhwNHTpUc+fOVVxcnD7++GPt2rXL6AsBAAAAGgvb8WBOSxjdXNJ10XLnnXcqJydHycnJ1dsmT56sjIwMLVy4UKtWrdLUqVMlSZs3b9acOXM0b948zZo1y9xRAwAAAGgyXPcce/fuXaNgqXLXXXdJknbv3l29bdGiRWrdurVycnIkSaWlpbJtM5duAQAAAI1V1c0lQ/0IF8ZeyZEjRyRJKSkpkqQzZ87onXfe0Te/+U2tWrVKqampSkxMVEJCgu6++2598sknpoYGAAAAEMaMzNYNBoOaP3++IiMjNWbMGEnS/v37FQwGlZeXpzfeeEOPPPKIevTooXfffVfPPPOMdu3apf/93/9VXFzDJly2bdu2xsd0cAAAANBYMKfFHSNFy/Tp05Wbm6tFixapS5cukqSSL1a5OX78uFasWKEJEyZIkm6//XYlJSVp7ty5ev755/XAAw+YOAQAAAAAYeqyLw+bNWuWli1bpkmTJlXPXZFUvYJYIBDQuHHjanxOdna2JGnbtm0NHreoqKjGY9++fQ3OAgAAALxkf3GfllA/wsVlFS1z5szRggULNH78eD333HM1nktLS5MkNW/eXDH/dD+Aqku7Tp48eTnDAwAAAGgCGnx52Jw5czR37lxlZ2dr5cqVsv7ppkApKSlKT0/X3//+d5WVldWYu1I1ab9169YNHR4AAABotJjT4k6DOi3z5s3T3LlzNW7cOK1evVqBQN0x48aNk+M4+tWvflVj+7PPPitJuu222xoyPAAAAIAmxHWnZfny5Xr88ceVnp6urKwsvfjiizWeT0lJ0ZAhQyRJM2bM0Msvv6wf//jH2rt3r3r06KH33ntP69at080331x9bxcAAAAAuBjXRUt+fr4k6eOPP66eUP9lAwcOrC5akpKS9O6772rWrFnasGGDVq1apbS0ND366KOaNWuWIiIiLvPwAQAAgMaHy8PccV20rFmzRmvWrKn3/i1bttSzzz5bfUkYAAAAALhh5D4tAAAAAOqPTos7l32fFgAAAAAIJTotAAAAgMfotLhDpwUAAACAr9FpAQAAADzmSLIV2k6IE9J0b9FpAQAAAOBrdFoAAAAAjzGnxR06LQAAAAB8jU4LAAAA4DE6Le7QaQEAAADgaxQtAAAAAHyNy8MAAAAAj3F5mDt0WgAAAAD4Gp0WAAAAwGN0Wtyh0wIAAADA1+i0AAAAAB5zHEtOiDshoc73Ep0WAAAAAL5GpwUAAADwmC1LtkI8pyXE+V6i0wIAAADA1+i0AAAAAB5j9TB36LQAAAAA8DU6LQAAAIDHWD3MnbArWj4dE6/IQLSRrKMljpEcSepQ9pGxLEmKSEw0FxYwe0Kf//Qzo3kmBSIijGU5waCxLEnS4UJjUUn7DhrLkqRNL7cymhfxtVRjWb3e+ZuxLEm6r3mesawHxv/IWJYkxew6ZCzLPl1iLEuSrOgoY1n2yVPGsiQp0Pwqc2EG30MkySo9YzRPlrkLKJzyCmNZkuQEbXNhAbNfB5MCV7cwmmd/fsJYVrDE7Pe9SdaN3Yzk2MFy6XMjUfCZsCtaAAAAAL9jTos7zGkBAAAA4GsULQAAAAB8jcvDAAAAAI8xEd8dOi0AAAAAfI1OCwAAAOAxx4OJ+HRaAAAAAMAjdFoAAAAAjzmSHHO3BLzoGOGCTgsAAAAAX6PTAgAAAHjMliVLIb65ZIjzvUSnBQAAAICv0WkBAAAAPMZ9Wtyh0wIAAADA1+i0AAAAAB6zHUtWiDshob4PjJfotAAAAABokLKyMnXs2FGWZWnq1Km1ni8oKNDIkSPVvHlzxcfHa8CAAXrrrbdcj0PRAgAAAKBBZs+erePHj9f53IEDB9S/f3/l5uZqxowZevLJJ1VaWqqhQ4dq8+bNrsbh8jAAAADAY47jwc0lQ5z/pz/9SU8//bR+/vOf6+GHH671fE5Ojk6dOqWdO3eqZ8+ekqT77rtP3bp105QpU7Rnzx5ZVv0uYaPTAgAAAMCVYDCoiRMnatiwYfre975X6/kzZ85o48aNGjRoUHXBIkkJCQmaMGGC9u7dq/z8/HqPR9ECAAAAeKxqyeNQP0Llqaee0p49e7Rs2bI6n9+1a5cqKirUr1+/Ws9lZmZKkquihcvDAAAAgDCWkZGhQOAfvYqioqLLyjt48KAef/xxzZ49Wx06dNChQ4dq7XP06FFJUmpqaq3nqrYVFhbWe0yKFgAAAMBjjfnmkpMnT1bHjh310EMPXXSfsrIySVJMTEyt52JjY2vsUx8ULQAAAEAY27dvn5KSkoxkrV27Vm+++abeeecdRUVFXXS/uLg4SVJFRUWt58rLy2vsUx8ULQAAAIDHGuPNJSsqKvTQQw/ptttuU5s2bbR//35J/7jM6/Tp09q/f79atmypdu3a1Xjuy6q21XXp2MUwER8AAADAJZ09e1bHjx/Xpk2blJGRUf0YNGiQpAtdmIyMDK1cuVLdu3dXTEyMcnNza+Xk5eVJknr37l3vsem0AAAAAB5rjPdpiY+P1/r162ttP378uH74wx9q2LBh+sEPfqDrr79eCQkJGj58uF555RV9+OGH6tGjhySptLRUK1euVEZGhvr27VvvsSlaAAAAAFxSVFSU7rzzzlrbq1YP69SpU43nFy9erC1btujWW2/Vgw8+qKSkJK1YsUKFhYXatGlTvW8sKVG0AAAAAJ670GkJ9ephIY2/pM6dO2v79u165JFH9MQTT6iyslK9evXS66+/rqysLFdZFC0AAAAAGqxDhw5yLlIhde3aVRs2bLjsMShaAAAAAI815vu0XAmsHgYAAADA1yhaAAAAAPgal4cBAAAAHnO+eIR6jHBBpwUAAACAr9FpAQAAADzGRHx36LQAAAAA8LWw67Q4Z8/KsYJX+jBqibi6hdE852y5sSy71FyWJAXi48yFBc1+LW2D/29WlOFvH4Ov1amsNJYlSRGtWxnNc4pLjGXtzIw3liVJ/3PDD41l/cdLS41lSdKA/InGstJnJBnLkiSdPG02zyDb4PnmVJ4zlhUKVmyMubBzZl+ryWMz/bdju6zMWFYgxuDXQFLgqmRjWVZSorEsSdozt7mxrJs6HzCSc+5MpXSLkajQY1KLK646LXv37tXs2bOVmZmpVq1aKTExUT179tTChQt15syZr/zcZ599VpZlybIsffbZZ5d10AAAAACaDld/Kl69erWWL1+uESNGaOzYsYqKitLWrVs1c+ZMvfTSS8rLy1OzZs1qfd7Ro0f1yCOPKCEhQaWlpcYOHgAAAGiUPJjTojCa0+KqaLnzzjuVk5Oj5OR/tConT56sjIwMLVy4UKtWrdLUqVNrfd6UKVPUqVMndevWTWvXrr38owYAAADQZLi6PKx37941CpYqd911lyRp9+7dtZ77wx/+oI0bN+q5555TREREAw8TAAAACB+O480jXBhZPezIkSOSpJSUlBrbi4uLNXXqVN1///3q27eviaEAAAAANDGXvfxRMBjU/PnzFRkZqTFjxtR47qc//als29bixYsvd5ha2rZtW+Nj27aNjwEAAACEAvdpceeyi5bp06crNzdXixYtUpcuXaq3b9++Xb/61a+0bt26Oi8pAwAAAID6uKyiZdasWVq2bJkmTZqknJyc6u2VlZWaNGmSsrKydM8991z2QdalqKioxsfFxcUURwAAAGgcHCv0q3vRaZHmzJmjBQsWaPz48XruuedqPLd8+XLt2bNHS5Ys0f79+6u3l5RcuMHXwYMHVVxcrI4dOzZ0eAAAAABNRIOKljlz5mju3LnKzs7WypUrZVk1q7jDhw/Ltm19+9vfrvPz+/btq/j4eO7ZAgAAAOCSXBct8+bN09y5czVu3DitXr1agUDtBcjGjx+vb33rW7W2L1++XNu2bdPq1avVvHnzhh0xAAAA0Mh5sSRxOC157KpoWb58uR5//HGlp6crKytLL774Yo3nU1JSNGTIEPXo0UM9evSo9fl//OMfJUnDhw9Xy5YtL+OwAQAAADQVroqW/Px8SdLHH3+s7OzsWs8PHDhQQ4YMMXNkAAAAQLhyvniEeoww4ermkmvWrJHjOBd9bNu2rV6fT5cFAAAAQH1d9n1aAAAAALjDzSXdcdVpAQAAAACv0WkBAAAAroQwmnMSanRaAAAAAPganRYAAADAY8xpcYdOCwAAAABfo9MCAAAAeI37tLhCpwUAAACAr1G0AAAAAPA1Lg8DAAAAPGd98Qj1GOGBTgsAAAAAX6PTAgAAAHiNifiu0GkBAAAA4Gt0WgAAAACv0WlxhU4LAAAAAF+j0wIAAAB4zbEuPEI9Rpig0wIAAADA1+i0AAAAAB5znAuPUI8RLui0AAAAAPA1Oi0AAACA11g9zBU6LQAAAAB8Lew6LcGSUllWlJEsKyLCSI4kWc1ijWVJMnqRohVl9jRwyivMhQXMrnoRiI0xmmeSEwwayzJ57kqSKs8ZjbNLzxjLCsQ3M5YlSZH7jhjLGtvz/xnLkqR0FRnLynr7kLEsSfr94RuNZbWaUGIsy7RAYoLRPPvUaaN5JjlB22ieoR/NF7LizH7fyzb3Wp0Ss+ev1THdWNZff5JoLEuSMp4z93Pr0/8pN5Jz3jH78yqkWD3MFTotAAAAAHyNogUAAACAr4Xd5WEAAACA31nOhUeoxwgXdFoAAAAA+BqdFgAAAMBrLHnsCp0WAAAAAL5GpwUAAADwGkseu0KnBQAAAICv0WkBAAAAvMacFlfotAAAAADwNTotAAAAgNfotLhCpwUAAACAr9FpAQAAALxGp8UVOi0AAAAAfI1OCwAAAOA17tPiCp0WAAAAAL5G0QIAAADA17g8DAAAAPCY5Vx4hHqMcEGnBQAAAICv0WkBAAAAvMaSx67QaQEAAADgaxQtAAAAAHyNogUAAACArzGnBQAAAPCYJQ9WDwttvKfotAAAAADwNTotAAAAgNcc68Ij1GOECTotAAAAAHyNTgsAAADgNe7T4gqdFgAAAAC+RtECAAAAwNcoWgAAAACvOR49DCooKNDYsWPVtWtXJScnKy4uTtdee60eeughFRUV1bn/yJEj1bx5c8XHx2vAgAF66623GjQ2c1oAAAAAXNKRI0dUVFSk22+/XWlpaYqMjNRHH32kX//61/r973+vDz74QK1bt5YkHThwQP3791dkZKRmzJih5ORkrVixQkOHDtVrr72mrKwsV2NTtAAAAAAesxwPbi5pOP+WW27RLbfcUmv7v/zLv2j06NFas2aNZsyYIUnKycnRqVOntHPnTvXs2VOSdN9996lbt26aMmWK9uzZI8uq/5LMXB4GAAAAoMHat28vSTp58qQk6cyZM9q4caMGDRpUXbBIUkJCgiZMmKC9e/cqPz/f1RgULQAAAIDXGuGclirl5eX67LPPdOTIEb3xxhu6//77JUm33XabJGnXrl2qqKhQv379an1uZmamJLkuWsLu8rBAs1gFrGgjWXZ5hZEcSbJLSo1lSVJE86uMZdmnThvLkiTHCZoLs83W1VZCrLEs50yZsSxJkm3uncWKiTGWJUnO+fNm84LmzhGrRXNjWZLklJwxlmWXFBvLuhBo7hx585ttjWVJ0tVfjzCWlfHHz4xlSdKo5v9jLGv6/CnGsiSp9ZsfG81zikvMhUWYff+1Db5nRqS1MZYlSYFoM783SNJP3/6jsSxJmr67vbGsb0z/3FiWJAU/PmIsK9DczHt5wK6UzL6FhIWMjAwFAv/4nq5r0rwbK1eu1LRp06o/7tChg9auXasBAwZIko4ePSpJSk1NrfW5VdsKCwtdjRl2RQsAAADge4345pIjR47Utddeq9LSUv35z3/Wxo0b9dln/6gWy8ou/JEipo4/osbGxtbYp74oWgAAAIAwtm/fPiUlJRnLS0tLU1pamqQLBcwdd9yhPn36qKysTDk5OYqLi5MkVVTUvmqpvLxckqr3qS9Xvd+9e/dq9uzZyszMVKtWrZSYmKiePXtq4cKFOnPmH5dUOI6jtWvX6u6771bnzp0VFxen9PR0jRgxQu+//76rAwQAAADCTdXqYaF+eOH666/XDTfcoF/+8peSpHbt2kmq+xKwqm11XTr2VVwVLatXr9ZTTz2lTp06afbs2XryySfVpUsXzZw5U/3799fZs2clXaiqxo0bp4KCAt19991aunSpJk2apD/96U/q16+f1q5d6+ogAQAAAPjX2bNndeLECUlS9+7dFRMTo9zc3Fr75eXlSZJ69+7tKt/V5WF33nmncnJylJycXL1t8uTJysjI0MKFC7Vq1SpNnTpVkZGR2rZtmwYOHFjj8ydOnKhu3brp4Ycf1pgxY2pMCAIAAACaDMe68Aj1GAYdO3ZMbdrUXghj69at2r17twYNGiTpwtLGw4cP1yuvvKIPP/xQPXr0kCSVlpZq5cqVysjIUN++fV2N7apouVhFdNddd2nhwoXavXv3hdDIyFoFiySlpKRo4MCBeuWVV/Tpp5/W+aIBAAAA+M8DDzygoqIi3XzzzWrfvr3Ky8u1c+dO/f73v1diYqKWLFlSve/ixYu1ZcsW3XrrrXrwwQeVlJSkFStWqLCwUJs2bXJ1Y0nJ0ET8I0cuLHmXkpJSr32jo6N11VVXmRgaAAAAaHwa4eph99xzj37729/qhRde0PHjx2VZltq3b6/7779fP/nJT5Senl69b+fOnbV9+3Y98sgjeuKJJ1RZWalevXrp9ddfV1ZWluuxL7toCQaDmj9/viIjIzVmzJiv3PfVV1/V//zP/2jcuHHVy501VNu2Ne8xYNv2ZeUBAAAAuLjRo0dr9OjR9d6/a9eu2rBhg5GxL7tomT59unJzc7Vo0SJ16dLlovvt27dP48aNU2pqao3WEQAAAAB8lcsqWmbNmqVly5Zp0qRJysnJueh+Bw8e1C233CLLsvTaa6+pVatWlzOspNp38iwuLq6xQAAAAADgV14sSezVksdeaHDRMmfOHC1YsEDjx4/Xc889d9H9Dh06pMGDB6u0tFRbtmxR9+7dGzokAAAAgCaoQUXLnDlzNHfuXGVnZ2vlypUXnf1/6NAhDRo0SKdPn9bmzZt1ww03XNbBAgAAAGGhEU7Ev5JcFy3z5s3T3LlzNW7cOK1evfqi91o5fPiwBg8erFOnTunNN9/UjTfeeNkHCwAAAKDpcVW0LF++XI8//rjS09OVlZWlF198scbzKSkpGjJkiEpKSjR48GAdOnRI06ZNU0FBgQoKCmrsO2TIkHotkQwAAACEHQ/mtDTZTkt+fr4k6eOPP1Z2dnat5wcOHKghQ4bo888/18GDByVJS5curTNr69atFC0AAAAALslV0bJmzRqtWbPmkvt16NBBjhNGpR0AAABgEnNaXKl7QgoAAAAA+MRl31wSAAAAgEt0Wlyh0wIAAADA1+i0AAAAAB6zPFg9LOSrk3mITgsAAAAAX6NoAQAAAOBrFC0AAAAAfI2iBQAAAICvMREfAAAA8BpLHrtCpwUAAACAr9FpAQAAADzGksfu0GkBAAAA4Gt0WgAAAIArIYw6IaFGpwUAAACAr9FpAQAAALzG6mGu0GkBAAAA4Gt0WgAAAACPsXqYO3RaAAAAAPganRYAAADAa8xpcSX8ipaICMmKuNJHUUsgLs5onn2mzGieSVZMjLGsQFKisSxJCh7/zFhWINHssamy0liUfbbcWFYoBKKjjGWd/9shY1mSFHF1C2NZgWaxxrIkyQnaxrICVyUby5KkYMHfjGXtyTR7EcCi1v/PWFb5GMtYliRZa819TSXp/tT/NZb1+qnrjWVJ0nea/8VYVrm9z1iWJN2RUGws6zvfNHe+SVKbsuPGsuzyCmNZki78zmWIfeq0mRznnJEc+A+XhwEAAADwtfDrtAAAAAA+x0R8d+i0AAAAAPA1Oi0AAACA15iI7wqdFgAAAAC+RqcFAAAA8BqdFlfotAAAAADwNTotAAAAgMdYPcwdOi0AAAAAfI1OCwAAAOA15rS4QqcFAAAAgK/RaQEAAAC8RqfFFTotAAAAAHyNTgsAAADgMVYPc4dOCwAAAABfo2gBAAAA4GtcHgYAAAB4jYn4rtBpAQAAAOBrdFoAAAAAjzER3x06LQAAAAB8jU4LAAAA4DXmtLhCpwUAAACAr9FpAQAAALxGp8UVOi0AAAAAfI1OCwAAAOAx64tHqMcIF3RaAAAAAPganRYAAADAa8xpcYVOCwAAAABfo9MCAAAAeMxyQn/H+lDne4lOCwAAAABfo2gBAAAA4GtcHgYAAAB4jYn4rtBpAQAAAOBrdFoAAACAKyGMOiGhRqcFAAAAgK+FXafFioyUZZl5WVZEhJEcSXIqKoxlSZJTWWksK6Ll1cayJMkuLjGWdf6T48ayJCkiId5YlsmvgSTZZ8uNZUUkJRjLuhBo7ntBkuzSM8ayrEizb2N2camxLCs6yliWZPYcsc+UGcuSpMh2bYxlBY99YixLkpwSc1/T1Kf/11iWJAWfizGat7y0i7GsiMRoY1mStKyyp7GsQPOrjGVJ0qqzZ41l2WfN/tySbe5P8VaE2b9Vm3z/NfZ7kmObyfEASx67Q6cFAAAAgK+FXacFAAAA8D1WD3OFTgsAAAAAX3NdtOzdu1ezZ89WZmamWrVqpcTERPXs2VMLFy7UmTO1r1MvKCjQyJEj1bx5c8XHx2vAgAF66623jBw8AAAA0BhVzWkJ9SNcuC5aVq9eraeeekqdOnXS7Nmz9eSTT6pLly6aOXOm+vfvr7Nfmsx24MAB9e/fX7m5uZoxY4aefPJJlZaWaujQodq8ebPRFwIAAAAgPLme03LnnXcqJydHycnJ1dsmT56sjIwMLVy4UKtWrdLUqVMlSTk5OTp16pR27typnj17SpLuu+8+devWTVOmTNGePXtkWZaZVwIAAAA0FsxpccV1p6V37941CpYqd911lyRp9+7dkqQzZ85o48aNGjRoUHXBIkkJCQmaMGGC9u7dq/z8/AYeNgAAAICmwthE/CNHjkiSUlJSJEm7du1SRUWF+vXrV2vfzMxMSaJoAQAAAHBJRpY8DgaDmj9/viIjIzVmzBhJ0tGjRyVJqamptfav2lZYWNjgMdu2bVvjY9tuPDcTAgAAQNPGzSXdMVK0TJ8+Xbm5uVq0aJG6dLlwN96ysgt3W46JqX2339jY2Br7AAAAAMDFXHbRMmvWLC1btkyTJk1STk5O9fa4uDhJUkVFRa3PKS8vr7FPQxQVFdX4uLi4uM65NgAAAIDvMBHflcua0zJnzhwtWLBA48eP13PPPVfjuXbt2kmq+xKwqm11XToGAAAAwH+u5P0aG9xpmTNnjubOnavs7GytXLmy1tLF3bt3V0xMjHJzc2t9bl5enqQLK5EBAAAATU4j7LSsXr1ay5cv14gRIzR27FhFRUVp69atmjlzpl566SXl5eWpWbNmkv5xv8bIyEjNmDFDycnJWrFihYYOHarXXntNWVlZrsZuUNEyb948zZ07V+PGjdPq1asVCNRu2CQkJGj48OF65ZVX9OGHH6pHjx6SpNLSUq1cuVIZGRnq27dvQ4YHAAAA4LEreb9G10XL8uXL9fjjjys9PV1ZWVl68cUXazyfkpKiIUOGSJIWL16sLVu26NZbb9WDDz6opKQkrVixQoWFhdq0aRM3lgQAAECT1BhXD7vYVVJ33XWXFi5cWO/7Nc6ePVv5+fmuGhiui5aqe6t8/PHHys7OrvX8wIEDq4uWzp07a/v27XrkkUf0xBNPqLKyUr169dLrr7/uuiUEAAAAwH8aer/GkBYta9as0Zo1a+q9f9euXbVhwwa3wwAAAADhy8M5LRkZGTWmc/zzKryXw6v7NRq5TwsAAACApser+zVStAAAAAAesxxHlhPaVktV/r59+5SUlGQ838v7NV7WfVoAAAAAND1e36+RTgsAAADgtUZ4n5YqV+J+jXRaAAAAANSLm/s1btu2TR9++GH19su5XyOdFgAAAACXdCXv10jRAgAAAHisMd5c8krer5GiBQAAAMAlXcn7NVK0AAAAAF5rxBPxrwQm4gMAAADwNTotAAAAgMca45yWK4lOCwAAAABfo9MCAAAAeI05La7QaQEAAADga3RaAAAAAI8xp8UdOi0AAAAAfI1OCwAAAOA15rS4QqcFAAAAgK+FXafFOXtWjhU0kxU0kxMKVnS0sSz71GljWZLkOObK+kB0lLEsSQoWFxvLCiQmGsuSpEBsjLEsJ2gby5IknTtvNs+kiAijcZZlGctyKs8Zy5KkiObJxrKCJ81+3+u8uXPEatbMWJbfOZWVRvMCCQnGshyDX1NJshLijWUFT5w0liVJEW1amws7c9ZcliQFDL4nGf7Z4FRUGMuK7JBuJMexK6RDRqLgM2FXtAAAAACNQThNlA81Lg8DAAAA4Gt0WgAAAACvOc6FR6jHCBN0WgAAAAD4Gp0WAAAAwGPcXNIdOi0AAAAAfI1OCwAAAOA1bi7pCp0WAAAAAL5GpwUAAADwmGVfeIR6jHBBpwUAAACAr9FpAQAAALzGnBZX6LQAAAAA8DU6LQAAAIDHuE+LO3RaAAAAAPgaRQsAAAAAX+PyMAAAAMBrjnPhEeoxwgSdFgAAAAC+RqcFAAAA8BgT8d2h0wIAAADA1+i0AAAAAF7j5pKu0GkBAAAA4Gt0WgAAAACPMafFHTotAAAAAHyNTgsAAADgNe7T4gqdFgAAAAC+RqcFAAAA8BhzWtyh0wIAAADA1+i0AAAAAF7jPi2u0GkBAAAA4GsULQAAAAB8jcvDAAAAAI8xEd8dOi0AAAAAfI1OCwAAAOA127nwCPUYYYJOCwAAAABfo9MCAAAAeI0lj10Jv6IlIkKyIoxEBWLNNaLs8gpjWZJkRZg7NscJozP6EgJxccayLMsyliVJahZrLCp48rSxLEkKREcZzXMqzH0/WFHRxrIkyXGCxrICCfHGsiTJqTxnLCsiKcFYliQ5ZWfNhdm2uSxJwbIyY1mBmBhjWRcCzV7w4Bj8WRMw+J4kScETp4xlRaa0MpYlScFjnxrLCrS4yliWJOlsubEo2+D3giQFEsy9jwT/XmgmxzH3Pgl/Cb+iBQAAAPA5Sx6sHhbaeE8xpwUAAACAr9FpAQAAALzmOBceoR4jTNBpAQAAAOBrrouWxYsXa9SoUerYsaMsy1KHDh2+cv/XXntNt9xyi9q0aaP4+Hh16dJFP/7xj/XJJ5809JgBAACARs1yvHmEC9eXhz366KNq0aKFevXqpVOnTn3lvitWrNCkSZN044036qc//ani4+OVn5+vp59+Wq+88oo++ugjxcebXV0HAAAAQHhxXbQcOHBAHTt2lCRdd911Ki0tvei+v/jFL9S2bVu99957io29sHTipEmTlJKSooULF+rNN9/UyJEjG3bkAAAAAJoE10VLVcFSH8XFxWrRokV1wVKlXbt2kkSXBQAAAE0TN5d0JaQT8YcOHaq//vWvevjhh/V///d/+vvf/65XXnlF8+fP18CBA3XzzTeHcngAAAAAYSCkSx4/88wzKisr0zPPPKN/+7d/q94+fvx4/epXv1JERMPvXN+2bdsaH9uG76AMAAAAhIrlOLJCvCRxqPO9FNKiJSoqSunp6br99ts1fPhwxcXF6b//+7+1evVqRUREaMWKFaEcHgAAAEAYCFnRYtu2hg0bpvPnz2v79u2yLEuSdOedd+rqq6/Wz372M911113KyspqUH5RUVGNj4uLi5WcnHzZxw0AAACEnP3FI9RjhImQzWl577339O677+qOO+6oLliqjBo1SpL09ttvh2p4AAAAAGEiZJ2WwsJCSVIwGKz13Pnz52v8CwAAADQlzGlxJ2Sdlm984xuSpHXr1uncuXM1nluzZo0kqU+fPqEaHgAAAECYcN1peeGFF3T48GFJ0vHjx1VZWakFCxZIktq3b69x48ZJknr06KE77rhDL7/8snr37q177723eiL+f/3XfykzM1Pf/e53Db4UAAAAoJHgPi2uuC5aVq1aVWsuyqxZsyRJAwcOrC5aJOnFF1/U008/rXXr1mn27NmybVvt27dXTk6OHnvsscta8hgAAABA0+C6aNm2bVu9942OjtaMGTM0Y8YMt8MAAAAA4ctxLjxCPUaYCNmcFgAAAAAwIaQ3lwQAAABQm+VceIR6jHBBpwUAAACAr1G0AAAAAPA1Lg8DAAAAvMZEfFfotAAAAADwNTotAAAAgMcs+8Ij1GOECzotAAAAAHyNTgsAAADgNea0uEKnBQAAAEC9LF68WKNGjVLHjh1lWZY6dOjwlfu///77ysrKUmJiopKSkjRs2DB98MEHrsel0wIAAAB4zfniEeoxDHv00UfVokUL9erVS6dOnfrKffPy8jRo0CClpqZq3rx5kqRly5ZpwIAB2rFjh7p3717vcSlaAAAAANTLgQMH1LFjR0nSddddp9LS0ovu+6Mf/UjR0dF65513lJqaKkkaPXq0unbtqocfflhvvPFGvcfl8jAAAADAY5bjePIwrapguZT9+/crPz9fo0aNqi5YJCk1NVWjRo3S5s2bdezYsXqPS9ECAAAAwKj8/HxJUr9+/Wo9l5mZKcdxtHPnznrncXkYAAAA4DUPVw/LyMhQIPCPXkVRUVFox5V09OhRSarRZalSta2wsLDeeXRaAAAAABhVVlYmSYqJian1XGxsbI196oNOCwAAAOA1R1Ko71j/RSNn3759SkpKCvFgNcXFxUmSKioqaj1XXl5eY5/6CLuixamolGOZabU5waCRHEmyIiKMZUmSXccJ0FARrVsZy5Ik+8QpY1nWVWa/wZySEnNZ588by5KkQFwzY1kRCfHGsiSz55skRVyVbCzLOWf262C7+KvPpTiV54xlSYbfkwyfI4oy9x5nf37CWJYkBZqZ+94y+TWQJJnOc8z9BhQsLjaWJUlWpLlfOZzzZv/fTB6bDL9fmvw6BFz8glgfTrm512rqa2A5tmT2xwIaqF27dpLqvgSsaltdl45dDJeHAQAAADCqT58+kqTc3Nxaz+Xl5cmyLN144431zqNoAQAAADzWWJc8rq/OnTurd+/eWr9+ffWkfOnCBP3169fr5ptvVps2beqdF3aXhwEAAAAIjRdeeEGHDx+WJB0/flyVlZVasGCBJKl9+/YaN25c9b7PPPOMBg8erAEDBmjatGmSpKVLl8q2bS1ZssTVuBQtAAAAgNccebDksfnIVatW6e23366xbdasWZKkgQMH1iha+vfvr23btmnmzJmaOXOmLMtS//79tX79evXo0cPVuBQtAAAAAOpl27Ztrvbv16+ftmzZctnjUrQAAAAAXvPw5pLhgIn4AAAAAHyNTgsAAADgNVuS5cEYYYJOCwAAAABfo9MCAAAAeMyL+6hcyfu0mEanBQAAAICv0WkBAAAAvMbqYa7QaQEAAADgaxQtAAAAAHyNy8MAAAAAr3F5mCt0WgAAAAD4Gp0WAAAAwGt0Wlyh0wIAAADA1+i0AAAAAF6zJVkejBEm6LQAAAAA8DU6LQAAAIDHLMeRFeI5J6HO9xKdFgAAAAC+RqcFAAAA8Bqrh7lCpwUAAACAr9FpAQAAALxmO5IV4k6ITacFAAAAADxBpwUAAADwGnNaXKHTAgAAAMDXKFoAAAAA+BqXhwEAAACe8+DyMHF5GAAAAAB4gk4LAAAA4DUm4rtCpwUAAACAr9FpAQAAALxmOwr5nBNuLgkAAAAA3gi7TksgIU4BK9pMmMnqNGCZy5LknDtvLqv0jLEsSbIizNXC9qnTxrKMC9pG484f+8RcWCDCXJakyJRWRvNsg+ecU3nOWJYkBWJizIVZZr/vTb4nmfwaSFIgMcFYVkRCvLEsSXIMXtMdiDT7Y9OuqDCaZ0Ub+vknKXB1C2NZktn3c6eszFiWJFlxccaygp99ZixLkgKJicay7NJSY1mSFGjWzFyYbfZnaqPg2BceoR4jTNBpAQAAAOBrYddpAQAAAHyP1cNcodMCAAAAwNfotAAAAABeY/UwV+i0AAAAAPA1Oi0AAACA15jT4orrTsvixYs1atQodezYUZZlqUOHDpf8nBdeeEE33XSTkpKSlJCQoOuuu07z589vyPECAAAAaGJcd1oeffRRtWjRQr169dKpU6cuuf/3v/99Pf/887rjjjt07733KhAI6ODBgzp8+HBDjhcAAABAE+O6aDlw4IA6duwoSbruuutU+hU3Klq1apV+85vf6Le//a3GjRvX8KMEAAAAwokjDy4PC228l1xfHlZVsFyK4zhavHixevXqVV2wlJSUGL0zMQAAAIDwF7LVwwoKCnTgwAH1799f8+fP19VXX62kpCRdddVVmjx58ld2aAAAAICwVjURP9SPMBGy1cMKCgokSf/+7/+uyspKzZw5U1//+tf1xz/+Ub/61a9UUFCgt956S5ZlNSi/bdu2NT62bfuyjxkAAACA/4SsaCkpKZEkHT9+XG+++aaysrIkSXfccYccx9Hzzz+v119/Xd/+9rdDdQgAAACAP9m2pBD/0T2M/qgfssvDmjVrJklKTU2tLliqZGdnS5K2bdvW4PyioqIaj3379jU4CwAAAIB/hazTkpaWJklq06ZNreeqLu06efJkqIYHAAAA/IubS7oSsk5L9+7dFRsbq8LCwlrPHTlyRJLUunXrUA0PAAAAIEyErGiJi4vTHXfcoWPHjukPf/hDjeeeffZZSdJtt90WquEBAAAA/2L1MFdcXx72wgsvVN/N/vjx46qsrNSCBQskSe3bt69xE8lFixZp8+bNGjNmjKZNm6YOHTro1Vdf1aZNm3Tfffepf//+hl4GAAAAgHDlumhZtWqV3n777RrbZs2aJUkaOHBgjaIlPT1deXl5euyxx/Sb3/xGp0+fVqdOnfSLX/xCDz744GUeOgAAANBI2Y5Cfst6uwl3Wtyu+NWhQwetW7fO7TAAAAAAICmEc1oAAAAAwISQLXkMAAAAoG6OY8txQnvzx1Dne4lOCwAAAABfo9MCAAAAeM1xQj9RPoyWPKbTAgAAAMDX6LQAAAAAXnM8WPKYTgsAAAAAeINOCwAAAOA125asEK/uxephAAAAAOANOi0AAACA15jT4gqdFgAAAAC+RqcFAAAA8Jhj23JCPKfFYU4LAAAAAHiDTgsAAADgNea0uEKnBQAAAICvhV2nxTl3Xo7lw1rMMXtMTuU5c2EBy1yWLnwNTIlIiDeWJUl2RYWxrIhWLY1lSZJ94qSxLCcYNJYlScHjnxnNs2JijGUFkhKMZUlS8ORpY1mB+ChjWZKMrrdvRZr7GpjmVFaazQsa/H9LTjSWJUmBKLM/hu3SM8aynFPmvhckyYqIMJZl9GegJKnMXJTh30FMfj8E4uKMZUmSXWbu/y2QYOi93HGkcjNR8JewK1oAAAAA37MdyeLysPryYUsCAAAAAP6BTgsAAADgNceRFOIliem0AAAAAIA36LQAAAAAHnNsR06I57Q4dFoAAAAAwBt0WgAAAACvObZCP6clxPkeotMCAAAAwNfotAAAAAAeY06LO3RaAAAAAPganRYAAADAa8xpcYVOCwAAAABfC5tOS9U1e8/v+bmSkpKu8NEAAADAa8XFxfra19Y1irkc53VOCvFhnte50A7gobApWkpKSiRJX/va167wkQAAAOBKKikpUXJy8pU+jDpFR0erTZs2eu/Yq56M16ZNG0VHR3syVihZTmMoRevBtm0dPXpUiYmJsizrSh8ODMjIyJAk7du37wofCfyE8wIXw7mBunBeNC2O46ikpETt2rVTIODfWRDl5eWqrKz0ZKzo6GjFxsZ6MlYohU2nJRAIKC0t7UofBgyqerPhcj98GecFLoZzA3XhvGh6/Nph+bLY2NiwKCS85N8SFAAAAABE0QIAAADA58JmTgsAAACA8ESnBQAAAICvUbQAAAAA8DWKFgAAAAC+RtECAAAAwNcoWgAAAAD4GkULAAAAAF+jaAEAAADgaxQtAAAAAHyNogUAAACAr1G0AAAAAPA1ihYAAAAAvkbRAgAAAMDXKFpwRezdu1ezZ89WZmamWrVqpcTERPXs2VMLFy7UmTNnau1fUFCgkSNHqnnz5oqPj9eAAQP01ltvXYEjh9fKysrUsWNHWZalqVOn1nqec6NpOXHihH784x+rc+fOio2NVatWrTR48GC9++67NfZ7//33lZWVpcTERCUlJWnYsGH64IMPrsxBI6RKS0u1aNEide/eXYmJiWrZsqX69++vNWvWyHGcGvtyXgCNV+SVPgA0TatXr9by5cs1YsQIjR07VlFRUdq6datmzpypl156SXl5eWrWrJkk6cCBA+rfv78iIyM1Y8YMJScna8WKFRo6dKhee+01ZWVlXeFXg1CaPXu2jh8/XudznBtNy+HDhzVo0CCVlpbqBz/4ga655hqdPn1au3btUmFhYfV+eXl5GjRokFJTUzVv3jxJ0rJlyzRgwADt2LFD3bt3v1IvAYbZtq1vf/vb2rFjh7KzszVt2jSVlZXpd7/7ncaPH6//+7//089+9jNJnBdAo+cAV0B+fr5z6tSpWtsfe+wxR5KzdOnS6m2jRo1yAoGA8+c//7l6W0lJiZOenu5cc801jm3bXhwyroCdO3c6ERERzpIlSxxJzpQpU2o8z7nRtHzrW99y0tLSnKNHj37lfn369HESExOdI0eOVG87cuSIk5iY6AwZMiTUhwkP7dixw5HkTJ8+vcb2iooK5+tf/7qTnJxcvY3zAmjcuDwMV0Tv3r2VnJxca/tdd90lSdq9e7ck6cyZM9q4caMGDRqknj17Vu+XkJCgCRMmaO/evcrPz/fkmOGtYDCoiRMnatiwYfre975X63nOjablnXfe0XvvvacZM2aobdu2OnfunMrKymrtt3//fuXn52vUqFFKTU2t3p6amqpRo0Zp8+bNOnbsmJeHjhAqLi6WJLVr167G9ujoaLVs2VLx8fGSOC+AcEDRAl85cuSIJCklJUWStGvXLlVUVKhfv3619s3MzJQkfjENU0899ZT27NmjZcuW1fk850bT8uqrr0qS0tPTNXz4cDVr1kzx8fG65pprtHbt2ur9qr7mFzsvHMfRzp07vTlohFzfvn111VVX6ec//7nWr1+vjz/+WHv27FFOTo527typOXPmSOK8AMIBc1rgG8FgUPPnz1dkZKTGjBkjSTp69Kgk1fjLWJWqbV++lh3h4eDBg3r88cc1e/ZsdejQQYcOHaq1D+dG01JQUCBJmjhxojIyMvT888+rsrJSS5Ys0bhx43Tu3DmNHz+e86KJad68uTZu3KgJEyZo9OjR1dsTExP18ssva+TIkZJ4vwDCAUULfGP69OnKzc3VokWL1KVLF0mqvvwjJiam1v6xsbE19kH4mDx5sjp27KiHHnroovtwbjQtJSUlki78Mrp161ZFR0dLkkaOHKmOHTvq0UcfVXZ2NudFE5SQkKDrrrtOI0aMUP/+/XXixAktX75cY8aM0YYNGzRkyBDOCyAMULTAF2bNmqVly5Zp0qRJysnJqd4eFxcnSaqoqKj1OeXl5TX2QXhYu3at3nzzTb3zzjuKioq66H6cG01L1WqC99xzT3XBIl34S/uIESP029/+VgUFBZwXTcxHH32k/v3766mnntLkyZOrt99zzz267rrrNHHiRB04cIDzAggDzGnBFTdnzhwtWLBA48eP13PPPVfjuarJlXW17au21dXuR+NUUVGhhx56SLfddpvatGmj/fv3a//+/Tp8+LAk6fTp09q/f79OnTrFudHEpKWlSZLatGlT67m2bdtKkk6ePMl50cQ89dRTKi8v16hRo2psj4uL03e+8x0dPnxYhw4d4rwAwgBFC66oOXPmaO7cucrOztbKlStlWVaN57t3766YmBjl5ubW+ty8vDxJF1YiQ3g4e/asjh8/rk2bNikjI6P6MWjQIEkXujAZGRlauXIl50YT07dvX0n/WKzjy6q2tW7dWn369JGki54XlmXpxhtvDOGRwktVBUcwGKz13Pnz56v/5bwAGj/Lcf7pdrGAR+bNm6fHH39c48aN05o1axQI1F1Djxo1Sq+88or+9Kc/qUePHpIu3AG5W7duiomJUUFBQa1iB43TuXPntGHDhlrbjx8/rh/+8IcaNmyYfvCDH+j666/XNddcw7nRhJw8eVLt27dXUlKS9uzZo4SEBElSUVGRMjIylJqaWj1Zv0+fPiooKNCePXuq/8J+9OhRXXvtterbt682b958xV4HzHrwwQf19NNP62c/+5lmzJhRvf3UqVP6xje+ofLych0/flwRERGcF0AjR9GCK2L58uWaOnWq0tPTNX/+/FoFS0pKioYMGSLpwvr6ffv2VVRUlB588EElJSVpxYoV+uijj7Rp0yYNHTr0SrwEeOjQoUP6+te/rilTptRYAplzo2n59a9/rfvvv1/dunXT97//fVVWVurZZ59VUVGR/vjHP+rWW2+VJO3YsUODBw9WWlqapk2bJklaunSpPvnkE23fvr26wEXjd/jwYfXq1UsnT57U2LFjddNNN+nEiRNasWKFDh06pOXLl+uHP/yhJM4LoNG7kne2RNOVnZ3tSLroY+DAgTX2/+tf/+qMGDHCSU5Odpo1a+bcdNNNzptvvnllDh6eO3jwoCPJmTJlSq3nODealpdfftn55je/6cTFxTkJCQnOkCFDnPfee6/Wfjt27HBuvvlmJz4+3klISHBuvfVWZ+fOnVfgiBFq+/fvd+677z4nNTXViYyMdBITE50BAwY4L7/8cq19OS+AxotOCwAAAABfYyI+AAAAAF+jaAEAAADgaxQtAAAAAHyNogUAAACAr1G0AAAAAPA1ihYAAAAAvkbRAgAAAMDXKFoAAAAA+BpFCwAAAABfo2gBAAAA4GsULQAAAAB8jaIFAAAAgK9RtAAAAADwtf8P/nkVfNmV8zEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)\n", + "plt.imshow(dps_new_f.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15, 30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 3\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dps.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 4 s" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_t = dps.rebin_time(dt_new=6.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 6.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dps_new_t.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzgAAAJlCAYAAAAW61cfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABf9ElEQVR4nO3de3gU9b3H8c9sroQkiIpAgoCBiAoIIlBI5QFs8Ebh4CWoKOaggLRCD6K1hAKGe1uLlwNUWy7Fgugpx55ii/V4A60SPClqkbZyK6CEWLFcQ8ht93f+wGyNCbtJyOxMZt+v59lHmZmd+WQyu9nvfmd+YxljjAAAAADAA3xOBwAAAACApkKBAwAAAMAzKHAAAAAAeAYFDgAAAADPoMABAAAA4BkUOAAAAAA8gwIHAAAAgGdQ4AAAAADwDAocAAAAAJ5BgQMAAADAMxpc4OzcuVN33XWXLr/8crVq1UpJSUm67LLLNG3aNBUXF9e5/KhRo9S6dWu1bNlSgwYN0ptvvtkk4QEAAADgqyxjjGnIE9544w0tWLBAAwYMUIcOHRQbG6uPPvpIv/zlL5WamqoPP/xQF110kSRp79696t+/v2JjYzV16lS1atVKy5cv144dO/SHP/xB2dnZtvxQAAAAAKJTgwucs1m/fr1Gjx6tH//4x3rkkUckSaNHj9aLL76obdu2qXfv3pKkkpISde/eXYmJifr4449lWVZTbB4AAAAAmu4anE6dOkmSjh49Kkk6deqUXnrpJQ0ZMiRY3EhScnKyxo8fr127dqmwsLCpNg8AAAAAjS9wysrK9MUXX+jgwYN69dVXdf/990uSbrrpJknS9u3bVV5eroEDB9Z67oABAySJAgcAAABAk4pt7BNXrFihKVOmBP/duXNnrV27VoMGDZIkHTp0SJKUnp5e67nV04qKihq7ebVv377GvwOBgLZt26aUlBROewMAAIhCxhidPHlSaWlp8vncO1hwWVmZKioqIrKt+Ph4JSYmRmRbbtHoAmfUqFG67LLLVFJSog8++EAvvfSSvvjii+D80tJSSVJCQkKt51bv5OplmkIgENDFF1/cZOsDAABA8/Tpp5+qQ4cOTseoU1lZmS7plKzPPvdHZHvt2rXTvn37oqrIaXSB06FDh+CBM2rUKN16663q16+fSktLlZeXp6SkJElSeXl5reeWlZVJUnCZxvj6kNTHjx/Xeeedp0ExIxVrxTV6vXYyVVVORwjLim30IQFJJtAkY3bYKxCZN9RG88U4nSAky+fuDnGzOAZdzteyhdMRQgqUnHI6QniWe785bw588e7/Wxwoq/35zg2qVKl39LJSUlKcjnJWFRUV+uxzvw5s66zUFHtfKydOBtTp6v2qqKigwGmMK6+8UldddZV+9rOfKS8vT2lpaZLqPg2telpdp681VvVpabFWnHsLnGZw6pxluf9N1c2M1Qw+XLr9g4fl8gLH5a/jZnEMupzPinc6QkgBKzKntZwTt7/PuJzPpZ9jvipgBZyOULcv3wLd/l4tSckplpJT7M0ZkPv3gx2a9B3o9OnTOnLkiCSpZ8+eSkhIUEFBQa3ltm7dKknq27dvU24eAAAAQJRrcIHz2Wef1Tl906ZN2rFjR3CEtOTkZI0YMUKbN2/Wn//85+ByJSUlWrFihTIzM9W/f/9GxgYAAACaL78JROQRjRp8PtJ3vvMdFRcX69prr1WnTp1UVlambdu26YUXXlBKSooWL14cXHbRokV64403dN111+nBBx9Uamqqli9frqKiIm3cuLFZtA8BAAAANB8NLnDuvPNO/epXv9KaNWt0+PBhWZalTp066f7779f3v/99dezYMbhs165d9e6772r69On60Y9+pIqKCvXp00evvPKKsrOzm/QHqeZLauHa86f9J086HSGs5jAQgps1i0EafO7O6PpjMMad7y9BptLpBGFZMe6+zipQUuJ0BNjMinP5+6C/GXzr7tovqa3gdThuF5BRwOawdq/frRr8Ch89erRGjx5d7+Uvv/xybdiwoaGbAQAAAIAGY5gTAAAAAJ7h7h4tAAAA4EEBBWT3yYj2b8Gd6OAAAAAA8Aw6OAAAAECE+Y2R39g7CIDd63crOjgAAAAAPIMODgAAABBhDBNtHzo4AAAAADyDDg4AAAAQYQEZ+eng2IIODgAAAADPoIMDAAAARBjX4NjHcwVOoPS0AlaV0zHq1gyG6rNi3X1ImCqX/m6rxcQ4nSC8gLuPQ19iotMRQgqUlTkdITSf+49B4/Jj0HL569j4/U5HCM+4++aCptLdf0t88XFORwjLuHsXIsq5+9MsAAAA4EHcB8c+XIMDAAAAwDPo4AAAAAARFvjyYfc2ohEdHAAAAACeQYEDAAAAwDM4RQ0AAACIMH8EbvRp9/rdig4OAAAAAM+ggwMAAABEmN+cedi9jWhEBwcAAACAZ9DBAQAAACKMYaLtQwcHAAAAgGfQwQEAAAAiLCBLflm2byMaea7AMQEjY0XpFVVNwATcve+shASnIzR7prLC6QghmSqXvxlb7s5n+dydT5KsWHf/6QmUlTkdITSXH4OSZMXGOR2hWXP9MSg1i+MQ0cvdf2UAAAAADwqYMw+7txGNuAYHAAAAgGfQwQEAAAAizB+Ba3DsXr9b0cEBAAAA4BkUOAAAAAA8g1PUAAAAgAjjFDX70MEBAAAA4Bl0cAAAAIAICxhLAWPzjT5tXr9b0cEBAAAAUC+LFi1STk6OMjIyZFmWOnfuXO/n/uAHP5BlWUpOTq5zfnl5uWbPnq1LLrlECQkJ6tKli+bPn6/KysoGZaSDAwAAAERYc70GZ8aMGTr//PPVp08fHTt2rN7P+/DDD/X4448rOTlZxtR9B9Lbb79dGzZs0L333quBAweqoKBAs2bN0p49e7R69ep6b4sCBwAAAEC97N27VxkZGZKkHj16qKSkJOxz/H6/JkyYoBtvvFEnTpzQn/70p1rLvPzyy9qwYYOmTZumxYsXS5LGjx+v8847T48//rgmTpyorKysemWkwIkgKy7e6QhhGb/f6QghmYoKpyOEZMXGOR0hLCvW5S/7mBinE4Tk9mPQBOr+VsxNTHm50xFC87n7GPTFu/99xlRVOR0hJLe/TprF54Wqhp0yhNr88slv89Uidnyqqy5uGuI///M/9de//lX//d//rdzc3DqXWbdunSRp6tSpNaZPnTpVjz/+uNauXVvvAodrcAAAAADY4sCBA5o1a5YeffRRderU6azLFRYWKj09XRdffHGN6RdffLHS0tJUWFhY7226/KtcAAAAwHtMBEZRM1+uPzMzUz7fv/oaxcXFtm73q77zne8oIyND06ZNC7ncoUOHdMUVV9Q5Lz09XQcPHqz3NilwAAAAADS5559/Xq+88oreeecdxYY5Rb60tFQJCQl1zktMTFRpaWm9t0uBAwAAAERYJEdR2717t1JTU23d1tcdOXJEU6dO1X333Veva2eSkpJUfpZrNMvKypSUlFTvbVPgAAAAAGhSc+bM0alTpzRhwgTt2bMnOP306dMyxmjPnj1KSEgIXnOTlpamoqKiOtdVVFSk9PT0em+bAgcAAACIML/xyW9sHkXNwQEDDxw4oFOnTukb3/hGnfMzMzPVvXt37dixQ5LUr18/Pffcc/r0009rDDTw6aef6tChQxo5cmS9t02BAwAAAKBJ/eAHP9Ddd99da/qjjz6qv//971qzZo1atWoVnH7nnXfqueee05NPPhm8D44kPfnkk5Kku+66q97bpsABAAAAUC9r1qzRgQMHJEmHDx9WRUWF5s+fL0nq1KmTxo4dK0kaOHBgnc9funSpDhw4oNtuu63G9OHDh+vb3/62Hn/8cR0/flwDBw5UQUGBVq5cqbvvvlvXXHNNvTNS4AAAAAARFpClgM23pAyo6c9RW7lypd56660a02bNmiVJGjx4cLDAaYz169dr/vz5Wrt2rdasWaP09HTNnTtX06dPb9B6LGOMu2/nW08nTpxQq1atNMR3i2Itd97l2XL5HdolyfjtuOdtEzIBpxOEZMW689irweX7UC5/nZiKCqcjhGY1g/s3u/0YdPk+9MW7/33GVFU5HSEkE3D3R59m8XmhqtLpCHWqMpXabH6r48ePR3zUsPqq/sy6cXuGWqbY+7s+ddKv4Vf+3dX7ww50cAAAAIAIi+Qw0dHGewWOCUhy57eDxuXNEUnytaz/GONOCJyq/02enGDFuPubX0kKVLj8QAy4+5tft3+7b8U1g7d1l397bird3aULuDtes+D2Donbj0FJkhWdH5zRPDSDv4QAAACAt0RmmGh3f6FkF3d/FQkAAAAADUAHBwAAAIiwM6Oo2Xuqn93rdys6OAAAAAA8gw4OAAAAEGEB+eRvhvfBaQ7o4AAAAADwDDo4AAAAQIQxipp96OAAAAAA8Aw6OAAAAECEBeRTgGtwbEEHBwAAAIBnUOAAAAAA8IwGn6K2a9curV27Vq+++qr27t2rsrIydenSRTk5OZo6dapatmxZY/mCggItWrRI77//vv75z38qLS1N1157rfLy8pSRkdFkP0g1KzZOlhXX5OuNFoFTpU5HCMmKc/dZlYHycqcjhGe5+3sNX2KC0xFCCpS5+3dsmsUxGJ03nmsqls/9+88EXH5aTDPYh/A+v7HkN/Yei3av360a/Glx1apVWrZsmUaOHKm77rpLcXFx2rRpk2bOnKlf//rX2rp1q1q0aCFJeuWVVzR8+HB16dJFkydP1oUXXqi//OUv+sUvfqEXX3xRH330kdLT05v8hwIAAAAQnRpc4Nx2223Ky8tTq1atgtMmTZqkzMxMLViwQCtXrtTkyZMlSU888YRiYmK0ZcsWXXjhhcHlu3fvrgkTJmj9+vWaOnXquf8UAAAAQDPij8CNPv0MMlA/ffv2rVHcVLv99tslSTt27AhOO3HihBITE9W6desay6alpUlSrdPZAAAAAOBcNFnZePDgQUlS27Ztg9Ouv/56nTx5Urm5ufrzn/+soqIi/e///q8eeughXX755brjjjuaavMAAABAsxEwvog8olGTXLHt9/s1b948xcbGasyYMcHpeXl5+vzzz7Vq1So999xzwek33XSTnn/+eaWkpDR6m+3bt6/x70Ag0Oh1AQAAAPCGJilwpk6dqoKCAi1cuFDdunULTo+JiVF6erqys7N188036/zzz9e7776rJUuW6I477tCGDRsUF8eIZwAAAIguXINjn3MucGbNmqWlS5dq4sSJysvLqzHv3//937Vlyxb95S9/CY6sdvPNN6tr1676zne+o2effVbjx49v1HaLi4tr/PvEiRN1XhsEAAAAIHqcU9mYn5+v+fPna9y4cXrmmWdqzPvkk0/03HPPafjw4cHiplpOTo4k6a233jqXzQMAAADNUkD/uheOXY9ovYCj0QVOfn6+5syZo9zcXK1YsULW127cVlRUJOnM9TlfV1VVVeO/AAAAANAUGlXgzJ07V3PmzNHYsWO1atUq+Xy1V9OtWzfFxMTot7/9rY4dO1Zj3urVqyVJ/fr1a8zmAQAAgGYtIF9EHtGowdfgLFu2TI8++qg6duyo7OxsrVu3rsb8tm3batiwYTr//PM1depULV68WFdddZUmTJgQHGTgueeeU5cuXRp9/Q0AAAAA1KXBBU5hYaGkM9fY5Obm1po/ePBgDRs2TJL02GOPqVu3blqxYoUWLlyo8vJypaen6zvf+Y7y8/OVmpp6jvFrs2IsWZY7q9VARaXTEcIz7j5b01S6/LRGlx57X2X5rPALOShQVu50hNBc/hqRL8bpBGHFtGr69/6m5P/aWQeu0wzeZ3wtE5yOEFKgpMTpCCFZCe7ef5Jkyl36Xm2ic9Qw1NTgAmf16tXBU8zCsSxLEyZM0IQJExq6GQAAAMCz/MYnv8034rR7/W4VnT81AAAAAE9qkht9AgAAAKi/gCwFZO9p43av363o4AAAAADwDDo4AAAAQIRxDY59ovOnBgAAAOBJdHAAAACACPPLJ7/NvQa71+9W0flTAwAAAPAkOjgAAABAhAWMpYCxeRQ1m9fvVnRwAAAAAHgGHRwAAAAgwgIRuAYnEKW9DM8VOIGycgWsgNMx6mTFxTsdITyfuw8JU1HhdISQfAkJTkcIy/jd+fr4F7/TAUKKSUlxOkJIpqrK6Qhh+Y8dczpCSG5/HTeH33HgVKnTEUKz3P2hz1S6/3csy62nPlmScToDnObuT7MAAACABwWMTwGb71Nj9/rdKjp/agAAAACeRIEDAAAAwDM4RQ0AAACIML8s+WXvtUx2r9+t6OAAAAAA8Aw6OAAAAECEMciAfaLzpwYAAADgSXRwAAAAgAjzy/5rZNx9Zzn70MEBAAAA4Bl0cAAAAIAI4xoc+0TnTw0AAADAk+jgAAAAABHmNz75be6w2L1+t/JcgWPFxsqy3PljGb/7L/XyJSY5HSG0gHE6QUhWSorTEcI7dcrpBM1aoLTU6QihxcQ4nSA8y91/cI1x9/uM2/efJMlUOp0gNJfvQ1+LRKcjhBU4XeZ0hLPwSS5/CcN+7qwEAAAAAA8zshSweRQ1Y/P63crdX2EAAAAAQAPQwQEAAAAijGtw7BOdPzUAAAAAT6LAAQAAAOAZnKIGAAAARFjAWAoYewcBsHv9bkUHBwAAAIBnUOAAAAAAEeaXLyKPprZo0SLl5OQoIyNDlmWpc+fOdS5XVlam5cuX69/+7d/UuXNntWjRQhkZGbrzzjv1t7/9rc7nlJeXa/bs2brkkkuUkJCgLl26aP78+aqsbNi9tThFDQAAAEC9zJgxQ+eff7769OmjY8eOnXW5/fv3a+LEibrmmmt03333KS0tTX//+9/19NNP6ze/+Y1eeeUVDR06tMZzbr/9dm3YsEH33nuvBg4cqIKCAs2aNUt79uzR6tWr652RAgcAAACIsOZ6Dc7evXuVkZEhSerRo4dKSkrqXK5Nmzb64IMP1Lt37xrT77rrLl111VX6/ve/rz/96U/B6S+//LI2bNigadOmafHixZKk8ePH67zzztPjjz+uiRMnKisrq14ZOUUNAAAAQL1UFzfhXHDBBbWKG0m64oor1KNHD+3YsaPG9HXr1kmSpk6dWmN69b/Xrl1b74ye6+BYCfGyrHinY9Qp5rxWTkcIa9f3OjkdIaTdY592OkJIXZ/7jtMRwrr0RzudjhBSoOy40xFCsmJinI4QkqmscjpCWL7EBKcjhBQ4fdrpCCG5/RhsDiyfu0eWCpSWOh0hLCvenZ+1LGOkcqdT1E9APgVs7jXYvf7GCAQCKi4uVtu2bWtMLywsVHp6ui6++OIa0y+++GKlpaWpsLCw3tvwXIEDAAAA4F8yMzPl8/2r2CkuLnYsyzPPPKPi4mLNmjWrxvRDhw7piiuuqPM56enpOnjwYL23QYEDAAAARJjfWPLbfA2O3etvqC1btmjatGnq1auXZsyYUWNeaWmpEhLq7vAnJiaqtAGdTQocAAAAwMN2796t1NRURzNs27ZNw4cPV1pamjZu3KjExMQa85OSklReXvf5hWVlZUpKSqr3tihwAAAAgAhrrqOoNcb777+vYcOGqVWrVtq0aZPS09NrLZOWlqaioqI6n19UVFTnc87GfVceAQAAAPCE999/X9nZ2UpJSdGmTZvUqVPdA1r169dPRUVF+vTTT2tM//TTT3Xo0CH17du33tukwAEAAADQ5D744AMNGzZMycnJ2rRpky655JKzLnvnnXdKkp588ska06v/fdddd9V7u5yiBgAAAESYMT4FjL29BmPD+tesWaMDBw5Ikg4fPqyKigrNnz9fktSpUyeNHTtWknTgwAENGzZMR48e1fe+9z1t2bJFW7ZsqbGum2++WS1btpQkDR8+XN/+9rf1+OOP6/jx4xo4cKAKCgq0cuVK3X333brmmmvqnZECBwAAAEC9rFy5Um+99VaNadVDPg8ePDhY4Ozbt0///Oc/JUn5+fl1rmvfvn3BAkeS1q9fr/nz52vt2rVas2aN0tPTNXfuXE2fPr1BGSlwAAAAgAjzy5JfNg8TbcP6N2/eXK/lhgwZImNMg9admJio+fPnBztCjcU1OAAAAAA8gw4OAAAAEGEBY/8wzoGGNVA8w3MFTuBUqQJWpdMx6nRqWHenI4TVssgd46WfzfXpVzkdIaTzxjudILx/3tTN6Qghnf/in52OEFKgrO6bkLmGCTidIKxAA+5GjdqM3+90hGbPuPxTnxUf73SEsExFhdMR6mSMOz8DIrI8V+AAAAAAbheIwChqdq/fraLzpwYAAADgSXRwAAAAgAgLyFLA5lHU7F6/W9HBAQAAAOAZdHAAAACACPMbS36bR1Gze/1uRQcHAAAAgGfQwQEAAAAijFHU7BOdPzUAAAAAT6LAAQAAAOAZnKIGAAAARFhAlgI2DwLAMNEAAAAA0Mx5roNjxcXLsuKcjlGnz74R43SEsLos/MjpCKElJDidIKSLfrPT6QhhfTz7UqcjhHTBH1o4HSEky+93OkJIpqLC6QhhWbHu/tNjxcc7HSGkwOnTTkcIy4p159/haqaq0ukIIZnycqcjhOVLSXE6Qp18pkI66XSK+jERuNGnoYNTP7t27dLs2bM1YMAAtWnTRikpKerdu7cWLFigU6dO1fmcjRs3Kjs7W61bt1ZSUpIuvfRSTZ48+ZzDAwAAAMBXNfhrtFWrVmnZsmUaOXKk7rrrLsXFxWnTpk2aOXOmfv3rX2vr1q1q0eJf38DOmTNH+fn5uv766zVnzhwlJSXpk08+0fbt25v0BwEAAACai4CJwDU4UXqjzwYXOLfddpvy8vLUqlWr4LRJkyYpMzNTCxYs0MqVK4Pdmddff135+fmaO3euZs2a1XSpAQAAAKAODT5FrW/fvjWKm2q33367JGnHjh3BaQsXLtRFF12kvLw8SVJJSYkCgUBjswIAAACeUH2jT7sf0ajJfuqDBw9Kktq2bStJOnXqlN5++2194xvf0MqVK5Wenq6UlBQlJyfrjjvu0D/+8Y+m2jQAAAAASGqiUdT8fr/mzZun2NhYjRkzRpK0Z88e+f1+bd26Va+++qqmT5+uXr166Y9//KOeeuopbd++XX/605+UlJTUqG22b9++xr/pDAEAAKC54Boc+zRJgTN16lQVFBRo4cKF6tatmyTp5MkzY/QdPnxYy5cv1/jx4yVJN998s1JTUzVnzhw9++yz+s53vtMUEQAAAADg3E9RmzVrlpYuXaqJEycGr7WRFBxJzefzaezYsTWek5ubK0navHlzo7dbXFxc47F79+5GrwsAAACIpMCX98Gx+xGNzqnAyc/P1/z58zVu3Dg988wzNeZ16NBBktS6dWslfO3mjNWnlx09evRcNg8AAAAANTT6FLX8/HzNmTNHubm5WrFihSyrZoXYtm1bdezYUZ9++qlKS0trXGtTPSDBRRdd1NjNAwAAAM0W1+DYp1EdnLlz52rOnDkaO3asVq1aJZ+v7tWMHTtWxhj9/Oc/rzH96aefliTddNNNjdk8AAAAANSpwR2cZcuW6dFHH1XHjh2VnZ2tdevW1Zjftm1bDRs2TJL0yCOP6MUXX9TDDz+sXbt2qVevXnrnnXf03HPP6dprrw3eO6cp7X6sp3wtEpt8vU3hivy/Ox0hLP/p005HCMn4/U5HCMkXF+d0hLC6/fKE0xFC+ueNlzodIaTWL2xzOkJIVqz7j0FfarLTEULyHz3udITQjHE6QbPXHF4nbmfKyp2OUCdjKp2OABdocIFTWFgoSfrkk0+CgwV81eDBg4MFTmpqqv74xz9q1qxZ2rBhg1auXKkOHTpoxowZmjVrlmJiYs4xPgAAAND8cIqafRpc4KxevVqrV6+u9/IXXnihnn766eBpaQAAAABglya5Dw4AAACA+qODY59zvg8OAAAAALgFHRwAAAAgwujg2IcODgAAAADPoIMDAAAARJiRFJC9HZZoHVSeDg4AAAAAz6CDAwAAAEQY1+DYhw4OAAAAAM+ggwMAAABEGB0c+3iuwEneG6uYBM/9WJETE+N0gtAC7r5czpSVOx0hLGvXfqcjhJSa0s3pCCGZygqnI4Tmc/lrWJL/yFGnI8BmVoy7TxAJlJU5HQE2MabS6QhwAXe/AwEAAABAA9DqAAAAACKMU9TsQwcHAAAAgGfQwQEAAAAijA6OfejgAAAAAPAMOjgAAABAhBljydjcYbF7/W5FBwcAAACAZ9DBAQAAACIsIEsB2XwNjs3rdys6OAAAAAA8gw4OAAAAEGGMomYfOjgAAAAAPIMODgAAABBhjKJmH88VOGmrPlKsFe90jDr5y8udjhCWqapyOkJovhinE4Tmc/8bSeD0aacjhLTv3xKcjhBS5vstnY4QkmkG7zOy4pxO0KyZqkqnI4Rl/AGnI4Rkxbr7448JGKcjhGfc+ju2pGaw+2Avd7/CAQAAAA/iGhz7cA0OAAAAAM+gwAEAAADgGZyiBgAAAEQYgwzYhw4OAAAAAM+ggwMAAABEmInAIAN0cAAAAAAghEWLFiknJ0cZGRmyLEudO3cOufx7772n7OxspaSkKDU1VTfccIM+/PDDOpc9dOiQ7rnnHrVp00YtWrRQ3759tX79+gZnpIMDAAAARJiRZGy+Z48dq58xY4bOP/989enTR8eOHQu57NatWzVkyBClp6dr7ty5kqSlS5dq0KBB2rJli3r27Blc9siRI7rmmmv0+eefa9q0aerQoYPWrVun0aNHa9WqVRo3bly9M1LgAAAAAKiXvXv3KiMjQ5LUo0cPlZSUnHXZ733ve4qPj9fbb7+t9PR0SdLo0aN1+eWX66GHHtKrr74aXPZHP/qR9u3bp5deekkjRoyQJN13330aOHCgHn74YeXk5Cg5ObleGTlFDQAAAIiwgKyIPJpadXETzp49e1RYWKicnJxgcSNJ6enpysnJ0euvv67PPvssOH3dunXq0qVLsLiRpJiYGE2ZMkVHjhzRyy+/XO+MFDgAAAAAmlRhYaEkaeDAgbXmDRgwQMYYbdu2TZJUXFysoqIiDRgwoM5lv7q++vDcKWqB0+UKWAGnYzRbVqy7DwkTsPlk1XNkysudjhCeL8bpBCFlPvqR0xFC+nvelU5HCOmS/Pr/AXCKqaxwOkJIvqQkpyOEZKoqnY4QlvH7nY4QmnH35wRfixZORwgrUFrqdIS62X1RSxOK5H1wMjMz5fP9q69RXFxs63alMwMGSKrRvalWPa2oqKjBy9YHHRwAAAAATar0yyI4ISGh1rzExMQayzRk2fpw99f1AAAAgAcFjCXL5g5O9X12du/erdTUVFu39XVJX3bDy+s4u6WsrKzGMg1Ztj7o4AAAAABoUmlpaZLqPrWselr16WcNWbY+KHAAAAAANKl+/fpJkgoKCmrN27p1qyzL0tVXXy1Jat++vdLT07V169Y6l5Wkvn371nvbFDgAAABAhBkTmYdTunbtqr59+2r9+vXBQQSkMwMKrF+/Xtdee63atWsXnH7nnXdq7969+t3vfhec5vf7tWTJEp133nm66aab6r1trsEBAAAAUC9r1qzRgQMHJEmHDx9WRUWF5s+fL0nq1KmTxo4dG1z2qaee0tChQzVo0CBNmTJFkrRkyRIFAgEtXry4xnqnT5+u9evXa8yYMZo2bZrS09P1/PPPq7CwUCtWrFBKSkq9M1LgAAAAABEWyWGim9LKlSv11ltv1Zg2a9YsSdLgwYNrFDhZWVnavHmzZs6cqZkzZ8qyLGVlZWn9+vXq1atXjXVccMEFevfddzV9+nQtW7ZMJSUluuKKK/TCCy/o9ttvb1BGChwAAAAA9bJ58+YGLT9w4EC98cYb9Vo2PT1da9asaUSqmihwAAAAgAhrrh2c5oBBBgAAAAB4Bh0cAAAAIMIieaPPaOO5AseKiZFlxTgdo06mqtLpCOFZcU4nCMPvdICQrLh4pyOEZfzu3oeOjmlZD+lvu/x1bLm/Me/214mVkOB0hNBOn3Y6QXgBd7/PWLHu/vgTKKt9N3cA9efuVzgAAADgQZG4T43LvzO0jfu/6gMAAACAeqKDAwAAAETYmQ6O3aOo2bp616KDAwAAAMAz6OAAAAAAEcZ9cOxDBwcAAACAZ1DgAAAAAPAMTlEDAAAAIsx8+bB7G9GIDg4AAAAAz6CDAwAAAEQYgwzYhw4OAAAAAM+ggxNBVkyM0xHCMpUVTkdo1kzA73SE8Cx3f5tj/O7eh8UTyp2OENIlhS2djhCW/+hRpyOEFChxOkHzZ8W6++OFqapyOkJIVkKC0xHC8iW4873GmArphNMp6omLcGzToA7Orl27NHv2bA0YMEBt2rRRSkqKevfurQULFujUqVMhn/v000/LsixZlqUvvvjinEIDAAAAQF0a9BXLqlWrtGzZMo0cOVJ33XWX4uLitGnTJs2cOVO//vWvtXXrVrVo0aLW8w4dOqTp06crOTlZJSV8NQYAAIAoF4FrcBSl1+A0qMC57bbblJeXp1atWgWnTZo0SZmZmVqwYIFWrlypyZMn13reAw88oC5duqh79+5au3btuacGAAAAgDo06BS1vn371ihuqt1+++2SpB07dtSa9z//8z966aWX9MwzzyimGVyDAgAAANjNmMg8olGTjKJ28OBBSVLbtm1rTD9x4oQmT56s+++/X/3792+KTQEAAADAWZ3zMCd+v1/z5s1TbGysxowZU2PeD37wAwUCAS1atOhcN1NL+/bta/w7EAg0+TYAAAAAO3AfHPucc4EzdepUFRQUaOHCherWrVtw+rvvvquf//zneu655+o8rQ0AAAAAmto5FTizZs3S0qVLNXHiROXl5QWnV1RUaOLEicrOztadd955ziHrUlxcXOPfJ06coJACAABA82As+0c5o4PTMPn5+Zo/f77GjRunZ555psa8ZcuW6eOPP9bixYu1Z8+e4PSTJ09Kkvbt26cTJ04oIyOjsZsHAAAAgFoaVeDk5+drzpw5ys3N1YoVK2R97c7oBw4cUCAQ0I033ljn8/v376+WLVtyTxwAAAAATarBBc7cuXM1Z84cjR07VqtWrZLPV3sgtnHjxumaa66pNX3ZsmXavHmzVq1apdatWzcuMQAAANDMRWIY52gdJrpBBc6yZcv06KOPqmPHjsrOzta6detqzG/btq2GDRumXr16qVevXrWe//vf/16SNGLECF144YXnEPvsjN8vYzXJ6NdNzoo75zEdbGe5/F5FprLK6QghuX3/SZJ8Lj8f1+93OkFIGVP/6XSEkCq6d3I6Qlix75c7HSGkQJm78+HcWQkJTkcI6etnxriRlZridIQ6WYFy6YTTKeC0Bn3iLiwslCR98sknys3NrTV/8ODBGjZsWNMkAwAAALzKfPmwextRqEGtjtWrV8sYc9bH5s2b6/V8u7o3AAAAAKKb+8+ZAgAAADyGG33ax50XqwAAAABAI9DBAQAAAJwQpdfI2I0ODgAAAADPoIMDAAAARBjX4NiHDg4AAAAAz6CDAwAAAEQa98GxDR0cAAAAAJ5BgQMAAADAMzx3ipoVFyvL8tyPFTGmosLpCCFZMTFORwjJVFU6HSEsKzbO6QjNWtWhYqcjhFTVM93pCGHFWi6/6NUEnE4QkhUf73SE8Px+pxOEZCqrnI4QWpz7P8f8c8jFTkeok7+iTPovp1PUl/Xlw+5tRB86OAAAAAA8w/1fEQAAAABewyADtqGDAwAAAMAz6OAAAAAAkUYHxzZ0cAAAAAB4Bh0cAAAAINKMdeZh9zaiEB0cAAAAAJ5BBwcAAACIMGPOPOzeRjSigwMAAADAM+jgAAAAAJHGKGq2oYMDAAAAwDPo4AAAAACRxihqtvFcgWPKy2WsgNMx6mY1g4PMoql3LqyYGKcjhGWqKp2OEJrLj0FfixZORwjpk+vdfwx2+3s7pyOEZP39gNMRQjIVFU5HCMvt74WWz+V/jwPuP6+o9Y4TTkeoU5W/3OkIcAF3f5IAAAAAgAbwXAcHAAAAcDvLnHnYvY1oRAcHAAAAgGfQwQEAAAAijWGibUMHBwAAAIBnUOAAAAAAkVY9TLTdjyZWUlKihQsXqmfPnkpJSdGFF16orKwsrV69WsbUbBm99957ys7OVkpKilJTU3XDDTfoww8/bPJMX8cpagAAAADCCgQCuvHGG7Vlyxbl5uZqypQpKi0t1fPPP69x48bpb3/7m3784x9LkrZu3aohQ4YoPT1dc+fOlSQtXbpUgwYN0pYtW9SzZ0/bclLgAAAAAJHWDK/Bee+99/TOO+9o6tSpeuKJJ4LTv/vd7+qyyy7Tz3/+82CB873vfU/x8fF6++23lZ6eLkkaPXq0Lr/8cj300EN69dVXmzbcV3CKGgAAAICwTpw4c4PXtLS0GtPj4+N14YUXqmXLlpKkPXv2qLCwUDk5OcHiRpLS09OVk5Oj119/XZ999pltOSlwAAAAgEgzEXo0of79++u8887TT37yE61fv16ffPKJPv74Y+Xl5Wnbtm3Kz8+XJBUWFkqSBg4cWGsdAwYMkDFG27Zta9pwX8EpagAAAICHZWZmyuf7V1+juLi4Uetp3bq1XnrpJY0fP16jR48OTk9JSdGLL76oUaNGSZIOHTokSTW6N9WqpxUVFTUqQ314r8CxrDMPF7Ji45yOEJbx+52OEJLb88lyf1PU16KF0xFCMpVVTkcIzaXvL9Uyp3/gdISwrLR2TkcIyYqPdzpCaBUVTicIywTcffMNKybG6QghWYkJTkcIq/TiZKcj1KmqMlba7nSKemqG1+BIUnJysnr06KGRI0cqKytLR44c0bJlyzRmzBht2LBBw4YNU2lpqSQpIaH2sZyYmChJwWXs4L0CBwAAAEDQ7t27lZqaes7r+eijj5SVlaUnnnhCkyZNCk6/88471aNHD02YMEF79+5VUlKSJKm8vLzWOsrKyiQpuIwd3P91MwAAAOA1zfA+OE888YTKysqUk5NTY3pSUpKGDx+uAwcOaP/+/cFBCOo6Da16Wl2nrzUVChwAAAAAYVUXJ/46LhmoqqoK/rdfv36SpIKCglrLbd26VZZl6eqrr7YtJwUOAAAAgLCuuOIKSdLq1atrTD927Jg2bNig1q1bq2vXruratav69u2r9evXBwcckM4MPrB+/Xpde+21atfOvusxuQYHAAAAiDDLnHnYvY2mNHXqVP3qV7/S9OnT9dFHH+mb3/ymjhw5ouXLl6u4uFjLli1TzJeDeDz11FMaOnSoBg0apClTpkiSlixZokAgoMWLFzdtsK+hwAEAAAAQVqdOnfR///d/mjt3rt544w298MILatGihXr37q3FixfrlltuCS6blZWlzZs3a+bMmZo5c6Ysy1JWVpbWr1+vXr162ZqTAgcAAACItGY6THSXLl307LPP1mvZgQMH6o033mj6EGFwDQ4AAAAAz6DAAQAAAOAZFDgAAAAAPINrcAAAAIAIsxSBUdTsXb1rea/AMZG4YqtxrDj3725TVel0hNAslzcdTcDpBGEFTp92OkJoLv8dm1J3v0asL4fndLOTvdo6HSGklq994XSE0JrB71iBKqcThNQc/h67XfL7B52OUKeqQLnTEeACvMIBAACASDPWmYfd24hC7v6qFAAAAAAagA4OAAAAEGnN9D44zQEdHAAAAACeQYEDAAAAwDM4RQ0AAACINE5Rsw0dHAAAAACeQQcHAAAAiDDLROBGn3RwAAAAAKB5o4MDAAAARBrX4NiGDg4AAAAAz/BeB8eyzjxcyFRUOB0BkBUb53SEkKzEBKcjhOb3O50gpMDp005HCOvgUHd/t9btVXd/5WnFuv9PtykvdzpCSG7/e3zitr5ORwir1ca/OB2hTgHj7t9tDXRwbOPuvzIAAAAA0AANKnB27dql2bNna8CAAWrTpo1SUlLUu3dvLViwQKdOnQouZ4zR2rVrdccdd6hr165KSkpSx44dNXLkSL333ntN/kMAAAAAzUn1KGp2P6JRgwqcVatW6YknnlCXLl00e/ZsPfbYY+rWrZtmzpyprKwsnf7y1Ijy8nKNHTtWO3fu1B133KElS5Zo4sSJev/99zVw4ECtXbvWlh8GAAAAQHRr0Im8t912m/Ly8tSqVavgtEmTJikzM1MLFizQypUrNXnyZMXGxmrz5s0aPHhwjedPmDBB3bt310MPPaQxY8bI5+MMOQAAAEQhY5152L2NKNSgCqNv3741iptqt99+uyRpx44dkqTY2NhaxY0ktW3bVoMHD9bnn3+uzz//vDF5AQAAAOCsmmQoloMHD0o6U8DUZ9n4+Hidd955TbFpAAAAoPlhFDXbnHOB4/f7NW/ePMXGxmrMmDEhl3355Zf1f//3fxo7dqwSExPPabvt27ev8e9AIHBO6wMAAADQ/J1zgTN16lQVFBRo4cKF6tat21mX2717t8aOHav09HQtXrz4XDcLAAAAALWcU4Eza9YsLV26VBMnTlReXt5Zl9u3b5++9a1vybIs/eEPf1CbNm3OZbOSpOLi4hr/PnHiRJ3XBwEAAABuE4lhnKN1mOhGFzj5+fmaP3++xo0bp2eeeeasy+3fv19Dhw5VSUmJ3njjDfXs2bOxmwQAAACAkBpV4OTn52vOnDnKzc3VihUrZFl1D0G3f/9+DRkyRMePH9frr7+uq6666pzCAgAAAJ7AIAO2aXCBM3fuXM2ZM0djx47VqlWrznovmwMHDmjo0KE6duyYXnvtNV199dXnHLZeLN+Zhwv5kpKcjhCW/+RJpyOEFvA7nSC0sxT7ruJzd8bAqVKnI4RkuXz/NQeXzfqr0xFC+uyeXk5HCKnNz7c6HSE8l78XWi1aOB0hpLhT7h84yZSVOx2hTsZUOh0BLtCgAmfZsmV69NFH1bFjR2VnZ2vdunU15rdt21bDhg3TyZMnNXToUO3fv19TpkzRzp07tXPnzhrLDhs2rF7DSgMAAACeE4FrcOjg1ENhYaEk6ZNPPlFubm6t+YMHD9awYcP0z3/+U/v27ZMkLVmypM51bdq0iQIHAAAAQJNqUIGzevVqrV69OuxynTt3ljFRWjICAAAA4XANjm3cebEKAAAAADTCOd/oEwAAAEAD0cGxDR0cAAAAAJ5BBwcAAACIMCsCo6jZPkqbS9HBAQAAAOAZFDgAAAAAPIMCBwAAAIBnUOAAAAAA8AwGGYgg/8mTTkcIz3J3zetrkeB0hJBMZZXTEcJye0Yrzt1vS67ff/HxTkcIy+3vhf4WltMRQvIlJTkdISxTUel0hJB8yS2djhDS51e5+31Qkjr9IeB0hLoZl+aqC8NE28bdn2YBAAAAoAHc/xUBAAAA4DEME20fOjgAAAAAPIMODgAAAOCEKO2w2I0ODgAAAADPoIMDAAAARBqjqNmGDg4AAAAAz6CDAwAAAEQYo6jZhw4OAAAAAM+ggwMAAABEGtfg2IYODgAAAADP8FwHx4qJkWXFOB3jLNya6ytMwOkEoQVcnq85cPnv2JSXOx0hJF9iotMRQjJVVU5HaPZa/d3d+/Cz3F5ORwir/dodTkcIqWqtuz/+dB71kdMRwgoE3NkaMMaduRBZ7n6FAwAAAB7EIAP24RQ1AAAAAJ5BBwcAAACINAYZsA0dHAAAAACeQQcHAAAAiDQ6OLahgwMAAACg3o4cOaKHH35YXbt2VWJiotq0aaOhQ4fqj3/8Y43l3nvvPWVnZyslJUWpqam64YYb9OGHH9qejw4OAAAAEGHNdRS1AwcOaMiQISopKdF9992nSy+9VMePH9f27dtVVFQUXG7r1q0aMmSI0tPTNXfuXEnS0qVLNWjQIG3ZskU9e/Zs+nBfosABAAAAUC933323qqqqtH37drVv3/6sy33ve99TfHy83n77baWnp0uSRo8ercsvv1wPPfSQXn31VdsycooaAAAAEGkmQo8m9Pbbb+udd97RI488ovbt26uyslKlpaW1ltuzZ48KCwuVk5MTLG4kKT09XTk5OXr99df12WefNW24r6DAAQAAABDWyy+/LEnq2LGjRowYoRYtWqhly5a69NJLtXbt2uByhYWFkqSBAwfWWseAAQNkjNG2bdtsy8kpagAAAECkRXAUtczMTPl8/+prFBcXN2p1O3fulCRNmDBBmZmZevbZZ1VRUaHFixdr7Nixqqys1Lhx43To0CFJqtG9qVY97avX6zQ1ChwAAAAAYZ08eVKSlJKSok2bNik+Pl6SNGrUKGVkZGjGjBnKzc0NnraWkJBQax2JiYmSVOepbU3FcwWOqayQsXtIikay6vglu42p8DsdoVkzfvYfnMUxeO5avvk3pyOEdHDJpU5HCGvpw5udjhDShF9OdjpCSJ0q33c6QlhWnDs/QlrGSOVOp6ifSI6itnv3bqWmpp7z+lq0aCFJuvPOO4PFjSS1bt1aI0eO1K9+9Svt3LlTSUlJkqTy8tq/jLKyMkkKLmMHrsEBAAAAEFaHDh0kSe3atas1r3pEtaNHjyotLU1S3aehVU+r6/S1pkKBAwAAACCs/v37S5IOHjxYa171tIsuukj9+vWTJBUUFNRabuvWrbIsS1dffbVtOSlwAAAAgEhrhsNEjxo1SikpKVq7dq1KSkqC04uLi/Xb3/5Wl156qbp27aquXbuqb9++Wr9+fXDAAUk6dOiQ1q9fr2uvvbbOLlBTcecJlAAAAABcpXXr1vrpT3+q+++/XwMGDNC9996riooKPf3006qoqNCSJUuCyz711FMaOnSoBg0apClTpkiSlixZokAgoMWLF9uakwIHAAAAiLBIDjLQlCZOnKgLL7xQP/nJTzRr1iz5fD4NHDhQ69at0ze/+c3gcllZWdq8ebNmzpypmTNnyrIsZWVlaf369erVq1fTB/sKChwAAAAA9XbLLbfolltuCbvcwIED9cYbb0QgUU0UOAAAAECkRfBGn9GGQQYAAAAAeAYdHAAAACDS6ODYhg4OAAAAAM+ggwMAAABEmPXlw+5tRCPvFTi+GMmKcTpF3fx+pxOEZcXGOR0hNBNwOkFIvoQEpyOEFSgrczpCSFasu9+WAuXlTkcIKeb81k5HCMt/5KjTEUIKfOXmdW502cP7nY4Q1sLYG52OEFLHo9ucjhBScziryFRUOB2hTsZUOh0BLuDuTxIAAACAF3ENjm24BgcAAACAZ9DBAQAAACLMMmcedm8jGtHBAQAAAOAZFDgAAAAAPINT1AAAAIBIY5AB29DBAQAAAOAZdHAAAAAAJ0Rph8VudHAAAAAAeAYdHAAAACDCGCbaPnRwAAAAAHiG9zo4JiAp4HSKusXEO50gLMuynI4QUqCswukIIRm/3+kI4bn8d2wC7v66yYqNczpCSP5/HnE6Qli+pCSnI4QUKCt3OkJI/iPHnI4Qli/e3a8TK9bdH38CpaVORwjPcut35L7mc10Lo6jZxq1HJwAAAAA0WIMLnF27dmn27NkaMGCA2rRpo5SUFPXu3VsLFizQqVOnai2/c+dOjRo1Sq1bt1bLli01aNAgvfnmm00SHgAAAGiOqq/BsfsRjRpc4KxatUpPPPGEunTpotmzZ+uxxx5Tt27dNHPmTGVlZen06dPBZffu3ausrCwVFBTokUce0WOPPaaSkhJdf/31ev3115v0BwEAAACABp+EettttykvL0+tWrUKTps0aZIyMzO1YMECrVy5UpMnT5Yk5eXl6dixY9q2bZt69+4tSbrnnnvUvXt3PfDAA/r4449df80HAAAA0OS4Bsc2De7g9O3bt0ZxU+3222+XJO3YsUOSdOrUKb300ksaMmRIsLiRpOTkZI0fP167du1SYWFhI2MDAAAAQG1NNsjAwYMHJUlt27aVJG3fvl3l5eUaOHBgrWUHDBggSRQ4AAAAAJpUk4yT6Pf7NW/ePMXGxmrMmDGSpEOHDkmS0tPTay1fPa2oqKjR22zfvn2NfwcCLh0aGgAAAPgabvRpnyYpcKZOnaqCggItXLhQ3bp1kySVfjmGe0JCQq3lExMTaywDAAAAAE3hnAucWbNmaenSpZo4caLy8vKC05O+vJFbeXntG6aVlZXVWKYxiouLa/z7xIkTdV4bBAAAALgOgwzY5pyuwcnPz9f8+fM1btw4PfPMMzXmpaWlSar7NLTqaXWdvgYAAAAAjdXoDk5+fr7mzJmj3NxcrVixotZwzz179lRCQoIKCgpqPXfr1q2SzozIBgAAAEQdOji2aVSBM3fuXM2ZM0djx47VqlWr5PPVbgQlJydrxIgR+s1vfqM///nP6tWrlySppKREK1asUGZmpvr3739u6evgS2ohnxXf5OttCoFTp5yOEF5sk1yWZRvfl9dvuVWgotLpCGFZPnffe8r4/U5HCMlUuXxAk2ZwbzFTWeV0BNgs8OWp6G4Vk5rqdISQrJgYpyOE5dr3auPy92hERIM/zS5btkyPPvqoOnbsqOzsbK1bt67G/LZt22rYsGGSpEWLFumNN97QddddpwcffFCpqalavny5ioqKtHHjRm7yCQAAgKjEKGr2aXCBU33vmk8++US5ubm15g8ePDhY4HTt2lXvvvuupk+frh/96EeqqKhQnz599Morryg7O/scowMAAABATQ0ucFavXq3Vq1fXe/nLL79cGzZsaOhmAAAAAO/iGhzbnNMoagAAAADgJu6+ohwAAADwIMsYWcbeFovd63crOjgAAAAAPIMODgAAABBpXINjGzo4AAAAADyDAgcAAACAZ3CKGgAAABBh3OjTPnRwAAAAAHiG5zo4gdLTClhVTsdotqxYdx8SgbIypyOE5Pb9J0m+pCSnI4TkLznldISQLJ/ldISQjN/vdISw3J7RiolxOkJIpqrS6Qjh+dy9D/0nTjgdITTL3e8zkmTFxjkdoU6WkdQMXiKSGGTARnRwAAAAAHiG+79uBgAAADyGa3DsQwcHAAAAgGfQwQEAAAAijWtwbEMHBwAAAIBn0MEBAAAAIoxrcOxDBwcAAACAZ9DBAQAAACKNa3BsQwcHAAAAgGdQ4AAAAADwDE5RAwAAABwQrYMA2M1zBY4VEyPLinE6Rp1MwP1HcaCi0ukIoVmW0wlCs9zfFDVVVU5HCM0EnE4Qkgm4/HfcDI5B1/+Oq9ydrzmwYtz5dzjI5flMZYXTEcJya0ZjXP45BhHhuQIHAAAAcD1jzjzs3kYUagZf9QEAAABA/dDBAQAAACKMG33ahw4OAAAAAM+gwAEAAAAizUToYbPS0lJlZGTIsixNnjy51vydO3dq1KhRat26tVq2bKlBgwbpzTfftDUTBQ4AAACARpk9e7YOHz5c57y9e/cqKytLBQUFeuSRR/TYY4+ppKRE119/vV5//XXbMnENDgAAABBhVuDMw+5t2On999/Xk08+qZ/85Cd66KGHas3Py8vTsWPHtG3bNvXu3VuSdM8996h79+564IEH9PHHH8uy4RYgdHAAAAAANIjf79eECRN0ww036JZbbqk1/9SpU3rppZc0ZMiQYHEjScnJyRo/frx27dqlwsJCW7JR4AAAAACR1syvwXniiSf08ccfa+nSpXXO3759u8rLyzVw4MBa8wYMGCBJthU4nKIGAAAAeFhmZqZ8vn/1NYqLi89pffv27dOjjz6q2bNnq3Pnztq/f3+tZQ4dOiRJSk9PrzWvelpRUdE55TgbChwAAAAgwprzfXAmTZqkjIwMTZs27azLlJaWSpISEhJqzUtMTKyxTFOjwAEAAAA8bPfu3UpNTW2Sda1du1avvfaa3n77bcXFxZ11uaSkJElSeXl5rXllZWU1lmlqnitwjN8vY7nz0iIr9uwHgWsYm4fbOEcm4M7fbTVTVel0hLCaQ0Y0nhUT43SEsKz4RKcjhBQ4XeZ0hNACfqcThGXFu/vvnamqcjpCSFZcvNMRwnLv3xIrIvd+iVbl5eWaNm2abrrpJrVr10579uyR9K9TzY4fP649e/bowgsvVFpaWo15X1U9ra7T15qCuz8tAgAAAF5kTGQeTej06dM6fPiwNm7cqMzMzOBjyJAhks50dzIzM7VixQr17NlTCQkJKigoqLWerVu3SpL69u3bpPmqea6DAwAAAKDptWzZUuvXr681/fDhw/rud7+rG264Qffdd5+uvPJKJScna8SIEfrNb36jP//5z+rVq5ckqaSkRCtWrFBmZqb69+9vS04KHAAAACDCmuMgA3FxcbrttttqTa8eRa1Lly415i9atEhvvPGGrrvuOj344INKTU3V8uXLVVRUpI0bN9pyk0+JAgcAAACADbp27ap3331X06dP149+9CNVVFSoT58+euWVV5SdnW3bdilwAAAAgEiz+UacwW1EQOfOnWXOcr3P5Zdfrg0bNkQmyJcYZAAAAACAZ9DBAQAAACKsOV6D01zQwQEAAADgGXRwAAAAgEiz4T41dW4jCtHBAQAAAOAZdHAAAACACOMaHPt4r8AxkRhzr3FMVaXTEZo/l7darbh4pyOE5fbj0IqNczpCSG7ffzL23DStSfn9TicIyYqJcTpCSFZigtMRwgqUljodISRfixZORwgpUHHa6QhAs+a9AgcAAABwOw/dB8dtuAYHAAAAgGdQ4AAAAADwDE5RAwAAACKMQQbsQwcHAAAAgGfQwQEAAAAiLWDOPOzeRhSigwMAAADAM+jgAAAAAJHGMNG2oYMDAAAAwDPo4AAAAAARZikCo6jZu3rXooMDAAAAwDM818Gx4uJlWXFOx6ibCTidICxTVeV0hNB8MU4nCMnXItHpCGH5T1Y6HSEkU1nhdISQrIQEpyOEZCpd/hqWJJe/z7j+fbAZ/C2RidIT/6OIFePOv8eWCUgufwkHGWP/ayVKX4t0cAAAAAB4RoMLnEWLFiknJ0cZGRmyLEudO3cOufwf/vAHfetb31K7du3UsmVLdevWTQ8//LD+8Y9/NDYzAAAA0KxZJjKPaNTgU9RmzJih888/X3369NGxY8dCLrt8+XJNnDhRV199tX7wgx+oZcuWKiws1JNPPqnf/OY3+uijj9SyZcvGZgcAAACAGhpc4Ozdu1cZGRmSpB49eqikpOSsy/70pz9V+/bt9c477ygx8cy1CRMnTlTbtm21YMECvfbaaxo1alTjkgMAAADA1zS4wKkuburjxIkTOv/884PFTbW0tDRJonsDAACA6MSNPm1j6yAD119/vf7617/qoYce0t/+9jd9+umn+s1vfqN58+Zp8ODBuvbaa+3cPAAAAIAoY+sw0U899ZRKS0v11FNP6fHHHw9OHzdunH7+858r5hyGGGzfvn2NfwcCzWDYTAAAAECSZYwsm4dxtnv9bmVrgRMXF6eOHTvq5ptv1ogRI5SUlKT//d//1apVqxQTE6Ply5fbuXkAAAAAUca2AicQCOiGG25QVVWV3n33XVmWJUm67bbbdMEFF+jHP/6xbr/9dmVnZzdq/cXFxTX+feLECbVq1eqccwMAAAC2C3z5sHsbUci2a3Deeecd/fGPf9Stt94aLG6q5eTkSJLeeustuzYPAAAAIArZ1sEpKiqSJPn9/lrzqqqqavwXAAAAiCZcg2Mf2wqcK664QpL03HPP6cEHH1RcXFxw3urVqyVJ/fr1a/LtmqpKGSv8cqibFWvrZVnnzLi8KPaXnHI6QlhWbFz4hRxkKiucjhCSqXT3MWidw+AtOMPt74PNgZWQ4HSEkEwdX766ic/l+09y/99jRLcGv4uvWbNGBw4ckCQdPnxYFRUVmj9/viSpU6dOGjt2rCSpV69euvXWW/Xiiy+qb9++uvvuu4ODDPzud7/TgAED9G//9m9N+KMAAAAAzQT3wbFNgwuclStX1rp2ZtasWZKkwYMHBwscSVq3bp2efPJJPffcc5o9e7YCgYA6deqkvLw8/fCHPzynYaIBAAAA4OsaXOBs3ry53svGx8frkUce0SOPPNLQzQAAAADeZcyZh93biEK2jaIGAAAAAJHGlZQAAABAhFnmzMPubUQjOjgAAAAAPIMCBwAAAIBncIoaAAAAEGkMMmAbOjgAAAAAPIMODgAAABBhVuDMw+5tRCM6OAAAAAA8w3MdHCs2TpYV53SMOpnKCqcjNHtWQoLTEUIylVVORwjL9cehL8bpBKEZd38dZsW48/3vq4zf3fvQ+P1OR2j+Ai4/79/tr+PkZKcjhGXKy52OUCdjmtHrl2twbEMHBwAAAIBneK6DAwAAALie+fJh9zaiEB0cAAAAAJ5BBwcAAACIMMsYWTZfI2P3+t2KDg4AAAAAz6CDAwAAAEQao6jZhg4OAAAAAM+ggwMAAABEmpFk9y2ZorOBQwcHAAAAgHdQ4AAAAADwDE5RAwAAACKMYaLt47kCx1RWyFgu/WX6YpxOEJYV6+5DIlBe7nSEkHxJSU5HCCtQWup0hNACfqcThOby13GgotLpCLCb1QxOvjB2X1hwjly+D01FhdMRwrJi3PleaJmAVOV0CjjN3Z9mAQAAAC8yisAw0fau3q3c/RUGAAAAADQAHRwAAAAg0rjRp23o4AAAAADwDAocAAAAINICEXo0oV27dmn27NkaMGCA2rRpo5SUFPXu3VsLFizQqVOnai2/c+dOjRo1Sq1bt1bLli01aNAgvfnmm00bqg4UOAAAAADCWrVqlZ544gl16dJFs2fP1mOPPaZu3bpp5syZysrK0unTp4PL7t27V1lZWSooKNAjjzyixx57TCUlJbr++uv1+uuv25qTa3AAAACACGuO98G57bbblJeXp1atWgWnTZo0SZmZmVqwYIFWrlypyZMnS5Ly8vJ07Ngxbdu2Tb1795Yk3XPPPerevbseeOABffzxx7Isq0nzVaODAwAAACCsvn371ihuqt1+++2SpB07dkiSTp06pZdeeklDhgwJFjeSlJycrPHjx2vXrl0qLCy0LScdHAAAACDSIjiKWmZmpny+f/U1iouLm3QzBw8elCS1bdtWkrR9+3aVl5dr4MCBtZYdMGCAJKmwsFD9+/dv0hzV6OAAAAAAaBS/36958+YpNjZWY8aMkSQdOnRIkpSenl5r+eppRUVFtmWigwMAAAB42O7du5WammrLuqdOnaqCggItXLhQ3bp1kySVlpZKkhISEmotn5iYWGMZO1DgAAAAAJHmgRt9zpo1S0uXLtXEiROVl5cXnJ6UlCRJKi8vr/WcsrKyGsvYgQInkgJ+pxOEZarsGc2iqfhsfDE0BVPHC9l1LHefmWrFuPsYNAF33xXa1yLR6Qjh+d39Xmj8TXzjiKZmXJ5Pkqly+esk2d1/SwKn7Ptmu6lYPne/V8N++fn5mj9/vsaNG6dnnnmmxry0tDRJdZ+GVj2trtPXmgoFDgAAABBpzbiDk5+frzlz5ig3N1crVqyoNdxzz549lZCQoIKCglrP3bp1q6QzI7LZxd1f5QIAAABwjblz52rOnDkaO3asVq1aVWN0tmrJyckaMWKENm/erD//+c/B6SUlJVqxYoUyMzNtG0FNooMDAAAARF5Akt1n+jXxGa3Lli3To48+qo4dOyo7O1vr1q2rMb9t27YaNmyYJGnRokV64403dN111+nBBx9Uamqqli9frqKiIm3cuNG2m3xKFDgAAAAA6qH65pyffPKJcnNza80fPHhwsMDp2rWr3n33XU2fPl0/+tGPVFFRoT59+uiVV15Rdna2rTkpcAAAAIAIs4yRZfM1OE29/tWrV2v16tX1Xv7yyy/Xhg0bmjRDfXANDgAAAADPoIMDAAAARFozHkXN7ejgAAAAAPAMOjgAAABApAWMZNncYXH5zantQgcHAAAAgGfQwQEAAAAijWtwbOO9AscXI1kxTqeom2niuy3ZwLi8lWlOlzkdodmz4tz9srdiXPr6/ZIpLXU6QkiBU6ecjhCez92/Y9cL+J1O0OyZ06edjhBaM/gdu/UjjTFVTkeAC3CKGgAAAADPcPdXuQAAAIAnReAUNbn7zBy70MEBAAAA4Bl0cAAAAIBIY5AB29DBAQAAAOAZdHAAAACASAsY2X6NjMtHx7ULHRwAAAAAnkEHBwAAAIg0E7D/hkJuvWGRzejgAAAAAPAMOjgAAABApDGKmm3o4AAAAADwDM91cKyYGFlWjNMx6mQq/U5HqAeXn6vp9m8iLMvpBOH53X0cGpfnczsr1v1v68blo/r44uOcjhCSqXL/+4zbf8duz2fFxTsdISzXvlebgOs/ygQxippt6OAAAAAA8Az3f9UHAAAAeA3X4NimwR2cRYsWKScnRxkZGbIsS507dw77nDVr1uib3/ymUlNTlZycrB49emjevHmNyQsAAAAAZ9XgDs6MGTN0/vnnq0+fPjp27FjY5e+99149++yzuvXWW3X33XfL5/Np3759OnDgQGPyAgAAAMBZNbjA2bt3rzIyMiRJPXr0UElJyVmXXblypX75y1/qV7/6lcaOHdv4lAAAAICXGEXgFDV7V+9WDT5Frbq4CccYo0WLFqlPnz7B4ubkyZMyUXouIAAAAAD72TaK2s6dO7V3715lZWVp3rx5uuCCC5SamqrzzjtPkyZNCtn5AQAAADytepABux9RyLZR1Hbu3ClJ+q//+i9VVFRo5syZuuSSS/T73/9eP//5z7Vz5069+eabshp535D27dvX+Hcg0FwGPQcAAABgF9sKnJMnT0qSDh8+rNdee03Z2dmSpFtvvVXGGD377LN65ZVXdOONN9oVAQAAAHCnQEC235U0ShsAtp2i1qJFC0lSenp6sLiplpubK0navHlzo9dfXFxc47F79+5GrwsAAACAN9jWwenQoYMkqV27drXmVZ9edvToUbs2DwAAALgXN/q0jW0FTs+ePZWYmKiioqJa8w4ePChJuuiii5p8u6aqUqZxl/XYzpeY6HSEsFw/yl3A3flMZYXTEWAzX1KS0xFCCpSVOx0hLCsmxukIIZmqKqcjwGa+xASnI4TUHF7HMi499cmtuRBRtp2ilpSUpFtvvVWfffaZ/ud//qfGvKefflqSdNNNN9m1eQAAAMC9GEXNNg3u4KxZs0YHDhyQdGYAgYqKCs2fP1+S1KlTpxo39Fy4cKFef/11jRkzRlOmTFHnzp318ssva+PGjbrnnnuUlZXVRD8GAAAAADSiwFm5cqXeeuutGtNmzZolSRo8eHCNAqdjx47aunWrfvjDH+qXv/yljh8/ri5duuinP/2pHnzwwXOMDgAAADRTASPJ5g6Ly0/tt0uDC5yGjnzWuXNnPffccw3dDAAAAAA0mG3X4AAAAABApNk2ihoAAACAuhkTkLF51De71+9WdHAAAAAAeAYdHAAAACDSjLF/EIAoHSaaDg4AAAAAz6CDAwAAAESaicAw0XRwAAAAAKB581wHx9ciUT4r3ukYdQu4fyQLU1nldITQAn6nEzR7Vqy7X/aBikqnI4RkTp92OkKzZ8UnOh0hpMDpMqcjhNYM3gd9LVs6HSEkU8XfunPmi3E6wVn4bG+KNJlAQLJs/mzIKGoAAAAA0Ly5+6tcAAAAwIu4Bsc2dHAAAAAAeAYdHAAAACDCTCAgY/M1OIZrcAAAAACgeaODAwAAAEQa1+DYhg4OAAAAAM+gwAEAAADgGZyiBgAAAERawEgWp6jZgQ4OAAAAAM+ggwMAAABEmjGSbB7GOUo7OJ4rcExFpYzldIqziIlxOkF4Lh8v3Yp19yHrS27pdISw/MdPOB2hWbNc/jo2fr/TEcIy5eVORwgt4O59aMXFOx0hrMDpMqcjhOT217Est36Q+Qq3fl5way5ElLs/LQIAAAAeZAJGxuZrcEyUdnC4BgcAAACAZ9DBAQAAACLNBGT/NTjRecoeHRwAAAAAnkEHBwAAAIgwrsGxDx0cAAAAAJ5BBwcAAACINK7BsQ0dHAAAAACe4ZkOTvU5hr/a96RSU1MdTgMAAIBIO3HihC6++LfN4tqTKlVKNsesUqW9G3ApzxQ4J0+elCRdfPHFDicBAACAk06ePKlWrVo5HaNO8fHxateund757OWIbK9du3aKj4+PyLbcwjLNocSth0AgoEOHDiklJUWWZTkdJ6TMzExJ0u7dux1O4j7sm9DYP2fHvgmN/RMa++fs2DehsX9Ci/T+Mcbo5MmTSktLk8/n3isxysrKVFFREZFtxcfHKzExMSLbcgvPdHB8Pp86dOjgdIx6qX7BcSpdbeyb0Ng/Z8e+CY39Exr75+zYN6Gxf0JzYv+4tXPzVYmJiVFXdESSe0tbAAAAAGggChwAAAAAnuGZa3AAAAAAgA4OAAAAAM+gwAEAAADgGRQ4AAAAADyDAgcAAACAZ1DgAAAAAPAMChwAAAAAnkGBAwAAAMAzKHAAAAAAeAYFDgAAAADPoMABAAAA4BkUOAAAAAA8gwIHAAAAgGdQ4DSxRYsWKScnRxkZGbIsS507dw65/Hvvvafs7GylpKQoNTVVN9xwgz788MOIZI20Xbt2afbs2RowYIDatGmjlJQU9e7dWwsWLNCpU6dqLb9z506NGjVKrVu3VsuWLTVo0CC9+eabDiSPjJ07d+quu+7S5ZdfrlatWikpKUmXXXaZpk2bpuLi4jqXj6b983WlpaXB19nkyZNrzY+2/WNZVp2P5OTkWstG276pduTIET388MPq2rWrEhMT1aZNGw0dOlR//OMfaywXTe/LkpSfn3/W48eyLMXFxdVYPtqOn5KSEi1cuFA9e/ZUSkqKLrzwQmVlZWn16tUyxtRYNtqOnX/84x+aNGmSLr74YsXHx6tjx476j//4Dx07dqzWstF23MBZsU4H8JoZM2bo/PPPV58+fep8gX/V1q1bNWTIEKWnp2vu3LmSpKVLl2rQoEHasmWLevbsGYHEkbNq1SotW7ZMI0eO1F133aW4uDht2rRJM2fO1K9//Wtt3bpVLVq0kCTt3btXWVlZio2N1SOPPKJWrVpp+fLluv766/WHP/xB2dnZDv80Te/gwYMqLi7WzTffrA4dOig2NlYfffSRfvGLX+iFF17Qhx9+qIsuukhSdO6fr5s9e7YOHz5c57xo3T+DBg3SxIkTa0z7+ofTaN03Bw4c0JAhQ1RSUqL77rtPl156qY4fP67t27erqKgouFy0vS9L0i233KKuXbvWmr59+3Y99thjGjFiRHBatB0/gUBAN954o7Zs2aLc3FxNmTJFpaWlev755zVu3Dj97W9/049//GNJ0XfsfP755/rGN76hQ4cO6f7771ePHj20Y8cOPf3003r77bf17rvvKikpSVL0HTdwAYMmtXfv3uD/d+/e3XTq1Omsy/br18+kpKSYgwcPBqcdPHjQpKSkmGHDhtkZ0xGFhYXm2LFjtab/8Ic/NJLMkiVLgtNycnKMz+czH3zwQXDayZMnTceOHc2ll15qAoFAJCK7wq9//Wsjyfz4xz8OTov2/bNt2zYTExNjFi9ebCSZBx54oMb8aNw/kkxubm7Y5aJx3xhjzDXXXGM6dOhgDh06FHK5aHtfDmXixIlGkvn9738fnBZtx8+WLVuMJDN16tQa08vLy80ll1xiWrVqFZwWbcfOf/zHfxhJZt26dTWmr1u3zkgy8+bNC06LtuMGzqPAsVGoAmf37t1Gkrn33ntrzbv33nuNZVmmuLjY5oTusH37diPJ3H///cYYY0pKSkxCQoK59tpray07d+5cI8m89957kY7pmPfee89IMtOnTzfGsH+qqqpMnz59zPDhw82+fftqFTjRun+qC5zy8nJz8uTJOpeJ1n3z1ltvGUnmP//zP40xxlRUVJhTp07VWo735X8pKSkxqamppkOHDqaqqio4LdqOn1deecVIMj/5yU9qzevXr59JS0szxkTnsXPllVeaFi1a1CpO/H6/SUxMNBkZGcaY6Dxu4DyuwXFIYWGhJGngwIG15g0YMEDGGG3bti3SsRxx8OBBSVLbtm0lnTktory8/Kz7RvrX/vOisrIyffHFFzp48KBeffVV3X///ZKkm266SRL754knntDHH3+spUuX1jk/mvfPf//3fyspKUkpKSm66KKLNGXKFB0/fjw4P1r3zcsvvyxJ6tixo0aMGKEWLVqoZcuWuvTSS7V27drgcrwv/8v69et14sQJ/fu//7tiYmIkRefx079/f5133nn6yU9+ovXr1+uTTz7Rxx9/rLy8PG3btk35+fmSovPYKS8vV2JioizLqjHd5/OpRYsW+vvf/64vvvgiKo8bOI9rcBxy6NAhSVJ6enqtedXTvnpeuFf5/X7NmzdPsbGxGjNmjCT2zYoVKzRlypTgvzt37qy1a9dq0KBBkqJ7/+zbt0+PPvqoZs+erc6dO2v//v21lonW/dO/f3/l5OSoa9euOnHihF5++WUtXbpUb731lrZs2aLk5OSo3Tc7d+6UJE2YMEGZmZl69tlnVVFRocWLF2vs2LGqrKzUuHHjonb/1GXlypWyLEv33ntvcFo07p/WrVvrpZde0vjx4zV69Ojg9JSUFL344osaNWqUpOjcN927d9fOnTv14Ycfqnfv3sHpH374oY4ePSpJ+uSTT6Jy38B5FDgOKS0tlSQlJCTUmpeYmFhjGS+bOnWqCgoKtHDhQnXr1k0S+2bUqFG67LLLVFJSog8++EAvvfSSvvjii+D8aN4/kyZNUkZGhqZNm3bWZaJ1/7z33ns1/n3PPffoyiuv1A9/+EM99dRT+uEPfxi1++bkyZOSznwo3bRpk+Lj4yWdea1lZGRoxowZys3Njdr983U7d+7UO++8o29961u65JJLgtOjdf8kJyerR48eGjlypLKysnTkyBEtW7ZMY8aM0YYNGzRs2LCo3DdTp07Vb3/7W40ePVpPPvmkevToob/85S+aOnWq4uLiVFlZqdLS0qjcN3Aep6g5pHpkkfLy8lrzysrKaizjVbNmzdLSpUs1ceJE5eXlBadH+77p0KGDsrOzNWrUKM2ZM0fPPvusHnnkES1atEhS9O6ftWvX6rXXXtPTTz9da2Swr4rW/VOX73//+4qPj9fGjRslRe++qR6d8c477wwWN9KZb+dHjhypzz77TDt37oza/fN1K1eulCSNHz++xvRo3D8fffSRsrKyNGzYMD322GO6+eabdd999+mdd95Ru3btNGHCBPn9/qjcN4MGDdILL7ygkydPavjw4erUqZNGjBihoUOH6tvf/rYkKTU1NSr3DZxHgeOQtLQ0SXW3Zaun1dXO9Yr8/HzNnz9f48aN0zPPPFNjXrTvm6+78sorddVVV+lnP/uZpOjcP+Xl5Zo2bZpuuukmtWvXTnv27NGePXt04MABSdLx48e1Z88eHTt2LCr3z9nExcUpLS0t2AGM1n3ToUMHSVK7du1qzWvfvr0k6ejRo1G7f76qqqpKv/rVr3TBBRfo5ptvrjEvGvfPE088obKyMuXk5NSYnpSUpOHDh+vAgQPav39/VO4bScrJydHBgwf1wQcf6O2339ahQ4f0zDPP6ODBg4qNjVXXrl2jdt/AWRQ4DunXr58kqaCgoNa8rVu3yrIsXX311ZGOFRH5+fmaM2eOcnNztWLFiloXKPbs2VMJCQln3TeS1Ldv34hkdYvTp0/ryJEjkqJz/5w+fVqHDx/Wxo0blZmZGXwMGTJE0pnuTmZmplasWBGV++dsysrKdPDgweAAHtG6b/r37y/pXwOafFX1tIsuuiiq35er/e53v9M//vEP3X333bVOKYrG46f6A7jf7681r6qqKvjfaD52YmJi1Lt3bw0aNEgXXXSRPvvsM33wwQcaPHiwkpKSovK4gQs4PIqbp4W7D07fvn1NSkqKKSoqCk4rKioyKSkp5lvf+lYEEkbenDlzjCQzduxY4/f7z7rcbbfdZnw+n/nwww+D06rHzM/MzPTkmPlnG0L0zTffND6fr8YQm9G2fyoqKsz69etrPX72s58ZSeaGG24w69evNzt37jTGRN/++eKLL+qc/vDDD9e6h1K07RtjjDly5IhJSUkx6enpNYbQPnTokGnZsqW59NJLg9Oi8X35q4YPH24kme3bt9c5P9qOn6lTp9Z6DRljzNGjR0379u1N69atg8NoR/uxY8yZIaJzcnKMZVnmzTffDE6PtuMGzrOMMcbRCstj1qxZEzxtZsmSJaqoqNBDDz0kSerUqZPGjh0bXHbLli0aOnSoOnToEBw1a8mSJfrHP/6hd999V7169Yr8D2CjZcuWafLkyerYsaPmzZsnn69mA7Ft27YaNmyYJGnPnj3q37+/4uLi9OCDDyo1NVXLly/XRx99pI0bN+r666934kew1c0336zi4mJde+216tSpk8rKyrRt2za98MILSkpK0ubNm4Mj1UTj/qnL/v37dckll+iBBx6oMWx0tO2fBx98UFu3btXQoUPVsWNHlZSU6OWXX9amTZv0jW98Q5s2bQpehxJt+6baL37xC91///3q3r277r33XlVUVOjpp59WcXGxfv/73+u6666TFH3vy1916NAhdezYUVdffXWtQSuqRdvxc+DAAfXp00dHjx7VXXfdpW9+85s6cuSIli9frv3792vZsmX67ne/Kyn6jp2SkhL1799fN998sy655BIdP35czz//vLZt26YFCxZoxowZwWWj7biBCzhdYXnN4MGDjaQ6H4MHD661/JYtW8y1115rWrZsaZKTk811111ntm3bFvngEZCbm3vWfVPX/vnrX/9qRo4caVq1amVatGhhvvnNb5rXXnvNmfAR8F//9V9m+PDhpkOHDiYhIcEkJiaabt26mcmTJ5sDBw7UWj7a9k9d6rrRZ7Vo2j+//e1vzXXXXWfS0tJMQkKCSUpKMr169TILFiwwp0+frrV8NO2br3rxxRfNN77xDZOUlGSSk5PNsGHDzDvvvFNruWh6X/6qBQsWGEnmF7/4Rcjlou342bNnj7nnnntMenq6iY2NNSkpKWbQoEHmxRdfrLVsNB075eXl5o477jCdO3c2CQkJpnXr1ua6664zr7zySp3LR9txA2fRwQEAAADgGQwyAAAAAMAzKHAAAAAAeAYFDgAAAADPoMABAAAA4BkUOAAAAAA8gwIHAAAAgGdQ4AAAAADwDAocAAAAAJ5BgQMAAADAMyhwAAAAAHgGBQ4AAAAAz6DAAQAAAOAZFDgAAAAAPOP/AexWnPOAAHbDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)\n", + "plt.imshow(dps_new_t.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15,30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's trace that drifiting feature." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# By looking into the maximum power of each segment\n", + "max_pos = dps.trace_maximum()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Detected frequency drift')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAKOCAYAAAAf5QD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIk0lEQVR4nOzdd3gU9drG8XtDSGhJqIYamogFFJUmioCCDWnSBMWAFEM7IlZEOuixcpQWOoiiCFJFPaKCHlEEURQQKUKkKtISOiSZ9495k8lKAsmyyW/L93NduZxntt2BJebZmXl+LsuyLAEAAAAAAkqI6QAAAAAAAO+j2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIADR7AEAAABAAKLZA4A8UKlSJblcrvSvkJAQRUVFqVKlSmrevLnGjBmj3bt3m44ZUGbNmiWXy6WuXbvm6HGHDh3So48+qnLlyik0NFQul0vDhw/PlYwwq3HjxnK5XFq1apVXH7thwwbde++9Kl68uEJCQjx+DQC4XKGmAwBAMLn77rtVunRpSdLJkyd14MABrVq1Sh9//LGGDh2qfv366eWXX1aBAgW88noul0uSZFmWV57PEwkJCapcubIqVqyohIQEYzmyq0ePHlqyZImuvPJKdejQQWFhYapVq5bpWPATJ06cUIsWLbR3717Vr19f1apVU0hIiEqXLq3hw4drxIgRGjZsGB8gAMgTNHsAkIeee+45NW7c2G3f2bNnNWfOHD399NN66623tHPnTi1ZskQhIZx8kdfOnTun5cuXq2DBgvrpp59UpEgR05Hgo95++22dOnVKMTExbvvXrl2rvXv3qmHDhvr6668NpQMAG79JAIBh4eHh6tGjh77++msVLFhQH330kaZPn246VlD6888/lZycrCuuuIJGDxcVExOjq6++WoUKFXLbv3fvXklSlSpVTMQCADc0ewDgI2rWrKkBAwZIkt54441M77Np0yZ17dpVMTExCg8PV4kSJdS8efMLrgdKu14tTcbrBTPuT7N69Wq1b99eZcuWVVhYmEqXLq0OHTpow4YNWeY9ePCgnn/+eV1//fUqUqSIIiIidPXVVysuLk6bNm2SJA0fPlyVK1eWJP3xxx9uGSpVqnTBcy5fvlzNmzfXFVdcobCwMFWoUEGPPvqodu7cmWWODz74QPXq1VOhQoVUokQJtWjRQj/++GOW98+Ky+VSxYoVM82aJu3ay4SEBH3wwQe67bbbFBUVJZfLpWPHjqXfL7t/Txn9+OOPuv/++1W0aFEVKVJE9evX1/z585WQkJDpn9eqVavkcrkuOFKc5lLXLOY0Y8Y/izlz5qh27doqVKiQihcvrnbt2un333/P8ntLSEhQ//79Vb16dRUqVEhFixZVzZo19eSTT+qPP/6QJM2dO1cul0v3339/ls+zePFiuVwuNWvWLMv7/NPx48f19NNPq2LFigoPD1flypX19NNP6+TJk1k+JuP1eJ9//rnuuusuFS9eXC6XK/3fxD+v2Uv7+4iNjZUkzZ49O/3PrHHjxqpUqZJGjBghSRoxYoTb+4tTOgHkFk7jBAAf0rlzZ7300kv67bfftH//fpUtWzb9tnfeeUePPvqozp8/rxtuuEH16tXT/v379d///leffPKJJk6cqLi4OEnSlVdeqdjYWM2ePVuS0n8BzczLL7+sQYMGyeVyqXbt2rrtttu0c+dOzZ8/X0uWLNGCBQvUokULt8esX79e9913nw4ePKgrrrhCTZs2Vf78+bVz505NnTpVpUuXVo0aNVSrVi21bdtWH374oQoXLqx27dqlP0fJkiXdnrNPnz6aNGmSwsLCVKdOHZUpU0a//vqrZs6cqYULF+qzzz5T3bp13R4zZswYvfDCCwoJCVHDhg1VpkwZ/fDDD2rQoIG6deuWoz/72NhYnThxItOs//TKK69o0qRJuuWWW9S8eXNt27YtvRHKyd9Tmi+++ELNmzfX2bNnVaNGDdWoUUMJCQnq0KGDHn/88Rx9H9nhScY0zz//vF577TXdfvvtuu+++7RmzRp9+OGH+vbbb7Vx40aVKFHC7f6ffPKJOnTooBMnTigmJkb33XefUlJStGPHDr3xxhuqWbOmunbtqnbt2umJJ57QJ598ot27d19weqQkTZo0SZLUu3fvbH2fx48fV6NGjfTTTz+pWLFiuv/++5WcnKz4+Hh9/fXXypcv30Uf//7772vKlCm64YYbdM8992jPnj1Znl5dunRpxcbGaseOHVq9erWqVq2q2267TZJ09dVX69ChQ/r888/1888/64YbbnC7DpRrQgHkGgsAkOsqVqxoSbJWrlx50fulpKRYYWFhliRrxYoV6ft/+uknK3/+/FZUVJT1+eefuz3mu+++s4oWLWrlz5/f+u2339xuk2Rd7Ef9Rx99ZEmyYmJirPXr17vdtnTpUis0NNSKioqyDh8+nL4/KSnJKlu2rCXJGjhwoHX27Fm3x+3evdv64Ycf0utdu3ZZkqyKFStmmWPChAmWJKtWrVrW9u3b3W6bNGmSJcmqUqWKdf78+fT969evt0JCQqzw8HDriy++SN+fkpJi/etf/0r/3mNjY7N83X+6VNa0v8f8+fNb//3vfy+43ZO/p5MnT1plypSxJFljxoxxe8wHH3xghYSEZJpp5cqVliSrUaNGmWadOXNmpt//5b6XSpUqZW3cuDF9//Hjx6169epZkqwRI0a4PSYhIcEqUqSIJcl6/fXXrZSUFLfbt2zZYv3666/p9eDBgy1J1uDBgy/4fnbs2GG5XC6rbNmybu+Di3n88cctSVbdunWtI0eOpO/ft2+fddVVV6V/T//8d9moUaP022bOnJnpc6fd55+PzerP3bIsa9iwYZYka9iwYdnKDwCXi9M4AcCHhISEqHjx4pKkw4cPp+9/8cUXdf78eY0dO1Z33nmn22Pq16+vIUOG6Pz585o8eXKOXi/ttLJZs2bppptucrutRYsW6t27txITE/XOO++k7582bZr279+vO+64Q6+//rrCwsLcHlehQgXdfPPN2c6QkpKiUaNGKSQkRPPnz9eVV17pdntcXJxatGihnTt36uOPP07fP378eKWmpurRRx/VHXfckb4/JCREr7zyittRUW979NFHddddd12w35O/pwULFujAgQO67rrrNGjQILfHtG/fXq1bt/Zq9st9L40cOVI1atRIr4sUKaKnnnpKkrRy5Uq3+77xxhs6ceKEunXrpoEDB15wVOzqq6/WNddck17HxcUpX758mjFjhpKTk93uO3nyZFmWpZ49eyo09NInJp06dUrTpk2TJI0bN07FihVLv61s2bJ67bXXLvkcd999d46X7gAAX0KzBwA+JjU1VZKzbEJqaqr++9//Kl++fHrggQcyfcztt98uSVqzZk22X+fQoUNat26dSpYsmeV1X5k976effirJbni8YcOGDfrzzz914403XtDoXSzHV199JUl66KGHLrh/eHi42rdv75V8mcmsAfP07ynt++jUqVOm11N26dLFC4kvL2NG99577wX7qlevLknav3+/2/6090r37t2zla98+fJq1aqVDhw4oMWLF6fvP3v2rGbOnKl8+fKpZ8+e2Xqu9evX6+TJk7ryyisvOP1Xsj/MKFq06EWfw9uNNgDkNa7ZAwAfkpKSkj7oI+MRvqSkJEm65C+nf//9d7Zfa9euXZLspu9SyzxkfN60xd/TfsG/XGnDV9avX59ps5NVjn379klSpoNeLrbfG9IGuWTk6d9TXn4f3ngvVahQ4YJ9ERERkuymLCNP3iv9+vXTwoULFR8fn37d5Pz583Xo0CG1bt1a5cqVy9bzXOrPVbL/HjMO1snsdgDwZzR7AOBDNm/erHPnzklS+qlyKSkpkqSwsDB16tTpoo//59CTi0l73uLFi18wgOWfrr766vTtSzVkOZWWIyYmRk2aNLnofevVq+fV1/ZUwYIFL9iXW39Pnko7QpyRNzLmZP1HT94rTZo00bXXXqsvv/xS27dvV7Vq1RQfHy8p+4NZvCWzv2cA8Cc0ewDgQ9577z1J0nXXXafSpUtLsn/pLlCgQPp1VOHh4V55rbQjNIUKFdKsWbOy/biYmBht2bJF27ZtU+3atb2WIyYmJkc5ypUrp507d+qPP/7I9GhPQkLCZWfLCU//ntKypy1B8E9ZfR9p10qeOHEi09v37NnjtYyeiomJ0datW7Vt27YcNbh9+/ZV3759FR8fr65du2r16tW68sorc7TkwqX+XC91GwAEAq7ZAwAfsXHjRr311luSpCeffDJ9f2hoqJo2baqUlBS365iyI3/+/JJ0wbALyf5luEaNGtq7d6++//77bD9n2mCSGTNmZOv+aU1JZhkkqW7duipevLjWrl2baYOSlbRry+bOnXvBbefOndOCBQuy/Vze4OnfU9r38f7778uyrAtuf/fddzN9XNoAmp07d+r8+fMX3P7ZZ595LaOncvpeSdOlSxdFRERo9uzZ+s9//iNJeuyxx3J0pPDmm29W4cKFtX37dv3www8X3L58+fKLnsKZGy71bwEAvI1mDwAMO3v2rKZPn67bb79dp06dUqtWrS5YF2/o0KEKDQ1Vnz59Mv0lPSUlRStXrrxgqEba0Y0tW7Zk+tojR46UZA8HSRsUktG5c+e0bNky/fbbb+n7evTooTJlyuiLL77Qs88+m37aaZo9e/Zo/fr16XWpUqUUFhamv/76S0ePHr3gNfLnz68XXnhB586dU6tWrTJdyP3UqVOaO3eu/vrrr/R9ffv2VUhIiKZPn+62EHhqaqqee+659Gu28pInf0/t2rVT6dKltXHjRr3yyitu91+4cKEWLlyY6WtVqlRJlSpV0tGjR9M/JJAky7I0ZswYffvtt17L6KmBAweqcOHCmjFjht56660LTi397bff3N5baSIiIhQbG6vDhw9rxowZCg8Pz/G6iYUKFUofItS/f3+3xu7AgQPpE0Tz0qX+PQKA1xle+gEAgkLa+mx33323FRsba8XGxlrt27e3GjZsaBUuXNiSZIWEhFgDBgywTp8+nelzvPPOO1Z4eLglyapatarVvHlzq1OnTtYdd9xhFStWzJJkTZo0ye0xTzzxRPraaB07drS6d+9ude/e3e0+L7/8cvpabtdee63VunVr68EHH7QaNmyYvkbaJ5984vaY77//3ipZsqQlyYqOjrbatGljtWvXzrrpppuskJCQC9YRa9OmTfpacZ07d7a6d+9uPfvss2736devnyXJcrlc1o033mi1bdvW6tChg1WvXr3073vLli1ujxkxYkT6n13jxo2tTp06WdWqVbPCw8Otxx57LNfW2du1a1eWz+HJ39Nnn32W/piaNWtanTp1sm655RZLUvqagZlleuedd9LXg6tXr57Vtm1b68orr7QKFy5s9e/fP8vv35OMaa+T0z+3ZcuWWYUKFUq/vV27dlabNm2smjVrXnQduy1btqS/5sMPP5zpfS4lKSnJuuGGGyxJVvHixa22bdtarVq1sooUKWLVqVMn/c84q3X2LrYupifr7B04cCD9z6Jhw4ZW165dre7du1tLlizx6PsDgEuh2QOAPJDWJKR9uVwuKyIiwqpYsaJ13333WWPGjLF27959yefZtm2b1adPH+uqq66yChYsaBUuXNi68sorrRYtWlhTpkxxW/zcsizr1KlT1sCBA63KlStb+fPnz/IX9vXr11uxsbFWpUqVrPDwcCsyMtKqXr261b59e+udd96xTpw4ccFj9u/fbz355JNW9erVrQIFClgRERHW1VdfbfXp08favHmz230PHTpkde/e3SpfvrwVGhqaZWPw5ZdfWu3bt7fKlStnhYWFWcWKFbOuvfZaKzY21lq4cKF17ty5Cx7z3nvvWXXq1LEKFixoFS1a1Lr33nutdevWXfSX7qx4o9mzrJz/PVmWZa1bt8667777rMjISKtw4cJWnTp1rLlz514y07x586ybbrrJCg8Pt4oWLWq1atXK2rx58yW//5xm9LTZsyzL2r59u/XYY49ZlStXtsLCwqyiRYtaNWvWtJ566inrjz/+yPLPsXz58pYka/Xq1Vne51ISExOtJ5980qpQoYIVFhZmxcTEWE888YR1/PjxLBu23Gr2LMt+jzdu3NiKioqyXC4Xi6wDyFUuy8rkAgEAAOATEhISVLlyZVWsWDHPh86YtHr1at122226/vrr9fPPP5uOAwB+iWv2AACAT7EsS8OGDZMkDRgwwGwYAPBjLL0AAAB8wtKlS7V48WJt2LBBP/30k2rWrKkuXbqYjgUAfosjewAAwCf8+OOPmjlzpnbu3KmWLVtq6dKlCg3lc2kA8BTX7AEAAABAAOLIHgAAAAAEIM6NyKbU1FTt379fERERcrlcpuMAAAAACEKWZen48eMqW7asQkIufuyOZi+b9u/frwoVKpiOAQAAAADas2ePypcvf9H70OxlU0REhCT7DzUyMtJwGgAAAADBKCkpSRUqVEjvTy6GZi+b0k7djIyMpNkDAAAAYFR2Li1jQAsAAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIADR7AEAAABAAKLZAwAAAIAARLMHAAAAAAGIZg8AAAAAAhDNHgAAAAAEIJo9AAAAAAhANHsAAAAAEIBo9gAAAAAgANHsAQAAAEAAotkDAAAAgABEswcAAAAAAYhmDwAAAAACEM0eAAAAAAQgmj0AAAAACEA0ewAAAAAQgGj2AAAAACAAhZoOAAS906elhATTKXxPxYpSoUKmUwAAAPgtmj3ApM2bpTvvlP76y3QS31O8uPTZZ9LNN5tOAgAA4Jc4jRMw5fBhqWVLGr2sHDkitWolHThgOgkAAIBfotkDTDh/XmrXTtq503QS37Zvn9S6tXTmjOkkAAAAfodmDzBhwABp1SqnHjxYsiy+0r5eftn5s1m7VurVy94PAACAbKPZA/JafLw0caJTt24tjRxpLI5Pevpp6eGHnXrOHOm118zlAQAA8EM0e0BeWrVK6t/fqWvWtBuZEP4punG5pKlTpbp1nX3PPistX24uEwAAgJ/hN0wgr+zcKbVtKyUn23XJktLSpVKRImZz+aoCBaTFi6WyZe3asqROnaRffzUaCwAAwF/Q7AF5ISnJnrx55Ihdh4ZKH34oVapkNJbPK1PGbvgKFLDr48ftP8fDh43GAgAA8Ac0e0BuS021rz/bvNnZN2GCdPvt5jL5kzp1pOnTnfr336UOHeyJpgAAAMgSzR6Q2154QVq2zKn79bOnSyL7OneWBg1y6i+/lAYONJcHAADAD9DsAblp7lzppZec+s47pbFjzeXxZ6NH26dwphk/XpoyxVweAAAAH0ezB+SWdeuk7t2d+sorpQ8+sK/XQ86FhEjvvCPVqOHs69tX+uorc5kAAAB8GM0ekBv275datZLOnLHriAh78mbx4mZz+bu0P8cSJew6OdmecLprl9lcAAAAPohmD/C206fthdIPHLBrl0t6/33pmmuMxgoYlStLCxY4R0gPH7ZP7zx+3GwuAAAAH0OzB3iTZUk9e9qncKZ5+WXpvvvMZQpEjRtL48Y59aZNUpcu9uRTAAAASKLZA7zrlVekd9916i5dpKeeMpcnkMXFSX36OPWSJdLQoebyAAAA+BiaPcBbli1zXx6gfn17WqTLZS5ToPvPf6QmTZx6zBj7lFkAAADQ7AFesXmzvRacZdl1uXLSwoVSgQJmcwW6/Pml+fOlKlWcfd26SevXm8sEAADgI2j2gMuVNiDkxAm7LlBAWrxYKlPGaKygUaKEPaEzIsKuz5yxJ6GmDcgBAAAIUjR7wOU4f15q317audPZN2uWVLu2sUhB6brr7AXs006Z3bdPatPGWfoCAAAgCNHsAZdjwABp5UqnHjxY6tjRWJygdv/90ksvOfX330u9ejmn1gIAAAQZmj3AU/Hx0sSJTt26tTRypLE4kPTMM9LDDzv1nDnSa6+ZywMAAGAQzR7giVWrpP79nbpmTbuxCOGflFEulzR1qlS3rrPv2Weljz82lwkAAMAQfjMFcmrnTqldOyk52a5LlrTXeCtSxGwu2AoUkBYtksqWtWvLkjp1krZsMZsLAAAgj9HsATlx/Lg96fHwYbsODZUWLJAqVzabC+7KlrUnoqYtfZGUJLVoIR05YjQWAABAXqLZA7IrNdW+HmzTJmffhAlSo0bmMiFrdepI06c79e+/Sx062BNUAQAAggDNHpBdL7xgr+eWpl8/e9ojfFfnztKgQU79xRfSwIHm8gAAAOShUNMBAK85cED6+mvnWjpv2rnTfaz/nXdKY8d6/3XgfaNH20djly2z6/HjpchI6dprvf9a+fJJt94qVajg/ecGAADIIZdlsQhVdiQlJSkqKkqJiYmKjIw0HQf/tH271KCBdOhQ7r9W1arS2rVS8eK5/1rwjuPHpVtukTZvzv3XioyUvvnGntAKAADgZTnpSziNE/4vMVFq2TJvGr2ICPtUTho9/5L291aiRO6/VlJS3r0fAQAALoLTOOHfUlLssfq//ebsu/56+3Q6b4uKshdNz43T/5D7qlSRPv3UXnfv6FHvP79lSRs22NsJCfbyHJ99JoWFef+1AAAAsoFmD/5t0CDpk0+c+oknpDfeMJcHvq12bXtIS24ZOlQaNcre/uor6fHHpUmTcu/1AAAALoLTOOG/3n5bevVVp777bumVV8zlAYYPl9q0cer4eGniRGNxAABAcKPZg39as0bq2dOpr7pKev99e5FzwJSQEPtDiOuvd/b961/Sl1+aywQAAIIWzR78z969UuvW0rlzdh0VZQ/fKFrUZCrAVqSItGSJVLKkXaekSO3b24u6AwAA5CGaPfiXU6fsRu+vv+w6JET64AOpenWjsQA3lSpJCxdK+fPb9ZEj9oTOpCSjsQAAQHCh2YP/sCype3dp/Xpn3+uvS3fdZS4TkJWGDd2v1/v1V+mhh+wjfQAAAHmAZg/+48UX7evy0nTrZk87BHxVjx72NXtpPvpIGjzYXB4AABBUaPbgHxYvll54wakbNLBH2rtcxiIB2fL661LTpk798svSO++YywMAAIIGzR583y+/SA8/7NQVKtjXQ4WHm8sEZFdoqDRvnnTllc6+Hj2k7783lwkAAAQFmj34tr//tgdbnDxp14UK2ZM3o6PN5gJyonhxadkyKTLSrs+etdfj27fPbC4AABDQaPbgu86dk9q1k/74w9n39ttSrVrGIgEeu/pq+5rTkP//sXvggD1Z9vRpo7EAAEDgotmDb7IsqX9/6euvnX3Dhklt25rLBFyue++VXnnFqX/4wZ4wa1nmMgEAgIBFswffNGGCNGWKU7dtKw0dai4P4C0DB0qxsU793nvSv/9tLg8AAAhYNHvwPV98IQ0Y4NS1akmzZzunvwH+zOWS4uOl+vWdfYMH29eiAgAAeBG/PcO37NghtW/vLDx9xRXSkiVS4cJmcwHeVKCAtGiRVL68XVuWveD6pk1mcwEAgIBCswffkZhoT948etSu8+e3l1iIiTGbC8gNpUvbH2QULGjXJ07Y7/9Dh8zmAgAAAYNmD74hJUXq3FnassXZFx8v3XqruUxAbrvpJmnWLKfetcs+sn3+vLFIAAAgcNDswTc8/7z08cdOPWCA9OijxuIAeaZDB2nIEKdetUp6/HFjcQAAQOCg2YN5c+a4j6O/+27p1VfN5QHy2vDh9iLraSZNsr8AAAAuA80ezPr+e6lnT6e+6ip74enQUHOZgLwWEiK9/bZ0/fXOvv79pZUrzWUCAAB+j2YP5uzdK7VuLZ09a9dRUfb4+aJFTaYCzChSxB7YUrKkXaekSO3aSb//bjYXAADwWz7X7G3btk1Dhw5V/fr1VapUKUVERKhWrVoaM2aMTp48meljli9frqZNm6pYsWIqVKiQrrrqKvXr1y+PkyNHTp+2G70//7TrkBBp3jypenWjsQCjKlWyJ9Dmz2/XR47YEzqTkozGAgAA/snnmr0ZM2Zo7Nixqlq1qoYOHapXX31V1atX1wsvvKAGDRro9OnTbvcfMWKE7r//foWGhmrEiBF666239OCDD2rv3r2GvgNckmXZw1fWr3f2vfaafa0eEOwaNpQmTnTqX3+VHn7YWXsSAAAgm1yWZVmmQ2T0ww8/qFq1aoqKinLb/8ILL2jMmDEaN25c+lG7zz//XM2aNdPIkSM1JOM0u1yQlJSkqKgoJSYmKjIyMldfK+C9+KI0eLBTd+smTZ8uuVzmMgG+5vHHpbfecurnnpNeeslcHgAA4BNy0pf43JG92rVrX9DoSVLHjh0lSZs2bUrf9+KLL+qKK67QoEGDJEknTpxQampq3gSFZ5YscW/0GjSwpw7S6AHuXn9datrUqf/9b+ndd83lAQAAfsfnmr2spJ2WGR0dLUk6efKkvv76a9WrV0/Tp09XuXLlFBERoSJFiujBBx/UX3/9dVmvV6ZMGbevatWqXfb3EPQ2brRPR0tToYJ9fVJ4uLlMgK8KDbWvY73ySmdf9+7S2rXmMgEAAL/iF81eSkqKRo0apdDQUHXu3FmStGPHDqWkpGjNmjV6/PHH1bNnTy1cuFBxcXGaP3++mjRpolOnThlOjnSHDtmDJk6csOtCheyjfP/fvAPIRPHi0rJlUtopGmfP2oON9u83GgsAAPgHv1jMbMCAAfruu+/04osvqvr/T2s8fvy4JOnvv//W1KlT1aNHD0lSmzZtFBkZqREjRmj27Nnq3bu3R6954MABtzrt3Fh44Nw5e4R8QoKzb/Zs6cYbjUUC/MbVV9trT95/v5SaKh04YDd8X30lFSxoOh0AAPBhPn9kb8iQIRo/frx69eqVfm2eJBX8/19yQkJC1KVLF7fHxMbGSpJWrVqVZzmRBcuS/vUv+xfTNMOG2c0fgOy5917plVecet06qUcP+98XAABAFny62Rs+fLhGjx6tbt26KT4+3u228uXLS5KKFSum8H9c81WmTBlJ0tGjR/MmKLI2caI0ebJTt20rDR1qLg/grwYOlLp2deq5c6WXXzYWBwAA+D6fbfaGDx+uESNGKDY2VtOmTZPrH9Mao6OjFRMToyNHjlxwbV7aMJcrrrgiz/IiE198YY+PT3PDDfbpmyE++7YDfJfLJcXHS7fc4ux7/nn7mj4AAIBM+ORv3SNHjtSIESPUpUsXzZgxQyFZNAddunSRZVmanPHIkaRJkyZJku67775cz4os7NghtW/vLARdqpQ9kKVwYbO5AH8WHm5PsP3/MxtkWVLnzlKGJWkAAADS+Nyi6hMmTFC/fv0UExOjUaNGXdDoRUdHq1mzZpLsoSn16tXTtm3b1KtXL91www365ptv9O677+qOO+7QZ599pnz58nklF4uq50BSklS/vrRli13nzy+tXCndeqvZXECg+PFH6bbbpNOn7bpyZfs6vhIlzOYCAAC5Lid9ic81e127dtXs2bOzvL1Ro0Zug1cOHTqkIUOGaMmSJTp06JDKly+vTp06aciQISpQoIDXctHsZVNKitSqlbR8ubNv+nTp0UfNZQIC0QcfSB07OnXjxtJnn9kfrgAAgIDl182er6LZy6Znn3WfGjhggDR2rLE4QEAbOlQaNcqpe/e2hyIBAICAlZO+xCev2YOfmjPHvdG7+27p1VfN5QEC3fDhUps2Tj1pkv0FAAAgmj14y/ffSz17OvVVV9kLQYeGmssEBLqQEOntt6Xrr3f29e9vXyMLAACCHs0eLt++fVLr1tLZs3YdFSUtXSoVLWoyFRAcihSxJ92WLGnXKSlSu3bSzp1mcwEAAONo9nB5Tp+2G70//7TrkBBp3jypenWjsYCgUqmSvSRD2nCWI0ekli3tybgAACBo0ezBc5ZlT9n84Qdn32uv2dfqAchbDRu6D2fZvFl6+GFnrUsAABB0aPbguZdesq/LS9Otmz19E4AZPXpI//qXUy9bJr3wgrk8AADAKJo9eGbJEmnwYKdu0MCeAuhymcsEQHr9dalpU6f+97+ld981lwcAABhDs4ec27hReughp65Qwb5eKDzcXCYAttBQ+7rZK6909nXvLq1day4TAAAwgmYPOXPokD344eRJuy5UyD7KFx1tNhcAR/Hi9imcaQutnj1rD1Lav99oLAAAkLdo9pB9587ZI90TEpx9s2dLN95oLBKALFx9tX1Nbcj//5g/cMBu+E6fNhoLAADkHZo9ZI9l2YMfvvrK2TdsmN38AfBN994rvfKKU69bZw9xsSxzmQAAQJ6h2UP2TJwoTZ7s1G3bSkOHmssDIHsGDpRiY5167lzp5ZfN5QEAAHmGZg+X9sUX0uOPO/UNN9inb4bw9gF8nsslxcdL9es7+55/3r6mDwAABDR+W8fF7dghtW/vLMxcqpQ9kKVwYbO5AGRfgQLSokVS+fJ2bVlS587Spk1mcwEAgFxFs4esJSXZkzePHrXr/PntXxgrVjSbC0DOlS5tf1BTsKBdnzhh//s+fNhsLgAAkGto9pC5lBT7k/8tW5x98fHSrbeaywTg8tx0kzRrllPv2mUPWTp/3lgkAACQe2j2kLnnn5eWL3fqAQOkRx81FgeAl3ToIA0Z4tSrVrlfkwsAAAIGzR4u9M477uPa775bevVVc3kAeNfw4VKbNk49aZJ95B4AAAQUmj24+/57ex2uNFddZS/MHBpqLhMA7woJkd5+W7r+emffwIHSkSPmMgEAAK+j2YNj716pdWvp7Fm7joqSli6VihY1mQpAbihSxP73HRlp16dPu1/PBwAA/B7NHmynT9uN3p9/2nVIiDRvnlS9utFYAHJRxYpSt25OPWmSlJpqLg8AAPAqmj3Ya249+qi0fr2z77XX7Gv1AAS23r2d7R07pC++MJcFAAB4Fc0epJdesq/LS9Otmz19E0Dgq15duuMOp540yVwWAADgVTR7wW7JEmnwYKdu0MD+Zc/lMpcJQN7KeHRvyRL7+l0AAOD3aPaC2caN0kMPOXWFCtLChVJ4uLlMAPJeq1ZSmTL2dmqqNHWq2TwAAMAraPaC1d9/Sy1bSidP2nWhQvYn+tHRZnMByHv580s9ezr11KnS+fPm8gAAAK+g2QtG585J7dpJCQnOvtmzpRtvNBYJgGE9e0r58tnbBw7YH/4AAAC/RrMXbCxL+te/pK+/dvYNG2Y3fwCCV/ny9tH+NBMnmssCAAC8gmYv2EycKE2e7NRt20pDh5rLA8B3ZBzUsnKl9Ntv5rIAAIDLRrMXTL74Qnr8cae+4Qb79M0Q3gYAJN15p1StmlPHx5vLAgAALhu/5QeLHTuk9u2llBS7LlXKviancGGzuQD4jpAQKS7OqWfNcoY4AQAAv0OzFwwSE+1rcY4etev8+aVFi6SKFc3mAuB7unaVChSwtxMTpfffNxoHAAB4jmYv0KWk2Gvpbdni7IuPl2691VwmAL6reHHpwQedeuJEe7ATAADwOzR7ge7556Xly516wADp0UeNxQHgB/r0cbZ//FFat85cFgAA4DGavUA2Z470yitO3ayZ9Oqr5vIA8A916kg33+zUkyaZywIAADxGsxeovv/eXiQ5zVVXSfPmSaGh5jIB8B8Zl2F4/33pyBFzWQAAgEdo9gLR3r1S69bS2bN2HRUlLV0qFStmNBYAP9Kpk/2zQ5LOnLEncwIAAL9CsxdoTp2yG70//7TrkBD7iF716kZjAfAzhQrZkznTTJokpaYaiwMAAHKOZi+QWJbUvbu0fr2z77XXpLvvNpcJgP/KeCrnjh3SF1+YywIAAHKMZi+QvPSS+5pYXbva0zcBwBPVq0t33OHUEyeaywIAAHKMZi9QLFkiDR7s1A0a2OvpuVzmMgHwfxmP7i1dal8TDAAA/ALNXiDYuNFeOD1NhQrSwoVSeLi5TAACQ6tWUpky9nZqqjR1qtk8AAAg22j2/N3ff0stW0onT9p1oUL2Ub7oaLO5AASG/Pndl3GZOlU6f95cHgAAkG00e/7s3DmpXTspIcHZN2uWdOONphIBCEQ9e0r58tnbBw7YHygBAACfR7PnryxL+te/pK+/dvYNHSq1b28uE4DAVL68fQZBGga1AADgF2j2/NXEidLkyU7dtq00bJi5PAACW58+zvbKldJvv5nLAgAAsoVmzx/973/S44879Q03SLNn2wuoA0BuuOMOqVo1p46PN5cFAABkC92BP7rhBunee+3tUqXs62cKFzabCUBgCwmR4uKcetYsZzAUAADwSTR7/igyUlq8WBo0yF5ioWJF04kABIOuXaUCBeztxETp/feNxgEAABdHs+ev8uWTXnxRuu0200kABIvixaUHH3TqiRPtYVEAAMAn0ewBALIv46CWH3+U1q0zlwUAAFwUzR4AIPvq1JFuvtmpJ00ylwUAAFwUzR4AIGd693a2339fOnLEXBYAAJAlmj0AQM506iRFRdnbZ87YkzkBAIDPodkDAORMoUL2ZM40kyZJqanG4gAAgMzR7AEAci7jqZw7dkhffGEuCwAAyBTNHgAg56pXl+64w6knTjSXBQAAZIpmDwDgmYzLMCxdKu3day4LAAC4AM0eAMAzLVtKZcrY26mp0tSpZvMAAAA3NHsAAM/kzy/17OnUU6dK58+bywMAANzQ7AEAPNezp5Qvn7194IC0ZInZPAAAIB3NHgDAc+XL26dzpmFQCwAAPoNmDwBweTIOalm5UvrtN3NZAABAOpo9AMDlueMOqVo1p46PN5cFAACko9kDAFyekBApLs6pZ82STp40FgcAANho9gAAl69rV6lAAXs7MVF6/32jcQAAAM0eAMAbiheXHnzQqSdOlCzLXB4AAECzBwDwkoyDWn78UVq3zlwWAABAswcA8JI6daSbb3ZqlmEAAMAon2v2tm3bpqFDh6p+/foqVaqUIiIiVKtWLY0ZM0Yn/3HB//Dhw+VyuTL9eu211wx9BwAQxHr3drbnzZOOHDGXBQCAIBdqOsA/zZgxQxMmTFDLli310EMPKX/+/Fq5cqVeeOEFffDBB1qzZo0KFizo9pixY8eqZMmSbvtuzvjpMgAgb3TqJD35pD2k5cwZezLnwIGmUwEAEJR8rtlr166dBg0apKioqPR9cXFxqlatmsaMGaPp06erX79+bo9p3bq1KlWqlMdJAQAXKFTInsz55pt2PWmSNGCAvTwDAADIUz73f9/atWu7NXppOnbsKEnatGlTpo9LSkpScnJyrmYDAGRDxlM5d+yQvvjCXBYAAIKYzzV7Wdm7d68kKTo6+oLbrr/+ekVFRalAgQJq0KCBPvnkk8t+vTJlyrh9VatW7bKfEwCCQvXq0h13OPXYsSzDAACAAX7R7KWkpGjUqFEKDQ1V586d0/cXLVpUvXr10rhx47RkyRK99NJL+uOPP9S8eXPNmjXLXGAACHYZl2H45BPp9dfNZQEAIEi5LMv3P27t37+/xo8frxdffFGDBg266H0PHz6sGjVq6MyZM9qzZ4+KFCnilQxJSUmKiopSYmKiIiMjvfKcABCwkpOl226Tvv/erl0u6aOPpPvuM5sLAAA/l5O+xOeP7A0ZMkTjx49Xr169LtnoSVKJEiUUFxenY8eO6dtvv82DhACAC4SGSgsXSmXL2rVl2ZM6t2wxmwsAgCDi083e8OHDNXr0aHXr1k3x8fHZflzaZM5Dhw7lUjIAwCWVLSstXiyFh9t1UpLUogVr7wEAkEd8ttkbPny4RowYodjYWE2bNk0ulyvbj92+fbukzIe5AADyUJ060owZTv3771KHDvZpngAAIFf5ZLM3cuRIjRgxQl26dNGMGTMUksn6TMnJyUpMTLxg/549ezRp0iSVKFFCDRo0yIu4AICL6dxZeu45p/7iCxZaBwAgD/jcouoTJkzQsGHDFBMTo6ZNm2ru3Llut0dHR6tZs2Y6ceKEKleurNatW+uaa65RsWLFtHXrVk2bNk0nTpzQe++9p4IFCxr6LgAAbsaMkTZvlpYts+tx46SaNaWePc3mAgAggPncNM6uXbtq9uzZWd7eqFEjrVq1SmfPnlXfvn31/fffa+/evTpx4oRKliypW2+9Vc8884zq1q3r1VxM4wSAy3T8uHTLLXbTJ9lDXL74Qrr9drO5AADwIznpS3yu2fNVNHsA4AU7d0p160qHD9t1yZLSunXS/w/WAgAAFxdQSy8AAAJIlSrSggX2UT1JOnRIatlSOnHCbC4AAAIQzR4AIG81biy99ZZTb9wodekipaYaiwQAQCCi2QMA5L3eve2vNIsXS8OGGYsDAEAgotkDAJjx5ptSkyZOPXq0NG+euTwAAAQYmj0AgBn580vz59vX8aXp2lVav95YJAAAAgnNHgDAnBIlpKVLpSJF7PrMGalVK+nPP83mAgAgANDsAQDMuu46ae5cyeWy6337pDZt7MYPAAB4jGYPAGBeixbSiy869Zo10mOPSSwFCwCAx2j2AAC+4dlnpYcecuq335Zef91cHgAA/BzNHgDAN7hc0tSpUp06zr5nnpE+/thcJgAA/BjNHgDAdxQsaK+5V6aMXVuW1KmTtGWL0VgAAPgjmj0AgG8pW9Zu+MLD7TopSWrZUjpyxGgsAAD8Dc0eAMD31K0rzZjh1Dt2SB07SsnJ5jIBAOBnaPYAAL6pc2fpueec+vPPpYEDzeUBAMDP0OwBAHzXmDH2sgxpxo2zh7gAAIBLotkDAPiukBDp3XfthdfT9O0r/e9/5jIBAOAnaPYAAL4tIkJaulQqXtyuz5+XHnhASkgwGgsAAF9HswcA8H1VqkgLFkihoXZ96JDUqpV04oTZXAAA+DCaPQCAf2jSRHrrLaf+5Rfp8cfN5QEAwMfR7AEA/Efv3vZXmrfflv7801weAAB8GM0eAMC/jB0rlSplbycnS9Ommc0DAICPotkDAPiX8HCpe3ennjJFSkkxlwcAAB9FswcA8D+PPSa5XPb2nj3S8uVm8wAA4INo9gAA/qdSJem++5x64kRjUQAA8FU0ewAA/9Snj7P93/9Kv/9uLgsAAD6IZg8A4J/uvts+wpcmPt5YFAAAfBHNHgDAP+XLZ1+7l2bmTOnMGXN5AADwMTR7AAD/9eijUliYvX34sDR/vtk8AAD4EJo9AID/uuIKqV07p2ZQCwAA6Wj2AAD+LeOgljVrpJ9+MpcFAAAfQrMHAPBvDRpINWs69aRJ5rIAAOBDQi/nwb/99pt2796tQ4cOqWDBgrriiitUs2ZNRUZGeisfAAAX53JJvXs7R/jefVd69VUpKspsLgAADMtxs/fll19q+vTp+vzzz3Xo0KELbg8JCdGNN96odu3a6dFHH1XJkiW9EhQAgCw9/LD0zDPSiRPSqVPSnDlSv36mUwEAYJTLsiwrO3dcuHChBg8erG3btsmyLJUrV0516tRR6dKlVbx4cZ0+fVqHDx/Wb7/9pg0bNujcuXMKDw/XI488opEjRyo6Ojq3v5dclZSUpKioKCUmJnLkEgB8UZ8+zimc11wjbd5sH/UDACCA5KQvyVazd/vtt+ubb75RjRo11KVLF3Xs2FExMTFZ3v/cuXNauXKl5syZo8WLFytfvnyaM2eOWrZsmfPvxkfQ7AGAj9u4Ubr+eqdetUpq1MhYHAAAckNO+pJsncZ56tQpffTRR7rvvvuyFSAsLEx333237r77bv3999/697//rW3btmXrsQAAeKRmTem226RvvrHrSZNo9gAAQS3bp3EGO47sAYAfmDtXeughezs0VNqzRypd2mwmAAC8KCd9CUsvAAACR9u2UqlS9nZysjR9utk8AAAY5FGzN3LkSL322ms6d+5clvf56quvNHLkSI+DAQCQY+HhUvfuTj15spSSYi4PAAAGedTsDR8+XM8++6zuvPNOHT58ONP7rFq1SiNGjLiscAAA5NhjjzlTOPfskZYvN5sHAABDPD6Ns3Llylq9erVuueUW7dixw5uZAADwXKVKUsaBYmnLMQAAEGQ8bvYeeeQRzZgxQ3/88YduueUWrV692pu5AADwXO/ezvann0q//24uCwAAhlzWgJauXbvq448/1vnz59W0aVO9//773soFAIDn7rnHPsKXZvJkY1EAADDlsqdx3nnnnfr2228VHR2thx56SC+++KI3cgEA4Ll8+exr99LMmCGdOWMuDwAABnhl6YVrr71W33//vW666SYNGTJE3bt31/nz573x1AAAeObRR6WwMHv78GFp/nyzeQAAyGNeW2cvOjpaX3/9tVq0aKGZM2dq7Nix3npqAABy7oorpHbtnJpBLQCAIOPVRdULFiyoRYsW6V//+pdOnz7tzacGACDnMg5q+e47acMGY1EAAMhrLsuyrNx44nXr1unUqVNq1KhRbjx9nktKSlJUVJQSExMVGRlpOg4AIDssS7rhBmnjRrvu1YthLQAAv5aTvsSrR/YyqlOnTsA0egAAP+VyuR/de+cdKTHRXB4AAPJQrjV7AAD4hIcflooUsbdPnZLmzDGbBwCAPBKa3TtWqVIlx0/ucrn0OwvZAgBMioiQunRxBrRMmiT17Wsf9QMAIIBl+5q9kJCcHwR0uVxKSUnJ8eN8EdfsAYAf27hRuv56p161SuJSAwCAH8pJX5LtI3u7du26YN/YsWM1btw47dy5M+cpAQDIKzVrSrfdJn3zjV1PmkSzBwAIeNlu9ipWrHjBvmLFimV5GwAAPqV3b6fZ+/BD6c8/pdKlzWYCACAXMaAFABAc2raVSpWyt5OTpenTzeYBACCX0ewBAIJDeLjUvbtTT54sBch15QAAZIZmDwAQPB57zJnCuWePtHy52TwAAOQimj0AQPCoVEm67z6nTluOAQCAAESzBwAILr17O9uffiqxHiwAIEBlexrn7bfffsG+3bt3Z3mbZK+z99VXX3kYDQCAXHDPPfYRvoQEu548WXrlFZOJAADIFSyqnk0sqg4AAeTf/5YGDbK3S5SQ9u6VChQwmwkAgGzIs0XVAQDwS48+Kg0dKp0/Lx0+LM2fL3XpYjoVAABedVmLqgMA4JeuuEJq316aO9euJ02i2QMABBwGtAAAglPGQS3ffSdt2GAsCgAAuSFbzd6ff/552S/0119/XfZzAADgNbfeKtWs6dQswwAACDDZavaqVKmiZ599VgcPHszxCyxfvlx16tTR5MmTc/xYAAByjcvlfnTv3XelxERzeQAA8LJsNXsDBw7U+PHjVb58ebVo0UJz5szR71msS3Ty5El99dVXGjx4sCpWrKiWLVvK5XKpdevW3swNAMDle/hhqUgRe/vkSWnOHLN5AADwomwvvbBnzx6NHDlS7733nk6fPi1JioyMVHR0tIoVK6YzZ87oyJEj2r9/v1JTU2VZlq6//no9/fTTeuihh3L1m8gLLL0AAAGqTx/nFM5rr5U2bbKP+gEA4INy0pdku9nL+ORz587V559/rtWrV7tdixcWFqaaNWuqcePGeuCBB3TLLbd49h34IJo9AAhQGzdK11/v1KtWSY0aGYsDAMDF5Gqz90/nz5/X4cOHVbBgQUVFRV3OU/k0mj0ACGANG0rffGNvd+wovf++2TwAAGQhJ33JZS+9kD9/fpUuXdprjd62bds0dOhQ1a9fX6VKlVJERIRq1aqlMWPG6OTJkxd97KRJk+RyueRyuXTo0CGv5AEABIGMg1oWLpS8MIUaAADTfG6dvRkzZmjs2LGqWrWqhg4dqldffVXVq1fXCy+8oAYNGqRfL/hP+/fv13PPPaciaRfaAwCQXW3bSqVK2dvnz0vTp5vNAwCAF/hcs9euXTvt3btX7777rvr376+4uDjNmzdPgwcP1i+//KLpWfwPuG/fvqpatSpTPwEAORceLnXv7tSTJ0spKebyAAB8Q2KidHlXvRnlc81e7dq1Mz0ltGPHjpKkTZs2XXDbokWLtHTpUsXHxytfvny5nhEAEIAee8yZwrlnj7R8udk8AADz2rWTbrzR/hDwxAnTaXLM55q9rOzdu1eSFB0d7bY/KSlJ/fr102OPPaa6det67fXKlCnj9lWtWjWvPTcAwAdVqiTdd59TP/OMdOyYqTQAANO2bZM+/1z6+WcpLk5avdp0ohzzi2YvJSVFo0aNUmhoqDp37ux227PPPqvU1FS99NJLhtIBAALGgAHO9tatUqdOnM4JAMEqPt7ZrlpVatbMXBYP+UWzN2DAAH333XcaOXKkqlevnr5/9erVmjx5st544w2vL/tw4MABt6/t27d79fkBAD6oaVPpySed+tNP7SN8AIDgcuqUNHOmU8fFSSF+0Tq58Sjx8ePHvZ0jS0OGDNH48ePVq1cvDRo0KH3/uXPn1KtXLzVt2lSdOnXKszwAgAD38svSvfc69RtvSLNmGYsDADBg3jznVP7wcKlbN6NxPOVRs1e2bFn16tVL69at83YeN8OHD9fo0aPVrVs3xWc8jCppwoQJ+u233zRw4EDt2LEj/SutEd21a5d27tyZq/kAAAEoXz7pvfekq6929j32mPTtt+YyAQDy1qRJznbHjlKJEuayXAaXZeV8lmjVqlW1a9cuuVwu1apVS4899pg6d+7s1TXuhg8frhEjRig2NlYzZsxQyD8Omw4YMEBvvvnmRZ+jcOHCOuGlqTk5WakeABAAtm+X6tWTjh616yuukNatk2JizOYCAOSuH36Q6tRx6jVr7P8f+Iic9CUeNXuStGLFCk2ZMkVLly5VcnKyChcurE6dOqlnz56qXbu2R8HTjBw5UsOGDVOXLl00a9asCxo9Sfr5558zvY5uwoQJWrVqlWbMmKFixYp5bd09mj0ACEKffy7dc48zpOXGG6X//U8qXNhsLgBA7uneXZoxw96+8UZp/XpnaR4fkCfNXpq///5bM2bM0LRp0/T777+nH+2Li4tT586dVTiH/0OcMGGC+vXrp5iYGI0aNeqCRi86OlrNLjIJp2vXrpo9e7b+/vtvlSxZ0qPvKTM0ewAQpN56S3r8cadu396+lsOH/scPAPCSo0elcuWk06ftesoUqWdPs5n+IU+bvYy++OILTZ06VYsXL9b58+dVuHBhde7cWX369NH111+fredIa9ay0qhRI61ateqSj6fZAwB4hWVJvXpJ06Y5+0aMkIYONZcJAJA7/vMf6Ykn7O3ISGn/fp87m8NYs5eQkKApU6Zo2rRpOnTokFwulyzLksvlUrt27TR58mQVLVrUWy+Xp2j2ACCInTtnL8vwv/85+xYskNq2NZcJAOBdlmUP59q2za7797fP7vAxOelLLnuxiJSUFC1cuFB33323rrzySv373/9WVFSUXn31VR08eFCfffaZmjZtqvnz56tPnz6X+3IAAOS9sDDpww+lihWdfY88Iv38s7lMAADv+vJLp9GTpN69zWXxEo+P7CUkJGjq1KmaOXOm/vrrL4WEhOj+++9X7969ddddd11w/wceeECrVq3SkSNHLju0CRzZAwDol1+kBg2kkyftOibGntB5xRVmcwEALl+7dvYHe5LUuLG0cqXROFnJ9SN7aUfxXnrpJUnS4MGDtWvXLi1atCjTRk+S6tSpo8TERE9eDgAA33D99dKcOU69e7d9Kue5c+YyAQAu37590uLFTh0AR/UkD5u9FStWqFGjRvrggw+0e/dujRw5UuXLl7/oY1q0aKEZaSNMAQDwV23aSCNHOvU330h9+tjXegAA/NO0ac4yO6VLS15avs20UE8etGXLFlWvXj1Hj6lRo4Zq1KjhycsBAOBbXnhB2rRJ+uADu54+XapZ032JBgCAfzh/3l5iIU2PHva12gHAoyN7OW30AAAIKC6XNHOmdNNNzr6BA6XPPjOXCQDgmWXL7CUWJCkkxF5uJ0B41OzNnz9fd9xxh/bt25fp7fv27dOdd96phQsXXlY4AAB8VqFC9vUd0dF2nZoqdezoPskNAOD7Jk1ytlu0kCpUMJfFyzxq9qZNm6ajR4+qXLlymd5erlw5HTt2TNMyLkALAECgqVBBWrTIOd3n2DGpZUv7vwAA37dtm/T5504dIINZ0njU7G3cuFF16tS56H3q1KmjX375xaNQAAD4jVtucb/WY+tWqVMn50J/AIDvio93tqtWlZo1M5clF3jU7B05ckRXXGJNoZIlS+rQoUMehQIAwK/ExkpPPunUn34qPfOMuTwAgEs7dUqaNcup4+Lsa/YCiEffTcmSJbVjx46L3mf79u0qWrSoJ08PAID/efll6Z57nPqNN9x/iQAA+JZ586SjR+3t8HCpWzezeXKBR83erbfeqqVLl2pbFhehb926VUuXLlXDhg0vKxwAAH4jXz7pvfekjBOrH3tM+vZbc5kAAFnLOJilY0epRAlzWXKJR83eU089pfPnz+u2227T+PHjtW3bNp08eVLbtm3TuHHjdNtttyk5OVlPPfWUt/MCAOC7iha1R3inndly7pz0wAPSnj0mUwEA/umHH6R165w6wAazpHFZlmV58sCpU6eqb9++SsnkAvR8+fJp4sSJ6tGjx2UH9BVJSUmKiopSYmKiIiMjTccBAPiyFSuke+91hrTceKP0v/9JhQubzQUAsHXvLs2YYW/feKO0fr29hqofyElf4nGzJ0lbtmzRxIkT9f333+vYsWMqWrSo6tevr969e+uaa67x9Gl9Es0eACBH3npLevxxp27f3r4+xE9+mQCAgHX0qFSunHT6tF1PmSL17Gk2Uw7kWbMXTGj2AAA5YllSr15SxjVnR4yQhg41lwkAIP3nP9ITT9jbkZHS/v1+deZFTvqSwJotCgCAr3C5pAkTpNtuc/YNGyZ9+KG5TAAQ7CzLfW292Fi/avRyKvRyHpySkqKtW7fq6NGjmV67J0m333775bwEAAD+KyzMbu7q1JF277b3PfKIPbGzRg2z2QAgGK1cKW3d6tRxceay5AGPm71Ro0Zp7NixSkxMvOj9smoCAQAICldcIS1dKt16q3TypL2I7/PP2/sAAHlr4kRnu3Fj6dprjUXJCx41e6+88oqGDRumqKgodenSRRUqVFBo6GUdJAQAIHDdcIP9C0ZsrF0vX24f6YuJMZsLAILJ/v3S4sVOHaDLLWTkUYc2depUlStXTj/++KNKlSrl7UwAAASezp3tI3r79kmpqfb0t9GjTacCgOAxdaqzJE7p0lLr1kbj5AWPBrTs2bNHrVu3ptEDACC7QkPt6Zxppk61F10HAOS+5GT7526aHj3s66oDnEfNXnR0tJKTk72dBQCAwNajh5Qvn7198KC0aJHZPAAQLJYts8+skKSQEPcP3wKYR81ehw4dtGLFCp09e9bbeQAACFxly0pt2jh1xkEBAIDck/HnbYsWUoUK5rLkIY+avREjRqhMmTJq166ddu3a5e1MAAAErowDAb7+Wtq82VwWAAgG27ZJn3/u1EEwmCWNRwNaatSoofPnz2v//v36+OOPFRUVpaJFi15wP5fLpd9///1yMwIAEDiaNLHX2Utb5yk+Xho3zmwmAAhkGRdRr1pVatbMXJY85tGRvdTUVIWGhiomJkYxMTGKioqSZVkXfKWmpno7LwAA/s3lcv9UefZs6cQJc3kAIJCdPi3NmuXUcXH2NXtBwmVZlmU6hD9ISkpSVFSUEhMTFRkZaToOAMCfHTtmX793+rRdT54cNMMCACBPzZoldetmb4eH20NaSpQwGuly5aQvCZ62FgAAX1G0qL3uXpqJEyU+ewUA78s4mKVjR79v9HLqspu9LVu2aNGiRZozZ4438gAAEBwynsr588/SmjXmsgBAIFq/Xlq3zqmDaDBLGo+bvR9//FE33XSTatSooXbt2qlr167pt3311VcqVKiQli5d6o2MAAAEnptvlurWdepJk8xlAYBAlPHn6o03SvXqmctiiEfN3m+//abGjRtrx44dGjBggO69916322+//XaVKFFCCxYs8EpIAAACUsZPmefNkw4dMpcFAALJ0aPS3LlO3bu3PSAryHjU7A0bNkypqalat26dXn/9ddWpU8ftdpfLpVtuuUXrMh42BQAA7jp2lIoVs7fPnZNmzjSbBwACxdtvO0OwIiPdr5MOIh41e6tWrdIDDzyg6tWrZ3mfmJgY7d+/3+NgAAAEvIIFnSlxkr0WFMsWAcDlsSz3UzhjY6XChc3lMcijZi8xMVFlypS56H3OnTun5ORkj0IBABA04uKc7Z07pc8+M5cFAALBypXS1q1OnfHnbJDxqNkrU6aMtmzZctH7/PLLL6pUqZInTw8AQPCoVk1q1sypGdQCAJcn48/Rxo2la681FsU0j5q9u+++W5988onWrl2b6e2fffaZvv76azVv3vyywgEAEBQyDmr56CNp925zWQDAn+3fLy1a5NRBuNxCRh41e4MHD1ZERITuuOMOPf/88/r1118lSfPnz9cTTzyhFi1aqFSpUnryySe9GhYAgIDUooVUrpy9nZoqTZliNg8A+Ktp06SUFHu7dGmpdWujcUxzWZZlefLAH374QR06dFBCQoLzZC6XLMtSpUqV9OGHH+rGG2/0Vk7jkpKSFBUVpcTEREVGRpqOAwAINCNHSsOG2dtXXCHt2SOFhZnNBAD+JDlZqlRJ2rfPrl94QRo1ymik3JCTvsTjZk+SkpOTtXz5cn333Xc6cuSIoqKiVK9ePbVq1Ur58+f39Gl9Es0eACBX7d8vxcQ4n0i//769NAMAIHsWLZIeeMDeDgmREhKkChWMRsoNedbsBROaPQBArmvfXlqwwN5u1EhatcpoHADwK3fdJa1YYW+3aiUtXmw0Tm7JSV/i0TV7AAAgF2QcJPDVV9LmzeayAIA/2b7dafSkoB/MkibUkweNHDkyW/dzuVwaMmSIJy8BAEDwadJEql7dWR8qPl4aN85sJgDwB/HxznbVqu5L2gQxj07jDAnJ+oCgy+WSJFmWJZfLpZS0aw/8HKdxAgDyxJtvSgMG2NsREfa1fEWKGI0EAD7t9Gl7ovHRo3b96qvSU0+ZzZSLctKXeHRkb+XKlZnuP3bsmNatW6e33npLzZs3V1wQr1YPAIBHYmOlQYPsX16OH5fmzpV69TKdCgB817x5TqMXHi5162Y2jw/JlQEtGzduVN26dfX++++rVatW3n56IziyBwDIMz16SNOn29u1akk//ij9/5kzAIB/qFdPWrvW3n7kEWn2bLN5cpnxAS01a9ZUq1at9OKLL+bG0wMAENgyDhbYsEFas8ZYFADwaevXO42exGCWf8i1aZwxMTHatGlTbj09AACB6+abpbp1nXrSJHNZAMCXZfz5WKuWfZQP6XKt2fv+++9VsGDB3Hp6AAACW8ZPp+fNkw4dMpcFAHzR0aP2dc1p+vThlPd/8GhAy+7duzPdn5ycrD179mjq1Kn65ptv1KFDh8sKBwBA0OrYURo40P5l5tw5aeZM6emnTacCAN/x9tv2MCtJioyUOnc2m8cHedTsVapUKX2JhcxYlqVq1arptdde8zgYAABBrWBBe6LcG2/YdXy89OST0kWWPwKAoGFZ7qdwxsZKhQuby+OjPGr2HnnkkUybvZCQEBUrVkx169ZVq1atFB4eftkBAQAIWnFxTrO3c6f02WfSPfeYzQQAvmDlSmnrVqdmybdMedTszZo1y8sxAADABapVk5o1k1assOtJk2j2AEByP6rXuLF07bXGovgyzgUBAMCXZRzU8tFHUhbXzQNA0Ni/X1q0yKlZbiFLNHsAAPiyFi2kcuXs7dRUacoUs3kAwLRp06SUFHs7Olpq3dpoHF/m0WmcVapU8ejFXC6Xfv/9d48eCwBAUAoNlXr1koYNs+upU6WhQ6WwMLO5AMCE5GT3D7169uTn4UV4dGQvNTVVZ8+eVUJCghISErRnzx6dPn1ae/bsSd939uxZWZbl9pWamurt/AAABL4ePaR8+eztgwfdT18CgGCybJm0b5+9HRJifxiGLHnU7P3yyy8qV66c6tevr5UrV+rMmTM6cOCAzpw5oy+//FL16tVT+fLl9csvv2jXrl1uXwAAIIfKlpXatHHqjIMJACCYZPz516KFVKGCuSx+wKNmb/DgwTp27JhWrVqlRo0aKd//f9qYL18+NW7cWCtXrtSRI0c0ePBgr4YFACBoZRxA8NVX0ubN5rIAgAnbtzvTiSUGs2SDR83eokWL1KpVK4VlcX5sgQIF1KpVKy1cuPCywgEAgP/XpIlUvbpTx8ebywIAJmT8uVe1qr00DS7Ko2bv8OHDOn/+/EXvc/78eR0+fNijUAAA4B9cLvdPsWfPlk6cMJcHAPLS6dPSzJlOHRdnX7OHi/LoT6hq1apasGCBEhMTM7396NGjWrBggcdTOwEAQCZiY6WCBe3t48eluXPN5gGAvDJvnnT0qL0dHi5162Y2j5/wqNmLi4vT/v37VbduXb399ttKSEjQ6dOnlZCQoNmzZ6tevXr6888/1bdvX2/nBQAgeBUtKnXu7NSTJkmWZSwOAOSZjINZOnaUSpQwl8WPuCzLs/9LPP744xo3bpxcLtcFt1mWpf79++vNN9+87IC+IikpSVFRUUpMTFRkZKTpOACAYLV+vVS7tlN/+610yy3m8gBAbvvnz73vvpPq1zeXx7Cc9CUeLaouSW+++aYefPBBzZgxQz/99JMSExMVFRWlm266SV27dlWDBg08fWoAAJCVm2+W6taV1q6160mTaPYABLaMR/Vq1ZLq1TMWxd94fGQv2HBkDwDgM2bNcq5XCQuzFxguWdJoJADIFUePSuXK2QNaJGnKFKlnT7OZDMtJX8IIGwAA/E3HjlKxYvb2uXPuE+oAIJC8/bbT6EVGul+3jEvyuNlLSUnRm2++qXr16ikqKkqhoc4ZoRs2bFCfPn20bds2r4QEAAAZFCzoPokuPl5KTTWXBwByg2W5n8IZGysVLmwujx/yqNk7c+aM7rzzTg0cOFC7du1SRESEMp4NWrlyZc2cOVNz5szxWlAAAJBBXJyzvXOn9Nln5rIAQG5YuVLautWpM/7cQ7Z41Oy9/PLL+vrrrzVq1Cj9+eef6tGjh9vtUVFRatSokf773//m+Lm3bdumoUOHqn79+ipVqpQiIiJUq1YtjRkzRidPnnS77+uvv67GjRurTJkyCg8PV5kyZdSkSRMtWrTIk28LAAD/Ua2a1KyZU2f89BsAAkHGn2uNGknXXmsui5/yqNl77733dPvtt+v5559XSEhIpssvVK5cWXv27Mnxc8+YMUNjx45V1apVNXToUL366quqXr26XnjhBTVo0ECn087ZlbR27VpVqlRJTzzxhCZNmqQnn3xSp06d0gMPPKBRo0Z58q0BAOA/evd2tj/6SNq921wWAPCm/fuljAdw+vQxl8WPebT0QkJCglq2bHnR+0RFRelo2ir3OdCuXTsNGjRIUVFR6fvi4uJUrVo1jRkzRtOnT1e/fv0kSfPmzbvg8QMGDNDNN9+sV155Rc8//7zy5cuX4wwAAPiFFi3sKXX79tnX7E2ZIo0ebToVAFy+adOklBR7Ozpaat3aaBx/5dGRvcKFC+vw4cMXvU9CQoKKFy+e4+euXbu2W6OXpmPHjpKkTZs2XfTxoaGhKleunE6ePKnz58/n+PUBAPAboaFSr15OPW2aPZ0TAPxZcrL94VWanj3tZWaQYx4d2atdu7Y+/vhjnTx5UoUzmYhz8OBBffzxx7rrrrsuO2CavXv3SpKio6MvuO3IkSNKSUnRoUOHNH/+fH366adq0qSJChQo4PHrlSlTxq1OZcoZAMAX9eghjRxpfwL+11/2aU///wEpAPilZcvsMxYkKSTE/UMt5IhHR/b+9a9/6a+//lKLFi0uWF7h559/VosWLXTy5En179/fKyFTUlI0atQohYaGqnMma2tcddVVuuKKK3Tttddq1KhRatu2rd5//32vvDYAAD6tbFmpTRunZlALAH+X8efY/fdLFSqYy+LnPDqy17x5c73wwgsaPXq0rrnmGoX9/2HVIkWK6PTp07IsSyNHjlSjRo28EnLAgAH67rvv9OKLL6p69eoX3L5w4UKdOXNG+/bt0/z583X69GkdP35cpUqV8vg1Dxw44FanrVQPAIDP6d1bWrDA3v7qK2nzZum668xmAgBPbN8urVjh1AxmuSwuK+MCeTn0+eefa/z48VqzZo2OHDmiqKgo1atXT48//riaZRwHfRmGDBmi0aNHq1evXpo8eXK2HtOpUyetWrVKv/76q4oVK+aVHGnNXmJioiIjI73ynAAAeIVlSddc46xH1a+fNG6c2UwA4Iknn5TeeMPerlpV2rbNPpUT6XLSl3j0J7d79279+eefatq0qRYvXqw///xT586d099//62PPvrIa43e8OHDNXr0aHXr1k3x8fHZflxsbKz+/PNPLVy40Cs5AADwaS6X+zIMs2dLJ06YywMAnjh9Wpo506nj4mj0LpNHf3qVK1fW888/7+0sboYPH64RI0YoNjZW06ZNy3Qtv6ykrcV35MiR3IoHAIBviY2VCha0t48fl+bONZsHAHJq3jwpbem28HCpWzezeQKAR81e0aJFVbJkSW9nSTdy5EiNGDFCXbp00YwZMxSSSUd/8uRJncjkU8uUlBRNmDBBklS/fv1cywgAgE8pWlTKOMRs0iT79E4A8BcZB7N06CCVKGEuS4DwaEBL/fr19dNPP3k7iyRpwoQJGjZsmGJiYtS0aVPN/ccnk9HR0WrWrJm2b9+uRo0aqV27dqpevbqKFy+uffv26b333tPWrVsVGxurhg0b5kpGAAB8Uu/e0vTp9vaGDdKaNdIttxiNBADZsn69tHatUzOYxSs8avaGDx+uhg0batq0aerRo4dXA61bt06SfV1gbGzsBbc3atRIzZo1U/ny5dWlSxf973//06JFi3T8+HFFRUXpxhtv1JAhQzJdogEAgIB2881S3brOL0yTJtHsAfAPGY/q1aol1atnLEog8Wga58iRI/Xtt99qxYoVqlWrlurWravSpUtfcF2dy+XSkCFDvBbWJKZxAgD8wqxZznUuYWH2wsS5eOkFAFy2o0elcuXsAS2SNGWK1LOn2Uw+LCd9iUfNXmbX0GX65C6XUlJScvr0PolmDwDgF06ftn9pShty8Mor0tNPm80EABfz5pvSgAH2dmSktH+/VLiw0Ui+LCd9iUenca5cudKjYAAAIJcVLGgf2Utbpyo+3l63ivHlAHyRZbmfwvnIIzR6XpTtI3tLly7V1Vdfrauuuiq3M/kkjuwBAPzG9u1Sxv9ff/KJdM895vIAQFa+/FK6806n3rxZuvZac3n8QK4sqt6mTRu9//77bvvmzZunBx54wLOUAAAgd1SrJjVr5tQZPzUHAF+S8edTo0Y0el6W7WYvswOAv/32m5YsWeLVQAAAwAt693a2P/pI2r3bXBYAyMz+/dKiRU6d8ecWvIIT+AEACEQtWtiDWiQpNdWebgcAvmTaNCltmGN0tNSmjdk8AYhmDwCAQBQaKvXq5dTTpknnzpnLAwAZJSe7fwjVo4e9XAy8imYPAIBA1aOHlC+fvf3XX+6nSwGAScuW2euASva04IwfTsFrctTs/XPRdAAA4MPKlnU/LYpBLQB8RcafR/ffL8XEmMsSwLK99EJISIgiIyPdxnsmJSXp+PHjKpd2TcA/n9zl0h9//OGdpIax9AIAwC/9c6z5pk3SddeZywMALA9zWXJtUfWkpCQlJSVdsH/v3r05SwgAAPJGkyZS9erS1q12HR8vjRtnNhOA4BYf72xXqSLddZe5LAEu26dxpqamevQFAAAMcrncx5nPni2dOGEuD4Dgdvq0NHOmU8fF2dfsIVfwJwsAQKCLjZUKFrS3jx+X5s41mwdA8Jo3Tzp61N4OD5e6dTObJ8DR7AEAEOiKFpU6d3bqSZOk7F2yDwDelXEwS4cOUsmS5rIEAZo9AACCQcZTOTdskNasMRYFQJBav15au9apM/5cQq6g2QMAIBjcfLNUt65TswwDgLyW8edOrVpS/frGogQLmj0AAIJFxk/R582TDh0ylwVAcDl61P164d697QFSyFU0ewAABIuOHaVixeztc+fcJ+IBQG56+217EqckRUa6X0eMXEOzBwBAsChY0H3yXXy8xDJJAHKbZbmfwvnII1KRIubyBBGaPQAAgklcnLO9c6f02WfmsgAIDitXSlu3OnXGn0PIVTR7AAAEk2rVpGbNnJpBLQByW8afM40aSdddZy5LkKHZAwAg2GQc1PLRR9Lu3eayAAhs+/dLixY5Ncst5CmaPQAAgk2LFlK5cvZ2aqo0ZYrZPAAC17RpUkqKvR0dLbVpYzZPkKHZAwAg2ISGSr16OfXUqfZ0TgDwpuRk9w+TevSQwsLM5QlCNHsAAASjHj3spk+SDh50P80KALxh2TJp3z57OyTE/UMm5AmaPQAAglHZslLr1k7NoBYA3pbx58r990sxMeayBCmaPQAAglXGQQlffSVt3mwuC4DAsn27tGKFUzOYxQiaPQAAglWTJlL16k4dH28uC4DAkvHnSZUq0l13mcsSxGj2AAAIVi6X+6fts2dLJ06YywMgMJw+Lc2c6dRxcfY1e8hz/KkDABDMYmOlggXt7ePHpblzzeYB4P/mzZOOHrW3w8Olbt3M5gliNHsAAASzokWlzp2detIkybKMxQEQADIOZunQQSpZ0lyWIEezBwBAsMt4KueGDdKaNcaiAPBz69dLa9c6NYNZjKLZAwAg2N18s1S3rlOzDAMAT2X8+VGrllS/vrEooNkDAACS+6fv8+ZJhw6ZywLAPx096n7db+/e9iAoGEOzBwAApI4dpWLF7O1z59wn6QFAdrz9tj2JU5IiI92vB4YRNHsAAMCeyJlxYl58vJSaai4PAP9iWe6ncD7yiFSkiLk8kESzBwAA0sTFOds7d0qffWYuCwD/snKltHWrU2f8eQJjaPYAAICtWjWpWTOnZlALgOzK+POiUSPpuuvMZUE6mj0AAODIOKjlo4+k3bvNZQHgH/bvlxYtcmqWW/AZNHsAAMDRooVUrpy9nZoqTZliNg8A3zdtmpSSYm9HR0tt2pjNg3Q0ewAAwBEaKvXq5dRTp9rTOQEgM8nJ7h8K9eghhYWZywM3NHsAAMBdjx520ydJBw+6n54FABktWybt22dvh4S4f1gE42j2AACAu7JlpdatnZpBLQCykvHnw/33SzEx5rLgAjR7AADgQhkHLHz1lbR5s7ksAHzT9u3SihVOzWAWn0OzBwAALtSkiVS9ulPHx5vLAsA3Zfy5UKWKdNdd5rIgUzR7AADgQi6X+6f0s2dLJ06YywPAt5w+Lc2c6dRxcfY1e/Ap/I0AAIDMxcZKBQva28ePS889ZzYPAN8xb5509Ki9HR4udetmNg8yRbMHAAAyV7So+y9wEyaw7h4AW8bBLB06SCVLmsuCLNHsAQCArP3731KNGk7dt689sAVA8Fq/Xlq71qkZzOKzaPYAAEDWIiKkpUulEiXsOjlZattW2rXLbC4A5mQ8qlerllS/vrEouDiaPQAAcHGVK0sffugstH74sNSypX0dH4DgcuyYNHeuU/fubQ90gk+i2QMAAJfWqJE0frxTb9okdekipaaaywQg782ebU/ilKTISKlzZ7N5cFE0ewAAIHsee8y+Zi/NkiXS0KHm8gDIW5blfgrnI49IRYqYy4NLotkDAADZN3asdMcdTj1mjPT+++byAMg7K1dKW7c6NYNZfB7NHgAAyL78+aUPPpCqVnX2desm/fCDuUwA8kbGo3qNGknXXmsuC7KFZg8AAORMiRL2hM6ICLs+c0Zq3Vo6cMBoLAC5aP9+afFip+aonl+g2QMAADl37bXSe+85U/j27bMbvjNnjMYCkEumTbOXXpGk6GipTRuzeZAtNHsAAMAzzZvbi66nWbtW6tXLHuIAIHAkJ0tTpjh1jx5SWJi5PMg2mj0AAOC5p5+WHn7YqefMkV57zVweAN63bJl99F6SQkLsD3XgF2j2AACA51wuaepUqW5dZ9+zz0rLl5vLBMC7Mg5muf9+KSbGXBbkCM0eAAC4PAUK2IMbypa1a8uSOnWSfv3VaCwAXrB9u7RihVMzmMWv0OwBAIDLV6aM3fAVKGDXx49LLVtKhw8bjQXgMsXHO9tVqkh33WUuC3KMZg8AAHhHnTrS9OlO/fvvUocO0vnz5jIB8Nzp09LMmU4dF2dfswe/wd8WAADwns6dpUGDnPrLL6WBA83lAeC5efOko0ft7fBwqVs3s3mQYzR7AADAu0aPtk/hTDN+vPvYdgD+IeNglg4dpJIlzWWBR2j2AACAd4WESO+8I113nbOvb1/pq6/MZQKQM+vX22tnpmEwi1+i2QMAAN4XESEtXSqVKGHXyclS27bSrl1mcwHInoxH9WrVkurXNxYFnqPZAwAAuaNKFWnBAik01K4PH7ZP7zx+3GwuABd37Jg0d65T9+5tr6kJv0OzBwAAck/jxtK4cU69aZPUpYuUmmosEoBLmD3bnsQpSZGR9uAl+CWaPQAAkLvi4qQ+fZx6yRJp6FBzeQBkzbLcT+F85BGpSBFzeXBZfK7Z27Ztm4YOHar69eurVKlSioiIUK1atTRmzBidPHky/X6WZemdd97Rgw8+qCuvvFKFChVSTEyMWrZsqe+//97gdwAAAC7wn/9ITZo49Zgx0vvvG4sDIAsrV0pbtzo1g1n8msuyLMt0iIyee+45TZgwQS1btlT9+vWVP39+rVy5Uh988IGuv/56rVmzRgULFtSZM2dUsGBB1apVS82bN1flypV14MABxcfHa//+/Xr77bf18MMPey1XUlKSoqKilJiYqMjISK89LwAAQePwYaluXWnnTrsuUED63/+k2rXN5gLgaN/evtZWkho1klatMhoHF8pJX+Jzzd4PP/ygatWqKSoqym3/Cy+8oDFjxmjcuHHq16+fkpOTtXr1ajVq1Mjtfn/99Zeuu+465cuXTwcOHFBIiHcOXtLsAQDgBZs3S7fc4gxpKVdOWrdOKlPGbC4A0v79UsWK9vRcyT763rGj2Uy4QE76Ep87jbN27doXNHqS1PH/32ibNm2SJIWGhl7Q6ElSdHS0GjVqpIMHD+rgwYO5GxYAAOTMddfZU/7SJvvt2ye1aSOdOWM2FwBp2jSn0YuOtv9twq/5XLOXlb1790qym7ns3DcsLExFixb1+PXKlCnj9lWtWjWPnwsAAGRw//3SSy859fffS7162YMhAJiRnCxNmeLUPXpIYWHm8sAr/KLZS0lJ0ahRoxQaGqrOlxj9+vHHH2vt2rXq2LGjChQokEcJAQBAjjzzjPTQQ049Z4702mvm8gDBbtky+0i7JIWE2B/AwO+Fmg6QHQMGDNB3332nF198UdWrV8/yftu3b1eXLl1Urlw5vf7665f1mgcOHHCr086NBQAAXuBySVOnStu22dfsSdKzz0rXXis1b242GxCMMi63cP/9UkyMuSzwGp8/sjdkyBCNHz9evXr10qBBg7K8365du3TnnXfK5XLpk08+UalSpfIwJQAAyLGCBaXFi6WyZe3asqROnaRffzUaCwg627dLK1Y4NcstBAyfbvaGDx+u0aNHq1u3boqPj8/yfgkJCWrSpIlOnDihFStWqGbNmnmYEgAAeKxsWbvhS7v04vhxqWVLe5kGAHkj4+/ZVapId91lLgu8ymebveHDh2vEiBGKjY3VtGnT5Eqb2vUPCQkJaty4sRITE7VixQrdeOONeZwUAABcljp1pOnTnfr336UOHaTz581lAoLF6dPSzJlOHRdnX7OHgOCTf5MjR47UiBEj1KVLF82YMSPLtfL++OMPNWnSRMeOHdNnn32mm2++OY+TAgAAr+jcWcp4ucaXX0oDB5rLAwSLefOko0ft7fBwqVs3s3ngVT63qPqECRPUr18/xcTEaNSoURc0etHR0WrWrJmOHz+uG264Qbt27VL//v1Vt27dC56rWbNm2VqqITtYVB0AgFyWmiq1bm1PBUwzeTJTAYHcVK+etHatvd2li/T222bz4JJy0pf4XLPXtWtXzZ49O8vbGzVqpFWrVikhIUGVK1e+6HOtXLlSjRs39koumj0AAPLA8ePSLbdImzfbdWio9PnnUqNGZnMBgWj9eql2baf+9lv73x98ml83e76KZg8AgDyyc6dUt64zpKVECXt5hkt8yAsgh3r0cK6XrVVL+vFHe1kU+LSc9CU+ec0eAAAIYlWqSAsW2Ef1JLvpa9nSPuoHwDuOHZPmznXq3r1p9AIQzR4AAPA9jRtL48Y59aZN9vVEqanGIgEBZfZsexKnJEVG2kOSEHBo9gAAgG+Ki5P69HHqJUukoUPN5QEChWVJkyY59SOPSEWKmMuDXEOzBwAAfNd//iM1aeLUY8ZI779vLA4QEFaulLZudeq4OHNZkKto9gAAgO/Kn1+aP9++ji9Nt27SDz+YywT4u4xH9Ro1kq67zlwW5CqaPQAA4NtKlJCWLpUiIuz6zBl7Pb4DB4zGAvzS/v3S4sVO3bu3sSjIfTR7AADA9113nT05MG1a4L59Ups2duMHIPumTZOSk+3t6Gj73xECFs0eAADwD/ffL730klN//73Uq5c9bALApSUnS1OmOHWPHlJYmLk8yHU0ewAAwH8884z08MNOPWeO9Npr5vIA/mTZMvuouCSFhNgfliCg0ewBAAD/4XJJU6dKdes6+559Vlq+3FwmwF9kHMxy//1STIy5LMgTNHsAAMC/FCggLVoklS1r15YldeokbdliNhfgy7Zvl1ascGoGswQFmj0AAOB/ypa1JwoWKGDXx49LLVpIR44YjQX4rPh4Z7tKFemuu8xlQZ6h2QMAAP6pTh1p+nSn/v13qUMH6fx5c5kAX3T6tDRzplPHxdnX7CHg8bcMAAD8V+fO0qBBTv3FF9LAgebyAL5o3jzp6FF7Ozxc6tbNbB7kGZo9AADg30aPllq2dOrx493HywPBLuNglg4dpJIlzWVBnqLZAwAA/i0kRHrnHalGDWdf377S11+bywT4ivXrpbVrnZrBLEGFZg8AAPi/iAhp6VKpRAm7Tk6W2raVEhKMxgKMy3hUr1YtqX59Y1GQ92j2AABAYKhcWVqwQAoNtetDh6RWraRz58zmAkw5dkyaO9epe/e216pE0KDZAwAAgaNxY2ncOKf+5Re7AQSC0ezZ9iROSYqMtAcaIajQ7AEAgMASFyc98IBTZzyNDQgWluX+3n/kEalIEXN5YATNHgAACDyPP+5sf/ONtHGjuSyACStXSlu3OnVcnLksMIZmDwAABJ6GDaXrrnNqju4h2GR8zzdq5P7vAUGDZg8AAAQel8t9xPycOdLx4+byAHlp/35p8WKnZrmFoEWzBwAAAlOXLlLhwvb2iRP2WnxAMJg2zV5+RJKio6U2bczmgTE0ewAAIDBFRkoPP+zUkybZQyuAQJacLE2Z4tQ9ekhhYebywCiaPQAAELgynr62caO0erW5LEBeWLZM2rfP3g4JkXr1MpsHRtHsAQCAwHXDDVKDBk7NoBYEuozv8fvvl2JizGWBcTR7AAAgsGU8ujd/vnTwoLksQG7avl1ascKpGcwS9Gj2AABAYGvXTipRwt4+f16aMcNsHiC3xMc721WqSHfdZS4LfALNHgAACGwFCkjduzv15MlSSoq5PEBuOH1amjnTqePi7Gv2ENR4BwAAgMD32GP22nuSlJAgffqp0TiA182bJx09am+Hh0vdupnNA59AswcAAAJflSrS3Xc7NYNaEGgyvqc7dJBKljSXBT6DZg8AAASHPn2c7Y8/lnbtMpcF8Kb166W1a52awSz4fzR7AAAgONx3nzOG3rLcF54G/FnGo3q1akn16xuLAt9CswcAAIJDvnz2tXtppk+Xzp41lwfwhmPHpLlznbp3b+f6VAQ9mj0AABA8uneX8ue3t//+W/rwQ7N5gMs1e7Y9iVOSIiKkzp3N5oFPodkDAADBIzpaeuABp2ZQC/yZZbm/h2NjpSJFzOWBz6HZAwAAwSXjoJZvvpE2bjSXBbgcK1dKW7c6dVycuSzwSTR7AAAguDRsKF13nVNzdA/+KuN7t1Ej9/c1IJo9AAAQbFwu99H0c+ZIx4+bywN4Yv9+adEip2a5BWSCZg8AAASfLl2kwoXt7RMnpHfeMZsHyKlp06SUFHs7Olpq08ZsHvgkmj0AABB8IiOlhx5y6kmT7GEXgD9ITnZfJ7JHDykszFwe+CyaPQAAEJwynva2caO0erW5LEBOLFsm7dtnb4eESL16mc0Dn0WzBwAAglOtWtIttzg1g1rgLzK+V++/X4qJMZcFPo1mDwAABK+MyzDMny8dPGguC5Ad27dLK1Y4NYNZcBE0ewAAIHi1ayeVKGFvnz8vzZhhNg9wKa+84mxXqSLddZe5LPB5NHsAACB4FSggPfqoU0+e7Ew4BHzNjBn2FM40cXH2NXtAFnh3AACA4PbYY/bae5KUkCB9+qnROECmVq+2m7s011zDKZy4JJo9AAAQ3KpWle6+26kZ1AJfs3u39MAD9qnGklSsmLR0qVSkiNlc8Hk0ewAAABkHtXz8sbRrl7ksQEYnT0otWzrDg/Lls4cJXXml2VzwCzR7AAAA993njK+3LPcFqwFTUlOl2Fjp55+dff/5j3TnncYiwb/Q7AEAAOTL574w9fTp0tmz5vIAkjRqlPThh07dq5fUt6+5PPA7NHsAAACS1L27lD+/vf333+6/ZAN57cMPpeHDnfr226Vx45xhQkA20OwBAABIUunS9hCMNAxqgSkbNkiPPOLUlSpJCxZIYWGmEsFP0ewBAACkyTio5ZtvpI0bzWVBcPrrL3sgy6lTdl24sLRkiVSqlNlc8Es0ewAAAGkaNpSuu86pObqHvHT2rH10ec8eZ98770jXX28uE/wazR4AAEAal8t94eo5c6Tjx83lQfCwLHuR9G+/dfaNHi21bm0sEvwfzR4AAEBGXbrYp85J0okT9pEVILe9+aY0c6ZTP/ig9Pzz5vIgINDsAQAAZBQVJT30kFNPmmQfdQFyy3//Kz35pFPffLO9/AeTN3GZaPYAAAD+qXdvZ3vjRmn1anNZENi2bpU6drQXUJfsqbCLF0uFChmNhcBAswcAAPBPtWpJt9zi1AxqQW44etSevJmYaNfh4dKiRVL58mZzIWDQ7AEAAGQm49G9+fOlgwfNZUHgSU6WOnWStm1z9k2dKtWvby4TAg7NHgAAQGbat5dKlLC3z5+XZswwmweB5Zln7Gv10jz9tD0cCPAimj0AAIDMFCggPfqoU0+eLKWkmMuDwDFjhjR2rFM3by699JK5PAhYNHsAAABZeewxZyJiQoL06adG4yAArF7tvpbjNddIc+dK+fKZy4SARbMHAACQlapVpbvvdmoGteBy7N4tPfCAfVqwJBUrJi1dKkVGms2FgEWzBwAAcDEZB7V8/LG0a5e5LPBfJ0/akzfTBv3ky2cP/rnySrO5ENBo9gAAAC6meXMpJsbetixpyhSzeeB/UlOl2Fjp55+dff/5j3TnncYiITjQ7AEAAFxMvnxSr15OPX26dPasuTzwP6NGSR9+6NS9ekl9+5rLg6Dhc83etm3bNHToUNWvX1+lSpVSRESEatWqpTFjxujkyZNu9127dq3+9a9/6dZbb1WRIkXkcrk0a9YsM8EBAEDg6t5dyp/f3v77b/df3IGL+fBDafhwp779dmncOGfwD5CLfK7ZmzFjhsaOHauqVatq6NChevXVV1W9enW98MILatCggU6fPp1+348//lgTJkzQsWPHdMMNNxhMDQAAAlrp0vZgjTQMakF2bNggPfKIU1eqJC1YIIWFmUqEIONzzV67du20d+9evfvuu+rfv7/i4uI0b948DR48WL/88oumT5+eft/evXsrKSlJmzdv1hNPPGEwNQAACHgZB7V88420caO5LPB9f/1lD2Q5dcquCxeWliyRSpUymwtBJdR0gH+qXbt2pvs7duyoMWPGaNOmTen7oqOj8yoWAAAIdrffLl17rfTrr3Y9cKDUtKn3X6dAAaldO6lcOe8/N/LG2bP2keA9e5x977wjXX+9uUwISj7X7GVl7969kvKuwStTpoxbnZqamievCwAAfJTLZR/d69/frj//3P7KDa+9Jq1bZ58+Cv9iWVKfPtK33zr7Ro+WWrc2FgnBy+dO48xMSkqKRo0apdDQUHXu3Nl0HAAAEKy6dJGionL/dfbuldq0kc6cyf3Xgne9+aY0Y4ZTP/ig9Pzz5vIgqPnFkb0BAwbou+++04svvqjq1avnyWseOHDArU5KSlJUXvxwBwAAvisqSlq2TJo40V4k29sSE6Wvv7a316yRHntMmjWLyY3+4r//lZ580qlvvtleqoO/Pxji883ekCFDNH78ePXq1UuDBg0yHQcAAAS7hg3tr9xgWfbRw3ffteu335Zq1pSeeip3Xg/es3Wr1LGjvYC6ZJ+Cu3ixVKiQ0VgIbj59Gufw4cM1evRodevWTfHx8abjAAAA5C6XS5o6VapTx9n3zDPSxx+by4RLO3bMnryZmGjX4eHSokVS+fJGYwE+2+wNHz5cI0aMUGxsrKZNmyYXh78BAEAwKFjQbhTShsVZltSpk7Rli9lcyFxysn1d3rZtzr6pU6X69c1lAv6fTzZ7I0eO1IgRI9SlSxfNmDFDISE+GRMAACB3lCtnnwIYHm7XSUn2kaMjR4zGQiaeeca+Vi/N00/bp+ICPsDnrtmbMGGChg0bppiYGDVt2lRz5851uz06OlrNmjWTJP3xxx+aM2eOJGnz5s2SpGXLlqUv09ClSxdVrFgxD9MDAAB4Sd269lTHhx6y6x077GvCPvlECvW5X+GC04wZ0tixTt28ufTSS+byAP/gsizLMh0io65du2r27NlZ3t6oUSOtWrVKkrRq1So1adIky/uuXLlSjRs39kqutGmciYmJioyM9MpzAgAAXNKgQdK//+3U/ftLb71lLg9sq1dLTZpI58/b9TXX2BNU+T0RuSwnfYnPNXu+imYPAAAYkZpqL8i9bJmzb8oUqWdPY5GC3u7d9hCdgwftulgxae1a6corzeZCUMhJX8LFcAAAAL4sJMReiuG665x9ffo46/Ehb508KbVq5TR6+fJJ8+fT6MEn0ewBAAD4uogIaelSqXhxu05Oltq2lRISjMYKOqmpUteu0oYNzr7//Ee6805DgYCLo9kDAADwB1WqSAsWOMNZDh2yjzCdOGE2VzAZNcr+O0jTq5fUt6+5PMAl0OwBAAD4iyZN3Iez/PKLPeY/NdVcpmDx4YfS8OFOffvt0rhxEmtBw4fR7AEAAPiT3r3trzSLF0vDhhmLExQ2bJAeecSpK1Wyj/CFhZlKBGQLzR4AAIC/efNN+yhfmtGjpXnzzOUJZAcP2qfLnjpl14ULS0uWSKVKmc0FZAPNHgAAgL/Jn9+eAFmlirOva1dp/XpjkQLS2bPSAw/YSy2keecd6frrzWUCcoBmDwAAwB+VKGFP6IyIsOszZ+wjUH/+aTZXoLAse4mL1audfaNH22seAn6CZg8AAMBfXXedNHeuMyRk3z6pTRu78cPlefNNacYMp+7YUXr+eXN5AA/Q7AEAAPiz+++XXnrJqdeskR57zD4yBc989pn05JNOffPNduPH5E34GZo9AAAAf/fMM9JDDzn1229Lr79uLo8/27bNPoqXtpxF6dL2xNNChYzGAjxBswcAAODvXC5p6lSpTh1n3zPPSB9/bC6TPzp2TGrRwv6vJIWHS4sWSeXLm0wFeIxmDwAAIBAULGgfgSpb1q4tS+rUSdqyxWgsv5GcLD34oH1kL82UKVL9+uYyAZeJZg8AACBQlC1rN3wFCth1UpLUsqV05IjRWH7h2Wel//7XqZ96yn0hdcAP0ewBAAAEkjp1pOnTnXrHDvsatORkc5l83axZ0htvOPV990n//rexOIC30OwBAAAEms6dpUGDnPrzz6WBA83l8WXffmtPL01zzTX2chb58pnLBHgJzR4AAEAgGj3aHjaSZtw4e4gLHLt32+sSnjtn18WK2QvVR0WZzQV4SajpAAAAAMgFISHSu+9Kt9wibd5s7+vTx15DLoTP+yVJP/4oHTxob+fLJ82fL115pdlMgBfR7AEAAASqiAj7SFXdutLhw/Z1ewsWmE7lm8aOle6803QKwKv4WAcAACCQValiN3ihfMafpZ49pX79TKcAvI5/9QAAAIGucWN7EMmnn0opKabT+JbKlaWHH7YXpgcCDM0eAABAMKhTx/4CEDQ4jRMAAAAAAhDNHgAAAAAEIJo9AAAAAAhANHsAAAAAEIBo9gAAAAAgANHsAQAAAEAAotkDAAAAgABEswcAAAAAAYhmDwAAAAACEM0eAAAAAAQgmj0AAAAACEA0ewAAAAAQgGj2AAAAACAA0ewBAAAAQACi2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIACFmg7gLyzLkiQlJSUZTgIAAAAgWKX1I2n9ycXQ7GXT8ePHJUkVKlQwnAQAAABAsDt+/LiioqIueh+XlZ2WEEpNTdX+/fsVEREhl8vl8fNUq1ZNkrR9+3ZvRQPS8f5CbuM9htzGewy5ifcXcltevMcsy9Lx48dVtmxZhYRc/Ko8juxlU0hIiMqXL++V55GkyMjIy34u4J94fyG38R5DbuM9htzE+wu5La/eY5c6opeGAS0AAAAAEIBo9gAAAAAgAHHNHgAAAAAEII7sAQAAAEAAotkDAAAAgABEswcAAAAAAYhmDwAAAAACEM0eAAAAAAQgmj0AAAAACEA0ewAAAAAQgGj2AAAAACAA0ewBAAAAQACi2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCavTyQmpqqsWPH6uqrr1aBAgVUoUIFPfnkkzp58qTpaPAj27Zt09ChQ1W/fn2VKlVKERERqlWrlsaMGZPpe2nr1q1q3bq1ihUrpsKFC6thw4b68ssvDSSHPzt16pSqVKkil8ulfv36XXA77zN44siRI3rqqad05ZVXqkCBAipVqpSaNGmi//3vf273+/7779W0aVNFREQoMjJS99xzjzZs2GAmNPzCiRMn9OKLL6pmzZqKiIhQyZIl1aBBA82aNUuWZbndl/cXLuall15S+/bt0/8fWKlSpYvePyfvp/379+uRRx5RqVKlVLBgQdWuXVvz58/3/jchyWX9850Pr3v88cf11ltvqU2bNrr33nu1ZcsWjRs3Tg0bNtTnn3+ukBB6blzac889pwkTJqhly5aqX7++8ufPr5UrV+qDDz7Q9ddfrzVr1qhgwYKSpN9//11169ZVaGioBgwYoKioKE2dOlWbNm3SJ598oqZNmxr+buAvnnrqKU2ePFknTpxQ3759NX78+PTbeJ/BE3/88YcaN26sEydOqHv37rrqqquUmJioX375RXfffbcefPBBSdKaNWvUuHFjlStXLv2DhvHjx+vgwYP69ttvVbNmTZPfBnxQamqqGjVqpG+//VaxsbGqX7++Tp06pffee09r167VM888o5dfflkS7y9cmsvlUvHixXXTTTdp/fr1ioyMVEJCQqb3zcn76ciRI6pdu7YOHjyogQMHqnz58po7d66++uorzZgxQ926dfPuN2IhV23atMlyuVzWAw884Lb/rbfesiRZ7777rqFk8Dfr1q2zjh07dsH+wYMHW5KscePGpe9r3769FRISYv3000/p+44fP27FxMRYV111lZWampoXkeHn1q9fb+XLl896/fXXLUlW37593W7nfQZP3HbbbVb58uWt/fv3X/R+derUsSIiIqy9e/em79u7d68VERFhNWvWLLdjwg99++23liRrwIABbvvPnj1rVa5c2YqKikrfx/sLl/L777+nb1933XVWxYoVs7xvTt5PTz/9tCXJWrp0afq+5ORkq06dOlbx4sWt48ePe++bsCyLQ0q57L333pNlWRowYIDb/p49e6pQoUJ65513zASD36ldu7aioqIu2N+xY0dJ0qZNmyRJJ0+e1NKlS9W4cWPVqlUr/X5FihRRjx49tG3bNq1bty5PMsN/paSkqGfPnrrnnnv0wAMPXHA77zN44uuvv9Y333yjZ555RmXKlNH58+d16tSpC+63Y8cOrVu3Tu3bt1e5cuXS95crV07t27fX559/rj///DMvo8MPJCUlSZLKli3rtj8sLEwlS5ZU4cKFJfH+QvZUqVIlW/fL6ftp7ty5qlq1qlq0aJG+L1++fOrfv7+OHDmijz/+2HvfhLhmL9etW7dOISEhqlu3rtv+AgUKqFatWvwyhMu2d+9eSVJ0dLQk6ZdfftHZs2d1yy23XHDf+vXrSxLvO1zS2LFj9dtvv7mdtpkR7zN4Iu2XmJiYGLVo0UIFCxZU4cKFddVVV7l9+Jn23snq/WVZltavX583oeE36tatq6JFi+qVV17R/PnztXv3bv32228aNGiQ1q9fr+HDh0vi/QXvysn76cCBA9q3b1/6/yf/ed+Mz+ctNHu5bP/+/SpZsqTCw8MvuK1cuXI6dOiQzp07ZyAZAkFKSopGjRql0NBQde7cWZL9npPk9ulSmrR9+/bty7uQ8Du7du3SsGHDNHTo0CwvSOd9Bk9s3bpVkn12y5EjRzR79mzNmDFDYWFh6tKli2bOnCmJ9xc8U6xYMS1dulTFixdXhw4dVLFiRV1zzTWaMGGCPvzwQ/Xs2VMS7y94V07eTybee6FefTZc4NSpU5k2epJ9dC/tPmFhYXkZCwFiwIAB+u677/Tiiy+qevXqkpR+SlRm77uM7zkgK3FxcapSpYoGDhyY5X14n8ETx48flyRFRERo5cqV6f/va926tapUqaLnn39esbGxvL/gsSJFiqhGjRpq2bKlGjRooCNHjmjChAnq3LmzlixZombNmvH+glfl5P1k4r1Hs5fLChUqpIMHD2Z625kzZ9LvA+TUkCFDNH78ePXq1UuDBg1K35/2fjp79uwFj+E9h0t55513tGLFCn399dfKnz9/lvfjfQZPpE0M7tSpk9uHnMWKFVPLli319ttva+vWrby/4JGNGzeqQYMGGjt2rOLi4tL3d+rUSTVq1FDPnj31+++/8/6CV+Xk/WTivcdpnLmsbNmyOnToUKZ/qfv27VPJkiU5qoccGz58uEaPHq1u3bopPj7e7ba0C9MzOw0gbV9mpw8AZ8+e1cCBA3XfffepdOnS2rFjh3bs2KE//vhDkpSYmKgdO3bo2LFjvM/gkfLly0uSSpcufcFtZcqUkSQdPXqU9xc8MnbsWJ05c0bt27d321+oUCE1b95cf/zxhxISEnh/waty8n4y8d6j2ctlderUUWpqqtauXeu2/8yZM9qwYYNq165tKBn81fDhwzVixAjFxsZq2rRpcrlcbrfXrFlT4eHh+u677y547Jo1aySJ9x0ydfr0af39999avny5qlWrlv7VuHFjSfZRv2rVqmnatGm8z+CRtGFlaYOlMkrbd8UVV6hOnTqSlOX7y+Vy6eabb87FpPBHab8sp6SkXHBbcnJy+n95f8GbcvJ+KlOmjMqVK5f+/8l/3lfKhf93enUhB1zgl19+ueg6e3PmzDGUDP5oxIgRliSrS5cuVkpKSpb3a9eunRUSEmJt2LAhfV/a+mfVqlVj/TNk6ty5c9b8+fMv+Jo4caIlybrnnnus+fPnW1u3brUsi/cZcu7IkSNWRESEVa5cObe1pPbv328VLlzYuuqqq9L31a5d24qIiLD27duXvm/fvn1WRESEdeedd+ZpbviHAQMGWJKsl19+2W3/0aNHrTJlyljFihWzkpOTLcvi/YWcudQ6ezl5Pz311FNZrrNXtGhRKykpyavZXZZlWd5tH/FP/fv31/jx49WmTRvdd9992rJli9566y3deuut+vLLLxUSwgFWXNqECRPUr18/xcTEaNSoURe8b6Kjo9WsWTNJ9povdevWVf78+fXEE08oMjJSU6dO1caNG7V8+XLdfffdJr4F+KmEhARVrlxZffv2dVuKgfcZPDFlyhQ99thjuu666/Too4/q3LlzmjRpkg4cOKCPPvpId911lyTp22+/VZMmTVS+fHn1799fkjRu3Dj99ddfWr16tW644QaT3wZ80B9//KGbbrpJR48e1UMPPaRbb71VR44c0dSpU5WQkKAJEyaoT58+knh/4dLmzJmTfhnDuHHjdO7cOT355JOSpIoVK6pLly7p983J++nw4cO6+eabdfjwYQ0cOFDlypXTe++9p1WrVmnatGnq3r27d78Rr7aOyFRycrL12muvWVdddZUVFhZmlS1b1nriiSfcPtUELiU2NtaSlOVXo0aN3O7/66+/Wi1btrSioqKsggULWrfeequ1YsUKM+Hh13bt2mVJsvr27XvBbbzP4IkPP/zQqlevnlWoUCGrSJEiVrNmzaxvvvnmgvt9++231h133GEVLlzYKlKkiHXXXXdZ69evN5AY/mLHjh3WI488YpUrV84KDQ21IiIirIYNG1offvjhBffl/YWLadSoUbZ/57KsnL2f9u7daz388MNWiRIlrPDwcOvGG2+03n///Vz5PjiyBwAAAAABiPMHAQAAACAA0ewBAAAAQACi2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIADR7AEAgt7w4cPlcrm0atUq01FypGHDhqpVq5Ysy8rxY3/++WeFhIRo2rRpuZAMAOALaPYAAAHF5XLl6MvfGrw08+fP1zfffKPRo0fL5XLl+PE33HCD2rZtqyFDhujEiRO5kBAAYJrL8uTjQAAAfNTw4cMv2Pef//xHiYmJevzxx1W0aFG327p27aoiRYro0KFDiomJUaFChfIm6GWwLEtXX3218ufPr02bNnn8PD/88IPq1KmjMWPG6Pnnn/diQgCAL6DZAwAEvEqVKumPP/7Qrl27VKlSJdNxLtuKFSt011136eWXX9YzzzxzWc917bXX6uTJk9q1a5dCQjjhBwACCT/VAQBBL7Nr9hISEuRyudS1a1dt27ZNbdq0UbFixRQVFaVWrVopISFBkrRjxw61b99eJUuWVKFChXTfffdp586dmb7O4cOH9cwzz6h69eoqUKCAihUrpubNm2vNmjU5yjv9/9q7m5CovjCO4z+5FvYyDkpEMxES5aL3IbxaKpEQFFiYQtiiYmCcIIwgImoRZEG1qBAiXBS1GMI2Uo0t7IVELJiKQoWgpgLfCrEXK4NSLKdFNP2nO436L1Mv3w/M5nnOPfc5y4cz59xz5yRJpaWlllxvb68OHTqkxYsXy+FwyOFwaN68edq8ebOampos40tLS9XR0aGbN2+OqAYAwPhHswcAQAKtra1auXKlPnz4IJ/Pp7y8PNXW1mrNmjV6/PixcnJy9ObNG3m9Xq1evVp1dXUqLCzU4OCgZZ7ly5fr+PHjmj17tsrLy1VcXKxQKKRVq1bp6tWrw6onEomovr5ebrdbGRkZlty6detUUVGh1NRU+f1+7dixQ9nZ2WpoaNC9e/cs8+Xl5UkSzR4A2FDyWBcAAMB41tjYqBMnTmjPnj3R2Pbt23X27Fnl5ubqwIEDcXPBYFDFxcXR+LZt2/TixQtdunQpJn7kyBFlZ2fL7/erra1NKSkpCesJh8N6/fq1NmzYYMk9evRIoVBIGzdu1OXLl2NyX79+VW9vr+UZ0zSj6wQA2As7ewAAJDB37lzt3r07JrZ161ZJUnp6uiW3ZcsWSd8/bfBDc3Oz7ty5o02bNsU0epLkcrm0d+9edXd369atW0PW09HRIUmaNWvWb8dMmTLFEjMMQ2lpaZa40+lUSkpKdF4AgH2wswcAQALLli2zXFzicrkkSUuXLrXk3G63JOnly5fRWCgUkiT19PTEvS302bNnkqQnT56osLAwYT1v376VpLiN28KFC+XxeHTx4kW1t7erqKhI+fn5ysrK0uTJk387Z3p6urq7uxO+FwAw8dDsAQCQgNPptMSSk5OHzA0MDERjPT09kr6fi0t0Nm4437v7sWvX19dnyRmGofr6eh0+fFg1NTXat2+fJCk1NVVer1dHjx7VtGnTLM99/vw57m4gAGBi42+cAACMsh9N4bFjxxSJRH77O3jw4JBzzZw5U9LPBvJXaWlpqqysVGdnp54+faozZ84oMzNTp06d0s6dOy3jBwcH9f79++i8AAD7oNkDAGCU5eTkSPr5d84/sWjRIhmGoXA4POTYzMxM+f1+NTY2avr06bpy5YplTDgcViQSkcfj+ePaAADjC80eAACjzDRN5ebmqra2VufPn4875u7du/r06dOQczmdTnk8HrW0tKi/vz8m19raGvcbf+/evVN/f7+mTp0a972SVFBQMJylAAAmEM7sAQDwD1RXV6ugoEA+n09VVVUyTVMOh0OdnZ168OCBnj9/rq6urrgN2a9KSkr08OFDNTQ0aO3atdF4S0uLSkpKZJqmFixYILfbrVevXikYDGpgYCB6hu+/bty4IcMwVFRU9FfXCwAYe+zsAQDwD2RkZKipqUkVFRX68uWLAoGATp8+rfv372vJkiUKBAKaMWPGsOby+XyaNGmSAoFATDwrK0v79++XYRi6du2aTp48qevXr8s0TdXV1WnXrl0x4z9+/KhgMKj169drzpw5f22tAIDxISkSiUTGuggAADAyZWVlqq6uVltb2/++XKWqqkrl5eW6ffu28vPz/3KFAICxRrMHAMAE1NXVFb2ApbKycsTP9/X1af78+VqxYoVqampGoUIAwFjjzB4AABOQy+XShQsXordpJiUljej59vZ2lZWVyev1jk6BAIAxx84eAAAAANgQF7QAAAAAgA3R7AEAAACADdHsAQAAAIAN0ewBAAAAgA3R7AEAAACADdHsAQAAAIAN0ewBAAAAgA3R7AEAAACADdHsAQAAAIANfQPgpdWrbHWBFwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.title('Detected frequency drift')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Overlaying this traced function with the Dynamical Powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAKOCAYAAAA8vlEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADc80lEQVR4nOzdd1gUV9sG8HuW3kFQUBQQxF6wd7HX2HvvRpPom2iaSYw1Jl8SY4rG2E3UaGJiS9TYewsae0MUERWVotLb7vn+8GVfN+zCAodlkfuXa6/IzJkzz+zOzO6Z0xQhhAARERERERGZBVVRB0BERERERET/w0IaERERERGRGWEhjYiIiIiIyIywkEZERERERGRGWEgjIiIiIiIyIyykERERERERmREW0oiIiIiIiMwIC2lERERERERmhIU0IiIiIiIiM8JCWhHJzMzEypUr0blzZ3h5ecHa2hqlS5dGcHAwFi5ciOTk5KIO0SitW7eGoig4dOhQUYciTXh4OPr3748yZcrAwsICiqJgzZo1uW6nKIrOy9LSEm5ubqhUqRL69OmDhQsXIjo6ukCxzZo1C4qiYNasWdnWxcTEYMyYMfD29oalpaXBdPoUh89Ro9Fgzpw5qFy5MqytraEoClq3bl3UYelYs2YNFEXBqFGjijoUszdq1Cijr61/b/Piy9HREeXKlUNwcDCmTZuGkJCQwgu6GDp06FChXytZ+3jxpVKp4ObmhpYtW2Lp0qVQq9WFtn8iopeRZVEHUBLdvn0b3bt3x9WrV2FpaYmmTZuifPnyiImJwfHjx3HkyBEsXLgQ27ZtQ926dYs63BJFo9Ggb9++OHfuHGrXro2OHTvC0tISlSpVMjqPvn37wtHREQCQkJCAe/fuYceOHdiyZQvef/99fPzxx3j//fdhYWEhNfZx48Zh27ZtqFSpEgYMGABra2sEBQXh0KFDaNOmDYKDg826EJabb7/9FjNnzoSbmxt69uwJBwcHVK1a1aQx+Pn5ISIiAuHh4fDz8zPpvul/6tSpg6CgIABAWloaYmNjce7cORw5cgRfffUV2rdvj9WrV6N8+fJFG2gJ4+DggH79+gF4/iDy5s2bOHbsGI4dO4Zt27Zh+/btsLTkzw5zN2vWLMyePRszZ840+KBPURQAgBDChJERlTCCTOrhw4eibNmyAoDo1KmTuHfvns76Z8+eidGjRwsAwsnJSVy/fr2IIjVOcHCwACAOHjxY1KFIcevWLQFA+Pn5CbVanadtAQgAIjw8PNu6+Ph48X//93/CxsZGABCvvfZavuKLjo4W165dE9HR0TrL09LShKWlpbCzsxMJCQk66w4ePCgAiODgYIP5RkREiGvXromkpKR8xWUKLVu2FADE/v37iywGX19fg5+xEEI8ffpUXLt2TTx48MC0gRVDI0eOFADE6tWr87zNzJkz9a7fs2ePqF69uvYafvTokZxgi7GkpCRx7do1ERERUWj7yLrH+Pr6Zlu3c+dOYWFhIQCIH374odBiIHlmzpyZ43UmxP++74io8LC5o4m99tpriIqKQrNmzbB9+3Z4e3vrrHd2dsaqVaswaNAgJCQkYPjw4UUUacl07949AICvry9UKnmXh5OTE959911s374dKpUK33//Pfbu3ZvnfDw8PFC1alV4eHjoLH/48CEyMzNRpkwZbS1eXvj4+KBq1aqwt7fP87amkvXZ+Pv7F3Ekhrm4uKBq1aooW7ZsUYdSInXo0AGnTp1CtWrVcOfOHbz11ltFHVKRs7e3R9WqVeHj41Mk++/SpYv2e+z3338vkhiIiIojFtJMKDQ0FFu2bAEALFq0CNbW1gbTfvPNN7C2tkZISAgOHDgAAIiNjYWNjQ0cHByQkJCgd7u0tDS4ubnBwsIC9+/f11kXHR2N999/HzVq1IC9vT2cnJzQpEkTrFixQm+ThRf7Ke3btw8dO3ZEqVKloCgKzp8/n+OxXrlyBTNmzEDTpk1RtmxZWFtbw8vLC71798bx48ezpZ8wYQIURcGXX35pMM8333wTiqLgk08+yXHfL3r8+DGmTZuGypUrw9bWFq6urmjVqhV++uknnWO+c+cOFEVBcHAwAODw4cPavhUym7V17NgRAwcOBAB89dVXOute7G9269YtDBs2DGXLloWFhQW+/vrrbGmyKIoCX19fAEBERIROv5BRo0ahTZs22Y7p331UDPVJe3H5yZMn0blzZ7i6usLe3h4tWrTA/v37DR7rmTNn0K1bN7i6usLJyQnNmjXD5s2bte+1se9rVgzh4eEAgIoVK2qPISve3PrU+fn5QVEU3LlzJ9u69PR0LF68GC1btoSbmxtsbW1RsWJF9O3bFzt37gTwvz43ERER2WJ4Md/c+qRt27ZNex3Z2NigYsWKmDhxojbfF734Pmk0Gnz99deoUaMGbG1t4enpiTFjxuDx48dGvYdZHj9+jK+//hodO3aEn58fbG1t4ebmpr0m9HmxT1NaWhpmzpyJSpUqwcbGBuXLl8ebb76JpKQkvdump6dj/vz52uvP29sbr776aoH7ZubEyclJe7388ssvePDgAQDgxIkTUBQFtWrVMrjt+fPnoSgKKleurL0/vPiZPnv2DP/5z39QoUIF2NjYICAgALNnz0ZmZma2vCIiIjB//nwEBwejfPnysLGxgYeHBzp16oQ///xT7/5f3FdsbCxee+01lC9fHnZ2dqhduzY2bNigTXvs2DF06tQJbm5ucHR0RNeuXXH9+vVseebWJ+3OnTuYPHkyqlSpAnt7e7i6uqJWrVqYNm2a3vMyP+rVqwcA2fK7ePEihg4dCm9vb1hbW8PT09Pgd0S1atWgKAoiIyN1lv/xxx/a6/Do0aM6665duwZFUdC0adNs+UVEROD1119HpUqVtN8Nbdq0webNm/Uew4v3kF9//RUtWrSAi4sLFEXB06dPAQBRUVF45513UKNGDTg7O8PR0RG+vr7o2bMnfvvtN538XuyT+c8//6B79+5wd3eHg4MDmjRpgl9//dXg+5meno5FixahWbNmcHV1ha2tLapVq4YZM2YY/G0AAMePH8fAgQO156OnpyeaNWuGzz77DCkpKdrjnD17NgBg9uzZOve5WbNmac/RLP/ui5jFmO+z3PqlGvO9dPjwYbRv3x4uLi5wc3NDr169cPPmTQDPuy8sWLAANWrUgJ2dHby9vfHee+8hPT3d4HtEZE7YONyEduzYASEEatasmWtfszJlyqBTp074448/8Mcff6Bt27Zwd3dHt27dsGXLFvz2228YPXp0tu22b9+Op0+fomPHjjq1dBcuXEDnzp3x8OFD+Pr6omPHjkhOTsapU6cwfvx4HDx4EOvXr9cby8aNG7Fs2TLUqVMHnTt3RmRkZK61TAsXLsSqVatQvXp11KtXD/b29ggNDcXWrVvxxx9/YN26dRg0aJA2/euvv47ly5dj2bJlmDZtms7NHgCSk5Px448/wsrKCmPHjs1x31lCQ0PRpk0bPHjwAOXLl0fPnj0RHx+PgwcP4ujRo9i9ezfWrVunHXxg5MiRePjwIXbv3g1PT0907twZALLVWhXUkCFDsGHDBhw9ehQZGRmwsrLKFneDBg3g5OSEVq1aISkpKccarpEjRyIxMRG///67Tp8QAGjRooXeYwKQp/5cO3bswNdff609B65cuYLjx4+jc+fO2L9/P1q1aqWTfs+ePejevTvS09NRq1Yt1KxZExEREejbty+mTp1q9H4BoHPnzvDz88Nvv/2GpKQknT5/Xl5eecrr3+Li4tC5c2eEhITA3t4ezZs3h7u7OyIjI7F7927Exsaia9eu8PLywsiRI/XGAMCo2st33nkHX375JSwsLNCqVSt4enri7NmzWLp0KX755Rf89ddfaNy4sd5thw8fjq1bt6J169YIDAzE8ePHsXr1aoSEhODMmTOwsbEx6nj37NmDt956Cz4+PggMDETTpk1x//59nDhxAkePHsXp06exePFivdump6ejU6dOuHDhAoKDg1GlShUcPXoU33zzDa5du4bdu3frpFer1ejZsyf++usvODg4oEOHDrCxscHvv/+OvXv35lhYKqgOHTrAw8MDMTExOHToEIYMGYJmzZohKCgI58+fx7Fjx9CiRYts2y1ZsgQAMHHixGz3oKdPn6Jp06aIi4tDy5Yt8fTpUxw9ehSzZs3C/fv3sWzZMp30a9euxYwZMxAYGIgaNWrA1dUVd+7cwZ49e7Bnzx58/vnneOedd/TG/+TJEzRp0gQpKSlo3rw5Hj58iKNHj2LIkCHQaDSws7PDoEGDUL9+fXTs2BFnzpzBrl27cPbsWVy5csXoe9auXbswYMAAJCYmwsfHB127doVarUZYWBi++uor1KpVS8ogOPHx8QCgc55u3rwZgwcPRnp6OurUqYPg4GCEh4dj69at2L59OxYtWoRJkyZp07dt2xbXr1/HgQMHMHLkSO3yFx8UHThwAC1btsy2rm3btjrx7Nu3D3369EFCQgKqVKmCbt26ITY2FqdOncKhQ4cwffp0zJ8/X++xfP7551iyZAmaNm2Kbt26ITQ0FIqiICoqCnXr1sWjR49QsWJFtGvXDlZWVrh37x727duHtLQ0nXtzllOnTmHixInw8fFBx44d8eDBAxw7dgwDBw5EWFgYPvjgA530T58+RdeuXXHy5EmUKlUKjRo1gr29PUJCQjBv3jxs2bIFR44cQalSpXS2mzt3Lj7++GMAQFBQEFq2bIknT57g2rVrmD59OgYNGgQ/Pz/069cP+/btw4ULF3T6fmZt5+HhgZEjR+LHH38EAJ3PQp+8fp/lxbZt2/Ddd9+hUaNG6NSpE86ePYtt27bh9OnTuHjxIiZNmoTdu3ejTZs2qFixIg4dOoTPP/8c0dHRWLVqlZQYiApV0ba2LFmGDRsmAIgxY8YYlX727NkCgGjZsqV22datWwUA0bp1a73bvPLKKwKAWLdunXZZUlKS8PPzEwDEV199pdPX6t69e6JevXoCgFi5cqVOXln9zZBDvxFDfdIOHTok7ty5ky39jh07hJWVlXBzc8vW/6l58+YCgNi7d2+27VauXCkAiAEDBuiNQ58GDRoIAGLkyJEiLS1Nu/z69euiXLlyAoD4/vvvdbYxpv+WIcihT9qL7t27p0178+ZN7fKsfgAAxLhx40R6enq2bQ31FQgPDzfYJ8SYYzL0OWYtVxRFbNiwQbtco9GIN954QwAQbdq00dkmMTFReHl5CQDiiy++0Fm3detWbf8UfbHmJKf+YLn1jTS0bdb10qZNG/H48WOddfHx8WLfvn1GxyCEEKtXr9aecy/6448/BADh4uIiTp8+rV2uVqvFO++8IwAIHx8fkZqaql2X9ZkCEIGBgeLu3bvadY8ePRIVK1YUAMSPP/6oNxZ9rl69Kv7+++9sy8PCwoSPj48AIE6ePKmzLuv8ASCaNm0q4uLidLZzcXERAMThw4d1tlu4cKEAIPz9/XVif/r0qfZaz+neok9ufdJe1L59ewFAfPjhh9ply5cvFwDE0KFDs6WPj48Xjo6OwtbWVsTGxmqXZ32mAETv3r1FSkqKdt2pU6eEhYWFUBQl2znx999/i6tXr2bbT0hIiHBxcRGWlpY678u/9zVo0CCd+9ayZcsEAOHt7S3c3NzEli1btOtSU1NF69atBQAxa9YsnTwNXf937twRjo6OAoBYsGBBtj64165d0xu/Pjn1SdNoNKJx48YCgBg+fLgQQogHDx4IJycnvf3UNm/eLCwsLISlpaW4cOGCdvlvv/0mAIgRI0bopK9Vq5YoX768cHV11fmuFEKI3r17CwA61/H9+/eFq6ursLKy0rmnZR1z1jX+776vWcutrKzE7t27sx3nrFmzBAAxadKkbOsSEhLEiRMndJZlncsAxNSpU3Xe/3379gkbGxuhUqnEP//8o7Nd//79BQAxZMgQ8ezZM+3ylJQUbZ5Z7/O/3ztXV9ds9zSNRiMOHDggnj59ql0mo0+aMd9nufVLze17SaVSZbsO2rRpIwCIGjVqiGrVqomoqCjt+osXLworKyu91yuROWIhzYQ6d+4sAIj333/fqPQ//PCDACCqVaumXZaeni48PDyEoijZOoI/fvxYWFpaCicnJ50C0OLFi/V+uWU5e/asACDq1q2rszzrRtipUyeDMeZn4JAhQ4YIAOLPP//UWb5hwwYBQPTt2zfbNg0bNszTfg4fPiwAiFKlSon4+Phs67N+DAUEBOgsN0UhLTU1VZv21KlT2uVZX2ru7u7ZBv/4dxpTF9IGDhyYbZvo6GgBQFhbW+t8Aa9Zs0YAEHXq1NG7rwEDBphFIe2ff/7RniNPnjwpcAxCGC6kZf1wmDdvXrZtMjIyREBAgAAg1q5dq13+YiFt165d2bb74osvBAAxatQoo2LPTVYh4O2339ZZnnX+qFQqceXKlWzbvf7663oLB1mFyF9++SXbNhcuXBCKohRqIW3QoEECgJg4caJ2WXJysnBzcxM2NjYiJiZGJ33WffLfn13WZ+rk5JStIC+EEN26dRMAxJo1a4w+jg8++EAAEIsWLdK7L2dn52zxZWZmCg8PD4OFTEMP8Axd/1OmTBEAxOjRo42O2xB9hbSMjAxx7do17cNJlUqlfQCQ9QCyffv2evPL+pzHjh2rXRYbGysURREVKlTQLnv8+LFQFEWMGjVK9OzZU1hZWWm/+9RqtShVqpSwsbHRKVhnPRT5+OOP9e77999/1xbIX5R17b/66qt6t3vttdcEAJ1CQ06yjrF8+fI6hfEsEydOFIDuQ93Lly9rH9q8+EAnS1JSkvD09BSWlpY6Dxpq166dpwc6MgtpOX2fFbSQltN1AOh/4NurV688X69ERYV90syY0NNPzMrKCoMHD4YQAmvXrtVZt2HDBmRmZqJ///46zQl27doFAOjfv7/e/dStWxeOjo64cOECUlNTs63v1atXvuJ/9uwZ1q9fj3fffRfjx4/HqFGjMGrUKFy+fBnA82YQL+rbty+8vLywbds2PHz4ULv87NmzCAkJQdWqVY2e6+fIkSMAgN69e8PJySnb+mHDhsHKygq3bt3K1nevsGk0Gu2//92kCgDat2+fr8E/ClOXLl2yLfPw8ECpUqWQnp6OmJgY7fKs937AgAF68xoyZEjhBJlHf/31FwCgT58+cHV1LbT9ZGZm4sSJEwD0Nw2ytLTEiBEjADzvN/hvVlZWaN++fbblVapUAQBtnytjZWRkYNeuXZg5cyYmTpyI0aNHY9SoUdo+M/++LrP4+PigevXqRsURGRmJ8PBw2NjY6G3iVbt2bdSuXTtPcedV1nX24jVmZ2eH0aNHIy0tDatXr9ZJ/2JTR33q16+P0qVLZ1ue0+eQkpKCzZs344MPPsCECRO098CsPjaG3uv69evD3d1dZ5mFhYW272nHjh2zbRMQEGAwDn2yzn9jm48b48U+sVZWVqhWrRrWrVsHOzs7rFy5Ek2aNAHwv3uEoaZyY8aMAaB7PZQqVQp16tRBZGSkts/RwYMHIYRA27Zt0bZtW2RkZGj7pZ0/fx5xcXFo2rQpbG1ttfnk9n2Y1XT71KlTetcb+j5s0KABAGD69OnYvn270XOd9uvXT2//9GHDhgH433sF/O8z69Gjh94mzvb29mjQoAEyMzNx5swZAM/7yV28eBH29vYYPHiwUTHJVJjfZzldB1ZWVtr+2PrW5/W+SVQU2CfNhLK+dB89emRU+qxBAf7dv2DkyJH47rvvsHbtWnz44Yfa5Vkd/7N+8GW5ffs2AKB79+657jM2NjbbiJNZPwzyYsuWLRgzZoy2Q7U+Wf0UslhZWWHChAmYM2cOVqxYgY8++ghA7j+e9MkqeFWsWFHvektLS/j4+GgLaf8+5sL0YoHm3/0GgPy934WtQoUKepc7OTkhLi4OaWlp2mVZ772h4zCX47t79y6A//3ILiyxsbFIS0uDtbW1wfMsa8RKfQ8MvLy89M4tlfXw4cX3PjfXr19Hz549DRYOgOzXZZaczoF/x5F1HBUqVDDYf9XPzw8XLlwwKu78yLrO/n2Nvfbaa1i4cKFO/9djx47h8uXLCAoK0hYk/i0vxw88H6RhwIABOf4YNPReG5rfLevHrr71WeuMPR8K4/x/sU+sSqWCs7MzatasiV69eul8j+V2fzZ0PbRt2xbnz5/H/v37ERgYqNPn7MmTJwCe90Pr1KmTwf5oWd+HufWJNDS4jaH718iRI3Ho0CH89NNP6NmzJywtLVGnTh20bt0aw4YN0+nb9SJDAyhlLc8a1fbF2BcsWIAFCxYYFX/W51yxYsVs/Z9NoTDv9zldB15eXnrnIs3rdUJUlFhIM6F69eph/fr1+Pvvv41KHxISot3uRfXr10eNGjVw5coVnD59Go0bN8a1a9dw9uxZ+Pn5ZRvEQa1WA3j+9M3NzS3Hfep7OmdnZ2dUvFkiIyMxZMgQpKam4sMPP8TgwYPh5+cHe3t7KIqCDz74AJ9++qnemsJXX30V8+fPx/Lly/HBBx8gISEBGzduhL29fa4dlIuLc+fOAXj+ZaHvCzqv77cp5Gc6An21hPnNq6BerL3MYig+cyPz/erXrx9CQ0PRq1cvvPfee6hSpQqcnZ1hYWGBPXv2oFOnTgYnpy2Kzy2/hBDaEWhr1qypsy4gIACdO3fGrl27sH//frRv3x4//PADAOgMVPFveTn+pKQk9OnTB48fP8b48eMxadIkBAQEwNHRESqVCsuWLcOrr76a7/daxmdRGOe/h4eHwZH6ZGjbti2++uorHDhwABMnTsSBAwdQpUoVeHt7w9vbG56entrCWdaoyP8upGV9Hw4ZMiRfhRZD92eVSoUff/wR7733Hv78808cPHgQJ06cwNmzZ7FgwQLMmDEDc+bMyfP+9MXeqFEjVKtWLce0WYWjor7PFeT7TN99+0U5XQfF6X5FZAgLaSbUrVs3vP3227hy5QrOnTuX4wiPjx8/xp49ewAAr7zySrb1I0aMwHvvvYeffvoJjRs31qlF+/dNuUKFCrhx4wamTJmCdu3aSTwi/Xbs2IHU1FT07dsX8+bNy7Y+LCzM4LblypVD7969sWnTJuzYsQN37txBUlISxowZk6cmaVk1FllPHv8tMzNT+4TRlLVoALTDaAcHB+utISnuypUrB+B/T3D/Td8w+AWV1VwoMTEx27rMzExERUVlW541b1ROtUoyuLu7w8bGBmlpabh3757eGpms87Qwz8Xr16/jypUr8PT0xG+//ZbtKXNO12VeZR1HZGQkNBqN3h9MhXEeZNmzZw/i4uJgaWmpt4n0G2+8gV27dmHJkiUICgrCb7/9BmdnZwwdOlTK/o8ePYrHjx+jfv362UZ9BOS+1/nl4+ODGzduIDQ0VPoItrnx9vbG9evXcfv2bTRv3jzbekPXQ6tWrWBpaYlDhw7h7t27CAsL0ylYt2nTBr/++iseP36MY8eOwdHREY0aNdLJo0KFCggLC8OcOXO0Td9kql69OqpXr453330XmZmZ+O233zBq1CjMmzcPQ4YMyTaqrqFpDrKujxffg6x7R8eOHTF37lyj4snaJjw8XO9owkUpp/s2gGzTLRCVNHzUYEJVqlRBjx49ADz/kZCRkWEw7X/+8x+kp6ejfv36evujDBs2DCqVCr/88gtSU1O1w+f/u6kjAO2w6/+ep6WwxMXFAdDfPCgmJibXSZxff/11AMAPP/yApUuXAsj5Cbc+WbWJW7du1TtvzPr165GRkYGAgACTFtL27Nmjnf9m2rRpJtln1hehvrmcCkPWENiG5vl5ca4nWbIKhjdu3Mi27uDBg3qPPas/w+bNm/Hs2TOj9pOf99LS0hLNmjUDAL1zkanVam3/0qx5+gpD1nWZNVfRv23cuFHavipUqAA/Pz+kpaXpnXfq8uXLuHjxorT9vSghIUE7ifWQIUP0TtPQuXNnBAQEYPv27fjkk0+QlpaG4cOHw8HBQUoMOd0D09PTDc7FZUpZ539RDEWedX82NDdfVn/Bf18PTk5OaNCgAaKjo7Vzbb1YU9a2bVtoNBp89tlnSExMRIsWLbIVSkz5fWhpaYlBgwahVatWEELg0qVL2dL89ttven8L/PzzzwCg0zImK/YtW7bkWsuUpWzZsqhVqxaSk5Pxyy+/GLWNMfe5rPe1IN8rOd23r1+/bvBBH1FJwUKaiS1ZsgSenp44ceIEevToka2/Qnx8PMaOHYuNGzfC0dEx2+AgWcqVK4f27dsjNjYW77zzDiIjI9G8eXO9TwYnTJiA8uXLY+nSpfjss8/0tsW+evWqtB8OWU8Kf//9d53+d0lJSRg3blyO/dSA51/MNWvWxM6dO3HlyhXUr19f2ynbWK1atUL9+vURFxeHKVOm6HwJ3rx5U9uXz1QFpYSEBHz55Zfo0aMHNBoNJk+erLdTc2HIKoSGhYWZpKDWv39/lClTBufOncPChQt11v3xxx/YtGmT9H1mvZfff/+9zgTPYWFhmDx5st5t6tWrp50fqV+/fjp9BYHnn9m/J+vOei+vXbuWp/iyCg1ffPGFtkM/8Lw5z0cffYSwsDD4+PgYHMxAhsDAQKhUKly+fFln0l8hBObPn59tIuCCynrfp0+frtOvJj4+Hq+99prBpn4FsW/fPjRp0gTXrl2Dv7+/wX47KpUKkyZNQmZmpvbHfl76vOYm6x544MABnR+gGRkZePPNN3Hr1i1p+8qvqVOnwsHBAatWrcK3336b7Uf/9evX9U6OLcP48ePh6OiIffv2Yfny5Trrtm/fjnXr1sHS0hJTpkzJtm1WoWzJkiVQFEXnPprVUiSrH/O/mzoCwNtvvw0nJyfMmjULK1eu1DYhzCKEQEhISK4PE//tp59+0jZlf9G9e/e0fS+zau9fFBkZiQ8//FDnejh06BBWrVoFlUqlfWgJPO/q0KNHD1y5cgVDhw7V27/90aNH2d7TGTNmAACmTJmCgwcPZtvm0KFDOg+qjLnP5fde+KKsz27t2rU618SjR48wduxYowuiRC+rl6+tlZkrW7Ysjh49ih49euCvv/6Cn58fmjVrhnLlyiE2NhbHjh1DcnIyvL29sXXr1hzbnY8cORJ79uzBokWLtH/r4+TkhD///BOvvPIKpk+fjq+++gq1a9eGl5cXnj59ikuXLuHu3bsYOHAg+vTpU+Bj7N69O+rUqYMLFy6gcuXKaN26NSwtLXHkyBGoVCqMHj0628hq//b6669ra8/yWouW5eeff0abNm2wZs0a7N+/H82aNUN8fDwOHDiAtLQ0DB48WOoPsyxvv/22tnNyYmIi7t27h3PnziE9PR02NjaYP38+3nvvPen7NcTX1xd169bFuXPnULt2bdSvXx82NjaoUqWKwcl0C8LR0RE//vgjevTogalTp2LNmjWoUaMG7t69ixMnTmDKlCn45ptv9I5oll+DBg3Cl19+icuXL6NGjRpo3rw5nj17htOnT6NXr15ITU3V26xozZo16NSpE/bt2wdfX1+0bNkSbm5u2s+sQYMGOk2Ee/fujUOHDmHo0KHo2LGjtgnu//3f/2Ubje9F3bt3x7Rp07BgwQI0adIEwcHB2smsQ0ND4erqil9++cXoSanzo3Tp0pg4cSK+//57tGnTBq1bt0bp0qVx9uxZ3L59G2+//Ta+/PJLafubMmUK/vrrL+zduxdVq1ZFu3btYG1tjYMHD8LJyQk9evTA9u3b85X31q1btc3B0tPTERsbi3PnzmkHS+jUqRNWrlyZYzO+MWPGYMaMGUhJSUGLFi2y9V0riHr16qFr167YuXMn6tSpg3bt2sHR0REnTpxAXFwcJk+ejO+++07a/vLDz88PGzduxMCBA/Gf//wHX331FRo2bKidzPrSpUtYvXp1nia9N1bZsmXx448/YvDgwZgwYQKWLFmCatWq4c6dOzhx4gQURcHixYv1jgDatm1bzJ8/H6mpqQgKCtK57vz9/eHr66u91vUV0nx9fbF582b0798f48aNw6xZs1CjRg24u7sjNjYW58+fx6NHj/Dee++hQ4cORh/T5s2bMXLkSFSoUAF16tSBi4sLHj9+jKNHjyI1NRUDBgzQO1n9q6++im+++Qbbtm1D/fr1ERUVhSNHjkCj0WDOnDmoX7++Tvoff/wR3bt3x8aNG7F9+3YEBQXB19cXqampCA0NxdWrV1GmTBmMHz9eu03//v0xY8YMzJ07F23btkXdunVRtWpVPHnyBFevXsXdu3cRHh4OFxcXAM+vH3t7e2zevBmtWrVCQEAALCws0KNHD21roN69e2PhwoVo164d2rZtq/3OW7FihdHvWatWrdChQwfs3bsXdevWRatWrZCRkYHTp0+jTp06aNasmXZkXKISqWhG/qf09HSxbNky0bFjR1GmTBlhZWUl3N3dRYsWLcSXX34pEhMTc80jOTlZODs7CwDC1tZWZzJKfeLi4sTcuXNFgwYNhJOTk7CxsRE+Pj6iVatWYv78+SIsLEwnvTFzoBlK8+zZM/HWW2+JSpUqCRsbG+Ht7S3GjBkj7t27Z9QcLGFhYQL/nfz335Ne58WjR4+0cVhbWwsnJyfRokULsWbNGqHRaLKllzFPWtZLpVIJFxcXERAQIHr16iUWLlwooqOjDW5vzPuSn3nSstYPGDBAeHp6aieTfvEYc5uPJq+TRAshxOnTp0Xnzp2Fs7OzcHBwEI0bNxa//vqrOHr0qACeT4ycF7nNUfbo0SMxevRoUaZMGWFtbS2qVKkivvjiC6FWq3PcNiUlRSxcuFA0atRIODk5CVtbW+Hn5yf69++fbX4ytVot5s6dK6pWrSpsbGyyzY1naJ60LFu2bBHt27fXTqbr4+MjJkyYoDeu3D7T/JyrarVaLF68WNSuXVvY29sLd3d30a1bN3HixAmD+eW2n5yOOTU1VcydO1d7/ZUtW1aMGTNGPHz4MNc5kvR5cQLgrJe9vb0oW7asaNmypZg2bZoICQkxOr8WLVoIAGL9+vUG0+T2mRq6JrOOvVq1asLW1laUKVNGDBgwQFy9etVgnrntK6fr0dD5ktvnd/PmTfHqq6+KihUrCmtra+Hq6ipq1aol3n777WxzcRqS02TWOTl//rwYPHiw8PLyElZWVsLDw0P07NlTHD161OA2KSkp2mtv6tSp2daPGTNGABBubm7ZJuh+0f3798W7774ratWqJRwcHISdnZ2oWLGi6NChg/j666/F/fv3ddLndv85fPiwmDJlimjQoIH2HlS+fHnRrl07sWHDBpGZmamT/sXzPyQkRHTp0kW4uroKOzs70bBhw2wTbb8oIyNDrF69WrRr1064u7sLS0tL4enpKerXry+mTp0qjh8/rne7gwcPit69ewtPT09hZWUlypQpI5o1ayY+//xznbnkhBDiwIEDonXr1sLFxUU7p+GL53hycrKYOnWqqFixorCysso2b5ox32dCCJGYmCjefPNN4e3tLaytrYWfn5/44IMPREpKSr6+l3K7bxobF5E5UIQohDYnRAX0ySef4KOPPtLWutDLI+uzff3117W1wESmdvfuXfj7+6NUqVK4d++e1JpdotyMGjUKP/74I1avXo1Ro0YVdThEZIbYJ43MTmxsLL755htYWFgY7E9E5u3hw4c6/ZCy7N69G/Pnzwegf5AbIlOZPXs21Go1Jk2axAIaERGZHbMrpN24cQNDhw5FtWrV4OLiAnt7e1StWhVTp07VO4z2jRs30KtXL7i5ucHBwQEtW7bUzo9CxcsXX3yBESNGICgoCNHR0ZgwYQIqVapU1GFRPpw5cwY+Pj4ICgpCr1690KdPH9SsWROdO3dGcnIypk+fnm1obKLCduLECYwbNw6tWrXCqlWrULZsWUydOrWowyIiIsrG7AYOuXfvHqKiotC7d2+UL18elpaWuHTpEpYtW4aNGzfi/PnzKFOmDADg1q1baNasGSwtLfHuu+/CxcUFy5cvR6dOnbBr1y69Q9eT+dqxYwcOHz4MT09PTJ48GZ9//nlRh0T5VKtWLUyYMAGHDx/G4cOHkZiYCDc3N3Tu3BkTJ05Ez549izpEKoFCQ0OxcuVKODg4oE2bNli4cKF2sAQiIiJzUmz6pG3atAkDBgzA//3f/+Hdd98FAAwYMAC///47zp49i6CgIADPR9OrUaMGbG1tcf369WwTOxMREREREZkzs2vuaIivry8A4MmTJwCez7m1fft2tG7dWltAA54P/z1u3DiEhoYiJCSkKEIlIiIiIiLKN7Nr7pglNTUViYmJSE1NxdWrV7XzSnXt2hUAcPHiRaSlpaFp06bZtm3SpAkAICQkJN/9XsqWLavzt0ajwdmzZ+Hk5MTaOSIiIqISSgiBhIQElCtXDiqVedZ3pKamIj093WT7s7a2hq2trcn2VxKYbSFtxYoVOiP7+fn5Yd26dWjZsiUA4MGDBwD+N+v9i7KW3b9/X1o8Go0GFSpUkJYfERERERVfkZGRKF++fFGHkU1qaioq+pXGw0eJJtunl5cXwsPDWVCTyGwLab169ULVqlWRmJiIc+fOYfv27YiJidGuT05OBgDY2Nhk2zbrBMlKkx//Hkny2bNncHV1xcwhn8LWWtIJaCHx7VdnystLNtk1jyoLeXnJft+sJH6mGsndRdVqufmZMwuZ54jk903m9SDzWgAAoZGYl+TzV2Z+Ms8PyRTJP3BEAb4H9Wdoxt3Yzfk7VWZsGrn3JMU6+++o/BJpqdLyAiD3finx3E1NT8Xsn6fDyclJWp4ypaen4+GjRERcmQJnJ3mfryHxCWnwrfEt0tPTWUiTyGwLaeXLl9c+nejVqxf69u2Lhg0baofvtre3BwCkpaVl2zY19flNIiuNDFlNHG2tbWFrbScnU3P+QpGJhbT8YSEt/1hIyx8W0oqcYiO5kJZpxp+DbOb8nWrOhTQ9D7vzSwjJ3/dmWkjLYu7dX5ydbODsXPiFNCoc5tmQVo/atWujbt26+P777wEA5cqVA6C/SWPWMn1NIYmIiIiIXnbChP+RfMWmkAYAKSkpiIuLA/B8HiYbGxucPHkyW7pTp04BABo0aGDS+IiIiIiIiArK7AppDx8+1Lv84MGDuHz5snbkRkdHR3Tv3h2HDh3ChQsXtOkSExOxYsUKBAYG5ntkRyIiIiKi4kwDYbIXyWd2fdImTZqEqKgotG3bFr6+vkhNTcXZs2exceNGODk5YcGCBdq0n376Kfbv34+OHTvirbfegrOzM5YvX4779+9jx44dZt9WmIiIiIiI6N/MrpA2ePBg/PTTT1i7di2io6OhKAp8fX3x6quv4p133oGPj482baVKlXD8+HG8//77+Oyzz5Ceno569erhr7/+Qvv27QsnQAtLaR2AFTt5HcRFUpK0vKST3VnXnAdJyZAYm+y5V8x5MA2ZneoBueeI7Ic9UgcOkZcVAEDmxyr7upd5/mokDpACSD1WkSR5NEbZ56/UAVzM97pXrK2l5QUAIiNDan5Sybwe+HDcrJiqvxj7pBUOsyukDRgwAAMGDDA6fbVq1bBt27ZCjIiIiIiIiMh0zK6QRkRERMZRVArKBLjD098dVtZWehKYcU2aOccmuyWD7NpbmWQeqzkfZy4y0jLwKDwGj8NiIWRPgVNEWJNWvLGQRkREVAwpKgW1O1ZBpZr+sLK0Zj9smcy5ACmbmc9FZipCCATWSkfYldu4uPv6S1NQo+KLhTQiIqJiqEyAOyrV9Ie1FSerJSooRVFgbW2DSjX88fBWNB6FxhR1SAWmEQIaExScTbGPksjshuAnIiKi3Hn6u8PKUu4AF0QlnZWVNTwrehR1GESsSSMiIiqOrKyt2MSRSDJFUWCpr39nMST++zLFfkg+1qQREREREf0Xn32QOWBNGhERERHRS0YDAY0J6rlMsY+SiDVpREREREREZoSFNCIiIiIiIjPCQhoREREVWw2a10fvgb2MTr9x00Z4+ZXB8ZPHdZZHREZg1PgRqF6vGrx8S2PKtDcAQOffxsVTD70H9jQ6fWHROR6/MpgybXJRh5QrQ58N5Y8w4X8kH/uk5ZXQPH/JyColVUo+zzMz4wvESvJplqmWl5cZv2+KtdyhtUWqxPPNwkJeXoVA5nsn1BLPNwCQmZ9Gzr2oUJjzOSL7ureQeI/TSD7fyGj/mTYF165fxX/eeBNlSpeBn4/f/84VAZ3z5ouFn6Nm9Zro0qlr9oxE9vRFQe/xmIHjJ4/jxKnjmDDmVbi4uBR1OIblNHoIRxYhE2AhjYiIiEqM/n36o1f3XrB+4WFOWloaToecwpiRY/HahNd10t+5fhcW/3rosOCbLzGg70C9hbTjB04U+dQIOR1PUTtx6jgWfPMlBvYblK2Qpu+zofzTiOcvU+yH5GMhjYiI6CUR16sTkJlZ1GHkztISpbbuNukuExMT4ejoCAsLi2yFruiYaAgh4Orimm07W1vbPO3HxsamIGFKkdPxmDN9nw1RScU+aURERC+LzEwgI8P8X/koSN5/cB/jXx+HwFoBqFTTH8PHDsOdiHC9abP6YB09fgQ9+r0C/+p+GD52GIDs/Z6mTJuMBs3rAXheQ+blV0Zn/Yv9ue5G3oWXXxkAwK+//6JNm7UM0N9HLmvZzbCbGDp6CAJqVERgrQCMnTQGjx8/yhb/1WtXMHB4f1Ss5odqQVUweeobiI2LNapvWU7Hc/zkcXj5lcHGTRv1bPcGvHxL6yzrPbAnGjSvh4ePHmLi5AmoUqsSKlbxwaDh/XHr9q1seaSnp2PRD9+hXZc2qFjVF4G1AtCxewes/HGlNrYF33wJAGjUsoE2ti8Wfg7AcJ+02LhYvD/jPdRrGoQKgd6o1zQI7894D3FP4nTSZW1/7MRRfL9sMRq3agifyuXRrE0T/PJb9mN+2QkTvkg+1qQRERGRWXv27Bl6DeiJB1H3MWLoSFQOrIyTp06i7+A+SDHQ3/bCpQvY8defGDZoGAb0HWgw7xFDRqBm9Zr4eO4MdO3UFV07dwMAVK4UmC2tu7s7Fi1cjDfeeh1NGjXBsMHDjT6Gh4+i0GdQL3Tp1BUfT5+JK9euYO3PPyExMQG/rN2kTXc7/DZ6DugBjUaDcaPGwcurLPYf3IfBIwcZtZ+cjic07KbR8WZJTk5Gr/7dUb9uA0x/90PcjbyLFauXYdS44Ti096i25is9PR2DRgzEiVPH0bpla/Tt3Q82Nra4fv0qdv61A2NHjsWIISOQmJiAnbt3Ys6MuShVqhQAoHrV6gb3Hx8fj+59uyH8TjgGDxiCWjVr4fKVy/hx3RocP3EMu7bthqOjo8428z+fj9TUFAwfMgI21jb4cd0a/OftKajoVxGNGjTO83tAVBRYSCMiIiKztnjpIkTeu4uFn3+DwQMGAwBGDx+DGbM/wvLVy/RucyP0On5dtwmtWgTnmHeD+g1RpownPp47A9WqVke/3v0NpnWwd0C/3v3xxluvw6eCb45p/y38TjiWLlqOnq/8b+RHlUqFNWtXI+xWGCoFVAIAfPrlfCQkJGD7b39oCxRjR47FhNfH4+KlC7nuJ6fjyU8hLS4uFq+9+jremPi/Gjz3Uu6Y++lsHDl2GG2C2wIAlq1aihOnjmPKa//BB+9+qJOH5r+DHDWo3xDVqlbHzt070bljF/hU8Ml1/4uXLsLt8Nv4dO5nGD18jHZ5jeo18MHH07F46SK8N+19nW3S09Pw1/Y92r5tr3TtjsatGmLVj6tKVCGNk1kXb2zuSERERGZt155dKO1RGgP6DtBZ/sYkw03/alSrkWsBzZS8PL10CmgA0KJZCwDA7Tu3AQBqtRr7D+5D3Tr1shUmJo6fZJpA/0WlUmHcqPE6y1o0bwngea1fls1bf4eriyumTpmmN4/82rl7J9zdPTB88Aid5SOGjIS7uwd27t6ZbZtRw0frDD5S1qss/CsGaN9nouKAhTQiIiIya3fvRsC/on+2QSU8y3jCxVn/MO7+/gGmCM1ovj6+2Za5uT5v7vfkv32rYmNjkJycjICA7LFX8q9UuAEa4OXplW3wFDdXNwDAk6dPtMvCw2+jUkClPA+0kpvIyLuo5B8AS0vdxl+WlpYIqOiPu3cjsm2j/712w5MnT7Itf5kJABoTvFiPVjjY3JGIiOhlYVlMvtZNEKedrV2h7yMvVCrDoxaaakq1nKYGUBuYg1SVw2iLwkznGjX0XptrvET6FJO7OREREeXG1MPam4qPjy9uh9+GWq3WqU179PgRnsU/K8LI5HJ394C9vT1u3co+cmLY7bAC5+/m6goAePose41ShJ4aqbzw9/dH2K0wpKWl5TgNQV7nkPPx8UXY7VvIzMzUqU3LzMzErfDb8NFTa0bPmWrkRRZ9CwebOxIREZFZ69yhM6JjovHr77/qLF+05LsiicfBwQFPnz2Vnq+FhQXatm6Hcxf+wd9nTuus+2H5kgLn71PBB5aWljhy7IjO8pAzf+PsuTMFyrtPz354+uwpvl60MNu6F2uwHBwcAMDo969Lxy6IjY3B+o3rdJav27AWsbEx6KpnQnGilwFr0oiIiMisvT7xDWzevhlvT5+Ki5cvoEpgFZw4dQJnz51BqVLuJo+nft36OHrsCL5b8i3KlysPRVHQq0dvKXm/P206Dh05iMEjB2HMiLEoW7Ys9h3Yh9i4WAB5r4l6kYODIwb2G4T1G9dh4uRX0axJM9y+E45fNm1A9WrVceXqlXznPX7MBOzdvxsLv/sK5y+cQ3Cr1rCxscGN0Bu4dTsMm9b/DuD5ewcA8z6bgz49+8HWxgZVqlRFtSrV9Ob7+qtv4I+d2zH94/dx6col1KxeE5evXsbPv6xHJf9KeP3VN/IdM5E5YyGNiIiIzJqriyu2/bodM+d9jE2bn9emNW3cDL9v2Ix+Q/qZPJ7P5n6O6R+/h28Wf43ExEQAkFZIqxRQCVt/2YbZ82dhxerlsLGxQft2HfDp3M/QuGXDAg/MMWfGHAghsGv3Tuze+xdq16qNn1auw9oNPxWokGZtbY2NP/2KH1YsweZtm/Hp5/NhY2ODihX9Maj//+Z4a9SgMT56fwZ+Wv8j3p4+FZmZmZj2n7cNFtKcnZ2x/bc/8cXCz7Fn325s3LQBpT1KY8TQkXjnrXezzZFG/6OBAg3yX6jPy35IPkWwF6VR4uPj4eLigk/Hfgtba0mdkdX6O+mahQI8qcumAEPv6iXzfZMcm2JlJS0vkZYmLS8AUHLoI5BXsmOTTub5K5vMW67s8zeHAQLySmRkSMsLABSJI8aJ9HRpeT3PUOJnmoe86veohco1s0+4XGzIvk5lfg6ybyESQrtw6QI6de+AD9/9CJNfm1LwDMmg0Ms3cXb7JYPrU9NTMH3NW3j27BmcnZ1NGJlxsn6z3rwzBU7O8r77DUmIT0Og37dm+34UV6xJIyIiIjIjKakpOqNTCiGw+IdFAIBWLc1n7jcyb0KYZuRQVvcUDhbSiIiIiMxI+65t0bxpC1SrWg3JycnYu38PTv19Cj1f6YU6teoUdXhEZAIspBERERGZkU4dOmPvvj34bcsmqDPV8Kngg/emvY83Jk4u6tCoGMmabNoU+yH5WEgjIiIiMiMfT5+Jj6fPLOowiKgIsZBGRERERPSSEVAgTDDyoin2URJxMmsiIiIiov/iQBhkDliTRkREVAxlpGVACFGgyY2JSJcQApnpcqcQKSqcJ614Y00aERFRMfQoPAYZGZLnfCMq4TIy0vEoPKaowyBiIY2IiKg4ehwWi7Art5GengbB9llEBSKEQHp6GsKu3MbjsNiiDkcKYcKXTJ9++in69+8Pf39/KIoCPz+/XLdZu3YtmjdvDmdnZzg6OqJmzZqYO3dutnTPnj3D5MmT4e3tDVtbW9SoUQNLliwxy3somzsSEREVQ0IjcHH3dTy8FQ3Pih6wtLZCtpaPsptCyvwho5L8nFgjcSBwlez3TWZe5vdjsrgTAshMz8Cj8Bg8DouF0PA9LkoffPABSpUqhXr16uHp06e5ph8zZgx+/PFH9O3bF8OGDYNKpUJ4eDgiIiJ00qWnp6NDhw44d+4cJk+ejGrVqmHXrl147bXX8OjRI8yaNatwDiifWEgjIiIqpoRG4FFoDB6FGmieZWEhd4dqtbSsFCsraXkBgMjMlJeZpez3TWIBUmZhVDZzfihQAhXXPmm3bt2Cv78/AKBmzZpITEw0mHblypVYvXo1fvrpJwwfPjzHfFesWIGQkBB8++23mDz5+ZyD48ePR9++fTF//nyMHj0avr6+8g6kgFhIK0oyb2ayb4yKzCeckm+yZtxJXqSlycvMnL/sLCTfOtQSf1wBgEriDyzZjcIz5f3Ilf0DRuqPXMm1JCJdYt8r2T9yZRaEJMemyP4cJNYwmXVthczrFJB7PUj+TBWJ56/Uewgg93tQZsFb8OdzYcoqoOVGCIFPP/0U9erV0xbQEhIS4OjoqHdApZ9//hn29vYYP368zvI333wTmzdvxi+//IJ333234AcgCfukERERERFRgQQGBqJs2bLaV2G7ceMGbt26hWbNmmHu3Llwd3eHs7MzXF1dMXHiRJ0aOI1Gg3/++Qd169aFra2tTj6NGjWCoigICQkp9Jjzgo8CiIiIiIheMgIKhHh5J7O+ceMGAOCXX35Beno6PvroI1SsWBF//vknli5dihs3buDAgQNQFAVPnjxBSkoKvL29s+VjY2MDDw8P3L9/39SHkCMW0oiIiIiIqEBu3rwJZ2dnk+0vISEBABAdHY29e/eiffv2AIC+fftCCIEff/wRf/31F7p06YLk5GQAzwtk+tja2mrTmAs2dyQiIiIieslkDRxiildRsLOzAwB4e3trC2hZRo4cCQA4dOgQAMDe3h4AkGZg7IDU1FRtGnPBQhoRERERERUr5cuXBwB4eXllW5fVJ+7JkycAADc3N9jZ2elt0piWloaYmBi9TSGLEps7EhERERG9ZIRQoDFFnzQT7EOfWrVqwdbWVm/B6969ewCAMmXKAABUKhXq1auHc+fOIS0tTafZ499//w0hBBo0aGCawI3EmjQiIiIiIipW7O3t0bdvXzx8+BBbtmzRWbdkyRIAQNeuXbXLBg8ejOTkZCxbtkwn7ddffw1LS0sMHDiw8IPOA9akERERERG9ZAQUk4y8KHsfa9euRUREBIDng4Kkp6dj3rx5AABfX1+dSavnz5+Pffv2YciQIZg8eTL8/Pywc+dO7NixAyNGjECzZs20acePH4/Vq1dj6tSpuHPnDqpVq4adO3diy5Yt+Oijj+Dn5yf1OAqKhTQiIiIiIjILK1euxOHDh3WWzZgxAwAQHBysU0jz8fHBqVOn8OGHH2L16tV49uwZAgIC8OWXX+Ktt97SycPa2hr79u3DRx99hA0bNiA2NhYBAQH47rvv8Prrrxf+geURC2lERERERC8ZU428KHsfWSMyGsvPzw/r1683Kq2rqysWLVqERYsW5SMy02KfNCIiIiIiIjPCmrS80miev2QQQk4+AKBIflKiUUvLSrG1lZYXAIjMDHmZqSV9lllUEp97yDw/ALmxqeWdHwDkn7/qTImZmfFtUvb7JvGcUyzlvm8iU+JnaiX5M82Qeb7JJWRfqzKZ8z1O1vf8fykSYxMZEr8DAQiZxyrzMwDkfg6ZEq8FmXkVouJak0bPsSaNiIiIiIjIjJjxI2IiIiIiIsoP8d+XKfZD8rEmjYiIiIiIyIywkEZERERERGRG2NyRiIiIiOgl83zgkMKvj+HAIYWDNWlERERERERmhDVpREREREQvGY1QoBEmGILfBPsoiViTRkREREREZEZYk0ZERERE9JIRUCBM0F/MFPsoiViTRkREREREZEZYk0ZERERE9JJ5PrqjCfqksSatULCQlleWFs9fMmSq5eRTGFSSjhGASE2VlpdsipWV1PxERoa8zBS5Nz2pn4OFvPOjMEj9XGV/DhqJ173k2KDRSMtKpKdLywsAoJLY8CMjU15egNzPQQh5eQHyzxGZ8ck+Vplkfc//l4AZH6tM5vyZlpRzl14aZtfcMTQ0FB9//DGaNGmC0qVLw8nJCUFBQfjkk0+QlJSULf3JkyfRo0cPlC9fHnZ2dggICMD48eNx+/btIoieiIiIiKjoZfVJM8WL5DO7mrRVq1Zh8eLF6NGjB4YOHQorKyscPHgQH330EX799VecOnUKdnZ2AIC//voL3bp1Q0BAAN544w14eHjgypUrWLZsGX7//XdcunQJ3t7eRXxERERERERExjO7Qlq/fv0wffp0uLi4aJdNnDgRgYGB+OSTT7By5Uq88cYbAICFCxfCwsICJ06cgIeHhzZ9jRo1MH78eGzatAlvvvmmqQ+BiIiIiKhIcZ604s3smjs2aNBAp4CWZeDAgQCAy5cva5fFx8fD1tYWbm5uOmnLlSsHAHBwcCjESImIiIiIiOQzu5o0Q+7duwcA8PT01C7r1KkTTp06hZEjR+Kdd96Bh4cHLl++jGnTpqFatWoYNGhQvvdXtmxZnb81EjvUExERERERGVIsCmlqtRpz586FpaUlhgwZol0+ffp0PH78GKtWrcL69eu1y7t27YoNGzbAycmpKMIlIiIiIipSnMy6eCsWhbQ333wTJ0+exPz581GlShXtcgsLC3h7e6N9+/bo3bs3SpUqhePHj+O7777DoEGDsG3bNljlcyjuqKgonb/j4+P1NsMkIiIiIiKSyewLaTNmzMCiRYswYcIETJ8+XWfdqFGjcOLECVy5ckU74mPv3r1RqVIlTJo0CT/++CPGjRtXFGETERERERUZYaKBQwQHDikUZjdwyItmzZqFefPmYfTo0fjhhx901t29exfr169Ht27dtAW0LP379wcAHD582GSxEhERERERyWC2NWmzZs3C7NmzMXLkSKxYsQKKoltKv3//PoDn/dX+LTMzU+f/REREREQlCfukFW9mWZM2Z84czJ49G8OHD8eqVaugUmUPs0qVKrCwsMDWrVvx9OlTnXVr1qwBADRs2NAE0RIREREREcljdjVpixcvxsyZM+Hj44P27dvj559/1lnv6emJDh06oFSpUnjzzTexYMEC1K1bF+PHj9cOHLJ+/XoEBAQUSn80RVFBUeSUbYXMIrKQPEWAJnsNpdkQQl5WGRnS8gIAKGb8NElmbCrJxyn59BUyp8zQU1tvNiReCwAAPQ/EzIViZysvs0y5n6nU+4jsz1Ty9DGKpcSfDZLnMhUJCfIyk33Zy7z/Sv6eUWxspOUlUlOl5SWb8q+uMQXKy3xvlTo0UKAxQS2XKfZREpldIS0kJATA8z5nI0eOzLY+ODgYHTp0AAB88cUXqFKlClasWIH58+cjLS0N3t7emDRpEmbNmgVnZ2eTxk5ERERERFRQZldIW7Nmjba5Ym4URcH48eMxfvz4wg2KiIiIiKgYYZ+04q2YVNgSERERERGVDGZXk0ZERERERAWjMdE8aabYR0nEmjQiIiIiIiIzwpo0IiIiIqKXDEd3LN5Yk0ZERERERGRGWEgjIiIiIiIyI2zuSERERET0kuEQ/MUba9KIiIiIiIjMCGvSiIiIiIheMhw4pHhjIS2PRHo6BCyKOozsrCR/lGqNvLwUM66wVWcWdQSGKXJveoq1tbS8RKZaWl4AAJXkc0QIeXnJ/hzsbOVlliH5/JX4OQiN3HNEJKdIzEzi+QFAsZX3mYq0NGl5AZB+/gqNxPcuMVFeXoDc+4jkc0T25yCTSE+Xl5nse7lG3m8RmdeWSJd8nRLpwUIaEREREdFLRggFwgQTTZtiHyWRGVdxEBERERERlTysSSMiIiIiesmwT1rxxpo0IiIiIiIiM8KaNCIiIiKilwz7pBVvrEkjIiIiIiIyI6xJIyIiIiJ6yQiYpr+Y5Akr6L9Yk0ZERERERGRGWJNGRERERPSSEVAgTFKTxj5phYE1aURERERERGaEhTQiIiIiIiIzwkIaEREREdFLRiMUk71k+vTTT9G/f3/4+/tDURT4+fkZve17770HRVHg6Oiod31aWho+/vhjVKxYETY2NggICMC8efOQkZEhKXp52Cctr1Sq5y9zk6mWm58i74JTrCSfZmp5xypkv21WVtLyEmqNtLwAQHFykJaXeBIvLS8AUCwspOYn0tOl5aVYW0vLCwBEmrzYIOSOqSX1a1ZjxuN9Sb6Hi9RUaXkptrbS8gIAaOTeR4QZ/pDRknk9SL62ZJ5zip2dtLwAQCQlyctMJfdeDkg8f2VeC5KvK9L1wQcfoFSpUqhXrx6ePn1q9Hbnz5/HV199BUdHRwgD1/DAgQOxbds2jBkzBk2bNsXJkycxY8YMhIWFYc2aNXIOQBIW0oiIiIiIXjLFdeCQW7duwd/fHwBQs2ZNJCYm5rqNWq3G+PHj0aVLF8THx+PMmTPZ0uzcuRPbtm3D1KlTsWDBAgDAuHHj4Orqiq+++goTJkxAs2bNpB5LQZhhlRAREREREZVEWQW0vPj2229x9epVfPfddwbT/PzzzwCAN998U2d51t/r1q3L834LE2vSiIiIiIheMhooJpnMOmsfgYGBUL3QtDcqKqrQ9w0AERERmDFjBmbOnAlfX1+D6UJCQuDt7Y0KFSroLK9QoQLKlSuHkJCQwg41T1iTRkRERERExdKkSZPg7++PqVOn5pjuwYMH8Pb21rvO29sb9+/fL4zw8o01aURERERELxkh5I+BY2g/AHDz5k04OzsX/g5fsGHDBvz11184duwYLC1zLtYkJyfDxsZG7zpbW1skJycXRoj5xpo0IiIiIiIqVuLi4vDmm29i7NixRg34YW9vj7S0NL3rUlNTYW9vLzvEAmFNGhERERHRS0YDFTQmqI8xxT70mT17NpKSkjB+/HiEhYVpl6ekpEAIgbCwMNjY2Gj7oJUrV85gk8b79+8bbApZVFhIIyIiIiKiYiUiIgJJSUlo3Lix3vWBgYGoUaMGLl++DABo2LAh1q9fj8jISJ3BQyIjI/HgwQP06NHDJHEbi4U0IiIiIqKXjKn7pJnae++9h2HDhmVbPnPmTNy+fRtr166Fi4uLdvngwYOxfv16fP3119p50gDg66+/BgAMHTq00GPOCxbSiIiIiIjILKxduxYREREAgOjoaKSnp2PevHkAAF9fXwwfPhwA0LRpU73bL1q0CBEREejXr5/O8m7duuGVV17BV199hWfPnqFp06Y4efIkVq5ciWHDhqFFixaFeFR5x0IaERERERGZhZUrV+Lw4cM6y2bMmAEACA4O1hbS8mPTpk2YN28e1q1bh7Vr18Lb2xtz5szB+++/X6CYCwMLaXmkWFpCyWWIzyJhbSU1O8XaWlpeGkc7aXkBQGYf/SPz5Ecd13vS8gKAQOs70vL6I7aOtLwAQPOr/mFn80OlcZKWFwBonj6Tmh8UeZN3isxMaXlJZyG3s7bQSGyzolbLywsArOTddxWVhbS8AECkp8vLy8DIY/km+Vilkt1GSiXxepB4D5FNJCUVdQgGKZaSry21xPuvzM/UjM+PFwkoECaYzFr2Pg4dOlRo29va2mLevHnamjlzxiH4iYiIiIiIzIgZVgkR5cwiJQ0+e86g1JU7sEwr2BNsR0u5T63TVPKeqNfNuJBtmcbaCk+rVcC9Lg2gdrCVti8iIiJ6uWigQGOCmjRT7KMkYiGNig8hUCbyMqpO3ga72PiijkYvjcS83BGtd3npkFD4bD+Fm2M64mFwrWLT7IKIiIiIjMNCGhUL9vExqBqyDaUf3CjqUMyCzdMk1PxqC8rtPYcbr3ZFkk/pog6JiIiIzIgQCoQwQZ80E+yjJGIhjcyaKjMDFa8cRMXLh2ChMeMBHIpIqUt30Pg/P+BuzyYIHxgMtZ28AV+IiIiIqGiwkEZmy+P+dVT7eyvsE+OKOhSzplJr4Lf5BLyOXMaNcZ0R3bQqm0ASERGVcMV1dEd6joU0Mju2SU9QNeQPeEZeLupQihXbmHjU+exXxNSrhBsTuiClXKmiDomIiIiI8oGFNDIbijoTfteOwv/iPliqM4o6nGLL458wuE3+HhF9W+BOvxbQWPMyJyIiKmk0kDugWU77Ifn4643MgtvDW6j+9xY4Pnts9DZpzva4MbQD4v288r3fQCfj92cMHyt5TTOPPgvU+dvhXgwq/bQPNnGJuW5rkaGG/8bD8Dp0ETde7YLY+oG5bkNERERE5oGFNCpS1snxqHL2T5S7c97obYSi4G6HBrgxrD0ynOwLtP8M1wJtno3KWkjLKz7WW/fvyt543KQq/DccQoU/TkOlyX1f9g+foO7sn/G4SVVcL9sLqQ5u0uIjIiIi88XRHYs3FtKoSCgaNSrcOIlKF/bAKiPV6O2elfLGpfdfwbPA8oUYnflS29vg5thOiGobhKpLdsD1eqRR25U5dR3uFgtwq3Z7RFRtAWHBS5+IiIjIXPGXWh6JjAwIRdLbJuTVuigqlbS8ACCuubxBJ9LcdVsre9y+gyY//4pSkfeNziPdzg7nenVDaKvm8DycAqt/5MR2JcpOTkZZ+SkVpeWlcrcwuC4B5RBSfSzKOZxH4KU9sE5PzjU/C3UGKp/bhTJR/yBkwAA8CixAE0hF7vtWZmvuTTjzRObolhKvUwAQarW8zDIl5mXuMuRNwSEUM37fJJ9vEJJ7i8iMT/YotBqJxyr5O9WsY1PJ+xxEhhn3J1cZ/k4t0rwKkRAKNKxJK7ZYSCOTsUlMRL3NfyDw+Kk8bXerSUOc7dsDqc7OhRRZMaWo8MCvHh6Xq4rAy/vgHX4WCnL/AeX68BE6fPsdwhvUxz+9eiHFxcUEwRIRERGRsVhIo2wUjRreVy7A5VEUFAlP/9T2AhYZGQg8dhI2SbnX+GR5Us4Lpwf3x+PKlQocw8ss09oe1+r1wH2/eqh27g84P40yaruKZ87C+/IVhDVrhkwbOZNgC5UKzzzL4F6tWtBYWUnJk4iIiKikYSGNdJSKCUe1a3vhkFx0E0hn2NjgQvfOuNY2GMKieDQpMAfxpcrjdNtXUf72GVS6ss+ovn7WqamofuCA9FgSS5XCmX59ca92Lel5ExERUe44mXXxxkIaAQBsUhNQ5cZ+eD28XqRx3KkfhDP9eyPZzbVI4yi2FBXuBTTCY+/qCLy0B+Xuni+SMBzj4tB62XLcq1kDIf36IcnDvUjiICIiIiqOWEgr4RSNGj53zyAg7Dgs1elFFkd8mdI4PbgfoqpXLbIYXibpto640rDP8yaQ5/+EY7zc+eCMVf7yFXjdCMXlTh1xtV1bNoEkIiIyEU5mXbyxkFaCuT6JRLWre+CUGF1kMWRaWeFSlw640rEdNFY8HWV7WtoPp9pNgk/YKVS8cRBW6aYviFtmZCDozx3wP/03/h7QHw+rsSBORERElBP+Ki6BrNOSEBh6EN4PLhdpHJG1aiBkUF8ksilcoRIqC0RUbo7L/Zuh/pYt8D13vkjicI6ORvvF3+NOvbo426c3UlxdiyQOIiKikkAIFYSQPGWDgf2QfCyklSRCg/KR5xF48zCsMtOKLIxE91L4e2Af3KvDQSVMKdnNDUfHjEHYtWtouOk3OEcXTQ2q3z/n4H3lKi527YLrrTk4DBEREdG/sZBWQjg/i0K1q7vhEv/Q6G0ybGwR2jQY6fb2Bdp3pv1/5+5SFCSUdseDGtWgseSpV1SiqlXDHx9+gLLXr8MpOhoqSZOsWqWmosrhI7BJzn2aBau0NNTfshX+p07j74EDAMiZAoCIiIieE/99mWI/JB9/Kb/kLNNTEBh2BOUjz+VpgNSIOg1wvksvpDoXfKLjNHd2KTU3wsICD2rUyH8GBk6mG8GtUHfbdlQ6adyE5W5RUej09Te4X7YGbgYGI93aIf8xEREREb0kWEh7WQmBcg8uofKNg7DOSDF6s0QHd1yr1hG3+zQrxODoZZXm6IhTQ4cgrGkTNPplE0rdv2/Udt5RV1AmOgw3K7XEPe86gML27URERAXBedKKNxbS8kpRnr9kZCWxyd+T0W7af7tERKH+qq0ofeOO0dtn2ljhSp/2CO3WAhpLSzjvkzcKoMWhohn+3ShmPKKkJvaJ1Pw8D8nLK93LOcf1avjhVI+p8L10DJVP74RVRu59IK0y01D9+j6UzbiGixO642lg+XzHZ79One9t/03zNF5aXgCk3T8AQJHcn09kZMjLTOJxSqeS/BBAUpNhAFDs7aTlBQAitej6H+dKJbk/qpDYakPiZwpA7vWglnd/AwBoJN6TZE+zIvFaFRmZ0vIiMgWze1wdGhqKjz/+GE2aNEHp0qXh5OSEoKAgfPLJJ0hKStK7zY4dO9C+fXu4ubnB3t4elStXxhtvvGHiyIueZUoagn76Ax2nf5unAtq9hjWwa8E0XO/Zmn3FSBqhssCdOsE4PPQD3A+sb/R2brfuo9X7S1F76XZYJRpfC0xERET/I4TpXiSf2f0iX7VqFRYvXowePXpg6NChsLKywsGDB/HRRx/h119/xalTp2Bn978njbNnz8asWbPQqVMnzJ49G/b29rh79y4uXrxYhEdhYkKgwokLCFr7J+yfGP/UP7FMKfwzuiei6nLeKio8aQ4uON9xOCKrN0bNI7/B8UnuNauKEKi4+2+UO3kFV0Z0QmTrIPm1H0RERERmyuwKaf369cP06dPh4vK/ASsmTpyIwMBAfPLJJ1i5cqW2lmzfvn2YNWsW5syZgxkzZhRVyEXKPikO1W7sg/v+CKO3UVtZ4lqP1rjeszXU1pKbJhAZEFu+Mo4MfBcVLxxCYMgeWGbm3qTWJj4J9RZthu++M7g4oQfi/bxMECkREVHxpxEKNCaYw0wjzLh5ezFmdo+mGzRooFNAyzJw4EAAwOXL/5uAef78+ShTpgymT58OAEhMTIRGdjtyM6VSZ6BS2FE0O7Ua7nHGF9Ci6lTGX1+8hSv9O7CARiYnLCxxu157HB4yHQ/9axu9nfv1uwh++3vUWL0Tlilm3MeGiIiISAKzK6QZcu/ePQCAp6cnACApKQlHjhxB48aNsXLlSnh7e8PJyQmOjo4YNGgQHj16VKD9lS1bVucVGBhY4GOQpXR0GJqfXAX/O6egMrKjdHIpFxybOhxH3h+DRC+PQo6QKGepTm4422UM/u42AUnO7kZto9JoUOmPE2g7+WuUO3aJjeCJiIjopWV2zR31UavVmDt3LiwtLTFkyBAAQFhYGNRqNU6dOoU9e/bg/fffR506dXD06FF88803uHjxIs6cOQP7Ak7EbE7sUp6i6o0DKB1zy+htNBYq3OjaElf7tkOmrU0hRkeUd9F+1XGkfCVUfLILgVuOwsKI0bfs4hLQ8Ktf8HjfGVwa/woSvUubIFIiIqLihZNZF2/FopD25ptv4uTJk5g/fz6qVKkCAEhISAAAREdHY/ny5Rg3bhwAoHfv3nB2dsbs2bPx448/YtKkSfnaZ1RUlM7f8fHxepthmoKiyYRfRAj8w0/BQmP8ELKPq/nj7JieiK/AfjxkvjSW1rgxqB3uBQeh1vI/4Xn+plHblbl4C23eWoSbvVrgZt9gqG2sCzlSIiIiItMw++aOM2bMwKJFizBhwgRt3zMA2hEeVSoVhg8frrPNyJEjAQCHDh0yWZyFpVTsHTQ7tQaBt44ZXUBLcXHEqdcH4uDHE1hAo2Ijqaw7Ts0Ygb/fGYwU95znYcuiylSjym+H0XbKt/D6+1ohR0hERFR8ZE1mbYoXyWfWNWmzZs3CvHnzMHr0aPzwww8668qXfz7RrZubG2xsdJvxlS1bFgDw5IncyYBNySY1AVVuHoTXoxtGb6NRFNzq2BSXBnREhoPcCVGJTEJRENW0Bh4HVUKVTQcR8McJqNS597u0j36Kxp+tR1SDqrg8tiuAoqn1JiIiIpLBbAtps2bNwuzZszFy5EisWLECiqJbSvf09ISPjw8iIyORnJys0/csa5CRMmXKmDRmGRSNGj6R/yDg9nFYqjOM3i62UgWcHdsbTyp6F2J0RKahtrPB1RGdEdm6Lmov/wMeV+4YtV3ZM9dR5mIYwiu1wp3A5hAWZnuLIyIiKlSmmmia43gVDrNs7jhnzhzMnj0bw4cPx6pVq6AyMInt8OHDIYTA0qVLdZYvWbIEANC1a9dCj1Um1yf30OT0T6hy85DRBbR0K1tcqdYR++a8xgIavXQSfDxxfM5YnP1PP6S6Ohq1jUV6JipdPYCm+79HqUfGD7JDREREZC7M7jHz4sWLMXPmTPj4+KB9+/b4+eefddZ7enqiQ4cOAIB3330Xv//+O95++22EhoaiTp06OHbsGNavX4+2bdtq51aTSfEqDcVWzoiRFcfcBwBYPEmGx7LjcD57PU/bP+tSHTHjm8HaxQ6un8ZKiSmLylVeczFNpvGDnRhF5iMb2fPqGXigkB+KjdzROEV8orS8rNKNr+U1hmqna47rH6Mp4roHIfDsLvheOwHFiHPAITEW9Y//hDv16yKkXy+kuOa8D0M8N8XnazuDJJ5zQiW5H4DE8xcWcp8BKorE/GRfW8nJEvNKkZaX2TNyChmjyTznJH83KFby5iUVarW0vGSTHpsRzd2NpVhayMtLIy+vwmSq/mLsk1Y4zK6QFhISAgC4e/eudgCQFwUHB2sLac7Ozjh69ChmzJiBbdu2YeXKlShfvjw++OADzJgxAxYWZn4RqTVw2XEF7itPwiLR+Al60wI88Pg/rZFao2whBkdkXjJt7HCtWR/cr9wINY7/Dtfou0Zt53f2HLwvX8X5V7rgeptWEOZ+XyAiIqISz+wKaWvWrMGaNWuMTu/h4YElS5ZomzgWF86xkagweRNsbzw2ehu1vRViRzfFs561pD+lJiou4j3K42SPySh/429UCfkT1mm51zxYpaWh4e9bUenkaZwe3B+PKwWYIFIiIqKio4ECjSj8Wi4Na9IKhdkV0l52lmnJCLywG+Vv/g0lD9P/xberjJhXW0Dt7lCI0REVE4oK96o2wSO/mqjy9w5UCP3bqM3cHkSh84JvcbNZE5we1A8aiU2QiIiIiGRhIc1UhAblbv+Dyud2wTotyejN0n3c8HhKa6TULV+IwREVTxm2jrjcaiDuVWmEGsc3wznugVHbBZ44BYe4OOx/YyKbPxIR0UuJozsWbyykmYDjkyhUC9kKt+gIo7fR2FoiblgjPOkXBFjxRyRRTp56VsSJXm/C5+oJVD67C5YZuffxLHc9FA03bcHfg/qZIEIiIiIi47GQVogsMtIQcHEvfG6cgCoPo1gltvBH9GutkOnpVIjREb1chMoCETVb4qF/Hfjd/BP+IWdz3abq4aN44l0WN1s2N0GERERERMZhIa0wCAHPiIuo8s8O2KYYP3x3ellnRE8ORnJjv8KLjegll2bvjGNjRiCsWRM0+uU3uD58lGP6xht/Q7ynJx5VrmSiCImIiEzBNEPwgwOHFAoOESiZfXw06h9YiTrHNxhdQNNYWSB2RCPcXTmUBTQiSR5WrYw/P3wX//R6BRnW1gbTqTQaBC9bBccYuXMNEhEREeUXC2mSqDLTUen8bjTb8TXcH4YZvV1SQx/cXTEEcSMbQ9iwYpNIJo2lJS536oBd77yJDBvDBTXbpCS0WbIclqmpJoyOiIio8AgTvkg+FtIkKH3vKpr/+RX8rxyESqM2aptUexdEzeyCB5/2QEZ518INkKiEe1reG8dGDc8xjduDKLRYsw7QGN9/lIiIiKgwsJBWAHaJcQg69CPqHv4JdklPjdpGo6gQXq0Vjr8yFYmtKgEK2/ESmUJkUG2c69EtxzQ+Fy4h6I+dJoqIiIio8AihmOxF8rF9XR4ld9cANumotP0oquw6CIv0TKO3januhwvjeyKhgicA4PZcmW+/cTV4xhIqieV3yTUTSg79i/JKpOU+VHueSCx0i/R0aXkBgCJxPjCRlCwtLwCwiMyQmp9j6XJ6l4dX7wiPm1GocO0fg9vW/msvUq3L4V6N+v9dIvnLR+aEMhnG33+MIvOhkVrudS80Eo9V8rUFmffLksSi5LxvIkPiPa4kTUol9TtV3u8k2d/PRPqwkJZHHpduofGGvXB6EGP0Nqmujrg8ogvutQxizRlRUVIU/NNtCByfRMPtYaTBZPV3/ozEUqXxtKyPCYMjIiKSR/Pflyn2Q/KVnMdYkjT5fJ3RBTShUnC7SxPs/+Yt3GtVlwU0IjOgtrLGqb7jkOrgbDCNRWYGmv6+HLaJz0wYGREREX366afo378//P39oSgK/Pz89KZLTU3F8uXL0bNnT/j5+cHOzg7+/v4YPHgwrl27pnebtLQ0fPzxx6hYsSJsbGwQEBCAefPmIUNmbbckLKQVkrhK5XHos9dwcWwPZDjYFXU4RPSCFGc3nOw7FmoLw40J7BKeoclvK6BSS25SSEREZALFtU/aBx98gAMHDiAgIABubm4G0925cwcTJkxAXFwcxo4di0WLFmHw4MHYvXs3goKCcPDgwWzbDBw4EHPnzkXbtm2xePFitG7dGjNmzMD48eOlHoMMbO4oWbqjHa4M7YyIdvXZT4HIjD3xroh/ugxCwz/XGUxTKioCNTR7cKl6F9aEExERmcCtW7fg7+8PAKhZsyYSExP1pitdujTOnTuHoKAgneVDhw5F3bp18c477+DMmTPa5Tt37sS2bdswdepULFiwAAAwbtw4uLq64quvvsKECRPQrFmzwjmofGApQqI77Rpg37dTEdGhIQtoRMVAZK1GCG3cLsc05R5dhd/dEBNFREREJIlQTPeSKKuAlht3d/dsBTQAqF69OmrWrInLly/rLP/5558BAG+++abO8qy/160z/NC2KLAmTYJnfmVxYVwPxFX1LepQiCiPLrfuDueYKHjdumowTeVbR5Do4I4YjwATRkZERFR8BAYGQvVCJUVUVFSRxKHRaBAVFQVPT0+d5SEhIfD29kaFChV0lleoUAHlypVDSIh5PZBldU8BZNjZ4OLoV3Do/15jAY2ouFKp8HePkYh39zSYRAFQ58oOOCQZP6orERFRUdKY8GVOfvjhB0RFRWHkyJE6yx88eABvb2+923h7e+P+/fumCM9oLKTlU2SLOtj37Vu43a0ZhMT5p4jI9DJt7XCy3wSk29obTGOpTke9i1thlZFiwsiIiIiKh5s3byIqKkr7KgonTpzA1KlTUadOHXzwwQc665KTk2FjY6N3O1tbWyQny50DtqBYSMujhHIeODZzLM6+ORBpboaH8Cai4iWpVGmc7j0aGsXwbdE+5SnqXP4Dikbu5PFERERUMGfPnkW3bt1Qrlw57NixA7a2tjrr7e3tkZaWpnfb1NRU2NsbflBbFFhIy6Mj815FTC32SyF6GUX7VcHF9n1yTOP+5C6q3sw+rC8REZE5EVBM9ipq//zzDzp06AAXFxccPHhQb7PGcuXKGWzSeP/+fYNNIYsKC2l5JKw41grRy+x2/ZYID8p5CF6f++dR/v4FE0VEREREhvzzzz9o3749nJyccPDgQfj66h8nomHDhrh//z4iIyN1lkdGRuLBgwdo0KCBKcI1GgtpREQvUhSc79gP0RVyrjGvFrofbk8ic0xDRERUZIQJX0Xk3Llz6NChAxwdHXHw4EFUrFjRYNrBgwcDAL7++mud5Vl/Dx06tLDCzBdWC+WR/dok2NrIGcdGyJxLTS23j4yIeyIxM7lXrzDQnjhfZE9QLPNYJccmZN5FNXLHcpL6mQJwuhZX4Dyu1OyDxrHLYZf8VO96ldCg3q1tuPndMKSXdTE630ffOBQ4tiwiMUlaXtLJvrZKygBNso9T8rUq9R4ne0g4ITFD2XOdyrweJH+nSs1Pdmzm/L5RoVm7di0iIiIAANHR0UhPT8e8efMAAL6+vhg+fDgAICIiAh06dMCTJ08wZcoUnDhxAidOnNDJq3fv3nBweP69261bN7zyyiv46quv8OzZMzRt2hQnT57EypUrMWzYMLRo0cKER5k7FtKIiPTIsHHA+caD0OjkSlikZuhNYxmfCr+ZWxH29WBo7K1NHCEREZFhGijQmKC/mOx9rFy5EocPH9ZZNmPGDABAcHCwtpAWHh6O2NhYAMCsWbP05hUeHq4tpAHApk2bMG/ePKxbtw5r166Ft7c35syZg/fff1/qMcjAQhoRkQGJLl64+14XVJy93WAauzsx8Pm/nbgzsyegKvrO00RERMXZoUOHjErXunVriDzWkNra2mLevHnamjlzxj5pREQ5iG8eiKhRzXNM43LyFnw//ROWcWbc/JCIiEoWoZjuRdKxkEZElIvHgxvjSXCVHNO4Hg5F1TGr4L7tHKCW3dmGiIiIShIW0oiIcqMoiJzWCcmBnjkms0hOR/nFBxA4eT3srz0wUXBERETZCWG6F8nHQhoRkRGErRXuzOqJjFK5j85oH/YYgf/ZgPIL98AiPsUE0REREdHLhIU0IiIjZZR2wp2ZPaCxMm6YdPddl1B1zCqU2nUR0PBRIxERmU4JmCbtpcZCGhFRHiRXK4c7M3tCbeSQ+5bxqaiwcC8qvbUBtrceF3J0RERE9DJgIY2IKI8SGlXEjeWj8LRlZaO3cbgWhcqvr0OVK3tgmZFaiNEREREBAorJXiQfC2lERPmQUdoJETO64/b8vkgr52rUNopGwPdOCJof/gFe9y+ztzURERHpxUIaEVEBJDTww41lIxE1ohk01pZGbWOTloTa57ehwan1cEiIKeQIiYiIqLgx7hcFaYm0NAghqWyrMeO5lGSGZiH5NNOo5eZnrtSSj1Nmdop5N23QxCdKy+vRV8b0PbPGQwQjrEltVL22F6WjbxmVd6m4CDQ7vhyx/eoiZmhjCDurPMV2d57cz0GxlHetiowMaXlJJ/n8VWxtpeUlUs28KazM906Y83eg5NgsjBtsyBiKrY20vABApJjxOSfxc1Ac7OXlJe/jLFSmGh6fjUIKB2vSiIgkSbF3w7l6/XGubl+k2DobtY2i1sDjl7MIGPsTnI6G8duOiIiIWJNGRCSVoiDaszLi3P1Q8fYJ+IWfhsqIGgOr6ESUn7MDiQ198fCN1sgwsp8bERGRPqYa1IMDhxQO1qQRERUCtaU1wiq3xonm4xBbytfo7RxDIuA/bh2c910vxOiIiIjInLGQRkRUiJId3XG24WBcrNMTqTaORm2jylDD+/92w/GEcX3biIiI/i2rT5opXiQfC2lERIVNUfCwbHUcbzkBsX2CIFTGNQ0p99lu2IRz9EciIqKShoU0IiITUVva4PGkYIR/PxjJ1cvmmt4iJQPlP/4DFs9STBAdERG9VIRiuhdJx0IaEZGJpQWURsTC/ngwrT0yXexyTGv9MB7ec3YAGSVk6gkiIiJiIY2IqEioFDzrXAO3Vo3Ak641c0zqcPE+vBYfYsN/IiIymjDhi+RjIY2IqAhpnG3x8K12iOteO8d0bjsuw+2PiyaKioiIiIoSC2lERGbg0WutkBRUPsc0nosPw/5cpIkiIiKiYk0oECZ4sU9a4WAhjYjIHFha4P6Mrkgv62IwiaIR8J67E1YPnpouLiIiIjI5y6IOoERTWcjLSyN5UAGJ+SlWVtLyAgChzpSXmSL56Y/M/Cwknh/mTi35/BUauflJdHd9zrVljxuNQ5Odi2CZkaZ3vWVCKrym7MKpbpOhrm7cvGvGsgyLkpqfVFYSv67Ucs8PkZkhLS/FSe5nKuITpOYn9b4k+7o3Z0ZOu2EMkZYuLS/pZH+nyuyH6+ggLy8r1hxR4WNNGhGRGUly88LFVkMgYPhHgOOzx6h95GdAY76FUSIiKlocOKR4K9CjyevXr+Pu3buIiYmBnZ0dypQpg1q1asHZ2VlWfEREJU50heq4Wb8LKp/daTBNmXvXUOXvHbjRpLsJIyMiIiJTyHMh7cCBA1i5ciX27duHmJiYbOtVKhXq1q2Lfv36YcyYMfDw8JASKBFRSRJeszUcnzxEudv/GEwTcO4AEkqVxYPKDUwYGRERFQumquZiVVqhMLqQtnnzZnz44YcIDQ2FEALe3t7o2bMnvLy8UKpUKaSkpCA2NhbXr1/H+fPncebMGcycORMjRozAnDlz4OnpWZjHQUT0clEUXGnWD/bx0XCNMTyiY61DvyDJpTSeefqaMDgiIiIqTEYV0lq1aoVjx46hZs2a+OyzzzBw4ED4+PgYTJ+eno6DBw9i7dq1WL9+PTZu3Ii1a9eiR48e0gInInrZaSytcL7tSDT581vYJsfrTWOhzkT9v1bheN+3kOboatoAiYjIbGmHyDfBfkg+owYOSU5Oxp9//omLFy/inXfeybGABgDW1tbo1KkT1q1bh/DwcIwbNw6hoaFSAiYiKknS7F1wru0oqC0MP1OzTY5H/b9WQZVpxqO+ERERkdGMqkk7c+ZMvndQunRpLFiwIN/bExGVdPEeFXCl+YDnIzoa4BodidoHf8H59sPkD4NNREREJsUh+ImIioEo/7q4XattjmnKhf2DgHP7TRQRERERFZZ8FdLmzJmDL7/8EunphpvWHD58GHPmzMl3YEREpOtmvU54XKF6jmkqn96JMuGXTRQRERGZKwHFZC+SL1+FtFmzZuG9995Du3btEBsbqzfNoUOHMHv27AIFR0REL1BUuNhqMBJcDY+Wq0AgaP86OMZGmTAwIiIikinfzR0rVqyI48ePo2nTpggLC5MZExERGaC2ssW5dqORbmNvMI1lRhoa7FoBq5REE0ZGRERmRZjwRdLleTLrLCNGjICPjw9effVVNG3aFFu3bkXz5s1lxmae1OrnLwkUa2sp+QCFcH0IjbysMjKk5SWdkPzOaeS9b9Jjk8nMB6ZQLCyk5SVyaNadvwwLnkWKozvOtx6BRvuWAmr9GdonxKHThW9g+3VTKJbGPY/buqBewYP7LxEr+X3LyJSXlxmfvyIxSW6Gso9V5j1OthxGQM0ztcTzDZB6/io2NtLyAuTe4xRbW2l5AZB6viUOkHctpCYqwOfSsiPSq0ADh4waNQo7d+5ERkYG2rdvj40bN8qKi4iIcvDEKwDWb9XKMY3mXAzSF14yUURERCWDdUJyUYdgFFakFW8FHt2xXbt2OHHiBDw9PTF06FDMnz+/QPmFhobi448/RpMmTVC6dGk4OTkhKCgIn3zyCZKScn7CuGTJEiiKAkVREBMTU6A4iIjMnVXvirDs45djmsytd5CxOdw0ARERveTKnL+J9lO/KeowqASQMgR/9erVcfr0adSrVw8zZszA2LFjkZHPJm6rVq3CwoULERAQgI8//hhffPEFqlSpgo8++gjNmjVDSkqK3u0ePHiA999/H46OjgU5FCKiYsX6P7WgqueRY5r0ry9BfTbaRBEREb2cHB/EoNHCDbBMldycm0gPaQ24PT09ceTIEQwePBirV6+GnZ1dvvLp168fpk+fDhcXF+2yiRMnIjAwEJ988glWrlyJN954I9t2r7/+OgICAlCjRg2sW7cu38dBRFScKJYq2M5riJRxhyEeGGiCoxZInXYKVkMrwWpEZSg28vrsERGVBFZJKWj62U+wTkpFsSmimaotIts7Fgqpk1nb2dlhy5YtmDJlisEar9w0aNBAp4CWZeDAgQCAy5ezz/+zZcsWbN++HT/88AMsJA4YQERUHCgu1rD9v8aAfQ7P3TI0yFgTipRhB5B5/KHpgiMiKuYUtRqNFm6E0wN2pSHTyVdNmiaH0XYURcHXX3+NoUOHIjlZXsfKe/fuAXheY/ei+Ph4vPHGG3j11VfRqFEjfP/991L2V7ZsWZ2/czpmIqKipvJ3hs2s+kh773SOTzXFg2SkvXsamS29YP1mLai8DA/lT0REQM11u+F5/mZRh5FnQigQovBHszXFPkoiqTVpL2rYsCGCg4Ol5KVWqzF37lxYWlpiyJAhOuvee+89aDQafPrpp1L2RURUXFk294LVxOpGpVUffYiUIQeQ/lMoRAYfQhER6eNz8CwC/zhW1GFQCSRxUpHC8+abb+LkyZOYP38+qlSpol1+/PhxLF26FOvXr9fbRLIgoqKidP6Oj4+Xvg8iItmshlaCCI9H5l/3ck+cpkbG0mvI/CsSNtNqF35wRETFSKnrEai7dGtRh0EllNGFNH9//zxnrigKbt26leftXjRjxgwsWrQIEyZMwPTp07XL09PTMWHCBLRv3x6DBw8u0D6IiF4WiqLAenpdwM0GmRtvGdWhW0QkInXKCdQsn4DQWp2QbudU+IESEZkxu+inaPLFOlhkqos6FCqhjC6k3blzJ8+ZK0rB2qjOmjUL8+bNw+jRo/HDDz/orFu8eDGuX7+OBQsWICwsTLs8ISEBABAeHo74+Ph8FS6JiIozxVIFmzdqwrJ9eaR/eQGaa0+N2q7svUso/TAUt6q3QaR/IwgVB2IiopLHIjUdTf9vLWyf5Tw/r9nj6I7FmtGFtPDw7JOhLly4EN999x1u374tNSjgeQFt9uzZGDlyJFasWJGtwBcREQGNRoMuXbro3b5Ro0ZwcHBAYmKi9NiIiIoDi6qusF3aCpl/RCD9h6tAQu7zV1pmpqHKxb9QLuIcrgW9gmfuPiaIlIjITGg0qL/oN7jeico9LVEhMrqQ5uvrm22Zm5ubwXUFMWfOHMyePRvDhw/HqlWroFJlH99k9OjRaNGiRbblixcvxqFDh7Bq1SptfFKpVM9fEoh8Tvitj2JtLS0vABBpmfIyK2CNarbsJB6rUEtuxiAzP+nTSUj8HNQSzw8Aiq2t1PxkXlsQkh8RRj6SltWW7xobmbIJrNolovKF3fAOP2vUFk7PHqHR4ZW4U7sJLrfujnT7vDWBdPg7Pk/pcyXx2lLsJJ9vqWlS8zNrMq8H2fc4IW8AHOnfqRLvSUJy8zvFykpeZplyvxvgLu93nONvxqXzv3wQ5fVM9/Si8GqtgLDiN9ojFS9mN3DI4sWLMXPmTPj4+KB9+/b4+eefddZ7enqiQ4cOqFOnDurUqZNt+z///BMA0L17d3h4eJgkZiIic5dh64grjfvivn8DVDu7DU5PjZsrze/iKZQLvYgrwd0RHtQUUAptUGAioiJVJvIyKl3en2OaR+WrI7x6MPDHShNFRSWV2RXSQkJCAAB3797FyJEjs60PDg5Ghw4dTB0WEdFL4WlpX5zq+Doq3DyFSpf2wjIzPddtrFOTUXf3L/C9eArnO/XHUy82gSSil4vTkweodWpTjmkSXL1wuXF/QFM8BhMRMNE8aTJb6pCW2T0SXbNmDYQQBl+HDh0yanvWohER6SdUFrhbpTmOd5uKKB/jh94vFRWBNmsWoM6eTbBMTSnECImITMc6NRFBR9fBQm24WWq6jQPOtRwOtZWNCSOjkszsCmlERGQaaXbOuNRsEM60HoMkJ+MebCkQCPjnKNr8tAB28U8KOUIiosKlqDNR59h62CU/NZhGo7LA+eZDkOpQCGMdUDaffvop+vfvD39/fyiKAj8/vxzTnz59Gu3bt4eTkxOcnZ3RuXNnnD9/Xm/aBw8eYMSIEShdujTs7OzQoEEDbNqUcw1qUWEhjYiohIvzqoQTnafgcvAryLQ0bhABp7jHaPr7clikl6BBM4jo5SIEqp3ZBreYiByTXavfA0/LVDRRUBIJE74k+uCDD3DgwAEEBATkOgjgqVOnEBwcjPDwcO3Agzdv3kTLli1x6dIlnbRxcXFo0aIFNm/ejEmTJuGbb76Bo6MjBgwYgNWrV8s9CAmM7pPWqlWrbMvu3r1rcB3wfJ60w4cP5zM0IiIyFWFhidCmHXGvWn3U3r8Z5W5eynUb10f3UH/nevzdc7T0UVyJiAqbT+gJlM9lxNuIyk1xP6ChiSIiALh165Z2nuOaNWvmOJ3WlClTYG1tjSNHjsDb2xsAMGDAAFSrVg3Tpk3Dnj17tGk/++wzhIeHY/v27ejevTsAYOzYsWjatCnefvtt9O/fH46OjoV4ZHljdCHt2LFjeV5X0MmsiYjItJJd3XGq73h4hV1Gnb2/weFZXI7py18/j3iPv3C9hf45K4mIzJF71E1UOb8zxzQxnpUQGtTVRBHJ97ySyxQDh8iVVUDLTVhYGEJCQjBmzBhtAQ0AvL290b9/f6xevRoPHz6El5cXAODnn39GQECAtoAGABYWFpg8eTJGjBiBnTt3YsCAAXIPpgAKNJk1ERG9nB5Wqolo38qocnIvAk/vg0UO85RVP7YL8aXL4UGV7NOiEBGZG/v4GNQ+sQFKDvP+JTm542LzwRAq2XOWvrwCAwN15jaOiircCcGzRoRv2rRptnVNmjTBqlWrcPbsWXTr1g1RUVG4f/8+hg4dqjdtVn7FspAme8JqIiIyb2ora1xt1Q13azZE4y0r4RJt+Au3wZ9rcdjVA888vQ2mISIqapbpKah79CdYZaQaTJNhZYNzLYcj09rOhJEVgkLoL2ZwP0XgwYMHAKBTi5Yla9n9+/fznNZccOAQIiLKUWKpMjjZdwLS7BwMprHMSEfT35fBJinBhJERERlP0ahR+8RGOCTEGEwjFAWXmg5CsnMZE0b2crh58yaioqK0r8KWnJwMALCxyT4tgq2trU6avKQ1F0YV0h4+fFjgHT169KjAeRARUdFIdnXHqd5joVEZ/tqwj3+CxltWQlFnmjAyIiLjBF74Cx4Pb+aYJrROZ8SUq2KiiKgg7O3tAQBpadlHGU5NTdVJk5e05sKo5o7+/v6YPHkypk2bhjJl8vZkYceOHZg1axa6d++Ojz/+OF9BmhPFygqKlXFDVOdGpKdLyQcARIbhCRjzQ9YxAvJjE5kSfwAqkiuTZQ6Wo9HIy8vcST9WiZ+DkBybMNy3K89ZRT2WlhcAqCrkPKrVE+9KuNB+AOru2Wgwjce926j716+4Wbmr1OtBpBhumpTnvJLM62lpcaLoeQqdX1Lv5YDc8012bFJJbluWQ7+sPLM0uheNUR43kzfSXtDSnfC7cTzHNPfL1kSEew0gJpc5INNTpMVF+VeuXDkA+pspZi3LasqYl7TmwqhfqFOnTsWiRYtQvnx5dO/eHWvXrsWtW7f0pk1KSsLhw4fx4YcfwtfXFz169ICiKOjVq5fMuImIqAhE1GmGW/X0T7uSxe/SKVQIO2WiiIiIcuYRfhvVr+3NMc1Tl3K4Wq0DpxMpRho2fD41wsmTJ7OtO3XqFBRFQf369QEAZcuWhbe3N06dyv7dlLWsQYMGhRht3hlVSJs3bx6uX7+OkSNH4uDBgxg1ahQqV64MNzc3VK1aFU2bNkXdunXh6+sLV1dXtG3bFp9++inc3Nzw008/4e+//0bt2rUL+1iIiMgELrfpjce+OTcHqnJhF0o9CjNRRERE+tnHxSF4xUqocmjFkGrjhPO1e0Ko5NYEUuGqVKkSGjRogE2bNmkHBgGeDxKyadMmtG3bVjv8PgAMHjwYt27dwh9//KFdplar8d1338HV1RVdu5rXdAtGn40VKlTA8uXLsWDBAvz888/Yt28fjh8/jtDQUG0aa2trBAUFoXXr1ujTp4/eITGJiKh4EyoLhHQfheB1X8HxabTeNAoEap/6BX+3fRXJTh4mjpCICLBIS0PrFcthl2h4QCO1yhLn6vRGuo35TGIsTTEd3XHt2rWIiIgAAERHRyM9PR3z5s0D8Hy0+eHDh2vTfvPNN2jTpg1atmyJyZMnAwC+++47aDQaLFiwQCff999/H5s2bcKQIUMwdepUeHt7Y8OGDQgJCcGKFSvg5OQk90AKKM+PDJydnTFx4kRMnDgRAJCRkYHY2FjY2dnBxcVFeoBERGR+MuwccKrPeASv+wpW6fr7i1llpCLoxHr83WZC8R/KmoiKF40GzX5ej1K5DKt+uUYXJDh7migoMsbKlStx+PBhnWUzZswAAAQHB+sU0po1a4ZDhw7ho48+wkcffQRFUdCsWTNs2rQJderozt3p7u6O48eP4/3338fixYuRmJiI6tWrY+PGjRg4cGDhH1geFbhe18rKSqcqkYiISoZEdy+c6T4STX5fBsXAo1SHhBjUOr0J51oMkz9QDxGRAbV274bv+fM5prlVsSkeeVY1TUBFQSjPX6bYj0SHDh3KU/qmTZti//79RqX19vbG2rVr8xGV6fEbk4iI8u2Rfw1cCe6RYxqPRzcReHGPiSIiopKuwvnzqPPXrhzTPCodiFv+zU0UEVHesZBGREQFEtawLe7WaJRjGr+bx1H2zjkTRUREJZXbvXtovn5djmkSHEvjcg2504QQycZCGhERFYyi4HzHgYgr65djsur/bINLzF3TxEREJY5NQgKCVyyHZQ7z0KZb2eNcnd5QW1qbMDKivGMhjYiICkxjaYXTvcYh2cnVYBqVRo06JzfAJvmZ6QIjohJBlZmB4JUr4fjE8ETUGkWF87V7ItWOA92R+WMhjYiIpEhzdMbp3uORaWllMI1NWiKCTqyHKtPwk24iojwRAo1+3YQy4bdzTHatagc8dStvoqDMgDDhi6RjIY2IiKR55lkB/3QZmmMa56dRqHFmMyD4zU5EBVfl8GFUOn0qxzQRFerhvndtE0VEVHD5KqQlJBieFJCIiEq2B1Xr4XbV4BzTeN27gorXDpkmICJ6aZW9fg31t27JMc2DKlUQGtjGRBFRSWJhYYGhQ3N+MJlf+ZonrVy5chg8eDDGjx+Phg0byo7JrIm0NAghqQJS5qhCkp9IC7Vaan5mS2jk5qeykJeX7NhkzlGlkXt+iBw6eeeLzGtLJbnBgUpebArkjkxmfylKWl523wcidWYEbI/eMZim0tUDcB+kQmqrirnmd369vLmMVDeTpeUFQO7916rA05fqysiUmp3Ua1X2tSXzc7CQHFumxHumxHsIAIhMeeeIytFBWl4A4HEh5/PN/lk0mv6xBqocPvskZw9cbTAUmgdPAUm/bUrMbyTKlZOTE3x8fAol73zdhcqUKYMVK1agSZMmqF+/PpYtW4bExETZsRERUXGlUvB0emtkBJTKMZnL/EOwDIs1UVBE9LKwTEtB/b2rYJWeYjBNhrUt/mk/Bpk29iaMzIywT1qhq1u3Lq5evVooeeerkHbr1i3s3r0bffr0weXLlzFp0iSUK1cOr776Ks6cOSM7RiIiKoaEvRWezOsItYutwTSq1Ey4fbgHqieGf2gREb1I0ahR59A6OMRHG0wjFAUXgociybWMCSOjkua9997Dzp07sXfvXul557tdRYcOHdChQwdER0dj1apVWLFiBZYvX44VK1YgKCgIEydOxJAhQ+DgILfqm4iIig91WSc8mdse7lN3QsnU34TX8lEi3D7ei9ivugFWEpsME9FLqXLIDpS+fyPHNDcadENMhWomishMmaqWqwTXpD1+/BidO3dGly5d0KtXLzRs2BBeXl5Q9HS7GDFiRJ7yVoSQ14h7//79WL58ObZu3YqMjAw4ODhgyJAheO2111C7dvEeUSc+Ph4uLi74dNRC2FrbycnUnGe6lxmbRna/LzMelFRmv68S1CdN+ih/7JOWP5by+kPVej9G52+7P6/D9cujOW6T3K0Knr3dUu/nJ7dP2j1peQEoUX3SzPraKil90iwlP8iQGJvKVe78Y+pSjtmWed8MQa2jv+S43b3ABrjcYqDO+aqEP5AWV2p6Cqav+g+ePXsGZ2dnafnKkvWb9a2dv8PGBJUlaUlJWNi1r9m+H4VJpVJBURT8uzj1YiFNCAFFUaDOY19Gqd8GAQEB8Pf3h7OzM2JiYpCUlIRly5Zh+fLl6NevH5YuXQpXV1eZuyQiomIg5ZWqsAqPg8PvVwymsd9xAxn+pZDct6YJIyOi4sL10R3UOP5bjmmelPHFlWb9zPtBuMko/32ZYj8l0+rVqwst7wIX0tRqNbZt24alS5di//790Gg0CAgIwHvvvYdRo0bh3Llz+OKLL7Bp0yZYWFjg559/lhE3EREVM/GTmsDyzlPYnL1vMI3z4lPI9HVFeoMSNOEsEeXKNvEJ6u5fA1UOLTlSHFxwru1ICAvJNdJEBowcObLQ8s73WXznzh0sX74cq1evxqNHj6BSqdC9e3dMmjQJHTt21KZr37492rdvjz59+uCvv/6SEjQRERVDlio8mdkWHpO2wfJ+vN4kikbAbdZ+xCzpCXUFV9PGR0RmySIjDfX2rYZNquGRxNUWVvin/Rik25es5nY5Yp+0Yi1fja47deqESpUq4dNPPwUAfPjhhwgPD8eWLVt0CmgvatiwIZ49e5b/SImIqNgTzraIm98JGgcrg2lUieko9cEeKAlpJoyMiMySEKh19Bc4x+Xcp+xiq0FIcPc2UVBEurZt24aBAweiTp06qFSpknb5tWvX8Pnnn+P+fcMtSAzJV03a3r170aZNG0yaNAm9evWCpRGdzbt3745y5crlZ3dERPQSUfu64unH7eA2fTcUjf5HsJaRz+A69wCefNpJ/iAORFRsBJzfC687F3NMExbUHo8q1jFRRET/I4TAsGHDsHHjRgCAnZ0dUlL+N6VMqVKl8OGHH0KtVmP69Ol5yjtf33zXrl3D/v370a9fP6MKaABQs2bNQm23SURExUda4wpIeLVRjmls/74Hp6V/mygiIjI3nncuIvDcnhzTPPStibC6+ltxERW2b7/9Fhs2bMC4ceMQFxeHt99+W2e9p6cnWrRogR07duQ573wV0qpUqZKfzYiIiLSSBtRCcqfAHNM4/noJdn+FmigiIjIXjk+jUOvIhhzTxLuVxaVWg+VOMUOUB6tWrUK9evWwdOlSuLi46J0frVKlSrhz506e885Xc8dNmzZhyZIlWLt2Lby9s7f/vX//PkaMGIHXX38dffr0yc8uzJeiyBvWVebwsNKHmpU5F468rKST/b6pJc5JZCF5LhyZsUl+3xR7SXMP/pdIS5eYm+RjlTjqmJD5mQJAmrw+YJc+cTMqnUrdHQ1cNsL1meH+Js7/dwylOtbA0zJ+coJTyb22FBvD/evySqSkSssLgHnPu5bHOYNyJfHakj0HoZB5z5Q8953i5CQtr9gm7lLysUlMQLNFv8IyM8NgmjQrO5yr0hWayBjjPi2Z8+jJnv+1sHDgkEJ38+ZNTJo0Kcc0Hh4eiImJyTGNPvn6+bxixQo8efJEbwENALy9vfH06VOsWLEiP9kTEVEJobGwxPk6vZBqY/iHokqoEXT4J9gmPTVdYERUJFSZmWixdgUcnj4xmEajqHC+Rnek2nIkRypa1tbWSEw0POooAERGRuZrku98FdIuXbqEhg0b5pimYcOGuHgx546eRERE6TaOOBfUG2qV4ZoQm9RE1D20BqpMmbWkRGRWhED9rb+idMTtHJNdrdwOT105kmOuhGK6VwlVp04d7Nu3DxkZ+mt9ExISsHfvXjRo0CDPeeerkBYXF4cyZcrkmCa/VXtERFTyJDh74XKNrjmmcY57gJonfpXbbImIzEbl44cRcOZkjmkivOviftmaJoqIKGfjxo1DeHg4Ro0ala1GLSYmBkOGDEFMTAxeffXVPOedrwbcHh4eCAsLyzHNzZs34erqmp/siYioBHrkVRW3EqMREG74R1rZiItIdPXC7drtTRgZERU2r9BrCNqxOcc0MW4+uBHQykQRFX8KZPeqNryfkmr48OHYt28f1q5di99//11b9qlevTpu3bqFjIwMjBs3Dj179sxz3vmqSWvevDm2b9+O0FD9I27duHED27dvR8uWLfOTPRERlVC3AlrgUZmcR3wMvLAHZe5eMlFERFTYnKIfo9nPq6HKoZY8yc4VF6p3g1CZ82hkVBL9+OOPWL58OapWrYro6GgIIXD9+nUEBgZi6dKlWLZsWb7yzdeZ/vbbbyMjIwMtWrTAokWLEBoaiqSkJISGhuK7775DixYtkJmZmW2uACIiohwpCi7X6IYEx9I5Jqt1bCOc4gyPCElExYNVSjJa/rQU1qkpBtNkWNjgXM2eyLSyNWFkLwFhwlcJN3bsWJw/fx6JiYm4d+8eEhIScPnyZYwfPz7feearuWPDhg3x/fff4/XXX8d//vOfbOstLCywZMkSNG7cON+BERFRyaS2tMa5oD5ocvonWGfo/+Fmqc5A3UNrcKrLFKTbOZo4QiKSQdFo0HTDGjhHPzaYRkDBxepdkeRQyoSREeWPnZ0d7OzkTCuU7zrj8ePH48KFC3jttddQv359BAQEoH79+nj99ddx4cIFjBs3TkqARERU8qTaueB8nV7Q5DBJrV3SUwQd+QmK7PniiMgk6uzcinKh13JMcyOgJWLc/UwTEFEeNWnSBB9++CH27duH1FS581wWaObHatWq4bvvvpMVCxERkdZTtwq4VrUDalzbbTCN2+M7qP73Vlxp0lf+5PREVGgqnjmFqscO5pjmvld1RJSvZ6KIiPLu4sWL+Pvvv/HZZ5/B2toajRs3Rrt27dC2bVs0adIEFhYW+c67QIU0IiKiwnS/fB04JkbDN/Ifg2nKh/2NBFcv3K3WwoSREVF+uUfcRoMtv+SYJsanIq74tePDFzJrT58+xcmTJ7Fv3z7s378fJ06cwJEjRzBr1izY29ujRYsWaNu2Ldq2bYv69evnKe8CFdLUajVu3LiBJ0+eQK1W603TqhWHSiUiovwLrdwWDhkJ8Hh402Caqmf/QJJLGcSWq2zCyIgor+yfxqHl2hWwyKGZcrKLK44NHwe745xvtyA4BH/hs7a2RnBwMIKDgzF37lwkJibi8OHDOHDgAA4cOIA9e/Zgz549UBQFmZl5a5qf70La3LlzsXDhQjx79izHdIYKb8WWEPImUpU4IatiL6eTYhaRIrFdrezhcs35nLKQWDktNPLykk3yZMJSzzdAbnwyP1MAQmabddnXlsT3TUg8f4UCHBs9Fu2WLoBTXLTeNIoQqH18Pfa9+jYSPcrkmJ9rnNwR4kRysrS8pN/Lkw2PmJcfio2NtLxEWpq0vP6bo8S8JP/stJB4rWokfzdIPNRS5xNyXG+RmY6G+5fBNtFwOrWFFS40GQb7WwqEudaimWtcVOQcHR1Rt25dPHnyBHFxcbh//z5iYvL3sCFfvz4+//xzzJw5Ey4uLhg+fDgqVKgAS0u2nCQiosKRbu+AY8MmoN3SBbBO01/QtU5NQYv1S7F/wjRk2NmbOEIiypEQqHH6Nzg/yXnqjMuN+yHBrZyJgnrJmWp4/BI+BH9cXBwOHjyorT0LDQ2FEAKlSpVCcHAw2rZti3bt2uU533yVrJYvXw5vb2/8888/KF0657lsiIiIZEgo7YVTA0ah5bqlUAzU+jnHPEaTTWtwbNhETnpLZEb8rxyAV+TlHNPcqtEWj3xqmSgiooKrW7cuLl26BCEEHBwc0LJlS4wbNw5t27ZFUFAQlALUuubrGywyMhK9evViAY2IiEzqYeUauNixZ45pyt68htp7tpkoIiLKTZnIy6h0eX+OaR6Vr45bNduaKKISgpNZF7oLFy5ACIEOHTpg+/bt2L59O6ZNm4a6desWqIAG5LOQ5unpmefOb0RERDLcaN4Wd4Ia5ZimyvEDaLBlPayTEk0UFRHp4/gkCrVObcoxTYKrFy437g/kMC8ikTl66623ULt2bezduxft2rWDm5sbunXrhoULF+LChQsFyjtfzR0HDBiALVu2IC0tDTYSOxETERHlSlFwpscgOMY+hkfkHYPJ/P85Be9rF3GpQw/crt9U/kArRJQj69RE1D26FhbqDINp0m0ccK7lcKit+HuSip8FCxYAeN4vLatP2oEDB7Br1y4oigJ3d3e0adMG7dq1w4QJE/KUd76+sWbPno2yZcuiX79+CA8Pz08WRERE+aaxssKJweOR7OyaYzqblGQ02L4R7ZYvhOuDSNMER0RQ1Jmoc2w97JKfGkyjUVngfIuhSHVwM11gRIWgVKlS6NevH77//ntcv34d9+7dw4IFC6BSqfDbb7/htddey3Oe+apJq1mzJjIyMvDgwQPs3LkTLi4ucHV1zZZOURTcunUrP7sgIiLKUaqTM44NnYC2KxbCMsPwk3oAcL93B+1/+AK3GrVEpEsjZFrJHYafiF4gBKqd3Q63mIgck12r3xNPS/uZJqaSiKM7mlRSUhKOHDmC/fv3Y//+/bh06RI0/50yw8nJKc/55auQptFoYGlpCR8fH+0yoWekLX3LiIiIZHlargJCeg9F01/X5JpWJQQCTx+Bj81ZhFZtjyjvmpzviKgQ+ISeQPnbZ3JME1G5Ke4HNDBRRESFI2vi6v379yMkJASZmZkQQsDOzg5t2rRB27Zt0bZtWzRs2DDPeeerkHbnzp38bEZERCRdZK36UGVmov72X2CZmXONGgDYpCWh1oVt8I48h2s1uyDJiSMVE8niHnUTVc7vzDFNjGclhAZ1NVFERIWnTZs2AAArKys0bNhQOyda06ZNYW1tXaC8OQM1EREVexF1GyPGLwBBO36H942c52LKUiruLpoeXY7/b+++46uo8j6Ofye9hw4hCAEJHSlSg0jQUJSliCKKIiLgsiL72B4eUVC6ZWXRFVZ3KWJ3RVxhF1BRQAQBESmyQigSEAiIQCAJpN55/sBkjSkk4eRmbvJ5v173xYuZc39zbu6ZmfubM+fM4Yad9UN0d2X7XNkJFajsgs7/rGu+erfQ5xhKUmpode3qdqdsL2831gwoG4899phuuOEGde/eXcHBwUZjX3GStmfPHu3du1cpKSkaPny4iToBAFBiqVVraOPdv1fE3u/UbsUHCkk6c9n3eNkuNfxhkyKO79beFr31U51m3AIJlIJPZprabXxDvplphZbJ9A3Q9u7DleUX6MaaVWKMSStzzz//fJnFLnWS9u2332r06NF5ngGQk6R98cUXuummm/Tee+9pwIABV15LJ/HyMjeN8y+DCU2wLxZ+UCwVk1e4XNnmYklmf0AZHzdpMJ7B9iHJ6PTjlrfZK6C26ecuGmwjVpDhHxPZ5j6rfeGisVjGZZnd76tuv3zClSNNkdpy/R/UMP5LRe3bKC/78nUJSEtW22+XKrVjfZ16sIcy61Up9vYOvRBS7LKXY/pYbgWanSDFTr/87aTlJttcm7NlOFG3DR7PDT9K4qdeV367r+VyKfZvf1Nw8s+FlrFl6bt2t+iCd6iUWsxjl8nzIBdfUMYSExO1Y8cOJSUlKTw8XO3atVNERESp45VqT9+7d69iY2N14MABPfTQQ7rpppvyrL/++utVvXp1ffDBB6WuGAAApeXy8dPBljdqU9wDOl2rUbHfF7z1iOqPflvVFm+WlW744gFQQbVbtkyRe/YUWWZfixv1c+3GbqoR4D5HjhxRv379VK9ePf3ud7/T3Xffrf79+6tevXq6+eabSz2XR6mStKeffloul0tbt27V7Nmz881YYlmWunbtqq1bt5Y49r59+/TUU0+pS5cuqlmzpkJDQ9W2bVvNnDlTqampueVs29Zbb72lO+64Q40bN1ZQUJDq16+vAQMGaMuWLaX5WACACuZCaA192+0e7eo0RGkBxZsC2SvTpepvblX9UW8raEtC2VYQ8HCNtmxRi7Vriyxz7Ko2Otyoi5tqhByW7b5XZXXixAl169ZNq1atUoMGDTR8+HBNmDBBw4cPV1RUlD7++GN1795dJ06cKHHsUt3uuG7dOg0ePFhNmzYttEz9+vX1ySeflDj2okWLNG/ePA0YMEB33XWXfH19tXbtWk2aNEnvv/++Nm/erMDAQKWnp2v48OFq27at7rjjDjVs2FCJiYl69dVX1bVrV73xxhu6++67S/PxAAAViWXpZL1W+rl2tK7es1b1f9gsy3X5XxV+iecV+cS/lNKtkU6N666s2mFuqCzgOWr88IM6v/dekWWSqtbT961v5nZDVEgzZszQsWPH9Nxzz+mRRx6R96+Gg2RnZ2vOnDmaMGGCZsyYoblz55YodqmStHPnzl32HsuMjAxllWKcyW233aaJEycqPDw8d9nYsWMVHR2tmTNnauHChXrwwQfl4+OjdevWqUePHnneP2bMGLVs2VKPPvqohg0bJi/D924DADxTtq+/9l3TV/q/KNV6aZ0CdycW630hG39Q0DdHdGZ4R529rZ3ky6x0QNDZs+qxcKG8ixgLmBYQph0dhsj2ZjLx8mH98nLHdiqnFStWKC4uTv/7v/+bb523t7cee+wxrV69Wv/+979LnKSVKoOJiIjQnsvce7xr1y5FRUWVOHaHDh3yJGg5hg4dKknavfvS1Mo+Pj75EjRJql27tnr06KGffvpJP/30U4m3DwCo2DIa1dDRF2/ViQlxyqpSvIlhvNKzVGPBJjW4/10Fbj9axjUEnM07PV2x8+crMDm50DLZXj7a3vF2ZQSYm1gHcJrExMTLPqi6Q4cOpbrdsVRJWp8+fbRq1Sp9/fXXBa7/9NNPtX79evXr16804Qt09Oilk2Lt2rWLVdbPz09VqlQp9fYiIiLyvKKjo0sdCwDgMJal5D7NdXjx3Uoa0Fp2MS8E+x05q3qP/VO1Z30i79Opl38DUNHYtmLeflvVjhZ9sWJ3uwFKrlL6me1ggO3Gl0EpKSmaNWuWWrdurdDQUNWoUUMxMTFavHix7N/Myr1lyxbFxcUpNDRUYWFh6tu3r3bs2GG2QkUIDw/XkSNHiizz448/Kiys5LfLlypJe/LJJxUaGqobbrhBTzzxhL7//ntJ0pIlS/Twww+rf//+qlmzph599NHShM8nOztb06dPl4+Pj4YNG1Zk2ZUrV+rrr7/W0KFDFRBgduphAEDF4goN0Kn/idWP825XWtNaxX5f2Of71GDkW6qydIcs04/LABys9SefqMFlfgQfjO6uk3VbuqdCqFBcLpduuukmTZ48WR07dtTs2bM1adIkZWdna+TIkXr88cdzy27evFk9evTQoUOHNG3aNE2dOlX79+9X9+7d9d1337mlvt26ddMHH3xQ6KSFX3/9tZYsWaLrrruuxLEt+7cpaTF98803uv322/NMK2lZlmzbVlRUlJYuXap27dqVJnQ+48eP19y5czVr1ixNnDix0HL79+9Xly5dFBgYqO3bt6tmzSt/9keO8+fPKzw8XM/c95ICTD2E0cnP/3Dyc9JMMv2cNJPPDzP4zB9Jles5aQZZIYZv1aksz0kzfEzyqlbFWKyocYU8yynbpfCV/1H1BZvknZJe7HjnQ2tpT8s+Ole13hXXzU4r/naLwwrwNxrP6HPSDO4LxpkeQ2XyOWmGnbolqthlr9q5Uz0WLiyyzMk6TbWzwxAjxwD7fOG3U5aYwWNSWsZFTXztIZ07d65UPSRlLec362MffCT/4OAy3156aqpeuG2Qkb/Hpk2bFBMTo4ceekhz5szJXZ6RkaFmzZrpzJkzSkpKkiR16tRJe/fu1Z49exQZGSlJOnbsmJo3b64uXbro008/vaK6FMe3336rmJgYuVwu3XnnnYqNjVWdOnV04sQJrVu3Tu+++668vLy0YcMGdejQoUSxS30U6tChg/bt26cVK1Zo06ZNOnPmjMLDw9W5c2cNHDhQvr6+pQ2dx+TJkzV37lzdf//9RSZohw4d0o033ijLsrRq1SqjCRoAoBLw9tK5/q2Vct3VqjH/K4V9UvTY6xxhyT+p8+Y3dbReG+1vGqtMv6AyrijgflWOHVO3N98sskxyWC3tbjeImRxRaufPn5ck1a1bN89yPz8/1ahRQ+nply5kHThwQFu3btV9992Xm6BJUmRkpIYMGaLXXntNJ06cUJ06dcq0vu3bt9cHH3ygESNG6M0339Rbb72Vu862bVWrVk2LFi0qcYImXUGSJl2avGPgwIEaOHDglYQp1JQpUzRjxgyNHDlSr776aqHlEhIS1LNnT6WkpOjzzz9X69aty6Q+AICKL7tqkE5OiNO5m1qo1kvr5H/odLHeV+/oTtU6Ga/9TWJ17Kq2/FBFheGfnKzYv/9dPhkZhZZJCwnR9o5Dle3j58aa4bI87BlmnTp1UpUqVfT8888rKipKnTt31oULF/T6669r27ZtuflAzrOYu3btmi9Gly5dtGjRIm3bts3o/BiF+d3vfqcjR47oo48+0vbt23Xu3DmFh4erXbt2GjRokIJL2Zvp2DlRp0yZoqlTp2rEiBFasGCBrEJOdgkJCYqNjdW5c+f02WefGbvFEgBQuaW1rqsjrw5VlY92qfriLfK6ePlb/fwy09TyPx8r8ugu7WnZR8nhZXsVFyhrXllZ6rFwoULOni20TLa3t74YNUrWD8679Q/uEx0dnefRV4mJxXvMya9VrVpVy5cv1+jRo3X77bfnLg8NDdXSpUs1aNAgSdLx48clKU8vWo5f3/pYlo4cOaKtW7fKy8tLHTt21F133aW77rrLWPxSJWnTpk0rVjnLsjR58uRSxZ86daqGDx+uRYsWFfqss8OHD6tnz55KSkrS6tWrde2115Z4WyVmWc68OmpyDJkkK9DcOAY79YKxWI5nchyZ6XZmcAxkKYeyFsoydHt0DruIq70ljmV63JfJMZpOHjdjeDIN+0KasViHnivp7Yjd5N/xGjXZt0YRJ/YW6x1Vzh1X502LtS/2Om0feJMyg4q3zTrLi9drV1x2EVOkl4oTz385jNbN8DEu0NxEZunRxZ/gpjhq7CjieGnbarlxiWr98EORMfZ0GSw7+SpZF08arZvJsdRG24eHPIPXsi+93LEdk0JCQtSqVSsNGDBAMTExOnPmjObNm6dhw4Zp2bJl6tWrly5cuPTb0t8//+/VnIkDc8qUhccee0wvvvhi7u8hLy8vPfroo3r22WeNbaNUZ/gpU6YUui6nx8u27VIlafPmzdPTTz+t+vXrKy4uTu+8806e9bVr11avXr2UnJysnj17KiEhQePHj1d8fLzi4+PzlO3Vq1expuwHAKAo6QGh+u6agToW2UbN96xW8IUzl32Pl22r2dov1WDbDn1z20Ad6nyts5Mc4DcafL9BV+0r+HFLORJaXKejTTu7qUZwsv3791/xxCHfffedYmJiNGfOHI0dOzZ3+Z133qlWrVppzJgxOnjwoIJ+ufCVM0bt19LSLl3UCyrmxbGSevfdd/XnP/9ZlmWpWbNmsm1b8fHx+tOf/qRrr71WQ4YMMbKdUiVpa9euLXB5UlKStm7dqr/85S/q169fnj9uceXcY3rkyBGNGDEi3/oePXqoV69eOn36tA4dOiRJevnllwutJ0kaAMCUM9Wj9FXMSEUlbFWjH76St+vyMxQGnk9W90VvKXrDJm0ZdpvO1eXZUXC+6sf2qdnXy4ss83PdJorv1N9NNUJlMGfOHKWlpeVLdIKCgtSvXz/NnTtXCQkJuROLFHRLY86ygm6FNGHBggXy8fHRypUrFRcXJ+nSM6L79eunBQsWlG+S1qNHj0LXDRw4UEOHDlWnTp10xx13lDj24sWLtXjx4suWi4qKMn7LFQAAl2N7+ehQo65KjGihZns/U61TB4r1vjr7Dqr/tD/p+7hY7fpdH2UZnh4fMCXo3Cm1XfumrCJ+Z6WG1dCOnnfLNjzcApVbToKVXcDwkaxfHteTlZWljh07Sro0Zf/o0aPzlNu8ebMsyyqzYVC7du1S//79cxM0Serdu7f69++vDRs2GNtOmdxU27p1aw0cOFCzZs0qi/AAAJS7tMBw7Wh3q9aMG63k6tWK9R4vl0utPl2jgU8/o+oJR8q4hkDJ+aRfVPvPFsk3o/DxuJm+Afo27j5l+fO4CZjVokULScrXYZOUlKRly5apatWqaty4sRo3bqwOHTpoyZIluZOISJcmFFmyZIluuOGGMpt+/+zZs2rWrFm+5c2bN9fZIibYKakyG/lYv3597d69u6zCAwDgCEfbtNLyKY9r1829lF3MB70Hn01Srz/PU/jxE2VcO6AEXC61WfeWQs6dKrSIbVnaGXuXUquYncAEZcB248uQhx56SNWqVdPjjz+u4cOH69VXX9WsWbPUrl07JSYmasaMGfL+5Tj70ksvKT09Xd27d9eLL76oF198Ud27d5fL5dLs2bPNVeo3XC5XgROW+Pn5yWVw0qwyS9K2bNmiwMDAsgoPAIBjZPv7acegfvrX0xN0vHmTYr3HLy1dPectkH9KahnXDiieplv/rZrH4ossE9+hn36+qrmbaoTKpkGDBvr66681fPhwrV27VuPHj9ezzz6rq666SkuXLtUDDzyQWzYmJkbr1q1TVFSUJk2apMmTJ6tx48Zav3692rRpU6b1LOzRYCaVakzakSMF36KRlZWlH3/8UfPnz9eGDRvyPN8AAICK7nyd2vrsoT+owbYd6vj+RwpKOldk+bBTP+v6vy/WZ38cK9uHsT0oP5H7t6rhf9YXWeZodAcltCp8XgI4i/XLyx3bMenqq6/W66+/XqyyXbt21eeff264Bpc3e/ZszZ8/P8+y8+fPS7p0N+FvWZalw4cPl2gbpUrSoqKiiswgbdtWdHS0XnjhhdKEBwDAc1mWDndop2OtmqvNvz5W88/Xy6uIW2Ai9u5Xx/f/qa+H3ebGSgL/VeVkglpu/KDIMmdrNdB/Ym7jMRKALiVkOUnZbx09etTINkqVpN1zzz0FJmleXl6qWrWqOnXqpIEDBxZ4vyYAAJVBVkCAtg0ZpINdO6nL20tU6+ChQss2W7dBZyMjlKz8g9GBshSQkqR2a16Xlyv/bHo5LgaHa/sNI2R7l+pnI1ChmBx3VpRS7W3FmSIfAABISfXq6tNHxyluziuqs/9goeU6v7tU2zrfrbPVG7ixdqjMvDPT1e7z1+R/MbnQMtnevtp+40hlBF3ZQ4oBlEyZTRwCAAAucfn46IuxI4ucqt/L5VKbb5Yo8IK5KZyBQtm22q5+V+Gn8z8M+Ne+6z5U52vUc1OlYJQHzu6I/6LfuqRcrksvE7wM5sjZWeZiSbJTC7/tocRMfk7J3N9fkoo5XXZxWX5+5oJlGf5ODcczyXjdDLY5y9ts+zV6LjO83xv9u/n6GoslSXZGhrlgBTwk9Ur4nyrucSRcG4fdrxv/9mf5FvJ5/DIvqs2upfryzoeV5RdwxXUL/I/p40imsViWZXjfMthGvKpWMRZLkuzzhfdUlVRQnJkkPuq9L1R3/44iyxy8upt+CrhKXsdPFyum7TL8a93g+d4KNvdMN8tyz+1uqNxKlaQ1atSoVBuzLEsHDxZ+qwcAABXZuTqR2jLkHl339oJCy4T9nKj2K9/U1wNHSYYTGUCSan61R1e/va7IMidrN9HBxt3dUyGUDXf1ctGTViZKdfR3uVxKT09XQkKCEhIS9OOPP+rixYv68ccfc5elp6fLtu08L3cNtAMAwKmOtWijXXG/K7JMxMHv1HzjSjfVCJVJyKETavnnfxZZJjm0lna37s9MjkA5KlWStmvXLkVGRqpLly5au3at0tLSlJiYqLS0NK1Zs0adO3dWvXr1tGvXLh06dCjPCwCAym5PbG8dad2+yDJNtnyqyD3b3FQjVAa+Sam6Zvp78k4v/LbVDN9AbW93q7J9DN6+D6DESpWkPfnkk0pKStK6devUo0cPef8yrsfb21uxsbFau3atzpw5oyeffNJoZQEAqBAsS18Pvktn6l5VZLF2n76jKieOuKlSqMi80jN1zTPvK/BU4Q9Yd1le2tHuVqUFVXFfxQAUqFRJ2j//+U8NHDhQfoVMkhAQEKCBAwfqww8/vKLKAQBQUWX7+WnD3WN0MaTwqc29szLVadl8+acU/sMauJzqX+9Tl3F/VZXvi07497Too6RqRV84AOAepUrSTp8+rczMomd4yszM1OnTxZsNCACAyuhieFVtvGu0sn0Kn8crMOWcOi9bIC+DMyuicgj4KUnXzHhPbae/q8CTSUWWPdygg45d1dYt9YKbMAW/RytVknb11Vfrgw8+0LlzBV/ZO3v2rD744INSzwIJAEBlcbp+Q20ddGeRZaqeOKy2n74r2fwawuVZmVlq8P6X6vKHeaq5Jf6y5U9Xj9K+pje6oWYAiqtUSdrYsWN1/PhxderUSW+88YYSEhJ08eJFJSQk6PXXX1fnzp114sQJjRs3znR9AQCocA6366Q93Yv+kXzVnm/U+Js1bqoRPFXVnT+o8/hX1fjNNfLOuPxz8lKDqmpnm0GyTT/TFOXOcuML5pXqOWkPPvig9u/fr5dfflkjR47Mt962bY0fP14PPPDAFVcQAIDK4LveA1T1aKLqHPq+0DIt1i9XcvU6OtmopRtrBk/gdzpZ0Ys+VZ31u4v9nszQQO1oc5uy/ALLsGYASqPUl01eeuklbdy4Uffdd5/atWunRo0aqV27dho1apQ2bNigl156yWQ9AQCo0GwvL23rN0LJ1WoXWsaSrWtXLFbo6UQ31gxOZmW7dNWyzer6h7klStDORdfV1j+NUmpIjTKsHcoVY9I8Wql60nJ07dpVXbt2NVUXAAAqtSz/QG0ZdL+uf2e2/NIuFFjGNyNdnT6ar/XDHlVmYLCbawgnCf/+iJq+slKhCSeL/Z7MkAAdvOdGHevdXvL2kpRRdhUEUGpXlKRVRpavryxfXyOx7AxzB0ZTdcphZ13+Pvbisgzf525nZxuLZRXyGInSstPSzAWzDN/l7eNtLlamufYhyfxndbmMhTK5n0qSDO4Plr+/sViSzP7dLjMDcIk5eLxMta3mZjJOaltdGaG1tOn2+9T9zb/Kyy74OwlJ+lnXrnpNX979gGzvwvftlLurG6ubJNVYcMxcsACz5y2Tx/P0OqHGYknSoxN2GIv18tSm8k1PVZP4tYo8uqtE7z1W7xrta9pTmQnB0t+zJWXLzjC4r7rMnZ8lGd3v7bR0c7EyzMUqU+7q5aInrUyUuvVnZ2frpZdeUufOnRUeHi6fX00fvGPHDj3wwAPat2+fkUoCAFCZ/NSoqXb2HVxkmdqH9qnNJzyPtDKxXbbqHflW163/W4kStOTQWvq6y3D955rfKdOf3lfAE5SqJy0tLU19+/bVl19+qerVqys0NFQpKSm56xs2bKjXXntN1atX1/Tp041VFgCAyuJAp+sVfvK4Gn37VaFlor9er3O16upQh25urBnKQ9qeszr5p+1q8Z+zxX5Plo+fDkRfrx8bdGD2RsDDlGqPfe6557R+/XpNnz5dJ06c0OjRo/OsDw8PV48ePfTJJ58YqSQAAJWOZenbm4foVIPGRRZrv/J91UjY76ZKwd2ykzN08k/bdXjkGqWVIEFLjGihjdf/XkcadiJBAzxQqXrS3n33XV1//fV64oknJElWAeNJGjZsqJ07d15Z7QAAqMRsHx99dft9ipv/goKTzhRYxsvlUrf35iupTr1861yBJR9n6PLx0ZmG9RTfu5vSqoSV+P0ww7ZtnV91RKf+8p2yzxZ/DFRqcDXtadlHZ2o0LMPawSMwJs2jlSpJS0hI0IABA4osEx4errNni3/FBwAA5JcRHKqNd9yvGxb+WT6ZBU9k45d2UbUM9qbV/S5eTVZv1K7b+mhfXEyRk5PAvPSD53TyTzt0cfvPxX5PtpePfmh8nRIadZbtxfcFeLpSJWnBwcE6fbro2awSEhJUrVq1UlUKAAD817k6kdoy+B51+8cCt23T72KaOry5TI3Wb9XXI2/V6cYN3Lbtysp1IUs/L/heZ987IGUXv3vip9pNtLd5nNKCqpRd5eBxrF9e7tgOzCtVktahQwetXLlSqampCg7OP0vQTz/9pJUrV6p3795XXEEAACAdb95Gu3v2U6u1K9y63WqHj6vvlJd1oEcnHclsr0y/QLduvzKwbVspa47ppzm7lHXqYrHfdyGwiva27K2faxU9bhGA5ynVSNI//vGPOnnypPr3759vmv2dO3eqf//+Sk1N1fjx441UEgAASHuu76MjLduXy7Ybf/G1rvt6sSKPfyfZDEIxJeNIso7+zwYdf2JLsRM0l5e3Djbupq+uH0OCBlRQpepJ69evnyZNmqQZM2aoefPm8vvlAZIhISG6ePGibNvWtGnT1KNHD6OVBQCgUrMsfTPwLoWcOaVqiT+6ffN+WWlqte8z1TvxH30ffYOSQ2u5vQ4VhSstW2de36szb+6TnVn8CV5+rtFQe1v20YVghpTgMpg4xKOVek7WadOm6dNPP1X//v0VHh4ub29vBQYG6qabbtInn3yiSZMmmawnAACQlO3np/X3PKijzdvKLmB2ZXeocj5RXbe9o2b718onq/gzD+KSlA2JSrjzU51etLfYCZpPzUDVndVZ33a8gwQNqARK1ZN25MgR+fn5KS4uTnFxcabrBAAAipAZGKRNQ0fJJz1NIWdOFXolO/OqgmeDLEzw6SS1e+/fCjtx+VkFLdlqcGyH6vy0T/GNr1dirWZSOSWNniIzMVU//XmnUtYnFv9N3paq3tFYNUY1l1ewr7SBvzGKiZ40j1aqJK1hw4YaMWKEFi1aZLo+AACgmLL8A5QUcVWh6zMalqyX62zDejreppmar1ynVh99Jp/MrMu+xz/zgq7Z87HqJe7W99E3KDW4eom2WRnYmS6deXvfpZ6z9Oxivy+wbQ3VntBW/leHl2HtADhRqZK0KlWqqEaNGqbr4hHsjAzZMvT8EYNXHG2X4csYPuaesWJnZhqLJUnyKvVduvnYGSW7ynxZJq8iu0r+ENoimRzob/A7kGT+s5r8HgxPkGAF+BuLZV8o/ixwxeLkZ2GZ/B4M9/a4ks4ZixX+TfF/wBfLf0rX3n7SddrUq4Wabl+pWol7i/WeaklH1e3bN6WhTaR7W0hBRf/EWHaiXanqVpg7I742FusfJ809xLvGdwf1bd8vFZJS/GeepfsFa3/LXkqs11p6L297tS8kG6ubJFn+5o5Jyja7b9nZBvcHp8YqY/S7eq5SJWldunTR9u3bTdcFAAA4xMXgatpx3d2qeXyPmm1focALSZd9j5VtS+/Ey/7siPQ/baXrIyvtLZD+Z5LV8vVVqvflrmK/x5b0Y1RHHWzeU1m+AWVXOQCOV6okbcqUKerevbsWLFig0aNHm64TAABwiFN1m+t0ravVaO8Xarh/vaysy/dqWj9dlJ7cJLtzHenhdlK9EDfU1Bms7Gw1XLlFTd/7XL4Xi3+76bkqdbXnmpuVXKVuGdYOlQpj0jxaqZK0VatWKTY2Vr///e/1yiuvqFOnTqpTp46s31wtsyxLkydPNlJRAABQPlw+fjrQqpcaTg6U/edvZX3zU7HeZ205IfueT6R+DaUwvzzrmpfg9r/iyAw5ZixW09SkUr3Pkq3aW+MVfvhEsd+T6Rug/c1v1LEG7SttryOA/Erdk5Zj+/bthd76SJIGAEAFUj9UmnO97DVHpZd3yPo57bJvsTJc0j8P5lveVHuMVu3yU5wUX1PtMxitcMeuaqv9LW5Upn+wW7YHwHOUKklbu3at6XoAAABPYFnSjVdJXevIXvi99MH+S2PRUGzJYbW1p/VNOle9fnlXBYBDFTtJW758uZo1a6YmTZqoR48eZVknAADgdEG+0vg20k0NZM/+VtZ3p8u7Ro6X5eOng01j9WPDTrJNz5IL/BZj0jxasY8Qt9xyi9577708y/7xj39o8ODBxisFAAA8ROMq0ryesp/oKLuKwencK5gTkS311Q3jdOTqLiRoAC6r2D1pdgHPqNm7d6+WLVtmtEIAAMDDeFnSzVHSdXVl/323tOygLK6uS5KSI2toX/2+OlOzUXlXBZUNPWkejUs5AADAjDA/6bH20t9vlN2sannXplxl+fnq+7t66Ys/P0iCBqDESjVxCAAAQKGaV5Pm3yh7x8/SoXNSAROLfHe+ntFNXht+2Fisb5OvbEKPjJBA/dS+iTJDg3KWXHmlAFQqJGkAAMA8y5La1bz0KsAPJ9oZ3VznCHM/aQ6d7GAsFlBerF9e7tgOzCvREe23D6uulLy8Lr1MKGCcX+ljuczFkiSXc79ry9u7vKtQKDsz01gsKzDQWCxJstMu/zyjYnMZbm+GWT7mfqyZ/E4lyb5w0Vww0/tCdraxUF41qhmLJUmun8+YC2Z60gaD+4OdmmosliRZhs8Nq2dFG4sVFGoslCTpoxNRxmIF+CcbiyVJrgxzPWmWv9nJWYyeGxy8bwGepkS/ZGbPnq358+fn/v/8+fOSpPr1C74twLIsHT5s7vYDAAAAAKjoSpSknT9/Pjcx+7WjR48aqxAAAAAAVGbFTtJcdDkDAAAAnoEp+D0aU/ADAAAAgIOQpAEAAACAg5CkAQAAAICD8Jw0AAAAoKJhTJpHoycNAAAAAByEJA0AAACoYCw3vkw7c+aMHnvsMTVu3FgBAQGqWbOmevbsqS+//DJPuS1btiguLk6hoaEKCwtT3759tWPHjjKokftxuyMAAAAARzh8+LBiY2OVkpKiUaNGqUmTJjp37px27dqlY8eO5ZbbvHmzYmNjFRkZqWnTpkmS5s6dq+7du+urr75S69aty+sjGEGSBgAAAMAR7r77bmVlZWnXrl2KiIgotNwf//hH+fn5af369YqMjJQk3X777WrevLkeffRRffrpp+6qcpkgSSsp2770MhXLEMvX11gsSbKzsozFsgIDjcWSJPviRaPxjLLMdfrbaWnGYhln8HOWBdvlKu8qFM7L5F3mzv0eXD+fMRrP5HHETk83FkuSo/cH+6Lhz5pt8NyQaS6WJMnbwT9pfLyNhTLefk2yTI+icfCx3BN44MQh69ev14YNG/SXv/xFERERyszMVGZmpoKCgvKUO3DggLZu3ar77rsvN0GTpMjISA0ZMkSvvfaaTpw4oTp16pirnJsxJg0AAADAFYmOjlZERETuqzRWrlwpSapfv7769++vwMBABQcHq0mTJnrrrbdyy23dulWS1LVr13wxunTpItu2tW3btlLVwSkcl6Tt27dPTz31lLp06aKaNWsqNDRUbdu21cyZM5WampqvfHx8vAYNGqSqVasqODhY3bt315o1a8qh5gAAAIAzWLb7XqbEx8dLksaMGaMzZ87o9ddf16JFi+Tn56fhw4frtddekyQdP35ckvL0ouXIWfbr8WueyHH3BixatEjz5s3TgAEDdNddd8nX11dr167VpEmT9P7772vz5s0K/OW2l4MHDyomJkY+Pj6aMGGCwsPDNX/+fPXp00erVq1SXFxcOX8aAAAAoOLbv3+/wsLCrihGcnKyJCk0NFRr166Vn5+fJGnQoEFq1KiRnnjiCY0YMUIXLlyQJPn7++eLERAQIEm5ZTyV45K02267TRMnTlR4eHjusrFjxyo6OlozZ87UwoUL9eCDD0qSJk6cqKSkJG3btk1t27aVJN1zzz1q2bKlxo0bp71798py8FgBAAAAAJfkdMTceeeduQmaJFWtWlUDBgzQG2+8ofj4+NwxaukFjNFM+2VM/2/HsXkax93u2KFDhzwJWo6hQ4dKknbv3i1JSk1N1fLlyxUbG5uboElSSEiIRo8erX379uXerwoAAADA2erVqydJBU74kTPO7ezZs6pbt66kgm9pzFlW0K2QnsRxSVphjh49KkmqXbu2JGnXrl1KT08vdMCgpCtK0n498DEiIkLR0dGljgUAAAC4le3GlyGdOnWS9N/f/b+Ws6xWrVrq2LGjJGnTpk35ym3evFmWZenaa681V7Fy4BFJWnZ2tqZPny4fHx8NGzZMUuUYMAgAAABUFoMGDVJoaKjeeustpaSk5C5PTEzURx99pCZNmqhx48Zq3LixOnTooCVLluTmBNKl/GDJkiW64YYbPHr6fcmBY9IK8tBDD2nTpk2aNWuWmjZtKkllPmAwMTExz//Pnz9f4G2YAAAAAK5c1apV9cILL+j3v/+9unTpovvuu08ZGRl65ZVXlJGRoZdffjm37EsvvaSePXuqe/fuGj9+vCTp5Zdflsvl0uzZs8vrIxjj+CRt8uTJmjt3ru6//35NnDgxd3llGDAIAAAAVCb333+/atSooeeff16TJ0+Wl5eXunbtqnfeeUfdunXLLRcTE6N169Zp0qRJmjRpkizLUkxMjJYsWaI2bdqU4ycww9FJ2pQpUzRjxgyNHDlSr776ap51lWHAIAAAAFBqBseLudPgwYM1ePDgy5br2rWrPv/8czfUyP0cOyZtypQpmjp1qkaMGKEFCxbkm0q/devW8vf3L3TAoHRppkgAAAAA8CSO7EmbNm2apk6dquHDh2vRokXy8sqfS4aEhKh///768MMPtXPnztxuzZSUFC1YsEDR0dG5M8SYZPkHyPIPMBLLzsg0EudSrAxjsUwzXrcC2oNTWL96pseVsjPNtQ9JUna2uVimnz/o5W02XnaWuVimP6vLZS6W5eBLpKb3U5Pt1+R3IDn6mORkxo9xtsH9wd/XXCxJlsE2Z3yv9zX4UzDL4H4qmT3+mmwfHsKy3XOacPKpyJM5LkmbN2+enn76adWvX19xcXF655138qyvXbu2evXqJUl65pln9Pnnn6t37956+OGHFRYWpvnz5+vYsWNasWIFD7IGAAAA4HEcl6TlPNvsyJEjGjFiRL71PXr0yE3SGjdurI0bN+rxxx/Xs88+q4yMDLVv314ff/yx4uLi3FpvAAAAADDBcUna4sWLtXjx4mKXb968uZYtW1Z2FQIAAAAAN+JGegAAAABwEMf1pAEAAAC4QrbtnglTKuGkLO5ATxoAAAAAOAhJGgAAAAA4CEkaAAAAADgIY9IAAACACoaHWXs2etIAAAAAwEHoSQMAAAAqGvuXlzu2A+NI0krITk+TbVuGghls1ZahOuUwOp2q4bp5G4yXmWUuliQ7Pd1cMB9vc7EkyWXu72YFBBiLJUlyuYyGs13Z5oKZ3rdMxnPyfm/6O802G88ky8fcqdTOyDAWS5Kz70Ny8L5lX7hoLJZxXoZvgjJ5HjT8nRrdt7INnhdMfwdAAUjSAAAAgArGkvHL5IVuB+ZxKQAAAAAAHISeNAAAAKCiYUyaR6MnDQAAAAAchCQNAAAAAByEJA0AAAAAHIQkDQAAAAAchIlDAAAAgIqGiUM8Gj1pAAAAAOAg9KQBAAAAFYxlX3q5Yzswj540AAAAAHAQetJKysf70suErGwzccqCl8n83fAlliyXuVhGP6ckl8G6GQwlyexntc1+p7bpfcGyzMUy+Z1Kjv4eZJncH0w3YOdeqrUzMswFM31MMs1kmzPa3iTZptucOZavr7FYdmamsViSzB4vTZ8bTH9WU0yfF4ACOPxsAAAAAACVCz1pAAAAQEXD7I4ejZ40AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQJg4BAAAAKhjLdenlju3APHrSAAAAAMBBSNIAAAAAwEFI0gAAAADAQRiTBgAAAFQwln3p5Y7twDx60gAAAADAQehJK6msbMkr20ws2+ClB8syF0uSvA3m7y4HX2Ix/XczyWWoneUw2N7sbMN18zJ8vcjkvlWJWF7m9gfbZXbfsgL8jcWyL6YZi+V4LgdPu2b4GGcFBRqLZbyNmDzXeBv+6WYbbCOmz6kG268VEGAulsd0Hdm/vNyxHZhGTxoAAAAAOAg9aQAAAEBFQ0eaR6MnDQAAAAAchJ40AAAAoKKhJ82j0ZMGAAAAAA5CTxoAAABQwVi/vNyxHZhHTxoAAAAAOAhJGgAAAAA4CLc7AgAAABWNbV96uWM7MI6eNAAAAABwEJI0AAAAAI504cIFNWrUSJZl6cEHH8y3Pj4+XoMGDVLVqlUVHBys7t27a82aNeVQU7O43bGisAzPrZOZZTaeSV4Gry24XOZimWbyc0oyOv9StoPbh2R2f/DxNhdLkrINtjnD7de2nHvdzk5LNxbL8nHuqc/OyDAb0Nts+7V8fY3FstPNfaeSZKdeMBfM8N/NaDzTbcTkucbJt735mWu7sjPNxcJlPfXUUzp16lSB6w4ePKiYmBj5+PhowoQJCg8P1/z589WnTx+tWrVKcXFxbq6tOc49UwEAAAAonQrwMOtvv/1WL774op5//nk9+uij+dZPnDhRSUlJ2rZtm9q2bStJuueee9SyZUuNGzdOe/fulWW6I8NNnHvZFAAAAECllJ2drTFjxqhv374aPHhwvvWpqalavny5YmNjcxM0SQoJCdHo0aO1b98+bd261Y01NoueNAAAAKCCsexLL3dsR5Kio6Pl9avbZxMTE68o7pw5c7R3714tXbq0wPW7du1Senq6unbtmm9dly5dJElbt25Vp06drqge5YWeNAAAAACOcejQIT399NN66qmnFBUVVWCZ48ePS5IiIyPzrctZduzYsTKrY1mjJw0AAACoaNw8Jm3//v0KCwszEnLs2LFq1KiRHnnkkULLXLhwabIgf3//fOsCAgLylPFEJGkAAAAAHOGtt97S6tWrtX79evkWMaNsUFCQJCm9gJli09LS8pTxRCRpAAAAAMpdenq6HnnkEd18882qU6eODhw4IOm/ty2eO3dOBw4cUI0aNVS3bt08634tZ1lBt0J6CsakAQAAACh3Fy9e1KlTp7RixQpFR0fnvmJjYyVd6mWLjo7WggUL1Lp1a/n7+2vTpk354mzevFmS1KFDB3dW3yh60gAAAACUu+DgYC1ZsiTf8lOnTumBBx5Q3759NWrUKF1zzTUKCQlR//799eGHH2rnzp1q06aNJCklJUULFixQdHS0x87sKJGkAQAAABWOJTdNwW8wlq+vr2677bZ8yxMSEiRJV199dZ71zzzzjD7//HP17t1bDz/8sMLCwjR//nwdO3ZMK1as8NgHWUskaQAAAAA8UOPGjbVx40Y9/vjjevbZZ5WRkaH27dvr448/VlxcXHlX74qQpJWUj/ellwnZLjNxyoK3waaRnWUuliS5DP7dTF9hMfh3s0y1sxxe5oag2hcNf6e24Ut9JuOZbG+GWQVMO3wl7CyD36vp79Qgo59TcnQbMXuNW7ILmEWtIrL8/IzGszMyjMZzLIPnGUlG9y37fLK5WBkXjcUqU7btnmOxG7YRFRUlu5DtNG/eXMuWLSvzOrgbE4cAAAAAgIOQpAEAAACAgzgySXvmmWc0ZMgQNWrUSJZlKSoqqsjyq1at0o033qg6deooODhYTZs21WOPPaaTJ0+6p8IAAAAAYIgjx6Q98cQTqlatmtq3b6+kpKQiy86fP1/333+/rr32Wv3f//2fgoODtXXrVr344ov68MMP9d133yk4ONg9FQcAAACcwP7l5Y7twDhHJmkHDx5Uo0aNJEmtWrVSSkpKoWVfeOEFRUREaMOGDQoICJAk3X///apdu7Zmzpyp1atXa9CgQe6oNgAAAABcMUcmaTkJWnGcP39e1apVy03QctStW1eS6EUDAABApWPJ9PyuhW8H5jkySSuJPn366PXXX9ejjz6q0aNHKyQkRFu3btX06dPVo0cP3XDDDaWKGxERkef/LkdPsQwAAACgovD4JO2ll17ShQsX9NJLL+nPf/5z7vKRI0fqb3/7m7y9DT9rCgAAAHA61y8vd2wHxnl8kubr66v69evrlltuUf/+/RUUFKRPPvlEixYtkre3t+bPn1+quImJiXn+f/78eYWHh5uoMgAAAAAUyqOTNJfLpb59+yorK0sbN26UZV26K/a2225T9erV9dxzz2no0KGKi4sr55oCAAAA7sbUi57Kkc9JK64NGzboyy+/1K233pqboOUYMmSIJOmLL74oj6oBAAAAQKl4dE/asWPHJEnZ2dn51mVlZeX515jMLMkyFNMyOB+ObfhKiWUwnsnPKUleBscZZhtuHwbj2a787fqKmPwevAxf37EMxzP5vZpuvwbZmZlmA5r8rL6GTy8uk8ck09cnDQ7IMP13yzJ8HDF4/LW8zX4PtsnzvelzagG/U0rL+s1s1lfKTk83F8zwJGuWr6+xWMaPl0AZ8+ietBYtWkiS3n77bWX+ZudbvHixJKljx47urhYAAABQvmw3vmCcI3vS3nzzTR0+fFiSdOrUKWVkZGjGjBmSpAYNGmj48OGSpDZt2ujWW2/V0qVL1aFDB9199925E4f861//UpcuXTRw4MBy+xwAAAAAUFKOTNIWLlyYbyzZ5MmTJUk9evTITdIk6Z133tGLL76ot99+W0899ZRcLpcaNGigiRMn6sknn2QKfgAAAFRC7urmoiutLDgySVu3bl2xy/r5+WnChAmaMGFC2VUIAAAAANzEkUkaAAAAgNKzbLPzwBW1HZjn0ROHAAAAAEBFQ08aAAAAUNEwJM2j0ZMGAAAAAA5CTxoAAABQwTAmzbPRkwYAAAAADkJPGgAAAFDhMCjNk5GklZS396WXEZahOJKys8zFMs3L8APFXdnmYvka3gVcJmMZ/JymuUx+UMnsH84wL8M3HNgGT2amvwdjxzbJssz+3Wwvg58128HtLcvwfm8ZPM9IRs81tu3cfctOSzMWS5LZ78Hwfm/5+RmLZaenG4slSXa2wf3B5LHc9HkBKABJGgAAAFDR0JHm0bgUAAAAAAAOQpIGAAAAAA7C7Y4AAABARcPtjh6NnjQAAAAAcBB60gAAAIAKh640T0ZPGgAAAAA4CD1pAAAAQEVDR5pHoycNAAAAAByEnjQAAACggrFsW5Zd9t1c7thGZURPGgAAAAA4CD1pJZWdfellgmWZiSNJ3t7mYknmPqMky9/XWCxJsi9kmQuW7TIXS5IMXk2yfAzvngbbiJ2WZiyWJLP7gmT0e5DLuW1E3obbiG3us9oGjyHGmf5OTTK9L5jmZfDarunvwWTdnHxMMlw3Oz3dXDDTv0VM/t2cGqssMSbNo9GTBgAAAAAOQk8aAAAAUOHQlebJ6EkDAAAAAAchSQMAAAAAB+F2RwAAAKCi4W5Hj0ZPGgAAAAA4CD1pAAAAQEVDT5pHoycNAAAAAByEnjQAAACgorFt9zx421Me7u1h6EkDAAAAAAehJw0AAACocBiU5snoSQMAAAAAB6EnrTyZvIc3O9tcLNMys8q7BoWy/P2NxrOzMs3FyjQXS5Isk8G8vU1Gk1wus/G8DF5/soz+5Qx/VsNXLy1zfzfLz9dYrEsBzYWyL1w0F0ySvA2eSm3D+4Kj269hBs+plp+fsViSjNbNznLuOdXwmUb00FwhOtI8Gj1pAAAAABxh3759euqpp9SlSxfVrFlToaGhatu2rWbOnKnU1NR85ePj4zVo0CBVrVpVwcHB6t69u9asWVMONTeLnjQAAACgIvLAXq5FixZp3rx5GjBggO666y75+vpq7dq1mjRpkt5//31t3rxZgYGBkqSDBw8qJiZGPj4+mjBhgsLDwzV//nz16dNHq1atUlxcXDl/mtIjSQMAAADgCLfddpsmTpyo8PDw3GVjx45VdHS0Zs6cqYULF+rBBx+UJE2cOFFJSUnatm2b2rZtK0m655571LJlS40bN0579+6VZfq2bzfhdkcAAACggrFs220vkzp06JAnQcsxdOhQSdLu3bslSampqVq+fLliY2NzEzRJCgkJ0ejRo7Vv3z5t3brVaN3ciSQNAAAAwBWJjo5WRERE7su0o0ePSpJq164tSdq1a5fS09PVtWvXfGW7dOkiSSRpAAAAAFAWsrOzNX36dPn4+GjYsGGSpOPHj0uSIiMj85XPWXbs2DH3VdIwxqQBAAAAuCL79+9XWFhYmcR+6KGHtGnTJs2aNUtNmzaVJF24cEGS5F/A45QCAgLylPFE9KQBAAAAcKTJkydr7ty5uv/++zVx4sTc5UFBQZKk9PT0fO9JS0vLU8YT0ZMGAAAAVDS2bfRB6kVup4xMmTJFM2bM0MiRI/Xqq6/mWVe3bl1JBd/SmLOsoFshPQU9aQAAAAAcZcqUKZo6dapGjBihBQsW5JtKv3Xr1vL399emTZvyvXfz5s2SLs0U6alI0gAAAICKJqcnzR0vw6ZNm6apU6dq+PDhWrRokby88qcsISEh6t+/v9atW6edO3fmLk9JSdGCBQsUHR2tTp06Ga+bu3C7Y0l5e196mZCdbSZOWTD44D87M9NYLEmSt7lma2cYrpvL4Hdq+OGLtsvcQdQytQ/8wjZ8gLd8fY3FsrMM76cmP6uDjyF2muG6mdwfjD/Y1OB3avrHjstlNp5Jpr8Hg3872+SxXJIys8zGc6psB39Ok+etAhIGmDNv3jw9/fTTql+/vuLi4vTOO+/kWV+7dm316tVLkvTMM8/o888/V+/evfXwww8rLCxM8+fP17Fjx7RixQqPfZC1RJIGAAAAVDy2jF5DKnI7BuU82+zIkSMaMWJEvvU9evTITdIaN26sjRs36vHHH9ezzz6rjIwMtW/fXh9//LHi4uLMVszNSNIAAAAAOMLixYu1ePHiYpdv3ry5li1bVnYVKickaQAAAECF46FdaZDExCEAAAAA4Cj0pAEAAAAVDR1pHo2eNAAAAABwEHrSAAAAgIrGdl16uWM7MI6eNAAAAABwEJI0AAAAAHAQbncEAAAAKhomDvFo9KQBAAAAgIPQk1ZSLtellwGWr6+ROJJkZ2Yai3UpoMHLIpZlLpYkZWeZjedUXoavoRj8u9kuw9+pl7fRcMb3h8rC5L5quv06+ZhksG6Wn5+xWJJkp6cbjWf0vJVl+Fhuss1lGq6bt8GfW6YnafCuJH83V7bBWB4yUYZtmz12FrUdGEdPGgAAAAA4CEkaAAAAADiII5O0Z555RkOGDFGjRo1kWZaioqIu+54333xT3bp1U1hYmEJCQtSqVStNnz697CsLAAAAAAY5ckzaE088oWrVqql9+/ZKSkq6bPn77rtPr7/+um699Vbdfffd8vLy0qFDh3T48OGyrywAAADgNIxJ82iOTNIOHjyoRo0aSZJatWqllJSUQssuXLhQr732mt544w0NHz7cXVUEAAAAgDLhyNsdcxK0y7FtW88884zat2+fm6AlJyfLJqMHAABAZWa78QXjHJmkFVd8fLwOHjyomJgYTZ8+XdWrV1dYWJiqVKmisWPHFtkDdzkRERF5XtHR0QZrDgAAAAAFc+TtjsUVHx8vSfrHP/6hjIwMTZo0SQ0bNtS///1v/e1vf1N8fLzWrFkjy/QzcQAAAAAns13mn6tX2HZgnEcnacnJyZKkU6dOafXq1YqLi5Mk3XrrrbJtW6+//ro+/vhj3XTTTSWOnZiYmOf/58+fV3h4+JVXGgAAAACK4NG3OwYGBkqSIiMjcxO0HCNGjJAkrVu3zt3VAgAAAIBS8+gkrV69epKkOnXq5FsXEREhSTp79qxb6wQAAAAAV8Kjb3ds3bq1AgICdOzYsXzrjh49KkmqVauW2Y0afOaEnZ1tJI4kWb/0KppiX7xoLJbl62ssliTZWVnmglmmr1MYnOLI5eB7vA3PoGp5mR03apu8/pRpsL1Jkre5w67l420sliTZGRkGgxme7svg/mD5+RmLJUm2wfEYdnq6sViSJF+zp3k7M9NcMC8HXyc2/HezDJ5r7AzDxyST50HTcwBkmzzfMz8BPIuDj5CXFxQUpFtvvVUnTpzQP//5zzzrXnnlFUnSzTffXB5VAwAAAMpPTseCO14wzpE9aW+++aYOHz4s6dKkIBkZGZoxY4YkqUGDBnkeWj1r1ix99tlnGjZsmMaPH6+oqCitXLlSK1as0D333KOYmJhy+QwAAAAAUBqOTNIWLlyoL774Is+yyZMnS5J69OiRJ0mrX7++Nm/erCeffFKvvfaazp07p6uvvlovvPCCHn74YbfWGwAAAHAEdz1omo60MuHIJK2kMzJGRUXp7bffLpvKAAAAAIAbOTJJAwAAAFB6tm0bndioqO3API+eOAQAAAAAKhp60gAAAICKhjFpHo2eNAAAAABwEHrSAAAAgIrGXc8wY0xamaAnDQAAAAAchJ40AAAAoKKhJ82jkaSVkBUQKMs/0EgsOyPDSBxJstPSjMWSJCsgwFgs03WTt7e5WNlZ5mJJkmWZi1WZDnomv1NJysw0F8vL8A0HBqdDttMd3H5dZqd9toKDjMWyLxo+Jplkur1lGm4jBllBZs6lOeyUVHPBLLPfg62ynwa91EyfB00yfW4wxfR+ChSAVgYAAAAADkJPGgAAAFDhMAe/J6MnDQAAAAAchJ40AAAAoKKxbcnFxCGeip40AAAAAHAQkjQAAAAAcBCSNAAAAABwEMakAQAAABUND7P2aPSkAQAAAICD0JMGAAAAVDT0pHk0etIAAAAAwEHoSSshOzNTtmXoz+ZymYkjyfL1NRZLkuz0dKPxjDL4d5O34V3AlW0slFd4mLFYkuQ6n2w0nkl2WprZgF4Grz+ZbG+SZFnmYvkabr+ZWeZieXubiyXJTsswGMzwVV+T8Uy2D5XBuSHLXBuxUy8YiyXJ7H6fbXBfkNnvwTZ3mrnE5N/N9L5l8vhr8nN6CNu2Zbuhl8sd26iMKl+LBQAAAAAHoycNAAAAqGgYk+bR6EkDAAAAAAchSQMAAAAAB+F2RwAAAKCi4XZHj0ZPGgAAAAA4CD1pAAAAQEVDT5pHI0krppxnQKRlXDQX1OAztSzb7DNd7MxMg8EM77wmnyPkZfZZTkafk5Zutm4uk23XNNNtpLI8J81luP06+Dlpksm/m+EHTTn5OWkus6d5k89JM87ovmV2vzd5jjZ6fpac/Zw0kwx+zpzfgk5/PlhahuFnkJbzdioby3Z6C3OIo0eP6qqrrirvagAAAMABfvzxR9WrV6+8q5FPWlqaGjZsqBMnTrhtm3Xq1NGhQ4cUEBDgtm1WdCRpxeRyuXT8+HGFhobKMnylE+UnOjpakrR///5yrgmchHaBgtAuUBjaRuVi27aSk5NVt25deZnsiTQoLS1NGRkZbtuen58fCZph3O5YTF5eXo68WoIrk3NwDQsLK+eawEloFygI7QKFoW1UPuHh4eVdhSIFBASQNHk4Z6b/AAAAAFBJkaQBAAAAgIMwJg0AAAAAHISeNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0VFj79u3TU089pS5duqhmzZoKDQ1V27ZtNXPmTKWmpuYrHx8fr0GDBqlq1aoKDg5W9+7dtWbNmnKoOdztwoULatSokSzL0oMPPphvPW2j8jhz5owee+wxNW7cWAEBAapZs6Z69uypL7/8Mk+5LVu2KC4uTqGhoQoLC1Pfvn21Y8eO8qk0ylxKSopmzZql1q1bKzQ0VDVq1FBMTIwWL14s27bzlKVtADDBp7wrAJSVRYsWad68eRowYIDuuusu+fr6au3atZo0aZLef/99bd68WYGBgZKkgwcPKiYmRj4+PpowYYLCw8M1f/589enTR6tWrVJcXFw5fxqUpaeeekqnTp0qcB1to/I4fPiwYmNjlZKSolGjRqlJkyY6d+6cdu3apWPHjuWW27x5s2JjYxUZGalp06ZJkubOnavu3bvrq6++UuvWrcvrI6AMuFwu3XTTTfrqq680YsQIjR8/XhcuXNC7776rkSNHas+ePXruueck0TYAGGQDFdTWrVvtpKSkfMuffPJJW5L98ssv5y4bMmSI7eXlZW/fvj13WXJysl2/fn27SZMmtsvlckeVUQ62bdtme3t727Nnz7Yl2ePGjcuznrZReVx33XV2vXr17OPHjxdZrmPHjnZoaKh99OjR3GVHjx61Q0ND7V69epV1NeFmX331lS3Jfuihh/IsT09Ptxs2bGiHh4fnLqNtADCF2x1RYXXo0EHh4eH5lg8dOlSStHv3bklSamqqli9frtjYWLVt2za3XEhIiEaPHq19+/Zp69atbqkz3Cs7O1tjxoxR3759NXjw4HzraRuVx/r167VhwwZNmDBBERERyszM1IULF/KVO3DggLZu3aohQ4YoMjIyd3lkZKSGDBmizz77TCdOnHBn1VHGzp8/L0mqW7dunuV+fn6qUaOGgoODJdE2AJhFkoZK5+jRo5Kk2rVrS5J27dql9PR0de3aNV/ZLl26SBI/xCuoOXPmaO/evZo7d26B62kblcfKlSslSfXr11f//v0VGBio4OBgNWnSRG+99VZuuZzvu7A2Ydu2tm3b5p5Kwy06deqkKlWq6Pnnn9eSJUt05MgR7d27VxMnTtS2bds0ZcoUSbQNAGYxJg2VSnZ2tqZPny4fHx8NGzZMknT8+HFJynPlM0fOsl+PR0HFcOjQIT399NN66qmnFBUVpYSEhHxlaBuVR3x8vCRpzJgxio6O1uuvv66MjAzNnj1bw4cPV2ZmpkaOHEmbqISqVq2q5cuXa/To0br99ttzl4eGhmrp0qUaNGiQJI4XAMwiSUOl8tBDD2nTpk2aNWuWmjZtKkm5tzT5+/vnKx8QEJCnDCqOsWPHqlGjRnrkkUcKLUPbqDySk5MlXfrhvXbtWvn5+UmSBg0apEaNGumJJ57QiBEjaBOVVEhIiFq1aqUBAwYoJiZGZ86c0bx58zRs2DAtW7ZMvXr1om0AMIokDZXG5MmTNXfuXN1///2aOHFi7vKgoCBJUnp6er73pKWl5SmDiuGtt97S6tWrtX79evn6+hZajrZReeTM9HrnnXfmJmjSpV6UAQMG6I033lB8fDxtohL67rvvFBMTozlz5mjs2LG5y++88061atVKY8aM0cGDB2kbAIxiTBoqhSlTpmjGjBkaOXKkXn311TzrcgaDF3QbSs6ygm5fgWdKT0/XI488optvvll16tTRgQMHdODAAR0+fFiSdO7cOR04cEBJSUm0jUqkXr16kqQ6derkWxcRESFJOnv2LG2iEpozZ47S0tI0ZMiQPMuDgoLUr18/HT58WAkJCbQNAEaRpKHCmzJliqZOnaoRI0ZowYIFsiwrz/rWrVvL399fmzZtyvfezZs3S7o0UyQqhosXL+rUqVNasWKFoqOjc1+xsbGSLvWyRUdHa8GCBbSNSqRTp06S/jux0K/lLKtVq5Y6duwoSYW2CcuydO2115ZhTeFuOQlWdnZ2vnVZWVm5/9I2AJhk2bZtl3clgLIybdo0Pf300xo+fLgWL14sL6+Cr0sMGTJEH374ob799lu1adNGkpSSkqKWLVvK399f8fHx+ZI7eKbMzEwtW7Ys3/JTp07pgQceUN++fTVq1Chdc801atKkCW2jkjh79qwaNGigsLAw7d27VyEhIZKkxMRERUdHKzIyMndykY4dOyo+Pl579+7N7T05fvy4mjVrpk6dOumzzz4rt88B8x5++GG9+OKLeu655zRhwoTc5UlJSWrRooXS0tJ06tQpeXt70zYAGEOShgpr3rx5evDBB1W/fn1Nnz49X4JWu3Zt9erVS9Kl59t06tRJvr6+evjhhxUWFqb58+fru+++04oVK9SnT5/y+Ahwo4SEBDVs2FDjxo3LMyU/baPy+Pvf/67f//73atmype677z5lZGTolVdeUWJiov7973+rd+/ekqSvvvpKPXv2VL169TR+/HhJ0ssvv6yTJ09q48aNuck8KobDhw+rffv2Onv2rO666y5169ZNZ86c0fz585WQkKB58+bpgQcekETbAGBQeT5JGyhLI0aMsCUV+urRo0ee8t9//709YMAAOzw83A4MDLS7detmr169unwqD7c7dOiQLckeN25cvnW0jcpj6dKldufOne2goCA7JCTE7tWrl71hw4Z85b766iv7hhtusIODg+2QkBC7d+/e9rZt28qhxnCHAwcO2Pfcc48dGRlp+/j42KGhoXb37t3tpUuX5itL2wBgAj1pAAAAAOAgTBwCAAAAAA5CkgYAAAAADkKSBgAAAAAOQpIGAAAAAA5CkgYAAAAADkKSBgAAAAAOQpIGAAAAAA5CkgYAAAAADkKSBgAAAAAOQpIGAB5uypQpsixL69atK++qlEj37t3Vtm1b2bZd4vfu3LlTXl5eWrBgQRnUDACA8kWSBgAOYllWiV6elpjlWLJkiTZs2KAZM2bIsqwSv79Nmza69dZbNXnyZKWkpJRBDQEAKD+WXZpLmACAMjFlypR8y1588UWdO3dO//M//6MqVarkWXfvvfcqJCREP//8s+rXr6+goCD3VPQK2LatZs2aydfXV7t37y51nG+++UYdO3bUzJkz9cQTTxisIQAA5YskDQAcLioqSocPH9ahQ4cUFRVV3tW5YqtXr1bv3r313HPPacKECVcUq0WLFkpNTdWhQ4fk5cXNIQCAioEzGgB4uILGpCUkJMiyLN17773at2+fbrnlFlWtWlXh4eEaOHCgEhISJEkHDhzQkCFDVKNGDQUFBenmm2/WDz/8UOB2Tp8+rQkTJqhp06YKCAhQ1apV1a9fP23evLlE9V24cKEkaejQofnWnT9/XlOnTlWrVq0UGhqq0NBQXX311brjjju0ffv2fOWHDh2qI0eOaPXq1SWqAwAATkaSBgAV2KFDh9S1a1edO3dOo0aNUrdu3bR8+XLFxcVpz5496ty5s37++Wfde++9io2N1apVq9SvXz+5XK58cdq3b68//elPioyM1Lhx43TLLbdo06ZNuv766/Wvf/2rWPWxbVtr1qxR3bp11aBBg3zr+vbtqylTpigsLExjxozRH/7wB3Xq1Enr1q3Tli1b8sXr1q2bJJGkAQAqFJ/yrgAAoOysX79eL7zwgh599NHcZffff7/mz5+vmJgYTZo0qcB1y5Yt0y233JK7/J577tHRo0f14Ycf5lk+c+ZMderUSWPGjFFCQoICAgKKrE98fLxOnTql/v3751u3e/dubdq0SYMGDdI///nPPOuys7N1/vz5fO/p2LFj7ucEAKCioCcNACqwhg0b6uGHH86zbPjw4ZKkatWq5Vt39913S7o0xX2OHTt2aMOGDRoyZEieBE2SIiIi9L//+786efKkPv/888vW58iRI5KkOnXqFFomMDAw3zJvb29VrVo13/Lw8HAFBATkxgUAoCKgJw0AKrA2bdrkm1AjIiJCknTNNdfkW1e3bl1J0rFjx3KXbdq0SZJ05syZAmef3L9/vyRp79696tevX5H1OX36tCQVmHC1aNFCbdu21bvvvqvDhw9r4MCBuu6669ShQwf5+fkVGrNatWo6efJkkdsFAMCTkKQBQAUWHh6eb5mPj89l12VmZuYuO3PmjKRL476KGvtVnOeV5fSSpaWl5Vvn7e2tNWvWaNq0afrggw/0f//3f5KksLAw3XvvvZo1a5aCg4Pzve/ixYsF9r4BAOCpuN0RAFCknGTumWeekW3bhb6efvrpy8aqVauWpP8mfr9VtWpVzZkzRz/++KP27dunv//974qOjtZf/vIXPfjgg/nKu1wuJSUl5cYFAKAiIEkDABSpc+fOkv572+OVaNmypby9vRUfH3/ZstHR0RozZozWr1+vkJAQffTRR/nKxMfHy7ZttW3b9orrBgCAU5CkAQCK1LFjR8XExGj58uVatGhRgWU2b96sCxcuXDZWeHi42rZtq507dyo9PT3PukOHDhX4jLazZ88qPT1dQUFBBW5Xknr27FmcjwIAgEdgTBoA4LLeeecd9ezZU6NGjdJf//pXdezYUaGhofrxxx/1zTff6MCBA0pMTCwwkfqtwYMHa9u2bVq3bp369OmTu3znzp0aPHiwOnbsqObNm6tu3br66aeftGzZMmVmZuaOUfu1Tz/9VN7e3ho4cKDRzwsAQHmiJw0AcFkNGjTQ9u3bNWXKFGVlZemNN97Q3Llz9fXXX6t169Z64403VKNGjWLFGjVqlHx9ffXGG2/kWd6hQwc9/vjj8vb21scff6zZs2frk08+UceOHbVq1Sr98Y9/zFM+OTlZy5Yt0+9+9ztdddVVxj4rAADlzbJt2y7vSgAAKpfRo0frnXfeUUJCQqkn/fjrX/+qcePG6csvv9R1111nuIYAAJQfkjQAgNslJibmTgwyZ86cEr8/LS1NjRs3VpcuXfTBBx+UQQ0BACg/jEkDALhdRESE3nrrrdzZGS3LKtH7Dx8+rNGjR+vee+8tmwoCAFCO6EkDAAAAAAdh4hAAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHCQ/weWvEzNa8iH3gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\",\n", + " interpolation=\"none\", extent=extent, alpha=0.6)\n", + "plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')\n", + "\n", + "plt.ylim(15,30) # zoom-in around 24 hertz\n", + "\n", + "plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Shifting-and-adding\n", + "\n", + "Shift-and-add is a technique used to improve the detection of QPOs ([Méndez et al. 1998](https://doi.org/10.1086/311600)). Basically, the spectrum is calculated in many segments, just as in the dynamical power spectrum above, but then the single spectra are shifted so that they are centered in the variable frequency of the followed feature. \n", + "This technique is implemented in Stingray's Dynamic Cross- and Powerspectrum. We can apply it here, using the `trace_maximum` functionality from the sections above.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAJeCAYAAAAna+19AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABjpUlEQVR4nO3deXxU5aH/8e9k33cgGwlLAMO+BAQURYqKWK0bWGvV2rr+LF63et2KS116a71u2PZW61KtesVal6IWAcEqBBBZZCdskgVIIPuezPn9wWvOnUkmG5Jk5uHzfr3yMnPmMDnBIZnPPM95jsOyLEsAAAAAAJ8U0NsHAAAAAABoG9EGAAAAAD6MaAMAAAAAH0a0AQAAAIAPI9oAAAAAwIcRbQAAAADgw4g2AAAAAPBhRBsAAAAA+LCg3j6AnuZ0OlVYWKjo6Gg5HI7ePhwAAAAAJyHLslRZWanU1FQFBLQ/lnbSRVthYaH69+/f24cBAAAAADpw4IDS09Pb3eeki7bo6GhJx/5yYmJievloAAAAAJyMKioq1L9/f7tP2nPSRZtrSmRMTAzRBgAAAKBXdeaULRYiAQAAAAAfRrQBAAAAgA8j2gAAAADAhxFtAAAAAODDiDYAAAAA8GFEGwAAAAD4MKINAAAAAHwY0QYAAAAAPoxoAwAAAAAfRrQBAAAAgA8j2gAAAADAhxFtAAAAAODDiDYAAAAA8GFEGwAAAAD4MKINAAAAAHwY0QYAAAAAPoxoAwAAAAAfRrQBAAAAgA8j2gAAAADAhxFtAAAAAODDiDYAgPH27Nmj++67TytWrOjtQwEAoMsclmVZvX0QPamiokKxsbEqLy9XTExMbx8OAKAHjB07Vhs3blRwcLAOHTqk+Pj43j4kAMBJritdwkgbAMB4W7dulSQ1NjZq7969vXw0AAB0DdEGADBec3Oz188BAPAHRBsAwGiWZcnpdNq3iTYAgL8h2gAARmt56jbRBgDwN0QbAMBoLSONaAMA+BuiDQBgNKINAODviDYAgNGINgCAvyPaAABGaxlp7ouSAADgD4g2AIDRGGkDAPg7og0AYDSiDQDg74g2AIDRiDYAgL8j2gAARiPaAAD+jmgDABiNaAMA+DuiDQBgNKINAODviDYAgNFY8h8A4O+INgCA0RhpAwD4O6INAGA0og0A4O+INgCA0Yg2AIC/I9oAAEYj2gAA/o5oAwAYjWgDAPg7og0AYDRWjwQA+DuiDQBgNEbaAAD+jmgDABiNaAMA+DuiDQBgNKINAODviDYAgNGINgCAvyPaAABGI9oAAP6OaAMAGI1oAwD4O6INAGA0lvwHAPg7og0AYDRG2gAA/o5oAwAYreXIGtEGAPA3RBsAwGiMtAEA/B3RBgAwGtEGAPB3RBsAwGhEGwDA3xFtAACjsXokAMDfEW0AAKMx0gYA8HdEGwDAaEQbAMDfEW0AAKMRbQAAf0e0AQCMRrQBAPwd0QYAMBrRBgDwd0QbAMBoRBsAwN8RbQAAo7HkPwDA3xFtAACjMdIGAPB3RBsAwGhEGwDA3xFtAACjEW0AAH9HtAEAjEa0AQD8HdEGADAa0QYA8HdEGwDAaEQbAMDfEW0AAKOx5D8AwN8RbQAAozHSBgDwd0QbAMBoRBsAwN8RbQAAoxFtAAB/R7QBAIxGtAEA/B3RBgAwGtEGAPB3RBsAwGisHgkA8HdEGwDAaC0jjZE2AIC/IdoAAEZjeiQAwN8RbQAAoxFtAAB/1+Voe+KJJzRnzhwNGjRIDodDAwYMaHf/1atXa+bMmYqOjlZMTIxmzZqlDRs2eN23sLBQV199tfr06aPw8HDl5ORo4cKFXT1EAABsRBsAwN91Odruu+8+LVu2TIMHD1Z8fHy7++bm5urMM8/U3r179cgjj+jhhx/Wrl27NG3aNH377bce+x49elSnn3663nvvPd1888169tlnFRUVpblz5+qVV17p6mECACCJaAMA+L+grv6B3bt3a9CgQZKkkSNHqqqqqs19b731VoWEhOiLL75QWlqaJGnu3LnKzs7WnXfeqcWLF9v7/va3v9XevXv14Ycf6oILLpAk/eIXv9CUKVN01113ac6cOYqKiurq4QIATnJEGwDA33V5pM0VbB3Jy8vT2rVrNWfOHDvYJCktLU1z5szRkiVLdPDgQXv7m2++qcGDB9vBJkmBgYGaN2+ejh49qo8//rirhwoAAEv+AwD8XrctRLJ27VpJ0pQpU1rdN3nyZFmWpXXr1kmSioqKVFBQoMmTJ3vd1/3xAADoCkbaAAD+rsvTIzursLBQkjxG2Vxc2woKCrq8b1elpKR43OYdVgA4uRBtAAB/120jbTU1NZKk0NDQVveFhYV57NOVfQEA6AqiDQDg77ptpC0iIkKSVF9f3+q+uro6j326sm9XFRUVedyuqKhQbGzscT0WAMD/EG0AAH/XbSNtqampkrxPa3Rtc0197Mq+AAB0BdEGAPB33RZtEydOlCStWrWq1X25ublyOByaMGGCpGPnnaWlpSk3N9frvpKUk5PTXYcKADAY0QYA8HfdFm1ZWVnKycnRwoUL7YVGpGOLjixcuFAzZsxQcnKyvf2KK67Q7t279dFHH9nbmpub9fzzzysuLk6zZ8/urkMFABiMJf8BAP6uy+e0vf7669q/f78kqbi4WA0NDXr00UclSZmZmbrqqqvsfZ999lmdddZZmjZtmubNmydJev755+V0OvXUU095PO4999yjhQsX6ic/+YnuuOMOpaWl6a233tLatWv10ksvKTo6+ri/SQDAyYuRNgCAv3NYlmV15Q9Mnz5dK1as8HrfmWeeqeXLl3tsW7VqlR544AGtXr1aDodDU6dO1RNPPKHx48e3+vMFBQW655579Mknn6iqqkrDhw/Xf/7nf+ryyy/vyiG2y7UQSXl5uWJiYk7Y4wIAfNPUqVM9puqHhYWptra2F48IAICudUmXo83fEW0AcHI59dRTtWbNGvt2cHCwGhoaevGIAADoWpd02zltAAD4AqZHAgD8HdEGADCat4VITrJJJgAAP0e0AQCM5m1kjWgDAPgTog0AYDRv0cYUSQCAPyHaAABGI9oAAP6OaAMAGI1oAwD4O6INAGA0og0A4O+INgCA0Yg2AIC/I9oAAEYj2gAA/o5oAwAYzel0dmobAAC+imgDABiNkTYAgL8j2gAARiPaAAD+jmgDABiNaAMA+DuiDQBgNKINAODviDYAgNGINgCAvyPaAABG8xZorB4JAPAnRBsAwGiMtAEA/B3RBgAwGtEGAPB3RBsAwFiWZcmyrFbbiTYAgD8h2gAAxmorzog2AIA/IdoAAMYi2gAAJiDaAADGItoAACYg2gAAxmorzljyHwDgT4g2AICxGGkDAJiAaAMAGItoAwCYgGgDABiLaAMAmIBoAwAYi2gDAJiAaAMAGItoAwCYgGgDABiLaAMAmIBoAwAYiyX/AQAmINoAAMZipA0AYAKiDQBgLKINAGACog0AYCyiDQBgAqINAGAsog0AYAKiDQBgLKINAGACog0AYKy2Volk9UgAgD8h2gAAxmKkDQBgAqINAGAsog0AYAKiDQBgLKINAGACog0AYCyiDQBgAqINAGAsog0AYAKiDQBgLKINAGACog0AYKy24owl/wEA/oRoAwAYi5E2AIAJiDYAgLGINgCACYg2AICxiDYAgAmINgCAsYg2AIAJiDYAgLGINgCACYg2AICxiDYAgAmINgCAsVjyHwBgAqINAGAsRtoAACYg2gAAxiLaAAAmINoAAMYi2gAAJiDaAADGItoAACYg2gAAxiLaAAAmINoAAMZi9UgAgAmINgCAsRhpAwCYgGgDABiLaAMAmIBoAwAYi2gDAJiAaAMAGItoAwCYgGgDABiLaAMAmIBoAwAYq61VIok2AIA/IdoAAMZiyX8AgAmINgCAsZgeCQAwAdEGADAW0QYAMAHRBgAwFtEGADAB0QYAMBbRBgAwAdEGADAW0QYAMAHRBgAwFtEGADAB0QYAMJZ7nIWEhNifs+Q/AMCfEG0AAGO1FW2MtAEA/AnRBgAwFtEGADAB0QYAMJZ7nAUHB3vdDgCAryPaAADGYqQNAGCCbo22qqoqPf744xo1apSio6OVlJSkqVOn6tVXX5VlWR77rl69WjNnzlR0dLRiYmI0a9YsbdiwoTsPDwBgOKINAGCCoO56YKfTqfPOO08rV67UNddco3nz5qmmpkZvvfWWrr32Wm3btk3/9V//JUnKzc3V9OnTlZaWpkceeUSStGDBAk2bNk0rV67UqFGjuuswAQAGa2t6JKtHAgD8icNqOeR1gqxatUpTp07Vbbfdpqefftre3tDQoFNOOUVHjx5VWVmZJGnSpEnavn27tm3bprS0NElSQUGBsrOzNXnyZC1evPiEHVdFRYViY2NVXl6umJiYE/a4AADfc+mll+q9996TJI0ePVqbNm2SJA0fPlxbtmzpzUMDAJzkutIl3TY9sqKiQpKUmprqsT0kJERJSUmKjIyUJOXl5Wnt2rWaM2eOHWySlJaWpjlz5mjJkiU6ePBgdx0mAMBgTI8EAJig26Jt0qRJiouL0+9+9zstXLhQ3333nbZv3657771X69at00MPPSRJWrt2rSRpypQprR5j8uTJsixL69at667DBAAYjGgDAJig285pi4+P14cffqjrrrtOc+fOtbdHR0fr73//uy666CJJUmFhoSR5jLK5uE+VPF4pKSketzmPAQBOHkQbAMAE3bp6ZFRUlEaOHKm77rpL7733nl566SVlZWXpJz/5iT777DNJUk1NjSQpNDS01Z8PCwvz2AcAgK4g2gAAJui2kbZvv/1WU6dO1dNPP62bbrrJ3n7FFVdo5MiRuv7667V7925FRERIkurr61s9Rl1dnSTZ+xyPoqIij9uuE/4AAOYj2gAAJui2kbann35adXV1mjNnjsf2iIgInX/++dq/f7/27dtnL1TibQqka5u3qZMAAHSEJf8BACbotmhzBZe3dzObmprs/06cOFHSsUsEtJSbmyuHw6EJEyZ012ECAAzGSBsAwATdFm3Dhw+XJL366qse28vKyvTBBx8oPj5eWVlZysrKUk5OjhYuXGgvSiIdW6Bk4cKFmjFjhpKTk7vrMAEABiPaAAAm6LZz2m677Tb99a9/1T333KNvv/1Wp512mo4ePaoXX3xRRUVFeuGFFxQYGChJevbZZ3XWWWdp2rRpmjdvniTp+eefl9Pp1FNPPdVdhwgAMBzRBgAwQbdFW2ZmptasWaNHHnlES5cu1dtvv63w8HCNHTtWTz31lC655BJ736lTp2r58uV64IEH9MADD8jhcGjq1KlauHChxowZ012HCAAwnPu5a0QbAMBfdVu0SdLgwYP12muvdWrfKVOmaOnSpd15OACAkwwjbQAAE3TrddoAAOhNbUUbq0cCAPwJ0QYAMFZbS/4z0gYA8CdEGwDAWEyPBACYgGgDABirvemRlmX1xiEBANBlRBsAwFhtRZvEeW0AAP9BtAEAjNVetDFFEgDgL4g2AICxiDYAgAmINgCAsdpaPVJieiQAwH8QbQAAY7UXbYy0AQD8BdEGADAW0yMBACYg2gAAxiLaAAAmINoAAMYi2gAAJiDaAADGItoAACYg2gAAxiLaAAAmINoAAMZiyX8AgAmINgCAsRhpAwCYgGgDABjJsiyP0TSiDQDgr4g2AICRWk5/JNoAAP6KaAMAGKlllAUFBbV7PwAAvopoAwAYqWWUBQYGKjAwsM37AQDwVUQbAMBIHUUbq0cCAPwF0QYAMJK3aAsICGjzfgAAfBXRBgAwEtMjAQCmINoAAEYi2gAApiDaAABGannOGtEGAPBXRBsAwEiMtAEATEG0AQCMRLQBAExBtAEAjMSS/wAAUxBtAAAjseQ/AMAURBsAwEhMjwQAmIJoAwAYqWWUBQQEEG0AAL9EtAEAjOQeZQEBAXI4HEQbAMAvEW0AACO1jDZJRBsAwC8RbQAAI7lHmSvWiDYAgD8i2gAARvIWbe6rR7LkPwDAXxBtAAAjMdIGADAF0QYAMBLRBgAwBdEGADAS0QYAMAXRBgAwEtEGADAF0QYAMBLRBgAwBdEGADBSR9HG6pEAAH9BtAEAjNTRkv+MtAEA/AXRBgAwEtMjAQCmINoAAEYi2gAApiDaAABGItoAAKYg2gAARiLaAACmINoAAEYi2gAApiDaAABGYsl/AIApiDYAgJFY8h8AYAqiDQBgJKZHAgBMQbQBAIzkPv2RaAMA+DOiDQBgJEbaAACmINoAAEYi2gAApiDaAABGYvVIAIApiDYAgJFYPRIAYAqiDQBgJKZHAgBMQbQBAIzkHmWuETaiDQDgj4g2AICRGGkDAJiCaAMAGIloAwCYgmgDABiJaAMAmIJoAwAYiSX/AQCmINoAAEZiyX8AgCmINgCAkZgeCQAwBdEGADAS0QYAMAXRBgAwEtEGADAF0QYAMBLRBgAwBdEGADAS0QYAMAXRBgAwUkerR7LkPwDAXxBtAAAjMdIGADAF0QYAMBLRBgAwBdEGADAS0QYAMAXRBgAwEtEGADAF0QYAMBLRBgAwBdEGADBSR9HG6pEAAH9BtAEAjNTRkv+MtAEA/EW3R9vRo0d11113KSsrS2FhYerTp4/OOuss/fvf//bYb/Xq1Zo5c6aio6MVExOjWbNmacOGDd19eAAAQzE9EgBgiqDufPD9+/dr+vTpqqqq0i9+8QsNHTpU5eXl2rRpkwoKCuz9cnNzNX36dKWlpemRRx6RJC1YsEDTpk3TypUrNWrUqO48TACAgdynPxJtAAB/1q3R9tOf/lRNTU3atGmTUlJS2tzv1ltvVUhIiL744gulpaVJkubOnavs7GzdeeedWrx4cXceJgDAQIy0AQBM0W3TI7/44gt9+eWXuvvuu5WSkqLGxkbV1NS02i8vL09r167VnDlz7GCTpLS0NM2ZM0dLlizRwYMHu+swAQCGItoAAKbotmj7+OOPJUkZGRm64IILFB4ersjISA0dOlRvvPGGvd/atWslSVOmTGn1GJMnT5ZlWVq3bl13HSYAwFBEGwDAFN02PXLHjh2SpOuvv15DhgzRa6+9poaGBj311FO66qqr1NjYqGuvvVaFhYWS5DHK5uLa5n7+W1e1nJbJEs8AcHJwjzLXqpHuq0fy+wAA4C+6LdoqKyslSdHR0fr8888VEhIiSbrooos0aNAg3XfffbrmmmvsKZOhoaGtHiMsLEySvE6rBACgPYy0AQBM0W3RFh4eLkm64oor7GCTpPj4eF144YX661//qh07digiIkKSVF9f3+ox6urqJMne53gUFRV53K6oqFBsbOxxPx4AwD8QbQAAU3TbOW3p6emSpOTk5Fb3uaYslpaWKjU1VZL3KZCubd6mTgIA0B6iDQBgim6LtkmTJkmS8vPzW93n2ta3b19NnDhRkrRq1apW++Xm5srhcGjChAnddZgAAEMRbQAAU3RbtF100UWKjo7WG2+8oaqqKnt7UVGR3n//fQ0dOlRZWVnKyspSTk6OFi5caC9KIkmFhYVauHChZsyY4XW0DgCA9hBtAABTdNs5bfHx8fr973+vG2+8UZMnT9bPf/5zNTQ06I9//KMaGhr0/PPP2/s+++yzOuusszRt2jTNmzdPkvT888/L6XTqqaee6q5DBAAYjGgDAJii26JNkm644QYlJSXpd7/7nX79618rICBAU6ZM0ZtvvqnTTjvN3m/q1Klavny5HnjgAT3wwANyOByaOnWqFi5cqDFjxnTnIQIADOUt2ljyHwDgj7o12iTpkksu0SWXXNLhflOmTNHSpUu7+3AAACcJRtoAAKbotnPaAADoTUQbAMAURBsAwEhEGwDAFEQbAMBIRBsAwBREGwDASEQbAMAURBsAwEgdRZtlWbIsq8ePCwCAriLaAABG6mjJf4ll/wEA/oFoAwAYqaORtpb7AADgq4g2AICRiDYAgCmINgCAkYg2AIApiDYAgJGINgCAKYg2AICRiDYAgCmINgCAkVg9EgBgCqINAGAk9yBjpA0A4M+INgCAkZgeCQAwBdEGADCOZVmyLMu+TbQBAPwZ0QYAME7LGHOdy0a0AQD8EdEGADBOyxhjpA0A4M+INgCAcTobbaweCQDwB0QbAMA4bUVbyyX/GWkDAPgDog0AYByiDQBgEqINAGCctqKt5edEGwDAHxBtAADjEG0AAJMQbQAA4xBtAACTEG0AAOMQbQAAkxBtAADjtBdt7ouRsOQ/AMAfEG0AAOMw0gYAMAnRBgAwDtEGADAJ0QYAMA7RBgAwCdEGADBOyxhzP4+NaAMA+BuiDQBgHPcYc4+0lreJNgCAPyDaAADGIdoAACYh2gAAxmkv2ljyHwDgb4g2AIBxGGkDAJiEaAMAGIdoAwCYhGgDABiHaAMAmIRoAwAYh2gDAJiEaAMAGIdoAwCYhGgDABiH1SMBACYh2gAAxnGPMUbaAAD+jmgDABjHPcbcR9Ykog0A4H+INgCAcTinDQBgEqINAGAcog0AYBKiDQBgHKINAGASog0AYByiDQBgEqINAGAclvwHAJiEaAMAGIeRNgCASYg2AIBxiDYAgEmINgCAcYg2AIBJiDYAgHGINgCASYg2AIBxiDYAgEmINgCAcYg2AIBJiDYAgHFY8h8AYBKiDQBgHEbaAAAmIdoAAMYh2gAAJiHaAADGIdoAACYh2gAAxiHaAAAmIdoAAMYh2gAAJiHaAADGYfVIAIBJiDYAgHEYaQMAmIRoAwAYh2gDAJiEaAMAGIdoAwCYhGgDABiHaAMAmIRoAwAYxz3G3BcekYg2AID/IdoAAMZhpA0AYBKiDQBgHPel/FnyHwDg74g2AIBxGGkDAJiEaAMAGIdoAwCYhGgDABiHaAMAmIRoAwAYh2gDAJiEaAMAGIdoAwCYhGgDABinvWhzXz2SaAMA+AOiDQBgnM6OtLHkPwDAHxBtAADjMD0SAGASog0AYByiDQBgkh6NtpqaGg0aNEgOh0O//OUvW92/Y8cOXXTRRYqPj1dkZKSmTZumZcuW9eQhAgAMQLQBAEzSo9E2f/58FRcXe71v9+7dmjp1qlatWqW7775bTz75pKqqqnTuuedqyZIlPXmYAAA/R7QBAEwS1FNf6JtvvtEzzzyj3/3ud7rzzjtb3X/vvfeqrKxM69at09ixYyVJV199tUaMGKFbbrlF27dvl8Ph6KnDBQD4MaINAGCSHhlpa25u1vXXX69Zs2bpkksuaXV/dXW1PvzwQ02fPt0ONkmKiorSddddp507d2rt2rU9cagAAAN0dsl/Vo8EAPiDHom2p59+Wtu3b9eCBQu83r9p0ybV19drypQpre6bPHmyJBFtAIBOY6QNAGCSbp8euXfvXj344IOaP3++BgwYoH379rXap7CwUJKUlpbW6j7XtoKCguP6+ikpKR63eVcVAMxHtAEATNLtI2033XSTBg0apDvuuKPNfWpqaiRJoaGhre4LCwvz2AcAgI4QbQAAk3TrSNsbb7yhzz77TF988YWCg4Pb3C8iIkKSVF9f3+q+uro6j326qqioyON2RUWFYmNjj+uxAAD+gWgDAJik26Ktvr5ed9xxh2bPnq3k5GTl5eVJ+r9pjuXl5crLy1NSUpJSU1M97nPn2uZt6iQAAN4QbQAAk3Tb9Mja2loVFxdr0aJFGjJkiP0xffp0ScdG4YYMGaKXXnpJo0aNUmhoqFatWtXqcXJzcyVJOTk53XWoAADDdHb1SKINAOAPum2kLTIyUgsXLmy1vbi4WP/v//0/zZo1S7/4xS80evRoRUVF6YILLtB7772njRs3asyYMZKkqqoqvfTSSxoyZIgmTZrUXYcKADBMZ0faWJwKAOAPui3agoODddlll7Xa7lo9cvDgwR73P/HEE1q6dKnOOecc3X777YqJidGLL76ogoICLVq0iAtrAwA6jemRAACTdPuS/52VlZWlr776Svfcc49++9vfqqGhQePHj9enn36qmTNn9vbhAQD8iHuMuU+HlIg2AID/6fFoGzBggCzL8npfdna2Pvjggx4+IgCAaRhpAwCYpNuv0wYAQE8j2gAAJiHaAADGIdoAACYh2gAAxnFfFbK9Jf9ZPRIA4A+INgCAcRhpAwCYhGgDABiHaAMAmIRoAwAYh2gDAJiEaAMAGKez0WZZVpuXoQEAwFcQbQAA43Q22lruCwCALyLaAADGIdoAACYh2gAAxmkv2tyX/JdY9h8A4PuINgCAcRhpAwCYhGgDABiHaAMAmIRoAwAYxbIsjymPRBsAwN8RbQAAo7Q8R41oAwD4O6INAGCUlhFGtAEA/B3RBgAwSkfR1nL1SKINAODriDYAgFG6OtLGkv8AAF9HtAEAjML0SACAaYg2AIBRiDYAgGmINgCAUYg2AIBpiDYAgFGINgCAaYg2AIBROoo2h8Mhh8PR5v4AAPgaog0AYJSWEdZyif+W21g9EgDg64g2AIBROhppa7mNkTYAgK8j2gAARiHaAACmIdoAAEYh2gAApiHaAABGIdoAAKYh2gAARnFfWKTlSpEuRBsAwJ8QbQAAo7hHmLdRNslz9UiiDQDg64g2AIBROhNt7ttZ8h8A4OuINgCAUboabYy0AQB8HdEGADAK0QYAMA3RBgAwCtEGADAN0QYAMArRBgAwDdEGADAK0QYAMA3RBgAwCkv+AwBMQ7QBAIzCkv8AANMQbQAAozA9EgBgGqINAGAUog0AYBqiDQBgFKINAGAaog0AYBSiDQBgGqINAGAUVo8EAJiGaAMAGIXVIwEApiHaAABGYXokAMA0RBsAwChEGwDANEQbAMAoRBsAwDREGwDAKO4R5r7giDuiDQDgT4g2AIBRGGkDAJiGaAMAGIUl/wEApiHaAABGYcl/AIBpiDYAgFGYHgkAMA3RBgAwCtEGADAN0QYAMArRBgAwDdEGADCK+zlqRBsAwAREGwDAKIy0AQBMQ7QBAIzS1SX/WT0SAODriDYAgFEYaQMAmIZoAwAYhWgDAJiGaAMAGIVoAwCYhmgDABiFaAMAmIZoAwAYhWgDAJiGaAMAGKWrq0cSbQAAX0e0AQCM0tWRNpb8BwD4OqINAGAUpkcCAExDtAEAjEK0AQBMQ7QBAIxCtAEATEO0AQCMQrQBAExDtAEAjEK0AQBMQ7QBAIzCkv8AANMQbQAAo7DkPwDANEQbAMAo7tHmPqLmjumRAAB/QrQBAIzCOW0AANMQbQAAoxBtAADTEG0AAKMQbQAA0xBtAACj+NvqkU6nU7t27dKBAwdkWVavHgsAwDd1W7Tt3LlT8+fP1+TJk9WnTx9FR0dr7Nixeuyxx1RdXd1q/x07duiiiy5SfHy8IiMjNW3aNC1btqy7Dg8AYCh/Wz3y66+/1t/+9jf95S9/0f79+3v1WAAAvqnbou3ll1/W008/rcGDB2v+/Pl68sknNWzYMD3wwAOaOnWqamtr7X13796tqVOnatWqVbr77rv15JNPqqqqSueee66WLFnSXYcIADCQv02P3L59u/357t27e/FIAAC+Kqi7Hviyyy7Tvffeq9jYWHvbTTfdpCFDhuixxx7TX/7yF/3yl7+UJN17770qKyvTunXrNHbsWEnS1VdfrREjRuiWW27R9u3b5XA4uutQAQAG8bdoKysrsz+vq6vrvQMBAPisbhtpy8nJ8Qg2l8svv1yStHnzZklSdXW1PvzwQ02fPt0ONkmKiorSddddp507d2rt2rXddZgAAMP4U7Q5nU6PaKuvr++1YwEA+K4eX4gkPz9fktSvXz9J0qZNm1RfX68pU6a02nfy5MmSRLQBADrN/Rw1X4+2iooKj+NlpA0A4E23TY/0prm5Wb/5zW8UFBSkn/zkJ5KkwsJCSVJaWlqr/V3bCgoKjvtrpqSkeNzu7RPOAQDdy59G2kpLSz1uE20AAG96NNpuu+02rVq1So8//riGDRsmSaqpqZEkhYaGtto/LCzMYx8AQO+wLMtvzi32pyX/3adGSkQbAMC7Hou2X//611qwYIFuuOEG3Xvvvfb2iIgISd7n8bt+ebn2OR5FRUUetysqKryeawcA8K6kpERvv/22HA6HfvrTn/r8z1B/WvKfkTYAQGf0yDltDz30kB599FFde+21+tOf/uRxX2pqqiTvUyBd27xNnQQA9Iyvv/5aJSUlKi4u1pdfftnbh9MhpkcCAEzT7dH20EMP6eGHH9Y111yjl156qdX0mlGjRik0NFSrVq1q9Wdzc3MlHVuJEgDQOyorK+3PDxw40ItH0jn+HG0NDQ2cew0AaKVbo+2RRx7Rww8/rKuuukovv/yyxzkELlFRUbrgggu0fPlybdy40d5eVVWll156SUOGDNGkSZO68zABAO2ora21Pz906JAaGhp68Wg65k/R1vKcNonRNgBAa912TtsLL7ygBx98UBkZGZo5c6befPNNj/v79euns88+W5L0xBNPaOnSpTrnnHN0++23KyYmRi+++KIKCgq0aNEivzn5HQBM5B5tlmWpqKhImZmZvXhE7XOPyqAg77/mfCHaGhoaVFVV1Wp7fX399zqXGwBgnm6LNte11b777jtdc801re4/88wz7WjLysrSV199pXvuuUe//e1v1dDQoPHjx+vTTz/VzJkzu+sQAQCd4B5t0rHrbfpytJWUlNifJyUled3HF1aP9DbKJjHSBgBordui7dVXX9Wrr77a6f2zs7P1wQcfdNfhAACOU8uIyM/P76Uj6Vhtba3HOXh9+/b1up8vjLS1PJ/NhWgDALTUI6tHAgD8k9PpbBURBw4ckGVZvXRE7SsuLva43Zlo662FPxhpAwB0FtEGAGiTt4CoqqpSRUVFLxxNxw4fPmx/HhoaqujoaK/7MdIGAPAnRBsAoE0tz2dz8dUpku7R1rdv3zYXsiLaAAD+hGgDALSprYDwl2hri69Fm3tcEm0AgJaINgBAm/x9pK0tvR1tlmV5nNPmvsplfX19jx8PAMC3EW0AgDa5R5v7aFBRUVGvXpS6LZ2Ntt5e8r+mpsbjenLJycn254y0AQBaItoAAG1yj7aUlBQ73JqamnTw4MHeOqw2Hc9IW2+sHuk+NTIoKMhjpI1oAwC0RLQBANrkHhAxMTHq16+ffdsXp0geT7RZltXjlzBwj7a4uDiFh4fbt4k2AEBLRBsAoE3uI23h4eFKT0+3bxcUFPTGIbXreKJN6vkpku7ns8XFxSksLMy+TbQBAFoi2gAAbWov2kwZaZN6PtrcR9ri4+OJNgBAu4g2AECb2ou2o0ePqrq6ujcOyyvLsog2AICRiDYAQJvcoy0sLEyJiYkegeFLUyTLy8vV2Nho3/bXaKuvr+/xc+wAAL6NaAMAtMl91Cc8PFwOh0NpaWn2Nl+aIuk+yiZJffr0aXNf9yX/pZ6NtubmZlVUVNi3W57TZlmWx+UAAAAg2gAAbWo5PVKSz57X5h5tsbGxCg0NbXPfliNtPbnsf0VFhcfXi4+Pb3WsTJEEALgj2gAAbeoo2goKCnrlOmfedPZ8NkmKjIz0uO2+mmN3c58aGR4errCwMIWEhHhcvJxoAwC4I9oAAF41NjaqqanJvu2awuc+PbK+vl4lJSU9fmzedCXaoqOjFRsba98+cOBAtx1XSy3PZ5Mkh8PBYiQAgDYRbQAAr1qGg2ukLSIiQomJifb2ngye9nQl2iQpIyPD/vy7777rlmPypuU12lyINgBAW4g2AIBX7lMjW44EuQfPnj17evS42vJ9oq23R9okog0A0DaiDQDgVcvl/t3PuRo8eLD9+Z49e3zivLauRlv//v3tz3typI1oAwB0FdEGAPCqZbS5GzRokB1xtbW1PnG9Nn+cHtlWtNXX1/fY8QAAfB/RBgDwquU12txFRER4LEiSl5fXY8fVFn+YHtnQ0KDq6mr7tvs5be7L/jPSBgBwR7QBALzytty/u6ysLPvz3bt398gxtccfpke6T410OBweK1gyPRIA0BaiDQDgVVeiraCgQDU1NT1yXN40NTXpyJEj9u2ujrRVVFSovLy8W47NnXu0xcTEKCgoyL5NtAEA2kK0AQC86ijaUlNT7e2WZfXqKpItrxXXmWhLS0vzWFylO6dINjQ0aPPmzVq5cqW9zX1qpES0AQDaFtTxLgCAk5F7OLRciESSAgICNHjwYG3evFnSsfPaRo4c2WPH5859amRAQIASEhI6/DPBwcFKSUlRYWGhpGNTJE/U8VuWpaNHj+rAgQPasWOHdu3a5XGhckke17qTiDYAQNuINgCAVx2NtElqFW2WZXmMXvUU92jr06ePAgI6N5EkIyPDI9q+j9LSUm3ZskUHDhzQgQMH2p0uGhERoZycHI9tRBsAoC1EGwDAq85Em/t5bVVVVTp06JCSk5O7/dha6uoiJC4ZGRnKzc2V9P2mR5aXl+uFF15oNZrmLiQkREOHDtXw4cOVlZWlkJAQj/tZ8h8A0BaiDQDgVWeiLTo6Wv369dOhQ4ckHRtt86doO1ErSG7bts1rsMXFxSkjI0PZ2dnKyspScHBwm4/RcqStt0YtAQC+h2gDAHjV3sW13WVlZXlE2+mnn97tx9ZSR9FWV1enr7/+WnFxcR7nrZ2oC2y7j9JlZmZq8uTJSk9PV3R0dKcfw/06bc3NzWpqamo38gAAJw+iDQDQimVZ7V5c211WVpa++uorScfCp76+3iNAekJH0bZkyRJ9/fXXkqTIyEgNHDhQ0om5wLZlWR7Bl5OTo+zs7C4/TsswrqurI9oAAJJY8h8A4EV9fb0sy7JvtxdtGRkZ9vlZTqdTe/fu7fbja6mjaNu1a5f9ufulCdynR+bn56u5ubnLX7usrEyVlZX2bfcQ7IqWoctiJAAAF6INANCK+9RIqf1oCwwMtEeuJGn37t3ddlxtaS/aampqPC6cXVxcbH/uHliNjY32NM+ucB9li42NVWxsbJcfQzp2qQL3cCPaAAAuRBsAoBX3aAsMDFRQUPuz6d1Xkdy1a5fHKF1PaC/aXEv6e9s3KSnJY1ri8UyRdI+24x1lc2HZfwCAN0QbAKCVluezdbSKoXu0lZWV6ciRI912bN60F21FRUUet0tLS9XY2ChJcjgc33sFye6KNpb9BwC4EG0AgFY6s9y/u/j4eCUmJtq3v/322245Lm+qq6tVXV1t3+4o2izL8ojK77OCZG1trcd0S/cAPB6MtAEAvCHaAACtdDXaJGnUqFH25+vXr5fT6WxzX9dI14ngHk1Sx9HW8s+4h1ZXp0e67x8aGtqla8R5wzltAABviDYAQCudvUabu3HjxtnTKCsqKpSXl9dqH8uy9MEHH+ixxx7Te++9d0KO1X1qZHh4uCIjI+3btbW1Ki0tbffPfJ+RNvf9+/fvr4CA7/drlZE2AIA3RBsAoJXOXqPNXWxsrMe5bevWrWu1z+7du7V+/XpJ0qZNm1qNkh2PluezuZ9/522UTWp7BcnvE23f93w2iWgDAHhHtAEAWjme6ZGSNGHCBPvznTt3qqKiwr5tWZaWLFnisf/xLPzRUlcWIXE5EdMjm5qaVFBQYN8m2gAA3YVoAwC0crzRNnToUEVHR0s6FmmuUTVJ2rJliw4ePOix//79+7/nkXZ+uf/MzEz786NHj6qpqUmSZ2wdPny41TXq2lJYWGhfjDsgIEBpaWldP/gWiDYAgDdEGwCgleM5p006Fi/jxo2zb7sWJGlubtayZcta7b9v374uXdPNsiw7tlw6O9I2atQoe+qk+wqSLVd8zM/P79SxuI/KpaSkKDg4uFN/rj0s+Q8A8IZoAwC0cjzntLm4L0hSVlamPXv2aP369Tp69GirfSsqKlReXt6px62urtaCBQv029/+Vps2bbK3txVtdXV1Hl8zIyND8fHxrf5cZGSkEhIS7O2dnSJ5os9nkxhpAwB4R7QBAFo53umR0rFrtg0aNMi+nZubqxUrVti3R40apZiYGPt2Z6dI5ubm6siRI2pqatKHH36okpISSZ7R1q9fP/tz96mYwcHBSkpKUp8+fext32cxEsuyuiXaWPIfAOAN0QYAaOX7RJvkuSBJXl6eKisrJR2bPnnWWWd5nF/WmWhzOp3auHGjfbupqUnvv/++nE5nmyNt7uezJScnKyAg4IRFW0lJicff0fe9qLYLI20AAG+INgCAh+bmZjU0NNi3u3JOm8uwYcM8rpfmMmHCBCUkJHQ52vbt2+exEqV07NyzlStXthlt7uezpaSktLr/+6wg6R52iYmJioqK6vDPdIb733VjY6O90AkA4ORGtAEAPLRcPfF4RtoCAwM9FiSRjk1RPOOMMyR5ruR45MgRVVVVtft4GzZs8Lp96dKlHvHVUbS5j7S1tYJkZ0baumNqpNQ6kBltAwBIRBsAoIWWoXA8I22SNH78eI/bp556qn05gKSkJEVERNj3tTfaVl9fr23bttm3zznnHPvP1tTUeKwm6Yq2+vp6e3VISUpNTbW/rmuRFKfTae/T1WhzH407UVMjJaINAOAd0QYA8OA+0hYaGqrAwMDjepyEhATl5ORIOhZTp512mn2fw+HwGG1rL5S2bdumxsZGSVJISIhycnL0wx/+UNKxFSXdJSUlSTq2CInrUgJBQUH2CFtwcLDi4uLs/V2jdC2nR7Z1GYLGxkYtWbKk1aqUJ0pgYKDHpQOINgCAJAX19gEAAHzL8V6jzZvZs2drypQpio6OVkhIiMd9GRkZ9ghaeyNt7lMjs7OzFRISouHDh2vUqFH65z//ad8XFxdnB4/71Mh+/fopIOD/3qPs06ePSktLJf1ftLmHV3V1tUpLSz0uAyBJu3bt0qJFi1RWVmZvi46OVmJiYrt/B10VFhZmRyrXagMASIy0AQBa+L4rR7oLCAhQYmJiq2CTPM9rO3ToUKtz6aRj13nbt2+ffXvs2LH257Nnz/aYGhkcHGwvSuK+cqRraqSL+3lvrv1TUlI8RhRdI3+WZam4uFjvvPOO/va3v7UKtosvvtiebnmisIIkAKAlRtoAAB6+z4W1uyI5OVmhoaGqr6+XZVk6cOCAhg4d6rGP+zL/sbGxGjBggMexuV8PLiIiQq+99pquvfZar4uQuHhb9j8oKEipqan2uWq5ubkqKCjQrl27PEJNOja1c9KkSZoxY4bHddVOFK7VBgBoiZE2AICHEznS1p6AgACPc8laTpG0LMsj2saMGdPuqFZkZKSqq6v12muv2RfeltqPtrZWkPzwww+1du3aVsGWkpKi66+/Xuedd163BJvESBsAoDVG2gAAHk7kOW0dyczMVF5enqTW0Zafn++x4MeYMWNa/Xn3a7S5VpR0XchbOrawh/t0SOn/FiuRjq0gefToUfXt29fjHLby8vJWf2bixImaOHGix/lx3YFoAwC0RLQBADz01Eib5HleW2FhoRoaGuzz39wXIOnfv7/XBT/co839fDeXfv36tVr9MiQkRPHx8fZiJIcPH1ZkZKRH7FVWVmrIkCEaOnSosrKyFB8ff1zf3/Eg2gAALRFtAAAPPXVOm3RskZCgoCA1NTXJ6XQqPz9fAwYM0M6dO7V582Z7P2+jbI2Njfrqq6/s26eeeqqGDx+uxYsX29taTo10abmC5LfffuvxvYaFhenKK6/83t/f8SDaAAAtEW0AAA89OdIWFBSk9PR0e4XIFStW6IMPPvCYnhgUFKQRI0a0+rOffPKJDh06JOnYNMjzzz9fKSkpcjqdWrp0qSRpwoQJXr9unz59tHPnTknSmjVrVFtbq9jYWPt+94VMepp7tLHkPwBAItoAAC30ZLRJx6ZIuqLN2/XaJk6c6PU4XnnlFfvz8847zx5VO/300zVy5EgFBwcrMjLS69d0X4zE9f26n9OWn5+v7du365RTTun6N/Q9MdIGAGiJ1SMBAB56ciESyXPVRheHw6Fhw4bpqquu0jnnnNPq/sOHD3tcWPvnP/+5x/1xcXFtBpvkGW0u6enpysrKsm+/9tprnTr+E40l/wEALTHSBgCwWZbVo+e0ScdG2hITE3XkyBGFh4dr3LhxmjhxYruLf7zxxhv2Uv1JSUk6//zzu/Q1vUXbj370I0nSfffdJ0n661//qkcffbTVQibdjZE2AEBLRBsAwNbY2Kjm5mb7dk9EW1BQkG688UYdOnRIycnJCg4Obnd/y7L08ssv27evuuoqe8XJzgoJCVFCQoJ9SYHx48dr+PDhiomJ0QMPPCCn06nCwkJ99tlnmjVrVte/qe+BaAMAtMT0SACAzX1qpNQz0SYdi6j+/ft3GGyS9PXXX2vLli327Wuvvfa4vuaMGTMUGRmpIUOG2GGWnp6us88+297H/by5ntJyIRKn09njxwAA8C2MtAEAbO7RFhAQ0OURrJ7gPsqWk5OjUaNGHdfjjBw5UiNHjmy1/Wc/+5n+9a9/SZLef/99lZaW9tp12qRj4dZT8QwA8E2MtAEAbO7T8cLCwuRwOHrxaFqrra3VW2+9Zd8+3lG29lx00UX28v8NDQ0eX68neIs2AMDJjWgDANh6ern/rvrHP/5hX8MtNDRUV1xxxQn/GmFhYR6P++qrr57wr9GeoKAgj8VPOK8NAEC0AQBsvh5t7ueYXXzxxd02bdF9BG/t2rUe59B1N4fDwWIkAAAPRFsvsyxLH330kb755pvePhQAJzmn06mdO3fat3viGm1dsX//fi1dutS+3fLabCfSxIkTlZ2dbd/u6dE292u1uVa4BACcvIi2XrZ27VqtW7dOH374of75z3/a1x3ypqampt37TyZOp1OrVq3SJ598okOHDvX24XSosrJSK1eu1JYtW2RZVm8fDtCKZVn65JNPtH37dntbZmZmlx6jvr5eu3btUnV19Yk+PDU0NOiOO+6w//30799fM2bMOOFfx8XhcHiMtr3++utqbGzstq/XUkREhP35Rx99pI8++kg1NTU99vVhtq1bt2rz5s38PgL8CKtH9qKGhgatWLHCvv3111/r4MGDmjt3rmJiYuztR44c0ZIlS7Rt2zaFhYVpwoQJmjRpkn2i/Mlo2bJl+vLLLyUdC99p06Zp2rRpCgryjaf03r17tWTJEq1evVqrV6/W1q1b7WW7hwwZorlz5+ryyy/XyJEjfW6hB/ie+vp6HT58WIcOHdKhQ4dUXV2tc845R3FxcSfsa6xYsUJr1661b2dmZmry5Mmd+rPbtm3Tiy++qNdee01Hjx5VRESELrzwQv34xz/WrFmzPEaNjkd1dbUuvfRSe0VHSfrFL37R7Re9/ulPf6p77rlHTqdThw4d0rvvvqsf//jHPfJvdvTo0crPz5d0LKjXrVunrVu3aubMmRoxYoQaGxvtD8uy1LdvXwUEmPk+bGVlpXbu3KmdO3eqpqZGKSkpysjIUEZGhsfvSl9SWVmp/Px89e/fX1FRUb19OLadO3fqP//zP/X+++9LOrb66q233qq5c+d2+O+0ublZL730kv76179q9OjRuueee7r8xg48uaK5N18HOJ1Obdy4Ufn5+WpoaFBDQ4MaGxvV0NCg4OBgJSYmKjExUUlJSUpMTFRcXJyxP2t8ncM6yd5mqaioUGxsrMrLy33ih31paanefvttj9GiqKgozZkzR0lJSVqxYoW+/vrrVtfpCQgI0IgRIzR58mSlpaX19GH3ql27dulvf/tbq+19+vTRhRdeqP79+/fo8ezfv1+FhYUaMWKEwsPD9dBDD+mJJ57o1DuYGRkZuuCCC3TPPfcoPT29019zy5Yt+uqrrxQdHa0hQ4ZoyJAhHUa80+nU9u3btXbtWh0+fFgJCQlKSUlRamqqUlJS1KdPH/sHsWVZ2rZtm4qKijxeHDY2Nio0NFTR0dGKiopSVFSUYmNjlZaW1uEvnebmZq8vshsbG1VUVKT8/Hzl5+ersrJSycnJysrK0rp16/Tb3/5WlZWVuuKKK3Tddddp0KBBnf578qa+vt6+9lVzc7P9byshIaFLEdDY2KjFixdr7969GjZsmE477TRFRESoublZAQEBbf59WJalt956S//93/+tfv366ec//7kuvPBCj+uTWZaltWvX6o9//KM++ugjHTlypNXj9O/fX//85z81evToLv4NtLZmzRp9/PHH9u3k5GT97Gc/a3d6ZH19vd555x39+c9/tt9A8SY2NlYXX3yxpk6dquHDhys7O1sJCQmdPrbS0lL98Ic/1MqVK+1t06ZN0yeffKLIyMhOP87xOv/88z3+bmJiYjR27FiNHTtWmZmZqqqqUkVFhf3hcDjUt29f9enTx/5vcnKy+vfvr+TkZPuNpcbGRq1evVpLly7V0qVLtXbtWp166qn685//rKFDh0qS8vLy9PHHH+vo0aNyOp1av3698vLyFBQUpOjoaPsjKipKSUlJOu+88zRmzBjFxMScsEs1NDU1ac2aNaqtrVVERITCw8Pt/zY0NKi2tlY1NTWqra2VZVnKycnpUqTk5ubqzjvv1KZNmzR48GCNGjVKo0aN0qBBg1RSUqL169dr7969KisrU0VFhaKiojRu3Dj79158fLz69u0r6di/G9fP3ZCQEMXGxiomJkaxsbGKjY1VUlJSt1zCorq6WgsWLFBubq7279+v/fv321Nag4OD9atf/Ur333+/x+hpRyzLUnl5uQoLC1VYWKiCggIVFxcrMjJSaWlpSk1NVWpqqvr169epn1tHjhzRI488oj/84Q9eZ+z069dPN910k2644Qalpqa2uv+bb77RzTffrDVr1tjbgoODdcMNN+i+++6z/0xtba2WLVumjz76SPn5+Zo6dapuuOEGBQcHq6ioSKWlpUpMTFRGRkaXpl9/+eWXeu211/SnP/2pze+3uLhY27ZtU3l5uf1zvr6+Xg0NDUpMTFROTo4GDBhwwgOpublZkjr9+6O8vFy7du3Srl27tHfvXoWFhemss87S2LFjezzejh49qvfee89+g6gzQkND1b9/f2VkZCgzM1NpaWk+84a5P+pKlxBtPqChoUEfffSRvv32W3tbQECAgoODO7XUs+vFt+sjOTm5wxczTqdTpaWlCg4OVnh4uP2C0fWL4uDBg/aHZVlKT09XZmamUlNTu/yP07Is7d69W+vWrVNBQYHi4uI0YcIEjRgxosuPVVFRoT/96U9tThNyOBwaPXq0EhISFBISYn8kJCQoNTXV6w/Empoaff3119qzZ4/Cw8M1YsQIDR06tMNf7ocPH9bixYuVl5dnP87ixYu1ceNGr/sHBAS0eZHcwMBAnX/++brrrrt0+umnt/uC/4svvtDnn3/e6r6+ffsqKytLKSkpiouLU1xcnKKiolRfX69vvvlGa9asUVlZWZvfj+sdtT179mjRokXaunVru9+/u6FDh2r+/Pn68Y9/7PGLy7IsffbZZ3r00Uf11VdfKTg42D624OBgBQUFKTU1VYMHD/Z4If/dd99p8eLFKigoaPW1pk+frhtvvFGXXHJJm/+PmpubVVpaqpKSEh05csT+KCkpaTV1z7Is1dbWKjExUWeccYYmTpzY4fOypqZGb731ltavX6+CggKVlJTo6NGjqqqqUmFhoWJiYnTttdfqP/7jPzzeRMjLy9PNN9+sJUuWeDxecnKyfv7zn+unP/2pVqxYoQULFnRq4YuIiAi9/fbbuuCCC9rdz+l06vDhw8rPz1dpaamCgoIUEhKi4OBg1dbWavny5bIsSzU1Ndq7d6+qqqoUFxenn/70p5o1a5bH/9P6+nr95S9/0RNPPNGlX/Qtv99Ro0bpiiuu0I9//OM2FzwpKirSueee6/Gz8Yc//KHeeeedHlsk5b333tOll156Qh4rICDAfqG9Y8cOVVVVtdonPDxcTz75pG6++WYFBASoqalJr7/+uubPn9+lv+/Y2FjNmDFDP/zhD3XeeecpODhYR48elcPhUEBAgP0RHh6uPn36tPqZs3XrVr3yyit6/fXXuzQFPT4+XnfffbfmzZunyMhI+3lVXFyskpISlZSUqLa2VqmpqXr33Xf13//938d18fD09HRNnjxZ2dnZnX7XPygoSNnZ2RozZowGDRp0QkYLli9frl/84hfas2dPu/ulpaXpmWee0WWXXeaxvaGhQbt27VJISIiam5tVVFRkh1pnphkHBgZqxIgRmjlzptfXNPv27dObb76pJ598st2f/+7Gjh2rs88+W+ecc45GjRqlRx99VH/4wx/a/P8UFhama6+9VoWFhfrss89a/X4ODg7W6NGjNXnyZCUlJUk69rs6JSVFAwYMUFpammpqalRWVmZ/VFVVqbm5WXl5efrss8/sv9958+bp0ksvtcO1trZWW7Zs0ebNm3X48OEOv7fk5GRNnjxZI0eOVGBgoA4ePKh9+/Zp7969OnTokKKiouzHTktLU2JiopxOp6qqqlRZWWm/SXPkyBEdPXpUR44cUXl5uRwOh4YPH64f/OAHXmdAVFZWau3atdqxY0eb/55SUlI0a9as4xq9bGpqUlVVlerq6hQfH9/hqKllWdqwYYM++eQTNTQ0dPnruQsMDNSAAQM0btw4nXLKKV5/f1ZWVurIkSNKSkrq0ps6zc3N2rNnj8rKyhQTE6P4+HjFx8crODhYTqdTRUVF2rdvn/bv368DBw4oKChIw4YN04gRI5SZmdnq37hlWaqqqtKRI0eUnp7uE7FJtLXDF6NNOvZEWr16tRYvXuz1B2N0dLSmT5+umpoarVmzRpWVle0+3sCBA/WDH/yg1eiN693azz//3OMFQ1BQkMLDw9XU1OSxelxLQUFBSk9PV//+/dWnTx8lJSV5fffSsixVVFRo48aN+uabb7z+soiIiNC4ceM0YcKETr3z7nQ69eqrr+q7776TdOwHxZVXXqnNmzd3aiGXmJgYDR8+XMOHD1f//v1VUlKi3Nxcbdy4sdU7j4GBgXrvvfc0atQoTZgwQePHj9fo0aMVGxurqqoqff755/rmm2/sd3U3b96sf/7znx6RnZycrClTpqi5uVnJycnq27evysrKtGXLFm3ZsqXNXzAjRozQueeeq379+ik5OVnJycnq16+fEhMTlZubq82bN3f49+T+C6a5uVmxsbFKTEz0+s6m60XV+vXrO/Xcas/w4cP10EMP6dJLL9XixYv18MMPKzc3t1N/NjExUUOGDFFZWZnHeVVtcTgcioyMVHR0tGJiYhQXF6fQ0FB79CwwMFDBwcGKjo5WQkKCEhMTFRkZKYfDoerqau3evdv+qK6uVkZGhi688EINGjRIZ511lkaPHu31Rd23336rX//611q9erUOHjzY7jEGBQXpnHPO0RVXXKEVK1botdde+17nRQUGBioyMlIVFRX2toCAAM2bN0+PP/64wsPDVVlZqdLSUpWWlqq4uFj79+/X6tWrtWvXLu3fv1/19fVKSkryGAk6dOiQNm3apF27dtnvGrtkZGTouuuu05VXXqlPP/20zVgbNmyYrr/+el122WVatWqV3n777U69IEhMTNT111+vm2++WRkZGSotLdWKFSu0fPlyvfvuux7hfuWVV+qVV17xGJXsbpZl6Ve/+pXefPNNFRUV9djXPfvss/XCCy/o5Zdf1u9///vvfT5zamqqsrKylJmZqfT0dI+f2fHx8crOzlZQUJC2bNmi119/3WOq7PGIi4vTrFmzNGLEiFbHnp+frw8++EAlJSXf62tIx36uDxs2TOHh4QoNDVVYWJjCwsKUkJDQ7pTR4OBg+828sLAw1dXVqbq6WnV1derXr5+GDx/e6kWf0+nU/v37tW3bNn333Xf6xz/+ocWLF3fpeMeMGaOJEycqLy9Pe/bsUUFBgf1vLjQ01P6dmpSUpISEBMXHxyshIaHDF+HBwcE644wzNGXKFO3atUvvvfee/v73v2v9+vWt9o2NjdVZZ52lpKQk7dmzR1988UWXnl9nnnmmtmzZclz//7KyspSamqq4uDjFxsYqLi5O0dHRCgoKst84sCxLe/fu1YoVK+zf9y59+/bVTTfd9L1HpCIjI+V0Ott9vSMd+5nb8mdie4KCgjR58mSdfvrpCgsLU3FxsVauXKlNmzZ1+nFGjBihkSNHqra2VtXV1aqpqVFNTY39u8314Qq1qqqqVqHsejPf9dojNDRUgYGB9t/zihUrtG3bNo8/M2TIECUnJ3u84V1bW2u/+entTc+WwsPDNXr0aI0ePVrV1dXas2ePdu/ereLiYknHfm8PHjxYo0eP1imnnOL1jVfLslRUVKSNGzfq22+/9fomfVRUlD2Vsy2RkZHKzs5WVFSUx5u3rtdpN954o1JSUtr9fnoC0dYOX402l3379mnhwoX2P4yQkBCdfvrpmjJliv1Cpbm5WZs3b9aqVas6fNGYnZ2tGTNmqE+fPtq9e7cWL17cLQt3xMbGKiQkxGNKQleEhYUpPDxc4eHhCgsLU2RkpDIzMzVs2DBFR0dLkpYuXap///vf9p8577zzdOqpp0qS9uzZo48++kilpaWd+noRERHtntR/5MgRLViwoNV217s8rl8YDodDDQ0NrX6x5OTk6MEHH9S6des8pkmOGTNGCQkJamhoUF5enj799FMtWbKkSwsMhIWFKSIiQtHR0QoJCVF1dbUaGxvldDrV0NCgqqqqNqdmRkZGqn///kpNTdWhQ4d0+PBhlZWVtRkSERERCg4OVkBAgAIDA+13/l1z3tv6/5yYmOh1St/xGDx4sNLT07Vx48ZOv1PclpCQEEVFRbW5Gl9QUJBmzJihU089Vf369dOECRPs0eV//vOfeuWVV7R69eoTcvJ+ZmamwsPDtWPHjjYfLyUlRTk5OcrMzFRkZKRCQ0PlcDi0ZcsW/eMf//B4ETBlyhRlZWWpoqJC1dXVqq6u1uHDh/Xdd9912wIagYGBmjt3rm666SZNmzat1QupsrIyvffee1q2bJm2bt2qbdu2tbl8fUBAgIYNG6bt27d7/fuYN2+ennnmmV49l+LQoUPauHGjNmzYoPXr1+vIkSOKiYnx+GhqalJxcbGKi4t1+PBhHT58WIWFhV5fHAYGBmrSpEn6wQ9+oL59+2r+/PkdPsdnz56toUOH6vDhwzp48KCKiop08OBBlZeXd3rEyuFw2FM2AwIC7JGdtl64u94gcU2Rbvl1goOD7ZkhLV+Yut40cbEsSwcOHPD4f5yYmKhbb71VGzZsUH5+vn3+ZlNTk5KTkzVw4EANGTJEKSkp+vjjj72GiDdhYWEaMGCA0tPTlZCQoNLSUhUVFamoqKjVz6eoqChFR0crMjJSzc3NampqUnNzsxwOh4KCghQVFaWgoCBFREQoIiJC69ata/X/avz48UpPT7eDJDQ0tNW5oscrLi5OAwYM0NixYzVy5EiFhYWppKTE/nusqKjQpk2btGXLljZfFwQHB2vq1KmaOnWqx4vlvn37Kj8/X6+88kq7rylcIT5s2DA1NDRozZo1WrlyZavndmBgoAYOHKj4+Hht2rSp068HgoKCFBQUpICAAK+/E1NSUnTmmWdq6NChbUZbnz59NHDgQDviXbG7cePGVr+nu1NERIRSUlK0e/dur/fHxMRoyJAhGjhwoDZv3typNyq7S2hoqGbPnq3Ro0d3GMM1NTXKz8/Xd999Z58a0pWodRccHKyhQ4cqPDzcI0gPHjxoR153uuyyyzRy5Mhu/zodIdra4evRJh07xpUrVyokJESnnnpqm1MdLctScXGx/UvI9cu75Q9I1y/orrxLHBkZab9LY1mW/Y/zeKaxuAwePFgjRozQ3r17tXXr1k7/Q09LS1N6errWrFlj/4LKzs7W3LlzPX7ANDQ06Ouvv9ahQ4fsd2Bc51x09I5gWFiYxo4da5/wvmnTJr3zzjtd/h6Dg4M1a9YsjRs3zuPYAgMD9cMf/lDjxo1r9We2b9+uxx9/XMuXL9eBAwe6/DVPtICAAI0ePVoTJkzo8Dw7y7J06NAhLV++XDt27Ghzv4yMDJ1++umKjIxUXV2damtr1dTUZI/8evu+R40apdtvv10pKSkqKipSeXm5NmzYoDVr1mjHjh3f67nYkf79+2v27NkqLi7W5s2blZeX1+bXGzhwoEaOHGm/qI2Li9PevXu1Zs2aNqe/nXPOORozZowcDocqKiq0fv16ffPNN6qoqFBQUJBGjx6tH/3oR5o+fboGDBig+Ph4j3Curq7WK6+8ovnz55/wlRrj4+M1d+5c7d+/X//617+8BlRgYKCuuuoq3X///crKyur0Yzc3N2v//v3avHmz3n33Xf3v//5vhyNxDodD8+fP14MPPui3i/ZYlqXS0lLl5+frwIEDKioqUkpKiqZNm+bxeyg/P1/XXnttq+mz0rGRsgULFujiiy/2+jWam5v11Vdf6dNPP1VlZaUOHTpknzdzvM+RpKQkjR07VqNHj7bfPHN9raamJgUGBiowMND+/1JZWal///vfWrduXaf/fU6YMEFnn312q5GkIUOG6MILL/T4utKxv8svv/xSzzzzjN5///1u/TnQWQkJCfrRj36kjIwMe1tMTIyys7MVHx+vzz//XC+88ILX6d7HyzUzIDIyUu+++26bcSAde1N1+PDhmjx5cpuve/r27au5c+fqwIEDev311/XRRx9p79699jm6U6dO1RlnnNFqlLu+vl65ubk6cOCAoqOjNXToUA0ePFixsbF2LH/11Vd68803tXfv3uP6XseOHavbbrtNEydOtM/vKywstF/rJCQkaOTIkRoxYoT69u3b5s+JwsJCe7aK+/OmX79+GjhwoPr376+Kigr7a7R8c881cyMqKkoJCQn2DI6EhAQdOHBAy5cvb/cN2MjISOXk5Gj48OGtjnPPnj369NNPOzXFsz0Oh6NLbypmZGR8r+tdNjY2av/+/Vq/fr22b9/e7uu6ro5augQEBCg5OdmemurO9fp2wIAByszMVGVlpbZu3ap9+/a1+/cQEhKic845Rzk5OV0+nhONaGuHP0Tb92FZlnbs2KGlS5e2+06Fa+51ZGSkamtr7Q/p2A/vlr8opWNRlJ+fr/379+vQoUP2eTzt/dKMjo7W2LFjNX78eI8fCtXV1Vq/fr2+/vrrLo+exMXF6cYbb+zSOS3l5eXaunWrtm7d6hEICQkJmjx5ssaOHWu/89jQ0KB//etfevPNN7Vt2zYdPHhQJSUlHf6wGT16tH72s5+pvLzcY3t0dLQuv/zydgOosbFRK1as0N///ndt2bLFHi1xTX2orq7u8uhOaGiokpOTFRgYqAMHDnQ42hITE6PrrrtO8+bN04ABA+wVC1t+tPUCsLCwUMuXL9euXbvsbZmZmTrzzDM9Tv5OTEzUqaeeav+dW5al7du3a9GiRfrkk09UVlamefPm6aqrrmp1YrdlWWpoaFBBQYF27typoqIiHT582B7ZqK+v9/hFWFNTo3379ikvL6/VL9OkpCSdffbZOvfcc9Xc3Ky77rqr0yO10dHRuvDCC3XHHXd4BHp5eblWrlyp/Px8NTY2as2aNVq8eLH9hsnMmTN19913a8iQIUpKSlJ4eLjq6ursqVkbN27UkCFDNHTo0E6NKG3ZskWzZ8/u8B3koKAgTZw4UTNnzlR6erq2bdumzZs3a8uWLSoqKlJwcLDOP/98XX311Zo9e7b9Anrv3r166aWX9PLLL+vgwYPHHWttOXz4sP785z/rj3/8owoLC+3tMTExOuOMM3TWWWdp9uzZOuWUU7731/IXTqdTf/jDH3T33XertrZWDodDN998sx5//PFOrRhcUVGhf/3rX9q1a5f69Omj9PR0lZeXa+PGjVq1apVWr17d7sW6+/Tpo8zMTI0ZM8ZeYCgoKEhhYWEdTkeSZJ+vsnjxYi1btqzNn5upqamaO3duq+8pJCRE5557rsaPH99hpO/du1dvvPGGDhw4oPLycpWXl6usrEwlJSXtRsyJ4nA49KMf/UgXX3yxGhoaZFmWBg4cqOzs7FbnUDc1NenJJ5/UK6+8orq6Og0fPlyjR4/WuHHjNGbMGEnSwYMHtX37dvtj9+7d2r9//3G90E1KSlJ2drays7OVnJys6OhoJScnq0+fPurTp48SExO1fPlyj5AKDw9X//797Ws1NjQ0qKioSMnJyUpISFBTU5PHCKRrKmpYWJhCQ0OVmJhonz6RmJjo8f03Nzdr0aJFWrZsmb1Yi/uCLd6cdtppevDBBzVz5sxWzwWn06kjR44oICBACQkJXXpDp6KiQnv27FFISIg9i8Gb2tpaHT16VGFhYYqKilJISEi7X6eurk5ffvmlcnNzPUatExISNHXqVI0ZM6bdqd1Op1PffPONvv76a9XX1ysiIkKRkZH26K5r1ovrwzVd3jVK7JpmWlJSYq9J4Fr8xfX/zvX/LyIiwp7GeaJmL9TU1Ojbb7/VN998o0OHDik4OFgDBgzQoEGDNHjwYCUmJmrv3r3atGmTtm3b1uFrktTUVI0ZM8Z+U1Q69u+orKxMpaWlCggIUFpamtfTPqqqqrRt2zZ7zQHXCpiuj6ioKJ95E9Bvo83pdOrZZ5/V//zP/2jfvn3q06eP5s6dq0ceeeSErRJmerS5OJ1Obdq0SZ9//rlHRKSmpurcc889Ycv0Njc36+jRo/Y0Ddd0BNdHdHR0u/8wXD94a2pq7BGYuro6FRcXez1RPzAwUD//+c+/14qZFRUV2r9/vyIjIzVw4MB2j8+yLDU2NqqiokJbtmzRxo0bdfDgQcXFxSkoKMgOKde7niEhIfYL9ebmZvXv31+XX355p0+8PXjwoL744gsVFhZ6xKxrsYysrCwNHTpUR44cUVlZmX3elusjPDxcKSkp9jucru+tqalJ+/bt044dO7Rjxw7V1NSob9++9vly/fr1U1paWqfOFXL9InPNDy8uLtbevXvt6M/Pz9fu3bvtd76kYwE5bNgwjRo1SllZWT3+w9KyLBUWFiovL08FBQUaOnSoxo8f7/HLqqioSDfeeKM++ugjr48RFham7OxsjRs3TnfddZfHhZfb43Q6tXr1asXExGjEiBEn5PtxV1ZWpp/97GdaunSpYmNj7f+vffv2VVpamqZNm6bTTz+9zedgWVmZQkND230TpLGxUbm5uRowYEC3rM7a2NioTz75RIWFhZowYYLGjRvnEyeI96Y9e/boww8/1BlnnKHx48efsMdtaGjQ+vXr9dVXXyk3N1dOp1M5OTmaOHGiMjIydODAAdXU1CghIcE+t8p9iW/Xz0RXvLlG21yjwO7/tnfv3q3PP/+81YuzhIQEzZ49W1FRUdqyZYuWLFmisrIyZWRk6KKLLurS6qJtKSsr05o1a5Sbm6vc3Fxt2bJFqampmjBhgv2RnZ2tqqoqFRQU2B9HjhxRaGioAgIC7PNCy8rKZFmWgoKC1NDQoEOHDtlTOk877bTvfaztaWxs1Hfffafdu3drzZo1ev/997Vu3Tqv+yYnJ2vs2LH2dNLMzEz757C3sGlubtbixYu1evVqr48XGBhoX07H/Q00p9Mph8NxQn6OV1ZWqri42H7zyvUaoG/fvn57SZyysjJ9+eWXqqys1NixYzVs2DCfWiK/uy8zYFmW6uvrFRwc3OaKmg0NDdq+fbt9frT7z5DQ0FANHTpUffr06Zbj8zV+G23/8R//oeeee04XX3yxzjvvPG3btk3PP/+8pk2bpiVLlpyQJ/3JEm0uTU1NWrdunb777jv7RbO//BB0vdB2Dw3Xala+rqKiQkePHlVGRsZxP28bGhrsKCotLVW/fv18dsTB6XSqoKDAno5VVFSkiIgIDRs2TMOHD9fAgQP94kW4ZVl64403dOutt6qsrMy+3phrtKempkbDhw8/aX6ZAD3BtXhSR2/y4Zj9+/fr/fff1z/+8Q/l5+frtNNO09VXX63p06crMDBQ9fX1HY4Kufvmm2+0aNEijxG9tLQ0/ehHP7IvpwCge/hltG3ZskWjRo3SxRdfrL///e/29ueff1633nqr/va3v+knP/nJ9/46J1u0Ab3Bdb6Lv74AKysr08aNG5WTk9Mj1wIDgN504MABffDBB6qpqdHpp5+uyZMn+9ToEGAqv4y2Bx54QI899pi++OILTZs2zd5eV1enxMREnXnmmR4XOD1eRBsAAICn7p42B6C1rnSJz8xXWrt2rQICAjRp0iSP7a5V/U7EkrkAAABojVgDfJvPRFthYaGSkpK8XkAyLS1NK1euVENDg9cL8bWn5YXzfGF5YAAAAADoLJ+ZsFxTU+M12CTZy3l25QLEAAAAAGACnxlpi4iIaPOigq5rykRERHT5cVteUNo1dxQAAAAA/IHPjLSlpqaqpKTEvsK9u4KCAiUlJXV5aiQAAAAA+DufibaJEyfK6XRqzZo1Htvr6uq0YcMG5eTk9NKRAQAAAEDv8Zlou/zyy+VwOPTMM894bH/xxRdVU1OjK6+8sncODAAAAAB6kc+c0zZq1CjdcsstWrBggS655BLNnj1b27Zt03PPPaczzzzzhFxYGwAAAAD8jc9EmyQ988wzGjBggP785z9r0aJFSkpK0rx58/TII48oIMBnBgUBAAAAoMc4LMuyevsgelJXrjwOAAAAAN2hK13C8BUAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAH0a0AQAAAIAPI9oAAAAAwIcRbQAAAADgw4g2AAAAAPBhRBsAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAHxbU2wfQ0yzLkiRVVFT08pEAAAAAOFm5esTVJ+056aKtsrJSktS/f/9ePhIAAAAAJ7vKykrFxsa2u4/D6kzaGcTpdKqwsFDR0dFyOBw9/vWHDBkiSdq1a1ePf22YhecSTgSeRzhReC7hROB5hBPFH55LlmWpsrJSqampCgho/6y1k26kLSAgQOnp6b369SUpJiam144BZuC5hBOB5xFOFJ5LOBF4HuFE8ZfnUkcjbC4sRAIAAAAAPoxoAwAAAAAfdtKd0wYAAAAA/oSRNgAAAADwYUQbAAAAAPgwog0AAAAAfBjRBgAAAAA+jGgDAAAAAB9GtAEAAACADyPaAAAAAMCHEW0AAAAA4MOINgAAAADwYUQbAAAAAPgwog0AAAAAfBjRBgAAAAA+jGjrIU6nU08//bROOeUUhYWFqX///rrzzjtVXV3d24cGH/TEE09ozpw5GjRokBwOhwYMGNDu/qtXr9bMmTMVHR2tmJgYzZo1Sxs2bOiRY4Xv2rlzp+bPn6/JkyerT58+io6O1tixY/XYY495/dmzY8cOXXTRRYqPj1dkZKSmTZumZcuW9cKRw9fs2LFDV155pbKzsxUbG6uIiAidcsopuuOOO1RUVOR1f55L6Iyamhr7d90vf/nLVvfzXEJbHA6H14+oqKhW+5rwPArq7QM4Wdx+++167rnndPHFF+vOO+/Utm3b9Nxzz2n9+vVasmSJAgLoZ/yf++67TwkJCRo/frzKysra3Tc3N1fTp09XWlqaHnnkEUnSggULNG3aNK1cuVKjRo3qgSOGL3r55Zf1wgsv6MILL9SVV16p4OBgff7553rggQf0zjvvKDc3V+Hh4ZKk3bt3a+rUqQoKCtLdd9+t2NhYvfjiizr33HP1ySefaObMmb383aA35efnq6ioSBdffLHS09MVFBSkb7/9Vn/+85/19ttva8OGDerbt68knkvomvnz56u4uNjrfTyX0JFp06bphhtu8NgWHBzscduY55GFbrd582bL4XBYl1xyicf25557zpJk/e1vf+ulI4Ov2r17t/35iBEjrMzMzDb3nThxohUdHW3l5+fb2/Lz863o6Gjr7LPP7s7DhI9bu3atVVZW1mr7/fffb0mynn/+eXvbnDlzrICAAGv9+vX2tsrKSisjI8MaOnSo5XQ6e+KQ4WfeeecdS5L1X//1X/Y2nkvorHXr1lmBgYHWU089ZUmybrnlFo/7eS6hPZKsa665psP9THkeMbzTA9566y1ZlqXbbrvNY/v111+viIgIvfHGG71zYPBZgwYN6tR+eXl5Wrt2rebMmaO0tDR7e1pamubMmaMlS5bo4MGD3XWY8HE5OTmKjY1ttf3yyy+XJG3evFmSVF1drQ8//FDTp0/X2LFj7f2ioqJ03XXXaefOnVq7dm2PHDP8S2ZmpiSptLRUEs8ldF5zc7Ouv/56zZo1S5dcckmr+3kuobMaGhpUVVXl9T6TnkdEWw9Yu3atAgICNGnSJI/tYWFhGjt2rN88WeB7XM+dKVOmtLpv8uTJsixL69at6+nDgo/Lz8+XJPXr10+StGnTJtXX17f5PJLEzylIkurq6lRSUqL8/HwtXrxYN954oyRp9uzZknguofOefvppbd++XQsWLPB6P88ldMa7776riIgIRUdHq2/fvpo3b57Ky8vt+016HnFOWw8oLCxUUlKSQkNDW92XlpamlStXqqGhQSEhIb1wdPBnhYWFkuQxyubi2lZQUNCjxwTf1tzcrN/85jcKCgrST37yE0k8j9B5L730kubNm2ffHjBggN544w1NmzZNEs8ldM7evXv14IMPav78+RowYID27dvXah+eS+jIpEmTNGfOHGVlZamiokIff/yxFixYoBUrVmjlypWKiooy6nlEtPWAmpoar8EmHRttc+1DtKGrampqJMnr88v9uQW43HbbbVq1apUef/xxDRs2TBLPI3TeRRddpFNOOUVVVVVav369PvzwQ5WUlNj381xCZ9x0000aNGiQ7rjjjjb34bmEjqxevdrj9tVXX63Ro0fr/vvv17PPPqv777/fqOcR0dYDIiIidPjwYa/31dXV2fsAXeV63tTX17e6j+cWWvr1r3+tBQsW6IYbbtC9995rb+d5hM5KT09Xenq6pGMBd+mll2rixImqqanRvffey3MJHXrjjTf02Wef6Ysvvmi1yp87nks4Hr/61a/08MMPa9GiRbr//vuNeh5xTlsPSE1NVUlJidcnTEFBgZKSkhhlw3FJTU2V5H1o37XN25QAnHweeughPfroo7r22mv1pz/9yeM+nkc4XqNHj9a4ceP0hz/8QRLPJbSvvr5ed9xxh2bPnq3k5GTl5eUpLy9P+/fvlySVl5crLy9PZWVlPJdwXIKDg+3X3ZJZP5OIth4wceJEOZ1OrVmzxmN7XV2dNmzYoJycnF46Mvi7iRMnSpJWrVrV6r7c3Fw5HA5NmDChpw8LPuahhx7Sww8/rGuuuUYvvfSSHA6Hx/2jRo1SaGhom88jSfycQptqa2t19OhRSTyX0L7a2loVFxdr0aJFGjJkiP0xffp0ScdG4YYMGaKXXnqJ5xKOS11dnfLz8+2Ftox6HvX2NQdOBps2bWr3Om2vv/56Lx0Z/EFH12nLycmxoqOjrYKCAntbQUGBFR0dbf3gBz/ogSOEL3v44YctSdZVV11lNTc3t7nfZZddZgUEBFgbNmywt7muYzNkyBC/uY4NukdRUZHX7cuWLbMCAgKsGTNm2Nt4LqEtDQ0N1sKFC1t9/OEPf7AkWbNmzbIWLlxo7dixw7IsnktoW0lJidftd911V6trR5ryPHJYlmX1bjaeHObNm6cFCxbo4osv1uzZs7Vt2zY999xzOu2007Rs2TIFBDDoif/z+uuv29NFnn/+eTU0NOjOO++UdOy6SFdddZW978qVK3XWWWcpPT3dXtXt+eef16FDh/TVV19pzJgxPf8NwCe88MIL+uUvf6mMjAz95je/afVzpl+/fjr77LMlHbvm36RJkxQcHKzbb79dMTExevHFF/Xtt99q0aJFOvfcc3vjW4CPuPjii1VUVKQZM2YoMzNTdXV1Wrdund5++21FRERo+fLl9jWQeC6hq/bt26eBAwfqlltu8bgEAM8ltOX2229Xbm6uzjrrLGVkZKiqqkoff/yxPv/8c5166qn6/PPPFR4eLsmg51FvV+PJoqmpyfr9739vDR061AoJCbFSU1Ot22+/3aqsrOztQ4MPOvPMMy1JXj/OPPPMVvuvXLnSmjFjhhUZGWlFRUVZ55xzjrVu3bqeP3D4lGuuuabN55G359LWrVutCy+80IqNjbXCw8Ot0047zfrss8965+DhU/73f//XOv/886309HQrNDTUCgsLs4YNG2b98pe/tPbv399qf55L6Iq9e/dakqxbbrml1X08l+DN+++/b51zzjlWamqqFRoaakVERFhjxoyxHnvsMau2trbV/iY8jxhpAwAAAAAfxpw8AAAAAPBhRBsAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAH0a0AQAAAIAPI9oAAAAAwIcRbQAAAADgw4g2AAAAAPBhRBsAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAH/b/AWewXFlSyCHrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "max_pos = dps.trace_maximum()\n", + "f0_list = dps.freq[max_pos]\n", + "\n", + "new_spec = dps.shift_and_add(f0_list, nbins=100)\n", + "\n", + "# Let's compare it to the original power spectrum.\n", + "plt.plot(ps.freq, ps.power, label='power spectrum', alpha=0.5, color=\"k\")\n", + "plt.plot(new_spec.freq, new_spec.power, label='Shifted-and-added', color=\"k\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb.txt b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb.txt new file mode 100644 index 000000000..e0513bb3b --- /dev/null +++ b/_sources/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb.txt @@ -0,0 +1,812 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on real data)\n", + "\n", + "Here, we use an RXTE observation of the LMXB 4U 1636-536 (e.g. [Belloni et al. 2007](https://doi.org/10.1111/j.1365-2966.2007.11943.x)). This source shows strong kHz QPOs, and this notebook will demonstrate how to detect and track the QPO frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# load auxiliary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from astropy.io import fits\n", + "\n", + "# import stingray\n", + "import stingray\n", + "\n", + "plt.style.use('seaborn-v0_8-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# All starts with a lightcurve.." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Open the example file. It can be downloaded from [here](https://drive.google.com/file/d/1frt_3ETYA0ehgHFiOhroBHUs3-mgw9OB/view?usp=sharing)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "events = stingray.EventList.read(\"SE1_7ceb190-7cec25b.evt.gz\", fmt=\"ogip\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a Lightcurve from the Events time of arrival witha a given time resolution" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "lc = events.to_lc(dt=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAJ9CAYAAACsI/byAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACiHUlEQVR4nOzdZ3hU1f728XvSC0kooSUEQui9B4ggRRAUEVCRP2KlqUdBBFRUUEQsz1EEAStgw44Vj4AICihdBFR6L6GXJCQhdeZ5ETJmkkmyZzJJJuH7uS4umT1r71mDKXPvtdZvmSwWi0UAAAAAABjgUdodAAAAAACUHYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYW4XIvfu3atnnnlGnTp1UtWqVRUUFKTWrVvrhRdeUFJSUp72e/bs0cCBA1WpUiUFBgaqa9eu+uWXX+xeOz4+XmPGjFF4eLj8/PzUrFkzvfXWW7JYLHnams1mzZw5U40bN5afn58iIiI0YcIEu30AAAAAgKuFyWIvQZWiSZMm6Y033tDNN9+sTp06ydvbW7/++qu+/PJLtWzZUhs2bJC/v78k6cCBA4qOjpaXl5fGjRunkJAQzZs3T//884+WLl2qXr16Wa+blpamLl26aOvWrRozZoyaNGmipUuX6ttvv9Wzzz6rqVOn2vTjkUce0ezZszVo0CDdcMMN2rVrl+bMmaOuXbtqxYoV8vBwu/wNAAAAAMXO7ULkH3/8oQYNGigkJMTm+OTJk/XCCy9ozpw5evjhhyVJt99+u77++mtt2bJFrVu3liQlJiaqWbNm8vPz0+7du2UymSRJb775ph566CHNnj1bY8aMsV731ltv1Q8//KB9+/apTp06kqQdO3aoRYsWGjRokL7++mtr2zlz5mjs2LH65JNPdMcddxTnPwMAAAAAuCW3G05r3759ngApSUOGDJEk/fPPP5KkpKQkLV68WN27d7cGSEmqUKGCRo4cqb1792rz5s3W459++qkCAgI0atQom+uOGzdO6enp+uKLL6zHPvvsM1ksFo0bN86m7ahRoxQQEKCPP/64qG8TAAAAAMokr9LugFHHjx+XJFWvXl2S9Ndffyk1NVWdO3fO07ZTp06SpM2bNys6Olpms1l//vmn2rZtKz8/P5u20dHRMplMNoFz8+bN8vDwUHR0tE1bPz8/tW7d2qatM2rWrGnz2Gw2a8uWLQoKCrKOnAIAAABASbJYLLp06ZLCwsIKXL5XJkJkZmamnn/+eXl5eVmnkZ44cUKSFB4enqd99rHY2FhJ0sWLF3X58mW7bX19fRUaGmptm33t0NBQ+fr62r32unXrlJaWJh8fn6K/OWWFyIiICJdcCwAAAACK4tixY6pVq1a+z5eJEDlu3DitX79eL774oho1aiRJSk5OliS7QS97tDG7TUFts9tnt8luX1Db7DbOhsiTJ0/aPI6Pj1fFihV17NgxBQcHO3VNAAAAACiKhIQERUREKCgoqMB2bh8ip0yZorlz52r06NF68sknrccDAgIkSampqXnOSUlJsWlTUNvs9tltstufOXMm37Y5r+kK2VNYg4ODCZEAAAAASlVhS+zcrrBOTlOnTtX06dN133336e2337Z5LiwsTJJspqFmyz6WPX21UqVK8vf3t9s2NTVV586ds5nqGhYWpnPnztkNnbGxsQoNDXXZVFYAAAAAKEvcNkROnTpVzz33nO655x7Nnz8/Txpu0aKFfH19tX79+jznbtiwQVJWpVdJ8vDwUNu2bbV169Y8wXDTpk2yWCzWtpLUoUMHmc1mbdq0yaZtSkqKtm3bZtMWAAAAAK4mbhkip02bpueee0533XWX3nvvPbuVgSpUqKD+/ftr1apV2r59u/V4YmKi5s+frwYNGthUVx06dKiSk5P17rvv2lxn1qxZ8vLysm4hImVtJ2IymTRr1iybtvPmzVNycrKGDRvmoncKAAAAAGWLyWKxWEq7Ezm98cYbevjhh1W7dm09//zzeQJk9erV1bt3b0nS/v37FR0dLW9vbz366KMKDg7WvHnz9Pfff+vHH39Unz59rOelpaUpJiZG27dv19ixY9WkSRMtWbJE3377rSZPnqznn3/e5nXGjBmjuXPnatCgQbrxxhu1a9cuzZ49W9dcc41++eWXAkveOiohIUEhISGKj49nTSQAAACAUmE0l7hdiLz33nv14Ycf5vt8t27dtGrVKuvjXbt2adKkSVq9erXS0tLUtm1bTZ06Vb169cpzblxcnCZPnqxvvvlG58+fV7169fSf//xHDz30UJ7pspmZmZo1a5beffddHT58WKGhoRoyZIimTZumChUquOz9SoRIAAAAAKWvzIbIqxEhEgAAAEBpM5pL3HJNJAAAAADAPREiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBOCQj06yT8ZdlsVhKuysAAAAoBV6l3QEAZUdCSrpunvO7Dp9P1i1twvXakNal3SUAAACUMEYicdVIyzCXdhfKvF93n9Hh88mSpG+2xio9k39TAACAqw0jkbgqvLZ8j95YdUDNwoIVUy9Ufx69qGEda2tA6/DS7lqZci4xzeaxmSmtAAAAVx1CJMqFr7cc149/n9RNLWvqlra18jw/+5f9kqS/jsfrr+PxkqQ/Dl9Q3+Y15OvlWaJ9Rfl09lKqUtIzFVE5oLS7AgAAUKwIkSjzziWmasKi7ZKkX3afUfdG1VQ50EeSdCo+RRUDvO2eZ7ZIJ+NStOD3Q/rz6EWNvjZK/122R5UDffT2Xe0UXtFfkrTrZIL+jo1XrybVrde9WlxKSVdahllVKviWdlfc2roD53T3gk3KMFv0wqDmGtaxTml3CQAAoNiwJhJuLS45TT/+dVLHLiTn2+Z8rimWF5JSJUmv/bxXnV5aqU4vrcz33Nd+3quFG45ox4kEPfL5NsXGXdbfsfGat+agJOnI+SQNmLtWj3/1l+77YLML3lHZsenQBbWbvkLtpq/Qt1uPl3Z33NqclfuVYc6a2vvykt0uu+6xC8n68a+TiktOK7wxAABACSFEwm1ZLBYNnbdRD336p258/TedS0x16PzZK/dJkuKS0/Nts3j7CbvHv9sWK0lavuO00q4Uj9l+LO6q2tZi9sp91mJELy91XTAqjzYdvmD9+6XUDJdc83xiqm6c/Zse+vRP/d+7G66qrz0AAODeCJFwW4mpGdp1MkFS1gfztfvPlXgfUtIzXXKdA2cTteyfk9p5IsFtw8C2Y3Ga+fNe7TiRtWb09xz/3qcTHAvwKLr1B8/rUkpWIN196pLLwilcJy45TX8cvuCynxMAAJQVrImE28odtR75fJu2Ho3TpBsay8+77BTDWfbPKT3w8Rbr46n9m+rea+qWYo/+lZFp1ms/79Ufhy9aR9Pe+/2QNk/uZej8pNRMTV28U/GX0/RYn8aqGxpYnN29quTeksZN7z1cteKT09V75hqdvZSqTlGV9fnozqXdJbeXlmHW138eV4CPp/q3DJOHh6m0uwQAcBIhEmXKB+sOq17VQN3VObJUXj/TbJGXp2MffGat2Gvz+OVlu50KkRaLRZO+/lvLd57S7e0j9OSNTRy+xv/+OqGl/5xS/5Zh6tu8hn7acVpvrjpg0+ZSaoZOJ6QYut4Haw/ps01HJUkp6Wa9d28Hh/sElEW/7z+ns5eyRug3HLygpNQMBfq67ldq/OV0pWeaFVqOilrNWL5H71xZb56QkqG7OlGACgDKKqazwmG/7jmjJ776S6v2nHH5tZPTMpScVvC0vS//KL0iLwPeWKuMK2skf91zRj1nrNJdCzbqYpJt4ZOk1AzrFLfdpy7ZPJeSbjvCZNTe04n64o9jupicrnfWHNSFJMeKrZy9lKqHP92qH/86qQc/2aL4y+n6accpp/qS7b21h61//2W3678eAHeVlOvnlCv3TN1w8LzaT/9Z7ctZUavsACn9u2YdAFA2ESLhkPjkdN33/mZ98ccxjfjwD8Vfzr9ojaN+23dWraf9rNbTftaavWfzbWe2WLTjRLxueXOt7nlvk85cMjZq5oikfNaf7TiRYA2Fz/+wUwfPJum3fef0ycYj1jbLd5xS62nL1Wbaz9qco+BKUeWu0FlY2M6WkJKuX3ef0d+xcdZjFou040S8fi3ijYD0TOcCMYD8zVqxV+mZWaH0v8v2lHJvikf2KC4AoGxiOisMi09OV7vpP1sfZ5otOpOQohB/+/swOmrG8r3WdWAzlu/RwpEd82378tLd+vNonCTXjgBky/4AZ88rP+3R0OgIHTyXZD22fOdpPdyzgSTpvz/tUXqmRemZmZr58978LlMiLBaL/u+dDdp5pUBRTnfM21jguaEVfPNUxI29eNml/QOQ14aD/958Ohnv+ptkAAAUFSEShv3v7xPWvfDs+WX3aX247og6RlXWg93qyWRybO3gtmNx1r9vPx6fb7sdJ2wD0W/7SrZq6+q9Z7W6gJHS/WcSrX9fd+B8kV4rNu6yzGaLIioHOHX+xeR0uwHSiBB/rzwh8vjF/PfrLGnpmWZ9teW4vD09NKhNuDwp0gEAAFAiCJEwxGy26Olv/7H73Ko9Z/TF5mNa+k/W+rrVe8+qY93Kalenckl20Wr7sXjVquRc6HInP+3IqupqsUgzh7RSWIi/zfNHLyQrvKJ/gWHd1duJVArwsXmcWcBNheJisVg09vNt+iHHHp9xyWka2TWqxPtS0i6lpCspNVM1QvxKuysAAOAqxppIGJLfyFtaplkPfLzFGiCzbT+W/0iiUTfM+s2p8yYs2m6zpUZJ+DvW+fd75HySBryxVn1mrtFfx+Osx+9fuMW6rcMrdtZF3TFvoyYu+svp13VU1//+oq//tC3yUdDIdHH5blusTYCUpNdKedpwSdh5IkHRL6xUp5dWav5vBws/ASinPt90VE989Zf+LmDGSlmVlJqhH7af0M4Tzs0gcVRahjnPensAMIIQCUN+3nXa7vGk1EyHqo3+sP2Epv2wU3tP21YsPZxjfWG22Djn19+t2pP/dFOjvt8WqxkGw0lRBvze/PWAth+L057Tl/TKT/aLaJzIZ11U7lAnZX0oKGrBm0PnkvK8p2MXLjscGs9cStHPO08rPtl1BZjm/rI/z7HkNNvN3i0WizYePK+tRy8W6bX2nLqkNXvPukUBoXfWHNDlKxV//9+y3aXcG7gDo8W1ypMtRy5o0jd/64s/jpX4zcKS8MjnWzXms626ee7v2uXkUgSjDp5NVMcXV6j1tJ/13u+HivW1AJQ/TGdFkdz+zvpC22RkmrXtWJzOJ6VpzGdbJUk//n1CPRpV08GzSRrXu4HNekh38cjn20rkdb7445j170Vd3/n7vnMavfAPeZpMeu++DooKDXTqOi8v3W1TOMiof2Lj1Tw8RJKUmJqh6BdWSpLqV6ugnx+91uF1svYcOFt4vxb8fkjTf9wlSZo1pLUGtgm3ed5isejLP47p7KVU3dUpUiEBeYtDbT58QUPeWS+zRbo3JlJTb25W5L4XRc7vkYIKP9mTaba4zZpRi8WiN1cd0Ipdp3V7+wgNja5d2l0qk5746i998ccxRUdW1sKR0fL18iztLpWI1Xv//RlZlBuN7mrFrqyK2Rlmi77aclxTbmpabK/13tpDunjlBt/LS3dreBfH9y8GcPViJBLF7pnFO3Tb2+t1/8J/7xqfTkjV55uPadPhC5r87T9KTs0s4Aow6tXle5SclqlLqRl6bbnzUzxz721p1LT/7bT+ffG2f6ec7j+TqDMuKOl/KaXwEc3f9p21BkjJ/lTXb/6M1RNf/61Xl+/VlO/tr/Vd8NshZQ+8frDusN02+89c0sgP/yiVtaFGxCWn6ea5v6vpM8vcZgrs/jOJeuWnPdp6NE5PfvN3vtvplGfJaRn6YO0hfb8t1ql1y4mpGdabT5sOX9Afh4s24l6mFEM1blcymy1a9McxfbzhiFIzivZ7Lc6FMzjsyXljKq0UZlucT0zV7lMJMrvpz08ABWMkEoWKjbusTzcedfr8ws51ZsSrrEtKzdCPf51UWEX/whs7IOeHgvUHi1YZ1hmbDl1Q5KQf7T7nis9+2VvAFCT3lOCjF/JWlF2QY+rW4u0nNHtomzxtjhmoRPvcDzsLHT22WCz6eedpJaZmqH+rMHl7lty9u2+3xuqvK+vGpv+4y+HiQ2azRUcuJCusop/LRrpyjx5dSslQoO/V9avo+f/t1GebskJgptmiW9rWcuj89FzfBxdZ0+Y23l93WM9fuZl2/OJlTbqhcSn3yD3tOXVJA99Yq8vpmbr/2ig9eWOT0u4SAAcxEokCmc0W3f524VNW4ZgWU3/S41//pTsXFLxXY3ny1ZZjhTcqonX7z1lDU0HiL7vmDr+R6ceL/jiu0Qu3aPyX29Xtv7+65HWN2n3SuRHlbA9+skU9Xl2l3q+tMTQKnJPFYtG4z7eq/fQVeuUn1nDmlB0gJemd1e4xQgzXmL1yn/Xvb68+UIo9cW8frj9sXeP9zhq+B4CyiBCJAl1ITiuX606Kw/oD5w2v7XRm9s6jX2xz/CQ38uryvfqnCFVsC5OakakRH/5h97nsKYPpmWalpJfs1OmZK/6dTnsiPkWHSmjk/fC5JJv1to5KSc/UTzuyCmodvZDs8HrdJ77+S99tO6Fzial649cDefYcRZYzl+wXzcpPbNxl/bzTfqGz8u58Yqpm2ymslZ/SmCrtqhtU5d3Bs4mFN4JLJaSk69Wf9mjOyn1FnmoNSExnRSF+/Ouk0+empGdq4qLtLuyNexs6b4PLrnUmIe8Hy/wqtBbE3W4AbD58wVp4x9XiL6db72znduPs3zWlXxM9+MmfupyemWda7OebjmpIhwiHCv+szKdicW4nc/1/23EiXnWdLHjkiLGfby3S+bnXeTq6PuvLP2wrByelZii0gm+R+lQUp+JT9Ommo6pXNVADWocXfkIhZpbCtjJnLqWo76w1upTiunCUabZo69GLqhrkqzpViv/rsijeX3vYUDuLxaL/fPKnlv5zSl0bhOrD+6Ll4SaFpRyRaS79qtAoP15ZtkcLNxyRJJlM0sM9G5Ryj1DWESKRrzOXUvTs4h1On7942wn9rwgh9Go1dfEOu1t3OCOpDBQsSs8068s/jsnDZNLgdrXkVQxrBnedTNAd8/OfOjzpm7+VlJapjnUrq2nNYHl4mPIEzZwVTnedTMh31NOoTLNFO08kKKKyvyoG+OR5ft2Boq1pNTKt92ryyOdbtfHQBUlSpQAfXduwapGul/vmQElYveesSwOkJP132W69s+agvDxM+uL+zmpXp5JD5+8+laCVu86oe6OqahZWPDeIsi2yMyV+w8Hzev5/O7XjRILeuaud+jSroTOXUq17F/+275z2nL6kJjWDi7VvxeG7bScU4OulFwe1KO2uoBzIDpCS9PrKfYRIFBkhEnbtOBGvfrN/L9I1Vu6+OqdcFVV+lUDLq7m/7NfrV9YRXUhK00M96luf230qQc8t3qlWERU1vnfDAq+zdn/RtkfJLoZxb0ykJvZppH1n8p9u9cvuM0V6LUmauGi7vt0aqxB/by19pGueIktfbXHNjYTy4LkfdmjRH8d1fdPqenVwqwJHlfadvqR1B86rR6Nqql0lQIfOJWnA3N+VkCN8LdpyvMghsjQUx1Ts7PVoGWaLFvx+UO3qtCv0nGMXkjXywz90Iu6yLl2ZMvrGr/u16eleqlDCRZIe+2q7jl3ImnFx/8It+nx0J4WF2H4v5d5Htiz5dONRPdGnsd1tiABnObpNFGAPayJh1wcGpw3lx9G1KO+tZaPjosq9HtPfu2zsG/d6jkIUM5bbVlbtO+s3rT94Xm+vPqBvtxYcqh79wjVTpz9Yd1jjC1h/mp5p1mk7040d9e3WWElZ03A/Wn9EZrNFp+JTnNryoTSt3HVaXf/7i4a8s75Y1j1eSErT+2sPKzE1Q99sjdWe0/kXC4q/nK6Bb6zVs4t36Ja31iklPVM9Xl1lEyAlaa+TW9gU5JY316n7K79q3YGi3cwoScdyVS4+aGAPVkma/9tB7Tl9yRogpaygduS8c+t9zWaL3l1zQI8t2q69Bfz/tSc7QGb70uA64B0n4jVx0Xa9v/aQ3e+5TLNFpxPc4/sxhfVrcMKFpDSX33j6ZXfx/rxH2UKIhF0HirjofY4DxQ+ksn2n2B1YLBa9mmtrCweW95WYjQcvFPihLOcyvPRc+5a9vmKfSsryfAqXnLmUos4v/aKP1h+x+7yz3l59QFFPLVGnl1bq3vc3223j6j3j4pLTtOyfUzoZn3fd7LJ/Tur6mWsMXWf6j7t07MJlbTx0QQud+HfJbyuVSynp+mnHKe3JFfgK+nfYdTJBSVd+lpxLTM13Su/+Yijqse9Mog6fT9ZLS0q+Em2iE1Nck1Iz1H+uc7NNllyZKlpUqRmZSs3I1M+7TuvFJbu1aMtxXT9zjZb94/wyCKN7Do/5bKu+2nLc7jY9SakZ6jtrjTq+uFKPfL7N6b4Up2MXkjXth536aP1htwi6cC/v/X5IbZ//WdEvrNA+B2/MFOT5//37897VvwdR9hAiUSxKY+Piq9VXW46r9bSf9Xuu6ZzJaZlFvhngast2nNInOfYNzR0UczLn+mDkTGEhV/t+64liv/u6eu9Zu8Eut6JUebVYLBryzgY98PEW3fD6b4rPFcwmf7fDcFGmnP1wpmro4LfX6+a5v+udK9sh7D19SVuOXNR972/W/Qu3FFiw6tC5JG06dMFaBMjoZ+mISoXvz2o2W/IUFzLibwcrEOde4+joVipS1preBxZuceicPacvFctm9plmi+HN4xtNXqZmz/yk+3P1/YGP/7RW78zINOu93w/pjV/3GwqI55OMfX/mHHVdvtM2FP++/5x1Ovvi7SdKvKKzEY99tV3vrT2kZ77fYV3/mdPltEyt3X/O4eq/KB9eXpp1MyshJUNvrz7oshsNRf15j/KFNZFAGVdQBdzJ3/1Tgj0xZsbyPbqxRU0Nm79RBwpYd7huf97CMsOLWMymKLYdi8t31Cy3N37dr7a1K6lzvSpOvVbnl34ptM17vx/S8wObO3X9i8np1mmhccnp+nzzUfVpVkORV6rGlvQ0pb+Ox+uv4/EK9vfWk9/8beicLUcu6PZ3NijTbNGornX1dL+mssixD0qpGZl68cddOnguSeN6NbQWlfnz6EWN/PAPmS0WvXNnO3WMcu7/oz2r9561edymdkXr381miwa9uc6p6y7bcUqnE1JUPdjP5vjFpDQdvZCsZmHBNkWrHPlQmWm26Ms/jik906whHSLybbdqz1n93zsb5O/jqQ+HRxsqZpORT+DccuSioqpW0HtrD+lFB0Z3Nx++qIvJaYbbS3lvPsTlOj+/PpamDQcvWP/+xeZjurFFTZvnh3+wWesPnlfFAG+tGN+tVCsjo+TlvJH/9Z/HteFg0Qq1wVam2aIZy/for+PxGnVtlLqVwTX2rkCIBFCiLian6+stx7XrZEKB7f6ba3quJG03uA9ncZj83T/qEGmscuUrP+2Rh0l66sYmeZ7bfybRJSMbmw9fKLxRPnIHiJeW7tZLS3fr7TvbqW/zGnbPOWxnvdtxg6HaqOd+MF4Nev5vh6wjhfN+O6Sn+zV1qBhR7uJhZy+latm4ayVlbd9xISkrSMz4ea++vL+z4esWJvd62+xtZd74db9esfM174jcFYVPxF3OGmm+nK7+rcI0Z2gbh6+5/sB5m9Hgg2eTdPaS/ZsM2f2/lJqhG17/TYdf7ufw6+XmSIDMlntWxp5TlwqsOmu2ZO3D+9OOU7qtXS01CytblVxz/39PzcjU+iuhIS45Xb/uPqPB7fMP/yj/3G27r7Juzd6zenNV1uyZnScT9OeU3rqUkq6zl1JVNzTQoe3CyjJCJIrN32wxgHzMWlH4HnuFhcyStutkgqoGGb+bb7ZkrRfMbdaKfVr0R9Errzoz1bIwD3y8RX2b2Q+R7645qInXN5KP17+jWXNW2q59Luo09pR04+fbm877zZ+xhs/PvcZ2d461lznXyG06dEGJqRn6eecpRVYJVJvajm2Bkdv5pLyjZBaLpcgB0p4ftp9Q/OV069/9vT30n+71rSPORoz57E+bx45Ujz56PlmbDl/QpZR0p6pOL/jduYJrl3OtsX/q2791Y4sa2nz4oqYu3qHwXNOZD5xJ1KYrN2U+Wn9Ej/Vp5NTruovcI6uOFroDyrvf9p1V/OV09WlWQ95ObCuWvV2UlFXA6PC5JPWf+7supWRo9LVRdm8gl0eESBQbd1jDBveUVEYLKa3JNRXRWa64K7zvTKIupaQryM+29P+ZSyl6Z/VBp6+7bEf+RVNOxl+22ZD+i1yVMPefSVSm2aJ/HFwXWFwKGq3Nr3iSPRO/3K5lO07JZJK+fjBGbYsYJHMrbGbp7W+v12tDWjl83dzTkr/847iOXbisz0Z3cuAajk0NzWnYgg15qqc64v8tdV2Roh0nEvT8/3YqNu5ynu+/hFzrUHOHUHuS0zLk7ekhb08PHTibqH2nE9W1QWih58VfTlewn5fNSEVccpoe/WKbzQdTR6w/eF49Xl2lPs1qqFNUZZsbPQXZddL1VYqLKjktQ2/+ekAWWfSf7vUVWMJbxsB5aRlmrdl7VjVC/NQ83NiesRaLRS8t3a2fd57Wbe1q2WzxVVy+3xZrLZh1/7VRetIFge/TTUet69vfXXOQEAkApSE90+zUncGr0Ws/79Wz/ZvZHHs2n0IbJeWrLce0clfR99HMT/YWkbtzVW2d/1ve4Oyq0b3sYG2xSJ9vOuryEFmYTYcvqMv/+9Vw+50nEnQ5PcNuOF3vwNqoohbjKEqAlFxboM1ssejoBddMv/5ua6wmLtquCn5eenFQC437YpvSMswFTpm1WCwa9dEWrdh1WjH1qujjER2t+51+vOGIft2T/w2q7cfidH0+MwSyHTqXpLdXH9DbVwpUGVEcsxmK6vWV+6w3wdIzLVfNh/Hy4NnFO/TZpqMymaQvRndWdN3KhZ6z/0yi3r2yV+0rP+3RnR3rFPueqG/++u/3yDtrDurJG5soLcOsD9YdUlqGWcO71FWAj2PxqCiF7soyQiQAt9Ls2Z/0bP+mpd2NMuH9tYfzhMjSDJBSVp9iLxbf+htfb0+71T/tTR0uDhedrGi6/VicXl3u+imrOQ2dt0GdoqoUujZ06d8nlZpRcEBb+vdJPfjJnwW2KU6PffVXib1WYf8Wub28dLcyzBbFJafrPzn+jbYcuZjvOSfjU7RiV9bo97oD57XvTKIa1QiSxWLRkr8L/p4d89lW7Zl+g0N9dFcn4y9r6uIdNoWBcso5i+JqGtEpq7JvNJlMJn226eiVY1mF3woKkdlFzXJWa5ekn3ae0pmEFN3cKly1qwQUS58P2Vnf/+6aA3p1edYymwtJ6XqGzyCGECIBuJW0DLOe/tb9qsqWJ0UZgcjINGvmir3ad9p+Zd38igbduWCjJvdrqi83G9sMvjgdPu/agkBGTPn+n3z3rXSV4xcvGyoulF84zB7dzTRbSjVAFlVBWwfZk3vEtbDzTyU4vlQjd/Gby+mZmrF8j+b/dkiXCym0lZph1uFzSQ6tZc1p8+GLWnvgvFqEh+jhHvWtI6CutO7Ktig3twpTpUCffNu9tnyvftphfCq5xWLR0n9OKeFyuga2CZeft6crugsX2Hf6krq9skrJaZmaPbS1zXMncm1TZbFYdOhckqoE+iokwFs/bD+pD+3sM/n4lZtH3/wZq5UTujldoCYtw6zvtsbK38dTN7WsWeh1ZuVYI//e2kOESIMIkQBQxlksFj3z/Q4t3FDw5s/Ld5xS76bVteRv5zZz33DwvPx9vPTGr8anzGU7duFynv0AnXEhKVVPu+HWNTk9+/0/Gn99I4X4/zstK78AeTktU8M/3FxSXStU5KQfNahNeGl3o0i+/jNvkHbkxsHXuQo0xV68rEY1gorUp9y3bTYePK85v+y329ae3/afczpE/njl+/3nnafVIjxEPRpXc+o62SwWiz5af0Rbj17U3TGRslgsumP+RknSil2ntXBEx3zPXeRABeXs9tnBYvepS5p6c7NCzih9e05d0jtrDqhe1Qp6sFu9fEP7/N8O6p01B9UhspJmDmktX6+8AfliUpp+3nVaTWsG211naDZbFBt3WeEV/Z2+OWCxZF2jZoi/PB24Rob53ynid8zbWGDb137eqzm/7FeAj6e+e+gaLS9g7b0kHTyXpAyzRd6ezr2nGcv36J0r02TjLqfrrk51Cmxf1G18rtY9MwmRsCvJwKbOANzD4fPJhQZISRp9JcQ5u2fcE1//rUCf0h0J+O+yPXnWQ5a03PsI5vbh+iPy9PAwdDf7bzcpQpTTt1uNV7l1R/aKAU1x4MZD7oJEiS6obvphruq0LzlYNMjeFG5n3PfBZr1zVzv1KWSNZUH+OHJRzy7O2o5n/cHz6pkjlOasbOwKb63694bVB+sOOxwi956+pINnE3Vtw6oOr3Nz1oRF2/RPbFZ18ajQQN2Qaw9PKev/Z/YU/CV/n9KgNufUu2n1PO1GL/xDmw9flLenScvGXat6VStYn8sK7xu04eAFtaoVoq8fjLHZC9aoER/+oV92n1HjGkH67qFrXDLam/umWfYNk+S0TL2/1ljV5T2nLun4xWR1a1hN/g7+3skOkJI095d9hYZIOMctq1e89NJLGjx4sKKiomQymRQZGWm33eHDh2UymQr888knnxhq37y5/U27N27cqF69eikoKEjBwcHq27evtm3bVgzv2r3YK0MPwD05WsI/94dkh16rkMqVh88n61IxbilQ2gHy552n1Xraz4W2e8/gByVcHZzZ4qS4PPO9/UA96eu/lJpR+A3k33MExdMJqfpsk+0U9ReX7HI49G46dMFuIaeiVLLefSpB/Wb/pgc+/tNajbMkZAdISVq8/YTdNuZc7/Xg2X+XB+RcErD5cNY62/RMi378y3YGyZ9HL1rXlm4/Hq99ZxKVmpHpUEGsM5dS9MvurEJou09d0rjPt2nG8j3WfXKLwx6DP8NvmvO7Hvj4T01YtK1Ir3c6wfnfd8Xl6PlkDZu/QcPmb9DRUlhe4SpuORL51FNPqXLlymrbtq3i4uLybVe1alUtXLjQ7nMPP/ywLl++rD59+uR5btCgQbrllltsjlWsWDFPuw0bNqh79+4KDw/XtGnTJElz585V165dtW7dOrVo0cL4mwKAYpCSnqmrZF/jMquoVU5RvAqb6rrv9CW1q1NJJ+Mva8KX20uoV8XndEKq9p/Ju6b5883H9PnmY5rcr4lGdo2SlFU902yxqGF149N5311zUL2bVleHyKzCKslpGfp049ECt+u4/Z31eryva/fn/OqP40rPzPreK63phrnDYkHSM8267/3NWnvgnP6vQ4ReuqWlzfPJV27gbT16UV9c+X+V09urD2jJ3ycVUdlYQZoftp/QmM+22hxbtuOUlu2Q1h84r68ejDHcd0ckpmboz6Nxhtsv+fuUnvr2bz1zU9NysyZ25oq9Wrs/q1L2rBV79dqQ1qXbISe5ZYg8cOCAoqKyfoA1b95ciYn2CzgEBgbqzjvvzHN8/fr1io+P12233abQ0Lz7NrVs2dLuebmNHTtWPj4+WrNmjcLDs9aI3H777WrSpIkmTJig5cuXO/K2UM78p3s93dqulq6bsbq0u4KrWOMpyzT3jjal3Q0UIPuDLMqmV37ao2+2xmqTk/s4ulp2FcyieGlJ/tWMp/+4S8Ovqasl/5zUw59mhYz/3tZSt7eP0JlLKTpsp7plbgfOJFpD5MtLd+sjO0VUcvvvMserF3+0/rB+3X1GQzpEqG9z22mjzlZSdqVTCala8PshtY4IUbs6BW958eeRi/p9f9Yo72ebjtndv/BiUpqGvLshT6EmSfp+W9ao58GzxrabKOiGyB9HLurv4/FqUcvYfo+O2JtPUbaCfLrxqFqEh2hodG2X98cZ+RWQMyrnkoFvtsYSIl0pO0A6a/78+ZKkkSNH5tsmJSVFZrNZAQH279js379fmzdv1vDhw60BUpLCw8M1ePBgvf/++zp16pRq1HB+XYG7MpstRZrudrVoWauizfoEoLQ48+ELeb275oB2nEgovKFBZy+lqmqQc+tP4T7OJ6XpvBsEyEyzRW+t2m/diqAoVu4ueC/Xyd//o/UH/t1T9PGv/lLd0EDdMW+DwzdFjARIZ+w/k6hnvs9am7lm3znteK6a241UbT8Wp+3H4uTpYdLyR68t8DND3GXb0GsvKO49fcnucWcUtg9r/7m/K7SCr5qFBeuNYW312cai37woiie/+Vszlu9R64iKmjO0rcPrJF3pt3357+t6NXHLNZFFkZiYqC+//FJ16tRR79697baZMWOGAgICFBgYqIiICD3zzDNKTbUNTZs3Z1XL69y5c57zO3XqJIvFoi1bnKs0WLNmTZs/DRo0cOo6xeU/blra3der3H25Ai7hqk3Ur3YvLtltvZvvCs5WwQXseXbxPy4JkEZ8uvFong3Ux3+5zaEAeTktU8lpxbc+Ouc6wkyzRQ9/+qfNek2jklIzijyyVJhMs0UrdxVtSm1KemaJ7wN8LjFVq/ee1RNf/6UXChi9zs/Gg+f1y27XTSU+l5imFbvOaPnO0tsP+UxCig4UMtq76I/8t7IqyhZb7sYtRyKL4osvvlBiYqImTpwoDw/b0OHh4aGePXtq4MCBqlOnjs6ePasvv/xSzz//vNavX69ly5bJ0zPrzsaJE1kfJHKOQmbLPhYbW7Yr2OVnWSGll0tLx6gqWrOXuz+uEuTnpUspxfcLHrjanUtM1Zur9muxC4Mprk4p6Zn6eEPpjgQdu2C8yM3UH3Zo0jd/F/k1HRl1W7HrjNbsPaetz/QucP2lzTk7T+vBT7bIy8NDHw6PVnTdgqec2mM2W5SWaS50FDRnAP/yj8K3OsnIFdhLszhT7qI+RkRO+rEYepLlsa/+Ur8WNfXubweVnJqpEV3qFrg/6fP/26nujapap1gXxfzfCy+a9thXf2n3qUt66sYmebZNyXnzo6wrdyFy/vz58vDw0H333Zfnudq1a2vlypU2x0aMGKHRo0dr3rx5+vzzzzVs2DBJUnJy1p19X9+8U5H8/Pxs2jjq5Enbb8aEhASFhLh+3jmKl6932R4ZXTupp1pOZV0vUFwc2QcQ5ZPZbHFJ4avirJZZHFLSXTPlMj/5VX9NyzTrXGKqAn29tDKfETCz2WLdU/GVn/YoPdOi9MxM/XfZboeLyXy3NVbjvtgmSXp+QDPd1Tky37Zbj8Yp02yRxWLRU98WHrA7vbSy0DZXq7QMs+o/vdT6+OiFZA3vUld+3h5qXCM4T/sFvx/SgnzCn731wVuOXFCrWhXtbpnylcG9Thf8fkjXN62ujlFVrMcyzRZtcIOp8a5Stj8F57Jz505t2LBBvXv3Vu3axhffPv3005KkH3/8965J9lrJ3NNcpaz1lDnbwD01D8/7g2RI+whFOblhc26uuKNVmoL9vPMc+2J0p1LoCQCUT1FPLVHdJ5cU+TrZBVeudinpmbrh9d8U9dQSzVyxr8C2cbkK65yKT1GfmWvU8rnl+nZrVhDYc/rf7Sb+OHLR4f5kB0hJmnJlfWZ+Vuw6rReX7LI7JfhyeqY+NrDXL+xbvP2EBr6xVn1n/VbgVFJ7cu4pme3Wt9brSReMpO87k6i3Vx/Qve9v0i+7T+u5H3Y4tGetuytXIXLBggWSCi6oY09ERIQ8PT117ty/P6TDwsIk2Z+ymn3M3lRXlI7H+jRSh8hKNsdeGtQyT7s6oQF6vG9jl7xmBTvTZXy8PFTXRSE1P2EhfsV2bRN7RQCA26lGgSZJ0uyV+7TrZFbxq+z/5nYkny1bPlp/WHtOX1Jiaoam/8/x9X0/7Tilhz75U99vy38pU2Hr3fIbDZu1Yp9+c2I9J/J6c9UBl1xn0Zbjavv8z1q4/rDT15i6eIdeXrpbq/ac1UOfbC22IlOlpdyEyLS0NC1cuFBVq1bVgAEDHDr34MGDyszMVPXq1a3HOnToIClru5DcNmzYIJPJpHbt2hWt03BIpYC8I2fZalXyl0euANSkpv19rfo2r6FhHYunTHSVQB/9MqFbsVw7W+vaFYv1+gAA9/LrHuoBSMYCwt3vbbJbKGddjmqz5x2cHpyYmqH7F27Rj3+f1COfb9Op+BS77Y4Y2P4ExSt3QaiiuJCUpmcWFzzCXJCMHDcVLhdz8abSUG5C5OLFi3X27Fnddddd8va2HzbOnz+f55jZbNbkyZMlSf3797cer1+/vtq3b69FixZZi+xIWQV3Fi1apJ49e5bL7T3c2a1taxX4/G3t/n2+be2suey7n+9rt+3Q6NrKXuscU6+KPrivg96/t4NL+lmWRvNcNbUXAAB38fz/djp97uW0TFkstiOKuSstHzqXZDcwlqfKm8hi4X9pvtyysM7ChQt15EjWkO/Zs2eVlpam6dOnS5Lq1Kmju+66K885Rqayjho1SgkJCYqJiVFERITOnTunr7/+Wlu2bNGAAQN022232bR//fXX1aNHD3Xt2lVjxoyRJM2ZM0dms1kzZsxwyXuFcdc2rKpPR3bUHfM35nnOz9tTN7aoqSPnk3X0QrIe7llfkuRtZ1G0JDUPD9FXD8Zoz6lLuqF5DVUMyL+qV3k2sU+jArd0qVXJX8cv2q/Id039Ktp98pLDd3QBAChOnzi5p+HrK/bp9ZV7Va9qBX15f2drxc8Pc1VGHTZ/Q76fLwBHxV9OV4h//rPt3JVbhsgFCxZo9erVNsemTJkiSerWrVueEHns2DEtX75cMTExatKkSb7X7devnxYuXKh3331XFy5ckK+vr5o1a6Y33nhDDzzwQJ4tQWJiYrRq1SpNnjxZkydPlslkUkxMjBYtWqRWrVq56N3CETH1Q9WrSTWt2PXvRsmhFXzVKaqKvD09NLFPI8PXalu7ktrWrlR4w3KssF+Cc4a20aA319l97pORWUV47n1/k1Yx1QoA4Ma2HYuzeWxv+5CZK7L24dx3JlHfbYvVfdfUlSSdTrCdvmq2SKkObD+Csu3nnad19EKybitkRpyz+s3+TSsndJOvV8HbxLgbtwyRq1atcqh9RESEMjMLn2s8YsQIjRgxwqFrd+7cOc+2IFezL0Z3UoPqQWr7/M82x1c/1l3dXllVIn3IvefOivHXlsk7OM5yxXSZ1hEVDbXz9vTQ/7u1hZ74Ov8qZa/c1kqfbzoqs+XfX8A59WpSXSuKuMkyAACuNMvO76ucnvthp+7uHJnnM0dBzl7KW9E/t9yBFK7n4+Xh0B6jhRn10R+SpE2H8i6Lc4XjFy9r98lLamXws5m7YCweDukYVUWV7WzoWqdKya2tG9Tm3ztBrSMqlshU1Ja1QpwOqg78/jHkpx1FC2StaoVoyk35j9jnNqB1wVWIqwb5asx1DXRz6zC7z4dX9FPjGvaLHAEAUBqMFOnZcSJeGZlmnUs0tmzjbTvbReTW/dVVhq4F5/kU01Tjon7+KkhyWtkrvEOIRKkaGm2sSuqILnWtf7++aXVNuamp7uhYWzNuL/5pxV0bhGrxw10UXdf4vpATeje0/n35o9fmeb6KnSCek5+3h3ZO6yNfL9d/i37/cBe1q5P1Xvy9badOOHLH1ahb2xXP9I/S1KNR1dLuAuAy79/nmqJiQHlzPjFNjacsM9x+zV6WdrgDcxmshvPpJufW8ZYmQiTcXueoKprc79+RMw8Pk0Z0qasXB7VQvaoVXPpaXRuE5vtceEV/w9cZc10DrX+yp3ZO66P61WxH4TrWrawtU3rrmvpV8j2/RrCfAny8NG1AM8Ov6Yy2dSqqTpUAa7/sjTLb82ivhoU3uqJlrYrOdM2tjeoaVdpdAFymvot/jgLlxYRF2222aUDZUJxVcnNX7nWVH7afKLyRmyFEwu2FV/IvsW0zgv3yn7I6rGNt+XlnfcsYGUGtGeKvAJ+sZceTbmgsKWtqa3bl2Ls6RVrbXt+0us252esqqgX5Ge+8EwJ8vLTskWu1ZGxXfTyyo6Fz7upUR2Ovq1+s/TKqtEYES2sblyY1g0vldQHganSB6uNlUnEWPbqYnF5s1y5r3LKwDsqmbg2ranU5nsrRoHqQVj/WQ7Fxl9UyPMShc++/Nkpd6ocqyM/Lun60T7Pqev3/Wuv4xcsaGl1by3f+W6woe/1l53pVVK9qoA6cLb4NjP19PNU0zHg4qVc10G32wswO6cVlaHSEPtt0rFhfw4jujarqwW71FBrkq+tmrC78BAAAgGLESCTyqBhgfzSuRnDBo2L/va2lHuxerzi6VGIKy0bVg/3UtnYleTm4aNtkMql5eIhNASKTyaQBrcP1UI/6eaaRNrsSUv28PfXl/Z1tnruxRY0C+z9tQDM91MO9/j9UK+Rrxx11qR+qh3s2UM2QvH0vhqWjBRrXq6E6RuU//Rkoy964o21pdwEA4CBCJPKIqWf/w2r2lExJ6t/q30qc2esIqwf76Ym+jfOcV5bc1LKmw+c0qv7vmsd+LRw/31H9W9qvgipJHiaT7u4cqcf6NFZTN5r6OPyayGK5bkTlgGK57ry72+vjkR3zXQcbZWcNWf1qrCsDnNE713R+AID7I0SiULe2raUtk3tpYJt/t3oY27O+GlSroMgqAZp4faNS7J1jvAoZQrq+aQ091sex9/PkjY0VXtFfrWqFaETXuoWfUIza5NhjKLtfjshdrTXAxzPPv1l4JceDW/dG1fTZqE4FtqlVybG+Bvl5aWh0RLFUsC2MvS+j9nUqlXg/yoviKseOkvds/6b5Pteylv1lAD6l8D0MACgafnKjUI/2bqAqFXxtjjWoHqSfx3fTqsd6uPXmqB4mKSo0awqpyST1aFSt4PYeJj3Uw7GiMd0bVdPaST31/cNdVDPEsSCUU3Y/pbyFdowwmbKqwmbr2qCq1k7q6dA1aoT46f86ZAWzQW3CVTc0UF6eHhrbs778vD3UrWHVAivYFqRzPiPcjnqgWz2tGH+tfn+ip+pUCZRfruCb2zX1q2jDk9flOd69UVV1ijK+bUtOHiaTwnJNcy3OdaKRVYpnxBVwtebhIfn+Tujk5JTsnDNEHNlqCQBQfCisgwI92quhajkx8uQuTCaTPrgvWt9vi1Wb2pXUoLrjm943d7CIjrNevKWFZq/cp/rVKujm1vlPWbVnydiuCvT1tFlz6ayXb22pl25pYROKxl/fSI/2bugWBXXa1K6YZ9uUglTPp8Lt23e208cbjmjDwQsOvX7z8GBVDPDWhOsbacKi7ZKkFwY11z+xCQ5dxxG+XgUHZcCddKpbWduPxeU57uyU77l3tNWA1qe19/Ql3dauljq+uLKIPQQAFBUjkSgRhU0jzalVrilPRR2FqV0lQGOua6AuDoygPXlDY5lMWcWEhnUsfDsPV+gUVUWfjuqkaQOaFxoack4La1i9gpqGBbskQGazFxZdESCjI4s+itCzccGjybnd2blOnmMf3NehwBHMJjXzD6mfj+4sk8mkW9vV0uKHr9G3/4nRHdG11c7gdNbb29cy1O5qUoeR1lLl5enam0P5VU2+sQhrxns3ra6HetRXdTtFun5/oofT1wUAOIcQiWI38fqGusvOB/n8jL++kUZdWVtYNchXt7WLKK6u5ev+bvW0/dnrtXZST7cciR3fu6G8PEzyMEmP9Sk7xYxubRee73MNDIxSTLy+obxzrZ/LfX9iZJd/16V2qR+qtrXzhjuPAgJxlUCfAv+fV/D99wNyy1oV1aZ2JZlMJvVrUbPAwkxRoYF6/94O+u9trfJtkx9/H8dHIh/o5nyF3vu7RTl9rqNqVfK37p2K0lEj2M9aUK2FC2Ze9GtZU952gmlxrX2tVSlAVXJVuAYAFC9CJIrdwz0b5LsWMfcHjcY1gtStYVU93a+pNjx5nX5/oodq2NlioSQE+3nLs6T3cjCoe6Nq2jKlt/6c0rvcVDa8OybSqfNub297k+GmVmFaOCJac4a20fv3dZCUdTOiWlDWul5/b88CPyhf38y5f09/H0/NLWCrghdvaaEeDo6iStItbfIP3gUZZOc8o9WHJ/VtrA+HR2vuHW00pL2xmzhVg3z1bP+m2vFcnzwf6AsKpWN7NmCdWykzmUz6ZGRH/f5ED33/0DVFvl79ahX0nQuuI0m1i6kCMwCgaFgTiRLRpb79qaTXNqiqj9YfsT6uUuHfD5+lFR7dTe7KhZWufEAP8be/n6c7MTK66EzbnG5tV0vvrDloc6xrg6o2jz09TPrqgRit3H1anaKqWP8Ny4Kc3xOOsDfYGm6wAq7JZFK3hln/hntOXSq0/R+Teyk0R/GtOUPb6I75G411FG7BZDK5dNZFszDXrCWfcH1Dl1zn1ra11LleFU28so65MC3CQ/R3bLxLXhsAyiNGIlEiPDxMWvNYD5ttHB7oVs+pkZmrTZCft4Z1rC0PU9aenEbX3pW2EH9vvXRLC4fOubeQ0chA37z3vSIqBVi3JvH2NOW7hrZ2lQDdd01dNcmxf6Yz00RdrXKgj775T4wq5xNsC5p66yrNwoIVdOXftnujqoW0zis0V/Xm4vRE38Z69652Dm/Fg7LjhuY1tHJCN62c0E0DWhc8El/Bzs8Ee7w8TLqtXS29dnv+08n7NqshD1PWiH1NbmLCDZWFm8e4ejASiRJTu0qAfnu8hzLMljzr2lCwFwa10LP9m5Wp/dQWjohWy1oVHTrnwe71dOR8ki6nZ2ragObaePC8pny/Q1LWnpXXN6uR5xx/H099OqqjftpxWj0bV1PFAOMjdz0bV1Ogj6eS0jId6qcrBfl5qW3tSgry89KFpLQ8zzs7Xdnb00ONawRpd46RxM5RVfTOattR2yBfL704qIVqhPhp3+lEtY8s+k2K0CDbUBlUyAf9SgE+CvDxVLKB/w8Pds9a61kzJF6v/LTH+U6WEVWDfHX2UmqJvuYTfRvr/y3bXSzX7li3sjYe+rcicu5CatnqVc1/ZsI9nevowyszWN69q51Dr39L21oa/6X90ci372qntAyzfLw8dP/CPxy6bnkwvndD7T6VoCV/nyrtriAfm56+Th1fXKm45PQSeb2RXepq/u+HSuS1rnZDo0u+/kdRlZ1PpCgXTCZTngBZPfjfD5xd6js+CnK1KEsB0lnVg/30/n3R+nx0ZzWsHqS7Okfq76nX6+0722npI10VXtH+dMw2tStp0g2NHV5bVzPEX8vGXVtgm5PxKQ5d08garpyDi9nrM+/LMQpbu3KA7ulcRzMGt1L7HBVtHalyXKdygEZ2tV2L2KhG3qqzW6b0VquIiqoe7KcuDUIL3Xczvw/9OTWoVkGjr41S3dBAPd63kYILuXvu5+2pD4dHF3rdnFrk04+378x/XWpZ9MuEblr/pGP7vTrC3prXB7pFaeGIaN3atpaiqgYaXhcr2X79P9E3b9GvVwe3srbx8jBp/PWOjyhPvqmp3ru3vf43potiriyVaGOngJYzsn/Odqzrmn1ty4r61Spo7HUN9J/uFLlyV83CguXr5anAfKofu9rkfk30Hwf3zYbzyuJWXuX/Uync3rP9mym8or9i6lUpk3diULyC/LzVt3kNl25hklOEiwt3TLmpqcIr+ucbeKWswjWS5OvlofuvzRpZu6NjHY3pWV9DoyP02ehOem5Ac93aznY7kIhKATbbuxTEw8Nkc4MmW+5RQUdvTnz/cBebx9WC8r6GyWTSUzc20a8Tuxv+UNohsrIGOrg/qj19m9sWD3JFtdHS5GEyqWaIsbWsOX39YIyhdtkjuzmZTCZ1bVBVM25vpV8mdNf/u61lgdfo2iBUg9qE681hbW224LBXoTWicoDWPN5D25+9Xn8+09u69tYR3p4e6tm4us0evv/pUc/6tezMVNTca7JvbVdLzcKCbY69UUDhrPLCkX2RezWprreGlf9/k9JWp0qANjx5nf43pkvhjUtA13y2S3vu5mYl3BOUNkIkSt2NLWpq7aSe+nRUJ4emIsK95B4kK4m1fO6od9PqWjupp764v1O+be7vVk+/Pd5DG5+6zjqi5uPloQnXN9JLt7TMN4B6eJj09YMxWjH+2gL3L725Vf5h7I0cH/p6OLH+UZLuuybS+vcxBrbnqGFnbz9XuKuT/a2Dcq4v7VzPdkTJy8OklRO6FUt/ClLQ/5Pi0K5OJe2dfoOiQgu++RJZyPPZGtsZxc42rGNtzRzS2qF9IEP8vRXs57r1XW1rV9LGJ6/Tb4/30Por/3XEjFxrJUP8vfXj2K7qHJX19VMzxE9dGxrfa7isMbq2NKdhnWrrhhY1tfnpXsXQI2S7NyZSNUL8XLJXs6vsf+EGzRnaxuZYQcUQA3w8Hdon+o6Ote1WGId7IUTC5bJ/6UoyPGqCsq9WpQDrB9ZalfzVoLpj1Vbd5RdkSd3IiKgc4NRreXt6qH61IN3dOTLPcz0bV9Pkfk30/MDm+Z5/bcOqeveudnrqxsaacXtrh19fypqmOLV/U71yW0sN61j4HrDXNqxa4Miss8Ze18Du8SdvaCw/bw9FVgnQPU5uHeNqd+YTeAtjb5uhG5rX0PJH85+GnR2ifbw89P9ua2m9RlH2/xzXy/6/tSR1a2i/QFrOIlY+nh4OTcd2RqVAH+vMAkdnGOS3fvuD4R303UPXaPmj17o09LqbnDeGjHj7znbWrbuqBvkqwA2KlJVX1zV2v228vDw91CnK+JTv5LRMjeud/8+Q3F4c1EIzh7R2omcoSRTWgcs92ruh/np/kzItFk10Yr0LyiZPD5O+e/ga/XUsXi3CQwzN7/fz9lBKull1QwNVs5hGq4y4vml1Ld95Wj5eHrq1bdm4+9moRpCWjO2qG2f/Zj3Wr0XNPFNg7bFXoMgRft6euveaug61Xzupp37dc0a/7j5js61PUVS1M5VWkga3j9CgNuHy9DC59ObEhN4NNWvlPgX4eMrDZFL8ZePFLcwWi+G2LWuF6K/j8RoaXdvuGtVGNYIKnLIZ5Pfvr/YOkZW1Ynw3nUtMVdvalfIUVjKqb/OaWjauq1LSzRr4xlqb5/KrctwpqopGXxuljYcuaESXuvJw0313C+Lr5anWERXzfd7H00NpmWaXvV7D6hW093SiQ+dUDvSxW5TLqP93awuHR8r7Nrf9GRJZJVA7TyY43QeUrCVju+qhT//UoXNJJfJ6DatXUH0nt/GC+yJEwuWi61bWn8/0lsWiQot0oHwJ9vNWl3zWS9izZGxX7TuTqOjIyqX6AfP1/2ujtfvPKapqoKJyVYUce10DzV65T5L9IiSlyei+j+6iR6Nqal+nktMhsqApvLl5FVABOqJSgFNVT+/rUlfDu9SVn7enPExS3SeXGD7XkSm93z90jRJTMxTkopGvuqGBqntlloCvl4dSM5wLPY1rZI0shlf0V2zcZUkqMGB5emStjXWUm0xKKNS9MZGadENjNZ6yrFT7MfH6RoqqGqj/e3eDU+cP6WD8+0rK2golt//0qKeHP93q1Ovb07tpdf2887TLrod/tatTSU1zrfctbg/3bKBqQX4a37uhXvt5r+HzwkL8dMLB4nalbWh0bX226Whpd6NEMJ0VxcLXy5MAiUJVC/ZTn2Y1VCmfPRJLir+Pp3o1rZ4nQEpZlSrvvzZK98ZE6okb8labLO/cYTuebg2r6t6YSLt7Q97U8t91eJ2ijK258fHy0OKHr7G7Z+DQ6Ai7e3b2aFRVFXy9FOjr5dQIZ8UA73z3As2pa4NQmUymAgNklUKuU9DrPNDt30I6/VoaX8OY0+N9s/4/eHqY9Gjvhk5dI7ecay4dWVtZmrw9TQ7/nvvgvg7F0pdOUVWcKlLkjIFt8o5a3tQyTJ+O6uiyQjuTbmhc4LR85G/i9QV/T0668nuspO7VRIUGWke6x17XQK8UUKirZoifnh/wb4GeovzOnTE4/z1hXcVINfbyjJFIAChAgI+XnnRiNCX3ptDFsSawJFzfrLpmrtgri0VqWrNk717/9ngPhQQUXIBlTM8G+ic2XqkZZoemz9cM8be7Z+BLt7RUVOhBvbBkl/XYT+OuzVO9U3J86uGbw9rmO1o0qmtdnbmUqnG97H8AvKF5DS3955SqBPqoT/OCpyOP6JL/VONR10bpYnKaElMz7IZyIwa0DlenqCry9DAptIL9KcWOenVwK721+oDqV62gG5qXjRCZzZHppN0bVZPJJDkwu9mwQN/SvXEbU891hYe8PTw0qE24pnz3T5GuUzHAu8T2VHQXD3avr4jKAfIwmTTmM9vR4Sk3NVWHKwVuBrePKLb9YHPKXdws9+Oc1j95nc3j7J81s1fu0ycbHRvdq1u1eCq6Z3vyhsaKDA3U/Qu3FOvruDNCJAAUgyA/b712eyt982esrm9W3eVbiZSUxjWC9cnIjvr7eLz6l3CFUSP/Zo1qBGnVY8YrcTaumX+V0fxEVQ20O9368T6N9egX23QpNcPQdTpFVdG0Ac30zPc7bI73alJNT/drWuC5c4a20a6Tl1S7SoBC/L11KcX2g/GUm5rKJKlasK/6FTCSV8HXS9MGFH2Ep7qL1zA3Dw8ptS00oor4YfPxPo006Zu/XdQb51V1UaBvFVFR24/FueRauTUPD9Y/scbWTlbw9dLdnesUaQ319U2r68s/jjt9vhFeHiZlmIvhroAThkZHyNPDpAGts9b25w6Rt+SoeDq8S6RTIdLRatuVchWQq1XJsd+F1YP9NH1gc3VvVE2jPvrDoXOLU61KAerTrIZWTeyunjNWyWzJGknt1rAq01kBwNVy70lYRpY+Oe2WtrX08ciOdiuplgTPXFMuTU7+i8fUC9X93eoprIyOpj6aY3RvTE/jFQIL06tpdW179nqHzqkSaPtBP7puZev0soJ4eXqoRa2QPCPc2YJ8vTS8S13d1DLMbSodlxVPOzHTQPr3w/D/RdfW/8Z0UWApVyh1dG1jfiZe31D+3p5ObfuRny/v76x1k3rqf2O66vqmxquNuuKGR3HLr1Ly7e0LL3JWGD9vj3wLiNnzfAH/Xnd3rmOzdMTXy1OHX+6n/S/coEd7NcyzL2p+7upsvNK0r5eHBrmgWJ3JZCpwm6Hi9Pno/LfrkrK2SfpweLQe7lFfHw2P1nVNquleN6kKXtwIkQBKzDX1Q60ftBrXCFKgCz+kIK/mOUJHRGV/VXPgw0hpKK7wM6ZnfX0ysqMWP3yN+uQqCmJv24ncawoL6pWnh0n/18F4waVujapaqxTe2raWvry/s+pXK50PR8haX3pdE+OhZviVqsS1KvnbrMdtHh6ixi6a7m10bW9uriqW0rVBVW17trf+nNLbJdeTsm6WZN+EutfB7UTcXX4/t5wN9Ydf7qeFI6J1b0ykPhreMU/14/xmhEwb0CxPQTE/738f57eNjZenhx7p1UCLH+5ic9zeCP24Xg3yvU5uft4e+mnctapnp9ZAWdIpqoquLWS9cdcGVTWxTyM1qB4kb08PTb25mXzcoJ5AceMTHIASUy3IT/8b21Xbj8UV+kMZRRfs563/jemiLUcuKqZ+FbffYqFPsxr6dmusJNldg+gsDw+Trqlvf73Wf3rUt1bfHdA668NZrybVrRVI+7cKK7DSq5S1b6a/j6d8vTz19uoDBbat4Oul5eOu1bmkVFULKr1tbZDF18uxD3rP9G+q//Sop4r+3oV+XeTmb6AIT+Mawbrvmkg99tVfCvT10utDWquCn5faT19h6DVua1dLX20p+vTN7C2a7upURws3FG1Lntx7UMbUC9Ubd7TVQ5/+WaTrGlGaBf5aR1R0aPpuTl0bVFXXBvZ/Rw6/JlJ/Hr2os5dS9XCP+tp2LE5VKvhoaHTe0Dp9YAvNWrFXzcNCCpzmLmXdEHvu5mZ6d81BRdetrC71qyox11T9nNt0BPt7ycfLQ2lXqj3n3sKjZ+Nqigw1PlW8pNbcH365n8xmi6KeMl5d+4072qjF1OXF2KuyiRAJoETl3G4ARZP7Tme14LwjjRGVA8rMeszrm1bXhN4Ntef0Jd1/bb3CT3CB0ddGKT45TUlpmdZCMyEB3vplYjedjEtRnSqF/9tVCvTRs/2zKgoWFiKlrFBLgCw9tSsH6OiFZElSzybVHD7f2WJC4/OpZPvIdQ30+sp98vHy0MiuddWyVkWtGN/NqdcoTLCflxJSjK3hlaSn+zVRrUr+emlpzrVzBd+M+k/3enpz1b/fB0/0zTtdu3Xtiob7kNu9MZH65s/juqF5TX3xx7EC2w5sE+6yfWkd5elh0nf/uUbHLl5Wj1dX2TxXlHWU1YL99OX9na2PC9ob+LZ2tXSbgb2Ds90TE6l7ck7FLGAXJF8vT71zZzst2nJM3RtWK9KIY/VgX0PT+nOa0LuhZuTYLsTIv2n21GBHb6gG+XmrU1RlbTh4wfA5he0f26Z2RW09GudQP9wNIRIAyih/H0+N6lpXH647os71qqhj3fyr3rmL3FuGhAb9O3XUw8OkMde5bs2iERV8vfScnXVEvl6eDt1FR9nx5A2N9fhXf6lyBR+N6hrlsuu2q1NJW45ctPvcxOsbaviVqrmVAmyruY7r1UD9WtZUpQAfh9a/OcPX21NyIET6eXtqRJe6emfNQV1ISpOXh6nAvUEl6bE+jTSwTXiB7ye0gvPbOk29uZmm3px10ya/EOnjmRXI29aupPl3t9fIUirI4uXpYfem6erHe+ial38phR45JiDXVNrIKrbvpUfjaurR2PEbMQNbh+m7bScU4OOpJWO7OvWzNsjPNsLUDQ3UvjMFV8t2dv2zKzSpGaxdJ/Mfla5XzNVki0P5n7ALAOXY0/2aatfzffXh8Og8hYvckZ+3p4Z1zJp21a5OJZduC+AOxvSsX9pdQCFuaFFT2569XqsmdledKq774HZ35zoKr+gvb0+Trsv1wXpw+6yqmVLWSF22Ie0jZDKZ1LB6kNMB0tHqsg2r/zti1LFu4esvvTw99Omojhrbs74+HtlRNUIKHkU38n58vTzVK8co8NT+ttWJcwcER+16vq8evzIC2suBQj723NmptnY810ft61Sy+3x1OzNAcouobFuULMTf29Ash9Lm5+2pVwe3Urs6lTS+t/HiO4V5ZXArLXqgs36d2N3pm3VNagara4Os3x/9W4UVOkPglwndNLBN0Yv8OKt5If92JV393BUYiQSAMs7Tzdc65vbCoBZ6ul8TBfiUv19BD/WoLx9PD+0/m6jvt52QlPWB2JWVLlF0xfE9U6tSgH57vIfSMs1af+C8Vu4+Y7fdPTGRyjRbdCklQ6OudX4ktEawn25oUcO6759Rj/VprAc/3iJPD1O++5Lm1rhGsBrXcO2atXfvaq8NB88r2N9bzcKCdSE5Xct3nNKgNuE2VUQd5e/t6dL/v52iqijQ10tTb26mm+b8nuf5AB8vDWgdZv1+l7LWVec0umuUpuTa2sfIGll34OiUWCO8PT0c/rrNzdPDpIUjOio5LUMBPl4ammsP3txfAQV9TbStXVGtIirq/bWHbY6X5M/tigHOf82XFn6rAQBKXHkMkFLWnfvsKbm9mlTX7/vO6bb2tRwuwlKY3KPOZXX7leKUs+hHy4iQEnlNDw+T/DwKDgfenh66v1vR1/wuG9fVqQ+eva9sTeNhKt3vQw8Pk2JyFLwa37thvutG3UEVO1Nwe14ZcW4fWdkmRP73tpY27eqG2q4X9PY0aVinOpry3T/F0NOrS35fww2qBynIz0uXUjIUWsG3wJ+Rnh4mPdu/mfq3CtPYz7bq+MXL8vIwafpA999ipjSVz9/iAACUsv6twoptipKvl6cm9G6o99YeUkz9UHV0cluI8uy5m5vp1Z/2qEnNYN1cBqeKFSdGxl0j95rBbLlHGTtGVVa/ljW1dv85jbimrny9PDWkfYROxl22KUKE/OXeSaWwG3MVfL20+OEuWn/gvLo2CM2zHt+etrUr6fcnetp9ziNXB/x93H/5SHHjpwgAAGXQmOsalHghorJkaHRtu9selEX3dK6jD11QZdSVW+dcbbK3PXGGt6eH3rijrc0xHy8PPd63sbYfj9Pa/eclSZ2j3L84WmkJC/FX4xpB2n3qkiIq+6tJzcL313VlNfiKAd42j4s6Hbc8IEQCAAC4sYd61C9yiDSZpAe7l8zWOa5Ur2qgDpxNkiR1yWe/15JQOdBHt7QJ1zdX9rJ1lTeHtdOnG4+qSqCPBrd37drD8sTDw6SvH4zRP7HxahIWnCfUNw8P1vqDWWE896ilPfWrVdD+K9Vc+zYveA9Ne4L8vAtvVM4xFgsAAODGqgX76fX/a+3UucM61tanozpq6SNd893A3p093rexvD1N8vf21Lherhl5zx2mjVa4fW1Ia5vHJiNppRAh/t56sHs93d4hwiXXK88Cfb3UMaqKgu0EuLs7R6pqkK9MJumpGwrfymPazc3UslaI+rWsqSEdIlze1/tzFM0acWV7n5y8ylhBPHsYiQQAACgHWkdU1FdbjlsfB/l5aXiXukXaCL609WlWQ9ueuV6eHib55V5rWLeyNh4yvgF8th6NqumtHGsRH7mugT7ecESbD19UrUr+On7xcr7nZk+plKR+LbJGsMpDICjrIioHaP2knkpKzVRIQOGjhDH1Q7X44S7F1p+x1zWQyWSSRRY93KO+pv2w0+b529tHaPPhrH1lo8vo1FhCJAAAQDkwoHWYftpxSrtPXdJdnepoZNe65aIScmA+hYAe79tIj36xXUcvJBd4fqUAb11MTrc+Dvb3UnhFf8XGXZaPl4c61q2i/i3DFBt3WX7enurwwop8r/Xa7a0177eDql+tgq6/sgdll/qh8vY0KT3ToqjQQPl5M9GvNHh5eigkwD3+7QN9vTTphsb5Pj+oTbiOX7ysYxeT9VCPsrm/cNn/yQIAAFDO5V4DZm/qY5CftxaO6FhSXSp17epU1prHeyhy0o8Ftnvv3g4a9OY6SZKHKWtPz89Hd9JPO06pY90qqhHiJylrNOtCUlqB12oaFqyZuaa1RlQO0KIHYvTH4Qu6oUVNpqWiUF6eHnrUjbe0MYIQCQAA4OY6RVVW5UAfXUhKU6taIQrxp7CHUW1qV9L/xnTRil2ndV3j6qrg66UKvl4a2TUqT9vc8c/I1hBS1lTi1hEVi95ZuKVuDatqyd+nJEnh7MsriRAJAADg9ioG+GjZuK7aeSJB7cvoGqrS1Dw8RM3DQwptVzHAWw2rV9De04kK9vMqs+vV4FoDWodr06GL2n/mksaV8RFEVyFEAgAAlAHVgvxUrZFfaXejXDOZTPpidGetO3BerSJCVCnQp7S7BDfg5+2pGbe3Ku1uuBVCJAAAgAtF5tjg3NPDZHdLArivSoE+6tfS8b0DgauJe5QwAgAAKCfqhgbqhUHN1atJNb1xRxv5+3gWfhKAcqtbo3/3aC0vayoZiQQAAHCxYR3raFjHOqXdDQBuoE+zGhrRpa52n0rQQ93L5pYeuREiAQAAAKCYeHt6aMpNTUu7Gy7FdFYAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGFuGSJfeuklDR48WFFRUTKZTIqMjMy37b333iuTyWT3z1dffZWnfWpqqp555hnVrVtXvr6+qlevnqZPn6709HS71//oo4/Upk0b+fv7q3r16ho5cqTOnj3rqrcKAAAAAGWKW1Znfeqpp1S5cmW1bdtWcXFxhs5ZuHBhnmPR0dF5jg0ZMkTff/+9hg8frs6dO2v9+vWaMmWK9u/frw8++MCm7cyZMzV+/Hh169ZNr7/+uo4fP67XXntN69ev16ZNmxQYGJjn+gAAAABQnrlliDxw4ICioqIkSc2bN1diYmKh59x5552FtlmyZIm+//57jR8/XjNmzJAkjRw5UhUrVtRrr72m0aNHKyYmRpJ07tw5TZ48WR06dNDKlSvl6Zm1UXCHDh1088036/XXX9dTTz3l7FsEAAAAgDLJLaezZgdIR1gsFiUkJMhsNufb5tNPP5UkjRs3zuZ49uOPP/7Yeuy7775TcnKyxowZYw2QktS/f39FRUXZtAUAAACAq4VbhkhnhISEKCQkRP7+/urdu7c2btyYp83mzZsVHh6uiIgIm+MREREKCwvT5s2bbdpKUufOnfNcp1OnTtq9e7ehEVIAAAAAKE/ccjqrI2rUqKFHH31U7dq1U2BgoLZv365Zs2apa9euWrJkiXr16mVte+LECTVt2tTudcLDw3X8+HGbttnH7bW1WCw6ceKEGjZs6HCfa9asafO4oNFTAAAAAHAnZT5EvvzyyzaPBw4cqDvuuEOtW7fWgw8+qH379lmfS05Olq+vr93r+Pn5KTk52aatJLvt/fz8bNoAAAAAwNWi3ExnzalBgwa6/fbbtX//fu3du9d6PCAgQKmpqXbPSUlJUUBAgE1bSXbbp6Sk2LRx1MmTJ23+5Ay6AAAAAODOymWIlGTdW/LcuXPWY2FhYYqNjbXbPjY21mbqalhYmPW4vbYmk8naBgAAAACuFuU2RGaP7lWvXt16rEOHDoqNjdWxY8ds2h47dkwnTpxQ+/btbdpK0vr16/Nce8OGDWrUqJEqVKhQHF0HAAAAALdVpkNkUlKSdWppTlu3btWiRYvUpEkT1atXz3p86NChkqRZs2bZtM9+PGzYMOuxAQMGyN/fX3PnzlVmZqb1+A8//KCDBw/atAUAAACAq4VbFtZZuHChjhw5Ikk6e/as0tLSNH36dElSnTp1dNddd0nKGm284YYbNHDgQDVo0MBanfW9996Tp6en3n33XZvr9uvXTzfddJNee+01xcfHq3Pnzlq/fr0WLFigO++8U126dLG2rVq1qp5//nlNnDhRvXr10tChQxUbG6sZM2aocePGefaaBAAAAICrgVuGyAULFmj16tU2x6ZMmSJJ6tatmzVE1qhRQ7169dKvv/6qTz75RJcvX1bNmjU1ZMgQPfnkk2rcuHGeay9atEjTp0/Xxx9/rIULFyo8PFzTpk3TpEmT8rSdMGGCqlSpopkzZ2rs2LEKDg7W7bffrpdffpmprAAAAACuSm4ZIletWmWoXY0aNbRw4UKHru3n56fp06dbRzYLc++99+ree+916DUAAAAAoLwq02siAQAAAAAlixAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwzC1D5EsvvaTBgwcrKipKJpNJkZGRdtulpKRo3rx5GjBggCIjI+Xv76+oqCgNHTpUu3btytP+8OHDMplMdv80b97c7mts3LhRvXr1UlBQkIKDg9W3b19t27bNhe8WAAAAAMoOr9LugD1PPfWUKleurLZt2youLi7fdocPH9bo0aPVpUsXjRgxQmFhYTp48KDeeustffPNN1q2bJl69OiR57xBgwbplltusTlWsWLFPO02bNig7t27Kzw8XNOmTZMkzZ07V127dtW6devUokWLIr1PAAAAAChr3DJEHjhwQFFRUZKk5s2bKzEx0W67qlWrauvWrWrdurXN8WHDhqlNmzZ67LHH9Mcff+Q5r2XLlrrzzjsL7cfYsWPl4+OjNWvWKDw8XJJ0++23q0mTJpowYYKWL1/u4DsDAAAAgLLNLaezZgfIwlSpUiVPgJSkpk2bqnnz5vrnn3/yPTclJUXJycn5Pr9//35t3rxZgwcPtgZISQoPD9fgwYO1YsUKnTp1ylA/AQAAAKC8cMsQWVRms1knT55U9erV7T4/Y8YMBQQEKDAwUBEREXrmmWeUmppq02bz5s2SpM6dO+c5v1OnTrJYLNqyZYvrOw8AAAAAbswtp7MW1dtvv62TJ09qypQpNsc9PDzUs2dPDRw4UHXq1NHZs2f15Zdf6vnnn9f69eu1bNkyeXp6SpJOnDghSTajkNmyj8XGxjrVv5o1a9o8NpvNTl0HAAAAAEpauQuR69at0/jx49WqVSs99dRTNs/Vrl1bK1eutDk2YsQIjR49WvPmzdPnn3+uYcOGSZJ1qquvr2+e1/Dz87NpAwAAAABXi3I1nXXLli3q16+fwsLC9OOPP1rDXmGefvppSdKPP/5oPRYQECBJeaa5SlnrKXO2cdTJkydt/uzbt8+p6wAAAABASSs3IfLPP/9U7969FRISol9//dXuNNT8REREyNPTU+fOnbMeCwsLk2R/ymr2MUdeAwAAAADKg3IRIv/880/16tVLQUFB+vXXX1WnTh2Hzj948KAyMzNtCvF06NBBkrR+/fo87Tds2CCTyaR27doVreMAAAAAUMaU+RC5detW9e7dWxUqVNCvv/6qunXr5tv2/PnzeY6ZzWZNnjxZktS/f3/r8fr166t9+/ZatGiRtciOlFVwZ9GiRerZs6dq1KjhwncCAAAAAO7PLQvrLFy4UEeOHJEknT17VmlpaZo+fbokqU6dOrrrrrskSUeOHFHv3r118eJFjR07VuvWrdO6detsrjVo0CAFBgZKkkaNGqWEhATFxMQoIiJC586d09dff60tW7ZowIABuu2222zOff3119WjRw917dpVY8aMkSTNmTNHZrNZM2bMKNZ/AwAAAABwR24ZIhcsWKDVq1fbHMverqNbt27WEHno0CHr6OLUqVPtXuvQoUPWENmvXz8tXLhQ7777ri5cuCBfX181a9ZMb7zxhh544AF5eNgOzMbExGjVqlWaPHmyJk+eLJPJpJiYGC1atEitWrVy5VsGAAAAgDLBLUPkqlWrDLXr3r27LBaL4euOGDFCI0aMcKgvnTt3zrMtCAAAAABcrcr8mkgAAAAAQMkhRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADPNy9kSLxaL09HT5+PjYHF+zZo2+//57BQQEaNSoUapdu3aROwkAAAAAcA9Oj0ROmDBBwcHBiouLsx778ssv1bNnT82cOVMvvPCC2rdvr+PHj7uinwAAAAAAN+B0iFy9erW6d++uihUrWo9NnTpVwcHB+vDDD/Xyyy/rwoULeu2111zRTwAAAACAG3A6RB47dkwNGjSwPj548KB2796thx9+WHfddZcef/xx3XDDDVq6dKlLOgoAAAAAKH1Oh8iEhAQFBwdbH69du1Ymk0k33HCD9Vjz5s0VGxtbtB4CAAAAKDOOXkgu7S6gmDkdImvWrKlDhw5ZH69YsUL+/v5q37699VhiYqI8PT2L1kMAAAAAZUb3htVKuwsoZk5XZ42OjtbixYv1v//9T35+fvrqq6903XXXydvb29rm0KFDCgsLc0lHAQAAALg/L09TaXcBxczpkcinnnpKmZmZGjBggPr06aO0tDQ9/fTT1udTUlL022+/qVOnTi7pKAAAAACg9Dk9EtmqVStt3LhRH330kSRpyJAh6tChg/X5rVu3qmfPnho6dGjRewkAAAAU4nJ6Zml3AbgqOB0iJally5Z69dVX7T7XuXNnffvtt0W5PAAAAGBYo+pBpd0F4Krg9HTWnj17Wkch8/Pxxx+rZ8+ezr4ESsmSv0+VdhcAAAAc5udDQUegJDgdIletWqXDhw8X2ObIkSNavXq1w9d+6aWXNHjwYEVFRclkMikyMrLA9hs3blSvXr0UFBSk4OBg9e3bV9u2bbPb9sSJE7r77rtVtWpVazXZRYsW2W2bmpqqZ555RnXr1pWvr6/q1aun6dOnKz093eH3VJZUDvSx/v18Umop9gQAAACAuynSdNbCJCUl2VRrNeqpp55S5cqV1bZtW8XFxRXYdsOGDerevbvCw8M1bdo0SdLcuXPVtWtXrVu3Ti1atLC2vXDhgrp06aIzZ85o/PjxqlWrlj799FPdfvvteu+993TffffZXHvIkCH6/vvvNXz4cHXu3Fnr16/XlClTtH//fn3wwQcOv6+yonKgjy4kpUmSalcOKOXeAAAAAHAnDoXIo0eP2jyOi4vLc0ySMjMzdezYMX399deFjiLac+DAAUVFRUmSmjdvrsTExHzbjh07Vj4+PlqzZo3Cw8MlSbfffruaNGmiCRMmaPny5da2L7/8sg4dOqTFixerf//+kqQRI0aoc+fOmjhxogYPHqwKFSpIkpYsWaLvv/9e48eP14wZMyRJI0eOVMWKFfXaa69p9OjRiomJcfi9lTXhFf1LuwsAAAAA3IhD01kjIyNVt25d1a1bV5L0+uuvWx/n/FO/fn316NFD+/bt06hRoxzuVHaALMz+/fu1efNmDR482BogJSk8PFyDBw/WihUrdOrUv+v7Pv30U9WrV88aICXJ09NTY8aM0YULF7RkyRKbtpI0btw4m9fMfvzxxx87+rYAAAAAoMxzaCTy7rvvlslkksVi0UcffaSWLVuqdevWedp5enqqcuXK6tmzp/r27euqvuaxefNmSVmVYHPr1KmT3nvvPW3ZskX9+vXTyZMnFRsbq2HDhtltm32922+/3fr38PBwRURE2LSNiIhQWFiY9bWdUbNmTZvHZrPZ6WsBAAAAQElyKETmXAf40UcfadCgQXrmmWdc3SfDTpw4IUk2o5DZso/FxsY63Da7fdOmTe2+bnh4uI4fP16EngMAAABA2eR0YR13GD1LTk6WJPn6+uZ5zs/Pz6aNI22z/26vbXb7nG0ddfLkSZvHCQkJCgkJcfp6AAAAAFBSnN7iwx0EBGRVDk1NzbsNRUpKik0bR9pm/91e2+z2OdsCAAAAwNWiSFt8XLhwQe+99542bdqkixcvKjMzM08bk8mklStXFuVl8hUWFibJdhpqtuxj2VNVHWmb3d5e2+z29qbFAgAAAEB553SI3L17t7p3766zZ8/KYrHk285kMjn7EoXq0KGDJGn9+vUaOXKkzXMbNmyQyWRSu3btJGUVswkPD9eGDRvyXCf7WPv27W2u/cknn+jYsWM2xXWOHTumEydO6Oabb3b5+wEAAAAAd+f0dNaJEyfqzJkzeuKJJ3Tw4EGlp6fLbDbn+WNvdNJV6tevr/bt22vRokXWwjlSVlGcRYsWqWfPnqpRo4b1+NChQ3XgwAH98MMP1mOZmZmaM2eOKlasqBtvvNGmrSTNmjXL5jWzH9ur8goAAAAA5Z3TI5G//fab+vXrpxdffNGV/ZEkLVy4UEeOHJEknT17VmlpaZo+fbokqU6dOrrrrrusbV9//XX16NFDXbt21ZgxYyRJc+bMkdls1owZM2yuO2nSJC1atEh33HGHxo8fr/DwcH322WfavHmz5s+fr6CgIGvbfv366aabbtJrr72m+Ph4de7cWevXr9eCBQt05513qkuXLi5/3wAAAADg7pwOkRaLJd8tMIpqwYIFWr16tc2xKVOmSJK6detmEyJjYmK0atUqTZ48WZMnT5bJZFJMTIwWLVqkVq1a2VyjSpUqWrt2rSZNmqQ33nhDiYmJatq0qT7//HMNGTIkTz8WLVqk6dOn6+OPP9bChQsVHh6uadOmadKkScXwrgEAAADA/TkdItu1a6c9e/a4si9Wq1atcqh9586dDRfvCQ8P18KFCw219fPz0/Tp062joAAAAABwtXN6TeQzzzyjJUuWOBz4AAAAAABll9MjkceOHdOAAQN0/fXXa+jQoWrXrp0qVqxot+3dd9/t7MsAAAAAANyI0yHy3nvvlclkksVi0cKFC7Vw4cI823lYLBaZTCZCJAAAAACUE06HyPfff9+V/QAAAAAAlAFOh8h77rnHlf0AAAAAAJQBThfWAQAAAABcfZweiTx69KjhtrVr13b2ZQAAAAAAbsTpEBkZGZmnkI49JpNJGRkZzr4MAAAAAMCNOB0i7777brshMi4uTtu2bdORI0fUvXt31alTp0gdBAAAAAC4D6dD5AcffJDvc2azWc8//7zefvttffjhh86+BAAAAADAzRRLYR0PDw89++yzioyM1KRJk4rjJQAAAAAApaBYq7PGxMRo+fLlxfkSAAAAAIASVKwh8sKFC0pKSirOlwAAAAAAlKBiC5ErVqzQF198oebNmxfXSwAAAAAASpjThXV69uxp93hGRoaOHTtm3UfymWeecfYlAAAAAABuxukQuWrVKrvHTSaTKlWqpD59+mjixIn5hk0AAAAAQNnjdIg0m82u7AcAAAAAoAwo1sI6AAAAAIDyxWUhMjk5WSdPnlRycrKrLgkAAAAAcDNFCpGZmZl65ZVX1LhxYwUFBalWrVoKCgpSo0aN9N///lcZGRmu6icAAAAAwA04vSYyLS1Nffv21erVq2UymRQREaGaNWvq5MmTOnDggJ588kktXbpUP/30k3x8fFzZZwAAAABAKXF6JHLmzJlatWqV+vXrp127dunw4cNav369Dh8+rD179uimm27SmjVr9Nprr7myvwAAAACAUuR0iPzkk0/UrFkzfffdd2rQoIHNc/Xq1dO3336rpk2b6tNPPy1yJwEAAAAA7sHpELl//37deOON8vCwfwkPDw/deOON2r9/v9OdAwAAAAC4F6dDpLe3t5KSkgpsk5ycLG9vb2dfAgAAAADgZpwOka1atdJXX32l8+fP233+/PnzWrRokVq1auV05wAAAAAA7sXpEPnwww/rzJkzio6O1vvvv69Dhw7p8uXLOnTokN5//31FR0fr7Nmzeuihh1zZXwAAAABAKXJ6i4/bb79d27Zt08svv6yRI0fmed5isejxxx/XkCFDitRBAAAAAID7cDpEStKLL76om2++WQsWLNDWrVsVHx+vkJAQtWnTRsOHD1fnzp1d1U8AAAAAgBsoUoiUpE6dOqlTp06u6AsAAAAAwM05vSZy0aJF6tmzp2JjY+0+Hxsbq+uuu07ffPON050DAAAAALgXp0Pk/PnzdfHiRYWHh9t9Pjw8XHFxcZo/f77TnQMAAAAAuBenQ+Tff/+tDh06FNimQ4cO+uuvv5x9CQAAAACAm3E6RF64cEHVqlUrsE1oaKjOnTvn7EsAAAAAANyM0yEyNDRU+/fvL7DNvn37VLFiRWdfAgAAAADgZpwOkddcc40WL16svXv32n1+z549Wrx4sbp27ep05wAAAAAA7sXpEDlx4kSlp6erS5cumjt3rvbu3aukpCTt3btXc+bMUZcuXZSRkaGJEye6sr8AAAAAgFLk9D6RHTp00JtvvqmHHnpIjzzySJ7nPT099dZbb6ljx45F6iAAAAAAwH04HSIladSoUerSpYvefPNNbdy4UXFxcapYsaI6deqkBx98UE2aNHFVPwEAAAAAbqBIIVKSmjRpojlz5riiLwAAAAAAN+f0mkgAAAAAwNWHEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMKxMh8ipU6fKZDLl+8fb29tQ21dffTXPtc1ms2bOnKnGjRvLz89PERERmjBhgpKSkkryLQIAAACAW/Eq7Q4UxS233KL69evnOf7XX3/plVdeUf/+/fM8N3PmTIWGhtoca9euXZ52jz76qGbPnq1BgwZpwoQJ2rVrl2bPnq2tW7dqxYoV8vAo0/kbAAAAAJxSpkNky5Yt1bJlyzzH77//fknSiBEj8jw3cOBARUZGFnjdHTt2aM6cObrlllv09ddfW4/XrVtXY8eO1eeff6477rijaJ0HAAAAgDKo3A2nJSUl6fPPP1etWrXUt29fu20SEhKUkZGR7zU+++wzWSwWjRs3zub4qFGjFBAQoI8//tiVXQYAAACAMqPchchFixYpISFB9957rzw9PfM837JlS4WEhMjPz08xMTFaunRpnjabN2+Wh4eHoqOjbY77+fmpdevW2rx5c7H1HwAAAADcWZmezmrPggULZDKZNHz4cJvjFStW1OjRoxUTE6NKlSppz549mjVrlvr166f33ntP9957r7XtiRMnFBoaKl9f3zzXDw8P17p165SWliYfHx+n+lizZk2bx2az2anrAAAAAEBJK1chcs+ePfr999913XXXqW7dujbP5Z6aKknDhw9X8+bN9eijj+q2225ThQoVJEnJycl2A6SUNRqZ3cbZEAkAAAAAZVW5ms66YMECSdLIkSMNta9SpYoeeOABxcXFad26ddbjAQEBSk1NtXtOSkqKtY2zTp48afNn3759Tl8LAAAAAEpSuQmRGRkZ+uijj1SlShUNGjTI8HnZlVrPnTtnPRYWFqZz587ZDZKxsbEKDQ1lFBIAAADAVanchMgffvhBp0+f1p133pnvVFR7skcBq1evbj3WoUMHmc1mbdq0yaZtSkqKtm3bpvbt27um0wAAAABQxpSbEJk9ldXe3pAZGRmKj4/Pc/zYsWN66623VKVKFcXExFiPDxkyRCaTSbNmzbJpP2/ePCUnJ2vYsGGu7TwAAAAAlBHlorDOiRMntGzZMkVHR6tFixZ5nk9MTFTdunU1cOBANWnSxFqddf78+UpMTNRnn30mf39/a/sWLVrooYce0ty5c3XLLbfoxhtv1K5duzR79mx169ZNd9xxR0m+PQAAAABwG+UiRH7wwQfKzMzMt6COv7+/br31Vm3cuFHfffedEhMTFRoaql69eunxxx/Psx+kJM2aNUuRkZF699139eOPPyo0NFRjxozRtGnT5OFRbgZwAQAAAMAh5SJEPvXUU3rqqafyfd7X11fz58936Jqenp6aMGGCJkyYUNTuAQAAAEC5wZAaAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAyix/b0/r39vVrlSKPQGuHoRIAAAAlFlP3thYnh4mVQ/21b0xkaXdHeCq4FXaHQAAAACcdXfnSN3atpb8vD3l6WEq7e4AVwVGIoFyroLvv/eK2tauWHodAQCgmAT6ehEggRJEiATKuSf6NpIkeZikR3o1LOXeAAAAoKxjOitQzt3VOVKd64XKz9tDtSoFlHZ3AAAAUMYRIoGrQP1qFUq7CwAA4CpRM8SvtLuAYsZ0VgAAAABFcmen2pKkyCoB6tusZin3BsWNkUgAAAAARTJ9YAs9cl1DVQ70ocjRVYAQCQAAAKDIqgb5lnYXUEKYzgoAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCsXIRIk8lk90+FChXytN2zZ48GDhyoSpUqKTAwUF27dtUvv/xi97rx8fEaM2aMwsPD5efnp2bNmumtt96SxWIp7rcEAAAAAG7Jq7Q74Cpdu3bV6NGjbY55e3vbPD5w4IBiYmLk5eWlxx9/XCEhIZo3b5769OmjpUuXqlevXta2aWlp6t27t7Zu3aoxY8aoSZMmWrp0qf7zn//o9OnTmjp1akm8LQAAAABwK+UmREZFRenOO+8ssM2TTz6puLg4bdmyRa1bt5Yk3X333WrWrJkeeugh7d69WyaTSZI0f/58bd68WbNnz9aYMWMkSaNGjdKtt96qF198Uffdd5/q1KlTrO8JAAAAANxNuZjOmi0tLU2JiYl2n0tKStLixYvVvXt3a4CUpAoVKmjkyJHau3evNm/ebD3+6aefKiAgQKNGjbK5zrhx45Senq4vvviiWN4DAAAAALizchMiv/rqKwUEBCgoKEjVqlXTmDFjFB8fb33+r7/+Umpqqjp37pzn3E6dOkmSNUSazWb9+eefatOmjfz8/GzaRkdHy2Qy2QROAAAAALhalIvprNHR0Ro8eLDq16+vhIQELVmyRHPnztXq1au1bt06VahQQSdOnJAkhYeH5zk/+1hsbKwk6eLFi7p8+bLdtr6+vgoNDbW2dUbNmjVtHpvNZqevBQAAAAAlqVyEyI0bN9o8vvvuu9WyZUs9/fTTev311/X0008rOTlZUlYIzC17tDG7TUFts9tntwEAAACAq0m5mc6a22OPPSYfHx/9+OOPkqSAgABJUmpqap62KSkpNm0KapvdPruNM06ePGnzZ9++fU5fCwAAAABKUrkNkd7e3goLC9O5c+ckSWFhYZJkdxpq9rHs6auVKlWSv7+/3bapqak6d+6c3amuAAAAAFDeldsQmZKSouPHj6t69eqSpBYtWsjX11fr16/P03bDhg2SpPbt20uSPDw81LZtW23dujXPaOSmTZtksVisbQEAAADgalLmQ+T58+ftHp8yZYoyMjLUv39/SVlbefTv31+rVq3S9u3bre0SExM1f/58NWjQQNHR0dbjQ4cOVXJyst59912b686aNUteXl4aMmRIMbwbAAAAAHBvZb6wzvTp07Vhwwb16NFDtWvXVmJiopYsWaJff/1VHTt21JgxY6xtX3rpJa1cuVLXX3+9Hn30UQUHB2vevHmKjY3Vjz/+KJPJZG07atQovf/++xo/frwOHz6sJk2aaMmSJfr22281efJkRUZGlsK7BQAAAIDSVeZDZPfu3bVz5059+OGHOn/+vDw9PdWgQQO98MILGj9+vM0+j/Xr19fatWs1adIkvfzyy0pLS1Pbtm21bNky9erVy+a6Pj4+WrFihSZPnqzPPvtM58+fV7169TRnzhw99NBDJf02AQAAAMAtmCwWi6W0O3G1S0hIUEhIiOLj4xUcHFza3VGv11Zr/5lESdJbw9rqhhY1CzkDAAAAQFlnNJeU+TWRAAAAAICSQ4gEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYVqZD5N69e/XMM8+oU6dOqlq1qoKCgtS6dWu98MILSkpKsmk7depUmUwmu39effXVPNc2m82aOXOmGjduLD8/P0VERGjChAl5rgsAAAAAVxOv0u5AUbz33nt64403dPPNN2vYsGHy9vbWr7/+qsmTJ+vLL7/Uhg0b5O/vb3POzJkzFRoaanOsXbt2ea796KOPavbs2Ro0aJAmTJigXbt2afbs2dq6datWrFghD48ynb8BAAAAwCllOkTedtttevLJJxUSEmI99sADD6hBgwZ64YUXtGDBAj388MM25wwcOFCRkZEFXnfHjh2aM2eObrnlFn399dfW43Xr1tXYsWP1+eef64477nDpewEAAACAsqBMD6e1b9/eJkBmGzJkiCTpn3/+sXteQkKCMjIy8r3uZ599JovFonHjxtkcHzVqlAICAvTxxx8732kAAAAAKMPKdIjMz/HjxyVJ1atXz/Ncy5YtFRISIj8/P8XExGjp0qV52mzevFkeHh6Kjo62Oe7n56fWrVtr8+bNRepfzZo1bf40aNCgSNcDAAAAgJJS7kJkZmamnn/+eXl5edlMOa1YsaJGjx6tOXPm6Pvvv9dLL72kI0eOqF+/fvrggw9srnHixAmFhobK19c3z/XDw8N17tw5paWlFfdbAQAAAAC3U6bXRNozbtw4rV+/Xi+++KIaNWpkczy34cOHq3nz5nr00Ud12223qUKFCpKk5ORkuwFSyhqNzG7j4+PjVB9Pnjxp8zghIcHutFwAAAAAcDflaiRyypQpmjt3rkaPHq0nn3yy0PZVqlTRAw88oLi4OK1bt856PCAgQKmpqXbPSUlJsbYBAAAAgKtNuQmRU6dO1fTp03Xffffp7bffNnxedqXWc+fOWY+FhYXp3LlzdoNkbGysQkNDnR6FBAAAAICyrFyEyKlTp+q5557TPffco/nz58tkMhk+d9++fZJsi/B06NBBZrNZmzZtsmmbkpKibdu2qX379q7pOAAAAACUMWU+RE6bNk3PPfec7rrrLr333nvy8Mj7ljIyMhQfH5/n+LFjx/TWW2+pSpUqiomJsR4fMmSITCaTZs2aZdN+3rx5Sk5O1rBhw1z+PgAAAACgLCjThXXeeOMNPfvss6pdu7Z69eqlTz/91Ob56tWrq3fv3kpMTFTdunU1cOBANWnSRJUqVdKePXs0f/58JSYm6rPPPpO/v7/1vBYtWuihhx7S3Llzdcstt+jGG2/Url27NHv2bHXr1s2m6isAAAAAXE3KdIjM3q/x6NGjuueee/I8361bN/Xu3Vv+/v669dZbtXHjRn333XdKTExUaGioevXqpccffzzPfpCSNGvWLEVGRurdd9/Vjz/+qNDQUI0ZM0bTpk2zO9oJAAAAAFcDk8VisZR2J6522Vt8xMfHKzg4uLS7o16vrdb+M4mSpLeGtdUNLWqWco8AAAAAFDejuYQhNQAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGEyAKYzWbNnDlTjRs3lp+fnyIiIjRhwgQlJSWVdtcAAAAAoFQQIgvw6KOPavz48WratKnmzJmjwYMHa/bs2erfv7/MZnNpdw8AAAAASpxXaXfAXe3YsUNz5szRLbfcoq+//tp6vG7duho7dqw+//xz3XHHHaXYQwAAAAAoeYxE5uOzzz6TxWLRuHHjbI6PGjVKAQEB+vjjj0unYwAAAABQigiR+di8ebM8PDwUHR1tc9zPz0+tW7fW5s2bS6lnxWv3qQTtP5NY2t0AAAAA4KaYzpqPEydOKDQ0VL6+vnmeCw8P17p165SWliYfHx+Hr12zZk2bx+60vvJ8YlppdwEAAACAG2MkMh/Jycl2A6SUNRqZ3aY88/QwqWGNoNLuBgAAAAA3wkhkPgICAnTmzBm7z6WkpFjbOOPkyZM2jxMSEhQSEuLUtVwtolKAHrmugTxMJsXUr6J6VSuUdpcAAAAAuBFCZD7CwsK0c+dOpaam5hmRjI2NVWhoqFNTWd1d7SoBerR3w9LuBgAAAAA3xXTWfHTo0EFms1mbNm2yOZ6SkqJt27apffv2pdQzAAAAACg9hMh8DBkyRCaTSbNmzbI5Pm/ePCUnJ2vYsGGl0zEAAAAAKEVMZ81HixYt9NBDD2nu3Lm65ZZbdOONN2rXrl2aPXu2unXrpjvuuKO0uwgAAAAAJY4QWYBZs2YpMjJS7777rn788UeFhoZqzJgxmjZtmjw8GMQFAAAAcPUxWSwWS2l34mqXXZ01Pj5ewcHBpd0dAAAAAFcho7mE4TQAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGFepd0BSBaLRZKUkJBQyj0BAAAAcLXKziPZ+SQ/hEg3cOnSJUlSREREKfcEAAAAwNXu0qVLCgkJyfd5k6WwmIliZzabdeLECQUFBclkMpV2d1AGNGjQQJK0b9++Uu4JUDC+VlEW8HWKsoKvVRQ3i8WiS5cuKSwsTB4e+a98ZCTSDXh4eKhWrVql3Q2UIdnf1MHBwaXcE6BgfK2iLODrFGUFX6soCQWNQGajsA4AAAAAwDBCJAAAAADAMNZEAgAAAAAMYyQSAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRJwscTERL344otq0aKFgoKCFBoaqpiYGH3wwQeyWCySpMOHD8tkMhX455NPPrG5bmpqqp555hnVrVtXvr6+qlevnqZPn6709HS7/fjoo4/Upk0b+fv7q3r16ho5cqTOnj1rt+3GjRvVq1cvBQUFKTg4WH379tW2bdtc+u8C92PkazXb0qVLdd1116lGjRoKDAxUo0aNNHHiRJ0+fTrPdePj4zVmzBiFh4fLz89PzZo101tvvZXnmpJkNps1c+ZMNW7cWH5+foqIiNCECROUlJRkt89LlixRTEyMAgMDVblyZQ0ePFiHDh1yzT8I3JLRr1OLxaK3337b+nOvYsWK6tu3rzZs2GD3uvxMhaudPn1aDzzwgCIiIuTj46PatWvrkUceUVxcXJ62e/bs0cCBA1WpUiUFBgaqa9eu+uWXX+xel5+pcEsWAC6TmZlp6dKli8XDw8Ny3333Wd555x3LzJkzLdHR0RZJlscff9xisVgsiYmJloULF9r9ExISYvHx8bGcPXvW5toDBgywSLIMHz7cMm/ePMvw4cMtkiz33HNPnn689tprFkmWbt26Wd555x3LlClTLP+/vXsPi6rM4wD+nRlgAAWEUIQhEBAMMCJlzEumuaYWmouKWpqJgI+kGWqmWbuSrZpGUhSV4KWVzVq1vO2mhYVUJnlZvF8SU0k00USUgFHwt3/4zFlPZ9TBcL30/TyPj/Y7v/POe+b59TIvc877NmrUSCIiIqSyslKVu3HjRjEajRIcHCxz5syROXPmSHBwsDRu3Fh27Nhxw94rurnsrVURkezsbAEgbdu2lTlz5sjcuXMlKSlJDAaDBAUFqWrKYrGI2WwWBwcHGTdunGRnZ0tcXJwAkKlTp2r6MXbsWAEgcXFxkp2dLePGjRMHBwd5+OGHpa6uTpX7ySefiE6nk+joaMnKypIZM2ZIs2bNxNfXV0pLS2/Ye0U3T33qdNSoUQJAunbtKpmZmfLaa69JcHCwODk5SX5+vqZtjqnUkE6cOCGBgYHi6OgoY8aMkffff1/GjBkjjo6OEh0dLb/++quSW1xcLF5eXtKsWTOZMWOGZGVlSXR0tDg4OEheXp6qXY6pdKviJJKoAX333XcCQFJTU1Vxi8UiQUFB4uHhYdf5AwYMUMX//e9/CwAZP368Kj5+/HgBIBs2bFBiJ0+eFFdXVzGbzVJbW6vEV61aJQBk+vTpqjbMZrO4ubnJ0aNHldjRo0fFzc1NHnnkEbuum24/9anVsLAw8fX1lerqalXuSy+9JABk+fLlSiwrK0sASGZmpiq3X79+4ujoKIcPH1Ziu3btEp1OJ/369VPlZmZmCgD58MMPldj58+fFz89PAgIC5Ny5c0q8qKhI9Hq9JCcn1/s9oFufvXVaVFQkAKRXr15y8eJFJa+8vFx8fHwkNDRU9QGaYyo1tOeee04AyOLFi1XxxYsXCwB59dVXlVh8fLzo9XopKipSYufOnZOAgAAJCwtT1TDHVLpVcRJJ1IDWrl0rAGT27NmaY2azWfz8/K56vvU34WvXrlXFhwwZIgCkpKREFS8pKREAkpKSosRycnIEgCxatEjTfnBwsISHhyv/feDAAeU38bb6otPp5Pjx41ftM92e6lOrzZs3l4iICE2e9cPNF198ocQ6deokrq6umgnn119/LQBk1qxZSsw6Cf36669VudXV1eLq6iqPPvqoEsvLyxMAMm3aNE0/unXrJu7u7nL+/Hk7rpxuJ/bWqfWbwo8++kiTN3LkSE2dcUylhhYVFSUuLi6qCaDIpW/TnZ2dJTg4WEQu3YlkNBqlW7dumjamTZsmAOT7779XYhxT6VbFZyKJGlC7du3QpEkTzJ49G0uXLkVJSQn27duHF198EVu3bkVaWtoVz62srMSSJUsQGBiIRx55RHVs8+bNMJlMuPvuu1Xxu+++G35+fti8ebMqFwA6dOigeY327dtj3759qKystCtXRLB161b7Lp5uK/Wp1Z49e2LPnj2YMGEC9u7di59++gmffvopXn31VXTp0gXdunUDcOlZnP/85z+4//774ezsrHk9nU6nqVW9Xo927dqpcp2dnREdHV2vuj579ix++OGH3/2+0K3F3jq1WCwAAFdXV00b1tjlz0ZyTKWGZrFY4OzsDJ1Op4rr9Xq4uLjgxx9/xKlTp7Bjxw5YLJYr1gjwvzrimEq3Mk4iiRqQp6cnVq1aBS8vLwwcOBCBgYEIDw9HVlYWPvnkEyQnJ1/x3H/+85+orKxEQkIC9Hr1/5rHjh2DyWSyeZ7JZEJpaakq1xq3lSsiSs61cgGo2qY7R31q9a233kJ8fDzeeustREREICAgAP3798ejjz6KvLw8GAwGAEB5eTmqq6tt1pPRaIS3t7emVr29vWE0GjX5JpMJp06dwvnz55Vca9xWLsBavRPZW6eRkZEAoFmYRERQUFAAAPjpp5+UOMdUamiRkZEoLy/XLKC0bds2lJeXAwBKSkrqVSMcU+lW5nCzO0B0p2ncuDFat26Nxx9/HB07dsTp06eRlZWFJ598EitXrtR8y2g1b9486PV6JCQkaI5VVVXZ/KEAXPoNY1VVlSoXgM18628yrTn1yaU7j7216ujoiICAAMTFxaFPnz5wdXXF559/jgULFsBgMCAnJwfA1esJsF2rV8u15jg5ObFW/8DsqdNHH30UERERePfdd+Hn54d+/fqhqqoKc+bMwa5duwCgXrXHMZXqKzU1FStWrMDAgQPx5ptvonXr1ti9ezdSU1Ph6OiICxcuoKqqqsHqyZrPMZVuFk4iiRrQzp070bFjR2RkZGDUqFFK/IknnkDr1q2RnJyMgwcPKt/cWO3ZsweFhYXo2bMnAgICNO26uroqt2v9Vk1NjeoWLuu/LRYLXFxcNLmX51yea6vdy3PozmJvrep0OvTq1Qu1tbXYsGGDcqvWgAEDcNddd2HWrFkYNGgQunfvftV6AmzXallZ2RVzrTmX/81a/WOxt04dHBywZs0aPP3005g0aRImTZoEAIiKisJrr72GCRMmwN3dXTmfYyo1tM6dO+Pjjz/G2LFjERsbCwAwGAxISkpCZGQkli9fDnd393rVCMdUupXxdlaiBpSRkYGamhrEx8er4q6uroiNjcWRI0dw+PBhzXnz588HACQlJdls18/P74q3lZSWlqpuR/Hz81PitnJ1Op2Sc61cwPatLnT7s7dWv/32W3zzzTfo37+/5lkf67nW2wU9PT3h4uJis54sFgtOnTqlqdVTp07Z/BBTWloKb29vODk5KbnWuK1cgLV6J6rPmBoQEID8/HwcOXIEBQUF2LVrF7Zv3658q3LPPfco53NMpRshPj4eR48eRVFREb7++mscO3YM77//Po4ePQoHBwe0bNmyXjXCMZVuZZxEEjUg68BbV1enOVZbW6v62+r8+fPIzc1F06ZN0bdvX5vtms1mlJaWqp7pAS4943Ps2DHExMSocgFg48aNmnYKCwvRqlUrNG7c2K5cnU6Htm3b2r5Yuq3ZW6v1qWm9Xo82bdqgqKhI8yFm06ZNEBFNrV68eBGbNm1S5dbU1GDbtm31qmt3d3eEhYVd46rpdnM9Y2pAQAAeeugh5TnJzz77DHq9Hj179lRyOKbSjWIwGBAdHY3OnTujWbNm+Pnnn1FUVIQuXbrA1dUV9957L4xG4xVrBIBSfxxT6ZZ2E1eGJbrjpKamapbcFrm0V5mvr694enqq9hkTEVm6dKnN/cou969//euqe5p98803SqysrExcXFykXbt2Nvc0u3yvKhGRmJgYcXNzU20sXFpaKm5ubvKnP/3J/oun24q9tbpt2zYBIFFRUZrl3q2bu3/yySdK7J133rninmYODg5y6NAhJbZjx46r7mmWm5urxM6fPy++vr6aPc22bdsmer1eEhMTr/u9oFvX9Yypl1u5cqUAkKeffloV55hK/w91dXUSHx8vOp1OvvrqKyU+YMAA0ev1sm3bNiVm3ScyNDRUtU0Ix1S6VXESSdSADh8+LF5eXqLT6WTo0KHy3nvvyfTp06VFixYCQLKysjTn9OrVSwDInj17rtp27969BYAkJibKvHnzJDExUQDI0KFDNbnp6ekCQLp27Spz586Vv/71r9KoUSO55557VD8sREQ2bNggTk5OEhwcLBkZGZKRkSHBwcHSqFEj1Q84urPUp1b79++vTCRnz54t77zzjvTp00cASPv27VUfrC0Wi7Rt21YcHBxk/PjxkpOTI3FxcQJAXn75ZU0/xowZIwAkLi5OcnJyZPz48eLg4CBdunRRbQ4vIrJkyRLR6XQSHR0tWVlZMnPmTGnWrJn4+PioNnanO0d96nTEiBGSkJAgb731lmRnZ8uwYcPEYDCI2WyWM2fOaNrmmEoN6dy5cxIeHi5TpkyRnJwcSU9Pl7Zt2woAmT59uir3wIED4unpKc2aNZOZM2dKVlaWREdHi8Fg0OwTzTGVblWcRBI1sOLiYhk2bJiYTCZxcHAQNzc36dy5s+rbGquSkhLR6/XSsWPHa7ZbXV0tL730kgQGBoqTk5MEBQXJtGnTrrgZ8MKFCyUqKkqMRqM0bdpUEhIS5MSJEzZzv/vuO+nWrZs0atRIGjduLD169JCtW7fW78LptmNvrVosFpk1a5ZERUWJs7OzODk5SWhoqLz44otSWVmpabe8vFxGjx4tvr6+4uTkJOHh4fL2229rNuEWEamtrZX09HQJCwsTJycn8fPzk3Hjxmk+mFutXr1aHnjgAXFxcZEmTZpI//79pbi4uGHeELol2Vun77//vrRp00bc3d3F2dlZWrduLdOnT5eqqiqb7XJMpYZksVhk8ODB0qJFCzEajeLp6Sk9evTQTAqt9uzZI48//rh4eHiIi4uLdOrUSfLy8mzmckylW5FORORG3zJLREREREREdwYurENERERERER24ySSiIiIiIiI7MZJJBEREREREdmNk0giIiIiIiKyGyeRREREREREZDdOIomIiIiIiMhunEQSERERERGR3TiJJCIiIiIiIrtxEklERERERH8YM2fORHx8PIKDg6HT6dCiRYt6nV9WVoaEhARERUXBy8sLzs7OaNmyJRITE1FcXGzznGPHjmHYsGFo2rQpXFxcEBMTg6VLl9rMPXjwIIYMGQIfHx8YjUa0bNkSU6dORU1NTX0vVWPjxo14/PHH4e/vDxcXF4SEhCA5ORk//vhjvdrRiYj87t4QERGRRlpaGl555RXk5+eja9euN7s7duvcuTPOnTuHoqIi6HS6ep27fft23H///cjOzkZSUtIN6iER0fXT6XTw8vJCmzZtsHXrVri7u+Pw4cN2n79//36MGDECHTp0QGBgIFxcXHDgwAEsWLAAFosFhYWFiIiIUPJPnz6NmJgYlJWVYfz48fD398fixYtRUFCABQsWICEhQcndt28fOnTogNraWowePRpBQUHYuHEjFi1ahB49emDNmjX1Hpet1q5di9jYWISEhGDEiBHw9vbG7t27kZ2dDaPRiJ07d8JkMtnXmBAREdE1AajXn/z8fJk6dary79vFkiVLBICsXr36utsYMGCANG/eXM6dO9eAPSMiurr8/Hy7xtyDBw8q/46MjJTAwMAGef1NmzYJAElJSVHFJ06cKABk1apVSqy2tlbMZrN4eXmpxsq+ffuKTqeTDRs2qNqYMWOGAJDc3Nzr7l+PHj3E0dFRTp48qYrn5OQIAMnIyLC7LYfrmsYSERH9wUydOlUTe/PNN1FRUYHnnnsOTZo0UR1r0aIFxowZg8GDByMgIOD/1MvfR0Tw8ssvIzIyEr17977udiZNmoRly5YhMzMTU6ZMacAeEhH9fsHBwTek3cDAQABAeXm5Kr548WKEhISgT58+SsxgMODZZ5/FsGHD8Nlnn2HgwIEAgPz8fISFhaFjx46qNoYPH44pU6Zg4cKFGDp0qOrYunXrMHv2bGzatAk1NTUICwvDM888g1GjRqnyzp49C2dnZ3h6eqrifn5+AIBGjRrZfa2cRBIREdkhLS1NE/vggw9QUVGB1NTUKz5T4+3tfWM71oDWrVuHH374AbNmzfpd7cTExCA8PBxz587F5MmToddzCQYiuvNcuHABFRUVuHDhAoqLi5WfE4899piSc/z4cZSWlmLIkCGa89u3bw8A2Lx5szKJtFgscHV11eRaY5s2bYKIKLe0ZmdnY9SoUWjfvj1eeuklNGrUCHl5eUhJScHBgwfx+uuvK2307NkThYWFePrppzFx4kR4e3tj165dmDBhAsLDwzF48GC7r52jOhER0Q2SlpYGnU6H9evXK7HDhw9Dp9Nh+PDh+OGHHxAXFwdPT094eHigb9++ynM5xcXFiI+Ph7e3N1xdXfHYY49dceGDX375BS+88AJatWql/JY5NjYWhYWF9erv/PnzAQCDBg3SHDt79ixeeeUVtG7dGm5ubnBzc0NISAgGDx6MoqIiTf6gQYNQUlKCvLy8evWBiOh28fnnn6Np06bw8/PDQw89hN27d+ONN97AU089peQcO3YMAGw+a2iNlZaWKrHIyEjs3bsXP//8syo3Pz8fAFBZWal803n8+HGMHTsWgwcPxnfffYeJEyfimWeewfLlyzF27FjMmTNH9XPjxRdfREpKCpYtW4bo6Gj4+/ujV69eCA4ORmFhIdzc3Oy+dk4iiYiIboJDhw6hQ4cOqKioQGJiIjp16oRVq1ahe/fu2Lt3Lx544AGcOnUKw4cPR9euXbFmzRrExsbi4sWLmnbatGmD119/HSaTCaNHj0ZcXBw2btyIhx56CKtXr7arPyKCr776Cn5+fsotWZcf69WrF9LS0uDu7o7k5GSkpKSgXbt2WL9+Pb7//ntNe506dQIATiKJ6Ia4ePEiTp06pfpTUVEBAKioqNAc++3Y2RDat2+PvLw8rFq1Cq+99hp8fX1RXl6O2tpaJaeqqgoAYDQaNec7OzurcgBgwoQJqKmpQd++fVFQUIAjR45gyZIlSElJgaOjoyp/2bJlsFgsSExM1Fxvnz59cPHiRaxbt05p22AwwGQyoXv37pg3bx4+/fRTTJgwAevWrcPgwYNx4cIF+y/+up/MJCIi+oMLDAwUAHLo0CGbx20trHPo0CFl8Z309HRVfnJysgCQJk2aXPHYp59+qoo/+OCDotfrNfFjx46Jv7+/+Pj4SHV19TWvZe/evQJA+vTpozm2Y8cOASB//vOfNcdqa2vl9OnTmviZM2cEgJjN5mu+NhFRfV0+ltrz50rjdEMurFNaWip33XWXjBw5Uolt2bJFAMgLL7ygyf/1118FgDzxxBOqeGZmpnh4eCh9d3JykrS0NDGbzQJAKioqREQkJSXlmtc9bdo0pd0hQ4ZIUFCQVFVVqV7vvffeEwCSk5Nj97XymUgiIqKbICgoCOPGjVPFnnrqKeTk5MDLy0tzbOjQocjJycH27dsRFxcHANi2bRu+/fZbDBo0SIlZ+fr6YuLEiXjuuefw5ZdfIjY29qr9KSkpAQA0b978ijkuLi6amMFg0CzSAAAeHh5wdnZW2iUiakjNmzfX3Omwfft2PP/880hPT8d9992nyb/R/Pz80L17d8yfPx+ZmZkwGo3KojWX37JqZY399lbXZ599FiNHjsTOnTthsVgQGRmJJk2aICsrC76+vnB3dwdw6S4RAFi0aBF8fX1t9sm6iFBJSQk+/PBDjBkzRjOWx8fHIyUlBQUFBXZvzcRJJBER0U1w3333aRacsX4IiIqK0hyz9UFk48aNAC7tQWZr4Z8DBw4AuLTv2LUmkb/88gsA2JwQRkREIDo6Gh999BGOHDmCvn374sEHH0RMTAycnJyu2KaXlxdOnDhx1dclIroezs7O6N69uyrm4HBpatO2bdubtjdvdXU16urqcPbsWTRt2hS+vr4wmUw2n1G3xmJiYjTHjEajKr5lyxacPHkSiYmJSiw0NBTApQXcfvte/Jb1Z0ddXZ3mmPX228tvw70WTiKJiIhuAg8PD03M+gHoascuf2bl9OnTAC49d3i1Zw8rKyuv2R/rb6Zramo0xwwGA7766itMmzYNy5Ytw6RJkwAA7u7uGD58OGbMmGFzafjq6mqb314SEd0uSkpKUFVVhZCQEOWZxBMnTsDHx0eTu2fPHnz55ZcICQlB06ZNlfgTTzyB9PR0rF69Wtnmo66uDm+//TaaNGmiWs3VlpqaGqSmpsJoNOL5559X4gMHDsSUKVMwdepUdO3aVTPeVlRUwNnZGUajEa1atYLBYMCKFSswY8YM1bZUH3zwAQDAbDbb/b5wEklERHSbsk42Z86cicmTJ/+utpo1awbgfxPT3/L09ERGRgYyMjJw4MABrF+/HnPnzkVmZibOnj2LhQsXqvIvXryIM2fOICgo6Hf1i4iooeXm5uLIkSMAgJMnT+L8+fP429/+BuDSXo+Xr646bNgwFBQU4NChQ8pWTjNnzkReXh5iY2PRokULiAh27dqF3NxcXLhwAVlZWarXmzx5MpYuXYonn3wS48ePh8lkwkcffYTNmzdj3rx5qlVRd+/ejeHDh6N3797w9/fHiRMn8Pe//x0HDx7EwoULcc899yi5/v7+eO+995CUlITw8HA89dRTCAwMxMmTJ7Fz506sWLECe/bsQYsWLeDl5YXU1FS88cYbuP/++5GcnAwvLy9s2LABH374IUJCQuy+lRXgJJKIiOi29cADDwD4322tv0dkZCQMBgP2799/zdzQ0FCEhoZiyJAh8PHxwYoVKzSTyP3790NEEB0d/bv7RkTUkObPn4+CggJV7C9/+QsAoEuXLqpJpC29e/fG0aNHsWTJEpSVlaGurg4mkwnx8fF4/vnnERkZqcq/6667sGHDBkyePBlZWVmorKxEREQEPv74Y82WSt7e3vD390dOTg7Kysrg4eGBzp07Izc3F+3atdP0JSEhAWFhYUhPT8fcuXNx5swZeHt7o1WrVnj11VdVz4K+/vrraNWqFebNm4cZM2bAYrHAZDIhJSVFWX3bXpxEEhER3abMZjM6duyIVatWYcGCBRgxYoQmp7CwEFFRUTY3r76ch4cHoqOjsX37dlgsFtVy9IcOHYKIKAs0WJWXl8Nisdj84GF91ufhhx++nksjIqq3rl27KovNXM3le/deT2737t2v+Qzib5lMJuTm5l4zz8fHB8uXL69X2506dVK2VboanU6H5ORkJCcn16t9WziJJCIiuo0tXrwYDz/8MBITE/Huu+/CbDbDzc0NP/30E7Zs2YLi4mIcP378mpNIAOjXrx+2bt2K9evXo2fPnkp8+/bt6NevH8xmM8LDw+Hn54eysjKsXLkSFy5cUJ6RvNwXX3wBg8GAvn37Nuj1EhHRzae/dgoRERHdqgIDA1FUVIS0tDTU1tZi0aJFeOedd7Bp0ybce++9WLRoEby9ve1qKzExEY6Ojli0aJEqHhMTg8mTJ8NgMGDt2rV444038Pnnn8NsNmPNmjUYO3asKv/cuXNYuXIlevfujbvvvrvBrpWIiG4NOrHnO18iIiL6Q0hKSsLixYtx+PBhZbGd+nr33XcxevRofPPNN3jwwQcbuIdERHSzcRJJREREiuPHjyM0NBTJycnIyMio9/k1NTVo2bIl2rdvj2XLlt2AHhIR0c3GZyKJiIhI4evri3/84x/K6qo6na5e5x85cgRJSUkYPnz4jekgERHddPwmkoiIiIiIiOzGhXWIiIiIiIjIbpxEEhERERERkd04iSQiIiIiIiK7cRJJREREREREduMkkoiIiIiIiOzGSSQRERERERHZjZNIIiIiIiIishsnkURERERERGQ3TiKJiIiIiIjIbv8FIb+RManGWVkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see what the periodogram looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4296it [00:00, 13627.62it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAJ2CAYAAAAOiOznAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACnhUlEQVR4nOzdd5gT1f7H8c+uS1k6CKyAIIKIlaJgAZEiiNiwoAiKgCKi14ooIoJ0KyIKXFTEq9grFtQrIKIICtjQq4idqoIiRcoCO78/5pfdJDtJZiaTZJK8X8/DQ3YymTlJJjPnO+d7zskxDMMQAAAAACDj5aa6AAAAAACA5CAABAAAAIAsQQAIAAAAAFmCABAAAAAAsgQBIAAAAABkCQJAAAAAAMgSBIAAAAAAkCXyUl2AdFdUVKT169ercuXKysnJSXVxAAAAAGQhwzC0bds21a1bV7m5kdv5CADjtH79etWvXz/VxQAAAAAArVmzRgceeGDE5wkA41S5cmVJ5gddpUqVFJcGAAAAQDbaunWr6tevXxyfREIAGKdA2meVKlUIAAEAAACkVKxuaQwCAwAAAABZwncB4KpVqzRy5EidcMIJqlWrlipXrqwWLVpo/Pjx+ueff2xto0OHDsrJybH8t3z58gS/AwAAAADwJ9+lgM6cOVNTp07V2WefrYsvvlhlypTRggULdPvtt+uFF17Qxx9/rPz8/JjbqVmzpiZNmlRqeaNGjRJRbAAAAADwPd8FgD169NCwYcNUtWrV4mWDBg1SkyZNNH78eD322GO65pprYm6nYsWKuuSSSxJZVAAAAABIK75LAW3VqlVI8BfQs2dPSdLXX39te1tFRUXaunWrDMPwrHwAAAAAkK581wIYydq1ayVJBQUFttZft26dKlWqpJ07d6pChQrq2rWrJkyYoMMOOyyuctSpUyfk76Kiori2BwAAAADJkhYB4L59+zR27Fjl5eWpd+/eMdc/+OCD1bZtWzVr1kz77befPvnkE02ZMkXz58/XokWLdPTRRyeh1AAAAAAQKpCluHv3bkmRp20IZDGWK1dOVapUUW6uN8mbOUYa5Edee+21mjJliiZMmKBhw4a52saHH36oDh06qFOnTpo7d65nZdu6dauqVq2qLVu2MA8gAAAAgIiKior0+++/q1q1aipfvnzMOfsMw9CuXbv0999/q6CgIGoQaDcu8V0fwHAjRozQlClTNHDgQNfBnyS1a9dOJ598shYsWKCdO3d6WEIAAAAAiG3r1q2qVq2a8vPzYwZ/ktk6mJ+fr2rVqmnr1q2elMHXAeCoUaM0btw49e/fX9OnT497ew0bNtS+ffu0efNmD0oHAAAAAPbt3r1b5cuXd/y68uXLF6eMxsu3AeCoUaM0evRo9e3bVzNmzLAVIcfy/fffKy8vTzVq1PCghAAAAADgjJu4xotYKMCXAeCYMWM0evRo9enTRzNnzoyY67phwwatXLlSO3bsKF62ZcsW7du3r9S6c+bM0UcffaQuXbq4iroBAAAAIB7xBHJeBYG+GwV06tSpuuOOO9SgQQN17txZzzzzTMjzBQUF6tKliyRp2LBheuKJJ7RgwQJ16NBBkrRgwQINHjxYZ511lho1aqS8vDwtXbpUTz31lGrWrKkHHnggye8IAAAAAPzBdwHgsmXLJEmrV69W3759Sz3fvn374gDQStOmTdWqVSu9+eab+v3337Vnzx4deOCBGjRokG677TbVq1cvYWUHAAAAAD9Li2kg/IxpIAAAAADY8ccff6h27doJeW3GTAMBAAAAAPAGASAAAAAAZAkCQAAAAABIgnh633nVc48AEAAAAACSxE0g5+WwLQSAAAAAAJAE5cqV065duxy/bteuXSpXrpwnZfDdNBBwr7BQ+uGHkr8PP1zyaL5IAAAAAHGqUqWKfv/9d0lS+fLlY07ubhiGdu3apb///lsFBQWelIEAMIOsXi0deWTJ34WFUpkyqSsPAAAAgBK5ubkqKCjQ1q1btXXrVkmKGAQG0j7LlSungoIC5eZ6k7xJAAgAAAAASZKbm6tq1aqlbv8p2zMAAAAAIKkIADOYh4MFAQAAAMgABIAZhAFfAAAAAERDAAgAAAAAWYIAMIORAgoAAAAgGAFgBiEFFAAAAEA0BIAAAAAAkCUIAAEAAAAgSxAAZjD6AAIAAAAIRgCYQegDCAAAACAaAkAAAAAAyBIEgAAAAACQJQgAMxh9AAEAAAAEIwDMIPQBBAAAABANASAAAAAAZAkCwAxGCigAAACAYASAGYQUUAAAAADREAACAAAAQJYgAAQAAACALEEAmMHoAwgAAAAgGAFgBqEPIAAAAIBoCAABAAAAIEsQAGYwUkABAAAABCMAzCCkgAIAAACIhgAQAAAAALIEASAAAAAAZAkCwAxGH0AAAAAAwQgAMwh9AAEAAABEQwAIAAAAAFmCADCDkQIKAAAAIBgBYAYhBRQAAABANASAAAAAAJAlCAABAAAAIEsQAGYw+gACAAAACEYAmEHoAwgAAAAgGgJAAAAAAMgSBIAAAAAAkCUIADMYfQABAAAABCMAzCD0AQQAAAAQDQEgAAAAAGQJAsAMRgooAAAAgGAEgBmEFFAAAAAA0RAAAgAAAECWIAAEAAAAgCxBAJjB6AMIAAAAIBgBYAahDyAAAACAaAgAAQAAACBLEABmMFJAAQAAAAQjAMwgpIACAAAAiIYAEAAAAACyBAEgAAAAAGQJAsAMRh9AAAAAAMEIADMIfQABAAAAREMACAAAAABZggAwg5ECCgAAACAYAWAGIQUUAAAAQDQEgAAAAACQJQgAAQAAACBLEABmMPoAAgAAAAhGAJhB6AMIAAAAIBrfBYCrVq3SyJEjdcIJJ6hWrVqqXLmyWrRoofHjx+uff/5xtc2ePXsqJydHRx11lMelBQAAAID04bsAcObMmZo0aZIaN26skSNH6t5771XTpk11++23q02bNtq5c6ej7b355pt66aWXlJ+fn6ASAwAAAEB6yEt1AcL16NFDw4YNU9WqVYuXDRo0SE2aNNH48eP12GOP6ZprrrG1re3bt+vqq6/Wv/71L73++uuJKrJv0QcQAAAAQDDftQC2atUqJPgL6NmzpyTp66+/tr2t4cOHa9++fRo3bpxn5fMz+gACAAAAiMZ3LYCRrF27VpJUUFBga/2lS5dqypQpevbZZ1WlSpVEFg0AAAAA0kJaBID79u3T2LFjlZeXp969e8dcf+/evRowYIBOPfVUXXjhhZ6WpU6dOiF/FxUVebp9L5ECCgAAACBYWgSAN9xwg5YsWaIJEyaoadOmMde/99579cMPP2j27NmJL5yPkAIKAAAAIBrfB4AjRozQlClTNHDgQA0bNizm+j/88IPGjBmj22+/XY0aNfK8PBs2bAj5e+vWrZZ9FgEAAADAb3wdAI4aNUrjxo1T//79NX36dFuvuemmm1SjRg2de+65+uGHH4qX7927V4WFhfrhhx9UsWLFUqmcAAAAAJDpfBsAjho1SqNHj1bfvn01Y8YM5djMb/z111+1fv16HXnkkZbPN2nSRGeccYbefPNNL4vrS/QBBAAAABDMlwHgmDFjNHr0aPXp00czZ85Ubq71bBUbNmzQli1b1KBBA1WoUEGSdN999+nvv/8ute7VV1+t8uXL6/7778/Y1j/6AAIAAACIJscw/NVONHXqVF1zzTVq0KCBxo4dWyr4KygoUJcuXSRJ/fr10xNPPKEFCxaoQ4cOUbfbsGFDVapUydE8gnYE+gBu2bIl5dNN/P23VL16yd/r10sZGusCAAAACGI3LvFdC+CyZcskSatXr1bfvn1LPd++ffviABDR+Su0BwAAAJBqvmsBTDd+agHcskWqVq3k73XrpLp1U1YcAAAAAEliNy6x7lwHAAAAAMg4BIAAAAAAkCUIADMYyb0AAAAAghEAZhCmgQAAAAAQDQEgAAAAAGQJAsAMRgooAAAAgGAEgBmEFFAAAAAA0RAAAgAAAECWIAAEAAAAgCxBAJjB6AMIAAAAIBgBYAahDyAAAACAaAgAAQAAACBLEABmMFJAAQAAAAQjAMwgpIACAAAAiIYAEAAAAACyBAEgAAAAAGQJAsAMRh9AAAAAAMEIADMIfQABAAAAREMACAAAAABZggAQAAAAALIEAWAGow8gAAAAgGAEgBmEPoAAAAAAoiEABAAAAIAsQQCYwUgBBQAAABCMADCDkAIKAAAAIBoCQAAAAADIEgSAAAAAAJAlCAAzGH0AAQAAAAQjAMwg9AEEAAAAEA0BIAAAAABkCQLADEYKKAAAAIBgBIAZhBRQAAAAANEQAAIAAABAliAABAAAAIAsQQCYwegDCAAAACAYAWAGoQ8gAAAAgGgIAAEAAAAgSxAAZjBSQAEAAAAEIwDMIKSAAgAAAIiGABAAAAAAsgQBIAAAAABkCQLADEYfQAAAAADBCAAzCH0AAQAAAERDAAgAAAAAWYIAEAAAAACyBAFgBqMPIAAAAIBgBIAZhD6AAAAAAKIhAAQAAACALEEAmMFIAQUAAAAQjAAwg5ACCgAAACAaAkAAAAAAyBIEgAAAAACQJQgAMxh9AAEAAAAEIwDMIPQBBAAAABANASAAAAAAZAkCwAxGCigAAACAYASAAAAAAJAlCAABAAAAIEsQAAIAAABAliAAzGD0AQQAAAAQjAAwwzAVBAAAAIBICAABAAAAIEsQAGYwUkABAAAABCMAzDCkgAIAAACIhAAQAAAAALIEASAAAAAAZAkCwAxGH0AAAAAAwQgAMwx9AAEAAABEQgAIAAAAAFnCdwHgqlWrNHLkSJ1wwgmqVauWKleurBYtWmj8+PH6559/Yr5+z549GjRokI499ljVrFlT5cqV08EHH6yePXvq888/T8I78A9SQAEAAAAEy0t1AcLNnDlTU6dO1dlnn62LL75YZcqU0YIFC3T77bfrhRde0Mcff6z8/PyIry8sLNTy5cvVtm1b9enTR5UrV9bq1av1+OOP6/jjj9c777yjTp06JfEdJRcpoAAAAAAiyTEMf7UTLV++XE2aNFHVqlVDlt9+++0aP368HnroIV1zzTWOt7thwwY1aNBAXbp00VtvveVVcbV161ZVrVpVW7ZsUZUqVTzbrltlykh795qPv/xSatYsteUBAAAAkHh24xLfpYC2atWqVPAnST179pQkff311662W7t2bZUvX16bN2+Oq3wAAAAAkK58lwIaydq1ayVJBQUFttbft2+fNm/erL1792rNmjW67777tH37dp1++ulxlaNOnTohfxcVFcW1vUTyV9suAAAAgFRLiwBw3759Gjt2rPLy8tS7d29br/n222919NFHF/9dtWpVDRs2TMOGDUtUMX2BPoAAAAAAIkmLAPCGG27QkiVLNGHCBDVt2tTWaw4++GDNnTtXhYWF+uGHH/TUU09py5Yt2r17t/Ly3L/tDRs2hPwdyLUFAAAAAL/z3SAw4UaMGKFx48Zp4MCBevjhh11vZ/v27TrmmGPUqFEjvfPOO56Vz2+DwJQtK+3ZYz7+4gupefOUFgcAAABAEqTtIDDBRo0apXHjxql///6aPn16XNuqVKmSzjvvPP33v//Vjz/+6FEJ/c3foT0AAACAZPNtADhq1CiNHj1affv21YwZM5TjQee2nTt3SpL++uuvuLflV/QBBAAAABCJLwPAMWPGaPTo0erTp49mzpyp3FzrYm7YsEErV67Ujh07ipdt3LjRcmTO3377TS+++KIqVaqkI488MmFlBwAAAAC/8t0gMFOnTtUdd9yhBg0aqHPnznrmmWdCni8oKFCXLl0kScOGDdMTTzyhBQsWqEOHDpKkp59+Wg888IDOPfdcHXzwwSpbtqxWrVqlJ554Qps3b9aMGTNUoUKFZL+tlCAFFAAAAEAw3wWAy5YtkyStXr1affv2LfV8+/btiwNAK+3atdPy5cv15ptvasOGDSosLFRBQYE6d+6s66+/Xm3atElY2f2AFFAAAAAAkfh+FFC/89sooOXLS7t3m48/+0xq2TK15QEAAACQeBkxCigAAAAAwDsEgBmMtl0AAAAAwQgAMwx9AAEAAABEQgAIAAAAAFmCADCDkQIKAAAAIBgBYIYhBRQAAABAJASAAAAAAJAlCAABAAAAIEsQAGYw+gACAAAACEYAmGHoAwgAAAAgEgJAAAAAAMgSBIAZjBRQAAAAAMEIADMMKaAAAAAAIiEABAAAAIAsQQAIAAAAAFmCADCD0QcQAAAAQDACwAxDH0AAAAAAkRAAAgAAAECWIAAEAAAAgCxBAJjB6AMIAAAAIBgBYIahDyAAAACASAgAAQAAACBLEABmMFJAAQAAAAQjAMwwpIACAAAAiIQAEADgub17pSVLpK1bU10SAAAQjAAQAOC5Xr2kNm2kVq3MYBAAAPgDAWAGow8ggFR56SXz/++/l95+O7VlAQAAJfLiefHKlSu1evVqbdq0Sfn5+apdu7aOPvpoValSxavywSH6AALwm7//TnUJAABAgOMA8L333tNjjz2mefPmadOmTaWez83NVcuWLdWjRw9ddtllqlmzpicFBQAAAADEx3YA+Morr2j48OFatWqVDMNQvXr11L17dx1wwAGqUaOGdu7cqT///FMrV67UF198oeXLl+uOO+7QpZdeqjFjxqigoCCR7wMWSAEF4AeciwAA8A9bAeDJJ5+sRYsW6aijjtJdd92lnj17qkGDBhHXLyws1IIFCzRr1iw9/fTTeu655zRr1iydffbZnhUc1kgBBeA3BIAAAPiHrQBwx44devPNN3X66afb2mjZsmXVtWtXde3aVRs3btRdd92lVatWxVVQAEB6IgAEAMA/bAWAy5cvd72DWrVqaeLEia5fDwBIL+EBHwEgAAD+wTQQGYxKF4BUIAAEAMC/XAWAl156qRYvXux1WeAB+gACSDUCQAAA/MtVAPjUU0+pXbt2Ovroo/XQQw/pbyZ5AgD8PwI+AAD8y1UAuGDBAl100UX64YcfdP3116tevXrq16+flixZ4nX5EAcqYQBSgRZAAAD8y1UA2L59ez399NNav369Jk6cqIMOOkhPPvmkTjrpJDVr1kxTpkzRli1bvC4rbCAFFECqEQACAOBfcQ0CU716dd1444365ptvtHDhQvXu3bu4VbBu3brq37+/Pv74Y6/KCgBIAwSAAAD4l2ejgLZr106zZs3Se++9p7p162rnzp164okn1LZtW7Vq1Upvv/22V7sCAKQRAkAAAPzDkwBwz549evbZZ9WxY0e1bdtW69at05FHHqn77rtPvXr10ldffaUzzzxT06ZN82J3sIlKF4BUoAUQAAD/iisAXLVqlYYMGaJ69erpkksu0ZIlS9SzZ08tXLhQX331lQYPHqynnnpK3333nQ455BDdd999XpUbEdAHEECqEQACAOBfeW5e9Oyzz+qRRx7RBx98IMMwdNBBB2nw4MG6/PLLVatWrVLrN2zYUL169dK4cePiLjAAwN8IAAEA8C9XAeDFF1+s3NxcdevWTVdddZVOP/105cRoemratKnatWvnqpAAgPRBwAcAgH+5CgBvvfVWXXnllTrooINsv6ZXr17q1auXm93BJSphAFKBFkAAAPzLVQA4YcIEr8sBj9AHEECqEQACAOBfnk0DAQCARAAIAICfuWoBlKTvv/9ekydP1tKlS7V582bt27ev1Do5OTn68ccf4yog3KPSBcAPOBcBAOAfrgLAJUuWqHPnztq5c6fy8vJUUFCgvLzSmzK46icdKaAAUo0WQAAA/MtVADhs2DDt3r1b06dP12WXXWYZ/AEAshMBIAAA/uUqclu2bJl69OihgQMHel0eAECaI+ADAMC/XA0CU7ZsWTVo0MDrssBjVMIApAItgAAA+JerALBNmzb6/PPPvS4LPEAfQACpRgAIAIB/uQoAJ0yYoMWLF2vWrFlelwcAkOYIAAEA8C9bfQDHjBlTalmnTp3Ur18/zZgxQ8cee6yqVatWap2cnByNGDEi7kLCHSpdAFKBcw8AAP5lKwAcNWpUxOc+/PBDffjhh5bPEQAmHymgAPyGgBAAAP+wFQAuWLAg0eUAAGSI8ICvqCg15QAAAKXZCgDbt2+f6HIAADIEfQABAPAvV4PAID1Q6QKQCpx7AADwL1cTwQdbu3at1q1bp927d1s+f/LJJ8e7CzhAH0AAqUYLIAAA/uU6AJwzZ46GDBmiVatWRV1v3759bncBAEhDBIAAAPiXqxTQDz/8UOecc462bt2qa665RoZh6OSTT9YVV1yhww8/XIZh6Mwzz9TIkSO9Li8coNIFIBUIAAEA8C9XAeBdd92lChUqaPny5Zo8ebIkqWPHjpo+fbq++uorjR49WvPmzdO5557raWERGymgAPyGABAAAP9wFQB+8skn6t69u+rUqVO8rOj/x/kOzP3XrFkzWgABIAvRAggAgH+5CgC3b9+u+vXrF/9dtmxZbd++PWSdNm3a6KOPPoqvdACAtEMACACAf7kKAAsKCvTnn38W/12nTp1Sg8Fs27Yt4sigSA4qXQBSgQAQAAD/chUAHnHEEVq5cmXx3yeddJLmzp2rxYsXS5K++eYbvfDCCzriiCO8KSVsow8ggFQj4AMAwL9cBYCnn366Fi1apA0bNkiShg4dqpycHLVr1061atVSs2bNtHXrVg0fPtzTwgIA/I8WQAAA/MtVADho0CCtW7dO+++/vyTpqKOO0vz589WtWzfVrFlTXbp00Zw5c3TWWWc53vaqVas0cuRInXDCCapVq5YqV66sFi1aaPz48frnn39ivn7z5s2aPHmyTj31VNWvX1/5+flq2rSpBg4cqDVr1jguTzqj0gUgFQgAAQDwL1cTwZcpU0YFBQUhy0488US9+eabcRdo5syZmjp1qs4++2xdfPHFKlOmjBYsWKDbb79dL7zwgj7++GPl5+dHfP0nn3yim266SaeccoquueYa1axZU19//bUefvhhvfDCC1q8eHFGp6aSAgog1QgAAQDwL1cBYCL16NFDw4YNU9WqVYuXDRo0SE2aNNH48eP12GOP6Zprron4+sMOO0zfffedGjduHLL8jDPOUJcuXTRy5Ei99NJLCSs/ACAUASAAAP7hKgU04LXXXlPPnj3VvHlzHXLIIcXLv/32W91zzz1at26d4222atUqJPgL6NmzpyTp66+/jvr6hg0blgr+JKlz586qUaNGzNcDAOJDCyAAAP7lqgXQMAxdcskleu655yRJ+fn52rlzZ/HzNWrU0PDhw7Vv3z4NGzbMk4KuXbtWkkqlntq1ZcsWbdu2TUcddVRc5ahTp07I30VFRXFtL5GodAFIBQJAAAD8y1UL4IMPPqhnn31WAwYM0F9//aUhQ4aEPF9QUKCTTjpJc+bM8aSQ+/bt09ixY5WXl6fevXu72sb48eO1Z88e9e3b15My+RV9AAGkGgEfAAD+5aoFcObMmTrmmGP08MMPS5JyLKKOQw45RG+//XZ8pft/N9xwg5YsWaIJEyaoadOmjl//0ksv6b777tNpp52m/v37x1WWwNQXAVu3brVMWQWAbEULIAAA/uWqBfD7779X+/bto65Ts2ZNbdq0yVWhgo0YMUJTpkzRwIEDXaWTvvXWW7r44ot17LHH6vnnn7cMVgEA3iEABADAv1wFgGXLltX27dujrrNmzRpVqVLFVaECRo0apXHjxql///6aPn2649e/8847Ou+883TkkUfq3Xffjbs86YZKF4BUIAAEAMC/XAWAzZs317x587Rnzx7L57dt26a5c+eqVatWrgs2atQojR49Wn379tWMGTMct9y98847Ouecc3TYYYdp3rx5ql69uuuypBMaOAGkGgEfAAD+5SoAHDBggH7++Wf169evVEvgpk2b1Lt3b23atElXXnmlq0KNGTNGo0ePVp8+fTRz5kzl5loXc8OGDVq5cqV27NgRsvzdd9/Vueeeq6ZNm2r+/PmqUaOGq3IAAOLn48GSAQDIOq4GgenTp4/mzZunWbNm6eWXX1a1atUkSUcccYR+/PFH7dmzRwMGDFD37t0db3vq1Km644471KBBA3Xu3FnPPPNMyPMFBQXq0qWLJGnYsGF64okntGDBAnXo0EGStHz5cnXv3l2GYah///6WA9FccskljsuVjrgLDyAVws89+/alphwAAKA0VwGgJD3xxBM6+eST9dBDD+mrr76SYRhauXKljjjiCF1//fW64oorXG132bJlkqTVq1dbTtnQvn374gDQytdff61du3ZJkm688UbLdTI5ACQFFECqPfhg6N8RegsAAIAUyDGM+NuJdu7cqc2bN6tq1aqqWLGiF+VKG4FpILZs2eKLQWYOOkhavdp8/Pbb0mmnpbY8ALLL9u1S5cqhy66+Wpo6NTXlAQAgW9iNS1y3AAbLz89Xfn6+F5sCAKSxzZtLL9u7N/nlAAAA1lwNAoP0QB9AAMlmlYZOAAgAgH/YagFs1KiRq43n5OToxx9/dPVauEMfQACpRAAIAIC/2QoAi4qKHM/DJ0kedC8EAKQ5BoEBAMA/bAWAv/zyS4KLgUQg/gaQbLQAAgDgb/QBzDCkgAJIJQJAAAD8jQAQAOAZq8wDAkAAAPzDVgA4efJkFRYWut7JihUr9N///tf16wEA6YEAEAAAf7MVAN5888065JBDNGnSJP3++++2Nz5//nxdcMEFOuaYY/TZZ5+5LiTcoQ8ggGQrKiq9jEFgAADwD1uDwKxYsUI33XSTbrrpJg0dOlTt2rVTmzZtdOyxx+qAAw5Q9erVtWvXLv3111/67rvv9Mknn2j+/Plat26dqlevrgceeEBXXXVVot8LRB9AAKlFCyAAAP5mKwA87LDDNGfOHH300UeaNm2aXn75ZS1YsMByaojA1A+HHnqoJk6cqMsuu0xVqlTxttQAAF+yagEkAAQAwD9sBYABbdu2Vdu2bTV9+nR98MEHWrRokVavXq0///xT+fn5ql27tpo1a6YOHTroyCOPTFSZYRMpoACSjQAQAAB/cxQABlSuXFlnnHGGzjjjDK/LgziRAgoglUgBBQDA35gGAgDgGQaBAQDA3wgAAQCeIQUUAAB/IwDMYPQBBJBspIACAOBvBIAZhj6AABLNMKQBA6QGDaQnngh9zqoF8LvvpB9+SE7ZAABAdASAAABHPvxQeuwxac0aqV+/0OciZR5ccUXCiwUAAGwgAAQAOPLpp5Gfs2oBlKT3309IUQAAgEMEgBmMPoAAEiFaqnmkABAAAPiDqwBwv/3208UXX+x1WeAB+gACSLRo5xluPAEA4G+uAsDKlSurQYMGXpcFAJDmaAEEAMDfXAWALVu21DfffON1WeAx7sQDSARaAAEASF+uAsChQ4fqrbfe0ty5c70uD+JECiiAVKIFEAAAf8tz86I//vhDp512mrp166ZzzjlHrVu31gEHHKAci+jj0ksvjbuQAAD/CD/VG0bJMgJAAAD8zVUA2K9fP+Xk5MgwDL3yyit65ZVXJCkkADQMQzk5OQSAAJBhogWApIACAOBvrgLAxx9/3OtyIAGoiAFIhPAAsKhIys0teQwAAPzLVQDYt29fr8sBj9AHEECyBQd93HgCAMDfmAgeAOBI+I2mfftKHtMCCACAv8UVAL722mvq2bOnmjdvrkMOOaR4+bfffqt77rlH69ati7uAcI878QASwSoF1OoxAADwH1cpoIZh6JJLLtFzzz0nScrPz9fOnTuLn69Ro4aGDx+uffv2adiwYd6UFLaQAgog0aIFgNx4AgDA31y1AD744IN69tlnNWDAAP31118aMmRIyPMFBQU66aSTNGfOHE8KCQDwrx9/LHlMCyAAAP7mKgCcOXOmjjnmGD388MOqWrWq5fx/hxxyiH755Zd4ywcA8JnwU37XriUtf7QAAgDgb64CwO+//17t27ePuk7NmjW1adMmV4WCN6iIAUiGP/6QCgvNx5FaALt0SV55AABAZK4CwLJly2r79u1R11mzZo2qVKniqlBwjz6AABLN6jwTWBYpAMzPT1x5AACAfa4CwObNm2vevHnas2eP5fPbtm3T3Llz1apVq7gKBwDwH6sAMBD4Rco8oG8gAAD+4CoAHDBggH7++Wf169evVEvgpk2b1Lt3b23atElXXnmlJ4WEO6SAAkgEqwAwcL6JFOgVFkq9ekmHHy69+27iygYAAKJzNQ1Enz59NG/ePM2aNUsvv/yyqlWrJkk64ogj9OOPP2rPnj0aMGCAunfv7mVZYQMpoABSIVYLYHDQFzxoDAAASC7XE8E/8cQTevTRR3XYYYdp48aNMgxDK1euVJMmTfTwww/rkUce8bKcAACfcNMCCAAA/MFVC2DA5Zdfrssvv1w7d+7U5s2bVbVqVVWsWNGrsgEAfChaH0ACQAAA/C2uADAgPz9f+Qzx5jukWAFIhGgtgJx3AADwN1cpoCeccIKGDx+uefPmadeuXV6XCXGgDyCAVKAFEACA9OCqBXDFihVaunSp7rrrLpUtW1bHH3+8TjnlFHXq1EknnHCC9ttvP6/LCQDwCTfTQAAAAH9wFQD+/fffWrJkiebNm6f58+dr8eLF+uCDDzRq1ChVqFBBJ510kjp16qROnTrp2GOP9brMAACfYRAYAADSg6sAsGzZsmrfvr3at2+vsWPHavv27Vq4cKHee+89vffee3r33Xf17rvvKicnR3v37vW6zLCJO/EAEsHq3EIKKAAA6cGTQWAqVaqkli1bavPmzfrrr7+0bt06bdq0yYtNwyH6AAJINKsgz+kgMC+9JDVtKh19tHflAgAAsbkOAP/66y8tWLCguNVv1apVMgxDNWrUUPv27dWpUyedcsopXpYVAOADXrQAXnCBVKaM9N130sEHe1c2AAAQnasAsGXLlvrqq69kGIYqVqyodu3aacCAAerUqZNatGihHJqhfIEUUACJ4EULoCTt2SONGSM9/rg35QIAALG5CgC//PJL5eTkqEuXLrr11lvVrl07Rv70CWJvAInmZR/AbdviLw8AALDP1TyAN954o5o1a6a5c+fqlFNOUfXq1XXGGWdo0qRJ+vLLL70uIwDAR6K1ADoNALlpBQBAcrlqAZw4caIksx9goA/ge++9p7fffls5OTnaf//91bFjR51yyikaOHCgpwUGAKRWtBZAp6nnBIAAACSXqxbAgBo1aqhHjx6aNm2aVq5cqbVr12rixInKzc3VSy+9pKuvvtqrcsIF+gACSASrVj63KaAEgAAAJFfc00D8888/+uCDDzR//nzNnz9fX331lYr+vwZQuXLluAsIZ6hMAUg0q5tLDz5oTumwb5+zbXHOAgAguVwFgIFJ3+fPn69ly5Zp7969MgxD+fn56tixozp16qROnTqpdevWXpcXAJBiVq18Dzxg/n/yyc62RQAIAEByuQoAO3bsKEkqU6aMWrduXTzn34knnqiyZct6WkC4RwoogESIdm754ANn2yIABAAguVwFgEOGDFGnTp3Url07VaxY0esyIQ5UpgAkmtN+ftFwzgIAILlcBYD33HOP1+UAAKQJL7MLCAABAEiuuAeB2bBhg7744gv9/fffqlq1qlq2bKk6dep4UTYAgA952QIIAACSy3UAuHr1al111VV65513Sj3XtWtXTZs2TQ0bNoynbIgTfQABJIKX5xaCSQAAkstVAPjbb7+pbdu2WrdunRo2bKiTTz5ZderU0YYNG/Thhx/qnXfeUbt27bRs2TIdcMABXpcZUZBOBSDRvAzann1WeuYZ77YHAACicxUAjhs3TuvWrdPdd9+twYMHa7/99it+bt++fZo0aZJuueUWjRs3TlOmTPGssACA1PM6u2DjRqlWLW+3CQAArOW6edGcOXPUuXNn3XzzzSHBnyTtt99+GjJkiLp06aI333zTk0LCHVJAAXjpueekrl3N/720e7e32wMAAJG5agHcsGGDevfuHXWdVq1aaeHCha4KBfdIAQWQCNu3S716pboUAAAgXq5aAKtWrarVq1dHXWfNmjWqUqWKq0IBAPzl119TXQIAAOAFVwFg27Zt9dJLL+mTTz6xfH7p0qV68cUXddJJJ8VVOACAP5BdAABAZnCVAnr77bfrrbfeUrt27dSrVy916NBBBxxwgH777Te9//77evbZZ5Wbm6vbbrvN6/LCAfoAAvCKmwAwL0/auzcx2wYAAO64CgCPOeYYvfTSS+rbt69mzZqlp556qvg5wzBUo0YNzZw5U61atfKsoLCHihSARMh1kS+y334EgAAA+I3rieDPPPNMrV69WrNnz9bnn3+uLVu2qGrVqmrZsqXOOeccVaxY0ctyAgBSyG0LICN8AgDgL44DwNWrV2vZsmXKzc1V69atdfHFF+viiy/2rECrVq3SU089pXfffVc//vijdu3apcaNG+uCCy7QDTfcYCuwfOGFF/T222/rs88+0zfffKO9e/fq559/VsOGDT0rZzogBRSAV9wGgHZ89plUt67z7QMAAOccJfUMGTJEjRo10oUXXqgePXro4IMP1q233uppgWbOnKlJkyapcePGGjlypO699141bdpUt99+u9q0aaOdO3fG3Ma0adP03HPPKT8/X40bN/a0fH5HKhWARHBzbgmbJjais86SmDUIAIDksB0APvvss7r//vtlGIYOO+wwNW3aVEVFRbr33nv14osvelagHj16aO3atXr66ad17bXXatCgQXr++ec1fPhwrVixQo899ljMbTz55JPatm2bPv74Y3Xu3NmzsgFAtkpkAChJffo43z4AAHDOdgA4Y8YM5eXl6b///a/+97//6ZtvvtHbb7+t3NxczZgxw7MCtWrVSlWrVi21vGfPnpKkr7/+OuY2GjRooDy7uUcAgJgSmQIqSWvWON8+AABwznYAuGLFCp111lkhLWqnnnqqzjrrLH3++ecJKVywtWvXSpIKCgoSvq9MQR9AAF5JdAAIAACSw/blefPmzTrssMNKLT/88MP1xhtveFqocPv27dPYsWOVl5en3r17J3RfsdSpUyfk76KiohSVxBp9AAEkQqJTQAEAQHLYDgCLiopUrly5UsvLli2b8CDohhtu0JIlSzRhwgQ1bdo0ofsCAJTmJqOAFkAAAPzH0eU5JwXNSyNGjNCUKVM0cOBADRs2LOn7D7dhw4aQv7du3WrZZxEAMgkBIAAAmcHR5XnixIl69NFHQ5Zt3bpVkjnwSricnBz9+uuvrgs3atQojRs3Tv3799f06dNdbydb0QcQgFfcnE9IAQUAwH8cBYBbt24tDvjCBQZp8cqoUaM0evRo9e3bVzNmzEhJ62M64mMCkAi0AAIAkBkc9QFMljFjxmj06NHq06ePZs6cqdxc68FKN2zYoC1btqhBgwaqUKFC0soHANmGABAAgMzgu8vz1KlTdccdd6hBgwbq3LmznnnmmZDnCwoK1KVLF0nSsGHD9MQTT2jBggXq0KFD8ToffPCBPvjgA0nS8uXLJUlTpkxRtWrVJEm333574t+ID5ACCsArbs4nEe7dAQCAFPJdALhs2TJJ0urVq9W3b99Sz7dv3744AIzkvffe0+jRo0OWTZw4sfhxJgeApIACSARuKAEAkBlyDIPLejwCo4Bu2bJFVapUSXVxdNxx0v/H0PrPfySLGBoAHFu5Ujr8cGevadVK+v8kDFu4GgEA4J7duIQEHQBATG6CMwI6AAD8hwAwg1H5ApBKnIMAAPAfAsAMQx9AAIlACyAAAJmBABBwYNs2affuVJcCSD43wVwSZw8CAAA2EQBmMO6+e+v556UaNaSmTaUNG1JdGiC5aAEEACAzEABmmOB5t6h8eeuii6S9e6Vff5VGjUp1aYDkcnM+2bLF+3IAAID4EABmmOA+gKRfJU5gqg0gW7gJAHfu9L4cAAAgPgSAGYYWQACJ4OZ88s8/3pcDAADEhwAwwwQHgLQAJg6jrSLbuAkAO3TwvBgAACBOBIAZhhRQAIngJgCsXl166SXvywIgsf73P+n446Vu3aQ//0x1aZDuvvlG+uSTVJcCwQgAMwwpoMlBCyCyjZvzye7d0vnne18WAInVo4e0dKn0zjvS6NGpLg3S2eLFUrNm0gknSDNmpLo0CCAAzDCkgAJIBDcB4K5d3pcDQOKtXFny+LHHUlcOpL9+/aR9+8zHV1yR0qIgCAFghiEFNDloAUS2iScAvOEGT4sCAEgTq1enugSwQgCYYUgBhZ/9+qv044+pLgXccJsCKkl33y09/rh00knelglA4nHDE/HIJdLwJb6WDOM0BfTzz6XataW6dc1OurCHC6JzixZJhx5q/nv99VSXBk65CQBvusn8v2xZMw2ofXtPiwQgCbjeIR4EgP7E15JhnKaAXnCBtHGjtGGDdNlliSuXVzZskMaOld5/P9UlgVM9e0qFheZx2b17qksDp5wGgBdeKJ1xRmLKAgBID9xA8Ke8VBcA3nKaAhqcjpcOQ/T27m0Gf7m50rp10gEHpKYcnNCcW78+1SVAPJwGgPfdJ+23X2LKAiB5uN4hHrQA+hNfS4ZxkgL6wguJLUsiBFr+iooYmQxIJqcBIMFf5vvqK6lOHfPfihWpLg0APyIA9Ce+lgxjlQK6caO0Zk3pdXv2TE6ZEiWVJxXuiCJRCgtLhsxOZ3kW+SX8bjJLnz7Sb7+Z/y65JNWlQaLwu0U8CAD9ia8lw4SngH71ldSokdSwofTSSykrVkLQwoBMM3OmVKGCdOyx0vbtqS5NKKctgFYBIPxrzRrp+uvNY9Dud/3llyWPv/oqMeUCkN4IAP2JryXDhKeADhxoViSLiswBXyQzjfLdd1NSPE+lsoKZzndE//pLmjFD+v77VJcE4S6/3Gz9+/JL6d//tvcawzAnbd6xI7FlIwU0s/XuLT34oHkMfvxxqksDZLaPPpLOOUeaOtX5a7dvN2/WXHml9OefnhfNcwSA/sQ92gwTngL6+eehz7/2mnnSyQRUMN05+2zz4lO1qjmqan5+qksEK+G/3UiuuUaaNk067DCzH1aZMokpTzJaAAP7mDlTWrZMGjJEOuQQ59uBc4sWlTx+4AHpxBPj297GjdKuXVL9+tKWLeb5ulKl+LaJ1EjnG55+FZgT9bXXpE6dpMMPt//au+82b9ZI0t69/h8PgQDQn/haMkysUUDPPTd5ZfHKtm3mtAHNm4cuT2UAmM4XxI8+Mv/fssW8+Pzyi3lT4PLLzc8a/mA34Jo2zfx/5crEpnknowWwqEj67DNpwADp4YfT83wF80ZEoOvBddeZg8QceKD0xReJ3/eGDeax8+uvid9XtvDz9c4wpMWLzetYunr7bWfrjxtX8njmTG/LkggEgP7E15JhYo0C6mYy51S7/35z4vDwUeboYxS/PXvMCbpfe828kNx3X6pLhHj89lvitp2MFsCiIumRR0r+/vpr59vINIWF5l3+dHLFFSVdDx56SNq507zh1K9fYvdrGGZryqBBUps2mTGY0tdfSxMmSD/9lOqS+NO4cVLbttKRR4ZOawVru3aZ/5IpPABcskTaujW5ZUBpBIAZxulE8Ongueesl5MC6o2FC0seEwD6h5ubNYm8weNFC2CsloSiIn+3NiTD33+XVI7mzZOqVzdb09KphSNS+nLwoDGJsHGj2RIumfOOLluW2P0lWmGh1L69NHy41KVL6m7g+vk3OXKk+f+OHdJtt6W2LMmwYYP71376qdkaf8AByf1thAeAbdpIrVql342tTEMAmGGcTgTvxDffSBdfbPYPSeaFKNLFJ1NSQLdtM3P4UzGKnp8v7HDOTwGgm2Mr2wPABQukunWlBg3MdMkuXcyK7Zo10g03pLp09qXqOwzfb2FhasrhlaVLzUG7JLMFMB0G/EildetSXYLEevlls0+tWxddZN5g2rJF6tHDs2LFZJUC+v330ltvJa8MKI0AMMM4mQjeygcfRH7urLOkZ56RbrzRzLlPtKKi6O/Bzy2A//uf9MYb9lKQevUy+zy1bp34C3x4JT68wpTNlW+/SfcWQDcyJWvBrW7dStIlw+fVe++91JTJjVSdR8KvCemeAhrrfJ0s6XJdMAzz95Op55EePeI7pn/4oeTx6tXxl8euSH0A463vGIY0ZYp5rvzf/+LbVjYiAMww8aaAnnlm5OeC+yD85z/Ot23l+efNSk/44BVLlkj77y8ddFDk6Qr8Og3EqlVSy5bmaJu33hp7W3PmmP/v3i09+qj9MkyebI7gec459ivnsY6JdLnQZ4N166S77pKWL7f/mkRWfJIVAGbzgAG7d5c8Dq/QpFP/bb+cR9I9xSydvnM/WLzYnEe1Xbv0/+4zSaSb9Xv2xLfdZcuka6+Vnn5aOuOM+LaVjbL4UpuZ4m0BtDsKpBcVzW3bzJSEd94x5ygMnsfs7LPNVIW1ayOfyP3aAjh8eMmJzWmfOieds2+4wVz/tdekuXPtvSb8e/NLRS3Rtm2L/2KTbB99JA0bZlZm7P4u/dIC2K2bu33EmwL6229mpcBOWffskWbPDr0r7mfpFAyk6rwS/hklsgVw61ZztNFkjGwakC3n63gtXmymS/qVH3/LRUVma9qQIWZfWi9FuqkXb4r2k0+WPGbUX+cIADNMIvsABvPiwho+Yldw5+ZNm2K/3q99AAN9NpLp22/trefHC0+izZwpVasmHX20eVMh3ezaZb8y45cAcNYsd/uI57zy++/SEUdIxx0njRgRe/2BA81pJpo3977CkwiJ+m4Nw5xQ2kupasVNZgDYu7c52ujxxyfu+Al/P14eA4ZhphSWKxf7RmU6Bp6rVqW6BJH5MTX5zTfN1rSJE825Zb0U6XwQ703ZbKzPeIkAMMPE2wJo11NPJW7bdvl1GohUXCzt7jNT+0ZEc/nl5vv+7jtp0qRUl8Yduxe6RAYJTvprlC1rvTyRo4DedZe0ebP5ePz42OsH0th37DAHtvK7RH238+aFTr3hhWSdAwsLpb59pWOPlT78sPT5LZEV7UDqfmGh9O9/e7PNb781s18GD7ZuHfHy/L1woXljqbBQuvnm6OumYwDo5+DAj9fh4cNLHr/wgrfbjhQAxpum6+fvOB0QAGaYZE0DsW9f6u9i+bUF0M99mGKdMNPxQu9EooehT7VEXBCLisx5ti66yP5r3P4GrM5ZhYVmS8vJJ0cfunztWnf7lNJjTirDMLMLgvsJ2vXaa1KfPtKiRaWf++ij+MsWLlnnkVmzzDSwzz4zj4/w4z9Z/cC8Si/v3t0cPGzSJHPAtfD34+U1PTBdRrw2bjRTYZmDz75E151mzpSOOsrejbAAJ8fWxo3mOXnYMHvdVhLVAujHQDqd+LiqCjeCf2iTJrmrLNhVVGQOU/3xx95sz2mlwa93f/wcRPmpD+DixWYK0mOPJW+ffg7O3UhkiljA7NnmoExORLo506VL9NdZDQLz3HNmBfPDD6VTT7VfhjlzzNHh7Iye6effbMCuXebAWEceaZ3KvHixdN550vTpocs3bzYHinrqKbM/afg5oFw578sa6fP0+nN+7bXQv5OZApoIwQOeWQ0Ilqr3E+17O+20klTYdJ92I1kSfXP+8svNQaRuv93+/KFOjq0bbjDPyXfdZfYbjCXS8WM3AJw/X7rsMun99+2WEHZkWHUIyazgvv66edI/8UTvUwbsSGUAmKktgMl08slmCtKAAfYH4tizx5xk2u2NjXSo6DuRjABwzRrnr4n0G2jbNjTVKJxVCuhzz5U8jtaHM/x1Z55pjg53yimxKxrpdFz8+KPZTydcu3bSq69KV11lpjsHLF0aul7wYFtS5HTdeET6/r0+N8ZqIUu3ADBcIlsAvThX7N1rtr5KZoq43cHIFi82b2ScdZa0fbvz/b71ltlvMR1a7q0k8rgMD8K/+cbe65yU6ZlnSh4PHRp7fbuDwCxaZKakBx+bO3dKnTtLjz8udewY+ho/1WfSkY+rqnAjmRWZ4IlEe/ZM3n4D/Prj93MAGKsFMPD3+++bKX+JHEkt+ILzzjux1zcMc5LsY46J3ZIUSTxpgn4U/n0m4jdRvrzz10RqAczJkcaNMyt+VqwquF6kescaVMoPAaDdipokffVV6WXBn93bb5c8Dn9v4cdIIgLASJ9nos+NsVJAf/9d6trVDJa9HP01WdeiwHf855/SK6+Y80UmQ6TvM/x9270xd9pp5vH+5pvO+99+/rk55P/NN5uDlkTit/rB9u3mezaMxLQAfvSRdOed0vr17l5vNwB0M3efnT6Ab75p/i67dDGDvYDwVOV160oepyIFtKjIDIBfe81/x5hTPq6qwg0/Bx/h4v3x+LUFMBmVSbcTBNvpA1hUZN5pe/55M8i3MyJrvOz01bnhhpKyfPhh5Pkho1m6NP1P2sES2UIQ4CYAjHUeilTpe/rp0seyFwFgOnznF1xgf91YlbXg4yBWAJjMFFCv+207bQG85Rbp3XfNloZ+/bwtSzIUFZnvuU0b6fzzpU6dzOU//2ym/U2aFPoZPP+8GfAGt6J7yW2fy+BpbZxmD91+e8nj4GkA/Gz3bnNu4COPlK6/3vsWwI0bzVay225zf1zbLZObEULt9AEMblC4/PKSx+HHVPA5JBXn9QcflC6+2Eyr9/NUI3akUbgAO7wMAA3DbH63a/Vq6fTTzX4owcNi//ij1KSJdOCB5t27SPzcB9DJvuL5Drya0N3u66w+8/C7uJ98Ym/bf/4ptWol1axpVrKcsFNxePDB0L+dzJkYLJPmC/JrC2Cs33KjRtbLb73V/Q2UaK9Lh8GPnLQAxqqsBb/feFsAv/nG/l3/wLZTlQIaqw9gcMCQiMFvEq2oSFqxomSKg88+M1t8evUyB/4YPNhMoZPMFqeLLjLPxb16lU619OJc4UXKrdOBQNIxrfe550panB96yPsbdQ8/XHI9DB/oyes6hZubCXYCwEitx+Hfd/Do76kIAG+8seSxk5t2fkQAmGG8qsgYhjkiWYUK5l1TO6680kw9evXV0H4+V15pnvzWrTPvWnol+Me/Z495N+Z///Nu+5H2JaW2BXDXLvMi4oabE6bdQGvCBOnTT83KYteuzvbhZrS+VIwC+803ZrrzhAn+GIEsGX0AE5Ei6ET4QB+RxPO7+/BD70ZFTIaiIvM3E6ny7KQFMNr3O2GC2Wpx2GHSb7/FLlegP1iyUkCdBoCJ8vTT0ujR3s8zatXCGf6e6tULvUkXuFEW3nc3Vl/eaOeOP/4wRycNKCw002m9GHXVqxFUvfLOO2bgbKdbgl3BcxxL3h+Xbm+GBkvkbyWeUUDDj6l45rreu9esnzq52ZbJCAAzjFcX2GXLSk74995r74cWfMIMHsFs/vySxz//bP6/fbv1KGeS9MUX9soYXKbrrzdTCFq2tD/qlRNOKvvh30H9+t4GpsOHh96FcsLO+whfx+7F5b//dV6eADeVALfzQMYTKJx1lpmyNHy4/QEPEikZLYDJvsuaiDT2WO/h00+lZs3sn3u88uyz0nXXlZwX7Vq6VKpd26z8W/UHjNYCKJmZHatWmetFSwEN3MjbtMnsXxTLjBmR9yklvotCqgaB+eUXadQoM009kYqKYt/4cvueY10bzj7b/H/PHnPwtwMOMFMO4913tHP/p5+afb67d0/OgC+7dkndupmps926Sf/84+z1RUXmZ9KtW8nNEKn078HL4FLyJohO5A1NNwHgyJHW040Fn9vsXJu2bzcHDdq82TzXnnde4uqJ6YYAMMN4dYENT5Nzc3LYtctMCbXSt2/pyXMNQ1q+3JzU147gH39gW3v2SGPHOi9rLE6mTwh/bu1aczh6O4I7OEdy//32tmXFTktm+Dp2A8B4jj2vWwDXrDFb6q66qvRz8QSAP/1U8njmTPfb8UoyWgCTnXKViBZ0O5/Lnj3S1Vd7v+9I/vc/qXdvszX/vPOcvXbzZvPfxo1mf5Rw0c7Xe/eaFfimTc33W6aMvX3aSZ0O/Cad9AH89FPz5lH4d/TNN2ZK+SmnmC1QVmId/07OK999526Ai2BPPFHyeNMmd/2Ug1m1AMa68eVV94BIXn655EZJeF9etwHg6tXmwBrhQV63bma3kddfLxn5NpEZNuHXX6ff35w55o2Sd94JzYIJL3P//u7KF0m0QMruNcHOd/ftt/a2FS5S3SBa2caONbM/wssVfJzaeW+nnmoOGlSjRkk9sbDQHIwsYPdu58F+JiAAzDBenBxPO630nXA3F5XHHw8djS7YK6+UXmYYZrqo3X1F+vE7uVO4Z4+ZEhDoUxFJPC2Akv2Whcces5dq5Vb4+wgf4CUwCEwwuwFgPMeemwCwb18zyLP6vK64wmypC58TTfLuJokf+o3F0wL4++9m5TvWa5I1mXa87Hwf48dLBx9sZjVYSeYosY88UvI4npbHaC2Au3aZ8zgGe/31ktdMn27/mLHz+QaCE7stgIsXS61bm9ec4KktvvvOTD399FNzHsdbb7XenpMU0EgZJ5I5pcBhh5lB8fr15nnx/ffdH/tr1pjbOvTQ0n2Xwz34oFRQYD2ipVWLZqwA0O736fbmUbTW6lif19tvm0F9sG3bzJu+F19c0sr46qtS48ahYwk47Xvm5mZYeH9np0HB00+XPA6+tib6WuFFC6CdANDOMWol0jU31udyzz3xtQBu3Bh5DtvNm83j9YYbzO+9UiVzJNJI/vrLHHwpkxAAZhgvKrf//a/Z9yOYmwAw2gXXSlGRsznHnJ7g339fuuOO0EreoEHm3fcWLcw8/Zdesg5a42kBdOruu52/xu0ooP/6V+x14gkAP/jAvJDHmrbBTUXro4/MIM8q7SpaOqpXF2M/BIBuRwH9/Xfp8MPNytjIkaHP/fWX2acosK1kB4CxPle3rZx//FEyMXKkfs1+6NfpRqTjINDCGCx4hL3gdWOZPTt09EYrsQLA8OVXXllS9ptvLlkePrhC8LDwwZyMAjpwoPU2gvf9559m2mvz5uZIyH36RH5NNLffbv6OJLN7QjTXX28em1YTalu1fsS6xicqBdTOerH2ffrpZlAfbPv2kmBp4ULz//POC822kEredzzn3W3bzBsgkVp6w9+bmzkKraR7ALh4sfmbDO7OE2zBgujbdlsv3X//6C2AsY7ZaNcuwzBT1idPLlkWaXoiybx5GCmYTFcEgBkmUX0s3FS6oo34GWkfTjozOynTH3+YwySPGRM6Z2EgjW/nTqlhQ/Mkd/rp5h3IYPG2AEZi9R4ipTt5IVF9ADdtkr78svTyDh3MC3lgZLpICgulF180LzROPf+8s/Uvusi61cQpP0y54rYF8K67zDugUmgqzI4d0tFHSyecYN4ckZKfAhprgCO3Aamd1j0773X6dLPf3KmnxvfZeFkpjHQchJ/HrDg5j06aFP35WCmg4b+ZSOc6u79PL1NAA/7zn5K51NxOn/Ddd/bWi/XZh3+vgWkgnLzG7b4iibadRN4schsAfvKJmar6119mS3P37ub5zer9hi/bscPZviJ9NokOAGMFOnZE+/47dDBvjkcSPIWDFbfXyho1Sr83Jy2A0Z7/7TfrLiKRBA+ClCl8UIWBlxJ1oknGnfGiIvsTyUrOKi6PP15SWYsUZBQWljw+7zwzEAz86BPVAmj1HgzDrGT26uU8iHazv2A5Oc5bAHfsMO+Yu9lfwAMPSBdeKLVta3/aCbcWLTIrAvFKZgvg5ZeXrizv3RuaciTZ/7wjtbQHV34DLfjJbgGMdbyF3+3et89Mo4tWWTcMe5+N1Xlu797QFoOrrjLPFXPnxjcPVCIDQCfnayfn0Wefjf680wAw3pF8nc4DmCyxPv8VK6Rp00paCSOxav2wG8g5bUn3IgBM5Oft5lj57TfppJPMQdPOPLPk2v/DD+ZASuHCy2+VArpqlXnjeMuW0s/5MQC0Y/Xq6K2dsVoYYx3H8QSATz0VusxpH8BIMq01zw0CwAyTqFaJZASAhhEahMXipN9M+IkiViqTZKaCnn22eXJNVAug1Xa//96sZD73nBkQOb0L6XR/wdz0AezduyRo8IJVWqrXvChvMgNAwyidGjxyZOlJeeO92/v776WX+W3erfBzxAsvxE6zcxsAFhWZd79r1pSGDSu9fjwtycloAbTDy4GDApX0SOfA8Eq81wFgqqaBCBdtv5s3m4Pw/OtfsadFCv9eJ092/ppI3PYBjDXAUKI4rdsYhjnoR6BM4RV+qzmOIwWA8+ZJlSubo+42bWrekDv3XPtlSVRae0C89b5eveJ7fSxuy/fOO6UzfOy2AO7dG9qHNF5+6PLhNQLADJOoANDLC2mk/mBOg8x773XWZzBY06bWlV0r27eXfv+JbAFcvbrk8c6d0scfx96O3X3a+YydtgDanafNLq/n0kqUZF8Qwkd/tRqW3+0AENGW+20QmPAA8IorYr/GMNwd+2+/XTJh+F132SufXX4JAL08tzsdBMbtVC4BsSY3T9Ucc9GOtSefLDmnBvq8RRL+3TzxROwphRI9CmiiA8BIx66bFFCnqZHhn3fg5muXLuaxFnzj0Krfm9sWwEif6cKFZsAfPLqs0+1HOxc884z5v5uuF07YGQTGah2rwfmitQD+9ps5UmlRkdS+vTm2g1cIAOF7iTpIvawERuoP5uYu2IgR9tYL3/aGDWanXruvTWYLYHhZgyu8kUYlczsIjJ0yeTHJbCZKxQVh82azb16kVtJsDADtTFTvtgUw+GaMV/btM/vM+iUFNFIAaJUSFlxmq+DKaQDopAXwt9/MY3/MmJKpA8LTxcPfd+DYjSeDxc1ro73GySjV8ezbaf8ov6SAxgoAvdhWJNFGnIxnf7F+65E+tw4dzBHT+/WL3ofZ7fFtNYVMwN9/m3372rd3t+1gdr47u99vtADw0EOlI44wW2e9DmozMQCM8/4b/CZRLYBXXpmY7QZzcxKz24pnxW5H/ZtuKt3aEm8L4CefmKPqXXhh6eciVWKk0il/TiVyIvhsk4oLwm23SQ8/HPl5t5W4Zcuk+vXt3RUPd8UV0qxZyTtOwgOPaBOZB5x2WuypXiRnLf1uGIbZF8nriaDjGbwi0vcbawTMc84pvWy//cx9R5ozMJ4A8MorzREcJbNP9yGHlF4nUgtgPAHg3r32bjIEi/absdvPfeNGdwFVIGPEaYqnFymg0cob780pL0YBjSWeGynRxKqX2dnPokXxvd6pe++Nr49zMC8DwGgpoIGuPYHzhJciHXfVqpnnorlzperVvd9vItECmGESFQB6dSKIxk0LoJ2+fPF6/PHSLQHRLkKxvoOdO807e3fdZY5MGi5aAPif/0TfdixuB4FJZipVIiYzT4RkB4DVq1vPaxjM7mcXfoE87jjzzmn4nIpNmphzpEXTpIl5d7pSJfPvfv3slcEtNy2AdoI/KfF9nT//3PvgTyr9mUycaH8Os0gtvOHzB0olx9e+fdJbb5V+fs0aqWLFyPuKJwU0+Jj95RfrTJJEBYBORduf3QDw++/dt6ht2VK6DNGmxpFK1v/888jzZMZqSY9WXrvvJdL2N20yr8NOJ2d3sp/wMjr9/L1sAQz//qLdLIl2vLm9ngYmTfeCnRs9dm8GOZkGwkuR6nVbtphTm9xzT/LK4hUCwAyTzs3Ubn7MVgFgIj6Ddevs7yPSiaJdO7O8ixaVtJZYjZ7lZijzPXvMwViaN4//TmH4Oi+9ZFayb7vN/HvHDnPerIEDve1knW7iudmyZIk5HHnwJNGxLtR2Ux1jidRSt3mz9Nhjoct++MFMl45l//3NkQ3feCN0gvNEcBMA2uX0HOS0chVPxkI04fO2Sva/BzcBTqTXTJsW/XVeDwITLtLNs3hSE70OAJ20lDsZ6CzY1q2ly3DTTaF/W6WAbt9ujpoZaZ7MWAFgtGlC7H6Okbb/88/SQQfZz9xxs59oc8653aYdI0eWHu0y/POK1vczEYGQ0/650UYstzMvqJtuLMm8WRyrfO+/n5RieIoAMMP4YW4ytxLRArhvn5mOZFUBiHewlkgibXfRImnqVOfzMdmpvMyebQ7RvmKFGWhGYud9RFrnzjvNsj30kNkq9Oij0uDBsbfnVDq2ABYVmd/BsmX2Xtu2rdmicf31JSNJ2mmdjcXOZxdryG63Dj7YTG8sUyYx2w/Ys8dsAbr/fjNATWQA6GRaGqttzZxp/l4CQavXAU9A+ABBkv35MZ0ER4Fj0G1A5fU0EOH80gIY7fNxEgBajVRpR15e7Pk0wxmGOW9ktPThoqLon2Wg3+jXX5ceoM3u5+hVMOMm5dVpABhrH4H+nnbO3X36hO4vvCyjR0d+bSJGu3UaAA4dGvm5SPXS4M/Piz6AXrjyyuQ1LKRaGocLsJLOAaCbE3+sC2T37uYE71aDxTg5eTiZBzDad7BwofMA0M6FM/zuU6R9uJkGIlhhoXTrrSV/h9+1DBapH1C6iva9jRpldjw/4QTps8+cbWvOHPP/WN9NeHpmrO1Gks7nCMlMuTn+eLNF4+ST4x9JMljwd7Bzp3TDDe639eyz5nDx111XkkabqADQit35NK0qj7GOI7cVzvDzZqJbADdtMm94xFNBdvP5WN1I+O4753Pdui13UZE0Y4bz18S61sQKACWz5fnoo82Rtr/+umR5vC2AXvMiBTRWP8vevc3/7QYPwftz8t1H+2zdBtROz6tz50Z+zk4AaPdckOgWwEceiZwCHU263LgOluZVAYRL58rdBx84f01ubuQf3i+/lFSu4xV+Mo72OUc72btJ47Nz4axXL/TvSMGCmz6AwZzcvY52RzAdhfeDDT4Gxo41/y8qMiv8TgQufF5cQFIRACb7zminTtIff5iPN2zwLiVMCv2dW1Wgwz/faO/9kktKHg8fbv6fzADQLqvzS6xzjtuRYb2eBiJc+Pfz8svmuTHSyNN2WL1XpwHySSdJhx1m9o91EgC67YflJnC0E9zt2xf7vQcGjNu5M3S0Yr8FgFactgDGmn5lzhxpyhR36Y1OfmPR+ugnKwB0MzCeH1sApZLreTBaAOF76XyQhvdRsCM3t6RyFc7uIAh2OAkAoz1Xrpzz1BQ7F4LatUP/DqT53XOPOShD377m3276AAZzUnmJNcdVJH69k3bBBaF/R/qtbdnibLteBoDRvrt588yK6KhR8e/HTxKVAvrTT6WfT/WEzYlgFSzE+p37tQXQ6vvZtSv25OnRuAkAw3+Hy5eb/ydrtFw7349V65Wd9xVtnfABgALp7ZL9gcS8PP9H21bXrtIpp4SWy+kooHY+52uvTXwLYHi/6GDJCgCrVIn8nJ2MJD8FgFZifYfpWPf24eUI8fBjBSORcnOtJ8T++efYJ4d337W/H68mgrcTALrpAxi+zp495n6GDjX7dDz5pNlJO54+gJKzyouXFfNYunRJ/nQVdjq225Gba1YyvZi3KNp316WLOam5l6O7+YGdaSDscvrbdCpdWgAjBYDx9gEMl+gUUC94EQAGczJFh1tuWwDtvK9o7y38uc2bSwa6SnYLoJ3tvPde6MA1TlNAY7UAOhWtD2A08bQARiqz29b5n34yJ5gPnkc00j6eeMK8OVNY6J8U0EhiXdf9euM6miwLFzJfNgaA4V58UWrUKPpgKE6Fn4zfeMPstB0+oMa2bdH73tiprLodBTT87/Blv/4afwugkyDL7WAgbk6k8+aZQ98nk93JrmPZbz+pVy+pY8f4y5SOF6F4eRkAxuJ0brVwfgwArSqasX7niQoA4z1+E3H8e5ECGszLzJRI7FwzrEYBjbcF0Op9X3+92RfTrymgga4Kf/5ZuiUt3hTQADcD4DhJAY3WAhjrtxrpeTcB4PbtUsuW5gTzwXMcR/tOX3nFvEFt98bpsceag2vF2q4XvvjCHAV97970bOGLJcvChcyXiQdpNNEq23//7d1+Hn+89LKnngodXGbfPnNwimjDISczAAyvxNlpfdy4UbroosjPOwkA3d5BjDR4zIEHRn/dK6+4259bkY69WL/B8ErDzp3mRcYL2RgAJqql2ep7tKoQGobZsrp0qdk38YYbIg+H78fzs5MWwOB5AN0If//h54h4A8sTT4zv9VasPp9YgUFg9EcrfmkBtLqZEavf9r597iaC//Zb/waAktmNpGZN6bTTQpc7DQAjsZv+mooWwEjfi5vr96xZJcf+22+XLI/1nb7zjrMbp5dfbm+78fjuO6lVK7Prx5Ah/jx3x8vjLthItWxrAUzWjzJSf7Zp08ypHSRpwQLzQheNmxRQOxfO8HUiBYB2LljRRrF0EgDGMzjH7t2lg2U7n9v27VKFCu7368S0aVLPnuZIlMFi/QbDv6sffvC2XMlWo0Zq9+/1QCLRWFXKXnih5KZJxYrRW3gSMVx7vFLZBzD8u9uzJ7nfpx1OWwB/+SV6kOd2agcn3KaAxrpp6jQFNLg8yZ4GwgmreTQlewHgokXmoCEnnxz5uEi3ALBcOee/Q8MoPX3CsmXSWWfFnv90zx53dddEBoDDh5d8B5Mnmy2PmSbLwoXMl20BoJ/er53BP8qVM+d/i8ZNH0A7LYBly8Z/woxnXjQnrCZVjVX2L76QKle23woweHDpic+dat++dGXP6qbE779LHTpIxxxjztUYLJ2ny6hXr2So81RJ1E0gO8PES6Et5rHS+1JRuY3FTQqo21FAV6wwU8QCv4HwFFC7FeVkchoADhkSfXt+aQEMZ7d7QLT3Hm2wj1S0AMa7LTt9ANu1M8cTuP12MwvASrQUzfDt2d233e3H2o7V91K+vLsbMUuWhP593nmxgz/JWR/AYIk8n4aP+p2JLYA+qj7DC34KiJLBT+/XzgmiXDnp4YejrxN+0brlltgDhNhNAY33hJmsgVbuu690EGi37JEuwuEmTZIGDHA/WmnAp5+W/nvEiNCJkIcONffz+eelRyT0Y6tQLMccI334ofTll2ZlIZUScRd41y7r35zbwCfAjwGg1XuK9DsPnOOizfkVyxdfSNdcYz5OhwDQ6TyAwXPfWUlGH0A3KaB2js09e0JH9nRSHj+3AEbiNAU0MD1NOLvHdfD3lqxpIKxutubmOg8At26VZs8OXbZ2rb3X+rEFMBwBIHzPb+kzieblHGDJ4KYPoGQO3x/tghB+ASgsLF2JizZnol3JCgDnzZNOPVX68ceSZYk62Ufq92IYZp+GyZOjV9qsLgzjxoV2gn/iiZLHq1fHfr1b27dLnTubLXPBfTC8lpdnHpP77+9+G14N3pKIALprV+sbCeG/QaffnZ8qtwFW55XgmxfBvvnGPLdcfXV8+/zwQ/P/8OuV3ZaSZNq71zwXnH22GbDec0/0c1GslOhktAC2bu38NXbOrxdc4G6+XictgCtXOt++FcOI/9xaVGQOYBOJ3XOPm+A3WSmg555betnmzaVvbCZSJgSA6dj/ngAww2RbAOgHQ4bYP8G7HbDCMCJP7i7Z6wM4blzp4MOpZE61sGeP+dmuW2cGg3ZSSdyIdNf29delSy+NPqiHFPnC8PHHZt+S4OGwnbzejaeekubPl9avl04/PXHppV6U+b33pKZN49+O10HVunWRK7nxBJvff+/P1l6nZfrmG+/2neoWQDuVtr17zePhjTfMY23o0Oivq149+vaSlUYfi5sWwPAUP7uctAAG3ziLV7yV8j17pOOOi/y83XOPkwBw0yZzPAEn19p4UkAjScaNioA9e9ylgPopAExHBIAZhgAw+SZOlF591d66iRoGPvwCc8EFZv+0YLNnSz16xLefZM+1t2KFOYx4PClnsUQKLM85p+Rx8Giv4aJdGIYPl267zVWxPNGzZ2K268XFsE0b827/5MnxbcfroCraIB3h6W9OKiB33OHPFkCnn98XX3i371QHgGeeGXudvXtLD9QU7Xt86634ypQsTic9j3dfdoOgdesSVw6n3n/fnFM4Erst1naP6507pRYtpE6doo/G7WT7fjznhNuzx/k1ZeZMc/TlZGEiePie27nXEJ9nnrG3Xjwn42iVTasLQCKCtWTfvf7rr9Kdsb0W753OWKkrDz0U3/bjEW1Oynh4ebHzcvJkL0Qrz6mnut/uli3+rIw57dfoZcAdHgC2alV6VN1Eeusts9U8mr17rUcrTUc//VTy2OtJzKNZtkzasCFx20+UWNkbdq8ddo+Xl18uCYC//97ea6Togagfzznhli+XVq1y9prLL09Of9qATEwBpb0ow9ACmBo5OfYqxU5O6uGinWDiHZzCrmS3AHo5l2OixBsMpeOdQz8FgF63ACbqQp6b68/KmNNzRyLPNX//XdI/MFn69In+vFUAmIypHBKhcWMzm6Jz5+S2AI4Zk7htR+LF7zjWucVuAPjvf9tbL9r8kdFECzD9mHaejtLxOh0LLYAZhgDQ36ZPd//a++7zrhxuJTsA9BOvBi0Jl44XFj8FgF4HJNkWAD7yiLP1vXoPgwdLTz/tzbYSyWpuwnQNACWpSxczfS48MPDjsRmvRGcX2D0O7AZhbruIhM+/FywTv9dUSMfrdCwEgBmGFNDMlcpUwoBsDgAj9Rc64YTklsMNr4MaP10Mvb7DnagKU25uZtyN9+o9RBtYyU8KC0sHgOFzeaabyy83BxoJlo4pbIkWa+AxrwdKScQN/MD5zO70SMgeBIAZhhbA1Ni2LT3uZscrUwPAVatiTymSqGGxk1Hx8jqo8VMLoNfvzcn2nKzr1xZApzIhiHVi167S19V4B9Pyg/AAMNu+Vy+kQwC4b595jk1m39pM5Kc5p71CuJBhCABTY968VJcgOfwyhLnXDj/c/P+NN8zpE6wq6r/8kph9xzs1hx0EgPY5qQg7GYQgN9ecniPdZVugsHu3VKVKqkuReMnqR55J4unSYSVRLYB79mTutTtZ/JT14hXfxbSrVq3SyJEjdcIJJ6hWrVqqXLmyWrRoofHjx+sfB1fbt956S23atFHFihVVo0YNXXDBBfo52ni+GYIAEImUqS2ARUXmv7PPNiv1LVokb99eTXwcTSYHgF4HJE4qwrFGCQyWkyP961/Oy+M32RYA7tqVHe+ZANC5d97xdnteTrESEAgAER8CwCSYOXOmJk2apMaNG2vkyJG699571bRpU91+++1q06aNdtrodfvKK6/ozDPP1M6dO3Xvvffq5ptv1gcffKC2bdtqfSbcgo2CPoBIpEwNAAP27TNHrAuf7y3dJXNSX6f8NgiMk+05bQHMBNkQDAXbtSs7gqNMCxL80GfeKbvTSTmxb5/9+QoRWSYGgL5rL+rRo4eGDRumqlWrFi8bNGiQmjRpovHjx+uxxx7TNddcE/H1e/bs0bXXXqv69evrww8/VKVKlSRJ3bp107HHHqtRo0bpEafDnqURWgCRSJkeAErSPfekugTeOvTQ+KYfsZLJLYC//WZ/3WwMADOhH6MTtACmp23bpA8+SHUpUq+oiADQC5ly/g7mu7fUqlWrkOAvoGfPnpKkr7/+OurrFy5cqPXr12vAgAHFwZ8ktWjRQh06dNDzzz+vPZl2qysIASASiX4E6cfr4E/y191QrwOSoUPtr+skAHQ7xLvfDB+e6hIkV7a0AGbie/z441SXIPUIAL0Rq26djqPopk24sHbtWklSQUFB1PWWLVsmSTrxxBNLPXfCCSfovffe06pVq3TkkUe6KkedOnVC/i7y2e1QUkCRSNnQAojY/NQC6PWF10mfTCcBoJ+CZtj32WdSjPvOGSETA0BIGzcSAHohU27gBfNdC6CVffv2aezYscrLy1Pv3r2jrhvo41evXr1SzwWWrVu3zvtC+gQtgEgkWgAh+SsATCUnfSvffz9hxUACzZkjvfpqqkuReBmcGJXV/v1vZ4NVwVqsa1463uBLi3Dhhhtu0JIlSzRhwgQ1bdo06ro7/v+KXK5cuVLPlS9fPmQdNzZs2BDy99atWy1TVlOFABCJlA19YRAbAaDJyQ2RNWsSVw4gXrQAZq4nn0x1CdJfrOtUOl7HfN8COGLECE2ZMkUDBw7UsGHDYq5foUIFSdJuiyvzrv/PXwusk4nspoASKMKNzz9PdQngB14GgD7LonckEf0rgVQgAMxcGZz0ljTpfJ2KxNcB4KhRozRu3Dj1799f023OuFm3bl1J1mmegWVW6aGZwm5gd/HFiS0HMtPmzakuATJNOqbOAJmGADBz+XkaoHRBAJhEo0aN0ujRo9W3b1/NmDFDOTZrCa1bt5YkLVmypNRzH3/8sapUqaJDDz3U07L6id0AMBMPZgCJ0a1b6N9e9ikZMKCkg/3JJ0de74EHvNsngFAEgJmLADB+mVhn9mUAOGbMGI0ePVp9+vTRzJkzlRthAo4NGzZo5cqVIX362rdvrzp16mjGjBnaHlRL+fLLL/X+++/rggsuUJkMHirT7lvLxIMZQGIkchCM2rWl996Txo6Vnn8+8nqDBkn/P8YXAI8RAGYuAsD4ZWKd2Xc9waZOnao77rhDDRo0UOfOnfXMM8+EPF9QUKAuXbpIkoYNG6YnnnhCCxYsUIcOHSRJZcqU0eTJk9WzZ0+1a9dOV1xxhbZu3apJkyapVq1aGj16dLLfUlLZDQAZzAOAXeFjanndh/jkk6O3/h1yiFS2rFSrlrf7BWBiFNDMtXNnqkuQ/ggAkyAwj9/q1avVt2/fUs+3b9++OACM5IILLlB+fr7GjRunIUOGqFy5cjrllFN09913Z3T/P0mqVs3eegSAANxK9iBSb71l9hWMkAwCIE7XXpvqEiBRCADjl4l15hzDSMfBS/0jMA3Eli1bVKVKlVQXR5JUoULsH/x550mvvJKc8gBIb4YhnX229MYb5t/z50udOiVmX1bdvYOvUgwaAwD21avHSKCJ1rq1tHRpqkthshuX+K4FEPGrVi00APz5Z+ngg0PXycS7GQASZ+JEqXp16eijpY4dU10aAIAdBH+wQkJNBgqfl75hQ+mss0KXZWI+M4DEadJEeuIJaciQ5LbC3XZb8vaVbf6/6zwAIMsQAGYgq36A4X12aAEEkA5uvTXVJchcpNMCQPzSsTMdAWAGatas9LKrry553LIlASAAewYNSt2+y5eXKldO3f4zHYPqAEB24vSfge680+yrI0n33GP+f8opZh+eSy8159oiAARgR69eqds356nEogUQAOKXjudSBoHJQDVqSKtXS2vWSIcfbi7LyZEGDy5Zx0nF6rrrpAcf9LaMANJDKluJCACdadFC+uIL++unY6UFAPyGFFD4RqVKJcGfFScVKyoJsOu001JdAngtlQEgg1U54/Tz4twOpJdkz8GKzEUAmKWcVBToJwK7ypZNdQngtWT//vfbr+TxKackd9/pzosAsFw5b8oCwHsVKqS6BMgUVO2zFC2ASASOlcyT7ABw7lypYkWpoECaNi25+06Wzp3dve7AA6M/7zQAtEpbOu88Z9tIV9l0rmLezsxBAAivEABmKfrWIBFOPDHVJYDXkh0Aduwobdxo9mM+9NDk7jtZ7rgj9O9evaQBA6K/5qOPoqf1S84DQKv1syUwmj071SVIngkTUl0CeCU/P9UlMMW6GQX/IwDMUk7uCEarVDz7rHTlldKFF0qXXx5/uZDe/vWvVJegtEMOkapUSXUp0lcqUsDz8zM7nTi8H09OjjmASzR27vx70QKYjoMZuFGmTKpLkDzZEtRng0QGgFddZX9dugalP77CLHXLLeZ8gJUrmwGcWw0aSNOnm1NLcEcIlSrFbslIpq5dpe++k7ZuTXVJ0hcXeu9ZBYCxKuk5ObGDMy8CwET7+uvk79NKugVFdsrbs6f71yI9JDIAnDrV/rocU6HS8cYZl/YsVaOG9NlnZsX4zDOjrxvtwA4esCEdfwDwnt8uDAQwzgT/piU+v0QI/4xzcmJ/znYCQKfnYKv17f5+W7Uy+2j27etsn35peUu30RSXLIn+/MUXSw88YP2c387JcC+RAWAyjpN69RK/D7uuuCLVJUgtLu2I+aOPVqkIrrQQAGaOo45y/9pkVzbq1In8HNMIOBdeQScA9F6iWgCd9u22+n3Y/e3n5ZkpY//5j5lmbZdfAsCWLVNdAmfCbxoEu+8+6amnpAMOSF55kBqJHqX31lvtrbd3b2LLkQxenovS8SYLl3bEPHAvvDDyc34KAM86y193l9LZihVmOqcbyT4RXned9OKL0v77l34u1cekFwoKpE6dkrc/AsDEGj3augXQLymg11xjDjYTqzxuW9D8EAC+8or1+SJYpHTKVLEKABs2lDZskG66KfprU1k5rV49dfvORInuG233WMmEANDLLIB0rGtwaUfEH3yFCtJdd0lt2kR+rZ9SQO0MpIDSCgpKL8vJcd96luzKRpkyUo8eUocOpZ9L9TGZjsIvigSA3hoypPRnXFSUmhRQq9945crSl19KmzdHHyzMbSCX6gCwSxfp3HNjr3fdddbLCwpS09JmdXxUrWqvLKkMAEeOTN2+M1GiA0C755A9e9xtf+BAd69LhHRLA/cal3ZEvDi8+qo0dGj0i4efWgBzcqKnycBapO/X7VQhqapsWO03E1JAk/27Cq9oEgB6q0KF0uepoiL/tABKZpBWtWr0u/zxtADec0/J3zfeKJUv725bbkTqJxcu0qirt91mDi6VbFbXNrvpgKkMAN2ePypUkI4/3tuyZIJU30AJcBsAtmvnbTniQQCIrBfp4mCn4hlvwHXbbfG9PhgBoDuFhdbL06UFMJpU35TwSjLfR6YGgE6Py1hz7sXDqgXQTvmiHQfXXuv9KKDRtue2IpqXJ11/vXT//dKUKdK99yb3nNGggb31Ir2//fZLzW8iN1c64YTQZW4DwFq1vCmTHU6vyccdJz30kPTxx0zfYyXdU0D9VEeLFgCOG5e8cqRKhlzaEY94Lr7Br3VaSf3uO2n8ePf7Dpeb66+TS7pI9wAwcNxZXZAyIQBM9nsIvyhm62/qoosSt203AWBRkfWxMG6cdPXV0rBh3kwEHyxaFkA8LYBly5otf//6l3l8JfOcYTd4ixRc5eWl5jex337SCy+ELnMbACaz5cPpZ7X//mY/1KOPtn/uszNHZqZI9xZAP11PIn2WCxZIN9xg/Vym3BCVCAChyCfZ4ItGpAm+4wkAvZ43MCcnPZr0/dYpPlIAmG4poFYXpEAFt2nT5JbFa4n8TM8/P/TvTJ0GwulnGKuiUrGi1Lq1u7KEb3vfvtifc6QAcPhwc/6uOnW8bwFMVApoKtmtgDZqZN0KHG8LYNOm9tNQg+XmSvXrhy5zGwAmeiTJYE4r/G7OdQcd5Pw16SrVv5+ATG4BLF8+8m880vI77vCmTMmUIZd2xMNO4PbQQ9K330Z/rdMA0OsTQU6OOTdVog0ZYn/dGTNKL/vkE+/K4kb4qK6RAkC3kh0wBI47qwAw8Ny993qzr2SOxhkska2A11wT+nempoA6Fev8lJMjzZ0rvfSS8227aQE0jMT0AbzkkpK/w89tiWgBtPpck3nTyO51JzdX+u9/zb6Qwdy2AM6dKz3xhPTBB9KgQdKoUc5eb7XPM86w99rwz9frm6+SVLOm9fJknD/WrEn8Pvwi3c/Hfip/pGA62ryskc5VXbp4U6Zk8tFXAT/LyZEOO6z08ngCwMAPLPwC61ZOjjkvVaLdcov9dbt1k449NnRZkybelsepSZMSu/1UtQBaBbKBY9KrviRezB1WrZqz9ROdAhpesWQUUFOsSr5hmOeu8BbUaE45xXrb+/a5SwEN/27cBID3329O5j5woHT77aXLFYnbANDqffoxBVQyW9zCs1/cBoD160uXXirVrm22wN1xh9S+vf3XB8r9zjtm6+Q550iXXWbvteGfbyKuQQsXWvctjKcFMNq5r1o1c90pU5zdlE136X4+9lMLYKSyOA0Ahw1L7kBWXknzQwle8KqCefbZztYP/Pjeeqv0c2XKOE/by8kx+wLYCdD69nW27WBO+hu4SctKtLp1U10Cb9lpAfTqouPFdq6+2vlrEhkEhr8nv6eAOgm44uF1a5tkTpouedcH8IMP4itTUZFZaf/Pf6SHHy59My5aAOhlKloyjzGn+wpf320KqNXgHU4C38DvsmtX6ccfzVG6naSABjI/cnO9T1c791zpiCOkX3+VVq4MfS7aZ5WXV3pQHrufybJl0s6dZoB+1FHOypvO/BRAueGn8ke6iZWbG/k4tDqeJ0zwrkzJ5LNLO9JNcIWkTRtpzBj7rw38kNq0Me9CBysslCZPdlaWwA82VsXkkUekadOcbTtY2bL2RlF76KH45tNLV35qAQx89m5bK4YODf07FcFQslsA/Z4C+u9/m9/LjBnR56kL5/S4jNUHNvh3vWiRvW0GUu/Cj0e7fQAbNw5d1rZt5DLZEevYSkQLoBU/jRwczqqFPBUBYDy/w5wc6bHHzN/ORx+ZfebeecfZNj7+2ExjtVKnjvl/fr45j6RdW7dKP/3krBwBZcqUBMB+CioSzW/nY6f89F1FGlE1WgtgKuYATZQ0P5TghXgqmMGvzcmRRoyQZs92vh2rC2GsE91dd1lvI9brrrgivlHD8vJC57GKJJA6ZLdSFk9Q6lTwZ9Smjbfb9tMgMPG2AB53XOjfXlx8/TYyafh78nsKaK1a5m//8sul0aO92+4FF4T+7SQADA/EYnEzD6BhmCN+BlKIrVK5nR5bXg0Cc9ppzvYbzm8BYPA50aoF0M35JN6BV+KpOOfkSJUqmX0PA1NJdO3qLGvn+OMj9x0MPk7CP69o3225cu7fV/B+/HaOcsJpRoOf36ud79JP5Y+Utpmba/6zGgk0Gd2MksVHXwVSxesKqVcX82jbmTevdBpnYH2v7zDNmVN6P3beY2AduwFgMk+MixZJp59uVqTD+yjGy4+DwHg1YIUXx1as31uyR4lNtxTQYF6mIYaPzOgkAHTKqgUw1jFaVGS23Hz3nfTNN9aVE6cj98bTAhjcr3bkSLN/bM2a0qxZzsog+ScAnDhRGjBAeuaZkmWZ0AIYiVcj4wYHgMl6T8Fl8VOrklNOP4NEvdcrroh/G3bOx376riI1BASO4UmTpK++Cn0uHfv6ReLjSzv86PjjQ/8OH5baLauKSLQm+FNOKX2hCazvdv6uxx+3Xt61q9S8ufn48sujl82KH1NATzzRDGyHDvXvDQCnok0D4faik4hgKNLnXbu22R92xQp763sl3VJAgzkJAGMdl+EtNLGCqXi+l/DPdO/e2Gnlgf3Vrh15kvpkzQNYtqw0eHDJ37VqSZ99Jm3cGL01MHzE2QC/BICDB0uPPho6rYDVDRKnLb5S/BN4x9sCaCXSb/vmm52tH3zuddICaMXu+pnSAuj0e/XyvZ5zjjl6Zffu3szJbOcY91MAmJ9vvTz4GAykNwd4PWp6KqXxzwZecVKRefnlkjsg06dbj2gYfoKyM3KiVRkiVT4C64ZfKAJ/N21qDrfdv3/paRjGjYtchkgXnv32k5YsMTu3P/qouSzdA8Bg4Z99eD8jp5xc8F95Rbr4YrO/pB1WI9EGRBsF1KsWwERWNMqVM0eNtUqzSuYgMH5PAQ129NGlL9CRxDouw+/sJrIFMNzevbH7ltgJdp0eJ24DwOXLI5c30m9t6VLpwQetn/NLAGjFKkX6rLOk3r1LrxtpvlzJ+vtLZh9AJ9ts0EDq06f0cjstgHYDwHinogjej5+CCideeSX+QYniUb++9O67ZrcdO+MaxOK2BTB8ICA7IrXEde5sfxuRAsDgzzi8lXD37sxpBfTxpR3J4qTSUK+eOfKWYUhXXmm9TvgJ/+mnzYFXatRwVoZYd1qiXWguvVSaOVNq1ix0nXr1Im8v2sU4P98MLAPrOLlw2/18401nCwwx71R4+V57Lb5yOJkr7+ijpaeeitwyEO6ppyI/l4g+gMlsAYy07US3AMZq8fNzAFi2bOkUHbectgB6qbAwegDYuLF0zDGxt5OsieCPPjryayKdx1q3jnzetHM+nTgxNDUzWaxaAHNzzetaeKV5yhT724m3HE44DQBzcpxl5QSfe+1eG6dOjbzvgGjHZ/Dn4edzVDStW6c2AIznHGc1krqdOkx4+atWNefbdGrdOuvlTkaEjZUCKpUO9goLzRF4A+u88or9/flNmv5s4KVIJ1m3d2XDX1e5splf3qJF5NcEd4QOTFNgVaGXIrcA2plgONrJ08n7bdfO/rp2K2U1apR00HeiTBkzdfD1152/Vir9/R95pLvtBHTtar+jtJPPvFkzc/6rSKKNApoOAWCq7mKH79fJb8YP9t/f/rq33Rb5Oau5+ZyYPj368RzphplkHruR5kPt1cvMQLDzPXgdALoZZMfNjSy7fap79TLT1pIp2iBJ8d6cSXULYLTlVu8t0jnKaQrojBnOp40KF60F0G5WQLgyZUqmakmGoqLE9QG0cw22Ol/YPSatAi03LYCjR0fP7Im0jUiDKkUbuCqcnRbA8M9j924zzX3FCumLL8wpUNKVzy/tyASBH1O0i2XDhtLzz5uBYuBuUKQWwMCdw1ijF1qt41UA6KTvo91RNg0j8jDb0bz9tpk6aGdk09NPt96vl3JyzBFNFyywt240b79ttvJUqSI9+aT1+vEOAvPpp5GfS8QgMJH8/nvk55KZAhrO7wGgE6NGWafp3XNP6WPLaQB45ZXSn3+G9h+TzKH3R42KPnJwYaG5f6s5US+80H56ltcBYP/+pSeHjyVRAWCgH3ayj8dYKdLxcDMPoJf7cTLZdbT1ow0Ck4o+gNdcY6awnnSSs3lvf/zRXSaNnW4uVuxM/xLO7nFgZ1Rxq3NcPNcaNwGgm1T6aINmOQkAIwWR0Y7B3bvN/486quSclK4y6NIOtyL94N2eCCLdAYy1vQsvNFNFA3eWwgPAoUPNk9p554VuNyCZAaAUPW89uG/khAnmumXLxp4io1IlZ2WQnF2w/v3v0ssSFVyEf56rV5f0oYy0TrjTTpPWrpV++cU82Ub7/qwCwEA6arSLZpMmkZ9LZgvgP/84W98r2RIA5uSYFZTwNL0HH7Qe9MJNxaR69dIDIVx5pTnxdvComeEC57pu3cz52oJ5/fnXrl3yOFpWhmS+l7FjnW3fTeZIrKCqoKBkzsdkt5SHf/7B328yp3RJZh9Apy2AXbtG3mai+ndGGwW0UiXzhuGHH9pLnZbMFvj69e1/zuedZ/5+Tj219DzGdrkJAL08H3jdepWsUUCnTYu8LycBYKSyRDtmGQQGiCLeO4AB4T+0O+800xoCJ0Cr+ZlilcXLANDqAllQYKa8Bqdj1qsnff+9tHmzOdpWLOFBkpesgtZkVWLy80tX9Ox85rVqlUyNYPX9RWoBbN68JOUvWgUz2gUpFdNAeKF2bfstN+HfQfgxkikBYLDgdMszz7Rex6s+gHaO8eBzXaJTcAOjJDdsKN17r7fbdivaHHk1a5o3j+zO8+q18N98vKN5Bkt1C2C05eH95yOV4cwzS0bHjrZNO/sNF+1cGa0F0M0IoYFzQqT1w6eDatFC+vxzM2OpfXupYkV7+wlmFXDGKq8X16BTTpFuvTU0cA+IJ2AvU6ZkoL1I4y2Ev7/Ad2xnPsSTTjJvSF1+ubkdq5vfTqaziPRZhy8PbkXu1cv+9v0uAy/tcCrSSTbWqHSRRAoAnVZ8wwPAWIGlnRbAaCdPpyc+qxaC1avNodDD+wiWLRs7RTPw+Vx+uXUqWKJ4FZDYSVOLd4ARJ3fmvvjCrDxK0b/3SGW4+urktgB6tb4kvfeedMst5pxmsdSpUzJAU82aZitUsEwMABcsMAeKmjVLOvhg63WSPQhMQKIDwAcekL7+2uzDEm1QrGSyCgAPPti8079kSWjQ5WUL4EsvlTyOlJ0RrQUwkW69NXo5nHDaAiiZqdJHHWWuM3269fpPPCG98Ubotc1OC2C087jd63C0FsDgv6Ndd6+7ruTxI49Ybysg/PoWXM6cHOmDDyLvx8qLL5rHffj+unWT5s83R1y3CsLjPR8cfLA5j/Kdd0a/oerGjh3S8OFmxs7KldbrhL/fwP6efNL8F63uM3GieWMz8Bt8/XXz+Fu82LzW/fvf5sA6dtltAXzrLTNAvfNOd1PA+JWH2exIV1Y/+O7drU8+btjpA2ilfXt72w2w+jEnMgXUKgD0onKQk1O6Ep5IXgWA4Sduq88z1oAjsbi9YLlpAXzgAenLL2Pv348CA/k8+mjpqVCCvfSSWQl54w3phRfMKTl++CF0nXR5z7EEH2stW5qV12gKCtztx83n5VUAeP310uTJ0dfJyXE+0FO/fiWDY0ya5Oy1dlidN+vWtR7Iwsvj8fzzpU8+MbfZqpX1OuHneTcpoGedZb082vmvYcPQv+2+7wcfDA1sou0nWgpopUpmC9fu3SWtW3b6byXrfBH8nqLVBaL11x8xwuyucdBBZiqn1bYCwm9ShG830oAikQRar7ZsCV3+998lXRfcDMIUr/AxC8qXl3btsvfan34y/w/0gz766NKjNEcKACtUMPttrlkTefvh302FCiUZHCeeaK+M0coSaXnz5qE3izJFhlza4aXVq+Mb2tarFNDDD5fuu888UVoNjmKnBTDeFNBoP3qvU/mS2Z/Ei/2GT/cQqQIVvJ9EBIB2OEnzlMy+EWXKlH4uUmuR1ZxZkbj5vBN1bATSbtq0MQNeq7unfp6jzQk77+Omm8z/999fuvZad/txMwhKtGH0nRzzd9zhfN923Hef+XmMGGF/hF8nrFoAI9208TrAOO646Oeu8D5FTm7ylSljfifh/ToDoqW+uv3dXXWVOWWRnW3FWp6XF5raGCl9L9o242kBtJsCGi1T49BDI2+jZk0zyLrsstgpxmXLmlkVklk3CU8FdJvN8uefocs3bSp5bBVgJ3pe4dNPly65xAzinn/eTHG1mu/ZzjUpPG1WihwABkT7HL3u/xvpOIz2u8wkBIAo9QOsVi2+i6zbQWCs3HSTma5gNbmnm1FAg3/wgcqeZFZurOYvjJaX7vWJ2O7nM2JEyeMLL0zefsPFOhlbnVzjHSDAbaUoUmXy9NOtj/VI00c0aGCmuASnzu2/v7PvIRkpoPEIrzxmCjstevfea05Y/s030ectjcbNKJFetQBWr25/0Asn9t/fbFkaMyYxlSMnAWCyB4EJTwUODgBjnY/OOMMcATZSenygv5SVeM51V19tb1tORwGNVXm32qaXN5AC1+OhQ0OPj2gtgBdf7GzS+UjHV7ly0l13ST//bI4cHX4jwG0AGK3sVp9vpHpHcH/eaPPqxrqe5OaaqfG//GJe104+2Ry/wA2r1tdYNxGifY52P+OHHrL3mmwPAEkBRakfYLwnbK/6ADrdj50AMNiIEWZqQ1GRWbEJb2WMNsqnlLoWu3btzBP0d99JN94Y//bcvo9Yx0n4CIPVqzurHATutgaLlgJas2bo3dNgkS7qgb4tkbZpdWd53Djz3z//mHc4TzjBrBTY5acWQCvHHGP2p3jlldCbDelo8mQzLTInJ3bKp2Su56QPiZVUBoBS6s5L8bBqVUtWC2As4QFgcAuv1Wfds6fZciLFbpE9+mjzBue335oj0Qan2rlpSQ5wM5WCnde7aQF0KrxvXbAXXzRby8OPl2gtgPn5ZppveH/XSCN3RmsBzMkpnZobqayx2BnMLvzYmzNHWrbMenvXXmtek/75x/nULcmUjBbAK680j5O9e6Vffy2ZOixctgeAtADC0Q/QjUSlkLlJAQ1Wtao5JPy0aWarZ/i6sU4CVlMqJMO+fWaKxtix7lspgiWqwli5sjmPX//+5nDceXnOUkDvvrv0smjrP/dcybH7wguhz1lVMEeNitw/JHCXNVrAWrGieYe0QYP4KmtWggcRCm6pTpZHHzVTk264Ifn79sqYMWal6N13zQpgrD7FXnETAAb/BrMxALQ610b6TfmpBdDKtGnmufnVV2NPsyGZXRyuuaZ0H7Lzzy9ZdvzxtosryX43DKfXZq9aAMOXBc9PO3Ro5P3n5Fh//rHGA6hbt/RcfZFuntrtA2j3dQHh8/IFPoNo9Zjw1r6OHSO3AJYrZ95wuOee6FPOJPL8MGxY7HXiCQDtngvLlDG/35tvjj6YV06O9M47pZeXL29vP+mOABCleN0CGPiBe33icTMIjJPRx2Kd8OOZQ8eqcmP38/F6dEK7qaxWE2jHctpp0syZ5vDNUvQAMPgunVWfTyl6C+App5gdzr/4Qrrggtivi3YsRGoBjPQdOQkA7XzPTzwhnX222Tdl8GD7285WwSMmnn662XI5dKj5HXfpEn+rXkBwyl6k6VrsBoDBQ4uffXbJ43hHyvUDp+cKq3NtpEDvu++clyceTvsA1qhhtsCcc46z/YSfFypXNkc3nDhReu01Z9uyGwAmIgXUTR/AmTPN3/DTT4f+Vu1eE+2M1uxmdNFgsb53tymg4dff4HKGP7fffv6+wdO3b+x1kt0HcOfOyM/l5JhTYYRPz+XmJl46ypK3iWi8bgFMVgDoJgU02kUg/GRr545fy5bmSGlOLVhgnix//LFkWaoCwEhefdUMcnNyzFEi//vf0Ofd3CiIFgBedZU5KXvlymZapZVY+zziCPtliXacB74LOylPkrMLhp3v+eCDnVf6stm4cWYrSYMGiekDF3DTTWawX768OTKmFbvHwuuvm4FfpUrmADwBmdACOHly5LQrK05SQBcudFcmt5ymgLplta0WLey1IoZLVAAY6doevs6RR0r/+585SuNpp0Uvq2T2z73zztLLjz1Wev/92K/38iaJ2xbAWNem8OMosH748uB6iFUA2KuX2cKcalbffayprqTYx1C0z9FNABhtqpvAdx0tCM9kaXhvEV5LdACYqFGr3AwCE034ROJ28sDdflZt25YeHtkurwPASJWYc84xg9vPPzcHM/Cir2i0gDzQWhMp+POanZsBdio8kvcpoHBmv/3M4zWRwZ9kBn633GIOsx8pQLF7LBx7rLRundmiFTy6bCYEgPvtF9rCGUv40PNS5M/x8MPdlcmt8BbARLXIevm9JSoADBepzHPmmCnYCxdaT5Bud/vDhkmHHGIeT08+GXk9O9+J3X1GWi/W7zpWGSLVs5wEgLm55vH/+OPR9xVw5ZWxy+Elq+86Fif1Cje/vVtuMQexksyuM8ECqZ7JnPPVTwgAUUq8dz/C+zK4nQcwlnj7AIYLn0jcznDf8XxWsU5mjz1mrlOnTujyZAWAknn3uXlz87EXgXy800BI5qAeXrCTAmq3BTDRAWA8v50rrvCuHNmmZ8+Sx2ecYe818aYPZUIAKDn7bQ8caE7HECzS53jffe7L5EayKoepCADj7RsYqcwHHWSmYceaGiiW/fc3R+T9++/oU+3YaRlykgJ62GGll8f6HUZ7/ogjSt8QidQCGPyZRmqZ6tfPemqGcFOnmt0pgn9LkTIXvGCnBTBcolsAq1Y1RzT93//MwfO6dDGX9+hRMoZCoqfW8CsCQHjeAtiqlXnXTjLTsgJ3XxJdMYm3D6CbFkAvA8Dwz+eyy6Tt280TV7BkBoDR1vM6BdQuryaijnacO20B9DoF1Ev33mtOXQHnJk0yU9g6d7Y/6BMBoMnJbzs/X/r449BlkT7H4AGSgrlpfbAj2vnWy8/ay0povC2Ado+5ZFScy5Qx06Sj8bJVNifHbMGMNn9gpNdF8v77kb8TJwGgU/vtZ567Pv3UzKw577zEDiqW6NEz3X7PlSqVdA956y3phx9KRuqVaAEEisXbApibKy1ZYvYhe/ddb8pkR7wpoOEtgIlMAZXsfc75+aVHpPL6ZHXAAfbWC75wnHaadNFFJX9HG3UsmBcBYPhr3Fb87LQAJiIFNNI2Ro+2vw0nqla1nm9s1qzE7C+T1KljjmQ7d27kEWPDEQCanP627WR0SKVbGUaONIe+f+ON0OWrVpXO4qhd21mZpPRsAQznJAAsX770oBiRVK7sbXncsnNdcbLPRo2kFStK5g+8+OLYr4n0O5082XoeSDd9AK1eb0ezZmad7OWX7V+rnXr9dXffa/hxH62Vz4sRgPPypMaNQ78vAkBkLa/nAZTMOdnOOSf0ZDNqVMljuxcYJ6xODvGkgKa6BTAgvCLk9cnqlltK0kluvjnyeo0bm3dG77hD+s9/zM7oV15pjvAZadTOcOHv2e0dzh49zP8rVzZbSt3wWx/AkSMjP5eIymF4fwh4I9UBoF/Eex2xOxH8rl1mUBj+OdWoUTpYfPNN5+WoXt35a9zwQwrohRea/faiBQmBydgPOKD0aMt22ele4UQifiPlyklffmlOYWR3DtFgQ4ZIzz5bMil7pEyr8Gug3QDQLzd6As46y93rwt9j5cqRBz5K1LkwWwNARgFF0k4kp55qTrz9/ffWk3zHy+oOfTwpoHYqcjVrxl4nErsVpEQHgLVrm2mmv/winXhi9HVPPz10zqZIE6lHEl55c/teZs0yWyBbtjRbuNywMwpoolJAL7rInLcw4M8/7b8e/kYAaIo3ALR7UyUwzHt4sGc1ZL6b6UAGDTLnJN2yRbr88tDnEj0KqFtuU0BHjjRH8IzmmWfMlMbmzd3Pl+Y2WIjETstQ794lk6jbnT+3Ro2SKYyc6t49+muTkQKaDqyO+7lzzYHyVq0KXZ6oOUCz4XO2kqaXFngp0ClWcp/SYUdOjtlidN997lJxrFx3nfn/iSeGvo8AJwFgeAugnQrM3XeXVPiitZ5ZcTsqmZOgKdD/UrIeaS+gbl3z+UQPf+xVAFi+vHknulEj+68JHzrbTgpo+J3wSMetkwuTYZh9y8480wym1661XyGB/8XbupEpKaDxsjN9gFSSAt6qVckIoe3amVkNTqaFiaR6denrr83uDA8/HP/2IklFH8Bwds5jZcuaN3MLCpyXKyB8oLh42bnOX3mlmfVwwgmlpzRKBTspoNGuj4H01ExUs6b1YDWJuhkWPI/sKackZh9+RAAI1axppsZceaX0wQepLo0zDzwgrV9vpq3EM/mrVDoAtOOII6Tly6XZs63nMXLCqp+AFSfv6fXXzSDmgAPMUUVTLfyiFatzv5eGDo38XHjKSaASX7WqmcqTm2uOVNiggfXrI12YWrUqPSG0YZjfxxtvmCm10eYpQvq57baSx8ETvNuVKQGgm5tJc+earXTXXSd16xZ5vQEDzP/z86Vrry3Z3+LFZuX+nXfMZQ8/XNIyaCeNL5IDDzRvMCaqBULy9nuze+PT6wHg7EhE4GLne8nPNzNHliyJf3RSK7GO9/Dsmnj7AD72WMn7fvBBe2X0o5YtrZdb/R4S9fs77TTp/vvNOrDdKTYyASmgkGQOcW53mHM/yckpPU1CsHhaAO1q3rxkqgSnBgyQZswwKz0dO0Zer21b6aOPzIuYk34XbdpImzaZ7zve1DQvHHigdMMN0qOPmv+7Td90IzylLPjYePlls49jwF13lTy+917zXzSR7mgHUo6OO67k8VVX2Ssv0tOhh5ojzX36qZk+6FT4OSubAsDOnc1/sUybZqYRHn546PD61aqZrVMBRx9tdjnYvt35qI7JlsgUULv7TGSAG2mfXkiHNOm6dc3g4pVXSjKXJPcpoMcdJ33xhbR5c+SRcf1q5kxzULn27Z2lAyfqe87NlW68MTHb9jMfVAmBxHFywkhFS8wjj5iT3R54YPSyzp5t9r3o0MF5mq7fJimfNMm7qRziEVxJatRI2rHDnGz40EMj35WMpFw5s4Xx7rtLlgXflX3xRfM9t25tjsjmlF8q9bCnW7foLVhOZFMAaFeZMvZbV51MSJ9K6ZICGq9EHJ/JKLdTVu+zX7/SqY3x9AE86ig3JUu9/v3Nf9FYHbN+/J7TWRrcNwHcc1IJuewyqWFD83FwGlci5eSYwUesfkM1a5p3Dd0ED7AWfjHJzzdTQKK1xEZz113mgBT33WcGe8GtPwcdZKYr2xlOPFHcDtiA5Io3LS/89TNmlDy+4QZXRXIl0f2JM01wP6ROnbzdtp9SQBPBD+V2e7xHSwHdu9d9eRIt0TearLbvh+85k9ACiIzmJAW0YkVz7p/ffpOaNElsuZAabdqY/YTKlk3MNAjlyydmol0vLravvGKmeRuG9NJL8W8PieF1ANi3r7Rtm/T332Z/1mTJhgDQy0rw0KFmf/bNm8254+JhtwUwU1JA/dAyFD4Krd35dcMzdIIDQLfdUjKVH77nTEIAiIzmtPJUuXJiR0JFar38sjkYRMeOyZvfKxEOPNAcVODFF+2/pls3s8/Ivn3OU1yRPF4HgHl5yW35C8iGANBLVap4NwCF2wAwGS0smdoHsGJFafBgczCRSy+1fxN5ypTQFt/g/nzZOj9dJH74njMJHyeySqZXSt54o+Txq6+mrhx+dcAB5p32445LdUnis2aN9MILzl/XrBnBn99lSlpepp9r/czPLYCJ4JdyT5xoBm3/+Y/913TsWDKqbe3aoQOQZbNkjgKarWgBRFbJ9ErJmWearTyGUXpqA6SvdG6thDNetwCmSqafayX/fNbh/BwAJqMFMJXHnpsbNo8+ag4att9+8c8jmsmy4ZySTGl6bxGwJ/xkXK5casqRTM2bE/xlmrvvLjmWb745tWVBYhEAIl52A8Dw62G6poCGv79q1bzfR6Ll52dm8BecCmu3X6SV6dPjLwtCEQAio+Xnm3PoSeZIjOk2Xw4gmfOZLV1qDt5y552pLg0SKVMCwGTO8YlQdgPA8Ap5OqfYXXih+f/hh9ubSxLxad3a3nrPPmsG5JUrmwOR2bX//qF/X3ml/dfCHgJAZLy33zZPPEuXpvcFDtnt2GOl88+Pfgzn5LjrGwj/StcA8KGHSh4PHZq6ciSSXz7rcH4OABP1mT3zjLR8Odf5ZAn0XTz4YPOzj+TYY6V166QNG8yBy+y69NKS47Nv3/jKCmv0AUTGq1xZOvfcVJcCSLyVK82J7JE5nAaAF18sjR9vPo4n5SperVtLH35oDlh0wQWpKwciB4DhXQXyklAjTFQAuN9+ZrCB5MjJMfsu2hE+RYbd16xYIX3zjXTSSc5fj9hoAQSADJCTQ/CXCeJNAb35Zumss8zRXufM8a5cbpx0ktSrV3ICC5SwOyjKUUdJV19tdpW4447E9ZE/4YSSx6mYkgTpqVYtqX17WnQThdMyAAA+EW8AWLWq9Prr3pUHkU2bZqaqSdKgQaktSzAnA/BMnWpOPJ/IIP2pp8zAr3Zt6frrE7cfAPYRAAJABvBrfyQ4kynzAGaD3r2lv/6SNm3y1+i8dvsABiS6hbZx49A5agGkHgEgAKSpCy8sGfSF0UEzAwFg+thvP3+2aDkNAAFkHwJAAEhTDz1kDnJUtap03XWpLg28QACIeBEAAoiFABAA0lTt2tKMGakuBbxEAIh4EQBmnpo1U10CZBouLQAA+AQBILxGAJieXn7Z/O7y8szHgJdoAQQAwCcIABEvWgAzw3nnSf/7n1SmjHTIIakuDTKNLy8td955py644AI1atRIOTk5atiwoeNtbN++XbfccosaN26scuXK6YADDlD//v21bt067wsMAEACEADCqRo1Ul0CeOXwwwn+kBi+bAG87bbbVKNGDR1zzDH6+++/Hb9+586dat++vT7//HNdeumlOvHEE/Xzzz9r6tSpmj9/vpYuXaoDDjjA+4IDABAHWgARr3btpObNpS+/lM4/n4m0AZTmywDwxx9/VKNGjSRJRx11lLZv3+7o9Q8//LA+++wzTZgwQcOGDStefvbZZ+ukk07S7bffrhmMnAAA8JnwAJD0PTiVmystXiytXCk1a5bq0gDwI1/eWwwEf24tWLBAktS/f/+Q5W3atFGTJk303HPPadeuXXHtAwAArxEAwgsVKkjHHJP4Sd4BpCdfBoDx2r17tySpQoUKpZ6rUKGC/vnnH3311VfJLhYAAFGFB4AAAHgtIwPAI488UpL03nvvhSzfsGGDVq5cKUlas2aNq23XqVMn5F+TJk3iKywAAP+PABAAkGgZGQBeddVVqlChgq666io9//zz+vXXX/XBBx/onHPO0b59+yRJO3bsSHEpAQAIRQAIAEi0jAwADznkEM2ZM0cVK1bURRddpIYNG6p9+/Y68MADNWDAAElSlSpVXG17w4YNIf++//57L4sOAMhirVunugQAgEyXkQGgJHXo0EHff/+9/ve//2nhwoVavXq1Xn75ZW3atEmSdNhhh6W4hAAAhGrWTLrtNunoo6Xnn091aQAAmSjHMPydcBKYBuKXX36Je1u7d+9WvXr1VL16dc9a7rZu3aqqVatqy5YtrlsVAQAAAD8KH43Y35FDdrMbl6T9AMGrV6/Wjh071LhxY5UpUybqurfddpv+/PNP3XfffUkqHQAAAAD4hy8DwFmzZunXX3+VJG3cuFGFhYUaN26cJOmggw5Snz59ite99NJLtXDhQv38889q2LBh8fJjjz1WHTt2VJMmTbR7927Nnj1bCxYs0MCBA9WvX79kvh0AAAAA8AVfBoCPPfaYFi5cGLJsxIgRkqT27duHBICRnHjiiXr99de1du1a5eXlqUWLFnrmmWfUq1evhJQZAAAAAPzO930A/Y4+gAAAAMhU9AFMH3bjkowdBRQAAAAAEIoAEAAAAACyBAEgAAAAAGQJAkAAAAAAyBIEgAAAAACQJQgAAQAAACBLEAACAAAAQJYgAAQAAACALEEACAAAAABZggAQAAAAALIEASAAAAAAZAkCQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAACw9MILJY8nT05dOeCdvFQXAAAAAIA/9eghzZ4t7dgh9eyZ6tLACwSAAAAAACzl5Ejdu6e6FPASKaAAAAAAkCUIAAEAAAAgSxAAAgAAAECWIAAEAAAAgCxBAAgAAAAAWYIAEAAAAACyBAEgAAAAAGQJAkAAAAAAyBIEgAAAAACQJQgAAQAAACBLEAACAAAAQJYgAAQAAACALEEACAAAAABZggAQAAAAALIEASAAAAAAZAkCQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAABAliAABAAAAIAsQQAIAAAAAFkiL9UFSHeGYUiStm7dmuKSAAAAAMhWgXgkEJ9EQgAYp23btkmS6tevn+KSAAAAAMh227ZtU9WqVSM+n2PEChERVVFRkdavX6/KlSsrJycn1cVRkyZNJEnff/99iksCxIdjGZmCYxmZgmMZmSJTj2XDMLRt2zbVrVtXubmRe/rRAhin3NxcHXjggakuRrHAl12lSpUUlwSID8cyMgXHMjIFxzIyRSYfy9Fa/gIYBAYAAAAAsgQBIAAAAABkCfoAAgAAAECWoAUQAAAAALIEASAAAAAAZAkCQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAABAliAABAAAAIAsQQAIAAAAAFmCABAAAAAAsgQBIAAAAABkCQJAAAAAAMgSBIAAAAAAkCUIAAEAAAAgSxAAZoiioiJNmjRJhx12mMqXL6/69evrpptu0j///JPqogHKycmx/FepUqVS63733Xc655xzVL16dVWsWFHt2rXTe++9Z7ndLVu26Nprr1W9evVUvnx5HXnkkfr3v/8twzAS/ZaQ4e68805dcMEFatSokXJyctSwYcOo63/yySfq3LmzKleurCpVqui0007TF198Ybnu+vXrdemll6pWrVrKz89Xq1at9OKLL1quu3v3bo0cOVIHH3ywypUrp8aNG2vcuHHas2dPnO8Q2cLJsdyvX7+I5+uXXnqp1PpOj88nn3xSLVu2VH5+vgoKCjRgwABt3LjRq7eKDLZq1SqNHDlSJ5xwgmrVqqXKlSurRYsWGj9+vGVdN1F1iYypbxvICNddd50hyTj33HONRx55xLjxxhuNvLw8o2PHjsa+fftSXTxkOUlGu3btjFmzZoX8e+6550LW++GHH4waNWoYtWvXNiZMmGBMnTrVaNGihZGXl2fMnTs3ZN3du3cbrVu3NvLy8owbb7zReOSRR4xzzz3XkGTccccdSXx3yESSjBo1ahidO3c2qlevbhx00EER112yZIlRrlw5o1GjRsb9999v3H///UajRo2MSpUqGStWrAhZ988//zQOPvhgo2LFisaIESOMhx9+2Gjfvr0hyZg5c2apbXfv3t2QZFx22WXGo48+alx22WWGJKNv374ev2NkKifHct++fQ1Jpc7Vs2bNMn799ddS6zs5Pu+//35DktG+fXvj4YcfNkaMGGFUrFjROOKII4zt27d7+I6RiYYOHWpUqlTJ6N27t/Hggw8a//73v40LL7zQkGQ0a9bM2LFjR/G6iaxLZEp9mwAwA3z99ddGTk6Ocd5554Usf/DBBw1JxtNPP52ikgEmuxXWCy64wMjNzTU+//zz4mXbtm0zGjRoYBx66KFGUVFR8fKpU6cakowHH3wwZBvnnXeeUaZMGeOXX37xqvjIQj/++GPx4yOPPDJqpbl169ZG5cqVjbVr1xYvW7t2rVG5cmWjS5cuIevefPPNhiTj9ddfL162d+9eo3Xr1kaNGjWMbdu2FS+fM2eOIckYPHhwyDYGDx5sSDI++ugjt28PWcTJsRwIAO1wcnxu3LjRqFChgtG6dWtj7969xctff/11Q5Ixfvx4m+8G2WrZsmXG33//XWr58OHDDUnGQw89VLwsUXWJTKpvEwBmgMDB/8EHH4Qs37lzp1GhQgWjW7duKSoZYAoEgLt37w6p4Abbvn27Ua5cOaNTp06lnhszZowhyfjkk0+Kl7Vt29aoUKGCsXPnzpB1P/jgA0OScffdd3v7JpC1olWav//+++IWkHCXXXaZkZOTY2zYsKF4Wb169YzGjRuXWvfJJ580JBnPP/988bKLL77YkGSsXr06ZN3Vq1cbkoyrrrrK5TtCtrIbABYVFRlbtmyJ2qLh5Ph89NFHDUnGk08+WWo7jRo1Mg4//HDnbwYwDGPFihWGJOPKK680DCOxdYlMqm/TBzADLFu2TLm5uTruuONClpcvX14tWrTQsmXLUlQyoMRLL72kChUqqHLlyqpdu7auvfZabdmypfj5FStWaPfu3TrxxBNLvfaEE06QpOJjuaioSJ999platmyp8uXLh6x73HHHKScnh+MeSRE4ziIdt4Zh6NNPP5UkbdiwQevWrSs+nsPXDd5e4HG9evVUv379kHXr16+vunXrcowjYapWraqqVasqPz9fXbp00SeffFJqHSfHZ6zfycqVK7V9+3aP3wWywdq1ayVJBQUFkhJbl8ik+nZeqguA+K1fv141a9ZUuXLlSj1Xr149LV68WIWFhSpbtmwKSgeYJ9ILLrhAhxxyiLZu3aq33npLU6ZM0cKFC7V48WJVqlRJ69evl2Qes+ECy9atWydJ2rx5s3bu3Gm5brly5VSzZs3idYFEcnLcOlk3sP4RRxxhud969eoVV3wArxxwwAG68cYbdeyxx6pixYr68ssv9cADD6hdu3Z666231Llz5+J1nRyfsY59wzC0fv16HXrooR6/I2Syffv2aezYscrLy1Pv3r0lOTvPOq1LZFJ9mwAwA+zYscPyYJRUfEdjx44daXFAIjOF3z2+9NJL1axZMw0fPlyTJ0/W8OHDtWPHDkmyPJaDj+Pg/6Md94F1gETy6rgNXzfwmGMcyXTXXXeF/H3OOeeod+/eatGiha666ip9//33xc85OT6dHvuAHTfccIOWLFmiCRMmqGnTppK8OycH1ndyTg6skw71bVJAM0CFChW0e/duy+d27dpVvA7gJzfffLPKli2rOXPmSCo5Rq2O5fDjONq6gfU55pEMXh23VufqWOd2jnEkQ5MmTXThhRfqhx9+0KpVq4qXOzk+nR77QCwjRozQlClTNHDgQA0bNqx4eSLrEplU3yYAzAB169bVpk2bLA/KdevWqWbNmmlxNwLZpUyZMsXHrmQex5IsUzcDywJpGtWrV1d+fr7lurt379amTZssUzoArzk5bp2sG1g/UirzunXrOMaRNIG5AwPna8nZ8Rnr2M/JySleB4hl1KhRGjdunPr376/p06eHPJfIukQm1bcJADNA69atVVRUpKVLl4Ys37Vrl7744gu1atUqRSUDItu1a5fWrl1b3HH76KOPVrly5bRkyZJS63788ceSVHws5+bm6phjjtHnn39e6kS8dOlSGYbBcY+kaN26tSRFPG5zcnJ07LHHSpLq1KmjevXqFR/P4etKCjluW7durXXr1mnNmjUh665Zs0br16/nGEfSBFI/A+drydnxGet30rRpU1WqVCkRRUeGGTVqlEaPHq2+fftqxowZysnJCXk+kXWJjKpvp3YQUnhhxYoVUeclmTVrVopKBhjGpk2bLJcPGTKk1BDLPXr0MHJzc40vvviieFlg7p4mTZqEzN0zZcqUiHP35OXlGT///LO3bwRZK9bQ+a1atTIqV65srFu3rnjZunXrjMqVKxunnHJKyLqB495qHsBq1aoZW7duLV7+5ptvRp1n7cMPP4zznSHbRDuWt2/fXmoofMMwjM8++8woW7ZsqakanByff/zxh5Gfn28cd9xxlvMAjh07No53hWwxevRoQ5LRp0+fqFOUJKoukUn17RzDMIzUhJ7w0rXXXqspU6bo3HPP1emnn65vv/1WDz74oNq2bav33ntPubk09iI1brzxRn388cfq2LGjGjRooO3bt+utt97SggULdPzxx2vBggXKz8+XJP3www867rjjVKZMGd14442qUqWKHn30UX311VeaM2eOunbtWrzdwsJCtWnTRl9++aWuu+46HX744Xrrrbf06quv6vbbb9fYsWNT9ZaRAWbNmqVff/1VkvTQQw+psLBQN910kyTpoIMOUp8+fYrXXbx4sTp27KgDDzxQ1157bfFrfv/9d3300Udq3rx58bp//vmnjj32WP35558aPHiw6tWrp2effVbvv/++ZsyYocsvvzykHGeddZbefPNNXX755TrxxBO1ZMkSPfbYY7rkkks0a9asRH8MyAB2j+UvvvhC3bp10znnnKMmTZoUjwI6c+ZM5ebm6t1339VJJ50Usm0nx+fEiRM1ZMgQdejQQb169dK6des0ceJE1a9fX8uWLaMFEFFNnTpV11xzjRo0aKCxY8eWqtcWFBSoS5cukhJbl8iY+naqI1B4Y+/evcZ9991nHHrooUbZsmWNunXrGjfeeGPESbeBZJk9e7Zx6qmnGnXr1jXKlStnVKhQwWjevLkxfvx4y7vN33zzjXH22WcbVatWNfLz8422bdsac+fOtdz25s2bjX/9619GnTp1iu9QP/TQQyF39wA32rdvb0iy/Ne+fftS6y9evNjo1KmTUbFiRaNSpUrGqaeeanz66aeW2167dq1xySWXGPvvv79Rrlw5o2XLlsZzzz1nue7OnTuN4cOHGwcddJBRtmxZ4+CDDzbGjBljFBYWevl2kcHsHssbNmwwLrnkEqNp06ZG5cqVjby8PKN+/frGpZdeanz77beW23Z6fD7++ONGs2bNjHLlyhm1atUy+vfvb/z++++JeNvIMH379o14HFudlxNVl8iU+jYtgAAAAACQJdKknRIAAAAAEC8CQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAABAliAABAAAAIAsQQAIAAAAAFmCABAAAAAAsgQBIAAAAABkCQJAAAAQ0e233678/HytX78+qfs1DEPHHnus2rVrl9T9AkCmIwAEACRcTk5O1H+zZ89OdRFhYfXq1br//vv1r3/9S3Xr1i1e/ssvvygnJ0cnnXRSxNcG1mnYsKGrfefk5GjMmDFatGiRXnrpJVfbAACUlpfqAgAAskPlypU1ePBgy+cOO+ywJJcGdowdO1aFhYUaMmRISvZ/xhln6KijjtLw4cN1/vnnKycnJyXlAIBMQgAIAEiKKlWqaNSoUakuBmzasmWLnnnmGZ166qk64IADUlaOPn36aOjQoZo/f746d+6csnIAQKYgBRQA4Avvv/++cnJyNGrUKC1dulRnnHGGatSooZycHP3yyy/F682ZM0ddu3ZVjRo1VK5cOTVt2lSjRo3Szp07S23TMAxNmTJFRx55pMqXL6969erpmmuu0ZYtW9SwYcNS6Yn9+vUrtT+r8oVbvXq1Bg0apIYNG6pcuXKqXbu2LrzwQn377bel1g3s959//tHNN9+sBg0aqFy5cjrkkEN09913yzAMy89n6dKl6tmzp+rVq6dy5cqpTp06OvXUU/XCCy9IklauXKmcnBx16dLF8vWGYahx48aqWLGitmzZYrlOsGeffVY7duxQz549Y67rRKx04PDPN7D/xx57zNNyAEC2ogUQAOArS5Ys0Z133qmTTjpJl112mTZt2qSyZctKkkaOHKmxY8eqdu3a6t69u/bff38tXbpUo0eP1nvvvaf58+erTJkyxdu64YYb9OCDD6pOnToaOHCgypQpo9dee02ffPKJCgsLi7cbj+XLl+vUU0/Vli1b1K1bN11wwQXasGGDXnnlFb399ttasGCBWrVqFfKaPXv2qGvXrlq/fr26deumvLw8zZ49W7feeqt27dqlO+64I2T9Rx99VFdddZXy8vJ09tln65BDDtEff/yhZcuWadq0abrwwgt12GGHqWPHjpo/f75++uknNWrUKGQb8+bN008//aTLLrtMVatWjfm+5s2bJ0lq06ZNnJ9QqPD3FjBr1iz99NNPqlChQsjygw46SPXq1dO8efNkGAZpoAAQJwJAAEBSbN261bL17LDDDtNFF11U/Pe7776r6dOn68orrwxZb968eRo7dqxOPvlkvfHGG6pSpUrxc+PGjdOIESM0ZcoU3XjjjZKkxYsX68EHH1Tjxo21dOlS1ahRQ5I0fvx4dezYURs2bNBBBx0U13vas2ePLrzwQu3atUuLFi3SiSeeWPzct99+q+OOO04DBgzQF198EfK69evXq3nz5po7d67y8/MlmYHRoYceqkmTJum2224rDmS/+eYbXX311apataoWLVqkww8/PGRba9asKX581VVXacGCBXr00Ud15513hqz3yCOPSJIGDhxo670tWrRIVapUUZMmTSKus3r16ohpvX///bflcqv1H3/8cf3000868cQTdd1115V6vnXr1po9e7a+/fZbHXHEEXaKDwCIxAAAIMEkRfzXvXt3wzAMY8GCBYYko0WLFpbb6N69uyHJ+Pbbb0s9t3fvXqNmzZpGq1atipcNGDDAkGTMnDmz1PqBfR100EEhy/v27WtIMn7++eeIr7njjjuKl7366quGJGPo0KGWZb7xxhsNScbXX39dvOyggw4yJBnff/99qfUvvfRSQ5Lx1VdfFS+75pprDEnGAw88YLmPYIWFhcYBBxxgFBQUGIWFhcXLf//9d6NMmTJG8+bNY27DMAxj9+7dhiSjSZMmls///PPPUb/T4H/hn3G4efPmGWXKlDEaNWpk/PHHH5brDBo0yJBkvP3227bKDwCIjBZAAEBS1KtXT2vXro253nHHHWe5fMmSJSpbtqyee+45y+fLli2rlStXFv/92WefSZLat29fat2TTjpJ++23n51iR7VkyRJJ0k8//WTZsvXdd99JMvvnHXnkkcXLq1atqkMOOaTU+vXr15ckbd68uXjZxx9/LEnq2rVrzPKUKVNGAwYM0Lhx4/Taa6+pR48ekswWtj179pRqVY3kzz//lCRVr1496npt27bVokWLLJ/75ZdfdPDBB0d9/TfffKPzzz9flSpV0ltvvaVatWpZrhdovd20aVOsogMAYiAABAD4SqQRJ//66y/t3btXo0ePtrWdwEAnBQUFpZ7Ly8tTzZo13RcyqEyS9OKLL0Zdb/v27SF/V6tWzXK9vDzzsrxv377iZYFUynr16tkq08CBA3XnnXfq4YcfVo8ePWQYhmbMmKGKFSvq4osvtrWNQFrqrl27bK3vxm+//abTTz9dO3fu1Ny5c9W0adOI6wYG+AmUCwDgHqOAAgB8JdIgH1WrVlV+fr727dsnwzAi/gteX5J+//33Utvau3evZWtSbm5u8fPhrPq0Bfbx7LPPRi1T3759Y7/xCALB4rp162ytX79+fZ155pnFg8G89957+uGHH3TRRReF9JuMtc+yZcsWB7he27Fjh8466yz9+uuvmjlzpk4++eSo6wdaJGvXrp2Q8gBANiEABACkheOPP147d+7Ul19+aWv9Y445RpK0cOHCUs8tWrQopJUtIJDyGDywSsDy5cstyySVpIImwgknnCBJ+u9//2v7NVdddZUMw9Cjjz7qePCXgKOPPlrr16/Xtm3bHL0ulqKiIvXu3VvLly/XmDFjbLVKrly5Urm5uTr66KM9LQsAZCMCQABAWrj++uslmYGMVave33//rc8//7z47379+kkyR/0MbsnatWuXhg0bZrmPQP/DRx99NGT5V199pcmTJ5dav3v37mrYsKGmTZtmGaAVFRXp/fffj/7GYghM/zBmzJiQPo4BVv0qTz31VDVu3FgzZszQ7Nmz1aJFi4h9KyPp0KGDioqKLAPfeAwePFivvfaa+vbtqxEjRsRcf/fu3friiy/UsmXLiKmzAAD76AMIAEgLp556qkaPHq077rhDhxxyiE4//XQ1bNhQW7Zs0c8//6yFCxeqX79+mj59uiRzgJJrr71WDz30kI466ij16NGjeB7A6tWrq06dOqX20b17dzVp0kTPPvus1q5dq+OPP16rV6/Wa6+9pu7duxdPuh5QtmxZvfzyy+ratatOO+00nXzyyWrWrJnKli2r1atXa8mSJdq0aVNcfemOOOIITZs2TYMGDVKLFi109tlnq0mTJtq0aZOWLVumqlWrasGCBSGvycnJ0aBBg3TzzTdLku3BX4Kdd955mjhxot5991117NjRdfmDLV26VJMnT1b58uVVr149y4FzOnTooA4dOhT//f7776uwsFDnn3++J2UAgGxHAAgASBsjR45Uu3bt9NBDD2nhwoV69dVXVb16ddWvX1+DBw/WpZdeGrL+5MmTdeihh2rq1Kl6+OGHtf/+++vcc8/VhAkT1Lx581LbL1++vObPn68hQ4Zo7ty5WrZsmY466ig988wzqlGjRqkAUDJTTVesWKGJEydqzpw5mjFjhvLy8lS3bl116NDBk8Dliiuu0FFHHaX77rtP77//vmbPnq2aNWuqWbNmGjBggOVr+vXrp1tuuUUVKlSwPfhLsDZt2qhZs2Z66qmnNH78+OL+kfHYsWOHJLMVdsKECRHXCw4AZ82apbJly+ryyy+Pe/8AACnHCO4xDwBAlmjYsKEkc7qCTDRv3jx16dJFAwYMKJXSatdTTz2lPn366PXXX9dZZ53lcQlj27hxoxo2bKhevXppxowZSd8/AGQiAkAAQFbK9ACwa9euevfdd/X555+rRYsWrrZhGIaOO+644r6AkUZoTZSbbrpJjzzyiFatWmWZsgsAcI4UUAAAMsRXX32lN998U8uWLdO7776r888/33XwJ5l9CR999FHNnj1bv/32W9KDsIKCAs2aNYvgDwA8RAsgACArZWIL4H/+8x/1799fVatWVdeuXfXvf/9bNWrUSHWxAAA+QgAIAMD/tXfHBAAAAADB+rcWxNbCBQAmfAABAAAmBCAAAMCEAAQAAJgQgAAAABMCEAAAYEIAAgAATAhAAACACQEIAAAwEVaH+q9QBk42AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Note the use of a power of 2 for dt. RXTE data can behave badly if we don't do that.\n", + "ps = stingray.AveragedPowerspectrum(events, dt=1/4096, segment_size=1, norm='leahy')\n", + "ps.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A QPO!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DynamicPowerspectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a dynamic powerspectrum with the a segment size of 16s and the powers with a \"leahy\" normalization. We will use this to see if the frequency of the QPO is stable or it changes over time." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4296it [00:00, 15818.78it/s]\n" + ] + } + ], + "source": [ + "dynspec = stingray.DynamicalPowerspectrum(events, sample_time=1/4096, segment_size=1, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dyn_ps attribute stores the power matrix, each column corresponds to the powerspectrum of each segment of the light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2.86142014e+02, 2.21404652e+00, 4.49974561e+00, ...,\n", + " 1.67625425e+00, 6.00745863e-02, 1.56656876e+00],\n", + " [3.08720461e+01, 3.72558781e+00, 1.50197819e+00, ...,\n", + " 9.41301441e-01, 8.74504661e-01, 7.77072089e+00],\n", + " [6.55459927e+00, 2.47765550e+00, 4.84945565e+00, ...,\n", + " 3.46383838e+00, 4.50184348e-01, 2.24257145e+00],\n", + " ...,\n", + " [1.39660007e+00, 8.01728092e-01, 6.49434961e-01, ...,\n", + " 1.77991810e+00, 9.01248772e+00, 2.23014832e+00],\n", + " [6.64803568e-01, 3.67539077e+00, 8.14022349e-03, ...,\n", + " 1.67739661e+00, 1.29050497e+00, 1.82808498e+00],\n", + " [1.56362131e-01, 2.62837187e+00, 3.48806670e+00, ...,\n", + " 2.44281615e+00, 6.93147056e-01, 1.79838829e+00]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dynspec.dyn_ps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To plot the DynamicalPowerspectrum matrix, we use the attributes `time` and `freq` to set the extend of the image axis. have a look at the documentation of matplotlib's `imshow()`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAJ9CAYAAABXWMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d1xUR9f/dwtiA8XuiiBVEcUVpOzaW1YxMfYSY69gTEzypJiemGaqibFrNCYaY2KJiegaa1TAgq5YULqA114RBQT298dl5s7ce3ch7/O8+Znn3S8fPrs7d+bMmbnTzsyZczR2u90OF1xwwQUXXHDBBRdccMEFF/42aP9/M+CCCy644IILLrjgggsuuPB/DS5BzAUXXHDBBRdccMEFF1xw4W+GSxBzwQUXXHDBBRdccMEFF1z4m+ESxFxwwQUXXHDBBRdccMEFF/5muAQxF1xwwQUXXHDBBRdccMGFvxkuQcwFF1xwwQUXXHDBBRdccOFvhksQc8EFF1xwwQUXXHDBBRdc+JvhEsRccMEFF1xwwQUXXHDBBRf+ZrgEMRdccMEFF1xwwQUXXHDBhb8ZLkHMBRdccMEFF1xwwQUXXHDhb8YjJ4ilp6fjrbfeQkxMDBo3bgwPDw8YjUZ88MEHKCoqUsQ/f/48Bg0aBC8vL9SpUwddu3bFnj17VGnfuXMHs2bNQosWLVCzZk2EhoZi8eLFsNvtirgVFRX48ssv0aZNG9SsWRMtW7bEiy++qMqDCy644IILLrjgggsuuPDo4vz58xgzZgxCQkJQr1491K5dG23atMELL7yAS5cuVZtOQkICzGYz6tSpgwYNGmD48OHIycn5H/GksatJIf8f8eqrr2LhwoUYOHAgYmJi4Obmhr1792LDhg0ICwtDcnIyatWqBQDIyspCVFQU9Ho9Zs+ejXr16mH58uU4ffo0tm/fjj59+lC6paWl6NKlC06cOIFZs2YhJCQE27dvx+bNm/H222/jnXfe4fh47rnn8PXXX2Pw4MHo378/0tLSsGDBAnTt2hW7du2CVvvIybAuuOCCCy644IILLrjgggp2796NDz74ADExMfD29oZer8epU6ewatUqeHp6wmazoUmTJk5pbNq0CcOGDUOHDh0wdepU3LlzB/Pnz4dOp8OxY8dgMBj+GlP2RwxHjx613759WxH++uuv2wHYFyxYQMOGDx9u12q19hMnTtCwwsJCu4+Pjz04ONheUVFBwxcuXGgHYP/66685ukOGDLG7ubnZc3Nzadjp06ftGo3GPmTIEC7u119/bQdgX7t27b9bTBdccMEFF1xwwQUXXHDh/zM2bNhgB2CfN2+e03ilpaV2g8Fg9/HxsRcWFtLwEydO2LVarX3q1Kl/Oe9H7linU6dOqFevniJ85MiRAIDTp08DAIqKirB161b06NEDRqORxqtbty6mTJmC9PR0HD16lIavW7cOtWvXxtSpUzm6s2fPxsOHD/HTTz/RsB9//BF2ux2zZ8/m4k6dOhW1a9fGDz/88O8W0wUXXHDBBRdccMEFF1z4/wxfX18AwK1bt5zG279/PwRBwJQpU1C3bl0abjQa0aNHD/z00094+PDhX8pb/9fZ/f+DgoICAEDTpk0BAKmpqSgpKYHJZFLEjYmJAQAcPXoUUVFRqKiowPHjxxEeHo6aNWtycaOioqDRaDih7ejRo9BqtYiKiuLi1qxZE0ajkYv7P0Hz5s253xUVFUhJSYGHhwc0Gs2/RdsFF1xwwQUXXHDBhX8e7HY7CgsLYTAYHukrMMXFxSgtLf1b8goODlasjf/KfS41FBcX4969eyguLsbZs2fxyiuvAABiY2OdpiPrf0eyx549e5Ceno7Q0NBq8/KPEMTKy8sxd+5c6PV6PPXUUwAAQRAAAC1atFDEJ2EXL14EIEq4Dx48UI3r7u6ORo0a0biEdqNGjeDu7q5KOzExEaWlpahRo8a/XziIgljLli3/I7RccMEFF1xwwQUXXPjnIj8/H97e3v+/2VBFcXEx/Hzr4vLV8r8lP61Wi8aNG/9HDypWrFiBWbNm0d+tWrXCDz/8gK5duzpNV13Z479OEJs9ezaSkpLw4YcfonXr1gCA+/fvA4CqsEROvUgcZ3FJfBKHxHcWl8T5nwpickn+zp07qF+/ProgFnq4qabZnH6K+x29ZArqXLKj3o9HuOeDg9sr4svDBge3x7X1wWg8Kp2Gq8Vh8x4c3B43NgSi4YhMPBgQgVrbUpyW0XNnA9x97Cbq/+GFVb5/cvRZ2mphjn6r8eaIZnXDq+KnrrUhvvfbx8W5OT4KDb474rT8HF2NBrDbsTn9FDp/PgVNlh5W5YOUjYQXvBwN708O/+XyOyr3zXFRaLCG51uNdnXrU60edduaoXzAZY6uGk219uoofnXSDgmNgP1hKf395PinoE2S+sDacykY0yZCUSZ5+QCg4/rJaPWW+vvVBfmjPCPbYfrBwe2hDWsD7fXb+HnfH5RP8uzO6CjseXclV+cd9o2B/7RU1bLK6Q+L6Ybym7ewOf0UOq2agmMTV2BwcHsE7XfDJ82PO20bGnd32EtKVOvvUDHQuaaybZHnMd9MwbDR+3DIJBpKyns9Cj4fHOHe19S8Lji1tQ2afy21bwJCV+/ng5+t27gwAHjweARq/Z7itA6uTY1G4+Vif+j/7ARs/3o1jVfetQN0B06i6MlOqPPrMQBA5pcRCHxeOU7d+jkQXsMznY57au2vwtQehvdzcLn3PdX6LbGEw916HDNs6bhZXgejPW46fZcE1vvusNQuweDg9mh/EDjVxfnY1WfOJHhsPOq0rbCoub0JivtfpekzHxbhpdAYh32frQdHuD0mCnvfXumwj+a+F4UTo1Yq6nfokKHYuGmjal/P+rwTAtY/wOa16zE0woSNKUmInTke7n8c5/IuHBoJj42SVoo8b72vN37+YzsAvi9XNX5FrJ4Cnw8Pc3mROOTdysOjE0tx2FyDhnX/YDL2vy6Vu/aORrjf77pq/lUhMvEhjpodrwcGB7fHw94d8fviNRgc3B72qHbY8sOP3HsElGM6mwYAKsxh+HX1Woe8XZkZjaYL+Xnoob0cI1obq5wrSvt0xLZFa9DnjUnw2MC32cxvOiLwmROqaQnfAFDW3Qj9fpvDemDjsnk7eiYPc/RM36I5yi6Ka7XFZ5MQ11Y8Abk5IQoNVivnh4JXouE9T2o/moi2sKecrRbPLMrwEAeRAA8PD9XnjwJKS0tx+Wo5LqS0gqfH/+6p3d3CCvhG5CI9PR2enp7/MbqDBg1CmzZtcO/ePZw4cQJbt27F9evXq0z3V2SP6uLRPfesxJtvvolvvvkG06ZNw5w5c2h47dq1AQAlJSWKNMXFxVwcZ3FJfBKHxHcWl6X5nwCR8vVwg17jht2XzkCvEb+7RYVDr3GDp4cWw1uH0/+0l75Fw/UnaNzhrcPh6aGl6Ya3Dse4y/1h+u4ZSpOk3X3pDJqPzuHisnSGTZpEn5F0uy+dQdORF7D70hl4JKRyz9nv5P++pRClQ7ogwxrG0ff00NLvbJ5sGPubPGfrgORB4rPl1mvcMODMA+g1bhjdbzCXT9HYrlx8tbQkH73GDRW7AlHc7y7Nn9A58fEq6DVueOrcDY5PvcYNjRObcjzrNW7YLZymYYZlx7lysmUkv+cWRUCvcUOrT4+jZHgXGs7G2X3pDLKXdubqi61PlifyrMn3J6DXuEHbNRLC292590HqVi09+e+8QmxLBR90U203eo0bdobvxu5LZ3Ct5n0uXE5zeOtwGHfEQ69xw+3p3RTx5HXDpn3mZg9FW9eV2bn3VyP5HG5ubQ+9xg2X3uiO8SEx3Dus2BWoqCNPDy0S0BCBb5+Au1cj7lmNuvXF8v35m6Je2fTXfg3DH9aNwKUbXH8jnw3Xn6B1Tvps8PQ0Rdsj/+7t2kGvcUO3VDuGtw7HxbgwWub0Z7+Fp4cWbjXrYkmwDUMnT+LaY/YqE1d3eWtEWuFbZ3LtaHjrcMzvEI637kUp3nnu/K4Y3jocLRccx7HJETQ845lV3LvpuugZ3O57Hy0XHKf1wo5XJJ1ulUbRjvUaNyQuX0PjDJswUTG26DVumPT8HlpHh1atoTRKh3aB+8Gz0HaLQr2tJ2n8C6PWcOkJX8e7/Kraxhy1OfK91q0yXO9Tghod2mPkuVvQa9zQ7y2xDd9/qivq7DyF3ZfOYPFL4/DrqJ6KdlujlociP08PLVZ0DEV57WLoNW5I68qPgW6djNBr3JD/UwRNV9KyNl7IylLUoby+chZ1QY269bHNuJeGRaeOx5x2XcV6q/2Aa4fF1tb0uxpNNizls1VcvA6HpuHqlg749WIK9Bo3ZE1dxY8PY8fD00ML7Zkc9MkcyY0fpByt/3US+mPp6DF/Jv5IP4zhrcNRZ9cpNDzUjCuX1yYbdl86gytzunPvp+yJztBr3IC8K7R+A98+4XAcYX97emjh/9FxRZk9PbSoYQzDwdXfK9JmrzAjpXMdGja61+M48bFY7sKJ4hhZ2v+OYoy88Fk3RZ3Kf+d83RUnOtd2WP+EltDfg353f6hTzBXs3Eno/PnDD1zZ9278Eb0+mUnpF1tb4+qWDvR5i0XHuTZpPjMWT7WJpHTV1gCE/oHvxby8frZJ9Vk5lvruqq0Yb+R9cfelM9i/fq2iru6P6Yr8j7th1KCRtGzoHcPVs7xPkzC1OZ/w5umhhaZntEhPuE6fBXt5ivPav7rjh3cXqaa3N3Dn+NQdz8D9p7oq3h87L7DpX8rKFMMqN+P/CddUxDrT/S///++IKd7e3ujTpw8GDRqEd999F9999x1efvllfPTRR07T/RXZo7p4pAWxd955B++//z4mTpyIJUuWcM+IeUhWpZCAhJFjQi8vL9SqVUs1bklJCa5fv84dMxoMBly/fl21oi9evIhGjRr9x9QS5bAKNlgMRvp7x6/fI3N+DCwGIx4+1omGkzhsXIvBCKtgo78fdL8C7w8THdJn45Kw/DfM2PnzalVeAGByXhfut/y5xWCkYbU3H0bqi4sU/DriXeflxdHKf8Os4Jt8yr+z5bG2E3dNynIucGWo90MyLAYj/KyTAQADwi0cDwVzzFz8Gn0vQA72+YaQZory3+p8k6vX5XkHufdiFWzcc/a33dQBAJAaLnqUsJy+i7BXTuLSi2I9lPcI5+oreMYRWAxGXJ1p5uqEq4vKT4vBSOn8sWE1/FfmAgDC34tTrUMWl5834/o0EwyfJsIq2NDqjSRFHJYvi8GIeN8uKOkfCQBYcOEQAEDfrCmXR9BzyajoYkSTtamq+cqx4MIhFMwx44rpLlfvH+ZIu5MX3jPRZ02ePAerYEPLDxK5erAKNuwN/RUAkPdze5T1jqDPVrUWL+yW374DALi0JQQAUFFUBKtgQ/jcOADAi5lnFO0XAJoPSuPC7aYOMH4Uj/QVnWAxGNHwkBc6vRWn6ANalYHbKthQfuY8rIINv3/VHVbBhjPPLOLKYjEYYS8pgcVghPagDX3TnqDp/X+w48OcIyjb5YMHg6LgN0o8dQt4Sf39pUWUAQAyFkTTsMDnk+n38rQM2l5tJSUo2CipXpx8ZRH3Dv03T4e9s1QPVsGGkp2tUN5T4Npmx/fj8cDqx7VdTdJJMe99E2g8ANgeWh96/1YAgMg34mh47U3iLnRpfTcufu+zAxVllPdXUh5H/YYtk+aueBJWkXoOG0OawCrY4PGTWD+ePyZT+m67UlCeKfmTITQqiotx/bdgBT8j0i5jVEszF57zsdiO7SlnEHGiAoGzxJ15XWhrNPsqEQNqF9O4/XyjYBVsmJjXFVbBhgsb2kPn5YWgmYdRUVREy1z8eBR8hp+i/Ixp2RkWgxHCv8S86/aTTnpbHxgHTcdQRRu/+1QM+vcfDYvBiJCl8fS9BU86hlPR6zDUOwZWwYbHho2HVbCh74gJ0Hl6wrrle/j/Mh0AcKTjzyjvGU5pEn7uPC2mbbw4iRuP7nS5oXhHFoMRhv1FuDnRhOInxLvc+5ctgxzy8Vb+jIXez1cx51kMRlScTFO0GwAInnoUBa+ZofcW1w5lFwVK12t1EublHKY0WDjqfyyCnkvmynt3tHjvvfQPcXwKO65R0KqwKU9fSHqLwQivQw3QNMkTsT2HQVu7NjeONFyZRN/FobBNMAw+S9Oycy8AtBhyhtIO/SZedRxUw+NnbiHsyGhUVPpivdbRuUIWyx8AGD+Oh1WwoaKLEZ7rkuE3JwnlaRn0+dhFv8Eq2KD3bsHV3c2JJmR8HQ19S2/F3Eug8/SkdHT7+BNYq2BDl1nTYTEY0fzzRLzQykTnajaO36viuzhT+oDS9vxRfI/3hkfTOnTEw/MnRjitv0cRFbCj4n/97+/xsBUWFoaOHTti0aJFTuP9Fdmjunjk/IgRvPPOO3j33Xcxfvx4fPvtt4pLi/fu3UOjRo3QuXNn7N69m3s2d+5cvPXWW0hOTkZ0tLioID7Ebt68yR0pHjhwAN26dcPHH39ML+u98cYb+OCDD/Dnn39y+qLFxcVo2LAhunXrhu3bt//Hynr37l3Uq1cPPfCkuBNTCU1ke9iPnlJMGM46a947ZqROXQA3jU4Rl51kvJPr4lI/HWBoioRdG9BmRRx83+InCDZ+xuoIBE1I4Z6x/KgJbfK4sWG9kZAqviv/PyYhu++3CFkWD593eGGxrFcE9HtSnNJkcfEVM1rMk2hYBRvMz8+Ax0/iIDgqpxfuTm2E8rPpVdJi+aVlXxiNoJnipJq1tiMCxkjqFBVdjPhjw2ouvlzYtRiMqLW/KR50v6J47ix/gqrq99KLZqS+uEj1uVWwoX//0ShpXBt71qzkaDmi6ez57bEm1P9efSGRcPE4YluEV0lfng/7XVuzJiqKixXv4NKWEKRG/cjF79+6KyoKC6H380VZjlJoBgD3/c1Q0v0yTUNo3h8cjdqbeTWkrLUdkdlzFY1jFWx4+1ookju4IfenMPwcvQwvtYpRCHUsn87K2uP0ILg/lqsou87TE+V371bZp9Tysgo29Jg8FbUzrnOL/7+Kh30i4LYrBVd/bYMTketVeUhfFolfH1uAl1rFcGmHpl3FtHqCog5IHbN8k7LKodYWynuEQ7fvODQRodjx21pVIYrQVaPTNMkTa3z/dNjGAWlMcvb+ip+IQs3fjkDbIQQVJ9NU47Dvbn2hFxXo9S29UZZfUK3y/pXnauHy+rg824xm8xMV6QDg+cw0fBkYovqMRc7HJrrAdJSvGsi4U3EyzWFZrIINHT+Mx4nXFnFtbeL5C1j99OOwH5XU6zK+iUadXB0MnyVC16ghyq/fAADoW/mgLDdPwZuzOrUKNvScNBU1dhxVPI9t3wslHfyg3+Nc9V6eDhDr3Tu5Llb6iJtvFV07QnvgBBevOvXmqD2zuDXeBK/vkhTlInA2F3c7NRh/tt9c7UV/8RNR2L90mdP6dNZWL7xnwrkpi6ucEy5uCqVCnlo9BK2Jg/+rSQ6fs79vTjShwSq+3T6w+qGWJUc1DVuWkKXxSJvObyCzcbXt2mD7zvXVmkMJ9L4tUXYhX7XOSgZEwn2b1BZ/Pn8cXsHZuHPnzn9UFe8/CbJmvZHu97eoJjYMzvlb6qNDhw7IzMxEUeVmgRp27dqFvn374r333sObb77JPevduzeOHTuG69evw81NXa1YDY/kidh7772Hd999F2PHjlUVwgDRTP0TTzyBffv24eTJkzT83r17WLFiBYKCgjirh6NHj8b9+/exTLZrNn/+fOj1emoeHxBN5Ws0GsyfP5+Lu3z5cty/fx9jxoz5D5VUifX5iXSHnwhhZOcbkBZHmwt4HWUyCKdNW4THW0RwcQnoQFKnDlb6HET57TtUOGl2uIyjo2/WlEvfeE8N7rn/H5O4gabfuQH0++R0fkHYLlmsL7LgsRiMCBp/HBaDkQphLJ/6PSko7xHODYJWwYaSAZHIfV+yVEN36ObxNCwGIxK/FE9QO74fj4ufBaH8bDp9/mzmOdW6IxiR3RudU4fAKtiwsSAZQTOlxSQrhFkFG7QHbWib+DSXXr5Atwo2pF1uqlgoyXfHSBipI/l7l/NKvjf/PBFdKvlVQ8XJNLjtSlFMAPKJjPyrPSdxboUCD56Mwq3xyvfw1a1AcQEW+xQ2FCQp6Mu/q+2kVlQe7fv/PIPLm5w0WQUbsueJeRd3bgOrYKNC2MCzNyhtq2DDwz4RVAgjeZB8DixcquAnYMwJBU/JHcTB9HzXNQoBRE4TEBcA6UsjKV22TokQBgD7HkhjGhHC5O+cBfucLWNsm25w335UIYSROFpjWwCgp5O6+vWgCwmCvnkzLr7bLnHjY2nY97RccgRPO4qwGpLV2YyvxPq4VFqf8sW+50tdNIo6IkKYLiSI4zN0QTxNRwXUfcfhtq857ClnVPlpu0g6kbm7PYDWkWaPuBtJhLCsT00o7ReJ7Hkmjr/AdTPogl4Otiz7l4pzxvbtPzqMm1Z6n5ZzUW4PAMCdMTGqQhhbRuFlM/dONR1D6fe7T0ntTd5/dG2DFXViMRjRa9xkGufky4u4tpK+NJL+JkIY+1ytjxIhTBvWRsF7Vdi+/UfFgpT9vr7QC02+kcZui8GIrM9jsKq1LyeEAUDQM4dh+EyMy76zbYlbFXXgiEc2rMaOo1yZqfB/4ybdBJRDLYxoPBDaBTH3ENu+FwAohDDTyaEAxD7oiHZ161YuhJG0r1zhx49Si6RFk/eW2Nb+bL+Zy7doqHQC/kWucpONtH+18uu8vFR5zv3ARNOcm7KYhsvXJCwfp2PWomyXj7Kwlen8mQ0BtbbP8nj0g8WKfGpZcnB7rEnx3lkeAMDn3UT0mjAFFoORznNRr8Xh1gTxe8Xpcwj+c5wqn4CoWSMfD7cl/cbxyfL7x7IlyPpUaYHvn4Bye8Xf8v+fxOXLl1XD9+7di9OnT1Or64Boz+HcuXPcna/u3bujefPmWLFiBe7dk+4Lnzx5Evv27cPw4cP/khAGPIInYgsXLsQzzzwDHx8fzJ07VyGENW3aFH379gUAZGZmIioqCm5ubnj++efh6emJ5cuX49SpU9i2bRssFgtNV1paCrPZjJMnT+LZZ59FSEgIEhISsHnzZrzxxhuYO3cul8+sWbPwzTffYPDgwYiNjUVaWhq+/vprdO7cGXv27PmPmhUluwu30v0xvHW4YvIiO/7yxT07qPXzjaLGCoDq7b497BOhOCX5K1hw4RBm+XbmwjK+ikHQc8m4/lswGj2RzvHiaBfLKtgQ230INYJAwjO/74jAscodRatgQ2y3wUj4c7OC3vvX2+BAGO+iABAXfuVpGfQ32eXWeXmhnPEbceVZM5p+neiwPi68a4bv2/zpm6OduexPTPB/WbmbDPADcfdp0+B+qxSaQ+Kz4sejUPP3I1yaAVEDUFbAH4XnfGRC+vjFqpObfCeP3UVW40H+O2RJPEoCilHrfE2ceWaRgp7awqFkZyvsa7eFC++aWowDYTW5etF0agf7MdEfYNhxDVXFVKNZaumEGtZjXNlyPzCh1evK3eD+/jGoKC5G+pIo5AxcxrW5wlEx8H4mAxv8dyNoTRymDNiFPe3rqL5nuqCvPJEm0LcwUPUjAvbUQb4DztJjweaX9akJmWPUd4vJ7zsJgbiZ2hjp4xZzdPy2TUXOgOVo/W0cfHY8gNuNIpSnZUDr4QFtndoouyyewGZ+GUNVDAnN2+NMqL8mSZEXixtTTGi4Iol7Jo/3VvZxvOcfDsvpu1QlWB6fLbPas9bfxqHmdQ2tx9wPTDg/cbGCH32zpii7fEW1niKPj8DR8A30BJMFW/+OxjiWZr2DDXGnyw1FuBz6FgZsO5qgoKsLCULC7p8V6W7+Hoyj4RscjrfysKzPYhDwL/G95f/SDi2HnYZVsGF9oRdGeUhjlv/OyWjxqx6FLXWwvSrt5NvNHaBJPAlHUDsVswriiYDPu9IYt+jCQQS4if5yBpiewLak32DxjgAqyrHgwiEEu9URx5ggf/ivu4iMyBJFedh+Wm6vwKESLT7wV5ZfXpdyaOvUwfaMQ6rx5PPM1ZlmNFlYvbFaPq6x9LPWGRHwlE2VhhrvZH4qz8xBxppwZPf5VpVXAIht2x3pr7dVqCs6mjPV4sjzlz/XNWyA8hs3afi09Gy88cPT8HlP/bRUzmPUnDgc+ajqEy21ZxVdO8LtaiHKz2c6rTs57cwvYpA1aomiTM7SWAUbOn4Qz71zEl5Qdg+TfbrQ+GW7fKDvkwfhZTMMnyRCFxyA8vQsRdlZqPFxeUsImg1SnpKrtbW2i+Nh14DWO52bRsYg8cslNP4/6UTs6nnfv+VErEnrC/+x+hg8eDAuXbqEXr16wdfXF8XFxUhJScH69etRu3Zt7Nu3j/omnjBhAr777jvs3bsXPXr0oDR+/vlnjBw5Eh06dMDUqVNx9+5dfPnll9BoNEhJSfnnqyaSgjtC9+7dsW/fPvo7LS0Nr776Kvbv34/S0lKEh4fjnXfeQZ8+fRRpb9++jTfeeAObNm3CjRs3EBAQgPj4eMycOVNxMbK8vBzz58/HsmXLkJubi0aNGmHkyJF47733OCdu/wnIBTGvQw1wq7M4cN4ZE4PkT6X7caSzZiyIRtCsw04Ht9j2vVB+4yauxpvRZFGi4nicjeu/axKCxh2nv9m82HgA8HRuD1wz3wYAaNxqwP6wFLlzTWj1ZhLc9jXHwx6XYBVs6DdgDN7btBpR7m78QmWvAddX+8LruyTMzEjHwiD+3gSbn6OJEwCCjrpjR0YIN0myfJPfo3J60foEwKmlOZv85ZNr20XxaPl+ouokwPJHPtfnJ3J3P9TelSHZA0JMofqCddBY4Ai/M6wGNdU8NaG9ontH/PGjpHp38VUzWnysPE1U41dXvx6mHU3B4qBALh9d/Xr0PpWjMrK0NR1DYT9xBiX9I+G+Xd0fn1WwoVvcNNT6lT/1vfy8GSdfWoS00vuY3Uqs1/w3zGj5Pj+xqeXrKB/2ubM6aHjIC7ef1FLV2urkI1fDc7a4sgo2dH5uOur+zKtLXn3GjHvm+8josZpLe2dMDOqtTYYa1AQ/ed5qdSXvJ3KaXZ6djjq/HFY8u/ycGSdf4VV55GUmuDHVhJhpx3HghwiEjz6FVT4HELRvAvwr+/DKvIOY7MPfQ5Vv+BCaRP2IlHf+rVaY7ZVb5YKxXYoWpyMqlPxFtYd1y/cONxpIfFbFlC1Xw+XiYlrf0hvbDv9eZV0QQYHkFZo0Bt5Dz0AOZ4Iwi7x3zAo174quHfHHT6scprm1LQhHOiqFRgLhZTPutS5F8ORjqs8JP2RBS5CzPgx+o1L5DRi9HvayMhrn+m/BaPKmHvYzmbA/LOXGKe3+E5Q+QXX7NqGzPO8gpla2JTa+rlFDhO68idNda9P7SgTZn5gQsKGQbhSx/aXtwnicnblIwQct354WsPe6qAhXe2dFQ6NRZ6Ny/naUrqq5UK38VsGGTm/H0XYp7/sRJyqQ0lGrSvPZzHP4OlA6BR13Ph9rWjt2sVOdjQWCsl0+uLnFm56GVie9XFBWi/vG1fY4atQ55BGQ1k3VxY3JJhybq9wUInkSEN78fp+K4GnKee3SlhA0H+RYTReQ5tIy+0Psw6//CEHs8nmfv0UQa9Y67z9WHxs2bMCaNWtw8uRJXLt2DRqNBr6+vujbty9eeukl+PhIp7KOBDEA+P333/H+++8jNTUV7u7u6N27N+bNm4eAgIC/zNMjJ4j9X4T8jhjdyWobrLjXJO+82g4h2L79R8UgpbbwIs9YkDtPJJ69sxGaQzYsuXAQM3ylBdGGgiSM8ObV0dYWNnQ4OKsNOFoPD2w/f0CVD7WykTAAsLToCOvFE04nH0d0HfFTVbyqnjlbJKjRYE930pdEoW7Te/RStFwoClg/A4EvSKcY8nwGn72GzW0bo/QPX9Toe0FRflXBzskCNePraAQ9WzlBaXVARblDmnJeWJrzcg7D6O4uCl2yE6WbvwejwePpNL5Gr8eOvGNOJ2D5YsEZ5PXE3u1zFN/Ru65OXlWlrW5bapxYH9fMt1XfUd7P7eEz/BSX5uqvbdDkyXNO87AKNvSaMAXjvt6Kn3t34k7yhJfMOPW84wWl/LdVsCHs83ikvrgIsT2GcjvHanGr8x0Q39Hdp2LguS6ZC7MKNvQP6gxN3TpI+8AHwVPUhQA1WAUbTC/OoMYz2Lwd9QlHZanObwCItJWrLgCrEhbUnrG8xvYchvLzmdXmQ34vxlEa+efcnKN4J2YAUF6O8uuSei+BvE3+O22fhG8sSEaf1KeRbPyFxtN6eKCisJCL27/fKNxtUx91NySr1pn5ZCn83K9inOd1h3MHuUuqxgtbx1WVRVunDiqKijjtCnk5yQYTzbvfKFSkKlXh2ToldyGtgg3tksc4vCeV8V04svt+67BPVVcQIuHkRDT3pzC0Gpmq4I2cIgHghGOC0ecE/NjGgMwfOiLw6ROKcrHQBfkjYf8mGv7A6odNbX/AmJadkbEgGtlDl4p1XLMmlqfv4k6vqkJV8bS1a2N7piT0qcUl2iuEVt5bZqcnho7WAn9ljXFvhz81kMPGdwlisrz+w4LYo4hH8o7Y/1XIfYWxQphVsKl2/vMv1KJhFoOR+y7/VBuoWeMEAKh63JRJz3FxR3jz9yssBiPGeNxA5hfKewz3RsSoDkhkMnQ0QJFBnP0nfBMh7E5CoGKhwMYDxJ1JXcMGHE8sbRKv1v6mHC1Hg6dGr+csOLL8suXM/SmMywtacXGWsVDUwd+7agWNGzzjCE5Fr6M8ESEMAPysk6kQRqzzWQxGfHi9NeV33n7xTh4rhAGiWpRaOQLWz3Aq6AY9exgXNoh+TawFvKEUYq2x83PTFeXmygvgFT/JOtSOX7+neVgFGxo8zm8q2MvKYDEYceVZvm7bHxadtpcMiKRCmNo7l4evLWxI+QFA7/bJ0wJAwWtmhWDAxjOfLOV4J7i7PYDmQe5ZkefpyyI5/hzVNcvj3dEx+KHVPi6MrU+f4afQ61QR95wIYWwYy2vhSLH/ue08hh/biOpzbN6nnpesQgkvmzk68v5Cvqe+uAi2khKUp2cp+owadIF+ijZStssH93b4c/Tdb5dzcQgqioqQcGIngqccc5iHnAdt7dqwGIxI+py3sCsfC0ka8lvXqCENe2zoeC5tz0lToQvy52gR665WwYYbk02qQhi5w+Vsgdh15nRFOVheE/b+wpWv1v6muPqM2WFfYE8H5eXVRLZXbV9WwYbZc2Yh4cROqrpM7uvRsbeSrzlZqartWuNWAxq3GrAKNkxLz4ZVEDcBWCy5cJDSLBwZg86fvYB6sZlcu9t+/oCiv1WknkPdDcnQuNXAmruNJKEtTLwfmtihBta28ebosOk/vRmA7ecPQN+8Gb27yd6Dkgth8rol71Hbrg22ZxyCVbBRIezmJBOdkwj2rVwOjV5P664i9ZyCZoxtGK0LQLLSZzEYcTpmLQAg58cO3HsCQO9VkzDTv6R7tHll9xT8s+/p6q/KO34NdPegC/KnQtiVZ8UxUdshBBaDkTuZZoUwTad2AIAJnqJvusCn+esDfdOewNycozAki36wrk83cUIYAPzZfjPGtBRPuWNjmDVCcTHNN7bbYMihbyFarENMmGo5iYVeFtszE+n7IMKe/J2QKwSkfln1QYLuqQ8UeWoiQulvR/OJZg9vxdFiMCLju3AcCtukuq77J+F/32Ki+PffDpcg9ojB0QLujavSRHrhXWnhGjT+OBePHTiuT+cvgMoHCHailcfR75asRhEhZNt9/u6VxWBEg1MaBd91NyRD79+qygWbnJ+8d8zcgBmwe6JioCI7qOkrlab8C14z4+WsUyhc7I3yGzeR/6YZaaX3FfEA4P6QaDzofgUWgxEaxopm62OSCWy9n2j5zF5WhpbvJyoGWvKdmME/33UN5bf79GmwFqQg6/MYBM08jGszTFz+ahMmCQueKNX9S99MBSA6490fVouGB8cd4d53u+QxsBiM1JyvRuZskOjby9sIy5PviFNc2yD1ThYK9ZMKVOsAAKJfFc266xo3punlC3FAescsDXKvhYCcErpvO4rVeQcV9W0VbDC/MAMPH+vECdhrWrdUXZCxfDyw+gEAvD9MVH3uc7gOXeABQJ8xkzjeAupJJwbbUnZwbTN42lFFe2UXaRaDER4HGkl9rJUPPH9Mpgvfiu4dKe/9/KQL9OQuGwtNZKXTUcYkM6lzYi2U0FJ7F8SFg/6eGOfiJmlBQczOr7nbCACQ+UNHWAxGvFLJE0trfaGX6nsmxkOsgo1u1uj75KFuv2yube1bsRx3R4uC4+XZvEDOxiPluTciBulLoqANa4N3s1NovJuTTKi4f191/CR9+uozZu4ZoUlOgQL3TUD2LA33rMaOo4CeF7TKb90ShY1xk9FwpdK4weCz1zjjQOSzaAcv0BH16KvP8OrLgHg6xJYfEN2RNPkmUfE+2bSOFnTkZJrQ33hPMtfteb6Q60dnZi1SfacfBYSpzk32h6WwPyxF9CtxWBbsTzcBiNBtFWycdoXHT8k4+fIilPaTNi5ImcI+j8enNwNwNV6qk5uTTNCEBmKc53XKY0XqOVgMRrp5JOeV4KUGWeImwCXxgv6iCwcRWqMWjUtMzDtKn7BrAwBg+871CP1G7KdD064ifUUnNPhWfPfJxl+49DvyKrUeKjdm5GNSvVhJ+Ls+XdzgLGI2KADAb7R4ty+1tJimJZ/0va1LRv4volA0lRGa1OZadvOGIMrdjbuXTe5GE8ugjjZA7MdOqz6jgk7vfES5u0GIKUT6ik7QlDneBAFA7xSysAo2lGfmKMb+souV7i+SU7nwy8+J7YWoMBfMkdqP/J1WFBdXKfiozQ37w2opBXVB/QSZXVvZe11E0L4JtNwXN4VSoVqNv9XnlM6iXfjvhks18REAOeYNePVD+M07rnj+YuYZfB4YqpJSHaTDE5Pp5Pe09GwMrXvX6aBYFU1HaQpHxcDr8CVsO/SrYgHxV/lmcefpGNT7IRkTz1/AR4tG4+Qr/CLh6jNmnHhNeT+F0ApJ0VP/SFXle39INA58s1SxACR0tca22J6wTnUx4mhhRPhi6XV5djoOfr2U3uEjeCv7ODrX1MJiMKJoWDS9j6M2KcgXqGo8EcjzH5bVB351blAjGSxujzXh8LzFinRq5VUrH6kn1qdN/ptmDBpyEB82TcWyOwZsDGlC6QSujVNcVFczAsPmK68Tudl8Nq7G3R32khKMPidggudVRL8Sx5nfJ/FubQuC14AMqMHZ++01bjL2rFlJeakOrIINz1yMxjctDsNvxxTk9FtB0+Z8ZILfHJ6/yDfi6KKPIOtTEwJeSnL6fqoqi1q8gtfMVEiVPyNGZFiT7FbBxqkrknSZ82MQOFv9Dhur9izP58ZUE469u1jR1lkz8442EljIVa4ByfjI9/mHMLZyN548J+b7AeW9RxbyNg8AEe/EodGyqn1DQaMB7HaOJ11oayT88ZOiXS+53QKb2zZ2yEPY5/Fo/rljH5EsrdiewyA81gS2OUqjOwTkDgtRTZeXlfzuO3KiqkEaOfT+rVCWneuQP6tgQ+DeiQgYcwJXnzGjyTdimwv+cxz8Py3HPb+63H1EtbI5G4P0zZtR4UvOA1smR/RZs/gFc8wK4VQNVsGGDp/Ecy4D0pdEIXiGtLDW+7fCtoNbnM6R+a+b6V20pkmeuGLi3T1YBdEEvfbrRtTsuVWwIej7ODTpcAWHwjYp2pOz8lY1f8nTk/jsHc2qaLGGZ+TxiHEcUs+O8nPEX/v58dz9REf8qM3pjuiTMNao0V9dK8k/K3a3hLZ3PheXGOFh8U9STcw/1+JvUU1s2ebiI10f/y5cJ2KPEFp+fBjjzucrjtflQhjZWbObO8Aq2KDp1A5WwYaMNeGwmztwO6jpi6Lob7kQBjhfPJJ8nA1sBIlfLEFZzgX08xFPqixDRPOud56OwYX3TAp6gGiqP3euCd/nH+IGrZIBkdLu4Q/i7v6q1r6iEDZoLHRMZyQ+aNhysDutRAhLuHgccRnSfQu2jATEMSwgOnsGgIiUEQCA69NMVAhjy0DM/BNaxLknqVvybH2hFy3j9TCx2xEhzCrYsDLvIDrXlLpjvcOShcTYsN5cvuaTpdRMNcnn4ivK04Sek6bSdP5/SCc79/oUcpYK2fKwQhj7ydYV+6ztonhkLJDUEQGlY1GfnheQ0lGLtoviMa2edFfJYjAic8xiBR+zfDsr+EpfHKVYeBE+5EIYeX4nIRCFT4qnTBM8r8JiMCp8oJE0XgMyuLYgL3P2x2IbTrjIG7QhVkctBiMubQmBz+E6XFpd0yYKmhaDERmRohNmIoSlrxD7DSuEAUD6wyKFEAZIjlzV+m/gWvF0Un4qKi+XXKgBxJPComHRqguTmr8fwZhzBSjLL0D64iiav1wI8zrUQFUII3nN8O2C69NMND0Jtwo23GxnV8R/7UoYyq/fgMUgWuZj3/3r2TaurZCxJnB+GaWv920Jq2CjFiDHthTbV8FGyWHxO8tW0vw0NaWT/6FpV5E5X/Qdl744CqmlxegWP43SBqAqhLEOcykqhTC2fOVnzqPH6UE0jJRtc9vGsAo2eqrEwmIQHcsSWjkfqms+AECnt+JQfj4TTRckKvoHAGqSOzVKNM2vOcT3O/m4/8dPq1TzSV8SxaUjQhgbZ+d93polUYsnQhgA+I1KhT3lDOr8cphLywlJzZvR32GfiS4MWHVRACi7dJlrF/JxQ+0krIg5wSNCWPrSSHh/pLwrJH+3GWvCET43DidfXsTFyRnIu8vZdnAL7lWIp1xkrpSj5QdSfmpCmMVghH1JE+xbvpzj3yPkJieEAcD719tUe6OmomtHaNzdkb44Chc2tKd15WjNIBfCyDOrYMPzmdKp2p2nRSFM7X1aBRuEe6I5f99KAzjVEZJIPIvBiFOzF6nSvjciBgOiH6fuTuT05G1cF9oao88JXFj9NUm0f5GypS8Rxz41FUc2rfxTLoRZBRtaDjuNa1tbK8rmwv8tuASxRwxrWrdUWAhjkf+mpF7zoFlNbLznCfux07AYjMju8y0854kL+PKe4r0e1JLuYHR6O06VpjyMfI96LY4OdlbBhux1RvR+ejInnN2YaqLfC+aYJatYyalUkCJ+RNiBySrYMKbX0zg/eTHGtuzM7Ryxzg3l6XDkFLVER/jMf92Mgo2SsEocdVoFGy5saA9dkD9iW4RTi3/yiUNNsDz/kh+sgg2NnkhH7gcmxWKLpCEHys9nin6uorblKGgVbAzFqta+NI3vW0m0vBlrRH9p3X/5F8cLOXEIOFqT85tjMRiR2KEG7jeVjLpYBRvnS4387/12OeWDVWG1l5Rw9Njy+22X7nawZdDVrydNWG2D6bOW7yeixi2tol4vP29GRRfxQrK910VMTs/B2fhF6B9oxouZkmU4tUmLlIvlLefJZYo8WKiF14vNRN0NyfT5/cHR3HNy90fe9lnfOyRtxrjFyF5nRGyLcBrG9g2rYEPzQWnIiy7i0pVfucrRYheFlPbX0dQgRfrKTtxzR2OBsz7sv+UBsj41YUflYpOoLxHcmmBS1DcrDB38eimsgo0T7kn8dWPEDQq5aiyL9X57cGOytPmia833O11wAO1PbBu2GIwIek4S4Eh81lgLUaUiz7vVFD/9d4l+Dc9NEf0HpT8j9o/NBUeQNdmby4OkPWNaS++xfOAvtbVtx63i6RWAafUEBM5ORuQbcch5UnToXWvLEY53tu7J94r79xVtMnueWO/kbg95TiwwEl9vbPnIZX5C9/p0E25MkRaWuqZNkD5BffPEYjDi2HtifVC/cVHtuffW6OhNLo18kav2fokaGKuqLhc4WFx6UYz/eWAoN3eoCYaEB/aeMQBUdJG+EyGrvGc4mn8hCnEZc9pwNEl51YQJvX8rGN3d0eqIpOoNAAfDNgEAdtyXNjCCpx+l/LI+rlbfbcLVTXafb9F4cRL6PzaKK5NavdbVigt41oKkvJ4tBiN0oa3hCEStNWOBNKZ5LvFE+LGRXLyHduX9RUdjqPbACezIOYzguCPwHcGrsjri87Fh/J1KQn9BHwusgmg4h2ymsumtgg2ZX4rvuE5lGy/vKajSYvNmxwtAVFvtO2ICYnsOo2GZP4ibb3U3JKMsvwD+r0ibVs7aXMIfP+HHNgZFGUn/IpuswTPEsY9VcZSXDwAnAJINFbLhxsZrPPA8x9Mv5x27nHjUUAH73/L/3w6XIPaI4sGTUaq7QWfjxB23p3N7wPLOfiwLlhaTnd6OQ2HX63Db1xy6veLCm9w3yn1fVPlxtHiQT7pWwQav1eKO1+q8g3g6twf8n7JBvycFMS/NQIdPRX35hsuTEPGOKODJdw7lix8A3CXu8oxsbLwnnm7d3R5A4xcNjYbf1mnoO2ICACB7XWX6qPaUNzIxm16cgZYfJHJmn62CDRbvCFgMRrRcoOf04Nk4el/J4qN3cl3KMwBkjpb8eqBCWVcECSd2AgD61RaFG3K3iK1jOW8siMuAwBeSoa1TBzem8rt3WZHF9HfUa3H0e721yaoTqnzhwX5PXxbJLbwzv+9I0/ltnYYjJQ85M9Vsm0g4u18q864N3DMiaJOTAwBo9mUitAdteM5fNPfeq5aAsM/jUXH/vqqabcND0l2j+IsxtPzk7hJbJ/L/rHXKtpv5Je98+fZYE2605RclCfs3KRbnFoORGlUhYeQzo8dqAKLaGyA5S5ULZISHied5QyrCv3jDGIBoLCN7mCj4fJ9/CDn9Vzid3Mn32L7igovszrJ0NYdsyByzGJPzRMtjDdbX4eKQfs2GLbsjXoJnhQQi3JPL+VbBBnsKb16d5DknK5WrK3J3ymIwUh9C5H/BH99RenKBkKU55pzkDDmn8kSSGL6R1w/pRyR90PjjmH+rFQZ7R+HclMW4OrNyA2u3N403+1InznXE1ZnM+2FUCK2CTfVU0mIw0hMlv9+nArvF+3qRr0v9lDjUBoCGqeKC4nK3Cmjc3aELDkDRMLE8z2aeQ35fnaJcbN0DQKOlSWi4IgkPBonvvfzKVXQ4MlqRjuXRYjBiW8oOMeDIKa69lp+RFoEkftSJ4dyiV45mX4ntYkDtYi4dFbQbNhCFo4XRiG3fi1OhlPcVtXE16+E9HJq/BFbBhpezTiHsuAZr1n0DANQYCAAIZulEgli8I+Uvu3SZ411bR7pnWZadi86pQ5AbJRlfYPPvV7uExtW3koSv3W230vdJTtjlbbbitGTNVI02AAwwD0Tf0RNVhVwWCX/8BEDUKmHpEEH8Vvl96sLGKtiwb8VyNB54HumrIpDxtdiukju4cfVCxi5HvEW8EwerYMOlF83UGInP4TrQBYtGimJ7DqNxrYJN4aeO1nFuHiwGIya+tZXLw2IwUifmxLchgS7QT6LrVoOGa/R6mpbQIeNVg2+T8MeG1UjYK1nfzOq1iuPl2gzlibFVsKHeQdFIT+77/HNHgupL+7dzceTvT9/Khxu7M8YupnkdqhTyWQuwFoMR139Tuu4Z1rqDav4u/PfCdUfsEYDcfD2BVbAh8McZCHiRN2OuNgHI4ci5LCCq2aW8s5gbNFqvjEOrN5WqBoUjY+DxkzRgsvcnNhccwWDvKAUvjoQWAArfWgREL15uetoZrv7aBici13P5yoU/Z9/bJj6Ns+YfKL0BXQZx9xrIPRMASF8eieCpjv1eAeDuscgh/MsMw2fO73Q4os2WSd+sKbYdtyp289hyDcvqg8Ku4sV21keTI5pWwQa/HVPgdcQNjZdIC85LL5jR/AvHfsbk9FhH1JTfFgZc6+sLr9WVdKPaU99ojsrP3pOSx2F/58414fxk5X2ilXeaYUNIM4fvnuDiplD80PFbaoSC+GGqKp0zZK3tiMyeq6i5d2f1xd4ZsAqiI9206c7TOPqtBrX+AIj939mdJp2nJxLO/alKP3ueCRlj1f3qqNLaa0B5T4HjQdc60KHJcNYXE1sGR78JyF0audsN+bsE1E9/5L/7nC7EoqM96EYWcaNATKw76g8kP8IPMU3OPifpJqfnYERd6S7atvs1cb7YAOuVtrCGKP2Q/RX8O224qrRqZXeUh8P3FxOGe+/c41TpiG8tQNQi8B56RtUJNpt/9jqjYnxT40HOb/qKTgheVgIcOUXvL7G8Fj8RhdHztmHBD0/C+0N1P4UsdI0bo/zaNS5scnoOVgb7OawvNkw+Zwqb2+JU9DoAwEuXO+LTZie452plZGk9NnwCvevH0urn04k7iaOICeMMYADq6wS1vkLCWVcbLNTuZDoTVNXaX0n/SOxbuVw13u2xJqpy7mgNIOeVDY94Jw6tx5/Djc6iEZ5upwajliXHYdtVKwMbj/hWJfEuvGeC71vqbiWsgg0Doh+H98YbSPqpI8rNd9BsiO0fc0cs51xzePwv3xErLKyAX5tLj3R9/LtwnYg9YmA7d7dTgxHwIu8/hd1ZYgcD+cB2168mF84+b7QsSTHQtXpTHChi23an8a5tbU0tsKUvjoImsj09GVmZdxCDvaV7ImwehDeLwYihaaJq1s2JJmTPM8FLV1uV35YfiHcYPH9UqjHI66dgjmjCucmTouWsgo2h1OIcyV8+0d0bzt97sRiMaDnsNFef7L0GqyCa9te2E80kEyHs2tbWSF8kCZ8Vu8VTtdj2vZCz2ACLwUhPKdhysEIYoa82CatNUGxY2eUrivcuf5e/BOyi8dUWKWyZyY5c8KRjOP7WYoQdlxybs0IY2/YaHvJS5ZEIYSw8NhTzJzAyIYzUBVt2+T0pAvkESNqsnJfJ9S7j7lMxNC57T4utS+3BelQIA4Ba4Te48hTMMasuGlh+5e8uYMwJtFnOC2HyeCT8j5DfuHL5vCvWN7sDLre8Js+fnOKw4Z/m8hsZbNpa+5si5Z3FXBp9S29qWRAAyu/e5crNWnP0fyWJowcAV2aZFXwBogXKO4t94LavOZeGFcLkdUuEsMuzzYq6ZctC6pT8P9VYXMD7udXFW9nSPT55nye/747mT0zleKlBFoInpsBuFnent+a0R9HQaCqEycdfOa6Y7optbx9/p5CkKxwZg5XBftxY+XVgG1jbeQK9C/DpzQAu3ff5SrPcBOmrIhR1JS83AHqK5nWogUNajspDkPlFDFeP8jwIDfIfsiReNd789UuoBU1AHFcPLliKsl0+sAo2nDGthVWwYW37VRgQ0U+xCH73mngyRU6p1Xhn+x3JJ+8dMzSd2oknE5VjETEiYTEYYTeJ77vmb0ewuW1jzrqq3Gowi3NvSE5cSfy+tS5RuoR3YXNbLozEtxiM6PeEaPnW40AjnIpeR+OkhtupVVyLwcidFsnr1SqI5uNZgyvECq3FYFQIYVbBhrLeEZj5/S9cGMCvEwgyVkdw+RlPiN+vPmOGz/BTqLW/KUcDAMa27Iwx5wpgFWzoN/BpWt5nhUhFPbC02e/u24/S72W9eB4Oz1usmpalYTo5VJW2xWBEo2VJWOe3l4ZfsklqrWrzbMxLM7j08vLuuHAEej9fmp5ojACAx4FGCt7K8guQG/UAzT9PRHGeh4J/F/774RLEHiHI/Yi9H7QZ6Ut4IwVysItqdtA4/PFi1XgEcmGAIO1jSS/9TqYXvcAcHHcEO379nsYnDhcJLZYu+7n80ydhN3VAg1VJqjvp8kWqM56JioL3R/zF8zOmtXC7ek9VACO/6/4sqXBYBRv0LURd8Pxf2ikWEbHnY+kgy6qaWAUbGg88j+D4IzSNtnc+LAYjym/cpLuBr3TbRunp6teD/y/TOfpq/FkFG33XQUfFOwqtjtRCn9OFioUP+97YcGJCPnRBPOydxTT6Vj5OBYdGT6QjtuNj1M9QaridU9Vg4+f+FAarYMONzrcgh1yoshiMgFaHW51vQtjcFt2nT1PEl38nn8vzDtJnxo/iFXzEtu+lOvGy+U9/axN9nnBiJ9qskNTFACD9205o/kUivSd25+kYNHv6krh49vTEuAvdqKqtfPHPLggJ1udLbfLcVKV1OrV2L/8kRjLq/SCdgOc8Ll7Iv/uUuuDQZKHylPWlVjGKuiF40P0K9/uhvRxl+QU43+mhaj/MWBBNfQiRcrPqclbBhqYLpMVqvYMNab5DGx6DXQv8HrydPte1DebK7eh73X6ialngj0r/dzovL1qnUXPicKb0AadO9p5/OBU25LTJv+ePyeg7YoLqwswq2PDiJfEuoCbxJKyCDadj1tLTGovBiMaJ9Wm6oh3+nNop2zatgg2Iaq8Yw1ktA4LLz5upULurnQdXbnKiIIdVsCF4YgpXjv6tu+L3iym4tS1IrK9KtTJyt+1W55tYdOGgglbm9x0xINyCkENjaVhe2T2O78AXkhXtJO9npQl5i8GI2LbdkTZjEeWTfOZ8bMLsVmI5i5+IouOqxWDE7rZbMTmvC6Uxy68bp2a48o64SE7sUEPRLmJ7DOXqhRVyCZoefgj7Md5KHQtN0kkFvyQ9q4rJomRApOrdRi9dbSrwE3rkZErOZ8nOVlTtt7DrdcV42mLIGepP8IHFiLiMTGR9qhynLQYjd8rO5uFoY0O/OwULg6R+6UjV1WIwImiC5FoltbQYtsr9T2Jw5U2f30QBfBkvgK9t443W38ZxdX++00NlZQKK9sWGNU3yhH5PCvfsSMlDVYEIAPU35tk/C9oOIapzoBwZY8W104ILh7i5qayXuOFRby3fB9YXetG5lwrth36FVbCh9YFxHG+FXa87LbNcXdOF/xtwCWKPEAYHt+cmjW41Ab9fRGMbagt3OdQW5wRWwcbtVrGLDhbspevAF5JRb+J9buFJ7lUtzzsI/1+m00v5QfsmwG/bVIVg2ODbJHRcdBIbC/g7TWw8tUUW4fPBoCh6P8ReVoY2y+M5P2qERsLun1XLHrQmDsVPSCd35Pm2owl491pbajrWKtio5S1yaZidgCwGI/y2T6Fh5AI6W78ExOy0xWBEwtn9yB62VFFukoZdLJBLwMSvyt5dRrzUIIvG1+yRLDJSniv9dlkFG26FiOHeHyVS62dEV5/k3SV1CMeLVbCh/MpV3GhXl05S5yctpsIgi5fDdqq2LY1ery5wVIhtd0HYetT8TVJZlNeXvA0SnzjsIp+lfe6dIIeCDbks/2MbAw23GIxocNZOywyIJ4B5b5tRnpGNhIvHUe+HZHoS1HxnBbVWRi5+Q6vjeJDn3/Wbf6kKh2oLBPl7b31gHILXxHHmum+P5S11ea7jF3pqwp0jkPda58/Givp30+iAqPa4PNusoGcxGBE06zBHw2Iw0sVUbPchivh3ukiGZb4MDIHH+mSOV+KXSV4/AHB/sHRqTZydBrzIjxvXZpiQcEbavfb6LgkvtDIp6uRW55vcb3mdZ34Rgz82rFatL4vBiNMRFYp0bL1dM9+mcev0y4ahfx4Xn2vTlScvVb2vZl8mwjZHElxK7OoLVTmvBOTksqKwEI+3iKDuGFirlgTxjPsA8h849gTKLl+hG0p2UwdM9emCLrN4x9PyuvAZfkrRvq/ONFMVduJgnCB9XKUBEf9WdFxg6RXEMM6JK8q5xfOGkGYcH8RCbszJh7Sc8nrRtmtDTxTdt4uaDTd/5zcE1OZTXcMGqn2ZxCdp5MalyImVxWBEnUul9LvFYOT8AxK8nm2jBluEf5kVxm0I9rQX73rWunwfg+rcQ+aYypOgGKV/NzZPAuJAXC7AArzD53uF4smfX8IUDDwrWivVdhAnl6Kh0fRklWz4sDQj3GvAYjDC5x3lBlGrN5IUYYB055bw1O/cAACgawsWa3z/VKR/00+0spz+bSf0nDSVo5X7PDAiTXRjUHEyDdGvxDlch7AQNrdVuFDR70nh1kIEozxucRvf7DhzvusaRRnMz8/g2l3hSElY1zVtotiQf5ThMtbxn4FLEHsEwU4KXT9PVoSRgeDZTPG0pqx3BJeeOAiVLwrku+EAv4NrFWwYYB7I5UV8sZCBp+yCuNs2tVV3BD17GA1XiuoL/k/ZuDtUpf0iaRpbR6CuVlLrIOakiYEMQFSZsgo2lN+6RVWrLAYjam05Ar9Xk4AY8TTG9+1EPKxXAatgQ+Z8aSIgAoZOpkPs/2qS6mQPiLuqpf0iaT2V37qFmJekQVK+4AiefAwWgxF3R8eg+eeJuLBBskAm38Fk61dtgQsA5hdmqL5XEub3Gj9x7WizDXr/VujffzT0LUWjA+XXrqFkZysAQPr4xdSMtBr/AKiFKhZWwYajHyzmeGWdbBKeyCKIuE0ARN9MeXOi5CS5fCfunaQQXOWCOIn7sI+460hUO+TlsAo2KhywYQVl4oloxelzisU3AHis53cxNZ3aIW26aPZYp9FCEyEZBSELQQAIfLrybkblgjD3pzDoWxgU5SCGLVie1MpLJl0CXcMGON91Dfxe5Q1oEDcC8ralRpuoLxaU3YPfVunkkcTr/fRk9Jw0FUXdrnGLBFo/R05R30dsPbDjApumomtHFA2NRsL+TYp3JE9LnKKTxZCj+IBkCY48ly98AaDxEqW61ONnbiF3romeAI0+J9D4RPVWnibwhWRcKrvHhVkFG3VxQRB7Ppb77UiY0o0q4Z5bDEZcn2ZC/0BedVTt/anBYjDil3vNaDoAChcV8lOt1p/xbiPUaBJjQOy45bd1mqJcWeuM2LlRNKpSZ+NhVZ5JGuFfZlqX2tq1YTEY6UmtxWCkp39WwYb4i5JqI1EFtxiMGHOugPJC0L/fKPqcbXssiIXc5A5umJaejXYp4pJmfq6kVr1953ruRLHhIS80eDyd61ukLGTTrp9vFOdeBBA333I/kDZIAGDgWWnjgeDOsHD6nb0fqPdtyVmsJfl2YzQeDZ8lImHvL0j/VjIExPJgFWzUSjL5L25Uk2tX8k9SxgMLl9Lfl7aEIPuTSmfSQ6Opw2eLwYjAsaL/veApx7C1rWjQgjh5rrPxMOxaSX0dAHWqnfe2cjNHDsITed8A6D1sUgainkwM/hBH7BmrI1SFKKtgw4DOTyKn3wrOYnLJgEi0GplK5y2rYEP975MU9aOtU4f7PSSzL1XnZONq9rTgfpPv3eKncf0eAF2bqNWHx0/85hLpHxaDaGV3cHB7RRoX/rvhMtbxCEDNWMf9IdHo9fZBJHdwU01DDFUA6qcs8u9qv9XCNW41sOPCEUpXLhzIw9QWYI4GY2fP/ko8wks/n07YkXeM8uK3bSpyBixXTF79HxuF7TuVdcUaNCmJjYR7giRIyoUZOXRNmwAPiqkpfUc8Oqpvv+1TkNN/BY2j5gCVxGVpaDqGIr9/PdUL5OSydJXvZ8g4IDkVBRtDcca0lvKQ82MHpHcXF19B+yag5bc6uN17COumNRw9Z8Y0HIXJ64XkefEVM1rME0+9BkTGosnGQlx5spbC7DuHyovl8nxKBkSi1r6zqCgq4p5lrAmnVvVy1ochvdua/xHPjtKQ5x0/iEdJA9GyaXXoa9zdqYn5NsvjqUpj2HENTs7qgJ0/r1bNV07X/5fpCHr2sMM4jniQ92l5XkU7/Kngvjb/EIRyHV5qFYOM1RHIfmyloi04y8diMHLGC+RjFBsWdNQdLWvexNpVfVHncoV0GhjVHtYt3/PxtTpoa7qj4v59rkykLBq3Gmi0vzZ+aLUPfZ6aBLnhDDU+2PSO6tDZOKsWd96NICzb1RtBLx1TN5YgAxmbSJ2x44Oz/g2IDohZC7aO4g9Nu0qdq7NxSdnn5hxFlLsbl0Z4yYx62eWY+P6vnEEc1iE6m493cl2s9DlIaTqrtzsJgagXKwrC1DiSg75O0vd7Ygx2/LYWFoORGo8iUDMeoUaHONXVtQ1G+dl0h3FHnxPw7v4nETxdabRJ3n/YOg9/L44zgqTGj6ZjKHZsW8vlt+TCQUya/jzy++g4YyJqc3HuT2E433WN0zbpqG076q9VzcOr8w5iQuUVhar6AiAZrLIKNhg/ikfTBYnUObxVsCGt9D5CatSm6UNS9NQPqKN6UwNpi46Mh1RFyyrYENuhL6DVqM5DRUOjcXDBUlgGjaWn3YC4KfmwjoZaFZXTZg26yNsaG/fn88fhFZz9SBunIGvW9LSmf4uxjuCQK490ffy7cJ2IPUJ42Fva7au96TAnhFkFG/LekXZEibXAq+VFyFgdAb1/KwDKiYAgfXkk94z860KCuMHd/rCUy5MdkOW7Po4GerXdOQDoMWUqF1cen/w7WtSwE5DFYMSD/uHw+20qbm0Ty0BO5C4/Z+bosKckLFirkvtWLOeeyYW5aenZKBwlnWaUX7mK8rvihfyrM80o6x2By8+buTKEJo3hysXSJmbKSf3atRoujr55M+434cV+4gweNK1QXTizKkK6+qKTzJyPTdRBuFWw4cPrrWHdtAZWwUaFMAK/0ScpTf+nbHDblQIkpyomZbLwzvnYxOXvyO+NvBwsWsxLBLSi2e6LQ1phlc8B50IYwC3M2Pp133YUFUVFtAxWQTSDnN3nWxonvdsaVZ4sBiN0rQNV69xiMCL6lThFm2b7gcVgxInXF6Gk9QPVtiZf5APAjpzDNK3v24noPm0arIINqeF27Px5NdfnCPqcLlTQrnVJR09IWf7k7Y597r6/mYI2W58vZp5BnX6SqfAxLTvjpVaie4KgCdKdpPTx/F1Utl7kv+cuG8P9zlkvqVSFHRlN88qILMGfA9ui+ReJSPpsiVQmxtALRUU5PHaK/qDy3jFzdWYVbLA/LMU1821YDEbsWie2g5ezTmF+rninj9wRtBiMGHz2Gvr3H831y/5nbiv6Llu/xCk0G4cdA6yCDXll97CnfR0EPp9MhbBb400O3w0gjU0rg0WT3rcjeLVyQFS7BiQtAJKvmgNitt7JySERwrTtJLW0DkdGU77f9ItUvEtdMdDv7f14f99AjqbXgAxEnBDVOQdExtJyrPQ5SOvz5kSTQpAgDtJ1Qf6oF5tJn+UMqByPk1OpE29AVJe8MUWsu61FtakQBgC1tbwRC3YRLhde2Lo/a/4BVsGmWBjL0/7YxkD9igGiVUH5nEXU/0k+A0xP4Phbyj4iH0PsJ85wdaNrHQg/t7qoseMoNSaihvbzxbtYrUamcmUj4Sz8f5muOqY4glw4YT8BoLm+LuTo+EE8Zmakq46jxGCVxWBE0wWJuDXehLL8Auq6ZnYr/kTNkRBGaKjlAYBuCPgMP4Vx53knyuSaAxtfTQhNOPkHyq9chVWwUf9xNyeJ75vcFZWPRw1XJFEhjFxzYGnf/K4e/c62NcITiTsyq4/Dcrvw3wnXidgjAEfm6wF+sMj52IT0caIK2YMno/Dn4mUOd3TVhCSLQdrBJr/z3zQrdvA1ndqh5cIcLG95yCkt8klM2lsFG/x+m6rYMbQKNoR+E09PccacK8DaNt5cHBLmaNFDvocuiIf3R4nQhrVBReo5RV3KBbmw4xp82uyEqoD6+8UUPN4igqtngnk3gvBKwwyHZde2a0MNeTjKWx7e53QhvfPF8tO/dVdUFBZycYnZ76zPY1A74A6aD0pT0CVgzaBr69RRnAgBoqn2Qf6pOGpUOvi8NsPkcMeWLcOAiH4ou3SZ27lmn7NQ21F1NvGxMJ4Q1VnVnjmqY0D060V8gMkFaTbNwz4RaPvRaWREliDh4nHEtghH+rJIBE+T2u3yvIOYKtvtraqc8lNNNi1JF/VaHI58uBiWtMeB3gUcLXn8rUW1sTAomO4aP5t5DgNqF+Pda22pvzqShriFyH3fhPOTlEZx9H6+KMu5oFqH8nydtWECR+OPIxrO3huLmxNNaLDKsaln8l3frCmK1tSid2uqA7Ux0irY0GfMJLjn3qD1U12e5eOgVbAheE0c/F5Ngkavh72sTBFn8NlrmFH/olO6F181o8XH6sKUWpsiZXkr+zje8w9XjQtIYyxxEeCwfLu94VGjGIVdr0Pv3QJlBRcd1oe+hQFlFwXcmGJCwxXSvKILDuDubFkFG0bl9MKtzjcd0gJElfa93y5X1KvFYIQmsj3sRx2fcI05V4AF84ZTNWuOz1Y+KMvNo/EvvWhG6ouLaN2p8dQuRau4K+iobu+MiUG9tcmqzxZcOKS4b6SJCKXGOeTlBMT7krU3H3bY/tX4uVdRjKHeMQg7rkFquJ2Lk/VZDDKfWsKlYXlwCK0O1gLROIb/zsn0JFwOtfe5oSAJI7xNyPu5PdI6f889J6eQcoSk6DG/+bFq5dH/zG1sD60PXWhrZL5Rk24kyuOSPq7be1y13siaJevzGN5/qIN8rYINMS/NUBjtcMQz+8xZ/yUosz/8x5ivP/c3nYi1+S8/EXMJYo8AWEFs9yVxYPwrCxwSX76YZOP8lYWRd3Jd7p4Mid8/qDM9cZDjzpgYJH+6RDHIVLXoVhO8+j0xBvaUM8j4Lhwttrih9ubD6HWqiF5WJiB+vnLWh8FvFO8DxVGeiy4cpBfVAWnBzeLybDO9M1MdnuXltQo2xHYfQh1Jq/HjaIF/p+IBRnjzl5T1zZqi7PIV1YUfS+Py82Y0+zIRwstmGD5RLuTk8bU1a6KiWLQEVt4zHLvWfsvRjTn5EO82ltqjalvU6uj9qf/J4lutnVSlpmkVbHjjantOqLQKNqSUlOI1vyjV+GplINA1bUJP4RxtZPx+MQVuGh22FNXF4qBAZHwVw1lKc8RnVQKOszyrU38ND3lhnd/eKvvZuPP5GONxA5Yh42DdtEaRn/lkKRXuWDp5Zfc4gbSqMQgQT4+Jo/myXhGclTOFQDcoilrzIxiRdpkzygBAdJYc8jvNxyrY0M83ijvBJ9DsaYEdbbap1t3l2WacfHmRwz5IfmcsjEbQzMN42CcCdwJqoNFS5+qXaqju+8/+xEQdErN8sT4b7yQEItn4i4JGab9Iei9GLZ+mSZ5Y4/snpRv0fRy1Clfdvkng6P0Dkh9IR3HTF0UhOJ73MVjvYENs8N+N6FfjUH+NY1VnQLzrlxKxoVrCPIvsdUZE+l5QWHqt7saA277meNjjEq4+Y0aTb9SF479KEwDdyMtYHYGgCSmqC/TqLOwBoHvqA+wPq0U3sKrih8wn1eG5qjnH0RWJv4qEi8eh02idjoHOhBpHfBPoGjZA2txA5Axa5rBeLQYjdF5eKL8l3jkl7lHIZgMbT+7DFBAt8QZPEh02D027ii1d2iDh1B76PPL1ODRIK6L+2rTGtqiwqdzrbN4Qu4Slj7Tg4RLE/rNwqSY+QnjYu6PTwZh9dn9INMp7htNwq2BTCGHZ85RWh1iwE61VsNHfciHsyixRZYAIYV1TeTO+VsGmEMIsBqPqzo88bxKPHeTJLl3Q+OP0grFcCAPES75WwQa/UamUHpvXvR2SSovwkqg2GOBWlytrvyMzFPwVN7Rz5VArA8uzfNCffakToJeEhNHnBPqdmAYOWsOrupH0rBCWtbYjrIKNTpoE/fuNUuXt5EviQujUbGlBZBVs9AI7K5Q0TfKkQhgA6PYep/TIZ3IHN8W7YWEVbLAWiIsIuZEXR5C3ObXnRAgj/tgISP4LbvlSIYyt/9f8oqCtKd18D39PVN1691pbp4tIooIiz4dA17ABHm8hXhQfVEfsG0QIU2t3LJ17le4fCO4PUVpNsxiMMD8/QzWc8tC0CTUbD4j3gKDRqC4wH9pFa5WsUZUxHqL1s/SJ7or4MzPSFUIYyV++SUGskrHpV95pRuu3e+oDLAv2p+/lXgvp5K68ZzgtU+kfvijvGa4QwgAohTCAOjiODe1JeSNCGFv3d56Ogb3XRcrP3dEx1ChB/pviBgvbznM+VB8jg2YeBjQauO1KQaOlSbg7OgYad3eFUP9W9nEaxqr4zcs5TPs6iU+Qvoo/hfd/OYmLQz6Jz8YFFw6hXmwmLAYjHdMz1oSj4SEv7P12ueo4QsKIEEZA/MCpbQKx3+VjeOg38U4XvsbYNMq7xWCk7jMIPSKEAaK5cQDY4L8bABwKYSwvTd7Uc+MtG8fZ/OL/lA1p10V1wTlZ0mYdySckRa9Kh3x/2OMSbkw1UfPsaiDhfr/zqvdEPU0NRJsi+7GVHD/ku9xnmXy+ZMP2h4mqufOaiirFVY3D7HyiOqYLNuga8r7m2n0VT+OzxsCIkQ+/bVMVY6GcD0e/rYJoMMnvV97FydWZZkW9ELBuMhyNvWx5ym/cpEJYxjfRsAo2ZHwVo1hnld8Sx9PzkxfT8XPb0QToQltzwijxYXr1GcnfIRHCAFHtN+HUHsT2HUnfWYNVSZzTbFYIY8tQJlxWlOdRRTnsf8v/fztcgtgjBLfdJ7gJsKx3hGKQmZsjOjasvekwXTzrW/nAb/sUGodOQq+IE5zpxRlcOLFgZzEYkflDR86iGTs4Nk0Sdx8WPv8N1X0HgANh4iTRPfUBTUcGsrX5h/DY0PEcz2qLYIvBiPSVnRTxWGe2VsGGiHd4/xxysLSv/xYMi0G8iwAAdSsNDdx5OgaGTxM5PskncerM0q99RbQKFTVHFJbIPRI2T/Z7+Nw4Lk5aRBnK0zLo7x/bGOiCrdmgNFgFG4I+51X75HQByZoUi5IBkei77ogiLvveTP/iF/VEvYbkYRVs1Dy7+37xLlrWZ2K9x5xU+pNKX9FJsQjq9FYcdf5tMRhRlpvHpSEOlQmy1xlp3InnL8AqiJYO1cpNypEzcBn1naPpKFnz+z3Ui8ZhBUUA2J4tnVIdf2sx7o6OwQ/W7sj/pR3aJY/hfO8QlOxsBYtBVFeyGIwIOMo7Q2d3NS0GUS2Y/a1xq6FoE1bBBm2dOjgUJvkzA4DJH26mtOkC3sND4Vcqd66JOpf1OVwHCSd2cj54vD9KBOy8SX6Cx1uI48bOX75TtPfg6UcR9rl0f8RiMGJgHd7QhbMF58T5m1HSP5KG7X6gw+R6l7E+PxH9W3eli0IAsHhHcFbKiGoQANToewGF3u70/qKj/MgYRLGpFseftl0bxLbphqJh4uKK+GAjZbsaKQo6HT+IR8u5iYoFN2uZtJ9PJ1gFG57PFPso7HYa1/PHZOzIOYy2C8W6u7hJvBv2nn84fd93QusDAAafvYZX/KJxMupHRXkAiI6iO0tjUcbCaNVFKnk+y7cznQvIaVbQuOO40fkWYjv0VbzjlXkHFWOuw40UZnHpaDMi5uUZVK3cEe4Mc+fSEEMz/rsmKcpGzI0P6DKIC5cLYWy52EWrxWCkps1J/y+YY+Y2OVhaRFj4KCCMow9I95Dkwin7veFy/rSSoGJ3S2jDJOHb67ieW9jbW4hzJrEcyqLVkVo0nlWwIevzGGq9DwC+DmwDy+m7kpC3lRdS9M2aKgSRAV0G4fNA/s7i1ovqGjLeyXWpUN/wkCQwknpIOLUHVsGGM6XiHE+swloFGz0Z5DY0Ku/0OWpDbFnZ39qaNakAFhzHWzeW+0hkaZ44JLkfqEogY/m0CjYEPSPezc0ertTgYdNpEk/S9OVnziv6GQDFKal8IyPhj5+qFIzV2pYL/7fgEsQeIcy0SZ1d4+6O3d9L+thkoUwmMXbivNSvBXL6rxAXfx1CaKcmu32eP0rmUQGg+efS4BH49AnOvCs7ga/x/RNWwYb3/MM50/elf4gTC1l0lcSKC7PynuFopKsDzfs3VAc2kgf5DJ4s7iBlMxdoWWe2AJDyzmJUdDGq1pd8N6vRE+Il4QareFPgmnJ+oI0N662gZfw4nsYhg6vXd+IirTwjW7FIIP/zcg7j+JuLFWqIupAg7vdbU3gfa+XXriF0gbTLqLYQ+zRXMnP7sI94IrNv+XJY23niWpxkhpqATBrEyhw7SRGXAWx+D6x+KOkuOkslF8LJKRhJf/l5M3JiV9A8dt53w42p4n2QhLP7HS70PNclQ1e/HqXh/5SYd9fUYozyuAWLwQhvfV3FZB344wyuLH8ObAtAvMyuNlGxi0kAMP2LP+Gsc7kU/i8nodkSdzRZUgsBL0m77+TT/bFcWAUbvTOyqIVYF31HT+Tqi6DWr5KKlVWwoeYufue7rLf4rhrv0il2Zid4XqU0SXhFYSH1AQUA+pbe+HTUd9S5bF50kUNhlfBFdsJJvL6jJ8JiMGLrxaNcWa2CDc0/T0T0q3Fce5B/suVlBd61bbxRc9dJZH4vntZ+EiD6PhzV0kzvOVJalX7k+g0YQ2kPzOhH+aj/fZLi7gzLp8VgpBsGhKfyngIsaY+LVkshniyU371LfbCR9kZo+G0VT83YRR1bPmJYQGtsC3tZGSwGI74MDFFddFkMRrT8QKRzOmYtrjzLG+e51EdU0WX9CEIjmfrueeZJAOLmBxFUrIINQTMPI/IN3uE4m2/6kijkT1U6rb0x1UStsF2dKRly8pYZUWAX444We+T9qrUzMiZbDEbcmGKCvoWBOp4mNLel7FDlP7uPpO7M/neePYOefGd8HU3pEBP98vFWTpeYNidobHuI2psOw+NAIy6cGC1SK/fDPrzbF1bwIUZE5PmyfGl756MiVTIEJb9nW3H6HKyCDf1+V+a91DsJMSclP3H1zmsUav/Wdp7SBkqlj0nCX8ZsaeOP1G/mpOY0bIBZNKYysEUk1Yhg4x/Y1x7+r4jz5OEjkpEln8N1oK1ZEyOye8NiMOLpT19UpLUKNu4kiB0fyH/Oxya6TgCAjO/CVTcDKoqLERx3RFVIcwaNb5EinsVgpBs3VsEGTaS6GXjdXoOCl6Dv+f5X/HgUpUP8lloFG3Lfd65lpCZ8sv320otmpC+Jgt3cgYvDrr3ujFZ3B/Mootz+9/z/t8N1R+wRgCNjHRq9HjvypOPuLUV18fbCcfT+EmsONX1xFILjjqgOdiw9YrVLdbdUo6G77ASOdlLlg0fHD+JVd7DkaS5saA/fEZJ1P9OLM6ig6Ahf5CYhtEYtbrBm83eUl/wz720zfN5NhL2zEZpDNoflU6NFjDqQMMIDwcaCZAz1FoXljIXRyB68VHW3Tc6XnI5VsCHgpxkIfD65yvKxv9XoOJvc5HXDhg+IGkAv6GO3NzUq4YgmG+6/cTrnBBgQTxaJUMvymvWpiROMHJWV5d0R347SVafsutDWKK9TA5mj6iDwhWR0TS3GG42UljYd8UIu1stRMiCSOnvN/SkMrUZKaikc/1HtOTPILC6+aobPxsuq9w1fz7bh4wHDudNXR3yq1YMcJJ7f1mnwPK9Hsy+Vu72Rx0dQH0xDMvtiU+AfHE1yQb+q9+MMjsyIO6Kpdl9DzndV/Yj9rmvYAOU3bqKsdwT0u8X7bde2tkbjgecBSPfe2HoemnYV0+oJksB59gb1wUSwPO8gWuhqI7aF+qJUFBynIWegqEJ1d3QMkj5XGg9wVib2OeFNLR25nyVvI/L+PKDzk7hpak6tV1bFi7ZdG2zfKb0LbVgbbN+h/m5Iuns7/Kn2AuGjc+oQ1K202ulsXPur4wKJm1Z6H7Nb8X7Zrk8zIeWdxQo6aoah5PlQc/vMcwBIf1hENxtujzNRNUw2TnXm16rGe7UyqrXtvxKvOvNrbJ8RSNi1wSG/d0fH0PndkOwBIUbarLk604wTry9C8HdxSB+/GCFL4+HzrvJutrM539ncR74/Nmw8NIknYRVEY19nZol3RNOXRCF4hlI1GgDiMjKxOCgQrY7UQm7UA9X89M2aYttxq8P35yyMzAdqd43/SebrU882+VvuiIW1vfpI18e/C9eJ2CMEuUd14iMLEDv+oDr30Gy+pKtOhDBAOtbfcK8e3RW0CjYIL0uTDbHiRQeFmDBKW4wgCWFWwYbWx8TTEb1vS+S9xU9aLCwG0XQ3Scci4zveihcRwshO0fDXd9Lng89eU6S/Nd5EhTA2P0LjzhjeQS4ArC1sSJ1AkviaiFA6yLNCGAv5bwDw3zgdVkHUYbcKNmR8F87tcpF00y70R+EoUec85MN8tF4pqVSS+Cw/5LPDvHhF3oHP8yeYVsGGe8N5tRurYIPHgUYcfZaf3mMnAwAe2sthMRgRslRpzpjNAxANJ1gMRpQViBbVNG41OCGMTSMvj1Ww4c9iUCGscJTkuPXIR7z5ZhKfCGEsH8RhKq2LfRNU+SZ3hdTeGYH/ZnVzzfIJPeGPn2Dd8j2yRi3B3dExOBBWUyFwsjwCQMY30VQ1s8JNo8oHEcIAUCGM3fGnaVTMslsFG3SenmjxcaJCCCPxPvA34nZYQxp2a7xUdyyv5A6XxWCkppKJqigZDwrmSP0lZ+AyhRBG0ODxdEpfLoQB4h1H8u4B0bQ6yUMNVsGGoKPu3O+EXRto/IuvmhWLPHldNXnyHPqdG0DzkdejxWDE1Xiz4rnFYITXIfEuTPpD6TSCOPLV75aELSKEAcDuH1bS7xaDEbfHmqgQZhXEnfiZ9SWz2YTGVJ8uVAhTq4eQZfFo/Yx0EpP0+RLVOiP5Omv75H3rPD0Rl5EJXSOxnUS/Io5Ld7qIdwY1bjVoHYV9Jp3QA0Dk8RG427EZPWG3GIzInWuCZk8LaGvXhlWw4cGTURwvxF/j7xfFumNPjByV4VDYJn5egqRWzgpD3sl10XfEBBQ/EUXLx6ZTaxuZP3SkYWz4qVLx9Cjnxw70WaNlvLPwrLViWiKEXZ+mfhpiFWwInnqUOvFlx+RZvp0pfVYIk9eBVbDh0pYQ6nAbELUP2DiA5DA7cK94Wq/tEKJo7/I0ZJ5kNU/kKLV0Um1T+W+I45V8niX9MndwI8W8RrQarIKNCmFWwQYhplDsH5V3XcnGrd8csd7J/JyxkL9Hy75rNSHsxUvhivjsd7ubFlfjxXJ4f5RITwtzBi7j0lV070hpLg4KBADkRj1QnQesgnh3Wy4sAkDwfvFqRqlFunoR22cE1z5bjUxFzscmTgi7+Xsw7af/FFT8Tf//7XCdiD0CYE/EtF0joT1oA6C+QwXwA82ItMuYXO8yF1Y4KgaJXyxRtcBHkPFdOHDHDcEvnqCX3llrZdXZYVR9xpygAMCnuckIqyEubB8MisKfi5aploktl1WwIXj/ePiNPsntRl6LM6HxYpUTlMo8HdWXvM6qKkvDQ14KIwj3h0RD6KJB1ihpcdTPLxr2khIAwIV3zaibZ1eozACi+tPCoGDcmGLCsfeUO66AKHDebgPOOW5Z7whOPZXFhfdM8H3Lucl5aHW4OypSVVWR/AakiYWY3q4K+a+bqYoWKbvv287vkMih9m5Yy41sPLWdUbd9zfF78Hb475qEoHGSWeKK7h2h3X9C0X7ldNgwYu1KvqAjeWXPM9H7loC4ODH2T+PaiKN8/LZMQ3D8ESzPOwgfFb87JA+1vn15SwiaVbotCDhaE1mRxZRuxLtx8Bh6CfvabcGau40wzvO6op2QE0dnfVgONT4cxWPLWxIbyfnisxiMuLQlhLpdUKv/SFs5Z/mSNdteODIGpXU1SHjnMzTR1VF9L4DYLz1OX1eYSmfjETPXjurh8nNmNPsqUbV/VFUPL2edwicBvAqUWt+s6GLEHxtW01PEtovi0fJ95ybq5a431MpHylgdXtk4t8eaUP/7qvu6PJ2+hQHbjiZIeVVaTXWEOVmp3N0sFoPPXsPmto0pfdbBtLy9dJ05nZ46q7UlQLLc6KgestZ2RGbPVQCA/o+NokKjfHzJengPI1InISVig+K5WvuQhxc/EYWavx3haDoae9RosfHJs4A9EzGgzWmc7ySpMxLz8yytEWmXsXbWANEHZGXacnsF1eZwBDW+wo5rMMYrGa/4KQ0MqbVBRzQd/VYLl58QkXzaJY9BiyFKU/skra51IBL2Kq2KOkP6kih6+pz5Q0cEPi3dydZ6eGD7+QN/adz8K3mz6QC+ffRuHvqPMV9v+5tOxIz/5SdiLkHsEYBcNdEq2NDzzJOo0fcCpx5DcOkFMx56AmnTnPtByfwyBlkjlzicqHM+NtGFt9qgKfeV4WwCyfwiBoEvSAMo63+GwG7qgJ0bRQMCGr0eQ04JdOIFqufPSs6rWrnkz4l5ZBIuN6nNYnXeQeqoMvqVOG6xwtIl6kssiHpKeY9w6PYdF3fE/nUNNfoq/TexJnHV6DsrOyBezC7LzsW9ETE4NH8JOr0ZR4XAjQXJqKuVrG7JBRK56feqeHjwZBQC5qRhlc8B9I99il6cV/O1ZRVseDq3B55vvhOvjpvOOc12VqbqTOQsKrp2pLSdLW5I+Z1B790Cb/65FW/7S3dG5MKlowUVi5u/B9MTo6ri330qBkmfLaFqM45QVfuuTnw5P87SX59uQsrbjs2bO9ug0XQMhe/SbCz1TkLATzMwufdezngHwd3RMSj01aLFx4m483QMvYNU+ocv9ob+Ki6sQluj/Mx5Lt29ETHQlNtxcIGk9sv6TBpgegJlF8STKGJ2XF4nd0fHoMHhy9h2cItq+Yj6slUQVZrcsi9zVubYcVGOgjlmqvYkr7P+j42id4bYulWrRzU1c/I9a50RAU+JJyiDMizIX+uPRsuSOLqsf0QCy+m7sLaTFjFWwUY3Mchvlq+/guqMwfI2k/eWGT7vSf1LLuCp9eWIlBFo9EQ6tB4e3H1EZzw5a6/EzYej/pDxXTiy+36LTm/F4UZ4OWf5UV5fcjcCaiDmyp3xRCDfHCB+Av8KWB6LhkWjtK4WXquV8+u8nMOcsMW6r1HjsaR/JNy3H+Weyf0KAqIq4iofFWGGEd5ZgY74GmVVve9uD4Bnf2mThVVvZPN/PjMNXwaGqNaBxWBUuLSo7njodE6OCeOsIGZ9HoPWn+YorBwT3JpgovXvSJAdkXYZ69o0dAliDP4vCGIu1cRHDHX+bAyLwYi9ob8CAHZ/L6nBFD8hXuJs/kUifN7hrQAC/CT6sE8EVXGTPyPwe1WcwIlne/ZSqsVgpEIYyYedQNiBLP9NMxXCNO6imlFZwUXc2sYbrCDGBwBRTXJaPYEbkI6+uZB+two25L+unHic7cSV9BcNmfQZM4l7fvjjxdyAes9bMqktpz3BpwuNd3ieUqWupH8kKna35CzpAcDVZ8z0jsCudd8CAGpYj6FG3ws0H2JW3CqIJnHleTubDNg4FoMRZdm5sAo2HJovCtrsSdxQ7xh0fWa6wqIaSS/3v+WIB31L0cF2rV+P0Mlve8I6mkZu2lzn5QWLwYhr5tsYtuMZaA+coObb2Taj7SBOmES9iX3O8qNWH5deMCPSVo4/flpFw7rF8RbF2LaptkBkv1sFG7Yd2Ya3/SMgvCS1N/kJH6Hltq+5w3dFhDC1vAN2T8S9Hf40f891oiEWuRCWsUZ951re5+T1Ji8ba32U5Yftwyx0bUUrZH1m8ObNM7+Q1K0IHdbIAAv7iTPIjXqArs9MRy/zKbzW6LwijlUQ1ZVafCwuMq/0KKPPrtzxQM+JU2AVbAohzCrYUHdDMieE3R0dg19sksBBhDBANDtOeDZ+JBniqXmzDGXZufDbLuZDjH4QECEMADSJJ6n/PsIDOy6y9QIAZ2aJG2PXtramz0gaYq7cYjBSU+DkN3Z7c/SImrna2B5QafTGYjDi0gpRCANE8+IkTt8posGait0tafoXGkjqrWSOIUKYPK+y3rwQJ4ejMVheT+xzNs3DPhHweS8R6asiaB2VXRRUy8uCGGPafv6AKj8r8w4q8pd/smCFMLX3md1XHMePvbcYOYNENbbr03lrjYDom9KZEGYVbMj9wORUCJOPS/ITWkdC2OvZfDoAaJxYX1HmGnfL4VYkKnkVjuTHhlf8JKudc3OOoiDmHtd25WOz+/ajuLChPUIOjaU0bo4XDQrdHS2NF0JMoWrbuDFRMoTBvh/vD8UyEyHs5kQTJ4QBoOqNJI1VsEHv25IKYVbBRg3XsPSJSwsA1DS/s7bBplebM6yCjRPCrIINAS8mo+zyFeiCAxR9BIBCCCZtiORfa39TrHl5oCovjyoqoEH5//J/BTRVM/IPh0sQe8Rw71UDAOUpBgDsXyrpNMsXrWw4ANTKvkFNzrODB/nXN5PM0ZPBzvdtcSDsMXUqN9gRkO/hx0ZyeZ6NW0TpElU9APAaIBkRsAo26Fv5KAY99je5h0XCW36QiILXzDCe4OOrLSStgg37VoqqUbq94gKj4SEvhSBpFSRdfblQGXl8BJe/nNcRaZfR8+ND0PbOV0xQTb5JhNbYVlEmAGib+DQuvmKmZsXlkxMAPDZ8giKMnQzlIOF+O6Zw6QKO1hQns02HUX5NeedOjQaBfEFSll+AviMncs/l6dlw4oMFAHKeFNsqa76d0K84KaqrVdy/j3ZfxysmxHoHGzps3/5PZuH9JqekCbazkVrFdDaxOmrP7Hs2fMqbN1fjgZyyUETxamnCv9QXTIFjT6BuP9H6prZ2bQBA5vwYxfsmapbyxUZEygjKJ7nPwZZD/p014w4A0GhoHV3Y0F7RBolxDFtHqdwFr0kbLGwerGVN1pQ9oXfgm6VY3lI0Sz8zI51a+JTHsxiMaPm7Fu9mi6fTLYedRg3rMcS8LN4xIe4x2PyJKw5AtAab02+Fgj9AdApO6q60vvS8hlU0fuRxRnQ5QBx5E6tuANDx6CjVPmoxGFV98rHPLQYjvU/W4/Qg1bbodk+qg6x1RqB3gcO266z/shtFxLw4IC6ULQYjtL0lwZQtT1E36W4xQe5cE7o+Mx2AtPnnLG+15/JNH3n/6ecrLsDddqUga21HBE9McbgIJhhzroDSfPhYJ8X4T1yVNE3yxGSZ4/FbE0yq84Qa5PUvnwcIzcJWUprM+THQN2+GALe6XBp52S0GI1q9Ls05uR+YnM6DjuY3tc/xO6cp4l4z38bDPhHIf8OMnhPF+cFt5zHU/VkUcLZ+9jnnDoTN/92ugxT1LK8bXePG8B1xCjUSPQCIJz1EbdDzx2RO0CObx2QDp59PJ7ppyNJ/+FgnLuzmJBNn/Vhep2zdkg0YEkbunqn1pZL+kbg6uDX3non/P2KdOWd9mKLfk7hVCW/aDiEoT89SfX5rguM7err69bAlyIr9S5ch82vnaqQu/PfBpZr4CIBVTbyy2UgHNUfW2NjJxmIwIn1VBIInSjrhgPogJA/LWR8Gv1GpUIOcDs1reSRyBixX7OaR3zemmPCwjgbNvkpE/htmnI0XVXUy58cga4SkJmn8OB62VxfhqZyeuNH5FnTBAUjYt1GRp1pZ1J71OV2IlxpkKeKrlVvXqCHKr99wqqKomi4kCOVpGQ6FI2eoSqCqTlpn9UHijbvQDYeS2zq1ukjiElry9qSrX4+appfTkMdVo/c/BUs78McZCHhRutsm/+0sL7mw6+g7S6Oq98Dy1vm56RD6VCB4Om8l7VBxBTrX1Kr2vf79R1MBFBAFBXKqycbPf92MV8duwPohvTjLgWr8qNWBWjly3zeh1RtJVH1ILZ28jOS5JiIUmnI7tiesQ9vF8Tgb5/gODlHXZe9eVAckvweDolBry5Fql606bVONlqN4fr9PRc7jy6vVDgD+3h4g+mds/nmiIk9d60CUn8/k0srvTmk6taN+4h72iUCNG8WwnxDngYLXzA79eBWOjKE+6Ei+XWZNx8EFSykPbL5yVXdF36/kVa285E5SVXBUv876GuG9+7RpqPn7EUxOz8HKYD9VulWFEbU+R7wB6uMeACAmDDkD6yB9gqSe+7BPBL1zxeLDnCN4za96psYdjZvkWbuv4tFiHn9C12/AGFx6u4L6nqxuuwSk+0+hC+Lh/ZHj+49kLiyYYxZ9E1YBYmlQTVBRK6v/L9MR9Oxhh+VnLRirgVie1XYIwfbtP9K0V2eaYdiUjbJLog/UwlEx8FivnPOc1Xv+m2a0nCuV+c6YGFWVY5aOnGbY5/G0z1sMkgVQtTGIgLWMqoZ/ktXEY2eaou7/smrivcIKdAq98kjXx78L14nYIwb2QmrtzeIAxvpGWZ+fSE8pLAbxzoDvz+Jr1HYIQcD6GbAYjHg5i7fAyC7kyScrhMl3nsiOGAmzGIzI+dBEhTC1HTurYEPDFUl0EiRCGAAqhBE0/VqMs85vL6yCDeXpWWi7iLfsR3nQiqp0Zbt8AIj3OOT87Wrnwe3iqZUbENVXrqwST1y0r191uPNoMRg5K3RWwYbL3RvRZ2xcOdhwSi/tcVgFG4amXVXwx8ZVTcvswqm9R/LdYjCi4O1gzuoioan2ftl0A8/eoLTKb99xuvPHCuVsOdj8NhQkURUQmn9MGHI+cmx5jM0z4MVk3B8s3VsgQpgcN38XVerIrubGAj4eoXl5tpmrO4vBiCDGImN1hIbsdWIZ7/rpEDz9KG5M4a0UEue+clgMRmzfzjv33XZwi+ri4MWnN2FtG2+UnxXVsIgVSXlbk7d/tXKQ8FZviDvQtX49QtNlfR7jMC23UEo5Q+8EkkULm4ZVfyN3JoNnHHHYR0afk+5Fsm3RKthQa4ukkqfWL9gwzZ4WqnnofVtKi7V4s4IWIPmH6/fEGK5v5DwuGRuxCjZ4HWpA1Z3ZOiK/iRCW95YZGwuSOf+MbJ4Je3/hyqkLbY0etXhbYPZjp6HzEv3R7VmzEsLbFZS3Vt9K6lmXt4gqWLk/iUKc3BE4AKq+KR/7rIKNCmHyOu3yrHgadn5GI9U2YRVsVAiTj1McNBqaJrbHUEU+Ok9P1T4SNScOFoMR+5eJGwVECHO24FcLy/u5PZ1/WE0Ktt+TNM8KkcoFc3Iq0icspvFK//DFtZkP6PjCghXC5GOsI979EqbQMPK+LQYj7ocWK8ZA+4kzaDYoDUPTrnI8VmfegbtoLZcIV8Fr4rh4hF75dXHclwthNyeakL4skksDSP7M1PoVIPbL9YWSX8WgZ/mNZHm/1hyycY6sI05UcOW4ZBZ9oWa/Jrn1ASpPvWpK1lY91ifjxlQTQg6NVa0f+VhhFWxUk4egwRFpbiaq3WrrA/YdsX0e4DVA2Ph+CVNoGBkfCW3WaiwADA5W93/mwn8vXCdijwDkxjqyPotB5lNLENu2O8pv31Hs6sh3C4t2+ONg2Canu4VWwYb+/UZRC4Rymu77m6Gku7i71DTJkzpSVVssytOyfmDkvsjUFjHyQQoQBaTJMsMPVYHEZXeFAfEk8cDCpQ53whyVRY1HZ+nk70deXnL5WF5WYlXr1ngT9a9VHf7YPIifnYKNofAeekbxvO3CePitzuUMgphPlqKnx1l84M+XtzrQ+7bEtqTfnKYhPBDfMfm/tMNZ8w9cHHldO6PDgr34zbb/OwmBqBeb6TR9zvow+C7UOTQcYhVsiHwjDk32XERZbp6CjrxttPs6HqefXUSF0eCpRxX13/vpyfS01Tu5Lo5sCsOp2Yuw7I4B0+oJivJTQXpjKM6Y1irKr2/pjW2Hf0do0hh4Dz0D88lSJHaoQZ8/fKwT3HYe4+i1WRGHc1MW/6X+JOdLLY4j4ZytI7WyyX8/sPqhliWH898EiNYeM8csVtBzlMf3+YcwtmVnh+MdsRCoJsyyUPPp8z+BVbCJGy8hvwMAYjv0Rfm1a3Rcl5+OVknLYKSWStNXdELwlGNcWdnT1QGRsQojQH8lHxZy4xJsXEB6D7FhvVF+/QZaH3PD14aj3PtJXxWBHIt0zzn82Eg0HngeXoca4Fbnm07HWpJPx/fj0WSRtOAt6xWBSyZ3PPAuo/fpuqc+wGuNzlNak9Nz8NFXY9BkYaKir1TVPuX5k7I2TqyPH1rtEzcy1hkR/MED3An1QsIXXyqsExNLnQAQc/Ihkju4Oc0LAHcqJT99vPprGzR5Upy7WR911Z3f1OJeft5M3VRURcfZKeOlF8xI/Zd4P7LPmElwz7hCDXU5Wz84+s2G6Zo2QcKJnQ7LUFVZ1eZPefzq1CGgHK/3PdDSDRVn+RLIN5LsvS6q0i6zP/zHGOs4fKbZ33IiFh16+ZGuj38XrhOxRxAB/xIXAwln99OOurEgmXbsEXXvcPHrVN49AaRB4/nMNK5zWwxGKoTdGxGDNivEHbL+/UYBALYG7aDpiRBG0rF0SRg7eJGjeADQ1qrF7dqRnbOqBmPvSkuFFoMRISl6Gk58jrDp5Hw0m5mFwlGSXnrtzYcdLgiJn5a3siWT5/eHRHM8qi065DzEhvZE+e07KImNhMVgRKsjtWja3k9PFncjP5TuHLGnfcS0sTMhTD5AszzF9h1JBV/voWfoc7d9zZH5pejD6ezMRXRBRnhI7FCDCmEWg5HbJQWkXXY2DUHZhXyHu6C6Rg25uib+j1oOO829fzbtgMhYLp+BZ2/AKtjo7q9VsCH7E2lxw1rfYjchiBAmf0+T03Pod79RqVQIk59wEL4bfJukKoQBoKfMgFjPxMQ6AGqgRT4Rs76mCsvccb95BSwGIzaGNIHFYETrlXEcH37bxZ1yIoSRZ6R+bnbxBiC9b3ZhCYh3QEhc80nRHcXCMcs4WrpQyYjEjckm7h2r9ZVrM0ywmzqo1u+NydK7mZyeQ99vr1NFXPyVeQcpD8TwB0Eti/iOGi1LQkHZPczPFeuVCGGhSWM4fuR9lOQxtmVnGlY0LJp+375DNE9O7lKx7TDmpRkcbQDIHr6E1olav2fjyutO1zYYVkE0HACA3vuyGIxIOPmHWK6nRK2Aa5H1VWk7A3EXMabTYWoQgbzPsuxcGk9NCJOXh+UbGg2u/xYMi8Go8DO1PWEd/X5ta2tKJ+zIaBpuMRiRNjcAAKgQBgDDsvoAAHcPzGKQ7s+t99sD4SUz128Avl2RZ6wQBgD6PSk4O3MRtSwJgFrnXF1psGNlsB+aLEzEgyejkNihhsN2zuZjFWwo7xkuukMBFPGIEAaIRlPKz5zHoflLOCFsbo64KUPcJQDinUpSd2xeVsHG3Sn1/eUy/c6ePgLAicj19PvWtg1V6bFg54/Hz4h3d4dk9uXisL4Czc/P4NIBwPXfgunvIy9/hXoHG0LXuDEyFoh9jPj7av6FZDhMt/c4Mmf4UBrTC0zQRIRyZZZDPu6wQkz5lavcc/Kd+EOUrzU0EaFcvZB2KIdVsGFqvjRuEFx81azgMezIaAT8JNZPzofSu/4oIIwbk9h8LQYj0ldId+3YPHLWh8He6yK9My8vv9yfrAv//XCdiD0CkJ+IAY53iQD1HWtHuzbkLpazXSRndz9Y3WsAaPd1PLoNPY5FLZSX+KuLh491AirsCr17eZnZexNykFM7wle/gU9zcR3tSMnzuD8kGrU3ieoTN6aacOxdaWde4+4Oe0kJLr1gRvMv1HcDrzxrpmqWANAuRYvTEZLaEfte5Hm3S9Hi8+bHFXwSvX5H9eIo7MosM/TFdhx7lzc/7ogHOa9y2uTz1rYgheEVlmeLwYi8n9sjrfP3SCu9j5AaojGK6QUm5EaJBhcyVkcgaAL/vu+NiEHdDY5PIOR8E9P5F94zoaslFXmmYmoGOe9tM0q9KhA4O9mhWX22TLqmTaihhqrqtSrIabMo/cMXNfpewO1xJmokho3HmuF3Ro98vz3WhL0ffYXB3lEomGPGQ0870seLbZa4TSDQN2uKsstX6B0jXePGnBN4Z2V2ViZ5PEBU87OnnKEnhMQEu1pcQi9jTThnuc8q2BCwYQYCZycr+lVV/DqKI+//7LOsz2LophcBa4LeKtgw/1YrerIBiE5f3c5ddNp21PrbrfEmHPlocZU8qdFk41UFZ23HUT7O8r5fUYrB3tW7ByU34V7VSZBVsGHN3UZY1yEAO3LEMViNj8zvOyKrt2gltfXKOLR6s2oXJ3cSApFs/MUhTatgQ/vDT8Ew+CwXrolsD/vRU4q4BISW/JQNgGhg4luRN9Y8P5k/8n5uD5/hEm21zQ+LwQh7ZyOyhtdE4Oxk7n3ufqDDJ2PGUGt91embjsY/EjYqpxdudb6J5zPT0K92CTdmA6DuJeTtkL0P2WXWdNTZqH4PzBmPavVanXKxd7kmnr+AVa19Fb4/HY1far9J/lbBBr9fpynGLQL2zr7ezxdlORcU+cjvjVaVJ0HRsGjU+UWk/U86EUs80/xvOREzh156pOvj34VLEHsEoCaIAdIiv6rBrKqBjh0onAkGgLg4yu4jOtX1OVwHX7XYi8HDpgDJqarx2cmHLDbVfKqwzqKJ406rYMORkod40y+SLuCcgVWP6JpajANhNVXjqe0U9jzzJPVRJC+HLjgAC//4DjN8JXPsq/MOYkLlYr7DkdHUsa5aHmr5A44XABaDETcmm3BsrtJfk7NdToLg/eOR3v075wu3tMeRdbylwqHvgguHMMu3s9NyqE0czwqRnDNRYgDCGdTqoc6fjVHU7RpVX5THl/tuI2BVfQDxorXa5gHxoUTKoOZ/R14+UpaqFr1aY1ucm1EXwTMc+xOSw3hCtEQIKI0uVFcAcjSRk3wrunZEjQwBZZevUH9Reu8W2HZkGzq9FYeGK6T6vPtUjKqDb6tgw7CsPvglYBcsBiPnS8gRrwSsI14W6YujkPOkeCrHqnURekFr4uDvwI+hHPJ6ltdTdRY71SlLVXGILyC157qQICTs/tkpj/Iy0N9aHawFKWi7MJ5zlu6s7HJe1cYOtXhXnjVzm3PVnV8cbV4QIytVgfUZJ4fGrQbsD0sd5i0PB9TLJvcn5ci5slUQjetMPjYe57p8j74jJ+KPn1b9pTpmQVSDdSFB6L7Bhm1v9ETtbcdhLysDYsJg3bSmWnWslm9snxFI2LVBNc6NKSbav9XamS7IH+UZ2fS5/88zOPXbkgGR2Ld8OUIOjaVC4qILBxFfOReqtb3YboNRnpnzlwV8Z+3s+jQTGqQVO/U7SdJfn25Co6VJimcsn4DkY1DtubwtqqVnHcGTZ+x31uegvFyZ33dE4Fj1DTYCYixNPs/fLaz4xxjrcAli/xm4VBMfQVgFG6yCje4Iy3dRyXPyTJ6W/Qz7TFSJ6x9oVgwoaoNi0Ljj6BY3DXlvm5EXXSTuhianQhfaWjV+g2+TKD9kx1/Np8qGkGbUZC4RwgDguXOiaqSaECYfoFgddbkQZhVE8/ikfAQBG0S1svtrDDR8UIaFS1eenoU+G//F0SNCGACFEMbmofZeLAaj6jtj07EmfNnnQT/EKd4v+e/wifgu/Uaf5NIRFSU2vjXkd8U9GwB4NrgXhJfMXB4E+ubNFGGkPKwQBogGIO6MiYEuOEBRNyTdgMhYxURMTGcnfb5EUT8WgxH1v09C4cgY3NoWRHm8MsuM2V65HP2WcxM51TUCuSNbh05QKw3A5L9upgKls8V5+tJIVNjOckIYACy5LRmNuPtUjKJebR2BrRfFtk2EMOI/jc0v723xnTw2dDzlhfgdk7el2L4jEbognoZrD5xARSMv0QR7pdPesoKLGHehG0oG3MHafNGUvC44AJ7rkqH3bgEACn9WhV2vU56IEKZvqa6mxfLz9XeDxC+VJvLJc3Zn+Zr5NqWR9bmoPkuEMEf0NXq9anskdXJpS4iqoMPSswo2Tt3NEdT6Khuma9wYVsGGkkG3HfJbniadGmet7ajIw2IwIrbPCI42pfNHc3Hza54kNMjHEzlPxOw/waicXlxech79d06Gxq0GbK8uQsDuiZiWno3cuUpT6o7ml4QTO1EwR9mfWCFMre4I6v2QDL2fL0efxmvH+5zk6j7IH71OFcEq2JD3s+h6ocT+EDMzKg3avC++33vDo/FlYAhuTJXUbtu8eUocIwP9YDEYET5XHF/7+UXjPf9wlD4QXTH88dMqBO6boFywj1H642NBfG+S+5nlaRnY074Oav16BDvyKu9sJqcq0uXOVapgajuEqLbj8rPp6MCog8b2GEq/s5sspN4IvYzVEUjYLxqP0ESK9UaEsISL4kn0vuWi8a262+tC+Jc4BsX7duF46DlpKi6+apb4ycxR1AXhW63tkLD0h0UcnywaLUuiviF1jRpC791C0U4IvUZLk6Bx408j1cbuT5udcLhOSv5EnH+IATC19EQIsxiMeCqnJ403/1YrAKLPQRL2wOrH8UpOcO3mDgq6BMRYGttXLQbjP8pYR4Vd87f8/7fDJYg9Ysj5sQN6TJ5Kf8uFJ/nEzEJXvx7Xof8sBr1EW3H/PkeHTW83deAGxj8XL0PadDEd8cVVfua8YqAlUFskyHH9t2BqjpmF3GGjvMwEV39tg+czladS5NNiMGJb4lakr4qgYVbBhsDZycida+JOWTITJOGB5EH8JakN/I74I3fL2Pjy3+SOm1wgkYM8939ZcqhLwoiT7GbzExWTW+TxEfTdyGmzefY+KzqKtJeUwPBpooJXq2BD2aXL8NshWncibUKtDsgdlXprk5H2omgZkSz2Ca1eE6Zg29EErr2U2ysclp+Fx0/JONJRPFmwpD0O2xyxLS64cAgLLhyi8YiREkA8mQUg3vGA+sTK1UulSuPZmYs4nkj/mJOVioyvJUenIZ/f5Mqib9YUVsGGzW0bUyevSZ8twcLbLbHyTjMuv4EtIuF1qAH9vT0zUbHgehj8QGwvjNPze9ubwWIwcgs00heJ82BSzorT56gDWiIcXzHdxf0cT4xp2RklAyJRni72NXKRnvU9JRdEih8X1dHK8gugDWvDxWEFn9I/fKlzZmKkh2035LNoaDR9pmYBU61N2MtEZ8/3dvjD4h3B0bw604zmlRskJNzv12nUMTWBxWDEurc+o05ec9aHcW2j3sGGHA02Xbd4yVF4wsk/YDEY6aaMVbChrFcEF59FwJgTqm2QuCRQjOG9C7gyy8cAeT5WwYa5XZ/gwm51vqnIj0XQhBTsuCBabAscewJD697F+cmLFfEGmJ6gND/M4d0JkHZHeGBhFWzw28I7V5fHK8u5oFjAA8D5WbUUYxh5Vp6RjVcaikIuObUZ2CISC4PEu20PPcX7l8RPFquaTdTsckc2BwA0XizOA8TfZdD44/RuYvCsPEV911ubjLJeEarvEgB83xHpkfbNQp5GeFkSYtl6J+UlllXV8iLt7uKmUNqPWaQvi4Tfb1O5sOzHVmLHfXeszDsI+9FTcN/fjI4hsS34cbLBt0kwfJao2t5q7DiKpkfE+tI358c2eVx5myVjQf/HRiHYrQ4Xl4UutDV2PxA3xxJSd+PcR03Q4ZN46tvOf9N0Wk/XZpgUp6fO+HH2TN8njwsjPMuxzm8vfTbbK5f6Gkv/VvR/JqQ2o+kHRD+OyOPihovulHQa6WxOcuH/NlyC2COEzemn4Df6JPatVPdlYzEYEfDTDDROrA9A7NwlO1vRk6CEs/tpXKtgQ7eaQNbDe5wAV/x4lGIBvnOjqOam8/RUDBj1azxA+LGRDneWACB7nglbi2qr7qwCQMnOVmj0RLpCSFATTsinfEe5yZPnEH/waYdCDAkn/tRY+uydAqtgw+nn+MVEzo8dOFosTfmCmY1D7papDbL9HxsFq2DDjq2S1UAy4cvzYMsth1Ww0fsTl5+TTjXJIvFo+AbYTR0UC1857fxjLTiaAOglbpb34EniLi4RCEjcvHfERURpv0h47cmm8XOeWC5O7G9KJ4oWgxFuO48pJmZ28pe/fzm/9Blj9CDYrQ6nVsnyfvR9cWFDnHk/sIoGPfJ/aQdtnToomKO8hM3Wh5yXjwLCEPSsZPTFXlPcOe/4oXiKVHb5Ck3TaKmkqjazfj4m17usyOMbH9HiJOl/uuAALs+egekK/sgJsNz0vSOQ0zR2odbmK1Hoct/GnzjLBS+LwUg3MQCg5u/SKcf2Heu5vsB+1uh7AQBg+pdk/ELer7M+j0GdjdIdoFr7m6rudl+fZoLW2FbRJw6FbQIqyrm8idPW9KWSie3guCOc7zUSd5ZvZxpf7jfxThfRfDfrPJqAnPQQdxkEbvvERb2aD8L+/pKTbm27Nv+jBZi8bgBRFZstV/zFGGw7moCC16TF/Yg0ZbsDRJVJQLyzxeZB+pWuUUMuftmFfGq++zW/KEXfUPtOfucMWiYtvs/cxs1JyhM3tbTBk47hVvl9aDuEOKRtMRiRsVpqo6RuiJ+qkp2tFBtiGr0ejw0bj7MzF9ENpMC9ovsCXVNRnXZ2K/H9Jpzao+iDj5+5hVWrv3K8eWS3wyrYcCVKy/FkFWz0hInA8Im6hUK2P8nLBoiOowFR1a7FkDO4NzxaES942lEET5eMpZDPLwNDMNlHVDMs6X7ZYR5yWAxG5L9ppvEKXxQNeF1e5smlu/y8WdFWyXqELVPF6XOcoEgco9NNujPn8UlAe5q33a5Bs/mJOPCN6A8ve4hoBbnOn43ReAk/nwPifeM7FXwfJv0o83vl6TR5lvWp0um3Whtnw86UPkB6tzXoeHQUnS8DXpLUQ8vyC9DgcXEc2n7+gCI9IDl3lq+J/mkoh+Zv+f9vh0sQe4SgdiRNOidRrwl8PhnXzLfpM/fHcqm1N/kAEhvWG/G+Xbjw/cuW4cVM6WSqb5q0+1l+965i4Dm6qCMaDxTNAsd26AtDsgdNSwYR771lWDRqMMd3xmppF3Ffuy0cTV2jhlTlCQBq7W/K8W0xGBEw5gSXByDu6LJliZojqfGRdCWxkYqBVXWBD9EHksVgRHr37+hzdlEinyBZulefMXPx5M8rTp/jngHihA+A25kMWD9DQcPRBNk4tZjG+3PRMlrmnRu/U03Hvks/lbs4s7z43Wk5DULfKtjg8464iNj77XKUX5H8rZA45N5MwAZpQc6CLCbkAoCcX2cLV4tBdAxOTr+sgg3a2rVxYwq/2Lu1LQi6L0V/SGfNP2B7xiGFnxyrYIOucWNeIKxUV1TLl1gcvdOm3CHv5FON/zGV5tWJgHOpT1OORl50kaIdqW1+qC0MSDxN0klFGcou5Cv4LX4iSnWDgWxisFbx5O/jlSvidz/rZLoxcH9wNJI+W4LyHqIfNZ/D/M535uglnMXGLUFWWk8XXxUXwQ8GRaHphrPUZ5laWcln/EVJXYw61Y6qvjoPWZCz9bL6bDS1uNh15nSubogKEsHDHpcc9teKYqmPkjGgZIAkLGZ8F07js3wAwIX3eHU1q2DDvBtBKNrhjwNhNTk1uQvDReub7J3DDSHNkPklrx5rFSSVyXcbn1G0m6vPmJGQuhuAeMJPUO+HZDwYFMXVkby9jDlXwNEifF8qE9Vavz7Wi94fvj84WuHjT552VEszddqrdgoLgBr80Ya1oXVE2ui+dluQw2w8AkBxgjc0iaIqt+ePotGJiofisifhxE48fKwTPsyRNh3kfXeW1wX4VFr0fT3bBq2HOP+RhTRJ4/8KryJoMRhh+CwRIUvEjRuiPimHpqNo5a/zbN5qIds/s0aIVmiJqt2hr5aqjg1sevaZo/GEfJKNBQqtDlbBRv0GWgxGaqyp0RPpovDeuDEA0fIiodM5dQgAoCw3D+U9xbGAaHMAYl+1CjbcGm+iRqJIOVkrtwCQ3edbqsLMlomotsvLWHdDMrVeSfySWQxG9HlqEr2rxdZV/0Bx3Al4KYmG578hCZXLK61vEjVutu5Ca9SCxWDEicj1El+MtVZ5fPY3+fRaLanDO5vzXfi/AZcg9ojB0UK04coketeEdaTrbGFLJlgA2FokWrKzGIz4PDCUftf2zodVsKHP6UIAoDuOhFaDVUko2ChOFuXXruHqU0pBZe+3y2FPOcPlTyZMNUEmIXU3yvILqPnbB92vcGUmA5NaXdjNkholsUI2wCyq3VlO34V7guTHpiQ2kvJ5+TlecLIKNmh753O0+w0Yw9WZI1gFG263K1MdPOW8kzsELLYG7aALUblKJLuQtwo29Jgq7iJmrzPS0x75oB7bcxi6zpwuCpXLIpG+opMiXtanJtwbrlSlZOuEzZtMROSZ+/5m9DtLVz7xB85mDEGcltwgZI1YopqnWh1eizOhz+lCOtmzCJydTE+/LAYjKu7fR8MV0j1F7PaG14AM7P1WPFUelGGheYYfG0npDMnsS82K07qqVFeU1x37GfQM76CUfU7amGYPP3mT722Wx9O7b575ZdSxMDmZ1FVeRCb89hv4NACgoouRC5eD6zsFylMalgerYKPGC/r7Swv7y89L7ZSo/KUvF10zeCfXpc92fCcuVoInpqDZV+IijLiLIBYb86KLFO+VqM/KBdVaV0V1xlpbjnAn+mq8E2RFFtOyEIfe1i3f03gXXxF5JIsjeXqyICdOvit2t8TD2zWp1TJSHkAUnOTp2d/sZgX77P6QaFpe9jQyaLxoJTXzyxjKh967BR5Y/XBuymKahny+0jADByudxNZbm4wx5wpgFWycqwWWH9aZO/t59RmxrEQ9zmIwIuyzeDT5hrl3+81SKgxaBcnBtpqZb41ej7VtvFX7L7lfGzT+OL1TdmDhUgz15jdjsj8xYdx5aQzuf+Y2jB+LggvZ+LAYjMBub5wpfcCl5Z5XwmIwYkblxiMJ39dui2JzjcxNFoN4ck8cM1sMRlWH8OS/W02golCcJ8lCWg2cEF9pOZE1bGQxGOnp5Y5torsKYj1WLlyy44t8jHa0eJePWWTcsxiMnGo3IKoEPuxxiU9fwG94qo2FCSf/UITXGy8K4N1TH0C39zhujzXBXlICvW9Lrr94rUnmTqAtBiNWBkt3rDRuNUQhqVKFucO8eNX1ATQaOmYC4olv1ucxqCgqou5syJjE1lVZrwh6VcMq2FD8hPj+z8Yvoqd2UytPEcsKRF9f18uLuDLIQcYONq+7T0njq6O5jqD32MkOnz3KKIf2b/n/b4fLauIjAEdWEwHlgvniplC0GKK8ayWP+252CmJqirvj7MQOiLtwO7athfn5GUj8cgk3sAfsmYjtXb9RqIBlLIxG0Ex+sLEYjLgx1YTGR+/QnWwSfvepGCR9JtGWO4RUE7LyXzfj7EzJmpe2Zk1szxYHY+IcWb5QqQryeGrpSFjuXBNVY8z4LhzBX5dwTjXV0mv0enqvgzjhJHw749Mq2DAksy+Kul2jcS69aEbqi7wlwNezRRVTNVpZazsiYMwJhbDLxlUThB09d5S+W/w0egLHxiO02LCoE8M5U/fyOmO/N06sj2vm207riIRnfhFDhVZn8dRoEQubas8uvGuGtlT00+SsLuRlvfCeSeEsWV53Jf0j4b79KDcBy53TqpWB/CZ5ku+d3o7j3CuwFktZPHgyCn8uFt9Xzscm+L2a5PB9O8pf7bmcnwW3fPF7qJei7CTe1XgzTrwhtedrcSYcf3Mx9656TJmKfSuW0zTO6oP9ratfD+W37yDh4nHEtghXPE9f2QnBk49h3Pl8rGnd0mG5qlv26ow1bFzy6XGgEX4J2EXLVx1aaibUWfqEFpvfhzlHEOFeQ1Fn/Xw6wV5Whg0FSRjhbYLP4TrIiy7ClVlm2OYswitXjMgpakhVNP9qXdz8PZiqYbH4IjcJL7RybiSF7Rds3bDW6qo7djvC/NxEbLjTiZqad9anq8Mj65ZB1zoQ5edFP4bamjVRUVxM6Wd8E42gZ0SVyQ6fxKPZfKnP9zldiF3tPGjfdFSOCxvaw3fEKRQ/HkVP0km8gWdv4KutjyN9HG+Q6Y2r7XHUqMPGgmTU1dZU1C0AlFo6oYb1GJeXs3HB/PwMePykfq+TbYcR78Yh5W2lJWAAtH12i5+mamFTXs/O4MxKJzdnfBmDwOeTHZaNWEAlYOdfXaAfNUoip03c2vwVVDXuss//Sebr95xu+bdYTezVLv+Rro9/F//9ouY/GNyg8oOo59xiyBl6f4ruDFWi3dfxsAo2ZH9swtv+EXT3LOcjEzf52E+IKipyIcxiMCLw6RPcpVqSJmjmYVx8RdzdbJeihcVgxLT0bDRcnkQdf7IWuIiJbAJWCJPTJp8tP0ikd5+sgo0KYQA4FRwAiDoxXEEv7LgGL2aewYaCJKSvFE+FCD/3BysvUxOQuql1VUPzDhp/HBcer0fjEGMU/j/PgC44gPJMLWMB2PHbWgBQCGHEUABJQ+5NFHW7Rp2pAkDzz3ljHAAcCmEAkNlzFQ1nd33ZuGya2D4jVMOdTYI9J02lk96VZ6VTk36+UYq4FoOkwsLugsbYhnF8kXAihAFi+ybOTa2CDSEpekp/RNpl+CY8VLQXeftnwYYfCKspGnxg8iZpfd9ORHHrYso/+9xZXfm+laRafvbTfbvk7Jn8N1mUSGmQ0+fLs5Wnpixti8GIDp/Go9Hxu+gzZhJNLxfCyN2RWr8eoelZIUxOV56fLshftT5JejlPB24Fqpa9x+SpyHvHjEL/Ci4NK4SRuOQEGxCNcqjlDQBr7jbieKu5VVxYEyEsqNI5ORmjcvqvwN3RMfjoTD+H7YRctJf3OU2kqOYoH0MA0VAAy9v1aeLvZzOlExqiogmAs0Qpp8XmyeKyycPhM/Y9kPdSNCwaEe6SFTmSbud9N+zIO4abk0wYMHs2rIKNnlY2XSCOp7aOwAb/3Rx9loaufj3kvS3WKXuvkdQpEcJI/A9zjqBgjhkvtOLv3sjfAaFF/tmxYbZXLjLWhHN1pSaUsfQ8DjSCrrXYHm9NEPN+MCgKs1uZ8XZjdXVXeVnJ9zp/NlaMiSQuawmUCGGAOObnvWWmZcgeshTQ6mAxGHHyZd4g0EsNxDucRIiq82dj1X7p95445tX8XTSYonF3p/G2tm0Iv1eTON46zIvHUaO4+TrUOwa9zw5UpSsXwkakKe+OkX+yTrg9lncA/2muUpOj5uAr3PtkQdrnn4uWoWI3vzHC0iB8ZH1qUo0DQCGEkRP79GW8plDWyCXU0BEBUVsElKea7CaoXAgj/AGSoRf5fASI7n/UIH8PRFVVra50nh5w4f8WXCdijwDkJ2IeBxqhsOt1+tzZTqB8V6q68WJ7D0d5WgZ0bYORNrsegqcdVY1L4vcPNEPbpBFViVHL1xlPbNjDPhHUmXPuT2Fo9EstHPpqKZem+7RpqJuSh0tL66HxwPPcYOWojIDkv6Oq3VPVsmo01PKbWpo+pwvpJCpPOy/nMIyMPjzxtVLWKwL6PSmqdVrVzh+J43WoAW51vomSAZFw33YUCRePQ6fROqxzR3QAdX89JA4gqiHlRRcpnqvhrezjeM8/HDkfm5A+bjE6fBqPZl8m4sosM0ZM3Y3XGp1XLHYsBiMyFkQjaNZhRXhVbRkAVuYdhLe+rtN3CwDpS6IU/r6qUz/V4UHONzmZqk5fZE+RCHSNG1OrfI7SRpyoQEpH5b4Zjaviq4jlERAXXJPriYsuTcdQ6O4UYdvBLfR5xoJohHx4AWWXlEYfqjvOOPrNhlkFG6JfjUP9NUp/XGw/v1pehB1FvljbRrpPqttrQHlPQcFf3ttmpE1fpNoXiKDm/2rVvuJaHamFpd5JinbrLI08HhvXKtjgt3UacgYuQ/h7cWi87AisBSl4OrcHvevrCLkfmNDq9SSkr4pA8MQUpK/ohJzYFVJfrtRssBiMWJl3EJNlTswJSmIj4Z4gbgoQB+JsvPw3zDgbz9edVbCh68zp1IFtdTA/NxGzR0yHdcv3Yj+XaVEQOPIBWdWYWJ3nX9z0h7WdJ+6OjkHS5+JGI3tyRaA1tuXuI/6VfAj0vi3pHUzFM+8WyHjGh9sIubs9AE/5HMMsrwtcXGfjeOb8GKru7Yg3tk2nL4pCcPyRKvujWn5q74t9ruY0ObbbYOR+XAdnzT9w9Cu6d4R2v2NH9VkP7yHATVJ5VuVVq+OM9Cy5cJD6+tR0agf7sdOwCjYsu2NQ+DG0CjaEz43D8TcXU02C2NCeKL91y+l4L+dFLQ5bb7X2N8XJdB/kDBBV4Qs2hsJ7qKRFc3m2mTsNldNTC/v5/PF/jB+x3ad8UOd/+USsqLACvdvnPdL18e/CdSL2CIIIYezkfmMKv0PE7uwRsOaW5YMKO5CYX5iBsvrinbGEXRsAu0Qz8/uOil0ai8GI7ZmJ2Ja4FZe3SM4y05dF4sZUkyIPduBWAxHCAKDVyFRqdvj7fEl/vebvR1DRsD4aDzzP8SEfwIKOulN+Sy2dEDw1jRssHwyKglWwwW7qgNarJOMe5ESNo2fnnT/KB+Bd7Tw4HiwGI67+KlpGe8UvmgvPmCreqXImhF39tQ29R0XyJPrqhI5VsFGz1OSuSWyLcC4vOZ+E1tV46T4IsUZnL5fuQRFLiFbBhp6TpsJiMCIvugjmk6KglvMRvwsKAMJmyardO+NFvfb0ceJJx8mXFiHju3A86HIP+8NqcWVufWAc2s8X739kD13K1QPb3sidEovBSK2asZg0aqaiDZCdYpbP1rNsXBy1ic8q2DD6nACLwYhWR2rRZxc3hXJtiI1vFWx0l5XQPPr+Ys5yJUmb8Q1/CmsxGDHL6wKlQ+7yORPCCjaK9zm3/CI5G9eGtVEIsEhO5fgkz4gfQUA05kBoEyGs+zTpBLqW4R7KLl2m6dkTUPZEiuRpFWzUf47amCEHWUxZDEYqhJG82Tjkf2zLzpwQBgCZlxsr0gCiQQ02T3IKTWgSn2UWgxH3K9RNX1sFG5KEVrQs12aYOH7U8pWXV96eAdANgcZLkug9xKsvteLeFTFwwoa1ej0Jev9WWNp1DXReXgiecozms/XiUarZUDgqBt6VBiU6Hh2lKFNJPR2lyQph9B16l9HfbRfG03LU3nwYur0GriyRtnLIQZ7PbmUGjpyiPKoJYVbBRoUwed8iJr/lz8inxWBE/utK5+zcZztPZHwXToUwq2DjhDBy2km0ONi0BN3iptGwiecvqMYBgG1Jv0Gj1yPzC97oilWwofzKNap2SODZPwu/h3op2hTAtx/23hMx1MGezqoJ/SQ9sVrJgswp7BgWmjQGD56Moj7JrIIN2YOXKsrIplvntxdWwYZLL/I+xeRCGAAqhJE5Rl7GALe6qn0rZ30Y2n9ROWZV9hXy3M+tLnVPYj92GtqaNWExGLEim79GQdI0XpwE/52TqTp3wpm99BlxW8GWz2Iw4qGdb98VXTs6fE8AsCXIiuCp0qk+Uupx9d9sfiL3O32J0mp1vYMN6Xsddz7/H+VHzIX/DFwnYo8AyO5C165vYd+GdbRTRrwbh0ZLk3BpSwi8X69A+ZnzirRquzW6vQaknfdG8AxpZ8zRJyDu7G1L+k0RXjQ0GnU2HlbdwVHjQdMxlPoKk+eT+74J5yctVuQhL4Pab0e4t8MfdftlO42jtuPVelUcWr1evcvWcj4+zU3GS61iHO6q5X5gwvmJUjmX3G6BzW0bQ9+8GT1pkJdPW7MmtF71sS1lB5cnrVdm96/9l/EwfMrvsM3MSMfCIN5/0l+pE7o4r7x3I393N6aYcDcASB8v6f9PS8/GsmB/pycRBOU9wqHbd7xa750FXVxUnrixdeGoPI7KygoRAOidGbW08rhqfcZZfDYsak4cvL5zfA+kunXg6J2p0amqTKpjQLOmKLt8hcbP/thET5BYWnlvmakBAjn9XhOmYM/qFRwfsedjuRMsMkZU552phRP8lfGCLe+t8vuOnXxDVG08/dwirgzjLnTDGt8/sbawIda0bon0JVHIGcjfmST3fvTeLaiftury54jfqsKreucAYDl9Fy80yIafdTK1iqmGy1tCcDLqR9W2uL7QC6ta+wIAMr6ORtCzvID1+Jlb+D3Ui3s/avmp9RNAvBtcL6cCnuuU93mc/V504SDiK09I5PGc3SPSNW2ChBM7/9I7UYO8/pOLy/G2f0SVbRsAeo2bDLddjjfpWh2phdyoB9C39EZZfgF91mvcZOxZsxJr7jbCOM/rirGtOmOMnJeq+g4AhCaN4U56HNLWaGC9KPrQIye68n57Lc6EmEkncPqDMNTackRxys3216vlRRhbaXHWb+s0TssBEN9l+ZWrirT5r5vR8gNxnCL3FdXqSRfamjMkBIgq495bdEDcNdSy5Dgc/8nv+bmJeO6pOGgST3LhcszLOYxX/KIV7YZ8J1oc/6Q7YjtP+f4tJ2KPtb/wSNfHvwuXIPYIgFVNdG9iQPm1aw7jVmfylS/mAvdOhKagJjLGSk4kycDS7qt4uvAgA4WmUzvq/6rXhClw23msSoGO5cXncB1c7KtD+V3Jap6jBScbNvjsNWxu21hBU+/bEu7fF+NUQQv4P2VTDOwsfWeT0qUXzGj+hdKJbcDuidTEbaStnOrZk/TCy2YUN7DTXXVH/OtCglDuURM4on7RHgD0fr4oGNhCcWeOE4CHRaPYS4uGy5OQ/m0nBE86hqx1RgQ8Zavy/au9j/SVnTCuUxKSO7hRgyTVWbzKyyeHz+E6OLamA263L+MmyOx5JoU5Z2fCrTw/wtvAszcws34+X8eVwiJb1ttjeYfd8roAgLLeEdDvFheG8smbVf9h07AbC+TuUYt5iYq6cdYeWRDjJCxIHunLIpHz+HKn6VmMO5+PMR43YDEYUTIgEvuWL6cGbdj0cl4rdrek1kL/ijBUnc0Sq2BD0A9xWDlsMb3bCAC9ThXhlYYZToXK6owPavyxdR/+XhzutLYj8Plk2E0d8N7ab/HSi/GwvLtfVRWOpUUW0Y7qQP49cG0c9R3kiF+5MQA5DQCwlZTgFT/H91fltKu7eFZ7V2HHNUgNVzrdBkTVTmKm/8YUExquUG4e3BsRQ637AZJRGL9fpyHnyWXceySqtHJ+rz5jxonXeGfkJJ9+T45F4dwi1HtOi4S9v9DnmwuOYLC3eKrjzPgKy+uVZ81o+rVYHn3zZlh3dDPqaWs5bYNV1aOubTDKz6ZTAUMNmo6hOD+1DoLjxfHwTkIgyn9prFBdludBPln1O2f9k/DCCj4O24ZGgztjolHvB3VjR87KnD3PRNcNf3XjBADy3zRTM/jycbKqd3Bjqgl2LdDsj0soy85F+redUDuzhuK+eFU8qEGj16P+fk9R5b/SqBIg3rMlGjpqtMn3jQXJ+OWeD35sYxDpudXAvYEdqb9ER33Q3tkIzSGbKm0ClyDGwyWIufC3wJnVxPTFUXSSA5Q714ByMCeLdvbZrW1B1JBCwRwzzsxapDpQsAMDEczUQOKVWjph76oVAJQTa2zv4UjY/XO1JjkA0Hp4oKKwUJWXazNMGDlzF15pmEHz0gX5ozwjm5uACub8P/a+Oyyqo/v/s7sodsXuUqQrYllFkF01dhfRGEvs0VhigTRTTE9MeWOK6QV7NBqN0RiNUeTaokaKILpiQekiXnvvysLvj2Hmztx7d/H9vt/f+5h8Pc/Dw9650++Uc86c+Rwb8xlF0/N3Y4S4b9jgMysFPmm1sMhvNwJ/m8ocR9L0vZ6YBI/tmTCFheDoq3VQ0HcRExLWtxIdodI0Ee/F4cojtzWIhuq2X5xgRf3F+qclrtIBQODaqSgYPA+hu8YhYGSW2zLu9e2IKpvFy9lCn7duyfwdAdwG76Ieo47KGF/nrNtNT09LCbhnHu/GRKKkuwdCPjkq2PHz5Z96yYZmn2sF6UnFXVASTaCTQzI8sX19BNv8ASAs0wPZEaU4+4wNTebtFe7ISbIDXZ6bipq/7hFQtvj68nUYmn1WuI+Q92U08kdoQW8AEN9WnFBefWcTdPQ6Lphm2c0WhrapRzSO3v2MqDfi3MJo58yNgtn/vO6psSQ7ELBuinCfRE9Q6Pz8VA1jopcX4F4IVccFCPBNyPP6zCEdh6bwFjj2Wg0Ej92PK4nBSLP8qpkntGx6SquuD0Wfo/Hbpo9iEP2VERUozv7eEo0fO6ob5/wUKxa/8SVGz3kRh55PQLepU5iLAFeCph6p49yNiUTVpAxNO9XxJdmBmP5j2Elj7zETsXX5Dy7XDxq+/mQGBnpHQk2v5B/Ep0FtSL6PjmFjU52eP5EClPlpalAfiQe3s7r1j+qPjekb0f3QIHj2LWLxafnu1j69d/QeGE+84HU/a6m6T/iTa1OdOm6ViJTuxEZix8IFlZZ1P0qvyhQTenR9eDSSv6q4B6dacykZtnujvKdyQlsZUi2tQ/dJk1HlZim2/LxYUze6T9OwoJXTEPximjC31XlTheL9tI+Ps+Z6HcwPDUTRL23hPyJLE0+vLDVRBFW9NHw9TA3qw3nhohBG7xKaggOQuGstoh2Po25snqaelIKXx8F/4x3wsPnqsq4kBuP84UaCIoenvHfbo2jmmw+04EF51k1ZAf8VQaxf28IHuj/+U3p4R+wBJH5ih8alCwvNxn0SAAVFEdAuREHcqRF9x0OK885t+bIAoO/QJ9lvV0KYh68PW4D+XCyaIvHlOrNzWTz6d/ZpG94p2IeAxKdYfid/I/dg6OKut7A2mpuK7W1qwm62sDypEEbD1G2jtCqM3Ncq/FhBKgIUJMaS6OsI3TUOxjsGzaLpsZ2cojizc5kQBoAJYer+A4CG81KZQ2r1Qs0TFcLUxNuRq8lutiDkaeLnKOeRpQAIs0xJXZZaCKPv6X9eCLs4wQrnkRzhO6qJF8L4eJLswPDs01hUvFvDEPDfxxVVTcpA4GupcF5ShA2PQH8ARKsqyQ5BCAOAoF+moeXCOJREX4dHU+IU/DvvPUwIo3MkO4L4fKuXd08jhAGA/Ah55n0wxbbpKdzVoJRxNQAR+8vYM01D764I433dMqEfb3U7ozmZCcv0QHnmYXbPRP19qPaVF8IM271hN1sEIYyi9vEUOi0dyRU+qNTU5bmpTGtPvw3/jeg3o0KYul7qMaKnkeffF7+j9A/9UwthfPzErasAEP9j+b0WAwDSLL/qxqflzQ8NxPXh0cJ4k2QHjnZZJsRvNigbhohwIa9T68IgyQ4B9UySHQwgpfFjR3F5nBYJEAAazk/FDP9oHHqenPTwQti3l5ozR8k8Epw8Q3vXST1H5K4ewrO7NYGe3NrNFmxd/oMmb/qOz8NTpfQ7P5W0r1d15Z5MeeZhhGQQEKI+IyYI6eObd0Hhz+3YM52fzgsXhTHlPEdM6Dz7FuHka6TdN4Z2wkDvSMwqTBfGjnrdsZst+KJI8RNoN1uYEEZRQgHA8VqCpl/UeamfTfUIKm6bL+NRbbQCUJN4dJeAQusqPY/4ydfXVXyAMPYAmcNxuXkwtQjWzDv+v3qe8b/500k9xRcAJoTR+75Gg+JIWU2Xx1qRMy8S1pem4UKbKkwI4/0Yrj+ZwfZpSvkj5+Je345sfFH/iDwVxhBlLd2r7IPGMgTDE2/adPsKIHMagEYIq/1XQ9jNFnScGadJw/NGAAQhTL028f3gvHARpoYNhDAK6OLMK4TdbNEIYXwedjNxEG3asY85JLebLcyvJI1XNzaPCWHltnZ4Old0/7B/1CLdvnhI/1x6KIg9QLQ25yAk2YGXTokQqJJMIHUBZTK38ZUhv2xjl4/1tDN6xC9A/GISPWMaAMCQqtg5U4eoQRnVhHw37tkgapIqFi9XDDf/rvH3KXg/sANCn9rL8vQeQjS5Ji9yz4Bu/OHfxrM4OXOJacor+Qfdat703kmyA+1mxyPgtVT0tz4KACjvbBHiB4zMYg4kj69q41KraWwX5rKM0q1+7Jl+FxpHT7ihYBQ0b+rYN3RaOqIP3GPxCle2ZflQoZUvO/lrcsl6wOFLsA8ZJ9RZkh0o7RUhbAz8+/wVSv1rnBMvR/P1lde2Eutep47wvWPb9MTitx5joAE8STIBS+GZNr04PDPW64lJDNHP94MU3e8R/EIamr9DHJ3TU+LYNj1ZnOAn9gttUJ8utP2MOApV33kBgMSD2+G8epW5F6BpFvgmY1YTkSmwmy048nSCJoz+p2mpMMLTxq2RGHD4EoJfTMPVUdG6jBh1hEupvOdJzXj6Jph837xlIhPS93FFscL3L++AVP3OWJvAJ/NjWN0uPh1tY4tFcUI4T/ReGQ+i4YrBvFHhagAgiJJ8H9L565OmXPY31qjB3id/NVcQlPkxSn8bPDxgOn9VKNO5h4AoFPT+gdVnzXVFEJdkB64GGDTtBqBx2m4KC2GM6YZwL9T4bQ9j0miZ6nuedrMFhipVhTDe/E2PwVfP0zub/Vm9wlPHsLpYPiLgBx8UKo6l1XmOOiqj4bxUIZz+z428A0l2YMsvi1n8248SEKSAUQdQGfE+l7w/Ju3e/S1Zs94IiNIwtXazBXc2+7M0z+WNQOiuceRbV6xjAFBr9R7W9l23FUAru5lYhejth01S67Aw5+Ur6JP9KOoUOdldIFoX5/kLmn4K3Kw43VXne314NBYU7xbCaLpLzpuo/VdDGDw9UeY4QtbDnifx5Quj4TyWJ8C503z5dqqVHK4ETEFYrQgLyyTCfMDrBAn0jJWc9KkVEZLsQL1lqQidmoGbjY244edk+Rh3K2sNPcFUC/e8wo8Cdejteclfz8PZZwioS9mNGzC0D4fvhynCHtk/IoblXfQvqyYPAMw339735gjhkuxA8BMKWiPlG64PF9dQ+m0ooFWLvVVwYZIVzvMX0HafAfmfkfgn3iLvqeIkJyGKObrny1Q/U4fj9Fvz7yh5NPdFSY+a+D4kFHf6RbJ3fyewjjIYUAbj/+c/Q+UV+ZvTQ9PEB4DUpol0YtOL0fxEN1SpiqTj6cIm7I45Atwf3d94vBN2fzMPAeumoHDQfE18vfwBYpZC4Wf1mATeCaRePUwhgUjc+ZsQ1nafAbOb7tdtmyQ7ELRqGrvLU25tx4RGVxezJdmB1mljBAfYud90QsHj89z2ibu2CwJoJZe++e9gN1t0zWeoGRCle70jsH3pIo2gXPhzO+R0+xEAWLqZuY+hJmd2RuMbItsg6fdlLG2VHc1wr/sp5MyLROGj+qY0kuzA4bu3NE5Y+UvPeu0DiP86ymC56jdTaBASd6xhTBI1nXXXb67KeyRuCnNYTOnG451E4SK6LfKH1tQ1/1CPKz3mxm624NqIaNT+JY2ZYOXMi0ToVJGZ9QhojqJR3vCZlcIu1qu/e2Vt4sOpuRGtg159qZsAAChYYUFu9yUsvt7cV6cHFFMsV32hris141XTrMJ0vBEQJYTxZefMjUKdbA8ceDXhvtrviigE+blpVjSa6x6G3tU7vbbKa1vhYKcVbuugrqPaUTWjCrhtV2UByl1FGsaD+9xv3QEITn7dxdP79ur86RxfU5KGoT7RDKSJ3vW80y8SOxYt0K3j/eSvVy8+fo+Jk/HnDwuEtHx83jF6zNH+SGq50eWYdTeGK6sHn65b1i0kD2yBjSnr3Y4Nj0B/lBYUucyHmrTSd7EtHxHMHimZGjaA8/wFZvJO3Qz8T8jV2KO/i9+1we9drQN7dRv08gMUIJ9LT1oFIKLANVOZWxJ3RM3lK5v76m856qiMXyJb4LtDmxC7bAb830oVnDC7G/uu+udsvI35dqRhxnZhKDuQjbtbmqNqn+Mu+5O/BuHKrUZlbdOjvxN8/casQNSsbfr/WtaNa070b/tg98d/Sg9PxB4gutubnITRRYVq6icUdwUAdMu6hfJ7d9kEzp9tRewjgwEAHt5mlo/dbMGFSQR6efbFIBaup1n6eva3AIDQ+HSm3VJrvNRpy63tBB8garIPGYfavxCbca/k+rr5OnNFAQIAu0hOqV+wTYDQ5gEVDKkHWH67EuYLedHTLoCctpkaNmBlhDy3R1MXPZJkBwL+mMyeh2af1SzIzjNnEduuDwDltIPPt/2seBSubMvSUCHs2ghFO8ebAQEE2l9vUwkYdYD1oykkEJ8GtRGEMED5VuUZB4W097qfAgCNEHann6LZu152W+OE1dSgPo48ncAcZlJqnWlk5dnNFtzwK9XtS+F75+Qj5lGipc+rEBz04tN8TWEhQhjtD7vZguq/V8CBp9RjaWv+ShQWhsg2MIW3ANKy0DD8nAC3r0fqzZAfqylfEoEovjnxz0SFML5dpYXH4TOLbOQU3cxutrCTHFfluJpf1NyoxQ/K6ZI6HyqESbIDVQ/WgN1swejCHpBkB3qPnohJOYXo8uxUlk6d/vDdW0j/SLyAf3VTkEtmRpId8JmVgq5ZxPG1qUljVt83AqLwSaHCfBk8iCPugA2TIckOFA6cjwOvJiC25SMo66ac1r2eL54quiJavvNYHiTZwYSwgPVTYDdbUPCJFUW/tBXmH/8NAXJKWPSh4mZjVUkqwuaTUyIqhKnHyIDDl1jYWafoV69xQoqQJvebChO5MmUuu/r2FDDGbrbg/BQC+sC/j31kMOxmC25JAXB274DcJRF4Jf+gZvxcbOUh9A+lwNXThHh8PcPmx7O+oWkBMEVLLSMxm625Zg9OvGVjIA2emzKENZPPg/6npmL8O4AAMPU8eIN9K1O9usLYt5stqJqUIeRXPNMm5EGFMLvZAtNEk7L/Ldea5/P/+bWD/ld/a3V7KO1sWx2lRcUumWU2/yuEsJO/hQvjzm62wCOgORPC6LvEo7vglVxf+G7np1jZCdzT9QiQjvGv/ezUkS9Tkh2QX9GerOsJweq5TH9nT+HAUowKE03j9xynnPwBQGyfEeIYqwCt8voxVXD1EfbpSTRJJYzynVjRuTL/vH2Jcqf831mbf25pRtm1a4hv3gX+b5E6qM3V9dKry5h1vgULUwthALBp088AgKp9RH9v6jypELbhZCacPWTdb5W/vD1MrdwjGp96STTN/DudiDlh+K/8/dPpoSD2ANHGBHLiwS8Mho6tsdjvL5jq1cXOttUhyQ7cjSGLWtCMVDjzClH4czucerS5kFeDRWShmlE/X9HGteoGSXYwnzUAYaRcaZHUiztdXK75V9fddFm835aye04rA7YTZKeKvEYX9hDi88f8RR9aEbBREX425aUw4YVftNWbC30+9SLZoG42UxwrA0Bi1jZNPakAxTOHtH2STPzp8Iz3lLqy7qZGES4DvjqkqU/j71JQ5UAtIV8AqP1Lmi7Ty9dDL4yGJ+78jfkFo3R1dLQQ99J4K9ruM8AUqgji6o2v/+zt7Ddv/nZ+CjkVSzxI3pdEXxfSfd5MuYgMgJ2k0jCeGdp2S9noyzMPo0lqHZcbZNJNT4XxzlZAWdTxFhUTX1RqBEK72YLyjINwHj6G3CURqBubB/PgI5o81H2ek0DGatdnprJ4abedmu89NPss+61ug/o58cAWJf+5Wj8+enXi31FGQ00Jx4n506Xx5BsdfjYBkuzAhc6XCKO6Yx8WhQYwtxNqkmQHXvS3Cm07+3tLVPu6vm7f8MzlWw2PMgUE395JH09n8ctLSwEAoVNE5tp59SqqHClh8T4KaivUyRXRPE782lpQKoVOS8eyE8kIfDUV/iOydCH1ab3zey2GrZfi8qCusTr83k1BaS+Ckpj3ZbSGcX/W6zgre6yv6KdIkh24s9mfpVGbthoi27ht0+AjZM1oOJ8IlfSuDAAk7loLAKhuL4Rpxz4U9F3EgDP6Hb7M4pk/VdZFWg+Dp6cu+Alth//sA7rhes/GUjEPOi7DU8fg6qYgnF6nmGjLr9hwret5rCpRTipzvyfC6bR6J7G9TU3IM2wIfDUVzstXhHLUJtwAGHqjum6S7ICzoaIRDxqzH63mKH7y1IIXX857BZma9p6fatV89z7Zjwpx7vUWkTTVdaV0KHq55l1p4XHduJc6XxTWEDoO+LiG9uGo9kc6dtxSWDT6jn57Svyam7+8Pfz21ET+bGWOF31o1aw19K6eVJKpycNYKipEnYePsXfrTyoWAZLswKHo5ezdsek+eL0ZccGyY+ECIQ/qUNzdvLhr7whJduDiRNEqI+axsSytqV5dl2aG/QKjWf75s0W4+puDOzFlzc62is9IeqeUr5seP6SuNx92+G4pDJ6e6HVkoKZOeT0Ws3vXrspo9rnW9P4h/d+ih4LYA0RUE8JPytM2wrhSyG672YI/f1ggLAz1N1YnzkKhXehoXqYmjdkmuMA3GTmLI1h8SXag8COy+IUujUPRByKoBZ9ntylTkPr53ErbwsOZSycV4AoedAAACvsrC7b/m6kInaws9LT8K4nBwjNPOQkKk9vsixS0+GscM1Hj4889vltoh/PcOdjNFmbPTuPTP94cj2d2JNmBnB86aupBzU3UGurDzyrax47vaC8W65HdbGEMAc+cByQ9BUkmLgfoJWJKdVaIDJjXklRkdSiHM4cI4h7+fkKfSDJxUA0QRhwgPtLsZgsy352jEchdCec5c0RB3m62sDt+gHLiRxmapc13uWz3l8Gio2RaXmz3oUTICCEXtyf5ddFsbDxJsgMFfRe5Fb54ok5Qa/ymAFNQKPO8r8imnzM3ClPqyrrlUXo6N0cQPigzys8FB3dfht/MG6XUY3cj9NpFn+Obd8HZZ2zwWpLK+urVM0rb1Cfj6rzUYZLswP7IlYJpGACm2eYZB/U8oHSVfBZ0y7ql6RNaXu2/GiLxwBZIsgMv5CmIhTNOt9ekkWQHE3rp2PN9/BBm1M8X8qT+hXjGTa9+drMFcjQBGDC1CmXpPbYR5pxHylTXm+8DAGy8b2i1Urc8SXagPOMgYls+wgSuSxtDhLzXtiL3fYMyyAlU2Y0brI/4MbG2JF0YT9O9ilgeN5ICWd60j27GKHcw+TrT35tykyudNzTc++MUzbwGgMPW5ajTLx9NB2Wzuh6cTpQBw30Uwab+fqOQjr8Tx4MTJP2+DGVd2wMGg6YO6nrZzRaYSs6xsLtbmuNIHFlfi9+x4ZmTCnjHndhIYezyrgloHemdOGe5AmBBXTvc6UeUnVW2uva9Ruvh7reHvx/7nfeVKPDzwDDq9YkiYFKFhR4DD4Dt4zRO0Jj9uOWswkyyJdkB/zdT0esJcsp1pz9pl/fHKfDbU5NZ28y/Ymb9vHWFCPbC508BXiz7tQqpoJfSiFNvuD7tUq/vQdsVYI+qEnFYXv8HUvdlJ5JJX2QoyLPOy1eY1QCff8nrNpTdvo1PLpC5FjQjFaE/xrE4NdbuEZQ1tA484MnGm1oXF4/ETRHiq9cVj6ZN8GpAJ1xZ5wOP3sXsHbWE4ecv3y98PufiRMHz70TOcuN/5e+fTv/8Fv6NyBQWolnMKRqUegGwmy3I/bEDJNkBr7VkocpfrniBp6dDND6PqmQ3WxA6IZPlGbRtAgJerzD5eS0V/m8r2viSN2zCIrJz/nxhMVFv7GoNEs/A8USFGXW43uKdZvkVtf9qyJ7pZmI3W1A4aD7a7lPQDim6knqxm9a8i0vmSi/M1KC+5j0ts1Z2VRafF/C+KFKYY3rxnj5fTwpkvnmoTypan2sjozX12RL2BzaczMS2Wyb0OPwYjDVr4uVoCXazBd6fKBtK7pIIXQaAN8mzmy0oLSqGHpX2jID5acKkzvCPxsWJ4mkJz3zz6Fk079A4ImQErVJMonIjFWGD0vali3BzcCe3AtHwbIJcdq9vR5S8roxfZ04+rg+PRuLO34Q2uRMQ7WYLej0xSdOvho6tAQB1dyuoaGHJY4X8+DoGTydMeui0dLd1B4DvQ0KFcRfy9B6U29oJ9Ruz4AVh/tDfP/nvQOkp0cUCT7Tse70j0Pg78v3pCcQnTZQyS0/Kuv3hTtDgvzFAhJUz1qu4EyteSqdgK1FvxAn9RX3G0RN7gNzZ48u81vU8K+vL4DBWx6wO5Zp+Df8uHh9nKBf2aVy72YKyru1hP3RVGAfX/AH/9Oo4+apN+IaS7MCd8ntCf1A0xpwfOroUStT9xdchNC4dx1e1EU6Q9da3xKO7mMCV3n618I7mnR95G3azBTeSCOQ+7SNKNYxVhfh8PahZsld/xT9b9d/TNfODnyN69Tz1ktakU11PSqefF03iTvzaWjdPAGytA7RrKXU+T/Pf8stiSCf3o9zWTjc/PoyiBtvNFhzPbsriZE9LYOvO9FMdGaKhnmBH07P6GQgbFJbpwUz1qF8pRLd1q3xh+Xm31+2Ho8+bWXjDfUTY7Bc7GgAQMm6fEJeWc3p6BTDEPcUk1tXaU2hfJHzf1/OzGDw9n85jO9nvPTcSM8/SnhFo4nkVVSuOPn96bYDuXk3zyZkXKbxztCfvcn8kwqTtBdEkli+brV19FQWm6U+iMAp+Yj88fLxZuMGDmNyW9owQTqL5cQwQ9En+2eejFOR+HY3tbZTT5YDXK5AJrWTd4s0jeaKKHAp4xH/v6r+nY8Kx45pwShQkqk6/fBxfpZzuBozMYu1gbW6kAK71a9GV5ddojtYf4UP6v0UPBbEHiH79/Tdm46/eGPlNmAoAIU/uI5rQngQBKa/HYjaRs17WwvnyVPShldwj8Ylg8NB6GlDzX7eYZgoAYvw64s0Ch8v4lHaR6yRso+dJkh0InbhXw/Dk/tiB5cObudjNFoFJqfaScinWbrYId8sk2YHCWVbdvuNJb7Ph61MWYGbvqAaXpjn4AtEA59+7Lgh44VUVk4ek4+nCxlMrpgA588hG8Fv8bKEutVem6dYx/Y4Bvao7UbXPcWzKTdb4LQv9MU6A1OfbRk3yeOKZEtpWj+2ZKC1RUJ2o8iloG9FUzq0whbObLTDuJmOy6AOrJu/g6WnIWUyEwnJrO42gYTdb8Nf381g9+P6kNKkuEcTKDYobAhqn1qo0l0wfH49nrr3eU2z8qbBrvEYG5pUuF1g8v2FEkdFy91hNvmoGIGbgE6SMaKKpDtwyUdMmvi6bfyXmxtQklwJe2M0WTCrughO/ttb0BZt7abU19amyVVGg1DVWR/DyOMQc7e+yP+7aFYWHnsCuDje1CsVZWwPcfjSKmRNRogh5XktScW1EtFDnktdtQl/V/FW5i0khu+1mYiLE15GePPCKHZ9ZKRomleZr/Gs/tvUPF/q4+Tup2HwoHN6fpLC7X7RN1swnhPSUCmMWavqcPp+b5lpDLckO5pPs1qAoAcWU78eoN/Tv+NE+yl2iMGg1Ywp0v7/e2k+f70fAsJstCNo2AeXWdjBWq6aJL8mKSwhXCg1JdjAzL7UTet/HDwltUqej5LxwUVNPvsx26aNgN1tgSDnATvpoempGT9dSigYJKPd91fX/qpnosoPWR0/RyafNjigFypwsvPgdG6Tflgp55X4nunRh7S4v1+076t5Ckh2ol0MEq7xRdTV14PNq+lUFEM89rTLQlUKFjofu1fXh6SP2l8FutuDUS0Sxuu2nRciwmDDPhwgBu+bMh5r470rN9HmhJHjHeIQ8SeZpypdzBRNISXYggVNSSrKDIStKsgPOHjJD4uX3n6RiEocKjgBRPqnH/KbEFUJ/SLIDIc/rn2xTUC9+PePzoidw9LnNV/EwtiZCmalhA4ysfUnIDyCuE0rWkLlPT7TousDnxbeDN1cvu3bNJV+yNuegJvxBJYKa+P//759ODwWxB4gGh7ZByPNpuBsTqZmkcbl5uNNfCQ/gwDKq/ZEODx9vt4yqeoEKsh0nXuDLnOg2ZYrwjt5Bk2QH8odVxVMFQ9m78tJSfBioaJxdMQUfBpLwrJeIQGiqo8AGqzdqWlbIk/tY+HAfq+Y9UOEvqa/o0FpNh5/8DgDxi2JoL8L0moIDdBdrY7Vq7DcAlO89hFMvkk1rbj+7ABpCmaznC4cJG4G6XduXLGTPJWvC0WIBMd0KrVKThVMTLD3qXM3I6tNh7whNP1ONHy2f1v/KE9E4+3tLBk0PiCZrAPDt8WTYzcRHjCQ7EOkgJoQNFhIBeGe3b2E7cBfTOIetANmYjk1SIINL3lD6JXQCMeMxpB4QhAnaLy3+GqfLCJkaNRI2/T8XL9TEo3/8HQU9QdNutrA7BL8GbYXdTJx8G5zk5MVw+46Qn8DQ62yk9D0Vosv3HiJhaUTjSRkRGs/Zo4NQF/p7RcCfmrmyyG83jth+0p2zYfPjIUdfc8lwe/gTVwlBM1JR3vOky3lfVVKYUrtZ69OGH78A4DySgwYLU5kvLIAwHep4r/zrJ/accHw3cxBP3xfOUsybqRlt3hfR8JouapcpEANfJ0p67QaA0uMn2HvGKE7ci7jcPCwc952QV6OBxwAo8NOx3YZoylJ/l0Zzyck2L2TReDRdXG4eqq9LZ4is56eIygnq4039/WhZIeMzXQKWqPua0pC8PkJ48J+ivya9/goeux+G1AMou33bpeBJmU69erxxpi2CZqTqrtl8XlQxIYS5oAXFu4Vv3nRQNiSZ+HCrGVMgnJwXdyLCS0l3YhLnM1R0fC7JDkGo5ankddGag/q1BAAYDJo6UkuL62VEWUNN2QLWKftjyDOK+TI1LQUUH3HqtUWSHewe3OlosmcHvkrW2FFHFYWi3rpIT47pOFGvKbwrCBre4/BjAIAGyV4w1qjB3me2N0KSHbhhuSXEt5stuDVIMS/3aO4r5MnXy8PfD4tbNGfv8rovgSQr9yWDbORe5clXSb8HVSEuJjwC/XXHg3nwEd29WL0eUPNQfsy6++9qnALEl2jOfC38vIe3cnJ5cHoCyg6R+7CJWdvwyMHByJkfiTfOKKejyV/Pg89QYj7Kn2hRmlpCxgMFceHrSMsExDvqlP5OYB0P6X+HHgpiDxDd60EWEfV9DQCYExKMHQsWaLSPtwaRO1K8VgnQ18LyGzyFWq27uwGqbUgXFi++/BonTbjT7bRbTaLdrKCkqRm8rs8QB46JR5W7QQOPXCDa8SHKhhu8PE7TNrtZuW9Ew/vXuI3yUgWlL2dhR1aeJDsQ/OcEDPAmG3O9ZanM0SmlxF1rdTeFstu3mekAza/ZFxUOSvMKETtB8RHjtSQVLRfG4V73U7CbLczvUYNkL6FPKPrUB4UZOGxdjqT1P7E20nhT6iqbsdpWnGnfhkejyXCyyfV9/EndjYZvU9qnc+Fb77Lg2PuK1Rf9+o1ibXu2eWcUv2ODMZkITT5VL7J3drMFk/y6YPWK7ojYX6Zo9wKaC/51AODwMwkaYTR3SQTylhFTHXo3x262wH9EFuxmC54o6s7Sn3nWxu7rlXfWbsL0d9+hT8JutmCgt755SelWP/Y7+au5Qnqfj1KQ/PU8SLIDP+5eiTXX66B12hi3zCIlr+T6KPjEChhcCwZ8uOlPUTCLbdWNPeu1rcuzU4X+o0SRzdRp6XNpUbHA9LljPvh31KeNui4hO8Zr+oOa0NZarT15mBMSzOLFq4R1AAh4I1VTp+AX01B0yYuFU19GdD6oFTt8fejJelm39syxsnqtmRMSjM7VyJbW+9A1didTkh0wz07B2XgbnLkFKNvmS5iv5r5Mq03rwSsHqJCl7l9JdmBQTRHAJvNdopyICSAnJsUzFfNjeg+Oj2+0tMJHQa7N3vTW2xuPkPtRbb4k6IfUabxef7nLT02U6aT1pfHtZgvzmSfJDiy52li3DEl2AGlZynetUpWZAAPkhJEvf7IfsSKgfippudSHW50DiqJtViFRCAS8oTC7x98X18mCvooDXPW8d0X03jKt/6Li3fC4QZRRBaUVJzg7msFutiA0nuyPp9aFsTQjC3siP/I2e84bM4eNY7XAQFFsm36VIvTzp8seZ/Fult3V/UaSTE651N/3i4uBaLb1rGZdoEh/FzpfQtnNm0I+drMFwWO1kPg86jBVcvBpaH9T83a+DTGPjYVn3yIAYDwFNZ2n9aXIkgBQ9C+isKACiN54cqUkcqWgqCw9pSo7miHgtVSETslA4UdWnK9AQ7WbLSg9KWsEaPodd7VZi9ApGZjVJIu96zV2EoIyqmn4LFrmPB+y/nkPOcyUeABg8vIS6lTSo7rwXFnbHtI/kx76EXsAyJUfMX7By0mIQmg82ZR80mrh2OXG2N32N2HRoKTHpKgXPPUCrk7X8+ANwd5anbe7MgEQDWlalkt/N67yVdePltVj4mRUTcoQ4hk8PQVnoZXla2gfjqJBddF8pr4PFUNEOBauncecEnd6LQ71lqbC2b0DTDsIg134sRUBr6Xq9l9lFJLhyZyjBkiTmH2/3jfy8PXBxj0bmMaS95M25mgJlrf00e0nV3VSt/eFvGymceXj9I+MZfeM+PDYHo/DeSxPk5+pUSMkHtiiGRP3+nYEysqZTzQAzAeUml7KO4zPg8MrHcd9h41HlYLTKD1FTBhtB+4ipV1VTX7Ubxqfh6v/9Ju46ic1qetEfwdlVBMYM3fp3IVXVv7JV2049Lziw2pKTgHmhwbed76Xx1pRb5loinM/89nYtiWOvVhTYHpp2sooZ24UCgcSZq/D3hFoNPCYbj/mLI5A6IRMXJhsRYMF2nHSLeuWgHjmlVyfoLK6qEdlbaLPZ56zYfcrX7B7X0uKd6OZRy10eW4q6uzIY8oHV9++8Od2gmNj3r/Q3OO7mfUCjZ/7TSe0bVeEW90UgePfHQcuqcKXGe/fyhWpy/AIaM6Q/iqLq/c+xq8jMy3T6ydG0W1R0qMWO0Xl4515zgbHayT8zQIHPgxU0iae3AeTwahZM/+dcay31t7v3FSHqZlmPi7vX8/dHmw3W3BpvBXpsxRfcjlzolD42HyX5bjLy9X+HLG/jAkSekT3e4/mvtiY+oemjLIuxDQdIMJE4uE/2V7xSeEevFqhgFC31SetFhb57UaX56bqOpGPbdUNzstXdBUB9Jn+fu9cK816T9vp7NGBKcH0+oMP0yN3+0TvMRNZ3q6+JUBO3SkoDZ++3SfxGrNeStSnGkCUTc0+T0Fp+T3swO8PtN8syrOuPtASNf4/+xG7ec2JYe2OPtD98Z/SwxOxB4hK1xPm2m4mzgvpZM//LJpBhEuyAyXR19m9AvXi4pNWCyE/xTHP8Lx2jpLe5qQO296mprAB6MXhNUBqOmWrBWPNmtg5f75uHKrppJR+557L+gFAmYcBprAQFl4804akwj26daR0r29HYSEv338Ygd8psOjDs8WTvvLMw3hq8FRMP0XS1VtKmMGqMkGsDMqohibpig0+37cfFOrbn9NnQASxoEJYSIYny4dPc6mzImipnVX/HNECxauJ+cKM0+1ZWupbSZ0XrS9ft5gaWgE2ttcwJoStKRGRqRL//FXQSNL8qBB2fqpViL99yULmE42SK2TPz4OVkxG9Ovc8SDSXhmQHjrynmM6ktKvK8qJ+xwDiN03d/3azhZkPXdoYwk6i+G/in14dlo/IHaO43Dyhv3iiF81p/QYcviQIYTQNny7oF+Xup14b1c9eycr9EAoIczcmEt6fpAjfkhfC+DIFIapmTfZMhTA1uVPcSLIDZVlH4beKMMHrb9QQ3vGkN/ZDp6Wj02vkdIqaCvL52weRu3kUQKjBglTms4wnXggDCAy4Xt0l2YGzz2j9+rlivh2vJQjgG+MrTmxq/rpHVwhTl0kdrQPEhJUipUqyg5n2Bq6exuoR8tweXJrdnD3nLCAa8ytPiAAg6jbxdVf/ptDf1JeZc6GynlIy1iZ3Dk0hBBwkZFmcgGBZVru6W7h23hWGuny72YLy0lLd8Vy2zVeMn5aF243L0L+DHZLsQOLJfey0noJTAYp5O00X603uEJvq1dXsa/Q33283hnbCrPMthPr0ixmJfi26CvWhvjhdEb3jCADdpk5h6exmC9p+TtaLwK0ThbEW4VkVFyco5rl6a3Lw8jjcfjSKIaBSCo1Ldzsf6W8KnsL3rytBI7O9UXh3/g/Ft5UkO5jSdWPqH5o8PHx9YNytrGnOS8RVxtQdOyDJDoxYMV23fEl2YJEfsSSptU5En6QnYhQNmk9bUGFSz39Tu9niUgj79niyIITRNJLsQLcpU1zOf/qfn9uxbXpq4vJ5q78l79ONRwbleTMqhKnn8slXbaj/dhGm5BRAkh2IHHZ/vhUf0j+PHp6IPQCkPhHjSU/46Tn+Kdyp54Faq9LuS+NDw9WaZldpeW0OULHJ2trBkHJACBt45AIDkFCnp3H4Zz7MXfkeAc2xMfl3zeZ1P9osSt0PDWImE5LsQOS+4cjosMptHgNy+mFD6CaXcQDAWK0aym6LTDcV6ibVPc3SmurVhaFuHeE+i7oNp160odkXKUL99YRr+lz0S1v4j8hiz8Zq1XD06zYI+/oKnEcUSOjjq9oA2bXZyV+vJybBY3smjG1boizrKACCzEUvhbsaN3rv9OLyYYaIcJRnKiZdPLkrQ/3eWK0aTkzvAO+Plc2N19jr1YvmQd/xpz/qOKaQQJTLZxh0OH0f22sY82GmRytPpGCkrxaAhtI7Bfvw9pTJqLI1Eyd+bQ3fxw8Jdb0TGwm5qwdynpyD6FemIe3TuVh+rQHG1L4gbv5hITgZ04g5b6Z067EoJH7/jSA4uPt+7kiSHeg+eTJDUqMaZ0l2IGbgEyjfe0gT3936QunCU1a8/spyzNg8CgVD5sFutrg8xVXn4e675i7twMzX+HUjts8IOA8fY2mGZp/Fl4d6IbvzMjZP6JylJ1QtF8ah+TtkbHj4+jBn3HQeUy04fxLgqg/5+l7dFITUdmsQM/AJJK3/idWVn4eu0rrq37JtvtgSpmWQK5uLlO70j8SOBQt08770pBU7Pvwag32iNHm4/E4+EUgo3ImgKrUw+2IQc4Phrg5nf2+J/ZErYTdbUH1nE9zqdgZnn7ah8ffi+D7+ng3NZ+qfHlwbEY3av2j9pLnqx/vZd/KXt2cmnv8OnXjTBt8PU9i+OO7YCSxtoQhExTNt8HsvxWUf8mG0PvkrLAga7WCn6/S029CxNZLW698l1SNX42LlNS92x4uGxQx8Aqe61GF7gV4e9zPvXZ3M8/H0+oKnayOjUXtlmpDmftr2P6KKk2OAuMepG5vnts2W/QQp8t+pQ2Xtbp1pxKGIMk26v9OJ2EpHq//KidhIy5EHuj/+U3ogT8Q++ugjDBs2DIGBgTAYDPD399eNV1RUBIPB4PZv+fLl9xW/devWumXs2bMHvXv3Ru3atVGnTh3ExMTA4XD8f2i1QndjIoVNRJIdeCWfAAlEvhmH7UsWCv4vJNnBLiarmV+e9r43R7M5mRrUZ8hUeowzXTwo+hsNB4Cn653QpKGoTGoNHgszaBFw1AtbaaHiTNVutqDD+/r+t65uCiJC1ptxLC49zeKFMLvZgvoDclj/0DrzvoqCV0zDve6ncPjuLRam15dqIQwAPHy8sSqsqZC/8/IVZuLB94EkO5hvKiqE8XFofam2U5Id6PQquT9HofkBIP/zaJTdvo3CRxcwSO6zv7eEJBPQCcrMxIb3wIXW5J7d5db1WHn8xsuPm6ubFK23egwaIsLRcWacECbJDrx0SvGHwwthwnfXyY/foNSMyqaCNEEIAyAIYa1SnhDy7Pz8VGHMSLJDI4TZzRb0mEgchifu/I0JYXw9ErcRqPHT60SzzePvke/hZaoh+IU6+ZoNpT0jkPcF+aZzTvdkl8uP2AgjPvNcOCvDMzEDAa8TDXjap+Qu29IWvpo+cmbnaoQwgMAp1zJWw/UkkelxN+/13kuyA5aP4uG5MYO1fWYjAqpxqvQ6yvceEpyi0v4Ly/QQ8uDvRdKwve/PwdBaV9HyDcXXFBXC9KhRSj2XjA0f3lhSXELw7eGFMIBAcfsNO8jSbipIY+NtWgC5sxf4kwKSQ4UwAGwe5w/3gCQ7UF5Fu0XqzVkaltpuDexmC2Oco2dMY33HC2F67XBVhrHXCZcCl6lRI5R3Ju9yl3bA4/m9GQQ7Jc+NWij3MUdJm71+TMVgnyhIsgO3HyXCWJfnprL6qevT68hAoMyJ+Aq0WLUQpk5H0xqSlHFyq9sZSLIDjb9P0ayzzWemCHexhH5w6uuM1XMnttcwAMDKa17CugsQ4JmAxKcAEIfO/D07eq+PH/OuyPdDUvfNv/6I60mBTAgzNagPSXagYZZTWAMBIPdrskbE9CfIjwUfi/46g0aT8ujpOhVszkQRX6Iegf66+9K4Y4qyj5ZJkX4NkW1w4tfWCFg3haH/8fGS1v+Epl+lwMOXzE9TWAjyV1hcjk29sc/XVZIdrJ18PPrfbrag6F/KHT9TQwUJ+PrIK0IZav97NI9Fxbvdfhv1PpO/vD0k2QHTn2blXYUQBgCX9olgUXydKX3SxCG8U48R9Xcp+qWty/xovEMRZSi3tbuv8faQ/tn0QJ6IGQwG1K9fHx06dEBmZibq1KmDoqIiTbwbN25g7dq1unk888wzuHXrFk6ePImGDYkPqqKiIgQEBGDw4MEYMmSIEL9evXoYMGCAEJaWlobu3bvD29sbzzzzDADgu+++w9mzZ5GSkoI2bf530G34E7Ftpw671XK60xRRarkgHkcnKyYesb2HCycm95OPenOzmy3w8PFGaclJGNqHM4eTevHo7+Ad4xlghFsNa8Vz3k/tEfzEfpd1+6IoFS/6WzXpAODc+hZoNPAYjO3CsGnTz241VnxatRaOEp/+ubyjSOjeC6UlJ11+i5fyDqNvjXuCMOWqbD7/CceOC1pKNZka1NfAP994vBNq/roHEfvLkNleX5fiqp56wjaLM2QcFq1KwCQ/LfhC0b+s8H9LMS20my04Pd2GA6+Q+xwnX7UJ/s2apNbB0ua7hH6gmnC9MWY3WzCrMB1vR/bTAIJU1p+utM30Hb3j56rtevm5Ggu5P3ZgSImUyjtbYEhW4ksycULtzMlH3pfRDML6fttE89y8eolQviuhXU0e/n4u/capy9Zrp97Y4fu16AMr8zU4NPssptQlZtRzj+/GtObE2XbA71PQZLcRdZenafLh847tMwJ5Y+oLYAz0Xeu0MQwwwx3lft8JIU/v0fSHKSQQztwC9D50TRAY+Hht9xkE9xeV9Rn9PyWnAENrESfusS0fERy607zpSZw5rTZDwJx5Lhxp7aogZ2FHhD61F7lLIti9O8awV7SHUt4X0Qh+kQiT7T+Mx/43E4R2ri1JF060XNXd1bvoGdPYd7rfPOJy8zCo5nWh3pQKPrEidywBL0m+XYb3AzvAFbkaF+rx2WpOPIx3IawxenOd/z+ysCdylrXAvnfmuJ1r9G6iXjvV+apPvgBiWho6mSg07to7oqq0V5Ou3NqOwajr1dsdSbKD3a1U10uvjjnzIxE6JUOTh6v4eu12lVaP1HeYK9vnCz61IveJOZp1JW9ZewSP3Y/rSYGoFVPATqP5tHdjIlE1KUOTpyEiHEl/LIfdbKnUasEd0b2Vz1+v/ZW1UZId+ORCiO49e0r8nsrT3+lEbIWj9X/lRGy05dAD3R//KT2QglhBQQECA4mGpXXr1rh+/bquIOaKUlNTYbPZ8Pjjj2P1asWZJhXEZs6ciXfffbfSfKKionD06FFkZ2fD25vAPp88eRJhYWGIjo7G5s2b/612uSJeELv4TDdcaeFEyHNaxoK/FM6/ey7vqOCMkIbz5oT9WnRF2bVruDzOCu+n8vBb8Jb7WnglWTFfUr+jzwDQbnY8lj3/BWb4R8PUIhj579cQTnD4C73uynP1HhAXvcST+5BwOQDPeh3XLJbUBJMP401j3JVNL8yqSc1QS7IDvUdPBGXwY9v2gvP8BVx60gqvH8WTGOuBoajTL99t+/T6NOaxsUj6fRk6vh2HBou0C/a9vh2xfclCTd+4YiYA4jDz2IJ28F1nEnzHVCbMuNt4QjI8cXRGOCigyb9LNO9+wTZsykvRlOdOacCP01Ol1zG+QoisTMDQe6Z0IymQOcylyoHcbzrpzklA3FANHVvjZPc6OPhiAq6X3RZMCN2Vq9e/rtrpiom6n3nUPyIGpadOY9RRGT+3NGu+L8+UV1aGoUpVlN+767JN6nSu2qeO3252PA7MSHCZHyV3TFBlY9ZYuzbKrl0T5vWVMdGVCiSUyaVKKYGMJkglmZry1HVQt4N/P7soDcOXvoCjT81B0C/TkD9iriatsUYNARGPkiGyDcoz9H0Q3e/Y5ylncQRaJNyFSb7AUOUqG1/0fYNkL1zofEl4F/jrVDaH+DaX9ozA3XoeKOlXBvNmI2qt3sNM+3i61zsChjLgo0Vz8XaAiJ5qahUK55EczTgYXtCL+Qzk6+iqLeOOndCYCavbxofRdrgal+p4xpo1cfTLVqhzuAqafp2CixOsqL9YXNtd7UFqUqfN/bYTCoYSU+BLT1oR//oa/NxScVuiNxZvSQGobi8UwC7eKdgnCM+8IoBP7054ZsqIinmmHu+UaLwrY6Ix8o0kbAqvh+LVbdDLP4cBWyXd9GR3mnPu3UBolZosravvYjdbUHNXI4Y0yrffVRvUeaj7in9HFW167/i8XzrVAUeH+WHj7nUsPx6gQ48eCmIi/V8QxB5I00QqhP1PaeFCwpw+9dRTLuPcvn0bN3U2M0p5eXnIyMjAsGHDmBAGAN7e3hg2bBi2bt2K06dP/0f1VNPanINo/H0KCh4njm/ViwCPzMUTFcLUaQwpB1gYXQzrLU3VXZzUixS/ENE7JHp1spstsJstODAjAT9eIE5dncfymBBGIeEtnp4sjxZ7q7hcFPn/d/opJprUIS6lWO8O2BBOTE88mjYR8lALYZLswP7IlbptppvW7CLCgJV3uay7aeSPmKupMxU87GYLO8VRC2F2swV1+uXDo2kTFl7yuk0TR10nACjPOIie458ShDB6MVuSiYNMGjf3m06a9HxdJdkBk5cXyktLETohE9V/T2ffrvdo0Slxi0VxLA/6v8P7cZp8Oz9PTJi+896DogFVhTz4vqK/DZ6e0COab9nNm8LmSsOpc2mPgOZCftQ9AI0/njvJs5stOO+8IdRZr1/0aHfb39jv4CeI6VLIc3tYGr5tVzcFCVrNe3U9cbsx8VlWy6j4GaL1VH9vCqXO553zA3HJcGVMtMu0vZ6YpJmT9J3e+M39kTBWpacIQM34OmeFsUL/84KIuu+ujRSdOCcdT0f+59GKcFOjBr4qEhlIV/2vBsoBgBO/tsaOW0Y0/VIBJDF4eAhxaHibL+I185GOL3WZvCkUfbfp2F8AIChX0mbPBaAVkviwegfIHV7BCbq1HflR5tRlyhddacry4NczOsb5+o744UUcfWqOUDdJdiD/s2hU2dEMkuxA2c2baJ2p3bqTfl+mW2f1WqgnlAHERJSn0AmZKM84iI0ZiSzM9KeZgdWoy+LH34qAP4X3AX9MRsHj8zRjXZId2PbTIvz13TyETs5ArdVkntH7VXwbqmzNhMf2TI0Q1iDZC0ukxbpr3/n3A4Q2uiNJdmBM7QsI+H2K5p3eWsF/O/63uqywefHs96bcZIROyUDTr0n7asn3NGtm1ksJDCxIr46UeCFMkh0IeVY5RU3/aI4ghKnrSKm6vRCACEjxfmAHoZzgF9NYegDMPFmvT7yS6wvhZ0crDus7zozT9BctJ232XGwKrwcA8Bt2EN9578HAI2RP/XroEJbu2eadEbhlombd0uNfbjxyDstOJDOQJn6+VTYe7GYL2nxBvtuNxztp5tKF6MZCfL39LmxuPA5FlOH011WFPqFC2IJiAmRybWS0Ju3fhZzlhv/K3z+dHkhB7D+h69evY9WqVWjevDn69OmjG+fzzz9HjRo1ULNmTfj6+uKdd97BHRUMekYGOQGyWq2a9NHR0SgvL0dmZqbm3f1Qs2bNhL+QEGILPTi0DWr/1ZDFoxvR2pJ03ImN1Cw2FCmLMQIAPHc2FdLrkVorODT7rEvmXS+fdwrIou3h64PidxR/OXoXT53nzmnCjnW8p5uvenHdsYhcMD9895awsQv1MpqwcZ/kMg/6W71p8v+9fkzFDH+yGHotURxlUyrr2h62F6dpylcTzzjciRWdRvJ15P3bqJloNVV97RTOTVPGoLHXCSEd/Ya8pllDFXdGEg//qfmmkuwAL1ACwLFJc1hbcuYSkyc14qEkO1Av4xRLF7roAiTZgcA12vslQdsnEM1moX4d1QyUeizm91qMsm2+KC08zuKuKknFrUYVrh58FKS3E2/ZWN3H+HbW7Q5aB6ok0BuHfFjud2QjNgUHCPWTZAdS260R+mTbskUIfCVV0w6eAc1ZEIlWc4ggQUEY+HHQIo6calChyG624NtLzYX8PLYrJy/USTONS8N5/zUhT+7TnRPUiS11EK2mJqmKBrL2yjQcf0/pX7vZgqwR37D3ZTdvIqxqDaE/1MJi9IF7MIUGicA2dergwlNWHLH9hBcODRfS8j4D+bqbP0tBn1GiQ2PelQX1VSjJDgQtJffBCn9uJ+TBCxS0PfwdSb4eNK+GWbeEd6Vb/ZjJmYeP4iybr/NnPw8RlAuS7MCFzpd054Lf+ynYdovM17UlirKkXraBuWQAyP0SNfOnJwTylJMQpfuNaVjqHkWhV9orQsi3eCa5++vsITN/UXpl0/oGrSR344ztyH2v0KkZwtikTn/11mt6h5a+p4orSXbgzQJtn12Ka4LGpprMP2HhSsW5dJXNipkgAES9ofVXCZA7t7S8wscUhGJKdF+mYQ2SvXS/n1rYuToqGn7vpWDmOYIMS4UyWoeq0l5NH9jNFmb2SZUIpT0j2Du+3IsTtb4nX8rTXm9Qk94+wCt+3O3/f+zqyH6fn2IVvv+lzhcFn46ZM4lSofDndhoFqbrekuxAzvxI9ry+VQNYPo7Hpk0/AyAWIpLsYKbhRb+0xfk/Ql1+BwAY69sZQTO0Pg1d7buXxiv9GfAosYqo+ese9Au2CXWvt1TrwkY9x6lD8IaP5ugKan4VbnJSvlCUvHazBWtz9E+1H9I/l/5xgtgvv/yC69evY8KECTAaxeYZjUb07NkTs2bNwrp167Bw4UK0atUKH3zwAQYMGACnU7nAKcsVzgm50zBKvJni/zZd63peozWqYayKHQsX4IuLIlT1n4sXYvPNKti85kfGMNzpppzSqRlBvQVfkh1Yd1qJR+nyOCuL1/fxJwEANweTUxdqtlB6ogR+SddY2ZLsgD17gCYvfoHi66ZekOliRAUP+p7eCwMAU5PGYjvKnBiYGwMAMKfVhkfTJgIDSPPVW6zpJXdJdqCsK4FEoidFLfYq6JVbflmMlC/mahZttdaSwscDBJShrIvSvtgej2vKp2XfHhCF0y/oMyblPU+i0Vxl0U84rlxUfiWfABLQy9qMsQ0OwO0BRIC6GxPJNPXRr0xjcaaf6iik4YmH8A2dlu5yo+PvITmzc4lA+OweQTAAgPyei9nvfrGjSfpDyp2ayshutjABlFJdY3XU+TmNjQH6jX0/TBX68dZjIhqcoWNr9i7xwBaXfUDjS7IDIc8Qh8bOvELhnd1sQfh38Sw9BQFwRb2ODAQANPG+BN8PUlyWq+cbb0O4l7BZ83OOOmmm9aL/Q6dmaMLU7aWn3byDaJ7OTTULYc1nknovvUoY08E+UcK8cMVc07zT2lVB4o41Qpjz6lU0WEi+W+PHjmrWC7vZwpxL8+0w7nSNdkfRXAGw8niYeUlWnNrza2OdfvmadWrW+RaQZAe6PDcVW35ZzMrvbxsIj95kDtzrHYF1e9bj4kSrpr/LqpZr+oj+p4osSoYqVfFpELl73OON53HqRfL+bl2iFR6Uaxfi0zyjXlcAi/hw/ttRP5Q0zrfHk4V8gl9IQ7mNCKse2zKFfrlbT1Gy3Rqk+MdS7yvUjQU9RSk7kK2ph91swaHnFYh/u9nC3H8YIsKRP3yukL/PRylsPPB+xej7sqyjCNo+AUcXE6EvYGSW0M5eT0xC8buEkfZaUnGKVKGcopYKeaNImfTUl7p/ofW+1vW80NYLnS+x37lfR+PihlAh/uWxZBxcfZw4tE9rR/YTv/dSAKMJ9iHjwBO/Tp2ebmN509P2bT+JTqtp/Ra8/ZXQVkl2MHcganInsNjNFl2zXLWA37/LIHZSO/jIOQx9ZruGn/DoXczGEQ2j1jzqNU8912oWKPuuJDvQ5BvFVJ06xgYIL+I/IgsNH83R5SUAoOgDMhYvTLbqvs/7SXQqffZpG243MLC2rg9JYnF5aw1AdDXB19+jua+mXdR9iN66SMGO1PP270JOGP8rf/90+se1cOHChTAajZgwYYLmnZ+fH7Zt24Znn30WAwcOxKRJkyBJEiZPnoytW7di5UrFfI2aLXrqmFNVq1ZNiPPv0qlTp4S/3FwFLtudlm3zeJsmbMahx2E3WxDbtpeG8eF/u2L67GYLanjchSQ7GFqVJDtQL4cgyuX80BGGlAMk3lrF9MEUGkQ0j+kHhfqgVwmujRA3Mf738VVtkPut6PyR39Bzl3YQFkP6nvpvcZ45q8mz9DGipc693Ailp8/oLsxqIQqAALBg/Gs/7m5RQDO+MRPGoElqHSG/7ocGsThzQoKFuqy1f4slFeYGkuxgF40BwHksT5c5spstqLYhHQdmJCAnIQqlvSLY+wuTRGCSO/0jGVrZ07k5+Hzg45Bkh3B53G62IHHXWuycT7S61Ak2ANT9STF1+qpZhRPJF7UMLgUH0WPc+d8UbRNGE/K+IiZqA49cQHnPk5o2Lr3aEHazBWWOIyieaYPUuo6ugM7XRf0HAJtvVmF5Xh/WSSgDAAweotnrrfomSLKDmX9QSHF1W/j28vXixw3NY1VJKlr8NY4wibMU5MvQp7R2/3wfUqa9bqwiwNvNFiC6rXA6x9ffwskadrOF+TRqP4sIgLHt+jDGGACG5PXRtM1VO9Wk9y02JZF7lcbWLYXwcXXOs9/0hFyvDJ75oH3J960eA6I3HniQBldrWWV1oKas/04eAPFfZjdbUDvxoFDnjSnrWZwqWzMxwDsCV0KUtrb/kJx+HJs4h/m+yv1OGbO5SzswrTmlpOPprI/qLU1lyKrNvkjBqZdszAk0349vFjjg9aNrJ/P8b3ltKxbv2eadhT7Kn21l6LiGyDZCuuAXyB2hO/0jGTCDen4A5ARELaBVtv8AwNsBxOKjPPOwZsxQovnmft9Jk2fwE/vZiQtfn5LXbfDYngm/d1XjpwI1j1oq0HZQ4Ka80XM15fc4/Jhm7pz9vSVCnk9D/QE5QnvORxDh22eoFmxGKskE0kSfUfx9XTWUvB7ljSanKPTedc4PHVmf0JNffj2be3y3WyG996FrYh258VX0LytCfySCfmlBEcq6EhTCta0aMd9+twZFCUIbHUce/n4I3DqR5ZszP1I4MePrkLesPQ49p4CMtfkqHqenk/0ptvtQIf5f38/TpJdkB0whirLa/20yHvScw59b34KZnVNq/H0Kmn2uKMiKS6+zdxRRlL5L+1TfjLn0uBZJmneRwpPdbMHZNwM0+87g0P8dELiH9Pehf5QgduTIEaSlpaFPnz7w8/OrPEEFvfnmmwCAjRs3srAaNYjTUrXJIkDul/Fx/rdIfSStntBJ639CfoWzQ0pNB2UT7a4KaS78O8IEOHsQJ5gevj6aTer4KjLhD+4kjpK9FtZWNri0LBhr10boRMJc0sUXIAiBzpx8QfM4KaeQvae+XvQ21ObDD6JJqgHF79p034eM2wffD8XTArvZglr7CXMf6XAK4YDiFJICLKiJbg5qUyaeCZFkB6r2Oa5JW/RJS5x+3gZTA+Jg17NvkS5jazdbYPH0RDOPWjg/1Yp+MSOFOvK/h+T1wfk/QtnmRd+FxqfDY5tictZgkchc7ViwgD1/HxKKxC2/oF+LrpBk4r6Az8sdo0nfrylJQ+hgBU2zf6cBmji5SyI045A+F3e6AXmGDcbq1VDd7xoRECtcGtDyjTWJY/DlLX1YOnr/g2fiqCBHKXDtVF2Gndf21lq9h5ktUY10+b27AsNB71FQBitw8ySceMuG0+vCNAwJfxKo3hz5PDr+9CKOdV0qxMuZEwVTwwYaxpSmLfjYqpl/jNKykHhgCySZ+Ajkv90nTRwCXHOZg0DM73+DMCzOc+dQfV06NpzMRPFMG248cg6SrJzw8sTPN71w2l69Oo74dbsmzCOgOW483gnvB3Zw2W4AzPyRvudPVPT+q+uxpiRNNw4lQ0S4EJ+OCfU8oG4FKFG4cj0lDTWPo3Q23obVOduFOvTvMggAYPLyYvECXleYPgrPHvpjHAqnh+PyOCv8EstYHiHj9MFtLB+TtfvyOCsTxCXZwQAcJNmBtNtOFH1IFDWPVNMKO3x/eDRTzNVr/FZXt0xJdiBoRirri6Tfl2nGgt1swY4FCzTp1GucWsBW92/ud50Q0zxKyF+SHYh4V3RTov4mNN8ql4yIbfmIy/HD18fnI/INrjwRLdRJjwJ/nSqURS1AKP0Z/rumjxs/dlQ3r+DpIrATTyE7xmve8XVzVb+I/cqppLqPQycqJo6Bn5UKeXZ8Ow4BVWpp9ge7mZw0S7KDoYoWfWjFvb6K6aGHtxnHJs5BwOuKkGv8a79QdvHqNqi+Ll1YX5gw82UtxIYpwmjolAymkKJjw9SCKDSDx+7HuOPKdz04PQEHXkmAJDvwZtJq3TGuHnuJO8n93sKf27FTT75PqQNzikAp9HW0YtIKENNB+n7nvPm66xs/tukpmbu9l+0Xi4mp6dYVP8BZXuZWWfEgU1m58b/y90+nf1QLFy0ix/fuQDr0yNfXFyaTCefPK1pes5ncH9AzP6RhemaL/wkNDm2jWVgA4iCVTtSg0Q7cGhTFNDR8PH6h8JlFNm3Tn/sw+Mg5lJ4ogd1sQf8ugyDJDpybZkXz4UTwOzaRaDGrbUgXFpaya4qWrMt3ymkYzwyvKSEbzoLJQzQbLl0AT0+3MTOA3G864cKjtwQNJUDABPgNVb0hlZachN1sQYbFNUIPn/5ujHih2262wLhzP+tLnkFQMwvXh3VifVp9XTp8BxfCeeGipm30P78od5syBQ3npTLHyXp045FzaPhojgD5S23jefLbo5g0jDt2AgGJT6Ft+ij2vr9tIMquEQHo8LOKqY+rjZx/L8kODPWJxrWuypjfuGcDALATSwAo6LsIrb6PF9LzY9Q8OwVlN27AewhxZ9B5+jRxDN24IfQPQHwYqTcyyriYWhGBisJ30ztfroi2++OwNboMNV9ubMtHEDI+E77/SkHTQdkI2DhZeM+7CXAltEiyA7nj5gjx7GZyr8R5/gIubgjVCHIAkDtOC6F9Q+ULzG62sIvcOQsV01Efj1ou20bDqhhMKKtazp63/LKYAV3ojVs1GWvXFtpD4waunobh2acxvs5ZxjwsKK7Qrt8rZVDPABC6JA6FHylmxBQghDLvNG867h+JJ6fc9HRP3ReUeORJPWblRN+6Qr3pHUxjheWCqzZTVL7eh8gcKlhhYf6UgqenCem8hxdiqE80TKFBsJst8PA2MyQ0eveS/tH7PHSu5Dw5B9lTErDn4znwTMwQ1puzz4imiXazBU2+ScF7BZmotzQVjvZagdJutmBmYAT830xloB3dJ01m73mGu+WCeGzMTGJh9ZalCibu6nmoFgzo/8IKn1e8EAEAAeum4HpSoEtBWZ2PJDsQ9MtdQWFC3zecr73LA4CZ4VEKWnIaOW+Hs3R2swVFHxLzsyF5fXTzSPt0ru7ayNch5CfFwkWSHajxu3LCzZvE0/d6a4MpTN/3FV92YIW/sAnHjrsd9zTNzSFkP3LlqkSdhvpypM8NFqUyxRYfDgCJT3+KRVeaIieB8BPHJsxhIFCS7EDpSWK+W/CxFTF+HTUCo91sgd8w7Z0muraZBx9BbuQdGNu2BKLaMKGYJ95ahHd5EvFeHAbk9ENM/zHoXM2I2GOxQpvtZgsuPKW9I5ezIBIBow4wBFO72cJ8jX4ZTBRw3x5PFr6hJDvYKaVaYFX3MV/WC3nZCP2R3Ds80+se7vVW7iurx9rZ31sSwbNhA4ROyETO3Ch0nzwZJoMRdrOFgYo8vCP2f4/+MYLY3bt3sWzZMjRq1AiPPfbYv5W2oKAATqcTTZooyHaRkYQxTk3VHmunpaXBYDAgIiJC8+5/g9QTeO/7IhO3K2E+qv2RDqOllRD3StktIR11GHm+lDBZkQ4nai4lTAcFXwCA/lH9Wf45iyN0BbuZjY5owiXZgVrGaih+1wbjzv26m1zLBfFo+lUK8nuSuxUhz+1BTrcfkbtU9C0T8uQ+9I/qL6TV6w93TDmf5s8fFmjiSjJxNsvH5dMEbpmIsq7tMfOjH4R0/CX5Rin1BA0zFZLoxlRtg9afCkAc/1Iq69ZeWOyvJwUKfl/ouwW+yez3mNoXEPrUXjQblM3ilRYVo6yLRbNxuNvcY3sNE57zl7dn97XafUIELh59y262wPfDCqFexYyo22g3W5ijcTXzwRN/OsbXr+3n8SiZpQjaud91wpH4BPTvYAeiRHMNNcP4aVAbXQ0pXw719fROAXE5QH3/8HQuTrnjw5vQmEIJiEPQtgmsj/XaUH+AAqGtFtLVDGWND+oI6Q2RbVjbQp/ay4QjV+0BgG8vNWfvjk2Yg403q6Hj2wSdrLy0VEinTlvyug05c6Mw6qgsKF348kKeT8OqMDLeqa+lyRXolBvTNwp5BryRioDXUzG7KA0v5GUj5Ml9OPWiTTOX6d+uBGKO1fi7FKEPaTx335Jfg6jgpW5j2e3bGiWLh78fmqTWQb/Dl1m8ra1ro+R1GwJHO7BxzwbkLtGu63QNuNKuISYcO47Sk7JmDbGbicNwj+3kflWLv8axcH7M8O2ibefbVNa1PWYGRqB1prFSpcqhiDLYzRZ4bsrAqRdtuD0giimEAOVOn9C3FWbB1NxUkh3I/bEDixP5lnjfzBDZBgGvkf2CChG0XoWD5qNWTIGuwEXBbXiymy0w/rVfeAaIOxL6zM9tSXYgb/RcmBo1wqmXyBpadkJmp3eUPK6TO3S/BW9BwHoF9VA9B9V94ZPGgTOlHxQQ9qSSTFYX3iS+cGVbjbJFkh3o/PxUOLOVawaA4ghebw4sbtGczXmKhkvj8kAtf303T9OPlHgEXgCIbdVNd8xQxZb6nZ9HLawKa4qWL4r36vjfdrMFuePmsPUEAKaWEMFXXttKN99b9zzEuZh1FNK6ZbCbLWg8uUgzL2lZnZ+fyhQZmTPn4F73U0jaSPyDOXvILD4F1WiwUOFj8j8n62vo5AxNfeovTsWZ55RvEVqlJkP95cvX6zuPgOa40y8SobvIfDa2bskUul8Gh7FT8EL7ImxfukgzfgGCrFq2nVjVGGoRk/7QaenMLRAABM0g+Tx/UquUfUj/bPrHCGLr16/HuXPnMHbsWFSpUkU3zoULFzRhZWVleOuttwAAjz76KAsPDg5Gx44dsXr1agbcARAQj9WrV6Nnz55o2rSpJr//hKgmZNdtgroHiBvJewWEEaLPZY4jwmSva6wuat5eS0XO4gj81bYaJNmBDIsJV7pcYMfzNN6pR/3Y77DPrmsWR/53v8OX0XvMRCHM790UrDyh3fABwggYq1Vj78q6tYfdbMEzHXawOJLsgLFaNQYJTfOYfKKzLkOWM0c5DexWgWKmZor7Dn1So72j7+xmC4p+aYvoA/dYmCQ7UNDnBxj/2o+41Cc0eQJA2/RROGe7jNJTCuLbxQlWLG3hC7vZItiUSzLx3UbJ+2PCcC0q3g3jzv1Cm04dE6Fw1QybJDuYjb4kO9jdqKujo2Hc7WBtoheFeVK3IXHbamETzOuxGFsHkTsFG1/6VAAYUad1njnL+pIqAexmC3oeJDbwJ97W3jdTb3AUhZEnuvE2+zwFzSpMbSXZgaRHv4DdbEHp6TOQ1inQ3HraaFd1pvGuc6dP7wd2wPobollxwSdkY280R2HwtrVS7gAVjmyC81OtaLLBUyhD77eewCTJDgS9nCYKBUeLhROR8oyDDPFMkh3M5YQek0DDNoR7CWHfBLdk7g7U8e1mC+xDxjGTK5+PUhA6LV0Dc83TzSHK6ai6rXoCKQC0rVoNMTWIDyDftSc1aQbk9BPWCvq9+fuR9B1FIlSTniLFlRKCH++lRcU4Y72K6V5FAAj4jSksREAyDRmf6fIb11q9x60D9rhvVrHfvB9Fms8j8VOENtKTJoraJ8nE9MucVpsJWTwZ27bE2afFeUbzu9H+FlME8QohgDjRLbe2E8ouO6QAo1AkOrvZgtsNRLjopN+XCWi+NB7fL/7p1YU62c0WnIpp5qqbBDJEtkGst6KYUzPodrMFznPncMeLuDwtv3NHI3Tf9VLcoYZOSxfqQfPhiaYviRbXbO+dWtN3/j0ggoHw8yD5ayIwya8o36f5TP37XjRv6vfN2OuEYE5cw1hVt2z6O+/LaEEJUbqV7OHOy1d09+3eh67BI9BfCOf7p6ziugUvXPL/1WtQURTZd82Dj7D3QRnkBDrvi2gGoqEn2Nzpdhqx7frgxFtEScPfcU3+eh48trtGo6b18FqinJ6+kn8QVzcFIegl0fWG3WxB8eo2LF6Tb5RvMet8C+YqQd1O9XcvLTyOHYsWsO9edugoU47LL9uEMUDzWFui3KOUZAcMqQfgrPBmwoNc8W2SZAdyFkSiuMdtl+1/0OghWMf/Dj2QDp2XLVuG48fJfZ1vv/0Wd+/exUsvvQQAaN68OcaOHatJ069fPyQlJeHIkSMICwvTzXfIkCG4evUqbDYbfH19cf78eaxZswaZmZl47LHH8NtvvwlIiykpKejRowd8fHzw7LPPsvqcOXMGycnJaNeunW45/y5R53jdOr2JKunHKmU0+XeeO5sKSImmRo00kPHqNPyic2GSld1FCl0ah4DXUnUX38CtE3XvNEiyA90nTYbRWS44KdTTeJ18zcYEEld1c9Vmmoe6btThrrpMvTxdMbUxj45B0h/L3dZDXQca9/TzNjT9WtRq280WFH5kRcDrqTB5ecF5SXRsanthGmr/kibkYwoLQeK21ULb9OrQcvdYNB9+EMOzT7OTCvrurbNtNKab6r4w1q6NTcf+0vSlXp/lft8JBYPn3ZfQoxfn5pBOTJur9/7KE9Go+1MaG7Ouvl+5tR2DCJ9VmI4IT+KXpeBTKwJf0Y5XvXbzZOjYGuV7D+nGUYctKd6N8X5ddOeQ3Uzgzqmz7puDOwmANmrK/zxaYBba7jNgdtP96Jw1BMkVvsvapY+Cz7SLKD1NQBkubghlQAB65KrtNCz/82j4bbqHKlszkft1NEKe1yKjya/YYP5UO4b1vsfQ7LNYEyYqDjya+6L0+Am8kn8QU9PGIWiMcuJx194RVSURxMRVX97d0lxzDydnQST8/c/iBf8t+D4kVFP3s0/bsP/NBE0fMIpuC6Rl6fYTX77eu5I14QxsQZIdCF4xDUEvu3f4rJev7cVp7H4hQEx/+VNnSXag5cI4NH9H9AtFnW+r8+TXML32XJxoRca/5ugywq+eseCTJkp7c5d2QEHvH1zOA701orJ1Q68faBxjtWrYVJBW6ZqiXqftZgtMoUEaJ7oe/n4axpbSuTgrGs3RXx8o5X7XCSHPkG9xp18kPDeRE4ryzhZsXr3E7ZpS2isCHtu0QoM6nim8BUKX5iM7olQTDyCgFHdrl+PYJK35Ml93j4DmggsPdVnq7xO0fYIASHF1dDRu1zci7fWvMdA70mW/uPrmj8RNQe0DpzX97W4M8I659eLdjYnE2ck3cdi6XPPN9eqmLvPfHX/XkwKR3PY3Ia0pNAiJO9bg1TMWONoD5bZ2MKQcuK+8AXIPuuzGDU2dvihKFRCf9WhR8W74VMDY07L+Tg6dF+yL+K84dJ7cIfOB7o//lB5IUXPRokV4++238fbbb+Ps2bO4fPkye6b3wHg6ceIENm/eDJvN5lIIA4D+/fujtLQU8+fPx9NPP41Zs2bBw8MD33//vUYIAwCbzYYdO3bA398fb731Ft5++20EBwdj165d/2tCGE+GPYcAuF58ACD8W+J/iDp9vdPtNC5OtLKTofzvmgkOTIdnn9bdTOxmC648Ec2053azhZmf8NodGr+gNzHX4yGPKXluyhCEsAQOoYm3Kz/0XIKgyZRkBwKSnoIkO1B9ZxPcD6nr1imgSLOh2M0WmIIDBHj5s/GKltIUEijkc2xqDd1NgH+m8a+OVjTXAJhjTp6MtWszcwXnpUu4PFZ0KMuDmVwdTcwpKPy7HkNNf9vNFnavb1Ld0yxckh2IfDOOCWGuNjJJdrA7ZcdXtdEtj94DAsCEMHU9+ProXbB3difa7Rq/7XHZHkBBcVQrDtTjnwphkuzA45ufZkJ9RGdy4TpwzVTh+9E7fnraWAAo30vmWZs9BEqfgh7w8W88Tk6C1EKYui+S2vzEvgFF8nLV3qCX0pD/WTReyCOnflkdCLIaZQziT0aj6aBsJoQBiqkjQOYyndvDs0+zvqJttajQ3CXZgbxRc3GphSdyFnVEwbC5wjuaLy+EAeQekKlJY8SGi07UJdkhCGFnniVz6sIcT+R+HY1e1Z1MCKPogFWlvUJZMJoQsH4K81NF2wAAVfto78yETs5A1T7HMT1lpJhPBTX+Xqn7xYlWeDRtgtuPKiA4Xp+XCGseQO5q0PbwfQgQU10a7jP0MFrsrYLcr8mcp0IY77Sauo4ARNcS/JipvVK8b8YLYZR4IezOZn8AwMbMJKGefF8xmxFrUgABAABJREFUJvJPM6bkFLCw0y/YUP8H5VSXto0+q++cUSFM3a/q9HQfUa+1/SNihDYDyr1hdV4ePt4ou33b5VrLl0ffdX9qMvr1GwVDRDgSd6zRpCktKsbNIZ004TeGdsK+t0UzdL0yW8wlQE+XxlvhuUkxaTMkk/411qzJ7g3azRYBEXjbskWI2F8mtP/CJAUqfWg2MWd0Hj7GUGr58mP6jwFA5h8VwtRjnPZHi71VcCmqmaavaVnmtNqab8a7DZFkB+qsSEPj71Iw0DsStx8Vfco9nasoe1qnjWF16Rc7mpVV/fd0lBYVw9Swge630wsLnK8PoEUdwVdNyoDPUGIFQE/GaP2d5WXMybjeXkjj8u/UflgNHh5CO/XMaJ05xGXFzlMENMSQokDtu+IH+PCyGzdgqlMHoUsVH3WS7MCL/oqZ+/mpVhjah2vS0/u/rI4Gw9/qjlgZ/v87ddZ6p/3n0QN5IvZ/jah2oTseg4dBa1YZl5vHoNLVWhdDx9ZIWv+T7iapJn4B+/Z4MkKr1NRovdQb/d2YSKyY/yXGV9wLAYh/jirhV3EoejlCfopD4CupMLYLw6ZNPwv5XB0djTorKtcg8+X3mPAUqkp7cS7Oiuu+5N4JjcO3zRVzzMfJ+aEjQ328Hy0bTydftQmQ2TT9IwcHY1ebtbp50DjPnOyE77z3sLKujo5G6mdzNX1N39PfrebEw/eDFN3voS6HDz/xpo3d4+Lroc7j2ohoJgTydHV0NHzjc3Gli2K6W9atPfInGBEyPhMfFGbg7QBiKnt5rBX1lpFvknB8N+KbdxHGIED84FAI5osTrLgWoDCaZ39vKfiK0iWDASgvh2U/YRwB5RSLp7q7G+BKlwso+tCK8qAbCBiZJXznmIBOzIxJrz/pc9GHVhyboGijaX++lHfYrU8ePQbP1Xwad+wEczNgCg5A4q61unPuZtld1DBW1a1n7o8d0PKT63Ae0T8hK3ndhlLLdV2TuMrGkd54zLl3A88274wTv7bGEZuyxsR2G4Kcd+sKJ193NvtjR+t1LA+AMEXXup5nJxN6faWuT2y3IXDmFuDyOCvqLU3FlcRgBvfvrr52s/bEQG89q2wsuFtD1WneKdiH9wM7wHbgrnCHlifaDgDw8PVB6YmSStdpY9uWDOzHXT0rW8ck2YGgldNQs8SIZl+kwKO5Lzam/qHJL+r1OKR/JAott6QAnDrQlDknBwhgB1XWueoTPvzVMxY0q3oZm8LruY0/+Mg5rG3VSDjtpmQ7cBcp7ari9fwsdK9ehqSbnvgyWFG23ni8E2r+uqfS71r4czvmy+rEWzZ4XibIo2pmO/l2GTpXMwpj3ZlbIORF/194yircUQKAghUW5HZfohl3xavbwG/YQdx6LArVfxfNRvXy4esPKN/lRlKggg5csU5KsgPZd29iuj9RjLyQl42YGnc0bWs3Ox5Nv1ROp6JfmSa4NNGbj3azBXlfRDO/cHpx9cazek09/p4NzWcqe5vakoeSsV0Yyg5ku53DL+UdRt8a93S/s17f0bpVNkZ4yv2mE0Ke0ypM+Dw7Zw3B+yG/4/kFU1H9bDnq/yCucUzgO3RVcNeijqMO/zudiM3bF4HqtTz+v5Z163oppv7DT8QeCmIPALkSxPgJemljCLz657JwAIjtMwKJW35B7LFYTPPZoTHdOflbOLyHaP2Y/CfkbsHmnwvvXUdAFXLkHrRtAoLH7r8vZsddufeTxtQiGM5jykmYHoNJn509OsD05z6cWhcmgGBIskOz4btqd79gG251D0e1bVmCI15JdmDXbeDDQAuKPrDineGrsLSFL85PsSLz3Tm6C7BeWe42DXcbC99OV3m33WfA4ZGBgrkPZWzUfUeJmgcVzrIi8LdrGuGIp9KtfuyelV57SntGMGADu5ncHzTu3K8rWLr77pW13xUT7uqbWj6OZ/cJaF6hS+LQo7cDRVG3CPP6RhxzDqse1+o+4/OOPxmN/MjbyP22E1q+mwvnhYs4/YKNMUju2uUqzBQWogEJcBc/Z3EEA97Qi8O3J2THeAbQ0PPgDWxvU7PS/nZ27wDTDtGMWZId6Nd3JDZtXolOr8ah3jJiMtb6m3iNubI7Kt3qx+Cv9dpJ10lJJuAJoS8dgRxNgEhGHZXxc0szSt6wMVRZgJyCBY3ZL7SLH/tNUusIaG56xJtI0nQ0j5iATsj5woKQp/e47Wu98BZ7q+BYx3v33T/qOau35vK/l59Ixhjfzpo8+kfE4OgMf+SPnKsoKN6y4Uh8giYPALoChju6MbQTdn9LTtxLXrfh8LMJbueku3XyfveGnAWRKOyvIHj+O2W5Kltdj/+p0Fz8jg3Z0/T74JYUgOp24h5GzzzWVT9IsgOxjwzGuUeaotFvR+C8fEWI2yf7URh7ndBtN12rEryJGamHt5khKN7Z7A/PvkWQZAd6PTGJreG0bCpM0XxoOF9G8Ts2+L2f4vI9X48lVxtDvuvFfJZRKutiwZZVS4S2ByQ9hdCJe932/aijMsbXOXtf394Q2Qano2ujybeuzSs9mjVlJsQ1dzXCc97b8FFQW7xXkInoaqb7HgOU/k6C2Jx9kf8VQSyuQ8YD3R//KT2Qpon/V8kQ0UoAorCbLQytjTIXPDkPE9MsZw8ZA2tqnUvzQtjtAUq+fD6XnrQKzxcmWzXx9BhbSXYg+sA93QXGbrYwIQyAIITR96zNFQ6zeVMlnviFmvrmkmQC4c/775FkB8IyPVA4srFeNkLdKJn+JMxiVtTPrE0AEHsslglh6j7nw1p/HY+ymzfhmZjBhDC+vvNPd0dYpgeOTZrDTkMazk/V9Nd7BZm4a1d8t6iZQeo7TZId6DV2EvutZv75slt/E6/ZWCXZge8v++LyOPLNszqUC0KYJDuYdnlB8W7k37uu6QMaP+CNVHbPio8jyQ7m1NqjdzHsZgsZx00aC20DoLmUbdy5H4UfW+H7YQqDAS5YYdH0h5r4McmH0fABOf2QMz+S5RP5VhxuDYpyuTE2+SYFJi8voT/v1Xdink8qlp1Iht1sEYQwdZmu8rWbLciPJEh+Ic/uYXD5Tb9MQcka/ZO3kjdsMFTRXtyXZAeKfiF+b5zZ2rWBUvzJaCEdoKAf8mNO3Q7aPx7HajDTrO1tahKUTZ35zvf3uLnrYfrTLPjispsJOET3yZOx5xNy+tI/IoYJYRS5k3dirkd6QhhFhy2eaWPKKrvZglqr9zAhDACWTyWorFQIk2RiEh00Zj8KPrFqmFlqdre0+S6hvOPvW5lpOKXG3yu+D/n+sZstSCrcw1Dr1MSnoWV3y7rFwnkhjCL6qUndV+r5QtcKviz6mwph6u9feuq0cApS8roihOUvbw979gChna6EMHXd6Ng9387I0vt8lIKzTn2nt7TuJ97WurGgfdYvpDPsZgss+8H8PfJll23zhSQTlNT+Uf3Re/REIb06T1d11yubT0Odzc89vlsI59cn6lIBADNzBAC/91N0xwIAVLcXsnC1EFbwKRm3FPhC7QsSC+6g8aZCGGqKChS72QJjrxOaNvBp8yMVM9LSkzJrg2ffIpyeTsqjazifnp5o0fDQJXEwVBFPOrOnJQhxzj6jRVel78bXOYudbavj/BSRN6FAVT5pxLwvbG48QifuZYBHeu2SZAd+bmlG36FP4sJTVuR+Ha07RimVZxyE91qCV0B5KH5eyTNsKD11Gi/lEV7rxiPn8FEQWZejq5kEAK/82WTfpWBpemW6G3MP6Z9LD0/EHgBSn4iphRvetA1wrWWSZAf6d7ALd0woqTdaGrbqel0sCg1gz+40UzSungaO11QbW7fEps0rEbB+CgoHztetZ7+QztiUS+6b9Rk+HsbdDqjJVT34Nlx4yqqB92fasd+noPCx+ewd1YgDwLn1LbCv4y8k3h+TETpVhDKXZKJRp8hKxmrVGLIUXzdqBrLymhcWt2gOeYYNB1/gNJve7QHVFJNkB6JnTEPd5fdvtqn3GyDCIG9CCRDTN2ce2bxzEqIQGp/uViOnJ2gDxM/T9aYm7HtH9Jvlqm6tUp6A7+P6J2SGiHDBv427erjTHKrbsfJECqKXvgT/N1MZ+Ie7cUxpwOFLAuIgQMBJKMNc/K5N4+tOkgl6Je+09z8ldR31ngEtc2Y3W2Dw8MAj+64JmmJJdiDGryPKS0thrFYNPfeew9bWtQVQEXW+AHBumlVwaaFmCEYW9sSlzheFMHf9TEFq7kcT7O67F3xiReCrqZp8eCCN8s4WGJIdlfalXrn8+3t9O2L7koWa+XZ7QBSqbdDOIVrve+VODPCOcLleuapD0b+s+GTEMo3Zuas+uZ/2AMDMc+F4r9FhTTv4tUmdhoapgQfyZ1sRNCOV+E3LSGRxwzI98FWzvfj2UnM863VcKIu3htBToqjHjOlPM5w9ZPik1RJQDCmdfcbGYP7paQygjNlGKfVwznaZxH3aJtwbpFTaKwLbli1yOV4paBUAdmKqF+/8FCvzd2Y3iyZ2hvbhKN+vgLvofStTk8YMCt/VPk6pYIWFnUbr0a1BUcwnHzU75/PJmROF0DitgOxuvvHfKeK9ONQfXgJjrxO4ExuJYrtJF+yHB+G6PjwatVYp9eBPiwDig3D0Cy+h5po9wqno/RK/5iTd9MTHz48TIOAl2YF+/UaxEzkAuqaMxmrVkHBsK6Y178Jn73JNM1SpivJ7d4U4ABH8ef+TtP8mFHeFHH1Nk586X348BS+PQ9CMVJSub4Qdj855oE+AKM/6XWan/8qJ2DMRex7o/vhP6eGJ2ANG/EQttxJAkDor0vDqGQuLw2s0Y3sNE8I37pOEvPTS8GFUCKPPevWhRIUwvp40jUfvYpz/IxSS7EDZIXK/IXRaOsJTx2jyspstMDZpxNJvWbVEKIdq3uxm8XK0ukxJVvyC8XSqQgvFb0In3rShW3Xl4nCjgcdYXo911PeBlvz1PBg6tsb14dEaeF+6qM6YPwl2swWLWzSHJDtgnk00m9QPjFoIo0SFsCuJwZp2S7IDx1e1wb2+HVk5prAQ1m6Dhwcy7xCHqN6fKOYdd/qTe1xUCAPAhLDn5EgYPDw07fz2eDLrB/VGcXHcDTSam6p5T6nP8PFCXmohjPdxk/THcqH/eDKFEIewsW163pewCACmenUhyQ6M9LXh2AQyBtI+nYvCWcpleXV96W+PQH+NEAYQcBIKeJE9JQFds25j1FEZ5Z2VOuU8qR1vAPFH5OzRQfcdT/QUy1Xb9BhxtXaXrQ+lpdjZtrowbgAgqZjci9xUkIatrWvDFBqE1HZrSPkfWDXzCABS3/7GbX14IYwvi6fimTbc60tOinghTP0NTCHElUDhx1ZhvPFln3nWBst+6AphAJgQBgCbVy/RrY+6bL7u+Su06yF1ZMunH559WhDC9NbUAd4RuDm4E9440xaS7MDKE8qcDNggOlpedkIBO/J/KxWDal5H7tIOyJkjntAOzI0RypuSU+Bybqjrk9auiqYdANjapJcGIE7ly26Qk6n2s+JhrFYNQTNI/5eelBHz2FgWNzuiFHazBUkxbYR62s0Wxtyq68DKSVBOFkp7RSCxRSIkWQslT2n/G4rJJxXCJNnBFAfnbJchyQ7cjYlE4+9J31Mo+FMvkjXo7DOKj0298bb3A2Ve0xNTPSGy4fxU4d36EMVZNhXC1GXwxPsji35lmjCneeAXSXYIQljXrNuaeUf98EmyQwCAomGhceksPvVnRtcfu9kiuKbgiX6rhvNSsSXsDzJnb5ch5Pk0wW+YsS0BvaFCmCQ7BCEMUABn6F7QLekFeMYRn3w11+j7NqNhNPy5vKNC3QCg06tx+DI4DNXO3BLSxLZ8BJs2/QyAOAIfdVTG58HhaPNFvJB/0asdNEIYnw+L9wuZ01QIo/7LaDy1EEZ92NGTeFrfCcVdhWcanwph3SdPRsj7h2CsWRN4VHGX9JD+b9BDQewBI7vZgvwVZGMzpB5giwIFLaDPFJkucdtqmOrVZe/sZgtbIPlJT50O621CesyqISIcL+UdRvdJkzV5qYUhSh6rG6Cwwpwt8s04tN1nYAyTOk1pQREAYobTe8xEjfaWPqd8OReXnrRqGEc+XuCaqcLC3awCiYgn/1/PCuaSfD6UqVDT4bu3kLT+JyR/NVfzjrbJ/GkK/PaIZh+S7MBgH62/LD4d9ddV/yXFZ0/HmXGsTc2HH2RIlHazhd0BkmQHyktL8UYAyT/vi2hWrufGDF1ntAAxcaIMOv/Nnm1OTJPUzlejXo9jpq1nn7bh2shoVpf82VZE7C/D9CUrhTap6fCzCZr36niFK9uyy/B0U1MzHHraRN5fDv+fgrsAxJWD3WxhzJjdTE436NhTk91M4ItpOX+1rYafW5pxzlKDvbebLcwfE1/PkujrzNQVIAK23ry6d9sDtx4TzY9p29Roc3w6PYFCXXe72YL+1keFMFNwAEMFAwD/t1NZedQflSQ74FlxEg8oArbdTAAwXM07vhwA8HsvBVU27xWYcvqfV6TQ7127QDsu6P8m36awNc9VmylNPtFZ6Me7WxQ/X3rj0m62IEjlmFhdxpUx0RiafZahk/Ljr+QN0Y/XshPJqLF2D1LOEQFzpK9iZtXqnWIWr/eYiejz+QxNmUNb7xeYZkl24E6308J4nx8aKKSpbDzQ5+vDtIiCfDkGT09m2hk6JYN9p8bfpTDlE61D0u/LoCYKPsILY3qCMz8mCgfNZwzrpRBistZyAWGUPyjUOlmneTt7dIAhIhyfFO7R5G83W1A1iaSdfqojtvxCEAO9E8icNA/WB1Oxmy24MJnsL7zZIK0v7RtXY48fd3xaQ8fWAMiplDpt16zbMLZtSVx3cKaUS1v44soY0ek7pb/aVhPmHe3j4+8riidqEq6nSAn6kTD3/iOy0HMcMW+v8Zti7UGpf0SMbvnUBNE8+AjyfiLmyRRQhlLkW3HCtz/5KpkH+Z9FM39noVMy4NG7GJLsYH4v9b5L9Ixp7Pc3wSLKKQDUW5aKs/E2dkeZvjv2fiuWX97oucwCxvwZKf9uDIHtp5D6NC2/PvH97D8ii/2OdDiRPkuxvlHzQHazBaHT0hGQ+BQA0Wfm6Z6Kf7oGyV6adntuzMCmY38xRcjfhcpg+K/8/dPpoSD2ABGFLXXFJADAymtkEtPL8HazBYlHdsLQXrljwiNu0f/U6TBPekIZXYSS/liO91+diB2LyOVmvz01NWnUz/WWpjItU/3FqcjqQE6DKFw0T3f6kQVxZ9vqMP25T8O8UQr+cwIw/LymnoDi7JXCQce26cnykGRyqpR99ybZxI/lCQwhQFD31Pny78KrVhcW5QnHjgt1o3HP3VYEvPzl7TXv1Wkk2cFMMZ3ZuTi1jtxHa7BAa/Kmrpemf15ME9pU+4CnEt9o0mzK+feuaxiH0+vC2CkafTf/3a8Ig76zKRp/n4LaK9NgatIYkuxA3pg5yGxvRP8aiqkmPb2lZV95Ihqtvo932QcUhp13jsrXk28z/W3PVu4/UJpVKJre5Mwjp4Kn1oUh8cAWSLIDzb5QNl21o9u8Lwjjc+uxKKGPJdkBRLUBAI2pkyH1gGbD5r+BJDsY0h+9x0jjhTy5j92nuZEUyNJsvFkNQ30UJiwg6SmWjt6f0BNIaZzClUTTXXr8BNqlj2Lv+NNRSh4+3rCbLez0QC1YGXc70D+qPyTZgY3Jv2vS86QWSIX+q6CLE7SKFEA5XVh5gvTv7KI0TV40P/qf3mvj77wu8E0WGKmqfY6zuvH/9UhdV0p1l6dhSl1Zd1zSE5Oc+WSsjfXtjOvDOsGzb5EmP/Pv11m9TH/uQ+NHT7B8qJPx2U3JMSx/wnzqRZvLutH8PincU6lAlvy1YvpFocA7zoxj7Sm/cweBHBLivXLCMMozFGETBoPQflrO1dHRut+dxivvbGGCjN1swZsFDvY7dBqxGKCnWkcnE6VNlGcVTVn0eevyH1CeeRgWT0/ddtOw7IhSWF+eBkl2CObklHK/EU+Cql4lyIP5M8naXdZNWcMjux7VHbsAcCc2UtP2G493QknpdZRVJWtvaFy6RkiV3u2GTUkryb7EKZ9uSQGoer0MOXOjENttiNCmO/0jmdN5vn/2TPwChT+TtZciG6vrK8kO3PFTBL4qWwm4xukXbMj9thPKbt9mjuV5M0L6LamARetCfZPRuUjDI+P2C+vhTTMBHg96OY0J/Xz9S48rc6Hc1k7Iq+7yNGG/9kqur/kGjRNSNAJU8HRS1vKKk2f1uvznDwtgN1vgt6cmcr9WlIuuFAf8/19z9IVu9X5VGLsQALEIomGb8khdbz8ahQudLwnx+fXNEBH+t4Kvf0j/O/RQEHsAiV9YAjYqpi2mhg2YCZyaeLMINdGJbnJhX+uKoay5Zg9beIo73WDvqH8UGp8CMei1AwAaPyZqznpMeArF/Y0uFz+A3Nc5P8WKoDH72QV8AEi6qSzmG9M3CmmcFy6iYIWS592bVRFWtcJH2DYCOBDxbpzCCA0oFRZBGAysvVd7iXcVbgzthJG1RcfMNO2hErOieRyjbEb9o/pr2qW3SWZF/YzBR85pNg1WL1X/GGvUcMms3rUpdukoc2ryCKo4Fcy8c5eVdyDqZ5haBAt5WTw9YTdbBIjhxP2bhfz4fKmvLxpe96c0hny47ESyBrjB/y39e1YXnlLAY8KSxwpzQQrboGn3M28+J/RP3gDiy+uZFjuFOn5VJPp7Y0xFBSCBLthA+kFcTwrEuWlW3TlHTUEptfkqnpVJ601N9Hi6UcGA16zwaSPJDnwT3BKmsBBWt9CJe5m2nN6PUQtjfL5jwvbiTr9IPJ2bg6aDRMQyNW1M38h+8/O+bfoolu/G9I26DArPiPDCqN1sYf67JNmBwNWKRrv+4lTBJI8X2gFygnRufQvM8I9G2/RRuswOfaZ+yeI+Xy0wYTyp506n1+JYeOuv4zV9w/cB/f1FkTI+S9aEo+QNG/J+ag9TeAuWNnQKOYEp/MjK7pLy+QFESOTz51HqeJ9Gpgb1mXLGbrYg62UimKy7UUuoL1/HVwM6uXz3r/Oi8kuSHThnu4zbj0YxhY+xRg32Pvd7ktcAb3Kibp7NoYZWmFer+6zOijTN3sGPTUOyA4GvKQ6VPwwUBRLet6N6bKvrDoD5LNRbQ9VjIPWzuYht14c9U3NYAAyWnOZ7YxQ5Xad3P407FbcMR5eJpzF07gLAjoUL2G9j65awmy2o+eseTPLrAkMKUdZ4NPdF4SzlVM1utkDuYlDWNLrWzY9HdXshqv+ejtBp6XDmFqBfCLFW6Jp1m1g7jJ2j6ZvhPlYEjDqAk6/amB8ugDiRLvjUivcKMmE3W9Duc62Co+mXKUyJSdcYvq30N3UOzl+DAMActdO+d3wmrkshzyv+86jQ74qo764Wi+ME01WaVn0/lb5Xj4WybUTh3NBUU1ibJuUUCnGLO92ARxMR4IxXHKqVCnazBUe7LBPaS99fGxHtcux2zhoCgFiY2M0WrPz+C929nVJ55mEMDm3jsp8eNHKWG/8rf/90+ue38G9EdALyEzR0suJkMjFrG3vP31uh5Gpzog6FE4/uYnlRdDIAyP2xg4a56nH4Mc2CQe878E5dAdHuXY/UTGNVaS8KhsyDsXZtoe78Ahfy9B5mP32nXyQLb+5xSZMm/zOFyad29VH7hyFkfKbSJ72ICQ3VwgPAZXuYULfhR06xfMvviH5YqFDKl03rxPtT4qm05CQAYOlVxcnkK/kHYfrTzNLazRYEbZ+Ata0aCX2g7j+eym7eZPHUpmN+ww7CbrZgwGEiALRKeQJrStI0ebzdd6SwyYxbv03zndRl8/XLXRKBuzGiIOKKxvp2RvB0IvBQra5a4Lw03orj7xN/OrQMv2GKZjDvq2jBwfDtAVEwbPdG6mdz4RHQnNUv1puM5TVhjUVGp2oNVp6pSWNdAfc8h9xG09aKKWD35Pj4kuyA58YMJJ4kp7n9bQNxcHoCe0/Tm1oEI2xuvJD23oomQl/3C1ScevPztviplkJ5fL3S79wTxuDMRkewY9ECwYWFXhv1wvO+IuatWVHED2D/LoOEvNWkN0YBoNof6SisOHFVX+ofy0Gk80I7JQqcw7uRcFU+ACxu0Vx4Dlol3rfh18d6S8k6ErRyGrtTqdcGvs2DfnkRALmr9mq4hMPPJCD4if1wHj6G2B6PAyAuRexmC4L+lYXSnqJJMHVQryfk8eGU+JMR+l6SHWhX9bQmfsnrNuR+3wl5X0YLzGb4t4SRPD/Vir/aVtMwkgAgdzGxfMpu3mRl8qiO6m9Pzaj1GE0aj5oB03h8fS0fK8IvH77/rQQhD7vZgutJgaycnAWRQn1uNzBAkh24uCFUSJdz74aQN/2deGALWuwlJ2zOfO0pqd1MzEwPRP2MixOVdYm+uzxOBLABoPjwUtGmzSt1w0uPn0DAG8o928ST+5A/kpi6l7yumLD6vUvGZeFHitKn7MYN2M3ERBoAvrgYKLQBAHOu7P1JCqqvU05gnIePIfCVVMwMJOPyUEQZ7GYLc1RvN1sEx+S2A3fZb7vZgpwEcmexX4yyT/Dm8Xr/6T212EcGY0heH5YXQHxL0riJJxUTbvV48n8zFaHxRCkWtGqa8E5+RTQJ1lujtoT9AT0aXos47j43TfnOASOzgGjlzq7vh+QOpefOpkI5TPGy80ndOtf+JU0z9mmcWjEFMNWpA68fyTga79fF5fpJ8+6XoRU6H9I/mx4KYg8QFXwUqTEnA7QnEFTbqH5P01FTILqIlHkQtCm72YJ2n5JNkSJElW71Q0GfHzTMWdU+xzULRuiUDE2Y3WzBtZHRrCz+1K0yoWLTsb9cLur0t91sgeemDJbfdH8CCNC/82MsXtDLaUIfSLJDF+6fp7PP2JDyJdkQ6UnAqrCmmniVLZrqZ1OjRjDVq4uh2WdxZ7M/Pincg+UtfRij9mlQG1ye5ydsJNTUw125fYc+qflGtx6LQmmhwmDQv4sbQhkYxRHbTxjqEy2MIUl2sHs6NJwytup4vJkb396Q8Zn484cFLJyaHUmyA7OLXN91olpd9ZhOnzWHOX129uggvL+eFIjg6WlwXlJMOqptSEdSS3KyQ/uA7zteOFeTK9Sy7hlTUNa1vUuNpalRI1Z3+i7Wm9zVLC0q1rTJbrYg8c9f4fd+Crv3mXbbiStBBiEP3nyKL/PQ8wmsvO6HBgEATvxK7p68HRAp1LN/RAxKSq9jVQnpw7q7G8AQIULiUzNMtVCWP1y8A1laUORSIOcZk+vDFBOv0xXmta7uYVK6a+8ISXagW9YtIQ7PvNA2q8cBALyenyWE2c3EbxkV9Gl6iqIotLOCAdZzy0DpSmIw7GYLAl8l/djk2xR8P2uYsL5QP4Xp7VcDIAyz2hXDuhBJeL5TrsDQ8/eA9AQ0/rtOa95F6PNV1+vi8LMJCHl6D4JfEOeZ71YCENBwnggoQanol7YM/ISWzfcBDxYBAG0/J3vFllVLhPrxZvA0zHnuHMuT/a8w7XW8liC0jcaJ7TNCyAMgjCul0MkZQp7U11j9ATlCumebd2Ymlep2M/j/MidzDUP3RwA4/ExFnj8ofUbfXeqnnJjE9B8j1MVYowa6Pj1V+Fb83U+9/axwlhUmgxFh80i/+m65yuJIMvHJ1Wh/Odr/K16TDwBIretoBfjzF9jvK09EC+PUFBIomOgBYD4iAaKcokJHSjviIoMq1woHESCQsqyjKPqAuGug9/f01jmACHN2swXOvEL8FrxFqGfTr5RTfbpm8mmpoMZT/vC5QnvNnyqCo3qeqNdsdT9R1zcUAZj1029LhXiS7MCxvwJQ1kVRcDDFQLcfXSq0aFp1PSTZAefVq8A2H7f8CI1rN1uwKbK+23gPEjlh/K/8/dPpn9/CvxGFfn8SRT+Ha5gSQLx7xC8A6jsyADEFovHsZgtqyfcY2lTTr4jmjZoXbmu1Xle44sumxISthg2E91Ez9ipM0dWrLH7PgzdYfu0zRuouYjFH++uG9z50zaUQVGXzXmxM/l0QPtT1VzM4ABAgTWK/eXMvehLAt1NNRR8STWXHd+KYCYha82s3W+A8fx63o0KwJqwxdrRex8yHtv20iOVde6UiOJ6fqm/2xof17/yYANxCy9o1Z76gwQWAXkcG4tbuhhqBIWdhR83G5Wpj4MObDsrGomLRLw4lqoEHiNkRjfNa+35ulQkxR/vjvYJMVhZf/7xl7QXQCwBIbvuby7zobx7oQpIdyBs9Vzeu3uZJ30eai7Hll8Xo38Gu6R9JduDkmBCEJY9lYRTswtU4pe2SZAeCRjswurAH2lZ1ovlMMgfP/0E0+/kr9NPzTMCO1usAEGRKvk0UBXFjZhIm+XXB8CEEBOFKlwsozzwstI8KInazBYU/t2PvKMMd46f4xpp72ZvFpe1IOL5bqFPy1/NY/KbcSdaGk+TbGiLbCHkA5DTcbrZgZ9vqDKGSb68kO9Clwpxn6/IfNPOY+uhBNEEzO/maDaYd+9gFeJqPulz6PLsojZnn6q1z9G4fAOZHrN7SilORCvNmPeLXIv6707w9DVXwSSFhgtNmK4Kv3thR14uP8+mno13WoTyDnIZTH3hqgct/RBZuDCXr0Sv5B4V+GnD4EsbUviCkafZ5Cjq+HaepDw/RLskiOAoAFK+uQFJct0zoC3rPh/4lbvlFM8f4PpBkB87FiSioPPHxqUklJaqE4OPQ+1oZH4ruOAYcviSkDcskcNwBow4g54eO8AhojuIBdYU6bMpLQY21ioljzrxIVP89nZlg631XejKWPZUIpuV7DzG0TLvZgtPRnqi1Kg1XWpQJ3754tWiqpqe0AAhqLN9eZ24B8xMXeyxWUx+7WTE9l2QH7vSPZIAnfP2dNcpRGLMQbwcQIe3qpiCi7FApemY2OiLk7Y42nMxkljqS7GCCmpqEfSSqDVNE8aQGmpJkApbCpy3LOooWexU0UaPKr9q3x5Mhv2JDbHgPPDM4kZkJ6wl49HeTVO1Vjx4TnhKe2dwJ2yD0ydO5OS73yIf0f48e+hF7AEjPj5jjzh1YPD1ReO86A8CgE7fl7rHMXhnQFzwk2YErZbcw3Icsdpb9CvLiewWZmPFyPP76zrUPD34DVW/EPcc/hSqX70BaJ6JoBa+YhrzRc9F90mR2iqXOzx3lfxbNHFbmzItE4aMLdNs28MgFrA9vCJSXC33Fx8lZHEEc1xoMkE4qHB/NL/DXqcJdgUG5dtyxXxEvd0e1AdIP3lfd77eN7uKU29qh8BkDQt+6zJD93MWXZAf6DhuP71Z8z9AP+XeU7GYLym3tcKlFDdTLu80QxVoujEPzdxR48Lb7DFi3JRqBr6bi1mNR2DVH9AEnyQ707zKInZiEfxePw88kIHLfcKalNlSpiqTj6bp1dteWon9ZcWziHJdCNE8ezX2xMfUPIlxwY4Yvg7a/9TfxOPScopGvrE5qYfV+v2f+59Ewet8ECmsKfsb0NKShP8bBMfZrDPaJQuHHVuSMI4xh98mTBZ84evW7n/rzZdF2BO8Yz0CA3JGxWjVcGmpB2uy56G99lPWzq3Jr/9UQ17qe123n/TIW6rXGFBoEZ04+XsjLZo7VXbXZ3fejNOHYccGU8fqwTrhTx8isAiqrr6s+VccvnmljaGxXxkQzgevfmQt8/oGrp+n6baosj+LVbeA3TFm3ro2IRsqXc3XHyf/ku6nXFr10HoH+KD9/UVDMVZb/v7PO0rL1/OP9u21Rr3H9QjozX2p8G9VUuLItate8jYaP5gj58Wlc7aPqMNuBu5jZSIvsqLceGWvUQNnNmy6/ISVTSCASd/5G5lRYCDMt9PD1wcY9G9ymPft7S83d7vsdK+7a/D+h81OtaLLrPBK3rdbtH7tZ9GOqR0Ozz2quVLjqv9wlEQgZr5xwv1OwD52rGYU4avp32ufs3gFbVxArpJAMT+RGinfnSsvvYQd+f6D9ZlGe9bO9Xf4rfsRe7rj7ge6P/5QeCmIPAKkFMTXRSb6keDdDRqJEndgCRMuzKTcZ/fqOZL68GBkMyPu8EwMnAETGgS9H75n/fX6qlZm/AASm1vuTFBjahyNp43JhcQP0mdp7fTsyeHZK1JkoLY+mpXQuzoorIeVCG1zFBcgdDgr0UbDCgo87/obV5zqyi7/yDJtwKZ1vK92M3ZEkO9A/MhalJ137/XDFuP07DHbOoo4InUT66my8DY0TUhCXm4c5IcGw7AdW74pGwbC5upsUpftlSAo+tSLwlVS8kn8Qvao7dZkHAHjrbBtkWEwo7RUBj22Zuu3J/aYTE3YBoN/hy5juVeSWcebzubpJ8X/FmNPfpiLkGSVPd22RZAc6zozD3vdEh9+882Ia98TbNvh+oB0Lenmq31Gnw+q4eukBsD7jKe/LaI2pmV5expo1kfNBG80cAAh4SGWCnKu6Ae6ZDL33NDxg01Mo7LeQhd8Pc3Z1VDTq/Kz4HDq1LgzNBmXjTr9I7Fi0wG1deCXK/dD9MuSBmycxBoyuT7SN0Y7HhdMyNRWssKD63hoorQn4fiDeQ+Md8xZ9aIWzKuCzvVSjrAKAM8/ZMG5KEqTWdYR+p45yqeCrpuvDOjHAEIOHB5KKyclj0YdW+L+pD4wjyQ60SoiH779IfWedb8H80rH+qlBk6a3pt6QAVLcXsviXx1qx5xPF9IvPh35fAFh/MgMDvSOFegBAyE9xCHzFtbN0U3gLOA8f04QzpRvcj2W18937pcrmUPE7Nvi9L57otNhbBTlWA/M/RdPx46gyQUYvPOD3KczVgSshR37FhoPTE9zOIeH76HxjmtadQBbbrg9G/rUfy1v6CPkef98qKPj0aEpOAXPJYGpQH4kHt/+PBLXTz9vQ9Gtx3aaCamWk7sPppzoiO6IUgCKsWg8MxY0tTZD1coJuf+v9LvjYijLPcgS/kKbpg4j9Zchsb9Sk5Z9XH9sHr9CCB1rwoDzrpxld/yuC2CuRfz3Q/fGf0kPTxAeY+EXx9LowNPPQ3r+gQhigXO7VvThcXs6gzinxQhii2+KR+CmasnMWKuZKud93QlnX9mg4L1XIx/sTkk/5/sOEqa0wH6Bw8kEZip8SmrdaCPNo2kQQfOxmC/pkPyrE2ff2HOSPJOYXV54QUfjU9QbAhLDTz9uQ230J5ocGCuhLVAgzRIQLedjNFlYXHlAEUW00zAgVws5PISZi/HtTi2CWL93kileLebgiGl+SHQidtBcevsTGnF5wnxMSjDPP2eBoD40QZgoLwfWkQPQZMQF2swWRb8bdV3kAEPo1uW+lFsJ4f3J2swX/akyANLYtW8TCc5dECG1TM8ubwusJeeoJYTzV6Uf8X1GkzH4xI+G3sUz4JpLsQMJx0X8O3xcNFqSi57hJpO/fsSFvWXs0mpvKENuCtk9A4cdWxjzrMQ9FH2rNo6hJIABBCFOXL79iQ8HHVqGNV/yrasYKL4S5E6A35SYzIazf4cuCU1YqhPHpWywi396jqQIeEZerL1AMzT4ruJrg+4P2oZrsZgtCJymmybS+pj/NuNdbMRcL+H2KkL5+qgxJdqDNl/G4NN7KmHTPTRma8VBlRzOWLrZdHxQ8rphETjh2nEFvq4mvP1+2uh3UjxKvBd++ZCFrn91sQZrlVyGt+n9u9yVo9kUKjsQpp6+5SwlwTCDnjqRqqyvw3uVkQpgkO5gfyLBMDzheS8CWJxTztvBvidlo8ldk3eOFML4OtVbvYe2lQljO3Cj4v5mq+90ST+6D3WxB70EKGBQVwnjQGsqgU6L9IckO7GqzVsiz3jLXQlSzQdnwSiZ3XwZ6R7LxSL9PxHuKEEZN3+l7SXYgYn8ZnIePsWe+7VQIo/Xj01I3GQCQeHC7y+/Hp9F7Vq9Xwj76vtas7lh8S0EIo+RKCBt1VNYtT5IdzG2I3WxBaFy6pp0AIL9sY0BI5k9TNHXkSS0k80JY6K5xQly1EEbTR70ehztt/TCujjIeO7xP1hp611ddx5xFink87xcv8eB2Id6FSVYYW7d0WX8+/MCrCZp1v3PaRd3vaApvgdzvlPXSbrbAaGnF4lIhTJId2LhnA/qMmoDUdmsYgqk7IZ+SKTgAtY8D+SPE03CaNrO9sdIx93dCTXxI/zv0UBB7AEmSHbg2Urx4eyDqZ/ab+gyi6FGSTHxmAQS+FQDRclEm4btO7N6GehGhvmyk35ZiV8J84Z3dbEFh7ELkzIuE3WxByNN7YPxLHyGQJ9/HiZNF54WLsJstyI+8jX7BIlQxrTel0tNn2O/CjwmTuyXsDwFimWf26v4kCpVqRpnPn2rM1GXSZ3qXRs0cn3rJBs8NNZTw9Io7GBUw4zw1nE/s/wN/nYpT6wga48lPqgjl2M0WhgRIN77j77lmInn0utITJQCAju8oQlWTb5R7bjSNJDuQuG01asUUwPjXfkiyg90Z5PN2xZBQwVLNfHluytD0D32Xt4wAXBT0XSSk4/3eqMvhvxcFCbCbLfjqkj/75jRuTI07kGQHSr2qw3NTBsquXRPKV9/5oWnps8cN4qZg8fhvETyWjN9m28gdyeAn9iOA86NkN1uYvyVKesysz467Ljdk/t6f+dMUAcLbbragwSIFhbHc2o7dOXQlCKr7jf7eFF4PtZ89IbwHgIA/JiN/hQV5X0bD61g5cpdECPNrUM3rwvcIXk7uAa0Ja4z9kaISp18MudtZZauCQErv1OjN48tjrbg1KArOHjK2L13E3qkZSApu4rs0D+mzlDs7ADmpB4CA9VNQbmuHe91Psb5xnjsn9M/I2pd0obfzlrUXBEP1eObrTM2Rzzxng6FKVRR8YsW2Wwq6IE9qJtbVf0l2IGTcPs23NOyuh2p/KPd67WbiB/LMczZ81YwopzYlrmDtrXaxnJVH3SPQ/PXK5gWlwoHzNe2l/2O9O8Cw3RvHOt7T9BO9V8QLsQLjrhqjfP40rxO/tmZxqHPjyz0Vcz9+PAIVACMV/sooAMXFDaEsv93vioo3ve9KKcavI6ujxw2SJ3Uu7C4d35bTzyv3P9VKBr30GqGhwqRdHU6d/LZYrKzjkuzA3XIPlm/IT8o7u9kC55mzuuXxfW7+LEUDxAIQJ8Su2qmud6fX4hAwMku3b3g0RwDw+jEV25YtEvKhVgY1dxFQI6qcZHn0W4gO78fh2+MigIi6vAaLUlF26CgLV/urAxR3BHazBe1mk3lRbiX3XpPHKvfpy63tmP/PxC2/oGDIPKXvotqgzHFE+Lb82Dbu3K/5/nr7H//7zc1rcLPHdQRungRX5GrN4Pvk70Jl/wWgjrL/A2LKP7+FfzOiE/FmY+XTqDeQnEeW4l7fjmgwqIAtHPTOGPVTg/JylibkmT0Y4B3BoFsBwqjkL2/PUKrUGw2tS/qdeyh8lKDjLakAbeCJd2pJqfrOJiwvqu2lNu2S7EDBp1bmDFLd7ik5BQh4jTCqbfaMRtnNm7i0MQSS7MDVTUFC3LafxwtQuPRd16zbrE00TM1AqcP1yCunFDGNDmnCE7et1oRR7X/B4/PQbFA27GaLAGAAAJ8U7kH+8vbCt2yWek9oE0/8PTEaf+/7c1D8jgIFTC9OU9JjGN4pIH1U8oaNtZnG2XizGotHSS2o0W/mihGhwg3fl7nfdGInRXpMI/97aQtfVs6m8HrMrIT/Znazhfn3OfG20n5JdqD3mImaevPlUKATCuUMACdjyX2Bon8pJ5k0zTnbZQw+QlDg8n5qr8kPgMa0kP8GDecpgta93hEwbPd2yfgZUg8wBYgec6Tuq+vDo4W8jh5vpqlf6NQMBI12IPiFNNT9KQ0h4zORu1RBKuMBGOxmC0I/EVHo+D6kzuH5dm4I9xKUP3zZ9Zalovo6ImhYX56GwnuKPz699UWPyaQn9aHT0nFqxj2WVq9/+LTLTySz+i/tvEgTV+2Qna+H3WxBk29SUH7vLgJfTcWnQdrTb0NkG11BmcajjtlpfHltK01ZzT5XzKj4/Jt8k6Jh+uxmCxrOS0XQ9gkAwNwj0PypHzt6omesWVMoa1CuXVfxQcs3TdQXNnmiea66Xpc53XU3lylRZRxAQCkAMJcgPAn+zlS3JK5kKSdju+bMx/mpVth9Ilj91UIHpaTivejfiTh/XzttNgwR4cxqAwDmHt+Nkje0QDt8X/HKO70yeHohL1uIR4Gd9PbU0GnpOP28DVWuGlD7LwVUid5fylnYEYGvaN1lUKIoh67WE576R8Yiw2JifaVuA1/HUy/acHvIZfbO2aODEDfnyTlsndWjmEcJqqSpSWPceIQoSzLfncPKoWU3mpvK7jPzQn6/fgo6b+HP7QT3E9RfHVWA2s0WhvoryQ40/bLCsiX1ADpnDUHZgWy0XBjHwha3aK4Zq3azBUgXHSefeJOMidMvKG4FqFLYldBYc1cj4blzNSMCJhWx03VJJu531OlM4S00fag3Xh7S/w16eEfsASD+jtjdoV1Q4zcFREJPgFCTWqCwmy0o+qUt/EdkCfFuD4hCtQ3pQhpKFPTAFaNhPTAUdfrla+pUWd0olbxhg88srQkHBSvQy4Nvj3ohHHD4EjaEe+HihlABztgdyWtbwTz4iCZv+WUbzJ/p3w9Sl3s/7dXrG5pP67Qx8B5yGC/kZePrQYO1d/l0ylSHNUj2woqAPyvtf1ebh147bj8axTT1rrTfemWVvG5jsNKu2q6mcls75sAz76toBp8e22sYLkQ2xJ6P57gtU5Id6Pv4kzCkHNC8P/mqDd5/Xvu3QFb4em3+9cdK+5OSnlAPEFPXm7Nuorq9UPe9JBPHwpQ5dPWdKlMcVCaY8Gn4uQ8AZd3aC45rBTKamDPwwUfOYW2rRvrxXNT12oho3KlrYIyYRogN9EdpQREujbfCa4l4Wnh6XRi8FtTCjgWu74lRij5wD2ntxFNnSup+ujm4k4By50qY0pu36n529d09/P2wMYWg0J5+wcYYRBqPv09asMKC3O5LiIKhWjURJMgNuVpb7nefUNe/sjgezZriyAc+aDVTxsaMRLdzw12fuqNVJakMVIrS1dHRSP2MmFzzwEHqsu6nDIOHB8pLS++rzu7eT8opxPBaxPmzqUUwc2PAj7u26aOYme39rj9eyfWZyXzu0g4IGacoFw0dW6N87yGX41Ovvu7Gw9qSdPR65TnUWaG/1/NEQV8AYi7YYJFy78sjoDlKC4/Do1lTlJ46XWkbabrBR85hWr2TQrmLindjkl8Xdj+UtpOmo0TD6J3009NtOPCKqJxwNS/eONNWczdLr/3qe4jLTySzE+LK2qb+TanoQyuOTdDncYw1amBTHlkn+sWMRFnW0b8VWMes9B6o9v/5jtjt66V4I+rPB7o//lN6KIg9AFQZWAclPcZsSF4f3HjkHIrftcHvXTKhC39uh4BRBzQXbdki6uON0pKTwoJ0p/wePA1VdBk9SgUfW5E7zjWT7Ioh5Jnt+VfMmFJXdsnMAIApNAgnBjWB+dMUeO5sijvdTjNUJFOLYCT++SvsZgvu9ItEjb1FcJ47J+RBQTj4MH6D65Z1C8mPtdT4n1IzurQdfD6Xx1rd3oWgVPQvK/zfSsX5P0IZqlZQRjUkeFegQt67AfvW5xkIh7r/9PqR0pnnbLgWdQvBT+x3yQCpN+SwufHwe9+1M1uarqT0Onw8alXKQNANih8rdXc3wJUuF4SwM8/Z4HhNK6iZvLyQePhPl21Ut4WSqUljwQ9Yu9nxODDj/lERaViLv8bBf0SW2/5olFIPP/nvcMvwVrYJu9v0WV/Uqwvn5Su4NSgKuxLmu4ynDgOA2PZ9kbh/M2L8OuL6Bj/sroD6dyXAqfMxWlqhzKHATptahSJx6ypN/KubgvBdy58R4VnVbf6UQneNQ/M5Jmz5eXGlY+n0dJsGvrqyfv2fklsFQWcL88/Ij2FTwwZIzNompPNPr46iqFu4OaQTU5xRMrZtiU1JK3X7XG+NdPV9+7XoirJr1/7H7XenRFLnyYPzSLIDa67XwdBaV2E3W7DyRApG+uqbUOvldb9CYsLx3Qiq4nqtuZ920zaG/hiHujnQmGGr49H8WuytovgYU73Xa0/A+im6pp4xAZ2QVKh1hq1Xppom5RRiUagWep1PU31nE2QVeSPkyX1Q0/Xh0Uj+igir/Lqo1/b7WWPVZX9VlILp/rb7Hn/uFFWUin5pi2Ndl2re6QEYSbID/QKjUXb7Ns4+bcP+NxPQr98olB0ggi7PC1DB2D+9OtrWKsH6VuI9Q768Jql1cMZ6FRcnWnHd18BO4PX6gf4ekNMP97qfuq8+uB8lAR+PX0Mk2YFezcIfCmIc/V8QxB6aJj6ARCew+r+elujGI8SEKnuKcmk1YNQBXHrSiv2RK4U87GYLchZ1RMl3dTSLExXCaDn8O4MHmWiBr6UKvobUCwxNp65n8PQ0Fj6lrhZhkF/wJNkBZ04+M8Ohfk48ehfj5G/hghbSc1MGEg8ojiNpHhSEw262MAeVIeP2odzaDqOOytjZtrpLP2RTcgpYXScVdxEWZ0l2oG7eTVYW/Xs9n5w8no23sbz830pFo5R6TAiTZAfyIxWTydAqNeHtfZGZNNJy+P7rM3y8UDe/PcT3SZNvUpDfczGiD4hmjeqNsOUC5U5J9rQEzTc/+Zpi4pf/OTF5m+TXxSXjyBMVwnqPnsjirwrcxpzw0jBqcgUovuEk2QGYG8NutiBsbryQr155kuyAh78fACD3hSAWbjdb2KkDX2f5ZaVdegzuuhu12Gkx/209AgjEOfVvdc52GQAR/vgyXDEleuH3w2Q6L1/Bvb4dUX2dPuy/qzC72YLE/ZthN1tQXlqKcc3ThL5XrxsR74r3UgCgzHFE6HPnEa2ZYqTDiTr98vFGgOLzyFClKovXZ8QEFj8g6SnYzRY83/ZPdscCEO+z8j6eJFn0ISTJDuR+34msVXOihHqox4Z63J94yya8czV2ATCzMD7O5tVLhLbTcp3nLyD2kcFC3Hk+qTDVqaMRwgAwc04+vvpb6DG+PNnNFnYXkv+eN5IUkANja8Ws76uiFKW8Cn9n6rHAl9Mn+1EMPnKO9cHnA4awOnXOGoL5oYEsvpdJvLPJkzshjJKhwrUINe2k8eKbKwjAVzcFCSAyl54UTaHV9zb5suxmCwJeTxX8g/F1fTo3B3azhfnLAxRHz5LsgEezpkK+Iwt7asePqRwdPhBNeu1mCzO35Pu6rGt75H8WjdjwHkIbjG1bCu3XE8LsZgtzOA4AF79ojoI+P+i2q9YqxR9lZUKYeizmLI7QxOXb0C3rliCE6c2n0y/YcHq6TRjHWXfFawF8mSfetMF/RJYwJilR0Ceeeo+ZyE6KL7cmJ5pUCAMA57E8pf0VfEFR1C2sb9UAy1SOrHk6YyUuFWqeKtUIYRtOZmr4H7vZgg2hm3TXH3drDN9OPq66T//6bp4mzd+FnDD8V/7+6fRQEHuAaG3OQZx5zrXmkZJaa2eoUlWzuKV/NIctKMXv2NBxZhwkmSDwNa24w0RpeEEvIX96F4A9lypoQuWlpZpFRZIdyP1RsSmn9uXqOrnTrKnb1Hn6NPaOluE95LBuOvrfbrZAniH2X9UkBRXMkHoACfndhPiAgu5oN1sENKeS6Oua/Dev+RHGti2F9NTJbOOEFKHNP/nvgE8aAZKIfWSwpr41YwpQZSvRAj4nR2oWdeNuB9p+Ho/ehwhDVtzpBqJeJ98xZuATzCyL5ml9eZrwTB0Hq/t8+Ylk5M+2wvtjhQEO/ukaStaIDjr5vNRE67p1BWESLkwipkVqZ8w07tqSdGxtXZulyx1HENTUiGPTT3VEuVUZf7SfS4uIjxge+IJSf9tA4fngi9oTMkkmDpTtZgsG1bwuxGdlVJyQOpS73gibHy+cwKnHfWX9AwA588U7AhcmWTVzwzNZYTAoupzeJn9zsIL6xZcvyQ7BT07rTKPwrrRXBBrO10fQU7eBPufPJvXMsJg09bkVo+RN/dJJsgOhE8kJL6+RBoCMDqtY3uWZh9lvNZMIACFPE+GGwnTzcSlRp7t8fX3/JTJV3SdP1rSVvs9bFaoJ02MeKTnzCjVCjfPqVeY8+dLGEAbEwNfXbrbg3DT9+5V6Y8doaYW8L6M14TR+zZgC5H0ZjcKf2zF03LtbmmO6P3dvMmwDyrq216QVyul1AmtbNWJ1vNxO+V68A3XegS6fx/VhZBwG/zmBlVu2zVe3TeV3CNgOdTit7gNJdiC13Rq8mDKcpfH6URyrP/nv0O0PV4wwX4/vQ8i35u/n8fFKT50WxiI1E+w2ZQr71qGTM9Bojv78AchdOoOnJyTZAeNf+xH0chpudQpm7yXZgeOP1nf77WlYzMoZkGQHwjI9UP13UTlDwZro+sPv1deHk3FDFWwAYPduj9MVdxf5uhsvVWF3JvlxnbesPe7aO+KNhscEoV8t1EuyAwdmJODAKwmCUDHDX7nDSgFPKNUtLANAzKL5fqH5UwUaJbqX5H8WjdCnldOyvC+jBeFG+CbbCLrw2ApFoV4/S7IDiGrDAKj4PhjgHaH5xjk/EOVzjF9HnIuzomRNuMu8+bDcpYpSMuqNOM2Yp+9ePaOM41PrwrA256Am34f0z6aHgtgDRIND2+B2A224mqEseV1csHiYXL2F3u/9FI0vJZoXAFzpckFYZB9dsAP3+opgGvTyLL+AmOrVZb950wnTn/vYAnnj8U4sbyps2M0WVN+pwBfraYZrrVLgvGkZHs2aCgsgPamQZAfsh65Ckh3sNIwnHm3Mq38u0+YzhurCRbY50LrwmxkAwGhi78qyjmo0jOoNgdaxJJow/c68Qg0TDxATGQAMvQwgppmUsl5KwNbWtVk6rx/JRe6k9T9p+qzuqr1CGfR9aa8IYSMd49sZrwz4Xahr0sbl8Bl6WEjrjtSMMUUC5NtWPFPRqA72UU43ABHyfXaRgoCZHVEKQ+oBoSx1m9S0MWU9+31rUBQrQ37ZxhDbALDTSXcMHEBg4fM/j4azewfhpFktOFDNOaUbjytCUti8eFbnpjvI2KEb+t4P5hDlxRJFK70pN5nlRRlBdT0l2YE6+5QTZdrOodlnWdyLE4lAfCiCMD2FFdD51NfbwNwY5CzsqBEE+TIolTW+I4Tz35veJ+THgZ7ihf/Pr1uS7MDx961COvVvSh7NfTVh2RGlmnVRvY54bszAqZcUAYVSvxZd0eRb5SRV3TZeyNbrJ5rm9fwsOC9dgt1sgVf/XIROSxfyaJDsBQAMTQ4AchaQE/q6uxvoriFljiPIHzEXK0+koOBTK1aVaJ2DB7+QhoBRB1jdqvY5josTyXduP4uMO4qYSokqSlxR7ZVpmv6TZAeO2H7SxJVkBS4/aIwC1MOAolT0XkGm7pxT93PIk/twY2gnTT0GHlH2JxjdA4zkzFPAo6hgrC7X3TgVxviGdFhfmgZJdsAUGoSro6LRY6Io3FP3EWU3brDTsTPPknWv9usnIMkOXB5Lvo3vh1pBkKdrI4kgFfgqWUspiiYlSXZg7/vKvcuw5LHsniyg7Jm8gg3l5TgQ9bNGiRD8YhpG1r4k5G03W5DfazGqSnuZ0M/3Bw+jz//R+qjnLu/fCyCgGwDY3VTGR1Ts41SBpp4XQS+nAWVOPHOyQvh/IU23DgCAXiVsrLVKiGfl0Dw9fLxJvIo7xHw5FFhM3Y7QiaQ/yktL0WhOKhosq4nl1xRGjXfTAQAhGcTdSkHvH1je/F1YdZ14xV+9JbX/VvD1ZeXG/8rfP53++S38m1HzmSlo8UMcQ1qzH7oqvLebLfD5KEWzWNB3gD5z1enVOLxZ4EDxu6IpQf4KiwAzbjdbsCHci/n5uvIE0T4ZkomdPF+G8/IVpjHlNfU0H7vZgrq7i1j8b8yKA9N1IZKw8Xkl19c1P+FpY2aS0G56UmE3WyC1rsPKyZ9tFTZX86fkZCjvC7LRld+7i5q7Ggl50c0hYD3xpcZvZpLsYOAFaoaNhsW266PRGKoFE+vL0zQM3rGO9zTMojMnX2AQPQKaY1HxbpcCBHVBUF5KmFO68VNS294DwG/jesHZnZxcUmH54gQF7YuiUUqyA0/nasFQ+LarNxhadvbUBE06GofPh9ei6hE11VFrFPXyo4h9OXOjYP4sBeVGYtYw67wWpUqSHfigUNGK5iQQxm1TeD3kjZoL0459rD0rT5Dx0HafAbF9RsButuBS54u4U67cM6n56x7IL9tweZwVxntK3SjqFz0tYozn+EyhTXrfV90vI6RUjdC/JqwxLjxlRd9h41H/B8K4v5JPtKoUmp9+1zvdTiP0KYXBs5stmpNQqqjglSt83dT/KSOlJrWA5vORMqf6Dn0Szd9JRf5ssvZcH9ZJaBf93+nVOJQeJwz+LSkA5bZ2Yh9VQJ67Epqafa6cClMTuRVHJABAv8BoYQ2ivotcjUVqog0A/WJHs5PwW49FCfFo+Rc6X4KaWsy/DUl2CMqvq5uCYDdb0PYzhXH0MtVA7hNzMNxHi+opycQn3p3+kcwvUsa/CIPOQ/lbPlKUAQ0WkXFwdbRy2qZmRPn8vZLr6zO60M4/ysDSsPNTxf2EopX2GTGB7CUeClS7ui411+zRfMdfXu+nPJc5Xc59u9nCEH4BoHDgfOR+Q9Y2usby+eq1S009XiH9mbhjDer8nIaqSYr/tytPRAumqYZIwkAbysHmmt1sYXeKc+ZGafqc/g/L9EDKF3N16yPJDhg6EncA/Vp0ZX45DVm1NfWmyH/qdpqaNGbfklqN8PsT/R0b3gNzj2vRkc9Ns8J55ixiAsR9nm/PrUFRyPtKe5pLy52SUyCEU5+FvFllwadk7MhrW2nm4nfeSl+7EmYpUUflfB0AoLTkJPr1GwXPnU01wqnz8hWUdbFoMwNw/o9QoijZ5ovq69KxtIUvy3f70kXI/Vbpl++896DkDYK86NFUQZDm+1uSHXjrbBtWHn1XfV36wxOx/4P0EKzjASB68dHny/fR8kUR6ZBe5OQXS7vZAg9fH+ZbCtDfXPQ0vXazBbOL0tC2ajXNQuSOyq3tsHnNjwjaNoHBlbsqZ01JGob6aBfk68OjUWuViNZ0fqqV+JDRacOEY8cFrZ1eHWlecbl5+HbaCF2hg8Z7oqg7u/dTGfELvfWlaajzcxoLD9j0FAPZ0BNICu9dR4DOJXT1NwQIwlztXypHsNIrS50XH0bjqdHy1OXkzI1C6LR03fx4yv2mE1rOvcTuEGnGW3RbFA6siYA3yLdcUrwb4/26CHno1Y8vr3imTXAyrqdBVDNpenWmzzyymbrt9PfFCVZdP2sR78Yh8905uuXR56SbnvgyOAxqkmQHWi6Ix9HJ+iAip9eFoemgbEiyAz3HP4XtSxYS5rsCPe3KmGjUXU7GRPQr0wSn7QBQ1sUC424H9OjSk1ZUuVmG5K/nuZ0vADHxyR8xV3ecAgoCXOtMIz5vtk+3j9V09mkbGn+v/YZ9RkzAll8U4A5jzZrYlJus6Z+z8TbsfyvB7VhUjyOah6vxFf3KNNQ6eZed1NvNFuTMj0TYl5eR/XJdFPZTnDffiY3EjoULNN+93ex4eB29hx2LRDRHY+uWKDtETsgD/pgMlBngKxGFwPDs05hU97SmDeoy1PTt8WQG8e2KaL3GHX8ECb6bhfWWtrH3oWuYUT+flcODouitW3SdExj4BvWZw11X65mr+tF3t6QAnE1rhilDk/Bi/QLdNBRVV5Id6DluEqpsJSe4ITvGI3C0VhBV/267z4DZTfe7HTfO7h1g2qEoF1wJdHrtuPCUFQ0W6gOBXBkTjbsjLqHRQAVt7/I4K+ot1Z5m3k9/AcQf6JawP3SFVXUbXSEXuuMJau5qxO6X65UPAKYG9eG8cNFlHFffhKWvUwfOq1d101Hi08cEdEL5nTsu83NX1/vZP+9s9odn3yKX+d14vBNq/rpH9506rH9EjNDnN4Z2Qs01e5D7dTQKhs0V5lXU/mHw6p/L4j6dm4OBNW+63L9XH9sHr9CCBxqcgvKs7+zpjWq1XAPM/W/Q7ev38H6nrQ90f/yn9FAQewCIDupLOYGoU9uoXdD+NMPZQzFJMrQPR9LG5QBcL+yA64WS/q6+swkOpwUKZmL0PaVtt0zMpw5NL79sw8EXE4Sy1Qy/uzpU39kE60Ik2M3k/kSjuakuF1K1gEDRyvQYCUp6ggkNy19hQdBoB3K/64SQZ8RFlwq3J960oetj+4Vy+LLsZguMtWszRDMKS63XhpwfOqIwRmH0XPWNXpjnzqZYH5LkUgihFLxiGjHfUOVx6iUbsl4Sv5Mes2qsWRPHX2wH3w9SNPH06nY3JpJphvn68PE3nMxEFYPJJWNU2djUI0l2wHHnDiyenhhZ2BOXOl9kZYf8FIfAV1I1DJNe3sbatXHs41bsLpK6X1xtkK7aWvShlTl9puGnXrQh6+UERGQOFwBb9Pqhw/txgvmamtTw5m33GZDVQVm2KfJhZcI0LY8ikd21d0RVSVEo3M83UOcFAHfK72GgNzEJuxMbCc/EDN247hQGPBXOsiLgDRHWXv2bophJsgOhu8Yh5xEFic3ZvQO7u9j283hkvSQKxJX1DyVaVtdnprIL9Xy63CURsIXma5Q715MCmX9GV2X8O/17vwzpLSkAu9qshd1sYQouk5cXnJeIMivx5D7Eeit3eQ0eHjA1aSysXTQ+/40CV09DyPNpmrLVdatsnnsE+mPj7nVCHIpCy+d38rdwHIpe7naMuCqz4BMrAl9Nxbk4KxrN0e5rdrMFhohwlGceZs8la8KZWba7tlRWtqs4MY+NRXnGQSHMbrYI7huy7t7GDP9o3TEPAAG/T2FO0WkeNF5Ypge+araX1eX8FCsaztcqNyWZnHjdD1otTdty91g0H649oeHbTvtc/Z4nu9nC3BS42+up4omm7zn+KWado1f+/2Pvy+NrOt7/38kNse/rIZHdziUSyUVptS7RKtVaqpSqJSna6q4tre7VRWlRqpQW1YUq4ShFkUQiXDvZZTn2XaxZfn+MZ87MOefe6O+zvPTz9bxe93XvPWfmmWf2eWaeeT/G9kGuUeh9q1RvbqZdFmV+EoWMx80bU2J6L2QcQI9KNxGeOgCp4cvLLMNza0JRs3d6mUqsmId/Enz9XUXs30N3TRPvIOoX1tpy54iUsNj0DBT82hKluw/Aqdjd7jK12eUFVXOh46vsYu+xieyYnMx6KN7KUFUaQFVN33kMXcwul34crDttpeN35ZMERLkelS7Mi0pY9oeyaYpPg/pSGle7nuAy7Jos+xqyGsDJCbKqubhyJOY9dBHL57niK5YDIz07/qwDwY8z/lmPfM3Tou+e626Zc32fh5zIqzwufcR01x7Zyv+vSYmX0gHYDtmQw/ncvtyp2CUTLop7+bGOEsoffWd9GM1NW6zyQ8+dih3BLybhzCi5zAGgsN1V7gyW+L503OyguKSwkCthx5+X78apmgvnh8l3ecqvS+FgAGJ9UfsB2KVn8b14cZvynv2B+Y6QGMbLx0e68+FU7HglkJkaifeonIodQS8nwhYWjJ1TZ5sW0+kzOkrplFy6hKx+X0tpieVJ35SfwNWjJH5GeY1KGAA0/IyVZ52H0lB9W23YQoPgjkgJo/SMZWr0MSUqYarm4vDzlP5X5/2k98Z8Ej9RCQPAHaYb41rJRbT+SjmuhKmaC1/NmmGZdtgiHWTAqdhx8fEoXpYXB8un52nDzWOCU7Ej5Acd9ZGUMABcCTsZx9rYhiXfotUMZpZHSphIMW2687i5P+n3McQFkdgOrJQwVXMhq8d8yxP26k9cMD0z8vdUpmKeRbreK0J6b/wW/dbV3ncFqubiShgASQkDAK9WYdyvGREt0u0f6vdqSQkjeafnJFj2A/E/OboV67AoK8cUZ8dHrL/G3NMPqdfZXedGjxyQyl/kcX5YNGx16yJtdiRsLcJM/EIXnoaqubgSJpYPX6wLShgAHIj+QeLRZpc1SlvOO/oYe3oMM/8emZZtGRZRbfhPUsIyf5DH3uT39XbepnwFU37FuQcVimFroQPM0HPfLQ1wKLwIEa/r/etGdS+3bZnag7u1g/FZkwH7TG2VHCsTpQ/V0Sq1lxymtKm9k6+4OefZPS261iCGF0//nYod5dbvxM0eHdz2E0B3Jg0A63/+jj1rEokbPSO4EnZhiDzGkHmnyDf4xSSpb4rkVOw4/qwDL8wdBadiR52H0hDTrT8PN+AQOx0jYC2iunEyiqRR6bJSyP5Jpol374j9e+juidgdQEY/YkZfVarmQm7RZYzy72zquE7FjgtDopA0zXonB2CD0EnnDWTd/y2Sr99EpK8OVR+bnoHZoTq6k9EcwROVdrJj/U8LTUoKOVwEgMlZuzA1qD3ODY/Gqc43Efb0Tmk3i+L0OnCe3c1Z3A6Z3ReY3rsjT7trMc3uQfHFi7i8LgjntzRA4w/0+yJ0+kWDX+Cq0Qgbm4yqW+vgUpfTnAdRTLseQFERis+ctawDovQZHVHhlA1FFUtNu/qAfrppLANPPG1hwShOy5R4kUmUMc89D/fGumZrpF3Y2ttrmu6rWJWbu8lOlKtnnyewbtX3cCrMlGPbDLZIjdz9GJLb/WSK446M6b+e5cKHDw4AbhYBp8/xBUPmtGhkDJGBZlTNhZZfxnEH4ZfXBeHy2ga40qgUQS/LO7PF97aXTNJEHmQCRQ69s5bYEXRLUc9e1gaBg3Q/Y+QjLf81B7/r5KkOxXQ6TI7FzqmzEdP9MRQfSke5zQ25T5qyeNB/agPuKG1eBMJGySdRIk/APPlbtTnjaY6xnRl5WcoyNwJho5ksoi9Dnwb1UXT8BA83+LCGpc0U5L7lwKHRTGGKeWCg5FC1LFI1F2K69ef9I3DNKF4O72cnY/is57Dvef1UWPR1Z5UHGv/OPRmNmt+xtmSrVg3xh/9yO84Ernsa2T2/kcqyZeIQVFlZDTs+mm1ZB5TOffsK8UrtdP6OwgUvH4vMAXPctgn7h3GoP8Pa95qnOnLXvuj3X9eA94LM8azSKKvtExnnGKtFrjv5ACD/l5Y4EP1Dmem4c4wtxjE67L0dKvi1pSViL8Duxx15qzlCnpNPDNNmRSIsLtlSXjqlEetpctYudKrgzf8b4x1924EmUxL4abFVHtt8GseRIW+HjBsDYnpkOaJqzArhFcPdMJF+yU9CFe8KbuvFU50ZZQhdFIugV937gvPUvq2UmrbJg9Gg7yEYicJGuIqRYrdhQsZh9K50TeLfesfjUPodtIynai6ELB2L4BdYvYtm8ORA3GrMdtf/xOf/JNPEN5J6/FdOxN6NWn9Hl8e/Sv/7quY/jI4/5zA5DHYqdty//RnLhVPe6w5U/yHJNADR76Lu4ah69BpCh7E7Ho8njJYGgg+mDuW/fRrU5/cBvKsyqHG6/KtqLqR9LUOse23X5ek2ahRUzYWmO8th/7NsUWVr2ZRPLjUXJnKQAHGwI1rbsgYAILM7g8Imv0NinjjikQcSB+niiwzoZHubX+EfLysixfVr8HBRL4/liGf7toQiILkiD+dU7PjhUm0UnzhpUsLEvFC6oRN2wO+dBKQNn42Lg80gFPFN4/kJpRjf0w5Z/OZfTHlcu36ZqQwBoPS+AgCAzzRdmTzT6RwPS6dD084Gm+Ja7cYC4P61nIodZ966wZ9X/nkHMm8yiH+ygRfjibvRouy2sGB+ikkUOy8O6U/WRnF6lrSLH/yS9aRM90kA4FhaXTT4IoErYarGLlUDOgSysR5Clo7lrgP2TWTIiMGf6r6FSAlrP5W5Czi8goF9HBjP2rYISW78Fsmp2LmpZPxGpqiKPmmM9S/yIBAHVWO+9UTYZ5KTvsNGMdARW2gQR+YTZRD5im4OluXJLg6q9MxC1ofR6HXgPACYlH1RZnK1oWoueFeurMsyOgXZH0Yj591o1HtYRxgtOn5Cknl4NXZJ3/8tHXyIFsmqZg0SQ5Tzrg7IQ0rYsaLLvBxUzYVJgZEmFNXlQRv5b3E88bYzcIDiM2fhVa48V8JUzYXii8yxsZTmvfrpEoGwiOXTuP8BroTRM7EOaLPrz9aV+TuqB6di574X8yeZ3Zk4FTsabjnH5TN+9+ytnxCkL2pvitv/0EleRsaF7T3soIC/N/K3Grfom04XK26pL8XLuVGHp09hD924YioTkb8YvnH/A6Z0rca+tVlJpmcA0KvHIP67+MAR2DYppjSsftP//VHyiRkAnIplpzvxB7cgc8AcqJoLFwdHIf81B6480hFhcTqqKFHmD+1gq1ZNUsKIpga1R0z3x9zms8kU1o5FJUzk4VTskhKmai6UdrJzFFWRV9qsSMvyE+tsVOvtvK6slDAlSUfy7d/YGmzJncKU+5aDW9cY55z0Yda+4EQ+Vu0GAGK6PsLjURhSwkjevDeZ7zOKT645ZoQ0M/VBpd9Bkwwx3R/jMgT9cpU/Lz6SwcOSix+vwqtcngvxbCOiuLSE+/kjPmI/OjHegZjxT5rydpf+fZSWlobJkycjKioKdevWRdWqVWG32/Hee++hsLDwtniUlpZiyZIlcDgcqFOnDqpWrYqWLVti6tSpuHjxYtkMDHRXEbuDyBYahAbTE3ClH0MQowUwAA5XbBzcyDcHkVFJ8NmYCu9tbBB27LmBjHsXSIMLKX2q5kLR8RM4cIMNHiWXLqHjK7E4+Ix+vyJsDNtpzl4q+xkDGFS0U7Hj8PgW/FnxgSOWE6uVskG/6XmtB5kTzpPj9EGzKL/AlK7Iv9/BU6aJDwDCFsaiZM8hDDh0nJdh6c79HCpZNIc48tRs5D6ll7uqubCoqR8q/1UX+a85LBcCxomBEPaqLU2CrXkonIodad904PkjszWiv67J5WI1Sdpq1uTpGNO79qCO2nYhPgROxc5PXIwTe+gEdi+KIPHFfBqJL6Bv+ddSNRdqPSiDdcQ16Sy1ycwlLL3sZW142qLT5q/O+6E4LRNBrybi2kP6guDA+FkIeiVRcspLJJaJUREenZbF8ySGzzgqm8PSN/ndCX4hSSpzp2LHut9/kOJEvzAWdeck4tCNK6ad5rpzEnFVDcTx5xwcWVRMh5DhVM3FTagGZTN/dW0/YuVBSG7GHVKiar0ypf+E7CnmM+fHNtL/rzYs4idCYh8T5SMYaYA56xXbdM470UgfNhvP1cyBFX10hpkl9eo5CPVnJKCkCzMbLrk1gVGaacNmQ9lWZIpvHJ8AfVFrfEf+n4ykai4EvJGItsmDpfZN4DBUn952NhbF3PuoKU2nYufjiaox887eETGsjdy8IbVpcg4b8Ia+CN7wA7uDdv/jT0HVXNyflru8GuW3Iqt20Pj9BF4/heuCeD2tXbuUxzHOCd45urlh6LBdpvTI35xxbBB/G8cYK9mMY5X/Y+wE/mrXE5hySve1tLZlDZOMzctXclsetAkg0tHlrZE7Re8v7jY9jJT2TQfk9a4lpVF8ryY5l3YqdskEGmDADgDQYUqsacy3tQhDUUUvHH1bn5vmX2iAxE/n4MD4Waj57FHJ5JUoeMhuCbxCVMABoPhQOi+PLnuvIXRxLHp37ivxUDUXN3O2misK++sKjtd2F0fTFMeCsLhkU92LZddsXhzfIDCSqrHN2QX+WwEAPfs8UaYiayT/txIQOn4Hf08uAIxhF160RmMVw6bN1eutOD2L50n0RalqLmhR7D633zsJaDCdbT75BPib0jWuS3pH9mbxV7CxhDbTAN0MUox7aWAUvNs2h1Ox4/iD+gZm9Rh2WhbTqD3QnVnikGuKbvv78nCu12YhfqbM906m4lLv/8rn30nffvstPv/8cwQHB2Py5MmYNm0amjZtijfeeAMOhwNXr14tk8cbb7yBIUOGoGLFipgyZQqmTZuG1q1bY8qUKejRowf+rqHhXUXsDiIaSCqtYBC+tAAWyTg4iosqkYwLQ6dix5S68l0SMSw9mxgQzRdGRvNIosDBe6Q0yAGpqrnglbgHLRLY4Ey7cWJ84+TuVOzInBYtwSqLdLOK5WMTHX/WgRUt2L0EnwZsR5Z83JCJ4PLmsh+yyr/ok4EoE50CkHxp33RA4T2nuGnjuIKOJuVALO9BfvoETQN32NM7LSc2ALingp4WQQsbJ8fic+c4pG/RBn8pbd+z17m8P7daaLLhB+R7eyJxmQWfWD39dR9yVosxUbbLA+TdULqDd/OSL392aKzuiyv+vhb8N/miIn6nx0TjYBxT/OsnVrOc1Ft9EYf0L6K4PKIDbpHEU4oLJfq9Qq8E1nZLurZD1EtjTXlSNRd6t3fCqdhRbWkSTsVGc2e5R9/WlcT+h06icr8T2PPyLFT/np1eiHezyAl6i9lxGL6SwaXTvbY9r8xCTLseHFpdJLEsvSvrpyXGcqDvkNcu8vs8qubCWEExNiqaAEz9jJ6Hpw5Am0/iEPBmohTeuOnwZ+vKcO6/iLXrmDNhcuZslM+p2LHp23mmPIny0+9db7rfBf8hb7v07PjK5mj9OcsvIU+6W/wRgAmZDKkaczxvq1nTVAaq5uJ3PY0yD/XrZHpOccjFAY01Ytm7yxPxIGfQoq87kcQ+O/1cAPfr5FTsCF0UK42pxLPz+DGIP7AJTsWOC0/o/YTuxFjlT/zvqT0ax3Bb3bomPlf7RuLo1GjubJ4opu0DbvkaeRgVNyWpKgKHZ0qIqiIZZT43XC+3mqnl0KbPIYRsHi6FEZ1LA0DYGN2NhU9gE/j2yEGbXV6oPS8RPg0bcFmuPRiJ4oNp2PviLNSL0je7ljfXw0z1/40rpUStUr1R+GhHlHRtZyrrVl/EwUhb21RA0CuJKMrK4c/IrURxehaP+3j2vVI5VP5lB9K+sR6/jWTVBjKX2Pnp2337CrlbiZFp2cj6OBod3oyF33v65kDpzv3oFfO4ibfVfC++I1+ZTsXOXQDwDZS2zaFq+om5yE+UVdVcaPHBSUtlzytxD45NlDf1nI3ZveWraiCcip37nxRlvDQoSuJHmzVkoljW5kTVH5NQsoedwhEatDHvRARcYkRy/Cf5Efsn0qOPPor8/Hz88MMPGD9+PMaOHYsff/wRr7/+Ovbu3Yv58+d7jF9UVITp06ejffv2+OOPPziPZcuWYciQIdixYwf27NnjkYeR7ipidxCtSNtnWlhkLJZBEawmepFsdfVL0uKiwfjMioinO7QpkRfRmisVEPKCvAN/0MHuEJFPI5GPyMu7KjuVCX4pEYmfzJHSoLD7J8xym1exrN4ZtxCq5kLWEjuKjjMwEHIobCW/OFFE7BrAHTirmgvPZ8g25dkxDPUw68NotEsZxP2ZOBU7rveK4Dw7PTtG4u3j15hNLJUqlVlv5GOmRqbur8zYFvZ1XML43p8r5SfnwUqcd2OfKvD7Lt+kHKbdMvmgZ2SyROmQknBmZDSuOVmbExf4IlHaeW86uDsCMZyquaT7StTurjzSUboj5F1J3hUXJ64T0cwcjC5Zf3SGnSw2+igBoc8mQUmq6rYsaSOB+A5oHG3aPfbeshvVf5AvhlM7udSxCY+7600d/KPJFH0BMrq6hrUZ7D+Ze65qYfbG7tctF6/8OVDvW7d85Ym+c0QikAMAOPxZC0tFg8r/7VMtsGbbSrhe1U+t6dI4Lficih39DjKY6gslV5H4CfNV5LulgVRGdR5KQ59hW/l/QG+/RhIhyGNa32d6b+zHIlEZO55n5pE9mzAH3NT/nIodqwtSedght5QgKgfvP2pCmaYrsJ7GM5FIaQh9cheKz53DmVHRkmxUVtEvMLlu/NFEim/sT8aNEgA4MyraMu/uyoGcQZfu3I/81xzcdx/ATvHShultj0y3iarkekl86QSg8i87uNlv0sesrjM+j0JmxDUetub2WlwGUjIAhsZL8oqn7GIZqZoL5TY3BADE7/mDPyd+f82aiyaT2cZX4O86yE3xqVOW/dWqfYtpAcD2P1uh5MoVt/GN/2su1MeRi8GlONPpHEKftjZzNdanU7Fjzfbf4OXjw0FxzncJ4HncMncul69qbKnEg8KQKZ9oFvrbkTao/PMOzFk0U8ojotrw+9RETRcwJduoFFy7vy1Pg8xPz3Q6h5s9Okjpi34CjfIZ5z9Vc6FFwhM8bEa3hQCYErb4hwdQ5Sc2180PC0TQy4ncH52YHm14iM+cih09D/fmYS8/xsqExjer+67UFg7HVeGypn/F4oW/HWsK61TYZrUIpgSA+xYkyxPeT2/5AiVQm3timc9Qr/CWnGfVZWxTbfNVtjQm/2u0QSqmL5KVUib+pvwDwI2eEXgwrZdl/v9pVAovlPyHP6WwBs/5/6UOHTqgevXqpucDBw4EAOzfv99j/Js3b+Lq1ato0KABvL1lFUpRmNlz5Vum+rdLd8E67gAS4esfa9pemuSNiwWrBYi7MMZwRqqfWA3lvEqQH3VZ4uUuTs6PbRAwcK/HcMbFh1FOq+dEtpBAxP+1wiT3yLRszA8L5Dx69nkCpTvlzmJVZg8ceggNK13AoiZ/Sel6ksNq8eSuPDyVs09QAArnAJtbrUSvnoNQsvcwT8+7TTP+f8qplni77gFLOejZ4rztqGer7FaWsvIBABMyDmNGSDMMO5LHnVECDDWOdm9z3o2WzK+s+Bff2x5fL5yBCZ0HSX7spuUk4aWAKCl8zjvRCHhT55c2LwLZvXX/ST4B/ijKybXMg1hHlA9PbbOsd2JZqJoL66+UQ49KN/HXNf1EEmBtvOL2KnC9OsttmyHQDXdpZr8fjbThsg8y+p05Ldp0780K7twIu0x5aP51HD8ZUDUXYu59FPGbfrYsO3flU9Q9HD4bUzH4sMZ3nd21KxFa3yewCVBSwh0sayta4GpGdVTJ80L9GQke60CkjM+jEPD7Tfj8mWrZh+iS+4gjR7HooftMQDVGGcX4RmhyCtMrtBM3nwSYouq9ZTe8/myEdc3W6HXcOBw3erTHpm/n8WfkgsArojUHwAlOqYDMiGuW5a1qLrSdFocGn8ugLuQfTpS7t6OP1AdEcAFPY6zV+O9U7EibHQn4lpjurXmK66nfBK4cze87ebdphpiliVjdsuZt17UVT9GlQ/YH0Qh8LRH9Dp7iFg0m2aLaAEnyvHPz/nCU25CK9O/ac8fjVv3c+cgwHH/1piVggxXRGPj/mz9L+Q3/6TvvTYfkMiRtQTjCRuh+MJWkquhYLctULiJd7RuJr6dPR/PylXhaRvcW2NgYPsNKOEImgZrc7phJ4UQ/j42TqmC+/zamDHUPx8bF803jnaq54Dz0INTmq2973hKf9z90El0qZuC5AIcJcKrPwTPoUimdzzllUVlj4okJDmlD63qvCPiuNbvhsOLlzo8bAFwcHIVqS5O470gAKFwXhIvrG0hXFGz16/HNuX8SfP2rib3g+x8G67h++SY+jF6LevXqSYrPsWPH/q3prF27FjExMZg8eTLefvttj2G7deuGrVu34v3330f//v3h4+ODzZs3Y9y4cejXrx8WL178t9K+q4jdAWRETayfWA0novULf1aKA/2+uDYY1Xq5R1Mz8oC3DWo+G+xFXtEvjjWZOVo5VHY3oLX6Ig6/xX2MuCad+TMxniQD2H24+C2/8v9Nd5bDkQ43PcpPvE7GOVBvlnlXXFvRQrpga6UcZX1UFf6P7eOyiMqArU5txO/d+LcmDYk2Nga668rJhSeiUP17NgjviXR/p8NdWp6UEaM85Muq6L5w+PxpdmpttUgReQb/OQIhT8h3kI4/60CDL9yjcJVVxyKJvm3cEaHoEY/RaVnc9NA4EYvIgwA89gMxr4SaZ5RfJKvy9WrH3EaURWUtLq72jUSVPw9zIJk+B8/gmRp5cl0KGx4iiUhs755uhq1tdHMzdxs0PR4bDq/tLumZU7FjXu42jO43xqS0GMnWPFRSOq3GIJGOP+/gCoiR3LUnd8q2u7a+OG+7ZC54u4vmzE+jkDHYPRIhUcy9j0rmjEbytAFFCHNlyeSuvsRnP+RtRx1bZcsxo6yFpfQ/qg2OTizF/A7f4Z2mUVh3VHc18nc3Nmw1a3KI+y7PjEGlFTs8On0GgBX5yejXWD9h86RUW413Ytj0GR2BGjcROmyXFLcstF/iE6iO5MqOrXko4jf+5FEO1/XreGLO82j0EZtvIifFoubCRKR928FS2aVNDnfkzkfa/4/iR3Eyvm9nGrs98XbX9tzJkflJFIJfTMLMo9sRVs767hjA7o6ndf3O/N7LCygthU/DBliTau0X06kwv5dloT4a5cz8NIrf9yX64VJtvtmoai6ELo41uekRZWye6oOzNypJay6AnaIXnzolIah6qidCro3ac1MyzdVWtMC+jkukOgf0umm6IBYBr+vy/ZMUsZcSev9XFLFpjjX/UUWsuLgYXbp0QUpKCvbv34+mTZt6DF9QUIDhw4djw4YN/JmXlxdef/11TJ06FV5ef+8U765p4h1GqubCiWh2oZc+1PHFAcCp2OHTSOGLTxHd0N3iQdVcQEkxnIrdxKvakiR03auj/ADAgqZNeFjjIGIcUBp9lMCVMPG5GF4ceIvTs6T37pSw4m76CSGF3/2G7hvIqdg5ItG+jkukSaZuQg3kvqWXS1FWjsl2vygnl8dxp4RZ5QXQwUDov9p8tRSHQEAa9D3E43+Wk2gqT1Vz4aNsZgIyL3ebVN/GSdPdZEkD+cbv56NwXRDyfm7FkQON8hMF/TqG87KayBt8Yb7DJJLYNtK+7YCjy1tz+eiyO/FKfWu21DaN7VTVXFwJIyIlTNVcXAmj9yL8u6q5OLCFV4TZvj636DLP/8UbFXD8eYfHfgWwS/o+TVj5lXRpx5UwVdOBOER5CIzFiiitK/064q9ZcxF/+C8u96oWtaV+oWouBAzcayqbYy84uBIGQFLCCIXTqGQDgPd1dlft7Ihoqez9faqgNPUA0r9rb4oDsE0YADgySje3LHy0o2VZ5f+im/YoG8/ihtO6LPa8YvbpJfZtY7u2qp+TcQ4M9evEy6qoezicih1d9161bF9k2qpqLgS/wMyOluUlYFWhbs5rTE9EQCNzY6dih/3DOLfjYODvzL+QiDBnFY7kav1ZnKlP0n8y3xri1wkPDNZBQCInMfOsG84OJv5WxPkn7UWTAfswNag9Sm/eQNAfT+Hep3RzLltL86LDqbATPHEeAoDjAxm6XODK0ai0YgcbywUFyEqmfo0jTeVMsh2dGs1N6wBmNjkqrxOcih1efzaSwtqahiB0wg5k3f+tKS13SpgYJvD3Uch2zud9mMAxrPJO368EdsT+Z5l5fOfxY1Byq+tn9/zGVDYAsHHxfG6GZlUW7hxV0zNjmxGRSe/ff0nyJUdxaew2lnFvRx8pnPjOOFa0ez8OquZC7/CeJpmDX2Tz2PgmnaQ4afMiJJktlTAAagGTj5QwUSbx7qKohLVKZUtTbwsTLzGfohJGPEWLDwDMwfeqpjjztBkU6HpMBA6FF2HXMT/MOrpNikfmtMkf6Gb97d6P46jKxroic3zj/ch6VXWLI6u115ERwtz4Nxfw/5coPT0dx44d459/Jz333HNITEzE1KlTy1TCAMDX1xeBgYEYNmwYli5diqVLl6J///5499138f777//t9O8qYncYORU7cic7TB3W2OlVzYWiAo0/93tPtocu7WTH/Fx9YLHL62wTnVrVFJPqMOhoGozFNI9OjTYNICL5+DFI1oDkitKiw10eCx/tiGV5CaaBluKQs0ff7FN45YRdem8czKvHZEgLuqBf2eLp+4DN8H/LeofNamfZqBwB7F4Y/Z+QcViKGzxkt8cdMgB4IUM/RXn7VAu0LF8RRfeFo6h7uCQLLeBG+esnikUb/OFU7Hhg8AguT+4Uh8f0AKByzyz4Pbof3t3zpImS8jcyLRtOxY6sR742LSzFNI6tbM4RD42LDmN7zO75DQ53XszT8e2RI6XrVOxYWVjFcnEt/je2e3pmCwl0G0+MW5qyD1kf6XUGAP4+OuLLumZrcLVeKZyKHVW31mG7qkvspnRrz0vkJngiIEVM10ewLncnrveKQPrMjmiXMohNwrfuZfTu+KBULiSXqrmw9auvTfJSOPFOl5Gcig5NbVTip+ck4HKTEmRMj5LC8/K4ZcJba4G+AeBU7Ei9zpAB6270tUx3QdMmUDUXQiYmcV6Vf95haiuq5sKVs5V4mLXrlqG8yoBpFgrjz9W+5jtHk7MY0EXGZzqoBFHJRj/L8cP3YolUDnT6sKVNRSkfqdeZm4WkaXNMvNuvfRZfhYZJmwWUF2PdbP9Cd/wtml+qmov3k9O/h3FEWeIjUtoCua87FTuUT/RxiZyj0/vCe07h1Cq2GGg/XR9jquYxh8dUvk2/1e/NUJ+WlPBWzSQ58l9jGxChT+5C+XUpuuJ54IipX6uaC0nT5qBXz0FSeZCZalhcMk7Fml04tP5MBp4w9gEiyl+TyYkot153a3Ku01nM82Molc2qn5B4TV//nZSWSLSJKKYphnUqDPWXyr+0qAhe7VqaFBIAmHl0u4mHU7Fj28yvuSsKsS8Z58UqP+3gdXZ+qD4WiQh/rXc8jmWXZNAYq7yRuRzAkG6N5nK0+XRuDQNo8glswsfpJj9Z30MFdAh7Sm/3JGaKTSZ2RkAbKo82yYP5s7BRrDwXXaxjkr3q1jo8HtU9fYtIr5kR1yzXOZ82ZCeep39sxPnFpmdIZW6cX8Q7xwDQZa/uU65unyOo/U0ipuWw8Yw22XzjU6C95ECTiZfw7rFeUDUdTVHkDQDt34lFvS8TkBN51dRfrNYOtMGwscUqqZ2J5a5qLnR/YqTOo6CMhdodRiWlXv+Vz3+S3nzzTXz55ZcYPXo0XnvttTLDX7lyBQ6HAxcvXsR3332HQYMGYdCgQfjpp58wcOBATJ48GUeO/D1fhXdNE+8AMt4RE8m40Dd2Yqci38WxGvicih3n1oSiZu90bgJo3EUiJ4RlKRYiFa4LwrY2v5rkEWWlNDzl43bySeRU7ChcF4TKPbNMeQTYySAppSKvOecbIapilkfHlMTHnWNQK1nc0Y2eESi/LoXzVJKqQou6JKVzalVTXC6sgKntV/GFb1l8xfTbpQzC7ohlUhzRYamxTAccOo7lzRtYmnP07txXQugS6erDkaj4m4xwKMoj1sHp0dHwvVCKqj/KZq4nf2uGohJvDjjirp1Y8TTm3/iMnDaXFddWty5OPRiCWgv0vkLpemr3VpNtWX2EHEK74+ep7bujE+MdWPrCJ3guwAGviNa47F+JI38aeRl5zsvdJin5nurQih+ZiaqaCx2mxKL2vETEF+yCzcu7zDqy6svGMYqeueNjCw3CkcnV4ZNbAUdGzMbMc00s7yqlLwzHNMdP6F/loqk9lXRph/z7Klqi7xnlinp5LAe7MMp1tW8kKq607g9Gfsb4ZdW11XsyOza+L8t0GGCAOgE/nnALjmBVL1ZhxLBkqnX14Uj8NXvubfcbMZz/jsrI7VhoCm8sq7AtT3KUXgBI+zqCIxwaw4YsGctPb+y7AVc7dopb+ecd/A6au75M85/Ir2efJ9D525389Jmc/1qVV8bnUQh5nqWd/WE0Ai2cEntqK57aiNh3Mz+JQsPtpXxTRwzvE9gERdlH/1Yb89QG6H9g/NMIe3qniS+Z9b+dlYoJU8dJIClGfhQ3/YsohD6bhOPPOdBgunU/tGovZO6nai6Efh/LfUZ6yiOl7b+jMub5bef8Lg+IQpXl1mjTACTzfitT06NTo3H46dm4d8TTKK+yTYT0heEIHW42SfVp3Ahnuvmh+vdJlmszklFK/x9kmvjC9gf/K6aJn3Za/R8pj7feegtvv/02RowYgfnz59+WSeGiRYvw5JNP4ueff0b//v2ld7/88gseffRRfPPNNxg5cuRty3H3ROwOIoItJeRDovDdJXwnRSRyzCoqYfQtdvhTq5pyh7tGE0BVc+Hi41F8EuILn2rV4NOgPtyRqrlQuWcWcovYsTvt+l7pxxQd8v8VuGo0bDWqo8djw6W4YjpWk8EELQLelStD1Vxo+zEz44mcFIvS6Lao3DMLlf+SoZPTFzETRvJ7dvw5HeWoy7gxWNGirkkJsypTAPwiM70TT1icih0xLbqi6Xy2Gy36ehOp3CVWziSjUQkD2C5d4OA9XAmj3bfjzzos5SJ+FL/kz1rSf0B3iEthKR+qpsP3kxLmVOzoHd4TYQtj3SphAFA5+yKXvd178o63cdKsMzcRVX9MwtWH5ROQeg8f5nbyolxiGYk8Rd5W6YlEShi9n56jgySIYYtPnTIpYcY0AcC5/6LpnfReaKtHp+omfxcH62Zw5BDaiqwWPllLdP7zc7dJcel3/ZkJeC6AtY3SlH2o/Iv5hMo40auaC0ffdkingt2eHuU2jhWpmgszJg7iaT0ynt0HGp13j9s6EuM6FTs/fRLLkuI23TrM1CaMfIrTsxAydDcqaV7o3elhxD9u7iOq5kLo8FS899kQy/r648cFJiWM0jTKRWbFYl2pmgsFrzjw+5dfAGAw2FZlZZSd6OxT7ASJrAdapXoj/Ysot+2Env/+xCf8P7mZUDUXeg/fJoUTqfje9vgsJxEHY2dJYCdE2UvbWva7Yy+4H3tstZk/LtuNUqiaCxV/S5bKp80uL1MZGNsWyW5Uwii8sf5FVykALJUwCktKGMCUMIA5nQeAFS3q4p3sFDwwYLgkU4/+zHluafvmprS1rtWwtU0FXl8pdhsP0/1gH85nztFtCHk+CSfHsTkn8NVEiZd31ap6P+gdgbMjomFrESalRZT5aZSp//j7VIGquXB2RDSCX0xCpRU7JP9iFJ7c3XQbqffvzE/MPg6NSljUHn2uapM82JRHftrf6WGpzMmsf0pQOJLf1833RN5inwKA0Gdvmet7UMIAoFeQPpauKkjhSphTsSP9idmmuBTWavzI7VgolSkpYdqL+hrBVl/3WSaCCIlKGD1rMjkRvcN7ory6E6fGsrUBKWFnR+iIvYMPayjKL5DGEuPazKnYJXcz2stmP5p3MhXD+7/y+U8QKWFPPvkkvvnmm9u+11VQwFwaFBcXm94V3VpHFwmbOrdDd0/E7gASwTrKV6uFrG8CcaTLItMO5LGJDo6042kni0AnxuRHIyfSbLLx2dkgqK2qWU5oRF33XsWGiZ1RboM8EBnTpHQ9LUCsBn93aZ9dHYaU9svhVOzIe8MBv3c9D9hGPqrmQtuP4vhO8TPpaZJj2LRvOpjgfW3VqnHwBFVzcZRDibxtsAX5ozgj21J2VWP3PvZNnGVZHuKpDVH6wnBk9TCjTVnl8++UQVnxPdUBPTs9Jhp1vk5EYf+OqPzLDmR/EI20J2dj81VvTPxkjMnFgRj30sAo1Nh9StqFVzUXRuV1Qm7HQnanaGd1NP4gARcfj8LJXtcRMnQ3LzPH82NNJ2pllcftkJjvnoEdUXqd+V+jvNk/jMOFZkUIi0s27YRK9bmxMUcCOzbRgb0vzrIsx+bbh0rAMO7yURrdFl6Jst+RAYeOY2T145b5LdrgD5/7c/X4jrbcPxoAZC2xI+iWPzeRovbcxLZTwVJcdzK5a18nf2vGT2GDfhqLVvYcXO8qI4Z5dWiFhl8exQL/rTxem11emNZgt8e+b3zu2HMDCW3LY9bRbdxx+HPHOuBQeJEpHlFZ7eN2+8TzGYew6lw7ZEZcQ/4kBw6Mm+WxfChtd+Xo3H8Rz9bM4CeI/0pbprglG/1wcrUf9rw0y8TzdspY1Vx4YPAIyVH46d/DOKKhGOdkcSHqCcAhIu9hR/IwpOoZy/Losvca3qhz2CTXiQkOzH3+C0T6lruttqBqLnQZN4b7nPJUNpS2u/dB60cidHgqtwxwF65nYEesy95hWaa3U38Fv7ZEo0eswXDE9tYycQgORP+A0O9j0WhLETbPs/a/V1Ze+x86idHVNY/xxHSNaVjJWXFLfVztesIyPXe8PfEzymDVbmO69bc8wRXjkwWHT1AAzkU2QMJn+uk17x9d2+GPpQs81pllP27UDtqL0VCm3f6JHQDL9Yq7NI2yijTn4FaEND/xjzgRe257n//Kidj0Tqv+reUxdepUTJkyBUOHDsXChQtNMPREx44dw4ULF+Dv749Kt0xff/vtN/Tt2xcxMTFYs2aNFD4mJgZr165Famoq2rdvb8XSku4qYncAUaPuXmMo1h9idzm0lxzcX440SN0/AMUHzROls1E75P/cAgeifzANPLb69RC/e/1tL+oBebClxSY9VzUXms+Jg/9UNugsy0vAID9HmZOTuGAS0zCmWdZAfTtpGCeE203TyKvll3Fo/H6C9OzBtF5YHbaWKSyjo3Gjmheq3X+cQ5DPOboNY28Bl3hXqoSSK1ckvukLwxE66waQLAOHeJLf3SKvrDwAbPdbNO/xlJb4boIW4RZEhUwtjSaYYnwjGpT4LvX6DUwKlJHUjGXtLu+q5sKkE23wfv29buV3l9fgH8dyEyJVc6HT3kdQ9cFck1nS/49CTOhi7t5bPfcqVx6lN294lFnMd88mkSi9ye53Bf42GmGxyaY4xsWIuNAuKz/eVaui5NIly7TbpQxC/aqXONy7O56q5sIDA4bDe5uLv7cyfT77VDRqfZuI80OjUWNxIi4+HmVCbn0tcy8+CNbvlBhlv9mjA/5c+A2X9eRvzVDvYcMmipuysXqX9XE00p+Y/beUpbMjolFrQSIfs43k3bY5SvYc4gqzqrkQ9MsY+K0vRYXfdQAWygMgbw5Z5fuFjAP4NKSl9M5dX3RXDgA4oh2VvSellsy+3Y3jAPB2ViqmBOl34sS0yC2BlSw3/miC8g8ctXzn49cYRXn5lvMUL49j7bE/vEQK485E0LIcAG7aZ6TglArY+2FbkxmwFQ93bcv+YRzqz0jA0anRaDJZlkksM6pXVXMh+MexyBw4x8QfkPtl7/CeKDp23ON8WZactzvGuVPkPCkXJ8c5UO9L9864y+It0ukx0UidMlt6J7r6EOMa26LRfNCqHYvynFrVFHX7sPuT3Q/2sdzA8pQfqzyJ+SJ3BWdXh6HWg2k8fGTCg0jtP/0foYhN2Pbwf0URm9H532eq+dVXX2HcuHHw9/fHO++8Y1LC6tevjwceYA7ohw8fju+++w6bNm1Ct27dALCTMIfDgeTkZHTp0gWPPPIIAODXX3/F1q1b8dhjj2H58uV/S6a7pol3EBWfv8gvvirTErhJnEjxG9xUcGkpGveX/VHR7+ITJ+FU7Lg0KIr5mYFZOTEOSkSq5uJKmBi+pJyuv1spYVaX7Z2KnX/sH8jOgimutqIF/+1U2H0wqzxRXPpYvbdKl+KJ4Qr7dzTxpXiiYpDxPQNUKHq+Fn+W+tZsKJ8kYHubXwEw32xjBQh/oxIG3DJjEJSwtNmRKOnaDtqLOkiLmKcejw1nC+F39TLLf00Ou7ogVYrXOEk3RRPNe9xdRDbmvfmcOK6EnR5tbodkarnp23lQNRdulhZLMocsHSvdaxH5OxU7JgWyy+LHVzbnslBZH1vZnKP2iZNjaXRbqJoLrT+PQ51yl/HKCVl+Aico+LWl27aXOXCO9LxKzyyuhNmahpjyKcqQ80601N7u21colblRCRPjuqP0j/Rds9wpslmKWD/pM5lZLSltTsWO7IeZc1kyB6Z0CNXx1Kqm+GPpAohEZSk6mxXlK7l0ifOnd9pLrK3Ve/gwSu8rMOWBeGZ8347H9d4m903R9Jmep7zLTIxqLE5E4aMduRImIqkZlTCi06NZXYhADwCwO2IZD2f8FuuCnBoTUfygl9lG2Mi0bDTfPtRj3RGlvMfyITqaFqlkzyGomoufWjoVO0IXX8GWr3XnwMa+GH/4LynfxgUvLdbp3ck4B8qvS5HyYiWLtNCMjQZKmZkhlb0oi7H8SAkTZe34ig4Y4uXrKy18ySF43husXcdv/gVnRspjSeTuxwCAK2Fnn2LvRfAN0V+hKI9TsaPzhDFwKnbsDy9B2jcdJLlDPmUuCFYVpPBnhBJqRaSEGcstM+Iats382iKGXNbulBmnYkf9GWxsIyWscJ2OCBtVwYbMJUzuHpVucj4hzzOUz8sDZCAeXn9jmalr7pAgU3rGebUspcs4Tol9112eAH2siWnT3bJMAJiUMCNvY7r2D+PQ/Os4lHTW0yXQLFLCxDiiv8VB2czB/PGVzXlbtIXeKp9CHe2WKOinsbxMz46QAclICXMq9ttSwrrsvYaWX8rgVmL587qLYmMauVGo9WAaz0+LhCdQtX92mWndpf9/Sklh42Rubi6efPJJDB06VPq89957HuPbbDZs2LABr732Gk6ePIlXXnkFr776Ks6dO4ePPvoIS5Ys+dsy3T0RuwPICNaR97qD33W6nd02MZzxP+3q0LvgjSMQMpTtkNtahJlO19wRpW3cvQF03zlWPN1NTuQw8XZ35lTNhaCfx6Bqps2tLyKKR84Zy+Jrq1kTXlUq84m+uFt7bFjCoJGtdvYAs9mXuOMVuHoUKuaW4+YJ7urLXf6M8haXliCmkbBwiGwtKXAUh0xgRB9ZAKRTVQDotPcRbDeAq1wuuYb+jaM4r7w3HDgYp5fd+9nJXGkSy2R0WhYHRLg0MIqbEl7vHQHfNWygEy/Ae7dqhpL9hyU+Me16oPjESanNZi6xI/hW+RrTTJsTibCxyaZ3MV0fkXzSeVpAuCv3spR5d/HE/xTXUx2L5OnSucjDeAnfHX8jDTh0HEtjY6Q2fTvy33B2wKYF33BfZarmwv2PPwXb5l1u0xZBctydwFqlXVZejq1sjoa34eCYZHfHW/x9fX0AfHvkSDxmHt2O8U06mdqDU7Fbnmp7GosBIGTJWGQ8PseUvqfxTkzT6CdP1Vw4XVyIIX6dpDgnf2uG9vXzkR+lQ2QX/NoStRdURoXf5dNSq/JyR+7K+szIaJxtw5YMdN/HHV8CVQJ0h/Lu8l/WWPly5j58HNza9FxMs1WqNz5tuKvMPhjyQ6zkVN1KBluN6jj8RTB3Fi2GEx0YnxsezUEqPsreUSYYFMlqTJO+rz4cifz7vE1lS2a64vhqVVbG9hv21zAOGjQtJwkvBUS5dejsbW+BEtdBqR17arO3M5f5NKiPouOyaaPIm3wjGq8QiA7T3fE2/i9rDC5rrLHvBj6q7zLVa8ErDtTILEbln3fwMrrh7MCBOgpedaDUC2j8QQJGpmVjQJULUjqV/6qLwntO8f9Wp78i/ZPAOv6JJ2J3It09EbuDqF9Ya6gaA5zwtAslUkyLrpYLybRZ7OSrbp8jyLwFBBDTrT8yu+s75KQwGQdI438xbaMSBkCafEpz8jHsSB4PY5SNaPN83Q7+yiMdpUHUuFtNz0Mn7LBUwtLmsLzm/8J2ievPSDAN1uQzi9JRNReKz53jJi8AYNu8S9pxtBrI07stlP6L8mU/OA8H42ZJ6VjlQ4xr3DkTyyHy7Wfk3cKVi5H2tdmPTP1q7BRjedBGKS3RtNWp2FGlZ5ZpkdlvEAN8af0Z8yPj965cduG+5Xl476pV+bu5YfpJZcLn+imT7xp995lM0VTNBfiYh5riEyclCGxVc3ElzNayqTSh+m5pgOw+c015dyp2FKdn4dHM+7lLALEOedlZ1IdY7vRNfqOswpd0bWeKR+HEC/JOxQ6vDq0s03cqdsS0vBfRL441XTr3aaSY+AMwmUsZ83ZpUBRKHW1N8n7//EOwbd5lGcfqP5X3pgXfwKnY8UYd3cSP+ATGP205XpASlvlJlFszWPL1FfTzGEs5jHyDUypwJYzIWK50MkzxrcZIgkoHGODE5lYrAW+blC75SBLbA5WHqISRjyh6V/BrSykv9BFPR0lG43holFdstze7HeN+msiNhVEJA9gJ4Hz/bcj+4BZoTGRrNHrkAFfCiu4TTLNunaq2+sLsw4z6qaq5+MmycYwCgNrzExH6bBLKXfIyxRPLD2BuNLyrVgUAfNWebebENLuHxxtx5CgvDzrJEMmpMDTDnHei8XFwa9NYSWHSbhZC1VzYH17iduzOeYedqFwpuYHgl2QwDbFu6PQ//uAWSQkDgJ5NIhmi3sZUzv9yI/2CP82D13tH4NJAdool+tgT2xTA7n4b5f1r9lxkPTbHBAI1pS5TkEgJE8v92oORlmsAp2KXQIMe3jAOADgisLHvrY1fYoovUoRLBicQ+534IVlUzcWVMGMc+s7uOxeq5sLE34ZxXueHRXMl7OQ4h2VduSOnYsfNHh2w7oqvPHdarEWMfLa/25GHEREg9z87CzcrsvmrxHUQAHMhQfEbfZiAxh+w8W9+WKApnfRVofwUDIBHJUzVXFiRZr6ycKdSCbz/K5//dfrfz+E/jGgA9IpgznEHHNIvwlstgIrPX+DxRAqL03dDM24pD3kP1+fxFudtl3imz5CVobR5EVzBMaZpq1kTvXow/zI9D/cGAOS8yyawkitXsKipH19IW8lmfLb1S2b2UW5zQ6TNisS5Tmc5GpFxohefEWX3mYuWiUPQuL/us8uYFvnMMqZPEzTxXZi7Db5bGlguQqhuuuy9hlJHW9Nk5U6JUzUXXsvci/xJ1ohkVnIBgM9VebJzKnZ4FeldlupnY4tVPK5XufIm/sbyIp5Nd5ZD+UzWvvZNNDvbFfPkVOzcbA3QTVLExYS7/DgVO99pdSp25L+mOykl0A9jWcb/8SN/PjlrF45sDTQpP+LvS11Oo+E7mSbHyvS7d6eHTb6GzhVfkcpmVF4nVPlpB7zCW0qLCXKiSnetjPk7+VszvrFAvNat+p6bYYmLMACIP7AJJ6JKEbJpBE9jek4Cigo0FveKL7KXtpX4EQ/ygyMiflVdlsTN3sTwdF8IYGhcvQ6cx+2QVX8lCnt6p/T+7Oow6b2VeSbx3NKGOUINnWANuGBc2GVGXJPyk3azkPtFIzowfhZHqxPj19xei/+v2+cIr8/iM2fZ73z9rojVglJ8Jz675G+T3hEYA8Cg4o+v1NH3KG7jDxJMPD0RhSU/TWQWpWoudHyVmQKeipWd0wa+loiWiUNM9059/kzF5KxdODMyGqHjWbnvf1bv6zRuEy+nYkfJ/sO4f8hTPM0HBo8wyRzwRqIpnlOxc9NCIrpv6FW9Gts0uXXvzanYsaCprmyc63RWyjvRq0d2IeDNRJMClv2+jlYaVq6y2zLNnczG3CMj2aZHv8aRUrmJefBu1Qy2G9anLgAzCyZYcyLagDj+nD62+65J4RYCjfvrYB3GNkCOgsW49M5oJimOH3S9gP7nPeDN/086oS/4jSSCVBnL2agkEl18XEdx3P4qUy6D1jNYbkL7M855qsZcCRjJKpy4cZH9IZtLaixibevaQ5Go96W+MVjStZ2lIm78XW79TvSsdF1KO/qFsW7Dq5oLPn6NTXcAs5fpZbnjIzNSo1UbMZKquZjPwCTdlYnRPBfQ53KnYufo2Xfp/w7dVcTuQFI1Bk8NgEOOG98D8kBCFLx8LP9PducUbt/zbALuMm4MhvrJO8D9Osk7bWGjUrgZGMDMTK73imCT6blzKNnPkLDWNWOoMa8/+pMkY/wfP/JdQQDwbtMMmdNkpYeIZLjZ7Rj81rNnLYYd4u9eONZemiRo8CaoV6di50qYcVElpmE1WB4ZOVuaIBr6VJFQ4CgtupMCAG/UOWxa+Bp/i+RU7PgguI2EvCZ+u4u346PZproO+V4318juM9c0ydMdollHt/F4bZMHcyfdopwzlBTuwJPXwf3hkjwRrmIOBy8SmRzW/E42rfNu2xx5rzskCHZxp9RWozoOjGflELJ0rOXiV5QHAKYGtecLP+OOq1OxI/NT1s6+D9gsLTbSF4ZzPkXZR7kiQPEG+cn37PZPb420OZEoTT0AW9MQ9Hj0STgVO1eyvO0tpPKjb3v9Ai6zWK+15+tKJsD8T9GpRNajXyN4yG7+7rkAB5blsXJ+46On+KmSsb28FBCFc09GSw6BAZjukzoVO98pdyp2eDnOYW3LGvw93VEhyvg8CnUTasBI4vhhVVfVKsgOWcV49G2rW5ef9nlSpumbIMWN+QkrV9n0vG+6U1qs0cbAuU5noWou+O+oLLUVAPwuptUYIealNLqtSeapYxeZ5Kf3B2NnYXP4fMs8GnnTs9AUX6kcjAvNtDmREp8aixLh1aGVhFrabRQ7jW3yBuv79+/XN0wA1n+oLRrpyFP6AlN0LG3btAsx7XowBWXLbqR/ZXb9YUW1vmXp3LxfP4mLadEVa3asluKKrlFi7h/Af799Su9jquaS7ggCguI5KRG9HX34M2P7p/gD+m+BU7Gj83h2CvtRtvUmgKq5ULL/MGouTLRUmjyRqrnQYLrZCoO+xefiCS59U1zROoDuw4qy5L3hYPfFKsgnU6IZ4/v1ZbcZ12N0CwpRpj7pPS3XFdROL98aHxI/0a0dNn3LxsGsHvMBAPEb9TnfqODUTWXf1O8BSHfdRDo7gs2tacNmI/1LvZ0ZgWy8t+yWykPVXJb3esUy927DzGGrLdXL6GaPDqb6JcsYMS6ZdIpzBN1Vo3QAhlZJRDD4xKPlzDjumoTCU1+k/1F7bvK5vLjb7SPt3QlUXOr1X/n8r9NdRewOIjqSdip2pC0Ih61ObcsJwbgwEgfBkOfYBd/MadH8JEyM71Ts/AQKAB48cA69eg7iF14pjHH3vHLPLGyeP8/tBPxDs8b8N4Wp+qOOwlWy97Bklx/4+yiJ16QTbeAT2AQzPp8JADjlOM95kWw9Hn0SquZCxnQ2oCsf64vR7A/MC1GrhY/VswtPyJehHzxwzrSYqjM3EffEjpbiWikaRt5iWPovnloRD/8d5kWmcZdS1VwSzLkxP7W31+S/g8tV4XH2RC7Fw3+anQtbyfvnInkh+W69fWhevpIkqycq2XMIfu8lYKR/Z3QZN8a04I4/uIXz3ztwBs+Du0UMKS5GmUUZMwabHe9eezASVfb5woqcip2bmBEPp2JH4qdzEDaWTf5DVm3iCHfEl8xSjLIQcIlIVopGxePXUP2wzSSrU2F34wb5sY2F2vOsHaPS75rfJXLz3fqJzGY+6BUW594DD/NwFVazvJwaG42qS6pLfEq/1f3maC85EPJ8Eu9zxjRFOY1tRjytET9OxY6M6Ww3PX7PHygq0ExjmX03U9yNdUpt3LgQNS6QVc2FlaGqJG+dFHZHMvv9W0AGt3wIiYrXvomzpEWnu37slbiHL+Qo7OzQEA4wI1LmEjtX7sU89nxoCP9PprPklwoA0iOu8/THFTDTqHPD9bHs8ENfSQoHAH4qSPHIXK34UDpUzYU/O9Q15cno10+Ukch7q46uqWouFJ84yX+HPrNDSjOm+2NQNRd69tbzJ8YltyfpMzqi+PwFU7s59EYA51V8MA2XBkbh7FPRSGhbnstlpQDZ6tfjeSrKyeXKMrV/gDk+Jx5Jbdn9FTrtIPNBAt6h026j/GK7WF2QKpUnEZWpcey60TPCkk/TrcOk01FjH6s7WzeZXP/Ldzwuffu9m4Aqy5OQ7ZwvxWuzy0tqu+LY6BufIvHxCQqAU7HjetfjCIx/2pR3ikcIwLzNddJ5/nK5milvABCQXJH/JsWHTvkzpkfhRF/5hJt411qQyH+HjpPbmVOx49yT5rkdYKdcxUcyMDlLvsdH83TLL+NQUqEc3j7VAnmvO2C7db+o3Hp2qm80c6ayOz/UrNQDzG9r0KvmsfmX5vXgVJgrk/jd6+U20uwagh5ndRP10licGhsNW8umUj7erquDrNF93rv0f4vugnXcAST6EfPx0h0XZi9ti7Su31kuUq0W+VaDY8w9/RD/1wp5wq1cGSWFhbDVrIm8bxtiX8cl6Pb0KPjGp0g8PaVDJKZrjOsuvkhXHumIrV9+LU0exsUXwC57965kvfsuknHRRovc4MetlSVRVoIGt+LpVJjtOaG0AexS/NWcqgiZaDbH+iFvOz461Rl725ea+Bh/p8/siKz+X7stS6PM2R9EI/A184TQecIYVP55h9t0PPEUn1OZ9ArthLXp29F19GhUWJ1cZnwrXrlvOeD/lnvo4qiXx6L690mmNuwpneMrm6OB4e6QlWyq5kLka7E4c/81ZHZfINWhT+NGKMovkC6Te+JjVTdW1OfgGTxTI89tHjyVPeB+990I7U58vCJa89NzRLWRTGBUzYWYNt0Rv3ejifflAVH48/OZ8PVifpwI4Cam2T0YlHwQP97bgZ+WinThiSgkfTwHrXc8jq6NM5EeIZsAGReXt1Nu7tpoT/8OklsBkWz160mKgrt0+BjwQzsED2GKRoSrGMs2djL5kHLX9m6n/j29Iz+QZcUzgoLkvenAwVjZR5iq6f74MqdFS5tbxO/+x5/C1XrlUWNrDoqOHcfRtx1oMsW6DxJpLzmw73n5brLXn40klExjHk8+40CDLWexdj3zKyflf2NjoHu+KZ6xnauaC3tvXMNLAYL1xK1ysCrTrnuvYkubim7nGJ/AJliz/TfLPqe97ECXx3ZZgkC4y6O7dList4AvxLhpsyPhU/0GB3XyNKaJ/0s62/HH8oUYmduZg68UvOpAow9l8KeyxhR3YBChKb6m/upOpm6jRmHzvHmWcuf93AoHHd+bysSnYQOsSV3ntg+qGrurHTpuh6lcVc2FbiNHwXctW4OUdG0Hr5slKKrkY9ocdLfWEXlZ1VWfg2ewqkVt03Nj/mxNQ1B8JMP0PnL3Y6jZOx0Z37dDyBO7Lbgwuto3EhVXyqBSVukBgLNxOE7GdkTNI9dx9MkSZHZfgIuXSlAzLOuOBqegNeuYv/r/V8A6vr7nlzu6PP5VunsidgdT4OA9HgfcyVkMxaztRwwyld7Rzo5TsaM4I9s0YJUUFgIAis+dg9LvIHr2eQK+8SnIft/6TguRyN/qW5xknYod9x54mD/zvuUMT8wLALR+Tc6jKGvgav3UbEZIMykdeh7hKsbpMfI9h6BfdDAAAAh+3MV3SUXqf+iklId7Utl9u5Nxwh0mwVyL/BURNXrkADIHsdMYMlsjGuLXCXvbl1ruAHI43VvPSQkjOawAOcT6IyWMl+0tEI3KP+/gcawW9ueHRZveF64LspzMnIoda9PZPUI6WRFJ/J/1UbSUT3GS9H9Lvh+zMHeblE717+XFcFmKDgAoU/R0RN5WSnzN7xIRMlQ3ASy3nl2yLspnC8yDU5pYmsxYtcnAVaNN5UDk3ZadkpAS9kx6msTHu21zqQ3QTj7dKXIqdkS8HstNSsU8qZoLj7++1pSmqjETZi5Tknzq6VTsKD59RsoDUZXlSejTKILLQ/DaxRcvYli108ibXVPiRXJU/56duPvHnZUWdca+33z7UDgVu2TKYwxLp8BWde5U7FwJI1h8kYpPnETuZAeOP+9Ai9lxJt58DFnJdscz7mUgRS9kHMCuAWGSEmYlh1UfslpgGjd+cn4039GpnuNm4R/ZWuJpRGYkJcwoQ27HQvg0UlBrvwzGsThvO5yKHbbNu7B9+hysSV2HtDmRlkqYsR0r05h5nHhab+WqgMpK1VzY/fosrF2/zLJc0D2fmwG6m0eIXgpgqK222rV4OZx8Rh6vSV4yL+7VtIvl+6LsozhdXGiyJqmfWA3KxwmSEmZsKyRb5b/q8v8vHGuPvTfMG4AUh5Qw8XlYbDLSuy20HIOl+u4sz7He29g4kB91GVceYSd3+yfMMsUta1ODlDDj+PhlI6YAEQgMhXEqdvg0biTJ67smxdQH6DcpYUYqOqY7oCeTW+Kf9RE7oaYTL3GNwtNcq28Ee2/ZDa+EPfBNOORWsQOAmCMxnE+bT+NgJDH/n6m9Lcfvwkdl9zXFRzIs20bN3ukAwJUwK162GtXx1yxmZnh9fYD07oWMA7BtUqBqLrTfOZClWVKMcpdLUW5DKp+n7t4R+79HdxWxO4hEtBxVc3F7Y6uFMsBs/52KHXtemWUZThxMWiaaTUiIyNQlbfhszt8Tr4uDo6TnNIGKz2hCcCp22DYpWJuRYJqQVM1luTtJA2vYaBmmV9VcSJ+ho5YBQIrdhtQpsyVgkdDxOyR5Vc2F+jMT0O3pURKvX5rL9tw/LGW+UHa/obsOOOU4b7nLRshi9G5t/BJuqmKryRaxs45ug1Oxw7tCBbiuX+eyFKdnSRPQIxnMeeCJCWzxkf3QPBx/XlcGjSROjl7lyksgGmIZGsugxqJEKS4ArGu1xHKC9ypX3lIJtNrhSx/K2k3FLfXxYFov9AqV7x+Gp+p3QIb7d8bFtcFu5VU1F5qn+khKlbEMSvYcQvOv43Df8KcR/OcIk3xWZFxsEYXFJqP6+kMcLc1qAg5IrohevQYjYKVsPHD8WVZHXfdeRcke/U4jALz3zpMSL3qvai7k/9KSm9816KsvNE5HFksmpQAQ/nYsnIodq1vKipGYltXC7Hpv2Twq4/Moy3Du+NWqdFUywaM+SXKtSV3H3xnR1FTNBf/H9uHSwCgEvZpoqkdKJ7djodv6EinzvgWWz7988ms0+DwBfu8kIOfHNqbxZUV+MgctonefhrSUnAoXrgvCPL/tuKoGmvi3mMUWdqI/I5HEhSQA9Hx4KAIGMmVY1Vz8XpX3lt3SRpStzq1deQuH7hRXlFl8pmouZC6xo7SwEMkfzObgEarmwtC0gVA1FzI+i9LHUOGer8jL7RjfJtSUnqq5YAsN4kogxRfHB/p9alVTzDzHQDheCewoleu54WZgn/bv6H7Iis+c5entfl1XQFTNhXtHPC3JZTXmqZoLp1Y1RR1bZRSfPgOnwlx79Oo1GIua/GUaS4zlS+8K7zmFjOlRODo1Gp823IWXAqIwMk327dQi4QlT3FYzdDTKNp/GSWVMiKsieW9zme4PEVX6dQfvw/Te1rKpKRzddzSS6I9T5O9U7BwERiyDgRt28DVCzrvRuLwuCLamIXA2DufxnYodAckV4WzUztT2jWWbHnEd8PKCU2FO5YNeSbRub6LMLzugveTg91en5ySYNifENKflJCG+aTwfUxt+moC0r9nm0muZe03tnPyyidQ4qQq2zTD7iHMqdsDbBqdiR9o3HRC6mLXTX/KTTMipYj7IDNep2OHbI0dKr0elm4hvGg+nYucuhQBw0JbMT6Juazy8k6i01Bsl/+FPaen/vppy1zTxDiDRj1i1qt76AnZ3CVLbeVsufomsJu0zT0fDq5jZXrsLY4wvkrsBHGA+NRp95N5U4szT0aj9jTldYx6MfD2FrZtQQ7q/IppriHKUlVdjeCuZjOkm7GqK0HE7cPx5Bxp8ztIs2uBvcvCY82MbHOmySMrDoOz7OBqYp7TF3z6BTVBy7AS869RGUX4Bz7tPgD/WJKwqczGducSOpm+cR1FWjpTWgKzuko+x4886JFcAmUvsCJjnDdumXdyPlEju2o67OnW34Pm7pGouxNzTD8UZbCFE5ZGxuB33h2clS1l0Ms6BerMSuKldj0eftARgiXg9Finvzeb+90amZePLlwdy0xMxbXffAMqsP6P8PgH+KMrR2xiZG6maC87G4fAKb6GbJN4iMkGzNQ9F8aF0t3kX0xqdloW5YUG3FdYd2XcDrnZy/V/tG4ni8t6osjyJ86F3Ivk08UPR0by/la6xfMkHGMBMnSv9yjZiZp5rgvE1j2L9lXLoUYk5J++09xFU6ZllOWaQfH+nLbnrz9POBmNDq6q8fdG7jO/bIfO+BSb+7saD/x+i/HR8JRY1FptNF8X+eTvjIADuV0l8NzItG/PDmKLlbW+BtfFsU2fAoeNY3rwBj3tsogMNP/NsGinK7WmesnpXcUt9rAxV4VTsaJ7qg0PhsjnrpUFRqLosCWefiuZgIu7yvDB3G4b7d3YbJqZNd37KLJJ32+Z8s8XI09N8Q3lyV+dWz8V4lx/riOob0lB87hx/F/zjWGQOnIOI12P5GsAdUX+xovQvO3IzQvL5aJTJ+M6dzLOObkNck86WeVM1tlFc+fdqEmy8FRl5U90CQO5bDhwaPeu227T4PPen1lgdOdutjABzRWBEZqb3t9PGjeU27Og9OBHNUERFv4H/JD9io7c8hvL/YdPEG5dvYm7Xn+7o8vhX6X9f1fwHUb8w2VQltZ1ePcadF+N/kXZOnY2U92bjvn2F/JlTsaOwvwxQIL4z7nABOrQxPT+2srmkhBHFdOvPf9f+JhHeFSpIfNJndrQcFJ2KboZH/2/26GBaIJES1mUvOz0jc43ct9iJRMuZcVJ4Mb64syvm1xiOyNY0hMf7PmAzN6Vo8HkCNz/zuT/XVP60Ey7mb1ngnyY5jGnb6taV5CjKPoq1WUkoqV2N590WGmS5iDfmLevjaAQ/7sKabStN+b3Q+Qw/cbOFBaPBFwmSr5rgx12wbdqFs09FY9OCbxC4arSUXtosht52/DkH8l9zWE5s4n9jPo0yW/3nu+deXlJ5kRJG5QEA70WulOJ3HW1tNkimIADz00W/681iJpO0SCYljNIkuWkhQ0rf/LBAVFyZjPm526TTWU/tCwCKcnJN4URyKvrlcVVzSUoYoPuecSp2oKRYMklUNRdy3onG4VGsXxBogwhxb0yL4vavcpE/F2U7urz1bSsE+/s0RuW/6krlVnFlMlfCxHS92zTj/73KlUfR0Tx02XtNQrMzus0wlplTscPLVwdiISUMAF9UOh8ZhtUtayLmnn74NKQll41ACES+oZuHc770LQJmEBE6Z1l1DQAbWlXFkMP53PSWxgA63bPKEwBU3VrHY5mXdG2HE+NluHOejxRfnB4TzfNKShi9P/O07LdKXLDSqV/G9+y0g073Ka5RCQPAlTBVc6HEdZC/MyL9NvxMN0/WXmayk38osQ2LMhnz1nyOftrkVa68hAZIShgAHApnvgvPPhXN+dNCnZQwyj8AvJapj9tp8ztwJYzIVlcHPnEquqnvhXgZrc+ohIlptE0eDID5MBPzJPYXsVyzP5RN7Y1tJXISOyX3atcSce/+zJUwCk8nPzR2iXDpIq/rvSNQ6dcdKHjV2gw0dNwOlHRh7UFUtEjW9BkdTe/ckajgqJoLtbfX5HzapQxC4/4HUHNhIvocZOV7bKJDahtGii9gAB1UtwDg/1aCZXnaalTH9HMBJh5ie57SZrVHJQwADkT/IL23bVLQdQwzfRbbOBFZTFhR22lxSPtKRwgVnbf/k6gYXv+Vz/863VXE7kByN0HRoGy1ELBSrP5szez5ewZ2hC0sGGda2ky7cM3mxaHc5oacr8iPIMMJ7Ut0rupUdESwzj/vx+XHmB+y9BkdUXLtGtLmd+BykP8auo8kphE2hpkfXlwbjJx3o/kdHvLTJdLWNhV42j5N/HBoNFt4kjPF3tEPwamwHXKxHMRygrfNNGCKYcRLumL6wSkVULLnkFRO5Jh2QsZhZrJhUGidih0X1wazhV3xFVM9AUDxqVOwInFif27t75bKJV9IPcKcYf7w2AyJx70jmPPdwkeZwkD3gC60rQOA3acwmr9euOUWSjRpin5xLEKWshOFBtOZ80qrdieWmbjbmfeGjCRnbNv0u6KTKVxqAbOVJxNPVXOh4pb6UloLmjaR4ldYnQynYkefg2e4b7j079ojvmk851FUoJmURadix1U1kPuts6JePQfx3yTDSP/OCJ2wg5vRiPVuXECQ/xufhg3cLrJVzYXSnfs9Kj9Gn11iWSrbbkrjg1OxQ/kkweOGDfGw4tdkADtto3uFnqgoLx+F9+jtuOAV8yKKeF/1q8rDld68gX4HT2FrmwqwC4rV0h6zedyb94dblse67B36ZsYtFDIpzaS9CE3xlZR4d0SgCiIlv6/LQN90r0wsZ9oMsmrTIpKsU7EjpvV90thgVDhUzYWlQSp/nrYgnD+nZ95bdsP1mmyKzhfGEddR52tZ+RKJLBXENB8YMJzx3eaCrUZ1fv/lr9lzJd7u2pCPX2MehpwX01goklOxI/2rjlA+ZmNHvS+tLRoorBGZ0n+qHr705g1cir0ghadNsusxzDRNVLpUzSVtAIgkwuOHjdxpqsfh25Ml2eh99RjzPSK+4RMUAID5+8paYkeDvmzeqORd3pRXY/0CQOAtZL78STr6o3i3Nvn92fAJbILS3Qfwy4my4c5rz09ESWc7Bh+Wxz9C2xTvoVF6F55gZnIikqaRQiew0zLjpoWYhneFCjx/oSm+6HXgPJyKHUsCN/H813v4MM//qhbsbl/DzxKkjQJj+7N5uV+60nxHCn/x+QvcdYequSTXAEQ0nxC5S1es6/im8RLEPq1LKL++F9wbmzX4PAGTpiwypZP2bQe3ce7S/y7dNU28A8gdaiIAbk4hDgh905242tUa6Q0AN+WyWtTZatZE8blzpgGAT+YLwxE6PFXiF72nP6r1yoQVGdPw8WuMorx89D90kt/BUjUXuowbw3erxTjHn3Ngz8uzTHIOPqzho2WPmhD33C1UfRo2QNGx46bFvVVYy3KxQEoCgOPPO7DnpVmmyZP+nx4TzRc/ANtV9S0ohyaT5R1kEV0LAHLei0bI/GMoysqxlMnTgvx2SdVc6N25L9ZsW/n/xduqLK3i0jOqe2OYEUeOYlBVedeW4gUvH4uQ58xogO7S6bT3EWxv8yvnU1ZejO3bKm9W/5WkqtCiLrmVJ31Re4QO02GTRcpaYjchptH3D3nbMcRPP8Eh+QLXPY2wp6wdrnqSU9V0Mzixnx1f2Rx7IpeaFtKtkoZgf9QPbnmqmgs9Hx6Kdb8tvu32592mGUptNpTuPgBbtWrcaa+queBs1I4r1p7qytO7+/dfwku1Mv9WPRff2x7lTxai+MARyzxS2L/bz4z1aezX7vKiai7kFl3GKOHEZXHedrx7ohuOdLhpWvD16jEIJfsPS/zSZkciLNb9nS/x/yMZDyAtPtSEuOeORKQ3K/69mnbB2iNb4ew7FEjex/m1SvXm7kWs4hEZF9Xuyv7kOAd2T9Lv6HrKJwA8n3EIc7V7UHjPKXh1aIV1q76HU2E+9AjpleYGgIHkXAitxJ0Ge6LrvSPgu4Y5RW/+dRz835aVRysZz4yKRu15ifDfURnz/Lbz99qLDiifJGB+7jaM9O9siq9qLgSuHoWw0boT9rYfx6HBdOv5T9Vc2H6tBJ0qePP/ItqiVZmVdG0H7y27LfuCVV7cEcXPn+TAtbolCHk+yVQ3Z0dEo9YC8ylqcEoFHHmlJXz+TLWsTzJrLelsh/c2lynPAOB4fiyq/pgE5/6LmFhLhtk/Pyya34W2Wt+I/MR24a5/jDhylDsez53sQJ19xai0gq1jqm6tg0tdTkvh3fUjvpZ6Yazk08xIPk38cPPKJWw8+c0dbYpHa9YRmwegfJXyZUf4F+jG5RtY0G35HV0e/yrdPRG7g0j0Iwawzlvr20T4BAWgZxPdOevKUNW0i0YDiVOxozgr1+1uHZkxEOoUxaEdN1LC6N0rJ+yo1ivTlBZ9nIpdOvEoymOQxb80ryeFISWMTB2IyJmlKKequfDx97oSVnRfuDSgirLQjrTomFhMV0QBI/5hi2JxpV9H7lQ0d7LDEq4WYDtXVru79J6UsLTZzJQnbOROHH56Nox0dVUDXO+lo1UFvJ5oqYRZTdBEdMnf689GUlkZF3EAO8V0KnaTEka8RTM9q3wb80k8RLlUzcXRsAAApaXwbtPMJPuCpk14O6N3dGoZ8lySlOYrJ/R0jPI5FbukhInOP61I1Vx46Xg7U/6Nk+6ZUTKIgKq5JCVs2JE8kzwN4s2TD5WJqITRd8jSsQAYmuYcAzIiAIQ9tdMyv8E/jpV4EV3vHcFN5Ta0YqdMQX88ha1ffg1VY77j7tnXT+LlVOxo9Ih8x4Heib8L7q1aptIj5m3tumU4+lB1AEDE1jP8OVsQy36alufLJzYvZDB5YprdAwDIXsZOKEQHwqSE5b2pjzNWZeVU7Dj9Ozs1tG3ahfg/frRciLWdxszc0uZE8ucib3d5NfIBgLVZSVI/NLYtb3sLHn+UwextqF8nbF4SIY3d9Dnykg7uQW0vLFZGL732YKRpwUn0a8gfUP5iwBrHVjYvsz7/mjWX/06f2dGU55JLl1g6KxdLedwfXmJK21gOnsZPCp/xWRTyX3NIzrmNRPFapXojwlUMVXPh85Dm/DSWlDAA2DKX5cdWuxbfoAOYb7gdH7LxOeP7dpIcBKhCz3zXpGBaThK6Dx2JQ2Nm4XqvCD5PijJmL23Lf+98ezZTujsWIurlsfz55RBmMjnyVhugek7/qiO0lxjgBilhTsWO8NQBaDCdnWhfGqSDY3UfOhK25qFwKnYO1kX8jEqYWGYFrzrwx9IF0rOZR7ebxmXKv3i94OQ4B7I/1JFxKf6BcbMQ8rx+SkwneAC4EpZ8/SZHgASAWY2S4FVaarl5AAAjq7N53HubS0qvpKsOEJLwOUMqFpUwanNGBbv1ZzKS4slndHATo3sOqzXTfZXy+Xv/qQlcCTs7Iho/B29gL7x007mKK80IwyQjACR+Okd6Xj+xGko2+vH/RUfzUHzS2krmLv3v0t0TsTuAjCdiRvJpUB9rdqluJyifAH98vPlHtCxfEeGpA5AavtxyEW1c8DsVO86tCeWwrPQ8ZOlYk48dkcTJ30qmtAXhCBuRisJ1QajcMwuXBkah6o8yvz4Hz+Czdb3RbOYxFGWbfZ4QXR4QhaFv/Y4VLeq6DeNORkCeMG84O6C8utM6wr9Itvr1EL97vdtFv3EScxcu+8NobppiJHfxuj09CqM+/xVDqp4x8V+ctx39J0zE1q/Mfso+yt4Bu69vmYqKmI5vfApy3otG8ILjOONowBc1Rt6q5kKgOhJhI1JhRe7aDlH+aw4cGG8+KQXM4C1E3lWrAsF+KHEdNMki+ipSNRfCvouVfLF5UoZ9tzTAqtB1fEHgvcVsrnNVDURFZza8fH1Rep3Bunu1a4nCwCqmy/C2FmGI38D66Jyj2zC2SWdLkAFP7UQkOgkQZbZq/1bk00jhTlc9pSE+VzUXxuRHIyfyKk/npePtMK3BLT9dAkjAR9k7uBPdki7t4L11t4m/J0XHSN72FibH2qqmnyYAQL+DpzC2RkGZvMrKp6cw3q2aoWT/YVM5p8/siOAWGry7MwCSXgfOc7MogC0E632VYFkG9P9UbDTqzk5EznvRWPL4F5gUKCtc4reXjw+y3ongbbnPwTMILn8Sn4c09yi/p3xSnsivky0smCNNWo1nRPmvOdD4gwSUdGmH0y9eRVGJN/Z1XGJK37tCBazNSjLFJ3omPQ1fhYbhZo8OuF7DB2daepsg+FXNxf0bWs1H4rOQH2Ilf2ueyqTovnCORFlWWCtyN84PPqxhaTPlttqWJyK/gWSJQaBDRjr6tgOHR1mPn6rGUCjLqztxdnUYUtovt5Sp5vZaWBb4Jx4YOAJ//LjAFEZ7yQFlGkubTiCNeaI24WnNoGqyDzHxuTHs1Ycj8dfsuZzX/Y8/haLKNm5m6S6ep5NWK/Ik7+nfw3DuXBVk3f+t274AsM1Qn43m+c9yHTY8GvWG5+DSJ37w+X37Pwas48lNg/4rJ2Lf3bvsji6Pf5XunojdYWS1u1h87rzlwoW+i3JyMTGA7eqnhi93y9up2JGxmMHoPjB4BPJfc6Bm73SkfyfbmWcMnmOKa7VYom/ybH+9F9v9DhvBzA4q37oYX/XHJFO+Zh26B5mD5mDg2u38Xfqi9rjySEe+uwUwf0djaxSg4pb6XA5Vc5kuS4tyvpOdYrnLJyphxKdVKusCZ59idu50wiaSuCMplkXez634s+ITJz0O8PfEjua/jeHEHbG0YUyxefCAbspnnNzF3UqnYsfmb+ZhUVM/U734NPHDUL9OqLSC3afJnBYtTQCvBHZ0KzMBexCFvx2LyofYpeyA1xMR/9cK1FiUyOM33VnONLmQEmarWZPngaB/O0yOlerZmNfVYz827ZwTfR+wmYdtlerN7erXHtmKtGHmgfqNk625EuZdmd2bTHtyNk9f1VwIjH+ahzeWyfWuuvkKmfaIdN++Qthrs53THqmnYKtdC+lfRKF09wFU+nUH0mfKJ3fFB9P477G3LogTyADRM+lppoUxNup3jkQq3blfkvnSwCjLfBhJ1VwmJcwTifzynPp9Tadix972pfy3iNRGShgAft/EqTDTMZHo/pTYJlYXpPL/p38PQ+4UB2b9NtdSruwH5/F4K1rUNZWdET68rEUwpdviK7NvIgCSE2OxnfrUvcqVMACSEubdtjnqfSWbt9FH5FF3diLyX3Mg4PVETAqMROG6IKlvi+2ktKgIaU/q99lWtaiNnpWuS3k8tybUsp+J+Tf+dirMr1P+Ly0lJcwYXnxGd3X/+HEBasyuKilhYriSa8wvV9iWJ6VyoN+vfjccJ8Y74H2jBFWWJ6HJlAQ8nyGDYTgVO1/4/3CptmUe6F5Y8Es6gFTRfeGIemks3BGZzKmaC/fvvySVt9VYRG4v6D2V3bQcGSp9aTMFOe+w8Td3isOSl7vxUPSTSUipdb5OxDvZKVwJ43PorbFGVMK8fHxMMpZX2Ql8rQfTTP2A5Dj/rMLWDE/apPcUnpQwANwM1MiL2oSnvuZU7Ng8f55JBqdix+kx0bweCx/tiIq/JUt9wbZ5F061KWfiB4DfcwOA3ZNmWbZFd/VgnEupTJruLIfU8OXIuv9bvHGytTQ3i2OMqrm4Eib2c3dlUXNhIrQfA3Cj6t0l+f9Fulvrdxg5FTsQyRz60WJ4XfYOc5hblPZNB9M7QjEMf4uhK2FjY6iaC8efdSBk6G6+oKSdqqwHvuWDRNh3sZx/lsEcgcg4YUwNYopc6FsH+Xt3i2iiA9Hsnsqctx5F8zlxUDUXQoftQtfJCZh2Nti007QyVOU+Vy6XXEOFr8x+lQDgkYwH8GYgUwhXF6SC0NWMgzBNmHS/oc4yhpoX+OURjs54448m0F50SMhMlLeTzzjg9+h+jxOq+O6v2XMRsmkETsY5EL5bN+fJeS8a3t2Z6RuZxhTdF47xNY9yJdG4wCi5dg2q5sKNP5pY5o2o6GgebDWq8/8ZQ2abJiEr+Z2KHfVnyChQdb5OxJrtv0HVXLg0UPZJFbxsLHa/315aVIppxB/YxP9X+Ym15Z1TZ8Op2LmTZFtd+cSzsrcXiu5j5pWEkJY72YHMT6J422i+fSj2h5dwsz6nYkfIRPNOe4qdLSQyP41CSWEhnIodEW/ESmHCnpaVdNGsDwCOFV22XAyrmguv1E7HkQ4MzERtVQ3FZ84i9NkkpC9kIDcEViOWudXih55V3VoHX4XqwBw8bPd8tN850NLcVoxPpjv0zruqDpAxLYdtikzL0dv0zR5sDDn5DFsgBq7TlVJ3RPdMRTo6lS0Yex04j5NxZmQ/sb3Rwo3oyHTWlh3Ps0WyT2ATPNhId1Zc56E0+L+dwBVX4tlmlxf3cSUqcmRC9sCA4Xgh4wBXoM+MkpFgSZ5Tq5pyvsTLqdjh954ZJVaMb/wfOEhGTxV/r127FJcGscXhKyf0NHp3epjz6HXgPADgZtvLPC/bbpnjGuWjhaFx5974v2bvdDgbsUVi2pxInB9q9udlRarmwoHoH6T2RbyzPopG4Cp9c8krojVez9JBMcqvs3YIfLWvroAHDt5jKiOnYoffuwmoPzMBts1sg+/M09H4PKS55QLaqdixqKmf6bmquXDFvxpP99yjLL+FSjlU/yEJ+ZNY+7QyEwaATs+NxR+jO6O4W3s+h1r12Tpz9U2HMfnRvN3Txo8YNuBNZq7n/zYzv4xp010ywXUqdqy7wuYrGjvuH/IU6nyt3xH3aeLH+UX6lpMQEQEgq//X3OT2+HNs/VBaVISmO8vBvts8lxAvnwYMDCn5+k1ez+RfNOzpnZbz//X1AW7nPzGc+N/dXEXPRR+SXn82glcJsHYd2/So/PMOeFeubJq3Doy39qNKzufTZrE2512pEs+bmK6xXRG6pciT4sxQUvh/mlcItIssJQhN0rjWEPNOc70oS93ZiahwVraKuEv/N+iuaeIdQEbTxLw3HfB7x2y+cmFIFKr/4N5kUCSjMkS/ewVFoeTaNWT+0A4Z97r3Z2McNMVnVottd2EB5hD1j+ULuRxEtuahiN/4k0lO4iNSm+TBuHSyCrIfnMfDF5eWoNW8cSjxKcWRp2abZKDf8y80kPzaGGX06tCKTzr0LP2LKIQ+K5e1u/yL7415tIpv5GWMQz6yjOkU9u+Iyr/sMPH7JT8J/RtHSc9EKuzfEdtmfm3ZHjwtyKzkLSvPVpOttHEwKxLNv7rAQRQAdm+oundFU7we/Z9E9Jyd2PlgIL97COjmaS9n7sPHwa1vq13eLrnrN0Tu+gZdxgesAW/cldHt0Lk1oUhu95PHPna7PFuleiOgwhmTg2h3iyRjedIz+t16ehyUjxPctv3ibu2xYcm3Jn7ulNHejj4oysktc0yhvNBGyrEXHGj4qWdgH/G/rUUY0ofVRpDBDNhTH8/6MBpBr5p9aX078EGU7j4gxfdp2ABrUtdJeeg6ejS2zJ3rtkxzf2oN/8f2uTVpspIzbW6EyfG96GPPaMplVeaUPr2n9D31eXru07gRivILLHkBwPXSm/D1KndbbdMIdCCa+RrlvVByFXZ1PMJG7pSei36+bnc88FQuZPLq5eOD0iLrRTKZqZZF7swIAWDI4XwMq3Yar5yww9VOB4EiU8SMz6P4fSyj3J7kbzstDnte0lERy5q/PNVT9W21JV+UPF/POBA9fBdmNUryKI+neeHvkDHfR5e3xp5O36JPowi3cQhUx6pNtH8nFnVn6+OAd5tmKNnrvj7LGn+tfO6JYYo2+EPb1hj+b1mbKHdv2PIfY5o4dNPg/4pp4uJ7l97R5fGv0h15IvbBBx/gscceQ1BQELy8vBAQEOA27PDhw+Hl5WX5+fnnn03hr1+/jsmTJyMwMBC+vr4IDg7Gu+++i5s3b1ryX7RoEdq1a4eKFSuifv36ePrpp3HKDeT4v4NUzQW/d+TjfBq4kqbJJoPebfVdQtr1LmuhTZfLA2eXoleI2X+IU7FjRX6ypZLQu3NfKewz6bqJlXfVqlJ6Yrre2/TdVFFG0eksvbfaKXMqdjTsewjZD+rmCyNyuyCmUXscGj0LPoVecCp2vJypg52kzdHvVXSppJvW2EICTXku3bkfXu1aSmmHPpuE/Nfk8rHKm0jt3ouT8qhqzLxFzPPFtcEmHuLv0WlZCJzvJdddFAMw2Dbza4kXvScljJ7Re5Kh8i87MPeCwt+HLYo1lYEYnn6LeVl0sQ6yPo7m/0WTHKsFs61+PTgVuwn6PSwuGfF//CilP6BxNI+Xvqg9iktL4FTsWP/Ld3i77gGOxEg86I6QqISJcuROdkj/jfl0R8YJVuQ76UQb9GwS6TYuQcV7t2mGrs3SJH70aZ7KTIQ6PTvGUhax/EWq2TvdcsI3tiGKr2ouKElVJR70fH94iaSEWS2ejfy92rWU0gGA4B/Hst+l8nOR55DD+aBTDWP/Fhct9Oz90025/zQKeyE+xCSPLSQQy/MT8WlDHbWy4acJKOxvBpkQSSzD4oNpkncaWwv9BPJ6rwgp7Jyj26BqLq60hWwezi/ozw8L5EqYmP81qesAsLtBRORigcKcHREtlYv/Y2z8MiphlwdEmdoF8RFR9ogyuzNQBu8KFSRTLlE+sR6M5btx8XyPi/tReTrqZ1F+gSWvQzeYu46+oV152Lw3HRKwhZGMaHNh281ojMR/QONoZPcyO52/d3MOl1WaT6La8Lgnn5FBX+4bzk6ARf9dxM/rGlsirct1f7fYSglTNRe0l9jpWNbH0fDy8eG+C1XNhZNx8tzyXT4DkfhlA5Oh/i3QGzJFNCphaV/rbdTZWAezuhAfIs1bIthUyObhUluh+VvVXMj4XD7BM+Yl6+NoXOh8Bs9nHJLGYgCo91UC9kwztyOAASGpmgsdX9HnHGonr2fpshAV39ue83Y3XhvnuPLli7gSZoxHv0uuXcO1hyJNbbrZvDjselM37R18WEPJ3sOmPIq/7x/ylGX/qL6NmcjWXr7HrRLW/9BJ+Nyfi6BvjqJ+YjXLMareRnnsvkv/+3RHnoh5eXmhVq1aaN++PVJTU1GtWjXk5ORYhh0+fDi+++47LF682PTunnvugb+/v/Ssb9+++O233/DUU08hOjoaiYmJ+Pbbb/Hkk09i4cKFUtjPP/8cEydORNeuXfH4448jPz8fn332GZo0aYLk5GRUvnXf5F8lK7AO2oEra5eKyF3HNz6nnbcWs+MsT92ITv7WDPUePmziR0AcPoFNLEE2CGzCuCDytAt3T+xoVPwtWXpmjOcufy9kHMCnIWyheHFtsASzT2Hu21fIfaqZ0t7XD3+1XqHv8Ar5Sp/REaETdpjihab44stGuh8jdzIa06J3Vx+ORMXfknFsogMNPzPvkKqaC20/ikODL+T68VSGVruNVuGL722PmQu+RPPylTzyNT4bcOg4fnE0l8wMO08Yg8o/yy4JrOQ18qq9vSbOdDoHnwB/6fRDhAomMu74i/DooqyUZ6tnabMiERaXjNO/h6HOQ2nwatdSWjynf9ceoU+yRX3agnD0brUf6RHXJV5OxY7To6O5KZKquRA5KRY1F5YNg03UdGc5zFBS/r/7M51mi+9z33Lg0OhZ6BXaCSWFhSY+ItACABS86uCQ5kR5rztw8JlZlv3NXR3mve6A33vW7ZNgvz3lxanYcWpsNHZN1k+yi7u1R/l9OSg+c1bKn9XOsRVfoswldgQ/7vrbYycBC/z/UNSem0hqK99VKe7WHqSIAkDmD+0QPGQ3nPsvQm1VjadLpx5W7bjyX3Xxa8gfcCrsDsofSxfAMXEsqi5LwttZqYiqYCtz7DHOJfR9YrwD9We6z6/VuAIwRSy3o7mtWcW/XHJN2ihy1xYAwBYahOL0LMtwRMZ5yVNYT+88yXG7YYruC0ePL/7ic8vt8AzfXYLUdky5e/DAOb4pcn19AHLT6iPrka89jp/L8hIwyM8aPbSstu4pjz4B/jg7uxw+CFvBfatZtUcjEA7Fn5aThDblK1jOKcZ0c96JRsCbiWWGy3vDAb93rYE+VM2FwJWjERYnrxtupwyeyOmGsw95I37fn6b8WYVff6UcPg1hG7VG+Pkue69x/6ZWoGTSvC+c+J4bHo3k9/Wx7+b94Si3IRVp33TAni5zUTMs644+AaI16+N/Pv5fORFbct+SO7o8/lW6I0/EMjMzcebMGfzxxx9QFOW24jzxxBOmj1EJi4+Px2+//YaJEydi/vz5ePrppzF//nxMnDgR3333HRIS9Enp9OnTeOONNxAREYGNGzdi9OjRmDp1KpYuXYqDBw/iiy+++Lfm2UjGHThb7Vpud3sA8y6RU2EQ5QAzc6B3w6qdxpj8aPi9kyDtNht57o5Yxv+nzdN33wiIY8323yzlIMQ/2vXqPIHZT/91zXwi0XQnW7gYlTCrgdmp2DE9h9VPwav6RDT9ob78d2LbXyR5KO4rtfWTNyKCLBeVsHeyUyTl0koJUzUX0p6TnY3eLC2W3ov1YKwvVXOhxIedeO19UXakSeRU7GjwhfmSs7TDC3N5AkBMux4AGPCJU9HvnBDZNu3CcwEOvhAzpmFMS9Vc8PFrjOXNG3AljMJX23valF9RRndt6yv/NQBgMkEzKmEApFPQK/06Iv7wX0ifwe5ViDvbVjuL9Cy7LwN4qPMQ2wEu3X0AL2fu446ff+/6FY8XNiJVUsJE3qlvzUbWx9Fc5uT3Z+NGT7YTWzehhmV9iM/oHhk9z/g8Cpk/tOP/xbIUy5/SI6Q5kfzfYjvepIRlfM/40T0yUQkDgAZJuiIHML9KpIQBQNvkwVKenYodiGqDwNWjOI+c96ItlTD6NiphdA/QGK7uHAb24t2mGVTNBdvmXSg+cxbay6x92qpV4y4sxHaV/0tLHH/WgZj7B1iWefDjLpxdHWapRBhJfHdg/CwOr298Z+zL4vusj6Kxap5+8uMVwe74khKmai5kvx+NjHvZSZXaqhrPE6CfelCb9a5UiadXeM8pnvc/ljJT8qrLmFXDlKBwt5tUALiTcjKpM/YRo2NoSvP80GgUbfA39eUH03ox5fiWEuapXCkOKWHkGJxk+OjWvWdRpuL0LFP7B4AbPSO4bLsjliG+QC9XAPz+mxW1nxrLw9IdxozFDAqdQKasysbdMyJVc6HUx0uaW6zqgL7tt4BWU9t5I30Ru0+7uqUOYuTbIweh43ZIPN442Vriq2ouDPJzcCsLr4jWvM04Fbt0cu2ubsQxRQyTFtsIJ7Lq4IPgNvBpqJvxG/sQAeGkzdPNAM+MisaY157jYXOn6ONywasOKU9p8ztwJcxYZvSb7hmKSph3W7MLBlEJM/JyR07FjlOO8yg+cxbRL1q7BjGG71HpJv9dbWmSVHakhAEwKWFGmSquTObAOTUXJkrvym9l983Dnt6JfmGty8zHXfrfojtSEQsKCvrbcUpLS3Hx4kWUlFg7lwSAJUuWAACee+456Tn9//777/mzlStX4sqVKxg/fjxsNh016KGHHkJQUJAU9t9FK9L24ejb5sWxqrkQv+9PeUD7toPbgYcmsaICDe3ei5McDjsVO75uzP5Xj8lAxnTZ7EVagN36zu49j8sBAJuvepsG0JFp2SY5ym1uiG0zmDnde0H6wjg2nfnsOtLhJu4bNpLzNipeYv4BYNjUF6BqLjT6UDe3EM0brchKcSl1tMXOt2XYdQAc5EOUh+jsCH0hsf6nhZJ85bxs/F3wnyMwIKs7/y/mhz7VDp93m0fxu6Sz+b2VWaFTscN3C5s8CUKfnA2vbVkDZ0fcUsSj2kiTsHE3nNK42aMDv/DtVOzcNLD9zoFSfg5PqGPKm0gnf2tmWadD2j8MI7lb5Dafq6PWEfojKciEQOdU7JIvFyMvKwX2s649EfJNPrQXHWhZvqLbuES9DpyHU7Ej6OVErpQ4FTs2fTsPJ8Y7JDh9Y3+yhQXz52JZZA6cg+AhOpKgsQytlEuA3UkRierz7FPRqPEXWxiU3rwhhSm6j13+t23eJSnM63/5Dq2n62XcoK+MTpf+ZUcgaa90Khnwur7ZIspGH2MZho3VzeN69H+Shzs2kY11a9ctk3gpHycgvmCX6eSzb7oTANC4/wEUdrzC0ScLH9UBDyjtcxfkE3BS3gHwhawoO30PaBxtGouMGwti/lYXpCJ96Gycb38DBAxEp1tivLThs6WyWZi7zTTGnBzHTNlKrlxBp72PwKnYkfe6+80SkkXkK8p9ra7eJ6pvqw1b0xCoGvOtZ8z3yd+a8XrZ8dFs+NzPTESD/xyh5zVsrbncbgFLeVr4A+BOdlXNhatqoISm6S6OU7Hj8rogbPp2ntS+Yhq15+9VzQXcMuqZdXQbct6N5iBHAFB3jt5Wm0xmMtD926lB7aU6KEthN7b3Pxd+I7UJY78X+7OrnR6GxuasJXJ/t22SN51T7DYszmP+FvNfc/D8bn6IofWu+435dMv4jCm7pbsP4Jd8a7cAYpkaPwAQ9EoisvqxuVr0ySnmhyj7w2hk957Hy6T2vERUW5qEvJ9bIe9NBwcjAcBP3223TjKye30jlRUBMYky0v0sES30XOvqfB4z1sWEDGvTUDGdzE/kU1kAqLaElVWf9J6Wyqn4W1zfWM11FDZtQbj0jG/W3NrAE83MRf+r67J3mHj+E6ik1Pu/8vlfp/+ZHFavXh3Vq1dHxYoV8cADD2DHDvNpRkpKCho1agQ/Pz/puZ+fHxRFQUpKihQWAKKjZbtxAIiKisLhw4dx+bLZgeLtUMOGDaVPaGgoAKBfWGvUdRVLYR0T2V2MTs+x3RsajMOeki8pi++IVM2F3a9bn7rQINFoUwnC/hpmGoQA5venz8EzpoV0t4o66p+quVA3oQYGVLkg8QaAm92OSRPVa5kMUWx2qA49X9iwvMRbjE/5oe9a3yZaDoDXe8uDuVOxc1tzozIEAF4JezhPCn/D2UGaCOdfaCDJXmtBIpblsUllZG5nqJoLeW86TJNCyBO7caHzGbeTu6q5EP/Hjzz907+HQdVc/P6RKCsBnIg8RB9jYt6udz0uhbs8QJ94Ut67ZQKRtNe84I9qg6IN7OQ4+gXWxsqt34nsPuwUiRatnZ4bi10ddAe5J39rZtrBNdYbnaoa81As3LG896lRUh0by4tORIiHWK5S+NJSNN1ZznIBTTKJVJRfgDWJv3OADWO4tDmsPujUVoQhF5USp2LHpWB580eEPI9Nz0BxWiZ8AlgZ+/g15gsHMc/uFoHdnh4F+4dxUp5L9h+GU7GjsH9HSeZa3yai/CWzpXnWx9ESLDeR/cM4LLxYj4NtGGU4NzwaoeN2QNVcfCElhhmdxszIqF+IVPhoR1PfUDUXvBL3oOBVB4rvbY+Gn7k3jabFtpjmylCVP8votpBvRlU9fMGkLNHpEz3LevRrjkJLDrDF8MZyobpJ+zqChzOm4VTsKOfFTAPDntqJm2sY8py2ooXUxyiPPo0UvkkzXHDsSyQ6MybH5X7vJXDF22ph7O4bADc9B4DlQRtRfCQDToW5Guh/6CQKfm2JC0PYOCGa+xEPW4swhDyx2/RcouR9btuuGIfKwKkwKwQianc57+kbXUE/j+HPq/TM8rhAFd8Fl6uCX5/4DI6qGZJMWR/qd1upHmO69YequfDRmVBpngHA0Wgpjru8iydxVpsQPo0buZXXqdi543ei+KbxpvBbrzYEIMPAk9UGpRkykZ3SBCRXRBXvCtIYSXOj2B7FTQmr9YNXeEv+zqpuA19NtFRG/B7dz++3i3R6dDTfVDH2C994NpaeHKcrmmlzInHD2QFXfqvPeSR9PAdFfc9JchLNCGH9o3FSFSkvHabEosszzCIn+EX3IGerQtdJsp0brq/5vP5sBKdix/ww891y+k6br2+Ki34zxbx6FZnHmpqd2ZztLVxxUTUXVqTtcyvrXfrfpH+8ItagQQM8//zzmD17NlasWIFJkyZh586d6NKlCzZs2CCF1TQNjRqZB0cAaNSoEQoKCqSw9NwqbGlpKQ/z76RKK3bwy+EAkPDZHDYhLWcDiXHhEvadfEIiDvT0IYCIVQUppoml4m/JSLtnEY8vDnB//LgAz9TI489FxYXi33vgYaT82ZwPjovztlsqS07Fzm3PAX0Xu8ZiWbFQNReHcxafBf3xlElG4rt53jwpz6rmgm3TLlN4nwb6wE7hQ5aORe5kBzYt+AbF9+r1ObL6cX6Bn/JDtvn5UUwB93uHLZxOj4nmLgJEuawWmcbFVJ2HmB8X8QRD1VywhQWbFle0mAeYeZaYNyJSAqosT8LlxzpKsojE/yftxcYWqwAAiZ/qYDCUJi1aG01Il2Q33tMYcjgfkZN0MyCRB5lIka82kQjm2qtDK1PZiL7UyJxILJOQJbI/IOP9K+PEZ7WQFuG/RQoby3wUzVDMYAhE9DzkuSQMOZzP+R58Rt/86FuZwZCvSVgFp2LHmh2r+cJBlMXIly7Pb/5mHurP0Bdh084G83QJvAVgCpuquVBtaRJ8GimSzOlP6Ke/Yh+pPyOBO5k15knVXKiTfIbHs7qXNzeMWS4M8nOgcF0QW5TcUo4q/8yU9D4HzShr+yfM4v3TqIxS+rbmoaZ4Md0fk8agsKd2wicogPv0OhVrbl8kq1NhLhkibm10OfdfNL2n31UKirlsYWN0GPY2n8oKsSj/mZHR8Lk/FzEtukLpp7vxsNWojpiuj6DpznIoKtAk1DlKU/SXZuQL6GAQxnZsbJd0gm7V143t7Jfm9dDokQMmACiSIX1hOOI3MJ+U1bfVNm2AiOlQmyKQHCOv7PejLfulGJdOWQFmEm610HfXTsU8TgyIxtww/STl0qAoCRmTwpHJLt3vEuu//AO6eTo9pw0ZiYTr9eRaxanYOSQ+oUlmfRiNM0/L/saI+h1km1K2puZrAgDQv8pFKXyEq5i7JKH5jOaKnMirXIYRR47CqdglM2E6fQqdsMOtkjUytzPe/Indt285Mw6Rux/j70QQEKv4xv+22rUAMJNu8ZloZqhqLhS86kC9L9mmQdDPYxA2Nhnl1Z0cyTD9KwYHX+/hw7xfhL9ttgyheZmobsoFVFph3pAXxxynYkfLxCFwKgyBFIB077f0vgJTfOJBRMidnihwUiLfbGgxOw62atWwvc2vcCp2rE03r5n+KVQCL5SU/oc/EqzS/yb94xWxDz/8EJ999hmGDBmCvn37YsqUKUhOTka5cuUQGyt31itXrsD3lvmIkSpUqIArV65IYQFYhq9wyzmkGP7v0LFjx6RPejozryt4gS2cyVcO7UJ3G8VMoYwLBlVzIfA1Nmi8ky1DGPsENuHhCMCiT6MI02JW/KbfqubCzKP64DDsSB7WXfFFrx4MAS/CVcwH3fIPHMWRp2Zz2R55bqJpkHYqdpPvo20zvnY7mZK/KvpMOdUS8zp/x1GJjPlrOVN2umpcWJNPqKLjJ6SyA4DgF5LgPzUB66/oEy2frAXHu7Y6tU158mncCLlvOWC7Dlyc3xgtv2T+0C6U6BOimL9zT8r3JMT0xG9xoRCawtpfy5lxWJPAFKb81xxo3P+AKa9ORfd7BADbv/ia35F45YQdAcm6CR6R6IjZqdhNZm9EdMonpkcTi3fVqvihWWMkvz+b3zsUFVG6C1Tr21sT65dMCSefTmmzI1G6c78J1Wp8TX1BREhwV/qxPjL4sCbtcl4aFGUqbyo7q3YOMHAAurcV9fJY00KC8rHsErtQf3KcNYrm+WHR+KFZY5621UJTlMt/h74Daqtb17To7PLMGIQ8z3a5I1+Tx7ANrapaKo60swwARQUa5xea4osOU2IlMxhVc6H513qfERU0sazE9q9qLnyWkyilLcpQ+dbJBZ3UE61qUZufuhjrgepffBbT+j6omgvxG39iit2sSO5bKX7jT+gV2omNJ382Qv5rDqzZthJOxY6gDU+hwebTJrkAoOfDQ/nvF2rvwLGJDn5Py6rOyUWE6IPv0cz7USOzSOprALhj+Z3vsDGw+Lx8Ohey4QqK07O4/yG6tyum/WCjcH4aLVLQerPZtrF9iWMZnaD3johxu3lAca48Yn0qQnKL7hcudD4jpe1ODv+pus81MWzgpESP8rgjrw6t+O/jz+l3jUjxMM4boiz0qbklx5Q342+jAmxFT9fZanomKvPp3RYyZeA1B5+/Lw1i7T592GzU/ob1HWpT3vYWAICxNRjqZPGRDEl+I5G/sRS7DcXnL8CnkYKi4ydYXMM9UMB833bW0W3Y/I1+39ap2NF6epyUX+1lB/KjLiPvJptnrwTdRM3euun/gfGzTMo30clnHKayK21cH8cmOqRyjt/3J0r2HJJ4iOBBlfNtuin9LQp9ZgdsoWzTZ/BhNraJ1y0AIOgXGYlW1VxYG7+E/wZguhNIbYjmUqMbCOO4bSRqd9NzEvh1CyP6pIjSfGQEU0gPxs7iG1szjzLT01JHW6iaC92Hjrx7R+z/IN2RqIkitWrVCpcvX3aLmuiORowYgYULF+LIkSMIC2MnG1WrVkWLFi0szRYjIyORn5/PT7keeughrF69GleuXEHFivIC9uWXX8a0adMk3v8KiaiJWQuiTYsZwHzKYlTK6Pf1XhHYPH+eNFEB+qAioqZRvM9yEjExgA1+rWbEYf+EWTh04wqeC2CLt7T5Hcrc9bHadfUks1U8q/f0/J7Y0bj01EVLxCyALbbobgbxMKKnqZoLUa5HUT0mAxcHR3H0I1vTEGkiBMAR9jzlpyyZiZyKnaPMlVVebZMHY0/kUh6PwhVt8Of3NspK01MZ03/7h3G40KIIYWOTEV+wCzGN2psUrb+zS6dqLu5TypNc12MiuNJQP7EaTkRfRMGvLdHokQMe43m1a4l1a5gT8MJ1QajcM0sK1+HNWOx8Z7Yks61ObRSfPoPspW0ROHiPqTw8tUdCIwSAZtuGosmAfSaZTo+ORupb1v7rAAaYQSed2cvamJz9Np8bx00veVxvG1CimyfnvBuNgDcSPcoMMGfVwS/Ip+buwlpRxvQohDzn3nzHqg1ROQBAzo9tEDBwrzmiB35BP4+xBMRxl7YoQ9qcSISNlS/rX3sw0uQo2l0ZlHRth3L7j6L4zFm3YW0hgSjOMN99NfIHWDmsyE9Gv8aR0jvjYu526+Vmjw4ot36nx77+d55nTotGvZ2lqLklm29IiXKRbFakai58djYIE2tlmcLdjhye8ps/yYHG71ubqNo2KSh9vgbWxi+5rTTdye4pX1b5EZ/576jMwUlOxUZL/qY8pWnkayWLqrkQunk4gh5nTtdLLul3F0VfVmlzIpHdZ66JX/oXUWg+LY+fvAEMKMP/bTamXHgiCtW/t7akMfLJemwOf+9Vrjyu9rSjwu/JbuUW6e/OE2WVy+3Gpf/nnoxGze8SpXK3tWyK4gNHcGZkNGrPtwbgEWVXNRczNS1jOWwci7I+ikbQKyztXiEOlFy5gvSZHZHV34x+aatbF/F7/iizLReV3vzH+BF7bOMwlKv8n0VNvFl4Az91X3RHl8e/Sv/4EzF3RL7HTp8+zZ8piiKZH4pUUFAgmSESWqNV+IKCAnh5ed02ouPfobCndpoGC6uFSPhbsaZ3AOC7lpnSkOmauHP1cuY+7J8wy8SfwApod8qp2NG8fCVdJgslTNyNpLjkM0R85hMUwNN3Kna8nSWb4RgVRvJ/VNKZKS90YlDxt2TsjlgmmbeJ8UTkMVVz4cQEB1fCWsyK4+YxxT/XRdaH0RIEbc57FSSZACA1fDlUzYUbfzSR0inpykzk6A4aAJwZKef72oP6yQ6dZpISdvI3830PkYxgCRROVMJEOvN0tFTexkGekLTEeFEvj4Xr1Vn8Hpjp8rsQ31guxm+RSAmzmuxILvHkJvdSLVx+rCMaPXLAkl/Qz8y+f1pOElfCAKDa8zYpnFOxY+c7sxHT8l7pOTl2Tev6nds+ZcyTU7GjpLMd/m8lIHL3Y3AqdlTeKN89oHKqM1c+IRKRBVXNhbRv9B39Rgvkyard+3GocFLOAwBJCQOAI0/pZoWlneymPFDajTeweHlvOND24ziZpyGO8XeEq5grYfUT//5Ep2ouSQmz1a3LnxNQiTG8U7Gj6ausz6bN7+BWNoA56aX8UJ7JdFSkCquTEb67RHouxiG+M49uh/eW3Sg+c5ajTFJYADi1qikAIP6vFSZZrP5TvH7+0chepkN/8zF7/0U4FTu6jRyFE+MdfPww8iE/c6rmwp8Lv+HmuKrmgpfBMsOYL6MsxIc+Tzn/xOXG3mi25pT0DgAHTHKXR6dih9qqmml8sUrP6rlIRn+Xjd+39pkJAMX3aihxHbRM09M45E4+q3dWvLs9rVug5HYs5GkYlbD0L9npfMZiHfnUFhIo5cU4ttB/MuGne2KiEgaA+7Kitm5Foc8mYU3yGs4fALzb6He1q2VelfLlrqxCn02S3pfevIEKv+v9i97RfeERuV142RnLr6SrNYKlqrlw8rdmiDkSY3puRTd6Rli2eeP/7KVtUfO7RGR9KJu/Fh84AlVzYec7ulkk1YG7elcLdsOx54YkU+5PrU3hAKBXKPOlR0rYueIrKLllISUqYQWv6CeC4t3o0WlZuPh4lCRH9vvWptV36X+f/mcVMTL3q19fvxcUERGBgoIC5OXlSWHz8vKgaRo6dOgghQWAxETzDlhSUhKaNm2KKlWqmN79O+hyiQwxTQNh744P8jB15iYif5J+wdWpMAeJ5HDxQPQP0uCa/5oDHwfLcLhOxQ7tJQdafmm++yCSOJmIMp0c58Dyy7r5Tu15ZjCNoqwc/vvlzH0cchkAWn9mXjAu8GcmIEcfrAi/9xIQv+cPiR+ZtxnjibI6FTtcr87il3eLqpRy85hzLUulOwMA0PgzfWEvlo1TsaP8A0elMvbewhC36I7LA4NHoN5vadLkW2F1Mg/vuyYFPgH+ODWWKUx0oieWaUmXdlCSqkrpeFpoifmu++N+OBUd2l+k4I0jULr7gKmcop7fCadiR29HH0kWY/7F7149BrldVADAnPNsE8OrXHnTQkTVXBySm+jYyubA9LqorF1H+ncMaj/nR/0OIQBkPcomNNE/DcBM1IzkVOwoPqffKWuV6i0p+8awxv9iOO9t7N4CmeWU9j4LIzkVO5bnJ0rxqqSVk95nPfAtz3N5Vd7MqPdlAurNskattFr4q5qLo3XOy2V3UESggdxebCj3ezcBDaYnSGVvlDtqjw7HDDBzJwq3qMlfSJtldlxttZAT2wgBE6iaC8WnTvFyOd9eV8qMRAuXcqfKSfyMdUYKNQD0eGw4HhgwHKrGgBZUzYXMT3VzoNR23pb1K8r6/D26k/GQJ3ZzZEJCPNvV4UfYd8vthBah13vpwECizCxDxQgctFeSn5QYgG2SEVKpbdMuHmbwYQ2q5sKhcBlmPmSojqg5dr/5xNiYT1Vz4eLjsnN3UgAXrbwPDT9NwP7wEi5f9ydGwqnYUW5DKox0urgQ03OsQVwoLav2YKVMi3KWXLpkql8RCt0qT8ZvY/kaw5ZF1L4zb93rEu+iqpoLlfcdk3i7U+bI59dDLXRwheKsXPj4NZYW/Fbj5lC/TjIzb5ul4kbkPPSglL/s96MlfhS2cX99U8srcQ/ndWlQFFrM1s2RxfGBTECt+o2Xjw/nT/eFt25tBSPlve7AVTUQ3lt2S/zFKwn1Hj4s3cMW5zoxDsDuDpdev86fu6Na1dlpZdCriTi3JlTKQ6+mXdB8jmyCTbyMd/JIloS25aXn5GSdiICJCsa2ldq36NtNTKfRR/rmZPaH0XjhGNuAmRsWxFEbKWzgpNv3SXmn0H/8ftitz/86/aMVscLCQly75eBUpN27d+Onn35C8+bNERys78gOHsx85EyfPl0KT/+HDBnCnz388MOoWLEivvzySxQX67vUv//+O7KysqSw/05SNRfaLn8OgDwwOhUGIy5S+EP7+QBy8fEovBdkx+chso8rAm8QUZdEBDRlWgIOjJvF3xkn06yPdcSpwPin2cS9mSE51Tx8HfPDAm97AuxeUS9Hp2JHFa0Ex591oPb2mlL6ALhTaJLHtklB8HL5HoXVQC6W2Xz/bWyRGHKJy5gxeI4UX9VcWP/zdzx9d+RU7HwHVCyjF+Yv4QvFnv7yzn7FLWwToCgnV3JcS3buXLnbuhv5r4TASBT+9Gg26dJJg5gGLWxGvjpRyhMADtMsUsbnUXzBtyZhFQof7YjW0+NMSjbA7qjwdPYfhrPvUJMieHwla29jaxTg5cx9Jth04he7R66bhn0PYfM38+C13YXQJxmkesDAvfwelqq5kHazUJLHSJ7a3drsFojp+ojHxZSqufB2Viq/r0F3+AAGu0xtv26fI1J6BCld3bui1PZEBMYbzg6mdFXNhZrbzf4AjTIZ+71TseOFY+15mxnlz1A7RaAB0cQve2lbtN7xOFrveNyk0Kuay+R4uOi+cKmcjP55xLxbLa4BoLSy+f4hAPiOZIvamG79pfypmgurCtjpaNqw2ZKMMe16mBbequZC+syO8Dl3Bd7bGA/y4UR9es7RbZIiIsor5fdoHlTNhdLotgCAgJn7AQD1/tQRXF3Cxn63kaMwK+E+lp+1KVL/p++sJXo5u1NIrEjVXFjaTLFcBK8u0BUkAn0xkrGt0OJOJN+1KbBd9TLF6fHFX/zZc8c6SAApj45+jjt9j2nT3dRmqV3SGGfkbbUB4o7CRqVwCHaRpPQMvsLojjARuRchorFywKHjnBfFofb9YFNW73MX9Jba9Zodq5H9gbXlhfiM8icq0Gp+qjRPi3OUu7FI1Vz8JNwYhoftnq+3q8jW6NfLekNS9CUmvq+6LElC0RRlKt25n4f1CfCX8ltaVASnYsewI3l8wyD4JfOdP7/3ElDRmc3G7VuAPU7FjnVHk3l6dKJPd+tEuV/L3GtZLmWtLZLsP/OwNXunS/1y7ZGt8J+agLzXHab+SFcRTsbp7iFup8+SwtXoD/PmnEhG5dKp2JE2bDbW/moen5yKHT4NG/A076Im/t+jO/KO2OLFi3H0KLuoP3PmTNy4cQMvvPACAKBJkyYYOpRdvna5XOjVqxf69u2L0NBQVK5cGXv27MG3334Lb29vrF+/Hp07d5Z4092vkSNHIjo6GomJiZg/fz6eeOIJLF68WAr76aef4sUXX0S3bt0wePBgFBQU4NNPP4Wfnx9SUlL+bSdi4h0xHy8ZNAJgnXpe7jaM8u+Mko1+8O6uIxm6m+wmZ+3C1KD2pufuFlJWdP/+S3ipVqblzpEVX1G5uN10HHtuIKFteRPfExMccL2qo88Rz7bT4tDgc7ZIDnqZTQgxR2KknbYrj3TE1i8ZolzvyN7cfOOva8A9FWSZcic74D/VPYy2SKEpvtzZL+Wvt6MPinJycb13BHzXpEj5D9vyJNK6fifxPTnOgd2TmANdn8aNJPt+d2WZ/WE0h61Pn9kRoeMZ6lWbT+Ikp9DudpM91ZeRvNs2R8meQ6i5vRbOdTpr4iH+Jx73778kQYIb82Alg61lUw7jDzD0sLE1Ckw7vJ5kBeS7V8Zys5Ln5DiG0GVVHi1nxvENi7Lar5iGrWkIzk0v5aA4XKE4EoP4pvESD1tIILKGNcDhp3WTQ0Avd0/pAMDN+8P5CYaxjDu8GYse47bj/fryoqbgFQffmaV7a2W1d1VzoVfM4/h21VwOtQ6wfkkojsTD1jwUxYfSoSRVxYmnGnK0PbEubud+zd9ZvBNd7x2BzfPmmeL1OnAez9XMkZ5fiA9B9ZgMeFeogJJrutVBWf3DXbsyKiae4gPAxqs2fBzc2rJPLb9cnW9qWY2jFL6sdlncrT3IVxwABC8by+HNrWQ35suY3rEXHGj4qXl8NP4/MzJauqPZZpcX9rYvdRve03PxmbaiBUehdCe315+NOLqdp3nI+IzK3IpEGa7HRMD39DUg2XqBbNU+xHnaXV7pf+3tNbEkcBNbrM+LQNioFP6+XcogvN1iFeY4OnHTtrRvOiDsaXbCTvciVY3df46sd5QDEHkaD63KE2D3xWb2XsiRXb18ffnJlDEPYtzrMRHY/I3eDy8PiEKV5Xq7O7WqKRq8WGQJLFJWGzj+rAMNvrh17y0+BEn2n29L4Vc1F1rveBxKv4M49oIDl5re5IAc6V9EIfTZpNse58V0bvSM4L7tfAL8OSIuhY+cFCshL7ZK9Yb6U5QESuIurc57H4Gv88g/5o5Yvz9G/FfuiK14YMEdXR7/Kt2RJ2Lz58/Hm2++iTfffBMnT57E+fPn+f/58+fzcA0aNMD999+PTZs24a233sK4ceOwevVqDBw4ELt27TIpYQDw008/4fXXX8eGDRsQFxeHP//8E1OnTsW3335rCvvCCy9gwYIFOHv2LCZMmIDZs2djwIAB2LJly3/MLBFgkymg71oBwKhbiyFRCQsVnPu+nClPEjuuhLjd1TFO8MSP7i3QO1pci7tMTsUumS6VbPSzHAy7jRxlGrCt5Eloa92JlR8zpPyXdLYj9PtY7HmJKR5BLwtOZQfclPJR6dcdCN44Ak7FzpUwQHYqTWEJ6ausRSkApEdcx8XHo/BZjp52UQ67u0UwweJOJilhqsZM8wDdV5Btk8Jli3AVw74bJiJeou+w0PE7cN8+dlLU8LME3BM3GseKzP7srCZMVXOh6lbdCTPVtbSLuJYBhZzrxHb8jhVdNk16Yh5VzeW2nQDsPhqdhgA6ylzxgSOSvCta1MX1Ut1kzqp9WpEIgGGUCwBH4KJ3pISJsqYvYqdNytYrkvzdh46U0rXKHwAUH8lAYttfAIDDVN83bCSK79VM7ao4IxtNJpsdIhsvibtLN7dnOV5nFL/zhDFwKuyenFEJUzUXGn2km5gZTyyN9U/kVOxYG7+EK2F5P7eCqjHIe+PihZyqa1GXJCVM/N71pnxXw1Ne3dU1UcZnuhN6cl1hJKMSBjAH9gCwNks/NRLDVP6rruVzcSF2aaC8o+1u3OgV4jCFIYsAsQ8RGRUCY/qiDJ7GKttm3S0AAIRMZHmNesmMymjVX4i/U7Ej/zVdCSNSNZfpbouquVD5ZDGOFemndqISZiRP84EoFwAo/Q6ydttJzr/Y/o1KmEgPDByBcQW6vz2RhzslTEQ1zZgeBd/4FKgr2SZt+sxbaJNRbUzxxHHSu3se0r9rb3pvlWdSwgCgZqoPNx0GmDnfV6FhOPZYKLzKsQ1Ln9P6Zi2B03R4MxbVYzJwpMNNji5s7INW/c51/Tp6R/bm/S7rsTmSe43S69ctNxyMZS0iMqoac7fTZa9urbSrw48oTsuErUZ1iZ93pUpu5SOE3AZfJCB9ITMbntF8qRRWlCHt2w6w1awpyUpKfMNPEyRUxKzHZFctIoKrqrkw/5b5t7EMAWY2SVSUk8vr9dRYdk+t5kK2QVw3oQZUzYX94SW6EubNrkHkvGu+D+ZU7Nh2y3/gXfq/RXfkidj/NRJPxDYeM9/psRp0+EC4sTGK363H7ywZw6qaCz0fGoLS1AM8zrk1oUhu95M0MRW86sCN6qW4WbvIBOMKyGhMquZC9s3LGNuk8//3Tqf4rHdEDNakxJvyuLogFQ82CjcpFbezu+cu3PHnHWjweQLSZkciLFY3waITR4CZavn8ab434S5Np2KHrX49eP9ow+qwtR5lMO7K0vuPsnfglcCOuB0y8k1fGI7Q4amW6V3tG4mKK63Rr4z8LgyJQvUfbi1SI1sDyfvwfMYh9Kx0HTFHYlA6vhr3aQSwXe9pDXYj5t5HEb/pZ7d57nfwFFa0qAt3tDB3G1/wq5oLIUvGIvjFJKmsrHZha26vheH1t+PlWSPx+TNf8zuQRsr4LIovSMXJvl3KIAmFU0zn9Oho1JlrfYJz9eFIVPwt2XO/vE1SNRcC1z7NAXG8WzVDyf7DnM/R5a3RZMA+adffXTqq5sLp4kIMuXX/JP81h3TC525coTwcf96BPS/NMoXz8vXFuuwdUtjbJe0lB/Y9r/O0NQ3B9PXfYXwT+Y5M3psO7gxW1VwI/T6Wb7Zc7xUB37X6mMQ3hG4hJ5bVTgBw1FFVcyH1+g1MCoyUkEiNdLVvJP6axZDq0md0lEw/ibf9gzh+58unYQMUHTsuyZrzYxusi5qFPrtGS6c6RrKSO7foMvx9qrjND8U5taqpZDprhR5bFp0aG81Np+nEvnd7J9bsUqU03cluDGOVNllo3HB2wKYF3+j1UsZYa5XvZvPi0GSK59MFkXya+HFzVGP50Wmup/RvlhajnJfNlE9juNudBwGg/6GT+KV5Pbdhex04j7UtayB/kgMHxpn7pLHN22rXQvGZs6b0Xs9y4b0g/b+VlYsVT095tYpH5KkdHH3bIdWb8b2n+duopPVNd+JqVx3901azJg69F4rsvnPRecIYVP7ZjMZKPL1bNUNhSDVpXhTJ01rj2EQHGn5mHlPFsgtZMhYZj89xW5YUtm5CDZxynDfJePFSCWqGZd3RJ0B3T8T+vXRHnojdJZ3EHbzMT+SL2ACA7vmwbWKmKEffdkg7prmTHei2vy/W/f6DFCe53U8Sb1VzodGHCQh8LdGkhPkEMtTAQ2NmSc/JV4rVLh/xFXeug1NkwAXxZIb8HhkHvYcCdL9bxkGaUCEB5jATAAJ/G225g0UyqZoLDT5ng2hYbDJ/diE+BKP8O+PkOGZL/spc3cF1/iQH4OWFtG87mHaGxXSKT5zE6rC1PB+l0W0tZSA/SU7FLp1k2X19LXeK6V6D9qJ+d2rO+UYYfFjj/8nnjxX9NWsu/915whjTe1vLpoje0x8DDh3nSpiquYBktpj7PIQ534xvGs8VBJJvb/tSDMjqjuIjGaZyp/pVNRdXwigufchBaEMf+XSZ/IORM1GnYjc51waAI6fr4fOQ5tj74iwUlugIW6KMquaSlDCqH6dix9stVqHm9lq40TMC9+0rlNoZKWFZH7ITNXKemjaHKWEAELJkrKmOiUfaHHZqbLxDc/IZB673lsEJwkbuhFd4S2R8FiUpugAQ8DgzV8zY7WdKR8wvwO701bFV5nevDoyfhYW3dnYBwLlfdg4r8vAJCpCUMCrDc2tCUXr9utQ/jf1dDC+WPQAo0+QFc/GRDK6EieGqO/RFlVOxc7NjAFyxEfvcyXEOjibnVOwcjRAAd2bb89bGhqq5uMLlVOyYFMjqRtvWWJI/7dsO3BlvxZXJcCp2XHso0gSxH/QrO4GsP/PWaVFkaxQdO85lJQfmAQP3YmyTztjXcYmpvEQS66FXTwYkMsq/symMeAeV4uzq8KP0zKiEqZqL+/uj/8b62zVZP63cPWkWejaJRNHxE7zORR90VrL3Cu2Ewv56WfeOiDGF61SBLTUItEbVXChcF4RTEzz74qR8ZH4SBVvLpnAqdtjvP8zzIN5hFvMofq9J/F161+fgGfR8iN3xLj6Ujja7vPhpKPk4FOnBRuGmfm5MS3z/S7584uoVYd4g8i/H7hVfGhSFki7tTIv+52rmQNVcaPx+gqnfEdDEhIzD+vxz5qxUBlf7RkLVmBIm9kvRhFwsJ+8K+vzsbu4sfNTzRqHVpoGquZA/ic2rRuXZauw0ykBpi8+dip0rYarmgk/jRog/sAlhcazPLv70U8t27lTsuKoGomT/YVRcqW+ktZ0WZ0r35Dg2ntzs0UHicbWefm7R7BvdIsmp2JHzHjsRy3hcPm0L2vCUxIPanqiE1d5eE70OnIdTsf+j/IjdBev499BdRewOJe9bTqPFxSGdEhCJA6lTsfOBjha4/lMT4NsjRwqvai60mM0Gni7jxiBtfgcOD21cwAJAUfZRtE0eLMlmVL467X1ESoNPnoP0ASkz4poU51IX3fnqffsKpbS77r0KVXNh3dFk3HB24GZ7eW/qF2vJCaOquTgKYvbDutIh5qH/oZNwKnZ0Hj/GNDgD+oXf3ZNmYfNVb3wa0pLLc7NqKVBaiuyebBc3+wPd1C3v51aw1dGdTEe5HuXpEmKVKMv0cwGI3/cnLx9SQKi+rJTaNdt/AwAOBOFU7FjRoi6WNlMkRdoq3xSeaNuMr01hig8cwbthKzGy+nH+jtC1iLequdB1zGgTP1VzIWVfsGWbpPoVebT+PA49HxqCbvv7wqnYcWD8LBNP8XflGdWhveRAqaOt5FyYiE6znIodZ4ur8EU0Tdaq5sLKwipQNRdGp2WZJvevQsNwrtNZlF+XgnurHJTkJUofxk4KyHkqQf4D4BOuMf9Oxc5Paq52PSEBCdT7KgG+a1JwVZXNokpTD0j9hWRdl8sWrsEvJCFtTiSurw/A0bfNjqVJIXcqdvRpFIGXM/fBqdj5SaNTsWNirSwpf6JiumbbShPPBwaO4Js24nOrRamo4NJ7I3CGsayI0uZFoFqvTNP4Y7VQi3Ax8z4yMe114DxUzcWVIlVz4Yu3B0LVXKa7LT5+utNtAJIPt97RD6F+g/N8g6npTmb+Rb6URD6BKxg4A5m00qYFUd05ifDy9cXVh83ok5cf68gBW7x8fHDyGYeU55K9h019jGhd7k54tWsptWOrxbPxd91wtmjVXnRgQFZ3Uxs3LoDJfFXVXEibFwG/d/VTPyOpmgslhYXcCbZTYRtrRvmt6rJyzyw0vOWuwzjviDTnfCOUu+zNzZkvPuLD+ZHCTnl68MA5LLxYj/Opm1DDVEbP1MjD1J8XQtVcyPwkCnvbl6LwHnb/qnaqt6Xc6TM78t9ZH5kdkYty9xn+DAcdKrovHI1myr7oVM2F8bfm1KrLkpDzYAVpnCR3B+42eYqPZOCFjAOSCaGXjw9i7n2Ux6HTnprba8Gp2DkSMwCELo5FzjtyHkquXZNMKUV5ppxqiZh7H7U8ZRLLwOq/U7FzZTL9O/nqg9W8YfxtbJtG9xpOxY6ifHa3OHcyK/PAclWkeCK/ik6zX0DanBXDl7vEFK5y63fixh9sM9RWo7qEuEz3fFXNhevrAxDweqKJT9qcSIQO2yXluTRVR0AltNkznc5h7hLzBsZd+r9Bd00T7wByB9ZR3K09Nixhd9eMk3PguqdRO6Ecdk5lC8X0GR1RWqEEYaNTpAnaSO9kp2BKvydR4rI2lTFOQKrmwt4b19CmfAVEvTRWN11zE4fSNjo1FMPSM3I4qWouhL8dizpfJ3LwDpEvUa+eg7iTy7Jk6PHok/BK2MPTI8eOYvr0+/ywaOz4UAZPABiQyJS6uh8bW7VqKL54UUp3VUEKfL3KmerHarFk9d7ds9j0DMwODYF3q2YY+POfGF6NKZNd917FljYVefjSTnZ4bWd5JzM2gEE0i+h3thZhJhAFgJlAibvvI9OyMaDKBS7L+WHRqLViv8nPjZHExZCYD6/wlqj2xXFc6HyGg46IICV5rztw8BnZ9Ibqg55dXheEKrccOHtq25xumVWKYY+vbI49kUv5Yj7FzkyN3slOwZuBMiS5MQ36X9KlHby37jaH8fLid7zE53k/t8L1/CrIHDDHUmYxrK1pCDfvLIuMbV0kin/m6WjU/iYRJ8Y7cM+TKTjS4aapXX50JhR/tq4smQWK1CrVG/vDS9ymb0zTamNA/H87eRP5uPtPZoDGOGELYy0hoFXNxUF18n9pySG+xfZKMnYbOUoygzwzKho7356NVklDuNNxW4swaWNAlO++fYUczdJdvrSXHWjU8yjWNVvjtkysNlPclaO78YZABSjO362Hv01RbYCkvfgsJxETA/SFPpkm5/7U2gQHLjpMNtLy/ERU92ZonMbxnChtdiTfgAtdFCstlMmMzKo9Aawc0uZFILu3XkZGEk3yLw2KQtVlSSYe9J/KOOL1WNRaYHYibDU+AsC1hyKx5WuWh2lng7HldBhudmNoo7awYBPARUByReREXoWRRN5Hp0ajyeRE0zzgTiYxL/bdwEf15WfuSDQ7dzc2G59f6dcRlVbssGzjxjjebZuj3IxzuN5V7u9WpGoutHs/DvW+9Awu4xXeUlKGrNJ1V7+e0nZXv+7ei/m/WVqMBxuxe3CF97dG4h9T7mhTPFqzPrR+5H/FNPH3HvPv6PL4V+nuidgdRF7tGBQ47Rq1+GQf39mRdor7DkXYUzu5EgYAoRN2cCWM4J/FnTuiNwMjcLR3DQDgO8TpMzpKO1WUDtFLAexydvUfkpA7mTlZVjXdXEvcfWqR8ARUzYXQ8TvKHMRr7TrL49f5mk1cCW3LI21+Bz5gibzXrltmkpNkDfp5jDTQeSXskRwr156faIpDVGNRIk+HoMxJFjF88cWLUj2omgu+XuUQ9dJYt5OKuLNoNfmRDyOnYpcAO2aHMlCLteuXSfDWk+ockSeV7Xq6TQbsQ6tbO7o0+VI6tHCkeOSTjqDQKez8MNkhaY1FiRwi/3bJK7wlD1+aegAXOp9hu4PDmLK7JnkNf0+OrkWqsShRkp2UMCLRaS7AELAk+QxKWN2EGpKj7BS7Dd4VmBNvUsIyPpfNfo31aatdC3/8uMAyTMZnzGTn2kORUn0fdHzPHSVTWDIbNPIgOGUxrPjbVr+e1H6cih3vZydLfURsd4WKF/InOVB/ZgJmKDqQjMiD4N8J1tpYx/vDSzAtR954MfZLY1sv6Wx+J/5WNRcuDIniv8kVAAD0OcjMtYL+0E15rBY2a1LXyeW0kfltGv9wPApeNZvRORUdVIdO0gN/Gy3xdip2BP0yxnQXrfa8RPR8SFfCAL0vKUlV8Ut+EgJV3SGyUQmzGheUjxMkJcyqbzkVOy6UXGVjmY+PFN9Ws6ZpPAHA3YoQlV+XIpVdi4QnLBUSI7mbB6zCqJpgJp7EgHNICVM1ZtpKC3X/x/ZJcmf+0I47TBZdc/Ay2DuU/xZdjFyPieD8w2KT0eoLZuFh9A+598VZ8Gnix/Oc/5oD6V91lNpj2KgUqR6MJy6ltlIuLylhJIdTYW5jjItsUsJmWZzQi+VfN6EGAHbqSmE2tKqKkkf1E0krlEFRCXM3rzSZzDYdrZQwCtt96EhJPjolI9cNTsWOC/HWoF+U7ooWdRGbnmF6T3OAT8MGmKBFSO2l0oodqL29puUYYsxLyZ5DWBXK+vvN+9l98bSvWf37bpFPaJ2KnZ+UG8dwkT8pYfQ+f5IDxfcKwCpRbeBU7Fh2qabbzQuyzhHTzl7a1jLd6+sDpHHGOI47FTu/gwgA5S+YXcDcpf9tuquI3UGUPpzt/t0Tx8zACIYWADpMZvbITsUOdeVi3HB2ME3kmT+0g1Oxo/gEOz1JH6rb/otEi981O1YzpWnCDrcLJ+JPaRwaOwvFp07Bqdhx9j5mXnXyGX1QunrJF6GLddtpkYwTEZ3QkFKnai68kHGAAxeIJMrUO/ohqJoL72ezSSbqpbH4rJd+D45MLAjW18hHXEwa5aOTQorXdEEsbDVr4v3TTXl88bvdu3FImjYH4akDpHhWZLXTRnWhai6+CylS4O+jTDyi9/THnKPbpAUJkacTDDH9ojzml8a7jW7eIpYHIaN5UtCtFplOxW6520jvCXXMnZIupheyebjJd5pTsZuc5oY+m2SS1anYYWsaAlud2vg+YLMp/2uzkmD/QHf2GfJ8kik/x1bqPvmODWxmmYaquRDyPFugkRmbse+Iba1PI1Zn4p03Y5laTebFJ06iV9Mu0vNKXkW49lCkSdE/GcdcMjR+3zOgAclEKHGi3GQ6+VKAGSWQTGlJXvHbe5v+35iHo8tbw6nY0WB0No4/y+5gDPXrxB3qrmrBzHxDn9zF70aKMtFiydgH0Z35bVrdsiau19ANPLx8fSXZRAqLTTaVc6V8G/odPMX/xzwwEADc7p4/XHs3+jeOQtgI/Y6msTyslC26y0vPO74aaxm/undF1NxeC6VFRfyZU2GOy60Wr8UTqsOp2LkpFREfax7db9lniU6Md5jGaCv5aSFMYUm5pWeEcOdU7G5NW4+vbI6Me/8fe+8dXkW1vY+/KRB6r5NQUiGQwKGknAMK0g4EVIogSJEOib2iWBAL9i69CoKKoogQGKQKJKEEDjWQHpIMvRNqyu+PnbVn75k5gfu593t/3HtZz5Mnc/bsPruttdd6FxNstJ8Sy6HZRSKYcqdiQ/gXcTx/n3jGLH91oSkA5jTXK0hX9RX7vjAnF2nTmaDx8DMzEPyUNYiD/ypmX7y4yd/SuyZvJ1r2AT1b+W0jimtiRm0G2C0XAL4unZ0gC0zJLyVnvEMCob1ibafnbh8DZORO43slqSo2LpkvhTd9yyysrB7D7H/TvpHtw8RyZwYHwbH/FpyKjdsGlyQz0LHCEyfxjbLbVMdzHS7AiqzGHv3ftHg+nIoNIRPY9z+yS1bvtlpziPxXjUfad1HSGk75+k1L4GBnTsWGrOdZmsFVL2D9tXKW+R2JnWEKS+1k7Y+05Nt6vH4AELxlpCltwC8TeRyPXYdM7+9Vum8j9q+h+6qJ9wBZoSaWtZFLEz26FW7V8JEgVYlUzYXA5RO5VJ5UR+idu8MwUeDuCsiIMDvMBoDsD+yocNoD+yfNQFjSUITUOc317Asei3KrT65qLnQeO45vpsZ3xsNRWXW0aoNVv4lxhhzVuJqf+E58HnEsF4ubWcPyl1UWwMAcsh6Zgx4DR/LbKikf4RuI+Wy57okPA1tJYcZvX1adVY05QBbR6MjfjNivMd0f57YW7vIFZPUvVXOhV4/BWLv+Jx6HfLuIeffqMZgDehAZ20DqcO7aSc/nV4dgd9vld/X907+IRsZgpv4nokSWlcb4bPXe6rd3Iz8U5uZJ7Tb2342HIy1ti9zF/0foTvX7v+QnEuUVuLsCNmcHI6XDEsvyrMZ+Wf2Z9n1bZHZfgGlnm2FynWM8raq5cKLwquSrjNKNyHkQnWqkYnloA8s8ywpTNRfWXfNBz0oMaMTo14iQLymu44WJqPpzkml8GNt4pz7I/rkVmj5+QHp3Os6BejPM/unI/17qgvYIGS0Ln64OjEKVX2SkRnff2bthA6xJXndX48ArOABFGTlQ85LdtosQ/cR2igiRVlRW/cpay+jZ1CY/X6zZxW4NSSX8uuqPjvUykNyGyY/zXnegQdc8joZJedLae6e9gMIi9g5CrT7sltOrZTMUHT6GzI/tSBs+U4rvERGOkt2yamXe6w4cfkZXrSZV8budl+7WSmNar/r1EL9vPZyKDd7+TVCYlWNCIRT9BRIin4e3Ny4Obo+kT2a5zf+BAzfwZp2jpm8U0/1xydfj3eyHZc3L4+84ELAwF4U5uUidEYmAFUXw3nj3iJlZH9rh/7rMLJIKJhH5F/UMa46i6hXcfgvPypVRXCCrxBYMiOK2jmLdVc2Ftu/FchcclJc7H4bkr9A41rsPGgnP7S6QbzZ347+w5PZ/jB+x3urYf4tq4hrnvHu6P/5Zun8jdg/SoJSTpsnpVGxoMT1OCqu6rQ7U3xaj/DqmkujRPgwAW0CGHGVIhBmDZuG9LPaeGIDCLjIKlFGKS8/EhJEESXx/bNRM7J/ENqBD0UvxW9BfPG7lX2X9bwA4+bwundsyb66ldNG4OUt9sNGPvyPVNHqf8bmumtZjwJOmfhOJ1PzKkvwubtbIVB+iC0/KRs5OxcYl770OX+RIbqLKoJRP6TcwGkt/GNiKHXhK1RMJkYnqaTzEi3RxOMsrpFxlqJqL3xyQ009RslhrroxOR/m1+UAeW6INjlOxofjQUUmaSA42nYqNS6MJ8Y/yNfZ9mw/isCm8sjTezhYV8OduT4zmz5Vm1+Dpa++oiZMvOODh7Q2v0GCpXgDQt9Mu/myEJFY1F/erI6axGvPie3onMWEN6qMwN0+KZ/U9UCLPGauDgNiXxnpcHRiFs3+GwIqcig3w9DJt4oNSdKbZmF9ZYZS+9Sc6ctjZCXZkRNxA44EHLestEiFAar/rKr1iedTOBvHl4VRs2NqqIpyKDc23D4equRC6YzhGGtRjiU7ZL5uYMKoDIUCa+h7MBgUAR/wEgB1fMSCUVp/HwSMiHH/P1EFXnIoNCV/OMrVPHMMEnpS3goFliCiNIh17YLFpzhITRkiqlO6VWkztjJgw70b6GseZMA8PqJoLrT+Og1eIDowjIhmKc9XYJ6S+RWHxW3/jTJjY5+K3Ilh1p2Lje4XrdXYDQGudmOe1/tZoesUdbfAox7778Sm6Crb/yvGm8Ud5eDdhay8BMABA0eXLyFhmQ0VnFqbV1wWJfh8mSO4HqA0eO1z8xtWp2NBqrwcvyzgHHho9jjNhAFBYg2mlBEwy2xqKTBjl431DHjMiA2gcm8ayxXFiHEtGQB7ScgEYgJaquXB0nHwrQ0wYACSkslu3ksJCVP8hCX3TnPyd/SV2+5I6k92mb2ulIyaKdTL6erRisqzeG+c/UeN3EjiCZUjcLs6EnRtjNqGg/MRvRkyYWK7IhKmaC2nDGLNUfOgo34NNjM6GxiYmTNVcnAkjAA2nYkP6l0wzpO7MRFM+J6O8pTCqV5LtV6ntpIb51/JFUDUXdwUifnerM9Z/At2/EfvX0H1G7B6ik0+zq/MVj3UCwCaqd9PGUDUXUue1R6MPGPoQITJdeeCsdCBct+oHntfIaqd5eKSPDCYh+m0RN2DLQyUsmCI3YRQu/qcyGnyV4HbjoXK96tSGU7EhptsgKS0AqKGreRrRia+quRD4ElNN63P4Atav+N60IdDzoJSTllKoVns9+CI4+RRjiF5IT7FsR83v2cJPTjdfSj/M0dmer5kNAJyhMJJYn6ZvJeLGwwxVLf0HBl98tfgGXG3YTdbRsTMxI2c7nIoNZ8fbcb1vJD+AUp3G5bLbrxpL5EPDiad1aRtB+9NvETJX7It9b8xwuwmEJnuz71OjuqlPACD+79/dbtIEC01lEHmGNUeL6XHouOAV/p6c0ca06YGts+dwFaDRE8UAAQAASURBVNNzHS6gwZcJuNa7Lff5Q3XyrFRJUse0Ohxc7WuuV9g3cYjYO8j0fa2YJ0pTeFJnYsU07afIqrjkZJXKD1yuq50AQImjNX9nnHPL8xJR5ZedqPOwGSWS51FchJgH+wEAd2mxPLSB6eBjHOv0P22x7Gi29a4haPCVfmOTPGUmV4Vyd6jsFdwBTsXGHZkfjFrmlmlzKjZU/VlW4Trakd20EXiDsY5GRtXYB2pYNUw+xQQy3v5NeLpbPSNQ6XfZPpWcqQPMsWvJ7oNo+a0seLBay47/Es7LL77BUF8P25dC1Vwo8TQfNFXNhaVXaluubQBMSKpSezQXVxeWqKQETsWGBl8n4GTXevy9t4DVkDojUkoX0/1xDpm+KngdcpaH83KsyKnY0GxBrGV7svuU43EAs4NfAKj0m7U98F/LF3EERtH9CcGMi2kq/cYOp4U5uVIeZIcc+ETpnPTT1R6t2gEwFdYGXycg/Ss2N1avNKMc0rNRk8Rjhwvaqw6cjpPVR63KUjXdHYoYz6nY4PQzQ95b/ab2EV0YyepKTJaqudB0V0VT+RFvyOqsVwbrdpcAUOmoj1Tv651O8XFW7Uc2F0NidyHwZ93R90vpug/T/NdkNVXvJkxDJHUGY94qbq0v9c+pZx14NUO2zXUqNuT/ptsLn3hJX1OuDtJVno3220QkRBBVsrM+0r8l7dEAY56cio2bELhjgtO+iYJ3t+PwbB0qxRHnKQFJAWaVdaK81x0SE0h50H/xmdQwac0kom8tprEa1/fpv5/uM2L3ECU+Ow8AgxSnRXNNwioAQFbMPB6PDFKNBxWaxL2j+vDnvNcdeGg0szNKm65LLj/O0m+tjIsn/Rffn/6jOX9X3KkNPNrpfrzuVlImvvOyuGIuOnsO/Y6cQdGRVKga2xCJegU5cLMXk76nztN9e4h5r25Z07TREp0tKsDy0Aa8XUOP5vG6fNpgH64W32ALef0DcCo2PP07Y6ba7Su2zC+pNTug9KjEGDLyowMAXlv2WvbBoMyuUtjW2XNw668mCBq2Dw88NQED/KJxaVg0smIYVD7ZGCS/M1O/6QmrxvMW0cbEhdxvgL6hzh8kq1OQrzQiI1NgJFVz4auGe+BUbCi6eMnEOKzOTzaFiUz9iZmBlv23dv1PuF21BLfqFEnpAAA1qsGp2JDZfYEUXvGPXTg7nrkPSGlXCKdiw9r0BDgPXeYuEKiMzof6InUhO7TljGebc+rsCP7e96ME3Nxcx9ReohbT49wzAYZ5V3tuommMU39mfmRH0PNJUphHgn4gJ3uhrNtX8cCBGxjkZy0dJuKHzXQGw0w+1wBg+dXqUjzxoHRmoh03+kTCs1IlVEirwON5N2mEkm01cfI5/cYC0P1/0e/2U2KlNpNEWQwTb0s4bZQh48mu0Z3Qp6izDnEtMqpin1OdSEWNXDyomotrB6iaC5fXBsKjXHkUX7sGp2Lj40HVXGj8zX7L8q8O1IGLxBtBqk+rz+I4Y2R1sCaVZvLdVbxRB4sQb3PFdgQvtrapBSCBB9VfqCN2NvxcZwDqJ3hKfVNSzku6vWkyiLXjwThmB/V0vtlOs2FCoeU3EV0qGOtdFqNiFGTc6YAp5uFVn93IZS7T3UbwPIqLLNOK+W9YytYNUslv/K6sUnmrpxklVSTlkwTUm2nNHAA6sA9fU0tdEJDfOgBAcZEpXwLPUjUX5l9iTAa1j0Bmai6SIdABYLaf+Sao1sJE6TtU/UlmGHw/SjClMa4J8PDg9q0AuNsWADj07AyZOcnJhVOxcSZadKYMAPW/ScAngeGmMeTbn+1Fl4ZG48BLugqnZ2GJ5bjh5OmFm51OIn1JGxRfucLT+b+mt7tnpZs4PsUBj4hwzjxtbVURuW9Y31YDDNRM1RgIiFOxIXOZXt+gpTJzS+H2lydK8+vS0Gj4fWitpnspPohr7ADyOae4QN6jai5K5IBp/6l0/0bsX0P3GbF7kKwk2U7FBm9fhcfJ/62l28Mz2bAAgN+HCSi/bjdylodLhsqT/PXN2N2i1fEZ3QFwvUd12x/PrftQknxY8pPjjgGi9ogHKwAcBt556LKUhhC2nIoNB5/XF+4rvcKxZf5cnIm1c7sncbG0OiBTOADU8aos/V7anCGt0UF4gJ+MfpU+dCZUzcUPeyS5VDUXrg40q+JUXrGTO2MVnVeL9bnU8ZypXptbskNkpd934lr/KFT/IYmn/SpbPgyL6cS2Znzu3l8TOfT0atkMquZCve8SpHHlkbCfl/NUmvUtzK6bt6U8xfoQ5K7Y3qAfJ/K+rPajfkCgA0zPh4diziUFAa8l8jEpblDxm3+V2km0PC8RFfuf4vGuDioFFAmrxu3OVM2F86Ps8OmRzUEUHnt8KwCgamo5nHhRZ+49ivS+EjdMp2KT0BxpTHi2DrWUXNIBn8h/3Vieb8fOh6Q8jEQ2Hv7lqmBbqwqW7fasXNlkrC++J+fe80P8Te+oX+vOSsTWOXNwfIk/Gr2nj4E1iX+i4ecJ3N6P6mqkPVN14J8SR2sO5kFxHxo1lt8Mp94ugGfrUDZPusqqnFvmzeX5zLroy9tV2KUdbvdoj7OtKkjx6dlqnTIewMVx3eqzOCS2XoF1OUyAccvZno8Hp2JDcUEBB9gR/Z1V+WWnZVlEB17Wb3bEfn49Q7b7bLidAWz8Fao7E04dWxtWZET7ozURADzPXMT1R9ktxM0Hmep5WNJQqWxxzVA1F9bGL+PPYjg5d//O12y/S9+F4hc/wICfol/Rb0ys1h5Vk1WKjZT7lvtDsZiXGCflg8Zw7L+FgCf0/NztKR4R4ZYMcVlEkP7u9gpVcwElJbi8NhChyd6m/IJeSOIO2wHwm/6SmzeRvqSN23JJ3dGp2PgNNv0+9Kw+rp7IekhqC5U/6VTZ7TKOW/ptXNdv9YzAsOzO3OWG6HTe2NZXTrYxrScXRzCGkoCexDRnJtot+7/AVz9qOhUbv0UV8341Q7C/K2W4g4brUMIlHcz5pkyYgXV/LJHq1+iDBNO3dXc+EcdY4CuJfFz1tj+sM0xqKpyKjZtXJH06y3TW6HSAXVEn2X6F/+ADuDyErSnxR//m9bKiNTtXW4bfp/8tug/WcQ+QOz9ixo10UGZXDgUOsAVFSaqKhY23mRY1+u1UbMy+KnQ1Hho9Dj6vaijpki8xHVRG4YbGXOfe6r2xTvx3Sh+cWtmYO1UFgDa7B3OHuydWhuJA5I9o+14sGmw4hZY/Z+FA27sfdsYyz4+yS35ajPFUjan5DfAzMyhW+QEMmSp+ywpT33mUK4+S27eQN9mBw0/PkL4HxbXK88rj0TjpYIh+0ftvY2rdw6b44m+ia/2juJoO5Sn6r/K0teDIjpnLbAh4woXf83ahnx87GOS/5oBHoe4Auiw6O8GO5CnMIP3cODtqz2V9mv2+HcdG6wdvp2LD6T+ao+B6ea4WKva12I7UWZHcTs44hqzSjEnNwvwQf8kQ/uTzDux/dYaUpuihtrhWv7wEIS0S+RqjvAN/nihJe8X6iETf10hWcY1h5NPNioxttb80EYmfW/sT+7+QVf3KCoenFz/ciP1vdUCwanfnQ33h0yMbt3u0R7n1e0xlWT0b63KrZwQqbDmICwNslv4IRaqfWA2n7JdN4cZyrOprpOuqPyo6s+DYfwuhFfM5w2rML+unVggan80PT3eTt1V/P3DgBhKGtEb8Xz9LeRjjenh7o6SwEJ0OXMfaKZ1xvZYn9rxn9mdodai06mOr/nA3jqecaclv9UW63aM9Ni3StS/yCq9iTOOOHATBXZ7XH43E3zPnIPzLOH6bWlad7iasrDaIRH6vjP3s3aA+1uxVpXyN/eW6eRM2Hx8eJoK4GMu3qmPO8nBU9LnN9zpjXQl0RdVcko864xz8R9eFWTnbMbFJR3jVrInrUUGSiiUBCgHA8bcZgqqx7p6VK+NCv3BU/4HNw+V5iRjkZy+zLhlL2yD9oYVux59Id3ovxiHyaNMS69YshVNhmgQkoKBn8t9XVt+pmgvN5sfC0f0QtGhr35eUZlDKSZNKt/g85KiGvFu18GYd3fZZ1Vzwjx8LzwpFyOjC+kKcG8Y8zo+yY/cHM+/YV5Q/8J8F1tE9fsK/Bazjr5jZ93R//LN0/0bsHiPvhg1Qe0dNAOZD+/KAjTw8cOMoqJqLLzZX1wXAqdjwwFMTTAsl2VeVX7cbJV3ykftrmOUmKBo+03unYuNQ0sYNicfrmof63yag+nbdPoI2ptQF7dGwL1MD2PvWTMRv/Q1NK5yFV3CAqXxSPSQiVUpjmUYmzCix6zx2HKp4VpDiZP3Ymj+3fVcHwuBpvTxN7QaAktu3oGou+E1LQMyD/eDZOpS/dyo2Sc9brEfVn5MQ/Bzb5IgJE8nd5kRMGMBuGQDgr58X8rzXxi/jz72bsduWfn6RPMz3owSJCbOSYhMkfJ3Zibxva89N5DDiTd/U+1f8nv6DD+DMRDsuDY2W6u+/ZhzPO2TiLgneHNCBR6isUccfQLOFLIwOxaJUs8FXCabvsGHpApMzVZF2tPpNkl4bdfuNmy29q7a5qiwJL6Vm20ZIQAeXh0Sb5gw51jaWI9bbqdgQljQUiZ8zFS/t9xZI/yIap//Q3QaI6cT8rOrl7rdHm5ZSuQATrPA4eclSP4j1M/6J+aqaC5H7BmJL2EqomgubFs3Dijz2HU4XFVgeTsW807/QhSGbF8xF8Y0bSPrUrO4mUv4khyUTBgBRk3T1IarvyZWhpj45+YI+Bv8O/x0AsDo3TGLCxHZefzQS/oMPmBy2A+DAKScFdwaUDtCN+4m2tarA0eas+oVuUwiWfnKdY9g2fTb2vDeTp6G8SWWU0vduq4MuWM0DChcBNM6PZmvU+VF2ns/UusyptbefL1RN9wVGTDbRmFI0y4BX9dsCsX70v+Ifu9Crx2AcfIHd7Ihw8lYU/qVuo0fAGkTay7J9otgux/5bUnjqwnbc7xWRU7Eh47NoFJ48xfvz1YyD8G5o9js12fmEVLYI4iLGs3pWNReaDDrI9zp6L/aNiHxZ7OMhxTOucSIVd2rD8xDLo7+B7zLb2qILF7g6LsURNWJILVMsT9VcOPpZSyR9os/DQX52aC+z75D9s65a98ABBtgVuLsCZ8KuDoyS6y4AaRn7wUrY427cluzTVerFW+K0Uv+T3Zbr4FM9j/YGoO/lIjV9KxFa9JU7rqVHril6G2BmDH9srmCbcENP70PG7kHQsH16XUvnhth2IqMKqRUZ5/zvqQct492n/166z4jdY1R44iTOdbgAVXMh+339kD/roq80WenK/tIwdkCs0jOToYWVrvXiwsEZstK0X9h+kX67k9LQ+wuRDe8otTs3zi7d1hGFjNbVCCn9qha1Eb/1NwTv9pHK3zJ/rnSoCX5qp1RHqwOvmL5XzBN4/kR7vPj1Uh5G6nD+Q/ZjRs52FHdqg71vz0Twbh+EzmL2Huk/tEH8xl/Q8+Ghlv3AJVX1q6N4f4r0/nYV1uGLL9cxMc5EYUlDpY2QGE4rZlj8XV7dI31DSkPPuz6VbeVEUAJj34hlxe//yxRH1VxY3bKmZVqR6s5KNN1miE5RAUj68yX21ty5KOWpRV9B0ojPATCVNHdl3akuAKSxtXlxpBQujns6MIh5qZoLlzqes8y76eMHsCp4HU9LKpbGw2hM5wH82bthA6lMzhz3P4wOz0+EU7HBb0gmPuj9M5rVOY3jU3R7vS4jx1rOR6sDhHGcORUbSvbJzL6qubCxxSoprLhTG55WRO206k+xnNpvlJMYtbE5MQCAEf6d3K4dREEvyk5w3R3kAd1ekdDfrOZ7jSWJUlpVc+H6jXKI6TxAqoMIokDl1eqTiosj7JZ9WfGPXbjxcCS3TxLnWZXZNWDbBzTom2KZVjTuN76zIroxpjYY56gYtn/SDLmsk6e4arT/H+ORcusazyvwp4k8bqGPjhQYPIaplZd4AdqrDoQle/L2EUS834DD0ne3qr9TseGh0eNMdaZ0a9f/xOsf//fvprwonu0j+daMEFgBBuhAgqTm24dLbXcqNiS0Li/VLWRUMkelUzUXVzMVbSdVzYXPBjwuueMge62i1AzTN71bxsE4T3/KTcC5MXbLvnEqNlRcuQvXVX9uX61qzI7Rijy37oNXaLBUxpQzujkCAVzQHEi9XWDqK3d1dyo27kdPpIMvsrFGyJ8AEyp4bVaQ1UUH/Nrx9Wyp3SKQllX/RLyh25cWdm1nikfIq6rmwrV+zEazYJ0uqHUqNhQMiJLso9c1XwOA7UfuyGocU5hX/Xr4vOFe03qnaroaP8BuHo1j4otsmfHKf40xsOdH23HL2V7Kk4Qg1D5AV+k0MooxLTq5HWv36b+b7jNi9yClfR2NXr2G8JsJp2LDxBr5psOLU7FJUq1Kv+9Epd92IvNjXbpFcSP26kiEBOts3CT5QlGpEpyKDUuv1IaquSTEM9qElaSqLG5lZpsT//ZnvE7i4ncpPoiHeQgqIE7FhrQIGYGr9cdxpkONO2mV1WF1bfwyfNVwD15YM4K/I/U0VXMhrklH/PXjQrR7JxZpETe5tJBUDEqSD+NMrF3qZ/FgLULSExFwypRt/SzrCQDlNjEQhSuPMzs0n7U6oICRSTWSVfjyPLYRGNX0iq9dK3MhtzogWMW3qg/d/N1ytjfFF/MxHmrWr9CdXIpxBjdyIGeqA96bku948BHHJpFo5Ozu0CoysarmArrm4dwYu2TrJVLQMnaQjU1LBwDEhHeRvj/lLaYrSs1A1kfs8FV44iTfUAGgqKQYWdNYv1VZzr7V2swkLHzyYew8GITGU/UDaLn1exD9ykSpn6adbWY5TwFwcBkjidJs43wp9vbkedQ+zFSDsz7UAQQuxQehzQdxHJGRpytVhaV4Fzqch6q5cGyufstsJPF70bgXHWQb5+/UzGQOYmI1J5yKTbrVpjD7SxMR9NZVrlbsrh6U186PZkp9LMarlHuVw4SL37zC6l34uD4TjFmtOyQAsWIc6b+SVNXEoJfFXIsk3oIBQJWca/wwHVq+Ek8T9KJuKybaZp7rwBxA156XCOWTBKT0qGEq926p/Lrd6DpsjNROcV1pu+dxdBtqRo2luuS97kD9bxKA6Fam/gCAAy/ptlJHOy4xpeckuHBY5r+ZB1dblmTqX6di43ZzVNeASbJwSMz/wdjxer08PNyum0Wd20p9MLiR2YEypSWAqYrOLJQkH8aglJNo9VkcqvViLgwIYl/MP36j4Aw7upWlKimtDaL/SBN56HmnL2lj2e8A4P/nOClPoqKHNBRfMaj5WQi1RDr9lANpXzOmePcHMxHT/EGceMkB743Jpv7cMle3T9w2fTacig2Ve2ZK+RG0vJiW1lYi45phNb8ovOTKVRPTyvMdUJvbYU5s0tE0TlqWZy44vFqEQNVcHBilZso1bF44T9pzai1IRIm9tVRO8YGjUp70v+jiJfynUQmAYnj8P/37X7Cdus+I3UNEV9JVjnuieH+KaXGzWmTaTY01LaoBkxK5VJHS7G67HO2myip5RpUavlBcY1LWoVXNtwXHC69C1VxY2Hgbi1uKntZz2stS3kRJtl9ZvI427j9DrH/nsWzx115xSJJRIxk3yxk52031pmfuwNqibU7Fhjpz2CZMSIdOxYbcX8Nw6hkH6s5MRLOFMpSz1WZj3OyzerPNZOqZFuh26AoPPxNr58xa1Z+TTHk6FYaYZ8xfPAxSOKF9DfLTD4TkW4j+Il+PNeVF8cRwyl+sB6lMWR1Ud01j6iH5D5UzMSZWafj3HTNOapNIojNSY92swlTNhdQF7RnTIzhVBgBs9DPVocOB/gDYTQvFqz0/UZpbqubiTCZJ0WcGB+G9rN0oOneel+1UbBJ6FoV7tQiB/2uyhJQ21BjftvCfLEuunYoNSDrAb0XEOtNNY9QkNv7I/owOfFJfXatnmmteIYE49sBiUx8Skd8ep6KjrCl/F/Kw6jHpqDc9gSMyXhnMGCij7zz6T+AXvE6aCxmfRaNlIrtZJlU4EuSQinKvwxdN+U0JMEvKjeQ/ZD9P80Yma3e1H5NQlJbJy/dLqlJmHlZjm697riPw8PFBsz3lTHHdHThtH8ZhbTobx2Ffy5D4Yrr934eZmOpeQdYHd3pf0oE9G90mqCuXWMYnujDSbOtz9s8QXnca1wCYg3mhLeK8MOarai7kTXYgc5CXqX1EdR85Bq/Ne9Hx2QmWeR1+ZgZTXS71pyjWXzzAUhorxlTVXEBxEUYdZ7DmBCbUZeRYno9XjepumUyrcPH7/j1zjh6npMSScXEqNmxYtsC0D4g3VSKJqMeq5sKY6ifR8Av95pdspkW3Ck7FhoxlpfVIOgDPsOZSHmWRCCCk5u+DZxhDPc7ouhCdD/WV+p1UQUMmyPZrIpnW/FIQHgAIWRzLvxUhg9abnsBV8wEGzkVIn8a+FAFhjEIQd+1VNRdSR860FDy9kJ7CbGLLIDrjiHmTu5RNYz/haI/GvFt/GsfTFB1JlcbN9z9Pl9L8dKUmVM1l6baC+v/K49Z27Pfpf4vuM2L3EPULYf5eRGhigAEKEDkVG2wfxfEFi8AWjDQ+VZYoORUb6syWoXEL8/KlxVXVXBx61bgRki+PcY07Sos4qVnsfWsmT9PuHdmOAwA8t7t4WN5kdltXsC4APvHsdqjBruu8XJFUzYXj78g+TQAgsFwVUzxxUXS7gZf+//hcMLZ/O5szH40eOwTX68yXVtM3Ek1prCjCVWQ6LCS0Lo8NYVXRq9cQAEBxOVnSafXsX9oW43cUD26q5jL5vAGA+C0r4FRs6HrkETyW0Y37ORPzKrelIYpSM6RwY39eGGlHlUxvqWwi76a6rRHBB8e06mpqS/spsSZG02ftblwaGm15mAEY5LkVwyuOS+nwP1q3YXEqNh0ePVRGn3IqNuxo9RsAYP2v3/Pwn3ITTG0nyGg6gEe4ihDpU47XxSskEMffdqDasiQEbRkpVN4D8RuWS3V3KjbE5+81jQuxHWL7jOMWAHZ+LM9p8q8GAAG/sEPLgCqXTeOlKDWDhy3J3SHlSc+kGjQtizGCnT5yL/ygG1caU+6IhAH+K8cj8OUk7j6h1kLzrYOqubi/PSJ3TI74W3QPceIlBx6sYD1O5jfejpo7apnyBpjDdbqVcyo2DjsuUsnNmzjW/raUPvMTxlAeG82+C6mUOhUbKp8q5mUcem4GtysUy72u+qPuTPOawmH1Z0dYrjPrf1kE74CmUv2NeYvplKSqqLi1Ph/Pn2brB+E6D6eaxgsAIOkAh9p3vT5DGsfiGKVnv2kJeLPTKjYvmgWZ6kB0ZuB1noeR0Tr8jH5zLab9WBDUEYl5GJliLZrBmkf6MOGQCDISf4QhpZ54yYH0H9pI6WfkbAciw819UZp3wF+jpXKM78U2G5lrAJKvx6KH2uJMrJ0zjWIaykdMK/YNwPynEZHqpxWpmgs3e0Vw1VoRIdSp2FB8SAecIHtPSqd8lsC/sc/WBmj/tiywPbky1HLMpc5ke6f/a4m83PiNutmDKNiz6keyay8q72G5VqqaC+NTM7kvSjEOCRybPq6jldI56cugUKCY7c0zcrZzDQcxf6tvEfwkW2dHNu4o+W4T69/gS2a/HDpbZ8joGxod0y9sxvwbivaaRsZd1Dby8Nb33/8Uug9f/6+h+4zYPUYe7cP4My0AJbdvIa/wKg93vTaDO5z0XzNOiks0JyTAdAgzLgIi8YPF31WQOifClN/aY9ss05QkHzZtkHXmJGJMahamZe2yPFwdfpptNqL6wV8/LrQ8lAJA8EOZpjBxISwoXdCtFldyQkzqY/R+Uu00dB02RrLXENtg/G98Trl1DbttXrzOfdOcvI+9GzZAiwXMF1z9b9hB92rxDWnRprr29GeGzwRq4FWzptROr9q1eNnuGEyAAa1ceeAs7xMx3u3OJ/izWIcBKad5WM1FifD9y1o1ojD7uGkjLjp7ztQnhLooxgMY3K94YHEqNpwbY4dXixCU3LyJZ9N1xDFKE7BhNFTNxaH1RcenUvtKJbMdntftYwDGVFl9w8GNHIjp/rgJUAQAXq/HVJx227yktEWpGVyNtWvQMbyXVSo5ztcNtnPf0PPz8vA0fefUuRG8TKdiQ6vP5dsHABic1cVUJwLKIQp+LkmaJ07Fhpvrm5rSLbvc0hTmVGz8VmyyPzskJbUuV6awQew7UkNOnRUpgUgQkx8SJ88lMX1ZZRjjWh1uT0XqW1XDz9lhyH/leLT6LI6Ph1t/sb660IHd+NRNqCHlv7ZlDX4rp2ou1Juug8J8daGp23YXVi/E1Ez99q/x1ASeB6mcEoVVY64Eqm7TfdRVdGZJfWDsk6yH58Kp2CQ/jxSvMDOb//75/Z5QNRdW5e+W4gDAgJTT0KKvcP9OTsWGVuUr4NxYWX1LtDtOnc1u2Ju+kWhiCMS8xf9PpaVyf4xFx9gBt3dkbxjJ3c2scRzQ+/zfWnKXKkbiB+Uf2E1x9P7b0H5vAVVzIW16FL+RMa7VOcvD0fDzBHjlVpDmY2C5KsCug/w3wZIT0YE8dU4EdxTsVGxYfLmOlD/55zSut2qYjuzmtXkv6s5M5MjGZVFZc0Ss//G32d6f/oMMLe+zdjfi962/Y35iX7WbGstNEZyKDTc7nUTtefp4yCu8igZ9U3g6Ck+dFYmQWDbfvZoFcZXej8/pdm3GvdVYJxKU1VqYyB11EzAOUc6tOvgt6C9Wv/4juKPymt8nmvqTXFWIFNekI/pWttY4ASDdMlIcVXNhtl8in8OU7vWMAzj1LBsrpFYesGG05Rkh9bYOZLTtO2ZTNy1Ltsuz7QPmHt+OS8PY3l9SWHjHMXKf/jvpPiN2D9HvqQdRsueQKdwzrDn8vOUboHoz2EIQMs58S2Lc8L2qVeOOSD3DmqPzuHFskZ2so1XRIrvvzRkIGa/n2fZdXU2v5Xey6o1xo855V9/kB1W5xA97Rmo+N07avIwHr4zPZYS6m51O8t+hyd5QNRdSJsyAV+1acCo2VH2tguVBAgA8Shmx1FLkJZER8d4kq1aVdWgwvnu+KVuQyY7ueicdoavwxEn8qUZJaQb4yW3q9sRoNN8+nKtrEqhB0YUL0gH+2JvyxgQAN/pE8vpZMWhOxYYvzptRKSk+1WNFaD2cG6szqEbAB3dE8ece19VDxTpcXRdgqs+5MXacG2Pn8WrPT+RQxN8ENTcxF5ndmFNW6meCoab3xu9hPBAfa38bN9c3lZDSMpayg0vR4WPw+1D2NaNqLkmieX60HfOPb2dqLtD7cPcCG97yN99gTBu52BQmtilk3G74fZgAcnpMzAT9lThac9sr8aBOzorFg73/6nFSOT49smGktS1rmJhB438rRpXeG8eUR7uWSJvDxmLIxF2SGrE7AYpVeT0GPCmVR2iPT6WlSlJ0SpPzLhszZNMj5lkl0xsNv9D7sXz3HKkeh5e2sPwmVvR8zWy3dc96eC6iKzDmXBQIiH1F7SO/g78GbjCV51Rs3I+dcbwD4D71CLyAqOAxxqCQ+4Muzz9tasf46owBTJ3XXqrP9XqyNLnpm4lAZDhUzcVV0bI+tEvjhMa82Eaq4/TgEFO7CvPy4e2rlLleGtMAQNo3uvNs3/6HMatU3fzp/CjLMZk2jN1IJrUuh4NRy9g3r3sN/q8lot+RMwCAMalZvJw6y5ntnv/ruoCod1QfOBUbRh3LwYUn7Yg5FoMGX5lRZq8/GonQSelYs2sN8iaXrvXN/STtFPJHZtVOyof8Exrnh3EOZizT1wIrgZs4VkTbZuN7qzSn46xRKAHgguOmpKYHgKMqq5qLo2Ya8wyZuIupiR+6zBlyAJi/upsU71p/9o0fOHADWT+1QudDfQGwcdpt6Gi9P0pRXeu+o9vBORUbiqDb6CHpAEp2H7TsH6s+sNoXjUQ3hcZ4TsWGKw+cRe6bDmSUmg58GNiKC1bJ5pP2KePaEVKusml+T/aPlL77x/WZhhG5ECAa0FcGHrqX6f6N2L+G7jNi9xAtvlwPWR+Z0cyKDx2VNkp6vt2DGQBbLdrHf9FVL4ouX0aj5Tk8L581TB2wXvItKb3xgBu9/zbqztIlT37T2CKU97qu0pOxtA1PS+h49E6E4OVl+LVDkym6JDpwtwwzDwDpQ2aZNip6Thvoh1afM6aSbB3Wxi9zK0kqzD7ODhJ9dQSuKWf02wJxY0z/oY0U7lRsSJ0TgYzPmWrd2fF2SU0PABY3a2R52BVtgwBw2xWq54ZlC3C04xKp3uJ3JHuHjMcZGAshTAIMPMCqb0R6sVamxHSKJB60SfopOucW63L8HfPNEb1rXCocMDJ4JOkU+6X2/ERuPxHyNwNTudEnUpKyAkBMmx487d1IkM/EWrsP8IgIx5awlRxAAwACh+o3WGKdrfqo1oJEjGncEV+GhPH6AGaULlIn6Vv5KmK6DZLGLdl6iUROjwkKnb5D19lm592hO4bz55Nf6zZ+WX30A2BxR7099J8OjmLbxDb2TXMDge7hIdVf/H4lyYeR/hA7+BES2J0OQ+JBhJ4JvIVo3ZqlAIBHKpcCUEzcBe+mjXn8o2NnmvKhthDKm0hi/enGS6znQ4cfxdnx5jXWON7o2f/PcdKYKTx5CtrvLeBZoYLESFuVb0UNv0jAgJTTeDB2PA/zDGsu1dFnjS4IOzvejsq/ykAF5HSaypMY/rEy/LzfNF3g4Fm5Mny2NsDNOrrD+XJbGiL1SSak6jqcgXD0rHRTcnxu1Zbkm7LvvZq/XJOYCK/NCgdTsNpfbjnbo/oxLymMVLTJ4bQ4pimeZ2vmquDN0+E4N86OJoOYXfXvLZj62qAqlxD2NRP0FdT3ktID4LalC5s1wa4PZ6LoIU1qB7Xh75lzuFCM9j0A3Ocg7Xtiu0idTfw25A7BOFfi8qOlsMAn9DXZ8eJE6XacQC8ASCiLxrEnoix6Vq7M7cT2vWmtCurdyA+Z3RfASI0e04XBQ4/mSWkuP6GrmYeM3oNuVY7g6sAo7hJFZHoBcMfNy37uAv/BB+DTIxtbrnsiZOweeG1mKtwnn9eBxa58cF1KvyGsKn9WNRdEVXaRjPuv2D/Gdpe1bhnnVaP3ExDXpKOpDFKLFdO5Y/ro5tkYTi4cxP1Y1VwoPiI74L5P//10nxG7h+j39vVNhv8itdo1RNrUjD5fxMnceOBBKZ81u9aYForyqp7++BT5wK1qLu5rRtVcXOKpai4OT65qLlRJqiilERcmz6370PXII/KCmJcstWGGr4zISOHuGJTCzGwJWUs8aBr7rfgBtlkuvlwH2HUQnrYWAMDRpwgFjfIIGrbPVF7I+N0IfImBbNSZk4g1CatMcajO9J902sW+zYtmUjWCxqU20gZmZAbKrdeh61PnRCAt4uZdHfqMfUjvMg2qmcb/ohNTsS6bRn8i9e3N9U31Q/U1M6iBsT7ixkZETqGJoRSp6NRprmIGgKsBiiS28ZfXPuU3CGI91v2xxMSAiO3o1WuIZf8BQO6bDsw9vp29L3WC7K78ksJCXkb8huVSn9dYYlafIdusBn1TcPwdB4+/uU11qY6pMyLReOBBnr5q6iVeJoVl/dQKnttdyHmXfVu6SSbV32v9ohD+VZypb0h9zXR4KSnheVv58KPnWgsS+VwyxhH7iG5yRHIqNq7eY1wvKI/CbN2pfLcndAQ+et/y2zhL5tlYvtU6Wr57DpLf0Zm7MalZki9AMb1Xndr81sipMERAAFD6HcHaTGuH1E7FhuKONrdjS9VcWBFaD3nddaZ3ydr5lvMkZ3k4CiuzeOLNrtVhUwx3x6QVFxTgZqeT8IlnbbrdrZ2ktuy9MZnHb/ilbNNm7EujtsMZx0WpPkUPafCfnIjYtHR9vJYyZr0dj2DzwnmoN53tI4TcaRwLMa26SvXP+siOtWt/RIvpcdht80LtuYn4KVe2cXQqNhx6bgZnxI39YYwrkscmX17eqOMPmNpPmgiALtTh+6N/E2RHXpf63Dh3xP8ZETfQU1DFLLelIX9f/dBFrl6rai4OeqFqLo6ySHaZRFkf2VGUksZ/FxcUSGA6VuOxMDfPcu6mf6UziUubyyBI1ZYlSW17pWk0qvyyE0VnzvA4F4ebhWONPtC/05pLMvqpeCNZpWcmUudGSOsHado4FR3wy/jtnIoNhV3bmcK9gvzdfndi6gEGqy+en8R5NSaVqRafLiqAVwuzhooxX2MdaA2hvZ5IdOHQYrq+Tv8n0f0bsX8NeZSUlPwvoEPe00ReyjvjUXh76CAB4kHSapMlMi0+IYHcbkPVXOg6bAwyH/fktggnXnRwxCZjWQBwtqgAQxvJcLjGg88bmS48WEGuj7tFhL+LbsXRstzFudMBK+91h8QIGsv32doAq4LX3bFeYh94tA/DulU/SPGyptn5rRblA7D2pi9pw/24mdpYVvtLn1vtGoLBAXs5Kh7A1HQGPrDT5JzUXR5WZbmLI/btums+6FnpppT+5PMOvhl+m7MDvf5+GhldGaT/qWccqP9tAtJ/aMMZ1TuVGbzbB2kRN3mc7A/sODZqJtrsHox9ET/hwdjx3HGq1UHVyFjezebkjikN+GUigp9LwuUh0aj2IzvQiN/+3Bi7hHTW/q1Y/rusfrSak0TeTRtLzATF7TR+vMR89jl8Ac/UzHH7XVNnRaJC7etoPFB28KlqLkw+1Qo/bbfjjW5/YMaX/TD9te8wJaCdKY8X0lOY8fpd0p3GWcGAKGz/ltk8PH+iPVLaFd5VngAQ8Ndobn9zrX+U5LxcLM/q4ETvrgyONrlt8KpfD5e+r4JzlyvzG5K7HTdW5Zf1Toxz+o/mqPfoUXjVr4eiU6f/oTKsxpC757upHwC8nbkXS885kBFxA562Fjj2fEUEj5TVr6dmJnOESnGcuqunFXls8kVJl3xTPKu23ak/T7zowJWQQiTEfIGRpWpwP+UmYHAjBwq7tOPq469nHEDnisU8/Z3WP6uw/Ncc8P2I3RB2HjMOPmt3W6YTf3s38sOanavdtudu1mIxzEh3m9/d0PEpDjSemiCtdVb1AoDJp1phWn0duVJ832J6nMQ4EXU6cB2T6xy74x4j/hfPIkQfZ+20tAdMndfedKN76lkHXK/NKLNPvH0VFOZruP5opIR4qWouvHKyDUekLIvczbc5lxSsCK0Hr+AAjs5aZvq+w3G1SSXuyDt1ViTqJnmh2BuoPc8MeiSug9RnhSW3sQV/4NKlS6hWrZopzb1AdGZ98M84eFf2uXOCf4IKC27i74dn3NP98c/S/Ruxe5RoQXCVqjI5FRs6j5OhwN1J+o4+JxsVb/xhPkIm6E53r7SU1UqMZdbxqszD3ElZiQn7IjsR2T+3stxQTj/NVBi5dDHpgCRdNTKTtBAtMtgeiUSoUmKdxPSiPZkYJ/2raJ7fzd4RaPiFrrJDdnmq5kKEi92A+E9mN5OiITeVETR8H097tdTxJJVDapui+pPxYNWwbwom1zkmtS342Z34+9NoU3sBcDUoAByG+G5J1VzoeuQR3rc9K+kMEiHRERN24kUHxrzwIoKG74P/WuZgmJAkM7ostHROaTw4q5oLaRE3udNKADg2it1A1HuUqdiKTFjRQ22ltMZxRr9FR7zG8oyHl6uDonn+BG6R+DlT8Szs2k4SQohMl9O3Dfa8N1PqP6uxJP43btwAkD6GuYVIna/7XItp0wNb58yR8iYH2iWO1pYHsKxH5qDxwIM4s6qZqd3JbTwR/MxOLA9tgOR3ZmJKQDt4tmoufQ9Vc3EmTEyb+ZGsMkYOxo3UbNsIHo/iTvt0Nm93SrtCeAc0ld6L+Z5+SleRBIDM7jrct/8rKTwdoa8FbBiN3F91VVD/VePRImGY1Df93pSdkQPsFrVKz0zOhIllGudT6gKzHzyKQ2ivquaCd5NGPPzUs7rqFD/UT3Kg3qPMvkQESBDzFO2mxBtGq//03GXEGP68qkB20G411sTndwPaIrs7OxQVu45ITNjJ59i6FF1Bh/UWhQWeFZiKOKHmEnn7+Zr6cF3zNfI3L1VpdSo2fJuzQ2pb2nf6gft6X/1Gifqz4RcJCJm4izNhAAPUUTUXNv4wn9evc8ViKV+r9luti2KYXykYUe+IGM6EnRtnl1xsAMwumvItzNVh2q3KbT7P7C7E2F9i/ag+D8aOtxQ6hCxm+fU5fMHUFnfzjJ5vBTG1PtGHHADTDbRTsZmYMNHRshUTljorEltbVUSrz8wuGiif3Lccpm8Qv2UFPCtXhqq58G0OQ3K1+ZgP7sUbG3EmjECBRh3Lges1fb/P+Cxa6gOqc2E+Uy/9c/rXvHxCNBaZMFVzYXW++ZZQ7BeRhmV3xopQ5ibEigmzTL/roOTwOmTiLtRclMhNAIwkCqP+rwz4/590/0bsX0P3b8TuASLpQtP3PsCYvgnY2qoiVM2FsKSh8O0vAygcf8eB8G7HcKnjOdPEvpNkzoqpskp39s8Q1HlY11NWNRdafxyH/ZNmlCnNFfNpt68YyW08TeX/IxLAEy850PDzBFx+IhrVliUxdKZj6XclNRTrdvopB+pNT4BHu5aWKI90YyPmeTrOwQFRqDzPVs2ROrIGB9Ywlue/diyyes2zlGjfqR8yPrUj8BXGFORNdmDEkL+wKbyyKX7OVAeOjjNLCKm8bk+MxoZlC8osy6o+p4sKMLxRhzIPNSefc+/rzat2LcQf3ISeTSK5HcWlodHcN5axHvS74tb6XFWOwj8+F8zbPijlJMZUZ8z1mYl21Eu+ytUOxb7r2XmvdAs3IOU0VoTWM5V9YU0wavZOk8oT23sm1s6hxsVx7u5gb+yn9C+iEfRikpS287hx8FmzG1MzkznoA8BUbpq8LZd1N2SUHFvNx4LHorhtkVXenpUqofjaNWS/b+eO4435WaUVywqdHSc5pS6rHca+zPrQbrInMcYXqax5ZPyGuW85cCRWnyNp37flN3F3288Uj25nrNpnlPZbzfmgZRO5fzpj/vaXJ6LaMvP8OPWMg0PJW429YdmdcbbTNT7PrG7kyvoO4V/EoaDVDQSPMPdJr8MXsbZlDQBsLux9i62L6V9EI2PwLLd91+3QFW7Po2outPw2jmsuGN8TXesXhUq/74SqueB4YSJ8LhVh84K5slBlYBQ/2Lrrj5hugzjwjzFOpwPXueaBu3lsTOPh4+NWBY6INASM/Xx+dQj8a5zD8oCNPPxGn0iTGjbtZQD4/kR1Ct0xnN+Cq5oLkZNjuUsCq/nY8ZkJqLxip9SmXsEdUFxQILerXHk+ZqzGxxfZiXixqXsnyVb9W1Y843PqrEhkPcJurOonVsMp+2XL/eZuy6n8d10UPHiGh1M+dzvHRe0aAGi6qyKyI68j9w2HJTMKMFAhAqwx1kuk3vaHUZiTK4XRzd351SGo1ScVl+KDkGT7FSm3ruH5prpLjP+kG7GOq576t9yIbX9k+j3dH/8s3b8Ru4eo6Vu7+KbhVGw4FL0UL6UfllC0UsbPwKWOOnQ4/T2rmaXaquZC0FImYSu3pSF6PPYkQhbLAALkvFgMS2633GS7REwYAPQYOBLTsnahw4H+kp67SK5ONSyld8Yw4wKsai5kljqxrHmMqT0lfjYLXs2CEL/5V95uorTF7EZFcmBpkHDVm54Az7DmKEk+bEoPAEFz8/kCTn/1ZphR9YoPHEXGYHaz4hUcIAElLLpcDyFjZB9XYjm92zqld5Q33TIREwYwA/tN4ZUtJWgi0AmRV926vDyvLXultojPIkW8GSv9jlr3vFRvsS+ojQ2+Zn1iBZcef3ATnIoNHZMv87DL/XTYYLHN9D/9y2jJXolAJibVTuNxCCpb1VzY+/ZMeF66ZhozYt9RGDFh1CZVY3ZXNXunIfsDu9QfvTv25Yb2dWfqkstFl1ker5xk+qJ0Gyn+Gcs1MulOxcbBcaYEMBsGx/5bOLOqGWfCKJ4VkRNvqtOtv5pITFiXg8yhes5UBx7L6IaOz04AAFT+VT+YBQu+z8idw0+pG5G2qB2avilLai88aZfq0mPAk/x5amYynIoNHu1awqnY0HhqAr/RVDUXrg40o93RO6dig2cl/Yan/YNHTXGsiPezhwf/LcbVXmZS+N5tndB+Z3Zrjd6T50jwk3stmSR3JL6j2xmrA6PIhF0cYTeNCadis2TC6F3iZ7NM89SrZk3U/zYBkZNlp/JiXyTubI6S27fYmF7QHkWnTpva82DceP02PzKc22c5FRuUzxLwUnt2s0i3kXSzT2ibAJsLVH6jDUVuhT8AA1Wg3/5/jkOn/nul9zM3djetp5V+128Dqv6chPLrdpvKqPLLTrhuMlXqc2PsGJfbATcejpTW+CIDuIE4RjY928FUV4ozLLuzaTwBOqBOz0eHS+88IsL576Bh+3BhpN1U31p9UnGp4zkpnJgwm6DZHb/5V26/tO8N2XdYSoclSFvE1Iw7PD8RtX7cy8dJ4MZRpnZUXiHfqjgVGzzr1YGRHt5/Qopn7BdiwsS137iXAMC6az6mtJH7Bkp5W82vkIm7EPD7BGRNs+OU/bJUX6KymDAAiHY9xvMmJox8JlJ8qzMFjf/zq3XUT5EJA4CdSxiqbrEPu5tw7Jc1h1TNhZQb+g3x1XUBuDowCm9n7uXt6HigP2OmDEwYAKzZHQ8A2N2W+Z5sWYsJGAkZmOo97ZDZdvpepZISj3/L33873b8RuweIpAt+M6egedxh0yK0Kn83fDx0YASRpmXtMhlOU/o3Ml34IMDm9ibJatEjXeg7LYj5rzlw6FlZTdAoZaQy/FeOR1ZfWXfbqdgQm5bOfXy42+TpNgGAZGPm1bIZhv62AYubNbKs69WBUTgX5gX/D/dibWaSpYTuZq8IbJk/17JP6DbnbqVrxrzvlsQ0Rsmpd0BTFGZm8zhvZ+5Fhwqe6NXsAaw9tg29gjtgbZq8CRnzpne5bzjg+/d1nHBU5MbsgHz7KfbjI2k9cbPTyX+oDUaGy1297tQPgPm2gSSod8ojcnIsdk2TbzfTFrXjalqq5oLTtw1QuuyJ5Vp9P5IiL83dIansiu1010Zj3lZxjeGeYc2xdv1PZc7Tmjtq4UKH8yY7TQBwHroMNazaHetWVn2tDq3u2nU34SJlTbPjgS4HMb/xdh73gQM38EtmGzTom1JmHnf6VgAQm5aObyc8bnJNAQAr8pIwwI+pN/X0j0LJzZtYkrsD9Uq/67NaBLYtiOBCGOOaYrRrOz/KjloL7+5Gs7BrO3hvTMaZVc1Q95FjAIDMT+wckh1goACDqly6q28glmn1rY319/DxQcnNm0idEyG5JwGAmzERHMBD1VxYVVCJo1ga+5zml7vyRBs0QF/TAndXwAzfJMt23PqrCcp3z5HCbvdozx00/6Nrat6KlvAbcBhp30Qh+Fn9e3kF+aMoPeuu5saMnO0ILFdFanvHA/2578tFx7djTLt+HKTCKi/xtjnzIzsCXrO+AU6dFcl9bqmaC2Ffx8H3Y51JuLw2EFe21EeTpTkozMt3uzenLmgvObyn/MS21t5RE+c6XODvaF95N6CtFGbVJjGs4tb6WBmsWsa901ygOvXsPZSjpt4p/p3Gv1PRbZPF8M5jxvE93mr9MOZNGhNiv9G892rZDEWHj/E0n2Yn4ZWm0VJ9xLZEuIrwfr2DUhilzVjaBs3eOMfVg70b1EfhSSaU/E+6Eevwx9P/lhuxHY9+d0/3xz9L92/E7iE62HUJAPOi1P+BgWj5bZwknSISmTBVc+HtzL3o+QizqxiznElVS3I1y3ytFiLShTYerOmGzDugKQDA9yPZDxKlcSo2RE5mty3pP7SBU7Ghxbs5lgvpzOAgk0RMpG8vNIHPmt24OpD5IiEmLGuaHUWHj2FoVf1mMOsjO3durWouVPllJ5Y/+QWKb9yQ+kc8uBSX95DK9gry5++TPp3FwwlqnPIAGCMIAGnfRpkkvcbnfkfOSOFGondb58zh8Phpi9pJTBjAbEC6Dh+D4isMOre4oAAxD/ZDi4RhUn6EJEZ9e3JlKOp10uC5bZ/EhKmaS2LCiNZcq8CZMGN73NkTUXliucGLY01xvKpVQ+Od8m3f2QlMsnx+lC6RLUrNkOKUxYSR3U+LGXEo8jEfECUmTLHBoxTxr+aOWohp/qC0gaqaCyde0m0qyEno0CYPuh3vxn4CmGNu47hu+54Zzp7ySfuW3SwXHzqKL87rfthW5Mmqazd7R3BENSMTlv2enTuTdSo27v+GqOmuitL6QePE6tAf09nal40VczniGJP+tptq/t5G8p+cCE+PEqne21pVwP7IH5H+pW7HeTdkXAsBtqaQbZGRqngyOyinoqOvDW/UAU7FhvCdT2BzbjDqzUgwuVWgMkSjelVzodZC3V0HQb+L9RfrViGVHbLqPqLbhga8KqNqzg/xl5lqxQZn/xEmxix/koxwS2kyBdcnTsWGs+MFH4Gltzyi6wOqu088u7H1bsQQ8ogJI1qep9+a1lyUaLlmP5bRDarm4oAxALP7IcGSkQm7Mlj/1lMD/zD1lxERGADXlCDy2qzb4C3P05mcw3Z2uP+0549S/KL0LKl/KC25FhEprklHOBUb3svazeNV7pmJ42+zvh/ZuCPSvvbleVmRqPLbMElHXyUbKIC1OesR3XbUqTDUR5Gq9cqA78cJHPl46pkW0nuqn5EJo/zE+i3z3yy9A8CZsBOCSw2xf1TNxW+dAKbqS34zVc2FXgFm22ZVc/F2iu/IGXX4l3FYt2YpnIoNxwuvQtVcOPWM2VWKWE9xvovrUPeUh1m9InR7enpPtoBiuFXeALtZ29XmF850U3ya9/F//QwAuFrMzhStyleA9qpe5+bzYqW6WjFhRJ65FTB6/RYeTn4y73btu1eoGB7/lr//drp/I3YPEEkXLqQGYGCztpZx7kaKZ0WelStjbdoOvqiI0k5j3lL+nl5AcRG8alRH0cVLZcctDY/pOlCC0BUXS686tVF09hx/R7d89P6RI+fwVI3cf7h9d0tedWqj46Y8bn9nrD+RKKXO+Dwanrc8LG1ZrA6kYp4RriLstnndUbJYFt3qGYHy68zw7XdDRokfIWpZxbmwJhg+82ph2/TZ6DJyLIq9PeB5qxjlNui3Cqnz23PVS3cS0Du11bNCBRTfuMHDLq8NRLVeGXg2/Si+CWpumbdIqTMjkfUou1n1Cg5AwLJ8fOe7E2uuVUDvSjfuqk7it6+bUIPDbovve7d1Ys1eXdrb8dkJqPzrTsvbZ5EyPouGsq2YuwIwjgt3bbvZOwJXG3hjz3szLccUpQeYzdz8d/oi4ctZkl0fvSe7yrL6UdVcaDEjDkfiGFN+frQdtRa4t9dylwfl79GmpSTZvtP4tvo2JG0GrO30rMo1HhjFeJ62Fih2HXFb57upk6q5MOuiL/dRBQCNd1bG8agCt/EJZQ2wtslxV2fRLqWseSSmuxkTgdNty6HR+9b2LMb0ANB57DjOeBWVFCPGl+03WR/Z4W+4sbkUH4TqMcyOKXr/bSxxRVmqeRrrLN76iUR2t8Y+a7YgljMtZa3No47lYHDVC3f8hsZn+mYAYwTIIbKRvspOwEtteqPowgV5bIYEotEPGrIjGRjGyRccqJpbxNV/nYqN37YBOlJp2tfRyBw4C12HjTHd0N6pD8mmjuL1CoiWNDus2kv5qZoLK65Ww4Aquvofxekx4EmsX/G9ZR9Sfl0OFmDFZ91Q8/vEO85loy2qsU0ALG+OnAq7FQocuo/bq1rVxaqOVEbxxkbw7JpbZnyrd4SECQAxLToh/shWAExFveTsee777U5E9pSvZxzAh4GtpLLEMkV787KI0vwn3YjZ/3jm33Ijlvjot/d0f/yzdP9G7D+AvGpUt5RCiiQ6mBSpuKCAP4vSTrIVIQraPApOxQZv/1IfTsVFUDUX8hYpAOQFkOqRulCXfgLgTNi1fjJCGACJCQOAR3wjpPerWtQGwA51VN7NmAgp/9N/6I5P3UmO3L3Pjm0m2d/RYkl/5ABblFIHvpTEmbCyJGkA0CuISfo8NjEpKTFhIt3sHYFZOdsR0/IhyzoD4BJXANi8YK7p/celkvzjbzPblctD2AZ3o0+kSVooHUam6oc8j3LlpTY4GmSh0u/M8Wa59XvgE78bmxbPh9dm9u2X5O4wMWGidJLogacnWLaJntdmymheia1XIOOzaHwT1ByXhulIh3wMGvL50TmTo4gWpWVi7bEWcCo2/H1FRgukfFTNhYdGj0PeCt2Bt0g/NN0ilcE3wpOn0LNJJM+n61vMpxgxYVZtB4DAl5NQ8Y9dUDWGGGpJpbZO2T/r6HS/z/oateezcTfkKLu9nnNJgVOxIeD3Cfw7XR0YhWlqX1T9mR3Ihpe6mBDbLvrYE0nVGDLerZ4RWHy5DmfCTrzkwO73Z0LVXEidE2HZLjEPgNmlORUbd8Zesu+wtC64YyaJxLFJDuzj//qZxycmTCSvIH8pb/FZnM9E1/yq4OQLun2XO4ZcfD65MpTb1GYsY3mKTBgAfqB3KjZprlL+om0iMWHwNDsWFvtI1Vw48pQZDVbVXDi5MhSpC9pbtrvyAU1iwsRxKf4XyyUVRKdig5eHJ48j+q9UNRc8q1ZF9Zh0pH3PGLWk1uU44An1t1fduvBu0ggAuxEj2tv+Z1iR6FhY9A0l2ilSPa3m7MJmTdBlxJg7tlHMB9C/GQA0fjdBWisBxkyomguh5Suh6MIFeFWrJu9dqRmY7afvAw2+TDA52SYmLDYtnSOV1glie97dMGHpX0VLvwnYhPq6+MYNxHR/HKrm4n1Htqun/2guzYFeQQ7MCQngYSef022Q1q/4Hv7xY6W6GOuzKbwyan6fKIVJc6u/bhe+/RsdIdB4RqmfyFSkY48+gW6HrvB8/FX2DQOHMqO54mvXTN/U3VlHbCcxYV7165nmNuWTOifClNfkrav073aRqQJHvBmLNdtXInyrzoRlfmz2LygS2VMSE5a+pI1pft+MicC+N2eY1kKyWTO2TdVcuP57E9O7+/TfTfcZsXuI+oWEwysk0BRedPGSafMwEi1qgPsDEABpARIp/aGFAIDCrBxcGqofihv2TeFxgnf78LwD/hqNkFHJ6P74KJNkbtt0fXH29m/C05BzXncHBqdiw9m2umqVT/xuvmjf6hmBfRE/mdoB6I44xXCxPlcGR6PRe/KBhSh85xNwKjakdFiCBw7ckN6/kemSDgxWtCIvCc0WxnKJ3rrma+DVLAgAEPTjRMS06MTz2zJ3LiY26YiiCzo08YmXZMjfxu8muP1+qubCJH92aKiSy9S7qv2YhOz37ZbOkQG2GYqqME7FhpLbt9BsTzlkf8Da9lVD5jxahJp2KswpKwB+4Kdw+lYRb8iAAlZQvMYDep/UXlIe6U8wFdDqP+igBoVZObxvnYoNWdPsuP5oJKYEtJP8z2R0YWN2+d72UpniWNi8YC78BhzmwCpiPCuitCW3b+FWT8aYTK17WHpvJRQxjuN63+mqu12H6ZDkZJvW9PEDuPAk638ChACAH5sz5pcO9MFP6X1aOf8Ggp5PwtkJduRPkkEk7tQ2OsxVSjnJnbQCQMPPExDTujsAprZmld4otJl/yIG8FS2REXEDXsEM5OGF9BTefqvDlJE5nX+JOSg23sJQ3EvDopG3oiWyStUr08c0wIAUMyiFVdtT50TgZLQXGnyZIL3jh7OF7dA/vbtUz/Av4uCxqSYCX0lExqd2pHdeZFmGWH7KxBnS2Laqm6q5oOYlw3/VePQK7iDFofFBf5efMN8aNOibwlXOPMOaS3mv2bXG1P7Wu4YAAAI3jTKNVeO3dSo2NN5Z2fTeqdhQfOUKvKpVk1wOiO3/IjsR8fv/4qAEVx44K+VrRaIA5+hYs5sIcez4DTgsMdEAsyUstyHZsr5imV4tQkyO4MU2VFi9S4q//ZvZKCrR4fGLLl9G2jdsncn/raVUP6u2iXnPDA5C4YbGUDUXdrX5xTI+hYmMfNDzSdzliXFe0+/4v36GU7FxkB+CZq/36FHc7sHWwIANo5E5ubWkStjg6wRU/rsuLztk7B7LeVrW3BLJHeR6+g9tpHVw237GIFbpmYlXamXo5Y9KthyLxv4ddYztA+T6gfIlRpDKIrCaEy/qDCflJ6riEk2c+TRUjfl1JKq1gAnCft2iz8GASWYQKCuivhV9i1Jcn/jdUn0o3MpHKbW/Yj/ZXvJepvvw9f8aus+I3WPkce2G9Jsm6dY5c6RFysjIiGS1yJVFxvcEOQ6AH7Scig1pETf5gpLZfQEA4K+fmeNfupETFx2AHarp91v+ETyO6C9HXIBF57oA+KJdft1utJjO7OS8QoOldpd0yZfKJKLfQ95aK/2mZ6dig9LvCH/e1qqCVJcPAtimR9J4Y96q5sIAv2g0fSMRZ8fbeVpCd0wfMgtpk1vwQ5ZYR7JDavh5Ai6vDZTyFA8YJ150SL/pP4EEAOASZavvfMp+GWvTdiA+f69U92Ptb+PYqJnIf83Bv1nw07INjFVfUvmqxmxkrMZk3oqWbsfn7c4n8Eam+WbAqpwBfmxT9J+cyNX9jKRqLoROPo5me8qZ+k8kz+2MmXd3MLJiHsqv243nT7Q3xbWqrziOjW02SsQzPmVjpeb3iTg7QWb0y+p3j4T9AIA6sxPh+7GMDEjP3g0bQNVcmHa2mamdVwdGSWhequbC+dUhKDpzpsw1wii0uV1QDo2eYCprZFP6ZVCo6eAfm5aO2juYr7ReQQ7sm6zf+iwPbQCPiHBeD3HdcCo2JH0yC34DDsO/HLPf8X89EStC61nWU9VcyPqpFf/+IeN3o7CyrnEf+PNEqJoLMa27o8vBAoSMSsbZz/2l9MpnCaj/DROCBL6ij+vs93XJtVG6XtY3ezb9qBQn65E5KC4ocNvPqubiUPZiOl72vPZYu14XRGUus5nGmqq50KBUcBY0bJ9b5lAk8bZIzAcA4o/+DYDBqRvr9WJTM2Kgqrn4NzXmRdS7XU8T43StX5Rp3RPHBIVva8VuYC8/odsktdrrIZUxPjUTi9SFWHxW90sm3jZdHRQN70Z+AIBXMw7ycuh2kDQOCOTDt7/Z3QnAmKjMZcylhthOVXMhd5evqW9ICyH9q2hepqgiqWou1Jmj30JxocJ8/TbUuBaJRDZ1md0WoOmbiVx41uvwRQA6wqBITsXGgItKKXSO7iOsrPOFGD4+VfevRWOO8s56ZI4ls3d1YJQpHytmf3BVJrAUhVFOxYZt3802jSGnYkPDLxK4nRtvn8UcVT5laycJL2vuqKW34YUkeNXWfxv3PauwggfP8HFjtXeSb1KK7xUSyONkfWjHsOzObvet+/S/QfcZsXuMyCDXOJndMVe0aXn7NwE2+t1x4aT/4s2bcRFQNRdez2DOl4tqV5HCVc2Ftu/GylJ+yDdyYr1UzYUSR2tTXcptSMYtZ/t/aAEiG4qilDTTokj5EAyzmC85zjVu8GJ6eg7/UnZYeWlYtIS0RXDzlAcZGC9/41Op7fQ/4FW2uVZbloSr6wJ4HfzidQCPar0yLOulai7U330dmR/bTd+VbikI3EMkp2KDd0BTOFP6AGAuCkQ1JKpDb/vD8P3IDNjQq9cQXg+StFp9o/SvoiUoe8r3sH2paXyK+X8Q4P72oMX0OKk+Vhu0qrmgJOmqO0WnTuMbRZc8nh9lt2TKRHs7gmAX6z7nkqyGCwAp7QrZuCq+YXqnai60+lwfL212D+Z5pc6K5PWguPScPlS/DUieMlPKz/hsOpAvcM8YqpoLhScYJPLkOsxGxzNMV+e9MUJ2Ehv+VRxq9dGhv8tiik8/pQsEQsbuQcnNm6b6Tr/IEEzPjWXtnhkcxBHaiq9dQ+8Oj3JVNwBY98eSO85/YgLEskiVjMKdig3+gw/AqdgQE94Fl9cGIuPxWfBsHQqnYkPQC4zBKTpzhvunq/jHLolR8apZ07J8EnIUd7QhZHwpqEUpYJGxXjEtOgEA3jwdbrJ5tGqj6CyeiNZlY99mxcgIggFP6OPbatwAzIeWU7FJzKRIqubCS+mHTeHi3HUqNsmnFTnwBpiqtXEer/tjiakeIq1JXmcKG/C+alm2sa4Ac9WR+BnzZ5b/W0scaCsDv8wJCcDwRh2QsKAtTxP0vM7gVlmexJ00fxIYLpV3Os6B2DeeM5VLYEii0+OUiTPQaIEX6s6SwUucig3+kxPh1SxIqhepqQY9n4Qejz3J60aqnUYADiJSCXcqNjiqpqG4UxvcXN8UXqW2MqrmQtrX0Zbrhaq58HzNbMt8+T6Tz/btASmn0fgd2Ubx/GjGbBu1NsT0A6pcdvut3Qm9qvyyE0Wd9XUg66dWcCo2tN3zuJTOnaDDuEeqmg4iJWrwWNHxd8xzjsCPqJyic+fdrr/u1qtJ/lHocrAAvSN7S+PBq05t7LZ5SXGLUjP4e//XE3H84xCd8Z4VCQ8Lh9f3Kt2Hr//X0H1G7B6iaw+3N0kB3R1S0ha3ReoMpq7oHz8WhVk5UENX6/GjdRuUwg3ssC4uaCI0OG3mJ1/Qr/ZJ71l7sArSvm8L76aN0SuGqfHVnZWIClm6KopxoTRKjNb/+r0JwQ0AyqtmlCftZVaH3lF9TPlmvy8fbAEgYP0YvjgWdm2H6oPPmaSrFF/VXBzdSyQx7sEXZBubpE9mSb+NoAb1v2Wb12OusaZN0Pi8o9VvPIyYSXd9R2PAc7sLAZMSTeOADIwLs4+bNoezf4YwxMVQZpAsOqsW/1v5OlE1FzIH1oBX7VqMYbZAL6P0Qc8nYUvYSimt0c+N2BarskQGxanYuK2Muw1Q1VwInROHhY23MWnkAN0ekfKqu+u8qUyvOrVxKT6I/17351LTWCJ1QOOYAdjt3M3e5hs10SZLVJ0NmbiL3xiSn5mYNj2gvepArx6D4VRsODfWLtXbqp/oHdnQxXf5BgDwdiYDTfCsUEHqZ2NfOX/WDfyNTtoPPq/bLihJVaWxeGJlqFQX0eGs1SHFqdiwqkVtOBUbas8zj1eA3Y7TTbo7wYMxXeOBB03hlX/d6XZ9jD+4CdV6sYPO2rU/uj0kFjymj5vejkdQdOECgxhfb0Y/7OkfhVs12Y1GTJseHM0UACLe0JHS6Obw958fkPpFpNR57Xne+1+dYWr3r5t+hHfTxnAqNhR3krUMxDpZ5W0cP5PrMITGpm8m4sKTZmGOU7Hh86CWXOXRSmgg9oVTsaEwM5uH+azZLa1hxvLFcSiu10YiB9JEub+GmdpKJN7e+vY/LKnDieR5S18Tbjn1PrciYob2vTkDiZ/J632z+bFo9NghpH8VDe+N+s22U7FhwDfrpbhfZOt7w/kvSx+EfZhugjwS9vM20BqcOIYxjqkzdDAgQuYllflBVS7Bc+s++PTI5oASYV/HIXOg7Gjbs1VzHH/HYfoWVsSFK+V1lNzOY8dB1Vx8rzvwkmzjVD+xmim9sRxxTBjL9ihXHl5bmIZGr4BoeHqy22sRUbSsPIzjzanI6IhW7e3ZeyhUzYXXBy93G8+4nnm0D4ORnIqN+2405rO5bU0UX7gohYu28e72+zM2b372ynpkDn47aL3n3qf/XrrPiN1DVOlPHRDBOGGJQSGqmlwBIXHsaj0rZh7f9Eh/+mKwbhfk3e04X7AejB0v5ePdRPfDRTYVVHb0qxOhfJIAR3AmCrOPo9h1hNct70vdOau4wKiaC9Gux3g4AITOjkNck46Wm4G0gYQ1h/IZO/AV5uaZNhLPZldNB7Dgkbq+uffGZFyPCua/ReAPp2KD/6rxuPLAWXQdxpi36P23GbPT2gzbS4uw7UP5hkxsp6hyIB7CjdQr5gmpzk7FhhV5ScgwwDGLRKAfJLGkMo2HYPEQR++MB27je1KTSfsmypTfSyfaoumbiSg6d17qf4KbNlLKLR3t6s3T4Qgavk+C8nZH4iZqPMyJbbV9FMfDj//CJNiN32GqJUOOaqi8Yie8G/lJ7cztXVsqS9VcKDp7Dqfya1r2obsN0niwJMfM4vu7IYKHLjp1GsonCSg+xNTWas+TVZGs5r1TseHBg/1Q/QcGdDLhueeRM9WBdwPa4s3T4dw9Q2xaupSG/j9fM1vOUzgYAkCHA/2hai5o0Vek9oiSZZFZuFO7reb4uTF2PJt+1CQgMR6CyOm5sQzjOmA87BnDAea4Vfx+xvIIbAEA1iSsAgCkjZiJzB5m6Pt1WTtR8YV8ALo9CuUr+hEjavpTvtuDr+J3XmqTcYxV8izPfQt5bt3H2+Wxiam7jcvVHRQbx/H849t5WOW/60p51/zemjkGgLXrf4Kq6Teaxv7uc/gC77/UWTJqaO4b5tsSq7kjrtdiPON7VXPhiOMHKYyeVc3F7a8obkaXhZbt2vOeftNMAj9383xN4p/8Pd3IEzV9i33fjEGzTOkIYIqIHCID4GiTSDrAy9zx9Wwpvmh7WbLnENuLbupHMvJZ9WYdtl50PfKIqZ1GFWUAKD5wlN9uEVHbc9/SXXOIY4gEr07Fxu2aiDqNH49evYbwdIub/K23Ichf+nbuxgIAFHZhN4oikmjxjRs42nEJj58lCGyt8r3Zy1q93GrdFMNK9rGb36XN2V6ROlc3k7gwUlcv9W5Qn/dLyZ5DUp5LS+3uJtVOk/L2rFQJToXZXhcXFOB2t3ZwRx0P9Oc3q6rGXBE0npqA/a/oAsh+IeFu099rdN9G7F9D9xmxe5DETazE0RqqxmwYiFTNhQZfJ3BwBXFh2vbdbKiaCzWW6AcEcdH4eybT2z4dx4z9jTYjYn7ew04DYOhyquZCWLInr9v+yB+l/MWFjzahnOVsQTHCpgNMxc94kLr46W1TPDEOSceN4WI9yqt7+LuSfYeRM1VnYButZZDw3psY80YgDMOWr+ftTvsmCteKb/FFuP631s5dnYoNu21eSP/C7NDR2B/FriOSPyiA3bAUXS5vakOXkWPZJtBFd9xZ/EAb6XDjTorXq8dgU/9ZHT5Kbt+CqrkQ/OxO0/tD7Yqhai5+4wJPL1wcbkfVn/T6i/GfGfU0AOajilQwskbcvUeM0GRvqf0AQ6uitpLdDgD4T8yX6vBjcwXVt9fmqkYUT/mEjbc3MtnvpVdqQ9VcCBmnqy+Gfxln2Y8Zn5aNlGU82Hd/XL8B7DxmnCm+qrlw6lmzOkxJBxt/TvtaB8ehm2Dxu3p8pyP3VfxjF5pMYX0iInPODNZv+8SyjQdiOhhSeJW3zb5+jIc0Y7vhKSOCisAITsWGyn/XlebCnvdmclU9qzrSf3JoytttYW9kZK7EcunvxEsOSeXS2AYrJsmYt7Ht537QGQB3jCHAxhyBzViVtaPVb1I+F0baUdi1nYnBNM3ZLmzsz22kgzAYD6RjGjPfV+lfROO3oL8s8zL2KeXjVGwSYyH2sajaLfq8AoAWPVMZo1gq3LFi5IzPquZCxme63Vb17azcqZlmJ9zGem5sscokuFE1Fy6OkG21xPobQZjcjW1Vc6HRBwnSjU+5LQ2lOMY0Utgha9hzihsT3kUKz5xjVisnNVqigPVj9P2423HL/EVSNZek8moU8IigVVZMkxVVWL0LxftTpDlCcQkt8nYPM7LnpWEyEqQ7/34tv41D010VkTY9ituEiiR+H6ubL3HMudsbVc2FThPG8/Cs3gzE4+IIu+SgvPDkKbT+lNmiizfFqubC0EYdTOPr4nA7B+qid+T25cbDTGNJtAmr3DMT3huT4Vm1KpyKDVPqHkHO8nDL+t+n/x2670fsHiDyydAZj8Lbo1yZccVDfm/7wyjMyYVn5cooLmC+bXo+Ohwluw+a4qfOa4+smHlupaLe/k1QmJUD74CmXP0k9y0HjsTOMDEhRjJ6tCfy8PHhjkQBtlGpYdV4PPK9omouRLwZy1UhbPsAlwGNn3wdFXZpB+9NyVA1F64V30I/v0gT4+OunlYMVVlh7t67y9fqt7evgjW746X3mR/bTYhM7vITny8NjZaAVIo7MtVFiieS1WFIzLPlt3Hw+9Dst+jEylCTnr3YB6E7hnObEYAd7Nb9sYS/j+k8QFJ7LavfrN4b6+rRpiWXZhKdG2vnt0nuyih6qC28Nu+943d1V5+sD+3wf53ZB60qqITpwSFl1tvbV0FhvuY2b88KFfB92kZuRO/doL7EeBjTdDlYgD+ndpF8FUnk4QE1fx9iWnVF/IGNUp9ZxSc/cO42eorvVb8eik6dhvaqA8onss8n8o0nlnH6KYektijm5a5tvE9K/QcZv4vjhYlI+HIWz8vdGIlp3R1FZ87A09YCa+OXmeJ6tA/jAhVVY/7hjMze9Ucj3QLBnBtnx56psm+3oC0j0WzSWRTm5sGrRQiKjpgZPpEqbq2P651OmfrB3ZqR/YFdUiUmynnXztHyVM2Fzof6wqdHtmWZYrutqKw5aRzH66+Vw+dBMpT83ayJFA8wr0X0m/aN/0u+Yj+GzonjN0Cnn3LgZi3gSKys4pz2TRQyH5td5lpjlb+7sOyfW6Hp4wekOAWPRWH7N7OlNlx+IprbtInzx1i+Z9WqKL5yRcqP/C6665sSR2us//V7t/1Lz0+lpWJ6cMhd7Y/k8+zykGhU+7F0r4kMB3YdlOL6JVXB/Mbb4VRsfIzT2iHu31QHj3LlsS6H2WW+lH4Ynwe1xPW+kai4ctcdxwn9Dv8qjgvZiBrvrIy5jXa4bdOS3B2IeedlDgKWt6Ilqq2oyoFxrMqms5DxXGGMd8vZnt+2pn8ZzZloMU/yzyfm1Wx+LL9ptaL/JD9i7Va88G/xI5Y84Mt7uj/+Wbp/I3aPE0ljjBJAAFiT+CdUzcV9hTkVG2fC6AYGAC6MtCNkrK53bDT4B4Dc/kwVTrQBsJKeGaWJAExMGBmHt066iVPPOJD3OpPQvVgrU0pL0rSgHyei1oJErM5nkqSP68v5qxrTV1c1F0egcyo29HtsrFQ3ej473g4yeD3xog7zLcYj3yrG9gGQIOepv6edbVbmIVZ8F/k6g3XPmepAYb6GkL9HSO/Ths/k7ep35AzXD6c4HZ7T/XGJ9RKZMFVzwXO7WbJLf50OXDeFi7/9PmSH56wfW0vvas2RJZJivzkVBvPvERHOyy3ZfVBqv8ftQgDggAZlSfrSpkeZNlBjXYkJUzUXBwYhJozybPteLP9Nfri8Nu812Um4ewYYAyKG+7+eiFczWNseqWx2Ngro9j4AUJivuT1QAEDxjRsY3qgDrj/KVLuIIVA1FzwrV0bnMeOQ8Zl+u7opvDL30WN5yCgpQYcD/TkTJpJV/KxeOtiD1R/ZphSdYrfgB59nB1nyqwUA79c7CCPte2OG1M80FqjdZR2qSZKcfPMW0hbp6jxVBbs248FSbGPRGQZ4U+w6YnlwLtlzCLlv6navTf6U0R8BmJiwtzP3YkbOdgBA7bmJpnoEPuHiN7BGJozcVgCAz9YG6HTgOq53OiWNCwJZsO8fIKWlcpq+YY1E2uTtRO6GwqnYJCZMAj74yI6SPYdQdVsdAED+JLMqmtX3iHAxv5G3G+u3r5NO2dCj0m3T3A3/Mo7byYjvxO8+K2e7ZTniWvGd707TOwA4XVTgdq0V4xGJanj73pgB7wIWh9aFrGl21DzsydPdjIlwm7cxf1LJNpZ57IHFpnRkuzj3uN52EQmTbrArbq0PAPjpig4Qs/bYNlx/NBK2fXo/Ft+4UaaATbQ1M74Xv/OsdjrgkjvhE72/8SpzZs2ZMADqyiX6mjef5ZUXrZsJkKAhft96qJpLEqJGvca+AfepB6BHJab58veMOfBoHybZWVI5EW/o6w7VjdYk0c3K8agCaUwZ+6ueV2XOhAFAv8ADkh0g9YmYjm60xTXNqu9EG3fxJlOMR+45xLzKYsLu0/8m3WfE7jESFwSyibFigsTFwcisATr0NwDsmjZTksiEjDZLxkXQgVczDsIvSUZLJBIXGYJdp3CqQ9M32ULzcX0X6n+bwG9eAAbBa1zQ0ofMQuqsSPQYMxGArkpm7BfjAUX9jW2GBesCpPd15iTym7iGXySYFnkA2D/J7PiW3hvhugFwZ9Digm91WPAK8sfFUuTwJlNYuwnRTWyHqrnQdfgYTKyRjwZf6jcPOcvDUeWXnZYbC8HsBu/2QY+BIwHICzyRZ6vm2NqqIlJnRZrqaczXf8h+ZH2oq+PdriwvCSTJFX8T80X5NNtTjv8mSeKa7SulfjJudgCDJXZXPyMZD5/i9647U5c4kh8ugB3Qrqv+uK7KUOVWfXv040bcfx5R14pFXIWE4md9aEeXEWPQ0z8KoV8yCfZcwTYHAIyoV2di9f4l1WDKr+uRR1BcUIC8YYUIfDlJcpbqVGxS3Y11rtIz03RIMDohPfGSQ+p/d/1L9qYnn3NI9Qt8xexsFwCWX63OwxqtL8CSXCaVTvs2itfn4nAd4pwcmBJ0uEjtfMpz2yGxr2Me7Gdint0dTK3qCEByeJwRIbsGIVI1Fy6MZKrSz017Cj22PSO9M+br1SLE9B4Ad1sBAKuC1/E1I/qViTy86DJDmavWS781NtYFALxCg6VyTz7v4AI3Y3wCPlA15phZe9nB/Xr5fpzA8xHHya2/ZKexdFPjkbif5/VxfZdpjwGAOgdvY1N4ZalPaIxR3IlNGHx8+Bdx8PZVUBYZ52M9r8rSu6uDrO1TqV3G3w2/YG0OeCINAHN/UWe2fvjdMm8ujyumF31vEVX9Kcly3ojjLvs9ec419q4itUd8dio2rAxmKJELmzWRyvd59gTvc2M57hgoAisSn43x44/+jVHHcqS5J0K0i1SlZ6bl/kv5GW/Vb/WMkOI4FRvqJtTgYTUWm5mOj88F470spiZesucQt7MsGBDFx4/onsUoQCA3K8b6WZ0RegU5pPrutnmh56PD3aanuNrvZhRLd2tn5jIbbDJotOl7FXZthxJHa+7Y+r+FSv4N9mH3URPv07+Vfk/VD7gXnrRzmygj8wUwFQyizuPGoWfvofy3URpdlmTSu2EDLvkn+iQwHHnRV7nRqdUBSNVcSGy9gof/nrcLncaPlzYoMvAV6/RVQx2Q5HYPBl8f8MtEKE3PYvMCtkEubtYIvZqZkcfSFre17ItLGxtIdfOsWtVUrjvJobgA0yZyfIr1TYpY5lcXmiJ0dpxpkyhKz0LqSLNqkVVe3huTpQ2kpIMNTQYdtIyvai785L8JAJDuKIHHDtau1IXsG51YGQqPdkyFaO06BhzS4v180/cXHXBTuP/ridwQucov8ianai5JHc14KHEqNhxrr9v2efs3kfK26kdjenF8uRtrIt36q4nb/gUYOASlq+jMQkVnlqk8Y90ye8xH9aVJ0m2xU7Gh+CozHs9+nzEV/q8nYtPi+Si5eRNFh4/Bo01LNPaugvZTmFQ3++dWXAhA/bz3rZnwrFoVF0fYETorDoE/TeT5k91H4NB9cB66LDlLBSDV3UhG5++qxhA2PStU4N/pwEuy0+GYVl0B6EhxRmrwNRNcRL0Wa9lPROU9GHOeOq89PBL2c5XL4Gd0fzpkp+rt58sdmK7ZuVqqrxVRv5HasnG8HLhl9rUo1rHclob8NzHJdyqrzh9H4VQY4mPQMP1UZdX27P518G3ODtNB26nYuD2gU2G2WqrmQvWl8mGe8hRtB03rSEqaZK/Y4Ctd/ZMc11JexraRPbE7oVHqzEhsbvmHZX8Y203pyBF7+lfRkhuIwVnM7mnNtQpSemJWlc8SsGZ3PLwb1HdbxrcXmuCWsz16BURzYBCRqixPkuqf/b4d9ROrcUAlco9i7AdiRkWBoVXbVM0F7RUHhjfqwG8sicTvKRLdDDkV8w2HMS7NOeN78vFFYZ5dc6U557OV+QQkH51EqubCx1k7EbhpFCqvYMKsXjFPoPIKfe4R3XiY3XQvbNaE3+QCDKKdKHLfQDTdVZH/XtysEcK+jsP51SG8LudH6WPxgad1jQ1xLJAQ54zjouV8azMtDhmfRWNS7TS85R9hGpdUfyLjbaToC5PaaVwbxPY7FRuKr12TwmvvqOnWxYJTsfG1+WDUMh6H/Nx1eH4ijHR1YBTSOi8ymVIY6+a9MRl1Pj2ODWEMnVZ0hXCf7tN9Ruweota/jwYAZH5kR83vE3Hj4Ui3jBTZZaiaCzmPFXMVLq/atXh8gqEFrCVr4V/FofDESXwSqBtwi5tTheRMt0xc1KRYKb9+fpHYOmeOdKAo3q/bGnV8doLpEFxu/R44FRuCn0vi0n0iUV+e8itf4bYUBjDJsfJpAtpP0VUZ1h7bJtVV1VxAdCuTtIyk4B0P9OfvzjguovHUBNyMiZD6AoAk2V3bsgZSJswwMRJinxjT03PeCsYwEfQ4xV//yyIA4KAoVhuFt68ioU6FjEqGV0ggGvZNwbo/lwJgql7X+0aiMC+fp6VNrMTbwxSmai68fVI+LFx5XN8Ez/7JNuTAnydK39DYri4jxvAbMfG9O2mu+D/smziuwkrx+xy+gPmlaj6iquXmln9w/2ZESTeK4NjP+oVUUcQ+JOAOYx2MdQwZrQsKAAAlJVA1dsub/lU0Lg63S45PS/YdZgf4uYlI+y5KshuhPMOShqL4yhXUWJyIxu8mIOhFpsYiApV4BflDDdMPgVbSdJoH5DOnKDWDtzn7A/2g1GHXRbdMFMEpk1qzOzJKslXNJTEAfSszBjVk7B7LujoVG0doW7NrDX8nCoyobgEbRkvprZh3UfDUqnwFy/lGdLvzCf5+XCmABcURoaeprEEpJxF/eLNUf5E+zZYBFBq9n4BnmnSwnAeu12bAs3JlqJoLQS8mSd/BWM/63yTwtUBcR+iWQfQ3R3FUzYWGXyRIY7f5PHktFkkUulCakNhdUlyvYOZ7kb4D5ftYRjcer2S0Dy48aec+uSgOCYeMftNEtc03T4dLqrhOxYYBKUwF9twYO1a3rIny6h4U37ghAYMQAEj+b7LPv2OjZ+KU/TK3gyNH58b1nRBCE1uv4GHefr7SGCXH28qnjHmNP/q39D3rf2NGJQR0/15GmpWznSOEEhWdPWeuG8B9fNG+Yjy83+zEfAIGDt1nGu+T/KMkgYGIaCyO9a2z50hlWlHN3mnIjrwOj02+uNaP3aodem4GavVJ5XmKN1RGYRHlTUKc0087THNjRV4S6n2XgPQnZln2J8A0PcR6ireRToU53bbaE41EY11JqoqLw2WfknmfBPN4vSN7m/qG1mZx3lb6namcVlkurwMAE1wa6yCOLzFv8qnoVJgQtuihtnDsv8WdghMV9HXvuPteoxIAJSX/j//+/27kv4Hug3XcAySCdWw8cdi0aBsXtXbvxCL5nZmmiR7TqT8utalnWjCMh03K07tpYw6V/I+QsU50WE9utxxOhUHob/tuttsF17ipuDtUUd6q5kLPxu1RUljI3406loOFzZh6TerMSITE7uJppl9shKdq5Ep5EfgAUeGGxvDupvvguvJ4NKr+bF5opf5t+RCKg/wkMBRjf1iFtdrrgQNtSyzjetWti/j9f5n6E2BS16xe8yz7hBuf9x0O7DoID29v3HC2wZa5c+FUbIjef5ujQlIfimWcKLyKkY07mvIdcSwXi5vJtyXpX0ajcp4nGn6uS9qfzo+yBGgharevGPtGhaHYdQSADtwiflNjm/mG2ywIRcfS3fYrtclIZeVtjNciYRgaPXbIFIee+x05g99b1HVbnvSdZkcg62HW7zNytiOuSUdcHRiFSqdv4a8fF/I0JFk2qt1QPtW318aljoxRqr2jJs51uGCqv/j72fSj6F3pBgZlduXpxHgx3R/nENhiG5rtKcdvMd31T5tpcaj3nT5f0r6ORvBz5vmxIi9JUoP2qlaN+zgy9mvYN3Hw/SgBl4ZFc/987r5TWf1uDFc15mS+7qxEyzEAAJmf2BHwaqLb8Xo3ZARUMJalveLgB3orIA+rsk+uDEWDUnCcstZF4/pnzJfSeLZqjrXrfkKPAU9yNUNj2TV31MKFDueRucyGhsvLo+JKa7ASAHghPQU9K91Er56DUXzgqGWZRHmvOywBgKzqcGGkHTUXWau9AkD6kjYIGm7Q97pDvgUDorD9W7bvpH0bxW9njenoOfNjO9KG69oLIlCJ2Eaqn9Ve3PORYVi36gc0nxeLJm+bx5fxUF7WnsiZXntr6du5iyv+pzLcxY85FoOihzR4+/lywUhZayiRd8MGKDxxUnrf+uM4+P51Vh/fnl5AcZEpvSkvQ/9mLLMhvfMi9Bg4kmt4uKt/r15DJMEuhVPashi0f2RfcCo2lNvSELc7n+DhP+UmoKYXc9fT4UB/VOmZaZnubsjdvifW+T8JrKPNry/Cq9L/W7COoms3se+xL+7p/vhn6f6N2D1KJC03TlqnYsOAp5kU0ttX4WFOxYb4rb9hx1ezLP1TWS1AhdnHufrM6TgZMMJIS3J1VRz/VQwGlgzhASC5HXOU6N20MbZ9x0AGyC7Eqi7iwuVUbOj4zATT4UOkdcdlyfvgqky6pL3q4EwY5UWOZUUyoi1tbLGKxwcYQIBRIim+B4D4w5uR31l2fEv9eWJlqGU6VXPht7913f1m82UjZJEJA4AeA57kzyFj2I3houPbkfumA2cn6DY3wc/uRPfHR+GlZcwHUNbSFpwJUzUXklrL6JvG/iYmTJQWnh1vNzFhAND3wV1o+HmC5K+LmDAAHBhgVs52rkaT3MYTa+OX8fyJCRPrYNWPAFB0LB23nO0tx4Nx7BjbYCQKEx0WOxUbGj12CPm/tTSlo+eJNdhtYs/eQ02HLzEeAFTIL8frGlgKv3ymrSf++nGhqb67P5jpNh+RmVrmv9n0nuqqJDHV2+ntmU2FkQnLe51JpIsOH+N5iPmIqqRGUjUXIl+PlZgwAAh+LkmydaPbigF+0ZJvImLCbvdojwfjZJ+Fvh+xPJM+mWX5HSkPoilndD+A1GZjOuqTurOEGzwPD7T+OE6K4xPE6tXb/jAvw91aI74T14TiK1csvx21k5gwAMia6mM5dinsel+mMkZMGN02GvuE2mtc/9zVv/jAUXx6PhDlcs9yQKK072RQHLrFCnjChcrZV6X0qubit0Sq5kLPSjfx5ulwru4MDw+pXmI9Dj8zQ5pjxnzF+DUXJZryAdj+AQAZXZkAwwpu32qdBiCp5hmZMGM90ha35UwY5bdmd7yUH9UtcrL1jWNM5wG4VasCnIqNI1qKcbocLJDa51SYoEvVXEhfIuuyielEOz1j/eHhgdafyL7OKG3mR+b99sKTbM8oeoiBCRXmMXX1lolDTXGz37OjZ+P2UnlrktdJ/e1UbGjwdYIsZCgughWJ3/vUsw5T/wY+wb4FMWHe/k1gJP69hlc3vWPh5fmz2M9W9bBa563G0eqQtbzNqubC4EYOnv+OVr9J7hDEcU1nKWP9rb6jmM64nv2eagZFulepGB7/lr//drrPiN1DJE7AbbOZegpNZPJ7pGoubG1VEU7FZlrYADapA59wSWkXX65jeVgtsbdGxmB2KKo3QzfqFokWj+GNdFWcrEfm4MxEOxq9z1QRMpaxRarnw0NRmM2cRw/O6oLUkTOR+Yl5c6C6bLxeaiDePoxvokaG8avsBBy+dV3SSweYwa+quVAlt9gy/5ypDmkxtWqT8R0ttu6YMadiw8EXZkh5kG+ShoJUW9VcKLG35m0Q1XnInkDVXFiel8hVPClMlISSDdDIxh3R6P0E1JmdKB1M/vp5IT4PaonQHcO5SpxxgXf3PcW2dR8yCouOb0edOXrdpmXpzO3nDZkK45qdq3n/XHlc9xFDthj+5aogcOg+U/7GDcdqLDbfLhtQi05YjXT6afnbUhnFGxtxuxECOyBa2Hibqf2+/dntc4nd2sYEgASdL9bfs3UoL7/xu2Y/edUyrTd++l/c0cyIPpVmvkERidIubLyNMT0XL0HVXLjeNxJeQTqoh3gr4a5dVuWoGnNrUPP7RO7wVHy39y1dVU5EQRPRVSluufV7pJsWp2LDI0fOlVmXzFIBUubHdvQYOBJT6x7m31eLlo3cVc0Fr5o1saqgkrmNJSVo8LWsvufbn33HwhzZDofmkzumyanY0Ga37p+PHIxTGlVzIbcXu+3O+JwdxEYcy0XjgQdN453yBWC6hWr4RQKSbhRZIlDSs3FtEuORM+a079tiQ1hVrNm1hgMSBT+90zIdAH5jLb4Xfb45FeYvkc/7QVGm+Mb1xtiXL6SnSAxPWYfgwuzjUhyy57EqC2ACAeM8s2LUjc/BI/ZKea275iPVUawfgV2J9On5QBSlZqDcelmV+dUMtocXDIjCpvDKMNJ7Pw+CU7Ghyh7dJotQht31iUQlJdj/6gzT+ulUbAh4zQyMUfN7a4S+dkouL4/KbPpWIvJejjTFff9sczgVG86saiaFG9cvq3dUTysVTzHN7W7tkDnC1/Se0gS+bL6NP/62AyETdU0Yin/HPgRQ/ABjhCn/mjtqmcax1f7pVGx4s85RaK86pPcZn0XzsxTRuTF2rjYszmOr+ollL7zcwPT+Pv13031G7B6ifiHhfKLSodip2NBt6Ggonyagd7ueuFR8XVp0CKHIuDCLDhZHVDtruah4JO5HzIP9LBcGj3Yt4d3IT9rEyM7GqdhQ6+hNDptMjF9J8mGe14UOzBg44NVEnHpGhlCmulwsYhvVulU/8HIp/Ssn2UIZWr4SdlwPRKXfdF1s70Z+mFQ7DU7FJsHsEjkVG0cstDrI3y4pkhbaM7F2CTnQXx1j2SfXVX84+4+Q+rLCn2a1HqdiQ7kTF6S+uzjCzttEcap7VkSNJYl4PeMAD8t+z84NrLOG1IdH+zCoGrMbUTUXjk30kfIAwP16WX1jq7pR28iR7I1a5dGwFOmLDMgn+0dKjigBYGUBizPlTEvJz5NI7phfsXzjgc2pMJAS+r06P9l0Q+vVshkyl7E0+ybPsMzHs2suSvYcglOxoSglTSo3pvvjABiKG9WP7I5OTbplaovxMEfQ5FRW8f4UU3+L9dkzdaapHyr/XZfH+2v5IsleCgD3VUaAJ0Yyzh/K6+8Zc7grCOMBCGCSezFctLcS82o/JZYzceTwFJDtBcs65BgPydH7Zejz6csedisccCo2BJSuIwGTEuGxQ26n1aGv6MIF3mfNFso3zSKtLKjCmTwxD1VzoWQ3G3eiY25je+o9qtv81P9GVr1z+rVD/b+ZQCl9CDuILW7WyLKf3B1WCx5jYADRFbzQ+B2zTzZVc3F7JwDIf03/fmnfMMaIVLEzuy8wjRHKR3QRYOwHp2LjoBdks2J1CK36cxLOTpCdJwPgggkxXdFDbdFqrwdemj+Gh7sb10SpsyItGSexriKRc3p6LwJbpM6KRIuZcZZlG/P55pFHpXiq5uLw8lbjcENYVSk9vSd7awLRAJh9Iz3TzZmI2hvw4QETI2E1Bspiyt0RufwQ8wGAU/bLprYB7NbaOG62tWK2zGF1T0h9YPWd3P03Us5UeX0vtyEZKRNYnxgBUggExLi3iAIwaofIUIn5i6RqLnhu24chR9ktoUf7MOzdZmYyVc2F4+9YawqJGjaq5kLgy0mmb1J7fiIa7rgt7VVkjynWkUC2KK9V7XUXEvfpf4PuM2L3ENGNmHFCe21mNxKFJ06iumdFPqlPxzlQWOLJ04hEkrq8wqtuF0NVc+F6YG1TmKq5UJJ8GGt2rpYW3Q8C9A1hw7IF0J6+ZcpTrHuvZg9A1RiEvbGOqubCnJAAUxqiTxuwm5W/bwArQuuhz+ELyH3TgdT57VGYm+ee4YhuxfN6aNRYePgwSee5sfrhoY9vO5wfbUdJB1Zu3ZmJ8H9dvw3Kcs6HU7Fxvz200VR0ZgFJjGkq7tTGXLZAaxJWSX1SY3Eib5MYDgDPHBjM6xf6YCaquJgefeOpCei6iPkV2rxgLlYVVEJWr3lQNTPqktWGQ4eSC0/auVqhWC6hNjZ8KR2hs9iBZW3LGjx9UWqGtFETQAOpPYpljjqWI204TsWGLiPHmurk7jAq1quPbzt+Q0txig4fQ8ATLsvv3n3IKB7PXf5Fh4/BqdigfJaArNtsTtSbzsp4NZT5vyGfSwA48iDVq+hYOn+mOmivOEzliO0I+Gu0VN+CB89IeRpv2ziDLPixud2jPS6OYGPDf+1YKT9SQbaaP2I8+o4U3nCp7CCb6l97rj4HxPSiXy8rxgjQkek8w5rzd0mtdbcGnlWrotH7CRITCDA/V07Fht/zdIGGeLA21hEAWkyPY4eaUmS+jKVtcGzUTCYosRgfM4ODkNZ5kSlfsU2e2/aZyhQPflJ/dm6r/y4uQtKns6RDNB0yKY+Y1t0tD8/EiFf+lWkDhHwfK72/8KTOEH31ky746DZwF69X8LO6JsGleN2PmdV6EDwy2XKOOBUGjEF+qUQ1T4qfurAdT0dQ8GKfXPczQ7Z7bd6LA21LJPclxnIBSKp2WY8wcIlvc3aYxlrUpFj0T+/u9qDtVGwI+K6Yh4dM3MVva1XNPbx7t0NXuKqdyIQubNakzHlF+RZ2bQftVfNawBn56ebbIP+VTJPCu2EDZL/cmscXmWgrRtgqf4AxwkZSNZfJ6ffhW9dN8yAsmZ0hsj+ww9vPF4G7K0jviUTmzatGdagau5WmepNAkdIa05OvRgAmQWnqLCZ8PPtniCTsAHQQEGObjWWomosLgIms4lPY/Mn9AICBvpQq1oggXU7FJglG/JKqYMhRDaE7hrtdo4zfTPQ1pmouxG/9jccpt6UhcqY6UJJs1rr4T6GSUnj5/9d//+10nxG7h6hfSLhpYhNZLb71ZiTwhUfVXCYfFarmwhjBFqjqtjrcmSQA9Hx4KDYvnCct8F1GssNe5id2Syli78jePPyI4wdYkVOx4am0VBRfuWJKL2427g5adCOQuqA9PghgNlKrW9bEkbgZ+P6hechZrqvnkW8U7hcn6QBCtjI7q80L53Eo8drzEuFpa8HrU2tBqdTdT2doxE0QAIoLCvBCegrXpxcX379+XGj5rahdLRKGmdpltcje7B0Bpd8RKMOz4NGuJVYGq5i8VWfiNoRVhfYy2+RJ+g8wJop06qtv123iTj6vS/AIbavEE5i94yfLvgaYbVLKRF3l0qnY4OHjg26HZJuYmyW3TZsZ/SbgFCKvIH8uDDD2j/gs5kM3gWL9pl9shM5jxgEAR1oz9qPn1n08POzrOEumSKSJTTpKqItDq56D/x/j4fuxvumuzWTMx8dZsloXItnY8woJlGyCrA5JwU/ulQ4L9P+FdN3ovKy6Fj/QBpsWzUONxQwEgJDa6KCU3nmRKW1ZG/lX2ay+pNJIf70OX2QH+WHs5otcHFB+J593IG+yw122AMD9Yq1d/5NlHdYe2wbvRn4o7n5BCq99mAFQ9PNj375nk0g+h3pHxJjaBwCNPmDtqDH3DB/nXFAikHH9Mh50iay+AYX1bNzeFG/DsgWmcgJWTODPR8fNkN6R42n6TaqwRkachEFEpFamai4831Tv/5R2hXAqNvQK0sMGpZxE9Zh0t4d4ojXXKli+M94spf+gq245FRtCRiW7ZcJVzQWfNbul319lJ3BGOevH1qbyxDwafCXPI1Vz4ZkmHXjYtxfY2lJjSSIKHjyD8akMLOHyEKYeLaqteyTuN61PlK8Ij07hNx6OxCu1dJ9udWcl4tw4XTvC3Tih59afxuGb+d9xZ8PL8xLRfkqsqY8ABsfOmdnd7Ba18MRJjr5rLM9Yf6JBmV1N79eu/ZGHxefvxahjOYh56DEAwKVherkvNrXjodFsPc26fRWPHDnHVc+bvpGINbvWICNCdiRttS6Tr82iC/p8/jCwFYYezeP1pTqTSmPRqdNu51rIRIbkWefhVOl9xqd2yz6wCrtdogOGiAjHHpuYyuPSK7LQWUR/9N3K7Ga3zJtr2pecig1BS2ORF30VI6udltSORbKaF1b+xcjP5O3OJ3B03AxcfzSSx3d3/rtP/910nxG7h0i0ERMZFeMGQComaYvaMcSi0vgbwqpKABlx+TqaWc8mkbjywFlc73QKY1KzkDo7Auv+XMoXlNw3mWSaDs9pw3R7kMINjXkZBIl+q2eEabMT6ykyDQCwKn83jxMT3oXnR2HiAaIwKwdDj+ZxKHEClnAq7FaOfG2pmov7RinfXYdNT+30vZQ/wNSr0odUNy+WecncqN3IXADAl0Gh8Bug26pQPHcHHYp3xPFDmQyYt38T6QCzKngdSpIPo09qL7wb0BbeTRrhZm9mp6N8loDnT+h+a5yKDVMzk/nNCYE1qJqL+xtqtWsIj19rYSLGlMJ4A0xdxVinzof64vLaQDgV5oh3XdZObAirKsV7eOBYNN8+3NQPZK+X/Z6+aR6Lqw9Vc2F1vlkKb/XsVGxczVNk1Fe1qI1r9RhwzYrQetL3EW0rKNz34wT07tj3jhvapkXzeJqYboM44IvYNlVzYZJ/FNrsHqyP8ZXMZqUoVT+8WZVFYQ8dfpTnuaqgEno2icSXQbr02jjP6dlrswLPbfuk707v6KD0rCbbcRGJjlvFQ/XzTR0YcSyX50d/xSWe8LS14EiGntv24aHDj/L0+1+dgcNPM7uU4287cPxttlbMPb7d1Ga6WbXqi6ITJyWEwLTvorB1zhwpHtmeORUbCvM1nla8zSBa5r/5riXIVgdccsRrnPdif647rgsTymJ2RXAIq3VEpPUrvkfjnZX5+3Pj5MNmj4EjkfVTKynNijxZBbvE3hrF167xdMtD786u5KsxQ+4cCUDz189IdRfb0mx+rNQHLb+LQ/Z7dql/nm/q4LdM/kP2cyGAOxLnwORTulZDvyNnsLplTan8aZ8Nhaq5uFq6eKBWNReHJZ+WtUv6FiJR+NbZc0zfc89Ufe8zMg4EykRp9r8yAy3LV0T7t5hq7CA/O79ZNlLVn3Rb4TrJjIH5Pc99HcVyPFvpdnsiOI9xTKbOa48Y37ZY2KwJ4jf/ClVzocK5IqmNFZOzoWrM6bYR2IrWmdYfx/HwE0/clOp0/G22Xybf1Jn3ThPGQ9VcWNpcXnsAoO4jx0z1pXzEfVVMRyp8ga8kmt4bhQ3EyPTxbYfMj+x87aC81jVnKJGLmzVC6Gzz+gSwmyuruhAFvpKI+onV5PelLnHcpXEqNnxc38V/hyxiYyQ88Zb0rSv+wfYeYpz/k+j/tTNn+vtvp/uM2D1EZCNG5O45eGQyAKBmQnmOWESHdnKcmve6Q5JsiRLPd+cP5XDbRI3elzfKHgNH8mdyOst/+yrYvGAuz2/XzdvwbtjALfMIAP2j+sKp2NB90EjEH9wkxaN04mYrLugixaalW+ZvJWkT31X9OQl195ZYLuqivr6qudDxmQnSb4pndbAyHlZEqTttVGI6+r9mh+xQleq1OmQte5/4J2fSjk9xIKWdDF0dXUF3smxFDfum8AO4qCoFwKSuompMhYVuNWos0Tc/yv90nAMeCftR0ee2FK5qLmwKrwynwhybOhUb5h/fjloh7Ka2j28702blVGySqqTVIUncFHd9OBPFndqYvnHTN3X467zXHfD/g6n7FGZml8n8imVk3b5qCTMull/v0aNlSqzFcU/vw7+Iw+W1gSjfPYfHe6TyNazL2YXUee1N6Skt5RXfLB4e5cqbvrtIhH4o1smzVXPJcatTsSGjiw6hv7hZI+6nivd/WDWsjV8m5UP1Fsmp2OBlu4TG7zJmv7F3FdOcSJk4w/RdqV1G+PXgp3fCmdJHyt/dgbnyCrO/Hqdik5BbiVTNxe2YrNpA/+ca/HSJdTX+ie0BdIe+Il3vG2kaO5ROXD+cig3Ho3VHs7XnJkq2uut/WQT/wTL4ziBbb6ms9Su+ZwfmT9nB0qslu3Ugv2QE9CPWOfcNBzy36j6pjv8Sbtk2p2IzqX87FebkW9VkwCEA8JuWgGNjZvJ4RlI1/UYv7bsoUzxVc+HB2PE8fO38juiT2gsA8HuLukidESml8Xr0rFvm2anowsLJ/ux7rMrfjcWX60jxxXaJbTkz0W7ZBqKGfVNMexeg+y5UNReCd7uH8+bCj1JXAHQTTO8yP7bj/GhdjZ6+o+g6AABXmydfmJw89LbQwX7L/LlSP8Xv/4ubDVA5Nx6OlPIRwW5IsEntpfk/2V+356vw564y93/j7zMT7Wj8rq5yePbPEGl+FKXJEPFl5fX3TF2YkzZiphRHXFPrJ1ZDk9WX+PsIV5HlmkO/T64Mld6fsl/G1XWMQbw6MIqbKRjXflXTb+TEsURns08b7JPWofOj2TcsOpZ+14Kl+/TfRff9iN0DRD4Z/N/5AOkTFqLno8M5WpRTsaGkg03yleFusvpsbYCbnU5KYdIG1bUdNi5h9k8Zn9oR+Iq13xP6fTMmAj7xu6Vwq/gAUyFb1aK2KQ+retyJyqrT3cQvK427uK0/jUODL90Yygu/KX70qxNR/Yckk98kMZ1VPzkVG7J+asUPWmXV707tTlvcFsEjStVKdlVEdqTu9NiKQXPXH8a2WfV9452VcTyqQPIVJL6n/x5tWnKVq7K+Y+qsSI54dWloNDwLIflxq7i1Pq53OmXZB4Vd2uFiUHnUmZOIJbk7MLxRB7d9lfZtFEI/ycfV1gq2zjFLv71qVOdqNmUx8wADH/DavNfUZ5eGRaP6D3rd4/P3Isa3rZSnU7HBw9ub37BYjRFjP6kaQ0tVPk2wjPtS+mH0qMSMwVPnRqBGvSscWEKKW+rn53a3dti0eD5/5+3nKzn9prJjug7kYCdp37dFZvcFpvFhNW7Edon9aLV2nB9tR60F+uE15qHHuB2eu7WCj7GIcMmXX95kB/ymJSD7PTuOjZkppfP2b8JvjgFIfWD1vW/2ioDP2t04N879zcb/hay+X9qidsjsMb/MsWBFt3u0R4WkVL7uZE2z80NeWeURFT3UFhuWsm964+FIS8AhInF9M+ZP5G6dA5j9lRHYoixSNRcmnbLB1ebu1v2Y1t256ucrJ9vgQNuSMtc+d3leGhaNW4MuoO4jzO9e0o0iTAlod1ffRdVcuFR8ndtvG9/dzT6U8akdVbM90GDRfhQXMKfjJ15yoOHnCfCqXw9Fp07zdNSeu60bkVNhLkoICMyzQgUU37jxD+05XkH+mL5xCSY26VjmemnM0xinrH556URbHGpXbJlWXEtafxzHGUZ6L/qGoz3Lo11LnGlfjds2iv1ZVhnu6upZoQLWZiYh+eYtTPZnjHRR57bw2rIXZ1Y1Q91HjuH4Ow40fsdwC+zpBTUvmZflrg/+k/yItfz5lX+LH7HDj396T/fHP0v3b8TuIWryDpMqrftjCZyKjRtvExPW8lv5Wp1uPIo6t4VHm5a42ekkX1S8qlXjE50m++0qXvw58BXzIePk8w5pMfJZxw75pIIkLrxGidNTNZjK04hjuZh/qQGPMy1rFy7FB0n1UDUXsj60c6meMW/j4mQltbWKX/yAfGtiJOO7Ey/p0nSRCRPrSr8Df5oo/aaDd/zRv90yb6Qmalzo3TFhp+MclodcAJgvqIGpmgveDRugdq2rXIpITJiquTAg5TQbP3/rCI/uNtey3ol0PIodDozQ6KJkT9VclnDvRK13DeH2blmPzOF53KrmwZkwClsZrLrdqLw3JfPDxPBGHaR3xjGS0v87FObmodLWFJ5XSQc9T2LCqL70Zxwr3n6+nAkblNkVtg/ZXDy5MhTVf0hCxqfsW6fOjYCXh7ys8nILC9HjsSfRs/fQuzqgORUbt0OjOokw9Z8HsduPjM+ikdV7Luo9epSrywBMHVjVXGiXzG7Oym1IxrcX9FtBcuwqUqfx4zkT5pdUBcFP7uW3LmI9rOaIWO/Wn8SZDhv0+4EDNyQmzKnoYChifxnJqdjgHdAU6/5YArKzANiNTP5rDn4j+1V2AmblsPlSmKWrLOe8a5eYMLGctK+ZGrfPWiZ4qj03kc8tK0qdEen2Xcbn0bxt9GfVpuCRySa0RlVzceASd/lvWjRPYo5SR7JbANHXI9HyvERTmNdmHbq9wp+7pHqK9T79tAPef1YyhQPyvK+bUMPUTvptZMKMdRHzpvxcpThI9J3cpXEqzP6O0HwPtNVlyjQeezV7wDROrepxuakn9rb/mceZEtBOqkNZ5FRsGORnN7X9TmlESh86E/vemMGZMAA48BK7XRaZBuM8o/LoRtRteaU3z8nvzIS3H7OZEpmwky9Y24Aa21KUniUxYXTTCIDfBFoxYQATmKQtKpu5dSo2HGpXLI0nirs8T1ZTbPC1LBDMn+RAwCQ9zvGoAtRNqIGS5MNInqK7ILCyVbMaI+JvUpVMnd8exTeYHzFiwgBmN6pqLj6GiAlTNRe320ZxEU6UgqdlfGp3Oxbv0/8e3WfE7jESF6nUJ2fCf9V4PlGNNxFBw5glqNeWvTj2bAUpn6LLl6WJ7pdUBRX/0DfdqwOjJOkSAHhfK5HrUKr2OK7UvoiQngD3ku93Xb2xPLQBVM2F9m/H4o3mD6B6jC7ppjT+rydKm47VwkzQ7aSOKJLVJu25jV35k3GwcYG7WSKr1TX8PAG3u7Wz3NjOjdFVPir/XRcZg2dZ5iku4j17D0WnA9d5GEmpjQu91cFC1VySLzcydKe4Yxp35PF6Pjoc3TccRa0+qZabBtlSGRk+zwryGAHYjUfjnZVRsE6G1aVyg5YyYcDJlaGm701ofiJ5N2mE4287kP1zK1NbG/RNgfKZ3kYqq+5MdlhMnac7ce565BEOSS5+59s9mMNRApYQqWBAlGlD9fFgCI9rj23jSJfrf1nkdvMblHLS1A9pi9uiMC+fz4tLHc+h/reMcSebJxJsZPVmKr83YyIs+9MjYT9K9h22HO/km8Z4KBbbE//377g6MArnR+n2TQSdDACrV+hqiI8+MhIAc65N+axuWdNUtliGaLM1vzFjZhp8KUt2xfQ0T9K+ZSpnxESIAAxEp55h7Zuf3EEqU4Sypm9krOPlIex7X21RD07FxkF4KJ8mP+fz36HlK8G/1LE2AAQtmwhVc3HocMpfXGuDn5MFAQDQ/u1Yy77K/MSOrL5z0Pa9WFMab/8mCHwpiZfhVGwIWcziETLcxRH62uK5bR+031tIZZC6GpVNrhzIbsy4ltBv0ddju+RBTGhQyiCUxRyIAghyGu9UbKj3XQKKHi8xzSljuWccFy3zM5K431BdyM8SUc0dtbiza5Hhein9sPQbANK/ioZj/y18ECCXJZax9tg2Ux2Mz+fG2NF01jHLOGWROF6tmNTV+cmmb0VEfvoKu+gMnxi35o5aPHyuQQh3ZiIbP9kf6GsAOW831o/n2TUP8fmMAadb8FHHcpgt2KHL2P/KDKnuIlkxDFTfpc11Fzff+eoInkZGyqnY4DctAcEjk9EiYRhu9tLRCa36m9J4+OiO0Qf5mUFUyLbdqdgksCUiGptOxYbO48aZ+gdgWhFEHuXKWwoeMIcxX6EBGq731QGFiF452cZy3DsVG3y6n+H7G9m7B76SiPSvdLcgpvL+Q+g+auK/hu6rJt4DRNe8nfEovEsPjkRedWqj6Ow5Kcy44IvhxgNG/msO+H5kPhSdeNGBAy/Li2/umw4ciZthuRjnvGvH0bGyHcD1vpGouHKXqVyreogqYCJprzgk9DmxHaIKEql/lSVNM6YHAO1lBz/8n3zOIaky3E1eZeX9j8a1SsvDPDyg5u+T6kXqDkYJo1UeeYVXMWL0cyi3gYFj9Oo1BMX7UyzLaranHLcvsqpj5L6BqDGtMjx2uCzrLj5n/dga/kN0J9R30w//SDx35d6pT4ykvergvl/cpV2VvxuP+EaYyicSyxBV9rxCg01+ywAGqy46uDYKPu52HKV9G4XMAbPx0KixHA45bXoUgp/SQQqMdRfLmHt8Owa++Qp2fiSr7c09vh3PZ/fjsPru5gSFlThaY/2v32NlQRXMDGZQ6alzIhAyfrepTx86/KilnZmYZ0zr7jj5WBDqzkyEh48Pzg5ri9rzE3FxhB01FrtXtRPbVta3N6ogWeVT1jc4M9GOYU+rUMPuTh3mH1kbzk6wo87sRHj7+eK7HT/Dv1wVKa13QFOs2b6Sh10eEo1qP8rrn5JUFVr0Fcv+sPye0a0kuxbjWEz/MhpBL5j9MgLA25l78W4AU7c9P8qOWgsTy+xLd32hai403z5cAlxy12fGdtn3D0Bi6xX8vbhvlbS+wv0pivn+nreLM7bu5jIAXOsfhW3fzb6rPVWk6ttrS+AZ7trhjiGLadHJcl8U622Vh7efL7KHN8HhZ+Q93KN9GNat+oHXuc0HcdxNB8BAgIoe0kzliWrOI47lYnGzRm7LvhNZ9VnuGw4ceWqGNObmXFIwvrrG6+9uDPklVYFrQTiS39HXr/eyduMtf3mtvrw2EImtV9xxXShrjTOuzarmQsTeQajVJ9VynmV+YkfasJnocKA/qvTMNOV94+FIVDl8GmcebIiai2TbSnf1+09STWzx06v/FtXEI4M/uaf745+l+zdi9yCJEpnf96+TfntWqOBW4mi1AB16doa08AOMgboSyhbdmM4DePjKcZ/Cqdi413mxPt7XPEzlVlwp2xYQcpRTsUF72SHFNW42VCeyfzE6mQUg2YGQKmBZG0LjnbqqIyHqKZ/pUjJSZbjTxi8+Z3weLYUbJWFiXI+I8DLjGsslyH1VcwElJej++ChU3FofW66zaem1hamGdjjQ35SnMV8/7yoot0HXP/c8d9kkcaS03yhM/cqrRnV0mjAeBY/piHQxrbujZu80zoSR02djPs+mM+PxB/wz0OVggVtJXrdDZhcG9F8Ez0hdYIYJVzUX1l1ji7x3k0ZSPsZNk9DMRPJspfu0Eh1wuttwjUyY+J5oQApTa8nsrkOY32xYzXLs+M8skX5TXjSPhhyVD0QiTLSYLvgZBlQh+qQRmTAAeMQ3wjQmqLxxjTtaMjbjGnfElTf88FSaDBlN78V6dzt0hfuZIn9yAJDVhzl+jnnoMaiai7sFEEFKVucnS+2hPIvOnEHdmaxe67J2csCDGosTMTUzGVakai6cLSqwfGek9OcCYdunlyvemBoPXkQ579r5vKw7KxFqWDXLse3dtLHpm/d8dLgpjNYEY3jyFCbUKszLNzFhAAOcEdfmxM91X2VEl25V4GHi2DL+52Un6TfkHUvXlAtF1xDTohNUzYWgF5JMty1ExIQBQK2Fibjdg91eky89sV/pVtlIHj4+CF4Si6Mdl0jhxr6h360+K/UXFxwAp2JDtV66X0OxHxq9n4DGAw9yx+NiXiIzQ/UkVwOk3nppaDQq/cbmmIe3N1TNhctrA6X+NgoBiPKv6ki8xnfpX8g3HkSdx42DU7HBf/U4SybMqm+M8zJvYBN4X4OpL4gJozT1pifg3Fj9BlZkwsT6vp/RB4suM00Ko0NyGkN9Dl8wpaP6kAaEWFfpG31gcISuMM0Nq7ErjgFVcyEv+ipnwshli8iEOfbfgrefL6r1yoB9/wBpbpN/tzvt4c3mxwKeXqb+dCo27G673HKeqZoLacNYvXa0+s3UJ9f6RaHCn7tQmJktMWHuzm//iXT/RuxfQ/dvxO4BKutGTKS7kUyJEq8zq5qhRZ1TOOO4CK8WIYjfsBxOxYbb3drxQzvAnEoWnjh5RykSGUOLYUFbRiLwCfnQtiR3B+p5VbbcvKwkqKrmQtg3cfD9KMEUfjdSVkC/Wbsw0o7z4SVcPUjVXOjteARrElbxg4PxBs7D25sjurkrw6ouPQY8CY9EdhtERrpie4OXxKJqNvhh00qiZlWGqrkQ8NsEZPafbeqzETkP4tzg6ijMyeVhw7I744zjopSn8QaR/me/Z0fTtxJxdVA0qixPksomupNEEWA3qg2/kO3FIt6Ixe4P2MbkWaECrvZqjW3TZyPmwX6AlxfOdKgr2QZRWelfRSNjkO6w1l2fW9VVJCq/Z++hkq2aFamaC73b9UThCetDozGuuzF5N2kBc7t6R/XBmp2r7zjWSxyt0XPONrxYK1PKx6oeoiG++D77AzuaviE76XUqNjj230JC6/KWbVU1F7oNHc3t4oxj4ovsRDy26CWkjLe+QReJgFesyjGWadUH4vrwj5K7vIkIMAMwH7bd1amnfxRXjXTXJiKv4AATAtzVgVGo8stOy7oNPZqHEdXO8rhOxQavmjW5vyaKSyA1Vm1UNRdafxLHXVkYyyirn52KDRmfRyN9yCz0Se2Fwu7nuEuBO7XXap2n8BbT49D4kz1Yl7PL1Ef/yDqvai4EbxmJgCdcd4yf9nU0Mgea1xUjeQc0RWFmttSGu5nv/0i9iQiAwxg3cHcFZETcQHGnNvjrx4XS9xBv3N31OcW/UHQNgxtZ23t9lZ2A55vKkPFdDhZgU3hlt/UXwz7O2gmbj89dtfmn3AQMbuTg+w3AkDyLUjPczklv/yYcTfhu+9yqH671i0Kl33ea4txNXq32epjOOLRvEhCQqrkQtDTWZGcvtiva9RiSbL+6rWtM98clddKq2+rgygNnoWoudG3Y8j/mRiz0x0n/lhuxlCEf39P98c/S/Ruxe4jIj5hR4kT/nYoN3+bsML1Lna1Lh0SJ1972P/MDetER3Z6o4rFT3P/YLWd7zoRZ0fI83c6JFiiS+DgVG9I7LzJtXt2+ekVagNruedySKTsTy6SuS6/UtjxkGRcx8XdxRxuvx7kxds5c1VyUiMCXkpC2uC1PQ0yYqrl4PDIwBxiIQq/DF+GzVffFI/Y75UN+sjI/YvUmCOkluTu4ke65sbrefsCkRIkJcyf9E99zJu7pnejVY7BJOnfKfpkzYUQP1TQj5dENYtt3ZRsMgpkWmTCxPsb/Yn9wp9kAZ8IorlOxweu2bk9SfOMGtk2fjYg3YlGUnoWiY+motSBR6k9qb4lXiUlKqGoupNy6JvUR0RfnA6Q86K/WQmaonedkOv/FGxvBHV0tviGNe/qf97r5EGPFMJC9HY1BI4lzhNKTkXz4l3EouXYNAb/IADDGMlXNBY+E/XixViaciuzA12o+ERN2668m8F83lr9r+oYOPCGOkyl1j0j1FZ+dig0bli5A1o+tOaCEOD5fbGqH//Kzpm9m1Qe3+t829Y9TsSE02dtt34ltdCo2HHpWdzgupjk73i6lUzUXbvaKwOW1gaY8cpbrN9Zkgxk8Mln6Ru32FfPfdNtjrJPRPk18PvGig9ejz+ELnAkTbRqJCYuapM9N8oUk2ty02jUE2e/ZEX94My+DvoHjp5elvjQyQWSjZ3XgdSo27lRcfEeMf+BLSWj3TixWh6xF+odtLb9rWWQcyxm3r8Kj7SUTQ0fgIsb4gcsnwh05FRvSBEfmVuUBwLc5OxD8HLOd7N3hUVP9xTa4Y8LE+MZnqz6xmpPGONfrlfAyzq/WIdtn+LL1mJzTUxxVcyF+4y+WeRasCzB918GNHFL7xHR9l7xkap87JuzCk/o+5pfE7C0n+UeZx1rf4aY2ps6O4PUImp/P45PvRXd7TGFWDmJadDL1o5WNeP5r8txskTAMPR8eCgASE3an9UXVXJh/fDu6HGS37CITRnE8ypWXXDY4FRvSS11fDD2ax/PzX6W7YKgek84dkee97jDt80abvl8DN1j2yb1O9/2I/WvonmTEPvzwQwwcOBABAQHw8PBA06ZNLePduHEDc+fOxaOPPoqmTZuiYsWKCAgIwJAhQ5CSkmKKn52dDQ8PD8u/sLAwyzJ27tyJbt26oWrVqqhWrRp69uwJl8v1L2ytTv1Cwk0LqHHReqaJjhJHYSETdIj56ttrm94bqTA3D95N2SH1Wv1ybjeg1IXtUN2zIv9NagHGxZ9+H3+HLTgNP5eZqrqPHINnq+bc8z2lIyaF9NFpkfIox6T0Y1Kz3G58fy1fhMDlE+FUbHjoqSSEJctDmWDd3UkQzzguSuHP18zGzU4nTf0dsGE0j0OobAGvJSLphu4kUzSS3/PuTMt+dyo2XBhpR4mjtSncKCGk9GvX/yTFzf3VPEadig3LQxu4PQTUncUO4d0fH+VW4kn/nQpTOcyfZC1RFW1+yEG3mI8I4U75kS0JqYhYHRqDn2EH08yPZZTJ0PKVpDS8rhY2O+J7OrT/FfqnZTsAoM+EZ6TfP12pCUAGxCFBgVhXahchZxnJKziA+5oJ/Ln0QOnphaxpdm4k71kIFJ07j+DnkuDdpJGkUmXsG/E3OfBVNRfOj7JDe8VhigMA5abUQFbPeQjf+QSPf7X4hjS2qB3khyho2URepjgH/Ifsx18/L4QVGf2vGccg5SX6DSQfZgDwVcM9lunFfIyHpuhXJ0pjuM4cncmk8nzW7uY+8cR8AuI0jMh50LLu5HdsWn2mvpc6IxJ1DpoZSOP3EZ+dig0Nv0hA0o0idB43jjsiBnTBiFjXGkt0IdfMr7825e3tWSzB8VMfBPwyUZLG/6OMEcAc1b+R6TLNrcJKzHk6qYL5t8k3pXWXb9DSWARuHCW1U9VcCCxXBU1fviq1IX+SQ9KaABjK7PnVIcgYNEtKD+hzUdVcaLYwFgUDoqS169ucHYhw6ftLSDnGYBSsC5DcF5yJZWAkpN5q7HOnYsPxX8LxabYMuCLG8ShX3lJwQvTVhaZu+ytgUiLSvmdCwjqD8kxj3l06qmv3IXr/Vi61SbparK9FpGZMacg5tqrp/t8A3SkztT+mVVe8kJ7CHYfX/F5nPPKir3IhEuXN+77Uwb3Yj81nXOVjvDBb9kFKca0YWVVzcVXNos66+4+ZwUEYejRPik/aM1ROo8cOYd2fS92en4xhr2cc4M9jGnfEpnDmYD002dtU33U5u5D5ic6Ypn8ZzfuABCeq5kLIxF1cfRNgwEgA8MkYXY39ROFVWJH4jUkgf5/+d+ieVE308PBArVq10LZtWyQnJ6NatWrIzs42xTt69ChCQ0PRsWNH9OjRA4qiIDMzEzNnzkRBQQHWrVuHhx56iMfPzs6Gv78/+vXrh/79+0t51ahRA3369JHCkpKS0LlzZ/j6+uLpp58GAHz33Xc4ffo0EhISEB4e/i9pL13zXkgNwMBmbS0PzABDYSrn4YUHnpqAbdNnS5NXjF/UuS02LJN9/3QdPob7EBMP/jHdBiGvVx0T8yTGITIuavQ+9XYB3/jcbShGiaH4nHq7AE71eWT1mSvVDwD6HL7AFzSrvOj3oMyuWB6w0bIOl4ZGo/pSayP0surmrjwirzq1EX9gI8KShsK3v6wKNyY1C/NDdKhxY39SfgSyYGTG7kTGOgPASyfa4vOGe3G7pAjlPHRXBQQaQWlEH15eQf4oSs+S8ktd0B5ZPefxehp9dYlxP87aiUn+uo2ZWB9Kb9W/Vt/wbvudwo1ANMa+JUCE/0sZad9GIfgZJln1ahaE+M2/um0DgdYY6dPsJLQqXwHdho7mfpuM6cX63k27RSJADGM+d9NOUi21GkdWdfOsVAkF3cO481R3DD0fc59Hc/VggPkkrJR2DhlP1set+oUIGbcbVwZHo+pP8rz0atnMEgEOYIArFc6UoNZC99/Uiimh92RYb1V/Y1p345Yo/7eW8O1/uMw0gLVapkikwkXkUa68W1VAsZ7iNyK/WyIVP9AGntv2mRMb8gDAVdWt5iaVYVR5I/VFd3P4+C/hHDxD1ZggSKzP9UcjOYovpTH6y/zifADUsGqS7zea83OPb0dj7yp44KkJqPT7Tu7v7E7rZ1nrzt2uvZY+okpJ9CEIMFTEjT/MdzsfpTKjW0H9bTEPb/92LBfs5b7lQKP39DLJD19Za4UIqiOGA+bxf26sHbXnJaJ+YjUsbvI3YroNsnR0DwAh38fC/3Wz+5vUmZEIid11V2vKouPbOYKg2B9Wv93l5y6tMdxqjrp7dse43c24MsaNTUtH38pXEf5VHJRPEuDRPgwlew7BKzgAx2LrIehFXTgT8NdoBD/J1MD/k1QTmy177d+imnjsiY/u6f74Z+mfYsSOHj2K48eP4+zZs6hYsSLq1auH8PDwf7qzMjMzERDApMphYWG4evWqJSN27tw55ObmwmazSeFHjhxBmzZtEB4ejj17dKkrMWJTpkzBO++8c8d6REZG4ujRo0hJSYGvL5MI5efnIzQ0FNHR0Vi/fv3/uY0iWdmIudsUy1qQRBLfH5/iQOOp1k5h3aUjcrdJWS1yxnTSZt+jPTYtmlfmphe9/zY2nmiGyj1lmwoAOL86xBK5SKwjUersCHhWLkRGFybJj3mwH4rSs6T2UZrTTzk4qlRZB+O7Cf9HmCl3DK7RWW1Z5Nk6lCMj3ulAkf5FNF/4RRpyVMPIaqfv6gDijqw2IXKyS0TOwRvvrIwkrQkORi37hzdX7RUHDr7AbruSb95CLc9bmNikI4x0N4wf2WqI5Yt1EON7hjVH8aGjbvMi2weAoYORYfrd9NedyKotN9c3hU+PbB52tfgGBvhFS3Ho/+UnonEuzAOpI2dazpk7jdk7rUNiPMeLE1H1pyTL/kz/oQ13t+EuD6tyr/WPQqXfdrrtC3qmsqzWpeSbtzBw9TN4rduf3LWDMX3ArxMQ/KxZpYkc1Xs3bIA1yevKXG/Fd7d6RqD8ut24/EQ0qi1Lwrc5OxCbNgTlep/CuqydZfY/OVzu+OwEVMm5xv1KipQ6NwIh4+RbaUBGiTXW7W7mBY11K0RcAPwbS7TRD2oos3cktL8BKacxvrp21/11twddETlURMnjefi2AUpK7orBUjUG/DK0DIfwXiGBiN+il/FqxkF8EmgtgBXHnOiInSimRSfEH9kKoGxBQOcx47g/O2O+7sa48d2tv5qg0ugiFOaym6Qrj0ej6s9JlsiwIl140o5dH5rXijsJKdy1ae7x7RgnMFziWLE6OzgVG9/rxfaLZbWYEYdG7ye4LTf31zA0euwQPKtWxdEvmyFk7B4pDxI+AkD9xGrYubElmr5p7bz99B/NmX9Gi7oQedWuhaJz59Hr8EWsbVlDiudubSprXvwnMWIhS/89jFjq0P9uRuwfVk3ctGkThg4divr166Nly5bo1asXhg8fjsceewwPPvggateujcjISHzyySc4e/bsnTO0IGLC7kS1a9c2MWEA0KJFC4SFheHQoUNu0964cQPXrl1z+z49PR27d+/GwIEDORMGAL6+vhg4cCA2bNiAkyfvbOj/f6G7mbAUnjNV1j+2iiMyYe4YJ3HBoL/wnU/wd9MvMiQlVXMBHrrOLpUhphPr7u2rAAD8pqYidFacqX2q5uJ+hKbWPWxiwshuS1yYnQoDeBDVlN7L0jeukAm7ETRsH38X//fvbNMVfOQQ7XtjhpSvVX9TeNp3UXoflIb3bKyj/fV47MkyN32A3U6tyt/ttixiwsTv5Nma+fA6/rZDCjfC0wPgvriMZQe9mAR4epnGyshqMry3VX5imVbPxm8OgDNhFMcnnn2fvAlNoPQ7Aqdik9Q0Kf3J52VjcrG+yqcJvKzJ/pGWTBjlBTDkTHF8inU/8NIMUxoxTuex4/hz8aGj8KpT2y0jTkwYADRMuim9N843ahvldXyKtRqoFQ3L7gwAEhPmVGycCaN2iP+rLUtCv16Jlocn4+HKu6HZRpLiP5H1kFSmkZyKDSc6F0P7vYXl2BaZMCsSbfPEelU8xfrz9FPunZ3T79SFZp+ANFYyB8zmTJhVepEJo/dOxYYl03oDAApPMLVlL8NBgOrT7YnR8AoNZmN4ZSg2L5gLVXOh2jLGtDzTpAO8ux1Hyc2bCP4hVioHG/2kPL0270XPR4ej8q87JSZsWpZ+65rVe65lfx18UR7XYlu7DR3Nv7uxnygPUoeuuHIX0r6NkuI5FZuZCQOArnkc6ZVQCj/a+DCcis3kI43KEtd/kb7INqtcinOmvLoH+b8xR+ai+inR2xk6cqyYViSvzQouDmeqZkMbdZBUzYhW5e+G9nsLiQlTNRe6Viwy1Q0Acpb/f+x9d3hURff/J9lAgBB63fQOBMKGkLIBpLsQiiCKIIIgNVGwN1AUUKxgQSA0QZAuRZTAUqRICgll6WTTSbj0ToBANvn9MczcmXvvbqKvX3/6vpznyZO9d9qZuVPOOXNKK2GcXK+Vq/bHpJN7YNIbELhynND3gAxib+qXNAomvQFnnilTjRWtxykiVPVN+P7S/1W7FzAmDADcVxMBCWXC7vWOwoUJonqiWbKg7g9yQOS4sK7CvqHV3pkPyLr86HIzAWf6Nza4m9AGuso4Keujv/mznm+Lwszhi4QyX+eLWhFeTxG6r+zWLcaEGY8MQNa30VhWmMyYMAC4YLzJmDCKIzXByPomBjDXQ0VweqYvAGCRlZxduvr1GM4hi9SxBmma++8NhG9QbmwNk97wSDXxfxAqzYitX78ezZs3R/fu3bFy5UpUrVoVTzzxBMaOHYt3330Xr7zyCoYOHYqIiAgcPXoU77zzDry8vDB27FhcuGBfNeP/AsrKynDu3Dk0btxYM33GjBmoUaMG3Nzc4OXlhcmTJ6NE4QUrI4MQjkajOmhtTEwMysvLcfCgtovlPwv8AqSBgSnwm2VZewPK25FN6PRoMTaH8qCl7zu8OFZoi+a7MUTbxW5ARjUci17Bym9qUV/OVy665dYCWt/mjCQAZMPzniobkPNBKn0+sO9WvqTjeYbrnIJ9aDWTMHM5AxMFu4v3/UT33VqMZePdl4S03BUG4dlRfwDiQENJZJaXljK7l8LusuGz8nvRbxQw5DAGZPVVjZNZsiDnC9nN8NsXyHtd3brYsmUlTHoDTo2z76GOvg8eRaTFpV0jVGkok+3aevYYpGpfCWbJguBRB1RECgAhELZyzmnhxcpnEVU6a2IUnFKOCHlMeuJkgK/HHsGoxMcpPFT1zv+Towy3viev2CXOtIhC16QMIQ8fyy/q8NMCTroWstG9y86DqLK7qZCuNR4UTo1VE858/2j+e32i8KPvbs26eNsYgMR50gXJwiwdyoT8yr5bF5O5wnuQVH7zFX67hLLK/QYA8vrOh77/SaEOgAgfeNDt0qvqobZ5ZR3lwKguHnoWRoHeWmvNRTb3R6jd5NNnWs45rBmUoPWd7m/3QdaSCNT+MQ3nX5WZRNvNm5plXW6UIGnnWjKH+51SrY3iAbL6btZzc4Vx042voerX9WA5FAeFCFfZwyWfPyx9sKqf/JjTfFEzD2gyyXw/eLyp7SZApP60D8p91qlKVXwSIAZwpx5f6XzQIkSV7ZolC17zNWp+X/4dVQOn76hNq0lvwFT/NrhvaiuMB0BiytF3ts4S9n82lz3nPCOGBjBLFrg6VWECIx4P3mEOjz+Ni0aBqhRS3O/0lx1dtGibL3yHnMh7MEsW5MURdfCg4QdV9dP/5QflvtsTSgDAsEzi0IkS+sp81X5NR+NvZQYm9zOjqh6t+KWF74kCE+8pKTj7dix+DyOhFKjAita1JVe8IX/QLUIoT/EaY80V3js6k78KFEOVvOJLcHJ2E20O+XpSW69D0IT9aKRTrytlH6lNYXfjEcB0VajLeGSAqm6qUkjnuu3KVZglEvg9c+RcTLwQhshJ8bA8pDGtiVEwSxb8FLADlnfmsLl305/Y4/cP/mtMXv4OKC//O1zY///u5f89VIoRe+yxx/DUU0+hSpUq+PTTT5Gfn4/CwkKsX78ec+bMwUcffYQZM2ZgyZIlSEtLw82bN7FlyxYMGDAAy5cvR3BwMDZt2vR/3RcGiYmJOHfuHJ5//nnhvbOzM7p06YLp06dj48aNWLhwIVq0aIFp06ahd+/esNlkgkaSiPdB/jaMAq+m+GegadOmwl9QUJAqz54w2UkGL5ECAOd9FjglW5D3qWzAHNf5KYHpoF6AaHrNXEJA8BIuAEj7IlHIRzeXnEhiANzjdC+Y9AbkfBljl2i3xxzwaVnfirdJ3i41hYMKADNiBoCSbb4qAj+gSk2mdmPSG9DzxHWhT8p2GXH8UMJly8xmacVb/eH/rEWFAwVbZ4LLpU0hLI06YaBQ3o7gVXUrYdq9p6QI34Di7rxPrPtBp3PCM60/4E355mL9KVK37do1mPQG3H5aJoL4Py2gDIHWe4C47N6ydRUjWEx6A+LCH0feKpmYqr6nsV2CqejdWOQNcoKTiwuca9SwO4Y80PJlxcUw6Q0IHpdeIeNL409RnHI/lYmF0FkJgjeq8sMnVPOwrLgYfluJlHlTi/qEAfxevDGk5Vt9nSDgefFnmWC//bQ4d+v2kl1JmyULknasEcry37eHTxRjzPj2+HFxDmvG5hL/noc98+YL72YVJOPuE6TuDINOyFtvcSrue9RhzwfD1ds8v59QBoYHs2RBwCptr478mlTOdWUdAISg1gDx7MqPg3WBrCrFe40rPUv24Kxvo3HnSdk5gxbjTNszSxa0/SCe3cTzzIlJb0DZ0dNCGRcPPb7OT1HVtSv0Z0YQN/lKJliVc0EXSvaHrZuXC3hEWmxsbCI+jIfbOvnGjd8jAOI4hOL3ejYhtJ3K7AsMKHR4iQjXmvY7xeJ6UcjuvFjYP12aNGbzoGii9i0s9QZL26KxIPNWtobtylXsmyWG06C/yx/cF76Ni48YDJjH3cXfV3jPQ9+sHjBLFnQ92Vez70ow6Q1o9VUCPD5LQdZseX7cffk6Sec8+l3t7o/JuYfYM+/JV2v/snfWbclWCw11IYGqd37mkUJdVW+Q8CgBv42Adbda48ceg6zEodvxW6r8WkzLgleehHVxBCP0KVCBFV+mpPwBsobORdZ3oq0vTefHyesjeS3EZcYBADw+k8fEdvmK8M35skNOFzFbPwBEjfRhG/OD/TXL+W8byfKcf1m8wet7UmQUy4pFByz8OuP3AHtMnnL886PuwqP2DZbmt3GMKqB4yTZfoSz/3/8tctN2MNwZJXWdMLH7IMJw953PbpB53NK+SMSlTSF4BP97UClG7M6dO/j1119x9OhRvPnmm/D29naYv2rVqjCZTPjxxx+Rl5eHUaNGwWq1OizzV0FKSgpee+01tG7dGhMnThTSvL29sXPnTowfPx59+/bFyJEjYTabMXr0aOzYsQOrVsle6qjaoqurWv+12kPX1Y5UG/8M8JIQs2RB9tfqAJWArKLi904q/He8QDbAzGxhg1kzqxsQ1QomvQFji4yCGpty06Aew9JLHggblUlvwLcBazAtLwMBb6Th4oui2tjOuzrW3tUXxJtDJaEUNGE/dt4lDiT4YK18fUHPk4My71MjU79yxORRfWwAzIOic40aAgFi0htYbBIeRvjIBwqVxvEHm24XwaVh30w2Jt+GiF4MqbR+WaE6pACtr/qexsL7kl6RqoNAeQib9AYhTg4A3PLWCXlNegOaJ8uERmWICPq++RTidryq+QB0oQ83/tru8BskB3zlHQwoD+4T4+cgeNQBXHs2EmXcGtAixB1JNpXEj5LB7O0Rwd6b9MRbJQBMyT0Iz09S4PlJCqtjSu5BzTY+ardBaC/4BXJj6JteXcBZ/3mKMG7ULsAsWVBzLbkJ9ft1NKvLuWUz1ToCCFF28SXZhXT5g/sY5fG7Ci8eyo6ehvT6AwH/u/2ihDEx6Un4BPpuvE87VP85nTF9ynHesYJ46nKKCLXb7uTcQyw/HxYDAEIWxyPwNVGazXsaUwJ95/SbLLjqMnyUZrvxWdnC2D3e+rjQVwqXfyEu5qtd0KGoZ5myGhUedF3UX5CK0rMSe74wPla1Juj/zRlJTKLuqG4KdC6EphJX2bYTmawdW3kZq5dnjg9+OFezrpwZMUBMmPBuRiD5XqkzEoX3pTu8GV5MePDuEZZeZdsB1i8lAQoA15eQm4BhmYWC7SYPdH1RoEKvoHevYVqeeEOsa64WHtL2N6f+oknwmvQGbN63EWfWtsLEC2GqMd4URGzwdrbYpGL8+brqJtdjv2k4ktz+svOq2nEP3Z2ny7dUaZ8nol01Z5aHhhvhQWs987+d2rZkzC+PDxXw8fsXL9wwSxbkPtyqA587DJ8PCONf2jXCoTBKt0vPcGDz9c0ugkfB+snEkZV1XiT8t7/A3rtuycBX7VfjTOltoQ/Od0pUfe3rEUnohI6/Ce1PyrXg8aeHCzjmfCGf8/aCQ5v0BkzPI4I2998bsLb40AxmycI0a5TjTuvKWxUm3A42+Ya7wVthwIt1CjWFMcq5w+MFAI8d6y88K/Pxzw86nWO/gxPShTbMkgW7W26EEqjgl7bxWd5+NJ2ZAlt2HsI/JkHK6Q1yaZcIoWzDvpn/KtXERwGd/xqoFCN24MABxMXF/akGGjZsiBkzZuCNN96oOPN/CAcPHkSvXr2g1+uxefNmxjBVBJMmTQIAbN68mb2rUYO4zlaqLALEvozP80fh3Llzwl9WVpaQTjcI6sZXKbmLcK3KNnzeTXveA+IadVNxDdwMBDuI5nmSA9bFxwvWRELgzcxPRd4n5IaBepaLcq0i6KADxLaBRrE/PGkOIwhNegMzWjbpDcj4SCY2Lo0TbbEiDhMiiub/wF9ty2GWSDwPAPBfd1voN09c8MBvnoGvEKKx7M4dtH2f6GWXxEXi7DuxqnIAsEoifXJu3RwDat6ESW9AYsE+hhN/+Du7u8OkJ7YmynYB4r5+CadqSWFK7kHc7XhBwN91s2zLZtIb0PHoXVWf+EOe/m46IwXG18X4OtQrGQDmjvnOk7JUU8noUKCqF257GzIPdU2XqtWHzZIFLk2bCFI7AGj3CsHD5dkLAvFBmRu+fT4GlbJu/j2VBJpO9Ua3IS+o8rl46NnvmGo6zCpIFsbnA/8I9Hx8kKoNGhqBrwsg0k4lE8jjbZZEdUYACB6Twezayo6fFvBfc7s2I8oafZcijNncoEC4NG0CFy9Pzblolizwfo+4Ss//mBA6e+fMZ+mzr5M++K8mrpHjuj/DyumCAxjubnsbqtbV1l/EmxoA7LaIEqaUsaO2KgCEANAUJswm3526vlbCjaRAlHeR4wZR5oBvn44HD/M8U6EL8hfGzCxZcDCC3DSefHEOs4kyS8TWk86R8xuJmhK9MbPOiVLh1XiWGPMOAD67EoTsH8OFea1VVgvMkgUnjMsFhhsAWn/7EmuD1TkvUlWW/gW8ngakOWZu3fY2BAC4dDujWjNUa6H4KbLmQw5Ugd/m0cz+id9HHqwkAiG6HjYUpQs34Fp7Dn0uzT+DocsnCHn42FYFU8gee3ur/A2V/eBx9376mHBLywsb+PhQF18kv1vtf5bVYdIbcOGOu4rg5n/T8dAaTyVO/DulDS4g2y6aJQvKDxzH79+Jt4LKvin7T9ugjNmAUxdZXpedB+0y/IDI6ABE+OO6JQP5fYiKasj38bjSjmhM5PVZwFTkaLtzgwKZowyzZMGZta1gy8zWbNMsWVhMMQqPVZOFjTQPjZ91a5AYcqPNNNEWKsK1KkaeaY9bHYifgA1FoldZftxc9zRB/mpRIAFAEAzy5Ux6OZYcTyM4YmoBMMa3ukm2EVOuKX5sqMt+/t3Smw2EvHHdBgrttjzorBL89t9O9oXbA2NweNIcxqg12zcULr/JNo203n+TauIj+GvgHxlH7M/AoUOH0L17d9SuXRu7du3SVCm0B15eXtDpdIJzEb2eECta6of03R9pozKgFdCZ37AKJ4k3UsqDxa9KTUJAut1h1+I8lBYUouoVIql9zdeIB7VtuD6MHNoFa1phYG5XlB8UXTK/mn0KhT+1RMiBKqw93/dTNTc9w0OtooaJpO0FZ/Yhe2YMdn+mdiii20UI65vPyjZqni4kcCQ1UDdLFmakT0F5+PNg0htwaVMI6i8i7bsmZTD35lmzyOFMb6icuxIdenpTWNIrEhklHqyNl87KqoBbMn8X2tbCZ9izLwlpZsmCmGo6u/kpaKmg8v3hv3/qjERN5sEsWZjnrxrr90PXIlhwehFxuEyzXPFjlxihURRzG7r69Vi7NA+1GzJLFkQeGgiT3oDrz9yCWbKgZo9cgfiY55mKgqnizajz74fxRX4a04vXGgNAvnl07nUZul2HhLE26Q1MTY2+G+/TDoZPiHTxzfNExaXsOImBRtXFeKDPV0YaNb8jzaMLklVkNrWoj+wfw4W6qF2brkF99v7s27EYWJOosOR9asT5V9R2GaXnzmPz/l9V7bl4esCkNyBpxxqY9AZkjhDdq5v0Bmaf6Z5IbBwp82zSG2Cz5rAxKn7skuo79wyMRd6nRjYXzJKFjWWM5SlWj1mSg8rywI8RdXdPbT0p8UMFKPQmwqQ3CDcmPJGkFHJQvD7cttrud+HnGBUc0TnSpN8pNu9NegPy+s1n9cQe0XYDb5YseLt+FnK6LGbt07IABOb2ymgjks7K81EXTAJFR02MR6PvyDi0mRYPs2TB8ZfloNM0WHc9jbhEtL2yDmo7LrNkwbmNzdk4rQ/cLpTTWkNuPxFbrsy2DxA8OoPZP/FzqO4PqZiZL8dc6+8ZBb9BR+Hs7i7gQMuUdRRxUzo04AlHauNb7fO6qrq0GB4AkDa0UH1vs2QRwlFQu0De7hAgjig+uyLPL12d2vLv4ADs+3Ye66ezQXQWcqe/tp0bADavqX2lWbIw20WtvYLHn9oRdjlWLKS1/CZBKDemtmS3feVvAMiaHc321LLjp2E6fhNe24iao+975HvmzIgRvrUWM9zjiaFCOAEAKB4QDaffPDDkdBHiOg1geS+MFxnS8OlyH+j3dF+VhrdyjrF3h94nc44KiUx6A4pibrN6qBMXvn2T3oCZ+ako6Xgevs8cFdooWhfKgpzTd1lL26jmn3IOKYOBh09PYHmouj79PlrzkofN6ZtVDN6wWjKNWPxUNGwnrYh7rD+r93hEGYJ/iGc3h2bJgrzexHGP18tWcpblETvp0+2XCWNC2/lX3Yj9TX//7fCnGLGpU6fiyy+/xP379uOd7NmzB1OnTv3TiP0ROHToEAu6vGvXLvj4+FRciIPc3FzYbDbBuUdkJJFkpqaqGZq0tDQ4OTkhIiJClfafAJWEKKVt9Nnr4xRctBUjZ4UBXYaNVJXnN2CqvsGDNTGKEXpmyYK8fvOx/9O5gLMOPgOP4Ub7K6oyKy5Fo8YWd2S2fcDK8ThemBAL998bAAA+aywSWN4uNZEzKBHuq9JUfbJ1JqpD1KuYst8PukVg1a26sHW/ptmuzwcpjMCkQazNkoWpnCg3WJcGxCBaGdPHLFnQwy8aNVKyWdyvsBkJ+M5jv6oefuNXgvM+eXOnNwb2GDD6Pm+6yLR0eHGsw8OhZ5AcOJoGY1W2owsNge2kFWVV5PcHw501cTdLRM2QAjUypnXSMmuKiO0a9WZ1wrhcIJ6cIuV561zipOrvm74xyOsr3/D0iu5NDtYlRELp3Lo5bgyJgVmyoOzePbtjYNIbcHks+ebFA6LReFYKrIlRONmnKaxzo3DrmRh4fJbCGJVmC0UprUlvQP1FqfBLGsUCl9JvFvDbCDSfn4CkPeuFdZTTZTE2Fatvvq8ulYlOj8/IDdi50ttYOvA7NPlaDjaqNeY8EfDmni0MN0dgliy4Nomop8VnZbP31OMozaOsp+zOHViHiUGBqa3FrbuudsvZm+daQAUofN+Sdq7F1V+DhbpNegNKd3jDpDegVzSJ2Ug9qdJbd3v48EBtA7UYE75cSuuqAuGt7JMWwQoAP+9aw97XX5AKnZO8fqgXvbpLyLkQuHs4Dr0vBnE36Q0Iepnc0DeYn6rZhlmysLhaZsmC9kefZGWPRq0U8DNLFtYP5Z6iRVCa9AZk/6gILAYifOPXrYuPF7Zk/q7amwFg+8rFKhzsEfm0vp0/LmK/lfjw+QDgWPQKoXzzeQma+ZXlgIehUB4G4DVLFuYSPuubGEEwYdIbUGY5KdT5++x5qnaovQ5iiLpk0p71qvGgOPivG6saF0C2I/ytlZswRsdfnsPsugCgzdR4oW3l/H39nGwnfWtQDHL7z0OtiMvo1b4f6W/LWjg/StbSMekNyB6cqJrbPOTMiMHWn5ep1si+WfNQ3uUsljfzhM2aw9LpDTLt3+GJ5IygaxUgTJzSjb9ZsqhiAGp9e/7da75qkwZnd3d4DjjBYhbS97ndvlfVxz/7/TwGOQMThbaodgK/Tvg/e+NG611zu7bwreJadWHBpWvtycWlTSFCHE6zZIHfu6ks4Drf1rV2suMP5Trinx/diP3vwZ9ixD788EO8/fbb6Nq1K65cURPvALB7925MmTLlP0KuMnD48GF0794dNWvWxK5du+Dn52c3rxauZWVleO+99wAAffr0Ye8DAwPRtm1brF27ljnuAIgTj7Vr16JLly5o0qSJqr6/ApzCQ9F9sLZK1/NBXRHwrAVVdhxkEk4tWOX3G5wfqk5SnWiXG8RG617vKPFQLbNp1gEAS332orGZqMXkTTcyl/YAOfhutr2HnwJ2sLoCV44T8BaYhBbBwoYF2Cf4quVfxeIQHzTtd0pVDy3j904q3rvYSmAge/rHMNsSs0Q8FgKA3+Aj7J2SKCsvKYHt2jX23HSGaC/U9aTs5VCJs1IqZ9Ib4LH3nqqPPZ4gRgKtP09gRJLfRJHJr7FhP1p+m4BhmbLu+8UEmdCmxsgAURsxSxYUvh8rHDJJ28nNArWdAIDLY4zCGNL/YemDGZ7UJbTycJogRWKgJynPu5sv6xjOCJfyjGNwbk1UxE6+qPYCaF0QKRzi9GYo93FCuJUdOYXay9M054VLE9HzaYN5hLDdN4tIvfP6zkfpWQl5T8xHylfiIewzOVX4NjStxfTLqOlcTUgLfO4wvD9MgckjXLDPAoC+brIdHL0tqR2nVvEZ7t0eH/hHCO3x9bR7eSziug1k80TXIpjZCgAkTlqX4aOE8af2oCa9gTmy4FX76G2EkmBUMkB8nibfEEbxhJGoLbaYK0rttYCv3ykiVHNcP7os2s1ltFmjqsOl2xkAQGlhEcySBY0zZAGPSU9CGvCEP03L/dzI+sXbBvL7mHVhWwGn86/GosYG2fNf0O7hKOkVaZcIo66me3tEwCk8lLXd+nPZkQuPk1myIPuhihRfF1X/pnlfzLIKfVSGmDDpDdgXtt7OyANdh44UGAglLsoxvr/dh8VQ1AJa9lZ4U1ZH5KGBwnjOvCrfCvF9UfaVhl/g8WH/j99UlTHpDZicewjR78Qj8tBAln5qrLZHWOpYhE+jKq98e2ffiUVjLgLBvd7aaqbhGUR9uUff59i7hO8f3qI8VBON6/ikgC9VkTTpDSzIOwUtnHWBfkL6jpbyrWOjDLXXTX7sZjSVHYos+WwGTHoD0sPXojQ3n81ZerM1+DRxeuO3dRTiWnQE8FBg87zI3NDA2ya9Abr69WCWLMKtX5djxRhjzWX1D8ssZELB1twZcb8uMTFo+W0Ccz6jtQ/w/5V9pe+/yBcFYQCYPVnZrVtCubKdXqq1d3MwuQXscPQeyxccny58D2p/ZZYsCJ+eoPmteJyc3WTVTLoWqKYDAKy6VRdJx37Dr5fJOWi7dAmH2q5mbuf5ccibbhTGgh+PgFXjMCmXPOd/RL7VIg3Thn8D/BttxKxWKyZPnoyYmBg0bNgQ7u7uMBgM+Pjjj1HM0VgVQWlpKb799lu0adMGbm5uqF27Ntq0aYN58+ZVXFgBfyqgs7OzM/z9/ZGbm4vAwEAkJSUhMFDU+58yZQqmTp0qeCKsLCxbtgwFBcSOZdasWbh//z5ef/11AICPjw+GDiVEbUFBASIiInD16lV88MEHCAgIUNXVv39/uD1cYE8++SRu3ryJ2NhYeHl54fLly1i3bh0OHjyIJ554AuvXr4ezs8ybpqSkoHPnzvD09MT48eMZPhcuXEBycjJat26tau/PgDKgs5LQBxxLiWkAw8u/BKNBHyu+yE/DG4PHYtu6H2DSG3Du9VgWN8negVqZ91qgDNxbGaD1X7YVo4HODd0Hj4DznsOItNiQYdAJzBr938vYB6UFhap6+HwjMguwOMSHpcW16Ajb9RsOiQktoo9JtjaPRl6vBULa6MJ2OPtcY9iycjVxqGj8HH1He2mOymiNhbLtC+Nj0XiWOgCm9fu2CH7hAM6/GosmX6XYnXeV7Qd9d2WkkamHAoQQnR0UXOnytM0lNxthZTO9w/wAMPJMeyzy3md37HqGdGDqpTRP0bux8PyE9JkG/Fa2QZ/PrG0lqPVsLK6Jfm63Ga4fXArFlIYnNIl7vr6y9gZsWJWIVltfQl7cQiFtUq4FYw4MZW6wrXOjkPfEfHQ63g+7W26ESW/A1ReMqPe9duBRrTGMODgQDfqonSRpzVV7Y2vSG5D1TQxyn05UlWk7OZ656dZaBwBR1eRv5ABCINHbE2UZW+c2zFGOI7xzvjAie8hcdBk+SmWLxsO0vAwW2kILP3ugtQcBQGjqEHgOOCHk89s0BsHj0lV10ODsyjGenHsIU/3byOtllBH1TtyBU+oRob3WnyfgyFtzhHFn+2FsX5Tmn0H2zBjkDErUHEvlmF3aFIKGfTM105T91TVuBNsFMcYgn986NwrB8em4PMbInJHwdYX8PkxQNwMAXcOGsF26xOqxFyS7MucPj4uTqyvKS0rIWu7+DGwnMu3uF/Nv6IV4csq6Bpy6qBn0WysvABRv9Ydbj1y74x6QUQ3pieE4ME09Rnz+/icvYUOLhnbbcYTDzPxUdrMkbWiBY9ErsO52LWb77KgsBaffPLC12WY2B9q+H48D0+S13TOoHcqKi4XyLv6+cFt6S1OTxnAYsHCXslV2N1V5C1ZCRcGmaVBqLeDxyv3MCP+3U4V3d/pHo8aG/ZplKjrjKqKTAneNYJ5hleuInq1a+Ea/HY86y1JR1iEc21cvlutuWh87pHn/6ADGlGb1XzoRuhqV88XwZ8F25x5yh03/y8bjnXfewezZs9G3b1/ExMSgSpUq2LVrF9asWYOwsDCkpaWhevXqDuu4f/8++vbti127dmHIkCGIiYlBaWkpsrKyUL16dUyfPv0P4fSnGbEPP/wQ3t7eGDt2LGrVqoWNGzeiXbt2LM9/woh16tQJe/bs0Uzr2LEjdu/eDYDcunXu3NlhXXl5efD19QUALFq0CMuWLcPp06dx9epVuLq6IjQ0FMOGDcO4ceMEJoxCamoq3nvvPezfvx9OTk6IjY3FJ598gjZt2qjy/lmgk/qa1R8Dn3semeNcETxSJi6UG8XVX4OZtPmPEMhaz/kfGZH5wlzYyssQ59EGhZNi4fUx2Tica9TAgtPb4PnQ1bwWOGqvbnI9rPL7DSa9AcVPRTNbBiWB0/mF0ai6NUNVV/bMGBKI2M44aLWZdPYQej41Ak6pR1ibzu7uggoOhasvGNFlfKpwYNjrmxK3/I+NyBwx1246hVvPxKC0mhPSP5lr9xsoy2bNjkbQi9qHxvLCZDTQuQll7Y0JAFwZZUT9hWr7DqeIUGz9ZbmqHgr0/Wd5+/G2XzRrf1ZBMsb7tIMSKmIi/yhxBZDYWdV+kT1V8WVn5qeihpMNflVqIq5FRxYstaL5f+61WDSdmaKZpmseBNupLNzrHYVqv8qEdcyRB4iokYfEvr1YrKi8T43w47zMVfQdLv7cTPDEaA/XrCURzFNYubE1E6ZolVESJlo4lPSKhOvmDIfzTWssrIlRCB6XjnOvx6LpDG1CwtF3pPD4gOcFBkN6I5Z54+PrqL2vPiPolP1wRAjZ6wefN391mMAU6JoH4ZVfNuLxGg9YPkdMCQ9jrLkwuEpI8GnP0nufuIZfQ2VVVemtWOg/T9Hc6ypiAu/0j4b76auwnZJDJFRmLJRj4qgtfjwKpsSyW1VH9VRmrB0JS+j768OMRB2e68MfZY7PvxqLalfKUW/NYbuqzNk/htsNIj7SmocvrCbU623V7J+ueRDOmhriyFuy8NLF0wOlRaK9OC0j7AUxYUDa0UqNhVb/eKjMmChx4Z979hikCtegBLrulN+Rx8ER/cD/puNglix47Fh/wSlG1tI2zLHY1RFGXOt+FwGcZ+BlhckY6qU+VwAAzjqYiw6i3dEnkRy2XsCFF2pQfJV4KvEdVvAYLhjJzSQv3Ho1+5QqRpmyLvffG+DW/WooflDVIQNur+20ezaMnjMex14jAhbnls2Y4ycKazMPoW5w7r+DEfvhb2LEnv/rGLEDBw4gKCgItWvXFt6/9957+PjjjzFr1iy89NJLDut4//338cknn2D79u0V8iCVgf+IEZs8eTJ27tyJAQMGoKSkBIsXL8agQeTq/z9hxP7XQHkjBpBF+/hTz2PbTz+whRyQUQ05kfdQ2jUCFyJdcXyCGMyZ5rvxXAxq/5gmEJQ0T6/YvticsgnR78SjzlJRul4ZKRy/SbeYk4CTCWqJLYVhmYWC1zqtdrTaPPt2LItNUlFZvt/0Xa+oXigtOlvhwUfzf3S5GQtIScH4xjjUWpGmOqAqIgSVbbr4eqM0/4xmuzxoEYFafePz2/tebnsbMscN/K3InyEMlTg7IlazfwwXVKLs9UnZL2Ub9tIrw+y1mpkA1+vlqJNdwly4a5WZlGvBx/4ifvbacfScMyOGqf44wsukJ7ZZvAvm0q4RqnhvFX13Cia9AWXt1THq7OFgDwqmGuEzORXO7u6CSlBF5VifXollNnGdTzyBqo+fEQK+jzjTAVLMLbtzL2tWtErdq6J+JBbsg1+Vmph/Q49P03swb3GO8L0+1Ig6y+zfJlaGOa0MftKGFirnEvb2ELNkQeJ1D3YTUpn9xVHbWu2YJaJNsDn1F5ZfWWfxgGjsmyW7fz/zQaygKqicG0oo6xAu2Lvx7Sj7QM8we3snfdfzxHVsCa2DMdZcpNwKxIymhyq1xioas/isbEG1t7LMT+4K4qlPC+euJ/sylVuAqODbTlpV+bTqrr6nsSpUSEW4AERlu/T8BThVqYqtBeSMT7zugXlZHXA4chVMegO7kVXCmQ9i4T0lBRdfjMXhSXPsCkKt37eFzzon5unXuWUzFAfUQvWfSXs84xJz5AHSWleBU3gorhhqodP4NHzR5LDDb3ZpUwgOtV2tuddpnYEC7TE3ASfjyRzN+i6aBRD/I+uFQt7K1oLpAk3rf/ISxtU5C5PegML3Y1HuBJwap9Ys4uHm4BjUWine2rn4eKG0oNDhPmDSGxiz+vWJvWjZ4uIjRuwh/NWMmD04duwYwsLCMHbsWCQmJtrNV1xcjKZNm6J79+5Yt24dysvLcfv2bbhzjo/+KPzHXhO7du2KlJQUNG7cGEOGDPnDV3KPQASzZGELVncoU1jw1F3xzmWLcHzCHAQtkw1/O44Zw+KB1f6RMBA8Exa4i9icbU4hMVrqLE3FxQRiX0SdXdhjKvhnk97AvAT5rhEdXyg3zOXt5Gdel9sRE2aWLHaZMB6o10RleZPegNOfNBKeab1n1xPbFj4QtklvwO9h1VT5eScifJ+yv47RHJeyjuGsPrrR3hgSg80pm1j+bsdvqQ5aHn+qLw4AW++4avat0/F+aPfKOIcER/Fjl1jgYuoCnJavva8+OaTbtmR4avVHC/j26G/63zOtJgKfO2z3m1CIy4xzyGTwaS6+3kI+5fziy9Lf+i9TcGDqXE0mjM//sT/p+91+UZr40rzUY5murnzjQY37zZIFox/fyfLnrQpDWXu5bMjvw4R6KRNG4wOei3XV7D/fPj+nADlenlmyYPuaJWScmjZhwVjzV4exb2qWiHG51vek706PmgvEhGFL5u92iUAahJeCc5hsC9bka9mwf1foz3B2FR2ASDG34GxooZovNE/Q+P2ItIjCOorHhGxZUtx5hByTbJxPe7KH6YoFl90AVB4zbZ2JtFzJhNE8DVPqqPACiIda3p2/Euj4Ug+ZnUaTGHOUCZuZn4qbg2NU5fh2ugwfhafc7cfXdCSs4P/4saUhHOi7zXeqobSgEL2iegEA7pTdF+oBwJgws0SC5irttahaL3XFr4whxjNh3QeP0NwDqH3wmAZ7VGtZS/hAY0QOqHkTxyPkGHI0b3xWtqrvAHHpbm/MANm+0ixZ8KBbBMOVx1lrT6RMWNgh0V7FpDcITBgAFuBdmY+vU59GiLaNQWbNM0GL+eDxKj1Pzt7yB/dZ/nF1zrJbdwBMLZb/AwDvKWTN0nA0u75fwNoGAOt8osob/MIBIdxK2fHT2DtX9krK3x7VcCZBvS9OKUW9xak49AbRGLrfI1LoB98f6ikXAHqfuKY604L3PK86c+if1zRiJ1o8IBr63XI6D9a5oqdG5TyjewPPhAFgnpw3tJDDgXhNS8GpcXNU+/OleNEer9bKNNV4n5zUhPWN2thr0UDuB8l+4/HQ+dG/Av4O+7CHNmJBQUFo2rQp+/uroaiIOGHhnfZpwe+//45bt24hIiICL7/8MmrVqoVatWqhYcOGmDhxIkpLS/9w23+J+/oWLVpg//79aNOmDd5//32MHDkSDx48+Cuq/p8DutCbJw9laheAWlJm0huQNVT2gFjt13QWD0y5eZv0BgQMEaVTZskC/eZCmPQGpppglizIXSET5/YIalt2Hkx6A27PKoOp31CxzahW8DOPhFmyIOnoTlbPew1ktSwtqVf/k2rX21q/aZnTo9VOISgEDj2Mwaclof7up/rA40lixxM0t0g1rkrCV6vfABD0wy2W70bZXZafOlKg9YR/nIDay9MQ8n08zpWS+G6JO7pr4kvxdCqT2+pRQx2/DgB2t9yI5K8TVd+S/w+ABS5W9oWqf5UfOK5JABU/Fa0iGvhYOgBwe6u/qu1F3sTY+OJLsmG7FpNBY+Notd3yoLPwbnPKJqGsEui74L3DBOIlxvIUTHoDc76ghIGnzrPyfLwuihc/nj6TiXMQ6szFLFnQqXoZK787UhZi+A06iu1rlmDJTSII4NXhaJ3l7QwIfIUw+ZSYsDcHdc2DVAd24CtpyJodLRAEpefOI+il/cj+OgaZHZbCpDcw9962K1c1iTpa1m/TGJjXL7U7xmbJgqk7CWEZc4QEnabqTlr7zJbcNOjq1oVJb8C1zUEwSxZc+Vj0uNrlWLHwvfjgxy6+3uz9t4HNYJYsxCnQS6KTAwCYtFF2HETLJG1fLcQ00u3Svkmh/b/U7oZqnpolC7w+TkFO5D1h7JSBWk16A7sN3L1ggVBH720TGFFmD6psO4AGOjfNNFpucu4hWBe1VeFu0hvgt2mMkBcAtmxbJTx/G9gM2T+GY3M6iZHJuxFXMjEmvQFNvknRHC8AyOtD+kjVJpVg0htwtn11mCXiTIHOCbNkge0kcd39tl+0JnGttd8rg6bze/Ok78man5x7SChDXborYeddnfBs0htQZYfszpz/r8VI0vYL79aFEnK+MGKMNVfzXKP10jh5FM53seFGUiDLT0EXEohNZx/eQLWWGZ0bz8UIcxGAKlSIlrBDyWhSl/M8nia9AV2OEScFJXGRcMupItSh3Jd6xj2r6h+NQUZtEF1+O6hi8mh5WrdzWDPm+Tjxx14qvPwGH3G4fgDAbd1+7PtWvs11btkMqwoJoxkcnw4XHy9hHHgodxI9/NI8SiEsj9eFCbEo7SLHQY19gQiCqNBQ2UeAxJ+kz8rbcvo+Z0aMoC3xCP5esNlsmDZtGlxcXPDss886zJuZSeb4119/jXXr1uHzzz/H6tWrmdnSyJFqj+YVwV8WR6xx48bYu3cv+vTpg8WLF+Orr776q6r+n4RT7UiMCXuHFE3j//NxafiNj5Z5N+coTHoD7j5BbgGUzi9MerX6hen4TeEA5Nvf22oDbga4CTisWT+fBa8EgObzE4SNvGdIB1WbZsnC1HOUBy8fOJLWEbzneQBgns3oe0J4EecOU/b1xcUEOdYYjRtmlizYnPqL0M5bOcfY5hl1+Gmhvh4+hHC5UXYXPUM6oPzwCVZ2oKdRGKsWc2TPTIcnzYFZIvF3hnu3h655EAJfIZ4Bvfe7Cd/l9WxSZ6mbrCVM0wumGpE9k4wBvcWyd0j6/TKa/R5plfXzHQGtiwZjpjF4eFDG0qnZQ+2oBCDe9GhsJR4K3yfMGY1TpixH4eTIZlh0Zh/7jrS9K6PUBAd/20ADf9L6aDwr3/dTcXugOH8u/xKMNc2baDKC/CFK/yhjqUUQmCULtuSKh7ZJb8DwWhdV70x6A67+GqwKkAoA7cfLYQuca9RAaOoQADLBS4M8U8jtPw/XhoueMAGw+ZUzI0YIzqrVV/ocPC4ds675CN/jrln0+naihKyptNYigab8bZYs+OJqAMq9iESx/gCy5uq9V1Vo9+36WbgyyiiM6YTs04i02ATmm9Yb9HIau9nly/i/lYrzr4jxBE0e4Wg4VzTUd0TM3XhWDP5rb26a9AZsTv4Z1rlRmvVFvyMy/cFjiKpXwln1rRgA5jWNtqklAAJI0G3eXlhoY1w6m1uvZ59geCrryemyWPM9IN52Ks8Z3mMrrVsJfJkzk2NxL4RoPtRaKYYsoQxA7gp1HUpg55nCdoZvnzra4Z2eUE0Hre/3eUAr5HKaENb56kDb9oBqOwBgLsh5CHgzFQNqqgUFfJ22rFzhuezOHeZ5lQ9jYsvMZg4ryo6cYn2pOlTWPqHj4P9NJq6OEPcGAJiSS87fjkfvCu9d/H2Zy3llf+l+4ZqUAY/PUuDi78uCpVMcYt4ch8tjjNiStILsVW5qIcKV0Wp8GF6XxJhuZUdPM0c+9Izh+6hFL9gTWtHfZcdPY8rFxwAAYYecUFpQyASJt7f6o6xDOFtvlFk06Q2YlpchtANnmXHnPUw2/jaFBWEGgO88SPxCan7Qs+dgFV5K4IV9tJ2A1+Vz5JH7em3IysrCuXPn2N9fCa+88gpSU1MxdepUhISEOMx766Ga9tWrV7Fz507Ex8dj4MCB+Pnnn9GpUycsXboUp06d+kPt/6UBnatXr44NGzZgwoQJuHv3bsUFHoEAG6xElSAowxVxnZ+Cc1gzAPLhauusdhBCr/4BWUVEycxQoJL86j+ni5vBw7zOLZuh06jRQv2v1ctVbShmyQJdaAhMegNSZ4guw2s7V0fhJJk48v4wRSACqK2B1kZK8eUJx5SZibA+KIazuzt7b+34A1rMTUD54Yfey5x16BkY+3CMyI1L8KgDaDQnRXXgUFzMkgWBu4cDgHA41e2VJeQrf0BUeaIWv8Zw5xm8S5vkRev1EWnvUryRlafu83kp8gKvZAw4dZHh8XgNctOQPVjWS6Z4+0xOReBraVhwZh+2bvpRGDd+7E7dv4PgsfJhQmOiUcj+SiYIqcSQnx/5UXeFflcEtO2spW1Y/vKDJ4Q89L3XNDIutitXhfdKJqjMchIjvduz70j7qHQ2ApDg1rqGhHkv3eFt9+BL/jpRmE9aXgQpxL42TmboH6q48YylWSI2aPSmTdle3qowAQ/ebfmIzALU622Fc40ayPo2muF0e2AM9s2aB8OnxEV62Z07zK08zeM7SY5FpWtBvE9Wvyyq810bLjM2/KFO8SztGqFaC1QtjzqaoG1QI3uXpoRhXRlJCLKKiGiT3oCdz8eg7OhpxqTGPdYf5YdJkPiQxfFsfOovTBXm3+w+ffBRo2OaRDQPt8vuCen1TpPbtuIBhKFyDg0R+nJpnBF7Za1oJiGnQMMmALJKEv8N6fqm7zy3OWkKQqgDCrNkQbmxNYomxqK3tafqVo0CVY2luAb/IDJyWmuEB2WA9BmBolBqSu5BYY9Q7vcUNu/bqGoTAPx3vMD2Tyog4EGLufeemsIcMkzIPi2093lAK5glC7IeuvundWjVU9IrUih7aZwRLp4eKtxpv+h/6jBDuRdcHUHWhv87qUyYldf74e1epzZsz2uZNoThRP+kN2JRYKqmwhEA7pvaCvj38BOZ+rhQ2YhfyTDwNyh+E1ORM0NUeS+aKAZV3ttqgwqHpGO/od7iVGT9INMFZsnCQmjsCasuzJHS3HwAYILY/NVh6GXso2LAAaA0Nx9HHsazo5D2RaIQF+9Gn1aqcvUXpEIX5K+p8vtBQ/E2KOuHNkK6lqCo7Jaszu8UEapaFwGrxgnfQBccgE3JpP9H2xDBJmXyavbIVdFIFIb+OEF4piF9zJIF07etZG1QJpemKespO2I/3A6PJ0t3EDro3wDl5X/P3/8lvP/++/juu+8wZswYvPvuuxXmpx4VY2JiVEzbsGHEHIE6FKws/ClnHZWBjIwM3LlzBx07dvy/qP6/CniviU+HiJuqSS975TJLFvSK6IHNB7ci5PdhyOywFG+eD8fRNuXQp7njjSbbEFq1uurgd0RY3+sThern7qD8wHFVmlmyoNVXCdB/oe0BjNatbEe5QTmSDtkDXUggbJnZqnZeP9dGZTPQecQoVDUf+FPtTMq1YPKLo7F70QJVWXv1DT4tYWUzPW4OjkHqjES7/XYEuZ8a4f+QcLj5bIymYxD6mwdnQwsWpBQA3so5BqPrXbRe8TJK3W2o63EDjd93ZgcCxYsCrW95YTKGeLUjRNulFkhpXRVn14fC48kTdr+fWbIgdFYCk0bz9dE8eZ8YYX1edntsfH2cynjZ0fxQzjMKhT+1xMnYH1mb7r83wK0Ol+VxqVYNW3LTEP5RgsCAO1oLtA3ecxafT8trp3INVDTPzZIFzRbGw2cyqZ+GmKBpt8vuYYCnzACk3bMxQspeH7TGHSBEpW63tut3JU60Dt41P19f1g9tEPQ8qevC+FhY3tV2ykPL560Kg/UxouLY+cQT2BX6s+ZYtHt5LJK/mSeM37nXY3G7VQnzFvlHwCxZ8PU1X2wJraOaR7SPyn6HzUhA0xkpDuedvTRlnXx6zvJwBAw57HA/tM6LRPBY2TFC9tcxyBmYiNnXvdDE5Qa7WaH5H3SLYCp0WuAc1gxlR08zpw/5HxnR0FKGG/46HHvFviOlcxubsxiNjsDRnmYvzZoYxQK4V3Y/tHeumPQGwZOovXb5ciVxkXBNkse43Nha8NypLEOBTxtpzcOiYD+YJQsCV45jwg2tti+PNaLBvFSVkw7qnn/mVX+YW4pOBrTq4b2kanlprAgqOn+U6dnLwhE4lDAm1EtqZeq3t//x+QD1ty/rGI7tKxfDb+sopjrvCHTBAcge3ghBswtQelYS0uy1/W7OUSE2Y2XOZKUTpbBDTjjaprxS/XW01h2Nj0lvwK1BMbjSygm+k8jZ8Hr2Cbzz5SjUX7wfv91b869w1uG3eBKc/4+ddZTduYe8ER//n4zHhx9+iClTpmDEiBFYtGgRnJwqjlm2evVqDBo0CAMGDMBPP/0kpG3duhU9e/bExx9/jIkTJ1Yaj7/0RoyHyMjIR0zYH4T+wa0EaRxd/LzEuvQcsW+pXfMuTt2/gy+aHEa347cgxdzCa76iqpxJb4DfxjHsma8bAHQN6qPaL+mCvVBZh3AseBhc0KQ3CIGBz74TizZT5duAr6/5st/Kdkt3eAvPSqmQEicl2DKzWVm+HB/wko5RVbO8qRe9G4tzr4kqNTTvnIJ9Ql1myYJ33x4L1y0Zqvx82wVTYtHzxHVWpooTkWLVWpmGU/fvaPZL2bbyRsKfc31OddLpODZOrYXgJfFCeQqUCaPvula3ob9nFPzfSkVwfDoa9s3Eli0rVfPIpDcw5y5myYIhXu1gXUCC237Q8CRuDImBx5PkRquXsQ/umv00D9QT42XbPC1ppvV5+WbApDcwJswsWdjtrfJwClg9TqV+CABZ38k3RydjfxTmGc+EAUDZvXsqKT4PtCwdE9c9TRheGR/NVeUrN7Zm8ZkoPJXTjQVDd0T0331CVF/zmZwKaUMLmCULGvSxovihjZ1Jb1AFlqZMGEDi0/D9aPmNOigpfS7tEoHS6jqGj9Y6U5YBIDBhNM0sWeBSVZYIV7kte0E0Sxa0nzCW5Xc+TJwOWB9bysauavcCVbtZ3xHboJpr97P26f+jr8+Bc1X7kmF6E2dvjVEmLGKK+laJBnmmzya9AUdfn6OaIz3jnsXFn0WbpIs/N1PVx+9lFDYWE+N6GkvIpJdt9JQMRl6fBULb1F5w+ZRemB/sL8xxs2TBb0sXCe1RdTG2Xz+8faSe93zfS4XbT/uh/1wOEWCWLOy2hqqOKZkwrf2Z/i5Yo7750Hp2cnHBhQmxKiaMv4XkHbBofU8toYOSQW+2byizo+LLGV8ngZkpE5bzgNjmOqUeYXmU6+Dxp4erzi9A1igw6Q3CDbMSP7NkYbbZtpNWYe2VnjsPk96A1+rlCn2m3//M5Fghv1PqEXk9P2TCtNYyvWnPWxUmvO8+eISAmxKUfQwcehhjrAQ3+s14UM4FR8yXrmFD1XmjBOc9xE49r8dChyqMtF2bNQf+kzNQelbCmbWy1kr1PY3RYnYC7veIFOgMAPgkIEwYs8oIApS2WV80OSz0U8mM8aBF+/C/qZ2fWbKwW2yax31VGmPCzJIFb389Gg0TU1F2T9s+/J8I/8aAzhQoE/b8889j4cKFlWLCACAqipirUOcePNB3jRo1UqU5gv+zG7FHUHng3dfvPHcCfr+ORvAY+aDRkhLy72kan7+ykkian7p819WtiwtLG6JBH6tw+1KRpIdKdu1Ji+1tjLwbXqoG6KgfxU9FC8a5NJ+y7oo2Yj7gpL1YSTxQyX9F/VHifu15I+r+oHabrfx2vAtpZb9Ld3gLnrnKOoarnIPYw0WZrqy7ImmfMm/ElHhGePB56BiaJQuW36qPpSFeWHJmH5o+jEFX2iVC0K2n4OLpgVPTG6OKaykC37mB0rwChnPMm+NQP1lCaZM6QNpRVdlFZ/ahQ9JrCB6XzspsvlMNvWrI6mAuTZsw4YUWKPsovRWLPoP34WC4M4oHRMNt3X7NfB2O3mMOaPixpb+tc6IQvPSeKqYQzRPX9WlNpwf21u67OUfRqXoZTHoDdC2CmWc2/ttFHC7D9MZH0fqzBIG4cLQf8Gk01plyTtj7z9fBj0Phe7Hw+kjdvr01U9IzkglD+Dhj2V/FoLrPLXg8eQIbitJRw7kqK6sV+NksWeC/4wWmHscDf+tsb5042t/Kdnphe/NfNPuh3J8fH/A8u9lQQs4XRgS8Ka8fXd26sF27hvumtsKtvr11yj/zbSpxOXX/Dl7xjWXrUhlglwfrgkgEj85Q1cu3S12e03AFDx5vSwJpOzlVSnfI3rd3JNCgaZEWG3Po4ty6ueq2f4IUiW/1GRWOj1mywH/dWBYuwdEYao09jQ9XGbgy2oj6C1JxKd6IhnPJ96b7NqvfyQl3n4hE9Y2yd2PqCt/Rvu5oLlC42y+K1UuBPzeU9Qh1RrXCxUh3NJot9rWy+wgFZVgECjnLw5HdWQ5zkl7yAFGuVVTfgQ/DYtLbd8dfe199LPHdgv6eUap+IP2Y8I7eftF3VLuFgtNvHijvchb504zwfV/b1tTeGHQ7fgs7WrpXOFbKdF47xsXfF/dysrAbP/8rbsR8v3/vb7kRy3/ho790PKZOnYoPPvgAQ4cOxZIlSzRjCAPAuXPncOPGDXh7e6MGp57dvn17pKSk4MCBAyymsM1mQ2xsLA4dOoScnBx4e3tr1qkFlWbE/P39K86krNzJCTk5OX+43P8aaMURA4CbWwJQ82N3FivIEWEEACGL4wUJi3KzHltkxDzPVOE9VW0BiAvZ8XULYNIbYOvUBjtWfC9sQrOu+SCyei4+8I+ocFO61zsKN31d0NR8Hkl71msebGffiYWbVM7imbn4eAmONCoCXf16sF25CrMkB6+kKo1BGa7Iiiz5Q4yHFvAqPHnTjfCbqD2+Lv6+TAdfK52+o1DZPp7f2BxHolaqpHHK8tPyMvC+n+wqWMk00Dhpyr7X3lcfL+l34rFqcp00MGfRu7F4YiBhSig4ubhg65kDDoUCAAQVxoDV4xD4KpEq39/uw25MKiu1pO1473fDmehizbKOxpu+1wX545ypCUrqQIh/x5enTARlDpT10hhW9trmVXz49+dei8XRN9SqYs4tm2HLtlXoOnSkEFNMi0gySxZ0G/KCwICYJQsjurXGTGv+dxo5Gq5bMrDkzD4M926vOV6M+AkPlW0xNcZZ2tACPXxOwXLNkznE0QItfMySBXHNHoPt5k1VOv1PGSh7dSrx5dMCV4xDwBtpkN6KFdT07AFVb60s4WXr3AY7ln+vOY8cjYF1UVuEBpyF7aXaKDsu2lLx/XHUtla9/LO9so72w9ZfJKDJVyloedCZaR4ocaG/lep2Wt/ixSwrEp/ojaQdaypkLnUNG8J26RJLu/prMBpNuM9s2OyVO/9qLDwWHYft5k3NdEAM2qscCwqWkhIYHoZe4PvZIuU5eD11XLNeAFhwZh+8HwqbHAEty6sDAnJwba1vxrc3LLMQQ9yvIGDnCAQOPaw5lsFL4mEdPrdCxq20SwSqXiwW5h7f5+R7ZZjq3wZZs6MR9KK2IKrlQWccjygj7/sNBdKP4dpwI8qdAfeiB4RJt9O+8p0SB8OnCdBvvwTbqSyYJQu6DxyOq6HV0WBequY4ZX0bjaAJ+yt9pivB0T5iL79WnsJJsTj54hy0mJ0Ar48JE/t69gnBfpPuZzcHx+BCu3IEvSTGUDRLFty8VfavCejsu+j9v4cRGzntLxuP2bNn46WXXoK3tzemTZumYsIaN26M7t2Jh+vhw4fjhx9+wK5du9CpUyeW5/Dhw+jQoQOqVq2KCRMmoH79+li9ejWSk5MxefJkTJky5Q/hVGlGzB7H6LByJ6dHAZ0rAXRSt+v8Ac6OrIqcrovRfsJYuP0kL1LlZhGWPhhN+51i7/02jkFwArkZ8Nsyyq6nLSVoEbQdXhqL378Tb2fMkgXrbtcSbBjsbbA9QzoITjkqOhi0cDLpDUxCz+oNaoey4mKHZZT9AsDsyq4NN6LuEvFALtnmC9fH81l5nmAuj20NpxSi1kLtDJQwxpqL+cFESFHaNQI7ly1i46MFlChYU5SKgd7tBaNgR4xERcTWH5HA0edekXHYnJGkwpfmdfHyRGlhkcOxtYcfhVezT+HVZSNZ7BpAHnMlXlqHLD3wAWBDUTr6e0aR26YEWdqrbLt4qz/cqtyHufmvQn29T1zD8uk9kfaF9s2tsk9KyPvUCOuwuUK6WbLgsYQxqL4xHWc+jIX3h6IUmUp1eTwrEg4o05W2X7efjkbNdQeAMptQ5qKtGEO92tkdFy1wJJhQfo+SXpHYvWCBkN90/CYjyOm7aXkZiHKtgk3FNTA7KBhZSyKQ+/giu0QmjwNtT4lP0tlD0Dk5O5xr9D29ZaKga9wIlxbVQcPhV5B0VI771v1UH+jeqYOtPy9D88QEeE91fIunNVd7+ESh/MF9hByogqQ9EQj5qlBQKzPpDchbFcY8e158MZbdNFTZ3RQPOqm9fyUW7MM4H8IgT8k9iOHLxkOffB+/LVlod72vKUrFVZuNlfsj+4NWGr39qUw5s2TBwNyuLDSGVj4eKiJ45xTsQ4JPe+Fd/sdGZI5QMxlabbX+IgFH3pxjt53zL8fC86d8lJ6VBNxMeoPq1qiitnr2HCzc0FHbVX5s/NeOQ+7Toi1x0I/x8H9Lmzm0hze1W4OzDiiz4caQGKIxkH8GV0YZUX9hqqo/dM8ExLNKCVprGyCCuiO7g+Gx+75gq2iWZOEnj/etQTFwXyXa1QLEe/KpMXIw5F/PHoRh9nh47LmD+x9cV50HZsmCuNbdkXRku8NvfnNLAGr1tC/s59eBUmunIgaMt5PlIW+6kTG89s4yvn1H+M8qSEZwFTcBh9LyB/+eG7F/ISNGmSt70LFjR+Zswx4jBgBHjx7Fe++9h7179+LevXto3rw5Xn75ZQwfPvwP41RpRqygoED17quvvsKsWbOQm5urUYKAj4+P3bRHQECpmkih1dcJ0H+eAqfwUJQ0roGqW9US+kiLDSPrpgpSerNkgZ95JPJMi4R2lBuCc40a2JItx41xdnNDWXExa2NZYTIa6dxYes6XMQh4I40ZTztFtsLWn5chcMU4ZD+byNpedasuBrlfq/SGx+eZeCEM0xsf1cQXAFP14+tR3lTxZflnXf16cKrpJrjtp30xS7LTCi1wqlIVWwvSBeKMbyd/mhGZI0VCQRcaAtuJTDi7uzPvT0qCmx8Xvk7hQOr8FF7Z/DOTrJW3M2Db2iWaRJa9wyDG8hRz6w4Aulq1BCly4aRYeH2sTXhpMUg0X9lOLyE0gNY3u/VMDNxXk8OZEsmVYRLObWyOo1Er0f2ZEczb1ZTcg4IdFW33QbkNzXePQsCQwygeEI1rwTqcGK++9QKAM6W38dyE11Dj10Oq273sr2MQ+Eqa5phWNM48ZM+MQdDyW4InSXozqcQn5Pt43K9vQ3B8Otx/b4CfAnag06jRcE0i6mIuHnqUnpXgvd8NqRtaw+NTtcpQp9Gj4bo5Q1B/AqCaZ0XrQuE5QO2QhdYzKK8Lrr+sZ857nGvUQNmdO5p9tLeuF5zZh3Fdh8GWpQ5zYNKrHa3w9bG96GG79sb52nAjSvpdR7X1dVBnaarDb6S1Xh21XZk06niAvi/d4Y2dLTap8tFvx9dDCbzmB11wKsJ+8E+tvvDMvlmyYOKFMOHG2t7+x79TOvxx1E/eYQ0/npGHBqJebysWndmHkRq3qs3nJwh4ao3tzPxUvOZrVJXV+o5tpsXj0PsVM2JafaJA67WVlyHOo43m+FoXtkXwKCLE5NXWsmZHI7e/qGZ3ZnKsXea9on1Ca0+1NwbUiZIjGJZZiKUhsi1e49RauGC8iYsvxaLRdyma9VbEOPD5Yl8bxxgse+dWXGhnId6i1t77bF5nXGl3Ddbv2wJO5SzUTUVttEh5Dr6T7jHbcUDUiFHiU5l+0dtJ6c1YZgtvliwwHhmAdwO3YHZQsGoc7LWjdbZrjTEtF/vqOJQ7Q7ChpvWtzTz0r7kR81n49zBiBaP+OkbsnwiVvuby8fFR/dWtW9duGv17BJWHDVbivtn4xjiY9Aamj15++ASqbiVEGV3cdOFmGHRMCkoXvElvQJ6JSKBNegOS75EbBVrGLFmQtyoMZXfuCJsEvW2ibQz1aiekB7xBNg1qPF2eQfANeEOMGUOZMH5zoekxb41jbscBQpjzcDDcWbVxObdshgvjieoVZcKoa2CzRNz/zsxPxYTs06wtOkYmPXFLHJBRDbYrV1Wx03Ifl2+wVq3rJBwsFK7+GozyB/dh0pPYKT16DRHG+/pQI5xLZbfWNJ6b7QQJ/EdvB/kxAoDn8juxNpRp/CZuy8zGjMBQhptTsgVrbtdmTgz8zCOFepR9MOkNqB1HPFA6VamKTWczUPBSSyHPyReJA4O47s9ojkHodwlw/72BCl/KhJV1CFfNTQruq9OY2/U2uy4L5QEIZQqmyCp2TfudwoNyG7avXszy8UwYP796e0QgYMhh6FoEw23dftyvS+RLvU9cY8btdG54u9RE9Y3pjAnj8akTIMYJ4g9Sk54Y2Je3M8Bv82hMz0sX+mqWLLjbj0ifA19LQ/nBE6xvZsnCmDBaJq77MwCAzBfmIjie3PBl/RQMk97AHA4AQOlZCYXvxeJMdLHMhHFxbgDAdXMG8laFwXnPYVwZSYjbNgeewb0+cgBfs2SB5wCRoFMSqqv8fhM9qDo5ac4HewTbvT5R8HapyeIm8XsOzUOZMD495IAYo2xLthi7DgAuxctEe90lqTgStZKpNfPf6Ow7ZA6FLIqHs7s7++400DYFGt8OAHpFxqlwohAX/rjqHXU8QMvwTBj/zflbF9p/KmU/FVEKs2TB/e3knCx+KhpZs6I1ndrEdX4KZsnCbhUoHL0hunU36Q14UE5u2WnAX5PegJg3xzHcLrWtDQAsUDTFtdm+oVBCrWxnlsekN0AX6AeT3oB6vcma4pkwHgfn+6rXKgitWh3V9zRWleX/07FzxITxc4z/DxAhh7JcnIfsmbhspxzwFwDy4haytJXN5bFt/kmRqh7KhNkj/nn8+HkVlCGrQM4p2Cek0bnKBw2mnmxvb5Vvswrfi0XhJHn+8kwYAFwwEiHbV68mCvXS39b5kZr4Bqwex37zZxDPIJn0BgSuHMfy9Ix7lpxT3C20sm7a/pV2RAgX/MIBBI84KPR72sckpICzu7tQR8tvEuD11HHBi7JZsiBrlrcYR9BZJ/RTubcVPyWGFwgcehjZy8Lh0ytPyFerZw5mBwWz8hdtMl1k7xsH7Bwh4Bzy+zBVEO/ydgYMKyAxzor1zqi1Mg3W78UQCLrGjR7FEfsfhP8zr4mP4I9D/+BWuJgQi1or0tD/5CUhjSeolJuN9Fas5gZBF/hU/zaqjVgZBBcg3t7oO76++CxZCqWsW4tw4fGkcGU0ieVyqQ1gu3SJlbFdu4aynV6qPvXoIzM7Uvd6aDxLvAW439pPwDO0anV8G9iMBV+k9d01+8HjyROY45GGlgdlooLvJ+2D99QUAYeks4fgbGiBer2trExZcbEQ1NksWVDrzD2cGksYmZJekfD9UoxVVd7OAC2Y7LFZwKfZQtmroZa0km9zYM0b8H+WlOMDaPP5rItlN+i0vvIH99HXIxKe09VEhElvgO1EptCuPo0Qsnc9bKpbDLNkwZ0nyeFW7OGqCjjNzwvq1vmjRseE+WSWLOj+zAj27POBGPutt0eEgI+LHyFacz/T9rpF28l6jhBuydcDsONGqJDni6sBwjhJb8kxe6hreSVDzM8Rp2QLgkdnYKJflICbSW/A3jlq72MmvQGGTxKEsb423MgYdb6OpntvCOUAos6mdH6hpdJK13T9RanoFd0bh9quxp5589k30dojlGuUetakdZcVFyMurKswBmZJ9pyo3Feq/ZKO1l8kqBhYJYGdNStaeP+tPkPwcDjlUgs2XtPz0uGZVpMFalb2WwmUWfV9PxVvW5LZ+5XN9Kz83X5R8Jomj+nmjCRS55PDVPUmHd7GiGMK5xTeC3kBiNZ4X3uezFe/LaOEuuM6P8VsJt1+2o+oNllM84FfB9O2rtDcDx50Oqfaf3t7RODSphD4TJbtgatdl00EaFw+Xn3dpDdgn5EQ7S6eHjBLFhRv9UejOeK+m/9MU+GZ4pn9YzirBwA8p6tDSCjLmPQGbAwyI/urGPbMe1i88VwMK0/ruPVMjFDP9aFGNqY0T3rJA5Yn8wVRlZgHk94g2DWq5hSnLFRadNbuWcfvd9eHEc/FvPBHmS8rsoTNlwQfEjexh7fIFFPHRtSbrElvQM0esuaR10cpOPmiyJRTuDWIjFFJr0gWOxSQz/dL44zMGVj9ZFkQapYsCHw1TehjL2Mfzb7yniSvTVc72aKQ94lR9U7rW5Tu8Mb4w4PJnvNQcEnLeXxG5iCN+Ubr8H/WgiZfc6F1itTn4KpCkp61tA0z9eDbz+m6GA86nYOLhx72YHhYb+H5weNtEfdYfwAk3lv+NKNg9wcAmR2WwpaVy9YSAGxbuwSXOhOBbpOvSJ/yeiwU5rftwkUMOWTf1vYfB+V/099/OTxixP5hUOMSOTA3tGjINkmzZEG1X9QxPugGpPTkdGYyYczS7tk0pYQ88ATE3rnzVcyJWbKgn9ttoU0emu0bivYTxqoOKeXv+gsIUUDVXPjNsKTUBQA5IGha+cETLCgk3bR4nMudZVejOVyg2aQ964W8NDitSW9gtka8pK/oXVmqyB9KAJGcOl+RbeJm5os6/TTIKLUpMOkNqF54CzuOthDGwCnZIpSj7/steFMYh9OjZKLBpDew26GKDn++Xv45eMRBFP4kM0fKuXCnfzSrx+k3dcBUAJBiyKFIjbaVfaixnrx3X5WmikWnRYCZ9AZ8M34weRHVCia9AdtXL2ZMqFY5/v3m5J9hlizwf1t0OsPP1/umtqy/19pdRWbbB0I+3rMVALgXlNltk7brSBrKjzkN72CWLMRr10NoPCtFWFd1l6Qi6ewh8p3XyK6ZqWMM/lsdnjQHbnvlW2Qt4k4JpYXEjW7nE0+o5o+tcxvV2C0vTEb7cRnIGiqGHwAA2+UrqnGgRI3Wmqf2OUr8+D4Fjd/PxqJxai08/vRwphIGACmtq6KnPyEoJ/pF4bdDLSC9FSuEzMhb2VqFgxK+6NZH8z3vqQ4ATKd6k++zfil7NzM/FdeHyQz/zh8XwTo3CsUDotHfT1Sf5vdNZV9NegO7yVfa7lJVKzoW19pdVdVrliyY6BeFnBVk7PM+NeJiguicxdapDZyqVGXtHmq7Wkh33ZwBp4iHAomYMLHvD9uadZV4naM2bm4c4U/zUCcEMUcesL4dLLmPoOGyN7v8aUahjBJMegNs5WWsvK5E1iagGgtXRhuR9nkiSsofCLhSFWdaz/7P5iKv50JhvKNcqwhlAHKDxONkTYzC2fWhQh5eMEOB31OVewB9rwsOYO9oYO++bnJYE5PegK5DZa0F/j2t40HH1kIbupBAADLTTM9GR+cshZSZhKF23Sy6+L8QSW7RD02ey8pdaUdusWKOPNBcs6UFhUKbWm1TbQtlv8ySBbUfyiTtnVerbpEz16XbGRaiBABa7X9W2IPMkgW63YdU/b3zZLQgFFKOzyAv8i15T6p8ntBZCQCA4jDtgOEAmCo9LVtl2wF8uoM40PKcngLf90WzCL4sHwvOpDeg7N49zXw8LG/jpXr3CP674REj9g+C3hmXMfXThapNUmvz1wK6wVCViQ/8IzQ3V5r39lZ/1aZA8/XsMUgoq9Vu3qow+Aw8Bref9qvqd0TYUnBuSeL07G21AWbJgoaJosT7B5/fAAADTxH347mfk8NIFxKIVl/IjjMCnhWl77efJrc0VJ0RAG4kBWri5/lJCus3VZs4s7YVikpvE6KkUI4V8ZqvEZd/CWbPyk0WAFYlLWauoO2NG817MkE2XqZMCe07QG6H+Px82oPH2wppX+SnaX5j3uOXsv0aG/az91ubbRbGXvnHCwWU9SjfZ30rqoAARPWs3cvkwNz1PYmlZI2X7fFowGO+Pq1Dn5+jfPryW/VZ+q7FC1X4nX1bHVuOpvPEnT0cqJTZLFlw9ddgIR/fDp3D0e/EA+nHHK6LHoNGwixZ4PvsKVUaLyww6Q04Lok3EUr87O0LWjG9cp+qovqOQ7za4Y2Gu5nKLz93bw2KQWjqEM22lIyILjhAeEfVBGne4gHRwrNJb8AF4000+0atMlneSo7F9WW3VdB/noIWrvKa8xt8BA8ebyuMm9vehgy/RWf2CeEQeHyVcHmNF8vXM44QgW+1fwr7P5VV4kx6A/KemI99s+YhrXUVpipp0htg8oxgv3UN6msyZQAR9piOy7aZyrFQvqP/zZIFAc+S7+33Tiq7qTr7diz23gN0uw8x9Wkl0PbLDz68yU9TM5GrClMwpeEJ9OwxSGgTILauSkhrLbsbn+gXhfLSUlYXdfut7Dsgr6M4D1kY4PeO2mlF/QXknSvnRdjeXsqPnXIcqcqp10fkZoSqQgaPS0f1qg/Y7dnFl+Rb8WOvzKmQ+QJk1WKblTiLGJjbVXXemvQG3OsdxTyiKplfOobUyRMF3hYKIPsKnJwYPnw9ZkmMi8jju+1OFSZszHxhLnzTq6v6pGvYEMt3dIAS7I0BBUcCIfpcb7F9222TnpgxaNXRaFZ1VX3ZX8Ug+AcxVmCN9fsFp2YV4WmWLBh5pj06jyC3qPVPkXnruiWDMb/Kc9DZzU0YcwAY8cmrqnYAOZ5aRTD4tFSpfP90+DfHEfsnwSNG7B8E3xzqis8DWqk2ExpgGdDeaKh0VLlh5n1qhHOYHJT0zpPRwoZYs0cuK/N6tkwIOUWEYsGvC4VNnScMKVBVKECbOKNqCcpNTHqT4Evd51IcHnSLENrROTnDLFmwpjk5ZEprk00zaddPyBpAVAkujTOqiPbkb+YBAFNnXHRmH9IMcgR0Pi9VGaLQbGE8TrVbBk87Lokb9LFqbqBUlbS2c3WBgVHWce51kTClcCHaXXVYUXDx91XV99uShdA1JjYvnmk18aZvjKqs3yY5mLcWA6PsR1xYV1Lul9FC/u6DR2CF3y6W/+KLch+o2iUlONYVpTFXwjS/NTEKmW0foOZaWTXEpDfg9OOJggSVglkiXsV4fF86q2bu+D4sDfFCXLPHkLUkQvO7lbnI46D1/bTePZYgj1/KzESZCTYTW7klZ/YJ5Zxr1GDP1IEE/6eEC6+TeGeUiFXiY9IbmL2X9bGlTPLOzwVHAg/lmqXPuf3nCe1Q3EZ6t0fSiV1C+2bJAvdVafAc8JCId3JStSm9IatGJ+1eJ7R/fAIRNvQ+QYQcbutkoQ21hQKAtxrtEsbIpDewmEEmvQHvbCCqyo/XeCDkuxRPbh4os1D82CWY9Abc7ReFMTkDNee68luYJQv2vP8VG88tSUQNsLTorENG+tD7ciBwqioKiDeIidc9hPG/0u6a4PadhzMfaocg0IUEqgh8Ch6fpeBjf/Lu2nAjIwTpt8tZHo6278cjb7oRDx5vqzkPAeDxI8Nh0hsEL3isPycycWGCiJt1nmjHpsVg8EBv4641UzsWETM6qeqiv+NadBTKnflALVy5tClEKE8dpZyZTPLSwNdmyYJ6va0s5Eej71JgPDKAlbPHfPHvk7aTW8flhckYkVmAW6Z7qjVvliyo9mu6gJOy351HjIJJb4DrniaOifOHqpL8eqPfuqSjdqzEGYGhODFeFvjlR91lafdNRJhnu3QJAa+nqdrufqqPw/7zafkfG1Xv274fz9JbzEkQ0kO+J2nR78SrypkloprJj9Xtp6OR80wi/N5VC+yUYNITGzhlnTRvUcxtFrOPVyWnzC/tY8ybxFZ/S1ayqu+NUmUGEgCsc4maerm+gd01QZ9zHtzGymZ6u3PsEfzvwSNG7B8EAWOPaBIJo73bqwgJs2RB4MpxMEsWQY9f16A+++33TirKjhJmxymyFWqs38+u4gGZOLImRjFnEGbJgvKDJwRGxCxZMCyzkG3MPFzbHKQiCrNmEaL5QUMibbQmirY01EMRAHR9biRuDyRMBHWPyx/mzecRe5Pa++ojeKx801SaTwIcN0xMVR2cJj2Jz9T8oAuRgHkTPfyLPzdj6XQ8abBl+szbVSi/A18/AJx/hRzuWd9FY+OQTircKega1Gflj74+hzG9/OFgeVc7ztHZ9aHYvG8j0ktE1RGT3gDbhYswSxYUxdwW6qN1Bo9Lx4tZVhUjwBPofJ22y1cQcqAKgsdm4OJLMpGzfeVitDnwDMtb/4QcMHnb2iUs357581HTWfagxBjyvvJhl/u5EdZEYqtw5P7DG4TGjfBUTjfmPMCkNwiunU16A7IiS4RxGWOVhQi0b0mn9zJHMlV2NxXGhHqEBAhjSdP4NqidS9ZS4lHN5baN9eHo/XuIfY0YqDeeReoarnBUkP+mLJ3P+5QQJhFT4hGwc4Tq297pH42jUSsBqO1e+LGrv4gwdN0Hj2BMjklvwJvnwwX8u57sq+qTi58PIUo426ucB7dV350fQ/r+Ttl94Znhd1YMCAsAnQdlqMpToHXPWdMLHV4ai+yv5JvFaslyQOyR3u3RbcgL7BsAQN+TV1i9/m+nIn91GEx6A4L3PM/y6PsT73+2E5nsW1/8uRme/tiMzCPeWHO7NoKWinZvyr3CpDdggKf8DYT+Sha4+Hip1pDWPg2QecenbWihLSGfknuQrQNannoZ7HniujB2tsxs1S0sAJTHthae6y5Jhe3SJaF/AUMOo+a5UvhNTBViO/HtmvQGZLRZI7yndWQvI/Os8bfynu3cujny+iwQ8k+QCOFL1fr4+ZA33ci8h/LhHdhc6x8tlykvJ3tC8yBhDAqmxMJ2ndhP+m0aQ8ZrSgrum9oyLYUXs6xo2DdTk9k5NY7sr05tWwr1miULsyumbtA3FBG1Vep4hx8rrW85xKsdFof4CKFV7DHwlzYRgYGLrzerkzIFJR3Pq4hzrXP/2GsyY2VPsAQAqwpljYpzr8Wq6jpjcsH1oUac+TAWTq6u5Nx0c2N5nLsWqtaLcjwiDg4EABa/lL436Q2ov0g+S0salDFmGAB83yPrUqPxAAEAAElEQVT5qbMdfpxMeoMgfAZk4apZsiD3UyO75VMyOfR3Xu8Fwnvluay1XynH2z8hU3O/MEsWOJUSM4dpeWTvC44nzHbZkVOsHi3cACDBp73qnUlvgHVB5COG7H8UKu2+/rHHHlO9O3PmDAoLC9GuXTuNEiSO2J49e/4zDP8HwF5AZxpwlV/UxDvgM3DpdoblM0sW+K8bi6DxajsenuhWgvK9cnNaVZiCuroaaD9+LNzWiTHNLCUleNsv2uFGrQXxWdno53bbbpk7/aNRY8PDtpycBIPpkl6RcN2cgbtPRKH6z+SwPPtOLML6nGJqnMqNrMNLY1FjvayCd+r+Hdwoc1W5QOfB3iathfPdJ6Kwd+58zbTcFQbmUINC1tI2iAnIw5HNzXHipTmMQTwcuYrl2XlXh88DZLshk94Ap4hQ6K4VY+iWPVg4tj9yn6qiCgbJw8BT5zHnq/5oMF9mNIOWxiNrmKxqRV01K92q833u1e4JbE7+2e78CfhtBAKfO2x3jK5tDkLdXlksHRAZwcrMHz5P0bux8PwkRTOP39ZRCH5BDCQKALOve+HFOoWs7cqALjQESdtXqyTPWbOjcfSJb/BU/9HY+vMyln5jSAzSvkhEm6nxgoqtVpu6WrWQdHqvigHig73S9zRwrtY4sblRpSoKJrZlsdrsMUV8GS3QSju/sTma9DslvNMF+Quu6e31k69XmW6WLEg4G4OcyHsoN7bGtnU/CHlyPzPC/+1Uh3VUFii+he/Hok5WGa6FOAtx7Wj9WoSTcq7y75Xl+Lrimj3GvjEAfJa3H2/7RWN6Xjom+okEPkC0GpSOMfj6lfh1PvEE7s9vgppryd7W43QvbG222W4ftPpZGeDbb7YwHqdHVexC3rllMyFYMF0TtL7Hnx6OrCFVEZyQDtc9TWAb7qraY5Sx8wDCxDTsm6nZ5pWRRia0YAIgLu6f/4axCHpRHfS3ovUwQYpEZtsHQj4XHy/B+66yjpJtvqgx8Bps1284rJ+vx1E8LBrPUdnWjaRAFpKksme8o/f03avZp/BVYHPVmqtoDSrnKGUuqKq+c1gzJhim9dijQZTpmnUnRiF4XLoqj1kiGhRZkSUVzvesH9ogt/v3ds8iHlca8kULF0fjwe9l9F2XY8X4rRVhehec2YfR3u1xZZQRB6bO/VcFdPaePxnO1f+P3dffvYczY6b+o8fjP4VHAZ3/AWCPEaNwaZwRhybPFYNAPgzqWLzVXzCq5jej5HtlmOrfRqhLSxJjliyIa9UFtitXVfXwvx1tRJU5+Gk/ACLB39likyogJi3TaeRouG6RjY1vPBeD2j+mqeqkQIMvF0w1quyNACLF3bJlZYVEROH7sTgZL0scDYeBzxpbHPbr9sAY/PTll3jqjTdQc422vZE9vP8IYVzSMxIP3HWqNioihp2qVEXutAhYh8212wcl5H1ihPV5+x7HKoMvD8VPReNSa2dm2AwApuM38cOiHoIzlo5H72JPmGgfwNdbPCAa+2bNE+acSW+Ai6cHrhs9UXPtfiH4tkvTJig9d16oa/4NPdY1J2qdyjhZtK3sH8MR+NxhuHh5YvP+XzUP3vyPjah7qhy1f0xjwcdpuuEwYAnXXm8AUZWiUvr7PSJZeAqtMQWAwJXjBE9ljr45j2PW7GhNRyv25oGS2LIuiERerwXiu4cEkFZ+rb1B2tACSK4D/ZcpKgbLXp//CHOua1AftstXhHfWxCiELLyD8gPHoWsRjKQda9DmwDN4K2QbC6/xoFsEflu6SLPvZskCv5/HIO+J+cK7bkNegGveZXYjT+GL/DSmHqwLCUTSrp+EdEfrYt+3D+NT7fQEuhahvJ1BcPCjHA/r3Cg0fzeT3RBp5VPGBTQdv4nX6uXaJTid3d3xtiUZnwSEEaHN7uHI6rTE7rwofC9WsHGNtNiQYdD9IUbP3jnCC6LsjQEFfr/n69hYXBOv//KcEAONx/+P4PRHyv8RqIghqehcoP/PvxyLJt+QPZQydNbFEYI3XSX+3vvdYHA/gxfrFKra8U2vjvRzPmj0BLmxvjLSiAPT5LPAN726oOJoD18lbcDWa6Afcj52h+8zR1ke7/1uOBNd7LDOrB8ILUMZJ3tQmbEUzg4HjPWV0UYcmDKX9aPVzATov9SOj2eWLDhx/y5e8zXandv21h+PU9emof+agM6PGLG/Bv6jgM6VgUexxCoGOqkD3pkO68vqTYY/5AGib88HiqWgOrDnRTIVErYJPiQSTHqDePuEig8bnrikeV7PPoHHazxQlamyuykedDon1B24YhwC3kjT3JAq2qw0CT6PcJjPkng+pV0jsHPZIrnsk8OYUTqt69zrsWg6Qyb6nVxdUV5CVN4ujzHC/P6XGOLVrnJtU0L3hzY42nUOU8njy7n4+2Lzvo346HIzpHT1Etz2UzDpDXDb2xDrA7f/R4c8P24Ba8Yh8BWZAOk4Zgyq/ar2uulUpSrKH6gD/pglC57L74Tcb5qpHFlUlkAwvj6OBat0lFfreVpeBpZc7oCcyIo9TFXIhLq4oLy0FOuK0lTqZxVJNm8OjkHqjEREvxOvUqHRwqGi70dvuLXa05r3uiB/nHq9gcD00Dw9Hx+ELdtWOWSAlL+d3d2xJfN3Ia2Hd1vkfRiJ6hedoCspR4N54q3C+VdjBUZZSTx+dLmZKkg134+LL8ai0Wz7gcJNehKbypadpzkuWmCWyE3tqSn1BW9oFZXh66WBbu21aZYsML4xDqlfJgr90doLKPD5lPuiWbKgVxsTSs9fwKVNITjUdrVmm0tuNmJBhJUQn5WNuUGBFa5BHhceV631fv7VWBx5c45Qhq+bBlAX5mWd2kg6uUc1f6n2gT0wSxb0ioxjdlsAUdG73MED+z9TC33s9fPOk9FMy4HvJy1/dn0ojscsd7iHa42Fct3EvjoO7qvTVGUBICCjGvIfrw7btWtC0G4KztWqoezePbtjoQV8+/TGhH939u1YHH95ToVEPf+Ozhl7uGUtiWDq3LSssq8UqICL1p//sRG+k1LhXKMGi/vXdnI88/ToaH81Sxa8fcEAy0NNZCqMGpFZgElbnoFzo3sovePCPKmyvSI4ADZrjkM6waQnquG1M0VnId0HDofzPosmg208MgC1eubApUljXH/MTyXspBoPdGx4WkKJQ0BGNWw5EMZiQyrTqeDI3phfX+eBA09+849mPCjN6jXvg7+FESscO+UfPR7/KfxHAZ0r8/cIKg8HXlio2lTMkoUxYWbJgqzvolmg2Ngj5CDRPZyc/OZy7vVY5PVZAJPewDYss2TBjdYNmATq99my0X7BVBL/JPG66MaVNyBfe7SNalOZERgqHIb0P8+EXZhAjItpQGiTnjh2cEQE82k0ne8HAGZPAAAuOw+KdaQdFQ5o7/1uOPo6IThoDKqteftR0pPYNjSYn4phXYYKbWvhQuHWMyT2TdDzhzDAM4bhR8EsWVCamw+T3oD3GpyG7RJx5tFsQYIqL8+EFU1Uu6y/Mprg6xQeygJg03QnV1cVc0eZMAC4bCvGDX8XaMHWAjVzljedzIPCT4KR8lWiULfWAcb/pmkmvYExYWbJgqsvEPyvjCSSwiq7mzLX5HzZNUWECXjfLxI7t4az9roMG4m4zDjB3TRfTosQoUAdYfBMmBaxoUW01VpJPFHWWZoqOMrgIfbIfRUOulq1kLVEVn0t7UII2RfiRsEsWXCvdxRaf5YgzOWi0tsqPG62bgjfjbKcjB/fLduIKit1/qLqy8OAz/z7slu3VGuuvLQUmS/MReNvU9BgXipzk0/xokT6nf7RwjqkdfNM2NURRiHNLFnQaLa2uh0ALLpBnPBQJsweCGv+IZTmFSC32/fCe6e2LVkwWF1IoCaTXhJH7DBq5z5AzpdkDXcaPVrGy1m+1am1QgxUz/+n+U16EtyWT8/5MobtiwBh+gLWjEPpeeIogqrX8QGldXVqw6Q3CEzY69knWB9cfL1VBLVyLdD2eVxMegOyviM2WMGposzVM60mmnyVIpZ5chgbb7NEAqivKxI9stqu39DcB2qs3y+EbFCCSU+cZ+QsD2e2ZKX5Z1BnGSGW234Qr/nNlH2mzJ49Qpxnwuwxzo6YMAqUCdPCIyfyHnNrXnpWEmyrAGBLrrwHZy8LVxbX7Bdtxzo/kqmt9Xx8EMPZ4zM5zmV4htq7pRYTrpwzAAQGUcmEaZ1j1L6Mqg9TpynULqzszh1Wpv7CVNwYQtZVq6/JHnd9qJHhdHtgDKrvaQyTXmbCANmT7iD3awh8JQ31N1cTwllQoB4qTXpiR6bFiJslC6zD5jImjL6vknkWJT0jhbng9zNxyETVQjcfMiP5a/HcA4Day8n39F87DmUdwwWBrnJ+5ETeY0zYg25qEwgnVxLQmzotM+kNiDw0kKXXfDJfVeYR/HfDI2cd/yCgEdV5g2ImhaxVCya9gdkFmfQGfNDwJMySBUmn97I66GbqfsbG4nvR/ACQ/DWR6pyJLhY2MaresaFFQyw4sw/XNhNj6VNj5sDFyxMAEPQ8iXuU+7noqdDFQ/YA1DerB8ODAjX0NksWnH+FbOp75pOYZS6eslcx6oCBL0+fOxy9B13duipCj+ICyBubEkx6AxZ4JbMyVDXKpDeg2nbZJofavSjx12I0xk35CT17DFJt2Hybyt95K1sLAYspPm0OPMPy0kDLPDRYTNTWyg+fgO2aHNLg8lgjLj3fRhgz5aEwxKsdLO/M0SRmeaBpfhNTMSH7NItbx9fXbIHs6IWfO1qECp+v3veEwaq/iIz7g07nBEJlWh7pX21nWSUxc+RcZgj+29JFSApJgseTJ4R6aZ+uvmAUninomgfBxcuTveO9eDoaB+XhDkCQwtJ8AIl3pWvcSGjbdvOmQOBQD2Blx0/DpDdgz/z5OPL2HGF9j3xoC0q9nJolC/Z9Ow+7vl8gEOxKBpQKF/h0s2QBykgMQdpnJZj0BjROrcU8YNJyxY9dQuCuEap1VmODGKJCiwngCR/lOGqthzXNm6Bgqoxf3ifkO/Iu7qn3M758wOpxqncAUH7gOLZk/g6AeEDj06nb9N0LiXBq98IFCHiDMBg03pL/tpFAmeyghToWaXnQGVnfRctCoSeHCe1nD05kDh8AMIEThVr5pYJwBACCl8bDaxrZC6xzo5B0cg8bN4AE8uVv1KgqJD8HTXoDY+DsgVmyIPdJInCjtk5n1xMPhkUxt4XvaJYsTIuA719N52qq9aB8Zutv4zIhj9Y+mt15MYt9yefhVcAoWBe1Zc5LeJzYt1Awncr1Sb3y6XbpNdMptP5C9OqnbE85xgEZ1eBsaMHelxUXszrPrH3IjD6M1xY49DDK2ovlad4v8tVaA8FjMiC9IXsWpmOSNVt2akLVBrX2/Jzl4eydU2QrTW+cSnBp2kRI23RWdozVdKbIrNO5qoSYN8m6pDdH9BvXWZYK1z1NYNIbkPx1IjYGmVX4KL/flVZOAj5ae/KYAfFY8pAZU4LyO5slC7LeDITrlgwWt9GkNyA4Pl21N/V8nDC5Sq+cJr0BQS+nYfvKxRWuBwq/LV2kync+sSbMkgX6L1LYPK7X2+qwnn8sPAro/JdApRix8+e1XaP+Ebhw4cJ/XMf/Cmzd9KOwIF089AKzxQPdvJQLOPmbeTjXnriazpod7XBDAwjRSjeF0d7tUbdXFvJWES9lpYVFuD70YQyvIH/4v5WK4B9k9+KlZyW8m0MOcOpG16QnAVfLOsje3Z7L74Qjb80RNt3SorMsfX6wv4AnD+81OC0wIfR/1nOy3RP1xthsQYImoQhAFVhz6xkidWv5TYIQ3Nn4+jgV0cvXubyZJ3P1TN8p2+SJXIDEPVL2zaQ34FDb1dA1lAP2AmCHAQBsLkjHhOzTmJRL6inrGI7SLhFoMC8VDeanCgeZFigPOYqTkoGjXty+DWwm5KMQMDdHeEfHpHirP2PW47OyoatbV5NQ03o26Q0sAOtnV4KEPA36WIX8518hN6vU4xjt0wM3J/b8bF5nhpftVJZg30Vt3nJXyN+y70lRRYSWVY4V9Ub6avYplGzzFcbBduGiMB6DT4tqSnw99saDvqNzqre1J+vfkhe+YeV7+hNpc93kekI99uaq0t0zBaeIUFww3kTokJOsDhq+AOddVXgp+0Df+W0cw25ctNIBYgdlj8DwmZzK4vf4vZuK8tjWzDGQWbIgeEyGTFQ+dIG+b8CXLN2kN8DWSbaDpXkFZm5hW7ivShNu4SmcWduKrd3cx0WiKfBVQiQfjyhD0EsyI2pevxRBGeIYOd0VvXrSW3cqdOLHxiwRiT3FP++J+cJ6AIDGO86q9hzrHDX+F5Y1ZvuMc+vmuDk4RjXPlPsNFWjQ9qUNJAB9x7FiuIvmB10EnCgsK0xmt4g07cyHskt1XZ3aLO812x2BaeLX1oNuEfDfNlLou3PLZkJ7eT0XYktoHdX8CUsfjB4+stOTxIJ9wh5M66AqxQXbfQHIGgcUbg+MwaVxRjT5KgWFP7WEPehyrBhZ38QwD6Q5kfdQ2KMOAPXe7/30MfiZR+Jqc84D4T4LE7Dy+IVVFVXazZIFLl6e0H+Zoupzbv95bPwGnJL3HKpJYNIbUB7bGtmdCaOQu8KArT8vw6kxc1RzggL1Ulp67jyaJw9lOPT1kN2/K4F+RyqooIw9vTVSzhezZMFHPhvt7gHKeW6WLMgaNlfFvCr3OqmDO55/5kXhnVb7Z9eHYt3tWsy+3mfgMSGdFwa5+Hoz5lfp0Ie2E/PWONU7rT2S4sL3z6Q3oEEfqzDnlbTGhXjtUC2P4L8XKsWI+fv74+2338bFixf/cAObN29GZGQk5s2bV3HmR4Brw4lUmAZWNUsWWMeLKp5Unc6kNyBneThm5ovEVsgBEmwz8JU0XHveiKAX96PVVwkIXCFLkpUSxaSda7GxmLisD8iohrPrQ2F9bCkhQuvUZuojtqxclPSMhMceMfbRJwFhDF/632/wETj/fpi1cSn2uqZEUkko5KyQn7UkfnxZ6t6eSvQAEgiZ3+icqlRlfaaBNfn2XPc0gcdnKfD8JIVJInn7JiXj0eOJoVCCEkcXf18cnjRHlUZjvinL8vZjZsnCVM8AEvz028Bm+NjfAKfwUDjvOQyX3w4K5Wk5WkfRRNldMWWw6PPtrf4w6Q0ofioazjVqsLQme5xRvNVfVS9N33zIzL4HnYMA4NYjF6WFRSg3tsbcoEDGMFM87I2Tkmj6rZUbVt2qq8rXfgIJBN3ka3Iwbk7ZJNRJ48UBchB0vr0bQ8QYa/4PA4DnrDBgU4v6DBclMczXYbt8BY/Fj8FXgc3xjv8WTcaX1rGymV6Yo2aJuEBXjsH97T6qfJRYe9DpHLJmRSN/mhFRrlWYi/uyeyR0wLV2V4UxLCkX42sp8VLCmR6EWK5V5R7DKenoTpgli+AUhEL95Lqwzo9Ufb/ghHQEvSTHjVPORZPeoAr4zs/zYZmFLH6PWbLAKUUO1K4EqpJN7exMegNh/HcfUvXRbZ2MU/CoA7i0KUTTTtL7aTlWmfJ7Zn+ttimkeWk4BbNEHAvR4O6eaTUBEHf79gQkWsyRi4c4Z0rzzwgqgSa9AXn95DAQul16OIWHokEfK9tnyo6ccmiXqQS6N3qNIsIz5S34qQg5SDNPTA71agfXzRmwLiB7QN6nRjiVynVSJyLBe55HXR3ZX3q176dq/8bLt9jNMW2T3/eUuJolC1w8iOpm036nmGq1028e8KtSU7V+cz83wje9Ou6a/eA5PQXnX4mF53SZwZmSexDJXycyj45eTx2HWbKgYUod1Td7u34Wgl5OE2yWPD6V3cPzfwAQPOIg6i0mc+Dca2QPvBlQk9WnJbCgz9RDonKO8P+psyGzZMFAT1kjYNtPP6BXGxMAIHB0lgovHm49E4PA5w4zXE61W6aZj8f36ghZq4AJKmKWC3m08A2rWg0mvQHdhrzgsA0e37vvkcDnswqS2VqmeQIyquHoG3Nkb6seavVPFx8vmPQGDAo8iAE1FUHUo1rBpQkJ7s079yp3q44Xs9S3U/zvtM8TVd/GHj2j3Bdtndqo9iqqAk/zNp5r387ynwdOf9PffzdUihF77bXX8N1338HT0xN9+vTBsmXLkJOj7Wq1uLgYe/bswaRJk+Dj44O+ffvCyckJ/fr1+yvx/q+FuktSUTe5nnD74/+OyGjtXiTHcAkYchihVYlKl286+f+tXo7rQ+Nk6b9IEVRm+M2iJI4QWFSfPCfyHttcW36TgKSTe4TNw3XrAez6nuBw/mVRtYnfgHmCi//Pt8+r9ND07E5LVPn44MQ9+gxheb2nEKar/O5d9i5rluhWnx7YFCen30Q7OD4YJo3RYpYs7PZMybjSQLM8fjTt5pYAfH3NF6W5+UIbZsmClgedcfi9Ocj9nBxmOTNEuyVaV29rT8RYnkL2TNGOCgA+Xf+9UMbeAdC8pxU9QzoAkON40fSLFnIAuf20H1uyZbWTWivTmAfOK6ONTOpass2XEVJ0LHYvWqA6qOihyOfjVS35wxQggaP5NAAY5H5NNV/cfhIDRPeMe1bVd+XhyX8XKqkVICYMAc+KdfDlNxSlo2BNK+R/LKu+7p1LxvGrwOaa/aFt6tPccaZUju1m0huwOfUXYR4BQNXuBSrBRPmB4wCIWlzQ+P3My6T7anJYW7+Xg/Ke39icle/rITJJPPGlbNcskbhqJXGRyIm8x4hbvkz+6jAh/5V21xA8Rvbs+Hr2Cfb9zJIFPfoMQfj0BM3xpzdePG70/9IQNYOqFHzcNfup8lDgbWB4fJVxhhr2zRQC5rL9Z5ceHceMYeVogPJrw42Cwxt+fQJyjKbmyUNR2F3H3tOYfrcGxdgl0HgcqP1k6VkJJr2BqekCskqgFiNt6yyh/PAJFZNEVcDyp6lVUs2SBQNPiR5Eyx/cR6D5liofDzR+pIoJH50BxITB751UeH0kqxpSIY3f4CNsTtH9kK/jYIQYu0zZ7v3tPkLf/LeNFJxi0LrKu5DbQ+mNWLR9X44Z5/9WKuZ5pqK6idggHnlrjjD2H/hHMKKer/NH391Qgta3K29nYLEkzZJFFdSYwtE3yJnCO/7QAuV+ygskeRx44LU/aJ7S8xdg0hsEdUktUNrAKf8nFsixvOg73vkFtbek3+ixY/0BEGGE1tnk7OYG3S61cx0eB7NkgXVhW2QtbQO3HsRUIbiKm4qhzIkUHaHQuHMUzr0Wi82pvwAg2jTKtYj0Y8xmkwfbiUz0dbvDcKZlOrw4FnkrSdy+nj1kbRV+b+D77GxooRLEmCULdLsPCfXqAv2AmDBV3kfwvwWVYsQ++ugjnD59Gs8//zx27dqF4cOHIzg4GHXr1kWzZs1gNBoRHh4OHx8f1KlTB126dMEnn3yCunXrYunSpUhPT0dYWNj/dV/+K8ApIhSr/H4DoGZc7G2qvaJ7AwDmeaaqNixAVpOhoCRGXJMyhIOE3xg9PpOlfgVrWhEVOs7RJnWbq9pEYsJUhKDyIF9TlApbVi7DJ+2eDVd/DVYdegCY5ziASMZvl4kb8anpIaxc0HgigedVZCiY9AYU7BZvGJ0NLXBhgky4WRe2hUlvwM5lixBz5IGwSSoJWkqw0rZr9czBltA6cPrNQ+iHSW/A8QgSBDLrubk4t7E5Al5PY9+G5rXOjcKDTudQOy4bOYMSVfjT2G0AMLqwnWpM6fOtDpdRdusWytsZ8PYFOU/O8nCBsVdu/AVTyDjUX5CKMbUJ0bO75UZs3rcRrT9PYGUYg7x1FHsXrBE4N+msePDyZYPHZkAXHKCa1ya9QWAy+H45ubqizHISLeYmCGtidlCwcCCW7fTS7B/7fg9tYUx6gxBclebv7xkFn4HH4DtJO8A3APhtGSWsN4rLYu/fMZq7tSlvJ64N5Vqm9kt8npxnEjHSqnZiEfzCAZj0BozILMCRhwGhATAnFdaFbVXjSftFbfwelJOQIq5JhOjfnJEEQGYuzqxthcwOSwEQtR6t/s8IDIVTKTk+ekX1QvnBEzg8cY5Kvc2kNyBp10+wzlOrOtljgk164kmU4n1/aWO7Zfj+9ewxCBuK0hHXbSA8P0lhTgUoKAPmFj8VjaSQJFT7VY5FRN3G112iDjRL/5slCwZ5xeLqC0YcjV3C1il/6+m+Kk3IT6Fxai32LntmDLOfpPC+Hxmn0i4RqrnFrwf612pmgtDO3VKi5ps5cq5qnHr0GYKRtQkjdjEhlpXJbEts0egNAW3n+jAjrPMj4dy1EHnTjQKebBw5p0hDThfBpDcIYUcoVN/TmOGuquMhtD/6pPDONe6c0G9edVRJ6JslCzoPymB2qABQ1l5N2CoJYwCY40G+lZOLqIqpxQTTYPAA4JRsYbf0AJA5Qh5zs2TBnf7RIhHeQg7KTcf+8i/ByP5KVielN98mvQEBD2NQKvvJ51Nqf5T0EtdZ36wewnmlxSBppZklC8ZxgYd1DeqrxsI1KUNou7opjwhBYtSOhwCoGEOlgIP+z4tbiKBh8i231h6ufJ+0Q2Tqj74xR6j37DtqTRSzZGE32PbqBciZXOvAWVg7EkHjlq2rBNxpgHmT3sC0N7YkrUDPQNE0gdq2lnUkt3c3B8cQR0VpR8n689D2lvqPhkc2Yn8JVNp9PYWbN29ixYoV2LFjB5KTkwXbr6pVq6JVq1bo1KkTnnzySRiN2hKiRyACH0ds57kTbJOm7pMBToJbqxacGtRDaW4+sr6LRvoTMzHESzugdtghJxxtQz7vjSExqpsBp8hW0BVexOZDZk1iK3+aEb7vawenLd7qD7e4AqDMhsJJsfD+LJ15qKOxm6rsbopfg7cI5RyBMq4PD0pGjn/vqH6zZEHr9ME4EqUdQ0wZ12jgqfNY01wtOeeflbjc6x2lqfbkCG/rnChB1WhQXhembsa31+HFsUKIASXQGEm0jaJ3Y+FyFwKBwEPWD20Q9PwhgWkx6Q3MJbQj4PtinRvFPENJG1pA3584jqGx62yd20C365Bm/+2NibLv9phMZZ7a++rjRnvZ1kuZn7oqV/bZER4V4WgPaMDpa5uDkB6+lrXz2ZUg5glNq60Yy1MsOKsWHlr/e0X3RmlhEc5tbI671joIj7Vijf9Oea8ICWRqf/bajWvRUYhHxY9rzpcx7Ba9ZJsvXB/PZ/n4oM6OQLl3XB5jZEHGK4K8VWGwPra0wu9AA2TTNmi7fLnGqbVwwXhTwMneXODfAUDorAQWRNwsWdDu6JOo2UPdd1rOujgCfiud8NuShZq4561sDb/BRyq1Dvh0GvNucu4hTPVvI+C5/FZ9DHG/IvQh4uBAwc5SC66OMCLjY9l1PO2z//YXEPS8KEShrs6n5WUwhlEL7vWOwp752kHuKW60vcqC1vzXqsO5dXOUHTnF5ifNH5This0HW6sCAMeFdRVciQOArXMb7FhOwshMyT2ImGo61Tmg1TaPEx94vqLvnPupEf7vpOLB421RZZvoKdBR2cL3Y+E1zX5MK621MCH7NL4NbAazRFTsaVB6Pk/d5Hq41u6q0NdW+5/FsegVMOkNGJZZKNxkO8I3Z3k4AoYcVuXpl2XCpdlqN/H26gTU4134U0ucjP1RlVYwJRY+H4jjYm88lPjSc4tvl6+fBl/my9kLv1HR+cJD5HvxuNzhPoJHHETm561R+Ob7/2h37cx9/dwP/x739fEf/qPH4z+FP+w1sVatWhg3bhx++uknnDt3DiUlJZAkCdeuXcO9e/eQkZGBL7744hET9ieBbhp+m8aomDCAeGSjah7Brx5GAx0h7ujCrp9cl+WlTBhADGmpG12atzxDvJ5XSquaRp9j7Y88017A061HLlBGJOteH6cwJgwANh/cCrNkYS7saZ94advMfJnBy15GHHpU2XFQJUFWEk0PukUI9klaG92vZw+yso8ljEGTfnLAaLNkQc7ycIYPH/EeIJ7clHWbJQu6Dyae5HiD/3u9ie0Vz4QVvh+ruYHz7VsToxCcIDJuyltQWo4yYbzEkh9HXhJolizw/CQFHstkJyIU7vaLglmyILf79+yAyJpFjIKL1oUKTBit/+ZgInV1atsSARnVmCtlXeNGCI4nBE3OlzGMCQOAF796CWbJgh3Lv2f9UH7PigiwgJ0jmOE4j4+uMbGLoAbmtJ41/jsBiHOfb4PGi1Km8bgpD8aKcDRLFtx+WvZiRsufGD8HwzILUbdXllAXZcJMx2+q2op6Nx6147I1cVESEfz/0sIisk6ftCLrubm40f6K0Cfe9sosWTAhW5wXJr1sz3Mjiaj4xbXoCMMnRN2pCefufHfLjbg+jOzpF1+MRdKe9cJYaK1ZANh915m1patbFw3mpyL7a9GhBG+XyNfhN+io0B/qFZV+/3MbiYpo0um9MOnVtx88XDDehIufDxtLR3mVY+7zfbaQVrNHrsNvxQfS1eqXzxxnzfLKta0krMvu3IEuOADtqjmztUthaYiXkN+kN6CTXpsJv/10NBqm1IFZsjBVM+X82thR9sZJ8Wo+ieznjpgwgOyHjz89XNVvHjeT3oDSLmrX3ny+e32iVPuhSU8CcWt9Q7NkQdmRU7iRFMiEBCa9ASOteciKLGFaFfQ7tTv6JG52UocE0O06xOqOqaYT0nqGdBDapd6FzZIFT+V0Y2lBPWTTDdoef2PK95VqKFAmjN/nlfsnD37LJZbfnpBSWXZ222iGU3nGMXGuP/TyuMrvN+hCQ4Q6KRMGkLlmDyeah97YdQzIgjWRfEeqrtdl+CgULfMXmDB7+wetU7lXmyULvJ46DpPegAmSOB/rZpYJZZXjQ9+5/95AeG9dHCGoTirnmFN4qKDpQHGxZefZHQ8ezJIFeatkzTCT3oDwj4hmR73vU9m+EfCm2m3/PxYe3Yj9JfCHb8QewV8PVLpwzeqP1rvGIa/vfBZg0CwR+4utvyxXbbbSm7HQf5GCrKVtkNvte7R7ZZxKwqS1SfMSHCUoGZ8WcxOY1A0A5hTsQ4IP2YwKphrhM1k2Si+YakRZFbWntiGni7C8mafd/pslC9q+H4/6i1LtHiqOQIvxoe96xj2LLUkrhDSazj+3POjMVAeV6WbJgrjQzoITinMbm6Npv1NMSk2h94lr+DVUZgh0oSGwncgU6tTqo1mywFJSgrf91B7oAKBnYKzQzh+BrFnRCBovMlq0/Ys/N0Ojj6sA6ceENk16Ejwzafc6h+OW84UR2UPmInhJPPwmioE8lXnLY1vDKeUIrg03ou6SVCZw4NVOlW1EWmzIMBBiaE1RKnq+/ipSvkrUnCPK9s58EKvp+SpnRgwCXk/D69knMCOQePy6+oJRUBOrSKppb845xCuqlWqc+Tq0CK+oifG4HF6O3KcT0eHFsfh99jzVHOfb1AX5C0ySMl2Fk+J5WWEyhnq1I3HIHrrAN+kNwjy+PtSIOsvUa1W5HzhqTwnW+ZEIHpOhmc/F15u5b7+5JYDF/NHqEwAhEDPftqP1p4Ur3x/A/nfO/jEcgc8dRlnHcGxfuVjIy+NVUdvT89Ix0Y8Id7JnxiDwNdmGx5oYhby+8i1T7xPXML5ugd26lPuQFi5aY6PVv9zPjYJ3Wpqn3ctjUXPtflV+qhFRUdta6Y6+S1l7A2JnZ2BKQzGMhb3y9Jzj32d9E4Pcp+W54RTZClnPuiHwVe2YYcp3zu7uKLsl2tTxcH2YEe1f3o8ZTQkzV5nbWmV7NG9lzkJ7361+cl2s8NuFXu37ador8/Xe3BKAmtNrYfvqxZrtDTh1kTkHsVcP1b4xSxZZu8NZh5zPohDwpijsNOkNKJwUi1GDt2LHM5Gq85H+jgt/nHmkrWzfrQsiie0igEvjjBg2fgu2hNaxW4fb3oYofuxShXsDjzsNUg8A901tsWvxQpZWEheJqjceMBVnpVDqk4Aw5KyQ1U4p8EG2S8sfYDd+/kffALEbsTl/041YwqMbsUfwN0H/4FYIHkfiWvDExtZfZK9E/MKm7tqDhhEpDo0Rdu71WMzMT0X+NKOwqRRMNcK5Rg0k7d2Aiy+KNzcUqBRoeWEymi2MF5gwAIwJQ1Qrgei63yMSPpNTGRPGS6+WN/MUcKeuwClEfEiYMKULd2U9AOAc1kyoK3umOpgy348yC3HPHTElXpXO1zuj6SHmVODmlgCY9AbEHrnP+sczYWbJgpS2hOAqu3NHcP7xa2hdtDwoLyt6yNA2J+eKxrr8Bm9wdcXdJ6LYTRTfry3ZanfGALFLufGc6PTjbj9CzFHX3JQJ46Ws9LnRE6cZcxCU4Sq0abPmVMiEZA8hBJrfxFSVFJeWvbaZhEagHvEoE2bSGzSZsLjwx9lzhkHH2hvoaWROK7TA8GkCq6OsYzi8p6Qw5wfxWfLtQPZgsk4oEwaAMWFa80iJ369nD7Jx4r+lVl4KLk0aA+nH2BjNvOov1EHLF70bKzzXXZKKoJdJn4tMaplZu1fGCe3YsnKF8lq4KN/RYLQRh8sw1Ksdef+QCWP1cvNYiwkzSxacHkVU3EJ+H2Z3HOhzeWxr4R11BKJcG3mfGlGaf4a9o8IpQAx4TMtes90RAjGbJQu6DBvJ8M3/SNbUYPtR8yDhmeLA72/K/YJ+R7NkQeBzRPXKec9hYU5ozQu2Jp4nePCu9ykTBgCBr4k2Zl5bxXo2nQ9zON+0mDBaH1+u8wjZxpPP4+Lnw+qMbEecHbj4+wIAGqbUwabiGqi5dr+qrFmyoJ3ZfoBuezibJQuaJ8rrl9ru0PQL42PhvM+CKQ1PaK49gATb5YEKG/nvEfSyKKgszzjGvP9RW1rdLtlWR4nv2TFywGrleWyWLKizNBXHI8pYm7abN4V0rTr5dL5fvI2R1hoCgLjMOOhq1VKlX2l3DSY9cZLiaO0DZE1dfP0ea5d+Zwpfr+jHftNA9RRX6jqfat9YHxTLKvZlNoEJo30r7RqBky/OgbllLWFfUY6RFhOm1ReaHwBjwgAgfPgxbO/dGmbJgmvDZft3AFhyhoQ7KH7sklBeYOTr1xPqp+NDvZQCwNbvRQHF7oULsG3tEs31/0lAGC6NMwq2fzRWWdm9eyz/BqvoXv8fDeVOf8/ffzk8YsT+gaDjuP7A5fEqYo3CpU0hbPEG7CRGxPnTjGg6IwWv+RqROXKusHGdHjUXZS0DkHjdA41mp6gOMgpmyYIhXu1wetRcFmOGAvO69ZB4b548FNeeN6Lq1gxWlgceb0bgX77CNqr7PSJx9/FbuDLSiKQj2yuUAG7ZukrYFANbF6naUh6OANBgnnhLpyS6ACBp108AgMtHSIDem6XVNOsEgAGeMczjY3mXs7i5JYClzWhKGGMXX2+VMfBU/zYCrv5rxRgi1X9Ox53GzkJ7NG+PXkNUeJQWFKL2j2m4a/Zjh93eOSRYtvfTxxxKYfnn/icv4TsPIt2mQYV5BwvWRW1VZfhne98dANLD1+KLq2qnHGbJgiq7mwrEmNYBrCRstb6vWbKwwOEmvQHOe4hbZqpG1c/ttmY5/rdJLztqoe9pGg0RYdIbsOiGt+b3AYjXOiWY9MSTmTDnWpI1bnhoPnHutVg86BbB7Ep6nO6lwpMKaR48LjvkqLlGmzE16YnhfuDyeIE5VvYXALZkJeOzK0E4GM4dB1GtNIlme8Qkv759n5GDAjtFtkJY+mAVw0qZcr5/PU9cZ85iKPi9I4873/7g05LASNO6BnmpwyXQoKpmyQLf91IR1/kpoQ+2U0SNtNVX6qC+Jr1BcGOvZFjoMw17wadRr6X0uW5yPSbsSf+E7M263aIdlpLRo2WrbxQFFs5dCwGInu2UdfDzhP5Xehel0nwKNCbZ5uSfWZ4Vfrtwv0ckum4i3/Xa0zUwOyhYKEfxjQvtjH3tG6vSaJwx/nvnrWwtvPOeKttxUocPFCzvqkOB0Gca9LtR0GXWHiW8+XwA+U4mvQFwIsQdjX8JALdKiWTf1pmo/N3vEakav6YzZMFkjIXMo0iLze4aUzLyPCgd2Jj0Bqbq+NHlZtiSLQpBaZ3WxCgsukH2mVNWD9hu3tTcsyhsLK4pPGsJFqKanmFpyhs0Gnhc1zxIFW4gfP0rQt/G+7TDssJkoW4KdO7tXCbagVfEKEobWiBraRtVnopohaKY2yjNI7fG6dPnCmWGe7fXLJ/LeapMOkbMBZSMKQ803prWvqBFtx2aPFeok9fYoHm6H+/jsF+P4L8PHqkm/gOAXvN2azwauEhuXqjRcUVgliwIXB6vkjxRiM/KFlw88+VMegMQ1QrXQ2qyOGHKOuwRXs5hzVB29LRgYOxI4nevTxSq/SIbSpd1CMflN+6SG5mHoE9zx/lxXih3csLWzcsFHOjvsENO+KLJYVU7pTu84dLtjIBH688ScOTtOSp8SnpGshAA9PBUHgxabfO/cz81ImvYXM00rWcl0PScL4zCt+vpH8NUFChY50UieKzaE9nVEUZm42GvjfCMQWj0xGncHBzDYgzx30lXqxaT2moxp/QZAKzft0XwC7L+uvJ7K8tQFTaA2O319pBtQkq7RMDlt4NomFIHP/ruZnXEHrmPlNZVNftj69QGut2HsLwwGQ10bpp46kICkbTrJ82Dnr67+mswMtqsYe+c3d1xYUhLFk9ICbcGxSBlZiJaf5aAJt8QRxxXrtVkNyFabdDxyushq61ozSVHKmSdR4xCVbO2vUB5bGts++kHTWZJ2YZSRTOxYB/G+Yg2n+dejxWITK32lDG+itaFwms68WIKAOuK0lDTuZrQVzYuTw5jHvb4dF491CxZEPvaOLivSsOAUxeZ186ecc+izHJS6CMAHCy5jwhXMlcMnyag8bcpmuvO2dCCla+on1rjx6vHujRpjNLzF1CyzRfVJtZk4QYubQrBobarNde8vb2AvY8JQ8y8g+jqfgIf+xsqLKdVB+9YpSKgTpgAYFhmIXPy4eLvy25QTHpyK1aaV6C5zu3tdfac/uiCA2Cz5gj5lfV2OHoPv4dVU80RrT5vu1NFxYhr4Ubf0XZub/VH7edv271t4R2zOKpXiaOuQX2V0w++7ZZpQ1ggbSXkrw6D7zNHBUcayv5Tpxe8Kh1A1HBrrcpQ3WDb+1Y8+KZXZ56WeaCmDjzweeg6p+8dteHi74vW63JxMNy5Ug5+nMOa4XZgbejGXcDulhsr1Q8qAFBqrVS0diqT9/JYIxrMS61w34CTE1BeLjhI06rfLFngv2Esgl7cbzfP2sxDqBuc+49WxWOqibOn/D2qiS9+8I8ej/8UHjFi/wDgvSa6OFXB+Vdj4bH1EmynsoQFyhME9g4ck96AWQXJLPZGZTckmu/SphC46MqQHr4WXU/2ZcwNzQNoM1r84THrmg/G1y0AAPivH4vcJ+dVelP8I6ALCYQtKw/mooMIWRwP30lqQlrXIhi2k1aYJQt6+ESh/MF9zf6cfyWWeRq0d9sBqL0s8nWZ9AZ2mCrfax2uf+SwsAcuvt4swHFFjB/N47qnCTYFba2Q2DHpDbgUb0TDuanMNtAsWdD9VB8mkeeBZ7ZmFSRjvI/am6eSCKM4mSULog4/LTi5uGv2Yy6R+XwV9VXZZ6XXO2Vdyvp4GxddoB+S9m6oFFPN/zYcBizqGKOaZSpTn1myICx9MJr2I84I0gw/qcZD17Ch3VvlM2tbseDFWmDPy6XW/KVQWSbh9tPRKHNxEgQBJr1B5SWuYUodXIq9rtmuIwg75IT1e6KR84wc7oEvQ+057fVHa16NseayILCdjvdjRCGdk1pCEFpX3nQjrMNFCTwAlO300lw3FKQ3Y1EcWsJuHSoacz695bcJOD5hDiIPDURGmzWq+QMAWbOjkdv/z+/FlZ2zAAmFMMgr9i/Z9/j8rnuaoKTjecFTq//acXAqA1MxdISvFj53+0Wpbhz5/IB6rmvVnfeJEX7vpjqcu8pveX5jc+bRN+RAFWS2fVDhGNx6Jgbuq9NU7yvqs716W8xJwAP3cofnmqN6eRtOrTI3n41BrRVqG7w/MraUIVKma+V9NfsUi/XICx20gBdQlvSMhOuWDCSdPYQ4D/UNHL8//RGoUBCj+P1vshHz/O7vYcSKXvrvZsQeqSb+A+HIm3OYuozxyAAA5HqeMmE88Bs7fR7v005z81TmpSC9JauNNOybyYhhl27ENoP+mfQGgTAYY80VbBwAsqn+GlqX5Q16SS0dpfUp8aJxbOizWbIIgRr598BDr3BlNpj0Bk0mDABsJ63Q1SU3DvaYsFuDYtD09xs495ocS4yqhJolMVCn0stit+O3WBkAjAnTBQcI7+l//5/GqvquNRY07skcDdWj3ieusbybUzapvkvOF0bNOulvPp5S8A9i7K/C90m7/usJng3nkv5S20CT3oDsgoeqR05OAv78jRdlwpRzjp+Pyt/p4WuZDQIA7G21gaXZystUZZT902qr49gx8PyE3JS4eKpju9E/HigTZpYsOGdqapeYMksWpl7Ft2mWLLCEk4C0urp1UbrDWyhnD8ySBY1TxYOGzZsdL6Bpv1MwSxbUfccFvdr3w+VfggX8bZcuwX/HC6rxKImLZEyYUoWOAvVySeHMh2pVOwAwfJIgtJn/kZF5Mb2RFKjJNNRcux/10s4xNTA6Rr8tWYhZBcksfhNP5Cj3Lb7eVYUpcG7ZDF/kpyFrdjSOtilH4Ktpmt/z5uAYxoTxbSvbUZabH+zP3rs+ns/Sqpvy8G7OUdzsUQxAHE+TnqgfWofPVdVnlixw7loI62LZxgYAquxuytR+j706hzFhY6zyzUHAmnGauPPxizw+Jarm9XpbhXy8bWzQi/s118/0vHQBJ3vAl+UDQyvTzJKsIqo8h6hNLw/29ir6TPM7V6uGko6kXX3/k6z+ZtNzUd3nlsM6bg6OUX334q3+eDX7FKpvTLe7D2vtDzyU9JTVF/3eTcXNZ0n/zqxthV5tTJp94ev0HHeV/eaZMKdI2RbNOj+SjaNZssB9dRru9ouCU5WqMOlJ+A6a1mX4KLt7Lq9iy6d5fZQiMGH0vFTm4+vl45VRQSDfR/671Voh2zve3+6Dsg6y19ucB6IKqlL4QAOsUyYs9zOjw+8BAD1qlGDTWaJBQs0z7M3tWivTWPpNH7IPUSaMtxUEoGLCtM5xZTtnPojVxNd0/KbwTfk8ukA/Vf5H8N8Nj27E/gGgvBE7uz6UqTEopSYAhGctaVhZewOc91nstsfHFDNLFjRPHgrvp48J9d0cHINivbNwHX/5l2AWl0bZtvvvDXCrg6yjDwAmj3Ah+LMST3vSNs+0msxGgMZjUeY591osms5M0a6z31AMXmrGymbyRtrlWDF++qobMj5SS6qV/bH321H8lOyZMcgZlGhXemhd2BbBo0S1Pq0N+r6pLQqeLUNudxLHptzYGk6pskrY/e0+qNq9QFWHU5Wq2Fogu2d2rlFDsDEw6Q3MyyYF6hUOAMqNrbFt3Q8sr6Px6GXsg82pv2jOSz7vrUExLLCt1twFgB5+0dB5NGV2CfakpFp42CPoKnpvlixoc+AZNOxr31CcAq8GaevUBlUv3ILtVBa6Hb+FHS3dVThKG1rgWPQK9uyoH0qiQzk29B0fk0irHl6SXtYhHM6/q+P22GNA+PSZ+akIrVq9QkLH3j5kb05TkN6MBcqBY69p2/towaV4I2r1P8dimNk6t0HuU1VUqj25Kwzw54zgA3cPR3anJQCAo/fvIaxqNaE9F08PlBad1cT5fo9IZvO6pigVAz1FQ//K7h0PukUgv58L0wjI/dwI/7cce4bl04omxsJzurz3uXh5orSwqMJy9ghxZbtXRhpZAGSaxnuEc9QGAOGc0krngb/FcfH1xgOPenBKtghjetfsh72tyO2zrkF9oF4d2KzEOQuNp1h7X30WK08577Q8apolCx471h/VTWoHIjy+yrhjfJ4WKc/B66njFe4/WvUWTorFyRfV6vH2zm7+t3Jf5X/bKwuQgMHOe0S16Zg3xwlxRM2SBZHvxSPjIyI04L32XR9mRJ2lZJ62mJMAr4+0VX4d4eG93w0LvJJh0ouxAysaN9pH5dzSyqus5+qvwbiT0kBYM/ba09onGTz0GGsP3H9vgJ8CdgAAAncPV3lApGYYSnMALTyoyvfg0xKG17oIk97w77oRm/U33YiN/+++EftTjNitW7fg7q4mQh7BnwMlI8aDI+KJvlMSCCMyC7A4xEe1GZ3f2FwVU0u5OVBbKz6NBpy0RzDaIyYdHRrKQMR8vjv9o1Ht6n1sX7kYwT/Eq9zhU4i02FDD+T72hFUHAEZEOMJLCxwdMpVhhCt7QF8bbkSDzdmwXbrk8BBT1k3bVNpZKcsUvheLmkXlqLtEHq/7praCnZGjAyoowxVZkSUVEgk9eg1B+WH5kEw6ewhTL7dCWusqmvVSV9yOxqcyRK6jd4AcZNpRHx3NB12d2kg6uYcwrW/EQv9lCiMO+dAQFTEcNJ0y38Vb/VFa5swCNpslC/zMI1XxppT16ho2hO0S8ep1+ZdgHIxY45CB06rDLBEPjdQ5iBbo6teD7cpVZH8dg5yBarfv/O/KMl329i2tfBX1xdGcqWg8tPLTUBW8YIlCx6N3sSesOsySBY8/PZy5oQa01ZKv/hqMer3lOnhctdx+V2Y/Aohn2aSjO1neyo4F/6wVrFiZV9e4kWAvpWTiKDhas3x6ZderU3go20P+yBrn3/OhVChkLW2DoGFExZa3y+Jx3XlXh88DWsER0DXBA1WP0xprQD13W36bgOoXygUVVpo3eO8wWB9biqh345H+CREOUvtIgAgKNqdvFsY1dFYCylyBU2PmaK4TqupL26Cq+Mo5quyPPs0dUoz6RtHeN63seVeZdEdQvNUf5483QsAb2qEFAFkwaZYs2HsPeKwaEPdYf+YxU7dLD1tniZW/82Q0iuJsyIsjwdbzV4chs4M6aPxnefvxtl/0H6IDKBS9G4ugHjm42/EC4OSESTmH8bE/CQ0yIuZplJ6VNMeICtAfMWIi/C8wYn9KNVGv12PMmDHIyFA7EHgEfx4a7STMLV3o14caEZ4xCEFL44X3dOHSxW/SGwQVs8UhPuw9//9I1EqWR3ngFv7UEtPyMnDR7CmUAUjAyfsmtTc5JQ58Gf49zc9varaTVvT0V6tKACSIMY3H4/duKiblWlT4AsS1+cQGmSzt8KQ5cIoIRadRo1V9pxB2SHaFWvRurN0NXkn8KPtbUTn+j8ILb21ihLVJT2Kp2AOtsazipBPqXHVLVCHx+igF92s5oTyWuOxdXpis8opm0htwbThR7ygeIMcsK+kZiWTJD87u7gJRC4je5LoOHYk+y/fi9lZ/lien9C6L7cOXpf8pE+YUEcrSHzzeluXJ+0RUN1ESeGfWtlK9B4iKGgBYFxA1GZ4Jc/+9gZD3xnMxKG9nUM1hAR6q+gDyrU11Ux5MegPmf/4VK1cRUUoheNQB6GrVgluPXMaEXRlF+ppnWqQqb9Ib4NyyGXtOOrIdiCIhCBr0sQpzOtJiU625kANEiHN2vcKbYMta6Hb8Fm5v9YezQfaCSlVgKMEZ+ApR77v1TAyca9TQZMLCp6s9Cyr77+zmxnDj14N1QaRqnFqnD2Z96jbkBabqx4+zPUJOmc7n63/yErDTUzUXzZIFW9eRfedgxBohbUNROmPCAAhMGABkDZ2r6m+93lYWIoHHWXojFmNqS3Dx9Sbe4px1DEd+jTiFh2rOnXMDQ1j+isaitEuE5nueCXOqUhXFT8nBfOk3STq8TSjDf7duz74Ak97AVCMp0DAjfF6+/9eGG4Ug3cr9BADOt6+tStdi7Gyd2yAow1X13ixZkODTHteHireVITPusnzHY0jYl54nrjOV2q5DRzImTHMPwEPm9OGa4PPwTJhZsqBonbzOlPvec/md4PFpCuotJo4e+PFpkfIc/AYdRfhHCaj7Qyobw5SZidDVqgVdoB82p29mddN6PT9JgfeHKWwMsn6QPfBeHmPEb0tkx0Bx3Z9hGhLD/bU9BjfeSzRYquseCGnKfUUYm4YNkV5C8p/5MJaFDFGOlT2GXlentmrczZKFeRPly7v1yEX2s4lCeWW9lAkz6Q342J/gnbR3A0unTBhA6KmLz9xFw31VWP98nzmKXu2eUOE5kQuhQgNdmyUL7jwZDZPegF7t+9nt44nxc3C3I/GSaz57GI9VI05sGuncUHpWYqGDlAydIy2mfyw8cl//l8CfuhELCAhAXl4enJycYDAYMHbsWDz77LOoWbNmxYUfgQr4G7Gd504Im6CzmxsCdpciK7IEAJESufXIFRYx76mnMtKqs+/EwuNTBx6AHJStrDTMLFng/9NYBE3Yrzpg+cOMlwIqy9P89Plc6W00dSFzrGdQO5QVF2NaXgbe94sU6hyY2xU32l9xWJ/3fjecvNYYyWHrK5TYafXzyigj6i/Ulo4qn3u174fN+zay90qj7CujjWiw5KDKhs2kN5BDIO2o0Ae+H84tm6Hs+Gmc+SAW/kvPojSvwG4fePgjUsqK+giIAbG10ku7RsBlp3wDZJYssJWXQeckyoL6ZvVAScfzducMIDsFUUorfdOrI31JOAIGW3Grw2UUTImFzwcVz3PahhaMtOZhUbCf3X7x5e2l03fZX8egrGoZghPSsa4oDQM81YIIJT701ubiS7Fo9B257aXeFKnHzZJtvtjdcqNQTmuuOOqro7Wsla+sQzi2r16MVl8lCOquAjz0JOaoHfocabHho0bH7I5jRTgB6n5d/TUYDZ+/DNuVqxXuW2bJglb7n2W2R47yf5a3HwZXV/SK6CEELlbiwd/YFKxphZrbaqL+wlT4pldHftTdSvfPUb+VONJ9yV4/K+qb8pvx6VnfRTObX/peqS5Jg6Ur66Wq4fW+t+84wR5+Lb9JgMdn2mrofptHC7GjlHkcqUcrgarXz8xPxWu+Rs08yjYiPoxnanda7VMvko72UK2zTksIovUfUJ8nAGA6fhPmlrVYvrxPjfB7Rz6vsr+OQeAr8ncqiYuEa5IsUPDf/gKCnpdDKyjxL/ypJVPXtDemWrjaG0dH+6Zzy2bYso2EraE3uBXtxW/lHEPX6jZETInXdPKh1VbIgSr45UC4ZmxLe+X23gM+9he/i9Z4mCULxhYZcXC+AfUXpjLtE606uzYN/ffciH079e+5EZsw+R89Hv8p/Gkbse3bt2P+/PnYtGkTSktL4ebmhsGDB2P06NFo27btX43nfzXYY8TMErHfOtVumd2DkzIiFOjBw+e7mBCLRnPUB5kWUJUsmk9LJYv+p57YqAcrLdA6cABxo6Ku8M2SBa1mJkD/ZQqWnNmH4d7t7ZYByMFZ37VYk6jpeeI6XqmbrzoI6KbeaeRoAIDrFvkQd7Th8u1XxIDaI06vjDai/gJRTYWqXir1+isC3pZjTVEqajtXt4tf3eR6uNaOEKOdXxiNsipO2DNvvurg4H/r09yx2Pt3oZ6CKbE4PXqOqh0tIoMPHWCWLAj/KAGN5qhtDagqmD1YcmYfmrrUFMpkfxWDwFfTGHPyR4HHgbqY5+unqjwVEQgVEVf2DmZdSCBsmdnM4+Vjx/pjb6sNqtAFjuY+n863s+pWXSwc1x+6XYdU+SncSArEpdMN2E0lD7z3UHvt2Jv7WqEytNZOizkJcL2OCr9dRYST1n8ezxZzEnDXs5QRVpNyLXismmLvqVEDZXfu2K1bq+2PLjfDew1OOyQu6yfXxZV213D2nVhUuQWV3VVFTAEAXPy5GQLqXSa2tzs9YW7+q4AbtXP7I0DL2jq1gWvORYc2Zzx+lRkXPv9Iax4G1ryBniEdkPlxCwRN2K+Zj4YDqKgvfPsBv41Aw3q3UDsuG2bJgp49BrHzg8eteEA03NbtR/3kuljhtwtBS+NRs8iJCTQqYvb5PVm5Fh2V5131O+oHXz7rmxgEvZyGkl6R2L1gAdodfRI1e+Ti9tPRSP5G9nRJ7bfsAc+o8PjStsM/SsDh98i+vOjMPoz0FlU7Ka1A8dPt0iMpJEnVjr19jk9T9bvfUBZ/1LogEsGjM2CWLJh93QubWtRn30tZrtmCBCZQy14WjsChh9k+VW5sjevBNVD3B8Jk+v0yGnl9FlTI+EVNjGcq/Mpv4dKkMWxNGwjq96q+VIIW0DUPQtLOtfDbNEbF3PGQ/7ERvXvsZ4LMf5Nqotc3fw8jVvjyfzcj9qe9Jnbv3h1r165FUVERpk+fjsaNG2PBggWIjo5GREQEFixYgOLi4r8S1/8JiHxPVjE06Q0oL4dqozNLFmw6SzYxngk7s7YV6pgzVZsD3VgBIPvHcLuSJADw+iGLBfUEgOSvZdWA5HtlQl7q4IOXImvVaZYsyJpN1GJO3L+rap8/RCkTONxb9tLXKzJOc7P7KWCHwITxbW7rEszK8Jvmlm2rYDwyAKVuzqhyp1RVpyPg6+fBydVVeLZ3Q8AzYRSo/RtVxdQ1DxLauTRO9IBIvUjyhN1AT1G1z2/TGADAhGwSo+1aO6JmY9IbUHVrBqr9Qg6F8y8Tj048YUDrOddBltb5phNGiTJhhT+1FOaYktH22zQGt8JLhHQqCGiZNoTlNUsWTGwgOszg6zFLFiHwpj6NqO4GvkoEDUpC/vwrsTAdvym8O/e6qAZC8bk1iNxGUSbsbr8olk6ZsLaT41XfXDkPqcc7mqZFYPO/AzKqEW+fAPN4WVjQACa9AWX37sEsWaCrXw8AENeqi/B9+LEBgM4vEBXc5gddWL7FIT6MCdNaj2bJgtpx2cgZRNb1SGsedHVqszSeCeP7QvuQds/G0sySBfdNcv/nBgWy8aDpJr0B/hvGCmPh9VEKDk+cAyVQdbbCSbGaa42vk9alCw5QEba07L3GNoEAojG6BpySbaLK7tzBsEzZpbz1QTGr+/IvwTAdvwn33xtgRKYcT0uLCVPie6Ud8Wx6fMIcQWDCj0NcpwF29xQAOBy5Crc6XCZ5uhap2uQZF76eiMPiPn2vtzy3g5bG42JCLMpcnLB5/6+4MURbPXzpTVm191K8EbGvyp4bqSc7CgVrWglzZMjpIiwK9oPpVG9syfxd0Iow6Umga/q8+ZAZiAljfZlVkIyQA1Xg5OKiSdyb9AYEPneYqfr2fHwQrrWqg7KdXqrxoUT9lXbXyDx8J1Wcd1GtULLNV/Mb3OsdxYLChxyowvqn3PMo8HUomTCzZMEX+Wm4/XS0XcFV0MtEKLJ7AYlvWfOh1kvyN/OEuvZ/OhdnPrCv0n7jh5oq/Ph102hOCsOBZ8Io/offEx3p2DpLmv3W2hf5vSrmiHxDV9KLeH2kTJhZsiCv1wKWvqlFfQDAvlnzVPucSW/A6dHyNwscShjjI2/NgVmywCn1CMp1RPUPAILHZgg4WhPJ3Ffu03WXpLL1aNIbUNolQpiTWzcvh05B9Dva28+/HCvkM0sW2E5lIWRRPILHpbOyuZ+qb1rd88CYsEfwvwn/sfv6hg0b4u3/x953h1dRdP9/khsIvdcbIKRSQrkQUu4FpKkXAgIiRUUQpCb23kUUsSOKUqUIYgERQQksiPQkJAQuHdJJyNJ7h9zk98dwZmd2994gr19/76uc58mTu7szZ87Mzs7MmTnnc15+GZmZmVizZg0GDBiAvXv3YuzYsahfvz7Gjh2LXbt2lc7oDmFpxm5uupH7A7NLrvFzRSiqCx+eYgtwGux6B0RJA0JR10jsb78A7jNs0rmiaBCo4qBZJqecdN/SLIzzOZ7ggPvECex4nQ18F4uvwmm14fgTbGHUvpwvl4EmcP3ikwY+gk0meQnlbNPlUPg1CADAoN8pwrzTaoO6tDmTqXk4+98kFL8VphucW4mobLMB0swBnWSp0iMbFX/S/NAAwLbDy06eySQ8+MBhzrfk2jXDYl8s12wRrZfXabUh88sYuPdnwmll8cgU1YXa05P5MwBw789E5vy2nJ+lenXkfCgra7T47Fnhqke5nFYb6n3uJYDvjetcPlJ26bph/z2mC5HgpWOQMTcSzd8/wmG4AXBIfADced7TgoYoY0YUWn/M/A/u3nMBFx6MhRp7ARNzNT8wANz3BgDqTU7i5jhEu55nyuPAnG7SfTJXIqWV4ghRXweAbe9MM5WPfGQAIHyEORCKeD05T2vn7CjtxIt4h49O45DRTqsNFzuwUyURLMBpteHZrP0S/3Vz2GJmf6SwoXDTp8xMMVFUFxzPjoWiMsd/AJgdHgT32XOSPOL3ou8744IZWEzYAhbeQR9wOnzENkP+sMfZQvxajygOy23Ge3Orn6GoLjR8jy0WN17V2lVsB/E6cf0Sfj93ol36TsOe1HbXK2+qxfMtHu2U+M5v0pD/Di9TkSvz6ZGLoLSogp9CfsfcJoHaOLC/F88vynLjbhlIRy/vwAbyd+rOyEauAN+d+UWMx/HsSt9oHFqktZ2oTIr9TlFdmFh3F5xWG7ImsTH6qJ19I1kL2iBz6DSca1KMMr+nw2m1cSQ9Unz8GjeCorowtMpJzvNs7DWOeAjIvnMXBsUicOBuefwpe4z9uKk8XhikQdafHWpHxrRQOK025L17c1F6M9C3orLQKwfb3UBJURHPk/l5rKGvUL1Xrv4BVRemwLdbgeF90O8T8bIfGW/b1N1S0GDR16/cb2w8aDorAQfb3YC6VPOtJPILsJq+K70MTqsNLzaORaXF7Dvo3ogpBY6dmil61uRYaa4xU0LpuRicXd8ufl8yBVpUMsRvQuRDlPklUxAtoUH8/pU+mvLu7tLWUE7zqQmmm7pUJvkMA5pyafYOKb+lSaipgqP/DTDfYBofFNWF673PosLPW9FycgJOjWTvmvz3aC7M7cH850ocrQEwxGBCQ11yOAV+f6Qb1jLu8+f5WkWUo3itETmZ5tIRGbk8raK6cHCEjNIc/Iq2GZP1Gfs+t72j+Z6eGmnH0gzP8R7/66jkb/r7h9NfCl+fl5eHmTNn4uuvv8bJkyfh4+ODkpIS+Pj4oH///pgxYwaqVav2VxX3jyEz1ES/4MYoysnj/gRmE7vTypD0eoffhWLd6SOZGFTdXBPnOpzCwoItGNyQxXY690gsqn7rOfilfkFJZdEzuvbx90fJtWvIX9zSYD7ZZW8fDrMOsB2p3B5fmw7cpZKPD5TCHdwvDGCLnjK/p6PwZQcCPkwyyA8APZp0xMqDmzyWaTaJmpGZOYiiuvD8kbbYE8l2n9df8UXn8mxXK/LteKS/rQ2uzacloOG7RtMkM2XG24TpqQ76PgHA4B+lqC7cFT8aFZVdkvmbSNkf25E1mCkf+W870Ohtln/owQIMrnyK8/YUUgBgE3j5ZZqylPu+HWGf52DFdsVjXS71j0HFn7RF8/RDmzH4pRf44k8MekokokEqqguh341FyAss/cWBsabmtHoS4ZvN2tPb/x8KktBv5FMoq2xD/lsONHrH/CTp8cwM9K54mecl09tbIX2ZpaUTf4ttoE8DsFhB7jNnTPmRCSrA+m6j91Nx1/YLXk1I9TQ5LwnPNDbfuVdUF4KWj0adJAuqzU9GxowohI+RTYQB4+LWaWUB52v3PnjLbSPSS9m7DWh5nsYARXWhyaahaDxol3RP3876Z2bjkEil5Qe0IOJ6uYhfzw59cbVxTfhdvsH9R814inT0aQd2viyfQt7b/1H4JGmhMc4OsaPaAs2PqOLG2vg5dI2pDPp7ZubY3trC2zujgLqK6kLIj2P5CfjaKxZMePwxHlrg6NMO1Ps8CT5RLVFUsQws640ByfWyKKoLcRFdUDCnPrfkoEDoJFfBmw40fDeJo6h6k9fSJBQF99VBg2k7kfVWK2QO0cYTvwAr9r3ZwKtZmn5eF8sRA54rKjOnS51oDL+in6f9AhtiRfKv6NnWiaKjxzh8vLf+Qc98/PywKn8b53VxVTAqdc8xlcesL/u0icCqFQv5tadwK96IgjCPzsjB9BEPYM2Pc6XnTqsNlogmcO81Wv/o+2fhKw64ywGN3vYOaa/P5xPVEhU+PYpLd50oVV4yyS5tPaGoLow7EYGU1mVMnxP9T5kmTv6bTBOf+WebJv7Hipjb7cayZcswY8YMrF27FsXFxQgJCcHYsWMxbNgw7NixAx9//DHWrFmDBx98EN99913pTP9lZKaI0Ud9V/xolF+WCt/KlT0qFeIAE7YgXpoMxOdmpKgubLlajHeCtcDM5Gcmxi/Ke8+Ocsd9UO9zbUC7fH8MKiyVnbePPelA3SnyIv3V7F3oXL7Y6yIE8D45U7wNSh+RPBgNHvAcZ4SoqGsk1n47G04rMzW6tL2WKYBDxux2/HRDP8l07/0IVi3/1lThIf+44QcP4cHK7DTyrZztvD2Jl7tLW/y+cA5f4Fwd4IMrtkYoq2xDxqwo5PZkdu3kRC2RENfETDn2RlS+6IxdWlq/xo1QlJfvceLK/DIG1vVAlX1npBAE5O8BMF/D3c8JMMvRLYFULVadpVpVlDSoD58Tp6XTSzOiuHK+FSui+NKl2+o/RBSKwcffH/kLw9Cw/x7k/djKdMHt6T/n9aGdI+l5U6ppIUTfhic6vqwp6vQ5wP0j9XT4VQdqHHRLzv+eFPGJual4LUjb1dY/p7bU15fSkCJu1t8u3x+DTV/NMG1v4pUxIwrh8duBYjePUWS26BTbiTaPyAcQAI780owHsjbL23JyAqwfaeMNtaFIPmXKouTG9Vve6KAyzShyRzHS22iGJH9WIVRUF8LnxyPoFXM/H0U1ghyJ/Fuk+2JvrJ8E7CPS0Wcc2PnSVIw/0RzJp4JQ0rXQq5x0fb17FNbN0XxrvG0UiXGhbqW+TqsNGXPaIfwxbXyl2Fzkp0Tp8he3RFF2JWQONZ5G106qhm8br5fmHm/KMd2jNtS3gxnRs6BfR0mbA7dL5J8rlq2Hkz/0jh0HRk7z+H7iDsZJEOz6etD/1qkPSRtWYt0t1arCffac6bd+apQdvjcghT3xRqIcGV+341Dw3pRKAp36M2M1KX61k6oZginriWJ33c7mVeYXMcjpP8PQ7hRihNJSHE5FdeGeQcN5HDKRV4mjNVb/9A0HkbmV/qm/9z+liH327t+jiD375n91e/yndNuKWF5eHmbNmoW5c+fi2LFj8PX1Ra9evRAfH497773XkL5fv35Yv349Tp8+bcLt3016RczbIHJoUUsc6LCAX/9yqZLkIF9zS3Uc+rwJtkyebuDxYe5WPJM5iAdHJTLbHdcrPj3iHkaxSwbkuNXFB6Wdd76OFGTZLA0A2N5PgOtVOVaKfsI2y3urymdpz7O/s/EgjZ4WuqVNKJfvj8GpFhY0fFfeiTNDidTv8os0OiMHM8ODoSf9hHNmmB3V5xljvR191oF6nxlPDEvdEfwjgC/i9IFoizvYsGbRPH4iKPKYec5qiJ3kSXZP157ykHzib7/69TBo3TYsbNrAlJ8+uLn4bGJuKiL9y3qcuPWbH2ZpxHayVKmC/PgWEsKbmE+v1Ij8TsTbsf1Nc1NI4hExJcE0sLNZWm+LbqKM6dHcf6H902NQafFWrjCLpFdUAcCnXQuUbNtj4EnO/U6rjZ80dB41Cv4rPC9qRdRXkcQgs6JcPpERKEnfy4O6K6oW8FcfAN1b+zTaWhH5MUyxbz41AVcCbyB8VBosdVn/dR87LqGWnn84Fid7XUVm53mGPiFuWtE9MWC6t3fRe98pHLxcD19Y00zTePs+SnsGAG3fjUftabcWUPdWxlZvJMa+I9IHsxd56oGeaGxp/8xY+LhLUHGJOeIgKXKlyUrXYsD74KVjEPb4Vhx6x46gD3ai+PJlKR8p22L8Q0/leJofiPLfdvC4X4rqQlznByQfMsrfY+9ZrIyoZiiH0AnNygeAoN9GIXy0+WmyeNJMwCOK6sJrx1ohvY1vqX0hdGE8t5BYWLAFXdNH8g0Ks3r/GaXjz8wBUS43lC86SIibt6rQeeLr7twWv3/HNkbv33cCS5vXLpWnPiYnYB5vTmyboMSRCB+5TbJC8iQTnfLdUcRk+jcoYrflI+Z0OhEaGor3338fAPD6668jNzcXS5cuNVXCACAqKgrnzp27fUn/BeTJNlhcwAUO3M0/YqfVhplRkTzNwP1Hcar9GQlgQ8z7clAM/O/N4wsNepa4d52U/uLAWKz+6RspryclLO89ze/h7FC7Ic1DB1Qu6/dNmU09pfcLCjQsTp1WG6rl3DAoPCME8A6672lXU0wnykLpS5uASAnT89NPInoeFC8GADZ9NQP1kzTAixJHazitNo5oqb6o+SJtb/ejQaa8H1sxxcZECbPUrCH1AQC4XNdHkqvR1ooAgJ0vas7XVF73ngwwg2zUxfodXsLiGok76ZP7zZXKWrOILUTJLJP+nFabVyXM00Snf9f636J8FwfESHlWpK/CwqYNGBzwN20N7ei72cX8EKOZSRqBMSiqiyth+vbJ/pS1S/EFOcipfuEAAOdnav4C7vPnmRIW20qSP+RHDeige2C04d0BQO1pyZoSHCnHAau5pTqcVptBCfPWXiJ/RXVJccHonmgyVWnxTdNQQQkjnqSEjc9J5++6ZNseXoZYNjn3A8DB1xiQhl4J03+Lu9qW4FqPKMOzlTnawkX5ZQG/f/pmcOr6k5K4DHQ6snrJNx7bRLz2LVcOnwVoAZP3JUzlMOjuY8e1U9qUXTzeWpXvUlCilpPaMXwe84UV302LlMFQVBdXwgAWZFYkkcfy5jVxsN0Nw/vxpEzr+YjfoP57dFptqD2NbaJkzNV82FqkG6f+W1HCKEahorpMeVCwekV18ThXpISZjtdbqqHq5pr8GW2aVFqUwsE2zMYLX1/z/WOn1YbsT+RxrXFqeaw6lMq/Q/JXPjByGkfMpHY8/Vs4V1KyH5wu9dMSe2sehy9q+0BJNmrrusmsb/q0awGABV/u6ejN0+iBPCj/yohqpu0jQsQTXb4/hpdHSljG1GhYIppI81L4mDRkTWZtseb7uSixt4bjubGYWJd9zxHJGnCS+J8o5MVk3i6DG7Y3nEw3S/cztIG+XuL37LTacH5liOn862m+npe/Gcu+64gac7RNxqmHNhvmX7GcB/YfR+YX8jyhBzixrN/On90o8YOlbh3O09O4Wq7wosRDUV0GJUws0/78WISP3IaTo+2SK0hcRBf+m8ZUAHDvNQJX/dfTHR+xv4RuSxFbs2YNOnXqhEWLFiE/Px/vvPMOGjRo4DXPfffdhzlz5tyWkP826hnZnf82W0zQQJb9sZ3bsAPAiKpHDUoCDSwXHozleSmIJz27Z+AwHkgWYJOgOCg5G0RCT/Ts4HBtF5/8qMSBd8qkB6R8cXfdz/Ou2LJMGkwLfmKTl/+KNIlHxY21JR4t0n2lfEd/aeZxESHKS/ci0wdKzwgIw4woX85HdpyIZ0pnkDJCSuNXry4U1YWA38/Ax8+P31+7QAva65O0Ez7+/rxc68dJphMXUeNBu0wnJ4CBOBS8oU0slrp1EPChzC8/RkN/Iwr+iaHXESwv+V4Qah4ANHhgr0GuJ9YMhSfSK6j6Sd1M+fW0QPb2Dum/COVMeRTVhS8DtiLnnjmmbdZ6SQ5XMJ4MbO9REad7Ic+nSPdOxNsNstO1PkaRorqAFPndZQ/SNkbIRE7fBs3S/TQlJ10zuc2aFItT7c/wZ78VaiAoTiuLDyS2A8CANMT6O602CaL96DMOnp4c9cU6UABTcZEPMKCOr84yxfNyvxhcGBTrsS0BcPNCRXXh+ppAfn/tFQvPQyAqFEbCbIPDabVxRabgTQdS359mvqiHcTFo1v+cVhtW5rA4biIfvyBNRrp/fFlTHLm3Pk6NYu1MfohEGcNkWRTVhTJrq8JptSHnQ21jyp2VK+UTlRizhV+PHjcDXfcdwu+fGiGjo36YqykqZn/6dgkfrvWdn1MZYAQtjAHmIyoqcpZ1VgStHCn1gdU/fcP565He9OPtqs5ToCf992P9JMkQ89HTuCcSgf4QWM/zWdo3Q++I8s1owBQKsT8C7KRwQcEWft3tkRHcZFDfjk6rDauXfIOVicy1gpBVRdn8N9TDMft5ZC9swzcqAKAoLx9572l9QVFdmJ2/2VAnT/XWKwfkDuAT1RK+FSogf5wD4QmpfCEvylUxXwPY8kneiesVteC41sllpe+CAHxEWTKmRRu+KSICCSKUV1FucZ0iUpUe2YZxRQRconutP2IBuOv7VUKd9GtS2SFljPFqF12syp8vaVbHEL+UAE7M5qXfIqpL5vFOKwvvoK9v8Z4Dhj5u1jct4SGsrt+noOCnFgYzXveZMxxFOracBXE3g0cfX8bWYJYw4+brHfpn020pYvv378fatWvRv39/+AkLT2/UokULPProo7dT3L+G7g9nu/YFDwfDp0xZANqEYLZ4JbMBSif+11PlH1LQ+sME9Oj+IJxWGzrtusIHSt/NDH3KLL/TakNRZyNPa0plOK02tPo0wbCQEBd25CRMpF+QiAMymWBkzJIRIX8OXSPx2BNZjGNPOniaejd36vSDrKddt1r3ZUjPwp7Yit8K000HVaLgl5JxIZDx6Ng0U3pGflErV34vOToHLRvN20NRXbjeSYZ5BpgpjtNqQ8ddVyXZ9fUR+WR+Houae92cB00i+veQOUVWMHP6zzDl6T57TkLJArRFHgCEx8vO5nF3DzSU1dPRG12HjvDY5mIfNlNqSuyt+XXB6w70jO6JvPfsHvu3fkKkP9qFF9tP9Okxk0lRXXzRfOgdbcFU+ApTdre/OQ2Zn8ca8uiJKz0dbIZnIgUpcjuVWV8fk+tr/YbIUrcON42i+pXxsYisEHTT303MmzlkmtS2uR/Ii8B6nyfjxHK2ex72xFbj96Lz5RBlWt68JnpndkeFn7ei8o8p0jOxTS4OZEqOX3BjOK02rItYxp91K++GorpwYqwd5zqcMvQZ4iXeb7k4F3ERXTjojdNqg19wYyiqi6NSelOuPclJ98Pnx6Mo9xCuO9vxsrO/s6FOnwOov+EUto3XwHf0/Nu9JYccqfMVM5cMfjnZ0E8U1YXDrzqwrjCMX6dfuy7lB4DzH7LF58k2lbg8NWdrG12ttvvgwPV6pjIB4Kd4ZkoeoH3Tya2XoM17bAFOJyD05+6iGgCW9N9f49TyUFQXfCtWhNNqg6VWTZ7mycD2hrbSt4P47OSv4ciY005KQ888js03fWc/DY0wjJlOq41bIhDCoShD7WnJGNKwPb/n9wdTVMtvqGuQgfLSaQZdR+8YwNNGVmN+tVldNHAJ4t34ddlsfESjDrhxbzt+71pPLQyNyF+s9+OZGdJ1SdpuFF++jGs1iiU5xXLp1Jjub3tXWzP4btohlUEATABgqVYViuoyjP16GlXQHom7/zDILcqgpzOP6jaPirW5zGm1QX1Bi2XotNqQ72Rrofy3HRLfWfmbubyzw4MkBbCoa6TpN0/34rr0x8WBbEyvvEkL1QAAGTOjYFkvx2E8/JoDV++LltpLPMUnOvq0A+6MbI6eaGZWCgCVMy3a/Htz/q47kOVxZ+aY5rlD/1y6LUWsSZMmf7Ucd+gmKaoL9T9Nkpyx6YM9M8wO+052wkST5bnEUMNCnfIQcYXl8yQes0tEQPOJjDAMWgT5CwBrv52NBQVbcPox7d7cRpsAAPU/ZScx8ZlZfCeHJlhvE+g9g4Ybdh2JyESI171BpMbL14JGWysy0IO17BTWr349TD8bYKiDt7bQ3+8VECnJIsYVKe7UBgBQ/gTbTTxmZ/DWkTuKNRnN6hGfiovFV3m5hDglEpnibGpVjqfrsfesJKued86A6RJIiqK6cPxxTTGdlMcWVCJ8txmf8Seacx7ll6Xi3CNsYno2az9eDoqBX2BDTD3Edm79AjTfPve+DENdi/LyUeZ3tpA58yhToObpdn2dVhtOD795spCmmXgpKjMpo+uG7yUhb2ggQmdp5pF6MnuPh5dEIOxRDTkt6o14U8VNz6dn+z4IfjkZJ8Yyp3lKG/CBthigOD++rZtJ7WimsNA7PTXKDt9y5QzKGzmAE/0WvtLwbjK/aYsz8yobdovN6lNy7Rq/J/bF2TcXKhlDNSXCabVBKdyB2r01M5gue/sAkMMMUDnnHpFPjRTVhWudjpp+WwDbzVVUFz9VL8rJk8YmUb7tbzG5phzaYuAltoVPmbJwtQFutGostcEpez04rTaP6IxmdGaFFgaE6KEDKoJeYQvlsso2/oxMlN17D5qOrZYmoVhQsIXDT+vlF2Wl8AQAEPjzcWxv9yO/JlAVcSFJcaRqzUiWyibeo2puZjHjwoLhW6ECfCIjpDS04SX2F0/9VoxJ6GlBr//e6TovmsWFJOAX90ntdMvbd+u0Gk1t0yMXIfwxY/gDsf+IkO+K6sLRZxxe273aRyxg9Yq0RI91obAAAHBFCULeTyHImMUW2csvVZDykC81XU9o8guXJam1tnlKY5/YnlPOaCeuACQEQv8Vabh6X7RUX327fRUWDgAIS5PjVoY9nYK4Lv35dfSr8VK5Itw68R16sICf+oTPZxsJYpwz99lzpY6dfg0C0L6qtikpbqDyDYWVIfykLfs7tk6o/o12QtR+Vz8D30FD/5CuyT+50dtJiN15g8vT88uXDHmpj9/7+UYATKHMmBpt+IYS1/3EUWUvdDzJ7yuqS/K5IwpcfBTHI2VTTP+VaYb3RGBm6ZdkxVBRXdImX73JsgWLorr4OP4/RXdME/8Sui2wjsWLF2PatGlYsGABAgICDM8LCwsxdOhQPP744+jXz/ih3SGZzFATRdIvwMwmU0+kqC6ErB3OAyF6SmP7IAF1v5AnRnKKF8shWH0zomdmE4mnRVbmvEiEDWML07hO/ZC44Wf+/MPcrXg5yGg2KE7MfFE2yi4FTC7qFgm/temGPASvTvD3Znw9kf75rPzNGHUTQKTNewnY8fpU0/x6efVtYalbp1TkQDMix3biQ07mZuWJcuW+b+eBpD3JePwJB3a8ptXHt1VTFO86wNPmF13EqJt+e5ZaNU0XYMSvX9Y9HAZYLEeEchdhks346OW8FTL7bm41v5juurMd1s01hl4Q0xS+4uCKm15uMd3h1xxoMLH0dOJ35u17clptGJ2Rg1e390XQg7u81tOsPek9TzzZBBtalefoagCw9HAqKviWRdj8eAS/4h3++tzgWKR8PN20LnoIf1GGI887UP9TuT2IKE3uRDuCXtPKp2+bwEAo3cUBMUj8bDKPD+Sp7cyIIMv1VNypDbIe9kP4GBkB7VqPKKyfPcuU96302yPPOXCpzRU+LnuT01s/8ZaXvnO/AKshFmNpPDzNOY1Ty3NTvyt9o3n8PTOZ/+x3RpQ3wY7g93fhasfmHKreNI8HJD49z+WFaegd4PnEyaxf6tNZIpogcc2PXscAogf2H0dAmdMovFED60834abFnuQDmHL1ZcBWOK02RLncSLPJJ9/e5nqz74Yr3nvO47kaOYYxIfeHVgh6cJdHPt7a5ErfaGycOpM/8zb+eyJ9e7TdNkjaHCLyC7BiRVqixM+T4m3Wh7v3GYKSNNnvVZ+G5qFb+a7o3pHnHdj1/FSsuuyPz0Kbee1HR5924HzL62g+/iiuhtdF2VNXUPTpBR77Tl/G/xRYx6d/E1jH8/9ssI7bUsScTieOHz+OHTs8L+4jIyNRt25dJCYm/kcC/huIOvWZjGBUqcz8nwjJ0NugJioCNAjcM3AY35EXP3LfypVRU7FwGFj9AEAoiaUNxqUtGDwNiCI/8ZmlZg0k7v7DwFNERBOfld9QF1c6HZPuH3vKgYpH3Ab/IUItM5sEaTF3bXVjA4okoEH4e6u/p4W+mN6sjYjMBvmgVSM5zLNZPrPFwxn3ZVS3VEDElwkYOGg9xtXeJ6X7OC8Frcpqg2XwmscQ9qhsevFDQRIebKidLHh6z97esad3bvacFBdFdaFHqEPyYfJrEICiw4VSueNz0jEkZQRHrCP+PWN6IXdYI2kRbSb7tbgoVNx3DEV5+fzeucRQVI3L8vhOsz+JRdbD071O9vq2Eetsdr80JdkTmaUjlC2zskQ5Ct50YF/8VK/vC2BO8AmBnpFJLWHBpmYz3r5vgAU5nR0eBOee81BaVDEN70D/z6wIQ/WemVBUF8K/iUfGo9NM+7y38gAt5IG+vqQ8UIgGgAUzLikqMvC41YWZKIuZXPrflMbsWk8Zs6IkC4HzD8WiyveanxohX3qSV8/bW3+ruaU6TrVnJz7ewheYyWhd7WsYfxXVhbi7B0ohLiQkTJ1M+jkPAFKuunkQcZEurQpG5Zf9Ubxzv4T+KZYf5XJjQp3dHt+Np7Y4lxiK8mVuoOw9h7yOYyfG2lF7uhHynWD29fliXf2RYvvJ67gqEn03AEAxO0mejBuX0H39k9I47tcgACVVKsK9L0Piw9t3ndUAg++JirpF4ngbf0lBEd9L0KqRyO3+tWk7ijFDFdWFDk+OweYpM3h7eOqXQb+MRniCrNhf6xGFIx380Ph11s4vZe9Gt/LuW5prRd5EPYJjkf9cW3w/ehIeSBqLYBNgrtz37bCEXsQ1tSK3hNDzEsvstfcMfouoDj2dXxmC5NZawHlPY5hIxR1s+GrGF2jW/Ph/teLBFbFP/iZF7IU7ipiBrFYrevXqhZkzZ3pMM3bsWPz22284fPjwfyTgv4GoU3et8CB8rxRxaGiAffg9o+JwPaiOBMNNAVP18Nx6Km0n7s9O1mcetUumBZ4WK95if1DgUL8GASi5dJlPvvoy8xe3RKMBMpIkQb0TnR5uR425Rth2T3U7/Vs4/P2KUPHm6UtpipVIiupCm4kJqPOleTBjPuFVqYLEAxtN2+XZrP14YdYIA8S5Pp03Euulj+kj5v84j00iLzaO1bMotSzxWc53NqCgPIJfZuWIGwAkh0gD9x/Fomb1TKF99byJR7tx8dKJJt0PWTscZcsVodGA3aYKmsiLoLO9nTCK6cUg5+LzuE794M7MkdL61a+HoiNHTeXX19+x8zqW5LaWYlHp0zVIqYTZjTTTzbbvxqNqzg2UVZhpFgUFf+ZIO+yPLDJd8NM1hS4Qy3k1exfeD2llqFv3wGicGB7J+4yishPLY5crSyeSpSlXnkh/spTznU1a7FiahMJ9MMsgl9Nqk+LQ6fuWpXm4tMCkuHhmiple7hv3tsMf875G16EjDKfgenJ3bgu9f4goo9k9x87r3CzNU9rYnTekQK6exisxvIU3RTBjbiQH31BUF1p9miCdLFL9e7Z14kJsID+5omfXekZh/axZPB3FTPImH8BMc33PXkTRoQKeLmxBPPeHK208EePCGZS2ll35eCG+V5KD8lA8J5Ey57dF2FDtvRX81AL7HN9KZZTfUBfnrpeDf6+jpZqBUQBsMT+FAjGrG8moVwo9KX2K6jIE1BbTRr0ejxp7L+L8+Muo0iMbGTOiYF1rMQ1Lo88v/qb4baKM4iaYnpdoheJtvUC89GSpUgXu8+dNZaLvRH3BgYaz90shc251jKF0Uw5t4T6I3sbjo89o/ma3Uk7lTbW4qaK3b97svZq909LqQUSbfq1SH8LmZgtRPTznv1rxuKOI/bV0Wz5ip0+fRp063mMF1apVCydPnvSa5g7JtMSViozp0Vi1/FsAwKmRzNdmRVoifDe7pEGwWdkKgI8PN03TT1zk4yV+7JHj45H1LfN3uriK+XJEpg80DDb6RbKiuvjftfvP8nvqSw50fGKMlLblpARkTI/mShg5Pp8brKE2VluQjNz37Sg6XGjYAQXAHV2vX5OBYBTVJSlhUw9tRo25yRwiv+nmITj+hHaqE9f6HuipRq8MVOyeg+trAnFF0RzaTyxvgu69HzGkF6mn/T7seG2q6aQqUnF4I2lR6Fe/Hk//WWgzXK0jx946OYa9K58/ND838mWhNJ4mwHEvsjAD5HgsPmtVtpxBCTs5Rgs3oH/PIol8MjvPk4AHRgmhBJxWG06MtXNYeUV14ee4GCgqg/YlOGeRerZ1SuU4rTY0eCTHUEen1YbQITuwv/0CWJqEYkXqCqlNrnePkurgPnECV3tFw33suGmdxHsl9taoZanI7y8s2MLLdWfmSD6SiupC0ZGjyDFBKDSb1FN7hxgCAot5FNWFw7EXeR2dVhu2vzmNx6hxWm1cUSJkMkon/iae1ecl4+Ro+XvXK2H0rOTGdaS/PY1D9DutNly66wQeDUwxpPWmhGVN0vpV7vcMaMW2AwbzvuCH5b6buO4n3gZ6Kjp6TGpXp9WGa6sbs3y/L+L5FNWF9V/PMshq9ltRXdwXh5z+ybfTjEgJM1ME9OS02pAxNVpSwgCg61ANVZXkHV97ryEvwMx6xe87adJ0fu1tXCalyVKNocXVS7lsSOe02rDvnUbYOHWmVMZDB1QppIDTyhAVfdrIYRPMqHjnfq6EUV7aoOlpv0+qN0GnizLRd2HWnu5Tp+Hbqil/Lv6JfPVKGACEDd0u1fHKqfIYnt+RgyCdWRGGCn7XUfaeQ3hwZy5PRyFHFh2WT7bqfW40l6VQIFMObZHKekqN4n0tt/dMZEyPRuxLYyV+ZhsotGDPWtBGahOn1Ya096YBqbtx4eb8GT4mjYelUVQXph+S/W/1/YV+N3+HbUj1z76b3xN9X8UxCWAhbsqsry/xoOcZ06NN3wk9t+2ApITpefy0sDN7f58kcSXMt5xxEZ8xPdpwT6yjorrwZGB7ZH4RY6qEZc7TQvqQEkZhB+i++C7E3xc6nsTlfhrfa6sbw1KboTZb1ll5We3eikfhyw5DO5BVkb5d9aTPV+Y8s4Sq33c/B237n6ASn7/n7x9Ot6WI1apVC1lZWV7TZGZmolq1arfD/l9L94e3RPjYVP6R1vxaW/yeeyTWuAC8eZhpNmlTAM+To+3w38DQtUp6nsbo1mwAr9Sd2Y3Xui+DxxUTSc+z2xCG9LYz+nsuw8XgIlT4WQ64WeI4x3cEAXAzwuPO6xK/oFeTcfSXZojPzILTakPQr6P4MzLHyO46V4IX1teRzKiGVTkOp9WGwIG7Yf1NO4EV/UeAmyc7N2ldxDJsbLmUTyq1ex/kCrAZKaoLF9rUh9NqQ5fhIxm/D+04O0RbsPM22KbFflGXNkdJtcrwa9yIpwt5PgUZs6LQLN2PvYMZ7F2tarqC56veM1PiGzk+XhrUqazeFS8jaOVIVFqUwiHQ9WlEorIU1QVL83DuyEyAJD6REciYFQXfypU9KoD6yaX29GRUWrwVJ8ewjYOLLeryvnrMft4wKYkLbrp/pdMxg6xiue6DWYaFht5/5LqzHcr9pu1GP7D/OE6NsuNyvxiU2Fuj/TNjOY9jL8tIdXQydr17FFssDMoztF/wK8lSHrFOYluJpwX69jP7VrMWtDEseizVqxvuKSqLFXjhQXmBq6gu6VT00KKWHhcCVL4I0Q8A3x+WfWgAoLijJtfl+2NgCQ/hcoQ+l4LMeZHIm2BH0EM74bTa4Gqj5T3ySzMAzKdIrEdE8mBDG3Q/0BMnlpsDQJHZsNh2emXLrJ5iXXmdX2RtlN7Gly/iAEB9kS3GReRQ4kuABmZlKKrLYEoFgJ+6Ufpd169K9f0wV0OqdJ88xevTecQoQ71EPl13X0L2p7HSMwpf4nvdjevdBRS3m0BGVXdrp3BUzukihsTYM6aXVIavekJKCwDZC4WXCpj2K/q9IvlXfu/uwY8h9JmbMRNfcJguTkUeHZ4cA0V1cT9Uooxp5otyM3lI2VBUF8LHpEGNvcBBkC5tqc3NLmm+AMBPEQc2sKPH3rPs22sSKrWB2CakBIjXB9vdkPpmbu+ZPG6UmXJEdOQ51u9EP0F93QI+SEJRt0ien3iMDWSbYRQbzmysB4B9r7C5//T4QK7wmdUprnknXv6Nzke4MgNoIB6iCazZ9+Zqw05+PdHuZ4w+1CtzUgx9Kbf3TFTdXJNfE4lovYrqQk7/Gab1Dhumnez6BTdm5dwMO0B1dlptOPyaBiomoiZX+HkrXjvWCmeH2LG+xS88Nl5iE83NpuacVMmqRRzTiH/BGw706P4gAGYlIpIloomUd//YqYb63qF/D92WIta+fXssX74cGRkZps8PHjyI5cuXo2PHjv+RcP9WooGu0VYGCTzpdDCqfpvCP3YR9rdHj4dMd7aITrdxY3nYKubfsa4mXq6ZKZUBaPDnokKmn0AoJhYNMssvVUBub800lRaHAf32wlKtKlp+JsckCf+cmYK4SzSkwXp992NaGJv0yBlebAOn1YbES0GGwbb3vlMelTPRB0hPookU1SNrUiz8Ahvye/fvY4sROrURyyn/SyrcndviWnV2Upc5ZBqqLUg2nQyI/+6Y7+Den4mivHypfcNHpfHTDoDFhGmTxkILiNDxVD6hp4n3abGe2+NrTDm0Bb8dbGEqi75vkGzufRl8Iem7YQcU1YVVvy5EwCpfrDy4Ca0+TeDpRV5mZfi2aIr0cQxxsNyvqTyfu3Nb08WlGQ9SxkV5izvYDH1aDCor8isY6kbR74047yXN6qDmrGRs+nIGfJJ3YstkLUBrvb77TXd1LzRkyvGNzkf4fYrrF+VyS2kBIHjJGF6+qBQsL9TiYunl158SikA61L76k2Liv6hZPZS94ObPTo6WY0tdi4vCgQ4LpHyivJ3GjMasfONuetl7DnHUNiLfTZpcFZZuhTuDxQCK3jEAiupC2LB0HHyMIQZeW92Yh9wAgF3R38OnTQTyolmYjFMj2YZFgwe0kyEqK2NPA37STfL6tm5mSKcnsQ94+gb1zxSVBVMvf9TCr+mEpfwybaEJMD8py/rtcHeRYwrlfmD3+B2YyfVi41hkfcYsAmbnb4btZrgB2tAh8l+ZZso35uV4RO4oxh8tK6JquGzqyzd/0nZLGxNKs98AAHWnJEl9EwAHbyjxLyPJSfPAxFzWDl0eG4WQwbIfeNQb8VK59FuUW1FdKLv7EIq6RSL4pzFY+dRHcFptCF03HOdXhhjmK0V1oeISBlRR+LJDeibCpzsD2MaAiO5JFPzzGG5S1ir1IX6fTjMaTEyCb6umODvUbshLtDKiGt/0AVjsSD3p+5RZH4h5hbXRu7ky+q+eCFqeEBqJzg61S+/MDHSKKNc5W3qmJ5qjy/yeLo0z5x/SEHKdVhtHSbzWMwpX+kRLykylxVv5e/LU751WG/LetSOldRmeruAN7V1ei4syfIeUj/5EZXZRsBZsndKf+dRt2IRRVBdXGlt/pK05iFZs/kVKK8rQYGISjv7CgDYINZkovY0vqi2QN94k+Q97fidU/4YTkrByFQsLtKiZHGoicY2GmirW3/aBsQ7/zeRT8vf8/dPpthSxF154ATdu3ECHDh3w5ZdfIiMjA5cuXUJGRgamTJmCDh06oKioCC+88MJfLe8/mpZmaP5QTqsNsxpugfqSA0qLKvyeoro47K+iulC8U7O396tX18CTJjJ3Zg63b8/+xNxnSG/SpaguPJV1wHSAJxQ0kov8GgDg8GMRfHFD8Zli5rBFSFyAMVCiWGcAfDF9dqgd3zdlsOmi6cj3+VGm+YnI3MRptWHJYXnnn/ymiEKfS8GK5F95HZc2ZxN30c1FiX4h7Ze8l9fVk9KjX4ideZQt3PTxvhTVhcxv2kJRXcgYWgFft5oPAKZIkfoyaLFO9GRge4Q8LJetqC4U/NQC0a9qiyfx+ZW+Gmw2nX48nNsFFZcwRZB2iwF2ajA5zwi5S1S85wCmnAk0PD/c1R8nxrI+UNLeqJSQXABTxin+C6Xz3ewyyO2TtBMLL7B4RRQ8EwBCBu+A392yIk5tdXaoHT9cqG54Z6I8Qw/dJfmpEe2byJBhJ9TZLfEEgLAnt5p/HwFGKGci8ZTQjI496eBlUCgDkfxXaLDJoq8XAPgnagqgSNSG5X5Nlfz7APBYSBtmzJTa+vRv4Sj6XTvJpTzVe2Ya6ra+xS9SyA2n1YZVKxby3zW/TuYmgXrZwp5i/Y3GLxrX9LIH/zxG6tviAgYADo2XF+hmC3an1Ybdz07F3iemahsSnTXgEFG+Rm+z/m9ZJ/uMBb2ibYroNzkUlSG1ha4bLt0PfZbB+Y9o1IHnJX9AQD5J0G8yVFuQjJ8Osjy17mOxpAp/ZmaEBIuvH3P045ZeqRfT0u+uuy8hY1o0jrrZfFN2VRqOJ8htmDZBg+rXlymWcWh0E/itTUfYU1sx4mZ/+zzme1TpkW1oZ7HP0SkDheCQqKQERV0jJfNXyhv2xFZuLlu/734suGlqTKcZiurCylU/YOsHDPzl1exdkrwAA7sQ2yv4JfNNNjMS0239gLXRm0E6BWuIHVmfGefe3J6zpOuGo+Q4lXR6e7kfO5nKmKmdfIrltpmQgNyJmul5zkfyJo3YRwnwpXsF2VfOf0Uayi9LxfFlTXH6MTv8GjZA7M4bksIkEvE89pQDB0eweveM7A6n1YaGE5JwVzyLpUnjkv7d6/ul2W+i8p9pgBjBi8dq9byXKaNkhijynH++Fr8XpMgmwwBw4WwFqf/R/ZO/hhv6hz6NXlafdi0AAEGJI6W+LZpxe6sfANT9IklaB96hfwfdFlgHAMyaNQuPP/443G634ZnFYsHUqVMxcuRIk5x3SE8iauKAJmxhHvviWFRdaETs8TYxEKAADRRdho/ksNv6HUtAHgx67T2DJ6sf4tfednufOdIOk+tvMx3kxTII9SzunkFw7z0oyXDukVhuviHmzfwihi/MxDorqgtBiSMRPnIbDr/qwN4np5rKKaYXZfGWLnTdcGnnV1FdCPptlGk8EbP8JAf9vmf/ffDtxszTbhWxzuydABp6o1ndShytsfqnb0x5nSu+goENjDv3Io+7dt/PzTPF551HjYL/ijQpLb1DANxRmhyzM2ZEIXxMGi4MikXSZ9MN7W8JDULiRmM5t7rIEeVoMzEBO17z/u5PjrFzE0x9WaKCszKimseySpPF7J4eSEb/3FK3Ds7Mq8wXoyLAghlvuj72pAOuV6dK7Xqr/VzPSwT3uZV3IKWJbgmk7vbYV80WVded7bjvm8jLDFKdSAxFcf6hWCR/ag5QcHFgLI8F9Gff2+ElEYbTOafVhsKfIxDQb690r7Sx01s5pcmjvuCA32WgzlRjPzj2pAN1p2jIhdGvxpsCJZnJ5EkORdXANfSkD4dhRn4NG6Co4DCqb6mBM+01YI2278aj9jRzhFpC/8t7z47GrycbAJ/M2oUoc0oMch6Ywa+9tS0BF/3ZvuDt2tP7pjGPSAxLYVYWIbTCxweVN9bEhY4n+bPMr2IQ9vhWQ14iM1RPv+DG2P9sXWkjyNP79jT+exs3PIWO8cQ7a3Issgcav9Nzj8Tinbdn49NQtnFwZpgdqROZMuzj54dV+XIge+JZO6ka9i1oxl0szGQsaW+DzxaXIWyOorrQZkIC/6b+zPdLdPSXZqjXd78Enx8xJQGbEz7h6MIi35L2NqxePA9Oqw2+FSqgz7ZDWNq8tgS8pm87kkMv0/8SfH2jDyf8LWAd+S+/8V/dHv8p3daJGACMGjUKO3fuREJCAiIjIxESEoLIyEg8/vjj2Llz53+khL3//vsYMGAAgoOD4ePjg8aNG3tNv3XrVtx9992oXLkyqlSpgu7du8PlcpmmVVUVQ4cORe3atVG+fHm0a9cOixcvNk177do1vPXWWwgKCoK/vz9CQkIwYcIE3Ljh2Q76ryK9EgZoH2rWZ7E8Oj1RcQcbVqSvwpHnHWg+lR1v0wJIzJsxKwodHx8jDUS+5crhyeqHTAen3PftOPo0G3gyp7AdOVLCJuexRYLocEs7RhNPNkHQq8mIeTmeH8OL/MnUEgCc/YYy2aZFmyphlDd85DbUTqqGBu9rJzOnRmk+cPoyFNWFypu0HTH9QjH/beZsm9VlLhYdTpYCVpMSRjvV+l0wkY8oo9Nq40oYAFMlTE8D9x/leRXVheez2ELQUqWKdNLotNqQ/5bmIHyqhbybJ6Yb2MCOw0uMgbrpOq7zAyjvzDWdoNbPmsXTXuvBdl9FmPTwMgzk4sD7zHyMFiQ+xSVSWxBRcFkAeD5rL448r9Xh2FPapCbWock22beFnlFsM/GefiITlTCx7oWvaLv7pITpedy1+36W4KaPDZkYknyGBdlNB3YA8P+hOoo7tYGiunDsSWNw5MQdq3E2hZ369M++W1LC9PUkmpSXjICl7NvMnWg3tO9XZxty+cJuBmbV8zj2pAMj8plPye0qYYrq4koYfa9iWZceYGNDXEQXiW+Jr4/pJo2ohInyKqoLtZOZWeaFBxlUu6fvh5Qw4v1xXorhfZrV1S8okCthisqAeoKWsZ37gAf28XRxnbQYmGRFQH3v2FNyIGHRXFyUQezXZrJZP0nCjjemSulI1rpTktBp1xVepl55cVrZZoz+eyAAD7oefOCw1H+DX042mMMpqgtrFs0z8AI0XyYAKCpgPrg/BGlBd51WBjbDFYt5st/SwEosLt2rDzAo79T3tQDjZt+wJTSIP895YAaXqbT+KvpJEk+zNtfzcVptuHx/jOnzJrO1b0rkQWPeucGsX+x9YqqhTiKv2Lp57FnhDlzoeBIl7bX6kBKml5X8j1fls5PTzC9i8HoOk2PF5l8Q9uRWXobTasPUQ5tN+72ZPHRf76tEpFfCyHyf+r1th9xOy/t+Zvp+qn6bwpUwAKg+Lxmh3zMgk5KiIo/v9ITjLFfsSV4C8aB7fgfy2ViSk4eCN+ST2x1vaD5Xbd+Nl+ovjkOK6oKlVk1D+fVuInvSOOW02hA4J0sK8SLy8dniwt0PPwYAWJmVhPVnWLuWbNsjmaiK5LTacOmBGIkXgDsnYv9Cuu0Tsf9L8vHxQY0aNdC2bVukp6ejSpUqyMvLM02bkpKCzp07IyAgAE888QQA4Msvv8Tx48eRlJSEli01BJrTp0+jXbt2OH78OJ577jk0aNAA3333HTZs2IA5c+Zg+PDhEu++ffti2bJleOyxx2C325GcnIw5c+bg0Ucfxbx58/6y+uoDOlO8DzOiHZZL/WNQ8SfzXTSzXS/98+49B6Nkh7YYufeBR+GTrMGu6k+mRBjqW91VKo3MduWOL2uKOn0OGJ7/WX5mzwB58BSvicRTDYLTVlQWQqCoUDWV2VM54u6fmJ5g3c1k8FSH8TnpGN+8PYqvXuX5gn8ag5z+cnwWT/WjazEQs1l6kVebtAf5u9DLd/wJB2rsvwa/tek4EW+Xdi5FMmur4k5t4LthBwp+aoGG/eXdQkrn4++PVblb+amRflFh1mZm/d7bOzJrNzOerT9KkMxenFYbsj6LReizpZ/GlNZH9GkOv+bgZnNmdZ6dvxkN/Crx63dz0/BmUJSBJ8XH81SWp4Upl8XHBygpQeYXMdwp3uePAPiOLQd3RrZpXcW6EV9FNUKj+wUFoij3kEluQH3BwWMXUXw5ivlFUNQUpqB4bUNp08NMBgAI+XEsQp9NkdrZL7Ahig4VoOB1Bxq+ZzzJIDn0PCn/6d/CUaOXuY+0p/GX+r3+OcVM1JdLJ856Pp7626z8zRg+7Gms/XY2f545LxI598722D/N5Bavg1ePkPyFRPItVw5P79mBd94Ybhpz8c8SxZATiU4F1ZccsH4kvyexPE/ffvSOAQae3saHW21r8dn17lHcP8+s/8fddT/cWbmmvNs/M1baUBDJr2EDXLRZuc+tN3nEuHj6tKW1U2ltQiSGStGnp7ALvhUqSDEhPcmtvuDA7ufYOHelTzSqPFvA/XL/zLxvltYsVh3R1V7R2DBTC0at56UnaisK3Ezp7hk0nPvQeltn6dtY5AsA5x+ORZXv5Pd/50RMpjsnYv+fKDs7G6dOncKaNWtgtVq9pn3qqadQtmxZbNy4Ec8++yyeffZZbNy4ET4+Pnj++eeltB988AFyc3Px/fff45133sHo0aOxdu1aREVF4YUXXsDFi1oA0MTERCxbtgzPPfccZs+ejZEjR2L27Nl47rnn8M033yApyTwO1H9K6osOSQkjmGkiQuSr+NNWnB5ulz7u62sCAdzcVYxowj/2I8/LDtBOqw2+l65K1/fMknfTwp7SHHQBBmGuqAzmO+LLBK8DpaK6cGFQLP8t/iciZCoqw2m1IX+cQ1r4UxmW6tUlxEN1aXN4I/2uoKV5uMSPftN13o+teJ56ozS/K1LCnFYWQqC4A8tzfU0gv5/xdTutTs3COF9FdeH0PRpaWsbsdvw3KWH6XV51aXNDu9KO67jgSEkJi2t6F8Ke2mo6eZZZX9/Am6jRzUU8QbFPztOgjEXZAWBHFHM0zvwihgM5rLrMgAbqfJmEtQtmQ1FdfOdS9LEgXtT2nUdpqJi+G9gEts8ho1SKdViVy+pGp0Z0X18vs8lN/571afU8ItMHmqah/2a+B6SEURpFdXFUQZE8KXhmaTLnt+VKmJ7i2twLANzHiMoc8t1TnIf9ec1vQkQbFPtIT0dvqVzxfVO/UVQXR2QVN2NKuhZyJUxfT33bjjsRweUW410pqgsrtiyDojJ4c3GMAYDdz03l1yuzkuDu3JYvMOk9uE8wQB3fbgUGOcifBdB8Vehdie1AyJaiEvZq9i7+2/pJErIWtPHYZxpWOSPV22wRl3vjonRN/V7fT0kJo/oTJR7YyNPp+Z9LDDWUN6pRB/j9kc6U5kjW/mHD0jHpdLCpfACQ+aUcM0r/PYXONA90DQDFV6/ihVkjkDRpulQfT+npXYtliOMnBfIW09SdwtrG+lGS4fQm7p5BhrLEOkS+HY/UNovleeyrmFtWwixhwabfr4+fhk4b5XJLICn6d+u02kyVsOWFzM+TlLBW230kf0yAnT6SEka+xPp3RL9XJC03yKkfMykt+eHmv+XA1V5GVMr0a9ela0JmvFZdhhEnfpNOB6PyDymwVKvKlTC9jCSL6HNO9yqu2YMbnY8Y+kZp5EkBWpnD2jRjqlC3aIYkWzHzNJxWG1pOTvAIpuK02tD6owSp/UgJo2vfTTtwfmUIvzYbD8X7PmXK8vcQNj+e93u9EnaH/p30Hylibrcb+/btw5YtW7Bx40bTv9uh4ODgW0qXlZWFtLQ0DBgwAAEB2iIwICAAAwYMwO+//46jRzXY0O+++w4hISG47z4t3onFYsGTTz6J06dPIzExUUoLAM8884xUJl1/+61nqPPbpaUZu1H+uAZJD4DDTJMjqPiBzx/3qfSxfx2+kKchc0BFdWHX81MNE0S5r+Wgi7+3qCzxIlQlMV+TTUNRy1IRe5/QFktkEqBX9Cr/mMLjPNE9UakkOHJxgdNovHEHWlFdcJ85IyEeWu/fZxj4CAZflJl++1y4zOUwWww0HrSLP/cUCNhp1fwn1kUs42Xkxn2tyVvkltKT35miuhA+QvOToefUxkSXzpXnv48+w9q16sIUHuPq7j0XeHvp47UQZUyPlnYW6b++bTKHspO6ZxozJf3iqmDcuLedJN/sc8zkM6f/DPg+dUyakK710MAoaHFTdLgQPWN6Se1PQXjFuEUA4O6ioSmKZYqKOZH+fVF7iPURSX1Jg8sm5/gSe2uetkW6r5S31n0ZEnS5KBPR7PzNpspt5heaCQ+hCvq2agr/DfUkuf0aMlPHoMSRyJjTTvrWrihBOPKcA3WUstJ9aTF3s19ei2MmZUeeY+adB4drZl6efKmIejTpyJUas3Q3Oh8BfC1eeSiqC/mLW+IpNQrlN9RF7gfmKHQUvFj/PYl1Cn0mhbcpIYXS83PFzCSv2M9zDBk+rnzMNqRm52/G7xPYae/Hp0O4v6xeWdL3u/y3HDgzzI73Q1pxCHgAyO4215CW6NJdJ3j5PxQkSQiIlGfszfAaZgtnMxLNcYmPorow5dAWw2LvbJrnOJ4nR9tRkq75vxFKoigD8Qp7grV79z5DTGWkWFeUJ39xS6lNAj5kZuJFvzdi49zGofxZib211B49O/SVlAJLtaoIH7kNPjdRJCkt/dHmG8lz3FFDSufee9B0Ecy/65nJCFJGSN9tzv3m/mbEQzSzp6DuYhqn1QbfJtoCfO2RcN42FKvK7PtxWm0S8EnvgCiJ98f1NKChqptrGvpN2KPbOd9WnybgzDA7Mj/XQhk4rQxxktBGxbEUYDEq6b7fH2xjpNE7SSj3Wyofj6iOkf5lpTYJH54O3xZNsedpbZNAbNPnarBA8O6z5/hz+wtjpbQAkDfBji9CWZw48bSZlDdv445I+u+4064rUlsFrWCbfrl9NVRnpO5mfeYmIqb1oyRE+xtDOxCJQaAvPRCDom6R0kYjAFxerYEL6WW/Z/99nK+iulBy4zpfw2UOnYbwkWw90Czdj2+a3KF/L922Ivbuu++idu3aaNmyJe666y506dLF9O//ktLS2OLObjcuBmJjY1FSUoL0dDboHDlyBIWFhYiNNSLY0D3iR78DAgLQsGFDKW3Dhg1htVqltH8V3R/eUvIDIGhVANzhk5DDxEU0UUiZSvzZtRLm2+S02tDxiTF8UCZb+Et3GWPGiJT86XT+m8poPGgXT095Gk5IkmQQB/S8fkDWtwyNL2NWFLIemi7xA9hOn/4eANyVMJrzM9spe+ZIO+n6rb33QX1Jm+ge2K8hFBYVHEbx2oaGHUKRirrJaH0Zc9pJ9QGAJRerSPeorWtuYWh87swcntZsh0y/S3a0U7H0LGyYFsuk3uQknH+Y9UuKcTUtvZPEU4R65orhTbhiM+XL00TX4osEbGn1M8qs3ia1zYiq2iZG2XuYKZllHTuh9l+pofOFPb4VPlHMBLio4DCPmTb1ZtBRqt/RpzV5Leu2c58tp5X5uhx/nAUIj+vSHwU/teBl69/Xg0OflOQX34eiurgJk9OqnYZYdmlxD/dEFhvez8ZpLOhtrKs/ACB8w6NQVBf3YRvRqAMsN80ixLx609AGKZVQvOsArnU6KsldNI+lb988C+GPbZPylHfmov6kJO4Xara4JCL0sfqTkqR3LLaDnojXyoObpPthaf7GfMVu7reQ/7bD8LzNhATsb78AH9dPwpVOxxD0SjIPwivSdWc7SWEW+77TaoO6tLmkIIk+KU6rDVV9y0NRXfhjvhGeW6+sZw1mmwojGnVApcVMsXixRrbET+RBf51HjoKiutDonSSkTmQ+TmVXpZluBpi1Jz1/sKEDJ8delviLZevHi1bbfVBzS3Xo6WA7zfe4+pYaPD/FrereSBvzDoyaKpVDv3MnaoAVAGBNqWy64aGvW3Z/NnfEvBJveEb5ghePxf72cmgEvtFwdz6cVhuCHtROFX2Sd0rtvWLzL1Lb0sJ9lRBXTawTbb6RPCKiacZsrS2cVhtC1g43PSXUw7s/f8R8viHSm7SZtQUpgABQpQfrZxHJg+FTcNSQViQCj9Cje+rTn+twynQDwCeqJaYc2oL6nyah+rxkhD3NzEFtOzSlOHtQNZ7n5WPsPWdOicGqpiuk9yUq1rndv+b3PzwVxp+LdS/ec0DKJ/Zz/fjr0ybC9KSHQl3Q3G7WRmbfXO2kal7TbGglxyokFEq6R8HuxfLE+lHMTD1vqk/FJVtR+51cFB0ulJ5RgG8+xnfTYq+Jp/WdRrP6rlr+rVSuorqw4mALadPkf4188DfA1///ruTfQLflI/bRRx/hlVdeQdWqVdGnTx80bNgQfn5+pmnHjRv3HwnYokULXLx40dRH7NNPP8ULL7yAxMRE9OjRQ3qWmJiInj17YsaMGRg9ejTS09PRrl07vPTSS/jwww+ltJcvX0bFihXx0EMP8ZOwypUro3nz5ti61eiHFR0djcOHD0NVzf24SqP69etL18XFxTh+/Dj3ETOj3vtOYXlz5lSa8XU7hI/chqPPOjgkvaVJKBLX/WSY9PV0+FUHh78XSb9Q0g8Y+gGqdepDqNd3v4GPnp+eRN8zT4Nf12EjUWb1NkPe0srQy+4TGYG2X+9GehttvyHzm7YIe3T7LdWzxN6a+80pKkMi7P9QghRf6VZlEe+Z2fOLzwmx6cPcrbD5+xv4AOzkiwJn38qCUUwn+jQALDTAwAbaZNU4tTxmNEjmefMm2FHFdgqXt9Ty2Hf05Zi9W6JTI+3Y9s40DMzphnMdTpnKvvRwKir4shOiERm5GFjpnNcdU0/tX9Q1Evn3luXBmHnfKFMWQ/ZkY34TDexCL2/ej61wsON86b6iuhC0fDRyezOod0Lu0vOYnJeEZmUrmMpEVHNLdR5kluh4ggM73piK8PnxCBICSNMiudp8dk//DpccTkEl33Kcf86HdgS/nIwrShDCqp7A4VjZTE6U9eizDnQfmgRXG8/fLVHOB3Z+mmqpVROJu9aa9nN9W4qk94t4KXs3PgppadpGpZHZuEVli7wsTUL5brhIhT9HYE+sBrPvSQaz71mka3FR8E9Mw9khdlRbcBO5r0EkUGyMPafvEwDQbV9vlHxQG2V+Ty+1DQp+asHNer31L0V1ocXnCdjz9FSPdXtg/3EsacZO1zKmRsNy2RdZD2snqxdXBaNS95sbTL4WoNiNVtt9sKttiVQOtU1c63u46Whp/aC0NqX87cbFcyWMf9fdIqX4Wp7awOy+J7kOLWqJwIG7TfN4ks0bzxv3tkOZ1dukevYIa4/iS5dMeXrjL1LmvEjJb+/I8w7Jj/ZW+Ma16gb3yVP8ntNqQ+VNtXgsNn2eJnPi0fgN2Q+Y6rT6chkJkANg7gQZbzRByPMpcO45z0PweJOr/TNjsWUy63uWiCY4GVUD1efJACzX1wRyi5TyG+riSqdj/NnE3FS8FqRZNmR/bOdB3G/lXVKdxPstUgZzFFVvfG513PLU5+/ecwG/t6gMAFh8cDuqh+f8V/tEkY9Y4IcTpFPk/wsqvnoVh+74iBlp1qxZCAgIQEZGBubNm4d3330X48aNM/37v6TLN4+0/QXTBqJyNzsHpfkzaem3WVpKf9nEIfX/gmiQWN68Jv9Nx9q0IwOALzIK3nAgY+7N4IS+FgMvgn032xGkweHcI7EIWslMbYrXagtVMY+ohBGikshXXBRlTI3m5mA5/WdIqFhOK4NpfitHU45o8iJqnKqZ7GV+yWKqiIiAisrMXERzAABY9etCSQkDmImHmMbb4CmClzitDInQd9MOj7upZrttIn/6Ldrz0+kRwE7cFNXF29YMPvj4E+xU6cB9X/F7+eM081C/4MaG8kT5FNVlcCwnmHu6JyphANvJrNErA70GGn2lxLJEv0SzXXeiml+z+DwUtFMkQqe7d8+DPP97Uwd73KUn08Amc+Ol55Q+f6Qbwa8ko6irhuSmqMxUZHDlU4b0IoknwKL/UPjYVCQUMjlFJazbI1qcGlEJo3YXy3g9x8WVMPHbol3zsmcZ2uCzWdp3RkoYwGI8UbBaAJISBrBg4wBQ3pmLP3YycyX9zi+1Rb3PmBKmbwf9Nw8AdbcV83zuk6e8KmGEJCjyuDggBlW+Yzv5ZI7YrTxTVsLS/PlJvqdvTE9OKwP48aQ4EbkPZvH6iLxpkWX2nYpyBP0yWnpGcbyI1n/NduG3fqihB4pKmJ63fvHnd3c+V8Loub4N6Lph/z1wWm0I3zjUdBEp9jeKy2VWt2NPOjC6qraZGJ6QipAXUhC0fDTnezK9rlZGMQskvqttiWm5TquNx+2ia7P6ivnKb5BjXx59Vu4zTqsN28ZPMygmfmvTYQkNwvCDh5A1Kdajkttoa0UJoZDaxex7Dxy427ReABh4jcCX/KTN6kqkV8KcVhtWZsqnxPSfYk1eHMDGs3v7P+pxwU+WE5RfVMLIJ9esr4vfhPvkKcM7+Snkd9N8+UUXJSVMrKvTasOnoRFQVBdHVwYA95kz3K1CaVGl1DnTadX85Sy1asK99yCqz0vW/LxiWwHQLDMA4JcwRZL3tSA5IH3WYM1sW3xX1EbiM6fVhh49HoKeAvrtldqDrGLOrAiDpVpVRLnc8K3Axvrc71vj6n1MXhHJWV/Xs0PsXB66J57g3x/e0pD3v5ZKfP6ev3843ZYiVlBQgL59+6K2sBD4/0EVKlQAwGDm9XT1pokBpfkzaem3WVpKL6b9s3TkyBHpLzMz05DGTKHRD8x813KAtmBvOCEJ4cPTbw6M2v3iTm2k/Bk3jLty9Lzqtyncp4lQyaacCeRyiXyyvm0jBUQWnz2S1xkAs9XeE8nM8IJ+HYXEjUsBaIvnulOS8E4w8xm60lcbTOk/KQYA82lwWm0S/LTTakPivg0GBLVb3VkXFy4ilK2iulD4srkZCQ24ogzi5KSfAEWzhRWXtR0k8WRsZngwT++pDhRDy184OXWXK+Fpi3LyOA/yw7rUPwZNZyUYFkb6vqWoLEacflHR9Ot4KKoLE+qYo6cRHekiwwD73DwlFyccs4meSFFdeCHuVwDA5lY/8/v1JicZ+gT9ptNV8pXSp8vsPA8AuF+EmFc/GYZ+P9ZjOe+HMeCGdm+ytsiOuiqli+vUj6PVERANkQgxDwC5P7TCe8E2/lxs6xNj2SQd8EESItMH4rPQZgZZiQ+dPOh5AECLzxP47/AxzNxu5cFNGH9CBroxUzrE9tH3ZUJq9aS4iL/p9FTscyHP7ef3bP6yaeSXAVu578yYw7I5kVm/IRNKM4AfM+rec7DhG1BUF+4e/BgKf44w7ZdU/9y+M9Foa0X+nE7RiA/997YBoW8nSn/0FxkIQPwT+TutNty4WxtHgh7chVEF7Q1y6N+bp3dcd0qSqazhY1N5/savJ3NYbuJFptiieaBZPRXVxX0jRRJBN858Eiil9xVwImzvJ3jsh4rqgjsrFw9WPoPQ51IQ9Qb7Lv3q1+PpVl8ug/yYS/JmyT4NrEYkcQ7Q9wFFdUEp3IGhBwt4GoKr96ZomrUJ8b/UP0a6V/0btjlFprXkm6eXo/0zY1HS3oboHQOkMYErWPsycPhVh9SHJuamGmQwk4l+6/uLJ5Rd8XtxWm3Y+bK2Mdws3Q/5bzsM7XJFCULWt21w4UHNB/3c4Fgp2Lv75Cnk/cgUr/CEm4iRKWwjzCeqpSR386kJiOvUj9+LSB5skFV8B5ZaNeHel8HlKu7IdqDyfmwlBZEXKXT9MM7zgUrMN7vsnBpI3LcBaTYLiluF4syjdgQ9tBMff/EVMr+KwbVOR+FTpqzUjk6rDb0yeqDaAraeievS3/AuSutHd+ifSbeliNWtWxdFRUY0pb+bCFGxsLDQ8IzuEYjHn0lL6c3SUnox7V9FYvwI/YJZJP2ERIM3paP4WP6nNfORNd/P5WkU1YXwMhUl52FvCxin1cbjjLX6JEEqP7vrXIwqaC+dBhCdcJwFAGy5ygZZS3gIcu+bxZ83fj3ZUJfyv7BFQKxLHqQurdKUFE8LJrFtSBHhci5sI6U3U3bOrwzBItcKFLzhQOzOG1h7xYLv4ieZphchhc1IP0muXTAbrbaznZ1XZj7mccA1W8j9UJDkdbLMeHSalJ5MBSzr2Cnj5i9m4MAobZK01KxhWHBYQoPgtNqwP1L+rhXVhcC32MTRKyASZkSy1PlSVpgoCKleSaX/owraGybzpc1rG/qE+A203TYIR59h/Tuu2wCDIulNGQbYhOu02tC952DuRwgwU0/awdXL6bTagGI3W4TOTjb9HhM3/AynlZk8EhAN0fLmNaU2ID8afd0BoPZ01tY+fn5Ij1wklRH9WryUFmAmLcSHwBEU1cVPQvT9Nqm15oh/doh2Epo/jrVpzodyEHCKY2VGZu3raTFL5R+znzdVECblJUvvMC/6ipSv2UxtI4HiWlVcshXqizIirJgHAHwrVICiumBZZ5XCdVAap9UGy7rtkvmRvk4fnmJoqPkxl7D/+mVD3SKmaLLpn2VNNvok62XcGf29adkieAfxpVOzzCkxcOy8jvyYS4Z8dDIRvWMAR2cT60xIieJ9v/psBz/vPbsU20hRXbCs3y618an2LM5bbo+vpbKnHNpiKGt5ynLJT+1S/xgJSKrcr6mwVKvK09f5SlPe9YoiyeMXFIjWHybwxTwApE1gY2BJlUo8j2gup6jMtNfv7nzTOcRsjLLU1MBBYl39Mb+J7Gesz2/WD1ulPoTjj8ubeU6rDVXTZSCZjruuSvlEXmJ7XnnkDHy2uDjCpNl8oTcffy0oGtedmtLsaQ7t0aSjdC2OAxRP0blHA4nq+PgYiZ8ox/Z326LR20mGNi3vzEV217kcaRNggFTpbXwleRoP2gVFdeFyP7mvlqTtltqn4YQk5D6knT7RBq3TauPWPKKMZI7ptNow/dBm+G7agbND7Lw8kZxWGyx16yDkYeMarOISDbEYKbuQ+j47tX0zKIrHhSu5cZ3zpDVQ0YtaXNPEdT9JPCm2X+Hz3gNp/1dRyd/09w+n21LEBg4ciDVr1ng8Mfq7KCqKddzkZGMA15SUFPj4+CAyki0e69evj4CAAKSkGJ1I6V67dtpgFRUVhcLCQhQUyKcsBQUFUFVVSvtX0d2vPQZLdebE3WsvM1tyWm3c9AxgEe+dVuY3ox/8aLBp9DZbEIvAH6Ki0mzLEDitNh700NIsTOKh56eoLsR1fgAAAwkQy2w5OQH5MZfg90e6xwG+fTnWzQhVzmxhp69Lik0epOiExNOuHi/r6TH8vmUdM0O89EAMRzAEIE1KRE6rDcmtl+CBBrFoOCEJe8/Xx0chLfFiYxk9kkh9yQG/oEBJbgI3EHm2+jSB//64HpOhOEb2d7p/3wn4NQiAorr4YkbcNR7cfbjEU1+G08rMs4iKr16V0unb3H3qtPRMUV04246ZCPXep5nriXWz73zAo/JIgCt6ucz6Ej07OcaO/JhLpv1BXNQ6rTbcFT+a89je7kd+QubenwlnQBspH6VrnFre0AaK6uLmhiU79nKzLKfVhvCx8q6xXmZ9vy6xt+bmsW3f1QAOSm5cl9IfGm+uKCiqC/PO1zEs4OhvVT4DTrk4IIbzrz7PqAQS2qnTauPgCGIaUt7cJcWwhIeg975T/KT0XKgPT9toPGvTsqHnpXZ8rdZB0/cugttYatfmqHueFqTi77jW90j1Le7UBmV8ipH9SazHftPobW1xSXDviuqC9WPjYk+sf/Flhpia2ERDxOUL7Zun37RQFvtik21luCwv18zk5TUrWwGjCtojZO1wLqe48KWg2kTZA40ARYpqPGlXVBfUFzSzPKfVhoPtbvDfEV9qJ5xOqw1hT27lSjXRi0eZ1UO9z2+O/z0zET5ym6F/EVKiSIQwWX9LETZPMSILmo3ZZPFA9HSze3haPm8EtIUae4GDRF1oYJF4KqoLh0fICpMZkQm302pDUe4h1Ps8CZV/SEFc07skWd0HszhSqsjvKTUKNdNPo+LG2oi7Z5DXeYjmw8TdWtDqqnFZyPxKWyBfUYJMxy2RLM3CUL/vfq5cZn+snfKu2LJMyrOpVTnTvq+Xk2Jc6uvniRTVhaPPOLBuLlOar8VFcZ768bH4wgUMP3iIX4vPewewtdba3q348wpLt+Lj0yGmbVn+l1SP3z/l1/dLsd8QVfh5q+Fe4SsOqbz9Y7VNRhEEyLdbAd9goDKpvOOPOxB0E9yMTqjM+oP72HFp3tKnUVQXwtL8Efr9WGmtJuZRVBfeCWbhB1YtW2D6XhXVhfBRLKRBwKfm8WHv0D+XbksRGz9+POrXr4/+/fsjNzf3r5bplik0NBTt2rXD4sWLJeAMVVWxePFidO3aFfXqaR/iQw89hOzsbPz666/8ntvtxpQpU1CtWjXExcVJaQFg8uTJUpl0PXjw4L+8PpV/SoP7DFPAnqx+SFuEjNcWHmTOMzuc+VmRT43+4+46TINT1u/cEfIVpS3OzJV4EGXcuMSvE9cv4fevxWnQu9aPkgwDlTjgEWw4md+IshR3bIOwBWzh0v7pMaUu4IiClBGmzxVVOx0U74kLCwBYN/dradAnHr9cqsTT/BTyO/99apTdUJb1oySs2LJMai9SgMWy63+axBcGVGaDAQckfmOrFaKkApuICSHNvfcgT5O45keeVjRNEsnya3XTdjObXIhEZedIF+b/QYAwF1cFS210Y0kdKR+1CQDk3DOHl8kXuVWqGCZ6SqOoLtyoxE4HaUFK8l7pG23IQ4iGpgunwh34rTCdn5IQ0YlK0HKmxNVOqmaaX7ynhxEW+7J+4szrUwF77QuZEtui2JSv02pD4LgkBC9lmwP9su6BorI4RE6rDd83Zaf0BLfstNow4WRTSa5Ki7ei9rRkbn5s9j2Iu8b6yf1E+yK+IHZnZGN585p8gyJwnBF4pcEDe1FzS3Wp/7RJe5DzU1QXcj6yc6AEp9WGxJ1r+ALDrK30cpEfEaXz3bADX57ojKyHjUitcRFdTBdoxFO8Jyoy9H/oQW0jTf990O44LZRFIgRDs7rkx1xC6JAdpv0pWAew4qnPmfluiZDeAIC1DXj+BhO1Z2b+JwA4gIaiutArowdvs3bjmCKfUKjBnR8RzCEv9Wd+tz3b94F/YprXMYPorvjR2HZYM7k990gsii+z00K/ANavuwdG8+ebvmJjsAgLTu1DPk7UDqaKf16+6X33+fNolu4njS9ijL/uB3oCYO8zcc2PuHTXCX4iJ8pB5LTa4N6fKb07+p9z/wyetrwzV8qrqC6OHkrp3ftllwO9z5KeLg5g5oq+FSvyfucX2FBCgxS/g7iDcQb5T//G/J9ERNR6kzWLCv/ENJ6+qGuklNcSFoy5TQINchH6rdNq48iXVK7o26Qns/H/5K/hcFptuHpftDT/mCk49J+ek3tEwAfGb8e55zwu94tBwxevSM+KjhzlMbwAIPNzNhfX+SpJKrfjrqs4/JoDJ5Y3gZ489Um6lxl1DVkPTZfWamJ9xLUN3RcRZQGg+bQE/E/SnROxv4RuSxFr0aIF8vLykJiYiNDQUNSoUQPBwcGGv5CQkNsSasGCBZgwYQImTJiAEydO4Ny5c/x6wYIFUtrPP/8c165dQ8eOHTF58mRMnjwZHTt2RHFxMT799FMp7SuvvILAwEA8/PDDGDduHGbOnIm7774baWlp+OSTT1C5cmWetmfPnujVqxcmTZrEgzmPHDkSkyZNwiOPPIIOHTrcVt1KIzOlpuLG2vyeSE6rDSEvmENei6iDlG/g/qNSYOHJeUk48pxDMiG7fx/zO/Hx8+NKAVHmPDZw+69ku/Wic65+oUQ23zeqlsW8/M3YGf29YdfLd9MONFhXxBDfFmtH/VRvT4oZ+cCdGcb8aciRF5BPZwhgQd82+nLoed+KF6U0IWnMxK/u7yoU1QXHc1psFDPZ9G3RfCobXEOfTZF2/fwCmd8EKcvhGx6FOyObA22IPDs8qZ3wOa02/DF/No4IYQ3IvLTm18n4+HSIYcAXqbhjGzRLl9FNKV21nbIZVOXXy0vPCWCD6NkXFkl10tef4pyJPn9ie1OgZlqQcqVrKoPfF81KzHYPAWZO5QxogzI+Fux6QdsVBbSJjk66TjjOSqd9ZrTq14XGmzrAGwqEnXETORAAN0XJWiCbv5KsOffPQJn19XHprhNwWm0oKSqS3nH4KG1xRDvjYj1pg0Fsa/EZ7RoDwPgcLXiy02rju6xiHjMZfQR0zlPtz0htXqfPAWlBFPwSMynOe1czY4wczxb7VxQZiEekjDksTh2dppVZr6HHHmzHAjGffzhWKtt95gxXNPX1OL+S7cb7BVihqC4eDJnSdRo9GvObNOTp6VsS6w0AXXdf4otdszby8fc3/a7EtHrwDnpW+IpDem8i+Aql86i0djsslUGmzcvDVvFQChRXThx/w9YPw43OR3g7EuIg+TX6REagfl/NV6/iT2zsLco9hEPvGKG+cyeye+pSzb+w/LJUHOjA5uLQ78ai6rfaPHS2fSPWz29ch00AmCUZlx42nj4DwPFlTaGoDDVXUV3S9yT267NDmDxk0iiaU7dOfQjZQvyxkq6FHsfEgteN89dL2bt5Wn1faDk5weP7B4DiXZqv4pkVYciY3Q6/FTK5zUx8xTKyJseicjx73yszt3B5ViT/iqpxWVIe/m10UQ1z5YrWzAXhywDjqYrTapPiwInBvxXVheOdNeAURXVxUK2EwA4SD6fVBkuzMNNxf/qhzVBUl2m/RGwrbm69YcZMzs+sLcW5gp6X8dHesxjaR1FdeK5GDir8vBXuLPlg4MbdkdxKAQBKyrtN3+0vX3RBgw+2SieOisrArzzNcaJ8nvoFjd204UxpKSQNAPi2boZau1jdLgzybMp8h/65dFvw9Y0bN4aPz60hmdzOiVnnzp2xYcMG02edOnXC+vXrpXvJycl44403sHXrVvj4+MDhcOD9999H27ZGk6nCwkK88sorWLlyJS5evIjmzZvj5ZdfxqBBgwxpr169igkTJuDbb7/FkSNHEBAQgOHDh+OVV15BmTLmMPO3QwQFeiYjGAOaMJkz5kYifLi8qDIjn8gIj3EozBZu9p0PILn1EgO/k6NZ/Bl93rz37Mxh+ya8asasKB6ngygocSQ3gSG+l/rHcMf+UyPtqPk14338CQcHnDCrk6cFT6tPE/jindfd3x+rcrciv+givj/XBn+0rOiRBwDkfGeTAkOLcpmRqDiK/Gw7wFHmzNIX/NQCDfvv8fjcW3liOZ7K95a/xecJKHu+BLWneYbtFe/5/BEA39FlkbhxKS8r5MexfFe5x96zeKZ6ngHG1yBzv6FAyi7E7rzBg/laQoMkvvp6/Zn2Ob6sKQdl8FYnx87rksmWN55mMimqC/c+8ChWL/kGnUeNgv+KNKn99fwGHziM2S/2w4YZM7H+ii/eD2nltRwigvCn+zkf2FHmgg8avpcEX1tzFLv2GXiQDKdG2bFt/DRjvdY2gNLsNzitNmRNikX2g3KA55Oj7Uh/2yQfWFiLGgfdqPCztoDruOsqNrUqd8v9D4AEgZ01ORahz8im4JawYB5vT2xzj30juiWQuluCpubQ5bGtMGL+MtPQBmYbLwA7NbN+kuT129LLcHFADD9pF9P7tm6G4p374VuuHDMHFmC6c39ohYy7jKEPbqUvAsDjmRn4KkxDd8ucF4mce2cj7p5BcO89KKU/O9SOavOTDTw89e9zxVekcBXXekYZAq6LPEprH/UlBxp8sZ3H4DKrZ+HPEQjot5ePJ/rn1JZ68guwoqhQNf0meNvMb4uwodu9yu4X3BhH765vOsdlfN0OIQuLYVm3HRNzU7HobDRq+F3i8wmgzVskt6VuHVRa4ubhN57KOoCeFa6atpXZPbOxRFFdhrAV+vrc6nxQ3MGGNYvmeUxzIt6O2tNYnwleOgY598/w2E+9fZ+K6oL9hbE8HIXYlzzV01NdFFWGwj+e4OAosrdCtZOqcb90QAvVU/R7Ix4sGwCOPu2QgEWcVhsyv4rBmLv+wMs1MyVZM6fEoOIhi7TJo6guNJuRgP1jpnp8ryJvM9K3jaV2bfhUroiinDyUNAnE2gOf/lfDtdOatfF77/0t8PV5r7/+X90e/yndliJ2h/5aok7dGX3gX7UmP00APC/OAeBajygeWBdgQS4J7dBMCRP5iGnoeeuPE1D+RDFSPpqO7kExKLl2rdSFvKd7ZuWLcaMU1YXuQTFYlbv1lvnr5Rcp88sY5PTTJpMzj9qR+v40jxMIwHaY18y1o+6UJNM0z2btl1Dr9HLo78e8HM9jCImynv4tHDV6ZRgGX326c4/E4o8PvsD9DaINioX+HVIsOUV1YdyJCKR2qIHiCxc81hWQF5REGbPbcad7szbvEfewxwUQkaVmDcnvjPOeGYXw0Wnw8feHpV4dfL3pe9T3q4SoN+KRNmGaoS3eON4SaTYLji9rCh+fEsPupFm7m9U37107Gr9ZevwY8bkYy4pIWuD5WqAc1szxPPHyJOOfpfMrQ3iw2IsDYzm0sygz/T/6tAP1Pk/ChUGxqPxjCs4NjkXKx9NNy4/deQPja+/12n6K6kL3Ru34Sbm+jj3bOlF09JjH7+LiwFhU+ikNfoENUJR7yPTbPbwkQkI+BZh/VXApi1D+u+8QXK/uj7LKNozIyOWm2i3SfTlCq6f2MquzX3BjFB89juLLWmBmvcye5BLTeSoLAJpsGsrj0sV16icFgBfJL7Ahig5pJpVX74vGhhkz0b3PEA5WAABHn3FwUz/fVk2lExkAsNSuLSFrmtHRZxxo8GMOio6wYMTZn8ZqsOOqC4/kdca3jdff0iLdW/35hsNHdmQ+Mg092zqRPyQE1o+Z/JPzkvBMY6PfXGnv7VaUE7M8TebGI/jdHUDTYMP4Rgt4s3yeyjAjM/ktoUFwZ8n+3erS5mj4ehHc+zJM8xd1i8TaBbMx/WwAljavLT0nclqZNcvS5rVx3dkOZZVtBj5m12L8Kk8UuaNYCgOjqC6039UPW1r9LL2X/KKLEsIiAEw82QQbWpXXszSQWJfZ5+phRNWjpa4B/syagOaXCXV2w/HsWCR9Nt1rXmqjvAl2Dt3viTK/jEHYE1vh7twWv383x+MaROQ79dBmJAR2kN7FDwVJqG6pgPMXiv9n4ojdUcT+GrqjiP0XEHXqt7d2w+bY6vy+oroQtiCexwTyNBkVd2wDx5epSGldBucGx6LqwhRYatfG/neDeOBZfT5x4BN5iyQGjAaYKcjhERGGkym9PHRS5YmvtwlOUV3oGdkdRUeOolm6H/ZHFqHr7kvcYd7bDlvElATuOH9mRRhS2yz2OGjf6kKZ0p17JJab34h5G6eWR170FYSl+ePLgK2mgy79p53rWy3T2wKEiHb3vLWnp/dvxm/6oc0Yq5sg9HyJzBafPXo8hJUrv5een4i3w6cYqDVDU44oOLFZXa/1iEKrd10SWEFpSqwoY/c+Q7Bq2QLpWXxmFqaFhbL+5egthQ3Q88qYFYXwUdqubvfej6Bk2x4pfWmLUX37xHUbIPmMHHnegZdH/8gDSpvlNTvtNmuvCw/GovIPxr4pkmWdFe4uKn9udgLhV68uio4eQ96PrTioiUinH7OjxhwW2yc8QQsmLu5ce9oRF9vDG3mS37diRR6DyZsynvuBHf5NzsF6v/fNg+PLmqLKrCrYMFMeH+/afT9qlb+IS3dpCgwtmiiNWBezb0q/iMv8IgY5/WeU2mdKU/ABYO0VC4+7disbApYqVeA+LyNVivy6B0Zj1aFU6VlPR28cuztAshbwrVwZKw9u+tObC+I47OlbvhYXhQGfrOKxMqW5pExZybTMrJ1ERRwA8t9yoNE7rD/S5gTPd/OEVVFdmHCyKd6odUCqu8jbss4KjK2AcrPOSf3BTA5vCmLElATsfXKqaRmZ89si5+45/Npb+5p9R+7ObdF/qiIpaCKJwZ9Lm3fFZ7kT7Qh6zfumyOnH7HxDDQAeOqByv1czUl9ywPqR8YTLW1smFm5HXIBs2ZT5RQwPW2KWvzSeeiqzvj5udD5i6Jfi5oBe6T01ys5NfksjS5UqQPlycB87Xnpi/G8FdG484W9SxN74Zytit+UjJtL+/fuxdOlSg+/WHfrz9HT1XI7Ed/LXcMS8zJQwcaLXDyiT85Kw5se53Bys6kK2IHOfOIGoFtno2daJt3K0IMaK6kLGTHPkJN+KzBTDEhqEjruuot5nSTg52s7LTdy3gSthNDDpF+fqiw5+ykW8KZCsfuCn657t+/D8TquN785Ors929chEhPjpB1i+c1hRc1Y/u7uWJBfJk/ORDM+tl19fL0pXc22eJDP9J1CIzCgNQVQMTi3S1g+YQi3GIDOTwWm14VrPKCm/p0mk3ufGWEBOq40HoI27eyBOjrYj/y0HglePgKKy4KFOKzu5AIBDi7SToLE3F5z6d0T39P2mxMHAWCzhzB/0VJtqLG0/Ldhs7WnJSB/H4H19KzOUP2oL/SIga3Is/Fem4ena6/hzEdo85MexkixmbUdKGPkOKaoL08I0h/fcwQ2kdidemV/FIO89u8H0dtXyb/lvs/eq70s97ffxe1d7Mad0veN+/U+TuBImwmQ7rTZEvh2Py/fHoCR9L7I/jTW8A0XVUEwBSFDQZgstAJISBkBSwqiNio4eg2WdlSth51eyd0p+CwQRHp6QCt9WTRG0jPUxQl8FAP8VaRxwxaz/6t+X/p6nfi4qYSI12VaGI9gpqgtBryRzJezEWKO/U+YULfZYud9SDTKWd+aiZ205sG9CYAf02HuWp+neZ4jpuCGOTxkzoxC0hClAYU9tleqvH3+IF4H6KKoLllo1uQ+d+M11u+njIqIo6slpteGZIwwZlpSwuOad4LTaODKl02pD6PphKLlx3aBIFuXlcyWMAg2vPLjJ0Jbib9/WGhiT+Dy4mhb0W5RPzO+fmMZBgvRpRSWMiL4X8t0bWOmc9Hz/2Kk8nljlHzXfNQBcCZt8pjGWF7SUxjJ9H3V3UZG47ieDEibK6UnBJV6hC+PR6Iudpv3ar2EDNFzkx9Pr0xS8aUTh7dnWKZVz7OmrPORHxlzmw533ngYulXPvbP675WcJBn5mShgABL2WjPMrNZ9jCoLs7tyWp60xR/YbHlbFqGhkfh7LkaA7Dthu2nf07S62ZVxAW8nnD4CkhBW8riEo6sMEUB7ySRTLLnhDQ7O90fmIJAeVL57Qit9gr71nsG38NANPfbkAWwskHtgI97HjpvLp8yiq638roPMd+kvotk/Etm/fjpEjR2LnTi3woNvNduo2bNiAHj164IcffkDv3uYBFO+QRqJpop9PGVx3tuNws5Hj4/lJAsAAN8yO7Usjs900ut8jrD2KL2nxaM4OsXNIV6LXc1zIvMZMBogPmUCJfD3tPA3cfxSLmjG0L0u1qnCfPQdL9epwnznD85C5Umk7XIrq4r4St1JvkVfB6w40fM+z3bmndjLj+VTWAXwR2lS6R759liahcB9kTtbnH45Fle9SuJ8EkZmtuphPJNH36lZJ32Zmk65ZmtJ4eXpOddCTuCvvtDJ/DTHwtNNqk3yLDi1qicCBuw18jvzSjIMMAMy/7eychqiacQlI1dJ72+kFGMog+UJ13X0Jtfwu8L7pra7ipNt5T1+sb/GLVOdD79gR+FbyLbWpb4umKN6jmZLRiZ2YR8wrmh174zv4wGEsbNoA6tLm2B3znYHP4VcdaPS5i5vgER153iFtsniT392lLUdeLI3EunQPjEbJjes4M8yO6vOS8XFeClqVLYdH8jrjhOOs13Y3W6wBbMcfF/yQ88AMft+s/bz1e6L4zCz0rXjxT42tZnyKukbyAOIk7/JLFfBVWDj/FkRacjgFDzSQ0W9vRWY+br7qwN4nvfvdeqrT8SccPP6fM6ANICwHxHbccrUY7wSzk4n8tx1SOIG/guj0t+ANBxpOMOetqC5EJA/GtDYLcVc5z3OOpVpVJO7b4LEtOo0ejXK/pZr2KzL/m52/GSM8BDL2Njd13HUV85QuCHnRaBrdadcVbGhVns1fB+MMmyPiKbWnd329exTKrjL68ymqy3BaKr4/ukf0eo6Lt6Gn/pH1WSyyB5mbOHtqC4liW8Fy/ip8LlxGUcFhj/UCgPB58Qh6zWjWT5QxNxJLO0/Fy0ExGHqwAIMrMwWfzNA9yXJ9TSBOrwjgJryW5uEGE1CR3srZzvu5KB/xLvw5ApUXV8bRbkUIH7nNhIOWz2zuFal50iPY5/iWpzs93I4ac5P/t07E3v2bTsTe/GefiN2WInbgwAFER7Ndz1GjRuHgwYNYuXIlV8RKSkrQqFEjdOnSBfPnz/9rJf4Hkl4RI6IPWFz4eFtQAzcX883C4N6fiVbbffBxvR1eF+B8cRzYECuSfzWdZIicVhv3VzFb7N7KhBWyaCym9ZqNT0MjPKbh9WgSyoMetk59CL6rq2PHG1NLHeBKW3AB7NQva0JlHlwXYLvrBFtNPMefaI6k1mUNvjXEl8y1jj3lQN0vbvpr3Fxkk60+pSmN9E7F+nbR16vVpwkIWHsWRZX94btJgydrkFIJh2MvInNKDMKe3GpoJ30dMue3ReiMYvhscZUqo1/9ejjbIRDnH74gmX+Z7QYb8gZYsSItUVt4VKjAIa/FPOTr4O7cFpb18oLfWx9TX3RwnxOAxY8zi4nkbVPiz25wiDQvfzOGNeqAi6uCUam7BkihL8vHz48jJ+p9hf6sMkJ1pGdhaf7S6axeNk+k/4ZLawtLWDAPYk1+Jn7166HoyFGUtLfB91oRCu6tgkqHS/jpZ497H8Sl0CrYOFUzB9QvLD2Ve+Q5B3a9MBWhC+ORNdiz76e+H5Y2xoj17Z3ZHdc6sXha3XsO5gGgRaqbXAXH7OcN9z0p//Rb9NfSp9X/JqXNE/9bJfIJzfwqhiN73sqGitNqg1/jRhwy3qz9njnSDpPrb/O6YSE+0y/qb/Vb+7PKNJmM6fuBaK4IyP5zp4fbkfbeNMP7ADTfO0V1cWXhVuVfULAFQxq29/juzjxqR/VvvIOsiPcAFg8tc0QoV9iyPovlqLxUhtm8qOcn+qACMoiOnvTyexpX9SSa4pc25opgYd7Sivc9vQMzn2yR9OPoPQOHwXezS+KpqC402TTUYKLtTTZShL29S70ZLWAEqikquYH1WPZfrXjcUcT+Wrot08Rx48ahuLgYaWlp+PTTT3lgZSIfHx/Y7XakpZkjMd0hz3T/vhOGj52UsEWHNVMAcYChj53uJa5dDEV1SXFlzNLT//zFLVF0qABOqw2HFrX0qtgQaIDTasMPF1i8oS7DR8LX1hxtJiZAUV1edw1Dn0nhqEhOqw2ZX8ag0y5m3pd7Exq82UxmQpG47ider3p992PTa5Mkvvrf9EdkCQs2beOTv4bDnZUrKWEAsOr3dob2JKCMNhUOGdpEUV2osYdB3rtemYqMuSzG18rVP0BRXfxUk5QwfbuKdPq3cK6Enfw1HIrKYL7NJh+i+p8modi1D0UVZUj62Y1Y3JewJ9niK3zDo8h938751E6qJqUPG7odqxfPYxdrG/D7ZvIWHTmKLZ/P4ErY5ftZDKJmMxMM7T9w/1E5b6HKny85nCKfyvhaoKjMJIv8HX7/bg68kb6PiUoYAL5YEOUakZErfSsA4NMmwvCNXFyl9R2/wIZSW1Af19OwRsy3jpQwsWxxshLDRegXP54WH2S+qy9XHyNPVMLE712vhBX81MKQ7pIQO47GArG+PjdjGD50QIU7M4fLSs7+ZFLss8WFrGfLoMHEJFSbn8zboHjPAZT/hZkDNkhhMfvWzZHNQM1kB7QgznTS4Nuiqek4ox8HxOdRLreUhn67O7dFXOcHcK2T1l/1ShjJccx+HsUdjZCpxJPCG5x7hJ1wvXiUpU3cuQbqS7KpEwDYPtAg0ZtsGgqn1WZQwvQyi/IADMU1Y2YUDr8q+7NQyIOwx7WguKUpD6HrhwEA96HUjzt+gQ3htNq42fjl+2Pg46eNP74tmkqyKqoLWNsAoc+m8HsUB03/TZn9JhNLRXWhVepDkqyrLvvzelEe8tvRt5eohAFaLDtFdaHGXM30GYBk9ksAKE6rDRnDtDhgFMvS01gAAEMEiHLiL6YlJezB3K5S3fXKg/jeDra7geKd+zmv7EGaRQrlm3++Fr8n/ideAFClR7ZURuKGnyXZC97UTPdafZIgya8fV/Xf6rnBrO9PHDdTqr9Z37v3gUcBQEKz1PcfM+XHW1++lFJLeu602tBmYoKB70YGcok1i+bx+GKdR45ia6frV9F40C64u8inY8TjSt9o/r0BQMiisfgopKXUTvpNBAAYWOkcFNWFzPkaX72Z+B3699FtKWLr169Hv3790KSJMfgdUaNGjaQgy3fo1mhp89oeBxgRchiQlbESR2t+j/4s1aoKypzVVIkDgEYDNJ+IwIG70b0Rm/wapFSS8rRI95XyTX5nEJxWG8oq27Ay8TvU+TLJdBDVD9REiupC2PzLHFUp+A0W82j/aHMzmzbfPivxNWsHgDnfZn4RI8Fki0SxTPSyEGyw2eLuhbT+AABLRBNefs/2faD8wnwjM25c4vHNghePNZ14XNfkkwqxHjV6ZfB7te7LgNNqw9oFsw1yUl1D/hjO8+oXs2LMEgDI6PQNBvbYzOX5tvF6HuCYeNACDN0O83w97fcZys+YGynVa9NX7DRGH8za3bmtZO6nr3clX90uWjHbSaQgu/qJVlFdXIG8lQXcdSfrw/p38PLvWpgKqn/JDu2k864E5vdEypRf/Xr8pDgkjUG5d3hqDE9/vbu8CSWWl/8Wm6hPP2ZH8dWrmJzn2eSKYvbwOtxUiIlfUe4hfq1fAOk3H8jPVPx2KfA7AOT92EoKr+C02hC0YhQ+CV/MY3wBbCxonFqeXxOK6vdNrYbg16LsiupCVpe50reip8OxFw2yTz2k9dF7BwyTnh99xiGlXbn6B94Gww8e4j4selnOP8zqffg1Bxamx5imsazfDndGNlqk+xqemykwvpt2cEWLqOB1tnANfoUt6gnYZ1fbEp7f+hH7RppN13x16n6RhMcz2bdPiIpiew09WGBoQ+KX8yHz39qR0Bq5vWZxoCKn1QbfmzExSe7YF7UYiIAWGF4/RofcDO+RMT1aKpP3w0NMnpaT2MK2Us55CV1TNLcFgL3Xr/AxRVFdiN15A2c/a4Rd169Kbar/TikwMSl8Pdv3kcySAeCz0GZeFUv9e8v9vjW/L5bZe98p+DVuxBU9d0a2lI5+x0V04dcUWoZ4UDBnSquoLh7j0Wm18aDC0mbPwFiEbxyKM+1PS/KK39Hpx+ymCpWnudxptWFhU20zrft9g03fI/0+O9RuuK+oLjR8V/M9nhA/j6fx1N6izOSnrkehFdPQ79VLvpHS+LSTN4j0ZerL17+jk6Pt2Jcw1VAOmd8C7H07rTa8F6yNpWFPM5kpoPmLjWNx954LsKzbbthQBIDyv6Ty7w0AD9OhqC7clTDauBkhyO+02gzhFnxtzfnzufuNMeD+W8mn5O/5+6fTbSli586dQ/369b2muX79OopM4I/vkGc6M4SZe9Ju1KLD2kmKfjFDu/T39n+UDfRJO3laosR9LBab02rj9uiXHmAnGNGvxWPymcY4/oQccBQAN5uixRKVL8JC04BrplwRPaVqoCA0cRNRUE6k7sb5h9iipm3adZ7/2urGAIClh1ORv7glX+QAQI9Qc5hjohudjyDsqa241kMrX5TL9n6CoV2fOdLOMFHoFyhOqw3uvQc5z6LcQ5z3k4GaCcoDHbWB9NhTmqwvB8UY2shsIiXq2dbpcTDv11ybtJ1Wm+QIHPyybJrTZW8fTKjDfKjODmETO/nkEO8QIb7a81nsNIAgtIs7aDLRAkQk4hP1Rjy/JpNCelZ5kxE8hZ7rFwF6xZ3SnHCcld6nvu85rTbuhL1u7teIa97JIGtuX22XVl82wCbYuslVOO8V6at4muyoqwifH8/j4ymqi5vVWZqE4tID8kKfduHpRFR0/ta/T5+r1/lvRXVBafabxEtsi+WFaTytvs3cmTm8X4qU9bAG6NF40C5c6xHFT0kV1YXwUWkYFxyJmXM+l/LlRV8xKHUAUJK+l5dJ37J+weTeexCh64cZ+jigBSIWSUQm9Nkif387X5oKRXWhzPr6Uh9wWm14sPIZJP6+yNBfMr+K4fGNGkxMknzsSEYxz57IYvhWrCjxvvvhxwzp7t5zgStaRGZ+p2aKcsSUBOwfO1XiZ3YCRkSALmYL0OCXmdLnk6yBQZQ4WkNRXTyURcbXbENi7Js/SzzK/J6OUyPZWBCRPNjwTTV/TzW8t7v3MJ7Nv0rgcZUIIVUvG+V7rrEdN+6OxNmhrKzxtfdi49SZeLFxrCEPkdNq4xtTRLQRoaguw2LdEzmtDNKd0pXZxUCfug0ZwTdJgn9/DMub10RRXj7q990Pp5WFg9CPDU6rDYl71xkW/vRs5aof+P2g30bBabVxJFFFdZmCjlRalMJjzQFAy60PSwAtgDZ20EJdUV3wq1+PpyEl3owU1YVVvy40VZ7oHRUJ+2EPHVA530WHk3kasX+aKUcZNy7BabWhZ0wvA38AGH5Q20QSiYK3A8yvEgDeXqQpZvr+ZzZPOq02+G+oh5L2TKYa+6+a1lXk9+WPxg1G3woVDH3p9xaVEZbmzzcUKb/eokQkp9WG8r+kGu7NPGfFkec8g3WIIRSqWSp4THeH/pl0W4pY/fr1sX+/MfiiSLt27ULjxo1vh/2/lqovYB9ww3fZAP7wXWyHzmwgJVNCUsAOL2HmVb9cYiY/lTfVgtNqQ96PLMAsDaAVlzAEr+rzkrEyoho/xRJJvxCefKaxYQfO0/WUM4EAgKxJsWhRsRAAcKVPNA+iSnyrLdDMLKt8zxY16W18tR2jqidw9b5o3N8gGo0G7JZk1AMNeNqlE2OsNU96hJdNccPEfPsji9A9KAaFP0fAabVxRDhvROiH3YaM4OiBAPBxPc1fq+4XSR4XC5Q+7q77uWwiFR09ZkhL6Xa1LUH5DXX5dbkzxYaFKNG6iGX8euuH06SJST+pKqoLn3frLsmxZtE8AEDhy+ZQvuKiQSybfiuqCxc6njRMqorqQuhCprzRDr2ZXE6rjSvmIrWczJT7BQVbOL99CcyHcNyJCLjPnoNfvbpSHuJ5+FWHJCchAwLM/CwocaQkP8D8rDKGTpP4UbmJ637CqQdZvzz0DlNMMr/QFO9GWysiY047TfbPEnD0aW1iLjpcaNqmlF8kf8GPNOSP4QblVFFdCEvTzLbEemfMiEKzdD/4r9qGoFfZIi/8G+0E9fGQztCTp+8LYObEYuw8MX3x2oZcwRd5xGdmwT8xTeqv4n/xvYvjS6yrP0c4M5NRryySX1TkDmNcMTMlXlFdHLSIeOh9FJ1WGzfFFHlcGBQr9ZWXstmYRSc7RCKohqKyYLp0aqd/55RXvP981l7T92FpHo4fCpLgk8SUssOvsb5FgAJ6WHFFdeGS1Qd1k6tgr30hACBo2WguV1HBYUMbvVgjG7nft8a+xzU/3XseGs7bUzyFFr+tMr+nY+sH07hpPT3zLVcO+Ytb4vRjdrR7M96rUnXjXm2jTAwlof9WxPopqgtjqxXydHufZAqw39p0vklScsXC+eZ8YMeFB2MlJNrCnyOkjQ+xXp6o2ZtGM3Ya3yy1ahoUPOJlvX8ffgtfaajHjXvbodi1D4rqQvNpCSg6cpTn+Sos3KtMQcoI0++M6lJrZjKyJjFkVuojiupCVd/ypm2rV46OPuvAk4HMBJMAOfQ0t0mghAjK5/3vtM0MAreJLWeRZKXyrig6i4GbVNLehmudjmL14nlQVBfe/ma26bwGMJN/p9WGRuPlTZOjTzsM8QNz32enzZsXaPNS1iRWhxOOs7jcj43t5wbHmrY73TszjM0FS5rV4ebVpEiLaUUe/1OoiSU+f8/fP5xuSxFzOp1YuXIlUlNTTZ+vXr0aGzduRM+ePf8j4f5ttDRjNxDbil8Tshxg3L0loo94r53tfFGsJEKgq/dtOT74qUubmy5C9KQfxFZGVJPKc1ptmJe/GYrqQsWNsinlbxEMqjb0uRSMrsp22Mov0/pJlMttmDiOPmvcKZrVcAvK/WqEnQXY4KefEDKmR0vtIZJtB9Cw/x7DfUuVKpIsJdeuIaAf2+kPj081neBFeU439eMTOynEgPauRJh6s4UqUeLGpbxd9SZWZuS0sgDEVzod49fJn0zn5dqfH2soj66Dl46ReD2VdYDLRzKIwWTp3uElEQj4MMmwkFBUZj4j5jdbUOuVd/rLGswUmzK/p0tp9UQIhUTh8+Ox+xm2qCVfDLHfjq9981TvZuBh2gEn3rVdDJSleG1D9IzszmMNcf4jGRABbWgAQH2/SoZ357Ta0DOyO5xWG/a3Z2aqgW8xBYdglp1WG/JjLiH8sW28jGrZbtT7PMnj+75xr6a06b/HyWca89+hj+wwTZcZdY1f+zXUTJXCx6Rhf2QRlEItHylkALAqfxtyP7Cj194zUnuZkdNqk8x59Wl9uxVI1/RcDCUg5vX07qlOKbafpPurL5eRnru7tDX9/ifWNcZEe6IwxrBhoS9fz8tMYaRxh/rPrutsR/6jkJYoaa+d7Ew9tFmSlX7n3D8DVb5LkXhTmrS2RhNq8q/VyxMwtxAPNnRwmRtMNMZ6FP+cVhv2j52K+YEbeb1z+8yUZBQVYboOeminxHPN93PhDGgDp9UmBREW60h017bHpGfFV6+i0YDdqDEnGTVnJ5u+/x73PsiUudXb0LNDX49Kl6dyRZ73DhhmyB8+RtusC34lGUmTpnNrE/VFBwL67UXvAOPprfitWcJDJL5ivChFdcFSvTr+mM/MzMn0mp6Z9UF9+5dZrbUrbdJ+dVaLP0hmzeI94hs+PB1Oqw2nRtiReu2GlI7aJfvB6QwxUycD7//RLaX0Yhn1Pkvi6U7E29FtX2/T9xH6rC6MgAkpqgutP0qA+qLDkK5iv+OG/ggwf9RGWyuidybbPBQRD8X6KCoz+Rd9s6hMQi52Wm04XMSsgELnnYDTaoPrFe30OvQ5TXEk1N2qC1M8jlsAULlAjoEHaL60Zu//Dv076bYUsddffx2VK1dG165d8dprr2HfPnasunjxYjz77LO47777ULt2bTz//PN/qbD/dPr+Qg0gZZfh46QPuPlUZlLXddhIaXLUL9TE3+V+ZQrFkeccHM5aVD7MFi4f53keNJ1WG3Lft/NFqRhjRVFd8IlkJ3OnRtilcs49wpQnMpED2EkQDeZnHjX6v1FevRwiZH7xWjaphI813xQAAFcbY7soqgvu8+dxZpgdFwbFInzDo4Z8XIF9yYGKGxmAxJU+0ZzP7mfZznDuRE12GpRHFbTniqS+Pvo2v2egtkAwg9Y1M2kgmGI9f6fVhuRPp/OyAKD6lhr8edg3l6V2IPj90ibIy+fLwadNBE53D5N4O602Hk/mtWOtvPISF456ZY3ueTLf0CsUGUOnSeVE7xgglaP/HmgHnO77r0zDieVN4NutgO8w07Pc71tz+X4K+d3j4pzSFwXW8fjN6vNRmk1fzkD2J7Fw78swncTLrNaUNjrtpjJXRlST8ohO4wAzHRPLXbGVmTmSz4oo+4l4u6FOGUOn8Q0VosqbavFdabM6EriJorpwrWeU6bjiqS1EcloZYh/A4kTpn4k8SSmxprATqt8XzpHqlvkl27UOWjnSIC8pqno5nVYbLBFNcHKM3bAoJopr2ZXnCR+bioypTBm7e/BjeLGxtkMumleS2aWel/6eqJSK34aeujw2Sko7q6EWZ81ptSHzG7bgzP2hlaG/imW6bvr96Re5ha9oYA0dnhwjyUHp2r4bz3iWaKBQeRPkcVwsq17f/VJ769v+6C/M54tMIAHmc0blHXy3upQ+50OdSWx0S85zOim+e87zsrIfKGdoT3EDgH6vSP4Vtg8SYP04CceXNTXkEclSpQr3KTOj5tMS4D5zxpivSahh3j6zIkwqh0zgaDyitPnjHHi8WgEidxSjeG1DJG5cCgA8FptYN/pfc3Yyov3ZxsX0ucw0T+xz5x8y+k/yPvGLHCPWabVJscrC57F+UHtaMvK3BfB87d6Kl2TQ8wAYYqXYr3a+NJWDLon36aSa5Crqpp1UpX7XGsvDmAn5u7lphrzi/5y75xjGO7HfN/BjFkXug1nInBcpgelQ+sNLjP6xYprrznb8WvTz1s8PQw/dJc1bPmXKAtAU6/8JKvmb/v7hdNtxxLZt24aBAwciLy9PY+bjg5KSEjRu3BhLlixBmzZGdKk7ZCQRvn7tEc30hGDoPS1arvWMgv8K48CTP87Bj98V1YXoV+MNMLnOPeehtKgiD/CLW0rAHfqFgNNqw4UHY5E0abphUKFrir8i3tMvdMzow9ytkg8VX0x9Houwp1MM/Oi3j58fnjmwGzUsF/FmkLZzKaYRY4d44qOoLsS+OJY7Gpu1OcW6eTZrP957cRjOhFsQ8CFr52s9orB+9ixjnjJluX+Ap7IN17GtoPw8X2qv/2TnjPqJuOggXr6tm6H5nIPYE8lMG4OWj0b42FSv8umhj8XniurCueIr3LQlY047hD/mOd5K7kQ7gl5Lxm+F6SjjYzHtc3R90n0JtSxacG9FdSF4zWMIe9Q8ppWnNvNUN7FMs3hunpQtuudXv57kU0bp899yYP/YqWj1SQI3TyE6/KoDDd5PMoU1NpVLgI03e59mdeV569bhu/UZU6MRnsDec+xLY1H12xRYataA+9RpAz+/BgEoOlwIRXVhzGE7ZjRI9tov9feuxUVJpohEFL8wY1o0wuNTpfwtJydg9zNTcdfu+1HemWtoD2/lW+rWQeKO1aZyBa0YhfBRaR7lBoDQdcMRMniHxzKv9I3mfiDi86g34pE2wRwG3Ww8jGt9D4dQ90ae3rNeMRLLM8vP2+fmeHgrecS8BW86+ImMJ96e7utl5eNPxYoovnQJxR3bwHfTDqk/EtXcUh3b1zblJ81EOR/aEfyyjEirhyI3K1P/rKS9TQrd4XVs1tGhd+w4MHIajhRdxJBHn4JlHQtaPPtcPe5b9G5uGt6+ZyDcWbml8qRQEJ7S6N+LWZriTm3gu2EHFhRswfC7Hpb86yjtlENb8GRge7Ta7oNdbUvw0AHVYL6qL5fayxNR2BGAobKKgEDe6hP6/ViEPK/Nu1SOHlKf549thcJOlfjcq+ct/taHhLmVepi1rWPndSS1ZorSosPJBuC0Y0864Hp1qnRP/C4j0wciPXIRRhW0R37MJXij/yX4+qC3J/4t8PW5b7/2X90e/yndtiIGAEVFRVixYgWSk5Nx+vRpVK1aFTExMejTpw/KlPlzwWf/zUSd+kxGMAY0ubmT+X1rBD20E4rqwl3xo7Fx2kzTQQwwH1SabCuDL6yabbu4COqwqx/eCF2Bz0KbGfJNzE3FsKnPwPpxkmEhqC/LdDLxtUA5nO5xoLvaKxrHhl7BgQ4LvC4enVYbjic4UGdqEtSXHLB+JA+69zw0HNeql+ELolMj7dj2zjSPE5d4ra+HJ/Lx88Oq/G23tNh1Wm3osfesZMZplkYsv6hbJPzWGsEviI4/7sCO16eWKuuJeDuuV/HBnqfltFmTYiVzCgCSki7KBQAXHoxF5R9kRfR2FEBPbWzWBorK/BrJpBYA2r4Tj9rTjZD/9w4YxhdM5xJDUTUuS+LdYVc/VOye86fesSiX+FtcbAMM+ZAW2Z7yAoBfvbrcHNJT+WeH2LH1Q8aLlB9P/DwFtzaTO3zDowic7gvfDTtKTQ8Aee/Z0fh1tkEz/kRzNCh7Goua1TMEbKbFGvEAtLalzSJPVDupmhSs2adNBFat0AEI+PgAJSW42isa5X5jbe7zRwBKuhZKfabVpwmo/2mSod4kz59ZxBKJaahMb2134952/LTyzy7mAHZ6l/R7Cxx8jL1/a0plqLEXDHXxxI9oeWEaHsqOQ+HXoag2PxmjM3IwMzwYp38Lx+mzFbnJqqK60PGJMdyUylvbEAX9Ngrho5my2vqjBB4MV5TPt1w5FF+9elvjgySDrwUodhvuKyoDlKq19aShf3n6RvXvVYwLefg1h8FcU59PP0/0zXTiSqdjyFrQBqFDzL8pPXmLxzUxNxWvBWkm9N7esxjnzCy9p2+g6PdGWNt8OSLTB6LWfbJ1haVaVbjPnpNidon8iIf4DnoEx2JlTopBVv3cYqjP2gY4s6AhqmZfRZk9efxUkAIwA5A2325lftVf0/9Jecl4rrHxJLa0Nj7/cCz3UxPrn1i4HRYfX379Z8gvuDGeXL2Sr608bch4m1//lxSx4HF/jyKWM/6frYjdlmkikZ+fH/r06YMPPvgAM2fOxMcff4z+/fvfUcJuk+4PbwmfqJbI/KYtt8VvNj1BUsLowy5tsfmFNQ3OvkOkj53+Nrf62VQJO/JLM7wWFI3dz7KdHdsHCbwMQkYyW8QceZ6ZPF3tFc2VMEV1SWmJ3P4+fGF5/uFY7ggt0sViNsET6pSohFG5vht2SJOwqISJzrDh8+INeT0tQs4lyr4rJUVFCJsfz/Pp215RXSj4qQXnZ6aEKaoLjp3XEbV9oKH8tQtmc/8qkS7dNPOq8xVzGj8Rb5f4iZS1oA1qT0tG/XtlfxyA2bTrZb4RfkXj4WuR+JISRnKK/0U+Z4facXEA87EhxDwyG8z7sZWhff0CZeQ3agNabL2xu4/0nJQwgiynP1LCFNWFOhUvynX9biyqDr8s8de3mdh2fvXrsZNH1YW41vcY6k19y69hA+brM8e4cHk1exc326J7BLCi/1ZEIiVMUV1YtDNReibKfS0uCoEDd/NvieLUiWkVlcX3clptyOj0DdZ8PxcApNhOol8E8Tr6SzM0fl3z70pqXRaLmtWDorokJezc4FiuhFFaktF/Qz0es5B4i/8B5the8LqDy1qyYy/sL8hQ6ihhEO8bZmqIlquarjC0W/1PNfNSs7Z9sYZ2Suu02nB6uF1COAtSRkB9Qe5T4jhFih8A7oxP151HjAIA/DHva84/5zsbT0PpHth/nD8XidKosRfQ+A3tRHFuo038OclEppki6ftz74Ao/By6hgfMfaASM8GrNKWKpIQ5rTZJCRN5iXL3bN8HYQuYiVlur1k8XfWMG9JcQ3mLr1418BLlA5iSDjCrAAI/EOXyCwqUlLCjT2u+QU6rDakTp/H+pagudN0tA6mYodOJ/0kJA4C9T8inFaK83e8bLPUpRXWh0+jR3Ad3XacpXAYxDfkAUz0BFo+L0ojfIACuhAHAisvlPI4PADBwk+yLp5dPv7Cn535358NptaHWfUaTZ/fZcyj6vZFBCQNYm5GZnNiOxVev4sWjbQzzOc0t+veuqC4cftWBUz80ROrEafDdtEMyzbRcZcAL5x6JRa+ASNPvRH/tSQGlOkeULW+Q5UqfaHR5bJQpT6eVxTFM/kQz4Y+YkoCoN+JxcVUwHj3U1XRdRVD/+vrmfqD17cxR9Q1rK/HdRb6trScu94sptf536N9B/9GJ2B36a4h2F1oOfw915+3Ab4Xp6BWgxXkBGAT5uohlALQPm3Yuia70jUaljLNI/H0RnFbZjNBsBy2uZVd8kJ6IVmXLcb4iiROwt51v/WB5LjEUKTYWjJmixlOaWfmbMUoILssXAvb7JJAIv3p1EfLbaaZQ6iYdQN7Np3sZM6Ok9jCTj36T+UZR10is/XY2WnyRgJi+uzhkvzfyaRNhCPhKvLv3GQK3vwVrFs3zOIGIVPiKA3ue0k6yLg6IwZbPtYCZZnm97R7S8/Bv4pHxKAPCmHnOiiXN6pgq0SKvJtvKQFHa4eDw0k9+sj+N5eYkIllq18b1iIawrN/O/CfOn8eJeDtqT9NOuO7t/6gGbiLsiCuqC223DULt3gdLraMol1gfS2gQ95nQk9Nq4ydMt8Jfb2brafPDrH/dqvz6/Pp7ZmWL6S+uCsaWVj97LMtb3zHrD/q8wUvHcPRBkSzhIXBnZHtsE7Esyzor3F0YcI+6tDmuZlZF8EvGxaA+b5u0B1GnjwYmYzaOeRuzzHj2CHVIqKu1k6rh1N3XDUisf5a3+FxMo6gu9OzQFys2/2LIpz+d7rr7Ev5oWVEqW13aHBePVEJ4gmwKKf4WTxnE0xuSJ+zbeKm96yZXwfzAjVzO0trUjDK/iOFgNIrqwhOFMfgygCHyvpq9C53LF3M+Uw5tQXgZFhaAzJo9lcPr9GMrNB5kBFkR0yiqCxNONsWmVuUM3wf9fjV7F94PaYWMWVGSSarZd0DXPpEROGmrgm3vGsfBY085UPcL7YTQ27islyliSoKEmmmWjq67N2rHw8i0SXsQO6J+KHXMNxt3vI1ZZvdLo1vpHzSHNU96xGCeeKu8LvWP4WFCAGDJ4RQ80MCIvHj8cQfqfGX+PiRTWl8LUFLM/Rn16d2d20KPkCqmazY9gfsZH3negXKnSlDj++04+GUrhI+S1xw0p7d9Nx61pyXj0HgHlg/7mKNLljafLD64HdXDc/6rT4D4idhbf9OJ2Dv/7BOx21LE3nnnnVtj7uODN998808L9W8j0UfMz6fMbU2MZmQ2OFsimsC917jQFa8vDIpF5R/ZItunXQsOF6wfAMlsjgaU8HnxCHqNKUfjTkQgpXUZiT8gDzovZe/GRyEt4RdgRVEhW6h58ikqbUGpb6NrqxtjfYtfDGny33Kg0TtJ0oQKAJceiEHFJVu5aQfJKrZhl+EjsW7u11KdxTqRP9utkig3+UoQZX4VY1gAS+2/rCnq9DlgqPvJX8OlgNU94h6WYpQAkHwiXsrejY8ffBglabt5GT3bOlFSvQpXvKWF/4AYVFqsyXVirB21pyfzPuNpQeStDeKad4L77DmPioGiurDkYhXMDA/2yEdMe6sKnDeFSu83QpS9sA0aLvDj8cP+TJne0oumtZ6UrtJ4AAweO3HXWrx4tA0+rrcD0TsGILXN4ltSJPWLEX0ZZpsx8ZlZBhRE/bgj+rV5ag8zuTzVl377RLXEuXcuI7n1EkNbPZ+1V0IYpHwrLpfDV+1ikDWtMbc60Pc7RXUh7mAcVx69ySltBM1uh7r1z3KTWW/fwoVBsUj6zLhJZkbq0uaw3q99w5fvj0GFpdo3OPzgIcxtwoJ4dxozGhtmyOiH+jqUpgT8mW9Xn4Z8D82IFtenh9tRY26ypKDr5aP/2R/bEfIiUyIzZkQh975ZkqwA0GxGAq4FX0XJFT8O2qSv5/RDm9Fr+ktSEF6zNhH7uKK60L33IxJc/rlHYlFzw2GPUO2+tuaG8VYkT/OpmUwAa1sfPz8paLanfKdG2LnyeKsbF3qeBW840HCCuen6nyFFZZuBfhd9pHAHIs/SeJutI57N2o9XJ43g1jIAA+XJ6cc2Lx/O7YLvgtbBabVJfuc+US35HKcvI3j1CIQNS5fuAd7H38yvYhD+dDpW5WtrFW91KXjdwWMNmr0TRXUh8u141JqZ/L9lmnhHEftL6LZME99++22Pf+PHj8f48eP59R368+S02jgSGn2wV/rKUOg0WND/08Ptps9FUlQXV8LEvBSbhoKskhIGGGO2EH323HTpfveeg1G++VlYwoLhtNqweDELpkuxp/Q0IiMXH4UwWNxR6zdyefRKWO99pwx59XVqOSnBcL+iYP3kW6ECl512tVyvTOX5AWDzFDaQk2mH02rjMcWofcoq23DvgGG8zvRH7R32dAqyP4mV2t8vuDEvR/ybnJeEyPSBXEa3LUwyqSQlTOQlDt71R5wwLJoU1cX9ApxWGzrs6ictCigdobkBDGZ71bKbqFjRLeG02rBiu4LjDjkAc2IhW6CrXeR9m0sNGV+9Epb1bRvePgAMMO1Ur+wbF+E+e47nS7923aDothsXz5Uwykf9gq7J/O75I20N/fvc4FhkL5SBg8T3BjAHd7F/i210aqSGLBgyeIepEia+ZwB4K8d8d3Ve/mbDPUV1wadYe7+iHPoFjKK6DPDOYj0cfxTCabXhuVrM5K16z0wDP/34wd+RLgh3s+nydyUqYZSGlDCxb+v5ujNzpHc65dAWiY8nhQFgCjEAOJ7VQjI4rTbYdgAv/vAdqvTI5vm7936E59crYZRvSn43JO7bwP1vAeCeQcOlvuq02iQFgcZF534WsPZyvxied+0Vzbw3fMQ2yW+ReCmqC02/jse1khs4+gwbD0kJozQAM4M1G7d3x3wHABytrcLSrVJ7z20SyPkQSq5Z/9AvALmMfYdwE+Og5Vr8RH1avWwxL8cbEBXFgOkAAzHiY+wXbIytMZcpVtTGIl8KCk8U8mIyDr/GEBxFJYzkc1pt2D9mKsIe3Y7c3jM5PzHdtbgojA3sYFDCzNqa+njmN23htNqk+Q8Aqn6bYqqEXenD5mez8RZgJ8iAcT71Cwo0pNXLX1JUhJNj7IZ0RJlfxeD0cFkJM0ubeu0GolxuQ36xvIYTtLiXFINR5HNqpGyed717FH8/+rkq6NVkSQmjZ03mauZ5APPNBLRQKiJRGBKArVO6V7iGOlPl2Jw5/WZwXv6WIv7bJqCu5jxQycCbZBCVMLpnNhaLdQh7fCuO/8zCFhBaMD2nNIQArKgu9O2/mceN9DS+m5mM/tdTCeDzf/x3BzXRA23YsMH0/tmzZ5GWloYvvvgCPXv2xNixY9GpU6f/WMh/OulPxCbnJeGZxuyj9fH3x6rcrR53uWw7gA/ret/10ucTkfzENERi/sz5bZFz95xb2l3T3xPNELO+bcN9F8QTNzPACk+8uzw2Cu9PnY6HVsdzZD9RZr1i4m2X91Z+e5Mn/y0HKkSdRK37MjA+Jx1vN3Pw95T5VQzCnkhF/jg7Gr1t3IH9oSAJDzZ0GHhb1lmR2CQRLScnGPzizOi6sx3af7gVaTbZ14vMWEurAyEWelsM65WiW9ldNeNhdl/kZ5Y27107Do7QzIN67T1jgFUXZQz+aQzS7/+Mt62ep75MMk81S2cmc967dix45AtE+5fhz0+NsuONlxbgtW+GwvcGEPChEUyiZ1unFJwbYCaUIoqaN1JUF66V3IC/TxlJLjpR9tSWRN7af9LpYAk91WyMAVjAbYr1JtXDAyIpndKIJIJx6GWhMsM3PMqVJDM5xOsSe2v4JO/02k9zP7DzWGd6nkefdaDeZ+bfWe77dnwxYI7kdO+tfShN5z19pZN48VmPJh1RfOECzMjTuzR7t2by8HsBbSTzK30effvQ/SZz4tH4jdLHAk/39GOoXjbfFk2xcvUPUhqzepnJWdq4LqJkKqoLzv29oDRjIRtEZEqpDmsbQGn2G78+/Vs4Vree53Hs8NYe3uoCMBCko3HXETZ0O7dk8EZi/ccctiMv+opUJiGt6mUh1OPzD8Wiyvcy0nDj1PKcj55OP2Y3+MCa0bnBsRxVmIj40vwsblKRbOHz4w3hRkqj7O9syOo8D9k3LkqhHwCg466r3BzVG88W6b7YE1mMrMmxqL+5hJs6/tl1DN0DPPdXb/OYZZ0Vp+YE4kwzIOi1ZNN04u//qROxNyfC8n98Iua+ehU57/6zT8T+T3zEdu/ejejoaPzwww/o06fPX83+H0d6RexWSVFd+Ph0CHdSd1ptBhja0iby692jpMEz9/vWyOj0Dd443hIT6uwudTGvqC40n5aAffFTpUlTVLa8yXL8CQfqfKkd2ZOvmFlav4YNDLuRt6IQeFO0KL/ZQpNMgn4oSEJ1i3aq1nX3JbxcMxNxnfpxhCyyR1dUF+JadkXi7j9KHeC9LXrCNw5Fxl3zjYuOm35XZgufWyGztMUd2+BsWDnTydjjgo8Wuj+0QtCDuwzpzX53HTqCt7Eov2i2AWh9Qsx/RQnCxpZLeR4zKvipBa6cKm/YOfffUA/XOh3l15bwEGQ9Vocv0EmeayU30LdpV+Q/0dLUhAlgpkuJaxcbZLCEBsHn6nUUHdZQ9zy9b7M+GDk+Hunj2GKFFAyA+YBV6m5EYeu97xSPG2Tmr0dlnVkRhuo9BRPTvkN4XKBb6TuK6kLqtRs8NIRZejO0TbM6eyvPp10LrFr+rVflS1E15ERPsnij0pT/0hZlYpt7U2rE62s9ouC/0niCSia9gPb+PPmeikh8ZKb2n3zzf1bBoDqKz44+7UC9z28Nyp7Mwm51rNa/j4UFWzC4oeZfQ/IAzFfYzKcVgGFuE0lEJTy/MoSbt5rJI5YnykdhKcTnRJU31cKFjifhF9gQBybUwnvRv0gbE56+h+trAlH2nkNS/xDTZ8yIQviYNIMJIfnCGfq4jw+OPWlH3S+SPNaltDVCcac2LHC37jmFtdDTtdWN4X9vHpYcTkEl33KGTZKmsxJwYJRnNGDyzSUZCPXTrB83m5nANzu9bchc6RuNCw38+FpDTK+/1rstiPRubpoUJkekpYdTcX+DaCiqC+2fGQu1e5Fk4aMv78yjdlT/xrhJ1K1+xP+OIvbG36SITfhnK2L/EWqiJ2rZsiX69OmDiRMn/l+w/8fS0gzNhllRXXxAEQcW/SDzYg1mmkMf8bAqxyWe9OH7BcjKWfebttP6iYr8JtJsFtNB7drqxlBUF7ImxfLBQ4wt47TacOSXZgYljJ6JPBXVhTpfJiFjdjv+vOhQAbI/ieVpfdpE8LQrtv6Gc4/ESvVwWm34oUCGVxaJ0lA7OBtEGtJcUYIMCoKiumC9fx8U1YVXjnTjcudOtOPlmszcy52pQaXvi5/Kf5MSRtd579kx+MBhztfbxEf3gx7cZTr5kxLmtNoQpIww5NVfU5DIa6sbG+pN5Ltph0EJi89kJlYtJyUYJhDxt14J01Pd5Co8T9lz7BS26PdGaJ36EG8jUQk7NdKOOl8modV2H/5cUV08lhTRjbuN73Gf41uEj5HBXQBwJYyu3RnZyBg6jd+j+vUOiELxhQtcCRPfGZGohIn33Vm5hkWJmE5sQ+qP+eMc8AtsCKfVxpUwAFwJAyApYWJ5j1fTgG2yHtLMhMVguAAzTZT6W+pu6Xt4/khblEZv93oEiurCmUfthjoBQNIkDX1Mv7AJWz9MagvxnYo8SrbtkdJQfjLlIyL4ej0vkSzVq/P8IullE+9lzmemaL4VK/JnfvXrSXlEJaw05ZWIlDBFdSH7Ew1sQFxkhzyfgkv9Y7gSVvCmAxcGxSJzXiQ67rqKxA0/Y+B+1ofJJ8XsPRD5VqgAS0QTQ7/zNO6YyX1ieRPWTwLaoHdmd+S/LZvDikpY5uexpnz5+NerMpcj69s2UF9wSM+JDr8ql0G/KXbgvPzNCF0YL6Vp/HqyodyMWcwc0l3OxyAP/blPnODlX7jCFpLqi1oQa33b6WUCmJm702rDi0eN8VIvdDwJn6iWuBpaB9nd5kpKWMacdoa+DgDlN9RF2XtYzC8xfIe4SM+9jyFakhJG8r4fopnHxR2M0wQpKeFKhfjd07W3uah7nyE4sbwJrlcx3xw2U8IU1YVDhew7qeSrBdCmsp1WGwLHJRm+XbEvkBJ2fU0gnFabQQnLmKOtF/aPltEwZ+VvRsSXCbws6pvlf0nlm3ti/W075O9CUV2S0kp06B1mkvlmUJTkE0XrEwBcCXNabai0KAUz7vrGtN2IUt+fBkV1cbeTW9mouEP/TPo/UcQAoFGjRtizxzNizh3yTjSQNNrKJiGzATPj63bo8NQYk9xGhW1FmgyTvSpXO6Y/PdwOX1tzKf2Swyn8tzhg+t+bB2dAG4Q+l4KILxNM5bp0sRzPc+xJeSElDjZxnfoBAHJ7fA1FdSHnAzuKO9gQ8oLmb+SuWEbiT4E+X89hfE6NsuPBhg7O17JODkqpH9gKX5QhY+efryUt8uNadTMMwmTS4bTakDFsGn65pNmbi7zabhtkqmweHD4NQ6ucBAAErx4Bp5UhnekVbE8LS3p+/mFZCQ0fng5FdSF03XBDeiIyQV3f4hfT9iBeiupC1gJtQdH3Jjy89ZMkdB45Corqgm+rpgZfL5HiWt/D+dN733G0AS+DnKX97s7Hpcv+kjwkQ82vmXkUQabT84LXGb+FF2ri4sBYUzM5gJ2meVpc3BU/mpdltgjRv4+FTRvgxt2RcPYbyu+bLWT0i4msBW3wbq4cwDgieTD/XXMLUxQajU/CiuRfceZRYwwcPWVNjjVdpOrr8nuLysiYFSWl7TZkBIYfPITXc+T6KaoLeyKLpXtm5N57EE6rjQeFp1AFeuXKbNEa/LCxTKfVxv25nFYbirpGmpbttNqw8yW2c95p1xXTxateuSruYJPgsvV1E9vq3dw03LiblZ1z9xwAwJVOzTnPoiNHvfKgb138bvSLXTFf+HusHcO/YT4yGV+342lEhLjAj7ej8o8pCBuWjk2tyqHZ9AQeHFhPcRFdtEX6960BAMWXL6PW10cQvnEo2j9tPj8Q+TVsgMJXjN/M9nY/MtkLdyDnVE1TE2t6nwRQJL7Dd3PT8GBuVyiqC5167OB8s7vOxe7nzE+RAmcdlPhMykuW+vewRh04cIdekRcpt+csLL9UARunyv5q4rsR+2tAP+YDbP04ydDHin7XQgnoxwf6E2PsiWlK0nbDb60WU1N9iY1hud2/NpX7zMcMcMXX1lziJcrUbV9v02dinfQAKFS2vszMeZGG+Urkcz6kImr3Pohyv6bikbzOBp6K6oJPpKaIdN3NQtw0+tnCedwVP9r0e/CmdJAspJSqLzjQN9PJn4unTPqxYFSjDjxUgaK6kDNA26QyK9PVhuWzVJHNs8lXkWQJfCuZh2xZmZPCQ7/Q5onZ+7i3ghY+QSyb6t+9Efv+y/+SKr0HcUP+Dv076P9MEdu6dSvKly//f8X+H03ioEhR2MUPvPqWGgCAlmGHJbtnMZ3Z4pKunVYbmsyN57/T3puGlYnfSWkr+ZbjAA2GneSSEiwo2IK9T7BFUtakWGk3MfSRHXxgMYs2T+TOzMG1ntqiMXPoNPhu1mQ48pxDuhbz3nVzU6rmrGRYmoXxQaykt9EHQ6xXwIfagiJjZhSGVjkpTWyJu9ZKE/a9DzwKRXUhY7oGlkJKin63vnbvg5Ks3R4ZYXgfOffOBgA0fjPZMImI/0meEkdrOK02tHszngefFAdtp9WGkME7DO9IrwzqJwGRiJ8YtFTk55/ITpmKdx3g/kAilVlfHwDgPnEC+W+xfuB6lfWNgAk+8IlqacgT8rAsh75Oevn2Pc760fwmDVFpUYqU99hTmhN0nS+TpLqLVH4Z8yu0va+BUDitNmRMj4alWlUADA00yuXmMpT5PR1I2YWTY+xS213tpe1+Bq95TCpnfvvZeDMoSnqne+0L+fNzj8jmFdW/Me7qA5DeX/bA6Ybn+jYiyu05S3rmtzYdc5sEYtR38Yb3T79HZORyHgQaQwAnL2XvRsbsdry+72/6yfQdEWXMiIJvq6Yc5IJo3IkI7TsVQAv8/tBiD55Y3sS0HTa0Ko+qm2uaPhPbmcYLuj/7JjiKWfu+GRTFFXp67p+YZug7ywvT+AmRGXkL9isqbO4zZ6CoLgS9ypSJ8JFsQVn4ioODuCiqiwdKLniT9WsCGNJ/Gz7+/kjcu47Ln9FJ24E/Zj+PjLvmc4TTaz2iTL8Ly7dF2PPUVEQkD9Z4+8pBdvfELuTli2Sm2FAaq+UaXIUB2Hv9CmY0YPWtvqWGYeEv8kzctVbi/1xju6HNvSkholy9K142PBfzRb8mg4LoiUCn/O7Ol/jq6x4X0UXj23eIqTz5i5nvn/UjhtYrttuFQbEcyKPcb2xBXuzax9M4G7CNgscz2bhLYFLtxsXjxPImsERo30uLL4ygVUTWj5IMbSmCVIjPWn3CNlgr/5CCjGlsnDt193VDvaacCcSqX1nfODTegZdrMhPoDTO0uKfll6VKgF3ZH7NNp3EnIni5iurip4piP1JfcCD3fTt2PzcVVzod42XTWC3SxQFa3D8Cz/A2RhERT/f584iYorVf2oRphjxbPp+hvbtiNybl3QwZMUnbJCt4Q6ur02rDS9m78W4uOxW/viZQVtSLbgKLCPE8e9z7IO4PN86X/7VU8jf9/cPpthSx/Px807+cnBxs2LABjzzyCDZv3ox77rmndGZ3iNP94S0Nk+11p2bGUHFjbQDAD0F/AGAmV4Ri5LTacLmYDZZZn8Wa7gCLA55oVy9ODCLFBTCzpczPY6W0iurCkIbt+b3Q51Kw+1mjzbe3XS93F8bbf4VmGtk8SUM9c1pt2PWCpsT5tGthyjfzixi492dieSFTFu5JZuYSWZNikf+2EaVInJBze83SJjwPSsDqJWxx4+P2gaK6sPGq1gY3KpnvhNE9vz/SpYklMn2grGgJAzDdIyXAabUBPj7wSWJgBNvenWaog6eJRa/UiUSndpawYClP9S01kDE9mptg6HmaKTZ077fwlTg0Xls0rris+QWs+nWhhsoIFiYAYMAXTqsNN+7VTgXE4Ni+tub8NNiMxH49cORaSZ4rfaI5H9qFJgr6bRTqTpEDA4ePTYX77DmmyH2VxMFPxDrXmpEs5dkwU1tshD26HS3Sffn1O8Ftkf+2cQcaAGJ33gBuMChqfYBmfZn671NRXcj7sZWUftLpYNNy9Lwy57fFwcemSd+602pDk01DUfL/2Pvu8CqK7v9PcgOh97oJgVQIJVwIaRcQBOTSRAFFFEGQmiiKIiqIChbsld4RRRALyguBRbqQBEK5dEhvLL3XQMrvj8mZndndG9DX7/t7C+d57nPv3Z1yZnZ2Zs6Zcz6nrR0LQvx52ltNGYpZ4MB9eCB2JD4ObIGQYbt5vvGN5JNZY10ho5IR+/MqeMfLZs8EQ22cS1Jm60ItxZC78mQ0vBo2QOicOJ5uRYC8UQeAbg0jkTfB3NeUZ5hfOz7mxHe15a4npbTiff81I+DZvAm/7+1RRlKyiJT2ZTSK21oLFmLZ4n8K+kzvlc+HCRhSYo4lphdNvq34LM7PNwlCRMb/WxYw4TyoxFSU0pDZrm+/wzrvRYWmcZg6LUqqS9VcHC0PAJrOjJN4HObXDg37H+TClKq5sNx/k2Vwd4CZzrubt8S2NP86ziQQifc9wptZou+JaQGgzAAGnnMmzmyxoWou7pNnxU/O2w5++iievqq/fmu5jhxt+y3/T2ZvxEfCF7NRmJKuuw5Eh8ljqYitBzOCZUuEmvMSsbfND4j//Qee3udDNl5udytRgJSsLzk/ttDLAzAz24zcKt6v/7muzAqJLREOS+Lshc7WrWBWN6vO0zV8W3ZPEElUfhKJkPQAcKB1MT+hu/kom7+VTxPgP4EpqTKn6uvSg9t1P/HU6ezdPtnOg9e9p5Wn1B537VQ1GXGZTNJpjjzzWxNT3o8yd+LUr6FQNRZIGmD7HyrvSJyMxvxxYAtMbuOEU7HzEz5xPl+csx0oKuRmy0WHSgdyuU//nfSXBLFGjRrB39/f9AkODkanTp3w/fffIygoCJ9++unfze9/PRkX27Lqbv7/+gNnTWlqztd9DSp4loWqudDYrmvxAKDZdH2RPNC6uFQBSeSDeMh4fLZJo2ic5Fz5+W7bQqRqOsz4hqULTWmPOL4zXbv9O7OtFzXowd/qmn2/JkxT1tunBEygBAEu6OUkHB05E7UTqkllkimPkT9je1TNBe+t9Xi64Od2otOQ4Xg/QM/j/00OAjcNlfKIfftcagoCNjwLVXOhR5f+HFqe122x4SEhIO3LaJwbofvhGTcf7p6f1XV6Xqrm4htK40bjYtsLyOw9Fw3fSrRcwBov1DXIxnY6FTv8P9b9mr4OamLim763T5uDK09G8wC0Zdbv5vWJwT+LXEcwr8EOfi9gw7NuNZw/zeok/d82a66uPb0FZL2nL+IU8NvqedP3l1nWMNdWigu691l9dnrsWZn5w/hNTpDS0AY4qWUZFOSdQPY7MQgZao5d06330xJvIl9OxY7j7ZdI91+uIUPDF7VjvKV/pitPbKHBEvIpoJsFH2+/BJmPyJYLXhv38Ge8bZZu3mUlkFMdAeuHcc0+ACzU2vPfp150oPzWujBS1vtskx4yeheix4/GS2lHAQA9WztRZVkS1iT+A0dH6coY4/PP7xmB4ju3TQhyxvQXn7oGW+Mg6XnUe/SoKQ/dDxmRjLXrl/P2vqDpEOw0n1Da9P6zTfHmRD9WsXz6/rlZfen9sDUO4icPRA89MZTncbehTPuS1dPv6BmpbUaIcfFdDRRMRYms5kNxswgA/qEnATBzysJiFqzZdyrrd6/69STgiP5HT5l4bvUeE6BEICZVc+HkrwyVkuJIAgw8Q2y7yMehF2aarhHfFbfVRvGew/g6yLyBNgpIlbox/16KR9XpoNnyhPxkyc+IePKbkiCdPjoVO86NipHquDQoBudGxsBjkw/C9/RHxkf6Mwn7NM40lqn9eQ9WQmFx0T2v0R1GMnNrEnABwe+7iEHVH23LFGHR41kIiMAylXhbrPpI/G8k8osj5QkAtH+Omb8+1H+IKb1YXvmtdeF90cOyHu1VBz+hK/+rGVnVf6JuNbCheWXYQgKROi0KHneYgpTMY1NmRUrlGudp47r14Wh5H0JhCABIweQpvd3bG/sjlyFg5ShpXRXrNPZr4fkLlv3iVOwY4tcOquZC2lOlWzz8u9L/NXQ9h7D/L6e/hJo4ZMgQeHh4mK57enqievXqiIyMxCOPPAJvIY7DfXJPVqiJ4oTRaFd5bt5hpXEjypnswNGR7tGIxHIvPx3N/a3cpQEYMtLNJvW4CY8YfFlMZ/xtxSv9Pj3GgbrTEkztUDUXWiUP4IGKg5aNxoDOOyR4dqJTYx3Y/+pM+McP5yY+Vu1Yd8NbgqAmvkSi4L1W/Spe63TwOja1qHhPi6RV26zyiFDE50bFSKANd+PHqk4ivgkvQQcr7NgaG75fKJXdo8kDKLxyhed5Ie0YZjz8sAmQorT6jOkI4pjgqp2K3RRkmvhz9zwAM9rc3eonSl3SGsGD91reS//ejsCnXLjtbMMVHHej8H1FXMNK5GlvirXx37sd+w89MRSef8iw+EZ+Xko7im4V8u86jtK+iEb6E2yRdip2FDtawiNhv9v07gSljA9jEPC6e3hygIEhDPFrJ8H6i+WuuVHOcpMrUsbHMQh4Va9HRPk0PnN3vIgogVZt6/HQE4j//QfLvMZ2Fre143zz8tjztm5qZPVuGu+54+3PvPvid8uP4rD/NSZUdn3sGbfP8M+886W9P3fjb0RuW272bqyHkFCN9eb3jMDtSjYeM7C0fgIAW906KDx9BtrKpjwW2t3yWN37NncHBpWgJnqEN0PxnsNu0wIspmbtneelsAql1X0v/ZjzlgOeBeDCp1hO6tdRCH5B9/FTNRduFN1GH1+2qb+2LgA7wswBzVXNhZ6O3ijIkhWn7vgy8u4OjdJde0q7brzmWbmyZagFVWOmf8Y5ke51HDECW+bNc9vXWT+E4Xj7JQCADqNGotw/hADcvuFcOdl50DBs/HYBzzf3soLfHmqFo1PrIngwU3oNPJaHpU18TXwAQMrsSCm4t7HdqubCxcIbHA0584MY+E8ofX4UKW+ig7tmAMx8mZTBYh1WeyJ3PBH9J8HXB07816Ampk+9j5poosWLF2PRokWmz4IFC/Dpp5+if//+94Wwf4JUzYWHjj7M/8/xlX1IugfLUL5ERiHMHToVAEkIO1WilSRyKnZ+5F+QdwJlNuzhZYiaS+MCYatZQ7puJLpOfmM0Wa8+oftpkBAGMDQ4KyEMAOp9yTRzJIRZaY6dip0LYQAQuGmoLqA0DuLX1/+42MQ33/R17MfL3tRCNpWz6lcyMTD2gVFTRr9JCFM1F2rNYc/5zPMOt3nuZQPD03jaOEQzBesV+bnYqynPq2ou9KxwCx43mXBAwWNLa6uxPAA8zkzRoWPo2Zo5WO8JX8G1k6KW0qq/6bf32mSszJM1o9S3AHhQY1HTCYAv0lb9lNZxMQBg86L5/NqFZ+VA6Eba08qT9w8F3C3af1TShjoVOx9PTsVuEsJSp8sAMSkL20jjkuiNDBfm5WyHqrm4X13QS0nSe0YbeOLVK6ARB8+wGgNkXhPweqJ0XdVcKOzITqfTvm0FVXNx87jfly0CAAQmlwOidX+LnhVuAdB98kSivgh4Va5HFMLounFcA4CSVJlfi9/6C1TNxZEx6R7lJfAQSn/mOX2eCzCEJPDY4UKVrDu8/qmZu3heD28dMMap2BGYXM568xqp+2xY3TeO3e7dBgAAugx8luep91UCr6fcB6dNZbgLAE75xTFB9bXY+RT/v8AiUPjZWOsgwE7FzoUw0ayT2pbywBK5/SXf3muSORoupRUR+ladkE+bC0+fgaq5cDDqe6nfGi+I5eZyNHbFfCkzmQBT+Y9aUDUX+r3wMgDmM2wlhBmfQfL7s1B4JIWfTFK/57ztkPKI/dEzvBusSNVcsFWvjqOjZ3IhTGz/jb5RyHhsjpSne5CDC2GAjnxKFhYi/ySEWc09TebrCJE5b+tjXNVcaL7Hk4MfGd8np2KH06cVrg6QT2apH4zrvVX9a4//wX+fHCf7PU2ty5Bybc0ao8OBm7j+WBS/570muVSBt+bKCvp7cNGeOQABAABJREFU8I9dUrl0gudU7BzkhMr4ObQO1uxaw+d3AFwIE8eoqjHQmpDRu+BZoYJetqGdTsUuxfJMeUZW1Igo0wAkH3EA0lgAmPny+WH6+yb2Z+bUGKktVE+3hwdK6TK+l/vrPv3v0P9JHLH79OeItAsXUwLQ7e04JHw+G+l3rmHd9VA8Vy3XNKGtyEtEVU9mTtQ37SFusojoMKi/LDEtNqVpeM4850CdGeYgtGIeMU6QO/or+b0a+UnaQFvNGvwYX9S4GttwLxritG9bmZzo6X7HQ4/Cu2uWKT/F8yHt2L2QFS8UYyd0jxeOhheg+o4a8Cl3CZ/V38s26hUqoOjGDZNW2Rjc2tinzb+Kw6EXrRHHKE3Xfs9wv7aH+g+RwE7SvohG4ylHcefnKvDsnFvqMzPGsRFp8PFcDKx8nv+nfGL8Fyv+jTzTaWBpGl3jBoPuL7lSC0ubMMEocmIser+8GZNqHbPMY1V+aXzdjShPaRrZu+U1XjPyanVNJDrpNLal2fQ4vkmI3n/H5IsxMiUDc0OYf6BHm+bc5FcMfAywDXJ+YB1kDi9GeicmmLV/fhQ8bxdL/nHGdhl5FU/w7mU+EoliKlnlo9MAsX6rskV+xNhLXQ5dxYbmlS3rvZvCo/W7sag9K9Eyj7t+sKIzzzmw740S5VlJgGEACJ0TB78p5jkZALod64niTswPlk6crOhGnyica2HjQB9EfY6cxdyve+NieAFCRuiC0595B7wa+OLIBAUhcdYnDrcejuSADWJ/UT0UC42I8odPiUWtOSyd/cM4uF6faXoXRBL5rrmjOs63vWh5/1r/aFRakWSZj/537zqA++e4e4al9VPq9Chk9J0j5Utf2gppDy5Cl4HPYsNSZo1AMbbOrmps8jtUNRceenKo5Wm0kZ8OB25iYq3j6N64PdYe/8M0n1nxqo13QPlENuN98PAjKPtQNtI/jUbaU7NLHQfG5yD+PxsbgxpH80EKv9LSlkZVt9fkvqDu1gQjT2J7r6wNRJXu6eyZBjngUbEi4vf/Xmq9d7MycNce+u3h5YV1ObulOrwaNkBBdi6MVNoYutE3ChV+2Xn/RMxA90/E7tO/lPqEtEDl5UwDHtewnaUQdtvZBj9d9efXSQiz7wOQxGJPETw2ALT4Mg6eLXUNGGlraGKpM8PsXyHWmbmsJReiRqbocbOstKzi76L2TMvuaW+KysuTJHSnzKkMga4gK4d9d2aa7xl7V7kt715I1DqJQhi1l+4TlLuquSQnYAqKayWEichPVu0W+5Ri7BxzMBjf5f6bcCi8iKf1rFeH5xUnZvLNIVp/Q99EOxU7vC/JkO5WvHgk7keHUQwy+PcVi/m95ns8EfRSEgovXeZCmDGvqrkQuscLAFDpZCFvF31TLLJPv3qC8yDyMqzE3l0cR+QDIsbaoTQNZx91uzAZn7+4mXYqdi4AORU7qi9O5EJY9R01cOD2rVLHD7W1YIMf97EojWh8iuPo57wkLG3ii8tPR0t9Sb+v9Reub3QvrF0apIPtiAiiADttEDcaquaCZ7lyuPhMDE7Mq2UptIma2qSWZfgJG1G/SropavHuQ/xe4DvyRqQgNw+2LXsR9PQ+XvYf0+eg3OpdCFoqI86JQA5GEjc44nMkUjUXB44hAAQi0bndSGSSJZYdPtmMhOdU7HAeYm0WHemNQpiquZD+mX6CIs6TxW3tPI1TsaP2rEQO5mGcM0sT4Iz/68wQkOw65/H+8ZuigwYATOCie6kn6nA+rYQwquePGXNwdPRM09hc2bQ2as9OROPn9fh/TsUOz5ahJh6NZZ77BwOMWLNzNULidkltn3GpAWyhwQCA8uv3c96bbB+EKjkFPO2pX0MlIUykWnMSObIiCWFiP1jxRGvb9/6bpevpn7BTiHk523GxsafUNkLVo2sh38Si6BCzxAhO9jbNy6UJEXQv+PmdJn7THlwEf3UYAj/ST9CvrGQIs0MDZcUkrY90Gg3B9cOp2DEh/YBU/9YwpogdtXefpbAqXiNSPtHjY6maC4+ld8GllSXAPK+YFaX53WVTOxqDtiB/5Lwlny7ufXMWNny/EIOP50rpjb/F9YFIfNcutzvP6zHuNcQyrq0LgGfzJqb2khAGsDAOhWfPSnyIvm0AsDR3B3K6VZDqsnoPnIodTWfqQCUUwkbVXHw8i/mshDAR9MyK/pg+x+29f1u6j5r4t9BfEsQCAgL+0icwMPDuhf8PU/Yi2RyMJpdOB6/zl7ysuhvDqp6S7quaCy4hpuT5thdx6tdQOBU7lI8TsHbtMqnMu218AX1CogDPtlo1uSZdXKRsQQxtbV6JaUzqYrZp9fyDLRBFLhYUOfWZGrwN/hN1Qcep2Pkp0OiG7DTFy0cxTYiEgGjFK6GQEW8A0Hi3fBJgXBSoDSlDdDRCAhIhyn3TwfmwQn4CgLC9Hm43MMX5+XC8NJrXfeUptjkvyMgCAA5/a9xQ0r3PgppJC0StOYlod4CBLFx/LMq0UBGvosmHrTZD2jwUXsSfFSFWOhVmgijWfzScbZrK/7ZL4sep2PFT6FK2gZwpbxRFMm5e6peAIhBIDKVxKnq8J3eLHwAeeJzSGQOZGn9fbHsB4xtFS2PUmE7VXAj4eRQ2Nl2Fcqv1vrIy2QF0AZliywBAP1+2GTb6WToVO97NTIbWURe80TlPuk/jCgCqfaubHXuvYdDpHt7e6N64PQof1KSx6lTs8NvmgV0fzMLtfdVhJON4uNMlHCP82pW6IaL/dEJrVV633k/DVrs2T2uPZkGirz7B+iB4jO4fEz6F9ZEYlzDti2i8mq4LTkUd2GQ1JYOZH1FgdJprrMaD8VkWPthamv8AoNZcswJF1VxQm+tBxa3KomuB45P5hpj626nYgSJ5J6BqLhQdOsbbATDzSWN5xvf6Rl82ljM/jDHdB/QA4iJ5NfCVBK70zovQYH0BbzcFtzU+z05DhvN68yaaTZ0H7M+U8hXtl8FLrOYkAhuy6sf5Mx/GsVg2xxcLwE0N+x/kPkNOxc5BUowmkVTW7qyGbvtP5I/yrF27jAtPIgWOT0SXQ1fx8Oev4kisbLI/te4BCaJ/YI+tvMzUiHypHiMvK/KsrQREgB8xX63aVzHHNxEem3y4EK9qLuy4FCilNfk8FhdLz0EM2AywkAcAMCs4yGT6DDA4eadiN5nYUVsCfhmFq+3P8bmc7ok8ae29pLx0vTAtk5+0Bn8bKz2/r9/rD8+wJqayrHgw9pVTseOmqqO3BvwyylIIdip2VOqWgbXrlyN1ehRyJzmksV/avB8yepd0v5atIhq+pc/BzkcH8d/FMS31/B4eaPCerjihEDbB38Ui/Xu71AfkokFEMTUzHp9tinMq8kb9kjZL5v8+/ffTXxLEioqKkJ+fj6ysLGRlZSE3Nxc3b95Ebm4uv5afn4/i4mLpU1RUdPfC/4ep4dDD/LequWBrGgKnYjf5JrnT1ImT3v5IWfjyEHz2yDfEOEkSUhflcSp23OkSjvPDYniMF9OGKC0TqubCiBKTtIyuC0yTLACkPi2DUITuKIm5IpwWeFZgminyQxMnN7/JcrT7onb6ZP7bQ3JAVQA43oYFU3wp7Si/lj3FOthvhwM3kTIngtuf0wJ4JFb2ZQOYH4TIhxh42LgxBMAd27HRF1W+T5LKerlRDKaea4yOw0aYnsXLjdhJCQW+Jdoe9gv7/noOFl+pI90T+9fLn21oyEfs6oBoDInfBFu1qrDdLECbt2PxbmYyfPsd5vkCf2CoWiuumeO0AGzRstrEXhxibRtP19xRfvcIhCyJRY9mD1q2AwBOxoVzfxKnYucbEOPC7O6dsAX5m8IYOBU7qqTovoeEzEmbRCsB16nYUWMhW7C9GvlZbhLp2pv+EdKJAdG0bIYC2eBdGVHRWFZxfj53lBcVEIAeXLxSxDnTxkP8VjUX9+1MmatrtrmiYmGspTBAVHV7Ta71Ld59iJtBAsDV9qxu8hcS6bVxDJSBFDAAUM7vKj4ObAGnYoe2silyHmKmLG8HhJvab8XPhdXmIOK2zbovoHGTLlLYp3HSPav6+P+iQhQeloMKA3oIC4AJRlSf51Y9fp8WzZ5X5rKWlht4AFj99Ze4MDQGKYNnIe27VqZ3iUxtRd4KcplwNjKF+Rl1D26Lsupu3m4Kbmssa9Pi+fyalW/TsiYK/28cPxF7+1v2j9WzoWtXAoo4YIWVEG1s1+ExMxHzymgATCAnChwo+1cSFXZszU/kjO8+CU9GoWND88qo96UZAdWp2KHmsTqbTYtDQsuypv5rvCgW7V4YxfP4rxkBAOjvK/vdUb6xjXR/I7Gs2q+ybzInpTwX216Q8ot5xqUd5tes5luAQdXTveDnWb+LCMGN2rPTZNGnW6SMvnNMz9Wrno5suupEsqSkVDWXFJSeKOA1GWW32reJWLtuudRWq7lS/BbbWPnZfF5fRt85UlqrcRX8/E5JQHInuInfpIj0ql/PNHeov37Lf3sk7tefp+DBQ+sFAAS8mojAp1yYna3HASw8f0F6byhcCgBcuFkBVvSCps/RQbEuyzT/jnQfNfHvob8kiB04cAA+Pj6Ijo7G5s2bcevWLZw8eRK3bt3Cpk2bEBUVBV9fXxw4cACZmZnS5z7dOxlRn0SihZzMhFSNIQ2521ity9S11hMWsI2FcZL0/GMfTo5jwkruG2xh6f7lFtRckCgJGU22D+K/PcqU5flFTaVITsWOj84HS//9Hj/IYlYJpwVFN1gQTq+GDSwXIJEHz+26BqkgT1/kjJstERSh4dsJ6NHsQaROj5LavTWsPDIf1oPgOhU7eoR1hlOxo+mMOElb1dvHHBjVahFQNYbOR2ZF1E6jtnBrWHl4r002lUlEPjzGTbZTsUubKSM/BZnZcCp29D96Cl4BjZDw+WwsCPFH4aXLQNIB7J4yC2/6R0h8B73ENtb9K12Gqrl4P6maCzOzt8sL5h+1+O/qi3WAho/OB0tCaWma0S0L5qHcWQ/ccOjQ4gTQQHnqfZEAv8f10xSfDxPcjnGxn4huBNeC3+QEHqSYyq07TV+8yQ9Je4WN/W5+bUx9nfqNrrwoyGJBVem00UheDXx5PDjitdPB6xjTsK00hj28vCSebXXrmMrym5yAHk0ewNLcHdL1Gr30UAhWwq9TsfPNQWavechewWIU/nyNnQ4df1Z3TqeTGLHvLrc7j1nBQVKZ4m9Vc2FYCpvPqR0AsP1KiOk9uHlV9yE4GPU9Gk2ST4KtxkvEpFh+v0avFP47c7l8MgCw/vasXFmqk4I/1/88wVSPSDHjRpuuuRtf3fyjsGbnakvBsfcR5jPp/+R+qTz6ffPRSHSe8jKS32cKKfK7IyKTYOP7Qt9zQ1i8uKLrOtLhxWdiGKCKh/lU3qpNYpnlt9Z1K1jV6JUijV3jswF0iHm6RrGUzhVel/JmfBxjaotTscPZdzCqxzPT5LcD2Dvv5c8C3opzJJFty14T8qpYJsCEDv4uCWBMVv2y4xZTCotgSWJZLTukYPvXuiAQMkJWwLkTkIwUv2EF8gqu8bzayqamuoz8Hc9n87oIYCPSyZfNZvKNd5fBd4228P8P1GLQ+8UOdqpjq1aVr9VWwh8AFJxiIDJTzjbVw8EIz8y3n64oFuc+CoTsVOzw8vUxlXunuBBlttSXroljIuND3T2g4IQGVWOIhuK8YMUvUcaHMaaxaqtZw9R39J+UOGv2rOPXxb2LuMcxCWqaC2UfypbH+Ecx3JrH6t0navFlHJLsPwFgaNRimq8V5q/ZPGkgVqYcxH3636K/JIi98cYbuHTpErZs2YIOHTrAZmPaZZvNho4dO2Lz5s24cOEC3njjjb+V2f8VsjVrzF/Q6+sCLDcQezuy05qqafrGa+O3C0wbdsC8sSDttKq58GiqU7p/YBwz42jwPlugxtfQba7bjWGxMxr2P8jrKb5zG5ETY3mdRN/m7pA2FeKpHpV3bPgstuH/Wg64KtpXq5oLN/pE4cljGgo6hUv1WG2IqK/ENHzC/N6O+MObTU7VRt4BoPAc21g1eD8BPTo/bpqUxfIJeU+s16nYsXnRfG5WRDwUHdADNnbvNgCq5kLKfD2oMQAec8n43MhUgmJAAeCmHE7FjpT5evDvJ48xTejcqX2wZvuvboVH+m28R9pGIoo9Q3zlzZE3Oh6tmFntazVTTXVYLWgAQ0+r/1kCro6+zK9TmASPiBZuhbiujz1jed1YPgB4r01mQXcrlkfK7EjYqlWVeEn7XPcLUj5NwK78OyguKOBB0alvgp/RT2BoTBWePSuhLnYPYhukgtw8jvZJdVHYA3HBNzp4i2NFbEPhlSuoZatY6oZE1XTlCd0f3bAdr+tYOxZUlsyLQ75h7+zJcQ4T+tiwlEzLjb04tp2KHgS6uEA3lTve5g56NHkAgI70FjyEncylL21l2liJbfFfNZJfv9mL+XXZqleX2uQ/QPdtonJSn2sgQW07FTsutzvP3s2hMQidrZ+KEWV+wJ5blWUyiIMtVFckpH8mm7iuy9wpbdZUzYWlV5nAt6ppTRNfkuDz6y7UnKcrtGJeGQ1EtoDHJh/c6RKOL+ubwyk4FTv8V4+QronPZdcHs5AecQsoLoZTsaPdmFGmMijP0qs1pTnvZgcZuVEUmIgCV4zmv5/O6sjLUjXdF8fY1oElMPNUV+rTusBP/egV0AhIOsCDqBOR8qjowDFTuatOJPO0Vpt6URmQ+6YDhcfTTIKHSO8EMMXKuZHmuRsAVgRsNM1Z4n8yNyMihD4iUbkxTDAPVvocsVzPCSkXYIGSAXbKarWO1f9cPuXLejcGx9vckcrcGlYequbC+p+Y0rXw0mV41qjGyyLKnmJGVk5oWRYpC3RllBXF7/+d/xbj+IlKUYBZm/TyCcfK4NVwKnZuPXGj6DYvn8JNiPNCdZv55EjVXLi+LsB0vcxVD3x5sRET4kv8xq472PpkjOlH5WR8HMPb9vbZZlI7Ow8ahsLMStIejPiy2gMEvKabq4pCpbFO5WO9n9bsWiONcSrrUPRS9AlpYVHCvzHd9w/7p+kvCWIrV67EI488grJly1reL1euHB555BH88ssv/xRz/2t0sycTNMg8BgAqdsuALSRQMsVTNRc3kSDIc8C8oQb0DbLVRrjZ9Djc7HDatDm61SuSp3Mqdg6TXPFnfWMulll9cSIQ2UKqe1CDtvz/3MtMw0caf+NkRvC/4gaHKOyzOPwxYw6GVDmDjd+xuCIEV221UffbWZEHZfSqV1eaPAOekrVePds9CgAYejyb57/ThZlL3emqC0eFR1MtBdvsd9hkPuPNrwFY+3zRf3IQ92rYAJfjg6BqLhQdYAATBMFPddAmyVinRyLzoSlMzYCtbh14VqiA8k79lFmMp7asiYJbD0ei2reyP56RLwp2LN4jbbLYjoAf2aaM/DGMvlG2S9d4OTf6REn3jMIutev4MCaI7wlfYRY6kw+ayjg3km0WCQCCTOeMZBzrQWOTUJiWiZDRu1B46TIuPsPaXNTOzjT5gmN8pDfzLaTYXfQOXFkbaClA1FioP/O1adZ+hACDEjcu5DH7+0l8ivWJ14i6N25vSi/yQ8oTERjHWDZ9pzwzCy+kHUP9z2SzNVVzYUGIv8TnWxl7MSGd+dXc6BuFvAkOU9nie0Wx6fymJCBwxWieJnDgPqiaCx2Hy8IFEcX9AYCyXgVwKkxxQnTh2RgOvEF1psyMRMrgWTDSl1kJiB4/Gsnvz4LfOwmmPhABecQ2FB7VFQmB4+TQAU7FjpPjHLBVqcLbK6KHAgzyv8n8WOSvb+RWyQMAVb5PAnYdRHGnE/DezsyDvRr58fsEfR8y0nwSYyWQq5oL26fJzv79jp5B2pcMIGBJ4wa49XAkejTtAAD8NJMo4NVEy/eGrn3XaAtsTUPQbFqc1K6wz+JwaVCMKS/d79Gqq2leL8jIMglxqubCuVH6JvapzAehagxFUNVcUoym1SFrJd6dip0rAwCgsBzbvRXfuY3SSNVcqDVXFgLEMom8fBR0HCaPWdHcTNVcSJkaxsdI3kSHCU3VSmmUMk8/daoz3XzSb/WOW7Wh0ZuJlnmNgnz8vvWm9jV8m1kGPJrqlPKHDNttWZ8ViUGQAaBggz6OCVSklw/b25D1RFTyEKiaC9krdKHjwO1bprFN7UidwdaUit3M8QUbvJ+Atc2rMyG+BHSFUDurfpdk+WxTn57Fr0+pfVi677Vxj2RyOSlojeUYEa/d7saeZcDriVyZQ2kAoMcDfXhbKv9RyyzQlaxB99rn9+m/i/6SIHb+/HncuXOn1DR37tzB+fPnS01zn2Ra98Vi/uIGJzOfLlVzoTAlXULAExHoAFnrY1yo161ZatKq0f/Dz5tRtQBg69y5UvkHo743TUTkAE7kcUf3/yMgiQ6jRqKgUzhGVmXmBsV1a3DkPeJP/FY1F7oHy+ZbIY+aHcQJbp/+i5PXvAY7UP435p9TcOo011BZTcZrtv8KABhQWYc9LrOBAQiUWa8LNe42Pg3fYosKmfiRX5eV4DG17gEUx7REQXYuqvZIQ4/Oj5vKL9jgJ9VRfUcNLL1ak22OL9eT0p53BmJtmrzBNLaRQDvE/kydpp8+OhU7Gk1KlMpwKnYUHk+T+smp2BH8IhO8UiPyTXXZ6tZBQWY2L6PCSllgVzUXB0JRNRdu9I2S+kb8lNlSH+9myoGcif89k3U/w6HHszErOEjiw9PelJuonXpJBiigE0JVc6H6N6zNnttL2iHY//fP6GyqGwCqdE+Xnk3eBAemZspxcEpbROttOWe6ltjyZwByXC5jvwDMFMmp2KVTn7DP4kzPm6jw8HG8lMb83WruqG7ii8o2Bmd2txFsW86TgQUUFaLCLzvh+0GCFKPJHR8AkN5/ttQWp2JH2cts7TAC6tDpl6q5sLfND1J/qJoLNRYm4uUaGUhZpJuvhsQx5/usd+V4cGMbOXCh1020ftd8Wu+uzdV31LBMI1L9zxJQeOUK98dxKnYOPKFqLqRH3ELDtxJN4THovjj/0vWiW7cQttdDiim1YelC/tsd7wRSRGmcip1bFwAs9lLQWF1h4nmnmJkmA5KwrWouk6khnZgSORU7Co+kwPeDBB4vjPpDVPacidPj+11bF4DC02eQ3yNCqkusR/xNQbcBhoLoVOwSlLvVJt3II2sn29ReGBqDF9KOSWmsxqq78gDmn1hwQuPB5cW5LzZVnyfFfvadmmCaI41KNQDwyPc03RP5DPkmVho3xvurT+yxXEPFtJm95sFIlFYEoyDln5iX4p6pmgup37SWzNEB4N1MpiTYNmuulM+rixyg2op/pc8RAMCxdswnq9PgYQgrW87tOAl+bqfb94A1hs3hnhUrWpZh9R5Z9R1ZmFB6VXPhiyAGfBbyTSz3LxPfOVVzYfPCefz6o7/IZuQA86Wneq62P2eyelFP7JP+36f/LfpLccSaN2+OS5cu4fDhw6ha1ezYf/HiRTRv3hzVqlXD4cOHLUq4TyJRTIaOeAReHmVKXXyJct528FgzRJTH1qwxim0ekokH3RcnGKdix9TMXQj31p2VbdWrczS79KWtUGN9Oez6QAba6Pr4EMsgyIAeC4PSOhU7v+ZuITVqv0780gw+fQ+beHVH93o/ZX4bhAzfjW9zd2BQiQkN3V9/oww+C2pmymP5PzoMSNJNpIhiU9Ms/WqMbbDi13if8nn5N0RBZrZlfnf9YwsJRGFKOk8bM260ZIJlJFtoMOI3/sj/l8abSOlLW0nO9S0/isPV4EJu+inVEeSPwjRZC++uXGo/xRWyun8v48IYG8sqf37xHa5tT/8sGk3bZCG/wynL8qyeQebyMG4uV9TOzoU7p8IQKWvPrwDvtcn8Wvi+Iuxp5YkX0o7h66AmEi/+64Zz8AWRzsbGoN6yI0CdWihMSXc7Nksbs4OP52JJ4waW7UqdFoXgMfr7mXnnGkY3bIewvR4cjAYArq0LQJV+p1F0/bo0RgEG2FJ9cSLGpR1G1wrMTCo2NQ2PVrzG06R/EoPA8YmlvgtWz1SMmUZ1aq86JFMfK+p1+CLGVM82ldfnyFmsbKr7uBjrzH3TgQbv6nG8xHiHxrSO/beR0FK2DHE3Lk+Oc6D+ZwlI/yQGaQNnlTp2S6Nzo2J4vC0id3MMpWn9biz2vqmbCRKlLmmNjC4LpTKMadzN0+6eo6q58IIWwQGTRHJXlvG3Vdqq22vClevL0TX/DLlr173MIwBQtLEBPDvLJvNW82TciWikR9zCpcExqLYkEbedbVBWNb/TxnzunpvI850u4Thr94byqTzu7fsAV6u795+qWcfAE8ljkw+01Q1x4JWZd+0TsfzMZS2R0uEbOBU7CjqFY+N3CywFTKdiR8rsSISM3oVz/wjBnvAVUj0T0g9ICJE5bzlwdLSZl9LGIH3TvGHMc6drG65opWufZCXhscRR8EirwE8YV12vgBnBIVJ+3t4PY1C1+Xkkt15h2U9WzzGv4BoeP/wMqnRPN6UT6T8pjljQa1Nh8/4/jiOWfwtpH92PI2ai0aNHQ9M0REZGYsmSJcjKysLNmzeRlZWFb775BlFRUTh16hSee+65v5vf/2pamXIQiA5zOwGK2rGjo2bCs1w5rpUR8xQePi75IgH6ZEzIiD3CmOZ/3PPsGQUne0PVXCi8eJEj7nnm6kKYOAl57JC1QarmQn6PCGS/E8MFLnGCsYqPIWqUjOTT9zBuPhLJUauIbj4aaUrrrp+M9aiai5vuddw5ypSWhLCU2ZG8nQBwp2sbDsXNy00y+6kAkISwjO/ltrn7DTATlW4PD7S8TydNpS2KzqO9JH7it7CTlrcyWABpoxCWWXJKSBr1+I0/mrSDRKtP7EHjBbp2nGJqAbqpGeWr91WCFE9H1ITGb1uJrPet7edFIp6dvuGoNScRqYvD3WoJrRZnsV7/1xPhWbGidI/y0bjw9mCnMmfiHAgcl4T8DqeQsrCNlM+jTXNTffSbhLD0z6J58Gwq37ffYVQ8yjTNT2UyZMg9rdiUazyNcip2ZHabL7WBqPasRMQf2cqfq/g+SoJcCbIbInWUSSISwqzKJ/j5oTnt4VTs3PGchDBKW6lbBgeL8F89Qio/+vndSFnYBl0rsM136vQozAoOktIEjtdBXYz9KPJDMO/0HMkfRUzrTggTT0BWN6tuKj97RQusbFrbsv/oWoN39fAMBZ3DebxDAj8BmCnSTdUf363rAFutmlId7sZl/c+YcBc4PtHyfRbnUvG/yBsArpyg+ZN8Rnu0fMhUJqXZ++Ysab5NmRMBW3AAggfvleZyK77ovvHUUew3p2LnVhxOxY7jbe5YjrWAX0aZNs4054ppjevDqRcdWBGwURfCNsp+jQBTFBB5+SiAp46MalxrrAQduk7zlMiLMfYiCRzGfprpw+banR8yodedECaWJaIzGvklU1IA2LRkAQ6+PNNUhpUQBgA9OvYzvWtGIcyjTXOp3uJOJ1D/8wTLcWAk4jH+xF4JpMZrEzupu/JktLQ/6d5tAAAgszezuDEKYQDQsXyRxA/B5JOlg1i3cXwZyyo8exZF7ew8jVOxw7ZZkaxdKM/4RtFI6fANfLbq5qy9K97gv0+9yE56j95m1/xfT8T5dBbzzhgn0nnoisRL2xfZmPf1qsStIESe7CWHvgWdwjEsJfM+WMf/IP2lEzEAePHFFzFt2jR4CP4VRMXFxRgzZgy++uqrf5rB/wUynogBDAlszc7Vlho80rzf6BOFCit1TfYDsSOxbdbcUgU5d9ojkbSVTbnpgDvNH10bl3YY4+aOMG2Mzg+PQc35iZZ5MpeHIeWBJXAqdssI9OLESvlIm+6OJzFf6I5B8HucTWZ3urbBjbGXsCHsO1TyLGcSKktbkI1pRUpdHI7gIXuQ9W4M16BRmtSvoxD8wk7U3FEd59tehJGsyrTSrF9cE4xdrXQhqfIftXC1/bl70uCeed6BOtPlZ5L7hgMN3k9Azo8teP8ADMlx7brlaLwgFo3edK8tXZm3C318Iy3rr7itNn4J+t2aLw8Pbjoi5vWqXw/XWzWAd3yyZZ9ceTKaC5Gltdk4ro3l3Et/WWmTo16L5WZXxvuLc7ZjSEkA67En2+BoeAHOjYzh5pPXHo9CpR9lE82cyQ74TU4wladqLsTs7ydpSgGYTqvvpvG2uk55uhy6ivE10k1liadUPds+wgX/P9NPpc0P7vIXbWyA30P/4bZt7tojpi2tbq/69VBw8pSU5uKaYBSuqsUFGSq344gR8F6TLOVP/zTaFOTWWF/uGw4ceU4OccHngOlR7GS472CovyxB4PLRSB8w25Jf//jhaBWSjV+Cfrcsi2h5bgIGNLAOLG/Fn6q54Hh5NCovT4JHmbLcZ8rYf3RKayzjXt4bq/LulpboXt9RK568Gvji+AsN+Joglu1ubXAqdrQ/cIsHfxep39EzGFlVk6572ptibfz3bsv0rFBBir9npVToNGS4ycz9z8xNquZCz9ZOjmhItDR3BwdGEWleznaMKJmX7uXZGflQNRf25N/GRP/Iu/YnUeSEWFT/hj2HL7MSMLaRA1nvx6DRG+7XEquyqJ6s92NwfKj5xLi0+c6psBOw+P2/lzoWRb7dlWW8rmou9OjYj1uZWJVp3CvQWu3VyA/Hn1f4XHIv81zn+s3+Y07Egl/915yIpX78952IpaSk4LvvvsP69euRnp6OW7duITAwEI8//jjGjh2LihUr3r0QAz3xxBNYsWIFmjVrhkOHDv3p/H9ZEAOAxMRELFy4EPv27cPly5dRtWpVtG7dGkOGDIHD4X7BuE8y0aDu3PhlrN+yShdYpsbw4MfuFkivenX5JP1nFkQjSXkiW0D99Vu5DA8PqCf2WfIglgG4nyhLrbMUvqjM/O4RkplXfs8IvoGyBQcgv0F1eG3aw82k4GnD7MytXMNvrHNc2mHJHLE0vugamZwQPXlM4zDypbXhXtpv1X+XBsdg54dsUSrq0ErymTCWZcwr0ukxDtSdlgCvRn5Yk7AKANBqahzqTE9A/vpGJp+W0tpCRGMt4JdREsKiqrkQ8UYsh+q2am/KonCEDN0jXVc1F7p3HYC165e7FYrdCVxWwsfpFxxwvc42yq78fLxWEhxae9WBg2NlcxdbaDCW/b4Ejx4dgLIPZZdah7Eeq/bdTUD5M++oKKQb893+vaHEL/HV/Os4DvX//IkoTPdhJ5UDj+Vhea/2iN+2Em+fbYaklmX42HC3CYnY299kgmPsCyWpMhb5/aHPSxYKlux3YhA4L5fHxqJ3qah9K3j+sc+yT1KXtObx/QDgWv9oVFpR+qZGbMfNRyNR/tdd0v1iR0sO+ELk0aY51q36rtT30TgOjRuwkCWx8H890XS9NEH6XoQPgPkBE0DO3eZ5VXMh6VYh3hw8DJ7bWVgG5dMELpglfD4bPaN68edgVSfxfrHwBqrbKvylceuuXYD7eYrK/yQrCRM69kdBVg43JSt2tETawHIIfm6nZV53ZRHd6RKOTUsW4KPzwabYnCJvjpdG40wkA2sxlvNn2i/Oq3ebw+JP7EUPH+Z/NCVjD4f0v5c2ElnNN6JZOtW9Mm8XKniW5QLUnxG4myY8jQaPHYKqubD4Sh2+9nk2bwL/RVlYt6slgp/b6ba9zabHod7OfHht3GNZfs+Yh3G9eT2+rov3RB4vrglG9Z6psCKx7m6PDEJx8kHLNp78NRT1hdiRTsUOj/BmuNC8CnZ9YDbjteIl902HFDDc1jiI+1iL6cL2euCTevtM88K07B0Y07Ct9BzvC2Iy/d2C2Ouvv44ZM2agd+/eiI6ORpkyZbB582asWLECYWFhSEpKQvny5e+5vNWrV+ORRx6Bt7c3AgIC/vWC2H36e8idj1hxTEus//kbdBg5EuVW7+InVVYbgc6Dhknw9QB4/j+jgQOsTz4a7SrPg8kCDECAYHTdLS50vfDB1rBt3mu5CGuvOHDwZbMN+IKc7fD1quR2IjSWU2r7osOg/rLEMs+f2Qzdy/3Srs3O3o6rxV4IK1sOhcVF6OHTmvuNeAU04jDz4onVvS6SnvamKHIdKZVPsSzRF1ASkOZF8Jg5TsWOjzJ34jX/qFL7nMow3lc1F/xXjeRoeKrmQq+U7mhfMw2zkzuY/KG4sDsoBtW+ZRuEwB9GI+ilJKR+05pDyLtr059RDlild/c/ZWYkMh+dC6dvOFBU6LYMcTG1qvPPjBd3PJeW717TWbVzQGYnLPff5FbQNeY1lpH2RTSPQ0d0/bEoKRaTqrnwQOxI3KxpQ/J7spBuq14dKCxE/LFtUhnR40ej6tIk6US8NEqdFoWMfnp4CqK2B/qikoC4Rj567kjVXOjmH8Uh6636gPNe4v8oXk+dHoXg53dK12xNQ3hsSInnr6LR5M0jiD+2DYGbhiLo6X24+Ugkyv/G3htj31K7eoR15mE2iDKnxqDO3iJU/GmnaTxuvGlD5/JyfDvjOFh+tToWNdYD1qYsaIPgBXew/qdv3L5nRv9Ddyd3RsXXvQo4YXs9sEUL1mPnCSfsdCplReSf5e69Fvtn+dXqeHvFABwf5n4DbmW1AFgrQwBmTicC7NB9ANJc4lmuHNZmJPF6af0VqfHuMtznzp1CwKp9xnZc7xcF2+1ilPvHrlLnmWEpmZiwsy+CBrHYohTWxqquHg8+JgE8EYXu8cKX9XdL735pFjtGIsHMqNAhcucDRr+J3I13MY/4/Vh6F/wUuMEy/d34FdOTL9yFZ2PM812VKii8cgUnXnPA56MEKe+1bmFIWvvWf4YgNv5fJIh98vcJYrt370ZwcLAJ32LSpEl4//33MW3aNDz//PP3VNa1a9fQtGlTPProo1i1ahUqVar0lwSxv+Qjdp/+byhtlh2A/vJ7JDK763Kr2aR5MMpsJtHnyFk4FbtJCKP8ItFkRHCz9N+4YPd6lsXduVh4A2nfMoTGrMibUjp3QpjVbxLCnIrdNFEqnybwCXBeju6DQbFXVM0l8Wm1ENA3BYJWNRds1arqeZMOWNYNAKFz5BhDlGfw8VzTYq1qLlTfUQMeEWYfnLRvW6HwwdZwKnZU3MaAAPImOiSfldEN22F8I4Y218OnNVTNxeHDU0bV5+VRAOPGu8tIPJO9e97PzUztIBMaI4n9Jban8OJFLC7pb7GO0E8uSNfoFIn6z92YMfYv1Uv+AJTmTseT2NSiIuZ3kAPa0n3PsCZcCAP0INOiECa2xZ2ARf5vYlvoXkHncGnhFdtS2LG1KV/moyWbh5KNU0GncNO4UDUG/OG/brjUF0YyIo91HDbC1KdN5sdajlX6nTvJoW/2mjNhwrNiRVwabI4FZRzDANDmTRkRL+yzOFxse0HiWWxDxvfydfGbiJ6T2JaKP+005Sn/2y4J8p+o8OJF3Py5uqn+qktZue6EMOPzCx6z07Tx6hnZUxLCAKBnhVt8HCzN3QFVc8Fjk49Uf3F+PvepFan17iek/1YgNHRCLPYTCWG20GApbaN/3OGQ/0FPsxNvEsIAoKhKgZSeyjUKYarmQsqQWaj4004e9Nep2BH1OhtPFD+Srlu9z4saN+R5q26viczu87H+p2/QM7InD+0R9Xosct7SBa2Blc9Lz8FKCFM1F7pWkP3GnIodZ55jiJPRrsdM6en7QOtiLoTlTHZAG898uBbnbLcUwlTNhROvO1BW3c3jj1ltzKkPnIodixo3xPFhs9BxxAjLdw8A3q7NlKBnY2Vf183NfjPVPzIlA0VXr6L5Hn2Ldb2fENZDUOgU3bolvW+kBBXpyCt6eBhC0HX3LorttQUHIL878zk8E+fA9mlzJDRd45xNtCDEH0GD9vE1qrS6Xl/7k4nf9KWt8I8/2vCyW78Ti22zZDTmU2PlcfJcqh64PXU666uC7Fz47dT9dQmtWdVcKBbMQuk77QsZQVp81qIvXvqnOuqr8fv6Q9fc7hdUzYVp2TtM1636hhSQNRaafULpfff5iK3/wd/G8jLLrTWfFt6nv4/atGljCTL4xBNsXv8zgtQbb7yBwsJCvPfee/8UT3/5RKywsBDTp0/H999/j2PHjuH69esoKGALhsvlwty5czF27FiEhITcpaT7JJ6IbTx52O0mruK22rj+wFlLgefV9IP4OFCPyaFqLjSZF4eGb+t+QqKWtTQBCjBvXh0vjUblH2StrFOx43J8EKr2SHObVyRVc6HZtDg0/PEk1yD3dPTmiGTByd5Ijch3m/du2tN7EQrpf+CK0Qgam4Tb3SJQdp1+AjQ1cxfebO1E/OHNllpGK3IeugK1eZVS2291j0xQxHt0AvXPkBU63cUhMdg1lWnlRIQrW2gwCo+mQtV0czYAvF+MvItlVt1eE+ffagSvTWzhILRGShN/Yi9sHp66QB4cgIyn60ljUqTqO2rgYtsLpj4T6xZJfL492z6CNTt+k64TiUhc7saF6BcJMPANMk0yEuW7qfpjW4uVJo0qaXHFaz2adkCVNTZc6ngNHuW8UXT1aqlj6tSvoahXYjZjVbfxt7s0gFlzbExnHJvif0LoI+p++BLWNqsm5W29+wnU7n3csmwyi+tw4CYPMtvjoSd4rEQjMiOZoVm1TdVcCNo8lCN1WhH5bBr58PJRUHBCD2EgttcdnYlzoM7MBFxYHcIFAbHdEZNiUWOhGQWytLJLe+ZWaaNdj/H5NeOjGCl4LFHKrEh4VCxARpeFvOzUGVHI6DPHNFas6r/RNwp/TJ+Dzkd6Y2PTVSa/JiOJJ0AAYKtZA4Xn2XvrWbEi1qbuQMTe/rzPrg6IRuXl7F16Ie0Yela4ZeKBzK7vdXwTNdk+CA37m8EN3PUVUe5PzXHE8V2pz0JEywSYz2riZ7Old+Za0S308412yy9du/JUNIsdVwqpmn4a41SYKf6QL35DRLlsvNwoRhpb9/rui9eJmk2Lw+ExM92ODVVzocfxHih8ULMsg/I9l5oioQoSaeMdUD6R46yJdXXt9wzW/rRIWhvENF7+DbFmx2/oNGQ4Ni2eb9mnrZIHoM4jx0x9AgAPPjuCr13uyN3a4q5vrebI0B2DcOt8ecnio7TxZDwR9/L1QUHeCRP68H+SaWLIK/+aE7GUTyeiTp068PTUFRsnT578W+tZu3YtevTogbfeegtTpky5a/pdu3YhJiYGy5YtQ//+/dGoUaN/7YnYrVu30LlzZ7z88svIzMxE5cqVIcpz/v7+WLRoEb799tu/Uvz/NBk3/yJdf+CsKU3wd0yTIgphlIY2vLZaLBaVlRBGacUgrQDbvImTT8IXsyWtmVOxI3uKA0n2n/h14yTU54h58+f7QYKkQRYXuvhd8gmFsf1WZOTpXvOl92cBeyn+h1Oxw7N5E4R7lzUJYQALsCqWmzNZCGpbIoSVpkVr/MdgPsnTvSe3juR10z1RCBP7obQ2GesShTA6/dw1dRbCp7CxIsI/UwBbp2KHz4cJXKNI/XJupByIWOyXy+3Ow2vTHl6/EVp9ZO4DUvrC1AwcGzGT81nUoRXrm93MHFcUwqiuHmGdEbxliKlup2JHcVs7tJVN4VTsWLPjN30hb+DL+2xKxh4JDtndAkunzdjI8gaOS4KXrw9y33C4FQDLOzMx9mQbqc1Oxc6FMDF94aXLWO6/CcV3bmPt8T8sefHw8sILacdQ+Y9a2B+5zMSnWE9Rh1Z8zIixo6TySoK5WwlhANOsW41b8TfFdqL2fJXYBQDQ5i09PhfF/ALYieIbGXoZBLVNgV2dip0LYR9l7sTBYU0lnjYtni/1zeX4IOl+2oPmk1SRxOC2YluMQhghuFkRpakzk/FuFMIAoFvPgUh+b5bl2HAqdo5caSSrjZoRlVV830kIA4AGG2U4+NRvWmNFXiJCYndx9EPKH/rZaaksq3E/LXsHTr7sQIVf2CmiV5ccOBU7F4Td8SQKYQBw4mndxLPo+nU4FTtq9ErheUgIAyAJYZkf6sIF+b4a33EjieM14MfRkhAm8pg6SH42dI8+RxzfYU/+baiaC7d/b4izqxpL7c15y8HRMul6lWVJ0nvuVOxcCCuNct90cCGstHncqdhxtf05/l57r03GsiYKXumln8ouv1rdum+iw7hyIO07Oc6oyK//2uHw/SABmXeucX5E4YPiDmYL8T67H77Ey/CPH86vi0IYIYcCgPJJAjxaNYNXIz+oGoP0J+r6+BB4JO6XFXS1a8Op2LEgZzvSvojGmh2/oUeLTiiz3jqotFOxS0JYr5Tu0j1RCHPX31Ruk/n6PCY+W7fvtUB+jx9EyGiziWf2FHnN8CjDzFkLj6RIY7ToHDtJFoWw+/T/hwoLC/Huu+/Cy8sLTz311F3TFxQUYPjw4ejatSv69+//T9f/lwSxjz76CNu2bcO7776LU6dOYfjw4dL9qlWrokOHDlBV9Z9m8H+VxAlSvFY7oZp0LeBV91o/eulFExYxuGbqDOb7c+Z5B2q7mNnIuJOtETNuNArPnsUnFwKlSUYUGADg2IiZ0nUAePDwI6yiSAYTLQZpNQqZ3Xo/LbXFGLRR/N31sWcsrxt5Eq9Z9QXdb/1urGnTWXTomCmvVz0WeHHD0oVSWr/J5hhuVpuXBTnb4VTsaPTEAak+W80aCBm6x8RX9P47yHpPNn1xKnZsvGmD386KlkJZaQKoaOIkosW52+SQidnJArZQ75k8S0pDwXStBGBbrZqSsJkXfQ23f28o8RU+ORZnnmemdZ5bmfPy8TZ3LBUQC3K2I/7ARgQ85TL1NQB47HDxUyy6Fj1+NApy8/hzvJvTu1ivLSQQauhqzkNB3gk0eD+h1P49Gl5g6suLa4It8zgVO1KXtOb3KOg0UXFBAXpWuMU2Y0JIgoyPmDDcPbgtL5NOD7o89SwyHmN+WAR73moqM7ct3nfYkm/6vyK0Hlp+HMev3enKTIk87U0thTNVc6HyUbapIERU4zu04fuFeD9A7g+RyByJlA653XQTEatxmWT/CV0OXeX9506QNv7O/EB/h8L2MmTf8yN0pULRgWMo2ijHVVM1F24+Gmn5blD9lK54H7NcCFg/TEpjq1kSFHqXLiCc+U0XVNofuGXitch1xNR2q3mNTqnGpbEYi8HP7EV/XxlSnsohf1Mj3/Tbf/UIjGnYFgdemSnlJQh4Y153fQIA9b5KsHw3xHxk4i5SymA5NIqV0OeOVM3Fg8zbSk4NxD7r0eQBy/4Uf0/0j4Tz0UHY3Ow304mu3zusTeK6czeeFl+pw/r40BWmIFkcjuZfxfFwCGJ/dDhwUzK5y17RQqpDfGapQ6vxawMq6369qqabq5MPdI2FiQh6ep9bXkOGsTE0uqGOrOjlo/B+I5Rf3w8SeKD5sdWz9PwlIWC8fH2kOgrPnZeEseJ9h1GQxQT79IhbPO36Hxeb9jYUnmKYXzsEvcSEXTphdUf5PSJwsfAGnAozdydytzaKJL4njzzMFDe5bzhM+bLfcR9uhcoVlU70DGlflDKPzceEVmrMuzaDtTXty2hJwfAfRcX/og+A1NRUnDx5kn/+Tho7diwSExPxzjvvoHHjxndN/8knnyAtLQ0zZsz4W+r/S4LYsmXL8MADD2DixInw9PS0hLD39/dHbq61k+V9sqbc16OkRYXIy0fh175rtAVJtwrZhBOtm1uJE5CXrw8uDY6xfLG3zJ/Hf5PgU2d6ArYsmAenYsdn9fci8TN2WrSheWU4FTsCk/WjZysBka4Dgra0ZCNCgBBWG+3i3YdK3ViJtP6nb9xuui4OYRPmrV6yg7OqsdMCYz+kLArncXXEvjP2o6q5OCJlz8ie/N6Dz46Q6sl90zyJ0/cwv3bSdVVz4dfrlVB4/oJp0QWApJZl0GiSGcmqc/lC5ERd521J/TqKnygZ67Xqo3uZ4MX+qO9VyXRf1VzIdC7g/9u+KMd5I4Ff7O+yD8kBdWvNTUSd6frGjQRdIx8ApL6Lej1Wumf1rABwnyLjdQDI+FCOD2TcqBWmpKObf5RprIoLN+XN+FD2x7IFB/D/hOblVOzo0bGfxA8Fz1U1F+p9YTbR5EqSE3W4b1bAa4n4PCsRa1N3cD60V5kwa9uin4TQu039a9VOY7/sf1WHXy9/nI31ItcRKZ4etdup2LlPIwCkfRltEjg7jpDfDbE+VXOhxtHbyHlb93Hz/SBByn/h2RgpvVOxI/tmLbflORU70zhHy6ee/hN0v4xP6jGNc815sslixn4fUz9VOsROD7VXmVY750f5ZEt8L/O7RyB4iOzPIb7X9L0vYjn//UdYOV7X4OP6+ni56CZKI8rf/sAtfBbUTFdGtGqGxrvLSG23mkON80mtRC/+m3yInIodF3fU4+mnZuoWFFa8GN8NkciPhtIFDTKfeBn5cir6Cbc7Aa1HkweYEH/ajl6HL+L8iBjEH9sm8Ri+pz+uPBRqym+sv8OBm7hd3VuqS7zf/Ks4eCTslzbJ7voWAEcQVJuzNTx4yB40733MUrDcGlYeOVEsJt/R2zfQsP9BU5oTr7P3JO3J2Sb+iB+KXRg9fjScip37oDoVO48HCjAALpGmZu7iZdFpsfgun/tHCEectXpmBXknTM/I6LMIALZmjaUyOowaye9xpcAafc4wzuni/3Fph3ksP+/4ZLyqPSSl7fbwQKkNxvh+4lildB/VZf8bvC+bUgJAw7fYfHHxGVkg82rkx3+T0uncyBjpGaqaCyEjzOaRxjUHAILGJrkdW/fp/57efPNNTJ8+HSNHjsSECRPumj4tLQ3vvPMO3njjDQQEBNw1/b3QXxLEsrKyEBlZenDdqlWr4uJFcwyl++SeGny404QaBgDFt0uCpC4Oh1MRtPxCYGGR1uxawyHW3W3GjC/9gdu33Gplkk7qE7q4KXMqDEI+b4IDL2gRUtlWi6BYhlEIEu9ZEeW51SuSa+yp/OqL2aZr69y5pkU3+IWdUh+omovDpgPApDMteNli2+nUhogWHgCST5mquXAkVo4lBABBm4fCVq0qih0tAQBlttSHZwUGAy0Gfjb2F/13KnY+4dP/ova6Vjn4hZ38RIm0omL/ORU7Jp4Ok8qkz9HbNyzrpHp6NHvQ9BxoUXMqduROYoJnpR93Sjwa6dq6ANhq17ZsK98EGOLjGPkiQab8uQIpHR9/JSY0pY0bEpqqmoG9TJQxubVUnvgt8h3wuuyAXZiagQeHDucnhkR5verydonlBS4fLV2nbwpmnNFlIQKeciF7CuvrlxuxzUDPqF5QNfcBjY11Wb2L4jinNLOzt6MgWweoIb8HIn7SLRCZ94pllr1425ROTDN/7pfwm1ISpFUwyaP8BOQR8CPbWK4+sQfrN+oAKqrmQmFHdqr463WmLFiXvQvqL0uQU3KKa+wLq7HhVOwIejlJ6gtVc3GzaeVjdhIqxttL/ywaDxzsA1Vz4dSLDnivTeZluWuv+K1qLknLvqRxA12B4Fnecq6+WHgDHmX0WHIkyBEV7zvM0fS6PTIItuAAy+dr5LHGIl3ZU+7MDfRs9ygASKc3E/0jLctwKsws3WqtoHaOadiW3fPwgFOxc2AgY/+I+T0rV8bBqO9N47d7j6f4f1ofd73eBqubVUfNeYkI3jJEmnv3hK9AxZ9LrCs8bW6fz8Raxy1RFQF2ymZEszP+FttRZkt9/lvsBzK3dip2eFaoYOonABjbyIETrzuk69f6R8PnwwTkd49w289ielJAUZxJANxn9sxvTVDBU0Z7DPcuy61VjORU7JbBlqmuHg/0sWyH1f/433+Q5p+tc8yoiSSw3OnaxiSQiGk/C2oG/zK6gpAEWaKTD1TleXtG9ZIUg1bPWFzDxTpFYREAj5FG6UR3CspXa56OegkAPVp0ksBIVM0F+z5m5UHlxJ+QAagAdtL3HxXQ+V94IvZ/QZMnT8Z7772HoUOHYvbs2XfPAGDcuHGoUaMG+vTpg7S0NP4pKCjA7du3kZaW9qdP7P6SIFaxYkWcP2/WfoiUlZWFGjVq/JXi/2dpZcpBOBU7R6cCSjT1JT4eRu0rwMxtKB3lmXSmhZTfqDEFgG7HekqTz8hJY6VyL65hyF6q5uJmG2KZShKLdO+9Jhm+HyTgeJs76H1En/iMJNbl5c/M1YzoY8YF2IrKrd7FTXmMdDdhUyw77DNmkpVst1kKjfsmzkTWD2Gm/KfHyJOru0WyzPHyKLx0mccrWh2yFmvT5M2zccN0YXWItDiQjwKl+f2HRZbt8tyuLyQRLh2Na08rT8vNd2jZCvyaFS/xhzcDAIrat9KvHdjI/QO8L+p51ySsslzQVM2FSt0yLP2TxHpvd4uQ2mTsy/gtP7M642XgECIx/plYPyEIdjl0lQtNZE5X2qbGf4J7U1/yVTPWd+pFNiZ+XTCNC/meJUEh63/ONnM9Hb0lYTh9wGzeb1nvs9Proo0NUOGXnVIfNnw7QTIXo9hPtmaN3b4jxnFFZYl8E9kaB8Gp2KUNjlX/GGOrEe83H4lE+idsDhp8PBfrf/qG57nTJVxK2/vIecQ1bAev+uzUxSPvNL9naxoi9SmZnZXxsPHYXJT200XMXJYUGtTe2KjHmJCaVBmnfg0FAEvTMlVzSciFnmFNTBs18VkRBY5LQnlnJvx/HYn9r82UynOH0mm81vCtRKlM8TkZn5WquTCggQPrsplQ7NXA11SuSOt++xbxW38xXe8Z3k36/1HmTryRoddxfsodrNn+qyW/RJH7Hkf6p9Gct7bOA/yZGftNpPPDomGrVtV0wm41douuXjXNp07FLoXlcCp29HT0Rll1NzKXM7+ogKdYWc6jvczCkiHcRGkk8kSodlRW1nsxaDZNR9jla1SJT+nqkLXwatgAr6brMasob8fh7MSn+u/eAPR3N+QbdsqfO8mBspeKeR6nYsfpCGZltGXBPMt3VzxxFNfL1BlRpnd/X8RySwGn7toC0xgninotFrYgf17n8twEnq8wLRMr8hK5/7CRnIodXr4+uL4uoFQh1livCNJTmtArkohgvH/8THR7eCAASDHySpsnSTkq9o8I7W+c70SSrgkYCcNy2qHw/AXU+7LER79aVTgVO3a8H8WtPJyKnceNI2q8IJavc/fp/54mT56MKVOm4JlnnsH8+fMtLfusKDs7G5qmoVmzZggODuafEydOIDU1FcHBwRjhxjLEHf0l1ESn04kDBw4gLS0NFStWxJQpU/DOO++gsJBNemfOnEFQUBC6du2Kn3766c8W/z9HxjhigKytAYBuDSNRfOe2vnEJ8gdsNsRv/olPBp7Nm5QaDPdG0W10GfeChH5IVNTOzjf0Yv7MqTFo0jYT+R1OSeUZ6eIzMTw4JJGYLmVuBEJGmp1oxTT2fYCrlbmO2dnb4V+mkmW7KIK9mCftu1bcTt6p2HHh2RiuaXdHZ55zoM4M8ynDqRcdqPeVft2jTXMU7z5kEhpFpDy6fn1dACqWwGaL16k9xvaLCJQAiy/j4Vsf8dtWyn05MxIhcbt4+zKXtZQAOPImOlAls4gH8gSAE685cOhFHSnLiCJXmhB7N22s2A/S2FkeBv8BB3CnSzjKbNhj+czFcihmGNGthyM51PLdyF1g43vhnUhc+NfcKGcZZ8qqDVZ9IMY3sjUNQfwGpmFOX9oKaQ8uMm1Qsqc4OLiOWJ5X/XooOMnePWz0BTrnWbaPYlkZebV6ZwDAq349rNmzztQ/d7q2YUhljw4Cdh3E6RccqPu1OdizVd96BTRCQUaWdI2CNdMYePKYho+WP4ajI2XUNrFsW3AAinJOoDjfjKDa5dBVzEzuyP0rY14ZLaHRXXwmBrs+0M2Ou/UciOJ9h5G6pLWEKjj0eDYWNW5o2UciLwALKu23zMZPwESKTU3DoxWv3bUMd31mfJaq5sIDcSNRIfs61q1Zqqf3tLkVKozlnvmtCeo8cgxp37ZC0Q0vhIyy3txdezwKlX60Do5s+Q6VjD+xjQDQ6v041JmRgNA9XjgaXmAqo7T2E3nam2Jt/Pelbr6Nm/PS3m2xzi4Dn5V8fI33xTrulWonVMNZxyVeBqH4/Vm6W/15Ex3wnWpGICxua4fHDpfbPlE1F1Zdr8ABNRbnbMcQwdTbWJ7xt0hGxMdzI2NQ8Uwhts1kp1vuEHZz3nbw028iGpuUrvGCWAnl9M/0zb22IW+Cg5tAY6Mv0vc2MKEKl1Y28ZD+WTTSnpRRM4msBF0AuDwwmp9WuqvPeL2g+M5/DGpi45f+NaiJx7/4++KIAcA777yDt99+G4MGDcLixYslNEaRTp48icuXL8PPzw8VSk60N2zYgEuXLpnSxsXFoVy5cvj8889Rv359tG3b9p75+UsnYi+88AJOnz6Nhx9+GCkpcoDK/fv34+GHH8b169cxZsyYv1L8fYL5tEIUwgAWu6bweBqcPrq5WtEh80Igasf6+Eai8g9Jlho2sjUX61WSKsN/YiIXwsT7Rk0aHd+TdqlbQ910VdVcyOw1D14+ClTNBc+KFS0npI/qulDQSTftmpDOTC9HN2QxxTy8vXl5lP9q+3MmvikWT8uP4qBqLiS/pyO/Ec+XBsl23ySEXXucmYaRGcn+12ZK6UgIo3amLmb8rkn8B/fpIV4qv14OoXu8TP3WZdsYSWNKfCXZf+L/l+cmoOjWLRSmZZrShcQx4YRMD/2f3M/vNd5dBqtGfYwqy5Kk9jZcKvtqrUmO57/dLSwij0RWGlSnYudaP5H8BzCAkhMPlrXclF1YHcLNKp2KHUWVC/g9AJZCmKq5cG6U7kdkq14dquaSkNycCjNpcyosThHR2dFm/yNKv+JaVdxU/dnm3a8Nvg5qgpO/6n4msalppgVfXKTFsgBwISzr3RguhAGQELLE8kQhTFqUT+rvHm2CxXZSOUYhjIA3Ur+Rta50ukZCmPFZElKZ+itDvK37dQJeSNNBbIxCJ/EMAAUZWfw3nRx7/sHaW2bDHnj5N8SyJgr8JidIbTSOs8LUDEsh7OoT0djQvDI/dXQqdnhfLJTasOuDWYgePxqpXzH/tXVrlgIAggfLwcApaLFxzDoVO7p3f1Lvr/7RyOiyEFsW6L614hxFQpiquXCjT5Q0N4j1EXU4cFPqN6v6iz09cL5VFfleiRBmfF5WZZBAEDRoH1Y7v7bkw8PLC1U3yGs33b/+WBQeiB1pLrtzHvfDFdtYZwYT1I+GF+BMnP6+GYUq+4dxElKieK/IdQROxY7TLzgs+/DcSDOAkdVcJP5P+46d6Ns27zXxQt+t34m1zHs3+q7RFuldqPPIMQw8ZhZSS/svttPIF32LQtiTxzTeDo8dLnhWrmx6j8RyZwSH8HJICLOau1edcH8KMy9nuwnxcc/kWVwIA5ipPj1X8bmJQhjl3RexnNfrVOxo9GYibI1lU32RGi+UYx6KJ9kAEL6viNeXOTWGx1gT23l4DFvDU2ZHAp3zsLCfHrQ7/sRe/JxnHVagOKal1B6jENZqapxpnIq/bbVqSj7LxjnB3Xgrjmxuef0+/T00Y8YMvP322/Dz80OXLl3w/fff47vvvuOf33//naedMGECQkNDsWuXvhfp0qULHnvsMdOnQoUKqFKlCh577LE/JYQBf1EQ69mzJyZNmoQtW7YgNDQUH374IQCgUqVKaN26NZKTkzFlyhR06NDhrxT/P0+q5sLJEtMa4+RKUKiciotNm0KxHCuymjhsIYG4NDgGOW/rC+kivz9K5ZPylt/K/GBOvajDtopIQTRZFZxgC0nR9es4+bKDT2qFD7LgxgG/jILXpj28XDH2EwDcfKglLy/1Kz12y+WBMoQwpa/3VQIeS++C1u/G4q2MvWg2PY6XXe1b2XE/fF8RAGDHVwyBjjbSHYfpR8x5Exx8g0v5gofs0YWyjoslPopcR7iGWNzUkOO6sR/pO3JiLKrbzP4ETsWO8adaceFlTytP2DYr8GjVjPOwLrUp4hq2k8oDgMK61SzrTJ2mB2y2Whxo4y7y4FTYKaOYtvDSZViRU7Gj0RuJUhspX41eKZJZZWaP+aY0ADtpEcurO4AJXV0GPstDDRj57uXDNsv73tAF6Wt+ehmUh/jqX+kyyjuZ0LsuZzfgaUP9kjhequbCrOAgqT+bf6WPJauNJdHxYTLqpNiOYTmyhjpvgkPiS9VceC5V3ywTTH1pQgw9Q0LYKy705GU4FTu0rFomIdQW5O9Ww6tqLnwdxEz3rjwZbRLGrPgBANcEZrpHoB+A7rNiRe7mqpuP6MFtrU7yvdcmmwSRqkuTuGmjWL5TsXMEwxO/mIOiExXt1+O3VVqRJI0XALj1qu77LPZBleQ805jw8PbGkis6gMLWsPKmfjMKPH9Mn4Pr9T34u+lufi/Y4IcuA5/F7d91H14jjXtc93chUARVc6G4oACpE5pwRRGRqrFA3OV/22X5Xm2dKwflbXegr5SGIP8BtjFWNRf8/8Hqrft1AkdKBJgybMalBsj8QJ9L6n5tNt9GZAvUmmt9aiJtfJvqcOqq5jKhBxoFoJuqP2rPltE/qa8JUfitjL240cccUuTBoTJSNAAsbeJr4unCszHoZogLSWbKTsUOuyEknjg2UqdFSfwva6JIQsva43+Y5mxxLBHaqkhGpGJb0xD09omAFamaCyP8GLqiGC5DnHOoLFvgNcvxQmm6N25v6hsAWHUiGYXHmZLr6oBoaK84kDfBgWuPMxPL48/K82eFufq7p2ouTK2r+8n7T0zEsKpMcdV0hm5GmnnnGlSN+b1W/qMWHijHfLGurQtAD5/W6OcbLSkQ8ntG4K2MvdDGM9NNI5Io0b6J+tpC/XLh2RiE7WKKHBH5cVr2DqlvuncdAKdiR+aHsoLhwtAYeOz683Go7tO9U3IyUzzk5OTgmWeewaBBg6TP+++//y/n6S8JYgA72lu/fj0efvhhVK1aFTabDeXLl0f37t2hqiomTZr0d/L5P0P0Qh8Q4gjZmobwSYD8BUQK2PCsqQzxN/2/1j/a8jrAYkBVW5IoabGcip1rf0UBje6pmgu2KlVwswMDXBBN+Iz8pCxsw39X/qMWh01uNi2OayyDn9f9Y+h0ieoCmH+YNt6BlFmRyHhcd6wUj/7F9ACwJ7URas9KxDsBrXH4efl0i6h7cFts+KotVM2FzoN0OGpVY7FcqNzDY2ZaxjbRxjt4vUHLRkv3CGzBuMEWqdNB5nTssckHADj4iMhHjyYPAADif4zBufEMWMWrYQMUPqhh3Zql/HlubTuDl/9uZjKvr3jPYak8oh97TTPxUxzDBN7MD2NQqcS08sRr8vOvsTDRtBiL6JridfrudPA6jwvVbswoqJoL49IOS5sPKxJPWgDwQKM0bowbWVVzIWVBG1OZKUPYok6wzHRvgQAk8FJaySZcMAMzlu1U7PD5KAHpn0Wb+s6p2PmJHf3nyo4SZEXiOS/6mlQumc84FTuu9WdCz7Sczvx+8As7pfTuSOzPkGd3Y0ZwCKL3M0CHzN5zTc9NPHU1liMJGsuSuE/fpcGsjYTMJj7rjA9jeHxDY5wdVXOhuK1eV2ntAGApEHAhp1UztkksAbE585zD1DajAqDOI8fQ9sVR8OnL3ofA5aPd8kCn4/RuUVmVDObGRGt2reG/KW1xfj4GVzknlWPMK7aP6jny3Exk9JsDVXOhsLjI1PaU2ZHY2HQVbJv3YnOz3+BVv56E7kYby+Jk5vjv2H/bhOKW+vQsyZRQ7Dux/2onVJN4E3kn02ur8eM/kc0RZBpp7K9q3yZiVdOaJr9M4/tGCLxOxc7h/8+PiEH752XUVvHk+W7j+Xq/KJR3Zkr3xG9CFD5fWAkVVprNN8uqesDruolVpPZ5hDfj95Lfm4Xi/HwedkbVXLjcpj46H+kNwNoUnyh4DONBVL4WHpcRh4xCkVNhvsYAQ1tVNRcuPsMEXVvNGhJS8czs7UgZWtP0XEjZKPJEcd7EdoppyiZU5v/pvvaKPs9S7ETKT2m8PcroipblSaizLx++HyRIJrMnX9bXHrKAKW5rNymhxPqPPKeHZXj0y1d5up8CN7B645OxI+wXzkvdxMs8vfeaZLwT0Bo+fQ/jYuEN7AjT/S4vDTILt+J7UWNhIlfgiX5jBF6jai7AwwNFh5h5pr8A+pQ7yYEai0p3ofi3o/9AsI7FixejuLjY7WfLli2mtB07drxruVlZWX8pmDPwFwWxnJwcnDp1Cl26dMGvv/6KU6dO4fbt2zh79ixWr16Nhx566O6F3CdLajadaXLEyZUCAYrXRRJ9HygNpe/RohMA5ld0prWHadI9P9w6Vgal89pUAj5QcsDl5evD7zsVO3dqdlvGRqYlDHmWLVzdeg5E9uUanN8hA1UeTFqc0FI7LjbxWtS+FQ6+NBOhk7PgVOx4Ic3aJv/cP3STjJBnd6P5Hk/eL0QkPClJlVF0/ToXfrxPXsVtp7wQUcDIVu/pWjbxvvJJAgofZCZggeN0TbyqubjJGQBsvGnj+VTNxQXjkdX2I2Jvf1xc7CflFeuJP7YN8LTB94MEFG1i/Uc+aWK7UguYL93Z2Bg8+dsYU7uNfTrRn8VNIifvnuHd4JHI/M38X09E9goG/OLzUYKkMaaytt3Sy5/pkyTdcyp23Ha24fdfq5mKJDvzadw+bQ6cPq3wWRDbTIsnPwDQo1VXAMwkyZ2WtbBjaxR0CrdcjDO7z4equVB+a12ODkbIf67XZ0JbqSP2+Xrp/ofdKsgmcaGz2TMnAUQEwgkcx05LCHGOqNacRKmfOL+pGdxk17jpFd/Z8yNiUGkF60vPzrk8vXETr2ou2BoHmfrcShGT1LIML4c2dkah5V5o80IW5mLcJBYAm065RIE44PVEpD49y/RcSKu+/sfF/FrAylESL2nftkL6J+ZnzrX8H8ag+VfM5Hjyz0vgVOz4/YdFWJyznZsXi/1w/TEmTBVs8OPXdnw1h5efPoCZG9lCAqX+ujA0hp+OU/1F7UsPF0H/KdyIyAvdF3+TqbbYf9HjmWDY8uM4tN79BJwKc+qP2d9PqoNQLan8k4/4Sz66+ybNRMp8XfmV0LIsbneLgC00GM6+gwEALXc9aRorxKM4jr5rtAVGEsdcXoGsUKA+F+nzLLNyyYqGpcgmtsYxeuAKCzlQc14iPIqKefBcsTxR0HfHd8Wf7+4bBwDjVj4j3TeuswBwOuaKNH+1WSCjGdtq1cRZxyXerycdHvDqkgMrSp2h9x0BZIjWJXcbf6tP7EFy6xXSterfsL5Pmy7HzYtr2A6B4xMR/epoqTwKqq5qLgw8lseVgGKZxrmIQnGomgv+8cOhai4cfFlWfL6UdhS9Dl80vQdiO7w2yoBkcy8rqP+5WcFL/nFUp3EMOBV2+u1U7KYwIUah26nYecxFsTwAGNCAKXd6HWYncWRJ41TscLys9xulN56epsxvY+Lr4uBonPo1FJETYqX6GrxXEkD+92qm9t6n/276S4KYv78/Jk6c+Hfzcp/AbMKtNlZG5CsjedWrC8d+NmGThtipsMCITsWOkLhdCHhd17aE7XoSTkVHkiOy2hgCLN6PqrH4IQAw9mQbWJFpoeqcJ5VVvO8wavTSF60NzSvzsonaPzfKtBkAdNTAwtMMoYzAFIyTcK2HUxCxV492/ln9vcib4OBxpAAmPAGAFn1V4j9+wwpsXsQWIoJGXx2yFgBQ/7tD0rO5slYPeL1hqR4fykpovvloJD4ObMHv+/86EpVWMKFtQAMHkluvwM4PdV82ImnDUnJKQyeP9Jz6HDnL+4vimtSelcjhxUXzMKMGlcj392L8nJck+SSlzohCw/4HkV98R6pPpGE/xvLYT2Kb6dkRPLQllZjVAsCsFjJCZfy+9QBY3DErzWfAj6Nh27IXMZ/LJ8SEXudU7Hjo6MO42eE0j2W3udlvUDUG3y8Ggm6VPIDnj3o9Vqrr6Gi2maCQBcl2BodNqKEAkPuoIo0LsR/Ea14+Cj/RfiNDf8+cih22unXgVOy49ngUj3flVGQfN6di5zG46B0pPJ5mubEAWCws8T9/B0s2dqrmgkcrXXsvprGim4/owY4XhDBEtbfPsvxe9epKgrrVhvX3ZYugai60+IIJt1nvxSD4uZ1SvemdFyFt4CwTz/Qd8HoifD5i4z+6nI3XMaTEhMrYDxV/YuV7dZERSOk0JXDTUBRs8MPRCdUAAC2+ZCanNRYlmvrzTOvypjnJiseCE5qJF6t+XZMcL/m0OBU7P91v2CeDo9VefCYGVbqnWwqntC7sfWsWF+Bu9GVKlZDhOgrduLTDKLsuGYVHU3nYk3olmvurT0Sj/9FTaPOm7o/j1cCXtzV8iuxHRWZVVPYwwf9I7HMKeaGNd6BZ2fJSf5DlQc5buk+Yqrn4uDL2GeVbEbCR/y7/6y40fFv3N+zR+XGkfxaNhcumA2DzntEsUCTjWDWuuwAQ8Kp5fQSYH52YfkZwCG+DiMTbYdRIxB/YyPrhFdbWoJdlC44bRfr72Oi3Qq4oGdCApc/6IQyV/5BNikV+SNGoai5uki22j6wyUjpYx+JM+ni29F8c90ub+HJla7+jZ9DykzguTBn3CfRNQZ9Fcip2dKuQjzHVdV9eVXNxSxt378nIqhpstWu7Fbbo26nY0WT7IKmPRPAUytvmrVipnDZvxUpKuYuFN/jexla7Nk68xp7B6mYy1P+r6QdRebnuh0085A+/IF0LGc4saK4O0K0ndn0wC/sjl6H6N4lIXdJaWt8KNvjhwkOXTP33b0v/gSdi/470lwSxatWqoVYtc5DN+/T3EL2ULT6Pg1fDBnAqdhScPCVNRuJk0u3hgSg4dRoJLcsic1lL7iBvtfhT2cUJ1d1uumhyFQMtGolMWghAg4h828T6ycnYWJ/xdI14q7ByJ4dqpmvX++mBmUnTS/dXXKtqEtxEYc+p2FHpRDECXk+UzNCIzo7WNfBiOVua/ypN7Bmv6IFUASCx5c+mzZo7Kv+rLjD8er0SMh+di7cy5DgiVptXdyQugqOrnSj1WXtdsknjxbigAcDpCBsqeZbj9wHwTTL5EFg9w4DXEjkipbhhy1weZlqsxWfc5s1Y6drNznLgXMpDPj3GtpNparLdJt1b9G5vrlX27JwrtZnKHdvIIbVDXLAp/h7AhGfil2LcAECvwxehRV9F3cQqUDUX6n+eIPUNxU4zjg3ykVQ1Fx4oB4RsfYbzRsqFCif1EzlVc0lInqrm4qbDZC5VmuDUYOWpUseRqAmmckLnxLlNX/63XUAJxC8Bn0ypzfIXnDptKYR+m7vD9G6REqTRJNbXXvXr4ZMLgVIaylNYXISct3TfubyJsmBKsXqMm9RTv4ZKihJKT+kKy3gg5y0Hgp7eh41NV3EAkAa/nja9H14N2UkCAfcY+9RqDqDfFDfM6jk4FTtWhNaTeCNBO7/DKS5I7/pgltsyRMVJ8JYhqPdlAir8op/2ULmfBTXDqZccsNWtYyqj8g9JWBFaDzUXsBO11MXhHP7bqdix523ZT4dAoYybZ5E/7631uACifJJg4t1r4x54hjWB3zsJlv1nJSDlTXCgZ1tzPDtVc6Fn20dQeDQVFTRPLhhm9p5rAn1xKnb0jOwpzT3GMeJOKBB5qvgTMxu8+aiu5PJsGWpqy9Y5uk+d8qneVlrXAaCPr35KXmb9bpN/daMnDiD1lxCpf9IF0/3P6u+V6jQKKMdGzCx1njD2gVW7Vc2FJZMexv7xM7lQ4lQYMvCaG+VwJs6Bti+OQtOEp6W6xfxiwGWihh/uMfU/AFwdEM3/F57VFY2lzWcN++vxt6hOY5zJmvNlk/qa8xO5Um7uZQXVbRWQ8iCDtNcGBHOlj9gvl5+ORufyhVK5AHDlyWjsavWjiU9Vc+Gs3RoanYMIRTIl7camq9y27z7999JfEsSio6Oxb9++uye8T/8UKZ8moLiC7ndzo+g2nIodrXc/gV+vV8JDTwwFABTvOcwniZQOLI6POBmkfctOyM4PYwJH2hfRqNlFs5zUaFK2fxjHfQpoUuvR+XH+n/wn1mXKJh7cPhr6JLWsiWKpzSOfCiut2pqdq6W0dyroQ5U0bpT2w8+f4v+dip3b7J98WTdbodOmYSWac1VzIb8nEzBqz05EwHrdN0zsP+LNVrMGGr6ViKmZu6T7VoICEfGX+4a+eWx7oC++jn0CTROexjsBzJwxdXqUtDg8+CwTgC8NZvboXj6KaWI38mlV79JcFmsmdbC8kbJa1I4P1U8hjM+D4kFR3BjSKhoX2lpzdCHGf8ABhO31MAnORDUXyKZKcV8wcxrR4d6p2LmQZNVmVXNJQUnPjo5Ble+TkNFnDi4M1U/pxE0X+bpFTJK1/NcFUJKVebtw9YlolP9V928i8AsAGFM9Gzf6RmFJw23o0aW/Cckrfv/vuO2UTVLEfuIKhRINtf+64fz+7ysWm0xpVc2FT7KYGSSdMoh9Yewf+n21uR5Mu6BzOO8znjZSj8FD946Oks2JVM2FM8/rguvPuWyzXjeJ+VQ0ncHMBMl00zh2BjVoK9Ur8klKkTV71mFD88pSndSuHj6t4feOfmJOFgN0v96XCdJYJnPfeo8eRZXu6W6FJq9bRTg6eiZ/t2hcxG/52fRuZA9oIOW9V0qZGYmGb8mgQMbfYp84FTuOjpqJ3DdZf1PQbuO7Tx9C6aM0FE/LSNT/9b5IQOHpM1A1F26q/m7bRPEqRb5UzYWHnhxq4lm8L1J+h1NouetJGElMt3YdQ9DzqqcHPbdSEhGPvh8k4P1NK9h73zRE4q8gM5spRT4zh1oQ61U1ZtXhbu0rjazul/91F6JfLfEzTGU8iDE4aSwZAVXWJP7DVJbVmKD/+8fLcesCKXaaG+Ekf30j1k/NGsOp2PnaLZZJ+Ywn51YCtlOxw3a72NSnFbtloGeFW6gzk/l1HXF8x+/batXE4OO5PE9W76qmZ0uCsnj9xOsOftoEAKdeYvy9myn7OJKlh9VYDNw4FE7Fjgpjy0rtKOzYWnouYltGVmV7ovTx7JS/7jSzSWOjXeVR9bskKa9TsePWw5HIr+bhdlwF/HJN6l+xj4tjWgK7DvLr/0kBnT2K/zWf/3b6S3HEkpOT0b59e0yfPh3Dh5vRg+7TnyOKyXAxJQCPN2abc5osVM0F+wdxcE3QN0gB64eZgjv3OnwRq5tVNwk8FB9Me8WBgy/PxI2i2+jXYzCKDhyT6iFSNWa6daPYCxP99YmO4vVQrC8jUTnxJ/aaAhVakXEj706YuNfND5VBcb7clSvRRl+ooast67FtVlD4oIasH8LQ6And5v/S4Bjs/FCPU9Rh5EicirLh+DCzT4yxLQ8c7IPyzky3G4X1N8rgsyDdVIza0ungdfz0eRckv8/qOLuqMWr3Po6Mj2OQ+rRZyDL2ifjb+G2rVROF587j1fSD3HSS7ifdKsSI/YOg9Dmip69enSMVenh7Y8zh/RxVr9OQ4SwGlcUGSKxTjPnlEdECxckHkfFRDHcut3oedL3H8R6Ib8yg99u+OAo7vprD03qEN5OUEqWNL5G8fBQc/6QO39y4I2M5FOPHeP2ltKPoViHfsg10LWVBG2R2n2/J113HrRvK+DgGAa8mYkrGHkSXs5VaP/3vOGIEvNfoGxwxnp4VH16+PlB+voScqOvS9VNjHdj/6kzL8TczeztH8rwbGcenu/sAMC7tMD5v0hLFBQVSmqW5OzCwQVtkvRtjilHk1bAB1iT+o9R3le4VdA6XfFZyJznQ6MczKDyehu6HL2Fts2pSXo9WzaQTRlFAcSp2+O2saOo3Y51Wz0j8b6tSxeSXa3zHRBLni/zuEah46CQKcvOQvrQVD6UQvq8Ia7KbYX/kMrd9bxy7IcN2m+55b61nijdZ2nf750bhjxn6+yvGDSytT3LecsDvnQTU3FEd59vqKHpEjv23kdBSRhcu7Z0q6BQOr017/vJ7BzDLkOL8fLyR4eLm4aXVfa913Xa2weZF8932hTsq6tAK2c5yKCpbjMBXrOHZrebm0vjtdqwnijsx64vGi2LR6A09FteF1SHcN80oyInXENmCg68Yyy/tfS/tvlS+oayUeRESSM2ffcbuxm/Rxgbcf9ddWlvTEBQeSTGVaatSBbMPxWOEIa4b5fvx+F5UD8n4j4gj1uSFf00csWNf/71xxP7d6C+diK1duxYdO3bEqFGjEB4ejtjYWB7UWfy8++67fze//zMkThaiENbNr41JCAPAba+NizHBg5NZRB/fSBQdOCalMVJo2Qp4bKNuouRU7Ej8dDZUzQVXK3bC0+WQ7lt1bmQMol5jpyTPZHeyLNt4bdX1Cm55mJq5i2uHrLSDKXNkuF1xchWDLRN5NWyA7HfYaaBnuXLIebvkpCx0Na9H9PlRNRdH5jvefgm/HuEqRLUliVIfl1u9Cz5b2UllQadwqW7bZtkZf1uLlaYFDwCHn+9a4Q7Pe3Z0DBcoN7WoyIUwAKjd+zhUzYWAVxkv3YMcCPxBR2u06ldRG0c8ZC4PQ86wxgCAjwNbSPdDvonF2wHh3GwDAFLmRHB/K4BpM0kIcyp26dRIfG7GhY+EMK+ARhzVrXLoBXjam7p97k7FjjZvxqLwQY2nqfTjTlmzWCKEORU7uncdIOWlskR/CvpekxyPtI6L0f7ALX76J9bvbrGnGD9Gfr8ICjW1GQAuF93kv0kIM9YhkvMQ23B3OXTVMp1n8yb8f8aHMQieegQXh8Tg7QDz6Zc47myhwfy695pkyd9l3xtM805x4eg0Pet9dsJYkHfCJEyomgv1vkxA63dikd8jgpdFMZoCS4KXU1oKRzD0uB6Am7f5Lpsk/9XstNjWOAifBTVDcUEBbyeVU8tWEQC4EPZq+kF+ryA7lwMYDTyWZym4cD4FIUzVmDM9QW2vbVZNypu6OBwnO1Y18etU7Oj6+BAAkPpNPNGxqh9gAe75hrLkVDn+2DbLPOL7LX5UzcV9zbzXJgM2T2ROjeFCGADsvdiAC2F0OmJFxG9m9/mW91YFrwMAZP0QBn91mKk94n+nYkeVpGw0m6avM2LcQKvNvKq54LezIvzeSUCxoyUuD6zMr4sgFwkty8IzrIkpP6CjfYq08bsF/PetXpG49bD5pAWQ48eJPAFsLlQ1WQhTNRePZ2ckK6HZWK6quSQhjPKJ94nIlB9g84Xn1n3wn5iIwFeS3NZjHDeAjkZo9V4Ud2L+4U9ndUSjNxKR9oUeziK5NUOsbDpL3jeI3wCAXQel95U+fG4ynPhTW43/K26rbbpGoF/i3JfZc56UTuTl4hA9rqRVPUTpS1tJbcl6L4YLYZSH4pmdGxnD3/eBKzfCVsuMSll45Qr8vOQ5kSj3TQf6hMhm+v/WdN9H7G+hvySITZ48GevXr0dxcTH27duHOXPmYMqUKZg8ebLp839JkydPhoeHh9tPmTJl7intp59+aiq7qKgIX3zxBZo0aYJy5cqhQYMGGDduHK5fN2s0/24ybkwInQcA33iI6URNjFU5Jq12Iz/pPm2yKK1TsZscbqmMq09EI79WETY0r6xvfOYmAiUm0KdvVkbP1k63Gxyqd0ZwCMafasV5p5gp2VMc0kmcU7Fz/xGizIfn8fIvDI2B07dkgfS04UafKGy8aZPqL8jORcO3mNBSdOsW/KYkoMOokVKZBxc0v+vGaOPHDOLeaMqxaQlbyAlhksohYc5YFrWLL34lWnSxrtqzE03jgJXJTCtafKkveEU3biDopSTTwtf+OR3e2aos/wEHcOhF2RTt/AhmfkiQ0mI+sd/dtct4TaSe4d2gai4OR1yQkcXz3UquiSLXESm/UZioucBs5kX3Rd+ma49HmYKbE/LlofAiXv65f4RIm9Y/wsqhzIY90vNZkLOdI9YB4NDQVn0gCuPnRsbA095U4re/r3kTaHwv6FrKgjaYtpMJDBuaVzY9W1Vz8TaqmgsBryfi1T1/oPpi91DgNG4Lj6ZK44/8XcT08Ue2IntFCwQN2oc7XcLR6A29XM+Wuh+omKf27ER4x+shE/a+pZ/Wim1bs/1XAMCixg2lTZgx7QtpxzgCYdheD3gFNEJmr3kYejzbBOPN+212pNRHHmXKYsRa2WqD4vssbeJr6n+PNs2lNp16ycE3eFaUuqQ1UmZGIqPrAgmdzamwkyiAIbwZ21Z4JAVOhSFYWr0rqubilgeq5uLzsZWSQixX4m2xGVG0ICsH/hP1ueWm6o/iTid4uWQOadusIz9mfCz7uTkVOwc4eDX9oDSWAKa8Ip87d+RRpiwKTp7C2tiPTe0xrmtivSTMeiTsR0FWDr9O/qwAU2wVHTiGtM+juU+Z/yo237/wxgoeRoLIqdgxIf0A2rwZi61z56LcP3bxuj28vLgPMc3v7uj5E1EccTdlEev7l7qsNbUJYAHiqc89K7CYkVMy9nC/aWo3rX1FG2XEQ7FfVM2Fgtw83o8bmlfGzUciTUGw74XEsUpE5Wa9H4PnUlNw1nEJ/Y6egUcBW/RbvxuLoKVMEXskVl5PJp4OM5Un8m8cO/EHNpqejZUwf/2Bs6Z0h8fMlOYZ+r7TtQ1mZzMz6D5HzvI8NFd2O9ZTymMUEAMH7uO+ngDzbRXr6X/0FDZ9xuaIKo9rWP/jYqiaC0saN8DNZZXcCrZiGarmQuCmochvfBP36X+P/pJp4tatW+857f9lUOcDBw7gwIEDltc/+eQT9OnTB7/8wmJATJ48GVOmTMEXX3xhAhoJDw9HaKi8uXjxxRfx9ddfo0+fPujevTuOHj2KadOmoX379tiwYQM8Pf9yCDYT0TFvRzwCLw8mPNIkcDY2BnvfdG/2RuRO6HK30bEqb0VeorRZtFWpgvhj28yCnI9iiQyW+nUUgl/YCc/mTbB2/XIp3+Kc7RjiZzZPEstYfWIPQ33a6At0znPLa/r3dpMZmaq5EPxtLFIHue+rnB9bwO9xdgKzIGc7fEu0UpQ+/Xs70jouRvOv4nDoxZml9rnIl1EQNgomnQYPQ351L1T6cadlWvGacWPoVOwobssgv438fJmVgBfSn8Dvof+Q6nXHY8g3sVLMHlv16tIJ193aeW5kDPZMnmXJKwA8l5qC7hWuovOhx7gJZovP4+D3Qw53/jfSTdUfeWl1EPzcTnjam2Jt/Pe8LZkfxsD/dTngKpFHeDOs+8dSfu3nvCT08402Fm/dFg8PKcbL3frf6lkD7IQw8+F5paax6kd3aeg6td+Y1lalClLeaopK2Z6S/8KfecfFe2fiHFIAXgBI+zwaNQ55cAAWVXOh4/ARGPPlD+hX6cpdywzb64Ffj7WU/JW0Vx04OHam23FjNP9N+64Vgp42+yB7eHtD+yFACrRtfNdK6+M7XdvwU9v07+0ov7cClE8TEJhcDukRt0z1xaamYVZwkOk6ld3jgT5A2TI407YmR7q8F1I1F7oMfBa2zXs5jykL20BRLvAYZWQyTOnJNBwA7nQJR5kNe3BtXQDqVriK6w+cxcmXHfC8w/xajO9GaeO4tHEiUocDNzGx1nHLPFeejEaVZToSoFV5FbfVxvUHzuLLrAQOliPy0rPdoyjIyDKZkol9VtpcaZXW+P/88Bicd9xBZjezSbCRn85HeksQ88tzEzCggVkgt5rH3fFcWv8ATIFEIRPE9GQGCOhmoff63ErrD89y5VB0yzzuia4OiEbl5XI4FrGtRE7FjvweEfCON/hwLQpHpnMB6/thMai5IBGeLUOxdi2LkdpsWhyPnXg3ujQ4BtWWWJuulza3GvkkvkhRcK/Pxki2IH8UpumhFqzqMT5/o6mzkXi64jvYgt/+rU3xaM8a+vy/xjTx6PT7pokAgFWrViElhdm7dujQ4Z4//5cUFhaGp59+2vS5fJk5kg8bNsyU59FHHzWlNwphhw8fxrRp09C3b1/88ssvGDFiBD7//HN8/vnn2Lx5M5YvX/5/2q47XXRNZu1Z5sC5IomaG/EafVPsJPG6u7QkhA0+zo7dSQgT01x8JgYFJzReTuAPekDUJrOYpnnCquWmfKIQdupFGfmM+OHQuwYhzNjuwKdcqLlDhpNt9V4cAl7TzQYpz5nndVQ1D8Hrc/W1xiatYuBTrD6KmSUSlXmjb5TbCduovetxvAecih3l9ufwBTbzzjVT2rYvspOrpVfNQAyq5pKEMLEvxjZywLNzLhovjJXaLSJFielJCBuZwjZ78Yc3m9ogagMpHZEohJGm9k7XNsicysbNjOAQlPGwSYFSlU8TLIUwVXOh6vaa2NZiJddmF7mOcCdrAEgZPAuelc2BQlVNDlANAJU8y0n3jUSmIwAshTCqQyTjJurEL82k50BCmJE/zv/CNuh3lIEjhGx9Br5JTPC/3S3CNE7FOi03A9FhKLxyBYGvJJmEsAfi5NPdexXyjELYmeccqHnAA8nvyWEUvOOTMTckgPPc/fAlAHoAcrH9n9Tbh4CnXFLbDo7VteS/Xq8EVXPh/AhBw1wihFF6oxBG19dl7kT9R49azmNOxY6jt29whEORcic5ULSxAU6OyEf4PnYiGvgUM9cGIAlhad+2gq1mDQDgQpg4rig/AMRvWwmtSy3UnKfHjfu2BCDHyP+E9AP8fXIqdtg275Xuhzy7mwthANBhcw4PDO5U7FwIA8BPbXeE/QKlPDNfrf95AupOKwGq0FlEytwI0/h2N+bFdhrH5taw8lh8pY7lnDz0rVUmdDoj/RL0OwA2ZxnJqdj56biVEAYAzb9mJ96t3o/jPKR+05rzkfOWA4gO4+XRyZTYpprzExHy7G5JkSISmTMC4Oh12sqmUDUXqtsqSGnFMSjGwlM1Ft+Q/r+VsddybjCWA4CbWjsVHe7cqdhxfCh7H+flbEf5zLKW5UxI198hArcgCtjwLIykai4uhBEPts0KUmbpKJBGIYx4S1nAEGQfTXVi4ukw5E5ymISw8yNiEDJ0D2/77ndZG0520BEXD4+RT8/uhQJ+HF3q3EbfZGIe+IM5faZTN0W1Wlfd7bPE78K0TNgaByFzuT7mxG/6LZZ1rgVDmCaQMGP59yoE3qf/PrpnQaxPnz4mAeSHH35A3759/3am/hm6fv06li9fDl9fX3TrZh1768qVKygwOHiLtGzZMhQXF2Ps2LHS9REjRqBChQr47rvvrDP+DVTYsTU2LVkA7VWmNWy8Wz4hE5EAAWvtC/0HgDObfExpizq0kq4Z8y5pLG9mKKgtAFT/RjZZE03iCo+mAgBOFVS11AYSURwsgMXIMZLIG5l4GO8ZnbTFTaWYft/EmZyHBo/pUc+dFY/z34HJ5aQ8ZDtuJKdih9ZeR0a6+kQ0j/9kRWSa6FFRjz/Ua/co00Rf6UcmiFC/i3G/rHgAmPkNlXP8WbbIvaCxTZd31ywA1gsKAMwN0RECs34Ik7V5fQfzBZc231QW/X7o6MMc5a7M+t2SqZNx06FqLqR9J6O70H0xJtDAY3nw3loPQYP2QdVcmJLBFvGiq1dN9VuNh75pLIh8xscx6N6N+YcVt7VzuPOpdeWTc0L9DP5ORk808inWVbXCTSkdBWfmfVeS1tPONm+Z3ebj51A2PsqVv4286GtQNRePSUZ5lufKcfTEd5hiACHpAFTNHCzXqdjxxNS10jXarLqjittqwxh2AgDqzEjg5jrixsvYHwRSQT4jZO5jHCtOxQ5EtoBTsSNyIuvnWcFBcCp20wmSu8DyVK6qudDT0RtF7XSeSGFENLaRAwXZ+rUuA59FsaMljsTNxO+h/0CDLzyxp5WnScig30XtW8E7pTyKr98AwALDU/35PSLQeFEs9rSSES3rfq37CToVOwY1aCvxVLSRwZR/EBjG3zvx+TpeMm8UVc2FTS0qAr3Ou1UudA9maJSpEfkMdQ16vzeYnQWAzSOZvebBo0xZKX+33k/j7OgY5PzYQipbnK+diu7v41muHC4/HY0hVc6Y1otVJ5Lxc2gdac4pbewRORU7Tr/AxvZii5Aixn469ELJpr1Y5zP4mb287/zeSeDx0QCgrKqbcjZeFGvqYwAIGcXeQwrGTABWTsXOBT8x3qCRf4AJL8HP7dTnBL82sG3Zy/8TMq5TsSPtC/3EnpQZVA6Zv1K+ysvNpuYj/NrhSJw1FP0HgboJ4P7xsoATMkwHr6Ly6H0883xJuISeEYhvHI+Q2F2W74Y4rwctKYRny1Dk97iGPa080ejnszwtpRGVE+I84np9pqldIqmai5sRikRhRYJfTDKldyp2PDhUNj8us4GdPAW9lCTN47d6RVq+b01nxvHrPR56wlR/9yCzAqHweBr8B+gCcGmClKq54LOQPQfvNclImR0pr7vC3Hmru9kX8d+W7vuI/S10z4KYlQXjsWPH8Ntvv/2tDP2z9OOPP+LKlSsYMmQIbDab6X5YWBiqVq2KcuXKweFwYO3ataY0ycnJ8PT0RGSkvNEqV64c7HY7kpOttXb3SvXr15c+wcE6/LVtC9OUvjmcmZZ8rciIP/U/T8AnFwItF4bluTqUc/cgh0nrRC/+78sWSf8B4OKaYDx/Qo4KT3VQUFunovsGGMsUy+pf6TI6P607a9O94piWUjovXx8u2FEZBLdLRNorcVI3amwpbpPVxCYuAuL90QKK20wfeXKnzeiXWWaziaCXkjjwR+Ufknj8p8IHZaRIsa6CrBz+/3AMe65XntIXZQoaSWlCRpud1o1lFu87zATVORHoHsw2f8Nr/SHx4FTs6N7jKVM5RKGz49DoiQO8Tz3KlIX6yxJTXcZ+/z30H4CnzZTOipyKnZ9wiIt62xdHSc9lcJVzHHHNqdilYL0UdLj/0VNSff6rRqLbI4NwfkQMrj/AYs0EvJrIN1ReBzM4oEbnQcOksUrCr1XAVi9/s++SqrlQqVuGtLEQ4/2IRL5uD8Syk6rcNx04ELmMt03VXGg3ZhQGZz8AAFzbHpzsDVVz8bAUz5+IkgLWOhU7tn89x1TfqqayQ3idGXJcMyK6dv2Bs6b4SsZ0f+b6yqa1pTRS3SUIaUbfNYD1abGDCRFVM29L40HknQIUF2TlwHO7fn1g5fP8FMRq87hh6UJ4JOzn5a7/yRzaQ8zz+w+L0ODdBH5SUOthHfHMOz5Z8pOjcZD5gS5AevkoEh9XB0SbkNWoflVzoemsOCR8weLheW+tJ70fxvoBIPUbfY5Zm6qfvBVU9ELumw6eLyfqOpyKHSGjdyFgw7NYl70LnY/05nN38e5DqD07EX6PH0Tmh8wnVDzpn5B+AFMy9qDBu0xBUHTrFqp+p8+RTsWOtC8ZUAPFGFQ1F648FW3Zt2KbKC3ANuW5kxyo71VJ6jd636027HVmuldaiN/ib3pu7hQtvSsywTt3kr7Z5oKfUL9VflK2URpC8DSOZVVzIf2J2cgoif9FyoyUORHwtDeF7wesXU22D5LqEHmik3SnYkf4viLOjxgehZRx0fvv8PppnhL7cddUpryrM53Nj1vmzbPsb6diNylLf1+2CM7vE/kYLDyaaqm4IaWepATwM4cyEddZp2LnazP5Q1M7AEj7D1VzoXsAOzkkwfuB2JGWyiP6XW61LmjSvgEAGryn81B4mClpz/zGwJCW5yag6MYNqSwCMRL3JReejcFbGXtNikc6xROBdkJG7zLx6VmxIpyKHeXWlu6LeJ/+++jvc3T6N6EFCxbAw8MDzz4rH8dXq1YNI0eOxLRp0/Dbb7/hgw8+QHZ2Nnr27InFixdLaTVNQ61ateBtoTX28fHBuXPncPu29Sbsn6GVKQxRaOzJNlj8SFcA+qRIzsYAML5GupTPqbB4VgMa6Bv6ohs3TKc1xt/SxNzqR1y4XUG6b6UNOxjFfHiaztBPyaw2fOTYXPhga7Qbw06B1v/8jVTWml1rcHlgND7K1H2n4n//gbfh1sORkgYWYJpD4p3uFZ7VHXe9/PV4LeIkbuTx8yzzxjBvgoNPiAC4L4OqudCztZOnu11dN3OjSVc0NQKASWd05CNVcyF0bpzU51W+T+JmTj4fJaDVVF0jl/6JHmC6w4Gb0gKZ3z1CakvIqGQUlQDIjG8UzYFYKF5K84VHkTJP3yyJ5PcOW3yyVzBei1vJQjDFM7IaN2qejCgnpiFQDvqcHyY7+5MgRKh5Vps38T+BmQyrygIUUxDfkNG7UJx8UNK+iu0kmO/A5HLw2rjHcqOhai6kLmktXV+zQ1cuUR+I7VQ1F7Lek+OU0YdMEZ2KHWcGshO0Bu8ywSjtcz1IacWfd2JJw21S4PLUCAZ5f6eSFwBgus9O0zO7m5BkVEaIyJ3G5wSwsBdiHlvjIAaA46Yed4K3WAcBDrhLL84rJBxt/FZXuDgVO1pN1eeXP6bPga2xbCZI8YlShnrzssR2i23VXnGYxpiquZAz2SHxYiW8ikTzw9nYGJ425ZlZyPmRhX2ggN0AAxESTbusiMYFAKwKXsd/p07TFWLimA1+Zq9pLlM1F8psYEKTSGR2FzyYnRp5dcnhYSho3inY4Af/19m7U+GXkgDFqj/eGz6EK0Ks1g9VcyG9/2ypPqcim08a+5E2rpSWno+4AY7ef4cJDiXv+5Uno6U84m/juyx+T0g/wBH9jDwa+Uv7rhUvT+TFnSKDiEzSxHefKPudGFx4Vp/zRN7Id5JMrkNGJSPXWY3nPdbuW4m/Bu8lcACZsut0peyeVp683Abv68Lp8TZMAEtqWcbEM1H3w5fYuzPPbCJnRUZlqVNhp+JiHzX+Y7BZGC45oXT2HQygBAnYYImkai6TuaqoSHEqdpTZUp/fU/oc4fExnQoD3yI+VM2F8r/tkp6Hu3mR9g0A0KNDX1MaALh6nVnKkG+g2JdBg/bh5iMyMFCtHw7gnYDWWN9+mlROxuPsXaE9nMgfWTg4FTtfx/+T4ojdPxH7e+i/ShA7fvw4tm/fjk6dOsHf31+6N3bsWMyZMwfPPPMMevfujfHjx+PAgQOoW7cuXnrpJVy7do2nvXHjhqUQBrBTMUrzV+nkyZPSJzWVmfT1CWFmPEfDC7iWichKgyLep8C3o/L0TQKd1hgno269n0bKQtmG3qnY8b2/7jN0djRbSFLmREgbUCrryHMyQpFxwif+bJv3ouLPbJF/LL0LT09lVV2ahNf8mca795HzEr8EZ+xU7Dj5K4MENzr3Bm4ailMv6drggsxsfo+uLb1aE07FjlXXK/C2vdwoxjRZ+36QgIf6D0HR9etswzU6Bp2fHoaWn8Sh4NRpXm7wGB2hi057HPtv49bDzNzg1IsOJNv1EyOnYoff5AQOQU317mnliZzJbJKvMz0B49LYBiRtoO6LtTWsvNRe77XJiNjbXypHJDp9s21hG7BP6u3jfhfUToLzLr+VBVJt2J8hnxG0MKU1ImD1aKr7fBoFdYmHk6f4mBh3sjX3DzASoeapmgvp38tlPJeagpnZ23FhqPk5vfvcYp7ObycTmtu8rZsf0UkUkfHE07NlKGzVq3OznODBuhDtVOzo3rg9Hnx2BFTNxTfLxo06IWedeU5WDFBQUAAoLvaQgtWmD2AhIMhXDAAKcvNMwcS3LJjHeTFuCE+PcVg+d0APkGyk0uaN1c2q8zpSv45C4fE01Fikb7zodILyOhU7UmZFWio3qK6MZxtK/wFwBElxDjHOKxTGQdVcqDNd31yeK2QbFBojd7qEs9MwsI2syB9puXm9LUNx8GWzL4r/6hHwm5yAR1OdpvnRyjT4Rp8oPvfUXyefghxt+y3/TYoZsQ+pbONmUKxT/B88Zqe0wadP5T9q8bTGZ5r+mQxUI/aLmM6p2OHqUA0AOBgF9e/ZVY3xRIPduBTobbmBFXk33jd+03O81Yv1ZXrnRVJZ3YMc3LyayiLhgdpLACDu+DDSmeccuLI2EB3LFyG0VbZlGuOaRfP3md+Yf9iUDOvTCFVz4eoTeh+TSRoANJ0VJz2PY8NnocZCNj/c7hZhyTuZXANMEYfIFgheos9hYnliSBb6zu8hC1FWQibAzJAzPo6RhK61zarh/PAYvi6kzIuwnCPSv7cj521rf24jHW+/xPJe7iQHF8gqnSy05LGoQyvpOpXTo9mDUDUXVofoVku3f2+IWraKJmUE8Uf5xXnTVrs2v0bKP5EKU3XfTZECn7Ke4y6uCUZhx9Zc6KO8RdevwyOiBQLLVELq11E8sDeVS5YuAzI7cfPHij/tNLWlXyvZ/Pw+/ffTPaMmenp6YvLkyXjrrbf4NYodVlhYWErOfx29+uqr+OSTT7Bs2TIMGDDg7hkADruvqiq6dmWnUC1atMCZM2dw+vRpU/r+/fvjxx9/RH5+PsqWLWu6/1fICjXRSNfWBXBn7tw3HChzDSgsD/h8qAdffeiJofj9h0VovCDWFMgU0IPnApAC8wLsyF+MGUVEAVCB0jffVtdVzYXZl3ywsmltaYIV7zsVOThi9hQHGr5tNgm02sBZ3SfkxtLyWvFZ2n/jtVUnkuHtUca0SRbz9D5yHj/mhXPfidQlrfmG36p8oryJDhx+vnTERmM7xPLOj4jB7imzTPyU1jaidzOTEeldRr4fHcb9k4hc+fl4zT9KCsBqq1YV8Ue2mupVNRf81w7nAWCtNp6l9XVp/FqVR9co+GhpZMx7dnQMas9OROGDrbk29m50r2OH6lE1F5w+rSTAkNLy0TUKeG3Ft6q5sOJaVey57o+P6prvAUDXx56BR8J+Xqb2qoNDlZdGYvBtI1+q5sLFwhv8JN6p2OFVvx7W7FlnGpfu2lhaH6TMikRI7C403l2Ga/rTP43+0wFqASC/ewS81yYj7+dm8PQsNs11FNT3bryV1gZVY8ikKc/oyK2p06MQ/PxOy/T3SlZ1U/Byut/63VjUnmWNMEoBru82Dxrr8/JvyBVbUzN3Idy7bKl9QNdzJzmk0yXjfXf/3QX7Jbr4TIzko/xnxtaplxzcd0psg7Ef0r5thaBBTDj7JCsJ4xtFuy37/LAYXA6BFIi+7djRqLRC9kuy1aqJ+AMb0a1hJDcTXH1iD8p46EHXPcOaoOjAMT5/i/UZx9C9PkcrVFR3fXW3/qT/g4/nYknjBpZl3OgbhT+mzzGNkeuPReFisI2bXzoVOzKXtYT/k/sl/gmNOXr/HS6UL8jZjofmv8qtNwAg84MYKbzKn10fAOD0Cw6U734aYTU1ZEXeRP+jp7AitJ4pv4eXl+kUDwDKb62LWy/XQvGew8hf34iv8wALB3R86Cy3/Xm33/9RqIlx/yLUxJn3URM5eXh4/F/x8U9TQUEBlixZgpo1a6JPnz73nK9Ro0YAgHPnzvFriqLg3LlzyLfwozhx4gRq1ar1twlhIi0/zjbqFCxZ1KLuCPuFp2vwfgLqfZWAhsv12CFOxQ7PP9gC0ujNRPQ/egq2kEB0OXQVYXvZcytO1k88SAij/GS2IlKxoyUKsnMlTZhTsePts804f4Aec8Y42bV/fhQXwp7O6sivS5NvA194ds7l14xCmNg+VXPx2DiUnrTXVDcJYVaaLFVzofGCWFPfUnkU98coYBnb1tsnAq13PyFp34x5nquWK03OwYP38lNGq/IJnevw8zNN/Fm1g0xDjQtRzXlmlM3L8dYQ3GeeY9pOz5ahUDUX3vSPMPGW+nR5qJoLPVo+xHl/zT8KxTEtebwdACi8dBkPPjvCNAZ6pXTnQhjlF9N0HDECtqZybK7SBH5jPxjLUzWGUFjc6YTbMWAUnukaxb2ybZaRzsgn0Pih/Onf351fcXNy9rcQzgshnFnlE681XJcvXRfvORU7+le6DNcFX9NYpP8eCfulMpWP9RMnq2/6bRTCAOBkgW49QP5tVC6dhlr1ffAS9u5lvRdjqlMsg66FxO5CxocxON7mjj7OKhVJcb2M+cksNuYVHc31ypPR/JTR9yNPKB+UxBnc6IuUhW2gauYYUWIfiEFuxbbFn9AVK0T+ExKlZzOz22IAzAes8h+13L7TxnJUzYUTr7kfGzk9qkp5SAgjujogmt8fWAIg4lTsOPG6A7bgAMtyjbyREJb1fgwWnHvAUgijQMq1E6rx+w3eS+CxAsVy77bRV3/9VvpP6xbAToJFEzkuOJWcQDoVu1uQJQCo94WMhNtkfizPJ14nIQxgpt5WfBPVXJDIlSOUptIKs5IgeyQz+S6+cxse3t7Iei8GvXxkECrya7UKgxD8/E7kviGb0dJYcip2NF5oBhw68ZoD+ybN5OvKtf6ymSelc+y/DSWpsvTuieOcPmRNQifR3Ru3l/rCFhyA0/2ZGX37A7eksir+tJOfJnfzZ+PF/0l9PqK61yTHQ9VcSGpZhq/r7dePRYVTstKqoL7sFiIGqLci4zgv2tgAdb9OQPF3tXG9gFk+kRBmXB/W5bC1y+gb/2uwyhUh3l2z8HMee+4p89tIvqQiqZoLqdOi4L9mBL/WbDoDVlqQs73Ute7flTz+RZ//dvpTJ2JVqlSRJNIrV67g6tWr8PHxsczj4eGB7GxrE4G/m1auXIm+ffvixRdfxJdffnnP+SZNmoT3338fGzZsQOfOnaVr27ZtQ/v27XnaW7duoWbNmnjggQcsQT7+KlmdiKXOiJKCVAJAzmQHjo7UtXoAE4LiG8ebtCqq5kLYp3Go/3mCNIEXdAqH5+1CyeldpJuqP06cqYZ3IldJ6InutHDipNWjYz8UpqSb0gAMzS71abbRpVMyALDvgxS4VCz3blo7r0Z+KMjKwa1ekZITbo/OjwMnTnMfoStPRaPK90mlClcXno2RYicBQI8H+qAwLVPq09A5cfCbkoDCjq1RbPPgcUFK08xReU0TnpaQG91tQlt+HId6XybgxC/N4NP3MNdCltYXRP2OnsHIqrLp1MiUDAkp0bihXHKlFpY28bUs81avSORX9UTVpaX7uxh5Mj5/d8+TqLC4CD18Wt81rVWbKX3K7EgJ6ISuu4uXJtZTWiwkq7qb7/HkwaGJjDF+ijq0gudWGYr9Rp8oLPnyM4xu2K7UMQMA49IO47Mg3TQwdXE4godY++aJz5S+IyfEovo3iVK6/J4R8F4jm615+Si42sYX5X/bZdl+kTwrVMDatATTO2pVv7EMz4oVcfXnuqjYLcNcsKFN7t6Nu9WRsqANmr59EgV5J/gc6tGmOYp3H8KpX0NRT4hBRmXffDQS22bOBSDHNjL2t7FvbM0ac8d++z7go7oyP412lcfGrXZUCL7EYfedCvNh+iAwDNfXBZTaFyKJaU+96MD+16xPze82pkpLX9o7e6/lqhrzpxVNue/GH8VFK60eup72ZTSCxt7bXERtKW28lJZPrNc4LjsNHmbiWdVc6ObXBmdXBnCgFeM4znnbAb8pCX+KFyM/YZ/Fof5nuiWM1btozCP+B0o/WaY4i1anc0S2piEoPCK3kdLdVP2xrcVKNP8qjpldQn6uzfd44rP6e//UOCWiU3KrsXn9sShU/MlsDUNkpQgwfs/M3o64ErAQunZhdQiSW69wy+/FITGWYEQUn9Cq/88Pj0HN+Wxutn8QB9cE/X3+TzoRa/ovOhE7cv9ETKcrV64gLy+Pf65cuYLi4mLpmvjJzTUjRv1f0YIFzNnbKnZYQUEBjy0mUm5uLmbNmoWaNWvC4dA1eE888QQ8PDxMAt28efNw48YNDBw48O9l3oIy+swxCQ5+k9kGSHRkJ9QmgIE8EDkVO+p/rkMrr7jGNKhem/ZwIcyo/QGAMh/VQNCgfdz8AIBkG29FTsWOJtsHcSHMVqumNOmcHOdA6tOz0PWxZ+BU7PhlxEP8HglhYlknX3Zg6jl2OnVupNwmkQqymI8DCWGkXTv6UjWOUKRqLhR7Qrrfo2M/hO9hflYVt9XGtOwdPHYS1eNU7FLARrr+09DPoGoubPh+Ibw27sHVJ2TTFdKcGRcAp6LD59O9wB9Go3u3AdICP+lMC+x/lfnf+fRlGjejQAwAYZ/qY0C8/nNoHQAMPYtobkgAvOrVxRsZLljR0iY6YITId1GHVtg6dy4Xwq48FS1pScUP5SdkTKOm2bgIimmcil0SwroHOSTQFbEPrYj4Dm+WYSpf1VwovHgRd7q2kXg1bqxEfxRjPVZCGQlhqubCwGMsTpp48qdqLi6EqZoLBRsYiMofM+bAvwxDiQufrGuyAQbMItK42SN4fltosEkoELXW9Lvlrif5vXKXCvlvAqfxEKzIqS0FJzRsmzUX1XfUkNrLofOh9ykJYWI62kyI15yKHXkTHPAowywHUha2wTfH1mO7cLIv8mCch6gM8RlR2e2fHyXlv/5YFE+T2X0+CvLYaWhGH4YwuW4VCzdCQphYFgBsmzmX/yfzKQDI6LoABZ11KOkra3W02sHHc1F4+DhP62oFOI/24v30RoYLWZE3YbsNjph54DY7KfggMAwebZqjYgkKp5GM7xUAlP28Br9X76sEyzGpai7E7O9nKg8AvAIaSWWmTmcnE6J/otjfXJnQjtXTercO6U0xw1TNxe+LtGavyn+fHxGD9E/l9SN1SWsOXQ/oUOMAsCf/Nq/fq2EDDm1P7SUhTOwb8fe7mbI/bMrsSMvxmrIo3JRX7AfxntVcvmnJAtb+Dq2kjXxxQQHebBIPeHgg/Xt9fqM0R0fNxLe5O+Cvsn6PP7GXPxsrSHOrefTAON0/e0SubnJq1RZje+hjFMI8K1TggDhkNk1CmFW5R5+vxvp3juxfBgDlnZlo83YsfLrmSGMJYMqlY73qWI5fgCk3KA+Btaiai8cFq3KcARn1TXsIK/N0pRsALoQR+JLY/gWXdbPDwgdbm8YEfcc1bMfBoKjttzfWcssvICPC0mkzACjel/jvo7dv8PhyAFBzfiKfW+pOM8ct/Y+h+2Adfwvd84nYvzNpmgY/Pz+Eh4dj506zPf6lS5fg7++PRx99FKGhoahevTqOHz+O+fPn49q1a1i2bBkef/xxKc+YMWMwffp09OnTBz169MDRo0fx9ddfo23btti0aRM8Pf8+nBPSLlxMCUCrtXFI7z+bv5gr8hLR39cMWAAAnQ5eZ/FmSujcyBgedFckyttkfiyODZ8lLRxW6eg62T6rmgtN5sei4VvWR+6U12rTBOg+ClZp71VTCehaOKrjwO1bCCtbzlSfsR6r/6rmgis/H3Zvb0uNp1V5VbfXxOV25y1PQ6zqM1LFbbXxScOVXONmzBO6xwstKuRZ2qoXx7TE+p8ZwlzgD6MR9JL16c2J1xyw3RJitXl4QBsf49Yf6F6eQeU/auGnwA2m+1a+C62SB2BfxHLLsdV4YSyOPztLegb0+8xzDux7w6zlpzRpX0TzNgPMFOqs4xJS5kVIQWBT5rdByHB2KrXqegXMCGZmgOR712xaHCYO+cHytFfVXDh6+wbGpvfnQcWteKHfMa+MRuKnsyWe075rhaCn9+FyfBCq9kjjaQHrMbX6xB40XhmHjL5z+P3luQno8t441Jpjft+KOrSCx50i7u8lliu2o9m0OJS5BlPwZy60Tok1lZ8yOxKNF9zkfqSUp+tjz0jQ7xJt9IUautpt+4x1i3R+RAxq7buK4t2HTOnJbzTjex1pDmDx3yj0AFH60lYIHLiP1yH6KDkPXYHa3L0W1d17n/69HYFPueDVwBcFuXmmZ9+13zNIHV4Gmd3nW45nYx0A0LO1E2nPB0jvAMCQKguPp5nKKO3053a3CAlFz13bqE3Byd5Ijcg31WHc+HtvrSchOAJA5tQY+E80Q8AbN+lLrtTC4CrnpPsiufPDS50WhYx+elgGq/EsklOxAx4e8ChbFgP2Z2JZE8U0j3mUKes2vITV+gMA3R4ZhHW/fWv5DE++7OCKTUAfh6qm+6N2OXSVx1cUybNCBRS5AfdSNRci3ohFjUW6n5nj5dGovDzJ7XgCwISFjhcl5QKRLcgfuY/WR4XTxdj5ke4vTOVdGhyDaksSceZ5B4evv1f6M2u3Z/MmKDp0zO06nDPZAb/J+ungS2lH8VXfPli7brnbOrzq10PByVN35e9eeHeXBkCpbdRecfBg8KrmQpu3YrH7Hff7KiverH5T3Z3rN/vPORGL/RediM26fyL2b0+LFy9GYWEhhg8fbnm/fPny6NevH3bv3o0PPvgAcXFxWLp0Kbp06YKEhASTEAYAX375JT799FMcPnwYzz33HJYvX44xY8Zg9erVf6sQJpJjz2MIGpskvZT9fdmJUNfHnkHU67IGfd2pptIiVU9lm0fRPp8C1zoVOxq+lWg5WVAZd4qZuvzUr6EAwIUwyiumNZJYrrHsgYYgp8bF1fhf1NyKdRYeScG5kQwVMtr1GMY3ikbLXU+Wqq2yVavKr/Vo+ZB0/zV/M0y0FT8A2xRdbsfs490KYb7h0v/itqzMWw8ze/frD5zFE++Nl/gU6z0aXoAVofUs2+6RuJ/3rSiQEK+U7tCLM7H/NSHoZ3ExDo41o8YZ+1jkY3kuW2SurQuAqrlwtf05yz4hIYw0uY0XxmJfhBz0XdKIBl839TNRnRkJ6HjoUVNeqpcCcxKddVwCAEkIG5d2GLZLXvz/jOAQnocAUHw/SMDAyuZAufQdWrYCF8KM90wby6cumK4FPb0PmVNjkGT/SconpnspTTePK+Nhk4TZ9M+iMaCBA7XmJCL3p+Y8HUGte27dx/29qGxVc8EjooV0zfeDBNSdloC8n3V/Tv/fRvL7c1//SmobANiueSJmvm5uxTe1CftNbSAyCmHGMXKjb5R0n9J0OHATNeclWgphqubifqMBAnKZqrn45le85vudl1RHg/cSkLKg5ARUEMIoH6GXAkCLL/STPHGMp3VcDAAmIQwAIibFYv3P3yBk2G5+vTimJc+fMtP6ZKPg1Gk0mpTIg8NSmmuhNaS0ABPo0/vPdjvfUlBwd/ev94vi9XY5dBWpEfnwrFjRbXqufCuJ5UchJwBwIQwAP8F3Kgw9k6wcnIodg6uc0+eoZaOlNqqa7Id3abCuXAwes5Pns5qHreaMK09GYV3mTsx7q690nfKIQpilIAeYyhWFMGMeUQjztDfFjq90wfHCEnbavaF5ZR5zS2z32jSzsNPp4HVeb9lrbD0h9MWEz2eb+BPJsf826n2ZgHol5q4ipX4dhfhtK6F8moBaf8hgRdQ31ZYwoU9EJiWyVavKUQzFezcfkX2xiewf6r7KxrLWrl/Onx+hZ4ppGvx+Qyrzi6BQrF23HA/1HyJd50JYvbqlCmFiYHAjL14+zI/d1jTE9Iyt3lWxHKeiWxScHsOEMHFurzk/0fJZqZqLIyG7UyoY2+numf+7kkfxv+bz307/FYLYxIkTUVxcjBEjRlje9/b2xvz583Hw4EFcvHgRd+7cwcmTJ/HTTz+ZgjYT2Ww2jBs3DsePH0d+fj5OnDiBzz//HJUqVbJM/3eQdxkdnUecLFTNBY+E/Ty6PL3M5EhP/9ck/gNORTdJVDUXdnzFNO0EROFOOwUAvXyYIGE04VE1F7RX9OP6G32YKVDGh7JztKX2ssRcx0ihc+Q4ZMZFkf6nzG8j9UWtuawP6LTBd+x1no8CioqLQuElZpJ6dnQM4vf/jsCNQ6X6nIqdx/IQyf8fI3gA1ZS5Eaa4OcQPffdo+RBQpNt9ORU7PHaw+zl9dMGNnLHdLfj8nqfNrXbNGNjYuIm0Kp+Po5KYNJ0GD5PSeTZvwtO2T2bvUaVuGYh2PQYAyFzWkpdNYDJEFFqh0SS9bSIvFD/lePslsFWvbtpIE3l3zeJCK5HxWVkRldG1wh2TyY1TsePLLDnAsdhf4lgTr6uaC40XxVq+LzmTGWR97WGXoGouPJcq+0qkDDEjZon0RRBTdLjy83l9/v9gfR78zSUADHUzP7cSr//oyJloMi+Ol0WxrIjv4uSD6DxINsv22OSDwzFLeZqQWN2UZ6J/pNQ2W/XqCHwlCQkty0p94Y5UzcVNocX4OMZn73lHXkVtocHIKbhmCssgktiuM781MT1/41zhvdZ8MiSaiRrLDRmu31M+MZ8YUtqUuRHw8PKS+2GjL/clpTwA+Gl198btERK3y7LvaFzR6QilKf+r7ptHFPT0vlKfgXHsGvmp+LMOWrSheWVcWB2CouvXpTyXBluDBzkVO2ouMCvebNWrc1AJAEAxpJPZJVdq8VtpT+rCxNlVjU18VluSWOo74m5epHAfdBK948vZkuBrBUzU7ZFBpmvOQ1egai5ujhuYLGv1S5ufi1xHpHFSfTETbK6tCzD5ZBrXcVtNVt+mFrpQTEIdBdB21x90LaFlWem++DvjMf1kfU3CKtOcRmE5rPgD2Hpp9GsFwP1HjVT3a8bzxNNh0vNM/4TNTwG/s3iuuU4dcmFPPhOSaX0EGCAM8WXlv65qLku/Q9EUcIhfO7drBcX4i9+wAqrmwoVnY0xpzzwvxzNr+YkelmB816ehai64JszE5YHRprFL/XenuJD/dyp27uPrKgF+MyoMKN+NPlG8rPv0v0f/FYLYfwtVeyzdNMF26/00nIodWT+E8etWQouqudAjrLNUXsQbsfxe7d7HUWZLfZ6XbPSNE5bVwt90Vhw/ip+ZvR0VVjINZsDr+mKtai6szNslLeqq5gI651kKaEdHzZQ2w2KbRaJNU2HH1pa8FdSrxn8TIAf5PbR6n21cm2wfhNqzGa9Ft7ykxUfVXJKDL9+sjUpG8DN74eWjIGRksuWGh67NuNSAB4dstKs8zsTpE/q07B3I7DYfgL7xUTUX0j7XfcuMi2+xoyVQVGh5D5ARnkSy0uZtvGlD63di+T2KSVNmwx6pH4oOHeP/ffoehqq58HNeEpLsPyHjwxg0mO/F+TEGFBd5NC40ACQAjez5Cv+d+6YD+cV3pLIIDp/KMFJB53BTn7jboFOaEceetizPOC6NghqhX9GpMrUvv3oRVE2P0/f2l0MAMOVCYHI5RLwRa1m+SKrmgt1bD0ZMcZ+KDhyDfR+w9J2eCHqJnY5TfK2Gb+sC5d43zbHZCDiGqLjTCcsxRH49Q3Pa8+vuwEyISPg+P5yN4Z4RPXi8u8zec3k7jO3eOofdK+jElDzxG3/E8CefB8AAci6s1hEkreqt88gxSVFiCwmU6rLit7RNvVNh8QrJtxPRYfw+bRCJQkYmY/xxtiklPyfjCaA4h6mai8eHorlFrLtnVC84FR1VDtBP7B375brPD4uxHDvGMS+22d18AgDJrVeYyvIfdVxKn/q1WSE197L+vsYf3iydloTEyZvzkLL6Rll8Pnvb/OC2Le4EDuPaQN9+k9k61L1xe369fatjPD0p6ERa99u3pmsv18iAU7HjYlt2qp0eoSP93e6m+9eW9g5TeqKq3rdKzeNU7Cg8fwGq5pKsVqzSWc1V4jN3KnZ0P3wJEZNiTddPjXVIfQcAU88xYbjsutLXMqtr1BbPMBZrDRuZT3H693ZcGsTmg6l1D0hpA8ezubPJh+x9EE1PSQlE6T/K3In6OwruqnQQ+5Ri6mnddDP+7Cms3XQqCQA5P+qWAtkrWvB+pDhvYpn1152U6qz3BRtrjv23Eb/lZwR/G4uAX0ah6tIkKa/4bMSQBCKR9Q3lSZkbIeWrsFLfg9wP6Gzx+S+n+4LYvxFZvYBkutPoiQPcwZiCEpI2r9NBpuksPHde2gCQ3Tm97Hc6noSquTAlYw9crzNzNTI5KI3EwL7PHB2MgcfyuFAB6BNRBc+y3DlfrDdvokOanFTNhaRbhTi7qjEHnTBuMPi1jQzNL/1pTykdp6QD+Chzp5Q/eAgTMurMYBvXhv1Zv7Z9cZRkytajS38suFwPF9cEo8yW+qZ233a2QcEJDba6dSSeVM2Fbbd0XlY1rcnvZUXeRJ2ZTEvo5aNgTMO2vE07P5wFj00+ePtsMwS9nGTaZLT4nPUFmZ7Z9wFbbnpaLkRWQpd4r+I2FsSyc/lCjHxhldQup2JHfk99s9HuhVEwklOx4/HQh7jATZt8p2JHwE+jpDqN7RDNbobmMJjjJ49pDJGu32HO+5HY/8fee8dXUXT/4+/kBgKEFjo3BNIhhHJDSLkXEBDhQkAEUQRRpEOi2FGx915QlCpFEEQUQYXAKlUhCYTAJfT0QFh6r4Hc5PfHcGZndvcG/Hyfz/PjeT45r1de2bs75czs7MycM+e8zzQ8o3ZBRRS6lJk4nfqdbdi9S9yGTTBBBzdMrWvIH5wyxiMynX7DZ7aBclptqHK5TDqZDX8qHf2y+/Dnjb5JxVUlGM3fSkVe7DUpmK/+PZ0ab8fxiQ7DfZEnVzQw7QPNdPDQK178ungyyxv3smymfOQlh2Fj4en9/Ll0PgBATbgo3VdUF/rtPYvCd+ST7kNvOLD2eCSKl0Wh/resbW5rfSS8MIHnd3c3OsiLvJBZWuI9g7kmvN7cNDSayDTFLefJ7QG0U1hRUZKycZmhfUS9g42ChH5Dqagu/Na6PlK/YCcqK5fNQ+8WbA6kDSJBvwPAu/n9AAAHh7I5kDT8REVvOdDmy2TTzaz4rQDAqq0roagu/N2uGueHTuzfaLgPoUsm8LTb35F9KfWBqvXtT+z5EH/Wc/+9Eg9m+RTVhbOdzvBnTquNh/4Iz/CF100lASGwhmf44umjHflpScKkCYbxNSx1jFSHyIPYluLJbKxGfKeFEhHHi9Nqw5X74xG+MEkq6/BrLJ/6ggOrD/4NRXUhe1YsFrT4C8eedkjfMoWF0Lddf4/KHrjvJKu37Dr3vRNDS+iFW33buzw+HvvzrFJ7xGun1caDmgOyqaNegZT/kfz95d8Mj6Gv82n/QtTffQleMVFS+iZTjOAP4gm0omrmueJ7Es2bnzvKvmc67QeA1WuWMJCXm8pV3901JB80+h+ZqZmHuw/mI+ereN6HiW3vNqT39XLDNyXDdO5SVBdaT9fMhxXVBb+/GuJiF+aL6JqsmeGTokoMc3D9iB8vp8Xg3ZJSRz/nE0KyyB8AbiXQqP1x05iAiurC+wUaYJh3m1aGNGKdAFPyVPS8kv5v0X8FWMd/OnkK6HxmpB0Z78mab0+aK/0EQpDN+nREnhzEzco+PyxBgi+n4MTkUH/i11ZodB8zWSl+2YFmH6RBObKzwknF0qA+3KdOe3zuSfMrLraWiFCkbFwm3auoPHp+4eEElAw5i4b9DxrS+bQIRGnRYVwZGC9pqRTVhZCfJiD8qXSpz83eR+jSCZKTvX5TAsAUatcT3yFrR/Fg0LfTvoH7TvLwAGL9TqsNR36Jwp6ERTzt2cfsqHbeLSHHpRzZwVEMPdUTtK06CuOuQlFduFR2DTW9jaY9+YttyOk237ApASAF8b4dGnmwCPNatoCiujCk4G6+iTRrv9m93M8TEPZsuukzT0oAs3fsqR4xvyUiFO7sPHi3aYXVfzDH80trQngswPiXkriZsRndqk4xMLtIRUvbIiRZ5d8V5ZtatAURVfwq/MYBwCs6CuU793rky4yKX3ag2fvaplIEF3JaWdwqCjov1knktNpweqwdp2NLDZsT301NuM8SABT+2A4vtPvD4EfZbc8AHrPPU98RQAHATvc29AiF+/gJnB5tR/05abf1vvXP9HMEoAUdNhtT+vbTM5+QIJTmF0rPl12qbQg5oS9PH67BE+V/aOfWC58XpuHZILvpOBbromdmcOFiGgI1UVR2+v5xYR/Jx1Jfh9f6AKxptUpqiycgEQDInheDiJGZOPKiA3ue8hyQme4TAERFbTKjvM8SEPocmx/EAOKAHKZALA9gsfFEyxA9b2Z1mvWBJ7KEBaP8+CmsPvi3x3Go56vV7GS0eCMVZ0baJaUQUVmXaB5z1IxvsX3i75g3k7hrgL7O4NVjuDnw5LwsrDjXAdmPhiBlrXYSezvjDdDC9FQ0n9/ufQDsJOtFjW9a4z3l5fsLXdgTb1trlLn24fhEBwdBqmh+4PeaxUhuC2Laorcc8L7OYsMqqguTjkXjNb9M+Efk39HgFLRnjRr/PixV/5fBOq5fw96Z/91gHZWC2B1AekHM08d9q8WE4n+IpJ9ks+d2RMSo7bcuyyQ/0e1MhnrBia6zp8WhYIC26fcJao7i+5qhyZdsIur09ARYSsoMNuknklmASirHses6t5XvG9MbqzLXeOwnfR/26T1E9nW4SceedqDJlIpRpGhDX1H/VYRGpe9Hs/cr9pcY7+VWmzv9fWt6LX7qUVHa686OqKrIPjVFb9sNKJlmi7Ona0DbpOgRzF7P34G3Qzp43AC0/ySZm4V4apunvni/YBteDo4zTVfRBik8wxdfB2zlCGgA88XTI1j+E4G/ojQiT3q65cJutXHlx6HXHQiZW4TS4iOGcvQ0cN9JTKirpXNabbA0bgT38RO3FEbFPIrqwvmyqxjczG5Ak/PUTqKitxwI/mAHyq5d8/g+fJo0xqodiikvF1aHIq39Mv5sWtFmhFapiYj5SRKyn9k35bTaTBVAx590oPFX5m0o7REDn3WZFZZpNvYjvktC8GTPwrZZP4UsG4/8QTOldpPSSz9OxJiNIjn3XMCz9dgJMJXzZO4BfBWmaelv93uq6Hu53XXJbE4zm0d63zuMB8gFhNhiwppmNq8HrxwrCfBimqEHVPwYE47VOVtua63zxLulbh2k7NtkOkapHfkf2VGzyAuDJqzH3+2qVfhdE/ouESml/onyRyRSqt5qjfbUPgDInh2Lgr6z4bTa4O3nh7LLl6W0ovACaEiaet66Zl01+H/eap3o8E4SD0juqa2eEDfFcm41Hi1hwUj5a3mFfXO9dyw2zGXB33vuv1dSFt7qPVTZ2BS/hq+Cxcv7tvgh0iMC/yfFEasUxP41VGmaeAcRmSbSR3tqvN3jwkUkTfgehDCAaeEt/v6IGMU23OnX3FL+kxNktKegbdUN5dBfrb8bIHeKHBumoomG8p1IdnC/AqqntPAQF8KcVhtqLk2XAssCDHWw0TTZ3EIEFdAjKVGfKaoL3u0jDfyUZR3gZYv9R/G7RNL/plMVfXu91gfw9E1/urkoeltMy6L+AIDEVndJfOuvQ59PN7x/fXmKyuJHUTwruicKYYrKfB/EPIrK0PaqKtsN7TwwxuiD5GwWY8pjs/SahvtOqw05w1kZJIRRHW+HdPDYnr3Xr5oKYfkf26V7AAu4TddLi9OAhHaSEEZ1kKmW02pD8bIoUwEoJ5YBZ3g/pAmMohBW1jUaiurisaD0fJttvMzu6dstflfiuPBE9LzRfQeQPSMO+ydMw6ptq9B8q2dEPKLlrRtK9Sgq83PL/0hzXK9oAynyVsebzQ9ZzzPlCIEoiPnjJsvmhjOKNuPA2Gkou6b50oj/1eeZ6ZmZEEZUu08eRzoEWNyfATlOvinU013J46QNbkrWOkOa0hqQzI/FetctnONxI6Xn/8r9GlKhmRBmaaCZMJuVEz5xK6Lfk0GM8u+Za0g39WwLuLPzOKopwMzXAOb7pEcf/Sz5EaleT22h+xQ3UvxOcr5jihOfACsOv+owjGGAKdX086ooWOjzHP65DWw72bUohAHA+gUsLqi4ppkJJ3ohLHKG1n8/tLJKQljp3Zp/qd4UXQT84PNL9wfYmNEJYQBQeuy41KYxiWvRaFoqNzut6LteGrKO1zH84GG+2Xc8w0xTe+zrL9VlNl/Rby9fX27ZItYrzknk+yeWcVUJ5vUpqosLYQC4ECaWsSrtd+memRCmqC4uhHkSCvXCSY99/bkQpn8uvg8SwnK/jzYdY2b9VfCB7Gfpzi3Q0np5SWUQkQ+d02rzKISJpqJi/hvdjiIxoIPpOBXrMuwpBETgW83hdxpVoib+a6hSELtDSVFdPM6PfqLpG9Ob2yE7rTYG7gB2slG2TouPJOaruyBNOmZPqGbhaRTVxcEsiGY2M06OxNfPoWu56R2hKYp0ZpTdkA8A953SU85U2beDL4TRvQAwAAcCGDBblOi+GOCRJtMrgca4LiJvZpti0Va+88TxEoy4pw03mZoAgPv4CfTtPEAyR/AkTLsvXDCUSwKDPo+6vLXpoua02rAr7gdDDB99mRvmzjZsDsjETc+XmJ//LzbXSM5pvllOd4sFUt8nV8quI3chC4waVbU6v29pGcbLCHmBLfwkSDmtNmlhreNdHUjPkurjwriwoDYbtNd0A0H/U3b9CUtEKPrtlcEr/vxhHpxWG9pVrWbaBmqb7cNk0z78J0R8mwmqT+ZqSgQyS3Nabahb5YrH/iUigBiDEPqo7OdxeU2I9NvsWs+bGA8IYGin2z6Q0SMntOiMtlsf9vgdWT9NNS1bvFfSJxbWT+R5ZEW4FkCY0NroeXEPL4/CrSUyHIrqwqdj5nDgFSJqS6vZyRyNUj+uRV+YvM8SUOOXrYYyLGHBuPAwE2xICAxOGcPLIlAOLmB/I/sOmW3qJvozH+EtQnBsMdaab69CqQ+q/LFd4tuMxP6s9aMxRmH4YzvgtNqwKiMF+5KnGcaZorpQWnjIkK+iegMf2ANXtDk/ZnkM85HqQuF7mgLRabVh/wSmGDj/iCZMttvBNt20mVdUF250Y8AMg/afwOHXHBLSJf0nAeePK1VwdIWs0COlAQC8lZ/J43lSMGAzvn2aBRg25mI8w9QvGNKkzz2HTPuEkPVEHtcUaOEc6J53rVrS2Ml/YKbhnVR3FvD6zL45AIh5M8n0WyTqfe8wvF/A5qBB+08YhCzxPYmKmktrQvjz0ilG4ClLRKjEk1hW2COaSaV4X/+d/Ha5BoInM2ROM99hlJcjZ6rmu6aoLpx71M6/VaL6W/yl8gvfs/NvzWm1MbCpBAakdnlQvIEfT+u1GEJDpIq+0Ur676VKQewOooERbQ2Tav5HmlYnZ34MLA0bovToMZTtYaZ1p8fYObhDVWU7/ozUNFci1fq7ASy1a8NSu7b0TETKejKXoU8RShxgroUUyyc0xaK3tImW4J3FiVhRXSj4kG2SIr5LkhYN/6CzhgmrtEeMZDJFAAP03EwjNShMO10iqrbSCCXtExIk/b7em8FUU1kF9zHY8KScXPgt24rABzRfu/45vTlsvygMUx1dxzEob9HngwREfd9R34v5ySGdQC0AZgYCANaB+9jvD+1S2yfnZXncwFYkCHgSaBXVhZz5MdI9PV27Nw6WqJbSc6fVhrxF0RVuosye1fCuirBH2QJLyHIAJHMbRWWBhe8L2W3g3Uxo0delqC6uTRXvE5y0yJ87Ow8ro/wNZXm3aSX1c8438YZ+92TiVhFvZs/oefHkmxs7b4bG9VVYK2n8E2V1KJfKNeuTsGfTcc+wUYYNjv7b8+udbxgbiupC6drm0u/LD8SbjjFFdSFiDIuxtejwFuk+jWE9pLiiuqTQBWZlAuBQ9Z42YYTWRhQ+kQlHOfPZae7Gqxroj3t/DpxWG74Ii5Q3guEhvMwWb6RKQDWK6sLZEex73Dif8Vtnc32EPpdu4Dl0/UgcfLwxR3OlMqlvAHCY+IpIL9iL/w3veLF2ymGmbPBpKm98K1IaOK0MmU8cb5Gzkg3lEh+K6kLEpsf4s6XF5qbN+nuXB2knNuK41o9xs/kt7OsCwz0AONFTO4Wnb4Oei+Usi2yEoCXHpH7JW8xO4PM/tsP2QTJ61biBrLgf4NOkMc9HSgMAGP3tRJ7XzLSdCx3FR6RvT78eUJw/ABycRSyD/BGzZ8canollEXKnWb8Q6d+//hoA9wej/YAIXgIA5Zl7OcDNsshGmJyXJY07aV65V1sDSYHgtNpwqJ+RP3d2HnyaNDZ99yRkEr98vdIpc78Jj+DXJx3nuGIte5bWdzQ3UP/VXZiG2otlN4DTnWSFHCHpEg/9A2K5AtBv2VbDO73Ri8UzzJ6mzW2D9x+TQmgAwCOF3fj1fxRqYiX9S6hSELvDyGm18ZgTiupCaOwhPHGEaVrCR2QiZdefUnpCMSOi+Fz6CeFil1NwX7gA94UL/LmiujhSFgDuR1A7+4JUpqJqMYMor778ch95I6jXaMW8lYTgm07NwZPT+IJXdvEiGtybjZbbNZASn5Agw+ZHv5BEv59sWFTJ5MmMLHXr8PJK8wulRX7D3Nk4NSKW1xX0KtOkDfC7hHK7Fj/LabWhpOsxbnJX6l/dsFmovmaH1C+K6kIN76qGjafTakP+AxqkLyFqEULliV9b8fzZIzQzwdCMarwfAeZ4/UGoFtpALMus3wo+lN8jkX7RI+RJPc+Uttrv25Dy548A2EmLZQNDDAsdJsegyZ4Xw82+PAmF4kav9LAcTFkcQ16pu5AZbZyy7to90GP5FFjWabXx2EwipexebxjPFE+GeCJTLVJ+0LPwx7ca+k38L24UKhKIRSp8l72fwfuZuW2zD25u7Mq0+DTHBO18RUJvaQ8mTB/5RUNVs2zYIaXTf8eK6sK0os2mm+2xgX/ze61TH4Hfz1vxev4O3sZghZ0cRX2tnQo2sPjBp0WgYYNWnrHb0HcPfKhIv8WNuSgoiPlezzf6T4n9YmlQn8+dANCtepn03Cs6Ckdekk8x3DnMx+rC0AS0ydTG26D9J9DrgcfgP599f42npmJyXhaWhrCTrtbfJMO2Uxs3YY/s5L4f665aJN7JZNqTwGTWFvG6zZfJhnQAkPuweTBg+k1m3KabZavNYLK3Oqoucj/X4iYREIbTakNJn1hELNDMT/uEJCC763c87eBmxjiTZnVunsrmwdB1I+G02jh6pNNqQ/+c3gCAU+Pkky+6XpW5xlCmoroQ/tgO6b5esBHTunPypX4JfdiFkBfSkPPIdLgma6ARTVZoflMU/gUAvhg12+N7XKhTRJjVT/kK7pvF76fs+tM0vSWqJUf+pZMeUvRRWTnfaCcz+hM6cV4VBWizNAADAKr501a0nJuEXZOmwYycVgZj/0FoO+ndiM+nNDXG9VNUFyImbAMhdNK9S4MTuOmnSCeSGVqmWC5R/qCZUtvEuJcAsDLKH7lfJHhEK1Qnaaizud9Hm75LopI/gvh19gwj6vTJCZqp9/r5LHQNfDQ/Rz3Y0DO5+3HScY7XPzCiLf5jqBK+/l9ClYLYHUgTXn0KANBz6EiU330E61fESIvYkZcc0sQhUvO35KCQXJPk58fTiJNM9jxWdtFSdho3tWgLynbtN2wmQ1ZchdNq4xHqiQhenDRFRJKGuX49bmYpbqxCBXOag+cbc9jo0vzCChdOAGj0tdHM8ep9cR4XO/e587CEBUt94LTacGEoq5MEWnED6LTa4JW2y1AepSnor/kD0IS85pBsBtRhO4OVXvPrQlPhgqjMtU96TiiUerLVPCTlJfSrk0naRqXMtc80r9Nq40LchdWhhudUv6V2bZwZZZdMrwDwvhLLA4C8ITOQ0jLFtM6IkZlwHz+BlnOSELJWg/7WQy7rhep7hmlpxXE+/OBhqW4A+KvtcsMGjbTshISmL8eMnFYbll6qw4FW+sYmwmm1IfWLGYZ8VFfX8ePgXYuZv5b0jcX5lDDDe9Zfi+bDud9rtlmkBACA0XVY0O5B+09IZTitzAy1IqK6zodUxdlV4Wg22Ij4pteE93h0NJYcZlr+0Cpy0Hoqb17LFjw9nRKL/n4Fzjk4Nc6OZu9r8c6cVhsPNA+wTYy+f+i32SkkwIQ+AOj50EgAQO8DffnzTtW8DelzvtG04ylZ6xD9fjLX5vccPII/G7T/BNasWoSAD41w3wCQ9tkM7Ikp4zwui2zErQ+IxM1n4Hup2P48m08Jmp1ONJ/5Zjzn8cSvrVC2az8vo2BJO9M+KVgix44U31nAR7IfpU9QcymdPrAxz3szBpSeaD7Ye5CFCzk+kfFdti5QAicSefBdnYGu3TVz4PzvIgz9+ELebqiTNGFAUV2w3HS4p7L6dh4AAMjrMY8JsM9qp4uEmtlgluaTlD0jjn8LBHEvkp4HRXVJCkyz9VFRtWD39HzO+SbSOC5OuMTLEE++Pwtj5tKRmT4oWtpW4qGRxY+fupvxFbqUhQGgGJwEr66fDwEmiIjojScd5xC+cQQGNmPrXvtPkpG/2Ibwx7WTmRt+QJ/eQ6Q1zduP+ZN6ValqECDPPaqZ9iqqCwc6sxhsQa+mIWSZFoqh+VY/6QS77kJ5/XdabXgmd79pPxfc0PpRUV0oLynBoP0nUOvvBnBamZ/40AMq54HWHb2fuJlQ6W1rDUV1Ibvrd/CKlteYvIdmGPqf/ls/0cyi8+6eBwC4OiAOp36PkHgHwBFaAWYeTvd9Atm31XBGmoG3qnXkgM5UnqK68EVYpJS28kTs/x5VCmJ3IBFUvPemnWzT855s7lC7oEyaOAAg/2PNhLFP4sOGMkUUJEV1YeFh5sQcMTITffaew4HOC+G02jCxRScpXZ9ebBKn2D+lR1T+vP++08gbPAOnx9glE6+itxzSZO4+fYY/M9OYnR+WACVyJWot0TbNN5YwXxxR40SbayKn1SYJFNV/3WZaPt1z5xbwZ8eeYoJs7R/SpQ2GoroQum4k8oTFQk+K6kLXceMQOomdnFkiQvmELE60sw9t5hD5vfsOM2xkqmxsivAMX8OkLfLvtNoQvHIsz7MsUgMVmHOeadbK7e25w7NegKbgsaIWzxIZjrT2ywz1LLtUG1cHxCHlwF+oNzcN+2NKpXbX/kEWagjQxYxvPR0cPR3598zlYyJvcG32/m7a5Fs2WGXhfYMM10/liz4VVF/H15mpK/krOK021D5wDlfuj5eEDqfVhuFFRvNVRXXBJ5gJGXMigpH/kR3ZczpiVUaKlDd7RpzB3OrCmAsou3gRiuqC76oM1EnMNSy2+vFFPmtePj4GnweAmQLR9bg6qkch0Ex4EPmtPzsN/vfmo7y01JBOX45vRg6GBMqmR7SRqoieyd3Ptc9Oq02CtxY3scTXxjYrOJ8ir/S74H07LP7+PB6h02rDPsf3bMyM9cLh1xwc1ZIriW7G6qKg0y1+L5N4aPR1Ktfme29mdZ5MsmNZZCOtDxPaYegBbW4DNOsC/Xd9z56LhndC/NNJPp3604nmsJGaILAzdonEX/CQLCS26yGV57TakH3XAsO9mJ1l3IdPpNLCQ5yn4JVjUSfRA4pej2IpH6Wp3YchMEaMZ2AFjaem4tQ4O47+yb63xJ4PmX7bswO1E5/rZ41ogR+HtoX1E3n9cl+4gPAMX8TtfBAAsGrzCs4jBZAmfi0tNYGS7nmVevH+DnlRBmkRr/Um9rEudqqc8AITftpvGyqNQQr3khjVHYrqwtKoAC7g6InmU7G+/TGlPGYlPXNabXz9o3tnRtqhTmJrZNjTbP2p4c3Ge0UhTRpNk4VvRXVJ/kpNvkhFyMMu9Nl7jqfb9/g0lGUxl4Pw75nQSgAmIpItlUEClSjckDlf+ETNAuBQ/GVsmjmLnyYTP9nzNEAUEjDafSb7zU5o0Vmqg5QcFBsMYEAr9L7FdUekwfk9DPdWpyzm5Z6LYgqyMysjDPMQxYUUT/TFfrBEhqP6im1ocG+2QUlyerR20ps9tyPPv2rrSt4XdG/gvpMAgINdFuD0GLZHm39oM+cxbANTLolzz3/SiVglWMe/hirh6+8A8hRHTKTrf7ZA1Z5F0qZAD3ta1jWagwoAN80xGvojZe1SwwbdE3l6Lk4unsrST3biMw5HLNCMos0IrlJTKpegzc34Iaht8T7FuTFLr+e5orZX1O43TkYhvX0V0zS1/m4gLSD6vGYxxcx40ffZpQfj8cYHc/FZWBQK37Pj4MjppvxZNljh7s4263ePGMMd86lMPbxzRTx4ottJZ/bO9eRdrRo3Hz33qF3Sonqq49gzDjT5IvWWPHsai6aU0E4C9ridvHqhwdMYI4jkPiEJKLt2DZcHxeN4nLcUxwYA/P5qiMt3naywDWLsKzPK/8jON6Kdsu5HTcG3KzhlDIKXlKPw0XJupqXnl9pzbrgdWz80H19mZPYuLg5JQOrnM0y//2v94rBp1ixDnwEMafDvr2dW+F0SUZojv0Qh4H5jvDN93DF9XURnVkagXr9sj+k8jbULQxMMm8LJeVmYsGi8FOrhn84zJX1j4bvK/Bttt8MLK3+zS2AoZuO1pPwG81e5RV1072SSHTteu/U758JEtw6wbNTMroNTxhj8XAB2Atjsg1SPfXCrecLLx4crDl7Jd+G9ELmdtztGPRGFA1FUF+ImJ5nGfNN/63Tt0yzAECbC07wgkqV1BI+ndTvzjP5e7sJo7kNrRnoofT0VLGmH4CHMfyvkz1HSfACwMCebN7bh8dD0RG3sNnos99HU86nn8Vq/OFxpZEG9uRXH6BPJjPfC9+wGa5sbvTpK69ytqHRtc6xr/Rsvf/6hzRjRvLPEx22vHTqitBRjzGw8UEgVs7Ev9k2PR0dj3cI5OHuhFA1aFt7RcO20Z2075t8DX7/720r4+kr6/4nILh4AqvZkSFniYiHCnnrXqgXvTbIPzLFBYch5rD7uStKcgPWLjX4y7NNriCkv4sSSPT0OeZ8loOdDI3FxSAIcu65LZeuvFdVlEMIAIPimCdQLebt5etHUaHS27IidsvMP6bd3m1awbpCHsNNqw3VnR4kHs0mV/GfIH0if5uhz2v309lVw9b44aWH2imWmnD+HrpXyqS9oZjhOqw1NW2mmZeIEL5ZltvBv+XImetVgQUWD39T6zqeFdiKkqC4uhDmtNsPi5LTaUNBvtlSHmPdS2TVYWobBEhkuPctbrGlBxYVC/LuqBEt5SMMnamPd3eWg0KIPX92FsibbbEOS92kCmnyRikM/tZX6jcymchZ0MLQLYAJMn/BOyLsJ6U1pDr92U3v7i/GkgUh9gWmqRx4s8rhRMBM26H/eY8ycidrqt2yrQQhTVBcu33US/fedRtHStiyg7Vca8AX5ldRdwPromA6xjSjkxTR4dWwDp9WGmr212FFOqw0RY7Zj/YI5yO85l9epH38t5yTxejwJnmbUcm6Sod9qLdFOlnvfO0wqRwTMIbMyIhLCiD89UXvueXgU93fZk7DIlK/i83VM8yuqi5t8AUBGh6VSGrFfRmcXmL5nwFwz3616GQ/1IPaxmE8EvhHrpDS+qzIM7ScesjqUY/842TdH/66cVhv6B8R6LINOF8V7FQlhV5Vgw3hZu1iG0SchTP/O6ASwovHkqd7iyQ4uhCmqUQiLnMVOpq71i5PepxjagtJ6Gk8khDmtNvh/J5/+AEDhO3IoB5HX0uIjpnO2p/FCRIrQRRfrS+BYRCuPaGiOn5wxmoyHPbrTdP6m/ySEifcB4MTj7HsJHpLF+dMLYYrKwpyExhmRGumEmdq4cQ5bS4686JD66PQYu0FQrLZyGwftIrJ9IJ8siv0W8uco0747OFLzj6bnemUjkejHLpLPPYekOWZE885QVBcOv+LAtX5xpt+TvmyACYV078iLsu8duQPoxwMALoTRs7Iu0Ya5wmm1wWddJs66r+CBlrJ/2x1NlT5i/xKqFMTuIBJtgxXVxc18COXv1HgZaCF7RhyPkVR28SIDYrjpA6CoLux4fTpCXkxD8xez+T0zEu+X7TnA7dz1aWhiKbhvFnKHzoD33ztRa0k6j+l16HUHTyce3/MNQXQUsmfEwVK/njQxfRzalvPQp89Q+DQLAOLaYk5EsEG4ExfAsj0HsGXKDGlRGpedbxoXS08UpNXM10xRXWj6mWYGcvg1B47HWnCtHzOTzJ4Zi/KM3Zx/srkHAOvHso+eX+98HPklyrQO/YRN986ukgWj8hvX4bTacGlNCK4HNeBpyfbfabXBu10rKKrmG6K+4DBM9Pr3UdO7GtwHc+Hen8Me3IytktttPj9FE3kUyyC/LOKFrldH1eXXZF7o6V3oBTwAPBSD02pD6PPpKPjAjuYP7pbqck1mG9P8e+aaCtt1F6Rhdc4W7oNIzwgIhcAARCLH991PszTzWrYwFbhE3s0o6DVZwDyRzBbs8k6srJz5MYicxUx1fmtdHy0G70ZObAnCn9zK31Mji59UZpMBmomgCBIAgJtTAeyUEQB+O6Kdrnj6fkRefUKCpPtmShoCuwHA/diGHlBhaa2hkwFAzFtJKM/cK9WbtyhaK69qmZSe0n1+JsRjnwKAZeMOeLkhCeV6XskM2IwuN9Ji+nV5YrxHwWBwzfNS2TGZg6VyFNXFodHFOczsG8v+liGmhY/IlDZeJ5IdPF/D1Lq41i8OCy40MG2/+A2LcZ8Admqub4eZALSmSPNjOfyKpmDKntPR8G0efsWB6s4CXpboByT6Nv5TCl4xjtdr1kZF1cw4xXTkY/fGySgOFFJt5TZs/koDOqp+zEsqj3g3GycAM+nW108U9Jq5aS2l++ac0TRaUV1szdK1TzSvBZhZNYFjie+1X0AMTzepXp7EE5mu69uiH2v01zr1EVjCWXw5CoXgv6Wex++byiFzX5HWtqkl+bA6rTYcftWBgI+0Nc5pteF6v3Omc7x+7qx6odyUD0ALj6C/b7ZueXoeOsk8lqCn/Psen4ZqK2VrGj3fuV8koOADNq+KQiH5aOrL9CQwi+m8/95pmDcoHZmHV9L/LaoUxO4gMrMNVlQXR/lrMDNN+uAjJmzjcPUAEPxSGpTIlcj7lKFchfzMNhwnHecAyJMW+R3Fvcy02zTZAECLwbshIhlZGrJAsMUvs0niUtk1OK02DDtQzONsAEDztzVn2tNxpdImW1FdWLNqESImbIP79BmejoQUmoxWr/6BmX9s04RSMXi0fuKjCc3SOgIt5yRhVkQIECdv1sS8ngQiURjQ/96XNA0HR03nk3bBvbNl4fXyZUS/r9nBd3pqvFQumVFVtKiIGwf/vjmG9ABQs3c+vDfthLefHxNEb9r+A8DqNUsQvjAJdRJZ7JvdT2toX542JIb+KC83pBfziRtPM8FEFCCpXHc3FuBy9qHNpouwvqw/fv5OStP1bmZSU1J+w5De08Zdv3nSv9e8IUanbfEbOfG4Q2qvyK9ZGyyCuUSVjU0lvsivg3wsw0dk4q2HF7Ex6+9f4cZBbCOla/xVKj/x9ftLBrQhU086HSEimH1P5ZfmF8JptcGnRSC8bSxWXftPkjH1bAueLmXfJqkvFdWFH1pZ4d6XjXJHey4EllbXNsXe7SPhtNrgLtFiFhb0/pbn5+V5W6C00frQ0jrCNOBq46mp2N9poWn/9GnZhaensAokRDitNsm/psYvWz2OcbG/916/igb3yiaMTqsNx7uXSnXTNeU/PYb1hd50j9LvfFU74TrpOIeau1QsamUE0RD5cVptPL4XV6T8tFX6hgmwx4woHfkbK6oLEaM1GP3iyWzM1zsoxz7cNHMWL19cazyRp41oRPI2w32Ku5TY9X6P47P8pvz8/W45tIHY7qafp5p+lxReBJDf1cyPZJRVT2sFAPQJc2BG0WYsuulT/VtrFpQ7OoMpwey7BsFptWHshk2GMk4/GiN9LyKPyUcSYAkPQdzLSR4FC0V18UDzZrxRP4inM4EP7EHKpl+k/jnb6UyFbRTry54XI/WN6MMKAIHvagIIIeVmxf0g8US+eXSP/LH9v0vjCNBm9Yt8iX2S/5ERfZOei4A2egFVbIc+P8CEewAoeluLe3psBZuzSHnU8t1sKTj7N+cCDWOt+VYjEJoeTp9QcG8171jTa/1HgXVU+oj9a6jSR+wOIDMfMfrY7c9P4LEtRPIJboET3ayoNy8Nx1ZEImD8aY9BSfW0tDgNg5vZpQXN0wQBGDWDYtn0f3nxNgbT3ncY1qzSTIc85QGAKWeDsDqqroFXfh3XVhLIiMo627jT/flHElDne61/vGvV4uAJwcpoRIzMhFd0FNasWoQ1V3zRu0YJQtePZAuMlxcXPrQCLECZG332nuO8HX7NAZ+Ys2g6QAYvqGjiF9up13x56nO6N2j/CQ7KYalfDym718Px7ASkfi5DU8fsLMP7jbOw5KI/5rVsgeu9Y1F1TQavNzG6FzfnXHapNgbVvCDlN+O7d3A8yktKDPy9kLcbH4e2NaTXt5XI/twEj07WlH/VlWqYNH8UAt9NxenRdtOYSsMOFPNNqlmfjcvOx/RxD8CycYf0vNze3hTx0lO7zdpA90884eAnp576LrPkumSCIpYtluWp/ktl1zCoWYJ0X59+5ZFMVPGyGL6pvvH9OOx/RTR4/zGMrnNM4i/xroEcxIbIUrs2Ug78hT+uVMFnYVEmJRn513+7jdNq47j9gmn69h8lo8mXqcieGYuI8RlSW4895UCTL9lmr/TuGB6E1xIWLIHtxL2cxGHk1UkOAyCEvk6Rv7wbl5DcorPHNLeiJ3MPoG+Na7zdh19zIPAdGUhBP57od5/wThwsQUzbf99pvsm/XZ7E55bateG+cIH7+4n1UtrRhzpLyH9mVLq2OXzuOQSv9QEov/sIqmxsihvdjprOW4d/boN9ju8lHs8PS0CdRZrJfN/OA7Bq8wpTxZO+Dfo6smfEoaC/BukOMNRL780uQ9+a9U2Ht5PQcEbFfk9m6xMANEuvieKESxIPNG7NKGdBB4QPZxYAFY39kYe6QE1gJn95nyUg9Ll0U5/HitaWqWdbGBBGzdpEZfgENkPp4WL+27tWLQ4Db/Ze9HX7BLfAqi2/8nsnHneg0TfafJj/sR05j9yev+FbJ1tzC5quWVexqV110zlT//0kdn+AB9gGmBJqnPUv9K5RguwblzGxRacK/RMr+pZuZ20W6fRYO+rPTrtlOoBZA4QO23nLOsTfpeU3sBG/3tE+UbRnbTfq3+MjljX3v9tHrFIQuwPodsA6AOaXVJ4hCybVNzXG1a7H+e/bnYQU1YUb5W6+scueEYeICUat5T+ZoDifMVEoz9QWFkV1oa+jP0oLZTv0nKnxqNr4CkdstNSvZ0CY0k9WANAnvBNHgTRbyL1trTHt11kcnUkEPRh5sAhDap013SiZ1RnrcmPd0QjU7pMHx67rfBHxxKN3+0isXq1pCL2io1C+c69pek/9aQYKYPYOKirryEsOBHzIFqWIv4ZzPwHqC3HBy/kmHn4FFlg/TUXXrKt4ucFBOK02tMn0luC7K9LmlSTGwjfFHHDA02+AIUs296nJeTFLd+hNBzdLMiOxb064L6ORxU/boN4EM9GX6+7eAWsXzZXqJKpojB9604GgD3cYYtbpNxAEBKCnnAUdEGw9BZ97jD4Zt2rfP3le8IFd0uReHhQP9b4bCB++47a+Y08KBbE+uj++2I7CuKumZTx3tAM+a6ohk7X5KpmPS7M5qf22odil07DfzpxjtrHW56dr2gDTvbuSxqH6r9tu2U6n1Qb1eQesnzL+RUFVUV2I+joZe5+YZjrmC39sh8gmx7EnIxihz1esoKiovZaoljjavT4PsWBpGcY3qJ4EQLPy9cLvrhenGdJbGjdCys4/EPNmEjLfnG5ol1iHWB6B8pwab0fmG9N5mrt3X8aL9XNg+zAZrpeM9QHM7Lvg3tlSuZ7aQgJF6NIJuP+urcjqwEzfeg4diZBPDhjGZMqRHUgM0PxWxXEg9g0pA+i3pW4dHHksyqMQZkY5XyYg/Cmt7GNPO9BkSioO/9yGh36gOh/IuwcXu5zC0ecckkm8noYdKMbw2qduuSb/k/XaU5rDrzr46ZeefJo0Rumx4x6/ucIf2yHooSxDW+cf2oymPjVN6yPB95/wWtojhrsYOK022HYCrmgtLQBTUJkzKyOQ0cEcwIy/8/r1AC8vuE+dvmU/+m+phyXB6//RXkn/rfYJSUDxkx1g/Tj1P0sQG/lvEsTmVQpilfS/TDSoz2aH4MGWHXBVCUZ1p6b9BeDxIxc3lGaTmX5CEJHWOmfdj/PrmnBtslh+yE8TpIWEiIQRRXWh7daHYR0ox6zS89vrgcdw5fWL8LsJJmCWTk/P5O7HF2GRyPvEDu8bQPaI6dJESXQ7GzQAuO7siKqKNhnnfh+NsEdkLVVijwc1X6mb9YT8NAH5D87g9VjTa0FNuIgbvTpi/fxvTesnBCtPAghdX70vjm/+zNKabQIrEsL6hDlQduUKAEBd3lp6L1xAbdMKq/9YgvAFSSgPvAavI9UQ8oJnVD7K5xXbFmt+XWhsr7cFw/YVGTYHt0Oe0nr5+ODj3M2YFJRgzATg0uAE1FxqFFKJbrd+ACh6y4EWb7Cx7xPYDKe6BRri4VTEe8vtVXCw4w2PCoMKFSI3kRsNJ7rtI3mMKbNyLK0j4N7nGfFPj5x65CUH9jw5Dc5mMVCKjUG6iT4pTEe7qtUqfI902uypTwAg5s0kCcL+dhRD4uml+C6p7YrqQnHpJYwWkM4sDRvCffIkTvzaCo3uO8Dnmj9+/s7jd6Ovt6yzDXnjvFH9QDXU73qUz7lmvJq1w9KwIfKeCkPQq56142bfsZ7E05QK+6mTDX/8NF+6J27eK0KTE8sanV2AORHB/N7FhxKQ+oV82q6oLnR6eoLhWwOAoysiuXXA/2Ts305feSpTfcHB/Tj/uga8F6L1bbttQw1mcv9kPhDJ28/PEPKl5ZwkyYdMrOPJ3AP4KqzVPxKC9KSoLrT7NJmbWgavHoOI0dtvq++I6LsQyatjG8mXVPzGwhcmIaTjYaBHsem7o9OfY884sGvSNI/vdcnhVIN/k0/TJig9yuIhtv84GU2maPuMNunDsCdhkaFdpLhUl7dGrSW1UevHdANfSw6nwt9Sg/dz+MYRHMZf30aRXxG1V0/37LmItW1q8d/0jZiR/psOXjMGEaO2G57rr0Ui9E5AU1xT2kpBTKZKQayS/i1Eg/rxvwfg4F0+FU62FS3oIoSsOFnMOm/FuDoqwr9P4iYEPkHNsSr1N573drRrV8quY2Az2VZfJE/CB/3WQ+dSGtqI0W+fACtQxQerUn8z5YeITPIA8A1Z7sJo5PWYJ/Ej9hktsBX18eVB8bC9xOzz9bwWvW2XoKqJvKpU5XFZ/P5qiF/C/qyQd+KnIsGi01PjUfMnY1yZY085cKH1Da459tRWABLstL6OihYL2tSRqZG+7EWHt2BYYCfT8szaQmPonodHQYTB9vQOxFNVPa9UXrsdXvikyc5bbnxuZ3N0coIdO17XtPdiHxjKCIiGcmSn1C4xn09IEErzCytsY+G7dhwcZTTnUVQXImcmo/lbRm20orrQ7rNkvvGmss+MtKPePCYMnHVf4ZsU0czvdvvlyIsOtFhUxGG6z4yycwjq1qmPGEzRiMgEx+LvD/fZs4Z6uo4bh02zZvGNphkVL4tCs0FGWHoAqLO5Ps53Pu1xLAAsHMaEFjIsdYd3krDjtelot22owbTYrC/01CXrGv5uxzYah35qi0z7HD4Hms3FnhQrpr8F02t9OjLLpDo6vpFkMIcSTcwT2/WA+9RpQz1iejI3zP62IwoSv0XE/CQEvyzDi4vtUVSXJFjbdgIfNfasDKK8FX1vt5p3PD33rlYNfn/WxMUup26r34O2VZdOxG4l/N0qnZ5K1zZHtUevc0GD8lA4lXHZ+cxf+Tbalvt5AsKeNbeA8ESi6byoUPKUt6J9w8UhCag97rAE2CHylPNdB+T3nIvE9j0lIY/mBk+k54PGnb4PknJyMT08TJvPPJRrNsZEpYK+fRXNFbcqV8zbb+9ZTPTXUKvFMDpXBsbj729mehzvtyKfoOY447DiclNvNP0sFd5+frh+6dx/jiA24t8kiM2vFMQq6X+Z9KaJnrRsQMXCj54qmnzENP9jrWG7ViitUx3ef+808Nj6m2TJMdyM37xP7AidlGbKh6c84jOnlYFAjG1u9Pcgv5nbbd+tBLPNUxlKF/m1KaoL4QuSkDN8Ot4/1RJL8jug6YD9FU7++R/bKzyBul1+9M/1i4e4AXVajT4sABhAgu6ExNvWGt4nz6H0CIPEF01Ab6f+w685EDy3EKsyUqR2E51MsqPh9DRDfCzyFaiorYdKL0nveeC+k1jeuqHpOHF364C1i+dKm0uisMUTTE3DPG2SRmcXYHDN87ys3n2HGUxNIzY9huChu6R7xI9PUHNukqs3F9TXH/zbOHzQ/SeuXLgVb7dD2d92NECNR01Nxt6JGmCEfhNBfOr7jtKa8U73IzN9MKXpdqlMM5Pegg/tCL4Zt6hoaVtunizyeatNlKK60H3vfTi8qylyH55h+lzfttNj7Nj+9nS0/Hs4gh7K4qfcwK39Ec3egyU8BO6cfNPv/sXjNqxYZUfQq2nc18j2QTIaT5W/xZyp8Wg55yKHwBbLIusIukf+sWTGfSslw+U1IZI1Qtm6QB5QHNA206Iiyawsd/cOUpB1aa7x4ItVkYAnll99U2OsCGdWBF4d26DgvlrSyZPZN05lkPmjpw04lU15Cz6wI/sxz/5MYt68xTaOvGpGdJJJMT4BcHNuT2NY3w6RRKFfIm8LSrvZUOfNQ/gl7E+en8ocX2zHzGYsBAX52pJi0lPbFNWFxIOJPPyJnlexfP3JnKc1TvRhvZXgq6iaX60Z6fN3zbqKVe9296i0vFR2DTW9q8lKhLeSDGPDU/n6tgBGXzCKaWa25zBrn778rllXUcfnisEX9HxKGNJtP/P0L+zKQK92RXe04FEpiP1rqRI18Q4k+pC/Cmsl/Raf05/ZZglgCxClEYnSnx7NNKmOZyfwe2JZ4j1PdZRlHcCM76ea8r/v8WnSxGbGLwlhlCZ3YTT0ZDaJdnpqPC+LJkR9/6zauhLZM2MNeVOOaKcxXbKuoegt8zhiF4ck8DL9lmmnUiSEOa025Axnk/zLDQ7iSl4dXg71WfCKcdLv0I6HePwyIkJTutVCfWVgvOG5Jy0gwOIERU1NxsiDRVwIu95b64/S7jZDvatTFmNVRgpv3+WeUaZjQ6xTvB/4TipKj6iIm5wkpRV58oqJ4mACFCZhU7vqKLebx06xhAWjTfowjL0Z+4VoeeuGqLKxKefFadVQGy0bmU9SeIYvfx71dTIbYw/LiInljvaGRfOs+wq8YpjvjxhCIfi3cVwIE3khIWxpsTE4rNf8Gzxd9mMaiELp3TFSHwBAxIRtmNeyBdTlrSUeRd6cVhvyP9RQxLKnGTcyIm8Fid9KeZ1WG5p9kIoT7stS2WIdJCzOv9BIyhfxXRIKfjC+J6eVoZa+ku/C/phSw0bkjYb7DHm+eGAeZhRtBsBQWp1WG4YfPMzzhfw5CgAzK9bPY0VL2+LxnGw4rTZU7VlkEMJabtf8bPXz2Pa3pyN8QRIOdmGx5EgIA4DhtbXA7G0/T0bzrX6GeUW8VlQX3DlMyKEYVznfxOPF44xfV7QG9R8xgcVSq3+fDKqiqC6ET9yK1SmLcXWA8V2eWa+NcQD4c+l8AEDBxFaGtGKZ9Lep7c/SHC4KYQD4yQMJYQDQ45HRhnLWLprrsS92vD4diuric6s+jfj+xHGRPTMWBR/YcbXrcTitDP1vzW/fG8z/AIYyuOqKtuGj/m8w05hWrOveRruke2aKkI8KtprOpXohjPrCK5Z9s2ROSkIYAO5Tqx+z4m9x7lYnaeZ8rzaQBSdeZ3Em1n0/BztzWUiNu0eMAQAsulifCQhxV3nZ9eewOYiEsKQc2X+QKHj1GLi7qxwRmZ6V29sb+I4YvR1dsq6ZzhVi3nGHu/HriE2Pedw3UD5RCCu3s3n4zEgNwVCkTe2qY8sUNnd/XsjaWNYlmtc/qFmCga8GM+X4iJ4EeoCdMIb+OEFKT0JY54kMBbnOTc8F8mkWaf6hzTj5W0ueP2zjCF4+1bGpXXWDEAYAdRJzsfSSFh4ktprFkOZOpUrUxH8NVQpidyiZaZwSdt3wqPnTkwjgQWmv3qdNfIRQJwZi9VQW3T8/zOi3Q+hj+rx6wUtRXcj5Oh6hSyZIk5M4OYpBIT1psQBwc70+4Z2k9BS3hyhiPAOPKHxX27gmBnTAnEOb4bTa8He7amjxRiosYcFSPkV1odYSoxN38JoxUj859/fjdYtO33wxugnZTH2xptUq5A/2lspd1rm19BtgSInib0V1ocZyo4miWR+JQm+zD1L56YqiulB1TQZq/d0AiuqCz7pMnu6FvN2GvF6xbVF9xTbTsaGoGkQ45Yt1uTm/ZiAVROWZe3HPMLbJfqkd01RfuzeOm6ZS+XTtzi0wwP8rKgso7e4tg64Q7D8RQT9b02th7xPTYPH352VQEFWvVKNv0pBAhwQ2Q89FMBv92AaA82VuwwbsRrejhj5QVBc3OzvQeaFhw0L+ffry6X/OcE2gE2HBTyQ7cPGhBKmfujw+3vC9HX7VIQGa6JUtiuqCpWFD/NDKKvEVPDnN9OTvzEg7UtYulfx1Eu8aiOqbGvO+onhqh19l/78Ka4UJLTrzsQfcjLP0PYPzJhNm0beTym4xeDe+CY8w3TwDkPz2zP6abC3z+O0QWT9NxVoXg/L3rlEDHxWw708UgkVq/mYq3srPRPjjW/HTLhkCXLxe1/o3KZ/TakPxZBZX7K9pMkIgAJT4a7sQCltB9Yk8mwk6yUcSYPHyxj3DRvF7p35ncd/yPtXm8pyvZSWPz/pM+ARYTfsO0GLuUb10PzGgQ4WKOz2fEeMzJOVEwEepaDU72TTftIB0rpjUlzX6UGeD8oL6YWlkE4+bcYDF3HsxWG7/0uI0nB5rN+Th8/ivC3GjV0dYGjbEqfF2w3s2e+9EpKQinkS0z1vN5+SHtH4+U64saBmInC/ZezwqBH0X56YBfpekssu63FR2lrHwEDdaBkj1iUizIj+mJ3WQ5yZSaiiqC8FDdzG+91yAorrg7efnMS/V67TauIm1mEb/nT8bxN7Nnz8yFwRLZLhUXsPUujjxhMPjexAh76nM1VF1cbdjN69PjJvot4yFidj2/nSce9Qu9cvhVxwYnV2AEc078ziGiuqSYliKY16MBSv2HcUvrOjbqaT/XqoUxO5wEj/69PZM00ubXr2w5hPMNt3hGb4suDO0icxptaH6r2xjTQFJxQnbTMBrk+kNp9XGg1WeD/M2XWg9TZyK6kLv+x7FiSfYRuP3flOQN2SGQTuoP+3Rkxir7Jiw4Bz/QY69Q/bn6iSHVH7Qq2mS4NDMp6bEox6+W+yLaUWbeT8V9P6WXyuqC+jBtNuF79pR628t0LKiMkRKfT85rTZEjM+A1/oATdC4iRI5vOguXrZocqTnRyRFdcGnRSA+KbwZX+j+4awfPrBzPhTVBf8t9Xiei11OGTbgBEtPv0dnF6A8Yzc/bTEbG+69ByUeXeeaGcajxd9fyk//Sbs+ojazs6/2u4zW6bTacPdwppWnAOVUFtX5V9vlKLt2zaMCIWhbdZ5eTbjIeBZ8l/oFxEgnsOK3oKezj7FvqayrFphYUV1o+0Uyz1vSN9b0dBZx2omXvh+cVhv6xvU1CG9iOyld16yr6PC2dtLYf99pQ/pG01J5rCnKRwK802rDpQdZPLHAd1OR2PZuqZ62XyTj2FPa6XDKrj8N/WA2nocdKEbGe9MNbTt5VxNkFbB3lz0jjsfxCnxXDnguBnMHgJAX0gzjSN9/nn6bPaMy6ORbUV0Y/O4aUJzE3M8TcKOXMbAxAA6tX3blCt+sh7xkbkoNAG+ExCB3SgIixu8x5U/MY2nciMdsIjNRM6GK6js33C4hxXoS0sUy8mLZKYYYWL28nG3Aq530Ru4Uduof/sRWqRxFdaH0CEMazZ5hPKU76TgHRXXhyEvaaY7TasPCw1sMafX86Uk/F7V4I9W0fXrFh1heccIlA2iU2dgo6Rtr+NYo5p54b3AzZpImUv5i7XmHd5JQ5Y/tcJ88KZ26mK3J0noBTUl1qw13Rf0m8kqAWnr/R09rh/ffO5H3aQJaTmPAThQGRl9vRXRmZYTpexHrVlSmeFXa1EbH15OwOmcL7t59ucI9B93vNegxj+01u5ey7icAQOtvWCzP74M2otHXqYjOGCKlt+8aBAAIaSTPnQDz8T4Ur5nhX/qxnmndlwbIYQkC30s1gHp4WkucVhs/wT092u7xHfV4bZQhbyX9d1OlIPYfSBk286Pr0gJmIpETW4LQH84BkDUyFAC2zvfpkoBGlPeJbBawJ6YMz+Xuxaptq6CoLg4gMOVsEKbdNCsS05tNPuUZuznU8rNBdsPCC4BvFuk3aY3c5czM43Sns5zXJsKC07D/QVONmahlVFQXfEKC4N57UOL3Vps6SxgzSUtuwUziPjodDqfVhrfyMw35g15N407kdL9fQIyhzMOvsY3LqcXNDWVQ3JnEboNM+RH7R+S5tOgwnhn1OLuRziDqgyenIXjNGF7H2U5n4InEeig9LSwFA2bh8KsOWBo2xIWhCYb0AANYUFSXdPJDaUjwoXfku6mJ9FwsqyRRNiOtsjaTC7uK6oL77Fk8mauZ7lS0CQfAHfUrSieewJ5dFY4hBXcb0igqC0Ta6anx8N4kBzf9ZPwcfu27SoPulxbibbvhv6Uesud2NOWhtPgIFwqOP+lA7hdaP5f8EYRDb7Ix83KDgxKYyN01DvINkf47vrQmBD5BzSV+AO0kmYT9Opvr82cLk7/gwB4k9Ipt0ddRPNmB4086OGKm2F8AM3kLH8FOHfVhMQAGHEFlO602ePn4sAcJ7Txu1PR0q03+qXF2XocIZrAyyh9rbp5w5Q2ZAZ/LpR7rqmhTZUZhT6ejvEQD+XF378DbKJblPn4CESM16G1RcQJoczGRPuSE+A3lfi6bZWV/29HQDjLjupzFNpgBH6Uib/AM6R2Y8RkxYZtB8KF69zw5Tbo3ZOSThr4RyzXrPyr7rPsKv/fWydb8mciPWblEiurigbQ9kfiNEqnPawK6WJaeVxGVr+H0NKgvyAiB+rY6rTa4u3WAd40anG/6zolIyDUbX3uvy/NXwi5m4mwJD2H9NcK8rSV9Yw3l6dsW+ny6FOuThExP+fTvv14/GbWV3p2iulC6tjnnO/wJ9o3V/5YJq/OX9ZTaJJL4nsk6wrtNK8Pe4pju5E/8H/heqvRtEJoq5U9rvwwAJFASelZ+4zoU1YWSctbPhKBKaxbV02zQ3tsSoqU26oLTK6qLWySJ33TZukA4rTase2duheXfUVT+b/r7L6dKQewOI0V1watjG27KY0aXB8VL6dttGyr9VlQXynbtlxZ3RXXh8l0a4tGMcwGGCVEEzqAJguLkiGnXDO+E5BaduUaXyGm1YXyxdhLnSZjQP7vu7CjVQVojivmiT6+oLm4mqRdozCZJQrCj54deZ33r5esLp9Vm6vfizi2QJsn1bZlpxRshMaYLlsgjad4+KtiKe/Zc5OmbprINWv1v5UlYLM+dnQdAPgHy1C66t+77OYZnX3ZZ7DGfGXnaiAS+m4qQlAuo/UM6mm/1k9I4rTbstS8yLJaAuYBX0pX5w8HbYhgbG7+dbXiPfUISpH59atsQ6Ime5Xwdb7px0G9wzchptcG/bw7OdjrjsR/M0Ct71yiB7YNkyeSXNiPiRvFspzOIGLUdRW/LZin0nIQC10vTUPOQN7/v26sQzd9MlXwh6NnTQQ7U65ctjX8qs2bvfA4Qom8PzRfHnnKgRY0zyPk6HrlTEvBicDzODbejpE8sUvZuMGiu9e+42QepcL00TRIiKC0AXHow3mOfO63MTPfKwHiev7y0lPkYpWehw/aHDO+A0mXPiJPMsMRnIimqCw0zLkjjx2x8Oq0MEl5fnliOWfk3enWU0kjXN4VJRXXBsmEHnM1ipLKIRIHJabVxnx+vjm0QOkn2b0nKyfUoFOYNkf0eyS9QbLf330yJUFuIIiL2wTEPfWo2j4vv5PGcbBx9js2nVdZmGvqa8r+Qtxvefn44PVrwb5wRx8eWv6UG9xlMbV8VTqsNl8o0qPH4F9lp8KE3HFI/iLzU/zYNh1/xvG6KRCZ61k9l4JTjEx0e+1msz/qpdoooWnSIfWXZuAOFk2xciVVeUoKydYE8HSkozNZJMr+jd/BWQyYAuHPy0XpaMg9mrqeNs2dL+ah88k2mtnUdN47xuMGKnG7z4e7WwVRYHpedb/r9i31EsPVOqw0F+5oaeKL32vzNVO4LVtG6RmWV7WGKN/K9OjvCLiliiUjA9TTPu7uztpHZq35tENs973yQlPe38DX8Wj/Hifc9rX0AAB0entNqw+kxdl53eSeWvuw95pM7MKItKun/FlUKYncQLc9mTuvl2/dwUx4i8WMnm2X6kEWzBL221NMiKiLOvZWfKT03yyc+I/+ZiJFyPkV1eTyJ0E9i4gRYVdmOx3OyTTdTZhQ1NdkAqW62QNDv3O9lE7TmbzPzlzU3nbSzu35nWlfr1EcMfHjiKeSnCdxUp+Q3NqG+GByPtW1qwWm1IWe+FnwS0Mxk9DyTkOk+e1bqI08bHDF/zjfahoB8aMy0yScnsEW+r/1efs9dXiYtTHR6l/+xHRdK2UK3+VCIaT+bLVCK6uJgKeIJi6K6gDK3BIaibx8JYfqYL7nd5kNPVEbY4muIflczFRTL1W8kbtxj9OHxbtPK8G7/uFIFfTsPkO7lfWKXyms8NRXVf5V9x8gPaMGFBlIftXg9DffsYX4U+69fMbybqKnJuNqoXNoEi5to3p497PRU9GMRn+t/Ew997ffCabUhK+4HNPkyFVkdyhH+xFaEPc2+pboL0uC7OsMw5szKy/08QbrHBeL5rG/r/l3InyuqC+5uHaCnWvtO48iLDu57mRjQAeEZvrh0xdd0kxS380EU9J+FpgP240avjqZziaK6kD2PnUaX79xrOhZEvkTyrlHDY3spH51EkJ/OsuJ0Qx3eLp2AXMzmSVHAhJcXR7MkIWNBy0AoqgtHX3XzzTsAXB0Qh+nhYR75NnvnRIXvyD4tnmDBmwzYbzp3iu03M1X+JjwCWc9pJ2NHfomCJTLcMDd9HNoWZZcvczAJAPi25xzpPYuhBwDgwcie/HndhSwfWWWI5WfP1E6BAt9LxfU/mYm+VxUNqVPfZ+RflDM/Bu+fasn5bDw11TCexLzLLt1EbStz456HmQlZjeVbPYINNX8rFbV/0MaIHixFz19Faw2VYe+X5bEMcb7r+dBI/mzdQqasO/ErO2WqtpKddLq7q3BabTALcQIAg2pe8Chk6Medurw1wp9kSqWcrzRFTHAVzRWAfMHMvsOgbdUN6xwA7nu17X1mEaA/jSRFFpV77CnNP8xp1UxzD4ydBq/YthiQ4zTMLYrqQs/BI7DolX78vrhGi3skUUlqVo6ef7M9A50SAoDlIlvnzBSqdzp5lZf/W/7+26lSELuDSNSEiB/vkRdlZD9FdWHgvpNwWm0cdIDuKyo7UaP8IrKc+F+khGoWeTOd0A6v5Lt4meJiXJLIFj3xyJ6Iyh6Q4zQ8I5+pqUVGPwIA6FvjElrOk9H2PAkhzT4wOjiLmwiaaInCHpFNyih9RUIOAAQ+sAc+IUGGDR/VlfeZdmIT/lQ6Aj5kfPUYyza2z+Tu52WFj8iEpXEjXpbvqgxps936m2QMP8gW6TqL0g0TvMi3fpLnPDy+FZbGjfj9XoMek94fLSCWfsxG/tBDgbycxIAOUp/sS2KnHSEvpOG4nS3G+ztpEOPk8Gy2qNKCSmApom+W08qCWddako4+IQk49szN08mbmyYqTxTCFNXFNeH9c3ob+kRRXfBK3YWdr06T+oaeAQw6n6jK2kzoibSv4rvuVeMGSvMLeRmF79qRO2w6fy4KTCJRGYtaNUOfPkNRsKQdTzupXh6s6bXwdJARrbPZB6kc1a31NwzlsU36MEN7nq3HjjXIj8VsoVdUF0fJdFpt8PurIUqLDuPUeDscz04wpK+IqHwCJuiw/SGEPZtu+G4AwPsU82MtPXacP3NabVi7eK5UntNqg/tgLgI+SkXEqO2aIBdbguy7FpiOKwJjOTnBjj/nacAW+s2hqCAiOvG4vHm7MjAeIWvZRrr1NOZbQgHR9eS02rigrj+JGNQsgfP3UcFW5H5uVCA4rTYUL4viptQAuJbcabVJQcSdVht2xf2AtM+0Uy4RxEOvVBD/372b+bhcWqPFrzo4WgPDUFQXvKpU5YigAIO3p7FJlgEXVoca+Ac0YBj9/CP2f8D9e+HeL4PmmM1jhe/Y8cy08dJ8qqfVB/+WvvmeQ0fydDlfMnPMQ687EDE+Q6qjas8iHHvGISFB8k1vQ2aeTyZo4SMyeegMs7Wkd4s46bcYG0wUXo6+oKGjikSmxQBDOL3+Zwt+gia2uXffYSjrLPeFKFTxMuZ0RHHCJZ7fEhEqpZe+RZ0CB2DmeqRMoHt99p7j89iMcwGIzGSxTAlYRyz38M9ttMata4a8T+ywNGBIgLvjF/NH4U9u5eXn3bgk9Qn5a4ptBCDFfQMY3LtIlM76sRwWRz++mnyZarhH4/TgqOocpVMcu06rDVWy8iVQrI2zZ+PiQ+z7fiNEczVI2btB2guYkdnaQGnJfxlg6+jqNUsAAKE/MiCz5dm7UUn/t6hSELuDSPwA6aP97UgGWiw5DKfVxicFgJ1oXRiagH4BRrOXNb9pQVdvdDvKr8+sjJDqEycjcbJVflmAiVlDJT64AJHCNtdkZmY2GVLclpI+mt9PFS/m1zaxRSfDZsLSOgIWL28EvWKurT01Tls4RIjn9wu2YXKeUTuYsybUMEHabq5JpC0V+8Ds2rsdQ+hatXmFNKFywWl6MnKHMh+LwfuPwSe4BU+T1aEciurCF2GRUpnuxVWhqC4UT3YYFtt9j0/DgpaBSOx6Pwp/bGe6ydUvHnqeAeZ7Qmn+WPYdE2o6szQkEGV0WArAuKCZ9Yso6Il1BQ/Jwqor1UwXm8K4q5oGNFrb9BFd82djoezaNeyaxISnNUXaqRLlLXdoUMpN09im6vynzfkzffv1wrXYVztem+6x78hXw+yZmEcMwEynpU6rDQ8XdDfVhALA6tU/IHhIlsTfiYeNEMYGJcDNGHyEGKkfL/p7IhgN3dswVwv4ffmuk1BUF5r8oSL18xmmAiQAZM/SvlmC6aa+JGCCqj5unsYSEYpZ5628rNDn003LJTREKk/fbvG3mbJBfK8NZ6Th9yu1TctQVBdXaIin7Dtfkf2ZynwY/LiiuhD4bqoh5IJPUHOp3LI9B+C02iQhhsBbiC+bry8Pgkv9e3yiA0d+0QJVm7XNjHo+NNK0vwBwpDyn1YbCH9txxReZT29p9wuf6/XjuPzGdSlQul9vLQYaId3V7pNnyhOBAol8i+2hDT4BF5m1T1FdsD8/AUGvpUknaWYbWjLpnBn8MwDgzx/m8XThT6XDUrcO9k+YZlpPky9ScXyituGn5ym7/kTO1HgO0kGkD3XitNpw+YF4Lszp5wo96cFCiAjdEgCiWh9G1Z5FqPHrdmlMWxo3QvnOvfDerM21Pi0CpXKon1f2mIor98dryozsPDbHCyaPBLoDGIWZvE/s8J+fhgsPa3uJ1VF1Ef59EpxWG5a3bshDUAS+m2oYr6+3XQXgZn/2KMbcQdORkrXO0G4xT7LupFP019SnFa9JQDb7RkgR7UkJRf/147TJX95cYRHxnfzNnx4QJZXntNqQ+oVs9pv3mdFX2mzOgpeXqWAPQFofg4dk8XRhz7Dv6z/KNLHSR+xfQpWC2B1EAyPa8snjWj824fcPiMWqtN9hiWrJEdHafcZMsGr/kM7Nk8SPnj58WrC9Ylm5tAE/OUFD1aO0IiQxADS5GZyY7Jc9kdNqg/q8JlgQmAUA+K7OwDO5zGyy5+ARvC69c7B7Xzb0JE6gjdK1E5XqK7QN+8vBcehWnZnUkb/JxYcSEHgzrktpjxgce5otSq6beyaK+UL9CzBhQb8JL8s6AK+ObQyCqNNqQ9spydiXxDYA2TPisDSyCQdKIRMVsw2XErkSzx3tgGYfaE7F+vfnzsnHw622e9yE6fm5el9chVo5AHjpu4USP57KFElRXXgud6/pc5+QIFwckoCvwlrx2D40nhTVhcOvsdOr3IXRhuDHAKRTBSq7+8gx0j1FdXFoeYCZgp0ebUfN7cz3ySt1l8f2ECW27mraTnGhzvs0QQKTEN9Z260P8zyT87KkegIf2MOvT3c6a3gvVJaoGbWEMRAUvc+iXtA4/HMbg/CvJ1IUED356wr0bm4OCCK2P2ecBksuEtVR0O+m8OZtwZpfF0p5KU267Wd+352dh3F1VEM9hT9qENGjswuQ88h0bgqrqC7JDJDK/byQCXrFkx1o82WyVB6ly/2cnUKLpnr6b7eu5TJO/R6Bb8IjpH4t6cs22znfxON4vJfEs/93MmR5aeEhQx+dnGDHL7/O4+/rYqDsmyK+a4CBGjWemoqA+40O/qRAMhNKnVYbvP/eiXdPGWOFKaoL+Q/O4NdBD2UZQpU4rTbU65dtELbFb/TIS5ovlKukhM/zZgK6orLT/0lB2uY9cob8fhTVhW3vM2XHxS6neL7o92U4eqfVhtqL0w1t1/No2wmgjAn8I27GENT3b8q+Tab5iVyTjYKe02pD+MStBqVMxPgM1NnMFCSXH4jHM7n74fczSydCmZsBz4g+oma8EM83uh1l7+99OX3Kzj8kPl/Jd6G0iCkTREAPp9WGqKrVUeMXGdwK0EweT4+1c9AdQBNmiMgPnN4BUc4j06XfeQJK5KRjmsJhXssW8FofgJjMwQCA90K0/Yb+O9QLNWK/6J8dXRGJ88MSPM5L+vlweeuGhnLpmciPXhFR+4d0rG/L4gMGT2bfPM1VdRd4jjtGFPqc0RLAaWXhXsS9l+gXVvJHkOmaa/adOa22yhOx/4PkVV7+f8AA8w4nilJ+NjsED7Y0AlTQB5t8JAF5sbLZi9f6AKxpxbRU+o/dU6T706PtqD8nDQUf2LUAl15e0uShn9DMSFFd6LZnAHx7FUr3Yl9NwksvLZLMOBTVhW5jx3KTPH3Z1Mb7c3vi8l0ncewZB3ZNmnZLHgAWd0sP+U7X3rVqwatqFQ4TH57hi5zYEiiqC316DeEmafo6zH47npmADZ9PRf8AY6BokXK+TED+gzMq7Dc9nyV9YyVUL59mASgtPiKlKXzHbgh2alaW/pnF31/yObvVO9WnWXR4C4YFspht7xRkIM63CtvUfx3PkbE8lW1Wl7iAeXoeviAJIS+l4fCrDgS+m4rsWbGIGJchpXFabUjKycWzKY8g/Kn0225fYuuucJ8775FX/f2cr+K578Ot2uWp/uwZcaabOJGGHzzM/YRePdHWgI5qxm+vBx6TBFZLVEuEzC/El9Y0j2A3eqLNuD6e0nVnR2yYpwE/eHpv+nZ72oCJaa8MjJfMgMod7fHHz98Z8tyKd7OyFdWFYGU0N1F8Jnc/vgiLNJSn55v6XywPAGadt2JcHRWJBxPh7q5WyJO3nx+Hmf8nPJvdK3rbjhavp6EkMZZbIgAMQY9CmRAdn+hA46nGk4a7ksfhZHsf7lvl5evLUR0tkeFw78/BySQ7Gk7X5pVjTzmw68VpBr5yvopHi5QyVF2TIfHp5eOD8tLSW7aTyFN7AebDtDN2iemGOP2aGwnVLOiw/SHJzJPe4aHSS3jkyWfx17RZFX7XJx53oKznWeyK+wFxOx/Etuif4Copgc3XF+23DcWuuB8M433kwSIek7Eismywwt1dxZEXHQj4KPWW6Q28PeFA0+/3wn3uPFMierHTPZEXgH2b1Q+dN5iBAuxUu6DfbI/97Gme8q5VC2UXL0JP+nS03vLfjRvBffyEIb3X+gC8FvQ7HksbjdBhOz2Wlz2nIyJGb4elbh0uXFc0RgA2X4jz3u2sKbea6y8+lMCV3RV+4+1aoaxaFWDbbiCuLbzKgTW/LpTSTylM5ebnPk0aY9UOhT+/0asjqvwhK1uPT3TANZl9c6XlN7ARv+L8+fOoXbs27kSiPWv0sPdgqWoeY+5fRe7r17Bz0St3dH/8v1LlidgdROKRdGaJZt/eNzYRTqsN0wLS4e4uO70TFKuZhoXMAWlSyZ4RB0XVoFODJ6dxTZNyRPaj0k/Y5HukTyMKYQBwqPQSnn5xqSSEUVpCdPI0wfWN68uRHZt8odl5m7XtsuAHkbJ7PQCg932PGjRnqw/+zZ8DzAfl6gB2imQmhHk6BXJabaj1Yzr6B8TCf0s9vJIv1yPyV3e/l8Sz+IxO7sh8qv3HDHWPBFRKT0KYyAv5e4jp9FpIgMURE39Pdf3usR/5+xfui+9dUV1oYGEmT8eecuC14FhkXWfKgPz7Z0JRXRwQwKy9ZgsigUaI9ZT8ESTlofhJge+yzQwJYfoNyfTwMH5C4LTa+OmmJTKcjVsBKITSVCSEmfFMQhjVTb4T+rZ6gr8HgIbpRqFKT2/t7Mvrz7BZDGnEd0IANOLJIADsn1gHObElsHhp6IviqcShn9picl6W9M4TJk2QhDBFdcHLxwdVFea75bTacFUJ5tfUV6/n7+B86fnUK1jEZwBQY4UslNKmykyQU1SX1Ociie0Q31/EaK2M3jVKeFoqTwT7oP/DajHfySv3ywLpgiKmqW9c/aKUXlFdBnM9MdZXRaTnme4VfChA7r/OvoGN387mprgnk+wGIUxRXbB+t0cql9pafcU2NH8rFcdWREJRXSgvKeFpKP5Sw+lsHbj8ADN5E09UTjyhwbuHP7mVC2EA0G3PAADAmkPbDW0Wr889qs1Ht9ogN7rvAMzIabVxPx0Cb6DyKG7k2OadeRB6fV7xf6NvUjk4iX/fHES/mwybry86vpHEhLD9/Qz8zmvZAiMPFkl8m8137u7sdFgvhJmlNeXt61Sc7cOUBk2mpKLJFzI4CdGGed+i8B0NDl9RNd9wUWElPq9oPQWAY8Nv7j8E1E+zut2nz0h+XuKJHqXPmRqPNa1W4e2QDpIQJpbnbWuNaUWbUdDnWyiqC+5z55HY8yE2f5vM2yLRfEF8is87Zd1vup6Zled4ZgJPUyZ8VhHfJUluDIXv2ZE9i5mzlmUdgLLiprXAtt0GIQwAF8IU1QVYtH0YAFT5YzvngfKREFZJ/zepUhC7g0g8kn45WDNJWJWRAoB9uIQAJFLwr+P4c5HoQ6eJN2KCcZESSb9YPH20I5/ERI2XmEZ/PbZ5Z3z17mB+//PCNGTPisWFoZrZwYXVobA0qI9uY8ZKZYrCh1g2Lz+uLapvagwA2NzuF7yVn8kdnAEWs0xss6e2Vl+xTeL5fJlmRz/+7+FSWou/P86M1KCEAQZHfpegBNLX1XBGGr8v/geAv7+ZCUDb9F0KKsNf02dJ6XrrTibEejz9JrM3AAjYeEMSsPrOf8FjGZOORUv80zUFZxWf0QZtUlACCt/V0APplE7f72IfzzmkxZ3bN7mpYXEkgZ78kkQy25iLZmRiORQfx70/B9k3LkuxzERqOUfzDxB5IeRLs40KpQl8NxV9whw83+eFrP0VxWsTzTE9fTvkS1beyXyjRDw4rTZYfNySUEQknro5A5iw1ujrVGBdMyiqC80f3I0PQttJ8wKBw4h16E84/mq7nF/TBvztkA6mfIobuOh3k82F/5uKn4tDEkzzite9+z+CwHdTkf+x3ZDGabUh+n2tDvp/ZoRs0iWS02rjmyEvX18Df2T6BQBtv0iGX28GjqImXJTqySy5LpnrOa02lHWNluqkb5DM10zfa4IGfBP8UpqpgoUEbhKa9O1xX7gA/y31uDmj02rjsOFHV0SiyYD9iPhrOH+WsOuGoQ77yxoYx8vHGU87X57G+Tn0hvZtKKoLVxbdBIIa8CgsEaHo02eo1OeW+vWgqAzxUC9wKqoL3u2ZD232nI5SuBZP87bZOAKArU9N4X7EZukA4NLgBI/5d77KNsE8iHOPYtN0+hOxvjEMRIRAXxTVBUu4rIAk8qTk0Y/3kj+CJKAWfRnXndqaLJpHO60MbdmTsEX3ufLkpv8doeMCTEAFAKRn8fcPMFN0/fcl+nlJ61DLMCiqC/mDZt5yr1Hm2sf9x/q07AIAcO9lJ51kwaHPI9KF1aHSd0b/a/bOl9o/53wTQ96B+5jCt9aPmiVFne+107DgyWmo6izmv4NeSUPEuAzTNjmtNkPcPwA4/wjb81BwdMpb+CMTdC0brIb3r6j/YWAdlT5i/xKqFMTuUBI3M06rDZba5s7pAFBw3yx+f9iBYkMammjEzTnF+dELLorqQmJ0LwDgTruAjKSVt9iGGecCJG2UpBW8qahzWm14NsiOiHEZSPuMAQScGm9H7T55cJ86jY3famACTquNIfF5aycHFNuET37bdnN/CNKQ/rl0vtReSXDTkQhWIk6oDwV14XkLnDKErPvsWdSbl2Zop8gXBdkU662+qTEU1YXs2ZoZI2lufZo2wZKLTOMX9nQ6LzfnO3baWV5Swp2CzchMo+nOLUD+R2wxEE8ynFYbDoydJjlni4tXVgfzWe6utAkaX/M1QBiK2XKjdhkPwls8Wd6g6esBgNGCn4deISDyc6hXLX5fL3CJ6be/Jfs0lK5l4ApjD3fi9yKq+El5RP5EE0+RFzFIrX6hFPkqu6IFoH2laICBPz1ggb6cDm8nSXWLz722GIUHPZHQViGJVuc9ihG8UlN8EE+Jre4yCA4iEepb62+0U7WNbVZgdHaBxH/xZM3niO5dHRCHrqNl/zt63jeOnf7VWpIufVPif3qX5dvZhpP8WFpPT5bKpIDxYt56c9NwerTddJyJvFzr0Q537R5oeE6/xeDweh5jfKsa+utKIxYD69TvMlgGhThI7PEgv88DEN8MxO4V2xaWyHAktjWerAKaX1aHd5J4G2J2lvHnS4LX4+92mobo7lXPQlFdaHrT31ccM+ntq7D5aU5HLsRkdSjnc0ZmtDefr6acDQIACTreabXB/zv2DVnOXUHKxmXwvngVlgb1+Thwnz5jKng4rTZEzkpG2S7mPxwxeruEeOoT2AwAO73V97lI9Htgszj0e/wvnv+sW0a/PPSmAzWXyuFOcqckmJZLvJc72ksB5MW1k9KVHj0GRXVx0Jfo95Lhzsk3rEX0WxR6AAYIo6/bt1eh9C2K/txX74vjc7sI3CX6i4r1kS953id2fu/tkJsWNWVMkUO+zg1T6yIpJ5eny4zWtoal+YXSt13yhyaYUVwwgJm6pmz42dCnevL7qyF//mQuA8FZffBvqR/0Zej3MwCQ1n6ZtId542QUH6uIa8vzL400IjyL4Xs8jSuUuQ1KEU/7C/K9E9PVW6OZjYprdtBDzN+YQgfQc/r7jwLrqKR/CVUKYncQiR9g7I7BsnBz4QK/po9Xb4Lm3N8Pi1o145MHaZABGCadmj9tRdjGEfyZoroQ62KTs/v4CQM6VO0+edoi1m0+lrduaLqAAcD2t6cbFiEiCtYs8qKoLuavNiSLT36ABg8sbvT1/z1N1mZtPl3gbyqwkfZfEvp0pN9kDj2gARS4c7Sgl1QmQeRGjNVg6nc/wxa90qPHuHZVUV08oHX4Y9ppZ+hz6Tj+pLZwD95/TGqXfuNc2iMGIS+mcXhmsY2tvk1C7cUsILN+MwEAuQujDX3SYvBuXk/zpd48fXlJCZYcTkX4k1t5v1E4gYr6TyRPgrLTakPge7I/RP3Zmjbdu00rKa1IVSaxeG2H4mX/HL1gKAoOx55xGMaUuDB+E7JUeqf6NOK71td59s0WhvIAht7ptNr4qalZmYfedHCB11Nb9P2g36g4rTb4NAvg98rt7U3NO8V55eQEJri8X6CdGDd/MxVnRtkxbdQMKd/gmue5IA4Aeyeyse0c8Ci/99e0WZIyp81XyfxaPP2OfjcZR37RAsdTPeK7pBMcx67rCHwn1dBes2sywaZTgNNj7DyMwV27B6LruHHwTcnA5V+a4P0C2VRSfOeEQpf7RYL0jEhd3ho+AVYAWuDvzJil/LnTaoNPIJuXRXMymieJyjN2I2XdT5L/jfi8+dvsOyN/LhKYPPVBRPI2w/hTVBe6ZmmobQV9vsWFEC2fOAeQEKoM9awUAsCR+1ZtXgH3qdO8PrPx+kDePTiZZJfQBCk9HxuHmTJxf6eFEj+KygBv6Pf5YRpf6e2r8PxDAh1yv72Zipz5MVIdYU+bo3vSvfzHvfFVmAyWop/f9HOLHplT7HtFdSHwnVQpb0VB1+kb3vH6dF5v8f1svi1Y0g7+Gdp6UJYlm9hTvVnPTcONe2KQO2y66TwmxgL8PmgjpoeH8XQURJmoS9Y19M/pDa/Ytg0MGeYAAQAASURBVNx6QVFd8ErbhYQXmHmfe39OhWsA1UvuBwAMfWxGPk2bGPYaJYmxCF03UmrXgnQHnva/yduKhXghz4hCTeTt5yf9PveoXRpPRKQwE4nKmlKYajqGcr5i7gcimiS9G/07EInuvbrbPKbbnUhe5f+ev/92qhTE7jCij9FvWh2PixmlIx8vTjdNKihfyAtGk7FT4zQtcejDLv4cgAQOEDGBbcZO/R7B60i8hwmHoetHwqtjGymvorKTNHGzFjXViJgltlEkAg0xE64IZTB4hWyCSe3Ux7Qy23wAgJdb893iwuyHxhMXsW76z/OsY9raH1pZcfg1h2GjYPZfbM+0os2874hIywnIm4vNL3zOg1eOrqMtvGJ5fVp2gaK64LOOAROk7PpTKttptXFfk9MlNQwL0sojmQh7dCdPS/0jmtgQUAC1hzY6he947jsi/Wal9O6YCtNS+rJ1gYYNCvn0eVerZkgvojOKJI4BMf3eidPQ5ItUjC9mbWj1LVtwi192wLtGDSiqC48njsaxpxwVCucAE66WFssKBnof9FtRXchbbOPonfpnRLGvJqH5m6koLykxPBPbUjxZFtacVhtHOqN07iaan4VXmowyKbap9fRkqM87uHD4wPpk6Xm9uWncnBEAlhdvQ8ifo7hvkMTbCnOkRUV18Th79Juo0TQZWVD/3Sqqi/tFvdHQHCZcPycAWjytTtXYMlf/2zTseI2dqlV3FqDaSiZ83TMhjZuCU31ieWSSG/aMHN+PTqh2xy/GoaHslID8SvRjhoSLwAf28KDeiy7WN/SR2UZfHLdmz6i+Weet8AluYRg3PkHN4d0+kpe/qV11FJdeQui6kXCXlyFn+HRehtNqQ/hNBR2nm4duhECr56Ei3vV0scspCRiEUHXPrgrn+c4PY2aExIf4LlL+Ws5/11mUzsMtLDqsxacsetsumR4DQH4vFjyazMypPHFeoDYsu1Qbud3nGb4XLgA+YtywU15L3ToGoUH8r04yxg/UX5vNN5cejEd+TxaLr+5qPwl51VN7oqYmo8raTAMPlC7s2XSOTmr7IFlqL/nhEf3drhpKuh5DecZuQ5+kfzwD5Y72hr4E5HAY+nb5btJMBl2C7+KhNxw49Lo21qovLTXk903JQMR4xmPH19i71seT+zi0LQ+pQDTtprnu6pwtUtq6C9OQ/olmEkq80Jyob0PsjsF4OshhOubJp9hptXGXAX3fmwlldO+D7r1QSf+3qBI18Q4gETXxZLUr3G766oA4Dtd+dgSL/6Ff8G6HJHTEm+T3V0NJMyUi6/XuOwze167DXasaQwaCcUNN9+ha5FVP4sSjz1s82YG9E286qsa1NdTX134vh/LlE9b9w6H8ssBQpm2nBlNvJgQBgHeNGjxwq56v2+nbitLcKr9+wu2UdT9q3vQ/0ecVEZwAZtai16jq6/q8MA1RVeXgpJQ2/qUkbP2QaUa920cib0hdZD8ma0op36E3HQj62GXoJ7oOVkajwDnHUL+lfj1cXVKLhwjgmxMdyhZR4bt2HBylbQLFskV+9PXfM2wU95U88bgDjb5hmsm7ksdx/7/EewYjZe1Sw3gz67dbvVN9f5r1idm1Pr+nsvRlmpXnu6mJFLvPbNzS2PZu1wqr1yxB2MYRCH3YJaWbcjYIq6PqouCH9sju+p2BL7FuS1gwUv7SfMM8tcF/S70K/eM80T/5Xv5JvlvV91Z+Jt4IianwvQFAnc31cb7zadO5T1+mpUF9pGStMwiRYp8GbavOYwh5KkdRXVh1pRr61rjmkbeuWVcNsOQAC+i8vq0fM4v8vT4y35wu5Xs8JxvfhEfAu0YNFD1j47HqzMbsrb4V2uh/NnoOvgiLNM1zPiUMdRJz2fWwBKR/oiHJEhrqoTccaP5WaoV1HnvGgSZfpCJ7bkdEjNKEf0uD+vwEDgAOve6AzzUtPqInvv/J2MmeEYeC/rIPr1mfAQzGnkxQAQZGsTplMc+rPu/A7mc9gzL8kznKbOzSf/V5B5qmXsYfPxu/b09leuqX0rXN4XPPoX/Ub7fzXYvPRYTg/wndav5tOTcJB0dNR2LX++HOyffIh99fDdGq1nFkRnvzubT/vtP4rbUc91E/7gCg3Q4vZLzW0SMgGSHQOq02CQXVbC6/cLEM/hH5dzRKIO1ZOwz596Am7lhSiZpYSf8mGhjRVgp++Ne0WfyahLDQ9SMBwBDwUa+JEolOziiwLwD8EiafnIjR4st37oV7fw6UFQt5efEvJcHxzASD9k5RXQjP8JWEMJEHjq7kbZEWhZ4PsXaQWZuiuoBtu3kb7nmYOUCXFh3m90gL12xKvulEn/amptUWNYuiv9XqXG2Rtj83gV+XO9qjT+8hhjKProhE9uxYaTEjx2+xv/WLgUiK6oL6AtOekcM8wAKvIq4tCt638/dKeWv9mI7fjmhIivuSpkl1rbniK6UHgGeD7FK7xb6gGCmK6kLZrv3Ifmw6Qn4Zz9N0zrofTqsNOd/Eo/mbqVwIo/zidcTITKmtZesCUfiOHe7TZ7Ah6ldDvpTd6+G1PkDi17tGDQS9KoOahC6dIJXdt9N9/DmZ0TitNvj8zXxdcqckcCHMabXxMei02uDelw2n1YYuWQzhsU+YUZuvqC6cGWV+qje1aIthA0N5smcw1E2KL+S8fzjyFslHXYrKTE7176PVZs10r8/ecwDAfQNDl0yQ6hOvS7oe8ygw0X96Z2SqJAphlG51VF1MzstC8FAN+tlptSGx1V1S2QBwsW0jzr++LpGWBK83nXcASIHO9f89fS8iX56EWnh5GfJ6KodoeNFdOPaMA2+ExBjaIrab6Hxnzcyur6M/QteNhLetNfrtPQs96TdmxLvY/ztm2LgvHcBiGZZ1jcaxZ9g9Lx8fOK02yVxLRKcjMgt069MsAC/Wz4F3tWrIjFmKOoXMlPPQ65qZ3jfhzG+t7MoV7HucmdF9XpiG7nvvw9EVkaATVv07vnZvnOnYa/ZBKg8LILabiIQwAEj/ZAZ6H+jLfwe+y77b/eOnSe1wWm0c2IfuE3w7CWEF79txYXUo3KdO8+9XUV3YP2Eadj89Dd7tNZ7EtUN8Fzd6dTT0oZgHAC4Piuf+rGZzqj4/gS4RrU5ZDKfVhruSmSWH9dNUtP1CthLRE5lQvpC328AbnXhbwkMMY1c8ibN+mipBu/91TeM35ysGBOXt58cDgYvtEQPDK6oLPvcc4s9FfiytI6R09IzmMjI1LusaLflmK6oLrWYnS/lWbVuFY88YkWj1/8kVQ98vxPuZlRHoPHE8L5dMGoNeZWuf3n9PT5fvOslNfWkuJSFMbCN96+IeIKtDOXxXsRO5dtuGGsomIQwwWpgoqovn+SdKgkr676HKE7E7gEi70A33Yd3RvQYtlqK60H3kGFRVNJhg/QalpPwGBvZ6hKMOEd3Oh222MTLLZ3a/vJMNXltc0vOK8ottupWG8VY8J/Z4ECnrfrotTZ8nrRnF6iHKnh6Hgvu0ODTetWph9cG/PZZxaryd+72V9ImF7+qMCtviE9Sc+wYQWaJawr334G33A2m2KT1g7NPrvWOxYa4xloyeFNWFF4/LJnMVvSc9XXg4gQcHFdNeHRCH0Jf2I2teG2S+MR0RC5IQ9lkusl8MRejz2klfzoIOCB++A8uLt2FgM/PAqHp+zfg5+VtLHlvoVuPKU5qKxm9FYyp7XgwKnHPQN6Y3VmWuue1xrO9nuqZnbb5MRvM5B/lJS/5HdoS8yMba5LwsfBDazqTU26vXabWhcVptHLdf4Pe6jhvHzfUAFg8v/Cn2rvSnEVz43dQYK8JZjBw6Fef9MjsWBX09j0GxTynWl6K6kNj2bqTsXg+n1YZx2fn44JNhqJtbgrWL5jKBpWMbDuDhiS6vCeFoh2J9RBXNb2bpzMaEt58f8l5rh+CX0gw8KaoLCZMmSIiUt9MP+ntFbznQ4g1jHCnT9ggWBdnzYngctVvVR79fz9+BTtW8K/w2KqLbncOProhEtRV1TS086HfO/BiEj5D5V1QXQtaOQvjwHYb7VMap3yPQ4N7sW/IAMDTA0vxCadwCch+LceHE50dedGDPU9Ok8dFz6Ej8+cO8CvvLp0UgVqX9fss5iWJ95nwTj/DH5RiGZnSrvj/xayspNMDKI5noF8AUElU2NsWNbkc9lqOf+6gPPP02mycB8zioFfHuu6kJfgtfI/WnV2xblGfs5v1iNn76xvdD6eFi03KP3UQQpbSxOwYjowOznKAy8z5LQPgrLpRdu4Zx2fkYVPOC1EaAnT6nTO6OU2190OwD9n0GrxiHtX0/l5TpVE/v/o/w+eH8IwkSQqOe/x5No/5j4ohVnoj9a6jyROwOouXZu/lHSVo4chAnIYye0SkNfcj9A2L5Zt5MgwewjVXu99HwbtOK+ykpKjtl02vYAOa8f+JxDShDTGOpXRv99p6F19unDPkMdd/UXjue1U6gQv5kJ16WBvU9Tv7if/19p9XGnYNFGrT/hCGdvnxxoRCFMACISGIaUPLVKrt4UWqXaPM+OrsAb0+ax39vnGM0SyA+QjPYZHUtpKGkSbvwcALKC4v572/OBRraTWiIlObddx+DorpQZWNTfsKiX/SqrskwbCpFrZ543xVtvkkVyyx43/zkiIQwkRTVhb+mzcK85n+jwUymjQx+KQ0pu/5E7sOyHT5tqkQhTM8z/ScwGTMSYwuJZPYuglPGcJ+SaUWb4bSyIK9mYyXnm3jT8eMVE4WW85JY39w00zzpDDZsUMR3rW8XoeMpqgvhC5MM7yvgo1Sc6R3O75MQBgDdqpdJZZldE4mIq0dedKCvoz8AcCGMaNMsWaNPQpglIlQ2CYtqiW/OMR8+AqUBYDBNbjnzKkdbTNh1AwBQfwvzW7NssCL5iAYpTicrTqtNMmOdFRGC+rPT4Jut+UiaCWFnRzBkOHV5awAsvAX1B/2FrB3F50azeUU/94qO+k6rDdnTZEXB6pwtyB7OADfW/PY9L4fS11mULuUXn4v1mhHxeGDsNCk/wMyWiV9prhfMuiNGZpp++5Sv8EejEM8R9Tz0iRnf+nlDP9ZFtF2AnUQ1HbAf1c66cc+ei9K7UFQXfrtcAwC4EKaoLg7WBADlV3yk8j4vlKHxCSQl79MEjr4IAMefdBj6g/ysyPLErI1lly9DURmAjnPAo+jddxgAcCFMfN/em3ZK/ZU7JQH5i+UySQjTv/ewDcwigtAQCWgmf+BMzovIl55PgPlEmj1TVJckhCmqiwthAHCj21FY02txvvV1if3Sp/cQw/rgaWwQURozIUzvLy2OhZKux6Syi192cB81Ek5FCxPyHRaFMP2822TAflzrF8f5qtcvm9cX/vhWHHvKgdyhMwBvtjWeFcFOH7vtGYBx2dqJ2ov1c1Bt5TZkPfE1ryv4F7ckhPkEa+EOaM5SVBfqfJ8ufYvtdnhJfZU7xbMf9Z1GlWAd/xqqFMTuIDKDLQ17xrjRBYCIsRnSJEhw2foF8tR4bQMd/lQ6wh7ZibI9B1C+fQ8+L0xD+21D4Wy5X16Yb8a1aTgjDXVztcDStMkBGIrjyih/KeaKPgYUodxRzKBaSxhUO7y8EP7YDvTfdxruU6cR+2oS/P5qKE2YTquNBwIlUlQXN+3QCxV0vSyyETq+nmRYJIuXRRn6kEwzzDYV6Z/MMCxIAHBPew0sYHDN8+hb45qhDLNN97gGmwAABY+VY1uJFsMn7dMZXOMKQLJHn33TRCfkxTRp0dv2AfP9uNHtKFoMZgtTrwdH8Lbq2+LTpLFh0TT7T2Z85fb20oZ1y7UyBL9sjIOlqC4OeazftEVnsAWb4t7Q/e6jGIR6vg4kRXzXCS9MgKVBfYm/YGW0BCZjRp42IcWTHRJ/ja3nMCyQQaOHVqkJ9XkHj6Ej9h8tzmYL+prfF6HaCQb+QsJzw3XMl/HYikipL9p/lMzHpEgUaNxptXEhy2m1IWdBB542/WMmuHYbPda0jSL123tW4p/MjFIO/MXvBXyUitLCQzwenydSVBcG72fmkO7sPJnvP3/Eb63ro9XsZFwdEIeCH1iwYZ+g5sj/SAtIvOa37zkK5lsNGRjH6U7MrM/dXcW0gHTT8SoCpPD7XtpmReSR/vvPZxty68B9hs0jACQeTET48B08cHj8SzKYg9Nq40hq9K4bzpDBkAoGzGLfcnY+zyN+U6K5lsifXohXVGY25eXri/gX5XEhjjOn1Yb3T2mmYk8ciYeldm2kfiHHmaI8lgb1ceFhDZadAoxTea1TH+H1Bz2UxeMZieW0Tn1Eql8/3gigx0xA0wuHlshwpLVfJvFA8dv+mj4La9vIoSpKym+gv98VQ50iKiv5axE9G8T4oVhXxE+zdW6s2rqSp3O9JPtm9dx/r0dh3Owba/5mKtx+VTgokKi0EdGJxbJqFnkjp9t8w7pGZvpiv7R8jX0XqV/MMKQ3E2zMfvu9VQt9wrXwHfrxR79DftIUot5+DElXTWAAMtU3NZbK7/TUeBx72oGjz7E5tCzrAIK2Gf2QqXz9GlPSJ1aKQ6ZPv+a373lMs4tDEnjICrFsisfV7H2j7x+FZFBUdoLVN76flN9M8UKn/orKwFtEnpt8yYDByq5ckYC8fHsVYlZECO55eBRGHiziZSYGaHN1lbXaCa6iulBaUMR5eDL3AHwCm/G0fWMT+TWFkCEew542P8mupP9eqjRNvANINE308WLoYGabCaKpRVsQUcXP40RIdD4lDOm2n/mk4XhmAvw3H+IBBsX0nxemYdykpzn88q14UFQXOj01HjV/YuYBHd5J4mhYJX1isXHObGmxEvOVlN9A/4BYaeHTa9k81W+2uRHp+JMONP5Kdv7u9NR4bPlypoEPT2UAGliGmO7co3bUXZgm8aCoLrT8ezjq/1KDg2uYtcEnuAWe+jMFdS1XEOdb5ZZtpHt5n9iRO2w6eg4diRPPXONmFZSu2+ix8F2dAXV5a+yOX1zh+zJ7RvfJDAQA5l9ohB9aWQ1pvXx9UV5SAv8t9bAkWBMi9CAp+raR6Z7TasPkvCw8ufshHtsIAGIyB0vmRAUf2hH8knkAZKpTUV2Im5zEYxmJwAA+TRpj1Q6FpwWY4BfykobMGfz7WIaytecCnq2XL6Wl+oLXjEFB72/Ru0Ucym9cl57p+1I0cXV364C1i+calAH68V5/iz8XTAAWh8e9P4fX07fzAAkdjQB7RD7CFk9A6PPaOLWEBaO0YW14pWk+ImI/inx7AlHxWh+A8rtv33k+b1E0crvP8zimzcaeaNIMABeGJqD2D5rSicx8AXaqUrsPEwYL3rdzpYDYnzFvJSHzDQ34BWDmlAW9v+Vl6nk49pQDu16cZuBbURkQBQkAIunHogi4U1F79c8aptbFScc5w5jQCwMVzVFmPMW8mYQGs4wxjcQ2tv0i2RAfzRPf4r0zo+yoNzcNOV/HI//+mYb8FfFqBuaUPSMOERO24dCbDgOcvVhvSd9Y+K7KMDynOsu6RMP7752m9SqqC879/ZCd15SHbyj8sR2CHtJiqolmpVK9ibEoGlSOiNHbpTKv3RuHar+bhzsgnsz6ss/ec1gdVRfHJzrQeGpqheOESG8C6akP9KROcsD6ye3VIZbV+75HUZ6xWwIHoue3U44n8qpSFbU31OLgN3cPHy0JLhXVI5pVmu0ZiNzdOoBC3pi1zWllAde9N2ljZVx2PmZFGINwt9xeBQc73uC/Lz0YL+2NABbvbtXWlR7nuncKMvBacCz0VNEeR1H/s0wTYwb/e0wTM5dWmiZW0r+J+mWc4vFmAKZhnVIoI+UpqgsTW3SqcFKk/CSEAWwSqvVjukEIOz3WjrxP7Hg2yI6aP22VTrUo2Kuopc3+tiMvjyYmp9WG95+by9OREEbPRApfmIT+AbH82bV+cQaNMcAcb/WaLJ9mAYbNssXfn5/UXV4TgsZfpeLymhD0HDyC56v501YDH4n3DDbtM69odnJGQhhB4yqqC16CzkIs72CXBXjhXWaaVNqDOVtbGjcCANwzbBTqb/FHaUERPguLwmvBsYb2jjyooQzqN2IUA8Z7004uhF14WDNN2jhnNhTVBetAGdab8iuqC941anh85rTacPQ5h2QGQkKYorpQ9JZm0lNeUgIAONvpjKRF/KixrMUX39mxZxwIXVCO4DVjAAAfhLbjQljI8vFwWm1cCOMC0EuysEHl6rWtJIQBMjBA6TEt6PeVgcw5nYSwK/fHo9egx1BwLzMjfbZevlSuWJfXRQaeUH7jutQ+p9UmxXUDwIUwRXXhRi0fg0b26gBmDnO9t/b+T3c6K7WRhDDeDh1E9bb3tbhTT6qsnNyHZ0iLuTu3gAth4rd76cF4DM7vIfWr+/QZwyl23qJolN99BIpqNEf1qlKVX4t8hw7bKWniRXoudy+iM4YY5hGvLS6pDAr4TkRCGAAuhCmqC8Evy4qQLlkMXZBMYEUq6P2t9B5EvhXVxbXfRE4rM9lzWm0GIUyd5AAS2hnea83e+fBp2sTQJ4fecOD0aM9xHPctZKaY9wwbxe+fSHZg7/WrPP4RfUtiv4mkL9NptSHzTW2MtNxexVSJ4XtOm8eScnKlZ5T+6n1svEa/p8GaZ7zLBN1XevyKLo+PR7exY6XvUqyrtEeMdMpthqgbMYHda/5mqtRO/ebUb5e2Zom8Ep3oWB0nftUATsTTXqfVBvQoRsS4DB73ThTCANnUVRwnH349AwV9vuWmbHQaeD7YR+KHAoc7rdqJv1gOpVsdVRfnhyXgfJQMx07xIsWxSdeiCaTZGIiclYx2O7ygqC6EZlTjaUjQ9iTAiXWJ5LWbzUGklDPrFzGPPr+n3+U3ruPSqLq8rPUL5hjarK+H/otmlU6rDeWd5PFG/9cunmvgQVFdcA54lJcrCmEADEJYux1eOLoiEvf575DK2vIlUzwQHD3ATCCdVhsHXdK3m4Sw3ClyuAOnlfljmvWV02rD8uzdqKT/W1R5InYHkNmJGJEnLSXAPugphamIrMriQ1Xf1NgQXBYArgyMR43lmmOrvszsOR251u9W9YmaMkvt2nBfuGBarqe6rvWLkwABAOCVfBfeC2F+N+WZcjyhlCM7kBgg+y6cXRWO02drIuyRnQaezbSEFbVpzRVfDhKgz2dWtln7KqwvoR1u1KzCFx6zOioiM42Z+HvoARU/xrZE2cWLFbbXf0s9BFY/i0+aMD+Gss42/Ll0vkftohkf/5T/s4/ZJWHJE296Sth1g8eNIsr/yI6cR6d7HF+e3h+drBC09O28z9vtE0+kqC68f6qlAWJ8SmEqng5yIHtWrBRcuU/iwxxh7fKaEGxu94vhnZu1Tbx/ItmBna9WrDkncloZyMzVBl7Y9/g09O7/CNb89j1azklC0GsygIK7WweUW7ykuGj5H9vh3eKyYUNrVl+vB0dIYD5iO/4nfXzpwXiUjTqFDyKW3zZYiaK68NzRDvis6Q60/yiZxwXTpyFe6m/xx+LgDRKvlCZyVjL2j9MC90r8r2sGdU1z6bTJrI0+TRqj9NhxWFqGoWBoI9Tb60bNn7bCp0WgFKrDabVh0P4TWBbZiAmhK8YhItk8RAgADngz9IBqeqKtp0trQqTTvKPPOtD0c8+ngKE/TkDeQzOk9lCoBLp3dEUkmupO7ddc8UXvGiV4pLAbit8J9+hLq5/DxTQEiqRX+FQ074tlf3Mu0ABD/k++dUU1AoXczpqhv6/nvaL2OK0aWItYRsSmxxA8dJeUntZ4fV16/sg6wazOitpldk9/qmvWXk/9euhNBwL/kCH29fzkfp6AsGdl14zcKQkIe9rcXaMiMltHqT1mfBa9bUfQ2xlYVbSN7z+8OrZhppT/w/VB/32L1HPoSHhv2onilx1o8t6m/6gTMZ8q/7snYqU3Kk/EKun/B/I0iRJoA9336tgG9899nqcxE8IU1YUay7fC0jKMTyCRM5Ol56LpRfDvYw18iDyIMNruC8zZv+NrSQjNqOZxIb08KJ7f0wthisqEMAAoz9Ts76ksUQijMvz75iDskZ3InqE53Yr1mQWSJk3euUftfBJ1Wm0cJKCvoz96PDpa3328bIKfJx66771PKoco77MEfHQ6XCsgPQtV1mYidKkM/U8+UmJf6R276Zk+WLCY54dWVi6E6RcXkZYEr0dWh3JNM7jZhXVXLSheFgWn1YaYnWVSHvV5I2y2WLZe60gBmMX7eiGM8oukD7gJAG813MvLpfKmDJpnuKcvz2xh3DhnNvI+S+DxfUT+xRAAvZt3lMow60Mi8n2kvBdWh/Iyn8ndj+wbl03jPEVWZYGio1sVSjx7n7/M693c7hc8UtjN0Eazton3G01LNeXZseu6lNZpteHK/fFoMDMNge+xPHQiEPSaHE6AyGddJgrf1carV+AVHOyygJ+06uvs8A7ze/rrGrDix1mGtnjqV0V14cLQBKlMfdqaP21F7T556FadjderSrChDP1/p9WGz5rugNNqw64XpxnGEAD06cVO7S4/EI/FwRsQ/5LRp89ptaH5m6ke3wd6FBtM/sI2jOQnY1TnpC0sdIj7YC6av5nKte0UquPavXHoNegxAMznleoO/alU4vvQT22x5LBWHwHe/NDKamhj/mLtdJiozrPsZOfkBMbf3cM03xn6L244RX/lkj6xeCZ3P8qyDkjzPglhFLhdnGNPOs4h9I39Uv/pfbvEb0vsY0KmdVptCF+QxP0wice+nQeYrj+URy+EiT7RtxqTnL+LmnLIy9eXt4PyWqJaetzwUz36TbzYF7wPBPh9EsLEcrK7fielpzX+tyPaKbL4vYtjQQwPIpYhthUAOj09AcuLtxnKE9OddJwzbWdJH83ihdIO2n+CX/sEWNH8TQaxn3X9moEPorBn0w3vxZMQpk9HdZGPPJV/PiXM0B6zupumlqK8tBQWL7ZFfr9gGxfC/ikpqgvXe8fy75usZsT6//yBrW/N3k/FqTG3Rg+upP8uqhTE7iCiI2lP2iXRoV9RXSjfvgfN35a1ZQADWyDgBbqfsuFnHqOk+VupODdcnqCIIsZrsav4wnDTif1kkl1aRCjdjZpeHBGJ4pnMOBfAn/stY5q6E08YTTDEskr6xEoTqtmCKj4j0xaKc3N6LONv70SmsX6/YJshb92FsnBAKG6lhYckrb9IiuriQUKpnA1Rvxr67tyjdoQ+l44X6+dIeRXVhbCnNT8eRXUhZ7jsz1LaIwY53ebzfAm7NECPOt7GTb1IXjFGIJLE6F4AmIkntVFPH4e2RdOpvrhxTwzeb6w5Pd+4JwbWT40bSv0CrqguWFqyhc27x2Hpvth+8b+eyOdJJKfVhshMH2mx+iqsFZxWm2TK1W/vWcNY1dfltNoQ+hxbvC89yDaiFC9ODERbXlrK85Kpa2K3Qaa8n7XVlepNa7+M19+7RgkmtjA306M0l+86iaEHVK5IIKduou+DNla44Jv1qZlwDACp7avysijW2ZwvPjekE79DS7iGvrZ2MTM5pphvANsIrrhck8fa0ff9jtfY2H4vxIaBzTTTY/0mtG8HLY4REfmJOa025C2KxovHzfuBxkZ1ZwEaptYFAI50aja/eNp0UdqyPUyg2PwV8yWtu8CzjyLFcEzs+RC/J5ohipTbfR5HwKO6RcTL/I81cBNFdaFP7yGo9vs2Ux8/y4YdEv/7Oy3EkEBNYULxzU6PNcYTzOk2HzWWb8XUoi1wd+uAksRYXGzJ5oUdr7P3tT+m1PDt6Inu+a7OwBdhkSjrbDMdQ+u+10zPxPdQnHAJb+VriI6l+YVcEQQAq/9YAkCO+6fv/5CX0riZNrVz1eYV/PkfV6qY5qO5TVFd2NnpW6l9FX1v9Izg0gFmpi1+czlT4zlq8eM52VKf5C5k352lfj1YwhiyqqVhQ6mOJ3MPIGc+E17Ldu03CFDi+CWkQP0zMvknEk3SzZQKZuvr8KK74LTaUHNpuoRkS6iT9C7N+o7KoxNPkb9lkVpMQnKPAIB2VasZvlf6rT7vMPBtto6I44vMNKleEuAV1YXITB+k2342VcToqeoa2Sfx5eA40zFCZYkxWsXyW25n/uBieesWzqlw3Wr0o+xmcEdTefm/5++/nCoFsTuICDXRUrcO/ygn52UZtGyAPPnRBpPIK20XXm1wQJo0nVYbwkdoC6C40SB6JZ89a/tFMvI+1aClp+1jcYIaTmd+GIQSRTw0+VKz8XefOw8AmFD3iMRjyzlJaPS1ud26ojLnXXd1b2nj5bTaUPietsHRw0cTAtr6Gcxcpv7sNGmRGPfBU7x8s00ZAJztcZXDQQPAmZHGDZV+ofHUBr2Qh7i20ilb7CsM7jzsB3Y6Nv8mKiIAVN0ix49Lb1/FdNHL+0Tj7/ArDhRPdkgniYrqwonHHUjZ+QcurwlBRoelON3prOlpn6K6YNm4A+sXzJHqMHOiDh2203Thdh/MNWywK9rUpBzZYboQphyRbfKnNJVjVtF9y4Yd6H0fg+xfGeVv2FBQEGX+PldG8OuaP22Fd7VquFG/hsSzorITPSLrwH1QJzkMaIEAcHyiA3W+l9H+zNrtSaFA9Y2ofYIrEsTnUWkMHvvQm5pv3q02HxRgWuRBz4tP0yYIHcZMefstfl7ixysmCu5uHfhvd44WMD3+RQ1dsGxdICJnJsNptWF6eBi/ry5vDYu/P9pkevPxeiueLWHB3JcPgIRYSP/rrq/GQWAIgp98l0RKy2enYid6XeflU2gAKku/2dMLh8RDRcIH5SfzIvfeg/xkm4QtoqlFWwx5RQGXeAp5QT7tpmDcYl94ovbbhkrlrYzyx9ADKurPln0sC5Yw37YLDycgooofLBt3wDclA39/IwNuUN/svX4VADMt1n/bep68N7Nno7MLpPti/+r79I2QGMS+KqNWZkZ7w929A+JeZieR3o21MB9i3V6xbQ1ztFdsW+k9fhYWhcIf2yF45VjJx9VpteF0FDsFr+FdVSpDUV1SUGGi7iPHSGki5sshDYi3/EEz+b1vwiOQ2L4nzxP2KJs73afPIOWv5VBUF1J2/SnV81VYK0PctN79GcpllY1NeVmK6uJIgVS3/5Z6ALSTKKLVucb1VlFd8GkRiOzZ5iASYlzBE09ofdf4K3YS3PnJ8QCYCap+Xus8cTy/Fr+zyEwfqQ4iCgVD/Nmf1wLaDz94GLufZQpVOiFsuZ0J2HSqJZJPADPFJQRC/Xh1Wm3YH6P55un7xNO3pheIxftiWd6b5b6g5yLgB/kJA8CqK9Uk/hK7P8DzlF28ZMpLJf33UqUgdgeS+9x5/lF+ENrOMKmI106rDJoBMJQxp9UG2wfJuDjE6Ch6eozdtCwyEbR+korQ59Px6gkmGAZXqSmVkfPIdClvRVoyuq560UtKP6UwVZqwq6zNRI1ftsIVDWlTfHDkdJxIZguk3j/Ct1chAGa+WNY1GorqkrTiDWal4ep9cdLm8NDrrCzSFpZdu4ZaP2ob63rz0qSJl07xAGDSsWjTSVkvKPP3tWIhP2VTVBdKq7M+yB3KgAlGNGcxR3wCrCi7ds3wTu5KGgcAOPKStiCGTtJACQLfS+Wnf+J4aPQN61sxoO26hZqPmp4q2jSZEZle6mGJrzs7SvxTmdIG3EverPOFKEATBMT/4jWNC4olY6ZVpHh7/H32y5Y2aWXXrsGyYYfhnak3y3ZabfBp2gQ17z6Owz9rMW4ov2sy6++uWVcNdYtpxTqdVht8QoKkNGaCnKK60GwQE8jJBE7s36K3HIb8AAM9uDogDj0fGimlJ5PWqKnJKD2qmRRnP6Z9vwCD4tc7ulP8p60fTUfv/o8AYKeezd8yotvtjl+MlL0bsCeGnWrkfMm+wdNj7bCEBcMnwGpopzu3QOJ1dc4WqdyIBUnY/s50HH6VjX0yg/5r+izDd5J3NzPrCX9Me68pu9fjjytVkPNdBwSvHoMe+/rzfhM3oZb69TjAwpn720l9oCexDTnfsfGaM3w6B/iR+K/iJ+UDwAVc8a8ioucFS9oZTlAU1YVdcT9wQZrSjqh9QsqvqC5k37UAiupC2qczDN+V2Nb2HzGTboKEJ9Ni/Vi2+Psb+mhORLDh3tEVkfykS2+CXG9umhQ/SVFdWLtoLvznp8G7fSSuf2uMk9fl8fEoz9iNevM0QVNRXXw+EPkMeigL3lcskn8VoMGT3/PwKGn+cVpt2DVpGrzbtZLasWHet7wup9VmGsaD8ovkPnmS3z/ySxQiZybzMrqNYSAnpHzwRKMW/w4APNgyADxc0N3Qz4RgS8BNIr9EFGMLYLHMfugxA3EvJ/H08w9tNrSBFKci+f3M9hpZN8ee9GyZMfD0+ZQwLgApqgsFNy7x9d+rahkiZ7B+sdSujZNC+KwFLQO1eX8XO/1sXUOF02pDuu1nqQ6n1YZVGSlSu4897UB4hq9hjJsJYPQt3r37Mg6/qs2xp8fYkfdpgpTPk3LM032Rqq/YxuuisDdOqw1nR9iRsuFnj/nuZKqMI/avoUpB7A4iSyTb4Hr6yAHg2NMOwyRLRCdGhDLWeGoqai3RbKoV1QUvHx9sf5ttxGgDIU4y4uLkKW6TWHfLuUlwDnjUkEbfht1PT0PO1/Ho9cBjcFpteDrIgTqb60tp6bTHu8dhfq/3fY9i56vToCen1Qbv9pGcXwqm6TdSxT17NOAK8g0CgPRrbm7KWXblCmr93cAwgYp96xUdhUZfa6d9nzTZCXd5maHvabLXxxHSCziNpskaStoQkqmGKKA4rTZU/3UbvP38EPBhquEdiXXkTI1H289lvzh9W8zGi9Nqg0+zAADa6aKYV/x/fKLmI0eml2RWFLStOhO2dUHHzRal2Fc0FEr9ZrS0hzGQJfnNOa02/Bn5u4F/M54H7z+GK/fH83sk9Iv03FEZAEaMUVN69Bhq98lD4APMdyp03UhDP5r5gC0rTkeH7Q+h14MjMHDfSemdiQiI+s2wt601vNu08viOWs5JwrV+cTgwdpr2TuPaSu+o+optBghvMmklYV0vFNN8YSYU0BzitNpMAyhbIsOldyjmp0DQ29+ajp83/ojSIyriJrP37hPcwnRsiOVY02sh+CWmcAh8V/aRMVP4mAntoUsnoFeNGwh/bAcK+nwLn3sO8W+noO9s7TtqUA8b5jJTqkuBnmOVETojUX7PuVr/7NR8GrtmXYWiupDY6i4pEDHRqd8jDPeoHJ/AZoA3m3O9fHzg5eMDRWUnILSxF3miazoRp3LM+hYAV6yJZYj91+TLVFga1MdvRzKksaWfC9xnWbw68XSSTInF+rLifoDrXDO03F7FEHZBUV1YN5ttcglJlPJ1WriTmzqL5elP8MQ8+j4BgLzBMwz3iCwbZTPPx3MYcqt4Ikl10MmNSBTbSqSLQ5hlRcESWaAPuH8v9o/X1jDfFGamRsqHo8/eHCdxbTFHsJKYE6H5P54bzk4nFwdv4O+Y/vp2HsB5FfkW313ZNTmY8hshMdj2/nSejpSCRC3/ZuaPHd7RTgBzv9CUuuI4M9uvEC91EnNx7GkHzg9j/RVcpSZf/8NHZGL/hGlIbN8TKQf+Qvi8c1IZeppQ94ihbpEf8dmuF6YhJ7YEOV/H82d0agYAnxTKVg2K6sL6tn7SfFP/2zSEPp8u9aXZeqqoLh7oG2Bjo7yTDYdfc5i2Qyynz95zpub5lfR/iyoFsTuILrzHjrHDfpiAu3drQX7FDVSTKcZNJdE9MdqGgMigRbe14te0gchdGF3hpv2tk615uZcGyydsB0dNB7ZpcKsXVofi9Bg7ghWjKRxqlsIrdRcPNHu+82n07eDkG4TQSWnc34N4KLfImyNRM0yaMpHfw9sDsLZNLX6PNuRLi9PwRoi80b/Y5ZTUN2IfvHy8nRS8k/4SAzrAEhbMF1vqF6fVBve+bJwZpWl+629hmmPvNq04TLjYxxFjZTt0Myp6pr3hnv79hE/cit3PTkP+h/JJJ7Vp5MEiadHMX8w2F/kf27Fq2yoA2umivg7633iqJkTqF6G/ijRTkaEHVIkHvang1XsvSPVcfkAzqxV99LxiolDeySYFRDUTvN4pMPbhlwe7o8YvTDsbvGYMng5i30Dxy9q3sCemDBeGJkjv3IwUlZkWEeV+H83v0/+B+9gmeVCzBDTsfxBeW1xY3rqhoSyzshXVBbV7XSxZMw9P5h4wPAcYiMamWbNkPm9+c+WO9lJap9XGTxr071BRXdz8B9BOmCmv/5Z6cFptHGhBz6f4l7Lupwr7jYj8TOh0RQxyapZfUVlwWXEMkYkWADj3XDDkEb85OjUlp379vKYXHEXTWrOAsfTs73ayKZF+I0rXc//ozsq9cEESgAE2HzR+9LjpCZqiulAaUA9KMfsGvCNCcOOu9h6F8w7bH5KeDTtQzK8vlV0zfDNOq01SrHnq+5SsdegfEIvg38Z57DMqW1Ry6f3LDr/qwCn3ZRz/oQUOdrxh6Den1cbjTpIgTP1IfS36pVIe/Tg0aw9dHyplJl49Hh0Np9VmanZOZX8THsEDszutNi5EK6oLLWdeMfRXne81BSc9q7WEbdqDh2ShaGlbQx7iP2ZnGQjsA4CGVLltN0YLApHYvroL2NoYvFKDx6e/0vxCw/um3z2HjpR4CNsw0lC2KGwRESJqw+mahUj9iNNSmqOll0znT72g1GRKKia89ovEn0juk0xpVbZHjhUm8imajerrpDQpR3YYTvby75/Jn5ceUXEyyQ7v9pFIeuFpzk/0+8kGns3KNxMA6T7tFQA2Nv74aT72JU0ztENf9srH74alfj2EbWDWDHmL/8Pg68v/TX//5VQpiN1B5Hd/IQBmuvZi/RyPH69Ior30tiXtpbSK6sKNWgxdzCe4BRTVZYr8QxvNaUWbeT7xf2r7qrzc9pO0Z6/n78DUsy2ksk6f90P9b9MQMVKOMg8A+b2YeVxZNS0Oy6odCjJsFm4y+H3QRj7xN0ytC+WXBRK/7pMnJfQv/UQX8uMFqd9qHWAO7IObGVEKAflkRFzoM6PZpzEuWw7WCgApfy1H0FeaqaXIH8XaAcC1l2V7DmDNrwslW3lL/XpS/xBfltYsfhrFISMNXdHbdim/mBcA7h4xBm6/MsMC4rTa8F2H1tLvkIddKOg3W/JPoXLCM3ylPrrwMBO8RQGLzDUurQmB02pD8wd34/Ig9k5+aGWVNltFD2smRgDTDot9RqYu+o1VeeZeWLLyTBcyEZXrteBYrDwi+1Zkxf3A80SM0sIy0EabzFJr/5BuWr6+/8RnFDJBbCNpag/91NZQBgBE/DUcjdNk2F3K67Ta0OSLVAxuZsdXYa2kNMQbIRaK9+j6TOsa6BvXV7pPfhJe6wOktjmtNpzoU8LTnRonb0zPdmLBnR/6ZrV0nzYqTqsNkVseRWL7nlJ9l9eE8HponIgb9+dy96KsazQOv2KOxHnq9whD/4vlr/nte/782Xr5hrSXmmkO+n9G/s7jPXkiM8Fev+E348XdvYPB1zLlyA6prbkPz5DGxrGnBVOnTmdRMLs5ynfuNYx3ALj+jmaSnrJ2KXzWZxrSKKoLcw5txo6OP0q8LWrVDAD7Tgc1S+A8kD+v2fg26w8qj/wX6bmZgkd8nvNlAkJ+Gc/vB76bimGBnbD81U8qrLf+Fn+DoExlkE+jnrhS7GAiFNWFkr6xvDzxPY4l0++bCp5689KQPbcjFNUlgVU5rTYULW3LkRUV1cXjyDmtNunEsaK2EEIfABzovBA2HfuEvJsZ7Y01BVul70/fnwAw41wAv+ddowZOOs6h1oEqhrReHTUTan0feW/ayZFIAfDA6+K7JoFY3x79uPDvq+1JZh/ajBHNO/P3dT4lzLBvEImQPEU6Nd5uGEtUH1HbKczSY9ckTagJ3zhCqiux7d3IWxSNxIAO/GRP/Ab7xvfj5e14bTrKdu1HzaWaIL3zZVlhAkAyGxX7ymm1SRY3eqWVfiwDwJFfokzbqajMR9t9+gx/L7nd5nOsgEr6v0OVgtgdRtnT4xCdMYQtNO17mmpdiRTVxVGAAKDMxJIw4tUsJkD9UiBNDmIZRMktOhsmHX29q7Pa8GedqnljZZTsL5B91wKP/DqbsUmr5hTmpE8w1wDQ/O1UwwbupOMcnFYWtFUsS4yXIpKXr6+kmQKAq1/eDEI8QgYYofL2xJRxs5SSPsxEJkyY6AfVNGrgnVYbvFIZqlnMm5o2cVrRZnTfex/yPpNPDRXVhRvlbkxpuh2K6kLR23a4T5/hz3o98Bi/du9jvLiPM1+PI78w7XmL19Mwpel2U0ELAKr8sZ07jIvPjk90AMGBvF8t4SG8DeLpJvnJ5MSWSH1UezFDe/yhlRVn3QwlL7FbJgrfsaNmb21T7Ldsq/SOnFYWtoBMuPT9J/JJ9/SLFcHy/3ZZDkjtu5qZTl3vzTZgVbws8K5VCwA7HREXYbNNN6H9eSJFdUGd5OA+M2ZKEDMliSiQUprStc0RPCQLx+0XkD1TQwXt/OR4w/cBQApMSxS6+DScVhsPLEtlKyoznykYKStDSKmxptUqiT9FZad7xcvYmGowi2m76eQAAFYeycQvj7BTnRPJzLRG9BVp/uBubianqC5kf9uR+yI6rTYuiAPgJ4WfhUXBe9NOBL5nRHgFgFB/TdMu9jX56OnHhv59NH9bsxJwWm0Iei2NC6FOqw2X1sggGdIc4OVleCbOXSV9Y/nvot6+8FmXKfEhhteIfpcJrD4tNP+WJlNS0Xyrtqlr/uBuaZ4Ty6ras8jQRj0/TqsNo29ugAHwYNLEP/mIKaoLXceNQ8gLaXzDP+xAsemYE/nI/ZzNCaTg08/JdE8UugBmjpp//0zD/Dr0uecMfS627XSnswZ+Wqc+AkV1oeADoxAplpPSMgVOqw2+qzJMv3eztpJipu6CNH6aDAAtBu/mArzZ937sKXMzM96m/f2Q+YamhHNabRxohoiQd4no+9PXuewSU9osb92QKSNVFwfeaPq5bBETnDLG1HQYAD9h7/4Cy3vsGSYIilYIZm0hfsQ+pDFIdY8VTu56PTgCdRLlwOBmfQgAiNOEDDEkgUgEdHN8ogO7n2bm2ISiqaguhDzsktqRsns9crvPMwiCVG7p4WID/2J7nVYbsqfLIEBlly8b0lG5k+ppIE4+62WF8/U/5bkYYMpH4ofKuHpfHIJ/H2vgK+Tn8Yb8lfTfT5UBne8A0gd0LvkjCL69CpHzZQLyH9Q0rN3GjsXG2bOR2L4n9r8bhIjxGTj3qJ2j9YmLkdnCR78B4+SnqC5suVaGt0M6oHRtc5R92hhV12SYLoKUvvX0ZAS+wyb50rtj+KRkVqeeHwo6KpafWXIdLwczKPo+IQkGu/aKyBIZDvf+HMP9Iy86EPCRJuR5dWzDF67PC9PQT3kSqFqGAucc0z4zm7zF+zE7y/B+4yzPCw+AoG3VURh31bQ/iLx8fCQIdU8Lhtk1YHyfR15yIOBDI7CC2Xvx1Ma8xTaEPszivpAfG9XX5YnxqPHLVpxZGYF6/bINefVlFr/sQLP3U6X3PfVsCy7Idx0/DptmzjK06/MzIaji5UbhtfocDOJW/eMpTfFkB9d0V0hxbYFtu6X+AVgfU5/o6dBPbdH8QaNJiXf7SJTt2i8F5jXr64IP7cgePt1ju/T5chZ04MFlj7zkQIPdN3CyXRWpfXMObcbo5p0l/vVBfMU6yh3tuYKB7lM+Tzx133sfqvYsku7fLpn1b1nXaHhv2smDX+vJK7YtyjN2o1l6TRQnMNOo7BuXMbFFJ8Mm/FbjISknV0J/pDSnxtmR+aYcPDwxqjvKr1+XNmjX7o1Dtd81887OT46H389bDe+M172uGdCjuMLxe/6RBMnszayvPLWP2t5uhxc/FTWrK3t6HCKStsG7Vi2u7LDUrwf36TNQVBfafZqMRjuvobSGBb6rZNPfJ3MPSCe3ntYcor7x/VB6uNiQ3lP7KiJKY/YNOvdcgNKmNvIWRZsivFLf6Mc/pUs8mAh3d1XiI+e7DsjvOdd8bvzEjtxh8vd66E0Hmr/Jvr+rSjD+aruc8bsoGq0CjkmgG8TnrdrqSQgVfwNMYUDvKntGHPb2+xr2T59GkykVBy/XkyU8BO4c4/ygrw8A4OUFlJeb8gpofVr4nh0HR06Xxol3jRoou3JF4uXyA/HcQgJgfVjdWcB5oEDW/xMya/Pr+TvwdkgHj88BYPjBw1jQUgMP07c1amoy9k6cdsuxS3kTez7Ewxx44u2ngzvgH5F/Rwcwpj1r7MB3/y0BnTOWv3pH98f/K1UKYncAiYLYuqN7cbT0Ekbc3EA9cSQeObEl/Hr7yUBUnVkPf02fJU0IWdev4aXYe3FkWDiaTNE2vEsu+mNeS01LQx/9J4XpmBSUYMINcPK3ltz0BTBubMTr9wu2ceGJ0urr8kTXe8ca4nUQHXvagSZTUtnGK3MfUOb2uNG6nU3Xb0cycH/He5HzRSMEDzEPCQAwU7zai9PhFROFc5G1UOd7Of6X49kJqHH8OiwbdvA8oRnVeBw1kVKO7OAogQBQ6+8GuNjlFBcG9YvsosNbMCywk8c29ekzlPvFeaJbCZG2nYArGrjWL07yO6KN76XBCai5NF3K+3r+DnSq5o2S8hvw9dKCmla0AZOEhq/ikTNoutQXnnj1dE9fJu+TxIdR5tLirpStC5Qc/T1uIkx4ADwL9LfaQHrXqGEKFw0AZV2icXhiKQ50XoiWc5J44GSxjGWXamNWRIjHOi+sDkVa+2WG+m9HYRCcMgYFiQz9rev4cVx4EPMtOrwFsWufRMTITI+CQvyLSdj60XS02vwoWgw2Cp2Whg3hPnmywvc1pOBubgJJ9/RtEensCDv856fh7t2X8WL9HI/jxxLV0rDB0detr0dU+Eht9rYAZW4+FvTtoTmPlGAtt1fhflB6/nq3iEP5jesGfmJdbmTYLHinIAOvBbNTty5PjMffXxsBKf6pgCuSV3QU1qxahNGHOqM4gZ18Who34ifuAAOLID+lf/q9EOkFNICFQ3kvxFyYAMD7WZ3kwO5npqH3vcO4GaDZvJJ4z2C492WbzhF+fzXE5bvYCeywA8XcVPNW363ZO4ucmYz946eZflu3KzB2eCeJ+1dVtF5dvS+Or+X6MsT+EvOUd7LBa4sL1vRaUBMuYlrRZiS36Cyl86pSFWuK2HfeNzYRpUdUAy+8X6N7IWXnHxWOtVuNCzPKnhGHiAnbcOLXVmh03wHDcy9fX5SXMIuVkr6xKPf2QrXft3lc57O/7YiIMdsN5fTbexbT93fBPsf36DZmLHxTMkz7ndY2sU30rPhlB/Y+cfsClUdB9uY85O3nx5U29bf4m578mpULAD2aRmEjfr2jBY9KQexfS5WmiXcYOa02yc45J1bz6ciJLUGdxFwkf/yTNMk4rTa0q1oNXjWqYdcLGjpT+4+SMbDmCZR3MmqrJgUlSPfo+tKaEDTsfxBdxzNn7W6jx0r59AvKy8GekdecVhu8q7GAjbEut1SGorq4k7ZIPsFMaCRNXnnGbqDMzcvz1GdUJiDb1lN9/QNiUXr0GDedTHA9YGi7orrgddOlKe+h2kj/eAbOjLTzep1WG1I/n4G8hy1S3mkB6Ya+VFQXEgM6SAvez6FroajMT4/K6z5yDC+/gUWLpST2Mf0WhTBLg/pQVBeu3heH686OhverXyy8q1VD3qcJ+KgxS1dtpQzUQKcPtQ+c47zR87dDWDsoYCi9az3KodhPIoU/uRUWL2/0Do7nSHDEX/acjqZl0LUYnJbyiQt1mWsf3i/QFm9RCBN5BViAUP17cjw7QUovCmF6cxUxn57f1bmphm+A8/T3TrQYvBtOKzObo/uiKdSsiBBkf9tRGovi2CEhjOow+97EeHiEwBr82zgUJGrBa8WNjjhGhgV24n6dYr1iO+suZEiGohAmlkVCWEWbmW07ww3lmrVFUV3wbh/JEcU2dKzH74vj56MCpkFP+fNHQ3767xPUXKpHUZlfkdNq46fudw8freW7Od8UPtAQJycYgyPTnLf1I2aKJgphxNv5R5iSi4SwKYXyaXCGzQJFdeG1YA2Rr8YvW+G02tBz/70AgDdOGlFtb4fU5zVwmvKdLBwCCWFeMVFcCCvtwYIbc7AIExL70dOz3C8SJCGMTF8pHAq1wTAuytwIzajGwqUsmYDsEXKYFOrLd08xRFEy2xaJyrx810m8ns/CFyxq1UyaI67/2YIHSzbjX7x2Wm08RINe+CjrrLUhe1qcIX+dzfXh3T4Se69f5X5X+jmxrGu01A/Vf91mOvb1c55IOY8xZZiawE4zn+z6MGJ2lkljcE2RBpVO1gwUoF7Pk/v4CX7dN66voZ8orTgvUGwzovPDEqSxoqgutHyCvY+dsUuktO7u7BSKhLBLa0LguyqDK4jGHu5kKhSSEFZulwGsVkb5I/CBPXBabZIQBgB9wjvxdFumzJD8WUX6fxHCpDnwpjJIDMdxdnxjKY0Ika9/v/9Thcv/b1QJ1vEvoUpB7A6kKwPjOVgDBWsUJ8Ehtc7ye0ROqw2r0n6XJtkmX6aif0AsvLa4pHRm1+0+Zf4wNXvno/qmxqj2O5vIN86ZLdVvlt9MCDj2lANnRtlRdo3BPr/baLeUT1yYy+3tYQkLxqE3HCgtkBH+6L9+UXQGRHPodf2z5a0b4qOCrcw/yqTNiir71jmtNuROSUDnJ8dzuP+QF9imU4xZc3UAi0kWMZZN9hZ/f9ONZNsvkqXfZPOv7yNFdaHq+esc8lrsY0V1wadJY/MNDICLXcLgtNrw1/RZqKpsl947b9NCzUnh4MzWHIqX6tcvrgBQVkMOdKqve+xhbWHzWZcJp9WGs4/JYBKKagwy7rTaUF5SgoMz5f4q6POtaT0A4BPUHPVny34U9CcCY9DG+J2CDMPCdur3CFhaMvOz63XLDWO21pJ0w3g78uLNuHVJmrDqaYEUeVNUlxQGQMyTMzWeb0Ao7cHR03kZiupCxBjz9yi2nQQPgJ1CiPWnfqHFiaKTnIgJ2wxlmbVJ3wf69l7/swU+KtjK4xKK/WyJaimNXUtEqGlfAUD4E7J/J5Xh7t7BIGiLigfatOkFqheD4w1lAcAfV7ST29LCQ4Zx8dKXC7j/JSAHMae0ge+kYsfr03k+AnigfGZjgu5R0G+fFsysKbJqDaRfc+PsKi1Eiae52LvHYTitNqS3r8LR4hTVhV6DHmObvZvjKO9TQfAO06DOKRCuaApMbSrP3Mvv+azLRMc3kgzvXoTiFucHEaTg1O8R/Fl5FW2nlLswGqX7axuEffL3EklRmRILAMKeTUf4RDY2yE+t5RzmfysiVh59zsHDpejHCymMxL49O8KOqj2LED4iE83SNUHP03emfy6OmT+XzufX+piWTqsN5zufRtmu/Xi+bS8pr1TGD/MMfQAAOd/E8+vg38fyZ2bzf8Q4ZkVCwv6q1N+QGe0ttT3shwlSvVcHxGHp+kUAtBiBoRlavyqqC5bwEJQWH4EZ6dGSb3Q7yssftP8E0j+ZIT3feNUbp0bGmvJP1iSUX/Q1Lu9kw+xAYzB0opyp8fBK22Xat3Td6lshCP3lyxywxmm1Sf6sekG3ysamuDIw3jCuRCKefDc1Qe4U1idn3bKJpZ731X8sQdgixlPfzgM4ABel6z5yTIVrTCX991OlaeIdQHTMezY7BLVraeZbhT+2g6NFAdd8EXm3a4WTcf6o/20aTv7WEg37V2xz7InEdHTt3a4VVq9hGqzEuwbiaO+maPR1KsiMQC8wiGUNyHHiatfj/N6xZxxo8kWqlPbUeDssJUD9pbtQ2iGCR6Q3K88wgUeEwp2dx5+PL7ZLvlfk83BmpJ0LUEVv29HidbaZn3QsGp802YlW3yahxevmSFG9HngMf/z8nbSQi3E+KtKImfFP/718fbGmYKuhv+l//32n8Vvr+oZ3QuS02jDyYBGG1DprqL/obTuu1yuD5Yq3hIQIAI5d1znqpRmv+sVGvG/fNYjHkzIjRXXh5ePtkBntXWEfmBGZrXhK6ykvmVbS88OvOdD840y+UVdUF2wfJqPxV6mmbe3d/xHJub2i/hbfEd3zrlEDhd+Fcn+witp4/pEEpH88w/Dcu1o1XOnZDmcifWD9ONVQj8gzwE6JCfZd5NuMV3oW/X6yaUBWM36PPeVAtTPl2PqRuY+anp/Cd+0IejWNxTJbsdC0rwCg29ixEpBC3mcJCH0uHZcHxcNv2Vbu16Mnn6ZNeABqp9UGd/cOUhDukj+CsLHNCs6Tme+foroQtnEE9yUS+SNfLgAYnV3A4zV5epfUpj69h0hxpvRCuKfxeztjW+Sv2+ix8F2dccu8nky+AGB58TYeOuCf8iC2jdonkleVqii/cd1jGX3CHBIgjmg2CDCz810vTEOrzY/iQOeFHvspYdcNpLevIvVNyB+jkd9rDuzPT0DtxbIv3eU1IfC7uamncvTzDMDAICa26CTd8+rYRkIUtrSO4CdwXbKu4dUGByTe9OboiurippP6/tD3odi3fe33orRINqU264+Kru95eBQsG5lwQ35Pon+VPg+ZpurL6dNnKNrMO4CsDuW4MjAeNZZv9fhN3IpEs0OzsffWydbSulQRmeUHzL87T/kq+radVhsOvenA/nEyeuKtyiafdrNnAJDYuivc587fNo9EpeU3/mNME+Pu+/eYJm77tdI08Y4nLy8v07+aNWsa0h48eBADBgyAv78//Pz80KVLF6xfv9603PPnz2PixIkICAhAtWrVEBUVhenTp+N/U3btsP0hjdcuCzCv+d8AtI/73KN2lGUdgH8OWwRICKPnoikdxeQy0+wAwF+CW1PU1+xErCzrANcWuXML+GZuTYH5pEyaI6fVhqtdj0t1NfkilZ9GEDWYmQb//4+9746O4ubaf+w1mN7r0tzBFLNgjL0LBEJbMCVAEkhCIPTihHQSQnrvldAhIaGEECCEgGHoBLANxrB0cMc2Q8d0MG6/P+SrkWZm17zf9345JD/uOT7emZGurjQaSffq6rkL4lF086akhBGKnNnERRS7TTsj0+ajGMxuKCsdRddY/CFxF4sULqfVhs/rsaDPpJiJRAFJCayAnldfYEwrPidyZ1F1Wm2Yn7UTXmXL8nsjT5w0pCfo5ObTYyQeTqsNAb9NQM5rDkSWY5ZyQqNTVBeyl7dEk7fiEfzMbq6Eie2on+zM2pXK0Vv0yB3OXf2dVptbJUx/raiauxbA4LEV1cVdLJ1WG/oeyTXwei2NxbMhiGpXGwbRTc8bvR/H+ybxqfudecwzp9UYnLhPeC+ce9ohpRffnXhfUV0ounnTFJTDjGruOAWnlYE/qK9o7ihFt2+j3J97cOj5Geh95LK0oMjIv27go1fCAGYkEUmsZ5+OA7B/6gzT99Y/pRf/XTee7VzU+zZOUsI8LcIB4PMhPwEAvI9lwmm18R1ESk9/2+bORcOESpxH4Ets4bxzGovtIyphXj5aaIaC02ek8jYt1oInK6oLvj0z+e8XUo/hyCRW16LObAeYdodS3cSgE0MmeFLCzv3RDOlLtPqQEibybL3ncdN2IvnM+OqVbJHafBSDYh8vXH08ipd9fX2Aad46Dx2X3pVXuLbDJyphWe/IoCf6BaqiunBxrN3w3N3ikc4e6RVv+k0gDHS9MmgjUr7Vvv0Dr8xA271DuIur2E6KypA4ASBxcKhUrtNqQ/AItgtPaK4nl2k746fSaxkMAnolTFFdErALUfHew1J9SaHKeseBHWHl4LTa8PAxDZGS3NFF2c1cJ/VtQ/WgskQlTJ/eabVxVE/9OHZhvJ3fJyUMAJ7/4Gkoqgv5Rdq4fH6ihj6pqC4Unj3HvTlEnkUHjuHzegxApMLvu3HjkUjDOyY+KT+1le7pY+OREka8xTZwWm2Ia13WwNey1Sr1G0V1GQKpU35xbBbTA4BPvboAILmdm9VDjJuoV8IA5tadPMvcPd1ptSHcV66D/ns/8zgLG7P4GpvbvW3NpbS83iVzoLhDf5/+/6J/hSIGAJ06dcLChQulv/nz50tp0tLS4HA4EB8fj1deeQWff/45rl+/DqfTiU2bNklp79y5gx49emDWrFkYMmQIpk2bhqZNmyImJgbvvvvu/0kdBoa0khQr/UCpqC5UW8gUgwutygOAwd2JlBCAxeQS49jQQDE/i8ULe2fCGCTPb4f8nu14jCV3ShvABib9YOO02jDnioZ+GLJdg2IHtICpogxmVHH5bj7Adj7IdrkIfjfnNSN0MCmIisp88921mVim2TNLtaoA5ICkTqsN/mvHSnn1+UqzEor5GvpUwpikA8iLjsDvOXuw4Mm+pvIqqssU4jv4uQQcmTQDE5owAJffm9fmeY86FhnK1i+izBZL7t4Dvd/cpzSF/nTBdVTdySYLS10Z+U9fh2dTj0sLwt5HLvM0hAZHZU/LbYLYg5t5/jUtShYH3hae5uPAMLb4XqsheP7SzCrJ67TaEPLXcKker6driyR93cT7BafPoM70OENafZucn2g3vHNL0yCP/YAWWbXmxPOdL6LkH9oh6pUJWNeimlTOhCYdTXlaatZAyyRvnJ/IFmCFqRk8HS20eLnpmYhu09N08ZHX+Qyva9+aB9Ainrmhbb4lB/tVVC0+k16e/hXZbgch7jX41Bhk/uS7DCqbziaJRDDvIhUXaN9fUUdj/QHz7/vroFDe373usHMysX/9blCq9e1Q8a/aCNn+FAITy+HUFAf8148BwOIHKaoLC7N3oc5DxxGgQ+fTy1BvwDGkfiWfjxEpKc8I1CH2tbW7/oCPX2P+rM73cdg+ew6q/JKAgCdYOkL582nA+v3CbO38iSiLCHQhUuN34qR26PakFgstv7gQrrw81Jwbb7q41b8nRXUh4o2Jpm0BgMf2Eo0XTqsNxb4y4mnt/idw9fEoU2NJRvQ89D5yGbFbl/N74hkvUr5afxqDgHfvcFkzBswxbRc9mckNaPERRaIFOgCMq6pKvMU+duPhSNPxg5736TgAyT+0w/nVTbn7MrWPaMi4WXRHll9n9KUyCPodAPJ7amdLc7sxxUX0ZNj35kzD91CYm+tWXiIRwVBPwU/tk/JT2JgrQ7U2FJUYUUF217dim8YiunUPBC2ZwJ+TWyrxeCH1mHStJ0V1oeDMWXyasRtxX80yKMAU2gMAPmu0GgCDoHdabXhw1FgpfciEPQiddsVtWfo51mm1IbpVV/5s35vM9ZxQF73SNfTQZder4vzqplh8rSafAwnm/h9FxcV/z9+/nP4VroleXl546qmnsGDBAo/pBg8ejBUrViApKQk2mw0AcP36dbRo0QLlypXD8ePH4eXFAvXOmDEDTz/9NL777jtMmjSJ83j44Yfx559/IiUlBU2aGGNG/E9ID19/t6S3/jmtNlwbEoXKv7IF74Ksnajvo1mkxQko+3WHtOg/90czbGn7A6pbtJhNZvnMfrub2CiNnp+lRVPEbvyVTbpLw5D8gBa0WXQ/tGy1ovBB1cCv29H+8OnOzn2ELJiI5BGyS1XKd5Eod86Cp4Zs1JDWdJDkntpT/9tTutLo3DMO1Pk+znQgt30cg7rT4tzyM5uw9PfcvQMznmb3vHx8AIsFxXl5BiTF/6Sensqha6+IVqjz3UmctV81Te+pHe6mLiJdiQ2SYtt4kpP6kf9UI8qZGRqforrQ4eAgvkA+uayV5GLlTk79t+BOyS+NiGfKtEiUP23BkWdmoOcjT8Er7oChXUQkTiIR4Y7XU4cWada+KQvCETwiyZDG05hA/3sfuYznq2fCadVcFN210d20A7XdtlveeO67CTjw6gz0Ce8l7aZRGnKV82nSyLADYTaGpkyL5OeV9GmO3bnJgW0swQGI3b7SbRuQa7ZZeaXJUNp3rqgu5BXncwAdMxIhzQEgeXYEQsZrLo9iWU6rDXnREfCNTcTpVaGoP0BGZ1VUF0J+mgj/1zQFwB1arKe6mt2n668y49GibHnTPBX/qo2ca9VQvU+KKQ9yS199KpG3SdoXUQh8+e762fnVTfFQk0MGN+4W38cgvN9hPmaNPHESPzZtcldjNiFW0nVpfdvsHVNeM/6KKrvn/2/G6+hmDyD2+F9S+VlvOdD4PdZ/m+4tg++siaay6GXUy2kmm5ms52IcqDPDOB/OzdopxS1zVwdJlhJEzsa7KyIr8obkvhya5IONy9tL7syhST44Fl56+JibgyJRYaW5gupduTKOfxqKjAFzMCi1B3fHFeeHu2mHf5RrYv/3/x7XxNVv3tPt8b+lf82OGMB2sa5fN1pgAeDGjRtYvXo1unTpwpUwAKhUqRLGjBmD5ORkJCZqk9aSJUtQoUIFjB0rowY+//zzyM/Px6+/yihd/w36PdmIRiYS7fwQmQ3WcV/P4lanPh9PZguLErcQSnPmBU0JU1QXLo2yY3/EUjzWyCFZzhTVZdiaNxvonVYbPwA8McW4+HVabfjqEnOvufpEFAqPnOB8/B87KNW3OEeLtRLbNNaUl0/3LH7tPzVeGuwBhtLX6IM4bGlVEQ/EMPRH7DnEdzBSppkHtBTrRr9X5Mi7OPqBs+rOmpLLnZ7EczqRr06U2rfutDhkfKQFIDZbmFNZaV9G4dJI7dCx+N4vjjHu1ojkzgKpqC6sz9rLXftEJez0iw6PC43Srk9N0XYxncf6srL+WIh9q1qa5hPrRa4l4n3KQ7ul7hYE72ckIuc1B6pGp8KrDFtUEagLUfbrbCHdZbRmARWVsGtDtPepV8Io6LcYi4gQEekdiu9S/646PC+7yzitNvivY7sxhQ+2xe1+7s8c6NsjeNJuvpNNLrViu5x72iEpYcTngxQNGY3SE7iHKOvvOTKyZnrP+TyNT/16pgsL+q3/v65FNf478KUEQ1mEKmimtIpE6KvUdh8HhqHet2zHZ23SeikvpaHzSu7cwMS0ACQlTF8XUsIU1SXFW9K3gaK6uBKmqC5kfGIMFuy7vZ6Bv9im9Nu7HHONO/us/E32b8Bg73NeE3ZUBkXyMkUl7E4vTQnTl0WU/ywLrC0qYWJbBv3Azv96RbSCorqQFnFbyk+/C7toXhp6qryjFhuzBFdIp5Whp8Zeb+l2HLvxwHlU75Ni6Bfkdklu6aJiKiphVI5+LGy8uyLGJaejea2z2Dq1gyF9w4/i8HOTv/g9MRQMoHmkiHmcVhvOT7RzxEoqN3QOczuncYnI3fgs9kn6XujeLcUfTqsNme1vafPeookwI3Huyn7TId2z7WflxB5ndSzqpKE6+s/QvHNOtMt3K587pUWflohc60U5AGD/G8YzWgDQ2KeSoR564rIcY94mKCrEzYGRyIq8AUV1oX68ZjA4Fl6Ahh/HwdKiKb+XHF3DVFZLTXafXJBJCQvfXyTVQVFd8CpbBhkD2Bx642Ut0HqTwYdQWFxk4K1Odhjq6m7cu1fJq/jv+fu3079GEVu+fDkqVKiAypUro06dOpg0aRKuXLnCnx88eBB5eXmw243oTVFRbOFFilhRURH27duHNm3aoFw5Wdtv3749vLy8JKXtP6X69etLf8HBDElrYAhzuVBUF7ocHsB/E914tIx0z5115d3zzeG0alvj6Y8y5YxcIvRW2ho/MCsnDS40WAOQUNfcDRKK6uKuEGKAVEAYVEvOg5Bvv54oXdHNm9ydUpw4CbI25zUHLg+3I+MTu/QcAPzXaJHqbw1gC9ryq7QzAuTqQgutC+PsuOOU4dP19HBDWYl1Wm14PV0rc1nAZiR8Nstj21C+agvjUX67rGT4T9XOsPF3uZnFwPHa0oC7UgS+lIAaP8Yb3nfmh3bsfW+moXwxXfMZMdzthtonXVgY6hfNANxCWuvL73hwkHRN/Bqt0WJFoVsOz9vg0zjk92wn9Sn9InbtPgWKylAp9WVvDysv3dMv3t/0j0DDj+OQ85oD60/ugU/DBli7Z63UPkefZhO+7zpm4Q1ZMFGqW+VfEySZACA40RcAsG3+XPg0bOB5MWCyOCGqtCzB8D1l9Gbw8pat+wzw8qJct/uyPj342BnT52KbKKoL9X89IZ1No3RiPDJFdaHx7oqm9aFzRnrlgJSe7Dcd0jeol+tuFk6keJKCI559ydvgZ8hL6KtmBgC9YkhpyKXPjNwZG/z2lIeiMrcxS/MQt/lbfRXDAtuCwcWLsohl+E8xggOtDmaKY9g+dg6I0EcNiq03m6ZdU2ZIC3IACPlruGTZ18chI3koVIhZ3yJe+kDHd3pFSAYGUjyLE9k76HroBno1aW/gK55ZEhVuRXXhWqcLAICac+X2CBm9F5NrpJW6EH1w1FitXaC5DprNhfo2EPMRbUpqgTkhAVjkt01SXOlsMyHlXh/M3E9TpskuiGI8yWJHa17W5ZaaK+bJ99hcdWxcyblNby9JBn1/dVptPPyEmEb81kQgDj5uNbsktbf+OcDO1Ir3XG1k/t47tGDYsQc3m74PT9+1orrw6lmbab0yP2T9+/fmtfkzgssXv1/xWi+/2bVU55K5pqhzG+yYPhveNrYWEvskUezGX2GpXRsAOHiJnj7auw4Ac0EGGKI1ACxf1wGLs3dJ42LhxUvodbwPLq0JwaUWTHlM+Y6lj24gK+yK6oL1c+Mc627euE//bvpXKGLt27fHO++8g+XLl+Onn35C165d8f3336NTp058h0xVmYtbgwYNDPnp3qlTDLo1NzcXt27dMk3r6+uLWrVq8bT/bSIriW/PTADaIui1tIMoOH0Gl9ZoiwL9wsNptWF0coZ0ELZocyM+UPj2zDQdpOneR3XZ7lTdxHyu+IiDnLsB0Wm1Ie1zTcEla6e4CCReABDdYwjfQTOzntX7Jg7TTu5C8jxtwU6QtWWvAdV+jkfy8JmSDNlvOhAyji2sh598gCtgJD9f9C4NQ2gSAwaoNSceJ/vIMcHE/yeXtZIgwonPA+W09Nx6uHqcgY9Zm+kBTYjU34WDvKFrUDe+Coq7nsKxCTO4X7yiunD6RQcv118ZDb/X46XF1IU/QyRZAeBozAxuHaZ0KSXtp6+3orp47DdqL4r9JRLBUe8MW2la13UblhoWlHRYecuCeby84J/NrbhOq83tOQZ9OrF/0u+GH7NdEoJjpmc+jRoaFgikDIv3yGqd9kUUqu6sia+t2gJm7Z61phPm55maBd6nvmYRdWfI0BsSiKJbPMh/0460orIdSy9fXywLrYeoA/mwfRLjlq/TakPswc3S2TS/PbISS2nnNtolKVmK6jIoL1J9vS14LKMrjk6cIaX5ZH8vaQd9bHYHLM02nh8DWBwmAFJwaafVhlqz4xGwfDwAoGhGHa2NSpQdcczz1DfEb5PiKInPxLyZHzLlL/PXMABA4K8TkNn+FpxWGw4/N0MCYSAgCSLrF3H8DENUf/eB4qk8Mf4SpTvYloVVmPrGQtO60I5en/BeUj5FdXGPAn2d9d+e/r7YftfXB0BRXbj6uGasCZ0Tg7LrNcRLsUy6t6VVRRTn30HOihZSmgUlZ5DF7/KjDPcGPTOlUFFdmHZyF/S09Ye50vujvuKJ3PUTRXUhJGaPwaAAsLPNgGbI2/UNQz8NnrQbvaOfgNNqw+pTsjGWXIMBIPhpDdxKROh1Wm0cyGLWyZ0o7sDqm/ZFlFR3MZD4RxnyN0L3I1yFksz72v1qaEMyuFFeAsUR8+m/h/U3faU8egWXrkPnxPB89F04rTau3OnJ73WjMUIcn338m5j2X73xQU96GQHgXNvy6P7EKKyLXWJIf+2xKBR1tKH59BgUntd255xWG95NT0La52w8OPusAzZfX4xOzgCi2FnlHdMZ0JD/1HjUslTk5RLgk/eQO0hsuww1fmQeFsHPyrvrPv5N4NOoIVomDOV1E+tZtLmRaR3vWbofR+y/Qv8KRWz37t14+eWXMWDAAAwfPhxLly7Fhx9+iEOHDuHbb78FANwsmcx8fX0N+WnXi9J4SkvpbwrwvP8pnT59WvpLSdHOZjScdch0YUWgBTX6JhueAeDuVIMrXUHa4jb8mVmAW596LMDg7b7tDZN3ys9tUXZ9IrziDyC6xxA+yKmvaK5m+oW7orpQ4bRm5dv7Llvk0yJQP9AXHjkhBagl4mk2N8QLHQbzAI4ikasfHa6nPGTpA4Cfm/yFok5toKguPHjkIWmRmfzAz9wXHABCv5EVI58AP0Q3ewAAcynQn6WhP3GB6bTakNF/Dg+kSmhNtxQNkU1RXXwnzWm1Ia93BJZms/ZJ+zIK1oFHpQUJucM4rQyQgKj+V3EI2MAO24eMTDL0lVr9tP4R8NsEWKpUYf2gcmXTBU/KtEhk5F/H6hsV+L116Ql8wi+4UB6W+vXQ8xEGwnJ9cBSuD45C8lPsXF6vfmxCaZkkDyX6iTFlQTiKXEcBAK6SMAi9ez+OgCnxSP5BW9ya9X090eF0r3YtTRfl7ng0mzcRBdk5fGGjX1yKRPDcqU/MwpWOF1HGS1PYl11nAC/nYmRDw2Q/bSFLZ5VExDqSUyyP3FVFKsxlcQLD35nIUd8ozfqSOGIJrcvANcWI9GX2jdJzQhl1WjW3Q4nat+LpPSovRYXI7XDJsGgKeEKOW5YVeQOPNTIC7QAMWEG8f2qK1k7Bz+7GuOR0nA/z0fgXF+PyMLaoTMpj78Y/dozUp+m/2CfMyu42bDQbC+YwNzYyZvgNYUpN0AuaQu202iSX8JAxe6GoDPBC5D3yxEnMb7zTUBbA3LFJvvwup3l6opTpzGr+4q4hhrwiFZw+g6lnwyTZAOYuK17PzTKXQ983nFYbMj+wo1KvdLR7ayIqjNbeeeN3NMODWM+oyRPQfv+jEs+GDx+ReI5o3FHqd6dXhSLuZrDhXYn1MHtXeoh5MT3x0C90SabuQ0fx64Dl4xGeNJjvWOrLbfS+8QwvXZ9a2QKK6kL0g4/wezSO9W8QgZsDI3lsPX3dnFYbd23LetuB3r0ek8rwL1MJG35bAEV1SW6Uvfo/KcknQqQvFoBaEm0Wt8oJUcrwmdJ7X5+1V+JNv51WG86vboqGCZX4fBOwaZTUFj4NrLy89E/sqLO3gF9nRM+T2k5RGeBNQdfwUmXM78nGfzN0WFE+cezUr0E4tWdeRd75gGXbPkPZiupC5aUJ8N4pA2MRvR0QjtShbG775cUvEPjrBIasmnBQmv/1PAnwqfD8ecO4SGibAAPnKcjOwcZ28s418d0Y+qf7hrpP/1r6VyhiZjR58mSULVsWa9euBQBUqMBAKPIEWFWi27dvS2k8paX0lOa/TUXXrhkmpswP5LNBFPCR6PIwOyr/moCizsy/O/XBH+G02uA4ICN2Ec+CM2fhtNpQbg1bNFX8S3MVSO/+A09feOQEl8H6mRyEUCSn1YaDLxtdRNxNvGJdTKlbDgpyThkG2cAtI/nvjF7zoKguhCcNNuXt+z5bCJftcVKSRU9rd66S5Fu7cxUKr2pgEurvzQ3ye1esaFhgOq02WL+I4wM9AFR6WnvmtNrwYYDGx3ddIqpbmPJDZ2Z23ZaRxYj/0mx5URQ4r1CqkyjH6VWhPH8F1RuFV68yS1tJvyroGi7lCZ60G/5lKnEkPHGi6TxuHP7s+w3W7l6DDcsZZHmlZQk4O+A2zhXeAMCQ2oo62nA4vEiS4+JYuySftV4uf0ZBeNet+wWA9i4BBmBC5fvUq4vcp+wS33HJ6diygLnyiZDT1DadnhnvVsHKr8JMa/rYL2b9M2VapOmkCwDzQ/wxN2sn6swwd98kUlQXX9CalaeoDAUVACzVq3NZbw5i7k+15sQjr3cEKv5V21RO/TeU/EM7KY1e/tU3KuDCODaWVPAua/g+KSYY7bqKdLPoDpxWG7y2yF4CiurCN5laHcmVVv9tKKoLPgF+2r2Gcj9s8Il2nkpRXZgTEsCBAihw6u5PZyJvgx/CfVkoiIzoeaZKqL4N9PL4bGaAIxl950qIhd6VKwMAd5ckA8GygM0AwOvutNo40hrRj02bIPpENPKK8w3lxX8hB7tVVJd01oh2T0QgFAC4OIa9K3FXY3It+dwTwNxlReq8+TnTsUG/QATA4sEBqDkvHj7ds+A8zMa+7DeMLq0AUHVxAva0+Y3zNuOpL6v+gGOYVJ2F7LDUrcPT6GUzW+ACMhIfAG7wor5CMORErXY/IbkMpj8yG7X6JfMA14rqgteWBpL8+joE/cKMaQ0GHUHL72IQu3U5f562REtX4ffdmPHxt6Z1B4DYQyw0zrHxM9B1SaIhnVm986swA7Do3ZD2JXONHNqoA5xWG1f+aDeT2srL17ibpX9H7ublfe1+xe5VYdrcMHwfbg6K5OlE40zAlHhsnzMHxfbW8hgk7IwNa9QB5Y6dMjWSpfysueqV2bAXp16VDb3uFC2xTp9maEjLPP0qtqtc5/s4VN/FlGBREXJabW49dehIANX3eT8HN8ooKttdFM+G6euh53dyGTNsNS5z0dDmI0rAR6Lb9JTCC/zT6P4Zsf8O/WsVsTJlysBqteLCBeaTbrUyVxszl0K6R66I1atXR/ny5U3T5uXl4cKFC6Zui/8tUlQXP9wJsMlS/JBDxidKHy0t5jb+8iNPA2gxpBTVxV3fzCa7Gw+cl/ibTd4Ac5kitz4RerjzwVtuB/ugbSNMy9Xfo9g/4gC87Za3JE+Tny2G/EnhywAA1gS2iJpxklmD87uclmQhPvqFG127A7w4FLkE6Z/IgBpFN27w8r/KNMYZo+vC1AzoSQ+1L76XDuW8TWV9rJEDPgF+8G7ZjC1AJ7Ldx+tFzIAQ3e1RXmb9AcfQ4fkJGHj0PA4/x5TjPm2dvByfLWyx1+H5CYZ3rZ/0yq3Zg7T8mnBabRidpaFWBT7hwjABBOJkdHkuL7l3UZ3of0Xd+RP9AmHBVbZAqztNW5AXnDmLPR/PlNp0TkgAS69zfyI+FVbulu6R0SLl2yikDRYWxN5aXxLBDkgmOkdIbeK02qBO1tI19qnkduI0+xborID4THzefQdbqKZ9GYUKK7XA377rEvn3KfYN8V3R2bHQT3Kl9tUvxqcHhyDpnZlS+WIaKrP+V3Ho1WeoVCc6L1bc9ZRUvtOqAVgA4MqT2cJ87c5VWpsVFbpNJ5KiuhD0vOZWSzHE9GlK4+W02nBnYxMpj9NqQ0FmFr9ed2IHFNXFz+ll9JqHxrs196P1zdby/BYdepeiulD4oMrBInoHdzA891RHuke7fgD42c8A4XyZ3gBkpnCFjEyS+Ja2wJP4lZzlXTL6a9O0+d3DTe8TXRppl8AY6Dul+sXu3wAASJ4bYTreinIfvMPGt6qLmaGKYlVZv2B97JtcPzitNuR2uCTlr/N9ealOobNipOdJeXdQ3PWUWyUMkAFlGnwSJ313gU+4cO4Zrc+TYcnsXUQ/+Ajnv6llZbf1tbRoiuSZ7Bvz2cI8HWr1S+bfaeBLCVIfifuKjWW7wlZKY0mxznisf/f9U3phQIrTNI3TakNeNbbqTfme1em8jS0Rr8QGmfY7r/gDUvmiF4uiMs8AfTsrqgvBw/dJ32ODT+PQp+MAKCpDcDQbJ6X1Qu3asJUonUWdNF9Isb9Tv6CwA3T/0POyS3Wftqw9lNA1hvqJbRMwJR5Jbbyx+pTmshs8fJ80X4vfMoE4TevYBQ9MZEcXxiXL82Ds/g2oPTMet/u1N1XK79P/H/SvVcRu376NnJwc1K3LwBFatWoFX19fxMcb/ZQTEthE364ds+Z4e3ujbdu22L9/v2FXbM+ePSguLuZp/y/IabUhukFbaVARP9DhJ1hgX4qzBWiTV+b7dglsg6hxzCXDIk5v0dSXpR94Y49s5W59VX7RLLN6AAWxHqldFgAA5mftlOrQ6aCGYqSocuwfAGgxLQafZfXCjZJgptlvOFBmw16prskz2/P0FPg6pokMc6tfABEiHx3ibby7IgBmEQaAPo7+mHFyJ1849+nwEMb13YDUhWy3UXSHUlQXXvTTrFkpP7U1DKaZ78vgMFc6MmSyyCnsbBS5JJopJ+Jie+3OVXhqBQOxSH3wRyiqCwOeZAuMwmMpCNzMdguTfwxHpWUJmFDtFHfPKThzlpdz+iUHrj4ehZ6va66P4h/Vhf6mB4dAUV1u3a4U1SUhV57o9DMAoHJ2gcTLUr06Lo0yAuUQibHBALYbJ8onnsEDmEXx4lg7/P8cizMvaP2dAAYor/9vRch5zYH0R2dxxTfjIztQpJ2vKPKV+79eISWyfh4nfSNUTmCiDOgjxu6jtOmPaK4oV5+QgVOcVhuUllXgXaECCisxufKiNfQ3szEgI/86l6Hcmj24PMzOwz7oFy5NfzSP+0TXVXfWlO6nfRnF4wLdeMQcYbTjpPGSbGbtpR8/nFYbBqd3k9qFiHajxPueeOeuDYazYbgEQuOOqJ1pdxwAOj0znp+X+SYzDoPTuxkWjE6rDVmRzOgiBmFXVBffaTari6K6sC5FjvXVx9Ffkoms8jcHakFzex+5zI1qogwXxsvfjX6sNlvAOa02LL1WXZKNzvFeH2zeZorqwtV1gXBabXhy9gv8/lvpWsyoLT9rsTn14wUA1PgxHr83Zzu4eb0jMLrtQzi/uilPR7KHjGW7Q6OTjcYqShNWthw/H+u02uCdqUr1nHOsI+442+HcH5r7OMB2PMU2IuMA8Qn31VALs96Rd2Iylobh4WMMuCFghba7TiiFdL1/qryYN5M/9ZsoFJ5I5SAV3oIXjX6Mid34K0Imau7CIX8Nd9v/qy2Mh/8f8nioJ/HYgVhWXuczuNX5LE+X+b5sgAyYwsby4GeYIer4GGa4EUOBmI0j3mGyC7+iuqTg9ATkQ+0DMG8VsY4F6ZkAIHmkmNW/sEtbNFp7nfPx3rEfgOw5opfVTFHi5Z45a7ivl1WcE0/kF6LV1zGGtAALp0FkqVaV8y//B3u3c0ICcGVoFNI/Ze0esIKNo2T8UVQX5h0z7nrfp383/eMVsYsXL5ref/PNN1FQUIB+/foBYDD1/fr1w7Zt23DgwAGe7vr165g3bx6Cg4PRvr3msvT444/j5s2bmDNnjsT3m2++gY+PD4YM8ezP/z8lEVKVSBwEABYgUFFd6FNBU2bmX2HgAH5vxmPaCHaglNxunFYN2tmdhYlIPNBPz73aMVjhwM0jPS643C1MAGB0yVY81WNHWDmpruLECTCwhdimsdhZYvGrm6gF7uQWp8BznKd+cDWThQZFQPPzn9toF97PSOQBi9fGrUZMk45If2Q2Hj+uoiDjJDa1rIyQL1hbi77wxDdgOZuw03v8IC2is99w4MTomfwsithGNfbJuxdEohuO/l09Vllz7wOYDzxRcAPWFmQNB4BNizU3Uyr34EszcLOutyFejiiL2eLObEIS872WdlBKV3Z9Ir8O+mUCYo9s5eicZv1OUV1InhvBeZZboy1Krq8PQEb/OVL5AENey+g3V0IBpXKJymxK4sAdAFN8Rah6ABzNjL/PDaOldqffp1eFSu1FNKMBs573P8rGogOvzDAEWSYei7N34WIrLw5nTnR5uB1FN29yiHHfWPdQ406rDROayN8TLeAV1WVYaNMhebLKElHwWDIOEFGMr5TvIrHzOyMKn9Nqw85psyW59N8vpRN3ArN+ayWVRS6XgAY/TmSmfIrP97T5DUpOEgJfTuDB1/XpqG1IaRWpwsrdKC5gxoLQshWQMT/E8C3m9Y7gPMiVUEzjTjbRos/vFxdLclk/i0NenwjsmD6b81rXoprp+Jr0thFYh4jGC0V1wadJI8k4J8qsqC4ETmb9oNKyBClAstNq426thH57O4y5Kvv4NcZ7AW2luncdMcb0XevJd10iCi9cRO3+J7Ry5kTAf432vuaH+BvyUVqnVTsfq6gufnaSym70yGGUVfbi6rXybmVQVBdyphrdyBXVhbOTHFKwa6fVBv/HDmJcVabwBU/Sdtf/avW7xIOCDovliOV3GTuW7+SeGDkT45LTOegKlUWBsZvtHAanlcUd42VkVpTSiuUAAMpqHjMUBgEAN3ZtnzNH8mIw9McSOjF6pun99CVam3Aex/ri4li79M1TmqKDx/lv4uVfRoOdXxZaz7Qcp9WGpnvLcF6dnmGKCZ0b0/ME2Lw3u2G8FCpn1Y1K6LhnrPSNKaoLHZ4bz3lkLA2T6mPmCeGuTHFOnOwXxY1y5OpN+eksPwDA19e0T1ZdnICAV9kclP7wbC4r8R8T6j4czj1H9wM6/1foH6+IffDBB7Db7Zg6dSpmzZqFL774Al27dsUXX3yByMhIKRjzxx9/jKpVq6Jnz5745JNPMGPGDHTq1AmnTp3CtGnTeDBnABg7dizCw8Px4osv4qWXXsK8efMwaNAgrFy5ElOmTIGfn9//SX1iN7L4ZLRTQ2S2GBMH12Wh9XB+AhsUPgtsBaeVud28my4DOugHQr3iJwaHpLTFew8DAIKG7ccDhwYa4qDoB2a9+wr5VSuqCz9frcXvU4wm+0vapHbqVXMI6LLKXkQ37yzJLyJLinXTKzBzde4xetnf9I/AlY4XDc9/aWbl7VB0gFlmA35nSpdPE4ZulDPVwXc7KP+kb37FzUGROBozg00AfdkZjtRFWoyWk+/4YEWOESa96mI5bhkRtcey61URtudxNvkJCEvFXWU32sln2qDpjuGGNnFabaj3TZz0fsW2MKPWn8dIFs1Zl7WzMvQnTkAi348y9iD1cbYbJQJX6MlptaHODhnRi2Qk9xu9nNQmtwa0N13AUprgRF8k/8AAPgjYQHxOPKk8/VkdovqflDF8d5Q3aPFErG5ek19T6Ah9XR6OeQHJT81E9SMM+IB4Vfs53pBepJTvIt32X9qdsoQGo8Nz41FpmebKJ/IhqyzRoIfYLmr2m+aAGsHPMhfJM88Z35vZ+zBbMAY/qy1mC9I0d05yIRZj8DkHDJN4uuuPYlk5K1ogo89cDiZDz6hv9GrSni8IRdLXt8aPsqeE+ooDvusS8dLptlhxXXND1L97M4WRLPqKygJ/A8Da+D/R9j05TILv2kTDTpk7+fTPqI40XgDAsfdrc3AhvWz6vhA8IgkPHnkIaN8Ko5MzEDpZc5kCmPsxGaZEHnnRESizYS96He8jLSBLk5vShoxLRMg4zchAkP36vCnfRUptrO9v4vgV9OR+eTwrcTsmmRt+pClbFPer9Wcx3A2ayLtcOVx5Mgr+sWP4vcXX2Dfdu+djUhuaxSgj8mnYAL5rmfsanTN8uJK2y0M8yDBV3pedK6S4Y4rqgv8UzcuA5ltLkD+/FzJ6L/Ki2e4/hUFwWm2cJwDkRF03yKZ/V2bfLsCAd/TyolsOas6VjVjiO6MzWcTP7Pvt+Ox4ozLYLh+K6oKXry+P00XIuu7IabVhZrDmLjmg4nUcsS82yFTpt914JY2FWxBjliqqC0cmzXCrvFMZhJaony9TfmbeL7XmGBF3eV87ew4+jRpKRg+zOVdsqxsPm3sg3Kd/N3kVF/+z1c0//vgDM2bMwOHDh3Hx4kVYLBYEBwdj8ODBePHFFw1xwI4dO4YpU6Zg+/btuHPnDtq2bYt33nkH3bt3N/C+fPky3njjDaxcuRIXL15EYGAgYmJi8PTTT0tK2/+WKEp5FzyEzafZYJzyc1ukd//BsOgUf5tNgp6uRydnmFogX0g9JiHzeSK9lchSvTq3VI5LTseckAD+POW7SHhVv4OgYcx1wNKiKa4HV8VfM+aYDoA83/eRSB8027S+ALAnLx9v+rMF9elVoTwAqad2EUnk2zzuSTR65DB8t9dDXuczUjqzRZa7dtAv6PWypywIR3rP+R7TeipXUV2I7jyIx/JRVBeaz4zB0YnaZOJduTKKrl0z5XN9fQB2ha1E1OQJ/MyFu/L1eTPft8PnphcafhyHiSmphlhx/1siGU6/6ODxy06tbIGGHwLpj1aRYjApqgsBK8fz/nFpTQgS2y4zbUN37fpNrh/ffdC/D31+RXUhyvUIpgSvl+qdM9WBI8/MkNow+Yd2CBllRPp0J4u7e6W9m0sj7QbF4W7KNKOMpWHwf+wgLEH+/Eyj8/BVKC2rwKtNC+6i6FO/nrSrrqgu9Oo3FNcCKqHSb9p5OnoOsHNA5ILmqZ6lyXu3z9yNkf6rxiFjwBxJNn1+b1tz3PCrxOHKOx+8ham1TpT6joiyl7fEUcciRJ+IRuGDKn9+aU0IR7r19K2V9q4+ytiDqf7t0Xh3RRyYEYbqP8UjbJ8XDrY1Tt+lzQPu0uv/Ow7c4Tvna04loYyXhQXM7ZbD0+RMdfCg4iKdfNeBJm/HSfzNyj1y5xZe9NNixzVMqIScqOv/0Rh+N9/W3KydqGvxlQI+3xwYiR3TZyP6gYG873uHNeO7O0TJM9sj46E5BnnW3iyHPhVulzqOOq02+Pg1xtq41aWOtZS+oGs4P8/riRTVhYjXJyLxw5mm3xSRu3FOlNGd7HebVmyPjzL2INy3LLoNG83BcfRkCQ3GgJW7sCK0julzfXn6370DovDBsb84eI9YP0vdOojdvwFOKwPnOPS8UekifleGRqFG4nkUJqd5XGfpn7V/bSL2fDxT4utta47Ux6qiyfo8bFqird/UVxwc8ExRXQjb8zgaTczFDVsj+K6Tx8iC4nxswx+4cuUKqujOot4rRGtWe+/34FOmXOkZ/hdUkH8b8eveuqfb439L//gdsYceegiKouDUqVO4ffs2bty4AZfLhalTpxqUMAAIDQ3FH3/8gcuXL+PmzZvYuXOnqRIGANWqVcP3338PVVWRl5eHo0eP4plnnvmvKmF6clptOPe0A8HD9/ED32YLxotj7Oj25GhDXgCwhASa8vYrw4BLyJ+bePeqYI4OSehUdKhWLJ/Kij2yFVfXBUJRXZIS1nh3RQQ/u5srYQDQ/ddE/DVDdvUkEqGFyT9dDDos/n91ohY/6dqZyog9tY8/17eVWX7KG540GEcdi5D+qV1Swszqaalbp9TFgFjO48dVKU3D+jLctyijyFfkNS45XXpGShjAztA1ej+Ou7cA4EoYnSmJbt6Zl1mpVzqcVptkQQeA4IUTDfUSZfRuHQr/Dlk8aCy3QnqxILRiPDgzPmZ1JLr6RJR0/+DLM/h1g0FHcMta0RAI12nVzi8AQI2+yegT2RcZv7Q2fef6e23fn4h1LapJacT3Qch4hGDptNqQYFuOARWvw6tdS3i1a4llOfGSlZ0oo5cWH00vMxGBu4j36LB59Ilo+AT4wWm18aDXJ5e1QsGmxpynT4CfqRKmb/+uI8aYptH/9n/sIK4MjZKAZV6sURK4dz+DJbfUrMEP3YvfWHHSEa6E+dSrK30DAAxKGJUZ5XqkVAOA+FtMl/OauZuZPp0kR4x5DCtxrFgXuwTlV2nBtEkJ0/df/VhCY89RxyI4rTbENo2Vntd8x4hOKfIzG68ApiADwLlnHEwpLEH6zIq8gT0fz8TnmQlcCdPLSGfD9G2hqC4eUoPO1gHMIyH7TQeiJk+Q0ovuy59fLEGP7ZYj7ZAeeUY+K0UyNHk7ThrTxf4p1pXO2FKZp4fV4ddiOv/V4+C02hC0dSRC3MQeJOp1vI9BpsY+lSQl7NqQKOyYzow5hakZHEXxatOqvFzayRCVMPFd0tEAigE29HiOQZbeQQ4UdWqDgswsHhZF3wZOqw0dnp+Ayjtq8XLOTbqFzA/sOPusuRcBtWevfkOR+OFM9E3uzXkB2pii/ya/yfUz8CnNCCC+OzFuW8pPbaV6iEclpvqz89s+m5OQ/hlTtPP6RHD3bUVlsdLq+Vw2/eb1yqn+OQAU3b4tIeCKdS08y1z1Uxe2gfWzOLT6JsbwjVHa3FAv6Xyt2bdutgar/lO8oe2KXEcRMCUeeuj8Q8/P4GcZAQaqVXD6DHzXJfLQLzdKEDB/Tz6E+/T/F/3jd8T+DSTuiPl4lTFNIw4AV5+IQoUz+dxi5lOvrscDp/r8IqV8FynFYkn/xI6AKWyx2H7/o6jeJ4Xnp4Fo8pk2ONi22NT6ZmYdrLmrOg6sCUXDj+Nw7bEoxH3FXNUy37fD7814ib+lVk2oTzRF3e/iJD7pn9lRudklft6Ant3tDo07y9r/NG1pPE6/5ED9L+NM26jLmLHYNo+5K5pZ6QDgdMF1Ho/HLJ2ezHZjPFlAezw+Et7b9xvka/V1DKyfx0lp3cmon6CiXI9Ih7rdUcpPbRH81D5TXiLpF6503TLJG4fDjVD/pbVRsaM1h+GnPF1HjMGWBfOw/qYvvg4KNbRHH3s/FJyUY/GRddOdAutOrruRkdLp619aGuJ9ZWiUpGxfGGeX3Gfuhj/xol3ic884UHduEopL4r95am/x/sUxdg6Co3+uqMxNeXGzhtL98tvrSmACntosv2c7rPtxprTA9vL1xYXhbXksQ7N63s07uTYkCpV/dX9oXsx34c8QJIUbd2U9kaf+kTw3Ahl9zMeHccnp3M3N7Ptw9269K1fG3CPr+FldMR8AFk6gBMDGXT28wlugOOkIz9fx2fGomHMLSDAGlfbxb4KCjJNI/SYKQc8neOwv7upSGpmNrQDQN7k3j9fmMZ+3haN3uuObuqgNgp7cL+2KJc+JQEbfuegT2RcF2TmGOqR+FYWgFxOQ8YkdycNnGupycbQde9+f+R/VWeyPv+fs4SimRGlfRvGznZa6dVB49pyBZ373cJTZlITsNx2ofrwQ1eKyDfECAc872VPPhiH1Rm3prKe7OcJd/6T74tqj66EbeLVmCjNClcgpkr7vOa029D2Sy8MiiOUA7F0MPnYGy0LrmX5jZjJnfGxHxRwv1Jku7/CmfBuF4OeEPry5IZTQNXfdRx+IGYeKmdfhffYSjy/p6X3/o3bEev1NO2Lr7++I3ae/ifSWELJqKaoLbd+byAeBKksSsHkRQ686O8nBASjow159KpHnI8op0BCMRKLzTXQmTYRK3tPmNyiqCz4NG+DBUWN5GQfbFmPWyZ2Gid/dwHKxQy4afqzF2HJaWRwUUsKIFNWF2IObUfc7Df0oZwU7wOzV6CZq9z8hlaeoLrx9pJ+hPNGCR2S20Ndfn3vGgWJHa6keZoM8wKD86To0yYfvDAHApxm7Uf/LOH6Gi9K1/I7FyNo2by5vL3eLeYoz4qldiTI+sfPdGCqvYFNjtN07xG3etIfLGurntNokJYwo5btIeIWz95D2ud20fZxWG1fCzNo//TPtLEjwU/vg5ePDJyPiEfaFhkRFuyYAcPI9O9ruHcJ5n7+jnfkRy9dbj+nAOcmzYflPcFpt6B3k4HkoJhm55hIgDclGSljKt9oOQrkLxfAqU5bLTn9mu1C9ez9ukFUkvQWY0jmtNrySdogHhJUWmkdy8VhGV8N7UFT5zJCiurgSpqgu3BwUCe+wZhxchlOUFnLAUluLKUi7xHW+j0P+2rq4NMp4UH++EDyYwisQ1V7EdsN9GjU0tTIPr3LB0Da3Op9FUUdjOxGsu4i8WWbDXq6EEf/ivDzUnBuPPXn5El9KU2ZbfQBAxi+tpef6c6+Vf03gPMP2eUnt/0raIYkvwYybfcti2SKJ7SD2t1fSDiGjjzY+XB4mx9F7uNJV0zFBfC9mshRdu8aVsNwRGtIr5+UmnAClU1QXXwhTup3fzZaUMDF/QcZJVN9VQwo9YEb6uhCMN5X7Taa5wUOUTeTjtNq4EpazooUhnSRLkRaPMXt5S+k5xS8MepL14ZCJe3i7hoxLRI/BI7gSRgHCiYJeTMCdXhF8N18sW1FdkhJGO6oiiefm6Ps/1x48NMiPVwMNbZL6+CzOn3aD9O1Eys3RiTOw69vZWJsYazonmilh1C5bvnC4VcK8IlpJafV59URKmKK6sKWVdiZeROYkmve7DBr0bOpxrGlRXeortxR/dB86Ch0nsXNopISJshJg0YabZVDQLVx67v9aPFfCCHlaUV0Ifk5nkOmWYzAAvJJ2CIrqMngjOa02lF+1B0Wuo9y12117EN3fEfv/j+4rYvcQDQxpxT/slO8j4b1D27GoPatEaenG3B+cVhssTYNwJSzfwKd/gwiDhXR0445wWm3SwXx3iomiuhAsxP8qyDklodEpqgsTmnTE9RJoeW8bi1FFwSWj2/TkvCzVqvJ8ojyVlybw2Fb0TD8pK6oLDR9mZ+b8Hz/Ag+yKVK/kfBigodoRP0AOuCgufui/pWYNLlOd7+PgFachauqJgtACwLGPgnl9joUXoErvNAw9ziZmiitTdugdXqf0z+xo8Im8Q6anC+PMY5mJio3+v0/DBvhg0BIpX+/oJ+DTPUvaPQSA0y86kPI9a8OA3/OlhaZYFgBkva0pK8HP7sb6PxfDabVx5DUxfcbH8mIxYPl4dH9iFL/2qV8PAa/I57yKCwoMdaWg4KTU0fMmb8XzuvQOiMJZuwaGYKlSBYrqwo31AVyBBwC0b8UPnNM7CPplAgofbIurfdwvGIKG7WftI7jgAED6o1oMsho/xOPan9pODpE+vIKiurBu3S/SO/O0INen6Va+EIUXL/HndH9Ni+pY6r9FKj/7dYdbZYDk2fH9bBQdPC4tgADwxbSiulB4/rxpfp/uWUj8YCbubGyCoMUTuZwNfTSleN2GpexHiet20W3mqlSQnWNaP1FeEZzIe6cLqQvb4Pr6AJ6v+i+J6HzwlgRGoOdFwcoBoL1vGendZr3tQHSrrlgTsg5Oqw3JnX+S2qo4n6GynnnBYZDv83r7Jfk/C2T9hwxeRJ4WV2bvhlzEnVYbegweAYABLbV9n7ne3RwYiWoL46WynVYb0j+VA8CatacnxXDPR1osOTM+9FtUEPV1E8cxAl5J+1JGe8vtcAmOA3cM+dz1UQAom6uld1pteGjJS3BabbjjbCfJBGhgN2ZyA0DDh2XFkeKQmX2DjR45LN2vcfQ6Vt+oAD1RnVNH+fDrjAE+hrhyW3/QdjQ9vYv+jocMcwLFTgSA8z8xcKvAlxLgN+QgTk1xYEjl4wheyPrIxTF2FD7Y1jCOiCSORwSGpTcE6NMBLDanHgiJzhcD7DiBWN6d6r4GYJ+me2UPH0pPwE2K6uKhSehZ76adDHUYrfMOIVCaFTmaPFdulYNl6z5UXLFbqp9opCDAop4V8uF7MAstpsVIaxQA8G4diqMT2VzU8lujS6OZUk8AaeTiaDZfi22V37OdaZ/wbtnMcO9epvsBnf87dF8Ru8eIPtbKaRbJj9+MYrcuR8i4vaYLdXcDc6P346SBiX5TvBzKE/AEe/56usyXnltq1sCZC1XhtNpQ5GIxqnaFrQTA/LOp3MLLVwxyX32c1cs68CjnrZ9M9bIrqosH2RXlmHZSi9ezyCYHtFZUFjiS6N1046Hh2ENbDAsSgCktBtkEN5aMh+SzborqwuJmDSVea/cp/DkpIvpJWbyuNSceKQvCOWJY8oz2PI2ZEgkABTmnJAAWRXXx9yHWSVFdKPQF0gcxy6IIbb/+F7tUFgA0fjdOyh/dY4g0KYtyJD81E9GdB3G0suBnd2PTEo3/o1vZOyjoGm46qYk8PS1arg2J4ot7IkKoo4DRPO8ezapI9wJfSoBl6z52rsnLCz7+TfB6ugvOw3LcGqqDSPrvqFIvGWXOLG34uxP5704Hb6PVNzGGhY9Z3hbfx6CgW7jHvtJ53DhEuAo5/0YfxiHCxfqnpWmQIZ/4X/8OxQW3SOmfMgW7/WvamZyyPU4idehMg+HEstWq5Xfj7a4fc0QZDl9i1uvctcHwatMCQcP28zYmxV0fr1DkpaguCdxAX5e8GkUovHjJbf8i2Ta/+DnPe21IlCkvSk8GLzOybLUa0ov/AUigEN47te+g9sx4+Pg3QYXfzftgyjBZkeLvoGmQJGsfez+pvJRpkW7lBYA2H7JFZ8W/avO27fgsM0hkvy6Ph1TOxbF2HruRdmXEer5d+6ihDk6rTdqVE/nNWfw9q0uVKrBUrw7/qfHI79kOZZW9PD+dh6LdX7P+ZEYEPCOmoRAFFK+SZFr/x0JMDw5xyytk1F68lb4PXr6+SH94ttu4crQrJ5bptDKQq5ypDvgulMczfVoR6AUAGnwSh6GNOiBwKSuv5rx4+GZcMBjDxDYV/zf4NI7HsKR2o7NreuVMjbqG8quM5ysDVoxH071lDCAtZTbsRb1vZUTeE+3ykbfBz1DHxu9oeSk0CZEIOJX5QUkMtnLlTI0BEXNe5DLX+8hHekZ92R0Vnj+PI5Nm8DVK1m+t8FVmPEdIBlig6ahXJiC/ezhsHxtjh10ebpe+bbEfDjx63lThBcA9MQAtrh8AFB0+joEhmqHwPv3/QfcVsXuM6GOt93WcBJGrqC54hZe4WpS4EjmtNqC42LBQpwWEniegufjoJwb9PaIPA7R7Ip/Ci5eQ1vVHg9VUrzyZ/a5wLp/f01tczfJEuAo5ZDoAWJprE2Rtb203Z7JfFOcpWmL5oiAgnO/+XH+U7Vp1GSPHIPJu2QyK6uLofWbWYLpv9l8EDvFknbzdrz0WZ+9C6qI2PAYcAKT3nM9hw0NiZLhxCk8gDvwEK08uLKKSLcrhtNpwZNIMtN7zuNTm5yfaYf08DiExe9D7yGXO+8xzDolP4ZETKL9qj+lh7ytFt5Aytq7k6iNOPBSsefOi+RI0NMn3122Nl5lCQM8q/5oAr3Yt3Robog7k899dD90wlQUAUr+OAoqLcadxDXwYYIPS0uh37k5ZWpGjhRcQXdTMFEyK/+S02rAjrBwOPS8DG/CFtQ6qu+FHcdi8cL7ES3RRqxtfBeXW7EGizSLxW/89WxDHbl0u8QcAm4aZY6rgOa3sbEbyzPYcpCBl2EysulEJ1X+KhyXIH+3emmhoFx+/xkie1w6FD8pnTS4Pl/uqKI/4juk5xa+q3icFlz64Iz3jikYw23G3hAQa+Ab+yoAmaIEv0tUnoviOpsiTvn2xj9SyaDtzcV/PMvDS9029MktU/HxVQzqn1YboVl3ZDcEdlGIREfnUq4uCjJPSPfI60Msgjckn5POZa+P/5L/PPuvghiyqq49/Eyl9nenMSHfjAW1XtOJyFn6g0Ydx3DWVv4+QQH4WT7+b78mgAgDVF2iGKdsn2q5Dj13PwFKzBmKP/4XC3FxkfGJHmQ17cfI9FrwdAE5fY8G/izq3MYwZPg2skhwEGOJOlvzKFkQ/+AgqloAZ6ecjAKgdV83UsNWhnDdOLQ30OH/ezqosXfPxNDcXOyd+gRsPnJeMCXoil0lKc2kk6yvr1y7mvFLHNkDwjGzTOR0AB8i48CebN3d/ou24AcyYJXpFnJ+ovcu0xW3wUQabh3ocY8cAgiftxnfWkniHQgwzfdlUH9+emfx3+e11DWnNFCwivzfYefWi27fxVabm6knvSQzWLRrfnFYbevd+nPdlT0YnKq/xo4fQomx5Q/qqixJQZlMSD3cgPtv9ieZmGt15EJrNjUHlHWwX8/fmtT2Of4rqgpePDw838o+kouK/5+9fTvfBOu4B0oN1ZH5ox4mRRvcR/SK7tI/c3T3xWfIP7fj5Ij44RYVJ7kql8d5wswy+DNL88YnEdCk/t5V2pwDgzKpQHGj/i1x2CXnbmvOgy8Sr+9BRsGyVebhbuIvt4xw0HLfqlUOZa4Uou+uIYVfFjM/l4XYUezM3Hn2d9XnEZ3l9IlD+1A1J9rslLx8fFBcUmE4Ub5xrhUSbxfR96KnY3hobVvzktl30RAAqgPliWaSbgyJxsYWFu26Ypcl+04GJj63lB6mvPRaFykvZZJP1loNPnorqgv+6MQgZvRe3HmrP3UYU1YU+4b1QXLE8R/PTL8rFg/CZv4bh0ab7kWizoKijDd47XW7rmjyrPUImaOXcTRvpZRPzVN9VA0v9tV1V77BmiFp4EKHltZ1K8Tsdn2NHZvtbUn0KuoVLEM/lt9dFh5qp2NRSW8QRlPzi7F2oZakovadOz4zn8XdE2HCzdtOPGWIfju7yMHetEfOLi2o9n159hqJ4/xFYEypDjboGMzLjoed3x8niLW39cZ7pdyZS6z2P40D7X9Dp6fF81+jOxiYo2+Mk6zv2flwJMevPPg0boCDnFPL6RPB4T5TWu2UzFB2W4cvN6qInr3YtUbz3MAdN0Ncv9esopA2ZddffpLuyzO5V3lELywM3aQpSrZoovCAH6QaAp1OSMT2YBa52vDgBlZcmwLtCBaxLjcPBO7fx1BcvYv9U+bsW63FxtB0158cb6gawM6C06383Y5RZfZruLYMT7fJxp1eEITA7APg0aYS18X96nI9EuqX4o7wzQ0pLlPlrGLyPVkK48yjOOy67lQ9ginyVJcZ3CjBl9OQjdVHuYjGS3v7PADiyl7dEo0cOeyzbrEyzep97xoE7VYC3RyzG/BB/t9/53ZI+vfp7cxyKXCLxOve0A3eqgofxSJkeieCndxvKBhjaKZ0T99RGpcntqR7JM9sjZOIehO8vwu6LfqhZ7gZOfxnE0TH145BYTmnzBlHmh3bkN8zjYFMkU4fnJ6DSMvM+QkShQoiy33RI4Wcs1aoi9uh2dKvf4h8D1uHo8e7fAtYRt/Ht/1p7JCcnY9GiRdiwYQPS0tJw+/ZtBAYG4tFHH8Xzzz+PihUresyfm5uLn3/+GWvXrsWxY8dw4cIFNG7cGJ07d8abb76JRo0aecxvRvcVsXuA9IrYjJM7EdPEHDHvxsORqLhCc1m5PjgKu76Z5dYC2T+llyE+lkgLs3dhWKMOODXFgQafxKHmruq42CGXoxSJg1fLb2PQ4FPZHSHjIzv8p8ZjQdZO1PepZDoAXR5mh+/VQvhezsfGX2T3wfMT7Kg9K9508CbSD6CuvDx+DoueA2x3yzc20ZDPHVlCg1F4LEVK32znMDT6zoKNyxbwvGeed6DBunPSToMebVIvi9Nq4+hT4j2KzeOpvkR50REc2KO0+pS2aFNUF5wN2khuY5bQYMRu/k1eWNSujdgDG92XWaKkDz2eg6jyJzGpSQfzdIIM0Z0HIXb7So+yEzmtDLCAzuGUVlfvcuUkxdqT0aG0ct2VIb6/mwMjDS5j4nNajACaYl1aHdyVKSE2CsYRPdGYYMaT+pBYT5K3w/MTsOubWdJ9p9UGeFug5CSZtotPA6sp0hqRiIQKAGmf2/m5Qv341KfjAKzduequF4iEwEe8KF/a4jaouLc86n3NFnrNp8eg0YdG0BlPZPa+Hxw1FmXXJ3rsQ9V31UBuh0s8X8CK8Wj2+jHJVU3k+/mlQEyukaYpaCUIe1TGrQHteSwzS4umiN34q8TDney9+j+J4r2HudHgbhbed2O0o3v+a8YiZFyix+8qfYlNCgQslhPd4kEeb5IoeX47yQhTmsxXH49ClV8S3H6bUnndHpXGdrRvBew55HGhLNY/eUZ7ySNBL9vtfu1R7s89PL4ePaN4b5TeUru24dylorrQ+tMY1PtW7qOFD7blhkZ340OHg4Mkl13ejxa2QYPlZaR2zHrHwV0AKcYnGXQozbSTu/gYbkYiD4Ap/VnzglH9J/dIrKIi7U4pL+rUBt479uP64Ki72hESkXZFYxrAvFjWbVhaqrJKdOHPENTqZx7bj66vPhGF/IpeuOYHnBipGWOpjpJs30fykCp3891FuArxQZ1Dpu2iqC5cvVaE6iHp/wxFrPvfpIht+u8pYlOmTMH06dPRv39/REVFoUyZMti6dSuWLVuGsLAwJCQkoHz58m7zr1+/Hn379kW3bt3QtWtX1KpVC4cPH8bs2bNRtmxZxMXFoXnz5m7zm9F9ReweoNLg6y3BAVIg3+geQ5D8enkEmkx6nshskDi/uikHQgA0y6Z+IhLzp3yrufp4sl67W5jTM0V1cdhwkXJec8hR7zc3lIKImtWFBmdSkP6TBbie782iOxweuPHuirhRUBZL/LeaDthkhbsb63VRRxtu1/HluxcAO2NRc642qYmBpWkSv1srYnSbnig8e07aERMX9KT0ijzc8da/J/rfq/+TgOu4qYLxStohfN68HYrzjHHpfJo0MsDA60lfJv2mZxT8VZQzbJ8XB1Mwq9NXmfE8j5jPy9dXgmOnZ/5rx7pFDRPzG+pXEkJCTONJOdXXDYC0w+OpPE8LZz1vS7WqhnOaItR1afVyt/i4m+88YOMoBD+1D5YqVbhiIqbtfviatOunV9QCt4xE0JP73S623ZXryXAh3gtO9MX3DZgb8NXHoxD/pfmOlbuyPO08l7Ygo90p2pEi8jRmRU6ZiGo/y2AlZu/ca0sDFHc95ZYPpZubtRNjS5AU76Y9AabYi8YuStN53DiUW7MHpZHI79zTDnQYkYSUiDzDu/fUp+/GyAIwmPcK3mU91ouMJbSL6BPgh4L0TLflBCaWQ1qEZvjJWBqG5Ad+luS72/p7eq6oLkTsG4wafZPd1v9KbBASbMs9Kgme+DutNm5IuNv3r6guzL9SD6OrnnH7DsR7NP6I5T5zKhIZg2qjINsYd+3Uqw7J2MvfU4kC+Xq6ix+XuJs5FwB6H7mMdS2q3XUbEVXdWZMjRNaOq8Z3TsUyCrqGo2zCMRTdvMmfmZVBUPqlyQr8s+Dr/4mK2N69exEcHIyqVWX38TfeeAMffvghpk2bhmeeecZt/szMTBQWFiIwUEbI3LRpE3r06IGHH34Yy5cv/49kun9G7B4k/aQkBvJ1Wm0oPHLCoIQpqovn84rQ0BcV1YWs37TdhYePadC2LZO8Ubi5JgAWYwkAaicVI3x/ETIGzJHkkBYwzzEIenFiEAcg8RnAXN8oXcCmUfyZ02rDt63bGerf8OM4aXIhJcysbYhCJuyBd4UKHI5flFufj+SLmjwBPvXrGdIObNie1+nUzaq42CHXMGDSdcjTRgAQgFmz9e3jvdMlKWEAuBKW352dy8nrfIYHBo09sNF0Iow5FSVdkzwEW+wVf0CaJEkBop1HcVKMfJWd+6GzZlGvaEFd9ROt02pD8d7DKC4owKcZRoXhs8BWXLnRvyfxvIo7EvuNWOdbDzGlmBSqGSd34vNL7JzQ4VGhHhdlohKW/YaG6GWpXYuXI8pL8ZsU1QVLi6Y8/UcZ7i32iupCvy2aixHx7PnoCP5cTCvWT+SpV8L07SCmp9AIZulE3gXN/Qw8A19KQOGDDE30dr/2eCn1iJTfu7VsGHEnQx9Hf1ODAABMPtOGW7Bjj/9l4KOoLkyuwdwgLdWrc55iH2j2GttJaPMRAznxrlxZKl/klbqwjVSGj19jQ731Y0FKBDMYLM7ehSq/JEjPALZjQzzVV4yBdek7M+PvSakFgOc2PYm68VWwLjUOG24yhEfx/KWZYiIqYVV31jS886LOrA1GNdwp9WnxXI44ro5t3BG3+2nxqE5NMZ6nclpt8Anw4/dpd3XkCfkM2/Y5c3gaQtNVVBfez0g08AMYEEqd6XH8HYjvPmDDaOhJr2woqgtjszuYzgfiOK5/D5YWTWGpXRv+a8ei8o5a3BX82CfMjXjtzlW4OTDSMO4RT1EJA4DkB342zHd6OQBmXNTfF58vzN6FzzMTpDJr9E02gIiI8iTYlnOEwdKUCzo7KfJ/K30f380lnt0PX+PlLM7WgLDEeaNHxVR0e3L0XSlCsUe3G8r9vsFuFGTn4MYjRq+Whptl4CTKR0ArT8+MMTxzV7aiupAyLRLrWlRD2uda/TM/ZOdtCS1Rj37q49cYiuqSYPpJCbs+OEoaXzcvmo+imzcNfVz/jkUlrPvhazydT0Pt7LuY/j7931G7du0MShgADBnCQuQcPuzZXdjPz8+ghAFA9+7dUaNGjVLzm9F9ReweI0vNGtJgQpNgaSROBsWJcpybxo+yQ6x78vKxIrQOv384vIijHHkVFMESEoi4r2chqY3WLW73ay8NcDmvOQyDRfOZMTzOk0g0eFdemoC0L9gAlt79B6i/N+fP1qWwwd5Sq6Yhr75+Zv8V1cXjrZFVCgCcg4bDp349fHShKdxR1cUJKDh9hsev0i9snFYbByHQKxf8txB/Rxx8C49ou4z6el0aZUfyHIbWlf4JmyDEAJYfrHpUkkFP4mJATFP4YFvTRU/4/iIDj+BEXzitNtys5wWn1cYniqqLEpC6iB2C92kix0ETSXQNFcsyk1vsPy2TvN3yFNtYVBbL/7FHat+YJh25exedxevTcQDUl42LZZGOxmi7rAU5pzi/gN8mcJkfPPIQr4P4Dqf6Gxd1RNFteuL35jI6l9Nqg9cuF/+t7z+ZHxoXRmbk7jvw7pZtmk//HszCMViqVOEuUOX+3IOeFbQQGIoqQ+4DLMi7Wf8vyMwylbdhQiXs+iySL9bNlBXxXtG1a3xhqKgurjhkD2bKVNX+Kk+nqC4MP/mAxAsAnm6zHbf7akpFQWaWod2dVpsBuRIAB+gQjQ8AEDJaC0dw6PkZPJYe3bvypGZgovxmi0EiUZ6gJfk4a7+Ktu9P5O2/rkU1Q1uaGTXye7bDlY4XDd8LBWgfXOmK1MYUINvMCFDuT20Xq8EnRjACgCknYvsAwI9Nm0j86P78K/XgPZt9Cxn51w1hBIjv8++zs8HnJxpBXdJ7akA1KT+ZQ7M7rTZkRd4w8CawDkV1SUASxP9Ww8qIPbARIWMTca3TBc4rZMxe/u4Kxl3Q+G5uKI1FZqT/Lsz6+JFJM6S+4VO/nsRzWKMOmOwXxdF6iZe9ToZhPC3uoCmthDDoTimyNA0CwM46k2wExvNeQFtYatWEorIQJE6rTdqh7v7ZZIMCDDAF3mdLkqGfiDKQ8dWTskRAMGK64r2HPc47h17QAI/0yo7TakPyDwwW/sbDLEwLAdSkDtUASvxeZwYN2qkj9FPiQ2OHXgZFdUlulPr+KP5Py7+Os5Mchvp725rzNlZUF5+Hkue3423zT4oj5oW/Ab6+pKzg4GDUr1+f//23KSeHGcDr1q1bSkpzunLlCq5du/Y/yn9fEbvHiOIGvZJ2COcn2pHbnk0mZlY0d+QubXtf5vY48sRJ44J9zyHEblshDRzB20ag3J8yfK3kMlhCjd6Pw752vxrKpMkir08EUp9groznCm/AOvCoZAHN79mOHy53q/DAOKjTvY2//sivw98pgdpOOIiC02cwtZZRIXorfR+Ha1dUDSFRUV0cmcusHFEmcVH1bKr54f5ZJ3fytGL+Gj/EI6MvO/sVMCUeL6Qek+qaPJxNGiJK4qySWD1Oq9E6T/ksW/ehj6M/v0f3k9p4GyY8skQfemGGYUEX9CRz9bvkaGBYnHqHNZMCJ6d8Lytk51c35RZFfdslz47A4fAiJM+Wg/ASNZsbY7ro0qPKYXNDdDvaX7pVkJ6JQy+6BxBRVBdCFkyU7j2S1p2hyQkBO8v2OKnPCp96bGBdKFiIxQCwhWfPCe+AIUSmLbHxGDqE9kVt2WPwCL4YINlSpmvIiYQO2PngLY8LwK8y402/dX16/TdFO1REZko03Wu//1EETImH/aUJ0rsxW6jwxXjjnfDNLcCPTZvAEqxZ9M3KAoDiggLc2dgEb48aA6fVhlXBCpxWG+p/yb5LQl0rv70unFYbztqvSt+g02qD0pIhSZI8F8bbkTItEn3aOqUyrZ/JysazaoShLmYKnNNqw/SVs9Hzkac4rwJfL8MiPTqsGxTVhcIubQ28RH5lTl8GwKDqqfyT78lut30iouG02gw7P2U27EXyjPbSe6D/i6/JO2WeyOxdiO3QO0hDTq2+q4bb/Irq4rtxy0Lr8Z3dCU1KYle+7jD0QQKyqT0z3qBESHPQUzI4kygfkbiDS+cXnVYbVgev5+npPdypYjHlQXkU1YUXAjfhXEzJGCcE7xWDs5spoZ5I/65OPRIglUn8xLkIAA62LZbqAIAbeCyhwRJ/kSg9nWsW0wWPSEJeHzYG07zr/5o2HkW8zsZJESWQ5Hz8uPF8qFgvkpvAn/TjEqWlsVGUm5RG8uDQtw3dS/lJiw2q5xEyai+cVhsqn7hiUBCdVhssLZpCfdkhyayvo6K64BPgJ/Ubn3p1PSqeAAPkUVQXst52IKZJR7hek1FyFdUlgXiJ45dvTll+fR++/u+nwsJCvP/++/Dx8cETTzzxP+Lx4YcfIj8/H0899VTpiXV0XxG7hyhnIZtQFJW5edWeGY/KSxOkAUH88G/3bc9cF7wtKLa35gOz2aAsWh4fq5yL3r0ek57r87WYFsMPXot8+aK6RJG59VB7Q7wMAJJysm3uXC7/sEYauAOVu2XBPPg0aohPM3ZLC0HiZdlq5ZCwgIawBrBzVyIlvTMTb6Vrk7deritPRuG9gLao63eJp7k5MBLpnzCLYPksNkGQ65e7CVt9xcFlpOCS+kUzLUREWnC1jiQPAH5GTr8YovNcTqsNEwTwFutncbg4lr3P33OYRTtvA5s4CjKzeFwscjMUeesXjvq2dlptHPqd3LU+z9QUlaKDx+GawpQ3vz3lkT5oNt/dAYB6w89wi+LTKex8w7k/WPuEjE/k/6nM8xPtQFQYFNXF0f70E2/SOzLc8tKQZfDpnoXM9+1S2YDWL0U+VOfkETIfsoh7IkV1oeDMWUPfPepYZNo3Ch9UcWmUHYFPuHCiHdvpeNFPhvb23slgi8V3kD5wNk9TmMKgtM2MCKJcIl+n1QafBlbDGCEuQjwpawD4Dg/A0C0BoMyCGvDbU573BQDw8vV1KxOVVVZhOwy4dBkAoE7WFuOK6jK4BJftcRJlD2Twupgt4MSdnXZvabGQTr6rGQao7lUy8xE8aTeOf+E5nhe9I8qbPKs9sLkhmu0cZvh2Y5p0lHYY976voeQ5BwwDwBa2TqsNlm1sd49c0vTfWWFqhuEdNHlL+94BIOdRPwDApgPGg990frfmruqSnD83bSTxEMlptfHYlO6UezFv0c2b/DedIxJd24mP02qD93YWH8GrTFkALD4XUaMP46S6h+5ibWUJCeTlUb8QjU/6OlDYEn3/LjpwzLBgF/OL/yv9ttuUh/gtzg/xR9nrxYY2EuNL6fuonsyeifdIySFezXYOk9I6rTY+V4jySgaVzb/x3xSORZ9er2gQD9+1ifDy9UXyrPYG3jV+1M4RU5w14kGhSPR1OrMq1NDm4rWiuriCtzQ7jsPfi6QPvyDK3/dILi8r+Kl9SP6RxVmkeZAo7XM7Gu+uCK8s1XQdFLvxV1i/MAfyEdu2ID1TqgvNAfrxg/6nfBfJUVEbv8u8jCikhrtyxPJo7rsbpf6eouLiv+cPQEpKCk6fPs3//pv0/PPPIz4+Hu+99x6aNnXvReWOli9fji+++AK9evXCyJEj/+P898E67gESwTo2n9aCTioq26GhBaxeIXs6JRn9K96U7uknAP2HTUhVIj8A8K5cGetO7IDTyiyYnlDHrgyNwtg3VhkOnxIR38ePq24Hbr0yYEYECuIprdmEfbekqC50nDSeo1Dq29edAqyvy/qbvuhVIc+tbHrFgoBQLo2yo8YPMvqUmRx6IoAQMe0dZzts/VEXhsAN39LapM0HMagzI44jaZ572oG685IM4Bb/qdyUhkicpOdcsWJFaB2Pba3nXWxvjdzXb/Ggp/p0ANBjyEh472CLxE4Hb2NHWDmervsTo2DZpint87N2YnQJeAGRV5myKM6/Az1ROZYWTQ1uqGeec+DAq/LOsR6YQk8FXcPhsyWJoy7q+4bY//sfvYinqzGrcdMdw3Gi088e3+vQ4zlY3KwhAAbdvnbPWnQ4OAi7wlYi8tWJ2P3pTI/59e8kwlVoiGGmqC4k59/ApCYd0Hh3RWRF3pDyPZt6nBssAGb9vtqyJv/2ym+vi1udz+L6o5F8scwVsBIY8mU58RjcUHZl0y8ixWtXXh5svr6mdSOQBQLAoPzN454sFVK8tPYR7xHf0VkdMb/xTo/jiP4ZgW6U9t3e7XdNZYi/c5+yGxDwzNJHt3gQub2bchh3UlpF9Dp333/GJ3aUueplCAB8t/XIetshBZj/b84BIo9e/pEcaMidQYP+r8hJwMMNo9xwA9K+iELgyxqcOWBUTt7PSMS73R7l4CBmMpnJAACnX3Tw3TOAKb4TvlmOH5s24WnFMqO7PQoUFiF22wr0Te6N/C7aQjb9EztShpuPASkLwhE8wvwcNC+7JAxE9psONHpfhqh/Nz0JbweEG+riXa4c1qUnoPWex1FvgKbg6r+FjI/t0m6dSJ0P3sL2sPKlzhmGOk2LRPAkc0Avfbs5rTYOHrbqRiXMDA4ylUVRXehxrB+8u2UjfH8RPqp7kPPJ/NBu8IDQv9eINyby8f63E/v+MaiJHbq9Ax+f/2OwjoLb2LX5nf+z9njzzTfxwQcfYNy4cZg9e3bpGXQUGxuLgQMHIiwsDJs3b/4fyXh/R+weI/8/x0qTZUY/GXpa/D89OMTtwndkVicDb0V1GZQwKoeUMAAGJYxbfaZH4vV0F6ouTjBVwnwaNeTyKaoLvzSzchAKkfSLAXeWRQIFoXROKzuwT5Zm0apOdCVWGyhFvjcHRaJocyPY9suDrRgKoHdPbZeQngOA/1rNXfHiGNli67Ta8HWQBhjhbuJ1Wm1oNpedRSNrdo0f4hGcaL67cPpFzX1CUV04/aK2o0AojeI7LKvs5enJjVGUZcZJ80UgALyWpsGiO6021JkRhzLb6uONkewcR53pcVifsRvJPxrfpRm5szbTM3p+5gVtt4DOLjqtNn7mz4yn2F9yXirkShjtjIrp2r4/UXJbJSUs9Rt2XtGybR+urgsEvLzgXaGCQQkDIClhdFbq1MoW6DhpPAAW6FqsX+PdFXGrXrGhrSfXSMP8LON7IfLZkoScqQ4eh+d2vyum7VZ9Vw2sbq65nzWtd84tTyJSwhTVhbV71sJptXEIbFLCxF1mkZ/IV1FduDkwksezEym6xxAOgz230S4uM71/UsLouvBEKiqu2M13s2i3a9e3sw1ufeWdbPeIlDB6pifxntNqw6v+kW4XWhTPhwAwbB8zt9ijjkWm9a8bb5xcye3Skyz0PyfqOv/t00A2Tj2R8aCpjIR86LTa+JkbIgIfEOWkvql/Z6IciurCtlve/LrW2mQpvz4PjTGFubmSEgaAK2HqK9q54ZRvowxjof+UeDT8KM7QZ/RyOq029j3q5Ckqq9mKiXfj3Z5j/ZBHhsjn95w9pm1DpEd7PblMcxFzWm0c4AaApITR7p/I7+VoOY6dWXlv+kdICI0A8z4Rx3Z6z3oepISR2/S2+XPxWGUtPACNF8TnQmQtfvQgv8tp5Pdk3/v5iXYETGHusSKYEZVjpoQlz46QgDwoFl+j943xCyd+NYnLI9Z/XTqb2+u/741ie2tTuXNec8D/tXjTfqOoLmwPMwZfVlQXnIeNCK1iQHsxsLkoq1j+qZUt+HM6jnH0VgOeturOmlJep9UG727ZUFQXktp4S2VXP6r135TpMkAJudUmfjCT8/onuSb+n58PK/n7v6J33nkHH3zwAUaOHIlZs2b9x/nXr1+PQYMGoUWLFtiwYcP/WFG8r4jdY0S7X0Rmk7xXO3Y+hZSKFvFD+bkcGkjUqGsercV6/voJQ52sIWg5rTZ8mrEbwU/v5tCxAPjERPzM4GjLbEqCorr4IlQs96/bGpqUfrAlf3EA3J0G0A72N/w4DmuT1hvKqxrN3BsyPxTcwaLCUGHlbnh3y8bel8INdaXzD2IgV3FRIsKZVz9+C9eGMHkIdUmc7N0pO4rKXO/0igmd1dLfr/9VnOFaz9tptcESEmi471+mEroflt//I64xiD0lB6Ek+jgwDICmGAFAfpfT3LoKAL0at0PISDYpZ/4aJrXPmlPmMafu9Ipw2x5Oqw31vtas3AXdwjlP2sEyWzRZggO4RbrRI4e1PCXBOC01a/D0b7240JQPxaICgPjWK4DiYhTdvIneRy4byiOXXgB8wdJg0BFJgaeFw+PHVWRF3kDyUzMN5TqtNoxu3FFqN5EU1cV3DJxWGw5FLjFtN3IRo3R5nRmMdHTrHgbZAbaj1/ngLUkOSkNjxZpTSSh36rrpuNBltGYYclpt2DF9tlRnInFXkPIW21vzMs4948DElFRpoSV+EwBbhJKC/FLqEYmXmcHGaWW7MsS3oGs4wvZ54W5J7JvieRgzOmu/ityn7BIgjohmS2Om/jvW81RUlyEOmxkqKxGdRaQzN0SBk+PxVWY8d/Ojdj0ctdhQdl50hJTm40Dt+z3ziNHdz2m1sR0UExLTkRtw44Xp/FnwcwlS37o83Fx5pjR6pa9Kb4akebPoDqKbdwYAFAfeQO7aYOSOsPP0WZHMfbrYwfqYl48PAODSSFae6C5OvPUoivry301P4mfdug8dhSaDD3GjlqVpEDYt/sFUsfJdl8h5EBDG781ro+au6m7b78J4u+EZABQeS5HKCJwcz909RSMWlU8hM+g+ISRfGGeXlJHqC+RdpS0L5kFRXag9Mx7Js9rj9EsOlLlulNOMQsYnYmijDkie1Z63AaE36ufB/VNnGN4xyZX+iR3FSUewYcVPhjJojhfzAUDDhEp4IGac27VM716PQWlZRVPmprI5zdXGOOaSG6xZXcXvKGLfYADA9rDyPC0hKnY5PICfJ8tZ0cJQB4CBghEASUL/rzAttwlvA7276336++idd97Bu+++i6eeegrz5s2Dl9fdzx0AU8IGDBiAZs2aYdOmTahe3fi93y3dd028B4i2eQMWTEVgkxtSDBhxMNVbec6sCkW9AceQM9Vh6vahT+/uvr6MgOXjkf7IbNNJx4zf5WF2VFvILFeRr05EbvRNNKqdC+93aphGq3dXvpm8NwdFcsh3d/UxqwPAlIfiggJYtlol9EOxLE/1Sv+EWQv1ZVTeUUs6X5QyLRLlzlrQ6AP5jJOn9iNeZgEt9XWxvzwB8V/MkuQudrSGV9wB+O0pj9kN4xE6O4a774h8osO6ofDCRXyasRsXiyrgs8BW8NtTHhuPNkfwiCSPbQqw4JdJ4cvcvh8ici1TVBdCdw3jSJ0iXV8fwHdizOpJ7XPuGQfqfF9i8W3YAAU52vdw9YkoVFliEgDU28IRLEsjT/2PZDBL5+meu3z6RQj9n3W5AX5vXtuQN+c1B1+AlCa7WT1GZ3VETtR188y6PPoAvJaQQBQmp5mmV39vjkORS9CnrRPDtu/Bj838gOJiHpBYn/5uv9XgRF/E/dAWtWdq3xkF+NWT6I4lthv1CUV1wfHCBMR9bYwHZqleHYW5udJYQHzC352IWrPj4RXRCuv/WMj5ujNgmdVP/wwAQufEoPE7sqtW6qI2CHpSM8+ffdaBut8Z63S3fdQdifnPxThQZ0acxCN01zAc67BQ4kPusOrLDn6OhvKkfW5H6lD3gW0pHY1H7uad/im9sDp4vdSmT2Z2QfyeZpKBBAB8/JugIOOkxP/ssw7UOngbokux3gXe07wHsEDmNOaW9u3ezfdPVGxvDa/4AxJfkbc7Mvtm3I0h7upk9vzkslZoMpiNw9eGRKHyr8Zxk2L8uZNDHI/O/dEMtrqn8GPjHQCY8kVIpmL5mR/a0ST2Fjb8toDfK+5g49fi+AcAZbbVl1wl3dVNDHYOACk/t0V69x8MbXa3Y4/+nv6Z7/Z6OL7LH8kjStw2TeYYse6W2rURsj4Xx8ILpOfvnm+OuNZlTeUxk++fFNC544N/j2vizq3/XdfE9957D2+//TaGDRuGBQsWwNvbfE/q9OnTuHLlCho3bowKFSrw+xs2bMBDDz2EkJAQbNmyBTVr1jTNf7d0f0fsHqLGI45IStjZZx3oE9mXX9Ng4W1jh7frDWCHlPVKmDiAZb3jQOb7dvjUq2uwCIl8ye3MabUh+NndhsFKtMYRH/pPShjAXJ16Bh2HT/csroQpqoujySmqC52eHm8qi35iT1kQznayKlZ0u/ABwKHx9XzWZ+1F+qd2FE+qwvPQM3FB0bvnYxI/+h0wJR6pX0fh7CSHVOflgZt42qx3HAietBuNPoiTrL96Gan9RIugompwuBX/qi3JeOHPEJ63ypIENJsnI/5tWM6siJntGbJeteQiFHVuY4jvld+CQYCPe/d5fBbYiuchJcxMVpGSwpeh1TdGeH9xlxLQXMucVhsaP3pI2l0j/pV6pfP6A0DAhtFSexB9/YKGuEVKGKWrsiSBTYg63igq5JZ/rzYyzPjlYUaIbPFa7BNOq427oXWcNF7aTZqbZe7eKX4bp1eFGvqi2bckwt07Bw3nv49MkpG29PL6r9HcZMOTBnPXPmpDUsLM3q3Y7xTVJSlhAAxKGKLCuOzWgQztq+DMWbZTWmK/M1PCeB1zzAP8iu3xfYPd2PemBqKiqC5k9zOGWwCMiHLEJ/4LbbeIFptZ78g77YW5uSjs0hZFr7AJs/Huijg/ke2a15rNlMDixEPoPH6cVBe94iHWT+Qv3uv+xChWxjtxWJYjKyUVKsrub3W/i0PW2zLYCPUhM95PZnbh5Vpq1uDvkv5SvtVgwyn/tQ6sD7efOpGXRYYSSnPyPe1MIqGPinxSh85E0x80gBSz7+DmwEjMbmh+3ozKyet8Br17Py61aUKmH4KeTzD0WVLCLg+zczmqpeRj05IfkPGJ9k3/0syKWwPaSy7WdeOrmH4DTqsNlZYlSOOO2dxhVgez52IZpIRROj1v8T1lva3NKYHLtNiNZnLo+yHt5IgUsHEUbxOAAWI0GXyI5zEoYSVjKClhp151wP/PsVBUF6aeDYN361AszY6TxqM6Dx3Hj413oNU3MWge9yTWndhhkFVRXVg59CtJ6QKA9EHl5LFBMEKREqaoLhR0ZeuQ5HntDN9a+VXMtdSnXl3U3FUdwcP3mbaZJ4VV/yz9U/fuzgUxVTUlDOBKGKEGZy9vKb2b2AMbcSy8gHvMEE9RCdOvnYiS52rgNv8k18R/Ik2fPh1vv/02GjdujO7du2PJkiVYtGgR/9u4cSNP+9prryE0NBR79mhz2d69e/HQQw+huLgYI0eOxLp166T8ixYt+o9lur8jdg8QWRdykwPwaFPm7ndhnB215rgHchB/03+yZDoPX4XSsoohHx0I9WRt82QRJIuppWYNDrPvTj53Fjh9Wv/V45DRf06pFiy9LMk/tEPIqL382nHgDnZNiJAmQ26hjAqDsvJnQz3d1duMTq1sgQaDjpimuzI0Cgmfz3LL6/xEO/a9ORMPxIzjFj1aVIeMk11RU35ui+DhRshmotpx1XhwSbEO9LvZ3Bg0eTuOW9qLOtpwJqoCs3BHhQEJB5HxsR2NIk5Bza1qunMlkr4/rL5RAdODQ2AJDkDs9pUeLbnitVd4C6z/c7GUzt3h58vD7dj9yUxeN31d6br15zG42vIO4MVgi836iqd7Il//1eMQMmGPx7oYqKQ9iUfEGxNxwV4gubISH39lNDKc8w38RIuz2cK7NHJnoJDyb24IJXSNR55m+XofucxjWykq2+2uttD84Hxpcpk9o8P9PvXrYW2SvEsy/OQDEkw9ANx4JBJX/CxcUeg6fDTKbErClaFRqLpYHmuKOrXBxl9/LPVdelesiKIbN0zl63skF2tayO4mdHDfE9/S+h/AUE59e2aaprHUqimF83BabQjb58WhzE2pfStgD1t4t/4sBvW+kY1zJ9+zo3rEOcS3XmEqL5H4zDusGYoOHucyxJ7ah+gGMnR4aST27xvrA1CxxBhj9i6yl7fk7sal9R36Hd1jCD+nWVr/Nnue/EM7NB3n4oGd9WmGn8jG0MoX3SrGd0uG+UsAXNITzSdiOZamQQxVUBhzzMZZ/ZzQ63gfrG+21rQP0vWlNSES4JFe7s23LPgyeqApqqGYjsBOXko9gi+DWhj6Na0fSvtmzO6LMopeEu6+L0/Xnt6jpWYNxB7aYvrMndz6tPp34K7vXIkN4kcpiAITy+FEu2vYhj/+ETtinbq8/bfsiO3Y9u5/rT1GjBiBn34yusMSde7cGdu2bZPSbt26FV26dAEALFiwoFRkxP9UrbqviN0DpEdN1A8seves0gatuyFFdaHH4yPhvX2/wW3AHY9Lo+xI/GCmYdAJ3DwSQcP2G9KvOZWEvg3Y2R89OpJeFsD9olt0ESzN9SVo2wgEllj6xbpkv+FAow/iDAPyg6PGoux648LZU/uKyG7uyJOyC8htqagu9A5yoOjmTVhCg1F4LAWW2rVReP78Xcmlf37lyShUXZTgdvIBIKFF3i2ZlW9pHoLCo9qBfyKq14Mjx6DcjqNSsO1Trzpw+Dm2mC3Y1Bg+3bN4/oN3bmOyX5RbC6Y7OUqjO70iUHZ9ounEfX6CHfvemindT1vcBis7zERY2XJ31eae5NKX6S6PpWkQYrcuv6vJXsy7IicBlbzLIbpVV8Qe2vIftw0A5HcP50HF3ZWX8Ykd/lPcK2IGhUJwe/JEd2sYItIvxCh9zV3VcbFDrml7t9//KPa0+c3A2+z7J/Ju2QzrNiw1bYvsNx0obHmdI1Zy5fINBw8c7qkPe6L0z+wIeMWDwuttgZKTVCpfMuq463+K6kKXwwOwreWqUpVJsR7uFr+lUdbbDhwbL6OJmrWRXtkV0356MRhbWjGgjqKONnjvdJnyuPZYlBT6RU/u2uT8BDtu1/LC0RgtJqGlShXEHv+rdINHyf2mP0zEV4/9iO+Cmt21UumJ9GWJirrIZ0HWTtT3qVRqeWZK2/+G3PE597QD+19n75HGl/Orm6J2/xNSPgDo4+iPgswsbewI8kdhaoYhHZXzUcYehPuWNZU967dWONZBczEmEtcjj6R1Nw1f4k6hFcs2Sy9et/40BvW+1QwhPg2shnOhZlQ7rhoW+W1Dt/ot7itiAv23FbF7ke67Jt5D9HvyIf5Rix83RV+nbXR3A6fpAs7LyzCQKaoLY7M78NgvG35bwO87rTZ4RWhb43RoHmAof0fu3DLwIyVMH7y1b4NwXHmSuQ3m760ubb8Tj6y3HW4nOEVlk2zAFM31cYNLC6SbvbylYZAMfEK+JhKVMLEMcRGmj2ujJ+JX6bfdXDYzEsuh2GgDUpz82aU1IajxQzw+uKAdKCdFpfBYCvt/4YLE35NSpZ8IEz4zov84rTbprzQlbOhxDXjFrLw7znaYmJKK/NoVYaldm5eRV5zPD247rTZkPuSNops3kfq1Fr+owaca8AgpYZR+sp/mWmXWL0RZvAWfbfH+gqydhvT0ns2+Hb0SBgCBQ/djsl+UqQwieVIY7jjbGVxsLo2yI+A3Y3w3QI6jo+9fet6pi9rAabXh1kPtOYJb4cVLcLzIeOuRJ0V++n4FgCthAHOtE8u78QgLNu0/dQ9GnpADXiuqi9/TL/IKr141LVNPz5zSkMT0751+n33WgdAkBsggGqVEutiBocZ1HzpKygsAtcdpu17uvn/xWcYndqQOq+62H/rPTeNKGKEgKqoLjT6I4/WP7vIwf0fuqOau6oa20Sthhu8vJ8ntM/F+evcfeD0JOOfUqw7pPYlKGH1Pqd+w/uQ4cAe3FH+JJ+UTg+IC7JyPqawlebJfZxD0+n5M7Sv2E9pB86lXF2mL5X5MSphXRCt473Qh8wO79I6IT+WlCZz/3ZDTakPK95Got/ksP+tLeUkJ03+P+jIVle18+70Rb4gtGXVAi1cn8tDTXB2olVgWlRN7cLPp/DOicUdJJjMFxl0diMzymY0XLZO8pf4gzteUps507X1v+Xk+AEhKmFj2iY8YyFKLacwNPvav36GoLi2wNoC3z2tIhnoljEC/AODVVopp2/ZtoB2/uJsYkuK4bdZWYhqAgVg5rTZJCQO0IOPXHoticQpLiAK4Ey3y2/a/Vor/dir6m/7+5XR/R+weIHFHzMerDL9vtrhTVBd69RmK4v1H3Kah+0Rm1ksvHx/JHYN2efTpyF1E5Kkvz7tCBWnHg0AZ3FmVzHjo5TZ77uXrC+8KFVCYyxZc3pUro+jaNQAMMKNCg+s4HLVYypvxiR3lznuh/pdscFyQtRMjGneUDs27K5Os2/Ts95w9qOBdVprszNp21smdmNCkoyFNz4efwoYVPzFlN7wFipOO4OS7Dgk5zl27+NSri7X7zCcYs7xULsVMud2vPcq/cIqfQfSpXw8Fp8+UapU1s/jp6+yOh3e5cii6fRvjktMxJyTAIw+iSyPtSPxwJo+7RPW68GcIavVjO29nJzngek17LwBze9oZttIga3SzB0x3Ze7GGsyts7VrI/bARp7+buruicQ85/5ohjoPHfeYRiQvHx8ExPtgRoME6bsK3jYCKV0WGBaH7voL3U/73I7AyfGG++7SE6AFXVuCA5A6si78p5q7HJnxoV1fEYzBXXmKqsW1czcemn2PLb+NQYNPPYOe9HpoGIoTzV1z9e1nVvbtfu2xbub3fEwITCwnvRdP70JRXTh25yZCy1aA02pD7tpg3M73wcH2v3j83hZm70IdC1NGAlaM51DcRZ3bcMOaSD4NrMjt1JgrJp7qSERu5XfzjZRG5JLc5qMYDsAjli3yJ7AYT/3IbE4xSysCu/Q9kovpy/sgr26BFPfMHX+n1cZ31Nw9N5PFaZXdWRXVhY7PjkfF5ca4gKXxFeskuggTmQHa6PP5NGmEgpMs3iC58pPMj2V0RW4H8+MFxCv8nYn8eMTVJ6L4WUznsb7I2N0IySM093FyOwVYjD4KD0Ey+dSryxEeAXaesMLvu9H3SC52X/HHIr9t6B3kwLrUOMP3Y0a5a4NRvU8Kv6a5xtPcoqgudB4/DuX+ZC7oXUeMQZkNew1pux66gUU/9cChF9lunqVaVRRevuK2nR7L6Iql/u49ERTVhUGpPbAyaKPHuhHoWkFx/j9nR+yBv2lH7K/7O2L36W+iO93bSFYl/YQMsEGveP8RNEyoZMg/X9gJABgIhdNqg6VmDTitNmT91grZb7JDwsUFBZwfAFMlDACOOhbBJ8CPp+0dJB+CV1SXpIQpqosj44lWJNGq1Du4g6Fel9aESOlEyxr9X5+xG4W5ufzZuhM7tIXopN1oMEjbvTu/mkVH958Sj/pfxuH0S0zukYFdoaguCblMbAeAnd8AAMttuQ5m8Mf6vJdG2TGhSUcOp0x1Scu/Dq/4A/y6OInJ2uRtz0FOqf40iZlZK5vHPWmwhDqtNniHNcP+gd8AALbPniMBwaxNWg9LdWbxvzkw0rS9RfnF+2aLBkuLpvBqI8P3Ft2+DQBcCfMJ8MPNgZFSu+mtrTV+ZBP/lkOhPA0A3I6rxdPVnRZn6CcVdWiMxPfpfXukQ+xiPcy+L/33p6gug4todOseKOrUxvAuAC2uDwDJ+qkvl3as6jx03NBuehLLKS4oQFrEbbkfNmgjKWFUhpkBhJ7R/dShM6UYO9NO7pLyDD+RLeUlxYXaqDAlHf5T43FxrB0PjtKARHwaNcTF0azdKd4fyRe7mbkIikpYxb9qm/ZtAKgzw/wbye/ZDlGTJ/AdKXGR404Jk8ZRN0rYyffsUlvq8xLN/f5rdHr/OXR6hsWUE99Lrz5DeTp6F5bq1aXyn/fTdpWq90lB5SVV0eF5tqN5u5/cd5rtZDD1313UdoxJCQMA7+37oaguXBsShYuj7Ti9KhSZH9hRcErlLnqe+oJPAytQAt9c+dcE5G3wk8Y+s7GBfov9PDBRXpRZzjCjmaiEiW0SsHEU50NgMWb9Vmw3p9WGzPeN3iFinvpfxXHI8DUtqqPJ23FcCVNUFy6OsaPY3pq3i6VFU2lcozbTyxC8SANNclpt6PnoCEkO8Uyh02pDxeXsHdHZKJGnCCjjv24MFNVl2CUBgOerZ0r1U1QXV8JEnk4rc/Wm+6SEAUBGr3lYfSoR/uvHAAAuTW5kKEdP4hn1KkuYgSF0VgyU0DXwn8qOB7T6iu1g7QxbCUV14fqjkVwJE0lUwgCgwu+sXda0qI7zjstsTBTWEc2nx+DG+gBcHG3HtSGaq/qdjSykyp42v0ltebtLK1PlXj9nlfuTtVuv431QZsNe07SrcsK4EgbArRJGeXM7XDL0Q+L1eSZrtxsPnDfk1X9LpQU8vxfJq7j4b/n7t9N9ReweorUzGKBEdJue/B59rF0ODwAAWFowBSMn6jpHNaPBu6GPppw5rTYUHWYHrQlYo/Gjh6Sgi0QUs6tXv6FSmcSHgk4C4IOlmbWp7xH38XAoTfntddE3McsQgJcO4urLJmWBrmlAFf9E/lzR2SDDidb/Mg4X/gxBcf4dUxl9t2vBobe1XAVFdcH6RRxH4hNlo/+ECifeJ6sn7TamfM/criY+8YwpD4rBFbhsgqlcXlsaSO0h0rXHmOucGE9LdCsrOngcQwK7SGXmTHUg5ae2cFpZkNbcEXZU+H23NBlxBeRBObCuKIOiupC2uI22uN74K9avXSzVTf+7ID0T66Z9K92jRSzxHno8Bz2O9UPI2ESmTJYgZjb54wLnp59cST7/1eP4AtL2SQy6Dx2FPhVuI3m4hsp3pgSRjpDK3LWtnsRyCs+fh+P7PYY8F/4MkRRmAv8wU/yuBGgL1pw3NR5maaNbdZXKMSjKp/bz9GdecODMczJipT6vuODs3ftxfFpX4zepSQepbBGoQFFdGHjUuKDwDmuGmnPjuZuforpQkJ2DN6awcxq08wqAI74CkOK23XjgvMFaTMHtiad+gV5mw15UXZyAglOqQTHOfl1rA/rGqL0ASIGDAUjIhU3eipfS6vMS9Vr1Eia/uBQVVu6W+uSFP0O4x4JYRuyRrdK1niotS+CIfmS1BxigSJPBh2BNqIxEmwliqCBf5V8T0H7CftQfcAx+b8TDUlcLlG5WH4pDWHBKhXJqP5efgETEtIrKDEr69sjoP4ffS4u4zX/3PnIZBadUt8YcAHgsbC9//nRKstT/zRQhckHzueUl1Sd5fjvpWlFdWBv/J7/OfsPB4x86rTZc7XZTAnbKeESbL7irbQmaqSiT6DaqqC547ZLrIz673ZfF2UqZJrveUtrG72gukCGjWTs0ect4/llv8AtcOsGgmBKRq7fZvNi/QQQyes0DAHjFyTD7evlJwSp2tOZowOdiHGj8XhxGZnXi6Q69OEMah/Vnp8PfnYgVOXKoAH070X3f7fVgP/Awrq8PQKMP41CxVzpqzo+XQL/K9jhpOhe9/P1CU8MBkf6+PkSQOO5QLDt33ylgHgcueX47qbyT79kx5IcXYaldG3m9IwzvUW84u0///9J918R7gNy5JhJV/Ks2zn8dwK1I4qBBvzN/DYPfkINanKXNDYFucoBlry0NpAHIHYn8ze4rqgtNf5wIv9eNLk0khz7PyBMnUc47n6Pk6RdW+kXYfyKjd8WKWJeyS4pr4rTaEOEq5AsXTwOzvmwzObzatEDxfoaa2Dv6CayLXWJqjaV7Wb+1KhWR0IwswQEoTEkvVR6i1K+jkDZERtgSZeL3BFQ1s0naHZkpBmZpHC9OQNxXDDny9EsO7gpqRgVdw+GzJcn0WfK8dqiQVhZlr7FgoGYLMq5odmqDk33KwXLbiy9qxDqlfhPFYxOVVm99P1BUF6JbdUXhxUvoeugGXq2ZYngfYjw5swWkp29IzNPjWD94d8s27YtEg4+dwbLQetI9ci+tvquGRzcjIjEmH5VPSGd6uQI2jEbwCPN3pK+HWBei9lMnGoLIivno/7k/msF7bXVufc8dYZfymb2XFtNi8N7IRXft7uqODwA8MHGcacyyzA/thvGN8hBaoyfyadIIx96rjeCnNATUt9L34b0AFhA6unlnU0s7ldHtaH9sCF0Fi5c3+kREmx72Nyjkqgs9H3mKL7LdtQG5QOWsaIGGDx8xTUMxkwjZkp6J7mM+9eriVlgjvrNAabqMHsuDHIv3nzkViZSIPKk9A34fj+Cnd3OXZLOFtNm4JpLTanQJ9DQWmj0nAIyUBeFI7zkfbT6MQZ3pzB227XsTUXuWdk7ZabXhjrMdzoWXRcOP4mBp0RSxG3+96zns6rpAVOltdMHUX18Yb+ehFczGDbM66l2xPdWbXIQB8Pnhf0p3M08Q2I8oR+PdFTG30S5JxutFt1HJu5zHtjH7ngN/nYCgF9wjNYsx+2ievbQmBN6/1kS1hfHw8vHBjf4sZM7FsXbUnBvPjzAUdmkLMXbd3czPZ15woN7X7uO7iv249ecxqPc1628Rz4/Avl/fuKdd8WjN+kCnt/4W18S/drx3T7fH/5bu74jdY2RmWVsZtBEVftcAIswWp6T8UGBTJXQNAAbHSuT1wt11YhpUyMJD5eYV58O7JTuEfGLkTEN6RXVxORTVhYePnePPfmzaBLNatoBPQ22Hp6iztqOSuzZY4qOoLmS9I8fv0stI94pu3IDTauPnxejZB3VKglk+FoXApfIOCKDtjpjVnyzJROvXLuZt/8HvC3g+AlDxXzuWl2upWQPHOizk8t3Z2AT5PdtJdRAtgUWd2+D8RDufHMQ21f+OPSVD2+uVMEV1IXlGe34vd4SdlSNMsmLZlO+bzDjcHBQptbc+jTsLodNqQ+WlCTydV0k8Sypb5IWoMEkJI2tpQVeGZhUyZi8afhyHOt+zxV5B13Bu6Qz7MkZqC+8d++E/JR6N35FjMfG2GayBlph9M0S3+7Y39AOn1cZ3kgkgQN8GYjw5yuOJaJEhpg/YNAre3bL59fVHI6X2tgT5Q1FdGF31jIFfwWl2L7fDJVwcbYclNNhj2RVW7sbJ9+yYdXIn78vFeXmS7HTfnRIm9gkxXg7dIz6kTFH69zM0sBRx4bI/Yim8+2tQ7dUXxEt9ULQe03XDj+PwcCX53J+ZldlMdv139dfMOdJz+i8qYfr6vTSL7fyKOx3e5cpJ6dfG/4n0Hj9AUV24MpS103sBGvR77NHtBv4kX8CmUVgf+jssXt5wWm1YmxiL649GGtI/kfEgnFYbmu0cxvNSfEGzecRptSHjYzsKbWycFJWwZTm6XcCSmEl6DwryiFBU5i4tKmGU33ddIjMEQu4vKRFyX3NabUgfOBuKylySpT7YgM0NQb9MkPiI/MT+pg8zII05QpnJP7STyiEiFMK/un4Lp9WG/a9r8bNICRPL2/rjPO5KFrvxV6kcsznr2VTtHGh86xWmihXAXHotVaoA3hauhOVFRxgMPBRPUP+tFF69agA40bcLwJBruRIG8PnBTHZFdSF1URvDPZGcVhtCtj+FnBVGN2tKmzx8Jgq7tEXEvsH8flbkDcM3qVfC6H7al+w7ujDeLvUhoqAXNHfS9E/sSP6hncSj7nfaWezY7SsBAIltl+G1txYiwlWI4oICbqiqOZe1ffAI1i6Wbfu45xAAJOffYKEEwMCBbPu1PkdlkBJ2aaQcx5LeZfg7mpsrpXVabajyqzmK6z1JxX/T37+c7iti9xjpF4zi4C8+d1rZ4XAxfX73cMPimWJinHtG80cXBwtLtarSfQDodJAtFjN6z5Nk6N8gAkWHj0v8KZ+lWlU4rTacXNaKP18RWgfqZG2BXJyXxxHPnFYbUp/QzlFV75MCRXXh6hNRiHI9AoC5brib2MwUBrN2U1QX4r6ahVr7vaRngBYQm8jL15dfF54953Yyf+7lSVBUFy6OtSPgVTZgZ/SZCwDwjx2DE6+HyJN2iz9QZsNetIgfiiuxQQZ+3tv3o/bMeK6EmS2i6L8+jo/eSggAITGaW1P1BfGGSZz+FmfvQspPzEL/vJ+DT0LioqPL6LH8PIa+vc1IUV048CpbxOz5aKZUnqK6pLhbxR1sHPHPZ4sGx316FTsfduPhSGxeNJ/z3v78F1JZFCQcABq/awQ80fdRfTvQswo51w339W0KMLhs8b26U5YpjVd4C+RMdcCnUUPcWB+A+Vfq8foSiTHjzk+0Q+1RJLVxYWqGVKZZvweAve/PRNDCTACQ+pj+XR0fMxMTmmjoagXdwk2VbqIzLzBjiHj2jSju61ml9gfi96Z/hOEe5avR3z1AQ2GXtjytXlmk3zfWBxjyuVs0eoW3kPKLZfaJiAYAzLlihY9fY/7c/rJsxLlcWBGWunWkM1oiUIBYT6fVhqqLE/h5JUV1wX/9GJ4udFYMTx/d7VEArE+U8bJIvHZ9O9sg7xL/rVBUF453XIiYUyVnxwYNZ3I0DJdkpr5fNRk43nEhl4UUvKre5aEnS0ig4d1W3lEL0c07G8YdSrc4exdboJZ4Y4jv6dTKFoY8+vmN7uUp7CxQ4Esy+qHTakPrT2N4WvG/WFdpzBHSLOoyx6NCMbpxR6m9qNzWn7EyUxe1kZ7TWeA+EdGm4w/d61PhtlQ//Vj0ShpDTC7IzmFoowIypm+sjPia+5QdGX3nGsoiChy63+33TOUefs4YOP6t9H2msgNA0JP7MSi1BxTVhXHJ6Tzdmee1+T1gxHFJudePuw9MHIdNS35AYttlPI0YUBlgO5Ni2TNOaiiSqY+z8abW7Hhk/aYhO4tlEDpxwJR4PBe5CVV31oSlRVMEJpbDC6nHDO3ltNowoOJ1fFDnEF/3iHxPvt6e10NEtQ0pUxFIYEZny9Z9cAm6ryj/8BPZ/Nyzfmyos1j2HPI0jt6nfzfdd028B4i2eR/0HQzLnSK3ixJL3TooPHvOlIfZwOuODwCcXNYK3t7FaPTIYSTPa4eM6Hl4MrMLcj4Mhu/aRIP1xmwRJFJRpzYYO38lBle6gjfOtZJcAp1WmyFwatWdNbEsYDOP46OoLu5aKJJ3y2b8rJu+3BuPRKLi8t3SQGzmNni3REGb9WTmSqdHbRJJbLul2XGobqlgkOf1dBfG/xyDxu/E4czzDikAK+Unt52WSd74sr42SZJrEaV1V1f9eyMyUzbM3nO7tyeizs4LsuW0FHInj3jfp0kjrI3/E06rDVlvO1DjaCFfaOrlC0wsJ507ofwFJ7Pvqu4Xx9hRc57m6tZ4d0VkRd6Q2lAvn6K60OG58fy8g7v2cae0/ad979OM3ZgaEc2t8infRSL42d1u+4VZGXfz/d/Nd6wnd+MABXX3atcSd6r5YsvPWrDqvD4RfAxxWm2IOpCPhNZlJH7+68dIQbi5TA3D+W6MmSxOqw0vpB7D10GhpdbzbusoxsITkeYArb94agt35Vx/NBLV4rKR37g2vOIPSOleSD2GTyYNx7b58oJaz8t3ez3kddZ2Q70rVMC61DjJnXXymTY82LOiurAnLx/tfct45GtGZsYKfVuatbVYDgCOkpr2ZRRXpDzJUFo/Jf63+7VHzpB8DAg9gC/r7zOUK5btqW5dxozlyg0gtHFJ4PO+yb2R3+V0qXIDRjRbknfOFSvGVVXdt78QC050q6y5qzqW+G8tdR4vs60+1oSsYwafNi1QUM0Xmxb/wNORS52n90bX555xcDAVT3Ut6mjDxmUL7urbEmN/iiTmu7OxCR5psA+dKqTwsCUAc2FMHs6MeFeejMKdyl7wuWXcZQfMx1p3Y7O7fquoLu5uXNrYQfmCF05EwKvxWJy9C0MbdeDPors8jORxtRH4suwiGZrkg2PhzFUk42M7kp8yhkwBgJSf2sIVNQ/VQ9LvaVc87prY4c2/xzVx1/v3dHv8b+n+jtg9RN7+zGpqGDC8LcwiU7JLA2ixXoiuFN2C02rjABIiH72lRVFdaDL4EIelDxmzFwErx+O84zJ812rWN6fVhtSvoxC253Gez4ynorrgvWM/fniiH5xWm3SgnNKLSpiiurAsYDOcVhbHx7s1W1SREnZxjObStm7DUkO5V4ZGof/RiwYlzGm1IXBumscJQrQ8KapLOkhMShg973zwFgC2W6NvQ9rBA7SdSDOL1u686mj6o+aCQOmy82vyc00HXpkhPe/lH8nO6DzNFIHD4UW8jorqKlUJEy2RYn0A2VpHyJtmC0sA2PvuTFxvKrv8AHLMFn2d3fUPUc6Ck9m8zNvWfFT6bTfvb/p6HP6AuX+IbqoFJ7MxMSVVqsulNSG4NNLOr6ObdwYASQkDgKzIG1IbmsltNmEDwLLrVT0qW6+eNcrv7lr8/ap/JAovXNQm+WfZe6d+oS/TrOzS7unr5bTacO4Zh2mfTf/M7rGegLbTXrz3sOG8lGjIUVQX3q2tGTfoPRNogF4mFBXyvOmfyTuxTqsNl4fZuRJmJrtYT339zdo/ONEXhUeTpb6F9hoC29xGuwAw17Jl16tyhcCsfEV1cRc/gCHRFpxSOSjEtltsuk2e2R69KuTBd12iod+LfRqApIQBzDXQabXBu1s2fBpY4bTa8Hm9/VL+N/2ZK5sZsIZeXvE3xbcbkOKU2vDqukC3/aDL2LHodrS/dG9OSADUyQ5JCQMYCJX4Hq48qc1hYn8BYNo3y/25B0FP7sfh8CKpTiJPvcsqkVgfUsIoz+rg9ex3yS7empB1AICMj9h3EPLzREM5RAVnzsJptSGvTwS8w5rBabUhYMNoSQkDgD4dB8h5iwrhtDLXa1LCckfYscR/KzqPGwcAHHSHjA8i5Xc5zfmvX7sYlq3azvqV2CD4z/My1NvdPHDZdsfQTmbkvdNl4ENEnjBEeiXMbE4q2+Mknq6Wjcl+URJP/ymaF0fCZ7NQe2a85LJM34woi/hfnCvd1ctptSFwy0hcfYL1QYpz5mmMJfRpp9WGgFfjkfJ9JFfCKE/sthUIfFlzkaQjDsfCC/g9/9fiEfH6RD17AEDwU/swMKSV6bP79O+l+4rYPUSFx7Wtb3LPosXJ6CzZZYJACIgGN2SLlgreZd3yJxh6kShgYvAzTKmx1NLQo9I/tSNtyCwcbP+L4RxNyF/DUdCVub90GT0WiurC+tWLDPxv9zUPZvpAzDgeQLTowDH0fOQpZP7KFt0158VLg223J0cD0AbZoKeP4+lq2VyBE+n7BtouBgAeBJZIXPg4rZprnNNqk1zwAGBqrRNSvvMTjb7egBYMV+RL7+nroFC8+8hSiQ8A/NyUKd1PpyQbBv31GbsRPCIJGR/bJZQ5kXJH2KVJjRathV3a8vIpOGjrPY8bF7woQd4USJwsnVYbFl+rifKrmGKfuzYYWW+zxdHtukU8vZnScu5p+byWmIZcYb0rV2aLorPa+zFTLAlI4dg4GbiDQF8ofY2+yahy8g4mn2E+IoWXr+DyMLs0ISuqC17tWppO1Irq4iikgOwKRpDPgytdcbtQUVQXXG2ME7hYjtk7uDDeziGZxec+/k1MLaZm/MX/Ff9iwbVPrWyBtC+jePndnhwt1Te/Zzs8Oo4ZQyzVqkqL4oBX5PM6ZnUl2fJ7snMY4rkPkfQLJnf1oLwimmHKkzMNbVf9qLbQbj49hj+vvqsGl0tESTRbPFM6vz3lJfAILv+eQ9xNke5/F9QMgysxcI3ts+fwZ/rFHo3DBvK24ONANr5lPDSHKUpfRBneX9O9Zdg7qW4M9KyvDwF4uOuTMU06csQ7Mz5640P6o+xM5a3OMtQ4ochZggPgtLJgzkS+axOloOx5fZgLqvVzzVgEACffdaDw7DmELJjIy626SJvDnFYbGiZU4s/ojKhYP6q7orrQu+djsDSXQ57Qb7N2I0qeGyEFqzfLT79rtmFnnP2nxOPUFIf0TFFdUnBz37WJKDp4HOdiHKhQ5bZBSShIz0T0g4/w8Zyeia7Xj768AQBQbg0b88TAwGR8uDiGvU/vitq5VafVhvzu4Vq7RqfCsm0fb6t30+X5icqn65Axew1tpr7iwAJdcGkxZIDTysCKiFeTwZ6BPvQGB/E+UerX5mdOK++oZZjr9YqdmQKl7wv6sSCt648M2EyXVvwv/qYzw0TBz8gIkZ0O3jbIofdgIn6iu6JeRu8KRjfhe5W8iv+ev3873VfE7iH6PVkbzOoP0Cxgiurii2Y++HhbkDI9Us/C8GHfWB/ABwWCoZcWfNEXpMVO7MHN/NmzfWP5b5ocTk1hk7D/Ywe5u962+XP5oOkVzs4BZP4ahsz37Si3Zg8sNWvgpdQjUjl/zZiDdalx6HzwFlsgxx3gQB8EDUsHhC+/cA2W5iFc7vOOywCYAifWW1QiKS25A9wN+b0Zbxjcizq3wUcZrO61Z7LB0/YxOy+QM1VbkJgtkOnej02bGCx29Ht6cAg/40LPols8CIBZzopcR6UynFYbluXEwztfHp0IVtmybR+KHa0BAI1LwhnUK+lLZovrO852Em+xHqQsAixuS+N32eJINAKYWR3rTI8z9EMiQoojdMvAH04Z8rtVXLy8pDT6idNnS5K0O1BtIWuTkAUT0fngLQSsGA+v23J/EMtKHygvbohCRu013APAFXP9s9OrQg11MJNXUdl5hy+CfoOe1u76w6gggCF/ie165A7bte0T2RcAg4G3VKmCBoOOIPVxhmLZ+rMY3KpTBr0D2EIn7csolNmwF9vD2IRfePkKqi5KMCwI5mfthNNqwwMTx0FRXejT1ikZNp7M7IIyG/bCO6wZDz9htqDVt4+7hXKf9n1Q/clcqS/q+5ElV9tZvxWohaIQUSP7NjCejwKAn6/Wku5ntr/Fn9P5UD5WmqAUivycVht8t9dDwu1C02/fcG5NcLek9IEvJ8B5jL236O5MkT3RLh8AUJibK717AmBo96amyJDynDzTaOyaX7KIrvaztjNhqVYVES6j2ycBYkjzQsmZQLHtCc3V+oX7GG3kUSHWVVFdPF7izCFz+Lk0fV6a40gOxwHt/ZKS1nwmA+wpOnycu5OKlDKdgd1kfCQbzYgy+szF4mYN3coPgJ/7IlANRXUhv3KxYaz7sWkTnu/qE0yp3v/GDDQYdMRUSSg8kYoi11EoqgtXim4Zyp5cgym8ZmfpiGiHX/QwATRjoF5Gp9WGqHLaMQGzsdXMoGb9LA4jSs7LUZ4TozWALkADK3JnHNKDB5191oGzzzpM4eydVhtHPHwtTTtHPC45HcsDN+HGZ0zJEcNSiNT3SK6hfOJL5+OJKO6d+H4yPrLzvtrH0Z/fp3tOqw3nJ9gN/Yko8wM7doSVc6vEifzo3plVRuXSabVhhctz0PH79O+j+4rYPUTilrTZAhcAops9AK92LaHkJKHaIe315XcPl9JT/tPH6yB3hOzic+0xzfKU2HaZ6YIpeVZ7rGlR3TB4NPhEPrOiqC68dFoDkLgaVBmKytATT4yeyS1JPSvkS3zowPfUWifkBUD9eqg1Ox6dDt5G0JMsPlKtfskoPmkOuy/mjT24GWOzmatA2hclIBAmIAOiJVOsBwB0eprFtSq/vS6zTm3fj6n+7XFL8efp605jwBD6M0ZmchV1biNdi21Av3eGrcT5idpE4FVN84MmcAGRqnqXx9kHjAs7og3Lf+L89YtrSk+/yyp7TdOIZDZREx/ipaguqK+43wkz49k3uTcKMrMMk5bbfMJxVrFf6ttU/+0kj5iJ7WHlETxpNz9vGP3gIwZlgYBX9PVcfUpbXOY+ZefxiEgxP/WqQ6pD2T+rmSq94qQuyj3Vv71p/3FabdwoQXmt689Kbd6ibHlkLA3D+a6N+P0JSXtxebi2Y1rvmzhUXpqA5Hls4ieXsZTpkdwKnTw3wlD+6MYdoagseKzTagN82DkH4rvIbxsU1YWigxoi3OBjRnTHC3+GGHib9bOCnFP4aO866Z6+bxakZ0JRXbg0yo6MXvNwYZy84FZUF9TJDtx6qL2Bx+JmDeFdrhz6tO/D71NcxuK8PIPSTPkujbIb+uWZFxzI63xGWuSK9TMLME5pUhe1weeZJcaMbjlsjDyqxVH0imgl8XRabRyAoeZ8rY8mfMbAC0Imygs3RXVx0AmRYo9u527jYl1SH58lpVNUhoioqC44j/XlcvQ9ksu9E0T5aIep/Wvm7laU9s7GJvgssJV09lKfhi/ia9bA7sdbAgAuD7dzJU2E0jcjcuf2n8raiYKMu0tPQZUB4LEMFq+vuKAAzsNX0XX4aP4dnhg509BvxUDi+p0Vat/zE+w8UDaR02pDxMIX+W9vW3O0/jyGl9Vg0BFuVNSPUWZtRv89jdNpX0YZ5nIzOjXFgcXXNIMm8bRUqYKOk9jcSMZWcRwyk6HwWIr0vO53caj7XZzkhWJWr48DNc+EuUMfQt/k3vir1e8AgEYfauiCYl3E0AUtvo+RntX5ns3Xzaez+xTf8fqjDCW4YFNjJI/QlMyCTLbDW9xBfpf73jL2ASK/N+I5kMvi7F3o03EAB+LRtzn91xtIARa37R/lmlhc/Pf8/cvpPljHPUBmccQsIYE43aMu6kzXFvtFndrAewez+HvbmqPowDHceigCgVOO4cfGO6RJQBxAFNWF8Tl2bgG+MjQKCZ/PMrVklXav5q7quNghl9+/PjgKu76ZJZWZurAN0rr9CKfVhpRpkQietNt0ktCXJcK360k8wKvPLx62v/ZYFCovlS1u7gZ8M14AUDuuGhb5bUP/lF6Irn0IvzevbSqTmNcnwA9rd67ifKjeZvXVK0TN5k1Ek7fiYaldG7EHNqJ3cAesS2FnU9493xxxrc3dTU+vCsXB9r/Ii6pvopA2eBZC/hoO/8dkVCaxTH27iHTyXQeOj51hKq9IqV9HSXFbOh+8xRXrkSdO4rHKxgDfnhSttC+iEPhyApJntUfIhD1SepKh25Oj3cYg06fVfwf6tGZ10tOdjU1QtoemuCuqC70at0NxgbyzNjo5Ax8f6439EbIbqqf3Tr9HJ2d4dHt0V09A7vtEYgw7MwXPo7IrkPgtAUbgFLEcAhgxG3+8y5XDwP1ZWBFaB4rqQsypKM7nbmXRvy8zEJzYU/sQ3aAtTk1x4PCzM6T0evJp1BBrd69B0OKJCJwsgwB4kidtiQ2BT7hMn+nHKCKvdi1RvPcwr6vYv/WUMj0S6QNnw2m1aTEhhTbo0+EhrN31BwCg87hx3FPBK7wFipO0M65Oqw03B0YaYk9SHYeffACp3zSXguV6Isqf8m0Ugp8z39EQywjaNgKBT7h4PKbLw+3S7tz1wVGotCwBa04loW+DcEM/WJi9CwNffBGVfjPOHaXJGLbPi4OXeKI7vSJQ4bCKtXvWAoAU282rXUusX73I7ZzqqXz63XncOJxr5yPFOHSXHgBuDWiP8qv2eJwrT68KlbxlzNL4NLDyHd283hHYNn8u8orz0b+BZmzJeosFZ9bzANi7JDAe8Vla/nX0n/0Kjjxj/m3p5b6+PgCVBIOECHwDMMCqN14cJ9WZYp3qv0XLVitOL/fjsd3EZ2K54tpGBMi4G7qb9wsA/spoZDg1l1K9HPr/r6e7cK2oHL4LambgqR9TFdWFq9eK/jFgHZ3tb/wtYB3b4z+4p9vjf0v3FbF7gPSKGF/cC+hyehp49DwWv9GXQ47ndw/Hlp/n49OLwXi1Zgp6NWmP4vw7Uh4x8CQAKSAtT1MS2NKMzAaqF1KPIf5GkISKRmnEAIoApMC4gYnlMKNBgtvFqqg4wssLWctaovGjxoDEpckHAKdfcqDB9H0oun0b6u/NYR3I3P3O/dEMdR46bkgPMB9562fugxLr+R98aYZh8gTMJwtLaDBaLUmRIG8B5n6jd0HVL9772PvJiIFRYXDM3ou3ax/lacyCxd7u254v2vTy3M1CR1Fd6B0QhXXpCaW2vxnv/8l7AxiYwvcNdvPn1M97PjoCXrtcbuui50kIm57KK+rUBht//dGQ311fiDqQj9VzOkvGEqJTK1vgcNRifHShqbbr6yZo6t0u9O4mrdhfbjwSCbVvAYJHJMFx4A7iWpeFd8tmWLdhqem7N+O9IifBALkPsDNm+kC+gUsnIOhFbWFfsKkxfLpnGb6FvA1+8O2ZCYApHsFP78bZSQ64XnOvPLlTkkRloPmMGNwOuS2FBBDzFXQLh89mpsTrFQMxfWkGI3dkqVYVhZev8DyXh9lRc81xxB5hKHipX0VJ7eOpjP+kXICN7YVHTsCnSSNkDGuERh+wPpn+mR3Hh07nYS/0fE+/6MDBl2eY9ge9PIRwS9ciuZP1/Oqm2NdOm3Och69CackWU94VKqDo5k3DWAcA9pcnIP4LY4xEus5+3cF3R3gbBPmjMDWDG8EurQnB601j+XlSsS76fn5hnJ0FFffyAoqLTcdfd+RVpqxhrjWbWxXVhejugzk4jCclj65PverA4eeMc4u7MSB5dgRCxiea8ku4XYiocha8e745FsR35DtDel6jkzMwP8SfB4rn6xH/JijIkL1JRHnot769zJ6Laczagp6/m56EtwM0Rd2nYQMU5JxC8pwIhIxLdFvG86fbGZQwcf2hl99MHoB56KxNWs+fm9XvtbSD/Pzn3Xy3PvXqouCMfA5TnOcKivOxDX/c04oHX7NG/j2K2Lbd/25F7L5r4j1IfTo8BPVlB0eXM6Pfm9fmSljBpsYos4lB4e64GASn1Yb1J7UdBRo8Co+cwOZbFpxf3RSK6uIThZhGPCNGz4i6PTkaoUk+HIxBUV345LnhXAnT53FNkVHfxMC4aRHawVb/1eNw5gUNIarltzGaEgZAObWfW94pj+hfXdSRxcQi8g5rJtXp4EszUHT7NtC+FQ5FLoGiupD1tsOtEgYAh543xlnRk8gfYAAURE6rDZ9eDOZpEm4zV8K0L6NQeExTwkQ5RfAM/cKEzsgVnMzGuRgH2r43keVd+TPiWpeV+smZx5pLfBXVhXJr9hgmQf1iSqTk2RFSHZ1WG4pus3d2+kU50LZ+ciLe007uknh4IndpUiLyOL/MD+3Y8vN8tEwYCq9dLh5jymm1wadeXWkS7B0ku0nu/M4Ijy+6mwIsQLRYByLrZ3HI6xMBRXXx84IA8G7tI7jW4abUFmefZeU2GHQETqsN28PKI2BDiTvXnkO8vfof1YIYSwuhKOb2aGkaZNomlPbBIw+ZtpvTauOyV1zOQF8U1YW41mWhqC4UHT4u1c1ptSFnhTG2FskpKmFiWeUyLhnKJiXj/ETmykcgDiQTpX/efxPnT65kLz69TGp3d3UXSex3TqsNjT6IQ+CcInhXqGB4BgCbF87n+XZ/Ip93ofv676LV7iekNOQKaUb5rQIkOastjOdnvRTVhbTHZhnQbk+/5DAd4921Q/oSdn/wsTNSv0M2g1svOJnNlTBFdSHglXiuhL2Sdgg9jvWT+NX/ip3npODUoizktkl0srcFehLbVy9r7bhqqN3/hPRcaVkF87NYQPGimzdxc2CkgZfTakP8F7PgHzvG0FfpmpQwsczC1AwA4J4INfomcyWM+lvtuGqm33itOSWofIISJqapHVfNUJ6iMtRdmmtFEpWwvGhtJyp20zIDfzrXdu4PbcfEabUh5ae2aPBpHD8/SGXq+4t4bjNkfCLSFrdB7yA2Rhd30NJGlWOx6f442QoZ/WXAmW7DRiPjY/bdzg9h4yKdu3RabcjrHSEpYfq5JMJViJdSj0htdm1IFAcDE2XXy++02pC+xCa1CclFShjlL8g5hYyP7Gg24wZu99NifOn7CSlhluAA0/WHWIeQBZpLbe8jl3Hszk1+XXD6jNROZvJ/HBh2Vwo70U1bY8M9mufu0/+fdF8Ruwdp7a4/cOhFTYnRD/56ElGr8ruc5gNG8gyGdNj9iVEAgKtPROGzwFaShRJgg0err2V/ZvGZorJzFz5bkpDsrMp3AJxWG3zXJuLmwEguV4tpjE9e7wjDZCYudDI/0A6+hkzYwyPLK6oLDT7VLJ0p30Wiy9ixhjqTf7WXry+8d7ow9OEJvJyig8cN9VBUF5RVCxHxBht0GyvXpWciJc+JkPIT8qOiulBzl+aL/sChgVI7eTWsJ/GZvb0rr29UORaCIPClBFPlRS8rALjy8ngasqIqKjsQXntWvGlep9WG2rPicaHwBptAo43vQU8tE4ZqbUTvRLCqKqoLltqae6ZoQddPTOLEGFKmorS4ckdBiydKfQQAst52SIesu4wdC7/XWZ0PRy0GAGxa8gN/XnDmLJwDhnEe+kUe3U/7UlsI+35QDQBQ+GBbeVFrQr5rGdT4I8ozAJgbkdNqQ9EFX6ktXFNm8MUykVeuZqigtKub1zS3niYcxBMZD6LwRCp/VnWnfGaj1/E+KNvjJEfFTJ7fzpBOrIu7tvepz/prXgYzIGQsDZPk1L8TkU9hSrp0Lf6uPVODn9Yv2DI+sWNmcJCB/+JmDbH6RgVTOd0R8bDUrcPL8d7pwsXfGsiLfzftEJrkw9vMnZHiUOQSfl9RXUh6h517JcVfzLfx1x8l/nqeTqsGdCMacYafyJZkVVQXkue1M1UMA0rcIn8b1p3XJ7rLw4g9/pfEV8yrqC54V66MzwJbYWPon4Z0AGC5qS0FSJGO3fgrvxe0bQR3SRTrlPK9rEgB4FDrdIZQ3ybdfp7MZRNdJy+NlMFvQsbslQCpfOrX4/VJ+UkzwpiVoa8ftT8BPVGgYDrXqv8WfbfXk+6fd1w2lNPjWD/NUOFtVFI5r1g5JIwoFxkjCru0Rbt62VK+4KfYzu7pj7V306uJNhcRL/3OT+DQ/Si6yZQJr10s3AuV7benvKQck1w+m5Pg/5r5nAIwQC59fxbrkWiz4Os2spHhVi1v1JlhRL/U/waAlC4LDGXq89F//6nxyG1RBdtnz5GUNoCFmSCyNA1C7PaVhnL1Z9z8p2rj1fPVMxFatoL0Le66XSR9T2K9Rb6vp7tw8j3Wh+m7EPlQHtpVBgD1dw1FM+1z92Ag9yzdPyP2X6H7itg9RorqQshfw7lC03XEGDwwcRx/3sfeT0pr9uHSgBESwyx1Pm+xbfAqSxLgU78eH5gIKhpgcMPiIEO/yZp36AWmGIpuiwQ3v2P6bF5mw4/ZwOu7TnZhKdjUmF87rTb4vRGP0F3DTGUH2CAKsJhKvmsTpQW0SMUlygrtNlwfrKVzWm248XCkpAwkflByhiPhINI/Nbduk8sDyb59jmY9XOK/lacr78yQJsTYzb9J+dIHsV2YiNcnShPGgyPHoEW8pvzoFRmiV/3lwZxkMFt8+O0pz1zfStJTfBMxcKltv3FxCEBC+aJ7oiXTabUh9sBGU3lFOv2iDPGsX4zrDQp0XeuADMIBAI3fjeNBRgFg21xtIfBNrh+8K1aU5KgbX8Xg9keLPOLrtNqk2EbeOxgAgmXrPklmUVaaWInobA+da6hRAphD9ekd5OCLZeKRNkQDQ6i5q7r2ff6kWWL914/h6S920BDAAOBKx4scLcxptaG4KwOuGdu4I1uwjmYugokpfjwPITqeetUc2VNRXbjViqHHBb7M3E0Dnjwqye0uHxFB1yuqC2eec5i+Z6eVuUgOPHqeLXpMgrxSnlkREW7HNIBZq8X/BLpTeJbBjF8exupcvU8KasdVg6K6cK7whoEP9YXjE0JxpeNFqe8rqgvetuZwWm0497S8WyWOI3cWlzV8i/q+UxoRoNDPTRtBUV3oMWQkACBg0yhkRM/zaEChM2cAUJjMYiem/NSWG29EmQN+m8BjNJK8TqsNybMj+LUIVJNXzctgPEnVLZSdVhvez0g0QHgDDGpd36aUx/7yBPi9oUF3i/9r/BgPr3Yt+a6zorpga6WdMVqbtJ7zbLjSh/PtNmy0tHunl93sfcQ0YWAm7jwfKH6b02rjYD3E06dhA9SNrwLvbtmaZ0ZRIQ8VoC+PQBzomV4+gKHdlrfc4Yi3Ig/Rc6M4/w789pQ3zAFiDEX632weG1+qLtbGPNHTRAQq0ZPZ3GimiIj1KLp2TfoG6DxX1m/mIGR0feuh9ph1uQG/J+5oi+UUdtEMZlUXyy7y9PuzF4bzsDjvrP/F0E6K6sK5iCp8nHFaGfR/2ucyNL/YN98LaIvAXydIc59ZWzxQDjg+hhlqxO9Cz1MkOiYBAIGT3SvC9+nfTffPiN0D5O6MmP5ArdngF76/CK7utRB7aIs0yZ5c1gpNBstnqoYez5Gge834EVlCAlGYnCbl95QeYAAVhwdOQwVvzVXOy9cXxXl5SP06Cv6r78CydZ/BuiSS//oxyOg1D+3emmgIxmsmtyeZctcGo3qfFBR1tMF7J4OUrtgrnceyEs9RRbgKkWiz4KvMeLzox5DxCE5fLFds49Svo5A2ZJbUPtzK9sc4zOs5H58FtpLqaSange9XUbBHHefWWwA487wD9b6J4+cqqu+qgaX+WzwO3Hq++vtmaedm7cSE8IEoPH/elN+Do8Zi6w9zeV2obgHLxyP9kdmG8szeT+qiNgh6cj/ckb5/6NvXXT309TVrd3eKpCUkELHbVsBptZme+eCyDBgmKXzEb37WTgwf9Ry2/Dwfm29Z0K18oUE2/1XjEBKzB5atVhQ+qBp46MsLf2cikt6ZWWode/d6DOvWL3X7TkX+Wb+1QnCd83yh6U6JuJsFgZ6/u3NXROmf2k2RKaks/bmP0sgSGozCYynS2S89T0V1YVpuE6xpUR23HmrP49KJlPZFFFKfYN9xp4O3sSOsnCkfwFzZOnbnJp73k12wors8jJMP18WRSe7PXz2dkozpwSFuy6LyPI13dB06JwaNY68ZjBGevnV39XJabTj5nh159QpQTi2DSieLUePHeEM+p9XGwTiICHzA3Xd2t5TxsR3+r2kgKk6rzfSeGdGz3BF27PnI8/djxiuvTwQq7D2JwrPnkPWWA8cmzEBWwXUMmfKyBJ4CMETNGj/E49TKFmgw6IhpOYDnMUw8W/ls6nFMa9Ea3oFNTOH5AeCjjD14ZEsMymWX5fEViX7P2YNHHnwMhSnpHAjFrG301yJQlneFCvCuW9vgiqhvtytDo7iS526uOfOcg8dDc5eGQDxypjo4EMjam+VQ0/sG3g6Q5dfXQQSIckeWpkEoPMFitJ5ZFcq9aS6OtaPCuULTMQFgSLIZfeaafj+A8Z16mp/M5qQ2H8VIxkZuWKjf4p9zRizi9b/njFjih/d0e/xv6b4idg+QGWqiorrQO7gDjxfSMskbh8OLDB998twIhIxNlBYcnkg/qTutNiT/GM5RgNwpCiKVNsF6hzVD0cHjSJ4dgYx+cw15aNFL973LlWNnuADpELa7ydbT4kJRXQjZ/hSSO/8kpTn3jIPD2JrxzPzAjqqpQPUF5gtFRXWh/WsTUf2neJx91gHXlBkeZUtfYkPQZ3d43JiOk8Zj57TZCNgwGsEjtJgvhAL4n9TVjNwpe2b3vVs2Q9FhZmV9PyPx/7H33tFRHEv78COtQOQcB0kok8UKUNgFDJiwIDA2YJPBYKKEc8YZ4xzANjYZjAkGYxOMQbAYDNggCYRgyaCIkDTkHAUK3x9N9XTPzEr4vfd3P3wvdY6OdmY6VPf0dHdVVz2Fmp75CCpTybBonB9tMwjDZosNlZ27ohl8+h0yfaZ3OteXc2mYDdUWJRoWLEqT9m0UMvvOKnVTpaf0ReEIHqYJfbceicS2WbPRIzCajzl9+8T+0iNDuqN74eVeNmWDszrxE7GSNosljWM6cbjXPORsrlfemNVv3Qt8WteFmA59+cZNTPdR1i68ESDHtRIR2Px3lZe08iXxaalbB4Wnz8CpuvDnLaZxpv4raQ4Q0WUJQdFM8Mh7zS6ZQd8L/V8FjKxPbNJpYGnKCpFOvmhH/Snu5y7Plk1QtO8I6iZWwWnbFbfli3VcHRCNhKkaGEbzFE98WX8PWu0egNq9jyH9q2g0+jjTEJAWMKJAApow23Z/XwkpT0xPvJT07ZWmTCjpm3GqLgzMeliKKSemC/8wDt6XiqQTIoCZQftNMu9fujfyWDaPG2bG16CjKtTb1XlsPpG8AhoifbQC/zfvHRxGfz/tuyj4bihGud80gA0RRMipumB/cTwuB3jC5+MEZH5mQ9pQI9w6XT8UNxZXFS/UmW5ETnTl53NrDDO6F57vRVAW05DSVE+vZhzAZ0FGOPfCTq1g2bIHHmXK4syKANTufUyaW8Q6UvJv8znJqbq4spf6w6xdr2YcgAXFeOXDcagx3/jdlja3kgLa3XN9f7R5N5YrNP5RYB0PBLF/Cz0wTbyPSAzo3GRWHBfCst+3YefHEdysUPyoQ8doZhNiLA09UUBQs8W5cewhtPw0Tpq0xf/WT7S4HFGvx6Josy9ud9fAHJyqC1mfaKYRFFcodBzzq9FPQFebyYFVi27d4nkPT5gOp+rC2rwUU36u9Y8ucYPR7XEmhNFz8jsw0zwBQNZSZgpy7KkZBiFMT9V/SMTFdSEcCVJ91Q7PcnIQR+IjcLCLB2MOXDUOFVcwRKT69WSzM70QRv154SnNVEKknLfs8PDy4unE9tOfmeAslkNCGAC8HRCBuIbtELB6LE49r5m/AcDu942ABkRO1YUr64Oksg/ZlkjPqSyP8GZo8CkzWS3obISqvtY/GtWPyKZT+rbrTaD0ZYj+JWL9wcP2Sn1Vfj0zQzTbCFKdVG7q9EhJCOOxn8A2x/p8ANBiapyh/83GKfH/1XHNJNj6SZxkliiaIVO/0NhwJ2z7v5UoC8cT3QcdJ/o4KAyelSu7FcLEvJ/WZffFMBPiOxNjohG/hec1YA/aKF0ZFI2idlYDXyLgDQkBDsWKDwOtsO3rx9PS/+nZ26X2n3nazn21st+3ocEnCQj8ebzEK+UVhbCcN5lpJZmREe9m3xKR2XMzuvVIJALf3WM6T9Bv/bshM0uAAWoAmv8t5Rt0VIVTdaFo3xE4VRcWNvxT4jPzM20OCd46Ag7FivyN/gCAhKkzpfniYOsiAEDt3scAABn9Z5oKYQC4UCW2gcxb9UKYmN6putD2+fGGby/zE5uhT0rqd7EPHIqVfzM9YgZjWcAf/Jk+XZ3vEiQhjNIcGcdOYch/mO7feiSS1ysKYXp+jv8UhhFVzmBbWHnTcbNux6+mQpi+HLEPHIoVlqbstPRGHxbSoNxv8snNgeenS9965WVJ8PmYzSeBryYavl+HYuXmk+VX75KEsLQF2smT1dvblNc+h89KPHtWrChdm80XllDN/UF81vvwedbGEAZwsyvcGNTeqbokIUz8fsiypvjObT5mRSGs2+NP8v4kIczLh/mOhj61m/Ohf1f0+7OgFvhk4BDUmJ+ItG+YUKoHlimJivPzeVlUr75tYlm7J80w3H9A/zv04ETsPiDSLlxMDUSVyp7GRfmuyY9TdWHN9QrcnKU0KkkL8/nxJISVZZoMs02deM8dpL0+rTvNGJFDseKdzD14P7AVSqLr/aJQcQWLH/P5hSBsal6Za8AAtlkrunrVdIN7r3QvGjv99fHJNvi/nYhn04/ymCAEmUzpSoN4d0ce4c2wYd0S3pYbfaM4KqaeNwAI/SEWARMTWTw512GcG2tDvY15PBhlSRq7e+03ikFDaUSTvQtrQ1GjFzOdsdSuzU0ZnSpD4Nq8aB6iXo/Fzk9moNvjT2LjLz+Y1mXGp54vp+pCz3aP8WC+DsWKK+uDUKUHM51tMTUOyufmml2rtwamcXa8DRfDC5D1iNHcxB1fem2+O42vR5vmSB1REV5XPREwUTbjylgSjqAhe6V8TtWF4C0jeaDeJrPj4PeeuVaeTGpLoj6Hz+LPi6HYt7YJ34yVpJ2mExB3gu+99A3AgvyubVYd2OwDdM41Tb8oZwfqWCqalp/fMwILZ0yFn1clw3Mvfz8UHD/Bx7ilZg102XYcc5d2N0CXm53S1E2swoUT6V2ZmJ6K7XL37bibM5yqdhKTOrcN9++ift2VfweR3mUQnjyQx5mjcrwC/VGQeRwAi+3Up892pIQb9aNO1YWFV2phSWMfzMzejvEN2/HyZ15qgPHV8kqMiXav37wIKa9PL35zJfWTnqZnb+c+WZTmTJzd9DSmpDlC7Fu9GevZWBv2vD0DLabEodAbhvGRtbQlAgbtMy1bbCPVddMZwIMI30sb3X1DYpw/ypv1iQ2F3sWSWbsZ6evqf+QUulZMxxi/dkid3wahT+0udf4srU/d8V3aN+BuPE1IS0Xvijf+Vrv05FW/HkcrFNNefzwK27+ZJa3FTtWFJrPi4DfJaEUjuheYzYeZn9kQ+KosIPc+fB4TqrlHqwaANXnJ6N0gAifetePIOKNljL6umBYPc9cRs76IORaDwk4q79N/kmlipzZv/EdOxLbs/ui+7o9/lR6ciN1H1O6L0aaTquh3sfxspDQJOlUXim0tpeuSNlaEaGUmhInXYjkkhOm1faImd8hRbRPmaKA5JzsUK1pM0U7U2pYrfchVXMEEkLi8aGxqzjTkJISNSs1CwepqvOzATU+h48HHeF4RaY+cdkUq7NQKlipVTDcoIs9EIcnefOE5NopprXpW0DS68X+ukvIRxHtJZKbxLd57SNJQlySEAeC+EuvjGapbrdmJKDhujNkk8kb1Uj1mfbAkZwecqguZn9qQ3Yfl86pXF5bQIL55daouJLdiMMy5E+2SEOZQGAKXQ7Gi2kKmld34yw/Yf/uWoS5xUae/pjPiDJpph2Llm1W6X6VHBgAg6I+RHEhGpA5jx+K1AAbUQlD8e96ZwU9pS+pbkUgI0/epfjNSvPsgQr+/htQn5VPEM0/bubCVO1EDf3AoVqR30lD2jow1Bw049Zwdpw7W4Tx6eHmhqJ0VNx+NRNo0Da10fLU8nG97ET4fa4imZnxTOXQCQs/DP4pDfo8IeG+rJ7WLQHPKbK3P84rlrW1WnWm97wphegCAs+NtGObbVuqvnLe1NFvnzOGgI0TZ79tw+lk7VyrQyfKJOfXhbF4FhyfIfeVZoYLhlAYATtuuSN8UkRjaQ+wT8d2UdP/8aJs0ZrPuXOPmcKGjd8OhWGFppCFDRnqXQfsJ4zjogsiPOK4rR53Fvl6aDy+BIREPX099AgAw/q5QQ+VTwHkSwkReqZ7INxhgUNYdhhZ7pws7mT79rF3qh6IbN/hphX6OoG9OX4e+nwAm7FLIh7iG7aTwIk7VJQlhTtUF9WX3wBFULglhI49lS4BKTtWFi9YCdD/aE/b+eyUhjNoWMGgfjn9gfmruUDTkzUbzY6GuaoryjizD2DGbI/Jek/vvyiAZVMrMzyvg9UQEv6Ap6/x3Gc0ZxXYTLW9SD72/eBVO1cVPdQD2jQEs5p8+nzi/AkDq95pFwvnRNtPvg1AFiZyqiyPSit/Ca6eNa4iZEFZ9Rw1Du8z6MnUmO7kiIUzflu3fzEL33kOR+akmhDkUKxfCxPRO1YXAD43KFkrTYf9NhE7JNMwBa5rWlAB+0heFG3j1vus+4jcpwfANnHmazfHnftOU5aIQZjaW4hvFG9r6gP636IEgdh9R7dna5lv8YC+O0Ew3mlY6ybQ5n7J7PYLtsBxkE8rJ1U2kxZPy019RO6sB0YpiCBF5lNHQwMyEsrBdg9jmdl4bfq/Y1hJLGvto9QqHrKlz20D5gk2UWR+5j8FjRmLEeaL+lS6jTL8r/Dpk+B5sbb6a87L3DQ32f316gtT+s7E2WLbsQeGVKyUKq8c/1PhMi8iX0uo3HGZ9LV6L5FWvLgAgpmkH6Xl+jwj++9QLdsPiSWn1G8LShEh3z9yVCwC17p5cBL6WCEtFBotccOo07tSvAvVlOwYdVSESbfypfBI49OW/4i9vUEQhrGfbRzEwi0H9H46dLtnkA0D6lGhYataQxi3ANhXBQ/caxqlPUiVsmz2bt5P8FPVtp3h4+mcerZvxMi/HM0HkxM8tTN+tU3Wh9d4iTM/ejg2/LYGeyCTWoVilvqJ7+r7Tvz+fNXkIelnbYBUXFMBzuwvlf92FkGd28nhi7jY3JW0ixTx1vk3A1nlzOIgHUeGxdDhVF+50PIlRqVmmiiIC9QGAX0d+LuWvPTORv5d3z7INnu9k7bs0G5NHR89A1UwNkvvyEDZ2CAxB30cE1W3WVrPv3OwbcSgM3VH87sQxStdO1cVNdmksiqdTvE/uggNQOkLwNOs/ouo907AuOZ5fV9wim36lvCsL+WJ+sR9vOgMM7a6+gL0HEuIo7qSZr+vuK/4AgGJ7SwOP5bfVddt/kmLizm2cb1KGp61l0dqi/14dihXXw9z7axa3tUrv4uOZg3iazkNHwaFYETouGcUP5+F45E1Yatc2zNmWalW576Seb0BD3jz21AxU/qmKoW/1/UnXZHJNf1WWJvFxNDY10/QdifkBZlLnEdGCo4GWRHW/SZAx/kA6AAEAAElEQVTWB4dixZ53GFKfPvC6mIbyhMwt5M9F/19xTSpOOcTT5/zSnP1evcjAixgLU1ybxLbdfCySB4XWh8cAtDABlkbBPMC0h5cXTj1nPjdvWLMYga8lovXeIpgRxZZMulWIov1H4VRdeDXjgGHMvlHrGNbtcRr4daouDPNtC6fKQiSUTSvP81IoBX1Z4tig/UetR1Lx8IHrUt9bmjUyrOG5BddKnZvua3oAX/9voQemifcBuUNNJCpJaNBvZhyKFT0OXcL6ZtUMz0vL5y6N/nlRh3B4btuLm49Fovxqc8Qhs3pEVDW6f6NPFIe/J6r8Vy1cbX+uxHZL5GkBigpLTOLl0wAFuXn8usP+m9g2OpKjjOnbatZ2d4tqae02K7+0dGZlXe8XBbUDODrhv0pOldnSl1Ev8tM0d20vrY2WunVQEFgfHon7eD81mxZnED5EuvikDdV/MEdjK6kf9O9BRPwiujIoGlWWJnGgCP3GjH7rzS8RHQYk7ceFkTYkfzjD7XcR06W/qbZbz6O7MRAT3o0DUdzru5TS6kwB76XfiMisxx3KoVN1ofWkWNSaVTpQi7tr/TvyCmgoobCJ6W86A1DekVVq+wENPZTeE8AEZ9v8vZhQI5mHbYjedwdJLcuYbqDp94rcJAyI7oeC3DzJTMlSvToKL2q+el4NfVGQnVPq3OBQrHgh/Qi2XG3CfenEZ/r+IpAN8X6TFC8eFyp1XhsemmBNXjK8PcpI+W//3hBbmv0Kh2LF2TWNuK+Mvn+JPCJaoDj5AP/vjqjP4vKiJWWYU3VhxbUq6FfpitSnZkSmgvr+onwl9eHt3xuibFcjYp94HbIo1oDAaUaeFSpgfXpCid9E1rIwpD60sMT2iCaGeiIwlZLoTrc2KLORvcvYtHTMjoxA/CEWCsWhMIj81jtH4GD0EnmMVKyI9Wk7DH3W9Ls4Q1BrMd+K3CRU8izH5kcBLAdgisZ7AQ4RSUSsNCOnykzwxHr+r3Obfu7Ift+Ghu/I+wZLs0aI//0n0+/KDJWX0mT+aEXAtGJ4JGpmqtnLWyDohfMoyNPMAwm0Rj8X/F0qbT7W/w5PHogavQ/8c0wTW0/8z5gmpnx8X/fHv0oPTsTuM7r+eBSfXNKnRsOputBsmmbaR+YqRA7FyoMYxoR3AwCsb1YNqfPbwLNCBR41Xq/ZNNPCVPyztpTW4WOEvgWA35cyk6rCMh4AAPUVu6F8QAPCOD+Gnd5VW5jIYw9ReRVW7cS0iw2l/L8EbZI0eSLdekRDP6L/Z8fJ9+i3eH3kVR/peltYefResBUAQ7VyR+cEMwVR81kaORSrxCvl6REzmPcLpdPn07eFxsP2abMQ8qx2anqtfzRPZ6lVkwMO6N+F2bs5/Qw7efNI2MdNwMT6rm0IhENhJhzuyhJ5Lzx9BhtX/CC11efjBK7xNKNdH8safkutmnAoVinWFsD80cT69O/gfLQcXNepulBlKQucTRsDh2JFq90D+O9Pz4fAqbrgvV42VXSuXAgAXAijYMli2x2KVfL7EEnPo9nYcihWxO/dKPVV+/3mJwK3f28o5eMkCGHpi8Kl/tJ/B/rf/m8nIvMTJoRRLKvcN2RQj1qzEg1ta/TXcNPxBTChQC8kizyv2/GrIU+jeWxuonh89JexJJz/vvmYhsDoVF1osJSdNJ0Nr8jvb/htCRJalsWQu5psAFwIcyhW9Gzdncdh6xnVi6ep5FmOK2dEXxHaIBMPBdk5Ulv0/8mKYFHODnw5YhD2j2yKxzO6mG6QRSrad8Rwj4Qwp+pC6KjdvIzeDVjMLzG+EwlhAAxCmPe2eoZ6SfgqTj7AzcDMiMZuRsQtPv6pL2eHBqLDuLEGwYj+028SwsT2U7mp89pIY0Vc01bkJklCGOXTzzvlQrXQI+7GOwCsTzf6oYk8AUDAwP1wKFZ4hjU2LauoQzjiNy03LR8Arja5w0+zzEzZAHAhzL7vNmaEBCP+0BaJB2+PMmjQ95DhnRVdvy71X5MULzgUq2Seq58Po/fdQT8fDdQq/sAf/NnNRyO5EKZ/b/q1R2xH6pMzuGmnZ1hjfp9ivkW7Hv/bQpg4XjqNHC09u1akmfiTEEZtBYDCQ8cM44vKIiHMrB2V/yoPj8R9WJHL1ofy2+rC2iAPBXnM0iPw5/FwKFbU7n2MrR8XLxrKcbfGpi8Kh55E3vSKCPp9ZXA0N2ndG7FMAm2776kYQNH/47//gaOiB4LYfUYVf9kJr0B/OBQrgl9IQsCG0Tj0zHRcfJIJM/4D9uP8KDYhTkhjm0ECjiCUK6fqQlb3uSi6cQMBbyS6nRQzfpQXuOsPabGjTj1n56dMgRtHATBuKHZ8PQv9jzBTpg7jxhomJ3KO3j1JW5RpQQr4bQw+OseCcD5TPRsOxYqct+2GhVJf5rZZs5H1sYYa58rPR+0ZiRibqp2IiEKcly/zuch8fBbaPj8e8LRgclYyrvWPRnxXZm5WkMXqT1vQWprcnSoLjOyTVAkA0Gh3GUMf3unSGs1TPKW6AWYXTyhXjr7D+bMi12FTp3E9ER+eLZvwa732r9Jyzc+g8Nx5HJ4wXUo358R2WGrWMNXI1Z2mbVC8Av2lOp2qCzvCVgIAh2P+KIvFvzIri9ocsHYMvzfzUgMUbfZFfodTbDzeNUtRVzWV2ni9n4ZEVXjuPFJnRXAUNKorudVynsazXDkpPwBUWyTDC4vPxWvarDpVF/5oYQ4esfWmJ+9jrwYKP5GgcngAV5M6nKocUByA4RSIKGjzSJ730nAbvt+vbbDFjZF+U2q2ARDh+Vu9H2to18MjRhvmgMC7UOpk9tiouxE6mtL3OsTex7H2C6VNH/33aqCYbp7F8dQjUFMaBCWzd3inWhG8Gvry9MOzH4JDkX3nKHA28V9j1W14eHuj9gxNUGz3zDi5bzwtPJA7wHxO6PRg3c61Uj94WrXx6K79ZkR15U60c9/JYb5t4bndhfXxP+KXoE2m5VXdXhOpcyIM9wklkfxzgreOgJevj2EMi6dA/NvvxMyxPJszQSI+bw8Kh3pxPsU/IgpMrm+PId0oDWGOnp/oCVi2KFI+s7bqidKGjtqNW70iEbSMbXprVLnO81TyLGfgxWz9Uvoclp5lfiKjzIrryL0ozj7K2oWi/UeltHwO3rbXbXsGHVWR1XMOt0AJHsbSnhunBXcW+zShZVmpDP23JJZNJAY4JkHdbIPv5esDz+aNkdTSuE5R2vK/7kLWsjDWbw2Y0Bi46SkDT07VheCtI6R7/m8lAh4e3OQP0FBSq8akS3xLirLRrC8swcxkNnU2M8XvGRHD05V17pbaojezBFioFT3R/kNfJzwt6DhmjLQXAIBarhtYm5fCBdWbHU5L4Q5CnksytMGdQkHfZ+I8bEZkmk1E9dQfn4HEL7VQEn1CjXD9D+i/mx6YJt4HJKImPtFIQxQkE0BAi0vhTqjSx5q5V42Uu7TiZHR1YDQqLzNOUGZlAXIAxU+zduJUYRVMDW5imrYkPumZaKpCJjotP41Dw76ZBp8WMe/Dw0ehzKYUpH8VjeDnk6TFraSNgtliXlo6d23w8PbGrc5h8I5PNk3naW2K9fE/apvaenVRXFiEwrNneT2EPqjXQocsjkXaUO1USQwA7JNUCbnR1wxauC6Dn4Jl6x6pnK79R8Bzu8vQFkuVKog/+qc0RpblJGCgLztdOP5TGN+ci+XpNX56ujI4GtWTzyB+28pSN7v6skT+aCyY1aPfIJb03KFYEb3vDibVPmT6Tp2qjMxlxmNp90Ryh+b3d8q4HB+MqjHp3CyTkDzd5cv8xIa04bKp2JwT2zHGr50hrWflylh/7C9DfztVFzof7g2vLu5BYSgdPXOqLjgeGwbn6kXc3EdfJiGApk6PRGicLCC8lH4IXwY3k8qmcrs9MQIbf14Ah2I1BMnW86HPf3loNKouloPREq3K3YU+PvKJkVhW2sJWCBm+R3pO5n76sk783AJ+Txww9ImZ2d+Notvo46OBMdleHo9yFwqxZb55UFm6R0FqKYBv/kZ/bG2+2rTd7kh8ftvRBmWdu93mezPThYfKuR+7vQ5d5Mo1d/WYfdNp30Yh5OmdJZr6nRtnM5jM3msbS+MFAOwvjkflZWxc0LpHVDuhGhb7b73nOtytr/e6NgPu15jciXbJ7Nts3B1puwhBy8YjY+BM03JKW3unXAiEs3kVKZ19322DMFnc1orsHuVNffCcqgu5Bdcw9uFhHF1Y/1zPT0lrSJ/DZzG+Wp6sTKlYEUXXr5siDZfU9+5+Z3wZjfRBM3mekvZTImoy0fUNgdgeZlzb7nV/kfFOOLImvXlfm+LRnvXh8NfhZfl/bJpYeAt/7P3kvu6Pf5UenIjdR6TXhJAJIAC8fYRNcvqFg0i/cJlNGqdekE3X3C0SYhke4c2QMGUmmqcwWP24PKapuvko26iQRkrkK37LL7yM1wKiJCFMz5tDsSL3DaNpozgZi9p2MtHZ99p0gxCm5/2PhSxIdUZ/Nqk2nRGHHo3aI7fgmmk+0nRZqrN4bDeKNNSlsD0eUtmlbWqINmTt5EKY+IzeA6EeEhWcOo34fb9LZYhCGJ1OAEDFHA90GqkhbdaarcWOyY2+xnkFAL+d7ATIsnWPoZ88t7t4DDGRCq9ckbSATtXFhTCP8GY41n6hob1iue7GapUfk1CYlml4TrHTnKpLOsnLLbiGQ7dv4sR7dqnfaSyI5Yjv8qEDfQzvSv+u6dmk2logagDo/sgQ/rv9hHFcCDv5khGIxKwPhhzNxelnzZHgCM1PpIwf5WuxTSLKINVFGujCNAYIQEieXQeMlL5x+h/4utHfSxTCbv+umQeTEKYnh2LF5qZrDFpms3RSXasXwaFYJfM5p+qCxx8svk7AxERYqlWVhbBodoL6ZXAzeHh5IX1ROAo2+Unj0WOHiycv7KRySwGAnby2edd4Ohj1WiycqgsXet7EqefsSJ0RiaRbhVJflSSEAQwg6OwadprvcTfmkjufK78nDiB9cbjUXw6Fmf1ZmoTw8h2KldfrUKyYdrEhEr+YibIbNHTA1Lmamaw47uo9xkwcezVgiHje3Y4bvi39OHWqLqirmsKpurgFBtHxPuxUeHJWMl45ZTS3eqgcEPZlnHRPrGvhFzGG+i21akp8xLTsCodixefH2am+da8WK5AUimJ++u1OCMuPiXA73xBRjDg9iXNBwhRtA05C2OWhbM1L2NvI7Zh3NweK8Q3dbbwvPsnSeAX6S+V0f2QITryjxXakseZUXahwmunPLcEBUpl0Euf3BAOoEIUwkR4+wE4hRWATPe8khAHs1BuQT/TIQsRjh0sSwujd3XQy3kb5tePCSpMUL0NdRIG/jJPaYjbHrGpam79n4o3irVZYudPQllaT2fe+KncXhh/LkcZIQPxoXo54P+glDRxJrH/4sRwDz3ohrLitlYcaEXkp2uxrKE+8PjdWW/sCVlwy654H9F9MDwSx+5D0ixAAKfaWQ2Fxpo5/aJMW1pLKA4B6UxOkj99sI6nfeBOsOsFdT2+QhPweESj/K9s0LW9SDz0OXZJMssTJJudtO/JjIpDxRbSBR7r2+YjxJQaVbP51nFTWm5la3uz3bYYJWt+WK4OjDWl8Jyeg6OpVPPHaywC0BRAA1JftuLiO+Q2Rc24fHy2g5+f1ZLODK+uDDPVa9xrbv+xqdalfxP5dcKWOlD7tB/aOHx4xmt8P/zBOatcz1bN5v6W8/i3XXItpxD96diLqOpyqC7Fp6QbBxKm6GACCcM+MxMXqllJBagvAYtNdLGQIduRvaLYJoDLOxMmCFaElOhSr5G8wyq8dmpUt7xbiHQB6dBto4JF8j/RtkK4PXoGeqm6vieIUJpgVbfZFhVXaAl+xy2nTDZW4OWi3vy/e29QPrtenS++CEErNNpjpHRdIPNC4yvzMBt/J7N14RDBFTfsJ46Tv3qFY0XE0Mwv1/IsNwq6DRhr6Q1S86PuhbNdshC6M5c9TZ2hCAVFxW+23XqGgJ7PNlF4w2NB4Hb9XeOmyXM5dIA4AKC4oQPCwvdjcdI2hnr7pXfnvmvO0zeCBqB9Rc47Rz23np0ypETBoH/a9Nh2hsbswaGOsoa0AgMgWhvtkAl279zHk94xA7vNM+LHUqulWqRU8dC+uDI429EHhkTTzesHCAsy81EB6Hjp6t6G/O4wbyze8+vodihX+u8pL6cfl2pA6hwktB6J+RNvnxkkQ+gCQ1Xs2ABbsfX+rYtNvqP6XRsUfCTrr3v8C2Owj8SKGQAHAQ1684s/WBZeJjKRvC5HZmAt597CUjj+P1JSbIoCDlz8T6slf12wM0z3LUGbyHzLBeNpiRteeYObW/rvKo8b3idK3IPJP60/1HxIRtscDBZnH5e8t5RCOjGdzyNWB0SjOz8f07O1wKFbUmM/GthjD0sPbmwuqooBB0PwiD6/VTDMdq7zNd8NWUBryoRLTfKMkS/dIgUnfPIUAENOQaaVImXeVUCHPyoKUu/41m8Oo/TTH3XYwpUXtGaw/+vhEYmEjZgZNvqkUamLFtSpSW8XfYj9Sfnpveph/AFw5pJ/3fm/yGwBg5DFNqXw2lpVj33cbbUZr+YoOmoPC3JdUjP8AauL/3438f08PBLH7lPQfMv3RpHrrqYs4NpIFsNTnM9uI64lvuO5qWSmNCN0evGWkYYJ2KFZYbhdJ99c3q4ZKyzUzH6fKTlicqgu+kxPgHZ/MfVH0mzGRQkakAGAbzgafaohQ1/tF4cNArV2i867IV4SrkF9X+VEzKaF65pzYDgDcHvuaDzvl6jpoJJQvElC9Z5ppn3s1UKT7AHhMHbG/P61r3GR/36ihtEG69YhmerS0sSK3/8k9gKcFhd5aUO+9bzLhg8AGqE6HYkVMA004179vd5vfGSHBUp36BY1ieInlir8dihV5r9vhvY4tws2/0cbfK/7RqG5h/gyivyEAKa7Kkqs10ePQJUMsIT3pN1xmGwcin3k5pvy6awvAzEJfrME21uEfaALv5XZa8HLPzjlSvotXK0i86QUih8I0oqTdF+mQbYlBGBcpv6fmO/TpeXZaEvhqIo5/wBQudOpSYdVOQxne8drJiUOxwnPbXoMAVhqlDtfMXENjjT5EHju0NpoJWmLakoj4EeP/ERW1Dze8d/08Jj4Tx5n4Tto+p2nXU2dG4nb3CNROqGYQTAEmeNBGTiwr59ViqK+y767Zt2yczw4NZPkjW2DrnDk4+Bzzyyw8x2JviTEdxX4R5yMAEliGu/6i+GBUljiPTM5ip+zlftuF24vqSqfFp5+x83KPR96U+m2WTyJCx2hm0tfrWQAwcyyz+SPji2hDv7v7rjxOsf7rNP0VXJ/RwLRNlJ7anzozEkGbmdKg/La6vKwug5+S4rWJec3GwYkoDVSJ2gAA2MXMQk+8K58qFxw/gWnZO5Da4QeeXg84Q2VUMgmmrhd6ASB9ajQ8K1RApZ/Zt388UgY6SvuhlTRPVP9BE5r2tyqW2kTWGJSWTueCylSShAOR1+L8fG5VQPmcqotD84vvz/byeABMIDbrT3ItcKouDD3eUXruUBjaLN0rs7U+HD6tDeiCNOeLghHAECiJHIoVgYNd0rXZvsXdfubaE1E8hmm7ZA3AhRSUZuVQDDIqr1+lK9K1OFbM1lJ6b6Sss+jM5apur8l/LzixHeEfaWvL94008CUSEt+tfRinb1aR6nhA/1v0QBC7D8mhWFHYiU3a6qqmfDLYlX+HA3LU6JUKh2LlMboAWXvTvfdQ/vFT7CeKV0Ufe/b7NoSO3i3VTYhKJ1+yS07zVFbdxCo8YK94P29lM2nS2vfqdLTb35eVeTdgpbg4AIClWSNp4vGqXw/pX0Vjw69azBKHYuUBnim/aGLiUKzc+TjZauH1Z08ymjuO8Wsn3SMHfvLDs9SswftRnLxFbaBI+o2LfmHW99HFETZsmzVbEt70m+Qzq0KwbdZsAx++H8oQzDm/NDfURX9kSiPWLfIrOpLT/4zP2T06lcp7XTOJ0S+ADT5h/fZmpov/dqoudDl4VXrHuRM1U9iU1ss5guLCRr54vvpxia9d+Xe4eZ6Z8EUnXvS8w7ixmHJcE8hpI+Z4bBjPE7n3CWkRdShWpH8VzQFQKFCwU5UDzOpJfLdH2y3CmJy2hvt6Ejdc9Hen2BhiQRwjJNx6Nm8MW0UNPMOzwIOno1NTfV0i3Xw00jCGHYoVd7q1MSga9GU8nRdlKPPMrxpKGjwthjzuhGjP5o2luvT8kAkdpXEoVnj+tdfQrw7FipnZ26VrPYljz6FYsePrWbzc0PG7UHZDMs7aL0n5naoLRe3D+fWGLE14dihW+D5+EAeeZ4oQn48ScG6cFs+RzC2JUmdG4s1MFzxvFeB2d02gdrexCm+qmTQFrBlr6DsyQdZ/C07VhbBdg/B2QATCP2DCYdXFSfB7TzPnc02cLqUHwM1A9fXUncbyBb2UJPULwDa5ogLNTIHQ78gZfp0+eCacqgu3mt5ExV/MT48obej4XWiS4oXQ8bs4yMHNDqcBsLXE8uc+1JybaNgIOxQr1Jft0jwj9hFt8o//FCbVSabFdK+wUys807CtVAaZwOv7SVQiiaS+ogm8DoWBax2dKpySCN8KAGR2nS/xQGQmCPXxiYSlShXOG524AkBP2yOIek07xaU06qt2JH8wQyqHzPDpW6Q8pBgQ04Z9IVtfOFUXPjjXGIv9txraTmizk842xZ2OJzmwlwhmVOsRdrLT/Os4lHXu1vq1uBgjj2XzOGv6d0gkzi/6cRCfx3w0qx68gCWNfRC4chzeqnUUGT+az8niWBDLy/jRirAv47TyN/vAbxL7JrI+sZnm1VPR6sr899jUTK7I63P4LEb4teOxxcz4oXJp7AP4h6EmPogj9u+gB4LYfUqWLXuYoNXnML/3dgATpCjy+/HJbKK41UvTrtJk8f7PmhA1ogoT3kSobodiRcN3Eg0TYd7KZii2t0T9LxPQaL52OuJZmU02p22y9ogm+IPRWjDbptPZBiEvpyYQ2ULSDNIkWLTZF4WHNJ+RfkfO4PC7fgh+Xj5Z05NXQ1+EfnKTPzu1ugmHH6Z8ANDwXWPUe2q3Pi3VRTC/Yh+ZbVxFk0azzaw73u/0uQiHwsy+9BtNgJ2I1Hn0qJRHX75DseLEO3b4Pn7Q8JyIQAjcCQkUGFZsZ/oQ7TTEoVglAcsdfRjI8ltCmZnmpubagtRofix3Jqd+PHaqjlSm+E7eDohA2bIFvI0XR8iLYNFBuV/K/bYLL/qzNCScOFUXnKsXaZrLnpowQ239LOZHFO07gvQpmrDa/Ou4e9ZEOhQr5vjuQExYZ8Mzg0AkQK8DQBkPC4fiF8msrdS3AOD3niYkZnadXyqv5X/dxecB9WU7sj6y4cLaUI5Y6q5dDsWKtIh8fk311HlUQ5MrsrfgvJptzMWy6J25++ZOrm4Cjz/YyQlp3UUSvyMKRKxvO13/EaWFSSjs2Mp00/T5cflUigQ/OgkT20G+N4A2x92oxwRiM9Po0PG78GGgFcV7D3G/LoCdMJ8dr80XxNfeDD8AQNq0KAnBkHhe20wz89LzXP+xIwblgV7wF4VfS5UqkhkoAIRsHcG+syfltsTn7eHXdLIjvmv61qmssVWNSqqMzt9LacT89G4A4Kv68nikdA36HnIbFzJ1XhsoXySYzufHfwrjMPP+A/Yb+k4ky5Y9hjL044X8gkmgIKKTM59pezjPXr4sPEroOMFcLzfFtG4zwUvfluh9d1B45QqCfmLIkqhbiz8vyM7hSLERrkKe98Dz0w3vf5RfO6TOiJTmT+4b6KuZjzoUK/a/PF0aNw7FigUHbNDTqtxdSPuGKWzIZ6z8troAgHp3xybA4oa2338LoT3TeKBlAIjf/DMGVr6IhKvBCFg7xjA/iKb5VFbaD624KaBDscLiwbauhUfS4FRdCHl6J4KXjucm3k7VxSHhzfo5dVYEbjvaIL3jAsnM9vxSDcU14HWjP6JD0ZB+Lw27a6nwsBaflGLsAdqJttk4FN+Rnr8HqIn/e/QANfE+IDGg8+aT7LhbrwWk34ErxyH0+2vIeQPw6XeI3199vRJe3vUE0jt9b5jo9QKJftEpacHSB3JMnduGn6KJvN0LiemvDI5GlR+TcOJdu4RGZ8YzPC1w5qYY6jJrA69DCPgqooC540tfBl2b8qNrj1N14WLhDVS33PWb8vCAM2+vIX9J/eXl64O0Cb4IeD0R6VOi0fgbFYW5Kjac2G36/vS/za4fPnAdf7So6LaN7gRVd33krn96NGqPoqtXSy0DAM6PsuFWzytss6Wrm/JeGRSNc+EeCFx5XfIVar//Fv4KK1fyey+BSnoXZv2a+4YdPh9pY5MQCsW0aV9HI+Q5eYNPRMiGZnWUdE3/CfkSAAo2+cGrywlDPkvdOrhqD0CFVWzT3GH/TR5ywKxMd3UDwPEPbDj2FPOhSvuhFTK7zmdC+qJwCZr5zAQ76nxXcgDbkuop7V2V2VofdzqehFN1IabxQyi8wjY3qTMjJaHlzK+NUefRo6bjQU8eXl7wDAlA/OafeTqxb8K+jEP9L+UNvhhI9l55D0n2RlpEPi6uC8HVXbVhyQcOPjsdjgbhkmb3zNN2KOvy3IY3EOtrNTmWmzGZ8UG/T71gx75X5PhS7njW99nlIdGouoSNYzEAcPMUT+4fLFJB59bw2pzidl7Q13Wx8AYG+toN68/f+X5z3rZzf0mAoab2bmA8fXQoVgw5mos5b/STUPRKGov38n2IdVA9sWnp3NybkAr/Trv+Tv0XnrIh+QPzIPMUwN6jdTNs+E0OCu0R0QIFFcuA0HLvpW3UhkmZKXg3UPPdrp1QDWftl1Dxz9q4/tBZFNtawiNxn+l4vLguBNV7pqFuYhUcWNwcdb5LcDte3PUDUcHDreH1RwrPF/ZFnARQZqlZA+kvN0LAxESprDdOhyEl3JPXteGGtwE8DAAmZuzHx0FhPG/e63aujHRHhJ7qbp8l9qO+fWb/W0yJg/JFAn4+tgfVQzPva5RAjprY8jV4WbxLz/AvUEFhPv7Y9+l93R//Kj0QxO4DEgUxr7tw3PkxEdzvg+jNTBfXlDtVFui5UY80XH/oLCzVqqLw0mX+jOheN9ZmC9RLJ1vh0ep7MC5lGPyeOOA2rVegP4qvXAXq1OSBbkuqU+Rv+bWqmBcaIKWz1KrJnbtLKwsAMj+zIfDVREO7z/0WyrWZfHM90Y5Dz0xH8I/jkT54ZqmLn57Oj7EZQADMBK6m0+Pg+4E53PnDI0bz0wmzctq8E4vd75svuADzF6OYYR5eXigukB2g3b1//eQ/5GguljT2MbTdy6cBXtm2Hh3LFxlgts+PskmgCABwbUMgKnXPlPrAq4GCgjxVKvfikzZuX3+v/HYcNQbe65NRc0d1nG97EZ5hjVG03/zUUMx7/Kcw+A/Yb1AkuEtvStFhcK6U4fknZyXjlWcn8BhxpQl3PYLt8KxXRwJEUF+248CL0/HwiNH4Y8HcUvlI+y4KmX1mISasM25EBnIUzoDVY5H1GDN1PbW6CfZFLpX4uOkM4IAldD9kYayEoGi2AbreLwqPvPeHJMS743HQURU/5Niwpdmvbvs09fvWCB1pfjogUknzlhmfTtWFUSfacWHVrCz9HEf37S+MR+WfZLM7jz8aSNptd0Sb79I2j7wtB6/gxRqZUpq0aVEIeWbnPc05NGeVOk6+jQKq3EFmF2YCJ6Y/uboJ6j9mDCANMCH1/LAI1PhejjmZHxOBrXPnSH0IMH+5Q09Px0OxY1H+112lCtviex11oh1OjmqAr+Lno/tvLyLkaQ2goWe7x7Bu+2o4FCuubwjEjdtlsKfNT4a2+CRVwjy/7X9bwDeje1XglPSeq++oIcWi0hOFVhDzkxKByo9p2gHxh7eZbubFe9f6R6Nq7AlDeWZpxTAGTtWF5deqoqJnPo87qm+jmJ/2F2+PWMr9nPXluxM2Tj1nR72v2drX78gZrGhSB0OO5mJ4lXOm61FQcjl0rnoYs0MDpftEuRPtuF29WAq67o7uZW4v7Z0rSZXxvR9Djs15085dGEi5e/PRSFT84wiKrl7lAqlTdaHR/Fg0XH+Th9RwN2eZzUkiP/8oQazFf0gQO/BAEHtA/4/JTBC7/XtDlHulIo8xda+bR0rXO6071oRsgEOxQn3Vzn0diMzKORtrw563mQCgj1tWmuAm1m1Wvme5cii6dYunoxglAANNuPLJLR5EmOrbeKOMIYaQWPa9bITEPJeG2aTgv/S89aRYpLxrFHzuVfNf2mZcvL8kZweG+LYttUwxb2mU95odB5/T3u93l3yxpmlN07QZn9sMZohEdOJjxndp77y0jfO9aHz1lPZNFEfScihWKb6TWfnnCq/zvj0/xiYFEhfL0/MgCohcYF/RjJ84u6OrA6JR+ack07aIC7ilenXEH9pSan+a3VNftnM/UHcbnxM/t0DDwcdQfOc2LHXroPD0GbyTuUdCWgWYiV2v5TukseFUXQhaPh4Z/UtXSpT2Tr3q1UXBKc3XwbNiRaxP22HIo+f/XjfyDoUB8iRbLfe0odGXBwCh255EaocfShx7GUvCkd7pewSsHmuIa0ZlNZkdJ5mMAuzEjhAHHQpD5KPg7dnLW6BhfwYc0aNRe9MQAWbt8KpfDwUnWVD0Xqk9UNQvn59WcQGyTFkURTaV4PzdkbsNtbv3Icaay/rYhrWDv0BomYqG/D0je2LdrnW8bKfqQrtnx+F0pCfShrpXKolU1D4cl0LKocrgPH76K/Knv771SCRXiBDVTqiGtBlNUG0REypb7R6Ai3lVkfXo7FK/N7MxKtLy3ET095FN9cy+SfG3uzXTo01zFO8+CEuzRjjZqSbqfKuNJXrn+np6RsRwf+XbjjbY8v1ct+Peo3UzFKccQmGnVrBsKfkkzF37W0yJw4EX7+2EFQBy3rKbKh9PvWBHvanaHNYjMJrvBdzV726tEe8XdmwFCsfiUKymygbqh5LKAZjZ8iv+0bg6IBoJU7XgymJaS7WquNytiQRMJvaLu7LpvmQ1o0vr5euDghwGOlJQfAdb8et9LXg8EMT+vfTAR+w+I/q4y3bNRpHrsDQZvHWmhSHdtQ2BUn6HYmWbgN+0+z7Oi/w+pREXEKfqglN1ofYMDWq3OD/fLY/6iYf+9M9EKrp1C6eeEwAghBgl6+N/RKXumRKPKfm3uRBmtth5tGnutj2e1qam/J5pX2AoD2CxaRyKFT0OXZKekSmFmMcSGiS1FwA6jhnjtk+ClzJ0Ktu+fgCAIb5tDWWKJN4L/Hk8/31puBFgg4iQ2+iPNtqc52aNeFoSwiitWM7kjcv4dc9WDp5O7Gs93et9d9cnX9Qc3qnuE+8xEyYSwtpPYAh4FTzLSuOsSYqX9H2IAm7NOYmG9mU+PgsfZWkbN+Jh18cz4FmunHTPp98hw3vW09WGntJi6hnWmKf3/VAbO4UXLyJgw2iEJHtL/IpkuHc3jhZthAybkE6ar82RtotQfIehrHEwH89buPVIJNKnar5wRQePmgrowc8nGfpKErAa+sKpMg25yAchEzpVF86NtWHdHqdULsX30ZdrNhZK6uvIN5iv6p0urbHlQ7vEA+XxrFyZ3zv+oQ3qy2xcRe+7I9WT2uEHNPpruNu6nKqLm3eHxu0yTedQrBwcg8gjvBk3myQ+CJEPABr2P4ALa0PhUKxSsGzxeyalAD0r6NyaC2EOxYq1oesRf+APw2b/xOttShTCaidU4/HvnlUjpGd1EzW0Nr0w5lRd8POqxJEgAyYmSgAXYr51u9bBoVjR7plxvOyKv+w0PcXoffg86+ev2Nj028lOXj3/2osa8xNxY57CyxbrOf6BhggIANtmzeYw60Rn7ZeYsu0uUEbt3scQGst8Jr38/Xg6p8osPoj0/lL6NgJAVc/yUrxFp+pC90eHGdZWfT9mv2/0syrezXx8Cw8d40IY1UNCmNj+mIf6cAsDANjy/VxelkOxcnAloqWr5wAw+sKJ9Yi/9e/foVhx4EV5XdGn15OZEAbAYC67PjOpxPhqfA9ia2n6nEgUwgCg/mNHMPxYjsRjjqMq/60v52ysFv4nrCyb/yv/JIPWiHUe+aSRJISZzWXu5haHYkV1SwUE/v4UAOD8aJtUz7qda3m+fxJYh0dx8X/k77+d/tGCWGpqKt555x1ER0ejdu3aqFy5MqxWKz788ENcvy7D2b733nvw8PAw/fviiy8MZRcVFWHq1Klo3LgxypUrB19fX7z00kuGcv/dJH6c2ZPkSf/Hv4yBXc2gdc/G2qB8oYFVFO07grRpUQaNlyUk0JBXJA8vL16PQ2FIjgB47CWnymCiaUJafb0S5pyQTUY8Wjfj9ZG5gn4jYbYpbe1dlvMnTtBFHRhiomf2aeRv9OcTrFhGkeuwYTJ0qi5k9WKL07obWiR4ypf2XRTWN6vGeaLgjT1bOfgmxhIcgMLUDCy/VhUOxYqCh+8GUF2XjNRZEaYLCgWHJLh7r/r1DAKk2cTtt7Mi9z1yqi7s/GSGlIfoVq9IRLwZa8jvFejPf18LrirxJvZV8I9M2Hsz04U3AhiISOqcCBT4acAaG9Ys5r/pPwXhpnskZBPp37F4T4wpR3b+Il8BP56Wxgb5P+k3SBSTRmyPZ4UKiE1LN918OBQr3giIhPqKhqhJsN/rM40oYnr+9fT26CU8Bg0AFO0/is8vBBnyOlUXsrrPxfod4UhfFG4Y7+J3xr/NYznI+NxmGCvUB5Yte3DiZ2OcK6fqQvltddGkbAVsmzUbwS8kSc/0bXTXPjFtQTb7Fnw+TpD6k8AcAOByCENdI6q+owYvv0e3gRKPadOi+LM7XZj/Sbtnx0m8OI704sJo9QVMqC6zKQWVfmbQ/QQWQP3hWa0qsJkBJlRscYEDOiS1LGPYbPYOYcFuCU1WJCrvpXTZV1fsF7OxXbzX6PPYo/tAKU/toadNN7xU1qjULMl012tzioEH/ffrUKyS3xTABC/xnZ61X+KABMfa3JHeoT64uF6g6Nm6OzwS90nlq69qUPk9gmXBePu0WXCqLrR/epzUTyKtaVoTDsWKjP4zYWkaaoCer7JUPmUmXhq112JmEcVv+QXFtpa8j52qCx4RLUyBMtYlaHHomn0bh4Oti5D5KRMI6DSCqP8RTRgS35cYb9GhWKVA3qtyZSUP8el93oOhwt5FpsVmH4NQeHGEDa0nxcKrfj04VRfOrmkkvev4P1chdVaEoU+IfL6QlQbkj6fnBQB25WvKicCV43jb9LE3HYpVgp0XSV8m9X3mZ6yNYngGh2KFV/160nWN7zULhB4xg03noKxHKxju0fslSsm/LT0fUvm81EeHntYQRPVEiuczT9vRo1F7AMCSnB2Gcdv7MHOTIEVL6uwIrL5eycAXYA4SQ0KnQ7Ei5EkmPNacm4hRqVmmvD0A6/jfo3+0aeLrr7+O7777Dr1790Z0dDTKlCmDLVu2YPny5QgLC0NSUhLKl2eO6++99x4mTZqEqVOnolatWlI5rVu3RpMmsgPnc889h2+++QZ9+vRBjx49cOTIEUybNg3t27fHpk2b4On575Nh6Zj3YmognmjUSlqEACBrWRgCBh3gzt734kha1D6cB3cVKe27KCkwpZkgpHeKF4lMKvTkTqDSbxKJzCbGM0/bJRMNyn91YDSPo2JWj1l9Ht7e2JC1023akqiktoiT9Il37PB7P8EwcVP6kSfaQ41mIBYtP43jgig9795ziLSBM6vLTDvnEd7MNN+1J6JQ6ed78zsRycPbG80S7uDL+ns4T+42UWZ8evk0QEFunlve6T6VV1r73NXVs+2jKMjKdptfX767ckurKz8mAhUyLuJklzpQ4ksHVDg+2Qb/t0sHdXCq7FSJ0CTN2khtEEkE6iB6NeMAPgsyIhiWRLUTqnEoarF/bC+PR5Ufk0w3bvT7ctFNDAjogNSp4Qh5eqc0j1x/PArbv5kl8UB+Mdf6R2PHVzOlOvW89wi2o+jGjRJ5n5SZgknN25eajgOsCGA9F0bakPzhDMN4/Ltzg7v3k/p9a2Q55pmWpx+r7fffwlu1jvJ7jefGSoAguW/Ycejp6dI70Ptikblq78Pn8eWubggZwUAzsu5c4+iSADsNnFT7kMRX3cQqHPnWoVhhqV5div/kToFh1m+Ts5IR6V1Gep7xZTRXPt3+vSEsH9bEph/n31N5ADspIP9Yp+pCkx2yfzKR/jsnf2B374jSZnwRjaCXk6T3EtOsE4ob1ufhLAy02QfozAQ18n3Vk+ijqa+T/ovrhUNhYViCh+51O2feK+nnu5imHbi/ON2jPqG0l4dGc3RdM14LOrfG5kXzeD6zsgD2ncc3ii9xTd6VfwdvB2hxx/RpvQIaGubY1HltEDrKPcCWO77NnpEfV+5EOzr3S8axNnfc8pI6vw1Cn9qN/kdOYXkTJhR3f3QYipMPSCA2lmaNEP/7T4b1zGx+F82L3e2HRLPTdw8koH1z9b42xaM9a+dmr/xHTBM3H/r8vu6Pf5X+0Sdijz/+OHJzc7FkyRI888wzGD9+PH766Se8+eab2L9/P+bNm2fI89hjj2Ho0KHSn14IO3ToEKZNm4a+ffti5cqVGDNmDKZMmYIpU6Zgy5YtWLZs2f+T9vQJbWHQMgFAwMD9QHEx5pzYDqfqwsFnmZaHoLDFeCZEp17MN2iZCju1koQwQJ5kCd45dPwuSfMrlrNhzWJ4lClruB+8ZaRUrl5wEevrOGYMh7vNWBKOdzKZDXudbxNw6gU5mCIAVF7GFk6vBnIAZJEiXIUcNt+pulCcn286MeuvxXYCDJ1JP1lmLAlH2K5BholUXFT1dTkUK773+4v/FoUwuicKPCI/VJao7XP0Hc5/i0JYzR0M5rr34fP8hMKhWLHghBZ3yWxMif+L8/PxZf09nCcqw6z/6I9irADgviFElpBA0/4AgKJ21hIXzpKoJCFMr8klWnPdqFWl5zlv2tE8RZ4CQ5K94R2fjPgtv6D+pjO8zpw37eiw/yZmZm/n45BrQd+WwVsuDbfB+nGcoa8b/TWcL9LiM3EM6gVLAJIQRnDvncsXus3z1XGjSS0ALPbfarphophC4jvX/45OHIviO7eR2ZfF56J5xKm6eMwo0QyysJOKRTk7EPHabsNY+iyoBdK+jYL/rvJwKFYuXF1YG8pjDurHQnQ5C9ana30nzXXiaSypFQW0zRrfM833qdVNMO/ud0FjiOYegJ0KE+nrSJ0dYfpNAEDoyBTT9ybW41CsSPs2Cqu/7iT1KwlhTtWF/B4RqHm4QMrrUKwo/6usFDvwIoMZX9O0JkJGpMDL3w8OxYrxDdtxawUAmFT7EE4UaEAmXg0ULoQ9PHwUACD+0BZTvkUeAOBMnN3wnY35+jkEbR4JS20t8HT6oJn8d9mu2bBs3eP2OxXLJ6LYYUQkhAFA94Ao/mzOie3oGdWLW1wQKBP1mf79Uf0U60x8B4UXL+KGTyWexrD23RXCnKoLBXkq7nRpbSi/3mNHeJlp30ZJ89yGG95wqi74vZ+AE+/Y+X1RCDPrCzH2F+fFhLr3HsqfdX9kiFshDAAmnWXQ9aIQJj6n/2KsUConbVqUgcf4RvH89/GfwkzrNRPCpDXXRNFFQphnBfNTMQDSKZv+WdbHmjXByuDf4VRd8Pk4gQth7vKFPsXqXd5EK5vimoq+mWLoHbHvfD5OgFWn/856SrbsIfh7ABiT0xYRe/pLwv3bzWXz4Qf030//aEGsTZs2qFq1quH+gAEDAAAHDxpPbgAmzRfokOZEWrp0KYqLi/H8889L98eMGYMKFSpg8eLF/3emS6HBWZ0Q+ifbdOsnwjF+7dBiqhZ08c5GdrJXeNfSTkx/IOpHfk1+OHntNejvW49ooAf0/9GNz/D84oKmX0gXZm5B3cQqUn1BQ7TZh/wzRHKqLjSZyTan3uuSeQDDoCF7UcaDxUK58JSNO/Xq8/YIaYuCPNUwkdP/ZKsF3heM/SBS96M9pWuHYkXYrkFwKFZ8fpwJe0UTz0n1Eo96J2CfpEpSXdKmbY5mpjjvrvAsllk7oRr/HfSHJsCKGz2nyswzeb6VC03bdL4t02br/cJG3HWwv9NFFiw33ijDAytTnanT5bhmFExc3w8OxYrwZGZmFvB6omHxpnQi4AdtWiid53bjBknkhZ6Rv5U+bfiHcTgzwW4Yk5Tfo40c6Lp3RfkEhcpL+6EVfD9M4NDcFOcmLYIpMGZfVuBxRzN99P0wAdvCymN8w3ZYlxyPos2+bjeY1RYmou60BEP/HGu/0JRn+t9+gntzLqfqwgvpRziqn0OxwvpJHDwrVuRpZl5iQtrz/tpmz6FYkT3JLgX5FvuBfpcmBPs9cQD9j5wybHKJz8Zz4iQzSADoOOsVrNsUIZVNm6eQp3fieORN6VmNXqk85qB+TDkUK+LyzAOVk5Kj/f5b8NGdHAKaqV6dL8thlF876VnbcszP7/KQaAmRlr7FMxPYXEZmzfRcP//kvGVH2g+a356lmrYu8Q35I1NQc16iaV87FCu81yfjz+kM7ONGX7ZZIxNpfZvF/ik4LgBbNK8ipfHz0kyoCvJUXFgbiu49h6DMJma612pyrMSPu/l171vGoLT1vkpA8HAXCs+ehX3fbQOPYv4VubLvTWxauqGenLftfF7V8+JUXdxv2aFYMcavHdbtXIvilEOGOs3a4VCsCFkYaxCmqewTvYt5Or0SQizTqbpQZlOKlGa6EGwcAKocs+D35Qt4HoJLV19lJ2JiuSUpo8TYX5eHamaDpKwAgPweEZKFih6YQl9+QsuypmuW/jet4eKcHPKMpsTN3+gPADhRcE2a34rtzK+rZ2RPbtIvzf8tm5jypSen6sLFJ23SCTiV0z+zM0783ALrUjYYeCd+AyYmSibQ7hQldK/j6DF8LBRt9pWeu1Me6McR/XeFy3MEgTbRve3TZvH8J6Kuo0avVCn9P8lH7EFA538P/aMFMXeUm8s0WHXr1jU8CwsLQ9WqVVGuXDnY7XasX7/ekCY5ORmenp6IjJQDspYrVw5WqxXJycmGPH+H6tevL/2FhIQAYB/g+bYXkfqQvOl2qux4HAAOvKA579f9hmm+yUfAqbq4nXqLqdrpUP0pLN2R8RoE8rZZbME/UXANi3IYslnoWLldfFN8N5hz58O9kbeyGb481xanbVdgRo6DV6B8kYAA5yhp0mvzTiyvX5y0nKoLkd4MKbLGfG2TQqd8ZJ+9Pm2HXM/ddgzO6sTLos0CLRKeFStKdW1ovE5ql1N1wXfCZXiWK4fXHUPhUKwo2zWb81XSBEyQ2Zmf2Axps3pqkM8+XpUMizmZh31wrjHXiookbgRPvmTUROvJbCN1ZTDbtJbZxMyWzo+xIWtpS3wZ3Az5HU5J+bIem82vverVRdlTV93WsTdiGb/OWtpS6kv9JsehML8e6ydx8PL3Q+4bdtPTMpHoGUHUh38YJ92v812CWyRLp+oymM3qF0saf5ld50vtohg7lGdFEw1ynsYDpe0RGA3PzjlSmQAY3P3dTeap1U2k8vU8mPFYYdVO08Wd0nSvwDaiZybY+fdP34VTdWF8NQ16/dWMA7yshu8mcA24XoAy25QCWpBsMc+Uw515Hsp389FIXoe+nQGLcxH4mmyySUAE5B+hb6dZu+kehVGge7krmsn53u3ATy8ATZi/MLw62wT+tddQNv1VXZIES80a0vtxqi7Um7fHwIfZpq5iXjFCntTGkP5UwvHYMDzTsK1UVkn017dsszakcslhPMT5VE+ezRuj7fMa4I9TdaFGr1TpRJ38ZBrNi5XGhkOxoszW+qbCH5XlVF1AcTGcqgvv1jaa9Yl91c9HFqJf+HMgCjq3lhQGvpMT+LxKykMAHBDDrO1Uj/qqUfmnn48CX5eFYPIDA4yCdt1EBiZFPk/670YsZ1TcC1Je10TzUAPKZwlu35W+Ta33FvG0Nx+NRNXFmukwKSsAwHt9soGv3BWaX7ZTZWbF7ihtYSspPwB0GDvWbdBseldbm68GAIzxawen6kL61Gh07T8CHgkspti6Xeuw/6Xp0pwLMH91Kkf8y1vZTLrvUKwSkq3I4/LAzdJJqZ5/+i0Kjk7VhTcz5W+3yUxtbfGOT4ZDsSJo2XjTuT17uQyUJs6VYp1Bm0ea9hnAfGgdihXRr7Jvsqgd6xfxtP3K4OgHPmL/g/RfJ4gVFhZi8uTJ8PLywuDBg/n9atWqYezYsZg2bRp+/fVXfPzxx8jOzkbPnj2xYMECqQxVVVGrVi14exttXxs0aIBz587h9u3bhmf/Kg3I6IL0r6JNF1dyCm41WQZmENM6FCtHllM+T8CZp7WTA4dihfVjNvGcXN2E3x/j1w7D3MCpU5r1x/5im/QuJ3D7WBWDxgcQJqe7aIhZjnloNi0O9hfYpFNzbqJUrsjzjltF0jMAuNaY9S+d9IgTrbiJq1/uMqZl7+DPlaTKfJHQo7aZLY4FeSrU2FYoPKYF3jXTmookXge+nmgot7tfG4NgQohfIh8UnJj6w4zP+l8moGnCUH5d0smGeF3t8BV4+TTg5dWck4igj/OlOlqn9AegnaQ4FCsKTp1G4ZE004XtbKyG6NZ6UiyH5nZHVFfdbxJQdP4iKuUU89MysfwlOTtM341DsXKhy2zx0ws1JW1Kbzva8AVQrL80TSmlEd/lAFemtGFIncsc2unU8rGK11BPOEHVl6Nvg9l/kTc91fkuwaDQ0I9Z0XSR/reexE4EWnylgWp4lCnL84YnD+T3+zQ38nHItoTfs2xh5pl/zphtyqNDseLkN+VhacqQAuHhIbVtXmgA5/vQbW2jKPLsVBninDvhx6ffIXTYf5PfJ1AXgJ1QFe1nvljxf64ytMXL14ffu34Xebbw/AVDPUW3bpm+E+qz7gFM607gA6I2/eKT7Ju/U1wI7DogIe65IzNlhr7dZnkAwKLzn1i/cRlHeRPTERE/TtWFY6O0kBbnx9zl+25QbbPxKo5l+q0kVTbtK/EdEYWO2i0FhBbrcaou7H9ZO4ETATFEEr9B5bN7CzAe06wT/z2q6inTud6hWDmICaE+ljRHl7l8hyskHIrVsEbr0wPgKK3u3mtKuCfPo//GxDxByeWkZw7FCp9+h6RxKkLu0/ikdoYMZ8oDMi8987QdV30sPO/J1U14fSLSX0zjhwCAK3GDX0iC53a5LfoxoudfnFcb9D2E4x9q5dfcUZ33d0x4N5736sBoqW3u+kVsE6V9SOgqh2LFrQAjMvThAdOkNEQUesLsmaU6cw/waNMcGZ2/B8CCj594V1ai1p+SgMvxwai5jSmLqL+Cl2jWWWQm/o+hBydi/xb6rxPEnn/+eSQmJuL9999Ho0aNpPuzZs3Ck08+id69e+OVV17B/v37UbduXbzwwgu4dk2zpb9x44apEAawUzFK83+lkydPSn9paWkAgJ+CNiH4ee1DpA2euBjveXuG4R79JrtoutbD4romssVNb2bnVF0obsvyEKSwU3XxhVoss7B8sTSRutukAAxljYKmejX0lSYvh2JFq/fZgtW2nCduPhqJc+M07aOZoy5NzPNCAzhS1m+pLRBapiJy3mRCpxotn+ZwnvoO51D/ej7FGCf3QmYb5KsDWb9dGRQNz9/rGNL4vyVr98SybvXSFnGn6oJHmbLSpqT+dG9+bWbbr+/Xqttrosh1GAW5ebjdndmbFzzcGus3LINDseLcWNbP5Fexqqm2YDlVl6ldvm1fPz72AAb57xXQkPPcanKsYSMoUtHVq9j56QzTPhji25bzJJJTZT484mZPEjYO9+a/r+vCODybrgVLBYCyzt2oujgJ+TGa/b24idFvtADmbzEhLZUjdZL2cmljheeZlr0DWTFz+XXIolg0+j5WKhdgPi1Ebff3NR0HIh+AIHRHh0lpydzTrE+Iz9dOWw3jvNYsNgZp0+pUXRz2HmCnnQ7FivRF4dxk06m6UGZrfeT3iJDqKeyk+TScH2MzbKSdqgu1ex/D6U/vJtIvptFhcChW3OgThRf9tXcvorACQMN3EuF4bJjUX5fjg/n1trDyOPmSXeo3QIPS1m8CiQgl79QLdlTsrpnSEnXvOcT0nRDR9U8ZW6U2/97kN56GNPqtk5kihRD3yMdWX5Z+o68XtMXfhEp5dk0jnq7wimyl4FBYUHsimtuJ6n0l+7h+cI75JO2eJMcZFN9H0LLxUhli3+rnXqJtYeUNafXt0s9hXLgMCeT9cjbWxttAQgGlE0OWmI1FovhDW4DNPsj4Ipqftrtrz72S53aX5MdXe4amdJycpVmZiO2lOFru6itpXRXzZETIigKxvWfH30UwnK2ZB3t2zsHIY9nS+Lr5aCQKz57FtSeiUOfbBFyMvMO/sfqC7xspU52qi481vRLXTCkU0+lxOFUXF4xEAU0SKr9K5/l/DNjC01FIDgActIuX/VAft99p4dmzUlq9MBg6MkXzL93MFDO9G7j3z6L8hJjI90R3wW42rFnM7/lOTsCRcUZz3iTrLyiuUlHi03ObEVTtAf1v0T8aNVFPb7/9Nj744AOMHTsWs2bNuqc8kyZNwnvvvQen04lu3ZjmpUWLFjhz5gxOnz5tSN+/f3/8/PPPyM/PR9myZQ3P/y8kBnTefNLc5l2cxD3KlMWGbNmBW685pevhx3KwsJGvaXBiKpOi3pdUjp4Hs2vxfscxY3C9rhdqzDfGkRHT6esANAQsM0pfFI7gYeYTV/qicGR0/l4qL/MTm8EkpbTFr+OYMfBelwynyoKorg1db8hHbV+VuwsVPMuaav4oQPK07B14pmHbEvvLXb+KfXQ5PhhVY9LdlqNP/1L6IXwZ3Aye1qYc0t8sX5/DZ7FiXDcDyqa79xO2xwOf19vL75ffVhdZq4M0/767iHVmG0h9G/9umt6Hz2NN05pwqi4cuX0Dz/u7N90U76fOb4Os7kxgmnmpAcZXy0PI4li3wWYpb93EKljY8M+/tUFLnxqNw/2nmS7q7t5tSe0fcjQXSxr7mKYBmE9i6JhkZL9vkxD4iBwHr+DFGplSX54ba0Ot2Vpaut/j0CWsb1YNABPeNy82ogGWxPf5UTZU6H8Kf7ZYZfpNmL1TAMjvGQHvdcmG8vXp0qdEI/jFpBLHTWl1AQwEYH06O1m88JTNME9RnvLb6uLO8LJYl/gbHI8NA3bJCH5/Z1xc7xeF/KqeSP5AHnOXhtlwtaEHDsdNd8uvWKe+Xn079fmr76iBi20vaPUNt6HawntD+Sypfffy3TlVF3pG9TLAw+v7r6Bzaw7Xfy91ePn7oeD4CeOc2yQEhUfS3PJMdGm4jYcEEfkw41/c4Jc075o9c4deXFK+zM9sCHw1EUXtw/H7T+yEpd0z41BxhTkirp63YltLbFxhDFrefv8t/BWmncSZzb+2ff14qBW6x1EDm4ai8HCqlGf4sRwJMv7U6iao99gRCQmRgsy7+2bNeLkyOJqfDukRHt2120DRYaj8uYqr7c/BqbrQeE4cjo6R4exL2xfQ8/YTxqHpxP2SWah+DtVTzi/Ncdi+WGqbpVEwsvvWKRE5t3P9Zv+YgM6dG730n0FNPPblfd0f/yr915yIvffee/jggw8wcuRIzJw5s/QMd8nf3x8AcO6cBtKgKArOnTuHfJOgxnl5eahVq9a/TQhzR14BDaVrcZIgIaxHMNPm9AiU7e/FhWNhI19YQgKx901NO+NZmZmQOBqE43b3COTermnQYol1UlkRb8bi0jCjiR2Ruqop4vOYqYP3umRTIUyv9dWXkTvRjpTWy03zAeBCmFN18Vg/dE1mAWI9ga9rpiWlbZro+dY5c/j1nY4nDXnFBaOPjwZ0YdDI3TXDIyEM0GKKpE8xBx6ga32ATgAGIexG3yicmWDHhLRUw4LiVF149Zsx8KxQAeetVfHpXSh/cqYW+2jx271Q8M4FDjBATtZm7fYsV44LYVyj2uG0fKqoE8KylrZ0K3yI5TsUK3f61z+jfCSEORQrnvfX+shSq6ZBw0r5Lz5pQ1b3ubw946vlIWJPfwS+ajQrpTJ62h4BAG6i1OWgubafyKuhZpIW/EKSW81qwIbREn8UOJuuRf6JShLCnKoLoWOY0kAUwixNQvhvEsJEWvvW57gcH2wol4QwAFwIOz9KPq3Ujwv6HZ+3BzXnJXIhDABa7NTMw8V6qK30R0KYWL5+EwwAwS8aN2QOxcqDv1I9InUexhAClaTK/F7RjRvoOGYMANk31am6uHk4AKwOcSJ9zN1gv3eFsPLb6rqdTy6MtKHmjuroc1jTxlPZFVfsxO2qHoZ81RYlwveDBMN4d6ouCYkOYAGZxW/p9LOy+Xnq/DYI3DgKHq2b8dMkEsKIj2oLE1GwyU+6V5IQJvaNSCFbR5iO14Bfx6Lqdi1weEFOrpTOrE69EEbt148TXuZdgBJxfOS8ZUfhkTSp74kmZWrln/i5BSKe2cPfIfGR80tzwzdG6JKBK8eZ9odo/q3nHQD3S3SqLlx4ip0cW+rWYevVj8Yx5FRd3BzS86+9iOk6AA7FioorNLNbEWyJ6hbL0cd9I8AZMoU3+w6JSAgTY3hy1MDDRuXowka+0juq99gRZH5q40KYU3VJJ1p60s/XBD4kmuiJ/q0iyIvYbrNxiKT9OBIfyste/uQUOBQruvZn45YQh8X5JmMJs37wCG8mPauwaidm+cj7GRLCMj+zSWOU/kgIo3KcqgvxW36RhDBxXeHv5Tf36NAP6L+T/isEMYoR9uSTT2Lu3Lnw8PC457xkFigCe0RERKCoqAi7dsmnTrdu3YLL5UKbNuZBDv8dxDWEJpCuegEma0EQHIrV4McglpP1iQ23G1STJtyiq1fZ8+JilN+Zjm1h5fmzl9IPobitVTJBobKSP5yBWe9/BUAOGHxlPQtiq/Q5jJgGraTJUVyUzCbPzE/kTR4FjTVrj37Sfjp5MA/OKy6qlI5MxPT1i/doYtcToZWZTfBiQGgA6HHoEjftFBclostDo/FQ7Fg4FCuu+7CxGfxiEjK+0ISxCFehVCbFiXMoVgT9ZHwXTtWFCit3os53CfguhPnhnBtnQ0zjh3A5PhiN/hoO1+vTsT49AdUXJMJ619T2dlUt9IBDseLT8yGouGInynbN5gADH8dqQBb6Pi+6dcsgRInvWa/ZzH3DjtQOP7BNS6A/HIoVXx03R8YEGKrX6WftsAQH8BAHrXYP4OWdidM2niLF799set+puqQguQCw/FpVJLdajgU6REuxTQXZOdKzTc1l/xf95nRdomaSJt4Xr52qCxVTtf5P/yoaBadO8+usj21o94x75MQdt4pMvycxLaESujsVWH6NCdsj/Nqhagwb+wFrxko86umd139A+mLNPNPd/5gGrQx5lT5uYjMBhm/Wo3Uzw3Pxv1hf0+lxEq+0+aQ+8fijAV46ydA/Ny+aB6fq4jH9CHzoUmAZU56Cn0+SyiazYiqfEF9F6Huiee9Oxfm2FyVzX+k9FsntEH/r53eHYoX/gP38fsCasQb4bdfr06WyQp/ajWUdZqI45RBXBJkRhUQwEwREk2MxjX7uTOu4gN8T/d9CY3fhcjsZZETMa7Z5Lmpnxann7NyHSVwnzL5rkV+im4FMiUOgNdf6a/NrdDnm93R2vA1+TxxAWkQ+V3ZamjEXBt/HZaCfky/ZOdhRyNPsNEpd1VTii+InilDqY3LaSjz36MZ8L+kktPD0GTgUK+ZGGZFwHYpVUtLF//6T1FaHYsWakA3SmDGba4jOj7ZJljDuBJfTz2rvz6m6pLHT/VHZNNid0E73A19LNIyd1O8ZMAuZeevHF7VDD8olUtBP4/FYReZCMuWCZopuaRLids/h83ECcieytr3iH40rg6Jx551LTMHU9qJBoUToz/rQMhfXsTquDpDNewFIfoT6P4AJ/gWdWxv6zqm6sKm5phzq0ag9q/MRY5y6+5U8iov/I3//7fSPF8Tef/99TJo0CcOGDcP8+fNNAy0XFBTg8uXLhvs5OTmYMWMGatasCbtdm4gGDBgADw8PfPXVV1L6OXPm4MaNGxgyZMi/vR1EJ1+yc9S/koSR3Il2HG3HNFXTs7ebTo4AEPB6Ijb9OB9O1YWHDvQxPKc4MpS/W4U78DqcjZAfr/F0ltAgnua1u87pqWPr87Kq9MiAZ5gx5gmVGdP5CaivahtoUdumNxsU8+o3K5Sf2753+AHK55omecjRXGlR8H9TmyCvDoiWJuuA35g2fEZIsOki82OP9tBTvyPMvOKbYLmtz1c/jo0/L3C7WFVdnMQdrg/HaieTQS9rWr8P6hxA1seyUEo+VwQLLi4wDoUFCKXrnLfsuPzQLRz5OgRVY9LhP2A/d6gGwLX/3uuTeR6vBgpeq5nGr8k3jdrnbkzpAUP6ZzI0vcbbhxny3a6mTaKEQkjmhPC0GDYSTtUF1+vTUZiexTe8tXsfQ9q3UfCIaGEKow0wvysznvXonQADinAoVozwayelJ9+rjTfKmJblUKw89EBJQoK+PoK6dyhWNPgkgfu3eF3z4OkdihWpT85AxRXs5PLNTBfOjbOh4p/ahv6jhx+DQ7GiR49BvI5Tz9mRtqA1T0OBQwHt1FX8luaFBvC0J+8iOz5sPYyCTX6SUCS24buQUAQP3Su196NzbPPa6v1Y6dsU01BIAHeCpUgOxWqA3jYTVoh8P0jAVxf9TcsBgKd8tnM/N3FTFNPiYRRdZQJZ3Wnu/cj0CgUzvt4PNAqeYWXL4cS78qbWqboQlFwOl4dGo97XRuQ8/VhSX7ZLabhSrbcG2kDPuwx+Cj0j5bAcbwdE8FhFIv8LrtTh/Nx8TEYEdqoufJS1iwkXd5WAK65VkQRXSifyS+XV+yoBxz+0Selo80lQ/GIe8Z1cGm6DR2Ex9r02HZ6dc0y/I3dzUeDvT/FnFAOK6igU5GyHYsXNRyNRe6YmVFM7RWGHykpb0Br1v0yQynMoVoNigdpPaKAAMMeXCRN1E9n87XlD9gcj3l97b5x0TQiGGQNnmn4zDsUKr/r1TIVUUQARn9ecm4g1eUaTX70gVPcbWVgT30Fx8gEcue3eJ35XvhYgGWCgFfr1O3QkO5Hs9t2fUj1m8wbl8wxrDE9rU34thsdoWPYcv5/nkJUe+vaJJ1BVlibBu9txfk2K4NyJ8jfn2bKJxE/NN7wAAAlTza2teoRoVi/Xnoji+ZyqC0faLsLmRUYT75iH+kjt5QryB/Q/R/9oQey7777Du+++Cz8/P3Tp0gU//vgjFi9ezP9+//13AMC1a9fg7++PkSNH4rPPPsOcOXPw8ssvo0WLFrh8+TJmzJiB8uW12BwtWrTAhAkTsHLlSvTt2xdz587FSy+9hBdffBEdOnSQ0Bj/3VT/ywR4dzvudhPwWBozZRJPjuIatnO7uIvX5/6qDz05FCumHJc1WIUXL2LDmsW49gQL4FiYyswV1JftfCOaNnyGrNHcf1QKJgpoi3ZW/9ocurduYhUpzpRTdaHxXPnkKvCXcW43dwD4YiqivwHMhMuhWJE6z3hiSaAhANDp0KOY+vBS9Dh0iZdNdZNpwrrtqw1lrGhSx62A2HhurLQ4inHaau6oXuoESxtxynOnWxvEH2WLVlF7TYso1u/3viaE+n6QgKAhe/mCBzDn/f6ZneFRpqzB9Mv+4nicjmmIJrMYpO7xn8KwIXsXL89vZ0XpHXx+PInXnfTZTKkPTn/CTmYb9tf8Z/i7vGv+17N1d8PGypmbIvVZYScNStmzXDkMOqppBkOe3oni5ANu+7/s1BrSPSKzYLviSaRIFFvpy2DtZIZOOgFgYsZ+nLVfMs2rH6sinwSHTLT7ffae6aTFTKh7qBwD17j+0Fmkzohkm7275lhF+47gz1ss/b7XpiOzGwtcH73vjlQOmfGJ71HsGwLtmee3HV5dmL9NxpfR0mZGn4eu36jFAprWnpmImBYPG9IAwJrF5puWvNeMgop4TaaQDsWKs7E207IBzYzywlM2rvWmtN+9OACnXtCUP3TSQkFZ3c0tqdNlAeWFdBnYSCQzvhyKVXLSp37MiLgl+bmIddLGDWB+ZMoX2sZRr3zRb9AtW/fAZ6Xm/0VEsYrE/EsbKzxf+dVGH+M3Atg4i953B07VhdmhTGFGqLlivVnLwgztIMUX3aegwBVWyjDi+v/VFiZKPk36udLSrJFpXztVF0Ke3INzY7UxkjozkpvcVl2SJKWt+Ad7l2SmqB97UrkjUrh5rzsFC/FK/BKQCL0nCvFSkHncMN6cqgvVFsknrSHD9+DyEO37M6u34OQpXOsfXaowL+YjM+mYh/pIwYYdihXHJ9sM79Zs79GkbAWpThGRkMLPUJ4NaxYbeKGYXuIJkEg7bhXx/iZY+aL9R1HkOsx5EvnqV4n17bnfQrHvVfa90TrpVF1InxIN+4vjpX4A2MmWeC9tOJuLDz0zXYqpt379UqlfCHbfHRXfvoMNN5jVyY6vtThhojUHEe0JCtOzeDp3Y/EB/W/QPxqsY8SIEfjhhx/cPu/QoQO2bt2K/Px8TJgwATt37kRubi6uXbuGWrVqoW3btnj11VcN8cIABoP/1VdfYfbs2Th+/Dhq1aqFAQMG4P3330elSpVMavu/kwjW4eVRBpbgAP6REmV8GY30QWxj03HUGPT+fDOHihc1doYJ+kgvOJushUOxwiO8GTas0yCoo18db+oEy8nTAhQVIuctO3w/SDCdoEXSb/gcihUXR9hQfUGi27x0P3V6JELjdklOvvo0TpXFRHl8UByuvXEFQVXP46z9EixNQhC/+WepfPu+20hoafTjO/5TGI61X2jYZAZvHYH0u6Y207O3I6hMJYzJaYsTUdcNfPQ7cgYrmtRBn8NnmQmSh4cBFe7C2lDU6JUKS/XqHFVJ3yaAaegLz1+ApVGwBKGvTye+Y31f6/uIBMGTQ24h9aGFaLlrEPZFLpXKdSjs1EUP6euO9PW9mnEAnwW1MNzXAwMQZfxo5f1rpu0tah+Os+HlUf3YbZR17jaMZz1vF0fYsOujGXAc6SXFjjIjz+aNeXBUsz4U7918NBLlf91V4ngV+XGqLjj6DgeS9vM0xW2t2PjzAkO64C0j0dTnJI/jZla2flyK150OPYqyXeVvg0ALAKDyX7Vw+Q1fKV4W5X8p/RC6VbhjmCtsL49HlR+TcG6cjaMqAiwGX9H167g8NBpnooqlmDwiv2FfxKH+VzuBokLDcyIRHILqLr+tLm52OG0QzilNTMuuKDx7lqc/8XMLQ+wgs34zuwbY6Vx+jTKSUFAamc2p+vFCdHa8DVWz7mDL93NL3NDOObEdY3RBpSndkpwdqO5ZXjLxvJe2ifc8vLxQXFAgPSfQID439IrEttmzDeX2Te+K6w+ddVvvneJChE97Bl7XgfzqTBFklo5ozfUK6F3xhlt+zcZ4TJf+KDyciglpqehd8QZWX6+ExypeM/0Wz4+2oebcRHiGNeZxB80ov2cEBn+xDiua1HHbf8+fbIMjrQv49eWimxz2vbS56OyaRqjd+5jpWNa3OXdFMzR8I98w19/oEyWFX5DyTLTj0DPmQC5O1YWYDn2l91vSPKIvv+PBx/gJUfrUaHgUeCDoFSOQS+jCWAS8bg5MYdY/hZ1aYdOS+W77AgB69BiE9euXmo6fkr4hAMj81GaIUQgAa/KSDf65Zv1Bdej77PKQaFRdkiT1ubtyzH7n/NIcjwXtR0q4p2m+gk1+2Nx0jdu1Nu91O+p+vO0fA9bRJeSF/whYx6a0qfd1f/yr9I8+EVuwYAGKi4vd/m3duhUA4O3tjblz5+LAgQO4ePEi7ty5g5MnT+KXX34xFcIAwGKx4KWXXsKxY8eQn5+PvLw8TJky5d8uhJlRQR022Cio5NWB0Qh6KYlryrbOm4PNj7Cgf6Im7MQ7dklD51CsQOdcPtFQIE9Kk/TZTB7PBDDR+N3dXPl+kICzaxrBoVhhCQ4wpJ13YjsyvmCavBt9ZJOY6gtkrb+Yj07cnKqLBxU2840T25NbwJyYq/TI4KcT5A8jlr0ggW12mqR4SWX5D9gPM0rvuICXEdeQ5SUTE4CdBhKtaFIHhR1bYXy1PFbnXSFM1GrV6MUcm0kIK24rn5JRewrPX4BTdZkKYQCD/nUoVqTO1EBBRB8CsTwRdr7cb7sQ/ByLk9Ng3Hle38PDR/E+f6gckHSrsEQNLJF+4fgsSB5/lCd1USOYUbrgT+JQrAhdIMfa8fxrL+p+k4At32tQ8PRfvxkOSfbGro/uIp51zoVHhBwAk94D+S4WHTwKp+qSghyLdQRueornIxPSxzO6aFrTH2QTNF5GJKvXuXIhPP5owAEKSAgTeXEoVqR3+r5EIax7Q3YiQaa33f20k92Yh/pgS7NfUXV7TakvSAhzqi5cbX+OI7QRDDwRCWEi/y2mxnGn+JR35dACFIMv6bOZ8MyXfW5FE7T9L08vUQhzqi4JnQ5gm6XTN2QIaJEcihXwZHHHAtaOgVdDXxxpu8ht+VRG6vfMFG7S2aZI+y5KSmfZugcVVu5EztvMBGlV7i541asrfbNiv5a0+b5WdMvAR+0911DWKYfcMAukqxfCRBri2xaPCHGuqF6n6kL+Rn9YmjWS+CBLBvGe+qyJUjEtkwMTAEC5tbuk7+9OF9Zv1x86a/rtEx+9GrRGg08SUHdaAvzeT5Dg8PNWNjPw8l1IKEIWGWNqEcV07IekW9rYcShWxG9aDqfqwnchDGRhRogGKKOn3e8zq4yi/Ue5uTtP52nh6bbOmYMVI7u43dQHL4nlQhhRVc/yhnTEo0hO1YU9bX7izwqLi/g7c6pacGWHwoCSfPodQvyWXzifHhFMmSUKYWJb076O5tYvgGzORuXGb1vJ69e3UdwPmLVFNNMLfiGJC2GiSaBDsboVwsR6Q7c9yU+zLFv2uK032sXWtKJ9RwzrjkNhsfn075v2QpSOhDB9ut4NIpC+KNwtr936PQmHYuVm9GIbZmZv56eoohDm7psQ83r8wUBbfB8/iJRwT4PAR2uDV5cTUr+kT43mz5yqi/uGP6D/LfpHC2L/rUTR6Xee8IdDsaLysiTDh71ux6/8mJ3oyHjmuO3hJQsfVwZpQaJjHuoDp+rituYUz8RM01bxz9ocWKF2b2aKVJieZUg7yq8d0gez07oKq3YaJi4R2EPMV27cSV6WO42d/vpFf3NTJX3+0Fh2qqFfYEXK/EwzgYpp1gkOxYqBWQ/D0ihYEgCcqgvKFzKIyKYf5xuEBIdiRfsJ4yT+vOoxwAmPHS5smzXbwGvuimaIadkVAKC+ogl7qTPZhooEtNDxu3i5GQNnwqGwkzux/wiOO+dtVk783o38/8gTzOdtyfyvpTzR5SxuFxp3G1Sz90Jt2vOOvOmemLEfqbMjpL4EgNQRcrrofXd4cFC9wEp9RtffNpA1x8XJBwy8Bq4axxHAiL8x6zTEQtG5noKaiuPwl6BNPG/Ik3t4uQSc4lRdwK4DPM+GxuuwPHAzL0df3r1Q8Z3bcChW1J6ZiLfOtMCGE9rGvjA9Cw7FiuWBMiiJO413pZ9ZH4nmimR2S2PrwAuyCZ34XyxX9GUEgKAfNCjqocc7SukJIEHcKOrL7N0gQno3+rYAbMw6FCsa/sqAU8TnxL8oLN18LBL+Pgz5NqFlWXjc8YD6qt1Q9uHY6WgxJQ59fCI5UIr1kzjeVpFvd3NTJU9NecXjw+06gKxPtBMUAFIgXXF86r8fsfzCS5d5mnO/hXIevLsdR+GhYzxd3spmeNGf+RqKsR/rJWkn+KKgRHGZiALe0DbWZJIr8tror+EG3vVpMvrP5GUejF5iKgiIpxYiEAcAFKZmYHKHR6VyP78QJI3FrGUs3lzPiBj+nokcihWN5jNzssK0TB6r0qm64MxNkb+NpP2m3w0AwwmQfsyatctdWjrNpPs+/Zjy8+rAaGz85QcpHwBubq0vk/571ZGDYcf/ucowLtu8w4RdD29vt/ONfn40G4cebZprihjXYUNe/W89pXb4AX7vJ3Afd4AhO2fpALmSrL/ghfQjmJa9wyCEAUBxfj5avycL8IReq2+TqWCtC2/T/RHNp59AfciMnt5t2rdRCChTifdL+Edxpu2ltujrLX44j6cnn2C6dqouXG533nTdDH4hybBurEo1P/m/L6mo+D/z919O/2jTxP8WEk0TvUNCEf/nKsOHfrt7BLbMn2O4nzonAnX+8sLOT8zjIenJqboQ/ON4pA+eaZqeJjdL01DEb1rOJ6q3zrRAstUCS2gQClMzpEkwa2lLeHgWc4Qv/SImkpmZmCFddBjS4rxQrdp1vNpoI75vpEH5lxa7Q2zHxcIbGOiroSp6tG4mAQLkvGnH4QnT0WJqHJTPZU3U+TE21Jyj1fNC+hFMDW5i6CezNqYtbIWQ4XsMfUHUo1F7FF29augjdwsLmXFRmiY7hhnMtNzlNXtWUtp7ee6OTj9jh2vi9BLHlVN1ocuQp2DZYkScK6kvUmdGorbvRVTv6T5GkPROGoTDmbfXbXmnn7VzB/XUmZHI6i2bakW4CvFBHdknTd+HPSN7oiA3D57lymF9ZpJbAcmroS8XJvS8WqpUQeGVK9w09++8K6fqQqv3Y7HnnRmm44zqF80AS3o34vtbcGI7Rtw9vdG334xHff+IZNmi8ADQWUtbImDQPkO+0nhz1/7SNp5Bm0eaxh3M+NyG9CHGOVMs8/hkGwI/O4jrnZtwnyqzMUpmty2mxkHZdhV3qpQ1CDcl8a83hxX/E+n7SPztzkzrXurW1+GuL0p6x2ZjbmLGfnwcxPzIijb7chCOmM5PAB4ePB6VaBJYGq/3wodDYaZ89RNvwbJ1j+E55S1p7HiEN0Pq897I7Drf7XsgOllwDfW9KiFkYSwPlWKgzT6S+fS9tMEd6fOS2Sk96/b4k/BI2Celp7TX+kej0vIk02d6utE3ChVW7sS1J6JQ6eedJfJcEunHWUn5o/fdQVLLMm7f098dq2ZlEHm0aY7i3Qel/KXxp6cLT9mQ/IGsUDSrT13VFAeifjQt+2ysDXveluehguI7/xzTxKDn/zOmiRlf3df98a/SgxOx+4hWpR7gvmHiZNI8xRNlNySb5snqOQfVFhrjId3uHmEohyaI0oQwL38/FB5OlSaVZCs7OSHgDjF/wKB93OQvpkt/fp/SzLkLE742L4WbidHzadk7jLwk7Ufo1Hxu8jExYz/XLKW8p4GEWJqESBq13Il27vDrUKwY6KvFwwLAhbD2+9kpoO+H7ARJL4QBkIQwp+rCM788JT032zDxvr7MFhPrx0yrlrUsDO3uovoB4EKYWI7Ip55ICCMiMy29ppFAEHj/1KopPac+bPucjNZVGhna54bqTktA+EdxkhkUkajldSeEPatGGBZhehY6fpdBCDsTp514FDzcmqd1KFaguFjqz8CftRAAXj4NsP3VKQCYL1/oeA24gOpMtloknomf2442/B5BV4uQ/mZCi/5EBwC6Pf4kAAaoAgChcTJ4AsBMTc02F1zIWDYetWfK377Ic9gXbPzd7HAa58bZ+LPeh43Q4k6VoQhSmhE6EzqxjiO3bxg2O+LzmdnbpbwkhAFMa67P525DaKlbx3CPkBivbQiEo+9waYxYqlSR+t+hWBE8bC9y32Dj5Nw47XsJeiXRMMb0fBwbNQPrj/3FhbCz422I6dKfp824w5BlgwazfPk1ipE6uhz+WDiPl2lGVwfKoA7lf93Fr8X/YjvE+3TCTJQ2bEaJISHE9onlAkCT2XHSewBYSA+/nRV5WgI9Mdv8ijyKY5WEMAD4vQkL7RCyOBaFR9JweQoTvGI69EX9spelskQ+zZAduz86jPNKJ7xO1YUzvzaGQ7Hi1PPMt8eydQ88ypSV8r52Wm5D+lfRUn2t9zKUzeK9h5DZdT4Pf0Jt69m6u9R3APtObC+N56AP+n4GgOztfvw+jTGxryh92rdRpQoC+vegD1EgnroRwFJsGos/KQphALD1pqfU74C2NlZYuRNp30Rx4AmqW2xb9nLZJFyk1JmRJQpOZjSptuw6YQkJvKf1Uf/d0u+gP0a6zUdCWNqC1sidqI1vJakyJmclG8YjmbmLddaYn2h4H3pezsbaTIWwmjuqo+KftVF7BiuDrED+cVRc/J/5+y+nB4LYfUR9Qpm9eMfRDGqcJgOCYT502+hzoN9MUPDGshuSpUnh+uPaJF/SggoA6xLW8PslTX70X5xwMweyzX/a1xqyk58X8wfp1aC1YZF6pmFbqTyigqrMzGLxyWh8HBRmykf85p/5b4dihc/HCfwe8UUBpkce03zPVn8t+2GYtUnPE2k7xQVVrBsAuj0xAgAQ8gyDIK87jTmzBwzcj4rdMxHgHGWoS8xvxosZxXQdAICFJiAzRABo8CnbjHV6io2fwnPnob5qR7cnRkjlkdlax1HyOKPf7t65Q7Ei5017ibzV+TYBH/rIMbW8Av014bBmDemZOPaOtbmDZolDDDzpNwD0vM70BP4uvP5IkRbF9KnR0nsMeS6Jb8wKcvO4eRn58rn7NgAg7RvN71HvB0R10EJKvIobLrNNvl5rTeW0fW4cvy66cQOeYY0NbXcoVgw/loPgF5MM7w4AbPv6AQDqT2HjIe27KKS8yxQYHt7eWNO0Jg9JoacbfaPQYb88z+iFwSZlK0jt0lNAGXM/2sJOrQybFiqfNtXiM7NAsHTKUal7JizHcqT3Vti4oangeuhpZoJJYCQi35Q+pmM/OBQreh26yMNG6DfMtWcmIn7Tcv6MfEmprICJiQgdm8z7JnDlOENbAaDyMrYhLrO1vmFDPjN7u4E3fT+Hjk2Wrh2KVQsJIZB+LDsUK27/3lBK5/deglRf3ut2zAgJlvxj972imbCavW8zodypanHhiA+Kt1T1hbtKvbRMvFYzzRB+xaFY8WnWTvw5nZlyk+m2Q7GiOJlZAgRuHMVjPgEANtaAU2Uw+pw8PaQyXXeHGJnPBj+fJL3jj+oyZSKZtB4bKQtXympNgdbiqzier8pS9j7TvpYRD6lfjo6ZLvUDwALAH59sk+oPedocEOfqADaXUdBys2+eyhfnylf8Wb6JS4abzmsdyxcZ7r9VS7NWCXl2J3/e6RAzISWY9tvdI3j4HLMxQcotd3sN8drdekIAJCKZKQTMvnmHYkXGw9+7rZfuZXabx+HtnSqLNfh2QASa7JBDsZApNW/fQtl00qEw3zax/6/1j8aet+UTM6LzbS8i7byGPHnZ34srE/9RpokP6N9CDwSx+4hWpTJTqK1z5xgmVQBoVrY8h2kGjAKUQ7FKwRtF2v7NLCmPGeknePITMNsYiHUGbGC+N9nv29DwHbbYlj/FhpZHmbJIyb8tpXcoVljq1pG0rj26DZQ2zpate9Dn8FlknmPgBLQ43ii6jd5p3aWyxHwOhQXEpGcxDVrhTrc2+L6RtgGpOY/xSHFeiEQeF5zYLl3r05ktCB477vbf3fhYqfPaSItylmMed+AX8558yS6VY/aOKHisQ7ECOSd5OjEuGQCcedoOtb3mI6h8lgCPHZpQELhREwbFmGL6PjDbrDpVFz9FdKouPhZJW0jpx98Np0DX67av5k75BE5Czx4eLsf5OmRbwsEg7kUbavadOFUXMgbMNLy/4ju3uRN/yNYR3JdhwV0/H3fKhZBnjY70FCOJqLCsvOm7l80C/Q7cOAotP2cBisufZaAaLb6Kw5mn7RwNTt/GhY1kfxvxt7hpODPBjpAJOzlPxfn5jN/UDFi2KFLec2NtqLThAIemJ/LyacB/F7e1GurMeUsevyJJ37TuJFQsR9pUC886HXoUTtXFYeTF8igGIu+XXUZzXb0AbKZocKouFFVl8Nxrm1VH/NE/OQBM2ndRUp3iu/38ONuAx3R6XObjLv8UBFjfF3RSfacj+449wpvxcp9+aBAAFh/OXV+J117+ftK9iyNkv7Q3M11S+pz95iFMKL0YSD4gfrRp3Z4tm/D7BPRhVmZxihAUN1I7PSGEW3qmF2gB8HiVAFB49ixXhjhVF049b+chG6iuOt8lIHjpeOn9Fufn8zKnHNcsHCotN5oRW6prIUYOPD9des/0WxRODzw/3TAuQp7TFCMOxSrN9dReKrMgOwfHRmmb9LQfWhl8u6msyj8xfo8/UgHe25hv9/XHNeUQT/dXLQBA82/i+NzsUKzwey9BKg9gLgJmc0fIYlnAoG9oS7NfATAQH4dixZUJl92uj2If3OnSGr0OXZTSUZkn3rOj3TPj3Jaj7zuABf42E+bM8rdO6W94dmaC3XRt01P9OZq5ndmaSOAlomKR5lYij8JiKW/GF9E49ZymMBkarFk51Z2WAK8/mDlzn1D3J433H/0nTsP++0/EHviI3QdE9raRj0xGlbX7+IR9OT4YVWM0ND2CcE5fFI6Mzt8j5lgMN/sx23AQ0f2q22vicjvZLInyiflvO9pwCPHh2Q/htO0Kf147oRqSdjSR/CvEMvQk8pT2dTRCnpPNI0RfHT0vIcneSIvQJjeRR/3v5klD0KDvoRLTfpS1i8fKEfki23Siin/W5jDOIvU+fB5rmtaU7ObdTeQiH+2fHofLw69gf+RSqZ+6B0Th0uPhqLokCSfes/MFU+S5y8Gr2NS8stS3jefEoeG7CaZtdMfT6WfsPICtWAeR/v3py6ibWIXHxdGXYbbRdceH4X50GId+p2dfHU/gGn5Ke/JFO/a/bIRwTp0VgaxH5vD73fo9iY0rfkD3nkNQvPcQLj5pQ/UftJMQ28vjkfjFTNN+e/dsMyS1LIPUOREIHZNszq9JG1PntkFWzFy36QC2sbZ0Ps9hrs0EMyKz/jMTiokeHj6K+ySRz5k7cqounCm8jmG+7CT6wkgbanwvm+E6FCvKbK3PBQU9L5eG2VBtkXlICv09S5MQFB5Jg/qqHcpnCTjza2PUefSoafq0r6OR+cRMQzvN2kx9FPjzeMOcQhDUlKd7QBQ2ZO00HY9E50fZuIJGpNoJ1aTYceJ7cPeOPr8Q5DZektiGjDvXeAxIh2KFVwMFBXmq236levX37+U7E68t1aqi8NLlUssorUyzZ07VhciJsdj1ccn+d+7KEInKiwnvhse2HsSKJnV4uh49BiFswRG4ws3zpS8OR/DQvfc0RjM+tyHoFeN4FtsU/mEc6nxnhOu/060N/lggIL1Gh8G5cmGp/fR/udaPgasDoqX4mGZ1ienN2vV335FZ/vQp0RxACgAPewMwJdeozsOl0y1xrXEoVslvlOhOl9Zu/SxL2gfcyzgW6eK6EG7yriRVhhp91ZDGqboQsH40Gj97hKPJmqWJdj2OqjHpJX6TC6/UwpLGPrz9D8WO5abJRKmzmuDE2Mn3tU8U9xELfBZenv+PfcSK8rEp85v7uj/+VXpwInYfUYXf5PhJJIRdGcRMDPyeYOhwRdfLwKFYEd8oHsC9CWEADEIYwGC6RXKqLm5+5VCsXAijZ4v9txr8K/SaQ/1vyhvyXBIurA2V7pEQJhJtxvXoeGI+vTZPL4R1GDvWwJ8ohIltWjO7g1R+/pMVpOcAg9qfUI35+pBpn0OxGvyyRB6orgord/LguXTPobDTiaTP2cZTFMJEnsUNHeXTm7qceMcupRF5yfrEhiFHcyUhTOwX/XtyKAyhTGwDACxs+CemHE+EVwN2imIJDZJ8tIguF92U3o9eg2lYoJL2o/y2utItMXgo/SchTN9GEsLovkfiPiy4UoeHatj18QzpXRBcu8iPVwAzaUuYwKCPh0TIgXf1vLTaPYA/uzogulQhDADqfZ2A2r2PwVKrJvddoDL03wxp552qC+mLw6W0et4dihVlNqXw4ORFN25IaTytTQ08DfNty9tS43stmHvaNM18+fCJ+vykS18vBaKl+57lysGpunD6GTtiGj8kpY3f/DO6HLwK5TM2/vZGLJN8SxyKFWnfMu1+9UMevE1k6jnvMkO3PD9KM+Nafb0S57nMFRla36m6pEC+ANNUl7RBuzogGpeaaiEoRNq7tqmEZupQrOjaf4RpOcRfiPdpwzNxDDoUK3raHuEnQcRbQZ4qXZvxQ/foFNqsXdnLW5iOFaL4w9u4365+PtTXS0FyRfIKYNYF4qnwkqs1eVnVf0g0bYO7zSkAwEN79/THv6FlXjwGGJVTtO8INzXUt9OpurhZGl2Lc5m+fjMhTF8mCWHNvmV+l+W31YUlOIALYQCLJyaiM14YaTOY+bZ5Vztx0tc55Ghuie9t9fVKWHNdC1GSMHWmaZuIYsI6S0IKpU3Jvw2vBgoeHj7KkMfdOxLzU592GfIUKv9VC8EvyieMYjiLEX7tJD82h8JAs8R3nNrhB0M7ymxKQcU/a0NP4njV91/g75oft+gvKuYV/wOAXxV2WndlcDS+9/vL7Tip/VcZLoSZPY/pOgA3NtfhbdSXQ7+HV2HIrpFvxKJ7w0hJCKM8gWPNQ+zcl/TAR+zfQg8EsfuMaGI5V3idf7xVlmoTnUOxInT8LilmlEOxIutjm+Twqd9gp85tYzqBBFU6h+zlLThcLOVZlbvLMPkS9T58Hre7a5DkaQtbwYycqgvpU6O5OZNTdaFGr1SpXPF/6/e0yPbP+2sCjn4BWH29kqEekRyKFdtmz5ZME8RnIm244c3NOcn8kWKZfZTFJkmfpErcabmonVWqs8Gn5kFN9f1PcdYcilWC1S5pg0h1VN9RwyAsieT3foLpc6fqQurwGfipo9E3z90C7lRdXCsf0+JhqdxmZcvzZye71EWd6QkGXqp6lpc2dhcblS9xAzYte4cBjKRr/xEI/ZP5NTRPGiK16doTUbx/qU/1i96IKsy36OSLsqCY+4YdOW/bDRvPgqxsOFUXPLe7EDxsLz6oc8B0QaZ8tXsfQ35PBoZDZkOiMCzyq6fCc+cRPFQzw3OqLmT+KI+Vy121WGyU1mx80W8AWN+sGpyqiwfzvfkomwuKXIeN3/DdTa+eVzFoc8jwPTgcN53HNCuJMr5n8a3K9TiD+KN/Ss8cihWv1JD9Kxr2P8BNRJ2qi/vG1JqtCYXbZs2GU3Vh5md9YN0L7J48Azlvsj6eERLMefZ/mwmF5BvbanKs6bzlbmMEsA1t0EuaWZlTdXFY+kNPT8eyCV/Cqbq4CavndmPZIlHsKz1R+py37SjIzoFnuXK4voHFv7rwlA0X1oa6HXOUl+Iilvta9rUU6Wi7RYb2kuAFsE3gGL92BiUAEdXn1UCB5197oSRVRt3EKuxeQ1+s2/ErmsyOg9dm7cRiYSNfw5jXz9sAAy4CmAm1NI7z9hraTkRWH5Q27Wvm4zXvxHapDH1fEYnPPVs2kfhxl8eMugx+Cj4fsbXiZofTHFiL8lKIF1HJoTfzFUGgwpMHSm2+UGj0rRTf44yQYPSueIPf149tcfxaatVE/P7NUvmU/o2ASKxLjpdOnI5Plr9z0ZSTQgqEJw/koWgcihWblszHL0GbTNcWs3tUP4FmieskvYcbfTWT1JXBvxv6Q2yL/p2FPKmZPscf/ZO977DGUh6xj5wqi70IgFtJ6Mt1qsxnn+KhuqNjo6uj/pcJUtsdCgtET79FHqovSMSGbE0IK2qn1f3AR+x/jx6YJt4HJMLXe3mUMU0jTmzNvo3jC8LlodGIfD4FCbPaoOYctpEJ+G0MQsfJKItp30Rpvi4m5mDu6jRboImXmZcaYFXT2iWmPTfOxp3kS6tvwYntqO9VSVoc9QsO/SZTJzO+AJjm0bfNLJ3Z/6A/RvIN8bUNgbi0rR58Nl81+KSY9ZO+DaNSs9C/0mVT/lLntUHoqN0Gns3g1TlFtjD1jTHbFDVLHMLj2qR9G8U3wCX1UUD8aISOZiekWZ/YuG085Sm2teSxWUqqu8vgp6CHky6JzIQNh8J8YKovSIQlJBAdVh7AHy0qGvKeeNcOjyIWM0rk5cr6ICS2XIGWn8ah3tcJ0nih8qneZTkJmHu5BaYnd0QVlzfqfS2PNSJLtaqIP7yN53fHv0OxGkzC9O1t/nUcF+wBFmi6ON/CzSQpXdvnx6PS8iTpHbrrO4AFYPZ/k723y/HBOJ1dg8fZ0/Mt5qf/qbMiEDpOA/85P8qG3ZNnmH4fZvW7I3fftvicyB2P9HvJ1ZqYN+ExjljoUKxovbcIKeGyrtHSrBEKDx3j31RK/m2DubLZdwuw2F3iyTvAECLHC+aFl4bZcDaqCK1aZvBNnlmb/o4AUFo/lZZWHHfic48yZflmsNFfww3hRwAwf9fcFFOeU2dE8nF0L+3Q0/V+Uai4YieyloUhYKB2CsAFwfr1UHBSC4Be3NYKjx0ut/V5hDfjJ+GXh0aj6mLNPLXFzsFQ+rDYWEHJ5ZARcQuTs5Lx5oix+H3p97y82783RNmu2YayqRzqB/19/b1FOTv4ybP4jEy8m6d44sv67oMeE93p1gZlNu42fVbYqZUpAi3AlKWZN2tzoC89vyGLYzl4CmD+LkXzZDGvPvyIu34Rn+vnRn16d2P81PN27Ht1uiGtGALmyvogA5iGvn6i0IWxpsGp3Y5h3V5Jz7e+jpBFsSioXMhRcEvrGz1ZggOwbN0KVA/NvK9N8bhpYsOn/zOmidnf3tf98a/SgxOx+4hWpR6QJg1A/pDpYyYhLOsTG5I+m4ltucGSpi3rkTmwhATyvHUTqyDz8Vk48d5dR9EkDQ5eP0FY98LwjMo5WXBN4oWEMDN+6bceqUxfJgBmV6+6MOKulpbqEP+LmyP7vttQPkswlKlvy40+7uGAHYoVkROZ9vzk6iaGMkQTkjXtNECMLvWP4dAz0w3Cj2WLYmi7fvFwqi7MCw2Q7rV9bhwsIUwrHjpqNzy8vOB4bJiUxnLNEx3GjpXq45o3N8IgpQE0GPT8WxqcMwEJ6IVYp+qC386K/H5WjGZ6E/JdDs6PlgNqi0IYYL7gOBQrLFv3SHUAQMaXTLOdPlULPOtuXBJVX8CUDYVpmfijRUV+EkJk2aLgVoM78J2cgACnDARS/SULPj0fwoWqbo8/aapZdaouDPS1Y1PzyggdmcLTi88BID5vDwovXTaU0STFS7qOeo2NJVEIS51hhHcm1EsqL2T4HkkIezb9KNvsB7Fp2+f3YjhVl4ScCQCRE1l9k7OScXyyDcdGzuCIkUnWX6QNV0kbJBoXWY/M0fq3aShqzkuU0pAQphcyiK73i0LuRDuuDI42tNmpunDiXTsvj8aCp7Up58+haEHK9eODIOknreyPPxbOQ27BNf5ML4QBQPzvP8GputD4xYNMWPMua0jjbj5p0PeQxL9TdWF8w3Y8ZIZTdaHaokSEPL0TV9ufM8zllqahUp+LaKZi2i4HNT+VrI+0sAMi6mRJ64T+PcYf3mbg26m6eABxh2Ll4Ucov1N1IXrfHS6EAUD2JLtUf9ajWoB6L58GHAihJBKfV1zBlAh3bpSV+HIoVjx84DrWpWzgZpDnR9uw8ecF/HmZrfUN5ZIQ5lRdXAgj/kgIA4CMCAbR/nZABDy3sViDBLxCQpjIp6V2bcP3Ij4P2zXI0E7ywRTJM6wx97M92LoIPUKMacR+AMCFMP37A8CFITJTFU+xJlTLwZa5UYY8805sR8vP4iQhDABCYzWUQ0JqXRu63sCbQ7GibM5Fwz2HwuIQZnzOvsevjifg+E9hOBOnjZkr64PgVF0I3KSZEIrfv9kY3ffqdHQYJ699DsWKoqtXYalWFU7VhSo9MnjeVbm78FK6/J2K84gohJl9e2LfA+BCmFiO+NyzcmXpWeBriYZQJGb7ALEe+u8R3gzxf676h4F1PKB/Bz04EbsPiLQLF1MDMejhXtxXAGB252TyALjXHMd0ehyFx9Jx8iU79r80HZ2HjYLX5hTTjU/LT+Ow7zVZy0TaRoBBvVMQZbfCE8w1g4B2UmYmjDgUZsbl9765z5JTdaHxnDhTyN+S2m+2AQGA/J4R8F6XXGJ+s3a600BnfWRDwBuJps8A4M1MFz4MNC9H5M2puhCwbgwaf3sNRfuOmPJekkBiRvp+bDYtDoeeMQZYpnQxHfsBFk8Jxcxd/fF5e2Dx8DQtSwQPEesXyV0/uCPPihVRdP26aTBkojtdWuOPhfNMeRf5C1gzFr84vsU7tkewbo+TnygRWapXR+HFi4a8PP+6MSWCd5REYnpPa1MUuQ6XnAHaqU1pZUbvu4NJtQ8Z2i/+vjI4mvvFXR4ajaojc6XgsrUTqmGx/1ZDHSW1saQ+cPd+xfv5MRHYOncOvy5JiLiXss14K7a3hEfCvhLHhXjfUrcOh8t39x2UVpb3tnrI73BKenb6WTtcr09HyNYRqL6xPHZ9NIOfyJbULu9t9ZC+MRC+HxoBfMx4dEfVd9TAziOB/FTb3Xx+r2PaqbrQ5u1Y7J48g+crrRw9QAvAFH6f1nW5zeNUXWjzTixqzjVaU+j7q/JftXBzaHmsS/zNbTumHE/Ei/428zI8PGCpWQPx+zfjTOF1PJ3dG7v3BnNT3ZLGtKG+u0AVYp+ELIxF2vAZpmPKrG0x4d2k0A1iWnHt7HXoItY2q17q92j2LGyPBz6vt9fw7HJ8MHr5HMRfYeVMy/Hy90PB8RM4N9aGOov3oejGDakOd6A3ADNDHxv7PLzjtfWYvjv9NyaWefOxSPw5fbahv7o3jGRIuNDAPczaSyfZBAJVUr8A2gmbU3Vh2dXqhr2Q3nLl+oZAVOyeeU/fZPUdNXCx7QWpHQCkNv98bM8/50TML+4/cyJ2Yvp93R//Kj04EbvPSBTCAPCgxkQhi2OlSR5gH3HhMYbWU/9L5rdDQphDsaLx9mHoMvgpfm22CSAhzKm6+MSjJ5pkYjr05b8JvlXUGJIQpq+Dfh8ZL0OuA4CjQTgPUNzwXe1kgPLoF8Pr/TRt37SLjN++6V3RI5Bp1KtuZxDRW+fMwaKcHUhfHG7oN/E66nXWr5batRG8JBap89qYTqxfPPED3JFnuXJ46O761WH/TUNe/QagdeMsSQgjR/DMH608Td7rdgmwoSQSNbYA4PNxAprMZGWeesHol3bk5RooPJJmWAD16QAgpkErdB00Es+ma3FmKE3DdxOQv9EfH5xrzJ/peRHTl7TJpv/r0xhUtCiE6bWVp6K8pfrEdG9matr10PG78I69NwpOMV+0SsuTkPe61h8khDlVFw8iTHU5FGupQtjwY4xHS9NQDDmaC+9t9Uz7sKiclz6rIfCpU3Uh/vefpGvxj8pM+y4KSS3LlLrwV/kxCVkfsw1o1cVJcDZZi/yN/jxEwFn7Jf5OqCwaBwTM4tGmueHbEYnGlv69F2zyk2Kw0X3v+GRDfSJR/eKYBYCgzSNNN8P6/nGqLh6nTUxffQebq6YcT0RP2yNSGeLGV8yT8WW0xGeEq5Dn0afP73DKMI7rfsPm48DBLlQ7dgPhyQOx7zV5/jP7JvI7nMLhCXL8LjGN+FsPdU8BtU8/a8eygD9Q5QA7cfJqoLgVwiy1asLD2xsPHzCiwoltcihWfiIq8vDQgT54KG6sIe+z6Ufxi3Wu4f6Kw+Fu5wLiyUwIo2fiXHW1/TkUZOcYyjr1gnZC96K/+5AYad9E4uwjDERqmG9bLA/cLPlLAkDnYTKwhfqyMYwMANTdURFX1gdJ35ReCBPrnpyVLF0DQPzejbDUri2lbbSbuSyICsy1zarDo03zEucAszkYAD6vt9dw/7ajDarGpPNYYjSHiuUUHD+BC2tDUWt2ItanJ3BrjoJNLIwCCWGWRsG41UsOUvxMw7a4UcdLqpO+O4dixajULASsG8Ov6Zsuv3qXYdw6FCsXwgAYhLAT72nvx/JnVQDAV2c683uzLxstWIhICHMoVgysfFGqM3VmJEJHaWBmTtWFqqPzpT4yI8+wxrgw0oZlAX8Yvj39PPjk8Q7GAh7QfzU9EMTuQzr9jPu4UmlDZ0iLif6jNhNaGvY/AMvWPYaNtphGzCPGotFPLp2eGsNRkJyqC4XnL0jPqZzuPYfwvF0HaRHu9YuvJTgAMS27wpm3F6nDtbaJvObeNYkUyyezFqfKYv8AwPWHzqLoFjM7udzuPNK+Y5vAYb5t4V/vvFT3hadsUnnVFrLNRfy+35E+ZAZCR+2W+pM2hd+FaKiPDsWKjB+1tlDdAAxO2maTNPmQOBQrns6Lgs9HCbjTrQ1C37qEwk4MAOXgs9M5DHNJm2FqiyhAAMCR8SzezQvjfjGMFQoMawkOkBYD0axVLNtz2158E9zYtD1bm6/GX2HlTDccD8WNdbshoOvSBAozophmeoHdoVjx/Gex0hgqOHkKXr4+aPkpE0wbfKKd4NFYAAC1fzDs+24byjVrMz2jmF72ZfuxpLEPPxUR21nQubVk5kLPQsfvksqVNpmbfaR7DsXKwRo8b3gaNsh03Su1h8RjwMS7poQeHujZ7jGcSK3LfcZOvMM2qx4RLQyb3ZyB/nCqLhTvPijxSEGnqe56U42ANQBQZmJVhDzLTGApdpa+XwAg5y27VO+tRyLhUKy8XKLgYXKsMVHwM9vUO1UW647KmNVwHYC7oDOCgO/uvV57IgpBL8kIjMlWBjLSccwY042cviwCTfFJqgSPxH24fFHzaVyWk2AoQzRxNhManKoLuW/I64PedJZ81lyvs9Nwek5AO1TezEsNeLnx+zdjQ9ZOU5/L0sihWFHekYX8KqxvRGHum+DGHB2S6PiHNkPcOGqbu+uuA0bCqbo4yAeZvN3oG4WTq5vg3FibIW/NQ7dNx4T+2w55ZidqrzkGh2LF5SHRhjwORVNsEg8HXpyO6FfGAwBiwrux78TeEgsb/sn9lYo2a7H+9IoC+j1w3dOmG/PCs2d52iFHc/GNkoy8lc0MfVa8+2CpfQewPYXY5u5HexrKEtGSAeDDwLuCpA6Mq0avVJ4ufttK1j9dTvA4ZgBQeCwd5dbKiIAAMy0/+aIdC67UMfA7LzRAMsUWebn2hKbQEZGXxbIdipXH/RNRiAsqsDSzfDQwoEcqpprWQxS0fDzGpmYaxkpW79mGeXfdrnXQU+Zncjy/9RuWocb3mgLD3Vru1UDBlW4XTJ89oP9eeiCI3UdEtsEi1Lj9BTbZ6xdfmhwIVQ5wvxkggYQmjtSZkW41dACbLMUAnACDgwWALfPnSGXpBQQqp8LXTNNVc0d1XAwpx9PRRpKoMD0L8ft+N9UM7bhVBKfqwigT3zF9fZa6DN74+AeaD5PHHQ0dzqvLCSlfjfmyVtcSGoSxqZnoGdnTsAGiTaEZpXdcwPuD0otBVvWbfT3/1/pH4/gHNqRFsOCjZTbuRkHmcWxaMp+nz+/BEPrCkwdK5Z4fYzP0f8AappW+PCQaNx/T3vPSxlrwXj2/8X+ukp4VpmWaCiGk9TQjd5tGACi/epfEY49G7Q18iL/Jt48WX5HohI+I/GloPIZ/wJ7XnqlBUpOPR0FOrgF0w6m6kPyBFli17rQEJLQsK/G14IoGnW2myFiTxzYPojmPXjDZvGieIV9JgrVDsUomhJT2SOsCTM/ezkNImJEY/0viubgY67avRmbfWfweIW4WJx8wCLR0uk5pLU1C4FRdqPTzTul7NNsEpi1sheJk5r8YsG4MCs+dR/b7No4OJqb1/UDz93SqLpT7zRxIhPu4in2k6x/9PCKa5vb3KR0Bkspy+LTmSKn6uRCAZO4s8iIqA5yqC3/OYH5U8/wYwl/IiBQe/mCgL5vTMz+z8U17YSfVIJiL37hDscLnowRYjXIMr5/87PTvRv+eyMc3KLkcmsyMu2dliH7OIaq2kAn3JMypr9gxM3u7gYdjI2cYylBftiPw5/ESnyL/nn/tRZt3Y7H3DfY+977FTgspNEit2YmGvGU27nb7jenHFwWaT/rcHBL+ymBNQKvzbQJ62nvzMAlpU9lJI53CWkKZz9bvTX7jdTWeo/Uv+aY6VYYYajaOnaoL6V+x97iksQ8cCgvRMiGNCRCWRsFSevF3sb0lLz91bhsAbF6j523390Xxw3lwKFZMzNiP7g0jpTLyXpeDHmd2mW/oO3GcE2VdqmFIZ/a//pQELG2sGMY1pTk/SlsrLw1jvylkDAAkt1ou8SGOk7K1bxj689DTbMz0bOXgz0R/dH0/WrYoyOg/E7NDA/m9og7hXLlM+VZcYxD5tpfkcetUXdwHTxT8Mz+xGdoLaEjMgNEi6r6nB/D1/xZ6IIjdx+RUXbiueGLJ1Zrw+SgBM7O3SwuzU3VJKF56bYuXLwsc+HSH35Hxueb03Xj6FcMEbmnGILOn3zVrye4lQ+nGH/1Tmnjpf9cBI0210QQ9e77tRdTeraEEHmldYGhnlyFP4eajzETr8+NJXHv+fmCrErWJIv9HP2Xwyf5vaeYswc9r2mwy7xM15IAmYBamZuDV+MEoyM0zLDBmRDzq+8OpulDsXVa6vyRnB2rMT5R4J7jgCuotzrNegFmVyzSK3uvZpu92gYXX32nkaA7QItZFJyxJn89E+dVGp+GvjidIixeZ1Yn1mtHZ8TaDMAsAlpBAeHh58fL1G+WspS3hVF3oGdWL11F+XTmc+VU7WRP57xkRgwqrdqKwUyv8PnUaAA3yGgAs+fKCt6l5ZRR2bMWv60xngtbkrGRtk3VWC85Np73695Y+JRohCzWAFvFdjKhyhrdNHBdzTmzHud9C0Xi9lo/I+kkczy9SSX0sxlyLTUuXQDgi9z7B8weVqSSV5U6o07eR4pOZfa8if+6eky9h+iL2LZ0fYzyFoPpChjNwlszPbAgdw05eG76TCM/tLnh4M5NS0XyI8lG9T+dFoc9h9t4ISt7vvQTDNyISmZWa9YEYz6l1Sn9DOkO8rKJCrQ92GUGU9EQnXw7FahhHVbfXlOZm0efXoVgR+GoiPDvnIKbT427LJ14I3vvTutoaoN/QBr+QZHj3+g3g5XgNYn96gyT4vZ+A1NkRKL+tLrwCmKk3Kc0cihWeFSuWOCeaCQTK5wkYf/c0jEIPnLwLpkJ/o1IZBLxHERDyXJL0jTlVFyadbcrLqzknER+dayS1I3V+G7c85fwim+2JZQ/O6mR4p+6+DafqQuIXcqDxdQlreP60jgtgqVaVP382fq08Dx7pxc3tAaDFtAOGuUT/fhyKFcHPa+/Rs3JleFauzC0yyBVheLYWt4/G18ZffuAne1kxcw1C046wlTzPx0Fh3MTv7BoWhqLBJwmwvTyep4l+VfsNAGFfmgvtKa2XS9diW+h3/kZ/3l7xvlN1IectO8K+iEPNeYko7NQKTtWFnZ/OgDtyKFa03d+X/85aFoaj7RYZ0lAdh9+TXS70axVdi/FZiTy37UWb7zWLhqDkcpgdGgiHYkWVpUmG9hJF7NHmmrThM6RyuZJhu1bPA/rfpAdgHfcBiWAdTzSSzQDcTRb6Sbzds+Ow/ZtZphOkWR4A+Px4El7xj+ZpxEnR7LdI6YvDpaCZIpSuuNF3x49pmVOjEfxCktvnpZWt55tI31cfnGuMt2oddVvHjT5RqLBKdtQW6V7bRr/JWdgjogU/JXBHqXPbIHQ00+R292vD40KZld2zlQPr9jjR+r1YpLxn9EMojag8gn3Wb+wfHjHaFDrZrE8eHj5KiksDMIfw/a206cVM+1naeDVLc3yyDcdGzTC8a4fCQBo2/vKDaT3uvp2Sxgw9L7a1xMYVP6DrgJHw/MuIEnh8sg3+bzNhu93+vmhU7Qxyo6/hxHt2bibT49AlrG9WzW17O4wdi3Jrd6GwYytcCvZGzbmJpuPJXXvMnpv1ETnU69MVdmyFjP5eBtSveyWz+qNej8XOT9gGpGdEjKTxLWmecfd9A8Cyq9WxMCoM8Ye3SWlEYKO0ha0QMnwPrj8ehYq/mAeGd1fXvShi3LUbANo9O85tnctzE3msvYkZ+9GxfJHbd1ZSPZQm8xMb90EqKTyCZ7ly3HTarL2Re59A9Z5p/DrsizjcqlNsCvUNDw9kfhqNFf2n4hX/6BJ5n5a9A8801NABS2rfs+lH8cZ3TxlMXZ2qC0m3CvFuYGspvTTOXovlgcYBFgPyxWeeRrm15qer7tZEMxJh9N19U0Q5b9rh+6ExNMaKa1Uwrz1ba0V/xL9L9/rti3P6git1sLSxgtvdI1B2QzKK2odLc1hJ87GHlxeKCwuROiMCoeNlU0OHwsJ8VLdUMOSzBAfwOGul1VPSvJX5qQ2Br8lj8F7fHZVjaRSMwmPp8ApoyGOEuktLdPoZu2SZVNLaJZZbEm9O1YWug0bCc9teVP6rlhTeYm1eCno1YOO7oPgOtuLX+xqcgoN1NBj/nwHryJt5X/fHv0oPTsTuI3r8kcfgVF3wrCjb6Yf+ORwA+5CDt47gH7kYLLDiLzsNH79o2tU0YShud4/g107VhVf8o3HqOe2EiDRn9JvKFhcV+h08dC+aJw1Bl8EMivZ0RDm3k5CZ5lF8Rs+9z7Hh+Octcw3rvWxS6HfotidN0zoUK/dlyvzR+DwouZwkhJmVYalSxbAY69t4fjQ7LViRm8Rhr4uTD5imF/ugR8uDnM/iggLuF2DWHwWnTsOhWLlZjlnwXSpb/24X5ezgbSDYZ9Iennma+RP8scDoZE99Qn8Zd67h+ZNtuBBG/o1XBkXj83p7DYGORf6lvo3WTr1ELabYz5Tv2KgZaLFzsMQP0TVftsl9PKOLVJ74OzYtnZenf+ZQrGid0p+bi9D490jcB4dihedfeyX+HYoVZ2NtKBJQ0LeHrURu9DU4VearUDeRLR6iEEaBUQEgIH40AHCfCsvWPXjiuU2m/Ik8if1Ufltdw3ORKG3qjEjuUK/vY8vWPQiN22UYM2JZ/rvKG8oW+yN1Xhv2fzYL+E6+lw7Fioyx/lI+s7YBzPH/0/MhUtqLT9rQcfQYOBQrvm/UkIcNABisulOVT5rInKqy87DEIwAOsW1Wt9n1iXfsuNEnyhBygMrV9+P2b2bxZ06VAcfQNQlhALgQdjbWZihDJPH0OH1xuPR+g36+wtMVXrqM1LltOACMU70LQa+6sD5T9nXTz6kkhFE9+1+eju5ddkvvf9BRJkR71a2DtKEzEFaWzflNZsVJm2ixj0QhDNB8vczWmm+CG2PfK0a0XIdixaCNsYYxKfYZCWFevj7wCvRHa++ypkLY2di7J+JHepnO4Wbz8rqUDQCYMGs2VqTvY3aa9PzT8yFwKFbMDg3ELylruRDW+/B5mJHIS/oUJrjRCSUAbtZa2pgV53QySz/hYBYVJISVRNT24oICXB4ShdDxuyTeeoSwGGkDfc2h50UhTCTP5o2x7Gp1KW3XQSNN11qn6kLaMOOJGJ9PhPWbQMMoH6UD2OkhAJz8WkaCBBigDRGZgua8KQthYp3iNe2dCrKy4VRdEkgLUdgeD4knz22s7/UxBkkIA/AgoPP/ID0QxO4j8ph6HQ7FivVpO6SJLfBJtsFo9+w4BA1mE+SZCXb4PcE+WNFESMxX6eedfILzffwgym7Q/Bpo8qz3NTP36RHMJqSFV2ohpmkHhN41ryFzJiJKlz41Gg36HgLFhyqMvHJP2kWRR6+GmjMzAFQ+wU5P9t1saChrVGqW6QaTytNvAgIGaahp4gIy8pimEQsc7DKURzFmzkywo6e9Ny9D/CMzTX35YluudmUO6/185BhZZptlcfKm+okORi+RyiUiFC+x7tozNc2hZ8smPF9KPnNa7zxUQ/6iODeEziX2XZ1vjZpAgMW+0vMR17AdvqqvnZrRAlZlKTOrqXWwUGqn/cXxcCgaCphTdcGzcmU4Vy7kZehR+t7JZEAzIVtHwHtbPbTd3xcHon7kZV4eEs03KOXPsY3ntIarATBttp5mhATzvHpyqi7UeiSVmdC1aW6aruWncchdwQTkRTk7UFjOg2ttxbSdRo6GU3Xx2EFO1cVN2Iqv3+DpQkfvNmwKzUATPs3aadhkHP+JCbA3O5w2jEOHT2vDBkkM5CzeF//z/Hf/7C9qPhDHI28a0krl30UUy+o1x/CMQlK4y+8V0BBp30ahqNjD0P7qPyRi69w50jglf5nqx4rcbkyLrl6VvrvUeW0Q9IqsYRfBicz483s/AX99NwuhsbsM9QSsGYu0HzQrBjPh8qFysgIDAE6+qG1ga88w1/hTW+s8epTfCx66F5ZmjXCnmKE3bvhtiZQ3K2YuN092KFbsjmmIbv2eNPDlaGBEkRXJoVjxjSKjW14qrAAAWLfHKY0Pv0kJUj4SyPVteTb9KDz/2iuVKc7dlJ/8ggBwVL6s3rMR0+Jhnq93WncAMCBrrtu5Fuu2rzYqGUICUdixldbXgv/lvMsyyinxYntpPOfVqbow6chfPB3x/WnWTgRvHYGrA9nJYGFQfV5Oo/mxeK2mJpj18Ynkedc0rcl/m70Hh2JF8IvMOmTdjl95zEVR2SDyUhLxsfNCEvJ7RkjP3M2B4juimGwOhUG1A0DRdRld051SRX+v6OBRzH6mH06t1tYniuVmRvr1lcYDwPyzyZy78PwFnB9jw9nxNqksUh6cG2vjfUfozCd+boG63yTg1PN2dH90GIKfT8KNvlHw/4n52Kqvulci0t7p3bMagIrX7FqG9IROqR/zAAtnArDQQSL9o+KIPfAR+7fQA9PE+4DomLcjHkX+E+0ksxZxEsovvgNvD/eQ1WZaJbNnYiyseyV92ZamoYjftBxDj3fEWfulUvM2+ms4Dxqa/b4NDd+RnVlPP2tH3W9k/yXxP8VDWpW7C318mMY3pmkHbp4kpo94MxY363jg4HPTpckvYO0YhI5NdssjAMNk6TjSywCaINYHMC1f0cGjhj5y1xZ9fzhVF7r3HsoRsEQ6N86GlHc1MzzRBDR9SjRfrEXe9WTfd5sDUDgUK3ofPo8J1XJ4HrovxlLSk1e9uig4dRqpMyOR1VuL6XL8pzDeDoD54mwLK29ahtgvIr+XhtlQbVEizo+yocbhG9i4gpkW9ug2EEUHj7otg/KLpqQSzwENsW7Hr4Z+UVc1RWFKNRyOm27YBOqpYJOfwTfOs3JlFF29iluPRGLbLK0vRBOm4z+F4Vj7hdpGsFZNxO/fDACI6ToA8b//BNtL41Flqfz+zMYQPSNzI7M+ILqwNpQ7s7srT3+/tPFTWtoIVyH8vM9jZQtFMqUlEr93z7DGKNovv1P9RvKhuLEc4EW/YadvzR25a69Z+6kd7uZNp+pC77TuEgqmGOPJqbrQccwYA3CHWb35PSKwdd4c1oa7MfKapHjhq/q73dZN/Il0u3sEtsyfI90/M8GOOt/JGvz8mAhUSEjlpor6906xj8zo0nAbNyelPDFhnRG/f7Mpr14NFMnk1FKzhoSma6a0cjcv2vb146iDZn3iUKw482tj7I1YZhiT3Z4YgY0/LyhRuLj2RBQHfhDnT4dixbUNgagk9In4DtO+jULI0zvdjhVKv//2LW7uL9Hd+GJ6WnBiO0b4teOmtPryaK5wVyfAzNoe7fgERzMmIpO8EimyBbCLKXSX5SRwAJlp2TtQzqMYfl6ar3hJPOj5FtPmvmGHz0cJfJya9WFJc9C9zFUrcpO40pPS610vACCm0+PosmIPnM2r4PwYG/ezLq0tzVM88WV9phBUX7HjwAvGEBREp56340rYbYQ+tdvAu0NhJuCbfmQn9j26DYTH7TsoTGWQ+eEfxGHbc9/+c+KIKeP+M6aJ6qz7uj/+VXpwInYf0arUA6ZCGGlTSAgT40o5VRcKNvm5ndzISV0SSN7QYFzFesTf1/rLi4l+Iiw8nAqHYnUrhOm166LQcXT0DA6wELwkFp4tm8D7EtMHNJsWZ6rho6C0JIQ5FCviD2+T6jj+IdOG1fg+EQ0+1RDfLE2YeUjo2GRkLW0JgJmZ6IkAJag8h2I1Ra6j5+d+Y47TtDHU97+48SBTLbpfLrESzo3TgCM2rFls2u5aszR0PEvt2rBsYSeQuW/Y0WiuttmhulrvLTKUsWxlRwAssChpYx8eMVrKC5Tsu1Bw6jTW5qVwbTuZhfgP2M9PhwBgW1h5nB0voDl6eBjKEvup2N6SmxXVnJcIj0TtJFPccOv7RizDTAgDgIKsbDSeE2e4fyDqR/h+YDQ9Eevim7u6R6R0TtWFoqsMqbHcb3J8m+ICLcaUKJwC4JtYh2JF4aFjuFNcyIUwup82LQotpsr8Fhaz0566iVW4ECaedjpVhpJH/BK0tL5dFDdNL3hQvD0uTN5F/BT7mxziRV4r/qnFCky2WrCiSR2kztfMSwEWt8upMpAOAoVZv2EZcn5pLvWnWL9DseLP6bMNAhPve2FMrM1j5rBr8pLdbtAcilU6Bde3P3t5ixI3mGKAZodiNXwj3uuSTb9bfZne65N53XSaQMBF7vKLZaR9zd5x2Q3JhrFKm1sAyPiCpfOOT0bhpctuwWm2C4ANeh7InFTkJW9oI1MFAaDB4vO14fwFA+KpWL9DsfIYU6mzIqR3QkIYARURfXVcQzutVem6YXPbK7UHPHa4EPDbmBLfB0fCBBD8IltTrB/HoW5iFUkI01PI0zulcrzq1cWZCbJZv0OxmgthgKkQBjD0PgAGIYzqKimwO9VbxsMiCWH0zuO3/MLT6L8jfi0A0ZAQBjCTUj+vSvx90TuitJbQIP5bjBcmflu1E6rBqbrg8xEbn3vflM1O816zS9+tQ7HyNZHKyvjRahiLMS27Gvqhn08054/Si++Cyo/f8guczdlmfvckpmwgoDB9H6V9y9B71+al4GDrInQPYND4yudanNPW78VKeQCg3lcJCH1KsxJJmxYlhUXwPqZyfooOHkVhagZSp0ciZHEsB5v6x1Ax/gMnYv9/N/L/PT04EbsPSDwR8/LQTLbow815y47DcWwSC1w5ji8KAFDYsRUsW42TuEh6Ie2mMwCVnrVwbZkZ0Ib4++rAaCRMmVnihoW03qT9MttIATCULf4W//eM7ImC3DwAgJJUGWr01RLbKLZ10tmmSGjJnHYsdesgfu9GAMCks03xbu3DUjvOj7ah5txE3Hw0Em99+T2+DG4GzwoVUHSDmY7RKYeXrw/W7Vx7z1rB0njsETMYRa7DJWrml+TswBBfo6O72aZTfBaePBA25bjBzJGfhHpa4JdYDnN8d5TYHnea7HttY+qd6wgtU5HnI8ALs7YS9Tl8lsNq69sGsEDeFEOOKPX71ggdmWIQlM3aINZZ8c/aWBn8u4GPi0/asOvjGVI5iA6TzCdL64ezsTZuBpU6JwJZPeeUmEcE0KDym6R4Ye97rVDuN9lJvtX7sdjzjuY7YdZWMb2YTuyD9EXhKJNZniO6lQR0Ipan/1ZLGh/ueArbNQj1H2NC7uSsZAxd9iwCJhq101S+eBqoL1M/BxIwhVN1odH3sTxmGsB884q9LChMNZ66xOftQUyDVjjztB21U65zpQAAeFaogPXpCVKbLdWqIr91MDYvmqcpS+6CFHj80QDFDzME1pBFsQh8LRFn1zTCnjbG042QZG9828Do4+uu7wFwywB3/aUnjzJlUXznttsyq++ogYttLyBraUtu1i3288URNhbW5B7q0j8z+wb/P/auPLym4/1/kptIgiDEkhuRPZYQF0kkN5TaLqHWUqrUTrRUqbbaUkurm9JS+1pKlSpVwq1dSWK/drJL5Nr3LZHl/P44Zs7MOecm0S9+6Pk8T57cM2eWd5YzM+/Mu2SMM6LS4TzO1xQbFwCdP4pql8JwYZQRHt/LbgvbhMFp0wFcfteIMcOXY2GQL0cje3spp8lWfwCALrg6UsY5ofy6ktSS3p03IuD6W4KiHQDxcMTz6zib+dmC2WqB39Z+qjdohc2tbDxbdVmYsQf9HzGHivoF+ePMJ+WQ2mqhIj0Lsqaq0UZw540IOOQUYPeseZTmoJ9j6Bxgq80B8QDG0U7Ud4sOaY78q9eQ+akRnnseUB0sW/VUw+0eEbS/Hidd8tQIpHSX9kWJi0JRpvw9HA3/FYm595CeWw6tSuaq5sOWIf82XyhjHR6D4WBfougE/wPyCh5i6wXtRkzD/wPYj9frC8lxLcuEAaKCPTtpJc1siMlp4uImP+UhcDGlUSbMbLXQWxYACB8TozgZcl0pTVJE+ZR9D4CKHrFM2Krzkt4M+ctt0QBJSxqIGxn3Csj6I1iaiB8ZJTHpDZQJA8AxYQsfmbKW00j+m/QGKoZntlqQf+kyLTuubgnF4kMWDJc/9+P7gGDxxPq+pL9DRM3yMs8jaInSTHnWR7wc+c1ekTZpIzDpDbgd6Ir3k09zp41y9PSKwoxzvL7g1cGRNA0Lk96ABkfE25NKHc5glievnA9AEkctyEdGw3uo+91Qjr6p6SIj4FClMs2TzT+6bksIkXUV+bJw8PWm/TDMOwrRtZrQfAgTxuYtr/eQclK/k3fE+afZakGpNfsUbRrUl7fWaNKLBjnYZ3aT4rJLrN+9VySz9tX2lYKupmggYv9XsxXjhDhjZtteTjt5zvy9Ng6PnS3RN/CAor8AwHGnB41DmLBasyTT0Js3hMP5r/3U2MOd7uKpasU58dw3dW6CdNslBxvv/BgjFyel+WLE95tCn1O7uCjqzT5njBPTJ/3UEFHHOsOuXjDXn9w4ttdR3VV5nuFHuuJY+K80bKxvmCoTxqbt99sGLizqvcH0WbfzMBocKaDf/KbUBGqM5mxfXtk/LzWdY8LYOTLaU7ylr/RTHBWPBURR1uzGtWDSi9Yx24a3FeeWm7coE2b9QOwDYqTg/N/elNaSF8Q5s5b7JdVvPSksR8z7txB0Oy3ON8SUuFpbAED3lPaKfCKOKjd997qIp/jERLkchJ6VvtsBgGPC2LFOmDB5melf8vOdnWMJjtbUb/n5ivyvNjEOu+bNU+THjtcgx1Ko96XkBkLuMsRsFY2RyOkiv9O/jMSxUbwImdlqgdOmA9AF+qHST3HoVvqWYuNNbi/V2ipxvqRj1fidwVy5+SfPwueNYyh1UWpr19940WOT3oCkJaJhhhPDRdpSvouErnIlmPQGZP4u6scSKRe2PklL61ODEGo3aCydausJwYwb3opv0qQXzb+XshMdxc955MYmNksqJz8xBYF9DtlkLG5sFOfPCgviUTle9LFFXJu09hVvSDNW10HWR0bYFQhwWcfrXCa+PZu7wZWvc+fHiN9YO88G2HjfGcHxPZF/VTR6cuqdWdjy62Lc6a68BQNEFxjEHyehl6AwJmzJo/2G3Km12WrB4W7TOPqC+h1ElY6n0Ta8LYZ5R3FMmNlqwfwM0acecWBP+kntgOSFgaYj9kSgMWLPMVadj4eDV1UA0obB1saeILXTXHziK/m0Uds4FnbalNPpJlp17aOYyMM+E5mQlmV4PSaT3qDqDwhQd6DquPUQDjWfgQdmX8Qe28b5QfPtLolz1TzkQI0lsDST0zqC+Rl7FIs8IPlxImKcciVlgsbHxFsjsoGQg20HNb26E+/N4uKVW6YU65HTBgCl1xzEtIBHImYnbqsyV/lN63NWx0x6A9znxlPHkLpaQXCo6knfT67Mi8PJ68H2v9lqwdHRs7gyR/qIm6a8i5dwe5M/LTOvubhxyL9yhd4S2Fro89LO8Zv90bVofHYcEst17KaBjZM4Rzrt71PmMo1bWN3Y/IlBDha6IHET86DJJRqvTfSbMFstyGh4D7HbVuNu14Y2y1EwZwyInz6z1YKypR5w/em400M1P+J4maBVl7c5kUlyU/XKIylaciBC6nu3WwQWZuzBmYGzbJ5ys/+rfhWnmEdYcST/UUrXEWw9q00U6UntPBd7Q/7A6N9XKupUfbE4T2R+2hAV5kvfQphFEs1ya5tEw4koHcGNjYF4YPZV5LvyYjj1gWe2WjgRM0Ac+2ybV9KVUt3cyNtE7SDEbBX1TwkepJRBySTRypnP2Hjknc+i+bYNiwYAHB85C/mvSps19qajyg/i7198dtIyWRrIb583jmFVzSowWy2qRhlY5DS5SOkmm9eEuo6KcVlqzT6uPHldiSNpW99h1YTSsI6Wxoh8bjvbdzb2Zkvi0JvP7adihADg96FtMXj52nS7h7iJtnMUD9JePdmB6r6Z9AY03HaByydo19u0zia9gRo9IHn6fBqvGMvkOT8pVcFsmq0Wut6yYOMEDTxAmYtff/xe9VthDzblbQaAu1EyWy3wHx2P1Bni4dAp4y8w6Q3YVmu9gubA3oep6CYrwqdWDumT+50aKuJtCHajDAvb577dj9H5YIi36PC4XXRPbr6wVafopl3g3ucmjZcyTTy4EPLyRLctOTkAxD215zdx9PtN+S4SQpS0T7HF8JutFpwcJjHVbUtmo2oXae9A/Mu57btA0955Q6xj0k8NMSK9E/XHqUY/G+63tR99ZkVH2T1Em9bd0a1qJHWszdJMDpHl30q2YAeT3gCvL+KQOEtSsUj9Rlw7WIfPGv5b0Bix5whrE49D516BTnxl7V2Ql3mefpzEfHNhpydqmwp20+HgUUWxEWA3kVU6nsabC0WHho2GD6bh5ReJE+T3AcHcST4gOlq1Lyla1EpcEMqZ22Xp7HHGitqH7NHdywgXk3hyfGV9dUU8QNSfEA6eUJ2Qde4VaPwu40fTOhInyQBg7HUY1f/pjZRmi8VTUJlCPWnDJX83BSBuIDg6VHSbCJKmKxc3Nl/2NzGDrohTIFkTHFme101YnrkXF9fVBBG3IjQRpsvvY3GDkX8qkbs5JH2lNpmzm4noJp0VjJ983JRpk0KfHbYdgoGxeDzj3F6uLFvj7dzESPh8Gk8ZHhbJPcWbCqLXJ28fx3LZHBN7rb/Ytzo30fQxuR0CgLYNWqvWU15/uTiaSW/AptgVXDlkg9Dt9EWbTDTrvJXQm9xzNh1T8XXX0HCAZ7gKmvD6naQdH5pCi2RyWboNXw9FmVM30b9aIxjfH8LROCgxVbERNFst9ESZPaAhTnvZcsmNISAaCDJbLbT92c3rt/51RGX/R+EX3zdSMcBTMbyFxAMGHUcLCff/IIGj3a1tEnbXWcvR71ClMo5mVMUIH6OiT9QYUHYM3O4RwY1TW33atr4JgGjC2qQ3IP/mLXqjl/zmHOSlpkMOs9WCjQdi6TMr3k1AGE1b36TZauHmZOI6Qn5wAoBzP8Lm4bYknh442drQqY0HADh/vRzHdGa3Ey2jEotu5yPuUp0YeT4EE/3qc/0wwkdi3OwcHBR982GKqJfU5fRlLh3Rmdx8TrwpKdFS1O0j1nU/ryi5IjDpDfDtcZSjx26v9FttTlKbFwqa1EPFuHJ0zGR1qkbfXR0k9r/x6EPO2bqQlwez1aI4FGTb1dYBgPydSW/A5XeM8O52XDE+bc1lgKg7zNYNEI0I2TUQ9XVJn/wzcy51Z8DSEjdVclAtP4xgyyw4elpaf6pI8wKL3FahiN25BvlXrtC4pVdJt0yXxz7EykxxDBGHy5vvO6HJsQdI7jkbdnstuDBSHDPEJU/wjKEwHn2oaDvyLG+XT9zPwqQ3cH7C4qbNgRBZF4Hv7sO9V65wusyAKNKuBuL6Ql72zvnzadimzStR0KQexm/+VZ5c9RsxWy1UTB8Agobup5ap/T4S10i/j+NRfXHMi2W+vqDg2fy95NB0xJ4DEHnb+t2+QPnVFu6dfHJ8aArFjsULuDDitFRtgiJhaha6iKVCufW3H9Lj6GJKyp963Y8qucrz//xKMCZUPGnz9FEtDUu//F0bvwgE7snH2dBcxXu55Th5eYW1AYGuZiBit63mwtqfukZNCrM0EjrZPGzVzXAEsNQTjWrkX7miSpcanbbyy/rIiGqt05H/qrXQ9nzQMRwu6/Zjano8Bn8wAllt8xTiemptsSxzL5okDKFuEGzFr7m3F3IfOsC/Jy9/b9IbADs7WEdH4viIWTbrQ5xXFtZHiQtDUbLcA+6UExDNU1eZptSjuDIkEofHKUUI5fkSq5MEtuITx7gsWFqTf4hA9fk3OOV51gIbmydbjq1+q7avFDIaikYbLg81KpS0zVYLoo51Rv6ySii7PAGOOz2Q2/SC6jiSl6dWvv8BZ4XOIADceisCN6rbUWfUtsaYHEV932rtnPZrXSQ2kXQEg2cMpafcASuGwP+DBNX0tvIERPPxrKPZouhRpXtbVdiZLtINdt1vhsLzlzPIv3adWssrrF7FaQM5qh905Oa3xDnhqvUYl3oYUc72RfaL2SpZhb39ZgRyytpRHUXSVn0zGsMacQcfphxHc5d8mPSSZbk7b0Sg2vBE3Ii6rsjbwacaEod6wu/DeK684szvulpByD/FG5AZnnwGbUuKBy3EYqqt9Gq/600eSl1skHa7uK4mqjzSObz4nhFHPxLnowujjMgvAZSIuI5KHc4USbvcAXVR8eVgLc+SdDo3N+TfuGEzzzEpx/CVf4jNski9WQvFrF63PJ3qbzu7Yol4FZWPPMxv7WDUnHKRMkAOVSpj42Ez/H4fjMDh0txY0KQep79VWLks7nSPoJIAujJlkH/7tiLO/c4N8c9Pc2HSi34S3b1u4kD9VYo5EVDOi2arBTXnDcXpQbMK7WNb9JG8o+s0U1gKZcesvPzCynihdMQqDXg2OmKXFzzX7fG/QmPEngOQQR34y8fw7lW4udnkHyIQMCLB5gdui4GQT6DkvZ2TEzan8YriulqiNcD8U4mKjV3G50b80XcKRvhIFo+im3dF/mnRXwphCtQ2inJayMRa2EQpR3EYGFuwxQgIxrqwizsKXaAfyv98nbME+WHKcQz5fRCSes1+rLJYZL8WzhlcUKMlcVY4goYqN2KXhxpx5DNxkZCbnCabnJy/fXB3lQcqLIjHrHN74O8oWrvK+dsHTq3SFeakSfl+f/dHYJ9DNje5gO2FY9a5PRjq3QiJ88KQ1q5wQxTycn3/HAS/wIvULDwpL2BHX47Zk7fTDzd8qFPknmfOo3eZqzYZu8eB2WpBq659YLfXwpVX74uhqDQrDjFJyZgdGKDYPLP0sdDVDKTfAwDYhdWB98xkfFx5C4Z4i6foiQtCETTgIM1jzk1PDCmXRctuefo1bKn5F5evre+4sPcmz3qKDZjZasG2BzrErB4E34/FTXDSkgYI7KNk3gkjbm44GwOZG4DCNsu2TtcBUZH/bjVJpxQQ/dMFxah/H4mLQjkLZLaYoaLGsK5MGcw5EcvVQY4L62rCo+NpLs/oVzpRva+UKRHw/yABFePKFeqyo9vpi1hVswqu94tEhaO3IRxSHhyp1VVOu616tWndHQXHzqDavlKY77WXxgUk1wrFQXHdmNjXrYmCo6cV4YUxDSxNJDy6aRc89CxLGQj7UqWwKUkyGMQatlDLP2OckYrH6iqUR/IH1RW6hfLyCSNLngs7DAKA9EmRhR5KEMMKNzYGck6wbdXbwaca8tJ59xdmK+8GwVZ92bCi5rii+oKg5tyh1O9bu5M3sCHYrdhM9fqsA2jvGcbFZw+jrg2IhPuSA9iccdAmzf92ri7ugZOt+bE4ZbY4cQcLTkYpLN4WRkfaV5F0DDr4+XA+7GzRBQDX+0aiYmwK8vw9YBd3lMt39dnDL475eo0ReyLQGLHnAJwfsdcbodSafbg03AjLx7OeyISWNL0hAocrncECol+fTZtX0nASJ8LyOq7ecKUbYzat9UMjdwOiBnKrVtiJkLwO915viD3T56rGZdPI37H+T1x2VcaNKd5w/mu/zTYyWy0wvj+Es2ZVGNNX2OZCHkb8aNnaiAL8ia0tqNHEWleS5535e214va70Q2Yrr3/7Lq9ZAzhsP4SrgyOpeIytuMVhposCictuaGy1LYmb3S6cWmO7viGIM+lutlrQaNhganlRTktuiwbYvnRhsehTHCwwN6FqdSXWP4s6TCisfmw4eW5dLRSbMw7Sd7a+c/vrd7Bx/0bVuiX/Ug8pzRaj9Ws9sfmv5aobnqJOdwclpmJekORw1Wy1oGn/gQoLdLbmAHl7smWzlkxvvRVBncwCUFgjtHXoJMf/+l2oja3C5jdAPKgiluJs1V8Nvc9mYml1UUTPOtoI/Xeivlxr73BO2Z/8twutjV/WzkVPryhRR+fA8ULLkt+wFKdN5FZH81+tD8cb2ag69xy97ZWntdXfgHJc1/1mKKr8qG7OmxyOkPi1Zg1VuKQoqnxAeeNeWFwWF0YZsXb4t+j8w4f4cMhvWFrdS1G3NtUbK5hiUrfolm9wt+uPMw+U2l2RGhpi58eMaaWh73RKtY1Tv42k+nry/G72jkS5pfGq6Yj/TgUe3bARGpsMHsRJ1ajVa0LqIUxs0IK7HSSHH4C4dhIRQzku/1mD3mgWBbbdkn+ph4C3lJIc5H/GeCOqjZf6/0GHcLj8uZ9aRNz2QEdvj4sLbt6ycTBC4viuG4S0jvPQLrENlXho7hH84tyIVez/bBixKwuf6/b4X6HpiD1HeP3QBeyZITIilafH0Y/f19yfi2e2ig42AWBquu0TwZ5nRB9Yvn9KTlYbDRuMS8MkscOCY2dg0htoWaFjY2DSG+D6lSt3O8HGyXMWnWcS2JeSZJ8BUaa+ZomS3ITEpidlm/QG6AKljdue6XPR8vRrqnFZBO7sQ8PNVgvcdFJZD5pcordP8oX9TvcIuO0tD5PegMsdsjk6SF7vJ/Mnvw5eVWk+Jr3oz0mtTQiIM2PyjpRNjFMAoJsLIhevVke1iV9u+YykyfzUWCgTBoginQQfpkiiiDX29FKUnzhLMvaSNIPXh3tYVtQpOvT5bNpm8rIK2/zK49oCUdw36Q3Q7dBjY5yovK6rGYi2jTrSvDNW11EwC4tmTqX5qPnVYs3fy8cZy4QRf2hqdKsxDbFHtxRa38XV/qFlJs1oWCjzaovxYeOTZ3ICTd5VXxSDsE95/zabNq9E3vksfHG1hip9Kc0WAwB3e3P+E6OCFrUxD4gn411KS2JDJL6aBToybnqcsaLR8MH0WR6PLXtTsmSog2XCrvWPRMX2jzZvj/TV2O9ZTu+DjuGUBrU5hsxlau3P0gUAB+qvouVkjBfbqsJeN5tjBoDCUpzappjgTndRv0xXK4gyYQA4na3N59QPnDav/4W6vhAOiN/7J5dCuHYh+jgAr99mtlowIVVyB2Grf+69coUL27p8EQospygTZrZa8GmqBfoEV5sMNgBqGZGFSW/gmLDs16R+A4BR+7rSdwMzowplwgDgs8vS2GBBmDBiHMhsFZ0oA8Cqu2VpPNaYk9lqwT2vAgx+eziqTItDT9drqBxfRsHEFNy5Q9uOrbPvXwMRu+U3mt/1fqKe7MV1NRVtYNIbcH5NME2/JGMPsrvacXEA4NTnFaHvdEq1jgCQ9NZs3H4zgqORwH3bOS4d29dqTJhdWB2Ys45w3xfxqXhxhLS3kK+tn/s1UIhoEiYMkPS8Lg/ljX8lT41QMGGFrR9s/Vkm7EYfSRc+eIY45k4PknRZrw6OhMuf+3G9XyQCRiYgLfcuvvXn/QzK17yiaCJM2L3Nflw4abegoWK7yQ03afhvQbsRew5AThduJPqhjKs9Wp5+DfbNMyVm5ZGoU26rUDj+fVCRvrCTO0A85dk9e55iQgGUJ+iFbQ6Lc1Ioj0/yddpVBRd+9qVGP1jc2BiI/fVW26Qv5fsI+I9SOZV7BFb0L3FRKNJaL1Cl02y1wDd2ABUJu7CuJhzM5aguBSDd+BDoE1yxuNo/NutLynjYOgwlNh/gwuS/2ZPpkClD4TE1jqunvN6FlUfiRY0YQhWjzVYL/FcNQcCIBNU0cno9xibjWhS/MKqVR+ixC60Nu7wCFFhO2aRL/ruoPMlz43cG43KoPXw+jce5CUZ8/eZSdCx112ae7Ekt0cFw2VUZ6wLNNpmYx4HZaoGvuX+xdO0AUbQvtdXCIr+T/FfrI2LaARww6JC6wgC/N0XjM7HHtlE65W2pVg9b48RW28tvTM1WC764WgMhLhmYGRhksx1Y0UC1vFkdjjYnb1LRUbW4RMRN7btkn3VB/ojduabIb8BWmFrbEN3Sgsb1YP+PtDnL/MxIN/HydHL/QmxZJB4pN/23EE6kyWy1wH9bXwT0Ejesn12ugwMGHcxWC5r36o8S8adx+beqcH8tkdN9Sf6lHqqPyKBmuYuDoublotq7uOmKeme2itYm82/esp2WuUl53DWEwP+AMy5nl8bh1GoIfPswF0fuByvscDd6GJM4OxxpHeahbVg08rKsAJQiuWyfm63i7fmeGXPR2rchtfzH0ljnh6HwWnTWZn+RekxNj0dwCZdC60zKLx9vxf3qlaguOAE33zzSXSxs3Oc1b4C0XqDzUkxSMjenFge2xpb1AyP0U5TML7lZVyuDqEEA4k1Q0ND9uBUbgLLRkjpG1kdGeH4Th7ub/bD3kdPxotYVNrzTqStUxJu8izzaBfF1ZfPJI7+QavufV2IGweXP/dSvYlHtZf3AiOMjeQmXxFnhSOs4jz4XZz0EgOi6LZFz2fri3Ii593s2N2JXFz3X7fG/QrsRe47QKUg8fbFvnglA+niJvkmJj/lTE7VFij2xIf9d/tyvmAhMegPaRr5Gf5NJaNsDcbNArC/J8weAebf0qqc/WR8bkbgwFPUnxijyPZ7qidEfr6Bx12eJTIuDRxUFE5Yx3ojAX2JoWGFM2KXhRjj/tZ+aHQ7qx8uns21h0hsQNOAgtYbl0fE0Ks6Op22W+ZmRY8IAqDJhanUvsfkAWpzgxc7ym9bnaGDFgzymSmaZSfzrG4Lob9Yyo/xElS2j9KoEpP8WQt8FjEjAysw4arpXbUNzbUAkdiyaT5kwtj5qG3+SXjh4gnNCTbCQcSEgXywdd3rgzhsRijosve3OlVdy7T5qcc/78zjMDgxA0/4DuXJYXy7OfS9Qk+ixJ3cAEG9DW7ftScsAgPoTY7DwVhWajvUvdn2DxICYrRZq/pqkJ06izVYLdOXKKsYSi2q/SQYV2P8kzcX3xFNe3Y7D1IKg35viu/yr17hxIO8v9s9stVDfPmrMWsOP+JswQNy4njL+Al2QP/WD1OLNfvgnxBkzA4NoHdk/YjUvrfUCLi9iHZU8sz4GNwWXg9lqwb3NfuI46y/d7pitFlUmjK0vyTM/MQUJ2fmQQ22cmq0WCJF1uTzVvlfhyEmxXv8c4fIp7CaFWPHTBfhyZbJ9ReDzxjHF+EhpvhgOfj6IDn6VMmEAsG3ZQmxKjsOhBquQMc7IGSAIeOsIt6knVmXNVvF2Sa0N1A4eWKy5W4Z7L4+vlp7tp6yP+Zv7Wz3Fm5UrQ5Qm1PNv3qJ5VttXiqZ5aAoVIxRx7kskPOpMHUrzkY/zlLBs3Gl8FREBaTQOQVWH0hz9hAkzWy0IitmPbqnNkZdlpf7ViI4sQfz3c2j86JDm1Py/nAkDgJMPH+D4iFmIPbaN3uIQ0/ZkLrHk5KCgST2M9IlE6NgYdDoliS4nzlVawSzzawLy0jNQwnyQmw/YNjBbLQh8dx+u9xVveHTB1Wn6Yw+zabuXuHIPP0T9CpPegKt/BWFOrVpcWfbOzjYtExKoHQzpAnyhnxKHwANOivgBbx1Bq659kPYr72/SbLVwbRg0dD/uvBGBstHJXNme34iHk6Vbpyq+M1vMTHC8ZGJ/ba2KHK0puXdRpk2KMm3CMWl/sa0v19ZXQ8Q+tIs7SsPJGguIexaSPwDop8QpvqGgofvRukMvWoeUFeq0m60WzLghWpmeet1PIdqu4b8B7UbsOQCrI7btwkl8dMmAeiXPobvrjSJPY8ruqYBbja5xG+62xvYKBeHCLCuSmxpAFJMovyged7tFoPQqpV8hAp/9LkgPfwAAikU9aWl9CHn2COp3EGarBeFjYrD/q9movjiGmjNX20SS9IWFE6tUZqsFrauFUktncmY0dGwMKizkdZiIkrt1bS0cb7hCtTxbJ8vs+/NjjKj6lXSKbtIbcPnPGugXEA8/p0vUIph9SA0UHJNEKj5NtVCfUHJmsbinwya9waYlQVvp7BoEQzh0Enlbq1EDGQAAex3M5w+p0mC2WvBqv4H0lu/agEjq/LowOgnU8jw3wQjvzyWH3ykrDPB/xIzYhdXB5j+XwaQ3FGpEgM0zaWZD9Gq0B9smNUKp3/cp4sjHWev2b0E4eAIbsg6hnWcDSm+r19/G37//TOkurH5Fnc4SYzoEF0cYqR8pNbB6fya9AWGWfGxY2BiVZ/Dji6VBTieJUzWhNM5H3KXhKcvrwb/nkSLHFwDO6py8DF1wdU6f5Zu0fRjdazDs91iQ+Xtt5GSWRsD7Sn1Lebn2hlrcbaqCrvA6wP7jNt/Pz9hDjW2o1akoy2xqIHUN+jkGiW/PpvVm8ydGJOS3APTbf8eII5/OommLU6ZJb0C7kzcwzO2czTmA/SbkdU6eFoGA9/n5OedvH+ysvc4mDRmfG6mhBmLIh2BC6iF87iea81ab32yNITsHByxN24Vej8Qg5XNAUW1w+R0j9RUGgOoyyev7byEfy2QeI+GNhg/GnulzbZZzd7MfSjMGklgIUQYk93BStapptkp6yHbbPSE0y1L9dgmuxETi8Fj18VdU/Ux6A9VNloebrRa8MnQQ7vW/CfxVAe7zbFuoLA4oXXZ2gJ09UJCvfPcYUDOApFreIyQuDEVQ/4MIOWwHy42qsG+eCeuHRui/VR+v97o0hOvGo9iUmkDrqTanFjXH2orXdOBAhWscAHTtL2ovweLynzVwJGwlbt8peHGMdZTv+2xuxK4vfq7b43+FdiP2nCHwlxjEjw/H4uriKcnVv8RTe9bJKasXdqvRNTzc4k0nmOAZQ7Exbj23IN7uEYFS50WmSY3RIUwYACo6WHpVAtqfumbztJUwYQTk5MfBqyoCex9GUL+D1D+L801R2ZXceJj0BmT9EcylM+kNaPFmP1UGjNBgtlpwzSQ5Ghby8rg6sWkOTpJMkZutFrTs0ZcyRccbrlCctsnTs6fbJGznA3sEHnCC7qEYnrgwlMY9ErYSG4LdMD2gBg1jmTAA6Psn7+/J1gRNnKwCou81eXzChOU1a8CFX1xXE7oK5XF9g3jLUf/gG+JJ5CO9H5YJM1stQEE+pbX2j0MVdSZMGABUWBBPdcvYPrLVX7oKoi6eXZiom/GgQzi8P4/DrHN7aFzChJ2bYIRw4DiClsbAbLVwTBg5jT8/xojznxjR+rWe9F3gO/uQUNeRY8KqH3TkFltCs0lvgHBQFM1ztNNxNBPxE1vMrBBZF7DX0fchh+24uKzj8ZRuc5C4KJSmPfrhLKrvJm8zs9UCIfchWpyQlLkPGHSocEo6OW79Wk+ujaPrtlSMT0ILYcLIt6JmgdIWqjC6Gia9Aaaqko+d2C2/ceV95NsQ9nvEZ6/XT1AmjKRlf7PpyG2qzfGzn3ejYOrcm3smTJiDj+TryWy10O+FZcJIvrfeirBZHvttJ749Wzq9fuRX0cFTj4vvGRE3TbwlOT5S0idh68o6HQaA2KzDSPpZur2V15m0y4ZgN5rGpDfg/CfSzZNDVU8IB47DpDcgaQn/nQOA584CxSaPMFZmqwXjUpWGN04PFuk/vyYY5Z15YxqECQNEx98s/fKyufGbl4deXlFcW5r0BkQd64yHW7yR+ZkRd7s2VIy98DEx+CE9jrYdec+ayFebHx+aQml7Ovj5KOoIiO5D1NobAD1MInmX+n2fom5mq0XUg7KKNzOk/eV1sNtroUwYyfPCKCPtF2IMSmgmOfhVW38B4PDY2dx7tfYmuNkrUhE+P+EVDEoUGcYL62py+bis249DDVbh0HjePYcaTWpzBBtO6RIEyoSZrRZkjpV8/I1KPgld9QAkzVT625TnzzJhxMk0QfpvIWj5Rl/0PXtOXG8XiExYXrMGOFZfoJJDhAkDgLbhbbk8Sq3Zh4LsbNWxRGhpOnAgqh90BCD66pOvBXYODrgSI+mXXRsQSdvCaeMBmK0W5LQJg3VtLWkNf7T2s/k0O36PhqmtNUfCVsKkN6BTUB3FOw0vNzRG7DlD0luz4TjsIn0eHCBuXD/xFx2Hmq0WlLTjxXaI40tAXESj3hvMfehlfk0AEnjRGfa/HGSSIn615BP1tQGRsHOSxBJqzpE28XmZ56GrHgCz1YIrxpswWy1w+XM/x1yYrRZ4dj6p2BTpdh4WN0XzwrhyLw+VjAbs/mo6R7/ZKjmqZfMiaZNmNIRJb8CWXxdziwn5/c0jmXX55MguZESU8Sv/EPzkuQ8e34uiCGltFsAutLYira1TsEqPLHS36vK2WrNTulKPedI0fcpc5tqfOIg2Wy1UjDJtpaiEX6XjaeRfu059qOTkOijoktNEaPX8Jg47H9jTZzZd3lZx4/utfx1FXmxbmvSimXAAOP2dn7iRmSqK04aNE/WMKusc8PkVkQkPOWyHnDZhODNQ3CD6PnJUTbD2/H54fi0usieHzcLJd2dRptJstXAbJELDdP0Bji6WZhKXZdTUFkX5Js4u/ih38nusviREkDIlAsLBEyKz9ig+Eecjeec52ynyZGncWtuV6+MLEdK3JRzi/fPlX7lCRcPYvNQYYjlsMZpq6Ul9z68J5g5DbB1eyPMDxBsdOZ0krwvraiJoSQw3fhT5JBxTpTEvPYOjg2zI1OpRbUiSTebQpDdg3b3S3JgwWy3wHy3emORlWXH0o1kI2sV/r0T8jIVJb6CO7qM96yO15SJ0O31RuYGFJLKcuLgB7GtLxlOqTpY2lBv3bwQAzDm3B7Ma/UIZAwKXP5Xm/llaJvrV58LZ9ycjl+OPgC2K92mTJVHD1JaLoKsegNZn2qqOrStDIrmxZ9IbxBv2R3FLt0lDiZbn4JZYgNKr9yn62e3neM7xMwBMSjuAG28rDeQAgC5QFHd12i6JlBEn25ff4fNhHQurjVvTiduKMHn7lfxecuie2mohAFBxahZyWj2+5xnL5F/qqTI47Hhj8yKOj1nRPjmdxO+aSW9AnWmiCGfQoANYbI1Cp1NXqAsGAvtSpVS/W2KYhtCx9La7Ip7OzY2jVw0mvQFekyR95+8DghG743cEviNK4LAGuQrLJ27qHO6dzxvHYP/PESyuLh40Bw04iKuDI+m6pza2885n0d/s+8QF4qEpORwmtACio2bCEK5bMB35TetT1QkAuNuhAdUjN+kNlJlnv22nTQdwvOEKNH53sGrdAGBtZl2OViImTtrf8JXYl7d6hNvM43mDIBQ8k7+XHRoj9pzBpDfQmwuT3oA1NSvBbLVgWkBNGjbEu5FiEmcn270/zsXN3soFjZ2A9mYXoE2bHvTd3c1+WJa5V3UjLj8Rq7AgHpvTxEn2TvcI+P4mMgtEryn/bDJNR/JhfSIVtYkMGnSATti3e0Sg0qw45DcVNxbtug+iiz5J/6C6Un6f5Bk4jGe0zFYLsj6WTu8+7jZAtZ4siDiH2kaU3LKcX8Pr1LG6AGarBX6/D6ZK4HbxR7ny5BtFcsPA0kye73o5K+jz75eMNq27i3k7OdE0xDkyYRJY2OoDk96A7NfCuXZwaJGBG29Lp7AmvQH3Cx4q8jJbLdQvHNHV+91/K8xWC040ECfT0vbOSKgrnj5+V+WIqlU9gpKPRB6GJ/OWPZ12iTL6aj7QACCnbZjNzX1xGIrCGDNdkD/3jjghtos/qlpmQZN6OPCl5INOV7Eifcda8WLp8/qSF2XMa96Ae074bo4qbQS3CpS31fK47U7e4NpBbVPKjiESx21veVWGXl4WAGz+cxkXj8wPiQtD4dHxNBL7SCf0xJqhPB/rB0bMu6WHg0cVqQ3L8JZL5fMTAIRMETc1rg45lEZ5HLPVgj+uSjc/0bWawG+NaMXx5MMHSFzcACa9Ab49jko6TuF1cPXtMDQ59oDfVC0K5SyfmfQGrKpZRZXR1+0Ub6uC+h7C1TA3yMHm6+tYGq1L5iDxXUdurABA2GcxirTysuSHDvL5nf2f2Gc2l3/+2WRsrrFRdfN8eNxsNDhSQNPmtmhAb9gBUF0wYkhITpva2jTWNwxuP4uHMZmfypirpFSYrRZOjJfkw4o2cpvyrdVUw821yyjaKXSs2JZLbleCnZOTwjw8ACyvUZVLc79zQ/ouY7yRG18knLXaR7AwYw9HT8Zq6cCCuGHx7XEUqd/wOpYkb/aZtaCZ2/QC1taqSOPpyolWHwvuSbefxHqv2WrhwgGgd5mrivKI/m1uq1DVcUDiqq1j5D/pOxJ38PlI7lmehsDB11sRx32uJFbqu4HXIWbjymmp+WkGctqE4Refndx7s9WCBhOk76hb1Ujodh6Gk50jDSu1Zh9n9ZjNV94eJf/Yx1lmJRIdDzqGI8HwOy03t1UoggZKh4YmvYGKo2+fsFBRloaXGxoj9pzCbLXgbrcIzM8Qb8SSfoxAyvJ69J18k15w7x43CZVbKt0u2Lu6AngkQmUnmr6d6Fcfmzb9SsvbG/IHenlFcROUfV3JnK58Q0GeXVcmUMYrcPg+WNfWUsRX2/jmv1pfdeFiYdIbKPNCNi9U2b4gH4nzRDGCAfX30HLYtGptatIb4Pm1dHpHDWicuM3RQepB0rGbeHtXV1zvx0/MJyOXc/HX1qrIpQscLukRsLSY9Aa8n8yfYJLfiYsbKMJIe5j0osiS2Sqa9g75WRSFIArRbfwkMQ/C+L3abyCX3+b7TlwffOUvKiQTU8RsuSXuSZsuQGSS2M3tjbclpkLe7+T53CreFHB0c8kEtRxse08P4E2u5zS5yNE2nzEWYtIbVGX2Wdrlm/eiwNIcu3MNANFqo614AzOjaJj9riNoEyjpz8Qe3ULLdVsSj26npZP36CadVWnKLS2KUuY1byC1r50dd+NEYLZa0K1qpCJMXo9ph5pz/WS2WmAfUoPGY29H2HxW+m5XbKjlY8X6gZErL3GWyNiTbyCo/0HuvUkvik+xtJDf+ilxWFOzEvIuiH2e0yYM+bdv49NUKQ7JhzX9/jBCFPc8H3GXxsnIk0Q30yaL4/VSpPjdp6wwIPbULnzYfAMAYKRPJNJM0oaooMQjYyz7j6PCwniFv6OgfgeR9ZFRtT8A3n0EuQUzWy0ov5g/XZf3lUlvwKGchwh8W5z//Lf1hd128cactUDb4FA3zniC2lwoL8Ns5W/Y2W+10bHOXNvWnCeZmL/3ushQH6onbR8ctx5SHbvJP0jfia1NPAAqwkzAHkaotQlLs608OX1YiFYTzVYLah+yx8Mt3tw7ok/8aw09hJwcJP2kFKsDQNdEs9WCf36aS8drtfFxiG75BjWUoUa3fd2ayG4XTq06kvY+HbVMtS5+H4k0sbePBLaYWrPVgquDxe8g9tQuLtykN8B/tHSzkxMtSZ6ore+stIcta80sE1lY/7J5p4c/QP1JMVw460qBpNu4908AwCvHO6nWPWiQNM+zxjDUysy/dBlOmw4gasQQBa0scydHyneRuPyOEck9+UOKc6ukG+qYpGRuvXJZJ7qUWHO3DN1ruKzbD7+t/Wh60p5qDOkLJZooCEDBU/77D5ix0Bix5wj2tYK4SaT0qgQMrNYIJr0BZc/aU8V7gJ9s1CYeNs6ms6L/IuHgCZizeN9gar8JWEaNzY/8VnsmvkxsTWwknm7HYZv0Ary/n/VZB5D0U0Pqo4SkS2s3HwCoA2U5I8Ba9ZIvdCHfD+XCR5ZPRdKP0qaBOMYk5ZG0tWYPxaaz/6D8IonRJSevl9810kVQno4ti/zX1QwEALQuKTJPZINDF5q+hxR9a7ZakPqtWAYxS2zSG2Cpx7dzQbbkJ43ksWPRfKStDKGiUaRcAnLCzdJLwOphEXraJbah9XH7WWlcQ77Rr7iSt7iXfzrJ5jgx6Q0o2OZlc8PBbsqI7hAAegrMHlSQdBXjyinKKQ4zJmeeAaDcn8eRsboOp0uTOEfc6M332sulJyfP8o0kAKyqKVl0jN31h+p3SMTQHLYdgu/GgSI9goDZv8+Gg6ee5smOL3m95M+BvSUdItJWBcfO4EGHcKQsrwffT8TxnfO3D1d3dr5RY7oBIK80UGGvdNOT1nEeR5faocPFdTW5MlgLopmfSbcjTpvEzdcrznyZJr0B+76ejZQp4jfs3U3SNyNxqjmUpuWxeog5f/vA/00xL2J1zWy1YON9Z0ojcRC/6ry0kb00nHdYf+K9WfQ5earkB89stSClh3SLt+nvldw7AMgV8jlaWXziK90W1hh3neocse13qMEqJIXlIPMzSUfpdo8ITv9QbcNNdP3k5e4J4cci6/S20vBUVTpNeoOCoQoYkaA6HuXfAtFTTv1a/eaBrSsbrraRvZwv3fSw82daB3EcnmhQgB3BfyriAMDKTHHjTHS/5GUXHD1Nw303D+DaM//kWfrtC0alJc+Co6epo3mT3kC/kVf7DlDMc2arBWNSRNHcinOksSoXwweAtg3bocGRAqozl9vmJvKaNyhyfQ/8vPC1esTK1TZvqsnval2PK8Ll87TZaoGuciXumXUZA4Ayo2pwMaVxz1kfGxX97v+mhetrNi+iWgAA9yvac3HU5mT22X90PO56i4yA/6ohNF8yvyy97Y7ZgQFcPrktxANU4tzepDdA5+aG1BaLaHrC6JN0Iy6EFmst0vByQrOa+ByA9SPWtXp9mxaQAHC+QGxthNjn630jcc/TDqeGzkL4JzFwW2Lb8p2tE0Y1JP0YgcD3JKtdZqsoY768RtUiTypNegO12Eefi6BJnmfmZ0acGjpLtc4sHppCUcJ8kL5LnBuGoMGSvy+C9fdKon2p+zbprjN1KLzWX0J+YoqiLLPVgqhjnVG6dSoS54QjaMh+RRy1OhELUIXRr8Z8yMued0uPNTUrqeZT0MgA+z0WajlRjY7cFg3guPUQKsaVwxXjTe5dxNFcJNR1pHSk5d7FEO9GXD7Ewqa87DXnE1Da3lm1rizk5e7NLsDQ6e+iyg+ShcUrQyJRcU68oo2ItTG1drM1rtTatKh08nFoa9EnaYk1xMLKVxvXtsrNGGeEw30o/NXYQruTN7AgyYj6Vc7D+uh2SBfgi/zkNPUy7XW43yEUJdfyN7fyjWhx5wdAdD7bR2bl8HrfSHoLxNax8buDUfIPntm/MNJI3TywSP8yEgELrMhLO4fsduF0c8uWA0hWGtkw6wdGlGhyFYcarMK2BzqFDqFaXS8PNaLSrMIdBsvT2xpXZqsFkaOGUDPpxLJezzPnqeibrXmdWMhdnrkXPWUGMmzhwrqanNPcwsZbTpswyuiarRbU2NOLY2hJOCnz34wJlgZbc7stWm3FL+x7JsgYZ0S1iep9WJzyi5pPCmuDxPlhCBooGnWIPhuN/Fet3Hu5pUgyJmxBThfA1zv9i0j4fCbmR/yNFYYxKcfwlX+Ioh7V9pXiDpXIu1HJJ9GqpKhTVXv6UHgvS6d+2Vhc7xeJA1+Ic/Oq8/HcTb2tNqscXwaXInkdPrI+sTg3wYgzA5Vzodlqge9fA+kaL39X2Hdp0otGxDw7S+ukQ1VPXG/spepPkKQnPubud2pI50/u/SNrvWr9BijXgTwh94XxI9a8bC842D1lq4nCQ2y7tey5bo//FdqN2HOETkF1cH5NML3hAcQPltXHIacv5MN90EGp2Jm4KBS+fw4CABz4cja8vhCNS3z0yXL4H5B0jMxWCxV/u/VWhGKSkJ/QsM+pXecoTpTkTJjLrsowWy3UIhGJB4DXJygEaidWZqtFwYSV3VNBNb8SZl4MSs6EkRPNmYFBik0162dKPyWOMmGscjgRUSMmjoOG7KfWq9j2JH/X+0Yi6GdRLMO1Ai+jz5bf+6zo0Lv6P71h0hsQuCzG5iZoUFkrGh/LVuTT/tQ1euK9+a/lXL+araKsPgBsX7oQZquFMkMAcP6RGBfR5wKAlj36osenH3BtZLZaqJsDFmarhTJhZqsFNabdpeUSsSDy3LfyPxztUc721OQ7acOKc+KR+o1Sp6ri7Hg0690fchQ2tkify+NcHRSJ5m/xeRFxJrWNY/WFMQiz5CvyS5scqcqEycccAMy56cnFaX/qmiIuAFSbGMf5qyF/bFy2DzYEu+Fo+K+wLKuDgiaiwYDY3WuVjOyjW2Pz+UPcJsKkN9AbIQBoGxatWhdbc0TSjxHweOTTia0HYcISF4Zy6eRMGADkuAlI+qmhYryd7TsbeWmigSKWCUteJl4L6xNckbSkAe76uXJltzhxB5UPZePPuosAAM1d8mG2WuD6j2iEYXkmf5MJiBvZI5/NUtSTpafxsWzVjRUgijDZ1RMNnjw0iXo2hAkz6SXLeqz+Eds/bF6r/LbBbLWg5yNT8WQcXRquvCUhtLFMGBtutopiZWw/skyYSW+AU4k8xThjx658vZictl/RTinfR3DjlX3vGyvq5xI/f+Sd3XZPm8yGLeZM3m7W0UYu7ekhs7hnFvJ54PabIs3VF8YoymDT1z5kr5qepQ0ApwvEMmGkPeTm+l1/S0Di7HAuD3me5H/0K50U7UGYsDtvRKgyYWarBW1O3qR5xN0LpPSxvhQzGvLrU/LUCHyYchzfBwQjulYT1Ip7CyeGz1JlwsxWC5UaMVuV4tJymlO/FfXGlnrv5t4LxrqUCWOtKhIDTwQO3pIxsMq7dVQvekOWxMDVmTaUa0+2X8PHiH3NMmGAaPyDfK8kDYuoY52pvjyZP5OW8moXRI+8tS8/l8mZ/B5nrDbnGQ0vN7QbsecArB8xBzvHYp/EFQW1fOydnVGQna3I9/qGILh/Yo9Nm1fS8IdbvKkIhxoNIYftcLJVeeRflfyYZX5mhNcXcXDbW57TJ3lg9uVEDNQW1JrzhqLa+DjkRIfBKVZcvITIulTHCRCdKRJ9ETYP4ictaUkDVSMOahOgLVrU2pGkS1wUil0tfuD8GbF5ktPzd5ISMTMwSCU3Hvc2+6HUIybOFh2s7xv5hqDege6o1EHyV6KWh7zuxJ/ZrYIH6FZVUpxu26gjtURWGD2AuPDlneOt1XVMMuFBk0tFpu955jx+axmBjfs2cD7vxqUeRpSzPVr07AfdjsPSmC1VCpuS9irqJ297FinfRVJ9iMIWP7V2I7+vxEQqRGjY/Jr36g+HbYdUfeEUl042Hnty3rZBazrO5eUSyP0FDkpMxbwgP65OLd7sB93Ow6p9cW5iJM4MmK34Th53vjEcARWNladPnBWOoKH7FWkc/HwwZfsKheW8wsaxGmzFZ58vjjDi6Ie8ny95nxBfYew7ADiU8xBd/xmC8rudivSjl9sqFJfrlaBOaeUHJmareLDi88YxRR18/xyEoJj9NutN8okYPQQJ380pdH3QVSiP2OPbAQCRHwxBmRX8ab6t8cjSHLK/h4KJS1wYirQ2kkVQkk/wT0M5i4+A6ER8lqdYbu2Enrh3sRQdB8m/1EPAW0foN/pv52b7UqU4gxNFjRkyJ5utFrStb8LGw2aY9AZYPzSiqvkGFTtUyydxXhiCBoki8nDNpTp78nYjdSA+7WzVjaR50DEcLuv2I3OsEV6T4nBlfXVUbH9WEa+w+pFwt73lcSPquuKb+CE9DjVLlLQ537H5EDov/1kDlTqcUS33cb9RNVofJz6hia4HtWvgzHBXTkdMja7i0lnY+kB+E6kTtf5wqOrJWWsEgDBLPg4YeDcphZXP5tncI/jFuRFz7flsbsTuLH+u2+N/hXYj9hxCPqmzcNpVBWarRfX0RLdDr5ofG4/oDpFw8u5A/VUKv1c7gv/kTkDl+R2rLyD22Dacm2BEhOV1AMCHb/0Os9WCG1HXuTRyOW/fvwYqaPP9UVwInWIP0HDWwiAAfB6ntL7o4KnHnulzgW1VEdiHF2FgYdIbUCvuLZitFhiOiE5RWfPRLC6MNHLpSJ8E9TuId9Nep23nu2kA119HPhM3fDMDg6jpXyIPbl9X1IO5/GcNJC4SZcKv3CqNiyOMir5kIfd9w9KEv8sr3tnKi8T50k9MW9Ze0q0z6Q3IS03nxgRbLxZmqwV55zIVC9iDJpeQ3S6cS89aCQTEW4flvdsgL/M8AGBj3HqaZ5SzaBBh6/JFXJqCe/ds0sIi62MjUh8pbRMmjNDB9iHbFvL/LCrOjqftIVfuN+kNcNwtim2dDc3laLvXRVL0Z9uXDUv5/pEOEeOviz05D90sMbmBB5y4fGh/pWdQPUOz1YJttyRDOQSECVOD32/XFe3KPhfW3kQXy2y14JvKfPr8V+tTtxBk8y3Pa+OedZQJI21MjAPI68CmJ4rxbHlsHHn/mq0W7naV3H7J+4QVBWPb+BPfcAT2Psw5AZbjVmwA0n6tC8e/D6JcMq/rxY47k95AmTDSb1cHi7e8n7+6jsa5NpAX4WLrlPDdHPj/NoSjlY0DAPnXrtPybTFh7PO5VbxbCpPeoHqTFtT/INdu5L/XpltcPF2gH1LCsmmcExHLuXEQ8JbIoBADCGx7y6E2Hsl/YqCK/LHp9Qnibah9qVKoHF8G1/pHUias0bHOyLsoHRjpv41DwdHTuN9Z3UAHIBmGSO08lzJh5yZGKjb7hAbi046EEau2hPboeq0AgBqpeVhGgNlqweHQ32zW36Q3YMY56dY2cS5vHbaS0x1V5oM97GD7jriJUfv+ha3l6Ttbc4L8UIP8t3d25sak2n/y+5tHt0lyvJOUCEA8aCTlhH8i3lpt+nslypxyVKSp/k9vRR3lTA7rj5Wth3z8yZmtQWWtuNuNN9AUdrgbAOBaUy/IwTJhRGpGrZ5pX0nf+u1N/jDpDbjTNUwRT8PLDY0Re06x8o6k7H75T5FZcNpVBRWcxBNA1r8UIOrK5L9qRcbnRurnhmyK2EmGndTlmwTyP22laD3vwiPxtKuDIvGwtTQ50HIfmZBf2vtHlI0WLSf+WkNkBq+srw6T3kAXK7PVgi6nL1PLbGmviYY2olt0o/neaxSI95NPI3FuGEcvO4GN9ZXoIOFUNKL5eRouX9TppuH1EzDpReMWAe8noODEGcVm1Gy1wGNqHCrGlVPd3E2sJt0Sshbg5ItW/o0bAEDFQ1K7lYNJb0ClDmeoeXefN47h6IezVDfrJJ/5GXuoIQg5WNPNxqO8OByJX2OB6K+JNXpAaCZlpk+KVG23+pNEkcjJafyG2tb/XfPmofE7g1HzkDgGY49ugenEbZpfT68o6rhXvqmTL5xqfWjSG6gYirzNPL+Og98jJ9GsVcPK8WVUDzbMVgvudlVuvtjNbeCyGLT2DkeJlueQOCccjY9l0/ebz+3n+ok4Gt4zY64ir3MTxQX3naREmPQGVN3+yC8Z45+MRUJdRzh4VYXx6EMkheWoblLNVgtn8IRsfsmBjFrbknQAgEtX6fv3k3mHzrrg6vA191fdgOncK1Cz/fK8xfIPw8D4GVTb/Kv1LRHhUasniU/0Y23lLc83+CfRKE+TQYNgtlrwu/9W7j1xfMzWM/WbSDh4VIEcJG/WgAkAJBh+R2KTnwGIpq4BoO/Zc/LkHE6/J87v7nMla30EFeYXfojAOtBm48ih5tNILa53t+OqDCwB+Z04l98gXusvMpHCEV6cKz+JF8026Q2wN0iHBEUxXwQO3l6FzuX2tWtQS7DyODn54vxTcO8eDv1VG+VP36d57Qn5g4tLRMn/+Wkul5dg5P0+ldpdURoD0WHwHhfP1YcFsQJI0m/avJJ7fy/Mh1q9NVtF33VsP9/owxt9IvkM8xbFUnWBfggafICmyW0VirOhuQp6kn+pp8iDIGjQAW7cs3WoPEN5q2vXIJjrM/mY8ftDHG+bUqW5octpcZ9S0Fiio+nAgTTNR74NubwI2pe6DwD0Vs4utDbclsTTNYzoD7Np1W6a5cyViymNxr+xUTrEMlst1Co1m55F6VUJXN3LtxOZxbK/8Dfp5D85lCyzIgG3e/CqH/SbeluSSCjTJgVmqwWuq9Wt/mp4eaExYs8ZyAfa3fUG/WCPhK3ErdgA5DS5iMXV/lFdwIgIVbUJcRDy8mi4boe40SC+iHzXD1Ld0LPw7S5OaETR3n1ePHYsmq+MWCDqWIz1DcPKzDjqILL64hh6skcWKwAYVNaq8DiffyqRPu+aOw/TAmoi7bX5lMa2DdsBEJlCNboT54dBF1ydPquduhUGEueLqzVwu0cE5/CR6EyxG3NAWjwAwD6kBrcg6aoHKPqGwOdTXrTpfmdRZrxdYhtFXLaPB1ZrhLT28zh/J3I0PpaNuLolaLr030Io3d7j4nG3WwS8vohD8g8Rqu3iM1akjXW8DYAawui6ewili6VPXtdXYgah5Np9+MFDZFCb9RmAkeXFjQ45pSaQM0Fmq4XTS2JBxhYAJMVI+jRsXXqfzaSWNe9Us6fvLkXeVo1v0huw90eJaWJBNxcfxVOGK2jIfnzmfoaLw/4VXBYZm8bvDuYWXZPeAO9x8Uj6qSE9lXfaKG2CiEUxAl2AeGq7cd8GxNVVin28k5QIB1/RySnxHxh+pCu9pZIbA5DXiSD/6jVq3Y/4KaTvTp5FUN9D3MaO+PXJv3qNi5vdLlzB6LHP7AbT1sa6qO+VzYu4lpAz7SQf1mS621mR0XXesF91vE70q091t0g+fh/FI+/CRZv03FnjQeOS//lCARy8pHFJ5m+2jizS2s/j6qzWLvL6h0wZimZ9RL0q4pPth3R1H1qAut6d2WrhLO/JN+iFMc1Bgw/QG0UAqDVAZMDuvBFBx5GtAxpiNEUOVu9HjrxzmfDbIpr8Jgwzi4ITZ1Bi8wHF2AOAa1FS+598dxb+/v1nmq7BeMl0utlq4azbkTzMVgvs4o5yfUJ8iwGgovO2+k3NmiB5Tl5WD84b9iOwzyHVg4zTD+9zRrXkB2hmq4Uyu4Bo7ZY1h87Wo9RhyeiXGjOmNo+z45qNIzf2JAc5cCTzn3VtLXz3ZwcAotsZkh9xL6J2OGYLxNgF0Q03Wy14N0v8BqJrNVEdw/IDG3l4Tq7IrNfd3wMmvQH+PY9Q1xtsve+9LvqL07lXACCqE6jR3Dm5JVcemXOu9Y9EmV8TqJsatr3J/6yPJIvQaxOPy7N+fiEIz+bvJYfGiD1HuNdBUmCXT4513bNoOAHdyNXkT3YWPvI9BgBJS0QGzDpEdITpkunA5UFONdVARObUFht5eHcvIzYliWITZ/uKm3f2Kv/VftIpWJuTNwGIJ2ws2E1f817iaTwRYevzyIy/4lRv4AHknzyrungQJ50EDh5V4LNfaY3SbLXgnxBnlPk1AXGHq0MNzXr3VyxWZqsFBcfEGzXHneLmjPhUI/mrgbRdyT/2waQ3YEPQJsVGVJ62We/+9PScwl6HQYmpiM06TBkE9nSQzYMY1EjpNgfGkUNoefKNoH3zTKiBiOPIN9lsewCSqXWT3gBdhfLYvmQBTHoDwiz51HofSbv3x7locuwBkqdJ40TuM4yg4N49Op4Se8+m+eQK+TS/pdW96Emp59dxHJ1FLcoknLgfUNvks/HVvoeC+/dpv7L5k9+B7+5T5AuIPm5Y5CfzYrwAqCgjIIq9Eh87RDzLrW0Skt/klcqLcxCR0l1dEZ2I5rL0EgMZ8nqzJrkJOp26ohgnaoyQ2jtbm0Xy7njDFYry2LhCOUlUdM8MydeTXWhtGq/CXjcahxj0AYDbPSTfjbZAvkPCeOnc3KCzs0f+5SucLza1uZqlUw42Tv6r9bl3Jr0BHlPjsH2JqKNFfLKpiZ2ZrRbEJCVDDSa9AVW/Un4b7B+dC0qWVKS/0/gqLSPrM3HdKZN8h46j766LDs8jLK/TfD5M4ZkStu6uKwu3DpjaUjT5HeVsD7/VvA8otr2Cdvem8wFb1/NjjIrxc2i85EgcABUhJ/nlCLnFYg4uv2u0OWbl9SCwD6mBgF6i2GLmp0ZcWCcegLSNfI0aphnhw4uqs4apbmwM5Ghbe34/589NTo/HVHE+vLvZzyZtxP8cW2bGeCNis5TMLxtP3kZExHXD9B8AiC5g/D4WvxW5U3q3veWL1caFzR9JYaL7lfybt+i4TZwdrvrdqc09VR6J31bpKPnx1E+JU5S7Z7p4WBd7bJv4LLtRJSCMurwc4qNuWkBNxbv0L8T1hri+MFstL5YfMQ1PBBoj9hyh1J8HbW5e5lZVGh4gz/mnk7i4xGGkXWhtariCnNARR5kkn4OTZkNXPYDLj6DKD3EIWDGEo+mB2Zf+XnK7EnWienGEEROu1ILZakGbAHEh2fvDHDq57Fg0n/7eFFwOZquFO2HLaRPGbfoctil1vWydPgKiqXS2zVJWGOgEaLaKVpnyLlxEevgDyowFLuWdSrrtLU83y2xe1g+NnPlcsniytGwI2sS1n4Ofj1SXKpUpfVPTeREU9oTszbRXuXIBoKCJKC7Blk+YPhTko0vp24iu2oDrI2IxSr4ok2ey+THpDTB17KWoixqjxUL+jljlkyP/2nX4b+sLAPii0nHq1JbdkO0KcUHvZrylLHk55D9hJtn07Tz5BV4tH/k78l7n5qbo6zLn8ujviyOMeLjFm4tzY2Oggq7EBfyNCvkvb3e5pUA1yBlj8tvlkr1ibKltiIgFPfnmU15P+W/yfmWmaCyHmI0n79X8FxEae5/N5PIw6UV/XGr5ExAdMrPVwvn7k9OnYGA869nMk4hzDai/R1FHk96Azet/oemuRd3gvkGz1YL0L8WT64GMw10SX21853mWR8qUCCqCvDltH73xL4zxIu/aNmwnMjyPbjX9V0q6X0SSgcQlt6Qs1GhK/1I8WJsdGKCgnf3Pjq9r/SOhT3AVmas/pMOxgpAAzgl8tX2lkPRjBE3rsO0QdAG+EA6dxLtZIhOxtbYrbmwMRNnoZNq+3/qL1hnlPsYIPeyGX+73rGWPvrT/UrtK1ibZ/2arBYmvLEWjY525+SDnbx9U+/FR+z2SVJBvyE16Ay51FZnntsb2AID2nmHIGFe43q7ZakGln6S1lM1TV7kSdZTN0glIIopmqwVeX8bhWPivyG9aH3nnMpHaWdzws/OE2WrBunul6W+3tkkcHVFfj+DGsHxNIeUTq76kTyrHl6HPhKEBgPTfRLUEXTYQ7SkeBlx8TynSTqwtE7oA4EyjZQCgsJDos9+FW891Ab64EXWd001kwd6SFsbosmGkzmkd5tmcQ+VpSdjld4wYdaG+Ii/5/Er0/Ex6A9e/hY0TNTpZnO03W9FfLxKEgoJn8veyQ2PEniOQK2mT3sCdSN/r0hDBM4YqJnx2Q68GsvFgTzkJQvb3EN917IXYHb/TeAnZ+Vx+rmnSEDFbLXAxpdF8fq2hh12+qGRc5Yc4KhpXcF+U7/b7uz/dXBBatz3Q0WdAYhqcNh1Q1IWlWz6pyifLLlUj6PU+IDp4JHFr7OmFpLekU1DC1JLTOgJicSol9y7VkzNbLdB/y1sEOxb+K33H0goAvhvEjQuxPnh5qBF5Fy+hS1VxcRnpE4ncVqHIbRXK9YfZasH+BOk2jpRPlL7ZeIobNEGg7VH3m6Gwiz9qc/NIymzZrY8YsF8Sg2DTyNvebBV1/Ng8CFgazVbRkMytnmJ9yemvSc/rkrC0EfG7zN+lGwu1cgDAOFLarKoxIiSM6LR1S22O5GVKRtGkNyD/xg3FQr1j0XzYhdVB1kdG3NcLKNGSvwVya5ukGKdBA9T9o8npSmuzQLVOhY15Eqb/No6mzUtNR/qkSEX+Jr0Blo8lU+vy9pFv1madk25+yPfZ3ctIxa4AoH9iGmBnh5PDZilEgE16A1x2VcbS6qI4K9nI6iqUh9lqgXW00SYNv96UxFJvRjyk8Yguibw92LFOwIorm60WXK8tfge7QlzorZa8r8xWC1p1eZvm2cYvgtbd59N4pH0VCV31AFz9SxQhvRUboDq+JqUdABKOwf8D8XCgztShCFgxBOmTIrn6qoH2Y+Z53Hg7kkoSBIwU82IPu0iZBW6lVXISDYWwcX0+jaeuLMxWC+p+O1RRrnzT96CyHRZX+wcNP46h5rtTVhiAhGMosVkaCxkN7yHwPV5Phvil+8lTEoNkmQW2HLtcXh+ybZQotkY2/AAwunwKV2+rkRetUwOpT6nWqTBbLVS3zKlVOjYli3N37I7fba6T7vPisSRjD2eBtNrEOK48IkZuq3wW+ZcuY8uqJVw92ka+RiVXFmbsoWJsJr0BW1cs4urhscUB0a90omGzAwO4cf7QJDJql98x4sgnvBsXed+arRaq62znWILGIb665PB54xhanLiDE8PFecS+dg1U+ZEXfzVbLQjqKzFWcmfk8vknPfwBlz7f3RXtTt5QdboOAM7X8/BKzCCOLlPHXop5Uu1Aif1t0hvwsDV/wMvlqTfAzrEEKs2Mw4kGBeIc/XUkl55A5+bGMdHELYw8HqGx+VuSfm3byNdU25rchgFA2tfqOtoanjwSExMxbtw4REREoGLFinB1dYXBYMCXX36Je4wV1qIQGxsLo9GIUqVKoXz58ujatSvS0pTSLMWBZr7+OYDcfD2BnPmQf6TnPzHi5Luz0LZRRyDnoao/D+LQU5/gSvXLdG5u9BSXBSkjeVk9pDRfTMPVGCESfvWvILi/lqjcFEeEAAnHaPw2AUZsSo6zOdEUVddCYWcHc9YRhHw/FB7fxykmbFu43SMCuSXt6M0ZWzc5coV8ONrxTKSc/iaDBmHXvHmoPzEGFecondb6mvtzC1hhJ3Zy+tXaRI25kL+3Vf92J2/gh8PNkNJ8McKPdIVb2yRFfNZ1QGF53YoNwPc1ViHCid9Uyem4OjiSE6+0r10DSX3K4ceOSzDh7Gtwa5uExAWhHGPDlpv8QwQCRihFmS4NN6LydH6zUPeboTj6kbhJsa6theMNV6jSn9e8Ae5XckSZXxOwPusA2nvatlhFHFfL20JXuRLyL11Gs+P3sL2OpMvW/tQ1rK9Vgcvj9iZ/lGmTAjlu94jA1Xp2SHpLaU6ewKQXb596ul6DSW9A5lgjTsXMQrPe/eFy4jxnCS5jnBGnh6g7fyb0p30VCd8xYn+krjAgqekSfuMcVgfCAUZf4dE3rcYAFwZ5/AujjDg2ijcnn/pNJPw+Yr6ZbVWp8Z1/i8eZRwiNhq+HovL0OI5mnXsFtNmVjA3Bbja/w9be4ciLqo2tKxahztShOD5S8nOkdqBU2BzFlnG3a0OUXs2LtHY5fRmLvmiPssuZb8FeZ9PwCyAadyB6RfI6XOsfiYOTinaKLq9DYXELGtfDlt8Wo2WPvtSM++PMTw+3eNNDEF1wdeSfPKtIwzqgVjMhXlhZCzP2oKpDabTq8jb+XvOzaj3Z5xwhVzE3mK0W1Jw7FNUmxMFlV2WsCzTTdLoAX8TuXguT3oBbPSM4lwOJs8MRFLOfK8vWoZLamuvg50Mt3Jr0on86Il5Lwlhn6oBoYId1MyMff/LxIXdJcG5VHY5xskVv81Ptsa3WevqOjbcscy96eUUhv2l96Hbyou5VE0rjfMRdmteE1EOIcNYp8o9u3pUzUKS2Pt7YGIj99VYjuuUbdNyotakcN3tHotxS3qcb7OwAQUD6l5FUx/vqoEi4z5OsqPquG4S0jvO49pSXRX6nrDDQQ2IC4qidQKjujW1nvn+uzbWTPWszlzeeifn67Q9+e2Lt8fHHH2PmzJlo3749IiIi4OjoiB07dmDVqlUICQlBQkICXFxcCs3jjz/+wOuvv466deti4MCBuHXrFn744QfodDocPHgQer26BXNb0G7EnmOY9AZ6mqW2YScTZV6q5NmeWKszWy24NNwIj46ncfvNCFgj7tA8Yk/uoCdbiXPCufLMVgtSmi+mJ04mvSQ6w8Z79WQH5ESHwf010djG3QLJLD4AyoSR+AX373MTs5yJaPzOYFx+x1j05mlbVS692WoBBEE8Sfw+Dg2OFHC0F4YyvyYomDA2LXsyRpgwQBTFIyI8D02h0NUU5faJcu6tIPFsgxijMB59CJPeUCgTxpYZ9mkMF0++eC7L3MulGZgZpdqmg89HQlehPBfmtEu0Brch2I0y2/vrrab5sY6h566cqWgzNYbx2vGKmOhXn2PC5PHMVotCx63gxBn4f5CA6QE16Ck6YcL6J6YpxkrACN5xtNlqwbWBkRwTNi71MEx6A2XCAFFXwRYT67DtEMr8Km5onR4dgpB35yYYOUMapVeJ8aLrNKNheVurIf/SZZitFmyvUwpJM6SbnvW1KlBxOZKn6yRJzIitS5lfE6hjVxYmvQHRLd+g9C+t7kV/e00S6+249RA2HjYDEBX3zVaL4kSfIPN3yUR8flWpr8tvdlF8n8KB43w/PvqmSXo1U9Bs3dTGAAB4fB9Hx67ZasG91xtSJuxel0c3DwwTZkv09cIo6QZcPlYSFzco8uACgOKWl4wl9vvPreGF9UObUbEttQOQjI9DsXXFIoy4EAqnmwJN/821QHEzx+C79AQE/RyjmKPkYzvzUyMEnZiW3DqYrRbMT2nEMWFrz+/nmDA5fbogf/y183dF3QGRQSNMGHGCzNaLzc84cggQEcLRnPa1OL6nXvfj+qDqd6JoYsZQnjlk48jzJ/+v94vkbqLZzTRb9s6FkgEp4e5dpH8ZibvdlMaI1Pq9/yOdY8KEsTR0TDLhdg8pn+i6LWGI66fI06Q34PTgWUB4HTxoconLJz85jT6XXc7fIpbMcKD5TL0uGQpp1eVtZHyuvEUmv0l+K3b/yrUfq+NI4vSp1gh3ukdQQx+ECYscJUmoRNd4haaL3SXqPRGdupPv8g6TfScrxxdbJ+I2xKFFhuK7I5aRez1yRE5uANk8/Ete4fL+3I8XOdcF+aNtw3YKNQyShi2TSC2w48ZstVBjGyyI3vG5iRITxuHRPQVraMt9nvg7YrSotlE61UGxZxCipP5i6UtuuoSjCQDHhJmtFvy+fq2SDg1PDK+//jrOnz+P5cuXY9iwYRgyZAh+++03fPrppzh27BgWLlxYaPrc3FwMGzYMXl5e+OeffzB06FCMGTMGZrMZly5dwvjx4x+bJu1G7DmA/EaMnHBdGGmkuhqA7RNJtYlbnkYeRuLntA1DRrQ9At/ZV2j+JHx3tuiHijhAta6tBX2nU6plZb8WDue/CndSWn1hDLXYR8A6Q25x4g5m7XsVerMD9v4wRzWfwupaWDh51/idwfhn5lybaQlMegOGJ5/hDErYais2rdoJZHHpZk8mi3t6WljeLB3BM4bi5LBZHL1sXNaRcmF1JXkee5iNkBLOHG1smrRf68K3x1FFepauwsZqtX2lkNHQtuhAxuo6VBeSxeV3jQp9DrPVAr/VQxD4ntLPEkvD9Q1B1EwxS89Hl0QXCPRUdMNApLWbz30/+U3rY+uKRYX2U2Fjk9zAyek26Q2oHF+GWoMktyZFgS1r1rk9GOrdqMh4amG2xjK5GZTTqxa3sHJHJZ/E9wHByFhdB6ejlsGkN+Bmr0iUWxYPXeVKiD3yN5en2qEGO26SfoyAfcVsTlxZ7ZvwWzMYqV14E+ZmqwUtu/WB/R4Lnc9IeOSoISjza4Jq2/huHIiggQfQ5fRlDCpr5ei01b6WnBwYnJyKnB/YNm3jF4GC7Gykfh1JRa3NVguM7w9B3DR+vrQLrU1dBJA82rTqjoITvP9ItfYkYJ2Xm07cxpZITxTcuYP8pvWxYtkMVNJJN8Ik3e1N/oivu8b2mvVIoqGo8cHSY+fkhM1p+2y2JyCam2ctHbLlErxyvBM1aV7UPKdGBwt2fKjFfdwy7J2dsSk1Ab7rByFoyH7VuGprDPm97l5pqisox/kxRlT9ihe5l+crLxcQDW1tCi7HpYk+G438V61wqOqJG1FecP0tAX3PnsPi6rzvxcepf1FrQ26LBpzetLwcQLQQDYcCheh4m5M38cvUNih/+j7+/v1nRbtPSjuAsb5hyH+1PnQ7Ditu69ToLQoX19WExxupdMyy7eP6jzvuNL5Kb3XzhNwXxqFzM6duz+ZGLGfVU2+P48ePIyQkBIMHD8acOXNsxtu6dStatmyJiRMnYuzYsdy75s2b4+DBg7h69SocHZW+7mxBY8SeA8gZMfYj73nmPJbXeGSd65F4gRyFLRQXRhpx7INZqgtW+qRI+IwVr9gnX62OT9zFE6TCmJbC3svLLmqDVBTzUJzJ7v3k02hdMqfQSX1D1iE42ukw44Y3NgS7QVehPPKvSQ6n1cQurubfg7tOugnsdvoiVtWsgvudG6qahSbpSN0Asb9ij21D4NIYTh/NOtqIHr22oazDfXy/IxqCYwHdxBPIxRXYMlp17QO7veJJWxu/CGxKTbDZXqlfRyKpt3jibVOMFIUvfA6eemw8EIsZN7wxzO0cffc4i6laOxE8znhjw9qcvIkRbukcLdcGRFIH2IXlk7ysHtVfu90jAgUOdii3jBdLsbUBDlgeg+SesxX5zTMuxbf+vAI6YU4IU8WKCBcHRR0iFLZZ6XHGyvmnkqez9V8eV56vrfzIoYw+wZWzkFkY/avulkW30pJDYLWNmtlqQdSIISi9KgGBB5zwk+c+ND/VHg4tRJ0eu3rBEI6chM9+F6r/qTbvyPvy3ayG1FABqWfQrre5wwI5BiWmUnPnZqsF1RfHoEwyUH6xNOau943kngFR1OpzvwY2vxEHr6rUQqyDp14hZp44KxxpHef9T/2jFsaWWxTYfMjmERBvLFk9UXtXVxTcuQOXXZXxoMklLj2htThzvFpbhX4ew/lZk4vZFzSph4Kx1+jYYBlUeb7y/P0POFNffMVhngDxVnh3nbWqfVpYu1NGuHV3auBFDrLm5LYKhePfBwul6eJ7Rk6Xi0XayhDqkkZXM5DeKtU+ZI8TDWwbQrB1+AIUPmez75JmNkTgO7bXS5PegKSf61OrvIXlBdhmdgvL38GjisIdhbwdE+eEI629+vdVWF/WTuhJ9SoJah5ywOkGeVy8lXfcsLi6N/cNqMHe2Rm/HY2DW1Cqxog9AmHEKlWqBHt7SYjvwoULT7ScTZs2ITo6GuPGjcOECRNsxvvqq6/wySefYMuWLWjRogX37tNPP8XkyZNx4sQJBAcH28hBCU008TlCzjrRISw7+fUuI5kLJuZTAd7ZJDuxE5A8PKZKIkryj5/cRJn0BnziLpqAN1VtgFXneXE98mfSG1QnEKIETGhYeKsKR5frP+6q6eSbRmJi16Q3wHTiNhUB0+3Qc/UjhkwAoHVJcSN1rb8kAta2vomjx9FOlDWfuksMJ0wYqdeZRstoXFJP90cnu8S08eRNHQGIvnmIBUS5DxyT3oCQKZJyfP7Vawj+aahiI6D/Lg6fuJ/F+loVkNppLoIGiYZKkpdJhgoIE1YxrpyijL9XL6G/ifNM4pQ0cR6vx8CekhMmjG134hdI3j/sGMzLEk/0f/k6mosXPiZG0W7kN3lOXSEadCCQL0Rsmhnn9irikPfEmhoJuzooEpuCyynyqfjLEY6mrD8kJ6TsGAr6Xhw32e3CUebXBJRbFm+TNrZNTHoDdb7qf0DyeRbQ6wiauyjFsMjtzd4fxBM2OROWMV4yysMi5Tve6IP8PXkn/zYdPKogaakoIvpbWHWuLcj/Gnt4S5ksPeRbJnF9/+SV5tl8zFbRAICvuT8AUQQ06ccIyoTJoTZHLQzyRdR7gznxS7U0pP2SwnIQPGMo1UMxWy0QjpyE2WrB3Krx3JiR101eNmstjqRLbPIzLr8rue1g6xqbdRhdSvNGDnw+jUf5xfFcWPnF8Qork0TUiu3PBx0ksfCN+zZIvw/EYlTySa782a14EbpOpyRT2Sa9qHvCthfbfia9gTqEl68ZakwYG0+eDwFhwgDeWE/i/DAU3BH7/0GTS5wFQLZv1L5/8r/HGZEJnXnTCy1O3OFovvFKNhc//4bkb9NstWDLr4uxrdZ66g9KjQmr/SNv+IrkxTJhau2hNpaI8Sri9gIAWlcT65yQbVtnj7QFMQBxva+YnvgCBIBVNcV1lDBhgHirKR/fZqtFYVCD/e/b/RjytlaD2SpZWAaAEw0KcPGRBWCz1QLY61TnGTW6zVYLtejLlsXSVnZPBQUTxjFDjyz2skyY217R0E/ZPRUU64nZasGuufN4GsPr4PJQIxeHpIk82gUAKBNma24wW0Ufkbb2KBffN9p8J2fCzFYLTjfIw5UY3iF3d9cb3LMcua1CYbZasCk1Aa+HRyneP7cQBEAoeMp/T/+uKD8/H5MmTYKDgwPefPPNQuNareL85OnpqXhHwrKybOurqkG7EXsOwN6Ibbtw0ubmIWOcET+9PVdx6o7wOsDBUzCfl67qTXoD7A21UGBRFxu0BbUJ1Wy1oMaCGHiPExe179ITMNpHWjDUThIvDTOi8gyleV9y8hTdtAvyE3kLWfKFUe3klPyXK9ZG12vF+WMi8WKzDqsakJCXKRjrwi7uKLL+CFZMromLQhHUTxRvYMUm5TQH7OiL5FcX0zCnXVWQ0+SiIi4L64dGapUx649gVFhUCs4b9ivqaysPWydsaV9HIrH3bNTY0wve3Y7jTvcI3Khhj9ODRNl/IjpFkNesARy2H8KNtyPh9vMjpeS/gnCowSrFWCDlma0WtG3UkVqIpO01P4zLW053cepUc95QVBuvHD/FGcfsLTJBygoDkmXGKOac24Mh3o1onnc3+2FvyB8wde5NjVLYKitpRkNUjrOj+mVq/SWHfGwVVRe19+T2gbxrfCwbn7mfUe0jQH3RZ2+sHKp6ImVqee5GuCjabL0j4eQW8OL7RlSZJvZh5u+1ccooWnEN+zQGB76crUpfYX1ta6zU2fcm9J1OKb4FXcWKyL9yhYtLoDbXqNUneMZQhQhXYWhx4g621uYdlycuDEVamwXcLd7loUZUmlV4vg5eVbFx3wZFe5xfE4yqXZTOdW3N3QTs+HTbWx43oq7jcWC2WuAbOwBBAw6q9sWo5JNoVTJXUZbZakGr199WFQP7t7A1NgobmwDQum1PznqrWn6sMY3ils+WQVBYXa2jjdB/pxSXVktzJSYS+jfSkdtUvAH4IT2O8x9niy5bY7uwMU8gvyll09zsHYl9X/PfL3u7Vtg3nPO3D3bWXlfk/F/cuYdVfyCIDn4VsSd3UPrYNGmTI5HYR5RmkBt/MlstaHqiI5xapSvKBACTZz2YsyQrwATyPUbmp0bOTZDaOL3dI4KuHXK8UKKJJbpyBuaeBvKEXGx/uPqptsewYcPw008/YfLkyRgzZkyhcfv3749FixYhJSUFfn68f75Fixahf//+WLt2LTp27Fjs8rUbsecU7MmO2So6I602MY5jwqjvrP3HgYJ8euIT9plo7GFT7ArFxlmeN1feI0XsBoe60XLtQ2rApDdQJgwAho56j0uXEpbN+X9ZmRlHmTBSNkFae9G6UH5yOg1zqOqpmHjZE1N2MiPPcutGsUf+RphFUmiPGC0qJTcaPRQRR3O5tmTLoO0bJ4ojyZkwAAjqd5DGa1/qPmfghM3Lv6ek55D6bSRymlzk2l8Os5U3jW+XUJY6x5W3g9ri1O7kDe6Ekq1b4iNxxHmhom8X15UJOD1oFo2f1lZUdLd3dUX+q/Wx7ZeFMFst+OjT5bQ8YoiFRXSTzhw9G/esU7bXIybsoSkUFePKFbqZtsXkESaMfae2qMm/EwA4ft9L0R5EP+jcRPGkMvMzI4Y80pGq+514i1muzyP9M8YohXxzRZDaZS7iv5/D0a2GjHHShsmz80k86BBOb7sKw4asQ4oNFSDdPpB3/4Q4I7pOMxoncVEo7WO19IB4KweIluk27t9I/f+wcdkDCrUNJjHTLk9ntlpg3JKBjM8lJgwAvF4XdZMaTIihYnu2+p7c7nZPe3QjXisIaiDjgeioyuub9KMnR/uhnIfc90LSyNM5+HpTAxsnh83i8mDrSW7LWYwun6JoL+K24Hv/1TQty4SpjR+z1YL7wR6qm1TChJF0rJ8nNn7inHBFevJcs/RF1fKJcQc5Qg6L7UH0beTfRk6bMHwfEMy1J/vfLu6ozfEoB/vtIXJkrAAAQK5JREFU2jtLt85rzicoxqe8XoAoxsnCjtG727xxuaI/5fOKnAlj449KPknLI65XSBz5d2erbgAoE8bSbitdxdnxyG16AY2PZcP1H3fO4bOttrz8Zw1Fe18bGMnRqZaHrlxZAFDclLL1KreU94Vp7+qKQ+MaqO415HUiTI7ZahG/M1m7mK2irqTZaqG+866srw5doJ8qk+my2cLVCQB1S1JjgbgPqr5IMn7l+0k8/H4fDABI6TZHsR9g6ZPXnxgFk7edzo7fRhMmTK3+QUtEWsja8aJDKBCeyd/TxNixY/HTTz9h0KBBRTJhAFDykaP7nJwcxbvs7GwuTnGhMWLPKeSTGVGyJrBrEIzS9uIiJZ9Qyy+SNjpsPm0btlOUQ961iX6TbkAPNVhF3xPRCQB04uz7xZ/UB0at2eImlpwCm/QGtP5kFE2TNFOyIsfRxNzeEbPD8smbPEe9NxhLHvkFsrVpMekNOGDQ0d8J34kTXfyUOfBwvAndDr3qImmLQWL/AKDOtKESE/OImSRpdTuUejjEb5m8LrktlA6IyXuWKbNF58URkijbPzcCuPf1J8Vw7QGIhlXUNhvkt30ZV+h2HKZ1I/ovtjYHa3f+RsNJnmw7tT8l6bWVMB/ELz47uTpy+UXwVui4vMJFJ7CT0g4UuVFh830nKRHH6isXTADYnQ14jxPFyLy+kNqaMAx3Iry5Mi4NNyJ8TAySZjak1ifNVgsKGtdT3dCz/0l4tYmSKXTrB0a4/Lkf/qOVjMjktP1cO8odVX+XLm1C2TplfWxEbm2JbnJzCwB22z0Rm3XYZruVaHlO8U3I46rdYpitFpztP1vxjZC8Vi9shmoTeDcSpI/c58aj9iF7Ls+U73kRXzIGiV+/LJMkPsvm2ax3fwUNLOTm+D/xVR6gEKT/JlkDzEs7h5u9IhT1vr4hiAuLPbkDdo4laNkfphwvdI75yFeaC23NY2yaa8GOijB5X+U1a4AqP8bR9iVWTy+/Y6SGFpoMHsSlS1paH59XPKVattcXcaiw1w0FjevRdk2cFY7vqhzh2j+nbRj3HDKJ7wc15hWQrNSpHaCQ/+FjpI1zQXY2FZ/uUjWCmyPYdMRaqUlvQNBQnpG6+pZ0W2HSG5CSe5ebE9nybDE2JPz7AFHv43rfSETO4U3GA6AMvElvwLhU3ik3APQ+J1oq/DDlOHLahmF5piSObWscE/wT4ozf/bcicU44XjneSZU+QseRMGndNukNSP8yEhXmx6t+62xY/k1JX9MWkqY/smz6yIJxwZ072Dl/PmrNHCq6UXiUZ05bSUxe3seGr4YiL02cf5J/iMAnl0KQuCAU0U064yPfhjDpDYjdLVoPrNj+LGJ3/cH1Pfm9+ZwkUnjj7UiuPHJ4fLaf5EP0/eTTCBy+D/Z1a/Jz+CO6C7Z5qTNhANZnHaB5m/QG/JDOO71nIc+DPPt+Eq9YB81WC1K/LfpwTsOTx/jx4/HFF1+gb9++hRroYEFM06uJH5IwNbHFwqAxYs8Z5BNl9cXqi4Rw6CQ3kRIdgauDIrlJL+JoLp1sNu7bwN1csRNRgeUUdDUDadr6B99QLPx5aaKhhlU1q8DnM3FCORXDm7kFwBk9sKWoW2fqUEWYSW/AhNRDNC2hrfTqfehTrRF1gizfAMsnaLYdh1vDsLZWReS/Kim/k7TEvHzNOUNpuDwP8lv/XZxisSOIrR5LzcKzdSHIa9aAMsFZTcWN27UBkYq+ltPH0kR+57lI8W81usYxdhVnSxt8tQ0RIIqlsXnmZVm5G4cupy9zacakHIPhiJQP8aXD9g9L/zvlMqmuV8Z4ddl6kkaXdlFRd9qf60RreWN9lQ45SZ1v5IsuEdoERtG0MwODkDg7XLTEZrXAdFo6fHjFWUk3+3/3LMkXDABYPp4Ft5/jEfjOPqpXaNIb4HhGOi2WfyM69wo2mV79lDib/TLmzYEw6UWT0mobgdE+EYqxDQCeX8fRWzJ5us01NqqK5aoxVrZg0huQ+al0S2IXWpvLQ40mljEgG++gnyV9wu89eMV8/1EJNmky6Q2UUWbb1Wy1wHHrIfj/NgSv9htIw6Nf6aQ4JCDx2d/y8s42XspXXJDitW3UEQBQ7uuS1IQ9bZsPJMfsrLTC/U78AZS8Tmrj45NLIVx8YuafpLUvVUqxWXfYfoirzz8h4uHc3aj7NJ7zX/uROVa6RQnsrWTO2ecVvjuw5TfJj2TQ0P2Kft4yT9y0+MYOAACcDc2l9VqWuRc7H9jjwxRJ3JW4YSFWQNUOLoJ/Eufh/V9JhnB+SI+j+mi2Dj1MegMChynXGXIodF9vB/vaNeD3t6jLONS7EbduuP2s1A+Vo214W+65/OJ4TKjIS0+kfR0Jc5akozpo/rs0T6IDRhwpf+tfBzvnz0dPL2nuko8Lks+GLH5NDBqyH7vriEzKm2mvcmPdFoN/tu9s1fBup9VvRs1WC+52bYikJQ1wbWAkR8eKdo8s7TY/z9G7e8h3QEE+zFYL0idFYuf8+dyaqnOvQOuo/1tSIyhptYelWQUEDTiI2F1/wGy1IOsjI9pUb8zVWw3s+HH7OV45t9vzvsimBdQU9ztHTwMQjbkAoAfD2T9JB7Y6NzeuTYh7E5Lf2tv1EPDrEJt0sfOmLZC6+X0Yr9p3zz2eun7Yo7+ngPHjx2PChAl4++23sWDBAtjJ3IzYQliYuAeKj1e6O0hISECZMmUQFKQuxWELGiP2HIJ8kNYPjJz/Cvad/KP1f9MCvzWD4T5PmoxMegNdLMjkMrp8Clr7iidarB8gs1VU5CWTTMX2Z1U3MYAocma33ZPmKUTW5eI+6BCOu5v9FIsKm4d+inQjQW7aHnQIVyi1s3D8m/eXwubLLqz3Xm+IMSni7d50vXiKpatYUfxfoTxMeoN4o/jI5PfpIbMU+bL5qyHnbx8uzfrAzRw99ztLGzGH7Yewcd8GcUHsJ24yKm9IVc2XLU/n5oaWb/Tl+rPqV3G0DLPVgu1LJZ8XaZN5BWH2N8ljcbV/4Lt+EFe//FOJ9PeampLfLLPVgq/8Q/BNZSVjwT6/EjOIezfMW9xcyMUL2TiZY43UkIXZaqEbFUB0smyLSQVA69zdS9xcbkrayylHB8XslxR8m59H4oJQxUbLd90g1bwBcEroBCR94qxwTu+Ixb3XGyL/quhsme2L1G8kQzJseUTB32y1UMfZsWd2c+Wx5V/9S9JNlL+/36mh4ntTY2501ZXmrOXxEueKCw0RZfL6UhpzwsETCkbHpBedyrK0kXdk4+07Jp6KPKvhxkbxEKigcT0FTSTNK0MHcXW7MMqIgPcTUGKzpI+Yn5wmlrd5AM2HbYvrG9QXyDZtekBXPYCWte8biRnIS02H4Qhgv8cCnzd4X2oloySjFWzdbvvoFGGX8+8h6UelnytAPLQ4VM/e5vwesDwGm5L2cnUiUGsr9jbQbBUPzGwxpmxadi5l8y3Y5gVAvJE3Wy1wtNPB+qGRiiqarRbRnxmARnuG4iv/EDR3yaf5XTHeVMytc87t4Z6rTo5TjNsRPkbogvwV9bRVBxbvlMuEXWhteE2Kw6a/VyKwD+/HkdxwEF9/BPa1a9B8yXqh5izad+NASpfZaoHugXQbBoDqFpqtFqoTKe+33BYN6FolrxvJh/iwVJurrkXd4Ma4GoOtNj4IiEEQef4mvQGlV+9DaquFODhhNhLnhKODoTUA3scXO68SA1cmvQE+Y+MVtBCLzz+kxyH/bDIN138bRy1fEno9v4lDwZ07GJ4sWpRMnM8boVKjV/7bpDdQ/3q2xonfxxKdF0YaUXKtxNCz1jjNVlFflMUn7mfhP0pdz8tsteDUO+K+wvqhUUEfoYf1Geq/va/CAJiGp4OJEydiwoQJ6NWrFxYtWsRZY2Rx4cIFnDlzBvfv36dhTZo0gYeHBxYsWIC7dyW3BkePHsXOnTvRtWvXxzJdD2iMWKEoKCjAtGnTUKNGDTg7O8PLywujRo3CvXu2fRn9L1ibyJtQPz5ylmJhHpql/qEWNBJPBYkOjElvoM6NSfoHHUXRHCFHNPe+u85aOHh7Yc3dMqonarZOoUqYD+LiOskU699rfkbbsGi6GLj8uR8lvyqL9C8juYlaviCQhTsv7RzMVgt2z57HiWoUBfniY7aKxiPuu9vjnQXiSVV0SHOYrRbEHt0i/j++XWyDQ9JppkkvWvaTM1/cpiC8Dke/XKGXnfxNegNK/rFP0ZZs/sQBr63yzFYL8m/cgP0/vE4QEaEamBmlyNP3E97apa56AFqfaavoAyJayeYrx7WBkXRMqDmYJnn6rR0Mlz+LZ0646cCBNJ3XpDgqWgaAszy3bdlCaUP5U0NFG5H/GZ8baZ0qzlaeKJK6RdZMUdQzYMVDLj+WWWX1sMghgUkvmvomYk9q9OyZPhepKwx8X4TXgd9HSnEUAnk+8s0qWxc1q5ckLbuBsBXHpDcgdgfv2Pf2mxGKeEGDxQ0qayacbR/yzLY3cSrLjkl2bF5830gNv6i1w/56q2HSG9Bi1h7FO5NedEvgsk5s+7aRr0FXsSI8vldn9Gec20tFNN32lqfWV016A8q3S0TLbn0UaVLeKIfYHb/bPIixMLx5QSPp3YH6q+jvt9Kb4of0OCQvq4cq0+Jwfk0wV9deXlEoecGey9vBzwcAcHrQLIxJOYY1d8tw5RMQS51yxhIQ/f2xbUXeZ6wWb+iGW8PQvFd/Ll+1fmLTsxCMdWHfPBMAUOWHOHo7dHwEf4DVqaq4vhDz/+yBjxp8HUtz6Qnk30R+YorqdxLdtAtadXkbsVmHqRgggV2YWHci0q/2PbX3FMUr3ZbEU71qQHQ0T9qBrBdq61Fa2/n0e//hhg8Kat1Fw4+km99zq+pQHbc2rbvTcllaHLceQlMX6cTf5rq3jTc+RPIgFiZNevHWjaQnurwkT7VxAwAOPqKl5uzXxL5LWV5PkQ4AgobspwdQ8vXKvm5NLu65iZGwd3WFLsBXtV9H+BjpIY/awQP5ffvNCHz+lXgQOSxStBitZl2V3TMQ5l6eV2HjkNB+7APlfotNV/WrOGR8bsTKTF4kUa3P/FcNoW2u/zYOSzL2cHmTOYh1c5HSbDFcV6ozdhqeHGbOnInPP/8c1apVQ4sWLbBixQr88ssv9G/Lli007pgxY1CzZk3s3y/tcRwdHfHjjz8iMzMTjRs3xqxZs/D111+jVatWqFixYqGm721BY8QKwfvvv4+RI0eiVq1amDFjBrp27Yrp06fjtddeQ0HBk78u7RQkLh4mvQGtX+upmLSj67ak1gkJzFYLrg2MxKXwksgYZ6Q6MAAwufIxGsekN8BlnShi4rZX1Hcxvj8EeecyMS/IT1Ty79iLllk5XrJOI59MzVYLKk/nzeJvPBDLLeL2u47A51PlqRjJI18ooAs3ycOkN6CnVxTMVgvaBBhVy2Yhf2fSG5CXmo7D42bT08jYY9vQ2juc5r/yjptqXum/+6PaPulEjy4ytR85b96vdBRstlqQuEAyzyxEKU+q1WiWM1DRNV5RlGtr4SAiVBkN73ELmbwtGr8zGPlnkyE0y1LdhKgtfGx/3miSTU+i2cVCnpct0VMWZqsFF9bVhNNGUd+LiBY6bj2k2ODLaSxvseee2bapNkHp7DyVMePt4CVuXk5ekdwpENjv4cszW3kxHUSE4NyqOlQc12y1UBPjpKxbb/H6LuvvlYTfmxaEjpV09czrlnFlkz7LFfLhPjeea3O27klLpFNnVqldDSa9qGfBPhMQ8+Ek7ELeXa6t46fwcvENxsfAwYMXs2XrSPqB6AipbUbMVgul51ZP8X+VaXGq/Uzim/SipdXtdUpJ3xyTb4UF8bjZW9y8bYz/CykjAhR5EAzzjqLtfCPqOmKPb8ftTf6431mUBLDfY1HQ6/OXKObKGvwhrgUIEmeL8xU7dthxecV4E6NCWiOl+WKYrUqjGmarBSeGS5u92tOHUoujJr0BX/mHUP04Art6wTBbRTcMZNNPyiT5FDw6GCTPxIXG6Shx7J0NzcW2ZQsVRmJYSQZCAwD4b+tL8zfpDdSQEUHeeX5OscU8+P+Wp7rRJrhbkE1dlrA0mPQGtDhxB9UXxSjGHSnX9R935CemwC7+KKI962PUWOm2IuW7SAgHjmNgpngznzlW6kc5PU2OPQAAPCyjFEsqbPN+vW8kgpbEIKnpEjFuqVPweeMYFcsHAO9ux6l7EeIrjJRLdE5ZYyRs/Uyde3NhqQe8aLwbb0sM1/IB0dAFim144EvpFjc/KRVZHxtV+5fNNy9dtOJJfHP59+TFnAs7QCLhBUdPc9/2nr5TsOnsP4jdvRa3eooi1elf8mOP6KvJ+/WBWWLe4qfMQYWFj9QcapeBPsEV+SfPcmP/ypBIehMHgBpgktN8JSZSMQbV1j1bfU7oPD14FpXEYN/JETAiAbqKFem7GdeMVIQeEOeQ7HaiSwmiDnC/4KFq2c8zXkRjHQcOiAeNGRkZePvtt9GrVy/u78svvywyj65du2L9+vVwcnLCBx98gG+++QaNGzfG3r17H1s/DNAYMZs4efIkZsyYgc6dO+OPP/7AwIEDMXXqVEydOhU7duzAypUri87kf4Bw6CSyPjaif2IaDcu/coVbIAFxEqgwPx4eU+M4wwAA0DaqA43DYqWveMrn+ptkACCt9QK6aQSApd6iiFTiIn4j92rfAdyka4sRIP/pwhNcnb436Q3IQ36hp2EFj66C5XHU4rKbEwLiWyQ6+FUIudIEV9/5PEcvSVN5RhwyGt7j8gPE01F5WcS4gElv4ERz7PYq6bA1sZM4QUtjkB0RxMUnyukAYDxa+ORsi4kpc+QCkqfxjIL8N1kIWBBGJuCtI4jduQb1JosbHHJyL69TUf1C4nt0PE3fs+KUcrq/S+fNwfcdKflX+uJqDQW95HnjfXFD4/emVCax/FWFKdsWTHoDVtWsItUt4Rhn0l1tkU74dg4X3r6UOGazK9pRXSJ2nKUsl4x8tA96hW6gAMC6thaXd2CfQ3SzRphBkp+8fRNnh1MzzOSbI9YO09osACBu3px2VYGHQ2mR6RluVGzqzVYL3OfFI+/CRa489j/5vXP+fI4Gk96ABx3CaZ4p3UQGr+zyBFRfGKPIj5zAs2HE0ur1etJhiUlvwIOOYr77vp5N20+u86L2nbVp04P+LtMmBTeCdFx9LqyriRnn9sKkN+DvNT8DAGfwp9p4kXnsfVa8DSrMpDlph9gzu+G7bhDXT/KNHnn2/Fqcr4nhIzafpKX1cbN3JIQjoi7wiYjl8HvTgvAjXbn5iTC6JOzCSCM92Zf3GTESQ/D3mp+RI+RCV7EiZjE3CSnNFyvaU+07J3GMI4co4iVPjaBGgNi4bJwuVSNQunUqN/4IRpdPga9RZBLSvlYaMrg/pAKEKCnPssulmwT/0fGYc24PMhrewzdp++A1SWxn+5AaeCu9KaXnQYdw7ApxgdlqQZUf+NvV9qeucW0475Ye9iVLUhrLL45HhXqXaX/WLFGS1s2kF3Uj7RwcMPOml2Is3O4RQXVOCx5ZWat9SLYVS+DFFVl/kG4/x6NtVAd6qJCflKpoY0AcX2w4aWM7BwdKE7kRk8OkN2DjfWc63ti+6ZvRmOaZtjIEt3pGcG0Vvn0YTHoD/FYPof1i61A2eSpvFMfJIY9rR7Zs4nKj7rcS011xju3DXlIPs9WCvu+KB8VEoqSwdQsQxQQB2JTqaTR8sGo6Bx/RX5udYwnkX7lCxdwP1bPH/VeDaT55zRpg1zzRgfSampVg0os3yrYONTQ8OSxZsgSCINj827lzpyJu06ZNFfm0a9cOCQkJuH//Pm7cuIHff/8d/v7+/4omzY+YDXz22Wf48ssvsXv3bjRu3JiGZ2dno0KFCmjSpAliY2OfSFmsH7Ecc3WUai1OrGarBa3PtMXmGhth0huwMGMP+ldrpFgMHXd6wMGuAA+aXFI9wSLxR12oT319yN9HB7+K/Bs38H7yaUwLqAmHqp7YuH8jnbSM7w+hjJut/Ak9tlBtXynM99qLJbcroU+Zy/DdNABB/Q9ycbLbhStMuF8ZEonD42arbm4IdMHVkX/yLBd2v1NDrJ0+Fe66Ulz8KzGR1LDFzV6R2PdN8XwaAUCbwChsStrLxSW+TORpCFg/ZCTO5KvVsSvEBbogf86fmlq5hf22dWLJ4tzESJwZINaxTevu9HS2sPxtQR6/wYQYHPpcOom993pD5PW7hrLRyarpzFYLAn4dguQec9D6TFsIzZS6F4XRweYz4UotxNUtoYhzfk0w8k6Xofp4avne3eyH0q2VenpqZadNjqSihleGRKLKb2eo/oCtfnDw1CMvy4q8rdXg0CJDEY/9X+9AdywO+Rmd17+HwPcSbNJBwOYJQNF/XU5f5nT97JycIKiY2lWre3SdZog9vh3N3+qvMAQhp0ntWyS0Jf3UEIHv2r4ttVU/tfZcdT4e3apKm/Gkn+tzTmALyzP/1frQ7eDj3ooNQILhdy5uzUMOcLLP40QQ5Xm3PP0aenruQ58ylxXlpHwXSRkd+cFQhOV1lJlUiuoBqtHKPjv4+Sh888nztZWWg50d1ZUktLyV3hTX+7pzOjoEuh16xFYX17Tizi22UJy0xHcjG7+w8XZ1UCTc58Ur3pmtFvQ+9wqWeu+G78aBSGs7X5EH8b8np684a9f5MUacHDarWHMj63fOVj+x4dc3BKF8O8lNyIVRRmwd8R16eRXu1De3RQM4bpWMeLRt0Jo7QJGXySLp5/pIbbkIgLLODlUqU7F5W2OM/d3k2APsCnGR0vv5UJcmJr2B+stj/YpW2OuGa1H8/Fn9oCPOhubi4gijgikuTp0I2Lm6OOtIcd7ZGiPFXYPl7xNnhSsse7JYffYw3IJSXwg/Yk3R4Zn4EXve/ar9r9BuxGzgwIEDsLe3R3g4b/LY2dkZBoOBXm/+G3h4eHB/AQGimE0ecuFkOotLfeph9dnDaO4RjNxX09HcIxirzx5G3+pNcbVHPTT3CKZ/eUIuVnhsxJ1XzmP12cO4facAeUIu8oRcrD57GHlCLpp7BOP2nQJY6ufQ8IdRNWm85h7BWJmwDavPHsZ3/gHIE3KRnZlO8799pwAuK//BvbUeuH2nAIKrM1afPczl39wjGKZ6zRRl9z18mj7vnxuE5h7BWFa9Im7fKYBfv3gan/yVSLmiCHObvZujpc6Efopyck6cQJ6Qi6knd2PssXisPnsYJf7YgzeqhiNoej8aL0/Ihdus3fR5y2czubZk8yXtTn439wjGw7s3aVzyzmH9Xq4t5bT59Y2nz8b4mwgZ1w/b6jhg9dnDyDl7BnlCLu60DVHNg+3PFj71FXHY9+yffruOlr//jZm4fadApP/ocS6erbJIWraf6Vg5c5D+LjdnN9cesV/ORqk2p7kykr4w0DjWW/fhPfIfBM7oh9xX07my1GiSvyc0NvcIxvvOYp8vOC21f+bw+qjS2YKqn+5WtA37fHlvWVzuXY97f2ZaiGp7HuwyE6vPHkb2n5XhNns3Hvq6c7SS8ZEn5OLKW2Kev27fII7LO+rx2Ofy7Y9jlE99+A7/h/um8oRcDD5yQtEGmVvc6bfOtj2h/bcablzb5WbfVR0javNEztVLaO4RDGxLUPQF1y+hQYrvZvXZw0DzFOQJufB9Z49q/91fV6XQPmbbh7zr7BlKx+Hqs4fh23sffQcfD6QuDqL9e2ZaCJevsH2for5/+6/ClPMeHF0TS+/HQYNExxuHUhV0FTRLRWe7ixxtmcv9kSfkwvsDaU7ZduXR/NG+G5p7BONCkgvy4w7SND+fTsDtOwVYffYwkifU48bmmRm18eumP3BvrYfiuyBpSPmX+tSj88LNjnUh+FeVvrkFNZBX8JDru+YewbgQeQU5Z07TtiTf8vxTe5DT9BzXp99lelIazn5tAPTuira09Werf8n/L47vQf7eg4r4pI4DjpzkxnaekItyc3fjfvM6dD7JDatO02ZFXENzj2D4DYjDH5ccuHwFXz0Kdu5XzGNsu6jNfeR3lcm7KF1qcdj+qTJ5l6KM/PqByBNy8UlaIHLDq3NlbQtcKf5eXxHwroKKU3ahh1dD3G0dosif/Tv3ikjP+RV+aO4RjGxrpvgOeRyN7BpGwn177+P6mX33665N3LzC1oVdC8mY2FbHgYuXnZKE23cKaB3Lz9yF1WcPY/e7P9GyUi6WVNB3ssF9pC4Ogvu0XYq6yulvVT2CPuf/5c7VwWvMbi5vtTzOzKytuk6z6Qqc7Ll+ZetE2p0877n6QJVmtW9h9dnD8IvZW2j9zFfEw5MX4Y4kD8WbD/6nP+T+f1fzqUO7EbOBOnXq4PLly7h06ZLiXbdu3bB69Wrk5OSgRAnliXxR8PDw4J7z8vJw9epVG7E1aNCgQYMGDRo0/FeQmZmJqlWrFh3x/wHZ2dnw9fXFxYvKW9ingSpVqiAtLQ3OjE7lywSH/28Cnlfcv38fTk5Oqu/IYLh///6/YsQuXLjAPRcUFMBqtcLV1bXYvgzkCAwMBAAkJSX9q/T/JWhtVXxobVV8aG1VfGhtVXxobVV8aG1VfGhtVXw8y7YSBAF37tyhjoOfRzg7OyMtLQ0PHz4bAyMlSpR4aZkwQGPEbKJkyZK4fPmy6rvsRwq2JUuWfCJl2dvb/88nH8QPwssqQ/skobVV8aG1VfGhtVXxobVV8aG1VfGhtVXxobVV8fGs26ps2bLPpJz/Bc7Ozi81c/QsoemI2YBer8fVq1eRo6LknpWVBXd39391G6ZBgwYNGjRo0KBBgwYNGiNmA2FhYSgoKOAcuQHibZjFYkFoaKiNlBo0aNCgQYMGDRo0aNBQODRjHTZw/Phx1K1bF506dcKaNWto+IwZMzB8+HAsW7YMb7311v8jhRo0aNCgQYMGDRo0aHhRoTFihWDYsGH46aef0KlTJ0RHR+P06dOYPn06oqKisH37dio3rEGDBg0aNGjQoEGDBg2PA40RKwT5+fn44YcfMG/ePKSnp8Pd3R1vvPEGJk6ciNKlS/9/k6dBgwYNGjRo0KBBg4YXFBojpkGDBg0aNGjQoEGDBg3PGJpsnQYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iM2DPA3bt3MXnyZNSpUweurq5wd3eH0WjEkiVLIAiCIv6yZcsQFRWFMmXKoHTp0qhduzYmTZrExdm5cyfs7OxU/9q1a6dKR2xsLIxGI0qVKoXy5cuja9euSEtLU4179uxZdOzYEW5ubihVqhQaN26M7du3/++NUQSK01bp6ek2607+li9fzuWbk5ODcePGwdfXF05OTvD398cXX3yB3NxcVTqWLl2KevXqwcXFBZUrV8aAAQNw5coV1bj79u1DixYt4OrqijJlyqB169awWCxPtF3U8DTaqrD4tWvX/p/rb7Va0bt3b1SsWBEuLi4IDQ3F6tWrn3jbyPE43+CmTZvQvHlzVKlSBaVKlUL16tXxwQcf4NKlS4p8b926hWHDhsHT0xPOzs4IDg7G7NmzVb/rgoICTJs2DTVq1ICzszO8vLwwatQo3Lt3T5Xmx/lenySeRlv9l+crABAEAXPmzKFzSrly5dC6dWskJCSo5vtfna+Ax2url3W+unTpEoYMGQIvLy+UKFEC1apVw3vvvYebN28q4j7O2H8Z56un0VYv63yl4TmFoOGpIj8/X2jUqJFgb28v9O3bV5g7d64wbdo0ITw8XAAgfPjhh1z8vn37Cvb29kLXrl2FWbNmCXPmzBE++ugjoX///ly8HTt2CACEQYMGCcuWLeP+duzYoaBjzZo1gp2dnWAwGISZM2cKkydPFipVqiR4eHgIWVlZXNzk5GShfPnyQqVKlYTJkycLM2fOFAwGg+Dg4CBs2bLlibcRQXHb6u7du4o6k7+yZcsKJUqUEK5cucLl3aFDBwGA0K9fP2H+/PlCv379BADC22+/raBj6tSpAgChSZMmwty5c4WxY8cKpUqVEmrVqiXcvXuXixsfHy84OTkJfn5+wtSpU4WpU6cKfn5+QunSpYVjx469cG2VlpYmABA6deqkiP/XX38p6Hic+l+7dk3w9fUVSpUqJYwdO1aYO3eu0KRJEwGAsGjRov/3thIEQZg3b54AQGjQoIEwdepUYe7cucKAAQMEnU4n+Pr6cv2fk5MjhIWFCQ4ODsL7778vzJs3T+jUqZMAQPj8888VdAwfPpy27bx584T3339fcHBwEF599VUhPz+fi/s43+uL0Fb/5flKEARhyJAhAgChadOmwvTp04Wvv/5a8PPzE0qUKKFa///qfCUIj9dWL+N8denSJcHb21twdHQU3n33XWHOnDnCu+++Kzg6OgoGg0G4d+8ejfs4Y/9lnK+eVlu9jPOVhucXGiP2lBEXFycAEEaMGMGF5+TkCL6+vkLZsmVp2IIFCwQAwtKlS4vMl0wUixcvLjLuw4cPBb1eL1SrVk24c+cODT9y5Ihgb28vDBw4kIvftWtXwd7eXjhy5AgNu3PnjlCtWjUhKChIKCgoKLLMf4PHaavC0r/++utc+MaNGwUAwsiRI7nwkSNHCgCEvXv30rArV64IJUuWFMLCwoS8vDwavn79egGA8OWXX3J5hIWFCa6ursL58+dp2Pnz5wVXV1ehZcuWxar3v8HTaiuysVFbmNXwOPUfPXq0AEBYv349DcvLyxPCwsKE8uXLc2PzSeJx2iooKEjw8PAQHjx4wMX99NNPBQDC2rVradjMmTMFAML06dO5uJ07dxYcHR2F9PR0GnbixAnBzs5O6Ny5Mxd3+vTpAgBh+fLlNOxxv9cniafVVv/l+erIkSMCAKF169YcLTdu3BAqV64sBAYGchvb//J89bht9TLOV++9954AQFixYgUXvmLFCgGAMGnSJBr2OGP/ZZyvnlZbvYzzlYbnFxoj9pSxefNmAYDw7bffKt6FhYUJer1eEARBKCgoEPz9/YX69evT97dv37b5UbITxd27dxWbIRZbtmwRAAgTJ05UvGvWrJlQpkwZ4eHDh4IgiDcoTk5OQrNmzRRxJ06cKAAQ9u3bV3il/yWK21a2QE6NN2/ezIX37NlTACBkZGRw4RkZGQIAISYmhobNnz/fJjPs5+cn1KxZkz4nJSXRU2s1Wuzs7IQLFy4USvO/xdNqK3Zj8+DBA+5EUY7Hrb+np6fg7++viLt06VIBgPDbb78VSvO/xeO0VZUqVYRatWop4pFNzN9//03DoqKihJIlSyq+vd27dwsAhG+++YaGEeZk9+7dXNwHDx4IJUuWFNq0aUPDHud7fdJ4Wm31X56vyI3Vr7/+qog3aNAgxbj4L89Xj9tWL+N8FRISIri4uCjW/vz8fMHZ2Vnw8/MTBOHxx/7LOF89rbZ6GecrDc8vNB2xp4zw8HCUK1cO3377LVavXo2MjAycOXMGY8aMwaFDhzB+/HgAosxwSkoKjEYjJk2ahAoVKqBMmTIoV64chgwZgrt376rm/95776F06dJwcXFBUFAQfvzxR4W894EDBwAAkZGRivQRERG4ffs2EhMTAQDHjh1DTk6Ozbhsfk8axW0rNdy9exerVq2Ct7c3WrZsyb07cOAAPD094eXlxYV7eXlBr9dz9Smqrc6cOUP7oqi4giDg0KFDxav8Y+JptRXB999/j5IlS6JUqVLw8vLCuHHjkJOTw8V5nPpfuHABWVlZdAzJ47L5PWk8TluZTCacOnUKo0aNwunTp5GZmYk//vgDkyZNQpMmTdCsWTMAov7E4cOHUa9ePTg7OyvKs7OzU4wre3t7hIeHc3GdnZ1hMBgeawyy3+uTxtNoKxb/xfmKfDclS5ZU5EHCWP2n//J89bhtRfAyzVc5OTlwdnaGnZ0dF25vbw8XFxekpqbi6tWrjzX2X9b56mm0FYuXab7S8PzC4f+bgJcdbm5uWL9+PQYMGIBu3brRcFdXV6xZswYdO3YEIDJiAPDbb7/h4cOH+Oyzz+Dr64sNGzZg7ty5OHv2LLZv304nHEdHR7Rv3x7R0dHQ6/WwWq1YuHAhRowYAYvFgsWLF9OyrFYrAMDT01NBHwnLyspCcHBwseM+DRS3rdTw22+/4e7du/jggw9gb8+fL1itVtSqVUs1naenJ86fP8/FJeFqcQVBgNVqRVBQ0EvZVvb29mjWrBk6duwIb29vXLlyBatWrcKkSZMQHx+PzZs3Q6fTASj+uHrcuE8aj9NWP/74I+7fv48ff/wRU6dOpeF9+/bF3Llzad1v3LiBBw8eqNbHyckJ7u7uXH2sVivc3d3h5OSkiO/p6Ym4uDg8fPgQJUqUeKzv9UnjabQV8N+er0g/bd++He3bt6fxBEHArl27AACZmZk0/L88Xz1uW72M81VwcDDOnj0Li8UCg8FAwy0WC27cuAEAyMjIeCwaX9b56mm0FfByzlcanl9ojNgzALF82L59exiNRly/fh0zZ87Em2++iT///BMtW7bEnTt3AABXrlzBli1b0KJFCwBAly5dIAgCfv75Z2zevBlt2rQBAERFReHPP//kyhk4cCCio6OxZMkSDBgwAFFRUQCA+/fvA4DqpEpOx0icx4n7NFCctlLDggULYG9vj759+yre3b9/X7U+gFgntj7/9baqVq0atm3bxoX1798fgwYNwvz587Fy5Ur07NkTwMvZVo6OjqhWrRo6deqE1157DSVLloTZbMaiRYug0+kwf/78IutD6iQfV4XFJXFKlCjx0rUV8N+er9q0aYNatWph1qxZ0Ov16Ny5M+7fv4+pU6fixIkTChr/y/PV47bVyzhfjRgxAuvWrUO3bt3www8/oHbt2jh58iRGjBgBR0dH5Obm4v79+0+sPiT+izhfPY22Al7e+UrD8wlNNPEp4/jx4zAajWjZsiW+++47dOrUCf3798eePXtQpUoVDBw4EPn5+XBxcQEgnooQJozg7bffBiCaVC0M9vb2GDNmDABg48aNNJyIdMhFNQAgOzubi/M4cZ80ittWcpw6dQoJCQlo2bIlqlWrpnhfsmRJ1foAYp3Y+vzX28oWPv30UwAv97gqKChA69atERcXh1WrVqF37954/fXXMX/+fIwePRoLFizA1q1bi6wPqZN8XBUWl83zZWsrW/ivzFcODg7YtGkToqKi8NFHHyEwMBB169bFkSNH8PXXXwMAypQpQ/P9L89Xj9tWtvAiz1eNGzfGypUrcefOHbRt2xbe3t547bXX8Oqrr1LT6WXKlHli9SHxX8T56mm0lS286POVhucXGiP2lDFt2jRkZ2eja9euXHjJkiXRtm1bnDt3Dunp6ahatSoAoEqVKoo8PDw8AIBetRcGHx8fAMDVq1dpmF6vB6B+5U3CyLX448R90ihuW8mxcOFCAMCAAQNU89Xr9Tav+7Oysrj6FFV/Ozs7GudlbCtb8PLygk6ne6nH1Z49e/DPP/+gS5cuCp0DkpaIR7m5ucHFxUW1Pjk5Obh69apiXF29elV1Ac7KyoK7uztKlChB45JwtbjAi9VWheG/Ml9Vq1YNO3bswLlz57Br1y6cOHECR48epafgNWrUoOn/6/PV47SVLbzI8xUgfkPnz5/HkSNHsHv3blitVsyZMwfnz5+Hg4MDAgICHovGl3W+Ap58WxWGF3m+0vD8QmPEnjLIx6V2O5GXl0f/16lTB87OzqofKNEJqFSpUpHlJSUlAQAqV65Mw8LCwgAA8fHxivgJCQkoU6YMgoKCAAB16tSBk5OTzbgAEBoaWiQd/wbFbSsWDx8+xLJly1CxYkV06NBBNd+wsDBkZWVxugWAqGtgtVq5+hTVVtWrV0fp0qWLFdfOzg4NGjRQr+z/iKfVVraQmpqK/Pz8xxpXbP09PDzg6empqmj/vIyrx2lTe3t71K9fH0eOHFFsVvbv3w9BEBTjqqCgAPv37+fiZmdnw2KxPNYYZL/XJ42n0VaF4b82X1WrVg2vvPIK1ZeJjY2Fvb09TCYTjaPNVyKK01a28CLPVwQ6nQ4GgwGNGzdGpUqVcPHiRRw5cgRNmjRByZIlH2vsv6zzFcGTbKvC8CLPVxqeY/x/mGr8L2HEiBEK07CCIPpF8fDwENzc3Kj/F2K2+I8//uDidu7cWeE/5urVq4qysrOzhaioKIUJ1IcPHwoeHh4KPxcWi0Wwt7dXOIt+/fXXBXt7e8FisdAw4uciMDDwqfm5eJy2Ili9erWqzx0WGzZsKNQvzz///EPDLl++LLi4uAjh4eGqfnlYvySCIAihoaGCq6sr57QxKytLcHV1FZo3b178yj8mnlZbqY2r/Px84Y033lA12fw49f/ggw9s+uUpV66ccPv27aIr/i9Q3LayWCwCACEkJERhbpk4mV2zZg0N++mnn2z65XFwcBDS0tJo2LFjxwr1y7Ns2TIa9rjf65PE02orbb5S4s8//1R10qzNV0rYaquXcb5SQ35+vtC1a1fBzs5O2L59Ow1/nLH/Ms5XangSbfUyzlcanl9ojNhTRnp6ulC+fHnBzs5OeOutt4TZs2cLX375peDj4yMAEGbOnEnjnjt3TqhcubLg7OwsjB49Wpg5c6bQtm1bAYDQu3dvLt/Q0FChffv2woQJE4T58+cLEyZMEAIDAwUAwrBhwxR0rFq1ivP8/tVXXwmVKlUSKleuzDm3FATR34qbm5tQqVIl4auvvqKe33U6ncLv1JPE47QVQevWrQUAwqlTpwrNu127dgIAoX///sKCBQuE/v37CwCEt956SxF3ypQpAgChadOmwty5c4Vx48YJpUqVEmrUqKFw4rl3716hRIkSgp+fnzBt2jRh2rRpgp+fn1CqVCluon3SeFpt1alTJ6F58+bC2LFjhXnz5gmTJ08WGjRoIAAQOnTowDlTFYTHq//Vq1cFb29voXTp0sK4ceOEuXPnCk2bNhUACAsWLHgyDaOCx2mrLl26UAbj22+/FX766SfhtddeEwAIERER3GYxJydHaNCggeDg4CCMHDlSmD9/vtCpUycBgPDZZ58p6Hj33XcFAEKnTp2E+fPnCyNHjhQcHByEJk2aKNr1cb7XF6Gt/uvzVb9+/YS+ffsKP/74ozBv3jyhd+/egk6nE8LCwoSbN28q8v4vz1eP01Yv43x1584doWbNmsInn3wizJ8/X5gyZQqtk9xB9+OM/ZdxvnpabfUyzlcanl9ojNgzQHJystC7d2/B09NTcHBwEFxdXYXGjRtzJ8YEaWlpwptvvim4u7sLjo6OQo0aNYQpU6YoJr6vv/5aiIiIENzd3QUHBwehbNmyQtOmTRUe5ln89ddfQsOGDQUXFxehXLlyQpcuXYTk5GTVuKdOnRLat28vlC1bVnBxcRGioqKELVu2/G8NUQw8TltlZGQI9vb2gtFoLDLfBw8eCJ9++qng7e0tlChRQvD19RUmTpxo09Hk4sWLhZCQEMHJyUmoWLGi0LdvX+HSpUuqcePi4oRmzZoJpUqVEkqXLi20atVKOHTo0ONV/F/gabTVggULhCZNmgiVK1cWHB0dhdKlSwsNGzYUZs6cqRiDBI9T//PnzwtvvfWWUKFCBcHJyUmoV6+esHLlysev/GOiuG2Vk5MjfPPNN0JISIjg7OwslChRQggMDBTGjBkj3L17V5HvjRs3hHfeeUfw8PAQSpQoIdSsWVOYMWOG6qlmXl6eMGXKFCEoKEgoUaKEoNfrhffff1+xWSZ4nO/1SeJptNV/fb6aM2eOUL9+faFMmTKCs7OzULt2beHLL78U7t+/r5rvf3m+epy2ehnnq5ycHKF79+6Cj4+P4OTkJLi5uQmtWrWyuUl/nLH/ss1XT6utXtb5SsPzCTtBkHmn06BBgwYNGjRo0KBBgwYNTxWasQ4NGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNzwRfffUVunbtCj8/P9jZ2cHHx+ex0l++fBl9+/ZFSEgIypcvD2dnZwQEBKB///5ITk5WTWO1WtG7d29UrFgRLi4uCA0NxerVq1XjpqSkoGfPnqhcuTKcnJwQEBCAzz//HNnZ2Y9bVQXi4+PRvn17VK1aFS4uLvD398fAgQORmpr6P+et4cWEnSAIwv83ERo0aNCg4eXE+PHjMWHCBOzYsQNNmzb9/yZHgwYN/8+ws7ND+fLlUb9+fRw6dAhlypRBenp6sdOfPXsW/fr1Q2RkJLy9veHi4oKkpCQsWrQIOTk5SEhIQK1atWj869evIzQ0FJcvX8bIkSNRtWpVrFixArt27cKiRYvQt29fGvfMmTOIjIxEXl4e3nnnHfj6+iI+Ph5Lly5Fq1atsGnTJtjZ2f2rem/evBlt27aFv78/+vXrB3d3d5w8eRLz5s2Dk5MTjh8/Dk9Pz3+Vt4YXGIIGDRo0aNBQDAB4rL8dO3YIn3/+Of2tQYOGlxc7duwo1reekpJCfwcHBwve3t5PpPz9+/cLAISYmBgufPTo0QIAYf369TQsLy9PCAsLE8qXLy/cuXOHhnfo0EGws7MT9u7dy+UxefJkAYCwbNmyf01fq1atBEdHR+HKlStc+Pz58wUAwrRp0/513hpeXDg8a8ZPgwYNGjS8mPj8888VYT/88ANu3bqF9957D+XKlePe+fj44N1330X37t1RrVq1Z0SlBg0anmf4+fk9lXy9vb0BADdu3ODCV6xYAX9/f7z22ms0TKfTYdiwYejduzdiY2PRrVs3AMCOHTsQFBQEo9HI5dGnTx988sknWLx4Md566y3u3datW/Htt99i//79yM7ORlBQEIYOHYohQ4Zw8W7fvg1nZ2e4ublx4Xq9HgBQqlSp/6H2Gl5UaIyYBg0aNGgoFsaPH68IW7JkCW7duoURI0bY1PVwd3d/uoRp0KDhP4fc3FzcunULubm5SE5OpvNTdHQ0jXPhwgVkZWWhZ8+eivQREREAgAMHDlBGLCcnByVLllTEJWH79++HIAhUPHHevHkYMmQIIiIi8Omnn6JUqVLYsmULYmJikJKSgu+++47mYTKZkJCQgLfffhujR4+Gu7s7Tpw4gVGjRqFmzZro3r37k2kYDS8UNGMdGjRo0KDhqWH8+PGws7PDzp07aVh6ejrs7OzQp08fJCYmolOnTnBzc0PZsmXRoUMHqi+SnJyMrl27wt3dHSVLlkR0dLRNpfZr167hww8/RPXq1empc9u2bZGQkPAMaqlBg4ZnDbPZjIoVK0Kv1+OVV17ByZMn8f3336NXr140jtVqBQBV3SsSlpWVRcOCg4Nx+vRpXLx4kYu7Y8cOAMDdu3fpjduFCxcwfPhwdO/eHXFxcRg9ejSGDh2KtWvXYvjw4Zg6dSo3X40ZMwYxMTH4/fffYTAYULVqVbRu3Rp+fn5ISEiAq6vrE2oZDS8SNEZMgwYNGjT8vyAtLQ2RkZG4desW+vfvj6ioKKxfvx4tWrTA6dOn0bBhQ1y9ehV9+vRB06ZNsWnTJrRt2xYFBQWKfOrXr4/vvvsOnp6eeOedd9CpUyfEx8fjlVdewV9//fX/VEMNGl5OFBQU4OrVq9zfrVu3AAC3bt1SvJN/s08CERER2LJlC9avX4+vv/4aHh4euHHjBvLy8mic+/fvAwCcnJwU6Z2dnbk4ADBq1ChkZ2ejQ4cO2LVrF86dO4dVq1YhJiYGjo6OXPzff/8dOTk56N+/v6K+r732GgoKCrB161aat06ng6enJ1q0aIEFCxbgjz/+wKhRo7B161Z0794dubm5T7yNNLwA+P9WUtOgQYMGDS8uvL29BQBCWlqa6ns1Yx1paWnUoMeUKVO4+AMHDhQACOXKlbP57o8//uDCGzVqJNjb2yvCrVarULVqVaFy5crCgwcP/n0lNWjQwIH9hovzZ2t+eJLGOrKysoQKFSoIgwYNomEHDx4UAAgffvihIv69e/cEAEKPHj248OnTpwtly5altJcoUUIYP368EBYWJgAQbt26JQiCIMTExBRZ74kTJ9J8e/bsKfj6+gr379/nyps9e7YAQJg/f/4TaQcNLxY0HTENGjRo0PD/Al9fX7z//vtcWK9evTB//nyUL19e8e6tt97C/PnzcfToUXTq1AkAYLFYsGfPHrzxxhs0jMDDwwOjR4/Ge++9h23btqFt27ZPt0IaNPxHUKVKFWzZsoULO3r0KD744ANMmTIFdevWVcR/2tDr9WjRogUWLlyI6dOnw8nJiRrCYMUPCUiYXGxx2LBhGDRoEI4fP46cnBwEBwejXLlymDlzJjw8PFCmTBkAgPDI+9PSpUvh4eGhShMxTJKRkYHly5fj3XffhYuLCxena9euiImJwa5duzBgwID/oQU0vIjQGDENGjRo0PD/grp168LenpeQJxuakJAQxTu1TVV8fDwA0VeQmjGRpKQkAKJ/II0R06DhycDZ2RktWrTgwhwcxC1lgwYN/t98Bj548AD5+fm4ffs2KlasCA8PD3h6eqrqipKw0NBQxTsnJycu/ODBg7hy5Qr69+9PwwIDAwGIxojkbSEHmbPy8/MV74goJStSqeG/A40R06BBgwYN/y8oW7asIoxs5gp7x+pSXL9+HQCwZcsWxQk9i7t37/5PtGrQoOHZIyMjA/fv34e/vz/V0bp06RIqV66siHvq1Cls27YN/v7+qFixIg3v0aMHpkyZgr/++ouasM/Pz8eMGTNQrlw5zsqiGrKzszFixAg4OTnhgw8+oOHdunXDJ598gs8//xxNmzZV3HTdunULzs7OcHJyQvXq1aHT6bBu3TpMnjyZc/WxZMkSAEBYWNhjtY2GlwMaI6ZBgwYNGl5YEIbtq6++wscff/z/TI0GDRqKwrJly3Du3DkAwJUrV/Dw4UN88cUXAERfYKzVw969e2PXrl1IS0uj7jG++uorbNmyBW3btoWPjw8EQcCJEyewbNky5ObmYubMmVx5H3/8MVavXo0333wTI0eOhKenJ3799VccOHAACxYs4KwVnjx5En369EG7du1QtWpVXLp0CT///DNSUlKwePFi1KhRg8atWrUqZs+ejQEDBqBmzZro1asXvL29ceXKFRw/fhzr1q3DqVOn4OPjg/Lly2PEiBH4/vvvUa9ePQwcOBDly5fH3r17sXz5cvj7+2tiif9RaIyYBg0aNGh4YdGwYUMAkoiiBg0anm8sXLgQu3bt4sLGjh0LAGjSpAnHiKmhXbt2OH/+PFatWoXLly8jPz8fnp6e6Nq1Kz744AMEBwdz8StUqIC9e/fi448/xsyZM3H37l3UqlULK1euxBtvvMHFdXd3R9WqVTF//nxcvnwZZcuWRePGjbFs2TKEh4craOnbty+CgoIwZcoUzJ07Fzdv3oS7uzuqV6+OSZMmcbpx3333HapXr44FCxZg8uTJyMnJgaenJ2JiYjB+/Hiqe6bhvwWNEdOgQYMGDS8swsLCYDQasX79eixatAj9+vVTxElISEBISIiqo1YNGjQ8GTRt2pQasCgMrE/BfxO3RYsWRepkyeHp6Ylly5YVGa9y5cpYu3btY+UdFRWFqKioIuPZ2dlh4MCBGDhw4GPlr+HlhsaIadCgQYOGFxorVqzAq6++iv79+2PWrFkICwuDq6srMjMzcfDgQSQnJ+PChQsaI6ZBgwYNGp4raIyYBg0aNGh4oeH9f+3ZoRUDIRBF0UlqwKC2BDqkBmqgAUqhJKKjNmLPxNyrvxj7zlxX7L1jjBFrrZhzxjknaq3RWovee5RS/n0mAHx5nV/+yAAAADzmfT8BAADgSUIMAAAgmRADAABIJsQAAACSCTEAAIBkQgwAACCZEAMAAEgmxAAAAJIJMQAAgGRCDAAAIJkQAwAASCbEAAAAkn0Ajm9E1ypG9PMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)\n", + "\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(0,2000)\n", + "\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAJ9CAYAAABXWMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3xURdf/d7MJoSXUQNiEkJ5AIGwIKbuAICALAZUuRRGkJoq966OiiGBFUaqIUlQQxEbgKig1CYTAEgglPSS59BJqAim/Py4zd+aWTXh/vojPu18+fLJ3ypkzc+fOzJk5c46hpqamBk444YQTTjjhhBNOOOGEE07cMbj80ww44YQTTjjhhBNOOOGEE078X4NTEHPCCSeccMIJJ5xwwgknnLjDcApiTjjhhBNOOOGEE0444YQTdxhOQcwJJ5xwwgknnHDCCSeccOIOwymIOeGEE0444YQTTjjhhBNO3GE4BTEnnHDCCSeccMIJJ5xwwok7DKcg5oQTTjjhhBNOOOGEE044cYfhFMSccMIJJ5xwwgknnHDCCSfuMJyCmBNOOOGEE0444YQTTjjhxB2GUxBzwgknnHDCCSeccMIJJ5y4w7grBbH33nsPI0aMQGBgIAwGA/z9/R2m3717N/r27QsPDw94enqif//+sNvtmmlFUcS4cePg5eWFBg0aoGvXrvjhhx8001ZUVOCNN95AQEAA3N3dERQUhJkzZ+LmzZv/nzV0wgknnHDCCSeccMIJJ+4Ujh07hrFjx6J9+/Zo0qQJGjZsiPDwcDz77LM4ceJEnekkJyfDarWiUaNGaN68OUaMGIGCgoL/EU+Gmpqamv9Rzv9FGAwGNG/eHF26dEFGRgY8PT1RWFiomTYtLQ29evWCj48PnnjiCQDA559/jtOnTyMlJQWdOnWiac+fP4+uXbvi9OnTePbZZ+Hr64tvv/0W27Ztw1dffYUJEyZwtAcPHoyff/4Zjz32GCwWC1JTU/HVV1/h0Ucfxddff/2/VX0nnHDCCSeccMIJJ5xw4m/Eli1b8O677yI+Ph6+vr5wdXXFwYMHsWzZMnh6esJut6NVq1YOafz4448YPnw4OnfujMmTJ6OsrAxz586F0WjE3r17YTKZbo+pmrsQeXl59HdERERNu3btdNPGxMTUeHh41JSUlNCwkpKSGg8Pj5r77ruPS/vCCy/UAKj55ZdfaFhlZWVNTExMTfPmzWsuX75Mwzds2FADoObZZ5/laDz77LM1AGp27dr1P62eE0444YQTTjjhhBNOOHEXYM2aNTUAaubMmeMw3Y0bN2pMJlONn58fJzPs37+/xsXFpWby5Mm3XfZdqZoYGBhYp3S5ublIT0/HiBEj4OPjQ8N9fHwwYsQIbN68GSdPnqTh3377LYKCgnD//ffTMKPRiOnTp+P8+fNITk7m0gLA008/zZVJnleuXHm71XLCCSeccMIJJ5xwwgkn7iK0a9cOAHDhwgWH6bZt2wZRFDFp0iQ0btyYhpvNZvTq1QurV6++7etLrrfP7t2D9PR0AIDFYlHFxcfH46uvvkJGRgYGDhyIEydOoLS0FGPHjtVMS+iNHDmS/vbx8UHbtm25tG3btoXJZKJl3y7atGnDPVdXVyMjIwMeHh4wGAz/I5pOOOGEE0444YQTTvy7UVNTg8uXL8NkMsHF5a48K0F5eTlu3Lhxx8oLDQ1VrY9v5z6XFsrLy3HlyhWUl5fj8OHDeOmllwAACQkJDvPVJnf8+eefyM7ORkRERJ15+VcLYqIoAgB3GkZAwkpLS287LUnfoUMHzXJ9fHxQUlLy/8G5jOrqapWw54QTTjjhhBNOOOHE/00UFxfD19f3n2ZDhfLycgS0a4yTp6vuWJkuLi7w8vL6Ww8rvvzyS0yfPp0++/v7Y+XKlejRo4fDfHWVJf7PCGLXrl0DALi7u6vi6tevz6W5nbTkt1Zakp5NeztQSvFlZWVo2rQpuiMBrnADABQs7YSAiQexPvsgTTcktBPWZx/EsGgLqi9fAQCszz6IIaGdOHokjI3L+6grgp7bq5lemU+J/PdiEPhK7ad/hugOqMk4rEmL1EOvbBZXH+yK3z9YRp9JnvXZBxG1Ywz29/hWVT+2zKZ/NMPF+y4gb04MMod8xaV59sAh9GhQw9Fm6ZDfXXZVYV83oybvbPsOPJKAeg8Wq9r846xUPLDlcQzpsg8Huzt+T+T3sMiuqC6vQMBWd3xs2kvLvDQyBp5rtNu//XYXZF9uhdXBAowGF0rP4O6OmooKh+2sVy/Db21QM+iEikctnB8Xi22vL6VpjOHBeHftKrzcMU4zv14/yP20C4Kf2kefzTur0alhMb58eQjcf993W/2ntnLNO6vxZqss+szGadX38vAYbJ71lcPyld8pGz60QxSu2TqjwYaMWvmsax308pE0kT9PQOaDy1Rpz64OwY6oH2ttR2XfjFz/GIJeUvdBkq7exta4MeBUnegpw2r7NnLnRiP46QzNuPPjY9H86z2q8EsPxcBzdboqPGirO7LmdET9jRmAwYD1xzI5Hti059YEo8XIXEqjy87RaPfYIRXNwhmx8H+T52F99kHcM3sitr+8FAAwfOCDWLvhZ9W3VhPfCYY0ue+wdQSg4m3o6IdQk3EYpc/Fweej3XSsA4Az34fCa1S27jtgseaYHSPDzHVKq6yv3rirxPnxsbgUAOwfvZSry4fngrHL0kC3LPGZOJg+2a0Kn31oN17uGIcKWxe4C/swZO8prO/aWpPGxbVBaDo8j+ONnZ9Yvh3VLe+jrsi8X3susj0/AcKHy7jwyyNj4LEmXXPeVraRMTwYVUdzddtBb3zW4pM8G1t5IfttHwRNs6vo3egbhXqb92OaPRsLzaHIXxKJwMmZKH0uDnumfqmqIwtXnzYQB/mh1SL+veTO64Lg6ftg3lmN9Dej4bZlv8Oxo2hGLNrd+laMYUF4Y+1q/GfKBPz8jTSnI7oDxi9Jxtdd/KVyvVvjh+2b6zR2nJ0Ui5Zf7tFsR2W7nZ0YC8+iSmyY/412ff3borJQPa9rQetbzf0kGgcHfq37vmrDpYEdsW/Du/Dw8KhznjuJGzdu4OTpKhRl+MPT43//xO7S5Wq0iy5EdnY2PD09/za6gwcPRnh4OK5cuYL9+/fjl19+wdmzZ2vNd7uyRF1wd5571hENGzYEIJmZV6K8vJxLcztpyW+ttCQ9m/b/B0TC/zX7KFwNbthyIgshk6Tfnh4uGBHWBSPCusDV4IYRYV3wR/ZuuBrcUPThPTTc1eAG1z8DsOVEFkaEdcGWE1no8msSpRf2/AFKz9Xghk+KMrDlRJac9xZtV4MbTvynJw0T3+yJ0Fft0rNLPWw5kUXzDcy6ztHY/NsPcDW4ocUub8rDmZ8jKW1StrJc8t/d2weuBjc0+eUArbOnhwstc0RYF+QlfM+1hXtYOOp16gRXgxtG90qAq8EN6zruxJYTWQj/4Sblg/LcykBpkzjyl22DzO71uXZh29ny9RM0X8PBJzkaIyNi4Wpww4sd70H4UwdxpAfftux/Tw8XoE88Lk6T3qNLRTW2nMjCl2H7uDLTP/0argY3XJx2D1wNbiiY153S2HDYAsOgcxgV3hWeHi74tXQ/XA1uMN6opnVi67+yeDdXV/JO7smsob8vrwmhaUiY1v8tJ7LQasV+eHq4oL5fgNR3HvRBTIvGqvZUtuXv4kEuPPzpg1y/+CjoCL6LDkajPw6iXAjjeC2ZeQ/HgxZfyr7Gvu9n2qXT74qk7TP7cY7f89Olb6DPwUo0W2fnytcrz9PDBTuMDVXveHPxAZT7NaJp3WKiVO3j3rK16n0p247w7Gpww6ihozX5IPUMe/EATTv+lA31fdthy4kseI8qVNFly2XpsDwG/W5Eff9AOZ8lmuO/OuE89y62nMhCUk6xZj8K3NOUy0v+1g8IwpYTWZicLdKwLSeyEP5MJteH2bj97y3DlhNZcLknlgtvvsYO97Bwmv7amB5wNbhhcdg+NN4k0XOFK81DxhmWz9YPFWHB8T20PYI/d9WsT7NSaayob2oLTw8XFHzRHSPCusD+7jKMCOuCYvcK/L79V67dSX633dI4f/JVecwl8SQNO04Z9+UgcE9TtPt4H1wNbrjS7wouPXYPTr7aE21GF+j2T2XYmPAY1A8IQsG87prv39XghuLV0Rw/frub6/bL1imtVGNNq2/2I/it/ar5a8XR3lw6Ja9HXvyKeybpXu8kjXuNfpfGjl9jfLm8Dbb54ebgbnA1uKHliOMcr5vETBj35XB1ZNuXrcuWE1m4ObgbtpzIQsAf8tjBphsR1gWevx5QhTf7wU5pW796QtXHyf83C7JgOFak+w1WD7ByfYDlrd+hG9z3ydL//cBWhCVm4ULSPVx5F6fdgx0rVkrzS1QEXA1uCJ1yBK4GNxx9/itajyGJkzX7jUvZdRx86yuOpqvBDeFPSu/iUA93NPjzEOXzxjDpXfWc9wTCXrbj0oYIbDmRhaC39mPLiSy4R0TAkH0c3Vs2QL20o3L77MvByugQSh+nzqvGXfa9svO799L9mv1J2YauBjccmLkMDbcc1JyXt5zIAopOUvotdnnrrl3YMZflJ/zZTM11haP/XN/ccIhbG96tkPqo8Q78/98RU3x9fdG3b18MHjwYM2bMwDfffIMXX3wR7733nsN8tytL1AX/akGMmIhkVQoJSBg5KrydtCS9VlqSXutY8v8HZMfEZjJrxguinYvPHbuAj2//GzrMT0L2smjYTGYEvZjOpSf5ASCyXn2uHEG003jPwmpkL+0KAPDtWUzjhNL9fJ6OnrCZzHBt15aWI4h2lHU/R9O0GXwE2fNj0THDhcYn3DOE4+fUdCveyN+H5P2/a9Z1aomFlhv441QIoh0l66Qj36rsPGz8/XsYmzbBjZVuNI/NZMamX1dxz1pty4az7eMIWdPnc3TYvDWVlbXSYetWP/8MWi5KBQBMyc5X8SiIdkq/5aJUnH7Civzhi/BLqfRuCx5cjONvWmn6EfeMVPHFvv82ro25Z/L7Ta/DNP3uOQtUNADAvF/NP0FlcQmMEWEwvZ/CtbceEny6qNrJZjIj70Pprmb3zKE0/Momb648//+k0ryBa6cCAArftXB0SNqQreMl/npH0zjfW21A6m8zmdF8WSrHT6vPUwAAr7Y8BgB4JS+Ta4ug9PpceQDQ5+GJGNiwXLON9r2xgD7X7D2E7eVyvQXRjuSDf3Jt1vGzJAiiHc/kHqFp2PiqrGMwenlxNJT9hmD/EX9UlooYENZD1eZsPq1vhKR3/TMDlUXFuDpcOukUflyuSkPah9B8Y9nDqj54ZUQcjsddhSDaMadgN5c/4IdTqKi5iWVh7VTtp9WnSFhU+ii47NjP0RJEO6qy82haz+/SuDitb0yrjFC3RrCZzMieH4ua/Vk0vmOafM+4xRKp71SekIxC5Q9dxPH+rL9Fd3whYb7vpdBnrXRs/uNxVwEABd9HQhDtaL4sleZ3REOJ0vt9kT98keq9B/wyBYJoR8CoTBS+a6HtI8ZfVvFN8p3rdoGjoVdPAAh9bC9t6wbbWnNxnT9IUvUjZX4CY3AAJhwrQu7H8RBEO272OoEGP/MnIn67G6GmmxmDfKK5cEdjlM1kRoOf98BmMqOeIGkmgFkQC6IdJa9adfkitH3mpHB9jv37bqCZC4t9JRGCaEe3p6TxzO3SDRWP5PefnRppfscAkNBXGv/3/WcB1w/IHMP2Iy0aW1YuVbX9kuM7UX31qsM5UhDtOPmUlZbR8Efp2ybjaHqXNVw/qzqsfXIriHYYW7agz9nzY6V88ZGaafXagfxm25A8GzuEar57l87tKX8srTWBW2iadVek05gLG0JgbNoEr5/uBJdbC+6C7zqj/H6JX/dt/JzF8nvxEYuKf61x+N+AatSg+o78uzMetiIjIxEVFYX58+c7THe7skRd8K8WxGJiYgAAqampqri0tDQYDAZER0uDcJs2beDj44O0tDTNtADQtWtXjnZpaSmKi4u5tMXFxRBFkUv7d4BVZ1AuRJSLBxLXZGcLLr7tzBSETsiQFp7Vav1ddmGkHMSCVk+DINqR9v5CFAz4EoJoxx/tf6X59AbxyiK5fdg05Hdo0h4ciq5G9iLpXR19vTlXbut5KZi44glNnip+90dh7HUAwLyiXQh5YjdsJjOyLKu4MqsullFeXcwdVLwQKAdq9m9CZB/dtCxsJjPmFOxWLUZIeT9dbaybt8nOFtx7zB8n638vDg3E8Ly+qjxaAoK7wY1OKKYdFZSHyvxCGEMCIYh2DMi6qBI4CD2t/kTCgtZMU6UTRDvsUXxaZVsm/7FaxXvvg9Ki0XrgBpeW8KtE7piFAIBG/fNpWu+5Kap0AFDdMwohT0oT/rEJC3Dip/ZcGU12tkDgGKks1z8zVOUGfzsNBbN4AU4P7wVFwhDTCQlR/QAAeTHleCb3CNcOrn9m6Ar2StrsQgwAOs9J4tL6zJYE2v4N+R03g7s7LbPqzBnNcaK6ZxT3HDo1HdnzY7Hx2A7NMUT5HgXRjqp7u2guVhut3a3qOzaTGVdGxqvCfd9LUX0HTexnaLqXAuI43rf8Fo0HfGI4OsbQII439u+5idK7a/XgURhi5E0s9ls0RMk6+so4rbZTlkXSHnzgMy6Pz9AsTDhWpKLRa+JkFX0lSP2sB26oyraZzLANfkRX8GTTZt+zXE4TK6s9Rc1KUtUHAAzRclsIoh2t56WoaAqiHQUPLKbh/q+lqt510QyrrtBP0giiHcb2ISreWZyabsX1nqe4OO9PUlRtqtUWRi8vJG9fj2Vh7dAmpYaLr94ibwwej7uK33/4mvLpiG8WLpHhfLqaGi6976wUTMnOx8DYgbo0AMB2ZBA3hir7hiDaEfF5Epp9I7Xzrk8lIf73td9QGjf7ykKkXpuQ30TAsZnMML8nCbU1ls4wNm2i25+UNE9XXeX6xWS/7qo8Wjjwkrx4VfZ/rbnm7FT1BoVt8CM4+kYwDSsYvBiCaIfLNXn+SOjQEy7mDrANHYfoGYmwmcxIuHe4ip8AYSLlY8jhM7QspRBI0lQfOAJjcIAmz+T3sMaXAADNBuag6mIZ0s1GbMyV5qeA0QdQ/1dpI6Ci50lKW0mDbHSy79CRkOvEncX169dx/vx5h2lqkzs8PT0RGhp6W+X+qwWx4OBgdO3aFT/88AO9QAdIl+l++OEH9O7dG97e3jR89OjRyMvLw6+//krDqqqqMG/ePDRt2pSzljJ69GgAwNy5c7kyybOW9cW/E44mcvL/0r3yLuXII7KZftc/+fsoLg0bwmYyo2xsPA1TTgrhcwq4xQpJoxyQtCZGQqOqVxd0+iQJrm19ucmGLAgBIL/fUhp3ZUQcBNGOdm+m4NR0q4que79CAIAxIgzT23XTXMQrF03VdvkegNYii4VrW1kQuhofhCubZLcJjiYdsojUwoKQYN28Zd3PcW0e8MMZLj7rD/njXVG8S9XeeR/Ip4PJm9cAALaslO5g0HeQIwkxGyOacvVgBbLu06dybXJP4hRZQHk6TbMfAMCJZ+VdT61+oWznPzs1AiCduDl6d+xv5S4haa+iNfJi02Yyw2Xbfri2kb7thA490WYwf3p05aY719Y2kxmG6AjkfB4HY4dQBD2fhoBXU+VTHoaXK5sCYXB358qvST9IT20F0Y5Pgtvrfg+kvNFHpTHJ4OoqCQZdO3Lx5K/3pymabWEzmXHyp/aUD3Lvj13YKdP/8d0yToged6wYMEo7itkLY7n0ylMpm6+06Htj6VdcXZQLCnJyKYh2GFxdEf7sIVW9lL8BqW/e99AE+szufqdP/hiubby5flSVnceVfX1wLKXZYqk8Cdakq+9Z2Uxm1OzP0m1XQmd9yR6O13cK0lV9eZhvPFeX3JVRWBbWjqbLXiJNzO4beS0EtlzlO0vpXI/Gh6xMlBPvUddFa0HHjd+38giiHbjvPFe/AcFWqe9kZHH1V7aHsl3yvpXb4OQzVlqWd9pNqjGRvTiGpjeleeC1fDsKvusMm08Uqo7kcPyz/wFpAw4AXH19NIW5vocuc2GnH7fCK6UpAKCmXD5S3vnZIi7dH+1/RenL8olVn0cmYsnxnbCZzDRcD6Qu1ZlHKU8fnA+Cq48JAwLjuTSLQwNRWVKKS6PjVXToGNb+N/k9hEkGAOZe8OfGjawn1LvvbP9x2yxvIinbSWteO50kvSv7K/MhiHb8vu4bVF0sg+3QJYd1J3ikbTeOj+uDY1Vpxh6VDJXNyOfXGVrfFzvHsnRbr5bmhPAl8iYU9hxE/nDpfZa+bKV0Nm76niapulgmzfFpmfSkL/mvtZQuQeiEDPSaJG2MrO/gpYon/LK8VuUWSBG3TkAF0Y74F6epvhNjWLDmt6Ts4+w4okxfvFaeCwTRjriXpFPRGHsVtyl/N6OqpvqO/f87wbq0YvHXX3/h0KFD1Io6INl0OHr0KHfnq2fPnmjTpg2+/PJLXLlyhYYfOHAAW7duxYgRI+Dm5nZbPN2VgtiKFSswc+ZMzJw5E2fOnEFZWRl9XrFiBZf2008/RUVFBXr06IG5c+di7ty56NGjB6qrq/HRRx9xaV9++WW0a9cOY8aMwZtvvonFixejb9++SE9Px4cffshdjhw4cCAGDRqEjz/+GJMmTcLSpUsxadIkfPzxx3j44YfRvXt3/J04dENWa9LbvSK/yfOmInkRsaa9N4YdOQ0AaLZLPnUSRDvdtUn7YKEmrfaLk7Bhn0DTkzjyu3xQrMMdm+gZ0kLCuHUfTB+koOMvJSpeAaDzntHoPX4SndR2fbqIltN6XgoWFu2EINqx9brcLQXRjqosSUXs92tu0m7rrZ2rx3OypQX2rUuTWgMf236RH/InD6dsbRH0562FoQHYFfmjZv0ILdd2bTXbIfeTeOQs78KVTxbfLApXRyIhqh9KKqWP92pQM0pfEO3we1t6TzmfxeGRtrLgmT/HAvFFK4JeSOUmD+UCj6hJKBeSJL7ZruYQRDsa/3xrAr014bAqPcp87P/M5+cj/MtEzbYlv4nwAUiqJSSc5ankFVmgU07eSuGPhLUbeRCCaEfx2o60nhsyNgEAkg9vo2Van5FO9KruFVX9ryYjC/lDF9FdUUG0o9Ha3Tg3SRJwL2yQdvF3Rf7IGTvpsCCJ8lLZO5rjO3+ORbXpQH6P9zyN+BemYdNxScWpZq8ssBhbtwIgLTCVbcG2v/fgI3ANaIcJx3tw4UoBm/wmIGHLw9rC5ZoRNpMZodPk8UIQ7Rj5/dP8u6mugs1kxruBcptp8Rb0fBoNr6msxFK/nSoB29iiuaYQ9Mdq2fhB1dlzNG6YbzxV79MS5mwmMxr8tAdXh8U5XJDqjVNa46og2tHQpR73HOvuRoUxJS8AABcjgh/ez/Xb0MnpHA02Hym3YkCMLo+BL6aqwk8+IwsNWoI+2ZRh303/Bx9BqwePcn2w+to1mn/uBX8artceAJDzeRyCxsjx3p+kICp9FGwmM7YuXYLQiXshru+A0CnpEEQ73La2wanH2uDdQDMCRh8AanhVIpvJjIGxAzGg3yhVmZUlpaq0gmjH5o7yXCyIdrT6IgVZKyVth2s929Nwtp3L75fGG5/ZKTRuy4qlmOzXHcYOoTj05Hwc/0HfaALb/jGvJVI+KktFbMxP00yb+tFCLsx/TwOujucmS+ND9WVJsHy6WaHD8ZOlLYiyCq8yrZIXkqfV/BTc99AEVf8VOnrSZza9st4EJ29pGDT4SW0AY1W4JFy9GSirfGuNQS4NG6KyWNu6dNXFMmlcf/OWxgOjfpgQ2Ye+QwDoNXmyKj87zyjrRP6W3uOKdSVqDSg2jVJ4EkQ77b82kxlNVqZx39iljUGoOpbLlVk2Np5rb635l8QRtG4ibzR0+CIJTVdIY0C62Xhbhj2cuH0kJiYiPj4er776KhYtWoRPP/0U48aNg81mg4eHByc3vPLKK2jfvj327JG/Azc3N3z66acoLi5Gjx49MH/+fMyePRv9+vWDl5cXZsyYcds8GWpqau6MAuZtoFevXti2bZtmXM+ePbF161YuLDU1Fa+//jp2794Ng8EAq9WK9957D126dFHlLy0txcsvv4yNGzfiypUr6NChA1566SU89NBDqrTl5eWYOXMmVq5ciRMnTsDHxwcTJkzAyy+/fNsSrx4uXbqEJk2aoBcelC6oQn+hpYUrI+LQ+IfdqjydP0iC9yfSIFfdMwou2/bTNPOKdmF6O3nny1EZgmjHvAvtML1ZEQB+MMldGYW83stU4QDgldIUZ6wXOdrZi2JQcP8S2ExmFL5rgf9r/NHu9cGx2D5/MX1mhQw93mpLUxvYQdLYsgW3OOz4aRJ85qSo0vecOoWqIegtaNh30eeRiXDdIgk/T+YexWfB4dCC1oCtrCcBeQ79JhEBr6Sq0vcd+xiMf+3D1eFxONvJKE940G43QbTj6RNdcSS6kqNV9LYFRyctwM2aKgzyiVbVlzyffsJKVScBSRBl78xpCRpKOgsv+mB9By/dMpTtoPxG9P7qtTH7O++jeOSOXqhdjm80hJIMdP1PIva+s0BVrjEkEMnbfpR+hwUj+a+1NM0Dh8/h8abFtJyC7yMRMCpTxZPNZMaZaRZ4LZTe5dlfQ9Hy/mzdd+8IpS9ZuX5L8s4404E7idHiwdHvukAvvSDaMa7oHpyyXNJMx9ZzaomFqiTr9Zmrw+LQaJ3aup7eN2SIikDN/ixVur5jH8PJ6RU4FL9KMx9JN7m4G5a03aX53Sh5qwsIjZM/tYf3rdNcR+kASU3NbbN8CuG3uxG9M6bXnnq06spfVa8uMG6VLZq22NUM57pdQPbSrgiduNdh/oFxg1BZXMKVa4wIoxtr5ffHcuNo1LtJaPWFtAA3v5cE+yvzHfZJ8vf8Yxakz1yAgdH9sSFjE2wmM57LzcJHwbw6Zp/DD8C173FNXgHt+YbErbrcAmM9zumm0evzWu+g+5NT0Wituu86giDa0e3paWhUWo6Lr15Fs4E5mn295BUrd2dwVsEevBqgPtVS0mbp6M0Pjvo8G98+wxXCr7E4MmU+R+e6EIDSM03R+jd3eHwvCUhlY+PR+/kUZETJm6+FqyPh/xA/RgKAIaYTd/pd/LoV/qtPUi2QknUR8B2Wpfs+yPxO4qt7RMFlx37N8kiavG/NyO31NVffq8PisHPerfuV8ZG4ENYIzb5JxTsF6RiV/ARCHt8Ng1s91Ny8wdFy29oGN3tJFomNYcGoOparWeYPx/ahWWg+ysrK/lYrgX8XyJr15DG/O2Y10Tvs+N/WHmvWrMHy5ctx4MABnDlzBgaDAe3atcN9992HF154AX5+fjTt+PHj8c033+Cvv/5Cr169ODq//fYbZs6ciczMTLi7u6NPnz6YM2cOgoKCcLu4KwWx/0tgBbEtJ7IQ8XkSfGepF//KgbFsbDyarEpTpSG/ASB026PSDiUT1unjJJg+5FWhAn6egtBEXrDQG5xZWgQsz3kfWLiTm+TSfUjw6aKioUWzLgLXfSPHw2WnVH7+HAsCX0rVnBiMLVsgOXML7kmagu3zF+tOLMq/p38OR6sHjyJvVRSCxu6ndJce34mpscNQeZI3061Xh6XHd2KiX/da0zqaxNk6KZ9dGjZE9bVrUps8NIEaLFCW477Nm+qs6/ER/+I0pL2/ULf9AX7R9EzuEXwSzO9K603OWmH/U6GZRfayaIROyNClub5kD4b4xurGExg7hCJ585paBTgCtk59Hp5I1YAdLXyPv2Glp50AYAwJpIsHLdp6ZZ+abtVcnDr6jly9W6Py5KlahdNekydj+iersThUUs+9/mAsrpiM8FrAC/l5H8bTEzEWNdbO+H3tN7QMItS7dAzHxt+/1/zuje1DUHUkB4boCM64DtsOZHPGZjLjxh/tUO++ojqNFXqwHboE4bFuEH5aobu5cTuL7driLo+KR8rH8qmJo2+979jHsHnVV1ya3LnxyBu5UNUuWvz1eGIqdny+CEGrpyH4mTQ6Bo08chITm8hjQF3HXAAIW5pIDeTYTGY65rp6t8aR2b5wL3SH31va9ziV9JTjgs1k5r5TFq7t2mJD6q9cvTt8kYTKRjUIeDWVo1nbOyc8A8DNfl3x59df1joG6QnujoRbQbTj4/OB9PRJK4+jccIQ0wnlLetTFVcCY7NmqLpwQZPPuo6nxf+xAtXA4cel8aPq3i4w/rUPMfYqpJuNlNbW6y7o1aCa0jw/wYLmy6S2U6Z1VO6FRy1o9o36Dk1dcbsbCwXfdebWOgPCeqD68mW4dG6PjRu/AyD1n7bvpqhoZS+Ooae7Wt+GcjNCk5/YTnRMISCCX8m6CGRZVqn4tx26hC0PRKIyv5ALr6y5ia342SmIkfL+ZkHsboRTEPuHoXUiBgDi+g4wDTmMU09a0foz9URXm6BEJqiZZ8PxesujNC53bjy8U4DGa9K4tBUDYuC+Md3hANsz8zq2RTZA/vsWNDkm3dMQn7fC9GGKqty6LmIIemSWY0ekbI3u0ph4eH6bxu0+Kem7+vqgsqQUOV/EIeRxxX2XW+n6+3WlqmEAkNBzKF0EK4VZJb9v5O/D24HyqapL/frYmJ/mcPdTEOUTMz1hD5AEpF9CpN3b4rUd4Tc6GzU3b1D+11xpgqWhAfT0kq0X4asugqUWzPuBHw52wQ89FiLavZ7Dd6OkQ3ZcSV9g04UsT0TOuAW69G726wq33/fSutw3cjzyRrkj5Al+d1iL90FZF/BbRDNVOtImjvgnp4PZX3VF+KdX6cQMAGHLEmG8bkDbmfwJUrx9OJokyDuW1VvawqWPbJimxtoZ33z/Bcb7da/ThoIWr2y/VdbdEU1H77Z4bUe0HX4IBldXHFtoRkECv+isGBgD9w3yd1440wL/16WFdv+jA4EBZ1U+6IhfurpunJD49guTOAFUM098JJCWietCABrYClR0Rh8VseyFwbjayogWS1Nx/jELmn+lvcAjmyha7QXwAszlUfHw+D4NuZ/EI/gZ7Q2tVcW7MJa5M+OIni62+AJ9JPWsmm5mGHbZddvD0Ziul0cLgmhH/4FjqSChPCGtCwTRjgEJY1DZuB7d+FL1TaZuyhMoADC2aI7kg38i4d7hqDqWSxf67wVJamjZX3ZF6CTtUzWlpoejtsheGEvVbtlwJbKXdkXjo/Vw8BnpXpay7TMqbnCnR4JoR/SMRLRclKpL09H7yF0RheBHpA2yohlWNIw6B68HjtU6Rlf3jMK5DvXhtSCVS6vFsx5Pgb9PRJNmV3HxhKeqbZR04GLUNO6lled2+2T5oFhsW7y41jx1FSgF0Y7g76Yh6Dl+/cLGd30jEXvf5jUX7kmaolKzFEQ7Zp0N4+YxJU2tjae6bgC4dG6PsvAm8FitnV8J418mVN0rouyBzkj/+T93reBB1qziMd87JoiZwkru2vb4O3BX3hH7vwjlBU3TEOkyq1II01t8kufjb0mXXC88Kt0hYIUbAMgbuRC75i7E6SQrl0/vojlb5vdf95EG+RdT0WKpNEnEjzjAmQdX0ngjfx9sJjOMoUEQRDulxdIFgNdbHqW/y5KD4fmtNHg1WrebM2fO5tmwZwMAcEIY3cW6ZfmtprISwX9JOvM2kxlVOfmUBhHCBNGOSxuDsK4kDcWvW/HmmQi8mHcQHi43uDKry8s1JxRl3YkQxiJynwE2kxnii9Jl6oqeJ2metsMPUTUGwufSUOkenJeL2pcIKxwqyx8QGM9NFMo2N7ZoDnsUkN/3KyqEsdailHVjFwGAZL4fgGryspnMVAhT1p2ACGE2kxmTi7vhjzVfU3PfyvqQ3+T5t4hmOPNLGE4+LfVbYpWNnWyVdEhZm1dJxifqNbqB6gNH0H/gWCwuk0zQHpuwANd9KzkaNpOZE8IAcEIYABhSDqCNK28h0+CmL9SS98rylz9kkWY6g6urqj0ujLeo3nXfQ5dpPWssnQEAh60rAUiuFIgQxvJIhDByOdz/9VQcf1MaM/LS/bCJuZPSM1NSD2SNhGiB0Gf/2kxmTggj+VV9Iy0THxemooGtQLPffBduwuloV2qco6Kp/D2IL1i5MpVCmEvDhhBEOxKOJah4J6pRRAhj+wt5Htu2G7X8CQBzC9VW/SLmyfdOlfznzo2nggoATgjTag/SRwTRjrC9btw3zCJnXhxniZTl/+RT0rs8P/MGsr+UjGoceko2CJHzeRyXBwA1elP4rgVXh8nWLDcmfwuXneryaV6mbv5uF1Vt8GvmZkw43oOqYHV/cip6Naim6UIn7YWxaRMVbQBo/MNuygfbVq4B7XDyKSsuj5Iv1Bc8IFnXM4YFc3lYXi+OsyB04l4qhClhM5k5IczYojlsJjMy3lyAsmS1ASYtoVlZ/0Ye5fQOaLs3U+D1gKSSObDbg1y6Hpnl3PMf3y2jQhjLX5e98vUJR0KAzWRGyPgMtHrwKEKn7cENm9rCMzfOlmTAxYO/k8fGV9TclOgeukTfw7UhcZp9EwBn4KP+b3tU415dNxOuDVX3VZvJjNzR8glz+4VJXD6byYwWX6biviP3c+HslQcAWFgk3Wv9+YPeHH1CA5Du8RIhjK2rcp2j1w4bN34Hj9VpeCNfOk0j1l2V5QFA9pIYJIclo+QVKxr9rK/y68R/J1xrT+KEE0444YQTTjjhhBNOOAFU1dSg6g4o1N2JMv5pOE/E7mKwO6ZK9QDym40TRDvV19/z3gLN0zOy69pqfgq1PMTu6GidopD8bT5OQfjORzi6S9ruoo4gCc5OkXfvyekNcbBqM5lxdqpFxRfxXwUA5y42BgCEpLvj3GQLGvXPp7toyrqw6PHEVJrO+Nc+ykPQ2P24/qC8S/dEaRz89zSg9bWZzPAckIfGLvVxOGk+0jq74f2gTnjBX9511Tvl0VS1Ar9TbjOZ8YH3fhhiOlGnx3q7aCzEF614NH8opRHw8xTVzlzCfbyRGfbULnwn75NIECXnwSTvmIJ7IYh25L4j32lgT1gcqU0REIeqWrucyjpe2hhE604MHwRsnKQ6SWHbbct1I302rm+OAy/OR/aCWFQdyUH3J6dyfBW9LfsFA4D+A8fi6+M7AQAVCTHwfyhTqtv+LATVO0XbhuyoA5Kvt9reC8sr275d9pTj1JP8KY0yjzIvAFT2kU6Uzz8m8b/p+F5O9cVmMqPRWJGGXXhU+r42d/SgNAypB4DYTrCZzKjeIln37DVpMm0bFjaTmVrpEkQ72vWUDPEEvpTK9ZVtkQ24ExSCvA8s6PHEVI6e8i97YkFATjOV7fGsvwUuHh60fsQ5LElDxjRBtKPNx/KplOkD+cRNebokiLK12JoB57nytBD1bhJHg9Rl0X7ZEfZzkf1VYxDxl+bSqJGKZvDTacheqG9xVu+bsZnM+MzEq4n3yCynfIVM342UzvVwJlHqL1eHx8FmMqPv2Mfg/emt8T/qB4ROkk6gLc/JYytRA34tX6Lt6uuDyhMnqfGknfMW0e+IlB3w62QIoqTmTcJZvo3tQxDqpnY0nODTBWL8ZWqqmzVQQTUXLpZpto2yTUhbbNj1M7w/TaEnmhwthfEDFrtnL1B9d6yPLmXfqTp3ntJWno4r+SLpCH0S1mbwEbT6IgVhe924PJUFRZSH4v9YqdaKsv3YE1IA2Nd1NRfH8iCIdpjSpFMt4rMTABDbCfWEvXgm9wimZOfDZjJj3RVP1ThLrDqS537DH6XP7oZbp7OM5cUdX8iOy186JdMqfNeCjq/xhi/IuMbyzULrOyDPxMIuQdEM/tnvbbW/QgDUryjp5wDvKmFaO0mlfPecBZiYXaA5flSdOk2tHyvfBfs36PtpXJxrQDuuDicrm6Lvocs4HyGtayYc76Gqb8HAJQDAGVpx4v8OnHfE/mEQfdsL2YEYESarnBWv7YjD1pUYaH0AlYXHUd0zCn98p22hkB3IyL0pZfyogt44Pi8UEc8cpItgpdWq2hbetxPWa/JkbF0iDS4JUf2QvP93edF4y6KeFv969VL+JtDlRUPv3XrgBt70OsxNmgBw/rdQNB+UDRcPDzohmdI8sMxvB1dmwc0reOTIOOpwmMWljUHwHJBH79zUhrrUWVmvmH0j0XxQdq3pSBuQ58Afp3L3sG7YuqKesJdrL0fqInVVJek75jEoLzXroWhNJxztLruiIDwkdOqN5IN/0ufu06dy1vG0rG3WFVp9vN+wRyUhpo75lfzWpc3Y32Vj4wED0GRlGr0zR0AsnOkJvVp0511oh28+TkCLpam4+IgFTVek4vJD8fBYncbdgRRE2RqhINrRec9o3LjpCr8Rskp0wWwLAl5O1eR9TUkqRvpaNPlwxCMxjqDVZkoa4vNWHHxWVh2j40VUBDZtUF92r0u/vPxQPC6OuIK2w2XXAYJoR0JkH2ohVUlLSbdglgXZ4yW125NPWTm/b7WVz6JohhVHJ8/n8px+3IpWX/B3bB3VzX9PAxTGXlcZuVBaMWTzn5pupX67AODChhA0G5iDk09b8dBjW6iaMbmHWZd21SrHUZgybsnxnfBzbawa04l1Vj3UWDqj5LkqqoILqIUgvXGRhP9WmkHLYC3ZsekHWu5HZVExCmdacOyxBVx+QHJZkveQvhGW/PctCHwxlavvZMV9UmWbEAw5fAbrO3jh3EQL5y8PkC0gE+Qs74KQcfKYy9Iid/CU9yBrg6O21OOb/Z3zaTxCnkqDS2Q4qjOP6uZhwwDtb8m1jTcqT5zEL6XpeMAnhjOi1TPzOl5teUy1gXJpdDxSP1pY67dE4vofHYhN4Rv+R+OLsg569XBEt/THCPgMzaJxly5X/yusJhYdNd2xO2LtwsW7tj3+DjgFsX8YSmMdShOtYXvdcKzrzVoHhXOTLNwFVYD/4Iv/Y0XbdxzvtmgJOxHzkpA1fb6KLoHNZFYJVuTSKZkA6jKgE1rEkpoj/m5HgACALdeNeD+oE5e/pPKKyqrhyaesOPCSeiGoVUb2wlgUPLBYM40efznz4hAyXRYqSFyNpTMMqQdwJtFCrdRpCQ3s8+M52fgihPfe7mhCM7YPQfKWH3QX98o6A6CGFPTagA3Pn21B4Msy7wOCrahmnCCSMgYkjKFOtwXRjsC1U9Fmh+xTTos2Z0jmyCDkHPJF/oiFDtuHfb42JI7u4IasTIRXRg13gVrZboJo5ywiaqVhDY/UtjFBvmkirOulA4BfStPhzhjtUcYTgzEAsO6KJ7VyePxNK/xmyAt6YiChNuj11aD0+siLKdfPqMDVTYFo1D8f14UAnP+rDXxmp8AYHECdpGq1saP3R3BtSBwarleb+h6QdRFPNyvkwmpbkCvL0vpL6Iw7VowvnxqKepvSOf6V5WjxXry2IzwblqNJQu5tLeYcQblYY2mem2hB0/wKanGxrkJywXedEfJamcpqGyAZWaj/m7RJd/wtK3cqSfDSKTPmtJaeHS2u9dqboCIhBlu/XKI7lgatnoajI7+Am0Hyh8dustHNps2PcQIJGxe8dTyCxtg52koeWOEMkDbWbq5thRYHrwB7Dqq+L7bOWjRHHjmJNe29Ve2q10aAvksGrXyO+qAjYU8rTmmUik3PukioC08ExogwJP+xmpZZVVONB7oPQWVBkSov2XTu+GkSDj01/3/0vXxcmIqIeg0ctsHlh+KR8olj68CAdPq8fWocDKkHHH5LL+YdRJ8Gku/FsrHxePftJXg/qBNyP45H8LPyumddSRqG+car+CK/VxTvon5DbSbzv8ZqolMQ+/vgVE28S3B5eAyMzZqhJv0gBmXJpmr/+FVSM7CZzNS548Rs9cX2vW8voL+1Fnlt35F2cYlDS5KGGD3QQ9b0+UjoNYwLs5nMsJnM6DRXUr8j/qLI/6p7JZXH2oQwLQGg6kiOqm5akzpJz9K+MoJXo7KZzOg+fSreD+pEn8nFZS3T8t6fSmqDw/P6cnSV/IsvWtFhDm/Gvv1iXhXRZjLjxHNWbtANmb4bJesiuHRDDp+BW/FZCKId37/8IQBpEiP5jBFh0AIrhJ3+OZwrl60TQdWRHM04QbTD+qykWvHFxbZ8/C0h7NLGIFU+gsA/HpP+vpzKvSeiFsbmsZnMqLYf5lRTQ57cjcY/7NZdOFx/MJYKYQCAPiWyEGaQDTew7UycqpI8ZCFvM5kR+GIqPFan0b6q1W42k5lTt1V+TzWWzjg1VTJk0eWdRI5vlo+iGZKaYk265IyaFcK+vtSK45HwQ4Qwm8mMbk9NpepnBET11GYyUyEMAPxm8Kc0VcdycWG8lDe5dB+MoUF44PA5VN0rLbiIig+hJYh2RKSOpfTm+/BtxIKoUgqiHUYvLxhiOtFT4u2d1uPQk/OlcYARwkg5Ri8vSkcQ7ajuGYV5RbsQ/O00rq3JbyJAK/F0s0JKU2s80PsOSJyxZQvYTGacftzK5bGZzAjb64blYW3x11dLVHknF3dD7oooFT0AyJ8ttXfb4Yc4IUxZp9KXeNVLQbRDfN6qWX8AKHnVSoUwZd0AyXpt1Ef7dTdK2P9smuye31AhTBDtqEiIoWUSIQwAJ4SR/A8X9oI9Sm4z4mSd5Zuk7fG4pMba+f0kLlwQ7TjxnBXuyekqQZita/inIgb5RMvht4Qwo6esYkeEsNxPeJVYm8mMhNAsGCPC0Gi7F1XlVrYV8ZFI5sPUzuskg1Q/Saf2Fa1k7Yp7Dg7RnB/YOqwbKjtgByR1XrZ9lPMYAOyct4iL14OyTynrw7bvyaettKyKhBjNPkKEsAnHilQ0WD91roH+XL6+hy6r0hMQIYwgwacLKguKVGOqINpx2LoSNpOZMyqjHBfJc+nL+urNnXaP4foQMUJDwsjm2+nHrQ7beEdk/TppSfRpUIUnSuOQ95GkefDEcqmf541aSHkQRMlZvVZ5pH1aGRtxz0rDbXcrqlGDqjvwvxr//WdFTkHsLsFVbxe0FcqRvTAWv0U0w/E3rGid6kl34QDA7O4OxEfiywnyRCC+wC+oAHniUw56A/qNgt8IaVE494I/AF7wsZnMeDwnm6NnM5np/S4lTdP7KdRCUqdPpEk2OmMkl46dNIhQobXYYAeqHo9PxcIi6W7P6SekhVL2/FhKr/THCNUADUinKlybbgrEznmLEJQuW46sJ+yldWcRviSJ0lsbtFnFI/vstyIf/9nyIzfRHJkyn6ZpsK01AKDNR2oVpizLKpqneG1HTGtaisqSUthMZupkmzg8Jb+N7UO4dsxeEsPx1OpBXv3D6OnpUABmYTOZ6X2L1a8M4MIJPAfk0fItz0/jJuWQR/fRNrKZzLg0Jl6Vn13sA0DLRWoH1Gz7/laaIQs9LgbVomVg98FSQo3D/M5zkqgzYHZBQkAmZ0LP4MY7OFYKaFqLQ0PqAfgOkxbG5ARTuaFhM5nhWSDzt71cpm8zmfFduImmc/VurbmQavzDbuz7j7zBcuOPdipexx4tUfFInpt9LQnHCT5dkLx1HX7p0AJuZyTfc+3eTEHR27wlRu/58ndiM5kR+wovZJK0W1YsBQBEv5WIqjNnuBN80q4brtXnaD+TKzktTj7wB8ery7b9mN6uG7VO5mgDRBDtqOlm1ow78ay8QJtbKAsOL+YdRMDPU9A61ZPrB8mZW3DxEQunFkjwmSmdWoxU9oHN+yOoSXIlGhdLffXSxiBOCCO85nwh3eViTckPCJG+eeLbUeub9Z2lfQ+G5Tuzi9zXbCYzd8+OHcuJVUSX+vVVZbknp2NAWA+uLEG0o/z+WOTPsXACxxnrRQDSPV4AOL3aVxoX2rWlZZ14TuKBbIR4z5XqbXB3hzEkEDaTGW0+ktsiIfweAKB3IAFJrbKyUHLC3DFDWq4YWzQHAFRduiS32a27uawKXvbNqxBEO451vYnHf/4ZFQ8ZcSa2OQpmW3QXxux8yMazbiaUbha0xgyi1WFs1gzFazsi6AV5zCPtoxToo2YmqfqA1jzH0lDOn+ydKsuBYbTNBdGOrV8uQc7XarVPQmOUxwXNuguiHR3mJ6Eyv5ALf6F5noovth2IZU+byYzKPtFc3ZSbH1q/teD36zmunNDt4wBI99AOxn3L5Tv8dlsVLZvJjFZfpHDtx9ZhyfGdeDHvoKoNlPUjtHJiKqgp/SNTZbcIyo0PpdDNgh239ayIOvHfDacgdpfA+/PdWOSbSg0H+L2dglOWSwD4HTThx+VoOqeYDgjshXWSjr1Iyw4GG3//noZvjGhK831/WfLPlP1lV3wREqoanJQTDQAMjEkAIJmF9U1rDNMH0uDW4Bve1xObhwgY3Z/kL/qT/30emYgLG0LQcP1uepm21edS/UKT9qC6pzRx+QzNQuDaqarBTTnQkV36+T7yPRkAtO7k+eqwOLR7M0XFT3XPKE4IEEQ7il+3ovLESbwZGI2c5bI6B8vLsdOtAEAlQJF0Dba1hiDa0Xb4IZpnQNZFyfT0oUuq9rsc3hyCaEeviZLxhcYteVURQbRj6fGdtJyqS5d0B31ux9DHxMXN/GSxKt2wI6fps81khue3kh81dicdABLuHQ4ASP1woYoGW3f21NLF3EHVvgDgZpANdDzwzmbYTGbkv8+cDFXp+7whxgoIspfEcPQrT0iObUtfsqLG0hmbitT+hxwtCLQWRQBQNNiLo1G9pS32zJJVhWdH30vT5nzTBYaoCGQvkgTqDfsEVVmknAH9RgEACt6zoN598o41aY+j100qHtmJ3WYy44HD52AzmSU/VhU3MLCLDQDQ7g1pcbjklkETImARoabZN6m03eYV7VKNJy0Xy6qogHSXizwPbCid3OWtkr5Z4gBcyRsBWbQDt+7RKcJIXsMu7YXp5dBKGva0v5yvT4MqFDy4mBtLr4yQBKLdcxbA2LoVxwuh8WrLYyx5Gl/wwGL6LIh2PJl7VN4QubXAS+28TpUPAOeugI5FObu4vqYcK9i0WlD2GUA6IfdZfkTVxpW9o+mpS3V5OZeHlL3x2A7VQnLbosXUITJbliDakfGJ9H5b3p8tCeCpv9K4zU9/QNMT4bSyTzQ2FezG6Z6tVXWpuiS9oz3vyd9N63kpMHSVjH181EYywBQsXOZ4F0Q7hB+XI+eLOC6cbGwJoh2fBYej8sRJVA05j4CXU2E5wGt5ANJGx4RjRdz3H/1WIkdT+ZtAa5wAAEPDBtz9RDbe/Zh0N69ojaSx0Wq+1H86ZrjQd/BwYS+OH9K2SoGKpCHuRQDQE3i2f+X3W6riBQDOJFo0x72C96TwtjNT0PfQZdXGxMyz4Vx9Sb6xR0uQYnZH4WpJQN6yYqmm4MPWCQBcPDyQP8eiSkPoJv+xGnkfyaeerX6Q2rD5V6mqdxA6OZ3vIw4EWgA4N9mCB+e8yGnQKPns+FmSKszYPgTZi2LQ5R3JJQgxmvTSKbPKQBEANNrupQoTRDuyb15F1cUyDAntpIp34r8bTkHsLoJKsDh0CcX/4f192UxmlHU/h4HWBzi1Na1FJEHO53GqSZngt9IMLAuTdtpDJ+3FiWelE6g55+QdfpZm+aBYVG72w4b0ZBpXEn+FDnCN1vJOOLUmLdZ6FkGzXc3huiUDNzbJgxSt8y3hxGXbfkov5En+rhX7lwXL++IyE64Oi1NNGkQvX7moIZeic+fKpzwrJs6laULG7dMUWv1GHIRvWmMYrkv+l3aVV3M8Xe95CkvL+PsDGyOa4sBL8/Fsc0l4NERFUL84Q96RThG2LpVUpUxDDnP1ino3iVO11Fu4CaId16pv0F3sylIRgmhHwSxpUf9uoPTO/HY3ou9vXftWQHwk1zZEOCPI+SyO3kfSEowF0Y6C7yQ/V7s+XUT5I3fFSBrlgnRWwR5s7uiB0pet9OI7AFQW8T69AKn/ALLvKEKzfol834rsngqiHYeemg9D6gHVwuLqJlndL3uBdAo7KJs/KdRa/BJrV5TeWy25byD7VVl9NOTRfajZn4XdCXNhM5kRvHU8nbCV7Uc2T7IflU/GACDnYWmxmhHlwvVB5aZJzjdd8EuHFhiUdQH5SQYcH+qN+/88xC20/Vwb47ncLMpv5vO8ipDNZMaQhS/QRSqL4z90omGbNqyi/og6fCEtWJ6P+p3yQ061AanPsu3Hnh6nfbAQrr4+9LSE7c/ii9qqSex9TQA4O1VeWHZ5O5FrW3FAFX2uOiX15ZFHTtIw9v/xN6yIfisRvmmNaTzLDxE4WXXDe7MehM1khldKU45Xkpc98dUSoskGCXlHfcc+Jr3LL+RNjIoBMVw+lqdWja8gOesvjrYxOIC786jMW/G7P63zx4WpXFxA8iT67Ordmmsnz29lFVblHPQI4wz7+sbWWHOlCVy3SDwQVXpBtNPvbOzREkqbjLkAsOmXlRzto09FcG1HwpXO0QHpjjM7DhFfXuSUn0W9+4qw8Onh9DnglylouZj35+UIRGAk/AiiHZWlIo3PXcmfgLWdmQKX+vVxtPsKuvkAAIei5fmCnDxW/O7P0WYFKlZ1XG/eJXXtNXEyPT1k4/b9ZwGMLVvQMHIqFPCKvNnyQnNJsHuiVJ5DX295FMVrO8JmMlN/ogCwKtwXQul+HOuxnBvbs25cV42f7Ji68dgOznorALx5JoL6VrSZJD9ipJ4ex8ocvh+iHaRcG7XPkOgRX4wA0GJJKj0hZ3lj26nxPfzcZzNJp6ihU9PhtUDi23CzGoJohz1KOgVWbRrdrM+HuUh3H8nGwb8F1bfUBu/E//92OI11/MNQGusA1MffbBj7HPztNAQ9r76HxVpjU8Ypn4mhDWX4vKJdmN6um6pcRxerWQiibJHu5E/t4T2Y36Gt7hGFwkH1EfhSKq6MiKPGGpQ7tOxfAMheFo3QCRmqsrX4UPLOplO2cWJOLhaEBKtonZtsQYslqbW2ox4/rMUqQbTD5hsNVFdxfCT0Gsapfyr5J+g9biLcNqsXU0pDLXrvRIu+zWRG9qIYFNwvv9MrmwLRuL/s+LrrG4kcfdImLA22TKOnJ93d1qpL5EdJaPNRCkpfssJnjqySdX1wLBr8tEczn1Z/EEQ7btZUIfqj6WjzsfoeS/bCWIRO2wOvlKZ0QaOsO4EhOgI1GVmoCwpmW5A9TlpIBq6fqrkAJMj5Ig4hj+9Go+1e+DH4D/T368oZtsleEoPQyZJBiB6Z5Xi95VHVu7syIg6Nf9it+V6vDY1Dwx/V5QuiHQEbJqNg4JLb6gstdjXDtwF/AZDa/PTP4dRRMiAZOwl8kV+oE9T2fejFhe11w2cm9T0hY7NmqLpwgQvToyM+b+XU+wTRjlWXW2B5WFvNsbMubaIsS4sHR+nrUp7uuLLFl3OYTOC+zRsVPU86LHdQ9gD8FroRAND1zUS0WJLKGV858VN7tLk1Hnd/cip2frYIA7s9qGlIQYvX6w/G4vTY62g3UlJzj39xGpqslOahgTEJ2JCejP7tYlFz80ad3l1d2kovvH2GK45EV2qmMfzpg5repVzc7Y7jbJiyHizNAf1HqSwEOqKpfCbfuEujRqi+Kmk8uLZri3ML3Kn5fO7b+MuE5DB5MxSQrf+GpLsjJ6ZCs3zyt7J3NLasXCqP2SGBqMpRWwOeX7QTSe26q8q/3e8BAM7+GoqW92dTa81abaIEiScWPbVgO3QJ69+4Dx6Zp5G8fT3fB9zqoeampCKZ82m8ysgTII27333fG+7x56igzqK2/uCoLcjahk17tuoqxjKbFEpDav8WYx15R73hcQeMdVy+XI2g8JN3bXv8HXCeiN2FYHf62DD2zsaE4z2QO2ah5mDGmsQmH//pJHnHnfWVRIQwoloGSLr4ZHeG3UUSRDu9WK2kD4DePwCA/g88TC+8eg+W7odsvS51t1kFe+CyYz8CX0qFb1pjzlhDh/lJHP1nco/Q5xPPWqkQxtaXGGfQAuHv8kPxeCN/H0K3PcrtwnXPHApBtGNBSLDm4Lp3huR/ZkDCGACAS0f5ZIOUX/aw+l7Ux+elk5XgZ9L4uz23hDCWP6UQVr1F1m1n//+5XK1WcvIZK91dzvsontJWTmpzCnZr7pJWDJCEMBaN++ejsk80wr9MlBbnX8oqaoJoVwlhBIR+8tHtKj4T+o6kaTOfk05cDj01n1sgbJ+/mMtD4oh60Liie1RlDvKJht8D8p0Nls+WvhchiHacsV5E3ofxqvqzIEKYINrxToHaUh77O+DlVPpOlEIYKZukb7PNAGNEGC7M8pfKqZQXjaefsFIhDABaul5W9eOKATEqIazg+0gIoh3535rxy6efqMomyE1YxPVT8p/cA1XWCwDOdbvAffNtxstGaWwmMyeEkTD2L6GZcO9wCKIdxg68ZU9jcIBqI+RY15scHfI7OUsWCFkIop27sySIdpg+TMGN/vIpkc1kpkJYzylTVAumwpnSKXDBexbc7NdVsy1i7FVcHmUdcz5VX8J3tChrsrMF9yyIdlTU3NQWZhVCWPFr0vj9S8gmFV0l7zd7nYDNZMaE4z3otzrfJw2R+yTjNm1ujcf9A+LQaK009m7Y9TNHr9F2Lwgif+eI8LZ9wWK0GynfC0x7XzZOQDQliBCmbDeWFpmTWP71hLCg76epwotmWDG3DT/XEZS8YqVCGFFPJsheGIvLo+LpPTnlN6ssm9A+ckNtBZbUceOm72kcMWZDYIwIQ7en+Hvbynru+nQRDNER2Jizi4ZtSP0Vaea1qj5YNjYeyWHJqrYlrk2UQphWea5/SqeyJ35qD0G0awphAPDoc8+p6Cjfq1b7ke+LqCuff8yCjOg1AKAphBHaCZ16c3MeALg0aoTpzaRNAqLdw31zHT1R2huoyi1Q0Tw2vzNNywph7PvbEVkfvrNSOD9tSlwbqvanaDOZkf1lV90+Loh2TUNU887Hcs+HE+fjudy6bQLeTSAOne/E//92OE/E/mEoT8Rq2zkTRDvybl7B9NihqDp1WjWwG1u2QNXZcw7pCKK0Wx46OR1+uxtRv2Jsmhh7FdLNRo5+7sfxyBvF7yideM5KF9YD4wZhw+7fOFpnEi3U4IDNZFb5RnklLxO9GlTzE+XiGIRO4RfDegOd3g6lzWRW7ZKzaLCtNa735C0fjj4q4rtwEwZlXcD0ZkVce2mVLz5vxZKkeXgzMFo3Xc/M69RPj8HdHTUV2juVerjwqAXNvklVpXdt440NGfyiTPkO9X7rlau5INSA6pSvlnbSo6+3A+qxoyXWBm12SHdOwW7JeM0tZN24jidyRuGvCGlBmXDPEFTlFqj6j7KPGEODqCDMlkPcA9Awg4EaB9Fqyy57H1Ltpmr1XWX5Wu2XuyIKwY/s1+375v2A/ZaWk6t3a1Se5PuxElobDAMt92ND6q9IuGcIzn9m5JzWavGmRUfvm9Sr87WhcTgbaYTfW/qGKWrjQRnvKMwYEoiI1QVI/sFCXXDcLt/WZ6dRYzZaPBHfb47oEFweFY+UjxfiROUVPHb/ZFQfOKLim/0mhuf1rfU70IKjviWIkssIVrVbmc9Ru9S1T7DlKduD7bNadSf5An6djNCp8kYFm96U5gH7yk5o9bnUl4JXJSLohVQUzLIg4FVJgyFkRSJyHllQp35Gfo8puBfnul3QTQPIpyxsuLF1K85Xpla9PyhMwwv+akfndeFNK1wQ7ejydiK8FtbNr6Ig2hE1Mwmt5utrDxAQ/11sWeS002YywxgRhqqsYzT+ysh4NF7j2Epy5WY/bOnwC+Ze8MfGiKYo/o8V/p8foafeT5/oiiPRlTB6eiL56Hbd75X40nPUxxy1IeFdC422e+HqPWe4MENUBGr2Z6FkXQSyLKtUrllYuHq3xoZ9AoK2TOCM+hA/f4WrI+H/kOzwWuub+beciGUfaX3HTsRC25+6a9vj74DrP82AE0444YQTTjjhhBNOOPHvQPWt/3einP92OFUT7yJo7d4Mzb1PFZ/Urju9ZE6OxcmuUNXZczScxdIyb2Qv7Urjku/7FCeeteJ43FWaduFFHwDSvbF0s5HLn/N1tHQa5iNtxRPzyOQ0DAAqi0tgM5kRvV/6dG70j8GGVz7g6Ox9ZwHl9Ub/GHR1v6biNXRKuqaqCKtOcGH8LdWkWxePBdFOfVrZTGa8kpeJg8/Ohx7Y0zBSFjEp/ltEMySVSjuXrgGSWuHlUfGq9AefnU9Pw5Rxxa9L7bMtsgENq6mooPSIOlTotkelcm6Zg2frfHVYHPa8x/uHi9wzGoIoWf+LmplE3/8H54NU/Yf9fd9DE+gFZWXc6SQrl7f//bI/Ka1Tq7cTfqB10tsBB4Drg2NVp2CsGgf7zPJTdqOBZj1ImYJox2vWB2lfBCQ/MsSq4Nmqq9SHFaH9wGHt70LrNAy45aft1iVqAEBNDfUTpWwbm8mMsrKG0IPb1jZcXdiytHZ0yWmY1skDAOpEVxDtqDx5isbNyM9QpVXWmbRHZVGxNA5sX4+mQ4pV9WH/suGE37CliTSc+IW7LgSo3iXJl/1VV+z4fBFMO6QTYdYACgFxfcCW3eOJqVx9yG9i9c7Vx6Tqi4BkVKgqJx8feO9H1vT56D5dvrTPji29D15FWXKw5m66zWSG5/r9KvrsO3s1IBalP/K+AQmfpS9bOd7fmLkMNpMZ4/26o/rAEc2dfPZ7YE/DIvcZaLnGW7vCFQkxtCxCK/9bs+r9sb/73z9W8zQMAMK/lFXfCb3QryX1ZHF9B64NSHzwt9O48q6MlNW0zYyVf8Lj+pI93AkuqRPxhdh7/CQIoh1BWybQ07AZ+Rk0f9xLEo+n+rtQi7o2kxlBL6Ti5E/tUe1/ndJWWnpk+SaqnixvW64b6WmYctxijcSwd99I2qpTp2k7XNgQgoCNk3CzRjIKQ1whKE/DCI3cufEw/OnDjW9a4y7LD/nrtVA2JrKieJeKdxbtdz1CT8NIfkO05AqmRYY83wuiHTWNGqjKqiwVpdOw9iHcaRgA7Jq7kLqc0eqXiI/Elg6/wGYyU0fsbd9JoadhNpMZc9vsldqSsfpL+seQw/IpVZror3saxtb9Zt9o7hvIXizxlfwHr4J4bpJFchIO0NMwQZRctAiiHTX7JbVB32GSQSPWRybbZgCwYZ8Am8nMaTTkz7GgYMCXAMCdhgHAgAGjcf1B6UTd+oxa/daJ/xtwqib+w9BSTez/wMPY9MtKTTWR0K8TEfCq2pRwyPJEBL6snnimZOdjcWggjMEB9CLryaetaH7kBuoJe3UHbVJ2Va8uMG7d57AOjtQRSNy1oXEoHXyTWhok6ckFY5KWQGnAoi5lsM9sHZSTKiDdIfB9j1eRclQGIDnGTfCRTdYLoh33HbkfLn2KuTAlvetCAPU9w16ad1SXioQYuCdLAukDOf1R0fMkV6/C1ZE41mO5ql5smjUlqRjpa1GFC6IdtqHjgLRMleojSdvn4YnYsnIpomckIuNNWRhcd8UTwxrrm8fXqkttbcwa/2BVYjh+iXpM3CBUFpdQWvdmPUgFMC3ajsomqqhP5h6l1u9YGJs1Q3LWXwhblgj/13iDLeL6DjANOazZ91SL1a3jETTGrtsmWrydfsJKF5paIKrDAJC7Igp5fZah34jxMOyyq9JqtUvx61a0nalWEdTiX+vZUVuvKN6FVsZGDt8F+1zdM4paKGXjACB2/wg0G5ij2w5Kft88E4G0zm66aery7CgMkNujYmAM3DfwqnMA8E5BOqLrGVFYeQ1Jt9xwkDzZC2IRmrhHRY+kIeprxHiM1til1QbB301D7uiFGNjFpquqyvLBGuQhqop535oR+HkNDCkHIIiSz0DPb9O4/AMC4xG7+zLXxsp6KOuk1361hQO8cRL3bd44VGiivguVdXJUX63n/NkW5IxTGznSe191odsxwwU//xVL/eLp0SWIsVdhZquDkhB7y2CHXr202vn1052Q8mIcrrVypQZT7p0wCfUE2VjXoOwBuNnrhMPx2Ng+hPOhNqbgXnwb8Jcu30q+On2SBNMH6vm03/BHYUg5gOtCAB722415SwfD9KH2uEbyflyYimf95XlrYPfB2LDzJ2qcjKBjhgsORVfj6+M70ca1MeWbCNM5y7sgZNw+PJN7BJ8Et9esNxv2S2k6+k5/Ajs+X4SEiHtRdYFXUWX5zL55lRoz02obGh4fCaRlquKj91djVutMmuZmYzcUjHRB6JR0jMgowNQuGXetKh5Zs2YdaXXHVBMj2p++a9vj74DzROwuAvl4a/Zq+x0JXiUJYca/ZP9PXx/fiQEh3dDrXuljJ357yIC6OFQyGsFeZG0y4AQVwtidJ/Z3wffSSZOWEEZ2ulgDICR8VoF0EdcYHCCfWgFo+ONuTggjBhGIEKbE9S9kv0B6bSWIduSuiFINhMpJctM1d1V41vT5qLq3C8f7wG4P0t8EZcmyJcXgX+UdK5Lmj/a/0hPAOQW7OYeohHYDm3RXqdF2L4dC2NVNgXRyIEKYzWSmCxH2Hfk/lEmfo2bJvk1ImCDaMdJX7Y+F8pWWCVOaBz1xI+1JyiSXuTPeXIAnxRiajxXCWNokr6ocDbBlAYDX94fo78oTJ5G9iL9cz/bLymLegXH9B89AEO04N9nC0Qaky/zEwI2S15JXrRjveRquvj74LDicW9yQNFUXLmBycTfcaCabOycwDTnMhRliOnGTO0tLKYSRfKw5dwD02wHgUAjLXhKDdLMRJa9K3x+5i8AKYezlcpvJDEOM7JtGEO1oO1M+TWBB+HfpGM69ZyIEs/wXvW3haPZ5ZCIE0V6rEMb2M4B3S8G+W5vJzAlhLpHSqUn+t2YVTUDaXdYTwpQCDVteQuf7cHaKRTcNIAkubHsJop0Tws5OkdviPwExSPDpQq3NsXkKHlysqiMgLSAB+dSEGI8haWwmM4rWdFL5/hNEydkucSrLnpBqtSl53hX5IwCg/aIkhDy5G1Oy8xE0xg5DygGalghhJH/8i9NQXV6OPWM7adJV/h4YO5Cmq+4ZxZV/+aF4zXYgEJ+X+nZFz5Nw8fDAjf4xqOh5EiGP7qNuPUgZWuNQ8etW1TjV8bMkzqBL4MupmryzYQUPygaEiLuY8J2PcLzaTGYEpUvO0I881A65Yxaq2qfG0pnj5+QzUv3SzUZYnpfmFSKEkTx63wTLY7rZCLff9+L8QNkB+cUg3kn9b6EbIYh29B3zGBfusUN2sZG85QeuHYnRnty58Qj9hnfszp4Oku+L+DO1HRnE8WtIOYDKzX5oYCvAuvat6J1tvXlJEO0YsVQyEGJsLfnjrMwvhM1kxhMDNnF5iZn/Nq6NMa7oHgT+8Rh3vy9knLR2eTxtjG5ZNpMZ/nsaoOreLnjAJwYNf5SMa7DWWkk92bysMTMWym+ixsXAhZNTfyqEAUBaJtw2Z6BBsTR2fdfFV8WvE//dcJ6I/cNgT8S2nMhyuGOjBJumzyMT4bolQ7XgIdDbtVHGa5Xrt7sRjsdd5fLRBai7O/pknMX+Mj/VDlrO8i7I7/tVrTt79O+tUxqt+nWam4SDT8ue67O/7IrQSXu5tIvLTPjq3QfQZGWabllabaHVZgNjB+LE/X7wWsA7rdXKbzt0CUJHTy7dgH6jkPtqfQRqLMKVvC0t88aa9t5wbddW00fW9Qdj0eDnPZrGUrR413p2DfSnTpi1oPVOlKjsE037mDKtINqREH4PtZhoM5lx8ikrDrw0n6N18qf2OBD7nYo+OQHU481mMiP+wE260CZhSsMqbJyjb0ev7nr5iREcNk//drEw1HOj5qaVYF1DKOkrn7dcN6JPA1ng0+qrLD9FazpxlutI3KUx8dwC2vrsNFwIc4HfjFsLJaavKuvPQqvdXP39sCHlF12elLS6PT0N099ZjVEeFxx+c0oIoqQVULNXEtAjP0xCm49rP70mdXdp1IhzlAxIDrwPPTUfu8qr8XagfKp98ikr5wRcrz517Uda6ZSGDRDbCdhzkEtTMTAGW5cswYABo6kRD5Zm9P5qZESp9021+CXPV4fHUZ+NJJwYDbgdkJO/S6Pj8fmszxDtLi30Hb0LALgw3oJmX6ei4D0L9UcFSNZdieBI8hN6eauiEDR2PxfOlqWCixFCSYbm907rvDgGBYOWaNI5N8mCFl+mcmbOld+/1um0o77IPpNT97mFKXja30oNSLFm6vVoCaIdUemj0OpBfbP4Wvw64kcrfW20WYM1emUD4OqkBUN0BIIX5qJt/fP4s1Mjmh+Q3ssDh8/hlw4tKM2y5GC0mHwNlaUiqntEwWXHfuR+HI/gZ2VeZuRnqK4H6NVbxU9MJ2z6eYXDflwbjeruZvyx5msEfT+Nm5u15sh3CtLxn4AYXB0WR32XAkDhuxaqcQEAfdpE/CuMdWQevnMnYpEd/rtPxJyC2D8M0qkvZAdiRJi0QNDzlaWEI99HWgt0y4FhSO28TkXv7BQLWi5WW+YjA0TfQ5exuaMHspfEoGAgb+o8IHkSQifxp2vsAoBMdICkbrX/VVmY0uJZGSeIdup3iqu7uzs2FezG8cor+K4sSnNgZ5H/rZkKRUq+tMBOViw91mKdVvritR3Rdrj2iaajAd2RMKBVH638HT9NQr1LNZzw6GhiMfzpA5cp9ajKqiDaEbR6GrWIOCDrIp5uVoiOaWPhM1TdzyhvtwRoVlBiVWFrW0DX1j7El1VtdbIeuIGUzvVU4XrtpdXW/YY9it/XfYNekyfDfUO6QwF17NESLH1hKLYtWoyt113wXlCkw3IIlH7f8mdb4HbZgLbvpsDF3IFzdE1oEB7OTbZg7wwNS3BbfCG0lyyWagnsZ6dYkPGWtgW5klesaH6sivNH1iOzHDsi69e5/wHSDvvlHmcBSPdegp/mF2+sryKtxaCqrW4JLKxlQrIZgPhITFz+M0Y2LtPd4FDyreVrTJlGyYNSXYykd+ncHtUHjsClfn1Ul5dzAm7B95HIvmc5R7uufRGQLXYS5Hwdjfx+S5Fw30OquzkXx1nQdLljP4dsfcuqr1N1ZUBfvVJZXz1exRet8P1sH6rLy3XrWfpjBHyGZtHxRBlP2lIJVx8TKktFzW+Cts0t9TNHvLsG+uNk3zaac1z2l10RtKoaxr/2YVbBHqy5GIvmrlfpfALI8xbdlGndCo3XVaGsu7QxQ1SbtdpKK0xPWApdnogAjesFynxKmkoQ4UAvzZlEC7wWSH0mcP1U5A9ZpNtPaxM4WfVVti85Eva06iKIdvx+zQ0fBUv3LU8nWbn7bLVB6SuSXD2o3OwH177HaTjZHCSwmSRH6VPv+RMvtcjheM2ZF4dGRUZ615zw2X5REo5Mna/7XlnaWlC2jdHLCwaPRqjML4SxQygqsrKcghgDpyDmxP86SKc+dLgV7k9+CUEvpOpOouRvRc1NuN9y/sx+7MbQICRvXYd7EqfgysQyeD0gTdrdModiV+SPmrs17D0iLXAC1qZANGIc/TrafTvxnJUTnowRYUj+Y7VuvZRlKcsYEBivmuyVZefOjUfeSEktxPLcNHh+l4YBWRexMaJpnXb/bgeCaEdCZB/UmLwcOvJk09dlt+3CoxZ4bRexYdfPXFs4uvuhRY84zXSUjvzVuiemR7emmxm///A1Ejr1RtW583XafSUnfoJoR/iXiWj3hrqsmm5mqlqnpFHwXWcEjD6giquLgEdA7nTp1Yss+giuDY3Djs8X8d/XLeESUE+y7K6mzWSmpwFaqG1xYjOZ4errg8qSUtUOMFl4O0KNpTP14UdML3N9Y1Asti1erFmPuvILSEY6vPZcwqYNq3QXiWemWah5bWK23NF7y59tQeDLqbiwIQTNBub8jwR3gsJ3LPD/j7wpEftKIu3nJD8RpNgw923enL8uR/1byVNt6c9OtaDlIn6Mz14Yi4IHFjveNLm16VYxIAYlvV0R9AJ/Uq/Xnq6B/tiw8yddvmpb2CvpseMpC7b8E5VX0Ma1scP6sE5slWP98corSOz1MDbs/AkDYxJQZmmLRmt3q/pN1zcT6aZEXRb+ynon3PcQjr3SEMEPa99P1KpbXb8XQH3PGZA2KXd+pi/4KHnWOsHWS6vVBuTEqMnOFlgTuAWzzoZRdyqET+J8W0nv+uBYNPhpjypcj4ewrxLh/7p2v9QCu3GjFKQAfhOktrqTu+bK9gUko1E1LgZuo8klMhwbN30Pm0nyZ7f/9fmq76FiQAy2Ll2i+342XKuPgQ3L0X/gWAQvztX036aVj+CFk1HI7KJefv9bzNfb76AgZnYKYk78b0JprIOAHRAujY6H53dqv00sBNGOHo9PxY4vFmnuzOR9GI/cMY7V2pSqgQR6O5ZKGh47WuLsrAA0zDlLrdYZw4JRdUzyUXTyp/bUuTNbx3j7cKSZ1wIAAv94DPn3fYXe4ybCbbP6VJD4+WBV0uo6QZLF3e1CS/DUmvTOTrHAo7QSW5csQcDGSWi31qA5kNsOXcKzzfMpTWUdlWWWrIvAF+bv8F6Q5Mj3noNDUP8tT/y+7hvYTGaVX5WysfFI+2AhnjvRBR+12cfxuap4F1oaG1Ha7AkfKVPLOIiyPeq6ONVKU5f0cwtTMGzJ8zj8uDRBsqcZhKfs+bEITaqbsMnCpWFDVF+7RlUH9Xgk5Th6N3p1ITuyBKxvHAJXfz9UFh6vU7lXRsRh16eLVOXo8aWEUv2FpU+E67rQut3FqCM++98/lhqk6Dl1CrYtUgsjJP2V6nIM8+Wtzg3KuoDfIprp8lCyLgK+w+STXEf91tE3ruTl/3dDh9AgQhkAGJs2QfLhbZq0j79lReDS46gsLoH/ngZY5JuKXocGw71fIU3DCrx6/Aui5Jh+Y/K3XPj5CRakv7vAYX9mQfw8smn1TqZYfvRAVK8JjC1bIDlzi67gGLJ1PALH2Ok7C9sxTmWNzvCnD1xGllN14pNPW+E9l/efRU7q9PoBABx/wwq/t/VPZgTRjt7jJ8Htd311z7p8S8fftFL1YeW4ptyUYPMZmzZB1cUy3TZeU5KKJi6S4MX6ZXPf5o2LH/uhwc97YAwOoPO1o2+EnkbXgrqO9VpxZJxXpnH0TerRBuQ2L78/FlFv7UPOA624DTflOikk3Z0TqByNYyzIxhmbL6FDT7yz/w/Oz6ASVzYF4uThVpwGw6P7juGRqIN3reDhFMT+fjiNddwlWJ/N3xmwmcx04PH8Lg05n8fRcCUEUbLic6WNbG571tkwml4Q7cgdsxBd3uYNF4R+LZugTujUG0jLVA08ZxItqD5wBK5tvHFqulUVz+Jyj7Nw35hOTw0AoGBmA/r7QOx3ACRrdPnvS4Y8+t8/Fk0Scinf4TMvAgAVwkgdSl6xwhgRRs3L/hbRjOZRTqIGxtEvABTMki7ik8mMpC16W9uYBYkn/9kyWJ6UZWe8tQDuG9LReU4SCgZ8CfeN6TT++mDG6WtHTxXPrJsClu7FRyzIsqxCrwayN40GtgIYUg/QNIt8+R32JqvSMDB2oCSEDR3HxfXcM4X2LYA3hU7C3vT7RcWHZt0PXdJNw6L8/lhph1UI4CZULRAT8U/7W3H48fkISJ6Eyw/Fq4Qwo6enrhBGkPdhPC3Lb3cj+j6rr12DINqx6fhe1UQMAOOOFdM2yl7aFTaTGTH2Ku02YOp+bpLcn7z3SJO5INrh6uuDqkuXVPxVFh5Ho+1esJkkQwyEHqGZEHEvDNERWFW8Cy6VfJl0IdY+RMVTjL0KpS9LF+pLXpH++r+WqspL/hp22XHfQxNU9YvZN5I+F//HCiVOP86H5X3Im59n/ytpm2cncQYplEKYIEouKsoelt7hgRv1aNsSQw6/RTTjvtEPCtMgviDzxAph5ydYMND6gOb7BoDID5NU/dJmkjQGCD/KPCyvxAgESefSSNrsyPlaur9ibCYLjIRGq28kIyUGd3dUXZRULPPnWLgxCgCaZ1Vh0a7vIYh2FMZeh81k5oSwV/Iyse8N2bJpQmQfFY9GT2nMqbYfpuWf/01Sf0x/V85L2kA5/hE3AcYOofiu70IVfWKIiW0TFo22e0EQ7Sj+j1VVv4bidVqWwdUVVWfPodekyajsHa1qd5tJVjEnfcv/oUzc+KMdpSmIdtT0LkXV2XOo7C21PyuEdXt6GgTRTtWtSZ1L1klqcf0D4mDsILWNIyEMAJ470QVuv+/FmV/CaBgx3sRCbxzN+Ua6jkCEMEG0o2DwYmoIx9iyBTdvERDjMnpCWO+D0l2tmJXP4r7RE2AzmbE7YS4to6LnSTT4WTIORIQwAkG0o2C2RH87Y1tqy4qlHB/FazvS9Eq4+vvp1putvxJECCM0JxfzRjGUeU48Z+XSs/2FTRv82mEcia6kQpgyHd1QUJxqkbjMG1JDsOMLC6UQBgDlsSEqZ+/Kb6Rx/3yVGvmgRvr37Jz474TzROwfBnsi5t6kBbdgU05C7IBbMSAG7htl3X72ErbWDh9Lh01D4jt/kIQGZ6qR9v5C9A+IQ01FRZ13hOuy0zwyvw/VqRdEO/oHxGFTwe4601fyzyLn8zjkD5XVES48asGe99RmiVlE7jPgj2UWtJ6XoplGz+Qt4UMZHvdSIpquSFXxSlQmtHb22HRlD8fjz9mfYYhvLE1D7jwp3yExVCKIkrnuPd2bo/ryZd26AtpqHtlLu1L/JlptPiBhjO7dDAJji+aoOndeFU52zQ3u7jB6t8KXO75DG9fGiHk9Eekz1epEr5/uhHSzEad/DofBUAOvB45xvGi1u1Z9lepojhYCJP7FvIN4P6gTF8ft8N8yCKDVTnXh8XZxaWMQPAdIKk1XRsaj8Rp9U9jE2MTlh+LhsTqNnoZqlR9/4CZmeGU5bD9BtKO/X1fupJCNIyqyet/FlZHxaLw2Ha7tfFFZUKT57bInVSRez/2GkkdBtMM2+BHcaOaOesJeTMwuwNLQAACyOWutvCoaDD+ugf6oPnka1deuqerjCHrjs1bbhO0YR91NJPQcSu/KKaE02FN+fyy2LVqM/g8+gpp0ebOOPeFxiQxXqUcbvbxQdeYMHOHk01b4rs5H5QnJKitrREMQ7Xi4sBdW+m/VbTe9Z722zn/fgpyHF2BgFxuOPxJELe0RQxYs6vLe9MZSLTrsc9iyRAS+sx8ID1SNb1puTUg+vTK0oMU/OXliw8T1HdD2tUpUHc7WzF/ZJxpbVizFwos+WN/BS8UP4WnI4TNY38ELN2xdqel6vfqTZ3L32xGURmIEUfuqw/HKK5js153jjVWDdAS2LkvLvDGxycla1wC3syYg88vMVgdhfWYaUj5Z6DAvaaPCmRaqaqmHnM/jEPLEblT16oLN38qGyZRrEJbu/KKdKrcW3xenoJlR8kX5bzHWse9wazS+AydiVy5Xo0uHU3dte/wdcApi/zBIp+64+nl4jypUDdzE4AEAVPeMguFGNb3/QeBIYAN4NSll3Gv5dsweNBJVh7PxXG4W+jW8eduTHQulrjeZfFx9TNiQnlynicwYFozkv9Zy5QavSlTdn2P5y/0knhqZ0FoU53waj5Cn0jQnSK12UeJ20guiHQEbJ1HBmFgN08pz/C0r/N5S77q6eHig+vJlWpe5F/ypI8za2vDyqHiVlStdAXrwI9SCm5awqJz42Hs2BIUzLfDZfhNuv+/VL6cOi1qbyYyCWRZkj9c2KgFIJ4tXWxuR8aa2oK3XT/U2JBzxokThTAvczxuQ+fx8h++elFFbvfXePUH2smiEfVZO72DplePi4YGNx3bANnQcDJXVnPsL1opi1b1dYPxLOrkgaoFKeizvPR6fiobrJeFd6yI+5XNRDFV5WlOSiujvn6EmvJV8iy9aYXo/hbsjVPy6FQErirEh9Vcu/dLjOzGRWdyROBdzB5zs3hStPk9RvW+2T88p2A2zu7vDd2D8y4TksGS0X5iEI9OkS/kDgq301FRvTDWGBqnu/+i9b72+p5VeS51SVT/mNxkX68KHVv7umUPRqL9aKKxtvL/dzQY2fe7KKOT1XoaIeUncvETKY9POKdiNlwLiOFrGv0w4csQXBYMX647ljngnWHJ8Jyb7dacWNdn0pS9b4TM7hQo4SpD3pFf2PYlTOHVLNo7wVvyaFW3flb//GfkZeKfH/fTUxrWNNzZkbELezSsIcmusqhMpe/RREeM9T3PzJSD3Yzato9/sfUmCBtta46cQweGYLoh22HyiUDArHtmPSuNyjbUzfl/7je73o4TWnEOMiCnzsndgCVrsasaZrq9NOH/1VCQyolw436DKb1pZLrvpczsgd2MBSVunpqKCM4ak5PHfckfMKYj9fXD9pxlwwgknnHDCCSeccMIJJ/4dqK6R/t+Jcv7b4TwR+4dBdhei1z2NZsNLaDjZKXGJDMfVDyqwvdN6JET1Q9Wp05q7KG5b2+BmrxMOyyKW4AhsJjNyV0ahfoMb8B2WhYuPWNB0hXp3laRl+SJ/2YveSow9WoJV4b5qVaCAdpxVQCXqopaiB+UJ3uAcG673PEXj2Ev/jk5Patu5JmHZC2MROk3Ste/+5FRqsUnp50mPR/N7SbC/Ml+3noIoqYNt2KfelWTrQMC18y2LaSRMz1iKZt5bhiQIiKohIN23ab4sFTAYAI3hQ6tdSVj/Bx+B4WaVymCAFmgeHVU5R3lI+8a8nojmX0l9mpxAKdv42pA4NFyvtsrGptEzE+6ID0enWOR0CgCuCwFoYCuAEjf7RnMGawjq0m4FN69g2i2HwgCA+EgIPy5X5T3xrBVtPtb3o6VVJ712Yq2PadGqyxilBVaVp/Oe0VwfJuUQKHlXGiIhpuD1xjOtOmvRrrF2hiHlAPUJRE/e58UhZLpjS2+A7D7DtY03Xt2VjG71XTAwuj9yPm6NgNEHIIiSmWxyd4jlh6iHXtkUiDP21gh4WeqXodvHIWBUpqpObD/SQnV3M1x22nXjAcmgRvmUC9gT9YNuO9lMZtzoH4O/vpJdnDgaRx09s+rXpC6dPkmCd+o1uOy0QxDt6Dv2MfoNudSvD3FaF3jPlb7vgA2T0Wq7K1okH8Ny+68Y27abZpmO0PugZMbebWsbFAgByJqufxKevSwaoX6ngD4lt12Olp81F9N1TUuxBKz6Mneq1bAhLq5rg0vX6tOT1cuj4pHy8S115fhIapBL2U8Kvo9EwCi1sa4bf7TDXxH8fP1BYRpGLn8G7d7QHxP1vi1iIbdohhXt3pT796knrWj9mfxs+NMHNb2lu1d6vClBjNaQOgO1n0IreSYI2ToeOb2ksUN5FUQQJVcnhtQDlKZvWmOUxF+RDWAZDBBK98NmMqus8mq1E8EPx/ahWWj+XXsCRNase7Pu3IlY14j/7hMxpyD2D4N06rd298HOePlCtyDaEbIiETmPSBep9RY31T2iYP18D9I6u6FsbDyarEqD0csLR94J4Ewia6lvEWgNTCefscL7E8bqW9MmKJkYofLnpeSH+PfSo+tIjUQQ7RgY3R+VJ06ifYYrjkRXovfBq3ipRQ6XRmuBy6q5XNgQwi0YHKn3OAJJV/ZwPHUSzeYl1gpD0t3xuc9uzQGf/K2L2XGtfI741XKYrKfiUxd6C4t2YppCd11Jl0BrITtgwGhs3PgdF38m0QJDNah1OEG0I+7lRE6oYcurGBCDyHfsONb1pipeKWRr8dj/wUc4J50AkJiTiwUhwVL/sj7ACZhKWtlLYhA6WVbBI46F2fS1LSaV7ZPQZwSqjsjWOk88Z8VLU1ZjeVhbzTa2mcyaPgK12otVQ9V7r8a/TKi6V5Q3dzSsoBL1mcLVkSoLdABw/jELmn+VSi26EVqsvx89P0JseziCHv/EQTOho/cOCmZb4B5WpnJToMTpn8PhucQT2xbz4+M9B4egZYMr1CAQIAuBJA1bF61vivwl90tyPotD/vBFtfYZR8IvgdLpt6P0NpNk0Kbq0iXVmEDQv10sNhXt4eIGWh/Aqb4+nI9FqvpaR8GCgB2H9b7lioQYjPhwE+fIl4B1skzqpuRBqS7GWjkk9yZpvlt+6QTRjplnw/F6y6Nc3Vnaxr9MwLSGqL+kjOsPWnzoPZN5iQhwynQ5y7sgv+9X9LkuAgKbpqpXFwyfL2iqTgLSpkPIeG1/pHrzBCAZtwp41fF9zfOPWehdX0B2XK0HopKsR0/rmVUbpHX6LA4hT+7WzV8bTSXI5pCyX7L3FpWbMecmW9BiSe1zOSAZyUGD+qg6dbpO6QXR/q+5I7Y7y/uOCWJxESfv2vb4O+C0mniXYGtcY1VY4Eup3AByYYNkIY0MDIJoh8uO/dSJ7tszlgIAjrzrj9Bpe2ia7CUxmgPRmitN6OBD/gNAk50tUP9sDTcAVV0sQ+Zz0h2K+UU7KW2Wrt/uRppCGKUT24mGh+2VTfWzAyC5OD63jbQb+menRgj8YRoAaVfMZjLD2LKFqi7sXQPlrm1CxL2c8KRckLB8sm1L8qS9vxCCaIerDz/RLPKVBmOlEMbCZjLjudwsTghTls2W+aQYQ/OxfLB5XDqGAwC8P03hyj07VbJEaTNJvpDYOrHplPRImmntuiN7QSy/IAkNws2+0ZhaItPWW2BXHzhC489Olax+/fXax2i5KBXjjhVTPnbPXoDqLW01FwGVDV1wrOtNVRuSvzPy1UYziGU0m8mMmvSDCPhlCle/BSHBctrC49TaF2vdjKRnhTCbyYyavYc0+wpb5rnJsh8+Un/22WXBFS5v5nPzqRCm7G8kb87DHlw8oaVsL4/v02CIilC1CZsvOSwZV4fH0XgihJ2absXJp6TFBrnDoBTCCJ30mdKGkNceI272jaa0WKerNxtK00nOvDiO14ROvVX0DK6uyF7alQuPejdJThMfSX9vzNnFtY3NZMbxN6y4/FA81y7Z4xZoCmHV3eUxDgBaPXiU+lEDpJNSQLJG+mPwH7RcQbTTkziSd2B0fwBAUHp92s/Zd0IEIHrJv8ZA44jlSZvJjOLXZeMUAwaMhiDakTOPvwtF8Oopadx7P6gTIlLHquKzv+yKGmtnysfDhb0AgAphbNtNPN6dPtfcvAGbyYzQ5Yny+Ft4HHvfXsDRr758metbuSuikPN5HNcuBKz1SKWrEGU7CaId7snp+KWDejwHwAlhpjQPbtwhf5eGBnB83Ai5TuNTPpHG7Y6fJWFidgG9C2szmbEjsj4AoEPKw9wYS/5X3Sui6lguJ4SRb6XXxMkqXg2u/C0PQlPrFO3kT5IRKNbcv7JPuDRsiLwP9McVAKhyd9E14AEATdLdVeFsWynHk3OTpPKC3ub9qrGItw+HINrpeAAAZ38NxXfhJs3+QMo8+PR87llrU0NZD6PBBecm8j5ODw2dRy3CAtLcrszPttO1ofI3peRPEO30hJ7tlwDwnHkABNGOjwtTuXkPgEoI06s3ACQf3Y7k/b/rzvl6z07834JTELvLYHCrp/ooyQCgFDCC1kgCiiDaYQwNQr+G0ilC6JR0fF+cQvOSxSUAagYfkCaxWQV70D9AWjiFfi2Zt7/0dBs0XZGqGiTJM7k4TEAGouNxV+UBy2BQD7Y/raB5yInH4BwbNxkQs88sQp6Sdvyz75GsjhHfMGz7sGVxu45fxKHqgnyJt3hAA44nAq+UprCZzNh63YXnmVnIVJaKqnBl+YC0UOEWxWW8Rb5XT0n+wFrsasaVZTOZ8ZlJFgSUcSSsyoM3z0/CL98rm72t6HlSc/JW8i6IdnSfPhWAJOD5/mHgJpaq7Dz8uXwpjt/r4nCyYOkVremEjDeliZo4C1ee/rj0Kdakt3PeItVCAZCMygBAfH0jV2cAcP2TV7sKnbZH1XfZxdZh60oIop1aA7OZzHiilJ+wB/QbRU1ED+z2IFfPwtWRuPC0JFwZunbE3hkLVAtEltbNXifgGujP1eu5XNl0NvlrbNmCpgl+Jo17T2wdlNi0YRUASeUHkE71WERnjESjtbtV7dF6Xgq8P1WfcCvBtt2eWQs01SUBUKucIdN5NU/i+JvUs/RlK2qqa6jFTgAIWj0NrdPK5DZJk1XstARMv7dTqPUzkkdvM4RVuxNEO05NtyLu5UREzUqCINpxZAp/YrGuJE1zw2FgtwfpRtF8H2lMYo3GEPqs5VsydgFA23dSqOn9tjNTUPyaZMr9ZjNpcyh/2CKujoJoR1JpPDKi5G/Pd1gW+g+UhLFBWdK4FrawHIYUyZ1F/rdmnOl+mX7DUbOSuLYoib9CaROajY7zwqLemEFQfdOI/KGLaLv4pjWm8fU2pdPwnK+juf6tNZ8ov08W4voOlCcx/jIXp9zsIM+hH1UguXQft3j2mZ2CkY2lvvX1cXkTEQDct3qqyiXP0furabqrmwJx4CVJmNi6VFa9vDRGcq+w6fheVCTIm2g2k5m6lhBEO1w8PChd78FHuHYpq5aEx8NJEv2c5V1Qfe0acsfyAjHLNwDOOiKhtb5ENhBy0XxT1T5KoYLF3relcSz/9Sjc7ButORacEptyeU8+ZUWr140oXB2p+a3qzRlkc4akSYjso/rebSYzzsVVcnSG+MbCZ7Y8ZpG53frsNK7ck09L39mpGBd0+iRJ1Q6OIIh2HHuzPWwmM571t9Sa3hFdrfYWX1R/Y+z4c3Z1CP4NqILhjv3/b4dTELtLULqyPQDQXUrlh0o+UnY3KPhpebHW+KuLAOQPelRb+WMnA1nBLAtCnuDvL7waEIuaCsl3RvZ4aSDe9MtKLo2eQKY1yRJ/LqipoWG5H/M71yzd6z1PcfSrr16lcWFfSTu1BldX1cIob1UUcj6V/Ratu6J9ZJ0/ZBEabfeikyJral0Q7TD86QNBtFNLj+8FRcLFQzbpq7djR/wuaS28233Dm/tlTWoLoh2zWmdiV3k1Z+VJWR6bnvwlccRiFDtBnZpuRdONaiFWqw6kHQlN9wuVsJnMqD50FKUP3sSW60YuDQB6KsHyolV3m8nM3Y0j/mSU/Bgjwqh/GxYDAuM1y3k30Ezzak1syvejJ8jqPRP/MSTf5xu+ROsfJNWlyoIijkf/hzKpeX2itqik5xrQjuOnMr8QgHQfDAA+Co6AINqRPV/2M1N19pycv62vwwXxzX5dUT5IcnUQuPkxAJI/MEG0o91PfD9qeX82zk6xcO1BkDuXd5KstUDQ+s77HuIXxkpoCU8EPrNTgOoqmqZysx+Cn0mDS76oGh8AyaR761RP1WJ9zjl5oVv6shXP5B7hyit5xcr1A/I/fNRRNF2eilafp2iOteQO6fE3rAj+Vl7gbdj1s+7Ckv2eHIF1Vtv2Xan8009f5+o7MCaBPhOBr+fUKbScmv2SEL/uhX4AwKnOBo6xA9WS+mLQnxPQ6vMUOk4S3o0RYdx42mq+bH2SWLIckHVR810AQEH/L7l2I8KdEvn9lmqG20xmOi50nz5VdzyZFyn5Tmv7TgrgYsSl0fEI2DhJRa/g+0j6u9p+GAk+XSCIdpxOstL3EjFPErrH37LCSfhv9blUX+JTjdSpLDkYGVEu9Plcirdq3hNEO7VICgDuyZIQamzdShLIj+TQcogFXK3+QzarCE3ik+3VU/KpMNt2JEy5+SOIdjR0qUfTshuweauiVGUXvMcLGeFLJF96/q+nwm1zhubcV5DAuzvx/jQF1QeOwP8h2Qcp2UzWGjfIc9W586gYEIPMG+WwmcxIztyiqkvO19EoGLTEoYBHTpE9vk/jvnV6V/CVVOomwdi0iao+LE3y12YyI/iZNFzdFKiKd4kMV7W7HpTv+8U8aV58d/LXmulIHVs+xJ8kO/HfD+cdsX8YRN/2QnYgRvcfgg27fkZ0xki4rmmB3XMWqCYodkCaW5iC9vUaak7+TXa2wNXhrng1ZSPeDpT0rAXRjoDfJlOjCyTMZjLDpVEjVF+9CmNwAKw/HsGOyPo4O8WCjLd4Z59sHuViV3zBioPP8KoY5H6BMj951jPcwQ5Megsclg65kyGIdoQuT0T2OLUBEeLHRo8uWy82nJgRZqHH7xv5+9CtvotmW9lMZpTfH4v6v+5R5WPB3rX5n4Dc4zF2CMWp7i1wzduAisAK5PdbSs3PE/9UekZFlO9WC8RggTE0CMlb1yH21UTsmbVAciLNGIYgtAaE9aALEq13kDs3HsFPp3H3cj4uTMWz/tLJVNDqadRFgTKvMoy4S2DrIIh2dPgiCW3fVRvsyPkiDm4XXXBswgLNfqpXnqpcxg9U+aBY1P/NsdNppR+2s1MsaHimGg3X70beR/HIHb1Q1UcTeg2jZpYdfRtafVsrHakjuUsGyMYAVPdsIC1GjiZ6IjRxj4ru9cGxaPCTdv929L4cQe89hO11g/2cLxrYClR0yKV9Nn1dDGmMPHJS5cdoQNZFbIxoCgAwxHSidxD1xovsxTEIW3BN5XZAqx4EpG8LonQ64LK2nsqwCSmn5FUrfGfpuz0g92tJnoQOPVF1sQx5H8Yj6Hnp+8n71oygW46R9b514guJQFlXOnfcunOopNNsV3Nc6HZek75embV9YwmdeqPq3Hno3UUWROme8YaMTbr9fe4Ff3xbGKNSnVSWXxsvbNlaafM+sCDkrUy6ucht1LT1xZXOJu6eIgvWvQOBq3drzmiTuL4DTEMOS/O6MBEFtqUIW5YI/9d4f5aCKBk6IQKJXn1ZXNoYhNTO66RxoUMoqg5no6pXFxi37lOl1aOT82k8wt86hqoLFxCUXh/zfdJqnXuVv0k/1aLPmv8//bgVrb7gXfQIoh3Xqm9Q4ZTkL37disNJjl2Q6MUNyrqA6c2KNL97ZX52LcDyp1cm4fHfYr5+5yHTHbsj1r2jeNe2x98B54nYXYIhoZ1QWVAEe0UFMqLXcKqByh2hvA+khWli0lMA+Amd/F4TuAVD/zqAcT9Jx/LGptJ9sNCpe1VpBdFOL8Mnb1+PlHtaAwBaLk7lyldOPsrwiePVfsLI/QI23aZr7vRZedpAoNxBO/6WvLsJSJd22XTkTobNZEbAy3LbkfszgminQhih0W/EeNVOmLJsANykTupC7gsodxXfLnhAmrxuncCRfAP6j4Ig2jWFsOotvNre2YnXuGe9HTi9XdHQJKmMqsPZaLk4FX5vp1BLccQHGHESTIQwQbTDzFwNGJQ9gJsYlbt7AFDwhKQyQISCZl9LtIv78qqrpM2I02lAmuiVAr0lVjqBIvdyDK6ueH7QBBpPFqosXSVovyoVsfW6i6ofkYlbmTfk8d3wzJXDje1DNBeOWnANaCeXyzjjJUIY+26UdJIP/smlabk4lfruCnouDdFvJdJ4otbWdBnvQFurf+htMACSOiWbjqStuleEb5r07jwH5EEQ7ZwQdnmUdLKycdP3CE2U6jaqQL7/BYATwopft2qOGyxIPMt79sJYVX3Y58AfJVXaz0zp2N5pPeXv/GMWmmbfG2oBgqj+AdICr/RlK4YcPsPRXtPem+MZADZGNMXpn6V7mZt+vqVe7WJUjRckT+iUdHpqReDqY1KN4+TZZjIj7yHZwlty5hZqQCC5dB+lbTNJvqf8vytVtQkgj0Vz2+zl8iQf3gYAVAgDgKc6/8Wlof0+WDZ80ewb/n5M9Za2CFw7lebLqJDucLGGX4jAW/KqlQphLH1lX3CJDNcM14LNZEZlqDRW1lRUwGYyI+4l+fugaU5IgvSZaRasKUmF+Lx8Mho1MwkbI5qi2cCcWr8by/PSaWj+bKldC2bxY72yb3ulNOXoBb2QiuqrV1ExMEaVfsPu31D/N0mFOjEnV1VXIoSxvCkt5xIhzGYyI3SCdILl/5p6zp5xpoNKCCPfnJ4g4Tkgj6pkE2fTekIYKU+JkKfS0DK5CoJoR0WVtqckY1gwOmZI47RLx3B6v5Qgt9fXHF/sX9YHW6svUpD9VVeuvQLXT8UQX2ksGVd0D3K+kO41+txbjPaLeZVdlq7WRokhRrpeML2ZvF7Rmh+MXl40nN0AHzb1T64scr+VLTP4O6m/rc/WtrbsxH8vnILYXQbWAakg2rn7HiQ86AVpgnRPTlcNgOzzxCYnEfq6dPk++fA2uHq3pubGBdGOyD2juYmW5M9+rQOlkRAlqb+Qu1t6i0rboUt019jRohUA+jesoL8r+8j3CIxe2tafAMDvLVmNqGCWBfnDF2FQ9gDKh0v9+poCqXJBJIh2bLgmpTXs0he+WNhMZvQ9dJmbSMndmsB1vIqW0P43aQG15QeOj+rMozSNa6A/V+ZJQVpcnH9Mmuh9hvI8K3ffroyM5xY4bL07zeUnGOWEe/mheN33Y48Ccj+JR+tUT1SPkM3Fs31EEO30Qn7gGDuXhkxCbWfKRkSIcQ0lL54D8lRtv9J/K4wtmtOwTcf3YuPv33Nls0I5IC2SlPUh9N4LUqv2EFVAEnbiOZlW82WplEfy/oJXJXJtwNaF/K0sKIIg2jEg2KrbtnoLTeWz8rtquTgVBrd66D9wLEwfSu2aviucy6+k4ZvWWHXRXxDtqKqRVGSVViDZ3+/5CCgbK6sSs39ZJ+HE+MqFbpJQePInSbXaGBpE07T7RDbtnLtSUo0qGxvPtd2wI6dV/ZgYGlJufgCSxcP8oYuokMfG9Z6eqvoe2D5H4gpXRyK319fwmZ2CaU1LaRkVA2NU74ncuWn14FG8kpdJ6Zx4Jg4VCTF07GEhiHZkL+3KvZdrX7tBCUG0Q3zBiiY7W3BpE/qMoDwQNTsSf/jx+TjyrDcujYlHwSwLpyKd/ShvYZdA+ey3uxF+i2gGLVTlFnB9kCwYAeleJ7FYZzOZ8WpArCq/INrhkWekJ3b3jZ7AxRODLI/nZMNmMmPjpu8BAF3/k8ily1nOW8sj/Py+7hsufPcc9T0qAq+FqWji0kD6bnyk/mdKVpuXV7bPL6XpmJKdD89v03DiOSsqW1Si5BUrZ0lQSwhf6b+VhrF9cOsS6U7Z0lv308Tn+Q2Khe0ldbfcFVHUIJeSR0G0Y9bZMNX4MjT3PvjvaaCqO9vvUzrXU8Xl3byiK4QR6G2SKtM5Ctu5R1pLLPXbqSngJP+1Fh+1kQS86kNH6f1SVx8TTefaxlu1RmHLPDNNmgOIyiwAlI2NR8jj8l3VHYfCEPacdI/SpU8xPnxYtlZJYDOZMSU7n9Jl+a1JP6gSXPPnSGPsmUR5rDXUl+9vE74BUOMwBB6r01R1CXpOChsSyt8pv1vhvCP298GpmvgPgxzz9sKDcDW44YatK/5aJulhR89IpGa/AW21mbpAbxEoiHYMCOlGVScAaPoSey3fjpwKb0xscpLSKRsbj7QPeD8dejtsI4+cxJr2khU/Y9MmqLpYBmOzZqi6cIHmKVkXAd9hWZo0lINiwn0PoSrrWJ3qzdJiVRn00rP1cUTzydyj+Cw4nAvLXhaN0AkZMIYFo+qYtMt5aUw8PL9NQ+mPEZyARUzPE9hMZi4fi/gDN6llzLpC2WZKYU4vTW209OJJHZRgTWjbTGa4BvrT+1IkzGNHS1zucRYAdFUlT/zUHm0Y/1GGP31w8au2aJJ9lVpDU/Kixfe1oXFo+KO0mOx98Cpaul6mfdNRXdnFQ69Dg7G1409cnYvetqh86ujRcukYjupDsmBOzOuzedi82Uu7InQif5KtRZf47RPXd8DBuG9VdEpescLvUzuqr/Enriees1K3FLXxz/o/qw1sXfq3i0XNzRu4MN6CZl+n4oPCNETWq4+HC3vhjPWiw3ZXLuDIc87X0cBlV3rSxdbXUT20ykrMycXgRtqL09rqx6KydzQ1HkP4/eVqQ3wREkq/BRbrStI4v4Z15ZmOm69YkTV9PtcutfFIcPoJK1p9fktN1yeK8wnItuOu8mq6u0988f2dIK4ail+3ou1MbdqCaEdE6lgsiFqFe+rrzznGpk2QfHibblv0nDIF9X/bo9mvFl70wfoOXlh6fCcm+skuCxx9D2xYj8xyfC3ci6AXUlVxPTOvY1tkA2n+OpbAuZMAwLmU0HvXN/rHUGMoSh6Urg3Y90fCCF7Lt9M21OsfuZ/EI++hhbp9p7Y5AfGRMF4qh+HyNVQWa/tWoxsvXyci4NVUTV4ByUfb+l7z8VJAHMYdK8ZYD+kubeE7Fvj/R9+P2Y0/2uH8Bh94z711R+yWiqUe3sjfR/s5yx+hXfpjBDx+8MDJPpUInbRXg4KcT2vuZdEh5WEctq6k6YhvTkH895iv33bI546pJvbsWHrXtsffAeeJ2F0GYgnJZjJzQlhl72huwVj2MH+0rYWiGVYUr+3I7Sax6TMqbiDvdenUYOzREgiiHY1O3eTSFb5jwbuBZryf2Y+j02SVbFlsXtEuh3ywfBM1maMzQ4F4ydLSB4Vp2Bwjqw2xO+YsyKBWlXUM1T3ky8c3+0qmxMcdK+bSE17JLj25G6TFq7FlC9120sJnweGUVtDqadKOnE26nM4KU57fSqpdRAg79aSkXkZMz7MTSPJfa1V1d6lfXyWEOWof8pfQvTiOPxnRoxG67VH6LIh2aqVQCUOUZGQiZ3kXbqJi2428j4VFO5F8dDtX9oadP3H58j6Mx7WJTSj9o91X0J1GQq/4dSvaDJbuoBAz0ZvCN+B6SxcqhK0pkSfk/gG82ipbT+LQXBDtWD+7j64QpmxbUkebyYytHX9STfxHJ0mGbp47wbcLSyu5VLqEX33oKG72k9RoSl61cub1lZN22dh4hE6SF/Z6ixkAGOcpCbNECFPC970UVF+7BkG0UzVDAIgcxpt8F0Q7Tv8czvFPytm86iv6m5zg6n0r7A52zc0buNmvK/bMktopsp60Q0yM5MS+wp+IaNFU9rP8fkvpnS+byYxBWRdgM5lxaYxUt1kF/MmaVvvlfiKlXRASXOtmQ/uMW+pVtyzCJvQcChcPD8rra/l2JK9YiGtD4mg5NpMZX4RIhiCIEMZ+e8N8tU+o9YSwV/IkDYfe4ybCK6UpddvB9htiEEarDiyIoQqbycxpSrDl20xmbnHa7j19x9B6ZbH11aor8ZenFMIuPsKPXb7DsnBPfaDfcHmsAoCC7zpT2lUXyzS/YdKGSiHs8qh4+p7I6ehEv+6a3zD7Tl7J4x1nC6IdOyLrc5YObSbZ1QoRwmwmM72HSXDyGSv1v1g2VuKncLV8mk/KrbcpXbevvB8ku4a5OM7CvT9lv343UAorv1860STuUIjVRwAI+EUyGmb8y6SpOulonhREO4Qfl6PqcDauRrbR/O5a7GpGeSMnjVq8AkDohAyY3aWTpuVhbWkaIoQN6D9K8hGnQL37iqgQBsChEAYA3erzloGV443P0CykfrTQoRBG8gGSZoLWe7CZzFQII23TfJncBp9k1c1H2T+NKrjcsf//7fjvr6ETTjjhhBNOOOGEE0444cRdBqdq4j8MpWoiIKlXDNhVSK3zEDhSB9CM2+IL9JHVAsKXJKHdmym4NDoent+l0XBA3sUpXtsRbYcfohbxAODKpkBc+81bVmPROHanp09eXsh5LhiBL8vqGXk3ryDIrTH6P/iIfNmdKVOPf0dqIcpnopalxLlJFrT4Uu2AsbbdbwCYe8EfTzcrpGmre0Yhd7wLQifwu8KsOmfO53HURQDbtjnfdEH+fV9plttkZwuUdT/n8LSjqqYaRgPv40xZl/xvzdy9LS31FK13VjjTgmOPad8v0WorV38/VBYep89E5ZO11qYH1qqgspygNdMQ/HSaRi4euSujEPyw2umosp5a9SFgVRT1IIjSvS+iyueo3yitYSphDAlEzgxP7v1oldc/IA7iE9Fo81EKtRjJlq3csQWkkx9yX0epfmPeL939u/CohRpqUZZJ6IjrOyCg+Xn8EuLYQqgWDQCIf2Ea0j6oXZ2Ja0cXI67fH41qNwOapIvYkPorhuf1paqqSlT16oLN30rfUfaSGM5EtxI3bF1VvpZYfmP2jUTzQY53yfXqAUjt0mJXM5zrdkH1Xmobz/I+ikfQc2kO+6nW90vCu+x9CF4PHOPi3La2UVlanFe0C9PbdaPPhqgIem+W9Fnle6ltjB99VMQX7w9DeUsDTO/zp1gTjhXh41mj0OybVFXesofj0WRlGowhgajKydcdl7TCSNkFsy3IHrcA7RclwW+GWp3WEaru7YKZS5fgzUDpxN4rpSlW+m/VrLMjHrSgF59cug9Ggws67R6Dg3HfIujPCaiX3QB+b6stt+rRqt7SFudX+8Kz6CYe/fQXfBdu0k2fvSCWGtIhYFWPAUnLorq8HIBkhKLNvEKI8Zcd9sXCdyw4NlG2KJv7Sbymr0NHcPVuTR3HK9U4yboDAPI+jEfuGHkcKZphxdHJ82GenYTWn91SM2zZgvoT1eJbyVfhuxZqEdfRWoL9ffIpK7w/1V7z6EEvLVs/rfQnn7HiwAuSJcd/i9XEPw+1vWOqib07Ft+17fF3wHkidpeBqFf8FtGM+6CL3raoBgBX79bc8weFsnAliHagTwk3SPn/JDm19PyOXwCwE+Bhq+RDjAhhp5OsKNvqzauxgBcSBgRL6nYnf2qPqjNnOCHMZjIjyE06oq9JP0jL6z2e9wejXGTqhZHne5JkvzqCaMc4z7M4/kMnFW9731Zf5tZaIAG8zyubyYyNEU0xMCYBTXZK6iUu2/arhDBBtNML47lz46mjU0Ij/EvJF1rIo/tofZ7JPcLxeGViM9RYOzucSBJ8umhOAGyY3iJfqRbB/nWJDOcsTgqinVqtY8NY9aLKwuMo/o+VPh9+fD4E0U6ttZFwY/sQztcbAGxI/ZXGs39tJjOCn07DuclqdTdlH2i8twHyvpXrfbNfV816sn2VqEsSWrUJYYTGxtwU7nnCMfkC+7AjpwFIBkP0hDBSXvK2HxE4xo4aa2eH5W0q2I3M56Q7PyMXPUfjBlruV9XL1dcHABDtLl/GJ0IYKdceJYUTIUyr3U//LKnZmoYcVjkCt5nMqOlmRvZXXbl8Sr4B0Dujem0ASKpXCX1GyGHVVWi8MxfGihoqoF/ucRbDjpzWLMu4VfqOnsw9qhLCSHriL2j1l59ycYJoR8XAGMovEcJInFZ5bBz5H/S97Fvs24C/VCp0Dba1Ruj2cRw9Q1QELffjwlSVEKbXrmQcsJnMtO/YTGbqx459V6/4bVDRIEIY4b3Gfpg+1/91D1wD2iHwh2mUFlvuxOwCjoeJ2QXI+zAe4z1Po/lXqZwQdm2opA68LKwdNXnP0gtKr48mK6X5KXnbjwCAgdH9uboSPFzYS3fBG3BrbiFCmDKvVjuWvCKNVZtXfUWFMEG0w/5zB0R8Ljv7ZeldqS6n/snKHo7n4otmyL48CRIi+6BwpkX1fSX4SGqdpiGHpTHu4f3we1ueS0PS3Tk6SiMlgGQkpeXiVPy17EuM9zytircNfoT+VgphgmjHlcAqlL4k81xdXk75q0k/CDH+MnI+j0PUzCTNtjz/mHQXi8QZw4KpGxHSP8oellRsc76R+F9yfCeqeslq2q7t2iLnqUDAIBleSH0glAphAKiQIoh25I5ZiPa7HqF5veySz8HWn8n+7pR+xxxt/giinVqT1ErLzhNhSxNpHnKHe0D/UQCA7C+70jwundtrjhk2k5leP7CZzFR1+bB1JQzRETRd1b1dsKZEatNG273g/UkKvrgoGe36t1hNrKkxoPoO/K+pcRrrcOJ/GVonYoC8EGcvx+vtzrGDkbF9CKqO5CBynwEfeO93uANE/rq2a4sNqb/qCiiENvE9VduOodYkKojSiceCQUupM1u98mwmyXBF8l9rAQCd94yGy+/NsP/1+aoytAZCZT2VMAYHIHemBwJGZdKwsL1uONaVvx8340wHpHSuh/gDNzHDK0tV9vnHLGj+VSpOPWmlO3XEEAPZjSdpakPlZj+49j2uGaf1/iI/SoLPlouo9HCHyw75dMg3rTFK4q9Qn0nKdlLWIWd5FwQvqoZhl71WHl3beONi93a4NOYyTEPke0XKfqKZ95ZfLyoANmxI7yuxeYYcPoP1Hbw0fdY46mPiC1bORPPVYXHYOY8XilletfpeXXd2tfD18Z0Y79cdVzYFonF/2fKWsiyDqytqKishiNIdo6qc/Fp5UNab0CR1JHEh6e7UMbUWb3pQfsO1tYUxJBDJ236EzSRZE93c0QOubbxReeIkarqZ4VJRieJ+nmhcUoPds6VF+YB+o3A12BPb58t+k5TGB/TKPfGsFZnPz0fwqkTkjnXsB5BArx56Y9cDOf1R0fMkBNGO/gPHqqytAkDrVE+cslxShWvRZPkzenmh6swZzbTK38Swhx79uuLKiDg0/mE3cr6IQ8jj8gm9Ixp0Prh14q3Xfk+f6Iq5bfbq9lUlr0rDD3X91hx971o0zk22oMWSVFU/OP6GlQo/ALj3cX6CBenvLlC9D0DapKrOPApBtFODEnXlf0XxLjzStpvuuyMn1HWpF6HxpBiDnInB1KgHeypFytCaF5X0iI9A2h63Tii1oORfb1xV4uI4C5ou5zd/9Mbcs1Ms1FWOo7RsuN47OP9bKJoPyq51fUDC7xs5Hi477RxNQbQjbMc4+D+UyeV1xBsxluLoXU7MLsDSUP7+JmukheDfciK25aAfGt2BE7Grl6vRp9Pxu7Y9/g44BbF/GKwgtuVEFgb0G4WNv39P47U+7NKXrfCZnQJDTCfUpB/k4tjf7OKUjT/5jBXen6j9irBlEYeSrGNJ1tEuyaPkkUVZcjDSzJIwRdQi2XxaeZWLweL/WLF1ygdoZWzksCxBtGNg98GozC/UHXxZFS7loMg6ONWkzTgJrU3oJGAFtLrg0sYgjPHbq2tamuWnLgsq9hmQ28ErpSnOTfGmlvtcGjbkTn4sB4ZRP1IslBN9wKZJCH1sLydc1GUCBSSz8EEvpFLn1YJoR+yridQXmVbeBtta46cQgQtjYT1wA296Ha51kVRj7Yzf136jSpe9MBYFDyzm6Od9YFFZQdPq9/mzLfDeXY0dXyzSnYwN0RHIe8gTVd4VyO+rraZKEL2/GhlR/CRHyp1wvAeW+e24LWHS0bda8J5F1/T5vKJdeHzs43Sxokc7ofN9MNR3pxbSCHpkllPTzYJoh+W5aUj9iLe2SsCqTCnrpPXNlb5khc8cqd9OOFaEUR4Xbuu7IKp8WmVcHGdBeQsDVRcqetuCo5P0hUBH5SjBqn07giDa6beopOvoWwP0N6SIQ1o2HWuplNBgF6KCaIfNJwoXH4lHg7OVcE+WhGfWyqsgSu4RIr58Akcnz8fH5wMhdNRfNBGhSQlHlhOvDotDo3X6QqUg2mEbOg5Ik/g2tm6FqlPqEyS2nnrtNO5YMZaHta11rtIKV9ITRDtmng3nTJhfGh0Pl0dP000bZb5ZZ8OwLbIB3bCaX7QTQW6NVeUR9VxH3wkLoqqst7mjDA/f+YimFVsl7d4Hr+LPTo0026GuIBY5a3s3bHz5oFhNp9h6m0vEyTjAb37mfNMFIY+qrcFqjfla7do+wxW7T7ejTrD1+FBi9FERM1Lv5zRt/i2C2O8H290xQaxfp6K7tj3+DjhVE+8i2Exmuji2mcy6H7TPbGmi+u7HRZoL3TEF98LYtImmECaIdlQ0q6H5BNGOCxtCVIMEEb7aviMPjA8sfJGqeL2Yd5DjUbloB4AmCbk0DRHCKhJk1aC+Yx6DINpVkx3xLSSIdhxOnI/h058BIPmk0SqH5KvML0T2smiOL5a/aPd6tLyRjcu4/EFj7FybsL9tJjM2ZGzClepySlOZhoD9TYQwQbSjYkAMl0aZN/7ATTQdeZoTwvJWRenW1RFsJjN9T6yfJoKjy9pzwv4k+yGuvYgQRvJptScAhD4mqSLWVFbq8sWGEdVZm8mMoBek3WD3Dek0jAhhrANU0tZXNwVSIUwLgmhHSud6qm/Gta18b3DkEenEo6KF7KsvZ3kXvJYv0Sf+q1homaJm+SIIfDmVE8K0FhMNPzmNNilVCBm3r9Z3OKu1vBt7/C1Z1cVmMkOMl33XsRbNtIRvNk7JM0HAK6kY0G8UbCZJ/QyQTJsDwFMPTobbabm8C4/KqqNsHavOnMGG3b/BY0dLrgx28WkzmeH5XRqi3k1S1V8Q7aguL0fYXt5CqN7iUhDtOPTUfBq2LKydLEQxqoJsWyjLJPep2PCzv0qnUbtnL6CbVa7+fvDbdK3Wd8byfG2IpKrXaLuX6lsnQpirr49q7Lg6LI6jw55csOXbTJLDYuCWGf9bYTGvydYnCe0OC5Lo8/RmRbAcGMb1h6PdV9C0Ab9Ohs1khv9DmfQd20xmoKYGTZenwj05nfpaqjqWS78xm8kMo8EF7d6UrMHqCWHiesmv1PWWBsoT8YMliHYcTpqvmQ8APYk5+2sobCYzXAPaUSe9hM8zr1ZQWlfi/elv5X+byQzz7CRNQSv3k3gqhNVlrCUoeVVW186eH8vF7YiU/VyWrItA6kcLsSvyRxrv0rAhzRu6fRxebSmpnpINMrIBSt4ZGd+Jeq5yfL7+oFR+jbUzV0eiqsx+TwnHEnS/s6Pd5TvdWvMdAJx+3Iolm/rqxrN14+INvMqZoVLmjeWjeG1HdM8cStOxcawQppyzBdGOgTEJXL2IEJb7STxc+x6neZRCWG2CFzv++e1uhIMvdEZq53VQgn0v5yZJ3yuxZHxxnAXfhZvQ4XX5Xuf3xSn/GtVEJ/4+OAWxuxB6AwsbBwCj2vK66tU9o6QPvtsFVF2UBQ2byYzCd+XFydFJt+5NbZEm0GYDczg67EA6q2APYvdLdzp830uB2+YMCKId7wdJ97GIsOBowmIHLbKbajOZ4ZZ2GKHbHkX/gWO59Ovat+IEAaLO5LJNUrVU3o1j+S2wLaV3vZQ8aQkWLLo9PY37LYh23PeQLPzd8+4ztDxHdMTnrTg32YLC1ZG4NEa6X1A0VOYzYl6SarduhlcWqi9f5uqytcc8Vf3O/BIm/TCo9abJQgAA3DZLO2zr2rdSpWuxJJXj+41lD9P2IajLAkQ54Wo9s/crIuvV11xQ5yzvgisj5btk5ISMpbfz1qLFZjIj7qVELq70ZbneyoVVZXEJCr6PhCDasaa95GBTHH0Dv5VK7RMybh+8jVfR6NbOtN7mgs1khvg8Xw7bBjXd+L4Qs2+kqs1+DP4DDX5SC3vKdmPbIufzOPi9lYLSHyNoOuJwWRDtnOl7pXCkVUbgj1O58h44LF14J4I5OSUmd0Kr7YdRlS2fjjb7JhXGFs01+0fQnxNwucdZzTiSv+reLmh+tAKCaEdyqbT4IQvr849ZqHowwZwC/i6fnjDM1mn3nAW4YesqCyLzpQX3yWesXHry2xgRRmm2vD9bVc6GlF9gSJGcU+d8KjtTV5bLouF6ie+r95zhaLHpK0tKVW1FTnwIWH5dzB3g2q4tspfdMjaxUNokCBmfgWa7mmNGfgZVswOke7SCaKebaaTNWOGOwGaS1JQL7l/ChWn1o2GNZfXMn642Ru6UtjQ961xYazwgKs3E7D4ALPLl7++o3lF8JEcnI3oNAMnhcMjjuzk+yd05AGjws+y+IGR5IjdmC6IdrT9LQfyL0zg+n8vN4u4/sXwBkisUYi5fyeu40X8AADqmjUVo0h56t1hJw/0PT7RfnITJxbIRFVYjIWBUpqrPNNruxfFDxncWLC8NfpaMsHz+3XzdvkrqkByWrNoQsJnMgItRd07oOXUKzdPqixQEvSA7U7eZzLg+OFYSSJdFU2NHbH5BtEMo3c89k5NQ4uaD5Gk7/BB2Rv6o4p+8y3MTLapw8pdVh2eh9Y5V9deoN1suwfG4q3D9MwP3TpiEgdYHVPTMt6pJjIbtnr0ADxw+hys+0hxeWSrSulm/fB7dP5qkonE3oqrG5Y79/2+HUzXxHwarmjjiyEVMa6qenAHJT9JIX96/ktYuFgE7SSgX/ezf4z90gt8IaQemaE0nHO2+QnOxrOSJqALdO2ES6p+6hpPdm2L/q9qORfV2FnM+j8Oke7ZiW2QD2RrW4iSqnsDmYR2f1oU2e4+FxdlfQ+lii0XBbAsCXtbW2f/pamOVs1dBtEuXpPcchCDaESBMROiEDM0dVkd8ArJeO+EvI3oN+jwyEVtWLNWkwdKq7Z5NwXedgcKGyH5UWqB5pTRVOdClvxVWNmubpK4NicOOLxbRd8aCdeKthMqJrW80hJIMJET24Sxh1bUfaUFLIGHVUQktQ1QENm1YxbUre89LeX9ST9BxxJ+Wyl1d62AzSTv/lQVFDr9vvbxaPLEWvAiN7plD0ah/Pk1P1NVIfP+AONRUVGD0UVFltU2JvFVRCBqrtmpJQO4xan1rWmOUMo6ob9e1LwBAjL0K6WajKryqVxfUE8tQla1W/1PyBQDVPaK4O5ks8mdbkDNuAeJfnIYmK9MQuc+AzC6S9kGnuUkwvc+Pa6zqcuHqSNWdFD2wNMz7gTXpMWhY4Abf9/St2gK1b67oqWfTfnjL4imh1+PxqWj0awY9EVc6KhdEO2xHBtExBQDct3lTq5yq8Ufxm1hhFUQ7IveM5hy6P5N7BP0byvchb+d7JHFKHgAgodcw2hf0aGUvi+bGekft6ugdCKIdowp601Oa2vq93jzP0lt+qSW1Hqz3fTn6DUjXEg4nSgLciWetaPNxClcmW66Sv7Kx8WiyKg0v5h2km7V6qLF0hiFVX0VX6x3pjWmU99etOJw0n4snjstZutvLgXtuHdYH/jANIU+loSIhBlu/XILMG+V4wT9e834+AFwfHItz7V3pZkLu3Hhq7Vfr3Sj7QODmxxAyTl8N8t+imrgxM+COqSYOiCy4a9vj74BTEPuHoTTWoTfY1DapKtOXvGJF1vT5uunY9K5tfVV3OwiWHt9JHVxq0VLyokzn6mNCZamo8lqvBCdcKMxOay3QIj9MQpuPte8S6LVRZe9obFmpLdzUFVoTEqFR3d2suktD9N6VNJRlNtvVHN8H/AmbyYyOGS44FF1N41YV78LYtt249Kd/Dkc/v6OwRwEu5g6oth9G2dh4pH2wEP2GP0rVn5QT7sOFvagTXfYivxay58ciNGmPJp3Ij5Jg+nQPwneDLpaUdVpYtBMBtyxmsu1GTMIXzLLQC/BKsG162b8+Gp68SXeByd1HYtBD+b6V/Sd3bjwC11fgj++W0XR1ee85n8Uh5MndVJDSWwBp8a387SitINrRd+xj2LzqK92+OfZoCXXYXJf+62gx1/vgVbzUIofG53wdjfx+kjPy8C8T0e4NtTqm0dMTVZcu/Y/HgdrCCYjJfkG0o+t/ErH3HfW9rNtpV+XfoNXTEPxMGprsbIE1gZLltYROvVF1Tl4MR81M4gwDEdzoH4O/vloCm8lM73mZ0jw07+sZW7aglt2UPJAw1zbe6PNHNjb3CkB12WXU3LyhalNlu+rVUQvXhsThamsXenLGgpiuL3zHAut9hzh1VwCYW5iCp/2tDtuSfS+nq65S4xSx+0fAuKoFPL9Nw4mf2nMCVF2gVffTSVa0mi+NoyWvWuE7i1e7P/24Fa2+4BfbevwqyyDl6LUluymhFX8m0YJLgaDq1mwaY4vmXN8CgIR7h9O7dYDakJFee/Qd8xh13cD2I0cC4W+lGRjkI1uKvO/I/cCbLTTvfAqiHb9fc8NTKybDb4Z6M5R9Zt1/1LZ5oawHG06MWRn/MiE5LJmGx76SqOluQ0lf7z1W1VQjwadLrXMcyydrjOfJ3KP4LDicix99VMR4z9Po3y4Wm4r21CoYszg71YKMNxc47JME/xZBbENmIBp5qDe3/m5cvVyFgZH5d217/B347z/z+xfBekDyZq91Z4t9rm3QE0RJjVAZpvfhb9j9Gx1MBNGOIYfP0LiJfrJuOiAZ7CAmam0mMx1QlBMDea4sFVF1bxcqhLFxevXTEsKUafWEMJav0UdFyWLXBxbkroyC658ZsJnMMHaQrZL1G/Yo8m+ZQmfbgIWSZ0Kf5W9Kdj43uZnSJLO1RAgjd3m0JhBBtFMhDAAORVfjuiAbEiFCWP5s+X5OqwePYk5riUa1/TAE0Y4mq9KkBd4ZWcXR/F4SGm33oqbWV/pvpXRZa2qAZKaZfS4YvFiX58zn5mN5wTbObxj33vtEY9qtew2CaEfw1vG03YiqilIIU7axINrhstOOJivTqEqsS8OGOPiMdPJKrCoq+0c9YS9OTZfVCPNGLsSF0Pq0/PO/aVulI7g4ThIEQp6UrE5uzE/DlU2B6Jg2VvP7cYmUJmzEdpLjmd+CaKd9jPS964PlOyQ2k5nuvLI8sWWtCvfl+h0gGRSYcaYDBNGOknURXH6t8YL8/bNTIy4+ZHwGpU3Vlm+lJ2rAekIYSUfeFzH5rbVIYnkgJp5JXQki6jWg6VosTUXUTPkej9biJf9bebxRLvRsJjOMrVtxz3kPSYZC1gRuoXyzC2V7RQUqmqmFSgCotymdhhtSDqBn5nWk/NERgCQosOmrzp6DzWRGwC9TdNug8sRJPNs8H8mZW6gQRuqREHEvlxaQTrdHHjmpCtcatwTRjobrd2PfG/+Pve+Oj6II+/8mF0jovS2hpAOhHISUO1CqHARUEKkKgtTE3huiYBc7ShVBkWJBFCVwKAICSUgIHB1SISRLJ3QIab8/hmd2Znfvgu/PV9E3z+eTT253Z555ZnZ2Zp4up++gMpRuoawSsP37doZ39ZRjtOl3L44l9bndtpFoaKmGjI+ZGXKd/hmouZRpCHZHLcOsI1t4216VKpvSqh+fF0/I5ojEhM06sgXFHS7x+xQCf+dLsm+Zfs47Bo6SxonevTh3eV+9vLgfz/HH7DxYhdl+OjV7BxrMTuJMmNif7LdtSNjzu0STQ7Fy3zoqW5yvenyfc841hUOxwvfIGYlWqrPqclW3TE+HOY8A0NwWrHXy8Ou3i3DtzihD2e4TJuD94HCeGoBwPpRhjEKoT/9h9g6nZafxZ23TvNn38PMEqVzq62x+lvRQAQBB68cidFGclG7DbD/WtyWOh0Ox8rQBZkyYfj5TugtiwnrvvSgxYccfY/N81lvMt3LtkRTck3kHGiTWltp3B469FzgTdmFNEGszNMj0HAD8e8LXV8BfBz7/NAEVUAEVUAEVUAEVUAEVUAEV8O+AEnihBP/7Ob7+jjb+aagwTfyHwV0esZsBkqCIpmgEltq1UHLuPJOuHorlEiexnl6rA2h5jsiPg6Btmjfeb6JFeyNbcH19fRsiGMwcbvhYie26k7pnv21D4PNJBtr17Vfa2AT7dzfn2gxPZT3dEyFrqRWZ3Rch9o5hSPj1GwBA/y53Y/XWn+BQrJh5ZCseacHMcsjeXA/v5GzDcwFaRLTyaHNnbuJUXQj6fSyyei401xC8Y0Pgc3II+Ckn23H/GKeqmSdSXTPfEPIHEYF8I9zRS7/NcoC56/fNvA+imbR5ZnXF39cdnbFh4ecGvKKppVk7VwdGScE0fJo05ikLglL9MKtpMro+OgnVvmdSVr1/ngiUu4hMb8jUy2w8Ym8fhJLMHI0ewVfPHZjND0tIILyKS/i8JMh6LwZBT7M5aeaLlD4/Est6zcFLEybCZ732flumVMHhqKsGUxqviHCUpcl5tvQSc/Fb8fRtEYipMcq6WKW8dscft6PxR3LqC2pr+cU6+GrQHTyRtUjLhZExqLk0GXkv2nEl6DpCx7nXtJM5sCctEMH5+2N4cmIAOPqSHfsfMpoy6ttxqi60nhMv5bR6KCMdn4WEGsYYYBrP+2qckWig59nv2JAxajb6DH4A61bIqRi8a9RA6UXN1JBMlqlMUe8IrmE26yOlcXDXn3YfxEN5L9E0B5IIZGZK9V45FY4Nr3TBpx99gmdaGv19qVzkjqFSLijykXRXXk8/3ddrEwNG7DK8j8/ONUNCbEcc/agadkctc7u2xIb3QElBgWn7/foOR+nugxI9HV+P51o8r0qVJY2nQ2E5OU/dc4XnsjSbd5FT4tzmoDSbL3rwigjH2p+XuH0u5vrS4yWg+Sk+B+T5KIK7tvT9M6Pdq3NblG3fK5UvD5dIR8SrcUh7VdYA69/nXfvPYFWbeigPKD8i+TqXd0agNm6PnyjtIe7mpwjkWgCwqIn3+kf+K0wTV+0O+ttME+9qn3XLjsdfARWmibco8AVOFzEq+11tYyOVODFhFMHwfEKwFDVRtL0GAEdTZqZAIZbFRYIcr8mZntp6vwk7WI89xDbE5BnMxIfCsjtVFzI/0DZXESf9zvhUDs1MgS6cqou3u+C8eYCHwOeTeD2HYuVmdCL+9AWd8UvoGmTfO9dAg2hGQGZijr0XDIu5makAMSkl+w7x9ussOY/YO4ahqHcEfr2smTFUy5c/qTJ7BwDAcwHROP5ja2lhdihWbkJHphv6PoWk+hrGIvj+nQbTG6KdmLDSrtrzVKtFapd8xByKFd5tWyHsmZNSfwFgddLPUpvv5GwzMGH9owdIZaj+b0u/MNBMzx2KFV0em4SzD9pwKs7GGMEZNgOO8wnBUp1T9nMeGWqHwhLnApCYMBoXp+oyZcKoHQCo8iOLNLbk6FY4VRdKmtbnz/a+wb7Dat9rDL4+SIr4v/l05mNBB6nHW9qxMi/FUM6hWFGSmcN/O1WXxISZCTSo7LzzWtAM72rVkLDpBxTnHDFs+sSEOVUXWg7bjdLbOkq4Qyek4pXACM6E0XgdjrrK2wKAezLvAACs/XmJRJ/+QO9QrNK3kvGV7BuaPifKUI9yJAHAlMWLJNyNP2L5DEVa6PfCsBamTFjB6hDUXMqS3fq/mYjJUZsM4yeC6JNJz/u2MJpvAUDyu3Mk+ogJc/euCPq2iMKBybNw/DHme5X7qh0vzxojzWWRrnfmDnN7gKPvnIIdiG3ro6+KTFjm1x25ryW9H4diRd4LWkTJgB/ksdC/X+U9NrfXrFlmoEuMYEdmpqVdWRvTGuxDjTQV7StrKQ2cqmauSPirzqktPScmzGxtbp8yQhp7p+riIfIB8GjBASN2cfwA830GgFVt6uHIcH80GXjA7Vh/dq4ZSgoKpNQK+c/Z0SipJhyKFaW7D8ISGiS9x4azEnF6Imu7rOg6nytE69aP5pgyYQEJ4/k7qftFEq9nCdPWQ7Ef9H15V6smPXeqLoOwRA/b3p5d7pz9LCQUR75lQTfyfwiHQ7Eitl1PiY7Y7oN5eS8f2cjKqbqQO9XO6R2Y4ZBoz/xI28eJCSsYYzNlrJ2qC1lLOpp+Kw7FypkwcV5TXYJVbeqZ9lm/Hv3WtgYA4NvWjVHcM8IUlxkT6h2v5a0reMAm0eEOiAkDgHsOjvBY9laCiqiJfx3893v4L4GV6XsMG95DGek8OSU9C3xWk2BR2GV6TpHKasUyf6Qrg6LReusoY2NlLJIXhVgGgNL1LG/KoP2neFvRz8dxWuj/wrAWAIAO77LcNL5rtMNo8JPswEd5fMRFyKFYEfKw7JMkhselhVCMtGe26NH/Wl8nGxbC0HHb0WFGvHSP8J+yn+PMSUb3RQCAeT840HlqnFTWoVh5aPNxuSxIybGn7IbF9JT9HEr2HcLvXy3Aqjb1+Eb6xoRFbOOsXYvRJ+ibG5ts9o1mMqmpeBB0qloems1fR/D7OW+ycT32lNG/xqFYceD6FZx8iB2o9M7Y1O7VgVG8nlN1Qe1dF8X5Rm2p/rfVV2MIGyTWZvh8NGlYbK8hhsOo2SEdAM6PuITU12djx8ts4yT/ClG4UCuW+VHEtu9l2g+HYoW3tY1E58ztK9F8G/N/Ip84wjezoIUpLdQOwJjmfmG3ob6F4Sjbvhft32c+SlV+TJHaLg+cqgvhM+OlMWj74yOG9ikdgX6s6J6ntibW0t5b6eXLhrp6IFy/frNQuhbLU54wepd037qThWIXD416uLQ2kOcfE+uGjN4hXYdOTjEcUO44cCf/fbsfq995ahxva3/cLPTee5HTVmUT811rneYj0U84a79eVaJ1/WSmsSYmlCDvBZleSShVdJ0LbswOYl0fmWQqPCEQ12cAyHyLMaS7npuFLo9NQvNXE3musoxPouEVIfv57X5ai0LbMqWKgb4uN3IrmR32UgqLpDGh38H37zT0AwBa/HCS4/h9kSzIEOufmaDNj5Cv4zDzyFYJ3/bXZhvexa/fLuLXxUfzDGNJjAoAeHdoDb9ftLDz7saXfjcZeIDTuCqf+fApg/Zzmlu+ZK5R8vfRGH/Ky0kgjrNTdfHD+8Y8TWjT9J1E7DvdGJYbEvqS9Cw4FKZx2XjVG07Vhfrz5LD85fXFoVgROl7T2orPKLiH2XoQMnoH//67j9d8sPTvTr82E01m66J4j3zkmt7DGLuSM2fhUKyotLEJACBh4wqOiwSqXpHtOD7SAPu0aIar3U5IuJMGv28I80/5JC3hYTg7lvnr2nYxZs8sGqsZ/Wb9BICp2XIORxISeWKYfH7XBJCOAwNwalWYwY+faKgymGmwLw2JNgQboTXGHfPrVF2ofIe55rcC/ttQwYjdIjAotJ30YUe6SnBXtStYcpRtdA7FCkudOkifFcWvS/ZpOVP0ByeA5bI50GWx6cFJbCtrqRXevY7CoVhhr8o2lPT5kdxsQdyY2u9g9rpkKqTH51RdqL1YW4BE6aSh7dIS6Z6nQ6c7KZgeGn/IgpQUxmqaOgLvLS6eswgAvIq9sH26ZspAZQdGsUNhXgwLWb/7KfdJRsVxtz09mZtxlJw7j6gX4jyG522UpKnZnaqLHwodipUHymj8cSJ8AlrgwogYpI9hDr9N3tfGXhz3EyXVsfMlOW8MSVOpb3/Mmoej37fl4y2+x7TC69I4c8YpIZgfMgBgXvN1AIDVW3/idUsOZEj1zj6oHdj0QBu6/pnZIYAiz1GgEnG8Sl37kf2uDcnX2DwKqlQdudHsQLKidUOU3taRj8GH23tJ74oOlOJhxStxF9YckiPgiWNtBt12y1oj8b//W4mYlKfRHfLwNkOfKe9RSmGRNOb6QxMlptYfqkz/R7WT6rr79un+yXgmaPDy8UGdL5NM58CuGF/TA098fgwvt7X9D2j4aSK8Orc1fbdmh8KTP7UCAHj3OiqVBSB9mw7Fit/a1uD1rnY7AQA8WIy+Pa+kXdK9dd8tYu1s3in1Qwz5rj9YkeYuo/siibmgcltmzpVwiQnYnaoLT636nq2lX3QGAGSOnMPr14jLk3CGPLqNazD0jAwAHI66iv6dHBJ+SrFgBi8HRErj7e5bI0jY8L2BcfNu28pQ7tGnvuO/A59Nwv7rjCEO+mayYXz0bYtj5VWpMi8rHsT1po7Hn7Dj3CgbLg7XmTJ6eXFtNuG/q6m85gd+x3KEXRzG6oramtAv49zuNw7FipIe2gGd5sfuqGUcv1N1IS3iW5RcYAEeVuQxIeSqNvXwVlB7t9+x+NtM8EJWJekLOkv0ACwSJ0FRH/ac1jEC34RUnk/SoVjh3aG11Aen6kLWezGGuUG/b9t9TWoTYNGGCciCY2r2DtOE6ARrf1ps6J96ZzND+du+ehp7fg0zZRYTfv0GdRey9ahmvyyJTsrNVWljE9Pzjdm8d6oudPHzlp5n9/5Cem7GJEn3euWhwV2HUPcVX+k5tUPa6OrfbTPgcihW5o5RTnv/FiiF19/291+HCkbsFoGCUYzBOvoy02g8U59JjetbqvGPtaSgAKHxKfBpwbRXZPYmgrtNEAAuD46GU3WhYIwN/fadw8mHWVuif9AzLVnC0tAJqRIe+k15cfTP6JraIzMOZdB+KREuwDRmVPfCCLYpROws5QtT4bqWAIArpdeR+50c0cu7alW3m5sEZdp4iGVK1tXn9Q5MZkxL6zQfaaNanZogLZKeGESxz0nvzUH7HV78+not4wIijt0J2wWpDTHJqXjoWr31J9Rclmxghvlh9iF2kKYDgIizx767kbCBHQjPjWKmEs3u3WsqnXsxIApPZcrmLKVdrVzDSrb1g/yNJlvEeNG16NtQY3N9Q3n9e9ELEsRxBTTTVP0YBj6bhFcC2UGBEvc6VaaR9N68kx/2Qh7YIR24t0/TzFjE/6OP3G6Y3/Qs522jCeWm9lVgCQvG5cGa2a0Ih6OuGuaPfs76+DfFywHaIdKMMSg+yg7uhWVFEk3iWPE6KXtMBRcEhf0ikfOWjY85+bJ8lrXRUJZoLSssND1kp32iMR+Ej0yMgjeOMfSXhCSEp+HdWt4ps7ER79OhSyynn8f0P+Mz2QxapN3skAxAMu9yKFYELS+W6jhVF9fK6fE6VZdBWk95lEIfZFoOUUNa1jPftN/6eS/SWHz8hDQ/9FBm7yCVT/+8MxwKix6rhzPj2VzWR9sEWDoTh2LlSb4BYMbZIADA24uHSrRSQnFKkKtfN4t6R/AIhGJ/xFD9FMFSD07VhcYfJqL24iTUWM4sILw6t73R2TIkW783PcwSrmfvYPn/Ej+cg7wX7CgrLkZxrwjkTrUj4IUkg8ksAG42KkYxNVurxP9O1cXzIqbPizTg1OPRf9sAE1gOSO+HrOHM7DWn3+f8GWn+E3avh08TZjFSad12PJSRztcxEcTQ/sTYijRnjpwDp8p8qggWXWgIANjc3g/f5iVJ40oaIafq4hYcFAWZNKI+zfxN101yZQBYknjCe2EkG6+WLyVB2czWlmnZaW73Wv1a7Lqx7Hh7laGsCxvPO4aNNawF+rnRem68YTzoTKF/L+QWIL5ncnGgNU58rr+m/4MPnMSxJ2+cgXRrs1jXjKGsgP8bUBGs4x8GMVhH2R0x+P2rBdKH71CsuDg8BjWWs42OEoqmz45CaFyKhEvcoCkH0plxNgx8bAM2t/czlDs3yiZprzyB2eYvMi8i0D3KF+UWvC3wbhPCk4Ba2oRK/h4ikOO92KaYvFKkybZrMGr2yzLQfGFkDJLem2OQELpb/DMXd0TwKO1wdfwxOxp/rDFLt+2+hs3t/TiO44/bsetZzZwoIX8HD6NLY9TffhfuTEiTEnefHWtD6htaviTKPXZmnA31FrD3Q8lhPcGRaXYcnGAeNMAdpM+JQuhkLVcY0e5uXM5MsKHefG3OUJAVqh/1Yhw3LXHHyIpJQunZhRExqLlMDnLiVF1Ycakm5oUGcly97h8nmYpQudhu96AkI9t0TjoUK8+V5+l9i/jclSnuGSEdTMzKZXwWjexBc2/qPYg43P0Wr93dN8MLGMfe7EDpqZ4n/Df7HXlaOzyVNetrp+lxUl4sWhfM8PS334Xiw7mmuMWkvPp+9L7vQUM6gawZNpTULeIBP+bnbsGEG6k9LKFBpkmAKfiAfk7qfwNM80Nmiu7endgPEY+neVYerj8D5c1Bs4AY7nBYWodwLboIMw4ncx8yPQ4KUHIz/TajmXCajR/lgLyZb/BmIPe7dgh44RIPwkPgqf7FYTFI/HBOuW1QQnY9Pefvj0HtfRexdrXmw6kfK0/rgjuGU1+G9id9++nzIhE60Tx4kQiUo0vE6QmojBhERqS3+4QJ2Dh/vkR//6j+KM6ThR2W8DAk/PoNQjc9wH0G9W2IcP3XFtgQ/pPUXlkXK9euU/kr90Rj86dsvT89yYb6c5Nw7Em7ZFostiPe018f/b4tmgze+a8I1rFiV+jfFqxjcIf0W3Y8/gqo0IjdQiAyYQQZn0ajxvJkrMhjTAiZ1ohMGEl++gUyKdP1vpEIeZT5Y9VbkIQtEfLkpTaICUufb5TiXRoaA6+OTFpKph1iW+LC5VCs6PrIJAl30DeT3TJhPoEtGY68NJTuPcjxERPmVF24MEI2RaHDljg+S1r5c18RAJiYzkx1avbTDkWidIxwlLfZPJvF/PWICaOcXruek00Uibltn8IcbBt/lIh55xWOM7ZpJ1hCg6R2Hly3ESvbNJDau9ZA1pz16s8O+mWC3/OMxjulOgQFYzTtYhfHbkN/0udFokFibYOUkK5DJ6cYxqPO1rpSO+LzevPlfDkiE+ZQrJwJ67bbqAkiEHPAES01lyUjfXaUVM6hWDEvNJD/dihWrP96gaGuQ7FyJkyE2Fa3cxooVx5tqlSWfG/KmxMEPr9r0ebMyjlVF0IeMpogDthXIJU7GS8ny9XjMzsU6Q8LZGKkB7Fc6fpm0jMax9seniT1m7QWDsWKvgHRhm8cAA/uY9ZOx9fj+T19GbP/N3OgNTus6JMTmzFhVLb4cK7Ux/42zQ9Nz4Td9tAk/kzPhAFA5n2zERZwDAP2FcCpujgT5lRdEhOW+107RLpK4NNU4VJzsa807gBwx7Cx/H7jDxNR2D+S00R0XVgTJI2pfzJLkB65YyjHrZ+/FBSGcJGfY2FspPT9J+TLvnsiDj1OAAhPuk96DkAyQ03v9iWnidY9PY47RrA+h36dI+Eal84YlmdaaqauALh1BMAClJh9B9QWIPv8ES30X/ymtl6TfXJFn1oqc7LkskR/X13UW6fq4nkB9ePVfMgeKQiPfi4DMATgqPFNsuG70K/XANDsXjavxDkLsCAya1cvkfos/jcbB31bDsWK3vc9yOtcHB5jWAtKK5VxXCJtOQPmczykXbYEBxja6l/1Gppvq2agTV/u7C+h0r3WH5zh5ZdcrMfr+65ORYcZ8dK3o2fCAGbqWFByhQsLCC6tDYRDsUoacafK/LUeVSOlvnptdRneZ9UftPW+8U9sH6I9zmwdN3sfhKvZvXsxase/w0+sFN4o+Rv+Sv8PsCn//R7+S2Bl+h7DYu1QWIALp8pMHxyKFZbgAKmeuECuyWaHkryePtLz4XsOmzfqxRgAMzPErR/NwenOjIFL/HAOZzb0CwlBtRXy4TP4CcY4UtAEvrnF2/Hj5hUAwKOSmeEk7Yh+I/Jp2ZzXgZcXfgxx8nLzQgMNB1uzTYn+LHXqAACPtkfP3w1qh45vamZEVRw5uDAyRtqIxT7V+bwGv7eidUNuFlXSvRNK0rOQRVEabzAW+oVZeVeWhGdEFrKDU20vwyYomnUBzLGZ+iymG6BxCp2Yiq9bbuRl+vUzRmVyKFZcHhyNiDR2uCvoctYwZvry+sOQvkxBcVV4W9tIc9rscNdmdjwvExqXwn2hqI6ldQjr24t2jD50VMKnxy3C7uvXUHLhAjeBcUcrmQ7qDwRmTJC+vr7c7fETTQ/GAPBLOJtrJx5lZqQ7p8wyHUeRBoAFLxD7K+KlaIgE139tAXjLEkrR94rq9txzmR8eqG3vESe5D6BohpglJDu/XoNtF6cn2dBzzHhpHCpf0kyWfQJaSPOWhBPu3hklTBXHVoTgJXHwbt8KmV/L0R7p/5wbCYNFKFgdwvFdKmV+L2I6BpEWh2LF5s/m4si37TDhaBcDLipT1jMfv4TXwR0H7jR9xwDwSvtfkGq1IPbXPcj4hDG0p1YxH5ju4yeg6g/beJAPvb+a72rjOkxCJbpH3/h9AZogTj93b3/1MenAvfspNtd8E1Kl9S+2aSd8daG+4TsX10/e7gt2+A9mZstByyfz9kQTLQ7eFiRsXGHK4J1qzyIpHogoltq5zS/f0A8A8O1zWKpPvmVimZL0LL6Gk8+fHgr7awdqh2LlpnUOxYrhOT05PodiRYBzHABgVLMuEk1lhYX8N+Eh4aH4LZFPFflH6/cjuia/PLpHfmFO1cVN/QLXjZO/0xvrAQB4lTKGKC7DGMiDcJ7+ORSWOnVM1zQRWn2uBcaxbNihMYfLkw3j3fIlObiSHqdDsaL08mUUjLGhuAE7Q7RMqcLLdXwjnvvyEpitb6mdvkXUziEcb0l6Fn/+VVgziabGHyYittcQlHa14toAWaAnwvBmWrRLqk++lhTwRBzvQ52LJPr0oJ+zxcdPwNG0o+GZvq9m0C+ErT33VL/glv4K+G9CBSN2i8Cg0HbStU9gS9NyJZk5hsWP7Px/vMwiQXWwMZOPw98wn6ExNU8a8AAAdFap+kNkvflJ6LfvHByKFU0GMltzcVMRrwFN6p/5QQwGH2BRuL5+Xg5xvnPKLAxoysLBin4CIkw42gXX7pSZNL7J3ZByE/1mzIJ+ATz6fVsDrQCQsG8DAKDk1Cl4+foi/wc2jumzo7DzRdmsoObSZGkjvnYni2pY3CsCvmcLOX6nyjQiAGDZyDY00QdPlNoBkBhrfR+avpNoYBI2fs6kjlU2NeLtEbMh9pFMsvQbyJo1y0wZ32ortiEt4lv4tJAdqglf/nPmkmYRxPGd0XgnSl37PTIwwUvi0Oy1RBT1juD3i4/mSeVLDmSg+96B8H8zUdp8233ENDAnS+QN3aFYEbOrCM+0jIFP40aSxoTaz3vBLtEianwBICBhvKFPx4ovSX3R/879rh2q/JiCI9OZ71Xg95P4s+bbqvGADY0+SYT6jB0d3pF9FfRA72jNmmWmhxQAnDGhdjaE/wRnXhoezo823ewDfp6A1mk++L29FjEu5y2mCavZLws/t29kqENz16FYefCe+nOT8PuizyWfudpfJXGai3OO4I4Dd/K+rWjdkOOgQyNdO1UXGn9sfnimfgU9k4SCt4t5xD+RqXOqLky+kX9MhDr92RoYsbOU++8QPnfj2WLoHsMBkeqIQMwt9Zfmj1N1YWFYCzybtQer2tRDvcACOBQrGtzFQvlv/Hw+nKoL1VYw4VrGZ9GwPT1Z3xwApg0Q1zaHYuX+m07VhTXhtXlZS5tQFJRc4WWvNtQ07GbfulNlIcUbJdXE6JqnAYBro/XMMv3e98gs5CxjPmjBT7LDeWk3LRjOdUdnrZ3SEsO6/G0emzvkY+Tt54fWW0fh7IM2nBlnQxMhiiHV44KDMeN5O+KeIdJZcuqUYQzF97Zx/nzDe0yfyzSEBV3OIvttG+xPsndBaTryfwjHqnyjqZ2eqRF/Wxo15KbLyiAWlrznaMbYUbANd3tWTr/P+Ziv3vYLAKDlUs0f+OjLdpTuOsDbq/ITY8Znh2jBmMQxCXCOYwFFbuQ/M11DPmAarxZTZR9c/ZzRM5EOxcojFOv3ChqfOouS4JW0C0HfTOb5CAFg50vG4Ff6b5rupXT8DledAaaMH/mG0bOXVn8D7y0uHnVTfE9ikK4TNo3RoXVYLJvzFrMyOfGoJiAKWj6ZP79yDxO0nr8vxnx/y2frVMEYY8AqnyaNDcwb4SBGUH8WvFWhInz9Xwf//R7+y4A+ytVbfvR46D0zQTNJ8x+8D/36DOeO0xdvY5srJW6VFi/RoftGjjL9YuJQrPygK2749FxccMWF8JfwOnyjXtG6IZyqi28WZocB+k+/PzjMJG250Zfh93OK9EysYyY5nXNki8F06p0cduAhUw6iVYxOyMelsBB7Y5htvd73Tg8Xh8dg01wW1dBnfZqUTNuhWLmTL984TMaZIOGPlRJt4rjo+yiWu9rthMQkis/1IOKlQw0BOWYTFB85ysuL95u+kwhLzZqGzVxfzowOGoec5e2lZxS2nvIauQOSilM79icno8EOxvyS1Fo8cG6Lqo7S9c2weofTFJ8YFMWhWFHjG9lkNXT8dulgAABjmnc1HFDpb+0VXzQfwkI8HxzPnOfFXHa50ZdRrfZV3ublFiXczFV9VtvsL98bbRhPh2JF93ET+G9xXIPv3yl9E/SXEVmICUfZuFy9OwpPZDIhSqvPLjJNRL4WwjzgBfYO2u/w4mamAPDRYffRIqn/6aNnc4EJ3Sd69Jo4+qM1iiD29kGcfn1ZANzkOdn6Pa/jE8BSaFDESk9MXFpH4xbnSVItCjUALUqc+F16V6uGTtO1QAd1kvOlVByTVk6AU3Wh7gA5v1nYgjhEpGnBLoKXXON+ryJtDsWKugPSuWadxuP94HBeRqxTsj8dw5tp82jfw9pBV4wOKrZxYPIsnLBd4LhozSMhhNkYBYyQI1FWOnaB01vZud1Q3qFYMTE9G6FfxmGoP6Nj6IHjAIDSa9fQfMgepL4+G/UWMCb+yDQ77juYhwtrmKlh2ObRrJ112zk+EmiYHYD1Y9jffhcAxnDpvx2n6kLOnfP5dcbo2TwgCOHeG7OER2LU4xfxxHbsw68Tdq4zlKf1reT0GVPaMz+MkdYUut/l8clS35u9ppm7ieDTzB+9Ro0z0Bg6Nk3C51RdCFg1UaI99EWZuTFj3DO+lIOaOFUWdbbKyVJ+7el9UCAXEbKWGplCh2LFyjw2D8UUONVHnjedj8XV5JxlFBFRxNf55Tg4VRcaPc1oPf6jplF0qi7sem6WYeyVzSxIz9UumoXJJ3ct4s+r/sAErWJ+PsIn9j/lTS2QCo1h8bHjklbT7FxU+nNTQ18r4L8NPuUXqYAKqIAKqIAKqIAKqIAKqIAKYD5if4f/Vin++/EEKzRitxBcHK45KjsUK2J73AtAlsbS/3qfJ0taFIo8SEA5bfTSKlF7Q8miSSqT+aFmYkN+SwCz7/YJbInbdl/j0qOMj2MMkjT6b2nUULpHIGoYxGdhXzDp8pMtbYayrT6Pk669OobDqbpQ1kXGHVCpOqqu3IbDb2gS4PvmPwGHYkVQqh8fg8gdQyWNiAjlSQYJr2g37922laH+p023yZWSdxukf5fWBqLGZs0/g/oXG97D0J5DsXLJtj6fTvRzcbxMUe8Iw1wJWj8W9icm8/6IyVoBYKi/FsZc/26oztW7b2g9mjWRtKAA4DgwwCB1FdsX8QUM3+22LTNwqi6kf97ZcL/G8mRcaVSJ+/jp2ysrLIR3r6Pc1wNg5ojit5DxVSdTiayIz6FYuRmKvpzYzw+DNT8uAMhZLqcRyHvBjgY1NOmqmE9MeZeZ5VkaNIBXqUbDoP2aqZWYNB0wzzGkBzKxq/JTCjr7Mp+/0t0sME5JWSlK1zeDQ7Ei7wU7+ndyYHenMslE8/GWmoaFfJwoNDd94w7Fik1z5yF8pmaiJM5nd+Mmvv+EP1Ya5ky/QG1tGfFagtRPS4MGKM5hzuyb2lfBiye0nE2UsB1gWjP9+xTbNaMNgEFD1WimZh5M9UsvX0aDOZomufjIUSknYtDTydL794pkOSJbvpyE+nem87ZoLaZk1scfl9N8kInzcydY+2IaCACS2ZxTdeHYj63hVF3oFzuS39enafjgcBK/pkAuIq05sZ/D0iYULVOqSO9S9J2jsSQ/MNGPUHwOAPNCAxHwgmb2VslL07qS6TzBwQmzsKSVP/eLO3TbV9BD1VpXJdpIc6Kfb07Vxc2zQycZzQvFfZauc1+183uWOnX4s/P3s++CzLbFMXMoVpScMDf9r/ZHA+ma3A3030i90DN47oQ2Dgn5O6CubIPqkzQzbXeWBwBLbeGz3tyqQHwnDsXKI+SmL2TuAeRXblaHIOQBFrzmyDRtfOrNT0KtJVoALf233+feBySa9Wt+ZvdF0rwjIP/G2ou176vkjOyzTCBqC3uP1AKMePtpEaLrLUhCv34jeELsxoKLBdFMqRkIyPy/5TBt36Yoj2ZjRL/XXvHlvoj6stl3fMHXJ9G81GwP8r7TGGikAv7bUMGI3SKwMn0Pahxmdv58ATqkOeGKB2CHYgXKykwXZn4Av2+n5GelrmxT7mGETAj0C+ThqKsozj6MKfUPwqFYsSh3C7KHzOEbjR5fyYmTphvjlJNyolkA6DAjHi2naBu1/qBOpl58421TAw5FDiGbPieK1zs0Vivv/2YirDuBrMhrvE0yF7LUlJMpl/dbD+ozdgMDLJYnHzJxzMXNqnrfbFy87bT03NImVLLnF/9TyPgay5Ox/qqFtyemH/j9qwWwPTVZGr/gUTuR+CHLTSPmVgJYGGF3/RTnwJnRN/xmTpw2MF1nlzQzPSSYMWf6Z2b39Qxc6PjtBtORnLdtSJ4xh4+Vfk4TDoqMlzvVzplvh2JFYb9IhIzegTsO3Mnz8pjRUmNzfW6G4m4u9I/oK9HgUKwIGC4LOPzfSkTlO45wHMTcUcQ1h2JFyalTvK2eY8ZLkTXFfvXbd46HUDcDPZ0+zfxxXzPtEO1QrLB4eXPTQf+3ElF8nCVHTvxwDnLetnFfT8JFPk5iaGo6fDoUq2mABL1QQ/wtMfK6tcOhWFF67Rq/ptx1fE284Qu07grLU0imhyU9OuHXbxdpzNENZk1sh9oNSfUtlynTHyL1AggABjOvGYe1Qy35rwDAZ98bk8aLuH5t/TMA8NQX+u+JciaRyTk9u6sp83Fqvq0aHIqWcLjUtd+0L07VhfDKVTgOalf/zZXsT8fhKM3s06FYOWOvHzdH046SHyH913+PZBImphsh03l30K/PcE5b/64DATAzfKINALa9M9vju6T6esGd/jkAHJg4i+foPDpeMx+r9TV7r2KwF+DGtxQaZLhH8EPwrzxQBgAUZx82bbdO/wz+jgEWbVcZtB/opTFiIm4KqgNoPsbiPf37PDPOhpTCIqlcjkOLPktBu8Q6fA7eSA7vVF1o8Uqi9E3Qf6fqwqk4G4p/a87vr/v+SwOjK9Knv+9UXTj+uB2FdWT/RqeqRWDU9w0Amm+rBt9NjfHbUi0xM60fVHbNGvZdiHnjxD7+1pYF21qQy4L+6AXgZm3r5zgAfBjcGr6rU3k5MhflDKIQmVM/Dv9GKCnz+tv+/utQwYjdIjAotJ2kobrZg614wMhaKi8Ofj+n8GfN48/CoViRUlhk2DzEjd+yQQEAfFTQUnomLrx3fPYsAODy7acM9enaDFKtWkS3wN8ehFN1SblzxEMKBc7Q05k8Y47hfs5d8+BUXQj87UHDwrZ7bBv+26FYAS8WibDkghyZiNrvH9VfLi88p0hs6QsjoMyQIx3qNxfyIdPjAbSkn/pDGUXgKunRyXQ8+QJfpUTCK/4XEz+LdQDwsOqnJjP/QpLy0RwibaKeboqWVnL6jISvX9htqPtFktSeKI1313/Rad3TAV5/WKdrv1bnTOucmmx0jnYoVjSfnghLSCC/77uGbZbevY7iwJQWpjQC7OA7LTuNPz/5k6z9TJ8ThdVpa/n12bHGxLVmdBLDVbI/nW/+Yr3fFzGn/aMv2Q31H69zWCrr7lvjh78budP089TdISPg+SR8/7wD6fPk6JzX7ozieEp6sAONd40avO6Ms0GGeSpqIfXvUE/D1YFRpu+gpLtRczlgXwH3lyKwbNgB267Bbuc+gUNhPnRiueOP2w006hlGsT6VIe0C3X+mpaZR9NqqjXlQJS0Qxdorvoh0ad+vOxo9HdBCvo6Tvvnc6MuGb0WPT/T9Evun75cIZgdFw8FaCPjkbi4CgP8jF90+M6PBqTIhl0Nhmqri7MPI+DgG2RQg5sY6Tv3IedPGU0IAQMDqCfz58qOJWPfdIiaYvOGv692+ldQmlS0+wiKz7nlilkRLca8IU5oTNrIIwL/ka7kFRSgpKHD7TvT9FaP3iuBdowYve/rnUKxqU0/7FjNzoD5tx6o29XjgHf6O9rI97lyvqzxhPAk2dl/XhB36oF3iuFoyNGawqE9nw/uncg1mJ2F9m1X8WhxXPdMmQnGvCExMz4ZDsaLxR4korgK0TvOR1o3Sy5cxNXsHb0+MJDu/2VasCmFr8Kk4bf29a78W6n7jVW84VReye2vMmv4bcKoujGveFU7VhbKjLAF6yMYx0jvqND3OsC+33+Hl9jv2WZ8m0e3pTCfirID/e1DBiN1icPRlOZCE/nBD4FRdcNwzml87FCuCRmoL3ZlxmsmGQ7Gi+Bhzko7yrcTz3lDZ1ltHcTwJYcwUiIJ0hH4Zx/ETTRTNTwSR3pKyUuiBnvu0bA5LWDBCRsu5eijKGtHU9J59Uj2Aac8cihWlt3WU6hJtepwAsCZhKS/j499UirToVF2whIdJm8fqlNW87kMZ6dIBp07/DLbp35AmEh4yKdUzk/RffUY+UJNmoW9ANByKFbftvib107JhhzQWFGBDv3BTVCaCku6yU7U4PiLsmDrbdPFv+ZJ5cm96nvGJHDyg9OJFfiin+zTensDMaZ1ywOnp9ooIl66dqgtNBh6Qxid9LjtkkLkYRckUYeZvRjMngDGn+oPC2V9C+fNXAiP4/eLNdaW+UnJRgEXDqrvQqNkFgHHpcs4k8fe45l1R8IDNNALX/odmcWaGynd4l5kB+jRV+JwVc5Q5FCuOPWWX2nAoVp5jkOjNLb4k0eNQrAhexrSpfj+nIHRiKtLnRyL3OyYRJ8GCQ7HityXsQFN68aJ2r62WwoH6LmohxWf63w7Fij9mzdPGdVkHXqbyjkx0eId991fuiYZ31ap4pI6WZ0ccG0riLuIX23spm0ndxdyDCfk70PgjRuepVWE48m07A41tPzHmSPPEKJn1z6m68Et+Gj4Mbs0EUjc0DVQmY1GEYc0X+9g2TduqM+6fze9T2bYfx0s0Zc3Q1gbv9q0QOn47coouSW2KB1exLcKZVXRJemYJ0VJvXF6rCTYoSJK7MXEoVikaKrVDjDwA5L6izVmv35tKuJq/yt5P9pA5CHz+xjcmrOMAEPBiEhrO0kzOQyek8nGnQCZ+P6dwYSeZ6boDqpvxCVuj1y9eYCoccygsyMiAphEo7dZR2gcCfpoo4aT77gQoJadOGZ7ROkuQFvGtoe6eJ2fB0jqEm4C+mXMjamDbmnCqLmR2X2SggZJm68GMkaQ1JPeOSlIZwiWaXJoxG/rviTTJTtUFn/VpGHwjXLtTdaH59EQciCjm9c6MY0JDSjfwbV4SSncdkHA7FCtL9D5bW3+J4Sx4wIa3gtqbCjeKe0XgVJxNWg8cihVrMtk88vKSGVT9vulQrNjdScupRn0QfxPdTtXFTbgJzObTvwn+jhxi9PdfB6+ysrL/vifcLQyUpbw77oaPVyVE7Czl5jbq03bUzirB5s9YBLZH1Ugc6lzEPvamHbl5on4BFK/pd/8ud3NzHQI905CzrAPPOK9/Ru1YwsNQsu+QoQw9H3FQxZiaJ00P+g6FmXKQFNGhWOHTzJ9v0vpFzOy3nn6xbXEMcosvSUlXxb4AzN5/ddLPBjr7R/XnySDN6nmiQRyLRRcaYsa+O7g2SYSct2xIf2C2RPvNQHn0iLgsjRoafBemZafhlUAm2T21Kgw7On+D0D9GI/32rzzSkL6gM0LHbTf00YwWs/EAgPRZUQiN9xyNsvm2aqbhw9310dM9T/c94c34shOy7/jCUO/4E3bsekaTkovPw7ZX0r5Lk7lAZY9Mt0lhot3RAQBhC+LQ8mX3jDHhLIyNxMbP57t9JycesfOQ4frvRQ8l3Tvht6VfSN+dHt+Z8TbU+9xIl9lB4mbmqXgv5Ks4BD6fhKNT7Gj2urkfp36MXzzRHm82MiYyN20rqh2cPy42rCue5olXpco8ZLq7OW/ZoKCkh4rL90aj2vc6/1ABvDu0hlf+SZScPoPSrlZUzjmJ4nzVtG83Q6NTdaH7hAk8/5jZd2o2DicftqPhp7JGn549lbmPaxt9WjbH6kSm5XD3/Z6eZEPaK7MRG96DmwoTHJluw5z75uKtoPaw1KmDkoICXBsQhU3z5vG9YlkrxbSf1f5owC0u9FDYPxKXGvug3gLjPDz8hs0gUNKPndn3Sf/PjbbxNA3/E7iwJgg1+2XBu30rlO4+aHj+UEY6PgsJle7Rfp79dgwCn0sypTf6+ThO16OZBw0+S2fG2fh4LMjdwrU7sb2HomR/Oo4/YefWJ4a2y9nfAJYMnUwzPe1D7vCdmWDj5vUA85ssS91jqCfWLxhjQ51FSdLz0ts64tdvFvKy/fqN4D5XDsUK302NkX+hJurfmW5K67lRNm7O70mwYgkNQnGDGlj33SLp2ZKjW1HfUq3cs4k7KG+vOvGoHfU+3oSN+Annz59HTcGF4lYBOrMu2tkBVWtYyq/w/wlXLpZgTMddt+x4/BXw32c1/yUwNI0d/t9spNnNK+8lYvNnc+FQrGgzKx6HOhehqM8NR/0yWRIjSofEawBo/148Vm/9SWrP7OAUMGIX93Mwk2QBQOb9daXFTSzjFRGOMTVPovPLWmhnp+pCzLOT+cJZkp4Fh2JF7O2D4FRZ3qiCB8xNytwdKAjIyV2/sDkUK2fCRDpFSV7xkaOIejEOF4fFcAm8Q9E0YrQwtvsonvvC8aAVAh2hi+IMbUw42gXLWinwH7zPIPVyqi7OhAHAHUPHwBMce1JOdqvvh77f1AaFUa6zVdPivDJca4v8fsQAGnrg0lnvMnh1DJfeo/7dR+ws5TSItBKenIHzZJwm7Wz7poMpHQB4omczWqN2DpFwiePhDk6tCpPqUFmfyiXSfcLnjglDTHt8oqQa7ovjQHiICXOqLmS9pwXGEYHG7dA4pvXIWxHuUVp6qkMlqa02n2lSV6fqgusFRvfJeLtUDmAaEbGPlo1GjbJDYb5yV53MF4WYMJGmS2sD+e/uEyaY0uluztI9h2JF4PNJ8GnZHM1eT4SXr6/bckSXQ7HiWGEtaYwJMj5lWpqANeO1dlP2QA/6g5ElPAynJ2maIpEJcyhWxLbrKbWTPisKJT1UlPTohGrfb5Oe6Wkq3XWAa4O9t7iwOjVBosUTUyjeu95XCwgg+qSQ72Dgr8xEO2d5e06DOEbEhL2Ts03C7VRZiPz855kWtvhwLk8fQN8vlSNtWv25zDQ5Yd8GHH5d1rC1mJqEt4KYKSBpVogJc6ouKb9lhxSWaJ4CJ4hMmFN1IWtJR95P39WpOC/wMk7VxZhslfkIzzmyhfV57wVeJ/MD7XsT11H9erLt7dk8fxSZIrv7/iwmh0IKNFK6+yC3bhHrfxYSCkuYnMLBoVhR8EswMkZp/s0NEmsDAN+biAnLfcWO/lWvIWInC7hDuEWm1N+nOu9bwm/fAtDWL711hkOxGlI2mK1Jq5N+5tdhC7UAWjlvau88+20bn0tnxmvpdZyqS2LCAKAsdQ/OjtXKmAkgiAkTn3tv3in5Xqnd6/B6r+WkorDbcaRFfCvVE3GST6H+mb7fB1+sjZMRVQ3fYreUiabrPMF1hxZIyWzeUD8aJdXkrg5O1YW+LdjZQll7wlDnVoXSMu+/7e+/DhUasX8YRI3Y+mOy9qRfsB2lV65g+dFEbl6R8Wk0su+ZKy1ch79pL0X4cSjMf4VHSJoXCZR6SaZUBGKd3nsvSiZGPo0bcUd+M/Bp3AirdzhNcZodKsw2PodixawjWxDfoiu8IsJRlrYPF4fF4NnXvzYkqsx5y8bzHrmT9prRAQD+ydWRF3NJekZ4b+aeSK+I93rfSDz36VdS5LyIaXGokVfMJdWeaLyZ51kzbMi8b3a5fXR3P/85O/Y+NgsOhSX/3mdbYmB0LcEBSPhjpem4FveK4FG59JvlzdBU2D8SRwYyc6H2O7wwo7GWmBdgmrrXcwegqPsxCU/mBzHIGs58AsflduXvT/+enKoLgb8+aNBk+TRpzE1yzWg7f38Man2d7HHszeZEv33nsCa8NlbkJWOwfwwuD45GtRWaJqTe1jo404UdPPsGROPEhAjsfHGWW+GCu3HTP+vfdaDk8K+nT4+7uFcE1i9eYPq+Srp3QvbgSsgePBexHftIAXYcihWW1iEoOZBhSp+Ix7tGDW46ZaaFLa9vtbbUw/muZ/hzr8h2WPvTYqmdvBXhkma5qE9nVFrHND997n2ABwZw197U7B2YHtgJ+T+EY2/MEn5/ZV4KBvlHwQyoPmkSBu0/5TaACo2Zp/6KYxf+aTx6DEpDQoqVm8ZSWetOFpwjZ3l7HvSlvPVO1DaY0XN5bSCq9c2GU3Uh6sU41FmUhH77zuHTXd0RNNKFqwOjUOXHFAm32MbVu6NQNcGFtUdSpGdm79S7WjWUXr6MGpvr8+AiAHBhRAwee/UbLAxrwcYg6T74D96Hy/dGo0b6eW4qqMd31RmAKo4cWIIDUJIpm/hy4UlTBatTExC2eTRaDtvNgxJR1Ek96NtRV7aBMogln08pLEKULxNuqM/apejBergyKJoLSs3G3tO3qaeHnllq10LC/k0Ymt0L57uekcodmW7DwfGz3b4Dd/OkuGcEKm87yBMGuwP99+EOLg6PQY3lcrRF/d4u4tBroahc0DeTkTVsjqG8WT9abRmFFkNlQYpTdWFghgNXu2lnFEvrEFz6qBhVHDkwA0tIIE7e3khiXEWawr6Ik4KH5bxtQ8Dzcq5NPYi0ZiyKQMgYYwRLsY3YDneYJiCncr2ahP8rNGJf7Oj4t2nEHuy085Ydj78CKhixfxj0jJhDsRrMiQDzBfzKoGhUXbkN1+6MYvbvYE6qZB8tgh6PJSQQJRnZOPakHU0+0Dabsi5W7miuXwy7PjoJlxtZsPOlWfxZmb0DUAZ4JTGTRsfeC9w2XU9z6fpm+LX1z+jXZziPNuhUWZJJ0fFdrJvxaTRCHjZGrvPE6Im/fTc1RmE3+TAu4uozZAxOdazKD8ru8Oh/i9cD9hXgl/A66LnnMn5vVw1O1YXzpVd5ElMR6PAPyMyhaPJJcGlINKp/Jx8mSnp0Qv5tfmg+XXtnZjRmLemIoPt2mvZbX5YOaClvzvbYV8B8Hhqee3mh6I4IKVS+U3Uhq+gSgipVNxwkRLzumPULI2KQ9L6cQNPLxwfo2NrUxMUTePv5YU12stu+3gw4VRfap4xAWWId7Hl8FqfTqbq4CbG+vNnhWGQ8ACDnTRu+HvEJonwrofXceDSflmhaH2DamNQ7P5RMZcT2RJrE53EZmYbEylRn3nkFK1qz9BOnJ9lQf67xANU2+T7uw+lubG6W0fyfjP3hN2w4NHY2gpfEwasUCHxO0AboBC76tsjEyx0trefFc58kS82aSDj4B1uTH7XD53IZP8Dp6/v4N8WhdxpK35ylXl0eevtmmX399ynej+01hDPHVC7/eTuavu05+TbhMHtmtp49lJGOu6pdkZ69k7MNzwVE8zIxu4qQ3KESvyYzsmt3RuFMGx80fUebt08d64T3mzC/1zlHtiAuaxjKeroP0U0H/WsDouD3C9sXSrta4b3FhfP3xfCw6Z76XFhWJCVjdqpM61BWdN3tmBT2j+TCM33/3LVDOMV7sT3uRcKG7w2Hez0ur85tkf9SKS7n1UD24Lkev4OLw2J44nlqhwS1eqaMzCP1tBJ+0XzTbD/I/CAGZZXKEPKItu/2HD2OJ6ame+IYitcnf2qF0g11ue+lHsQ93YxGkSZRGKen89hTdlQ5VYbaXyVxobFTZYnTyaJA/36oft/mnRGcZJFSzbgbf5EBNgN331HW+zEIeioZZ8bZ0OfhrUjr6M3XfbGsvv3isqIKRkyA/wuM2H9f5/cvhEYzE2FpHcKvzRaAwv6RqLqSLSKb5s7jH/Sn39zJyzhVFzf7E/E49l5ASQaTkBITRk75675bZFic6brUx0tiwgAWppaYsAW5WwxMGNV3qixKnUOxSiHfHYoVKx0zJZo5E/ZxDEIe3mZY9Ol/3+ad8UTmAbyWI5uGiTiK48zD1FN5r60u7HxxFmKemWwYYxGnV0Q4HIoVT2QewJVB0ch/TjP1WvF0HzhVF35vV43XGepvg1elyoa2SQMDQNLwcCYsRjMnIiZMpNuyYYfEhIk0ir/pQEh5Tcwkev36jUDbNG84FCtS3pwtOVGbbSy0yetBLP9tXhKc+TtRad12BKwdL9EV36Kr9A5z3mSmLEVlJYZDJ/2m65/ffV/qh1N1IX1Be4kJE/vvToLpVF0ovXbNMFdozAEYTIfc4dsdtQzKuyxwTf+IvhwX+YsBQO5UZubV/j3ZUbta32zkvWBHWeoefHupFr8f8GISj3DWfFqi9P2JwRKcqguh8SmmTJh+HByKltsPAJ74dSR/RjmSLPXqwqFYMbGW5rNUf24SC3BzA1qmsNDnxISZjYl+7hTGyvOPrwU3QlKbBTRQn2VjRuaQ+votX2LmcJn3zZaYMAA4dndVt3QFrJ7gkQkDgKIQLTQ6MWFO1YVGnySi3oIkXB2opQQRaTrZpzkyeyyU+mjGhNEzMUIezXP6Ld4XwUxD2fRtbY64AxEPpUwwK0/liAkTy4z84gmpjJ5JITMyv59TsPcx2Yz3/SaayWtApeqcCaM5QMGXaD6StsXvlxTU21oHR6bbeOhvYsKy35EjlDpVF8/T5FCs8PWqJL0fh2I1HMgBOay9aOaZ3KGSoaweWn0eh7VHUrAod4sUtGjwj1v4uKQUFiFo0XFOF9EDAGXb90IZtB8hj7Botr33akE59O+nxjfJhv5QUAlx7pR264ia/bKw+OhW+AS0MKX75/vfAwAe8W/EQVXCE/xkMmfCCH7/aoF0Lc5ZAJhzTguwUljkY2DCxP6IgtWs941mkbTWES3SdxDTHm0/Zmtpk/cT+fcsWu60fJmtD73232VgkvlcKC7m0VPFvohjTDDi7k3S/qYH61vx0jmHIHPEHDhVF8oGnsGbjXaj+bZqEhMmjuOfFUbdClARrOOvg/9+D/8lsDKdHSjpQ05Y/x1/Jn7gTtWFjEURXHJ3/v4Y6UM+MEnbBAHAq0z2DwEAZ1vGnDgUKz90Nh+yh9/TH+IcihXwtqCkkhyqVTzEAuAOwlR/ydGtEk6n6sLlwXIuK6fqwnMB2j3xUJw9xBiqXnxeVlyMD4Nb84OrWIZwU0h4ABh95HbTMh3fiOcbvP7QRP8z7qsBp8qS927+bC5afKlJHH3XpGJSnlH7JW4C/SNj3eLvc+8DWqXk3Xy8GiWx9yT6QB1/3M6jJZptGgTkG7Zx/nypvyKsWbMM7zfZAafKnLopDYC+rPiOkzqsMOAR+0VaQKfqQuiD2z3SGfAi29QGNGUBRCiUu35jcihWznC0f19LHtx62lkejhpgZiQEQb+PldoVN3yRDmrnUqnGnCVs+B5nfwk1bKz6eiKNJadOo3/XgQahQfPpjFHb/bQcDtupurDvkVlwqi4MrX4eAAw+Nvp2SjKyDQd2s/dKUR+prqV1CLy8vKA+a8epyTbkDNTec/K77BtL2PO7AZ9TdeHJTWv59Vz/JES8KidYz1sRzq/Jh9KpunB6IuvLwtkfAgDuGDZW6kvpZRZyPTQuhY/ZdQcLj+3/2S503zuQmxeJc7K/TRM0ORSrIX9SyYmTBsaa6odOSDUkTeZMU1kpHIqVCzDM5ggAHLNZDPcdipWncaA1T8Sv/94dihUJu36FGYjtHn/c6Ncn4hSfuTvIGZg5YT2kZ2KaBLPvHwCavSZbaBDkP2+Xkq6Le4KYJsWhWHFlUDQi0obycmQqlzNZK0PzkeBMlwLJt/LaADbHAp9LQvocjSl2KExj5lRd6Lb7KqJelOepuzEh6w933/nWa8YIwAREVxOf6vhtyRcaM1+mzZGXAyKR8MdKj4LV7BsJsUW3AJEWs7ns7j0d6cuiIY5q1kUKzhWfr61/oZUYA7y7Ewv2RQFTCL++bYdiRegfWoRmAtEfSjTbbXbvXgnXohvrutiX0q7snfme8ZbKUt9IUCz2OX1OFJw/fIUSX6DKpkZuhQnUhk/vXP67MDbS8A0RpM+JQmG/SBx+zbj+AsArDbS8fLS/FfeKQPa77DdZL1H7FM2a5iUlcTcLRKX3pauA/5vg808TUAEVUAEVUAEVUAEVUAEVUAH/DigF/pZky+5FIf8dqNCI3UJAUvlrA4zJTUXpZ3YfZibgVF3c34iuQ77WJIEAi7ZU2JPl6UifZXRMT9jwPS9PWgO9VN+punBlYGfucPvVhfrI/CDGVMIk3ruvWReDZmPLzLlSHb2GTd/Xwv6RpmOhvycm3KSIa3rcp0fXl9qhMg0/kyVaYhmn6oLtqckIfjJZKkOmEFTucJRm0iQCRbksbVDbQBOnN3EX/+3TpDF/fsJ2Ad7tW6FO/ww4VRfOjLeh8UeJ3AxIj0uUnBZ0OetWYijSzbUt+9PhKryR6FbQMmXMlHME6bUNZNImvo/PzjXDgPR+Upuk7SAos7NoYHOObEHeinD0C+mCcUKkSwJK/kzQ5H1NMl+cfRjOH7T8YAEvaO8o+P6daDVf054FPZUs5d4ioH4M9o/h5k4OxYorW+vz35kfanPd63dmqndxuPyt5D0dheLsw6baGHHcvDqGcxocihUBP07kz8iPBAA6vBMv4aBcZGLOGzNJvlN1oe4ALXTzazmpKDmQgeLjJ6C8m4gGc5I0TVn9eiyBeUx7aUzIjNGhWPFuUDtp/NNeZVHHAtexyGUURKPdh/Go8lMKr9dgBzOzmtyCacm9N+9E9ts2SZKvn1OVndtxalUYSi9fhm+fw4axc6os2qnYb9EfVr/WUB/F+40/SsSx4kuGOsG/TJL6OeFoF6y9okVudKou5D9vN5hC6jVy9S3V+NiItOvpW3W5KvRQ2E/T7J+ZwL51MoUU4YOzgViRl6xpF26Y9p2Ks+H8/TFSPkGn6oJ321aGuSLS0uwN4/pHv8u6CGvMen/D86ZvJyIn9nOcnsTebYcZ8fwdU75KqlN15TYe0U5chxrXOw+s9zf0k39bL2gJtzfN06I35tw1z1A25tnJeLH+IdRZlITY3kMN+4So5RH7QZq62Pa9pGdd/Lw9airEb/mPa+x6cm1mepn+eWd4W9ugf0RfYBbThmQsMiaGDhxp1HrRfxH/yJwepv0R3zflEtOPS1bkNQmnSP/Jh7TE62LuOBo/p+rigWMIh1N1YcPCz3nOspYpVQzj1HX3PfDu0BpNfJhfcMjiON6XX79dBADwf1MzrzTb50V6yY+8+fREXO12gt/vGxCNadk3/Ne8vDgup+rCgPR+TPOWkCrhiu01hPfj934fwHdNKg6N0/zA1l3RTFNvj9NM9gHmu+2zPg2Bz8lWNPxbT94tlRfHTH9d7/Mkt9rsCvi/AxXBOv5h0OcRA4zmLOKHmj47CqFxWoSrzi/HmeZToXqU40h06tYvmISfcsi0TfPGb0fDsCtqGSbl2TDXP0kqJ+JonzICVX6ojYhHdiIr8pqB9jsO3IlfW//M64uRGcWyFInOrM8AkLWUJaw266Ona4J2H8XzCFhm+EWm0KFY4RPQAsU5R/j14W/ao6TYgqD7dqJgdQjq9Jf9NfS4CMwWWbP2AWDG4WQ80zLGbRk9Xspt5VBYMIuay+QIgFcHRuGPWfNQUHIFw5vZDX0U8YpBGjz1Sz8vTzxqh+t5LVhFeZDxWbQhUpwe3AVcEPPKiDSJQDg/OJyEJ1vapOh/+oO92fj+cQ14I9B8jMIWxqHlS0mG92AWLVDMj/fR4UQ83lI2ibt2ZxQ2zZ0njacn2jI/iJGEAS1TqmCuf5JUXoyUCrDgON69jnoca4JTk23wvVCGpPfmuGUeRDoBYMrJdiw5sfDM09j27+RgAowb+by6PjrJkHcrfW4kQielwgzM8HpXq4b8yR04g25Wp9ukidJY6/Glf94ZoeO349LaQFS/4cPhaQ0GgNJuHeG9yRgMpzx66T7gXihC17Hte6HkNIsoebLkMkY16yLhEfOGORRmFnlfsy5SuxTsQN8XMWgQotoBKXvcrp/u3ilB1gwbgp4xj2ZLkfEcihWF/SLhu0Z7t0em2dHilUSP8wZgwXUu/Kjwd0NwaWgMqn/rOXBHeUBtFsZGwjchVbpX3hwgOD3RhunPLkQ978s8AbxDsfK8nFOzd6CLnybz1uP0tB8RUO638uYUYPwuL6wJQnGJBXUHpPMgTl6d22Ltqq/d7p+e+pv/nB1N30nkOeTEPomBw9z1hzPquryFAHD4NZuUP1EcIwDo38mB1TucUptimbafxGPvo7Nwe/xE/DFL/uYbJdXECdsFw5jdMWwsfv1moYTTHZgFi6m0sQk+CPgej7ToYuirO1CSa2Bh881wKFYelIvo+bdETZy9IxJVqv/vG9VdvVSMuE6pt+x4/BVQwYj9w0CTuiA9EEPCmGSLFnCn6sLtcRPxx2zPYef1ELa9kpTbSFyku+6+B1OCV/Nw6yK8mZOCMbMehzIj0bAA6tsyXWy8LXDmpbldhK4NiMKJ0VdxsOtit2UI78l4OxrOSjSEEHaqLtwxYiwK61TiIZfPjLdh+3RjVCNPB4vywMvHB2tzt5d7CKFnIiPprozYvhgS3gxOPmQ3BEYxg1NxNlyv6cXD0xPoD+4Ay0FDUfhEugA5JHF5ByNP4OkArx8Dp+rCj5erS2kKOk2PQ4M5xlxVfYaMgddWdn0+IRi1YjMl3F1338NDdJu174le/YYuhvMGgLMP2pD6evnzS4zc5a79c6Ns2PYOwyVG1TPDd+TbdoaQze7oDt30AFrM8XbLHOhxU+Q0p+rCtFNt4F/5LL5t3RglPTrBskELrtB+hxd2dyrjOABtbM1C3IvQILE2TtnP8ba9OoZj7WpdeGwvL6CsTIqQ5/V7U5T1zJfmTPv349Hk/URDv4kedwIeff/drWfUpqexE8Pme5pf7r4fJbkGEn9ri0MPsvevJNeAGnPR0Bd3+AhW5adiRFYs8j8PRu2vkjAxPRvzQgNx9pdQnD1XDcH3a35utz08CVV/2OYWl9g2AAT8MgGhE5n2oMO78Tzogkift58fSq9dK3ccyhsfeFuA0hLDfafKorjW33babQoF/Teqf68kgASAvBftXPNiRgvVEe9RWPTMxR0RPMozw01AkYjN4M2cFLwYoPlQenrPlgYNpPDmZvuY2TdQ/FtzrG+zChFpQ3lCY05b7VooOXcepyfaUH+euTBLnLNO1YV+gTFSdFkC/d5i6M96fxQsboZaWddQae9hnuhbZLJ+yU9DJS/LTe+v+mv6TwK38urp718YGYOaS7X9jvqfkL8DFi9vfv1nwCewJR5Zt0ZKZSPi0dPujsZ/S9TECkbsr4MKRuwfBrM8Yu6kcemfd0ZOrBYSPOu9GAQ9ncxz3Yhlxd+eFnKARa3y3rxTKt+3eWeUFRcb6BXrFvXpLIUoF+HkQ3Y0/CzRsEHejBTQnWQu+x0bNw2i+6fibGgwm927NDQGWz+aY76A3pD63uwYmfVb7IPIGLjDSUBhsMX6r59uhc3t/WDdCfw6z4YdL7PDGaUuMDswlneYPDfaxqNIdXw9Hg1nyUwXwborlfB+cLjbvurrHLh+hWt0bmbT9HTYK0/i6qmPevwis+yxDeHde+prefPgqcx96FO1iLfhrqz6tB3Ke+VrX93RET4zHvse0fKOdXwjXjKfvVk8NzPH/6eHaU9tAWx8KO/fn6WXYFp2GmL8jMExbnYulQeW0CBuPgcAR6fY0ez1RJz9JRRNa5zH1W4yU+3l48PXRBJ2ie2apdpwKFb4tGjGE+LGhvfgB1PfTY1x/an6Bs2E2Cd3ffPu0Bqluw7Aqcp5iar90QA/BGuBQPRjJGpqxfsAuMbqZvcNgiPftsPBrosNbfJx+Swa2YPmSs/FEOqAFp7dLHelT1MFxfkqZwBLuzLTNtNxqVoVjlTVVCgmhkKPeWayFKDJjG5381r/3Km6UFRWggFNI9zOTVFrTvNaXOfMvhd3dLijIWD1BIROSDUtR3uDO7zXf22BynccQXlA9Mb2GoKE9d9JbYjCFCorCtbE+tRnAIb8oPoy4noKsMiFtbyrGN5X9ts2BN7I+dXptThcaqYFhNLjdihWqM/Y4f/rOVyvVwU+69Nu+ixwcXgMEj8wP2e0TfPmqRrEPsfnxyAr8hoKHrAh5a3ZhnbE3/8WRuzTtOi/jRF7OGLbLTsefwVUMGL/MOhNE90tAvcdzMOSVsyOXlyoAG1Bq7G5Pr4P+k1j1G6YjFAd8eMncxw9kLmLvo7Yjgju6P3ocCJaV64qtUkJdp0qS8Ab2uwE1rZaXe4h5GYOkiTh0ifX1dN+9Pu22G//mt+72cMpMXw3e+iTDnC+vlibs83QF5EuM3rdtUUMgX6xF/FREk09juKeEfD53VwTV17fzj5oQ90v3EtTzYAS9oog5sm73jcSldemut2U3EHBGBtS3tTMYsScV2Z9upnDDAFt6GZ4xD4DQI99d5d7gDE7fIgHef2c+PZSLR5JMXTTAwgYwXwIz461oe7Cmz+oPZF5gEtnScv+PwWzeUv3spZ05KHb9f3U4/D0zNG0I1BWZt4fLy8482XNRHlzpNvuq9g4KQZeSbtM58HRl+xo9kYi0udHInRCKixtQlGyP93t+irC4TdsKKkMvr5mfNUJIaN3oMzWgafzEOHYU3bsfkrTWh/+pj1aDmO+JMRouAM97aJGQp8H8vREG87dfo1pxW5onJyqCxGvxiHtVe0A2K/fCM7IeVp/zfpPAkACcW6560vuq3aUecHUFNHdN6pve2VeCqp6VzalyQAx7bn/6J9h0km7SCCZcN4Ap+pC9HNxOHVHIUJGa9rj9C8680ixnuBmBQmPZh5E/6rXpGfps6OQczezkPFu3wqluw9ySwcx8bm+DUo+fzProVfHcJTtLD9PoL4NS726yB/VCv4/5qH4cK5URzTlFd0kDr9ukxIo3yx4RbZDWeqem2Kiza7d9csM3NVzqi4E/DwBgd+UGvZUs3HOfseGjFGzDXRNO9UGy37sjoMT2Prw3aEdqBOafcsyHhWM2F8PFcE6bhFYmb4Hhf0ipcVRXBhEJqyorAQOxQqHYsUdB+7k5UQmzKm6+CEBgGHD0zNhGV8ys8hPu33N64t1HYoVPo2NIWM/KmjJaRWfta5cleNptWUUAHAmzKFYEfLADqxttRo5RbIvED2/NCSa90Vc9Kkd7/atpEWu5lLmH3WlgbdEi0PRQp47VRcPrSu2JV7PObIFwUvi4F21Ko5MZyYP6Z935lo3d+BtbWN64HaqLpTdCILhVF0I3jDWtIzZvfBP4xHpKjGUeT84XKL72JN2w2ZBgVXo/sl4ptHy+T0NZbYOODqFXR+ZJmu69MExADCNEoC6XySh1pZ6Ej3jcrsiwKkFJxDpdKoufBu4HgAzRaEcZGKy8spr5Rxw4u/8H8Ldbo51FmlBJwCW88oSzPJOiXnAzOaQQ7Hi27wkKMk1pJDr9FxkwvTzmurT34bwn0zpE8eCHOCJlm/zkgzaFMpnFPDjRAytfp7jJxPl630jkfrGbO6YL34P+nmkrmRzUTQ/DhixizvlA2zO6Psn9vP0JNncJ2RxnNR3sd2g+3ZKY6LHJY6bmFtOLOdQrMANmeC4XBbgg3L3AUDBL8FwKFYsutAQDsWKK6XXUbiOrT364BT0f1P7Kli34kvkrdDw9O1/Hy9LQSpCJ6Rifu4WHtqd+hE+M57XK7N14PVKb+uI602KJCEXHciJ6SM6vCLZt9Pk/UTpfRMTBgCFoY0N9APAlUFyoJyQxXFsDXkymacN8BaMFsal5+BqIy94q34Mj2D2V39ekvQtrFmzjL/DhzK04C75z9v5++2QMkITJv3elNMWOvck/13SvRMCRuxC2Hbm30xMWEn3TlJfmr+aiBavaIEZ9PP39EQb/rim9UWcSwSD/FkQq0dVOV2J2TcqpgHRl9Vfi4GeBle/ID233H/SUCfom8movTgJIaN38KA9x39s7ZYJ039f+u/E3Tfzxktj+Fg5VRboJzQuhZcv3c3ycVLKGmLCqA0RBvvHIOPLTjyfofi8f9eBUlliwnJftUs06embWdBCwlNy5ix2PTsL96xJMdTz3rQT9x3Mg1N1we+MJvsnJszsvQw9cNztMzF/pEOxIv+HcJx9UEudomdeed+EvHFmIH4j4lpnBqFfxiF0Uioqp2pmoOrKNgY8RBNZ81Ta2ESiM7FDZbR4RVsfvr9U2yONtwqUwutv+/uvQ4VG7B8GUSNWKaoT0h+uhJAH2KaeO9WOA5NnGRZtd1IgAqfqgmPgKLcO2Gb1jv3YGk0GahLSE4/a0egTtnHOPLIVj7ToYlr32FN2NHk/EdcGRGHTvHke6SNtlVN1wfb0ZGycMRN3NZU31RV5yaju7fenpJgiXaR1A4CcN23cNKG8unq/I0DWjOglXE7VhTaJ90uMnRnuaafa4JejbXkkO/FZ5JQ4g+/R5bWBUtJH0fRSP/7kv1C6vhl+bf2zW6kg/SfNhUOxSv585UkLRTzRz8fB52optn48F9HPxaH24iRu7kRSful9tGiG4iNHTXFGvRiHK3ddkBIEU73jj9sNSUGpzF0ZfVHY7Ti/l/VeDMLeP8zfu6cxAG7MkRYN4fzhK8msSw8+zfxR1Lw+zzUkfocbr3pjyrMTuPb1Zr8zkZ5Lpdcw2D/GUAYADx5A31KAcxxCxxqlrn0DolFWWCh9c6IJHWlqxMNEh5QRaDzwgFvaCMwc0wl8NzXGqpC1vE2zcQY0rRPdF30zxHYJj36MzHCarYP6MmfH2hA24QBO2c8BANIXRqD6Pl/JxMldu1fuiUbVH7SAMnqTPYDlfqJod4Rj8IGTUsCb8tZr07nZsrlBm1BeHfp93dEZlZ2yNYMnPESTT0ALpE9WEPicrEEvjI3Exs/nl7sWm9FC/oNelSoje3oE0h+QzbEoGBLB8cfsaPyxuSk1ALxzJgS/t6t203R4ui9ee0WEoyxtnzSu3SZO5CZ283O3oLlPdV6Xl5k0EX4/p7gNBiR+g3ow03SJdI04qPLcXp6+BXe/3Y1F8W/N4dPbfG65C0DVfocXZjTeyfsl4hfHgyB8ZjyqnC7D9mlGn1paC/RaxvK+c0/XItCzq3dHwVJYZrC0IPBPro4FzbfwNsNnxqPqiTJUHnoCATXPSn6tBHrTTi6U+CoO6aNZX92ZYovCBvLPozVGBCp3ZHEwMu5/+5bVANGZ9ZO0mL9NI/ZoRPItOx5/BVRoxG4RsG4pRVnqHoQ8sINLwIgJK1itJYM0WwDNJG7kE6NfhEQJm7iQNblxMKPyxIQBQPyYR5D/nB1dd9+DGYeTpfYoWhkxYQDw5ukwqR0qS0yYQ7Gi5tJkJF3z5c+o3GB/Fiq83tY6ANhhUOzb2EPa5p01w4bTk2y8XUvtWig+dhy99zIH+IAXkwyLNeGy1NSSWgNArdhMniCUQG+eRuWvOgPgUKxoXrcAT2RqB1qn6sKloTHSe0jsUBmpnb414MktvsSTwIqwpf0PUn9FTZx+TC2VmMTbu9dRXkfsryiVc6ouKVnt4elMupzxZSd02j4MF0aaMwR6PLW/SkL175iZJWndio/m4aGMdIkJIzpO9jQ3p+098kHUWZSEvTFLAAAZnzDpf43NLGx807sP87IFY2xS/fMzmku4gp5Oxuq0tVIZs/dOuIuPHecS85JTpwz1nKoLXr6+KD6aZ2DCaBwe2zNMMoHVv5slF000i5DHkkyF9DQ7VReP4Bb9PAv5TEyYWMahWDkTJtJXVlzMy4WM3oHXclKldokJu9430jBnxGuRCdOXKex2HKdLLiP6uTjDnLOEBPJyYmj0gjE21FyazMO0U1sOxWoYX7P/4vOrzgDDPREabD6Or1tu5NehY9M4E3b+/hhex+wgqz8gbVww33DotWRUNbSrjzpq1id9v+kZjaHIhOnXz/LwEBMGAK+fbiXVAwBLAy3proinOOcI7uljjIx7ZKD54VsPVKaodwRu3zMIAJCw/js4VRfKiq5zJkwsu3or0yQPPsD8pogJs2xQeDnx77l67oPCiHR4GjNxvKZmM2Hn2p+XSDhSCoskP6cJzbuaMnd+PzOtz4HHa0NJrsHb6bHvbgBwy4QBwCfBrTiDr6d/7KEjWNZKweADJw3ftfqsHfPOs/ER08fkftcOJWWl3LoBAM6XXjW8L2LCaA8Vn7uLAkyBekQ4M05L80H/28xi2mP/txJRb75xXxPXAjFpt7vv4GbAoVjRfe9APkeobpWfUgyWFk7VhdL1zQAAx0fIKS3830pE3S+SUL1vNhfcOBSrZC2iZ8IcihV3ZfRF+ujZ/F76A7Ol9ARdH5kk9atxAht/S0ggX2OcqgvpCzpLtDa93ygkuxWhpMz7b/v7r8N/v4f/EnB1lcPbOhQr39RokaQPte9d9xsOZPoDsPif8oNRDiL9wYdAX5fgtyVfoPmqU9jS/gceXt2+67rbg8am9lVgqVcXANAvMMaw2BK8FdReqi9uome6FMCpupA8Y45E10dZvVDYLxJTs3eg3h5mkpb/PFswE/ZvYvQK0dNiuw+W+lKwOoQdwC9cwEeH5YhgFPpb33+6XpC7BQBQxZGDy2sDsbaVMfqkPljIuVE2w1ifWhWGCTdyZrmT6sXnx5i+D/Hdpd/+FTsUNmqIgF8mwKFY0Wn7MInu0xPlTbPDu2zDpJxVIQ/sQIO7DklaipvZDPXM/GchobydjE+i0XvkgwDAfZr0m+xvS7+Q5myli95wKFZcvO00AKCkh4qcN204OsVuCFl/tI9sqiAe5sXDFjFe1P7F205j+dFEnidNPKhV2tgETtWFzlMZ49N/B9OuUR4qbz8/qU1iZty9m/tqML84Mpehsl6VKhvG8sII82/kZLwd296ebSivH0/x+xefE0x67zHD+gAAldemwvo2mw9XUyZ2ygABAABJREFU7zbmLnQHVK6+pRpqL9YOXUGpfijsF4mSDBa9svfIByUayadv44L5BhrFue5UXaZ5pQDmXyjS4VCYppfqFvZnh9uEP1YyprBeXcN81kvjCcgUy4zpEU3AHYoVwd1yeNm+zTtzXAP2FRiYVvEwKNINMOk9lbl2pyYI8q5WzXSdFnH06zPcLaO0ub0fz/EHsNxwJadOIfMDWbBF/10djTj6dWTCPDKDDFo/FmW2Dqbrg1N1odJvaajiyOH0hXylmbO6Y46IeXWqLoRtr4SqPtcNuMXyZn0VIeAnlvMp/zm74Zk4nq936Gb6zb0cEGmop69L/Qn5mpmmqTEXOT1m/qLuxou+g+x3bPDq3BYAsDCsBQB5XKhN5d1ErGjdEL6bGiP4SU0geqDLYsQ27cRNPwFgqL9x3yGgNjzBiUfl70ykJWbyDgPu/fGzPOIT50DH1OEG3GZttfuA5aSz1K7Fn9H34lSZqWbVxyqZMt/0W3xGAsvVW3/i+fF4+7r15sLIGGk8CYclOID3JbbBHoPAIGQME5h5+fig2optUJ+xc9qL81hUVn1kTUpB8WeY0Ar4b0GFaeI/DKTmbTf2DTRatBO/5KdhQFMmVaEPs8e+u7kvCi0CFGaY4OrAKFRPP4eE375lh04hso/ZYSC2XU+8nZaA9pX9OF4RxA3AU5hq/QHwfEIwkq3fs8OrENnLoVgxP3cLZ0DENvrb7pTM13waN0LQL2clPxqxHTH0NmdK5kVK42FGH/0mx+HinhFY//UCtP0kHtEDd5vmrtKDO0dmp+pC37tHocTXYojopR8jgvzn7dj7qGZ6emlINLZ+zKKLmfXbEy7xeeiXcUh/gB16KT+YnmHQ4wrbXglOZ2ccGlt+mPas92MQ9JTRZM3SoAGuhzeDZeMOWGrWRMmFCwbTyj73PqAlsBbCVztVFzptH4YGdx0qt48iXWJ/LMEBSPhjpWlZh2Ll4eBvBv+C3C0Y17yrgYHxNDZ6ocjNgFlZd8IVPe5LawOxtf0PbtvyNHfM5oO+buDKSQh5aJvhGUUbdDcmYluWDQpKejC/IXVlG1zLqIXAZ8s3F+6YOhwN7z4o4TIba309T/T0C7aj9MoVfq9BYm2c6X1duvc/wS0+F8s4VRf6dx2I1Vt+NNTTp5Louecyfm9XTWpbXdkGl45VR2i8JiDS918MCS6GWid6Qr6Ok8a7UVJNfNVCjuDqaUzNIOOTaIQ8qkn0H86PxqdNmZb8hazd6F6llOOZeWQrQisxpvLCmiDU7Jflth3eJyGQibsyTlWLPKv/Puj3C1m78VZQex6Mxd08ovIAM1U8ba2J7a8Z10HRXL+8dVlPE0VCFdsya58Ye9Jqd0wdjp2Ry8td883WHU9rltn98uBm5gftYTdjtu8O1+V7o6X8ghRoRF+PIjOb4Tv6sh3NXrvxfXlbgLJS7oOqL1/SvRMsG7WgK3o6W8+JR/PpDNexp+zwO1OGust24NCn7XmUSgLa0zu9FocGs5NwZJodq8bMMOQY8/Ru/i15xN7b3vVvM018uvOWW3Y8/gqo0IhVQAVUQAVUQAVUQAVUQAVUQAX8zVChEfuHQZ9HzJP0ykwy7k5a7kni5G1tgzUJSxF7+yBuwnPyp1ZcAk31Rx+5HSdvv4ayoutwqsxsq97nTLpaZ2tdLA/4nYecBrR8WdRuxqfRaBh4hgfBsNSvh4xPmiFwpMtAkzt6zRJQzjqyBfEtuvJABAB4gk8zCeP/RJp++A0bJt3thLOtJoHJfteGj+5ZKDlajz50FF+FNePO+576Y5YcVB8SXtTaiPTogfBfvTsKVX5KMTxflLsFTXyq37S2hGB+7hYMmfIMN4nTz7FV+anw9aqEmQUt8Et4Hbe4Lg2NQfVvjUEZzN5BeRLy8ua6u/KecIswNXsHpgd2uqny9Fx03i5P0+ROem6pVxcJe37Hm6fD8GL9Q3AoVhx/wo5dz8zCqstVcVe1K7xe4bqWOJLTAKGTjFrfJzIPoG9VLTKnwz9CipgntulOm+mp339GK5sxMxohjzBp9qlVYWhw1yH+jBLrUn0xWbS+ve7jJsB3Tap0D2Bj6lWpMsqKNBO2S0OiUf07Y9CUy/dGY8snc8t9nwQUEOXPaDsmpmdjcPULN9WGvsyi3C0YI2hdCTIXd0TppUrIuXseQr+Mk3IsLTm6Fc/lO5B3uTbQK4/j33f9Kp5saUPuK3ZUPgdcDC0x1WZS+WPFl9DEpzrCP43Hvoc1TQ21c2ltIKrrEqS7C7zjbpwA8DQp6tN27Hmy/AT1lDyd2qSQ8E7Vhdg7hqFk3yHT7/vanVHw+1k2LXen9dKDJSwYCRu+l8pnFV1CfIuu5WqOAeClbBdu9wP6R/XH6hQtHUtJ9074bekXPDm0SK+Y+9O7alW3Wlkx1Yd+HaQAJje73h19yY79D7F3HfjbgxjZPhWpVosB98icHjjTpcAUx82sj0Oze/GUJTG7ijCtgXyuSZ8Txd0AzHCK7+v4j62lwEL0rO9d96NsO9O40R5YZVMjQ+4/M9y0dzlVFyJ3DDUE0qL34VRdUnJsjutGEnqRHoLy5jdppD2ttRUaMRn+L2jEKhixfxj0jFhByRUMbybbt+sXE71ZS/rCCOQ4Fng293jNhkPjZt/U5uRUWUS7lDeN5hkiTpFJMlvwPjgbiCfrZktt3jF0DDfdozoD9hXgkTpHTA/RQ7N78RDokvlG//s85jq5GbjZQzf9fvxYZ2yeG4m0VzW/HTNGAWDBOCY07/qnF2qz9j0dDPmhvk4dnii2vL7QwUHEmfOWDcqWYviuNo80Rf0I3fQAvLKrSqahZoyIWN9dpLw/axqjr1ueSQ4AfpB1R9vN0HIztF4cFoPED82TfDpVOUF62zRv7I0oBQDkvWCH/1vG6JAAPEZeM5tzYZtHo27Ny6jZLwvefn749NBviG/R1bS+Wd/E32LEUIpg6Z9cnZvvUr6l4z+2xq6oZegXGIPSa9cMeKT+RIRj7c9L+LPXclLd+uQAwJs5KXgxIArn749B8rtzMCC9H34JXeOWERfbPvugDdWGH8PGtj/CoVjxTs42PBcQbTpXyHyPnqXPjkJonFG4QTD0wHF827qx4b7ZWFKkuD8D+nktCmtyp9rRfHqiaf+v3BON6unnsWbdcgAw/Sa6j58gReMk6B89AGU1qnLT9vJoI7CEBuFcpwZSglv9OIRsHGMQvtF6ZSZkKa9Nd8KOD84GSoIzd1Bm74B1338JAAj6fSzLuWYClnp1UXLmrMdog2Y0OlUXj1oMMB8wfURKszXM+lY8Gs3U3i0JEsR+ikmTb4YBK+1qhfcWF09m7e7dnplgQ735SXgp24U3As3LmPWVmDtiUNLndEbopFQuoAS0fIZO1YUO78Zj17OzDH131w9LcABKMpk/JkWZdcccO1UX+kcP4AnLqS6BT5PGWJ221lAPYIFmfv9qgUSH7enJPC1Ol8cnS/7fIp0kUDEbJ4KvLtTnKYg8jWtsj3tRePDAv4IRezf1tr+NEXs2cvMtOx5/BVQwYv8weNKI6TdLAodiRb995/B4ncPSPVoc9Ak3CSjJL+EOWDVRClDhTiqlf3bVGcCdsskHxGxR9a5RA6UXL3pkJOi6v/0uFB/O9cgEmDE9+rLV/miAy7ezSHhfXaiP0TVPux1DgCWwbvXIfi4Bc9fG/w/jYNbn9M87Iyf2czgUK3LetiHgeXPGRoSiPp1Rad12A079RjblZDukWi38QHkztJf3jk7/HIr6d6a7HXdPuAAYGEUvX1+UFRYa6jbfVg250ZcBsJQKu6OWlctocmb0hu/SXwGNkmrihO2Chrt1CBLWf+dR0upJyumO+RPTPrirU2ljE/wSukZK7qyXrN7MNxa4chKyB8kHO32bC8435kyGU3Xh20u1sCA0AAWrQ5DS8TuE/jEaAcNl/x3yB7yZfosgSvv1dUgz4umg+We+SXHelq5vxh336dm6K5XQp2qRwfdWakeXVNqUgX3Xxn2y3K0fD2Wk8+A2ZmXS50UiZ8B89B75IH5b+oWhnaI+nXEusBJ2THXvz3llUDSqrtSi1M44nIxnWrJDrLsk5JQkF2AWDwVdzhr6J0L6wghDSgUCYgAA8zQIntZ5Go+bBRGXu7QXYtnXT7fC6re7I+k9+WBN7WZ8Go2Qh83TUlAKFgA8sbbZmvhn1oPjj9lR9WQpai5L5s9JYznjbBB+a1vDoxCJ7jtVF/r1GY7SvQfhDjI/ikHWUCNDRtpp/V5C4Onb8+RjZVbeHUMKAO0+jIcyw/j+9EyVGV7y/SZc43K7Sn7fTpWljFnx6gzJV12P58LIGAx5cR2cbWvyFDikJbM0aoiSE1pEy6BUP2RFuhdAudvT3b3PwthIrPpw7r8ioXMFI/bXQQUj9g+DyIj5eFW6KSnXzYDZAmAJDzOYdujbuTgsBjW+YRuCV+e2XP0vljn5kB07X5olLaChi+J4uPhXToUjuUMlCT8gLzrPZu3Bu0Ht4NNU4UlAyQzFXV/Mrs3GqHBdSy4JF8uQNFl0uga0zbX4t+ZY32YVp1Ucwx5jx2PDws+lPot9yvg4BiGPmedcMgOJYa1WDaWXL/NnGZ9FG8yKpPG/YUZqxiylRWih8vvFjkSpa7+Ep6yLFV5bGf3PZu3BjOEj+eHLqbrQv5MDZXVqSrlxqA3RBAwATk22ocGcJD5n9IcCcXzcjUFsm24oOXfeo5RzxaWamBca6BaPWPZmvpfyDvXiGImQtaQjmi324aGR/0ybnsqfGW/D9umzDePmDre7+5b69ZCwez2eOd4RMxrvRNTOIUjp+J3H90G49IcpfRtmAXviMjIxOyRYuqdfdywhgUjY5DmgiBld7vpLv70i2+H89CtI6rDCMFZPZe7D+8HhBhyrr/jhs87RyJzdkjO0+nnnVF2IPRTLA4x4olNsM31BZzRqco6bYXv6FkTtaXnzR13ZBsog7RsmBotg7KEjWBjWAk6V5bbaNHeegU4zes36ZCaAcgdmZdJnRfHAInqgAAxnx9pQd2GSFMRFTx/9z5ph40mz0+dGIufO+RKtANB6bjwKA6+h7KqPW6HinCNbMGDOs6aaZ2l/1OUEE83fAJb2oN6mPK5x0YO3tY1hvRXB3X5qRhPAxlavFXdX78w4Gw8wYrb33wxjeHSKHc1eTzTc/7PgVFnAKJ9LXpq2TIezPNxm54gnMg/ghQ/GoeEsjcaMT6ORfQ8TLo3M6YGlARvgUDQNOCALGPRtBK4bxyMd0j3A8/qb8Vk0Qh9Lw9pc7aziqS+iVtwdExrxahy3Lvru0I5/BSP2dmo3+P0NjNi1S8V4PnLTLTsefwVUBOu4xcCTlNCpuqRrEXLesknl+0fGAgACVk3k90v2HeJtUDn9wkBMGAAc6W+c9JbatQyRihyKFQEvJiFmVxEcihXTGmgmgz4tmvEy6V90hlN14dHMg+hVpQR1ttZFL+dB5P/ADk05fT837btDYf4kK/IYbSdLGNNyZoIxRO/hN2zw7XOYmancGC/q74HJzD6+0SfM/MPHvykAcAmnT+9cTqsIDsWKys7t0n2HYkX/6AH8OnvIHLfvhvrijtlYk7FVeubOt4PgqquuhBdgGjayZe8fPQAOxYpS135Y6teTyq37bhGvO2XKBJSlyv5oxcdP8BxAJx+yS3RW/24b5t8I4f9QRjoazGEbBzFhDsWKVvPjJXzZb9ukvnt1bgun6kJQqh8m5dmQsH+TNI9IyuhUXTj2FGt/cPULUh8AFrnNqbqQs1xLgcDH50aOqZBUX+m+fpMV8fW9exQvo2fCFuVuYTTft5MnCTU7xIr33c0Fsw17+/TZ6PxKnPT82p1R+PZSLUaPjw8mpmczie+NsOYUXlpsr+T0GcQ8Mxm7O5XBoViR0vE79Ln3AWl8Ccal50jt+WadNPRL7EPJgQxkfs1inGe9xzQrIhOW96JmTi1+cwNXJXs8pBBdow8xDdXpn0NxdIrdUAZgGnaHYkWjpJpY+9Ni1OyXBYdixYq8ZAR+P4m3/X5wOKe9uFcEp+eF2Q+i5Nx5BIzYhbGHjhjmXfocFsJfzyCI4FRdSJ/DQmj3t90JAJiWnYaQL4pxPqUhrg2IwpnxNmm89WMvMmEERX068zQGYluXzlWR0jDUOFSAjM+i+fXwGgW8jU1z5yHi1Ti3TJjZ2N+b1dswzkQv5drybstykl0cpuUafPxYZ2M73szs1qxNioJXd2ESyrpYkRCWYKBJz0QEPaPlgdT7RjruGQ2HYkXzaYkIeWAHQicb/YMJJrfoCv+3EnnqA/06vDKPMXAJ67+T6olME8DSHuiZsKsDtZQDnpiw9FlRKNu+l+fYM9vnRfofP8b2Sr1psn7eUN16C7Q0Ej3GjpeeSe15W/i9awMY7f3CbkPrNB+3TJjY3oB9BVKZ4p5a3qwRB7XvJv2B2Wj6x1UDDnGOmUHOsg78d3IHJpiOdDF/1w+DW6PhrES8lsPmQs7y9gh5eBsKy4oAgDNhTtUFq6+29pel7pFyG4pATBitp+K3an9ysimNrd/Kw7UEf16upKzU9J3Qf0poL/Y76/0YaQzqzzPPeVoB/zegghG7RWBl+h4UxhoTPOoP/w7FaigHgPvBUHnSMpGUcNEF82SjevwAULq+GWNcJs3Cyjy2wdFBp/ovPobyBKL0imB10s/wacZso0nbRQktC7qcxepHe6DpPftMpU/iIj6j8U4M9o9B7lQ7RjXrwjaf+XKSxfRZUTg09kaCxbY1MfrI7bA9PZnnzqFFumAMOyhRXg8RB8A2TbP+6RdK2pSdqgvjcs0Tf+o3ffHAXmtLPemZO6BcZFfuYQewgBVneR2qFzpek84RXb33XkTC7vXI+Fg7QIljmvT+HMM9uo49FAuY6MonNO+KOlvr4rOQUDhVF0+4TThavJIo9SXw+SR0ek07HJZt3wuHYsWspsk4HMU26v72u6T2ydSjyfuJppuTU3Uh5FEWLls0k6PxJbPZjEjZ9LH73oFSH6m8l48Pui7QEoBmLu4o1RtjktRVL+UV74k0H3uSbfC5r8g5qpyqi+czcyhWaS4DLGHsCyn3wKFYUVZcjHmhgfDetJMz7a7ntQAL1x3aobjWkmT+vTkUK7wSd2nM3YAozpgMrX5eor/4aB7CFsShX+xIACzvFI3Po5kHcW6UjfvSBD2dbOir/5vaIU5cWyh1Ah3m3cHPp1l+qsaPXZcOhNSGU3VxM2e9s3t1bz8eTl08zAPA+sULeLndT83i+IbXKIBDseL44xrTFzo5Be13sBx1JT204C2El/6q5Pkgq+gSio8chVN14ZXACHhtdeHAxFnw+yUF26cbc7+ZzeMVl2oi+nmWELvSuu2ouczItIaOTcOZa9X4dcJv30qCGv36LR7oTq0K48+WX6yDNon3G2i4eNtpPr7ioRoApgd2wvEfW0PtxXKxkZDOqbpwIIIxCJRjjMaPfB+JHjPBxLrvFrE1pts9yJ3Kxj99HtvTujzODr+UD8yhsAAzTpX5mnE8ybJ5rBnjoB9z8r8S4cKIGAzyj5Lq60HP/Ii//5g1j+dqNCtD/3MGMk1lwqYfDM+o7bAFbC6UdbHy8QWAggdsvA2iR0+fCJTYW1zjqJ2CURrj6PdLCv+uDkSwcPktU6og45NoXq+kRyf8cU2jlYJcOFUXol6Ig8/vaVyQuqyVnIy70hkmMC1c19J0bRSvLXUYXtJUOxQmxHMoVh5QhMq/HMAS0QcM3w2n6sJdTSM9Cj4ALXfXbQ9NQultHQ3jRsJZsZ0ay5Ol9WHBDYFccV4+Nrb9EcW/NWfvbdODUj0vX1/D/uBQrMj4SltTgp5KNowFwaDQdqb3bzUoLfP+2/7+6/Df7+G/BAaFtoNvgiz1o6TIgLyA6cuZwYURcuLO9w/0lp7X21rHUMcngJm4ePc6yhezQf5s4aaDzvmuZ+BUXeg5ehx67rlsurA6FCsyv+6IxUe3MoZHkCKKC5R3+1ZY//UC6T5J6vV9puek1TKTDIbGp0j4T9guIOm9OZKTcozrXilBcMbHMVzySzhD41PgE9jSMD4OxQr1afNEoQuab+E0E13Z79oMB0OHYkXv+x5kjOjzzfg9Slqp7zcAbHtnNhbkbkHVH9g7WLN2uaGcU3WxaE4CPFOXaQyyh8g+AaVdNVoIx7NZe3gZS5068BpZip1TZhkODedG2bA84Hdev9aSZC5ZPRUnHxbUZ9lYiXnE6P8zxzvy6+LDzBE+9o5hPPk4we17BqHvXfcjIX8Heo4e51HySO3OOrJFek7PfPsclsbh/P2srbLiYmxuryVsDh6108g0gZks6sESGiQdMhyKFQHOcfxekw8YU0HBdfqFdNHmw43DpLsN2SyIgEOx4uH8aKlvGxbKmmRRQCD2YdO8efBZn2Yq4AGAli8nYU3CUnYAO3FSa+/X0dj2zmwJn+WGiUiPBydwPO4Oqw7FikqfnZOEEPpyExpvwtorvijOPgyAmcHq6XOqLrT6PE66BoDWW0cZxshMAGJ20Nb7E1EUR8sGbU0o6tNZorfZ64l46J5JhrbM2qFn6UWXDeXmhQai9ldJUn+8bkjyRTzcn2u9v6HvpPXVz9Vuu6/yiJXEeLa4PxOWOmzdpzWA6Ony+GT4/J7GE2J7W9swxnjgATT+OBH9bXJCawL/wftM52/6F2zM+tz7gOk4Aexw3Hx6IqZm70DOAJbcmCKtisFSMkew9StwpDy2BWNs8G7bio+Vfm6JY0Vrgn7u64VRYl0zXADQel68dF+M6psxM1qqT/+77x3ID/UOxSpZG9B/CqZFGvmYZxlTWufLJIx6bI2hfyLkvWDU9pH1AsFtD09CnS+TOE2WmjUNa9fhqKuSUMOyYQcP3uFUXUjI38HHsM6XrN9N72EWMKcm26R5eHhQfThVFza2/dEj7QBM/X8DnzdqiYh2Wnf0jGb229oepK9rCQ9D1ZXb4L3ZuK52231Vesf0u/FHiTj7C/PnLBIEkw7FCp/euTj6sh2W7CrS+16bI1u0EK6Q0TtM1yFxHszP3YLMTzoZ6KuA/zZUMGK3INCiWnKGaT6uDoySFkz9pnt2rLz4OFVN20GwJ3qp9HxpwAYAzJ8CYE6ixTlHTA8r+nsbr3rj968W4Pd2zEzKq2M4jv/YGpaQQDgUZmsefP9O9Pz0GQPNgMZsle4+iB8vV5f6siA0gJf77FwzU1pEXMQYiTT6BLbkZfoFy+Z1tWIzpfELeSwZXfy0z4DKHnmvmjQ+ADuIK+/JGh/qm0NhQVJECJ1zzFDOqbowc+GnOP1zKHdmL+tihVeVKgYaRNzjbjgXO1UXYtv3kjZ5jUBtp7i8NlBa4MVy+oTTAPDuiJEc/8l7WqH42HFehjbf9FlRqL1YOzgefoNtvCRZ3fEy0wSQCZvyLjvkWtqESv0CgBmNdyKrSE6g/dovi7mkkMpe+b4xyrbvRWzTTvj9K8a007ygPmV81QkOxYq2ad5wqi4p7HTMM5MRvGEs9OBUXUh+lx3wSrt1NDwnes+M16TddEAS309JehZ8AltKffu623xTfMeKL2FNxlbD/ImcEmdaXk+vU3VBfcaOjMhCU6nvbbuZJpFMKc0YLrP1w6zfpKkA2KGYcBEOCs6hN9UkvHraVoWsZXOo6LLh8OdUXXg3qB0+DG7N71f/bhtnfMkkzqFY0WJqEqw7ZcFB8yF74NW5raEP+v9evzc10EbScXdQGBvJAuSs94dTdeG2hyfBqbpQlrYPz2btkdoQf4vjcWS6DS18KqPDu/Fux4e0mBTARo8nb0W4FK6e/pPWV+ynQ7FiU/sqBjpKr13jkQq9t9x4Z1HtcG6UDdW/TUb6nCgeNbXUtV9aN1Yn/SzRfG6UDZcHa8yyvq3QB7ejsF8kj07ojhF2qi5MD2Tf79kHjZolMnk1m6t1FiVhzbrlBgZYbKcwlmlL9NFDPTEFGV92MuARofmrMvN+9W7NgoJSN4j0xHYfDN8+h9H4I23vaPhZInwCWki06JmKWl8zpvT0JBvWhNc2p/WzaJwda+PJoqmuU3WhuU91jve1nFR0myprrUsuXDAwx3Tt07iR9F07FCs6T41DbFONSbjeNxJ5L2qafjF4jEOxcv8w8V7YQnmt63uwPwDg0cyDbvdVgO3D4jsjP11xDRmbexuP9CrWzbnBnJFrhhnQ92IGFN4+oJKWDoa0zQPv2YJDD2oacGqXLCEAIGJnKY4/ZjynmK0VE5p3RVzMBre03EpQAq+/7e+/DhXBOv5h0EdN7LL7HlTvmy2VMZNEAkyjVLr7oOlC7lCsaJlSBYejrvLyOW/bkD56tmHjEtuRGJqmClanJvB7FOJWD+7oc4fXU3l3G7YIZrnFLOFhSPj1GwBM60UMF/W11/3jmMS3XyQ2LpiPgDXjkdPvc6mtJUe3or6lGgKc49ymAxCh2+6rfAGn/E/UL099pHwnlP8p5tnJqPW1xoAU9Y7Ao7O/4T44YoRBTwcaAv1Ym71ns7JiebN3Rtf99p3DmvDaKIyNNGhnPdUzw0/vw91YASyK1ROvLsPbB/tKeanM+lTeO/NEK92jqJOAHF4+8+uOqFL1OpcA/xUg5sLT09Ev7DbTqKMAM1ciibTYFz2DbjYXKSiBU3Wh6+57UPPhMpRk5qCwXyTyelkQ9HSyYY7o8cZ2uwclGdnwadkcxYdzkfuqHc1fTcSg/acwO/12NB54AFnvx3Bthr4PVF6kXwQqS0F93M1Lmj/u1rQj021oMTWJB+hJnx+J0Anug62IdPQcMx6/L/ocA9L7Ic5/Az4JNjevNIsAKgZm0OOmUNbUtj7YjfXteCmYkCda9de3PTRJCuZh3Qm4BF4z0lWC1xvuMdQLWj/WkOMQYAdkfb/drUFmuQPd9UGPQwx3blYHkA+unvYOd3NJLEOBq9y1Qfc6vBuPevuvo9K67W7b9WncCMXHT/BgRpY6dZCwb4PpQVvfhp5uffudXovDjpdnu33v3lWrYumh33jKm8EHTmJFa+aGIAY48WncCKt3OD2uj2X2DvBK3CXl99PT5uXri3cPbcIzLWWhY85bNu4eYdY3s3sfHU7EU/3HmgYQI0jI34HYpp0waP8prGzTAJbwMBTX8oNXIjNhpGBfZvVrbK6Pi7edlqK6uguq5VRd6N91IFZv+VHqrxitV2zDXU69elvrSDnYzN7ts1l70KtKCRyKFfZd15HYoTIvP+KgisVhDf4V4etfS+n5twXreDnq91t2PP4KqGDE/mGgSV2QHoiaNbzRbdJEnpgS8LyQOVUXwmfGG6JBmR3Cuo+bAOvrO/FRk+1SMt6eey7j93bVcDMg0kKLNoE+3DSVX3elkiGCmQiUo4VwXxgRI4Xx7bR9mOnh26m60D+iL1DFD2fsjbn0UD8G/SNjub+ceB8wSqTE666770G1GwlN9Qup/vkdw8YazB2cqoszhPpogwT6cOtmhwFKiGo2D4ghoshRDsWK7HdtyLhfTsb8Zxheuv/B4SSMevtJHpADYHmKyDxSP8fOl17FUH+bKS6ze+7+6yFzcUdk9VooCwhMNsHDr9vQcgqjlQQIaYXX8eDHj2PXs5q02NNhzqmyKI4J+zdJ3074p/FSIuLS2zri128WSgdmEg74bmqMwm7HDfNFbNvT+JiNEd1rPScezacbo2/p64ggzSUP+bFEGk/G26XIZGbfx8yCFlia2xk1+2Xh2JN2boIp0nUqzoYGs5Ok/GNmICbUdkeTWZ/1ZR2K1fSgRd/or98s5Pj043Sp9Bqqe/sh4tU49JycbJpo+mbB3fsTaRcjuTlVF/rePUqK7KavG/JVHJf2i6kUKJGxvnyr+fE4OMF9AmVPh3/AyJBQDjfxmdn7SS+6jNjvn0LmCNkio7zvDmAaY7N8TGZjQiDuH3q6KZw5wAL4fNlqMSa36ApLcABw+ixKzjE/yd57L+K3tjXctiHm1BOBUqWYQf7zdjR9u/zgF7fHT0SVH7VvUkxW7uPf1ODHLIKIUwy5Lz4nMJsH3n5+KL12Ddnv2LB+xAyuQev8Shy2T5OjuD6cH23wuXUHM49sRd8Nj0rRCAkyPolGyKPbkP+cHU3fMU8zQP263jdS0nxRP25m7npaK9yBU2UpfRputfA0P57oA7QUBu5SOZCQxoweYpRFcChWlLYLwu+737llGQ86s07b1vtvY8Reif7tlh2PvwIqTBMroAIqoAIqoAIqoAIqoAIqoAL+ZqjQiP3DoM8j9tHhRDzekpkZePn6Ym3ONrdSIOtO4J1G7qWu4j1uWiBI3MQyBGL9jK86Ibv3F+VKd83uzc/dwpMmZn7dkQceEPOUFfeKgM/6NI946F6PByfgrVlzMGJdnBSqmGjWawT0tJppCT399kRP7lQ7qkaeRv070zEtOw2vtrbz95TxWTRCHk5B7is2gy8BACw/msjNSETclg0KEsIS0O6jeO5b5QmuOzqjyzvbDBGleuy7GxvCfyq3D5So8ma0MgQ3o5kww2F2X8RnVvbwazbuvA6wsMmkxTWjMfD7SUgb9CEfWz1OfZuitLy8uU30LL7/E0T5VuLPz0ywYcqzi/Hil6PhXQQ0fSfRgKt/JweKj5+QcLlLTmoGTtWFwrIi+HpVkugSTfbEfol91d/XP//gbCCcbWuWq50s6h2BSr8Zpb2WNqEo2Z/OcVIdym0lwrUBUfD7xaiNE9ukhNWeJN5cI2/rAK+kXR7nKSVK17fjUKw4/oQdjT80/85y3rLhkyFfSD5r5WlvnSoLyCDmLxSfkZmpGbh7l+VpUg3ztmlHyU9UX0c/PnQ/7Is4tJxS/lrg7l552grvtq2wZt1yqYxZv8zoLG9dtzRqiISd67SyBwbA2foXAEBshztQcuqUsQ/r/eFs/Qu/PvtLKNZ1WOR27fA0Hp76AgAXh8fgeOx1hIzewfM/egKx/5PybNy1gNoUTaXF+7nftUPzIXu4RYlIo95FQYSzD9pQ9wv32h8Cs6TchJf2ZzG/ItEW+lUcd4e4WchaakVm90XIKrpk8O27bfc1bG7vV+4e1DbNG3sjSpH5UQyabCnj6RP+7DmG7gHu56unfcyyQcGZL1qgoDUQ8KLRlNyszr8lj9jUbb3hV90YKfuvhmuXijC9QiNWAX8XOFUXWleuyq8PzWqH2Pa9AMgbGP1/p5F2nbEogn/MRb1ZiOoj021onzJCPsAUXYdTdUm4HIrVdPEJGb2D339U1ULmm5lY6A9DzX2qw6m6kL3UiqyeC7XD31uf8TKemDCn6sKAfQUISvWDQ7Gi8tpUxPhZEDo5BV4dwznNgd9NNoyL2YJJ5Uu7dTRdAJ0qM0szo+fMONnkrvn0RNS/Mx1OlYWuJiYMALIHzQXKynBg4ixpPOi3uNmLbZf0UOFQrFDeTZQChNC7unJPtIbP24LKzu3YcjKIOwET6Jkwffv0v6hhkYEGsUzkS5pTdeC6cRJOs7ko1ncHVIbehVj+nTMhEq6WU7VQ3pmLO8pMWFQ7iXaHYkXIo9tQx6J9O+K7zX3VLs1xp+rCr8sWSv2h+7fHTzTQvTIvBS1fTsLLAZHSONSbn4TZIcFo9noimr6TiLNjbWgzS46odrWtvwEfMWHU34vDNX8Lyhkljg2FZybIfcWOXlVKeBvumLBuE+W+XB0YBfUZO4Zm94JDseLJutlS//XjQUBBUgDAP1kLrlOyPx1FvSN4HerH8BoFhvng90sKLBsUXteyQeHviAIqpHf7kuMyHIii2knXXklamGuz/wA4E2aGU2TC9N9p+gOzJSbMHY6MRRHSc31UTrE++fpRX8RnSZdDAAD9u9xtYDrcrbV6cChWUyZM/00SfjHtBJn0ingpkIQIp+Js6LfvnFTW3fcs4qKAGnSv1edxiHHdC0toEPKft2tjdGNt7j5ugvQ+naoLsa1uN6xBAJB3X7Bc9gaD5VCspkyYU3UZgp4UHKorrcsEFITDE4h9F/vv06QxAKDG8mRk9/4CALAzcjnyn5OZvcJ+bF89O9YmjaVDsWKuvzx/vf38pKAcIp7mQ5hZK5n1i/0lZgkA0hdGSPXqfpGEoQeOG/DRf6fqgqV+PSTPmAMvHx8pMi4xd/36Dsf5lsxELWuGDWW2DpyGgOdZcKfm26ohawarez4hWBorS4MGUvtBI1lSdZEJy/gkGt5+fqZMmH7sleQaPI1C8OPJqJZ3FVlLjeXF9yZGqBbHAACinzfm5qN6gT9o+QvTF0YY9saEsATUXpwkMWE0Nu7OK/aPxqMC/m9BhUbsHwZ9sA7y37LUrsV9VSwbFGBIIRJ2r/9TkqVjT9nR5H2j1Lf9Di/MaLzTgGvx0a08RxfgXsoHmDM94uLmiRmgQ1uN5eaO3SKe4Tk9UdDlrCnum5VausNdnjSMbOjdtQ2wUMZmmi+n6kLgykkIeWgbfAJaoDjniCntXp3bou+XW/BAzf2mmjIRXstJxXOZ92rhrAEc/b4tms6sxLU7APNpyPAghXRnz27WP3dj2N9+Fw87r38W22sISg5kGJ5lfhiD4CfM3/m1AVHYNG+eYXz0Y0FO5wDwzPGOmNFY9s0r7/swOyy666slOAD5dzYxHNqp3JwjWzC5hdGnhd43wFJQUPRTp+pea0F4Mz+IQciz21FWXOxxfpuB3i+F8AYviUPQM0mG+4Q7fXYUwuZdRtlOJgBIX9AZYZNYMlnycfDy9YWlaRMUZx92O0/K++Y83df//vFydSlh9M186xQEx1P5jM+i4X3Ni/swuWtf36ebXWvczSXRTy7r/RgEPZWMFXnJqO7tZ8pI6+8NzHDgxxBjsAVq+9RkG/fnvNnx1vefAn2IfSZw165+rMgnuKR7J1g2siA0pMWgerHteiJhz+9uxzdseyUc6lwk3TsVZ8OOl2ejX7AdpVeucDpEXzsRKBCSQ2FRfWlu3yyYHfbFfupp1vs6izjIl9fduOnb1d+/mXXg/P0xqPV1MnKWdeC5uPTthS2IQ8uXNc1n5uKOpgFaPAkfACD3u3bw2l0DzV4z3/faJt8nBTTSj5clNAjZ9zfEwfFatMHy1n3as5yqC0HfTkbw4+YBN/7MeqlfNzydLQz0zI00JBlXV7bBnuilcChWKWiHU3Xhs3PNsKpNPX4t9jnSVcItWzI+i0ZA/JZ/RbCOKcl9/jaN2Osx627Z8fgroEIjdovAynQWyeqX8Do4/rgdJefOY90VNskTwhJwdEwY/3Apx5UoCRIXT4LiqvI1haTe3anMsCE7VRdGNesCwLgJOFUXfFoYI1qFLI6T2o3tcS+vr5dSERBukQnT94PKdB8/AcsDfpfuuTs4Fa5rKfUnaPlkCX/+83L42K6773FLG8AO/GuykyW6YnsPNSyiLX84K+EQn1Pi1UOv1zXgJyjbvhdrwmtL2hyHIocPJ3g5IBJlZXIo12b37pVM7EYfOorAG1LIggdkTd7ioywZcNin1wy4816w8/eWs6wDgjeOkcaX+kX5o1YnrjL021KvLpNE34jIJ46HU3Uha5jswC/C1XoWaXz63q3lhhLnUfHxE1xiTPOY6vULvpE8+bt2hnoEVF4/j8zeTcIfK02ZMKfKtM2TW3RF3gt2qR2n6sLqrT/BqbKE3SVnzsKnZXPe9owcY24ceuZUXcgaPgdlxcX8HuE0G089EBMmlncoVti77jPUEXGHxqWgbKcWHjp03HZOA0UDXJuzjef4cihWVPujgQGXQ7FyjRnlMTz+mN0wtnraj/3Ymv8++yDLvTewmhzcQz8WPk0V6Vn+D+H8MEX3LK1DDG1lD5rLIzk6FCu8O7C2wxbESfj0h0Gz9VJPGwBkFV1ih9yv5bD4eTGXeB1iAgf7x0h1KYGtGRMkMpj69wsAO6YaD7V60N+n6zPjWbubP5sr3dd/JwBw38E8/lvMzaUks2AXfaoyTbtl4w6udSMmrFESy1tVcuYsHIoVT2Xug+1pZtHQL1DTCn+ipHJLCGqrqLoXHIoVazITpf6v/WkxLGEaw07aHdJoekW2w9rVS6R+6/cm/RwxO9CL120/iZfuOVUXfHrn8nv6dyOGnhfxmM0ph2JF+/c0rbq+jhn9AHiwKpEJ0+MgJgwAJqZnI2h2qdS276bG+OhwomHO66H5kD2cCSNaaF9wKFbsjZHHW4+vJD0LLaYmSWuxvj/6eyQ4dChWVM/xNl3/Qv8YzWmiVBX693xuNNsTxXWJvi0zOoJS/UzHInRSKrytbfj1VWcAGsyuysvtPqHw9h2KVWLCLpVek/C93lATJEzttdLQrwr470MFI3aLgJhNnZKMUrRBh8LyVxGQVHrG2SAA2gI+4qAKEfbHyeZxYsQ1gOUBERfJnGUd4FRdiHSV8Dq0UK5O+lnC7VCsyBg1G21mx3N8CRu+B8D8wPSHW7OF8+TDMnPk06KZxMT5JqRyPJRnR2xf3PB8+xyWcAU/qUVeBNghVVyYKeIhAG5eJULu7HqMmSm5wvGW7E/nJnSUM61090EcfVnTZMW262lczO/badp/fX8IR87y9jxxtdgHS82a8O1z2C0D7lCsUghoMbw5ADS0sLxvZWmatLL0to44+6CN+x04FCsCRuxC0EiXATcAJBz8g7+TnOXtpecJe3437ZdTZQnAzRiLoy/ZJVppTqz9aTGvf/ueQW4Ze4I2iffj4IfhcKqamY5DscJ3U2OpnCU0iOeVEelblZ8K7xo1eA4/sc8Esb2G8G+txVRGr/9biYi9fRB8/JvyOlTvfNczAFjCaqK9fWU/CadTdeH0JM0sqc/gB/izS2sDDTgdihV37T/Dr/UJsEXaC1Yzk7cTNpYvyDFwlFuhh1l/naoLr+WkSuNEQNHi7E/KAg/S+pCfSuOPEw1zVX8wU17X/BxTX58tPRPrHntKMzFdnZog0UoSeLEPJQcyDHNOz1yU7joAgCXT9QR37T9jGAezAzyZUwXfv5Obnemh03SN6aP359UxXIrMRzRaQgL5vb7NO7s9JLs7NJvRqC9f73PzsOPimBEsaeWPDu/Ew6Gw3Fz0bGHzzYY1v9aSZHhFakKRE7YLUhvvB4ej5lJmgkyWB0TbrKY3cmiVXAYAKDMSpecOxYrDb9zID3Uok+P8tjX73mlvK0vdYxib2A538HsX1gQZ+m62TonQ9O1E5E61m44PANyb1RsA288yF3fE2ENHpOeiQEdsr8e+u1m9K2WG8gDTwgBAm1nxUpsvZGmJ4SV6vbxgfTteekZjN7j6BR71mO4XdjvO/dMJ3OVY1K93FB6+cF1LOBQrVuTJQkz6OzLNbjqm1J+8YlkAc+UeLXk9QeOP2V6V+6ps5hkwfLfGoLdazWm7OjAKJx9ma0ftr9hc3/WcbOJJ9Wi8+PoaqQktaS3kY+Paz3+vDf+Gpzi4NDQGl89VMRVkOBQrBvvHGISkVGZZKwUr040a3gr46yA9PR1Tp05FTEwMGjRogBo1asBqteKNN97A5cuXbwpHWVkZli5dCrvdjvr166NGjRoIDw/H9OnTceHChfIR6KCCEbuFgDQWgLzwuDt0/9a2BhyKFT3GMpviN1cONuA0Ozg4FCvGpefwZKwAC4ZA0jQxAASgJS8U4diTbGFr9loib+OOoWMAAIkfzjHQTQsSSZgAoOGncoJJYvZ6jB0vLWARO0tRfDTPdAEn0G9CSnIN04OfQ7EifT7b0OxPsEOkGIiA6iiD9sOpujC8mV0aQwr1n7DpB16epIMBznFc2kvlKdm2nintFxjDygj+InOObGGM0PDdUt/2XWe2+AkH/5D6UdwzQsLr1TFc6gOgSa31myLADvpn2/ih7n7j4iMeFswO6ACkjc/d4cKpunDHiLHSGPe59wH+vNkbsnnLh0/IJmMAUMWRI0nM0+dGMmb4RqJoAKi3pBpCJ6Uaxrmw23Gp36c+sCDg+SSuCaG27moaiTWHNqP56rPS+B1+3Yb5uWwM6WBPuIihm7l+MVanrIa3n5/bw1mrLYwJ6jNkjIH5qT83ieOlABRO1QWfz+pDD07VxaWrANOuWGrWNP026gxgufSyllrR9677gRR2KA1YNRFO1YWh2b0kvAA73DhV5kPkUKyI8tVMT8wEK6JmW3ye8Vm0gXkT64lQtn2vWwaj3YfawUg0s9YfcOj36Yk2ZH4kM6dU5rkTMm79fNXT5lBYknD/5OrSmFPbfe7VmOZTk20G2jcumI+Xsl0GOndMnY30BZ3hVF08gfna1UtMx6ogsiGy3mNrRWl0W9O+6+udeMSO5UcTTcuKNB6Zrh0Gzb7foOWTTdcAOsR6V6vGhQUiFPaP1A7EgkCF7g0+cFJql4Da+CU/jf/uNvsZac0S6Wj5ksxAnpmg9afy2lS0TvOBU3Xh+BMyc5Gw61f+O6nDCrR/P15iFvQMn56+oQeOo/n0RP782gDZl+xaCftmri3wQvUa17AwrAW8O7R2K4ig+2RyLqYMEcuFTmL7dbPX2bvNf86ORkk18eb9oyQmi49pWRlcz8+S3h8x9vo9kfy3xPdReltH/LpMTh1CzymsPmkgvdu2glN1cYFodW+2z7ff4cXbcChWhHbPNhUaEN5xQvoCh2JF1R+2wVKzpqngofmriTj5kN1wX4+3yo8p0lkDAIZm9zL93hp9ksiFd/r58HJApFRH/P6qelfm47z1ozkIm7QbIam+bunSC0nFMqJQ/laGkjLvv+3vr4QvvvgCH374IYKCgjB16lTMmDEDYWFhmDJlCux2O65eNQ9sI8KUKVNw3333oUqVKnjllVcwY8YMtGvXDq+88gr69OmDP+vx9a/3ETtx4gReeeUVrF69GidOnEDjxo0xaNAgTJs2DbVr15bKHjp0CM899xw2bdqE69evo1OnTpg2bRp69uxpwHv+/HlMmTIFP/zwA86cOYOgoCA8/PDDmDx5Mry8/rpM32IesSFhndwmCgS0zZIi7JltkvqDhUOxwhIcgIQ/VmqL8Y0Eh/Q870U79j1szLUEMBOGwdUvuJW4iglpzQ7vYoS49DlRyLlrntSOU3Xhroy+/MCsj2YHAF0em4Tq320z9LU88MRMWGrW5Nodp+rCogsNsayVYhqdTwTKHeNUXdzfhyJWie2I70GMlEjg1TGcm8xQnYLVIUjp+J3pZqLvh/jbu1o1BGwsQVbkNeROtXPNp+ibQHWCN4xF0H1ytMB3crbhuYBoQ19X5afirqaRhvbiMjK56ZhIV4PE2jhlPydF06O6884rPNGo2aHKE+h9nwrG2JDyprkPnDuGkIB8adzNDf0Yh30Rh4AfL/LkvJfvjeYRuESIy8jkPk3Utt6f5dRkG3ZMnW1Kn9huUZ/OXLqq74NTdaHbxIk8AiHVC0r149Jbp+pC9HNxUi4cd7jMxkgEwu9tbYNS135DHfKHI39KszE0+02JWOm+7anJqLksGbmv2FHlRJn0jgA5596JR+xoNFPO3ybi5+PfbwTXeLnrF8CSQvuucZ+YvKhPZwS9dgAb/mgP/w7HUGXQKZTqJKfqyjZceEP1FuRu4QfLI9PsaPHKzSdp9vRuPK1rAGCpXw8lp8/gyHQbDo4vP2KdT2BLoLQUxYdzcf6+GDSceFjKhWc2VwlG5vSQEtjS83YfxkOZYZ7zDjAmANYnwnUHIq6zY22ou1CeJ1nvxSDoac9Jpd3BQxnp+CxEE+64m7ueaPJUVn3GzsekvLIEYlJmM3r00Ug90XJhZAyS3jPmd7syKBpVV24z5Ab1RJ8ZLRRddVV+Kny9KqH1vHjU21uCGgl7sCYz8U/PZafK8nqFTk6B+rRdsgq6GfAJbGnq03oz78qMzqeOdcK5oqpSTsSMrzrB4lOKjO6L3H7HN7Ofi/BviZr4QlLfv81H7C3b2r9sPLZv346QkBDUqlVLuj9lyhS88cYbmDlzJh5++GG39YuLi1GrVi20atUKqamp8PbWGMX7778fS5Yswc6dO2G1Wm+apn+1RuzkyZOIjo7GF198gYEDB2LmzJm4++67MXv2bPTo0QNXhENQVlYW7HY7kpKS8Oyzz2LGjBm4dOkSHA4HfvvtNwnv9evXcccdd2DOnDkYNmwYZs6cibCwMMTHx2PatGn/K30ZFMrCFxMTlrmYmQSYSQOJCRPvEay+4ofwpPukj1xkwgAg84Vw6TkxYQaJGoA5EwajX5/hbukOGb0Dq/LlQ4zYVvDyPN6H0MkpiO1wh1TGoVixKmQtL//rsoVI/7wzp6HH2PE8GbK4mFrq1OG/AeBkvMbokITSbIzI9KzkwgVpMfzysbsAAI/UOWIq9SIgkyyHYoUznzE0eiaMntO1WUQuch53KFbctpsdYOv0zzC8z2NPyaZy1+6MQv4P4VK5Wfud/BBOJo1O1SU5iBOUFrFPPnupFUVlzAR18VmjmURJ9064q2mkYe4BwLyYKENfAeCU/RyrKzBh9PzrXMboXRwu+8WI81uk852cbfyazEoJ6ixK8ihVFWnSv0uSNpsxJHRf7HPLKUmcCQOAat8zuijKllN1wbtGDSmwBIHIhAGapLv4t+Zu2weASuu28/bNym2ax4QZDRJrc3qzImXTrtqLkwz9MhsTujfzyFa34wFoZjj6NaL0BPseiAm73pcx7ken2KE+o83dQftPIXDFJH5dnK+y9a4X0+pStLfm0xK5vxO1fWSaXUp83mhmInrvZaHgz7XS5IgRr8p+XqW7DuDEo/K3R75b4lhsXDCf9ydjZrRhPlZatx3rt7dF0DNJ8O1zGKWXLxvm7cTQrRzv+QQ2F0ZNfIK3e3DCLFjq1+M+KiKdltAgOFUXjr5kR5vE+/laItJo9k7E92CprR0qSk4zM0ryw9HPL9KSExRnH0bx4Vxc/7UFai1J5uuxfv0kOtZftSDoG6YtWxqwAWZgxnCI/Qh4IYlfWxo0QEO/iwY6j0yTTc/0tHgXa+NBz/VMmB6np2ciE6YHaoNM5L0qVTbFLfmnejPLkovDmUaz2VeZhvKEl3C9k6OFWQeAGocqSe+B9j26JzJhlTY2MXzjdH15cDRnwvRzq+pK1qYZE0ZwaaisZdavk07Vxa0eSHh3YOIsVPt+G0qvXNHWqRnG+a/HR207FCtCJ7P+ERPm3aE1rt0ZJZUTzScvDmN0WkICcaJHE6kNMzD7Psz2/4hpcXi/yQ5DYvrs3l8gcKTLLR6xbdJAB6wZj6EHjpvS5fV7U7e03mpQBi+U/g1/ZfjrFB8A0LlzZwMTBgDDhg0DAOzdu9fwTISioiJcvXoVjRs3lpgwAFAU5rtcrVq1P0XTv1oj9vjjj+Pjjz/G0qVLMWLECH5/2bJlGDlyJF577TVMmTIFADB06FCsWLECaWlpnFO9dOkSwsPD4efnh4MHD3JN16xZs/DQQw/hk08+wSOPPMLxDh48GD///DMyMjLQooUxvO//BPQaMQCGBe5mpDnuJKhO1YX+kbGS9LlvQDR3wteDp/YK17XExrY/Imj5ZGQNn2Na7tiPrdFkoLkUWixL/9MXdEbouO38uSjRpGhX1LeYZydzp2SqT9omT5InDt4WOPPSJLpv3zMIVRw5UnnxP+VycaouhC6KQ/qY2YZ+6xdgEcfhN2x4afB3GF3ztPTc07h7us/HTYgipcdJZShnXOG6lty37Gakf6TdUZ+2Y8+Ts25aYijS4VRdGH3kdu4XQtHNin9rjtOXqqHxwAMGes6Mt6He50lov8MLuzuVGb4D+m2W16o8SafZvHb3zQAsKMGSVv5uv4ebHUt3beS+YkfgoqMoPnL0pnDdDB29917Eb21r3DSdlGvHU5uxdwxDwq/fIOqFOG5OY7Y+mY13yMYxCBzpMuAUwR1tTtWFDu/GY9ezs9y2Yza2ljp1UFJQ4HE90D8jrb53tWpYk7EVDsUKnyaNUXxMDuutx6Fv29MaHLx0MjJHGs1uAVnLevRlO2qnl+J4vyI82GkrptQ/iAXnG+Pb1o1Nx1iPz7tqVXgFNEPCr99Iz8qbYyKuU6vC0OCuQ4CXF3w3NkLGhkDTyLAAkPFxDEIecx/B7sg0Ow5OYO8w8+uOqOqqAuW9RAM9+vxYejyLcrfgtm+eMUT/1EP6/Ejk9J+P2+MnosqPsqaIQJwD+T+EY2/MErT7MB57nphleLfljRutVXrwimyHopqVsX7xAql++hedEfrgdkN5MeKnnmZP801/HXsoFiU9ZF9xd+Bpvva9exROvnwdNebXwqa58zyOgVgvwDlO2pfM8OvbNhvj67+24Kaa4nNx/PRrQW7xJfSb8yz832TzSD839e24y8NqxkCRT7Co+ddH4xTrPZW5j/v4m7VN/b89fiL+mDVPGqfisqJ/RdTE55P6wfdv0IgVXirC27Y1aNiwocT4HDt27C9tZ82aNYiNjcXUqVPLVbh0794dmzdvxptvvonBgwfDx8cHGzduxMMPP4xBgwZh8eLFf6rtf7VGbMOGDahSpQqGD5c1NsOGDYOfnx8WLmS5gi5fvoxVq1ahe/fukrqwevXqGD9+PNLT05Gaqml1li5diqpVq2LChAkS3scffxxFRUX45ptv/tf6JH6wR6Zp/knXHZ0NixVdP5SRzqVch79pbygjMmEOxYq1grZBbFdse8C+AsOBh/LkBD+p5XiqsqmRhGd31DJDnyiSGtGT8xbzp1CftiN03HaJlqCnkzktotbIoVg5Eyb2XZ87St93L1/NTtuZlyaVW3GpJmfCRJwSI3WDCXMoVqSPmS3Vp/LtPornNOoZs5YvJWFJK38JNwCDM7PYB8feC4a+iEEkAPDNjtrUj4FTdSF7egQW5G6RApnQ2OrBEh7G65F2h5gwEWdZF9aWPjKhQ7Ei+VqJhFN0zqcQ0z69c9H4BqMeuG6cVL7e50xKPqPxTkPf6PeloTHwKpP7CgDhM+VIY/R8XHqORL9TdcH6VryE36myYB0iPmKc28yW84JRmV777zJtTw+iH5ZYpvm0RK797j6erTPeVavCutNcIktQ1JtpkCgIAo3PyYfteKZuloHOjVe94dPM34AnZ1kHAxNGZSgq66rLVXGhdW04FCu+nPY+LMEBUpvieiHOLYrAGXgj4EtR7wiszEuBT8vm0neiX8/SF0bAJ6AFcpa3h0OxovFHiYbvSQQzHJduD5Ho0Ud3FGmmvGcho3fAqbpQevkyL7M6bS2cqovnCjN7J2YHTOneDY1IbO+hCHo6Gf27DjStI5q6NnstEYkfzoGXpRSb27PIgRSAovfIBw3t67/90itXULLvEDq/EsfviX0efcjc7N2hWNFz9Dg4VRdjwgA483eisNtxt0yYU3WZMmGE7+yDNrR4RTNJ86ty3ZQJK72tI/zfMgZ1yVikBVFq4lMdh0ZqOShFGsT3EzqB+YlW+TEFg/af4uXSiy6bzpe9MUvgUKycCYOXl1SO5oPo70NteXUMl5gwp+pCSQ8mTPXOPcHzZHp1DEdQKvMfzen7OS9/+V5N+3rk2yAJjziOZr85Db835dYgDsWKhLAEqM8aLTAAY140sZ8NEmtLz8pS92BH52/g93OKzOgLkQLF93Xd0RkA25dOPGqXxk9f3rH3Am/bJ6CFtJ7Qn5iiRawvMrEOxQpLm1AexGdC866cCct+x2aYm3wtiWFnJJcQh0T0I9TPEWLCnKqLB5VxqppfZ+aHMch/TjurFTxgw0ex5vuD+D0G/MiEBfpAVv+WYB3/Vh8x076UlOC1116Dj48PRo4cWW75JUuWoGfPnnj++ecREhKCgIAAPPjgg3jiiSfw1Vdf/en2ff4nRN8qUFhYCD8/P4PPlre3N6pUqYLs7GycPn0aGRkZKCwshM1mNMGKiWGbcWpqKqKiolBaWoodO3agU6dO8POTI5xFRUXBy8tLYtoqoAIqoAIqoAIqoAIqoAIq4H8HMjIy/tc0hI8//jiSkpLw5ptvIizMGJxOD76+vggICMDo0aPRr18/AMCKFSvw+uuvw8/PDy+99NKfav9frRELDw9HQUEBXC6XdN/lcqGggDn+5ubmQlWZRqhpU6P9Ld3Lz2dRgAoKCnD16lXTsr6+vqhfvz4v+z+BJk2aSH8hIUyCS5FyHIoVS45uRdtP4nFwghZ+vrJzu0H6BzAJimjbfntLJhWP2ClLu32aaGG8RUkY5Qcbmt2L3xt84KTHgBXULsBycJhJyEXIi7nEpc8AuJP2nieZP5OYnV6kz0wKbdAe3Wjvs3PNTKVvZIKZPitK6rdTdWFeqBbxS13ZxlRbRG0cf1wLnf366VYAWMAPS/162PO4HArXjP7TE5kWkCKGDfaPkfCL0npn25o8h1xa4XUA4BJjh2LF5cHRvB0luQbyVmgmEEQbjfO45l2RvpBJlnPetBmkj5YGTGOgN2XS94dLYLey/2KIeK/ObeFUXYjxs0h19CCOR/rcSISMMTcvdChWngdO/z62fjQHPuvTeM4yKqNsuYqMLzvxcq+cYmPy3B9DDBLuRjMT0e4DTdPVIWUE7moaKdEcvJS1r09aSmOxvo2WR41ojO0+2DBP9/8S5vH7cKosTQPAfMpcHc2l4NRupd+YJpQ0jBSivv6eq4Z6lvAwbLkciuKjeYZ2S9UqBvqpDXJwf+7rMVxb83hLOw+6A8jrhf673ffILOn+2da+qOpdGSV1WK6psw/aUGVTI4OmMnRsGopzjqDmb7J9/fCcnhL9x35sDa+O4aaasio/pWj0+Edwn05xXKg9n2ul0n0zCBmTZqqZNStvfUsLFQ4AKGUa4oTfvgUAnoeNntMaLc5beqZPtOtUXbBs3IGs92NM55Ae6s1n/mEbr3rzMk7VxdNbmK1zlX5Lc/vdOlUXzoyzcR8f0kLo36GIu+4XSfAWfCX8B8spBqic92bW1/sPdwcABK6YBKfqQnafBdK6aPHyxuHX3fsYifBQRjpWtmnA23ikBcuReW60ze0aDwDPZmqh4I9+r0WpzIjUTPmJJtFsnu5bNrDAVSUnTvJ7ZTv3ISvymrTOO1UXqn2/jV83/ExLr1JYVmTaJ7GtwrIihrtnPhrO0oKihM+MR/OlR2CpXYtHhiW8f8yeZ8BD16fs5wzaU6JNjCK4JmGpYewBdj65Y9hYAECjTxKl+noNsrOtdpj+cONSjvtK6XXDGIl49HsXwPyRxWiqDRJro6R7J2SMkq1X6PzhUKxAsvaOHQoz4d/1jGz9IdbV0x+wlkWp7teXWWIFP5GMpu9o+3OdL5Mkn1aviHCpPv2f0HUTw/PRRqZt69YRnV+J+9dETSwt8/rb/v434eWXX8ann36KiRMn4oUXXii3/JUrV2C323HhwgV8+eWXGD58OIYPH47vvvsOw4YNw9SpU3Ho0KE/RcO/mhF7/PHH4e3tjaFDhyIhIQG5ublYs2YNhg0bhkqV2EH2ypUrPGiHr2CmRkBaLyrjqSyVv6Jzwv8rQFRH39esC5q+nYgJR7tIZcRDQPrnnXH53mjD4pQbzRzJ0zpqr9apulB87LhhgXOqLpzs6Q9vaxue8wgARtbIlupKcEP7GP5pvOGZQ2F+ANTGiUc0dX+N5clSecrD5VRdyL5nLrLftvHw91SOrvVtUEho0fxmVZt6sGyQk7yKEBqfgvznNBMOh2LFfQfz+HNl0H7Etu/F8ekX/8YfsYU2LiOTJygtuXCBO8aLIf71Y+xUXUh7dTYyFkVgReuGOPyaljfK3eJP9uURvswp/MLIGF52y8y5vOzmrGDss2kJNIk2sf85jgUAgIAXtUAV9Jew61c4VReC1o810OBQrCiMZQE7+vUdjtjeQw3vA2Dhx8XcPCceYT576so2BnwAkLXUitBJmlZZPADwg+iTmlnJ0ZcYvtGHjqLL44xBKjmjJdJ2KFb8+s1C1Lph/gMAyR2Yk3voeGbKcvXuKAn/nic1IQf5q4n0BD2dzPLLxcimvuL46ekuSc9C0PqxUr6ZvY/O4oyyQ7Gi3tY6UjtRL8hJ0c2AwrHrN3Kn6kKd/ix5NkUapdQMAFCy7xA2PNEFYw8d4d8M1aOkwoRP/44cihUHJhlz7ZCZo7hemI2POE4U4ZCihNbbfRE/hjjhUFgKBrEOoOW1Ipra19AEXw7FiiYDD6Bs5z4DI1DaVWvXqbo4I2T2faUUFsHnUon0rRbGRkp0mwl29L8pqBIA3k+zehRkgcyy0z/vzNfokAd28PL9AmVGixK7U5+CntK+C8IJMFNTqtcoqSZylrfHpSHReCuovSmz4lBYbsb85415ncRrCgzkUKyotyCJ+2jtfkoOiy7iTyksQp2tdeFUXWi+oVTCq2dceF/q1+PMQMgj23jKDhEcCgueQ3j0c5baeCgjHXdVu2J4BgDb3pYDwejf87tB2iG4Se0L0vzSj4875sAMyFzQjGaHooXA7xc7Er5elUzHqtf+u/h9Cogh0uRQrPB/KxHFefkoOXeeRwxt95GcG8uhWCWzT7ENApFxqVnpGv8t9ldkMHruuQzvzTtx7c4oTjetufr3I47fIy26cNoH+UdJ4+NQmPtClU2NDOPlTnDydcuNsGyUozgDQOIHcwxl6Zl3Fdny6eyDRmb/0pBoTnvo+J1wKCyHqNnaSW0TrP15ieGZl48PXqzPDuuUhujXZQuxfZrnfIYV8NfCq6++itdffx1jx47FnDnGOWIG33//PTIyMjBkyBDDsyFDhqC0tBRbtmwxqeke/tWM2G233Ybly5fj4sWL6N+/P1q0aIE777wTPXr0wIABAwAANWvWRNWqzI+o0CRAxbUbjpdUxlNZKk9l/idw7Ngx6S8jIwOAphETtRu50ZfRel48/9iXHNUim4WO384juAHy4uRQrBIes82SoO7CJOT1qS0tHIP9Ywx4/x97fx5f0/X9j+PP5IaY5/EKkZEYr0Qi96Jml1BVSqlSakw6VyeddZ6rrZqVUrRaVW2FQylKEiFcM5klcczzmMhNfn9sa5+9zzn38vr++ulLX++sxyOP3LPP3muvvc+e1tprUFQXO0Te8u0iursHBEnuw7sRspx51HJNMd4UEbgzsrlHQKfVhuCXkuG7VatTUV1Yv3whzx+8/lFex7vBDE/tuclcNx0A3N1UHqdMjGUDAJmfxaLRh/LtxqhqZ/jiempVc7jPnDX0Y9W/6vD2Oa02zAwLRVEfDTcxSGRXIQazJjwdn56Evn2H8xsgffBYkemjTU2kvdfwMahx4KIp8ya6ojfbEMyeCUR8egl8+ix2MKDbmuxXysN9MN1gZ6CoLvhsbAT36dO8fjqQ7uuwVGofABxd3tpjsGhP9DV+l9mZfDekF6oslxl6EUe96eYukgFgy8w5UJ9zGPra08EIuBVfLkWOlaaoLnycm+KxTOjI3Yjxlz2dBQw+gDFHmDdO0UW308qkp2Y0i20MfdrYZvGQITHd/eZK5f02pGFY1fO4p4K5UOXiCHbg6me/1+MBV3zW365RAG5vIPY3AMkLpd/GNOk76OsDgM1ttNs7CuKrqC7uJY7w0/oBAB1ekj0oir+dVhYfrULeBYQu025eaaybgadxZXZzBQA5H9ilb0QORIKmJOOFrH3IiZtnOo7XZMvOBSgUhaK6WLiMW78ttWvBfV4bS1WrXOeB5U/aLyFo2F4e8sO3VXPTw3BxfgEafaDFw7r6QAdun0dAgbIBwH9zA8O+IK4HPlHslvK1oGh8H7QRTqsNswOSsaLAaNsrtv2xjHT4VNOczJxa1RzPNrUbxrd+bIp0hu3w5+W/Dgs3MOm0npnVr2cOiEnx65nnkYnVp224bjHFDQCl9rZca4LozviaaTVMyWLrS4XfUxG8YiJKXAd5nriW3SQ8fj3zAAD9ovog8zOjF0PAKBAEAOtHRhu/IW3TDHSK45UEp4rq4t5w9flK0w7wZ4qvKdqUiTdw9KffX8X/ADAmrzMA5pRDUV2wfpKE611OciFL7tty7DsA3JOlWX9QwHT9GgMA1+7vAL+GDbgHZcpX6xvZs66iulDlx+0anSWyLbR+bTATUCiqC36NrHBabRiU2QulxcUGmpxWGzo9ORH/FnDD9x/7+38Bb775JqZOnYpHHnkE8+bNu+OwVKQR53a7De+Ki4ul/3cK/2pGDGAcaEFBAXbv3o0tW7ZAVVXMmjULBQUF8PPzQ2hoKHcpaaZSSGmkilizZk1UrFjRNG9hYSHOnDljqrb4dwGpbwC3FpqWzE2z02pDdOLTfEHLWMTUWXodulfKTxM7YPAB/pyzrK004ScfZ2UHZjihqC6+SYh54ro9wAPn0sJytuN5aSOcf1HemKdmM0Yj9GntoDrmyFEJt/i/4afsEFDqaCu3GdqGVdKZHT7CHtklLW5nx7IF+c8F8+C02mCpwwKukhv3TXPnSvlDn00x3G44rTbEdXsATqsNm6IW8HTR5fXlzme4q2yCP7/RcOvjslT9wWggXGV5CtasWWZI9/S8sXVlaWNYv2wBSvYc8lrGadUCe2d/aNysCF7P3oX5eVuhqC7Etehi+C5UttnjmpTeabWh6YNMnUNU/aJ3vsNv8jFC754/od0UxGdk8neBQzWVRoLMz7XbvpbTmfSWAoWKULL3MC9L4/L6wBhDPn3biTZShTU7VH2Wm2zoK7Es5XVabXgp+l4D/tvBgmbMKF28taUbGDOaqc7spTZkf8AOpdcHxvB22z6Q1eDof/i38bx89lIbRKC+5Uzosd2oviQF2BCA4qP5PN3sgOCpb7wxvwDg10CTZpsx354YYTPGrKRLO/hd8eF5bnY9biirqC7kvm1HjUXeves5rTZ2gzlZczyU8WUHjuPCKDs//FHwZTOa9Ew6hfoIeikZwesfleij/9+ddqDPfSM991uM7IiFwy0hmNNqQ+K+jVJb0qKW42C8JvgS+3XNuu9ND8OK6pKcL3zx8VdIv0czNKdQIwQU61GELTPnwMffnx/MnVbmcVJs8wdn2DhPOCarYxONX4eF48cty/m7evcdltoAAGPTcwzMlwjTG203vBNpCJ+UihNPGR0y6A/NffsM4yqR3sBptSHnPW2d/SiktWGMEPgk7zHgy75/NnLfsaNrxRLE9RwKRXUhe/BsKQ8x7/p1rPj4CUljgN4BQAOdZpXZ/AIgqUDHdR1syKNnmryBmKcwLpqrS5sxWrdbK9VYtteKTk0AwHcr6wdRiEl4i/ML0GaXj5RGv0Mmp+DsOLshqDcAVFq5HcXHTxhoKuoTbXCzr69T3xaztY3S+Xe7FbIj61wdKKoLeT+2NvSvWYzKMvj74a233sLUqVMxcuRIfPPNNwY39ATHjx/H4cOHJS24Fi3Ymvntt98a8lNadLRxb/cG/3pGDAAsFgtsNhs6d+6MevXq4cSJE9i9eze6dOmCSpUqoXXr1vD390dysnFzTklhC1r79uxmxdfXF5GRkdi9e7fhViw1NRWlpaU87/9rcFptPEaVoroQPnEHXxzJ05dvj3xYU6oaNhQRgobLG8GnDVlZsu8S/whKsnJ5IEn9wYikvcsjGuDVU635uzeCo3B2vCaxBoBhVc/ztpjRqKguXG9Qgf+m9+6ut7xP/SVLnAlqz5e/pfvMWY+LIQdBN5yXO5IJRXWhuq8mda//ZRLqJ2t67KQ6oN/UCuOiTQ+NdBvXZHtlqcydHNgpT5e9mmqOyHgQ9Ivpx5lRoqe8wtTwMkbONN2AFdWFt4IjMbZJJzitNhxNaCl9F0V1IfhFdkNTWlxsoJduT/Q4yR5CtBtZt0iTaJMXRrNvoqguhD6jMe7k9Wp5hHaYIzpyvm/Dfzefy26KyfUv5RP7KWwRY0pybsrBpwFmBykecEQJvAhBv04wpLlPa7HkxHkjbroEfk2byGUF19J0AyOqE+pxBT/kQsYo9j23zJjD63O9ZGQq4zMypSC5out4sW8N0IOp6JJwBwCCV2qSWU9ri9lcBrT1AQBW71KQOS0WF0ba0S/SKeUVx93wwyq+OrqNl1t4iQX/Tp+tzTHfzbsl73p6yPiCMfRNX5NVG/UgxjcT2xL2pHYI2v7BTKxfvhA579mR01c7FFoiwvg3oJum+XmaGsqadd/z39m9vpHqeD17F05PskONvYy1qxbj4ohYaQzmvnNrDKayNf9mT019jPq64GWH9Kx/bwkLlp7FA7XTakPvIaOlvheDdL8cJMdnKphbx7SfCMju2PeWGj/djurd/u+wMdtREpKZ4bo/QL6xqp9cTWrD/PAg07XU0zcW+47yNfhCtl0Sf1NdpG6mL2v23CBVk4hbalQ3rAVi/ibbKxvSm76ajNjnJ8F9MF0qK4KIj7yreqPLfUCzTTHDV9jXqNKYuGkFrg3qIOG73X4laueIa65/4g7U7JchzWXCZ9ZG8sQq5k2f1/6O+kMECneSPq89zkyQzyC15yXjStR1A60i8DRfC8qv3YHAdkwQ77Oxkel4UF9wSOkiXcXdo6TxFddjCK4O1vq3wcBD/GxnqB/413hN/LfaiH399dd444030KRJE/Ts2RNLly7Fd999x//Wr1/P806ZMgURERFITdVCYfTv3x8xMTFITEzEPffcg2nTpmHatGm45557sGbNGgwZMgSRkZFmVXuE/wlGTISSkhI8+eSTcLvd3HNJlSpVcO+992LTpk3Ys0cLWnjlyhXMmzcPYWFhiInRNqHhw4fj2rVrmDNnjoR72rRp8PPz44Hf/k6gyWe2uIqLUs1tLJCs/2btoLqgyV88v9kGrd+0mi3Q1Hb0h1dKW300VVpcxA1r64hPeN5lGzui9eeavVjtudq1vv4Ap/9d2I8dsv6aPlvKq6gunIqU9bb1fUIQ12MIT+vbrLPXvGLd6XOipXbrN56T9ksotbObRFJrEfGdeNphqsrktNrgv3oHejw8FnkdrprScTspo6K6sLlNRX5TeHas3bAxrU5dbWBGqaw3CaT4TAdzM8ml2XP1JUZX1f3T+/K8NysLh5RpSfCJagmf6Nam38ATo+gJFNWFoGF7+XcKfIPRTjdDhEvEF/wS659JgZ04DnKoMKG6ysbBrBh+M3jqMQeiXbK6QfikVJyZaJfGyo3+mi0DOVqgft92Q3aSU5ybJ7XLL0iLP0jp4ePNVeL0B0b9/NGPqZlhoR7He+47Whv0831sOnPCETZql3a4rlEERXXhhax9CFozjucntUxP9KbPjkbI0vP80Oi02hD6dAr6PLcFxSdOms4Dp9WG0dVOYdieR3nasuZWKKoLOfcyVUsxDICnwxi5q6b0gmI5+Cq92/eM8eZIfBYPjfse+RKROx/kz+5DGbxMyX52c0OCDU+HR4KOFXylgOLVl6Sg1ZcJWJi3FU6rDUce1RwMtJiZIMXKozppzvr4+xvWbKfVBndGtpTfabXxw7eiuuCzTWsfqRq2TB7B8TgDBJfxgu2k2bgiu+PEw1sAALtfZv06P28rji5vLd0y076l72s9/ZQmhr7Ql9HvR2ZrnlnfEZwfbTfMJRGImRXpEoGeq2zWxoI7vInp2KYwH3kdrhrcul9+MBa1dsjOZCTwtUBRXfj1aiX2vW7tN2fH23H612aI66WdQ1p9mXBHwhL/NTsM751WGyr9zG4Ujz+r2QwGrZrABCC3TDHEMbXsUgv+3HyutgZT2hOBHeG02rhdNgBkfczWoNg9N3la4paVaLPLR/r2OXHzoD7nQM77dmn8Oa02HrhcbNeVIR347+FRqagzx7gvhj682zBHxfZQ+BOlgKlskhpoafdjUl7K/33CpwAgqYjmv8q+L6lbv5C1D2/n7EDihh9RbpImnJDG460QFyTYAfCvcdbxbwXyep6Xl4dHHnkEI0eOlP7effddr+UtFgv++OMPTJkyBadOncKLL76Il156CefPn8eHH36IpUuXei1vBv/qgM5XrlxBTEwM7r//fgQFBeHixYtYtmwZ0tLS8O677+Lll1/meTMzMxETE4Ny5crhmWeeQbVq1TB37lzs27cPq1evhtOpSWuLiorgcDiwZ88ePPnkk4iIiEBiYiJWrlyJV199FW+//fbf1gYKjtcV98HPpxzSZ8YgPJ5x34rqwtPH2+NQlKxvSovSpeGxqLYsBUV9olF+LYuD5DzUH+hRgKylNgTN9OE3SvqNDgCazY9HdI9DcP3aAo0+0Lz++G9ugMIuJ1B7W00sDfoTwK1D1owYhCekwhtYmoUi8c+fPB6wxfRTjzuw+2VjwGBx8ytY0VJS1/SUT3z2bRvBDZW9gbgQlzraIue+Sgh+MdmQR7/Z898xrYFUQXoV28bgkQlg9lbhk1K1zaR2LYNqkTcaPUlwFdWFZgvicWTMTMS16WG4FbwdbjPIfduOI2NnImjNOB5o2xPT5O276Z/p9/nRdtRcmHzHOMyg894bzCmJjw9QWsrL3Ogfgwq/C+NTF8D71KrmXO3JJ7o11q5ajN4PPAKfJE04gw0B/IaIgL6fGRT2i4b/atnxCGDe78d+bolGgw5Ibcx/1YGDCZ6DFgNA+pxodG1zmKvtiOCpv1YWpPJbBoAxUG3KVzCOYbBDfWlhIU487UCDafKtmV/DBsgZG4zG7yTxueitjWb0Ud6Mrzsg7LHtUv0UOJmCKt9p+wiKu0fBb2Ma3N0iuce6rI/t3KmEb9WqWHPkL47D3TUSlk27OF3B6x/lzjIurQlBctsV/BuIge/FeXWtpAiVfMvzw9Oadd97Hcc579ulm0rbbjmGEeGOa9eb3y6b9QNgLuDylJfyE9zs3R7l1u30mkefTkFrzQRWd7LGK6oLz59ohyfq/IXxTTp5HONm7dSnm9VH66novOd2jBoFj9avrf3T++Jm1+Pwa2TFwTcaIeK1o0jcve6Ox3mzb+I5Mw0A751pxu0b/RpZeTxPb+3St01RXYjYNhJNhuzDZ7nJeLapdtuz7lo59K508z8aC+L5wlsZs3XCW55RR++RmGdv3wsArg3qgEo/y2p4YhlLeAgSN62Qvp/6gkOytbsdiPguPRSLaks1QU2Hl+JxyuFGzgCmZTA2PQcLBvVFxRlnDZ5WRTx+DepzgdKrp1pj19Bw7iHRbA6IY6zr+PHwX73D0HfNt47kKvuK6sKlyyWoGZ591wd0fnLrff9YQOcvO929Aa7/DvhXM2JFRUV45JFHkJKSguPHj6NSpUqIjo7Gs88+KzFWBIcOHcJLL72EzZs3o6ioCJGRkXjzzTfRs2dPQ94LFy7g1Vdfxc8//4yzZ88iJCQECQkJeOyxx+7YqO9OQM+IedrQCO7kvdPK7LXeCDZ6RhJxOK025P3Ymqs/muHU17ckfxtGNO5oyOO02nDiKQf2vDgDB4quSxsGAIRtGo2Mrgs9SjCdVhvyX3Gg8btJUjk9PcdecqDCmVLuWU0Plx+MRdLns7z2XdyROK4i5lOuPEpvFpn2jRmItGctaSc5ywCAfpFOFJ84CYC5SiZbFbFc9od2ZIycyZnGNWuW8XfnH7Ej9X32LiClCgpirxjKm9EiPtP/05PsqDsr2esG4andd8IQEQw4eBa/tqhtyjSKuEUaRhwuwKhqZ0zr80aLorow7XxTPF0z13Szux0jaPbODMT3p+Pt2PXazNuWn3F0K0LKVTEIPMR82R/ZEfxCskRzi5kJBjf5t6PrTugXD4L68r5tI5jN3a3lX1Fd6BMYg9KbRZh1dCsmBXYy1EHMUvYHdmSMkr3PEROsPxRnfN0B2ffP5nmfyTyEz0MjoKjsBru0eVOsXbWYv492ubkqm0hz7yGjse7HhQj/Nh5BU7Qx3WXiBFT4zXiwVFQXgtc/iuxe3/AyvP2N2mHAgTP4tUVtr31slia+y/wsFqHPptzRwZXg12M7JI93iupC78GPwCd5jyFv7J6bmFr3APrF9ENxgWaz3HnvDbxaR7aX9Fbn9YExqPiL1keU//hkBy43u4mc/nMlXHq8ZmlX1gZDabWUh+Ew6ysACNlRAWvS2ngUZJyeZMeu1+Wx5A2fp7ZeG9QBlX9Nw8kJMdyduxmekI1jEPqwubq7Ge6a22rhfMdz/H34ongEvZQMv8DGPCA7Qcb0DrBuArZ+Odvj+EmfG43w8Ttu+83UFxywfqQxi2d+C0ede9MlfKHLJiFkcgoyFkZxR1D/KRN1u364OrgDKq/QhCd97h1h8AJoVh7wfn4R34kCXjq3ZHzZQVIVDtvhj4zoQhT3iOKBssXxGb4wHkEvJ5ueTwhEYY1z/yU8WyubM7m+bZpzG2RFdSFiTgIOTWACMjNBnCU0SArnIT4TXVkf21E11wf1vvY8Hs32lB+P7PpXMGKPb73/H2PEpndaedf2x98B/2rVxPLly2PZsmXIycnBjRs3cO7cOSiKYsqEAUBERARWrVqFCxcu4Nq1a9i6daspEwYANWrUwPTp06GqKgoLC3Hw4EE8/vjjfysTpgeaiPQnegSsvKUu/03vz47TDEpXFrCFIuSHSVBUF2fCFNXF/8iglXAAkPSUzQ7OwT9O4vUBQB2LHONHhAZfMMP9Z5vapQXXabUh+CFt0ek54lFD2fyfWnEmTE+PT/tWPG3/kzM4E0bG9b8eYzcSzv2XUPWHFIR8Pwl5b3r25ubupnL6iAnT00tpiupCxtdMv/uVbG3hz3/VgcxumoMPKrd6l8LTyFWyoroQlaa5fs8YOZOrAJETDkV1Idrl1rzo+figIPYKp0FPk9g/eqB0YsKItsidTJWFQgcQvprbaiHo1wloPs/oaU6sTwRKU1QXvvrxXl7myczDHmnt9MREOK025L5tx5LmAeg+ehzH1yLpYf67b9xDhtANIp41LWvw9C57r0sHRNGLG7ltpnLpc2RbLLN2mUHdmRrTr/8eANAqjS2jCYFMRY3GHvU71RO75ybCv2QqL0HKWI6HmDBv9CiqC7k/yK7InfsvGcqIz8SEZSyKNBymS/YcQu73rVHaUcNXerMIxT2iuCrnPfGyfRzdWAW/JHt6VFQXv4l0nz2HxzK0A2PYY9ulOfV5aASvb82Rv3BkbEX+DADv1NuHS8Nj4RfYGHlvaHN43Y9MiEMMldNqQ5/AGJxp5eex38Ie2YVOT0yUGDen1YYTK5sbmDB6nz43mjvcENPFfuf1+YL3H+W9nfDi20uBPC/l1zNhhJ9CMIhMmKK68FebClKf6kHfH2RHmbVUbkPDT5OQ0192amR2iA9eMdHwvS9saYAqvkx9PP9Vea0V82ZF30DOgDlQVBePWSlC3VnJ6Bcdd0dM2LGX5NhlYlsr/bwdaNsM7zz7jdc5EfrwblxZy1QPTyUY9wh9WWLCqF2W6z7IWdaWM2HiOhj2+HYDE6YfPzn95hoYXL9Gtxz4xGo2sPqbH5EJI8gcPovVK8Rj7PboLTsyX+bFkVQjCe+Mo1u9MkhUJz0TEwYAEbMSTF2xm5U3q4McYOjLhyekck+VLzzL9iCRCct5z47pjdhzny828XSKPxr84yQemoWYMLN9y/KndhP+bK1stP4sgZ9/iAkj+iq0O8fpJG2WD3O248QvTIiUuGWlhDtxy0pDfSHPJ6Ph9xpe/bg9fkt1OusT2fa6TDXx/x78qxmx/yVwd25rWLz+XKAZif8cygwIaZFUVBd2vjUTOR+wxW1o5n0AgKwHZ0l5xAPE3kjN65YexLRXT7Xm3vOyh2heAfWLLtkAiGU/y5Vdv5oBSaVEOOj4jv/Wxw0hd9crC1KlTcK/4TUoqgv+Pkwq82wtZh8R+mwK6qUZ3YfqDxw37o2Rns/8Fm5YTJ1WG8Ie247wRfG4p4KWVrHDGVPdeIAxhuJzXMtuho1UKdCketSH79QT7AQFD2n6w5GeYRY3+4yvNH15SqPAsbvas6DNH69n8Zx8otmCf77jOYRPSkXg6+a3jH0GPCw9X78vBnFtevB6yV4LAPpVkmPOOK02fHwuBAB4/LOmryUjY1EkKkzRVHUaP7Cf4ytxHZTs6wif2TPFYmnxNfsW5NVRUV3w63hO+g4RL2YacJgd4vN/anVbJlcstz9Ktgtr8maS4ZsB7GBNh+rM3rKbeX0bFdWFvgcuSO/IcyXBs7WyDUxvq5QREg5FdSFs1C4E/zhJrmv/JTR9cC/W/bhQykvSZgA41lXeHvQHCU+HYjHAvPiewlWI5cufYQfGs+M1d+/VlqVgdfJvUhwzqosOLQATogS8nyTRoaen8ortuDaog5SnwcBDPH6ZorqQ8VUHfH2BMQnh43egZP9hU4ZbpDvjqw4IfTqFM4hiXvKGacYQrIhgTkgobp/ojhtgjKC+X4mxPzveGJCd+kYEEkgcfeuWB9S/RrE6H3LxuGfivgCABxHWM+w+fn4Ie0I7FHcdyw76Ae9pY3zthI94WVEQIuJyWm0oPppv2ierdyTyZ3HMi32qqC5JfR5gcdSkfSLtAD56ehSazWeH+bm3nKjo21p9OPNGWG+G7PilX8f7biugaTI1CUHD98AmXKrp91kAmJYr477Zuz18orSYbIrq4g5xePtT9qJvWEcJjx78AhtL+4Ce3vJrb6lJ33KxfqjjYom+kHJVOM1U7vt8o+dT3sfhITzt0CRj0GP92NcD1aOoLoT8eEUKQyPW03QpExJvmTEHlpo1JW+4wa8zJ2VZS21YuMTJ8YY9zsblwntlz8Vi/5itWVSv9RO2b/U/cJ6/J9gd/b1hTXkxqAPK+7kNe7C+PrEvRO0AEZxWG0bfUtUNeS5FwvVvAXepzz/2978OZYxYGZRBGZRBGZRBGZRBGZRBGZTBPwxljNhdApa/9kgSGPpdblNDg2SGYoc5rTYEvcRupX4PX8PdqdO71dcqGKSK3oDe77BZEPBnMS/r7hppkMIBwAudhxgkYWQbdnqSeRwO8jiX+0MbXqfTaoNz4Eje7utdTuLYSw4eBJfy3R8QI7WhyZB9aJs6HABTuxFp8WQ3IubZPFv2ipkWtdxUTQcA0kfJNkJ17k1H4Bua1LP76HEc/4BG0VI/UTwYALDUruVRejYww8ljF5lJ+PXPehyK6kLYE9sNZdLa+Ur5WpZn6mBrVy02lfiLf06rjd9IEt6Kq1INwa+zPo01tOfocnbj9kerqhK9ANAlPAOJzRI1WjcEeL2ForhiIm0A0GnvIABA43eTDH1DjjkIxAC4Zjc59L+oyI97+1qcv83QLrM+I0m+orqQ96bmecxTm+IaRZpKbUU6SAVT/55UqsxwUwBevdQ27KkURL8aD59yzMmE0qqaQUKsXyeyHpQlzeL7X69WktYEPT0izfEZ7Cay4afsG5GXQIC58AY0b6tmN1FdJk5AYV82p0TpsV+D+ob2m32nv6bPhl9QoPTOb2MaivownGFPbMdjNTR7H6q/xcxbt6yb6xtwhj2xHRdHxBrafPIJzZtq1k3Na6NfQCOpX7J6LEDWzSvc1T5wy1bGxH7o0IQZUh8B2g0woIWVEPu84irthptuUs9MtCMqKA9mQFoF+u9ZsLyZNOf817DbiUsPaTeTTfzYLUu/Dv1RcZXmaMpsfFKaz8ZGhvoAbcxnfhbrtTygzWex3ZvnzOF9SnSJ64VfcFNpHRChOOeooQ49fgCI2l0CVzvgxFMOw5whiCjPPB32GjoaAFBu3U4eAJnqIMc1Yn0lV68a8Ikqne9u+slAn0iDb5vmhne0xpjd3AFATQubyzYT0znREcWoo/cg7w2HhI9wmp0t9DeixztVNcQD5eecW05knFYbEg/8Kdk0lt4KjhvykAs36pcg87t2DIePDxTVhXeDtfYTvuwPZDVIRWU2sGKdmdNiYalbF7+3rAlFdUnepPV9RL9r9U83tA2AZCYiAqlpe5sP4q2jp/3iboR/q/v6uxH+1c46/heADB/PpwejWlXGF4uLh35iWqpVg/uS7NqXnGQ4rTac/rUZKpa/iW1tfkbE7AQ0mWpuKFo3qQZOOy7gmcxD6FOp0LgA3PJIR3SIdHmizVO6oroQ+8IkVP9Odi+tN0K31KgO94WLpvR6g9x37Wj6SjIQ0xrHuldFow/uzPGBSF/U1HjUmZ2MUkdbrPuJBeXz1D6ABcctKQdD/+qNjC8Pi0XSZ7M4vtO/NkPdAUdM+4k88Imbm9Nqw9GpDhweb/QuaQaWls3gPiDjvx1TYNbG0GWTkDmcqbnOOroVQeWqoNPeQajcJ1vKWzDFgcCfTsCdkc3rLFofiD9brjKtU0+LorrQN9SBkmvXYGkRDvdB843r7ZwdeC3IGCRR9MSnB723SrEuPT0LL9XD6Gqaxzr9HKy4uT6udzkp4b//4GlcLqnAGU0C9XkHrB8n4fhkBxp+Ko+PzGmxPOA54X4y8zC+DNUOUKJBOoElLJi7JjcDfX/d6fzUj5Pbee7zNIZED6vXSopgW/QU0kfLThgoDz37tmoOn+OnPKrv+FatipLLzFPklaGxqLI8xUBDqb0tfJL3wLdCBVzu3xaVf9IEER2fmogqP3oOkEq4bvaMwsZF8037xSe6NUp3aCrDcT2HorS8H4+/JZZ5LycVw5Y/xT2vZnzVwSAYsX2QgPpfGtcnszlKHiHJEYCn/h966ATGVj/hdX6T4x5PfeCJBrO86fPbS7HVxLVqeUEyhgbYUXlLXfwcut50/psJoQAYvJ5mTO/A1c/E/Po19sa9MZJQTcRL9Hhqs6c0T3nsz01C8idsPY98Kx67XtcEdIV9o+G/Zgfm5m3F+CadvOIyA7+gQBTnHJXyk4fHS2tCUK1v1m3bYQbkgfCN0y2R0tboXEHCE9sGys+L+Dci5yQijTeC6sBvY5o2R6JactuxU487UG96Ei6MtKPGYu9B1c36HDCuvWb5rpUUwfnkEyiu4IOiqj6oM9t7XbcDcZx4Gx/0f/hhFaOrnTLMHbG/RM+1TbZXRl6HqwY8YpsL+0Zj0/y56NGwJTbh7vUSSGfWiVsG/2POOmbfs+Ku7Y+/A8puxO4SuD+8tSS9AmCY5AA4EyamUaBKRXWhQdXL2NbmZzitNjSZmoSClx1SXvp92nEBADOeN5NoKcdkb4DSO91C9WGOtil6kvqkfDRLChjrtBqN0PVMWNH6QOgh+0MtHlLhuqZQVBdjwgAgdR/2PzmD46ubVEMqa6lZ04CPIO0NdmgkV+YDMvpIbb/Zu73UvqaL81AUpgVdJprogPBYRjoyFkUi6bNZiOs5lJerO+AIx6PvW3KDHrJ8Eg9KCTAbrDtloiig538qWSNa6NuGTE7hNPZZ/DycVhsq98mWpI4AEPB+EkrVk1Kdf7ZcZRjLhNs+eZKBNmKMiAnT05SxKNKUCQOAGvuNdkxUrvpBPy1I7i36Sq5dM7QVYHGrAOBQ0TXTb6NnwgBgUo1j+KNVVZ7Xtyr7bf2YzUe6ASInCQAQ+nQKt90hILs6n/atoKguySsY/SdG12wuUzvoNjXrU+02wRIRZshHcZIU1YWw72QHLe6TpyRpt74uM8hYGIULY7Sb3oey7kXQy8yhR9sPE/iN0tmO5zldue/aUbL/MNxnz+HiiFg8k8nCTdAtl6K6sObIX/x3leVa0G+ACS0AwCeZaRKU3LiBrV9q3hmdVhuq/LgdBStawtIs1LQd9J3L/ZEmjUmxv8JnHubPD+d2hftgOkpcB6X20/so//KovU+TaxITJo6/+tNlxszSLBTpM+VgxiWdmR3Xhu/ms29/yxubOC4zp7EbqcGHTvHg54rqwtlxdtPvpmfCzJgu6jd9nuI/WFDyoMRxSDy2C+Fjd/J8/aL6SHh+uswCL1+95zRPM3OKAQDHf4mQniv8nopLa0J43dmDZvPf1D5aY8U2VvgtFYMye5muOeLhWmyn+Nx931XDXvvLVXablvGF7BWSXKA7rTbUncXG+JmJrI5N85nd55BXnseZCXb4bGyEM7+FI2yxNseOPyvbSYqQO6wREo/J9tMB77O1RM+EAUCXCSzOl5kTFLEOd3oWYp+fhKl1D0hjm0Bqe8peabyKTBjAbg2zh1r4N7l2fweUph3gN3/1pjN6ayyWvfVW3FyfByPXjz31Bdm5kZ4u/X4R13UwWq18AmpnHyR/MoszYTSPzPpA32YAeDJT05gYGmDn9o2emEO+H33dge8X+n5MHzWTp4nhQ8yYMD3QbfO/BUpLfVHyD/yVlv7vsyllN2L/ZdC7r5fe6aRgdZNq4Lumm0wld4rqwt6iG4h/4WkuOe7bdzhK9hyCJTwE7vSsO5IE6sFMYtrzoUdh2bRLSvNEkzfpuwhm6f2i+mB12lrcEz8BW2bOMaWdyiqqCwXFVzBWkESOOXIUC5ppXsrEOo4XX+HGsnr6vbXfabWhpEs7+G7ejVeyNbUIgEmwr9cth6o/aEFvJ6RnY054MHz8/FBaXAxLRBjg4wP3wXSPfX87mnwrVMCabDmwLuWdn7dV6gM9Lp/2rQB3Ka4EV0HlFdtN22d2aNF/x/DNjyBo+B7pXdansQiZnIJfj+3AOXchGt5SDRLLkntz/bdzWm2S5F/fLjPhhKexHLKjAkbUTsJbwZGGd2b5Pb3/T+F2dZRsaIyTiY0Nt2RmZT3NFU95xLR+He/jalbpc6IRPoHdstKttLdxR+nkZv9O2+yN/nO/h3OVHn3ZRZfqYEnzAK+0EPg1bcIDZFOd7XYMM6ig3g4PpQPyeIpKGyqpJ+vL6m9s6L3+BsSnXUusXb2E09i3zzDJK1tJ53a4HOjPNQQAIP81hyGEgb5vvY1RT3mqb62Ni53OSunkel2f18ffH2tzthu+Y1yPIUjc8KMBvyd6aK3T5ynqE40/v5lrwA8Y1xlva6D4juJRDT10AssjGuDiw7H4+u0vEeVf/j+a2572I3oX9OsERHx6Rrr5B5hgMPjFZEzJ2ov3Q9pIZcQ4XxT7kNyr573p4O7R74RGaiflE8OciHXebpzcSR8EKWPR/POruB5QlavZivjTZ8Wg2hE/7Hledt7x/6VuRXXhoZxuONuRqYuK7vL19QIsBl85Hy3Exe3qzlnWlu9TANCnSXuszduJuK6DDXHKPNVJv8UbekoPXjcW2b3no+PTk/i5S4wL9v8Fiktv/ituxCZsHoLy/8CNWNGVm5jT5ce7tj/+DvjfZzX/JbAyXZu4RX2YtDe57QouBQSA75pu4nnEBYhsLsa//gwuNdXUGymo8aXWdXB1cAdpsaFo9E4riycj1uPuFmm6EZLESgyIGpQ4znThVZ9zGNL7NGmPJzMPS+5a9VIwMb34OLMLqriKeUusn6xNQkv9ejxfQAqL3UQMCHkDHFb1vGGhpkV1dJNOuDKkg6Fuv+CmvMyJpx3cBg0Acm7ZfPhu3g1FlZkwRXXBb2Makj7X7GoW52/DnPBgKKoLpcXM5i5zZB18nPgthh9W0c9+L69LlBbOv9hA2uBu9oyCorr4bSAxYdT+ruPHo2QDk4res2qyVybXcvYySncfQOUV2+FbubJXCSRnsARbF0p/oPlu3peZ05h9WOZw1nZ/n3IYfetbEI5Se1vkvGfnamhEu0gruQTWjwn1OaNNlL4spV0ZGous6BsGJkwE8t53J4cgcV7cDpxWpl6iTyOYHLgO1i9SbyvB1pfTfw+RHrI9EtNJvQkAwifswPWBMXBabfzg76mtYp8SE6aoLiwvML9NoTLkuVWPi/KKdhX6skuaB8BSt65UVmIaAhpp7crNk3A7rcwOkN57+05jjhxFyYbGUv/q+6HOvem8D0o7yu8V1YXNc2SbUnqvV0Nbu3qJlEdkwgDA96/d/FsMOHgWABA0z6h2ajYfxTZeu7+DxzIEIhNG/bw6+TcpD+EsLdRU1H3bamEG3IcyJBp8/PxM6wKY5oDIhIlQfq1R4u9NIEDvyPuhWbm/ps9mYzSiAc6Ot6P6dyl4OSjmtmuFCOU2NUTErARe53n3NcDXIpUPn5TKVYPFeZ4xkmlSEBMmjq9PQ1tyHH+1YS53KfxLkzeN8TJFGhXVhcmZmk3Z9drMzrdfdBwAaGFOoM0reu79wCModbSV8NFNoycQ+9y3XAnWrP0em+bNlbRYACBzcTuET0pFg8+NoWaq/lXHMGf0c9NszT7b8TwTUAKodui8oax98iSe39WO2bB7E06JEDR8D8/jtNpQWlzMxnR6Fjv7/BLhkQlTVBcurQnh74kJozr6OQYgbHQall+pjuOdtfuMwKH7+E1qxtcdDO3R06n/LZ4F72Zww+cf+/tfh7Ibsf8yeLsRA8wlt3E9hxrUuAjOTLCjzhw5YOztJFWK6kLM7iGo2S/DtG6xfkp3Wm3ovu8qXqydYZoHYDYhJOkyq9MTPWRHo6gujM3rhPlNtvI2DM3ugYudzpqW0wNJEc3a4hPdGmtXLebBVHN/aIOmD+7F1Qc6oPJP5nYlYl8SnjuREHvCEb1rKPyW1EK1ZSnwa1Afj2xJwdAqF+G02pD9oR2Vml1Ag4GHTPHWT66Gk/ZL0juy+/NGc6cnJ/L20Tsff3+UFhYCYDdqAbqbLJ+NjVDa/RgU1YUOL8ZLuv+OPUVIalselj+tOHywscFeS1Fd6HO4H0q7MzXUE79EYE+MFsBaDEbqrZ/N3otgZjsJMIFDlR+3S4FjAbaJircrZmAmwZfadd9IlO7Yh+77rmJja8/x9Ty1TcRb8LIDAe8xVUYxIPrtyovjmoIbe+s3EfRzuteDY7D+hwVwWm2GuXu7byLiF+krcrZHeWWnty4xzCE9feJ78ZYbAHyiWkpOEO4UzGhVVBfiWnaTnEDcydi7k7rM+o6C++rz0Pvhh1WuAqWnO3RJPEKeZ/PQEhaMow80QMD7TBX9wOMzJFy+rZqjZP9hqR4z8GscgOL8AkbbgiiEjzGfl57ozfnAjvRRM/FwblecdlxA+rz2CB/n/dt766v5FxvgiyPdsFdYL8zg5BMOuKawNutvpszarKjajb63fFJ6o3ZQju2+4/W98pa6uHrPaZ4GyHPmyczD6FfphpR2fWAMzrbww4HHZ6D19odgvf8gjv3ckjvguZOxZ6lfT7LxNAs87bWdt9L1Nqm+lSpJtrX6/OR8hdZ5/u6WrblZH5jRcf4RO2p+e2fnF79GVqzekWi6DxN4W6dE8LSXx+65iZS25Tyue5ZmoXAf0cKiZH9oh99VHxyaNMMU753Av+VGbOzmof/Yjdj8Lsvv2v74O6CMEfsvgxkjJk7cpqkVMTtAi83laVLrVR3MgMpefDhWUosxywMwafT15g1Q7g+2Ifs1sqL4mGrIZ7YIelrYTj7hQP2vkkw3R1IzUlTmLGJYj21cBUGEE087sOeFGQhKHOdxo1dUF9Ze8+cBZD0tpKUdbfDZ5jLtVzGNDtv/CbPl6ZmADLEB5tEs7Y2Zpn16Ozxi+8Q2WurWhfv0abi7RuKPpd/IzHzzeyTG5cnMw/j63nu5CtKd1KfPd3FELKovSYFvq+ZYs+57OK0sNlta1HKp7O0O9GT07g3MaMtYFImwUbtM32UttSHkIdcdMQYEUbtLkNZOVhrwtbXAmsSlHsd+rwfHwPev3dI7PT0eHeToIPPzWO650Gm1odTRltswmoEnRiv7AzuCXzLG/BNhYd5WjG7Siavd6vGuvlZBcihiBqTOSPUQc3w7AYYInpySUNm4Xg8icf0PpmX17SztaMPZVhW5/adZvZ4YstsdVD2B2QGy7YcJ2PMiO5j1fuARj9/wP5nz3ubP7egbn9/REKeP6sn5vg2Chu011FvYLxpFVSyo+kPKbfsJ0BgCdWUL7OuwlNN6p2sKweL8bRh5K0ivyHR7wnNujB11t5+VnP54q/tO+jHvdQd8i1nsNH3deschisocSZB90JW1wdxmW18vCYPMQE+XnnZyIuNtPN9JO836RK+CJ+Z9+WQbw5pI77qOH49Nc+d67OvcH9rgSOdFADShEachIAoocUNRXegxciw2LJ7Py825aMWqXu1w6L36PKj8iMMFpirNgOakyVO7FdWF8+5rqGlhni1z3rfzoO93Mp9EYQfA4oYOaCRrQng6E3miSYR/CyM2ZtNQlK9S/v95fUVXirCg6/82I1ammngXAgXLPfmkA7kx1+G02uC02rjr6Y9zZe+D+a85UOugFlQ27w0HMr9rB0V1SX808clORMSR94bRiLi44BhnwhSVBd683Qah/60/HNb/KslQHgCCf5zEbT2cVuYsgpiwbJ3qU4Npt5xXFBuH79mxmtvaPpUKTekS205MmP4dAEw735Q/080f4VFfkNU5AeDU4w6vTJiiunDmt3D8emwHhh46gYD3k7jL4Dqzk6Vyy69U93iwpmC0ue/KXp7EejK+jYT7NJPI/rH0GwT9OkFqHx2QCb4MbS6pIOn7zFKnttRv4rvIt5gxeqmvDwqmOFCy/zB/T+pewSsmSjQSfkVlamAi6Jmwoj7RhvFKgWVF+LnzTE6bT1RLrl4FMNfHiurC6vkzcHWwUaVLxA0wpxHigaMwjtHQ6ptDDL+/v6GPnFYbKr+jIvM7Y9BcETc5yNHXCTCX/5QW+kyK1Gf6A/ypVc2hqMbAzyKUOtqiV4/d/B2pwMKHqXtcGRoLv6BArkpKTJiesffEhFG+yw/GcnVGoiHx8Bbt2UdWLzFr//f5SUifUN/QJ36BjdGvQ384rTa4DxwxXVcAIFhwLEBzm4QbfYM1dWg9bLkBhOyoIH0vM9DXK6oGepqrTquNO1MC2Dc0W2/0//UgurgmvE6rDZmfa84klhckm+LJf1V22ESOAwDg0nCmVkyBhNPvWQSfctrhivJtmjsXVX9IQcEUh6GfKNSDWIacvlT+qZph3pu18cJIO8IWxSP9m/bSukpMGACs/U1W+fStUMGA60rcFc6ELcnfxuu21KyJkOWaipt+fIvpE9JlQcChSTP4bTVB9a21AYAzYeK+eO/hBwCwNaRKH3NPp06rjd/Iiw489KDfuwnWrlqMAQfPymu0EBpFj6P53AQJH/02G+siE0ZOdCivuCYSns9y2d7lv5qpnpZ0Zu7lL4yS9+2mD+5F0Cq2D4nhZVrMSIBSwM4ZEbMTsGHxfN4Op9WGFRH1UFxwjDNhAAxMmLurpkKZM2CO9D3EeUvt6Lh9As8fNCUZRc72hn4QQTSLICbMx88PiuriTBg50NGDngb9M9Hvae6Xwf8+lDFidxHkv8IWZPcZpnrnemmG9L70ZhEA4Pmm8qHiYPwMVFmewp+bTE1C+CeFWHetnLSgEfhsbASn1YZTj2mb6qGJM7xKavSbr54JESGtsMhQrsvECaZ56b3vTXaDc6N/DEYdyYflT6vXOgCg/l/a8L38YCxapfmi9nztMKZvh/5g7I1pnJu3FWta1eRtDVo9XmJqax+4aejXWgcLpf4RgZ7r3JuO7y41xrcvDYCiuvBhfZehnYrqwvzwIJn+DQH8nd9Gtmk1jc1H+oIoOK3sllNsywvRilQ/SQjp/YmnPcfAoTSRrmMjmnmUspJHthqLk/kNnz5P9uDZsNSobhhjTiu7kSQ49bjsWQvQbEtqb6vJy5GHMjGvzd8fLb9iB461vy1ByZ5DyFgYxfM4rTbcHxBjMAYX+0VRXbgwyo7iEyclGjbNY5LevZFMgYBUOfVwvctJ+ByvYPpO3y6xToLAofvM599+o7fUevcdRq9D9+LpmrlS3wBAqy9YP/gk7cGMRilYmLcViurSDpS3FCG2TZuF3E+qSHjT50SbMjuK6kLIjgrSM+UTbSNN15HSUsN4s9SuJeEf1tiBzBEzDe0vPprPVeaIkXRabTjxlMZgeGOEFNWFyuuZum36rBhDvnsqAFnRNyQ84vj3dGivtHI7sj6248xEu0fmkHBtuG4xzWPG/JnVR/GcyAsm5aEbU0V1obpvRcy/2MCAr/E7SejTbwRPL1ofyGmptoztGxS/ymm18X3GjD6a3+dXhyH/Fdb/1XM0IaA4JgCg+hJzp0JiOxXVhe0fzkTwS8l4wMY8WA7McPJ8XfZex6WHjHHF1mQz2i+MtPNx0WSIZl8zonFHTfB0/jxXdyc6Mj+TD870bnCVS6bfUuyL5cEbpDIibX492S0XrSGe5hKVa/iZtmaS51Nx39aXH3OEOeL5tUVtnjY/byvcZ8+hYEVLU2bLLPyJHq9fUCBK7bJtGQkzY16WY2yJbX62qZ3bfX+cm8I1Amoskj0nKqoLFVU/dHhRw3VtUAc0fieJ03JoouzABGBhbcz6DgD3EkrOw0S6xLxOqw3qyhY8vfED+3k+v+Cm+HPBPHR6YiIAoP8BY7zJRYFb+DOVI3szAgpLoqdBTzM9h3+r9UO5CzcMZe52+Cc8JtLf/zr877ewDMqgDMqgDMqgDMqgDMqgDMrgLoMyRuwugsbvMml1yYbGplfqAOBbubL0DJirABb0rIFPQ1saJFKAZlBb7+sknPhF845FfxnTZdUtM6mf/jZIlG5H+Zc30Cjqg4t4fz/GbndCnkuB+/RpbJ4zByOqnkVis0ReR/BL5m60SdpKEvn9USWm+QBwdTGAGdiKUjdR0kl9Ob5JJx5vCQDCx++Q8m2aq93IEByN0wxXzSTd9Hts9RPcE6Q+36nHzW+qlIjfDfjQowDhY1hgTb1b8pWtGkj16r9hpVMlUh2K6oJfUxYvqGBFS8ONgqheZXajqAeKByWWcV+46FEiTrD7ZXYLfK2kCCJkfRLLnUeozzs83i6QxJ7qMXMEQnDuUbsh3Wm1ocYi2SZTUV3o16E/y3NLxU6UOotxqgAg5HlNEkxziegJWjvOQIfTasMr2S7MvXVrRV4/RdqeraV5bKOyfsFNUX40u2miYMr0XfY/NQOnVjXnZUY36ST1PanyhGwYgwP2JdKYC5+wg6nqDRol0eC02pC0WI4FaAaebnfEd4rqgvvsOTitNlhTqspjXXXhZk92k6l/J9rpNPgiCe3eTTClgcoUOdvDabXhp5A/8F5OKg/wTaqlRBPd9OnHtnPgSI/tVFQXMkfMlILJ9u0zDADzPCvi/yiEfdMBGX0M/fN6tizNN5Om05ggG87W2x/ibZx/y2uu02rD8gg270/Hy/GzSndrDk3K92I3Ki2/SvB4UyP+NrsdqtkvA0175sJptaHKchayQgT9Gkb/c9+2I2LbSABAvw79DXl/SmFqXn6+zF7o2v0dsLlNRVxtYFSJo2+1/cOZ0rgAwDUECDep3ovzJ/RZdqPm11C7RdTfQnmKPem0Mtf5evCtVMmQT1FdGJDRR6Lf0xzx3cp+i7EGiXZac3ZcCTKUJ4/BAYMPwNmoHRzPTpLaT//bpg73eFtTnHMUPsmy+nObT9n8qrkwWcpradkMXfZex9UHWB+EPMf24uebxpre6CqqC45nJ6Hx20mSsydypkV59fulorL4op5upXe+NVNap3OWtQUA9A01fu99HZYa+k1RXVi99Rc4rTYezmVtb83bpdPK3PXr+1E/T8gkQn+LnvOeZioh1t3n3hFIf0RzHpX5gqYO7NNOjq9XBv/7UMaI3SWQ94oWTHB9hOZeWH8gXpOxTXoW84nP1k+0gzOlb7tRYlgo9sQsAwDu2lhRXQh7fLtmS3KrnBk021mO15u4byPXc/Z2UNcvtOV8jPFAzA4jYh6yo9GXMTtEEPjlVMCl4bHIe8MB95FMHmTUG40UZ6Tj05M4vjF5naW8hXHRvD7ajAhIzcTsIENp5TY1lNLrTWfM+IqCFGnRp98lGxqjpHM7g+qJAX+BzIBQ/+S/xtqd/InmBIL+yHA8YDAL/Dn5eCRu9ozyeBAVhQJiG9NnxaD4hBzkGQBXrxTbL+bx8fPjv+8PiIGiulDqYBuru6qbl6OAyQSkxiTitLRsxn/n/9QKPUaONdBT6xt2IDj/iB1phUXwbRvBDl8tm7HDb7uWvG9Wb/+dlRV8GxEu0WuW/l3Y47INSU6fefybrSjQVKXuqaC5Qc++v4oBl3SgeYYdsoqzc7F6+++Gvrwwyo6cm1ewO/p7AMCxlxyGPKTKEzpyt8RwEWRF3wBS9hq+bf0v5QOvSJ9+/lE7Tz3GxtyNe2MM+X3KlceCJn9J65zTakNe33Io6hMNNfYyexcjM6eUv97XmuMf/XoAgDtmcVptXEDktNoMqqUzGsnMBMf5y2KpvYrqwtnxxsNVxlfsQHo9oCoAwPKnHJiXynespcWFLOlkQ+Tb8XgrOBKt0nx5G64MNdqalO5gKnd9BjwMALDez4JK/3K1ihQ3kA7Gya9+CQBwl8oCFxFIaNEqTTsGOK02LggEgMJ1TdFx7yCpPDHJ7m4qT3sk18nLi99BxAsATV9LxqGOrE9Lr1/neYNXMhvSpmFs3Xi9MZtvlVay+dPwM/adLXVq8/bkfGCX6hDrP9/cR6K5yVTWVtEWmoDCpOj7KGTDGMmDJgGN7eYv7pfqfybzEA8Yr58fhV1OoMve64Z+0feZorpwfLID3fvu5niaTE2S1mkSOJr1MwCgtBQ1k48Z6ACABgMPGeoWQT+XzGIeHp3qQOL6H7C5TUUeRF0sL0L6DDbn41p0QdXvU+DbprlpXvFcIv41mx/P6fTZ2MigTiquG7b3E9B4HgutIHp4vGff/aZtpTR9+uodiTjxSwSnT3T8YdbnkW/FY+fbM6V0+p8+eibS50YbypemHZD6OWCR5pnx5x9k51Z3K5TA5x/7+1+HMq+J/2W4nddEs4mvf2+2wHycmyJJpzwxR5R2Ot6OXa/NxPeXa2JBs0DTw42enrzXHTg0iel0iwFJKc/qaxXQr9INRL4Vj7qzjF6JTq1qzh10cDp+bYa6A44Y2mPWZj0+8fnsODtqz9Mkb3pPSuEL4xH0skzTrKNb8VjMIG5oDgChSych/ONsySWwt34nII+I+nxH37Lj8DijHYxZWwgofcbRrUgINA9Crd8Axb4KXTYJIZM1JjF9ZgzCH0vjzJqnsaan6fhkB/ZONtoaKKoLLb5OQON3jV7F9O2j/3rvfIqqBSA3w+HuFgnL1ZtAqvcYK35BgTyOln6MkKths3cFK1oiYPABFPeIgt8GjYkl72R60HtLI8h7w4EmU5Nw+cFYHtib+rXdewmoN91zH3kDfX7R1bhZPvpfsKKl4caLwNsYLJjiwIEnzL2wnhtjR60FbO6ELY5Hh86HeNiE7/OTMKyx8bBLwYLN6jYbC4Zvr2NsPEH6rBjkDJhjqOO9nFS8HBRj2u83e0ahsKYfqvyo0TfqSD4WNWtsSo8++LK3dUgET/nI422fwBjJPus/AW97Br2z1KkN95mzHufniivV8Oqe+9BkyD5YalRHztwmKJ9UVYoZ5W3cesJL4OmdOF7N5qZ+rHtbX8zaT54gKdQGoAWfF8uafR9yIy+CX1AgVm9b5ZF2gvxXHFzLxdP+a9YXZm088YxDCqDsabyJIVvE96F/jkHICDbH9GucHnwrVcKazCSv65O4/vH17ZbX41eyXbinAtAmdTgaCoyffiyE7fDH9EZaAPFWab6SVgsFcPcEo47k443fhyBkcophLIV8Pwmhz2p7nqK6MCizF34OXc/r+zg3BW3KV/D6bbx9M5/2rVC6c7/pO0vLZoheuh8pbYUz3aBRUH5edNt9+8cju1AzPPuu9RJIZ9aRfw7/x7wmLu627K7tj78Dym7E7jIQJWOAucRm1oVGhoVHUV1In8MkL69n7+JMmFi2095BHuutfLIEcV0H8xg9omSn24H7pLz0rslb2mJ9MH6GgeYvQ5vDabVh1+szTRc0kQlbcplJOne1/8GUPmpns53awkZA7SfPgAA4E0b5cgbM4bd+TquNM2EiTArsxJkwojXkuRSU1mdql1lLNPVGs8VUlHiJTFhJF+0GK/D1ZEM/ZH9kR7v3NDWh7A/t6NtnGO/H4j+YymBCoBYkWdywzcaK2LbM4bN4QE9FdSE8PhUocUt00G0FjZG81zUVyRNPsYM1MWH6vndabZwJE9PNDmFx7XoDgMFFOgCU7DmEYy8Zgy0rqguWP3chv1dVqW16OgB4ZMIi0vyQ+OdPEm6n1YbTk9jtRsBgproluk1WVBdnwgj/5QeZRFY8hIh0kOT9dKQmxaPvMnLSWkOb9ThOPsnan/em7MVU/131B1NSa6TnLcz3BAIGH0DvwY9AUV0ot6khp0VcNwDmKp/qOLWqOZp8uUcaH6R6rKgu1FqgCTiCX0zmTJiiujDnQlvTNl54oJ2EL9ql3XBSgHSxvwAg62P2bc6H+UttJ7jZMwrxGZnSu/BJTOX343MhUn5iwsyg3B9p2PbFbOn9F+8NNdBDQExY7tt2w3tFdaFfTD/TuqT+rFZNW0ffZOvo0aXsFveFrH2G8vpxJqYTZCyKxJkJsrpt/mvaPE7cu4HTUfCyA/cfPC3RNic8GDV/YiE63BcuosmQfWjwhTEOowgUSF6/vpNHSXG8UUB6gK2l4jiksuTU6cOzYRxvcX6BYZ0zW4M8Abnjf6PuQeS+w/qHDu/6stfvi5Fwkut9sb7inKMSfpEeRdXU4wI/1+g1o/tGf7kuM+aS8u95fgZmXWCxukgdV0+/orrw1/TZyP7ADp8oWb3uUNd5uDiCrV3EhFlaNkO5TQ15HYV9owFfC2fCCL/onRdg+4EohCLa6913GOnz2+PdYPa8N2YZzj/Cvrm7a6Rh7Uk63hROqw1fHWVaPuJN3+UHYzkT5mnsjah6ljPThLfLXuZlmpgwsezPoeultOebxuLDs8z5zUM53Qx9TnhFEG9U1/76neleBACJ63+QmTCrjTNhgw/JQt3jxVf47+yP7BjS3Yl/A7hLff6xv/91KLsR+y8DSRfOpwejzxsJSPpsFrJuXsHaqxF4rEa+YSFYXpCM6r4VAQCDMnvxoJGIbSNJW/QSNjM49ZhDUu2hcmKZy8NiUfV785hjBP9fyuulXZbateA+e07CYdYGb5Irypu5uB1CRxpjIQFA1/0D4d8711CeJKQUU+ROwIyWE0850OCLJESk+eFQVDFqbquFRhUu4NOGu+C02nhgTD2zoJdS6vu01RcJ2P+UFiTSjJbegx/BuhXfAgB6DR3N7Q0AdtBuNvUQbq6oBt8e+V6/2elJdu4JUQ+jjuRjRFUtoDaVm5+3VVKR8oYf8Hxj6OmwJeJadKkOljQPgKK6EPNyPAY8+yderXPYtIwZfm903Q6ojLc4Nrcrq0/T02qWJgLFh9O3peX0BG4rQ4FIRZiQno054czuUZTm5nxgR5Bgh+nXOACFIfWQM64UWd0XAAA6Pz4RvkWl2DxnjmkbzGgV457dyXokQtH6QJTvddS0nP6W0hNukZ78Vx1o/A7rm577L+OPVlVN6/U2JhTVhci341F3ZrJpGU/9YAanHnNg9yu3bhw3BHAb0IjZCWgy1bgmA5ACo+sD94pw7f4OONPagiZvycKR+w+expwvB+B8VLEhkPSdgl/jABycYkV4gnmcphv3xmDz7Dm8H6i/qB4fPz+UFhdzfFQ+amo86sxm+WwfJMD10gzDXBBBpFsffFx8f2VoLKosTzEtR899ew8zBLz2tm7oIWN6B2QPmi2Vy1rSDpndFqDniEfxxxIWw7FwXVP498411fpQVBd6DR9jGsPPwKzuvY6X6xxB32adsebIX9I48TT+1Ocdkkq3orrQ7cB9KN/rKLI+iUXmQ7O8jgP9dxCfT8fbUetQIUjd2Vteb1B9a23ujdLTnqCnSWzvpTUhqNY3i33TUAd8KldG4p71Xuu9XWxGT+2h3z5+flibt1OqwyyItr6cHsSbzH9LHLGHNj70j92ILe2+9K7tj78Dym7E7iIghiUhsBMeq2GcyABQ3bcil/6EVDkDAEj/pj2QslfKJ0rY+OE0to0k8an3dRIGHzqFz84FS+UIjr3kQNXvtWt/AlEK5Olge/IJJjlK+mwWzGB10q/shw/T5TdjwsK3jJLph/fFnMqFjtT060UanVYbLv/EbLJEGyIAKKnA5BHEhOW+a4dvBWbA7xcUiDO/hUttFusTgZxaHIpih43zHc9hf1QJp5t01/VSUr2qiNNqQ/d9mkvpRh9qdgLkzldRXSjposWsIkNrp9WG33+YK9EW+kwK3Bcu4uzVSlL9iupCnyDZ6LzhuuP8t15CuKiZZj/iPMSM7efmbUWAn9GuCdBsVkQciuryyIQ5rTZ0HTee44iaGm/oZ2KAnFYbKp0sxl9tNJfqotQVAPpFaUbyIl30m9w9i6CoLqTPZNJqvetkKr+keQC+z2ffOn1+e15Ofd5zTCBiuPVp4mHCEsFuAuJadzfFoaguHh9Of1AlJszyp9XAhAHAnPBg3OzNaCUmrPKWuqicL0scV2//HZZNuxD68G42DkeNRaWft6PC76k4776GzM9jDX0GAAXFV6R0fcysjk8x99DWFOPNJjk8OTORSd/JoQS1TQQ9EyZ+bz1QHQcTZvDnP1pVRf6rxjAJAAsYLdrH6teeKsfZTZ5P+1ZSuiehgdhGQIuJWO9rNp977r8M9CjgZZpMTUKpva1hnDqtNpR2P4b7DzIGPHH3OkMd535na1SlldvR5K0kXFkbLNG1skVd7Hp9JsLH7zAcLgv7Mm2Kylvq8vyvZGu0n1rVHH6NrCjOL+BMmEgb5avwG7uRvDSc3bAS00p95FtV/vZU3kcwQ67/ZZI0J/Q06vv8bMfzUj8HpFThZUQmTGyv+Fyy/zC/2bsTRtq3DYvfZ6lfDwA4EyaWDxnB5o7lTyaAy/nAzgWApPWh30vMtAQIn33PYABMRXFzG3YGKLnM7CcvjpC1X8xot36cZBijNMfm3a8xzudHazeqZAtpqVvXdI5Rmbozk/HH0m8k/M+faGeal/KIzr3OjrejyfbKWB68QarjxNNsHvYaOtp4lhHa6bTaUNQnGsltV/DnkmvX4D59Gv1i+vH8ZmuWKCgSnSQpqgvHfm7J5znVlT4rBn2atMfKglRcvy9GEirk/8Tyrk7+DYrqwvDDzIay/4Hz2vreshk+FFS0iSZ3eXYOotAE/wYoc1//90HZjdh/GUQbsapbAnC9y0lY6tTG6QHh3JmA/uBvJmnyxBAR/KeST4DZJIWUq+Jxc7odzjFHjsJZ6RiPYG+pUR3uCxcNOMQ29BnwsEe9a4DdsHli7m4n0Zt8PBIfNdiJZ453wJdWJhFuPS0B1o+ManVmDAL9J91/ArJLWlGQgsEB5rFpbveNzo+2o/bO8yjZf1iyZ8v9oQ2OdF5kKJc+rz3Cx+30WlevB8fwmC5i2aylNh7gWKRL3z71BYehbwhPr0P3wreHd6mforoQ9l08Mh6eiW6Pjkf5tbIUXszr16A+jj4SgkYfGhk0M+k/5SHpsNm3V1QXwhfF89ses+8asnEMsrovuKMDGAAU/9EETaqchxp72RQf4Pkw133fVWxsXdnQ/pzv28ByuAqCZ2Wh+MRJZHwRi7Cn2AHSky0Y1Rf1ZjzqzNFuHPwaNkDx8ROG7xC0dhzCH91poOvoVIchxtB/slZYWjaDz9kLWL1L4YymN/sTAKi4uT5+CVOkOkRpNqVH7S5BWjvf29JzJ/TmveHAoYkzEPzTRINtn6fyYrq7WySyRvqicaOzqPRSJckL4Z3SpE/LnBbLYw/5+PujtLDQwCCJZYdm98DFTmehBxHvmYl2pL0xE3E9hiBxw48YkNEHhV1OmNKT96YDTd40zjdvYLaG64Fu/b3RCQB+DRvgqq2xIYC7/rAtljvxlANjJiTityd74KHpqzG2+gn+rtTeFqUWH/hudSH3bTua3ZODwi4nTGk0W4v19J2Ot6PhymzueEi/PymqC9tulKBjBd/b9l+0y4136u0z1KmnR/z+dGtNN2hm3+nE0w40mCbboZ1yX8VIIYbaf7rvA95vXO8Ect+1o+krxptjgjs9q5j1U/N58ShtdhU+PqUIHMrUeHsPGS3Fo7zTMW327RXVhYsl1zE0wG7I54lOT3gBIGyHPzKiCz2Ws4QFw52RzW/S/i03YsM2PPyP3Yh93+O7u7Y//g7432c1/0XwSxgLwus+cxa1vkk2Xbj0IC4iGV91MF0cRFe4BG/naIfiE085kD43mttQZX7HbJrIJonq8bW1MN0krytBHBeBorow87khcL42mdOTeHAz9zIo4nBabbg6mN2crP31O+l9k+2VJZxVv0/hZaLShsJpteHVU629Lrrk3XF/VAksPr740roDD+d2hdNqw76nZxjymzG6Yh+QATYB2QwQE6aX3OollWbf6Er/y1w9Rgy+fKTzIu4pjcr52lpwJuzkkw5DEFACYsIoiC29C3lIbpe+3QcfY33iiQlzWm2mTJgZzoyHZ6Ltxwkov3YHl4iK/aGoLuS+wwIodxy82xSH++QpU492AEyZMNGttKhyt+hSHU4Dfb/Qh1mdH+emSHiyP2RzpnBdU+lb+/XMgxp72UAn0SQxOctb83eK6sKLtTNwZa18+6yoLhSfrIRDE2bwA1/YU5r9it4WTASn1YY6c7QbBwASE2YJDeLvwh/dKeUjfIFvJEnjUuxbn+jWvE7yMqoH94EjKD5xkrfFb0Oagc6jU7Wyzv2XcL3LScM3q9Y3S6Lv6FQHThdVNaUZADrvvSH1AyDfUomgqC7caMgk1/VS2e3fkvxthvIAuGc7MT1rqQ29vvwL4Y/uREVnDtauXoLSjjL9euAMXNdIwzvq55Afb/D2kBdH/Rii/E6rTWLCFNXF13B6BoC0N5gjIPehDLR7J4EzIuIhn/I3eVML9aCXxOvzAswDnpkgTZxP1wfGmDJhYp8cf9YBS53aKD5+Agtmfc7fiza89KdnUPa8OANrWtaA34Y0LI9oIL3zSd4D362MlhJ/wBelWF4gCzP1tADgAYb146zuzGSs3qUg8zPtxkm9Rz4IvhUsf199PQR/vSZ7eCS7zewP7Nx2S1xDFNXFGT5SY9R/QwCodtTN06j8yMYdTdtJt+FkDyzSq/+OIhMmpt8O3N0iUWpvi4+HfitpE4htE2miNol/Zu/F58PjZqLpg3sROHQfTyMmjG7b9SCt4Y2NKuVOqw3F3aP47x5vPGvoVz0ub2cO8V1GdKGhDSK4M1hoktXJv+HfBCXwQUnpP/D3f8BrYhkjdheB2cFOTC9ytsf8iw0M7188yf6HPbFdMjpVX3DAt20EdxAhLnavBUVz3HtenIGcfnO5yhOpJOUs01RkJqRnY03iUtOFsaIzR6KzpDNTS6iUfwU1FyZzNUCn1Qa1k5+0wJGq1uLPPjUs0orqQl6Hq1JdYt117k0HAOywWTz2qaK6+O2XiOe7ppuQ857R/bE+HwAce1E7SJa4DkrvqA6RLv81O+Dj72+6gfkFNzUwegDQ+IH90vPkzAO8ntKd+7nKlkgDwNR4RFswcZMlGBRtvDkzY6gj0pjr33viJ0j0KaoLheuaAgDavZMgvfOGt82tmDW9R8rMgqKy+Dw0hpu+eksdNOa6VF78PaBRNFcn87RR19xWCx/npqDSz9tNmd0lzQN4Wo+DA9BlwgSO4/mm8k1m8IuMJsuHtaW5AwArCtgtxsWHjV5JAXD344FD9wEbAqRxXaVPNv99YST7pmFPpaDr+PFSu+OOxBn6tW9wLM4/YpdcK5t9B8I/a+Nij/0pAsU+0s8/UQVw96uMOScHGgTktt2sfoLANwTblFbaQVZRXTxWHzk4EMvQ3Dc7xLxa57CU/8wEu+lNunP/JbaWDWDqVykfsdv0EcJhVVFdyPqUfbPNbSpK62RpR3Z7/GLtDJ6/b+9h8Nnm+XAqpls27TI9uNHh0dv6A7CbCcqTubgdp9NptUlruJ5pUVQX/2ZEE2dY/f1lgU3bCAyrKttY6YVGZ34LR3hCqmHcOa02fH2hMeJ6DAEAVFqj2dscXd4ahf2iOT0Us7LhZ0lwn2FMZVC5KhxXtV/cEm7Cr98LCZ9vWzneEheuLIlH8AvJ+DJoBeyzJ0vlo3bLrt9z3rejxuJbHkB3aE5hxP6heGNEux7035VwpC+IQtNUZs+9efYcHtut/4Hz8ElmznCCX0pGLZfc9/DxkXBOydLMDkT88RmZ3L2/2d6pH1sbF87jtFT9qw5OJTgMtNOzJ2GiJTQIea/Lcc3ob9SRfFj+3IV1K77F12HhHpl2fZpZPZ7WN0V1oePeQfBt1dyQDgALmvxl2nanlcUDU1RNuLUkfxuaz4vnZTd8N5//rj0/WRpz+a9qIUB+uVrFQOPtGNXgHyd5fW9Gcxn834Ey1cT/Mpi5rxfBbIKKad4msP4AoL7g4DdA4gZH6kyeyt0JTZ7gVIIDRdW1mDUEostqwndqVXM0eCgfhfbmuFa/HFI+nmVop6K60OfeEVj72xKOS0/L1bXB2NrmZ7b4zo2WDNPN8iuqC62+TMD+J+XbMf2mcKd9Lr5bnL9NklBSnp4jHuUuue+kP0UHA5T/9exdklrM7fB4em82njyNO8C7JFDMR3nNJIpm0l2n1YZymxqiZ91DWNOyxh2Pc290iPXcSfkb/WNQ4Xd2I6mfF9fu74BKK7cb8JGxPoVEIIct3iD3HTtCFp5A4paVBrquK0FcuKFvt14tFmAMnRgkVVE1lUU95Cxri/ZN8gzODf5TOPGMA1cblSDzIS0enQjkjEWEOxl/IpwdZ8fOt7Sgp3E9h8J9MF36rs3mx6Ppa8nyN4lpDaTug6VObSTu3eDxu6svOFB7/034J+4wvNN/49x37Cjf8qLBlbmeflJTBoDMz2IlF9qU9574Cai4KtW0vD7v2LxOKIi9grHpORha5aJEE+Vp82kCGn6ahJAdFRBU8bRhnQBYeIavbcvw3PsTpbAelK/lVwncbrNv72G48fl1lO91FFeGxmLbtFkIXRLPA5XrmT5PtEfMSjA4DDHLJ7bpTuY5zUMRx+1oybl5BUHlqkjvz/wWjq7WTMlbH5/TX3dA9v2zPdKiqC60mJlgCNlCkHLDjTeCowzlzo63o/bcZMkp1O32+NuldRszDuWVnZyGV0+19iicVFQXnANH3jYMiJgfMI45Mc3dLRILv/1SshPWjxEzHGb7a6m9Lep8koelQX/e0R6rqC5E7nwQu9r/oJ0PgjqgtKgIyjFNLd/bPnAn+5++La+eag17lQx8GdqchwgRgY+jLzug1L8EOffORbNv4tH01WT4to3gYVrM4N+imjhkwyiUq/z/XjXx5tUi/Nhj0V3bH38HlN2IlUEZlEEZlEEZlEEZlEEZlEEZ/MNQxojdJeBTTpYskPe0B7J6eiyjqMxpglk6YJT8WD/SPO/Re0V1ofj4Ce4BiiCubS8Amn2RNxr0v0nXWlFdqDcjCQeemCG992nfytRD1O7o71Fy9So2LpqP6ktSTKVU666V41HpzVQZAKByn2yEbRoNAMjpNxcA8+wHAOHfxvP8Yj81+sDYN9R+p9WGyLdYOVFViODUYw6OT3/TU89SWaKP8ogBasU2cJr2X5LKPV8ry9BOug1LnyHbgBFcGMliuJB9j9lYAeQxJrb//CN25L/mkN7p68j7sbX0TPZZoX+OMa0LAI/3Ftemh4RbUV242fU4nq6Zy9MV1QXfSszZy6nHHVL7AWBlQSpXBQRg8MpGuEOXTcLHuVpsGbNxC4DfhgHA6rS1UFQXLHXr4pnMQ6i0cjuWFyQb+iHscRaUNH00u71ptFr2OgkAFxNDpXqOPDoT7swcU6nvltYrJdpFXL9N+MhAM6lW+WxsxNPS3tRuksTyQcP3mN6GmfUHebwkqLi5Pn+35/kZCHlOi+Ejwme5yYbbsOyPjHaqgBxPS6xfUV2oPS9Znuenzkr1Oa02fhvW8qsEOK02Zq+aug/ZH9h53Cxx7vlvbsDrsX6UBP/EHVCf18bV+dFarCuRrqavJmNfh6VcnVQ/DimNbsMyFkXiaeca6R3hrPzHAcP4tNSpLbUdAPYW3UBBLIsx9PH7D6H76HHo02+EAefeyWx9TZnfjq8ThDfji1jk/dgaAYMP4P2QNtJtWM4HWhw0ug1770wzlOw/zD3qbZvGtBJCnpfVi/X/4eOD6/fFSO2k27BWab5S28hDIeUzuw0jlUa/RlZDX9Nt2AtZ2q1O3usO9GnSHnognJMCOxnGWZ1706UAwk6rDXmvs7EQ9hib06IXVFKtpLyN306S2uu02hD84yQ4rTbEVrBIbQaYWnrtuWy8iiFSaO1TVKbOKKadetyBnPftHm/7nFYbyiua/afTajPchqXPjea0xLXrDeWXxfzduUftUv/Sb/KYSDgV1YXMzzW1WNsHCbyM5c9dCPCrgoRjsRIeM60HPZx/RI7F55PM1iexT/T9KPaD02rjt2H0XFpYCJSWctrPuzVPxc5Bo7zS47Ta4NfIKtVxOt4u4QeAd+rtw5ehzHsm3YY5rTbMv9gAjmc0NcSwJ7cj5965bK26pYJPt2GK6sIzmew3mXMAwMr0O7ut/G/DP2Ifduvvfx3KGLG7BHLnhEnP7kMZUFQXomscNSyU4iKxPsJo4Nk2dbjXuvSHAADcHTJB4h4W/DB8UqrhkEBlLKFBcFptnMkJXjcWAOC3MY3jVlTmOU8sp3fIIS5yfo2sUl0AEDEngb//NLSlVJaCI4qLfrOd5RD8kEvKN74J24iDpiSbbmoZizSja6fVhvzX2IacM2AOAPC4WqIRc5tdzOXs7lfk+F70//KDWpBc+3OTpHo/y002MAS0cXyWmwylVTWDmsTVtcFwWm3o9ORE6R3ZbujHSe21mXBabag3IwmW0CD49siHu1skz0eu2y93PiNteAQ1v03mqjdL8reZbqpNhsibxl/TZwMAd99M7RLLkjMSOiiL7Rf7qE9QBzitNh53rd70JAOuSr7lsW2a5kWz5LLmzVD8xpnDZ/Eg58ErJhrqFQ9ZYrrTakPinvV47b1HoaguyZMWYJxLb+fswKFn60ppAFA9LlMaV2aHKkV1wcffH32bdTbFP7HAjpByVaSgouL70u7HOO7uo8aatofKeDsgUR9X/mk7fNq34k4Urnc5iQeyekJRXfywIbaD7BifG6jVnfl5LF7I2oeMh5kTCQq3MDWbrRHuS5dMD4Jm/UN2Re5ukVI7iJEAwFU6g1/SGAdxHJp50bN+nARnQBQsLZuh5kKZ0S61t+V1Oa02bP+QMbi9ho/htI7J62ygObvnN/i9ZU3+3PlxNuZyPrCj5Kpm90owbKsWeoLwTOn8AH9fa0EyNi6ch8J6mg1b0Npx0jetO4vRfrN3e05bxZO+fI5SGrnVTh810yAgernOEdP9wRucetyBjC9isGWmeYw5YnaobeofjU3Hnyi82TSXHV6Lj6kGYQRBj4puhO3w50zf2jzNFrbn/svc/bmeHvhqTJJjT5GEk5hHShPdvm9p/40Bl9Nqw7RcTeiQPURT1aVwAn0OMxfqxdm5UFQXhuV0l+oQ14PwMWnSu3rTkxA0JVnqg2MvaYKDjOlGG01yjkN7KanmO602JO5eh+CftfWv1jfJpt/4UpAhCaHPaGq29b9M4g6NCNK+bIe+fYZJzJue0Rbbq6gupL4/k78np19m7dKv54rqQsb0DtxuWAT9ejKssSDAE8L8GNaaGCZULD6mSvO+7ixjHFSn1Ybsj+wI3TRaom1Fpxao+oOW/+QTDt5Wy59WA57PQ5m9r+9fuzkjfn94a0O+MvjfhjJG7C6BwDEHpIWKQDQSNwOzTarBQE3/uMNL8aabHgF5bNIfcMVnOjCLC6yiuuDOZIee8bcC+YaNTsPZcbLLV4B5zhPTnj7enuMgz0pFTibNpI1XbBe5WDY7sP1iD5MWVEWVnXNsucFcB4vgtNr44ZJveEp5XB4Wy29UUGK++Kd/o8WM2htZanrwIKj6g+b9rtpS7YavuHsUnm1qN92kTsfb8WxTTUppqVlTOxj3yeYHZD3T57Ta0OoLTUrZ4+AANE28zPHQt6K4NiTJ83TQonI537cBANSxVOZ59TclIohjRIRmC+RxWHNbLYl+AEifzSS35DxirRBvRV+HeAiP6zJIottptUF9zmFIo/9hT2j9ZwkPwWMZ6XzOeGJSdrwzEzk32e1E0fpAXHpImzcivBYUjfCEVFwYZX5zQoyt+E4cv2tztqPkMvPKKBqkX1oTgtwY5tGvydQkxDW/R3L8ov+/cdF80/lCefR068c5Z0R27udCGQD4KeQPOK02VP0hBdcHsptYOtiPfHIN/IIC4Xv+Ms+f9eAsfBSiHSzWL1sA3woVJPsZcQ6Y0UbfhNpQ/mABVhSkGPKS57/T8Wz+NN86UirP+yFGPuhYqlUDStzAKS2WIcG6Fd8i8/NYaUwrqgunb8VyOjPRzr1oKqrm1EbMf/IJB050YFttkMAgivWYBQcvzi8wfLfyyk7ebtETZt/ewwAAOe/ZUW6dxpAEvJcES1iw9E2XNWcHwsi3jTH69Gu8NaUqfz82PYfnE/ui3vQkhD3J5pSvrQWmZqdJY1oPAe8nGfoTYMIbgNlu3Y4BpPZkRBfi0kOxODOBzbespazcH62qosE0rR7fChW0Pihxc9pWf97FdC7o15hLw2MlIcyE9Gw4A6LYftZUZgaoPbX6p8NptfEg3AAQsnEMznc8x+tRX9AcZujnQdDacRI++k3aGwC7jdcDOcdZvSPRMHecVptURsR9494Y3u7iRrK7dbptFDVkgl+UbTO3fzgTJXtlJzpFfWSHMoMPnZLaS/Wlz2+PLa1XclopNpvZOKA6wx7fjvIX5X4jvBlfd0D3fVf5O308SconQeo+rolEMTkBAKWlhj4EgOAXknkYGAKKh8rreFTzTOruxtZJOiOZrd1h89z/ohuxsjhifxf877fwXwI0+RTVBftzTNrc4aV4w8FWv3iI0k8zqJ51nZcnr1AijupLNOmNeFgVN276H7vnJn/W00FqS6LqC+VzWm0IvaUqCGjBjgHm0v7c7+G4UcuPp4kqM8MPq8ha0s70oJj/mgOJBzcb+kd8fjdYU9WQFszTp9HzoUelfqj6fQqabGC06R0iUJ0Ui0lMp3otNarDPnkSfNq1lNJjpmhMiKK64LdRdvEtbsYUAJXKJh74E3rQf296phhcALChxa/Iir6hSRsFtSH6f1wIwNtyeoLpNw8aJgcKV1QXvv30UwmXt/FHeZq+onnuzHvdwQ8jVJeiuhA+kTHQJdeuIWNRpHQYmn+xAY696IBvm+a8TOvtDzGBwC33vyId+56dIeEX/4v5EjetwNdhTHLt2FMEp9WGkOWTTA+nQeWYMXr5XkdRbalRSmoJD+G/ayzSvqN42zotN0mih/q8/4HzBhqt87RAv2KwUkV1IfHwFi5hB4CML2LR98AFA01ieynIuj6d039LPdlptSF9ATtkps+IMRwQCSr+kopLa0IwutopKKoLa1rWQHHOURQf1UIbmB021mTLQeL1ghRK089pwuE+eYqHihDxLGgWCIDNIafVhsOdFmuH2t+0IOGkmkVlEw9vYXhveY0l8GtQH85G7fhNANGw5HJtuKbMgKK6UGd2MlcvclptPGiv2FeXmrm5F87YPTdvO1/07RJ/n/s9HLOObjXgoNAXQS8bHXHkDm2A987IAewBba0JWT7JMDfSCosAgDOZADA/XLuxoG+19po/T7s2qAPy+tZAwkePG9ZrEq6IjIE+D/0nb7gA+O0vCW4AdrgXx0q1pSmoM4d9czoY69elkhs3pPoIai5kzASFfhFpoe+dsSgS1ZbJ831OeDBQ4pbWKLFvzCD/p1Y8XAZB+QulUp1ieX3ICUV1odOTEw356XeXvdcNeKJfMZ4h9OUpREz5C2x/dzw7Cdm9vuH5ghLHYW3eTuS+Y5dCq4jfUP+bnsXYkYrqwoqIejjxS4QhpE742J3SHHdabbCEh7D9MrCxlPfFkyzfiWccqP+VrB5KEPbYdmxszdrVZpcPio+fwNG37FBfYONJVNck5gtgmkgiOK02zM/biqBfJnj8rt761iXEtaZ0vbMcugnMWmqTYqGVwf8dKGPE7hK4P7w1l1DSIU88zJkdIp1WGzYunIe2HyXAE9DEJukh4dBvVmaHA31aSttyGHXEPH6UGBtIj1NRXUi7Zyano35yNelwVat/OtZ/PI3jSh81ExPS2eF6WXMrMrstMGUSboQUGphGWuCdVht8/LVDAqWJbbZs2sXLkY727ADzIJTiIqxnRPkB8cJFVFuWgrWrl6Dde7e+yYYA1PxW/o6/H0uTFm/rR0mm/W9Gu1gvxTKitOGHNTWeuBZdJPpFL21UpqGfFqw74L0k9Bo6Wiqjzw8AEbMTkBDYCek3r0rpnjYi8XfBy4zhbPIWa6/tfW3c6pmTsFG7+HOLpIexPKIBGn2YJElcq39XlW3Yt1Rn9Ru5SIP+YE/p4u+ktsxOM2voLNN2edqIj/3M1GXd6VlSOuHP7skONZnTYiXpuciAi2psVNf8JltNaQbA3S5TethTKVjTsoZUXqS324H7UP8rJlyISPPjKjMnntJcUZParaK6ED6GjdGcgUw199hLDtP2J7ddYehrS4tw+Pj58cOOHtq/Ho9+Hfob+oralj6vvWldF0fEGr5lXOvuUp6Mb28xvbfUz5xWFh+ImPwTz2jtdVqZ3aG+LqfVhpz3WGw7mDgVXtSssdS/fSrJtwcAEL4wnqeJNxA/ZrTzOI7MQDxE/34sDbX6p3Pvf8cnm6uoAkCbTzR17sbvJqFVxXzTfIrq4kGlKT8AvByk3Y7o6b20JoTnFdv+1/TZCHg/Cbten4ni7lEomKKFm6DYYufd13ibpuVqgYjN5m1pRxuaTGV5nm64nr+nw33ID+YuwZ9UoxGxbSScVht3V09tVVQXbvTXhFKIYTEoxVvylBuyBgXNX09rtLd1RwQxRMnr2buwoiBFCsauBzPGsPJP25E5LVbSAqDvtLlNRamdiupCrQVs7xH3nIV5W6X6CsYyRmf9DwsAgMfqDNlRAU6rjcesbLSFMWoZiyINNDutNm3uwbhWiuO4wcBDCHzdaCNHEPzzRFjCguFz+SpCN42WBDsAY24U1YUXJv1g2l8iXFkbjNgqbF0OfD0Z1o+SUNKlnaSueb1JdanfCEgwFeBXRQrdcGUIY9r1MQcV1YXsD40hcUYcZu7yu+4fyNNIRRtg6tRL8rcBagUAKFNN/D8IZe7r/8tg5r5eUV3cVTM96yf37Q6VYn4ff38eMNTdNRJ/LP1GKgswRoQCABPc7BmFS4HlsfPtmR5x6+slvJRuRmfEtpHMbmFDANCDLVK+lSphTWaSVFbfXs40dbJh/fKFcFpt8AtohOKCYzCDZzIP4fNQZvtzdKoDh8fPMND+3plmmJt8Dz+o6RdzkZ5fj+2Av0+5O2q/9P5Qf95OMX+Xvdex7sV7sGn+XNON2Kd9K5Tu3C/1Jd9ML9XDsuZW0/r7dbwPq7et4umXh8Xi6beWYWGMDe7mgTjbujJmvPwlj0MEMFuerAdnYfmV6pLk26ydIpwfbedSZU/9Zla+sG801C5+CP3wMBIPmLsqPvGMA0WOy9zG5dhLDjT6wLM7bH0dltAg5DzckAeuJTj5hAOuKWwsFK0P5I4JRBz6/wR+TZtgddKvXsen2fNXR7chvFxlQx7qKzPIe9OBQxOMYzZ611DU6p9uWkbfhqDfxyN8wg4pPfcdO5q+muzx+1TfWhsP1d+OmWGhHttjBmPTc/jYofwFK1oiYDCLiaeubIGiA9W50bqeyTVjes/9Hu61rWbtJjj+rIPHfTLD7an/zfpFUV3o16G/FGBbDznL2iK9y7emfbq8IBk9X3sWO96diZCNYww3I57qBZga3JzwYPhWrmxqX+at7H8K534Px47I5Ya129uaTG7677Q/AWYzW21pCqZmpxncvOvrcneNxPnJV6SbMj34NbJi9Y7EO/6WTqvNNMQCAOS+a0fd3SWo/BMLVRG0ejw/uJvR5ynd0iIciX8sv+NvoajMGZXeDvpOoG5SDZx2XAAA+GxsJKlD6usgEPvCr0F9FJ84CUV1obD0prTPKaoLLZNH8Hmsx+dtvfSUbgZ+jawoPqZ6nKu3K38nedzdImH5c5fXkD3eaC5aH4g/W66S0mcd3YpJgZ08nnkIf6zrAVSPyzTQ22xnORxpf5M/l/j7YuON5Xetu3Y6s9637tF/zH39qt7f3LX98XdA2Y3YXQIr0/eh4GVNwklMmI+fH5/cooRMlMIBQN9mnQ2LCf0REwZot0DiglFqb2tgwhTVhY2L5kuBDc1wmx2gPNFJAaKbDNnH8vTQDjVHPmxtWPx67r/MpU5Oqw3nV4fh9exd8N2q1VtccIyrq+mBmDAAnAnT07a5TUWJCXNabegX1Ueim/77+5RDXK8HDUyHWfulbxHxOxTVhanZaRzXqVXNsblNRfiv2SFtNr5tmmvfRWDCAEg3SGTnof82EbMTsHrbKomupM9mYX54ENwXLkL5eRFqz03mTBjlCX2GSUHnhwdBXdlCaoNosyGmA0DVvCJed2qhprqq7wtKy1rCJIH+a3Yg6KVkuM+fN2x2BVOYcXWDz5O0sQLwOG9i/d33eQ74nfdAQ25fKEL9rzT1wD9brsKpVWz8LLzldIbofS8nFd0eHS+NmeLcPNj3DDbgFKHNLh+pvwDgicCOHg8J4s3t2bHsRvfoVMaExfV6EIV9o6XxtKKN5jRAvy4A4KqVTqsNOf3nSv0DwCsTBgAXO53FwMrMHu7kk4Kh+y3bKrHtGQuj+DPFuRJpCxis2b5a7z9oYMLEtchpZbZOIl3FiXV4G3PftuPocqO0WFFdKFjREk6rDQvztsIviKkoNvxMti0dlNnLcFDSf6fct+2GOUVANluevn3Q8D3Ss9Nq40b/1X0rotYCtpZ6Y8IyvoiVGAUAGFyFeVAtuXoVj2WwfeHkE7IHUW8HVjGf+HvwoVPSs6VlM27XRDhJfVt/qBTLhb2wk9dL3vQU1YWi9YESHccFhzjJnzCnFm8ER0n7ibin0F/5PTnw+aU2Ou+9IbUh921NvU3v1MOsL/TrEnmK1PdP01eSORMGMGcXfsFNDXj04LTakPUJ+37nxtjhPpgujTdRBQ5gNlkA8xBJ4I0J87bmfNd0E5YXsLmlZ8IU1YWjy1tDUV0IWxQvjXv6v3qXwp9FJsyvkRVxLbtxJixrSTvAR/Ni93BuV8M4FPfjFl8neNwv9enEhHUfNRZOq41rXYh0imX1385ptcESEYabPTXGnhyKUL6zEezWSWTCqGyrL7VbZLN5dPQtO/ym1uRzgurXM2H6sxmlrWm9iNPh26Y5z09MGEHJjUKUwf8tKLsR+y+D/kZMUV1o/1q8dAslgrhA9D9wHrMX95NuCRTVhaBVE5BzH1MporwjDhdwg3ARh1/jAC7lLewbLd3OmEl2CJqmVuTOAzzRZ/YsphH+m6Vu9G/kXSpKeTu8GI/tH5r3jTfQL5QiXLu/A/762hi888rQWFRZrrk8b/deAupNTzLQ3+3AfdKtCuUXbzX17QhKHIecuHk83aw9C/O2YnQT4yIvMXkm7VJUF4JXTkTYY9ultov168uL+fwCG2N1MvPG2TfUwdWKCL7PT8Kwxka1qNsdBvvF9OO3l3q6LWHBcGcwZyRxXQfDnZ7lkVnwNsYU1YXegx+RjK3N8gf/OAlhT2kqWRlfdUDYE9sx/LCKZc2tyP7IjuAXGMMyscDOVVbNvpNvm+ZwV/GHT9Ier7Quzt+GepbK//HYNYP0+e0RPnYnr2PLDeAedsbg+C3168F9kh22u44dD/81Owy0pdxwI7aCxStNvIyPj6mqHsAOaJndFhjGp2/Vqtz5iBlO/bdJnxWDnAHM+961QR1Q6Wdj4F7CmT4jBo0Vo9otBb0OSKnC3b8DzCmH+5IWFiIqbSjq3JsuBcSmWxJPY2zwoVNYEVHPdIyL+XyiW2PtqsUGHHG9HsSZj0pQaUYN+K82DyRNZa4+0AGVf9ru8f2xn1ui0aADUlrG1x0Q9th2JB7bhbhGkR7Lmq3tZuuKN/rMns3gdvWa5SeImJWApr+c4yrJ6gsOWD9i+51vq+bcNu5O6SHcY/I6I/dyLb5ui/vjnYDYjvOj7Uh9b6Zpv4g36Gbrwp30h75dd9Lnd4LHEy5Ko7kQtbsEae18YQkPQeImpop84hkHGnwu22fl/dja4EWX8FEeRXWhy4QJqPB7Kgr7RZvOAYLCdU3h3ztXKn/5wVhU/SEFV4Z0QJUfjY5K7uT7O6025P/UCo0f2A+AOfcRbbO9AZUv7Sjbc51fHYaa/TJMachYFInsnt9I32/a+aZY07IGnPsv4dlazAyj7UcJaDAtCT8e2YWa4dl37Q0QnVnvXTf2H7sR+633/Lu2P/4OKLsRu8vAabUZVAH1h+fM79itwheJcWj0AVsMi3tE8QUg5745klRGUV18kxFjryiqS1K1OdeCqUbmv8IO2R+fCzHQQZK12QHJ8ClX3iDdMttwxVsLSjv6luY1UGTCyDBXv5jSs8iEmUna9P0llrfUrIngnycaaNYzYWRzdD7MV8JVb7qsxkL0l+91VKpXUV3oNmYccPaClJ+kYE6rDTlx8/hvcUMWYfQtb5Si9FIvcfPEoIU9th1DD52QJLl6XGagqC6sTv6Nuzhek5mEGUe3SnnG5w4w7Qf6zvr20G+9CunxyQ50Hc+cKLgzsnGzZxScVtt/xITp2+K02jgTVtiXSZpFj1lUXmTCFNWFykctUFQXvm/VBAA4E+a02rD+UIShTvK6CQAlew9j3U/fAmCCjVdPaTdHYr+MbNyRp/v4+Ul9pI/jx9OrVWP2AwKtACQmzGm14d1gWQo76+hWJO5eB0Vl3gM3zZ/LPL3pxkl6Uf07OtQpqkvyHkYe9Hz8mJOdkBG78aQaLY1PRXXhyFfhBtrFZ/1czhkwB9GvMvs3YsJ4m7ewGEDE2IUnpKLqLlXzdHorb6u+RwAABbFXpDpFV/lOqw3llzIHEMSEAcCBJ2aY0tUniNmFTKiu8vL0bsDBs7w8lSvdsY//vj4whsdlch84gtR2P0oH0Ig0P6k89fHWL2cb+o5wnn/EjnsaZ/HbCXpPwheRCSN8hLvi5voSLhHMGDP9/kM2Yvr8NE4pf/ZHdgMOp9UG56BRsNSoLuH1CwqEorqkNdJpZfakJXsP87zEhAHAmnXfm9JvaSar1Orfb7tRAjX2MmfCFNWFUdXO8DzVt9Y2Hat6PNR2Cnmg7ydFdWH2lqU8jZwLieNLxAOAO+0RvVVSPoCp2+q/W7Od5aS8pEVS6mC3sZYa1XmcUk97DQE5LFJUF4//mdaOHRPd6Vmsf+vWRYPP2Xeg+H0AEPzMOQO+34+loX96X6kdm+cwIfGmuXOR/YExHMj3+Qw3MWFiH5FreGLCsj+wG9pjqV3L4/cjPAcd3/H0Xa/JXp3pjKMvL363dT8uZPXfunEjJswMwkbtQutp2s1gv5h+3J5XaVWN0+W+5yIU1VVmI/Z/EMoYsbsIhh4yxrihRcjH359PZFJtCX/3IM+3YfF8OK02RKT5eWRUAlKqoEdFt+EQT9DwU6ayFfgpc5TwRyvtgEN0BA7dx3+vPZrKpUPeJJ4bW1fmhuX0vs5eZkRd0knLBwDFR/MNh3iKFUL1urtGwlKtGiLfjpfKihs4gRiE1n3+vGQ476kfyF3/wcc0z3txLbogfVYM8t7Q4oKIZVp+JTue+HPBPH4QBoD5eVuxZu33vE1if4luyOnwQgc3s8MQPZsdDsRg2ssjGuCpdau9HrRDNrLYPU9mapJlp5W5OO7XaSCcVhsSAhlDmD6fuTAW446JbtrFUAtUJzEhcd0ekNoR17IbGn6aBP/VO3BtEDvklvsjzVCeQAwwagb6vvjq6Db4r2GHXVJDUVR2uyUCHaKtn7CxX1pczPPyb9JLjh+UPisGiXvWw68hCw7sW7UqbO8ncMHGDptF+m4v1s7g36vX0NG8HqdVi18mxqcjyPgiFu5LlzCicUcpaDXB2zlMrZVi7og0UwBbcc7OCZfdmAOy23RLWDD/7duqOV+P9Iy/02rDG9+xwMItt2vOEI60v2lYB7J7z+fv6V1J53YGAYSIv873ewzMNcA8eOq/c3F+AdYc+YvX2WXiBFzsZGSMKDSCWGfyp7MkXGZrl9Nqw2MZ6ch8J9Kj0OTXFrUlHPr1q+Ivqdg5daYkNBHVuzIGy/GFzNaxRZfqSJ7man6bjKzoG8h5j42L4D80D7BmQhCxbtGxkhnNIg3iOKbf1foag8sDwIhbggYqF/r2fslpCIeUvUg8uFkqS4Gw6eZLUV3Ifcd4yCbwC2zMcRKT4dO+FU7/2gzuI5odjtNq4x4bCTpWkAVs+r6+2OmsV2EP0Sf+Dkipoo21mTG8zNgmndAi6WEATDWX6kpfEGXwfvleTip32qPGXjbdx8nmkeD4sw58aWXrAHkb3tymIq7d34Hf0LsvXETpzSKOi75Pznt2wzdOalvewPzogbyLKqqL29gpqgurU1cb+qd/oyj8Hr4GbVKHo9TRFjnvy3VSvD8RaloqSTh828oxHhXVhZ77WWiWjFGaYJa+gd6FvH7NA9i30TstsdSvx9fL8fkdcXUw25cyP49Fux3DELpskgFflTwWS5TUZi+tCUHfME3gRv/3PT2Dz1Gxn4gWAGg0iKl//nvc15cFdP67oIwRK4MyKIMyKIMyKIMyKIMyKIMy+IehzEbsvwykb3s+PRhDmsk6/fEZmZgZFmoq0RGlZAeKrvMgwN5uP/Tv6Tn3hzZo+qAxXhQABK0dJ8XOCl0Sj5Dnk3HilwiU+60Gas9nKlx9AmNwo2dbyQ6F/ru7RsKyaRfHnfeGA4cmstumORetWBFRz1B36LJJCJmcYkg3o5/+k+cnsz6icieecqDBF0kGHN5AUV3oOm48/BM1dSKfcuW5lFGE3LftODJ2ppTmHDgSSPWuOy/q3Es3Fvnb8PDACVj72xJJQmpGs/6m7Xa/OfhaoBSkoW/vYViz7ntZcu8BN2+bDtd1JQhbWq/0Wrcn+vPecKDJ1CTmKn1ICvZHldzx9zG7qSD6LM1CkfjnT177QFFd6Lh3EKrcCpot5g1eNxZho7XbuuOTHWj4aRJOT7Jj1+tGj6LXB8ag4i+y3ZIIOe/ZkT6albPUrYvEPetNb4f0txn9ovqYevoS26p/R2k3e7fHsC8SsSKiHix16xpiZlGZzo9NRKWV2/kczByu3RrxG8KlNgQ/xPCfSnCg3gzPnixF3LcbVwDzlLnn+RnoPWQ01v24EH3DOnr0FAiA24uZjTNLRBgw4yow6LrkmdPw/WNaA6nMKUzQqgkIj0+V8h37uSX2xy4x0G/2vZxWZltz4AnNOdDzJ9phbyTbZq8PjMGWGXPQr9NAFGfnmvaDWR2ePC1K7b01zomm/2Tu3CmQfai3ckQz2QLpYXlBMoYGyLddRG/fPsNw+KkqXPVWD/WTq+Gk/ZJH+nhfhAVj6G9bMbraqf+oDzI/j+Vx4xTVhaybV7hGwNG37JLbddN6a9aE+/x5U9ye6vSUrzAuGv6JO+Bra4ESF9N+8W3VnK/RBOkzY7g5gogPMK7PtbfVxNmO5+ENTk+yo+6sZMN3LOlkg+9WF8/n064lbtaqwLVx9HW3/TAB5a6UovZ8rc/0tuXd913l8b5ut1eIHlTF9KsPdMCpSF8eQ098Z9stx/Lya1Afq3cpcFpt6Ln/sqT1AwCd997Agg1dEfpMimFtNtszPJ3LnFYbfNtGoGTPoduWiUjzk2KrFpfexCasumttoujM2nft+H/MRmxNn7l3bX/8HVB2I3aXgJle8MDKV3BpTYjXQ6bTapOYMPE63Cy/JTSIq5m0mJmA05PsEhOmLycyYU6rDSHPswW6wcBD6PfkFp6v9GYRZ8LE+hTVBZEJA4AmUzWvdWRzobeZ2TH0MwM9ZuoFS/K3IeR7pjJATBhXe/hRDlTq18iK1x/TdMM9qb0AzHudNaUqr4eYMEtEGBTVJal6EJx80oGmryXz70J/Pjc19S13t0gU94hCl73XJfWPPc/PkNpI9I1o3BGlaQcMG9THudphQUwXf5ttxuLvjOkd2GH1VmDSkv2Hpffv5bBDlKVFONp8ylSMmqayWDUfntU8gGV+pqnNuefVu23dTiszYteDuwI7rO5/coaBCSP1O//NDaT+AcBVf5xWG4+pJ/at+0imYQ6R/YRIZ5U+2fz3CcHDW9joNKmfG37KGI+6s9i3JpuG1ELm/WrLjDmGtokQ9HIyeg1nKqH6jd5ptXF1WqKf1HpXp601fG+xT0VwWm3cpkpRXSi3bicXeAy75SHVjJGrtHI7/y0KQiTG9CGtXPkrpfgsVzsApc+OlvDqmUkRzBiOBp+ztcFnG3tXcvWqodyFkXZup0T2YmaH3ddXfw93N5UfjCmej9Nqw3UlCFeG3opLdivAs9NqMzBhgKYyRDZ24ns9/Yqq2dYQTmLCABYEO+5IHIqzczk9+v4hnFOy9sJpteFA0XWPTJgYj4iEDfq+rptUQyrzfX4SLg+Lleo69bhDagPAvChKfR/TmjvpoXI57zF1ON8KFaCoLq5C67TaJCaM5quiujCsn+aJ0VVYKI3hNWu/h085bb0EIHkT1jNhZvudorqQuPlnLGtuNfRFkbO9Ib84dkKfkd3wExP2Xk6qRyZMxJF44E8Jd6svzGN8Oq02WGpUN5RXVBem5bL1ZNM85vGUmDAABiYMAMLjU3k7RdpFnORhkpgws7lIaUW9L0k46DuKTBgAlO4+AL8NaVI91wZ14OWqHC/BjX7a91JUF3Jj5KDTG1tXlmgmFXkz5kcMYyGmV/5pO9JHz+R1OK02bsPraid7wy0+oanlztp9j9QXiurCX20qIOtBJnxynz5tWF8p7+lJsoq7SBfl1TNhADD5eKSh76c11Ox9FdX1r1FNLIO/D8oYsbsMLC2b8d+d9g7i+vjiwrO8gB0Az0w06tCbSWjEPO7MHJ4nvGcWdr0uG6qaLTxOqw2dnpgo1aGoLqS0LYfzo43unk+5PUuw9Rtn8E8M79q8nVLdJHXt/NhEDD+sorh7lNQOkVHJGibbehCe7CGzOP1hm0Zj9Y5E7gqa8pkd4ACg9vxkqLGXOeNF4D6UIfVN9KuanVr9L+WbNoK1q5fw35Y/d8FvQxr+ergdO7jOay/VS4b0YjsAcDfYFMjz+aaxuK4E8TxBieN43oWX2IG7w4vxXhnzsMe3w30owzSP02pDlD+zF0j8YzlnPmYHJCP2hUnY2Frz/he2+DIvT0bUZgdU8X/m2EYAmGt8Sg+awg46fe4byXHQdybbvhtTjP1D3q8AYM8LctytzGmxsIQGIX1WDA9y7bTa4JO0B5mfxUp5385hzHbm57HYE7NM6isxH7Xh3KNsMx7W2AHfSpXwWlC0xzGln4frly2Q8Ir99UuYIqXvnawx6Z4OBuRgR4SgYXsNaQDwzsohAMCZaxHP2PQcwzjwxMgDLOh8y/IV+TyLeP4InFYb8t7Qbk0U1YWsJcZAxuJz0K8T+O9jP7dkApyaNc3rXJyM5LYrAIDbxejxKqoLT7z9OPJe1xiHJc0DoKgu5LxvR0VnDqosT5EYF9G9eOiySYY5Myc8WOorMbi9J6bY7MB7fm4TIKY1lqodcLOntq7pv+mYDWMBgAvazBhc38274bTacHVwB8N3onb1rb1PKjOssQNJn2lrZvZHdux+WWYeM6fFInH9D3BabZyRU35ZLM1jRXUh6GUmmCu5cYMdvm/1qch4ifT06zRQOqC+GNRB6h+n1WYIoLzrsS/4+3KbGhr6gEK8AECLmcx5RJ/AGAknQXllJ087M8H8MK0HRXXh5SAN38kn5LlGNmg03hddqsPfNfrQ822x+wIL93DqcQ2f02rjQd/F8aAfIwSiC3898yWWCZmeJaU7rTYcneqQnqns1fMVTfcLAk/vnFab5OW036t/otGgA/j9GNMmiHmZ7ZXXSoyaJITzy9DmEt3ieLu6NthQLv8VB/oeuACA3RY6rTbcuJfZ8F58mAkF9J6Hsz9ifRY6cjdi99yU5m1xjyiELdb2dH2dlJeEcCKQ4xGzOU//90eVGNL08/aB+wbh3wBlNmJ/H5SpJv6XwVNAZ7PDnF9QIIpzjnpclEWoua0Wznc0ejEi0NchPouLll4yNeDgWfzaoraBBkV1oduB+3BycyMcTJhhKKevx9s78Xfuu3Y0fSXZNL9vq+a43qSqpDI4+NApTKh+K6bMLZUjT20GmOt6ugW4HZ3iBhb4RpKUZlb24ohYnHKUonzdawgcus80jycct4P0WTEIn5QKRWVBQD+YNIo7u/A2PsS6zj9iR+r7M/lh67umm/i7zntv4K82FUzLN58Xj8PjZiLlhts0GKu+bv3GKrb7vPsahjV2IOvTWAT9UoiT0RUlg3TxO5i1Sd935x61Y8c7ngOQryhIQRXfChLO/ul9cbPrcdP8ANAqzRefNmTx966uDUblWzdnBBQktNymhhzPxcRQHrwz87NYZA2b5fUbm9Xr064lSncfkN5nLIpE2KhdJhhkXIDQV7dUT0X8rdJ8+a1j2HfxyHj49uEyzCD7QzuCX2QMNKnrKqoLfeMeQonroOk8OrWqOerdd9gjTn3dZoGtveXXg+i2Xp93xtGt/NbjTtp8J2uvPs/ZcXbUnme8TbmTNcDsUGpWhn4vyd+GEY078mcxqLUnuDDKju0fmLtf1wOFO7mT/cOsL/Tv81534NAk829L+UiVt2/f4SjZcwhZS9ohZAS7IUyfE40Puy43DUIv4ukz4GHk3lsNgW8Y1b89tVdRXYiZEo+a396Kz+VoC5+kPVBUF1p9kSAxWd72C2/fVp93ZUEq7g+IMRzm272bgN2vzEDf4FiU3LghlSX364rqwoor1QxOeTK+jUTYI/KaoQ9/cbvxDhjXb7OylL/dewnY/fIMNPtrlKRx8/uxNO4l2bGnCEltyyPj20jYgvJx9R6jurS3PvOtVAlZr7blat7ZS23o0DQXpx0XPNJp1tYTv0RgT8wyaY5Rez31z9mxdknl0gz8AhoBxcWSuQSghZg48UsEGgw03pr9W9zXO9dM+MdUE5W+c+7a/vg7oOxG7C4CvdRT/448S92uTM4Hds6E0bsLIzXJWdgOf+kdLTTDD8uumc0W2F9b1Eapva1B+gYA5XsdReN3NLVD/Xuz/2YLn1jnkTEzob7gMCySBS87ULL/MPwTd3DVFUV1oU9lTX2BVI70+EXvY2QPI9IFAGPzOhn6gH4HvpHEpXzeNvSUj2ch7LHtCByqBSW+/+BpKKoLzf4aJeFVVBfU5xyovrU2Zh3VVClEvOJzzgBN/e3T0JYGj4OEM/+nVrxc9kfy7WXq+zPhHDgSiuriTNiTmYdR2tGGv9owVaOTT8rS3+CVExH4ejL6BsdKTBjR54kB048J+k2qTiGTU7D+hwU8CC/AAnq3+jKB4xXHk1n/K6oLtb4xBiCvva0mxzk4QLsFowC/N7seh6K6ELW7RBsjQuDgQ6O0m5KtbX6W2gawW05FdeFm1+MYc+QoHHuKUD0uExPSGcMW+mwKHM9Owu1A/73Xrl6CYy+y/unbexgszUI9MmH6NSDoNxYW4NSq5gYmDACXzALMVb/Zd7swio2Xq4PlWwsRgl9kB8BSe1uurhu9ayjif/yFu9o+M0Eed/XuO4yiPkyFUVQ7S58bLeGmMk3eTOLj2dv6aCZpB4DEw1sMaYQvIbATD5nhTYhAKoBm7yxhwTg3xvPNRO15yTzILLXhlWztYHhlCOvf4896js0n4vb02/KnFXUslaV34nxSVBd3bZ4+K4an6Zkwb7B6++/IfVf2fGdGi2+r5jg73i71hfhefYHdxjR5KwmhS2TvtwTkpS599EyEfxvPb9Iyuy3gdYdP2GHOhMW2AcBUyVtPS0Dpzv04PF5W/9bT5BPVUhpjTqsNNb9l49vHX4sT2DfuIcNNV+8ho3kZ/bej/5W31PV40Ceo5FteemefzNTrG25kanIlN5h3vriug3mZujOT8Xo2ExTRra1IR+lNX8O8ISbszEQ7+jkGGOjQ0+i02rhXQUO/tWtpWOvrTWdztm/oQQmvGKomqS1ra9gjuyQmTFFdXBUdYAJXMyFEybVreHnQCrRNHQ5FZSrTpx0XDG0A2FovMmPinGgw8JDUrr7BsYbxDGgaE4rqws63ZTtwAEj/pj0U1cVVy1enrkbxiZO4dr/m1RbQQkwQE6bv93+L+/qyG7G/D8oYsbsIaBETFwtFdcGvcQDCFrHNykyKpl8c00fNlHACwIp3P+ZlpjfazstZwrVYYaOrnTLUUdKlnVRHkbO9FCxXpFsPtMBEbGOH/bYfJhjK9IuOk/Lq63dabTx2TMS2kTxPwyQmFbS0CEfAe5qUM/FKM6mOa4O0RZD+SNff04YJsBhE4mamXyzL+VgM7QWYakzJBjkWmqK60Lf3MADApBrH4LTa0PRB2RW302qD9ZMkXOx0FkHlqgBggaIJ+sX083iAEEGP0ydNkyBVbX5O6geAMavi9+tX6QZ8tmlMFalblnZk72kTIamsN0Za/3z/QVniycd3UKCUn/4/XytLClY+JWsvp0vf//xQrIvHpagunO14nuN8IWsfivqwA7+4+TutNh4vBwAOd9LUsNwHjki0TUjPRo+RYw1tn5abhGFVzyOpbXkUrmvKJdMAUPV7zd7qVIIcykFss36c0YGvZP9h7pbb7MAU9MsE/s5ptSF8Ijs01LvvMILWamqrZ8dp6jPF3aMkBlE/H2osSoaPvz8qr9jOmXoRbvbW1Gp9kvfw71mrfzq+DgvnNzFpb8400PznNyxwfMB72s1y+HhmY5q1pB1y37EjPkNzQ252EBNjEDmtNlTy1eIakrrXtfs7mM5jS4twnl78TalHIUL7N9i6e6ZVRc686MepOyMbtRYkS3Xo6S33Rxqvo9n8eLwbbMPZcXb0i+mHKj+y9Xjvc7J6IOF550xzAECLrxOQPisGGV8wlavzo7X2h+yoAHc31XQcie1/uQ6LsRY+KZW/M2NySb1ZBFIjvhlQKLVN32ZFdWHNuu9Re675LaDlTyusH2kCuybrb+LiCGN4hpDJKbzPSG2ZoG+wMb9YB1LYWuE+lMH3D2pnwRQ2Ns6O11Q+S7q047a4ZutYaWEhfxZttgjE4L5UD8XYI5qu3nPagHvwoVPo22cYbpa6eVkK1QFoIRbch7TQIBcfjoU7XVY1fCs4En4NmNq23iYwfNxObpOqhzqzk1Gcm+dRwEE0ZX9kh/vkKUkVmAQ0a1czRzZZn8aiuHsULLVr4dzvbKyQ/RMA3OgfI+FNnx2NKVl7kb3UOP6yB83mz2bx4giWNbcabrMuDZcZqStDY/laf3VtsDTmKZ8YcoD2Nj28FqSFwDBbKxqv8oXTqoWH6PkQs4UkjZu0wiLkvmOuSl0G/7ehjBG7S+B6P1nFiyZ7XNfBKAqsg4xRM03fiyBu/orqkiRVY5t0ksqSJJqC51L6jf4x0qJ24mltAwI0HXsJYswDIDqtNgw+dApNhuxDXLveaPBFkrQIAsDqHYkSzeLi2ObTBIlxONRxMU49xugmByCJfyznZZpsr4ylUxjDQpsS6azrmVyK3TXmiHbLSPYa4gHTUx83n8cOaCQlI4cFB+NnwLeHFgtNUV14+WQblOw/DL/Axoh1PWA4pOlxU/qfLVfxdDEYsqV+PfQNNdoEiWVv3Ms2FvLeBgB1BxyRxk2zb+INGwrF+6JnRXUh44tY+Gxz8ZtUsS6n1Qa/oECOhw6+ZrCyRV0JL8HqbatMNz5xszwzwY6uFbUbq1+uVjGlRYzHpT9cA8CUtyag/NodWvw6IZ6TJ6b70poQKW1OeLDBSF1RXXi6qRZs1b93LqfrdLy8+dabkcSd8OjrE+eG+F4MWmwG4QnsYB3X60EpXVFdyOkzj+Pc+RZjilZfqwC/jWkSg2gGrx1KZk4jAqJQe2llfogFgI0L50l06n9nTos1rEmFcdGGfOKz02pDtarX0PTVZAysfIW/j341Hp+dC5byF1dzG/qOGGL/80ztkm68xX4FAPdB7eYcPQo80lN7LmOw6n2dhKoZfrAIqjH6cZJwLBZH37Kj6/6BHoUmiupC09fYWlF7XjJKzrCYZ35Nm2iMXbdIiQa6nW78bhJyBszhwchrLtQESjMayd9xzkUrMqdpzEqXiRMQ16ILnFabwQ5QrIvwLWtulZ4tLcJxI6kOnFYbV3M7PtnBNS30h1un1caFInrGNLFZojTXNi6ch5tVtHlIN9iiIxKRFrPDMv2m2zp9m8R2BrzPBHcio+i72dwZil8jKw8MbwaK6pLGOe2rTqt5TEICuv2dUF1Fyd7DkmCJxpzZHg8A1b/THDWJ70kF7rummwAAQb+P5+/IJtVsna24ub7HugiCX2B9FfSSJnCovGI7rt8Xw8uFTE4BXj4N99lz3LGGiJecfqgrW0BRXfCveQPvh7RBRteF2Ft0g9elpyV4pWafLubhvxtpt9WK6pLiAyqqC1WWawx95VtecfVrAjnp0cMzmYcM+xXhpbRuj7J+rrgqVbIz/WMps3UkB2kvB8WgdZcMXp6Dj3zjU/C8Zw2EMvjfhDIbsf8yiDZi3fa5uV2OpU5tJO7dIB3Gmi2IR9NXvOslN9tZDg3KX8LmNhVN39MCcE/CBGyZYXR5S4tT8M8TpeDHZi659QfG/FcdOJigqX/MOLoVjz72rOQ9K+OLWGQPYfYy5D62zS4f7I2UpdIiLWYMS4+RY+G3wWgTZdsNfFhfLmupX48f0PX49Auy/l3XseNNXfLry5v1hydIPLYLcY0i4RfQCKtT5YDL5BrcU7udVhu3gzKjN3Lng6g74IihTqJt8vFI7I8qMdjpvJLtwj0V7kw6d/4RO1fZGZ/fEXkdNOcs6bOjkXPv3NsymfRM4QvU5xyo4zwGv6k1Je9cZv3gE9USpWkHDM9m36ZPYAwPPK7HaYbbDDyNDafVhvdyUhHlX54xpLrvSe6n9fX4NW2C4tw803rMJK0irfQ//xUHGr+r3QQX9ovGprlzeX6yV/PWxsJ+0fBfzQQJXfZe97hmmEH+Kw4cfGzGfzwXvNHj7V3GwigeQuDiw7HSYZTqofKnf22GugOOQFFdCFscz9UnxXwA0M9+L4qP5uuruuN1yBuI9ZnZVYl49xbdQJvyFXh+T7jo/dnxdvRISIarnZHWdu8kYPer8s2auP6ZtU9fL733bdMcNz69jvK9mLCKbO0U1YVuY8ZJQrk77Z8Lo+yosSjZENLkTnFkfRqLzOGyvaX6vAP7npmB4BUT0XxqJty3mNtXsl14N9jYLrO1yGllN5RVjhfzOXG7/gHAQwb0HPEoV1G+VlJksPO603mgL3PiaQcaTDO38RNxZH9g58JafRsVlQkD09r53nb+eaLVLN0b3ZfWhCCo2jnJS+N/Mn8AMPXSFNnh0PHJDuydLK87/Q+cx+8ta2pr46sONH5Hu2knmjKnxSL06RTD+mHWX317D0P+WxYetkLMS6Fm9ODJbuw/2WecVtu/xn19z8SJ8Kvsf/sC/39C8dVC/BE3+67tj78Dym7E7iJ4tc5hLmkhJkxc4MhphQiUn9KPtL+JzW2Y16P0b2SPfIC2mFb8JZVv0vqF1mm1Iezx7ZIk35NL7i4TNG9n5KSD1J0SAjth85w5Es1hT6Xwev5oVRWK6sLHDTRppKK64FtBcxLRc8Sjpm0gJuzCSNkO4cP6Lum2SFFd0iGE+lTfj/qFsrAfk1j6r9nhMZ+iutDt0fG4rgRJEkzCT7d3IiiqC82+ZyqadGin/L6VKnHX4OK3V5+X8Yh2UJY6taX2DA/Wwg2I6ZSfbIN2R8vqHiITVvWvOry8SDcBGa87rTbMbbxNqid84g5p46K/fh36o+X0BG4rQ321IoKNv33PzkD5XkcNLpKdVuawRaxfZMLoWdzsCtc15WV/yNls+LZdx4+HHvwaNjDMJQDw8fc33USbfcNuRF8OiuEuqosLjkltF53IEM70WTEGJuz0r804vT4bG0ltJ7VCcW4CQKOtzNbnQBFzB71p7lxsuu7L39/sehy+lSsbaPe1teC/xQPn0qU9kPemQ2q/fo5YwkN4euN3kwy46dknqqU0FyhND+QhlG6l9eudSEeVvf78OeUjJvFWX5C9y1H5HVHL8HbODtjeT0DGSHY4zStmqsZ0E+602iQmTN9m/80NPPaD/lkP9L7F17fm+fbfDXlEmtuUryCtYQAMqnr0/u2cHag9NxkWsHlMoRsoT70ZmtYB4XOfPGU4KEek+fE5E9dzKN8vzo7TbpRK9h7mt/IAuMMTp9WGPxfMM+Cktpv1F92C1FjE9jC6LRDzdHxaVpMl1TcRZ8jkFGmcKKoL+55h+0724NmcCVNUmQkDgJjdQzitotq302pD+txo1J6XLM0JALA/Z7TtFL8Thcaw/KkxlaKd12fngg3zhLv8r1TJsFbr53mDaUmSSjDlvzRcHh/uKiWIa9dbolHEJapdA+ymT/xOlmahvAzdvos06fc98b9IL/2v1jcLOdOb4dzv4VBUF9p8koBSe1upTPqMGAMe8dnvxAXDO/LeO+bIUX5z/ETNo9yeVVFdaN9vP9dqEdeh0KcZ80Xrh55u8XfJ/sNoNOiAtD/Tewo1I4Klfj1TuzE9XLu/AzK+Nt54KaoLXSZMuO3aUgb/m1DGiN0lQLEjnFYbHj+m2TXoDyfPn5DVNWJfmCQtIuLBO6fPPJ5PfyinZ/GmSP+fPDHpFwdR/aLC76lcBdJpteHqAx2Q9Nks3Lg3BsXdNXVL3zbN+QFZBHGh7BvWEU6rDWuy2YJZ9a86+GOJ7MpY/7vGYtk2w2m1YU0mW6zDFsUb+o/qNAMx3X/1DoOkjOoQ08qv3YGKzhypLLWp3teaVI7czzutNoTPO8t/E809Dg5AybVrHEfNbbWw5DJjsp5+9GeJzgujNMaEDh6E749WVQ2bC9EcvGKi1E/6viS43PmMQYrn6aAV16634dCtLxP8x6Mozi/Agcdn4GY1P0O9VL7cpoZc1VOEI2PkDY4O7iKOvnEP8QPE+TWaWlV134rcCQ3lp5sjEYqPn8DQ7B6GfiHbELEvCqY4sHSE5lLbzEW1mD+uxxD+TLY5hP/kkw7sav8Dz1vaXVNBBYCq+41eqY5PdnBVo2ebaoKI90OYg4JnMpkReM115XldVJ+ZfQvAYreRZ0JPaw/ZpcS+YLQrE38ToyyOIUojpwbNdpbD9S5MlWpBs0Duql7EI/Yh2ZulL4ji6WRnJLrwBoC4RpF4OGUcfItLed7xt1xYr976i1QP1TUspzuv02m1obDLCcPhjODh3K78d8EUh2FOULnG75qHs9CniWs64aq+RI5nRb9j/Jln3aYVzgAADjq+42UzvvSs0kTqUwSHooo53vOfsjiC4Y/uRO15ych5X7a9E+HXYzukNopwKkFTzb1yy+13YRwL6bCvw1KPOKltVZbLtxRkm+hpvdYzCU4r87AJANGvxPOYVASp7X7kv0UGU1FdyOlnXBPO/R6Oaks1waH4ncl+Ub9v6tcPpVU1Q76gl5MR/PNElFy7ZrrHAEDO+5r9mviNKf+WT76W8oc9vh2Ju9eZ0mRG380mdaW63UcytTXi8mX4b27A82Z8G8mFcwSi4woz+gGg2rIU7IhcDoDNX5/kPVL/5Axkwt3uo8aazo/i3DzTb++02tiacYv5dVptqLEomQueFgVu4WrTVJenMSTmua4E8d/if6fVhvBv4znjpy8nnqMGH5Jvnqk8QaWV29GmVa7Ub0Tf5jlzbkvn3QRlzjr+PihjxMqgDMqgDMqgDMqgDMqgDMqgDP5hKGPE7hJ4oFN3RMxmqiwZ0ZqDDJKWtJjB3u2NlE36SNeZoLD0Jv9N0pWzY41uhPWSxLF5nZD5uabu0D+9r6laAgAceFy7mldUF0p3a1f4lX9iHsA2z54Dv41pvHzJ3sPcgYFYVpQafXt4nUTf5c5n4ByoBfcV+4N++zVtgpAfZPURp5V5S9TrzOul1t5uhhKPadI2kV5vN0lietgOf+6x0Wm1we8SMy6/MqQDfC5c1ug41B8AsKHFrxKe8x3PYVGzxnBabVgx+B4Jf41Fsh66GIBSzGcJDeL1O602hD0hB1vW94OZqokotfMLCsT8iw143hey9klSWOegUabSxOye3/A6TsT4YtSRfFOp+M2ux/FmdB/4+PmhYIoDITs0uxnKf2lNCBY0k70sAuymp+Qy69c6/Qqk+snxwNcXZG+WTqsc1PRiJ+2m0uyGL/8VB349tgNF1Ut5gNemqRVNb41FSNzwo0E6TTS4XjKquYj9J8aAKtnQGIrq4gGe9XkJPg+NAAAsDfpTak/snpvwBGIfH53KbjbS50abSmirf8duayzhIejbrLNHWsgjKqUrqot7lzvS/iZ82zSHb1tG6802TQ10+FatiuIe7FY9fTajJXyMFqbh+GT27aoIZl5UNmj4Hox6fA1Pz/wsVnoPAP06DeTP5zsyj6Lps2JgqVlTckwjrh+l9rbcRbaiuhDwvqYKKK6fIpjdqolAa7q43t5Oir8iop4BZ9iT2zmdisq8StLv8mt3mKpKO602VOubJaUFTUnmgbCJLoIBjaKlOkSoN0PzTljlVqy9TfO0myb9uqOnAwByf2hjuCUqmMLGo0+58lI6lem+T7NRPTSBzY2S8nJwYACS6mPL6QmGG4ue+7V1GQB2RC5H/wPnYQYDK1+RcOcVXzHkSV+ghSzQj4Hwp43hRugmMq5dbwRNSUbbjxP4O+d+LQ5ev4734b42vZC5uB0U1cVvp5xWG+La9uL912PkWFPaFdXFPR/r+5p+F993nXslrbqrAi53PsPLAkYPgmKYFDGfOJ71N0CUvnLhdPZ9/f0N416PU1FdyH1Xu7F9L0fTMFiTsc1wZkmfGWMYa3rcVGZL65WmeyHA5oR4A0e0RMyRPUHTvKRnfX2K6sLnTVfAabXxc4uY79r9Hbh21N0OZTdifx+UMWJ3CbhPnUaTqUYDU5qkZHwqvtc/K6oL7ac9Zciz8+2ZkmqB2aGxIPYKQp/R9O8pMC2BuFjEHWEHrGcyWfyNqN0lhjxmQHrbispiNkXulD28jWzc0YgnlcXg6rL3OmcoRZqKc/MQ+kyKYQH9a/psqa1mDKW3g4HFxzg1xAOSmJ/cr4t4MqILucfGKVl7uQv0bV/MRvHxExrSHkYjfhEyvuwA98F0nqdfp4GYkrVXomdc3B+G8k6rDYlbVppujmZMgb7/9IcUp9WG4pyjWB6h2c58FKLFO3FabUDKXtNDZ8e9g/hz8EvJWNSsMfRAdbvPnEVpcTEOPDEDWdHMk5ZfQCNeZ3LbFQCYK21rSlXuVp/eZy21YUOLX003019b1Mb5RzT37YrqQuAbSaZ9b3YQbvxuEgY0ikbwSxojfORNZr8R13UwzvwWzvFeGRor4SFcJRsaGw4/qYUag3TsJXYAvidBc0dP4NvDyMCKfSe2i9JFSGlbznQMAEDmYk09zqcFO5CGjzeqiYp1utOzUHL5slQf2c4BQPExVcpvGKPLUrBmzTIAmlc3gAXdBpiKlO/Lp9gh9V6j6tjeyTMQ63rA4B5fUV1In9cea1rW4Gmhz6ZI7wFwNUWR/vBJqfCpVBEZ0YUSw0G0i6E79O0JfUZ2IKKoLpQ62krPtFbU3lYTXSZMwKnHHYbvpaguxLXtJbU18u14nodoWphnjDfID+5WGzJGzZT6vd7XSYbvbrY+AECVglLTfcJSp7Y0rigGmifwxlSatZvCeoj5A96/FULjZhHCF2rjq9TB1L03tq5soLXaUeax8EqJ5o1v2zTNNujA40wN99yjdtx/8DQi5iTggars2xJD5rTa8ERNzauuft3v23c4tw8l1VcRSGhgtq6uzdMcnRStD4Rvm+ZIf4SNYxJuiQ4hnq2VzcuWVKsE99lzCB25G06rjaurAoD7tBaSY8Pi+RLtljq1kfe6Q+pv6mtSaz3lZkztBWcEgl9KRuvPEtDgiyQJD/WR2BcHHd8Z1jXe3tg2Ut/p992hAWxNLi0slN6ZxRV0Wm2SrTwJxET8GdM78PfkDVHE5Wks6mmMfiUe7q6RpnOG8jZ509yRiqjGSOV7DR8Dp9XGw9PQuUWk66+vZ/9r4oiVwd8HZYzYXQRmkimf9q2keCT0Xswf/aq2SVs/lhcGWjR+CvmDL7Z9wzpK5RXVhfT5RpftTquNu0AWF4yTV9hCQpJ3V/faUn1iXgrcCgDl1u3keNPa+Ure/STp4htanCWif3ObitwjEeXNWBhleugUN3KnVXZRX9rRhsvDYqW8+t8UgJEksPo2AcyLJJUpzjnKY4dR3utKEHzas0N614qMUT07zo7WnydIePSHDv0mEfbkdljqavr8xdm5eD+kDfo268xperF2BtJnaxJKv4BG8Ab3xE8wtEnsLz1jaJbXbFOtm1QDiurCV0e3wdIslKeTdFzfbk9g+dMq4V2duloqo6gu1Lk3HWrsZaz7caFEd8hDLvSLjpPwf5/PDqDRLrfkaERPh5imH08ExT2ipGdyyJG4aQXSopZzPGTvoj+ErY/4zdBeki4rqgv7n2QS/QbPabcUFBMr+0PZVbhInyfpqx7035kgdKTmMKfJkFsSWSEsxfICz95axbqD3jQ6KAGYXR+5Aaf8a1rWwLTzTQEAtg+0eTE4QHMHrv4hM+2K6sKFkXZuj1Q9LpP3h8RQjdtpaL/TaoNfwwaYWMD68cOzYYaxDsghNZxWG/r2GcafvfWp+KyoLnQfPQ7rfvpW6/OBI1Gcw9aisx3Po8LvqTzwrR7cp09zN+6KqtnrivWNFg7/zXaWk9qgqC7Ete4O+PjwuHW3g35RffjvHe/MlMbKigJ2aEzcu0E6iG77YrZHfPwwvCjeND3r5hW+t1lq1jTth8X52ySb0KCXtXG47qdv+W992UtNmDOSKr6a46cWM423YLW+ScbKFnXR5M0kfkD+o5XmrMKTkKZPk/ZYs2YZGn2YJOEkQYoexL4M2yE7APqz5SosXf2NxEQrqgud994wlK+bVIMHtvYGerrp2zV5K0naV6musCeZ0JCEobM+nAZFdcH6ifE80XxePPZckuel3qmQ1M86z4emQGtNTGtePnw8s9Mm+9Hfj8m3iHq6KD3s8e2G96JQyVK3Lm9/9a2aYMGvYQOe5/gvEai1IBl/LP1GwpX1aazpOOW4m4Xiwig7/ljyDV+vCcqdYTbgQWvHIWMRY9T0jqO84b7boOxG7O+DMvf1/2UQ3df7+ZTzKD0UIe8NB5pMlaWbVMbSshlKLT4o2XvY8J5w03/R9TbANkP3eaaKkbWkHWqtq4DU92dKi2vvIaOlw68I1wZ14LdAVAelmUrKdM9Oqw3Hfm6JRoMOGGj1BHf6Pn1ee4SP24nF+dv4ZkPv110rh09DWxrKmD6buNQFmPH2zLBQqQy1T7+hm20iZv3iFxSI4pyjpuU99Y8lPEQK9mmfPAnVlnmOFWWJCEPiBs2I3RttImQtaYeQEbt5nrYfJuBymBvZg2Yb8ltCg+DOzLkjvNT+qKnxqDPbsyvg2333nA/sCHrJe/nC0psY0IgxB1mfxqJF+1wUdjlhKKOnl37nfN8GQcPYWCjpZIPvVu2AU7CiJerOqySFPojaXYK0dr54MvMwV5siWoLWjkP4o8YYfafj7Wiw7CBQrw6P+Wc2Nr2N2VFH8k1vIQEg46sOCHtCm585N69gUmAnHlKC4MraYFQbfBIlV68a5u750XbUXJiMyZkH0LvSTTitNsRnZGJg5Ss8T9bHdoQ8n+x1Lph9U0vdunCfPi3Vqb7g4EF6PUH/A+fxRM2jBnz3HzzN49mZ1Zn/mgON39bCAoihBvR5HXuKkNRWdqbiaVwen+xAw0+TkPWxHZkjZnodu97gzEQ76syWved6WmMoT+Tb8dj1mjHcRcaiSGT3/EbCoc/jaZ329B0V1YUn1WgcaW9Ug/WES//bLG/1rbXhyg9A0HDtRvJOwVO77mQdAdgttm8P2cOm2TqZcCwWWdE3uIv+Imd787ibunKevptI882eUTht8zcwRrbdMIQxMGuzoroQ+XY86s70LFDx2dgI6u+B2PvcjNv2iYg/Z1lbpHdhAofi7lHY8N18U6GF02pD+qwYhE9KxZnfwpEWtVyqZ0rWXu5wCADyXnfg0CQjLd7GIP2ndUNf5mbv9lwgTGkf56bggeSJ8MmshKavsbn169VK+Dos3Ly9H9hRvdVZ7IhcbtpPZt+xoPgKhhx4RFID9jT2/i3u6+/5LeEfc1+/5d4Zd21//B1QdiN2l4DoNRGQJVknnnJIk/qGlW1yHZ+aiJZfJaD76HEISKmCvDcdcB84gqwpbHIkHItFswVa0F79Af7lIFl/uiREu0kJGbEbNb9NxgNZPWGpX4/r4ZONh9lCW+nn7VxVjGj/a/psKKrL1I7LbPNvNOgA1OccOFB0HY49RZq0KlA7SPqUK48J6dotC+E485u2cFK602qDb9sI5MQxL0pjOg/n7+h970o3GYMF4Ojy1lKfHJ3qwMWS61pbBSZMUV1YXpAMS53anAkT8RKsu6apjuhBUV0Ymt0DADA1Ow2zLjTiZUl6HrppNM/fKmWE18MDMWEEYnDLMUeOcjVSgNkwuA9lwGm1Ia75PQj+QwsVUH1rbQkPtYsgZMRuXHpIs7vZ8+IMZA+azb+zmFdkwrI+1m51xHziOHBabQYmzNNhSvwT08XAo2K6OBeICQOAzOGz8GvYWlNclF9PQ/o9i3g+crtP+QIGH5CYMAD46y3W9i9DmwNg7rTJbbTIhJFtoaKymxD3hYtS4HWCablJiJmi3YaLID57YsIU1cXtBqnMpMBOKFofyOP6EVTpk82ZMPpGhIMCC38a2pIHlBaZMAAIeV67iSzqYwzqrD9UubsyiTEdpsS8xISJY4fccdPf7y3ZDYslIkxqBzFh+a+Y31w0fkcbd4rqMo33RvBG3YMS7muDNG+3iurioQgU1cXdboc8n4wWM4234hcT2fqRPovdtNOttoj/7FjGhGVM74DOjxuD3FJ+cYwD4Idvp9XGb84BILvnN9K3pN+kaWA2D7qOH4+sj+3c1faJpx1IKywCAPj4+cFpteFI+5v/P/a+O7yKovv/k9wAgdBC55KE9ACh3JAeer0QEKSjCIJISVREURELiAVUVFCQKkUQUBRBhMClKC2dwKVDekiydEILEJKb/P6YzOzM7t6b+P58fXnfb87z5Mnd3ZkzZ2ZnZ+bMnPM5DKmUJ8q/YLw4BtB8qrTnB7Jy73S+CY9nTmp+79T/T4syNhlYufYdWrOA3EaXQGzJi4fRJRCXZkcIfenyDLFv0FNseqK754G4+KTmptSUmkL0VzcdQ/bH4cjcJNaNUYhogsbPz/x7AYBq+1PwsHkplGQOkPNS2paXhD7nn1Lxpsq4kkwSCRhf1jMfzb8iJ7SF5aiXi3NihXS0nSJ7j2TyOsfUAkDM8XRFFkEWZV2yBhGkxEZPcQHVQTaEeCUMAM5PVfvPpm8IENrJvk4dlHY2MPnoM8v169A1kucw6jtfbe8xlHYmffy9a6T921d3hMczJ+H+fjwz3fzWx1dTIaZzC0WD1CJevh/vkXFooltn1O0vjuGdTg0V+rODqwsAoOBnbyucnyyqOhH7+6jqROw/TPyJ2IHLZ9kHP/L8FUysd0U1QWXND4fHLHFnGajcSQv/vG2KPbadDkBm39VQEh1IQmdGof6GeM38JsnMgvEqy6E8lFTUP1gVl0spq11QW5QdO6NaAGvVbcEtL2ZGouSjzCO9GYHmcQ+w9+d17PmiAnfs9q/PAtveHxGK2j+ThenNSeHQP5clnJBoyUFPhirakdSSMe+dCJx9eSk8dkxmsOb2jo4ofUQm9IJdPnAekIbC4aFw+kVeMNsFt0NZ8mmhTOVOvy2ZraUxSSQuWvU9ySgYH45mE8T61zvakAFaWONjrc5asijfVcaXYWgeW4ZWM8/gUmghCzptksx471o7fNzkdIV9vjLPxlzIw8ZWLrgWHYEmS+OQ9m0ofF6ST3L5OlA+l7e3xqkQ4s8U+6gUnRztrfZNAMLOqy1SnizyZSvrkv1JOPOPUG6EdJ42RegjADFr3rPjB6vtkDUvHB7vxAun0ADgd2Qc3EeJGw4DOg1Wnc7SoNKFezxxtP2vqnfjdWACM3lULmoq0y95Xnzev5JneEZv/OJFfCjdEp2wyjVW4JG6KlgwW2qd4oDzgSWoc6QRAyhQ8q1Mn3v0VAgcf0/SfE5l6/LyFNT6NRFpS0Lh87JoNeDQ0pXFOdPqF6XdArBv81qhLa9PDUfj5dZPPCivgan9sdN3N+nXMyLQwCgJQEpXXo3AyZlL0fmVKXDamohbE8LRYK3aNFLJFwA8t05B5jByKs73bZ50f+oR4xdj81uuaCyhaTqfGoqin5qiwVr1xo1Rb0BZeAfBr09rfqCnoEy+hg1guXmL9W9bZG1u2vXAkW24aFHmZ+HwnKkts/IeYP2bubXTFw0Gpv5L3wglai3C8x907iZ2tGmI7E/CcXHCMpvvSimr7+FxqL/bCXPeXyu0ga18A0IGCHE1+XqwvvXrFPi8LI5x9ETfFn97Qxvsjtn0l8aOivpdZJ9RsJwlrhV8gGdbdVS9uxfC0WBNPFvT0XR375XC2TfziT0BomvWzjte+sdOxI4O+vaJbY+/g6pOxJ4wmptJ7KCpEkYHIRo02GNWPKS3IlSDFCW6O6ec9JUD6ZnAUgxqR+J6UHQz5e4oVcJo0GSejHqDCrmLxg0z6g1YXe5InrZEduamJwRKmWkek2TGnh0/CLuCvMzK9LwSpqtfT1VPSqVdAqBfEAe7WHG3eLpzNkySGTV2EbkeNiKfQ+ryEIx6dS+GNj2u4sXLb5LMSO+xFjvzU7R3dDUmVX5Adl9PTKf42FJXXiQnAYV7PJEUQND2box8IPDhFVVKU+vnqwI/82XR9gGAtzJOs+d8mxn1JC4aADivi0dRtyvizvMPvqh2sDly37PuB2HUG1SnaQCQ86FsL5/xhXySZpLMCPiYnBB4zUhArV8TcXG+PyZczEGTwReQ+Rnpe8kGndCeC7ITNN81X2/+PdHfi7LjsLEV2XlssjQO87KSUPeiTqiDVts0f/o8urw0BUa9AR96aseToQiMANl55csHAPsOrbEhN1bIxy9Uaftp9XUAWDF6hXB6QNMb9QamhPFx2LSUsNIDrgzNjfrbnAnbyPj1GzxWUMLofXo6y7cPXaQ69cvUfBfeY0/Ii6h9L2DOdX9BdmtjgZL4PIDaiZ8S3960XagSlroqGJdCC1VyKgFJzgcSkAdeCRt5Xt6M0BqT7GvVEp6ZJDMOrSA7/0POXdf8zox6A0odyE6v+/YS1WZWSU4uSva7Cel5sj90Ar7fR5FFYdchAKBSwlKXhQjtS39TICaTRE7qcnIbwSSZkfY1+S4tNUmZTltJn0r+ZBnzyTPqDbBv20rgx5Pfm2RO2ZmfIvTt61HhuDGZjAGWHvJpmZ2Dg/C9Rpwkp2sBH0dbnePoveDjI+HUL5MpYVrKiF38Sc37Qj/+SDxhtdy8BQCoxgEhKsc8rQDlfBlaSljqd8QPu/eZe0wJ478BrW+Iv8f/vj2WIGI2GJgK+/athOfFvQPBE+VP5wdle/q+eAwRJx+j1SrZh25HGzKGu78bb/M98GXQ/pHadT0anLqLAbUeCfn4b15Zb6qE0WtlvY16AzKHygBcJsmM2ZnHkTmM3Lv7jHXfLa3Yidb6lJJ0Pp7s2eN9MiiX5exFXJ1GxnuPpzNU+ZSkNa43WENO4KgSRum/BayjrMzuH/v7X6cqRewJoW2pp2EcOg5zPGVlhv9/uN02AGRAOD19KewdHTXT8Qsm5Ydf2oXYMUS2J6Zw5tkE/tZju3zKQRW5rE/loMGJn1k3aTBJZhRFBiPnw3A4/JHC7k906wwAqsGzosWzUW9A16jJKBweKtynKHJa+QDAcvuOcM3Xf99PMiJb7i9tNfkY9QYUdLAAIEF397etg/XTBsHe0EaQXWuSGNhCnPioKYrWgprPW5KXj5ng3YkAAQAASURBVNRVwWxSN+oNaLKE+KfQxa1Rb0DLkTKcrUkyA+WH2Ea9ATjgwn6ffm0pK3N25nGhLNo+WZ+G43Ovdhh2/ppKWVHSzvwU+K2WHe2d0x6juPtlhuBpbWK+0/mmSmEt08l91OsNMVgthb2enUkU35o7UrDWryXS1gUibazY92i+N93DNO/zMlFQGloOAEx3F82Q3vEIgV2JzCd1TRALLG6SzAxwBSDBOJX8jHoDc+CmCIyU/4CIQQCAZ7N6AABKT55X+Sfyv621J30236s9ykpKVHU1SWamnLw/SjYv1doIsO+ViyyjeApu1BugTyCbGmXJp1V5lJS6UoS19ztWDalrgpicaUtCVeOSz/PHkdBBNNFVKp4mySyYZSoXa/TaGprjrgfimMjn852UjJwtMhCA8r9WPSl0/sR6V7A85yhL87hfMB6aPOCzIQq6Rg1R+uCBarFPZZhaP9/qQpYCulTbL4+b3V+cxGQ+0GaHzX7hMSsekd2GwpKeBV1j0e8NIIhxfPuyhfKKYER2k5FMfSeSk1ufV8l32eJT8RTIqDfgQXMZYn/33h9VZb2cT945Pc2vZqcTnjdeFo+C9mrTuotLOgoyxnUgAEl0TACADp9Fi21wwIVsznDmYff3eLL6OLTQA/bqzRVeZmvKD4VGN0lmNPta9sM+Fy2ayRXXU/c1W2MpQBQeAHizgbxw7zxtitVNCX5zUfk88TP5lGr3nh+F763a/hTofL1YWvqMAnkxJTWordDuPIKsFim/aUA7zItRb8CdVnWE9FRZtMbHWhuYJGI2qZWvk6O8fKV+0Hx+pcmi7k+9Sga+nJ7jJgrXAGBJy8SVV8kmxFKfzSxv2tdhaPpNHIznB7LA9ADw1S1PgQdFFdWqFwAMGkLeSUnPQExMFf2oq+j/DlWZJv6HiR7zFqR6YoSfCHlq1Btg7+Qk+Gbwz9ssjWaL4ivTI3DyLetOtvm/+uNM2EYEpoxESuAWnHr8CO2rk8mk1apoeK3MZnDT/A4l5Se9FYHT09X8U9cEIavfd8JiQ2tyUj63tQvI5+3wmQyfa5LMOPjQHvO92lvlo6XsPd7XEtX75Ah8lTLS6+yf2rMTAV2jhrDcuKlKozSxNElmZBTfh1c56pbnz1Ox5+kv8UpLedENwKrzduO4+vjB/aBVmWaknxXAROjzhEcWvHD8ebgOP2OzTg4t9AwJjm8rPp2ufj1Ybt9R8eHboNuph9j4Yy88av0Q3mNPYEb6WXwx7lnYxYkO9CbJjOIyi6CgKvsUXw5/r59bEMpKiGZEQSCsEc+DAg9Y608uCbWRFybG+tG18RVCA2jxpdc8WevfJsmMd662h7lbfVju3hXy8Dwi/Xsg5uyfAr/0hWHIGLVc5m1nB1M+OVEImh2Fht9pmwjTtCgrg32H1ti9ezN7ToEdbNHqS0fZpgnlPzC1P4q7X1YpF1qk9f1NyQtHdshDlbwOLfQoyZewIz9Z8M8DAEv3jtAd1D6BVn3P/YLZya2WDABRFn0nJ+P22HDBvJrS+ruNUFzmgIn1riDSvwduDfBjMRlpmQ1jndGrwXkWssGol0F/rJWrlLlwWCiOLl6h6vN/heodbYgtngeEvA4tXbEr/nfN8q3JZpLMGNDRiJIrV1XpAbkv8N/j1vt1Maz2XZvfB0/3R4Qi9usViGzfS3Ps1KK3Mk4LoTCs5dECeACAOzHecK93CwWdyEnWQ5MHDrfbhpBZUQwl1SSZYWwRwDax+DLofwrKodV21OxTV7cuYi4cVj2n/Dq/MgUPnr+N40E/aY5vf+VdWWuz1NVB8J1ITtzbfBuNepmlgiJiqwy+nMrMnQA5zaR+humLwpAxcnml+jHldy06AknvLmbzgVY5SllKegXC4YCMkkjNqJV5c7a0YxuVyvGOT0vXUfT+gE6DcX5GM01wKZrv0s/tGIIsvXd/jydDAdZ6r+suHcX48vFUq56Fw0LZSbMWD7ugtihOPvFfAdYR/tsr/5hpYvzgxU9se/wdVHUi9gSRSTKjxqFmwj06eCy45YWbL8q7dUa9AR6rZcCKZovisPdBNWHApQ7gAAHB+PhGK6QEbkGvsRPxpnsY2yFtOScOJfkS3BKdAMgxjPr3HQ2TZIZLQm3oP9feLfN94ZhVxYrKqfWcv0+ftU1Rd8eTM+WdSKPewKDg+Xu2lEC7GjVQc8RtALKpDi3XLtBfaC+TZBbMsuhCQlkvamLJl0mVMKPegEWR69H/yMuqHdI/137HfvMmpHyAWPo8sl1Pdo8qYbysXj9NxRzPQLgOP6OST3ldki+pdhOVygU9MROUMB9P1gbGM3exKT0IZ19eykzOvvT2ZxDSOXNlsxejXn1KuOCWF+OvpUTTe/TEJ2OTgSlh1nZKefIZd5zxubXTl6Wh0NfmNe1U+WL2y3DzfBlabalsv2Hnr6meAUBKgD1iLhwW3j3/HRj1BlgKClge/8XELJOP4QcApV3l9I2T5KCyyv5tksxoHFsPJsmM3bs3MzNPAFZRJ00SCcad9n1HtvDm+e/03S2UxZ8s8m2o/L5/zCVjRHbIQ822DIoh74JXwmhAZ93B4/K34ekuyGOSzLg9Tj6h55UwmqbLS1ME2bIGroJJMhMlzI6YtqQWFzJ5N7ZywZbWzdj7oEoYAHhumwKTZMbNTgXY0pqMx61XRiN1WQhTwvQJddB94iR47FCf1Bv1Bnaa5rRVhtJ+UPoYaYtlU21lH7ZG1+bJ5lGUSnJyVWMfz1fZLz/LInLsOm5Spc19j5wS80oYrcdKX09Vn+P7KaWiAeSd3vEkJsR03ODrm/lZuBD2g1KvmhYh7b1RajMzk0RCVmiVXS8yHT96/MGuaxqzYNQbmBJmF9QWRr0BH2XKJuC0fjxRZEStjZbGy+NxJ8YbDzr5qdo2Y2MAM5U+ungFGg+6iNbLo1n+yFZdWVoaGgWQ4dIpPwoasjhH9mPUNZUDBFN+VAkz6g0499JS1N2cgCvTI4R3w49nJon4NPV6bqJq3OXrQSHo+fa9vsNPQFoMD7lgVYlSEk3XZGmcSgnjTagHni1Qlc3HQBty7roQtoCmm515XLAWSZmjttxh42mhHPR7dFZP7Ir9jVnrWJPbbcRpFquP3ott/6tQDyU1d6gtlFvvaEM2FgDAfb18Uqvz9mA8nk4z4va4cJQdO6MpUxX9b1OVIlZFVVRFVVRFVVRFVVRFVVRFVfQPU5Vp4n+YlHHEAMDB1QW7Endq7kTSeEUPhoSi1jYZaatr1GQcXrbSqskAv4Njy1RC2tYG+iHnVHm0+MxIP4sZKyepYvrcfDGcmVIp82T92B6pXdfDqBeRwfi0gHhKQmMQWZOJz9c6diwzJyjuG4QH029jf/sfUNveUfMUhpKtXV9leWnrAuEzPgXZH4WzuCM0Tdo3ofCZloiGsc642akAStLiqRWPqGCXD5ICfmbpKIqbtfrzdO3lCDRZIr4TigDGm1sAgH37Vti950f4rY6C+/vWzdi25SVhiEuIZvlOhxvjV+992nKVm83RutM0Ds2boTDAFTVikjXb5O4zYRWa2yif2TqVtUVaJ6m2EEOp+YlJMmP65SCcDyzBjcnhSPmA+G3w6JuULn0QAbcP1MhaJsmM8JPDhPgyAFQx/rRkVNZVeZ/m6X3mHt5skKHixcf2oqiIf7WdbI0P1vKXHnDFvta/W62btfrwaW2V7dC8GUouXxHSFOzygWVHI3ZKSPl2nzQJNXYli+3yRRi83kjQ5E0p990InHtpKZNNGAOWhBKTp6HjYPp1Pbx+nIqM0WpzLpNkhkfMiwjwzcGv3vs0eVH6MTcOo12tB2bWejcRr09FnR8TYFetOsqKH2u2H41tp+RRme9Gi19FaSlV9hvVksnB1QUXp7myOYHnbW1uMOoN6HLqEd5rpD7RGXb+GibXk4T7FGnPGk/7WrUE30Ctk8me418UkFMr8/0o5dYyJd2YG4sxrp1U6VddOopJilPNyhD/DlOKHuMdj5AK25MSb/65KDsO090jGLprZcvmy9FCadRKp5Rd17gxYk7us9kXlSd3lSnDJJkR2X2YKiyMsnw+L52rHdzdcPFlPRtLKjvO/bfEEQvdPu0fM01MfPqbJ7Y9/g6qOhF7wkjn7IyS3DxhYGfmEXH1WdDYI9+uwPKco8y8oOZvSeJE4uhodeLTIooKRZUwa3mMegMDl/jS2x+np8umg17JxOes4Xcy1LFy8PEYfYpdUx8Ha3LS3/yEq0zPpzXqDSg7Xxu3xxETzmp7jyHB8AuGucimLosLZOSjAeEk1kq/wWNVvLTqT8v1GU9s1y9OVANJLOq/AQBwe2g1oQ2+yiZtcvChvYqvoISVx5ZxHpAmlPmL135BJpNEzC4BEkyabxOlEgaAIdy5jTgtyGV36TKMegM8P1ebRPB9r5Y9kZGa0l15NQI6fz8AQGHX60KdaCykh4NDmJ+T0mzm+nd10PvTI6xOyoUMH/9MqTTz8gl9K+ZFtFkqO/bnvh9htd+HnSxmba1MY9QbcK17saoMSw/iw0l9AIx6A84HlsC+Vi0kzFnC0imVMAA4P1k0seWJKmG0bRyaNWUx/pSIfJRW32mGPs9MENoCADokPcOczmmeNVuMchva69higSphkV2HYFfsb0Iba7U3T8q2p/GprLV3WUQH9sy+V672Rkd5LD/qtJ66Klizb/BU3Jcg0d16QUZ2Lbl8BddekpWW3Hcj4DwgDdveXcDuUb6FUXdYu1OZ0p+V+x7/DVCqd7Qhzr20lPFQLsaoyVPmUGLqTZUwJS+j3gDfF4+x78eoN+DGlHDN+lIlrLSzAZmbtHkpx9y4r5bDJJlRVvxYSNs0vi5LP69puT9s48aqsTdtfUeBpxb1945g6W9OlE3n6RiglKnLy1NUfcTrRzHGpLJeFIXVqCfBdEty85A+Rhx7jXoDwt4U+Sjb5kh7R83+SdF/+fJ5JUzZBjofT6aEUX43psims22/IWMkHzhY69viZXFJICZtNIZbzUNNAQAlV67CJJkZ0qy0rY2mEgYAk7hxiS9H+duaHEa9Ae94kPfWc/yLKoWEEu2rRr0BjxoSs98h564zIKRakohyZ63vaN3nURr5dPy3Rv8oqqhJInHDgo+PtFp/B4+WGJfTVRhPlETvv5tpFtomZ1hTFT+TZMajgaStBp4tEHgWRhYR+bIvCWOJUn67AH/hGSUaU7aK/u9Q1YnYf5h4sI4/7OtiQK07eOriIJT1zFeldUmojfyX3VF27AyLHK8cTPufvY3pztnC9W7/+ixejnKHMXBuFFLmLFMtKOj/4Pei0GANUYQePh2CmtuToCRbO1A+P0Qh7Tnr/G3tYFHK+jQcHm8TGcoiOmDvL9/jhqUQjXROVgdtreuKngFA0PtRaLg6HnefCcNtX3u4zSUKTM7cCLScE2czL8/71k5fJHfcAuPTY4Gk05ppbMlNSem0rEWVSWOtLH63HADy346A657bDPLXWptp7QRqpeGf0ftp34TCvlER0ruvk5+Xg1MY9QYGLEOp95gXoPtTDeRAeSrLp5SxyQCvZ82a9aYAJpXphxQsxVo6rXwV9WlKj41ByHlKJ8TH6XLqEY60d1TxsrYBQU9hAXLiXJbtBM+3K44nBQAHHurwuVc7lbyZmwzw5NoOAFGUygOal3YJgP0RGZ6c5le2OaWHg0NweNlKdh34QRQ7QQQI2FDNvteQYPjF6lgSeTESmOwIS5rsGzvo3E28VD+3wm++ovehjCWlVT5g/STHVpmXX49A86/ikLoyGFkDV6nkcHBpgZI89XivLL8y9aBjgTKdztkZlgL5hF6rPpdnRLDA05RojDnAOqAKf9oLAA7NmqpOcSr6ZkySmY2VSlnvjAlDwgKyoA2cG6UZ7H3d3SbY3EpGxaNWC7Tt+TJvTgxHw9XloVnGhbMAzMp2VcY7o3PoxtxYNNI5qdrPGmltOOzcuhYDWwRqziNKvpUZXx4MCcWRb9XAE1qyWPu+tMou7RYA+0MnVM9NEgkf0GCgHJjZrkYNlBUVVVgnYRz2aIldsb8BgADwopTL2nfGy6OUPfujcJQ5AE/1TcSXzY9X2Ka27vPPTJIZHT+KEnznUpeHwHdqEpPDc/8L8Bl3vFJzBU/b8pLwVIuA/4oTsZBtr/5jJ2JJQ75+Ytvj76CqE7EnhIb4tsPTTvcxsEWgoITR3RO/Y9Vwdklb3CqPnRVzch9uTCa7p4sLWrIBYLd/fRj1BrZbtNu/PgB1vBye+B0x/n/7L6PhfPEhS1dzexKmpV9QLQjbJoyBSTJD5ydGhDfqDUwJ4+tTWaJ193g7HuMuEhNGitA3xrWTwFcJcXvl1QjhuqwTiZFUtNfd6oIWAN6aSXZC625OYEoYALScEyfka3V0rJBXObg2GEgcy5F0Gle2t2ZpaAwerfIfDA0Vdk8XZCfA4UAKHJqpd+R4okqYSTKjcVx9AMR8hd7jnYUpUV50tzwqLR0AMGjUUc24KzQPreegtH6qZ/OyklhdKFAMnbgul7cBALgcKIPXs2ax3crK0N+T7Pq2GHpWeKb7k0xoV16LEMrTqo+Du7xLmt59HbJ/IgibNyeJsfCUShiVVavOfWsVs+fXo0Q+6RsCGJ+bk+RYaUx2bw+UdglQ7abS/9VNx/BWz53C813zuwsyGPXEuZ22iVLeGjdlB/DUruuZEpa1uYOqPJ6nUW9Ar5oWzX6V1n2dcL+0SwBTwgASEiLrU7G+bolOmkqYSTKzE/t5NwjYQaOV4s7343oEdMEaGfUGWHpIiDlEnOWz5pOyd7RpCKOexC3UWrTx5JXsaPUbOhe1VPM+pXYLo1X3ePmVi0F+0UYVgVc7iea7JokAZexK2sWgtfldcpNkJie35XT3WTFkA0BOt/g60bFAqbhTxYaOL/RkO3V1EJxjG2BxTqxKCTNJZqaEAUD14+T9LM85KqRz+4CMjTvzU5A1P5yd4lCi4wJPWovp9NFOSF8UJiCKAkDCguXw3kxOuyggAz9O9nMLwoKzfQS5M/sSsAelEgYADVfHs/z116tjr1G6+60rAOIq4NC8GWBP9qzp3FPRvHbzxXDYO4kK2/09nkh/Wcfg/X3Xy+FBKM92X4l9re+I8ZDeEmOAKceqWtsShXs0nIGuYQN2b0b6WVW70/99Rk3QnMfsD50QyqMhOQI+iUaDgalI+yYUOmdnmCQzyoqKVLJZayf6vyQrhz2POXVAKJu+M1vfGaCOc0qtgdzfj4fHrHicCSwVeFpTFHmeJsmM9IVh7Bvkv2fPvRMFJQwA6l50EOR1OiOHN7A25mjNYUNcQjTTVtH/NlUpYk8I6fy8hOuseWShQQeGi0HFqPdDApLmLWP3m+0gO8M7/Z1ZPrYg7X1JsxzloNZoRbw4IIS0Y9fNvyRBkGFnx+5pBaqkk3XMn7/YrCO/kKxoAaykVdOHApAHZ4rSBRBTkcfBBCmvYDxpt2aLE4UFg12sGXt+24AafbNh1BuESYmXb2TtO6qyad1D35YnzZYjT+OZC5IqrVbeZk+fZ9elZy4IPPl0R5asECaeSbNfI4rUlaso7RZgc6eOtgtFYKTmK0a9ATfbkF0rB3c3Vm7APDLZF+11h1FvwDIfojhRfxFKWjuxJsnMgj17/jqFyUx9C25NCBdONox6A06FbGY8cp+2CPzYf29tJZlSs4Xq+GVK+XbF7QAAGD4l9bvYZT3MRUVouIpMnNJbEaq+p2vtgy158ULATr5NaX81SWYcf19eCAIkaDElWoawAE7PEk6OeKIybGsjmoVR3zgALMDt+x7BqnpTed3mipsE+W+TRVtqt+/hkyzvWK6/2wg6bw9hgW+Yrx04l967tdMXJsmsOv0CgNRxpC30CXVgksy4FEqQyRxauqrqmfNhOBxcXXCofU0AYObDNLbh+SmyvxWltPVi4Oz7I2UT49TnRdO0iW6dhfcEEPRX/j1nBD9C3+HPQ0l8rDi+jnx7nH5tqbCo4v+bJDOyPg1XLbqUCz66KcY/c/04jimZAFB24qyw0EzoUA13niP1rrspQcgPAFfD1dDyczNTUNqZ9FvpDXkBf280UeQGhA6Ey3xSru/EYyjodAu+1ZxUdS+wiPHRKGz71JZyuANKRj1BSqXBaXmZqJmtsk2V6TJGL4f39AScevyIbagU9w2CUW+A59aH8Nw2RXif9HdZSQlchp3V5Emp57iJMElm9DxdqMrP17v5QXtkfEnaiQZJL8nNQ8nlK8jq/52Kr7Uyi/a6o+F38QJan0kyo3a/THg/J5tre7wdz2JxAcDczBTovxAVYrtYM/PDVr5rrTYFyEbt3WfCWHBqk0RQbrflkVObkFlRQnprYxRfVpu451CSfQkmyYxXXyFzvc+0RJS1aIro/DCkfSvGzFLKlfdOBHqNnajZ9gBxFeDndWvKUsiJEUIa6stL+xiNZWcXLCPlKvvN5e2thTwACdJd8LxsYkqRbBM6VBPkpa4Jue/LMSmbLYxDZI/hLA3vsvHmFe2NuNRiGU7f1rz3pFJpmd0/9ve/TlWK2BNCpRnEUZ5+lDxcq3ISM0lm3H02DEWtWrA0fUaOx+XtrWGYr965VdL1qeHCdf++oxlfJJ0mi/cXuTRlZSoFzhZROe2dnNA+6RnNNLROytMaXaOGQhq2618et8tvDZlAauxKRtoSMvDHHPoV911IIFDndUSxLO3UXlgwpC4NEeSevm6SptzXLIXQeXsAkBfBAIk5lfgpWfxlf0TaZnzdaywfXeDyvEySGQGfRKPLqUeabUDTXX49QljwU6q/Ph49x7+IK69GqMxDADCYdq28PD1sQnZyS7IvwegSiMjeI3HiHTJR1OibbVU2JfHvwySZ0WZZtGBSZ1+nDvqMHI/kT0RlhealbeI7gZhO2deqxfj1Of8USs9cUE2+Wsq6lgJN89DftfMt7Leh3JdO2tZGCMNgkszYkheP1PedUM++Ji6dbS7wzCi+L1wb9Qb0OjdIVSZfPy1SLsj5tlDmufliOF5LP89Onqn/YMF4cdfXJJlZbDzKM3UZ6eM0IK9Rb0BacBHaf0HGhI2tXGBJJ/5XcxuThWvTxXGqtubrzE52Fff5E1Ep7B5C345ifHgAHnqv5ex4lOTmsWt6EnGrNdk5Ti0uhN0fLYT2yOy9hvEwSWYWAFnZhiW9Alm+/v1Gs/w1tydh3EUSF4r6c9jFnWTBZWn+PTt+QKdTQ1Xvw6g3QNdG/sYAILLrEPa8xqFmrF9Q02m+vyY8sgjyOrTQE1meCkHIiRHwO1bNqnLCj/U8tL5Rb8C8rCTVO+HLmeMZiPxuxLeQX9TX+ZHw2ZUonsBenSb6UtLfzrpaKrloOcpyAWBWxinVPa021SL+nb7pHsYW/NTPyi7uJDKHaMONK8uk5fAn6NX2p8CoN+CPdk5WF7793IIQt3A5vGaI7W1NdjqumyQzMjYGCM9q9M1G6ndBQj5av4xN4obkU/49WL45noG49rJ1UBa6uUjbK+L1qapxgfpW1rpWLOS9/HoEhriQMSJpvnWod50PCZdA59eszcS/kw+VMr7uNZb+oVsdeNS8jswhK3B3t5fQf2mAdqPeAJd5ccxs1iSZkbo6SBh7SnJysW351wBIfDD79q2QsUD2O6TkPCANWfPCVe/w2ksRQlvv+Y34axvPD1TV9VTIZiYHlbcs5Sycv4+H574XAIinzRRun29r14/EkD6Wi+oTfZNkxqmOsvcP/w290rITK5/ez5tl/d1X0f8uVfmI/YdJCzUREBdvFV1bW0jZorTvOyKzzxpE9h6JmP1b2GBEeWTND4fHrHhhoLKUlUJnZ6+Sg5ZtTcb7I8PQ8KVsAGAnKb7fRzH+lZE97ZtQZA6XbeBvjwtnihGfN3V5COyK7eDzSqImb62FMy+7tUUDm/g0EA5v/O6LRk+lqiaGeTf8cKh9Tbgn1WQBbnlePGnds/aMlzWy6xC2uBbShrWHQ+4NNNl6D1LYPZt8ah5qiu0+JlX59nXq4HGwLxz+SBHq1mZZNFw/ioODpztKMrMrlF8pMyWaXnojAvov4jTlO/BQh/hCHxxp76ip0NCA09ejwnH8fTXaFs/Lf3E0XOary1HKxz/L2dIOFzpvUPWxbcbFmOkRCiVZU8yMegOW5hxFdEvrwT4FstcBpZZKfR+tUxxwPrDEJt/K9C9r30u/liHMj9C+fSvc86knBCVVks7XS4UyVvNQUzzsRvyGqC+S1vu0Jh8lW3UzSWb4Hh4Hj9GnbPLM/DScmW/SNFdei2AnrgAxRyvJzROCxDKFt9wfRIk46LH7RSHGE2vP8wOBXnmMd+qyEGQNXsnqo/P3g+XsRVyfGo7js+UxTatP2moz/v3Z/dFCMHHnUVxL9rsxiwnKg68Lk3NFMHYav8Hr7mQxTH2EiyKDUSOGLEx7n7mH/W3r4O6zYezEztq3xJN7Uk2scBFPMv7K/KVVjkkyMx9fANiZn4JqdroK+wyVobLlad2nVJm6WJszlfPHngc1sNC79b/UNgCAsPYw/bpec6zbXlibWUFQJF1r8yGfX9ewAWJO/8FQdov2uuNg2+3w3jQVTY4B90bdxenQTSx9+Iyp7IR/wsUcrPWTrQ4AEjOuzk8JqvfwV+dILdLqH/T/qceP8OzxiTgTtpHxLBgfDud18XDwaMkQZK9sby1YtADkZJ5uCgEERI1aogAkDuKuo9sFWWdnHseHnh1t1oPe//nicTj7Zj6xPlF0zRq49bV/zEcsZdjCJ7Y9/g6qUsT+w6RUxOjHWBbeAXu3fo9ukyfDcWcSg5XXGlR6jZ2IAxtWCx83zW9LmdMiLZhypSKh5QBNfwPiQG7p0ZH5+NBnlKQ3InD69aUqmVZfOgoXh9o2J71KLzbLJyOtPH9F+anMc1v3luccxb0yB7Sv7ghLWSkiW3RkC1J+4Obh5Ss78dgb2lTo18Xz4p3h+ftKQJfPshIx0yO0wsWKtQW8x47J8J0qB1EdmNofXRqmY3lyN/i+cEzFw6g34PbYcNTfQBR0r5+mwvu1BKR93xE+zx9Xpa1oIf9X+oq169SlIch6eiWMLoFAqcUqD+Ui6q/0jcrKbCtfZdNp1XN0Vk/86PGH5neslVfJI31hGLxfE+HeC4eH4ug3Kxgfk2RG16jJeNhQh+SPRYVZ5+wMWCzM9I1S2JtTUW9jghC+whalLQ5F5rAVKiW406mhqN1PBviYln5B08Sar2c/j1DsyUqssP103h6wpGcJ99OWhMLn5UTxm2vjC8u5VCgp7eswtHr/HGIuHIbXHxPg/dwJPBwcgpq/ke9G2ba0XlrABlnzwtHkeCmcfklU9ccDD3XoVdNiU+H+8Z6zsFBOXR0En9XF2PvL91a/s3EXc7HeTzZFtQazTwFvtNrRVn9uf9wOByUfGRSCC4dBIeS16LExCNVNx6x+13z7/HjPGXO2jGYouFqyaG3AAcDjfS1VJ9MA2cQqvXdPSMvanRtL7B0dsTszgZVL51+e/I5Vw8UgEcXV2rdoSwkuHBYK3eMyOP6eZHOcmZiahVmJQ+E99gQuz4jAqRlLrZYV2WO45klQ6xQHLGp+TPj2bYXXUZJJMmNA+FOq8DaUKFiZst70NyVbyrZWWw7P6K1CKK6svHx6ullz64Vw9XhXty4sd+8if2YEWnwmbkg9eioEDjti/yvAOqoUsb+PqkwTnzCiA8Lerd/j/OMHOLSS7JzysPI0Hf1/YMNq5r9EBx27+JOqgUQ5AQHkZIy/RycBo57E4zFJZlzq5SDwPvXGUhUfp8PEz2Xu9TZIXRvIyt6/cY2qfJNkxr1RYUwJo/coUX8Pa+1j65lSLq0dQQoNfP7xA1avqLR0lPSUzSQpr2CzRZCP/52xgJhHUJ8Ya3ItyE6AR7XaeNOd+B5EtiBtTp3jSzKzWd7znTao8pdFENCFwj2erHzqWwOAQS3zVNrZgOtTwxE0JwoOnu6CbN+afxfqSYkCulwuuY/AE6XsxGeaJNvtK9+VFh96TZWwS7OJyUhx98uY2TANWf2Ir4XShn9RdhzsSstY/oxRBCltUNtTAu/3rokof7YUIo/tk4V7yt/8JN06xUH1rn2jy4EGStV+bYDs40T7Jf17K0OEIO7XMkQzP3UE59uNJ2V7a7W9tbQVLUwAIMw8HIkXPIVyu595WrMv9xorw+K7J9XErRdI/2/1WRYrh8Js50dahG/VqCchNhqsiVfJYCkogOXuXVX6ehvJTrnXm/Fwjm1gte70vs8rRHHK/Fz2rzXqDUwJM0lm2AW1ZUoYBcdR8vLYMRllRUWabaC8x59G0/yZQ1eoFvwx+7cI6WjoCZ9XE1jd/T68CwACuqRSCaPlW27cVPVVj3fimV9T+y+jWf19NkThc692QttqKd1r/VoK7eE78RhutK8l1FmZjyphVBZqzqhsV6qEPTYGCfeV4DfKfKc6lsH5k5ry83zZRFuphNH7tyaEC0qY1jfBvlWXQKz1a4mLE8lieet9eaFH+zdAQoxo9T+qhAHAy/mhSFtC+lRpoSybsnxL1w5IW1yertyficpF59+iAcFE6QTxDzecALJ/as/q47H7RSHf5Rmi8qust0kyw2lrIhx/lwGVqMmyMt1qXw/m+9r8yzihzfj0Rr1BpYQVDSC+rIuaH0Nkq67sHfDhdUp6BqLGoWasz2zNSwDsdarxWMvEGSCKTMzJfTBJZtg7EtPmAeFPqRQuXsky6g3YUA5gxbeRMt3DZ2qg74jxmt9+3jukjSmwTtP4upicSsaW3s++gPt7PFlaOvc1WBMPv7VRWJRN5nq/Y9XYhlOr8s0Fvl2/+maJqtwnlcr+If+wsv8DPmJVJ2L/YeJPxEr7qScQo96AS7Mj4Pah6MBbesAV9r3IQMUPQLZ2F2la+vzH3Dg468hEm/FlGLxmJDAzMUDc7bNGz1yQ8OH+ISSAqZUdpyvTI3DyraU4+NAe871IrKCm8XVxNfyuSiae3BKdsMo1FgMC+6HMua7mjjJPdsHtsOc30YzMJJkR2aGPsHtmi5STN+WV/lUYvF9PwKOBIXDcSQbZRwNDcGjlSlV5lW1/ZXn8fXsnJ5QWFmrDiGvQ9ahwhuRkkswImh0lBNXmy/M+OB7p3dfBqDcgfVEYvKfLJkWUjHoD7B0d2UKBykcDQ/PpvX6aioxR6oC1i3Ni8UpL7Zg3Spn4vI/7BaP6nmRsyI3F+L7jYTmfptmuFbW1IId7ZwJZn7QLRr0BZZ0M2PvzOgCA35FxcB9FlD3lLnvq6iD4TpTjARn1Bs2deOUiTUtW/r7We7fWF6j5jrLO1uqfNS8cxc0fw3dCCtK+74jW71xBSb4MLKOVj5qraSm1ld0ZLovowFBNeVM4h2ZN8bC9K/5Y953q26rM9wIA3gfHayIyUvoqOx6vu4dXCAVPT5xpIHNb9VO2RWSfUbCcvQhADl5rkszo8Hk0mi0i30TBLh8WA5DSjvxk1Cg3O9cqS2tMaP9FNLM6qCitrTpopcv8LByeM7VjM2q9E2vvSHnfLsAfZSfOwjm2AQo63bIpjy0KO1mM5NFt2HdP5aIhRGx9M/Q/DdsCEMAPPqaXUW9A6opg+E5JZqeXyjbgTyUrqjd/HwA6nxqKOw8doR9yDrd2+sLul4ZImrdM6Pu0nMrw1xoXCoeF4ujiFZp9gSdbZQDA02lGPOwmo1wqg1DbksuabJSsnUpaI2q+l7oyGL6TRZRnk2RGz3ETUW2/GJrBLdEJeVNaYuCmI9jRRvYvpyfJlS3bWv/XXA/Y2aHGwaYo6nbFZl4A7ATXvkNrXJxcFz4vySbd1mT7bzFN7PjL69D9AydilsIiHB/+1RPbHn8HOfynBaiiKqqiKqqiKqqiKqqiKqqi/w4qA7MS/reX879OVaaJTxD9uZaYbBWXibF93D6ME47tAcC+V66wE6PcFVQSn9++Q2tkbe6A0a4yyhBFiqKgCSaJoLLR3zzP1FXBuD6VmG2Mr3tNQM6jdPl1GTb55FvEBJGehgEEdvnab60YXy2ZV7nGEhOFy1cQs3+LZhq+frd91QGeAQLly6dT5uN/K/PTuFzer5P2oadhJskMx51q9DLlaYLyv7X09L3RdBT2WOs0LO1rOZ4QTa+EVaenYddeUpus0BheAOA9PUFoA15+6rvA33f9JE7V76j5lEkiSIgAQWKjkNg8f4o4ycuvbLPqe8hu6FjXTrCcTxPKV/KrDL3SshNQVoZdSbvYvTueNRnPi12ID2HgiVLVSZfvxGPAAReYJDN6j3kBJskspOFl8VsdpZL1WrQcz07rJItPq9V37YLaIm7hcna98o5eM/2tF+R2TR2/DL4TCMRyZp81KMmXYOkhOorTvlbUn5idUvAGyjNrHjEZC/hE23xJi3Qn05G6lJhW3exUwNLtOm5ip2F8GQ+fDlG9e74Mvp28njWj2sHmmmlT1wYyQImSvHzVN8eHbaCgBKWnLiCyQx/WFtk/yWOTVv3C3pzKTsNMkhmtq9dC2pJQGPUGdhoGgJ2G5b4rf3eDWgRXePrBx9oy6g2CD65We1j7ZgGw+Ec88f1PeRqmfM7PIXdivAXZaTgEZT8CgD27NsIkmZG23o+lv/QzMSOmKLxabUvRBenzhA7VEHPgZ6FuAInlODtT9BUdEDJAVQ8AQqgAesITeEKOJ3Wo/0JSH27uMuoNaJf4LACg5m9JKO4bpJLZ75gMqKVFRr0BTv0ymStBg4GpiP/kW1XfN+oNeGjyQM6H4Zo8AODmRNnEVvn9Od4qhlFvEORRvkNrxI/fI5rJp19GvUF1GkbjSyrfN8/DwaWFZr/8c+13Qr5h56+pZOBp9qRJMElm1WkYLeeP9SQ2XOjbUTCeIdY0KVddUGo+h5fq5wrfCp2T+HagoRy0yufbjoa44GW/U/pQzldWhh0+ezTzUnowpBzKP5+YeJaePM9QP7XGum6nCH97QxsM8W2nqn8V/W9TlSL2hFD6MvljHtgiULVwA9SL0eW3W2g+t7a4AYCuUZNRevI8Urt9r5mGxm0psDxgwWqVg4zvpGQ0Xq6OF0P5mSQSxFQrL19mk8EyXPmlkvuqdNbqoKXkDAh/ivmU6OrXExYu1ialS3MiNOUfdzGX3adoSCbJDOfYBsyvic+XviGALXSdDpNAmv5LojEt/QJLY01BA4DMz0SfFpNkFiZYk2RGaWeSP2+rP3xeFVGmlAt7vqwm38YJfCituyTHWKM8IrsPE3hotY01oul3pxNFrek3ccIzSu7vxwv+U/wzCj2uVPy1ylIqzXy70glfi0evsSSeEAUE4fklvRakSm+SzECvPBj1Buj+PI5ez03U7H9FZcV43KJY1WZNlsoL6jpHGgl1LuofrOKV82G48P7Kjp0RFmKLNj7NeNPg4PZOTrAvsa7sAyQoNgAEvS8ri0a9AbfaaC8safiM+50eqHha+552p8XCNzpJ1e7KvkSf19wuKx89zg5WLfCU41lx98vCNU1PlU6eaP9wcGlBwjYoZC7pFYiYk/tY4HOPxjLwBU3bZ9QEdq/eRrKwu77Dj8nGL+KV75Ga7yrbQdfaR8jTcxzxuwusoQaCAKDyBarMWO+UK0/rNF6bFimVPEDeQBuZ2YsoRYZf4ODSAsW9SYiA5MUdmc+nkhdtF4oyCYABDx37cJmwsAXIJpFJMqOp/jZLz3/byrpe+iACU5e/DKPegHWXjsKoNzAzVL4daBy9HfnJQj1TAuwZ30luYiw0k2RG0YBgpkCZJBk6n1dAjq4O0uzL/DX1G2qbQt5DZIuOKBwWqlKmaxqz0HK2tvk4AIb+aOnekckx8vwVNhYBYCAeWjwiuw1lGy3XoiOE9qQyrPdztTrWmiQzQ1ZUzi/0+t1Ms7DBZdQbkLExAOmL5M1CGi5ncj3ZPLrD52KYnZfSUhngGPWzA4jpIZXFfwnJk/jpMuwLbQ6TZEbjQRdZWq+fpmrWASDgQXSTOeOLMFX/pWTv6MjMq/m+ONKF1IHG/rJGlG+tbYnCNf9b+d9nQxQOta9J5nnzOWxLFf2Ln1Qqhd0/9ve/TlU+Yv9hUqImUjhgSrnvRcD14zhkbAyA1xg5ECRge9cLIGhkxe3dYX+I5Ls1IRwN1qp9A4x6NXyzS0Jt5IXdV6WlpFV2xMnHmNP4nOazz7ISYahRgz27NzoMDhOuoqZRdHa/v8cTtftlIm1dIDL7rhaeGfXEt8cu1myzDXjkKeWCnZeHhx/X4pexyYAap2vBZb71QMLW+N8ZE8YWb0rSyqMsX5mG903jn+VsaYeWI8nAnTM3AnWyy1TvmM/D5819PwKuH6kXjFpk36E1Sk+eV92n8PHKtrHWr2i63mNegKW6PRwv30fpKVlhXXfpKMa7qQPGUsr+JBwtdz6AXfxJmCQzns3qgdvP10fM4W2sbEpXXovAyTfVqJy8HAce6vC5lwwaEjIrCknztWHwtdqQUr2jDbHF84DNfDxNTM3Cal8PzTry5YScGIGkgJ9VC9RpUjAuBhWrZLLWHynf9XcbYWMrF6uy8f3wrYzT+NyrHaodbM6UIC1ycHWB17arwqKQ52vv6IjSx8VAqQW6+vWw8fRujOkxRgC60Pl44mJUE3byrJSbEi+rQws9SvIlmCQzwt6aino/iD4hyrrxcObKdDxvet351FA4cWiLAAlV8TCpkfDdaJVpi78yT72jDXGnswIB8dNwFpuMUt6sCJQ4lcH9vXjmd6vVLtZIS8HhYed54kNT2OIHAJ7bplj1fSnqH4xLA+yZ0kqRcjssiGbfZs6Wdnh8pRYLT0IV1Gr7ZQX71oRwFp8w5J0oOK+LV5VFr7u8PAW1fhWtNKx9F7a+m5svhjPLAq1ybL1fJWV/HI6LLyyzykPn74eYfT/BqDcg2GzBx01OV+qd2qqfcqPJ2ndOqXCPJ5z6ZQr+2zxpwbIr+V6aEwH3BcRqwCSZ4fnrFPi8nIiY/OOIbNGRKGk91mrWjaL2AmSjRIkEDRD/QRoDUfnN6Vr7MAsKXr7+nmHM11mr7tYUf/psQHAkSvIl3BsVhnc/WYdvvIklT6R/D1gKCmyOuUqqaHw26v974Os7/DIDulr/gI/YgyKcHP7lE9sefwdVKWL/YVIqYqXdApjiNOZCnmrR1GfUBOz7aW2lF180H1C5ybq4b5BgRlSZCSjo/SiseX8hQwWsaFJQQvHbImUah5auIqRtSDsg6bSqjvOykvCef3fsTo+D0SUQpryUCgdAgMRJsdy8VWHdbclLSWu3mh/wAXIS4Dj4OpFTb2CQ9lryWXuPYSeLkdChmiqttQnY2qLRLqgtyo6RoJ15syJUCqi1utsFt0NZsvwOUooeI7BG9QoXohQu29biuTLPeP75MyPQ8mfJ6iJy9aWjmGhF0SvpFcgCjlamr1C6OSkcDVdpw6tryU8h+um9VkfHMmW6orLofQCquqsWRQqQHwqprORfURtTsjbWKN8DTauUFSAnSo0HXVTlH9DRiJIrVzXz8MALAHDnOTLOPK5jxwBqlDTwbAF2+jsDkEEklJT2dRg7XVbWLX1hGDJGLWfxkrTagq+7LarsN9hv8FiUJWvvhvPp7pc+Qm17R6vvofeZezjYrxUDpil4Phwfvr8GC71b2yyf3iuL6ICcV8vgPuqUVSWVb4flOUcxdVQ0kCCim1oLO8GTrn49xJw7ZLM9K3PPWpo2S6Ph+nEc7J2ckBfVAfov4hiozLXfWqHJ4AssbciJESqgFatlcRD0qd8FwffFYwzA5a/KTGNiGvUGXN7eGs2fPo+NubEY49pJM78WeBclWyAjlGocaoazuc2R0VNUiAaeLcCucZ1RlnKWKFFbp8DnFbXbga0+T8M02Joz8t6JQLV7JJg8JQqAZG3eohuBJomc9FnSxA0SW2sOa3KMPH8FW1o3U+W5ZinE2PK2f/RUCEOa5HkK/Lg1iK15g+bj0zkdbozCrtcFWXs19/+vgK+vUsT+PqpSxP7DxCtiBy6frXBxRReLWmRrEU5Pmv4qUR70hMzaok1rwp6SFy7EH8vb6o+au+vi2IfqeC2VUSpNkhnGFgGCh6itRYWtBaatun6UlYz3PYJVPHl0PVrfyFZdYbl7Fz7JNbCkRSJ6jn8RNU/noeTyFcaXDraU3so4jV41ySTe5aUpzIzBcAI4/ZwfsoY3hNtcMkltyI3FWNdOlVYOahxqxtCcsj8KZ4tIh5au2BX/u7hQ/7kdPF+5hpIrV/HQ5IHD7bbBqDcIKGOVJSoDXcDy7Z+6LAS+UfJpHk+8PFemR6DFhgtMEVZSaZcA7PtpLT6+0QrvNSo3ay0PfMwHDKak3MG1FjjaWn2U8lWm/lr3KlNez9OFGF73BLyq1caAzk8zuXPfjcC5l5aqvhUA8NoyVUC8rOymAY3xteuBIwbUemRTNr4OA0IHoiQ3T3gGQHgPFfGp6DfjV4l62CKdjyfOz2yArMjvVDz/KlkbY3i+pd0CsG+z9k7/gyGh7Buv7NgkvRUB/efqU7fSzgbYHzULeYoig3Hwu1Uw6g2C1YOdgwP2XBJ9gCpTR/6e14EJDMqcKQJzItj4VFnFqaJnM9LPYlFuH2BSDcQc3maVZ+kBV+xr/TsmXOpiNVC9Mh/wr79/zW9YsfCmc2v743bYfqED8+u1q1FDiEWXviGAtSV/2qYsL/TtKNRfr35GT5P4+lT0fVT2Of0/Lf0CGxPoPYoESuNV8jzT1neEz7jjSP8qDKV1LPCdlAzpzQjoF2grisW9A9lJZ2XGBC15af3/yvzOx1U1SSROYFlRkUpZ03l7oGCxPer2zyDpBj2HFkuysdrtKH6854x39oyCz6vWA5cz+YaOEzYmKhqfTZIZYebhqL6yAXZ+tvy/4kSs/c9v/GOK2KkRXzyx7fF3UJWP2BNIRr2BfaT8zgkAHNggm+vRj5763PAfds5c0Y5ft6yRKp/Wb+VCGSDw2dRMkV+EhJmH26wDr4SZJDNwrB6aHLzC5HJwd2PPX84PVdVBKaNRb2DOr3w5NI0yr9aCySSZmf36436ysgWQkxydszNCalRT8TDqDUwJo/eNegN6x5GF6ZIWZKFVbe8xQQkDgF+99wnt+rlXOyQ8InGWjny7gj17pn4iLGcvskUOALYzZ2uS4Z+dS/JgdaJKWMH4cKaEZW3uwMrzmP0IJVcIdPGtP5szPmX2sk023yf4OtQ72lCIu0b9y6gSFpMv74T7RiVB5+PJ+iT/R8k5tgGaLYoTTiOVZe/7iSxCmBIGwJSXAgePltjuY1L13ZLMbBx8KA9xp19fytqLTyttayPky/gyTCUf3x4A8NDkIchGedKYcvy9yDbdiH9hteqwr1NH1ZYA8Ec7J0S3JPHz8r6SgURcP4kT+i6VHwBTwvh7yjS6xo1VdaCxpmg8LWtjwI0psr+aUW9Anz1nVOk7HhtFfmjEWaPO8d1OPWRtofP3YzzbH7cT2rjn+BdV74avV8ZGOXaeFvFAMJa0TGRFkpP9AcGRmvWzRRRk5dZOX00lLPi9KEFWasWgxVuphPH1Uv6mdHr6UtyJ8WbXPhuIb5/9UbOQJ3VZCC6Nltu+wdp4pH1LfGzKSkqE8rRko7HUep0bBJNkZgAVNA9VHOj1430thfEpsl1P9tveyYm0zfGR7N690bKvEO8zy1NptwB86e2PGL8YWNKzNGWl9djXmsRAXOt2BDlb1P66gOxzS58pn+f+0rbCPkDnJpo3fMZU+XvfvgEmiZxMAkDtfpkwSWac6lgmgCtRJezus6QN+LZUKmEmSfYhrb8+HkX9g/HMBQlfZcunsVomfVobNMrn/FiaNyvCZt0H1HqEyIuRAm/nASSMAI1XadQb8FIaCSXjM46M896vJ2gqYcqxxaGwBDH5x60qUQ4eJKB4cd8gq3IGJI+2yp/O6UpSxlXdkyUGXKcUc3gb6vbPYPUsO3YGq92IP/Vav5bsBP3Sz+3gsWMyS8ePu0a9QXU6HNl7pHBNQWbomGbUG5Bg+AU1tychMG40quj/FlUpYk8QaU3Ivc+QXb9HI+xUaYx6EtOInq7onJ3Zs5Zz5B3LrM0dmLkCv5hQDkTKSYsOLnV+ksEh+IEvwfCLwJPyzfxURsiiwZONegNc5sch5vA2ln5X3A6WLi24CHmzIkADnVIUMVoe5anVRhtyY8VB9oG4S5O6MlgYKP3mk5PBP9esEni+4xGCmLN/Cu2jRRlfcqiFbeta3XXVuk/vzfEMVD2b6RGK1O/kCcg9qaaQBwCCzRbc2ukL6S2yUIw4+Vgo0+vNeNUk57wuHsVlpI+0aHSbPeu2RZbvzDTZ34SiFirfKy/rnc434fBHCnMCt6Rm4NIHsvIf2aKjIIMlLZP1SQBscULrVtDpFvtd2i0A3n9OYPkLxoej6+khQv+kaTu/MgUlWTnCsyHn5NNHitTJyz83U96RfbyvJU6HkgUGdbIvrV7GnqctEf0IKQ96emjv5CS0T0lOLnqeLhQWwJbbd1DQ6Rb25CRh98Uj7L41OhmyGbqGDQCQUz2TZIaDqwv848cI6ehiUUshvLvbi7S7lfh5fPn8IoG2o87HE41WxAt9j5oHGj6NZmUpzQznZclIojQe4aH2NXF9KlHqeOTBUx3ldgbIJobW4ojKRU8DlHWm/5UmhJQP9SPj68fn439ToJcmS+Mw7Pw1NCgPupr2TajwThusiVfJSnnfmGIdIZCXX0sB3pGfzPgmGH5h931WX1PlB4CswSuR2XuNIIf3D/KJhkkyIzBlJO7u9tIERLqvJz5zxUuawag34I91BOmukAtOy8hehz/9f2OXWZs7IOb0H+y6ZyLZgKJtBgCFzeyZrFTx5+twaU4E7A+dsPread60b8h3SMcBAGg58jTSloRiY24sHFxk4KoDzywg4jqpUVtNkhmuw88I1yPPE7mpEqpr1BAl2ZeEjULnUwWqdz3MhYxhO/KTrfZZAIj/YrlmX7g5KZyh/xn1BtzrcoPlqbE7GZtb6RkaKD++dfgs2ur8REGe6EZYjUPNhH7rMj9OVQ+TZEbIO1HyO5gizjv8t0N/f+vjK6w3KJ1+TZ5HtL4Pu/iTbG4wSWakLgsR+mpJFolbqmWRYZLMSC0uZOakRr0BfmtE8CE6d92cJCvjhcNCBT58ezwYEqqSUVe/HgDitwcA7ZOeUaVxG3FaMPPWkpX/TQO6X3mVzJe7knbBJJmZ3//tsfKmV0rEj1b5Pkn0TwRzpn//61SliD0htC31NG5MCWfwvOlfkUGeAnf47yYLKpNkRu4vbVk+6lsEAJYCEkC1X8sQ9tyoN8DpiDgh8QtsgNh10/v1jjYU8tL77b+MVt3TWqADgCfnZM6biynLVeZ3mR/Hdqre8QhhaYx6g8DTJJnZxGySzOzUyCSZYV+nDhZ6t0b+zAiMuUBOq3wnixOl5aq4qFHKp1RAlG3XMTRNuAeQwVo5MdL8FN7XJJkRGdBXs0xdwwZw8HRH609lp/1De+R2ommTDTokd9yC09PJhDen8Tkszzkq8NRaFAxsQRS/P/1/g0kywy6oLf5oJ/cLvq78PSXPK68RBZDuOvuNIadTDh4t4fZBxQFoAQKy4DyJwKU/nWYUyrg1IRz2h06wCcqoNyBp3jIcbrdN2DygPJ22ktMGB1cXVt7U+uqAvka9AZNTM3F5e2vM8ZRRSav3yWG8VvqSxWfmsBUsnxLeWrnIp2EG+Hf05wvk283+JFxoU6VCrmxvPh09GbzepTki/XugJDcPLsOIn5O9oyP81kaxjQw+v+EEyV+3fwaMegMWZWubCNk7OrK2pIsEnixpmez0jqf0hWFo+o36lI4S/W4BCP2SoqzShaJRT/z5AKDAIocDoG1sF+iv2S7K30a9AZdfj9B8Ronvg/Ska1GBu2bara2bsDLpb5Nkhm/bPEEeZb15pM5GK+IxOTVT4F201509z39bjTpI+2MNu2qayp0lNUMIUeDxG9mNTyl6rHoXD5s5Ct9Jo6dSUbd/BtwcakNJJ94h44h99DWhPKfyUx6BFKeeHs+Ipww8yBTN22wR6Sv0dE9Zb3q6xi/G+Wum1B8i6ZXgTplDV6DXF2+iJC8f90aHweP3SZgj9YdJMmN3Wqyqvlpzz8R6RBGji3/LDTIG89+X5ayMztdhgagIDR40nl0rFVjleMVTw1XxwkYeAGEjjubnrx+aPNDsa+uIxBQwZ6CRwPBTM3WttLnvyaE1ePATS2qGkEc5F7I2KQeqyH1fhoWneSi6qEkyI9gsmizz75iarLf6LkrgofWdGfUGTM8cAXtHR7m+LywTNvV03sQihPfZpXMEJR418ci3K6CkmHOks9FNo+ZPyyBVDs2aCmkpCmr7pGdg36E1u8+j6/Lvin93kQF9WZpd875QyVFF/3eoShF7QmiIbzs0WhGPDz0JVG3G6OXCc7p7bNQb2I5e5ufhmgNsWbF8SqJr1BAn3pNNsvj/lHIGy2aLWzwPQNe4sWrBeWrGUuFeq1XRmkoKTT/k3HXVwlN5zfOn5jT0nrVFKuXjMy1RU/HZffEITJIZLT6LE4BO+PxaO4kUClxLAek95gXh+vR+P0F2gAzW1han6V/Kym3Mib0ASOwjnkfM6T9QkpktmOa0nB2vWpzQ/3zZU1t2FsplC7LB8m4j3aWn+SgoB3+Pwv/SNrgxWQ19TREQaSyiHz3IjnhJVo5Qb5eE2qo2YpNOcgyKP2gKk2SGm9MtIR+P+Khr1BCZmwyai46yTgZmUmiSzCjJzYNJIn5M9B49+aK00teTTap8u7Lyy+OFGfUE9rzNt9GafYxS6xQHzed7fiOmS+7vxlvtE8o69XMLwrT0C6hzpJGQ1vn7eMSc/VO4VxLaGu7vknaiJzX077OmJJ1dAFFkKHiAkoafyFbViW8Pk2TG7otHhG8x9bsgeL+WwGJCKcnSvSPezZTlpP2SJ7pQ/CwrES577wAARrvKAAdUnrKUs0IMK2vfLQAWc0tZB636nXhvKezbtxLAP7QW5/wzo96APa12sWvatnw5W1s3kXmFtGNKPaUafbMZrxafysqHvaGNwIevKy9Hcd8gNFgjfxt2tUqwJS9eUHyp/HVPXhX4KMkkmbE4J1ZQYGv0zVbVSSmPsq0AssPPk9b3DgD1ItOF66xPteNnWVOonbaK473nz1NZmmZfE7/PuK+Ww3dKMta6qU+daR3oH7W4eLyvJTOvpfwvzRbrpKx7s4WiIlSWIqP48SibJsmMNsuiVXy06k3J90XxJKh/39HsvU64mKNSRAEAYe2JwvNeFNJ/IKZupWfUZqCpq8mJH90gORe9VJDr2aweMOoNyJsl17//2dvst0fMi5obCO7LxFNxuwB/NJ/2ECbJjOj8MCQbdADImK0kajq9f/wCeP1EzD91DRsIYxpPlh4SSh89Yu9xYGp/1N0kA+7wSKzW2tvrDZKeDxWitY7SImrKT4nGu2v+9HmUnjyPnLnkxMvhDwIOZldNDkvBf0f2jo6IObGXldtI58Se/bfEESsr++f+/tepShF7gsgkmYVB0NpAQintOQJ6cfdZOYCnatfqxk1hkEkqkiGmU1cQe2qKjseUgpP7hDztFomnYYBs+qicOHPfJQNRHycyOBtOqE9caNBfnnj4YwAIfi+KpffYNUk1GVpbYGgpf8oFiTD4hpBBr/TMBSGve1JNlkf353EY9QakLg+BSTLj/GTZ/ILy0Vq80GfUtyyy21AY9QYURQaz2EfKemnVQ2tBYavu9P/hZStxfwRZqPOxfZSTjs7fDzofT/jNOSfUp9Eq2QfJJJmxNU+EuW4Y62xVTq3QB/xCt9tioqSkddap36kdMUX48tjv8HxWvQhM+zoMdrFmFfKmUW/ArsSd6PLSFGQU38ccz0B2UkYDy1Ly3P+CeuFdHi/MJJlRkpcv+GdRijj5mPFZ1PwYjHoD7owJE4JsG/UG9Do3SMhn1BuQ+16Eqq4myYxVl45iz6VjGFDrEe51uYHukyaxZybJDN/D4xif9IVhzB9pQOenkTl8haocACg7cZbt3mr1meF1sqz2OboA6nF2sPCcLhJ5/xaj3oBrv5FNDN3B4/jEU2wva9/FTI9Q7Nm1EYAcoFzZ1srFu7XFkrJfPt7XUkhL+wDlQcMlKMdMrfGDz0fbsezEWasLRQBAkjYCJk9p60hcLiX4gZInzcebapkkM3yeP45t91syE1YAuD8yDH1GjkdJZramfPzvIcvf1FRgMxaEw3iebGYEzZbNvrYX1pbThbUHQsj3dHImGQt1jeTNJl3dujDqDQicK59ypP8QIJTv8Tb5/svCO6jaylqb8fl5wISC8eGIeG2q0IaeW6cI40akfw/WHs9m9cCsMZMQ+6gU1fvkMPNamt/twzjVO6lIRq15yag3sDAHJsmM/n3Vvj+XflYvuvn5pPTMBUxMJd/q6DoFqrRb8uKBhFMw6om5rPdzZGyYlXFK9d37TiSmv1NbdtasHw3CfvYVedOV37Cg379SiabhS/jvg8buywh+xOq/9+d1qrazXCeIgWMnTYf3awkw6g2IOf0HTJIZqStkl4KC8eHQNW2iaiet2IL0v7W1goMHGR9azo5H5ib13K01387KOMUU9NaxY9E4Tm6Xsgi5D1+YVB6S4UNiDcFvivO0OzPB6rf53xJHrIr+PnL4TwtQRVVURVVURVVURVVURVVURf8dVFZmh7J/wH/rnyjjP01VJ2JPCNkFtoFRb2C7UcpdOK1TEKPegNz3IxD/hQgXXhYhI+Px9tQmyUxg2e3s0PN0IbKeWsWelewXUaIAYEE22XV0yi9F16jJKnn4nTuTRHwf6ClCdLlZ0p9fh6t2mIo6t8HorJ6wRbwZTtaAVZq7knSH0ySZGWiF8uSF/u8f+ayqXVPXBlrdvc4OeYiAedHs2iSZ4Ts1SSiT33E06g1sd9raTjmNfVIjJpndo75390aRU4HLM9T+LtZ2+UySmZlNKk/+UtcEwag3oJ5ZDdaQujaQIXQBxBbekpaJmAuHxXLLESp1bQhyXG17R0GWm50KBFlMEkG24/tq6ndBKIqU0Sk7vzIFAHDgrS7kRIAzM2FUVgaTZGZmdcq2rHbXjqXvsEB8R0a9AcWTbrL+tytxJwDAbcRp8VTjsb2qDytJeT/vnQjEdagO49Njhfv1NiYIO/QA4NCb+MBZenTErQlkB9n1Y/kEgu+bUSHDhH5VY1eykM5j9CnWBi0OlrJn9ORDKTOVgcbl4sujNNJF3NVW9h+TZGb+hLSMK9O1T+ubDL6gOl3Kf1t8d8qTgxu/E7/U1ikOcDMRH5K8d2T+eVv9Nb9lZTn3R4Qy0ASajsrN2qHcbPWzmz5Wx1H+P0CC2/JtpvP2QOdppO9SkAKeF41t1v/sbc0TSED2xQUAn/Epqm97KedTR2XpMeFFzR17k2TG5lZ6dnoAALW3JGDflnVCemV70fx8jECTZEb4DGLq5/VmPNCLtBcfzHiZjzc51ek3miDCJZ0WxjnqVwUAd7aQsSVlzjJWLj2pUdZl79bvVe1ki5TjLgAkzVuGOj+R729nPrE08HklUXif1J8JAG4Ptodd3El0crQnYRcUVLjHE32HP8/K49FhlaT8/qydwhj1BpW5oEkyw22E9dMP3Z96AGCB35W87QL8MdIlXFXW4pxYdK9ZKuShp8YVnfLZPOkFAUChgcZpuWXhHazmo2kCPxB9wJT/q5vIadvdZ2XEWt8psm930rxlsFy9xk7KbJ1cAyTot/IepXPvEXPIrE/DkdZ9ncBD67vtOW4i5nu1x/mpS9k7ux5xm/G2izsplKXz9sC2cV+yewuyiSlk26+jlawFomiQPWdPtJmuiv73qEoRe0KoLIWYhUV26CMMUMoFDCAOGueilgqLFQCwizvJ7tGI8qXdZNMQU/4JnLjrKvA80EZ2TKb3aYDmhAXLGepi6pogIQ0/+Lb4NA5b8xLYRNkw1hlJ85bBoXkzdDn1iKWvtvcYCjqpY0Xxi1HlfVrfzM/Ccfl1tV9CXIfqgizKBVz+B2XwXywOhFnG1VYXKg8Hh6DJkji0P66BVnnmrmrikd6MEKDX6X9lXZQLCRq8OW7hcuiaNmHXqSvVMLwUhIWvo+7P44xvXsl99sz3hXLH83LljweOyDKuxr0uN1T8lQomW2SdS1W3gd7ATFv5dvAac0J4X74vHsPB74jCPyA4Ek5bE2E4AVyf/ACBc2WkLmsTP99ulNzfl32vqM8az6NeZLogJyWqnBr1BgZtLr2pDZww5Nx19Bv0HLI2y2YnLvPKFSlOeefl4hHK2AL+z+OC35tSqTZJZpRcuar5vpXKBwCrwVq35Mkofp1ODRXKs9W2FNDG0l1EuVS+E6PegBZ7y/tMSDtE+vdgzxyaN4PnXrJ4CD85DI3j6uNh24dCfXlfmfyZEWj0VCqMegPOB5bg4HerYJLMcvsCDJiElk3/D8/oLSxqYr9eoUrXalW0IL+DpzuMegNmNkxjbXp3txd7/nCw7GdlksxIXRXMwCrYN5CehaPfrIBRb2CgSHz7dHmdmFZPd85mz/j3FvbWVPYd0XIoOptRb8Cpx48QPUreVKD059rvNMd+rfGXkmF+NB4bxXHaY+ckTSWG5q+7WdxI0CKjXjbrBIBLH6ih0E2SWYhXqWwHa4qLc2wDmCQzHgyRQZiUfJX11uqn1ex0qrwUQp9XGtm7LbWgLLyD8F3m5zbEbd9a8qbKH6KvKY+kysunrKdy4+D2uHCsu6RWtrXaPNK/Byw9JJttUHbiLKsHDwbjW81J1Wc6bnjNaptemiO/R9r+SqLmwxSciI6bdg4OsIs/qa7/mbuwr1ULRr0B6RsC0GhlPDz3vaDFWqC6mxJY2AutfkMVNEDe/Fh9hwRlXnfpKB73I+aMSfOWCQA6/H/fiWRu3PnMFyiwPIBRb0BSUbFQnu5PPbumcc9oX0tdpR6r+frHHN6G1tVrqdZRLT4j4xtVXE2SGdKbpK4ZX4ThRDBBS6z3o+2A3E8K0ROxf+Lvf52qAjr/h4kP6OxgRxDF+EUaP1g/l90dP7gfrHDRStMD4oRVFBnMTmPSvg1F5pAVCJgXjXoZxTi4ehVmXO6IuC9CUHdzAnqfuYc3G2Ro7nApZaP0eF9LVO+TwwJe6pyd2U6kcmLoN+g57Nnxg1X+PJVFdBB2nbTqaq1NtAbz61HhOP7+MtXCU0kOzZoy51xlWq06KRcdeSX3MdGts+p5ZLuesNy8JbwjAAg7WYwff+8K9/dEaOy3Mk7jxxthWOUaK6TXqqct2WzVlb+/7tJRjHfrrEqbujYQvhNSNDcHdI0asgUOffZ4X0v86f8bS3djcjhKq9uhyRJtJD9ejtWXjsLFobZKobbV9++MCUO9jQlWn1urr0kyI7L7MMQc3MqeV6ZfahENfqrVRjT4KUDQJ6kSqSrjgAvQiyhImZ+Fw3NmPOydnFBaWCi0Re9nX8D+TWuEb/vayxFC+9rqC1emR6DZIuIP03P8i/hj3XfoH/ksSs3nWFpaB5NEkFPpRoFWG2q1G098eUY9AQXgT2a02nzBLS8BjU+zvSB+X77fRyH1efJ9tz9uh1Mdy3BzUriApFZ6wBX2vXIFXl2jJ6PmdtuLIL7MtHWByOy7ml3rGjZQBSO/9lsrBrfd5dQjHGnvWOnvU6tNZqSfRd9axZptBag3oLR4pa4Mhu/kZCEdAHQ6NVRQoqzVuzLP+Hs0kLGtcVQpi60xiuejq1sXlrt3hTSRrboK96zKGdIOpu0brLZ93+HPwy7uZKX69jMXJIyvew1f3fLE6w0y4bl3Imqdr8EW3zx1O/UQWQ8b4VIo+Z5bHR2LliNPa/YL781T4TVDHUAYAPqMHM+Ce/PyVWasomkcWuhZeAc+z9VpEWj6TZwmLweXFtiVtEtz/LdVVkV9tLJUFBmMbSu+ZiA/tAzK2xbx6QwngM+amtHm22i4fiK+p5wPw9FytjqoNk/vZpqZT2zOlnbCO0xdFQzfSclCeq3+n74oDBkjlwtyl3m2wIGMr5/YAMZ0zdp688x/LKDz+Wc+e2Lb4++gKkXsP0y8InZ5awBch59hk8tHWcnElBDqj7i/XxeU3rsn8KKDTJu454RYKcV9g1RxOR4NDIHjzsrFwQCgmiCMegN0TZswKPjKLPArWmQUDQhmZllKBcokmTEg/CkWmJim8djzInxfIE7IkW26wXKbILHBXgeHpo1RcvmKJi9+YvBfHI2zryy1uai0VQ9l2m15SahlXx07CmvhWx/ZHMkamSQz/NZG4eKEZSpeStL5+yFm30+aC5rRWT1ZPC4lD52PJzsdU9YBACZczMHoOgWYc90fCR3IhoCDR0sW14UnOsmwybylK0pycoU0fN8AyKkJfRfKCdjSoyNyJpXC81kz7AL8UXbirMBLKWvW/HB4zJInyWsvReDEu0vx8Y1WONLeUZXPltKsuVBdHoJalxyEExo+LwAMz+iNX7z2V6iwmSSC7EWdypVk374Vdu/5EZEBfWG5eg1Fe91xsO32Cr8l/npuZgo+DO3HYoY5HW6Mwq7XceN3XzR6KlXF596oMMQtXC58A5E9hsNyMV2z75R2C4D9oRNIXRYC36gkVDvYHMXdL6Pn6UJVCAQtOf8K0bz2deqw8a2ibw+wvnAXxgQANQ81ZSE1tPKzsc3XC5KxKZou1lYUrSkflFdF6Wla+r1lLAhH+hj19583KwJnX1mKXQ8chQDcRr0Buja+sJxLxbuZZnR1hPA+Q2ZFIWn+MjyX3R3XI26ryt+Zn4KBLQLV80q/0Sg9dUH4Rrq/OImdahv1BsDOjpkta7V9RYqZrbYbEDIAJXn5ch0bNUTMqQNW3y8ABL8bJZw6A0Qx2txKL5ZnrxMg+Omzdl9F4/TrS4UyUpeHIGvQSgCA5y9TkDl8heaYbzgBmANEfka9Aa+ln8frayfC9ZM4ZP/UHu6jTuH+iFDhBFfZdmXhHWAXb33DUagLgMATpUgJEE2s/+o3qJXu4dMhqg0J6Y0IFhfQFn9rCpGDqwtKcsnmUto3oUJ72spXGapMXel3xJdhayyh10VlxRjScQAsV6/hznNhaLCToO7GnDtU4cYBK+P8QKBXHuxr1UL6Bx3g+VY8m+fYeNe2FUrPXMCjp0LgsCMWB/HbE6t40DWr36a3/zFF7OKznz6x7fF3UJUi9h8maydifmui4P6e9o7MpdkRDNmJJ6PegKL+waixW96JERaYawPxXdd1+Nyrnc3FKeWlzE+vfTZEwc7tAVK7fc/SWlsUmSQzOr06BbFfk4HX3tAGpeZzcHBpgZK8fM0yADJw70rcqZoEteqlpMosmvj7ZREd8NNPy+CsI+YEJfvd4ND7EpxjG6Cg0y3WppVZ+HV5eQpq/SrHttqVuBNzrvtjbuOz6jq6u7FYNd0mT9ZUjMvCO2Dv1u9tLvq06mTfvpVgRmTv6IjdmbKfgEMLPR60a4Frkx7gbPjGSk2KJsmMnuMm4o/1q1XPZqSfxZfecuynf3UhrqTsj8OFE0IHdzeUZF8ii0afTrgxsj0arI3HxtxYNNLJwZU9f56KzBHLhX4MAJ1enYLaPydWauNAi+jzG1PCGRKltU0LW/2QKo8A0GZptOA/dnVaBO4GPYLPuOOqRZa1TQVKaesC4TM+BRtyYzG+9/OwXJTNNHlZ238RzVDzlOOJss38l0Tj7MsyUihfXvrCMHi/JqJrUrnafBuNcy+RBW7B+HAWq8ham/4V0lJ6rCneczNTWAD1K9Mj4LJDQklmtqpsW4rZxNQs5qtjqw6VXVDyCqG1emnxV/5WpvH8eSp8Xk1Q7ejTk1VAPumnVOdII6Sc9oTPhiKmCFQ0hto7OjKzdy2Z+c0/mtc5tgFcaxZgQbMTFX5jlN652h7zmp6qsO7W5AQAfUIdXH3KETEn9wlyVjTX8cSffgAQxhuad93dJtjcSv+XFaJLH0QIMRh1rX1gOZ9WYb0o5c+MYCdvynSp3wUJkPi0zkFzokgcM43+b61vdZo+FbW3iKdzAPDoqRA4/k7mLnoCrfwWc9+LYGOcrfEyYF60VYsJOv9QU8HKUkV9mZdNSz5eRmWayt5X0oOhoaj1ayIbr6miaNQbUFJWXKWIcfR/QRGr8hF7wijt6zBsvV+XKWGN4+ojKi0d+TNlO263D+MAOzv09+uiGmByBhN7Whpc0Kg3sICLvhNS8LkXgcv1jx8DgJxG8AOTUW8QeBpdREdlo96AP59ZAFPEtwCALi9PUeWjclKH99o/y47TpeZz0Pl4MiWMAkFcn0p8mOhfSS6BEveZJud1OkycbL2SHYWyTJIZurp1VYPg7Mzj0Fn5cB2aNWXp7OJOCmYOFGiB+rHV2J2MbXmykkQnGK0Bu+aVR+w+rUNCh2qaAzaF+DXqDYISxvO1iyf+fldeld+/NcWVz196+iILumySiK8g/45K8iVU35MMl2GignhzonZsOlrv6nceqxQCAPhk+gQABPaff87/z/xMdCxX/r40W+1zQr8DJne5EmbUG1BaWAjXCeQUZ4xrJ5am2+TJyByxXFUGANT+OZFAdHPvkH+XWnW/+4wMBkH/K5Uw2rZ8fmWQb6oAZ3wRhibfyr5t/CKABkz2GXcc90fI/jJGvQGFw0OFstIXypD5lHzGk0XKWNdOKHKpp2pjKl/zr+Lgk1wDJsmMlrvuML6dXp2iqpPLPHUA2ZuTwlGy3w3eryVoKjBGvUEw90mat0wla9P4ukIeXk6t/5TouMKXxZNRT8xiKc2YKceDa7YoDreDiE9JUf9glfKkxcu+Vi2s9vVA2hI51qES9tqoN6B1igO2FxJz2vRFYp9xaN5M4MsrYRSYxCQR88+KFnHUV5TytndyYjL4vUdOk3c/v4DI+Sn55jxnxjM/n13HTWzcB4B7XW7A/bdSBpxhayFKn/FK2IBOg1UyKy0wUpeGoKDTLaaE8bHolOWNzuoJo96AyA59BCWMl8PBo6Uqf+qyEM22k8LusdNi/n17/DZZlf7mJLVcWT+2F5Qwk2RWKWFGvQE/9wlh46dWG7IyuLrr6tcTlDCTZBaUsLcyZH9UB093mCQzHJo3w4Ohsi9Xi8/IJoqdg4OqPrwSxocKoGa6yrZVvmfeR5oqYQBw4KEO9o6OyPw0HI6/J7H0fLxT+j9/ZoQKqEg5XtL8SrNqnox6A0pq64TnqcvJt0CBhLTmF2WbhJ8chsf9ZEsjpYLovzhakN+oN+DK9tY251/+Pv/MPammkMYrmVhs1Po1Ebd2+rLx2mV+HNonPaPiWUX/N+j/SxG7cOEC9u7di02bNmHbtm2IjY3FXQ3b7CqqmHLfDoWubl34vJrAgoGaJDMKRtTCMh9vtuM1N7PcRye0HUrv3VMtItp8nI/b48JRelKOBn8uSgzcCMjO8BTsgT5XDn5eidWE5wDg4lAbHtXIgqPWr2KgTX4gctLwNzBJZsQc+pVdUwf2xsutx7michV2JZPp0hbyhEDRkQq7tlIppWN3RsFy964wMaauJeY41PdLuRBX1hUgNvG17AkYSI8XJglyUiWXDsIV+bJFpaUL15Uhk2RGs6/lmFaev0xBabcAIQ1FhmMTW/4JtgOubBdb5Rz7aJmwm8k/M0lmlCUTO/hOr04R8lJFMjvkoVAm/99zZrzAd0BHI8tv1Bvg9mGcpqy3x6mDvzJlv6saFdJxZ5KqfJ/1UaxsrzflduH/7GrUEHjTOsd/KQdXN+oN8Fkvx7gz6g2I7DZUs11d3nqsqk9JvoT0Z5cLsvHk/VoC0tZ3ROYmeQPj7GMSHJWCRUhvRbC0yoUML7fDgRTVQotPt6QF4V+WchYOLV1hksyo/XMiPHaoEVJ5HgBQ4F/GNixomqIB1gFHAOCxMQiX5sgbHlfD7wry3npBXAQb9Qb4JNdQtdPR9r8ynnbVqrOAtny66n1yGB9+IwgAYhctR/pXYTi4epWQT+dNTrzaLSKKG43xVPrgAQAgc6h8Mt9iQzVVe54PLMHTTiR+XsZIuc+YJDNKLl8R6jDuomzKGxf6HeuDp2YsFfLxbUEBj2hson4DxsDvWDXmOwiABbSnsaI835bHVYrsGfxuFBv3i/oTcIPqpmMCoEpKkYxCy//nZaP3lObLi3NiVbL7RpPxgbbfsQ9lREV6jwZop+bVVHmifOhmm+EE0G+nGTcniRs7vlFJuPG7LwqHhWrKzY8J3U49hPv2UiGNUW9gCkr+zAj2fj1Gn1KlUyphAEFobbhaPmVyjm2g2XZ8HL4vzbuF9qS8KOpor5oWdp+ipJZcvsKsLgDiG2vUG1D7z/rsHq+o0k1EuqlH360WmSQzQzQFZMWKfw4An3u1w+7MBHi+LZ6q8aTz9wMgg1Q8eipE1RYU+MLaZgylGelnsTznKDOZdEskirDvVKIENj8ibyaZJDN0jRoK3yffX+v2z0D1PckquWl6Pq5qwfNkTGr29HkY9cQiQzm33Jgsjlu87HQ+pETjqgFAg4EieE/zp8/jv4mqAjr/ffSXFbE//vgDY8aMQdOmTeHv74/+/ftj7NixGD58OLp27YqGDRsiJCQEn3/+OW7cUCOzVZE2HXvhO+ZgTFGMjHoDdiXHCB93mGN5ANwEMjkod2BK8vKR+CnZfTZJZjx8OgQdPou2OlhSHtYoI/gRBp5VB5JU5nHwdGeIirRsJVmTISb/uGZdsuaFC/dzPpSvKTmvI4t7qgjwk6XPNHmyonn4QMrKhbhRb8C8LG7BUB7s+fJAN8an+p5kgR8N2Km1awsQfyanw42Ruozs3C3z8UbOlnbCRG5rscPzo9c+0xJZUF+KvMaTsh3vjQpjJ2a23jWf1ySZkVV8n00y/H2j3sDM+5TymyQzHFxaCDx1ft64HhUulAGQnXmaL/9XYtaY/Yl8ikfT3exQpqns8+1T2iVAkEHZliX1iG/IO1fbk7AMB1xYeoCgBpYVFbH0ykWXzpkEr77xuy88347H3gfV4JJQG1e2t0bMoV9Vp18AkDNf9lez79AaRr0BNydZP3Gk5fqMO4607utY6InX3cOFOus/t75rzPfrialZKv7em6cK75HmKcnJZffp4sYkmdE6xUGzr3pPlzdDjHoDBnQ0Mv9OeycnIW1/n04AgOqmY3CbG6fqM5R/gzXxmJFOTmjvlJIFTFpwkWY9aZ61GX+wgLZ8G2iNP1vzEpD2DQlwnjFarQzHHN6GjC/D4LrmIvyXRKNlw1u4NyoMZZ1Ims6vyKeF1FTZ2iaHcrHGPzdJZoypQ4ANbvzuK4QS0Oob9N57jUT487ITZ3ExqBg6H0+WxnPrFHnz4YcoZGwUN2wAMH8qo96AGrtliHDXj2Tz1Hc8QoQ8IbPk4M70v1FvwMo7ehV/itpHlW7+9Cb9hwCWnw+JYpJIgHb6m/XRp8dC17ABvA+OZ5tq5gBgp78zSh3k9qFyN3nfAU5bZcW732ASaiJrHlHa0r4hshxqX5NBpvNtnv1JOF5LP89OmXhSvpvivkHs3rpLR9lvj51ks+5Hjz9UeXySa0CfUIfVs3X1WqTNDj0Po97ATlBafCqeIPHtpPxNAYp+8drPnvHK8RAX8V3y71b5rRj1BpTFNKywX/N9n/5vnSKGpf1972YWugNh7eH4exJTUNMWk/egBWihvDZJZnzp7Q+PanJQ8UuhhaLMKbJfsceuSRgTa5ZlC2mnmhOvR5Extbh3IB4+HSLw4ilp/jJBppLsSyo5G60k31PfEeNVbWSrbpR09etVOC9X0f82VVoR+/XXX9G6dWv06dMHmzdvRvXq1TF48GBMmTIFs2bNwvTp0zF27FgEBgbi1KlTePvtt+Hq6oopU6bg6lW1LXwViTTElyz6TZIZbnPjMDKzlyqNcgFKaXnOUauLgJtjC9Hs6zh4bhNPMHhqm2KPS7PVMN6Udvo7M34PTR4qGehuHYVM52XQIqPegMzP5cXHU6kDhecmyYxr0RFIHS+aM2mhGClNDy+X3Fel0ZpQtXbgTJIZ73jIu3am7RsAiKd19Bnd0ebNlbQGWo9Z8Thx0R2+UUms3S503qBa6GtNbABRcHm5leXEnDvEficVFSP7p/aqetX5KYGdmNG8VPFRtosge7XabJLh05gkMzK+kCGh+/uRmGAHH9qTvlBudkrJcjEdx9+X3yW/+5vxJdnNbTGUOC5fnLBMaIsHQ0PhNaP85CdMrNu4nK7s976f1jJzNBqmwKg34PZYsgBr8wmRKSXAHm+6hyFvvxtuTJHNiHQH5ZNhXjEHCKRzzNk/kTU/nIFf9K1VjLyw+zgZshkA0Lx8x5Rf+PIQ7Lt3b4ZJMuPYXHmThKfSLgHiAlRvwP1I2ZRIqZTzpscFz2ubQ42sfQews8O1l2WTT+czxNSo11jtWDXKPrioucY3Xb5BwcvG+xyVFhZiQOhAJlNpYSH7zSuKWmPWl97ETI9XTmgeB093AXY+a344mjuQxdml2WTRT0/VjHoD7o0OE/r0MJcw7Bq0EADgu16OM8TL4DUjATGnDsBlXhzKeuajzk8JsIslctMFvvJd8PmNegMsPTqqGxZi29ITZSWYytVXIpD1I+nnb14JgF1QW9KGB1yFsguHkYXszUnhiDn0K+ocaQSTZEbmsBWszTzfihfCSdD7yvHqrYzTQp1814kxmEySGc7fy+PA3d1eLP3keiLEOl9Pt7lx6P7iJORFygAZNJ4YQEIxWGtLdi/pNCw3b8HrWbVy3XhZPIvpF3x8JABgd8wmoZ5lycS0L3X8MkR2H4bM4XL7ULr0QQQz23vctBgLvcm3lVRUDL8j41RyUaq29xg7Be675C12P7C1vAFC+25pZ1K/tOAiJOxpJ3wHAODxDLGkyBshx3fk2yX/7QgWtoVvM5NkhluiE65sJxs9pQdc0fvMPSHdjnyyaZA1X21ZoPUtNl4WL2xo2docoPk+ykrG+cASpkhmbAzAoJCBMohKwinGr6DTLfi8kqjJky+rdexYleKnhLbn+3P2R6R+vpOSsd7PFUC5GWjSaSGGn0ky43YrcsySPchBACbRWit8e5vwujMmTLO/0nt2sWKsMK0NLACC4mdfq5YAJgQA21Ktx5Z7koicVv0T8PX/6Zr++8mh4iRA165dcfToUbRt2xaffvopRo0aBTc3N6vpHz9+jD///BMbNmzAxo0b8eOPP2LDhg0YNGjQ3yZ4FVVRFVVRFVVRFVVRFVVRFVXRfytVCjUxKCgIH374ISIjI/9yAdevX8enn36K5s2b44033viXhPxfJh418cDls6qdlsgOfWC5fp2h69D7yh0pLZMBLdMZ5ekLQCK/t6/uqLnzdX2HHxoPuqjiARC4+evtq6HXsGRcDCpWyWNtN01Lbi3+Sno0MAS18u4LcY6stYMWP2X9g80WJBt0UJIyFpOW7Fo74+yUZ2MAfF/KREkbd9jFnUS1g81hibzDfE14eSkpefDogEY9Mb2zP3ICSirtbID9UbPqPoU2VpZ1/vEDZg6j1XY09hsvCw8hnfteBM5FL9WUkaf7ezxRb+w9lZ8HX66SlM91vl6wpGYI8e94Ktrrjhp9szV5Ucr8NBxp45YhaHYUGn5n3Z8BUMPi821gKx9A/J+yR5cx01cAuPx6BJp/pY7Fk/5VGLxfT1Dxpkha9DpnbgRazpEdyQeEDsSuxJ2acmj1ycp8iyaJmKBObSnGuxPqRuMDapTHk7V4fzTt0pyjiC4vh6KnavFJ+zoMPq8mYGd+Cvw3vAyPt2VglN7PvgDdweOISkvHMh9vVsdLJfcxqTxmny0ZrVFFaTO+DIO+7VUcbrcNHT6LRrOvrSO7aY1BANDquyjhVN/aOELpx9w4POPZnfmE2SK74Hawv10ohKiwVS963y7QH7qCQoYiqZVHea3sl1bT2tkBZWUsLqEtsq9TB7svHgEgjktace16THiRmRVmbjLA81mz9neqAVevlFOrfWj4GGtzqTIPDefA86b1oGnta9VSjf/8adeZabJvIEUnVCIg26qHtXpd+60VTgT/qF5X+Pdg43xFPIV8XYfAkp4l1JPWVZnX2likRRRl09Z7sSVXhwXROPlm+bzEQeVrtYnyHi8XjwCpLEMpP+NX3s9ZG7XrifyxrdBskfyNzLxqwCsNSWxMALCUlSKyRUeBFw0T0au5/38FaqL3hlnQ1XKsOMP/J1kePEL62PlPbHv8HVQFX/8fJiV8/bXoCDRZKqL40I+/uHcg/li/mg2GWoMwTf9Vdjxedw+3OlBnzQuHxzu2F6Y6P28htpAtBQQAPHa/yKLWU5qVcQrdaxKn6IB50TjxzlLtwUxxnbo8BL5TZb+vfk+NEezAtejh4BAcXrayQuWT/319hx+OdtyAIS4hLI5LjUPNUNRNjD8GgMWpogoIIA7cWfPDWSBZniqaVLTaYJoUjG/0yZrv5sqrEVYXgjw/GjvMJJkx93obzGl8jvFLXRmMrIGrrE6SlEfhsFBcG/6Imc5oEV04Uz79PcNQ+oigR4bMioLz9/FIXRqCrKdXCnVeVOCO6c7ZQtkZGwPgNeaEqk2uR4Wj8TJ5Qa7VdpYeHRkIQb2jDbHF8wAAoO+w563G59Hq27YW5Nb6fvdJk5iPFE9aQcEzFoQzwJD0HwKQ0XMtApJHs8C/PL2Wfh79ahWxMrXkLO4dWGlI57TvO8Ln+eNWvztK/PuytZmhbBtr4xH9PS6nKwPpUOZTQuEriaa7MTkcTZLusAX6oHM3saNNQ5ZOV78eM/ehebJ/ao+LXdYL8g06dxMv1ScmxosK3LHbv77VcpWxGflnvcZORN9Fh/F7fjs4flZfAEBS0lsZp9GrpkXVLgDQ67mJcPhD3GxL/S4Idc5XR/Mv44RA9FrvgX7vylh8WgtmvgxrdZ6SF64CG7BFfEBrZcgPZTnKcAbK7/iORw00WMOFrWjpius9XAT0zZlXDTjV2UkAKwl+LwoN1miHSaBBvE2SGf0GjBHiOFlTIAAg69Nwthmg9Vwpv5Jo+plXDULMMUpaG0o0j8/6KKSNW8Y2YXhS9oOwt6ai3g/a34/QTxTw+PTZ3WfDUHeTDE+vrKOS7AL9VXOytdiFtoiua6yNK3fGhDE/OJNkxoDAfii5fAV5W/2Z+bdJMuNO6UOMdLG+5mkaX1cACKrMeG+L7o0Kg5NUBPsjJzSVb1u8/Y5VE+Z3+1q1sDudgFX9t8DXVylifx9Vwdc/YUSVMIB81MLO2/4U5JXcR8zhbey5tUn2dXfZV6IoUoZqpf893qkYUc/uwSN5QbAimKX1/HmqZtm+E8mOFl8OVcKMegOaLJFR8Siggxaf9EVhaDP/MuNl1Buw5/eNDKaZJ+obAgCHl60U4Lcp5b4XASXRNI0HXWTOzBS+eYfPHvZ83g0/9h6oszyN/QUAh1asZL+d2hRg1wP1wMTXkZeN/30tOkIYzJUnjDxK4smZS3Fjimjvb5LMWJQtOpjT3XGj3oC4DtXhvVFG+8sauAo+G2QHfF7G3PdkxDCnrYlI7fa98F6p35rfsWqAvY6hsRn1BhhdAlH66BFBswPgeIcsOn2jk4S+ZtQb8MNX/QFA8IdM77FWVS+TZGZ+CzSvFvELYKqEGfUGQQnTeg88T63vgf/PP7/2ktyvDq5apZLHJJmx67gJd3d7AZChoL3elOvi/Rzx4TkR/KNm/oXerdHnmQnsXqujY1VyUiWMtpVS7qz5Mrqcz/PaSoKyTXmlWfneAALAYa0Nlff55+tbHhbu7cyXZc8YtVwrm/DenQ43RqOV8UwJA4Df2zcV6lz2uFhoBwBwH0UAPXSNiMK2Iz8ZuwYFMR+j3f71WR5Ld9HHq+e4iZjdbhcA2TePl+nAhtWY2TANTv0yrSphFGjoc6922PNARILsPmkSLpfcx4EfVgtjnkkyw/fFYwxJsfEyAkx0dVqE6t1kbe7AvneqYCjJqDdgY26sID9PJT0DhbS8EqZMz/uisnYrV8IACCc5Wt+r87p4gSc//uzfuIYpUzRvSU4ukuYtY2OVUW/AZ03N2J0Wy9IZ9Qa0eD4Ti3NiVeU5HW4M+15E6e50aijKTpzF5dfV7Xj3GeJX6HNwPMvrUY4MmLZEDB+h/M6UIQr4uhn1aiWM5lMqYXbVqstz7dvkndMTHuX45LM+Co/7kbm53g8JqvdErz1+k4FRYg78LDyjVHdTgtD/+nvKIRi0+gtVwnR/yoAtvBJG86RvCLA67wFk/NIaayhRJYw+nxm7BwAEJcyoN2CkSzgWZBN/4rx3yNic/ZHsP2ttA0hZRwptXxHV+SkB+35ai3lZSUKf0FLClG2YdK0ljHoZ0Kb0wQOWftAxNRLwk0hl/+Df/zr9S4rYhx9+iC+++AKPH1s3mTh06BA+/PDDf1mw/8tEJzn7tq0AiAusiW6dhXv0o6cfeYfyWBQTLsrwzQe/W4Wwk8WaO9jWFk2AHAcLALKeIgvNjE0G+LyagNfSrUOt7nlA4hMNTO0vKJM0Xg4AFaADjdUEEEQ2iuLGy1xaWCjkMUlmnJ+6FA6uLqwtav+cKDw36kmcJqPegEXZMsKh7+FxyFggwh/zkyst91B7MQ4I/0w5uZwI/hHfeLcS7in58YO0UU/iShn1Bpx4bykWF7Rk+W7t9GXpHwwNxa03CoXyivvfRvpXYhwppckhJXsDgYWu5n4fex7UYEh4e0cv0KyX68eiOR3Pz9K9I3Yd3Q4ASO9TG6a8FKGeulZE6diTQyanmtuT4HesGkvj0NKV8Tr2EVlY3el8U2gnnbcHOh4bJbQTdUZXtjttz7Yp9rgT4w2ABHDdeK+hqh202saoNyB1rbwA1drY6PB5tJCnwPIAOj9vFpDZqDfg4EN7NIx1lpWfT2Wkw7r9M2DUG3CqYxl0bXzxaGCI5gaElmJjkszYt3ktAuYRGXigF0rUCd+oN6Cfh4xQN+c6AWTxmBUv1Dv9hwAY9WQHXOv711o0Gc8QU60ah5rBJJEFsPJ9aPV1rX7Ppx3YIrBCJZhuzgDAr977VDKWlZSw30a9ge0s8+UyZeHGTeTNikANu2rEqmD7BmGRatQbsH/TGqE9qu1PwVo/8m2WnjwvjLsA4PkrAd7I2kwAHyamZhFkTq4uvEkiBYOg5V0JdUBzh9owtghQtRlF4+Pbw/y2bMZGqeSxGF+J/ue/IQBopHMS3kNx3yBZkfhD+1S1bYo9S184nIAT2Z8jJlYUrVTrWzNJZvQb9BzujxRjqvF1t3VN6ZkLBBCEfoe570aw9N4bo4S6Pux2Fb7VZNROKh8Nc/FWxmnEtifhU2hA88dGGe237mby3tK6rxPqYdQb4POyCDCh3KBYm7QVOl8v2LcncwAFUOGp3tGGAk/lHPzw6RCUFT+GrmkTq+3BK6Oeb8ej+p5kLM85qpKJf8++Ueo4mP0GjBHyKL9fGitOOQ8DYIiuAGDpoQZsofkMJwDvsbJJPZUp8ESpkPbmRPXGIv1Pf2/IJWERPvFUj513niN97E138t9lHnm37u+rN5y16mTUG+Cxi6BdUmRkoBzxd4efZv1oPh6F0qg34NrLEar3MPd6GzLXlMc9SzD8ApNEgNmU9d4R1NhqeVX0v0n/kiL2wQcfYObMmejVqxdu3rypmebgwYOYO3fu/5dw/5eIIuUU9w7ExS7rAQClZ8gJDD/wUjLqDQiaE6XaeXnK/QxMkpktHKZJZLcsoUM1lq/fhQHCBH3nuTCBT8EuHwDau6Zez5qhT6iDhd7ywtioN2DQuZsy/1pFMOoN2Om7W+DjMuwsBnQaDJNkxvUdfsLAz8dqsrabq/XcqDcwhZHnp1wsAcB0d3LqdHlGBDxGn2LmYTxPWk72T+1Vg7dhfjRLq1zg8GnpKR19rpxs+bS7kmMAENSvV5xlPxw+xkitXxORErhFqFfzp8/D+3XZXMOoN+C9a+0024meHpzvtAH9ahUxJDzqF8QTzdNn1AThnkfMizDqDbjpL/sSxpz9U6iPSTLDci5V1ScvBsmbACU5cvwkGpNNuUC3pGcJfokAieOifEeUjHoDvmx+HAmGXwAA55a2xZg6Nxl6mBbxPHi/LiVvk2RGs0VxyNwkv+vRrhGI+ZOU1eEz0icCahTiZqcCGPUG2Ds5CX5NDu5urA/E7N+CQytXsjpTuH4eFY/vL51ODYVRbxB8FiP7jBL6k8cs+XShrKiIyZnQoZqKn0kyM+Q655QbVhVAZb82tSUmIUXdrrD7DweHsODYfFwsgIxjtDyAmAEa9QZ2ahDZvpesvJcHdVduXPDfMI3LZS6SzTR5GhDYDyaJjE10M6rv8OeFtJRXy+3X2b3+/UYja/BKFU/lN0spdakcTJnye7vX72QhV26+u9rXgy0I+XL59uCp5exyRbmsTJWOokIOCB3IeGkt0DP7rBHajv4NCOwnpDMXFeHwI5n/vWkVx/08csULGV+QOcLpl0RMvNQZHj+T0DT2R2RURmWbBc2Ogn16LmIXiaECtNqAJ2X9NrciJy7NFsXBwd0Nrp/EIetHEjuOxQQ8P1CV36g3qPxqP/dqp3of1U3HbCqJfmuikDdLtKowSWbggIusxLZ0xenHdRFzcCtKT5F5+16XG+j+IhnjGsYS5OH7U4hy5vs9USDbLI1Gxw9llMqa25OQsSAclqvXrPZB5YmfSSJx49K+DRXu2+p3Ey51wZ5dG1XzklFPkGZpTD2TZMaPuaKysCUvHtfGieFCeHJwaYHCPSQW6mdNxQ1jSvOanhLy0PhrlKdyrQOQIPX8u7ULltFbEz5fDrtANRKwcuzjyb5WLSEdhdLn01supuN40E+q/Nb6sEtCbWGsptD0+z7qAgDIGiSPNXwdKeIjADg0baLJ+0mjfwYxkfz9nZSamorZs2cjLCwMjRs3Rp06dWAwGPDJJ5+gULHZb4tKSkrwzTffoGPHjnByckK9evXQsWNHrFix4i/L9C+bJnp4eCA2Nhbh4eFIT0+vOEMV2aQhvu1QODwU29YtET7Q1O+C2OnWg6GhLFAhABZ8EpAHq4+bnEZk92HsvtLEDQDKeuYLZdT7QQwM6zwgTeBJf1MeUpi4wC3uHch8NPhy1t9tpOKzK/Y3GPUGHA/6CUa9AVemE+Wo87QplRroKL/H/YLR6uhYmCQzW8xqDd5eB0SFwqgXg6byZZkkMzMLcR9FJgrn2AZ4NJBA2ptnyScgxWUWFA4XJz6AmKt1HnCS8Uv9Lkhz8USDxRr1BuS/HYHkjltUC8EuL8shByJbdWXplW1DF54fNzmNz7IShToBBPSCbxOthRxAnPDps30/rUXJfjeW3vdForw1+VY2f1Qu2LUWsvxE6Ls+Cvm/+iP3ffLO+ZhsWkqWcuHGp3swJFSoI5+v/nqysN3fto5YQTvtAZ2asWgR5eupgM+m9W32NWmPsO9msMCp/MmtUW/ArrgdwuKYbyv3d8kChJpNAUDg3Cj2nO7eX54hxxa0nL0Io0sgi2+ltdC5Mp3UqeOxUTAOHYf+fUcL9aGLjImpWSolyBb8Or9IqvlbEvp1J6Z46/1cBd7V9qdgyDlZ4aG+WPdC3FDUP5iBv1DlnfI/+NBeKI9vawCYyZ34mSQzHg4Oge5PPUouX4FRb8BatyMspIBd3EmkLwwTeAGA5Xwaq69d/jWr30OPCS8KbVraLYCZ2PKyXSuuy+ShRE9F6H2lMsh4HnC12o/5axp+oqwTl79cEaDmlrwMW/OImVnJ5SvsxEfX2geGGjXwiSeRf/rlIDQYmGq1/vQky3lAGvp1kxWuvLD77J0pZX3nansmQ8Pv4hFz7pBKUbOlIGjNAfw9ahZefNtR4IteeUI9tOpEy0/7NpTJwJuyZyzQPpW5+MIynH1lqVpR6CUDQpTk5OJzL3VYh1pZtwEAmzzIppXl7EUY9QakPk983Vw/jkPj5WQMKAvvgLCTxQjrRKxNPPe/wHjRANMA8ErLTkI59H6rWaKVirLf8SSF3YNRb8CUPNEqpPeZe/h93hdI/7gOCy0y2lUcH+vZ10TTrRc1+ZokM3x+u8qCriufD8/ozfJNThWBZYx6A7I/Dhfeq3e5iejVVyJQ0itQeAc0NAEADAgZQNwXOOUqZ668IQoAd0ofMvcGk2TGw+1NGJS8oHivJRvcW+7X06wjACy/3YLxAYBbO31hksw4/kN7YSyl4WWcfkmEvYGcir2VIcLTmySzcHJXcvWaqrwq+vtozZo1WLhwIby8vDB79mwsWLAAfn5+eO+99xAREYGHDyv2i338+DEGDhyIN998EwaDAQsXLsT8+fPRrVs35OTkVJhfSf8SWIe9vT0++OADuLm5YcqUKahbty62b9+OTp3kAWLu3Ln48MMPYbFooxZVESElWIfW4KW8R6+HnLuObW3EY+wZ6Wfxpbe/Zj4AsHNwEEx5aJrUVcGq4IqUxlzIw8ZWJABunSON8IvXfquTt7VyedL9qYelhyRMyjR96opg+E6R5aADWj+PUJQVFeHSnAjN43yj3oDMz8LhOZMMaG1T7NHOKQ8rsrqgbv8MAMDczBQ5IDYvj7Mztpzejdr2jprt/LhfMKrvSRYmLEo84py1dkhdHYSs/t8B0FY6+PpbenREfldHOBQCp19fqplOWAwfaoqH3f61OH0UnERLZlv1ob+VxMtGUbBs8VbWx75tK5SeuSCkW33pKDHHtbODKV/e3fbePBXpz6iD8lKy79AapSe1zWeVclC0Qlt1tdWf+fJ0jRrCckO0ErCWX0v5tNW/K+Kj5KWVjvK5XHIfz14cw9AQbfEOf2Mq8x/x3DYFZQ6lwjdaWTJJZjydZsR2HxOMegPsHByw59KxCtvWlny8k7uSlCAmfDv1OjcIDr21ET+V9yjAiRblz4xAg56XUdOYhbQlofB5OVHIn/ZNKBql2MP5e9s+jtbesa1vRskr750IuMyLQ+57Ecy82GP7ZDwTnsAQVG2V2zp2LNxGnP7LfV/FZ0U03ObGwS64HcqST9usd0XU+8w97G9bR9U+1saiypSRvihMCEiurAOPRMuXw7drReXY+mb/anso62fp3hH7N61B//7PoPTkeU3kXL4MW21XmXKNegMaxjrjyhxPBqpRUXr+Hs1/s5OM0uiSUBt5YeqYn1r82i2Khv7zODwYGgq70jI4XiuCXdzJSn27ynta/ebpNCNS93rB9RPrAFgAMenm4+ApaWteAoa5hNkEBamo7aW3IhA7cQmcfTOfWHAKumb1/P6dfwysI/P5eX9bexw7dgw+Pj6oV6+ecP+9997DJ598gsWLF+Pll1+2yeP999/H/PnzsW/fPvTo0eP/W6b/L7CO8ePHIyYmBsXFxejduzd+/FHtcF5Ff42MemIaABBYW3oPIIMXvTZJZkytL/tZ0UGlb61i5iszIPwp9jxtPdnl3nPpGNI3iF7DJkl9LM//Hlf3Bvt9rwsxZ6L+ENbqkPsLCUTK299Tur6+JUySGR0+j4aucWMY9QbkbSXKo3KBR3efy8pNkvhFas1DTYX28V0kB9I8/m4gPjo2gClhJsmMZ0zqIK4myQxLQQFq2zsK94adl3el/lyzSpAFAILeJ7x42G8+Py8XVcKU6fg60me6P4/j/JSlOP06QZfsN+g59ozf3aS7blQJo3x1DRtolgGAnQ6kLSanClogFkzmefLusF1QW2zNk09NqZkZ3x7KyeaPdd8xvhQshl9AKiemdzPNKiUMAPOJRFmZUGb6M8th1BvQZmk0TJKZmf5Q3t1/OCbUS9rWRtXelG48I8NKl3ZWT5bKhQVAfMD4a6r0KZUwrfL4+61WRWNGuow85jaXLPR4UxWt967FS9m+yv9tvo1mdRvv1hl/+v8m5KfmV11OPRLuUyQ1o96AzCErNDdK+Pagf3Qc4vvWw25XWX14JazaweZCWq36UaI+QybJjN3paqWVUrcvyaYMBcrg29Gh9yUVX+qnqnxfVAnj6waQU68at8vwoTdpR+pD1Dp2LEufOXwFkuYvs1qvioiXRdrWhl0PCH9KJafLvDikLQmF68ekTWZc7gjf6CTBDMwkmVnwYmU5jtWLrS5ki/a6s2uHFnpWn9RV5NvufuZp9vz8FLKBVJZ8GvbtWwl9s84ROWCxVpvQYNaUlKfaqcWFTF5Kb16R5zOTZBZMBgFiEcBfK5Uwvj4AsG/LOpVsJsmMc9Fq3zwl0VOYj2+0EuTk+41Rb0DEa1Nhksz4KjseV6dF4MEQ+aRX64STr6/u4HGiMJ48D79j1QQljJbz5pUA1cKfKnFKn1c+n0kyI/eXtiw9zXuzU4FqU4NahNB8thSMTR5/wnhGNoNd7XZUqJ+t70P/OenPjjcfo+b2JFwJd2LyuSU6seDm9J6Sp3Is5+/TMYkqYTpfL6H9eaJKmIMr2ZR+MDRUaLdhLmT8uBp+V1Ufa2Nz/kz5tNEkmVldq+jfR0FBQSolDABGjRoFADhzRo2Oy1NhYSG+/vprDB48GD169EBZWRnu3bPuBlEZ+v9GTezVqxfi4uLQtGlTjBkzBvPmzfv/ZfmX6P79+5g3bx7atWuHOnXqoFGjRoiIiMC6deugPOxLTExE7969UadOHdStWxf9+vWD2WzW5CtJEsaNG4fGjRujZs2aCAoKws8///wP1AhI/IyYLZyZRswhKAIdHbx03h6I7DFcyNO/72g2GNaLJKaiu+J/B0A+8DM9l+PeKGJqwDvPGvUG9Bk5nqXjBy3fdVGocaiZapEHQIAzL3hevQhzHX4GRr0B1U3HkLpSRCFK/oTUr9miOBZnaqCnjIDE0/Kco5qTIgA42FuE65LLV5D+A5mU/1yzCt7PncCtF+RFmG9UkmqyMOoNuPZShEqp2Nq6CfP/offtgtqyfBRowiQRAAp+kWzUG5iNvLKsrGLtXcA7Md5C+f09w6Dz9sCeHT8IMlAfFcavXCGmz3OmtEL4jKkC7/yZxKyNQoO3/lQ2g7O2i5k6Xl48lh07wyYZAIIZqtZOn1FPwFAAgjhXIyZZNVkrlYsJv00V7j96Sq6nFtF0rh/HocfZwWy3lZYxs6FoXqsfck7Iz/fV8502sPv7tqzTRL7k2wqAJpw1W6Bz5jG6Nr7sfsZGNXpYyzlxmLZxkoqX+/vxIgrbAReh7jyfyK5DhGc88deun5CTI4fmzTQXTk1THsMkmXHkRfK9Xp0WwWTi+wlfNuXhs/Iyu6Z/deaTRXTPcRMBEAXq0gcRKl4mycziMEV2Gwq7GjWgRb3P3EPq2kBsbkUWzuFvTBW+WzoOUZnjx5Ox4LF7kVAmD2TEU/yXy1X30tZ3RFF/eSOBL2/K1p1ImbMM871EBEHan7Q2K7SUev4b6ho9GXYB/qIc9gSIg+/D1NdSKW89VwLbn74hAL8eC2TlUjLqCYro/RGhqmdNBl/Q3Cwx6g2ooZOtKKhfq0kyo76Z+B4bGsqofjwP6i9Fed3rckOQBSBgQjS9x+hTKoWXp1daqtE6T3UUN2momaJJMsPSoyNiDm7VVBJoGSX5ktX3pHXvuezuAo9rv8lmqDS+2pH24hiifPd1fiJjsX/1mmj6TRxqbZNP5OlmTt47Eap8AASTZK34nQDQpY5sOrju0lGWV3fwuBDfSktGPkzD3WdFQKjAD6KYOZ/TL4kMsVE5LlA0QL79NmTI/pWAjGjIp6OkNS/ZHyLrluZfysrKKtdYOG1N1Mxj1BtE374DLsyn1ZriZ0nNYO3P98GML2Vgo12JO8k4uWSFUJ5ynLwzJkx4pjUenHlVVu5tKbJPJP1T/mHlPmI+Pj5o3rw5+/u7KS+PjGFNmza1me7IkSO4d+8eAgMD8eqrr6Ju3bqoW7cuGjdujHfeeQclnMVZZelvga9v06YNEhMT0bFjR7z//vuYOHEiiouL/w7WNqm0tBT9+/fH+++/j+DgYHz55Zd47733YLFYMGHCBLz99tssbUJCArp164asrCx8+OGHmDt3LtLS0tClSxecPi3a7N66dQudO3fGr7/+iqioKHz99deoXbs2Ro4cibVr1yrF+FtoW+ppPDYSBKu8kvso6SmjiSkDelrSs2C5mA6j3sB2r3bvVZ9G8h/8EJcQxC3Uhofet2Ud0paECoNG6pogpI5fBst4cVH0uF8wdK19hHvU7Kbv8Oc1Jw6HWw6ML090xxwAzAFqRRAAev02g6E7UR50IP3Fa79QT4DsWtkF+LN7fEyZtPUdVQthgPg9Ke/lvhuBkzOXCvfKjp1h5VH+HT6PZosifkJy6kfid1GfPnp/asvO7DSN510vMp39Lu5NIOBjDm9TtYdvdBIr63G/YHg8cxKZn5EFaM6H4Tj78lLU3ZzA4O5NkhktPpNNt9IXhaEkX0LW/HA0jHXWXBhSsjZhmSQz7o8MQz+PUFV+5YKK7qJaW4SOuZCH/j6d4P2aCL3s+HuSZtkfZalN4tb4bmQ8bdUHEBHSlBMjvfeNdytMTJVPV+nJtN/aKNX7MOoNzEePPrv9NFmYZ38Sjpj9MsiK15gTqvzBZgsuTFqqUlRNkhllpaXQ+RCFPifWVSiDfzc0nIW1xQUAGIeOY793pewh/WdfS3bPJJlRbe8xAo+fRMbDpt/IKKN8ebyMlPiAwJQyRpMNJNoHxte9hvOTl6ram+dnScvExYXap+3729aB74QU1k70pI6S8/fxQvtQGHefcfKJFgCs9Wup2Vd6jZ3IYPlp2szea3Bw9Spcnyr6DwHAMh9vtPlWPF1gPMPaC+2jLMvOwUF1z6gnKKN7dm0U+wkXlJjn2Tiuvqo/nQj+ESbJjIxeazXNR3PfjUDa12Go/XMipDe1fSPpu6a8HdzdULBBRjv12ClvHNCxc0pDOSyBSTIjskMfFU+drxfzj+GVvVLzOc3+pcyv9ZtX4nii8u/fuMbqApfve3TTwySZBdALLd4lZfbCfRp6glcglfnujwwTkDR5GWhapfXI2ZfFEzjPfcRnLGOEI8vL87k3iigLIbOi8K2PL3s23q2zZj2MegNDPza2kOcLfl7mv7FxF3PRaGU8am5PQrvEZwFAMNk36g3yaVvbezBJZmEcpX2Tpt33/AKU9CKbBbnvk7445oKo0PNEAYConADgsWuS5thJqX45uJBJMqN4flN4vRmPB0PleUvpD6v8Zo16A565IMFrRgKeTjOy+xMvdYbh02jVO8jgNlr52Gf0PZskM0NvpnmU5Q/xFX0Nq+jfTxaLBR999BEcHBzw7LPP2kx78SLZ5Fi0aBG2bt2Kzz//HD/99BMiIiIwf/58TJw48S+X7/AvSa1BTZs2xeHDh/HMM89g7dq1qFlTDfv9d1NiYiKOHj2K6dOnY+HChex+dHQ0WrVqhRUrVuCzzz4DAEybNg3Vq1fH4cOH0aIFcbQcOXIkWrdujRkzZmDv3r0s/6effoqsrCzs2LEDTz1FzPsmTpyI8PBwvPHGGxgxYgRq1679b69fFVVRFVVRFVVRFVVRFVXR/2VKS0v7t/nMTZ8+HfHx8Zg3bx78/KyHKwDAzBBv3bqFs2fPsvQjR45Ejx49sH79erz99tto3bq1LTYC/a0BnWvWrIlt27Zh2rRplUIe+f+lu3eJzbFerxfuV69eHY0aNYJTOUJOeno6kpOTMWLECKaEAUCLFi0wYsQI7N+/H1euXGH3N23aBC8vL6aEAYBOp8Mrr7yCW7duISYm5m+vy9ARI3GjA0HsKyqTY7r4L5Z3XI16A/MTo/F8qBmBz3q1/5OSrJlnDOg0GJlDRchN3xeI/0ZJVo6w41R9TzIs59MYkiAAFvMqfYyjaufNJJnhWW7G5fXjVKSt78h2mqgJJT1x4OP5mCQzvJIdkTl8BcpOiIEbAQJ9btQbWEwZPh/dCed3XQHAZ9xxqzurAFAWIe/En3uJ7NzrFFCy1NeI+vVQMw8e0Ynn6767UHW/4ep4dJtC6jrhUhdV3f5Yv9rqDh8NpgzI8U6e60eQmfhYRfaHTsAkmdH262ghQCWFAU99fpngPK21e6/1Lunz2lsSmN8en2dxQUuUdgtAnSONhN1etuvbL1hIP67uDexOi9XcsQ1+Vw5Anf8r8SEMqVENCJF3DOkpI8+T7q4a9QZmrpa6jJjFUKhqmtbeyYmVkbaOvMPcdyOw2leGb27xKXnHzeLJyUTa18RcZ8wFgmTX7GkRFIQCW1ycsKxCc5NkgwweQ2GsjXoDvH6aipgTe1mQXv7dKneAKdHrwmGh6nITTgnpTJIZ1fvkqPpmy5GydQD/7vjyHgxVm7UpZQMAn5eIyRAfM8hae8zOlMEwsp5eqeoPtMzcdyOE/mmSCGQ99autcUgMqhvZeyQb4zpNl012tU57HQ6ksADBQ9PlE52zjx+i8fJ4aJHrJ3HMhFPg/SsJQSK9FaEqx6g3CIBJQXPEk9Z5N/wwLf0Cu+Z37ancDh4tcT3itiZv/qTaJJnhkyxbNbh+EscCsJ9+TT5xUX6nfPuUZF+C87p4vJSWCp2PJwYEnFK9x9bVawmyUJNzvj9YUjPwVVejcEJg1MtBtpWnYsrxg28Tep8P7A1AhWTbr6U8T9ETQK1xbVfKHnadOWQFu8+3I0WRLOh0Szh5BcDidGqdsgNA/dhLQkgDZXubJDOuG6oL93geV16LQGYfEt+O93EzSWbmXxa3kPjNOn9P+iqNH2nNUsAkmeWYduVuHPy8bJLMuPZyeciX7a2x3k8+FT0dugkA4J5UE32HPc/eM50P3UachlFvEMZRZZtMDRwChwNkneP6EfGN3djKBbMyRGh7SvRkvXCPJzl92hgA30nJqr7Szy0IOj9yqld/vOxTKE0mlkVHlqxgafkA7FoyBp4oxfi6xF/81Cl3dj8v7D6zGKD8TZIZ0Rxw1478ZCHwOZVT+a0oY8v9t1BZ2T/39++k999/H0uWLMHkyZMxa9asCtPTQ6awsDCV0jZuHLE8OXjw4F+S4V9SxEpLSzF79mzNZ3Z2dli0aBESExPxxx9//CvsK00hISGoX78+Pv/8c/z888+4dOkSLly4gFmzZiElJQUffPABACA5mSxYw8PV5iVhYWEoKytDSgr5yC9fvoz8/HyEhYVppuX5/Z1UdvI8c9SM5gAgXOaL9twUaaio2xVmTgCAKTsVET8A0A+/JCtHpaDoE+oI18qB/NDKlewehUD2eSkRRr2B+bTx6R1a6JExejn8oi6q5GjxKRmEPX+2sPsHH9ojI/gRK8OuRg1hsKVKiBLpiKan/l1KswAAbNGmpMIWBDXRvlYtlsdyVYS3phPQl97+bOFuksy4NFFEB7U3tMH0y0GsDjQdBUpx/J2YGK51O6J6JwWWB6r3QfNTEzB+cTun8TmYJDP8jlVjphGUZ4vP4lDrjKTipWUWpSxTa0GhlBUgsVJonp3+zrA/dAL3uhCAFwoFzBb/5aYst3b6orSzXAaNU8bzb7BWNjVrMZQo14Fzo4AkgsSmc5YBOng6OXUxjHri+0cXJc4ndZrylxYWYsv9enho8kBm39Xo5xYE10/icHl7ayZ3VBoxG3XcScwlM0csZ4sGW2ZPfqtlRVKpPCjfgVFvwPHZy1ga79cSNHnz78qaQlb9HvmO0r7vKOS7X+63qFwIa5VBZZqWfkG10Kn1a6JqIcnzpfH2KKUE2MPBo6XNRcaHnh2Fxa0yraUa8RPgv/fuE4mJnBR2D/U3EPPoayvdmaJskgg0vlFvwK7Y31B7i2j+qrUp07//MzDqDSjsep0tvP2ry9YdJT3V5lHmt5dqhlMw6g04PX0pa7tupx5qttuxucvY7wdDQ7FtUU8hMDxdLPLvhW6QabUp3SD5Kpt8P2nBRUJ5dg4O0Dk7a+btPG0KHg4O0eT95WvPwZKWibTgIuE+TRvwsehTy7fF1WkRyPo0HLuSY9TvttwnR6nQUr43JpPxmm8TZXvQa6dfiPLv9QcJW1JW/Jg95xVPALg+NVzzO1QqWfR37S2yqZnyXXvVEEGTlDKW5Euq58qyeH8hJb025RdBHvs6dVg+6l+mHD93x2wS6qFsL6PegB35apAuSpdK7qPJEmLWfqo8JIRyzMkOeYjswbUEvkpSjjc0neX6daYw8fnnexGz3uyPxXmaukQ49SObUyPbyOAhWfPCsfoO2YTZc+kYLBfL/eSPmwAAqctD0HLkabybKcsQk38cW/NkpZaXnwLapATYM9l9Xklk9b/2snZfZXNio4YY1CIY7qPUmxbKfHc6yzFYtYB0qujfRx988AE+/vhjTJgwAcuXa7vuKMnFhfhrN2vWTPWM+q4VFBSontmiv/VEjKfg4GB069bt38UeAODs7IwdO3agQYMGGDlyJFq2bInWrVvj22+/xdatWzFpUvlELZFBkD8No0Tv5efn/+W0/wrxzobNmzeHjw8ZXGhAZ62FgkNLV3R6dQquvKaw6ecCgPLxxXqeVgelk7a1EQZQ6ltmjda6HWG/+cWDcpdQi8qKH7MBhQ56dAIuLSwUfLh25qcwPgd+WC0MxnwZZVYCuQab1f4TqctDmH8XHRx/vOfMftNFGwDMy0pieWv/TAba0gcPhLw88eX7jE9h157PihN6qfkczgeWCPmMegMyehEfw3czzcJ9Pu9o1wimCE9MzWK7rZH+BCa15+lCAY6a5r8YVIzolp2Z/wnlWZKXLyjHyjaM7D5M810qF9mev04R2oRNqLfvqBaYtJ9cnCAvMvkFQIOBqQJENI1TxstGQSVoGp8NUbjbTT5ptxQUCPLQ/jmwBVks875/RQ3IQj6yfS+VPG/vGw27JQS9k55UNH/6POP9tNN9lZKgVGSVlLW5A4sNo2ybGxbyfdLTTaqgKxeAvK8KPekx6g3Mb6zn+BcBkJAPvAyXxpM68EF+AaB2+QKG8j8sgyMKRJ9/lJWMb8M6sZNirQWFljLTdHGcqu+UZMkAGVrKCEVA5e9RUAAAuN7RTrUAPrh6lar8opG3kTlCDmvAp3dLdELsI7KB0TSemLjY16kjpCn0kDegam9JkN+1vQ4myYwDP6wW6k/7ea1tiTbHC991UdjyXS/hHVOURkqvpZ9HrV8T0WBNvMCH+nvydeX9TBrH1QcApC0RT4Ned5dBlIRFZkkJPipfoCqfH/1mBWr+lqRZF8edSex3xElZwWn7NVHAmiyNs/p+m34TB4+35Y0VpUx3xoShfnqxanwp3OOJRivjNfseT0p+PMz4S2nqmGf2bVuh8fJ4Vh4fs7EiEsb58ncz59AQ9kyr/gBBPVa2q7VNESWPnwzkm89YQJTH0nv3VHzodfqiMBYrzRrRtINayNYStB9RcnOoDZNkZj5V/Hvh5ePfKwB4JauBSnJ/aatZd8vFdFi6dxT8zk2SGf0GPQf398TN5ZgDPwtp6BxokszweCceW1rLYyRfNgD4TiV99xNP+Vlki46obe+I1LVy8Hkq396t3wvXRr2Bxf7sPnGSELSZl4nNiRx6LuVBTy6NegN6vDBJJSsAVTiZJ5n+WwM6U/rggw8wd+5cPP/88/juu+9gZyXOqJJCQsi8RME9eKL3mjT5a0G5/22K2D9FtWvXRtu2bfHGG2/g119/xXfffQdvb288++yz2LdvHwDgQfnCuoYGGpejo6OQ5q+k/TtJ6aDJDwIlObmo/XMiTr65VHhGP/y0xaGIOXWA5f2jnZOKj36I7BBtkmRUQwr0wA+sDu5uwqA5KK0fAHEHL/zkMNUgkrdVRvv6+WdyanBjCuHvuU0OnFl24ixSVwfhpbRUVLPTCYtb5QTU9ptooS0cXGQF2SSZcSy4pkpB9J0qBl0FZAd9mo+W9Y5HCAadkwdNmkc5mfBkbbFlbWJUvi9AnhDujQoT8tLnNGj2al8PzG1MzCBjzpKgoBQR0JoivOcSMb+79AFR3MsiOsAS4Y/X0s8Lpo13xpCyLakyxL9Wva6+QszBMoeuAOzsbCriSmUi4BOySKOQv7QdaL/g0yp59tl/QXjmOTMead3X4fY4Megn/R3Zrqd68VE+uNbOJfYN9Dvpf/Y2S+LzUqImOAjlzX83jDiIbGWZJsmM1G7fs2f8QsuoN2CMK4m3WJKZjWvRpG0pkqlJMrPdbu8fZE1ph88eBJ4ohUkyI3cIWXDQOG2+U5KF9vB5MRUdkp6B35oo1fugaQDSB5V9lqeQGtVguXETdnGVizXHn8B9fKOVqs9TOShyaPhJOfD8w25XGQIbLaPm9iTGw3NmvPBNW5OBIv/x5dH/l0IL8aEnkZHG+dl98YiQ//BStVkkAKR9EyS8S4o66HdknJBO2c7OsQ0AAB7vxKPpN3EM5h8A6m6WwwKYJDOW5PVkp8uAjDxH0eKo8ggQU0BKpeULFaV5OW27HhNeZPdi8o/DJJkxYfF0XHuJ8KeLQqX8Wv2aUlyH6ox/i89EEy3+27c2NvKKj0kyo97GBNSIUVua0NMPpRxK2Yx6gzCm8PStjy/bzKJp8z6yF75fPo7gjSnhmn1AWd5Dkwd7N75TklXjgXIOygu7r/k9ZP/UXtWvg9+NQuqyEHa/9NEjmCQzvN4UAWm05MoYuZyZVyqfUQp+V3Zl0LX2gVFvwPWI20wGmt7rx6mobZJRFPv7dVHVkVqY0P6QEUzGLXqitSA7Aa7DzyB1hYie3N+HjIO6g8dxuaccD7Xv8OcZMBYADDl33WZdtNpBOfdae27UGwQAIH7jRMk3IXwlALIBRCn/V39VXi1ZTZIZR75dweTRikuqa+Ormb+K/n6igH1jx47FmjVrYG+vrQpdvnwZFy5cENb8Hh4e6NSpE5KSknD8uGzaarFYsGrVKjg4OKBv375/SZ5KK2Kenp5/+c/Ly+svCfNX6fTp04iIiECfPn2wYMECDBkyBBMnTsTRo0fRrFkzTJo0CRaLBbXK4aSLiopUPB49IoMGTfNX0v4rdPnyZeEvLY0sqq9PFncz6YfdMNZZWNAU7BIRC9O+74jMYSs0J03lQpLnS6/Txi5j92n6kuxLwr2iblcE3vkzIxDfYauqbi7DzuLgQ9KlRrqQxXKjFWRXi5otUrmy+n+Hb318hXsmyYyvbnkKZbf4NE4Y5EryyGnk6nJI3msT1RDNtP58W9K6hb01VbVYeql+rjzhle9w0smEb0utHUE+jbKd/dbKPj8AEGYerlqQ1PmJmEvtKKwlyF2y340tvPl6aNWVp7TFoay93D4gCyS7uJPIfBFY6N1aQLejqE6U5/3SRwwqmyfhhIM7ha1oMgTIqZRRb0BJLtkpGp3Vk/ULrUmSX5BMd84WntE2rr8+XpUeACw3b6nSUwNzegpaVEYWZLv966sma2UdLpXICFiqibYXqc+d58RTjYyN5GSr+4uTYBfcTohxw9d17wMC+91kqdq0VtpAlFbl7ijdAeZjzRjPD1T1zd3pcTgZshllXmTyuD9Shl5elC0GPw5/g/hN2QW3UymcWv0cAPzWiP6oNA0fb+tIe0eV4pQ1LxxDzl2HRzXi51q3f4awCULj9Sn7vDU5AGItQPPQNMW9A5nvqLWFGADomjZh/C/PEGH1iwYEi3UrjxFWsMsHnj9PRe2fyXjmPuqU5lhAqaCT2CeL61lUaWiZxd0vw3KbwM/3GTleFdibKo+Zn4YLbbvJ40/Gg6/z3OvER4j6Rd6cFI7IFsQE9NQbS9Hk2zhszI1lZt5l4R2gc3YWIb8VMio3lbQULUr8iTSlyzMiVIpPtymTYZLMyNxkYLEOAaBgvLjA5+NbUeLLbbQinsUTvPtMmPAsoUM1Ib3bDGL+PejcTZXsjVbEq74FLbqa3Ex815YHKpl4OR1cZVNmw6ey6fzFLutVY+rNoFJkDV4p5Ofrzfsu8+VJb5H2bbcwmr1HrXo0WBuPyzMiCLIrd9JEZaDpvV9PQGmh7Oes3LgAyNgKkM0Xo94A4xkSR4ueaFHfON8pySysCQCBL+0rJsnMNn6o3NvaNFbNmzzx18W9A4WwG0a9gflha+Xl0/FlHh+3kLWFgyvZdBvpolb0Www9C6PewDY1tUj5rdD2DZ0pjqNpzzescAPgiSIKLf9P/P2N9O2332LOnDlwc3ND7969sWnTJvzwww/sjx7gAMCsWbPQunVrJCUlCTwWL16MWrVqoXfv3vjggw+wePFidOvWDUlJSXjnnXfg5ub2l2SqtCKWnZ39L/39O2nhwoV49OgRRowYIdyvVasWBgwYgJycHGRnZzMwDy2TQnqPmh3+lbR/JzVeKU9Ml7fLaCsUUMGoJ75XzgPS2Edt1BuYA68W2Voo84OCztcLt8eFo/UK2bdDa7FN6cyrMgQ1NSm68ipZyPAxdazJ1P6LaDYYUUd0ZvbWtq6QlsrxaKBsppT2dRgL9Fv9XpnmxGzUG1DnSCNcjwrH7Mzj8F9C6lbvB7VN+DtXZTNIusMJAEX95Rgp/ouj0XP8izYHSuVk6f5uvHA/wfCL1XdC4YZD3iF+RQ69LzH7dErtj9uhtLN8HXkxEnYB/uw6a3MH+Lwi9yMqq12gvxA7jhIN7EzT1rZ3FKCy7ytioVFZgt+LqnCRYo1+9PhDs28pJ1ra7vQEj17r/iTfp6WHHIqgMnJkzSOLV2qKo3xXwoKyXBmlpjk8mSQ5CKdRb0DC58uFZ15jSDvXiEnGnt824OhiOdYM359/uiFuvPCLpmZPnycbBJxJlecvUwQ5GZXHTOIXjjRN8cNqeCktlZnYpS4PEU5SAMA56SpMkhllyadVcvKbC9SMjl9gKdtO2U6py8VYcB7vxGNbm8ZC+h1tGqr6A5WB+ipplcE2ZrjQEZSq7U+B6ydxqnd87TdySkeBX2JOyEi5zb8UN3xq7EoW+FI5quksDOyCl4U/qafUzyOUwXFT8o2Sw0/wfCmZJAIWkzGqBrtWpvF8Ox4l+91g6dERj/epfe9oPeJflEOgeOyahIarZJNHnx+i0DrFgZ3OmiQz9m79HpaCApVfMi8bP/cU7vG0uomRNY+cKtFTENqPaAyo22PDMejcTWTND8ehFcTf2PNZMzJGLWe8nNfFAyHt2DUf30q5uKXx+m52KoBJMrPTRj49X597y8ji7qX6uao0ad8Sf7/YR6Xo8pJ4cgeAhZlxf080yRvtKsbOuvVCOGhMPLoZ5eDuBpNkRtNv4mA4YWNzrVS8NOoNgj9VzIm9mgox3aR51KiMvUf63C6ordAGLrtvwP1dWenUIpNkRmk3tdk03x7UZO+9RuUx49rWFfo3PeEHSFgTSjvyk1nZ90aHQfp/7L13eBXF9z/+Sm7ovcMmIT2UQLghpF16vRCKgIhIE6QmiCJ2UREUFFEsSAdBEEQQaRJYBaQmIRBy6ZDeWHrvkJv8/pjM7Mzu3gv68evPt+Y8T57c3Z1yZnZ2Zs6Zc17nNQuCZsey02a+PqtkRr+MTuw3/z75ukptT8bDSmqb5+fsY24WNJj4g+gwtDzal9VBfRsBoN2oUdh/vxCRSSMgK8SvtiAvX/d+tOtVlZWJuPpClLp348zcUh+JgF2uTYjAei1ILKfqafKcuqmU0P8bohgPubm5eP755zFkyBDhb9q0aY8tIyQkBPHx8WjVqhW+/PJLvP7667hz5w6WLl2KKVOm/GGenlgQy8rK0v299NJLcHFxMXyWlZWFzEy9WcFfSVQwstvtumc0qFpBQQHCwshikJCgB7RITEyEi4sLQkPJyUq9evXg7u6OxER9zA96r0WLFrpnfyVRx1hA3DAWPXoIuOh9JXii96dfbiBcG6WhZE/NQOXMexjTX0WDtEpmYbPLEzVPAIhJEQDU/UrUtGsD8sqKjZnh1ZulnrCUukbALKjG2RFR/wRZsQkboSorE4WJvv3wkax/brW+jMPvzcNU3+bwmG4csb7RwlhMr3PUcDPBmyCE9jrOTMHc3EWUTgBIfvBQv5gWE7+Y0GCyABGQroyIEvJVW5agW+zo9dHmRXDdp777uAZx2LZlJUvLB9nmqShZRZ2kQgQAQWizSmam0aVUkTML4nmq/q3K4+yc/axsnmctyYoNee+qAUqfO60I5VpeGatrLwCgsFAoU1nvDYAAGDRYIp44OvsufN4Rv326qNP8/EIp5yej/oEKCPomFt0tvXRlUVMsXjmg5QMAWr48RrjmBRsKukN59vhY/SboSQ0VzmXFhoCXyLui5j6yYkPq0lChvfyGrHur3gh84RB6VbjL0lA/CXqdNicC9vQsIqQtFuc0Wk7qXGIepTWjo/TgV2/Cy2J9fLasXgvZCb62bx51IembJLvqvhuaZs888USAjyNEiffx7Dh4BK4PFU1e+T532Ur8RN37ntCVIys25L+tRzgEVNNcgHwTRuOsIP+sbmNY9OABhla+LJzyaMlozigy30Lm0wsM08wtDnB/b7EE0++HUbpzjmASStsiKzZs26gGKg8cdVDoC983EvDbT2JweG0ZRht0/rpC10xhzK3PT4Jrsfm+zztkjggcc5DF/uPHQNUVCdjUuAZ83hZPn6ySWXiHNKYdX3/mKlInnctkRQVlAYgfqKzYcKNQRG62Smb0SO0GAChnzRJ4cm2iAoFQ642pvs1R4Re9Auv3pYvR6iXV1J6aXVN6O4OsJ9W/TcC2LHWO/eVsMrM2yf3AAlsIMbtbd1tVPlJz8oDxB3TrAAWgoHzzfa+df6f1WYVFufuEsUrN/VKXtGB99qhTKOztmjsUxqySmSknHSlDrL6ndM+zp6lAKC71JaQtC0XaMtUXCwDKuJBTys7PDkf8rPmQPotHj/7xqLj2gBDri4KqGAUDN6KT4+ayOsZ6tWJpb7W+DKtkRpm4g9gf/DNL/1C1BkaZLQfRsqwrO+mqqDGN1fb7pEwbApeRdaj6twmoV6xE4y1Hxnu1FMZ44XEisKYOFVF1D04j1kmtPlNNif/J9L+Kmrhs2TIUFRU5/OMRD2nadu3a6coJDg7Gpk2bcP36ddy/fx8pKSkYNmzYn+LpiQUxLy8v3V+1YtQyo2f07/8lNW5MTC+WLVsm3L9+/To2btyIatWqwd/fH/7+/mjRogXWrl3LwDgAAsyxdu1adOjQQUBAee6555CRkYHNmzeze3a7HbNnz0bVqlURHR39/6xNVsnMzPsMqahIsL3v6qXakVMHblmx4Z2aZyArNrSJGc0EFWdCWfrzpbA1qKrwjId25amwOI6Cs/Lu1DYh+LB4pFzpx0S8kn5K0OJtjVvlcAOdtrw5K9MoDW035QcgiyQNvHttWJRuoXKrW0cox6dttjCxOqILUTdZPh75i957xydc4NURLW2gfhOpL1TEoQ9VMAthAwLj/gVEwa7prFghLYXVN9pIWSWz4M8BENhlStVM6mmJrJBg1BQAQNsuWn5gqQrst6sDk1363PMjdXz+0FAS+K70I9no+2wZJeQtyM5l+TM+j2SQwbJiw5kR84SxYbRRcDR2KKqjrKh+PHw5uRF34DE9ntXPl0lp90IiKGR9rL633Mnqpr2wFPGnO1ds4miVzKiwR/WF0PJMx+Gp6fUNN8Cp37Zgp1FWyYws6xLdOGRjdN8Glrfr6e66OmTFhoBxKvphVvRiaMkqmeG7TjWlkxUbrowk39SUTIJYVqYL+X6M8keHdEG17mnMNDJ1SQvmF0aVGsfDxDmCnizRvml1tC86Hb8Fq2RGqe3JQr9cHxqFd3zCkfY12bS57UyG20ARvY72T+dTPR1C0NN03suzDQUS29tzde+D/7ZM/j6G48+tbh0ybp+dL/BE+1JrAnj+FQvajh7NoL/5MnOmWDA/Zx9iizeWVTYdZeVQk1Cet4aLYoW6+L4AyAkSL/zzz2XFxlAHrZKZIctRywEAaHv0HoaeyRMUO308wpkvE0/v+YRhUqYNmcX+cVbJLAg+2voPfKKih2qfWSVyciYrxDeNnhrzvq/2y1dglczMlIwXpB+1O2dYduFxFR0UAEMTLHr0UMcDAIbOCAAFefmYn7OPXbcrV2i4nvRwD2Xv9NTouTj/sgXrG9fCwkBysni7fyQzJzfiscGhUuzaVLOGMJ609S0J9MGo+q10a5tVMqPx+wobX6W2J2P7Kr1VTYv3YnTv0RGdCi3Ag2jR/4uetAFA3G8/IrPLEgQMS0aYzS68SwBw3ZvC+JlRh7xbarqaNT0Kh9+fp1vLjNpMyci/S0v88xPjxTAOVsksKLy0xPf7u2l9dEo+ozpoubcL7xt+j3x79r2mn0tL6N9N/9NgHRMmTED16tXx1ltvYciQIZg/fz6mT5+OkJAQnDt3Dh999BFMJmJm9NVXX+HBgwdo3bo1vvzyS3z55Zdo3bo1CgsL8fnnnwvlvvXWW/Dy8sLAgQMxefJkLFy4EJ06dcLBgwfx2WefoRJ3AvNXEv1A25VT7RKiO/XXPedt71OXqOYGE7xF0wiAaJULb93C7f6Rug+fTxs4Su8oXdCBmLZQp3Etr9EN2+ju0fJqLEnA0eZFbANJJ9LF59TTtPy31RMSfqLNXEXKoHG/6F/TL2Lhs3G0btOpbQ81CbzURhUyWJvOXxD6oajHDVwbRjRuBR1FaGqeJ1545O83/UI1a8j4PFJY+HKmWITytDwHjDuAGVcCICs2uOx0F3yfaFsAwFQcxDD/bQszr6K+MccmqpvEZbn70KU8aXPSA33btfVPz0piQCBMa1qMdhm4PAb2y1cQ8OIBwRSP543vc7+DZQ3RJmm/dTh2Bzfi/CErNrQaT7TJr6af0C2YVHNvRH6vimal/ILOl5O6RH86Q4mHyLZKZuQX3MZqn52wSmZsuysC9Gi/EZ6vjM/VUw6ft9X3Vv68qr6rvIrwO6x+K5gCyGbrThvV8dzRZkGSCepl4Q5PIW3gC4cM+aK/+e+P/x9RI1vHv5YHR7zQOD9WiSB9HZo6D9eHRmGybyjcfLxYubT+zE+ikPkp+Z7sFy5CVmzMNDKr22JU+kidO2XFBhTaBb4K8s8K76xC10y8Xj1Dx5dLSBAOfDIPha1DEPDSAQY8QU+stO35rRFRqvFmT36rx4p1n1WVdHw6bf9o+9qenmXYdwXnLxgqRGgZWhPAI6/PZSES6D0KruE1OZ751qXOD8fWdNUCwa1eXRYvDwAuxlrgNVk1taS+YrQuq2RG3PY1unbx9VLUwVrxVfG0BxGkeaTW3cHlsLyBpyHkutFYalMWSBuqKp3oqQDPk7P8AND6KPHbvTIqioF9UD9jXvHAlwsQH1f+Hh9nz0jhARA0QS3aIv/dUZ4pgAp9Ny6hQULZVsmMWvFVWd+2emkMCrYTMKy6X8ULZVJ4fL4feLTbMy3UOT3u6A7h26V1Xf0lUKj/2vPkWzTVqM7yFpxVMDdnH/xXiqFFrJKZnVTXWKI3WTRSaAFEgUCBVuhz5TV9bD0A+Kj2MZ1Cgl53HDJC+PZlxYayl12EdgJAUUtjxSnlN3WYKsjzSNN8XXzdXbsPYvdoud7vJmB1nqi05MPe0LR7mq4X2s3zacTb055RhvNB47nqPkIL3PaPpaK/8e9fTv/TgpiXlxeSkpIwZMgQ/P777xg/fjw++eQTeHp6Yt26dYiNVQe3xWLBrl274O3tjXfffRfvvfce/P39sWfPHjRrJsZuqFGjBvbv34/evXtjzpw5eOmll3Djxg2sXr0aI0aM+H/aJn4ycPPyZAsmACTet+smxoChh3HRrsLVazen9JrG0HGmSdISDSrNO41TvyKrZEbc6T2G/APqRtUqmdFo5g08d5po4ah5gKwQc6w723wRcLCMsPHxHWjTlZm6uAWOvTIXWU8tRMCKGKzLV+MsvZ0hxuqgfmumq25Cv2gnv7TlzbE1bT+Sps9DdHBHtumkZGrgD6tkxoXxeoHKKplhqlEd0kzSN8PP5MDv1US4hDVlEMO+PxJTChqPyIh2Nq2AvumdUdRB9EmUFRse/uYFv53DWT97fByPlLDVZOORsFkQDnfdc8WwYg2orNjwno/om0HLtEokfkrqkhbwddPD61PYXh8uLh1/iiYrNoY4yPc5D27CIxLSNAsOt0aV6HRYJTMqrCNmN5/7B+neSY8TBJL+xuBI3Vin/+lJQqW9NdFwEUHVpEIBAGR1W6zLF3JwANx8vFDn63jBBI36GsoKCW7qbEPIX/u9mih8X5Tu1iUnPKNTRZOW0xNqoVv0QAY9r124+ev9X86HKdAP52UiiHVv+RQzaXX2/VKESm2fJjYrBe+kcrp6qBmZrNhwfoJ+jGup9LaDCH87hikMKCQ9z4/vWwlY0k81udFuSl32i+3W5ucpa7V6AkPnLnq6WFiWCKu//bgUsmKD66MidDtxHaNTM1k76UmOrNiYiWnFtQeQs6YpZMUG/4nqHKKNSdd+kt7HjCftdxWUMIjMU8WhBLRzbXTnZ3XtNrrW1hntTqwCLo5TT3UCxyaha/dBDGWy4Nx5VPsuAVkfk3kn5V1ROJpcSw16rBUitXzw70tWbAxJzxHv7UaJJ9ha5LdZ2eoJrtEcLCs22IsKhe+Fn2OvjFA3v3uDyXitsSgB5X8+IASqfpI1rdr+6mz+4fPRoLv564gQRU/u3vtmmJDfKpmZUozWRwFUfOKIORk1A+fTXLJcZ7/3fb0Abp2IeeLcnH06vnkzR1mxCSdy9B7//kz+PsKz6j1E4ZHGUbRfuYrWR8lpTP0DFRDr1UpAYKRET6q1bTC6pkLOkdfnsjAy9PmxiXN1eXi+jZRGdP2lJtdWyYx6s+JZXEBq/uySYBx0npbVtX4L9ptHmgaAbr6RQlqrZMa2LSsN15oBnuo3F3zYhQE+WSUzPrrckJVBFbimWrXwy9lkXTnPnVbgWqkSKavYZJGWm/FZJG4OjGTWIiX03yS3xyf5Z5Ofnx++++67J0obFRWFHTt2PD4hCCDHihUrHp+whEqohEqohEqohEqohEroP0L/L2N8aev5t9P/9InYv4kyPm0Ba9+hgtaQIoLJig2XNjXAZF9iKkghsa2SGVmfRGGIZ0ucn2DsaL4yj4ApZMwkWr4W7+sBDnjTCXqPkrbMgPEHUP9ABVYGfe5avryg9aRmZMr6xrCfSsOwyheFcmj9FbpmIi3sASquPYBmSc8h81O9bbZVMiNw5CFWfsWG1/C0h4ri9rFfMEvf4FAp3GtLTIKkpheEdmi1e5mdvmXl0wCMvLassFJZyIoNdWbHC/FTqMaUh0unvl9FB48hfRA5EbCfTIWsqKZZFLqZJ1lRzdWEk6veQ1B+jAsyOizVndLIig1dnhkm5OHRKo20mLJig99qAogR7d4cWd0Wo5qpvENNstYMhU/H+xIama/wz+kz3o+FL1tb/y9B5GQi8VMVPU3bfmrSdav1ZXhNjkfAihh2OgMAnZ8bruO79lOnUZCVgysjo3BivIr6SVGujj4k2uLCtiFOx7/2moc5lxUbOz1+uuJNlsYU4IuAcQdQaDuJ1DG1DdvNk1Uyw56aAelTcipTkJXDxhf/3Wr5SplEzFSjG7fV8bvAg2jGo9uogWcLi8NxWCUz3DpeRtujKrjBg25hQhn0xJFq2LX1z8xOZGOBD5rKt0nLk9ZMSPs8tc1ydm/b3TKI7vwshhWfYLokHBG+6asRj7A1qCoWBvoyk2c6R1gls+Drd7rVCpbv9jMR6HHiGuzXrgn8HjSbGC9WyYxX0gkggalObQaN77v9BQYqcCJqJQK/ixFiuvFttp84A6tkFpBKjfqIz2uVVLPwlElzcSlGnRtdc88x2PlNZ4k5b+rzaigSbblXRorBnR2Na5fQIHTuP4zVXxTVDJdHR6HLM8MM81B0SdbO4jlPVmxIXRiGoNLlhPRWSY1dSXmLdm+OhYHkpJg3Dz/7loX50PJBy2n5OzeRtFeH69cMaqInKzZmtsmHEqBpH3UKxeZIUseJKAJ85PsWOfm41Vwf8fzis0G6ewAQOPKQwN/6/CRdGqtkRqeBL7A0sV7qaTz9v+XAL7pTL77N2u/fnp7F7hudrNKwFABBNbRKZizy3K/rB0qldtUzbB/lnz/tpadNAPleZMXG0Cu1fAprm2aca9uYZV0izGEBLxNrnsCRxad1hSI4m3buKCoQLT3o/3W3KwtznlEaLdGyqZsFTUNPZwFykmeVzIg78hvzA6TlhaYU4oeGkgD7z9fj91oiM2Evof8ulQhi/xDye+MQkEigXdnmYrgKNlGr1xk2UQ3+8BcAxSZ7xXb3tZPvGW7yO818HQCYcFBjcQJ6nFA3HVbJzEwnrJIZ/U+JMcOsklmIQwQAizz3w61uHYHXgjCC0sgHHQUAqc9Jw4lZ+xsA6vY+Bd83VFOW9O9DdP0kKzbUfuo0+81PorJiw9cS2ZQ0XBTL7Lfpc978it6j+V12EpCAoIRBmJlNJsZtm75naQtv3YJrMPHPor4OWuH1+hAVKeriRr0zOoVuBoA1+Wo7tW0JmRYLJB3DnYa1DN8pAGbi1flUT+E+XMmCSP3TvJPKsbL9J6qmWm1Hj3a4qe/87HBYJTOmX26ASZl6AZ22m5rRGLWBXlP7e0p3+0QIeW4XQ2BT0xZKfDmuFSo4XSRpLDxZsSH87Rj89sNSXVr6/NBU0fG7Xu9TsEpmvO5N/Ptcd6c47HOeL2rOVGbLQcN2Rzdso26W0jLZb7/XVIGFxkmi5Zp+l3TvgpZLN//nXtX769Fr+kdjUdH7lL/0LyOxeTeJ/8fHaAKAmj1T8U7NMyxfma1igNqCrBzyzot9E2n9D63EDCi4dFnhPr9h468BoNOgF3S8aceQ9tvuWv4B7CfOCDzz6QJHqCZV1Ple25dGtP+rBUz454nV0XsIABKDDwDsFy7Ccxr5juv/YEL5nw/g1fQTaDorVvAVNCpPVmwIGH+A+eEAAMKd+4PUn6L6etWal4BLm8g8yyuB+rbqJ7x/LXU7cR2Hps7T9akRFSWfgOs+0vbC1iFwSTiC5A/m4de1y1geHpjC0Ua7u6UXAkcToZSaltH8vm8m6PLT3ztWLGHXx19SN/pllVJIfvAQue+ryizPD4miovrSBF1Q5DlBKprsd1NUH3AKAGWVzJiUScAqxnu1hKzY0CZ2NEtnlcwIeP6wTklQY1ECi+ElKzYob4jx5+j/Ph4ioiol067DQlr6O2cKadfg7HaGQlW7EaPYPcsrYxlIE5+G8tEo2Y2lpWEpVubtN3z3VskM7yRVWH7U7hwL7+CIrJIZbceM1pW3654r4ravYdcUOEpbp7ZPqd9zdLunWdq4k7t1Y4rGHOTzdg/vzvJo52EtUeUYP/9r35329+Dsdrr5BgADHaN0a0Ck0B/0Ge9XSeujJpZUWKcIwpRK4Ov/e/TEglibNm10f0uXLnX4rE2bNmjbtu1jSi0hnvLfEQUFCmdKiU7Q6xvXYteUXPeqMLt0ootu2gG2t+YidW44AparKEjjq5FNFdWS8rSmUV3dvet+BGKaj5VTcP6CkMZ1dwpkxYYLUTfViWiHhzA5uoQEIeywCj4y86qfED+J511WbMxhHCCbAlmxITqERCx/KV119qb5rJIZocmkfOqs3iRZHeJ1vyQbKOV1UqeUqAIHFHU4C1PjQNReWI4FoLRKKtzxxVgLCo+KyFps49uewP9WXaHa3KeErWZpAOCNDNGuPXriKwCA1XnxuPpLICLeUoM7pkwiGxDBAbo4tlWzGbHie++Yx/puUqYNKLSj+YcxeFSFAL5kh6sCOq9VpeEAAMB3PXF8d6tXlwgjxWNp+elwtClrvOkHgDd3/yK0if9tlcxoP3wkilJUMBBZsaH8+mL/jOI4K/uDf8amO+XZCQSgBiu9PJoItlvTVA0uLcverjk6Dh4h8GOVzMKJTbnddZjvDx9vSVnfmI1RLd/8Nd30tX+B+MGE2VQfTe9nidLEzdfbcIMTd3qPTrjgHe+tkhlJ0+cJ497eXkGLyTG6/gQIJDMAHH11LuPT1MDfcCOsbQ/lw39CIroXj+1qy/RCg7YdRpuagpw8jEjNYuWXlg/p0miFK4CcUtI+p2isaXMihDTpK0IEAAEtb5mfRDHgGIraCBCQGm3dskKAEQASHJ1/rk1rCvRj17JiYycsVskMeQMxT6fzD09ltpLv83P/IEifkbmFhrbgN2P0mrap1K+H4OZeLHQXw7PLig03BhGF1/kJFiZwAcDNrX7sd61eZ3Rj95xVRCDlN3uyQk6o278wCtEdnwEiiQLh/IZGTgVVWbHBdW+KoZKBAlMAQD6HCCr0eTFMOwBsfuoLHX98v9DrNberGM6vskJOmmec7YZTY8l30CZ2NFM2yQoJigyoQA7v+YQx3imIlazYmBUEAEzzVeu2SmbsmbtQ4C/z0yjdOAaIME7zSJ/GY9Od8iwPr1CSFYI8y1P6LNFfmObzmhyPtDkRzCePB4qwSmZBMVLpx0Q23vh+elRE5qdToeqJECXLvljdPYAEpNeuEe59T0BWbBh0Op/5xNFn9H2U3ZykGz/tyhXCJ04NH/O5fxBL/0r6Kcy+5mWoMKB+z/bUDOHdL7yhfksAiTlIr2ndW5K26HgDYKgI5clIcOP3HpQuWa5j9jUvIR8ATH13uNBn8bPmMyUjpdTFLXSCXvjbMahc8w6uPR+FPh4kTiJvLUQDkv/PUAlQx19CLkVFT4bS7+r6xw/PXFxcDGN8lZBKN2/eRJUqVdAOT8HNpRTyJllwctxc3eRPSTvhaCcS7ebPERVFNcOv677Tpcn4LBJ+r6knJ3x5lLR5+HRu3vVRkJ2L1kfvC8f3f5RomcobFmai5ag9t7f5ospzqnmRo37g++6P9K82n6zY0C16IHqs2otxVfN05V8ZGYUaixN078io3pw1TeHV/xg6Hb+FuQkdkNV9Efx2DEdGx6VCXiOyHr+JidWJk/uJh/cw0Vs0P6JkCmrAThMctfNxdWnzAcSsZ+fyJejWoDWKGnpj28YVTsvoduI6JlTL1o0pozypC8IQOEYVROdc90Tr8mlMSHbEG19e8GEX7FgUiVrzRA08fX63TwTKrz+ASZk2vPXOWMTPmm/4PcmKDRFvqSAVj/vOZMWG2de8dCctOWua4nSrFWj58hjs/2qBbizKCjErjDu527BPXMqUQUTSbUypJaJNeieVwwIPx/HnZufsx3ivljoe+fQr8/az4L5autc7HOU26E2tnjutsE2EVTIj8sgjJDYrpft2/NaMhf8E1fxmdV48C34LAK7BDVF41BhFr9r+6oJJGUAQ2Y5NnMvKbzlhLK41cMXJmLnw/WkMi7nmiBx9l/z/6MZtYb9+A7nvW1B/qvP5x6hs3+0vIGDoYcPNHt83Rv8BoLBtCFx3pyB3bVPU738cjzo2x/2apbBp5ucY5ElOcEIODsCdk9Xg8zaZa/x/H4709qIpc9zZwwzwg1KdhMosHIfRt2jEs1Uy41GnUNzwK42aCxJwe5sv9jT9CSYXoqRbkrsPHm4V0T+zI260IicXbj5e2LJ/Iyvr/MsW1P0qHk+fuoh1jWoLZZ+fYEHdL+NxY1AkqqxUx4ryugXSzHin3xwtT9uPJn8fFC58yICQKu2tiZ/8tjt9j7JiQ6StHxLNPzldI2hfAYAp0A+P6lTGbz8uRXTbvrCnkTk57z0LTsbMxYRzLdCu8mnMCyABmTNXmZHWbhnLPyPrAN70UcOE7LrnKpia0/bkv21hZtkAAQRa8HwfuCSI8SPT5kQgYFwx/PsPzVh8SUdzldE8xLfv4jgLQ2qWFRu23C2Lz8cOYuEkAr6PQdrgeUI5eT81EQJwPyk96tIClk8PCIo5gXdXE+R8FcnVWVuc7ZXcvOsj+/NKzBzVqA/ob+U1CxN8J2VypteuJp2Z5INfvVGmS7ZTfgB17TSqe+2Zw6gWmIkbN26gcmXRwuifQHTPWn/h+3At9+f3eE9KhffuI3f01H9sf/wV9MSCWE5OzuMTGdD/61hi/+tEB/W1VF8806A5Ku2tiVutL8NUozrsV66iUbIbToUWsMmk2cxY1P1CRLGzSmakLW+OgKHGcb948kisiCX196HtmNEou1kNhvpHBJQn2ZBo8wLQTYp8mW1iR6PchqQnFib5Z67ly6Pw7l3ciPNHleh0h+l4Sp0fLgS4pWmosBA0OxbeSzNQcP4CasVXxSXLdYd9ICs2NJ0VK2gpnQmA156PYic3Rn3kqIzhua2xtP7eJ94gGD2jz8elpWJOgGrPf79HOIPOBoDotn2RNrKOYEYEkE1/7mgfFNpOCmX6bBklBI3V1u1oocv8JAppmsCWPKV/HwL/wSlCGR2HjIDbjmSc39AIR8J/cFi2s/7g02lJWd8YUp+TujR/ZDPuSMidnbMfscPGO4zRB5BFmm5yaL4rI6Pw/pvfoVeFu04VIdp7jzqFwm/aaeRG3PlTbdDe07aH3t9zn5wwlNpVj8Vq4st50C0Mbvfthu129J5Y3l+9savJBlglM+bn7MNYr1bodPwWXq+eAf/fh8NvUIouDyXXChVQeEdtu2XiWFRaTYLA8/EHqcKHL4PfgBqRm683CjKzdfffyDiGT/1Uk0Nt+1xCgwR0PaM2uzZpiMLjp/XtCW6IrdvIaXvzD2NQO/EmilJO4OFvXijdOUdXjjb/mvwEFl/rSZUxNF3/U+cNLSactUP72xFRQUxbRuQbYwV/UWdziTbvZfsd1DRVMOwH9o52eODmYg8WsPxJyK1uHZ1FCN+H0c06w37pEky/S4hrQGJOZn8YBe/3REVO2uwI/Nbrc/iVqsh47NagNfMnety8FjQ7Fh4fx7PxJCs2LLtZG8MqXxTaSgUzvqzU+eHI6kVOAPlvKH1FCPyHpDhUVjgiJvw2DoT9ZKrDdNr0zgTA7B+DmeUBpWvDogxP8x3VQYnWFTQ7FifGz0Xn54azQNXXhkUhabq4BjmbUwGCOEv9zbRpqUKKJ35OD095BtW6p7G+0vZBx3pB2IWN/1jBg+5ZPRdM/tsEsbwxU/6x/fFX0BMLYiX0/4a0J2IAp1VdOxYBL5MFggpm/PMBWR1YDCRKRovrwKz2uNJSdEZ3Ro4mXaoN+9q/Icrsrou861V1/lr8hMzbi2vLAYCA72Pg+0YCmiS74nhooS6dlpcLL1lYQF8t1T9QAYs89ztdLAAiiCavDBZiywDA+5mHMdW3uYNcKpn8fVjcIEebnZnZiXjdO9KxEDg3HIGxRAjMe8+Cxl1S8ZPfdgBA01mxDPr3cQuDS1hTFB08JkzuVHC/PCYKNRcYL1hMCPo0Cm53XYQgogAxwzIyS3LEh7P7PLl5eWJLwmaHAr3RhnXb5pVCupi0dPSucBtWyYy7fSNY4E9H9Z/b0AjSFFds27LSId/vXmyKj2ofE+rmNZujUzMZmMDjhAb6u9GCWAbccWlsFGrNT9Dx6KgPGu4bAq/+j/cT0OZ38/FioCWmmjUQd3QHuod2xZbkbTqeL8VEodY89dvj5wuj9hnVm/+OBR7TReHF2W8ATAAq6BiKHSuWOFRs0PuRb4xFle8TsSx3HwPqcMQTz/eTCAL0fqNkN3xZ75CQ5t5T4Si3UVUMeSRWROKmYNZemr9Z0nOo2/uUcK/5hzHsFFZWbAidEoOaC/Tvv6BDKNx2ks1Zk69j4f7J4xU5D4oeoZe7CKTSrdtz2Lr1B6H9Rn0z/7o7M2sHSEBsPnahdj47+3MQ3PuewOXNgajZM9VhX8qKDZGvj0XiTPFE+cvseMEskJbt/8NYdGljYyEveIGF51d7DRD4cboBTlsWivcjN7Pg8Ebttkpm3Yb+jygj2o0apQMk0ZbB/876JIqF/nj4mxd+D9rocL4DgMxPouBbnP5OvwhUPnlNJ8gUbK/PIO8d1Vv/QAV0rnYcSwJ9oCW+Px2tWfd6h2PP3IVP/P1o5wvfX0cgYFgy7vcIx+6FCxH16lhBuGUKBk6A0ZZH67g1IJJZJzjiXXuvcIcnXDvmOSwz9dsWCHzhEGZkHcCdolLCWm80/9DvUShjQRiyei4CAASsiIHvmwl4aG0hmGe7NmuEwiPFwD7Fc3CDb2Nw5gX1xDB0SgySJ6vAOrJiw4jcVphY9zcElS6Hm7cK/ydOxEoEsb+OSsA6/mHEf/gULcitXl3BOdsqmWGVzMxkx61uHViOkHgjnZ8dzsqgf1QIoxMYRYozqttIkOP5+tq/IRolu+FB2/NMCKM88f/tJ1MNF1KefwrM8Xm9wywNb2etXQxsb4nxcSi/smIThLCrvwQKafLftjCkw/zI2zohDACm+jZnZQFkI87zbqpcGbJiYyhVvN+Glh/exwwgixz/nCfPD+OZEGaVzIIQRtM6WgiLDh5Dn5OXYJXMqNY9DQCYfwCd6FPn653Gadm+bySg/gfxuNc7nMVcAoi/IfXf2XRWDNTJ1585IwpXX9D7GfLp+f9aIYz2B41nRccFzVOUrA/4PC/AH75rCfpj2/dFP4mnT6m29jQYcr3epwQ/tS+zxXcfcnAADppNsEpmwU+vTJdsxsfCQF9h8R+eqwYlPzfRYrhBODVGBYw4/P485jsEgAGg0LZRn7jbz5A+p0IYDVJMiSLoaQFPKPHIkXkvEB+jgnPnDTeAh9+bB5eQIHxeTwQPoO9AS/eeUscRfd7v2d0AyPzDv08+P//9yooN+WPJSVF++9KGY1qbv8r3ZA7khTD+O+LHpVG99Def/m5f0n9+O4ejYHt9bDzaDFaJmEFTKrcxSSjn0A9ECNPWdyT8B4EPq2TG4ffmCWn4TRffhoFztrBrKoTJig1ldtdlaa89rwaAtUpmQQijPp1UCGv2aSxrG8/Tr3dLwSqZBSEMAA58Mg+3no1E/1PncWWECgzVPaIHAOB45Eqi0OmpIiF26zJAKJu2SyuEmWrWwARvC5TXLcI7tUpmeMU9QkbYfeS+T57Z24tgBdpxwY9JfhMfMCwZPzQkvnamRgHI+DwSS4r9BVPnh6NrsbkfFcK06xvfBn4t4evlhTD67E4/x2uUz1uqSXrh13VYuqazYnX1AcCRwV+x69I37ShMyxbSZP8YjGpl7uqEU0rUB3qR534sCfQRxrms2BgIiJZXLR+8EKath86t51+x6IC+6P/MLksgKzbme5zw+XxoSVZswikSnc9oGZSXSqtVQKPoZp0FPmla7X4j70pVw30GzZvVdTGujIyCuUwZtCxL+uzKyCjBX3h1XjwaJZOITvWXpDF/VEoUEXXHPRN83yTv+felaszKa1sCsHXrD4wP++UrsEpm1DgunnUkTyZCme92FbQoP/I2Xkp/FlbJXBLQ+T/oJ/ZEJ2Lnz59H3bpPZpLgiC5cuIA6deo8PuF/jPgTMdd24Yj46hA+qn3MocbOVKsW4o78pptcH1pb4Pelix+r6TPSiMmKqMV9HPU5eUm3qMuKDU2/iIU0M55pvXInW4Rg0E/Cl9H147RzjsrpcOwOdjatIDy/tKkBavU6gyr7auBGqysOFzhHddF71JeBasSoL4mWrg+JgteYVKzx3fHYd5P2XXOG1OVIi0q12PxpBM+XNk/O1Ch4ve/cDNLvYFlkhN3X5b0n+2BP0/U64YlP41avLgrOnUf+Oxa8PvQn5jPU1SscRY8eOn139HpNfgKquKrIXfyi3LX7IBSlnHjseLg1IBJVj1yB/VSa0zqN3hM1B6aUMTMKfq8bfwu82Rnve0VPJ7V0aWwU7riDmSXxbaemRTyPV0ZE4dCH8wz7On1WJEO+fFJyNoYdPaf3AcBvx3D4D0nRPQeAMrvrYlPANoFXR/1w7fko2PtdQXIoCVBP67wxOBKJn84X7jkirS+ZEf+Ovmft+A1NKdQhmvE0/IwaMiDjs0ikD3TsP0jvX4y1oPZcvT8TJXqPzhk19lfDKp/f0WxGLI68OVdXXsYqM14z/4a4S03xoO15w/bx6bN+aIbUtt+h9bgxqPJyrmAiSsnUKACnXq6GwLFJuPiiBbW/MZ6fHQm4/HMfeQQChyfrnmnTPe69OsojKza0iRmNPfMWMj607X/4mxfO73UX/PicjW/qv3v1hShU/zZBV1+7kaOwa/Eilkfrl/WkvDtrv9E71J4g/ZmyteVSfyZ6v/GcWJwcNxfrbldmJ/w81T9QgZkwG5Xv5uuNQuU8Lg8MEfpO2xZH79vRM5eQIBSlnICUWAlK5C0hvbOy+ffGp3tcvXw+n42jERiT5LQMZ/n/yNx6eXQUai7U+xlr8xYUPfrfME2c/zeeiI0tORGDr68v3nzzTVy8ePHxiTW0ZcsWhIWFYcGCBX8473+Jphw7BNfdKYIQlj4rEm2P3iMf6HECvWq/RGJOXX0hCldGqdpSZ0JYxueR8EisiJi0dMMJxCqZn1gIA8CEMHt7cryfPY3wIc0kC9aVdeQ0ggphvKZR+98RadtCtWc77qnxfRwRfUaFMFlRESJr9ToD1/LlmUM5P2k+jieeqEP51cYECe/U2Ll42DVMl+7AjHm40eqK080upcDZD3Fuoqgl1BI1JeKFsAfdwljaAVkdMCPrACvb6/0EpC0np32XRxefChbcFoW1fiIKJ81bzkpMMIsszRzyZF9pYvx4l7rMtJVFjx46bANflqzYmBCmHZNWyYxtW1RnahoLT1sGQLSo9lNpunbwCzUAQQiTFRtMAb7sRJKS3+sJhmNBVmyC7w8PgGEkfCC8KWrNT4D3ewm4+RwxVaXw7+ZPiBBWalc9od01liToeM5fR+CkMwaoWmZZsTE4Z/6e9rp7q97CfVPVKrrNS95PTQy1yVbJrBPCeNj77GvVYJXMMDUKYG3YtnGFvh8AJH08j5m38fw9qOrK6uLva/kx1aiuE8IAYm5H09P33W7UKKE/+PmO/rd1VhVJl8ZG6dIvbeDFEPAKyxaxPuPr4cuTFRtS3hVPs+/3DDdMR02ZqKVC3a/i2fPOp3rCVLMG7j0VjvR2yzC26lkmhHU7cV33PfHXSyMIUMfeOQvwS+BWFh+SJ/upNJTLI1r/lHeMYf617XM0ZwcOT8b7marP3/Wh+u9zcHY73T2+Hh75U9smq2TGnnkL2fhIXRDGftM8k30349TYuWxc8/m1m2JZIeErAKD6t/pv3CqZmRBGY2XSUAjBhx8fVPZh1zCH74fWxYekud1ftZygJ0iPOqlx1CjKKs0bNFtEPmw8T7zWtpWCSlglM6JDusBzGhlnWjPru30isDovHrkRd8g3WRwbkZZX2IooLrbs24DC+/eZEAYA3S29HPYHP274ufhirHjSRC0WlMhbWJ+vF4ocCUlWyQxTrVq6+QMg6Jk0L31GrYb4cVI+1439pnMZJVNjYlnT/EPVUkJbf+YqUtaNOP/HKh2SP1BPyrv2HCSsqwBBltUiL/6zyeVv/Pt30xOdiL377rv44osv8OjRI1itVvTv3x8WiwV+fnrzrDt37uDQoUP49ddf8f333yM/Px+hoaFYvHgxgoODDUr/b5ORjxhAkHrqr80TgjprySqZBcdvipD0OA2R8oYFxybokRkFTVEx+IL2GU8uZcqg6MEDdn1uQyPUK/aXoOmfO60w8xFBu+bhjoL8s4blunl6oCAvn13feToCFdYRX6DUxS3UwI4ARqRmMbt4RxMhPUVakrsPIzR+JpfGRuHw+3pHXUr0Pn+y5Kh/n0Qzt+FORfSucBv77xcyO3VHWjRHmjcjAcNRnRQMg6YxypM9LQpnhhufwjhqn07bx/mkZa0Ohs+Aow755099ABIUWeuHISsEFY43f9XyoKWbAyNxoWURQwxzpDF93IIJiEiBj7q0QKlfyZjrceIafgmqhjoJlbHcS4SoB1RHfS3P2nSBu59n3yq/4aExnBy9c0flaskU4MvQ25yl5fvmsSfYLi5AUZGhz5vRe1mRtx+1TcYx4Ci51auLdr+lYXsTNZQELTfu7GE0WfAiO+0I+iaWmQdaJYK0d+QNvT/l+Q2NUL7MQyQ0W2fYh7eejcS1Bq46NERToB/idq0TynPz8kRBTt4TjRktGZ1GOyJZEf0KnwQtls8bsGsYfAfaDJ9ZJTPOv2KB+6p0Br3OP+Ovqa+PNo2zOU97jz8pdURGp5tGZdLf+W9b4L36rGB+S593b/kUCrJycO5VC4vV6Kjf3DzcsSVpyxPPsc7ayftV8b5BfB5A32d0TD0pnX/FIgB0Zawyw2+gzWH5RjxQcrTO0GdG7QaAVuPHYN/sBcKzO9t88bZ/HN6d9QLKX7Lj2rN3dEiJNH/XnoMEgBpZsaGrTwS2ZR3Q8X9rQCQqrf7jQY61Y7Xd8d46BENteyk9feoiRldREN2wDew3b+LCeAvqzNafstITfG0/3nwuEgmfzzf8PgKWxzBAKsN3Ft6UhcmwSmagfh1sz5nzjz0BUk/EPvgbT8Q++Mf2x19Bbk+S6KOPPsKYMWMwdepU/PDDD4iLiwMAVK5cGXXq1EG1atVw//59XL16FYqioLCwEEVFRQgODsb06dMxaNCgx9RQQiVUQiVUQiVUQiVUQiVUQv94+rv8t0p8xPR08+ZNrFq1Ctu3b8f+/ftx4YIK41q6dGk0bdoU7dq1Q9++fREVZezIX0IqOToR05Ks2HCu4DaG1W9lqDHkbd6p3w6vzene3IqC8xd02i9KFNaZkqlaNbiUKY0th2WW3hFfWk2TNr1rk4bY+isJ2pg6Pxz9I5JgC3FeltE1vRe4+3mktv0ObWJHY8/cheje3IqTH3kiK3oxgj+LRb1Z8U6hlp2dLvAnIUba4D9zuuKIaF4eBjvvPQs8P9SDAjyOd6N0Uy41Rnyz0ob92qXf83BLzYf9MjFvuzUgEm73C4V4UU+iJQbANNKO2jjzqh9er56h49GoL7TXtA6KlubsxDDzkygU1Hlo6LeiTdv26D3sDi5nWDfftse9W5cyZVD0qECIJyMrNhx9eN9pzDOKTMnn4f2xZMWGVkf7omrZe3jU7pzA/+RLQUhsVoqdzhnx+1eMS0ekPa0xqrtbt+fYCYFROhc3N2zLPYRuAS0ZvDxATme9J6mnSKV21cMvgVt1/FBUVlrek8wdRs/obz6kBI2FSJ9Hd+qvQ7Ljy7g+NAoHPnEcgsEoH/3/YdZBvOejN2nW8phbcBujHKBGOjvtpPczVplR5nh5ZtJMY4kBwPr8JJR3JWZwNH3mKjMivLMRn9JAB33urB4abgIAO0F1ND9p35sWgc5R+2h5Actj4PtWAtzq1sGWw7KOP96/i4dlf/FsBNLCiCVH5idRKH3DxaEfmLPTImd9kf5lpBA7z2jMnZtoQb1Zar3UV9coj/KaBffqFrIYn0ZUYU8t3GlzyeFzbZtou8Jsdha3a0XefgzxbInb/SNRcU2iYXpZseHNC2bdGp79YRSm9F/NfCv/LGnHhrbvlt+siZUNPYQ8OVOjcHqkHhSH5mk8Jxae0+IZsqyzMQlXE1xcXeCb4Ka+j/CmLPi6kLaYqM+59hn9rbXGcTSWXM2N8TDlyP+Gj9i8v/FELObffSL2h1ETK1eujLFjx+Knn37CuXPn8ODBAyiKgmvXruH+/fs4ePAgZs6cWSKE/Qm6PiQKsmITJj6A+EdYJTNDDuM/YPqbCmE19lfDluRtWJ2nTvDNPo1lcU+skhlWyYzC1iF4SVFt7iutTmR1z8xOhP3aNba4WSUz81E796oKR2w04dA/eg8ACo+fZvcCxxIhjD7zThJBGvh8Qh80UG2wfZ47AqtkZmYhWw7LmNxqE6ySmS1saxrVRe5ki4AGyNej7WdatzZw7dmfg9hv1yYNdZMnf019djJniGOfr0dWbBh+RhRa+FhE7u3yWLl8X2rLccQDAIZ4yAthNG+vk1fQaeALcIk/woQwgPhY7Zm7UKhL+z7aHOtjWPeW/RuFdHzfWiUz1n/UmbXFaHwbtYFes/FajLY15VJjh0KS71sJ+KrVD0IbjMq7uLEh3qkpBrjmKXUe8e2xeoQK9918xA1GnYTKxDS30A6PxIrsfnTbvgguXVZoK/1Nr6kQxrel8JaqiLFKZlTomqkTwgCgfcVTqLCnliCE8f1r1Dd8n+R+YIFLSNATjSf+e6f/pU/jGZqfUfkdT/aC6w1VuOL7npKrnzcAYEPqLtx8ThVYeSFMVmy6mGSUD4rKapXMcPP0EMYqz+utZyOF/Fo+6O8vJs9h97bEbxLS2k+m4vY2EdzAKpnx8DcyHqouTzCsHwDzM+Pz8d8WFcK070LLY323itCSNg+t26VUaVwYT9DyqM+R30CbEGqACmF3+kWgj0e4wD8A+A604ZLluqEQxreRIn5SojH/ACDrh6a6sakVbCiZfpdQWj4kfiPlyzsUwgDyvV/a1AAF5y/Af9cw3XPq3wUApTLVdWbf8lCWtm5SIR42vQtntORGXcYzT7SuvEl6v17/CYlCW148G6Fre71Z8UibrfoEZY0qHmPhetQ86bN4+L2W6NBXTVZsTAhz8/XWrTkA2Udo12lZsbHQHXe2+WJo79EAwIQwvl1hk2LYbyqEXXzRgrSvInHn6Qh4v5eApQ28HM7x9B71eTXikZZv9N9UjfikrmrizdIWtjLDrV5dnB45z3DvQdvrOY2MfbpW8eXy17JiAwrtyJgexoQwWbEBSccczpcXYy1MCOPL4cdut2TSrwUdQ5GzpilZh2LVubXS3poAgDOvlMX1QXqk438klaAm/mVUEkfs/2fSnogZaUoKttfHjsabhPv5b1twYvxcWHsPYZoampf6mtCgvTzx5d/e5ounPWyQm+i1DLzvFQAhIOWfISOhTfubv+bv03g2gOqH5sj/guZbl5+IfferYEpaD1TuluGQr1/OJqOUiwk+W0cicMQhp1pPetLorH2P05ryk/n0yw2EUxlAXByKWprhsl9NDwAPosNQJk4Pqexok+Ds2eP45J+bGvjDfibdMG2fk5cwtupZXXmmAF/E7f6Z1cUH1wVIcNmQ9ROQ+fQClobnTXndwgBgHPFFKf37EGR0WMryUn8nGsvIUb64s4cR7d4cha1DcMurDKp8n8iChhrlofcubmyI2k+pAXfv9olA+fUH2LdK+dBS6qIwZHVfhMA9Q+EzQI1tlLEyBH6DUnBtSwALRWBEfP/QWGD0Ho0ZZpXMQsBygPjtPGh73uG7157QzcxORHDpsrq0jvpRO/619ciKTZir6L0uTz8Pl4QjTucE/rS/x4lrGF8thz1P/yIS/q/olS3OBBuAwKvbL19xyK+j8rQbPV3fnOoBdMzX5XVWLq2/V1pXPGh7nvnEygqJcUdPKxyVafS7oGMo3HYks3ttx4xG2c1J8EisiCX198EqmXFnmy/2Bf+MjoNHYMf3SwwFnpW3amBQpSu68p3NOzTwvNFzAFBet+COlx0BL6q+nNvulkHsluHIfMYYnfJJySg9DWLtCCWSz3NjcCQLmTDzqh+2N6mEO09H6PyjjKhJsisOfByGCj8dEMY2X8eTrA/8c8uRh4hvVtppvWfftMDzq8NMWeXm6YEtB37R1XPzuUhU/iHRkIf0WZFArQfoG2TDzLophrw6+0boKbKskJhyFMzqce2lexRtOmV9Y0h9TurKyJoeBZ93jFGAKW/UB94RrzOyDsBcpozuW/ZfGeMQLffKqCjUWOR4/8PzqA3ePSY/Ctnh9wCIaKzavFdGRKHGkgQUli+FnXd++MeeALETsbl/44lYbMmJWAn9jSRsfosRfNw65eJuIUH8ubSpAWLS0iHtu0fSGmhqqMP/nIBApK8gqqsrI8hpm9+PY1mMrIpdM3VCmKzYcOEliwCAISs2+K26zK5vPxPBfj8JaSdZ7UKu1V5p01dYr/JIwUCoGYIW8WxoThsAgGXWRHQt/wAJzdbpNG+yoiJD9XAPhe+vIxA44hDjR8u7qUZ1AMDU+E3Cs4sbGxq2ieeH15be3uaLDkNHoHH8YFglM3YHl0PaN2JMKIq8eH1oFFz224T4UwCwa/GiJxKyLtvvONTS85pDPg9/TdtDNeoX2hKUuSsjo3TtNBLCgg+7wJ6WCZ+4keweL4QBQH+PKASMP4A1twnimalxoMAbFcKM2isrNpiqVWP3q+wry55dHR6F+lOI6Vyj0uVZPhoXho99ZnJxxZ1tvnDdm4Iq3ydifX4S3O45103d7RuBlLDVMDUORHTHZwAAe+csgKzYsKPxJrQfPlJIT/tfVmwIHEVi0aS2WQ5ZsSH12xYAgPT2SyErNrSum6HLOzO7OKh7zRpC//BIp1bJLCgJPGRVc17QMVQvhGm07r/9uFToZ2pWGTJdjX9ET5ddzY0BkLEtKzZDtFBWDzjt9AYVUXFJLhEGfl33nS6tdiwd/GgeK4MXwgAIQhhFoaPl8X883XsqHHFHd8DNXWLjwtFmkY4ZbTlG5VolMxPCUueKcdeM5gbtuN4UsA1571mwb7aqmOCFMH4cLb9ZU6xX85sKYZTKbiZC+ZL6+9jJdoWumbBKZrjtTNbxSMta3oCgfBa2DdHN09r3S/MokbfQLOk5h3OTNDMemX1JG2kMuq7lHyDzmfmG5VGiaLCmxoGGc5YjoqisFCVSm4+vo8r36niiADIV1ukBJSjdGEzQUF3Ll8fn9Q7j4XA13icVwh7+5sXyG/Wzln/+9+RaJ4X52yiv+4x4Ib7anSXE9d8URGIJmhoFQFZshrG9lDfIN+w/MRH+Q1JwtLmKEMq3mSKA6r7p4v9UCLNKZlRZmQhTzRoYeiaPlZUzxWLYxl4V7gp1nX2LfG/HIlYBIEAlVomY8AJgQhiNj8mPRVrX3aZkbxTdqb9Qp70dQQ9+0yfC8H36vZ6A7A+NrVlqLEoQrHd4ut8zXEBW5BXWVsmM7Bf92TUvhMmKDUVRzRgvNZYUK9X+V85Gilz+vr9/OZUIYv8wemglGzNZsTE4bpdSpZkN//2HpTAvwF/QXjub5DM6klOCGksS0K3rAIzutIMhCVF4XEp0UqvztV5rGLdjLauj4lqiyWx1tK/DBcTRwqjVqqXPihQmxZypqsmTqWoVAEDVFaImiprdyIoNteYnsPIq7a3JTG6OvjbX4UbMKqmBOmXFhoBhySjc4WnIc7cuA9BtD9kcv+MjmgykhK0WFkm+rvC3ycRMTSJkxYb9wT9j5/IlArJUwItkc3F5DGl36W2ELwpTX3BWYfmdaSj54JgAMMizpcCToeC1g9jZ+/wySmh7aHJ/lrfUdrKho/FPaiwW4dU7DXzBcMN1tDlZTEqfL6WrO+891STjQbcw9K94AwBQWE70kfwyOx63+0eiS7/nAQBZn6hCt1Uyo9BbYtf8OKi+VP0d3ak/K+/4y2QjRk9Xzr9MxtHN+2VQbncdyIoNfTzCUenHRJafUp+Tl1ib935DNpH2k6nsG6XprZJZ5+cyPLc1/FeNFcoLnRIDq2RG4AuiAuB4aCHMKaRN5hRyf9zElwEAGRMCWXudbcwAIhhSctuRLGxYlNctuBguohRSHmTFxoKaWiWzcIIw/RLZjBXaiKaaju3S24hwmf+OKtA4E6xkxYbhg8bjyijyPs9taASX0CCBB56skhlj8qOYIErJ3q65kK70TbuuT7KmR8E1WFWYyIoN+U8XEMG1+Ntyn6FHJ5QVG/LeteD4y3PR4didJ9740/uBsUkCFDltl5uXp1BPxJsxQpqTMfqg9fx/+g5XNfNzyoNWmOHz07AUAAkLoi1n+BlV2KUbRdfdKYZzKU/UDFRWbKjb+xRkxcYCLPM0O2c/GYevWbDlsKxrm6PNPjvFyD/P2kTHDU0X+oEealw7Jo2eIbwplnG88mkbHNL7blPo8SrfJyK63dMovHsXVsnMTrP5NpTurJqi03HGr7284ks7Bh2tYfQ5pVfSVcTGMl2yYZXM6LV2H2TFhrgdax2uAdKnBNL+joHpbWhKIQDynZXdnIQH3fRmtFolAFXK2C9fwaBK6onz6VFzEXJwgBAQetPZg7oyjr80VwguTtEitX6U9LSf9pus2ND66H1YJTMyOhKlEjVfpmTadVg3ti7GikoYrdWPVTLj5kAibNNTLS2V3ZzELBOuDYvCPZkE1k5dTPZyVFluNK9RawB+fS+8a1xPCf17qUQQ+4fQ+lRiskPt5PnFc1uOamLk2e+48OECok04P6mcm6hOMrnvW1B49DTerJGG3PfJRpgG3KXkSFvXbtQoRL4xVniWscrMNKoAMU0AVOHOaOHg7eEp+U9MhOWIGvjX630yoRW1NMN+/YZuMZYVG+rMjkfqIn3MFj4oL21L2jcRhm2im83Q5P6oFV8Vrh3z0M2XbCT42DiFx08zXxyAnKbIig0mfx9YJTOaHhho2G/VvkvQbcSMKO0bop1LnjwP154XtXEXNzaErNiQu7apsJAabXYp7LVVIiENtJv1e7II8S8rNqa9/67TIjSeG8u0gTV7pjrc5AHEbK1rr8GkH3Yd1j0P/C6G1XXmhXnsN93UeX6obu7LbFUF4qLkE0K9E7wt2P/lfLjEE82yz1sJuNs3AsNzWwNQ48/w/XC/R7jQdgrooE0HkPhNAFD309K41/aCsKjzf1eHR7HYedqN0aLizRufV3utRN5C+kBRG02h/rX9fHV4FGwhJH+fKkQILv8zUXx4vytqWh/32yVE9cXgx6g0Mx61vyHCx9k3LQj8LgbRjduydKdCC1DYOgQ3BpPvIboNOUExCoBM65uelSTEtns7Qw1fYMSb694U1FhEhPpqSyqxd8/noZtLWbFhgUcC4o7uQP9T6qnf9lXfQlZIPLXzGxoxJca2u2VYWZ06p2DrttW4udWP8ZDZ6VvkvSsqLqySGXmTLEwRFv5ODE7GEmXOzqYqBP/9nuG6tjgiqsTg6+DDkVglM64WH0wazd+UBCH6NcK3qy+Zbx91CsWtASIojHbT7dqkIdbcroLCVvqy608hG/ErI9S5h9fa0xNLZzzSayoI8/GueIACmm68V0vIig3HJupDqGjpobUFXj3XXMhvv3mTXZuu3GK/Oz87HDUXJgjf4SKNIKjdELPfSccw41I73doqKzZ8LR0U0sqKDb/+9B1kxYZX00/AnkoUdePSUsUyOZ5NAb5YVnwKDIhrupYaLo7BpbGiDyYtc/KlIOE93OtNxuMX/o10ab9/v8dj+1dWbHj61EVU6Jqpe0a/d9Ouw5AVG8psPQiXFk0MhTr6R79BAFh9q5ow76SErWZrqVUyo4xLKUQ37SDUOTi7HWoscW4CyP+nZVklM/YGlxWujZQn2jGsjf1Hn7uEBrG4m5VXJT5WEKZlVFuWgD1N18MqmZEVvZgpixzxdCPO/4nmkhL6d1OJj9j/z/QkPmI07lKr8WNYPC3t5orfZFolM+72jUD5n8lpS7tRo4Q4TUYLhazYEPnGWCR+Op/ZeGvLzv3AgvofkM3W42zXtfwZ8chT1g/NkNpWNFPSpqW2/tpnTZJdcTy00CkvNwrvCXkd8SErNrR/YRR+/3aRoKWUFRtCp8SwDbS2jf0yOgmC4OUxURj18iZmtsf7OznrGyP+jNID0LVJm95UuTLbtGifR3d8hp3mGPUDf7/I0gwu8c79eOg9vj2pc8MRGKtuOJTXLJA+E08f8iZZsHrULOaP1G7EKCacUfI7WBZz3Y0XQ56X0JRCnbAgKzZ0HDwCbjuTDb+V6Zcb4J2aZ3T9/Li6jPpAVmxo8V4M7na7xU49rw6Pwk0/IkQ9rp+NrnPWNMXpVitEBQsXL0mbh/6/EeePKtHpQgw06tfGp+fj6D1J+68PiULVFfq2UBRDo3bIig39Mzsi92Y1VIlON+TX2Xhy1DfOyOibiXgrBjHvrMOmi8106HKO3qus2PCg6BHKuJTS8Xnr2Uh2esrz27XnIGzbrAYiN/n7wJ6unkLx6bt1GYAzo6sg4KUDTtuhbZO2Tyaca4FToQXCM9cmDVF43HGsLsrf48Y7TfdH7jmb22TFhoFZ7fGW+1ZmAqusb4zSW6uwk3ej9hvde5Ix64yE/qpUCVvP7IXPhtFoNPuaw/nx2rAoJE3Xo2TybY609UOV6PTH8pXxWSRT0vyRcc3/Tp8ViYwB89mc7kyop5Q9LQqV04HgMceYz6CzOhzR+ZctqPtVPJbl7sOwfjFIH+8G/yEpuPCSBXW+doz+a1SXa4UKcK1aBVnDvZkSxFkfPG7ucDRGCluH4LcfVX9iAHBxc0NRQQFu94/E/i/n47L9Djp88ToD/6J5tb7y9L4z/3GazqgPtPlkxYabtwpRLTDzH+sTRfesHt9M+dt8xPJfnPyP7Y+/gkoEsf+fiQ7qa6m+eKaBGOBXVmwwfxwL29uquYo24CagBpnVTkgUtEN5zYJjE+fibuFDPB09lAXSNFrQTz28i7tFbswMT1ZsiHptLCqvSoQ5BU5h5ynwwePoSTf0T7qw0jJcWjRB0aHjDssVaIcH5Ea/GNZj+l2Cvb2C7B+D4f2sCqjAw1TLig1tR4/G+QgTzoxwDF1N29LmWB+Us2Y53MT8ercUPvdXzWxoWzocu4OfZnXCwWmkjkubGqBWrzPI/DQKaYPnCXU9bjHVCWrFgAVvZBzDp35NheeJ9+0YdWQIpD4n1fTVqiHuxO+kr8uUwfgTR/C1Pzm16zBsJHYuW+xwc0bLePibFzPVcQlriqKDx5A5Iwq+byY4fO/0fvSZaMQ1IDEMW748Bvu/Uh3oaWBzow2hs3Hg5i7hzMza8DMIhqvlgS8n/x2LEFyY0ivpp9C1/AOnG4PUJS2Q1W2xIV9/dkOZ+WkUfN9IwJTMZESWNTmtn15rFTQXx1lQe47jgLhuHu6Q1l1HboTo60cDKxuNv7k5+xDrZQy7rqXHbar5+6+mn8Cshs1QVFAgpFmZtx+DPFsaggu5eXliS8LmJxKyebALAMh71wLvtRdhP5OObieuY2tQVSGvS0gQO6HVCoFWyYz6Byro+k1bpzOBHIBOsULT0Dr4TS+9R+eLB93CUOH4ORTk5TNgGAAITSnElpwgHAn/4Yk2talLWjB/Wv4ZBYPRtt/R/9bjxmDvHPX7vd8znPmxOeuT3PctqD81HjX2V8OVlqqZGyUjBaGzb6qgQyhT0vyZ7w4oDmHx4AEmZdowzVcs43H96YweWlvg96WLHfaFIypsG4Ica1kUli5yCHfvSBB3xG/X091R1OEsZMWGBktj4D1JVcZc/SUQB5uroST48vl7Wgh4vnxn37uz50L5mrJSF4UhcNRBw2dPQo7Gb+EOT7h2zHOa1tQ4UBfyAiDf8PzjcbpQFHz+jvWC/ifg60sEsb+OSkwT/yHUJ1B1nqeThe3BA9SZTUxH6J9WCAOAX4KqwSUkSDcJuu6zwRTgC+kzsrnq4xHOhDA37/q6xdsqmeHl5obQMsULWTgxiau8ikzmPOw8Tz7yCMiKDdHuzdlz7X9K2snQKpkF0At6r6tXOMs7O2e/rs70LyNhTiHxOy7byQaHCmGZq8ysbTwfAk/FZnnaPpMVG+ztie8IL4QBEGIFWSUzyv6SBO/3EoT2nH9Z9Lnw2ToSVsmMPU3Xs3wtj/YV6rRKZkEIAwDXbALbPX9/e1RfqtZRq9cZyIoNvm8kwPenMYaCD98u/rd2UbNfvoKMVWZ86tcU6bMiGSCMVTJj7BfjGWoVJfu1ayxv0YMH6F7+PktPT10oDxQIgR9jskL8Jeh10UFiO+/7purTZbRQ0vudap1m1xXXHhDeXVHyCeRMsQh1OhPyKRWcVQQhjJqwyYoNeT81EdJTcBBZUaHAtf3Pmwi9mn5CaANNEzjiELt283AX8jvi18QtQEZj2veNBKR9FYnJvqGwSmbmh6ctlx9zvBAGgAlhPL9Z01VwlsIalZEbcUeoFwBcCsV+4P2gqBDGp3etUAEAcH6D2le0zvk5+3R98OBXb5Xv4jAaXco/wrZcfcypQZ7E7I1HLQOIALElYTPaHe/tcG7ixyr1qwOAnCkWeH4Uz1BDK7mKsZ4A1UyWlsP/V16zMCHMaP6MSUuHa9myujmLp8JWZkMhzCqZ0WhhLPtN66RzTK1eJEzDriWLkP80MWf0G5TCzKCTQ1xRt/cplu+i/Q4DJ6LkI48AQOZcKoTJig0uO93Zb60QRtvPtwsgEOlWyYzy68Xvt+zmJJame6vewjiVFeJbBwD1p5IxOsk9Dm9k6Df1WiHs/ATHQCwA4LYzmdXjiGTFBriaHI6bogckJlmbsmAhDQzLKCYjodnom372i60sbYU9tbDtbhkAwKMuLXTjhL923Z0C+NyF210XyIqNgdiYGvhDSqyEgo6huvXBSKjhnxd1OMt+UyGMUq1XC9kzN+/6urF4c2Cx6awGMdVonGvrdZTm7M9BGJzdTsevMM/+ASFsdGomS+eI7EWknY6EML5+IyEsYxX5hkcVx4LV8v1/UQb8/0Il8PV/Gf0pQezWrVt/NR//eaI+YoA6GbzpI/pUaSde/j+/EQCAvJ+aAADsaZkobB2i24htiVchtvmy+JgycetV/4D8d8jGrn9mRx3vWdYlDieSx10DYOZSlIezb1qwLSeJpR3v1VJIb6pRHf4TEmELAW60uoKapgpC3/gWb6x9141hGxJ+YdAKJlptVtp36qmerNiQ/kWkkC/ta8fvpWK380IbtdpjANgfTCDdozs/ixlZB3TPZcWGuKM7ICs2ZPVaiHMTxVhOtHxqzsQL6gCBKjdaUPh2UqJCiP/ERPTxIKegUzKTUWe2McwzT7S+tkfv6RZfHmTEZ9Now/6XFWLS6awO4VmTyoh4K0ZIkzNFFTi8JouCBK3HVLOGUPaF8cV+Nk1EBYCs2JDQbB3L79nvuLBxt1+7JvBP6eKLIjw+/f+5vz5WlzZvQf5ZVrdWqOPvxZ3eA0AF86HO9dEN27A8AS+r2m8K+mCk+ABI8FeepEQVvMPFzY399nlHVQJs3foDK4Mvkwf3kRUb84Ny1G6KnkkBHfhN2dhiwe3chkbsPgUfsEpmAeXV0UYtcJkI2MALv7Qsmp9HQmuU7GZYptdk0cRqRV4kzk9Q0RQpZf8YLNRJn3tuIjEctQioad9EoPOzw9G7wm1szdQDxPC/KRIuT1RZdWo0edepS4lParvjvQkibjEPF8cRXo+8oVpWJH0snqZTGuLZEnHHdgrvhAZId7sjopcVdTirU7bQzSoT3jVB2CtwfGnbSQGOCjLJOwo4WIY935KwWcg3YXAMPvVryvx4AGB+juoPpryutllWVOTR506TeSn/bfI87esITMq0MZ61vLn5eKHB0hjI+aoCVLuW3ojzZ/d/D9poOCYv2sXTUKN18VGnUOHbGltVFX7utLnElDylfiVjuVsAWRfv9CN+xp2fHc7q9nnuCLzeT0CjhbGouIa4GdjPpCNtZmO4vXNBx0PTL1W/Pm1f5K8LEmJe0bxM6DiTzsbAFg2yMEB8rGTFhmr7VQHfKpnx4lkVMfjiOAtM/gTkgle88vXw/ere9wQuWa5jVrZoJuisf43o9jPEh3xhoAhWop3PZcUGk4urrm8AoP2JpwzL1lJ6u2XCdcYqs1OeS+i/Q39KEJMkCaNHj8bBgwcfn7iESqiESqiESqiESqiESqiE/h1UAl//l9GfEsRq166NxYsXIzIyEqGhoVi4cCFu3779V/P2nyVeA8T/da3fQpdGq8GlmhwKFiArNh3UvfZkRKuJp7Cr1N9LVmw48SLRph7f2gCdjqsnopdHRyHiTXJKMTi7ncMyeRqXpqLyaZ8lP3gI9xnxhmY6smJD6oIw2K9cFe4Zac1kxYaA8QdQdcwj5Ewl5lWuZcsyuGaeT4rCR+sMeP6wULb/K4kIs9lZnZn9FrD8VItZ0CEUsmJDxWL0KdPvklPzC1mxwX7iDN7q+4JQFwA0nxojnHIdfU0MTsmX6Vq+PNK/iBTaTc2EtMS/+6zVwSxGkpavoT++qLufuiDMoUnN7uByupNV/kQncGySLp+brzeskhm3Wl/GpU0NWGwqo/cOgKG6VV0umoLyp2A0j/akK+7oDgDAq+eawyqZmc/l1l/V8AOtj95Hh6EjdPXvarJBdwKk5c0oPhElmm9Nvl5zy//XvttZV4kJV6fjt4TvtbRMtOGVXiMmWPabN5H5SRRMVavg2jBjMBqeXxpT6Gf/3wAQbbqsEGRH2m7XisR0kMYgzJ4WJbRFWwdA4vk9iFYhprXx/ehvN19vAAQine8jbf/WKzaX4++nLiTlmxr469LzfckHfN1xTwyGTM3uBp3Oh6yIkNSnQkV/M/6d8L/LdMkWTpfSloXi/CsWZsrMpy9qaWaoegVnFVglM4uDFfDiAfz241JdO62SGWZ1ymbzsXbcFT16KMwT9OSKhiehVHsOmU+7W3oha7r4Ll12urNyaUwp7Qk77V/eJE37jFLjfcOQujTUcKzwa5ZbvbrsVIpSte9En75v3A8IZY/KIydARZZmKJ1P1oDkD+YhbQ45WaGnqa7BDSHNFP03X/eOxPWhUfihITmV9PiYzBuZ/RZgmi/5RtqOHo22Y0azdgFAQVYOvCcloOPgEQ5PLCgoB20b/ebSvlJDswzxFK06jNYFirLpbN3gn9OT5SoHyMmZ694UzLzqJ6Slp6XsRHLdAV3AcYDA2Be1NLPy+ffv8fQJ1J5L+mtwdjsAYFYiPK+N58Xqxg3/zq+1vCqsDfz7rT0nHrh+E1bJzCxg+LS0DFmxsdN8WbEhqHQ5yIoN+W9bdGPSWR/SuZL6GWvHNb2XsTKEXVslM7I/itKdAkfVJEA8l0dHsT4ceiYPppo1DE+8aL/wJvGyYhPMyUvov0V/ShDLyMiALMvo27cvjh8/jpiYGEiShDFjxuDQIb3dfgk9nngfMUrdogcKE4PWMV1WbILZIU3Hk1UyI/XbFroJgZ8k3Xy9mdmMVTIjcOQh3SaRpvWcFo/tTSphUqYNZXbXRc2FCTgwYx78dg7HJct1gTctr/T/nIBAHS/0GR+ry6gtWT0XAdDDY2d8ppoPrsjbz+5vSdgMdwsxodmamYhRz2wTJsTpWUlYWn8vpmeJcMIdjommJB/VFv0RaBlZg8j1ju9V80yPxIqwt1dYvy0qhi3m+53m37ZlpW7DXGt+gq7/ja5lxYbCu3eFoLbOBIbcyepildpmOYufxJ5/QJ77vE02RNRkh+93rcBgNPbo/4aLVHMXv9VjRb4eFajt7XUGW+NWsTYFLtfHAjKCNKb5u/lGCmOBIsVV2VdDMLPbPyscK4vHRpV9NRDxVgzjN6G7P9sIdW9u1X0jfH38NYUTt0pm1NhPAHNuDCL8nON8oCi65Yo8YnZzfSi5vjUgUteHsmJjJnjbzqu+n3STSNtI7/u+lYBGO26h2rLiYKcLidBM48HxZD+VBqtkxq57rvBIrIgKPx1gdQ7NaQOrRMJGAID/kBTIig1nhhMztisj9cIV5aHW/ASUiTuI7mHRAIAik6rF5MfKln0bABCIdNq/NJ7Q48jT6zJBICz21aJl8t+TdnxOHz1MKCPu2E4AwMqGHiw+Xe77FkF4t0pmIT6VozFub98cfgfLImBYMot3BIhmXr+uXQYALDSErNichlSg/2fUsbE0dD62SmbARexXraBrNM/TZwXZufB5JwGZM1S/v20NtzAeDrz0pbom1K0jlKPtX/6ZzwZ1XHo/exSBw5PxZXa8bo7geSs4dx4eH8fD3r657pm2Xpfi+GHUz84l/ggLIAwAAeNExMnCo6dxc2AkQqaR90DDaVRdrkLb8/W5hJJvrOwvSSi7OYkF+KZproyMwo7vl7D0Ru3SKjwA1VRYVmzMvJxvGwAhzprlCPHR7eYbqRPOjfICxMd0y4FfWN00CDWflj4zNSAmlOdfJrzw5sgAcLVhOd2cp1XW0TU+49n5UN4g/dRyApnba7Y6BzcvfTxO/jpkWix8141h7Tv18C4A4kdpv3zFsL3hKc+wd2aViJlm5gxVILJKZnh8HC/EUhME4mJXg8LWKtJY0vR5wnvT9rWpVi0iLA1KEe7zIUQoJYe44trzUUj+YB7Oti0PAFgxqBviju5wqpDQ3qNhXe53DdU9/yeSS9Hf9/dvp/8zauKlS5fw7bffYvHixcjIyICLiwvMZjPGjh2LgQMHokKxY3YJGZMz+HqjicJo0vij6YzI2aQUk5aOeQH+hgtOm5jR2DNvoZCHIpbJig0+20Yi8IVDusWL0sUXLSxo7I3BkajyvTHKE8/nNftdDPBUbdaN2nT2LQuOvyQiud1+JkJA2jNqj6N+dMS/ljdnzx9HFBHMUTl/hM+up7sLmywtUp/RZpqni+MsKOh0HcciVrHnH2YdRHiZUkIeWbEh4s0YHaT5k/RbztQoPKhbgMDRB+Hm642CzGyc/TkI7n1Vf0dtX1BYdiPSbgD+zPgHgPs9wrF7IRnTFBHsj7z3dfmJqOhaVtd+WbGh0fxYBjjwuPFCn7t5uDNfMqP2GpXxqEsLHYolpfOvWATB4XHkstNdGEtGAiptn+/PYxDw4gHAxQXy2RRdWY7GtSPB1yqZ8eBXb5Tpkq1rb2HrELjuTRHy9Tl5CTP2dGensG9eMDOhxkiJ4KhOSnzYCaPn2vIcUZ2EyizYvKP3/qBbGMpuP4Kau8vje+9dQhpT40AonWrC9pY6p41IzcKSQB+HCoPurXqjIDPbkPcn+a3NZ/TsUadQlNquRx28s80XFd8tj4KKpUHjUBnNWXTu0JI2vazY4Lt+DDL76Odvvs0+m0chcMxByIoNPVK74VE7AnrU+uh9FmfKqC6fLaPQePpFFGTlGD7XtrtWfFVcslw3fEbncWd0Y1AkqqxMxNOnLmJdo9qsnKKoZvh13XePnRcA5+ONUq+TV3DqjoS0sAeG7XG0DsSdPQyTiyuskhlp30SgTJ27qP/MMaHu9BUh8B+i/8ZNgX7sFNgZTcq04d20PkKAccpT96ie2JKwmdX1uPXKGfU5eQnrG9cS2n1lZBTKXSnErm/mCUjPfJpGyW66U3KKDlpudx1sCJB1vAw9k4flDTzhstOdoUzyfLM53cdLN9ayVgfDa54J6xYu+Z+Ar/f8aurfhpqY9/L7/9j++Cvo/4yaWKtWLbz55ptIS0vDb7/9hmeeeQYnTpzA2LFjUa9ePYwdOxZHjx59fEElxD5SqlHnJyBqnmKVzDAFNRDy6bQ5xeAEfLk0nZHmkX+mnaBlxYbeFYjZaati4Au/H8eyPOU2qidJ6/PJb4pYZpXMeC4kCWnfEZOw1uPGAFA1cfnvECHMJawpbj0bicRP5wt1098uLZoIfFYzlXfYdkpaIQyAgLTHt/mjyw2FsowWeqONDv/74jhVi+qoj+kzavLF33Np0YQt3o7aRLV83cOiISs2NFxMNL18cGv6v6jDWUS3exoAMevjkfoedNOnv/mcGBS29px4HItYJdx7zyeM8UD5bjdiFKquSIBrk4YMGIWngOUxujFFUfNOj5yHwNHkNKTlBqLNpEKY0WZDVmxINP/kdAzz/fQkZFRP2V+S4P87cXx/WECg4CnC30MrOV1Omx0haGlzpqpmgd3GvyyUN/1yA5auSoYa787qHiLwoP3d6iXyvVAhzBQgOpQ7a+POZYtZIGZt+VQIkxUbLo6zsCDFjvqVIqY54pOfOzL7LijOVCQ8174Tt3p1WTn0frcuA4R651wnSHnU1E43jopNrvl5bX3jWggcm8Tuz6hjE8asETnb5FETN23eEalZ7NSIfXNRzRyW70gI48stIx9G0aOHOPJzYzT9kiAhnn+FKJyuflaIOl/HC3mXBProeKYnvlbJLAhh2vq086DRbyPFxv2e4eh18gp7Vmp7Mkx1agvvJm+SBRW6ZuLS5IfghTBaRv0DFdjvAzOMQUMofXnNm+UPGHcAJx6qpqTX7HdZnbTNVAizSmYmhAHA3uCyArAPzXevNwGn+q7jImzZv1FXP0V51BI9GdKOK1mxof6vt4Vr/j9AzGKrrCQKx3WNagvluCQcYeiIjogfzz1OqBD+RuN7U+MaghCm5ZmW1WxGrFBGtHtz1u6AFw+g/jPHmEUFvV/ueDkYkTMhjDe/m+Zr1glhlKeCnDxW16VNZL+T9ei27l1ceElFKU6dT+YxerJIUTXzH1Zn5VKqsTgBe+csQM/OA4R2d/X9GUDxAAEAAElEQVRSLXK0QtjTpy5iU8A2Mm7aXkDWI707zqBK5NvY1nCLUKd2f1WQRdCDz/5MAJ1uDI5EapvlBPHyf4VKUBP/MvpL4ev9/Pzg6+uLypUro6ioCHfu3MHChQsREhKCZ599FtevX/8rq/tX0frUY+xjrbJSDV5rmUiEnqzoxQDIhGE/cUY3wfOCm/aIn5+Ault6sY2FrNiY/4c2nXZTKys2FC6tjfQvIgVTOAAMye6pM0/DrW4dYUFIDnFlPlfl1xObcCXyFoIPuzC/s9Sh5RH/xXxmysYvFDOv+gmxwfiyrw6PAlyLfUBcTbjbJwJvZBwzXJB4ut8zXFiINsxuz5452pRRCF7lDWM77tpzjE1xjHjhtYi0f2kbjfigZG9PwgPkDvKGVTLD630i8PIwvbTMu30i2IJ46ENxs6MNmAwAlX9IxJVRUbr7vNDFt4fyTcva+utqhgbJt8H3LcIj3Xifm2hhvg207Lz3LNgdLC7qRkKtdjNPn+dOVk9HW748RteGUrvqsfyULm8O1N2jZQAE4ju/4DbKlyGLet3ep3D1l0CUlonpdcD4AwI/Xu8nMD/Bu7VcBZ83GjAagBAonRdW+H5NXdICqUtaoMJPosmVPU2EWOb75u0MvbKLDyJMx632G689J57Fb+L7PGcNMZV+1CmUPbNKZrg2a2Qo6Go3HEZKHf53wbnzOqGk8Phplvel9NOI60x4CD7sAjdfsiFffaua4RiwSma2EaP3XUqVhu/PY3TfJc8/P7/xCh+AnBxSPyZte/tXvIFTn7ojdW44q98l4Qh7TjePfF5te11KlRbLLSR+qMcmzoX0KRG6jrxO5kg+ELZ2bhA2+cW+SGnL9OZNWoH0nuyjK0NWbDD9rpqpZ34qzgllNydh/pnWsEpmttG1X7go8OA5jQj6NXvqIbwBIK/VIwDAomKzPEcCPgBsDaoq9NFEb5UfahUh9GlxGJf0WZFw8yFQ8nRcvDfgR5gCfIXxUG5DEt7OOIqJ01RzaPrcxc0NdzfU0fGkTWeVCMLjQ2sLMg7HEKuBHieuCRtwmr6y6T7L71qeKBWnZCaje3h3AGDoiNQXu3CHp2H9VsmM8dVydP1276lwhib5OKUVpbpfqUpA7fug+4QZg5cBIAJJxswouM+Ix6WYKGTMjDIcl6EphdASRXM1Ikfr5eEWP8IqmZkPIJ+WnhDLCkEYBkgIA1mx4VO/pnjUpQVGVCNrUJ+TYhB3q2RG4TfqWgQA23KSdHxQJdu6RrWFfhvr1Qr9T53HjcFkb8CHLrBKZl0oA+28ZZXMTPF4qesD+O0cTvg0cFMpoX83/Z9NE+12OzZu3IgFCxZgx44dKCwshJ+fH8aOHYthw4YhJSUFM2fOxG+//YYBAwZg1apVjy/0P0Ra00SejLTO9LeWzm9oxIJy8kSDTVJy8/JEQU4eXCtUQOGdO8LmQBswlAbJ1fJkNKHwvws6hGLH90uw654rRsQ/zwQPZ/w7Ixr1Xkv8AseXef5lC9xXpcF+6RJ7dmVEFPZM+YpBtGvzGJGs2NC9VW+cHl8X/q+oG+ims2JZbDaeqLkBX3aRpRlc4o8YapddmzTE1l9XC/ec9dH9nuG4N/YakkLWOuTdFOALe1qm4XvRtk3bd2xDWRxo2RFR0zueZ2vfoZB/Xq6rx7VSJRQ6CXfhWrYstmaqiofUBWHo0OwUltTf99g+kRUbfH4ZxU7V+LakfdecKQCMyEhQsEpmVNtfnTmVJz94iHd8wnVpG+0fgvrPHNOV17X7IBZG4t5T4cJpMSVtoM/HjUP++fWhUai6PMHwmXZ8NVoQi/pTyBh18/RAQV6+kK57cysKzl8w/J5bTI5BjUUJWJS7jwUe1aaTEithaf29urEjKwRUyMif1SqRmIH13imCy517zM/HaJwa8dWt6wBs3baa3XerW0doQ+anUShyv4/09kt14+Zx/Zz9URQG9NyDxGaldN+GUV5Xc2NsjSNmuzSItCO+tWVYj9/Exrc6YdGcLzDeqyV7dnlzIJJDif9YfsFteLhVfOzYoO0zeuboPqCa8GWtDobPABVkpOXRvgz63qjtzvrGqM4mya74vN5hw29Nm0crsND7d/tEMCWes/GhvQYAv53D4T9YPGW43zMcXu+cxnKvPfDZMgpZ3Rf9ofnxSeoHSDiDM62Xs7ZQngZnt2Omp0bvkJqAa+t3LV8ehXfvCnVGN+sM+6VLwj2rZMa5DY1wlNsPyIoNHYaNxM5li5F4347JvqFCHsrDuYkW1Jv1ZGbLt/tHYv+X89k1rYuabRqRrNjQYegIXG5WBvU+V0/mASDS1g9VotNxa0AkKq1ORN57Fnh+GG845rR1GtXj6Lms2OCzYTQCY8X52d6uOUy7RKAu7W+jsvhn1NQUIKaNX9Y75JAHej/vpyYCuNrNW4X/G6aJX3z495kmvvLeP7Y//gr60ydi2dnZmDRpEjw9PfHMM89g586d6NmzJ7Zt24a0tDS8+uqrqFGjBjp16gRZltG7d29s27btr+T9X09Ug8l/yI4mhLq9T+nuyYoN27IOIO4smVxcQoLw8e61kBUbE8L4tFQIK7ObnF4UJZ9Q0+zwYL+NtFb8vR3fL0H3sGgcvueNjI5L2XNtW4yI10bR/0ZCGACHk3Pdr+KZEEbpu/dmoY9HuNMJGiCmDpS6PP08CjKz4bNRDXRslcw4NnEuK8fV3JjxzAth9F76GJO4CePq5QEXALJ5d7Sxvif7YPeChajWPU0on+83AIjb/bNQD59mXFoqu8f3Hb3PtIIbVxj2Dc37tIfoTG6VzJB/Xq7jBQC2ntnLeDUaN4X377NyHkSHIXDMQeRH3mblPn3qomFbKFqlVgijabRCGD+mTP4+um+KXlMhzCqZ8Y5PONJniSabVsmMUy3V/pEVgjJqlcwoSlG/l3IbRc0qez/FQA18WyjSlhFRvrJ/DBaEMPqMH8/8+zg1Zq46LvPydeUVnL9g2DdWyYxDU8gJan23isJ9npRIVbi2t2+O7hE9nH6vY/KJVjklbDXsJ86gIDsXADDjSoCON/43377Co+r3UmlvTWw5LLP0rk0awveNBPgNSjH81vi+ov1CT/1kxQbvdxOYEKbtE/4//V1oOwmrZMbqvHgM6TZCN7aNvk1EBpO6m1TG7oUL0WPVa0hbpiIM1uyZyt7jiPqtnM6V93uG657TenjQAi1fkbZ+AIBRUSQuHRXCaB9V1MT50tbh7Jr/XWQhZprHQwsNvzVt/zgSfABg75wFLC89debzAUTxABC/QX6t0QphALB7wUJciCIIfVQIM5qbHLWPxg2jRME+tGWEeuTpygAgCClduw9iz9O+IebO1ASc5qXtLLx7V2i77/YXdEJY51M9ISsq6ihP1Gf0y3OdAaiAVPzcUW9WvMO+AEgcNvq84ho9SJSs2HRCmLa8UtuTUcSBmdL6E80/AQAqrSbl8kIYTcebZ/N1XhkZpatHu07yc0klSVQO9jp5BdtXfcvS0bKbJLsK/ci7FWh5AFRTUwD4st4hBCzXn7Ty+QAwIYyaFZv3DkQJ/bfoTwliVqsV/v7++PjjjwEAkyZNQlZWFtavX48uXboY5gkLC8ONGzf+PKf/IaIf7KWYKIcfrza9I62NVTIzZ9SilBMILl1WmNjY4lKo2t4/aHsepsqVxTI75sMqEf8kfoKjz31/IkhIFH2s4KwCuUllWCUzlhWjBjriGwB+OUsQ66ynejjdgGSsEp9RXgJWxBhOxLSsfgdHs3tLcvfpBAMaXLGgnNr/1NSIasm0ZQNgWnHaHi3v3itcDM3ltJtfAOwERdjQtCR8lbNmCfdPPbzLFl0jQU8rcGZ9HMXQKq2SGaZqqokXj2JpVAZAoHmNhF5Km+6Ux6MiO+7JPiyN8poF3SN6GCoUACJcUuhpV3Nj7Fq8iJVNkRN5R3aa3yU0CDuXqyhm6/ITde13RFb3EMFkz2ijzbcxY8B8wz5NXRDG+KJmw7q6uE2ndmPFX7vsV3lwtKH3G5WNjM8iWTBqh+3jyjfqc/qMBmjl0/itHourL0QJeR5Eh2Hd7cqG75ym277yWxTk5eP18yEI2DVMSEMh0bPD7xl+H9+eFE3f0r833ui4lCkjoFD+5LddKIs/Wabt5PM/6tKC/fbfNQxNZ8XCq/8x+B0sK5RD+2PDnYpCH2r5Nvn7wNQ4EJ2nviooVIz+s/yJROixtyf+N6nPz0PAsGSkftsCt7epG0zex1dWbMwsGlBNRQvGXUaFPQTZ7dxECy6MJ/47LqFB6Fr+gUMhjZo47g4u51T44PPTgO1G/cr7lvLlucSrZpoUbvzLbGOQmu6tepP+0Pi6GrXBbWey8Jymoae/NByAlqcrI6MYerD2fWuFv4Lt9YU0q/PEE6Iq0WoAY1mxMYWltt4rLa9BS9rxQU/Qbz8TofpXcmVkT1PRAVOXtBD4DRgqrktWyQzXjnmG7efnomstr8K1bFnsbGoMpGaVzLg1QFRA0bZS+H9+3Wk3cpSufalLVYG5xXtkLndt1ojlLRSjSgh5tfcowqys2BC3+2fhvVMeaixOEOZto3XKKplZ0PN6xcHkKY2rmqd7NwBRJPDkPyQFJn8f4Z4jZY1VMiNtKFFqFXQ0DunAp6en6j4jHFuj/KOoxEfsL6M/ZZro6uqK9u3bIyYmBr1794YbBxHtiI4fP47k5GQ8//zzf4rRfyvRY94GE6bD86vDugk9dWkoiw/Do51dGRWFGosScKdfBK4PvM1sjVMXhaFd09PEbOhUD7g9X+QQcU07cfFk8vdB3J717Bk12QIIMEXtOfF48Ks3i7NE6Y2MY5hztgN+9v8NA7Pa49CehqibaMfmOV+hims5Vp7RpsxIK+ro2ZOkzf4xGN7PHkXq4hYIHHlIeMYTj5KnLYeSVTLDrW4dXGvng0qriZli19PdBSADR3wAxOSOOpJ3ix6IQttJ9tzN0wNbDvzicAE14oXSc6cVPFUhGwM8LYbvstPxWwzS2BmPpjq1EZfyq26BMyL6zCU0CNs2r9Sl0yKUPUlZsmJDdFB72K9dM3x+4SULKucUoDDmMip0zUSvk1ewqTHZsGbOiELvzok42rwID3/zQunOObjfMxxlNyfBFOCLob/8jgGVSLkNF8Xi9CgVyCXvPYvgt/DlNW9sDapqyAP/+/qQKIb2ZtQ+5TWLofmqUfspGfW9rNjQtecgpybCyhsWSJ+Kmuy2Y0aj7OYk4Rt19s04IlOjAMTtWMvKo3XPuurLIPaFdr9uwbFX5jr9NmlbmyS7ChudX84mo4d7qNq+vkOBxKMO+dXez5wRBd83jU03jcio7/PfseCu1yMEjjkopLNKZphq1jCE2JYVG1q/OAblfyY+fec3NHJooWCVzMwEiv9OnqSNLqFByO1aBYFdMnCvLTnRfCPjGDqWswtt4Om50wrW9G3HzGG1Y4vmc61UCVvP7IX/78PhNygFV0ZG4dDUeU/03QJAg29jdNDejzMPBkB8fAvtTpNQ1FCjjbUjKopqBpeEI0J7z79sQd2vHKPSAgTNcO+nc9DDPZSZjlslM9KWhSKzyxI0XBQrxC7UkqP11Blp+WlwqBTOtHiE/Hcs8JgeD+U1C45NnIuWL48RUH+N6vX7cSzz4abIfXyazv2HwXUfSUtRRx1RQYdQJvg64lVW9OaRjtpHeXxUZEcpF5Ph3PDR5YZOvwl6L/8dC068OFcYy02+ioX7jHhdegCw9h4CJP0xAYeaClPew9+JQdJ0428id7KFKQNkxQb/XcOQ3m4ZrJJZmJ8drfH8s4KiR9iFjf9YUzxmmjjrbzRNnFhimqijU6dOYceOHejXr98TCWEA0KRJkxIhzAklxhKtulUy49rzqpaYCmGyYkO9b1RhouZhYkZY4acDmNJkM3NM9va+yMyG5Ea/MCGMd5zVbkCMtEf29CydFo1SyiSycS3TJZtNHlmfEJ7HJQ/EnTaXYJXMuNLyGioGXUW5jUno7xEFnw2j0WnQCwIfAQf1CFGONGOyYoPPptGGabT8Xx8SBe9nj+LCeIsQF80oz5b5Xzusk7+/5bDMzCaskllY5ByVXW43QVbj43BtjVvFNJ0AsOXALyzf7WcikDY7AtZTPQzLpXlMjYhJ1w8NJQzwtGBKZrLYBhcXyIoNr1fPYPzQYJxGxAthABD6QQyLLUe1n5SCZsci+8MoFCWfQDffSGhpb3BZFGyvD0B1WOf7hC/PKpHTucBlMbBfu+Zws1Xn63jsmbcQFYoDZo+rmsfS+L6ZgBP9vSErNpTuTJzXy25OQkHHUNjTMrG0Afk2os9EC0JYh2N3WOwWem9rUFVRs18cw8hUrRoAMORPZ0IYAEMhLHVpqKBN/eWs+s74MoKTnhPazwthN7f66fpI+jSeaZvpmN29YCGuPR8lfKN8mVrSOpa/mk7qjNuxFh0Hj0CFTNWawSqZITepLLxP+l+aGY9WR/sabvhp3pCDBKnseGihMBZKuZiEcZH9Clefwfer3dT4vqnG3zs/QYwF5VKKOPDTAK00rlPHIWKgXo/p8aiYUQrV9lcX6pIVG+KO7sDt/voTIKtkxt5vFrB7dTXadi2VPpyOMrvrYm9wWdwYHOmwr/h6TI0DUZR8Ap7T4nGv7QWsz0/C+Zct+NSvKToMHYHuoV2F/PT/Dw0lJoRpT3r4Piy8dQvrbldGentiSk5PGAAg64dmDoEH6HijQhjPf8Dzh3XtkRUbHlq5ANWFdrK+bAlw2Gff7P8RAFicO75+Ps+afPX988AplCggRb+MTmpeLi4bACTOnM+UATQeIQBkdiFxIgvLFOnq5YlfM/ixrZ37jPqF/j/TgoCZeEwn/NK5ZOI04vOlNWXuc/ISq9P/lUT2roo6nMWDbmFYlqv622YMUNdbKoRpeQRICBoqhDlSAj7sSk4weSGMBnq++kugYR6rZMaQ7M6GbQfAhLD6ByoI+XLXNmX5ZcUGj+nxurGsjYsp/N5AzMnTlotQ9c6+U+qvCRBAsmrLEnR1yooNyhuqENbgEPHt44M1S5/Gw83TQxgXFFSGH8/OeCmhfzc9mRSloQYNGjw+UQmVUAmVUAmVUAmVUAmVUAn9u+jvMhv8D5gm/qkTsbVr16JDhw44e9b4RODs2bPo2LEjfv75Z8PnJWRMVAtd7TvRxENWbIhu0wdFjx4yGOp6c3KZBmVhoC+LgfJ7EPnPn2bJig3T64jw1vwzLfkdLOtUY8f/p5RabAs9tGGS8LxWrzPsOjA2CabfDwM7VO3QN+4HmAMsr21qe1T1WVPWq1DgSzsvxtmfg4R2AMD86+4CJHnVFQnImBmFOrOJpsq/2HcluvOzrN00L0UAdERGWivqC+csj1Uy477dDT1OXIP/rmGs3iZfx+LM8HmsX3qkdiPays8jUXHtAWQ+vYD55NE0Tb6OZWXLig1xO9YK9VEULGryJZ9N0WnvvvfepXvnvFlE2ldEmzkiNQv36rig4KwitAUgMci81l1gseIK76tQzPz/HY03AQB+Capm2I/MXOgVC+zXriF1GOmPwGWqrx895dXm5/vhbh/iY0ZPcG8NiFTz71DNahosiYG9vSK8Q+ojoX2//LdBEUf9fyMAIhcHqOMy+LALy6uFCzf6tgKHJzNzX1mxoZSLSaiX3q/XWwRboHEFAaBytwzDfti6VY+YWu6KaPLFP5+epSKGXXjJgtKdcwR+v2gWzvLs+H4J4n77EW4e7gKf2tMJ9j31yBXq6h7aFbJiQ5V9xJS03uirhlp21pezyTv1flYEktD2p2v58ix8hVUyM7AbWbHhyBtzhTLPfE3+u2WQb91jBQG9OdumDFIXhgnlHpswF6t9dgrzBP2jAAVGJ7eu5saGcwV/cgYA9ps3sSmAAFfxAex5rTnNR+u1n0wVxlQfj3C4LyfjpNT2ZBScOy/UwZcBkNOLNrWIf1it+KqGaZ+ueNPwtNTnuSPspFl74sBf571r0Z1UafvBKplRWj7EfGbovWrd03Q8m2oR37KVN1og+8dgLPfag8tjooQy+d/9PaLQ+sUxAm9GJ2e3Wl9WG6cJIeHs9FhWbPB5Sx98mkLQa+vh57l2x3sL99i6lbNPV1/uB8Z+oIsG9gIAnU/p+sa1hHT0W16Suw9lth7EsGLkU4Q3JcHWi4meXvHvAQBuPRvJ5nf+ubaNv3+7SKhXVmzMLLJ6D+PQBQABRLJKZlx8UQw/QNdAAMiNuIPUJS1YHm0wab79PD0oeoTzr+jN9Ol/zzVuwjOj8Q5A8M0DwICStP1glcw4NkE1bT/T4hE5wa5ZQyi7IC9fGJPUN5Anmt5U9d9pfldCjulPCWKLFy/GtWvX4O7ubvjc3d0d169fx+LFxk7sJaSnPoFN8bl/EHPG5skqmdkGjsaXYeaHDo6zZcWGh795GU42WlMBfhIeeiYPGWH3hXLos2vPRwkLSfoX6gYxuuMzAIBWFc/o+ODrPP+yBeiYz+5ZJbMQV4vSOzVVAU7qc5Ld/9gvGMF1FCHtxVgL1jeuhZo9xc1KpRwXVkbp0gTJzX7iDOZfd3c4ARsRLfNu3wh2j5qtaNtHicbicX32IcZXy4HfQBsLSOn+iWpW0fLlMXjU7hyGnsmD36uJQln8xO3+iWrqxr/T7I+ihLQPfvVmSGW8UEHzrLtdWbew0rIyn5kPWbGhf8Ub+HDI94aL764li9D+Z/L7UZcWyJoexcow2sg46s8q+2pAVtTgwlbJjPQVIfB5R3W6Lrx8VcjD/6d5KKw1vR8/a76Oh9CUQt3GQluW9pm2jJ25RMj3fvYoq+9oc3UTl9lliZDeZ9tILLwhQVZsyPqhGTwSCQJh+xdGwYgc1QsAVTLuGn7DsqIGpDXaAJf9RRW2tG19x0eNuVXn63hcHGdB+DuqELw1bb9uw7IlaQu+vOYNAOh6urtQHv8OtuUeEt7XluRtsEpmDKxD3tXFXn669vJ1BYw/IJRL/2vHbeHdu8y/6MvseFSynRPKBIhwULjDE2Vr3sM7F4JZ7D1qTuU1OZ4hb6avCIGpRnXdZpnWT827KQ/mT9QguLJiw3ebxY0p5XfXPVeMTs00fMZ/MxTdssOxO0zg0Obh8/n+eld4LivE5ImWmbpQBb8ove0gi69kBC2uVUBoxwtFy9MKQQtvSHjwqzcAwPMjcY7SEv+uqZJEuxbx/+k7Wr2qA7yfPYqQabFInkwUNr6/vcD4aDQ/FogMBgCU//kAi+dF6zKal1IXhAlpXIMbCu0HiAJQK4zzfQUAaXMiGKS8rNjQaaBqev9+pgqFToOS8yQrNoz1aqUba9VOF+rmu9yC28jtKm7QaT4+hiANAG6VCPImb4qHpGNC+/iQLNFnopE6j8wJlX4U44Ty7aWAIeV218E7F4KR964qNNI0fDxKvj7zJ7FCu2p/ozffpmsgAASOIK4YFKzDd+1YXft5/mTFhjIupVDjGAGr8ftRTA/AoS+4tr+9J4m+ptp+MDXwR+CeoYwP7bpkv3xFKJeaSrcbpZ//td/aT0n7dWn+kVQC1vGX0Z8SxI4dO4awsDCnacLCwnD0qD7IaAk5JlmxCWhwABB39rAw0VBfLEDckGs3wi1fHsNOx+hzLVklM1IXq1onWbFhVbfWWGSAcmiVzEj6WAwM7P+KilZnP5WGrI+jMM1X5ceo3oLywiW8k8qxuinxgVm1C6qs2LDK53chT8q7c7EmP4Glp3noRG+VzPDsd5wFuVzfuBZcy5cXNhQXx1mEMgGiOR56Jg9dnxoCq0T8QHh+Xk0/wa7pokvJ3p5sXOKO/Mbu0YCUdRIqs+CSN32IRn9QJREEgPLRfKoKf0vf8eXNgcj+kLSF+mbQdu9qsoHljXxjLHu2KHcf0pY3x8JAgs7m88soh8INACx5yooOQwks98xscWHe3qQSZMWGUr8egs87xppTq2QW0N94skpm3Gh1RTc2tIGuW+8ngWIpolzqfBWyO/nBQ8a79jtIXRgmtMnWtipyJ1tQaW9NQ+GLH2+UZMWGbXfLsN9l5MpC23y2jjRsG1t8XYpYAFD/mGwsqU+QOktvI5v+NberwOoeIuQDwHzIKGy+VTIztD0AGH4mhwXitUpm7Jm70JCHqy/og3NrqcKeWqze2nPimSP6nX4RrE9vPRsp9Jk8kJTLg9RQoum174P+nhfgj+h2T6PGIv0mRzsWbj8TobvPz29aYWFirxewJWGzwAtAhAPXjnl4lF0RySGuLC8f1J0GLfYfkgL7FSL8Uz8bvh00P72u87UoeNQ2qSh0/Aa+XblC9t3xz5ffrGmoFNj1XChqfSuCJPD5aH1pYQ+EZ1bJjG1bVqJ7q94AwARMbRpZsSHt6wjdt8AH62bKmVVmuLlLGFb5orDG0LyjqyhMyBDGwvGbuLYlgNWpfc5TxiqzcPqhTUuVUCmTVBCYgOdJbLJGyW6oPzVe+EZ+X6r6W1slM7o8TXzTefQ9HozFKpHQCPx15iozjkUQRNzooPa6PqQUMO6AcN+0S/WLm+rbXDdmndGNQeSbr7Q6Ubeej6rfigm6VFlLx9iMvs+y+qliiz4PGHpY943yvFglM97PPAx7ewWBMUlI+yZCyE/JtRKZ8ye3JJYOGwJkJIe4wvOjeOFbzJliYeEvbj+jziPXh0ahztdEATn0jIjsSCnyyCPDNanq8gTcGByJgJf1p9FGc02p7eTb4QVNajnh6F042q84upfdrzZ8BhxFYVu9NQ8g+rQBQN0vST+V2aL/JhvPixX4KQno/N+jPyWIXb16FbVr13aapmbNmrh8+bLTNCUkEp1I+InN5KLGsWj94hhmAgg4nthlxYaKaw+wfPTUQms+BYChCdL6CzKzMap+K3Wi7jtUeA4AZ9+0MLAInnze1m+w+N83t/rBe2mGkIeHtabtDhybZKjRpH+N58SySZ5Sfw9RC2dEyR/MY8/4wJgAUOp2kdBGgJjyLW/gicpfKMIzys/n/kHsmi66/J9VMqPlhLE6jdmFqJvMnKTe3ju6evnrWvNVkwha5prgbxHQOhsA4BKmxkKiABk0b5XvE5H2NVmARtVvhXA/kuf8BAsCRx8U6uTh7K2SGfZTaSi1nYBJvO4diXMFt3F9qGoWZJXMWJefaPie6f+4ozvY70bJbliRtx95k1SzEarF5okvb3cwEdLtha5ofuhZZPVayNK84xOOsz8Th2ftaUPg6IOYfrmBysfpPajb6iwzSZIVG+73UIW6wLH6kyOrZMbXvZ5iv5Mnz4P/yhiWpvFUNQ4XT11Pd4dVMjOQHQCIO7mblWOqQ+bN/hVvCGZRlBd68u0/Ub/pkBUbljbwQjlrli4fXE2otLcm+0aqf6uPOaYlCqrDjy23enVR4Sd1c1npRzE0QOGRUyjoGIr7PVTTRVkhptOyYkPVsbk6IYn/bU/NgKzYUGlvTeE5DR9B/yquVXlwRHybaIyxR104IAiu/KPPfSXkowiQAOD7ht7cjJriadugLddorinooJoJ575PFDzUDExWVBPNoZUvC+ONzU3HT6Po0UMHrdYrp3hwJzqHG/ELqDD+mf2IUokPF1B45BRMNWsIeX0H2rDlYBw6PzvckAf+HdA2POoUionVM5m5IS0vulN/XVsBIPCju8jqplrP8AIIn19b5/0e4TgVSiwdXNzchHFM6eLGhgy448An83Q8O9qQp7VbBgBI/baFIZIrAOS/bUGYze5wHGjr4n9TZUfmDPXdVVlJvnlqTWH0zQJA9lB1rYoOao+79Svp+OP5mXXVl12ff9kiCC8AhLUr4MUDyH9bNI20SmZsPbMXABh8PSUa55GW5zU5Hv6riAKw4toDyP6RxM7jYyAub+Cpa5Os2JDYrBQAYkZLiSrzqnyfiEtj9bHCnJG9PTkN7B7RA+XXk/nEVLUKa1ODQ6XYb8oD/V/Q0TjgNUCUYZ7TisMl/LBU1w5ZsbFYk/y70L7PtK+Iksvzw3i0mBzjdBz9I6nI5e/7+5fTnxLEatasifT0dKdp0tLSULVq1T9T/H+SLo0iG2Z6hG2kfVT6PhSurZIZw88Qe/CilmbdAkeJnVq4ivbw9L9VIpDKVCtJN/QABE0jzeM+I17wUZIVG4s7YjTp0N+Vu2Vgy2EZsmKDqU5tuHm4C8/5CV1bDj9JeU6LR8W1B5ymMTUmpmQupUoLfFBbfW0+rV8eT2t8d+jK53nky+P/TI0DmU8Jv+Hl8xmhexm1q3t4d3Y9vutwFLxaHbf7R+KLtQsgKzaMyG0Ft065iLT1E8rP7Eeepy5pgdU+OwGA+c/wGxf7tWt47rRq8qkNZFzPrSKqLk+AS4smrC1Pe4gIcnzb6XXfdIKQdSq0AEM8W6LcpSK1L35eLvgCXnhJ9TEpbK1uEKtEp6NWrzO6jRgN2bAw0Ff3LnYHlxPSl+6cg4sbG7J7uxcuhKzYkP1hlO5boET9cky1SLwmv9fV08eCnDzwRNukPSnSlhmX8usfXmyNNpi6sVRox63Wl9k9emJKg7lredKOQ8p/wbnzLBivo7rcdiQLZo8AWGy2ws7ixkzLN63rJ7/t7Lq7pRe7r90katv+oFsYSwsAK/L2C+0o9eshoT30dx8P/amntl+0vym5li2ra4MRv/S/285kNEt6DrJiQ/2p5BQg49n5rB03Wl0R8hvNmTSuorYfACDj80ghz9Ips3RpjQSls29asHMZEXiW3KiL/qfOw39wCvImqd+d/fIV3drz5TVvhrDXzd8i1GPUJ6W2J+Ojyw117y5u+xrBAoOS/SQJZH1lRJTD8WJU1+6FqmKmqKBAN+5kxYbaT4knXTyZGvgLp13a78EqmRH4wiHdM0oeH8cjYWK4bswCgOXIQxbzkuZ1raQKTPu+JiibaUNEK5MPsw4yawpH8wR/yhV34nemVHj61EWhnWye5cJMUORII0Gd5vP4WA+1rh2rgbufx7LcfdjQSn3Pb2QQePj0gfNZ2WdaLydrYZAK8KZtGxXmUueSb5RaDbg2a4S4oztYulrzExgf2dOimGLZqJ9kxQbT7+TUlPpnAapSDABDp9SSVTIz01l6ws/zvbSBFytvw52KurxGc4JRfwe8rCq56CmiVTIja0nJidh/jf6UINayZUts2rQJqanGDplnzpzBpk2b0Lp16/8Tc/8lqrXoAOztmuPIG3NZENSXFNH8s8JhfRBOGh/JZb9eSMh/2yJ++EMPo7BtiOFit33Vt8wm261TLrtPNbp8HqNJmsK6r7ldxXDS4dNaJTPsFy7iUsf6uuf8BoMGXzRa6Oh9o7IBdRO9LUfcMJbpki04SGsDul4bJmqXefL7cSyr49azkYgO6WKYjpL9ZCrcvOuzdgUlDHKaHhDN7/iNDB8LrrBsaWzbvBIV1ySiUenysEpmVHAjZkraYKO0rMARh3QLdIO9Q/mq8cOwruw3PZGhfLB+nXFDaAO/aaNp+ftHcj2EOvhTSatkxu7gchh0Oh9ldtdFna/JBmBKZjLb+DnahPGLOQ0Ym/lpFFyDCYhKUUsSa4bniW7KWr5Mgo8HfB8D7/cSdG3QtsN+6RIzj6T18gI+JatEABu0m5tzGxoZ1gGQYLGO2pczRXRmv9NPNRui43DOdVG7HDKN+C1RnzgazJ3WXWFPLXT1UU2G+PIpj7/+9J2uXfx/nnjobID4hzEKbwqrZBa+KaMyL3RyR3rxCYSjdG7e9dG5/zCU2Uo2aUPPEEF4iGdLQ77s7ZujS7/n2fuiwiU/bvh3Utg6BHnvWVg4Bgr8AwD3OjRF9jTVF9LRmOSpbu9T6Hyqp9AObb5bz3Lmp8VEn0cefk4nzNO/gPePsd9FUc0w0VtVJtQ/QMwjU+eHs3FKn7nPiEfXXoNxaWwUPjveGWsa1YWs2Jh2n+et8Twyjrr5RmL1x13Zs63patoHReJGlu/bvcFlDQVNaoFB/esotDoA1FiiwoNrlQZWSQ1CrhVcnQnJ9L0ZUdzvP2Fskl6hd/YtvbCpXe8AcnLltjOZpXHhQvnENyvNIMytEvGnLrxF/Lq7nbgu8E5PoGTFhvd8VEWDtl3asavla3QVRfe8q5deAXFtGLFsuPgiEcAfdFf3GdpvQ3u/83PD4dqsEfxGphMQkNoqKAUfz07Lh/3EGeEez/e6RsRKIKv3QmQ9us3SFB455XCt9J6UwPxy2w8f6bB/+GveCoJvF/Vz0wqMALEI4MFYtP0+L8Df6VxAn0U3bMPy0W+TJ1re/Z7h/zMBnV2K/r6/fzv9qYDOBw8ehMViQbVq1fD++++jS5cucHd3x9mzZyHLMqZOnYrr169j3759iIiIeHyB/2GiwfHa4SlkzW6FgJf0jurahdpIIDLaSNJrl5AgbNuiD7zrWr68zkRPVmzw2TIKgaMO6u7z+QtbmVlgSABYmbefRYbX5nHEJ80j8FqqNIoePcTVXwINkZdcy5ZlSH3O+sRo02t0T3s/a3UwUtssNyyDDxjrqCyjsinxC5RP3EhdfDNn75J/bnT/SfqA33Q6CuR5ZVQU7KVcUHuuPjDmtrtl8IV/I0OeHtfvANEezgvwd9im1EVhbNw97l11On4Lr1fPYHWGTI/VOX+vyNuPIZrxlTM1CqdHFgfljAxmAYON2tLn5CVmQsqnuRHnj+rl7iKuQZwun1E5jtrDB6rVvqfQKTGouUB/Svu4MrWUO9mCU2NU3xrbgwd400f0AzEaa7QdNCA03y6AmLjR0xVnY4D+fj/zMKb6NsftZyLgMuIS9gX/7LQd14ZFMZ+1x33L/G83Hy+GIMvndTQ+UxeEoVqKGw6/P0+Xju8Ho755HDn7Jng6P8GCul/qgQtuxPmjSrRqeeKsLeYU4PqjcljgoY91pOXJqF2O1g6j68eVp33ubN7iaU1+Avp7EGVKftfqODZBHxjcKFi2dix07TUYRYeOAwCW5O7DCIoayKW9NDYKteYn6N63oz6ZkpmMyLL6IMQ8ZX0chdTn9eaPjshZv6bOD0fg2CSkzY5A5tMLHPLl7J7P1pEIHHHIYX/r6lzSgiljdc8Wt2DrlbM1nZK23x3xW9g2BK67jdciutbz6fPetQigMDy9kXEMn/qppvp+a8Yio//8J+q7oWfymMnk4+YMmgYARuS2wlzP39HL3TlmwpOMM/p77ZnDqBaY+Y8NYEz3rPU//ehvC+ic+8a7/9j++CvoT52IhYWFYe7cubh+/TpefvllNGrUCJUrV0ajRo0wYcIE3LhxA/PmzSsRwv4gaYWwXfdcdRMAf+3oNwA0nUU0juvzk1BQpYzhRFJ49y7TIvHaJF4I0zqjPuoUClmx4bc1y4TyapoqQFZsuDJSdYg2mvij2/Zlv6ngNuVSY6R/Scxtih49RNbqYBxsrgZT5Bd7I7h0o37Qbp5kxYbZ10Q4dNpmmjZ1bjh8BhhDZsuKGDC2V1pX3NmmN4nL/lH0e+qR2k2ozyoRbSAvhBm94+xpUQJ/2s0hfz9jZpQuPwDhRJVvp+veFF1Z9LrGogTUnqs6YJ971cLyft2yrVCHs37PWh2sS/vZW4OENmv7VyuE8XzJig0uYU1Z+VQIS/8+BFbJjNrfxDNtJs0zpHh80TxvZxyF1/sJSH1E/PLkn5czHrv2Gizw61a3jk4I8/2ZQGNXiU5nUPgA8RWh0OUdho3UjQlTgK/ht0BPOY02vRQdjm+/9p21G0EQuIIP623oadr6U4hpHIUCf9MnAq+mnxDeAw+UoH2PFIiBN0kDiAngS0qY4bj0W62ilU2+RFD8Jk4eB1Plytj/1QJBCAOAlkf7QkvOhDBtG/nnBVk52HVPBNUwmivovayei5jJE5+ejk96vyiqGbtefrMmbsT5O+QHIH65w3NVi5ARqVnodPwWu+bNP6kQxqOyupobI9H8k65cvr18u20hxN+Wv7cyT0Vf0wpMjjaC2nKNro3SPqmwRe/5rRnL0smKDdk/BjM/38Kjpxk6ME1PEXqpEEbLp4BJfH1Fh44zsBUPt4o6fpQ3LMz31oh/7XgGSHgQI4GcT+fzdgK6NWgtlDUjS0R11eY1KgsAGn19Hbe3+TIE0dv9ucDfGt9aR31MhSrtXE3JFCACyFA/PR4MxLUCOWHNihaVLo72HmnfEBCYNhtf1bWPWtfwRIUwagrP70WoEMYTFcKE+bA4hAU9kaM8+U8gpn8UoVdL/MnkoEoqyqF2LmBt4xAoaZ8uqb8PvdxVcChToJ+uHgCIfF0Fzmr6hRqKxiqZmdWMz4bRhnn/sVSCmviX0Z8SxABg1KhROHLkCGJjYxEaGgo/Pz+EhoZi3LhxOHLkCEaONEYVKyHnJCs2jEglMZHalVPhkumHzi/m9BlATJwouZYvD+kzspku71oaPJKTdkMHAOEpz+DFs6q5Ev+cd0ZV1jdmiERGGxyrZMahqfNQ0EFctKwSMaGRFRvsaQRYgfqHAcSMI6P/fER3JuhPPgOOGm7wjPiPbtZZeK4lfpHgY1ppnwFAYGwSu/9ltoq4yE/ODRcTp9oHbc+jQtdMWCUzcwoGVHhzSo/andPxdHOgapLU5KtYQ969J4mabSOBM3VBGFwrVIDf6wk4+vC+roy0kQFCep4azY8Vrrt6hRu+z6Ovqlpp5t9UvPAZbS7ob16gpfcrrCMAMhQRz1HbeJ67difC25IbdbFt4wr2zGfTaLiENUW13apGzn7iDMtn4jRnBR2J8uBjP+I4Pt5LFNCskhnbNhG4fjcfYv9fcF4E47BKZmT2XWDIo8fH8Si0kRAL1EeJxrTKe8+CuN1qPEVZseHO0xGok1CZXcuKDQEHy0BWbAwU4cWzIsqX0X9qpjezrrFGmScKBQ4An/sHCf3tSAvOt1F7cg6oPhY8T1bJjIwB81maxGalYJVIXD/7zZvCHEOFkbIz1e9SuxmicaEM+SoGEtKOv4/99CAwPJ/a39o5xWgs8r6cQytfRpXodGR9rCpA3NxFEIOaR4tYiBGrZMaSQB9sb1KJ1ZffsQKrs8xuYiJY/mdVEUfHE6W075obCgKPOoUi7z3juFPhv48nY3l7fTQ9MFDXtqxPiIna3b4RrM/fzjiKKZnJunr43+lfRur6iM5plB4nPGf0ny9An9OYcS4hQYZ5KEIvPz5kxYbP/YOEa0p8PE0tSZ+q5sC0PD4GGp/PqM+1dfHpqPkhzWMuU4ZdZ64SBSKfzaPQLXogS5uzRvUNsp9MxbV9dVnZpW/aWd7Qeep4zZuk9iEFn4g88kjHM0/0Pl2LtUIzv8Zf6Resy9vtxHWHYyPgRTLHB6y8By15TVfXV0p0naWm8HR+6DToBd26QOOJUurmW+wrWRzCok2MKMhQvnifTCYw1aqFrUFVhbbzAuvFjcT37Zr9LssXMJT429K4p3y7w96NwfuZh3HmfXXdkRUbi82ZOFOdE6WZ4onelvhNcK1Qge0/SlAT/3v0pwUxAGjUqBFmz56NpKQkpKamIikpCV9//TUaNWr0V/H3n6LsD6OQ8eg2QVTjiJ8gKHQ4/0xWbAhd/wq7RzdNjhYRrcBVrXsaMkb4sLRGC43ymgVSn5Mw1anNnv96t5ThJtptp+poHna4P2TFpgOl4H2eaF1xv/2oEwZ4vgtbh+gmTPulSzg30WIouMmKDZc2NcDdPiLCIi+0Gmlyz/4chEaliV04798iKzZm1rYsdx+aJJPPZ/vKb4UyaJv5OnieK69S/a+Ov0wEHXtRIbt3Y7CqHXS2IcjquQiFd8jpTnDpskK7AeBy8ypwRPWnin2wLSdJqMtoEWd9VWgXrvkNEiUeBIMSvdYCrfRK68qeDzqdL+ShgS/XNKrL6rG3b47AsUnYtnEFbnYgY921SUNh7Nhv3mTXbjuSHQr2NHgwAPivjMGpCfUMBWBnmxrtn1UyY8+8hViZtx8nY+bq8ldYdwDLvfYI5VAo8uyeZdm1VtClfKXOD2f+k/S+o42hvV1zw3T0/0OrGL6Cz8sTFWz5dlIyp4h9of1tRE2+imW+aHzgbfqdUL+ZG94moZzLY1RfLQokpFX6UKIabP7bcwkNcjof8nzTjS0tm89zt28EM0MDgIKzilA39ZnliSLAWSUzPD9UT3weTqhh2Oerb1WDrBAgnoDni0FXXEXzuJ3Ll+BkzFzDvqYbxx2NN0Hqe4qlOTeR9C0NTlz+5wPYcKciZMWGduUKMdk3VBj32jHjPyERbvXqCuNl1cefGfKgvTfzqnpiYGRiVpRyQpfHZ6O4wTZSSsiKDZG2fro0F8aLfpYA0ProfZ3ywFEMNOqnqSXLRPXUl47VO/0idOOE/m85YSxDYqRpAsccRI9Ve1l6r/7H2HNZsTGeUpeGovS2gwwQKzlEtZSh/n0AcOAr8i0vPyDybDQ3yAo57ZIVG6KbdjBso6yoIFZ8n2wNqupQ0GbEfZu0/qKCAl2yCd4W3VwhKzZsX/mt7j1LfU6ytH6rx2Jrpgp2AVcTym0kggyPDp06PxxZn0QJoVyUNyywX7oEeztVuXHuVdEvsPZTp7H6VjVUM5XXtT+j41LdverfJmCqb3PUjlMFb6tkRuAK4vPW5lgfVjZPV0YQZQhdx0vov0n/J0GshEqohEqohEqohEqohEqohEqohP44/Z8EMbvdjpMnT2L//v3Ys2eP4V8JPTl5v5eAWK9WsEpmnH1LNJXQnhTxWiSrROLCGJH2NIanR0WquUPh0dM6jXKdhMqwSmYUWZpB+oxo3uwXLrLnWhOnG4P0JisHm69xeKrD8++3RkUk1GrHmAavGGAizGYXnjfsS0zSmiU9p2t3rV5nUH79AdTYr5o/VTOVx6xs45hnVskM975qoOZqyxLQ/sRTjA/Ky7D6rXA8tFDgb1ImKafcoqoAHJvZUEpdoPrYUHQ7gMRMMTpppPxpNYjp34cg/J0Y9pyS6aHeuJpvN88PzZf+fYiA3Kj974j4MSYrNoba1+3EdcPnvCbzQdvzAIAZVwKwsqGIsggAsWdFuG56AmmVzPB5jpy0Fh4//VherZIZD4oeITSlEFbJjIzPIpkPhlUi8PS9WhnDVfP800DI/JgwqrPt3NfR/oVRhiebAEF55PNaJbMQ08qoTFkhcfYChyfrxq3R6YVp12F2zY9V88fENLXcoUyhbx2dYtlv3kTee2ROim7bFz5bRrFybSGq2VWDpTGG33udhMrCN+g+Q+/rwfsVenxMnv/40mesHFdzYwHAxNEpICUe5ptp5ZNPCOmcnY6dafFICNTOp937zQJEB3dEo2QSv4oPCu7oJJiH4uZp25aVOj4BYGkD4ueUH3lbTVxoB09+O4czs3Jd/S4usEpmcnpTVMTS1JsVr6tvXoA/rO4huj5stDCW3ePN6LYkbxPS+pQSYby188qVkVHoc/ISM8+k93unWdG1+yAhz7rb4ulrYIyKfKtt552nVRNeHtiEUp3Z6okRhUffG1wWlzap/qQ5U8kpa+q3emh9r8mqiTrv11dptRpD0bX4ldD4e0+fuqgbAxXX6IM0y4oNmxqrp6QUQVL7Dui3Tk9ZteujrJAA3VVXkG9DG8jbaGzQUxjf9WNYEHNqwq0leqrIl6UdP85OwNufeEpIU2pXPVwZGYV7vcn7sLwyFlaPUGGOckT0++RRfQFgSfZuZjJI0RStkhmBY5OQOnQeqnyvppc+Je/UtOswwmx23Nnmi3qfxwsByM9PsGBApWs6Xh536stbu8iKDThGYuntabqelc2nr7FEXI/T5kRgfer/BmpiCf119KcFsQ8//BC1atVC06ZN0aZNG7Rv397wr4SejOjHl/sBmfTcPzFwSgWEyZyfJPjf6bPUjeuDaD2aDy2z4Zpx7FpbhlUy40LUTQCA60eX8aBbmI4PSjSocJWViTrzHr5ObV6+jIU9Fwl8BM2OZb+1cY1+2NWSpW05YSxutCKOtlo0LUreSeVwpeU1xodVMguQzz6bRgv9MiUzWWjD70EbdRNoqV31AADRbfqwe9N8SZpKtnOwSmYM+OE3HS/8QhY45iC7x5c9/EwOurdUF69xaanst7YclzJl4D84BdWWJQj996BbGKp8nyiYpgFAUOlyhuVU218dAOA/OIUFOHa2uGpJK5hQ2hpUVUgDAO2O91bL5jaWO5tWYDyZghqgcIcnZMWGjLD7Dse6MzJKV8alFJJDyLTn9xoZrxRGPHV+OOLSVD8EXnDh6Wf/33Tt1ArqVon4jv3+7SKWbma2ukjzQhfte1qOs3Z0PtXT4WaA54k306JlWCUS287nl1G4FUECqduvXEXHwSN0dRnV4fkh2cDb0zJ1qKr+nxDH+jPDRdQ4ytdr9X5l36C2LtpnPgOO6uqd4K1uArfGrdK11ztJHc9G45puAuk19UnhyVGfy4oNLcu6Ct/VjcEqaIL98hV8WY8I7vSbyfupCRLv21ket3p1nSoIqGLEmRDM86j9Jv0HpzCzVm3bacDwSj+KIFCOFAOmKpV1z+t/QPorOrgjCm0n2TN+fjJqm/a6xuIEzNjTXdeeDQEyMz+meZ6ueJNdG/WL5QgJdh2e8gwqrDuAOgkq36nz9NDgTNDvvZDdW9tsCWvLtAFEEK56mISk0AIueCQSs02XeH3MR0Dd2FOeKRy7I6GCmrtrnw2r38qhMML3A32WMzUK4W8TxQcF+qJx9jJmRhl+y9pyvQLPszS8iTAAhEwna/DCiWowdC0PVskM/x9Usz+jb5H669E0j9qdQ43FCdgzl7yPSj8m4soIMR5b1qPbhmUBqoKTtSUyGCPqt4L/EKKo5ec+ag5s9P3Iig0HzSbsCyY+vNXfJaEeLm5sCI+12WS+rFNbKEs7Jh0p4QCg4aJYFD14wN4nBUdpNkP0C6e/Tb9LyOxjrFD/J5IL/ib4+v+/G/o30J+Cr//000/x1ltvoUqVKnjqqafg6ekJNy6GBk+TJ0/+PzP5byYKBXot1ReVK7liwrkWSB3sA/upNJYmdX44snot1GnUKF3c2BC1nzotTA6mOrVhv3BRl97oGgAGZrUXNkpazR1fd94kCzynxTud4AESy+d+9VLYN3sBS8OXFfn6WMz/6CuYy5TRLbhtx4xG2c1JQvqg2bFMU67lCwC6t3wKBVk5hs94HmdlJ2Cit4jumP+2BSfGz0W3gJbMXpuV29zKwBvSZkewU5T070PgP1gPlBBms+OgWQW0aLQwlm1oKIWmFDKB4OKLFga9njEzCumDiB9a26P3sDu4HMvzoFsYdi1Z5HDid/Ouj4LsXNjbNcf2Vd/i9fMh+Cm5BQJHHXS4KchZ0xSnW62AtfcQIEn1UWg8L5b5N/H9ZNS3fLlu9epiS/I2dt3ivRhB60fzDj+TwzT+jyO+HiOob/65tp1+B8siI0wPZELz+W5/gfnSaMdK3nsWnIyZK9yTFRsafBsD73cTdHkW3pAwugrxFcpZ05T5fABEOaKNzdY9oge2HPhF4PdBtzCU2XrQ4QbXGWnbbvpdQlyDOIfzRo8T1zC+Wg67b2rgj0uWWqi+1Di4uaMxxI+H7uHdsSVpi8M6nc0r9D//PciKDdHt+8F+Jp09p1DTqQvCmDLDUR3KaxZ2ms8/b7QwFqdGk3drNMa1ROeH5h/GoNY8VenRaP8QnGq5Qsh3dXiUwz40qoe/5ucXo3yUHPUvAKf98s6FYCSHuKJge324dcoVyrgn+6D0J9UE/xxHPDgbl1q+0leEsE2y9jktb/KlIEyppZ5W3nwuEpV/0PvZPY7ezjiKEZtGw/8Vx3lpnX47hxvO30Zt4ImGOOGJF44qZROfIUdluVaqxEA9zr5pgfuMeKFf+fQuLZowKH5n7XnSeaLbievYGlT1iUKFaOug/Gnrzf4xmAVu1pVVHCKEhgt4HN/auaDUrnr4JXArS+coTA7lzRGf/D2+XlOAL+xpmTpeMlaZWRw4I7r3VDjKbUxiZdN9w9ycfYj1aqWrl4Yj4O/d6RfBTlF5XjvWC8IubPzHwrXTPavXjI/gWvZvgK+/fx85b/674ev/lCAWEBCA+/fv4/Dhw6hVDItcQn+O+DhiO86RhYjG7NDSvd7h2DN3IZswcj+woP4H8bqN8aY75fHe3GGo+wV5lltwG6PqtxImD6rdpUf2bFL9MApnRsxDl37PM2d6bfwnWn+n47cEJDCrZIabp4duc8lvIJp+ESugBv2RRYQvSzupmmpUx+kPAlDllAm15x9A9tRwtlm+/UwE9n+lxmK5OM6ClElEyOCFJkrXtgSgWndVEC6KaoZf130Hq2SGa4UKTFCjMc+cbayM2jciNQv9K95A156DkNelChMu89cFwePpE0I+bf67fSNQ/ucDhuVmfxgF/zmZ2HJYdip8G/WpVTLj8uZAJIeu+UPvw1Edb2ccRcbD2hhRhWhc373YFAfNJpbuztMRuOllwtHX1M2wUZtlxYaOg0dgx/dLHqtQoNeTMm2Y5muGyd8H9vQsuFaogKKG3ti2eSWi2z0Ne2oGy0PrpjQ6NRMLA30N+6z/qfMYUeW8IY9/ZuMqbLjCmqLo4DFk/dAM5Q5UQO2Ue3DdnSKkCThYBqkvN8SvP32n28gC5HTWnp7FrlO/bYGsriLsNADc7xGOsr+o5l6O+K+wpxbutLnEnvc6eYWZUvHkKOYfLXv65QaCQsGoPLe6dXRIlTSdq7kxtsatcrwxnh4FuAA+bycYtkVWbOidZsW9theEcmXFhhbvx+BqSCECxqkbIiq80b5tO3o066+0ryIR8PKTCQh5kyw4OW6u4dh2tPF+aG2BsufvYOvWHxyOmcDdzzOTXDcfL+D+AxScO+9UUObJ0fjl//vvGob0dsuclqctx7VSJWw9s9ew/302jzIUDgECQf+5f5AuDwBEvToWCZ+riHPnCm6TQMJQFV7adrt5eqAgLx9u9eqi4Nx5wzodkaNN/eOUCpdHR6HmQrLe5E62oP4U41hXsmJDk69iGUiTs7njxqBIJM6cr3s33Rq0Rs5SL3j2O67Lf2G8Bba356LToBdg+v2wUB5NS+c4Z31gNEa6h0Vjy0ExdqI2X+gHMShzswiVVicKgsYr6afwhX8jh/Oms3649WwkKv0ofnO8MthRvtV58WixdiL8J6pmpF36PQ+X+CPI+6kJPPsdx8VYixAzky/vysgo1FhsLFDLig1W9xB26mzUBm16vx3D4T8kBanftkDgC4cc5vtfiSPm9cm0v08Qe2vSP7Y//gr6U6aJeXl56N27d4kQ9hcT/Rh5IUxWbOyv3AayGaBQ1/W3qVHos6arpghzAgLR83kVjWlU8cLFC2EAUFDOhZVNJ17v9whsukv8EVglM6ySWYge32j/EHgnkU3V9qaVdfkL8vKx8IYI5UzLAQh0q1az64hofA3aD9o8/D37lasIGH8AKe/OBQrtOD78G9LG7fVRca2odao9J57xSxdyvp6kkLUACBKfS2gQE8IyPotE4Z07LLaKVgjj+0JLfB39K96AVTJj2+aV8PiY9EdRSzNORK1ksbAof80/jGF57/cMx95v1NNFbdne7yWg4PwF9uxRF73PA03L/6d11eyZati32mvtb9cmDXX1tCtXyJAOrZJZJ+xeCTKh3qx4YWzw/6npp1Uy48Eb14SNkXYzq6VpvqQcl0KySBbeucN8g+J2rWPp+Lppuc42KGsa1RXy8oiLCG9qyI9VMmPHPf0Y49sLgEHz+zx3BHW/jNcFOXXz9EBa2ANmHmVq4C+UYZXMghAmKzZkdV3M2sj3XcVjYkiFRgti8VL6aR3vvBAmKzaMq5onzEeUDjZfg6KoZgw9DiDCDAD4bBuJ3cGiOWyTr4jJ0/ylqpllwfkLurFJ28abJBpR6rB5mPjUJpbnyij1tJve44WwOdc92f0aixMEIUxWbDg2cS5mZieyvuOF1pc6bRPLPk7M6M6+KaKuAQTRjvriace49jf1MSstH0LhkVO6OcS1WSOWhwphALBl/0YUnDuPi7EiUl7B9vrCfMT/OeKDv+c3UL+pXJOvmlFq+TM18EfhrVuGc59VMjs8oQOgE8Io+cgjUPmHRKE+ar4HgM3dzafGYH1+ErJ+aIZKe2uiIC+frEUGQtjwMzmG3yk/VnghxKhvaHr+u3oUfZ09qz8lXveN8Hma9z6uK5empeFp0leEoMpK0nZTUAMhfeGtW/Dsd9yQr3u1iS+g6XfiH6kNdwPgsUJY4Heqv/GdfqoPHkUGZYLKCD0ybs2FCcyXjQphsmLDF/5k/PIQ80ZrDT8H0N/xX6iCOKWT4+bq7vHkam6MAZ4WJoTRuuj8edLyPQAIQhgARLcnZo1FLUkoHiN6EB2GbXfLAEVFDtcg7T7AKpnZqXDgC4eEfNp3WAJf/9+jPyWI1alTBwUGUKQl9OcpY0aYMAnxpF0Q0sIekOtENVZT6jBx0vio9jGc/TlI95FbJTNu9yc+MWVuFOmeK69bdDzQSeXy6CjUf+YYssNJjBD5rLhZpGWta1Rb1xZTjeq6dDwZTcAF2blCHiMhp2v3QXDZ6S7ce+60glIuZOO/o/EmIX/qItVnrsVkPcBFv4xOLG1RuVIYuFI9XfJ7jSwwW9PUQKlRr6mBSfl6tAsxLeP60Ch0b9VbuGeVzCg9jWwU7SfO4H6PcHa/1rwEdI8iG9aym5N0i5eRFo4SjWmlXRBeSj8tbCLcfLzgu34MzCn6TbCs2FhwVC3V2F8NVsmMrb+uFurIf1sMJ7AuP5E5wkeHdCFKhKnGGmOAbEr5+GsVumbq+svNw13UTnL1Ux+S9OH1DL+li+MsyPqEbNZ5HyNHSgH+XfLt4oE+5A0rdAIP/d+xnN0hrzxfPLmENRXSbjnwi5CfmupdGhuFrj0H6Xj12TBaKJP6QQJAQU4e+52/Lgj1p8Tja/+Gur7i26vdzGvHoUvCEaZUAMDMAanml+8bCtRR9nKRYb9Q4BmangKAaPmbnUO+w25dB2BsVTUcRo1Fzv2u+FM9t3pEuE5dGMbyWCUzXvdWQ0hQkhUb83lkfDchGtrjL4sbQxpbsMKFQodKDf6+1i9TW2/hkVPCtZu7xPpsTX4C21BeH0I2x26dcg0FJr6OxxHPZ9DsWFRxLcfiItH7tI/tZ/RAGY8r0yqZ4eLmJrRZVmxI/4KAPmVZl+jyAfr5rNb8BPTxCIfPc0dwt+cjh3U/6hSKpQ28dGP3/2Pvu8OiOrr/P7Bg790Fka6IZVEpu2o0tlWMGjWaqrErJCamR00ziaaYqok1RqOxxBJ9LeC1xQoooit2upRr19gbC78/xpk7c8uCfvPm9+Z9Oc/Dw965U87MnXZmzvmcs6/ZNGHq3wDZ3KuJpkuNWCaE7797X3ftlWQHc13Br0W0PKphQiHSJdnB/CMKvFSqhEsjxQMHADg1YpYggFN3N+r11ej7280WdrMsyQ5UXrVPE9etDRGca89P1HwLam9r5DaDQszzfOsJvHazBUNOPyaEGc1PZ8fbNO+KHMfZmsPPYdRm7I0zrYV2oAegRdXIeuC214Hopo9pygKA8nHJTLBUvy/tWuLq/T+Gyhw6/2X0SILYoEGDsGXLFty9e7fkyGVUKgp4J1mYhIwGtNFEajcTw3V+0vHqf0xIBxCdc7kHEaL3fjdbWEztZgvM0xJwYewDFKk54cJ7qnqh3pjq8cjzBQCV1rq7nFB//LOR4QR1Zq1yGsxTwPZhONOpOoo7Fwj8LGtqZnGXXCcT70vp5LanZooH44Fu2CgVtbfgeoeLkGRyynq/ajl8PWeQhh+ej2pLk2A7fA8dx5CN7tlXbboLS9pPZFHY9/ksFGblAFCAWQDgFe+trJ0rbNgvtFHh6TyWz+UNwYa8qEmvnd/OPIJele6g4s76jM/C7NMIemkfvqjvEL4R/R7lup1GdLOOQpmS7MBSvz90eaCqlnSxG+AdxTbkcYc2a8rIXCqm/77Lr5h5eg8uD7Nq+joFLinML4DPPnIzSQVqgOjuJ7QiRvcUuZEn91YhaLj0BCrnExPgnIjbAv/uVaviXg9xg0TbiW8TSXbg/Esimhjff5vsHgKPBvU1dR2RK9oP8D5v+PDi5COaeYBHL6NhdWcnojjlGObn7hEEpuDY/TD9odxMZ/eZq9sfvAcQv03p0yM135E3iqdpKRiC0fwUMlvroFxvAyvJDtRaoNha8ch5FHjGbrZgSd5eBCy6wPrI/a4Ksht1zF2USm7zTCoNDXqLxJPdbGFCV8Wd9dmtSfYTBCyIRz+k8W/1U24+PfyUQwl1O2T8GsZ+U7WwKiu0SHfqOdNISOfzr7q7jlBWYYHM4rT57TUWXmNxouab8OWbqlUTyl+SR4TZC+uaoM/xS7g00qpJbzcT4Bm72eJSLVMtxNADJXU7uVeqxBy1U99SfJmZT8/WbRdXc935l2y4Fh+AuOM74bmjoW7c7YvmC880jnsngho4OSvF8LtcfzpK42Rbkh3MmbZ6bYso74l7PcI18xdfDwZ4E9ECQYtidMvmxx79fzc6HEW3bjG1Ob3vZTdbUHlXXWR9aYXfxlHCAUrbD5Sy9IRBSSaqqSFzYnXzL05R1Of5/4Bye2XacVBw2M3fhPHxizqG6YabatbEosa7hPaj6MX8OJFkBw6/rfXVKMkOBA8/wOYEu5nYJTsvEmCvo22KhG9BhV067wJA3Ekt6veVjUFMyNQIqA9Ay9KnR+LKxiDd+faZ7M6I7va0bp0l2YGeQe00acrov58eyUbs1q1bsNvtqFGjBqZPnw4/P79/B2//E8TbiOWvaAPfp5VbLknW6tbrLdbtxo9FlRXKFbzR6aERqdPZzRbBwJqG+68cyxZiI6FJPUnazeT2ojC/AJ9kJ+N9v3DdOvC88vw77t7FUwljkfH4glLVhZLPvsrIjbwp5J211IL0TgsROiMW7vfJqf29HuEotykZ6Yta45PIf+Gjfw2C/9vKRtBUuxaD99VrK5r39WeidJ248rwAwLlXbLhdr5jZr+nVX02uTtBKE59/1rPnUdep+fRYhtppRKaQIAFQprSU/kMksvqLyFC07DfOtMbXDckGtsW3sTjy2ky0HzdGAHvheVaH8eH03Z3eEaiwXjmFpbZY1H6n45jRqLQlFW7lysF57RqL5+Hvi4171gr5Z31hhf87WpCO0nw3SXagR58XNIb31ffUxtX2l3TTu6pnSeXpla/XVkbt5yodQAAL9rSbhcE6hvNG80KzmbE4HqsAwDg7tcZrPy1Fr0p3NIKsKTgABT3ro/aJe8rN7tFreL1WlpD/oBNnmcpo1OH7AuCDJDvw2JF+qGhXVDZvDIrCvSGXUeuJNNRNqIGUgkYov6uqAHPuarxJsgOdRoxC+fhkZHwbhcDXjF1NqPOj/9U2L3x690qVUNg6GFtWLHSZJwVwArTfiv5Pm98WwSMOiO3aLBjO48r4Z/Nck0B2q0XDWh50Q2rr4lL3HUq3+0Zg16y56GXtDWe9GihOPlLqNlKHUWAcdd0AMCAISq9knMT0QKImfeZ1Gxp+k4Cqu+vgeoeL8PAyM+FVr2xKmjIggmvQ+El3nPjQv40Qxqeh9sPq9zxIRkn11ws3GtPq389kd0bLqgWCbSZ9Z3ttLKr+lsT6R2nKokSBckoTt3CrD7Y1Wye0Kf1P7cvpM297qbZhfSPjGCZn9EaVB5oR6vJyV7aAz0B9yHd1uZIsgiRJsgN+G0cJ34SfA/Xm+dKsx3ycKy9amWNs4UCiVQi76ebjFxbf/2eAdUz9G23EJpbZiGmoefPmyMnJQVxcHAIDA1GrVi34+/tr/gICAkrOrIwAAB4+XvB9OlUz8LN7zxPi8ZOBJDvQM9CGRq+mCe/oSU+nUaNYurRZ4kkv1f3WSwcAPr+akDPFKkwQ6tNQ9YmP3gkQQG4vJNmBiPKe5LTtj2HCaZr6tNN/9RgE/0JO7W4WeyLg+UOwmy248qKVnbLxJ2XqU0dJdjDBh9br9pMRSO+0EAC5saGqU+U2kQk4aMhBPFXlLBPC1t2sBFPduhohTF1PyjfvV0bNz/XC8izc8e5MnBpO1EgvjhFhjPXyZ+3vpoC4nv+X1ibLqO3VVOuJNJwbp6hynHmD3OC5t2zKvoPX5w9AXj4k8dzKl9eUxQthfNlDTuXBFVEhTP3NAbBTSoDYEr5xpjUqr1bU/3ji0xf8Hsp44E9/c1e2wM45ZLNKbx+Lk8mCTW0Mbtc2oejOHSaE0XzUQhgA+L+TKNx68DxcHE2+JX9jw6e3my266Ge8EMa3Iz8+6Tt1/6D/6c1cdNdBQnye6KZCPe4oXR6m9EWjzZ1Hg/pKOz+TqhHC0n5ua7hBsZstaPRpgpCfacdBJoTROJTidqyGs+NVbF/4E6ujWgiTZAcTwm4MikJSK0/27vzLpF/zQhgAVM26wQ4iLtj+xIl2i3G1xX24hYXqzilZX4h2MHazBeXjk2GqXw+BryXBo3EjdB84FFOztS4f6G+7mdyqsbniN+2BTZMDZG4sunUL7nscwju9PIPH7keLb2I1fYz/TzfZ/CGMs5q4caLv4v5YhT8HW4UyqRAW3e1pXHuWqJxRmzi72YLlefqHNX8GEq2Dgr6NmO0jzVOvTjwfMekZQhidK/kwOjbmrxDVQV/d9yxuS+RQmPpKu97hIgBohDBa9pWNQZqxTP/nvUfmvxcfjFue36gKos2r3WwBIsiNSOZSC7MfVqfjN/w3Bon+EQve0arYUV6orzNeOFCPaT7Ncr/t+HnL4wwqn09D+x/tH/Ny92DG6b1C26rLov+fr3qJveP9ZPZq/6SGD98qlzVCUKtp5MacF8IAoN4DuWvYqdOCEFbUMQxfB4ai+rP6iM7ulSujwo6qhusfjdfhpTHsuTAvX6hb8Khk3N3sq0lDf7M90b7KmvdGxMep+YvoWoZSfPwy3fAy+t8jfcz5EqioqAgeHh7w8VHAFPQu1h7hsq2MyqiMyqiMyqiMyqiMyqiM/kOJ+vn6O8r5b6dHUk0so7+OeNVEDzdP3Tg3Nvmza/m8STZ43gCcFUWnz92eHoYtvy1Ak/kxurYxVCULIPrXccf+YKcw8ppmMPc7rknj0bgRNiauB6A9ieNJL1ySHZj9pxfWNKure5VPw4q2NYJ7F3KLcnqyDY0/1He46kotgKk3TI9kji2N0urxWZKKBR+2riAZ5d08DdUWAKDP8UtYmd8G5bvnAADSF7UWfFUZnX7lT7Th2MszSzwdU5+I0viXRllxYLLoUNeoHmr6JDsZEeU9xfcPVH/4ejru3sU7fpGCyp+pRnXEHd+pKVeSHfCLH8lOXtXtX1Jbl6QCYvQ9e5zsheLOBfqJDNJSPzfOx1u79KNkxKur+tByJNmhgTx2lY6G6alE8m204kZ1pNz0wxf1te8ABbKZ5im/bROc0BrRvS2NUa7baV2+JNmBK85beKaRjYVRH3LqfmlUR1dtkDYrAsEx+9HkgCdOtSUADJlfRTHAHL30tO7qvKhvtvzVoXB3L9bMdYWd28Bju+jM1qjORnWQZII2l/biLBYn/YdIBL2s7xOstKRXtlubUMFOh/o24+NTon6XSpoH1eV5+DVmPhmnZu9Hm/LlXLYBDc97z4ZGn7qew/WeEdGC+THUI7V618P0rbOv2XD4LX03GTQMEP2dTctJwlu+UYZ5XxphxdVgcktO81GbCADECXBc6jb0aBzBVBU3FKTA082k3Oq0bIqi1JNs/ubLU/eh0n5HNSy7q7YqqT3ps5FaIkDcquz+YY6mj9x8KhJXgkwMyMdutiB7WSv4PXtY4J+qjkYdvs9utufn7kG3n94WgJ2yP7PCb4J+P9Crq177nHvFhoo9z6FlbRk5EbcF9Wae3Dw8mA0jTxV31sed1+ugOOUY7m72Zes8AORMseLUsFmG7Vma3/8U1UTfKX+famLOpDLVxDL6G8hUry4z/FUTrxt9/KWZaPB9AlMfA8hE4777EB4fPgqnRuhDrm7612IW33nlijBR6AlhALAxcT27mqcThXqCUVO4w4lr8QH49GJTQQiTZAfyJ9g0kyMVwgBohDDTg0HHNqSfW9HL2luII2xYn9J6pXc1US/O26srUKlVgfiwZivGaRabi86b7L0kO7CuWW02OafNb8uEsHUFWj10vmzvqQku+VXHB4BOR59k4bXnJbJvlP25FRYO1DLz6yjjvN1NiCjvqeFL+n0RaxO72YJF1+rgHT+iusLbXTn/vKrbN3r4tEV2T6JaZgoJEvoSzVddJ1f1pyhh1H2C3WzBwmv1NPGoEDYiLVupi476DqWijmFo8DTZdJr+OIh248dCkgmISNpsAk7hbmkGD2+Czlk/kfTLXm16CPXl+wktz3H3rthfVEJYQDJZyGac3osNBSm6mwf/dxIZminfzjTP+cF+DGhFb2HfvOoX4fnI+JmQZAfOv6zMNxTVlPJ+/eko/BH6L6Euq/OThLo800icr/Jn1WRlqMeRKwFGj4JjSP+iQtj5l21MCONVovTyV4/ponJErfeYdQncd9XQjD1eCJNkBwPzMOK9sAuxDSra1kiI4zchEc9kd2ZhdAPNl1d+ZwPh+XZfojLOg4QEJSuqwE+m2zU8XGhbDXd7KSiPVAgDgIhDAwW3Cmrnt3qkN9d9u0NxGdCmfDn2u2egDYNOnNXMkZSOx87UfFOa76QsJZz/RvUTqwH7j+C1jBMwopq/JMKjodh2JfUtGq/YXRk3aiAPfrxQISxtbjhDzeTz4an2/EQUm4ohv60gLlIhDADOPgCYcl68BLvZgk2n9zNV9Ce8RIAeCjZDwaP4OYQXwloedGPtZqpRXTPnUkqfHqkrhNH6pi8SwSbUeQjPUS1hNxO/j4uaNNK8p3xW+n2fZtwBwOUmRAi7vCEYdjMxEai2vRK8k6oI60HxrySvyXUVgLERPu0FIUySHUwIo3ycfU2L8sy/b/k1ARzhgbHqT09AYqvVmONN8qJCmCQ78EaGUr67byP2+07vCFbG7Y7ncPljIlTzQlj2Z1b4TtK3IVa3dXE7i24/BIA1acYHEv9RVIaa+JfR/1kQO3HiBNasWYPFixeXHLmMDMl5/gIafaLccPH/+d/8gA3cMZT9vhYfwOyd+HRnX7VBftOmO2Hzi5mHvy8k2cGg4Gn4nd7KBoFHP1NPfH3Syab003pHkNhqNXa3rKCZjCjyll56ADg7XplUPfx9EXdyFzIWK6hK/u8movB0Hu72JJsQ9woV0KMx4e9CjBbtS92O6oWL2rjQidKtbXP2rCaaVo3oZTdbELnjZUQ5ntJdGKmxPAD08QoX0gHEpkm9eS/s3Ea3fdS8AGQhUJ+sAUD1NMDxoOlmnt6DgDfIJta9alVtGxU5hbzVv6mdwZKm3kIZ9Ddv60ARN+1mC079GIZPLxJ7tocB9pBkB3O9wJd1uQNBac2JuA33SpUAAMuaEhhvKqTx7TCoylUWphbgAaDVl7E4O96GLcsWIK5JHAuvsoIIHBmdFiJ47H4k3XGiyHEc53oQVexzVmInQ53oAgTBkxL/fSwq+zo1ZYYTG6lgz8rwdDOhZ89nSfiSMAQkV2D94m5t7WpkNxOQGFdEeXl8+ChNWL0flE1O3JHtkGQHxuSTcVT19C0Wj9ZlgHcUSw9ox3CDJ08wH14UMdJutjB/Q3z8CZmpLK9r8QG6mzuePHteYL+LDymbpS6DRwj1Uv+WZAeDzA7cMRSH39LeOLM50MuMHn0HI3h0Moq2NdIVJiXZAY9tRHDbErIezaeLKJGH8r3RM1CLbkn/3+14FptvebI0lDcKXw8AQ+rsYb95/2f0f505iSi/UTnUKeqgzJE1e6Uztwp6JMkOWD6L1WwOM75T+lG3Z4ch2LOybh2Kbt0S/APSuYdv06DFivsBvm2m+FuQvzqUQfvTNBTOvUclBYVZb/7LHumPqLfGInhRjOadeg61HAIT7Bp+Tfp5/cRquN/pDJkbThDH7MXtLMibJLrbqLtXsdhQz9cAcPUF0lYZz81mN8v0fYeXx8ButqDBk6RsajtqN1tQ4XIR49WoD/JjTj3/pbYmc0DPQBvTQNAjXitErx2DhhzU8MC3XVHHMEiyA9/lJDAwFGqrK8kO4kD9Aam/Pf/7z8FW5nSZ2mVWXLsfteclYr7PHiENnX/59H2OiyBGdrMFHv6+QliDb0WBU11f+u19PipZA8Butgg+7ahfxvTpkcx1jCQ7kPFNFGr20tpI+01IRM4nVrT8OhYpd+8JbdrlBWWeAgC3vSTcrQ2xTf0iW2nfMj9i/3v0yILYwYMH0bp1azRv3hxPPfUUhg4dyt7t3LkTlSpVwrp16/4KHv83iANjoEb3/EaATlDUmTBAnG4W21pBkh1IbCU6qqV0+J2ZMH8leqCXZAcurGvCJtFpOUkozMohC1PnAhRtU06Cds6Zy9LyjlXVC8m6oE0snPLdy9aHvS+2tQJAhAwA8Fs/ivECEMPoay3u4eJ6cnK2cc9ahMyOZf5UKOV+ZEP5+GRcXB+M6JQzTN2j7qxEzSTML6KS7IB7y6ZCmQCQPVUBJOHBFPi0eZP0byopJH3g4EOoHq31o1PcTslDXS59Dh5F3BZccd5i8bb9Ot/wlNdutuBCjLKxVX9Xu9mCGwMjkfypcjMa27g9Bpw4DwAoun4dNwa6Bmrh88z90MbgxNVpsr4kCzIVXACg7mwSN21uOOomejCB3EiwVG8InJ1aw24mrhfUdQt6kdwsmgL9UHTrlsBP7Z8SkTZHCzvPhFvOdxYNa/BdAiqfLWJxa+6tBUl2oGhbI7YRB4hhfs4UK4OL1isj8IVDmrqcXRui6YNqHvgNWNOfYhiKlimnAuIPN2ffxe9dbdkAkPANORhYcr22po0zvlE21+W3HWZgAnpEy6GnxDwanZrXYmsrVlfqWNrNsxwkmdzK5q1qjsKzigBB/Q3x3/K1r8ey/K/frsBgrPUOnACwjU/dhBoCX9sWi5DkRnOAJDuQ0Wkhwj7VwuvbzRbkfmBD/60Hmfr2lhBFJdtutuD0ZBGmnP72+kL8Lr5Pp6Lo1i3hAImmpeXSzR4/v7PTdskP7/uJ/RgAE+7UgCwXxlrhvlv050iBVyTZweYgntQIkQCQOWi2ssbsPAS7t3Jrozd/GY1pu9nC1GgBoNsJ8QDEe8Ax5myYEvUbp17v1Pkfj5mJ6kuS2FhQ88X3MUcY8G1giJDPOes1lje9BblbqxwaTRE36VQFkoIzqPlI+pK4fYnuNEDzvtLvZEN9dzM52ORdvuz9fo6uAMTXxRXRW9OiW2StYLc3US1ZmTRP9eGBEUmyA81T3AUeqDP58b5a8JAevZ6H30RSp9uSH+BOQEvOvqp15VFjsejPjwfE4MuXZAf814zRtMtLNfI0WkLU9Yuawg8qeyYjov7PaLzAZcocpJ7jeAp6RfGlFjI7FhXPK9vmqdn7hTb2fT8RDb9OwEQ/5QBbkh3Y9qu+T7ziFILyailfnvWNshsxnb//cnokQezkyZPo1KkTMjIyMH78ePTs2VN4/9hjj6F27dpYtWrVX8Lk/wItP0lOWbsevQ7n8TTNJptS0U2CBujh6wNJdmDzql80p5ODTpyFKTgAXY9ex1tnFZQ3fgKo2+cUK4PqwlNy75KH7k+9KJzM0TyiDhNVIbYRe+CrSM1nh5fHMIfMdRNqMI/2dEIKHpMMj0bejK9GnyYgeMQB1OmtIECeGKugYkmyA+kL28DnIyJU1umdhm9224UyjTYMlLIG1tRMuHRRubCuiW4aAMJCbTdbcGFdEyJEjTygm4b+pqdeALkp0ts4AMRGr6apkrCAuhJc7tRShHa908i93ysqmlfjyEaZd7JdZeU+hrTn3ipEwzvNJ/2HSJwYM1Pjn6nYSoTq9BcUXXje95bdbEHw6GTUG5rDnvX4vNsrXNhYAsT/jN7mRBDWMrJ12ye79zxkL2slhOmd+vJjgQoykuzAlXYE5cu9Sx7biFO0slPDFEepfNm8DzT1GGjw5Anhe9K+Q4l3JAsAjT9QNrC+kxJZ/6I3CHpE67IoX+xfdrMFga8r9lTF9+8JNjjqfmY0Zvh62c0WLMzdA7fEwyye81QGOcS4f4/FO277VfMNsx440M75lPyvN1NRrfbqf4xt/vTS0HhpsyNwaL3ok4xvP+qc+dpzynx27VnFzsf+5GDUO/AAhnybN/w2jWTxfD5OEFSUWLs9EGROjpopvIsreGDzWXBId7MbOPgQu5EJ7pSFqrvr6PKtHhsV7aRvF7wjbkDjM8gc5DyeJmxOD34gqqJLsgOet5WdC52D7GYLCt61Ibpjf13BhU8PgN2S50yxMvVZNf9080yFY5r2zOuK0LolZL1uGXzY/qmzNP2FquEBYP7z1PMBj2BKhTk9Uo8LOqYBUcVazSdF3jUS+JxpmexZPX7KdycHm/kTFd57+EWiyc8in4btz73Pm0QEInprSn3KfR0YSsbTg0OTHc3XAgCaf0/U8eQ1zSDJxL2Nugy72QLb4XsYltuBodWq5zb6m/pulGQHig8dg3tVglJY0Z4NFDlhCvLHbesNAECH1Du6c4rdbEGF3mc09aZtmdVvjjDO7WYL/OJGouI5cRfO+12UZAdMIcRfl9oli15bFqccY4fMV5+PQpT1pMCPOj59ltc0Y/z6fJyAo68o+5KJfhFMZZsezBqNr/QZkUibp2jF5E8k33V+7h7dsVhG/zv0SGAdTz/9NDZu3IiUlBQ0adIEkydPxscffwynU1FxGjRoEI4cOYITJ4z1vsuI88kw5VMEvedg4fyGsfOQEfDcmoI3Mo4JV+d8PL3n7KlW+E1M1MRxlb40cfTSPEwZlC9KxbZWDEwA0F+caFhIigdOtCEGtDX31sKVdpdZHJrWVKM6nH9e1c2Dj8cbZ1M/JiPSsjE/WPSLZ6pTG86LlzR58eFpsyMQ234btjavqonnimgd1CeYfLpLI6yoPb9kA2VJdmDzLU+hj6jbVP18b0tj/BH6L1Zum8kxqDNHPOUvzXfRi+8qjdF/o3zZJmpFCzQedET3nZrCHU4sO9oWmZ0X6PbfjO+iEDhe68+Jz29e7h6M8mnP4tx8KhKVV+1D3YQauGD7U1P+bckPu1qswbDcDljgs1vI75ucRLzuq2wCXbWbXtu5qq9e+5XU/4zGNTukkEYg265/O+vq2+vxQeujTmeqWxfOCxeQPdWKtKGzYH9yMBMYKTgAAHQ+chPv1E5HxIQYBget1wYfXghlxv4j0rIxqMrVUrWFq3pJsgOBS2KQ8bxy8JD3vg0zh87GZwEtS8wnKLk80sPvltje9F35nQ1wt+PZUo8vV9/baFy9nXkEXSo60bPns+wWlsXpP4Rs7t3cBJvG0vYrnseS1g3dvL3CmIBL3wUtikH6EBGIiC/DvWpVuJnc4fzzquF8VZp2UafN/DoK3tucKHr1Ina1WFNi/T18fXDnJzD/WUb19tzREBuC41l+LfY9x2y19eZsdTtSchWH5h3dsouwfqnj0zlNj3iAHHU7dTvRW7DxNiKajo4D+U0biqxXcbugCrPrtnwWi2vBTmQNIIAf+RNsODaOqBGfXRvCVD359Updz1K1RddBun70eh77E+Nr5uj2Az6/zK+jkPHsbJd9CwDzX0dpclYKPvTXuja5+nwUqi9JgnuFCii6cwfAPwis45O/Eazj/TKwDg3t2LED/fv3R5MmTQzj+Pj4QJb1HSiWkZYcA3+GqUZ1IYwCHHhuTWEnYPSUmFLbD8QTtuiWXQCQiaQkIQxwvVgBxK9LwG/iiVqU4yn2m56ibb5FNj/3u7ZB/mrRJ4/dLNqy+K+5wdTaAC2YgHpD2is8mv2mQhgAJsB8l5PATpQk2YGTU5pq8qAUvCiGlcM7rA56NQkXxlqZXRFft7jUbZp8JNkB58VLrJzsPnOZEEbDmu4ZLMQHtEADy/22szbiTwkpuZUvjwOfaE+M9fixm4mOu3qh5tOon8/t9BLe6Qlheqd1bmGhhryU1N+yP7cKdVX3Ub30djPxxXSyvdYWVa/fXBppRbLFhMzOC9g79woVcG6cDV2fH46bAyIROJ4Y16vt5ihJsgOjfNrjVj9FlbPyqn24NMqKC7Y/BTsnSrtarIH9ycGQo66zcL9/jQYAvJGljBs9ou1sN1vQ9bnhQn1KEm75/3rvJdnBbiqorac6Xmji88Jz8LAUzYZGkh0wBfqV6tvz31ivb0uyA84LxPYrbegDIYe7taM+iwBge4vKeCqzK/Z/pr0B4tuGCmHZU604d78GK69nj2eURFEtWXtIsgNp88htLlUhpPny/wPeShR4b/RJAjpVJGqtpmCtv0yqen1xfTDSw+8K73JXthDagraPe+XKkGSHIISp5zH3ChUEPpoc8CxxvOn1iy8DWsButiA+fpk2/u+LSJriYtTeW5MBitD2WH2jmqZv6h0iqPlq+z5Zq+gt8j17W3h4e7G05qSqJE1xsaYf+b+rtP/1pxVbxceHj8LtJyNwakYwsKayVtCvWZPx2PmI6FvSqI3avTqGvQt4Iwnl45JR0Z7tUtitvIsAUxXm5MKja67wPvId7W3d/U7kdqh5ijssn8XiSORSlpeR0MXzq+bBaO3s2eMZOC9e0qio8vH3TFc0KPhv6dGwgYBSqi7TvUsei2+03np4mVm6205PuLcKgfmrBHgPOMaEMLvZgvozEhA0bh+LS+3Jc6ZYmRAGAOW6ndZ8r/SFbQznRABon9qf/Y7bugKA6BNMkh2ID62haR+7mYCU8HlTW2tKtC+qy+SFMEl2YMz343TX0qRpRCPj9BvGWg//qUTh6/+Ov/92eiRB7OrVq2jYsKHLOPfu3UOhDvRnGelTv+AW7BYn/Ucy+HmAg5C5xLaBngoCgOkPMw58rDzzwkHLr2KFcIDYZxW1txjycFvyQ8biMMEp76ygQAZQQfNKsqwS8gWA76KJPZjn1hQcsy4BoEzcWV9akfAN0avvd/wCipOPwP/tRIbq5+rkECDOONUTvYcvAU7oOHo002WXZAeiuwxE0wknWD7XnhMnyrQhszR5hb9HFsq6s5VbJ36zSSfr3A/JRq3rc8MZSIArQaLxoCOMr2YJLwBQgAb0Fi5JdjDAkoLficA2ODVDM3kbLc4DTpzXvBudliU88xtMSXbg3RdW6G74AODOExGIemusJpyvhx5Peie6PPm9mygs4M7iIpd1o/EqrdlnuOBSdRZKdFxEhz7O2q/ozh3Un5EA0x8HsWeGsgn48wnRZkf93Xf/KKJxdhxLTo/525C0+W2VCPuPMJsnQEEAvDnDG7NP7zGsJ09v/7RYqI//ZtHYW2/jy7+78qJVqI/dbEGtU0StuMihoKR6eJnZRtt7wDEhvpqonZJaNVQttOjVzb1yZdzc5G/IM98H9TZ2kuwQNjd8Oibwxo9kyJaF1YuwIbQmA+CRP1bUeSkaaMNvEvBY7Ghk95pHxvwdhSfa3nz+PE+m0CYsvMVvmRp+u4cdReY0K+47TSyt3WzBhMxU+Aw8omkLgKidqwVWu9kixJXHtBa+EUWVdEUlHd7Q33oC26V2V7Br1lwWbjdbMDfYX/dwR5KJ028jOvAJGZMBz5FyykkHcLupAvyxwGe3IZ8AkPEdQX7lHWKX25SMimv3I2hoCpyPy5q5LO7YH+z39hYiAAlPNJ0kO1BlpRbtkv9/v6uoHmc3W/B74Bb08GmLi+uDNfnt+4LUm64ffDsfbVOE+jMSNN9dHY8+n3lDa6+sN1ZomvhNyyHJDkFNPvMrZU1Uj3W7VxjsZgsujbJiY8om3bYyNQs2FARvS36QZEW1ll+786NuoNnPp4R6uTpEAMBQCAHi0kJdP0l2IGhoisYRNd/+e1r+rgnPjbypabfM+zfYb/ru7rArLufawor6ZgJUnZembfC98o0psJQkE+AcSXZo7BTL6H+LHkkQa9iwYYkqh6mpqfD19X2U7P8nyaO+AsOd1W8OTH+YhQngxGgt2pfbiHJElQfKgD/7KrE7afiNguZE03lsT4H7HiVPSXbg6vPKpLyrxRpkdlnA1IEo2c0WhhTF5xfd7Wk8PnwU7GYLhqzfLvDLL4j+bytGu2uaKfZGjjBxERmW20GTlq8bQHyuyG/amP3ZzrlzhduZuG0rcdum3NSei1T4yS28oTvx1913WeAbUBCT6PPGWxXgM5m0qWnHQQ1IQL/jCqqbqRlZjE21a5G2Of0YGj11VDg5X3itHuxmC8InxQj1a/AdKcOr/zFkfWkVbgXUbZH+i3iKtjqknlC/i+uDMTfYn6VTCxl2swVDql1Exjdkg0OBFyhV2LAf1ZdwJ6JHrwl8SLIDWUuV/C4PJyAiUW+Nhd1MoIVnnt6j2+a0fLvZgmgvUg93SzPDb68nLPL1CR67H/NzFSSu1Ht3YAryR9yxPwwFV0rVlpE63nwqUsOr3mbhaBsiOOavVm43qa+0tTer4OIYKyb9/IsAjjHs1GlUWrMPYxu3Z3y7EsbozSY9SMjqPp/VOSTFQzc9zycFHODDeKQ9djhTIKPiv/YLG0g61nmSZAcDCVDnayTAnnndBnkNuX2LT9+Lyj2y4NG4kZAnAFzZGCQArdA2b/JzDINy58vQ6wcA+QbFFQjUelY/IjxTAJ7DEdqbH4CguNnNFnQaMQrenymotUFDU4S81Zu/uC2/kQ1u2+YMnZS+C0nxwBzvRGQ8PwsNH5zmU74/CyC3cZV7ZME7qQpT7aHlnP9XU03bV+6RxQRMuqGjt2e8AOW4e1eTlucr+zOr0HZ+0gihbnqHSZLswP1ip5DP/e5t4eZZDvfs3OHDgzQUpIW/+efLkGQHTEH+eCWD2OdQbQ9T/Xqacabmhd5g642blgfFDTFNs+5mJRZmJOhT4cZutmD1jWpI/0HZ1PNp7WYLWnwTy3jm30W9NRbFhYXMxpnnm/6n6wdPFNJ/Xu4edEi9Y5iWUsOvEzT8283E75skO/DW2TDh8MxutuCik9wEXtkYBADCLReflyQ7mCoqdYXCwh9Q2pxw3P5e6WfqfkNvDr2+0NbVvWpV7JwdiVfkcJbnrX6RzG60JKIHWnr9VE+1clReO8ODFOfjrdm3o8insY0VFXT6rtYTabCbLbquFe48EYHyV4s04ZLsQGb4HU0foVT7p0TmOocXwgHg9IoWuPpsBP4RVOz29/39l9MjCWJ2ux3x8fHYv3+/7vvNmzdj165d6NWr1/+Juf8lKjyn3GY03TNYgNNOnx6pOzFv3LOWqfLQCefwO4ohKUBOkZydWhtu+uhGW5IdiA59XPPeO6kK0he2YUhRVL0JAJzHTqHcpmRIsgMLmjRmvFGocFenXerTPrvZAjnqukZgoBT6A7nhK0o9CfNXIngGvZ2hbUBh/G8/GYGgV5VFh9r6qCdm57FTmoWNfy/JDnw78jkAxLkujcPzSgVMSXYw9QfnJSLgvVhvLwAgbsdqFmdoNfK9ay1I1P22kuyA/9vkHQ/Z2/ZDRbWSogiqiW6w6vQWQV/sZgvcHsCp8+1PQR2cpxTkR0l24NIIUleqRio1r8YMtyn5P6e0W/Kns9By/7NImjYbpmbBaPBtAlvchp06LZQLKCfElC62ri6oslD+2qQMEvz/0Dz84kcK6Udwtlxv+UbBmZ6luwjTZ3VY5VX7DMeJXnrvAcc08WYFBeJK8yKy4V6rqFE+U5WcrKYtaKP7vc+9QtqCblApVVuahGvPiT7gePXctLnE+Ju6naibUEOosx5qnrpOkkzAbyiEefVfk3Crf6QQx5XgqBZSKDX8JkHrPPk0UWdanpeAHn6RkGQH9oetRHbveZp8fd9LZGp9FA6fAjTwlF94g31P/gBFb0yrf9M45eOTNXWV31b6J4X/T58eyeLYzSLSKkWiPdGmEHazBR1eVlTcAMXFx2OxoyHJDuRH3UB8VhJMdWozng6FL9fUL31GJDbu3yjw7F6rJrbdNgkbzXcetCdP/PjnfTABRPVU3R5q6jhmNJ7waiMgwG5f+BOK799DOekAsj63MtVevj9t2rhEyIcXZpzpWZgeqCDY2s0WOM+d1y1fkokmAvUJqN740zE1rcEhdvBBD8Uq7qyPH4OCNfnRPGjbUIhzSXZgbrA/ij0VJFW+/STZwdYeirhHDzKrL1F8iNHbcb11jOZLaYo/+T3Kpz12t6zA1Ib5MnM+sTKVVJ5/vo9v3EvsplJbFwuHZ/UTq6GOidwE7g9bqWmLXm16aNZt+o76PaPPFXfWR3bveag44IoQnv25Vfj2/H++HYuuX0fteYk41fY+K3P3j3NwavgsXB5OynILVw6v1CBRD0P5E20MbAUgiJL8vGv64yBTkafgG2re+Tnt28AQoc6S7ECFDftRac0+JkxnfCu69+C/c/+MbgJ/g1X+/ah2UONBR1B9mf6+uoz+e+mRBLFJkyahatWq6Ny5MyZOnIjjx8liu3LlSrz22mvo3bs36tatizfeeOMvZbaMyqiMyqiMyqiMyqiMyqiM/j9SGXz9X0aPhJoIAAcOHMCgQYOQk5OjZObmhuLiYvj6+mL16tUIC9OeXpaRSBSB5kqaP6pVdTc8nbz2bBQSv54tnILRuKYmgagy/wpW+BNQifvFTni6mTR5UejsKuXvMZhkSnYzgTf2WXNeczOiVj3iEX5yP7IZOkvUO1miz9eejUK1ZUm6p4bnXrGh/nRtnmpe6P9LI/V9PFG61S8SldbsM8wHIFDZwXPPMD8lar74NLQORnGM6l8aeuLYFYyreVo3jR7frogiQFI+rG+MZW1uxNefQ6yosYi0ZcHvofDqr9z6GJWrvhHhefTw9kJhfoE2vGEDFJ45K+TB8/T8yXwsaeqNKxuDsD9spabc7M+sSHtxlqZcPT5dtVdp0xW8Y9NVt1HnxdcBAC5vCEZy6xWa8vPes6HRpwmIKzjIVDON+AKIjRV1XcGXo0bUjG7VjQFg6PUXHim0aFsjFE2txxwU9zt+AWNrFKBNyiBBxaok8vBrjI17/6WpO6Xbkh+Bun5A2ctbwu+ZVCHOn4OtqLE4EW6e5fB79h7081bsQSjReYOfB+1m4gPM52PRV2LeJBuOvzTTkCdKl0ZZ8d7bizErKFDTVymV1O9LGo/8+w6pd/BenZPYf/c+8xdG32d/ZmW3Vq7yvv1kBCqu3Y+0OeEIHpMsvFP355ZfxTI1dVf8Acqc1tM/CkV3iGrVsXu38c3Zbpjvo6gYj07LwoAq13Tr7BbegvliAwhYhvMKuUFxb94URUdPIucTK3zfV4CkOh+5qdhvRbUEklJ1x5Le3MuHVd5VFzcfU1TE9drx4mir4NvLbrYgfXqk4ASZf3f1hShEjE/R2OI5O7WGacdBIX74ezGo9XOiLm8AcddB1YON5p1PspPxvh9R3evw8hjml0zNGwDEFkQhe5Q/1m78BX28tL7nACDj1zD0b+ZgzqAvjbLiahBQ/rIbvD4X+8XNAZHMcfP1p6NQ9TdlfQ5J8cB3DQ9ovjnlJWxKLOr9KPqnMxozfJu46ueS7EB0i85Ms+TGoCic6ViMoJf2lWotSv8hEgPb7cOpa/WxNkgqcYwCQJuPYpDykYjOCQD5E2xMdZmPz5PenNHkgKem77hqg6Y/xcDr/V3/CNREv4+m/m2oidkfTfyPbY+/gh7ZoXPbtm2RlpaGNWvW4O2338bIkSPx+uuvY8WKFTh16lSZEPaQ1C+4hTAw1QO92jLiq+L8yzZBPUOSiS+fg4mKjccTXiKKEFXrqNvnFOr2OSUIYXxe9fffZUIYfW97baxm0YjPUtQZfT5KwOkVnDpBndrsnd1sQcuvif51sa0V7GYLug8cyupDy+fLO/O6DYNGEoHy4mhRd1x95U//84AlaXMV/XNJduDqC1EC2IIpOABtUojvqv4Z3TDj9F5IsgP+7yYKziL1hMdvckRhj7YNpRb7ntOkMVq4Mr6N0jiYDnc4Ma7maZREPBALn57+bnKAIMdRGP5ere3YdQcawVfdxyTZwYSwoo5hOBqlqBdRWyXaN/k/mh/1L0brDgCF+QXCM82DF8L49+6VKsHDrzGWNPUGQBz56i2gfhNEG4anMrvqtgUAdB46UhhT/H8+b3U5fP5eXyTottfzJ/N141NKbr0CXY73YeH0r+J5sjGiQljH1NtC3i2+iWVpTCFBTAij5dCFmwIgSLIDrfY/y4Sw230V8JJj90je93qEC0ih7l3y4LGN2LvU3FsLa5rVhd1sQZ3eaRoEQb05ib4reMJL09fzJ9jg5knstfIKamNx3l6Wngph/HeosZhsYIvv30Ml93JCGXzeHneLhU3uzaciBX+DNL/jL2ltatVxAODA5FmYFRRI+qTqwKCwSxtW/rV4xb6TBzOi77HNm7URVVXKmaI4i5+WQ+a73S0roEefF9hmm6UH6dPqdrabLbjfXfRPVHEtUV0KHpMstOG1+ABNf274TQI8/H2FfKkNFPXJpP52dH7vNmgoXve14tB5L0WY2OzL7E7VwE+S7MCmfynquJdGWZE2SbHXjd+8HOmLWqPiBTeh3lQIm5q9nyE29rL2xplCBTyB59No3L7bSFHnl2SHAOBD/6d8NAtpCxSwDQBMCNMb30lfzsZ0s1bY3br0Z8EJud1sQa2fExGTngG7Vxgyl1o06/SOefOwOG8vU0+OKzjI1M7TZkdAkh1MOLebLS6FMLvZgvtFJsTHLUUfL3HN4+sR+MIhTGtwiIUfmDwL/m8nCkKYe6VKMDUJZEIYACR8qwB0AWDqtgCQNpMckqTNUXxi8ULYpVFW2E88oeHljYxjgiokT3azBabQJizNtWeJOnbcke0MHOWG2R1BL+1D5V11cavontAelPy3Dme/s/rPgSMM6F3vMCvTyCcj/VaFldyEfnb2NTIP8vajfHz+zxSkgOp8epGs7dPNyfguJwHOTq2FsroMHqEZ/3azRfAl+Z9OZaiJfx098o1YGf01RE8XOqEvtp0hXta/yN6Hd/wUg2H1CRsgbhpzP7IxMI/sqVYELL+ColTR1oSnebl74ONRBSFzY+HzUQJM1aoh7uQulxsXyseKG9XZBt/oVIqP333gULjtFTfs6nRZn1vh/65ySqmun16+0U0fK5HnrkevY0fPEFyN9MKe6cQ/iTmpKvPvlDPFilPDlFuVtJ/bInj4AU0+F0dbkfLRLN2yJNmB4J0vIq3jL4owwd0Y8vHU6dU3eaYgf+Q92QDmafon2JQ/erKsPk2kbRe4dCzgpkDtqsvmn29u8seelr8rvDdvimtf3UO1dyswdD0a/+IYK4O35/OYl7sHw4a9Co9tKWie4o5jVxuiuHMBvsjeB0v58iV+S733w06dxoImjV2m0RMq6XO/4xew4PM+TLB0VZbee6M248vR+83zoOaJz/OevS1y+rtpbjR48vD1YaA0enwELYph4wYgQD0Nvk/AB1kH8bF/a8M6u6qnUTy+Pnyd6f/xZ9rC8UGYBhDEVXsHJFfATK8kTRnBC2MEP4OuiPJ04t4thJSrhB6NI4jzahUP1Iebe6sQxMcvw5nCG2i3/g1k9SPzAtxNSJvdGsGjtd/j7HgbDr9tLNjd6xHObGX1BAUAgt85Ne/Z929gLAcUoOad0rlxNtSfocwNBe/YcPRVRQgNS34G9fqeLLHd+byN+nPtvTVxqZ1oC0TflcRnYec28Niewp7dK1VC0a1bunxkfBuFwNeShL5FSd1H1eXkfGqF73vGLlr01k2+rsNyO8C34iUkDg9Dccoxl+2WtdQi2MMCxHXAdHMyega1Q9HNmy6/P08ejRsxW0m6JlH76JLGpeUQ8EV9BxZeq4dlTc1CXTfdKo8ele7qzo2lmfckmdyASjdC8XqtLE0+Hg3qo/DsOUiyA51GjoLnzULmiP1W/0hBcOR9ABr1MbWvLTVPV4tuY5B36YA8SqrnjYGR2Pv9HOF92swIZD85t8S2CfxjGAKeP6R5d3pFC+BkFTT+INFwrnfb7oVNTTfCbiY+MO/nV2Y22Tzxa+Wpr1oh7433/2NvgOie1f/Dv+9GLGty2Y1YGf0NtCbtCBvE7/hFIm9Vc90TE/XpJQD06asg76QNnYXyM64I79UL0Sif9rCbLTgxmizizmv6aiaWQ8S3Tt57CqoU7+xYveHkKfcjcnO3eeVC3YWQJ34zWdIGgsYxEsL4st6qlYnCvHwBUUmOus5+80IYAIwN36mbX525ibB8Hsv8RpmTqsKjQX1U3V0HdrMFaR1/QXRYdwDA+ZdsTAiTZAfSfm7LeCrqECbkW/unRAY5L8kOONOzmBCmPuGUZAeChx+AJDvw2fpfWDvobTYC3kxCxrPKiaardqrcQwS0iN+8HFV6ZCE+bqnmu/E+xvg0Ph5V0Ot7AhN9tE0RijuTW7B3/CIZb95JVTQ88Pnc60FOgimwDBXC+HagFN1lIPtdN6EGuh69rhkXa5rVFYSwuz2V01se4fL2kwpCFZ9eT5iiqIp2swV/DlF8obm3ChHGpp7Aov5dTjqA7N7zcGkU2WiYataEKVS5PZBkBxPCzr6q3E4F73yR/eZdWQDAtSYExIMKYUbUZEEM8ieQPFPu3hMQC/Xam/Y/Wr/oZh2R/ZlS/55B7bBtWYQghAHEf5I6n/qJ1djvzPA7un2T+j9U80Gfb3Bw7pbPyc3heF8y3xTfvwePhg00c+frvlbc2OSPosPEtUVDjyoIeolzh1DkRPYT81i6VzJOonkKWR4bfKfMr1Oz92vqxAthfJk8/eq7QxMGAOPPtBWEMJZ3VEtNPivenMZ8n0myA0dfJcLhsNwO6Pb0MAb0kfsAvGRyVgr0iEJ9Z39G+t6PfzbSbGKX+v3B+OG/vd68pO7z/p8ph4CSTNA2KZKsuu0CX1M2pY/FjEbA9mEAgHYPfD+ZqlXTtCst99TwWUL59I/GaTd+LNyrVkWPxuIYn5pNbhTlqOtIaFVOI4Tp9T21ECbJDgY6EZ++V6+ZdSl7qhWFp/OE+tA1yW62oGhbI+Hdn0OsWJ2vHKg5wsg7KoTx4FHfBoawdG0+itGMAb59+Prx7fu6rxVSc2WzS7+HJDsQtPESi1c+LhnuOw+xPKgQdjUuEPkTbVjUpJGhcE3LK+fuZH1QL15phTB1Pe70jtCUXWXlPk0/DY7dr3tIRYmCJFEhzK2N6B+18aAj7AaLHx/TcpLQozfxyVjcuUBZA2d6MiFMkh1s7bkaFygcWKb2XlCqev9/pzIbsb+MHulG7OOPPy5d5m5ueP/99x+aqf8l4m/EPNyIStkbGcfwdWAoLsRYUXdWItJnRCJonKI+QQcsf+rEv1Mvqm7bvVDcuUB3g+jqBE9+04Yjr2tPgtXxjU68cn5riVMdFsFutrCTTwA4/7IN9X5QbDpi0jPg63EJE3s8L6hG6pVB81aX64pKOhFUU/r3UQLaIgCkL2qNoCH6KIW0jI6jR+NCmAcafWKsKy/JDky7HICtzavqvtN7pv+vvhCF6r8m6cY3BfnDmS76DFPzZ9QGHVNvY2fLiiW2E38iCgC77hDULzWfepsaPYFEr1+1HzcGbkVgNn0l8eSqDSXZgWY/xqLRlASX8QKSKzC4YbvZgnm5exjCproOlKgtTM4UK3wnEcHhwwuhzKFw2rxwBI/S3q64agP+OfcDG06MVcZe2uwINJl3E5vWL2Fh1P4gd2ULnGi3GNGhjzN7HEYPbG4omUKCmH9Cvp4l9T11u6rjRjfryPwgPsq4NOoPrt7zbeCqDMpLafIzmhOF+ccrDFLBIdjNFpiCA3BjRpFgA0ep5t5auNKO2LdMynLgsQeHx0Y8lN/ZQOPMmb5P/zESQS/tE/Je7rcddrMFb2cewZcBRD2cn6do+vRfWjOEVT7v0B9icexl5UbNqC967mjIHBBr2sJFn+CfeTtdvfmBUpMFMfDZfIfdtFByb9kUp/vWwvEYwm+Lfc8JiJwlle+KJNmBpnsG42T7xaxtors9DeexU7q3tlSDQ68/uVob+TVQrw15ujDWioMfzHJZp7Sf2iLkrUw25vXG3ZUXrfjsg7msf+jlc2NQFKqs0N7SqNuotPMB/63tR69h2dd2JE+ZhdR7d/CWbxQk2YFe7foypEeax1tnw5DauhiWQ1rXNnplSzLxw1V/RkKp+OIp/YdIBL1MeKT2yqVNq36/oSAFnm4mxqdeHFfzK59Okh3o0jD0H2Ej5v/B33gj9vF/943YIwli7u7GF2lubkT/u7i4GG5ubnA6nYZxy0gE6wiLj0XmoNlsUK7IT8Qgb6vuBCsYOMNYfY6mbfpTDE6OnOVyE8yXcXezL8p3zyGL1E8xLnWXjSYVAFiStxfPc1CtriZ0V2RqFgzn8TRWRuq9O2hZroKmPHU5es+S7IDj7l12CuWKf0rV99TG1faX0DzFnfmRclWemirvqotpjdcIvkr4NCEpHmhRKR8rQhpo0hZbW2HzanILFvDbWGEx58sseMcG0x3iawgA4OYG+S0rzF8ag6mU9A2q7q6DVQFbNe/5hYzmFZb8DA6FL9ftW01+jsGp4frgGudfsuHQJGOBn9/AAIqal1rYSfupLYJHklvDdTcrMejq/Ik2HHt5JkJnxGLi0N8MDy9O3LuF8ZmDgC6K3Zc6Hv1tfXMsEr+aLfCc8WsYAl84hKtxgageLdpa6rXvhoIUNFkTi6z+isrM8rwEdP30DeH2kVJRxzC43S+CW8Jh3QWcbbBnxMLzBgQ1Nv59m8kxmvzTZkegyfzbAtCCJDvQ/akXsXnVL0JZjLZ5QwrZYFg/ddk8XRplRZ1D1wX4d1bPbY3g3iVPow52Y2Akc7ZLKXNJGAKeP8TKoCAoANkE8qf7Rnyp2zJzqQUBzzng0cgbhXn5mm/ffcCLSB/pieyeP5VKsAOInWbGy/7CGAAI0JLe4VPGd1EIHK+/OaaqkK6Ir1NQcnnmBsBICLKbLSi/swHWBW0S+MueamVqonobY0qLrtXBkGoXhfc8qdUVKaXPiETWAMWGV68/82Q3WwA3N7iVK4dnDmdjWVOzZh5z8ywnqKeq20Vvzu/RdzA2/Wux7jc887pNADyh/VCSHehxsheKOxeg69Hr2Nq8qiatK7VMSXYgfFIMai1QboBtr49F1eX6IFaUzo63AZ2uoMGTWt9WpkA/5D3ZEJXOFTNH0nx9KRgTPQx9GHqYtVutPq/Og4J80efXMk7g+/79EL9puWEZaoAnI/5Kw7tRHEBf6KMkv2ljLgwk2YG2H8TgwMfG+yo93owEeFr2ylMHUTM46z9W8GCC2PtTYfobBDHnnTvI+uS/WxB7JNXEP/74Q/dvzZo1mDBhAipXroynn34a27dv/6v5/a+mzEGzEfiHogpQ3V25pVAPcF4IA2Bow+S/ZgzsZsUIVD1ZqP3iSLIDl0ZamRAGgOlA02fqXJTPL/tzRUWCknvVqoIQxvvDovGE+M0VZ6YF79iQNi8cnY8QkALqm4vy+ZYvURugPnkoL+r81eGU3vGLROtPYgAAXY73MWxnSiv8t0GSHRoh7LsccbPL14GGSbIDNx+7gABPop6X9hMxvu9l68N4+67hAYyoLi4yC3P3QJIdcEtUjI1rpT446HgAjCHJDpx7hagreX2RgAbfk8Xt5lORkAoOCUKY7qYGQPPpscJ7SXbgtYwTMNWvh+sdLuq2CRXCqOG237rRTDVKrxy6AdUTTOr9mCC802yMn54t9D9qaxM8SgEruDTSiuCRB5D5FQEVoULYsFOn4axQjDOFN+ATd4UJYRR8ge+H431tTAij/oEk2YELMUQNT37TxvoJFcL4uga+QE7xqRBG8xXG2yJFbdDTzYSs/nPQPOl5FvZMIxtSPhRVDgGi/rhl2QK4JRxm+XYaNUq3Pb0/SxCEMHU9eTu/233J9wseux+zVinl0npuXkVsH9u9OkZ4BwDokg+72YK5V83I+CYKpmqK2iF1EE3L5NtJkh34fsKPuBYoqqvejQ5H/upQbAlZD0BRB6PfngphPChMxuOKGo8kO5gQJskOSM2rsXJNfxBVLg8vs6bN3juv3BYAQMCDcq9Gegnx6G+3xMMIHmGMIMdTi+9iYTcTR8e8EEZBXk68XUOTxr1CBea8WJ3vkry9ukKYun1bTYtl7U6FMDWp++bJM6JTZUl24IdBPxnG5/vUkGoX0fX54SwOnRfpt7tf1cTS3Rio+Kijmh5tP4gxzBsAghbHsDTuVargXscWWNbUjIvrg2E3E60Ku9mC3A9t+PNpZYxdGCuqt4XOiGX58muhs4LiJF3dlnfqFbPfAHC9kXL7QdWw1ULYbYmg1boSwuxmC2otEFXbEr6ZLcSRZAfzsUXDDr89U+OgfEQaAeByZmTD/FUC9n0xC4FLSJv2PPYnekX0giQrYEx6QljNvbWEeqpJ3Wb0v9t2LwG4BCDALEbrcubXUUwIo/RK8jOI37QcoYnP65YBQBdlV82f+n1AsiIoXB6mr+ooyQ7c6hcp9G+98gHAvOeGMH/U/kn0A1p7b0323dT1PvuqDWnz2xr2c9q+/YLF+aiM/vvpkQSxjh076v717dsXn376Kfbu3Yu1a9fizz///IvZ/e8lipro7l6EijvrswEasncwAAgoZgBB/6MDPXuqlTnxpWHUuSBVZ6Hh/mvGwM3DAwtz95D3KtheOrmoiZ+kKBKeqW5dNnmYbrsJpzySTBw48pT7dSUWn26I+MmKnqABgNcXCQgelYx3aqfrTug07dmn76LTiFGMR/69Hu8AkHSH3NLWnUUETI+uuYYCGJ9X03mKwCLJxFZlvK+yObebLawOaTMjkD/Bppl0JdmB7GiyudmYsE54r0ZdbOihbFTtR6+xhZsKZ9GdBsBZXIT60xOEtrebLcwuzhSotemj8cIdpB22vzQNAPBCTicW79vAEJz8gKRN/14RSniyHb6H4FhiMxM8VqtvDwDnY22aMJoPv6HmKbplF+GZti3Nv+AdkicvLNE+2+T7fIagCAALmjRG4w8SMdSnPYoOKyfIia0U59pq3iTZgYjXFGe3tJ+Yv0pA9GP9WDj/X903+f+ZSxW+efVWmtar/zHDQwSaT3z8Mk1Y+Y3JsJstMNWuxcInnmsJSXYw20M18ZsEu9mCXbPmsndjG7c3FNarrNwH5+OtYapZUyNYja4uI/D1JDivXWNh93fUEfLp9rRywGQ3W9CugjuqLk9i7SLJDuz4aR5zkp2xWETdpXxcWNcEbomHWTi1xdDre3c3+6L1gacBAM7HZZiTqqKwQNbwn2xRXH24hbdgB01qB9/nY226/YWWbzdbkD/RhtMfKxs+o9vor2cPIuNmhHJ4QPOjqIXRnQbgzFriSJYi/dUxVWZl1k+spplDKS/TXpqHs2tDNO2ifqZzVNqCNkh7bBFDdwSA6G5P4+vAULaW5Hyqv5H1TqoCu9mCrUt+ZmHjfW3w8PeF3UwcW1f8F7HLurCuCROo+Y29AFpUp7ZmPKQPnqXMsdevw3MzcSZN3Sy8ue4FAIDP5ASmvi3JDtSdnchsLCXZIUCQ280WmJoEwm62YMtvC1gY6wthoQAAv3cVYQkAux3T23AXdm6DovYWVHqvCtt8A8Q9A6W7vcJ1+2vGr2Gwmy24Z28rhCd/qhyQqNcyWj613b4xKEoRQt4i81Z8aA0U5hNbJTXiJ6X7XdswNVq9OQ0gt5crblTXzHXFnQuYKqmRAMOnoSBSqfcUQCsKduU94Bh62fpo0kqyg9n28Xnxh7t6NNNL6c+1FiQKY58fu5XW7NPU6/zL2rWLV/NWt4+pZk1mW3mj6A6iuwzEB1kHUdilDSTZgXLXi2G64sHS1txbS+g/PMrnP4LKbMT+Mvq3oSY+88wzyM7Oxr59WgjWMlKIXvOGLHsbXs8RGx/+RAgAim2tcDWwkgA+cG9LY/wRquhYezRuhI2J6wW/MXpIQeq86TPVc261/1mm8mAUV4/03hnF5ydAdTxX76gPGKr6dXZtiKCeoc4nullHxB3fSRbcunURd3iLsPgb1U8d7kpNiKXzbgMUOdkzRYu80zsCFdaTBeTSKCtqzzNG+dKrQ0kTM99eept5o++ijkdpeV4Cnmlkw41N/tjLoSka8ZI2OwLZfeYy1UN12fQ557eW8H06VZOeElWF5Xl09a3U9EbGMcSuHYGAN5NcpjVqL3V7uCpXkh0IPzgItZ7Q+trKnmpF2lCtHxpKr2WcwLeBIRo+7GZyUkw3KXmrmqPRU0chyQ6EzI1lqKh67WOkVpW/OhTeA4iQ5/ev0QiOIf1wavZ+TPSLEOqW+VUUBnfbhYRW5TRj0IhcjVVAi6RG40y92AQ7W1Y0zFPv2/H/+XbrNGIUyseLN0Rp89sKaoM8r35xIxE8kiCjym/ZBIRSo/7C53N5uBXJn4raB8XWVnBLJOqifmtHu0Rio6pqNF/qE4ynjF/DkNlZEQyM2snoPe8PiqrMuVeuzEAljOZaGtb2/Rjmm07gvWVThsabNisCQYvvshtaoS896MdGY+jPIVbs+1xfg0NdR/U3BwiIQuJXs9Fu/FiNbdPDrFnqMkoz77pbmiE+bilLEzExBjUXkra68qIVNX8x9iNGiTcroGqOee/b0OgTrS2rmmyH7yGhVTldPtOnRyLrKbLee/j6YGPCOqH8kuZUU43quN/Kn4Fw0He3+0YwQZrPh/r7NOpHNOzOExGosGG/EFbczgK3vQ6hbpLsQLdBQ+G+RwwHFPtkI1qYuwcNParo1svDy4yNyXGI7joIzuNpum2hJp5XirhKUUtdpeHbevMtT3wdGPrQa9k/RjXxvb9RNfHTMtXERyIfHx8cParV/y8jfar/7Cmsyd8PuJuEwWyqWxduCYex7/NZuBBDTtXy3rehXLfTwmS/MXE97GYLUt+cycLoyaOpZk2Wn3oCoM9tp41D5v0bgmBD86eIV5ToKU7mNOWUL7rrIM3GttvTw1B9j3i6iW3emlM9u9kC+9FrAj80TbOZis+s6e/+CEBR/SrcV1OIS9Pe706u/6kQBgDOCxfY78eHjdQsloNOnMVFJ1GDjC1QTqgBIHB8Ejz8FBQ/9cmZ3WyBlJ/CfI7Yzcois3POXEiyA1efjxKEsLxVzaFHRsKpKSQIy/PIIkDVmiTZgZb7n2XxaLuq25bS6LQs5ruMj5e9rBWuvhCFjMVheKYROfXnhTB1PgABowDAbsJadEwX8pz34MaVPquFMNqG9D8VwuY/UMcM+G0sE6YBYPMtT0gysdvRE6De+3Qkqpx2Z2Xy7afX53OmWAV+5141C3F6NulgyCsAJoTR/sA2+hNF/2aIaCGknXSir8CTJDvYCTDdvALAcduvLJ7PRwmaOgQvikHlXXUBAMXJR3QFS3q7BIAJYZnTrJjoF6FpF59N99kGr2dQO4G/vPeVGwWejOYSAEBUS10/SACYECbJDnbjU9KBAv/Mf9cd8+dp+OLVBumYoemoEAZA4yZC3V9yPxJ9qQFArZ8T8eGFUCFs8+pfcO4VEpcKYep5glJ8hlhmxbX7EZOeIYQFvnBIM47VZDdb2G0g3wdfSk/DnhlzGBrn1uZVcf2ZKMSn74XdbEHQohiWR3To47pl6AlhkuxA/Kbl7LnxhmKNrSLlgR4mTLssqv/SfGosShTiG7UVP475+FQteO93s1meapLfVOZidRsBit8uu5n4iHvnnBJPbyxRKnIcZ3m22v8sE8I8/BozIYznic+raFsjuLVtjn7VlOe93xP7uEafJLB1i8ZfV5CMu5t9BV4+rHtcUFXky6JCGAAU5ihaHi0PEnX28IODUPCuTejnfN6nZohCmCQ7kD/RxoQw2n52M3FUXH96AsvHSAgDgJsNTJq9R1a/CuzWm97Cdn/qRWxZsVC37Xkh7PIGZT+SvZxoALz49Eu6Qo4kO7AxOQ49fNoy8wb12qA3v/N1et2XtDdV91bnT2+Me5zsJaTvXkkBEepz/FKJBw/0BrZMNfF/jzz+XRnv27cPFSvqn3qWURmVURmVURmVURmVURmV0T+Q/i61wTLVRH3Kzc3VDS8sLEReXh7mzZuHZcuWYdCgQVi2bJlu3DIixMPXF/W0odymZEzLScJbvtytjJsbKu6oh9sdxat5PXUK+v+25IdrGxuyUyt1fA9vL2brZaTOsThvL+qZKuve0tDnUXntMK+R6EelpJMfNVF1HTcPD2zK1RrBA0Da3HCUP+uBxh8kwlStmmCPUhKVpBLQ7/gFjK1RYMg3ny7t57b44bFfMT1QC8phN1uAiBaQ1i4WTtrsZgs8GjfC+3+sxYf+bXTzLXjXBq/PE9D16HW8VSuTpdOLC2hdFxjxy9Ot/pGoknkN8fHLDL+pOh8AeONMawZSonfSq1YPo46F9dwATMhMxWcBLXW/ifokVc0fTQsQR9Rnj9RHxvOiilO4w4lP65EbIgozfeYNGxp+nYCCd2zw+kJULfHZVxm5kTcN20HvhNxVXwKAovYWZLzoKSA6SjJBK6RAHI/FjBbUfShV31MbK/y3CWWGJT8DbKkluHygRNVd9agkFRijevptGqnr2NxV/up28l81Buv7fIfQchUNT6ppuBqVtaRvQX8HrBiLwPFJyF3ZAj4DjzDUTHX8wq0+2NZsHQKXjWW3NXrluFetqrFrdWvbHJvW/Qq72YL0hW2Q1X2+br9V81vSuBp/pi1OtCkUwvqk98DdjiIggd1swer8JAzwjtL0QQBYk78fHQ69gJQ2K9DtRG+4dxFtgDKnWRHwlgjURJEKjcadqXYt5MQ2xfEYog7rVr48iu/eNZxH8ybZ0GiKeNPHo8tKsgNdXhgBj+0pyJ9og/dU0o979B2MrNfdUWVXJdSd9XB9uLBLG3hsE1EY0+aEI7v3vBL7vHdSFeRH3dDUuyQy1akN58VLJa4npa1DaSnq8H0ktfLUlEtVjHmiLhDcwkLRfXEiA6zhy6fubHj+ghfFMFs4Gt+9cmUU3byJIafy8HzVkm90jNqFtnN0l4HMdUZp2qS046qksaY3Tq8MtbLbTDWtyE9EdXcyb6UtaINs+/yHnkcBRQXVVK0aMt8KhdfOe/DcmsLixBUchMlNq8VRWHz/nwFfP+lvVE2c8t+tmvjI8PUUpl6PiouLERQUhO3bt8PLy8swXhnp+xGjVNJkdfvJCLw57Vf0qXyL6T/TNKbgADjTMnXT3dvSGOW6nWYb29OTbWj8oehImCeeB7qpBcD02tm7121IfXMmS5M2JxzBY0T7DZp/8M4XEfT2Jby4bbfgJNqo3plLLcjotFARJB/owPPxnjh2BRtCa8LULBhxW1cI7y4PszKEKoD4afL5OEEzUVOKDuuOuEObhfoLAtnsCASP1W6k+XzUi1KxrRVDoePDnz+ZjyVNvYU8qM0fVZ2p1pN8SwqRricYTDzXElPrp+qWzfN0cX0wM3Ln6c8hVmye+g06ff6GgKqltu86H2vDofdmaoRNvv6u+u3DbExOT7bh5CjSpzqNHIXyccaw3ZSXboOGYsuKhQCAVl/GosF3Dw/fX9QhDO67iQG6546GSN/tC9/3lY2K/9bhDHjjWnwALqbWQ/pgES66Z/dnUHT0pJCvJDsQNjWWtS8t22is2M0WVN1dB9c7XIQkO/Bc9uO41O5KiYIA5XtDcDzsZgv+HGxFjcWJSF/UGlldf36ozQxPfF9UU2m/+6ATZzGi+tkSeaA2SUZCHAAMOHEeq0PqPXQ9jIj3ueWKNwC4/kwUEr6ZXaryjA4ewt+LQa2fiUqb/+9jkNV/DqxvjEW1ZURNtd34sUwFDzAWGvj8ozsNQNwOAkbTbFYs871lN1vwQdZB5vBbXafMr6IQ8KaxoGrUHpLswEXnTdThDu3U8fjDLj2BEiDAIcfGzWTjXJId6DxkBDy36jumpvlT6hUejcICma0DlKiNUkl14HmKKziIdu/Eovqv5DsE7Riqcer8qMTW6NAmcB47pQk//bFV4y7G1RhQh/Fz8pr8/ejnLQprVMDSS2c0p/N0Zm0IGhrYZr+WcQKfZPRClR6KvTvNy4hnviyjvuGq3hnfRDFHyXwe1IekKcgfn2xezuxi9fhpc6gIKWHumvZYcaO6Zn+iR+p6ZHwbBff7bvB/W/mO9IDS2ak1TDsUv37RTR8TDpb/KTZiARP/PkEsc+p/tyD2SDZiQ4YM0f0bOnQoXnvtNSxfvhypqallQthD0J+rAnTD1YIR/7xr5lz0qXyLLBwcvDsAxO1YzeJeWNdESFuu22kAQKeK5MSSF8LsZovwByj69gBQPcsJSXYg63OrIIQBQOqbM4V0wYFnNPzbzRaEzIlFWsdfUJiXj0FVrmrqzISdnxT0KF4IA4gOPI+udO25KGwIJdCxtC1onS6MtSJ5yixkLA5j/Ph8THhv/4oCy03L9ls/Cie/JLZsfhv0IcKz+8xl+Zvq1tXkQeP6bRrJwt0SFBh6fsFTC2FwNzEhDICw8Z3YJl7znSjxQhhff1pOjz4EWaz691WF7+LevCkkmdhutNs/kgkJV+MCAQDFRW4sftej11FvZoJQD71FlD6nzY5Q2qlmTSGOOv6d3hHCO0l2oPGHCawMPSGM5sG3yZYVC9nv5eO/MuTNaKGXZAdye1Rgae53OgPf98lmOfcjYmPR9C3iX+ql9DRU65nJUN144lFAKdnNFtT7IQFfZCv2U1QIo/Z7fY5fYnYHALAqYCtDTb3U7gqD0+fzLOyi3LQC5NSbCmEAUGMx2RAEDTmo2QxTJMTSULWemZBkYh+q/r7qfPnvCZAT8Xm5e7AipIFueeqws5/oh/PEC2F8XL0DJb0w9TsqhKXNDYebh6K5bzdbgG3eQlwqhNFn96paP1LqMtTfrdbPykYt6OV9sJstqLYsib2vsiJJM9aNDsto/s60TBa30ScJCD84iD1TIezPISIkOgBBCFMTtTOm5Ld2tFCnuJuNdfmjqJVrmtXVzBnq+N6fkbG+46d5LD29QQAUmz1+zFM+7GYLLs2rBEl2CEKYW3gLjRBmP3oNkuzAM9mdIckOBnHO8xTt1RpJX85m4a6EMEkmCLrqutNn+kfRTem3ch47pRv/5MhZmjD1M83DqC9Q6ucdweLd6xEOSXYIQpheupLmglQOOl+SyQEgpW8DQ3DuSH0A5FDDbrbAf7WyxlLkQ77MJgtihDVWva4ZCWemINLmvBDG50FvaZ3pWYIQFv5ejCav+PnthfRnXyPz/PxgP4ZQLckOhtTL80a/x/1iJ3sOfC2JCWF0rqf+PU07DgrprncR7WTLbMT+9+jfhppYRqUjvRsxPWe5RpOjWh0HIGohKZd8sKP5WmGx0ztRk2QHwj6NRb2ZWrUn9ekR/5vGo6f1emmoQ2qjevBxv8jexxwsp/8Yiax+c3TrfHmYFeGxh5AZfkfI72HUFSXZAb91ozU3WnrtzJ9eqeNcHm4VNlLDTp3GgiaNNfGMeABQorNsHnVRzQOPJEXD3MqXx6bsfegV0QvHJ3qhSdMCFHcucHmCWlIYpRub/NlJJwC8knHSWEWTI6oGwr+jvxfm7sFQH2URvNUvElWyrjGo+ZJOVPXKTZsZgeBY1yfgAEFq3NF8LXpFPoHCPH0nzpRo+aGJz+OYdYlhPwYUZ6ZG7ynRG2S9Mco7XNVrN6N83do2R/GBoyzeF9n78I5fpMu2UAtRfFubmgQit189HH1F5DNgxVhkDlJuakJ/iIX31AcHM+4mhiBK5yf+JoYvM2+SDb4rzsKZTvoVfwPK6uXmBqngkKYP6PWH9IVtEDQ0RYNgpyaKfkippHHgSnAvrRBrlI7/TR1S89/i6gtR7GbGiAd1HdRhdH501X78bSffJ+zebSDlpwjpejSOMHSaXGxrhbu1y6PYRMBIhLzMFoY8SPl7mDbkx+SovHbIjbyJ+13bYPsiRX2MzsvqukY5nkL16AwW3u/4BaxpVvf/9G0pPxGHBqJmL321O1f5jE7LwoAqxDVJ3qrmOG779aHawu4VBjzYwqkdnpc0b3R4eQwq/b5Pt/9oynmIPq43j6jDxuRbkRNxW8hfkhUUSqM+re4vlzcE66LXGtUpbV44snvNY2tl8d27MIUEIW7bSpfzCp8nn6+pbl04L1woMd3DtN8/RTWx7Ebsr6N/G2piGT06Bb1MJse4AnJyQv1eAUR9gycqhN3vTm6PPLy9cLRNEcp3zxEGv9HCYDdbUG+miAYkyQ68nXkEnUaOYmEdXh6jnBZ27M8mJV4Io3nQeN0nvM7yo+/kt21CXPqebhYl2YGgl/Zh/tUGCEkRsWTSZkWg1oJEZIbfgdt28bbVee2acDrP15X+uYW3YOXSGy3PHQ1124gSPb2S1zQT4rh5eKDW83msLFP9elj0ZFchLf+tPBrUF04waTupnWWreadCGF+PsE9jUfB7KDYelJD1heJIW5IdKL5LnLcuTVqFg72/Y7YA6kUYAF4uiNSUF/mugqqmJrW6yZuLhrN3WV8SPnjHv5SoLr5ef3xh2KtC3Epr9iE+fhkKfg/F+ZdsrJ3UCzrl49wrNqT9JKKN8UIYDeN9IDkfbw1ToB87qNi4b4OQb/ZUq4C6ZjdbcHEMuYXikQh5p8UAYGpCbhDV6ojqulO+Ut+ciZb7nxXKrriTnCb/+ubXQlq+jxjlK8kOFB84Crfy5VkYHVd579sgv2nDPXtbzcaAb9+A7cOEfJ2nMjRCmN1sQeB45aYmZO9gZvcjyQ5I+YoqWfDIA3BvFYJ2FdzRPIUsN+4VKrD8fDZfhzM9i6WlQhhPabPCNfW9+kKUpl0k2YGs7vNZXI9G3rpjOm12hAaCnie9jRN/qq8noPPv+OfFeaL9rN435Kl+MhFuojsNYIcttRPO4tpz5CR+Tf5+TR6dh47U8MuPGwDskMpoYy7JDuHmnV8fUOTU9Jfi+/d0+6QkO7B51S+osH4/ds2ci8yvozRtdLthZWGdaPJzjKYNjYims5stzLaz49fiQRY9HKPCFv2dZFkllDFjsYhg6oqMeOoV+QQAYH/YShZPb60t6hCm20/mBvtjyOnHIMkOJoTplaUXFrRjKO5Kjdm7Kiv3afomQGye1N/dbrag0u/7BG0XI7KbLQx5keeF96tnqlFdiE8FHf/fybgJXhiD5tMVBGQqhAGA9Y2xAIBe1t5srejRd7Bun+b/S7JDEMIyl4SxdvXfMlx3fqBCGAAU372LGwMj4TyRrhEWKaX/0pqFN5sZK/RbADj5dSPmK06vHxV2aQO72YKg5PKMB71xc/Y1m+EcX0b//VR2I/b/mdQ3YvQkd37uHng/cOirt4ku6eRFPanonVJdezaK2SLQeBfXByOlzQpNXGqozJe1+ZanANGaeu+OCDKiw9uNQVE49+QdBH1xF7en3cbprHrCzdTDnB7dfCqSOS42agcAkN+2wfwl2SgGbBuGzC4LhInXb8MoZD8xT3cy1uMn60srUzugvs2oPcvotCzMDfZ3ecqozlN9g5L+fRSyBoq2J7f6RaLSGq1PJnX+lzcE44lGRxkUuTqeq1M76xtjkfi1oo5Dw5ssiIHvpER2U6uXh6vv9lJ6Gn4M0rpAsJstKOzcBh7bFQNmvY0M1fU3Ko9tdjqGwe1+EfNtpKaex/5EfGgNw82SEQ/q8uIKDiLaq7XumKL/K+6srwHX4fPpmHobO1tWZM9quw0jWyxJJr6zKiVlwHnlCgAY+uShvJWGau+tyWzPApfEMIAH2r/V+aXNDUfT6deZ+mWvNj1QeOYs0n5ui+weog+vjG+i0HhTIbYvJI7M7xbfRx+vcL54eO5oiPudzgAAluTtxfON2unWfd3NSpq+BABu5csj/YswBI5PYnmdj7WxQyaAqC9XW6qoMfU5fgnrmtUucXw8zJzEx33+ZD4WjO+HcpuMVWrtZgvcmzfFBWtN3LJfZ77j1P2TxtX7rkY8q+O5ik/tV+i7EWnZmB/spxuX2k/qjZe4goN4Ivp54UZbnT5tVgRzp6COQ+e5ksaoUZgepc2MQC2HCSkfaW9AH+bblpbcwkJRfOiY7ju9NVeSic1pxRMVmMPp/Ik2NPpyPwOvUtuTUXLFf2nmfUoXx1hRZ04i3DzLGd50qilzSRiCJ18TbNF5n2G0PLfwFnBW8sANc3mmdvswZE6qCjnquuH79B8jEfTSPs06CpDDmMK8fJd7J0l2IHxSjGBDTsPnXjVj7jd9GSCSqXYtOC9d1sSzmy3MNlHdL3M/tMFnMvmu7hUqoOjOHaiJH6//GBuxCX/jjdhnZTdiGvL393+kv4AAfTuoMiIkyQ7U/IUMeG+PKujR5wXYzcQZLiCeBqrTmerUFsLDJ8UIC/cTaT3Ze8vn5GSKt0WgVKd3mlBGs1kkrvPiJcw8vYfFs5st+DowlD3fKrqHt3wVZC/16R/Nr8qKJGR0Woiiwyewo/naUglhzk6tNWEAUDn/tvAsyQ6kLyS2MudfIidMp1e0YEKY38ZRCBx8SGgXu9mC4NHJwmkb/e3hZdblJ/0FZUEfPn4DAKAo9SR891fEp9+9wPJJu3+TlUNtMiTZgYDlY4V24m2Jim2tEPRqksCjJDsEIYyenOnxltx6BXPK+3bmEVwYa3W5APPtUG1ZEou7Ov+BkfqiGHhvJwtzVv85hptEvXzpux+DgiHJDuSvDmXhzWbFYl1BMjy2p7Dy+f80D7tZ0fUv7NJGtzyaxn3nIUEIk2QHbj6w3QCA+NAaQnyjPsq/vzFQVOtL/z6KIV0BQNgUMj5C5sQiILkCwieRG8XbHc/pnnDS7zqxzimhLCqEWQ4REAgqhFHfMjztmD+PCWEANEIYzVfdhwCC6AiQzQ0ffqndFZYu4C1F8KozNxFdj16H3WxB2w9I3Ty8zMh+Yh7rt3azBYVnCNofj7ZI8/DdcB+em0l494FD0ccrHJeHW5k/IEl2MCFMkh2CEHbzKaX9ozsN0BXCAGBT9j4Ejk9ieUmyg6lbU6q2NAl9jl/C9afJPLVu+OOMf2q7wve/tzOPAAACl44V6sOTun35U/gh1S4yIcyjEbEv65B6h8WLbtYRkuxA1JJUHJg8C42eIn43274v3hDx35Kfn9T9tyQe+fxq7q3F3kmyA9cDnEL95wf7YcCJ80JZRR2J36ctvynOpilPk7PIOI72as2EMKPyg2P2644NSXZg949zNPzzfNnNFmaLZzdbUD+xmm4/5/MMjt2POnMTdddOvn6STOyoXPGu906SHTD9ofgh3LRxiRCHzyPx69k487ron85utiBoyEEcG6fcBntPTUBxYSHjjwphNK+ex/7E5eFWTV84O94m9EUA6Jh626WwBgB15pB9B73pVL+n9qvYRvw4Zi61oPamCoItuiQ7mD2e3WyBKSSItMe/FsN95yF2yMfH/yJ7H+5Gi22u5k+Oui7wVHV3HQDAuXGkHYNe2ofTk22I37wcV15UNB9yV7ZgKudN9wzWjB2+neruFtFKafiZezVwYPIsZH1hRfoPkXBeuqz5pjTPcTVPC7zTcCqESbIDRXfuIG2utr48X2U2Yv979Eg3Yr6+vrh//z7OnCGLp8lkQp06dXDx4kU4nWRCb9iwIcqVK6dJm52d/X9k+b+L1DdibENoYBehR6U91TOKR8PzJ9jYidzkrBRdqHX1KRvVM6fUPMUdWxdFMcNUvTIvjrai1ok7bEEHSndyL8kKZLUrKtzqA4+uuQwpjhIPRQ2AwVFHt+yiue3T44c/DSvNSZseUbsEo7IurGuCun3Ek88zr9vQ8Bt9NwRG3+VhTo2NhCvL57GoP13czIZNicWhSTMR9dZYVF+i/Q7qTYBe/upw3g6OhunVmc9XkglSG9208/VskzIIdXqnGbaJURvxdO25KDz+VgJD0lKn41EVJdkB/9VjEDRuH3uO7joIl9rWRo1F+s5xjb6Fh19jFGYrC7qpfj0BvTN3ZQuE1D+Lm49dYHH4G0dJdqDj6NFsQ3RjYCSKPN3ww5TpGqhrV6R3a+EXNxKzOi1Gj0p3hbh6deFPxilRyP4bAyMhdynWRR299lwUKp27j22Lic0Pj/6qbreMb6NQ6Yw7zF8mCDZhFJWyxLEZ1RJIStXk69GwATambNKko/nNuNJYAIRQb9Z7BtpQdOuWhueae2vhSrvLQho9vqjtp5r/ksZRSVTczoLNKxcCAELmxsJ3zRUUHT5BNqxZVeD/TqKmfKNDF7UA8DDrkyQ7NO4b1HEoSq4678ylFhTdd0dWt58BAG+dDUNqa7KF4dtXj4dW02LR4FstgqrR3FBSOA/RT6l+YjUsarzL5dzyMHOkEfF5MHTUJwcj/YVKKPYsNrxxBAjoic9HCcwFAH1/9fkoVLjiZIiVPI/qgwb+t1Hf5N/xpI4XkuKBfzksCB5xoMQ2528UAaCnfxS7YWLr1mexcEyYacif2u6b0r0e4bq31zzl/NYSTwQeFb471bihPDw+fBTL5+x4G0PtLWms0PL/KTdige/+fTdiGZ//d9+IPZIgdu3aNXTt2hUeHh747LPP0L59e5hMJjidTuzevRsTJkxAUVERtm7diqolIEn9r1NJ8PXWN8ei2tKkUk148ps2mL8ig/76M1Goulwfitho0ufV6vi4vcKjsXLfWobApE7r5uGB4kLiE4eHx5ZkBx470g8V7YrwnT4jEkHjFNUT3/0VsX9hGIND1yMesl237pzBsoevDwpzcl0KJn7rRqNXm8P4wYuglFE1sa5Hr2Nr86qlait1eNr8troLCa/qIckEqvb+muqCv5+HFRIALYQwa6vFYQgcfIj5KPGTRiB4mGKzY7Q5NdWojrjjO3XfFW1rpPFPxJMkOxC4dKwh6lpJm4ybAyJRebWodsnazd0EN08PbMreZ9j/ef8+PO/qZw8vMzYmx5W4ASqJ37Ov2XQ3dG9kHGO3xB7+vijMyhHyy/7cCr93E9lG9HojD1TNL8SumXMFPo2I1id0Riw7MOGJGp+r47vaIPHvcqZYca+mE4HL7mPLbwtKTJc+PRJZT+mD6hjxHt11ELwWFCCk8hlIzasx309hU2NxaKLxHAAAd3uGY8f8ebC9NhZVf3N9GKMWaCkPzZOeh1d/rdqY7rz2APhEL56ekMRTSePXVfmlOTQpbRy/DaMQPDpZN9+SylSHUb9V97u3ZTecfByPxo1wrY2ZHcyVNHfyvpzu9I6Ax00nuyHn4wJAz+jncPHTQiS3XsH8wanzv9U/Ert/IDdqNNxUvx6c584LMO6u2tC9QgXEZyU99DdTh/Fj0ZVgl3n/BmIbE7CiFfmJGPh0DDavXKjJVw8YSY8fSvx3VbvR4POiPOVMseLUMNH9ht1sIUihXfKF/GneancH8ps23Gx5B0FDiF11jz4vCAefJbUZX4aemcPDHgTo+ZpTl3/tuSgkfjUbjw8biT8W/KTJV503XScfHzYSY6avZuBc1JyAxi+NAG40Hv8pYB1lgthfR4+kmjhp0iT8+eef2LFjBzp27AiTyQSA3Ix16tQJf/zxBy5fvoxJkyb9pcz+N9OatCPC4KeDkto0+EkjAADLr5OTWKpa0vnITTaYj7w+E5LsgCQ7UHV5kmYykWQHUyEBgNt9xRPyucH+LC5PhQUy+nlH4OYmfyy6VkeAPgaA4sJCSLIDbp7lkNX1Z6HMSzsbCnGzBszB5KwUtD7wNM68bkNOxG1dIUySHUwNouiOyaDVAMfdu5AKDim85uRq6mA3W5iKmd1sQfDY/ch6sTHmX22AKxuDkHCZ1Htrc0Xl5Z6dgJ9Eh3UXeJJkByZlOTR8ZPf8iaWVZAc8vIiqCi+E9TjZC+G7L2mEGipE88+WQ8SBsdAeHKn9uFAKHHwIlXfVRbQXUed8J3KTpqxOoxQQFqr65fzzKuxmC/vjobh5ftOnK6AqfJ50Qe58RLFzMicRoXbhtXoakBlJVmCj1UIYQNot47sooMiJC6sINHZRe4tm4VqdnwTnxUuom1CD8U7JL04EMSgskHUXWj4/Wh9Kd6PDBTcKANCor3irf1sifmZ4VV0qhPH5Vc0m6jR2swUV/7Uf9X5IQMW1+xnftHwKdyzJDuStas5+h84gxuKVz4hnZwXvEnWkTdlaxDRXmx51W778ZBzKXTKxmz4AyP3QBmzzRv7qUBa/R9/BuPpCFIJeIcKx83Gt6jAdK3wbUF+HuZE3ITWvBg+/xggek4wmC2JQ74cEoQ2yl7XS5LljPrHjrPpbkub7UYASGr5x77808ykAePU/xn5vKEiBm2c5xp8kO3D9GWXzd/czYpcSV0BOzykcN43fdF4smn8fK7Q136bp0yOF/qbHDw0PWD5WU1/6nnePof5mAGAKbcLCirY1EjaCVAjj66jXz+nvoOTy4MFeaFhIige7Ub1V10OTR8avYSg8necShU+SHWweyP7Miv1TZ7G4O+fMxbZfCdDKrf6RDISI5nO6dw0kt16BFt/FIuPZ2UzIlGQHzo4nee7+gRwKtJqmgEI4z50HAMGXlpovCuixJn8/iu7cgd1M4Mt5vvX+03xu9YvUzBHUATaN525pJvRv+n2oEAYAg7ytyO5TUeAvaylJ06uSaFckyQR8yq1NqJCfug/azRYNguvLO14Q6gEAfmtvsLTNU9xhN1vwUnoapJANLK7/7wpgV/4EGzKemy3kYf4qAX1CFRcqxQdPwH/VGJbeVLuWpu2/yxHHPX1PzRzy3hfXjf4Z3UolhAFATm9PId7NpyI1cRO/IrbY5SQReZpvS0lW3BM4/yTudv5Y8BMWNCFAKVOz9zOb7p7dnzE8gND7Nur3euvSfzQV/w1//wP0SILYmjVr0LdvX13VQwCoUKEC+vbti99///3/xFwZlVEZlVEZlVEZlVEZlVEZldF/Iz2SamLFihUxZswYfPfdd4ZxXn31VcydOxe3b982jFNGxqqJGd9EoclHxxF3kuibU59c/GlL9vKW8Hsm1SBnhUpSj+FPltS//eJHutTddm/eFDn9a8Hvu6MaP140jkfDBsyYX5IdaPtBDGr/pEUoouUa8cyreDyR1pMZ+OdPtDEfRm9nHsGXAS00adS/KYKeq7bS40Fe0wzmfsc16QBg9uk9GPvghFPdjnazBZdGWVF7nr5vI0l2ICz5GdTrq5xeGiFYXX86ClV/S0LOp1acGj7LUBWCzxsAghfFwO9dfZslNa9G9Ve/D9wxFAGcs1OKHMXHNVLNMcpXL9wVL9X31MbV9pc0aY3qpg67X+zEE16KPWT5nQ2wLmiTbrmS7MB3V3xZ39Hjz+ik1vl4a5j+0Nom5K5sgXqLKgp2cu1S+6NKjywhX4owaUQ8LxETYlDzl0SG8AjoI3bx+d/qH4mOHyQgpV01xKcrsOt2swVpsyKQ3Xcu7GYLog7fR1IrMlfxdqUAcGmEFbXnJ2pQIGvurYVrQ2vAmZ4F96pVce755qg7WwEFofW9u9kX5bvnlFhH6juK8qeuv91s0agLlzQPAsqYk2QH/P41Gj3bpuLE+y3wx8/kNm5e7h74eFRxOS7Uz6Y6tRGXuk3g1ShNdKcBiNuxGl2fGw7qOsNutsB2+B7ku9WRE3Gb2aeuzk/CAO8ow/wAcqOr5widT8PzZeSDz4iyP7PCb4Iyp6jHFlUjdFV+r/BoFBbILuN8cSkI79RO19h50TZzpmUi6wsrguecwcY9a122MwDYDt/DtrNNsKvFGsZvxq9hyOy8QJM2ZE4sA1ygRNXySpojeaLIlOp4pemXHt5e2Lh/o+4cQ9ObQoLgPJEuvB+V1w7zGu0V4lFVfzXPLb+KFfwa0vDuT72oQaIVbEg5v4EAcL9rG3huTdHwSdUc1fWlqpJGbTntcgDTVsn4LkrXRlySHWjxXSyz1TKivFXNGShOadrdFannc95coKTbOp54Poo6hqFox/5/jmpi+b9BNfFumWqiLgUEBGDVqlW4evWq7vsrV65g1apV8Pf3131fRvpEB2/G4jAEvp7EhDBJdqC6O4G6fjLdzuKXRggDxI0Krxpx+mOr8J7+ps/vnW+B7J4/oWhbI016Ss0XnYLPxwnMWSj/nm0gOSHMbrbgwMezUNiFbHwzfg1DsbWVhg++Pfh8KXLXhuB4Fo/3YdSlouLd3pVQQTfSbmGhuvUyardGoxXnjZRyphABeeCnbwnhQYtjhHwoBK4e2c0W1Ot7Uijr63TFZsvCrZvUPsb3vUSNgJH9uag2St9FP9aP2Sfxdcr8Okrg0W62aPyi6H1T+juj00LcflKxvVhdQL7PKxknYTdbcDc6XMNjUYcww3bgv13mNFKXyVkpun2jpz9RX9ETwijSJq9eQvPocrwPbhXdY++pEEZVsj70WcfiRrfsIrSB3WzRFeB5UqugnH+ZqA5uXfIzq9ulkaRu7q1C4DPwCCptSRXKoD7b+G/AC2Fq1T31po6ir35xKUQZOyohjP82AFDp9334tN4RFN28KajmABCM/6kQBoAJYTSPA5/MAqJaoujmTaHfXGl3GXE7fyff//p1JoTRMgqXEv9pvBBG1WP5Pkv5oRs9u9mCYlsrtDzoBr91o4U2o+rClPhv4l658oMfotozPfiwmy3I7jsXR6a2QrlNyejhQ1TPRvm0150X7hc7hXz4OCc+9xPa0miTZjdbGDCJacdBmOrWZXESWpVDTsRtSLKDIcEN8Cb9/8JY0ZcgpRsDIzVCWPZUKwresTE+5l41o8fJXgCAq3GBJQphfP6S7IDfhETN9+HnEmrLZZSH3WxBYYGMtPmKap+pWjUhz+iWXbC9BfE9dvgtRf3+fCyphzMtE7kf2uD/TqIghKX93JaVoabVizqhoj1b4JcKYTx/0a264cSYmUI/SZsbrhHCjNYQAOh6lKD+6QlhPH+mB5tMPi/6rQrzC3TX6Ssbg1i480S60Ld6teuL3MibmvIyOy9gYXx+Db9JwNUicnA+LUdBVN686heBbwDI7jtXqWCRU+DZc2uKwAfjW0cIy/wqCtMDm+Lac1Ga8UFVCakQJskOwYm8mn+1EMa/9/D2giQ78J3lN40Qy9P9rm2QP1GrRq/ODwATwmh4wydP6NabrkX03b0tjZH+g4IGy/PhvlMUkP+j6e9QS/wfUU98pBuxH374Aa+88gqCgoIwadIkPPbYY6hfvz7OnTuHnTt3YsqUKcjMzMSMGTMQGxtbcob/w6SHmtgrohcK8wtcpnO3NENR6ik2CfKTmxpMQL1Jo4O+V+QT2LiP6IAHLB+LzGdmi+/bP4mNe9biFTkcp9reR1HHMGGiuN+9LSoek9lppnqDoTfhqX8DItgHX5fleQl4phHZxEZ3GSic9qk31x6NG2Fj4npdwUtPkCjVaZi7CRnfhKPh7mLsmSGCEkiyA+1T+2NPy99ZvjHpGZgVFKjJRq8sSXYgt/AGO13/JicRbzbrwtDW9PLQM7xX521UFh92c5M/Kj/Y6Kvf07YK2D5MODUtv7MB7nY8i7SZEch+cq6mTNoGRrzrtXveezY0+pT0U1O1akyYVy+QfD3T5oQjeEyybt5qfiituFEd84P9hPimJoFwnsoAQG6KrvVuhSor92mAYSTZgejQxwW4eKNy1WVTIUHPr1nGt1EIfC1JyMvVt5RkBz68EIqkVp6l+uY8mf4ww/m46xsHvvyWB90YEp1RHJ7SfmqL4JHirTn1/WOU7vJwK6Jf3SUIdbQcALhRdEe47dGLY8SPmufS1Lmwcxt4vneWOUA3Iho/3OFEssXYdpWnJ45dwbiap5mvtZKI9dFmwXAeT0Pa7AiGMFmqecuA1GAuGd9EsTmfL7tnUDsmSNN3akAdHoymcKsPtjVbp+0XD24kKV0aaUXtnxJ1+4R63PPvM7+OQvVTbswPGF+O7fA9wWeiUP6Dfnl2bQga6AAb8XUuTZtS34Bqvp/Lfpy5f1DX7erzUUiaNhvzrzbAipAGLsvl0+rd7rjic/bpPfDzrMLS+/8+Bm7V76HY6Y7yle/BZ+ARIR9Aacd5uXswyqe98N5obqPh1O+gUZ78rXlp8nO1bvHvbmzyR9UJFQU/bZeHW1Hr50TNPET9XuoRz++K/ERUd6/okheA2PferaXA0SOiBbBfbNfSrouS7MCtonsMAI2S3fwPAut452+8Efviv/tG7JEdOr/66quYMWMG3NzcNO+Ki4sxbtw4fP/99/9nBv/byUg18fIwK5KnzBLiupqo+PdqtC/1BMFvQkuaJK8+HyXAlKcvao2gIQcZkt75fzVl6nT5E23w/iyRwe4bkdo5tF7ZfH30FmdTcADidqwucTOmruO156Jw95krGoh4gAhzhafzNM6TJdkB/5VjEfRqyeiVanh9PSHQyBG1Ht/+W4cjaIhWnc2ofnrw+LTsgt9DcTRqCYt75UUrKlx1YtdMRbDiVdmMyvHdX5Gdzt8ouoMq7uJkbDdbkLXUgvROC3UXt5JQGNU07NRpZhj9THZnDUR1ScJnxjdRCHzdGEGU8qx+X1ohl09P4dbdmzdF/OblsJstuLHJH3sfCOyR78boQtoblaF+dgtvgeLkI5p0p1e0gH+szMYVTTfj9F4Ee1YucSPkygmtEfEqwQA06tMF79rg9bnxKbXdTNR1L4UXCqASgCL4U8r5rSXebrkZK0IaCHl0Ovoku0Uzars/h1hZm3c9eh1/dAmA89x5pkZZWkGYf6fnYJ2H0Kf1U5P6HS/Q0Perb1RjwEl6aQAIwpkryvrcCv8H6sjf5CTidV+rbj/my6LvqPqZUbtkLrUg4DkHJNmBbbdN+DKnp4Cwpy7DbbsXNjXdKNQlKLk80sPv6qZJW9AGwcNSUPCODUdfncnSGR3WUFh2V3XSo8yvo5j6ZJMDnjjV9j57p+dImZYbtCiGta26DxmVqdcGRmQK9EPxuYuIP7W7RCGBvms6LxaNP0zA5WFWjYNiAILbDT2++frxz20+ikGdufpq7dR8ASAAU2v/bI20wf6I27qCxSvtYUnuRzacGK0P3lXSHKYOB4hWCnXLAChrvFFatr+oWVM4fHO3NEOR4zjOjbOh/gytax7DvLzbCGqbfNzTk21wvwc0mkI0et46G4ZpDQ6hS8PQf4QgFvT23yeIpX/51wliaWlp+PXXX7F582ZkZmbizp07CAgIwMCBAzF+/HhUptoSD0FPP/00VqxYgdDQUBw9erTkBCp6JNVEAPj++++xd+9eDB8+HGFhYfD390dYWBhGjBiBPXv2lAlhD0lr0sTN1UvvECGD/+MR6QBlcqPv6eRDhbDLw6xM7Q8gE4C7pRmcpzKERYz/zeedtdTChDAah6IibglZD0l2MCFMkh3wnpqAcy9rHQhfGaqoy0myA3Gp21h+QtkRLYR60XddnxuOiAlEzc/y2QMH02mZhguIJDvQ89ifkGSHgCoJEJSkun1OQZId7I+m2ZhI6kQ3WPS93WxB1sDZQll8nhTZyW62IHOQiCTFfz8aXnnVPrhXqFDiNwDAhDBJdsCjYQPDeJR4IYyny8Os8Op/DEGLYliY57PnGGofrSvvrJjnja97RNVsVjd6a0Hr2KPvYABA+gMfQHp12xKyXpdH/nvwtKBJY5iCyMZ0ud92Fn7tuShhI6En9EqyQxDC6Dt+s0EFAkq9wqN1+VP3Mz592pxw0rd3rAYAFB09yeJX6ZHF4hkJYep63xgk1o3G4YUwPrzxoCPC4YbdbEHeJBvGNW6ne0rLP0uyQyOEGfUzPpwXwiTZgUHeD1RJLzQDAEEIo+mim3VkbQEABybP0ghhAAQhDAB8n05lNwp8+opvV8KM03tZON8PaBza5pLswNbmVeE8dx6S7MDNRm6GY1r9bDeTWzMAuDTKioIn72vaaP9ns1h+en2F5jMitz0LP/1VZQ3PA6pcE9Ly+VHK7jOXqXdLMkFyvdObqAhnfW5laXlB4XVfrSq6eg7k3/HqqBmLiTqxW9vmzLE3FcIAoEtFJ1M9M6JNTTdq6pEefld33EuyAzVSiKrw0VeVjXmH1DvYcdtdaGf67sTomUIeL6Wn6earJt6GjRfCAKA4m2za7UevsbR77xSh85AR8OdUvSnZzRY8e1LWCIosv85ExTD6sX4u+ZJkB4Zs3IGi69c1m31JdsAU2gS5K7WOfxt/SMac+hCXkp4QRvlWj5uc31qyOLe63QCgILry9eVvPT8LaIn1J1ogbusKzfdxVVdKW4Z/yeJffUH/RpxP13TPYOGZ5vXGGYJw6v9OInI/UJxcb0xcj/RfWqPizvq6vNB2qLWxWMizyEHswp0VuLksrDuuxQfo8nZ52IN9ECeErSsQ57nGHybgXq0iVm5q6+IShfMy+r/Tzz//jG+//RYBAQH44IMPMG3aNDRp0gTvvfcebDbbQ+NabNiwAatWrULFihUfmadHvhEro7+G6OlCq8FTUPdXff3gnE+t8H1PObmlgBSS7EDAtmEIHKxNl786FMesSwBoNxj0tIz34wKUfHKoG8/NjfnwUsdRq7fpxaH88b9NtWsh7sj2Up0ClpZ3SXZg4rmWmFo/VTmN5k7HeENberLtSrXhYemevS3+WKBA3G8oSIGnm8nl6Wlpv4c6LgV14MPkt2wwT0vQXXhcUbGtFbMRUPNKnX6rBRNJdiD68afYrWtpiKq98rcsaiE7/OAg3N9cB/WnKxv8rC+s7MRzWk4Sgz02qhttBz3iNzquvgslXr2Q+liiRvUtv4pFw28SNHWgv6lfoysvWrH/s1kuy6FqRwCB5M+O/umh+4VeXWgYdYSb84kVvu+LJ/zquABw7hWbxtG33WzBGxnH0L3SfV3e1EAFpeGTB36hcQCgR6/nDW/v+PR6gDx8OT38IhnMeGnnPVpXvfwojcm3IieCLOa5H9jg87FrAAGeLo204sDH2v5gxON3OQkY72tDzb21sNzP9Zzp6ptSdVRXcYzykmQHgn6Ngf/bylpyW/JDxQ+r6jrMVlP+6lB4DyDfU30TylPWl1akvyCqJ6rzvjLUCtPdYlRbRsYlDxTlqg6U0n9pjaxuPz/U+Go/bgxT25RkB8KmxKLejwku6y3JDiy6VgdDql2E3WzBuXE25oRYj0c1IJEkOzSqrnrlXRlK3AS46he5H9hQoc1ldqj6RfY+WMqXF+KNSMvG/GA/l3Mrn7/eeKbqrTQvV+lLG05pQmYqPgtoyfjz2zgKwaNEwYfmQVV+/y/l8fEAbXsYtUPuyhaCmqhePv8Uh85Bb/2NN2LT/robsQMHDiAoKAjVq1cXwt977z1MmTIFM2bMwMsvv1yqvG7cuIFmzZrhySefxLp161ClSpVHuhErE8T+PxPt1FfS/DGwSWs2IDuOGY2dcxRHr+oBX9Ikz8cFiPf3I+NnGqa/vCEYtZ5I083Hf+VYuNW+y4QqmpZunt1bhaDosKKD7+Hrg5OvmNlNREkb26JtjbAlRLTvUpNeOmen1ti69GeE/hCLYy+LixgVdKxvjEW1ZaJK4eZbnmzD6NGgPgrPntO02ZWNQajZK53lx6vHqHnSq1fFnfWxNkiC3WwRUKQGnTiLFSENmPNtmtZnX2VmWK0mU5NAnHitlmgnoqPywBNfX7+4kQgeeUCjomeUprThrt5lTrMi4C1lU//4sb4o1+20kO6x2NGouHa/Luqh3oYQAEM45OunZ38BEBXQPdO1tn2A8ZiizxRtTm9BpaT3/el76jiYnZ627CI4nebTq+vd4ttYjbBoNIaobR1PvPoR72Sa5kOFRD3Sqwug72CVEj24AICLY6xI+dBYsDz/kg31fizZ9iXt57bI7mEMtmFE/IGDKwG0w8tjmONhNamRIHkeJdmBUXntDMcqjXu3+D76eIXrlk+drvP5UrU6I0Eoe1kr+D2rtTXUIx7RbnJWCj7pOkAAsXiYtYS+55EDXc0TfL6Usr60wv/tRN2+VVqBpzR8lhRXr8zRaVmYG+zP5l9XqHzdB7wIt0TtN5BkB9Lu38S4xu1KxaN6LqHx1ai7Rm3VPMUdR9uQm5SrL0Sh+q9JmjQltUPHMaMFlFZX8/tF500834jUjaoo3uofKTju5vmjxJs16JUxNXs/Yj98Vbix9tswCoEBZzHOZxt+DApmcYttrfDhrwvwsb+iNn9mbQhSI5aVur0f5f2QU3l4vuolst9RqXU+Sjk9fNoyv6t2Mzl0dl66LKT/p9iI/VMFMSM6cuQIWrZsiTFjxmD27NklJwAx0Vq1ahVOnDiBli1b/v2CmNPpxA8//IClS5fi5MmTuHnzJgofAC44HA7MnTsX48ePR3BwcAk5/W+THliH0QbP5YSjczOl3oyk/dwWwcO1UPRG5GrzqRePf6Zx+d9qoAcPXx/k9/VGg+/JBqTd+LEw3S1CxX+Jtg/nY2049J5iI0ANtOmp4MaUTYbtpG7Dnj2eQVHqSajp7HgbGnzn+uSaCjKu2u/8yzbU+8F4k0tJvUnUW5wpRDKftrSCEgVLKCnuPXtbjTPL0x9b0fiD0rsX0Ns0UPsJNQT/B1kH8bF/a92NsiQ7dOGpS7OhApRbKb14rjbmQcnl8YPXPvQ42YuBNVCBWV3uoy7oRjypydV4p2HULjP3Axv8fz5dIrAPQGwHx9ZQ4tnNFpjq12NqenzZfFl6ffZq0W0M8rbizOs2lwKdOs/Tk23w++wgiu7cMfweHg3qY+NBSZeXa/EBSGy1mr2beXoPAjyrIHhhDPwmam/y1GXo2abS2z09KuzSBh7bUlzmqdf3g3+JESDdXRFN4796DLIGiIcG1B5X3U8oXLua7Eev4fVaItomhQbnyyvNeCpJkC3NuqQ3p+nNIz16P4/iFOWGkx1ccWua3rzOgxep4zx7UsZvbYIQn773oYQ9dV6mGtURd3ynbh+l9cj6wooqp90wYOx27G5ZQfO9+PqqD52ovaxRe5c0p1B775LWaKP6AUDavHBk9yLuGdRuJwBRcwQgyJt+E7VuWDqm3sbOlqJ6VknrROtPYlB3lv4tPCVXbjtKe6hgCvRD3K41LtvmXo9w/PHzPABAtxO9BTvmkr6D546G+FfQRqbaX9p9G69VQemfIogFv/n3CWJpX01EvXr14O6umE6cOXPmLy0nPj4e0dHR+OCDDzB58uQS4+/fvx9WqxXLli3DoEGD4Ovr+/cKYnfu3EGPHj2we/du1K5dG+XKlcOZM2fgdJIT+qtXr6JBgwZ488038cknnzw0U/9LxAti284ce+SNHo88SFGijE7e9Ihe7euVR4WLEWnZGFTlqrBg8Mh3ADH6L6rkic0rF7IyXW2IJdmBrs8Ph+mPg7r1e9jNr6laNbhVr8YgngFxoTFa6IwWQh7EwBV/9P/C3D1o6FFF1/cMAISkeGDbbxFwcwKpb8xkG8S41G0uJ2/PHQ2Z3zReyHLb7lUi0htrBxX6GqC/+eKfKZVmcVf7FDIqR00lCpnebXCzX1vc8DKh/vQE3BgUhb3fKWhvvGF13iQbfOKuCqprevnrnXwb9QUPv8YozD6NhyFJdqDL4BHw2JbCQCtMdevCeeGCyzQ8j1V318GqgK2Ghxz8rSOl/Ik2HHtZObRwVRYAhogKEDTN1nXyBDsZV5tuehPO2snbC3eCG2g2TXobMErqulEhj/roMZrD9OYUnoraW+C+x+GyDvzYMRKsSpqP1DdVjK/+Q4Ak4l5kdX4SqrhX0AXe0cxfNWviTht/doMOAANOnMfqkHos717t+gr9kQkND/xI0WcKPMG31SfZyYgo7ym05cMQ304UwEioN9d2/M2h0dyiDusV+YQwd1OiBzhGadVE++alUVYcmKyvmmfUh9R+sF4uiGS2bOoy7zwRgQob9EFT6Dwtv2nDkdcVjY0BJ85jdbP6DNSqNAc4ap94lCTZwVBhqbDBk/+W4Vjc4Sfh8IsnVwK3mh5VWHyUdV2PeJXCkvKmNONKY8GvJaC/5vE++Sj6Yu6HNpwYQ77b8yfzsaSpN868YUPDr0un2s74rlaNuSJCVEsgKRWXRlhx4JNZun2xTBAT6e8QxJxOJzp06IDk5GQcPXoUTZo0cRm/sLAQrVu3hpeXF+LjiSul/4sg9khgHV988QV27dqFTz75BGfPnsXIkSOF99WrV0fHjh0hSdKjZF9q+uijj+Dm5mb45+kpQiOfOnUKTz75JGrWrInKlSujQ4cO2L59u27eV69exbhx4+Dl5YUKFSogNDQUs2bNwr9Lk7PISgxv6YDkJxP1BJLxXRSuPh8lvHNrrtw8XjtfhYV7NKgPu9nCJgg+37Sf2rI8PgtoibPjFf8y/GRyaCLx3TI/2I+F2c0WmEKb4Hgs2fSlzSNqOJs2LoHbXgcrk8a1my0obkf+u7VtLuZjIITxdVa3SdTh+5q4ABB3cpdmIfdqdEkoTy1g0LIth7SLe1EFD1Y2/25FfqLAH/3f0IPY8ugJYQBwok0hquUUoeHXCSyN+pTebrYgfZGIXFg0uhLjg7/p2tR0IyRZ8amjdxpLKXjsftiPXoObZzn2TTKX6p9Y0/p2GTzCcBPNk1ubUCaE0Xj0e6vbHCD9ha+vkRAGAFcGR6Dy6n3s5qJG8hnYzcRWEgCcV67AFEhsDhptuY77NSswABVaD3X+VAjTEzbV/9WbXj1Sj1e72YJti4nDYQpa4UoI08vrUE4j3fwpX7wQRt97T03QbUs3Dw/hmbYJL3RV7pGlEcLUaXii6shRb48FAGzcv5HZJuql58eQ3jexmy0Yl0f8JDrLuevOCc1TlBNnv42jAJDNFl+GJDtwzb+iMI9JsgPf5CTibvF9Fo+i1wFAz+jnhDp+kp0s9PuMb0V/e7RuVAijz8NyO5A4SYpfuAHeUdh1RwE64ilocYzQTs4rV/DMjHihDUdXl4Wycwd6aeZyAIjbtlJ4pt+Sb+v3/cJ1257Pj/9PgQ70+nfQq0lwC2+BM6/bWJ7mpKqszHmN9mrKoKS3JtnNFjZ3X39aVIPlhTCef0l2IG0OmUvoHAgA9+qQ+bL2PMXXIi1DXSalwq0+ACAIwXazhQlhelRhw342l6nbL/VCQwCA+SsyJi8PJ2Apq0PqCUKYOq0kO5A2m8CaU7+Z1CfeE2k9NW1J7a0qLbiOFt/GCu0T9KIiwEa36sbSZi21CPX/7opvqec2Nemt0bQe/Pjjw9ukDALcTbr1p/9vDBL3OBSFkT7nfEoAMRbnif2M1t9utmBDaE3hW7dP7Q8A8GjkDUkmKsQr8hOZECbJDtSoewOS7GBCGAAsaUriUyGsuJ2F+Vqj6exmYoZgN1twt6eyvjmvXVPa4MG8cOATBUwl7ee2wjfLmKGPWvwfR3+zH7H09HScOXOG/f2VNH78eCQmJuLjjz8uUQgDgGnTpiEjIwM//vjjX1K+R8lRtLRs2TI89thjmDhxIgDoQtj7+fnh8OHS6bQ/KvXv3x+BgVq/TampqZg2bRp69+7NwjIzM2Gz2eDh4YG3334b1atXx7x582C32xEfH4+uXbuyuPfu3UO3bt1w6NAhjBs3DiEhIYiPj0dsbCzOnTuHjz766N9arzIqozIqozIqozIqozIqozL699H777+PH374AaNHj8aECRNKjJ+RkYGPP/4Y7733Hvz9/UuMXxp6JNXEChUq4JVXXsGXX34JAJg8eTI+/vhjppoIAO+++y6+++473Llz5y9h9GFozJgxmDt3LjZs2IBevXoBAAYNGoTVq1cjJSUFFosFAEE8CQ0NRYUKFXDy5EkmUM6cORMvvfQSpk+fjnHjxrF8BwwYgPXr1yM9PR2NGzfWlPsopAbroHRxjBV15mj1sNWqFUbX+/y7P4dYUXv9Saa+xaPd2c0WXBhrRd3ZSlm8nyhAPPGqursODqUE6ho082Wr052PtaHezATdd65UF+70jijRqFivjQCgZ89nER+/TNNeeioEpeVLj6iKkyQ7EB3WHXGHNmvANPTy1wNaKO335uvQav+zeKPpFixp6m2Yx+PDRzH9d0o9+g5GcfIRl2UycjfpgoN4J1VBftQNTXip8lTV49i92wxim39Hjf1pGABEP9aP6fyvyE/EoKfGMFUwnnifZRSdzYgXI9XBoo5h2LJsgS5ghfqk/WHHphGVFCdtdgSy+xAwn1F57TCv0cPZwrC2fYA6qe6frvodjUfD9YAm1GiQvMNZPaLqWzwP6vIALeql2skuz8PtJyOYjzy98QcABe/a4LMgA85z5zXtQ6k0/ZgHL9Ajap/maq7jgUz02lmSHUzVivqms5uJmxH/B1DynY4+iR3N17Iy7ndvC8/NpbcLvv50FKr+Jt4W+28ZjqxuP6NXeDSyh/kKquiUPHx9sDFhXYnjgD7nrWqO3gFH4QjT8lASr0ZtGDI7VkCo5OMVdm6Dbb/Oh91sEdS8AQi2yzSNqUkg4v5YBUDbZ9TU+chNbG9ROt9D/HcdcioPi5qQW2/a7oVbfeDRNddlfekz76DbaIymT49E0Cv7xHEh+aHw5/qo+luS4bgw6n/qMD0eS/v99OpqVDYAZPwahszOC0rVx4J/iUHaiwagQQ9sD0s7Jvh41D8mpZLWNKO9h6v4/xjVxNf/RtXEb/49YB0fffQRJk+ejGHDhmH+/Pm6l0pq6tu3Lw4cOIAtW7agXDnFmXynTp1QqVIlxMXFoXLlymjYsGGp+Xgk1cTKlSvj0iVjh7wAkJOTg1q1aj1K9v8nunnzJpYvXw5vb2/06NGDha1btw6dOnViQhgAVKlSBSNHjkRaWhqSkxWj36VLl6JSpUoYNWqUkPf48eNx//59/Pbbb3853/2CW7BrewBI+ZBcXQfvfJHFUasF2M0EgENNajWAGosS4bxyhYVHVTCxuENO5eHgB6LPkTneilBmNyvqazNO78X1DhcROD5JKINe0av548PqzUxgPKvfuQozEsLUGyX1s91sQXz8MgBg/tfUEyD/HDEhxnBSnZTl0ITxxNto0Q2dlJ/C2v/iaCsCl8QIk/LV56OYECbJDmR/pvj4qbq7jlBnvXaiv+1mCw5HLGNCmFE9y20iqlbUR5bdbBGEMHX7vZQu6uKjyIlLo6xMVYYSFcL0vj0Nl2Ri+6EOp2XR31QI4999kb2PIa4BwOw/vQAAzoxsVs/q7hUh/b5IU+bVuEBsCVkPywOgq49brBfiqIkKYZLswLzcPSzcfSdRIxr462uatHazBWn3lf6l/lb8t5RkB2LSM1g8/k/NV2ji80I6/p0kO4iaqdmC6K6DkBt5U/PN0+aK6lL0d0iKBxZydUsfrIx9df+ivu5oeNrMCDa2VuQnsnDqRJdPX/OXROF5bOP2mo0izxdV3+rZ/RlIsgPpC9uwPPl25YWw8/9qiou3K+v2YQDYNXOuUB+9+cPr8wRBCOPb+/FjfdH1ueEAgD7HiRBF1TABIJvz18ULYW6e5VC0TVErBRT148z7ZLy4P3AaKskOYk8GoHr2fVxY1wQDTpzX1JvWcVxNoiZbpUcW6yPFcgVWx/LdcxDd9DHAjfhI275QcZmh15fUv6kQxrdb0IvErq2wQEajT4nALb8tqkI782XWvoE7hqIkavSUIoSpv1vwLzFszuVVvPTmDPq/fWp/jZsA/ntv+3U++70hOF6J5G4SAKTof+p6w262IG1+W1x/RucA5oHfy+0tKuvOJx5+jVk/VvMlv23DxysGsTDa7h5dc1E3oQYrI/2X1rrj5tqzUcz1Ag2/OEZZQ2iaoFf2IfOrKNZm51+2oaI9m5XHx51xeq/QxnqClt1MVCzH5FsFfsbkKwdotKxiaysMOqF1HUDfq4WwkBQPoWxa5u0nCQATFcL4PIzIb4Iy/1B/e4weQggDgCbzFfVh/+eUdrCbLbj2rKLSaCTU8vyq37mFhWr6Xhn9PUSFsBdffBE//fRTqYQwADh9+jRkWUZoaCiCgoLYX0FBAdLT0xEUFKSRHUqiRxLE2rZti7i4ONy8qQ/he/78ecTFxcFms+m+/3fSypUrce3aNQwdOhQmExE4UlNTcffuXVitVk38qCgykKggVlRUhIMHDyIsLAwVKojSfkREBNzc3ASh7a8iUxPRMSAduCceW6A7Od7qH4mzr9kQPJwg3qkXbKOJVL2JnPbj0wiZG6spm6Z1r1QJGZ0Wkk1A43Yw/WHWnODQWwJ+QtE7EVLXjSejRZb+7jRylBBXPWl1GjFKs6mlfOyKFnV+7WYL0mZFsPi3+0Zg/2fKhvT8SzYh/WMVgMvDrSw+5aXY2gqm4AAhX/Vvu9mCOnMTkfG8uOFNmjZbePaboAgb1ztcRJtDRbCbLbiwrglrk9p7FZ9KRuTmWU7Tfu5Vq7LnjclxhgsFoCzGPwYFC215b0tj1J6XiIxnRLtL9eLDb6ABoEefF8gpX16+po/S3y/kdNKtiyQ78I5fJACgZ5MOAIAl7z0hlMv3d/VzkmUV1t6sAkcY8YMzN9ifOeXVo9p7a7L0Pg9s/fg24H358RTsaXwafr3DReS9b2NpZgUpqtRhU2NZ+OVhVsBd8StH/SrxdWuTQjZu0Y/1gykkCACQ26cOy2/26T2M5+DRCvR+5yM3YQryh91swXcND2CoT3t0HjJCd044H6vYBBXduSPUNThWASUY5C1uxHiKKxABKWLSjf3JqXmgjrCDhqYI+dM4njsaQpIdaHnQDfX6nkTlB86yaRyaJ83X9tpY5EzRzvt6Y0Ddl8p1O42tS4ld1295xI6DQoUDQOACfZu/U7NbMqflvAPcwq0+CPAk9rvx6Zxdy4Ob3ErJOXgpaCdWh9TT8KO3AaW3uxRZlTqMdV67BhQXa8ZFL1sfTf1vbtJXrZFkB5p/H6sbbjdbYP5SFL4pJDcANJlENC+oU1v1dzz3ik2TH0CcNQNA2ouzMMWfhJWPT8bZV21CvJsDIjVpK/fIYmHUfpcKu7Rcu9mCtNkR4rcvcrJnU5NAlockO7DtNtk/BI84gKrLkzR2rdh/RHzm6gQAd/zqIGioCFxD2+PI+Jk4NYKsCfe7i4ep+TdqsLhUCIabGysjuuljqLYsCbkfKe3YdF4s6szRR+oMeFNB+q33g9aX5Jp8Mq6p83cm2K0PZgcufP1ueLshJ+K2EDbHm5SdPj2Shc1a/iNDns1frbjQoHVT04k2hbr875o513C/oJ6Pv8vR2shS5FOahh7MUroylMwPBb+HCnlT8n0/UZdfAMxfHT/O/hyszDdvZx5h+b13voUm7/z3ld+mQD/N+/9kciv++/7+avr4448xefJkDB48GD///LMAAsLTmTNncPLkSdy6dYuFffXVV1i5cqXmr27dumjUqBFWrlxZKhVHnh5JEHvllVdw7tw59O7dG2lp4sn54cOH0bt3b9y8eVNQ6/u7iF4vDh8+nIXJMjF29vLy0sSnYQUF5FbjypUruH37tm7c8uXLo06dOizuo1DDhg2Fv6AgsqFynlLgiPnNbbSXvuFmpd/3odhNiU8n0FZfxOLmJn/kfEo2SvYnB+ump1R/egK8O+ThTu8IWD6PhSQ7cGZtCOPhs2N/CJPQiQwvYVNQ8I4I8MH/Vm+O6fv6idU0k7vdbMH97m3xQdZB2M0W5HxCJrOgRTEAgB0/KWp1G29V0JRZPj5ZyHNJnnK6pwbvuLelMfOzYzdbsGvWXLZBkGQHDk3S+gvzvKVsbCqlk9Ptzat/YTDSI9KyhTSS7EDTPYMhyQ7cHBAJu9mCYadOC21Df/OTL/2dEkaG5sG2yu3rpXZXhDh8P7n9ZATcLc0EqHj6ruj6deGZbzu1oMwLFXazhQku1AcYbTe9hVGSHWwDTd8XHziK7M+Vk1q9Mk/+HKKpD///tYwTiD+1G/d6hGP3D3NYmVRIBQAPf18Wfr8r4bn9uDFM8Jkf7Af5TRtD9LObLeiYelsod6nfH0LZekKX3kGB3sECn2+jT8RNKw2nbg7sZgtqLUhkqp92swXym9pDrDq9yVzrzMiG8wTxcef1eQLjY2zj9nDjHLHazRbc2OSP7S0qw5muwJpLsgOeW1OEOtLf9Wbqg32kzYoQntVtw9efQjhT4oVPvh0AILpFZ9x5gmyOKeCKHg05lYepF5vgficC1DKtgeLPR5IdMP1hZnnz+Vf9LQm+kxKFscb3zz7HH2h2RLVEdIvOAIDMr6M0fbCiPVszTumtCRWAz40j80fwCMUdxKBl4yHJDoQ7nPDomgu7mdz68W2R8Q05yHJeuIAR1c+y/CmZQrUHSfxvVpcHfsv49FQoeSxmNApzyA1ExjeK0/M9D9Qb1WUCgNcXoip5UXuln+j195C9ZK2h4Da1FpB29/vXaKHdKOiOJBOnxjSv3S0rMCAhnp8G34t9svLqfZrvzLfHIG8y31AYdp7f4FgFDVH9jr8Fs5st+DKgBaZmk/nOd39FXQfBfDsUvKsc4Jlq12JzzbzcPaifSFSqLo2wCsJ12oI27NaSrWXdczT1kgpIf/do2IBpUvh8lIDYAtJXD4z4RsiD//3EsSuGfQYA+nmLY9tutuDseBvq9E5DuxlvaHhRq3/yc0HQK/tYHvTQAQCOWZeUKGSo9xD0xpfmp+4X/ptFIClJdmC8rw3ulSpp8ubnuO0tKgsgOTUXkn7q1V90Ek/nYA8vs8AjT2fesOHyhmBhHr0QWcTK/DKgBRk7HcKQbCEHbW5hilA607KE/ea1PMro30c//vgjPvzwQ/j4+KBr165YunQpfv31V/a3ZcsWFnfChAkICQnB/v3KIWTXrl3x1FNPaf4qVaqEatWq4amnnkK7du0eiqdHEsR69eqF9957Dzt27EBISAg+//xzAETVr3Xr1khOTsbkyZPRsWPHR8n+kenUqVPYs2cPOnfuDD8/ZVGn0mz58uU1aeitF43jKi6Nz0vHfxWtSTvicnGh5NGwAdybE78wDb9JQLGtFexmC+7Z26Lbid5o8H0CKvfIgu97icKpnXpjQUmSHXDvkocK6/fD8S5BCaJOEiVZuZGgcbN7KQKR/KYNXl8om0m7WUGGUk/8fB6LGu9iz+kzItnk5rn5ANpVIF0y4IdM2M0W+L+byDYAND31i8O3Fz3Vo/R8o3boOHq07sJEhQp1m9SfnoAefQez55sDIpG3qjkAIOGb2cqCrdrUSjJBlKTve7V/EnazBY0HkW+6Z8YcSLIDC5o0NmwXvj75q0M1QkmLfc9p0vFtsmvmXBQ5jgt8qdtdXbbe4swvWICi0qNegIz6KZ8HJb93jX083Sq6hysd7wjhgHI6DQDfBhJB7fyoW8Impm6fUyxNYVYO48FzKxEG98xQhDYAggNtANjZsqJGkDIFB+CJY1c07Uv/6wlnlPiT/pLIKA9ahvkrrUPhVzJO6vbnt86GsTrwNiMAUWEDlM23K8ERUG5I1PxRAZzn3ygPv7iRuu/kNc00m1fnpcsM/tuZIR5m8DwsatIIm995jNVN3Y/imsQhc5pVCEufEQk10b4T3WUgJNmBgHIP1BKTUplj1YxnyW316ck2ptak/u7jz7Rl+XVb9SYAoP4MUWAwBfqh9lFygPNpPTIPp/3UFvGbl8NutuDSCHJYxjtZ58c2/R235TeNgMW3o7oteKJCCfXNaDdbEPh6klCOOh8j2rJioW6ZNOxEu8W684S67/DvljT1FsrlD5L0BH1ekKY3neq2ufqCokbY8qCbMKdJ+cpBzIAT59FsVqxhvSXZgUvOyjizNgQ5EbdZuPymckOXdEexmzVx5vC8k95RPu1xaWBVSLIDtecnCm0WPEw8EDHio8NLYwAAhWfOCuEzvchtF0X9o5oDtI6S7GDqrA9DHrfINQQvjNMyAYKSOzWbqEfPvaoVVPj65H6kaATceDC/SLIDd56IENLYzRZEdxrAflOtAJ749SWru6Juyn/jmMMKv1TNk48HAM5KRcL6HflODK49J2r2tOhHUGELC8hBfs4U8YZ3XUEyGu69gVpPpKH9uDEsPOhlra0o7wj61EuKr7Up/sbzaBn9e4hqtOXm5uLFF1/E4MGDhb8pU6b87Tw9kiAGkKu9zZs3o3fv3qhevTpMJhMqVqyInj17QpIkvPfee38ln6Wi+fPJwFTD6Vd6cEJy98EmhScKJkLjuIpL41fSOXEpLfHwm2fOnEF6OjnZ7hfcwjCNJDtQ1CGMbDjPnEXR0QcOid1N2LzqF0iyA38s+Impw9A0z54kE8jyPK06AgDkvUcmyIzFRFk/dAZRReEX6dX5okGv3WxBy4NuuLCuibBZpHFq/ZwoLNL8/1b7n9Us4FkDHmyWH+jn2s0WXBppFew2yuVfNpysaDg91TM1CWQnYhU27NcVfHI/tAn5nX1N2UAXJx9B+i/E50rl1fvQ6KmjQlr1oqQnPDtrEbW2S6O0OvvqjbDdTOy2+MXZewDxJ2dOqor8CTZkfBuFI5FLdRdEvfz1FnU9AZz/rf5WfDqeZ6N4etTvuGJzRYlX5QSAzu++gswuC1hZj8WS03N6Os2n5RdmN89y7D1fN2r/pBYoKQWsIDY+VMBW19WZlsn8zgBgNgB8HL5cvn3qT0+A7bWxLvtqwTs23b4EkEOJNpNjhBsTvtxele6g24nemm+c2roYV+MUtSoa/8zrSr/mN9+S7ICfNILF+yJbMebnVbx4vvWIb/fnsh9HUXvyHDzygNBf6MGRud9x1mbOTq2FvnRphAjSokfl45Nx/ekozfih/9U+1YLG7WPqbr1sfWA3W2CqVg2S7MAVS23YzRZ8GxiiKc9/JekjjT9MgMc2RbWMj8erUQW8oQUu8ls/CnG71iDxK0UFWZIdyI7+ifF8u76bZlxSsh0WBZIf/2ykqW/wwhiBL1fCMQB281YS8X2L56/FNyI0ut7854oHfh4ZdOKsrnBJ7YGMVNn4gxjfSYlwr1BBI1Ty6qOprYtxeZhVl9fVIfVwPGYmKzv9B0Xlkeb3dWAoGj7wyUmJ2jNKsoPZW0uyAw2+066z/mseCFD5BbCbLViel6Dhg/LGq7Sp615pzT4WV70eD8vtwMLjT+3WCEPBD7RK1HXjST3e66TeZLbhemvodf8qaFO+HO53b4vZ3/fVvKf/wyfFwOejBAw6cRZ2swV7W/7O3tMDGDoHXRlq1XVUHjY1VrdP8XMMX68+lclBeeZXUfjVd4cmHUDmBr5PVBx8Bj9MmS7EoRoolO7VI2O+w0tE6Or7xFCmVrxnhuKMXc2rmsfgkQc06zf7fVQE7/qPpr8Zvv6vooULF6K4uNjwb8eOHZq4nTp1KjHfnJycR/IhBjyiIJabm4uzZ8+ia9euWLt2Lc6ePYt79+7hwoUL2LBhA7p16/ZIzPxfqLCwEIsWLULt2rXRr18/4Z3ZTE5s9FQKaRhVRaxZsyYqVqyoG/fu3bu4ePGirtriX0U199bSXZy3/LZAG87pt9vNFqLGt82bTTCf//YUJNmBZxqRzd/lYeJtVV0HmVgCB5PTGu/PtGhYTxwnm0K6qQaA+JxmONj2N117G1qGJDvQ019Z+CXZgcMRBDxj750izcJKVS8k2YHaPyUKi8nGhHUsn+BdQyDJDnh4e7H09CQcIBv411K1Nnz8ROjzsbhhO/zWTGFipHr5FAiFN4LuPGSEJl9KdrMFphrVUXzgKNlchiubtWGn9G/hAGBjchyiw7rDbrYwe5r5uXuwwGc3vD9LQOBrSejRWx+8ofKuugI/NF/Ks5pX0wPUIfXiyv+xOkURB9+By8YK8ShRlTJJJmqY6nzXNFN4o33SmZYpLO61NpxgeRRu9UHFtWRxTpvfVpMftYsClJNz9eI31Ke9pj08GilAJhTtkxew1cIxT4lfz9aEqfni61j1tyTdb0yfLX2PM2AWntwrVEDQuH2oMycRRUdP4m50OPMVSPO2my1w75Knu+BXjyYgIGHJihDX8BvteKbfMHiYoqI1cup4of5UdZja2BjV9ZWMk+x5qd8fKPYgy4l3UhWhPHZwxJGzPIlLN6a152tvTfMmibZEABjSW7dBQzX88GVS2t2SaDzQOYT69AGIM2Z1/LTZEcgaOBvZU8XbFnU8NUmyA+k/ko38hMxUBI9JVtJEtNCMHYD4fOPHs/ymjd3GJrQitp7UHmpds9qauvpNFH0ZAkQFcfbpPQjYNozEi1AO+DKfUfqye6sQgReqPnxxfbCGTzqnH3l9JuNPrz3UApGaXz7eipAGsJstyJ9gg/3EEyycjn966EJV1I2o6M4dmJop9qzqsrM/t6LWAvFw0BTkr8tTVv85gv2Q0bfny2rxrXJ4SbUyrrxIeD79sRVBL+0T0j3TSOvvkfJcY3EiMpdakPFtFC7EkDzUICG0H+V+qOQjR11Hyt17wnue57Qhs1DcTgxTU/cBCihYxKGBQFIqvH/11I3/7EkZVVYS9VDPzQc0YF983WotIH10yuYnAQAt9z/LgIR4P1zv+EVi/9RZQh7079DEmQIfWV9aGQgIrW90l4FCGxW3syD4szRNfpRMtWsxv2oAcGtpQ7QpryDgqUmSHQgelYzCrT7Y/SMRuooPHdMItmrBlRf2+L5Jf9OxxeI3/89DSSyjfz89kiDm5+fHfIj9p9D69etx7tw5vPDCCxq1whYtWqB8+fJITNQasyYlkcmgbVuy8XN3d0fr1q1x6NAhza3Y/v37UVxczOL+1STJDiz3UxxMZ32hnOT5bx4BU11x031ppChYpQ+ZBXRR7KEaf0g2OVV314GpWjXUXX1MmJDyurux33RTdWNgpDBhle+eA7vZgrE1ChiPR6OWkA3uAx3405NtbGKhdgEAWSTZKdAighqY/ZmVOZjs2aQDLq4PFupgN1tQ2KWNsEHm3/s9Q06gNu7fyPIOeIucjFL6OlA8TeXTe/j7MkN2ALjXIxw9fJTvSW3r1t6swoBQqBuB8jsbIO//sffd4VEV3f+f7CaEDgECYUlCOoS6IaTsAoKALIQiRRFEEKQmKHasqFiwV6SDIIoidoTARUBQSEIJLKGn10sn9JpNfn9MZu7MLZv4/t6vr69vzvPkyd57p5yZOzN3zplzPqcvWaxNHdrqCiauCxdZfRFT9uDH4t2QZGKWSPtPkp2CU7PDYoXr1GkUzbJjaD2CqjYxkKDM0Q1hRfphjXbTYbFiRqstum2lPFNighCH1KhHkuxEyKZKYbNS2xf6ZJqQ/sbgWCTcdZ+g0Ww98iByVulgUXM88b9peclHtrN7tSeUszQRExWtoSQ70e+eB2H9SjFF5PlVl69+tn7XOmR/GaVps7lpE432WI9vh8XK3jcluunm21PVBhQAztgvsMDXfHnlqjAf3sl7cDmwcnmuBPFwVy6l5ncfM3zuulP0N6U8N10i8kNNh3kfGxrsll53nzEVn4S1FTc320hgdoqkedal3dRKshMeMR1RSyKnZqMCyOn0jcGxjAeaNuANxZdIPX5+XbPCsA/U7c9aQdaT53Iy2POGX6dpgjEDQOT7Z+GwWDVCDuWLOvafeoRshBvtUAQkuul+M7QTsr+MQug3RIEh/fSFwLua6D3LeynCaazDopg167VLTTnvxaPOz7sR7FUfYWMJ0id2K2ABA6P7s3LKDxwV5k7mOLIJpn6IADDg8AUAwJ43FkCSnYhcnCQEyFWP9byvO7N7F8sVUz5388Mn0wX0KRY23vSZJDsRNEv8ZvNpPFsSIIjkzWuEfg359SGWlppF87y4shSAl4Sew1k5ALDkYDeEf5mI3HdssL6ZxOrz9GshlEGp3Evha5g/UUz5fE7qbP2SGHJDPYb5Z9SPLvR+J9rMyYHvApK3wWrxtJUChgTOFs2snw8W/bz4/nJYrPDY6RTuqQWTTd9/zn77DCRWOt7Je9h+gLca+bqtaIpI55ZeOyWZILWGP0rakRH7NSKmECXF3RtnCLyyb3RlX/MCDACYGjQge6GZqYIvZdbcOOYzS3nw2OmE69x5OCxW5iMXvE4B/HKdOy+EKvFZobXk0eWt0s9TfZ+/pvkpCEvmfOXdLLvoJ6RtsjxVMJ+UZCd+zFRAYP7W9F96IvZ3pH9JEGvcuDGaNWtWdcK/kKhZ4sSJEzXP6tevj8GDB2Pbtm1CkOkrV65g6dKlCA8PR2ysMllGjx6Na9euYfHixUI5H330ETw9PXHffff9H7WicmJXmunVPqfAaYaPT9fEOGq6VFnoJdmJgdH9Yapdm5kqULrc4ywKHu7AtMF0sQifsYstJJ+EtUXm0q7Y+fEiVqaGr8r/1HSHpmv9MvkotFmWyE70+PQOixX1Igl8Pt2Eevq1QPnly0iPXqOpa8sXy5hWXm+DrF6gC2bbsSE3DbmVcNJmH7KZCdxVD2W9o1n5nd9JwvodPwm819mVjdYpXohcmASP6PY4/hCJPbKkdy9NnTd7nkRI5Yd9w6bVmJ6ViQp7Z1bW9srxwm8mqMkkfUddXkvEnYfvZrFdJNkJmMyQZCcCXtMCJQQ/n8pOh/iNBU3Xq0657vuiaWgdo/J6s9/UDyjrkzjd95zbj8TbOcmBttCy5Jl21P5lN1yHiVDEI9KFjlFONQFimknfHzWTiz9wm5mwqUkNqsK/f4+UAwzAhG+Xmkyd2mp47rR7NMIe2M/6jJ7Y0A+1euNA34lHjHKaQE91qBlv7jAyT1y9urC6+P/q33y/qIkC3gAEmITS4UcqQWNU8dvU419NRvfNv4lohk+eEM0D9fLT/t/Sbq3Qr/W+U5zyPYNb67Z/TABxWC582Y52KQ/A3IyYA278+Qu2Sfkonwhb2xeRuSM/bdetn6eg3XU0m6ZBmQMAQDecBwWQeTO0EwNf4Ikvi/p/Ggn7PivI/Gsxl/B9sbs2NpgkO5HTeznCHlfQ6tQChrpun51NhPzq55fu1wKI8CTJCnqi3noJiP5FalILSR5bW2FD+8YAgIxbxIeThikAAHPjRqzck4+SdxY8+gC7R33TABLDK6FTH00/tZuXxPw4+TFN+aDmmGo+HRYril60Y336Rt32UosGo3nAkysrl5UDEEEo64EFyHpgAZzPzWfIpmUnT+nmv95WVKBIshPW/cbziYbFyPlKuZfzFfGjo2Mj+YACFkBPLiu6WTH6mCwAhhi9Z8oHvUfL5UMqxM+cBoeFgPmo38uJJ+0omkUUJPW/3YV2KQ/A70PRDWFV0U6hzjdDOwkCE88Tb8bLv9+Iabt118Syk6c0bSv+vj02HP9D01aHxYrwR3ZhXUm6Bo2TElVu5A1awp5RdGGj72bmQi04EQBMz8pkSiM94vvSaxNR5OYNJWtb6fpwTGx0Erf7Rgv1nrFfEN6XOzeVGvpn0r8kiMXHx2P//v1VJ/yLSJZlbNy4EbGxsejYUX8Qv/nmm2jUqBH69euHt956C/Pnz0ePHj1QUlKCuXPnCjEEJk+ejOjoaDzxxBN48sknsXTpUgwfPhw//PADnn32WQQFBf2ftIMuUvmvEnMEyzspmsWVTlhey0I/TmUnTqL8xg3I8ZeFfNeGx8F/jjbGinohah14VihPkp3okK4dIuGPpqF0vI1taDOXEmjnoFmpKO2m+HNRxC5JdqL53cfYbwBYv08SeOGfAcApm3tbaV6LVF6LnHBlVWp1kw//BgAojLvKTu0A4MBM0cTBYbHCVVqKRf6pCHw1BdmjG2ByUTc0+KMZEwp4kANKkuzE2+fCMS88Apu++1zoM7496v99jgzBvlkLBLAQh8UqmJhSMtWty+rMG7BUUx7lSb3Jo/95fhPuug+l3c6j60vkNK1e/1w8c8rKEK70PkaS7ITf0KNIu+ESPhIHHyPCAQWOCHohVYBRbrNXgbdvukTRMvovJwJGWmcvmHYoH6suryYK/Kr9JNTj/+ID8QI/TFMZFEg2GxnHNPkzKk1iARKQc1ua4h9GBWlazoCE+9k7qdhDNJPUHw0A82ejlD+5gvHG00f5Wif3zu8QMyb+3QJggDcA8IRTNLGBTmwTqqW+5RCFjkv3x2vGgh5Rk8P3W+7Dzhvl8PRrwcZReQ/lVNNoM6l+RlHyzk61IXOpVhAKnJ2CgHsO4eicEDZ36CYlslZd4T3yccJovfQk7+wUMjYW+afi8n2iYz0N0EtPsSmPlM+2O8aiYLYdzhvKyR6lkmftmrkU/JOC9NdzCvlNoeiNhCkAkGfa0WuionmP+H2cJg1PtBx+3aRpPTjLjoZfEaGOjh2jTSSlj/JTNEiXPL80b/ZHShykmBfI+nBpdDyLjTi/YAeeDorX1OW6cBHR+8vJOvFxioYfHvXTc2s6i6PG042W2gDxAGB7iij6pjcu0jyjdQS8noI7kqZoTLON0vumNMaT2YopGQVhmVuwU3e9pn/7n5+P/NdtumUWvmJH3cNirD0AOH2TnNzApMTrLPyW7EsmB3YnQnNlAO6+9z+E0PudmnqpSWr5AbJueux0CidRAAHM4Plh/W8yi9eVZdPA9gPC7MyPjoL58NTy/RSG9AoAR+xfatKMCejGyi9YU7nn8vDAjUGxAkqvkaADEAGd7zdz+zZMiaoeT4dtqzAg4X7okSQ7MXDkRFzseFtQ3hnV67BYsbFgt64yixcS1XkrulkxLzyCxTbVI7VCg5ZvbheBZk+R68IJimuGZ0s/eLb0Q8j3U6uc0383+m+Gr/+7kee/kumVV15Bjx49sHTpUg0wxn+CVqxYAZfL5ZaXsLAw7Ny5E88++yzeeust3Lp1C126dMHGjRvRt29fIW2tWrWwefNmvPjii/j6669x7tw5hIaGYu7cuZg+ffr/dXNqqIZqqIZqqIZqqIZqqIZq6B9OHhUVFX9a3nz11VeRkpKCX3/9FVarFbGxsfDz89NEpvbw8MCsWbMMSqkhALh06RIaNWqEXrgbnh7aYLn8aVFC57vgUa8OiwfDa3F5TQx/zyOqPSr2HxbKjFiZiDEDtiOlM9H0m319cS0mCN7J7gNVm9u3YSZpav74ewBwpfwGRvjHszTR+8sxp0WG0B619kqtEeZpbckeeHt4afKr69XTiNHrkUdPYvflYOTHXsd1KRh1HCJcttu2t2jOkBzd8Uyv70iawhzP1STJTvQeNxEbPl8Ibw8vtN0xFq1HHhTKnZO3W9fu36ht7t4F5W9G9jEMrHvDrdZQrw56z/pWEosB5OHtjY1csFq+D8xtwgTUQ3VZpevDsTvqWzgsVhTMtiPko6NwlZYKabM/iBdgvQECRZ3RpYKlu7oxhKH86ZFHdHtUpItjX2/80N8v5DpZIFlK3tv9EO+Th+2d6kBNZ6faDIOoAuQkuu4PyimKXn+fm2xD0yWpMDVogPNDO6DxF6nIXBirMdtxZ2albsvDJXHIirkpPDOqP+ddG7LHLMDNitvw9vDCwG53oyyvAKcftgtO8kbzDSB+Nsnbf0D4tvEIf+M6XIePC/Pi3EQbg+02aou78ahO82fHLr2fd/sKpo6aDo9U0TcsofNdSD7wq6atZh8fzbjUm+9G885hseLKyHjs/GghIhcnCaZ9evxZ30xCi7kpKHrRjoDXteELKBnxRslUuzau/txSd30zdWiL8kPH/nSb3JG7Ptezduj0XhIyniIn666KciFWptH6FuN0YY/VLNyPnp2omX/qbyFtF72/onAHeu6cjtC3bqH4FQ9cOVUffaMOo/DRUCAtA3PydiPam8QyK+sdjRvNvFB/TZqmDgDoPX4Stq5Y+qf6Sq+P1Dyq+0GSnUhofycWHvgFk1VgREb9RX/3HzwGF167iSZjz+PY+8HI7bcM3R6bhp0fLYTDYkWjHU1xsfs5IT9P1W0b3+9zS1sLvo4AcPm+eKR8uJClybl9BUmtu//ped91ViID9lHzXJ0x2HHX/bAMO4Lrd8ey+KF8mvkFO5DUurumHCPy8KolhFwoft7OrI8yF8cwfzi9vRrP75lEG3wXpCJzSQxCJqVgG37GxYsX0bDh3w+8g+5Z2z4yB2bv2lVn+P8k180bODb3+b9tf/w76F8SxIyiUGsK9/CAy6VvflBDhNSC2Nt5u/BMMDE96n9sIMIanMWnrXZVuQEBiC9G4GzRlltvk+BuQTB1jsSGDV8Li1fYqkRkj1lgWFb+GzYEvWC8IVVvWCXZibBt45lJRpu9Xjje9TYAAqZBY0IZteH0w3YWDLc6ZG7ciIFo0DIB5ePXWCyuSwABAABJREFU9aVEhtTIt7vfiAfZpk3NT3mPKPz6jQK7DgAenp6oKCvTbAb63z2Wmbnp9bvJ2g7lziMsfdSeUQLoAk0Xuqc2cmIUAJS77psgxCdRl6X+QEesTNQ4r/M8VYfU/Gd/EI82UYVw3Slr0mYuj0bks0VI3r9JaIe6zj+7EeSfU4FaL0/O+/G60OLueIiak4TmnypmhfbHp6HBN9qNWHUFAnebBDXlv25D0IupGHn0JNZE+gnPaDmdd49m6KNGGw8A6DN2Ijy3pKPkh/aaQKU8f2pe6QZJnW7C8QIGOFP0XQcE3HMIL+Xuw6shxM8sWJqIiAnpKH7ejsMPz2flDbQNxvrUXwzXDkqDDpcKmzejjTT/f+eNcnSrbTJ8F+ZmTZGcscVwXHlEtUexoxEOzZivyXtpdDzsT+3GoWjigzni6Gl8N/EueKQo68FzORnoVYeYGRW9YMfge1Lwdgsn45nSzJyDeCe0I6vf1DmSgWUYzQl3fVXyjF0wZ60qf3XJa1tLZuJJiSpE1GXfHBADuacnW09MtWtjQ27an66frSNfRCFs7H5BAeO93Q83e57E2Sk2NFucqplTgHYO6I4DX1+Nf7VRWv4ZLV+SnZhY2J2B0JyaYWcKqSezD6Nf3du67/GLop0Yy5nwuePV3XrI2sEpQn1TGuPLoG24Vn4Lw/xjWf6seXHIHUZQ/U4+ZhfM8f/sfqBgTUe0HnkQ+a/bmO+0Hl0Ya0PjL1I1ZbprJ/3v4e0txD7s9tg0jeALAKeT7Nj/onae6o2FvK87MyAeStkfxiPscf1vgfy0HQcfJ4qB0K0TEPaAGCxeGPebgljAbaow4+nMNBt8F4ogLcHrJiNiyh7dPn48+6gQQsNhsaKs4naNIMZRjSBmQNu3b6922r86qPN/G+mdiOltTCnpac74tJToR0yd5vR0O652v4rg0Qeq1B7SvO4W8huDYlF7nVZ7v6xwByYGVl/jpdcGvefuNrhV8ap3ymKOCNWNXcJT5vJoBvetVza9Xl2UIsATV7XJMocFw5WtL0TQe/TjW51N2orCHWjpWZ/1T5s/xqEirx6Cn02FOTJcQJZqu2Ms2vmdxNU7zmjKSyqJx/xWaRgQEo8NuWJ/GY1Jnpd1JekY1EoJhNs/sCsTUEO+m8p80/g8ev2V0GsEXJk5RDjPL0LMvluCVtxd3/I8Vmezple/Ud7Vl30wqkEpe3bycTsOPD1fk/7/d2Os5sF1ZxeYf9tX5Tj/s/Xnv2bDZ2PmMaGG0sUH4tHoyzTkvm1DyDNaRYW6rbzQdWGsDbveXsDebe9xE+G1WT8mV3UEdP4+FbDNzZoy3yOjcTQlMxeLI0I05Vd3XfpXBCWeXHd2weZVn6HUdQ0+5roYGDcIhfcFYtn0jzErOAblPaNg2r7fcENs3Q98+0cccu9R4hSZatdmiLRVrZnq/rvVPwa1NhIt/YVxNjReqWyg+W9GddqY+7YNWWMXaPpzwOELWP1mfzT6UivAASSUB50/f1Y4oMRbKPDt5b8Ns8+0Y2EAHBYrcr+yIqvXCk1ZOauikH2nNjyMJDux8EIr/NjOt8o5p56rM3MOok8d4vubuawr8gZoT85uDoyB93r3Vijq/uDr4GlF4Q6Mr/ze8uSwWJG5IJaBgXTaPRothyqAQHptoekv3xfPwkVU1d7q0vWhscxSxN2aK8lOJNx5D5J/+w7tP01ioR7U9Z2dYkP6KwsMy6En0vR55pIYBnhSviWA+c2NOVaMVW39UR06vy4CTQZluk1DLZEk2YkB4d0YAi3/ziXZiXkXAjC9cRE6pI1hCrP/FkEs8uG/ThA7+uk/WxCrNljH2rVrkZlJBl/Pnj2r/VdDf470Fht6rf4oZX8Rpbu4u+7swj6oFGjAYbEic3EMms9LQWZPBapWkp24I3EKtlwnENkUAYtf0PmFzRwZjotjFOftupsJJHT7uUnCh8rfsz6u3BvnVoO1rHAHi/FE04Xuqc3Sudus0XsUEITvH3X6kmeJcLRu+Ae4MpI4p59Z2waS7GRxrdQkyU6G7MYLYXpE66JCGEDipah5pb/pf1d2npCfIlHxlPzrN5r8Hp6erBy+nS0962PhBSW+WtB9GQh+lmygk7d8i5ubglgZx7p/gat3nNF9zzkxN9DltUSm4XZYrOg9fhJsB0Zo2sxT3zEPwdy4Ebw8zEK7NxbuZb95IYxvl55CgL6bstx8XB8crTFNMuKlqk0CrUuSnTCHBQMA3j4XjpsDY1h+fixnfygChPBCGAD4fUhAdQb01wZiVvMkyU4UzLZrnp9/SBsvifY9AFwdEYeckZ6GmzI+Vpq6nTyZmxG4dYrUaG7RHEGzUllICZ7S3llIhOdntKeofPtzvyJ8rk8lAeV9Uxrj0hByevBjMXGK37qSoNpSZ3zaNgopTd+Hw0LMqQECmMGvfZRCn0zDoMOlcJ09x9rXZnmi7to57+GRGt6N+gYgJtCUFx5qWp3HSBGhJvNv+xD1ehKL5bh+1zpY3kvBrGAy1qgQlhDVT9NOAHBGAR4+t9j9rHlxLNRB90emauIQAeSdqnmj/6kQ5uFVC7veWiAAx9zseZKhSua/ZmOBkGn+6P3l8N6u9EnIM6msTx7I7wUAmJ2bDj/Pi0h7Z6FuewBgeRstyqZef3b4OEnbtsoYYLwQdm6STZgrtIyUzrWQuThG6TsdIQwA6u0hZsd1treA/LQyN4dn38XCthh9W/h73R6dyu5TIezd/DRETNyrySPJTnivV8YaTzzgDf2G0jR3TtD6wUuyk8VP5PuV5su7ezGbG1QIk2eKCIP8X0QiGQMpH+q/Q1oWLf/cZBvGHCtm4C38HCmaJa51vLk+zV/eM0q4R8l1nMRGpKZ+CR17CzwAgNfQM7rvlN6rv0Y8peVRJ019imCOCIUkO7Gqrb/Atzk8BGqSZCfMLZqjyaBMwz0D/U+FMIfFirKocPbMe/0eDDlyDvnfkBida9s1hePoIPz545Aa+idRtQWxYcOGYfXq1cK9b775BsOHD/+3M/W/TALKVnwnSLKTwWjTiZ31Odk05fRZDg9PTwzsPpTl93CBac0BYGOBsvBRe2W+LACo8/NufNCdBDf0+ziF1U/TRO4cqwgPR7PQaJWyuNETE/83KzVW/tFska7/rbjpBoC+9z/EypoY2B1lRcXCQpkTc4PVr7cJo/cdFiuyVnYRYJJ5vgHg6sYQ2A/cwqEZ5LTisSA76q8hGr47W2XBYbHCktYAeuSwkGCVkuxk6GO03GdOWVHyQ3uG4gYQsx5+cW459CiwhWyOKZyvWpCmRD9eFO6bEoWIVi/6FWUKHDAfjwwAPn9tsG5bAOB2uUnoP/WmvtekySytq7bo7+m1aS8aDhBPDvm4LACwedVnQhy1qgSiqj5mfN7fF4ihJBifd2oFCF7Q0qu7wR/NWDoqDD/TNAvbliwRyqb/wx5PQ8LxBMaXusyc94igtmHjal3eARJHL/cdsmE8Nnm+pv1NPtMKO3W2t2Dpzrc1I+/uxbpzYsiRc1i/ax16ZpDYTaYGDTR9W/w82RC5zp5Dwas2Ztqm5/fIX/MbZSOBI0SF+nbGfgGB9x6Ew2JFXRNRBFEkPOrXRIXRiCl7kLmsK/oPeYCVT31aI5LI2mVuE6ap9xGfAgGOO+hFrVmcJDuxdcVSYXPIj8suryVCTUNaxbB25N0UA5LT/OF7vHXnZfrNW7ob6+bzydrY4I9mmnxPZpP4gFmPhwJQBHJhTeSQOvkAwfW+38UC5kqykwX/Td6/CQMGjGZ1LSzYweq8tCGUoCLeJsLdhmyiRPDwqoUfixW/1OMTFwiBkAEgPcoE/7oXdPvk/Hgi4MfXNguKCprmlqOrZm5XpUyhY9RhIXDikqyEF6jopszxpktTWRBl9TjOG7QE60rSdeug6f0+IvVc73kKlncVs+Qfwn6tlgBG+13ve/d0kBiUnea74+AwTZnmsGAiCE1SYijSMumYrCURpRaN8QYQRFA1TwCQ/WWURkClZHlH6Vv612P6VLRZJs4J/h3prdcAQccd1/As5rTIEOp3WKwIeC0FuW8r30m99d20XWVeX7s2HBYrC41yejpBNXWd0yKLNkrI1vCjUZhUYhfQe2ZfX2U/w1nD8HzTcUbzmX18yDypWwc9M64L3xi9/DwfBQ+XC+9gbbumCLovQ+GzTzELYG7Ux39Lqokj9m+jagtiehaMx44dw88///xvZeh/nZr8UhcAiJYoLQPt5iWhYs9BtliWPGtHvUO12YStKCsTfKp++2yJUJ7DYsWA8G6aewAxuXNYrChY0xHr0zdiboH2RAYAAj4ip2WerUT43OyP4oUFxmGxAuUuYTExNxXj42z+6jPth2GLP/uYARACVxt9CCTZifBxSlyk63fHahbpev1z8bLvETgsVnbyQZ8fii7HpdHxWB74h662kk9LNYQ03dstnLiR0xDprxC4/MyFsRrfCgA4c7Ue2ewc/8OtUKK3wXVYrEg+sl3YWCy+qA2kGT5jF84kKh+6hl+nacqi5VGo4ksbQjW8SLIT3sl7YG7YEOcfsuHOB3YLzy+NVmCuKfGOyHx56v/5r9mQtVIRmDyi2wvt4v87LASunO8TmnbccS2c9eZVn2nGxdURcZoNCP9eL/c4q9kQOyxWrLnSiF3zY12SncwHji/zxuBYmBo0QOhTaeg1eTLinffoCjQAEPxsKkJmpqJ8SwB7Hrp1giYdz2tC84OszoA3UoSPP59+bTsSn4sCimw4/ge6vpyI0vXhLFg51SpLshPHJi0QNiplfaJR6rom8KEep3oCGU+S7BQUE+rx1/CrNHYi67BY0fplhZ+IiXtRsfeQbplF33WA63g2ynuQTaXHVuXE99fIX5TEld8nPtA2QHz+Or9LTutp/DqHxYoRR09j36wFmjr5uukJrLrNFAhF3Q8zJ5Gg9RGfk81s8XNE2DzxBDkNu9zjLE7/3Fboy4f3joYkO1l8wiafkRPsvNWdWLl6Qh/Pp2dQIBwWKxqsJkqmeOc9DPbcYbEi2IuYK2OLPxoOyGFrBH1+aUMoKm7fQvv10yHJTpx6hPBLBV1+rFBFGQBMLlK+Kzmv1WPl0fbNzDmIjh+SUy0qQJgbivEhPUOCWNl8Peq+zRuymAlkDgsJUBz+RSJLR4Mo641NLw/tSbpaMO8/5AGh7pFHTwp8qom/12B1GiLTPRUYd65cPmg8L/T83vFHZH9EFDjXygnYwyVrc82aSOl0kniytKF9Y+RWxiI71v0LnHzcjvBt44U03kfrCHEVARK6QpKVOFp8v9yqb0LQrFSN4gIAsuYq1i2Ti7oJAdjVbQOUeIiSrJyoSzIBzOHrBIj/JVVSAMB9zlxIshPHJyzApdHxaD4vRdMvevPBZG3HeO8/cIySvqJCeI+8v6DRen19aCzO/hLByqAhccryCtg6y+fjLRLU3xV1BBJ+DdcbWzX0v0fV9hEzmUx45ZVX8NJLL7F7s2fPxquvvloDyPH/QbyPmG9KC5R2O69JI8lOhH01DeYbHghbUoyygiJ232hTtPNGOTM3kmQnol5PQvP5KZp8VS0GiVnZWBAepvlwqRdEvevwPd5IP0s+/qen27H12fcE8z2e3+ps9NzxWdGNfJz16MzaNmj6Th2YdpDnWZ/GIfxhrZ+Smopm2RHwmmKbzvuA/Rne1GkBoP+QB1Cx9xDLW/CqDa1f0kcAU1/TMiYU9oAcf5k9S7jzHriOZ/9pfhwWK9aW7MGQVjG6dev9vnJvHOp/u0uw+S951o5Wb6WQODaVQYj5j9KTJ7ow8ANA8XXRa6uaTj5uZ0FFzT4+SD78GxwWKyLTPYWAoXpt0yufXud8ZUXo/U7Bd4An3jnbHenxz9+jzuJGH341n4G76mFJwE63fcKDNvDlerb0Q9mJk+we3zbPVhaUlchu53B12kmdzAu/7YiAj8zwzCyB68wZzRh1N34dFisuJoehUUI2PLa2YrGr+HSPnejK3i/v58iXeaLsCsZnjQL6FFdZrxqAZ27BTjzSupvgR+NuAy7JTiT0HI6zH5nhM5DwQpHn1BswvfFHAU6M+lWPRh+TNTGk1HmqO+cpypteegoWo0eS7ESfByayuIwUCbM6dPKnSPhVmsTxqHI836Z69bAha6fQbzyPnfZ54F2//W7bqO5/gJh7qy0N9NBOjeYhW6+PDURFhQc6NJZxKLpc7L8t/kCfYsO1wpLWADu2dUD9yFIGwkTzZn7WFW0fPY7yy5cN5+GNwbGo/ctutzzqCSjqZ+pvZHXHjyQToXfCgK3Y3qkOJNmJAf1HoTzjGAJ31cMfGzvj2GQCpFFnewtc76kNfq1X/vkJNjRZnqpBt+WRCE316jH/KoDEr/wkrK0un+6eVTU/9Nblzu8mCYGsARgCk1VV/tlfIpAevQaAqFih/tOAAir2X+MjlvQX+ojNr/ERq6G/gG7264LVwVsBANbKk3p+4a1z0oTjDy1gQhi9z6fjSf2xp0IYT0abQgBALEH5GlrvCqur7VJ9Pww1MS1azE3Un9MQkuxE83mKEGNJU0yn1OWp27S6iPA9Kk+xD1e3AQA8L1wXrqk2GgB8hxyHaYei5Xu416/MV8Zde2hQS7pwVkcI49vlGdwaT2YrH5gRR0+ztK3n5wjtVQthekT56LL3PjgsViwP/IO11WGxMsh4PYHAXZkA4O3hBUl24vxDNmR9Tk6kaMBQmob6YgDAiUEE5ZK3+ff/MJ1o+orTWb28ppRuYACCbLUhN41dd52VKPadfyuBz8h7jrF36iolpk+DDpcaCmF6RMs3NyMnSCcfsyO71woAiu/A2hLRfNe7Xz4k2Yl387Unjep+NTdWTtSo+Rql6XdtQtanymkNP7f1xn9h3FVDQYD+P/TofCEf1bKWnTgplMULmJfiAlgZHl07CDwYjRNaLl9m/7o3cW14HALvPQjPg7lwnTmDIUfOaco59YgyZ3itdvcZxJ+GmhZRIUydjn+/TZZpke8cFivxj6kUwvi28HyYf7OQMa1CQX2kdTfAZEZE4m5U2DsLdfNl8O13ZeVid9S37DkP/82/T733Stfly/fFa/rVI6ajbp1ft7UIbcn+IB4zcw6ya6ONuN41D7WtJl4Io/luDoxhvwsnEeXKxTHxaHLsOk4/rLzbH4t3a/JSokLYB/mpghDGpy+/elXTb3z/vesnItkBREnC3xua5dCsxWohTJKdGgRfftxQor/vfIiYX1f0LgH6FDNFkjA+KseekcJGjr+MkGdTBSGMtiHiob3YcPwPViZf7rlJ5ISZBhA2+s7Q+6UPKr5y9F7whkksXfYUZbtHT3DMv1k0ZVNaVbSTlR/yTKpwElSecQwAWafo6TYAjRBG+ZxQ2EMzLposJ6dvFemHhWd0jEqyExuydgrlUEGLfUfmkD66MSgWA+sqp7U8jTlWrNs+nkc9xY3fhykCX5LsZEIY9c28ME5rSqxuOwA0G5yJrrMShbHtsFhRUVaGi2OItQmP7FxD/1tUI4j9Tch70z42SZ1R2ueW98jx/OX74jXPwr9UNrEmazvNZki9yJx2XWX3Bxy+oKuJk376AgP6ieADrV9SfAaGHCEa4K4vJTInWkl2ou2SJPZbkp0w/bFf4EeSnYI5YPzT0zQLNDWJyVwYCx8zMdUs/iBck+7ShlBWDoX1pXX5v6n94NNnny/pj+SMLcI9ylv2F1GYX7BDNy9Nc2OQEt8rodcIdp9PV1h2BWV5BXg/rD0DH5jSSDFvK7nWGOF7vHU3v3xZmYtjhGcOixW+Q45j5FGy2a6wdda0lebvkUE+TL0ODWXPzJHhQnspfX+lIe5ImoI9ry9A+IPE5JPXUgJgEP+S7MRdkUehpo15u3Q3ojQPrS/3bRuCRx+A7alpcFisMP9mwd7XFgj5yoqV0xEAKO12XtPOR3wK2GaFggwABOb52vA4Ib/DYsW4gjsAgCHtHZhJBBnP4NYsb4cvZyBzmejP4rBYcffGGVhTLPrMRO0ZJaThP6RZMTeFMqQODZE7XEG+oyaDarpyr8K3Wpig7dDbOPLPGZm0CJN/fLqIpaPmgOZKLSOfl5oW0fvqjb7DYsUL76xA3ted4bp0CQAxkVSnbzE3ReyHyr8dnyxi5dN7eXNsMPv4MIAh/lnWyi7Yt6GdcB9QfCT7HroMh4WgAqp5ACCEV+BNeQEAse0x+pgsQNMXvmzX3Zj3PXRZo2DgN/Nq/gCg98GrmvsNvlGAcKhSiDdBV5fnsBCwjKsbQxD2RBreCe0opKPl8uAnPN9qcid4A0D0K4koedYO7/V7kHDXfQAI2AUANFqVBo+dTux/XlEEtF/3cJV1tq9FNvLhe7xRuj5c4AUgiiqeqG8gTeOwWJkyg1eS0Oc/hUvstxrkIsZJTObjZ5LvzcmfInXnkdnHh+QxEcCh85FemvbwAqCe0Ej5U/+WZCdiXkiE/LTdsI/4tjZdqg+Sw7eZL8fn81TBd0ySidkvQPYI4Q8qvuNlRcUAoBt2hNKYgG6CH7C6TRQEi97PXB6tGVOd3k+CJDshx1+uss3u7qufj8ztAwAIfp70Ue11Ioz8xQfIPun8ugiMa3hW5LMSDOWl3H3Qo4Q+9xrycm4iWTuaLE9F5mdd0XilaMrJ/6fAWVSo3vvaAqwoVPYWOavIRm/arB9066uh/x36U4KYOmBzDf3fksNixdV7xA0ljWlET4oAIGRmKkJXE2f4cucRlpcuED47mwhljOWCQm5o35j9Vgtv5YeOsXJOPkoWXfp/bbumCF09DU2XpsJ17jzLQ7VjehomKpDE7lcWOh74gxKFlKV+AZLsRL3vtY7QqZ2/x43BsZpF0P74NCEd/7zzu0kMkIRvK6Wwsfsx4dEnIMlOzM4lJzzUt4WW43WljJWXvO17zC3QmpDxgTcpglL8zGmosHUGAKyL2MDiw1EqHW9jPhCUaPwR9QduTaQf6VOdOGeU/uhUG6bOkdjW4Sf2rCKviH1c+TGyOCIEptsVuhsKvQ1bfux1TZ0dP1JQzuhpGq3HYbGi75iHAID5DKS+R1C5ktskG24MKT8UiAIgGk76jG5Wor1rMV6Sf/0GdX/Yhag9o+CwWHH657Y4/XNbnLJdEtpD+SrLK2BlZ41dwKCmad3mNmEICj3FgGFo/uZ3H9Pwyz9Xb6hj99+L0z8Tja4t/ZqmvZLsxM6PFUGp89ta1DieCl616fYZo3LRZNw3pTFr15WNCioYFaT4edK/7k1Ne9Sb/g/DIlm8HvUmjb/uNXEyAyqhxJdDEVfDP8mFq7RUOLWh/Lb8xYudUNP7AJB7zyJIshPpF4kwnT+CxPfieeEFZgDwXaBscHO/sgJpGRrTPxqPUT0fnm6So7u2OSxWTMlUHPz5NFs71hPKOPm4HabOkSx/csYW3c0cT56tA5AeZUK9/rlC2g5pnC8MIMQrojQ7V0R9Nbdvo9s2AFhYqYRqtjgVh2bMR/aH8QJyK0/8dd6QxRiS1R+S7ISpntJe9TcFIEoKatYZvm08SteHI+/rzvg+srnQB67j2cy39+wvEbj1a2uEP6woe/SEVUo8yAUAvN6cCLmNviTfGz8VhHvhS5WAEJWn7VJxOkmnMk2bk7cb2zr8BHP7NhpFE99e/hn9vepyUzRZngrLu0qZFfbOzIfbaK0FFGWROyUMADzmkw9zi+aa+ZiYoAipar74dPJTonCVN2iJkJ5vX6u3SDui5pD5GzEhnZVZ+AopJ+PJ+UL5lMYdL8Lp6aKFCX0PlGh907My4Z9WX0h79T5vTZl8eyhqJw8zz+bIpL04+agd3WqbhH6g/e86moXCbxV/P572vraACfIRDylowA6LFeamTYRxueaxAez53leJopGiW07PykToGHLKO77habdz/+9KHn/h3z+dPP9M4vfffx9LlihgEJcqP+CBgYG66T08PFBQUKD7rIZqqIZqqIZqqIZqqIZqqIZq6H+V/hRYx79C5eXlVSf6Hybq+FiaGYKDXtAEVQX0tVc8JZfsQ0KrLkyb8tPV+nBVmDCiPhGUHRarEOyXlkmfuSu/+Dk7Dj8yHw7/aKYlpHRusg17Zy9g5aj5zf+mE4LuI9rp61Iw6jjyhDQD7UNQll8IgKCd5Q5bpCnLXR9Epnvio5baGC3u+opvOwA4b97EM8Hk1DH7o3iEPaYgitE+W3GpOfPTiH0uET6fpwoaQlqfR0xHbPz5C7daR0q3+3Vl8PhtliXi+MQFuvnUZfDvbWHBDtz7+tNouiQVJc/Y0WnIUZzrVqppa9eXEgUzl6r6SK3V5Wl2bjpeDiEmKLanpqHhV0p/8cEqe2TcwB+dCLpn2NfTkD16ITs1oAF29fpQjzIXxDLo9mrzPnwckJah2171NQ1YXB1qkdoQp2yXNGUZ/dcjk7UdNiR/Va320PSZT3kj7AHRT6aqca8eR+3mJSHgDa3Jrpqq08cZt24gceZjLBwETe8ZEsRQXNXlnJ1iQ7PFpJ+N+tzUoS3KDx2rVr/wpBeYPXp/Oea04GCiob/eqbXq/POrG0Owo9MPf4oXgJgj0pOwP9MWdcDXhM53wXXmDMy+vgLam5rczVm9tOo+0UvDB+Gu7lyt7vpL09B1ENAGmKZ0bpINTZem4srGENwfuAerZg80DDRMydy+DZJ//YacVHCBvymNO16EMQ3OsfYbrbn1fvfFD2G/YmB0f6xP30hAO3qXaMZT/8Cu2Fi4V5efoll2+HQ7ifqVp5mOo4OAPsVV9g1P8kw7Dj42H30emIgtXy5TTuvDQ+DKylWAkgAgvhOQluH2dA4gcTz9VXuCTu8lIeOp+cL4UPfRzJyDOHbTgumNi9BmeaIueIWasj+IR9gTaZr75qZN4Dp3HpdHxTPUT1pXr4mT4b1BP+QOYDy/1WnVz3jQH/bs6CBIkevI71ZRkEr2a8aFOTIcyVu+FfrjWvktDPMnrgrhe7wZoqoRz/Tas3UA8/d33dkF5t8UM8lvj++DT0Tu3xacgu5Z2yX+dWAdRxbUgHUAIALVv/JXQ9WjYREdBYANukAMOHwBDotVCPiqPr6mQhg1+Rta7woWR4QIC5FaCOPNG4w2JZJMfK0cFitQ7tIsbE2XpCKh53B2j0Kc03RUCMt9y8aEMFPt2phfsAMOixVl+YXI/ojkCZ9OTE4GRvfX5YWa4AAE3QuA4MhPfTeqIkl24plTSrtn3j+F3eeFMAAYH9idmBNUmg4MjBuE3W8aQ15THw8+KKgRbV2xFAAQvHYKgmaJvkcOixX5rxGzsxWXmgv5+t89lqWd1ro7mhwhJnuHHp3PhDBzmzDc7hvNyqJC2IWxNtTZ3kJ3ww6AxVvRM32haeJrK8GaG36Vhpk5B1FhJ+aWp6O8WPoXmx1jZYU+ScyBTv4UyYQw+oz+p2Yheu8wInG327FKfRV43qUfVrI06k1Fj4enCrG2Hhu8TiiT50PNz9kh3sIzNV+6m6inxPFAzYf59NRpXs0HTZ/Te7lwX10Pf525UISWpuk3TX1HUwdAFDkAWAgJtakOACHAqcNixdNB8dj5kTbgq5EQBoCFe8iaFwfvUsXghAfvKT+kmHtKsmISzRO9R/MkZmUzIYyGOJBkJ9KjTMJmqs8DEyHJTnx/RfyYu3uH9for5oamDgQKnPqf8Hyqxy5vjqheN9VrLP+fCmE0HxW+6H9zZLiQV5KdCNxVTxn3BmWrN9X0f8IdwzQ8UapdQkx5TXXrosve+yDJTjx5oguKXiT9b90v1lHWO1rTVgpyAyjzlOfTa9NeZH8Yj/xvOmHXW8raSgPeem/3w95Xyf36/XOxtl3TKoUwgPgM0+euEHFu1fvdFyvbBBh+AzddI+uY684uKJ0TBIfFimNPB8H+xDRU9C5B1sfKPMl/jZjc0qD1pk4Kal/gLgIVH/BaCgsd4rBYBSHMN6Ux8t5Uvu1GbbK8k4Kjt67B+8QlwdSWxruiQtiFsTa29qnLo/1+dQRRPN53ZJymvpYfpCChE/G/ul3h0s3/TmhH5g9KhbA1xVphjALKSLITOaMWasaYJJPYYJ4B/miwWhknFDDJe8MeIaQOz8vNTUGa+R2x/UGdntPOv6OP+rBrOgayDvkrc6hEQeeMTlcCwnvcvK3pj97PzgBA1h1eCKOm3w6LVQieTWl96i/w6NoBkuxkcV9psPJhEfpmkTX0z6Vqn4jV0P8N8fD1nh5eumlu/doate4qED4+FA6bUnnPKPz69XJlY+frC/j6IHnzGkONmJqMnutpQ400PXpa1tt9o5lmldLCgh0svg3Nq4Z2FrRRLZprgs9SyGm99Gqe3bXdXbtfPtMeaZ29dNM0+KMZLvc4a1hm6JppgnBnxIu6z67cG4eX3/wM74e1R/4bNhyfsECXP/NvFrjuJFDkvcdPYpplWmbwuslCEG93PBhRddLpvXM18VD1F8ba0PiLqk/oKGR9VTwbjUVdqtQW/5m8fPvcjTFzWDCSf/8RA0LiUX7jBq6OiMOpWJPm5Kfe7764escZTR18vUanA5ToiZIkO9EtYzjTtgNAcPIkBK+uQP7YCga8ouaXtufCOBt2vaU/vvRI711cHhWPlA8W6s7/G4NisX3xYk2fAcC14XH449NFbuclJZqm5If2aDX8sCat93Y/3Ox5UpdXns6vixD8RtTpjMbapdHxQvwtgPiiTVs1VUA8/bPrDH8Cpk7XaZ8H1q21IfAV4zkgyU7crLgthJ4wqoveO5Now75ZVb9zmt7VqwvM2/axe8HJkxAxaa8mffFzdvi/mWLYB1WtEx6engzK+4VcJ94IEdtZ3TFqRDnvxSP0KSLE8ZYNPE/quU5/e/q3YgBCeu0x4s/cLgLJmxXYcnft0buX/UUUwsaKAY958vRrgfX7RP8vnvJWd0LwKHI6FvLrQ8J6ACjQ+jSOnZpoG/nTKTWfah5vDIrFteZmFhPP3TePkh7velDx/AlqdahscyC2tFvLyl9RuIP5aem15c+MM5rWZG2HcucR3fEwJ48ESdcb+3zf9Bk7EVu+WAZXRTmuXsF/xYlY+2l/3YnY4YU1J2I19BdR3upOulqjWncVMLhUei/s8TRkfqagu5m270fUHMW533XmDE70aoanT0axPHoLP68t1VuATB3assViYEyCLt/qsh0WK97O28XK9tqcrtHKTmvdXchz4gniPGtUZvL+TQKfCwt2sLg/ANGg0iCOABC5MIml5cs6NUPrIEzT0LIylyjIa2mdFeH48qh4lqa8Z5RGCLt6TxwLmOmwWJEzUtQC8tpXep/XygGA17aWqP/tLrwf1h7XhsUh6IVUHL51XTMuAODocSWIpNemvTj5GGkbDf5JhTA9hDI1DxMzyYklRSoTxkQs0dCZGjQAQIJd5ryvBHjm+efz8sTHC6NCGE3XfcZUgRdKB56eL7w79Xvi28TDzlOiDvgAOSWSZCfTFvPIl2oy/2bRfT8USIXvm3MTbeyeKzsPDosV5Tdu4PKoeNT7fhfeGPaVJhA6FcIk2QmvbS1R1idaKBeAWyEMAGpdUE4vd3YiqFshmx+Cw2JFxKS92LpymWbTpW6PJDvReCU5jaVAOnw6NclPEbS3ou86IGafoilusDpNeEcAGLrr9sWLkdD5LhS9oJyGUNTCue9/ItRH6zzxpF0oix9bVAjLe8sm5LvfbxeWFWrRTtXt2NNljSaNw6JAx/P3+PLVQpgkO9GrTjlav0Q2mxTxj+YrmiWuMxXdrOj22DQGAkDRHXkzRHXdGV0qmBAGEAd/9RrtsFgxpFWM7pzgyz39sB133UcCiKuFMEl2InRPbeGaliHJTmz+6jOc/rktir8nYyQvYSn06PAj4nyl5dzu1xU3NwUh9rlEDf88VZSVsTxzIuNgjgxHyQ/tlTYk2YVxwreZ/82fkAttfEoJl3E2uhwv5e5D5KIkXQUC/U2v1+9ez+7nVAZSNlLY8Dy6jpB3pj6tiX0uUZNP3W+S7ETY2P26cxEATHXr4tEdW1ne7A+0iMrBozLYc/V6IMlOBq3P39MbS/WOnGTPk0rihTRhY/czcA6AIBgaCWE039Mno1j/xj2TqPtOQ9Zc0LSHWpLo8Xt+gk1ARB1zrBiefQuF98QLYZRcdyrKX/W8UP9RylwUA4fFit4Hr6LceYS1n/9OAMDzwYp1Av/9ylzaVajLcwtx+zB7mGpOxP4HqeZE7D9MvI9Yz08exv4X5utqjwHy8a61UbvhBBQfq+poIk2d2qI845hmgdT7TQPmSrITtienoeHXoh03QNDgfAZmkY+d6hRIXV7OuzaEPp2K8h5RMP2x3zAd//v0w3Y0/1T0bTHVrYvya9fctjXzs66IeGgvTk+3Y/8L84U+qC5lfxiPnPsWGmrN3GnU9H6bGzZkKHXVKU+vXTzpnQSoy+H9uow2D2pBgNLzpzohPap6+hoa8NpnZxOsDt5qqCmm9+hpgCQ7Mbe0NZJH21h8GqN8MftGak40eJpfsANJrUWN5133TYDpj/0sCLW6fHfv0IgXSoUv2RH4qjaoct9Dl7G5QwN23/pWElp8Io7hEz9FoqUKva3XpMlw1TYJMPO3fm2N39r/jO4Zw5mpHPXBo/koqfuc+lFGfJ6IVtvL4PL2QJ2fd7ttl/3ALaR0FiHkaTqfnU1Y0Hm9DVavSZOxbekSxosRSbITwT9PYSfatCz+pE9PuDcaS3rt0WufZ3BrlOUVoMLWGR6pB3Tz0/9lvaNxdsY1AWHvzNo28B1CQmXkvGtDy5Ry1P1RRHStznx2l7bwZTuOTlX8dAaExOP44nYIH6cVrPWCEwNEWfL7/MW6/aHHE98u6nOstjgAiB9sxIJjON6VxBE0+/ridptWuBhaB7vfXMAC1ZeOt8FnhaJwSeg5HMnbf9DtF0kmfrJBs8h7j1yYhKPT5rt912/n7WK+vbccXVFL2svSUHLX75a0BkIYlZsJMfBO3qM7zugJNu/XY/ReX8rdJ/h5S7ITdx0dzJCA9dojyU4ktL0Dycd+BwDcNXI8i3upGb9+LXD/9r1Y2SbAUNCp7nirzv3ct2xollEh+ALr8U/zUj9Qz9YBWJ/6i2Z9AMS+Le9uhWkHeVZh7yyEkMhc2lX35JWvn6f4mdPQ6EuFT8+Wfrhob40dcxcJfBrxQv0B1f3wfXEaRvjH6/aRuUVz5E8OQ8DrytqetSIauf2W6c49gMR7e+qFr7AsIpg9N3VoC8c3adjQvvF/jY9Y+6l/4YnYon/2iViNIPYfJl4Qu7cN8fVqtyAJRxLnaxa5y/fFC/bxdEGxPz5NuE/NOvgF58XTHfF6c2KzXZ0NDv+cPqNmEPSjyVPOqigGx2pEH+WnILJWXbK57B+D3z5botFGutss8PfWlaTjjqemC4IhoDji0o97gwIS/6r4+/bwH6E1aeLp9M9tGSS5Oz7UvKjv8c+CdtfBIv9Ut2UY1aUnJOl9eKP2jIJl+mWUFZdU+SE2IiEfZ773Z4QSNd+U39y3bCivXQGPMiD0KdEXwNtDjNPjEdUeG9evInmHj4P0w0rdNtOyASDr8y5M22vEryQrwAd6aTZe88aHYUpsobyvOyN49IFq9+fj2UeF/Or+qGqjNOTIOeZ3waehTvh679/ctAmSDxKBlwrblKhJlLqdFCBH7Vi+pHAHAj3rC/1KlR16psWSTMxpPLekC/f+7IZQkp2wPzGNOeoDQLzzHhbo2V1+dX8YPQfAzIfUdQNAQlQ/JO/fhH73jofHTifb2KvLvZgchkYJ2br1qYF+9PrEXR9UZ/2tTplqOvmYncXLU+c5NcMO7wsV7PT1x+LdDHhAry53a4EkO9E9Y7gAbKKnxOLJM8AfZUXFyPo4HuGPkvf/zCkrUl+JxeeffIBprbszAVFXKGllQVkJiYN1c0CMAOxgatAA5ZcvG/YLbwavHg8OC/HJ5k919Ig+uzgmHmnvav0l+byX7o8XhJkTT9gZKEZVVPCqDa1fSmVANnz5lKqaa+o05oYNkXzsd11+MxfGstAxlHhBld6nSlq99lJlb1U8AUD7T5Nw+GHSF0Uv2nEkSdz7vJDrxPLTPSDHX9aU4bBYUfy83TBQOG230XtUA2W4e99Bu+uwsC3VnZcUvMgjuj2LyynJRPE4rtExNDIpQbKpUqWs4ja24ee/reBRI4j9+6lGEPsPk5GPGI8wpib1B1zvo3Nmmg2Xg4GWKS6mATfKT0m90OvlyVwQC/M1E4J/uomrrbzheO53Q+253jV/HwC2XDfjndCOmrQTM/Mwsv5F3U2AJDsxoN8oXGrXGPXXiJsfXjuqxz8AlPWJhueWdN2TNoCYRrV8X7l//e5Y1Pl5NyuDoiMC4sdNnmmH5R0l39WNIewEw52AQMvRu+fhVQsbCwhYhZ5G9s9u9GjZV8pvYGSfBwCTB0OQAojZjeuKlxCPSK15vOPgMAEBk9KAwxdYXDr1B86IN6NnYV9NQ+hTaSj8tiMC7z3Inp16xI4Wc1OQtbILcvt+pmnfhXE2NPk+A1lLwhF6v6JVLpplR8Brxv4rgPL+JhwvwKgGpdXagPKU/5pNo6AwaveQI+cw91Av9A3ORHKqFeEziCnvaddVjA1Q4gp13j1aOJHhyaNrBxaUWa8eQCvEV4dXd32U/7oNQS8a5+s/eAw2/rJKd2xmLoxFxDStT2dVyiBXry44Y60Nv4+M3x9/oqPmqfuMqaj3nfYkVH09MTNP0FJXR5ikfBtt+rJWRCN8vBZ5kG+vu/ZXZ567K8PDq5YQl62qdl2XgvF7xx81/LnjrSqqThuof5leuZLsROTiJAS+koIbg2Lhqu3B3mfuOzaEzBRN6yj9WZ7pnDB6l1W1w93mfNzxIsyS7kH4DHEcritJx6BWxFrh3fOh7BTdXblG6zLf5tPT7Wg+zz1CKvuebW2Fit6i/xt/os+nLXnGjlZvK+9JjchrVAddt/WeZX3eBbl3feZWsKlK8KGWNu74AJR32m5eEnwPlGkCQeuVDUDw1aZ98GfHPwCU94jCr98sF3ihz6hFyX+VIFbrLxDEbv3zBbEaH7G/Cf2YqWw2JdmJZotTkf8GsXcu60003TTYJp3AwRsnIfcrK8ovK4iBw44Q/xPvSxUIeSYVvy9YjOwPRdtxOvH73fMgqw8Ag43Wo9AtEyDJTkQk7kbok2n49ZvlaLA6TRDCACDkB8Xf5/y6CGGhun53rFC+w2JlQti5SWLA1+wbfth5o5zx91FpkFDPhk2rmRCW+45iF06FsFu/tsYXRTuFQMCmunUhyU6mxdcTwgAlCCX1Q6GCLO33ij3iySL1qzr42HwUfdeBtZFHXHNYrMj6JE65HjoWmcuJb5DDQoIO8wszLZtuoiTZibKCIqH/jN4Vpd7jJwl8AsC8CwQtrL6pNs7F+gpCGACE3u8UAD6u3Bsn5O91aCjqOPJwZaTWH2FD+8aMJ/Nv+zDocCnC93hjbYli8kMDPTssViwp3AFJdiJ6f7lmXFB/Dl4Ik2QnnM+Rd0PNtCTZKQREbbwyFeVXryK71wohn1oIy3kvXnie/WUULO+QNMvbtGYaSspP+ZYAgT+9vj8+UUTUNNoo3RwQg8H1j+JY9y+QFXMTufcoZohUCKN0IPZrw/esJ4TxGw7+vfEbmgp7ZxyfSAKTUtRS+oz6hOqVK8lOBM9O1zyjzx0WK45PqYsPzhPEsHfPhwppeCFMnU+vzhap5KNr3rYPfh+l4LU8Mi4vjlH8E+l/emqi1w900873A183bRsVwvSEGr7sC2O1KHd8GxwWK/M7CR+fjpIflDFP13L1GOKv6X/eD85ozPHPAWKyl7e6E85OJairRkKYuqzi54iPC1WwtPljnKaNND/9M9qEfpRP1lX6/vTaSMncLgIAUPdkBSTZiZz343XfEfWVu13PhB2fLGLPQ2amCkiS9D2oyzA3a8qe8/6tfJqgWamo6KbNX+93X00/8ETREU+UXdE8o3lWtglgQhh/f1ArMh4GtOkhmDK7W9sd/kRwGxg7kJXTbn4S+22qWxem/mcFtNbrQ7Unnek3ydigQhj/bnkhLPdt5dtMBRDKX9OlqUI+vfZLshMt5qYI45sGxM5cGIuKG2bdvnVYrGyu6c0Pfu6GPk34oO/CM7i1W6E84I0UJoSVrg9Hne0tNPXzdYV9msfqo4IoJc/WAbpzlvrJ83Wb/tivWSsojQqoGm25hv6ZVCOI/Y1I/YG73agc14bFwXMr2fxMa91dcAqPeGgvyq57smsA2FbaBgCQ+p5iKpFz30KhnkY7mkKSnYI9tnpxo/RjMVms3CE38ZQ7fBH6jnkIgBjVXpKdqPPzbsOPWdOlqQxAQZKd2N6pDjMdSeh8Fza0b6yBx6eU9YCyAfZPI+ZVte4qwNiAbni+2XGWh/cpk2QnE6B4WluyRxF0nxVBJbI+jdOkl2QnXMezWR0B9xwS+ONBEOiGW5KdwO6DiHz3Ms5NJgv3/pjVQpkAOd2j5fILd+b8WDhaKc7OfQ9dZvn4d0fjlAnta9eUbWQbf5Gq+/Gk5LBY0TDrssCDd798SLKTQZer8/Pj5xGfAnzaaheGtIph/G/8ZRVOTydO95MrHafTo0y6QDC88AAAkYuT0HfMQ5p5Un71Kku/ohKwwTF0rIYnh8WKa8PJO+RNJB0WqyZGFwCkv7yAXd9rSdf9sEuyE5c2hOLKveLY0NuoegYQcJVTD93A5EAFrKbXpMmatvN10P8e0e0FHtTvm4J+8M8zF8Wg22PT2L0B/UfBI+WAIpBWAsrwyhgjXgZG99ds7PnnJc/YkTd4CaQOZAP+dJMcTTozp9E0EnTobz5eGwDEehMzVtdo4qNGAQ/4cqhAoUfq/qL5ek6dgi6vJeLMNJtGONMTyna9vaBKJQh/GnwofhX77bk1HXdOEBUkas045bX2aQ827/SeU2qzXOmHZ4LjEDwqAy1H52vGH1+G+tnhR+bDMygQkuxEQsfeCLovQxd2mxd08lZ3YmE2eIqsVReA8v74uaJuQ/LmNZBkJ5osJ+bbPocJCA0FT3FYrAyEyGGxosE3ogXElY0hgjLJaH7QOGKS7ET26IUo2xyIeOc9Al+9D17Fpm9XCHmvlN9A7ndE0Is/QPzi4p5NFOopjLsKh8WqAYKg3051/+iNdV6Zyq/3pnr10OHjJDF/cToull8XUBwHDEtj5ZVfu4ZmgzNheY8IDJ6tA/D7/MVCGQ6LlQFJ8H2gpxRRo746LFbk3b6CsFWJbvMZKTQcFitch8l3OWLabkRM1aKGZq0kbhpG3yi9vgLIuwCAsrwCIZ2af/pMkp3wGZiF6z1PaXikdH5dBMpOnETQ7jp48TRRHHtta8nSlBUUYUDC/QDA9gwOixXDtkwXyvH0U4Q9c+NGAICzv0SwOs0+Phpe/87kUfHX/f3TqUYQq6EaqqEaqqEaqqEaqqEaqqEa+oupRhD7GxGv/QSA8Id3oeEBoqmhZlLfR5IAv5kLY1G+JQARE4kpXt5bNmCLP0q7nRe0QL4pjTWnXGtCtghaX16rVLCmo6DFGeYvxsAwMkuhUOEOixUXQrw1bes/cAwyF8bC3LSJoXa3btFlePq3Ek4zACWYaer7ysmemhdJdmJKZi6K468Ynlzw1wDgOp6t0Zh5V/rp0XRFs+xo81kibgyKRe7wRQj+ZbLwfEB4N10NJ/1fPEt70snqP5KJpktEjR8Nyi3JTsHX7crGEJT3JKEI8oYuhqljG5Zv6/0EvjreeQ8cFhJA0p3GnjqWC/1RGcxZnY8PPmxkfqJuv5HWnd5rPi9FY2pSViKzwNCU+ECnAHB0ynxsXiX6EqjrGB/YnZ046j2Xu3tATb4pjQXe1XkcFiu+j2xu2J6GA3JQ/9tdQpscFisLI1DRjdw/+loLFL5ix9FuXwhl8GhtRn0JACe7NdK0nV5fGGuD55Z0BuNP80ZM3SOcXqod6Ad2HyqUpT4JAhTtbdkJBZ1z9DGZmZWxdlyo0PRRziolfEbmZ101iKEOixWOQ5fcvlOA+AZG7iTrAj1pp8HV+T6nfkb8vKfvwWGxosfDUzVjuPYvu+G7IBX7XhJh3aPTR2rWqYsPxGvGt967y1zaVfMuAQLBTue1b0pj3BgUizHHinXfa8ZT81le++PThHK6Paq0Qx1rCQBu9zqheZft5iknK5nLRP4cFivyxpCgtq5z5MSxydEyVidvmsvKuGOlJhg93y8s3fxY3ft677nJZ6QtFXsOov1cwu/QCds16Shd3uRnWKbeXF520Q8OixWefQs1wCtbO9bTnD6O8I9Hi0+IWV1zLzJ2adw92ree/q00fHl41WLAJ3rtBPRPzel9AAjf440NWTsFUziaZ6S/TRj3h6LLUfRdByT0HC68V5+dTXTRC9VzQI+P7C+jhGsayFuSnZjWujtCn05Fp92jDb8JfJmlDyomhvS5u3zh4/Zp5hn/boz6VJ1e75ROb9/D9wu9l/1hPCI+T0STQZmQZCcW+adij9UMgMwvvkw+jhgldZgHGu8NAFwXLkKSnWg2OFM5JSwtNWxTDf2zqQas4z9MRmAd8lN2XI+6zpAIL98Xj5QPFXND9UdUDTyR85UVzRpfQZr1O13TFkpnptngu1AxwVNvJs1Nm0Ae0xaXg8t1YdxpOko8QIWpcyRutKyvi45olJ/yoOeErZeO0slH7fD7WOsMzPfRsCNn8GM7X00f8OlPlF1hm3l39Zl9fVF+4SID0tArS93vZZsDcdtlFoAuTifZ0Xy+vhMzQHwoCgc3Exyk+foo8AgABuahTsNDugtlcwGhHRYrBh0uxfoHuqNi/2FIshOrL/tgeZvWDBSCz0t/jztehJVtAhhSZ1nvaGZK659WH3u+7YSW76cIoCM0//prtfFJWFuh3UDlePDwACoqGJy5Uf/waHV6AjhPXttaYl3EBrfzQa8OHlbZKJ8a4ljdVwMGjMaGDV8DAAb0G4UNm1aj44dJsLxr7FCf9XE8cu8lc04N7QwAmQtikXf34mq1h29X2g2XbjiDkmftODRDRHIrHW/D7jkLDOuQZCcS2vWE68JFmJs1hevsOd10ue/YBBNidxtQd/MOIAh0qe+JaxEP9lC+JYDAhZvM8AwKQLl8ksWx46nwZTsCZ2vnFW0HQDay7wSsRaBnfXxUGoTHfPLdtkFdFlWQpFm/Q69Jk+GdrA0/8mfeXVXpkkv2obDsGoK96ld7XeKfdZ2ViL2vad+3+t2MOVaMVW39NeWq0/Y+eBXPNM3SrBt6vKjXCB6lDlCQSavqD/4+GwsARhw9zRSZPI9qPvhwHztvlOPVEGImp4ZHB5S11V2/GpFeHrqeqsm6H3BG6eel7aDkGdwaFbVrwXU0C6Xrw+EzMIvlKS67gnsPP4iGA3L+1BpIf/NhA9T9qM5Lx72a9MaJES8jj57EmkhR2KaAFw6LFaOPyfi6rcVwPFe1X+HT6QVt55/T//xao/ecomhWt28pFX3XAWG+Z/GlX/J/BXx9h8l/HVjHoSU1YB019BcQBeugi4XlvRQmhC0p3IEG36QxDY4kO1mAyF4TyQkNFcIk2YmKblaE3u9Eo4RsLLvoh3q/+xouCvte0t8cUZvn5INb4Xx2PnLuW4i821cETRbPz9yCnQBEgIryA0dxftoV9Lt3vCa9Xp08GQlhFGSBz5f/ug1+HxOtZf5rooO7w2LFQPsQeLayuBXCKLXkILypFg8ARuX1ZuUCQPKBX2EOUAL1XhpNNuHJJSIU7s2K24rmtG8hE8JoOftfJFpvehrEtzVzWVe4jmQKGtGo10V/ASaEBQUyREWa/4si8k5CvepDkp3I/jBe+Ai67pTxQX4qeyfr2vvg1CsuVsbyNq0BABvXfglXry66H7CX9gyBJBMhDCA+MKZORLgqjr+Clu+n4Mw0G/MtMnWOZOV/EtaW9YM5MlzUYFbqh7LGigAYaqJC2JAj5wRNqB6duKw4ww9IuJ+BChSsEQNorisRASk8Ug4woBc98vD0xAh/cVyqx3n5gaOsfeWHjsFhscLyboomkDIAmCNC8VLuPoQ/qmwK1EKYp38rIcZT2NeKH5g5PIS1k/9PyQUlGDT//NCM+RpefFaQ8UHfD18m9SFyXbgIAEjO2KLJT9OGzExl7Vf3DSX1ezPVq6f7Lht+lcbKGHD4AszhITj8yHyYW5BNtqlPJahNuQvrd/zEhDBzhAgeEji7cs14XZnnNwbHMiEMAFYHb2W+jBvaNxbaQNvmrh2Zt6+iUUI2HBaroRBWHdITdCg9mU1gsa+OiIPZw8SEMH6tppRx6wbjcW7BTiGQs8NiNRTCHBYr2s1LQskz5J2/snuIpmxJdmJZ4Q7WP5dGx+OZpiIYEN836vlKhbCmO4mvTH7sdeS+rbwbKoTx3x8+gK8kO9npLUDg7X+N/IVdUyEMAHpMn6qpn/6nQhgAdKttYs/S3iGK0BNP2NH30GVcHxqLUK/6umWo+0WP+g95QNPPYxqcg6lDW+GUTZKdTAjLXBSj2cQPjB0olLt+589I3vItAGB31LfsvsNixcTA7hohLGdVlGas0IDDdL0GiM+y1dub8fR23i5W7qX7tYBgVAms/juzto2mLxwWKwPd4vlQC2GZy6MZ4AUAjG8oBlJXl6kujylbfHxYm+l4p0IYTZ/zfjyKvuugebf+b5J1o/BlbeB5U+3aghBGfVZvDojR5Y3WJ8lOBNxzCDd7nkSnnyZo2lJD/2yqORH7D5M6jhhPdJG4NixOEzSUf579RRSO9V4KLw8FfWjYkTNY8cZgNFqVJqTl8wLKhvHOCZOYyYypcySe+mENfr/SFi29LuDHdr4sxsyf1d66enXB5q8+ExZFow+9Om/Ri3YhUGJ16m6R2hDBdc9htu9hJHTsjeSDWzVBgNWaMVquGn5e/QGtqu7q8HdhnA2NV6aykxx1f1RXs+ruuSQ70X5uEvtgOCwEcp+iPVZFNE+nfR5wzujMAm7q1U1/88E33WkeB8YNwvpd64Q26p0KGrWTviOjOq6MjEf9NWnIe9OGtvY83WDXeuUaXRvdL+8ZBdN2oiips70Fc/amzy+MtTFHc4fFyt67OzIab3rjtcuriRpTOjV9lJ+Cx4LsxmMqtiMz4VQ/u92vK7w27WXxb/jTBAAw1a7NBJzqrgl8OxM69mYmcJSujohDve+161x1ynNYrMhcHo2ICeksDp6e8OLunauJDyGi9w7a/DEOQfdloPj79mi+pC5qbRQFLf4EntbF4itVnviqeTzruooxAd2Q8348Qp/Uaucp3Rgci9q/7Na8W9YXOsGYKfHWBnx8I3W/0DEgyU6EbxsPz8y6CHxFf55mfxCPsCfS4OHtjY15uxDy7TSmSHgtbw9mBYsbUZ7fuGcTmbmfmvK+7ozMnp8DMD7JYGnn2DB64O9I6+wFd6Q+edMrT29s6PVV0Sw7jiQqcdroOCkuuwJ/T/1TSUrmNmFwHc/GoMOlWNfeB45DlxjQDQCc/CkSfkOPInN+LCKSdjPeK27fwqkZdmYySes24lvTT25iJOqNJ75t7r7jAFDyQ3u0Gn5YE0fM3fpKy5d/bAfLsCO6c9Wobf8K0ZAS1f3m0jiKfJw9PeFOr5wziTb4LhAtjvhg5zzRuHj/LfD1HSf9dSdiB5fWnIjV0F9AwyIUrbx6Q/bHvEXCffXzsLH7GQwuPTF6Z/MgfV8gAJmLCYpd7PME9Sji80TBH6niWC7eCe2ItM5eWNuzHQAgZv5jAEj8KYCYplDNpZoyF8UwPjd/9ZnAM689KvmhvbB4qdMEvJ4iwGvrabgAYr5HT8JOPdoaaZ0r0dXOnYfDYmVCmN5Hi5IkO5kQxmvK+LrpfXX9px9WNrtX7o3TvCc+Pd2M80KYul/cfXBM9eoJ6Wn5vOYYgMZXpmLPQbd88UTzZHSpgGmHts38B5SSb8uLQplUCAfAYOodFivKioo19dBTQfX7CNxF2kr9ngCwd0S1q2qi/lDBz6VibfhGTZlGY4BeU0RHvbby7+XXr0ksGHPDhkwI45G0Gn+hoGcBxK8EILGqAEUjy/PGjwF12+j1LQfRVAfdn+1WEJdkJx4LsiNrXpxhOiqEAcBA22CYrGSun3zcjmEf/goAqEgnZqpTGslCP1AhrMLeGXHPENQ+im4HKCefmZ91FfiilHxwK7k2mdm9et/vIn5nBv6KRuN1QJseAIA8xzKY27cB0jJwY3CsZv4a9am6bEl24oP8VCGOI82fuUxBMg26jwQ99x9xGL99tgQACcNBaVpjBRac1rVhYyU6aqX+c2DcIKGOMZXhC7JHi0i3aqr9iyhkdXlNRJCMSNwtjHe+fbyJaEX6YRQ/R8b81XviWBmS7MTWFUtZvqxeKzRCGF9m2BNkPau4eRMOi5UFaAagK4R1f4T4uCX0HI7GK/UD3he9aEfw6AMI3TpBM1/1hOzg51Mx25cISqYObaFHpeNtbpE/+d+munWxsGAHVlVaFlAh7PTP5CT/0oZQBLyWgp+u1tfM3WGvPC20l++r0D21YQ4PwVmbLySZWCIAYEIYTU/jB1IhDFDCmTifJWtmh4+TdPtOT1Cg94NHH9C9T8OpGK1FfPqE41qUW0l2otHX5ISQCmEnH1W+jeF7vHUFO1quZZjij0zv8d819fvOW91Jt71G9+h1br9liD9wGw6LFQWvKtD8nXePBqD4tZqbNgEAeG0mQtvyS6Ga78Xkom6aeyHfT2X1+S5IxcijJ4XnVAhTj4vm31/WbUcN/fOpRhD7mxAfR0xvMVQvrLf7dcWAECKkFH6rCHHZ9xM46vAZBDzg2rA4zeT+o/+HkGQnMzsKfk40A9xYGf8CICZ4AHD4YbLwUz+YVzaPwLlupZhfsIOZxtA8EVMJBHzCnfewhZZfxOlC12q4kk9Iw23OckYqQAN6QpAkO+E6kqnEcNp90HADklSiNZ+QZKKd19ukqRfYgfYhLPYKLTvzs66Cbx4FbeDT8B8Q9UbixE+RkGQnbveNFupTt5f+N7XQmlc6LFaNH5U7clisyFpBPrqv5e3RXfyN+hogfm38GL02PE5jAgOQ+E8AGFS7JDvhGRTIftMNjiZfs6ZwWKwMFpoCqPB9occzha7XE7gAYM0VEeyCj5l1XQqGJDsZkIgeX+qNGgC4Ll1idVEHbsabh4eQXpKdWGEj79lVqh8wOuqNJJjbRUCSnbqxbWpJe3F5VDyu3nHGsE/4uRQ+nZwwefq3MlRkRO8vR1lBEQNm8fswhW0O+fL0Nnybvvsctxp6kI3jR8o8KD9QuYl8aC9OPGEX2siXd3NjgMBT8uY1kEr2I/ujeISuniaEBeDnRdaKaKUuLpi96zCJJ7Z90WK3mxq14PVAfi+hnieCRFj274vJ6U7egKUsjyQ7MZ+L7Whq0ABeI04b1lfyrAJ2AJAgtFQxQe8Vf99ek4//beociRNPKAIv7VPfBanIXKgAK52baMMMmSjcaLgKWobDQqDnaVr/N8mY//aD94U09G9ASLzmG7Si0gSR3rs6QhvaQ70O8uOz3vdknXRlKabsFB6eUsDrJIBz2AP7cbtfV8aXZ0sCuMGbzfF8A2IYBj7dGVuZwBvlaZlq7TC3aI7ya9cwrXV3jAkQAZkaLG8Ih8XKTPyG1tPGD2vymSJcdt49WuiL1OVd4MrKxdmoCsQ+n4imO300Y1VvrvJ9+NgJ0h+87zCfz0jJ4O5+xIR0Ic35dQq0Ov8nP22H605ZUx5Avn8XH1DitPl9TMbWyUft+LSVFtCIpvOIUfYwDouVmYcH/XJd8y3sM3YiEShHZQh5jPpQncZhsbJT09YvKUKR39CjOL8uAqFj9pM1WnViv7ZdU6HfHBYrlgTshMNCzHDz3rTh7BQbwh8R44dR80p1O9T8FT9FTKc9VOP6b0sVf+HfP5xqBLG/IdFJLMlOtqjRj6K5YUPkvmOD16a9KL9xAx7e3gyFbXj2XZoNU90fd2km/MRKnwd+wVQvYjH7Rmo2T5QcFivCHyYbvFCv+uhX9zbkp+2aRT75t++EcukmI3TMfl1NF82Hche7Dvttgiadw2KF2ZcIJFuumyHJTowruENIpxZmASAnRuuw77BYkXxwq7BpDt1K6ox9PpGV02mfB8ryCxHtXUsoM+KhvbiYHIaIFYlCG/jNDL/wDrQPEdrScijxHdq6chnWX6vN8qs3v/R/1hxFayr0mQ6p09Ayip+zI7ffMgDAqHUPs/unk+w4NUOxew9OniT0E6Xm88XgyHV/0AYq1RtTDosVZfmFAIDgDZMQt+1h9owGTQWUmD/5ryubYX5OqMc4TTO+UuBT912HdBNMHdpiWUQw80+QZKcQwLyOI08zT5JL9uF2v644M03ru0CpbHOg5h5DLquowKUNoch92wZzeAjZeFae0vLlRfw+jvXX/hfmo8TRDA6LlZ20qflqsFo5bWi7gyAJjiu4QyjXHBkOSXayzS0fc0hd/9e7xI06/1vdZnWQ3l6HhsJv+3mBx6x5ivJnxNHTaPkB2YzRDafZ15c99+6XT/osqp/AW8MsE8KeSEP9b5Wx5RkSBIfFiv6DxyB8fLoQPJWWRwPFGgmOlNqnjoFnSz+yoUuehDP2C6yMzIVatLvu7zwh5KflUxAcD09PbDj+B9ucq9ceAGj1VorC1xZ/ZI9ZgJsDYoQ+PmxbJeRRbzDLDxxFyw+UzfdzORnMtyZvyGJWZ9NlqTje9TYyF8cwn5XCbzuy8jLvWEnK2xIAzwB/SLKT+ccOGCAi4dHTT37c0LSh3xDfxB1zF7ntb/VaqEdpnb3wZPZhXBkZz9LVXkdO9k5F12LpKHonFfb1vlGUT0l24sJbRHkmP2XXxKyiefw968NkbacoWE6dNhRgfp+vFfL15golv6FHmT+RJDvh0Z+sb7n3LsQZWxnk18PYM1oX/9ujawcAwMXy6+jzwEQAwNHoMjhaKegdvJKCkYfoCwpo/WGNePb0a8EsSdRzyfIuWf/VwjdNQwFNaOBpXiBT80PniasuiYdqbtgQkuzEoFbRODvFBtMO8rz/sYGsjZ5b0tEhbYxb/gGg6U4fXEwOgyQ7cfJR0v8Jd5LYcR5bRaRLyhNFSOTfQel4m8C7w2LFQk4BI8nEvyz4uVT4ZN4U2lb0XQehner2878/+XI+8m5fQUXluK6h/x2q8RH7D5MeaiJdAGxPTUPDr7R+Ap7BrXG6lwVNlqfi5E+RaDX1HFynRE2s3kYAANYUpzLoWz1hhc8PQDeNOu+PxbtR11QL/QeOwcb1ykbCKA8AfFQahA3tG2t4Zb85/xWeyrtbmc/SxQfiBRQrU4MGLDBmsDQRERPS4RHVHhvXr8LGa97oX/cmQrdOIMF7K300BDKZgXIXBhy+wHgrmmWHZ3QpWg4VF0e9fjP6kKr7yyivw2IVfHHMTZsg+eBW2J+YhpQPFMRMgJxizGmRwZANb/WPQa2NyulWQlQ/JO/fBAD4/kpDjKgvBlfV47t/cBwqbt7U8Dcz5yDeCdU3ndXbXNmenKaLPsXnX3+tNp5e8RACXk/BuYk2NF2mPdHjkdn0+mxKZi4WTLkH5m37hOcVts7wSBXBLYz4MGoDvU/RSN3Nk/Sbt/B8cKxmHKvLMqr/SvkNBvZh1NZ1JemCDyhNNzBukGDuaUQjj57ExEYnBf4S7hgGV3aekM7csCGSj/2OTde88H6YFkhEj3/13G2R2lATjJk+7/x2Evw+TkHmohhETN0jtJVHPuXRN81hwYxPSXYi9vlEZt4jP213izypfic5t68w4UkvTVU0I/sYBtZVBJOiWXYEvKaPoEaJXg8I74YNWTs1/TXkyDmmba8uT/xzc8OGcF26hAvjbMwEltZL004s7I7ieO3JDU9lmwPh2bcQHltboaJ3Cby2tWQw+Op1q+i7Djhi/1Lg8eKYeDRapSgJBnYfivU7ftLMCc1ar+o3h8WKzIWxyBsiBiG+a+R4ZiqtbqO6b7q8msjQgPWeq/PyvPin1Udx/BWBBzpu9ShrZReEjyOn/+7G/oTCHpDjyekt9QGkPlXqtEbflrmlrYXTaqM20TI8A/xRVlTMrk0NGmDD8T80aem1um7P4NZYv/Nndu/0dDuaz1PWQ4qGWtX8kWQnZp9ph5TORKDumXEd2zvV0V0z1fMn4c574Dqeza7r/e6LKZbf0b/uTWTevopHWndjSIbuvq1GfFX1bebp3GQbCzlTVZtzVkWx0zV3daiv/1t8xDo99Nf5iGV8VuMjVkN/MTksViS0vQMNv0rDiSeJJsfUQEF8K8srQJPlqSj6rgP8hh5F8v5NTPOkp42lfmMA0MhUh9XB/y96QTF3AcDMCvk0PPFmU8P8iT9Gxf7DgjbaHBnOtM4AGDpZj4en4jGffEPBBYAAIkCfSbITph1OeFQiNzX6Mk1YsK/1UhD5WrUkMTmoYNi/7k0MCLMTIQyAVLKflcmo3IVlhTsE3gKTL6Ll0KPsmr4P9ceC9rnDQsxBHRblRIn14/BxwnXJM3ZkLogV+vX7yOasXHp60mB1mtg3ANKjTHBYFGRD6qPCa3QpP4sjQtB7/CQhf4xTOXUcGN0f0ekjsZFDwQKA0vXhACAIYUJ7LFZkfRKHhLZ3sLrCfpsgCGG3fiX8ZS4lvjV5X3eGw0IQE48kEXPXpsuUWGo57yna8HENz0KSyWkk39+9D16FJDsxov4lUPNHvm2bvv+cpbUfUExJTz4ujnHK84zsY5p7tD5qduqwEGdyWm6DP5pBkp24WH4d0d61WBoaM6n/4DFuP/58fVQI4+Nd8WMeAAa1ihbum3+zwGGxYv2udYZ1UARPSXbi/a+Ga+aZWggDgORjvwMAknaP0Yxvfh3h+0o9j088HcLuUW0+fX7gGfLOqRBGy/YM8MeBZ+ZDkp3IXBDLhDAASP79R+R+ZcWSSvMx3tHd8m4Km0OerSwo/LYjTj+snD6o5ymFGjfqM/r//ENkraJ+U/T+J2FthffKC2G0jUb/c5/rJOSlv9UmT+5InUaSnSw2m5EQ5rBYmRCmfqemevXYvS3t1gIAKnqXYEb2MayL2IArG0MwoE0PVk55d1JuwD2HNBvoRqvSGHLlwO5DUeHtpWmvXvv53/R/xLTdwlx0WBQFHH9PjxwWqyCEXd1IxqPXtpbCOm0k0C0LJOOMnjDScVvwKhkT5srNYMGajjCHhzAhDABO2S7Bkka+1aceIePw0mhi2kmFMI+trZgP4KH4VUIfAoD98WmGipxHfApYev7b6LBYcdp1lV33nDoFpQ/a2PpArTw86tbR7TsjAaEsj9R3ux9Zv/e/MB+eIUEoLiPjiaKh0vTP5WQI84jnjwphkuzUCGHmNmECX/3ueZBd80IYAFy94wz61yW+iBFexI84YNNFoZ/4Po19PlHIz/Ol7l91XgC4PCqe5Wm6RPH9VZfR++BV4Tp0zH7BjB8AXsolY8VnZxNd4fndfGMFZg39c6nmROw/TO5QE9XET1yqbeGfRXyeiMwHF2DxRYuAcAYAq4tSMCpA3IgCgOPQJWzpH4my4hJIMnGenrh+M0bUv2T4oVMvIOYWzeE6dRp5c2wIfl75AJ6baEPbiUdxxn6B3fOIao8TdzRCw0IX6v64C6bOkSg/cLRaGiZat3oDAACFZVfQZ8fDCLlfFEQzl8QgYvIehhTlLh6LnpaKv3/r19b4rf3PQv16PDPtY716KL96Vfc5pepo4fgyz6+LEBAgTR3aInbVQQEpTPjAVb4bem96VibmhUfAo2sHbFz7JfocGQLPvsRc8NKGUA208Z/hlWo51Tyof9913wSciaqDFp+IMZyoJhoAbibE6MJ9A4BnSz+sT9+IgV0cKDt5Smh3nyNDsKXdWiIkruyC3L6fad4r32YA+qejKjJsdyVCH59Gkp14+Ux7zPY9LPRZVdpahvoHorQIelHU6JeuD8fuqG91N5GS7MSW62b0qeNi5VG0L1oPTVsdUpdPT0vos903byNpzgw0XZLKTlAk2YnY5xLh83kqTv/cFvtjVrP8nfZ5YN/5AHj2LSTCQ0U5Elp1qdbYN4eHYMTaFOFEL/8NG4Je0NdMe2/3w82eJwV0OL6f9IRHh8WqGXN6ZTfa0RRrQraQ+5Un6DzCYd4cGzLHGwtEarKkNWAbdJ6q6pcz02y42cQD/nNEQbBHxg380UnRUvMndvw7bbs0Ec0yyrHjk0UCjzPkGHxi2aPpI0ruTiDN7dvAdfg4xh0vwpdd2rK1z2htPT/BhibL3fu2msND4MrKddsfenyq0/OIhHobYIfFioLZdrR+OUUTr8wdZc2LY36YfFma9a9VFFtj8t+w4XbATeT2/YzxMSP7mBBTUa+N7tYOd/O7KqGDzlV3/cdfV3WKF7qnNua3UkJMFJZdYSEgAODd/DQ8HRSvOxeN2jUwdiDbo3R+Nwl+Hxqfguu1n5ZH902Fr9gR3/8gm3tnf4lAs8GZunn4ewO7OLB+n+R2bkoyCcDe4Js0TZw5z6BAVHjXgut4tu4aBADfHt/3XxFHrNOEv/BEbHnNiVgN1VAN1VAN1VAN1VAN1VAN1VAN/RupRhD7G5H6yFySnfAMbi1oTpjWSXUa5rBYkfLAe0iI6iechmXNi0P+N52E07BVRTvhGURABp5okosyC4Fp7ZA2BuPXb8HiiJAqtdT8844bT6N8SwCCn08V+N/72gKcsV/A7Fyilc/6NA4V+w/D7+MUmG6TGDrlBo6pRmY6TBMN4otE+Zgc2B0h9ztZGkl2onS8DXkDickejUXjjCJle2/3M9Re8mXw92vdVVClhpvnv/yqYirC/zcyCzEqh+ezyaBMDDpMzC5vDojBhk2rkdbZS3OCQYn3HTS3b4N54QSRr2IvMS3y7FuIq/fEIXNRDBoOyGH5KWABvdY70Tn9M9Hg0sDRS3/vhczFIlQ1zw8NqGv6Yz+DX6bPbwyKZadh5qZN4J28B6dm2HFtuBaNrewEORnhT8NoOZ59CxmvVOOsJnqyw8xCKyqQuUQJucCT3nsR7nGnYTwf9DSMb39VlOdYxsqhp2H0+vrdsew0jJYpaPwtVuE0DCCwyxTUhudDPSY9Wwdo2kfLZ6dt7dYKbZwVHIO9s8nJz8a261n5Q578DdlfRjENO81/MM6LnYY5LFZ0WPKwcnLcSTkJKHzFLvAhyU5U1KuN70b3FubJ8QnaQN/02drwjQAgxJ/i80qyEx3SRNNRSXbCO3mPZg0GiM8hTbMmRAlaLRWTdY2Hms8cv0DzbigMth6vcvxlmH+zCPf1TiOASpCdSpAj34Wp8J+TIrSp5Bk7fnnvTgBggcJ500l+7JSF3sCOTxahx/SpQnuPd71tOMYACKdh6n5yHT4OAFjZJgAbsnYarmmU1Kdheul5VEUjquqkTJKdkDo0FNb2wjLFVJPmb/0y6U914GhKNwYpayJ9T7nDFumu7ervBG8KP6D/HoSP2yf07ydhbeG1raWGd76N6r2Bev4DylhV51VTzvuKmTGdqzygCCXPln6aMg7Fr2Ltp6im/POcmBsCv5MDu+PH4t3I/Yqk4U/DKN2RNIX9/ulqfQaQ5LBY0f/usQxsyGGx4sDTyrdDkp0CiqiaJJn4R1IKXE62vIGvpODgUgVIgz8NU7eHp7LTZ9n3UZKdglk7n7fBN+SEnPqj0v6o8DQLppb8eDH/t5321KAm/tuoxjTxP0x6YB16pBeQlw8kC1RtvsDfu13hYs7/mQtjETFtt24+PWHFHamDXkqyEwPtQxhaHqWsuXGo1eIajnX/gixCTZsIcLFGm5EB4d10TV7Yps7aDvN/XoxplQsgH0h3wvECjGpQqvmoGQlXMU4XtpyIQMMBObAfuMVs3I14NHWOxIYNX7N7HlHtUbH/sG56o/68NDpeA3RhaO5iUFbJs3a0eotsKiJ+H8dgfmlf8BuSrHlxqJdnhuW9FPTMuI7nmx0nG+V0Ew5Fl7vlld7XMyN0Z9pCaUnhDgRWoq8ZtaXwFbthEFl135x2XUVzcz1F8PvNwmCW+XJdd3bB5lVikHFK7sZ44St2BL21j6HI8TzQvJKsmOepKWtlFwRbzopmkVVQdQR+9fO8N21CSIqrI+Ig330b4eP2VWseq9tDf/P10ftTi23Ij72uW8aTJ7rg/Zb7WPoOnySxcam3JnXePRoHYr+uco6441d9X10Wb0YoyU7ckTgFdX7eXWU7HRYr5KfssLxH+OfBTCTZifafJuHww/N1x3z+N50Q6XcKh/YEI/Qp9yA27tprbt8GJ+5syvwWaUBgPX7d9Qdfz8lH7cxvTxAeWzRH8v5NiH4lEemvLNC0i6+DL48G+j471Yb0lxewNL0PXsUzTbNgfSuJKWHU/GUuikHe4CVCuUZtoaAToWumYfgdu5DRhSj27ho9ASHvHtOMyeSSfUhopZj+qwNm0zZQwBh6bW7cCCUPtjcE6tCjrI/jWTBrgMTX8/soBUXfdUDAPYeEOu/J6YvLPc7ixJN2tHzfuI4xx4oxruHZKr/Jf+Z7bZSm6EU7Al7X58XTrwXKTp4ynHP533RC0H0ZmrauKNyBlgYBrnmT9OryWtYnGp5blKDMvMsB5S04eRIiJu0Vyjm/LgJ7uqxx+x01N20CeHjAdfZclf3os7MJVgdv/VN7JfVcHRASj+IZXViMzP8asI7xf6Fp4op/tmlijSD2HybeR6xhA5PuhKY21QDgGRSIsvxCnE6yo/l8LVoXT+420ID+ppPPwy9apeNtMI08gzTrd1WWeWqGHc5n5+N2hYsFmlaXrfeb/x/88xREJO7WbYfRRtHIzt57ux/Whm9km6LjPVayZw6LVUAcdFgI2MbZjmYEvpqCvNWd0CWgGKuDtwp9pl5MY59PxO45+uhReps6/t6AAaNRfuAoQ7hyR1mfxiF3+CLdccL3Ez9m3PHhjphwW7m5Ut+n5OHpiYqyMiGvydqOxaX6M/X1u3c8Nn27QjftxeQwNErI1tzP/iAeYU9U7eRsqlsXZ0Z3RtNlqcx3UI839QYwaHcdzcZOkhU/J4oWp35uNBbuz7sT57qVuh3XRuTuI6/On7MqCiazC8GjMjRtqm65Swp3MP8O6gt2y9EVtaS9mjk870KABv2PUtbcOIQ/ovWlMeLh6og41Pt+l+FzI9KbEwl9R8J1RPT/AIzfOVUc/Sub2etDY9Fl1j4cjS5D7ls2hDybKqT7s8Ilz6fRZrQ6vNHflrQGWB74R5VjjK9XTebGjeC6cLFa9ar9ZPmyO+3zYAKUXt94eHszFFeaR6//eL84qoTS4wUAbg6MwbYlS+CwWHFlYwjq99c/cZNk4tsUWCk8GI1Xyheg+LMZlcenVfO3tmQPhrTSWhOo06r9YqsivTWfn4t8u0rH2zTfMPpcT0F4ZpqNgaJQwVjdvqIX7Ah4IwVZn3eB7xZvphT9M1TVnPEMbo2yvAKU94iC6Q+CUhi7/14W2/LOw3cz326qvDDai+jVuapoJ5qZ67H9jGdIEMpy8zV88EpfvbXd3botzOv/EkGs84N/nSB24PN/tiBWY5r4N6G+Lz4EQFmw+cnJb6jpydL+F8XjebUGESCLrl7AXofFCoeFADfw9QEEIpheDwpQkLF8VqQyIUxdnnohafEJiRky+DiJmZX9kSgQUB4oOW/eFO45LFYmhPH35acUVLmI7Q8KbYk/cJsJYZLsZH8AcLOn4uR/vMdKlofeq7Vxj1BP3R93IfDVFFTYOiN4VAZKu51n6SXZyYLj8h83vQ+YHlHBmrXVPxrZYxoDAK52asnQqfhyaFlPZh9m8dsAgj55YawN3TOGaz4s1PyDL4fvX4BsdiXZiQpbZ11+aboNuWk4P4GEPJiYmadpZ0VZGUPEBICg3XWwIfkr3fbz+fTqUwthfPvTrN/p5o94+bBhf0uyE9lfElXphuwUBpMfMVl552wj1Z7EGKOB0inpCWEOi5WBTVzzM+nOMYqCqKZz3UqR9XkXVu+5yYoZDh1X/Lzkf/dvHQsPr1qaMvU+9KFj9rPTUL6dND1fPj+e+f+8k31Fb2IepBbCKE1vXKSZe/R3+CO7UN5TjHuk5oX+vjDOhnrfk6CoZb2JIsc3pTHLQ2PzAGAIiXy56o09FcIk2YkTP0Wi/+AxSOg5XJOP/qlP73n+zO3baISkmwmKWevv8xfjaHQZJNnJhDC+HH7TbkTZH8Xj+ysNDTduWXOJORgVwsYcI/Dk5d2tQv+rxxJATCFtB0aIbfL1ZfED+b5gZDKjvEcUM2dLPrJd6Jezv0QI/PFjSW2e3W5BEkuX0UXRAfN9M+hwKXLfsgmhNBwWclrlsFiR9XE8emYoc/LFZsdYGYdmkO8iNRlzWKy4tCGUpfVev4fVQ4UwGrdM/V4nB3bHkyfIKVq/e8cDAApm24X+dVisODeJrI28EKYuj5apJnov5v1HhT7NqTTjU5ezfp+kKUNv7aP32s9N0jy7M4ZYaZSuDxd48lmRqomHSZ+nvr9QKFeSnQIyZfnly8J7PzeJrGlHppP3Ef7gPjRNOSnwQec2Lc9kbQcAyH/NxtBKKQ9Z8+LwQq5SNwAWP48iO/76zXL2jJpxh20bz4QwSVZim9J2lfeIEr6blPh+GRPQDQ6LFYNakbho63f8BEl2sqDTlChqaVX7IzXRZ6OPyYbfsRr6Z1PNidh/mHjTxF9K9mOYvzYekTvNDU+8YMB/iPvfPRYVew6y5zPkGBzvetswL0CQj/gAyPEHbjNkPr16AABb/CFFrnOrCaLXFGELAPLesiFznGLGAigIcfw9SsXft0f5gUYIfFVE3aPEm3mo+09dnh5/cc8kovEXqYZpqrrPP9OrEwBm56YjvrZZ9xlfhtHzD/JT8USQEtBWb2Mb/NMURCTt1v3A0Dwlz9jR6u0U3bouPhCPtHcWutUWqje99H/2h/EIezytyjFLiZq8eES1x9Wg+qj74y7hhFNdvl67eb75+HKUaJ9XVzMJQNCgAkDMi4nY87oodJeOt8FnRSpMtWtj6sFDWBAeJpQx6HApln+aAN8FxmPKcE5RPnx94TpzBpLsRPvUMfAfcdjt+NAbf+q+a7cgCUcS9c3EPFtZUFYiK/Vz87U65O490etGO5riYvdzumn4tJT0+oaaQgHQjGUaY43GIdOrQ90/bXeMReuRBwEPD0gl++GwWBG+xxt597ZgAhpvdsXnvzIyHvXXVI47Lj+lRjua4vApP/iPEBHn3PUfFb4rbt8SntMxLslO9BvxILyKzxmepkuyk8UIrKo+SicftaPVV1lIPvArHEPHCjEdjd5nddoU/PMUDOiaIXxb9MrRm+/qMUmf0ZMzShfG2tj6zcdAdLcOClSJolr4ih0tU27Ba5P29FfIs8UfFz/zZzHUHBYrVhXtxJiAbiL/rQNQVlDEst3u1xVem0TTOTUlZmVjaL0rQn2uXl1Aw3bwfTEocwBu9zqhKYPngVp/VIf0vp2U6LuhMRQBBfXV6NtXnTWhOjzo5VOne/pklCDoA9oTZGo1cn1oLOr8JLpmqNusx9uJJ+0wX1eU4jRN5oJY5N29WOgnI575fNStw5TcBJsGLP7bngDVnIj9+6nmROxvQj9mHsQw/1hcl4J1Fz/15AWIrwu99k+rL2gy+QWA+paFf5EIh8WKTyx7cHVjCOSn9bXJWR/Haz6UaZ29hJhMHXfdz/IwHiOVmEaS7ESFvTO6Z2g1z5LsRPKv37B7wc+mMt4fzybgHeePNBO0c7RMSXbisG0VE8LUPAAQbO3vnDBJSEfjqfD9aI4MF9LsensBsj6OFxZKGhvmdr+uhhtgT78Wus/U7/P63bF4OSRak47XNqpJPRZ4IWxAmPIe5R/bsb6kQpjDYsWAfqMAALlv2ZCzKgrhX5K+bfW2EidLzUujL9PQ/+6xuh9hmMwYc0y78aNlhD2ujX2m1xZKZSdPwcPTE+/8uAx1fySnfryZKd3oqvuVjgm+TD0hDABeDolm+QtmK33mGeCPC2NturxSHxzaP1QIa7NXUUrQuFblN25gaL0rmvata++DfbM4cIl4Ek/q4gPKyZvDYsWAAaM17WJ8nDkDc7sIOCxWtpFX81veM0oYfyXPVp4g+0drNgMOixUBr5GT64xbNzRjj9/wAkBFoXjNE+X17BTlVNRICcHzcbH7OQYuoH6XfNuLy5SNqMNiZQAkp39ui6D7Mthac+hRxUoAAAtkqyeElXcn4Q3af5qEOw4OY2W3HlkpcHD6yU9b7RJOyQLuOQSzry/yXxfHDBPCVPlpey52P6cRwrJWug9Z4rBYUXH7Fiq6WTVj/MST5ITII/UArkf6uS2HCioTM5XA2ABw+b54zXiVZCfqnyiH68wZ0j5OCDvxU6Thxlj93vjyaLq8uxe7FcKMxgwAFI4JYnW8kKuk35i3Cyd+imTpGn+h+MHyMRDpHNZbm3ky1a0LgAA6UCGszbJETR5ax4zWmwUhTJKdGBPQTVM+L4QBEIQwSVZAJyTZicxlxDKCF8JofWohjNZTfm+Z5r5H1w4CD799toT1Ye7bNmCLPytb/e66vkzaTOMv6vXf88GxWF1EviE09IbDYoVnSz+W7uRjYnzEkh/EQPFMoK4EmJF/bIfL94kB7mn+Utc1Ya0K3zaePePpXb/9wrWpdm2NGS+1NBr8+hbhPp0jeu3l6854cj4udL0lpJFkJyISd7sdY2FfTWP3+w8ew/JR3/pvQjfjv4JqwDr+bVQjiP1NaFgE+WDUcSgfyr5jiLlij4wbwkYEADLnx8L82z52XR1n1+bpij0+lvjC8m4KzqxtI2xSHBYrcu9dKCzM9P8UH7Kx7z94DA7GfaUpny5IkuxEl733wSPlAOr1z9XdyKsXt8xFxLznkxiyaIc+nSrEJGN5h4/T/XjyZdH/kuxkZlQUsS/sgf0wt4tAxO9KcOXyedcAEMGW7wOHxYqXcgnAAY034rVpr6Z+WieNL8K3d9Vl4jPDB3vkwQH4/OpyHUcHKb91BBDG/7VrrL2WYVq/rBinCxs2EWSskGdTETpmP0JmpiJzQazuJowfDxV7DsJhsbKA32xclLuwqq2/RvDn6xbSG5AkO3FzAHn3FWVlGr82noSNbmXegTEJAIBeh4ayex/k6/shUF5OP2zHscnKpr2sqJhp0Kdkan08KJoYoLyHt/x2wty4ESuXJ5pGnqnNJ8lOhrTYdEu+gJR1oV0j9jtm30gMjFPePwAkb14DAFhYsEMol9b/69fLhfSHZhDwCIruZ/R+Jrz5OHJuX2HvvUWqgjBnatAAkuxE+eXLQh6+DIfFiujZBNSBT6OeC3w/UHrzqyVCeofFio4fJLF0A2MHYmKleWTWPGKu5DpzBgCEOGUeKQfIXKg0f+QVUep+AgCvjFyEj9sH/zkpqP+wB9Skzksp/w0bBh0uRfKBXxH0oogS6+nXguU9+0uEwIPDQmIAqtdVCqAiyU5kfd5FUze99tip5AEIEM2V1kpQdrqpp8Hu9UiSnVgWEcwUAQCQ8uFCDYKkw2Jlc80zuDVMDRqw/C2HHtXwyK811Xnnet8Wfj3mn9Eye2Zch+WdFHb9RohVqLPl0KNwWKxMaFhxqblQn7p+9X3e3Lf86lWYOitxxBwWKzzbXdKUE5xMlHyfhLXVvDOjevSuaR0tPyACTf/WsYiYqD2F08vPm5XTeSE833uIzZshR84JwkXIM6lAn2LdeiTZib2zF0CSnfD7MEX3m0vv8YjMNH/ZiZOs3Ettialu9kdEkdZq+GEk9B0plHPl3jgGbHUw7iuGOqjeK/iY66LnVAVhkSIlG/FG+VH7OAtp64vKkWURwbrpACDkx6kAgLY7xhLFQv+lQrk8rx0/0JqFAkDoU0RoPzvVxoSv2xUupliPnz9JN18N/XOpRhD7G5F6c2P+bR/aLUgSAnTSdBFJuzHg8AUGZa7Or94I8R9XAMwRfl/XbzQf/adPRukuvOMDuxMNbeXiQTfQtHwKg+2wWNFijCzUzfNnqldPgM+NmpOEiKnEl81VSkAMTjxpZ20QYF0rN7FqWlaobE4l2YnIRcoi6LBY4crMYdfJm9cg8w4FsIP6vmxe9Zlm8e1WWwFQMfv4ABCFKr5O+j/zNnme9UkcVrYJgCQ78UzTLJbWHBaMqD2jNJtFjUDWpxgbr4kbq2vDtHDB9Jre+yA/lZWd+7YNe6xm9LvnQVaHZ3BrANBo7vJWd2JlsQ2fjw8k2YmmR8mmr9fkybofbfXYpfcdFivuSJqCFYWi8JC1QvEP8N4gBtFVk3pc09PJ4LVTUFYiw2GxovbgE6w+elqozk/7qPmnysbCZG0nlD+i/iXS7jDyMb7drysCZ4sIYpLsxDD/WJwZ1k7od3UaioJF6fwEG4J/msKel504ieRjv7Pn1Blekp14N/I7HJ3ZSrdfKRXNsgv36f9L9+v7ZKrzmyOJj0izRakI9VJACc46Kk9ibJ2Z7wffrt03b2vKarYoFTcrFHNnh8WKzM+6atLNLdgpXFOzJofFykIfWN5T+m397vXsd/j0XZr+yFzWFTcHKuuQaft+TX/wlP8NGeOuS2RjvaY4FS9J32rS9Xh4qtBm+j/ohVSsa+8j1EF/UxAFh8WK5vcVs9/05LPJoEwhvVr4yb3rM2E9oP5v9L3w67LrThnhM5T+8Gzph/A9oomeej1h9anWUBqcN3NxDJvL1Mcna05jJoR3fUlroQBA0Orz9dDr0D3k+1XeMwrBv0wWBDaHxYpbv7ZmvoxGAvDzzY4z3i6PMlbWUGjzr9sqIQHUwiEtt/+xgeye2vSz/MBRIY//iMOa8ZSXsFTDM1++3vg78YRdV1jlqeL2Lc13gfZZ1idxQn6P1APoNXmyRnjlic6bte2aGgqBan711gv1Ok9/85YRwesms9+xz5PxkjdkMRwWK3JGKgre5M1rhPLqf7tLt2z1bwCo/ctunJusb8GgbsedEyaxeiTZCXMLIqA33Um+5fJMO1P+qRUEfP/T+7QvW488qEkT//Q0IT2/jqm/lXTdBYiVyuBB42D+jZx0tvxIBCn6u5JHRcVf9vdPpxofsf8wUXvb6X8MxfE7PHUXUkqajTpH2V9EIWysEquELtaLL1owpZGM8C8TkfUAMavyDArE+pS1LK9aIODro8+uld/CMH8xjgpP6s2a+jrk14cQ/uA+TZoKW2d4pB5g156tLICXJ9anrDXUMALA6ss+WN6GCBSnf26L5ncfQ/YXUcjps1zgh+8ziuDlro+vjoiD9VknsmLEDY3DYkXBqza0fkl72uLhVYt9yOv97osfwn51yzvlR/ApUaXr9uhU1P9WuyCffNSOS+1uM5hno7YC+r4EfHvUvylR3wUeDZAvm/o/6JWn1xY6hvre/xDjx9074EMgGAmqnfZ54F2//YZjV82buzRnptmw7yXRR5H33xDKaBXFYgKpFR0ABEQtozrzX7fh+ENahE2qQFALfvRZp/eTNL6P5yfY0GQ5OZkpdV2Dj7kuHBYFhtuI9Pql5Bk7Wq8qYDF7zj9kQ5PPSNntUh7AEfuXuu3JWRWF0DH7Yfbxgau0VHgmyU70nDIF2xcvRqf3kpjWX03F37c39J2ivmTulBYLC3awkBX0eZfXErFv1gJ02j2aneS46ws18Wh8hd92RLptGVsD9dZivXXP8Dq2IzP5U6cr6x0Nz63prI6uLyei6ZJUId2a4lSM9CcgEQmd+sB19pymHj49RbzMXNoVeQlLEbEikcV91BvHkuxE9CuJaLaYrHfW/cDbLfTXDfU8r+p7YtTnRs9NtWuj3q/1cbnH2Wr1uxrl1N365K4cIyrbHIjaY28Jpz4A8Q2KSNyNKZm5WBwhgrEYtU0P8bUqPgYcvoAN7RsDICbWrV+uGj0Z0N83XB4Vj4ZTipgyUs1T1uddkHvXZ0jofBc7cQOUtcGI1HzQcafug8SsbCwID1PWM4Ny9cbYxMw8LIsIrnJMuGt/VWN30OFSPOJTwNKYWzRnsTmvDYvDH/MWGY73qsgzKBDn7RZcbWlCy/dT2P7kvwU10Tr2jb/MR8z5xQt/2/74d1CNIPYfJh6+/t42XTSLgd4Hkl5nLu2KiElaBDP+uvh5Owv8afQRrWrBMvq48o6/kuzEgIT7GWQ5AOTNsQlBntVl5HxlRXavFQCgOMkDODvVxrRFapJkJ2xPTYPPpixciwtBabgXDsycjzsnTMJvy5ci5sVEtpBHpnvio5Z7hbp5qs5H+F9ZYPm86noAor0uO3FSm6EadGVjCBo9XAFXdp5QT/i28Qi5nyCnmXYQPz9qXqnHl/pd/CvtfDtvF6ze3v9y//D1Zs2Ng+mmB7LvX6j7XjQCTyVksZp3+rusdzS2fLkM8TOnMZ8xGteNlmV/fBpSPlSC8VbVjur0kd5c5Mekpowt/kAfra+d0ZzxbB2A9am/AAAGdh8KV9MGKBjYQDfWmrsNSnU2tPz9/oPHCPEBRx49iTVV+CUBBL76yHQxvhZMZkjF6WizLBFBs0QBAx4eGH20RDjR0COef/lpOyzvGq9x7ki9Ebw8Kh4pHyxE/NPThJAE9DkPqa4u39wuQoDJB4hSYeMvq1jaMceK8XWXCJT90hS/Rv5S5VpLBfCG+S6GJEnbrdfOrHlxyB22SPe90nV19DGZ9W9V/USfz8nbjWjvWm43s5TUaagQyK69amFjwW5NGy6PioeprAI7PlH45xWMADnFTd7yrWG/UaoqFIg80w5/qRTlB4iA/lxOBnrVKdfwb9Q/fQ9dxtNNcgzfQ4W9MzZ99zlTrFCBOTlji+Z7y9dJy1ldlIJRAfYq3486LIQRSbITESsTEfxsqqZMep33dWcEjz7A7nV+Nwl+H6YI7aH5lhXuYCbDenWp26RuJ1+vXl4+bXXCurijAYcv4PMFCdj//PxqCU38/NAjSXbizgmTUEtSfPyo8C/JSrxEdXtin0/EuU4VCF91ma0JPC/miFC4MnP+ewSxB/5CQezLf7YgVmOaWEM1VEM1VEM1VEM1VEM1VEM19BdTjSD2NyK1NoiiC1GNyYijp+GwWNm1Omp85kIRfEGSnfCfo6Di0Xg3fF1qTZxGyxsRyu6pny1a9BEAwNSJoNvR2FG07MzxirkX1f68eLojex56v8IDQysD8TdR+wHwCI8Nv0qD6+w5eK/fgwMziZarlrQXUXOSFLOGLf44Gl2m4Zvy0vXlRGStJCeQ6lMCvg080bS3HF3h6d/KMB2lgfYhQv9KshN5c2zCaZg5MtywLr3f9fvnCqdhtE1ZvVZAkp34dc0K5M2xIfzRNHSdlYjMBYopVfR+ReNLyyxdH45rw+J0NZP0jxL1AQSIRvmZ4DiGxqhOy+fPnC+ac/FpaL3hj+xCgzyT4emNWru6fufPQvsb/NGM/QYAz63kxOVac2WJ27h+lTjOPZTxYKQhlWQnMj8jCGbB0kTS9h/b6baHr5/n350JDz0Nk2Qnlqj86PTm3frUX3Dn4bsBABWlF1Gx5yACX1Eg2yWZxOECgMhFBPRCfsru1jwHAApeteG0i/g2tkhtqGkffxomyU52GmY0/qdnkZOhgDdSNO8O5S44LFZ2Gtb9kakMTEcq2Y/xDU8LZWV/qEX2S+hzL/vtv+G8pm1G45nnQ5KdLNRA+9QxyP+mExqsJqdgtR88KaSzP078PypUMQ/58tVBoyXZKWi+AWBVW3+UX7sGU58iVsbZXyIw8qh4Qm59K4mNn4wn52PH3EWsXnftDJ+uEwR7+DicesTOrAxo/+qdjKiJPudPw/h+KX7OTfyxSuJPwwDiA0XTXd0Ywvqnweo03KpnQv/WsVhTTMYGNTWnpD4N+yhf+b4htiNWFO5A1qdxWL9rHfSIgnBYfr/CTsM6pJvwysMTWTl8+/hrGu8PgHAaBgC9Jk0W+o+CxwRKV1i5rrPnhHGr7i/+fVAADL1TJfptlGQnckcsEvIDQMEaBSlybYkSLzFz3ALD0zBJdiKz5+fCPXoadrtfV3ikHBBikk0M7I7T0wmP5mZNNeXxdSR07O12jVWTOm11TsPcfYc3tG/M/IJp7DSanqK28vR1WwtKx2v9jPk6+NMwgMSavLSB7JVoLDvaFvrfZ0Uqwp5IQ0W64m9I/coACH7s/w3kUfHX/f3TqUYQ+5uQdc1EOCxWDMocwO4dil8FQFlkvo9srsnHL6wR03YbbuAA4EpLT937lPzT6mvuuTJzDBe5a+WemJ6ViQ0bV+vWm9D5Lo1w2cjzmu5Ggi50ngEETpffQANgpkeTi4hv0omfIlH6oE3I3/zTFEUAiNR+iB0WKy6Ms8E3pTHqnXQhfJyCOum93U8oSy2YAYCjVRQT+qgfjV46StQPj98EU+GU9WFQY6E/zL9ZhPKuVG5UqiIe+tzrsgfkH9uh6bJUFhi7W8ZwpEeZBF4cFit8BmYxuHg1aT6IBUXIXFIJqPBOCnpk3MCGTauF9JLsZJsrCjtu+c0Dpx4hTuonnqz8ePv4CGVLshPN54nmdep2OyxWdNl7H8yNG2meUf8R2j7P4NYImpWKVluIzxINC8Hna7A6jaU/+Zidgc9IshNn1rZhde6662PEH7gN3+0EWY0iU1JAB37jxpQQCxV/Sj5NQsfeAMDgtnlo6EBPcf7xgi8t446Dw1DrrgI4LFYkH/5N01cOixVNfyHBbI9OnQ+PqPY4+MR83THE3zs2aQHGVvr9rWz9u6ZMvm1GY57vh3nhEZrnVNBT81Dv+11I3vY9AFF5QSnnPjGYLAC4jmaxdOWHjrH7XxTtRMkzdoFf9ebQYSG+Hnw7/EccxvEeK9lz7375ghKgwTdpuDBWCRnxQi4p/8RPCroez+Of2Xg2G5yJNZF+8GxlYXlafJIi8AuAhfYAgOtDY4H4TroKEJr+9HQy55CWgRZzU1D4kmLqpqfo0eNX7xnP1+FH5rO2erayaPIZlUf5rlcZVJny5DX6FCpu38JIf7K2d3ovSSir9/hJMDdtwq4fC1IEwezR9TA+sDvCH96FDmljdOukwpf0A3nXV+6Nw8b8SHhv2CO87zNr22jGf9Ml2gDdFDBn29IliJ6dqFU2/aCAQpnbRSB5y7csWLNef3qGBGHIEcXfjyrSABLoGwBTFghjzENB/uSVmklFdzJeaXpeIcvX7bBYYWrQQLMuUwh//zfF9Zmu166z5wzXBkl2ovzbOkxRVvSigr7rsFgRme6p2xdGRJViPTJusP2KWrik9yTZyUIR0Hs+A7NY+syFsdj0/ecCv532eaDwJTuuDbnE8qj50uPRHB6ChgNyWNmnf25b5RoJQPDBlmQnTj5q1+SpoX8+1QhifxMKfpFsmNdFbAAAzMg+pvkQMyFDtSnSI/UHGgCaLlM+JOoF02GxGkLg69Vh6tQWT4+bptlwSbKTQZ3zcLq0rs0dCOJdzrs2IQ/9ENDYP85n52sFIYsVSwJ2QpIJjPJ3r72ry+PAuEHCR5WnxitTccZ+AbV/EQM43uypaKT5fu/+yFTG/4BDpYzf3LeIo3zPjOvotHs0u8+3iS+Pxu1S88MjBgIEDY1PV7+/Fk5dr54NG75mbfa+UMHCC9CNQn1uwwOTWdO3Jms7tpGSZCcGhHeDHkVM3sPy8mie7RYksfw7Ov0AAMyHoP63u2AqI2qtOmfIfwrq0DPjutBevbYWlinj0nfIcQxJyWbP1HOh7/0PQZKdKMsrgCQ7sWHD15BkJ37v+CNy3tNHE5RkJ/w+SoH3hj1szPgOOY6JmST+1NiAbpjtexhNDlwS8v7x6SLkfd1Zd55GTNuNgfYhSr99Tt6/6xw5vaFw234fEuVB5sJYrL7sI5RfVlCkeU80vIW7PqN9G5w8CRX7DwuCVPFzyumYWlABgLw3bUJ6o7VGr+7HTnTVbPT52INU0Mt7S5n7BWs6CvWvT1lrKCSoN4i3fm2NnPfE07KxAd2E2Hh82ecmkTmb/00nuE6dhiVN2XSOOVYsvD91OyXZKQR5fyPEioSew9Fy6FHNOiPJTlj3g8UZo0L5qUe0m6ysuXEwWckJa1mJLNR9XVJgtB0WK94fT9YZc9MmqPPTbkg/rNRVVlCqN1g8ZfPvWSSM1ZgXyZjs39o9CBMN66FOI8lOdHlVQVJUx56jafQ2pPR91tmuxF7sP+QBnN3TQkiX8dR8oU6vTXuRfHArAOJLzJdNA8gDBAmSLxsgc1A9lut/u4uBxPDv8dKVOhp+eQrZ/BAcFita3KEo5HpN2WWotJBkJws/EaoDud4jg8Crl+XmY2075YQpYno6ynpHY3j2XQx1kPIqyU4E7a5D7lVUoOss8i5O/6zEX9T7pm9bugTm3yxCOZQ2HP9DuB+8QYRSV89Nen27wmX4nit6lzBFWcDrZL1Lv0nWBWq1YlQHQL4RV0aStTviIXIS9Uen2lgWuAOS7MSV8hsavqJnk74ov3ZN4IUnXnFN25LRpQKBr6ag9gbRFyn/DTKXeasFnlxZucLa1/xucf/WM+M6Cx/A83IxWfFPdVisWPToXN3y/5ZUE0fs30Y1YB3/YaKOj71wNzw9vITJTCdr5vxYRCQRwUEN9KDe+ADi5mFASDw25KYZCibVIZrvyezDSPppIgNU4MujCEbqfDw//woZ8SzJTgzsPpQh1BnRmbVt4DvkeLXK/yA/VYA+V78LSXbC+mYSWswVgQEujY4XoMfVmzKgetrm0vXh8BlIYO7NYcFI/v1HTT5a14zsY0LAYwDIXBTDwgA4LFZ4eHoi+/OOCB0jomkatY8SBbVQpzv5uB0HntY/XdFrE49+CCjACFURLSOhY28kH9wq1Oe1rSVu9zoBgMBhm7aTtmV/GYWwlmdYXJxekyaj9lMyKnqX6L6D/G86Iei+DGR9Gofwh3ch65M45N6jmPkYvS89zSs/32g/+X2YggtjbWzzzvc1RcRUb9b4eczXMzEzDy9/NYYBcpx8zM5Mcvn0PFiEJDvRfcZU1PtOx1Tt/2M+/jvKylvdicGVUxSyM4k2FvRaPSYl2YkBA0YzSPGq+qsqnvXqAEgcwc2rPqvWWqnmj6eQH6Yid/iiao0Vmjf6FRKHzZ1CQq882hZKJ560I+NJMjYoOiclh4XERaQhOdRl6/FHSZ5p14RjcJdXjeTo2TqABTQ26tv4A7eR1tkLb+ftwjPBcdUaX3ppslZ2YfHZHBYrK49Pn7msKyImVgI5HbqE717rh5QPyXfNVLs2ym/cMFwf9ShzYSwippFvdM578Qh7di8qyoiQcWlDKBoOyNHwW935k/VxPOK7Hse5bqWa/FGvJ6H5fPI9GldwB07ZLrkvTIf4Mk3Wdli3/ksktNIPNF7VGsjTjcGxgsKTIrxSKh1vg8+KVMhP2XHwCSJwt5uXhIA3yDjj109K9PunrjPnXRuyxyzQ7dubCTHwTt7zp+Y0BYk58aSdIdVSupgchkYJ2cj+MgomU4VhLDMAyPu6MzP5PHzrOtrXIgI+P/d/vwEWFw/Afw1YR9T9fx1Yx/6vasA6aug/SJLsRN7QxeyaQuZSclisyPo4nmlUeO2Ow2LFhlxFQLhWfkujOVLXpXeflvl+WHuEPqUg0DksBE0LgKEQZnRtlIbXoNO6KVF7d3kmMblZv+OnKuuhQphak3h2qo2VfzqJaKrV8af0tM1qIUySnWj4dRriD9wW0vKbpC6vEe1c+B5v5H/TCR5etQQtmEcU8QWkQhgAuLLzWDwynlLfXwizr69GCAPAIO3p+7o0oitCx+wXeKExuIJ2Kxpfh4VA+wMEwpwiC5b1jhbKu9VI7BO+r4ufs+PEk3bWJgDY+ItiWivJzmoLYbQMenpE85vbhDEhTJKdTAirs70FcnovR/HmQFaOd/Ie3H7Dj/FPeSr8lvhPlOeR9oY/TASV8Bm7DDe6PF9q0rtHYxnteptsgj22thLS7fxY8fehfhdqoYKve1lEMBPCJJmc3vGaVYfFiotj4gUfpbY7xmLHJ4pg2SFdu9QPO6KcWOd9LfpK6M1X/r4kO5kGnr4fgAjH5shwt3mpEAYAyfs3AQD2zVqA1ZeJuar65MhhseL79Z//KSWHO+L7jifzb/t0n9HTb75e/nnC8QQ4LFYEr52Cu0aOr1IIA4C7jg5m9TgsViaE3e7X1ZBnahqp1xZKVAgDwEIk8OP/1ZAuGgHSqD94OviY4vei/v6o2+awWDVw+l/u+Ib9NqonrbMXAMBaGZRazSf9z5uD6pWV2/czoe4xSx4HANzcFMT4zRugxACTOjQU0FM35KZp6uRJbcJ/c2AME8IAErB3Y+FeNi+aTFFCoVB+y3vox+rkieYPfzQNzhOthPzFz5G19udn30HWp0TI1BPCbveNFtrR4I9mkGQnLo4hJ0yjj8nCelPuPAKzh/G2kH8n/D6DEg1yDwDbFy0W+o8XwgDAZwW5pqbTc862YUJY7ltECMv+QLRiOHf3NcZH6fpwxkvo06noPV45veN52raUfBf73TteKEuSSUxNfh48l0PWJorU2fL9FM28a5SQjbO/RCDsgf1MCKNlZC6JEdo8reMfcFisSOg1AodvEfeH8JWJwnfujRCr2/H2d6UaH7F/H9UIYn8TMocF62rg6GSt6GZladnHpNLEJ/xRIhx5hgQJeehv+r+uifi4nHxUHxbXYbEiZ1WUsNjym3E+HQU+oAFZaXp+UdPjQ5KdeDdfhIUO3VOb8ZPSmQgpCwt2aMod0ioGhS8pmlm+fAC45ejK0uvxQ6nNH+OUYIrv2HChyy1cv5u0gwYy5cvR6yf179m+h1kbPEOChPb6LiB1ZcXcRNB9GcxZnfJH+1K9GD/SWmse6LBYcedvuRoHaQBwDB/HPiQOixUnVZZQkuyEHE+Cs6Z9JW4EPj5CNsStv1Eco7d8uUyoN7BHoVAW34bDj8zHXfenCR8SGgCWf0+3+iv+CXxZNzcFae7RvPS/63i27ju53vMUIj5PhP+bKUL9nlvS2e+SZ0lnBN5L/CdCniXvxNyiObK/iNLwBABzS1sL7QdIXB2ABGZVvy+9jZUkOxlYQdnmQNYX1NFd7Xdxx8FhAIh5rbocdZ/zz9RQ68e6f8Gur9wbh/db7oOpdm04LFbYDxCFzI/tfAGQOFWZPUVfCYfFiqx5cW4Fg5tNPDTtLryrNlxHiR/GyUftqLB11giYkuwU/HwA4sO4vA3ZFJn7ndXUN8w/VleA0BN4JNmJccfJ6Qv1q1FTWR9xg0qp0Q4x6O3F5DCEPJuqmfNnEhXhzHUnMSnMG7IYph3KO6LlF3/fXlO/qU+RcE3L99q0F6YOWiULAHY6YLK2A0xmXf7VAj0l151d2PdBXeeNQaI/I18O9VltNy+J1afu823XxW0ErZ+ux7H77xXAJygf5x9S1lpzO8XEPfzLRM3c4nmiMeEooIIkO5lpH8+Dw2KFq6KcAVZ598sX2k3TmNtFaL5V6j9JdjKhhjf3k2QnvNeL5uXqPqJgE1RpCQC/fiOCkKjz83wCQMA9h4Q0TY+S07ZAz/oIf3gXnj4ZxfLyfea1mayBd42eAPnHdrjcg8wtul7wMO2m2rWFvNeHxmrGFyV131ByXbioy7/6fUqyE2/niaf12zvVgTyTrKsN2p2HJDs1MdZ4JQ5VXPJzR56pfPTU647HTtI3gbvqsftleQXCuvRmaCdNW02uCjK/v1bWsmaDxTAVtIyIyXvE+d+BnOC4MnMwsv5FAGDrCT9m+bH3Y+ZB1ND/FtUIYn8TcmXnGWrI+EWEksNCUJB4omZ6dbaLdvbqTYTXFaJiuDwqXrNA8icogLgZV5eZc/uKkJdfmPUWcPqBopHsafqcmBsI3TJBSBvspWgd+Y9kk6MuoU7+dy1pL0uXuShG0/bkEqLxPt5jJXpk3EDBbDtCZqYiYtJe1PmZfCSbLk1l/aLW/vF18f9z3o8X2r5+x08MKZCm8djaim3+KC276CcswGqhldK1YXHC9eYODZCcsUXoH0l2QvphJXrVKSebv+fsmNP/G/b8Vv8YVm5Zn2gcmCn64EV41SO8VwKM3JE0RdO/fLwr9YbPYbHiUHQ5Yp9TNlFNl6YK/eQR3R6/fUa0kzyyV78RD2o2SQ6LFeawYJT80F53c+m1raXAf+NOZwVewvd4s+fFz9vR6q0UzZissHdG8v5NQpyiUtc19B9MHP3XtVd8tqifT/iDxOSJD0zssFgZyhs/bgZlDhDGkGdfIsiW9Y5G83kprA/4tpVeIyeVaqQw2q7ct2zsNx1j6g2PWkCp/y057Su/QT78iU3EjWPTJamaPKOPycgdtogFtc570yb4wwEEQAcgm+jfK/cUQS8qcYr8Pk7Bpu8/F/I4LFasv1Yb8/atFXhPCt7O8pWer0/GrEMrBBas6Yi1V+tqhDJKM2Qyzsc0IAAC1K+G/lFtNBXS1eVc7H4OHT9IQuAuMh8aJWRreADICR7NW/gKOZ0I+XEqrPuVdtL//iOIn14Zd2LL1ynJTgK+Ufmbgo+UPGPXTZ8/tDFQ7mLl662FkuxEcsk+RfD9bZ+hGXftdYqAQBVvtJzkNskAgCPT5wvtomkk2YledcqRXKIEjqdpKLIc3TDTMsty85G5KAYXuYPTwsHN2POQmaLgm1QSjxnZx4SyJdkJnxXKWOP9VWmakUdPak531GvW23m7mO9WVbR15TJ4xHQU7ul9s/XWdIAgT1IeHBargASs/rbz9yRZQW6lipGpb38vpM3oUqHJn5il+NKatu9nIEPU78vs6yvkcUW1Eb5jdX7arREY9MhhUSwtACBi+4Oa9ZqWyV9Tc9F+I0j68xNssLxDTvt9hxzXFeQ+yCfvvLyHvvKMN581ejeFcVeFMgccvoDQb6Zp0kuyE1dHxCH1vYWIfT6RxVhT04rCHQK4S85X+vsgdfl0zE7MFGOCDosQx9jflmp8xP5tVCOI/Y1IvXipr4dmOeAR3Z4hAektHAA5IdAjmv5yELlusFrxHUvoc6+wkdTb0Kk3PUmtlYCOBbPtyFrZhdWjl09v00CR4fjNMCU1+hlANpVG7eLryRu8RNM/1O6dfrhbv8yhLHJ10H4BgLkFOzUbSZ5/h8WK0CfT4OHpCc/g1qzteUOJWcYzp8j1xrbr4bklHeY2innemkg/SDIxGVX3Fc/TH/MUEzMjPtT3Dj8yH8vbKCc6fOBtzy3pLG2M0yXkvXMC+UjTjzD/TG/Dx7/TqxtD4PN5quY5/c/D9vLIXsW96yFzcYxmfLmy8/BZ1Apdof52rxNk89CLvFPerBMgp4+sLx5WzKp4kBgKMc33+agAu2BSSU14qOlR4SsiXDdFK4v66TGhfkl2Yl3EBrZBnX1Ggbz33Jqu6QOAmK7SzRKPJkbHwpm1bdhJHgDmN0qpdLwN6TfJaRdFAVUrDgACaKFWMqj7+Ou2FmE8BT+XiuDRB5hpJ6X8121wHcnEHbUVXhPa3iGkiUz3RO7bygnSwLo3EOxVX6hzTAPFkT38QdJnPER0m73EbO1Y9y8YQBCfv2gWWSuOd70NSSa+M5TonHRYrEL/8eQYPo79tryXgsK4q0joOxK5b2vNAdVKmqNTyPgKn74LzigxHf/fs28hemTcYNYNcc8oJkp1ftrNeKXpDz2qAFXwdR6dIipRjNYns4dJsxareSt51i6URcdmzylT0O+eB1n++JnTNPnps66zEpHQqotSzhZ/TfvVlgYRU/cg+DllrWj1dorm+0DbkxNzg5liq9eV4LVTyL0t/pq8ayL9hLbrgfXwvmPqvqG/zZV+KQ6LFedfuaFJRyH09dap1UXKM/V6ShUZ/D1K5qZN4LBYsfACMWvO678UV++Jw1U/L2R9GoeVbQJ063RYrPBNaQwAzBT8g/MhyFygnG5FTNyL0D21UR7YHPmvk3k55Mg5eKQqggY1p5dkJ15sdkyog18v6P/lgX+w55k9ReWL0b6GkkcqWYfVpousL34ja1HRdx3wRJAN4wruEE4UTbUVIZyGlaGU/UWUZr6emmFHox1N2Xjz9bzMkFl56vBJEup9T5RYu+co/qumBg1YGypsndHj26cEP/SHOmjbwZ+msf6LJUBFyyKCMSVTAdOqORH736MaQexvRNQsicZmUX+YfgqXsPGXVSi/dk13MXRYrAIiGW9WJMkKYlrQrFRBYxO6ehqDg6YLVthX4oeXlq8mWnfrl1MQPm6f8MzTr4WQ7vpQxbyo6LsOREvMOXBLshOXRsezNIcenS8soHofOv6+O4EJIIAO6rz8Jk2vjkdad0PJs3a0+SxRKMthsSLku6ksXUVZGcryCoQ0A22D4Ywi17criMDjOq7VsJ9y3RLKpdo1ytPKS82Ecunvgtmiiam6PdXpoz1Ws5C3YKBZwx9fb+FLKkEEwJbrZvQ9dJmhJfK8q0mt5QdIrKm8QUsQ/mUizq8TN9mzgmN03yX9X6u4lMXbU/ePw2IFTGb0vf8hxlfo06macvSE6xNPkFOOtHcVpLIKW2cEvpIipC98udI8+OFdQr8PCCfCDt2gvux7RNMf/Ab7o/wUZMXcVMbqZVFb3T1juCHoDPX3c3kDzweTOXaz50lcvi9eo4nmeTB1aKvZHPKkPsG9MNaGo92+EO4df2gBPsgXTzBylxIFQNZcEp/uaHQZQp5JFerS63OACJPqfip6wY5PLESR0O2xynhe9s7COAt4TTTx3P9iJax6qyhB2KzoptSd/UE8nsyuBJNJy2C80L/84c0Q8owWspzvP4AIA2rKfUdZh1lbPTzwR6fa8NhJytj19gLG/43BsVhdRBRDa68qirYzicoJKI17qDfHeXJYrBjYxWG4pvE8tXorRTfd9sWL4ZGibMwbH7+qyU/TUzReei/vTBON4NF0KXn/Fx+I1/DtsFiFMA5q4vnqO+Yhds9UuzZDvkOfYiHvHUlTNO2m/s0AsKRwh+66eGl0POKfnsYEfwBwXbrEnu+O+pb5qFGlVWStupo5Rk/QqUlm8M/aMULTqtc0gKCrnp9gY+bDDosVOz5ZhMYrUxH+8C4N35S8trVEak4wzC1IqJubA2MgdWiIiMTdQtria41RkX4YwT+Sti1aNlgox3dBKkNf1Htf9F7ID+QbePTWNUw4XqBpX9bcOHR+V1GKSLKT5aHXnkGBeCl3n6YPAGLeSk9lqXnmvhOiEEpP+gFg/e71Qn+Gjd3PeKVCWotPUnCxu+LDSJVA6rqv+5Uzs3W+D55yKnNm0/efo7y2cmQjyU5ccRFrjIjfxykKg9EHtOvf7oOsnMURIZq+q6H/HaoRxP5GRKGpqd8Iv7jHH7it+fjqbaKCOY0vNSuSZCfuSJzCYr7wZTssVuSMErVBkuxE6FOivw89GVCTuw3B+n0S+x3yw1SU3GFiH56Aew4J5dNyKPqgXvv4eii8Os2XubSr5oMmyU4GIQ0AYQ/sxzJV0Fzqm6cuny+j1VspuGW5LW7at/gjfIZ+/C1aFhUyHRYrvDzMzFySlku1nrwZprlpE/gOOS70zaq2/hr+HBYrWr+cojsejPihjto8zcw5KOQNn7FLML9Rb6iOTpsPc/s2wofrt8vthACnfH+q34nfbvLRHH2MQF3fGKyYcIbMTMWeLms0wpG6bdelYAwIIeMx+fcf0Wr4YU0a+tuSUhebv/oMZh/FzHBdSbruu+bHMjU95NPxGmM6julpiBrWuPyqsnHVG79qoZHGQ6JpaBgLmo4KuXqb6vzY6zidZIf3BXFDYL5Voamn3XwlLlP5oWO6wiE1WdryhWiW3PiLVM07jnkhkSGB0fcW8vwV1NneAuGPkPlBwXBoDCFKW66bhTbnvmPD7jla5EDqwA8A9deQ9WHTd5+ze3r9y35XVAiCy/Xm3ixN2BNpeD9M9N+i6YJ/mYyA11NgqluX+bLwZqGSTEwIHRYrIqbtxuxccpKUtYIIr1kPLND0lVSyX1MXBV3Yvmgx27TTE7/ct2zMv9RUr54Q91CP+LnW+hfiq9N3zEMsz9lfSLn8yRAFeuDHPh/PjFLFHrJO0NMWmkddL0D8eIz4bPSlPhCG34cpKJitVdKox6f5t32s7vIbJJYUDbDO5+FP9PXKmhzYHTcrbmvSbHz3Q5TV9cDxriL4Ek/N5teD2dcXl4IUlGNemKVjgq8vInE3Sh/UB1vRG7+AFtyCX08dFgLSBYjgJbd7nUBOn+VwnToNSRb916g5X+aSGNzseRLl3a0M1VaNDAhAgGDXI0l2MqHwsSA78/Fk7Tl0CbkjFsGy+ABL77BYNYJkWX4hXg3RojRKshO/LV+q4YHGV3VYrAwYiJb3QH4vRM1JEvig76WsuAQRv48TyqL9T/3GJNnJAEdyRi5kljqS7GSgHe+Eku9ju3lJWHOlkSaIenoUOYnm/dkkWQEI4/lVr8+S/N9jmlgD1vHvoxpBrIZqqIZqqIZqqIZqqIZqqIZq6C+mGkHsb0bnJxCtSYWtM5w3bzItCYX2pcE11doe/o8nqsX9fcFiw9MTh8WKmwNjNM/4NDwqG60XIPFh+FMNSjzABNWC5YxaiNA10xDy60Oa9LyGqN7vvppnwb9MFq6Pz1GADjy6dkBewlJdvoNeTBXy0SDDVDvJg6RIshM9pk/FlXvjNGXl9V8qMswBV6i1WuqTD3qPwsvf7tcVDguBZ+c1g232erFgper6JdkJ+Sk7+/1Crviu+TrVWkL67LvQzRqe+9TRgp9s/FkxP1OfajksVrgOHxfKPX+7nlCGWnPL9wnVaFO0rrve+F3Df1Une2cv1xPMUR7PPopL92tPbCWZoEQ6LFYW5FiSnRjUKtrQtIfPq76mYQcowiavzZ4S0gsA4NG1gyHvfH3qk2Ra3+PZSqws6mx/aUMoHjtBzIwjd47V5bH5/BQ0+Eaco3V/VMwlJdkJh380gr45qTkVV/OXfOBXgVe+Hjo36bP/x953h1dRfP1/khtq6J1NIZ0ebki9F5DuhYBIUQSRLiVR7FhRRFBUFBWU3qQoooCiBBaVopCEhHKpgXQSspQAoQZCcpPfH5OZndndG/D9+frF75vzPHlyd3fmzJnZ2Zk5M+d8TvL7C4X3nfGNGY70LNzudhEFo4mZ4eFp5NTQa5a46/6xf3vcfjQCpiB/AORElJL5MNA0oQ4LymuTzCiKFscoo9NBnox2m2tuJrvX15+M0j3n/9NvdVt6PPMjCvyI+MqkLohgfp0URGK6HzkJc3ErdToe0P8zs9RTihNT9CAYlPxeVwFg+BNWbR1lxY76+xoI5WT3rAqbZMZv61Qo90aPpEJWRGsHGr6B57U1OU53DyDhDvKtV3UyGI1VWjNwnh+fnm8r6rMLgJmMVjQWAMBy773wel017b74UyvD7woAnszqLjwb4CEiuGZ8Y8ZQTwsaLk3AB1lJTNbs74IhK3Zmbpo10BWO/Hw0WqxH06xoHKP+sxVR4/h6unlcVuwCuBElipZ8NOJb4b5NMuPKWIuu/IwnCFhIVr9ywKRnxBN0LcmKnZnD0j86ztK24d8nRYWlJopyuzqwSWbkDw9mcsmKHaZGDYV3r51f+HtGYxA/pjlSVOTE3LetyLdexWtTvmV5ZMWOvtFPqumVmoyPawdyknh9eBRyIm+h43sxZPw7uUeQhfLXxjTzej+ehe3RypvxqTofXZpI3kWjxXpAJ74uffsOh036F/mIVYJ1/G1UqYg9YJT8fnnsoYQjeM2XKAS7b7vCxY047/MTK6B+yPwfT36vJwiKhazYdSg9smLH7qVL4dbCSzcgn3lP77NBywWArQk/Y8/iJQIvQAWYSJtHFjGXfiYQwQEvJCKz9wodvy7PToKs2NEm/inceigfffqNEMqigYrZAqJ8ErJJZtzydhfq3fqgG2TFjo036zC5tKSdFOngWOdAHgu261JNNWPqF9FPN8FT0xCmZAT4Cmm6Hr0Nm2RGdNfBjP/n2fHMZBQAgr6OwaxLreAS2lYwh5EVO8qsHYQ2kD5RY5h92H+o08ks51FVkS2zqDwoH34S5e+nLg5H9nfBOiU/uutgIS9AAotTWuCRyPreqnLfC5tE/Fu0+Z5LJ+ZwLm7kHfGO4NqJmJePmlXdHhiBk9a1SF2m+j9+FtAaCZ/ona2NFuva78No8temo/6SNOzApXbkWzz3MlGMr4y1oKykhLyzA8cZL2riJyiiAfqJm5+MPwtozdIuDAxA5+cmYUbgFqSEErhqrY8WAKEcZwqmTTIDpQ440jLv2Sb8ddpqNe7UjSeicOuhfPaMr1fLP4nJj/+T5TKUlSFp9kLsu1NaodJU46ckxO3eqONnDyFxkX4MlMkmxmwLqm0nSrxLaFtsOJugk5v3MzKqI5++zjeJuueUct8mfApGi4tZRwEJqBsUm4RBnhF4Of2EEM/PrVlTBDx1WCjLSJF42zdcV18aFsEo/b02JmySGcrHKgiQm58PHNevG37nWp7aRXB0h97IKr4ppKM8qL8ST9rvlG6yZfTQw7ObWgdifE5nXZlG18UwCX2ZKfqfRMHNy1NY0DpOp6PdPOKHdDh8ve47pteXOxXoZHd068jSpHdbxWLYUV/Lm0Oj8HIw2cCiaI5BsUm6NnXWvwecvGyYho2jXEgBWbEj33rV8HtsMfSYTjmgIQwo8SijDb8R/bXNh1Wlm9a3eg0VJEo77tKyMnutEMaoOt8kOq2rW68cpM2PZCaK1CT5wHsLhXdJEX+NvpE7j0Rg/pl9WH+jPjoeeILJdK8xGgBOxixA0Q4fdK2Ri62F1TE0sydskhnb4r5haXg4/OHfkQ2nOt8mwtG9IxovUtcEgWtj2O/gQwSQqWBroK6/a4k+839ZLafp+hNCGq3c1Jx52zaiQIateBqV9H+LKhWxB4zoIMl/7LP9g7E95wB7btqlxv7gB07+mqda3+/HhSkqsMPQWmKsD/pXciYXLVeq8OObzyahqIlD4CUrdgGqFgA+L/AReNHfAJgfFR93gx+IKCBAzU1k95465NKgwkbto6U/vyRKX+rScCCiPWIb7YFNMmNIretwqVYNEW/E6PJQ4oFRABE2vKxIRd7bmrRVyNc3sBOaBKrxjmTFjrg/Ngtp3mxETo4caZmMP/UFouT7RgL+DK7ObPX5+lFnee1CxdQyQAe5bJPMcDW3gU0yM6h2m2RGoVRdeNfnf2wtlEF/u3lIyHpkKXyeUO3afX+eQCbOPZvwTFqqMCFe7dwCGd+YGQ9ZscO1Q2uM8e7M0lD/Fr6cfjXvwCaZUVZSAi1p5eKvD4YS37FZc8nJbtDT5HuwvjRZ108y1oUIiwlKRgs0m2RmwYxtklk4yc2aTRRJ/1dUFE1ZscPrfeKbd/RlcprRYGWCriybZEZhmA8AsBg/ADmBpc+pLx4vl5uPN1FUy0/fimu64uGaREHPe434E7mEtSMKcrchUDa3gSOfKEeWlycLcmqJOqvTNH37DteloURP/QJHHUKPY7fgvd9dCHrL1zd1ZSh8nlD9gvy+n8yed6ruql9Aaog+i27TVZBdVuywvEKUYN83EpD+KUHWLDt4AkM9Lbj2lHgK2uwz8cRNO5Zqx0YjpT9g11h4zSTvl27WZM9U41Xx/6l/2Y1hRI7Uuc2F8i8+q/d5opT7tlVQEvjNKX5MLyxVT3v4jSEt0fAbAIGHv76NnDJmfqQ/GTHqGw/FEDAJR34+JrfojPln9jkti+djk8zoeXIAUWQ+j0Lg6EOI7jqY9NOdHkLaJfJKFoOL7xNBq9V4g/T/8z+OIWNd25ZCmf6vJKIk96xufPD40Di2JM9XVuzIWh8sjIdnJpYK+exvLBDy1tqQiIl1Fd04UtHmBU0DAFvaNGTXrZbFCOOSrJBQJwCZB7XjB+WRPUvd0AK4eGSlDnGzKrgqU+zo3EWff9TULlx3Gz8BRyO+RdYHYt+uqF6yQuLzFTgKdfM8zR84ZT/cPCREvhaDJgvIPETRN50hkPJlVf85CYMPTsTKli3QeMBphv5KT9dtkhnhdlJvHpGSUrWHszHGuzP61byDDX6qwlewNVCn9K9r5YnSrmRsNu06hPzJajvzp/M0NABF5qXjFE8UkISNiRxKJd0U4enyeLXdA8ccFPqt14fOfc8fNKr0D/t7yKWsrOz/SFUfTLp+/Trq1q2LbngUbi5V7pk+3O7ArCbHhAHQJpnh5tsCJVlnEJhcDTt+7wjf1xMMB9drT0Wh7tpEIS9P9F67g644HloKN08PlJzNQ850K1ImGceS0Q7GdMDr8+hIXIisjSZfxmNudgLaVq2hK69wUCQzFzKSo+G++rjciexEd0gajmblwTzzt7QUUORoemWqVYAFBgBT25bMnE4rI/9fW35G8U3Etuisy8O3QfYsC9p3TcONLpfYs+IyB6q4mAwXny47PbC91VaBR9OEOrhguV6hPEbt08/yCGbv+Z7EZYsKBhKPImu2Bamj1fhyw7J6YL3vTqcLBe2723CzLpYH+SJ1QYQOHl37runvKrubo7jbOYFPdNvuzBzQqFy+bC2/4l6hJBDp755Az7Mw1a/PTiPu9d4AgiKYHXG7wnZMXxOCgJGH78mrYLQFSbMXovfwsXDdo8bYa/9ZLI69SMBvivqFM6d4gU9EeyDJuZkJ/baM2oiXpevR2/hhQQ80XkS+6a+uerEFnlF6I143H49koR9MDRsws1j6zbjeBZp9IYIEOXvflEacOotRdS7p7l8ZZ8Hlh+4icMxBpC6KYND/RrydyX4/38C9iPI4M8PKzN7mF7TA1o7NUFZUhPS5UWixvQQ7V+kBASqSwdn99M+jEPjaYWEDh6YH1P5uatoEKR96IWjswfsq4+ooC+qt1oeF+KvjRccDT6DxgNPIe82K281LkTF0kY4PL6f23fG82s2LZcoPAKzJ3YcmJnchvzP5nG2QaGVwVle+jPsl/hvV1qUiXrJiR+DuMfB7kpSbH2MRNpi0fJyNq/dS5Jzx+v/9BrSU8UkUAtbdQNnhE7pn91PelV+CkNxxwz3r57dpEgKf3Y/LT1tw4L2F+OhyIHa2d3c611IeZZYODBTpfsY1+j/3LasQ6+7iT63Q5FHV2uL6Nn/U6ZsBl50eKOshjrkuVaqirFjd8Hjo2CAGnMaX1zZhBDyH6NvNmWzO6PJ4C0Ma1dYl6tXJ2PH2AtQPysS1a9dQpzx0woNEdM0aOvR9uFWpfu8M/59UUnwHBze89cC2x99BlSdiDxDlTCc7qHmb2go7N/zilSphsmLHlV+C2AdPodPTwouQOmoh+7j5AaH+vgZI/HgRXKtXZ2ZvF54Tg0pS3sdDyU7h1qStuBhLlDCeH5XJ98eJQvBkfqesLPkYmnxJJuuXfCyMt6zY0TShDmTFjjIT4dVwX30Cvf+7ihDoEtKWKWEA0GxgCvvNIwvycktz9LHBHCdOMyheypsntkDikPUAMU4aXy++DXymJeAH/9+EwXdGvspfKwuvhFG/PF4JM9WrK8h3fTjZbTdxAxBNuzXhZxYcm8JvUyWMyrned6dOFm09KIW/FcNs3qkSlrEuRCgTIPHC+EVHcbdzjDflG3dil1Au3470z5lSVuU3gkBH/fCoQqfd0bRJZnZqBZBFhqzYkR1xm8WJ0da7ym5yaqGNW+ds4qz/NTFHokpYxwNPwCaZIc2Jx7XS2wCAeq/m6L5TWbFD/nENCgdFwtWsorqlzScnbqb69QUlzKgvA8SPYU9wDWI24+ICm2QWlDCe+ACx1G/TJplxZkN77PtiMZPRcfmKUOdmfXIR+Fiqjl/4NPEkWVbs8E+uzvisH9LTUI7kWQuR+TBBXKx+zg2DTqrmjPx3lD5XD2UOEB8so3dnRPRZ7jQrehwTA7VSHi2mq6clv7StzxSlgJcSsXMV8f1MXa4PHj04vbdh+UYy3xgWhYAXEnUnETS9TTKzGIKOCxeRZVvulJeW6q1OwK3tfgIv+pv2l7zXVf9RAEhdESbI3vbLWDZmHn9+AQJeUDfj+nUeaChL1oAl7Dc/jtkks6CElf7uhSYmdyYbDbYe8UYMCwJ+dZQBnL+mfSi0Pa1XnxakH/B+l86UVgBwrV0ba3L36e4DwO6lxC+qxh4SUiVvU1sWTkVW7CgYY3xa03J5DFPCAKCwmYvAm/Y5Kld0m66wSWYU9yKWHsuvNdPJPDanC2RFNV32SarhdCyUFdWM26he2r5p1F+pHyMApD+5SFDC+HGn83OT2LWpERljPBNrCWl5JQwA/HeOFb5VlxBySkyREQ+8R3xIf5jbi9Vt0Ml8w29KVuwCMq22HVKXqrEm+W8AALNSoNe8EgYAdfpmAADKeuTpyi4rvst42SQz/mi/GbJih6u7uyALr4Rp53X+Hr/Ooff55w2XJ+jympo2QfvPY5H4sd7E/oGlsrJ/7u+/nCoVsQeEzkyPgPcMokQcj1qHfhH9kD9ZNCvJnmkRBqAG/VPZx0wnYko2yYyiHT4AgHXlk1NBpyuwSQT2lwazbTovnk1CRpOcTTKjyQIy6fLwuzRt1sAlzLG9ogUTfU4Hu1puxN/G/QdikviN7y6iQLb+haWnEwY/0BsNctpBmV/s1/6TxOCiAzNfR5tkZhO3m58PMl7RK2suoW3x8ONjdHVpeaAKhmb2NOSZbDbhOSVceKaVTVbshju01FEYIMANFM4/7tQfujbgiZ+gqJkRX54RURNTypPCJfO807vrfT3c+2QK1+bDYhtQ3wBeptuPElONuntFJSL3B2Nwi4rqx5fVxqrK4v9KIoL2jAYAXOt82TBPcbdzuP5kFOLyDrHnvJJOyTW4FUxtW8JUr64gy6Gw79h1xNcvASAB1Pk+d44z/6y5eT9K7WoMscwhRCHSKqpG/aRpQh2UHklR618+ITlTTvhNiOo/Ez+WMksHtBh6TLeBwP937ZmLG10usTah/at6Qakgn00y4/Trbdlvx4nTAk/eH4by8J4Rj8n18oTy0ueSzYOAlxLR7qB+CnqpqyzUb2uhuOtqtGj1mhWPAbWP6NLda0yidQkaf4AtqilRfzjt90Z/33pMNWOtvV6EZe92fCAACCAyjtPpuoUkjTdlJBdflvab49OlfxbFFKPC0rvImW5Fqm0xUu4WsnSPPbFHeI8A0CGJgAOUZGYDUGM7amUEgLC3Y3QLY5ru7JV67Flp1xAUdzuHgF1jUf9rEgRcVuzY/+FC5n+lJcqLWmp4JtZC2/mx2H6GbAaVHTiuG2MBsMDY3Z6eAFmxo/TGDYz06mRYRrenCdjTj4EkpMrxqHWo8WMSXKpVg01SA/ZSeSj5vK1aliAqmJ2sUhnoKQ+FP3dcvQaAbCbJih0bWjfD8py9uPRzEFxrEqAIJeoGAODCIKKYJ69Q54RVmvAqNomYcdskM9w8JHafKdzFt5wqcZTmBbTCXVuYEKNTm94mkThllLIXkQ2r+O3BOnkKxlhwc2gUSnqGCr6AAbvHsDmb72sDTl4WoPhXfDxAN6fz9Ur7gmyorcsVzWODJiRj6vkQIThy8cNhht85f03b3VkbGa0nbJIZpbduCff5tDQNDcERl3dI4E2fr8vdp7t3p3+EsA6wSWY4LlyE9DFRJv8t8PWV9PdRpWnif5j+qmkiIA5e/G9Krh1aswUcJfc/GrOFhdFEmzHHwoLdUno5/QTzT6GDxucFPnik1nHhtIjnyad1pgAYlU/TX5pkQaPFCYjLO4Roj45O6+iMj/Z5v84D2ULD6LlRXlOAL/PlkRU7M6uYkXmQoaM54+WMZ+7bVnjNjMflpy1ouMwYPcsU5A9HasZfkrWkRyjcdh4U7qWuCEPQOBUQxChvRe+HPm+zIBY+i9NQ0MtfiO9Gn7dNGIETlnUV8qbvaEBaHxR1PW9YdlF0OHYvW2rYH+j/59JPMf+y+63D/ZCs2BFx+HH41buMgk5XDOvBm/XR+mwvrIY+NYuc9kt6v/6+Bth/2k94Hzy5VKuGsqIiXHjOihu+pQh4kbRz0Q4fXIiX4P1uvK6ff54dj1HHxyC54wbhPgDc3O6HepNLUJKd47S+NsmMunsbsqCmH2XtZ8iApvr1EXdil+798WWcfcOKKrcA++sL/vL7kBU7+pzqx3ambZIZLm5uxGcwKhjyptX31Vfv9b1dmmhBoyUJur7I55EVOx5+fAwLsGxU1v9PH3N074jf1q1wOlYbbarYJDMy5liQPmLhfcmRPjdKACBIXRaGoKcPCOlLu4TA9c/DyJ5lYSiyRm1hJKezMVYrT3GvUOxcvfwvjTOUd4GjkMVQsx65i+mNTwplVvQO6b2wd2KcjqvOSHnFimMvieb29/O+lVetkD7Wx93i8zq6dUSVpFMoLSwkfd43Ujgt9d0ykcUa05Y3NzsBL/mom55RR4qR2KEKTIF+iNuzCRFvxqD+Kn1di/qFY/dS43GU/83fy/zGDD8KsGPQDhXN1QCwPjcew7yI/3nPkwPg1st43Ml51wrvd/VtZtR+smJH34eHofT4KeH++R9bM9eE+6GK6mCUpqisGNVcqrB01fY0Y3OWUd0rKpORiwtQVnbP76z0dy+49swl7di8LXbjpwfWFI+uWcMem/WPmSYe+GHaA9sefwdVnog9oKTdgeH/2CDqxPlVq4QBENDOBqbZdBMtVcJoGfX3NWDO6L7bn2Yw+C/Uz0Zsi84Mypfm+fGWasIA6HeR3Xy8WVqjyTqr+CYKRhMlDACiPToi4xtx4Mp516pbtNgks3ACIyt2hB4mO/mD03tj694fWR5TgK9wAhP5WgzLl/4Z2bku7RrClDBTkD9eu2DGzvZkt3O6nwp7nj3TgtLOaj36+kVBmWqF38ZJgoyUv9fMeOR83x4NlyUIz+nv2wMjGHqclowWcJSoEpb7Qzt2Xwu13/uJscK1UeDUtC+ikL+lpcDba1Y8HPn5qPMt2e2naHL0BIxXwkadzmX56EkhJZtkZhParcdUBE9qsrd72VK0WqaawWnbDyC7ui3/HKXbudSSUdsaPb/1WCTjUb9fGtb77hTSu7q7o0MSAbPglTDa53h0Q0p0h57/ttb77tQpYXw528uDBTedF4+AFxOR8w7p49duVzdcuLjWro1XLIPRoD8xJex0dLDAr1afTBT5NmLlaNvDJpkxPjVLODE0l4NApM2PhKOgoMKFRvYsCzxnx6PpvHhdn9SOKTwtOKOiaZ5OIzv79PujQERINA4EnFNyE6kL1ZOjUadzdUoEAGStD2blH3x3IdyaE7Mwai5lk8xw8/IU8vJKGE3DtxvPn79/r34GEAAAvj7auml3yilRJezSRHF8p5DwfHkZwxYJgWIpiA3/Ln79biVkxY7T4xYifS0BsrGl9BfemU0yY262fnGvlZmeUlBzRipLld8OouWKGBaKgCdZsSN1QQRy3xLN4ClRJQwA4jsQ2P2+fYYJMqR/FqWTl5qT2iSzgMxnVL7RvWMv6c3to6ZONuTB89EqYbJiZ1DolH77ZgVKC8mJpN+O8SgrKsKln4MgK3b47xyLoMlJaJpA4N2VV61C36IB0gsHR+LKWAtmNCanTI40cipaf1WCYV+stjW5wm/3sQzVPJASb3ap7aum1oE4WEQsV/JeIzLSAOS03Pqmmuyk8/c2WyArdgZ6QSljjgXVuD0uapLJtx8tk64TqBLGy3Uk4lt26q61ADIio29POyYuv9aMPa/mUoUhLQNAUdfzbEw3ol/y1A1QyrNvgJWFGDK1CWJB3AN3jyHP/dQTciqT9chdFHzrye7nvKmetFfS/w2qPBH7D9O9TsSMdqr46/slWbHDNnAkrrxTxBZxlBzdOmLWiqWIqq4CTJjq1QWkpgyd737KM9qB4u89mdWdQQhrF9KFgyNRc9N+Q35a4sEtACAkeZhgE87nc3V3x7a0fbrdKFd3dxabZ/gpBd+FBmJb2j5kFN/EoMMT4Pn0RTguXYZLeHts/2lNhTvZb14IxsEQ/Z5G/X0NUNDpitN2ie7+GByn09mpCOVN0xjVR1bsiHwtBvs/WmjYNnxaU6AfMsY0hc9bomMw5e/o1hG/fbOiwnfrbAcPIHDJVeUDSF0QgayBS3Qya+tx9g0rPGfH48ovQcystl9kfwGpUluOdhef58m3a3TXwXCkZeLCc1Y0nRcv8KJ5Rp3OxeqWXk7L0qY3elbRjv9f+TbvxUtLrjVrYls6UX4uPmtFky/JSdm0i+0F8B4hj7kNtsV9Y1jOqutN8FV6NzIWlO/a8jLQ/6nLw5DVd5lhGwGA/4bJzN/IqA58m7hWrw7vP1yQHXGbPae7/Ubtzr/7qCPFmNH4BONdFB2OanHlpr3l8vsk1cBiTz1SpxHR8s6W3MR4784V9nOAKNku8Udwc5svapWbCfLpUleECRsg2rGP52dq3JghXfKU+bEFfq8mCPnuVY/7IR50g5flbp9wVN2eDDcvT2zd/wuiQx5G3OEduvenBeaoiPi+YfSd0vtpX0Ui8Jn9bBw2+o4oWBLPm0/zWEYv/OD/G7tXsDWQIdvxZVGgqdTiW5jSwth0EQBcq1dH5tshOD12IXqNGMdiHmr58bQmd59Tc0hn5Gwc0/6moDr0fsisWFTpl8/qaESpS8IRNFE1eXfWB2XFjj6PjGBovfR51ocWBH6Zg5Kz6ol1zvftUf8Hd12cQgAMJIPypifRlOhYr62/7/anDTeo7jWWGrVVRXMm/Z++NgQBT90bnCljXQj8RxwW+ATuHoO0bqt06XnrFlmxI2x6DBouNQ6Lw9pjrIXFXuTp1nY/1HneFXG7fvj3nIgN+QdPxDZWnohV0j9M2h08NtkvDtft4PF0aZKF7fhod8tskhlIOsYGRT6vafchVQkrj03iuHoNjpOpQnl3bWGGvHk5nS1kbZJZAN6g5ObbAgCBr9fuVlEepkDiqB6Tlo4FZ/bi0p1aeCdT3W3eHbpSyGuTzHCtXRtXR1pQeuuW4cDL239/20piSllsi85oPjAFjktk540Pbkzr3HZ+LHLeJadfNsnMlLDhpxQhLQXK4Mvn28NxOh1NE+oIKGutl8QKPFJXhME37mnIih1pqwjEcb01CSxkQExaOq6O1PvuhdtJzKj6KeoCm38OANVO5eHHW7XUNo8QbdOVzW10u4p8/yqtSqDJg2KThHfPO90DYKAkNHjt3pB1AMCUMFmxI/t9i17GqGCcHqf6bvA8eXkAIG7PJsiKnSlhpjZBQh5ZsTMljO+/NsksnGzS9C+mpwj86bNrI6IEHgAB2eHfL3024tRZltaob9NnrrVrI+2LKOGe9jsrLVQho5t8GY+Mb0hZs5qoqIyyYkfGHBUW+bYHOck9u5GA//Cnlt9374jkjiQkAO8MTX1ponuTGD5B4w8gOrin7ruldcgYukh3T3tN761P38XQLO/0JydcMxqfMPw2AMD71zus3MQOVYS2ZUoYwEx/siNuC+W/k3lI1+58H7NJZhbgXSuztr4u++yQ8w5jX/AmAATtlX9fFS0qASDne/XbcuTnC3JtPkuUJB4yW0v8qZcRXRlrYZD19L9rdbJIoqAbVKa6extCVuzo8D5ZcNKNEK0SBpC28PrqmG7MX3SG+DJtOJugS2+0IHZr1lS4nzmI+CM9e0REjuR/84i1lDd/faOLiNhJFZTbshjP0XtGPFLuFjpVwmTFjru2MGzLTITPWwScxyheZ8sV6ql96lIypo306sROe436GaAC59A02nGC/93+s1iwMAWuJhRFh6PK7uZ4KrsbDk9bgPr90gy/RXovq/9SFhaD8r451BgUp+zgCfQ6fkOt34Eq8H09Aef6e7N7AOD9+DEhdAVPXu/Ho+2XsSjYGggAOPjuQuE5NZ/WUtC4A5iRKZrUa8d27XjIk9Gcp+VF8yzP2YuAp0hf7zaBjG8Rb8QYtqPPMhcdH78n1T5JQ4DIih0FXe8I6Q7MEOtuJNuVnneEa/qtuvfJhON0OmzSvyigcyX9bVSpiFVSJVVSJVVSJVVSJVVSJVVSJf3DVKmIPUAkK3a4hLVDyCz1VITfUQmalIxbQyKFnZxzP6q26QenLxTyODu5GnQy33DnEwDkswed7uztWrkMfR4ZAZtkRurKUB0Pn6QahjyNeFEqDFLtxbW7qZSobfzCwAD4V6mFK8u88Z5fR5ZnqKc+aGnpjRvY/5F4miIrduS8Q2zLKVoWDearlVe7c86T5+x4eL8bj8Ap4inet60ktsP1UdZ+zLniz571HDnesC1Wt/hDuO/9bjyi23ZnaYLGHUBWNDF5Chyj7iC+UD8bADDQ/SbqrRF3pZ9JS0Wy2QRZIUhk2t152hYl5y9gYWCAmjFJ3PmWBp1EYDLZnaWoYPypxZ7FS4S+Rn9T9DNKFB2SnrgO8CC7ybxJIt2Jprxcq1cXgBuov6CWbJIZfpsmCfWSFTscJ1OFkyVt/fn/rnvVOlPqU7PI0Hwlcc4ilu7CFCseipkI7xnxapv+5s1+r2ulhmJotSxGqB9fVumNG8h8fBHOvyierNkkM0q7hBiegPuX+3Zod9epr6dNMjPHfQq7PKL2ZZz7sTU6fBSLNlsvwG/TJPhvID4xV0dZUNSXgKYAQNyv37GyHJcu63bwedK+l5uPRxq+q6Ge6i52aRV159kmmRnqWP4WNYDvr9+uFOqeuigCweV+e9oxSitTn34j0Km6q9A+Rumc1Ymvr3YsKH44jMU+1PWtwaPESrsSS4OUTuLJum/c0yz/IM8IdlrpEtZO6J82yYyYtHQ0Wpxg2Kb0XoOVCajTNwOyYmdQ3aV37gjy0XAE1zqT95kSSoKqny+fQ7TjH+W97fSfuvaZ3KIznklLRZfPXjaUibafTTLj1YxjKL1xE5fHq+O07xaC7DovgCCW0hM2+vxm6R12TU8/cqZbDd8LJeqDRmNA8TK/4KP6FJV2UQOsUx5V5QMwz44V5NcSO513NSGrH/lOCgdFIrZFZ908YZOISeT14VHYs5icSPZOecRwHOJ/S3PimYVE3JFfsXvZUvwStA1rfXbDJpmRO81qKBvfLtt/WiO0TfXLxUJ9KWqfaZeEqQ0y4OhG5tJ5EhmnGy8iY8jEVBWpU3sayf/2/CAe9fulIW1epE62rOKb7HeZpYOQL6q6SUhr1L/zt7SETTIj4k0x6He9NWS+4IOcG+XvNWIcxnt3Zn7RNIxB0mzx9EpW7Bh0Ml84CTWqLw05YpPMLA6lszHEqG4BTx1G2DvqaVztWQS5uKSHCgL2b0FNdCn95/7+26lSEXtAaHPqMXSbMAFlB44zuHhGnMmY+0bVj8ommeEVIwbNtUlmbD5LTMU6zoxBH281Pg6Fct/cRlV+ZMXOoMVpfu3C5daQSCw4sxc2ycxsyrNsy3UDVfz3IcKERBfxvGw2iSDg2SQzCgdHoqosovtpB1OjBVLddYlCurTVHYW0smJHTFq6bgFrk8xodNyBjWcTGUhCatev4YyMBnZANXvTmlQBQEIHArjxmm8kdnXxVk0afhfNMGZdasVk4hUGWbHrAiGzMiLaO11QAmDxe74KVM3y6H8aP4eX24hskhnX4gLY87RwsijIiVShvdt9EctMc4xI22583QofJf2x9Hcv3Nruh6z1wbrFlW/c0yi9c0e4n15uo9/16G1cfEYEbXEpcREWfjbJjNRlqiM/DSXAm+zwcvF153/z1zTWD68k2d9YgBo/EbMyGi/p9zZbdLwKRltQiwMTM1KsbJIZR6YSXws+Nprrn8SkxqVKVcN3JivErJOX1yVUBaegaejz5gNTUO1qGY52LEPgs/uZaWG91QkobOqmk/HKL0HsXo8xTwv8nC1Aan2/32n/onm1QdxNLmQqokHajZTnoMlJOBrxLbum5fdpoQJ50Hzbt64TlDabZNaHoXDVB13XvhPtol9W7Kiy4wCijhRDSzbJjIzHa2Jwem+Vb6mDPaPU7qCrAKohK8RstszaAWUHjgs8r4y1YGFgAJTNBNiGKk2pC0idO0+ZZLgY5K/p7+RZ+sWnrNjRbGAKProcyO5RSH2bRIJ9a98DzfdVYBCaf6rOVdTclKbpPpb0lznDnsSpuW1wYOZCKK+SBTEfKNommeFbpRb6n1BN14d4qqAG1wKI0u49Ix6XJokhXPi6lFYjJramAF9dPfnfrn8eRuY3ZlwZK5p71lIccGvezDAPf536lbpo/vMrFfKdzycrdqRMWoA7DVyZnK49c3W8taR9l/x3nfFpFLxmkfZO/zxKl5cqt3weWbHr5p7qvyRhaMp5OLor+OhyIEy7Reh1mm9JkJ8gLxsTxpJ3oJ0DAp8rn1OXheGujYy/kzkfP5eEI0y2Krubq3Ojn4/ue6dlNh5wGjeeiELSBwtZbDb+uSOijVBn7fdbLZP4YtKwA5Siuw7GRcctmA+raWmYDSO65Lhl+N608wSVraJ1zIH3FjITcJd9JK3bzoNsk7jSNPH/HlWCdfyH6X7g632SajAHdz6yvXbwcmveDCc/8EDQ2IOGfCpagPMgB9odzYp4zT+zT7C9L7N2gEv8EZYGcL5TxA9WL5/riE+bHzIcjLX5tU7M9Pn5F6w48qrqOJz3ulXnZL48Zy/6f/Iqms4T48FU29MMWwK364A/jOoMAJcnWHSOuc7S8/mcLfzX5e7DCK9Ouja/OtKiA+bInmlh8W2ctdf9vDuA+HgM9bQg94d28HrsuE5mWbGjy7OTmA8fQPwYpDnxOl702m/jJAROURfaFKSDPvf9ZQKCJibjg6wkvOkbgZzv28P7cdHXiW+fe9VLVuwIWh2D1FGknSikMv+83Rex8PhI7QumenVZzB9K55+3otkXItCHti2MZDJqB6N7RTt8UHNoARxXrwnPTHXqwHH9OnTkaoJ89qDT96gti8pz9g0rTkxZcF/57sWzz4CndMoBLzvti8L9iPZAkvPFhH9ydWSE33H6/H7k4tu9r18UtmUmYtJZiwAEwqcH9P3H2XdJ0/JEoc7vNZZR2O3U5WEIGn+gwu+QJ5cqVVlgWQACAI4p0I9ZBfBkatsSjhOnUTgoEn9+tdjp92HU12XFjg4fxwrjJf9M+01r2+zGE1ECeMP91FM79mWsCxHiFN5rvBqfmoWhta4ZpnU2VxjBphvVR5lqxbEX9eEYeOKfZX5kgd9rZAwuLL2Lx8x9mV+xszGeL6+kZ6hOQTKSr7SzmZ3Y80TDvNwaEgn3jfvvOf4UbA1EUsj3iJo6GYlzFgmy0TnAqA21fEMPlzKfaGffkpbSPyfBznn+FIq/orIuTbTg4LsLYXllMhI+WXTf46BNMjttN2fp6W9K/LdEwz/wae41x/K8+fFY28bnX7Ci2efinOMfNwzZ42c9sOAUdM0aPvCfA+tI/rESrKOS/gF6xk52glOXh2Foihi7gi4uZMWOBv1TDRcUsmJHybnzyLItZ/ky1qkmGFd+CYJNMuPyBGPIe6qYyIqdAUZod5h4omVPadEJmZzZmEv8Ed2O3rmXjaFm+R2/46HG589GE6Pj8hVxUG9JzOv4AQ0AU8IorDUAjPfuDPvrC3Q8i7qeh00yo8mjpyrcsaR5Gi5NgEkzKKTNjxTS2CQC+2s0AGvbtpHJXbhPQxPwShg1rzBSwnjeru1aOZ0gbg+MEMqu60rMSXkljOcFAF3fiWf3bJJZUML6DHhKqPOOwioInLIfbl6erAyqhFGiqF6h1apCVuzwfvwY0uapbafdZeR3O22SWQD2oM99X1eV4vqmmuw5dZTnlTAAuoUpAKaEXXzWyvjSMqnJ2PXhUTqZ+Pai35DR+6n2cDYcV6+h+OEwxhMAHNcJAigNrcB2VEsdFX6DylQip6u7O7snK3Z4zi6Hlo9S+33qSjH+ndGurfsfIqy0LaU/U8KcLS6pEpY7jfvGK1DCAGCBB1nApy5Wd9T5dnNWX6OFok0iAepXXW8iICbSHXmaRjuO8Mo1n4Z/r7wcvBLG3+d/r7reBHc/J5DlQePFEy+jutztEw7TLgLlvyyDAPv0On4DLiFtGQCOKcgfjrRMyIod518Qx1FqPlpz835E93ycgRpR/rSvxp3coyvfJpl1C0A33xaYkalX/APXxgj5AKDjK4fxVqZar8cyeqGob7jQJkV9w1E4SP9dUx7p3VciJHkYott0dapY8WUuD/JFn0dHGrap9h1THi1+uqbrWzbJDFPDBgCAPo+MgJunB6Q5+nAMAJhsWt5pI1U3gEGeEYg7+rvQl0KSh1WoGBkpYdo+Jyt2ZPevIVxTomFe9s43PpEDgHMlN9l1Usj3sEnEmkRbn9D1LwIA2sQ/BTsHHHVzqApMRPkcDHEVAktTMppvZMWOnHetDFWVT+NIy2TX4Xbx1NjFjZzMU/TFOt8kov3nsULdrowTw+fQ/2wOLFfCqEm9ls5ubKvLT6H6AYI0SvsZDf9AZTSaI7W86HNhPC6nbuMnsN/aNQsA+IyvPBH7v0aVitgDQr1qkt3QoPEHsKF1M+GZs4UdJWeDg/8I1YaZwoXTUxw6YGgnXptkNoxfVJFyktZtlZBOK+fRl0XFR8vrmbRUp7uw2oHt7BviIhkA4nb94FS29LUh8B12tML6GE3q/KJYm4/KSRfQaV9EIe91KwKn7Ed+jIXxAIgCQNEOKS+K3KTdTZQVO66NIAhX/ERP05yasEAnA71O+yqSpS89fkqYnHi62YzY5fezPMLSx+UdEtLlvk1M/zI/tmDUmYeQbDYh5/v2hm22fctaod0+DSAIfSenEdMTU/36ura7MUyNCUTrEfic6m9H0d6cvSPqT0bvlVk74GKs3oQKAKr/nCS0ITVv4fm5tmsl9MsmX8bj5fQTcPPzYXnLDhxHxhwLC2xtpBTwZa++3kj3DihC2VdL5unaru38WJSk1Rb4GCoex8nJ2eUJFqYQU8RP3YIx8Sjj0ebdizqeWtn5WIMAgJ6qDx/fhulzo3T9ymtWPPx2ED9It2ZNhbpTHxSeTC0D4J5ZBakrwlhfeDYvEkF/jBLkpERR2QCg+GFVyaLpvm1FFodU4eRNnnkyqjdAwgMYpePbq2CMuIm18WyiMO5+20pC1f4XhTS0brzvG1yIKe2uFUtxeQVBjaUQ+mvTI3CtldoPbrZpyPgfeXWBU4XYkZImLG5tkhlX2rjo0jkjm2TG1n0/6QLWy4odfq8mMFNISmnhRXjfT22fG10u4dKEQphaB7Lyqm1Ldmq692oGWWweDl9vuCnSt2UX4Ztk33qyuEhNXRwutMndX0l7UlPessMnWP34d+q4fAVpq0Lx0MoDDKqdL4fWgVdieZ+pXk+OY7/LLB10/crIqsLZe9C+U77fpY1aKMjkmaiP12l0XdolBGO8OwubSRd/amVYpv8rZEw7aV3LArsDwL7P1ZMzvpySPBEdGAAznQWAtHlqjMaUic77LH2/yWaT4F/O4gpy6Y+9QDZCqGlrgxWaU/jytOefF83WqUm9rNjhEt4eNfaQsclzyAkhb2lnM154aQrj0+LnMvY78Y6D8aPzmVHfNFqz8HWl/KptUxFfXYNb6Z7/W8il7J/7+2+nSkXsAaFBQe2R9YFmlyfCuU+L0e6dNq02nU0yswUNvc87zD48ZDQLIqrNbzTAUP8Rm2SG/3p9IExegdQOxmlfqDbuXwUG6epDFYUOc0Q4d/50Rat88gMrLS+jB9nNcqlSVeBDJ5e282N18smKHQ6Hq6GCxqeh9wKfT8Tx58iE03ghmSCoP15R33AEjhEhmil4hVE96p28Idy7/qR4AqOVg15nDloMz8Ra95S58aIElHUyo+SMCmUe7dFR4H8yhkx6aU8tZGAi3o8fw9wrfkK9fbc9bThx9Ivoh6BJyUibFyn4u9G0tdeTBWzqogic/7G1rm+U3lEd9bWKQ95r6qlA9xOPIvt9C1zij+DwtAUCDy25Vq8Om2RGld8OCmlkxY5tO9YjaJUIpvFpQFuUZGYDAPsmKBCGURk0wLlNMuNun3AG1MGn3f58NwAEOECrTBf6FMP3DRVoIzrkYcP+9lIDshhsuJSciqYuI4pM4BoxIDZ/cgcAWxN+BgA8ld1N1zYVjR+yYmc71ACwo7AKMoYtYu+m5Ddv9oyCydxtKQnvjvqg8OOB43Q6PD6KR9C4A7BJZvQ4dgtfeuyH77Cj8Pt1HKJDHsbFn1ph0EmiHPKxk6rsOICzb+o3ZADozLKd1U37LdHgu84W5LJiR9IHC4XxbIinXiGlABl8fjc/HzQecFpNW6Yu8lyGq8qvTTLjSMS3LIB66OFS1PhR9KXi6zAk5SJkxY4rY/VhSwD1tNLUOtBw0aglo3HQJplx8RkrgmKTDPNSmVxC28Jj8Ak88/PPWJ6zV6i/UfqP/dsj4o0Ywz5+ZZwFp74giuvq642EfC+mpwjXQZPEmFlVe58BAJQV30WZtQOrg9HJSOCYg9gTTBSA4E9jUfq7lyAvf6olK6rPFED6NE3nkiCa4jtrY/6+0Vyunav5P0rLvffq6qElWSF+cDz/1GVhTDmUFTt8t0yErNjh5uPN0vFhKtz/aGz4bvInW3T9DACkQSfZvcDn9gsKoBEftxZeQp15k2KbZGbfN58nbXVHSB+rvl5l1g66NM2+iBd8WXme239agx8DZcP503WvXQDgoaAe51+0YrpfKPp4k3HWaD7j+aWuCIP/+snCWAcAllfI+oiHv8+PsaD06Ckdj0r6v0eVitgDQpaEO/D9UUUYsklmwcSnX0cbZuS3ESYGPi29vjFMVXC0SFSyYtcFg5yRr+5kuSQcQYPTd9D/RIGQR1bsQBQBVcDv6gKTj0mWMUy0OwcA84exusHKJplhah2IwOfFkwUAMDVSd3+V/mSgPjJ1geHAT6Pa0/s8uhwAdHp+EptMbJIZ288kQUuyQswGtBOkTTLjdJfVTttaW08ACJ0RI76HLpcAkF1hZxMyAGaCSGn7VhJj6/NsonDW+Ya0k0u48YmUrJA4azbJjLNRN+GM+LzUQRggix6jxRcAtFkQK7TBSw0yhXpn9V1muKCjO8yZjy1mceJkxQ5TgC/OvGdB6gpyopE1YAmORHxr2KbZMy06JV5W7PD4SH1fVXufQd3yWKE0b/AhF0Gmkh6hSF0SzpS7D7KS2HummwF9+o2A75t6JctlpweK+objmnoYY7jIcv+jsRADqur2ZMNNgd/XqGbD2v5DF5SM710RDMJoIyRg9xgEPU0UGb/XRPmdndzlW68KfU7Lc1WOOGYAQFlJCWuzTwPaEiV9PkFIc+uVA0d38cTr129X4uzGtrpFGH/tWrMmsj5UN302f9STpQscfQhxh3fgekY9fBTfl4Ev8G3g+UG8ULflOXsROiOG8ePrdXWk3pSVJyOUR22avn2HM/llxc5QUGk6appptPikCj1PVMa60elOx5cPmpKT/Lt9wjExNVOnQG5s3QQ2yYzk99XTc77PZXxK+ndxo1rCwpimpdemIH+hLbWLyCZfqabJABCwTm1nShTEaV5AK4wvP4lx8/SAWwsvp4vMpNkLmVk53y7JsxYyBX1UnUvC888CWuvK1radmxeZo6ivMqCejNx6TEX2y9/Skp1SN/80Hr+2/lngw59qLb8mWqloZab5ZMWOuVf8kB9j0Y1dvJx8XxLmQM6CgOevfScVkU0yY2626L9MwWHYdTlYytb4LbBJJLZczc0ujP+th/IFhEYqa/20u+yaJzrXOvvOtO9ra8LP4vjo4iKk8/xA3HC1SWYEjjqEjE+i0PnoYMiKHTt++Bo2yYy8TW2FsqvsUM2C+fKNxiP6TFbszJyeT9PsMzLOlJWUCGUYvYensrshaNwBtlHFp6Hz+I3lVVl+umnL9wGjfv3AUlnZP/f3X06VYB3/YTIC6+AHg7zXrDj+vOifsOiqBza3aYxf8g6iv4doatVnwFPYvmUtbBJBJvolaJvhoKFd5LI0UcF465vVzOyEn7CLogm89YC0Pijqel7HCwBq7GmK210vCGX9kncQVVxMSC2+haAqIgw6AMTlHUKbVc/A5y3n4Bf3moTo8xp7mhruelWURzuRsgndz4ctorQL64BvJyN9uN6BOPiQC452LMOL6SnoU7OIPTc1bQLHBdVsiR9w23wVi7dGfYcRtS/rZLiXrPQ3X4as2PHwkNHYsfFrli66bXc4Cgpw5ZcgNOifCuVVK6SP9Sao2rrystJ7WeuDkfrQakMZnQEmULr9aARq/JQE1+rVocR0RLPP4nVABdpyWy+OhfeMeFTb00zX74zaQttv82MsaLwwQfcOjSZqI742yYzsWRacHrdQx59vFy25dmiNjDeqwHeYaiI4NqcLlKgbTtsHIDDcXu/HI28TOWUwqq9Wbq383cdNQNXtRLlz/6Mxbj2Uj0uTLKh2rQy114vhBSoiyvfSJAsOTl+IjgeeYMiG/HMAyPgkipk5Ofum7vc7NronK3Z0fC8GyW9/hWgPvbmjM7r4jJUpEwCBHM8bVIzAUYeQO82Kk7EVA5u4tmuFbTvWV9h37EVFGLL5eQS8pG/bsxvb6kyhnJH2HTvLo33vPY7dws727ri53Q+1+mTq8sqKnaBLBgcypenWdj+49yEKXtCe0Ujt+jUsR4Yw+Htn8t3vu3SWv+XyGFS76sIQFyt65/SbL+0awsIZpH0RhcDnE5HzjhXe7+nHsPMvWtHsM/19U+PGcOTnY0teMguhUVEd6bh0r3oqm9tAGnRSd58HCkldEAGfwAsoWdAMNTeL4BouIW3hcK8C173Gyha9RwFg6L3obkMQt3vjX3ofBWMsqL9KnWf7nrjKQqEsuuqBU7eb4/PmB9BmQSz7LihfCugEAPjdExmHvBD0USocly47LXvBmb3wr1KLPTszw4oW043nHb6+H1xqyU4rnaW5377H2m9hBIJikgzzawGTZMUO64uTBUAaeh+4vzGYEp+WB17j59H0z6KQ8QTZzO7ZvC1246cHFpyCrlkjBsz8x8A6kra8/cC2x99BlSdiDxDJih1b8pKFRZ7HR2qMIvqhU/j5Ki7ErHBG5kH4/TAJNsmMy+1rsw8/83df3S4VJXo/q/gmujwzCaWdSR4kHhVs/2laAKgWRxZ2r3htF3Zw+MGHKmGyYoebhwRZsTM5p7ToJOwE0nSdXo3F6bELYQryF2RMXR7G0jAqByCQFeK8rl3wZRY0cFrndgeJuSGFWdbx5ij9syhhJ1u7k+b/svEAfbQj2degShi9TxUkLT+bZIbX+/EYUVtF3Gr/mWqOyecxUjyCVqsmaXGHd7Dn1FyGXsed2AVT25ZI7rgBsmJnJh4UAITSutx9JL8G6p2vf+pDqw3rbpPMyI64Df/k6rpn9D+Fey+9cwdHphJzQrrY0daXlpkyiaQr6noeg07mQ1aIE7hNMqNvoIo0aaSEXZpkYTuP2om7/4kCFp/M2U4p/e0zLQFhb4uxbPgyqQkpzScrdmzb9i18hx3FmRlWllaJusHq2OOYGhLApUpVBrnv9T5ZqGiVML48+sc/499D1e3JzOxoU8CvAIiDf+31idh8lrwD/t0X7fDRtT9f10aLiV8eDy8PAH1O9WNpqRJGfaD4dtJtGpSfhGj7t9FChpLllclovCgB0R4dnX639D49FTn/ohWFzcqEZzU370dmrxWQFbtOCeP5Unju0uN6fx8ejAYg4Sp4JYx/N1oljH93WuLbjV6fe0l9TxvPisAH9P/O9u4YknIRnwZ9L+Sl8dlskpmY6x08gbGnifmee7nCZpPM8B+fRt5vTbVP8uZhRvKMz+ks1IP67q3PVRfad/uIgCw2yQyftxPQ/NN4XB6vmvPSUCf8PAeAbby47jnMzBQDn0/Ei+kpTAkLTK6Gpgl1WP4WAzMN2zfuCPkOBniE694B/03R/rr9TJLu27o5VG+OeizyG11ZAJgSJit2BMUmYVfbn5jPnE0yM9P+ssMn8OuGVew+QDZP2Jxy9w4uxlqR1XcZ422TzHCkZujWBnx96P8uR4k1wJ1HIpD0wULheVFpFdbnNrdpjJTQEhSXORhMPk8nrapPK3qehf/UBIYUSeny0+Jpe2yLzhiYZmP3eD/n7O+CoSVTvbqwSeYKlTBaf0BvUcKXraWgmCTDtgJgiFob/9kiHbiZ9vuUFTtaLY2FqXUgnFHqQnW9kfJ+e5bPd9hRxivgxURETSXmi/8W+PpKH7G/jypPxP7DxJ+IZX3VGZmDFwsf+q3HIuH+A7Fd5mFUKf3VHUqjAZte8yds9yJ+YZW6OBxZjyx1uvtdZXdzFHc7pyuzot0/Snmb2uJ4FDHXi3p1si5YsKu7O0pv3RLkAQDzYcAeAh3Jih3XSm8zuF5+kn0oZiJq/JQEN08PFrjxfyKz0f17paFwyIC4g2+0yKbkEtoWZQdPON19c0bOJu3AtTFIe2ohll9rhvF1yQJoa2F1FnTVWT1kxY7iMgeC4iYjaEJyhWmNnv2VPmzUDto8c7ITMdUnyvA531Z9W3bBttN/IviTWBx9RfUxo8SHMjB6D9o+kT43CgEvJWJN7j6M9OqEMxvao8VQEZY/q/gmnk57Em69cli++vsaoKDTlQrryMswJOUiNrZuAoDs8l/t6X9fp1xGMOYCubggdXEYQ7XUEt+ON4dGQelRKsSD2pKXjGouVSr8Pop2+GB3ux/RL6IftiZtrfA9Orvv7FpW7Hj4sdG68BmUbJJZOJnmoaO1cNeyYseJu7fx4vDJMN0uxra4bxgPPk1018EMWt6Z/Glfd0Rm7xVC/tTlYcjqu0zoP3yYB5dq1VhgX8q799AxTEYKXW9EzuQos3SAS8IR5E6zGi607/YJx8WQKkyGGZkHdeAdRmXIih2rrzfCulaewqkDT9qTGGd0v+Mrzy8mLR0LAwMqHKO1RE8mKKz7/Y7plPJes+LJEb8LCkNFsp97yYrmc/UngEZWLUbjvTPeADC/oAV+aas3adTKcD88KyJn8pV2DYHrHrIucTW3Qan9ZIUyVzSP8vIZ8aDXtx+NQOu3jmGxZ4JubKeKff/6dnwW0NpwftHOmdmzLPCZRqwmujwzifmLpa4IQ9C4A0JeACjuFcr8jZ3JalQ3bf2MqKSs+F9xIhb5yD93Irb/5//uEzG3eyeppEqqpEqqpEqqpEqqpEqqpEoCUFb+90+U819OlaaJDwhlfBqGwGf363ZL6qRcZbsp2tMwQN1dcalSFdEPDYJ/cnXIih15m9qyGEqyYmeQ4UuuSewevxMLQLczR+nSz0ECdC9fLqACDfDl8URPw7SmIEY7QzbJzFDqnklLhcfgE8wcgJ6GUT6mxo3ZaZjWZGDzqQ7I+ISciqR93REzs5Kxptzsbqgn4R99OhpXR1pYXmo2V9DJSwdiwctsZPbApzFqo75+UYbpaBp6GiYrduE0jOfVzzpAuOeafc6w7tq8rL04MBQeRYzm93uV7C6Or3ue3eNPwyhV26M6rtPy+3uEIqvfUl3a3LeshrJo88sKQfqj9eBjY/H5nPUZnu9UH9V8iO1Il8eyi+75OGySGTsKq6D0xg3YJDOaz43XtaFNMgvO+vwu7ticLuyea7tWmJ5PYtJQ07QmJnfIil04DaM0uUVnuPXKgTKVmCvW3dsQ6313qu1VHjbBqJ9R+dxd1ZOSuCO/omjEFfY90zobtbnj6jVmAkaBfGg8JQBAWRk7DeN55E7TozzW2pAonIYBQPDe8RXKLSt2VHs4GwABdDE6pdRe8/KVdgkR+Ll5SDA1aiieEpfHMdT2F/qf99M88qp6Cprdv4Yu3+iZL2HHxq9Raj/ptN/RGF9a4mM4Bo4+pMuf1XcZM0Gmz3hEWO1pmE0ST+yMTsOyvwvGjEwRxIgnaq7sNUuNGcnDhlfdnowTU1TTsel+oU7Huh2FxJ85dVkY+rSIYCihWY8uQdpqvf8eRZykdG2EGqOKrydPPBIpT7JiZ6dhsmLHNxcI5PqcK8S0nZpr3x4YYfhNpH0VyWLOacGrKFFAki5H7+jkOrOhPTw+ir/naRhP3z33CQAgP8bCEIZTF0Sgv0eorq9SEBujUxxelm5PT4BNMuOXtvV1z3jiv4GQWbHC/exZoumdER9ZsbNQHmwcHEjiueVPtsB1z2EyXke0d3oapq1j9xOP4mKsODfw/LWy3xpC3nGnF0jb1fgpSYivqs2fFl6E2PgRAg9nbSMrdvhMU83XqQ+frNiR1WcZMy3k+fCnYdq69Tp+Q9evtW2hbee0r52bW1fSfz9VKmIPCB19ZKXu3pa8ZLjcLIRNMuPGE+LEReGp6b2y4ruI+2MzFngQaHCPwSdQ/WeyULJJZhQ/dQU2ycxMmviBQYsc2CFpuCBHo0dSGXRvRYM9X15R33BhIuEHI37ANLUJ0vGkgRwHuBcypQwgEyvN/0FWEl5N/J1dUx5UqfQdfoT5rDwefAhv+4bjiVNPCuU4uiuotyZBN2jWTbkqxCnRPm+zUA0uOTTlPPp1etTQbIOn0q0krtTZN6y650xRCvRDyz9HCc/490QRrtjC+vIVXVotb+b7BzCnakCMr6Il7XvTPivqeh7PpesDX2sX1n36jYDX+2Iwy4g3VT8rrbJEYbsBwNFB9SGiAZCpov/wY6MZv4oUNL4cGsvOkUIWXp8GEOUpdVGELr3Roofvv/vPtmD36y++gBmNT+hkcaaQuPn5AACLAXats+pjISt2eD12XKc8aPmsbukllNX0dTFelLYtqCxuvi3wpQdZZPhWIfGI+D6UukT156GBcwEIflTX4lSUO1OQP4NQBwCfJ44aLhozP7YI7aetV0ULpbhjO1XlvHwjKiYtHQCJZxR39Hch/ajTubBJZmy5JcYF4+nm45HCdcFoC/xeT2DvjfrWNVyeIMjW55ERTO7SrqqixSvp9Hl695W4MMWKvE1tdeno72Mv6s1hZcWO0i4hhotRAELYj+zvglFjT1N27fPEUURVNyH80FDDRbCWbJJZCILNl6X9Pydb3QSTFTv7frKil6Gs+C6LsfZYRi8EjlLDFWj5Ul/KxDl6lF1hM8TVBL9XExiKp5aXqV5d1uYb/Egf+K0dib/m+3oCLkyxosaPSbp3kzY/EoHP7Bfq7PvzBGip2f5SAMCfwdVZXjpWGG2wVDT+AMDU7CEAgMaLkxjCcFBsEkxNm+gUrsCFZ3XtIivEVLbLs5NYW1CfbQq7b5NIHC1KXY+KoEkZcyxosiBe8Gf1mZbAFF5allHfKcnMZr6FAICkY3gr045D7xCfs21p+xjKs5HioW2fqr3PoMkC0TzWqJ/Se+4byTurtSGRhbSgfI3KkhU7MnutEO5fHx6Fjy4TX66gr2OEPn51lDGyqk0yM1PbjE/1/oFG491v7es4Hf+1ayBKgaMP6er+oFOlj9jfR5WK2ANCg4JUeHL6UQ/wCGfxf2pcEuGsKTx1xjdm9HlkhG5QorzS55JBt0H/VMHpG9BPgvT/kYhvhXS8XNr8zgZPHrbdJplxtkSFVqcQ+zbJjNKMMzhbcpOlpXFK6PNGS1RFiY+p86ZvBGb7q8AdVH66o8vLQn3FsjOa6uqR95o+EPC27euFa+3geTJmASJfi4Gs2LHqrUd19bdJZraAYOX1JJOr52xVMaELSptkxoIze1F2Ph9N1tcQ+GgnB2e7o0YyAIDrXn16Pl90yMNOeVhfmqybQGlA5Cn7nnQ6adM4Lqen1NCVV39VgqCYa/usTSJBS3f88DWrB4Ujrvn7caQuDUfOC6UMBMCZsmKkjAAEypwneqrjbNI0UhYYchiAy50KdO8FADup0fK97dfQ8L3RoLDaMUBb9oazeuCRuF+/c9oOPI+SrDOGylpxL7Irfyx6vnqvTlWdIgoAdaPT2T1HagaDUKdkk8xofdCNtV/fE1fh92oCTtzVI2kaKWSObh0NxyVejoHuNw2fW16ejNkrngBAYhNSGnXmIYFHre/3s7yyYkfSbBXAIP2zKJRk5xi2p+Pj6yzfr9+SjTMayJamn5mVjA4fkbAPTefH43jUOt2Gg9GmTUnPUJX3dyth/jCW5eFlCHyebFZcftqC011W6xBqbZIZyR034PajEcI97bdvpDxWRNTnkr7Xsk5m4Tk9oaJhO1zC2xt+g3W+IfL3GfCUrlyXnR6QFTuJe3aWnDg0d6tl+E04rl4z7MuUms43jjcZOEVFLHRtR077gybpQ4y4/7Bfdy9rwBL229mcSMEdzIfVdNe3+as+0qUOoc35E1pKTb67avi+XvKxoMUrp3X1/bX1zzAF+OLWY5Fo9oVa792TRMsAGgeRQqnTZzT0hqzY0Ti+nlBHfnxe2bIFkyVjjgUPlbsH0c0lSjbJbHgqqiVetompmYbv0ej7n1wvjz1ztibRzk02yYymk7Owsz2xVqAxGwHAFOCLeqsTnK5nstaTdUZASK7hmAWo4S3S50YBZWUwNW1iWAftN8eXN+rMQ7g0yfKvAeuopL+PKhWxB4Q2px4z3C2hgwONQWSTzDDVV00R0rutQtnBE+gX0U/gR/PzSF7UWZhS3xNXnS7ojRQAI9peWM2wXO1vT7dajC8PLJA/uiPGe3dmz6InizugWjM4Smnzya52j2O3DMuUFTtq7GkqPAuaTFCT/DdMZmk8PlLbxGjhSanTC5NxYQo5zeoxajz2f0SgzP/8cjG27vtJN2EMj3kRAHDuZavhBAMAL8U9xX7HtuiMbaf/ZE7CfH14c6Pott11Soz2XRWMtqDkN2/h3b55QUWoinwtBrnTrLj5eCRDWtx4NlHXF/j35OZDAvdSk4zAMYeZTNpJSXo3HV2O3kFWH4Ly1c86QKhTcZkDXSdNZPlj0kgsJbrbu9x7r+ECsbSwEEETknGq8xpU3Z6MrG87sDTOlBheLlmxo94a8QRgaMp5lobmu77NX9cXjPrGlXHiTjL/33HpMhzd9IuRKr8dhE0yCyZhNomgXIYeLjUcA3iq61oxpDPPU3lFHxS1cFCkrq2oTEM81VN3t98PGi5qjMYBU506SFutmtZ83vwA+72tbT0AwEs+enQzWbGzeGOM1+5DujSUaFBuAGi4r74uTZ1vE3H8eTGwt6zYccGiR0Tj0/C/A15MNKyjrNjh2jOX/De3QZ9+5HSMwpbTPvK2bzhbDFM+G2/WEeTRfrM3hkUJMeZSi2+hWTyROWRWrCAjzddwmX7hSM23bINHMTNrmocqPpRX1BHnceoc3ToifU2IUB5fTv5kC5Quzk8cZcWO6p/oFQyeyg4c17VFWQ+ywHa5cxe+cU/r5Bua2fOeiuPFn/Sm1LJiF+IZ+v5CTsB4NEzKl1cg/H4dp5MBILG+tPMzpYZLyfhyfHALVj8+HIDReEnv02sliphM33kkQkjjWrs28q1XdfXbWlgdjvQsBupF+WuRc50pLfz1Wp/dAg/v/QSNE1AVElmxI33EQnSeQpCaSzKzde8ls9cKrMndp5NVN68eHUzGnlrXDcdZI4XUXm62KysEYZg+S/siCnd/bWH4vZgPAz8GyowH/9yRnqV7J/zJs+8wEs+veJbzWHJnHybjEV1vOS5chE0yM4WckvnDWFyMtWJpzl7dGH/Bch2NFidgUJCIWFxJ//1UqYg9gKQdrE7cvY1+4dGQFTvS5kUi7sQuYSLIe82qQ/k7/2Nrp0oWAPgnV8e2tvWYvwtd7FOe97M7BQBfPDZEkJufULT10e4GAYD7kPPCYi/ZbBLKL+p6XrfIlRU729nc2d4do07nGi6+b3e9gEsTLQK07JsXghHwgjHCXOvFos8GX16tDYkIfpKchFTbe8IwDU/u9jz0On6DxcrRttG5kpu6oNZas8SZWcT0xK/KHWY25igoEPLU39dAuL75eCSSZi+EW68c+P4ygU22HzQlULm9nxiLemsS4DUrHvu+UBE6h3gS/6wXzhEIarrLSQNnl2TnMB8dAKj7ZwPd5EWvL09shmmNTrH7Jdk5Qr36e4QyM1YAWNqjG2ySGTU37Ue/0D7CjqrRpErJd/gR4ZqmLXAUCosM2kZfXfUS0md/F8zQIXneCR026vow5Vdm7cDuNVihnu7Jih0lPUSEOdPuQ043MRZ76k1iD4a4IvMbtdxf8g7q0tzru+yd8ghLK32iR2mrtY20Wdh0EYpfVuxARHudrO2+UH1KXMLb46FjgwR5AAL9HDhK9YPq8FEszwJllg7sJJXmo3kptDuvmDobs7ZlqtDtlzsV6OqfNi9Sl4eH1y/p4dzniZfLaGPHf+dYdq/UfhJlh4k5KrU4iD4djd5Dxwj8aN4lQX5k7P4yUjdu2CQzaq8n5uTzz+yDrNgxpUUnbN9CoMKbLFDNxk2NGwt5teS+sfwUJ/Go7lnZAfUU19SoIRI7qDErh59ShHb57ZsVCBh5mJXFnpWHDmm8KAEeH5K+1c+i9jd+PHjB81eh/Hcy9Qq2ti1SFxHFoyTrDAtA3PfhYez5tc6XhTJoYHhedt6vk96PenUytu77CQAQ3fsJwQ+STxt1pJiZVQKA2zmyyUjN3Sk5Cgoq7EcAWHk8nX9RDWMBAG9kHNW1BaXG8fXYGEktWUpvqPEHaVgCgATR1spT0bV2njRKS+XMibzF3Bl8hx3FtbgA9mzv/MW6OvLvtInJ3fD5utx9rIx9wZsq5MH/zphDNnOGbH4eqcuIubo0R7UwCXw+EVV7n0HfE1eB3z2F+tlDKt5Q1s4zgc+Tb5KGi1BescJt50EU9QsXNhCoq8GxFxcYKo72ELG9m86LR7N9BZhQvvlsRP+aE7HKgM5/G1XC1/+HiYev//0cmdy7TpyI6r+oJlPRvZ9gztnnXrayxf3lCRa2A8eTrNjh9/1kBD6fCJfw9tj+0xoAZLDJn2xhdt10MHkquxvW+uzW7dg+/PgYuOyz63jzg5byihXHXiI+JFq44xfTU/BZQGsGDS0rdgTuHgO/J8VJW8uTv3YNboXSo/o4PjQdAAY3e+OJKNSZlIuyHnko6RmKS+2rMXhqnu70j2Dt6xLSli2qeHIJa6fbtbVJZiivWnHsBbLr7rtlomDa9vCQ0WwX0kjpfPlcRxwPLWVlGL0/65G7mN7YGBxASzQ4srZN+LyvZhzDx/7tnS7ijUhW7NhRWAUP1yzW5XHz80FBRDPUXp+I59JPoV/NO8LzNgtj4TUzHulrQthizkgu/n73sU+jqnzAMC1tu7C3Y9A0Lgsl587r0hgRD9Wu5UffZ8A3k9XYV5p0fJDWNzKOMjPY+yW+HACIfmgQHOlZujSAuAjI/aEdi9fD5xd2xoNbYdt2NcDwi+kp+LxVe5SVlBjWhVLWbAszyXHWJjbJDLiaIJ89aPhNGn2rWvmyvwvG6S4k1tyGm3UxtNY19LM8gpIzZMOkb4AVpYWFQt652Ql4yceCs29Y4VIK4aSaluO/fjIyhumDqPP0XPopvJMyAI0eSRXuF/ULR7WtyUj7KhKut13g/0qiUBdnYyml/MkW7J32BWq6VoVNMuPaU1GouzZRqAO/4Pq8wIedBmrbevdtV11/0rZrl6N38GdwdV0avqyK2sGZXADQbl4sPD4kCp69qAivPjUJLvucn9QEfDuZxU2UFTtaL4oVAilrF/b0XsgHsWjyZcXBe41kfu2CWQg9ov2WjH5r26Si9jF6VndvQ1zrfBm3HovEtA9XMdjz6DZdKwz5YDQGVyRz4OoYpI1a6FTOtzLteN+PXKcuimBWHNp6Up483asPOyOtDBnfmOH/JCkj+JAL5jQ7zJ677PRA/i134fsyas+Kxnut7Od+bI2a39dF3XWJQl5tv71Xv69ojDK6vjzBghu9bsHnCf3GhbM2NuLpEt4eZcl6/zhZsaPb8YEMoMhZfq3s/5aAzlHR7/1j8PWJce88sO3xd1ClIvYfJtqpC1L98HhLYt7TY9R4AZXHZacHtrfa6nRQMKKzG9sKgUSdDZaAfuKdkNsJfeofYwAdlPj4RUZ8JuR2wlKvffD9aSILnhj0dQx8thRix8avdeX07TPMUMm68JwVTefFM5mLHw5DlR0H7ntyNZq46LMNZxMYaqKs2A1jk/0V4nl7JtbSmdXR3xXFJrMeuYv4DlUN69fl6B3hdAkQYwg5qzdwbyU3bX4kAqcQcxY+vtL9kPd+d+RE3qqwTDffFijJOgNZsaP38LEs1oxWFj7vre1+LNCslowWfEZpAtfGCH4P97Nw5dMCJKA3NVOjGxgfvLICfWoW6epZkWwVyUzzXxlrQYOVCUI70OdRUyezBYqRnADZsS9qWKpTLnjK/MYMvyftTnloydG9I35bt8JpGvpuKbns9GCmZab69YWT24oWRfQeX2+ABJtuMd14EW+0QAOA5Tl7mZkzX5ZRu7ZcHgOftxN0aaZdbI9kswl5m9oKAbVdQtti+8/rELBrLByFbsjqt1Tg1+HjWBx5dQG6HR+I3e1+NPwmgz+Jxdrn5gox7goHR6Lmpv26drlrC8OulcsM++7NxyOx74vF+OqqF9JuN8XnzQ8I9ePjo2nznnvJiqOvLLivb4HnCRATSmqufK+FqhGlLopA1oAlTvsD5TnqzEPMnJQvJ+vbDvAdfoS9G1mxCzG0nClqfDluHhK2Jsc5lZvGFwPICWvmY+qpD/8u0teGIOAp1Tyb8jM1aqgLckxl6TgzBo0XJsD9j8Y4vi9A8FP6/6X7Gd94appQB1VcSnGufzWdvFp+GZ9EsQ0rqhwapdW+y5Z/jnKq5NyPwuzseUV5MtaFwPVMdaSOca7s0nv8ZgmlqyMtgvn6zccjmU8p/ztjjgX+UxPgWrMmSgsLncoPkPh8Vbcno9qeZixAOUB806hZJC/fvyWOmKXvP6eIJWz771bEKk0THxCiYB02ycyUMDqAb235s26HSLsY8UysJdzzHEIWETaJmLwYDVw2yay7b5OIOYIWJdGlSlVMrKsAILDRAJC6NFzg83tSO9gkM1PCbJIZvm8kwCXhCJOfnyB5JYxHe+KVsLJOZuxctYzl0ZLRgmD9jfrsHkXzokSVMEqJHy/StSVPF57T+9nIiurXxNPZqJtCWl6mrUlbWf15WGZZsSO+Q1XceCJKmDgo7z+DqyNkFrGDLxxMTK946GqjRUd098fYb77dX04/IfAf0kk9zaO+Ynw9jSCm52aTSWqp1z6hjkYLT2qeY5PMcN1zGBNTVajv/MkWIS/Ns9fAVIWnju/FMORF2h482SQzU8J4uYwUJqP3Tu95by8R6td4kTFP2pYdZ8Zg4806wjtPXxMCm2TGgLQ+CFoVgytjxb5n8yDb/g1WqgAcNokgjlKquy5Rh/Lnv3Os+K3Pjof/K4kMMdCI0rqtqrCf83R5vAWmXapZpVvzZrq8p6Y0Z79lxc6UMAA4/U5Lp7wrGof4fs8rYbJix3IOPW9rYXXDfKuuhgl5tPwpbS2sDp+3ExCXp5pTRvciSIPJZhMAMCWM8ik7WG6K2H2loIS5hLTFQzET0exzYiJFd7+N2rr53HhdaIWam/YLyJ0uIQSNsKp8AP0sj+gURVmxs8XgljYNkRJawupI09wuR0Sl902B6oYaDdVA26zviavMxA8A87s0ek/xcxcJ10Zpbm0nZZmC/FFld3NcfMbKTPuCJifp3jPPg/7Of7gMbi28WN3p/RYLyHLleNQ6lp4PZMyn9f1lAtoljtDx3pocp5OZJ6qEAUDgc/vR5ZlJAt+A3WPI/6fUTSW+7YvWuxu+e5tkRq1zDsiKHbceyv9LShhFiwWcj1/OvntHt47MvJz6EMoK8Zs8G3WzQiWMwrbzVgPOlLDUFWFsPPslj5ymh3ieFeR0phzT/qC8SvoJDZfBp+V9ULVrIUpZsy1o+dpF+L5J2jb98yhcGWcxTN/HN1JUwlwI8qzWh5h+a9rfNc+5QFbsyFnjqwvtIyt2XIsLYGVW3U5MYYu6nmdzwKIze5mFxF9RoCvpv5MqFbEHhHiwDu2AY3JxhX9ydd2kRVGmZMWOs1E3hee8f0lQFdVW+/J4MhBkzeYWheWDECV+4KQ8y4rvst8lecSnoEWLfCFf5pDFuDLOokNAkhU7ivqF6+7xv4+8tgDufxAfiPMvqsrPju9XVThQRbfvoeM3rDbZjXetXRuNflZRpmgMJVmxw7VdK0NFVMuLKoU3nohCURlxcLdJZiwMDDDM7/f9ZMMdOD6t9rSmqF84an+nTnb9IvoJfaHJgni0XB6DmptEIA9nE5PjtKok8o7lFHKaynK0Y5lwrZ2s6q5LxLpcVYmfmZWMtlWJL4/fpkmGyo1W8eGJV+4bL0rQlUfzZJbH0cmdRvoB9Y+zSWY0XpSApA+Iae3LH61jTtXayd6IZIWYGtHf2v7IX1eVD8AmmQW/o88CWuvaibbdobcXMl8gStQ081iKN3zfTGAKFyPOGGHU6VwmR+fZqi8UQBYAAt/yRSDvrwYA6wb3QmByNcF/hO8jRoteWbHjoyyxXzVcnoC7tjCWlzcHpf+pU7qRopDxxCKhXK0shYNExbLM2qHC9DbJzE66bBKJbWdUlz+DSQzF1JWhrL4vpqfo+FGfmmgPdXE3YrMIg0/H1SXXJDIG75IM+3bZ4RPMNI3GvuPb2iiP9tugCgoAbN9KlIwz71lQciYX3Z6eIOShMet4HubZom+r73ASS+32wAjkTLfCkUYWii7VVGAlGk9v9Zd9ETRONQuukehu+C7S5kWi+zg9zLuLm5twTU+zHakZKO52Dk2+iseJKaL/DN8+fL+mQBulN26g5EyusEifkXkQv363EvlbWuqUOVmxY2nOXiFuWNDEZHZqxpcT8n4sOiQNh6zYUbA1kPV/WbEzv2qaXlbsqLl5vwDb7s+dKvNkk8ww7ZLg1itH8Kvk25HC6VPSynbxWStM9eoCIKeadB7cs3iJ0HZ3bWEwtQ40HGNTl4QLbWrafYjFKqM+hEZjvWvt2jp56YYqT0LcQaiou0HjDgBlZZAVO/p7hMJlpwemNP8NGetCdBtXfDmpy4mvV3Sbrjj2AuknXrPide3E+6CWWTvonssKQULcmrSV8Q54IZH58WrTlxUVCbLcGBopPHdGrsGtgIj2ZENj4Eh4feiKIbVEMKCUu4WoG50Om2SGW7OmAr/aeWQN4VtF3TinIGCU/j0+Yv/g3385VSpiDyAZTdoZ4frAkhWZK1ZxMekGQFkhsXEAIHX0QpZWzlNNLPgytbzp8/wYi7D7Sylg11g0WJGgO02zSWbsXroUn2eTAda1enWEvU1ONWicK5tkxq2HiGJ3ZOoC9A3sxO7f6S/GeqJOu7JiR9yxnU5lvfRtczguk2C3udOsSAsvYoMyRczSBoTl24vysUlmxH+2CNVcqjA0MfpsHYcMJSuqky+FV+fbgZJbCy8gKpiVc6uJm5Dm2jIRidLV3R0+bycICEwV7TICYEojNRGjZVEFnudD89AYK75bVETDEV6d2O+3fdU6BT6rInQ56y/OFDVnCjmltFEL2YQ86GQ+svqLgaJtkhlXR1qwMDCAwXnzz2TFzuDAtW3kuHpNV+bFWCtL1zvlEaFtA5/TK7/OlAVndW45xS7co2ilPPlXuYgLzxFn/vW/dYKs2LHozF6BP4VEpic5LvGqP6Ks2GFem4Kkrzoi2kNFfnM2PvDlv+arP1msKh9Av/BooV4UzIYqBzzx34y2TBoXi97nkUFlxc7qQenWY+Xofx7qt0aDszurAy9n0FjVouDtDwjy3cvpJwS5tGMjjc2mVRYoPL+ju6Krm/Yb3Ja2j/GQFTvOvqkPZk5P6G8ONQ7wTqnFOwko2uGDanEqtLpLtWqY0fgEUzyGppyHKcAXTefHM1RAnleNH5PgyoEjlnFoczSeXuOF4oYID3/Oo4JmPraY7ezz7VC4VWw3Z3XivwtZsQsbgVIiUQKaPHrKUEmwSWZEVScnlYfCvhP60i95BxEyKxYTvDujxhSF3T/3khWu1asLPADg8FsL0GxgCmySmQVzfs2XgKgcifhWGCcpMiaFbTciWbGz8YP2EY+PyOZd6oowoT8AYO8/b1NbRNkfY3yujLWg2B1AYxLeotnn8TgydYEg+5kZpJyq8gE4UtLIHFceZ7P4YVKW53ZXw2/eJpmFb0irzFIgEKO258lx+QpczW3Ua405u00yI29TW2xvtRXv+XVEenc1PqpRH4nv/TkAIOXDluybcza30U23HT98LbSr9rum90t+84Yp0E+4R9cgWqIboTy/S5PE2GKyYiehbZKO4dzLViDpGLb/tAY2ycxiJQJATCqJV2qqUwcl50l4CRr3lbfuoeUsf+lzob6VqIn/98jt3kkqqZIqqZIqqZIqqZIqqZIqqZL+uWDLlQGdK+kfI34XpHBQJNvp4im6Q2/2u+Q3b/Zbu7tlRNpdIB5iemCaDYWD9fGFZMWOtK8i4dasqVCOdheVpvUfIYIxaE8HWlclsWdKzUHsZI4GHObNP2ySGdvS9rG8Fzuq+wUZn0YhzHqapes2fgKKosMNd9Ea9E9lv71miT4nNF3cUWKSpEy1Cjz4ndHcaWosMGpuRtOO8Ook7MxR+HHt7jFN023CBJScyWUQ0zbJjAYrSUwgNy8CuVtzhmgmUnqL+HzwULj0xJCXhdLQlPMY4BGuqyu9LuuRp9v5T10Whp3tiWmV13a9yVmrZTHCbqGs2A3NY7oeva2TqaL+SYM/82ltkpmZQU2ul8fKuD1QPRnV2vLzctkkM9x+F8MxaN8tL/fhaerOs2tPYhKlrcflp1W/vvMvWAXePKUuiGD36WlvWfFdZo4nK3adg7is2DHdLxRN58XjwhQrXKQ7sElmTG7RmfG/MMXKdp/5Ey++PgdDXFlg3aujLIbtzefRPtd+QyV5CnuW+0M7eM8g31C1OBX+2yYR4AJte/Dt4vrnYV07acvz/XEiOekcZVGD6ZabOgGinwqlTs9PEvgY1dF9GAmkO+W7p3VptTvuHT4WTcr4Ppu6TO9/RvP5/jSRXfN/7fupJzwlPYi5ZNIH5LR33+eLnJ4iZn8XjIKtgTqLg00Zf7K0E7w7Y0PrZszZnwKnaPu35wd69Ml7vXuaN3nWwnuedLWsR/rk+BwVJCV7pkXgw/+nf7yP1EpvUq/caeQU67GMXqwcGifK//exulNMm2RGFRcTDk8jJm3oeZbJ1nxuPLZlEuuE9LlRQjvT95r7Qzunp6QAMROVFTs7oTUim2TG4WkLmJsAAKzK2YuoVycjaNwBoc6AGvjaY/AJ1I1Ox83Hybzb+OdUeHwUjzMf1iCn3W5uwnuKfC0GpyaoMfI2nyVmjo2WEH4s6P0m8bSZ/pcVOx7tLvroGZ1Aacdqo/dfaj8pmIFqv6nCG9WEd8S3VbfjA4W0NGA373tmk8x4I+Oo7hQ18/FFQhq+XY3qFdkwm5jlRpC1VdeJE/GCjzh287JTM0p6r9HiBAStihHaps+jI0kbVFF5ABD8kne3+xEACetxaSKxHkr4dJGQHgAL2RFaraqujSvp/xZVoib+h4mHr3dzqeI0nVY5+CuUP9nCwAb4/BTF6oVzYUgJLTFcFDijO49EYO68L/Gmb4SOrzOYbL4uAImPRgO9tjxQBfMkvekLQGznm3wZj5zpVqRMWsDaYWthdcwLaCWW42oCykoh54mLv/MvWnFk6gL4xj3NYtQ4I1mxI7p9DzguX2H33Hy8UZKdA1mxY+4VP8jt6gjlllk74G79qqi2NRnpa0OQ0WMlQt+NYRMlAOS9ZmWw3G4eElvoxqSlY2FggK6tjBCqXGvXRumNG8h5xwq/pZkoOXcepjp1cHqBP1rOLkTcr98Z9hMeYpfVydMDV5dVQ60+mUj7uiMCRx9i7+axjF640eWSYftc3+YvBCnVth0AzLrUCgmPtkS1rwtRUFQTTWvewHrfnYZ9gb9HkRzTVndEZi/nqH1apRAwUIoWhyNoEjHtsr44GTUv3oVpF/GfKtrho1voUp4DTl7GljYNcXtgBGr8qIemNqLsmRb4vC0qh9rFn9F7uVc9tPlcg1uhqFkthiLqv36yELTd6HujoRjuRc7K5+9p5dXWiQ/70Mc7zBBSf3xqFpYH+bL7dx6JEOLK3Y+MWpl4WPCK2lHLiy76KgpPwHooBbQAAQAASURBVPM792NrNB9I/M7SvoxkJrqhh0txMMRV4OvmISFldjMhNpVWFlmxY0BaHxR1VeMp5k+2oCC8GEHj9SEdBp3MRxUXBza0JsFlexy7hZ3tjf26nPW5a3EBqBudztJMz28rxBXj2/faiCiG2llm7QCX+COGZRVFh2P3MhXEZGZWMiKqVdG1uZufD0oys0mevuGotk0d8+81t8mKHe33P4n6q2rhpU++wUD3m7r3vSUvGf2fmADXvfYKea7PjccwLysLF2GTzHAJbctAWa4/GYU63+jN1bTy3GuudPPzAW7fwdaD27H6eiOsa+Wpy1vWyYwd369iaMnO+uq5kpsY491ZeJ49ywKfaQZz+8pQZNlIkPBeI8axcW9mVjIzMZcVO9p8FQuv9/XopM7GKe19U6AfLnZtiobLnIOPdDl6B5sWdEfjRQlQXrGy+IZGZQLkPZpaB2L8TzLzv6JlXvo5iEHnp30RhZHd/nTad3m+IbNi0WSB81AK2nrR/gEANfY0xd2n3RG3hwBJWV6ejDrfihtD/Lig5TU3OwGD1r8E39eN10TFD4cht1cV+L1KNrhDXx4L+zdvPbAogXTNau094x9DTYz/dfoD2x5/B1UqYv9hMlLEPshKYgoOXbDLil0YUClVtMCjZJPMTqGD+TTO+EaHPHxf0OZLc/biz9stsLqll+7ZvRag/SL66eDdneXlIc7pMz5empb4vNrFNc/75fQTDNDCGdXf1wCxzXfioerQLQIAVek1ei+FgyJRc/N+jDqdi9UtvXD+BSvqZpWgxk/6WDHO2uBe6XglGAAWnNmL2BadGQ9eVu371yoO/LPzz1vR7It4zMlOFJDfeBhwPr0RyYpdiCdFy3EWa8VZGzi7R2PCmVoHIu737xHdtjvzkauIz/0sqGia3GlWnIxdoHsH9fc1QEGnK4aKSsEYC9sJd1Ze1vpg+A47WmEa2sb+O8cio8dKnQx83CGAvAe6iQEAOd+3x8KO69CtRil7zi+0aRlaBeq27IsatixBrncyD+E9P/3JnFZWw3Z1cdEF6axoHGuzIFY40b5nGa4moNRhyFdW7Ogx5ml2gqAtn4eTB4DORwfDvU8mpMTaUKJuCOmP3r3DoOiN3rszcvZug1bHwPf1BB2vhx8bDZf4I8iPsaDxQr2yH93qITiuX3fahud/bK3zf9KW0fm5Sdg7b7HwjPYdI3npRoYzfvT31ZEW7P9ooWF73Ot7vp+2VKZaIc25/1hlWroYa8XhaQsQNj0GB2YshC2lP9DzrC7d2NNnmK+Ydpy837HjftJeHx6lW+TzPOjvNvFPweux4+y6z4CnsH3L2ntu9mjlZ+3wjBVNvooHooIhb1qte84TH1rCqE5p8yOROWRxhXV1NbfBlz8tgX+VWqwsGpaFD39RERm9h5vb/bAveNN9fYs3nohC7e+IjzEfxiZrtgUeYQqq9ianzNnvW3C3cQmy+i+tsK8bydcvPJohdVaUjn/2b4Gv/7cqYqmpqVi7di127NiBjIwM3LlzB/7+/nj88cfxwgsvwN1dH4icp4KCAqxevRpbt25FSkoKLl26BG9vb3Tt2hVvv/02vLz06997UaVp4gNIb/qSY//SriGCedBv61YIC1762823BWwSgXqnZJPM7A8AU8K0kN9Gi3J6nw4QVAlLn6suOop2+Aj5ZMWOCd6dMaL2ZUQdKSamE8fJ4sBosOr9xFihLIp2BACuHVoDAHLfJjtSw7J6MD6yYod7n0zdZMIHraaQw3w9KP2xYAmTl6I00ucP1yyGrNhR3EsFeuCp4b76KOh0hQXc1LYVQGDO3bw8YX1psiAfAPz5FYlJQxXVZp/HM8Q1rZxG78Pompc1dXkYvHcUCenoRGfEh/997mWr0F98f5nArk2tA5kTP1140nT0FIjPu/ksZ2ZyXEWUsklmYpapoer9FN09wLgN1pSDo8zMSmb3aL+giHMUiICPZcX3Uy1p2zb7O/3pCC1Hi+hFKXVtS6cLy/qrEgTzqOiejwtyFe3wge+wo+y5srkNOk+ZRBC6NG1hk8wIeOowZl1qpas/H/yVysEH1PV+/Bhm+wej7fxYRD80CAB0McpskhmnF4aI30z7zbq2es+vI/K36GHqZcXOIKP7WR7RPXetWVOnhLn5iGbWPPUN7ISTsapJFg8L7XShxylh9D8/HlCHeaPNA2raRa/d+2Qi/fMoKFE3hH70bF4kgqtW1/E3kktW7Bh7+oxh3+Pz0B1zLS8KZlJaxUU3RtgkMxzX1VMDXvmn1EyzU9//hLjItUlmuP+wH2HTY4Tym3wZj4IxFnR8L0ZXn+5NU+ES3l5oV4Ds7vNjmVYJq7anmWE78fUy1atr2Fa0/VOXEzPRO/0jmBJGn72VadfxMyKavskC8j03XErMw+XWvwjPb5bD8WsBO/pGP4mMb9TvzGh84fsLrS+fztS4scCz3UFXpoRp5R915iGVz8CRTAmjfC+F1Na9C8rjkuMWMj+yMHm6n3hU10ebfFXejuVKmLatABVZsayVGqaFL4umC5yy3+m3mbeJbHSW2k+yDUJqEkzDssSd2KWrv3BdjvLsv34yuzXrUiukfd0R7jNqV/gtlnZVzah5pGI+lqjvGwmo8RyJ67nxbCJ83kpgShh9ZzTkQ4GjEGnzIjE3W48CDKjm3fw4TWlG5kEhbWkXIptrdRGs64Glfylq4ooVK/DZZ5/B398f77zzDubMmYOWLVti2rRpsFqtuH37doX59+/fj5dffhkuLi549tln8eWXXyI6Ohpr165F+/btcfLkyb8sU+WJ2H+YjAI6t14cy/wx+EVH7ltWZkbAm5Lxg03qsjDAFQySWFbsCNg9BtWP1GRmcQBB4iu9pQbkpaYlLVfGwOct52aFFd3XpqFE0zbcVx+XO6mL4/afxep2M2kd72dnNO91K44/twAB62LgPzWB2IInHdPlGXv6DIbVLkD4WzEMQtxIvnvV4X52cI3uUz7mD2Nhf52cppT0CIXbzoMV8tDy0vJMKioWkAz5dBXJzNPZN63w/CBeV0bThDq4YDHeZb/XjqCbh4ST73rogt7eq47UREtLru1aofT4KaQuD2PmWrKiNx+lZXQ5eodBmRuVmfe6FR4fxuvyUbr8tAUupUCDFc7NbWgeas4kK3aEzojBwekL0a/zQGzd+6PwLhxlpYj26Ihex2/gt3a1cWtIJNw37ofyqhXSx85luafSocnXNKEOMq81YpsV2nfnWrMmHjuYifF1zwvPjN7pL3kH0d9DvylxP+8SAPr2HY7SIyn39Y0EJlcTUE15KooOR+EzV1G/Xxp7Tk+H+PbRmi7fS8bo3k8wU97iXqFC/MaKeGjfibOxio6xRvmpObhRWxjx56+dkTYIuazY4ffbOJ1pJB/w2ZmMlC4/bWFmZ7JiRz/rANz1agjXP0V/YLdmTVFy/sJ9y1oR3ekfgT1LlhjyuPCclYUU6ZA0HDW/q4uETxfdcwzXjov3SqsNXm2TzJiTnYjXHx4BR2qGLt99fbPlp00V9ZuIw48jKeR7ds+ZrC+nn8DkbeMQOGW/7llF/fNeYzclejplxFvbL/1/H4uAkYcN5x9nxKd5Lv0U3kkZwEwOnZVJ/6euDGXIqABBXqamqJSujLUIc33fll1QeuPGfdXf2dpAm54P/s2fmLY76IpPmxNk22tPRaHu2kRkv29h6ypn/Gi512+Uon5Q5oN/ItbrHzwR++3vOxE7cOAAAgMDUbduXeH+tGnT8P7772P+/Pl49tlnnebPzs6Gw+GAv7+/cP+3335D7969MWTIEPzwww9/SabKE7EHhChYh99v42AbQE4Uro0gQX7pIEQVFFmxI3C03kQRAIKePiDEhek9fCz8n7QLShgANvnSgYDa9/u8RRY3/KmGthztQNzuoKvwnBKVnRJVwgCgy7OTcOxFdaeb0slnVOAEox0m/t7x58iiy39q+YIsyTj+xrDaBbBJBBSDTR4bJqNvn2H3tWCoaFFmNJDSXd9zL1lZGptkRtN56mkKVcK0PLR1dFaW3/eTMXHu80Iefke0jzfZsUstJu/ZzVN1Jqd9SFbs8OqlgqSkfakCtqxu8YcgRz/rAKcTLJ9OVuwoyVMQNCEZfbzDhDzaHUGt7FQJS12kOoKbGjZA6fFTMDVujKDxB4T8Nx4KFPiEvB+L0q4hmNboFDK/MeveTc50Asji8SH5jkyNG0N5RXXerrK7OeZmJ6DhsgQWf4avnynIn/3u9SSBRd/+8zomf6PFZFe9JDNbeBc2yYwvCgIAAL+1I7vK7hvJAopXwigoTOGgSKHdnH0LlNxaeAnvjZrtUrJJZgxJIafapYWF2NC6mSAf/58vp4qLSWg/LZ17WR/sHCAALDbJDJe8i0IbNtxXn11TZ3x6/aXHfpyZYRXuse8pLhn1HyF1ejaPnOhTE72WK2NYHu8Z8U6/1ZzvRUjowN1j4DihxhjcuZr405haBujahJfFaPHU9stY5P7QTuAvK3ZBwQlMrsYADmySmSlhsmJHtT3N0OmFyezaKA6Vtg9o43cBQMCLRHHon9qXgT3U36vfXb/dpMxQRnqPr+vYl8gJkZuPN+nb2Tn49buVQpucf9GK/OVkgdRtwgT0C+2jazNZsePiM/r+cnNolDAeAUDN347iq6vEaoC266sZZGxvOi+exdTcHbocdb5NFPou5UH7Jg3UTdtd28/5PA/FTGTPrw8lZqhuXp7sXnDV6oIS1vXobaE/0Lh+2nkvdXn5OJh4FH37DGP3tX3UJhFIfZqff54/WQTf+TSgLQKn7MetIZFCXbS838hQzZ0pFWwNZGlkxQ5TmyDd9x3363e6fJkfqWFj+PYMGHkY15+MQoek4br688HpeRqW1QM2yYyJqZnoV/OOTgmjgcEBArJB+ZZZOghKGABcDKvJflPZkt8n4XkofD2F569oXXHxWatuHqXPjIgP/j2sdgFLdzy0lOWtuzYR+N0Tp8cS4JuiviqwmNH7t0lmTOCAbyrp76ewsDCdEgYATzzxBADg+PGK/al9fHx0ShgA9OrVCw0aNLhnfiOqVMQeEKJB/AJHHWKTdOIcfWBU7QDNI3YZkeuew04HEu0ESO/ZJDPevGA1zKPd8ZIVO46HlrLnka+pZixzsxOQuiScxdAACNCDqVFDmO6UGg50Rot8WbHDNnAkauxpysqckXkQvYeOcZpPWx+t/AEvJKL06ClsOKvuUqWuFHf/o9t2R/hbolkOL5OW2OTTlZw2NJ+rRyzj/6d/HqXj41KtmuEAreUR+Hwims4n/E0BviwNDcS7PYcoLQNWTQUAlJzN0y1Ipp4PQVmPPFYGBR646FCVdMq3JDuH/c6epZo9afsj/07LSkpgk8xYnrOXPffdMtGwvwEEUAQQA9zSOHGOfDV4+OUJxPSNj0cFkBhBrnsISMvWTl/pyqAL9eyZJL8jPx/HXlqg1mu7L17ysRh+cwAJUmuTzHCtWRO/fbMCAAGcMXo/ut8cuIvRwgkAvGbFo6yTmZmw8sSXkbU+WMhPzT2FBbuLi5rnd09MrKs3/3S2gDNaiLC+vcOH/T76sn4jRVbszP/q3NCWAk/+NHy2fzBuDIsS6nVqwgJWFv3vEkYW4pkfEp/ZLz3Ed17znIuQBwDCp6lIZ5RSOon+o35P2uFSrZruHThOqyAWylQ9whr9f7DoLrvv+UE8vB47jtKuIcL3Rd/17UcjkBZehD8WLNEtBG2DR6Go63nU2qCaRnl8pDd/1daR9+EDiI9il6N3AADF3c5hYcZu8jv6KgC1zwDA8H5/MNkpBR9SzR7fvKCmfaYe6VuZo1WQCQAoGE2+IUS0h8fWC2j4JlEMdy9dSgCEuMC/tD2afKVuJPbtSxbtiq0EIbNihX5XeucOtrRpCAA4aV0LAOhZw8H40Ziaw7ys2Hw2iSEM8/Vp/ikZGx0nU3Ux27RE8/2xcAm75zGYgHZs3f+LLp2s2OHWvBn2BNeA32/j1Hv5qg8hT0HjD6h1O3qK3deOFUU7fJzO1Y0XJaD72Kd1z9037td9r3w/me0fzO6/k0lOaeo/Qk7Lc98mGx+Ok6lC24UeVudzNz9VprSRCw2VRACo800iPF4r1s2NPBgLX9eCTsSSYUit6+jbsouuTfYGb2L3qv+i+r26JBAz3evb/Fn6I6+qAcO1sg3ZEq9rs0VXPXTtZJPMghm3zTOU8b+XYpYxx6Ir99pTap+TW//Cnp8bQ1wHTLsk3WYA/VvqvRf/BnKBCmH/v/pXXl5gYCCaN2/O/v5uOnuW+IY2bdr0f5T/2rVruHHjxv8of6Ui9oATvxjJKIdG5wOFBsUkCQND7jQ1OC3Pw5niYJPMaP9ZrG6hwe/Y8juflChkdcf3YoQB5WKPu4zPE4teRlb/pczuvXBwJOr0zYDj0mW8Pm81ct9S+Zlaq6cbsmLHi+kp4gCYdAy3u15g11HVTfh1wyqhPtpJgEIqGylOwYfI5z3UU1UqKMoUzRN3Yhc7RTNSNqi9u1YG7W8jxYMqgzZJ9e27LfuyoKtXxoo7oDS4qk0y4+bj4i4ohbAGSLDPdvPI+0y5WyhAHsuKnU0w10ZE4WjHMuEZ5THSqxPaJY4Q7vPPeZQuSs+ln2LXqQsiYJPMDEJ9vHdnJjuvZAFAXz91wtKiOvLEl9VwaQKDhnemFE9pocL78+W5mtswcBHtez3+XMWnsZTeOK4ulCnqp7Yso3d/9g3VD+/qKIsubcEYC1z26RcTAATIfArqQdPwi2gmf95h3LWVQ673PGu4UWF0T9ueaV93RMisWPaMgqoor1oNvwkaFBwAmgzJ0fHm61Z7fSJy37Yy3xO/TZN0/MoOHIepUUOGKMY2HH4lZkBNvoxnShGl5FlkN7z93FgdP75uZUVFhotXeq01m+bTPn96GGurBWfIwunXb1UAlR7HbqHXiHHo4xvJ/ECn57cVynJ06wgkHkXrg25C+8iKHWlfGkOmO1sMFnS6wsxxAWByuf8NRXLjfRApyhxPP9hD2bv5oKnav2h51FSe3qv/tWqFELd7I0qPpAjyOS5fMexfNM22bd8CIErKwEm7DdMZ1Zu/lhU7BnlG4OC7Ksy+UZm8kkvTjc3pAjdPD10f5vt//mSL4Vhgk8xYmbSRyD+/GNkzLfD9eQKBSq+AtN+WdqNjd7sfhXuyYheCMFeVDzhtU5rHzUPCB1lJurrIih0vTX+GJCx1wCaZ4TWTvNP0z1TfbwD4oKkKHa893eflp+FWKNFNDJtEzA0B9Tt1RjZJPa3S3nfWVgAYai+vGBq1zafrBgMAhp9SmF/x3C0DdOVo3/Hl8RFI/zwKj2X00o3ltBw3H2/Iip24RUD0jeZ9zorL1E0EnydI29Lg39o6AJUBnf8T5HA4MHPmTLi5ueHJJ5/8H/F4//33UVxcjNGjR//lvJWK2ANCg4La6wbOoZk9ISt2VP80H7JiR3q3VQCAE88uQNSrkwFXE2TFjm5Pk5hLv+QdZI7t2gGdH6S0g440J1436FGna36AaPYZGbi7PT0BGT1WQlbsaLwoQRioqdmArBATMH5A5dHIPgtozfzdQj6IRdzv3wsDXZ+aRUBEe0FuHmhEO/AaTcR7f9c7k9O2ONqRxCi6NUTl2eVZcSGoVU4B4OzGtrgWR8yXjketYzwvj7foymnzVSxW5Yi7WzxPACjpEYod368CQEARaDk0ttjFZ60YknKRLS4BQIku0dWL8r0WF8D8n2jMFKFtyoEMEueoMVlcdoo7hGlfd4TH4BPCwlk7ybmEtoXllcmsf/FhBOodJwvLeqsTdPkosR3DAB82oRspsbQNtHxc99rxTFqqkJ6moWAvtO1pvBaAOIlTvtpJWKdY/K7KNeDkZfZMC9ZCTa4oL7rTrOV5YsoCFi+v3uoEAlzBEY+suDxnr9AeM54RnejpM5fw9vCvftFwoVpVPoCG++qze59nx+OdzEOCrFoZ6aYMpczeK3Swz3mvEb82I2V1c24HlXe5Aqhd6MiKncVB9JoZj9IbN2CTyIms0cLXcekyk5NtOPRWTWppHB5t3mMviSd2wiLSQ9LJrk2jvS8rdhSMtsAU4Mt27G2SGQeLPIT+Z5PMWHTgIfh/lILtWeqYp1WATLvJu6CbXkK7D9afilI5XM1tMDSzJ7LfV03FjP5r8/Htw/dngPgU83MFTZf7lpVtelCigBh9HhnB0i84s9fppojRPX6cjO9Q1bCPOMtP0w5Ms+n4OSP+eY9jt6BE3RAAoijPsHdiWFqKfusoK4WWRpbHj9z+0xr4vJ2AoElkkU83FSjP7Jn6eKCyIoJdLbkmGdbBJpl18fOM3jH/HTua1MfIFS/o+NkkM/Z/pM4hPAWuu8nS6Pi6mthv7TqiJPcsXELbwrRL/y3R+WBX25/uq09Q/sGfipsnPLiGtk6Ufsk7aKgse+93h8+847BJZnzbSmL+1BQUh5arnesLB0ei4dIEBLyQiBtdLunmbCortRKhZQ/yjICUWFtXPyM/W6O6PJdO4g5S66gHnsrK/rk/AGlpaTh37hz7+zvphRdeQEJCAt577z20bKkHoboX/fDDD/jkk0/Qp08fjB079t4ZNFSpiFVSJVVSJVVSJVVSJVVSJVXS/yl6++238eWXX2LixIl44403/nL+uLg4jBgxAqGhofjuu+/g4uJy70wa+q9QxK5cuYJXXnkFAQEBqF69Oho3bozu3bvjzz//FNLt378fvXr1Qu3atVGnTh306dMHdrvdkKeiKBg1ahQaN26MGjVqICwsDN9//71h2r+DNqce0+3MXOt8GTbJjLuP3NY9q7s2kZ1uVIsjQWu/vdFUt6sFiMfvsmJHp+cnGaYBAFPTJgAgxNmh9tgAMY8c9kmckJfndflpvb00TXNpkt4cCyDmRUF/jGJmc0A5GEI5+AZ/omZUrna3ihJ1kLVJZlz5JUioJ/1d6yf1BO/PL419c/hdYs8hJ1gwVJtkhimQOBUfmKnuNtbYQ2yEb/sUY4x3Z9gkM5Sp5JTErXkzrL+hnlJQ0I60rzuydsv4VDVHafJlPDa2biLIzZtQUsr8iLQtlY0nyyuTdfd4KuuRJ+zmV61RzJ6lrVJt5fv4ktPDtHmRwJHTqPNNItrOjxX6nE0yGwbO1PY3arpRevwUSnLPshNEni5PIKaNgu0+V9ZXgUGwSWb0PElMTbz3k/gfFKlvTLlJZHbEbae79Xxf5fuTaZfEoKxtkpn5rGh51NjTlEE/U15tHhZP6vi2GVa7APmTyS55aWGhTh5Knm61hHe+MDBAJ7es2FGWfAyb24gw2ML3WO6XlbokHC/4WPGeX0f2PLrVQ7odcN4cL+dd0mepCTEt853x69g1QEwuaf660emwSWY8FDsRrQ+66XbRAaBfRD+49crRycq3E32X2mdtFsbq7mnbxSaZcXm8RVcuP4ZuTY5DUXQ4bsu+uudGRJ/V/zoBjvQs4dnyIOKjefNx8n1c+jkIQWMPMmd+NrZy5tdh74i+py7h7WFqHQhTwwaGcrReROrdcWYMSu0nscHvdwyJ3sf4a0+vUxdECP1Ze0L7TL1cpC4PY/5V2vq3/4yUN/HJOB0iHT0RLjt4AtHdhkBW7Hiu+1OIDu7pdP7h5ch5V+97R3/T0/HW+0bqZNLKSU3Vp+e3ZTzW54pjDy2LP9FZ8ntPQS6e54H3FqLM2oGZ1gGAycW1wvFDVlQgkm2n/2TlAcDp8WReoKfk9M99ohrLb2PrJjq+gArQISvEz5Cmv/GE6lvpGtxKaN/tW9fBa2Y8AysJWBcjtC9P9H6jeWcRk5ZueDpE1xg0P+/HVmbpgO0/r4OjuwJT68B7jq8A4P5HY3aPtjFfLvXto0R93I1Ofenv/h6hmJ7fFn1PXCWZIohpX07kLRZfT0tGbUJ/03UGn49fQznLB4CFuYgO7mlYXkVETxH/LfSP+IeV//1v0bvvvotZs2Zh7NixWLRo0b0zaGj79u0YPHgw2rZtix07dvyPUR3/9YrYmTNnEBoaiq+//hqPPfYYFixYgDfffBM+Pj7Iy1MDBCcmJqJr167IysrCe++9hxkzZiAtLQ1dunTBsWPiUfCVK1fQuXNnbNq0CTExMfjiiy9Qq1YtDB06FCtXrvxfq4tJ8xJlxY6yTmYsOq4qPvyg2+v4DeH+ulae7HfhoEj2my7s6WCXH+JqOGECQNzhHToZEjoQe/hXM47B/0k7NrdpLAywvEwH3lvIfsuKnYEG2CQzdr49F4AaN6hgtLoI8B12VBj0qdkO5a+dCMPtalo+HZ92aGZPRIc8DABo0D+VtKeFIFtRx/bTC0IQbncYLsb5QbdwUCQDseDJkZapm+DoAiGr31LG69iLxKF468Ht+OVyB53cPApmjXOuhghjlChAC3/f7zUxjgm/8PB/9pSQ36i+PLUYegxXR5KFbOCYg0xGamYV+Nx+bM8hirrnbBX63iaZkbowQuB75j2LoMgCKmqXtvwDMZ8LbXJghmhKQ9NSJEhqVurWi5iILPXap6sLT87qrJ1c7UVFKHu+Dmyeocz/J7PcP1NLx3IlHc8f/H9j/LSKXnRwT2byBKixY7Ty0DzOfIWojyZftrMFFwBk9V/KftPnjuvXdYtkSmmrO8LtVrlylSWaZi0P8oWs2JG2KhSyYseJKaIJYHGvUPyxYAlSQkvQ51F1QU3L4QO3t1yhKiQbb9ZhJm45keK3ZpPMSJsXyfxatM9kxY7Uhary0XC56Meo/X+u5CaqxSWzQNU8XYy1wtS2JbK/CzZcBNIyte1c63uygKtiKjVUMON+/55dH3hvocC3LPkYHClpQjgGPq/3e6TejRcmoNfxGwj5IBYfNCV+X43j68EmmZH5jfqNtZ6eZTg+AyRO11dXvRA0/gAOvrsQpvr1oSWqkG9rW0/3jCcKYFOSmQ3Hpcu6fsT7AbdLJKaM3u8av0NABcfwflxvnsXk5+JvyYodiR2qsD4wzIuUR+N/eb9Lxqd+oX1YGQEv6AMm83K4xB9hi2JtG/Ll0nu9Ux7B4bcWCPe0/7X9dmv8Fqf1AwjaIzX7t0lmBiQiK3Yh/hUF/5AVEo6BlkeBdPyn6s3Dux4VNwjyrVcx0P2mTinWtousEB9Rv1/HQVbscEk4oo4lKSraI1OIyuVKW92RITPeekgFXTJSPCpSeM/92FpQEvlYpFvnPaT2VQ16stG4b7T+4QFteHkotVqmxtkz+r5Tl6gIkfRb4Odh+pvf2Daqb6WP2D9D7777LmbMmIHRo0dj2bJlf/kka/v27Rg4cCBatWqF3377DfUNxtH7pX99HLEuXbogOzsbSUlJFSKpRERE4NSpU0hJSYGHB/GJycvLQ+vWrREVFYUdO1QF5NVXX8WcOXOwZcsWPPIICUrqcDhgsViQkZGBM2fOoFatWobl/FWiMRm64VG4uVTRTWRa4gdKPq0pwFcAbaDPI1+LQZ2cOzhnqQGPD+NxZZzFMD6SrNix7kZDFmyY560dwPjn9D+NI2OUVyurQK4mpoAVjLYg4YOvYHJxFcrSpuN59rM8IgQJdlaOrNix/kZ9FutDG2ckOrgn4o7+jkuOW2hkcmc8inb4MIACZxOErNix704pXpkWizrf6ANymj+MRdN5zmNFGcnK8+b/u+z0wPZWW4X8FS3Atc+0SlG/0D4oOXfeUKbxqVkYWuuaIW+j/uGsTrJiR3SH3og78qvTPkVjzGnl0L6n7iceRdXeJDiueXYsms6PR0nPULj9LkIaA8RB+9tWBJ2q43sxOPQOQf1ydOsIXtEHgJi0dHbqZNQWo07nYkTty+g1YhxMu1Q/Kyq/No+bpwe2Jm3V8cn6tgOKC6sgq+8yoS22F1ZDbPwIZPZaoXvv2wur4bOA1obtzr/LlstjGBCJsGHDycy/E152+tuoDGd1rIiM0tL4P6Z6dYHmTeBISUP6mhAEjDzsNA9/v8zagQU35ulaXADqRqfDpVo1bM8ifma5P7RjQW9lxQ7Ly5OxbPZnOnAVZzIbfesAsOVWTcycPRrJsxbC//exyOi5kuUZcPIyvn+lD6rFGSPFPfzYaEF+WSHogamvVBf4OJNJez9w9xisiVqO6X6qJUHBaAuSZi90+p5ouzh75zeeiEL8Z4vY5tPVABNueTuQOWQxrC9NRvxcMWZXUd9wVNuWbDhHZH5ogd/rCXBr3gwl584b1ifnXStTlozGGACYe8UPcrs6LM38M/sQVMX9vvtkRbwpBX8Sq0O5BUCCB5eVCTxKfvPGrVUS6q5NRO40K7xmiXEY/TdMrlDZo2mzZ1kY8NH9yOu7ZSJaTrGjrFgFxMqfbMG1TnfYN+TWwgswmVCSmQ0ALF7hnOxEBFclsP+3tvthb/Amp3NIld3N8UvQNnadsS4EYT5nGNKhMzm13w+N86i737Y7HAUFuj6olcMZfxpD1ajcK+MsSJ610ClP0y4Jju4Krm/zZ4AffDyw1MXhyHpkqVMZKL/I12JQ7YYDNX7Uh/mRFTuiXp3MrD6M6kHJKG5rSVkxduOnBz6OWOfu78LN7R+II1ZyB3t3vfu3tsd7772H6dOnY+TIkVi1ahVcXY3PpM6dO4dr167B29sbNTmf7h07duDRRx9FUFAQdu7ciYYNG/5/yfOvVsT++OMPdO3aFfPmzcOUKVNQXFyM4uJiocEAID09HYGBgRg3bhyWLxfNusaPH4+VK1dCURQ0a0biP3l6eqJ69epITxfNvNasWYNRo0bhu+++w9ChQ/+WOvCKWNuDNXHi1WAhxhQl+vH2GDWeBR417ZIQ1zLunoMTnx8gscVc95QP3J4eKDmbB1PrQDRacQEXLNfhEt4eZcnHUGV3cxR3E50ijRSrvNesqHqtDI0XVRywkJdDu+B5KGYiQxfj89Xd2xDXOpPdpe7jJmDXiqWs/Kipk/HD7E8YKp8RaeVdk7sPI706VZg2dVkYgp4+INwTqHxyBoAzG9qjxVDj3VujgTzty0gEPrtfeB++v0xAVv+l6NMiQphkeaIyGS3EAQL6kTUK7ATrwhQrms6PFwIOO1OmrEfuYnrjk04XNDOzkvG2L4l/4rvtaRZUWSsDXVhu2/atoYz/U7qXMl/RAprm+/FWLSwMDICs2NFjzNPYuWqZoaJLydG9I35bt6JC5ZYv414yM/7lGwrO3iNdKAh8Bo6E/OMaNU2gH+L2bHLaJqY6dRB36g92//wLVhx5VYXp90mqgcWeCUi5W4jqLqUMYQ9QF24AUNIzFL+vWe60jkb1dXb/mbRUfBVIzIPhaoJ89iDafxYLr1VpcOTnw9SoIeKO/m7YR9+8EAx7j4aIO7ELfVpEoKRzO/y2bgXbOLo6yoJ6q8XFjHaccalSFWXFdw1lvddCnT679HMQGj2Sapie1Y9buBu1G817fXgULndwYcAB+VtaovGA05iReRDT/UKd9suCMRYB1IWnsxvbotFKd1T/5f5iQK6+3gjrWnka1if3LStOPrPAsI/SscUZ0aDlLjs9UNYjD+d/bA2PSZeR/qI/amVDN0/w/AVZuHHWVK8uHFfJplCNPU3xY6CMjy4HopaJQN3TIO2O7h2FTQcqg5buPBKB6j8nIXumRdi8MHrvfJtQgKmKSNvOA9L6YEvgdh1/ozK0beEsTdb6YIaEqR1n+A3Vi89Ymem0kXz3c03p4rNWwUz8ri0Mu1Yu07fT21bdCWC7g64szM3ZjW3hOeSErqx7rReKHw4TXCac1cno94hTZ5nFEB1rUu4WonXVmoh8PQb7P1zIyinpEWq4BnOpUhU5r4UxxZum15L7H41x6yECsNbho1g0+4Kkj7I/pnMdyPzGDL8nCa+hKeexoXUzfH/60L8ioPO/VRH76quv8Oyzz8Lb2xszZ87UKWFNmzZF7969AQBjxozB119/jV27dqFbt24ASEDoLl26oKysDB9++CEaNWqkK+Opp576SzL9q00T4+KIyZ63tzceeeQR1KhRA+7u7ggKCsLatWtZuuRkskNpseh3Q6OiolBWVoaDB8mHd+7cOeTl5SEqSh97hN6j/P5uOh1WDLedB3HlF32ARZtkJrtV5UpY1mwLHN0VNhAEepKArTRf4Fo1lo520HDdc5hB4W9N2gpZsaPjt6dwwXKdyDGeoMzxSpizBS5A4t4cekc0SeTTa2XQDl5BX8cYKmEAcGJrS5a36nax3euuS8R4785CmTQt/U15+W0kfnEU7UpbH759qBLG3+PTD09RJ3ZeCXM2ifPl0Vhd9Hn3sU8jqz9RLulC0SaZceE51aRnaMp5QSYtlfQkE0erqSpcuP0NYiqT/SgZuCbk6uttk8xIXxOC+A5VdfLT30XR4QxtyiaZcejheULZfD1tkhmlR1J093h+Ru3Ok7P34tquleGkBwB9+o0Q0mrT2SQzO+2ySWZcCK2KDnNiK1Twlq6aJ/Rxo3drVJas2FHSM9RQBvNhsFNdo4WWrNiRtccHfHwrm2TWmdrw5rDaxZ2s2OG4fh39Ivqxe0333xLKWOxJzJVe8LHCtwo52ad+a198Mp/xc/v9IMKnxWD3bVddGXxAYdZ+Ee2Fe3zd3lw+Rq1AOXy2NCce5x4PRN6mtnBcuux0oVrF1QFHQQFm5LdBWfFdpiCPqE02aOgiin+P9N1QlMhLo0ORH0Pq+NCxQbjTn5jQXppk0cHf83w6fER8pdI/ixKUMPotKZvbwM1DUpVM7vSE8nDzIspO7g/t2L2ETxchdZRqett4wGnIip2dbjnrl0ZKGJXFc8gJ7FmyRPecJxqEGABG1bmEzA8tQn3oM6/3CeKta7BoogfAUAnj39tv7WpDVuxMAWo2MAWOCxcR3ClNDQqkIf69sTrlqTEw407ugSmAmMTe7noBUVMnY2d7d+a7SZFiTbsOCbKU9chjfq487VlM2snn7QRWLs0XsGusKAfXJnx9jcZLIyWAKmHaehp9u84UtbSvOwIgCpibn48uhAWffnVLL8iKHcW9QnH4rQWG8qXP1cewpM87HnhCuNfl6B1U29MMTfffEOSsKh8g6M0aMjIf/rS5qhxTJYzKW5FSQ01KZUWNT1gUHY70NSFCvXx/niDUhwYApzypEgYAZbeJW8ILPuXotmVA1NTJ6vdaroTRMZHS9jNJTAlLuWvs35s2L5IpYTbJzJQwm2RGovkHQWYATAmTFTs2tG6GmVnJ/xrTRJeysn/s7+8kun7PycnB6NGjMXLkSOHv/fffrzD/8ePHcefOHRQVFeHFF1/U5R85cuRflulfrYidPn0aADBhwgRcuXIFX3/9NVasWIGqVati5MiRzJ9LUcgOMzVJ5Ik3U/yraf8nxAeka968OQIDib+MqSWxG1amWtFk8i3dRODWwovxMDVqCN83RJ8g9CTB6Oig5feqOsHQP94B3r98AKDPks0qTC2q6uF6+QmE+nhREIiWB4iN/pWxIlAH/7/T85NQ1DdcyxYAWF20O4GyYofn7HiYP4wVeNHnNEYJX0deXpq2+OEwZA5ZrJOLUkXKwfUnifId3W0Iu/dtK71fEOVLHfa1imfrxbFqkNNySGCbRCDGjXg1nUcGcJdq1bChdTMhDc9bVuxw+/0g8idbhKDHtNwW75C2Xeq1z1BxoCYt/DNaZwDYvWyp4Fw/66Lz00deNj6Is3aBTNPQ+HjaOvE06jQxOy09rvq5pa4IExdbh0/o2o/60QFg7U3Jc3Y8mn1GFppZ33bQKc0AicOkbW9TSxUww5lSaJPM+H3Nct1GAADYQ9RFOUCCn1NwHJfQtnj48THwfjdeiG+lLS/vddF3kF/c8+l4P6xL5prCc6P09JQitFpVYexpsCIB3Wqowdddwkh5fEBh9k45cJ3ORwcL8h9/boHwjl5MJ3GnmiyIF8JAaJU+QIV9j+9QFW7NmyE65GFB2TFaxAcmVwMAdKpOprgD7y1E44UJyPzYghq2LFxqTxTJmvmlGPfFC043UZp9QRaVAS8mCs/of2nQSdz1a8ryl3YJ0b27ktyzCH03Bl6PHYeyuY1OUTNSyLV9T1bsDBSFJ89EAupCwTwAcnKnVawo7QmuwcqySWZsHf6J7vvkiQ9AbGrYwFABcQltq8vXr6NNkN17vzt+8P8NjReKvnvKq/o68fLxcmU9SVwPmibUEcJvaOuqbUdqJaDlz+cHgPb7n4RNMsN/hKoA7r7tytJeflpcmPN93Gh8M2pTvu2yZ4mAMkbzGCVq7WI6VYuZHfL8aB7qN2uTzKi6+wjmXPE3fL+1s9Sln7a8xgPIusrV3R2yYsefwdVR1PU8Bn69U9d3Ez9epOsPGXNIO914IorFHtUqnTzxGwGA6lcoK3Zm0srnrxaXjICRh5HzjhomhIYPoD63H/uLm0KmenUhK3YUDo7E2WfImP9Wph2mAF/s/2gh609UDlPLAPScmKj7Dun4x5Q4rgwACHxO3WiVFTsyvzHD+tJk9jx9bpShAn6zlCiHdNOzkv73aNWqVSgrK3P6t3v3bl1aehoGkFOyivL/T4wM/9WK2I3yQIC1a9fGrl27MGLECIwdOxZ//vkn6tWrhzfffBOlpaUoLEcnq1atmo5H9erkaJWm+Stp/056fsNPAIiTNL+Ioh/71oSfyQDRqKHOKVqnEAwcaTjo5UQSBS/qSDFSl4XpBgNaXtA48fQl5x1xsizJJicvdb5JxK0hkTgdVgxZsSP5fXFn2iVcHQxrfb8fu5cv1U3k/hsm6+XXTBq8fxWfho8lZLTwpUTN0IzKoL9lxS6ASMSkEROC+tvIpBS3e6OhIkR32WXFjmsjojD1g3WCQknTes+IR9wxMpFR0zQtyYodmR+r/GwSAcjQlulsIU3TDE05LyxOeKWUTSihKtIYReSiVOebRGGyoM71smLH8dBS3OlPQBFMTZvo+hCVR2suarRQKjtAfHjS14Sg2/gJQlpKK2IGCu0uK3YEjTugm8w6vhcj5M96VD0ZkM8e1L07Sr7D9T5HAEEH5fuhTTLDcTrdcHGrvTc4vbfQ5jyV5JLYWmnzI1FvTQJcqpNxpuzgCRZPriKiO/8A2Qg5aV0ryGDUr7SLX17u9bnxQtvwfYueBlHKfcvK3pmW+LpGvBHD4mylriSnERnFNwU5+9Qs0uVdd6MhZvsH46PLKgLby+mqCRMAbD24HY4LF9F630i4NRc3KAAS7B4A0sKLSDneIjIgDQx9YsoCmOrVRc1N+9Hs83jhVJX/bi7GGisKfFu5/nmY/a6aJpqVUmq0hLyDWtWLdP3CJpkx4ORlw/fHp/WcrX6Htx4jC+6zUaRdUyYvQFkn0ucOhm4wXNBTXjTuJAAEVXEXnvNy87Lkvm1F3LGdQjr6u+zgCV36rYdk9LMOYPfo3ENp6nmyYD72ghhwnqancRl5SplMTCUvWK4bjoH9wqN17Wo0R/Ll8HGfpEEn4ebbQkg3218FcGi4TDR/de9jHMC515PjmBJD+6ORTD7TSF88/yPx/6RIh3xabX+gYzFFlNUqA9SsGAC25xzA1AYZLM0bGUdxWyanik3nxxu2Dc/PtakIihKX3x4FDnHtox3nbJKZBTiu/V0iiz2q5c3z1T47+YwKfFLReOv9XjwKRlvgn1yd8XD987DAFwBsg0ch7uQe2CQzam7aD+njeJx9w4qHqgOO9CxDuRyn09GtjmrdQeupHf+cKZfhdgf6PDICfk/aUXs9mU/9doxHwEuJrG6bzyax/EM81RPKGxt9DXk+cFT6D/79l9O/WhGrUYPs7g0fPhxVq1Zl9+vXr48BAwbg/PnzOH36NPMZKyoq0vG4c4fsRNA0fyXt/4T4gHTnzp1DWloaAGBuh3bsQyyKJrsi2sW3TTILSpjRIAZA8CfhiS5IEjtUQdDTB4SBWMdDsbOdVe/34hnqUfraEOEkw30j8Xei6ISU19k3rNj+0xpdPbTyZgxd5HQXkB/kUheoygIvd9b6YEHZMMpvk8xI/zxKuCcrdmR9KEI31++Xxq4HupMFTtyJXSr/lP4sbe7bVsiKHYfeVs2LEucsEtCntApQRvFN9BnwFOOhfb9RUyezk8ybpXegvGrV8eLJtXZtw4mAnqDxeShsMKWygydQXEbM5KhZKG0XU6Cfrky+j+xZsgQtl8fAcUEMJFxR+9skM3o+Nd5Q3oCRhwUlvXfKIywdb6tvk8zo6ye+R0q834lRP+PrQPPSQM9n3iP94OybVvQNIO816P3bOP+8Vag/XxdK5sPAtdLbwj0eGYyWl6FBXQycQhZMWxN+ZvfCp4mQ5kZtJSvkZMSlWjWmMANAwO4xgmz8N8rXnSebZEanJa+g/dxYdp26PIw9p6dBNJ/X+/HYfDYJaV93NJSNUv2vE1i9g8YSJTi2RWdBPqPvnfq17GyvKgcP1yxm6fn35/34MWw9uF1XrxPPksX6ze1+ZCMj5wAaLUkQ3jsbS69eI+aiIKeqfDtRnnwoBr7OrRfFsv6qvEL6zN1fWzDAIm0dad7BXuT/uhtiOIRn6uUK47w2n7a93H8Q/UyXXJNQRSnQtWk/6wC4dmgt8Fm76DOkrwlBXN4hHe9MzQaEaztimljlRsWKDc+HXtOAt0bv+mjHMryYTha6/AZY1FSyMXet5+0K+xigotStyyWn/SV5Cloti9EFUaZ8roy1MDlpf1jpLYa4GSfvMmxzeu/aU+qJhlZhNdWrS/7vPoTSW0Tx9PxA7T/KVL1Sb5PMaDaQnA5T6HbtxsjNxyPZPYo03HCpHg2R5qFjhLbtZ/sHCyihea8RecyzYw3buiQzW+gLRV3PM1RKvqwyawfhmvLiUQS1VG1PM1a/j8rReG2SGTnTrWi9SLWAeSyjl27MsElm9A0gcpS6ARnhd3T8bZIZBWPK+0HiUdgkM0PAlRViaWPUfvw9Z3DyNBSONj1PyWYTXK+JSmvgmIPCGDbIUw1JQMnUuDF+a69H1Kyk/276Vytinp7E7peCbPBEERQLCgogScSUzMikkN6jZod/Je3fTfSDpKhbRhOB9n7qylCnE5awo/mWle3K8kTjmxjJQndWASBlam3YJDMyeqzEmddUQ/+MT8jE5LhAfNT8fhsHAMJAR/+7NSNxzkyNG8MlrJ1u18smmdmOnbaebT7I09XTJpmR+tBqp4OhTTLj5XPEtr6JGIIMAd9Ohu/rCcxEihIvC78oK+0Swsw/ZcUOny/FfPwiSrtIWX6tGWySGbEtOrMdNaOFcd11KtLWEM8oSB+LC2FePlmxw9HOz1ARSpsXqeN966F85i9D5aviYhKuKQ/qg+QS2lbHm/6mDu7ayVfbJrzMNd5RhGu+ThR62SaZ8ZbPVt3CmVJh72DhftYHFkxM1e9M0zznn7di/Y36uncjK3YWX+zU0wuBqGB4fhCPs8+UL9JPnEazL+JRf18DDE05b7gABYDjj3hgqKca74cqddo2pabAPA06mS/ULXmW6Gfp7Lv0nE3MF/m6aPlrd261/RIgsefqZJVC+kRdLPJALDxRmQZ5RiCz9wpdW2qVXFrmgJOX0Sb+Kd3iUvv+bZKZtR3Ny/8HgD4tInT8jdrItXp17AveJKQt/d0LNsmMLkfvYPgp9dTqo6Z25ExXTaG075nW7fyL4jjp/V48eo4cD5tkhvQJGeue8DhgqKDwfKc2IEhty58ZyOrA5+H9g/kxhS7yeV40b+GgSGxs3QRb9/3EnqfNIydmJdk5KD2SgqA9o1l+T7dayOi5EtEeHXX1DXqDbPTNzCJzUNlp8m01+zwebh4Sa4/oDr0x4ORlXdtr+61Re9DfFAmUboDZJDMS55CNubRuq3TvVnsdNJHIOMKrE1zNbcjNMhc2NmnloRYbWn58P1oS5Kcr58wMVfmgSHh8HvqfgonwRP2M3HxbQJoTjzW5+3B1lEXXFlqljv9Oan2/n5VR/+sEIT3Pg+8v2pASNE3qijDG1+Mj8t3b39Cn1cqmLa9pQh0m044fvhbaxCaZ4ejeEUETy9E0o4KFuuW+ZRX85szVquHHW8RX1XtGPAvVAAA3ulzSyTQk5SKLwUjDVBgR9aekpo6x5aBE/Dd3/kWrrs/SeJayYsfn2Xq/wAb91TiRgLqu4an44TA40rN0J7tG4zBPF1bUr/QR+1/2EXsQ6V+tiEVEkB2Fs2fP6p7Re02aNEF4ONmZSUjQf7SJiYlwcXFBaCgxoWnevDk8PDyQmKiHn6X3wsLCdM/+DrrXolY7WAMAykicrovPksFmec5e3UQNkN1sWbHr4hZ5zYxngRVfTE8xnMAAwO0iOXG0DR7FYrzIih3+ryQKMgeOOqSrw6pyf6GS8xdQ2iUEcUd+RdmB47qJUFbsqGHLEpQzyqfkrBp02JlSuiUvWfd8k70jsj60oM634vv0f5lcfxbQmpXj4uamUzjos83fLmRtBABXolsKaV3d3VncIb+Nk4S6bWjdjMlE3xOfd+xp1cTSGVElyiaZ4btlIvw3TIZbSjZkxY4bw0RgmcDn9uviT8mKHe/5kYVX7+Ek/kp0h94YdTpXaFfeB0lrcqT1kdAuRoz6Lb9AKO52znCBbZPMiPv1O3bdrUYpXGvXhs1DH2Or+s9J2F5YjZXn+2YClgT5CeXxfbjZF/FY2bIF82/hFwuUuo+bACQS5/djLy7A3GwyTgw6mY+CTlfYCSMA9Bw5HtnfkYXF7UcjmBkx5dfiHb3zPwCce4m0K/3GRp3OxeR6+s0eXkaeJqZmGn//0AfsDj5kjIgwOL23cJ02ciHqrk3UfWs8ubq7s/po353RJkDArrECry1tGsLrsePCxoZ2bKH3aNvxdDHWyniVFd81VLwoUb7bMhN1GyOuPYmv4bfrezAfT4D4fnrPEDc8KB/TLonxaPZZPPI2tRXaiPoCUqKBtfndfm07UaKgS/Q5lTO5o2hWeLdP+alCk0aQFTumXWwvvC+bZEbNzfvhWrOmkI/6qlBK7fq1YXlaKjlDxgN3lxLU3duQobgCwNbkOFXpyM/HljYNdYq10fvl25TOP5ZX9CbpWnomLZXlNer7smJH6OFSuPl4o9R+kvSh6eq7NDVqCJtkxt1fWxjWWVbsiHxdD2rF1wOuJrSYXr6pWO5remmSBVJibfZt0LGZEr94b7woAaWdzSjJImN8E5M76q0mp1npa0LYCbR2LuzwsT5wuVZB17YtXwdn3wl1O7iXksvzpc88E9WQPatb/AEAKCxVv0leTopcaZPMQOJRlP6u+rhTIBi+D1NEWy1ABvWLzOSsV2gAbFmx49zLVrQ8UMXQTJ4vj86R2vY5MpWcoLs1b8bkoWslm0R8wWi+0INDEbh7jK6dth6SdfdqnCRAZwdmLmR+wJT4vqj9dho9korNqXoU5kr676Z/tSI2cOBA1K5dG2vXrsXNmzfZ/XPnzuHHH39EUFAQAgICEBAQgLCwMHz//fcMjAMgwBzff/89evToIZyqDR8+HBkZGfj5Z9VsyOFwYP78+ahXrx6io6P/mQpWUiVVUiVVUiVVUiVVUiVV0n8l/asVsfr16+OTTz5hcPNz587Fhx9+iKioKNy9exfz589nab/44gsUFRWhS5cu+Pzzz/H555+jS5cuKC0txaeffirwff3119GiRQs8+eSTmD59OpYsWYJevXohOTkZn3zyCWrXrv2/Uh9npwvanUN+94rucNH4HpkltZymtUmqMyvPm9pC96lZhC7PTmLPsr7twH77vVZuErFpNRrH13MqOwD0eXQkuz7/Y2uMKQducHTrKJRvVK+0VaEos6pIdiHJwwCQ2DE0j3Y3kNIAD7J73HXSRGw4S+QNGn8Avq8boDJGBevK55HgtPUK+eZFAMBbc8bBJpnR4OkcIV3prVuQVhDEOer/o+UjK3YcflM1A+l/gvh00CDTVB7eBh0g5i0Tlj+LqyPJrmDQ5CQEvJDIHJDzzS7CbqSs2FmsMlmxM38ZmobGkHPk52PNsD5C2TwYBKVeTxJz09t9rwtlaNuI0sWfWrF07RJVEATqCG/0/vh70b2GovTGDQYFTv/KrB0gK6pJE82T8Y0Ztf9sxO4Z7fbHHdvptN/QsAi0f9Cgv5vbNBZOMmWFIFS62ck3xvvWGbUDv1PcfG48k90mEej1NvFPsefnXyA7r3aNbyotf0gtAlBwa0ikME7kb2mJmHd+YOmuxQXgaMcyQx6bAn6FM+o1Yhz6Rj8p3Btw8jK2pe0TeABA2uqOTt9/eveV6PXkOFwrvc3M2/h0ht9vRHvD0+7UJeG43azMcPefN5ulIAcPPz7G8DSm7fxY9Dh2CwAEnx0AcKQSU0E3D/WUjOV/VhznPQaf0J2aRbftLqTZXlgNRV3Po9081e+mom/F6Jmpkeo/RvsmlfNQ72a69w+AmWoZ8b3X6Ry9z+d5yceCa50v69IAIjCOTSLxnYxOR7Xly4odv35HkIwTPhFR6oxOx2hIgB6jxjOe9PugPD9oepSBR+0orMLyZn5sgeMSkZ8HddLKWW91gnGfpGnLw00AYL8bHi3ExcfqoPTWLbgGt2LInLJix/wz+9gpCr3364ZVQpnUciNg5GEEjRd9tSnKYLPP1ZM9+rzLM+rczJP2NE07F2jb914nkc5O1c5G3dTlHeQZIZycaZ9Tf2PXnrkCP5fw9vD9eYKQ1iaZdTHmKECN3+v603KbZEbzT+MxT0pG3OEdhn2QyhM/d5HuPkV3BAgIEK3D7UcjdHWxSWYENrgEvyftyJ1mNfxuZUW1OOItJajbBk/OTo0BYOBTw3XpH0gq+wf//svpXx3QmdKmTZvw8ccf49ixY3B1dYXFYsH06dPRqZMYuDchIQHTpk3D/v374eLiAqvVitmzZ6Njx446nnl5eXj99dexbds23Lx5E23atMFrr72GJ/4fe/8dF9Xx/Y/jT1gQFRtiXbBQLSguImVXE2tcRZNoTIw9llgg3fTeTUxieqyxRGOJUWOMotduooBiWbvS67WLDRVl4ffHOHNn7p0F8/m+fnn5ypvzePBg79yZM2fKnZlz5pTHHzfk/f8CNDheUVogzlW/zvSYbwyIZlHbaRBP2cdbGWR/YkXA6+IiRgMOUjD5+LBI9336DYf7zVtw1q4uuKOmoD+I6GnVA78J68sWvG7D0WfuBA2Nbm+or5/1QZTm5gtp9kdGQVm10IDTcoC4Bxfy6vrKvWZNdmDR03U3fVtRnsrK8zQpqgOdDz2CWne8bunLXn08FrV/0VQp9QEyZXV9mZOMsGqaa2o+Lw1YaTdb4N6hDTKH1EPaEzOkm03eeza0/Mxh6Cf6O0AZh2z7XEP9Jt/6uLGsNjv00HIm3/pwXrho6I+cj6w4OVYLosnj5unR199r+Fim9kKDlSqqA/cnTECN1cQLVVyvwUjcvNww31xtfhWNqb4/ZX0i+60v7wqXHqcMn9eOJijpelqaj/6nc9s9vDXWb1iG4O2jETRMFD58XdQS68PqIXtpB6R1/clAF1+3KTgAiX/+ZhgLfRt8dtVHUWfj+FYGf+d7+TvlKqtPHzDZFU4+kDwFV7Tog1HL+rTlnhrMJrEiRmXd9eroV/OmS9q6HrrBXNDz0ONwMba298b5P0KBP3yx770ZQjkacNq9Zk3kvmBhMbFkc7ayb0VRHQj7LgHTxs1lqt36MpcTg1nw2svDY5ntFwDkv2VDs4+SkPeuDc3fT6qwztMv2NDkqySkzeskePOl3oMp5L1jg8dNMLtaV3T/nbmTNjMa2Q8R76uyPuLhxsPRgmDG3dIW6xOXsLLqSzYcnjzdZf1/Z42SzV36X33JhqZJxdi4wvh9u8Lpql9KNzeHR6+8v9Vvd/Nd8+89/P0EL9F/Fypbf1vNi8fJsTMQ1/URONOzpOUAciZqXfsM9kW4s7X0oWMXWJw6Cvp5BxBV8NS3O2H7nDkAjH3NB74uiYtiPgBkazkA9Gwahu34/Z4P6Hx/l3f+sYDOf+784J7tj/8E/CsYsf9l4Bmxx1oRhlC/eFZ0SOPz82Uo5L5vQ4t3k4T8V4bGos7SFMNitLIgBbXcq1e4abHDR5sQOI+nC+kB68YjdHwqMr6ORfDzKbj5YDSq/0E2J/VlG2p0OweffukCvX17D2Exovh2u3lWw4bcPQINtf9qYDDeNTVsKMTP+v96gHs/ax9iq5vuKu+1x2Kw6xstPtmVYbGos4QwUG4eHrDuu453Gx5j9OgX3Mo297MJNoPXNldjQkHGCOjfyfDMzdsJf49ahvLXym5ikH+soZxbZBg2/LEYdjO5xZTF6nFVV9qcKISONwZFL1wVBr9HjhrSKbht9WNBYvV1FDmvY0gzG7KnWBHwhuZm2vriJIN9IADkvWeDd365YOxN+6vdNwnwm2o8IHoEtMC6Xb/DbrYg7cdOLMg2fX9xrBX152kCkwlpWYL9Gl+Hq/llCmsF51ESMuHa4FjUWi7SztPU56ERSH/eE25nvJjNox7MKbUxv/lf5JttGwrnsTQBV9T+wcz4nOLOe8eG5h8mA9zWcGGcFb5zSdvWFNfEQ97X7/pwJusHNy8vbMjeLczJkIXxqNfuArOT4oEy3Tyd/EGJpmUujkCrty4id1otFp+sIjrpAXrgsXOYVK8QgSsmotold5x4cobLcjkfWplDiH6RfVisIwDI/NzK3HfzdPHPnd6NxwXrbdTbW034vvVlXB24+TbdzSH9lr0T6r6Rj9Uhiss23e4Vier5l5G4bYWhz0ytgpG4bUWFe9Di/F0Y3qyzlCZX4NHMH+W1a7I5+XcO8cJa5FkN5RGtoKxehE5vx6PW46fg1TvHULZvnyFCXLTGyXVwfkB13GzfDJ6bNY92U7L3sHh6rup8Kj2NfQMXxltx8b4SmNd4wnuFpg1hP3IFSjvjwVFRHej83ETU+tWoOcHXo6gOdPwwHg1nJON2r0hsXThXOh9ke13gyonIGjQL7b9KwOEXprucLxSyp1gx/qGN2NyutjTf1SGxSPpyJrbfcGcu/fk85yZZhdssvTCi9c6RONFF7s2ZQlBqdWRG3WR4n804gW+DWzMhgh5vRe259liMoX/1eRfl70Ijk3el+7Dt4C0kdahmEGpTIZSiOnC73In+fpFSPLJvFACeLoxBepTRO/evJ/fDJzTrnmU8GCPW+e1/jhHb9eE92x//CfifVk38t8H1gTHI+JIceumHS+Pw6IH/sO1mC/sDyIdOP3ZqvBy4UlNrSJ42UwjSS6H7Oy/ggcfHuGTy+MX/+DM+Bnro4TpzMFEDqP7HHuY2/vAL0wXvWPR/2ZETcHbvaGiTzDBf5kEp8aCobtXtyfHShZnS7bm9KWuTR0AL9jv9O+Lc4t1AcTHVg6I64H4nfAHPhAFgTBhAYrgkdagmjIvdTIJq68cKAOLuH8h+u9esCUV1oNF0eYwnGvtGn243W1DSL0rYrPh3fF/o20eZMEV1IG26pm5CmTCAOKqgUL6PqGm12edhYMK8/9Tiz8S+ojmSoMFbs/vNEein7o/1TBjfdkV1QL1SR3gGgFcyD8NutsDHRMYk4A1RDZUyYdc2BCL/LW3ON38vyeBxi/ZXaeRVnHpRDB0AAKXZubCbLQhJ9WJMGN+f9eclC8+U+bjZP9pQh35upf1IjPadR0+yd5QJ49tLn1v/GI8yLw8EjziAoBdTDHmy7rjLV2OvsjT+wAsAoTueQP3+aXgzy4H0hZoHveYfJAlMmKI6WF/ZzRZ2AE3/wegQRgaDal0xpOmDVtvNFgT8fl1gCnkw3SyHKSRQCIJLmbDC1zSPhkEjD6E0O5epEfJzFtDUZimcDyeBnX9r2xDtvklAyLO78fJjv+Fa2U24W9ri8ggS34eqRgNgTJjdbEHpqdPCPA2dc1agX78m280W+M5JRujYvWg0PQmFr9kMYxfxcYKhLD8XXX3LsrX61Is2/DH3e9zoqrnV5yF3OfHQ5rl5H5wnM5jrcB6X82SGsI5Myd5j2COGN+uM4g2BuPp4LNpO1xxNpC/UtE30Y1qaXwDnsTSmvjYm7z4hH+8cgheG6A+25bdv4eybt0nfzk0WmLCClWGM7vUblsFzO/GmnPlFLM5Yr8B55ixznEJxvhEQLV03eXh5+RPsne+cZISM2s+YMFOdOlBfsmHFh1pIFx7sZkulTBhAVEBpDEDPzfsM8yH3A6uQxuOn6vHXgkorZYrda9ZEtctujAmjOPLfsjGPh/UOkVvvT4LCmQMZHm/DmcksL7/HmXzrw2624LOIlZUy2dQNPZ1/3wa3hqI6GBMGAHml16QMjqI6sKYwVVs7Jf1rN1vgHt6afcsjm3U20CRjapM6VENi4X6kPaF5tQWAZQFaXL3+fqL3at5LKf898R541x0g/cXvDyaf/x2viVXwn4OqG7H/MlDpQvsxH8MxZb6w4bpiiGgalebqN32a324m8XRquQg8qa/HlbSJp+Nm/2jsmD3bpbSw3NYBbkkHcUMJYDFLeDw9Rj8Jz42ciknjRoIOddrcTggdt9elpE+2mLuSCj+bcQIHr7fAGw1OGvrubnFR4G9aaD4eZ7m1AzzVi0yVUo+rIgmZvn6ezvMTrNKwA3qJY0WbXMnGllIJMV+PojoQ+OskhDwnv1mh4OzekakG0nL9bA9hXdKaux4bWm9JXBS8LpYwj4W3+kQxm5jpuTuZmq4MT0UwLi0bg2tdZvXkLm+PwLeu4/jzvghN2FPh3JLNeZ5uCsFLJ7FbqLvF9/nFIOGwQ+HznBS83DIWHn5mlBaqhveu1gHavoro58umzYxG6CRNfSrjq1hkPj5T+u3r4fTzNjT5WrwlBIA+D43AhjU/V1jWVR8B5GBCvYrazRZYDgCrE61o+aZrt9SK6kD4Fwk49NJ0dH5+knBr6KoPAQCx4XC/cRtlB49LVYzulva7uamWrdfXH4lBzVW7De9crV+V0SLLR7/PRfm7MLJZZyOCuwSqfVBu7QC3ZDHoOU//D5eaYU1bX2R8GYvgySlCHtneQuFu5pyrb5F/x9Nzt+sDD7f6ROG2tzuLh0nxDD2hMu+aHk0ao/T0GYGeU6XX0FSnQQAAl0ZaUW+RGPhZRrOsDa7e1f6rAVYEbf7b7WPfaItobMjdw9rG4ze1DZWqcfO/+TR6a0VVRis6O3xd1BLP++QYxr+yfV1Rieqr/ydJLvvlbvDR/5nTYpmwiuY9+5QNB96cjinnW0lVfQEIGhCu2ukK0hd2RFaveYSZ1t0UxrwWz2wT47o/CufJDKFsafnt/wnVxK62f+5GbEdS1Y1YFfwD4DtfU8NztfkEbR0Du9kCjxbEFazeWYBscarVh7i9LutiMeSTLXCyA1/Ma/G4+ji5Gam+VlQXDEn1EnDRmCI17NnIff9OjA5/7ZbJc+NewYV+4oGNrC5FdSC7749wdhOlqDy9eikpTb/xsDHg87fBrTFvU3ehXRSsL05iOMptHeAe3trQJ6dWt0HaHHLDRJmwa4NjpQcpt+SDKM3Nl76jgZmzl4WLtEe3R/YUKzJ+jmBplFYq3WswW4wbo6gOFghV315XQJkwHkfgqomMvuI7zjzgUblMRs+EPXD8QWSM85Metii4bfUT2keDcW7/cQ5jwjK+jhWcZjzbTXPykfFlLGujm4cHy8+3iYe5oQGwmy346DwZ04DRmXCmZSJ7wGyB9otjrYZvwW624Ltco4MKCgFrJsButiD0wztx5GLDEbxtjJBfUR3oPuZJAS8AzD2m3cj1PXoJAJD+U0e83DIWGV/GumQgZAcA/ZyWrR36NSR00h68nnmI0Rj8AnHzbqpTh+Gj9VwfKN52UecBfH12s6VCJoy/caagfx5X97RQ3hEBKRMmfFd+EWj6JaGHvzUE4LIPGyfXwWlrLZQdJOOmZ8JczV2ABEXOWBQBd0tb9D9axJgwvTCEB348AODiWCsutjKxtK4TJuCBoWNYfDI6r3mg66cMLz+2Hv5+UFQH3KtXx+bF83C7dyeMbNYZee8Yy/N0f5mTjFubWuDU6jZw8/IS8qwI2gwAKGngJeDg1yi72cJc2PNMmL79iupAnxP9hHJ6nBTm5mlBd2VzKnuKFVfWB8FuJqrA+na5d2gjPPPfJIXbvTuxtGobUuG9crdAMwD8+OZA9psG6ebbRB1Q6dugZ8JuDND2pfZfJQhl9O1LX0D2yVcyRfflK4I2I/iO23RTiKjiC2iBpPX02M0W/HlT0y4JXEG0Yty9vTEg3Q6A3JJTOkxhraTzix+vzKibMLUNRZOvjIKIwE1joagOFK4Kg91swbqE7ojaP1hoa+s5Wowu+tfh8wQDLn0ctOxP5KFT2Pe1NhTFg7TA1x5NNac2erVtRXXgwJtEXdMVEwZoGhD6PZ2m8fOLwqnVZP6FjNoPu5k4H9GXp0wYACRuW8HKUNqq4P8eVDFi9zDoP+DgEcTb3bHXmyJzsfHwri/Hl3ff6WBe+u62zrgIolpRb2Ey3vx4Ac4+ZRPy2M0WfO+3m6XxB0BFdWjxV8qcwsLOe07kabebLQheOgmm7dphv89DIwScc5trG3W/6H4s34Mfb5Ee+oJeTEHaTEkE+yfILVynd+LhlnRQsB2g0HTAcaZuSXHv+nomPjrfGrbJk9CnuRgDhv7W00ENyAOGHGLqJHazBaapFxDwRjIye8wX8CiqA15uni4P4H1qanrlfLBRvt2yTYK+s5styHpkFvsdUo/Y2IU8RcaSBm6dmq2pd5xa3QbpP3U0MMbuPfNxcpzmdINXD6FQ3qMQpsaNWHvWZxglncHPpyDnYyvDQ+PuAEDw5BSGk3q2pOqvLhnA2HD8FU6kdXqPcrT/689Llh72Qj29Dem0DDXeTzy2AyVxUUDKIXwR/SvLQ/9vm/+joa9OdFnE8K0PqwcACHliv/QgqwcZnRUxOWxsU72EtE+CwoW+V1QHnFc01UGaXvO33UI5PVx/JAa+u3xwf8IEw9pDYwGVnTpjOMw9mtnLZbtMOmmnvv8YLRIlDrvZgksjrTBtM0tpPmO9Yjg8ytZJCtQLJ0CCImf2nI8yxzGsDdNUstvO0A6QcQ+ITpyoaivFn/rRDOYBTlEd2DF7NjYtnY+ggURdm/fYSsux9VMCfDqNsVh2kzj5oBoHzT9IQp8HhwvtuzZYUzUOq1YD28J+R2mpCW8cF8ebjhe18XUF+u+YZyL4Pt7Qep2Qzrch7LsENN9NYnKNu8PgBKx/0tBWRSUCseQOKwEAV1to8fLCvicqlWUHjwveOvXzT1EdrH9cMdCK6mDMmWyO6OmvCKgTK0V1YE78dy7nnN1sQbU8Eqvzs6D26NtniPCeBmxP3LFKoENRHQjcRFT6sqaKAdFLe0Ti/upaXhpbrqy4GKtDFAMdzqMnUdojUmibbB/J/dATiko8BPL7d+h3twCA2WZuWjrfYH86efBqhp8yZfx3qRdgUNA7HNNDw8lOeK/cjffPtUWHPUMFu82Kxm7QcaNHQx748xWPp9ewsSz9hhKArM9I3zcdcNxlXfzY84wkLaOoDvR5cDgyZ2vequ9pKC//5/7+5VDFiN1D4G5py37bzRbERfRmH+/VIeQm5vTzNoRO2oOg4YSZ4ZkRfvHK+7U9Wzzof/4QwQMtd2uT6EY98cBG9tyv5k3moU7PeFT2m8LlxGAAgCk0iKWpL9ngEdgSAFGryRgqupmdvWqmgFN/AKHQzPMie0c3JPrc5t0cAy3efbKQNdUK3x9FtQFFdcC9ttwGi/7+K7w6ai9LQXlpKbx2NNGjljJmikoY4ebKDda/zu6qkEffzruRjlEbQBkN+g1Az/TSOuY3/0soW1qowm624NUA7VYkvNEpZD0wD5ZPEgScPCiqAw/5RQk2InazBek/dYTzzFkoqoPZoPD9QqHaZXKwcvPwYHaDAGBqGyr0Bz+n+boTCwkDf3l4LLtpU1QHs7/iD3d82bxfjTr5eqECn0bbRb1fzQgh85pK2ilQOwG+L/R1UDj9nHh7cWmUdqiiQU0V1YGsqZpdSJ8A8dZKP7YeTZsIxuCyQ8798RMEWmTjqqf7XLwVf30/C5eHeAsHTQpUFef0uI6GdzI7T4B4hj3xMZEMqy+R9ob+FC9liPnf9Hb9bIIN9RYlI7FVItLmaePg6hvi56D+OwG0GyHAaKdLAw0fi9ek9nxA8rNP2dB0WhKKB2njw9fRLyoOdrMFnQ89YggpoKgOuEWEGehWVAfSZkWx29qbDxLhknt4a7ZvNE4mjKzljpyrrGsEs+WkOGotT2HPTxcS+po9ekQ4sMvWIwqxjkeFvtKPz2dB2rfEHzb5b8lutiDiI80Ozv+TJOTFFAvfGlVP5+sCiIde+l2dGK/1Pw1LoKgOvB0QZdin3Nu1drkmUqChAGTQ9gdtTQtcORFukcYxYsG37+Cl9mmK6kDElATBCRRf7+XhhDlu8Y52U9JqvqiuJgMmHHqE2OQGviruZVt+nsvWPL7d9AZc9m1s+Xku0uZEsbzRb8Qb6PUfRGx53f86IOBwKy0DAPQ89pChDP29YiwJKn/2aRtOjBe9SNLxl623PB7Zt0HDOyR1qIYmHDMEACE/a23QnyFWtmmE6wNjsDh/F2IP3hbK0RtKAFhbuE8oR4XF7pa2UC/UReAryQLdMhr1e5jsf9qzXgiaIKoCV8G/H6oYsXsIqLtb+iFT26lb9k6ovYxsoAdfEa/s1+1ZhzWFqTCFtWJlAeB4ZyJ9ly38ssXPbrYw1+P6BctV2fLO2m8enytJYYqFeORK3L6SpZm/SMK6nasBELU3fdnxdySkeprjej4mLHZ8LC66IekZSj4NAEw6h0UBv5NDadlV4uDAXRcvTr+Jn59oZW7FS/pGCe/05exmCzb06wC3XWL/0HFzJZ3VbxxPpacZ+kJfb/ex410epHhQVAdePWORzgc9znO2S7CbLWj8XRKj6cowzbEMP+4NjpTCnFIb5ycS1T+PU14wNWyI4CWTiCOIOxC4mUgVfysgh3l6c1heWiqoQPKe/vj20P8d9z4Ou9kCkxtZzuouFm23qGMN/nDHj2Xzxw5LpZX6vpNtpGnziZG2R9Mm2LrgRyFvwNCDFfY9DwdfFT2bFTd1g6kBUfvy/ySJMWCBryYz9cJyXcwxPfBSYX299NBObUy7TpggtDf9G+3mhGds7GYL9r9NPAp6/nyb4bs/YYJQT9qcKBx4c7qAUzZvAeCFjOPwWZCMrEGzYPKtj8OTSblPBi3GhfFWOLtrccvcOrUT6qG361Rd0G62wM980VCn/pDHt4f/LcujD9fwQ0go3L29EbowntHEvz/w5nRcHh4r2B3xdVD1SZntrt1swYZ1xBspve1mzMnEVDzTgth97Zg1G4rqwPoNy1DmOAZEt8cZK7nZXO4gB0gaL1DfPgo8k77rZplB0ECBL0Nd0lckVHAFdrMF4XuGomi0VXBEpM9DD8A8LYrqQODmsaixeg8Chh4U0mm+83+ESukHwDzzUujXZQAAMNVBRXVgf6dfhLLu3trN+LGnpjN6axaYmMdYWvaBoWOwbd4coS8ow2I3W9Do+yT0sz4obXPK56Kw8cI4K45HljJnOK72Xwrrdq81pNE1LHTcXsFBjd1swe/Ht7Hf/dP6sndsvbyjBWI3W7Bnygyhnfz6qW/L+sQlsJstzOU9XyYolXD61N6w0fdJUoaf/vECTvbtRxEmP/C3iUI6T59HM3/hHQAEvnJHMKRTAby4NhSK6kDN33Yjes1kpHTwROa0WLhXJ7R+bvuV5eU9IvY4XIyb/aNR8LoNZY5jyOi2AGnTo5F5+5qhHYrqENaH2FcmCe/08zXkCW3fu9fBreyf+/u3QxUjdo9A0HYv4aPkf1dT9hoWQOppJ677o3jILwqJm34hDEpEb6H86dVtkP49WdApjtPPaepsNO+ok/kCfgqK6kBpz0ihPIWNvy4Q8NCFJWuqFabgAPaudHNzlkcGdjPx7iWTIrl6dh5PNzBGfB2UlvRvY4R6+d8t3hHVHULjRfs3ypDx0ix+g2kwSyu/fe4cl0zoDYX0RWmOuEEBmpc8+kx14XmppKI6GI6b5Z5CeUoXfwu1bd4cZqNE4esc+c0ZH3tNT7++LabGjXC7l7Yh3arlBj0oqgOnrCbkvx6CBrOI6l/Aa8lwnjuHoJc09Tu3rX7I6jUPAAkKSsve2tTCMP/4//Q3r5KpP0Dp6VdUB7vFcJXH1QGOpuW/aTOkKaoD2fa56BfTnwUEBcjY8cyDK0mvKyYgct9g+E1NgvP8BZaHBlQ/+5QN3WqQQ/OV9eRmmdp/0tsSWb/p5ws9tANAxw/jUX2tqIIW8hxRB81/24bQsXuROY0wZtlTtJu6G1011cOiEA9hjELHpxq+T/W3tlKavgpug7NPE1W+9JdbIa7rIwCIt8Wuk3YLApryvUcMAhK+zadetMH7DoMz6mS+0G672YIXT3Vk9oW0DE9Pl2cnGgQfgZvHGuoqKy5G2iiikut+qVh4Zzdb2OFaP5+oF0FaZ7cjAwx00DL0tlvGFNnNFgT+OkmzuVmtqb367KlmoJenTfb85jMTK/029MCPd/uvtfWHHqL13+zwEwVoOuA49kyZ4ZIJm5K9B1m950JRHXD39hbehYzaj7NPG1WxKTR4kHzjl0ZZDfj1z6VZOVBUB7vR1c9VRXWgrLjYMH8AwG8qYSI8tzcFta1z33HA0F80SDvFV5qbb+jLtJnRiAvvKaTRMBFUVdy9nejpk97g61V5AcB+RPRQWviaDXVr3BTSeKbidrdTFTLRsrHPe4e0K+B3TS35w+xU4exgN1uYmrDdbGEeEfVzQo8/61MydiVdTxvelacStVfaLzwoqgMBayagNL+AzRtFdbB9T1Ed7KaM0nDhfG2NAbqDM2PoTJTdJLTODg1k4+7Rsjmra2t7b1Rfu4epGtvNFoQm7EFCiy5os8+D1aGoDsy+bMbZd7Sbtts1tT3T1fdWBf/3wGghXAVVUAVVUAVVUAVVUAVVUAVVIIN/yn6rykasCv4pyOxWsZqRXnr+6FRibMu7PrWbLUydkUp9DkYvRa1sE4qe0CTZNexGA9UlvTU1GL1ka8uiuS5pUlSH4PUHANJHzkDin78xfFvarpGqMnyXu4uphjSdZryxkUmMFNWBrhM1NShTq2CD6oS7tzf6RcUBADNQpu9N24gjCuqpkIeSOGJboL4s3hjqaeBVCyjc95QoUaYqVIOPn0YNe7aQ97vcXYabO/pMjZLf6vIHAOD+w8R7Fw0FMDc0QKCD/m72kWjwXE3Zq9k8xIbj+ZauJcl8O908qxkk8NT2iY+5AwD73psh4KBtDHw12eBdkf+tvmxDeY9CqWrKzflN0WOUFvvpu6IWUlrpbYFbZBi6jR8vleqei9dsBX8ICUXabHLLSKWuANAwqZ5L6Tn/v9nHxtuJBVeIA5J1u9eS25YMooqU3W8Oar6nee/j5wx9pl7y9OopMy/5YV/kcqH+CWnkhiflphONftBUQ+v0JXYR7jvJvH+mRWfDrQr9H9fzMQAQ4oWxPpjh2hC+2YdEhYx6Hgt4w+jgJG1WFMyfJwltpJDzsWbTZh54DFlLtDwrr2lx4Q68QdQRa5x1gzM9i9E+ralRVafhRvEmlm9ztcvlLO3tlIdZXYWv2uBuaYsjkWUIfj5FKEP/4no+Bu8VRJ2Qqj7/EBLKbm554G1GymrXlNJCoc9DIwAQByAho/azMW++2xvb261G0boQA34en36O0DqyHpsp3Jqlze0ERXVg/9vad8l77eMh/fsYYd7XKBRv9W7ZOwnvM74it4imtqHQQ87HVhx+XlOZL+l6WqCZ4lnc2p/l0c+VgceIw6A3AjTHSmXFd2jaopVr9H2SYc2goKgOmBr4ot5CeWBhHih96is2pP/UUXCixDtasZuJ04v+R4sM68Ta0PUG9WA+D+9ptF/nh4VbT5o3dNIewYMnzdPlmYksb9mRE8xrMQCmSp144k9G48UxZK1T2tUhN/V3bq79Pk0SQpfcze0X6zPd7Rp93/wDMgbZDxPHRW5b/fB2QJQBB7WBFnDq6tBD+qgZbI6nTZfPXb1KvEeLZuRW6k5ojrLiYlg+TUCHzxPwfEub9ExjN1sM8S8VlYRiob8zP7ey8ViXtEZKsz7teGQpqy/8iwSsbNMI+zv9wvLxe2Zlt7ZV8H8HqhixexTGnMw1pPEqObzjjcJXbYaNhi48drMF5V0uwecn7QBVNy7DsCGsS/7DUB4ATk22GQ4B/IYSkPgkmg44Lmy8QcsmCXhkB256cKSqIVTVkubjDd15aJs0QvDkxTOioQvj0XXiBJQVF2NdaiLDxy/Azu7EEUXwCM3QmP7f/iPR8Td/Lt/sabtoUNCzTu3wQr3M0XLle49AUR1Y3kZ05mE3W2Bf/4L0gMBvUuPqksNMDXv2XakGAUa1J6qyp6xaKPQD9WymP8QAYPFmeJr4uG98/qAtY4xtkzDctB6q4uo/kxwkbgyINmzM9ZNUgdk7eb2JgLv5bm9y4Lrjxrl831FsnzNH2pb9b4sqUNn9yfgGvqZ9C9T2TVEd6HVEC36s7x8eLwUaZ4jm611TU0GhtoMAhAMFDc2wIW8vM5rn8U+qV4jx+Z2F74kGhn43MBIt99QQvhH6u9W8ePY7/VvxkK2oDiRuIfYOIaP2szR93/NlohxOAzNH89BDYdpMEvg7dKLoWRRb/FFjR2OcXt0GLd8U3TcHDiPzMOD3CaxddrMFcWHdoagO5pZeTyOfRtUqKd7Ylyex39T5jt1sYR4pAaD5mnNYn7iEPffr/DBpwywtALrzuBZwPnHLr3hg6BhD+yl4upnY7/IDhAG/MiwWwUu1tY9fC97J2s8clVB8eTHFsJst2BMhet2kEOVwImRRvLDu8vnsZhK/kELouL2Gsfpz+mxWjs5vRXUg5GlRvYvaJwPE1mrb/B+F+RH8AmHEeXtN+r7lm3Lvozy9HaYmuGSKABJQm0L4tARxTvYsYL/5dP28tZstjKnRr0OKqnnz5MuZP0tCyBP70eKdZBYW5tCLhKl069QOlxOD4bF1H57x0fbj2IO3EZKqmRLEPfC49BBdNFoTflJX6HqGQNZXdrMFO7+bJbyv/Qvpf2pC0OltMi9oQO7Uj7UDvt1sYeFW9H3gai+h74V1oZ0mKAGAnA+t0n51vtMQbhHEMUnRE1Z2ZnAlQGi119PQF7I+oeFG+LTc5e1RZwnxhJy+IJIIwnRnl/wV7eB4bbo0zpl+nPiwPnazBeuS1rDfGcNnCIIaWd/dLncKfXH6Oe281PRLrX79WupqLNYUphrS7lko/wf//uVQxYjdI/Bbmhg7ZH6rFsj4SoxZRW2WaGwr+s5vqvE2if/QzQOPIf2bWGT8HAH3dq2Z8aiikpsh2UJxbpKVeP/6MsmwoMa1vp/cVGzxZ44Q+EUleLLmmQtuRHptm6wdUNJ/IlJ56owA0OKTUbpkhu6K6kCzR4+47MOXHv6dGbHLGBxX/cP/t5stuDw8VlqmrBZZdNeGrse4tGyklvgK+FzVFZRanUlWFdXBXKBfGRYLd29vNpYPHdMko5QW6gGS5il6gkjpPLc3ReudI4V5QCX3Mqach541nALN/GahP/QpqkOwC+JxBo88YEh3teEpqgNbFhGnB3QeUyacp5FuhLRMelQJFNWBKAehmR5e6a1JRe3l5zVtY9qPnbA4n9hSTc8loRDOPkU2z5frZwrl03+Ikc4Tt8gw5HxsFfqpaLTV5TzLHqAdhk3bCXMQ174HEk/8CUV1GNxOz2lGbkwvjzDGSsuJvsF+UxfbANDyLY4BeXY3o4WPEVb4qo3ZOsgYHD4t1UIYDd7DKUAOncPfXUcYsEmiTSU78PQswM0XG+J2KhEWvXuOHNJ8d5HnuJNx6NvpkNAuZ1GRgTGkzzScgp5u+rvMk6wxrmzQFNWBE6/XFuY3DY9AmUg9dPwgXnB2IZPO0/Gn9SR/MVOIWcQfAD8I7Cj9JvQHNf7dR40OC57w7GYLrj4u7gmyYMv8IZjvUzq/W/01ykAf/5vaWvH16uvg/8v6w262wHpwEHvX5Jsk9BhN7FZvPBwtMIX0P7XjbDpNc+QQ9p3mpZXG8KN/R2/dEOijuDK/iIVHM3+W78yzRBuAD6yrZwQAsAM9TS/fewQplhXIe88G+4CR6NOPxDZ8v+FRti4BxM5Xv0ZkfB2Lot7atyrrLwqZiyPY2PL0yfp5eG2yR/jOJW050WURFNWBzocekY4HD/r2UhiTd59Au748TQ/8tUh4pn3ovtOB8gNHoagO7PlkhuHMwNcPACc7EYEV73hH31793C14g4xhi8HknBQ6aQ88qt9mZd2rV2flj9l+NrSV4qNOiShsWr6A5aO28+41awr0lmxsiQlpWYbxSCzczwQyt3sRprDJN+Qs5hFg1OSQjWf4ftFmrPUfTxnKVcG/H9zKy/8PKGDew0CjlHfDw/BwI/E5+vYeYvDyVBHoN9OJBVbkRN/A5RGxqPtzCkwNG8J57pxQJnNxBHOBL8NDn11JcK6sD2KqUXpw69QO5XuPSMsB5GaPHsZleTK/iEXGMGOcKNlBV08/n2dZfhKGNLMZ+of/XxEefR59fwBAXFh3OIuM8dlk+GXlK2ISFdWBRzIeQPH95/BlTjJefHQ8itrWZgEhadn7Dt3EX+HVWZp7u9YoO3ICptAg5tZX1i5TSCCc6VlYWZCCQf6xBjr4cgAQ/kUCvC6Vo/4816psrubQsxkn8G2waHRuatgQiQc34aH0PijpehpF60Lg0y8dJt/6cF64qLXRzY3pidO0s7+3RoMvaxg8w9E8Q7J74GapJ250PYPiQTEC0+IK8t+yodlHSSiJi0LNtPPI+6wmSm56Ir3bAmGcTj9nYxvu3UDa3E7I7vsjuo95EjXyr7BbBTcvL5SXlMA9vDXiliazW+606dEITTAGa+896Al28NaPZfo3sQh5TvQWSX/HdRskzAN9eQqBKyYi5Nnd8P6zIYrvF9eL/DdtTD1TD3fzLdHfACr8pmR4SuKi4JWYanh/9ikbGv0g0uTqu8u8fQ0JLbrAfuQKJtfPQtukEcKBLXRhPNJGzUBcRG84z5xlY1bZmlMRKCoJZFzeg4TZKFgZxjzpVUSrqzozv4hF0Esp8Gjmj3W718L64iTUWaoxfleGxiJ52kyX/VsZfhmYggOYmnlla6Eer5uHBzbkGW/pYl6LZ+qD+SvaodmjRHsgcOVEZA2aZcCT9mMnZMdVPhb6gzeF270ihVt2AGi5pwYTahjWxVbBeG/DUkR7eUrbpW/vtQ2BWNp2IfPwmzYjGnADU5Xj6yh6wgqfn7T10xTWijlskrXvhhLA1NI9mjRG6ekz0m/mwpMkFMug42exsk0j2A7eQlKHarg+MAZ//TBL6BePpk2YcyFavu5OX1zuYgxyrh87V/3Rp99wdjMMkHAS1JMpQOIO1lylrcHnJ1jRYLaoQhq0dQxafXIdzqMnAQA5v4Tj1iUvtJl2Ec60TOR+YGUOtsq6RrC1n46lrA9v9o9G9bV7KqS9svNARX2ifxf65ygEDDmEoNTqyIy6iQV5O4Xg326e1VB++xa+zkli5gK1/2oghPX49eR++IRm4fLly6gjccjy3wZ2Zo16Ex4e1f//Xl9p6U1sT/34nu2P/wRU3YjdI3B1cBQmpGXBbrYg4w1xclOVCgqKSjxQyTYeu9nCFqWUzwgzk3hwE0w+PqwsAMaE8RJdHg//+/0sYg/Bq0vyTJheykaZMIYjNlyoi2fCvszR1FqoF7igl8iNWtwDj6P5buJCeHBWTwGHh78fAHIY4+vn2zO89xOMBr3EUraY3u4ViWuPxVSYh2+X3WwRmDCZtLHwNbLYZn4RK2yeAGD5JEFahjIfdrMFxfefg6I68Pj+J7Fhzc9wc4pyE0V1MCaMwvqNywDAcPjm29MwqR6c6UTKV8u9uqEPKaTN1NQHm36Z5JIJo2pqfD1ZS7T6KBP2dY6m9pl4cBPsZguzKbm5hagnOS9cxOnVbbT+KiRzlbfLeb3NeikTRqGo80Xc6HoGgHZz5N6hjdA+/f9jCUQlySsxFWe7NoHfI0cROMy48Tb5Jom5lqZw/RHyfG1DoIEWqjJW/dQ1OI+lQVGJN8LyDsTepuzQCawN82F0UCas1V5PoU95Joz+Z339mOYCO64DidVzu3cnMkddMGEUL/2j9pS/BhH7U6q2p6jERm5lQYoBDwAsv1YX6d9p6pA0GDJ/yPH+syGrp7L15tRk0Z6RxmvTHwp9j92Ufj96sJstSGjRBYrqwMbRNrx8OgIBL4n2LwF31FUTD2wkB6o7YybDz3td1PeFojqYm2y72QLnu41YOs+E5b0nqpNTtXNap169FABq5bpDUR0ozS/AqdJrGhN2Z32tszTF0EdvnW0vPLui2VUengnjXYPzfRN9gNgfZvwcwdLSfuyE8tJS2M0WDD2h2QqNyOnGBEkAub2g+EKe2W341gAYmDCPJo1Z+RsPazeVsnU7712bwITRIPX8zXLPEcQmNXRBPDK/iIXzZAbeDogyrNd8PbT9iupArT5ZjAkDgGrnTQITxtPk81MyLoy3IntpByiqgzEd+rlGcVP7YkV1oPT0GUP76G+qkvvpbuKOPqlDNSgqcc3O738ACWuh7yueCaN7Ft9Gvt16aLNrJGPCsj61ou5OXzw2aYvQdzwTBgANZifj9As2AX/wiAOsP84m2HDyvoUInZgKZ1omrm0IFOKs8Wv/vtkiI+Wzqz57R73BuqLdFRNGA4zL8lOQzYuAISS0SGYUWZuaetQS8riHtAQAxoSlzY4yxFYcGGqMa3kvglt5+T/292+HKkbsHoHNH83Db+eJ/UjgMIfwjlepoDCqznm2iKTcFFXNcn4JR9DyScIi4ywyGhvTd3azhRkrU/fp1PgXILYpgBiriwf9hlX0hBWIbq+l3Qmuy+elMLml5jiBMnf02Xn0JOY0I2pkdKOg9JYWFEJRHcx5gWyzoDYfeprPxWt18huB5+Z9qPUr2TB45lcmTaPlFNWBC+PuuJy/rdmM0bx+nxLGg97w8X3e+DtRmp/3a3uNzvJyXB4Ri+wpZFysfjkAtBhZ+n5cfq2uSwZSNl4/t9wu5OU33fZfaepA+gMFj5MPeEnz8XXTmyS+/pd6DHN5wKUqLQCEoJx2swX9jxbB083E1Eeo0xIeqCMBV+0vO3hcaKs+H/9MXUjrcVCg7o5p+l/fE6mzLDYUq/8QueXu0yIazT5MAvYcFvDy9S/I24mTnW4b5lz6tzGI3DfYkJ//TW+/PTfuFfBnfCkaubuCOL+O+DInmant0fz3fTqZ0XHj4WiWPjc0ACHPkP44/0cort53Hmk/EiYwbXo0AjY8iQ51teDr/FzL+7W9wTbv0EvTDQIiGfBu7cu2NBP6gf8+qWMeu9mC8r1HEFUrCyh1Yt316oa+kz3TGIEUb+jbRw1MDD+nDkYvZflp0Ft9nx+fMF0ozwun/rwJxFlF/ADgeH06w9PUoxZj6JFyyEAPhVSLifVDzKvx6PC55mZ+8VVfIa+iOtBrmOiqn19Pabwq+vzuuTDceDgaeyJ+hd1M7G7pu+y4Hxkt1JYSIDaZPA672YLQBSQe29kEG0yNG7ncXyis26/gzzse2WkcvOINgUJeisNvh8isvxoQIwiIABLEGCCOaGiIjcqYj5K4KHSYSoLTXxhnFebbyXHEXosyoAUrw9D/KBHYXR4eC985ySwWGqCpxNkHjBTazM8pGQ2y74M6oNCvb1/nJElxyODIs+L3J2M+6P9Lo6wsZilA7G+L3myOxUt7GsqW9owUaD748nRBEMS/azRdpHdX+CoDnTS/749EiOL9Z0MoqgNFnS9K8yqqw0ADTyOfTs8dMjwlfaOQv6LdXY2J3WzB5zmaAItqQ1B6QidoqtEegS2hqA6DmUoV/PuhihG7R2BgaHu2SfEgW2z5hdlutuCLQrvw/uR9C5E5eCbOTxTtVvhyX+Yko8OeoQhKrY6cX8LZlX/A74SZqD8/GbfsnRgN1P6C4tGDW1R7Qernfv22IY/dbGE2Y9Qe6uJYKx7JeMBwIL000ipsJoqqeTOkixh/oKNtu/CkaJANkI2Qp7nhjGQMSNf6TCaN3P+O6BEQ0KRkelr3fkicQoR6egsbGP3tKCmB3WxB+k8dsafktss2NH/sMHuek7cTdX9OQcAbhCGgtlGy+VDe2SIwJnz9Hk0aG/JTuvnf9x26CbvZgt6DnoD5c41BfCdrv5Cfr//Lzr9IN2waQLT7mCeFMbzVJwqlWTnI+tQq5L80Upunsa9MgqmBeEBMmx+JtWE+sJstLlUCFdUhOBKgdBW8Lt6uXE4MZnUrqgPqS0ZHN/zY6NtMn+nh6YdLhAHoF9MfgBg0FCCHrE7vxAtpG3L3GOqgQB2ujG7ehdXLMwIhz+7GvsjlBtroQY+m0UDhfFrwZHIgqLGjsVSowD+n3AgQ6LObLcxjnd1swdmOHrgxIBqhO8its0fL5ghZFI8GD5Ibv+w4Etw6e8BsZPf5Ee82PAY92M0WNH/sMLNdov2lP3h6+Pu5ZMpounvPfOGZL9/Kj9wklGxsCQCY9tEwlBYUCqqyfMwq/vuxmy3wWp/K+mjltToou3rVIMDgvQnqv1N9Xo+mTdAnIEaY97Q+RXXg40AL0qNKMOV8K/Y+JNULca3vNzAIx+LJoTkuvCeuDNNu3X121RfoaJs0AvUWJePgy4QBzPklHMNrXxDWoLZJI7B5yTyBHh5azRXncUoHT9T4fY90XaJeOmV49HMtbfQMrClMxYG3piPxwMYKvzva9o8DtX7r12UAdnIHdf57MW03et1s2fiCYYxdMbL02dm9o5C+/cc5aPJNErI+s8J3brLAUADA6RdsGF3nLBSV3IRSteO6S402if5/EIZNWb1IOs9dzX2+n8qtHYQ5rC/Xphqxe+IDtVP7ZAo1djRmeO1mCzo/NxEdPksQYnxOLBDX7noLkw3j777jAPw/SUJJ3yjGXACAx5Z9xrF1JzZWV4fEYnx+Z0MbqZ2sTMiox1Uy3Et4z/cDbROlQVEdgrBZj5sGa+fB2a0jll31gdf6VByz/Wx4T3Ho16D80nrsNhkgNq/6NU5RHSjNyoHdbPmfuRFj7uv/ib9/OVTZiP2XgbcR23JKU10J+z4B/lPEQ2dJXBQe+2ID1rQVnUTwC5J+ITIFB8CZke0yPyBnrEp7RsJjyz5DPn35t862x0eNiASH2vrIgNoLyPDwtPH0KCqxkcpeFoJG08khMObVeNRblGwoL3umuNzDW7PbiIpAqN/dBJRpHpGK1oWgtlcJPHrlGcrw9RY/GsNcYMsOZPHpGZgREmzox+tlt1hg4/QFkYJr3VubWuDWnKbY9bUYJFY29nwb0n7shG7tTmJ+878EGqltGF9GPxYFr9vg/0kSbgyIZk419Pn15cqtHbBx5U/sOa5tVyQe21GpJFZWP0CChFK3yLL89H/a3E4IHWf07PhixlH0rnnb0C9579nQ/L0kAZdHQAuUV/MUvHAyiA2H/9dZKLAWG2zVKJxa3QZNBxwnN8F3brq6TpiAHbNno0+LaJTfvuWyrYrqQPD20Qi6cxPuqj9MDXwFV9cV4aNpNx+MFryM6sHVt60HapdE3z907ALWtPUVyvO2hh5NGmP8X7vYXKd5Tj9vw8FXpkvrKRpthc8C1/aH+rbR33ob2LRZUQYnHPq20W9AlofaJFGQrTPp38cg65FZhu9Bnx8garvZD81mAqbdU2dU+E2cft4muD4v6RcFr3WpUlunytZBfd4tN0z4LKg9yzfqZD6++WQwfBYkS/s2e4oVaaMrpheAYY2V7kV16sB55Qp7d+PhaNT4XZubjZPrIO2Htqj7c4qhLytqF/8+bWa0y1t8GR4Z3rx3bPA95oT3it1CHn1eaiftu8sHFzoXsbw8VLTXmnzrI/HwVinuu23v3eZrmFRPKujV56U0Vob3Zv9onG/vgaPPTEend+KZaiSFK8NikfyFpi6tx3VxjBX15xu/dVf1VkYPD8NPFGBxa/8Kz0ZRDic+anRYeE/tQwFy02e6VY7ay4zq2BXtgXwfZn5uRdDLYhu/zklCm2o1yVydH4nQMfsMuEvLb2M7fr9nbaLombV75Ov/mI3Ytn2f3LP98Z+AqhuxewR+S9MWBbvZIjBhU7PJwd4rMZUxYYrqQMbXmgTU5FufxSrhwZmh6ZhT3BTsZguCtoouyCl4bNmH/Ldthhg3dPEpeJ1IrlMtJoZzTcgGAMALGcdR1kVkQqi9QMgiTdJEY3rp8dP22f0isCp4E+qf0GK11FskLmyuDj9U4qSoDgMTpqgOmHx8cKtPFHs+/4cuPg7HhAGAT790ZOU1MuDRM1s8EyZr14yQYOGZQk33amyc9PFNtoX9jlrLNfuPrM+MNoOUjuDF8SxfdtyPBiYMAJzpWcz1L69eyM8T/0/I/KuxWjR0pjHFZG0/E+3N8tnNFjgvXYbdbMFvBRojR2N70b6X9cWlkVacetEmMGGUtrR5ROUN0doNbHZfTQ2K/z8tOEz4puhvyoTxuE8mmAUmTJiXKYcwt/lOLMvbJbSdqkPlv2kjTBgA7DnM2kY9gZbfvsVugikNmZ+LnhKDdOrIFGjsMwBwnr+AtLmk/3PfJ1Lq0J+Mkltax8qCFMaE8WNLf+vnqfUl4tn0/ax9LG/6d8T2rTS/QPg2n6qXj4eOXWD9+tCxC4LDl9LTZ9hcpzQpqgNNviYqR7LwHK6YMH4sujwzkd1yUnqc586h7k5tXQydmGpYV6L2DxbwUUFEwcowQx2hT+5l7XJ1kA55ejfrL76N+rk8/EQBY8IAsn7R3+PSiIAsf4XmPe7MM4RR5cFrHWEq9UwYTw/vxh6A4OWN0m83W/DJOHKDGde2KxTVgYWtmrF+lx10y1tqDi30fQoQu8vGyXVQdugEYg/exptZ4rxSVAfOTyBznca9AoAL462MCVNUB7KXhWNhiz+ZXbPdbEH4tAS4AkV1MM90fH2hk/ZI6aTQ9ocEuHt7I/MLMlfbfaOpYVNo/kES6mwxuunn687+xMpU6SkTRt3V6+eOviwF54WLwvrEq7Dp19Yp2aRdHs38mev8u2FO2n9J2keZMBZvTNJHepr5/qX/adt3zJ4N/0+SEPfA4/D9MdkwP5K/mOnyGwIgMGG8B00+RmjB6zZkTbVKaaVzigJf/+LW/micXEd4p++nVIsJMa/GC+8TD2xkz/UWJgtMmKlhQ9ZHeb+2F8aNp49vK8+EefgR9VzKhAFA6Jh9zIPv32E07xkoB1D2D/z9H7gqqroR+y+D3msiUPFH+V3uLoR6eks3Bz7tcmIwUiwr2EJhe2ESfHbmobRQNeT/MicZE15+ntlHVUaDojrQ+bmJqPUrYTo6fhjPgsKW9I3C9rlzXEqLSspv4yG/KKlEqSIJFk0D5AcGADjzrA2NvxVjh3R+biJ2fTPLQEdFi97Vx2NR+5cUId+lkVZ2E0dpUFQHWv01Cr6rarI4L7I2eAS0wHObElHPdB3RXp6VtpE/rGcMn4EHho7B2RduCnZTiupAt3Hj4bU+FepvbXE4ZkmF41WRlNFrRxPGRC+40kiw6aBAPfz57KqPZQFbWR9YDgCOCGM99Hfa/Ehk24nb+tczD+HZw4+zuHMAELlvsOAuO/tTKwJeMwZkpUD7Pfr1eOZ97HJiMOrGESbKo0ljrNuvsLwAMSAPfE2LqxPwx3iETkxlHvT4vLS+gA1PIrvPj4bbLD4vBd6bl7NbR2xeMk/YoGUSVF6KDgCmNiHMplFRHejXZQBKs3LYe/62iOINXjIJQS9p89QUHIDShnUMLs31YwOAeabUg9tWP+bl724gc3EEMrrPdzmnZXOvvLMFbrsc7PnK0FjB+19J3yh4rSfMB++dNXuKVYiPRPsz8v147HuXqBLTutLmdUJ2H/mtFkBUIA++Ot1At6ISl+lUEMGDfi52PvSIwSawsnXTbtZuJ/RzQi/cuJuDGU9T5Hvxgic6PT2KSuw/edXjiujm0y6OtaL+vGR2E6iHimjlb9Up0Jsr/nZaVi+9DdS/p3WW3RcB97/kTnsU1QH78f5Iy2zKbHFyfglHy8c1m2VXHn5L4qKQO6jccNMuu2HWH8Rlfdn36CWsD6uHM8/Y0Pg7uXt3PRS+asOR5+S3xxXNEfVlG4uF+XfmUJ+HR6I89TC8djQRNFv+vzIJbp7VUGdbbVzuQlRCe4waJxUqyOo5+3trNHr4hPBels/ZrSNkaqjCXOE8LQJEWEFjGfLQaq8nc7EPANceixHORoBRQ0BPf2XaHLL20uf/mRuxjq/Dw/QP3Ig5b2Lb/n/3jZjHf5uAKqiCKqiCKqiCKqiCKqiCKvjfgH/Ko2GV18Qq+MeBOtigkhy3rX7C+1DPO+pfR66wgLSAJomj1/x14zKE6/Pav6RIb8MAIKxaDYPER6ZOQFXM1hTXZLdhdrMFEU9oXn681qcK9QKiB8bw+c9Kr/J5WF6QLE23vjjJkMbT6HhtOlMXo7j1t3xZn7kOvAsQ19klIy4aaNs9lUjc+/YeIkjlWj5+CElfzRQkbyX9ojDo+FlWdt2u3/FNzz7CbdjlEfKg0XazBaY2RB006GXSD+47DrDbsLQ5mpSN3hqYBx4j+aoT6VRQanUDToCoPfFttZstcIsMY9JPu9mCpa2JuihVIaR5TfV9YGrYEEWdLwrqJlMbOwxt4NVCsu1zEffA4wCAT4LCcSh6KeBO1FnbpQxHo7dMwnxIGyU6SeHr6nOiH17PPIR+XQbA56dkpu5RNy6Dqab4r7mCuPCeCPsuAS9mEO92ga8l4/XMQwwfVV37cVkfZN++hn4d7YJaEACEjiWS8A25ewy06G9GTjyp0Wzavt8w/2XzXW9Twnv4tJstKG7dUHjPq+1ROvjbsFcyD8OZkS29DaNQ+KoNPQ4XQ1EdcF64iEyd9zgA2NB6nfDM086r/9D/fCxCfb/opb/0v9suUY2pztIUQQXz4sRr2jvOk2rAG8nI/UBz4kP/N5hlXC9Cx+4V5g4P5/8IRZNvkgTa+DGT3YbRd/wfvQ2bKVmHXZUHINyG8ekVldXDmkLtlshutqDbk+MNcZlk9bObkiNXUHenr8v69GNHw1Z8aV8Mu9mC3o9qoUFc1UfTefVmCtSOi7fVNNWra8C5fc4cKKpDWFP477Ci2zAAyDjsj9AJ5Hu/+ngsTt63UMjHh1rhy3olpiJ03F5h3ua+b0P1tamG9mbfviaUp7TxZdeH1QMAFDcrh3vt2gj7PkF4rwf7kSvwm6rNUb79fB/IgN542s0WEtNMV8fFtaGGNclutqA8lezja0I2sPceAS1c7pc8jitDSaBxqvLJ1/l7zi7BPf75Dl4AiP16ZRDgo5Xr8Jmmqnp5uFgPvQ2T9WWHqaSv3XccYHQrqsN4G7aFONT41iyOsf4MYQoJZB5E9W2lIT/ev28ACl+zwS0yTMjX8YN4IT9PD503VV4T/+9BlWrifxkqUk10tZlSoO/7dbSzGCOu1Ahu9+7E3FnLcIR9n4AmPQpwa3pT1FxFmKwuz0xkMZgUlXjVosE3XanU9Ivuh9IC16pNiupA+J6hmk0NR4Ne7YCmdzn0CLw5FSA+/+nVbXDlbC181HUVhte+AOvBQUjusFLafxTvqck2HHppOkvL+tSK9FHEID3tx04IfVJUR+HVuHj6zsVbsf9tzZC915Gr2NyuNqbn7kSQZy2pqg9Ph2ysLo2yoqSum8G1PY+DljGFBCJxxyqXKkUZX8YyT3mu5pTdbGFBQCubbxTy37bhWLxcZaYienmnBfp3fH5ar76/sqZaEfiqph4asigega9ywVF966O8aSPA5Iayg8cF/GNO5rLwC5XRy9eph1v2TlC7eKLl26J7e1eHFVm6PoCnDNw6tcOGNT8j9M9RSLt/odBnvGMPQFNFar7bG3kxxULdM3N3YlILEuPoqfQ0POR9nZU7VXpNCDbK073uenVDAG6+bxbk7URTj1qwTZ6EpC+JXU/k+/FoMMu1alxlYPLxYXH5MqfFImPoTJdlebynJtvQ9MuKvxf6v9eRq3i5fqYUb+GqMPg9clRo561NLVDtAc2ejTpM0bfLo0UzlObmS2lw8/KC+wZfOLsbBWGyOcTX7+FnRmmhamiHDI/+t7N7R5i27RdUQflAxhR4BwIAUQ++7VPKBBY83sh9g2H3P4F9EUYZrowGjyaNUV6nlstYdjSIO6/yV9m6oMehqA60mZ2AgF/OMYGGXr3OFZ0Urg6JRe1lKXc1Xxsn18HCFn/idrkT/f2IO/QOnyUIDlYALQCzDKgjB74NEVMSBM+kFdErxbk4wqVgxNX6FPTLJGQ+PlOaR79nVDT/9M/8b5lzJBnuytpaWT9U9I3ox0JRHWi9cyRaDD7Mnl3REeVwItViEuqi6rZlXSxw3+kQ8FI8/BjzuCmYtpmFNYHm+V9RTexheQ0eJq//v9dX6izBVsen92x//CegihH7L4PeayJdSMbk3Qc1Voyvw+s4yxbBmNfiUW9hsvS93iblyvogJHdYCUBbIPxTaqEgVpTuUXDzrMZuB2SMHAXZQpnzsRUt3xQPaMWDYgQmDwDieg1mLshLe0TCY+s+g82KohLbqBo7TwixdzK/iEXQSykwhbViQSFp/vH5nbFtZ3sEvSjeevB5XG1CgOYh7m5AtglUhl9RHejbdyiLc3V1SCzORENgogCwjZ+mxYX3ROKhLej4YTx8Tt6Cx9Z9lW6UgDZGV4bFos4SeZ8I7XZzQ9SBUuzv1Ujw2qf34kfxt00agWO2n2E3W9jYU1q+zkliwSwBQH3FhsPPE6Yu+xMr0p4QPbSlfx+DkKd3uzywBijjkG2fi9XFtQTnEDyU2zpg44qfYDdrXiuvDY7Frq8rP+jTeqltTf+jRXjGJ1egQw9f5iTj6UnPYtu8OdJx5+3i9GM09ISK0XXOMvzf5e5CnzWTWZyuikBRHQjcPBYhozTpcEVzIXDjOOYY5reCPRjoH/23GCeZ7Q+F/keLmMtuWf18WkXfiR7y3rHh+CTNmcWw7O7CuqaHq0NiUXt5KnO+w38Dz2acwLfBrVlat/HjBXskandS2XfUck8NnPiwPXbMml1hG/v0G44N6xYLZXmgXgUBMAblbvuG2nBWdMCN6/4o4O4m2CLe7YG/rIsFm5YvcNk+3taKQo/Dxdja3uhSXXa4Z7Te8VbL03J1SCySviTfqkfTJjj2bnN41LlliFMYuHKi8J3wOPLftpHYfTpw79CGrbuu2q+oDqTdLsYL9w9BaW5+pQwI3y4+H29Lerfj+v/CmCiqaGNKaQpQxjEvfTzjR/d9RSXOfwJeJ+t170FPCDfsFa0ngCaIzF/RDs0eFeeCK0aH/h91Mh9ffTEYvnPEW119fr392+c5KXi5pXY7RgXO6d/FsLmQ/6YNzT4WbcffPReGlA6eUtooBKVWR2bUTSYMuZu+54EKdgBic0gD01fWl1WMmAj/FxixKtXEewT6p55Hv5j+bFE4M7Ypvs7RNg5FdWDT0vnsWbYI1FsoSul54A8riupAnb6Z6PRuPIIXa17XCp/RVAVMdepAUR3sr/z2LQQkPmmo1262YMN17WOU1U+ZsKypmoqi98rduNk/muGwmy2MCbu4NpQxFZQJ8/DXVDS3z52DsqtXYfLxYfHNmrQjh9cr026jrIuF0WI3W5AXUywwYXzMHx7cIkQ1Ahqo+al6+SyeCd8+2jfx6cRRRGlP4onQ1Jh4V+w1fCx8d/lIx4qmjTmZC7vZgvXrlzLcSV/ORPBk0YWz3WxBf79IXBkWy9qVeGgLABIXjQYl5Q8mAOBes6Z0o1FUB+osScGpF21CGv/7u18fJGnl5Ui1mAyu0+nNgB4/3YRPv2BDs80lmqdDAM+3JN7+0n8g3vjMn2kBuQNeTxY2JwDMMQDtA74NdrMFoWNIXBieCaNlrw8kdbglHYTdbMH1R2IwfdQgKKoDtZa7ZkABIPDXSUKbqLrP2jAfzL3cxOUB6OaD0Zjc0opqGzQV3RsDCINzq08U7GaLSyYM0ILf0vRnWnRGyDO7hX5utVc7QOgZVJ4Jo/+vPRaDwVk9hXS72YLQH26xsgP9o5G5OIKNRfYU0SuZm2c1oZ0AGBMmi8G1NswHL2YcxdnfWwu08Pnulgngyx6fpAWB/eh8a8O6pv+d9OVMgQnj66A3fhTfqVGad1ZAi0HV/qsEIDZcwEHxeDRtgpzoG4wJU1QH8t61sbWDP2yWHyCCto4fkjWXj011NsGGzw8peCWThD6gTJirvtG3lTJhFJ5Vo4R8drMFzpMZONulAcuzurgWZHDjYbIun31Kix9FmbDBx0/j+sAYlPSLYngBYMMaLa5Sac9IXBppNTBhfH79t0xpVQr2Cfk8/P0E73Wlp04jdNIexoSdfsGGiFSiLh7yzG4WC4vHAQDNP5ELDCgTxudXVAfzHHqzPwlc/uDCl1Cam48zz9qENfbCOE3VnX7fMqYdAOqdLEfazGihLsunotdG/pvmGQf9vqqo5BYwfL8bFNWBoNTqwljzjn4oTaFj9jFcdrMFB94gAo25zXdCUR3oGxjLmDC72eLS6Q/FqaeJxgOk6z//Pq7bIJdMmKIS752UCZOdIWjZpknXhfTwatWFMlsXEAc9dM1EdHs0+zhJwGE3WxgTxvdP+H43nFrdBq9kkluy6X5k3q1LTQQgqlJSXH2PXjL0Df3v98hRZHxNzg08E0Zjc8r60tX57Z6Eqjhi/zGouhH7L4NeNfHNLAdG7xwL/5UeqPH7HmT8HIHgEQfYouVuaYsyhzE4KgWaL/9NG449NR1x3QbBmZbpUupTEdD4PBRn+k8dEfKE6JnI1QHq/ASrwYMXX0ZGi6vDmf3IFbStXoivgttUKo3U/876zIqap9zQ5CtNNUJWNwBDXBt+o+j92Ghm22I3W+Du7Y2y4mJp23jckQfKMKWx5qXLIAGuhKZyWwe4JR00HLh5yF7aAQFD5ZJLPm3xVV8sbNVMaJce+HIX14aifv804b1+E+Uh79f2aP7YYfbuvkM3YfVOx2dB7aU4AOLx0HfCDYT8fgZfNyUqoQGrJyB7ADnYXnjSymLU6OMo8bTI1Ff5NtpemISkr7S4NrJ+5G8keDw0L8VZ1jUCnuevI3HTL7CbLbg8PBZ1F7tm7Gi5Gjsa40ZX1yrEd8ucpM2KQvaDc3DfUxPx1w8ao1pZ/fR/wes2tFxWiLHKNnz+wTDU/TlFyEthT8ltwfNX2oxohMYbvw8KNI4YTVdfssH8RZKhftn8k7Wbvm87IwG3Wt8Q1K5k7Wq3zx1HIsvYc/YnVnawBID2XyfA/BlZB65tCDR4PDQFB6C0cV14Fl5Eac6deIHuJigFYiDasO8S0L7/CSwL2IqEwlhkRt009IeetnFp2Rhc6/Jdr7+u5oIslpysDP/bvXp1lN286RKnojpwqvQaRg17Gu47HTA1bIjEg5uYd1FFdWBETjchDlXarCj4bXQXtBqmXgjBq77plbZRv96xGHy6PP1i+qM0v4Cl0VvsDde98FWwGDidgu3gLSR1qAZzSm0hdEdF6ycFetvC9w39zWssAEDmEgtCnkzD9R7tUH3tnrvCbwoOQGG/ptKg9PzaU5lQgoceh4uhvHC/1AshBfpd6KGitVyfh/6mXnX59EujrLjxyCVi/8tB7MuTUHexUd2zsnpp+lPpafghRC40pfkA+Z7qqg0VpcnKtUsZDr9HjrLYgnazBVlTrXC/BTTe5xRibNL6ZfumHk5NtiFl8td4NKIfi4FIafqfuRHr8Oo/dyN2cOo92x//CahixP7LQCd1UVog6tQmF5SyzVT2DBB7kxVBm6UHHLtZHlSQx3f01g1MbmkV0mQSPT7YIQ/nJ1pRu6BUUOlxr1kT6zOSBDwZX8UiePJuoLwciupAxEcJgDvQ6Hvx1k+2OJb2jERBt2po+XYy6u70xeUuF3BplJWpYfLwQsZxtknr8VF1R30f2M0WQf0gY1EEMnuS28e+fYawOGT6DYQeIG7ZO6GaotnfuXl4IH1Be4R8dQvl+4hqgkfTJig9ddpgo6GoRGWp/MBRmFNqC+qobByP9wd6FhjSAW2uZCyKQPBI1/YBU7L34I0A0XBbtjnxZRTVgYA1EwS7Ln2/VZamr48Gfa5sw8z50IrmtgK49yR2N24RYSg/QOx3grePRka3BQAgqNLQsucmWdFwZsXBQmUMVmX56Tegd5Xs6mBBVVsASFUhl+UnYUgzzYEKb+spo6O0RySKm3oypu/8H6GC638+PwAhrASFW32iUG2DZvvjyp6RgqleXRaUW2aL5YrJou9CdzwBD08n4KiDYwmiXSHLK1FHk9VxLt6KhjNcB3PXr3/9OtpxaYE3avXJYu7XQ1K98L3fbtjNFpxNsKHR9Ltz5Q4A6d/EIuuxmUL77GYLbigBqGHPNpS92wO1rO/0tFW0F/C/38naj87V3Q0u+JflJ8HHROzAct+34cR4MhYhqV5IjyI3gVRtFyCq6+3qnzbYHFIwhQRi1NptmN+qxd8+6NJ3vP2iqzz8MwWafmG8FY88sxVvNDgpvDM1bIgzjwSjwSzjXPFo2gTr9m2Q1hn2XQKOPmMMaeCqPZWNr36NCV46SaoeL1uPeZfprtbrrCUWdjN4NzTInmnYDBpOQN/Pi/N3oYHJWyhD8eifF1xpJKhVU8icFuvSLECPa01hKh7yM7p9d9WeiuihEDElAU22X0TZkRPIX9EO8zr+hGeODcX1pAYsXuvQE6o0bAs7HwS2FG4Z9Xl6jhgHj637hHOJojrwwNAxzElIRXsjhSpGzAhVjFgV/P8dZM46KLha/AHywfJG1ry0nYfrA2NQ8zfNw6EeZ9rcTixWSmX18QbQVILn6gAmq+tm/2hUXyuqiLyZ5cDHgcR7X/k+0VA+sXA/4vw6CvmL1oXgQlEtBI8w2srJFumK2kQlq3ezuLtqX4X1xYbjdi1PbF04l72/W0mnjHb989ATKn6JaiXYysna67OrPprVKMLnTQ7AbrYI9h53Kxn8u/QXPWFlcb4qok0PsQdvC2ojAFFpTR85w+X8cjV+NB4Vvem8m/G82z5xBYrqwJTzrbAjvIaQTm3j0mZHsZhGiupA37hhWJ9IYsAVbwjEzvBVhjGXtY1PP5tgw4G3Ko43RMFutuD8RCtuNHDDsaemo89DI7Bhzc9oNTeeOSCheJzdOqLc5AaPLZrwIuszK9xbFAuxmFzVR2+RZe34f+nja4/FoGzseXwS+hs+CQq/qzKK6sCLpzpiWtP96DA1QXobwdPiu8sHSwK2CbTSPG1mJ+D4BM0+TaB/iz/UDc2FGF2yNlKnAaZWwcge2gj1jzpR69fdgrMPWo53ohOwegJCE+TqdYBm4+fqQKkH/Y2gK4cndNyoUwe+Pe7hrbF+wzKWpr/ZUlQHNlz3Qp+aJRiR0w0FH4Zg+9w5AFyvmbK15vxEK2OqaHpl6z6P+4dLzQw2vn/nW1dU0fayojrvRhglW7dk61Hu+za0eFecT6E7nkDA0INCfrrH6+vS00djOsrqrKhdsjR9LDxZe131a957NjTbWMzsdmVjwTuaopDxdSyCn69YpVwGrpg0V32Q+4EVLT9IxbrcPez8QZ0n/b/uD/rvmwfKrBW8YYP/lKT/HUas/T/IiB3+dzNiVTZi9xDQD1T/ofLv7WYLWwTaVKuJ8C+IjvnqEAXXHouBojoEPHSB5hcQj5bNGc5aJ6uxMm12jTTUyddX0vU0FNWBvHdsTI1CtiDRurocekRIr752D86tacWez02yYur9/QAA5fuOwnJALE8XQb4/fPql4/Ew7WBI82YvCxee+fcL8jT30jzNvKoj345bfUT7h8gDZdLy+sXdMG4ph1DQoxrLu/G6J8uT945NGCfZmAduHGdI4/ONrnMW60/+ZSjLP5t866Oo80XGhK0pTMWm5Quw/YY70mZGV3hooP8XXmlgaG9FdAOAz09Ge0U6Nq7oLekbJRhQ07/Fg78V8seFdRfocXWY8FpPbn7+nDHbkE8/T/i0yhianF/ChXRqt0dx8EwYTZ884EkAQETrHPbuWTUKZY5jGJ/fGWnzIwXVSlr2WTWK0ZM2J4r1CZ2zp1+w4WoQmZ8hqWRT5F1I83Obtq/BrGQ0+zgJbWYloHzvEdjNFrR823iDaNq+H1sWzRXakT5iBlo+fsgwjpeHxwp0ATC4qXfVr65sNs9PsArla/26Gz2bpuGTkAiWnjZLtIWSwZHIMtjNFhx8dToU1YH8t0S7SP4AfKFzEbJvXxPSTK2C8WhmLyHwsH7+KG3WolniBYEWWXvpjafzZAaav5eEXd8Q1dLS3HyUbWkm5F3ZphHDE5pgdAFf+68GmJtH7HtqupN1hjJhp1ZrWgH6/vHc3pQxYTSdZ8L4MrQNwS8YD8Blh04IbdSrF9rNFnwV3AZ2swWFH4Sw0Cb8OkDrMNWrK/Qbj5cyYQHrxku/UX1+gHh+pO++OdiDhV7hywDEsRDfZhoSg++Dvn2GIGTUfi1P0yYCDll/Xdsguka3my3oNWysUI7atukZM4rLdBMGHAFDDyL2oBZsOP8tG9vj9fNuTXFNeDRtwtKpow79uknH4crQWCEd0Oye9f1L1VRlDLQehx5a/lbE7HZdlckcIqqRA0Do/MsCvXrQp7tiKvVr4ppCsk+kzSceME033ODWNhjBf0xC2rxOUFQHWydlbXPr1I79fj3TuDYCEDyq3p8wQcBDHbAdfZoIearc1//fgypG7B6BC2OjDZtMv5j+AOQLD2Va6AZqN5OYWYErJwIgHhDtZguuDdacTFC865LWMDzUWYLdbMHxzotYXv4/D3azhXkty/nQKmxKvOFq2xkJ2Bm+CorqQNETmupjw4dOsjhXDWcmo7xEcxjgiACrN/ZlLWZY6E/xGHNScyE9pfEhgbaJBVYEDDkkbGbpCyLxTtZ++KfUQlOPWgyvm2e1Sg/b2+bNEfDLXDUDgPpbW2Fxlm1YAW9oB9xpwWGMxnrpZej83EShLO1LClm9tZs0GcNIY5rZzRYWE4q+92jSGO61azO3+xQe8iMH+0+CwpHx4EykTY82tN9utqCkbxRG5d4PAFjc2l/IQ52u6A9V+W/acDkxWKDX1QbNDtI/dsKpUuKxizJOH2anCvjfDogS2u0sKjLgjbt/IPsdkPikQAMAXH08ljmg4Wk5/ZyN5cn9wIqA9aQsZcYN356bm3AbtPxaXdRZkiJlynM+1Az5swaRGEnF92v2ADReTV5MMTOk5/vGbrYgc0Ajhndop91CnwPAwZeno+XaW7CbLUzFLOgl0dsmDzydzd9PMuSbe7mJ0AY9E6ef7zRv3cUphrEFgNZzSAyfzs9r37Mej/NYmtDP9H+D2cmGfv2o0WGgzMnSqQ3Tq2eMdevnIKX5WILxVuvSSG2sqLocZRCdJzMM4QZuKAEG3D8kzhVwps2OqpBBpHkV1YGSvlFMDZenP/2bWENeevBbEbQZ4+6EH9D3k/5min9/u9spaborwUTXiROEZ9lhN3d5e/asf582i6jD6unh59Diw+uF51v2Tix/zi/hhBkdnyow0bL6ACDj5wgEvEbW3bl5O5HW9ScMatVdOhbHbD8L6dQxAz/fyw6dgKmV5gyo9NRpYa7rvw1FdWBX+CoDnXp15kYPE5X3yH2DWZ0U7GYLfNKdAo7TL5C2p3TwZHXyczmu+6Ps98xLfvghJBTr9m0w4AWIPW/+WzaB7uRpRi+yVBCjhx6HNftoV/spD3wfxy48KKQFrJkgOOPi6eTLr19PbNA2XPdC32AxJqaM6ZLtPwBQ8LooiKF7YuiYfYiL6A3/T5KIOUK1MhaP8OIYK0w+Poa2UCaNwidB4dJ1kDroAIA/p882tJP24fmJopOkexloQOd/4u/fDlWqif9luBvVRL0dB1Xxkx009GUV1YGOex9Hw4dOCrg9WjZHaU4ezv7eGgeilhkWPo+AFijNzjUcXHncpT0jkbhwpqDTTVUMAWKc7MzI1nA280dRZ38Wd6jXsLHgNycKfY9ewvM+OQaargyNRZ2lxPiXxkDiN4G6O32xPHALYWoCW6K0QW0oqxcZNkrahuO3ruP5ljZmXMu7m9XHCJNtuHw6Beo4Q1EdiHorngVCpbr4+jL82F0ca0XqRzMq3NQqGutrj8Vg1zezGJ0xr8Vj96czcN/TE1Fz1W5cGmVFaQ0iYT69ug0LEq2np6L23S1dtBy17XJVxhVDLEvnjen1dfJu8nk6XNHJQ+Cvk5D12EzYJk9isYTeP9cWC/Z0Ruj4VCOSCnABQN/AWKzPIsxQyk0n3g2MRNq8Tsju82OFtCG6PbDHKA11b9caZUdOGOagojoYzQD59q6E1Gauvu/2gCTLk7u8PYuxQ+HD7FS8HRBlsJGT4dGPQ/YUK9JGi3M7KLU6pvulVEqr7N3dzFP92vV3DoxxEb2ReGAj7GYLCt6wMWk13yZ9G6naKbXD43F22DMUTQaQ2HZ9mndCeWmpYK/GQ8HKMPgPkn8z+vbq1df0eXqOHCeolsqAj8/H91P6tzEIeXY3Cl+1wW8qqUP2DfJ2pPo+Nvn4IPHoNvYu7v6Bwp5AY3LRMvq4aa6At+m927WZH6/K1h5qo1XReuteuzbKrl5lz6bGjeA8c7ZSeuh/GufNFb2ycjwtiupA9zFPYtv8H4Vy7jVrouy65l2Q7uUAUVMv6iwK52R1VfbO+8+GTKjEg37f5CF9YUdk9ZrHnmUMbEX9JaMt50Mrgn46DWdGtjYu4a1RduiEmD82HMqqhUK9AGB9aZIQwkW2ZnQbNx5e67XvWRaWgYbP4em+MN4K3znJyPnQipZvJwvfESCGKuGhxYqRKHjm3XtWFY+eWXu2e+UfU03ccuSze7Y//hPg8d8moAqqoAqqoAqqoAqqoAqqoAr+R+Cfci3/f+CuqOpG7L8M+hsxVxIpvdTSrVM75MbVQfMP5NJQQJPMmFoFw3kyA4rqQJtZCYJKEl9X2qwohE5MNbyrSGp1YZwV0ZMOCC6cAU1qVzwoBju/m/W3bj4qaguj9Y6XJz0UvG4TvIXxNMW8Go/dU43SOo+WzXEzqKFLybH6ig3mzzQ33Lc2tcC2sN8NeDKnxWJ87y0GaRk1Mqblsz61IvA10TFC1hILAoc5DDRfLruBwf6uvVrK0u/mtuCVzMN41jEE/oOOMhf7NA91O66nxZVU9oHjD2JTmz+E9LuBotFW+CyQO/Tg63k24wT61RQNJu7m1k5RjZ7KKF7eUQu9oZDRoQd6O0XzWA8OYoHRN1z3QqDnRTzTorOUFgB4JOMBQZLMS6sVlbgJ/7nl9r/Vj65oth28hXcbHhPSrj8Sg5qrdldYjgK9+cr5yIqWb5H5GrrjCaR1/Ql9g20ou37dUJZ6Nnwzy4FO1W6hpns1qVRbNketL05iN96V3VoAwP2HBzJvhXw7KvpPQbhBaNca6zcuQ5dnJ2Lnt7MQ81q81CPr3fQZD5mLI1Bva3X4ztW+9dczDwmORvTfbdeJE+B1vsQQw8nZvSM2L57H8ub92h5JsbOY101Z//BrS5NfvQSHDqa2oXAeS2MeRtvs88DxyFLp96fvx5K+UXjtu4WCC3m+HXrvtPQdDRxMwSOwJdbtXM3K0XHgaddD1qdW1Gx9id0uAjAEL65sXHJ+CcfJ+xa6XC9l/Zj+QwxCniL9R4Nn82VNYa1YOAtZn1SUxoN7hzZYv36py5shSo/+nStvgxWVkeUDgM7PT8KmL7/FQP9o6EG2/vPP1EES/272ZTMm1CW3l/2i4thNpj4Y893sWzJwdfMZ+X48GszSvuPLicGoG5dRKT69Z9kp2XsQ6VWt0vniirbuY8czfPwNtWydOxdvhc/0P/8nnHX0DHv5n7sRO/r5Pdsf/wmoshG7R+D7Y8nw2VUfAPlAaZBgCoGvihHny/ceQfMPCHPAB1Sl7wFtcaRMWPgXrpkwAIwJu/CkVcBDddgB4Ha5qLfuPyqLMWG0Th6v98rd6PbkeAGfojoM9d98kCz6ppBAYVPIXBwhtEVRHZibt1PKhAGA/ydJDD/fD3azBfUWJRsOZACxmbvRUFML5d8rqkNgwjK/iEW1B3KF8jR/eeMSvOpL1A+p44QrwzRPT7QNPBNGywYOcxjospstGOxvRfrCjlBfsgk4+HovPGmVbhIeAS0MfUd1+z8Lao+j1sX4PCcF+yLchTzNfieeMU8/ZxP6sGxLM8Q98Lhh3rj3zBfGnZYxtQkx9CcPe6bMMPQ1xfHA4NEs/dvg1gx/9u1rAg79QZZ+QxQyhmpG39cHxmD2ZTPsZgs7RNrNFpxdFcTmi6lOHXyekyLYnPFziTJhtGydvpmwmy0I3j4aXwW3YUwYDehLy3cbTxwNrArexHBFOZxYt+t35L9tQ9p8YhTPx2ri69Z/O3rQ9wMAvNvQGG/wr+9nScvp8auv2EDVD1u+lYzrj8TAbibOAuxmC9ZnaLapi/N3IXd5eyiqg7nLf/KXeOZAguYDgOBtY9gzravuTl/Sl0vF74RC9tIOwjN9zzNhMqD5ot+Ih6I6ELhxnGF9Wl6QjPUbiWq29wqiJlhsdhP6R/abBz6dX7eDhh+A79xkgZZuNeSOfwAgrtdgeO9Mx8aVPwl4FdXBVNhoQODmjx3GkGaiwx/6X/8tBg5zsHhzFJzH0mAKa8XCPByPFAURfNsoLvrfa30q+tQsMcxNmt9j6z5cGK/Nf1pubvOdLGC1W2QYits0FNp/clJdQ5/wdZyLt6LaZTcc5OJV2c3G4MWyNpi4A1zLx4nQKW1WFKbn7qyQKaHvKBMGgDFhfH7nUU31f8EdByoUSja2NORXVIcQfJoCtYPigT+s8+NqCmuljQkV4h65YiirXxdctZP+1Vl/FIPiRhny8rbB+W9r9mXRb8SzfNQrJo9zZZtG7DevTkqZMEV1IOPr2AqZT97eUrZPKqpDsDOzmy0CEwYAkwL/JLhmimFcFNUhOEDZNk/07EnDvlQE+n2HbwO1Of/hUrNK1YT14UbuaagK6Pwfg6obsf8y6G/E1JdsODyZ2CPwCxPvOh7QFpHoA4/Bp1+6gFMmQZMd1PTp9J3MlTWN9QMAc/J2ooF7NeGgxQMtQ91x87Y3ekaoIgmYh78fSgsKpXWcft6GJl+7to2QMSxM6rSmFRo+dNKQTxbjytWiX5FEjDFXG8cxhxt84FfAOJ48nH3KhkETt+KtBuKhXzaueb+2R4p1Nrs1k0nZKoJWez1xstNtQzrvivrUizY0ncYx8H4RUAoPMPzuHdoIwU4BEvA0406Mm66HbmBHeA3DOFCg6UFbx7CwBHqQlaWBZ10dviprv6ISt9RZveYZ8vLSWlNoEAuKbjeTOHEb8va6nLv6MXgqPQ0PeV831JE2PVpwSV4RzbJx1X9H/C0xn4/Ga7o4xor680WBDg+u+pG+k80/Gd2uvm8Ktf9qYHB+QW/jKa4Ps1MxauFzaPFukrRf5ubthL9HLfR+9Ak0+DwPFzoXGQJ+8+Dm5YUN2Zo9VvrCjswduVtUe2z4fZEgwKC3lKy8ztZRUR2IfiNeuNGl7W7/ZQJ8j9/GxVaeOPQSCSuwvCAZdd1ruOzjfSW3hAMf38dXh8QyO0BX31D+2zY0+9C1a/5LI62otyjZYG8IAAOPncNvbRsayurnvaI6MCr3fpyxXoFbVHvgUBpyFoXiRJdFwlxov3sYzAOPYXlBMm6Xl2F4M+MNsfefDbEqeFOlc8jVN0Zp02tGyOaKojrgKCnBqwExhpuju10n72aOK6qDxTUEjN93j8PFsHqn4+NAY5v59uZ8ZEXw91nSmIJ3Q1eHzxLY3qhfN0o2toRX7xyXbdDjLLd2MNzO6uvXl+ch52MrTo6ZwfJUtsbJaKFp3+XuQt9VL0o9eLrCwbc/aPkkZA4WHZLwZwxqw3VxjBW36rnh4MvTpeND7ST1dWUujkBG9/ns+cr6INTpm2lYZzNvX0NCC2Lf3mvYWGxeMk+o58rVMviEZt2zN0DsRqztS//cjdixL+7Z/vhPQNWN2D0G5i80L4YUFNVhOLTTPD790nH299YGiSifBwBazYsXFg69C3D+3clxMwR8AKAUaAec8c27CGoLtJ5+toeEgxqNiVR7WQpq7GiMwN8m4qn0NEH6RuvgPcx5BLbE6dVtUFpQKJXiqS+5ZsLy3rFVutDfSvKVvr9dx9PlhkTpVVQHYl+ZJOAr6xphwPV1UUu0nnoFdrMF3ceOR2bUTbyZ5UDWZ4RhoqEA9PQpqgNNdlzEvAM2Qz/R/92PPsxoaf7YYXTcniDQAwBvnW2PU5OJ1LJ4UIzhPQXKhOnfNeVUf5pOS0L6Tx21/igvF/qJMmE8jqBhWt8t/K2n0Id8WxXVgbDvEmA3WwQmTD//ZGPqPHcOYd+Ttn+YnQrvPxuyMq6YPT28FrXBIBwAIKjMONMyGQ2K6kB5aSn7LaOPP3CYGvjihxC5e3Z6SNPjKLd1EHBfGE++jfTvYljZ/LeM8yP7odlwr17dQM+kFl2A2HDUn5+MZfnGG/GKDqI8ftsLkwxpANDpbW1t+S53l4CXH0f6e0XQZiiqg7lrV1QHu42nZd/r0BNlXq5lhPaZryBo6xi4JR3Ehc5FmJCWha0L5wrzqtVe7Za7vKSE0VPWNYIxYYrqEJgwAAYmDICBCbObLQa1WrvZglZ/jcK1YBLgnjJhZ56xYbC/Fc+f6qRHy8q5krqfft7GhFh8/1A6KByLn85uYRXVAVPjRuBh91SyplMmjIbSeCXzML5b9DAKV4UZ8CZuXynUaTdbcMZKblw2/L4INTfVQcvPtLWA9svhmCUAgLruNWDbmSDQSX8X33/OsPfoGQP63r2DpgJJ4VJEQzJvOCYsc1qsdC6HfZ+AZ194BopKPOS5W9oK9FLwaCLeULliVG71iRK+PX5s6pClAovzdyF7gOYdb3H+Lmxt782YMD1Ovr1lgTdQevoMw8vf1uj7kjIGAHHSYTdbcKsekP59jFAH/U+ZMFm9ue9raq4ezYinXMqEmRr4QlEdyPg5QqBDvxYAxGNzSV/C7LZ8M9kwzhUBzct7ZaTwfM8RjAmjuIaeUA3j1H73MAM+AMgcrGlH0DL8GYM60kj9eAZjwk5NtsG9XWuhnYdf0ATl/PgHDddimyqqgzFh/FyxfJKAhBaap9PMIR6GeTAwtH2l/XRPQNWN2H8Mqm7E/stApQtFaYF4rFVHaR6Z1Et20LSbLSi3dsD9s3bjr/DqwgIVuHEcQkYTZoqP/l5ZXe7e3lifvgsdP4yXehE8/ZyNBUk11asL56XLGHjsHCbVKxTyRkxJQKPvNem2XhrYbdx4bJ87x4C/MhpvPhiNHbNmo9O78dj7viZ5m5K9xyBh1tfru8sHFzoXSetw1R+u0qjE2ZWUk6+fplEo7RmJLYvmsjQa1NjV4Yt/5gNh03Tqvevi2lCE+JzDkoBtckamW0eUebgJAad7jBpnuFXIXBwhbDK0HXHdH0XithWG9unHsKKxlAG1VzHQy9nJ9D9ahGd8cu9qbAAwL2h8EFrZd0Wl+frbAAqXR8Qi5bOZ0jYCFTM1NO/QEyre3z7AoF77d3DI5hktK+sDOobf5e5i6pOy9sd1fQSJO1ZJ20SfVxfXwoyQYOihMvr5+mhgY9k7Su+gtgdYSAtXQAPLXh4ei5TPxdhDMjpk36QrGmRpNDCrKawVU0e7MM7KVBArKqtPy/rMisBXNE+fffsMIW6z7wL0uPsfLcLaMB/mqU2W97vcXUh44hmU1jTB6eWOmr/tdrle8eVcfVN8YHi+LopDNh/ez9qH2OomIS3yQBn2Rbhr/XDH/lDWzsr64sWMo5gWHCYd2x6jxmHrwrm4XnZLav9UEV79s7C3rpyIkGdIX64princfmcsikDwyAMw+dYHfOrCmZENU8OGcJ7T7ESfzTiBZ3YOZ/szj1/f9uxl4QgYcqjSfqGeE13lk6U3Tq7DGG0ezjxrg+M1o5aOjNa/ux7KytnNFoOdsiua+bTw/W74vMkBQ72K6sDzpzrh66Z7Wdrd7EeV9R2l/4HBo+G+02Fok17bxBVjz5dxr10bt65c/N+wEWvz4j93I3Z82j3bH/8JqLoRu0dALwVJLNTc2uoXA34RoNAvsg8AIsFyR7lBYkUX+YyvY7H70xku6dDjXp++CwCw/+0Z6PQO0QV389QMVykTBgCJx3bg1qYWOF9aW9iwzjuL0ej7JAF/v+h+THIEADcaag486UJ3u1cke9a/o7Bj1mwErpgI3znJgoQq0quatAxfljJhPB0AkL9CC9BoN1tw9mkbmu/2hqI6UPiqjdWxskCTztVblGzA7+p3l2dI/LDzE4gEW683ntLBE1mfWgUpHI9HUR1YW0jKlO87inb7yGdMY185zxCXuKkdl2NJwDZDH5ZbyY3L5iXzGNNF66LPfP6M7vMN7bCbLXCeJPYwGYu00/K+kltw8/CA+op2MxmwbjzDZwrV7LFkElJFdeDrpnuF9/S3adt+hnNtmI/0O+Dz8+9o4Fz3qzfQdcIE6SELAMwDiV2V/haM5qn7s1xFTD9WN5QAA/12swWFq8KwtLVZUCGkN6p7Sm4b6ru4VrxN4+vLXhaO3PdJP/frMkB6SKH/KSPNOxLh6yq3EjssZ7oYVFoGA7w1Oz2+r/n6p2bvxtmnRUcSdrOFBY3Vq13ZzRY2pwEiXT7cW1OXo3Te7C8KV8Y0JgHNaRwz/o8f/6LRmn1Lu28TDG3ib9KprQktH+XQ7GJpYNbETb+wNN+5yXB27yjUd/YpG8KnJQhjQOs3NSS3OZQJs5st2HWzjMSrunPzoJ/XaXPEuHZ8X2d/YsXaMBLjiGfCKI4+D5Ggxc+06Ixli76DV2KqyIS5m1gZ/ZpF89wYEA1FJXZaFPem5Qtw31MTBTpla9YLGZra8ruBxBay5R5NVXnHFDF2Utn163Dz8BDooXkzPxeDfJvahMButiBtPtkrpgWHQQZ0bbObLRjoH+0Sn6v1REaL3WxB6IJ4ZA2ahbTZ5Jbsh5BQtP4xnuULHkm+u8TDW5H4528AgHMPBgv19Kt5E1m950rr1oPzVE2YggNc0kqBMrIyRiJ/RTvYzSTEC49nYYs/DXkV1YHG34paOvp6+Xey+mIP3pb2MS33bMYJQ7nDk6cj932b9FtwxdB83uQA2k5PkDLPXzfd63JtkOGluPVpb2aJZ4mZl/zgvlOj0e4Xwcp9a04Vvn+72YJ116szXDSGJ99/ZVevGui6Z6HsH/z7l0PVjdh/GXgbser+LXCxa3MW1yLvHRuOT9L0lJcXJAu2QIC2ENEbGR4KXrdh3PANUNrVwVPpafghJFTYxINSqyMz6iZMjRsh8cBGho+X5FAJuqvNiIJeikq9F+oPDR7N/FGaX8CeeenSWWcxRt6xJyjtGQmPLftQdl8E3P86YJCe6X/zNNwt6KVwsve8ZzZX+agueEX4+7SIxtlxkcw4XlEdCN4+Gi0aXYRHrzyXuGne0AXxaBFTIA36+sOlZniqXj4eGDoG7n86BPstGS6AeJDk54vXjiZYEyKq6b11tj1SLSaBNn3f8/W4W9pifeKSux4Hept3y94J1RQirdTHuSl6wgqfn5INNygA8cjpvdIY64fvd4B4Vbv/96N41Te9wvEGyFhSL4g8Tj3evzPXTNvMeKX5BuYtjy9P7ZEKX7PB79Mk1/PZzU0Y1wV5Ow1x9Hhw69QOptNFzP7BVb7iR2Ow81vRq2n+WzY0+0hTYQzfM5TZCyqqAyuv1cHs0EABz9mnbGicdBmZL3savH9W1Fey9/waoagOg+fQu8FV0VjxXv30c+du6JYx8fTZFBIoZWYV1YG4iN5MSEKBerSlcP6PUDR4ME2gP2JKAg68Md1Az/ATBVjc2h9XhsUi+YuZQjsU1YFuT46HV6LRCy597hMQg/KSEsO7yyNiUfdn194r9emKSm5Sr7VtgBq/G50o6b/Hu/mmKhpL2feujweVv6Idmj1KAu1+mZOMsGo1BJr6PDRCCMRbGT0ymjq9G2+4faRQ/GgM6hy/xDwp3k37ZO8oTEjLwrtzRwhxqNTf2uJwzBIBD98vPGT8HIHMHvMN9Wy5YcJnQe2FdWdPyW28HSB6YKzoe/AIaIFjbzdkcRJ5Gly1U9ZmWq6idri3aw23sjIWBJ7Pk/ZjJ4Q+uVfIr5/nf3ctofvrmra+cO/QBkXt6qLuYtFGrWBlGNzdy5kQzxWoL9lQ3NKJkKeJ45dTk20w/7DP4IGztPz2/8aNWKt/8EbsZNWNWBX8Q1BaqMInUbPNmfGEqGrDLyB0Abr2GNEF3z1Vu+WiUiT/T5KgtCMTV8+EAWDOI5xnzuLPmwSn+rINidsjGQ2eKGf12c0WZuPES5donTSd1k0h50ONbv6AReF2r0jc9/RETDuvSes9tuxDzsdWuP9FJIoBqycItHc7MoDQXl4mlcLS2yaZRI1C38BYXH1cswW6OEZcoO1mS6VMGADh4M7qim6PniPHsXIXRkRi/zszkDmN1Heq9BqChjng0SsP7tWrG5hK/YE84I1kZO/3Z+n5b9pQ8DqR4q9pS7zObVo6H2cTSBuKN2jeJ0t7Rgq47GYLmy80z5qQDYY8qRYTe5YxCPqxL3Mck26u9H9i4X5hPGjg783zZrN8RZ0vioeCT4htC2XC3KK0m2PKhFF6b9lFG5yo/cTbZ2lWDra290bfwFg4u3cU2qOooq1Snb6ZaP9VglRyavkkQdpuV+2lv53dVYEJ42Hdrt8BAH6fJqFgJZHmt5mdIJQnnVXO6FFUB0Y3J3YGAWsmSPGW7z3C7B88mjZhNGd/Is7xWtnX0GvYWCGNMmGXRpK8TQccR9mWZsh7l8w3nglTf2sLk48PeoxNQfmBowbvn7K+ohJ9+t7d21uYF+t2r2X2TnazBUPb2gEANx42qpNRm5X0n7RxNfmKHsz048K7Vudp0KfpQX9AzPrUasjrTM/Cd7m7DGXjuj6CxAMbWTspLurRlkKDB9MMdDT6PslAz+nVbTCqDnF4kvwFUZVdcEW0C/NKTEX2MjLvrC9NMs4Rjgmj777MSUbdn1NQ9ITVwEDo20//L79WF870LNT4fY90reXz280kcL3+Xa/hY9mtJfX2qt9T+jw8EhfHiJoCblHtYTdbGCMKEPf0Ny7WYDcqk1uSMh2mat8Vz4QpqgOnXxC90urXE0UlwjCebt85ydL9xdSwIbxX7DYwYfzY8+OpH1u7mYSnAQDP7U0BAINqXcGR56YL+cwDj2FIdg8AxG28bD+mQO1vPVo0Q9qcKEbDZ0HaekrLR3t54uzTNsN3XPwoOWucWt1GeFeanQu/dSbpPuzKLjJg7XgBh/WlSazs4quaDTe1D2y1l6jqF31WCuexNEaTojrg4WcGAIQ+udew9trNFsHLpZ4Jc3U+4NvxVD0i/Cw7eNzAhAGA/6CjlTJhNwZE4/Dk6ch6ZBaezSDqx4demo7ykhKYWgUb6vxfALfy8n/s798OVYzYPQbOS5fZB8nHmwHI7QAFusjU+nU38t8im0jmEgt7rz9EAkDER3cOkjoXt4rqwBMKOdA1W3MWGcM0G5gAz1pCXt6mgaeDGsjK3rV8OxmlPQhzd2tTC8NG5Ll5H2qu2m2wB6HelhTVgdCEPcLG7NU7h0hi/TqyPPyBa997MypkngBgfVYKav+SwvLcqusmHBJ4oA46+LoqktwpqxfhajNNhZN6q6Pu1Fdd0wzQy24ShrjX8LEMv2z8gl7WDJ+bfZyEOrnanf3VIcRQvdEP5NDm3ScLQb8QmnnVx5K4KCnNdrMFgSsmsvp54NW26P/iQTGGg5Kzu2jjqD/I0bGymy1CqIZ2c56GHhonEwHCsOzuWl+4m1CeehgAuQ0o7RGJuA4PsDLVdxwRaCwp1WxRFNWBsps3sXnxPJybJB4y+VtGRXUIHrGomhEANP4uSbpp8+3l//M4AXKAEfIfuSLkvXHNC3azBc3fSzLgoodC/rCTNisKbT87y/BnTos1MB12swWlp06zNOrRDSButcv3HcU5C1GXcYsIQ/GGQJaXD/ewqc0fOD5xOhom1YNbZBhMvvVxbpIV5oHH4CwqwrSmmio1D9TBCH8QLT8jekwsKy5GwGqy/gw8RmxnqM2VojrgvHIFiupAjd/3GFyBZ/YgarMhT5D6ez/6BJwXLrKyfH/JvlOaVlYsOgeg/fdixlFDXvou8DWNxrQZGpMY6unN8qTNJt9b1IqT0oOqfrxkB3V+zoXvJ671mww4jsBNY4W8S1uTAynPbDf4rSYRMCxJEejX9wkdn8ktSVmfn5IrpYn+TZ0md47gCnZ88I3hAGzatp85PynNzjXUZTdbUJ56GPXnE7rm5O0EotujPPWwgbaWjx+Cn+KOFu+KNkYHX5XbOdnNFjT5KgklcVECTdvm/8ic2wBA4DupAk20bOjCeFwbrLlip/ZfdrMFXjuasDIxr8ZLBTysDzi17fK9R6CoDtzudsowj888q6n87j5EDvG823h+3MacvON4ZgtxvrEu+Q+Ejk9FzxHjBOccfJ+EbB9tYP4V1QHvFeQm51D0UkMfeq/U3Pvz73i7rLi2Xdnv0AlirLHkL2ay3wtbNYPdbEHkgTLmCOpbcyrsZgvqxmUgbW4ncX0rJA47Bh47J9TNrzkU2uwzmkC4Gg8AWHddFJJOz90p9C+gCWRoWnlnC5mfHPw5fTar64eHHxbqozfiywv+h1zXV8F/FKoYsXsM6AfKMwR65gYgHsyeSieSId+jTtjNxF04YDwAUzjwFtmI6C0ZAKwsIBt0aDxRKUnctkKoi1+EKpLmHY5ZYtgwwr9IYGU8thL9/GoP5GL2ZTMrH7R1jICbAtVj50H2rJfa8b8rOoDp0xXVgSZfJ6H+PPliSFV19G1UVAdMPj4GnHYz8arm7EaYjyvrg4T3a9r6GhZ007b9KN3cXHoIk20U/Oald2+tqA6DhymASMllhz8ACHl2N9rsE704uVvaotmmYsMcpEG6r23QbkdorCM+X6zjUQPTqqjazZfdbMHxCdMNh0NqNH6hc5E2D+947jS1CcHi1v5wKy+H89w5htt/h2br4tGimaBOx7ep4cxkaR/o54ybhwdOPDnD0Pf6m9P3swhdc7nN1+RbH/4ptQSczZ4vZs9z8nZicv07KmxbiHoZZSZMvvWhqA5mlwgAuf1NMDUQvX2GTkzFup2rWYwyPnC1q8MFPxbUgxr1QFp+4Cgu7mrCyvO46F/u562w4Y/FQCNfNJyZjCnZe6T5KYQ8s1u4xbSbLSi7etUQZy3kZ+LV8Le2DYVvi9740TRKM73tePm0KL3ZuOInQx+8n7WP2cDxdQJgt5CK6sCEtCyU2zoI9fE2R/r+5NcDun6mze0kjHnoBPK9pXTwZOMnW5v4NdtuJh4y9WsiAOaMACDM5/JrdaGHgNc1BpoXNOn7RQ+ydH7s+x69xNptN1sQljwcALDvXSIwozYvsr7igQb5dpa7Nv7QrweK6sCH2aQvg7ePxvjmXaCsXgR3S1vEdRtkqJPelreaG4+8X9szPJ2fE23a/FNqQVEdyF3enqlx8vXTgNl2s0UI+s73VcBrydj1NRGw0Th5AKC+YkNJ19OsHbwquGxPcqZlGphl2d4/cNx2lhYavwem4ACXe1/iRdL2G6WiR2CPrfsMjCoFXrVYRm+bmaKXXnoOoc83H4wWvg2annhsB8unqA50/DBeGGP6W32F9Dl14GIKCYTdbEH+WzZMzd6N7L4/SvuPD8Hg6lxA7Y9puiz+Fw/9at5k7ehxuBgJLbrAbrYg5xdNSB74WjITuACA++4jGH9HYwEABh8/LdBw+9vrhjMEQG7rFNWB39IOV0hTFfz7wKPyLFVQBVVQBVVQBVVQBVVQBVVQBfjnXMtXqSZWwT8JQ0+oTEpCb2Z4yYnPT6Kk8/kNIwEAf/0wC6bGjQTpk+xWRZ+mqA4M8tdspKjkSbjV2VXfILXi1VIotNk10iDhafplEgI2PGm4VZtQVwVAVKOqHyXes5Zd1W6VAKDZo0eQuTiCqdIFpVZH+g9ESkxVKqik6vRzNqFevbTMlXS28FWtXFzr+1n8Jldl+faHpHphcBaJj+UsKhLy8mU2L5kHAKjTV5N2XlwbijWFqQaJLwB49MoT6uN/yyTksltBRXWgT/NOQhoPfVvdJ0jfI6YQCeeg42cFt/GK6sD6xCXYuJLcMqR/E4tWez3ZWCuqA7X6ZAn1qr+1Feo9k1tfmFN8XrvZgmuDjbF/+HhZesn4lznJcB4nAcxN2/YL7/NiNPWy0tx8w3xQVOLAgKfDbrbg+iOkvpZ7NIN+RXVgQ57R8BvQ1EwTCsm3824gUbsdx0lBnRcuoiBW8y549mkbjr2rSWzHN++itbtngeBowHnhIuxmC/JiitF2BhmbkGd2w3n+gkAHQG6UvdalsthIPOjnDH+7ocdDgQYFfj3zEADiZZXC1OzdqPkbCYrsPJ6Oa4NjWYgIvh522/Q6+b42/L4IAJB2WxufvR9qasd2vwh2k7U4f5dAb+gkopJM1V7pOyrNP9RR26QvD48VPHRSHLHVTTgXQWzAGifXgaI6kFdKxsZ/0FGW7+tXh8ItSQxeK/u29LdZfN7svj+6LOc8fwGmsFYV4qcQ8sxuw3cDgNkEUZgbGoDpuTsNuACgz4PDXa59rtZI/XeazXk0fN4nR7jl8B90VFgT+bhZsts1RXUIt8lUVVlPA9/HPF1vBxA7qKBh2m2LW+4pwcOpHk6Om4Hmjx1muGr9uhsXntTsh+k3GvjU6QrHFhBv/GR95V6zJkI/0r75w89Pl67ZfLsAopIIEBU32c283WxBjR2NWdq7DYk90oXxpB3OjGzDzRnFc8Z6BWkzovFn+98Emiva53gcPNA4jc0/IN8etWV9yFt0k1/9D3I7HLJ9tFBn1FvxaLfPnT03nEHW0VMvit5VzZ9pN3V2swXO9Cz0PXoJzT5KwqsBMSgovQZFdeD082I5HuxmC0yhQdLbYH5uLgvYKtCo70c+/9b23jDVIzfQAV+I8fPozbf+5hQAlrdpIuDWO9zSQ2TSkArfV8G/D6oYsXsIqI6/DGSLecgzRC/bbrYwb1zWg0RN48wzNlwdEsveU7jwpNWwwFDgvX1Rl810oeLpkB3m6Ganry907F7mypzmPX6LuNbd3m41/D8huujzW7WA3WxhjhMA4jb9ckuiUpEZdRMhT5HDyYnxoq5/I8cNAEDsy2KgZWrcT+vOe0cLfAloARztZgucV66wQxgtf/ZpzTYqfL+bsMGlR5XgcpcLQt/IGCuK72yC5oo3teNyPORHGExqaMzXq6gORnu7bzUX2LKDmQzoZiBjDAGji1waWmBlG9HYX39wD3kuBX5el9D8scPM9THFf8tOVLLMA48J9WU/PFvIx4OiOlBreQqriwKd1zRdUTWHGtSGxRXTradfn5eqZvLvLrYmtmQ50Tfg0bQJrqwPQtukEVLcdrMFXQ+R+Uad3fB0yvrcI7AlGn2fhNAx+wzzQvabTzsWT+a6XvhAIXjEAdwYEI3S2l7CO2pvQINly+hyRfOV9UH4JCicCBx+1g6WrwZoDDIA7Pp6pvBN2M0WpH9D1pwL461o8espYX7z3lcFGgq1GHXDm3VG6EISIDr/LRvDTZluWR9RSPl8JkLHE/Wyjdc9kf5TR6TN7YSexx5Co+lkjv91pBXsZgvGN+8Ck299FvLh0kgrc+mup4+vx262IP0njSns02+4kFfPrOnnKY09psfvCrKXhQt2kFSll+J1iwxjAWL1sOGPxYwGV31H03lHFjwEvJEstCEurLthDvJtoXlPrW6DN84Q9S0+dED9+USYSG3deDrsZgvcO7TBA8cfNNB8faA492g5KgSjzxQyvjYKeOhzvYwSw3eQeHAT+vYZIv0m6X8agF32DiAu46mQiOJtlzIcbWZpazgVLPYN0RxTUUYy8DXNBnhcWrZA++oQBb67fIS+p85CZO3n2976hUPCt/5+1j5Ev6EFYV+Qt1PI72p8i+8/J9TT/D1t/5SV960nhrlY/u7nmNZ0P77OSULgxnHIe4d83/5zjjAnVq6guttthmfcHSEWVanmhQMACYIekurF4kDK+kTfzh6Hi5H/lrbfX3jSiuAlk4S5r6gOOC9dhqI6mK3y3wEZs0e/DT5P89FH8T8BZeX/3N+/HKrc1/+XgQ/oXKc2kRZ5tGiGkRt34sspQ+DzkxgXRrbgmdqG4kazOswFOA804LL+QFDwhg3+U5KQNjuKGc6a2oSgLCtP8DIkq7twVRj8HtEWizWFqYyxuFvQL3Axr8Wj3kKysbSdkYBj8dMNhxp9eVnwYYr36cIYfO+3G+2/TDAEhqyIJmd5GVYW+2BuaMBd5bebSYydsZ+uxtLWZiiqA9tvuGP5xWjhoM63I/9NGx4fvB11Pa5jfVg99o66cecX6rmXm2B5myYYl5aNV7c+bggCLAsTwPdt/ps2NPuYtJ8G547r/ijz1mY3WzDo+FlMqKvdxrp5VkP57VuVtp3W4apfPAJbYt3O1UgojEXuQ/WY04iK4PQLNjT5yrjB6uu5takFqj2QWyk+9/DWLEhu4as2wf2zq+9J1j79u7thiF3haf91ApP6yvDyabd7RWLrwrnSTfxuaZDR5Kpf+XcRqUPQ6OETSP8mFlmPie7RAeIghtomVlRXz2MPYUvbNUJ6t/Hj4bWOrDuXR8Si7uLdQHm5lDa2znFBlGX1zL5sxso2jSpslwwmpGVhdmigMFayudCvo10IoXB9YAz++mFWhXVFOZzM+2hldOgPlHdzOKZAwyDw9NrNFsDNjan2KKoWeoDmCfs+Af5TtLmYV3pNsG9xBRWty1H7B6N+/7QK89GA6fqyNKwGLfd1ThKeb2kT8lQ27xXVgdiXJzEPd2NO5mJ+qxbCe0Ds3+ylHRAwVBPEUdf0lR3kabpbVHvp4dzVuuFqnuvr0ufzCGyJ0qwc9D9ahJiaGYj28qx0PvHg7NYRm5fMu6v1pKI1XlYPXx8fykRGx/k/QmFtkov0qBIDnrNP2dDoB22dpm7p9fWwdcG3vsFBD0Bu2ppOc73e83C7dyd4biR1jMjphnO2S+ydm5eX9EzkCuru9MW+7Oao4X0Lfo8chaIawyuc/b01Gj18AucnWrHv3RkCXf8r7ut7BT3/j7mv35z59T3bH/8JqLoRuwdhXfIfmN+qhcFz1epiYlhsTqkNgJOyHksTmDB6Za+oDjT5Jom5tk0o1Lyq+U8hh/fs/pq3JefxdJSXlCD/TW3jo8Fm+QPCkdjF7L2iOhgTRoNqukVqBu7UiJVf8AGgX+eH0eHzBLY41luoqWJSJizvXRueP9WJSfL0m8bWhXPJQ2w4rg+MYVJQu9nCFvjKmDA9zji/jgYmTE87pYX2SX7/Moyuo8UHmnz0MWRG3RTGruvECez52FPTkdShGtaH1RNUNegYzr5sZu0YXYeocc4NDTAwYQCEMAGK6mDOVyhQJgzQgnP7LTwllmlD1FqpWuGVRzSVoRsDNNUzvoxMCsqD+ooNpVk5AMjN0bp9G2Bq3EjIT93q82XrZZTCtE28JZRtntvCfkfswdsu66dAmTBAuwGlDlRcScxlwB9c+kXFCe++zBEPbFTS6woPZcIujrVqgpGVYey33WxB+gLSNzQILV++T4to2M0WqRTZP6WWIU1PC3+IKekbJXxbPA0/hi8EQG5C6XivLEiB+pINo07mo/ayFGGOA8CyfLKuXBmm3cbnHDYLddvNFsaEKaoDH7w3F0WjxLbo2wyQ26RWez0BgK2BfNuquZUK+WXfreyZuuPn57T+IGw3W1B6+oyAg6pp8rgU1YEOn2u3S5QJox4zQ37WvHDqaeLrrmxunnnWBrcIbZ2lTFhJnOjGnLevsJsthrbSfYCm8UyY/psHwAKMd3o73jD2FAdlwhbn72J0TEjLEvImbhdDfiiqA4G/TTTEwuSZMIq/bEsz6ffFt2PplC9YOs+E0fd6oEwYfc/HB3O11vFjr2fCqKqwvq5yWwekzYw2MBT8PNPPqeJBMdo3kFcAn131sTbMB0suGh16uVp3aLpp+36BWTp066Z0vsna7QpvwPonDW2loUxkc0hRHWjwYBq+99M0HwYdP8vKH3hzulCOxgbTM3V0PUo8rGnt8H3XdJoxLqPeK7KiOpD/pg0e17Sg0zwTBpAwD7L1hj+XeDRpzNKXB25B8MgDTFhtN1tQZ4nm7AsAGj1M9iXKhFGnR/9TQG3E/om/fzlU3Yj9l4EP6Ozh5glTmxAMWLXLoCYGEB317AGz2WKT9akV6aOIrUWrufF4+pFEPOOTK5VCeW5virWh6xG4cqKg+gVoh40xJ3MxpDZR9aBlEwv3Cy7ieZx6SRRfTg8yaaDPrvo48UtrNP727m+s9HUoqgPh0xJw6EXCvLnXrImy69fvCtfdSADTZkYzBkhfRlEdiH4jnrldVlQHgpdOQsbQmdIx4IP20nR9oM1za1phtWUuOxB5/9kQq4I3CXTJJIM0aCWgBcM2hbVisWxcQUm/KHitS0VZFws2LV+AXsPHGrwfuuozV1Ldvr2HYP3GZS7rda9eHWU3bxqC2VYkseThw+xURHt5smeehszFEQgarnmWkzEhfLBXfd1UMiqjJyi1OjYca8u8GwLAlaGxqLO08lshu5l4YSx8PhrNfj+NxB2rDH13YZyVuW3Xl60IQlK9BMky325W1t0ElBF146nZuw1qhnRtCVw1ESFP74b6kg3mL7SDTFjycBy1LjbMQfq7X0x/Q6D2vn2HouzgcWEMXDFJ9N3rmYfQrUaZIa/se+LBw8+M0kIitBiXls2EKXo69XSE73fDrqkxSPpqppAvdMcTSOv6k+E7Y4fAI1eY91kZXc9mnEC/mjelawyfdn6iFQ1mudZ60MObWQ58HOj6/a0+Udg2b4603qj9g5HacblLmu5mrsn6sP/RIrbv6MFUry5T5wpdEI+AN4xeaT2aNhFuy2kdHT+MR8MZRMgR+/IknOlZitCx5Nt0r10b60/+JRz2Ze3qGxiL9VlEkODu7Y2yYuIBduqFEGxt783azGuG8P3R6e14lHtAGCOAaI/waojXHovBrm9muexHRXWgX0c7rluao9oG0XW7fo7J2gIAHi2bY13SGuHdqJP5WNiqmSEvX69+/utpzPgyFsGTCaPw8ukIZneZ/akVaXfOF66+A1f12M0W5L9tYzanhrbc+V4VldhnO68QL7npP3VEyBP7DXUpqgNnncUY2ayzFB9A9sprr/vBbZcDV4fEIunLmejz0AhsWPMzawOlL+CP8QidKA92LmvT3YArJliPw83DAxvy9krXUuB/6EYs8Ll/7kYs65t7tj/+E1B1I3aPgKlNCAAgccuvAhPGS5HqpIlOLqlOud1swS1fJ9aG+QjSIh7Whq5Hn+adkDVoFhTVIUhT6UKnZ8IAwOTmLuTjIfOFVkC05hrY1SFLUR0IXDVRcA1dd6cvlgVsheM1YgOT+blRuucW1d6w8TNpXgctqGTTacTOrHRzc/TYc0a6IFIX4xQezezlUqLL90/2Q7OZJEvvbtluJi7qFdUBU9tQ2M3EhbirMTjyrBaQM20OuSkMHnFAyLe/0y+MCXP39kbx/edYu3nJKcWf/l0M2n+ZIKhOeGwhtkjOoycr3Eg8/P3gtS4VJRtbwn0nwcvb4tD/Z54RVYP49rfcU0Oow262oOzICWl+aqi/PoswLjwTVtoz0kBrFhcXj8dDjfb5+UDh9Y7rmfMNRXXg+K3rhrx9A7Tgm/qDD2XCaFrGIs09embUTYEJA8CYsJUFKTi3phXKO1tYLCyKn+IuLy2F+YskONOzNFrihsG9XWsAMDBhABGw3OyvuYMGAES3F8aIMmEyppOllTnZ71cDYgyOB6j9S8jTREhDb5Jpv1HHDIC2VvH16JkwAFi5jjjgiH6duKnu1/lh4T0/LhT3T+c6u1xLKprLlAkDgNcTh0rXIP2zqVUwPm9yALV/SUHY95pLbrvZItyQfHS+tVC/ojqEECC0n7seukHw1qmDV+aOFfsfRB1L3wZ6wPdo5g+4mxjD7ubhIV3H7q8uSuL1wDNh/Bx562x71O+fZqCJb1dceE+sKRTDW+jromNzf/wEVj7zZkNDuxTVAdM2M4I3X2fl0kZrDlrOxZO14FafKIEJu++Qxrzuf1tjAlI+n8mYMIDYuerXHZ5OOo50rQG0WHF2s0Vgwp5KT2OaIfr19UJMKXPPT+HyiFjGhNH6yk3E5i17Wbihj+nv0tNnBCbMbrYg/Is7sT0HjMTcO7Za+r68NIr0FWXC+DFZ0vc+Qz30990y1sGTNTvdQx3LmWv2WrnaeGd8FSv0i36PkDEVzT5Mwunnbbg8PFbIC0Bjwjo8gMQTf7I1kGfCeLwAGBPmiuEpvv8cNv66AIrqQO1lKeTMsfcIWXs4LYZDt24idGKqy29I1iZXderPUrGvTELvx0YzJ0uy76K8tBR2sxYOQg/nJhrtIe9N+Kduw/79d0VVjNg9AnRhpx8ujWLPS4X8Hs5hsbkAIkkEyMfNe6yiaRTy3yRGqBvy9iJoGYlgX37gqJCPLlS3y50CHtlCQuFW09vAnsOGdD3YzRaEPL0bbkkHWayly10uCAxGxvAZwuahqJq6R92dWvwkWk/ZweOGTcujVx7mruqNwM1jDTS/GxgppF29jwSVzVgUgbheg5H1qVVY/Gn/8HXE+XU0tJN6P3QeI+o4vIrC6Rc0Bub1zEMCfupUQNZXg46TIL1Ueqs/CPE0NNnlBqeX2Dd3swF77WiCdXvWQVEdLDYTTwP/31lDS9fjzYm+wYLs6jdnfiwB4Pz9t9ihkAdFdcA6zaiaEThMbDePmy/r1kmLOTeu7mnUXEWYCeuLk9CmWk0D3iORZQJ9PNxQAoQ6gkcegAyuD4yB+pI2vhfLSlF7Tl247XKQeDZubgJ+2cGs1V5PlDmOYf3GZUI69d6oqA6cHDcDdV8mnjQDV5EYSMXNa+L+BC2+1tXHY2GqU8flmJdbO6DGjsbMeUL2p1bGeFX03fL0lls1j6LqAw2lbdIf1gf6E2bP56dkWA4Q9Tn1ZRvsx/sbaP2tYA8KV4XhhlO76aQxvmTtEhiciZoQp2xLMwQ/T4Qhl0aSdA8/szB32by+IwgwNWwI/ylJSCwkaltF60KQfWc9uDwiFm810AQLMnroOL/RgAg+nFeuCCrDNE+DB9Ok9AMgjOydG8sNeXuR+6YYk4t6W+wbojGqFX3j+rlNVSTTfuwkpPPj5jx/AQ/5RQn9ZKjHjTAcnte0feJ4pOYYKG2m5iDJ2V3FyU6a+rDdbGECK8pkVdtADsSmEGK31rv2Yebtrl/nhw2HYD5AskfL5gwvTy/9TftAxjjw5R7yJsIat61+hj4NnaB5t6Vl6/6cIvSlojpwvSFRMQ8YcsjQ967mC0A8CwMA9hwWvK7yQNX247o/KrTTbragNCsHL2QcF/LX3elrEGbo+0LGkFNo+ThpQ8MZyZiaTdbSmOiTyPg6ljlp4vHwoBdW1j9+C+cjxH7g1Tad54igkQrveIGsK+g5cpzLd3wbqVBJUR1Yl5oIACjeEIjwatWFvJXtlXazBa3nGJ3ZuHl4IPaVSdiwbjHLl/LZTIR+fRzNPkyS4rWbLRh8nAge1ofVQ9p8owBy54s/VkhPFfz7oIoRu0eBRrEHuINDdxXVe55jC03pqdPCAguI0pxXMgkj0+zjJPQ9eolshLfc4O7tLeA+m2BDRjzxWujpJhqWy6SMFELHaSpc+rpdwYTIgRXi1LcZIEzb5zma1E6/OfPPLd5JRsio/QZ6+Pw1dmjMUmbP+XAeS2MqnjTwqytJmZ7Wh1tYcW6SFafv2IBQY35FdTCnEwDwyfARLvECxKkEBeo4g4YkoH8PDB4t0JK5xILay1Jw7CnRi6SsP0t7RApl+UCjiuqAqYEYYJra+03J3oPDz08XaOf7O8rhxPZ2q1m9xRtICIRWf42C3UzUgWj/h44h9k4fNdLsKXx3+RjSeNC3JXzPUIGGkJ/jUb73iDR/tWtlFQoSZFDDTryVmVNqS/M23+2N4g2BqPnbbhyeTGwZzj5lw/M5A5nbZgBAOXFvnP+mDS9kHBf6mv4+2ek26x+e9owrDdH/aBEbdzpW9GDhvWI3Jn++BACxvdnx5Q+4+JDmvp7W4dHMH3azBb8sn4EbXc9gX4Q71hbuQ8Br8sCyPI0e/n5C+rD56xEXTsI1UFVi/lvUH3j1/b3nPLHTOfzCdKBnAXunqA6YfOtjoH80/B45ivNvtWRl/Acdxak7buZ5vG4eWtBxDz8zGv18CG5eRBqxqc0fLF+9RURjgErf9d/v8BOEjsSDRPU3zq8j0uZE4ca2hqyP6v6cgogpCUibq4WDoFC0LoT1Q9qcKMOBn6+Pr9fd0rbCNdJutqD5+6IL78RNvwAACid2ILcMI+Re5jZc92JlTNvMzB6JQvBPTkYfD/q1XkaTe+3azF7DY8s+Yzvd3Jgad9l9EdJ6qs8UtS6oB9ta8y/DbiYu6o+/SILsUrs3nv6SrtrtWWlOnpReNy8vw1i/e05k6mUMWXmPQinNNG1PyW0hLehnjeloMlvziFpRHQAQvGSSgFf/X1EdyPnIqCFCHSzp6fsqmOw9UW8Ruz2ZN18+7IGMcQUA28FbrD46l6kK84XORcgcPJPZ/dLyiupASV/NURcvrFRUB6opexH0kqi6vT5xCWSgqA4EvZyMLs9MxHe5uwQ8PJ1U4yPnl3CX85j/Fvmy3n2yoAeZkEz/3OJdoqbNawNsyNvLmHJ+XPRq4np84+pqczh4QRkr5+ZZDQAwMLS9rOi9B1U2Yv8xqLIR+y8D1beNWvUc6g4qROa0WIzvvQVb22vMkitmhYfmu72RF1Ms5M1938bi7QCAW6d22LDmZwFXxqIIZPac71LCZTt4C0kdqkFRHej8/CTmblxG15X1Qbi9shEudL6F0DH7hHyBG8chZPQ+wfOZR5PGiNigMmltw6R6oqFsbDiUVQtZHaaGDeE8J1f7Aoiknz9kXn8kBjVX7cbygmQM9jdK2vjy/O/IA2XYFyGXUZiCA5DxUW0EDDlkKHdxrJXFf/Pd5YMlAdvQt/cQlNfwvGt3tzy+/LdsaPZR5V6fFNWBkIXxSB8lel9SVBKfbUjtIk1KuH00Sq95wuOSB9JHzKh0XlVGa5tdI1nogqEnVIyuc5bV1X3Mk8wLpN1sYd426XPxozGCwIGCW2QYyqp7YuOvCwC4vhHZU3IbbwdozmDsZgtOrW6DpgOIhDhtXiemzkS9hFK4MjQWydNmVth+fX9n/ByB4BEHhI1+5iU/cgN2lzj4dADo8HkC/nxxGnbe9MG3wa2l5fj6+LTejz7B4m/R9PD9bkJsLR6f3nMXj9tnV30Udb6I0h6R8NgqfrsyqKzfKsvjqpy+nW6d2jFGm7fLosB/c2VbmrEYPZXR4Orb149XZfn4/gleMgkZw+T2ob67fHCpXxnKAvzZbbtQxyOj2FpnahuKkia1hXHg4dyaVmj40ElWx/ATBVjc2h8AUZGt5V79/6nvgTtMJWcXK8vnaj7z69afEz+H/cOX0GB28l31r368eFtPWV/zeWU0zMnbifHNuzB72YtjrCz+n6zNDx27gDVtieYF74m2z4PDUb7v77kTz13eHi0Ga+s9T/8bZ8KxP7ZGpV749P3UMKkedh0JYXZsFeWl7Xpg6Bi479Bu9DMXRyCj+3z2bDdbcC7eyuJ5uaIDAKIPPAaffppN3IK8nWjqUavSuQCQfUEWmkc2l2Rz5fQLNhx8We5FmT4nFu7HWed1jG7exeWcOhdvReOkS7jSqi47x5x92oZG3ydVOK8pjsrOYa7qdVXO2a0jqh3OQdq3LZDRfT6Ct49GRrcFeCcnEB9bN96zNlHMRizgGXi4/wM2YmUl2Jz93T3bH/8JqLoRu0dgY7s/8GLGUWQMnYl1b3dn6aawVgheSiRopT0jDRIx+ntOs11Mis1LcbKmagwIf3NAIXikZqMkWywoE2Y3W1jcIIC41dZL/pI7rITvj8kGJsxutiCrN/FwyLufLj19BqkWEys/ocl2cbNNOSQsbM5z56C+rKmD6RdkalhMn2uuInGBBvtbmUoN/37ZVR/meY+vZ1+Eu1TyCJDgmVT9RE8DPRACgLsbuREpO3ICG35fZBgz2RheHhEr0HEsQQsIWviaDRFTEgxBhwEg4qMEBL6WjMDfJgq02s0WvLdsKKMx+/Y1BA4jnjIDX0lG4OaxgtSRx3s2wcbUoVz1hd1swfHOJFjvLXsnOMuJeo4pjMRqevq75Wi1V3OvTL1IxUX0BqDd+iqqg90oKqoD5fuOwm0XmTdxvQYb6AOA++MnMIcdikqMzAHgUPRSNE4mizVvU3L0ac0+T1EdjAnL/kT7PqZmi3Gk9N9D8IgDLP2pdGJvM6leoaFfClaGGeYH7wmSx3/w5ekY7G9Fv5o3hX7m66ZeyWwvTIJ7dU2thsa9479DyoTpx9VutqBWYYl0HBXVgaLOF5E5LRYeW4m0ucdhLfgylZzz64QMz+1ekSxYLs1LVZFpPa7q17eZplFDewCCcwz6PvUj7ZunTFjOx1aBXurpj0JlgXn17/Q06xlG+hf0Ugo7FD5dKNp5XOhchDOPtzUwYQxSNNVl57E0KRPWZh+xG/OvexlZn1pZcPJ3kx9meQb5VxyPicLt3p2EdllfmoT+aX0BQGDC+HlE+1G2dvHPzddfxsLL7dFgtuYJl8L1slvSsvx4KaqDMWF8PLCw5OFCf6f92Imoebmb2C0pnRvUzpbe3FEmzBUzt6atL9O6OPqMpmGw4Y/F0jb2OiLGYuRxtxh8GKU9Ig3z2m62YErjQ9iQbRQ+yb5X+nv4iQL83HK7SyYs8NdJqP1XA6TN6yT05aal81ncMoDE5aTvAtYQ1WaeCZPtS5R2ngkDgKYerr2z6r8h3qOwDDdfZ5dnJhryNfkqSfjeZGtInF9HjNapdtK2Uk+JvkduouzgccaElfaIZDE0ew96AgCgvmRDxlexBhyK6kDAWi1YPL8Py9rFz0X9ukZxbF4yD84LF9lcDxp255xlleO+56Aqjth/DKoYsSqogiqogiqogiqogiqogiqogn8YqhixewimBZNYQjVWaxJJ59GTCHqRSHC2LJorSA71UFpQaJAspo+cgbNPyeMa6dNGncwXJDZnnzbGcOn92GgAEAIp62/U9JJO6ixEJhG/8TCRTt8YEI37q7vGQdMOvzBdisdutqDN7ASpRDH9m1gohUaX5vNbtUBKB805QOzLmu6+HgcATM/dKcVP6VlwR/qf/6aNqVjSPNYXNdx2swVbbpiEZ0AzAuch9Kd4BCQ+Cb9Pk9Do+yTUMN1meCkNjaYT1YqQpzRJq6I6cG1wLE6M126CAjxrIfJAGZ4/RSSnIaP2C5JGk299Rk+j6UkoCvcx0COT3ALAmU7VmO47vfWcHRqIltUv6FEg8cBGOLt1FCSG5vfcDPkU1cGcoOjH4s8ZmnMau5l4+6K4dqYHS2/6KNA4bQAQ+J7mBdFyx86Ilil4Xe4tEiAG/jJJ+ftZ+wxu3k2tguHsrgp57WYLspd2EJ75b/fcGnIb2WafB7L7EuPt2r+koLhPOLshpeXoTbheLYa/YX0l8zDcd4geOvXSW7rO2M0WphotuyGSpSuqA+c6esH3x2SBjsl5DwtlZbde+rHV56M3nACg/tZWoBkgjnDo78zPrWj5JpHyU8cORSfJvC7rQnDyIUB4oLHbeNp4utr+QAz2748nMQH7nOgnnV8P9h7K7ETKO5N6yq0dcKmNXLIrk/Lnv23DlOw9LD17ihXHI4m3tZKupxH4WjK8ElMx6mQ+00CQ3Ui03FPDcMuRvSxcCNEAAHWWpOB2t1MsrXhDIJsf7jVrwm4m8cHiOjxgoP1sgra+280WlO87CqVdHeZ4gV+vB/pHV3jrzKcpqgOZg2eydP9B4m1i6JN7sbxNE6DMifLSUsPtgwz0+wtPS3i16tJ0Gc6X62ca8Nhe0NZ4j637pHOd4steFi68c/VdAWBqp9Q5l75cmy8KsCJoM0LH7jXsjdt/nIPzE8RbakC79bxl7+SyrXqaikZbpfNdVtbUsKEhnZaltmiycnX3FArpdrMF72TtZ88V3cby5dRXtLW7/rxkPHTsAtz/0lRd06ZHY8vPc9mzWzLRLjg8eTqCXzDafV0ru4nWzx5mtOZE3zDk0d+E6dsGALbJk4R+leVrtKW2tF33HJSX/XN//3KoshH7L4M+jhgF2ZW23UzclfNxwBTVwWL/fJmTjLBq4rU2vwhGTEkw6EPLrvv5TZXGmeLzundog/Xrlwr46fuQRfEIfFWuc+5qo8z7tT2Od16E+xMmCEyorA/0dcre8eXy37axANFCne/Y8NGInzGo1hW03z0M5oGiS3Oa3z28Nc509sH+t2cY+qyiNvHveDsWVwxmZQcIxtAdHIQ6fTOhqA7sK7mFSK9qBnwUTMEBcGZkV4jXlZ2Wvg03lADmyEL/7m7apM8reydrL5/uub2pcFjUvweI3r1p+/67Ghc+npiiOvDR+db4K7w6ex6QbseNrmeQsSiCeU8s6xoh2F3I8FbUfgC42T8a1de6DuCpb1tFbTFtM8PZXUX2p1Z4XHVD0+4F8OiV57KMPv3SKCvqLUxm9pWK6kDERwloND1JSktF9NJ8d9P3fMw0Pv+lUVZMf/8bvPnoGJTvO4rCV23wm5qEXkeussOvvg73dq0Ncet4uuvu9DU4MKDl3Tyrofy2eDDUQ/YUKzxbXWGMQEV9S+vU5+Pnf8j20YJHUL6MK1BUB/rGDUOZ45ghne+PzM+tyBj+/277WdnYyWgVxuJOjMCK8BWtCzGoulVGA03L+dCKn4Z/j3cDI3F9YAz++kGM3aX/T0H/rdvNFpga+MJ5/oJUIFBRG/lnfbrPrvpYFrCVpZ1e3QZN7tis3trUAtUfPMPimrH+GG3FninGMdPjLnrCCp+fxH2E0hC8dBITpFTWl9NzdyKhRZcK81W2Tvvu8sGFzkUu62DpfhH4MjsJk1sabbRNbUORuNkY104Gi/J3uYwhlr+iHY7Zfna59lS2nmYusSBomIM9N9/tjT3LOqDJV+SstOtmGT4I7CjFSfFmf2JFwOvJFfYFn9/UuBGcZ86y9IkFVsbc/c/EEWue8M/ZiOVNv2f74z8BVTdi9xjoJVoU6MfNM2GXE4NhNxNvaqdfsGFyS9E2ImjZJCiqAx4BxGPZgTdE73r0t6I6kHn7mpQeyoQBQEIh0Z1ev34pdt0sw3dFLYS8oX+OMjBhtD3s4BMZZmzn4dqwmy34c7oWs6thUj1pH9z31ERDOsXdp99wYSE0tQ0V3Mjy/dr8gyQkXSX9R5kwnk6AeKQrO3QCDWckCzh6P/qEUC9Ph54mgNixtNnnwdoQ176HlCZTW2KDYWosBvPO/cDKbrHq9NUOo5Fe1WA3W9Bj9JMIXGnUrXdmZMPd29swp+hvRXXAe4VmFxWS6iXkuzKM3KgMPaHiz/a/AQAyvyBz4Nod74gA0evn5x0TGvwkDwRe2UYFAH1b3WeQLt7udop56KL1rS0UbwM2L5lXIW4q3QdgOJhRJozCja4kJh3vwp4yYXwfAkSYIGtj9rJwNE4WXcvvmC2GmtAD35e89zQ9XHjSCreR5CYx4LVkNPs4CR69iKv7Pif6GdqesSiC4aVS8t2fzmDlAXJbSJkwAIiYksDK5P3aXpB0A2BeMgFgwZVGhrF+MeMoyrpGIP9N7QYP0GKmnf9Ds99SVAfqLUzGGwHRzEHCkefIDfjmdqKUmNH0jo0xYYrqQM6Hxv7imTD9oYxnwmTrLgAEvJGMpt97obRnJCurqA4kFu43lOUP8x0+01xe280WNkfSuy1g/UTpuLWphQGX/vC2PnEJ5ubtNKTT/0NPqAh6WbuRzPrMasCjB/072SGWb5te8KKoxEYp/fsYKKpDYMLm3ImLpc/v0y8diuqA7y75jbsrhkRRHWj5djLeDYyEaZsZf/0wC93GjzfQL8PR7NEjSJtHbn9iXosHQNz1A0DrnSMrXZ/0aXy/K6qDhVAo6nwRAGC5s2Q0GUACmquv2FDtgVzWP/T7AyAwYbSvBh47pzG3dzxL3vR1M8xft07tAEDKhAGiJgYtq2fC9O2rTPgyJ2+nwITFOh4V5qxQvrwck1sab9LOT7QybQdXQG+1FNXBmLCsJRahLpNvfdwq8RTGg28D9RzrislWVIfAhAFAQQ8wj8d2s0VgwqhtoN1sQc8R4xiugNeN9pAAULhKjNdK3yce2Cjkz4m+UeF3WgX/bqhixO4xuBvpEF3sUiwrcOZZslgdfHm68M5utiB4MpG8lWbnwm62IOLjBMOmSOukizNVPZRthp813c6ePwjsiLVhPsL7tPsX4rcCUdJPFx+6EJbvO4qMr2OFOpp/oN3SxYV1h91swTnbJfR5eCQ7+NF2/fXDLIF2Ho+zVjX2u7RnpGGh1y/A05rul+KhMKjWFaFumod3kpDzsXbYcbWZZ96+huORpchcTBxKOC9cNPSPompqeM4zonHziSdnMLUkSkvhq0QdCLFEzYgy6PR95+cnwa1TO5QVFzMjd6oqpD8c2c0WvJhxFN/77RbeUQ971BPixTFW5oq4Vp8svJBBDhneK3cz9RG+7TT48Zi8+4Q+msMdJl1JENef/Evon6LRhHav9akC7f39IoWDmt1M3HbbzRZh06RQdv06q1dPLwCkf6/F76NBtwHgzSwt/7XBsQaaj3dehOuPxODy8FjB2Dvt/oU4Y73CxuXK+qAKmXf9/5NjCaM0IS2LHcLp+70fzEB5de1GlC9b3qPQ0LeZPTWPafPf+MrAxALAV78MEJ4PvDEd5dYO8NrRBM0fO4zfHRtERv6OO+g2sxMEj5kA8Yo6LTgM/z/2rjs8qqLr/7K7IYEQINSwgYRUCIGwIaQtIN2FoChVEUU6JApiQUVBQRQLCgLSqyAWEFGUwKI0gSSUkKWTHkiy9BpayuZ+f1xm7sy9d5PwvuCLfPt7njzZO3fKmXOnnZkz5/z5wwrqYkGOuk+nKxZRLE3s4oXtK7f6RUHj5gbvjxK5900mS7vSFY2lFS18yPuEgkPQ7jiEbaslVSaT3oBYL36X3KQ30E0vADj89nxoQpvRfLz7H4XG3V0aE4/doO+qdDutKF+NfrmvKbYOQ2pcoO1jZF5b+L0tLQ7l7YwY/mDf2eMHGR8A8bSAgGzKBL6WjOw+0rhMHMCPZCzYAaK6Lfut2MW8XH2+bFtjDE07jYzZYhnEzyOp35Vl3jDpDXSjkOQrdzae976Y7+3eUQgadhAmvYH65WqULBqcYC0csjxiVWIrQtVLkvqUSW+AJUw8wQdER9nEBUhxd3FMIYZMWNrJb7PVQi2x6hp60jHrTn1BEVc4eAzRb4+x++2ch5xXLQcQrTuuzVdqrxBfo7pGXtx402qGuLHgravO9c+asZmKPiqHvG+nfLgA03P2c+1P/u2cC5XKWhkdV3J53g3zhf+gVGR+F6Yoz2y1oKwO73idpYGNx+L8S6GcoSqth7jO0fn6cBtCcoM6ZquFjqkExECVSW+AU5jSiNPFMVK7rsza75GCw3z9A4NDNfF/DHLMezXdD/2btkbvExcV5rDNVgsiJsVxVvnsDSTywUbt2bqhuV1VvIp2JNl3Wg8P2K5eVdDUbM9LislNboK2V0Z3bAzcwsUx6UXfR1cWuyCp1XoaNzbsSYVwogY1OuWLDQAoEkrQyysCl0fGoM4S+6Z7q+5qgF8DzRhnjaCOSeV5tzvShy5G01eEI8e0jOMRq/pXntBXXj3YMuUuCQj0ye5Y4b2bxns/24JP/Pi0udNisPrFOZjsG/EfD/xq/Az7JB6p7yvVP9k0LNTiVZaeH/MS4aGVnDTbm8TMVl4FzF77VqsPAATsGEqtjJmtFvhvH0qtJgJA+uIIBI06gPz1IYq7K+Xla4/mjG+iqJ+wpgedcfL1FtydhvJottdfAdGCYJP3ReGkzQdxOPhR5dXWSD4sbSQcAKLfHoPkL6Q7PCa9AdYJRhx9XWwLrDpRed8gfUkEcnouUeVLRXXUBvjC6eZtlJ47X+k2JO+HTtu9sKXZpkrz2Gy1oKexF0pzzyDz62gEjOddenT3boMtZw6i9cHnUK9XGlWBm5mbRE8HTHoDsr6Khv+byRWOv1f+CELtp+yfHpitFhg+jUeDueK4IMS0QmacFtldpdNhe8K/fJyRx5VD7t4g+3sD6te+geoq/pnY8thyRqVnY3GQH1qkaKhzdbX4FeUHiBYw7d35AySXJ/I8r70Ug32fLyi33mvy9mJQ47aq9JDxtTL0EthzLZExLwrZvRdRGiozT5itFsy96sNthsrfV4am6Tn78Z4vb0WUlO+7ZQRyui9VtJ3W0+IU1hZNeoNiPs39KRQ6nQ2N+h6H++66KGx/SVF+zqcxSH9Z3Gzq2e5ZlGbnYsDJc1gb7Amz1YLIiXFUHVMwtqKboOWtU9TqwoYTOtXm1+zPYxDWNh3X211W5Kfza8L5USuvzG4Dh6JK1gUIRcVIOPyn3W8hv7Zg0hv+PaqJjeP+OdXEvAWPLD8eBBwnYo8Iege1RPqCSCzKEE8PtPXqcQMya6aZBem8LWfGKwbMHgHizmR4qjjZkfesKp4c8jzYgYaY0SbvbFevqi6yT7WTzLWTPDxni6ct7rvrwqQ3IP9HX2lnmCmzNC+fCmEA8PGlZvQY3x7MVgucXFwUg2rxn6KT6qtDYriyXO7dxauzJAmvZIgLHKLylsWoPvwaaIZJb6BCmJw/4VPiqBA2//QeNGl0iboaIHnsmbMIfxRIzj6bLY3jFl2CsRW368iW0SJ5EH0m74kQJuc7K4SZreIi4fxYI3o8+TyN47/qPPW71Xa8tItKdmnlPGX//5gnljvOGoHcaTHcDmj9eUrB8FbfKEWd5N9abUEoxysZ6Vz4843FNt1p2EiapkfT9jBbLdRMMRUg7u2esmXKJ0S2zZB3LWfFw21/Va6OrBBmtoouAADegMCtvrzJ8tK/vGm+vr+PpHnd6sfHA4DAV/fhwm+iH7G0NiVUCNM2D4JJb8Ddp5SLJZPegOYL4rnwMx8YOV4SwxUAUGdpEkKSBnF5LGHMy/9RkEJVhy/ES5fdWSGM1AEAzncsVXxX/QzxhKr3iYvcnQ57C5Gae+pQIYyNl/dzC/pM6qPWR2yZOdSJOglz2u5F4968Z3SC1JeNZ/IKE/tgZ8lAADvmFfWU+gVxA0IXS7miCigRwgi/esY8DaFU5Eu9Xmnw3udGVeBYIQwAMgcu5Oixt6g70HqtKu+I8QaT3gDLxPm0flvXf4vGa0Vz7uFTRDW8QafyufrL+yIgnYRcTwjg+MVi23fLqBoiIJ5QVO+ezcWlvO8fpVqnxUF+AKAqhJHvTtxKyL+7vIygeKWpffY38TvJ8hgAambd5tpc02VxijIG3Wu/rT6PV9DACWEnn1KlUU6LPdcSga/so99jVHo2/f1ibke79TfpDZiZ1E1Rb4JNt0U1azL3n3tdbJ/ysYcVwuTtgwhhLA0mvYETwoS2Uv+Ub2o2ee4IHR9/9v8LiFQ6KvadmETLK83OxdzTe7E22JOequ7/dAFVzSQ+EwGg3bjRlC62z6qtR+Q8ktPp+9so+tvvnSSqysymNVstKM3OLTd/ol5s0hug2ZWK0vwC2C5eVNBw55lIpC8SN0PZdZ3fz8prF480HObrHxgcgtgjgusDIxEUtx/1nzkFAFwHZidN+WBJ4HlAvOhZ/KcPtIHiREdUGqY3OELjXRkqTXB+W4fTvMggqbZ4BkSv7zk9luLsG0ZuciX/2QE+Ni1WSXuZDQDorli9BUl0gHPfXZfjBVuv9TlieiIoyaFtKt7zEoqKFJM+UffZP533L8bGeWv9y9A2qA+XzaKKC/HlURmkTBHzzZtkxNBTL6FKt9N0cdV10DBal6e8wikf1g6exX1Dp8TDykWRRrSoSNQaWMgXk+wz+zvrq2g0mJuIsmOnaFpbhrRrvffrhQiZKy7iZy34hobrPBsAAFrMEd/5JojCt4e2GsxWC9LalKDJZEnl6c6zkaoLgT1zF+GqTWx/ke/FUTUmOYi6JMmPLBxI2/j5UhuubhqDaDWvyhbxe2297YyywkKY9AbUeKGA443aJMzmzaLw+WjaNvQzEuE5m3ekbS8dG+a2XhRYWqRoEJnan97XAgCX8zpKj9vP+xC4cwjyJkt3IADQvs/mfXNWCcxWC3evzKQ3IHKiuHBcPexrLv7JMcp7oOxzo77HuYWLt646dD6NAYhqnkLKcRT8EoLUSfZPOLFNvHcRNIK3vMf+3tC8HqruaqBYdKYvieDyvd7uskI4N1st9P6enH45f+SYlnMAQucCGr9692x0PPYsAMlXEHDvvqsgKDZv2L7osukAffZ7p/yL+MRyaenpPO7dksZ7pbq+yKu0mvSi82SC7j1FITljriToNF0ep1qmxt0dpWdFK6Xk7h9bB2IMpu5icaG7plkju5sgBAFviELllKDfaT4kLlH9Cvo2DoGv7kPI3HjVeYAN2zt7kapgaa988t1NegO9cwOIqn3FJvGObMaq1orxkvwmfQIAd483Y14UvaMIiNoD7KJ+Q/5+qtIKALd735vL7o3D7Fggh0lvALrkq4411waLY9vJ4ttcGrm/R5JO59kAi4P8aB+4aLymKjATuNYs4urPjkVzAkSV2JQwDbQBvii9Z8NLzTCTNsgfAPBshomGsf7b1L4hucfstNeCr3MlP19sHBYmvQHYz2vJkDisKneQs6j6apkojWNlt28rBK1zMU7chgJLKyuc5X4co+ChfM4MihP7yvp8yVpi9vdSfPkmtxzpK8T5vUq301KdZkZzdFAeAKj6237kPL2EC1t2Zg8Cx4n3tc9MioQD/7/gEMQeEWyfKt0/KA+B38Vx8UhH1uxKhaZVMKp0Ow1bRjY3OJN7X4Do2JKk9fpNR8NPvwUuPwIykJBL7Q1n8sYvnHTiXQO3n/fR8ISmCfT9ufGS7r+9uv3s/5fqQH49IQCpET8CABWUhJhWcHKRjsNtaZkwW0Wz4UGrlLuaX+cmYtIFaSdOXj/fd5MUao/aWjVV48pB3jf+OBEXkhtyYVOXLeXqQuo2oUk0N1kA4s4xF6/MpjqRnR9r5Hjv9nc9u8IGUXmS4/RH0j2xRp+Ki0eDiwt0DT2hT3aHUFusu9dn4uIjJ3apoq0RAQIAqv4q6vnHhkhOyMmkSVQIPVYmoek83tohyc9/QhLXPlLCNPSdSW/A+Zgb3N2BMssJLo+vAqTL0ETwkbc3e0IJIE6+Jr0BiTMlFTu3v0XV4Gk5/P0Tk96AaEs/mPQGeu+N0Jn5tTjxhqeW4auGh+DRMwPWtyQ++XyQhNV5eylNfi9Y4PudKDgOPv0EAKDXictc3bq8OBxVTTmKb2y2Wqi6jlytSA5yx0Zef5PegLIO4gK+9HQeV+7ysJUw6Q248kcQV2bhc2Je5uA/FPmp/SYnyoDkqDVo5AFceEXdLQBpN+xYYLZa6ELRXn80Wy30Lta4yWMV7/p6paKsnQG5r4k7q5eHxyArQjIqoZYvcTBur57ydqz2PmtGDBfGqnGS9Dm9FtPfWzatwfVB0QgcK42lacMWiIuzKfw4WlYoORRe0Va6+5c3Wd1VSXl1kdM9KyCYKyt4cTyyOotlEAGp0aeJqvww6Q3QuLsr8i2vfHsLePI74cg2nI+oArPVgsDBh+g7eT1JnwAAp8TD9H3gK/vQ+BNxPItt9gSnPfBHQQp6N4rkaKq24Z6wIhuHWYMqarTKBXViCGd8E94NDGw8D0g+7MlueZtIgOjSwbv/Ueoyhc3PabvkziLCYsP5zp643bjUbruwpYtWeH8NNNMwctJL3GTI3a8kpG4Vhccm3lz95Kbyy5v7SRzWXLw94U8err0tGiliHc+fWcfP892926DJpCSu7MxZyvu95Nv1bSRtxvVsKm0EuXW+gJm5SXb5R9xHDDxlRc+2orsOcj+f/ZZZjHAnryO5+2nSG9Cp62HVch45OO6IPTA4BLFHBL2DxEFELpCwiLDYkPHiAhoP4Ae4ssMnFWEAsHXdSvqbqG+Z9AZq+AIQLyzLd3AIFIMgI6gIpaUKOtk6HH5buhcmp5k8+/05jEt/eaS4gEk2/Kzgh6DTQCgqwtWXpZOUiEMD8KFfONIHi7wZmibtTI1vYsTOaUZFvcizzkuvmCxs165zz+WB5CNXGWzrquHqadIbkPMZf/pD6l993T4unBWwAKAoVjwNJHdASLxfAv6kZZr0BurniFjSkvPb1qk1/H7g9fR79BiIxdf12JSyBdboQthOpHP8kE8mmhbN0HhaooJnTh41cfZN9dPSjFWtUZpzWkETSbumsI4qvQS2kxmc8NrT2AtysG3XpDcg96dQUcjoHI7AA7wee+ejt2h+fRtJhmNI2K0nRHWmSBdnBT01YzORvz4EK7x3c3mShUtKmIbWQ/+l9L1ezzyJfmNf59IQnqzy+RsAsLF5HbSYE0930uWXweW7viyyvhfpZ08FzFYL/FsUKOoAiGptxAJkUQ/+lIqor9Z+Kp3ru+4/JePMFF6IUusj8nDB2Apu6/chf6LYPurPS8TFMTHIf49foPpulFSETHoDzo0XNx5s6Vk0vOlB/psIRtEX2+YtouVEuS8+k96AP0I8cGnCXaQ/sQoAcHAar+ZN8oo+XELHNmJy3F4d2XTsb7JgM+kNyBy0gEvfbeBQqY16hVH62O86ZvIvirxNegO8pyRy34Lkc7t3FKcm92yfPXaFHPbZ3gJZbQHsPSURsc07UPVkQDxFYevWaah4cq4NaUoN7RCrqaQcuYBB0pINNG7ROoNXJz8RPx/pJdKiW41WeT3V3p9/PgQdR46kKrlPeYVz9GSsas1tXrB9jWhYFPWMUPDNf62kkq5r4q1KH22zrvypP1tvAKiXWMtum2v7mqiSR8aMIfcW8KQ+Jr2Bqto6bffCAYMWdRcn0VMfgrNv8H1v7c2alAa2j5MNuRo/8PcgCc1ERZeU/d5baxR1U+MBAHrqRMJiuw7g4pYnjDZIEaXZd+pIbhC8+x+l6cxWC7acOcjlA4hCH2tQjOV9wbtGdBgljkEnw0tpWcmGn/HUlte4OSLCotws/aGZno7pLA/Ib3/GZQUpU96WzFYLsjoWwYH/X9BVHMUBBxxwwAEHHHDAAQcccACAgH/mtOrxPxBzWE38X0Pu0LloaxO4PJmLjNnRyO6/kO7AdBw5EjuXLEFsq244+XETBI0+gGsvxaDWat7ijvzkyZ76CAuzVXJaWPqXN8q+bIAqW3gz4fJ8mi+IR+Np4m4Za0lLrUw5PQNPWfFDMz2Xf0pRMd7zFe8b9fCL5vzRVARtcCBsJ5UOQokzWFKuU5sWEA6KKgczc5PwlHkcUKWMs3RYHv/kdQpPLcP0BkfK3Zltsr8qddRoL08nnY6eLNrbRbRHH6D8ngXvGulOpr1y1doLC+LkUuelR2mBlSuv/aujUe2XfXatucnzzH/PiEbTE7nvTSx+ma0WdBg9CrsWLVbUa+YVPzg72ZB7tw692F8Rf+zFyZ9oRKNP7d/1oIhsCew/yvEHEHksd/xJcGZdS7oby0LTKhhlh0+i78kLWB+s9LFFkPNZDNIH23foKk+Xsao1VdEqeNeIukdLcDHUmavfsjN7MPye+XBC/80tfgrrdiRv1iIZCSfp7NHU6fgz9JTAXt3sQY2/xFnsoMJMAACcu0lEQVT217mJSnUuAE4RLSEcOIpGydWRH30TZqsF6SW3MNanLZdPZdpDXEYmFgQGKOJcGhWDlCm8X6fYkE4QiotRdks6kbn7dCRcf99P47QbN5r65JOfXJn0BmBbI6BLfrnt9/qL0YoTPTmv7NWP1J21zKdWVvoC8S6yxt2dqjdq69SG7fIVmK0WhH4Zj/qpd1FaTcv5kASAcZmnMCegmV26WFoAoGfUUyjNyy/3O5QXrhZHrQ+ajt2AuUUNZK0Jg/+gVNXTJLX2T09i0mJh62Tl6Mj4tjWyuy1XHxtVnGafmWKE9xSx/90x++LvlhtEeteEoZnXOeqIHgCls6K6qs2/av2yqGcE/VbpCyNx/KlvEPPleHh+rRzvyuO1NtCPu0dsrzwAgJMTIAiqtAIST3M/iUHa0AVcO9FUq8bd+wJ468KAyMOqphxKQ9Cul+E78D9T2VOr8wfZh6h/MHs8GZyWh1VNGyvyIXUNmRuP42PLuUsroyG223OwHU8rlzaz1YIuDUP+HVYTG46GTlOl4gT/JUrLivHX2UWPLD8eBByqiY8Ydrb4FWarBYGvJXMqK+TieE58IIJGi0JSrdVJ3EBJOjXxgaGmZmJvEdDWVWwKuq5nUO3U+XLTmPQG1Dlmoz6XWCEM4J1VqmFIDfFOVs/w7jR/ctfFpDdQIYw91pcf37P/E7atUy2HCGEEWzZ+R1VqQqpURdDoAwgamkKtSxJelHbmfVORP/8DrtzASYyg5HwWg5KuoooLuV9EkGeSnASzeTqFSXebhNJS7juydQMA4+tjuPQs2GeNoTkAoLSatLdiL9/yhDCz1YLMexYHSwvEBYrOrwlMegO6+0ah2i/igrP2U+lIXywZUSl4h78QT+7yrRk5i5Zp0huw9bYzxnpIKhxkQaugo0UNnCmqzVlX69H9ecX3tydgsmCFFLPVAk0r/g4Qjb+fV285WXyb/vZ/QbyYLod3/6Poe1LpXuFMrGhamghhquVBvKfI1oE44t1621m1foGDD9E2eWzcfLhsOkDv+xEMl/lwyvregOrds6kFMjnvyJ0aNpy8s3Vsrbg3adIbqBB2x+xrt269T1xU7btsPsQwjPMUcdxRE8IAQDggfpv86Js0Lbncz9Irb+vdBgxR5EWEMDk9ciEMAGxXr6IophlV6waAXYt4p9x75qibH6foks+Vw4KE1fwuGTq/Jty7zJnRVMBi60e+ozzPGZ68IHL3ad4qXlDcfpit0h0zs9UC4w4rzefIW/Oh3XGIE8JIfnMCmkHXxJu2EzV+k+9g0htQmpeP01PFb0n+s/mVN+bZAyuEaVoFo/Qvb2zrKfpnIkJY2MfxHB3km5w950HLYWkld5pZPhIfiACoISvi/5I4zQ5OkRSKiBAGgAphAOA/KBWFX0qLeRJ2fVC0ap2FGFHV9vRHomom8atJYNIb0CP2BXydm4ibW0SjXDuXLKHvax/SonejSBx+WzR2kTFPMvxCDDGxYPu8LSNb8W1ImedeNyLrq2jpfUEqfdfrxGXKS6I2busktinWaiupx+bMREW9WSGs5p46qGrK4dpHeodvIYe2eRBt32pjzLnXeCfyLFgnzQTsXGa2WqgQxtJx4VVRXfpI8V16T7K89YnZKt7vNOkNVAgj79fk7VWkuZ/NrP85HHfEHhgcgtgjBnZBobZ4Ozla3SpaWTvpjhDb4cub3NQmUwCc3jebB5tXtQ37qBNPOVKmLLC7K0nKdAoPwaaULXQBqw3wpZa5zr5hRPriCG5R47tppN26mE4+RYVPlm5SJsmn6e7BsKVn4an0HjROUY8IlN2+jeLuUnm67SnIL73JpTfpDciKuKsqCPm+mwTnv0Rh9NYT/MKT9bPG1l9IlazXEdP75A6NHO4/KX0NqX2TMovolsDnA/u+0WJDuyjo4fKKDlUI3ya9gfpPSZvdissvaJR0cur1eSKNf2JeC2zJESfXd3x5YyReuhvYeKsajXt6bUvVxRwAhd+dzVt+5OiyB3kfkv+X36c06Q1Ym89fyDbpDZxQoHF3R3CVarC+xX8nTWgzrA8WrYitZiZXVvhT46l88ibPxBHvVwEh3EaA3JKZfKwoT0gnC1hiSVXOn4xvldbo7jwrLnL++n45Ek7s4mglLg/MVguqmnIQ27EvbB1bKwThDc3rwfePkRyf2XpfHRKDY+NE0+tk8UYsZwLinSO5Y1m1OhLH7wBwY7M/Fye/s9jWWMMGusaNFDySPwd9G0fp3b5qGWqcLuZ4Rn6zYwybz7ScA1x+2h2iFsDt3lFIX96Ght+6Z2L/7BtG9NmUTOua9WU0At4Qn4+0FjgekO+oRjfbRuq9nQ333XUpnVOzUxRxd4e62m2L8rxPTauj4Nml34MU8dJXiBtT5O6sz4e8420ACFylNDx1MU4Udu88I7Y9srnD8pf837z5B2xrvhHFy/mxtf58scw6ez04oStwSArNi5Rltlqoo2JiOTVvkpFrx+ZfVwMA9H/zG1zkHhFLE8k/+nAJNKHi6SGxYAlIfSp5Bu+6gMAp6TA6jhiJYm+xrREXMeTPfXddlFlOYHwTI3UbwI7jdRfz1j3r+Fylv0vPnS93I4D8PvtrsCLe4Qnz0SY6HS1nxmPAyXPc+2/WPk1/l+ae4d6d/TUYWSU3uY0vth0IbaW4JV3FDVDWfLxc6AdANzGnbfqObuKptf/D78xH+qIIVafVgHhPluVf0Chx80E+17Jtr/43Ytua0IS/R2gPJr14x9JJJwrtxOqn2WrBoMZtadrQL+Pt5uHA4w+HauL/GHLVREAa1DseexYuT+bSsLbjx2Dv16K6YrGpDaqYD+J2H/GEgsQx6Q2cOpk9XBoVg7qLk7DkzB6MvHfhl4Xawo4Nu7HZHzV6ZCnSqSF9QSRynpFUz9ofuYtJdU9VuPtjtloQG9oFuWOaovHHkjEMdmA06Q3QGJpTIUSNbrU6VBQPADRubrj2syc8hhRSy4pqZXE7d/cc/cp3uOSD+/Az7bDMm7d4ReKsPLMHQ7zbQRvgi5MT6yBo+MFy6e9w5A52hVYtt0xaJ0Nz4FQ2Nmcnc/HU6CCouacOnRzVJik1kDyJGqPaezZt4XPRcP8pWRFHXh/2mY3X5cXh2PYdr2Ia2+wJ2G7coPEu/R6ElPC18P1tFNwzdTjypqRWQtSz5Pk+2e9lqrI3NTsFp4ob4odm+krRyKqadT56C9tbuinqzT4TR6bFpjbYsUKyutkjsC1ViyPxq+5qgDsdpJPrsnYG/Ll2Jc1Ln+wOa7R46nFtcAz2fbZA8W3L2odRf2VyWtSe5bwh7y5ubIpDbX7i4pZ2CYduWwoXHxCNw2ze/ANiDvdFjR5ZXD62jq1RpnOimxq5H8egySR+EWXr2BranZLlvNiQTtxmBwnv2dqETYfMFdJ/9k0jGn6VqGjXTZfFwXfjTQgHjir6nJpqmdlqQWRqf3j0VKpIE1Use/yrzFgkj9/96UHY8vsauwtGQGyD58cZ0WCO0hWD/DuzYYR/xIqfPchVcq8MjUHtFbyqfGXAjqks7NFamfG7sjzt3utFCAePSWU9+xI9FZfzNGDnELqhkfNjKHyfl9zCZH8WA7937W+AAeImTX2tdIJrtlrQPPFFzlVD5ndhyOq8osJxVW0MLBJK4OLkrMqfzO/CqC9E1gk2iScfC+TldRo6AjtWLFWlS77JYi+OfK40Wy3oOGIkdi6VTLmfG29UVamsLOTlDD79BM7H3FCNmzfZSK9XlFcngqYHnZHWpoTfONjYFPV6pQEaLTJWtkLg4ENYn5+M9p++gdT3eUNl5P/a/CQMaBTDlfX55UBsb+kGW6fWELbv+3eoJtYf8c+pJl5Y+sjy40HAIYj9j8EKYtvOHsfZ0psYck+t6NWCKGREFNHfBy82RpVFtfH3gsXcYHOk+C7ejXgaBYMC4fm1dOz/Y6EHVjSVTO6SgWBGbjK3o8OCLKoI5IMr+3t6zn56r4vElZdlD8XdI6gvKDnIYOwU0RJCygnOjHB59Ngrd2PBAfRp8zQyZtWH7/NH7NJ244Vo1Pg+GU7hIbgW7I6a3yVzg6jxjTGodr4Y2h2S2or/AVfOFDZBQsEhaJ0kC3ruu+uisP0lek9NvmBak7eXOhBVq1OPHgPpKY49VLS4M6QCljDg7lOR2LVYEozJnZybA6JRfS1/+vZB9iG0ddXQSZ6lWV4e+44gY04UMvou4Hhhj9bydiLVFh49Yl/gFnBl2xpD0yWPi6OWVo0GwP5dw4oWF5pq1bA5UzoNZFHWPgx5Y0txqt1qNF0WR32wsXmsv1mDOrlVK/PGZn8ktVqvKL+ihbzZaoFvwgjkxIpCXYfRozg1UJJuTd5eRPw1DkFDU+xuwES9E4d9ny9Asz0vwWeA8j6ctl492C5eLPd7PZ/TGVfbXuHC5HVhcXVIDDxWJqHz0Vt4p06G3fajDWmquHshL1tejtkq3UXl6qzRAmU22hbk9SFjHrmfyy7O5PR194mkbj9YRFhsOGDQYlrOAUz2Fa2mtX91NHZ/w2sYVHbDyB6cwkKwZdMaDD/TjqpzahvU59x1nH3DiIYzeYuvle0vBPK7YwDwfrboVN7uN77HZ+sEI46+Ph/dnx4EIeW4ohySPrbrAGrRVd7u3f6uRy2dDjqVjzXNGpVLrz1hzmy1IHhRPE6Onq/atyor3LWeFkf9ZJY3X915JpLO5fI8WH6xaYS2BjjttdCNlvmn9yDepx0Xz8m5CracFvt5z4hYql4uFwoAIDbsSSSkbq1QiGLpqQzSF0YiaMx+XPitmcI/IgA4ubhAKBKtAxb1jICgcYLr7/vtzvPpS9tQv4Usnjp+FQtOtscJ43foOGIkXBIOqPKdzG1snci7/PeMOP5q5e962YtHxiGNmxvdOKuz1wOX215VjS/Pl9S7VChxCGIMHIKYAw8d9k7E5Dsxc/S80PJqQRS+8RL9zeR8FgPfd6WdSABo82GcwoM8+x6oeGClu2XbGuPq941QZ5lyt1PbNAC2tEzxd5A/EnauV+Rd0Y6ZPWGqMkKWPFwtTu60GLoAlk8qV4bFoPZy+zuZ9yMcqNF+5kMjvKcmquZXUXnAPb9pSYcVPGwxOx4lNQR6EZqACIb/yQJCXqfMmdHUyWvGvCgEvrKPGr0gJwnsiaqcRns8qogm550N6eX28NQypIRp7muRQBabajy41TcK1mdKqLELpzYtsGXjdxzdJr0Bl0bHoO4i9f6j1n5b7nsB+t7qp7Lss86vCVXzVFtwVmaDQd4O2XTaGjW4U0BAVJ0sO3Kq3PIqqqP8PUlL4p57zUgd327I34/ejSIr7OsZc6MQOHaf3TGponEDgGKhV/ynD727NuDkObhpihSbUQHfj4H/W9KGg5NzFdwxGTgVsvJ4Ym+BHduhDxJ2/YLOQ0bAeaty0Vhe3j0je6I0v0D1Xej+gTgS+UOF4yZB4AEXuoEHiOrINj89Z4SGpAdE/rILY0AUEqr+tr9SY+7QtNN43l1UgTvzgRHeHyVi0Kl8DK5xCUeK72JCk2guPmtIRu3blmcow2wVjfu4jrfSe3cE6cvbwGe9k8LICGsMCRAdYAe8lKqoh87Xh5ofz/0pFGntV1Va+CACOksnwLdn1ohHRbjdJwq7v1mk2h96tntWdQyRP2d+HY2A8clU26Dw+Wi4/ygJI1f+CILzd7W5MBaXR8ag7qEbONO9JuYOW4Qv/Fsq4tjb5FCrY8bsaAR/fRalOaJ7mXHWCMUJk1r+7FhHNoLezjqqoKe8OU9NEJX3gzfPtsax8DI6fpVHS+wTvWHLzMH1hADOzY698as8muR5/2uMdTgEsQcGxx2xRxDdfaOgbSBd8E9rUwJA6tAmvQFXiqvRZ/8frsFstXAd/+BUyVcOO1gOPv0ETHqDtNO0SLqgKgeJU7jcC35DldbxAFAhDABw8QqXt8suT8XgE7yI14W+1S9KMQCb9Aa8n13xopH1JUYQ26EP91y0tQl3CkHoI3kSIYzlkZyWyu4IEoe3BLom3vCemqiYrMxWC97PtijKNFstCsMCW9eLl5RTioq573/stfmcEKZtKhofON27joLn5QlD7H82Xs70GPj/fIe+z+69CC67PKlRiCNvivd6Rnq3o4402W8PAC/mduTKsLfgJvcmAPFCOWthLCVMg6eOi4u8wWl50LSQdt4DD7hIiyjPBrjdW7yLlpC6lSuD5ceeuYuQ3XU5pUU4eIy+0ye707yJECbnUdPdgxV1MukNOBr1vaIsOV97nbiMTXt+VfDg4samCt6RdqLWLkm8iElxinTWl1vQ3yRt2ZFTXJ6aFs24dGffNHLx1WDv25HfnrOldt6v80BFPHkel34PQuDYfcj+IkZRBzauSW/AnWciERv2pGo+RAgjYVW6ST4E1wZ74nn3q1y6sAPPw/+tZI6+c3Ft4PqHtBufuTpMQUtFfT/yvTjYMrJh0htwvYmz3Xj2vqeaEEbeqQlhWWvC6Pccl3kKWV9KY09GhCRQtZgdD9uly/Sek/zbPZ/TGQA4Iayka7gkhD37kirtbD5E0J2Rmwzvj0RhfMo+0WgDEcKeiJd8xA33bgfrBKOiTuQ+GDGUUdRDOTeZ9AbxVPeeBUoAOPe6mC5o2EGFEAZA4esy4CXJoMk756V+RoSwjNnRaPKcqHbovLOhou5q/Bi0+jW7QgkJJ1YAnSJa0nfWt4wITtFRX5EkvNov+xT8If2EHUPktJj04uYfIPo2NFstVOWbCFy3+4jjZO2n0mkYS6fZakH60ja4bCyGkHIcjT9JxBf+LWkcOS8IXcR4iHyTiPwOfC2ZCmEmvUFc1zg5oXuvFysU9v++K+Z7qp3YjokQZrZacD1BnPvCPpbWFmx+Ze0M6BneHelL+Hvn8vH5WHgZ0hdEUiHMbLVA17iRIp5Jb0DC3xsAgAphAND9VE/k/NBKQTs7T8j5lvNjqCrP/hVwGOt4YHAIYo8ghKIi2M5fUF1I/lgoWn763ncHjb958w/oGSNemCUdutXn8dhYcIC7DGu2Wqi+NOn0xAIjADqQ3n1a3M0mE2HyjIW43u4yNyCpDRryuxolpmsARFUcQv/J0fO5wZy1lqTzlXauiZNSUh5LM/nv8a0kYJGwXr/x95F2tvhVEed6QoAiT0C8rA2IVuvMVguuDJWcX5O4ZDBnF8okDzLhke9VmnuG2+liB+RP/AzUCSqb5s+1KxX0AuB2W7V1RQfIT8SNQrGpDcxWC2xpmeJiQmVBp3F1RdaX0Vx+8kWDSW+gl8sBwPe9JGz9+Vvu/cbALfS5y0vDaVxyT0Se50XjNVr37r5R6O7dhuNX+jLRYMHf8yULdOy9lMsjRf4TM/eD3C9j81bJWEdGRBGm5+yn6apt2EfLZmHSG6iBDXbRT743jRNdKG1QLJCseLL9j90lZ9sBG0Z4IadjY/M69HfuNGkToV6vNKQvbaNo32z5amA3EQqfE79vg7mJ0AYHAhAdJKvlWXbsFPfc8Ct1tUoWajxVyxsAPRVnYbZa4PfLaJpP3afFjR1imIQtw2wVVXHJc7Uth5GQulWxCPw8h78bq1Ym6/zbpDcgNeJHFPXkF/i1T/AOVANeSkXeZCMujuH7v7zuLL0eK5Mofc63BY7Or3MlIVVt3OG+zbbGMFstiD5coiiPBbmjZtIbMCegGRUurW+Ji/D890RBhzWg4xQuWWot7SIaRpCripqtFnpHDwA9RZODCq2zJIfoE5pEI3+9WEbgy4c4PlX9lT9t1M9IhP8B0aKs/49jkDE3itJK8t65bAnaH+HVvtWEHc9Zifgg+5Bqeyz+0wcZK8NV8zBbLbCE8XkBQHb/hZRusinEbpClz49UfP/Qzuno0WMgZuYqN/1IvLIOovBMrH+a9Abov0zEyfBSuCSoG4qQt3lixIqgp7EXZ9zGbJUMerH10gZJBmzYO+VsvJ6RPenvoBEHETSUdyhP3hFjV+T5+iBx7CHGQ8xWCzfWs/TaOrXmnm9u9qUuZQDAe5+bgg+AtB54su/LCnpqxoqbwfXn85ueGjcxL80eCzalbIFX48uKtPKyWMfXJr1o+VOtz6ptHAmdC+A78DCXX48nn6fxzVbREAybhjiZl89NDvz/gkMQe0SwIf2oYiIxWy3U7C8Jk+/wXowTd5RLz4hqGhpDc5j0BnjOTkQvrwg47bXQ+GQw0IQ2U93V3hv6CwBQn04umw9w6dg0nQcPpzSo7ZIBwJ1OojW8j+vzk/nx4jtouixOsePJeqVn6yh/bvV5PFemSW9ATol4B2JMrQIuHSsEEfqTDT8DEBfiJr1oHMOkN8D9R3EH0e9t0Txx7RXS4sp9d10AQNBIaceV5Bcb9iRyPxEXbbEtO6vyVm2ArWI+qIhHwFrIy5kew9XJdkk0F1z1t/2oYj6oKIPNy2y1oOzuXWS+sJCbUN45rxz0ifparxOXFd/bZZcnmi2No/zQbROtr114RZpYytvVFIqKFDvTzhck8+yaVsG0fsTsMKtaa2+Ses83kgsnJ4Ny6L+UrLalrwiHSW9A4syFqu125Zk9igkZEK3bqdHAhhET0WoTNctT+V2xoBHSdwzey59CxLbqpvim7Bhh0huwdsaX2HtXXJB1WicuSoPG7C+3/clPcOX1sdevz0wx4vMc5Y5910HDVPMjyO6zSEG72pgHgLsPeeZt8XsFL4qH31/DaJ8m1jjlCyWWrk2JGxV1q7ZXFAIv/CZuPHCCxz00npYIm4sTAFDT/fJ8AKBBUg1ufDTpDaj5XTI37oxvYuSeAfEbt0gRp9/ot8fQ8eP2Ii+Y9AZMrXeclhV6yAm+m0fAbLXg+qBoaAN8ufoSmK0W6L8UhRnnQj7cbLXQO1gAoNuWgjOlNxXjqElvwLWXJAGUHYfkGHDyHMqq2bhyqm6pgVv9omi+oV/FK+icf1o0UjTfSxQeA95IRuBYaQON7eu7Q125tKtuiOOw6RivftvWVaMQWJ0iWqJKt9Nwt7hwcWO79C93w0StvuwG2ZNtjmLnHQ0X/3q7yyg7fBJvNFFqaZxe2xIXx8RAs8u+7zA2L3JiRp4jJsXR56BRB3D2V8kC4a3mDZASpuH6uRr98s0Reb099tZG7uxanDVPFtdeiqHxQ2pKGgtmqwU114jtXRvoR8vfcuYg/c1+E3K/mlhdlfs1PBN1i9aD5E/+bveOglMS70vszLqWKO0cTuOmFEl3Mlm/fwDgxliZZOmS0ygf9+Rjt5pApjbnA8DmrT9ycca98BsXjx077I23jywcJ2IPDA5B7BFB7yBRaGFNHveMegqnRs5XHVzbjRV3lw9NFlUQN+SJCyPWoh/5zw7uJr2BqirJFz9k97gyuzLOf6XQHdbY0C7iQFynNh1MtE0DqCDH5tn2SB+80US8s3W7gY6j4dzrRji1aaG6wGAH0MPvSCb8iaA65t6FZVJO6JfiAoCosvn9PFpBS+LMhbg8PIYaR2HLY+Oa9AYUtr/ED7b3FgImvQG5IwOQNlQ02S+3vMfSDwDdew5SlCFfDAFA1oCF9L3ve0mqPIFGa3fgnph1BGXtlBMhgYXRvhqVLk2GJr0BG5vXUaQr6nAOPh8kKSYx16vSbqwc9hY5Jr3ovDf9ZUl9tuzwSZGXP4XSu0ZqML4+BjcG8gLE8PQc+jthx8/l0gOA7vQSWrSBfpyPHdIe5N9oz72NClvH1ly4rqEnfS49d16V3ya9AYbP4umOr5wmQLTiBUgnjIQ+28WLXHyWpy/mdgQgqnsR3zh/tZBULOWIeD8O2h16cfHop1HQAIiGFgjCUwZw77JmxMB7SiIVgrR1JXPmZJFl0htQ2oU/hVATTNlxTb6QtL4tCfh3GounQ95TE5HddTkX32y1IPszfvFb8mQbLi+2TABIOLELZqsFqRE/qi6qSNjtqNtcfDnMVgv61ZU2Uy68YlQdO9TK8O5/FF81FPl1IUag/paIQYEuL0onzjM8U6nl1OQZC2Gr687lBYim8QlNZqsFlonz6bNJb8Cawjoo/tMHmtBmdGPHW1dddW7Z9/kClP4l+gsLGM+f8gOAzqexKPwHe8K1tnRiZdIbUGdJEgLfOkHzPfKmRAfhQ7wPfz/MHshpAgBMyxE1N9YMvud6pEUNevrGotvAoZTOLb+JamyH355PT4kBUIM8Jr0BIUniePxKhrrqvdlqoRt1BLmRd/CpfyjMVguc2kiqwNogf6QvjFSMGz4DjqLeQmlTb+HpPYp6ExVIQPSXp2nRDLEtO8NsteDAx5I7GLPVgiORP9C4xOKgvfmLYGReW+455q0x3PPVtldwPGYNcrovpenz3xN9hwFArdXS6bsljNn0aCT1c9YZdHmCLgC7hrrk9K+9WRPRln7iBsoGpfXdqturUz+mRUIJ1Ryx167kApNavC4npFN0Ok41Cufm6DMfVKzOrVbGhub1OOFSXk6RUKLMxIHHHrqKozjggAMOOOCAAw444IADDgAoEwD8A6dVZY4TMQf+YUS6SBe9Wf1kAqIj7bae3x0iVsoI5OmIXrr8pIwFudOkBrVdLaLqYrsk6l4nHN1O33FGPBgQ9UcA8FiZxOXrOSsRWzZ+p1AbYP/Ld9KH9zWrluORUSqevBwT/ZUFjtunugN1cNoCXIjn1evK26k1Wy3QBvnD3EKy3tP440SOpit/BNF3RP3p+RxRZVFIPU7LMVst0DaoD5PeAP+fxtD85TTK6RqXKdbJ+lYUYkM6KegDgA/Hj4Bmj8TD2E79oAltBrPVgrBP4rm4fatLaj7aIP9yVTZYPgFAje8li1vZ3/PqFew3O/1RDHXSCgCaXance+KQl1ySZ8tj1Q0TZy1EjR/EMjNXh2Hu6b34/KsXpFPde/cc1GDvpNeWkY3LXSR1L3nfyPksBt0GDqX3MFk/Via9AaVnz1WqHMu787Gk8V5qWCGhQLxHQ9SBGk9L5PonMT6ixlPy/6LxmiKOHOQCec6nop8n4jiZGF6Rf+dP/Axw2eUJk95A73KR9/4T+HuZpO+zcQBwPsRYviy+rufCzFYLik2SOpR1gtgXj46fT/PLeWoJl4d8DGP9N5mtFjhvPYjSzuF46vhV3BwQreBdbLMnVMcVeVv3u+czKuqdOMU31Xp4oNvAoZgXKPb1Hk8+j/rzElW/PQnz3zaU5s0i8BVxbCJ3P81W0am82jc36Q0w/7JKUUZC0wRFPGi0NGzqhgHYEfIbNm/5Eb7vJdF4RVubqNKr68o75mV/l57Oo/zy7s+rnZ/7NRgrvHcDEO+A5pTcVPBaXicWV4fE0PzKjkmaG5N9xbtRmc9Ld4ga9ZVULUk+rPofWwY5Bct/j7+jQ/KYtGAIF86mvS1bB07LkVT2iSuSOns9kPN8AwSN4e/CmfQGOOl0OPuGkX6XMT7taP5OOlErpKTjWe6k5Hx7D1zrGkTTqM2J5Lf77rrc+9hO/Wg9AKC0czjORN3CtJwDKHw+GtlfxHDjNpuvSW9AwA/iXBT+9DFkDlxI48jbrdlqAcpsqCzMVgtVe2XLZZ/lY++A6texseW3iryIg+hDk6XTQrl7lfLoAID8iUaETY/n4putFui6nkHEoQF8eH4KYps9QfPw/kgcO3t0f15Rl7L2YbQu2lo1sfZmTRqHbQeK/gqgl1cENqQr3YM48HjDIYg9Ymj/ymhoG9QHIOptE5COTqzoEVSkAmBPNYaNy3p1fzbDpChT/tseSJ6tPo/HlWFKXXl5uYBonl0b4KuwpmivXJPeADg5QdfICwAwoXaWIs7nOftwvYnysJfwQs6PG0FlaDdutCIuSwOx7GfSG5Cwcz20Hh6q9FonGFH7KUnNZVKwuED60Xc7N9GarRaY+gxGuz9FK1IBr/M+y3q2Ntn9np9NEIXxo+PnKwykkDT5AyQVh4xvW8OWlomyI6IAl/q+pNrJtZvoUNjSs+wuwOTqLQBvuZIsXNu+puSlzwdJyOvFqzGyCwBW/Q4QLU4S+lih3qQ3UCuNAS+lYqxPW6R8uAD7i0QzyJv2b6JxL/0eRIW43I/5BQC7mAdElS9AtDLH9hGz1QLfd5Og2ZVKF6BqMFstqotaQDTTTi6pm/QGZL4g3k2L9WoNs9WCnO6S82a2bNb4iElvoMYpANF3k2rfUIHvQPFehe/EJNX2ryaMFXWQhMviP31gKSqixk3YPLQhTWmYSW/gBHk5fwBgfXB9bmFp0hugLS6jeR59fb5is0VtDGPbLbuAM+kNeDPzOHTbUzDW4zRV9WO/97hD+1DwS4hqO5dvQpitFtRanYRrg8X2U/CLqA5nu3qVLvrNVgsnNBDofBrTsKnZKahT+ybHE3n5RKil4+gMacNEiGkl9oV77Yg1vqMN8FX99ub8FJo+ffACRZzLI2OoMSNSV6cwXt2PhHc9VkjLu/R7EM0r4xvJ6m3m6jDcPVaLps3psRRjfNoh59MYRdn2Ng4uh4pST+60GMW3OPumEQE/3io3D/b56hCpzzdKri7+ny4ZBGFpIr7U2PJIXkSVkoD4fmPjX257Fd4fJULj7q7YLBBKS9FwZqIqrUJpKfw2jKb0+P4+Eia9eOWANf5EyiE0X39R6ouF7S9x+aaPqsvVr6SGFuvzkzHZNwLCyxfh93YS/A+48v04UPJj6P+mWO75mBsw6Q24OSCa64tsvfuevKAYTydmHaGGluTxWRVHeZ97sv8QyGHSG/DSPf+aGXOljamywye5Pk9+n/6IX3dkf6FOBwAcHzsfqe+J443zzobcxteB1msVdBC3IC67POndye83LVe0Jc3uVEpXwoldeO+3FwCIbgfYdgaAGtv6N0IQyv6xv8cdDj9i/2PI/YjJOzW7SIpt9gRsN25Au0MPWycrzo81wjJxvt34BOx7nZceQi13JPz5E0x6A7K/N9AFNPE3xOZDfgOA75YRCBp2UFXou9k/CntnL1KUBwCD0/KwqmljVRrVJmg2zCmiJbJe1yKj40qY9Abqx0otrj2QeOlLIjhjG/I4cpC8g1N02HfBBy5zaiO/i5ZaKGORMTsaga8pw+3RaLaKTnJrrU5CsakNNdxB/CLdGBhNT37YiVgtT7PVQn2g2INTeAi2/L4G3Xu9SK1UkXwIT7UeHkg4vgO9MrpjY+AW+o3WFNah36+8+gw+/QTOx9zg4rDOMkv/8oau65lKfzdANKyRY1pmN768vT8RNwpVf1P6g1pyZg+8ddXR5aXhqqc1ankCgGBsBafEw5WOLw/v0bQ9LvdpAY9v1R28Et8+ZqsFlqIivOMbpaiTSW+ArVNr/LVGvB/VYnY8jr0m8jT3p1B6imi2WvDE0d6oasqBxt0dZYWFNDxkbjztN2p0byw4gF5eEUhfEc5ZS1MbB9TGGwLWka+9eBX1fwAI/SoeR960P7aR/60+j0eHlw5QFx/lfQ81kPqSNEWxEdi5dEml07M0kzTpiyMQNMr+HRiCzFnRyHpuIRZf12N9cH1FnvI2oFYWwYXfmiE14kfVd+XxWw15k42onidQS5BqeZ6ZYoT3lMo5graHNXl78ezxl7An9Be7YxuiQ2H+ZRW6vjAMuaPK4H9vrjJbLfD9fSRynpa+lTakKRL+/IkmjXg/Dgc+WVBhG5KXnbEyHIFDpDYRl5GJBYHqRoDYdBOzjuBT/9BK80Qex9axNf76frnqd1flzT0MTTuN1T06YNOeX2nanq1NnAXa6y9Go+Z3/ClYbLfn6DpAzhtAtGZJ/EiqtUedZwNaRmX6u73f9saBroOG4a81yzHvWmNsbF4Ht3tHYfe8RRW2M7PVgnbjRnMWmdVoZPsMqRMA3H0qkvoUlG8GkDEaEDf3mkyy74NUDjK3V7TuWZd2CB5B2Y+s3yyyZu3i8fI/5kds29VvH1l+PAg4BLH/MUijvpruh/5NW9uNV94AZrZaEPPmGLpwB4Bz443w/DoROZ/FKHZD835ugcb9JJOxRT0jsHOJNKG9nnkSswKC0evEZRSVOVM1PPmgRCAfgDsOH4mdy5bQRW9lBAlAnDiLazrB82v7xhoqg/tZiJUXn3WUzcYFlBPszf5RsHYr49SoSDzi5NRePkPTTmNFU59yFwfs76LYCM7cMcnH3s6aSW9QTPLkf7M9L8F/wjV62mNPoCDxWSHAHipahOiaeHPW7Eg8p+1e2NJsE5dOTYhXy5vQeH6sEQ3mlt9+zFYLWs6Kh34Gv5Bk89U18kJpfgFapGiogEvKYHkpzzckaRBVdyLxtR4esF29CuPhYiS24ieugaes+KGZvlK8l/+X06zGHzbf9PmRCIpXCqmXRsWg7pLkCq1TydtatwFD8OfalXaFKZPeQJ2pm60WbLujVTqF1WiBMhul8/qgaHo6Ka8bIG4WZQ30oKd7ABA5MQ71dp/Fpj2/okXyIHj1OU7zy/4sBhmDF6B7z0EQUo+r8i827EkkpG5V5Wv6wkjk9FqsSgupa2W/m7xO5B3bxtX6c2XGsvK+u73f2Z/HwO+dJNwcEI3qa5Ox8PQeavQIADocuYNdoVXLLUcervauzl4Pzt2K2oKdODon/c5eWWSumn6pqSpt9saFO89GKkzoy9PcfTpS9FHGQG0jhv2m3QYMgWaPhYaxG4WGVN4o0v0KxHL6KppH7aVl45FvLJ8rTHoDNNWqoez2bRqWP9GI42Pn26X5zLqW6OZ7ijpltkcX2QS0109I+ZUR0kj8wJ1DkNFxJVrOisfR1+fTTWp5nm5/18OtJy7a7Y9smK6hJ0rPnrPLt2dnvk39JVaWXgJtrZqwXbuuCFdDqVDyr3Do3KXWYOic/gFBTCjGtmurHll+PAg4VBMfEfQOUnqJJ0hf1oZ2crajsx1efnri+bU4YPhsvkvjERPJJ4zfceWwQpjZasGsgGDcMfviqx2xeKO2aAnp3HgjLZP4JjPpDaqDjsvmA+gwehQ9eQifIpnfZeknam3BC+MRun8gaq9IEi1c3fN5YrZakD9RskTGOvMlFubsCR+D0/IUYWxccidJPpgSJ9QAqBDW+wSvNqeG6uv2wblGEeVJSNIgmi/RJ5eDDvJv9OOeWZ6yeukknAhhJIydANg82nwg3W3R7hTvI50fZ0TsE71pHJ8BR7Ep6Xcuf7PVQp2rEpD8WV8/6St4y3i3+t0zJ94o3O5CzWy1oDT3DGLeGqNYYAidCxD5XhzHq1VNG+PCq9K3JnVslFydy5PSEHPbbpvg4vmIdxsKn4umebI0l+YXwGy1KIQwAJxAa7ZakDFb8qWkdm/FdvUqzFYL9nWop6Dph2Z6Gpf4t7K+bbTb18n/7uWYbmfrwS46cp5dzPHAbLXgzBQjUqYsAASB88XEqlmyeYcdkCzZqQlh8rqnDV9An798pj99nzFHpB9lNuRNMiJg5xCYrZIpbAAI2DEUq/P2Ivt70Yw6ILpY8J0o3XEy6Q3Y/+kCZA1piJ6RPeHV5zjy3jdif5F4Qub3rngPlb2b6RQewn3zKmudYNKLGyLytpDTazFCv4xH5ERxDCP+2ioSkkx6ccOEvPfbOlzxPci7VU0b0zybrohT/X7yNk2eWWfqbSbH4fxYoyKdPD8Cv3ckS41mqwW+ztWpCq/OswEVdMxWC86PM1LH492eE++6ydUH5W2P+O+63FZSn5a3V+IGpTQ7FyVdwznVYoKsNWE0vssm0arwe3XTuHzkdcuaIdJGxjoihOl8JF4Tq7KBB0Tz9qwQlv29mBfxpciGsX1RdzgLALCmsA6cdDoqhF2Mi+GEMBblCSTyb02+I/G5qNZ+5Onk74kFTrPVwlkXln+zzZmJXH6NPk1ElxO9FHMkcQjt3f+oQghTo0tIOc7RLeeFPQGJ/M+faKT9DgACv4ujGjL6GeK9zIRTf6uWf+sJdYuzJr0BzRNfhNlqoWrt7F3fW/2iOHrG+LSj1nzlAhex0qomNBMfb6dmS37cWHrYKw5q/dyB/x9wnIj9j8GeiNVwl/yB5P4UCqNPDqzRhVx8TWgzXIz0QJ2lSbi4sSnq9Urj3ld2t01tN0cT2gybt4hH9bFP9MbZ7g1R/5tEOLm4QCgqKneX6tkME+50kFQhzr1uhOesRC7updEx0BYBddYeRmnrIGpMQi0/eR20Qf6wpWfR96PzY5AbeUfiyz1VrCtDRYMEAHD6oxj4fCDunE84F4YZnqlotjQOPh8o1QnMVgue7Pcytv78rSQoDomBx0reEIA9AUONfvLfycUFWxi/S/L3vU5cxsbmdVQHcpL30LTTeN79qqL80x/FoLh2GbS3NZxzXACKExg5rfJBnw2POdwXNXpkKfjE5vXe+VCkhGnK5YEa0hdGcpfaK/P9AWmHmbzPm2yE9xcpEIqKaDrDZ/FoMEfdgS6rlikvR23xI18YaKpVQ+63/pwDa3t1vP5iNJK/WKh4r3F1xe1uobgSrIP+C3VjGWwana+Pwr+ePVrJu7Dp8aj/jfJUUI3ec68Z4XpFwL7PlXeI1L4rVceJbAnzr6tVeQUAHUeOhMumA/Rd1lfR8H8zGbf6RsFt/T6Yjt3gDN7Q+sp2pW2dWkO74xB9LtraBDtb/EppYk8gWLoDdg7h1NgIfazK0vD0HCwL8uXiqPEMAHp0f56qbct5U177rUzbZunrOHwkdftRXlqi5qSGDfn70btRpGq6imhg60bqx8LJuQqEkmK7efQIMHKnKuREguDceCMOvz0fzfa8hFPtVtvlU/ThEiS3cuZ447d1OLKfXIaYt8ZwxiYA0ccf6ycKUI4zADD39F6M9eHvujq1aUGNRAGAtnkQbCfEe77tj9zFpLqnONr8D7giK0Iy22+2WhDbdQBNw4bLecjytmfM0yg9nce9U+NHeb+7vjAMxHjQB9mH8JFfa9wx+6KqKUc1X22D+rCdv6DIp0ePgWix4hSOtBZwu3cUqm3YV+m1hBxkvSAvmzxPvdhcoRlgD2rpAfV+Zy9deX3bpDfgzBQjTo6S7k2Xl4a8Sykqpqby5e8AILZ5B9iuXa80jSz+NSdiNV/6507Erq9+ZPnxIOA4EXtEQPyIETR57gi1PsWi7Mgp1FmaBOvbRk4Ikw/6+RP5E43LI2JU47G/iRBm0htgy8xB/W/EhSIZVNndJDYvAPg10MyFHZ4gWT0jOz11FyVh//QFKLt9mwphclrMVgsCvxN3n8mpltlqgS2dN8qxqBEvdAgB3gBAhTCz1UKFMJPegCOtBbQdP4aGsbRSgSnxMNqOl/yrVLtQandRkr5cumQbG9IJZqsFGkNz1cFVKCpC64/iFDwjeKVWniJ/Oa9XNPWhv5ec2UPjnRqxAIGv7kPGiwuoQZGMb6Jw7jWjQghjdz9ZBO4cIoZHtqTxWCHsjwLxZFPjzvunSgnTUBrlbcKkFx1lq8HJ1b6lLXsTL8ALYYBoZZBsEJBwy7vShMrmM+FcGG55u3H5qvG77ZE+HD1sPpkftoJ3/6P0xMqkN3DtwGwVd9kB0PsYxOcYiVN29y5cf98P/RfS7qq8vKYHGcupOadVBWaWLnk9iBBG0l0aFWN34ew5OxG1Vicp3p1eK520sPGbTErCmQ+NwP6j3GKorEMYR4/LJv6OFDEAQKy9kpN2QqOTi3gqwQphAJD1vJbmeWaKkQphJJ1cCKPlsXeJNo6i8ffMWUTjLAvyhdlqwY2B6k6LDakSr4mzcxb2xkO5AG/vHSCOyya9qDpn0huwcxlvIZLAybkKup+SLIKSuyZyrMnba1cII3OC/JteHxRNxyfyXq1PA4BQUkzjEC2JsnYGaIMDRT4xQlhp53AqhFk3NAcg+vQy6cWT+C4vSb7SWu0fyNVjaj1JjTR/vXiCmf2keFeUCGEsXcTHH1s3olLKQi6EAeAs9Wob1EfCX2tp3nKH0gCQFXEXZqsFF+OkfpXwl2Tcwd6cQfhF8xneCIB4385stWDGFX8u3cUxvKEJtc0hIoQBwEd+raH18KBCmNpcH7BJPJ18PqczV1bZ4ZPoWEM0gEGEMLX6yOd0NWxhjAqRsjsfvUXpJ/OSWnqdl6ghcHVToOIdm2f+e0ZpXJ4lnVKfH2e020/ZOrD9oppV4N4BQE4Jb1hHnl+4SxVV+km/kQthZqsFV1+OoWXnfhyj6IcO/P+F40Tsfwy5sQ5AOeB2HjICzlslx6EZ30Qh8NV9XNy8n1vghFGaUEgnZ+8nkXBdIy9s2r+JTqZkcmShNjCQC8Dl7VKpPRMYUoGU11tDu/OQahp5fLKzlvNpDHwnJikMEMhpKG+XrDK7exdeMaL+PKUhEPkusL1Frfyd2u/LI2JQZ6n9C75qaTK+bY3AlyWT6b6bRnJGRyoqk433bIaJCs1R78SpnoTYo6ciEIMPamlKu4RzRjIqmizlZRMjEGxate/Pwni4GD1qHKYuISqKby/80ugY1F2kbu2L/U12QSsDYhCALTc2LZaalpfTw5alCW0G4WQ2bZNs3djFK6smWR7t9iBfUJqtFnx4MQTJrZy5OOXxleTR7bmh0OxOhdlqUTUYUxnId/rlOPe6EYcniGPZmry9eOH5V7B13Uqaf8EvIfDqc9xuehb2xrCuxwqpw2xyWumyy5Mat2HTdx00jDq5VgO5P8emqSwvCC68alScfsrnDwBotiQePh8m4srQGHik3ebuPbHx2nwQhzpLk+x+RwBceyT/2VMkFpmrw5DVZYUoSH0Rw53a2+vHbJgaT8idNnuw9+0I2HuLANBmchwuR5UqDKw4hYdQFy0EdfZ6UFXLS6NiUHexOq/kZRf/6YNqQ0tRml+AW/2iFIYk5GlLu4Rj22qlkSJ5H2brqda/zVZJe0QtPjnpNVst6BkRi9ICfvyxVzZBWfsw2q9J3je3+KF69+wK01/c2BRajUAtFMrbrEkv3bm7n75B4l6Mi0G9Bfy4rdaOmy+Ip65D7PGSxM+aEcO58KgMLX4bRlMXFaRM9mRe/l2u9Dfg0NpJj+wJED0Rcx/0z52IFa55ZPnxIOA4EXtEsCH9KC5uFE1By3e9tq8UzVsTHxz+64ppOhK3cb9jiHg/jobVS6wFADg5Zj4XFxDvv/x9T7PC8+tEhHyjNB0v3xUFwFlhAvidJTnNJr0B2qYB3MBnCZN8MLFpyN0i+eKcnMSRi/lECCN3huT0qg2eapC/C04RTd3Xn5eo2C0zWy10F7i8vEh8ll8mvQHLzuyhJo0B4K0JPyrSEuS9b1Skz5gdjaqnXLHwtHi6tPCaF4JGiipfeT+3UJSpRhOb36+BZsr78oSwyvKP8AsQfaDYo+dWQ2fIERvahcZ/6vhVRZk774jDU1HPCCqEDTxl5dolW74cia2qUP9DarzQNfTEhVeMinA56i6ybz2OTccKYcR0+aVRMbC+rWyv2U8uQ4/j12gdTHoD5vmtVdRFrV053S7CltP7ub5H0LPdszBbLTges0ZRZq+M7vT34NNP0LLk39Ne2Sa9AeHVREGInI62mB2vmsZstaBRcnVKn2a35N9py8bvuPhOOqWrCTXa/m65gXv/euZJ+v3LOoTBc1YiYp/oDbPVgrpaN04IA4Bj0Wu49Gq/CcIOPI/AnUMU4RNqSyfF+bOqARBN/au1C2Ll0h4Cllu58sOmx+Pu05G4MTCa3ke6ucXPTmoxHRHCnMIls/Ps9wpeLI7tPh+K8Q58soAKYYR3bT6U5o2DH0l3+uTfVT42seMke4rE9smsLivgt07UMvB7W+xHZJ5j60H++yaMoHOHPZA7beTUFhAN0ai1Q7Vy2HuLJr0BdZYlqVq5PP10Tfq778kLAIDvfXfQ+qVMWaAqIMjHJrPVgirdTlMjJG4/71Ntc+xCXbctBSavMEU8k96AS6Olkzi27IhJ4v3aG5ulk7XW0+KwqBE/fpF7SSa9garbmvQGbDqQQNOpzcmEtoxvJaNimt2pcAoL4WipjBBmtlpQr1caaj+VDpPegNi0WMUY2/7IXXriXdE8Rf7rPBvApDeg8PloKoSxIHSSE8EuLw7Hibj5Cvp8N45C+sJILg0g+VGUzzvss9kqnpYC4t3BwFf2QWNozuVP2gDxHdgieRB9V2NtxRZXHXi84BDEHhH0DmrJqRr2y+pKOy5ZsO77XJxANLtSuUGexCNqeYDk6BUA4OSkKI8sbAHJtwqL6wnSREgGokujeFWJ4WdEx5Rn35RUXjz21qZ02dIyYdJLDmvZwUpjEFVVekY9pdgdzF8fgjV5e7kwUmaDpBqo/035jlNZkEWeSW+AYGxF+TXg5DlKz8nwUtg6tVad3NR2yJrPlwTXlrOk39GHJRPaBMO926FzkrTget79KpefdYOozmhIBRp/kghtg/ocnwJfS0ajTxPx7Ky3AQAbmksGH1ijK/b4IJ+o5AKz2WpRFRSIqpCaYCvniUlvwJWhMYp4bPzkL3jHoCa96DepZ9RTAIA/QpR+2T71D4XZKhqTISDGLYq7S0KfSW+gxhnU6j3wlPoub+nZc9wJqNlqgbZGDUV6eZ5yPhDc7B9F4xADKHUXJ9G7YMRZMan/eI9cLr2vsyi4ZMyL4sokvqsIbJk5dgXRTXt+5eLmTzQiZ3oMbvaPwsbALTSc+AiS16OijQziwLissBAaV1dqQZOoy7LfNz/6Jh0zNK6uNH+T3oCp2dJpoFBaytWXpYO0UW2QP945z9PZvZpkHIeMiYQ3Jr0Bm2672q2HXNAgeCVDPNWp/8wp6tbDHjyfPck9E4MibD1JnXS+PgCAs78GS21k728AgCf7in4Bq9wQ4Pr7ftT4IRkZHVciOEVHF7XsQpMtg0BIEVX5MmdGU/9ZZqsFJ0epWzhl++7BqeKGTM5nSvX1wueikfldGBemcXdH12OFMOklv00kL11DT67uJr0Bujv8/MPOc/LxNmiEqPlR1EgUgo4US3exrieIG3tNDzojtmNfnGq3mr7LeXYxpZ34X2PryvKLfHs1wZFAW6smvKdId03XN2/A0avWdwg01arRd8Q/Jckn7+cW0Li5URryJxqhrVNbkQcAFD7HjwMEKR8qTfIDwIGPxfVBUqv19N2hyWLcdmNH0zTEeBALp+1e9HfuxzFw+3kftE0DuDacvrQN2h3pg9p7XLiyt2xaA52XXtW3IUF5wioAXF3sreDr7lCx/7rs8lTNk1XhJunIZnHizIVUTVwNV9teAQDotqco6DFbLRjTdgdyei1W1IdtSya9AXNP7+WetSGiQZtDk8Vv8eny52C2WrA54XtVntguXYZJb6CbRPb458DjDeVWpAMOOOCAAw444IADDjjggBoEAcA/cLPp/8HtKceJ2COKwvaX6O6I7dJl7l3GynDFzhx7QqaAIKju7N8YKO7gOrVpoUiXbPiZex5w8pxo5prB/MaimoZr54vSzlbbKwj4fgzdHQKAoGHiLieh12y1oMxyAiVdw1Galw9dE343rFHf4xjUWLpUfeG3ZjBbLch734hVPn+r7mROz+GtY5G82N129l7E2mBPjne3PKvApDfgVl9pFzJvknRSxO7o3fGWTl+2jv2CqhgQK18E5De5UyLf8TNbLdD3PgGT3kBNHbc2n1XsEgOAhjnwMVstVN1HDRlzJbUSk95AzU6zNOk8G9D3jbZeU3x/z2dPQhvgS3kcmxYLALjxgthmirY2QehX0s5z7RW8w2IWb2cdxYu5HekzW7fSvHzV0zoAyPoyWsELs1U0+btj+RK0PyJemp+Rm4zJvhFcHLasITUuqO5ssu3HpDcg7JN46otGvuPN0nHuNaPqd66+bp+CVvaEiPgtU9tNZ/MLWi5dFDfpDfReExunrH0YYrv05/JhT21pX/o0Eb7vJSloY/MzWy2SiwaNlktvj0ZANDxC3nvrqtPyu/tE0nrXXSLe5dmcncylj3bVKvLNmC0ZzZCfLtnSs2gfSV8Yia9zExXtxdRnMADRdHj6wkj0rHaXO/2wdwrG1nFeYBCNw7rAkLfRC781gxwB45O502Vt0wCkrwhHbKd+1PLlkcgfFLwtbCKaiS+5Z0vm8nDxIv/XDQ/SskncVpvPwqlNC67cc+ON6HVCnCMC3kjG/um86h1Lv7zOLrvEcfD8OCPSBy9AjwBePdr9p2QEvJjKhZUVivfksr6Kxp6hX3J5E2MrLGrYMb5KTgLJiTXhbZP9Vel90glNotFkv8ifZMPPMOkNSGtTAlt6lqLdkz+vLZKVRo2ra4WnvGrjre3adbyeyZx4MotBcipprz15btdSdXe3n/dx817jfsdQdusWTd/kh3yUeTekz+z/xJmi1VVygvZ21lGuLWibBynSqY1bGataUyM5LAjt6UvbQOhcQMPThi3A9UHRsKVl0ngmvQFBIw7CrXs26iyRNG9MegNazorHpgMJmBPQTPWEEABKuobTvIan52BDPj9fE/c7HntrU5V7ojVT1OEcF5fQHVj1AvfMwqQ3wPn4abrGURuXCdq/Ip1amvQGhMyNx85B4Vy7IfF9E0Zw5fRLlZ5tHVvDdjyNG1eJuxei1URoYePI6d6QflRRHwcebzgEsUcI8sWdSW+A9z43hWpF4JAUxWCiNpmQcPnE3W2g6Aemxg/JaJBUg7MaRf7IQp/oMK8N9qR0kXJdnJxh0hvQs5HoJyT3E1F33f8tcVBN+PMnWiYZEOMyMimdzn+Jky117hvZEqZjNxR1SI34ESa9AY0/4VUo6YS0Q4/3fCMVPAEkNZGKJuGkr0TVuT1zJatqjT/m/X+lLxYNUQSNOoAGSaIK2xDvdlTFgKVJ/pvQdmm0qMrT9KAzx3OCj+uLg/D1QdHU1xkAqkJH8g18LZmbKACgUXJ1dDnRC4Fj93Hl1/mqmoKm8z396O/NCd/DpDfg7Bu8imLesw3xznmRPwlNxfsDxGLZzha/ouFXEk3aQD9aH/kC5Qv/lpyqLHmncXPjFhYAkFVyk77PfGEh/e2k09G41peCYfIKw+5QcZE1oUk03s9W9gcAdMEekiTp4LMLN5YelsdsOPt85Y8geM7mhQC1hV557YCg4F1e0Cd51v9GEgDO/RqMjG9EwTqH4c2fP61AwrZ1inLk/JRDLnwSH4UbmtcTw+85VyYg9yQU/crNjXs26Q3oMGoUAODSYGmjiCxg5ePTE/Fi3ItxMZTuwNcka3gB4+0bYwgasx+x28bRfCmSj8BstaDegiRqMU/ODzlviJ8fArb9Ev9ebDraVhjT8eyiiljDBIBzM7SoVfsWXdDKy9eGNIXZakGNH5JRc08dJE2aAwCos0xpwIOUkRKm4VwwlHYJh9cPmdjYvI5qfDkP5PUo6iAKTg3miG267PZtnPlAqapMQHzdma0W+L+ZzG2YsWDLr7NE/Y7l1vXfwmy14Idmek6dr0utEwBEX2CAZCG3+6meHK/JZhIApC+KgJOzaDjAdjKDllF2V1JtjJwYp0qHnN7rL4pz1ayAYNW+tOmQmf5We2+NLsRuq/JuX8CaOGhr1KDjHgCU5p6hjsYBYP5ppaXZsluixcEv/FvCN2EEjcsaRzn3Gj+WsH4AAwfzBmMy5kahZ4S4saZr4o2gEQe5NuL3y2jUXJNMLRhWJMgSX16AaO1QLd72VctoXu8m9UU1TRX6zMa/2vYKGvcT23eZ5QR6RvZUXeuUdA3HHyEeMOkN8NsgClLaWjVhtlpQdZcoKNuuXoXvq+r+5oJWivci2x+5S61Etp4mhjX6NBFlR07B1rE1THoDvYIBgPKK/B2J/AE3XhCtNhIjZN17vciN5+z6AAAVNNn692z7DKVR7lP2UYVQVvaP/T3ucAhijxDkO3xmqwVnom4pdlAuvCruWnYdNIymVVswnBsv7tyzFsqWndkDza5UlDzZBunL2iD/wyDFQoUs9AHxNM5stdAFGVuGSW9A35MX8GE9ceIU/G6rLlABUegzWy1YEMhfwuYWSvuP4m6ZqPc9LlNc6BCTy2yerAAzILsLbJ2sisU1AXFSKV+IAOLALYdJb0D6EmmxwSJo1AFJkIm5oRpHHma2WjAqPRsdR4zE7bJi1DsknnbM0R9Q1IelL3nGQtguXuTys/efpMmPvgld1zMKWjS7UulvkqbOMuXi6Mhb4qVl4mhb/2UixtfZg5p7xEUeub9G0rB02DKyMS7zFLo/PYi+73H8mip/THrROMfmjL2K7xXv24GLR7DlzEH63GBOInfKm/NjKJ5wleL/fVeq6/gmYvs5HrNGVVAvb5FB6kguXpv0BtR+Slz8sPcn1Oglz/L8TXrxzuT1F6Ph9RnvQJW8J20LEE8mm32YgRYpGvT9bIKiLEIbG65tUN9unQiGp+cgf30IgoYfxNtZRxX0kwU38cMkb6dkV5+F6x9i3JveyjupBBfixe9BHOzKL9QTJ7v22jpB0PCD3LMQ00qx2JIvhsh7t7/rIeeHVogviMbGn9rRO6xEuFydJ7VLuRAtH2MyZ0ondyzMVguWtFyt8PXFtsGEP39CT6PoMPd6u8vU4igLUhZZOK+W3Z3VbUuB7fwFBa1qv81WC0o7h9OwPwpS8HmO8qSUNfAkp/1WA+VtBsJb7Q49xyMqJC2MVCy4icsAEk7M3putFlhLPERB755hBOIMW+hcgGZ7XgIAtPo8HkKdWrT8nKeXYMtp/pRFjv2f8hodbL0Dvpc0DIjrCfk4bg+3+kYp3td9WhKSdH5NkL68DWo0vYLbP9dG2S1pTi94R7pfvSF/P+LvOVwmYfLxNmjEQS685EnRfYbn7ERkrZE8SO9s8atdugPH7sOmAwkw6Q0ozT2j4AWxyFxaYFX0KXv9ERA3Dz16ZohjHLNeYPuf2WpB4MuHVDeQtPXqIetLvj+V5hfQuOwJJRHszFYLtUiYcGIXTHoDpnhvpGURC5cmvYHbYPjrxRkAJPcEnYaNpPe6CKpcFMe4Zd68cMyOASa9AUlfiieX2jq1YdIbIBw8pphbtYy1vymhv6P1wecwOC2P8qY057SqUO/Ag0d6ejo++OADREdHo169enB3d4fBYMAnn3yCWyrzmj0kJCTAaDTCzc0NtWvXRv/+/ZGTY9+qb3lwmK//H4M1X7/t7PFKdUZ7u3rElKzOS0/N0HKCjiytfJCtuacOrrcTBS/WIaG8LHk6XeNGKM3L58pj/3ccPhJ36upQa7U4sU7LOaCqStbDL5rbwZSXBQB+fw6jptwnZh3Bp/6hdnlEaL4+KBo11ySr0qYmBJW3a3rVdhse2mow6Q3UWSnJ59YWP1V/Nmz6jiNGwiVBsop0eWSM3R1jkiZiUhxqLxd5d3VIDJxvC6i+Npk651QrRy2v9GVtkNNjKdqOH4Pqa5ORMTcK2X0XIerdONRaJeZPzfM6OdHTjISCQzDMfhVfj16EL/xbKtqUGtg49toQeSbtwV6+Be8aOaHlyrAYyg8AyP0kBv7fXqAOvwFx4iNqhm9nHcUX/tIuo9lqQXjKAKSEr6XlnX3TyJ3w6Rp6YlOKaJKcfCNtoB9sGZLT2IxVrZHddTl8/xiJoFGiJctme16Cz4CjXB8sjz/yOpe1D0PWCCcEvnzILj+a7K+K3Mg7yP0kBmlDJTU0ef4A0HxePDo+ewjzvZJV8/qjIAVPeUlqQya9AaenGqmVPRZZX0ZD530LPgNEwY11bJsxNwqBY+07gTVbLVhTWAeT/u7DuV5gMSo9G4uD/BTp7OVHEJnaH/vDxNPBzJnRyHp+Idf21H7n/BiK9CdWwf+nMQh4nVeblJd3cUwMDn0g8pmY4c+cGY2AN/hTO3t5nP01GA0Zwx5mqwU9I3ti477fEeslWaC78UI0PXE+95oRnrMlk9rjMk9RVUs5dE28sSlxo2r/qqjv2YNa+5SnYx0ms23fXjnl5UXA9u3y6kBQ8mQbOG89yLk2Ka8+rMl5tTwrG16eY+uyDmF086s8mK2ixUr3vFLsWL5EUa7ZaqHOq9XmqP/0GxKY9AaU/uWNwu+8sH+6ukP3+ynvwqtG1Mwu4eY3Np3WwwMJx3dw3/TJ/kPgtNeiWt44awTS2qgbYVIbO9VoNFstaLYkHqdGKq1Hq0GtzZUXRlDwjpGqIbKYf3oPFa5JekKPPTrWpR2CR1D2I2uunaxZO1d97h8zX7/9zk8PjB/vvvsu5s2bh169eiE6OhrOzs7YsWMH1q5di9DQUCQnJ6Nq1arl5vHLL7+gX79+aNWqFUaOHInr16/j66+/hlarxcGDB6HX6++LJocg9j+Gmh+x8uCk0yEgSYuMiCLFAAFIg0xRjwi4bD5gd8GXviASVfN1aPxJ+T46iA8vAnl+an7K5DBbLfBbPxq/Pj0boVVEdTKyiLQnJJI6uP6Zyp2GAKJVpyaTpMk6JGkQjsesUfACAGJbdaMnSwTnxxrRYK5E84+FHljR1Ie+vzokhpuYBpw8R1UzK4I9ftuLCwDpJbdUHY3eeCGa7rYB4PzwsPmXtTNAs0faae84fCRcNqtPhmrPbHjAD2OQOXCh6ncBRF9ymw6ZKzWZyZ+bHnRGWpsSmK0WdPduo/iu9hay9vIj/7M/i0HAD9dQdvikXf7r/Jpg055fK73ryLZrp7AQCKnHuQ2H9GVt6KmMtlZNoF4dKqQB4gkG2XWuTFvInRaDtOHl94f7gb1FiTy/ytDGxpP3LxIW/fYYepLAIu99o0Kl2F69sj+Pgd87SpPTpOynjl/Fz++a4Po7f/KRMTuanuD3OH4Nm0NqQYhpBack8U6o886G+CNoMy3vxmZ/fBj4B2YFBHNlNJ8fj8YfqzuIJnGe7PcybB9d5U6etU0DkPNcfZwcMx/7i0roJhPLs4hJcTjwsfR97fJdo8XcnL8x1qdtpYQhAqeIlhAOHKX0sOqQamD9+pW3aZK+KAJBow/gdu8oVNug7vuK5U95/bmifiwPD08tw/QGRxT11daqCdu168j+3gC/Fyzl9pMz61rCu7/yzg3ZlCJp1Pz6yWnT1qsH28WLlCeAuMmXPGOhYsFO5rgm70vteW1+Empqqqp+y9MfxeDUCHVhKLZDH9gysrk0am0ifXEE3RD6sdADq4xhyB/SDIZ+x8RTdicnTM06iNc+fBW1Vkt3ejO/jkbWgIWIDXsSaRP9qFpwZccGACjb1hiaLnmqbanN5DiqgUFo9/11FHKeXVyu8CeHrnEjlF25iryxrejG3IzcZLqmkOcDqLc7QLzjTJzDk7ZttlrQK6O74k6aGn1s2yYbm5Wthxpyp8WguJ4NOb0W40ZhmUMQY/CgBbGDBw8iMDAQNWvyGlGTJk3CJ598grlz5+LVV1+1m76kpARNmjSBTqfD8ePHUb16dQCAxWJBeHg4hg8fjsWLlc7ky4NDEPsfoyJBrLxFc2UX+kDFO2mj0rPxycxBqLewfIebK8/swRBvcYfHfXddFLa/pMiLOGG0Ryv7nP1ZDNwKnNBgbqJikDPpDdT55pU/glDvDRt36kHik5M8Npx1okjyYvMP2DEUQR9egy0zB/pkd6TPDMHerxeqDugxb47BlhmzuElUrV46zwbU4TVB+NQ4fDfxKyy93A7Hwsu4tK32D1SYwJaXba+88iaac78Gw/PZk8iZHoP0IeqTO0krx4CT5zC8pjQRsfn3OnEZr9TKg0kv+mlx/1H9Ho89IaC8ulQk2MU2e4KecJmtFjRdFlehM9w7z0Ti7wWLFeXKoUbHnWcjqfqcnBaC6AljUHONtGhpMTseXp8nQtfEm6r8lFd3eXv33zYUAS/Z30kn8eUnvADoKZYaX8n/0ENOmOGZqrpoBPiTau99bjgTdYu+t+fUWo039ys4qi6UYiPgknAA2Z/FYGH/xfjCvyVm5iYhpIpyIWuPnpv9o3DTSwvPr8WxiK0/S295NNNF7pIIxUle+tI21Nw6IAoICSd2IaWoGO/5iqpZ2pCm9K5sZYSRqrsa4E4H3l8jUL4za7PVgp7h3VF69hxypsfA973yHc7e2OyPGj3sWNCQ0ZUxJwrNvrmEhJ3rVXlEnFoTsBsY8vz8tg5H9pPSXaEex69hvEeuav+raAwhYwKqOCPhyLYKN3TKy/vGwGiqOq9WR/nppLyc8tpgeWPbzQHR2Pv1QgTtehm+Aw9z8e2lI/3CXn0qSs/SnFBwCFonDY3Hzl9q84zcabfafF0ZsPmTk96exl4ozT0DrYcHbFevoqxDGGAT6AajXPhhy3Nq04Jevzj9UQz85qQrDJyRPMip883+Udg7exHNR843bYAvEv7ewIVdGxyD255OKK0KnBw93257MlstaDkrHkdfV4/D/jYduwFzC164KBVKsBO/PfqCmMuAf04QK1r70Plx9OhRhIaGYvTo0Vi4cKHdeH/99Re6deuGjz76CJMnT+bedenSBQcPHsSlS5fg7FzxwQqB447YI47KCFtkgCp8TtKvXnnPr49Jb1AMlnnv85exL/zWDJ2rnsOhDxZw+alNhEQIM1stnGVHFkQIY/MiIJYUAVE9KGPwAno6FduxLy2XWOkji+3aT6UjYed6lP7lTfMOWilevmaFsIw5UWg+Px6jn9hOBzzTsy9xNJj0BvgPSoUtU1zYWKMLOSFMPpHX+CEZAxrFKCYDOX+IDxPC87Dp8ai7KAnBVarhq4aHKD/MVgsMn8bD89mTqvyT06AWXl67OBz5AwDA970ku3Uy6UVHuk4uok+Yu0+Jxk5Ya5Ly/xub16G/KyuEkXK7P/MSNXDC5mlvkpXnR4QwAlYIY/MDJB94VX/br+ATqTubJmc6f8/KbLWg6q/7ubbKou2RPuIGwJpknF4rqWoS1RQihMkXauSPrS8bpzwhjM2n5hpRrTTkG9GZsmBspRDCAOCSTbLOBgBHWgvYdNuVy8ukN0AbHAgA3EnOmSg+7dUYpRN5lv7y3rF3BbO+4u+AqC36AFD1Jr93k6ha6RtNYjhe7ryjoUYKdA09Ffnunb0I+sVinjqfxjjSWlBtD2zZxOKoHDk9l+DrXN44TU7sUi4tcej9nm8kzr0u0mU7nsaNwRVtONzpcF4xbpqtFlQ15XB83VggCYUmvQGlZ8XNEyKEkTt+BOmLpOekVusV36goVnx/9tdgji+B4/YhYed6BH0bx+Xnf0BsR6wQBoDTjmBh0hvoiRPJe3NILfp+Zq79/uz2dz1c3RSoGDNsN27AdukyejRtDwCUJya9gVrurQyKBl6F8XCxYtzKf8+IBkk14DlbrNOPhR5c3eRjCfvdnMJCFN9QjuprRXVh34GHVd/Lw8xWC3YulXwqEmuSasKQvbqzNBO1WG2NGjBbLZwQRu5TmfQGjLOKauNyIYz8Z/MkYRXVnYBYWrTGNgIAJBzfAUD0larZY8GSM3u4OrF/BFs2fkfL9PkgCbYr1wCIm0mAuDFM4ke9eRD5E43UiqxJb0Bwik7BL9ZXI0GVm2XQf5EI76m8H1OTXvStR5yK98nsRg2YsPOD/BuZrRaFEOaAfQQGBqJhw4b070EjP1/UdmnQoEG58Q4cEMeZmJgYxbvo6GjcuHED6enpinflwSGIPSLYkH6Umk5nBzm139ogf2kwbfYE7eTuP0mLY2LNDwDg5MQNHCdemc+VU/+ZU3i+sTTwyhfG8oGUNeuuBrLYUpsUDN+dpHnW+0W0lFW2rTEAIGGn5IjS1smK3I+lhk4Gs23NN9I8a91r68QJa4/j1xA4bh9OxM/H9pZuaLb0npWs/ZIxAjlPCdSETjWQeMS0Lomna9wItk6tubDU9+bTNO1fGU1527Pds7C5SPnJ6VGbgNny2QU9SxNrdOH6oGgurVo5QmkphCJRxZUYWiBIKSq2uzgob2I16Q3QNg2gljpJuVt+W43zMTeQ82kMcj+J4eID4iJHbQIPXB1Hw9mL7QBwu7dy0ezkXAU1YzNV6ZQvHkheZPEqbwPkJON2nyiOj3vv3QM0Wy3wGXAUJr0BV4YpB2W2TDUBoOW+FxSLCnt5yPPJ7rsIjaaLk71T4mHVRX5drRs07u5c+jkBktl1Et92MgNPHZccjfuahyt4l/3kMsw9vVfRnuwJ+qenGuG7UbSMuDmkFo3v/2ay6ndg6dF5NuAu+2fOEtsyMUJCePapfygOvyP2sSvL3RR8MukN1AhE6ek8ThhWqwMAanGUrVNpZ9EK5PgmRpo+YZfUBjbekqyStv5IbK+es5SnQmw5ZPxQG3fkY7B8sW/SGxSGPeTzhMsm/vQuaPQB1fGO/CeCr/4THTXPXi+xFgAgeFE8p54OAPO9lBsxxKiPfOFJUNI1XNFeyDMRsuW8AIBbT1yER0/REuLlkTGK95vTdgMAenlJwiax3MvW90K8ETNykylt6QvFhfOhNj8hsZW4s8+OTY2mJ+J8zA1azoqmPnDe2VBceDOWD9kySB2E1OPYe7eMe1feON9x+EiOH8uueyrmK7ng18KNv4NK5l17mwrZn8fQd38USEKx7cYNrm3d6hsF748ki8Fz9KKRqsvDY/BB9iGOFkLPpd+DFLxgf+t8Gqu+M1stsL5tRP35iYp3ADDSux2lI2+yUZWHJr0BPVubpLaVL1qVXtJYNGxT5bpU1snwUhwfK61/zFYLNiaFcxvXLG2AeL0ha0YM8ruXKd4RlBUWUlVLcm/cbLXA/91C1b6gNl4DwLXBMf8e8/WCAAhl/8Dfw1fas9lsmDZtGnQ6HV544YVy41qtYr/z8vJSvCNhBQUFinflwSGIPSLoHdQSbuv3IcJiU+wAfZB9iBv0bswRpAXBqb/LzddstcBcIO60kxMzks/GW9XsLlblNLBg71HI3wkxreCTUELz4nZ/rBakhGnQdPdgmPQGqlf9Z/DvND0xWTwzNwlpwyQrRmw5Z980AtsawWOleOLTy01cbLV0lXTUye6YnL7Y0C40LHiReKLATmDakKbo4RetOkjmTI+BtmkAzFYLNid8T8vKf8+ITfv+gHYHbybY+MYYyk/2fkVpdi70X/I7x4EHXFR3/uRCg9pCLXN1GAan5dGTA7PVguQZCxV8swf5ouzsm0aEu1RRTUvKPj+WF8bZBYMtLZPbpWTz9p2YhCbvJyna3fPuVxG4Kk4xgbN3hsiJE7Fu98lXi7g8zFYLhJJiXPitGTW7zyLi0IByhd2sNWGqQmb1P08gNrQLFfhZfmV/LrbXAx8vUKQz9RnMtX+T3gDf30bRZ31v0dro2TeVGxtND0pqDbEd+3J1IX4E7Qk0gGTVsaywkGsvJA17OgkAf4SIu/3+a8fAr/FF1W8/1qctzcfWUTIyofNrIglR90xenxo5n5qQByT3BoDIN6eIlopF+eURIi83HTJzRiCynhPbsu38BXQ+ekshUJj0BiS1Wq86VpmtFmgD/aS4stNxln/2TkB121PsjosmvQHzAoOoNUJi1IOA5RPBzf5R2JzwvSJcPlYGLxL99LHW4kgcsnBkw0k9WMFQLX9ShhqeXLGXnuwTlxO1T5ZxaTJmq1uKJIaefDdJQkXOZ5JgQ9yVyGkhFnIBUZ1YXieW1oNTFyjafuRE8bSOnAKSNsjWNWtGDFInzUdoFelEOGjMfkWbafJ+EoSYVrQM9911ufc3vhZdGsgtvhY+L/GE0NbWVcPRGhv2pBh+pI+CPnKnl8S9YpPcQ/R48nn6juXFWA/pNNKkNyBzID/mk00FkubNpyWDLs5Okh8/QHTzQixzEp9j8vmnzrIkvDduDJcnQUr4Wvr7wr2TeDZO6ek8Lj7pFya9gbp8MFst0Pk1oXHMVvFUkvxuPC2R638EM3KTaZs1Wy0IXhwvft97p7j15ydCEyqevOV8GqPII/DVfWioqw452h7pg9yPY2C7eBGZgxbQ+3f2hCj5WL/2Zk2UZufSd83nxys2T+TPtVYl/WvM1//TyMjIwNmzZ+nfg8T48eORlJSEjz76CE2bqs8DBLfvbe653NMmYuHq6srFqSwcd8T+xyD6tlfT/dC/qXSiIu/o8ntQJB7ADwAErafFod6CJO4iOwCce91Id2vNVuUlcjZv342jkNNLeaFWTiO5cxCXkcmZp6dCwz09aNYqmFodNNWqcWaMyxMi5O/V4rP3fMgFdmLdrTJYn5+Mvo2iOeGOLaPmnjo4szBQ1UiBnNaod+Ko1UgCcp9D/h3lyPoqGh7HnHDgkwUKOi6PiEGdpXy+cgHY3veTgwpibxjRcKb6PY/yeE7ybDEnHsfG3dOP39YI5uA/xPB7d6js0We2WtCztYlOqvKyp19qil2hVRXhJP20nAMYuvg1NPo0kVo10zXyQmm+tDtFjEcU9YjAzmWSpTKST+Fz0UicpbwrCEgGcNQg56da/cidEDZvYjSg66BhKKmuUxiiuN9+QHDhFSPnF43Es3c/SN4GN+TvR+9GkVzbJyD3kSqirTya2bK+zk1EcJVqFbbZCIsNBwxaRTib5n5o+m/oL68seZsOWhUH33f5Puqyy1PVKIA8LbEke36cUXTbICs/ZG48VQW/3ScK1X5RWq4s7h6BKluU7Zb9Dje3+KF692y7tBCLoU4RLbHlt9WK+pPfto6tod3Jb0gRkDvFxAopQfqyNoiP2kEd39uDnO9nphjhPaV8Q1H26gOIqmvdPY5iw6XWyP8kUHGKaC9fWtdOrRWbb4DoUoJ1y0CEA+8p0rhkL3975QFSf2HvC5L4rCEnNVrNVguaL4hH42nS+GtIBSxhUv7EIigg+g8lrmvup49U1Dd6n7iIMbUK7LYfe/lUqn9vawR0EdXLWAMcXV8YBnmb1IY0he246GPMnvVhbZ3asF2+Qu9cE4SnliElTEPpBIDYlp2RcHS7SFtkS6qFA4hWh1nrqABgnWCEfoayP5v0hn/NHbFOun6VMjD336JUKMGO0p8fGj8mT56Mjz/+GKNGjcKiRYsqjD927Fh88803OHHiBIKDg7l38+fPxyuvvAKz2Ywnn3yy0jQ4TsQccMABBxxwwAEHHHDAgf83mDJlCj7++GMMHTq0XAMdLIhpejX1QxKmprZYHhyC2CMCchxN1K7kIKdh7M500+VxeOe8QbFjZvIKo84Js/svxIXfxHsh03P2w3NWIgp+CaG7Lwc+XoCeUU8h+rCkTmi2ilbpWNUi+RE6uyuV1Eq827UgMEBx3A4Am8c8AbPVgqQvFyryIQ46zVbJqSdblzvPRNIL5Cx9AJC+vA1Xd3neVX/dT+MTc84jOuyEGuQ0m60W9G0UDUM59hOut7vMnYZdGxyjyEdTTdzpJ6dh5P4FAMXdJLPVAqGtQUGH/5vJqL0iSbEz2PnoLe40TLtDT++zyHkh/82qVsl3Io+8pe7QVb4TadIbuHt8JExwYuLe26E06Q049tp8xQmL/LfaaRh5tyu0qupJHqF7sm8Ejo8VyyC7zqX5Bbhj9qXxTrwivnfZfICrO/nPnobJy2JPwy781gzWDc05+uT8bJBUg6sfuZzP5hs0XDTh/9ea5fQ0TFNNVC3L+SwGH14M4Wjoe1LcuRXaGqDz9YFJb8Ddp+5Z6PPwoPFS359P2z7bX2v0yKKGG8xWC6wT+LuhBNU0VWg4cVRK7qOemtFQMQaUdJV8kbF99OaAaERYbFwdYjv1AwAU/ym6jAiuItaXGLgYZxXp09aqyfGKPQ0j4WarBZeHKw3p0DjRocqwezDp7TsdB8AZxJCnI/UfnJanSEfeW98WjQSwp2EkH3IadrN/lGpagrK7d6ExNKenYSTOhnxRrY60dwCo9ot40k9UGgmqbDnAfRNANM7BfvPq3bPhvrsuRyP7fYn5dGoif4ceJr0B6ctEZ9jkPtRf3y/nyrZ1ak3L/tn/L9zc4oeDU3n1zZweS/FXC3eUdQjj6LR3ykz+k9MwAAj9Uqqzk3MV1W/K9muz1YJjVzyx5IVeuGi8Vu5pGHHYLM+TnIbJw+ul3KRhglFUc/SekogPsg/RcYncv1PTKCD3NdXyBsBZzyTpM15coBqf5VnjaYnoekzytfZ5AwsXj5yGma0WJBzZRsPZPFnVQXl57Jggr9fErCMAgDG1Cri7c/J0l0bF0PSsgRa1fBV03JtrAOCav5bGv9jKFWarBdogf/redjwNBe8akfNDK3oalvW9WNdz4+8Z2rl8BWarBZ7PnoS2eRC99yw/DZtwLgy2y1ck2vYfxcLTkuqw1klaZpM03t/ncvRPz1Ealnrk8Y/cD7v39xAwZcoUTJ06FS+//DKWLl0KJyenSqWLiBDnp6Qk5Ql0cnIyatSogaCgIMW78uAQxB4xlN26BZPewC1sSp4UJ7szH/J3SdKGLcCx3t6IeF+yaLX3bhnSF7ehaU16A+o/cwpmqwXhLuIEdSx6DVrNiEfXY+L9kbPz3JDcyhl5k4x0cm4yOQltPoxTHQDVFuQA6MJQnkazR3RMyb4r2toEAKixgx5+ko79hnxxQZqxMhxVx1k5Z6jBi+Np3kHDDqoOXvJFIjsBs4t5tclVvgixhInhGXPEBVPmd2GKdHk/t4DZKup3yxfxRLgcl3kKZR3CqGWqC781g+mYaAkwb7Jk1Yk4t5TTLn826Q3Y3tIN9RJr0bJsnazY9t0ymK0WRBwawKW5MlQUEjsOH6mgv+lBZy5ftcWBGopiI6g/t1t9o2g6dnFotorqhunL2thtQya9QfXeSUXC5IXfmqFn22dU82NR1ZSDuafFi9tnSm/SPIq7R+BWvygu7xaz4+l7eT5svPrPnKJ3vM69bsTbWUcVvDofw1t6JJbI7OVJUHb7Npx0Ovi+m4Sp9Y7j4kZJZ319cH2YrRZsXbcSt4PqAQA1tEIsjhGwgmHuT6JAUi+xFjXcYNIbYBn/DS68orzvxy7AikObAABsN27gQrwRAS+mcu/NVgt3/wcAAnYMBSAKn3J1QltaJtq/MhpVukl3XFrOisfhCeIGAHHiSqwQAqKaEEvfE0d70+f6v/F39wDRIqtJbwCSj9D2fu0lSWALTy1Dzqcx2BxSCy2SB+HCq5IhgCt/iJMoMf6gJhjsLyrB6ry9WNVUMkLAIrZTP3r3hYWcb8SEtryMG5ulRWOZRWxnF8dIGz29G0XS/OTttMFByQmudYIRGfPEvtlh9CgaLne6CwCF7S/h7K/BND9iRImt9495iXg+pzNsncQL68SX3kd+0p0fFtodhxA+NY6+I+qPF16V2pxJL1qX+/OHFar1yfpSHBuIgZOsNWHQNfKixkEAcKrUW04r3U4AQOej4t2ltuPFuahGjywIB48peC+fAy6GaVTHF/kmB9lEM/+6WhrPE0Wz9KWdwymPAOn+HdkIMFstlK4/QnjDRb6bRiraDftNNKHNEDFJ4jF5V2evtDFD0rHqn/aEJvIN5PUDgE17fqWWSknaGy9I6vtkjGNpNelFwzqkLh/5taYCFwBq1AcA6i6WFrcePTNw/cVoeg+XpVFz7y4O+61YntQ4Iy3eD78jqsmXubtycY6Nm48NMQupkbTMjith0htw+G2l82fbiXRqIp+gZ2RPmPQGzPDkd2vNVgt8navTMVfedsxWCzYdSODSEHcXDvwz+OijjzB16lS89NJLWL58OTQadVHo7NmzOHXqFHfnq0OHDmjYsCGWLl2Kmzdv0vDDhw9j586d6N+//32Zrgcegzti9qRYNzc3jkkAkJaWhnfeeQe7du1CcXExWrdujalTp6Jz586K9NevX8ekSZPwyy+/4PLly/D398err76KMWPGVFpyrgzYO2I13DWKSUhtQXi/YBdWJr3oANfv3i4tuT/A+hCSp226PA5NJol3mdq/MhqAZHyCLLTZkwyNqys2ZydzE5b8t9kq+trQFgG2TtfoopYgfUkEqmU7o96RElwMdVb4JQOUpykE9px4FvwSAq8+xyvNMwBoNSMebV84hKyIu+XGZ+9GZM6KRsDr4knZ17mJGN9E3cqk2rfVuLujrLCQiwMoFzjyb0qQMTcK2X0X3XebYfPrk9mNWn4iZVvfNuLo+PkIXB2HjJeUdworg+I/fVCl22nVetvT02dpI7B1bI2/vl8Ok94AXUNP2C5eglBaajd+eXnZQ3nxnLZ7YUuzTdJGg6srhJaB9O5M+tI2mNT2D6wN9sSl0TFI+VDiV/76EDTqe1xRhlp5GXOiELTqlmIBQKAxNMfmhO9h0otOSXfP47+7PM/ynuX3IAreNVKnqRXx5cofQTjQWrysX155ADin2Gwc+V0+ANR3GYmz7MweDHj7LSTOXAjf30ci52nJlDdbzo2B0fj8k4V4wtX+Dnp5UOOTWt3YsPIE94p4Ir9TUm5ce3GiQ2H+ZRWa7h6MJs8dsZvP9YQAJBt+pmN6+yN3sTvUtcKyyPuMb6IQ+Oo+Rbi9+svDWEfb9tpjg6Qa1FpheXmS31dfjoFx3AF83VDpIF5O2/vZFnx7oR2WeUtW8sj7gaes+KGZqHZU8mQbOG89yBaNzkdv4a/4dtDsTrXLr/z3jGg0XX2uUoO9fFT7jk9jFPnWA3vfSY2HHUaPoqfrxOcggXVDc26uzfoqGv5v8neciWN1nZcepQVWlP7lTa0Vy+tij35dQ0/qUkEez2NvbVxtewW9TlxGf/dTeKmx5LzceWdDlHTkDTGwwpO8LKeIlvhpw2KFj08AuNUvCm4/M/fBNVqgzAZtgC9smaI7iKFn2sMaXVjp9m/vHUsbeY56Nw61VkmCZf5EI/Rd86DpojxFJ2liO/ZFUdqpf8cdMW2ff+6OmO2XB8aPefPm4dVXX4W3tzemTZumEMIaNGiAbt26AQCGDBmCb7/9Fjt27EDHjh1pnHXr1uG5555Dq1atMHLkSNy4cQOzZs2Ck5MTUlJS7ls18bEQxNq3b49Ro0Zx4c7Oznjuuefoc1ZWFiIjI6HT6TB+/HjUrFkTS5YswbFjx7B582Z07dqVxi0uLka7du2QmpqKsWPHIjg4GJs3b8aGDRvw4YcfYsqUKQ+MfrlDZ7PVgo7HnoXLk7lc5ycDm3xykf83Hi5GYqsqil1tkicLNs5750OREqZB3mQjd6FXHlct7f0sdirK99x4I3XASt6RyTt/ohHVCwRcbQ74vpvEpU1fHIGcp8SF2RPxoxTOeOXlXBoVgxqnS1DFzE+2FeH9bAs+8TPQPAkqM5nac9bK4d6FY6ftXji908euc1QAaLoiDmlDF9gtHxBdDRTXKoP/W5LZ8MBVccgYvICbOP4Twa3dkT5wu7fDzeahadEMm7f+qJo/u8Apb/EaG9IJtqtXUR7sCTL5E404PnY+ekb2xKb9mwDYXzBXxgFu4AEXZESIZv5JnpXlV0ULrcr2q7tPRcL1j/0YcPIc1gZ7lpsvIFoHzRvWVHEqI+fZyLy21MwzULl2bLYqL/7L6arM+HD36Ui6YDRbLQifGkeF1qKtTbCzxa+V4o1aOBXw7i0mKwuz1YLR+TFY1CgJLWbHw/v3S5z/JDZv61tG6L9KAgSBLsDvV9AnTqYjJ8bB41tlOyQGjNTGmpwfQ+H7vCR02eMDSVPZMdtstaDTsJFUpZEtk7z//HIgdrT2gFBSrEqbvbLLK1OeXg650ZGK2oO9Z4L0+ZEIit+veE8MOxFjT8TIjt/60cjuKzkBZiEYW1E3En4bRiPwFdFQRLOlcfD5QDLI1N03CkJRkWr9SZ7a4EDYTmaUG0eOixub4lAbyXH4/aRVi1feNy1P8H7nvIFqkbDxcz+JQZP3+fZNNl8qM2ZUNN6x78o6hOHPH1agR+wL9DRZLV1sq26wXbxoN//Pc/bhHV9JdZgYAMmZHoPEl75EXa0bl8Zpuxcu33YD1tdB7RVJyJgThcBxSsNgFbXPdWmH4BGU/cgLYh2dev9jgthOYcMD4wcRruyhQ4cO2LlzJxdXLogBwB9//IGPP/4YR44cgYuLC7p06YLPP/8c/v7+ykwrwGMhiL388stYuXJlufEGDBiA9evXIyUlBQaDAQBw8+ZNhISEwNXVFadOnaInXcTyyZw5czB27FiaR9++ffH7778jIyMDPj4+D4R+VhBzqa+nA4Mc5U1U8gGs67FC/NVC9B/k++soBMXvV+RTXl7kHfnd5oM4HPxI3ZR8yZNtcC6iCk68Mh+mRuFAmY3mY/gsHg3mqAt19mgoax9GddXZugGiCtjhCZK3+olZR6jKgzyuvXK0Hh6KBf7C03swxqedaj65P4VyO8xmqwVB38ZxfnVIOcQqoFo+xGKknCYS58qwGNRezk9UNwZGI+kr6QJpbLfnYDueBqGtAVvXreTqZY8H8jC1ibb704MgpDCnNMx3tIf7EcQraru+G0fB608nbJ09l6pc2Utvj3/20vTo/jwuh3lg/6cLFHmY9AY0Sq6O/Gjx5Pz8WCMazE1E+rI2VOVKzi+/rcMROCSl3HrLaSyKjVBVBZOnr8iK5qBT+VjTrJHd8kx69ZMlnV8TakZZjZcVtSFbp9b4a83yCuOd+cCounHAglhqIxsOOZ/FcJsq5L/G0FyxiPpPNgzKQ3mCAnnucOQO3qubBsOn8dTxvNquvVre9tolWSCyFmzl9PyYl4jnGxtxq28U3NZLlhDzJxrR6NNE7tRfLhiTPAiuvhyD/Z/yp9hn3zSi4Vf2tQzstY/KCFc6n8bUXDlrKZSk7fLScGxbvYxLezEuBocmSzQOPGXFksm9cbORlqqsmvoMBpL50z5CE5t/zJtjoC0RuNMQtTFQ/rsyqMxmQIvkQZzmxf0KpP+JcFn4XDTnR1Qt385DRtBNsMvDY1BnmdTvrr0Ug1qrxeewj+OROkmaZ28MjEaNH8S5y/jGGLj/yJdz9tdg6KdqsGXTGgCiBUHb5St2aZ2anYJoVy33DZ7s9zLnD7G8+pqt6tZ1SZ0KfgmB97B8TrVZDrK5RvIjIGVcGxzDnWaxuDIshrM0XRnBvzLCJiBuuP3+1UKHIMbgQQtijyIemztixcXFClVEglu3bmHjxo3o2LEjFcIAoHr16hgxYgTS09Opt2wA+P7771GtWjWMHDmSy2f8+PEoKSnBTz/99MDp35B+FAmH/6TPb2byA7k9AQMQBw9yx8ZslfTATXoDJ4SRMMNn8ar5yGHSG2DSG1BnaRL9zaYzWy3YvnIpGnS8Z442n/cTY3lXcmgsL8+kN6C7dxuuvBm5ydyFYQJyZ4MVwsxWCzpWLcPQtNP0OfI96a4c4dncqz5cfqc+CoLZaoHZakHOD63gvc8NY3za0TA5vXI1H5PegPSXF0DXyEsRfuy1+UBkS472zO/E7UFitp/wUT4o116u9K1V44dkBC8SfaIYPo2n5na3rlvJfQ9Cq7ydNEpW+kZpPk+61E7yIEIYrXsFQpi83izvCC3sf7W2Q9B58HDk9FqMPXMXUXPpaumDF8ZzeZH8KtpMKDtyCh7fiu03Ni2WrydAhTAAdKFNhDA2HikzcIjkCFVuaEEtja6JNxXC5G2M3FkhYI23qNVLTQgj8QN2DgEgGichxjsIiBAGAOtv1uDaHovgFB1HP4GaEEbima2i/zUACiFMW6+e4nvT3fJ7F+vlZt0J7O1kE5itFuh8fRRhau3Q+rZREUbol7cjcheUYP03ncWxbKJ0b6Sk41mYraIBArPVAk1oM9W85WHXBsegR9P21Afh4Qn8XcpLtls03fONRZqJTycC4oyWFcJMegMabb9Ny/XfPpSrr1wIA4Ajb0r10bQK5ngR23UArg2OQWwH3t8VyT/67TH0t9lqQca3vGnu0tN51KhD9bXJ+PCiZBzKpDdAty1FQU+9BbzPxyE1LqD6un1UUDXpDTD/skrBU4K4jEwcKb6L7r5RcD99B3vmSHfvzFYLehp7cXVgf6vlx95hkuPK0BiMzlcaKSL/j0Wv4ehk5yG1Mbukaziq7mqg+p6g28mnVenUtBINWbFCGNumzFYL8teHwKQ3YPvKpQBEZ851lvGGoogxKZPegN/f/YIro8YPUt7uPyaj4F0jR0vDZ09CSD1Ov+/b+3dytJAySJsgQtjl4ZJhjq0/f6uoP4uzpdI4HfVunKpRpzrLktDhyB149TkO27Xr9B5ieCpj7OHe/Jy4TDIiY9IbEDY9nmsLtVYp52MAyJwZTX1G2tvIYp9JneVxerY20fTkjp3ZaoHrH/sRvmq4Kg8eOfzLjXU8SngsBLGff/4Z1apVg7u7O+rXr4+xY8fi+nVpN+TIkSMoKipCTIxycI2OFgUYIoiVlZXh0KFDCAsLo87ZCCIjI+Hk5MQJbfeLhg0bcn8BAaLfraeDmqH5Z8NQKpSgVCjB5/5BKBVKsC7tEDZdEFAqlKD1nmewLu0QujQMoe9IfN9xu7HybHV0aRiCdWmHsC7tEIo31qfv2fh1Zu9Cl4YhXFzyrv1LL6HzM88pwskfScf+Pp1cmz5feDkMpUIJ8l5rTeORsrs0DIHQrAkiE59CqVCCtcf3c3m/7hOOUqEEnx7bDZ/1L9I8a/Q8jnVphxA6ZRiXV5eGIVgSpEfu22JZ7iv+Ru2/XGm6dWmH8LIuBzcKy3CjsAxZy4PQPTSZpi0+A2RHXkOpUIIbhWU0TalQguyVgVh33pk+s/zo0jAEP2z7nYb7/DRYKnP1txx/mgzar/oNyPtSoQTNd/TlaCZ1WJd2CJ88uxilQgn+fvUb5L/SmpZ/an6I4rsYdj/D0ZobdZVrL6VCCZIHf4N1aYdwo7BMUa91aYdQ5qKhNGYtD4JNKyjaQNaHYbhRWEbD2TZBeMnWr1QoQVlLf+7durRDyJwSBqc/k7n05DuwcUuFEuin7uJoUOOnGj3s97O9KPFKXic2rk3nhFKhBBkfG1DN7I7vTx1QLc917R76+8OjifQ3GtSm5d/NyVK0WfIurkqagg6hlhuNf2pWKPeNbFU0KBVKELb3NqyjW3P0+AyUaNT9vperd6lQAv12LUqFEnQTrnHfhuXx0dZ3sC7tENCwjqJt0WenMlTfWp3me6OwDD4v7Efm0mY4NSuUhntuc8bCXRv4tPf+Tn0Vqggj8ZqsfhmlQgkKe0p1L0Wp4rvdKCzD3exMro7yPkzyrP+51HbYdlsqlCB7chjWpR1C9gpxvBVuFXFl1Vr0N30+NbcF9y2n+QWL48jho6j/VxWOl2y9SHm1nktH8Y0rXDsgNH5/riqeaxSp2sZLhRKYwjqrjv3k+efly2lcdsyR9015H7223gs/rV2Dq/0MUr/sVR3Vv/0bP/7xs2IMX5d2CG6rd9OwZtv6wXfwPvp+7nGRXz9s/oXS2NkpRXXOUnsmYYeuFCraBvl2hPa0z1vR8LkBPnjdJxwld2/i5xUruDQ3CstoP5SXS+YOOR3ku8tp7GbqixrL/8bHNXaq0k2+kXzcfVmXw8WdcexvdO79PLo0DEFuRxsKn8hXbcvvHUlGqVCCss7ZHJ0TspuJc7zliIJGEs9/8VB0aRgCzz4WlAol6NpY5Nedm04Kmsnz6NRjeLlxlGpbJmENPt2FoDnDaDrSL8jfNL9gRZpSoQR3szK471lzqcRjU0x31fGA0Pdi4yj6rvq3fytoI3/bWupQEN8aRe2aY9fYb1AqlGCfwUbfX22sRac+z+NW9SKub9SeuwtvHz4Av2VDsS7tEKyjW+NGYRkGpmSitE0QpSO153x0aRjCzVNnR4pjsVCnpmLcJXUuFUoAH0+YIrrhzHcBuHs2n/LG/OF83CgsQ6eDT6JUKIH+Y1FV/FFXViuF+jd44H8oqZiYfzuEfzkiIyOFGTNmCBs2bBC+/fZb4bnnnhMACC1bthQKCwsFQRCEn3/+WQAgzJ8/X5H++PHjAgBh4sSJgiAIwqVLlwQAwoABA1TLq1evnhATE/Mf0+vp6cn91a1bVwDg+HP8Of4cf44/x5/jz/Hn+HP8CXl5ef/xOvNh4s6dO4Knp+c/ygtPT0/hzp07/+uqPzSIuij/Yuzbx6tuDB48GKGhoXj//fcxe/ZsvP/++9T0pIuLiyI9OfUiccqLS+KzpizvF2fP8ncLysrKYLVa4e7u/l9ZYwwMDAQAZGQoL/k6wMPBq8rDwavKw8GrysPBq8rDwavKw8GrysPBq8rjn+SVIAgoLCykjoMfNbi6uiInJwfFxcX/WJlVqlRRaKg9TvjXC2JqmDBhAqZOnYpNmzbh/fffR7V7DlKLVKwV3b0rmiUnccqLS+KTOA8CGo0GjRqp3/2433wAPLaXGR8kHLyqPBy8qjwcvKo8HLyqPBy8qjwcvKo8HLyqPP5pXtWsWfMfKec/haur62MtGP3TeCzuiMnh7OwMvV6PS5cuAQDdWSgoKFDEJWHE7r+HhweqVq2qGreoqAiXLl26bx8BDjjggAMOOOCAAw444IADLB5LQezu3bvIz89HgwaiJaKWLVvCxcUFSUlKC13JyaJFoDZtRAt+Go0GrVu3RmpqquJUbP/+/RAEgcZ1wAEHHHDAAQcccMABBxz4T/CvFsQuX76sGj558mSUlpbi6aefBiCaqX/66aexc+dOHD58mMa7efMmli5disDAQERGSiafBw4ciNu3b2Px4sVcvl9//TV0Oh3nKPpRwdmzZxX3zxxQh4NXlYeDV5WHg1eVh4NXlYeDV5WHg1eVh4NXlYeDVw48TPyrHTq//vrrSE5ORqdOneDt7Y2bN28iISEBO3bsQFRUFHbs2IGqVasCADIzMxEZGQlnZ2e8/vrrqFGjBpYsWYKjR49i06ZNMJlMNN/i4mIYjUYcPnwY48aNQ3BwMBISErBhwwZMmjQJ06ZN+19V2QEHHHDAAQcccMABBxx4DPCvFsR+++03zJ8/H8eOHcPly5eh1WoRGBiIAQMG4I033lBcJjx58iTeffdd7Nq1C8XFxWjdujWmTJmCrl27KvK+du0aJk2ahF9++QWXL1+Gv78/4uPj8corr/xX1g0dcMABBxxwwAEHHHDAAQf+1YKYAw444IADDjjggAMOOODAvxH/6jtiDjjggAMOOOCAAw444IAD/0Y4BDEHHHDAAQcccMABBxxwwIF/GA5BzAEHHHDAAQcccMABBxxw4B+GQxBzwAEHHHDAAQcccMABBxz4h+EQxBxwwAEHHHDAAQcccMABB/5hOAQxBxxwwAEHHHDAAQcccMCBfxgOQcwBBxxwwAEHHHDAAQcccOAfhkMQc8ABBxxwwAEHHHDAAQcc+IfhEMQccMABBxxwwAEHHHDAAQf+YTgEMQcccMABBxxwwAEHHHDAgX8YDkHsIePmzZuYPn06WrZsCXd3d9StWxdGoxErV66EIAiK+KtXr0bbtm1Ro0YNVK9eHS1atMC0adO4ODt37oSTk5Pq31NPPaVKR0JCAoxGI9zc3FC7dm30798fOTk5qnHT0tLw7LPPwsPDA25ubmjfvj22b9/+3zOjAlSGV7m5uXbrTv7WrFnD5VtUVIQPPvgAvr6+cHFxgb+/Pz7++GOUlJSo0rFq1SqEhYWhatWqaNCgAUaMGIGLFy+qxt23bx+6du0Kd3d31KhRA927d4fFYnmgfFHDw+BVefFbtGjxX9ffarVi8ODBqFevHqpWrYo2bdpg3bp1D5w3ariffrh582Z06dIFnp6ecHNzQ9OmTfHWW2/h/PnzinyvX7+OsWPHwsvLC66urggJCcGCBQtU+3ZZWRlmzZqFZs2awdXVFY0bN8abb76JW7duqdJ8P332QeFh8OlxHa+AyvNLEAQsXLiQjiu1atVC9+7dkZycrJrv4zZmPQw+Pa7j1fnz5zFmzBg0btwYVapUgbe3N1577TVcu3ZNEfd+2v7jNlYBD4dXj/N45cAjCsGBhwabzSa0a9dO0Gg0wtChQ4VFixYJs2bNEiIjIwUAwttvv83FHzp0qKDRaIT+/fsL8+fPFxYuXCi88847wvDhw7l4O3bsEAAIo0aNElavXs397dixQ0HH+vXrBScnJ8FgMAjz5s0Tpk+fLtSvX19o2LChUFBQwMXNzMwUateuLdSvX1+YPn26MG/ePMFgMAg6nU74888/HziPCCrLq5s3byrqTP5q1qwpVKlSRbh48SKX9zPPPCMAEIYNGyYsWbJEGDZsmABAePnllxV0zJw5UwAgdOjQQVi0aJEwefJkwc3NTWjevLlw8+ZNLm5SUpLg4uIi+Pn5CTNnzhRmzpwp+Pn5CdWrVxeOHDnyr+NVTk6OAEDo3bu3Iv7vv/+uoON+6n/58mXB19dXcHNzEyZPniwsWrRI6NChgwBAWL58+UPj1f3wSxAEYfHixQIAITw8XJg5c6awaNEiYcSIEYJWqxV8fX25NlBUVCREREQIOp1OeP3114XFixcLvXv3FgAIH374oYKOcePGUf4uXrxYeP311wWdTid06tRJsNlsXNz76bOPOp8ex/FKEO6PX2PGjBEACB07dhTmzJkjfPbZZ4Kfn59QpUoVVR48TmPWw+LT4zhenT9/XvDx8RGcnZ2FV199VVi4cKHw6quvCs7OzoLBYBBu3bpF495P23/cxipBeHi8elzHKwceXTgEsYeIxMREAYAwfvx4LryoqEjw9fUVatasScOWLl0qABBWrVpVYb5koFixYkWFcYuLiwW9Xi94e3sLhYWFNDw1NVXQaDTCyJEjufj9+/cXNBqNkJqaSsMKCwsFb29vISgoSCgrK6uwzP8E98Or8tL369ePC9+0aZMAQHjjjTe48DfeeEMAIOzdu5eGXbx4UahWrZoQEREhlJaW0vCNGzcKAIRPPvmEyyMiIkJwd3cX8vPzaVh+fr7g7u4udOvWrVL1/k/wsHhFFjZqE7Ma7qf+EyZMEAAIGzdupGGlpaVCRESEULt2ba5tPmjcD7+CgoKEhg0bCnfu3OHivv/++wIAYcOGDTRs3rx5AgBhzpw5XNw+ffoIzs7OQm5uLg07duyY4OTkJPTp04eLO2fOHAGAsGbNGhp2v332QeFh8elxHK8EofL8Sk1NFQAI3bt35+i5evWq0KBBAyEwMJBb3D5uY9bD4tPjOF699tprAgDh+++/58K///57AYAwbdo0GnY/bf9xG6sE4eHx6nEdrxx4dOEQxB4itmzZIgAQvvjiC8W7iIgIQa/XC4IgCGVlZYK/v7/QunVr+v7GjRt2OyU7UNy8eVOxGGLx559/CgCEjz76SPGuc+fOQo0aNYTi4mJBEMQTFBcXF6Fz586KuB999JEAQNi3b1/5lf4PUVle2QPZMd6yZQsXPmjQIAGAcObMGS78zJkzAgAhLi6Ohi1ZssSuMOzn5ycEBwfT54yMDLpjrUaLk5OTcPbs2XJp/k/xsHjFLmzu3LnD7SjKcb/19/LyEvz9/RVxV61aJQAQfvrpp3Jp/m9wP/zy9PQUmjdvrohHFjJbt26lYW3bthWqVaum6H9///23AED4/PPPaRgRUP7++28u7p07d4Rq1aoJPXr0oGH302cfJB4Wnx7H8UoQKs8vcmL1ww8/KOKNGjVK0S4etzHrYfHpcRyvQkNDhapVqyrmfpvNJri6ugp+fn6CINx/23/cxipBeHi8elzHKwceXTjuiD1EREZGolatWvjiiy+wbt06nDlzBqdOncLEiRORkpKCKVOmABB1hrOysmA0GjFt2jTUqVMHNWrUQK1atTBmzBjcvHlTNf/XXnsN1atXR9WqVREUFITZs2cr9L0PHDgAAIiJiVGkj46Oxo0bN5Ceng4AOHLkCIqKiuzGZfN70Kgsr9Rw8+ZNrF27Fj4+PujWrRv37sCBA/Dy8kLjxo258MaNG0Ov13P1qYhXp06dot+ioriCICAlJaVylb9PPCxeEXz11VeoVq0a3Nzc0LhxY3zwwQcoKiri4txP/c+ePYuCggLahuRx2fweBu6HXyaTCSdOnMCbb76JkydPIi8vD7/88gumTZuGDh06oHPnzgDEOxSHDh1CWFgYXF1dFeU5OTkp2pZGo0FkZCQX19XVFQaD4b7aIdtnHyQeBp9YPE7jFVB5fpG+U61aNUUeJIy9A/W4jVkPi08Ej9N4VVRUBFdXVzg5OXHhGo0GVatWRXZ2Ni5dunRfbf9xHKuAh8MrFo/beOXAowvd/5qAxxkeHh7YuHEjRowYgQEDBtBwd3d3rF+/Hs8++ywAURADgJ9++gnFxcWYNGkSfH198ccff2DRokVIS0vD9u3b6YDj7OyMXr16ITY2Fnq9HlarFcuWLcP48eNhsViwYsUKWpbVagUAeHl5KegjYQUFBQgJCal03IeByvJKDT/99BNu3ryJt956CxoNv7dgtVrRvHlz1XReXl7Iz8/n4pJwtbiCIMBqtSIoKOix5JVGo0Hnzp3x7LPPwsfHBxcvXsTatWsxbdo0JCUlYcuWLdBqtQAq367uN+7DwP3wa/bs2bh9+zZmz56NmTNn0vChQ4di0aJFtP5Xr17FnTt3VOvk4uKCunXrcnWyWq2oW7cuXFxcFPG9vLyQmJiI4uJiVKlS5b767IPEw+AT8HiOV0Dl+UW+0/bt29GrVy8aTxAE7Nq1CwCQl5dHwx+3Meth8elxHK9CQkKQlpYGi8UCg8FAwy0WC65evQoAOHPmzH3R+DiOVcDD4RXw+I5XDjy6cAhiDxnE8mGvXr1gNBpx5coVzJs3Dy+88AJ+++03dOvWDYWFhQCAixcv4s8//0TXrl0BAH379oUgCPj222+xZcsW9OjRAwDQtm1b/Pbbb1w5I0eORGxsLFauXIkRI0agbdu2AIDbt28DgOqgSnbHSJz7ifswUBleqWHp0qXQaDQYOnSo4t3t27dV6wOIdWLr8/+dV97e3ti2bRsXNnz4cIwaNQpLlizBjz/+iEGDBgH4d/EKqDy/nJ2d4e3tjd69e+Ppp59GtWrVYDabsXz5cmi1WixZsqTCOpF6ydtWeXFJnCpVqvxP+fWg+QQ8vuMVUDl+9ejRA82bN8f8+fOh1+vRp08f3L59GzNnzsSxY8cUdD6OY9bD4NPjOF6NHz8ev/76KwYMGICvv/4aLVq0wPHjxzF+/Hg4OzujpKQEt2/ffmD1IfH/jWPVw+AV8HiPVw48mnCoJj5EHD16FEajEd26dcOMGTPQu3dvDB8+HHv27IGnpydGjhwJm82GqlWrAhB3RYgQRvDyyy8DEE2qlgeNRoOJEycCADZt2kTDiUqHXFUDAO7evcvFuZ+4DxqV5ZUcJ06cQHJyMrp16wZvb2/F+2rVqqnWBxDrxNbn/zuv7OH9998H8O9sV0Dl+VVWVobu3bsjMTERa9euxeDBg9GvXz8sWbIEEyZMwNKlS/HXX39VWCdSL3nbKi8um+f/il8Pg0/28G8fr4DK80un02Hz5s1o27Yt3nnnHQQGBqJVq1ZITU3FZ599BgCoUaMGzfdxG7MeFp/s4d88XrVv3x4//vgjCgsL0bNnT/j4+ODpp59Gp06dqOn0GjVqPLD6kPj/trEKeDi8sofHYbxy4NGFQxB7iJg1axbu3r2L/v37c+HVqlVDz549cfr0aeTm5qJRo0YAAE9PT0UeDRs2BAB61F4emjRpAgC4dOkSDdPr9QDUj7xJGDkWv5+4DxqV5ZUcy5YtAwCMGDFCNV+9Xm/3uL+goICrT0X1d3JyonEeR17ZQ+PGjaHVav+V7QqoPL/27NmD3bt3o2/fvop7ByQtUZHy8PBA1apVVetUVFSES5cuKdrWpUuXVCfhgoIC1K1bF1WqVKFxSbhaXODh8Oth8Kk8/JvHK+D++qG3tzd27NiB06dPY9euXTh27BgOHz5Md8KbNWtG0z9uY9bD4pM9/NvHq/79+yM/Px+pqan4+++/YbVasXDhQuTn50On0yEgIOC+aHwcxyqCB82r8vBvH68ceHThEMQeIkjnUjudKC0tpf9btmwJV1dX1Q5K7gPUr1+/wvIyMjIAAA0aNKBhERERAICkpCRF/OTkZNSoUQNBQUEAgJYtW8LFxcVuXABo06ZNhXT8J6gsr1gUFxdj9erVqFevHp555hnVfCMiIlBQUMDdLQDEuwZWq5WrT0W8atq0KapXr16puE5OTggPD1ev7H+Jh8Ure8jOzobNZruvdsXWv2HDhvDy8lK9aP+w2xVQeX7dD181Gg1at26N1NRUxYJl//79EARB0bbKysqwf/9+Lu7du3dhsVjuqx2yffZB4mHwqTz8m8cr4D/rh97e3njiiSfonZmEhARoNBqYTCYa53Ebsx4Wn+zh3z5eAYBWq4XBYED79u1Rv359nDt3DqmpqejQoQOqVat2X23/cRyrWDxIXpWHf/t45cAjjP+Fqcb/Lxg/frzCNKwgiH5RGjZsKHh4eFDfL8Rk8S+//MLF7dOnj8J3zKVLlxRl3b17V2jbtq3CBGpxcbHQsGFDhZ8Li8UiaDQahbPofv36CRqNRrBYLDSM+LkIDAx8aH4u7odXBOvWrVP1t8Pijz/+KNcnz+7du2nYhQsXhKpVqwqRkZGqPnlYvySCIAht2rQR3N3dOaeNBQUFgru7u9ClS5fKV/4+8bB4pdaubDab8Nxzz6mabL6f+r/11lt2/fLUqlVLuHHjRsUV/w9RWX5ZLBYBgBAaGqowuUwcza5fv56GffPNN3Z98+h0OiEnJ4eGHTlypFzfPKtXr6Zh99tnHxQeFp8ex/FKEP6zfsjit99+U3XS/LiNWQ+LT4/reCWHzWYT+vfvLzg5OQnbt2+n4ffT9h+3scoeHgSvHtfxyoFHFw5B7CEiNzdXqF27tuDk5CS8+OKLwoIFC4RPPvlEaNKkiQBAmDdvHo17+vRpoUGDBoKrq6swYcIEYd68eULPnj0FAMLgwYO5fNu0aSP06tVLmDp1qrBkyRJh6tSpQmBgoABAGDt2rIKOtWvXcp7fP/30U6F+/fpCgwYNOOeWgiD6W/Hw8BDq168vfPrpp9Tzu1arVfidepC4H14RdO/eXQAgnDhxoty8n3rqKQGAMHz4cGHp0qXC8OHDBQDCiy++qIj75ZdfCgCEjh07CosWLRI++OADwc3NTWjWrJnCiefevXuFKlWqCH5+fsKsWbOEWbNmCX5+foKbmxs30D5oPCxe9e7dW+jSpYswefJkYfHixcL06dOF8PBwAYDwzDPPcM5UBeH+6n/p0iXBx8dHqF69uvDBBx8IixYtEjp27CgAEJYuXfpgGGMH98Ovvn37UiHjiy++EL755hvh6aefFgAI0dHR3IKxqKhICA8PF3Q6nfDGG28IS5YsEXr37i0AECZNmqSg49VXXxUACL179xaWLFkivPHGG4JOpxM6dOig4O399NlHnU+P43glCPfHr2HDhglDhw4VZs+eLSxevFgYPHiwoNVqhYiICOHatWuKvB+nMeth8elxHK8KCwuF4OBg4b333hOWLFkifPnll7ROcufc99P2H7exShAeHq8e1/HKgUcXDkHsISMzM1MYPHiw4OXlJeh0OsHd3V1o3749t2NMkJOTI7zwwgtC3bp1BWdnZ6FZs2bCl19+qRj4PvvsMyE6OlqoW7euoNPphJo1awodO3ZUeJhn8fvvvwtRUVFC1apVhVq1agl9+/YVMjMzVeOeOHFC6NWrl1CzZk2hatWqQtu2bYU///zzv2NEJXA/vDpz5oyg0WgEo9FYYb537twR3n//fcHHx0eoUqWK4OvrK3z00Ud2HU2uWLFCCA0NFVxcXIR69eoJQ4cOFc6fP68aNzExUejcubPg5uYmVK9eXXjyySeFlJSU+6v4f4CHwaulS5cKHTp0EBo0aCA4OzsL1atXF6KiooR58+Yp2iDB/dQ/Pz9fePHFF4U6deoILi4uQlhYmPDjjz/ef+X/A1SWX0VFRcLnn38uhIaGCq6urkKVKlWEwMBAYeLEicLNmzcV+V69elV45ZVXhIYNGwpVqlQRgoODhblz56rubJaWlgpffvmlEBQUJFSpUkXQ6/XC66+/rlgsE9xPn31QeBh8elzHK0GoPL8WLlwotG7dWqhRo4bg6uoqtGjRQvjkk0+E27dvq+b7uI1ZD4NPj+N49X/t3X9M1PUfB/DnSXagU+A8RsfduoMzSNmgjEuQMtoYNdEYf6AYQsCJ8/xJAo5sBf0YtMByNnIJosGkpk4cblkDR7dFMKSVQ7QSQi0gwbQzQi5+vL9/+OXz9ePh1x/h4enzsd3GXu/X533vz2fcZ5/X3ef9/tjtdpGYmCgMBoNQKpXC29tbxMTE3PAi/Xb+9++3c9XdOlb38/mK7k0KIa57Qh0RERERERHdVVysg4iIiIiIyMlYiBERERERETkZCzEiIiIiIiInYyFGRERERETkZCzEiIiIiIiInIyFGBERERERkZOxECMiIiIiInIyFmJEREREREROxkKMiIiIiJyisLAQCQkJCAgIgEKhgMFguK3te3t7kZaWhpCQEKhUKri7u2P27Nkwm81ob28fd5vu7m6kpKTAx8cHHh4eCAsLw/79+8fN7ejoQFJSEnx9faFUKjF79mzk5eVhcHDwdnfVQWNjI1566SXodDp4eHjAaDQiIyMDv/zyy7/um1yTQgghJnsQRER0/8nPz8dbb72F+vp6REVFTfZwiOgeoFAooFKpMG/ePHz33XeYOXMmzpw5c8vb//TTT0hPT0dERAT0ej08PDxw+vRplJeXw263o6mpCXPnzpXyL168iLCwMPT29mLTpk3Q6XSoqqqC1WpFeXk50tLSpNwff/wRERERGB4extq1a+Hv74/GxkZUVFQgJiYGR44cgUKhuKP9/vLLLxEbGwuj0Yj09HSo1Wq0tbVh586dUCqVaG1thVarvaO+yYUJIiKimwBwW6/6+nqRl5cn/U1E97f6+vpb+rx3dHRIfwcHBwu9Xj8h79/c3CwACIvFIovn5OQIAKKmpkaKDQ8PC5PJJFQqlfjrr7+keFxcnFAoFKKhoUHWR0FBgQAgKisr73h8MTExYurUqaKvr08WLy0tFQDEhx9+eMd9k+t6yNmFHxERuZ68vDyH2LZt22Cz2bBx40Z4eXnJ2gwGA9atW4fExEQ8+uijTholEd3rAgIC7kq/er0eAHDp0iVZvKqqCkajEUuWLJFibm5uWL9+PVJSUvDFF19g6dKlAID6+noEBgZiwYIFsj5SU1OxZcsW7N69GytWrJC11dXV4f3330dzczMGBwcRGBiINWvWYPXq1bK8y5cvw93dHd7e3rK4n58fAGD69On/Yu/JVbEQIyKim8rPz3eI7dmzBzabDZmZmTec56FWq+/uwIjogTQ0NASbzYahoSG0t7dL56hFixZJOT09Pejq6kJSUpLD9uHh4QCAY8eOSYWY3W7HtGnTHHLHYs3NzRBCSLcn7ty5E6tXr0Z4eDhef/11TJ8+HbW1tbBYLOjo6EBRUZHUxwsvvICmpia88soryMnJgVqtxokTJ5CVlYU5c+YgMTFxYg4MuRQu1kFERHdFfn4+FAoFvv76ayl25swZKBQKpKam4ueff0Z8fDy8vb3h6emJuLg4aa5Ie3s7EhISoFarMW3aNCxatOiGE9r/+OMPbN68GUFBQdI3zrGxsWhqanLCXhLRZPjqq6/g4+MDPz8/LFy4EG1tbdi6dSuSk5OlnO7ubgAYd+7VWKyrq0uKBQcH49SpU/j9999lufX19QCA/v5+6Re3np4ebNiwAYmJifj222+Rk5ODNWvWoLq6Ghs2bMAHH3wgO2e99tprsFgsOHDgAJ544gnodDq8+OKLCAgIQFNTE2bMmDFBR4ZcCQsxIiJyus7OTkRERMBms8FsNiMyMhI1NTWIjo7GqVOnMH/+fFy4cAGpqamIiorCkSNHEBsbi9HRUYd+5s2bh6KiImi1Wqxduxbx8fFobGzEwoULcfjw4UnaQ6L71+joKC5cuCB72Ww2AIDNZnNou/5zOxHCw8NRW1uLmpoavPfee9BoNLh06RKGh4elnIGBAQCAUql02N7d3V2WAwBZWVkYHBxEXFwcrFYrzp49i3379sFisWDq1Kmy/AMHDsBut8NsNjvs75IlSzA6Ooq6ujqpbzc3N2i1WkRHR6OsrAwHDx5EVlYW6urqkJiYiKGhoQk/RuQCJnuSGhERuSa9Xi8AiM7OznHbx1uso7OzU1rQo7i4WJafkZEhAAgvL68bth08eFAWf+aZZ8SUKVMc4t3d3UKn0wlfX19x5cqVO99JInJw7ef4Vl43OkdM5GIdXV1dYtasWWLVqlVSrKWlRQAQmzdvdsj/+++/BQCxfPlyWXz79u3C09NTGvvDDz8s8vPzhclkEgCEzWYTQghhsVhuut9vv/221G9SUpLw9/cXAwMDsvfbsWOHACBKS0sn5DiQa+EcMSIicjp/f3+8+uqrslhycjJKS0uhUqkc2lasWIHS0lIcP34c8fHxAIAffvgB33zzDZYtWybFxmg0GuTk5GDjxo04evQoYmNj7+4OET1AHnnkEdTW1spix48fR3Z2NoqLixEaGuqQf7f5+fkhOjoau3btwvbt26FUKqWFMK69/XDMWOz62xbXr1+PVatWobW1FXa7HcHBwfDy8kJJSQk0Gg1mzpwJABD/ffpTRUUFNBrNuGMaW5jk3Llz2Lt3L9atWwcPDw9ZTkJCAiwWC6xWK1auXPkvjgC5IhZiRETkdKGhoZgyRX53/NjFTEhIiEPbeBdUjY2NAK4+J2i8xUROnz4N4OqzgViIEU0cd3d3REdHy2IPPXT1kvKpp56atOcGXrlyBSMjI7h8+TJ8fHyg0Wig1WrHnS86FgsLC3NoUyqVsnhLSwv6+vpgNpul2GOPPQbg6oJE1x+L642dt0ZGRhzaxm6lvPaWSnpwsBAjIiKn8/T0dIiNXcj9v7Zr51FcvHgRAFBbW+vw7fy1+vv7/9VYiWhynDt3DgMDAzAajdIcrfPnz8PX19ch9+TJkzh69CiMRiN8fHyk+PLly1FcXIzDhw9LS9iPjIzgo48+gpeXl2yVxfEMDg4iMzMTSqUS2dnZUnzp0qXYsmUL8vLyEBUV5fBLl81mg7u7O5RKJYKCguDm5oZDhw6hoKBA9riPPXv2AABMJtNtHRu6P7AQIyIilzRWsBUWFiI3N3eSR0NEt6KyshJnz54FAPT19eGff/7Bu+++C+Dqs8CuXfUwJSUFVqsVnZ2d0iMyCgsLUVtbi9jYWBgMBgghcOLECVRWVmJoaAglJSWy98vNzcX+/fvx8ssvY9OmTdBqtfjss89w7NgxlJWVyVYrbGtrQ2pqKhYvXgydTofz58/j008/RUdHB3bv3o3HH39cytXpdNixYwdWrlyJOXPmIDk5GXq9Hn19fWhtbcWhQ4dw8uRJGAwGqFQqZGZmYuvWrXjyySeRkZEBlUqFhoYG7N27F0ajkbclPqBYiBERkUuaP38+gP/dokhE975du3bBarXKYm+88QYA4LnnnpMVYuNZvHgxfvvtN+zbtw+9vb0YGRmBVqtFQkICsrOzERwcLMufNWsWGhoakJubi5KSEvT392Pu3Ln4/PPPsWzZMlmuWq2GTqdDaWkpent74enpiWeffRaVlZV4+umnHcaSlpaGwMBAFBcX45NPPsGff/4JtVqNoKAgvPPOO7K5cUVFRQgKCkJZWRkKCgpgt9uh1WphsViQn58vzT2jBwsLMSIickkmkwkLFixATU0NysvLkZ6e7pDT1NSEkJCQcR/SSkQTJyoqSlrA4v+59rmCd5IbHR190zlZ19NqtaisrLxpnq+vL6qrq2+r78jISERGRt40T6FQICMjAxkZGbfVP93fWIgREZHLqqqqwvPPPw+z2YyPP/4YJpMJM2bMwK+//oqWlha0t7ejp6eHhRgREd1zWIgREZHL0uv1+P7777Ft2zZUV1ejoqICQghoNBqEhobizTffhFqtnuxhEhEROVCIW/kdmYiIiIiIiCbMlJunEBERERER0URiIUZERERERORkLMSIiIiIiIicjIUYERERERGRk7EQIyIiIiIicjIWYkRERERERE7GQoyIiIiIiMjJWIgRERERERE5GQsxIiIiIiIiJ2MhRkRERERE5GQsxIiIiIiIiJyMhRgREREREZGT/Qds3MLcRqexUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)\n", + "\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(500,1000)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mh. Can't see anything here. Let's try to rebin data a little, to get a better signal-to-noise ratio." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 1.0\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 2 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "dynspec = dynspec.rebin_frequency(df_new=2.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 2.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAJ9CAYAAABXWMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d1hU1/b2OwVBERQVy9C7iODQmVFjjaNojD2WxBg7pMf0rjExPabYezcaS4xtjDVRQBAdC6J0BMbeRUGYme+P7dnn7DmDMb8v1+u9d78+Psw5u6+9zz4z691rLYXNZrOBg4ODg4ODg4ODg4OD46FB+e/uAAcHBwcHBwcHBwcHx/8a+A8xDg4ODg4ODg4ODg6Ohwz+Q4yDg4ODg4ODg4ODg+Mhg/8Q4+Dg4ODg4ODg4ODgeMjgP8Q4ODg4ODg4ODg4ODgeMvgPMQ4ODg4ODg4ODg4OjocM/kOMg4ODg4ODg4ODg4PjIYP/EOPg4ODg4ODg4ODg4HjI4D/EODg4ODg4ODg4ODg4HjL4DzEODg4ODg4ODg4ODo6HjEfyh9i0adMwePBgBAYGQqFQwN/f/775Dx48iO7du8PNzQ3u7u7o2bMnTCaTw7xmsxkjR46Ep6cn6tevj7i4OKxdu9Zh3urqanz44YcICAiAs7MzgoKCMHXqVNTU1Px/jpCDg4ODg4ODg4OD42Hh9OnTGDFiBMLDw9GoUSM0aNAArVu3xmuvvYazZ88+cD1bt26FXq+Hq6srmjRpgsGDB6O4uPj/1CeFzWaz/Z9K/guhUCjQpEkTxMTEIDs7G+7u7igpKXGYNyMjA507d4aXlxdeeOEFAMBPP/2ECxcuIC0tDZGRkTTvlStXEBcXhwsXLuC1116Dt7c3Vq5ciX379mHhwoV47rnnmLr79euHX3/9FaNHj4ZOp0N6ejoWLlyIZ599FosXL/5XDZ+Dg4ODg4ODg4OD4x/Erl278OmnnyIpKQne3t5Qq9U4fvw4Fi1aBHd3d5hMJjRv3vy+daxfvx6DBg1Cu3btMG7cOFy/fh3Tp0+HSqXCoUOHoNFo/l6nbI8gCgsL6eeIiAibn59fnXnj4+Ntbm5utvLycnqvvLzc5ubmZnv88ceZvG+88YYNgG3Tpk30Xm1trS0+Pt7WpEkT282bN+n9LVu22ADYXnvtNaaO1157zQbAduDAgf/r8Dg4ODg4ODg4ODg4HgGsWbPGBsD2xRdf3Dff3bt3bRqNxubr68v8Zjhy5IhNqVTaxo0b97fbfiSPJgYGBj5QvoKCAmRlZWHw4MHw8vKi9728vDB48GDs3LkT586do/dXrlyJoKAgPPHEE/SeSqXCiy++iCtXrmDr1q1MXgB45ZVXmDaF6+XLl//dYXFwcHBwcHBwcHBwPELw8/MDAFy9evW++fbt2wez2YyxY8eiYcOG9L5Wq0Xnzp3x888//23zJfXf7+6jg6ysLACATqeTpSUlJWHhwoXIzs5G7969cfbsWVRUVGDEiBEO8wr1DRkyhH728vKCj48Pk9fHxwcajYa2/XfRqlUr5tpqtSI7Oxtubm5QKBT/pzo5ODg4ODg4ODj+s2Gz2XDz5k1oNBoolY8kV4KqqircvXv3obUXGhoq+378d+y5HKGqqgq3bt1CVVUVTp48ibfeegsAkJycfN9yf/W7Y/fu3cjLy0NERMQD9+U/+oeY2WwGAIYNEyDcq6io+Nt5hfxt2rRx2K6XlxfKy8v/P3ouwmq1yn7scXBwcHBwcHBw/G+irKwM3t7e/+5uyFBVVYUAv4Y4d8Hy0NpUKpXw9PT8R8mK+fPn48UXX6TX/v7+WL58OTp27Hjfcg/6W+J/5ofY7du3AQDOzs6yNBcXFybP38krfHaUV8gvzft3YP8r/vr162jcuDE6IBlqOMnyb8g7jv6hxOGItUMUlPuP0fsA0L+1FrCSB6KyXxxcNx5yWNYeF8clwnPewTrzCPeFdgT0e2YYFAdP4N1jJnwWpaV5Bxt6o7b4DDbkHUf8vLHw/uogrg1PwE1fBQ6Nnk/Ld/hmLDznHGTqHHW4BItj/B32RRUSCEt+Eb1Wt2iO2vMX8MPJdLzURtRIFH4Rj6C3HLOU9vU6aqfvoYvYFOdJrxXOzrBVV8PyWDuo/jgqyvueTKSy6R8aiWu/BKFmRzN4zmXHVrooAn7P5TBl+odF4ebgOKhvW1F/c/Z9+7wh7zgef+s5NNxwyGGe2OVj4DslE8+bTqN7g7sO+9g/NBK1nbT4ec4CjGgdCwBoaGyKW4bLTH2Fc9rBJc8FmRPmo+MXY/DnWwvQPzQSqiYesFy5CmVkGNat+6XONQUAEX8qMLXFMURteg7KKiVMQxbQ/PZ9ut98nHkvAX7bb8GWfVLs35dxCHrz0H3XdenkBPh9lMnMjWJzKyjedMO6jesQu3gsfD87iAsTEtHcbh1+ciILH7SNp/VXLA+H19O5Dtv75EQWUr95Hk0XZQIAij+NR8B7WVAF+uHDX9fho8g4Wd8ujU1As/mZqO4RA5eXzqJ781P4PaGRTAYXJiai+eyDsvKO5OXos8KpHmw1d2VlBHncry5pnisjE9BkKRnfrQHxaLg+6777hYDIzaOgrFEi8K0sps6CH2JwvOcS9A+NhNKtIcrHRUDz7UFaPmblGBwevgDd3xmNndMWMu0E7XXGkZlR2DWV3L/ybAL2vUfWllUXiV+XrERC5hBkJqzBIH0XWC5duu86uR+EdQYAVn0UlGnHUDEpEV7fiHOyIe84erz5HFw3HsLVtcHwGFwAACh/IxEeuvNwHVDisG7v3Q1Q3vW2bC+vq591zZs0fVCHrrBcuMjcu9+4S6YkwP/DTIf5xxwpwuczh2H/G2TP7v7eaLitJfvqzUHx2PkZkX/zXW640O1mnX16ELn/1T7gqB77/RQga6OwczXU3hp0X38S2xMa/2W7uXfv4P2ETrjaNxK7pywAAAzu/Dis165jnSlT1q66ZQvA2Qm1peVMPf1DI6GICYftcC4AoOztRPjPzYPlylVZvr8jG/v+AnAoG8tj7bBpvmgmId1f1S1bIO8VXxwdsBAAYHj9ObidvIyuK0103xFwc10ALDYl9kRtpHUcqb6LKZGxD9QfAVU9Y7Hth8V1pkv7fmNIPJyvWuD8+2GH+VRB/vhl22/M+h53pABfFRpg3dQUV5JqcLz7UvQPjUTIPiccWBlD93SH3yXuvccEvHXsKL6IaudwPKrmnswzJa2zaFo8jg5cSMvUtYdeGZWAJoszURfqkmMtarAfW+Hm5lZn2X8n7t69i3MXLCjN9oe727+esbtx0wq/2BLk5eXB3d39H6u3X79+aN26NW7duoUjR45g06ZNuHTp0l+W+7u/JR4Ejybv+YBo0KABAOJm3h5VVVVMnr+TV/jsKK+QX5r3/wfCL/wLr3bArrM5UCucmP/ubkr6ud6BXJpncFgMEle+gF0Vx+i9JmlmpuzgsBiolfWYe0LeY1MW0jx3hnaEWuGEokU67DqbA2svPbTp46BWOGHg+DEYHBaDweHxGBwWA6fM04jIboBunmJ9g8NigJKzKP/0Mbi7KeH/9WGoFU7wOKuApVU9Uv7e/1ZzD8vGuDw2RDZW4b+ioAzn3u1E+13bNhAT8svxWsRjolwaNkbY2yaoFU64+ltb7DqbQ/M71XPF4LAYRraDw2KgVjhB2TEePXOqoFY4YWu8hsmzs4T00/nPk7SMUK7f8+PgFKfF4LAY2udmg8/AtZKVdT3XRgganYcbWyJo2S7fPA811KhndcaFLg2Yvsrm7t7fxhuPkvu7A5i87m5KNC53wY0xj+Ht7eNoH1Ud4pnyaoUTXP7IwbPhSVArnFC+JhZVPW8w6yHO5ISwiSdx6vWFcHdTouXCIxjcOhZqhRMuDosi8jpRROuTrifzx52gVjih9NuOeNIrF4PDYlAyYglCPjgCdzcluhy3QNE1kZZNXPUCU14676XfkLUY+NkRqA7nM+MNe+soMyZp/4X/owakQ9Elkcpi19kcqJ68CmVuMQaHxSBwGpnXz99cyZQrWx2HNyuexrUJj9H6/Z4pkLUn/H9z8qtotTqXyOfXKIS8b8KdoR3hVGXFJ1E6el+o2/Z4Enq+cARqhRP2L1kG1ROXsCexGboct8jaOP7RQnQ5bmHGZj/v9utk19kcPDVwONQKJww7fhZqhRNU7eNovomXulF5XHmhE73fveApqBVOuDnqMUZmaoUTmi87Qj833mCCc6OmNL3HibtMn9rtmUifh9aTjiH0bRPq1XdDUb0aWqZ08DLa35r1reD73WEMzr1GxxQ0+QgGh8XAY71JXLdBZG+YG3YYWd8vpvePfL6Ifq6XcQqDw2KwosNKDA6LgeLydUY2ldvCaT9/Kc9i+n3hrU4oXpIEJ6f69F7jclf6ec+6VVArnHDq9YXMPHSY+wIa/XoUrdI94TmkFFOKj0OtcIL/14eRodvCPNfC3+IlSTjXrQa7zubI9nIhf9Gs9ij+qQOT5uj5UCucULRAB3c3JRQXr9H81p46xK99nlmrRbPaM9eF4xY53GvqRUZiSUwYbI1d6Frw+MVE83msM4lrqDvZNyufJv0p++Ixpr7r48XrXWdz4NzSS7aO7Z9j4fpq6mOYVmKCu5tSJsOg0XnMM7DrbA5Ku1ihVjgBFRexekFfnPnyMWZ89nvEsB5PYmjaK1DeqUXTn8maG362N5QtWkB5pxbubkrU7Ahl5hDnrwBnzsvkVrRAh51bfiEy+PwxBPS4AMXVW7SsU5yWGYd0zKXfdsTNrW3I9e4AXB/7GM0nzJkgl65fsXO6FU2JXP88CXc3JQaHxWDW3TCoFU74XdGY5GvghtB3TDTd/bejUBSWY09iM5lcPQaV42atB9JU9Wk/P4tKgqp9HJw9W8rGLYyjfA15R6Abebc0NB7D4LAYjL/UXSZ34V3bP4V8t4h54zRcdx5n8rxbdAphh9ygVjjBa+UNDA6LwY6je2l6VYNGaDb4DJovO4LS/stpP0peb4vjHy+E7qgStseTMDgsBpY+emac0nlRK5xwzrmlbDzC/5If/Mj4PmXXtVrhhNB3TcxeKdy/9GsU3N2UULrexc1Rj+HItEV47JgNu87mALuCmPql7cre//cU8o+6qYq7mxLubqqH8P9f8zPF29sb3bt3R79+/TB58mQsWbIEb775JqZNm3bfcn/3t8SD4D/6h5jgIlJ6pFCAcE+gCv9OXiG/o7xCfke0JAcHBwcHBwcHB8d/M6ywwfpQ/j2cCFtRUVGIjo7GzJkz75vv7/6WeBD8R/8Qi4+PBwCkp6fL0jIyMqBQKBAbS6j1Vq1awcvLCxkZGQ7zAkBcnHicKD4+HhUVFSgrK2PylpWVwWw2M3n/CWi+O4iYKSk4O0nP3DdotEBCJHt9D7kTZsKg0dJ7DTdYZfUaK46gtlssjGaTeO/e5wuppK2072bDaDYhdPQhGDRa7Fk4DyGjsmE0m6DcdwQAoGrSmFy3C8cPGnJU5fyLerR/eQKtz+WyAoHrJ9A2dq5ciOBXMpi2BeQtiqX5hHRhHMI9RSw5Y+s9LY2mOZ+9gQWhAUxd1spK+rnezx6MTGw1d3FpvA692z8JABifR4453hqcCOV+E7a/3Jm2H394iEzORrMJiugIZgxOO7Nhy86Bx4EmzHzUuCqYfNZ79HRWzBoAwI3hScj+eBYAwHXdQQS9Ll+Lah9v2q60v0azCZ71byH24xSk5BfQ/FmfzkKThekI/PgwbaOkT33ZfAvXiri2ON1xKb1v0GhhNJtgioZsHnAvxKCbudbh+hHy5k4gG1fQpAx8GRQpm+8/o1yg2kP6pz96F7nj7210CgV6DHyWyRs24yyMZhOsnaJp/dL+S9uX9t+8oQ2MZhPeb3YK6vQcdixWC8IOOcGmb0fL/RDcmmnX9U9XuA04h/BRufSeytNTNhaj2YT8JTHY/8McWO9pv7zet8FoNsHt5wzUnj1Hx9aqH6krr9MSOO3MhilalFlIljMWnNmPP6NcYI8hRd3wZ5QLXjlL9hibrh1C/xgJAMzcS2UBANYTpwAAYxqdg7JtayjSjtK0y+2v4tozOhg0WjSfkYa8haRuj9755O8SsodeeY41QJY+B5YbN6jM98R4MPnaTDtL02h/qqrwVkAirUeapnG9DgD4cmcfmi6dV+FvbVEJ8hbFMuUd5QOAWOd6sucGABolF9D7Q330zDh95uagqMcCJGbfoflHTtiOCy/omfUl7TsAHJs0E+Xv6HFRfw0A8GnvpwAAtTt9ZbIT/hb1IEfg9K9OhNFswtzr5IVe/JkO7TKHAQBCUzNRNHAO054w9wDonmE0m9C17SmaL7k72bvqGQ/B/332fRiamsnISSpr4b7RbKLrR/N1Gi48r2fSpfk6viDu+Y1WkP7kjZzFtNl0HunDgjP7YdBosfXIDhR8l4TW81JRvk5uOyEdr+esdHwQEE/nXO3vi8iDw3Hpt1AAgFKibRbKdT1O3gHN5qYj/5lZuLI5FGXv6ZE3N54Zx6UJOmxJ/w2hE7Kg2C1+Wdocug21jZxpnfUNxbI152gvKE4mRzjPfKSH194aoFs5rcOg0cKWncOMTRnVGpXbA2E0mxA0KYM+f8pXG+LQJ0SGF1L1dM6EsoemzMK5l/W0D4vC/GDQaFG6JpLO51tNSV1zQ4nX6S0HfqX57/RLoH1eV54hW5sXU3TI67QEDZSslv+2xgWWS5dpWSnCs9Xwf4ocr1XvzsbmCnLM/s6TCbja/gpy7t5h8r/RpJDmFTAmr5ip98ugSBTGk321kRMpb/CKpu1/sXqQw77YDp2AQaNFllYFp53ku4vzFtFUwaDRomB5NAwaLWpsFpx7RY+R7pdke4iAvE5LAAD+76fTuZfmNW+Q+w9o2S8XBo0WDZUu8FiSDoNGi4Mdm8Gg0WJXm01MXvt3qIDiz+UOIDgeHu7cuYMrV67cN89f/e5wd3dHaGjo32r3P/qHWHBwMOLi4rB27VpqQAcQY7q1a9eia9euaNmyJb0/bNgwFBYW4rfffqP3LBYLfvzxRzRu3JjxljJsGHkxTp8+nWlTuHbkfZGDg4ODg4ODg4PjvxkWm/Wh/f8nIQ1pJcWePXtw4sQJ6kUdID4dTp06xdh8derUCa1atcL8+fNx69Ytev/o0aPYu3cvBg8eDCcnub+H+0Fhs9keDu/3N7Bs2TKUlpYCAH788UfcvXsXkyZNAkB8/T/zzDM0b1paGrp06QJvb2/qAeXHH3/E+fPnceDAAbRr147mvXz5MmJjY3H58mW89tpr8PLywqpVq7B3717Mnz8fY8aMYfrxxBNPYPPmzRgzZgx0Oh3S09OxYMECPP3001i2bNk/MtYbN26gUaNG6IwnUTWkAxquPYgzH+nhOzmN5hE0soUrolHQZREAoOep3ii+2BT+Tx1DvMmC1b93QMGIWTLNrbSO8APPwHfwcagD/bFl/0aa944xAPUNxXV3UqmiDkHs+5T/UyJCXiAGsjNL9yPVrwOTTxiLVKusahMKy8k8KN3csO30nwCAHoOehSLtqEz7bDSb8NWVIOxsKxqunp2kR6tv0qTN0HIF3yUh+FWWabLp2kGRfhRBWS5U2ybF2df0uNPCBt1jOTivuwFL5xio9h5G2Xt6+HxK2il7X4+qlhYUDZgj05KrwkOwdddaAMCmygaYEcJqQy5uCsPhuJ+JdtfbC7Xljo+8bqrIQl+veKZup72tUP1RSyj3HYHRbELcBylouoDVxNz93Q97In6lZTZXZMPw7HiqGRT6Gzs5BV0nZOBYjI3eV7q6MowiABSuiEbQiCM4/6IeLX5MQ/k7enhPI3JQhQVj655fGK16t6fHUC2njFWzmx9pHmk+Ib2uObKvK+aTFDQ0W1D/V9EYWhEdAdsRwoYFbBwPKIDQlEyHjIbQh88uhWH/gDawFBTL0g0aLSoHJqKiTy1Cn2PH1+W5sahnJA4d8r9PQsjLGSj+XIe8keQZrE6OR2l/IHScqJXNmxeP4t7zYNBoaV+vbglBZvRaVmYKBWUjpajpEYfdi+czefN/SETIS6ITCaF/I0sfw3ndDYdjsr93wVKJZ3za3zefgPJ1EfAemCO7Ly2T/0MiXupmxLaIxmTcsxMQOjGTWYsxU1LgOVuuUfyr9u3XkaPPdUG6Nj8pzsIHAeRZ65dvwJ1O55l6LjyvR/MZZM2r/X1RW3IGAFA5KBGuv8gdqagD/VFbVMLkl/Ypb1YCip+ci+SILrDci1NjNJvQ/uUJaLiWrU97BJShLqy5xeypdY2zrrmVyuf9C5HI0qqw+Mx+tFI3RGz2EDR7Ik9Wl+DspXhVO9Rcc8afvb/FGF95H4QxPchcCdfrbrljYMMbCFuYgqDF5+hzZ79vXHlOhyaL2PVRuCIaoa9VwHL+AlN/+boIPBl4HM7KWqS1q+ewXVN1Nd4KSGTaKVgejeCnjzD5uo4aC6cd5Ln2PeiKM4mVDuuTXt/YFgT3XoUoe0+Pk8/PZMYBAJcm6LD8nW/wij972qV0sh6nxsnzVyfHo7KFGpejrTgyYDoaKevDoNGitlssdi1bIJO38HzNO7Mf4yTzJOylZ9ZGwnfwcZRO0cHvw3RYO2ih3G+i+eJNFmRpVZhduh9LryUgfXQ0tv+24i+fJ3tZSD/XdI+F085s5C+JQciz5DSEqmkTbD2+m45XyH9xUxg8+56usw21nw9qS8WTSY6Y6tI1kTjVgXwnO1t7C90yJ8Jn0AkinznxCJ2QBVt7LRQHTEw9Ah5krPa4NF6H7I9nyfryV/vSF8UHsfd2GN0fBahCg2DJK0StrQZ78SuuX7/+jzqn+KcgfGe9cNrvoTnraB5W+o/Jo3///jh79iy6du0KPz8/VFVVITs7G6tXr0aDBg2wd+9eaLVaAMCoUaOwZMkS7NmzB507d6Z1rF27Fk899RTatWuHcePG4caNG/juu++gUCiQnZ39t48mPpJeExcsWIB9+/Yx9z744AMA5Neo9IeYXq/H3r178f777+P999+HQqGAXq/H2rVrmR9hANC0aVMcOHAAb7/9NmbMmIFbt26hTZs2WL16NZ566ilZP9auXYupU6di+fLlWLZsGby8vDBlyhS8/fbb/4JRc3BwcHBwcHBwcDzaIDZi/3oe559uY9iwYVi6dCmWLVuGixcvQqFQwM/PDxMmTMAbb7wBX1/fv6xj8ODBqF+/PqZOnYrXX38dzs7O6NatG7744ov/k/+IR5IR+1+ClBHbdTZHdn7foNHixrAkuK8SWZ6+Jy/ju229ETSJ2F91HzEaAHA9wBlNFjrWMgOONUmMJjIpCsb1S6GdlgpP0x0o/yTawtv9E9Fgg6i1VbYLh/Vorkzb80lxFlZe0SE3tlbWLgBMv+qPbRGNZeUEJggAbg9IRIP1Bx0yK/ZyEeqx15hJ8U7hMUwLioLRbEJyl0GwnCY2Nqo2odi6c80DacL6nryMTW2a0j4YNFqc2xiOlv1Ee6JzL+vR8nuRpVNFhEE54wZqOrPhChwxfFAoYKw4Umdf7jyZAFW1DXsWzkOv5OHYtnUlQvaOQtB3FtiyjjssU73DH3vbbnRYZ/6MRIQ8fxDqli2w5bARFpsVyV4xREbdh+C9zauR5AyErk1F8CviupOunw7HBqBzy3xMbX7coR2N9PrsxnBqL1WdHA/nrVlMHoFRrIu1AsR1UPiVDkFvpMvWcHKbTrBcuy6yx18nwepsQ8iLB6HUtoHVdBJFn+sQ+HbdzwdA1t/5wVUIGHZUlmb//DBs1C5vqMepUVtUAvOGNtD0P8n0UWBZ7wej2YT491PQYmQJajrLba7oevf2wpbMLTAMGAnj+qXMnmHQaHFjeBKaji+la09/9C4ye/pS+zWBMQxNzcSF5/W4GWhFwbDZMlnbMwSq8BBYcvNR0yMOzhduw2oioQUEjToAWDtG031DiqujdPBYnC4b060hSWi4huxj228747vgcBjNJvQYPIpqr6+M1iFrqsj2Xx6jk7HClKWZmUDtaxxB3aqlaMcngcLZGduLDyI5ogu25uxh+pi/JAah43Ngk3jJEtqxXxPSeTCaTUh+/Cls/f1nh8+h0sWF2hkK5XqFtMe2/AM0f9tsJU7EWpkxAoBitxdsXSuY+9K/Ab+OR2iKKIe/YgyDslxQ3JHY9c0u3Y+Jfh2YebWvw2g2of0rE9FwTQaKvtAh8C12PiYV5KBHgxqH75vEt1PQeCnJL2Xb78fqCX8VsRGwZefI8ggwaLQomJ6EwiGzYdBoad/qYikq1kfAawBrU6rao8HWsK2yvrv92Qw3O17C1Wd16PjSQZyItSLeZMHU5sdpWfs+3Y+lFFjZ/J8SYVPZmPkS8rb7MhVH35zJ1GN/iiFvZgK2Jk/HK/56ur+qIsJgyTkNo9mE4ppbmHiPVVW3aokt2dtl68Wg0UIZ1Rrbtq++L/sn3AvZOwqBw030+rHU8ai/MRNKNzdYb96k98PnpsL3Y/G9mL80BiEjD9N04d2jDvDDlgO/ok9eL2wO3XbftbqmPB1DvHUonqZDwDtkHXU8VoXtUzrhVisVTO/MrHMM9uMRZJk3OwHFfeeiZ0Aithcf/EuWt7p3PGODBhD7bPeVGbL2Oo8bR/OqPD1huXjRvlrK2gH4j2HEzp32fWiMWMuwM4+sPP4JPJKMGAcHBwcHBwcHBwfHowfi0fDhtPPfjv9oZx3/VVAo0H04YbYMGi39DwDuqzLQIt0dRjPx3LOpTVM0C78k2rG0rIedKxbiarhYnaCRO7cxnLmmZQYRb2Y9n3xG1N6sX4rHh4xCix/ToPzzCG1PyoYBoGyYPT4IiMf0VmzgYal2KKZ+Cc58pJexfn294qH29sK5l/VosP4gXP/wpHKYd2Y/8ubFi3IZMFKmqXTEhhnNJlwfkYRpQVG07C+7VtI0y8k8Wr7guySZjK4/LRps2rNhAPGQFJ6tpjIS2LCzG8OR/1Mitv7+M2U1AGIjUjmQyFzKhhnNJsBmQ3KXQew9yd/6v2Ziz0JiW6S8fAMGjRaBw02wZR1n5Cj97NyjRCYTASHPk/ncctgIAEj2iqFplpN5mBIYg2SvGIYNE2RYOpnYObj2LMLqk8SbXf73rPwKV0Qzc3wsYRWtY+/8eUx9ZR/oYcnNR8fnibfN8y/pmXEkvp1CP18dRdgwoSxA5m7FzaYoW+TFzE/Ab9UIm3MdN7YFUeYm8O10RrYVb5G2VJ6eKH+XjKvB+oMO2bD3iuRscshLB5G3II7U2a0cP/+xGgCg6S8GoRbaE9gwo9mEG8Pl60343GRhOmo6n8WbhccZraqQfnmcDrXlFTBotLjTwkWmuc3/nmhlazqfhdufzQAAae3qofbsORR+JXrkKu43FwBw5L2ZCJqUgfYvT6DPlgDd0YEo7Snq6n7cvghGswlOOw7BajpJ+yRlTezZMKPZBFV4CDwWp+PDosNM/W8WHofx2+mwdiTr5btgcQOT2nI0WZhOy5X90pZ6lxOg8hA9OErZMPvnCABqz55zeN9WXQ2DRoutOXtkaSHPHkatjvX0F5qaiVuDEzG8uAvTnnTfNmi0sOSchkGjxeUxOsIQSPYMa1UVw5wkvJsCa2UlI6MTsVYUfpNE86kD/AAAeTnesEdyBOlL9NRUGbsirN2vSlgvtvSZja+CtaoK1cnxcFMqoNS2IfOaIPeCKtTXcE0GLo8RGafiVe1o3m+CI5i8wv3pV/0pGwYQj7jmN/U0n32/pLIEgO2/rZDlSXpzIpW7KjSI2bfyn5mFVwtyaR/OrI1knqsTSSto/UIeSxezrF2j2YRfgnYCIB5Gv2l1GKWT9fREgH2fAPL8SJ/dirf06DJ6HPJmEw+GQ7e8AAAIeeGgQzbMoNHi6Jsz0SevF9SB/jTNWlmJguni+yk0NROv+JO9zHlrFhnDPTbMoNFSNsxoNqEmoIXYv9cn0jEazSZYj52iHj0FxH2YIlsvwvtHOkcXRxAPh4LN97BTRIaCh1xhL1rcYSGViUGjRZdU0ofa4lIYNFrUdD4rrpekKJlMjWYThniTfUxgwwAgrYsGrr8cRIsf02TfL+i7YrnofVH4KzCLoRMzYdBo6T5Q8onOYdttv08FADhvyZI9F+4rMxh5Cp/3zhPfeZaLF2HpHIMRp8qRdLQGl8eRdgQ2zGg20UDPHP874IwYBwcHBwcHBwcHB8cDwWKzwfIQLJseRhv/bnBGjIODg4ODg4ODg4OD4yGDO+v4N0PqrEOtcMLNoUm400SJI+/PZI5F2H+mBrb3HBEAQN78OBQnz2fyAo5dszpKK/5ch8B1t2DLOo68WQkITcnEzaeS4PYza4AKANdG6pgjJveDfVmp4wIhTerW3Wg2oVevYbAezYWlSwxUew7LZGDfd/Obemi+JMcDp5ekofcfLyBk5GGat8OxAXDtWYTZpfsR4NSwTplctdzG0METoThymhrn2/e/6QEPXG5/FUazCT0DEmX5fiw9gBf92js0dLaH4CoaIC7yT6bOlB2Bu/aMDheTrNjS+zu84q+nbm6lbS4rO4BnfNrjymgdmiwkR4WSuw+B5WSeQ5kZzSYkdx6IytCmcNksN+oXXK0LsB9H1GEF4wZfmD/7MUuv7/7uh2u/eqHV7ksoHtwMTtFXqROPq1tC4DnhNmrLK1DVJ4H2yfy6Hpqv5cb8yqjWsB475VCmjp6Xuz3jUW87a1ydvzgWIaOyZWUEJB2twWTPHJnchPmpttWg94gJ2LlyIfSvTkTj3YWMIbbgGEJw+W40m2iYBkco/DoJQa/Ln7UHWUf2KJ2sh9XZhgZmBVr8wIZ6sHSJwc4VC/9WnWW/tMVJ/XKmjKpZU1guXZbtSdL+Xh6rw6Ep9xxt3AuDcf3pJDRaLncCA4jhLgQ38Y7qdAR1q5Y4+YEv3E+r0exENdS7shknEkJ5Ye8pmaqjwVoBx3skIDposEfJz1E0mK1Qv7QeqdMS5hj1Tl/sarOJuu//q/aF8kOLu+Jq+/sHGgWAixN1SP/gB/T1isdzp0uxKMzvvvXat2sv95JPdDg9RnSUciFVj+Yz77n1b9USJaMC4T2NDU/icC9IiIRx4zJmrJcm6JD90SzZs3X+JT1a/JCGdeUZ+ORiEg2ELpXV/dbc/cYnva9s0ADbCtIQ9XUqWn0r7jGCMxG1nw+2pP+G3gm9He5tUuQvjUHrN8qpa30AULdsgdpz5x/4+ZWGS5H2U3jOADFcxc2nkpD23WzGEYQAqTMboQ7rLh/0a2VyeMxe+CysF0cyLf5Mh4B3SZ2N9jfF9Q6XmbJXR+nQ6aUMfNVSdDpVvcMfzj1KUPBtEoJfE4/EBq2eiMKhxJlKSn4BZoUEy8YslBFQsT4CJ5KIS/3i1VEIGCo+e/ZQubvT4PMAWS9dj1did6Srw/x1rR0AMOT2AbqVOzzqeHmcjgYuf9B6ATFsQc/eI1BuaIQTL83E3jtKvJffDw17FmHt6cPwCC16ZJ1TCN9ZS09pHpqzDr/W5kdWHv8EOCPGwcHBwcHBwcHBwcHxkMF/iD0iEAw0b3sq0XxmGqOtCtg4HgDRsBk0Wlg7ic4QpEbzxcnzMfuaF6O9CV6RAnWAHzWQVWrb0DSDRotb2wPpdd7IWdj+6zJieP0kMeZ/e+pSmldA/tIYNF6azhgiC5AawnpnNIQqOIDRkBnNJqj2Hsb1p5MYzVtteQXyl8ZA7eNNxnjPIYhqz2FZ+7HZQ5j2jGYTjr9CjIKVbVvjFX89dZErlNsftR4A6mTDACBg+1j8WdUMyDiG7cVEK3x5rE7GTlxufxUp+QXUuNdeqx3q5Mrkt5dP8TQdvb+9lDA/VzaHwmdqGgI2jwMAhM9NpWWaHLuGov5zaEBQgQ2T4hmf9lAH+KHJQhKw06DRYuvONUwe+3Fb8grRMOc82maz20DRlzoaiNjgHevQGP1YjA15C+MAkIDVdWmMhesN5Zmo93gpmv+UBsvJPPhOTkODejU0X2b0WtgqSfT6fXPn0vsCG2bfvvXYKZlsiz7XycZp0GhR9LmOYcPOfEwM20NGZWNIrtyV+aXxpJ61+UQVP/kieWbuGuIIW7iIyKSvVzwEZtft5wxYLl6EIj4S6lYtAYC6SRcCIBs0WijSjkLlSZzRlP3SFvX3icbzQa9nwPw6G/TVoVY1KYp59qRyUPv5AAD8PkpD8ILzML09U0y75+gBNlFGghE9QBgKabsAsLqMyP+kfrmsLSkbpvL0ZBwcXPi1NS6Pk7BhAGC1wGg2oXHOTVldwnXuBNLf64EqdD8h5jtQ5dhz1sUUHS5uCsOW7O1Q2BRwL7NAvYsEMpe6VA+fkwqj2YSdK4mzgNOjZ9G+2vdBcBak2qNh2DBpf6VsmIDQpSniPitxWqI7OpB+Vnc/A4NGS4NZGzSicw9hXdjPa9dRY3G1/RW8VCBngKV5jWYTJr26Bs4KJwCgbJh9fc77WsrGnv8TcSTkduo6TTOaTfD/gDhKsXYkz0LLA1cxJq+Y7Nlnz1HX89L31ZbMLdAesXO+sXEZHavQj5a/FsGg0aK6l+iMaUjuOcrgDvQW2bDKQYkwaLRUltK1Zj8WAfYnKOwZNevt2zBotGj1bRqTJrzb2mwoh0GjxZbMLXW2oWzQAAAQMvIwth7ZwaRdXugGS+cYBO4cLSvXJ+cqc200m2gwaOG6zYxU5M9IpGyY0Wyi4TLSviOMkpQNE8bQdEE68r9n36/KbmXYHO8re1eV/BxF8wx1Y/sknau8UbPo5+sdLiMkyxl3+iXQejwWp+NYjI2R0dmDrVD1RALCPj7JtCmwYQBENkxJHP709EuA0WxC4VAxnIbRbKJsGAAEDD2GvLnxTPqV58g7VRUSiPPDImh7Qpndka6Yd2Y/LaP20tCy4bPFd23TAx6o7Sp553Urh8eBJjBotIj6JhUGjRb9T16E0WxC03kio22PayN1DtcLQPZmg0aL7VtW4MRL5ATMtKAoNOxZBADoHxrpsNyjBitssDyE/w8jVtm/G/yHGAcHBwcHBwcHBwcHx0MG/yH2iGDgAKLpa/FjGm4+JbqmNWi08NqlAADUnjuP6yOS8PuqRdAfvetQK7ihjSfVZI0sfQxBb6SjtrgU4XOJNkdg0IQ8DXsWybRkBo2WaqBnhIRS7ZqAou4Lab6lN5oRTZSnJxRO9Zh+L/DdD0tBMQCigQprfJ5oy1/Qo9HyDEy91BqWLjHoMnocjGYTirovRG0ZOY9d9IVjjdK5V/XIjl0ju09tM06cwifFoitYIc1eVtLxUEax53z0db3NlGk6X34G/NIEHWaFBGNDeSbNa3+G3Gg2IXJ6KpMm/A14J50ZW96iWGTFkDGFjs9C3px4GgRT6eqKbdtWwaDRYnNFNlNPx2NVTD2nPmlCyuw34dyrenx0MYJxDS2UU7q6ok9eLwDEbfA3rQ4z9Qa+KQZA/bCAyFLQxkvbK+5J7BE9+56WpQHE/k3Q1BteepFpAwAaJRewDMvVqzIGSKltgxvbguj1F5dDYDSbKDulUIuOX6XBms+sJVrFIbnnEPh2Om4PSKTt544X7S/XhLdkngcAuNH5Djodu4OOvoUwaLRIa0fW9Z5F8wEAoc+ReSh/V0819UazCSWf6EiAbWfxOXAEy0WiUfUZdAJHT/lCFUJY6ZGny6DueIXpi/CZ+X8viPPSG83QIt2dZTYmeqNwRTSMZhMs+YRxELT2tcWlMJpNqGkoyuxmx0uYXUo0xc3miPIT2vVQNaDXUkbDpm9H7wtjKv5MR5mV5k+eQtN5ZJ2rWxLWr+wDErrCdkRkCFUeHjBotCj8SkfrV8RHArpreKOJyPxOCYwBFGQfnFQgBuD1nJUOz76noX9tIkKeP8gEgwcIuykwbYbcPujw0gQkR3aVyVhYGwaNFif3hAAAtoZtpfVcfzrJ4X5k07Wjn/NGzsJjKeNle4x7LzIOS+cYWLqIoSLstemWixfxTuExIpeIMBg0WkwvSYPTjkMwmk34Ibg1k9/1D3Gvr7FZUFhzC8uG9pT1U//qROY6waMEAGF4hfkqGjAHANk/BTDP4b1wJtajuRjS8DpTnyNW4IsWJpz5UGR3pXWFLCchKYTwGXsXzKP1CM+j0sWF5v+sOJParaW3W0fbK/pS7mLcvl9SN++CrCoHJaLnqd5MXkd7+LEYm6zv9thWkAZrp2h6XfVEAqBQQNW0CRolF0C19zBCRh6mTLWAzREeqO0WC1V4CFqku6N3Yh8AQP6PibRNn0/TaKiRsl/a0j5aOsc4ZHKln4sGz8a3VwKZsUmDQAtI9C2heRy9I4WyBo0WoUvFUCL58dWovzETnxRn4W5Pwk5dnMjOh/8H6XD5LRPNjCJjCwBRX4sMlJDfWE72VFvNXaYv0v5IUdxHXDMAkPUpYbgt+UXMPiaFr7ohAKDibT1arrsBAAj8ZQJyJ86k9VxufxVnDPVou4roCKwO2A2j2YRW35B3cqRLGXq3fxKXxuvw0cUIcQyS/1L7+XMvs6ccACBvdoLDcdW1ljn+u8Hd13NwcHBwcHBwcHBwPBCsD+nYID+ayPHQYD1BvNtZusRA+zrRqgj2G/t/nEPzNU07CwBYkRsH/8z69L4jhue8jngOujZSh9zxM3ExhbWh6RVItIWPHe9PtZdC2pRAUXMbpS2m9y+k6hmN2YrWJLDo1qO/U22WkCZ8zv8+CVuytqIkgQR9bP4T0Sz9GeUC1Z7DMm92756PYuw7BC3TrcGJaPldGiK/S0X84SFMf5XtxMDV7xSydgT2cKR16pVzTaaJs7e/EJD9ETkvH/XHeHqPYYqmEe2+5kvRm5g60J+pP/aIaPMiMCz0WhLc0VpZSbW3yU+NYfIdaO/JXAc/fUS0v/guDekT46D5Mg3VO/wBAF1ynoQ6wA/WykrUdD4rk4nQPykbOSUwBrVdY9G7QRXNK6xLOr8/JDqUqXQ9NFh/EOoAP3Q+0U+WT1qX/ZxZTSfRZFwV7d/G8ig8PmQU6hlJ4HBbba1sHADgO/g4Yo9YsSa8JSydY/DnT3NQuibS4fxK2y6dokPgcBP2RdVH2ppoJq99We/P0uB+7BIt6/8BWbO1JWdoPv1R4hGz4m09znwsaka7jiRzGTohC5b8Iqj9fLA0zAfNn5QzjwCg/TyVzk/vGAMUcW2xorU3zutuMPnUlQqEfFnF3LPevo38GYn02XXZnElYbA8PGM0mJuArILKJdT0/Bg2xdTOaTVC1CcXlcYR1yhs1C76h55E3OwHryjNg7UDK1547j47HquC/6t6auxeoFSAsKAAUjBCDNJsfc4Om/0kZCzcilwRuf2nlWBnr5LZa9LAmfc6azZXsI+Gbsf+HObBcvkLzOWKyPU7L7dEyvpzNXAt7QmGqkmnzj1lzcWN4EjZXZNM+jMkjpwJUew9TD7BCmfJ39VB7i3a904KiYOkSg62//wwAeHLlJAAkWLOwlgRUPkY8dCZ3GoA+XrFI9esA25Ec2jdFNNHWV7YkfdRNIszYn1GEbTrztAVO18SvAPkzEmXjFvp1t2c885w42uelaQaNFr5TWPtO2s7Ton3e1goxyHevENHTrLWqitb/bgAJgBw7OQXhB56h9QS+Sea2zaxUmlfZoAEKlonPbfArGXRehfW//4c5sHWtQMmnLINjb8tV/LmOub4+QgzELn0n/L5qEe33vjlzAZsNlstXmDxb0n8DQDzjCpg2fzYu6prhvO4GasuIPVrIiwdpunRt+gw6QWUm2DlKIdg5nX1Nj2+vBCJ4z3N4rUkRTZeu9dsDEpE3i9hi2e8f0nYfHzIKAJD0Blk3AW+nM+lGswkJzk5QVVmQNzuBsXsUoGrRHOd1NxCdNRQGjRZdR47BsddFWzhp/xyh7D09ZYel/WPWnHcsOj4/4S9ZQiHd6/M0vN6S2POFvHSQWctGswnuotiQP9JNVu+UwBjUFpei2dx0ZLRzQsX6CNkzUPS5DjeHJuHGsCS0/J48BwpnZ5ondCIbwPuv5MDx3w3OiHFwcHBwcHBwcHBwPBB4QOd/DpwRe0QgeE1U7TmMPVticMFSiZsdL6G6Vzyjzdpy4FcYNFoEDD2GkoQ7jNandqevTFMGAK7nahCwaTxaP816mrNWEaahvqEYvlPSYN7QhqYL3tIA4E6n86RvwQE48r6ozRK0N0FrJsKgIbGnAFb7JJxXF2DfP6PZhHMbwxkta3a00uE4GmefR8knOvj+UoEmffKYfgheFg0aLdTdz9C6hfP7Qn0XN4U5PIO+9MdeVCNmfuMeOzhgJJPHaDYhYNN4Wj5ouNhHof4b24IQ8A4bw0Ud4Ict+zcy+bKjlUy99hp+VeNG9J6tK4mvduWt2+z83bxJr587XUrrE7Bj3RIAgHOPEgBAvcdLUVtcKpOrvRYu8C1iI5Y3Nx7KqNZQ785m8gie5AR5hbx0EF9dCWLqsGcaALJ2nXuUENuN75JQ8nMUk7cuBlKILwcAHq+rodwvphnNJuTNTmDaspexai/RuvsNOU7zKeIJO3Z7QCLOvSpqqU+NJdp6hVoNzddpyJsXL9PIStvZunedbLxS73Zp7eohf3Es6l+wwfdj0Tub006RBTWaTagtJWyPKpSVo9CW6W3RjmHLYSNsh05QVtVoNuHmU0mIPWKFz9Q0FA/wkGmQi/rPofGfhDoFNurK5lC8VyT233fwcWZMUk2u0WzCVyWEfeoxeBTy3m9AbcEAstaK+87FQO8k/L5mMa3j/WansPWPDaSO9UupHdumiiyZhluwxRCg8vAAAKxo7Q2j2QS/D9OpFz/pfAveLpmyzZoyLI2jeZSO1aDRIv3r2UwaAGRX35WVM2i0KOy2iLkf9XUq3FdmoI9XLL23IDQA6kB/h3ua7/dH4bfhMgwaLbVnKurvhIgfCcMR8C55Fi1XryKtXT1ah9pLQz9b8kUVvlSWeaOJTczRt2Zi2CkzGv1CbEE7HiNsU2G3RfB/X2QMBXuk2/0TZXXdeP46IyepHKRtUyREOhyvao+Gfi6dokOyVwzNVzGhHQJ/mUDfIyFZzrT+gu+S4Ln4MF2b0vZ8PkmD0tWVvAdu30bwM0eYPMJpB+HdJayZTwavpHWEZ6sRNM+GirfFvSDgbdbWSF0l2ozJ/vd7hsl7Y3gSAraJzK3AtvlMFdf2UztT0WQhe/Ij/3u5TRtAYhpK7xs0WmrfZzSbKPvY6ts0GNu6o6ALuy4BYO51DQwaLTxfKULxk3Nlz8JXJRmoTha9ESr3k3240QqRbc6bR76PXEwRT02o9h5G69m3HO7jlvMXUDpFB7dF7jCaTdi9dAEtJ9hL2vcjf4l4GqdJx3Ow5Jx2uJZoWasFDTYQG8KST3XMs8zku4f6+1pgzfU4eq2IjWD2Budr4hf/0HdIXQGbxuPW9kCH/fAaQGxeg1ekIOmNiTCaTfA02aCw2OC+SpSdEG9UattIZRgeQvMJ3wU5/nfAGTEODg4ODg4ODg4OjgeC9d7/h9HOfzs4I8bBwcHBwcHBwcHBwfGQobDZ/gcOYD7CuHHjBho1aoTOeBJvFebhm+AIWR57qr2qTwL2zZ0rMzaP+joVrb5Ngyo8BCWDPHEyZSZz9O3Vglx8FxxO89f0iIPTDuL04OxrempEK5SJ+CkVXnsqYXVR0cDKl8fqUP+KFQ3WH0TR5zp4/VmLM4OtKOpBjhxYusRg54qFzFEA7RHAFC0fh9FsQrsvUtHye/HIVpsZqfD64w4TENWRPJJPJ8PSxQyAOET4yPMkTReOA1a2bg7nbWzAyzW3GmFBaAC9Nmi0OLcxHL39cuhRNilqusei/oly1J47L+tD6/kp8PuQHC2pWB8BrwE5zHwkmQZhhF8WNkd4yOq9PiIJGV/NZuSUvzgWIaNYxx353ych5GVyvKH4cx1jMG1/pEMRHQHbkRxYO0Yz8subG4/iPvPuawh8c2gS3NZk0aC79ke2AKDb02Og3s32T+3vi9qSMyj4LgnBr5J+hh1ywg+aLGZ92rddvDoKAUPFoLhKbRsUDW6E08/NQsCm8QidmOlwjACQNyceoROyUNM9ljnqAgA3n0qC28/icRChjs+KMxHrXA+6owOR3m4dLVP2gZ4cbXJzw6kvwxGaIhpR53+fhAP9v8Yo3w4YdsqMUe4XHI5FaMNoNiF8bipyx4vHd185G4fcWNahiKppE+ow4i+RFIULcQ2pgxtpe9Jrab8Kpich+JUMh/Ir+C4JruVKHJsk7g29E/ugtqwcAHCnXwLqbxRlr2wXDuvRXNk47Y/U5i2IQ+iYQ7Qdpasr4y7baDahy+hxMsc80r7nzUxAcT/5kSn7cagD/elRX0dHC9V+PvSop30d9mvbvq2aHnGobaBkZAA4fl7toQoJpMcEjWYTglZPhM3ZhqL+c2jbPZ98hoQ4uIfKQYlw/eVgnf0BgOre8Sjtb0PoWCJfVZtQWE7myfLZj1OQx/3GLL3udOwO9kXVhz2EPCpPT2w9+rvDPoZnq5l17qjNkCxn5MeT41n5S2MQMvKww3YAcgQudFwW5p3Zj3G+HeruU3gIft25mjkK+lfoerwSuyNdoYiPRHVTF9TbnoXb/RPp8bbO48bRQMlGswmRB4dDM00FZIrzdnaSnh6hfdC1ZX/vzMd61LhZETQpA9dG6qjL8xGnyukx3E4TxsPlN3FPMr+uR5NTtXDZnInyd/Xw/oz0IeyQE07H1aC6dzwT5FlATY84lPRR0YDQjvr3WXEm3g0gTjx6BSZRhymXx5LA7B1enID9P85xOP9Gswm9gvWw3r5N793YFkRDN0jbvP50Ehotz3BYBwD0GPQsdvyyhN43aEgIDmndjmT+dyCUuzEsiR4fLFgejeCnjzB9+as2pM+iUKaw5hZS7zlAEtaVfZ0AYO0UjTvvXIfrvRBCET+mwntaGmptNdiLX3H9+nW4u7v/7bH9qyF8Z83JbQ43t389l3PzphUR4RceWXn8E+CMGAcHBwcHBwcHBwcHx0MG/yH2CEFgw6QshL1xqNFsomwYQLQr1613YNBoKaNlyc2HzydpTJ7SyXqGDbvwa2vKhhnNJrT6luSPnioGW8x5YSauRDSgbJjRbMLVTlU0aKrVxQbnLVnwSK9H27JnwwAS3FPQKhk0WlQOIkbGbX9Ipa5dhTSfT9Mom3P+JT1UYcFEBru8aX2EeTPjzpPEScOynY/BoNGi/SsTkVpBgk/XFpcybJhQTsqGCejtl4PD46KYvFKnCgIb9mqByAyELk5B4Penaf54zRm0zVbisdTxSG79GJFxfjO86FGK2m6xqO4Vz9TfaEUGlZPguEDKhgntC2wYQIzH7TV1RrMJlQMTkf99EvzmEG28ID9be1K/368kv+Cu2R5GswluqzNQ/naiTPsnfI5IHwH17mxqzG44QdweC67aBTYMAGXDACBsQQptQ92yBe2/wIYJ19u2roT/e8Tpgy4ynxmjrb04VqPZRN37Cw4vBGcbbxYeh9vPGeh6nDAx0mDLsc718NZ5LXZFrgIAXBmtg7WDFj6fkPVnvXkTyoY1MtmPuqeNX9VagzW3GjFyBwClmxvznAlsWJu0pxGVOQzTWx2CQq2Gx4EmeKmAOMuRsmF1GaFXPZEApasrjOuXUjZMaLdn7xEAiNMF6XMluJEPmyW61AcIyyUg+NUMtPomDe0yhwEA4t9LoWwYAFQMrEHF23p0yXkStwckUjZMOh+OrkPHHMI7hWROldo2DBt2YxgJhlxvexa+KJZrh4V++m0mhzMKlovuxwFgxc2mAAizCwBb9m9kykllAEDGhp35WI/kx/ozMqGMSptQZj6ddhzCHzPnyp4DKRtmNJtgflMPZdvWtOzlsTps3bcehSvEvnucVKCoPwk9IjhdsmUdZ2QoBCq275s0j/OWLBQnz6dOaW77NaJpQj5pHcqo1ow8Hh8yiulXyVQd3isyMWM0mk1YeEJ0dHDnyQRZv24n+MMeQh6BDXO0nocXd4HT3lbIj6+mwcPt2TChHaG8S2PCxozz7cDIQ/i7644KALB111rKhglpivhIWd1ND3hQd/RvNc2HwtkZtqzjUL5+HsNOmfHnDDJPjw97Ds5bsnDzqSQqH03/kwwblrcoFscmzcS8M/vxfH4eegUmYVJBjkwm9njlbBxznTt+JgqGzYbazwcHPydOglQtmmNFa2+oWjSHQaOFy2+ZOP+SHqVriPOTTS9+CZfNhCHz/iyNyuYHDXF647wlC1e3hKBkKhnrtZHkr6WeEg0qVLR/jk48vBuQgEsTiBMOa1UVdbXfdD7ZlwU2TDofls6iww0pYwUA6e3WMTIR2nTEhgl1AIAi7Si9/uNeJI5tBWSswrgcMZD2z42jz/ZrWmDDjGYTw4ZJnx/h79VR8venwIZJQ7oIbBgAuJ28TMZ0z+FR8KqJInM2qB5cexbRct7THId7eFRhsT28///t4D/EODg4ODg4ODg4ODg4HjK4jdi/GdRGLP5dqA+JZ417x/ZE7dlzNN/NoUlI+5a1Ubjf2eW60u4YA1DfUFxnnstjdWg6X3Spq4oIo+5jqU1JQm+U/+QOr/essLjWAzKP453CY+hcn/i3ifgpFTkvzMSmygaYERKKa8/o0HgZa9sk/Rv3QQqaLiDpSjc3bDv9J766EoSdbd1k4/m2JB2v+YuaKaltkio8BJbcfJpm6RwD1V5R83r3dz/Ue7yU1jfpbAzc1VXULbT9WfR15RkY6E3cCZe/o2c0Voq4tti+aTkS30pB42XpdWoZHzveH39EbmC0vd2Hj6b9kmroVO7u2HrqD9mcXB2lg8fidJnsAEDdqiW2ZG93ONeCzZh5Qxto+p9E3vw4hI49xJTPXxID/2UKOO3MxrKyA6i02jDsvdfRaHkGir7U0aCpgq2QvUbRHkJ6b31fbEnbhC8uh2B3pKss311DHOoZDzFyv9E7Eg3XHpTlVbq4wFpVhbMbw9GqX26da1t6f3JRNj4KjEX/kxexoY2nLC+V0W4v2LpWPJCtgdFsQtTXqaiKr0TAsKPUpkDt74s5f6zEGIkty/3qE+wxz9Tegq+6IZIju2Lr8d3oGZCI7fcYI6Fs35OXsalNU9ncS22wbgxPQoPzNVDvyn4g2Zx7RY+jb86scy8xmk1IfDuF2qw4emaleYXnt9OxO3i32Wmm//Z96PDiBLiuI2OU2j8CJNit329XKQtXOTCR5hWgPQIMbJyFDwLiZWMdeboMS8N8YGuvheKAien7hRf0sCkB09tsMFmDRouCZdFQVbggb+QshC1MYVy61yXDuuSWHNEFW3P2IOqbVMYNf+E3SQiaJGcCWqS747zuxgOtP2mbw4u7YGXAHmqXYzSboHt9ItxXsm3YdO2wY90SGZspjP1+Y3HUn7Ov6dHq27/W3BvNJuiODnRoIyS9dtQPKb4oPoi3AhLp3ErrqekRh92L5zN97vbMGKh3ZTtsT5PhBnPSTXqtCg/B1l1r7/u8OJKD9L0goOhzHQIl7u7L3tejqrkFRYNYmyrhfXo/OJKLYINpNJswpKgbrne47LC/ddVx7lU9Wn5H5q10TSQ8NrriWqgSvh+nOSyv9vPBlvTfHMrG2ikayn1HYDSb0Gn8eMrQ3Q+1O32h7n7mgdaYo3Hdb1+TjtO+XFCWCwrjq2TlpKjpHisLJyLgfv0rXxeBtyKMGOl+CR2fn8DYggnlBBs0o9mELs+NRdnjagS97th+VyjbrVXEf4SNmOnkw7MR07bhNmIcHBwcHBwcHBwcHBwc/yD4D7FHBBtWrEbxNB1+LD0Ag0aLLdnbAQBFK7UAAI/9Zej5BLENuWMkdk4GjRbrysUzzgKMZhOCV06kn4W0T4qzKBtW9ktbqpFRurri4kTCMh2aMovWc+m3UMqGTb7YhrZZW16Blv1ySdrGZchbGIdpQVEwaLTo2XsEvD8j9mYzQkIBAAe/mAWj2YTSNZEO7UxudL9N+2q9STSWO9u6MfnCFqTg+tZghg0zmk1Qa27jroGcvZeyYQCwc+VCpg6Xfpfo5+hPU2EsDUdau3o4O0lPZSE9595Q6YLrTxPNp8CGVayPQG23WGzftBwA0HhZOioHJqJXr2GAQoGST8kZ+113VOS8uP9eGDRaet+g0eJqqBggV5CB0WyC5cYN2ZwBgMfidJpPFR4Cg0aLyoGJ+LH0AHI/16Dz2HGwR+XARGzfsgJGs4nYOABQVKnQ/cRNJl/Is4cR8hlJf8anPQKcGtIz/AIbBoCyFAaNFr3bP8nUIT2fL4yxtuQMDBqtjA0T8u1ZNJ/WJ8i94VrRXkYqg21FGRhxqhxez5TfV4tq0GiRt4CshY8Cid2IwIY5stswmk00WLZBo4WqGWGekBDJBImW1t/q2zTkdVqCTsfuUJuC2pIz8FaT4LlqLxKwNnDdBId9BEDtMcf5doBBo4Xl8hUYNFpsLz4oG9umNk1p28IYSj7VYVv+ARoQtdpdQVmA4BUp1C4EIEGOhWDfRrMJtTt90XK6aD+q9vZi6hfk23hpOq6PSKJpANB9BAlKW1hzC/kzEmmawGZv/7AT03dpwGlLlxgYNFrKcNV2jWXYMKPZhJOpM+k6a5uthOs6dj0AxN70gwBiKzbmDMtATvllCABgx9rFULdsQfuniI5A85/SYHqbZQENGi2QEAkn51rqjVRgw+zblcoBIF4CrZ2imXkxaMQg2VKPegAQNCkDl34LZe7lzUrAed0NqDw8EPSzaDtiOHFDtCP5SgdlgwZMoF2DRovL7a/CoNFiW0EateVJ/3o28z4wmk2UDQOA5G6D0XncOPqMVqwXPfQazSZop6Xi4qYw5hm7NYRlfgQ2zGg24ca2IJmMAODqFrJHSdmwq1tC0KvnUCjUaqaMIL+bQ9l2hODWb4e0h9FsomyYUAYAzseKtslGswkTynX0ORBslwRce0aHRb5/0uv8HxNxKbGZjEWyZ1gcMYmbK1tBqW3D5A+0C/7sMzUNTY4pZfULbJj9+nK0P0lR3EvcLwU2rORn0a7ZoNHSdXBltGhHBQDqAD/KhhnNJjT7uQHcV2Yw3l3t953a0jK0mZlKywj9u/50Es4m1adrpOGJc7gfrLvIvO1qs4m2I9SVHN2D5nM0/ufz88i+3JjY5l54Xs+kS983eXPjUfVEgqyuwvgqWd321wIbljczgVn7HY4NkK0jYU8EAO+BOZj90SAYNFpqYyidT3WgP7VBM2i0qGc8hBGP/4lbg4ntcumaSLqHA+R0C8f/JnhAZw4ODg4ODg4ODg6OB4IVCligeCjt/LeDM2KPCPqHRiLgnXSEOrnivSITAODyGB0Ch5PPWzK3wJZNPDOZL4tesxoqXVD2gZ7RDBo0WgS9LmpihLQPAuKh8vAg2mf9clrHtvwD8JydDlWzpjBotGiRTs7hNnsij9aR1q4eznwoaqSkmsPinvNhNJugiI7A9i0rHI7PoNHCbXtDpk8KtRpGswkhr53/y/Pi/h+ko1FyAW4MIxop84Y2CF45EYHTalH/bTMKV0Tj8lgdZSSk2jIBUk9uzWekwWsAkafUlkM6NgBwum1jNIJeX6qgvGtl6nVdd5Bo8m02nH6OMIpfBkUif3EshroRDbnfZpFpy/5YZB3tNa9Cn7+6EgSj2YSiL4h289aQJLj92Qy5rzambYY6uSLk2cMY+vVW2m/BI+WdZuyjbdO3Q9GAOdjZ1o3pu9FsQknCHWytIDZr3UeMxpuFx5l0AdW9iVbeYha1oKo2ocw47LWNVzaTdPPremJDE9kVBo2WMJL30Qq3mZHK2v+4X4L15k3oXp+I/CWiFtFoNlFNotFsYmJZSXE/G5mqPglQurggeDthJNUVlxE6MdPheADgsZTx2BdVH31PinYaQl13A5oDAEJeFG2bhDrObSReSyvekmt2hToElkWaJk03aLQ4/dwsoim+5820ylOB2m6EAQx6Ix2Nl6bD96ArrJ2i0WxuOhaF+Yna8e7Ey6Xg4bC2vIK2Y//8NVqRAZWnJ+3DzhWEYU7164CQ51nvh0azCZefqWSeOa1rKa1L6nkVANS7s6mG22g24UAVeaYKviPe6k7EWh3ah0j7WJ50i5kf//eIHWXAxvFM3D/7PYnZFzKPw2eGWlb3XyE3thbKfYQR7XWPtZHWL4xLyjQK+2nU14RpaDOZyMdy9SqCXxW9qBrbuuNAFWETg95Ih/X2bThvZT3Alq+LoG2dTJ2J1vufgUGjxUDvJKiaNqFjFOpUhQbBkpvPxJg6kSTKxaDRosWPafDsKzI2RrMJDdewDJs0v3uvQjpGa8do2PTtYDSb4NE7n7wPYkXGzaN3PqzHTsFWW0vLvFAhsqpuq0V2dEN5JoJfIde22lqE7nuWMn0A6PMvtdk1aLQoSbhDr8seZ08dNF6WzsxLyIsH6UkDAQG/jseDYKjbVXy9cQEGFXYHAOq9V3/0Ls1jNJvQfEQpcy39LKyL2MkptP95c+LpZ/u16Gj/8n/qGNSB/vT6ZOpMGM0mNFmYzua32aBs0IDWY293mZJf4HCcKcO20DLCiZhGyzPg9YXIqJ98twVTRvDOeW2kDsXTdFB2Yz2YCqxwde94WM6TuIwC2ys9WWE0m+iJmvBd5BRH8xms91jpGIv7zMO+OXPpdW/dE4zs7MtJ33FCWmhqJh5/6jmax7VnEQRb7k+KyXOT8dVsWub61mC4/ZxBmTtpWwaNlsY6lGKyZw61g/YbcpzZF7dkb0fbH1KxIe+4rBzHfzc4I8bBwcHBwcHBwcHB8UCw2sj/h9HOfzs4I8bBwcHBwcHBwcHBwfGQwd3X/5shuAJtO+ZTtFx4RJYudVtvNJuw+EZzjHK/QNOF+wnvpOB6MHB6zCzZsQaBah+fV4S5oYH0Wtm2NbbtWC3Ln/9DIooGzUHYghT4f5DO1JNRZUGSi4ree+x4f5TnN0fRANFNb9l7elR7WoFm1QjRXKAOEeqCo2NRBd8mIfi1DKj9fWnQ4L8q81dtAPJjQwAJnrtvzlwMLe6Kq+2vUFftADEY/vLtZ2gwS8EdenVyPD0u5MgtfF24NTgRB76fU2df7D8DQK9ew6jreOlRLWle84Y2aNawknHPb3/EzVEbAGDtoIVyv4np54hT5VjR2ls8etRBi9/XLMakszHIfj9WFixbyKdqEwqUn4Plxg0kHa1BRjsnmQyosXbrx6iDEul93aSJSP+GDaAbuiQFAe+QtVg6WQ+/jxy70Da/oYfmqzRcGa1D02M3sX3Tcqy42RRLw3ygbNsa1hOnZPJTNmgAhb83Dc5pP6a65lW4L/TnynM6NFnEPi+AOM/SfktDOjiqs/gzHQLeZd3H5y2MQ+joe0cvlSrAaoHRbEKPQc/SIKj2bbfLHIajCauYNEdjqd3pizvzNVj35dc0iLWj+gR5hP05Ev5PiUG57ddaXe3Y55fKOLUiCTO9MhyWZeq8N3b7+p7Pz0ONTY25oYE0TREdgVazzuDcWC/ZXlfVJwEumzOhbNAAbjvqY03gLgwoeByVj10EAJx7WU8Dzt9vXHeeTED9X8lRVqWrKy6v0aD2t2Y4/KG4F6u9vegxUIA4k0j47hCyo0VdqFQu1o7RuOXjDPeVGeRYYV5hne3by/NM7S2MuzeH51/Uo8WP8mfl1YJcfBccLrtvP85zL+uhmXMY1qq6XYB3PV5JnfIUfaFD/jOz0Gn8eOybOxcGjRYhWc7Ij68GQFyF7166gM75oMLuuDNYhXbbzjKycDQ2KfJ/SkTIC3ahLhIimcDLddUl3duEcdpjQ3km+nvLHfYA5Nhd46XpUIUEIm9CcxQMn13nWp9clI0kF+K46cKvrXEkfjV6xyejtsLs8J0kvIOE69ClKXi572bqtEft480EYHc0PqPZhMS3UnDwC/kR+IsTdcy6tC93v/eX2kuD9tsK8W6z0zRf/pIYhDwrD87tCBde0MOtrBZ/zJp73/307CQ9Wn1DAjhHZQ6DZrIStiNiwOzabrHYtWwBDlRZMSUwhpadfLEN0trVo9c9feNgq6112BfBZf3FFB08Z8n37OQug2A5XcDcf5DvG0azCb2Sh8NqOikL0eIIebMT6DF4Oj5bzX+E+/qDOS3R8CG4r79104rEiHOPrDz+CXBGjIODg4ODg4ODg4OD4yGD/xB7RGB1knuGMZpNSPt2Nv1s0GixqjVxRiHVsASvnIi9n36PwC9PIO4jYvxb8nMUjGYTNY7tf/IiZrwwhJY1mk2wnjhF65YaAoe8RNxoC2zYkNxzMJpNiPsohWr3hP8N3m2AkBcOYvVND1r+5PMzUThkNgq7LoKtawUUajXKPmAdFEjHKKDoSx0KviPOOIJfI0EPBTZM2se22UpGiyh1GGDTtYN3RkOm7tLJesYAunBFNJIjutA8Lr9lIvfubVxtfwXWXT6wHs2lTj9mhIQyxs2CO3TnrVm0bY/mNxmtV8GyaNnYhM8N1x6kfRHuXbBUwmg2IW9mgkMj7W3bVtHPRrMJUd+k4sxHevRO7IOa7sRJg++L17En4lem7IqyA3UygSVTdTRNud+Esl/aMvJc0dobANEMGs0mXH+HOGI4EWulbJhU7kL9lpN5KJtI6mqoqnI4RwaNFr3COjpkwwDAfVUGIweDRouGEVfotd9HabI1mzeLaK+Pv0pcMjdZmA7boRMwaLRY9nQyAND1bm/4br19G1t3rqH9MG9oI5sDwS2+gOod/rSPp8bdM5JfZGf8v3E801bLzBqaJmirhTR1gB9tCwAC3k2XzZ3gFId02kLTdvyyhNYrLdNmZipa9ssVDci9omXra0XZAQDEvXTat7MxyrcD4wAAAJTaNky57iNGUzbsCwcu97uMHocVN5vC1l4LpZsYlP3SeNGt9uSibPpZWBMzvcR5n14isjjKqNZsuXtMYG3XWCjbiazOTWt9woYlRNJ727esgDnpJqwnTjFsEwC4bM6E0WzCtoI0XO9wGQaNFtXPNsCGcnJfyoYJ7UvHevd3MmcCGwYQh0AevfPhOZs4TBDc6EudohjNJqj2HsbO6aKTj7wFcWL/dvngepALGv9K2B1LHnEDH7Bp/H2ZR0GOAhumcKonZ8OSolA5MBHfBYczz4DgIKr4cx0zzvETfmPYsPr7yHiCslzovbea5tO6At8i43bZnCmyJvfYsILvkpjAuQaNFjc7XkLtufMO2TDpOKV9BUDZMKPZhJJP7oVryDyO8y+K7xlhT5O2p3RxoXub/T4s1AcA/QeModeqpk0AiI4mhEDneZPdYWlSK6tDQN7COLyeN5jK4XYVcbdfW2Fm2pf2T2DDaB0jZ+H5xmUYn1cEADjf04dxoQ6QUwAAkPTmRFrPwk++pZ87jxPDmwjr0h7qVi0RPps4kSn6nMjz3KuiM50b24JQW2HGvqj6CF4phlooenwhzeNIjlJci76L+r9mMutVmq9nbxKeR3CeZdBoEdX8LAqHuTN1qndlw6DRYkpwPBTOxClL9+GjkdauHs3T/tgA2GpraYiGykGJTFu7ly4gfWorhthQurggufNAGDRahg0T+iIgb1Hsfce5betKvFdkQj3jIVp22Cky51V9EqBu2QIXnifOq6Z2WQfzhjZ47nQpSifrHdb3qMJyz2viw/j/3w7+Q4yDg4ODg4ODg4ODg+Mhg/8Qe0TQfDYbvNQ/sz4MGi10RwciudtgRutm0Ghxu38igveOgtFsQtDrGejvnQDrzZtoOo9o0v2fOgaDRotr11zRJedJLJ38BJx2HGLqOPuaHr1jDOid0FumJXu1IJe65V0TTtyDN50navwV0RGAUkVd6i8cLQb5tdf02WprcTKFsAYdj1XBvKEN0w+DRovyd/XIf3oWgl/NoO6J9a9NpFozIZ/SxYW6thbKCyygQaOFIv0o9u+MpGW8MxrC76M0JpBo0IgjqI4OpGUAILwece/7e/hvRNt+T2tpNJtQvKodo8WzH6dn39PMeIOfOcLUDQBtv0+FPbKribvj5ipX9Bj0LEJTM6mGL/+HRFq+zSyxrEGjRb3rNvhOTkNtWTmcdmaT/pZXEI3qsyLrMMKnPRLeSWHaFNaRELhWCOhrsykouyBda5bTBWSM4yuRNysBl8eS+vNmJ6D78NGAkjCkqhbNqXw0XxLGSgjKLcjJ96ArGVNCJA3cLeCxlPGMhlpoXwgI6tn3NHPfXputvq6SyVzQItuyWHf84dlqWXnKGmm00PQ/iRVlB9Bj4LO0XOiYQ8j/IZFe15vcmJGpFEKdwatqGLZQcB1ub5NxdZQOtcWlaJtNtmPzm0QzmmQahP4nLzLt1KVNFj4nvk3mu3ClFj5TWffeihiW6Qs75IQRPu1xdZSOGUNZP8IGq9zdUTkwEdu2rkTxNB111y24XAYArTPrJhwA6m3PwtIwH+xYu5jOs9FsomEbPivOpAG3hb6de5mw1gpnZ+hfm4jFV0Vmw3pMZLOk9qnq3dnYtm0VleUINxJOwLhxGVO30L75dVKn26fllN2QytT3oCtqi0vR3zuhTpYj//skGiJCsMeUQmDbhLJSN/qxR6xMfzyWiOyENOyCslsZ7jRTYFs+YStV7u64vjUYxX3nMm05Ys+NZhNKp5Bn1FZzl0k3mk1AxjG47y+Wlf80kHzOGzmLGfemNk1x7hU9lK6uQFIUrn5FWMDC+CoaAgEAkqO6yduyQ+vpFSJ79Rd57e8LY7vbk7g6F1gggIQ2OXsvNISUAfQZdIKMoSJL3E+qxAC/Bcuj0fFYHbZv92zNDBot0JwEendZ6sH0K3AGqM2mI5YpdPQh+LsThmvk6TKc7rgUAJC/lA0SLB3nuY3hsiDaBo2W2nYfmjwLjVawIQU0X5ExN91ZTMtE1KtPP0v3HUeyNmi0uLvcCbkTyWmC/JGzcP4lPVp+l4bCb0hf0tuto+WDXs9g9kuj2YTW88R31I3hSSIb+hNhoq4/nSQLLRK8dxTDUkvtwAAgJMsZZZ+FIv/pe/vGpTAm/epvgajsTWzvdq4kzJzudcIKVm4h31mEEDWuv7DhNoR+twi8RK+tVVW469UIA3MvOJTTpd9CcadfAkKfy6Z1MfvmL23pfvJpoLh/GM0mrGqtQfGqdnDZnInac+eh+bUUBo0WS8N8oOl/EovC/OD3URo+uxSGbgdvytp+FGG1KR7a//928B9iHBwcHBwcHBwcHBwcDxn8h9gjAoVajeROA2A0mxCdNRRzvAlj4d6rEJbcfEZDYzSb8OeMOQgabkLU16mYVCBqklSNGzHa3MJui1Dv8VK4/Sz3Rtbq2zTUnjuP2vIKqP186P0rz+nQs0E1/pg1l9Gi5X8vaup+2DiX2moAwI61i0mCUkXvmaqraX5BU/RnlAs0/U/Kxp/zwkzab8ELkxDkU9rnbUUZsrICU6f28Ubh10lYNuIHWmaB734YzSbqPUloQ707G9dGitpZqYbPHnmdiA2O095WNOCjMEYhqG/5O+J5enttmio8BF5fEJZIFRwAAGiR7o53AxKoVm3HL0tIv4xNgKQohLwk2qWdTJnJjnd+OioHJqJ0TSQzJqPZhC8/JB4Z++RcpVp3Afb9WnGzKbZkbkHeolj4Dj4O69FcJHcZxMhhTB7RstZWmBGakomm80l9vpsB1d7DdA0IwTkBoGA60YiWfEKYlmVlB6Bwqod5Pvds1uw8m5nf0OOGr8hYSlmKM2nEnkMI5C2gdqcvK5Ooi7gxPImOseRTHeZFhkPVrCkWn9nP1J0bW0vz6SZNhD2MZhMGj3sFinTWE6F0TnasXQzDCdHGLXjPcwCAmh5x6DyG2GQo/zwCg0bL2K0AxO7u8liRhcr8jLAQJ2KJvYLX98QGolFyATa08WTmrXJ7IKwdRPmoIoiWWLg++DnRHgcNF8sI2P7bCpS9L/Zl/4I4nPlIj9oBV6DUimxZq2+Jht1y4wZ+m/4dDBotAt5Jxy9BO2V1Cu3mLYqVra+I9BGIN1mYe1+VZODdANEbnVBGsMcqmxSLyhZKfNHCxKQ7Yi6liJyeirgPRGb81nbRc6LRbEL3EaPhs4B4Ql0f/DuaPZEn6+88H8JA9cm5KuufgJCXM9Dy5UKc2xiOvLnxsjy//7wIKg8PGDRahB0iHkOd9rYCAGRHK3H3dz+6voWAx3eMZE8QAvoCgNf3h+hzbblxA42SC5gx2/dLKh+/D8Vn3tZevv4s5y/clx2xl23L6WmwVlYCGcfgslm0h+tc30rLbD22S1bPhVQ9PQVhNJsQsv4s/D9gbZQEZstoNkERJ9p05c2Jp32Rznm97Vko/CaJskBjzhB7uGP3PIMazSZc+LU1I5e+XqSudwqPMWx0YddF+DPKhdavdHPDulvuMJpN9DQIAFyLagqDRksD8Ro0WhR8m4Qdaxcjb7Z8LUux3H8vAGBpmA+mXiL9KupO2Bvzm2TsHV6cQNnalv1y0TjTzMhRgG7SRNr3oi90srnacthI7Kyni4yUfZ8MGi3yl8TI7iu7lTFybvEDka+tRTUzD47ejwCx2xXSqpqQr5VlH+gR8gKxIc34cjaSjhIb2ajDChjNJnhuFu0Mxy1Yj8IV0bg9IBElP0cBILaFgudNo9mEBTu7MG169M5Hg/UHcSRe9IbqsfkkYbp+FIM/539P3gvhs1Nl/Q9qdJl+NppNuBjlgnXhzR0+a82eyMOlCDH0LiNjpYoysEazCcqo1jBotKi/rwV6DHoWRrOJfo8AiM2o/Xc6o9mEd5udxq4X2HfdowpuI/bPgf8Q4+Dg4ODg4ODg4ODgeMjgccT+zRBiMnQLfAk7DmxlNDFnPtYDNsB3MtHu1HaLhXpXNs58qEfuRJFBkmpmpBrqYsMCmWZHKBO06zkUdltE0wtXalHQebGsTmlZQNQClb+jh6pa1J7b53WkkRO0cSHPHobRbMIrZ+OQGyvG+cibF4/QcVmytoxmE3qFdcS2039i6qXWeL/ZKSY9f2kM1TI+ljoe9TdmyvowqLA7jps11NubfT/rgn0eW3stFAdMDsfZq8dQ6pkPAIpXtcN38T+jd4MqGDRahGerYbrsDeceJUz9UV+nMnKs3B4I155FTP3CGHuFtIe1shKqiDBYck7L+ms4cQO7uocwtimOtKKOULvTF+rubMw274yGKE+6BWvHaCj/PIKCb5MQuvgarMdOycprj4AyGX8lV+nY/3ztGzRS1kfEj6nwnnb/9STEPLN2isbvq8T1K8SbE/KuKDuAET7tSZqXBmdG+EPzZd0xoZRubtSeqew9PXw+TYNS2wZWE2FvVY0bwXLtOi37+FPP4fefF9E6HK0laeyor0oy8IZ/kizfhRf0aP4T6VfR5zrkjxRj/ChdXLCtKEP2LDl67qVjWVZ2AM1Vrsw9o9mE7bedZbGjHD1rdT37AJDcbTAsufk486EeTjFX0apfLh4U1b3iMXf2dLzo1x63hiSh4RrCbpvf1KOybRVCRrLxiMbkFWNBaACUDRrAevu2rL7n8/Mw+etnkf3RLHR8fgIabBAZS9+Drpjnc4DKavY1L8ouBq+aiKBJIrO+ouwAmqlc8fiQUVDuJ5rpPnm9UHy5CbwHiqcN+p+8iK+P9EBBl0WMjD4rzsSwg2OR99hSGDRaqMJDsHXXWvrMS/c4+1hzgnwNGi3KfmkLn0EnML0kDa/46++7Pzmaf+l+euYjPX1v1AWhjk+Ks/BBQHyd6fafPyvOpKxmXetFeq/8Hb3D59oRaPy8pCgY1y9Fh5cmUPseADj/kh4tfiCnCy5YKvHMvWfcUfvSfhR9qYP37lrU2+44/qGjceTNjUfo+CxZXgH2MS6LP9ch4G25t1NpuctjdTg0RXzGL24Kw+G4n7H6pgcWhfnhQqoezWemMeWEv/X3tcCdTufpnlwX6hqT/XXfk5fxfOOyOvMI8+afWR8lCXcc1i8dp9LVlTCnDvpQ9UQCXH7LpGlCOSEGp7RuaZ0AUN07ntq5AcC8M/upZ1D7crTemQkITc1k0oX+vH8hEms3d6B20sL+cvd3P9R7vBTKqNYO328kswrGcmIjFj47Fb5T0mjd1b3i0SA9D1tP7nPIqNm/3xzNT+D6CTA9PgseoUWPbNws4Tvr7hM+Dy2OWNe2ZY+sPP4JcEaMg4ODg4ODg4ODg4PjIYP/EOPg4ODg4ODg4ODg4HjI4D/EHhG89+t6GDRa3OknGv8GzCpAw/hL1JBTvSsbM0v3w3eKaBgb90EKanrEQdWsKUNzS48lCuWF6+HFXVA/pz6TP2i4CcndBqO6dzwiv5O7WjdotPjsUpjoFGLMQofHEgGgd2xP+jl0MTGgbzMrFRXrI2gASADMkR0ACB1Hjh/0jk+G7uhAJq1aFwaDRkuNqw0aLUo+JUGJhSNNBo0W9Tdm0s/C2AHgZsdLONlhsWxMdUEoFz01lTn2oDhgYo5PSD8rzphxa3sgrozWUePcH4Jb03amtzoE2w/NYTSbYN3lg14512DQaGVydO1ZJOtLUfeFMPR7BlUdiVMFy8k8h/1evKgnthw2Qh3gh8tjRFf2UkNsRyj6UkePJQpjKvg2iR6BUf55BKWT9bDVs2Hb9tWIOqyAIq4tij/XodMxcmzFFE2Cixs0JIDlxYlyV9XTS9Jo/Vtuu6DVt2kY4q1Dh2MD4D0tDZfG61D8mVjupYJTVM55c+Px+5rFuPC8HvVKSQBewSmD9FjiuZf1aHbvaB5AHI1ovkzDmQ/1jJOCwPUTaB6pm/WTzxPnKCt/m0/TLdeuM3N9IaY+lav02VL7+cBoNkHVJpQeSwSAN/yTaNkvisWjVs1/SqPBPl3NClqf0WxiAumW/BxV5zzar/VnfNo7PG4kPZaYkl9Ayxo0Wlg6xzisS/grOCARHAf5TkljHCTYQ3BTLpX33gXzEOrkCqPZRI8lAoDmyzTmWKJQZkEocWLh6Fji4jP7MSMkFM3mEOcPF4fdZvpx9JKGfo6dnIIFRe2ps4CmJgVs7e/JZ5c3Rvi0R9uMEfRYIgDUdD7LHEs0mk3Y0MYTQSOOMPcA4N2ABLzebieVnSU3HwCQNz8O01uxLrur+l5nHKNI145g7B9erwGtW3DkIW0PkM9/7xgD3U+NZhNzLFHl6cn0QZBv33yyTyc4O8ERhPeRwtkZ0VPFd4LU2UrQLuK8qGA6Wd/5i2MR/Rn7/rjtJ+7zRjMJXG/fn3XlZD3YhG8kGST8yv4f5jB5hWOJBo2WHktURBOnJ4LjD4NGiyvPEWcWl8eRdRj4ZjoaHBeDamuPiGMs+lKHp0s6y8Zf3GcelflXJeJ6Fe4VjvZinpO2+gLaN/v5EQLOXw8h18IeJ4Q+WTyUBJ1vPlMMVh/xo/juqXoiAdc/Iw61ypNuMWtB+ozZHwk8uzEc+T8mwqZvR9+ZAAClCpvasN8Zzm0MR9TX4tx5T0vDpIIc6jgMAGq6x8Kg0cL8pp4ZZ+X2QFz6mYRCUYUGwaDRUqdCRrOJHkuUykTdsgVCFtbAHkJg55oecQCAvfPm0f4BgK+6IVRhwQAARTxxWNVmRioNr2E0m+o8lggAWVoVPZYIkP3FaDbRcBTCsUT7PRAAjOXZdMzSY4kA4Lwtix5LFOZESA/e8xxyXpxJ63N0FDbAOAYhLxxE/9BI/CfA9pBc19u4+3oODg4ODg4ODg4ODg6OfxrcWce/GYLhY2c8iV1nc6B/dSJ1NX/+RT1a/JgGVdMmsFwmgSHNG9pQ9+/Xn05Co+UZVLui2O0FW1ei9Rt2yoz152NQ3emcrE0hf9RhBb5qeYRqZqROQARUJ8fDeasYEBK4p0U/cQPGtu6yenue6o28E95olq1E5rRZNL8jqH28UVtWLuvXX6FPzlVsjvBgHDT07tAPtUUlsjqKV7VDwDDihlwRG4Gff52PRkox2KWUAQjYOpYxHBYcYpx7WY+W36fJ6jaaTej2zBjc9KmHaz0rETBUdAQiwDujIS5Xu+JOp/PMmC9O1KHFsmPUuFmA1GFGwfJoBD99RGx3lzfQrRwp+QWYFUI0go32N8X1DsQFr6VLDHauWEjHpWwXDkVVDaBUwJKbj6AsFxTG1xHAFEDewjgU95xfp+OGW9sDoW9ezKwZew3siFPlWKUNpmyOVHYzrvlgU5umdbZfF4xmE0KWpyBkwUVs3fMLYUAm6uA5O13WT6PZhMiDw6Hpf7LO9XQ/I3apbKX3Y49Y8VmLYw+0PgHgncJjmBYUhSubQ9GkT57Dvgj3yj7Q42TKTIQtSoH/e+KYBOcvdY3js+JMxDrXu+8Y7WUDOH4epUbzQr6pl1rjzygXjDhVjpHulxzOOQCELE1B4Nvp0B+9i488T9I27hgDUN9QzPThyuZQ1FviAevoS3DvVUjbF+QbtHoigl/LQN6COLg1raSsW12yA4CbQ5NoqAvptcKpHhPU2Gg2IfbjFDSbyzrLqByUiP0/zEH0Z6k48q64/1X1SWDctQuQOmWoq1/SNKlDlvtBcMZgNJvQev8z8Bty3GE/6Dx6RQOS17fRbEL01FRci66hpwsA4rjjbvAdGmgeCgUtd7t/IhpsOIhrI3VovDQd517Vo+X0dJoujOPyGB0OfUKcTKhaNGfCVQBgZC04ebgyWocmC9NRf18LXP/MB/WMLDv4/wNhrRk0WrxakEvZ3rL39TSQudB3p72tUNP5LFuBUkVDb9jPV+HXSQh6PUM2v2ovDWorzA7nveQTHTxiL8Lj3XrYtnWl7FlR7dHg0m1XePTOv++4PNMa40pPKyw3bsjSBJZs5PDfcdPigiytGNw8/6dEhLxwUHZao679ymg2ocOxAUgJ2IelYT4yOSicnWGThJ+5337SO8aAO2294bQzG+XrIuA9MAcF05MQ/AobakZ4X5s3tMHxRCKjqj4JuBCnRu549nuHdByCgya1lwY1fp5QpB1l8tU1xvzvkxDycgZ9fqR5lVGtoSg7j+urPHAgaj29XzpZD7+P7u8wyhGSjtYgo52cWS5e1Q55nZbct+zFTWHw7HuathPx6Wic+undR9Y5hfCddcdxP7g+BGcdlTet6BFZ+sjK458AZ8Q4ODg4ODg4ODg4ODgeMvgPsUcIBo0WztfFAKiDxu2G0WyibBgAyoaFHXJCo+UZKFgWjUsWwqrYuopBAke5X0B1p3N4tSAXV0broFCrYTSbcGm8jmq2jsXYGM22wIbd7Sm6MhbYsLP3zmcLmp2dF1vT4MTSM8+2rhUoGjQHHkvSkdx5ILUzAES7EaFM6h4SIPbW4ERat9FswqXfQnHhBb3M9qToc1J+c4QHAGBL2iZarraohOkfkqIws3Q//JpfwaXxpJwtOwdDvMVAmNKxX7JUyhiBrb//DIAEmy2epkP0p+L5+RvDkhC06zmod2XDY3E6AoYec2grU5HiR9kwo9mE2rJyGM0mHP5wFmXDhIDcRrMJ6u5naD2uh+vTzyWf6IBuhD2cFRKMoi/JmAQ2DABut6jHnNvftm0VLKcLqM1Kaf+mzPgAIP9HInu1jzdCR4sa6zNrI2k9l8eSthr2LKJrRoBBQwLTGjRa3B6QiBWtvRnbJiFQr0GjxfONy2TykZ6lt+na0ftqH29GK1rb0ALL6QKaLrBhQroUAhsGAEVfiDZnjs7mG80mDCh4nLTp50PZMABo95Voo5EdrWTWCwBqG2c/HgAY/zOxP2vSJ48Gtrbp2kHdqiUUTvWYfvt8koa2GSMoGyakWU+cgk1HbDtu9yfzVDpZDIBrz4Y5shMJW5DC1GnQaKFu1VJWBneVMsbszygScFVgwwQbDfv6QucQG7e0dqQ/r5yNw4Iz+/FH5AYAQK+wjrRMkz55UNhIoHqhvfwlMdhYSGzgmpwg9gDFveZT1/gCCyNFcc0t2v9tX3/HrKO0b2cDgIwNC1ozES3WnGTHDcD1FxJ0tvlPacwcCyyUUK8Q6NktgjxzmdU1yFsUS+1VhL4azSa0mSHuFQIbJtR758kExq5HwJ1O51H2nh7tX5mIFsvEZ3/f3LlMeYNGizazUqFu2YK5H7YwBc1npqG4N7GpEQJO+05Og7WSaOsrByUCNhvduwWX/42XpiPpaA0qvawwVhyRyajpAnFtSgNCC3lsNXfp2hRcdDdZmI78pTG40+l8nWyY0WxC/5MXce0ZHQ18bTSbYO2gRdts8vVkQ3km01benHjKvBrNJsqGGc0mVDe1ytbx5tBtyFsYB6PZRAOgCy7IDRotVB4etD/9T16EqlrBlBfq25K1VcYICf/9P0hHo+QCGu5CgJDX0sWMzOi1MJpNqByUCKPZhJcKTsE7oyEj54v6a7DcvMncEz5/dikMLQ9WY3ekK37Z1IGmqTw9UTSA2NK9cS5a1rYjGDRauPYswtIwHyZv0psToYhry7Bh96vLoNGiaEIQnHZmw2g2UbvK4Fcy0CvnGpM3d0ozAGR/Fuozd1RRNuz6iCRm7oQ8JX3ICZbaCjPDhpW/Q+zUbj6VhOrkePn3hcFkHxCen/j3UqBs2xqbK7JhPXYKlqtXGTYMIIGpBdtz6X/7OQ/JcmbakrJhai9in6pq2oSexgGAO/0S8GPpAaac0WyCZ9/TdA8xaLRo+dNB/CfAYlM+tP//7fjvHyEHBwcHBwcHBwcHB8cjBm4j9m+G1EZMrXByeMbbkRZfQMKRwciMJsFDpQFoASAkyxn58dW0jEGjhdLFhTIWF1N08JyVjrBDTjgdV0PPR0vrr8uW5u/gudOlGOp2VdSCva7H8ddmMuMM2DYWoWMOORzr/exD7LWfdfVRuC/YRNRVnyMYzSYEbB7HBPcEgEu/haLZE3ko/CYJQZMyULRSi8DhJpqucnenZ/2tHbT4fc1ipq+OcO4VPVpOF+dA+3kqWvxANMzVyfEo66Fizt4r3dyw7fSfTJ2ry9Iw1Idop8Oz1bhytwHO627UOa/ScfYYPAoAkD9GzdiLSSEEnjWaTegyehzqbc+SybBwRTQNfOt70BVnEuWBPuM+SGE07dI6LF1ioNpzWHZfuA5ZmkKDH9/vORHun629hVG+Heqc6zv9EqjHTXuZBK6bAA//q2j2BOupUrD/ctR/+zo6vjABDdYfxOVxOjSdl47n8/MwIyTUYV+Tuw+B4kYl43XRPp80ALX9M2B+U0+DV08qyMGL2cNwuuNSpm8jT5dR2xBpWWl9b5yLxrEYG7WZkaK2WyxcTp3FliwShN7tz2a42fESUz7pjYlotILY2sR8kgLPWaxtlnQ8QlDlpDcnIuPL2Q7lKA2qbS8z+zEAhA2d9MQmTGxcQdMKvk1C4dDZ6NVzKLZtX42hxV1xtf0VptyNYUlwX5WBYafMWNVag/eKTKgHC5JcVLJ9Rvq3zYxU+HxKnt3Et1PQeKnchrE6OR79vvod2yIaM21KbZtUzZrCcukyrm8NRqPkAtm6urolhNoaKRs0wLYCwuQVT9Mh4B2xTQDYdUeFr1rHYnup6E3W0fNiNJvQMyBRxoQI9QiBvB8E68oz0FDpUqes/gpCPv3Ru0hrV+++eYxmEyK/TYXma7ldj03XDor0o8w4hPY7HbuDd5udpmu3ZGkIrCqg0gcMMy1t76rlNt1XAXbPqO0WC/UuwrJdSNXjyPvi+w0Afe8azSYkvTkRjZZnyOqX5peOUTrf9ml1XUv7+MfMubRulacnLBcvPlD5ayN1SJs2AyoFOQ2gDvBDbXHpffst/Q7hqD/CGs2bnYDQieJ+G5TlgpleGQ7L1PUdIHhFCsb13IllKx7HiZfY7xO9ApPo95zSNZHU3rKutZ9akYTCeDI/vXVPwHrxskNvrfZ9SG79GCw3btDvXkWf6xD4tvydJvxVxEdi+6/LkFqRhH3rYyh7XLyqHeYmLMOr307Evpd++o8I6LzlWCBc3VR/XeD/E5U3Legd9ejK458AZ8Q4ODg4ODg4ODg4ODgeMjgj9m+GvddEQUsjeBwTYDSb8MrZOCZWzP+FnarpHgunndk497IeHnk1cN5GWJ54kwVZWhVuPpWEtO/I2Wp7jVmX0eNQv/Ay7no3hmrPYeTNiUfoBJYNceR1SMpCCezI8/l5eHPVszg1dlad46jpEQenHYdg3eUDZTe5fZEAwVNTda94Oh5HMJpNuGWtwkDvJNl9oQ93DXHUnmFzRTb6eMUCAIpXRzn0iihA3aolas+ee6B5EfI48iwFgI7j1pAkNFyTgbzZCSjuOxd983tSL5ieaY2RntEawa9lwDujIRb47gcgt2tof2wAGt6LS3blOR2aLGI15kIZ4XrMmQ7YndMaoWOIDK49Q+yrGi9Lp9pcgbEwmk0YWtwVn3pvQqpfBxR9qUPgm3Jt8tmN4Wi4qhH1Btoi3R1L/f5g2geA/B8SUTRoDnNPFRwAxa3b2HLYiJ69R8B2JIeRca+ca9gW0Rhdj1did6QrvQaAq8/qUP+yBfvmzoVBo8Wmiiw4K5zuyzLb3+s8bhyct7Br6szHevh+LNr9BG6YgJDnD1K2xb4eAaqQQGzdt14m99y7t/GKP9G0l7+jp/Fm/oqlNWi0uDE8Ce4rM/Bj6QG86Ndelk9YS1VPJGDfnLlMnSp3d5xJaQuvL9Icjl9ASJYzfvIidlQt0t2xPyscRYPmONbeP6uDx5J06iGNymjdBIS8SLy6dTvZl3oGfRDY9O1wLbQBrkTaEDRJ/rwAgKpNKI2tZzSbELh2It7usQnjG5npuARGzRGbVRejLt3jZPJRqmhcIXWAH7Yc+JVJD89W44+KIDzpd5x6+GP2SommXmh71x0VutW31NkfKdspLSf0TfpcS599wWPqc6dLsSjMD0azCfrXJsJtdcZ9xy9to671qGrciMZPepD8UrkHr0iB/9ZqqPYcrpP5GFn6GN0vAraPRXHP+ZRhFTxNXpqgQ7M57N7zakEuvprwNGWqpJB60wWAvFkJKH5yLnr1Ggbr0VysKDuAF848gavtr8Cmb4cdvyyhXioFb8WOcO0ZHQ5+Qd5pyqjW2LZ9tUwu1613MMRbtFsFgHFl7XEmsZLKwPyGHs7XbGg6L515p26tOIxkrxhZewL+aj0bzSb0TuxDvBUnRAKZ4vqzh6Pno+hzHSytqtFstzM8lqRTb5n3O6UCAHd/98P1Oy7w7HsaRrMJgwq7UwZdKBOwZRzj7dNRX+qqHxCZbEfryJ6p+qsx3y89OaILtubseWB211Ff62pXewQ4pK3BXvz6yDJAwnfWTceCHhoj1jeq8JGVxz8BzohxcHBwcHBwcHBwcHA8ZKj/3R3g4ODg4ODg4ODg4PjPwMPyaGj5Hzi0xxmxRwTXfgliqPf6hmKsLiPHEQT34bmxtTjzIXHr3v7YAABA/gziClfVojmMZhOlwqVHVKT3nHZmo/xdPX58eSact2Wh/r4WMJpNNDik288ZsqMMAJDcZRD2LJyHmpaNqBOF0AnkGEGvnkMBABd+bQ1ljTim/O/JEUDzQNGN9DyfAzCaTZgREgq/D9OZMdv32WkHOR6n7FYGo9mEC7+2lo0NAHynEJfF0mOJkwpyZPkMGi2G5A+Qjc2g0VJZ71k0HwCQNzuBHkv0PehK3dOr/X1hfkNP+yvUsSV7u8x5gBRXR5E5vJiio2MOfiXD4Zw5b8uCx4EmODB9Ngq+TcJP3YmjhU0h22l9y/33InThNZz5SI/ypFsOx2TQaKGc44nie27/3cru4pPiLJou/L05NInmL0+6RY8lAuRIovToS6PlGZh0NgaVgxLR8fkJWB2wG8M+fAMAoLzL9kH4LBxLNJpNaJutxHndDdqedK2FvHRQdvzEUlAMazMPGDRa2I7kQO3nw8hVOIa4O9KVXgtlPZako7yruMX19YrHJYt4/AcgwVvtj3ZdHqej16W9FbCHcCxRyBPyPDl2G/xaBh1TTY84AIBCLeq6tu5bz4xb6MdrbbrTMXtPS5PJpew90UGAFJbOMbjQizhXeHLRG/S+dE3tXUBcmbv8lsnUWdUnAadnBsHrCzG8gDRd6eZG68iPr4ZBQ4JoL/X7Ay0yFEjuJD5HQnkANIi7cCxRQMiLB6GIJmEO7ncsUQg1IV1DirSj8FicjsYnyVzY9GKYA6PZBPObenosUehLyMsZWBfenJF1XccSAeD8i3qHx5KEPU4qH6PZBJWHBz2WCAC1xaWysrmxtTgc9zPS2tVDwMbxtJ5zr5L59BtyHENyz9E6DRotZpm7MO0IznOEa/tjiQAQ9XUqdK9PpNe9Y3vCoNHSY4kAUBhfhfwlMVgU5kf7Ibj5l4KOp1us7Pjyhef1UDUjITAKvxGPd9sfS4RCQa+vjdSh7H09syYNGi2Csogzj6A30un7xNHxLYNGi/O6G/SzEGLDcxY5Kl0znLy3mpySB6rv2aBadixxxCkSAiRg2FFmfKEp5PmwHiUhE07WuOJq+yv4sOgwFGlHydHW0CAAQP1LJMRM5SASUkK6fzdeJr7TrMdOyfoEAHHLX2PGZ9BoMc/nAOJN4pHUpo+bcWjyLBjNJthUNow4RcKeJHvFwGg2oXIgaVs4BgkAgTvGyOTo6LhobRmRQV3HEkeeLqvz6Hbg2+koenwhbj1BHAXdejJalteg0aLzmHHMnNd7vJQGLQaAU5vljoqEsAv2708hXbVHg4ubwmDQaGGqrpa9Z6THEo1mExMWRjiWqHRxofccvafp+u8aKxs7AMR9lIKtOXscys3+O4FQ32eXwmj6h0WHkTc7weH4grJcYIoGij+LB8f/FjgjxsHBwcHBwcHBwcHxQLBCASvkisp/RTv/7eCM2COCxoMKAYjal/wZifBQNQAA9HtpD9XyBKwmwYEb9iyC0WxCyPMH0SukPbYe2SHTaguQsh8A4P1ZGj4NJJ/vdDovY3GkWqXtt53R9+RlWE4XwKDR4vZ712keocy27atxp18CVL95oME5G24MI9rSkJeJhqqw6yJad+D6CXjrvJYGcb7+tKhZzaiy0Dp7+rFao8kX26D5k6foOBTRETQt/02iXS1/RwwC/U1IWxg0WuTNYwM9Wl/3gNFsQt6ceEZWQ330sHaMpvfC5lTSNMGIevpVf9SWnMHxV2fKZGrwipbdk8JjMdHgHv6AMAbWTtG4NEGHXj2GOsx/tf0V7LqjQvBrGfghuDWtt2A6kVdyZFds27EaLdqbYTSbEH94CKP9F3A+UQmriri53r10AV764EWaJrQrGOzfGiLOhb1WT/r3RKwV+3+Ygz9nEMcaHkuIttH//XQmn9rbC1HfpFInHQaNFidirZQtMppNuDJazoBI17Ha2wunUxrRtNOfNWMYgzMfydmi5MiuND34NdaovpnKlbl2L1Aw8k+O6oam89Lp+g5NZV3a5y2MQ/6SGIfaVOk46u0j2ua7ndvRuhwZm6uaNoH19m0YzcRpx2fFYnuGE4QJeG8kCSyuatoENT3iUDqZBDJV7T2M0ImECfL9OA1Xt4SwTJITG/DZ7U8SULXiLT1cNmci+OkjUPv7omBZNNMvo9kE682b6K3vy4zNczbR9qd/PRuW/CKmrQup8gDsAFB/Xwv8eJU4h7AdETXUynZicGhpueyPZ9lXgefz86AKDaKhDhRpR2mA58Cdox2yRI7YcAGq8BDmvkGjhekd8ZnO/zGxzvnVH70Lg0YLy9WrePyp5wAAbxayDjcAoOqJBFS8pafPY2hqJs58SNbq0TdmQuFMAsKuCW/J1H+z4yVmvSgOmFDbLRb2kPav1bdpuN1cScezJZsw59LnuXBFNIoeX4jPijNlYwtaMxF3+rH7rdMfx6k8hOe1+Yw0WC6RYNYCOyntD30n2Gy0jWthgM9UOctbGF8lG8fiM/spM2mfJpQVGA0BtnsuypX7SBDqTRVZtKxBo4UqJJDWc2W0DiPdRQcR9zuNIbwfpwSKjjGEgPINTGdgNJvQKF1kjupaL3TMSVE0ryOnEQaNFivSdcibEw+liwuce5TQ+/7vpzP9jvkkBa7rCAvfK6Q9bTtkVDaU2jYO+3FuYzhClorB3QXm2RGWjH6CGZNBo0Vyu8epbAwaLU7qlwMArCpxHQj5Xyo4BedtWUjuNKDO7yP2DoLuPJkgyydNB4Dqqa0oq/ZWAPn+cPY1PZNn+lV/2scXfx6L8nURTB8El/bCetQfvcu0JXxW786m98IWpsBoNmF8XhGazkuXjcme7RXSL00gMt4XVZ+mTQmMQXHfubRsr5xrNL/gPj/4S5E55PjfAP8hxsHBwcHBwcHBwcHB8ZDBf4g9QqjpEcdoVIS/+57XQR3oTzSxeYXoFdKeSbdWVjqoDTLN4u3+ibJ7Uk2Q2t+XKW/QaNGzQTU2tSF2AbFHrDgQtZ6m9W7/JNU+1TRQoun8dByaMgvp3xDbg60V5Oy/bpJovxDywkG865mOrd9NBwBkfCnaKXwUGEvHtL00E9dGimyJENizeDXRLG7fsoKWCxpBtKHOV20waLTYWnEYhV8lQunqiuLe88j581XErsSWTUIESF1SC1D+eYS2J7hJl2q6Ltx1p5/ty6q9vejnVwtyHcpYOrfKfUfQbE46bKdFOw57Tds3hr6YWbqfli+dokPhECIvy2UShFY9rQkMGi2yYtbQtmI/FjWfAW+nI+zbYhqcUpB38WdEthXrI3BuYzixKVkjskeOtH4AUDA9ic65QaPFVYsY9PLMxywrUltegeaH5bYbgu0fADRZyAa/tP9cW15BXcMDZK6ljIHvZDkbcn5QGMNAdRk9DtZO0ah6IoHeu5BKNKmes1kWz3LpMrVlsp/n2/0T0Ti7HjwOOOPxIaNoPwu+TULRlzraZnXveNju2TCoK2vRN7+nzIZCqNfm1ZyWe2HMi3g3IIHW+8snPQAAI9wIC7H1+G447TgEv4/ScOk3YmMhPPtGswkevfPRW9+X9t1WI9pmGs0m/BK0EwBw4uWZMJpNOPeKHrUlZxD8zBGmXwaNFmpvL1iaEjuxiyk6hxr/ji9MoHNx5P2ZuGSpZMZZ0z0Wdzqdx+YID4Z9MGi02LZtFZRRrWV1GjRaqL006PnkM1Ddc1U8IyQUljxyYqC6N7GfsJy/gAvP6xEy8rCsDul8SvF8fh7ZQ3Pz8cpZwvKoA/wYOz4AKBo4h8pCapdqNJuwcV5nmu/sq0S+3epbZO26ZhQz9ncA4DtFDHQbmX4Xl8fqqL3YV1eI/ZHHgSZMGaPZhNoGchfR9uxqy+lpsrQD08mzXjkwES7H6sOg0eLdgAT0ju0JABhQ8Dg5sTBkNhPMvOkBDxoAGiDPq03XDrcHiO8PgZ18tSCXrLfcPg5lHjyvAudeJmO8YwxgZCnUVfg1ebZbqRuixY9pDk8W2PSEWc6bJo7boNFi6/HdGJh7geZ7YvBYlHyiQ+LbZA+05BfRuRT2GqPZBIVTPfq5dyLpu7VTtKz/nmmN4Z3RkOnvlsNG8jdrKz66SE5mFNfcko1/TTlp76uSDBjXL8Xw4i4wmk1QhQXTtgU8d7oUoSmZUFSpaODnwA0TmPoMGi1KpupoYHSj2YRt+QeYtWA1nQQAlHyqg2K3+E46mrAKhm7is3IlqQaKuLYOn2vFAfm9rUd/d8j+2duUV/eOxw/BrWE0m5hQHQKkZV85G0ev6/+a6XDe550hYVnyZyRCvSub7gmq8BA8ljoerb4lz9SKMmJ7vmWiaGPp/1467txkGdSC79jQNavXd4YqNEjGAAp/8+bGI+CTwzBotBjY8AYdQ3J0D+Y9ZM/4AqDhFC6P0SEln7Cp5g1tYNBoqQ1aSVUzmr/wa2Krbbl2Qya3RxFWKGF5CP+t/wM/U/77R8jBwcHBwcHBwcHBwfGIgQd0/jdDGtBZrXCC0WzCpsoGmBESKrMrcfRZgCNtlX3+c6/o0XJ6mqz8zaeSqB3PjWFJSP9mNi5YKvGMz70AsQoFCWq5drFDrWfevHiEjsvCxYk6eM5Op33oFZiE2IxK6pGxrr7/HeTNTkDoRFFbW1d9Uu2WfZ7rI5KQ8dVsJj1g8ziEjicsmTRgo9FsQvicVPhOlsvtr/ogBIE2mk1IbtMJ3feXwdjWHeY39IydGQBML0mjQX3/DoxmE7Kr71ImRYozH+rhOyUNebMT4JmuwtQP5qNHgxrarnlDG2j6n6T5vyrJwBv+Scj/Pgnr+34PrbMzDBotKtZHwGtAjkxjaH8toLZbLNS7snGnXwLVtF8bqcPBz2eh3VepOPoGCVj8xeUQ7I50rbMeAAg75ATTZW/UNxTfN58juTA2KV/poKwBat2sNLBw8IoUFIyoO6C40UzsAgXPjAKE4MgBm8bDL/ACnHuUYFnZATRXuTLrTdkuHIoaC+PR76/6Knx+qeAUejeoQnK3wbDk5jP5FdERDCPcs+/TsB06Uec6VHl4wHL16l+uX3WrlrgV6wuXzZnMfaPZhDFnOtCg4cBfz8H4vCLMDQuCseIIIxP7v0w/PT1xblAwrkbX0mfxfnuetP+61yci/Ws2mHbloES4/nIQSUdr8Nusx3D4w1kO2xbW1ePDnsPvqxYRNlHXDsVPNsC8wXPQub4VBo0WivhIqC7fhLWhC6zHTjH1XB6rw6EpszD3uoYJIl3TPRZOO7MRkuWM/Phqpr2In1KR88JM9ApMorYr9nNiNJvQZkYqVo79Dm8FJNKg7CWf6OD/QTrCs9U49lY77F66gDD/ksDz9rJW+/tiS9omh3KUBuDOm5UA11I1vD5Pk/XHEcrXRcB7YA69FvYyelqiRxxlwYV7it1esHWtAACce1mPo2+x++HlsTo0nZ+OcxvD0bJfLlPWHnW9DwXYryHVHg0sXcwOx/JXY32Qduk7ZdN42bsKIHbSIS8cdFinrb2WMlKry9Iw1Ec8ZdBj4LNQpB/FiFPlWNHaW9a++XU9NF+Lc7auPAODnhjD2Gbar/ve7Z9kApErXV0pyy4Ei2fK3gsCLR1ncvchTDB1R8/Ylc2haNInD/lLYyiLXfGWnrLGjmTqqC7pZ+H5rmsuSqfo4Pdh3UGcXyo4Re2vhfJnPtLTUxbC9yUAuPKcDlcfv4OCzuJ3oPwfEhHykuN5FGAfgBsAVM2aYuuxXXWusVrbf0ZA59WmNmjwEAI6375pwVDtyUdWHv8EOCPGwcHBwcHBwcHBwcHxkMEZsX8zBO1C4PufIvDTI/T+re2BTBwYR6je4Q/1tCY0DovRbEKHlyZQLZHAiAD3vE2pVLBWVt5X4+d70BUnv26LhmsPonqHP/a23fjA2kHAsW3R/Vg9oVxmdQ0+CCD2H8Wf65A30rH22r4egMTmkp6bB4jXxe2lmQhdnIKAd0la8Wc6BLybjrOT9Gj1TZrDPj+o1pVqmQP9YW3gAuuJUw7zKpzqwVZzl9E4m9/Uo7JNNVp/epXGlnKk/ZP2U7h3Y1sQ3HsVyvpnjxvDkuC+KkN2XzrmO8YA1DcUAwAqtwdif5T8TH9dsnHEjrXNGIETSSvuq8UEgJAsZ+xfGovrEbUo7juXpl0ZrUOlRgGfqWl/2X8A6DF4FEqT6yN4vhm1xaX4sOgw2rsoRdlLmCNp+2c+1iN3vKiBt2dZ7ZE/I5HGCgOIfYKUpTKaTYh/P4Wxd7OXUV1rP+jniQh+NUNWRtrn94pEL25CnogfU+E9jdUml/wcBf+nCAPbK6Q9rvWNhPvqgyj8OhFBk0gbV0brmH7eeTIBf8yai48uRmD3xx3QYINcw2vPeDiC0WzCK2fjkBtbSzTt8cnYkrVVtra7jB6HPQvnOXymA7aORehYkTmRykBAn5yr2BzhQVnlXsF6av/4oIypqkVzWM4TuyKFWg1bba3D8fTN74mal5tQu5vFZ/ZjlG8H+R6xyxvoRmIzCayygLJf2sJn0Al5JxIiYXF1gmrPYdh07VDapwGcI65hUbsleDcggWlDHeCH2uJSprjrH54oudYEzT9SozKgIRqsF+dNYJHK39HL1og9BMZOQNtsJU7EWhk5CHtzwbdJKBw6+4H2SymkeVQRYbDknK5zrhTOztS+0lE7RrMJXUeOYfrsqJ3L43RoOi8dFesjUFOjos/FX50k6fnECNiy2bW+teIweg0ZDfWVSlhy85l67vaMR73tWQ7H8yDrsXRNJPyGHKf5kyO6yNhrR7JoPS8Vfh+Jc6tyd8e15DZI+5bMj/Qd2vSABy63Z+ssmJ6EwiGO57Jkqg4N211Gduwa2v/LY3V46fW1WDipP/bOm4fI6am4FXYXxb3my8aXNy8eQSssUO11bL8p4J3CY5gWFCVrv/hzHTYP+xov+rV3OH4pJhXk4NNXn4PLb+L+rYiOoDbejspJT2pc2RyKJ32P4c8oF1k+AdJ3N0C8qoa8yO6TRrMJ5bW34K1uyLQpMJzqVi2xJXu7w/5c3xqMDO0vdB12axXxH8GIrTS1fWiM2HDtiUdWHv8EOCPGwcHBwcHBwcHBwcHxkMEDOnNwcHBwcHBwcHBwPBAsNgUstn99sOWH0ca/G5wRe0TgO5UNtHm/Y4kV64nLXOceJVDtOUyDoxo0Wrj+chAlnxDX5MKxRADYVpSBbfkHaL66cCaxEge+nwOj2USDShrNouteVdMmsjLCEQCDhgRVBsjxM+mxD6PZhLiPUlCwPJrpg/BXOJZoNJug+aOWSS/8JommDck9R+ss+pyMUwiSLK1PcN3tFnmZpgW8SxyJtPpGdCs9rqw9LJ2JMe3Z10gA1hvDHQc2ln4Wgt1u2b8R23asZuRh0GhR9gExsrbV3EXhSi1qS87Q8s2O3kVRjwX0WGJdkPYTAG4NTsT5C2Jw4/J39CidIg/MWfKpDu6rMnD1WR3K32VdygvzpGrcCH9EbqD3G9arpmlS2VcOTGTK2tcjvfYakEPnJuKnVIdjyl8Sg/z4atzyt8qOAzZZmA6fqWkYknuOhkCQQrrODBpy5ONuixp6bGtKYAxGlj4Go9mEsg/01EjdoNFC5eEBgATfFY4lTiogx1ekATbVrVrK2pUeSwRAjyddHquj9TcurELBsmgYzSZsqshi+goA7V+eQN1ZS+Ub/CoJpp3/PQkLMKSoG00zmk3IXxKDTwPvHZ1SiC+knBdnUpncHkDmyGoRt3NrZSU52mmzIeyHCkbGADnuZjSbcKW1GklvTERGOyeHxxIBwHtgDmzttcw8AMQ5gACDRovcWHLEr+ep3qitMDNHvoS/wrFEo9mElwpO0YDuBo0WqCX9H5h7Qba+BLzoQeZa8xV5Nmzhokt0oYwQmkEKpYsLjGYT1D7esJy/AFVYMHk+7x1L/KL4oOw5Ob0/AFbTSZg3kCC5o3w7oGSqTjTWX0r2DWP4ZipT4ViidZcPznykp8cS82YmoFfONbFDmcfpkXJF+lGcfm4WWvXLxbsBCbgyWmzDaDZhy4FfZeNZH/w7PPuehu1IDj2WKOy9Lfvlwmg20TXiCMJYdy9dwNw7EWuF0WzCmLxiKocPAuJx1xCHwqGzkXv3NgpXahk5AeSYmRQqT0/ybK1qx8yjJec0LefoGB/aBNO5lAb5jc0eQu877RSD7aokR5Wk9R2aTN4JXgNycLrjUnrfUYgWod5ePYfClp3D7AFGswl9O/SH4oCJHkc2aIjjqyvP6VBve5asfemRROkzYI/q3vH0WGL1Dn8YNCRQOADEHx6CW4MTZeMS+io9lggAbx7ZD7fV5Pix2kuDgLfFwMPSY4nCsxH8SgbT3+pe8fQ64NdbcF7ehJmjQ1NmYUVrbzhvyYJBo4XmyzTmWGLRl+IzFzouC8KxxJrusTCaTbg5lHUbD4AeS7zynA7vFB6DQaOFTd8OAW+n02OJwviF7xDS/aS6Vzy+CY7Avjlz6b2kozWwHcmByt2d9m3Bmf1MoGtpqIYmffKwaGdnpl/27QjHEm8MJ3u04OwJAA2dYNBoMca3g2wN7Fi7GGXv6xG3vYyZx8IV0TRPo+QCOsbAHWOwIU8MEM/xvwHOiHFwcHBwcHBwcHBwPBCEOF//+nb++91YcEbsEcL9tGfS+14DcpjgzNu2rYLa3xfl6yLgcaAJ/D9IZ7Q6ai8NuuQ8STUyygYNZPUL9wTNWcK7KbRPwn+lqysNJEyhUDCaHu9pxLlEfnw1o/mfcc0HTeelI/hpMSCv+U09TRcYC4NGC+etWcyYC4bNhiKasIBrwluieoc/hhR1Q4SuqE6jbgCI+joVzZ7Ig9FsgrJduMwwO+qwAuYBjbBz5UKce1VPg0M2OUAYhLs94xmNqfA5b248KsNbkP56x8raBwCfT9IQmz0EAJD92CymX/WMhwgbsncUppeIrJfSzc3hGhCYvwPfz0HIs6IBtPe0NOqeV6px9E0ijgM8lqTD+zNSf/7SGKZey7XrhG28F0x1e+stzJoR+uq6Tm6UbI/8n4jm1vyGHgNzLyBkaQptV9W4ER3TqwW5CHn2MIxmEzxyFHRc9vWOaXSOkanrH55Ufp5pjen9vNkJ0BhVTNncuSQYs8cpCx3HmY/02JqzBwCQumo8zftNcAQzVgCoGBxI5NNFlJdW9KEDAIg3WYgR/HzR6YVy3xGEvVQCg0aLvl7xqLbV0LSST3Q48P0cNFLWZ+oRAt0aNFoUDSaG89c7iAxuz94jEPLsYajCgsn6qF8fRZ/rmP4aNFrKiAQON8HjQBOaPj6PsOrnfqqP6l7xMJpNlPkRWMQTL89EoxWisxBVm1A4wo61i3FxUxgjr+OvyRmXq8/qqFtyAOjpG8fsA9LPvRtUodFy0rbK3Z0ypOvCm8vW2c2nkhyuPVt2Dmy6dnj/QiS9F/BuOmVyjWYT8pfGoLJnFAwaLe4uJqyi5TTRQqtakLaEUA0AYbYAEhBW1aI5NANP07pOj55FHB8B1A23UE7qUEPZrQy+k9OQP4P0wzNThW0RjekzVrxadFJwu38icu7eoePLmjqL5quLGTRotMwzbzSb4D0tDXkL4mRycnQt3dekdd4aQupcEBrA7AfOu0jeV/z1CBpuQsEycrLhzEeEce9c38q0Zbl4EQaNFnmdltD6VZ6esj6pWjRHwXdJtD+2IyKr/scswnSY39Cj2RN56D58NGEkssS5stxgg98azSamPmFcldsDYdBocf5xLya/0tUVvRP7AACsx4jDpTuR3oyczMlerBwTInH0zZnI+nQW8pfEUJZUKmdVaBDKfmlL2weA4lXtaHq8yQLnLeQ9lzcrAc49Smh5RXwkVkQuQsO1B5k5kNbF9AfAFxHEwUuXnCexJWsrKtZHOHxeAt5NR1WfBMreAyRsg/M2kdmzZR2n4WwqByXK6hECRUvHbNWQ8AsCmyjcF5yqeGSek/VZuG6yKB2d6xMmVpF2VJbHO6Mhs28UfUHkLfRZmrbt28cAkHWhahOK6t7xeKmkP3W4I4XAjhYOnV2njA0aLW73J89w+tezmbYAx3uVfZ98pqYho50Tro3UUYawoMsi2ZoxaLQIGZWN/qGRsvo4/rvBGTEODg4ODg4ODg4OjgeC1aaE1fav53Ks/wOO3bn7+n8zBFeg3b0mwnhop0z7KbhaLntPD5//x957h0V1tO/j9xYE7KgoLkgHxYKrSNlVY3cVjb232BXUFJOYmBiNsSUxxcSIvUdNjC1G0TUaNVFAEF2x0+uKBbEhIrvL749xZs/sWUzezy+vMe/33NfFBXvOnJlnnjNnzvLcT1lEWIayI96oOk0OcxqxeGcv1EAW+AjX2m1l1+lUauR+rIXXwYc4/PNW9IwcAYvhCsoiQ2F2kqMwTA7IAd9ZlRc8BOynKQeA4MThaPgsFsFWZtom4MRY+I4wiM4J+7Jnma1MDtrGNgU3xe39jeHa57r4YrkCXVPu4WjzGpWOaU8uezJ0GzIWijIzKpIuis7ZWrg6TpyE+94OOD8nRtSf0qsRTDl57Fph+v7K5k7T2U9OzcSaQF/RXCq7F7bWYXmNGri1vSFjC/9M97Qfej2FsODn85C9SAPvD8n9Kjnsi/u/ueHimzFQL4lGg+VxyNiuhuW2E2OF9EYDAk++Bp/hF0R9KX298TC4Pmqk3IIpM9uufMJ70H3ga0ibrETQO1mMzaWFx4X6EfZTbH6MqnIH9HEPFbXRGw3oca0XY30U9erifucA/PzllxjZyBrXUKFtiYIO1XB5Rgw6TpqEu00ckPJ2DCdj79SeGOSWjLE1b6H1J1FwXRWP7EUaVPg+ZnPXGw0I2BqFtNEk5mXTg/oYW5PEUNEU/8K5K/x9EPu7NfavR59ROLz/exIfskQD/y13RAWi9UYD2r45FdV3JnBzNXUOQeZwObJ6kbguS/tWkP9hQw8K9LMgK4mtYVpS4v6oCCR8brUkp8aEITCajw28HaXBD++TdNXC8WmRbKHOhPdKERSAm6/UQ/K8layNrUx6owHh70XhzGcr0cMrjMWOCtv5HJyEwElJdtNSK46rENs4FkGrouF18D4sVZSQxV9gpQKEWJt7CpM82+Hpr16o0i0HSl9vbo3S8YSy6o0GlFeY4SBTwH/HVFZmIHVDGwSOP8uueyv9Kr72J6y+sOTB/ZERHKNZmWVfCKW7CqYCIzK+jIDf29b1s+qeO/Y2deX0Zw+2+w0tLu2RUB35EY9E19PyEA9GRKCouQymGhb4b3+CI7s3s340b09la/n/uj9Xdk5vJKUVljU8y8o+CMeJbNWdlTPIXqiB/+o8mPLy7fYvhHGWFp9O3sAVBQaAnpEjIL9zH6b8ArtyZy/Q4PoEayH5e6M1qL3V5n0mk0FfQJ412q54rAYum+KhbOSBg2cOiOZZ/JoGdbYlocJkQtYSDXxmW/ukpVvslWsoHqtB4uKVCPsgCq2iDcgOK8WTV8O4lPD2QN9DwqLFsQXn0DuwPSwlJUhdGYasvmu4OVCkf98KbvsdcXoZiQVWL4nG/RblokLutvgqOx4zvcUxoADRb6uF0agf8+dFou2dsz0mr1EDlocPkbo2lO2Bts9vwftarvA5AK6oOgCumDuFd6IzjqY2QeMZ2TAXF3OlZP4tBZ03nGv1wtLXj299/qXVx98ByTVRggQJEiRIkCBBggQJEl4wJEbsHwa1LnREXxy7cZm3+Ab4IvYkKbLbNmUATj8ruGtrMbRlA3QqNZQe7jDlW2M1qCXansVRbzSg46RJzGe9MqsRtcjRY60WRaP+CnHBUHtMjdASSWWt7LrK+hEe7zR+EpexytYS/GcWVIcTDXEg8BB0HiHQ5yeLrsna0RKpHTYjcEsU6qZUMOZHbzTgseUpqsqriPrMm6PFlWgx+2ULRc2aiL32O6eHJ6+GoaymHH3eO46TwSSWSBEUgNhjPwEgBa9nT5gK5W98IdP8D7So/UohqvfIxN78RAzqPBzm1Ax0vliC9+qmcTo4/NgRX/sHVarrsPOD4dKLL1SsU6mZRVtvNMD/+Dj4jTxP4j1qVYc5PQt3x2uQtNDKSkxIzcL6QJLNjlp2K2PuhH/fnKFFg+X8ejLubQpVf96//z+1iANWtgJyBWAh8WNjrudhS+NGdq/P+0iLK1ExIh357J/MZXusbDzKElT2nOZ/oGVxdMqGbjDdKGRsXMiemQh4IwG6Sw+gb261AFbGJvcK6QHTDRKDYe7YGke3b7Dq2b0V0reo4T/aymQpatdC7JWTCP4yGg2/jEPWjpbwX/gE5svXceeXQMaUUllt9QMABx87MSYg4kI55ruSDJUh86NQb7XVEq+98BTzXK9wcr9b2Aoprclrp0LbErK4C1z/OpUajc864HqbctG8aZFiewVpbSHUUfvpU1B1zxnRGkz7NhwBr59hLBFAirC2+s6AzxrY17cQXUZNYM9k4ZtauC3j9zhzx9aocjEb5qK7TPbcuVouo62tvBSZn2rgv+MeZLmFMBcXI3V1KAKnJMH5ZAOUdrj53GvtQVgk/c/al0WG4sS6tfDZNxlZ/axF12kB8Mr2bzpve+cab4iC95x47phORbKXfunfDGmbWyOz2wZEGAahVmT6n7IXws93pmi4dcfNe0QEi+/RGw1o81EU6q4XF19/nj7k6qYonG9B/b7XUPe0C7b7HOfmauoSAuUx694cfE6GlNYVeHDID7WH3MLD7k1F8baleh8ov6yLVkvO4cuG56BTkSy1D0Y/QErYDuhUao7BUrqrcDApll1P379KHy8cPP0zerXti+wvqnPF1+me5aGXoereM3bvEV2PtjqQq5viUOx2xrQX9GoIt2/iOKaXe2c+Y91s+xlytRA7g0jsWFnPUOxas4x5D6Sua4PAiWdRoWkJucmC9KHV4PeOleF9ODQCcV+Ln/OMba3gN1LMzlOZ6ByFsryefg3f+jd57jqlbDZAWLuMzhtZO+MsLZ7UqYDv+7w3RWV7Q4uvnxW9jhQXvbaVMav8EaZ6tYNc3RRPz1/4VzBia8+FvDBGbFLr5JdWH38HJEZMggQJEiRIkCBBggQJEl4wpH/EXiIEbIlif8/OSIE5LRM6lRo6lRrVe2SiZ+QIZlkRWlh0KjWCTo/m+qJsWIeUUgDg2LC8Xc2hU6nx6LAvZA5V0GZuFGPDaH8Lsp59DmvBxkpcTFgPvdGAHp5tUH9FHMp6WeNo6G97ViKhXz6F3MkJad9EQBHox44J+5mSr8HynNOsn6JJGpah6r4Pn2dGp1Ij1/RIpJ87UzToPGYC1zbzMw0OBB5CZHAXxo7QzEx0fBqj4/N+PMeG6VRq9PcIs45z6QGr5XUl2lrbyR70RgP0RgOufRsAnUqNz4oCEHKeZBtz+iURCUtX4WSwM/RGAzK2tYL5qpXR+sgnlFnehf17b8zE6eA90BsNUH//BsypGbC0U+O9ulZm63YUkY+yYelfRaBnz+HI2EYyn72efg06lZpjw4SZAoUMELVCmm/fhjmd+LTX2RDP1qneaMBn13VsrulfhkOnstaCs9UFAOR9SDKvNVgeh5icU1w7WzbM9npbXduzTAIgbBgAWMysbtyWxo24ttk/BjN9N1oQZ12rYS3YvQ+cmohb07QwvksyHgrXFndfPooXHY/sOBARhkHQGw3w+rkIIedJpjDKZkV2GwoXRVUEvEFiZYRsGJ0bAFYnkB6jbBoAKE6cg8/BSdbnr+A8Pgnbz8lW71AF+qXp0G0EWdf1fnZm9Z3qvZrK+hU+q7VO1QUA+J8YixumR1hb0AEeCdUBAAktHVj7eqvjoWzoxsaLa1kFka/0Z3rw2zmVsWF1T7uwLGm2VmpbNky4jwBAxpBVoj3PFjqVGj0v34NOZc0sKZxT4ZtaBLxOjlM2DABkpwkbFtltqEgu+ntKPtmHhAy1470KlAwi633VPZJZTnHiHMxFd5E3R4vLM2LgcKIhrk6NQeqGNig5TDJ00j1AOM+74zXwfT8elgtXcf2jxtAbDTD0+hYAsC9Az55pip6N2zN9CX/TvxU1azI2DAB89BPYufLubUTX5PQj8gRGJ3Jy/b5yDQ4+dkKNP+qxYwXvadl9smV/5U5OuPE2qc94ffxKdnxvvrXf+bPHAwACXiOsEGXDbGXSqdQsC6UthGzY/Ezea6Dm9gTuvheFkj2fZu39K2ziodjtqN+XZFXc6n1MNM9jW9dz7VNaV6DxWQfEt9wNy8OHKKtl/arFdNliLxyOnMWlEGvGyWq7z8BBYWb9Pz5IGPusxRrkD/ZmOtap1MwbxWvnTbIPZOXAdZ01I/KHmdY9q/oh8j5beKcJN1dzp9YidpbKJyu4zdqa07Pg9g1pZ8rO49rR/dHnA2udRL3RgLTvwlH4lhY7g9xQ2i8MpqOecDyUhHrP4j4BIHAiiYM8snszKpIucmwYAMaGCddBg/iaIjbM9l1gy5wCwLwl49g5e+cBoGWdAhQfDEBswTn4jzrP3WfV53HwfT8eufO0eDwgHH6/kf6Cv4i29jtgDBpviIJOpYZqaRwCJ56F709TOVnpfQHI86FTqeHjUB3ylkF2szu+rLDAWtT5v/lj+acn+gIg/SMmQYIECRIkSJAgQYIECS8YUvp6CRIkSJAgQYIECRIk/CVYIIflBXA5L2KMfxpSso5/GDTwsUvQOzjy2z4AwIp7jbC/aV3WhrpOxOScgp8DcaFTejWC167byAh9gg8zDXjFCRyNLnQPHHktH9ua8EUqheltDxQko7d7CJ844XUtGnxbeRpY2xTqAJ+mnCIoWYmfDWoETjgLe1iclYgPfMJY/4D9BAGVBWmnbQpBwNhku0kRuo4Yj6PbN7Dr1txXYXdQfZEM9vqPmDUVtb5PQIWmJUuzTCH7zZ0rWkvxpHcYqv1+TVRklPbZK6wXvjj1E4KqVOVk7TpiPKpczWcplOnx1p9E4dxcPjV3ZTq6MZMUpLY3HyHuTNag3hpxULusVTNUnL8s0qNwHdFkA3fHaZC0aCXm3W6G3NI6yJsdAMXxc5x8APBuYStc7l4H5jvWIsXrc09hgme7SmWUq5vadc+giQpoym2R/A5VuNTkAUmO+M79jN0xbkVrUaEAHoQ+QWZXsj6axkSj0cI43D0QiDq9iXte0SQNzs5fiR59R6Mi6SJb3/ZcYPRGAwK+j0LaqJXsvgldamzlyN/dDJc129B98FjIThs4XY/I6oTtPscrvQ+0z96pPVHe8QZzjfWay8tGx7XVNQ2qF+o87V1HBCwpheXSNXZcGBBP+xCmzNep1CiaoEHd9YIA/bAWQCJf2uGzrDN4zycccicnmEKDRCnwbedXGZ53ftz1HKyZMRAOR85yOi/tFwbnfYksIQpdw5X1f/lpKZpVca70eRPupbbI+lQDx7syqD63v28+1bVBFf1ZyIObsOLBonmFtYB+31bifh3rz7npCeees7MFvIZcZAlCAFKIWlhUWgjTUU9kXWuIgOlnUN41BA5Hk/G4fziq7j3DJYWhshS/poHL5njR2IVvaXHhXb4Mg+09KZqkgeIJ4HLpAdtTAOIOGTiOdxukGHktH99+MRh118VjVsZFfO7HF7Ut796G3Vu/H6YiY9gqTgahjLaJqgDgh7w4DGuk5eRV1KuLW/0CUXedOKmOTqXm3k2QyQDBV6WBV2+xd8ntqRqEjEvB2kan4fvTVKQNioFCJrcrW2Vr2LadwsUF5uJiu7qiadVpkhN7Mlc2jiqhBowRD+2OT13IhfurrV6WF3thz9vdcXzDWs5V+voEcQmJ580PIAmzyjveEI1jq2sKWWgL7Nm7Hv09wuzeL9u/bZOL2a5X+nfq+jYInHCWfe566SGONq8BpVsD1N1bii1evzMZhPLTeXeYPBlPXBSovTWe7TfCOQNAy8ThcOt31a5ubPFvSV+/8lwonKv/97mc0kcmRLVOemn18XdAYsQkSJAgQYIECRIkSJDwl2CukMP8Ago6v4gx/mn878/wXwKamEGnUmNa7TxMS0vlLCp6owHRXu3Y54PxvyAj9AkA2GXDACDXRIpr/hjZjgWzniiVI3VjCHxmx7MxeruHAOCtiw2+Jck18mdrOWsWTfBA2TBzhQWmo57In61lbIFQ7qshJgROOItHzwLThefapzxBiGMVKL09Wf8UuT+1QNEkjUgu4We90YCAsckoeJ8Eg2cv1PAWzxPn8PaN1ug6cjx0KjUm1yIB+Yq6dUTB4Llz+XnW+p5YBYVsmN5owP1REXi6mKTizViq4fpxOpCIsjYBTE5TlxDunpjyCxgbRvVI5RSyYRTn5q5Ek7XR6DZ8HDd3nUqN21OtYysa1IfcBOzMtwZL2+qagrJhQrn1RgMqzl8W6Zr2Q39TJsH1F8IYJbR0gDHioYgNozKe+C4CZcHebOyynqGY4NkOd8eT+6r08QIA3NhHCtUWv6bBodjtIrn1RgMCp5DkMdRaK1MquTFtC/WmhZaJ1g39u35MHAyzYxAw5hyT1eU6CeCnbBgAnJ1PWK3DP5NC6ZTt1anUiGzVnVuvOpWaFUd3XRWPxhui2H23ZyW+rNkGnUoN2Wki0+knFhS+RdZxUdtiTna/Y9Ygc6F+DwQeAkCYMK+5/L23/Vt4vykbRo9ZDFfgN/I8LJeucfryG3mefW62nASk19yRAEW9ugj7gCQWqrs+HuXd21jX3L6tqNC25OY6/Z3X4XyyAQ5lJjA2zPb5s7dW7d07IbIXWJ+BInN1OBw5y+bd4msib5V7JvS+XIzssWS/cr4ltrTrjQakfRuOHl5hmOmtEe2lQj1ua+JRqaw+78dD9XmcaA+k11fRE/kOHf6Bm3evtn1xf2QEynqGQr9vK7uu9Eh9UR8UXkMI60jZsBp/1GNs2K2fm3Ay6I0GKLvmImA6SUzicJR4EFTdSz7PrJMpeuZdNlvXU7uUAey829dxTCfZi6y66pBSitRVYSiapEFZ5H1UeWTB4YPbuH4DxyUjdSVhmOQtgzjdbWvigbrr4iFr1Yxjw0oGhsP4rpa7t/4zeUacyhNxgSR4oWyYcP7DGmlZe8Uzq3psyjGc/YQwOQEnxrLz3YaS5+0DnzAUTSB7FS2uTEHZsIAkR7iuikdueAl0KjU+7L4Pke6toVOpYTnWSHTf6HNd3jUEiAgWnaPyZk8PQsYXfIIjqrtRZ69A6e3J2DBhv5TB496lgnebMeIhtzbTv2/Ftfd7OwHzM5NhfEcr6mfhnSY40MwFxzesxYTcduh9mTB2NDHR5aelnLwlg8JF7wSAeI6MvJaP8o43IK9GEne0/iTKKtczNsx2b6hIuoj+HuL5jcruyP722zkVmZ+Te+ayKR7ZCzVce51KjYq2ar4Pi4zTybt1MgAApsKbuKl5UCnLR4tyOx1IZAW5KRu2NDuBm7M9NqyyvW9v6kVRWwn/25AYMQkSJEiQIEGCBAkSJPwlWCCDBbIXMs7/OiRG7CUCtWLqVGr0qfaYHaeWFVu/b2pJWXynMQBS7FR4fkqzngAAU2Y266Ojs4X56a8ICOT6UtSrC51KjbRvIqA3GhDZrBNjQZh1XpA2VqdSI9K9NZRdc3F5BokbOPzYkWOsMj/XICbnFCtG3frsUOTNIRa6P4JJ6lZL7eqszyZriSXbc/BFLHzPGt/Vo9dIAMD+giSRTtw/JTJ6z4lHj2u9uDl92fAcjm4j/Swr9obeaMDtvo3R7DtrylkAuDo1Bl1GW1M624Pv7imo9X0CnDNJzNOGgSvZuUl5pECl+6I0LMsm8tCUxnSM5sly9nd6p43QGw3w3z4VZUe8ReO2/CwaOpUaXvPikDG4CtOnPdnMN2/hvvophnjwKa2Fa0Hp4wXIFVC6NWDnyruGoMuoCaI1ZWsBtLXcme8UIWx2FCeTkD2g7epsiOfSe59Yv5Yd16lIuuWQ8xakhO1AZLNOcNkcjxbLork+9EYDOo+dyMkjC23BipxSPB5A0lr3v3KbXac3kqLj9uYlHCN7kQbVfzoDRWN/PP3VS6Q/W310vlgCWVVnu/qhba+PX/mXYkGMe5sCAMYnjYXb13Hc/aVthMWYhfisKABKD3c8HEos56nr2ohYnAbx9lPgK91V0KlI4epx13O48/YYSboPzM5Iwa1+gSz2AgB+27SO/f3eTTVuhlZD4VvEon5nsgbVdp/BvgA9GTsimMmoqFuHjSlcO0IdPelNLOBNY6I5fWb9EMyVCFix/VUAhCnVGw1QLSXyHt2+AQeauTD5hYV807aQMgYdJ05CwOtnGKtKx2+yNhoyR0eR3hkEjIY9vQn7mpaWSmJfAHScMIkrMWDKykHC0lU4sX4tb0VfJo5ly/qBjJn+dQQeDotAab8wlHdvg4ft77A29fteQ8ITs2j9Ul2ydb9Aw8qTCD0KbNm0d/yO4Ja5RDQ/30XWQtwng50RODURddfGQ9X/Cok9o/f1am/WLjCKlFE5dGgHpzs6FmXm6edqu89AtTQOqRv4FPu0b4cTDQGQWOSElg52PSdsn/v01T74IS+O07XvCAMK9wXB+WQDyP+wMsFnF1hT7lMvBmHpgLTQMm7MCbUK8WA4eR7T0xrCdNQT5RVmyNo052T4bct6rN1J3pl3JvMsLABciYqB3zsJXN8yM1k/yz8ZDFN2LgBA4eoq0qPxXS13/yCzYcoHjCHrEYD/KHG85jzfEMyYsE+0Fv4IdmLt8iMeYYYLv280q2LdE7OWaFBt1xluTk97hEJ36QGUbxayOEtLSQnuHgiE6yryXKZ/3wpydVNuPkLZy7uTPU7h78Nku629h+Kx5J74v5mAj/vuZO2vj7eW3KHQxCQh/Ssr2xg4KYmthbKeoWy8u+M1ovUkhPpT67tF6euNuwcCUdaTlPMZunEmd13WYiIffcaEsO13oDoMEv7fgsSISZAgQYIECRIkSJAg4S9BihH7+yBlTfyHQTPQrD3XGj+G+LLjNAuconYtmO/dF11HrSrBX0Yj5e0Yq/Wv32iWdQsQZ4+jFkKhpbAyFkSnUqPksC+q9cgUHbcHKlPHiZPgGJuE1JVhyOq7Bh2mTEbeIBMCXjvHrr/xthYNv+TZNqFc9ti/yhiGyA4DYE7LtNvOloFQuLgg9jLJSBdbcA4KmZyd90iojvWep9jntOXhcDslQ40frZbJ4C+ikfIOsWQOyugKlfN9VnzWVq5hWZ1R3PYuAMDUOQQFHatgUJ9TOLi2PSvGWdl9EOqhV9u+MGXlwLi3KStwbE9PmZ9qkDbGPhNjLwtX8cEAJLb6iWv/aHA4qv90xq7eK7sHNKMZ1S0AtFoUjfMfknVpLyMjAKR9F87iVh4NicDpZavY+QeH/FCzZ4ZIp/bWhqVDK9xp5ozyGsAv0Z9jesQgViRZ3jIIlgv2s1VVtsYUzRoj9tcfK13nlfWju/QAM+tkctc1T5ZzBVtt5c/a0RLn2q/GQA+rhVaYCY/JFOgHc2oGIFegeEwY7oRYEDDjDNfXjX1BaFhJZq7UjSEIHEdigwI3RSF17ErR3JsnjITHAuDwwW1YeKcJ5tS79txnMXeulisGOyvjIro4m0XrpWiCBkURJgROImy2d6Izcl+pgOXJE05GvyQnFve6KfcUxnq2Q8YXEfB7JwEup+uwZ4ni8YBwVN1j1YGisT/M19OtDZ5lX+t8sQTv1U1D67ND4drnOtqnPEH/mueZBd/eHG3nKjyvqFkTmeu8cK3dVm6uYR9EcVna3r7Rmt17pa83TJnZ0BsN8P11PAJeO8eNIYTtPvjDQxcMq1FsVz7bjG/29COcB0BiZM1Fd9nx1gui4LoyntsjhPtmWa9QOB5MEo1tqyNhvwDZc9JjPOEz/IKo/fJiL8xwyRHJbOocAuVvydiZH49acmfu/J1fApEcQtiO+bebIq5lFZGsfxV6I4lvVsjkaPzHGFT9ozrqfxfHnRfdd9v1BV6vmdvV8B1hEI2Vtrk1d7+FGHM9DyNrFKHT5b6o0o3PeFnZfjc38xzaOslF64RCp1JDERSAehtIjFPGdjXSO26CTqVG6oY2CBxP4u2+yo7HTG/ei+J5oO/sJ73D4HQg0a4Ocn9qgV/DV8JDWd2u7AXvaXHpjRgcfOyEb0cMhsVZiV93bIROpcbr6dfwxpnh8BudAn1+Mnf9o8HhOP3NatZX0QQNHEor4HK+CBUOChw6/EOl32t6Xy7GgWYu3P3I7LYBOpUaSm9Pxi5S3IrWon6M/cyqAKCoXQuxV06Sd5tNtl570BsN6Nm4PSwP+WyVtpmpaUbaf0vWxK/Pal9Y1sS32sS9tPr4OyAxYhIkSJAgQYIECRIkSPhLMEMO8wuIbnoRY/zT+N+foQQJEiRIkCBBggQJEiS8ZJBcE/9hUJq3I/ri2I3LIncDvx+mwn9mApony/FlQ+Le0DJxOGptrAHnnxMr7Vfp1gCmwpsArBS98V0tHB5VwHWltfCgkMo3d2rNUpEDgMzRERVlZUjf2gouJ5xYoLvwGlvXRSH0RgMGZXTlAslt3VcqQ+qaUAROJu4w/a/cxt6mrpxMwjGErg+0ILA9d8caf9TjZKEQumjQ64LWRMPzY7HrZJ8rRazYtl+SE7JHqJhbJEXeh1o0WhRn110o7dtwBLx+hvV5rFTBuXMJ5yTUgT08GBGB+C+shU2fh4gL5XCvUozdQfVZ/7MzUrDEL/i511EoAnxhTssUucBQeYXHSgaFo9quM7g1TctcMCsDlYW6g9i6GdlzOzId9cSxpvtx5LEDl8KZIrbgHCLdSSIGzzPVkBteggcjIlBze4Jdd5+YnFNcaQhayPl5OqXXj7meh7UzB3CuW3qjAYG/j4HPsBTojQa0SxmAWlPKcTD+F9F9Dk4cztwJU9eGMvc94RjGWVqWFv15LsYlA8NRbfcZu+vOnvy2ek3/vhWqOJrQcK0jSxcO8IWdASD7x2C47K+KW9oKBEwjrm9KdxVMBUbRGEIX1cogr1YNlpIS7ljxWA0SF5N7UBYZCsfYpOe6D35wMxjJreTsc2SnQTBfTxddc2u6Fuc/sLpyt/g6GhffirH7/AkhC2mGiuTLuD1VwxIL2MrwV12pK3OFpO6XD4dFoMXMC3CUm+y6PdN+fGInIityHVotjMb5OTHc2ug6YjzKXBxYivrKYO7YGke3b8AHN4OR8F4Yftu0DpFdBsN8Nc1ue+H+q2hQ327ZDeHcHg6NQI0f+QLB6iXRaLCc7AvC/ZBeIyy6vTQ7AcFVnDhdtU95wtxmhaB7SPNkOS5Ob4H0EU4ImHGGczWz1Tst3guAFbiu7B7JHKog7bPWyBi2ChGzpqJuXCFMmdkASAKfG09r4WqICfdGa1g6c9H7yaaYN4WpSwiUx5K5aypzC787XoM6G+IRcaGcS1Bir63w/WzbL93/qTuoEKX9wvB7zBqEzY5ipQwA8ux7D00RyQ+QQvEeJ8rZ3iHcI7c0bkTczSMz7RZrFuLWNC3kpgokz1uJsPODRe7zFLbzvrEvCB6zTaK1m/51BFqGZKBsuAMOJsWK3i1h5wfDpRd/zVNdGxzfuI71L9Tp2txTmOTZTvQdo/vgsawcCYXcyQmWJ0+44uA39gUhJWwHgtZEo0bobVRdURuOsdZ9/9/imvjF2XYvzDXxnTanXlp9/B2QXBMlSJAgQYIECRIkSJDwl2CpkMFS8QLS17+AMf5pSK6JLxFsLS86lRp+u0iRxC8bkuKzE3Lbwa3fVTj/nAilWwPojdYUs4ratQAA90dFMDZM2K9qaRzOfUTSuT4af587pzca8EhlTZMuC2mG8RdJgVf/0edRd308ig+SYsUjsjoBIBalmjMr/19ep1KjZLorsxzpjQaYi+6yz8tzTnNsivDvrN5r2d+UDVuecxoVZWVQBPpxYwhhMVxhx231+bD9HVFg/KPB4aKAZZ1KjauTY3BvtLUYZMdL/WDqHIJptfMAEPbw6LFWiD1J0vIrgqyFnK9Mi2HXcWzRpQfIHLTamtxBpcbnfi2sluDdzdi521Eau2wYvT8F72tRc7u1aGT7lCfQGw2sWKWtThNaOrAipHQ8WzYsa4e1EG/q+jbcfRt54CRy55LyCO1mTEF5hZnTF/0BgFPfkjnWu2Qt8Lk7P4GTByAsCkDSrv8ZG6Z+RsgUvqGFsmsudCo1ulct52QECKtAE7AAwNpGZI2tXrxMHNBery5hnR2qc/3UXRsvWlcPh0VwKY/p+S2NG8HxYBLTe1kkSX/sMyyFtav+UTWYcvI4Bo6e6+l1FenLSL+UDaP3kj23n8eJ9BL4+xjuGAAUamR2GWIhUteEIiiZPLODMrqivHsbds5/1HlcbbsVv21aB+MsawpsyoZtyzsNAHA4Vx21tiUwNgwAMiZ7wxY6lRrnP4xB8BfRonNCWEpKRHvCnVALbplLgIhgzloshN5oQOZnJPX3+XY1oAjwhdyJsCdCNuzGTDKXwre0LCEDHY+muae4vb8x99yuzSX36vAv2wCAY8O0F56i+DXr3mFvfezMj2fpzvVGA7oPfK3SPY8mI6nxQwKyw0rxrYqwgMISBLR94O9j0HThLehUatSPiUOrxVYdB26OguLEOREbJq9BmJ/7IyNYX4oT5xAxaypS7rvD4chZoruraWyfAQCFvw+bG2XD9EYDzDdvsbTcSm9PeCRUZ3O/PZUct2XDdCo13A9amVPKhjXeGMXaCEumUDZMqKfdazqjZ+QI0bNPWa9LIRYc2b0ZATPI/M3di7m9ROHqis+yyDlavFcR6FcpG0avrSh/Cv+ZZM+t9X0CY8MA4L26afh9HUldTtkw4bwr2pI+KRsm1K/eaGClTqiMmZ+TdT038xw79rg/KdHhVEwSwCS0dGDnhM88/bvgPS1OPSsbozca4KOfwM2L7v/K35KZLMa9TSFXN4XzvkT4HJzE2DB63ntoSqXrN3XsSjgcOSs6v6VxIyhq1kR8y92iYs1CpC0nBaDrr4hD8jzChrv0SiP3zN+HNHpWMkJvNGB/SVW0nzaF9dVoZilbu0L4v5WAlDwPZEz25r7vUF0ltvqJOwaQ4uvDsjozXQWttqaq91RWZ3qcc4sUH79hesTYMGE/hzLJ+vd3sL4vU8J2oFdID3h+HId6VUvY/nZn8l9PnCLhfwsSIyZBggQJEiRIkCBBgoS/BMsLStZh+X+AL/rfn+G/CGWRoTjy2IF97n/lNpTFj7k20Q1+A0CsLqbCm+g+6DVmtYm9chIAUCOPWC3fTifFMZ/2CEWz5dYCxlk7WsK1z3XWj99v46BTqZGwlMQbtTgzAhXJlzGk+n1mCQKAxFY/AQC2+xyHvEYN9OwxDO4bC1AykFjqUte1QdYPwVA2dGN9Wy6mMvkiOwxgMgDADK+26DhxEuvfZ/9kdp3Qwpf1qYa1B0DSeD9D/gdaTj+2lq3KYo3o59PfrIYigJQNkIUSdsrUOQQ6lZqzbJ5ovg/K35LRcQKRV3H8HHzetzIn1C99VsZFVAZ985qE5fxtHO78Qoppl/UMJYzTtXx4DLzM+nNdKY5DofLrVGoo+WXBimNTq5ylnZqzuB4o4GMA7MFn+AWrxX3CWc4yvKVxI3h+QlirarvPoNvEqdZ5GQ2YnEriEExdiO56Nm4P+UlrXFF1uZPovlJ//cCJZ7m50YKoQktvz5opSF3fBm7f2C96TGUtbnsXXa70EZ1/1zsC7adNYZ9vR2lgvlMEXb/RIouyPWttjR8S4D+TWDeFxUQBwNK+Fdbt+A4AELtmBQr2kLi1ksNkXT1cYI1/ypuj5eLRDK1IEVJFg/owdyJxbfbSxuuNBsZIUcZNbzQwNk3p4Y76Z5/NN6wF65/GSxrfIc9JVu+1OD+vNXQqNR62v8PFcwiZWsrCUdyK1mJkI/L8XXojBquesXpUB17z4hhTbau/hl9Z+7rxtvV51RsNGHK1kGsb6FANOpUaAdPOYMSYGdDv2cLOXX36WHTv00aTgruWkhKY0zKZBRoAOo0nz6qHvgg6lRpuX/PMYlb5I+4zALYv0mOeyurcZ+EzNc/1Ch55Wt1mMoatQv5sLTsffE6GIR4auK6MR9aOltCp1Diye7PdeBehToTz06nUuKl5wM4FrSH7ceorW2DKzmX3rX7iQ9Ym9bWVdtfwoet/AAASlq7C+lzr/av1fQJuPqqBh8MiuPY6lRprc0+h3y9n4D8zAU96h6FC05KtE5fTdeDzQTz0RgMOxu1HfsQj1qfrqni7MgDAwVP7kPZdODI/0+DuOML8eH8Yz8bMWqwR7RWRXQZbma/v4nAodjsnZ2zBOdHerzcacHecBg0XK/FK9GR2XFa9Kt7zCcfjAeHW/fvZO4U+d5FdBrM+fA5MEj3vQkRcKIdOpUbNXL7IvBCy0wbG3uiNpOSKcO8CgIwvI9gYvrPiMe56Dto6WeMeKcP5vLg/vdGAgCRHPBgegRIfEzfGPA2JUc1aooEqoQZ33eI7jQEAqv5XkDqmJkr7hkFZbLXT61RqpG0K4eSlReGzF1o9R/pcKeLGZPp98IDpNutTcs/p9wRa6DxgxplKn43Y3/eSPxKsngYrAgI5XWSMbcjJp3BxYTpJ77QR1ybFsLZN40ZhUEZX1j4keQhrq3AlXjzFb7mz9lenWL1caP8eCdWRpFYAABo+2yeE46euCoP/NsL0DvHg2S7zbRKrbu5kRMkgwgSWkBrXkNeoDgn/b0FixCRIkCBBggQJEiRIkPCXYKmQw/ICii2/iDH+afzvz/BfAlmrIJxYtxZfjhrOju0rtPrrUytLiGMV7rojuzYjZz6J3emleRV6owG/7tgIpVcjllGuyuEk5ncPANVOVeMsh/6jCHMR+mEUdCo1Gn5uzcR0dUoM0pYTxkunIoVlQ+dEAb4eeG/vTqxtdBpFzRUkbmXiWfgMS4HpRiFuTyVWr7ydQQBI7IU5LRM3ZxCLceG+IJg7tcaJdSQWTG80IOiL22yuGV9YrbPlta3+1fKqVRlzAADeW3M5a2W3q69y+intG4YHh/yI7AG+nM89/U2zHlYkXcT9kRE49v16rg+hrhwP2Y/bor8bKa2WP3vXm7qEwH/UeVaYlPa3rYmHqK3tZxpnBQCG92NEbct6hqLwTaJf+SnrOZ1Kjd7uIfBOdBb1rTiu4o7ZMkNCJoDGdOmNBpxYv5a7bmB1YrWnmb+o9d0Wd8dZLYPdho/j5hiUrGRFLak1GwDSNoWgo7MFgRPOAhHBCH8/Cnkfau1aT1M3tIGyKynQuSAriZsTtZ7qjQa4riQWe/2+rdz906nU6PHqSGR+xmfRFMZSmdOzENmiMzv/648bMbV1XwDAoLR+eJxXA/KqVVm2stOCOI0r0VarLEXxWA2CYu/gaU3eLmYb9zH61UlI3Uis0jdmkvlnDCEstim/ADV+eFZ4PJFnZX2PTMDFmdZxhcVYafyU0NJ755dALlYGAFfgVKdSY6qA1aOIPbGbnbdlJwBSwLTEw8I++x8fh51Bbtxcuw0Zy85n9+L3uje9rfdc6dWIu872eRtzPQ9VDpP7b75sZf+FzPg09avcNfYgnItQJzqVGt2Gj8OVKN5SfnmG9fNSt/NQensCAFfUmI6l8PcRrWHhfITyLs85DZ1KDc+PCSPcS9sHebuaW+9b4kXuPjb/1urJkL1Ag4FXb7G+m38bjZ7fzWKfTZ1DUKd3Kmr8kICynqGcHF1PT2OZVp0OJEIWf4F5NtCYNjqm3miAKqGGiOmx1aVOpUbA62fh+148dn68VHRvfD7gYzSVbg1gvprGHQt/P4pbnz2HjOfWcNs3pgAA6myMBxIvsgzBeqMBpixSOJkWA6fjp64NxdMeJMaTejjoVGoETk7idCr/4zxbf4A1Vsu26LXtc/XHClKQuE9aD1Gm3cBNUVCHpZP3VD2SlXdjYy/Ru0SIAwXW2K6el+8xedNCy1BeVYasPmuQ+bl1H9vRhOzffgtTYIx4yPV7Mtj6bvCfmQDnnxPhO4v3yggYa83qqDcaWJbU6+NJ3HnWEg2JoY4IRmlfkiGQxhY+7WFdVz7vx2N5zmlYHj2LDa2ogN5owFfZ8VAcV6HzxRLuXt+KJs899boQygAAncdMAAB4zbXGs92apoW5uJjdg8eWp9y6VCrNXAbleq9aPXfMt2/DXGFBhdL69VinUuPugUDWf+MNUVjveQqpa0M5mSgK39IicGoi/N4lMmV+rkHqamvbtI1Wr4VT35J1QeXfnWzfG0bC/y4kRkyCBAkSJEiQIEGCBAl/CWbIYMZ/P6Phixjjn4ZUR+wfhrCOmFJGLGumziE49v16u3Er9JiwRpPtOQqlrzeX2UnYF7W0mSssUMjk0KnUyPxUA9/3xfVPiiZpUHdtPB4d9kW7Bpn4rAHxd6cWPiHSvgtHwHSxD3vGdjX8RhhQ2i8M5ipyVN9pZXcs7VtB/sd5KJo1hvnydeTO08JzfuVZ9DLKH3FxNoq6dRB78Teunf/2qfB7JwHOJxugcI0Pam0TZ+8q2NMM7gNIHF21311R8sptkX66DR+HX3dshG7AGOafbg/2ZK3sbwDoPug1yOIuiK4reE8L98/Etbf0RgNanBkBVf8r3HFaB4f20zRuFNzWOEFmrmDsFCCoJyOTMQskRWTLbrj2RSMEvHZOFJthqzOA1Nu556eA6os4lPUMxa0JpWg06FKlunn6qxeqdMuxe852/oratVA4vCm6TEpASusK7M5PQHW5E2svtKpn/xiM6+23cMcAwOFEQ5R3vMGNk/OJBl5z+biV6QXhSAu1ZoET9kN/07p09vRAcT/WH7Ui0yu953+GAwXJcJApOD08T0cU6vMkxswW9taQPdl+yIvDsEZaVl9vbe4peCqrI3BzFN7rtxe7hnWC5QKpcab09cbBU/s4OYT12oZcLcTu9s0Qm3JMtG91HTmeq0+YO0/LxVxQ1D3tgqK2xQDAatHZk9/evLwTnZEdVoqyXqEiZsIW63NPYYJnO1Hb9K8iCBtwsgH2Beifyw7bypK1WAOZGfD+iOyf6vPAZw3+fA3Y62tWxkXM+nwy6q2u3DJe2jes0jqStmu4svfA894PkV0GI/YYX7/p7jgNYZhsxlE28oApL/+586QISlZiWcOzaBoTjUYL49D/ym1MrV3wl/QEVM7Y07qZlT0rtnqW16gBy8OH7Hjhm1q4LSPPTFmvUJxYuxY6lZqr75W2KYSxQkLcmqaFpQpYDCLtM2e+Fl7zyLH82Vr46LJwa5M3XDbx71j6e8z1PIysUQT/bVHwezeerWl78gtR/JqGq/VVGYzvaqFayr9X7b2b6GdaP9BWTte42vje+4Rov+yXpkNpB5KtWRHoh9gTu6FTqSFTKlFhIvFzFW3VXK0txXEV6jg+xm3tvb+0f6aub4PACWdF5xWurmjwyxMYIx7i/sgI1Mgtg/wP4umTM18LBD2E1xCrp0Dd0y642+EhKkwm9p0ldVUY9D2/Rs8/piOj80boVGqkrgpD4NREPOkdxjwJFIF+MKdmQJVQA2+5/crVuSvrGcp5zVA57e0pQuiNBnScOAlVEzNxZWED5E355KWtm0W/sy5I7AynF1BH7MkjEz4K++2l1cffAYkRkyBBggQJEiRIkCBBwl+CFCP29+F/f4YSJEiQIEGCBAkSJEiQ8JJB+kfsJYTyt2QuSDdjWysuIBoAzn9oDb6PMAxCi6+i8WhwONdP5AFrMK8tKGUe6d4arRZFQ280wPf9eKRvbQVTlxDWJnsBcUvUGw2o3iMTZ98m6cmr7hWnmtUbDQiYTgKgaUHP1FUkaNdvBJHDeV8iTi8jCQZqnSIFdakLgfnydQy8egue8+OQ/SMp3KhTqVmKejpetFc7Nq+SQeEwF93lZNGp1EgfQcYo7XATtbYliAL1IVfAfcBllhpf6JYYcGIsa/vrDuKigIQUkS7Tvxane9ZdesASZgiPUzRdGU3cNeIuWK8R3NfyGhVI29yaySXExfDtrMAsBS1ICgA9rvVCo0GX4HDkLMreLebkpYU9qVti8JfRTK6pcaeR2W2DSFaqs7Tl4ZyMD7wUkJutSTuuaL/nZKLXyZ2IS6HQLVEYHC+cP4X53n24roxHSusKGGdp0ePSCNaGytBL2wdZSzTMLdEWBwIPAQDyPrLeB8uzqhC0H/9tUcwtcX4med6yfggWJRrYfWCTqH8A6H25mP2doN7FuejQ64VrTngvLO3UkDk6AgDujtfAQaaATqVGz8gRLBlH1g/BMHUOseuiQ5/z4bXtp7G+9EYMS6FPx43sOJCdX3OfBO0bzaQANC103it5Mgmmnx2PnUFuuD6ZuIH8kBeHigcPRfcq0r01Qg1mKGrXwoRahTDfKYK5wsIFpetUauROtibb0RsN8JzPp5Gnx6lbIkAC2IXQqdR4K524ST4aYi1ITPugLlzU1dDxpBunc1qMHgA8nqWaPrF2LQu2DzWYWXkC6l5FrxcWZLaVO2MpOefzQTx8P7W6Lp97vRUiW3Vn1wll6X/lNkucQ/uStwxi5z/3a4HqRqvOAODGviDW1+KsROaWaLsnCXVCf5sys5G6wZpshiaDoG6JeqMBE1Kz2HmdypqsQrh+kxatRM7OFqJx7Lkl0jkL5dMbDVjW8Cyaf0vcEgFgb1NX9Og7mp0vmmjd9xxONGR/9/AK4/X+RQTnxmYqvIll2XEiNzv6u8kp6xipMWFwPujE6chtWRwsHYifr+PBJDT7jiTmUB6zvkOFySoonvYIRf0VccwtUdinMF26x5I4lHe8AZdN8UhdR+5F79SeXPstjRtBp1KzBA90TQv1B5AyNwCQtpm4BbtsjkeFpiV7Z9rbcwC+eLntGqH30+dna5p/Wsjd9prb2nuiPUn71lSUD7V+pm6JeqMBh3PPsuOy0waYO7bGjZlaKIICYO5kxPfeJ0T7HL32zmQNW0d1T7swt0Tb+Zlv34Yx4iH6XClCrW0JMFUjzl5p34Zj6qBYzi2R7jXUXZKGUgR9ew8zvNqy5GWFb5KEG6kxxC2Rjhd7Yjf0RgOMEQ/xrjf/HcA2mVe7GSRpTNEyb+79YPu7xVfROLFuLcx3itDop3/H13IzrHFi/92f/338O+64BAkSJEiQIEGCBAkSJPwPQUrW8Q9DmKzD3EsLx9gk3tK7UAPvOfF4NDgcp78hVmKdSs0Ch20DaQFiZQmbHcUF8MqrVsWh9DhRWyF0lx5g3Y4eaLTIajkTWp10KjUgk0GpashS15Z3DYHD0WSuvb2A27+ayEBvJAkyhMWAhZibeQ6f+LaGomZNmB88EF3r88skBE5JqnSckdfysa2JB/LmaHElOoadT10VhqBvitHuxxQulS8FS44ik0FfcF7Ub4P4mtji9Tv8jo2D/+jzKHxDy4oP25trad8w/L5yDTsXlKzE1RBrQdCKtmoc+WkTd79o4LD2wlPUc3iIHXMjRQkNKGx1za2pRRpWQJXi4dAI1PhRnNDkz+6b3mhAq6RhqN/3muj48+6xbaD38xIx2J7fm5+IqvIqomvuj4xgRcmft+5s+7PVW1lkKBxjn5/wwRZydVMcit3O+lX4+8CcnsWNRYPvhcxK8VgNEhevhE6lxrS0VKwICETuTy3gOZhYcOVVq6JMG4TftqyH7+4pCJhB7vfO/HjUkjujh084LCFNcGTXZm4OgDWJiBBUHqVbA9zdWB3xLXdjzq0WSFIrREk+aFsanA4AH2YasMhXDXuwTYBQmb7vjtegzgZ+/Q28egsrv+uH8x/GcG3TtrRGwJhzqAxyJyccykywuy7Zel+gQb2LFVyCIHvQG0nBZM+P+UQnjwaHo/pPlRfRtR3vr0B36QH0zQnjaHxHC9UXle8VNEGBLe6PikCt7xOY3m3lmZKvESV7EK4JvdGAVouiUX9FHBxPuqGsQ2Glc8lepMH1cStFx7MWa+Dzgf1EEfaevTuTNai3xtqeJpCobNzK+l1W7I03XbK59sKkIXqjAW3mReHs/JVYdc8de5u6onmyHJdCLJX26XtkAqpdckTkyDgYWvHyzM9MxjxfwlbXOlUXO32PASAJf/q4nMO0xJHwfeb1QSELaYaK5MsifQy5WsjKNtjTFUCKBdMC2cI2gP2EJcLrn/YIxfENa7l2NBGX7Ti2OhPeryGZXdg8n7ef0jWgNxqg6zdaVD5D2Ja+f+lcQuZHQT3uIm70UCD2ykm799/xpBv2Bxzmzt2YqUW1Qgviv1j1p2vGVm+zM1KwxI+wh09eDYPTL/aT3gCkZMxADyvrJewre6EGw179HQktHezuafaQGhOGwOjKxwOAn66fg0tg5kubnIJ+Z52T0B1O1R3+6+M9eVSOhRFHXlp9/B2QGDEJEiRIkCBBggQJEiRIeMGQ/hF7ieAYm4T074mfut5ogF+SE7znPIvP+ukMi9FI/zoCmd3XQ280oPvA16A3GhAxayrzpdap1Hj0KrGQ3nhbi+LXNIwNo8URAcLiUOiNBsysk4l6r9wQyTUoo6vV6lRRAVOBEakrSeyXw1E+Dq37oNdYf0KfaHoM4C16tNCj8BohG2Yb6/GJL/GLr/BUiXzgdSo1AqcQRtH4DokPqtC2RPoya0wJLZxMYxQoAqcmIvbYTzgZ7Izb+xtDERTAnacxeZaj1sLLdPzOF0uwxet36FRqyG45ItRghts3cVzchS2cf07k9CNkwwDiS69TqZE/W4sIwyAmo7KRB+a5XsH+pnVx6tvVXIHkyOAuXByPvXgRAIwNS/smgo0vZMMoel7mYwFsfdxT15Dipw1nEyvz7IwUKJoGcuNmL9Cwa8wdW3Oy2LImeqMBxQcDoDcaoKhXlzA3Xo1EFs/+HmHcHI2zyL2utY1nRlLXhj6XDUtdQ9ZecOJwJo9MqYRjbBKWZVut9Ip6dZH1A7GgFk0g88ncTvqQVyPF0TOG1UK34ePwcBhZa7tO/MjNVW80IDusFEWTNNw9ctkUj+bfkHiUFQGkYOjVtlsBALkfa2F5/JgxzgEzzrDYyyEe5PfhrDOieMNHQ8h9pcyHMJZR50Gs+gfP6VGzZwZ0KjUW1icW7Etv8MWmhc989o/B8E50xitOXBPuGTx0/Q9Ov/ctpaJnFACSFq5kf9/YFwS90YDdQfVRf4U1xid/Nrmn9tgwvdGAUAOJHEhb0IpdYzrqyc5z6/2jeBaXaiszXXc/5JGxr04WF9ymbFhZZCj33Athj2HVGw1sPQiP6Y0GHO3XEgBZP6ov+Jg52jbzUw1y52qR1XOd3TFrfZ+AjKUaWB4+ZPuo8B2QHVaKaWmprO87UzQcGwYADX+9CYS1QFmHQqRuDOGeE9e42mTevULh/WG83Tm6hRTa1avSw514bnwTgdSV5HlVerij3pp4PO0RittTyXNkL27Jnh4p8uaQ95faKVekrysfW98VOpUaddcSmfc2dQUAxobVOlWXG0NvNKDL6AkIGJuMiMEX8FkDAxuHtpnnGwKZksQd3W9XhMhX+kOnUuM79zPoXrUcaR03sbGLJj17Nn/Zhj5XinBvtIZbk4sP9SP9jBQ8l4I9EADWe1pjgftcKWLXC2XSGw2IbNZJxFId37AWAIl7pO1834/Hg+ERnI7z5mgZG5Y/W4tmy61FwOk8X4mebPcdEHxORu6pjxec7sjYOVpYnKLgfS1cTtcBABTuC8KYmndgaadmc6m3Oh4zGhxDxjtNuXkBQNkRbwDA5byGCPk4CgCQuqEN9EYDGn4VJ2LDZKHW+EXhbzoW/bzEL5js600D4fRLIiev7TtbyIbRmMWWn5GYeplZhvmuhPGkbJi953RvfiJbA/bYsOxF1ne43mhAz9fHitpI+PuQmpqKuXPnIiIiAq6urqhRowbUajUWLVqEkpKSv9RHRUUFtm/fDq1Wi3r16qFGjRpo1qwZPvnkEzyw8dT6K5D+EZMgQYIECRIkSJAgQcJfgrlC/sJ+/k5s2LABX3/9Nfz8/DB37lwsXboUjRs3xpw5c6DValFaWvqnfcyZMwcjR46Es7Mz5s2bh6VLl6JFixaYN28eunfvjv804utfHyN28+ZNzJs3DwcPHsTNmzfh5uaG/v37Y/78+ahduzbX9vr163jvvfdw8uRJPH36FK1bt8b8+fPRuXNnUb/379/HnDlzsGfPHhQVFcHPzw/Tp0/H1KlTIZP9fZW+hTFix25ctuvvrGjWGIVLANc+19mxDimlOBnszFnDaIwHPVa4Lwhu/UimsXujNSjp/4AVMKawHGuEnEQP+MyOR96u5rii/R6Bv4+Bz7AUViTzzyC0Ar0SPRlVC0pRkST2E6dtbVmKB8MjUHNHwl+OEaBxYkKLl6xVM8gsFhw6tEPExOlUanyYacDU9dHwOlCMMteqyO3hAL93rCzQ0x6hcLrxiBWwtTc3AIjsMADmtEz0vHwPh5rVJlauk6/BZ/gFrr0oNiasBec7bztXW72EfRDFYods26SuCsO5XsvgoqiKNh9Foe56cRFuWrTW3lg3Z2hhmE1icW7O0KK8OsnqJQSNR6MYePUWJtcyWtmkVWHI6mONcaMFk3N2tmAZqh4c8kNs860Y1siavZAWxqSxIrSQduGbWpiqApenE0Yi1/QIkzytRbvpHOqedsF2n+NMv8uLvTDDJUfErtlaywEgYEsU0sYQNib4i2g0+inXbsa3zO1qBCwqReyvP7J+JqRm4YOkAUjvtJFrW9l61RsN6Hb1VVQZVQ7TDcIaLM5KRIhjFay5r8IXe/vCf+sdUXY6Yb9LsxNYVi690YA2H0Xh7IKVaLEsGqrPxUW/AUHhbjvy5JseYYJnO26NAiSzWMqAb1Bd7iSaj7xaNVieWQltC/fa6ltvNCDk4yhMenO/qEhv7sdayMv4dUYLuM/KuIguzmboVGqszT3F7jvtVxHoB9njJzDlF7BrKyucau+z7tIDrN/WA5dnWItI640GBK2KhucnZL/sOnI8jm7bwM3n3mgNam/l4z7GXM/Dpsl9rNlUbcYzztLi4pv8OEJdy6tWRUn35nDex1vG7cl/olSOpd36sELaPocnwl11F9V6ZCJ1QxsEjj/L9s70ZRHwf/P5MXDyatUg82gI83Vr3CCNS7wdpcG5j1YymRffaYwP6l23P8dnMW0AoGjsj3ut6qHO1BxWRP3ugUB41bqLXX5HoVOpYenQCvKT57k4Stv92R7oeMUHA+DSK40dtxxrBHmXPABATM4pRHuR9UKL29Nrh2R2wf12RQCA21M1cF0VD6VXI5hy8kT6VjQNhPlKKqcTAHz8k42cmZ9rsLT/VqwM8OfOVxbztzs/AaHrZopiEG2Rtrk1Al7jmWBzx9ZQnCDH6HNjT1cAoGzoxvYcW9g+s1mfauDzvnWN03c+1bHeaMCA9G5420NPvFHkCsBi5oo0244PPD8WKv3rCGQMtR/bVbCnGTzH59uNF3s8IBz3vRXwOHgLscd3IThxOBr2uyrqwx5uvq5Fg295vStcXWG+fRs39gXZ7aeyPYX+pu88e9fkfaRFowVWr4oePuGoKCuD3mhAVvkjTPVqB3tQ+njhSWY6TuDnlzYmin5nnR3f44XFiC3RHP7b9HH27FkEBASgVq1a3PE5c+Zg0aJFWL58OaZPn17p9SaTCbVq1UKTJk2QlJQEudz6j+KoUaOwbds2nD9/Hmq1+i/L9K8u6Hzr1i2Eh4fDaDRiypQpaN68OS5duoSVK1fi999/x+nTp1G1alUAQEZGBrRaLZRKJWbNmoVatWph7dq10Ol0OHToELp27cr6ffr0Kbp164bz589jxowZCAoKwqFDhxAdHY2bN2/i448//odmLEGCBAkSJEiQIEHCP4cKyGDB30dKPG+cvxNt2rSxe3zo0KFYtGgRLl269Nzry8vLUVpaCjc3N+6fMABQqUhpmGrVqv1HMv2rXRMXL16MnJwcbN68GcuXL8eUKVOwfPlybN68GQaDAV999RVrO3v2bNy7dw96vR6zZ89GdHQ0/vjjD6hUKkybNo2jEtetW4ekpCR89dVX+OqrrzBp0iTs2bMHAwYMYGP+N6BTqaH09QbA+zmbL1/n2DAA2HhJw1kVAXGMx4WwHQAARaAfKhTApYht3Hm90QB5lzz4zCZWnUaDLkGnUsNzlRJ6owEHz+lFMtIaJrYWTfrjvC8RFTbPTfpXEaK6WB9mEosvAMR/uQrOJxsAACo0LeF40g33Y/2tY/YK5WqkfeLbGsqGJOtUeQWJFak4f5ljs16Jsvq2L81OwCJfNZaPXw3LhatwOJoMi+tTTg9VDiex6+2xE/THnJaJ1JgwvOmSjYzt5Bhlw2hbWh9GCP0+EvfzeEA4azfw6i2RxZzCZVO86Bj9HDg1ESNbvUoYovXEWutwoiFnaaZs2IPhhFHJFOi/wfI47u/qBWTt6y5ZfZuHh/PW9d1B9dFtyFj2OWheNjeez1KyeQnrtdTsmYFhjbTIm6OFuROJDzu5Zg2JnelcAr3RgC+99gIALsyKweXp1ox5ujNR0BsNKHxLC73RgH0l1aE3GnB/aFVu3APNXAj7+6x227jrhB1T+Pvg6a9eAIDIbkNxrFQB3/eJTnv0HY2GX8Xh4JkD3Bxpn2kdN8F8mWcD1gf6IL2TlQWxjdegcRAUOpUaGddUnGV6kH46dCo1dgfVR+rYlYwNAwDNhYFotTCa63OUYRwAwmQAwNkFhLGgbJhwne7OJ4wyrRcnPHdvNIlLo2tCp1Kj0+W+rF3moNUY6EHiR2gcH8WhtNPsb1NePhT16rK+A0++BoW/DzfnemviRWyY0tcbnh/HiVhXatX/3I/EdjiedIPnsxpfFHqjAebUDJjyCyCvWhVKd/KiczyUJIoFEcaX0PFvvK2FvnlNeCyJw5HHDpxF++pUK3OlOG5lIHQqNVQJNVB7K3m2ZG2aQ+nrDb3RAEOJJ+QnrVlTY3JOceOpPo/j1obtOjmUHsfYMNs99M5kfo9c4hcMU2Y26yOrxzpU65GJogkaBI4nWRSf1iSbrZAN6325GKmrwqAI8OX6K/6JZ8Puj4rAitzOSF0TyrFhAHAy2Jl9ttXpxZlEb43POsB8PR01fkiAZWAZa5fUeid2+R1F1xHjAQBVcu9CbzTAYrgCAJA5VMGQzC7wOTAJ/jumwtQlhMXs0D6Ubg3Qqy1Zoy690pD2nXX/H6yyZumNFjALR5vXQOqqMKRtbg2dSs3YML3RANdV5B13a4XViyTtW9Jn7jwtzFdS4XmGPGd9qj1mfQrZMOH9etw/HL6z4hkbJoTzHftORgM9IuD5MWHKHvcPR9kRsqaWZvPZagNeO8disOkxxeNyAICibh0rG3bMg7URPm/CPUcom9KbxFBuzTuN4C9JPBhlw2ZlXMTS7ATmAUMZR51KjT3+v7LY7OZJZG4VJpNdVlNvNEDWqhkCo0ns1f1YXj96owH+byVw7YVwH3AZBZtUTN9pm0hM64KsJFTdcwYp78TgzlckPq2mE6kDOfyakV1/bwwfbwWQWqO2bBhAao8B4Niwwje1dt/JdA1EpVmfH6+58Xj6qxc3B+1bUwEAjRaQ+0zfR5QN06nU8HGozvrUGw14K/0q+9uUlQN580CRrBKAgIAANGzYkP383cjPJ94eDRo0eG47Z2dnvPLKKzh8+DA+++wzpKenIzs7G5s2bUJMTAxGjRqFgICA5/Zhi3/1P2LHjx+Hs7Mzhg0bxh0fOnQonJycsHEjcSMqKSnB/v370bFjR44urF69OiZOnIjU1FQkJVndXLZv346qVati0qRJXL9vvvkmysvL8eOPP/73JiVBggQJEiRIkCBBwkuKf2uMmN25mM1YsGABlEolRowY8aftt23bhs6dO+P9999HQEAAfHx8MH78eLz11lvYsmXLfzz+v9o1saysDE5OTqKYLblcDmdnZ2RmZuLOnTtIS0tDWVkZNBqNqI+ICMIYJCUlISwsDBaLBefOnUPr1q3h5MSnCAsLC4NMJuP+aZMgQYIECRIkSJAgQcJ/B2lpaf+1mLk333wT8fHxWLx4MRo3bvyn7R0dHeHj44MxY8agZ0/iAbV7924sXLgQTk5O+PDDD/+j8f/VjFizZs1QXFwMg8HAHTcYDCguLgYA5Obmwmgk1LW7u7uoD3qsoIAEghcXF6O0tNRuW0dHR9SrV4+1/b9ASK02bNiQUZhF44grwtW5fGpdnUqNWqeIO5DsNyJTVFo6fEfw6WwBPjhc6JYSe2I3EhevRNgHJAXsg+ERdoOPSwYSV42boU6ivil1TgvdMteffUEsDXjq2mep6G0KOmYMWwXHIhmUvt7sukW+aizxC0bWp8RtqrTDTbwSNRmaVWexP+AwakWmQ280wDvRGY4Hk1D9pzNMBr3RANONQrx5ow0cZAo87m91W9lXQmh/5/1Ezq4jx+NdH+LG2cXZzNoldF7O6Q0gxR3zZ2sr1SlAgomz+q0BAKR33AR7OBB4SHQt7bPqnjNMn7uD6iP4i2go/srmEhHM/ux9uRjmO8TtRtamOQCgvOMN7p4WTdTgVrQW8xYQdzrf9+OhqFtH1K3eaEDtLcQ9ZWYda5KHxQ1SoDcakPOJhrWTnyJzuTlDi7S3/QAA4e9HQeHqKiooW6FpyebeaGEcFMfPcbqofpK4AdGgZZ1KjUeWJ0hbEY6Id6fiatutUC+JxoV3Y9B6QRRWBhBXVVN+AZun0L3FbRlxCdvYmLgjmtOzUKUbcQsxX77O3N/0RgNLJOOjnwBL+1ZMZppYwJ6OhGA6fpamWqdSo7jtXdF1TT7JwsNhEcwdNavPGuT+1MKuq1PNnhmoH2NNY65Tqa0uM2YzevQZxc1XeK/7X7nNXAuFLnEUZz5bya6j6fardLO6Vwv7Pbp9AzdvWxci850i+P1ISmXU2+eMzMXV7brQDrx6i31efeJ7kS5lbZqLXJto0da5mec4ufI/IG6nlsePWSF5vdGAY6UKTl+2a0JvNOBJPaubWPeq5ax9xAXy9/xM4ua2NvcUd082ev7B2lacvcRcBGspS1Hjj3pI+4YY8KhrnNCFzxbCda9TkQK4wvlRCAsdN10ZzdoJdaQ3GlB3fTwcT7pB6eOFOleeiMY50MwFgVMTkTXSDfJnxkRZm+ZccW+90YBa3ycAXfIRODlJtOdVaEh6ff8TYxG4OYq7jrb9VpXEjpmL7nJunzqVGjS5hCkrh13je2QCKsqf4n67IgROToLf2wk4tnU9dCo1rkW5sHamwpswZVnXaMB0sm8qmjXG5FpkDeR+TNYFfabapzxBVp81LNEF1cfyYuI+lrFdjfrTnzA5A14nfV6d8ixBUHgJWw/C69tPn8L0QvVZde8ZPNW1Ycep3MZZWrhsimfHS/tZXQyF+q269wwcu5M1NTuiL3cOcgUCoxLZHqpTqdk7tdNJQVhEl3zivv2GFqkbrHEvts9V2mbiVngwbj989k/G6EZt0fDLOCiCAtD7Mvme9LlfC7zrHcG53gn7CT5HjN2/beBT7ttre/jgNna+VmQ6IjsOJO+SnS0qdbeXhbaAd6IzALAEYzqVGk3ezcWBgmR85BPKyqkktvoJeqMB1XpkQm80YEcTFevvzKcrRe/carvIfS6aIHZbpL9v/dwEeqMBF2bFsHIx9rAywJ+bg3AfBYAHPtav1DqVGsNqEP3emGn9XqFTqbkyJo2U97g1ZLmUWun4LxMsFbIX9vPfxEcffYTvvvsOkydPxuzZs/+0/ePHj6HVavHgwQNs3rwZw4YNw7Bhw/DTTz9h6NChmDt3Lq5fv/6n/Qjxr/5H7M0334RcLseQIUMQGxuL3NxcHDp0CEOHDoWDA8nm8vjxYzx+THy+HR0dRX1Q1ou2eV5b2p62kSBBggQJEiRIkCBBwr8LH3/8MRYuXIhx48Zh1apVf34BgF27diEtLQ2DBw8WnRs8eDAsFgtOnTpl58rK8a/+R6x9+/b44Ycf8PDhQ/Tq1QteXl549dVX0alTJ/Tu3RsAULNmTZY5saysTNTHkyfEokjbPK8tbU/b/F9w48YN7ictjQTsP6kjI4Hzzwo161RqBJwYC4AUVtSp1Li3oREAoF+1RyjVkyD5kPOkSKWpCwlq1anUaJU0DOa0TGSVP2LHdCo1EhcTa1HNHQlosSxaZMWttptYjlRL4zj2SdiHLVLCdiCrNykgGTjJaiG1vVa1NA6mzGzojQZsyj2F2/sJ/Zs6ZiWUbiQ40vnnRFYgkSI7jBSFlYU0E1n7lzU8C51KjT9WrGbtVwb440nvMOTvaorcuVoShF9RgW7Dx7E2eqMBF5/WJAyBkxPKu5MikU6/JIoSCgjH0xsNcB9wGf7Hx3H6UAT6sbaykGbcOPZ0pggKgO4qWZ8p78TA/OABbszUsmsAIGM7SROtqEcY0kINYfp6Xy7GDJccVqi14uwlzhJN+zj7yUrUj4nD1/5BAAB5yyCYi+5ycsnaNBdZwpdlW9Mu61RqLj3vjbdJILNhdgzcT5LUxXV2XWBBz0LI4i8wuWgSgrKKcmYldl0ZL2KFBnpEIGDaGVaY2TCbWKpdV/IB8zqVGk91baD08SK6rMQySz/rjQZ8mEnk0KnUyF5IGNIs3XrI/zgPyGQsUYn85HmEzI8S9XdvjIaNQxOg1F0bz41BcSua3EvzzVuI+2oVHteTM7mvtt3KzYMG6uuNJFkBAJZEgPZZYbag4uwl7t4JQQvWcoH5z5JaGGfxllhLSQl6tdbZ7Yve89K+Ycj8XMOda7XQWuyVBtvX+DEB19pt5XSgNxrwYHgEvr7UBakbyZ5EU+YHJDmyttenOdp9NvRGA0sMUPgW0aOckFeMhaKytnF8ZPf6xmcd2FxoIiJbJLR0gM+hiSipqAK90cBS5ttjFKleC/Y0Q94TFzxsfwd7+nzDsR22zOHz4PNBPJQe7laW0SZBit5oQKlnOVLHrmRMRP5sLfJ3W/eWsg6FJLD/j/OcDMK1+LSWBZYnT6A3GnB4//ccC0CTtQBA1qca7v0BAG9sJXHQ6R03IfU1awFu3yMT7M6TFjvWqdTMMyJ9ayvWjrJWFU/5rxy3p1rXWcCMM5Ur7RmESXRo4gvPwRfJeyDYGkogXNs0oc83YT/AlJ3L6UGmVHL3ep5vCLcG9EYDqu6xemNYnlgZyCr6syJdtOpvfU5lIc1EZQoA67NJYfJuwPWjz0/G4/7hbA8V4mjzGkhdGca9Wy+8F4OqaVWQ+ZkG2/JOi67xbHiXtRWWJIk99hP+KOaTacxfNoa7lp5LaU2Y5forxO9Hoa6bLY8WjW9OJYXjhYmc6HWKxsTToSLpIrLDxPWbypt6oLc7WZu0XAydiz3PAgDoMGWyiPECSLIjW/juJWxn/b7X2J4hZI4pDj52Eh0TQuH6rGj46zHIma/lzil9vNDwqzirLDIZe3dkLdbg9QnWVOmK2rVg0bR47lgvC8yQv7Cf/wY+/vhjzJ8/H6+99hrWrVv3l8tSUY84s9ksOmd6VtLBJCjt8Ffwr/5HDCD/gebn5+P8+fP4/fffYTQasWrVKuTn50OpVMLf35+llLTnUkiPUVdEFxcXODs7221bVlaGO3fu2HVblCBBggQJEiRIkCBBwsuLTz75BPPnz8fo0aOxYcMGURp6ihs3buDatWucF1zTpk0BAJs3bxa1p8dCQ0P/I3n+9QWd7aGwsBCNGjVChw4dcPToUTx69Aj16tVD27ZtcezYMa7tggULMHfuXCQkJCA8nFii27Vrh/Pnz+Pu3buci+Iff/yBV155BZ9++inee++9v0VWWhyvONUXNWvIRdakAwXJ6O0eIvL7toWtdftWtBbn58Rw7Qve08LsBHjO561aa3NPIbO8Jsb9OpGzmMlaNUPLDZdhaAXO+mRrLdap1KxQL/2c/4EWHov5NNv2rFg6lRqOJ91Q1qGQnZuQmoX1gT7cGMJ52JOlxh/18LD9HbvyAcCA9G4oeYUwNzvz4zHEQ5y4BQBK+4XZLbYa/l4Uam+NZ/cDAPpcKcK02nmsne190RsN6OHZhit8aW+cypgzAEhbHs5ZitO+C0fmgNVce7mTE7N8dx47EQ5HrJbaJmuj8dT7CTK7bRCNQYvCCuF8sgFKO9yEIsAX5jRrzJi8eRPk9K2DRovsFyOlc8hYqkH6yJWisej9AYDSvmFw/jnR7n2khVdnZ6Sgo7MFAVujkDZ6JTpOmMQV8F2ecxpvtn4Vmwy/YJxmCA4mHqxUhwDw9FcvkT8/hemoJ24d9mBFainStrRGwJhzdq+hULqrcDApVjQPWqj67ngN6mywz8oAwKPB4ag7PQffeO+Cj0N1bo23mRfFsW62zw9t+3BYBGr8QNLX92rXD6bMbJi6hODY1vWIDO7C4gn1RgPW3Fdhd1B9kRz2+i18Uwu3ZbxOjHubQtX/CvRGA9q+MQXVf7KuzXHXc7CxsRfk6qYsVTkAVtxU0aA+zDdvceMBQGzBOUS6t8b8zGTM8w3hxkv7JgIBb/DpvW3vM10zlcGWLba3fwkL1KZvbQX/0efZufsjI1BrG9Fvk1Oj4TXkIp68GoaTq9cgsawcYY4OIt1RlPUMheLtm1B2zWXH+lwpwv6mdbl2eqPhLxWofd5e4ZFQHes9rbFuTeNGodGgS5BXrQqLHXd6pVsDZE3yw5UoUjZCEegHc2oGO+9yug6K296tVGcUiqAArhQDANyarsX5D2JEjIVOpRYV++18sQTv1U0juh4VQWLXnvVR/zvrO4SOKXN0xOEssu6mF4QjLbQMWUs08JkdL3pX/BW9Cc9/mGnAjG+iYel4D6r+VyB3ckLquiD4jzpv9xn5s36fNx59vk1HPfGJ7z7GBAvbmCssiHRvLbpeUa8uYlOOQadSY3nOaczwasvJUzRBg3FvHxCtMyFKBoYTL5iwFqK4bnvy6lRqbMo9hbGe7UTnAPH73Z6ObNdC/u5m8Bh4mWv3cGgE7vvKmXeK3mhAt+HjREXULe1bcYwwvT53rhaen1j3rZuva6HaehXm4mJUaFtCFncBcicnZL/fGlcnx3B9Zm5Xw3cEkVFRsybQsD5ij+9C79SeOBB4iM3t8GNHfO0fxMYs3BcEt35XYenQCg6XcmAuulvpWtybn4j+HmFM5h59R6Mi6SKUHu5o8vMNGFqX/SsKOr9+qi8cX0BB57JH5fi23d+njxUrVmD69Onw9PTEggULRP+ENWjQAN26dQMAjB07Fps3b8bx48fRsWNHAIQJ02q1SExMRPv27TFgwAAAwJ49e/DHH39g8ODB2Llz538k0786a6I9WCwWvP766zCbzSxzSfXq1fHqq69iz549uHDhAlq2JIHIjx49wrp16xAQEICwMKubyfDhw3H69GmsWbMGM2bMYMeXLVsGpVKJoUOHvthJSZAgQYIECRIkSJAg4f8MmvU8NzcXr732muh8hw4d2D9i9qBQKHD06FEsWbIEe/bswXvvvQeZTIaAgAB89tlnmDlz5n8s07+aEXv06BHCwsLQv39/+Pj44P79+9ixYweSk5OxaNEifPDBB6xteno6wsLC4ODggLfeegs1a9bE2rVrcfHiRRw8eBA6nY61ffr0KbRaLS5cuIDXX38dQUFBiI2Nxd69ezFnzhwsWLDgb5sDtS50RF8oZcS6kLYiHAHTrJZmc8fWoBmoLO3UkJ8isU2HMhOea6kESCHftDErEdm0A67PDYL/zIRK29qDuVNrHN1mZVOoRYki64dg+AxL4WQAiBXo7jgNkhattGsZy5+thdfKyzDfuw+90QDfPVPQvEUOy5z25NUwVEu9yxUg5az1b2jh9k0cMj/XwHeW2Bqe84kGNVoXoU5vawaip7o2OL5xHUZld8T33icQ2bQDzPfuY39BEvq4h0JxXAVzJ+Of6ubm61qojt5B7NGdrJ2pSwiUx5LtWgKFxxQBvog9uUfURtnQDaYbhehzpQj7bqgh75LHmAIhjLO0rKAvQLKIPWhSG6eWr7arZ/q55dJo1EspYxnKhMjYrobfMyugra4rYxiHZHbB/XZF0BsN8Dk4CYGTkirVm95oQKtF0ai/Ig5LsxPwrncEVAk1YIx4KGpHx+zpG8HiMZ5nXW2yNhq+3xfa1amtzJWxFgCYRdOe7LR95nY10jpuss98XuuFis4FdmV9HgMrbEfZH73RgKBV0bg05TvR/c+dq2WFiFsviILrSp4xA4DsBRr4fJKMivKnUNSsCfODB1wfjifdUDqnIX79kbcwl/UMxYn1a/8Sm1A0UYO66+KRM18Lr3lxqPa7K85f9kFW3zVMz+1SBrDMZmHnB8OlV9qf9kvRIL4mbmoe2LWm21rej5UqWFZM2/5pe+Hn0A+jUGejmD2RKZU4nHuWa982ZQDu3K+O6+23IPTDKLz9/g/Y0qsjzOlZonmU6n3we4u9PFskYAF1lx7g2KstYMrKYddY2qkBhQzF/k6ouz4est/ccbjJweeuVXuW9v+EmdEbDYzJo3uhTqVG6ppQOOc64Ep0DDRvT0XNHc9nIv/MS+J5cqd/HYHO2os4dr0xxzrrjQb07D4Mh478wPoo6xUKx4NJHHPzpHcYjqxegT7uoTDO0qJB4hMoTpyDolljmC9f5zwJnqcbhYsLXk+yxtI+b16251NXhyLr1bXcOZ1KjYI9zeA+4DL0RgNCkoeg3quplTLaf/YbIIyv2x93UX31Hbbn2pPrzmQNkj9eiVcu9oezLkt03t4clO4qmArE7zxLOzV+3bnJ7n0tiwxl2ZPt6Tf9qwj2PYOepwj9MAol7jJUK6jgvhvY9mVvjm+nX8aX/s24cyUDw/HERY6iMBMCJ1tlSl3XBnJHM/xHE8as8E0tLsyKwYp7jbC/aV1syzuNmfk9cVPzgDHBqWtDuTh3nUoNedWqcPnVEUVtizkZe7XtC1NWDjKWauD3Lv/946+yr5W9p7o0bCYxYgL83YzYy4h/NSNWpUoVtGzZEtu3b8eNGzdQtWpVhIaG4vDhw9w/VgDg7++P06dP4/3338enn36Kp0+fonXr1jh8+DC6du0q6vfo0aOYM2cOduzYgaKiIvj5+WH58uWYNm3ai5yiBAkSJEiQIEGCBAkvDSyQw/IC0ky8iDH+afyrGbH/BdhjxIRQ1K2D2Iu/sdiE5+HeGA1qbyGW3siW3UTZ7LJ/DMb19lvs+u0LIWvVDBXneb9tCuHnBVlJ+MgnlOtL2J+w7frcUxgV9Ra+/G4FPvAJgzy4CSwp1wAAdw8EcsyV7ZgZX0bA7+3KmTxbn3AAaJ4sx6UQC/u8OCsRH/iIa7oIQeeh/jQaDb4Vx7cBQPFrGjg+sKDqXmJtvfm6FqveXI55viGc9RsAiztJ/zoCFXWesvo2tvOUBzfBocNWC3C1311RNsYZpuxcrn37lCdcZjChfEIZ7WFt7imMiXqLWJbtzIsidVUYAqcmQuZQBYdzSBxHi2XRkGmLK41f0RsN6PHqSFQk218zAKnR5vSLNS5MUbMmMt5tBu+PKo/toX357ZwK/zcTIAtphvS3HeA3wvCn87YnQ8h5C5JbiTd1Wwtl/mwtPJbEQenhjkV/7MF7PuF2+wxIckRaKMmuGpNzCn7PYryYtdnXGwdP7QMA5JseYYIgtkJvNKBHn1EsG6IQirp1EP5bIfav6IDkj+1bjXtc64WcE15s3f+ZFR8gdc/utitDwGvnEJNzCtFe7UQsE40hozGeeqMBvnuncAw9Ha/djCks0yrN5knHVnq4w5TPJzzalncaIxu1FeldCNe42ritvWdXfgoas2Urj+2+Q+NPbkdp4Jr8CPp9W7m4O+HzpDcaENmsE8zFxZwuhbqpjLGwB3ptp3ETWXY9erxXeG+Y8vJF7DgApK5vg8AJ1vbpyyLg/+az+L/WOoTp8xDXsopovN6Xi3GgmQsAoPFZB5zcGoqyOoDXPLI+br6uZXsaAGR+poHve0QPq3JOsXp+FGVHvFF1ugLm1AwWbxj4+xikvkLeH6bOITj2/XoEborCyqFrMOnUa3BwMsF7aMpzdcOe/2feB8JjWYs1SB1bOUvyPOiNBvjETkTH5tex0fMPrr2yoRsOJh/+S30A5H5XaFsiI0oO/9HnoXRrgOtfquA3krArqWtDkdWLZ46FTOaY63nY0rjRn46VWl6CGV5tkbGtFfxGnmfXPW++ERfKkdDSgcVq0r5afBWNs299g/YfvA6XzWKGhs7refLoVGoWb1kZE22LO1M0qLdavIebuoTAcc4NVJGbUbNKKW5qHoja/JV1IsTAq7cwuZYRuqu9oQ86gAjDIFh2usJlkzir7vOe16i0dPSr9kjUf/5sLUzqR/AeSjx8FmQlieI/7e0NAJAzX4t6F82otuuM3b3I9jpbfQr7++n6ObgEZr60DBD9zjr9VP8Xxoh9127vS6uPvwP/akZMggQJEiRIkCBBggQJLw7mChnM/+Viy3Sc/3X873N+EiRIkCBBggQJEiRIkPCSQXJN/IchTF//6WM1/JxuYWeQG9emMtcAexS4PdAAaMula6JzA6/ewu6g+tz1woQQtu523onOrPCi3mhAr5AesDwqgeXhQ+bSmPZdOPprkphroN5oQGSr7tZ+jnkAXfLZuS6jJ0B5LBkAIGvTHBVnL0HZyAMDnqVhn1CrkI0vnK//jqnMZREAul56iKPNa7DPNEBX1280l563MldKei7i3anM9WlCahaGVL/P2tm64VE0T5bjy4bnuL5ydrawW8TSdh5hs6PgsjneqttjHvjMdzfUz0onCPvMn63F5Rkx7HOv0EiYCoxc/0L3OgBYlh2HN71Jkcm0b8NRM12BBt8St7OmMdFotDBOdD0A3ButQe2tvNtJyWFfVOuRyR2zt/ZUCTWYi5DC1RXXlnois/t60XxssT73lMiF789caW11ejtKA9eV8cj6VAOf9+2nf7d3HU2XTdvQJC5p30Qgc/CqSl3SbGWM7DiQSwNOofTxgikrB6ajnlB2zUV59zZwOHKWuavlDvXExZnWdMq2LsIAuHT0ACk3sC9Ab9fNxZ6u7IEmxhDOhZO7kQdMefnokFKKk8HOdvsYeS0fG97uz7m+6lRqbu0JMTfzHBo7lKLnvHdQZwNxLRqV3RHuzvdgaMW3XZCVhPnt+4lcHYWun3/mLkhdHmnih+wFGs4ttnisBm2mnUdGqLVgb2X90eRJt6ZpUX8FWS89A9rCUlJCGsgVgMXMuUz/lXvS+WIJfmtR7bljA0DqyjAERlnTvz9vTQJ8wiUqu/B87sdaeH7Mu3YPvHoLq77py5UFsJ0DTRmftjwcqoDbOBVcecIcW9l6Ro5gJQ5ov6efWDAnajKM458yF0e6N9L+LB1aQX7Smkpe1qoZDh/c9tz7rzcaELglSrQXUAhT5gvP0zIDNCGU7d6huTAQNXvyz/m0tFSsCAgk77yuQ2BxdGDPcO48LTznxyFjuxrpdpL+pK5vgx2dViPCSVHp/XzaIxTHN6xl90B36QH0zXl3LaVbA5gKb9qdKy1LkromFFm9/zwxT/YiDbw/tK83e2569hJMAeK9tTLojQb07DEMjz1rov9nR/CmS7ZozB4+4agoK7MrE0BS+wv3SNqOyggAGV9EwP/9s6gwmazuss/KMOR9qEWjRXEsIZFw3QtdjXtevodDzWojb1dzNBpkdTHPnavFktFb8O7e0UgbtZIlBbNF5ucapI0Su+KaKsr/Fck6pvw+8IW5Jq5+ZfdLq4+/AxIjJkGCBAkSJEiQIEGCBAkvGBIj9g+jsmQdChcXmIuLGbMghD2rFLuudi2Y791n1tXnWQnZ8Yhg6PdsYX2vzz0FD2V1AICPfgICxyWzawCwAoSUMbCH+ZnJ+CirH+RdrAWPLcca4degX/6Slb4y6xsthCws9ilsI0TI/Cgkz1vJPtsb1zb9/Y23tUh5O0ZkMbUoZXDZJA5KLpqkgdvIbJR3vMHJbGuV0xsN6DhxEu5MfIwqShPOtfmRtU37LhytW2Zgl99R6FRqVlBWyIgAYGmRqcW9Mp3deFuLhl9adUMLN9vq9NGQCJxetkqkF1ooU280sMQlf5as4K98BgCfnycza769tXmgIBkOMqtFmGtjU3i0ZBBJXbx9zhesoKnteBHvTkXC0lUArPdfmGSjMjkqO9by82jCsgrOFbyvxaXX+WP2Cm8L++ml7YODcfvtztPWelv8mgYum+O5+5W9UIPlw9bhS/9mdudtm6zAdKNQNCdh8hLRPiJgwgvf0sLkBHgs4S3aNEGH764pCHidT+YBAHJ1UxyK3c7JozcaEPZBFHuWbFkWmvq6rGcoK+D99FcvHG/2M1oviMK5j4gF+c9KAgiRtiIcTealAy61RMkxAHDM5ITcdsh72x+y08/kighGcMxFLHU7jy5X+uBYU/v3jOqLJtv4M8u/7fUUpXofFFxtgDoXZEhatFLE+uuNBqy/78a8JmzLi9A2FM97Jv8Mwvb0XtpeLyzebXxHC889Rpgys1Htd1fs8f8VvTSvwpSTx8ll77kKnRPFCp/TcZW+3jBlZtuX6dleYPvc0PTkwvaRXQaLCk4DwKyMi6zsgb2U68J+myeMJHvvc3Rke5zOVVG3DsxFdwEAnmeqITe8hLWjz7Y90GeAJpWpdJ9ybwV9wXnRuZHX8rGtiYeo3+HXjNjRRMUds51/haYlboVWg+F9sq/1vHwP+hEaWC5cJWMOGAMkWMvWKN0a4OA5/Z8y03qjAeHvRaH2VivDmL1QA89fn+DXHRsBAMuLvXCgmQvkwU1Q6lEDy1Z8xxImUW8CCup1Yo+d+yvr/eYMLRosj0P61xHwfyuBXUP3dABouTQaF96Nsa97lRqWY43Y9xylhzsqHjxE7LXfyTlB0Wnq7UG/wwj7ED6z/5b09ZNPDkaVF8CIPX1UjjUdfnppZAErQwABAABJREFU9fF3QGLEJEiQIEGCBAkSJEiQIOEFQ/pH7CWC3mgAIoIBAOZiUkBwqTtJu9t0RTQAYumZlpZq17qoNxqYL/KW7d2gNxrg+9NUvv9nv5vGREPWpjlKBoYzyxbta4JnO+J/rlIjS7eeG0unUqMiiVigKBsmVzeF3miA3miAonYtAMDHQ8dybJjeaIC8Sx569hwOvdGAu+M0xBJqMHPWIL3RgLyP+JiSPlcEMTHPLEnU35xeU9ovDC2XRjMZAaDe6nj2ufGGKLGuAfgvuMSN3/DLOHZ96iqS7r5CLmMpcm3R4Eg+dgfs5/SnNxoYGyZ3cmLnHGOTcCliGx6kuXBtK5zNeNj+DuuTFqEs6FoLpf2sKffdB1xG6qow6POTMTsjhZ3TGw1YnJXI+kx5O4YdV7qrEDj+LORVq6LN3ChuDrZsmN5owO78BMaG6VRqGN63xqM96W2V5XkWT9vzQstkYFQinurasDZ03dx8XYu74zVofmqciHFQ1KtL2u3bikeDw1m/FXIZ6q6NR6BDNbvj61Rq3A+QI+LdqdCp1Ejb0hp6owHfufPsDR3v7jgrw9Lsu2jWV/qyCMhaEebpwqwYtJ82BXMzz7Hz7p/GiayaAdPPQKdSI/NTDdqnWOOO6Him7Fx2Td6u5pheEM6dDzo9Go+GREBvNGDJ3DUAgOo7rRbr7SO/wbKer4rm3TNyhDjm4EYhN8/ZGeR5T24lZ/rXqUhcIUXBcH/MyrgIyBWo2v0mPJbEIX1ZBNf3gWZkHQvZMKEOLIYr7D4I74uQWabndSo1cn9qAf+ZCVD4++BxA2tC3yrdSFp815XxbHzKhlk6WAPK0r9vhQpNSwAkhXveh2Q+AdPOwHynCOa0TLvMUZXbpUyW9Z6nIDtNdJKxrRXutKyGpW6EbaCWeHpdy8+i2eeKhvUAgKWeX3HPfvpy17jado8DwIeZBjgurA3/NxNQZyOZa+DC67g3WoPJqZnI3K5Gr3b9rDHEcoWIDSuaqEHzb6PReGMU2r4xhZO37RtTIFMSvSpcXLixFa6urK3eaIDxXS27b7nztIz1soXwuOqLOFSsfwoA2OP/KwDAbORjleztG8uLvRgbBljXqSkzW7Tnsj1j31YAwLjc9tx5IRtG2zfceEP0jgGALs5WrwL/mQnokFLKPQO0bc+AtsCZWvamz/WXur4N+zvl6RM2D3PRXXY8YVdL7johG0Z1T9tSRviJxQE45iHaY+j8YOPURNv8ENEMsmdxxsLrVmW+AkWAL3dNxrBV7O/sBRrI4i/Aqcct6FRqZHwRgTddsiG/edfK4OzZAoW/D0ZeI7HepsKb8PuRfNfQXe3NPZcA0CGFPGMRs6ayuGOqH+858ZCfPM/Wx+ZlkciZr4Ul5RocY5MYGwZA9AyWl5H17PvreNZnZeww/Sw81mA58Rzxf8u6tz4eEM729G5DxsLta+v+Tn9MnUPwWVEAALDvOcHnZDDlF8D84AFaf0K+b1A2LP37Vpjc8lXojQY470uEd6IzFHXrcLK1fWMKUstLIG8eiH8DzJC9sJ//dUj/iEmQIEGCBAkSJEiQIEHCC4b0j9jLhoQUyKtWZR9HNmoLvdGARouIVcb5ZAP0qfYYzb+NFll7hBg5/BixyA+2WrqopUinUuNKdAxW7F6FarvP4P6oCAA8Y0b/Pv3EAlsI/ZozvojgLN+UkatI4rMF0rEtF65Cp1Jj1dxvAABJakGGqIhg6FRqNFoQh56NiaWzrFeoyMoplIH27bwvEW5fx0EW2oId8zxTDYVvaJH3kRbec4gV7s4vgcjYrkaPa72IPA8fivrN+JLoI3AqYd+Km5AMgkJLm/FdLbGM5eSh6fHJ7Pjb6Zc5y6XlyRPOkqZTqeH3NvFFlzdvQljHnus4HdFrVUvjUG9mFrM66o0GBE4lzNcSv2D8HkOYksAtUQhxrIIOKaWcXvx+GwdTgRHB52SwPH6MuuuIlf3GviBuPAr/7VMx0COCndMbDYhs0Zl9rvFOHifj7al8jA4du+yIt+hY2opwNFkXhazFGhQ1sxak1anU6KXtgwbfxqHOhnhcb09iFfPmaK3M5DeebH2d/mY19EYDXONqo/pOq09/9kKNKCagrFcork6OQa1tCbB0aAX/1Rai/51T7T47dTbGw/iOFlvzTsNjsZUZHdf5BIvV63b1VfyxYjU+8eUzg92aZpXX1CWE9Z82ZiX2rujE2u3NJ0Wt07+26rnRoEtImxaIW9O1TGeegy8yBuzdLyZDbzSgYI81HizEsQoe+5PngjK3mZ9qRMyFrQUYAJb4BXP6p2wczbKZ+akGbsvi4KooASxmlhkuY4h1L1mWbY1B/CzrDNefEPRc2GwrI603GqBoarX6Kt1JvIrnYLJnmNOzUDutFEHJ4jKXwrmkfRcO+cnz7HhG5404snszshZrcL1NOZ4ElImuEYLKWnH+sl2mIb3TRrvFammfbt9YdWAxXGHsEWBlZmz7FRarps+YIohY1hf5qmF2VnBjmIuLUSvjMdYE+sLvy3IWM3X3QCBCkstF+q67Lh7un8Zh1oC9qP7TGW6ep79ZjQqTCQDxuLC0s15rvn2btdWp1Lj4FmHCe/pGwHN+HDsnr1qV7bG280tdEwpzJyPHfsmdrR4BtkhdR5jxA81cuH5kSiUK3xBn2hTqjfZH46dv/dyEnc9aYt2XFIF+WO95ihtfuD8LmaGTwc7wWBIHRb26XHtLSQlmj/+RXeOX5ITcj7Wsr8gmrwAA6sZb42WCqzhhW95pACRDKMXFt2Igr2HN7AuIWXx6jF6fpFZAH3SA1/UqqzcE1bdwX1e4usJ87z7LLijEHy1/hDkjRzQ2Bc0mWisyncz3nQToVGoYB/ox3fkemYCrs+tyMWgZQ1cReYIOkOdSrmD9f1DvOgDgVlgFN6491F0bD695cXg9/Rq3fzU+6yCS13808d4IeI3oOH82eS8/HkD2tI4TJtmdp/C7jq0eq+4hz82qnFOQnzLA1CWEu1anUkP5WzKLwafXp7SuwJPeYdiZH48618vIORlhc/xHnYe5uJj1kR1WCnPRXUR2Gczmffqb1Zjh1RaWS6mV6uZlgqUCsFTIXsDPPz3T/z6kf8QkSJAgQYIECRIkSJAg4QVD+kfsZUFIUytr9Pgxd0qnUmN+JslcePV3X+hUajxxtYisjMLP1AIltP6lbSZWfMbMOFSHwtUVtb5PYNY4U+cQrp9PfFtDp1LD4URDAICisT/rI+yDKPi9k8BZt/I/IJbCUIMZebuas7a2+MDHGm9kfOeZ9TMhBTk7ibX10PU/kLalNatLFNl1COsrdU0ofA5NJLo61oizSh3+eSvrt6BPNbh9E4crUdY4p+LMOvAbYUBF5wLOCiZE+vBV3GefD+JRe2s8lF7WuA/VUmIlTl0dCv9RVqt896rleDgsgrueWaSfsYvUYkvrutn6/gvlSY0NwK6bbTgW8tFhX9ZuaXYCfN4nTNfJYGcuJtB/1HncmaxBSusKlPYNY/Nt2O8q+7tC09Jq6X3H6icPkDgpc9FdKGrWJOzfW8Sn/WmPUBKz86zGUEVbNTqPmQAAUDQNhGP3bPS8fI/ry++Hp7g2cSV8PohHw68Ic0nHPRi3H7agtc3Svg2H38jz3L3SqdS4rb0HvdHA4hK858SL7qPjwSToVGp4Jzrj1x0bWeyP/5sJduMIHg2JgOqLOJhtYi7m1LvG2ihnVidxTqfrIOy81ZpJ60kVTdAgu7cDu1cBJ8Yied5Kdn1VeRXoVGouJgEAkHgR9b+LYzGFshDCfulUapYpkGZtS/s2HPNvN2UxJFl91kCnUsP3/XgoG/FZ0nQqNZotJ7FMChcX5M2xMg2pa0KhNxpYBsmSgcSKnDZmJRQ1a2Lyh2+ytjX+qMfpjNYGuzFTy2I4aHyWUK/v+YQjdX0bJC7hs5ear1itvqYCI7f+TUc9ceSnTTj+PdkjZA5VWH/BX0azdgHTeSaO/vh8QNZlZvf1+DDTgObfWK9JjSF9PjjkB5lDFZTqfZC6vg2bW/fBY7k+s5ZoGCsMAJefltrdd0MNJN6Iskf2YM/jQKdSw3w1jX3OGiDOYpnTqyp5VpOt9ajq9E7F4gbEe4LGbtJ+l2XHYd2CfqJx19xXofg1K1skP2WA0tcbeqMBD4ZHiNoDhNFX1KsLWRuyl1seP0ZF0kXcfF3LZPwhLw7LsuPg7kniYul60xsNMD94AGVDa11M4TsocOJZTof0eIXJhAvvxTDvArmTE25Fa5G6KozFPKV9E8FdV7/vNfbM+cy2spjm1AzR/vpgeISVfXLgWdcb+4JENagAYGSNIjZWRugTXJ0cw+KgzA9IDb6qgwuh87Cy4XseEaazrRP/NYt6YVC5bFkaKtvIRtZMsDqVGgHfR7G2WX3WcPshANTabM0oZ759W7TOKHq7hwAWM/eup7HdtlAl1GB91F9hZUYDxiajZgp5Lu+N0SB7oYaTXW80QJ+fTLwhvgtn49B40jE5r6DgPS3uTCbXdb5YQrIPqpuysXtVfYJlxd4stvl6m3JOV9RDQHh/PZbEMVZrRFYnOP1G6tEFrY5m+phzi3zHmJ2RwrFcts91dK+J0BsNrMbpgYLk537nKu0XhuoXb2CIh8Yau1nBM4A0BpHKYr6axnkU/JtgqZC/sJ//dfzvz1CCBAkSJEiQIEGCBAkSXjJI/4hJkCBBggQJEiRIkCBBwguGVND5H0ZlBZ3tucwFJSuR+qA+YhvHAuBp8bsHAlGnNx/keStai/oxvKuMorE/Yo/vgk6lxqqcU/BxqM76UXp7ImeYB2Imx2CRLz82QNLaXp+wko2tSqiBm+PcEHvsJ06Wogka1P/jFsypGaI+Hg6NQI0fE5A3R4vqeRVw2RyPO5M1cD3/CId/3srcDJrGRKN9n/PIDisV9UGLJdu6dbSZG4W666yFIu25ZQBgBTaF19MCji0Th8Ot31XWp73rje9qUbWwAmc+W2k3CB0AMr6IYK5+MkdHlB9sAPnHdfDrzk0ilxSABIB3qXUFA6s/4MYUymDv73YpA1CtR6Zo/AptSyhvPYA5PQuy39xxuMnBSmUVwuFEQxwIPIQmp0bDawifcMVWZuFnmUMVVJQ/xZCrhdgZ5Aaljxcyx7jDc35cpfdD+Hl2Rgo6Oltwy1yC0Y344sy2sPdsVHa+8A0tShpZ2L0INZhJ8LugDS2g/TzkfahFo0WVu509T7ZpaanoU+0xdCo1e05t126HKZPh9Atf5DNtRTgy+6+2q6//ZHzhsdRVYSwJjblja8zfsA6LtT1x8Jwevr+OR2Y3cXFgnUqNjC8j4Pd2AsZcz2NuWt6JztzzuT73FHrEzIL7p+SeH3zshG/9m8Ae9EYDOo+ZAIejySJdVPbsCts9HBqB+75yLBm/CTP3j4Hf2wlwPOmGsg6F3Di0YKu98e3p0lZ/k1MzsSbQlytcTJE7Tyta37bzqKxfoQxNV0TbXVt6owG+u6cgYMYZTt6M7Wr4jbC66spr1IDrERluah5w/TaLH4nLmm1/+tzLnZxQ0cwPh3/ZhubfRouKkwOkUO2rRwzY3ycM5vQs7hwtPPy8+dubW4++o1lSp3HXczCshjWZgSLQD7EndtvdK58HvdGAXiE9cLejN6rdeArFiXPcucBNUcx1FSDP9Q+TvsIneb2xy+8ofPQTEDguWbQ+pqWlYkVA4F+a25/Jp1OpkbFUA9fzFai5PeFP2wvlEB5vvD6KJda4MVOLhl+RNXR7qoa5jctCWzAd24YIcC7wq8LQ4A85am1LYMW4dSo1V0xaeI1rXG0u8QwigoGEFLvrvmePYbCkXIPzyQYo7XCzUp3YmzM9pwjwhTlN/J4D+ILs/+l6+b9AbzQguewpF15he16nUsP4rhaPGj9FVuS6P91nqP5q/FEPG+ofgUtg5ktbwJh+Zx19fDiqVK/y5xf8/8TTR0+xtdOOl1YffwckRkyCBAkSJEiQIEGCBAkSXjCkf8ReIqSua1OpBQwAvnRLhLmTEToVSZlb2jcMX2UTy1dS651cMDgA1I+JY8k1AMJUxR7fxdpsuhfO9W/KzoX7p3F4heQLQM58LVI3tMGdKRqkfReOp24m6FRqdB/4Gm5N18IY8RCxx37C1aeP2ZgHCpJRd308fLeRlOvNk63B5wBQ40diAVw6dgMSl5AkBskfr2RJNu5MIcG7jRbGITusFDJHR6SuDkXJswQVeqMBeWsbcDqiySPKXGQsQQg9r1OpkfehFkpfb3Y8f731esUzC8ul10lCD+ddtaA3GqBo7A+dSo3U8hJ2XdoKoi/V0jjU3hqPyKYdOP0J07kLk5gczjoDZddcxoYJoWhQH4qaNXFyT2usCfRF4z/GPDcg2HZup4L3sBS5QovnkV2bmeX6cJODousfHPLD/ZHiAP2yOQ2gU6lxrd1WpK4O5fqcd7sZlxyFC7AvJ4Vcdwa5QW80wJSVA9/1OezatM2tEbTGGsRP0fFSPwBADfkTRDZ5BaMbtYXSqxFuzNSydrQAtHDutgHOwj6F+nL7Jg7pI0jyFUWgH5LUClEbmgJZCHk1a2riR4PD0WhRHG6+roVfkpOorRBDMruIjhnLrQW8nx6rJxpfp1IzNox+1hsNCJh2hrFowmtooLft807bPBgRgac9SLH1BvE1oVOp2Wca5A8AihPnMCt1EEyFN6FTqdH4q1LRGLQwKU1gs13XlrWhbBhNFT3k3XdQ3uoRk6VX1SeIyTnF6YIG2etUajgcTbarC73RgF5t+1qD/m3W263pWtT4MQE18ixYERAIv7fJnlLWoVCkk6e1IUL2IlKKwufgJE4u279TV4VhTaAvnvYIZenp9UYDLO1JkgZhWnfbeQDAW+lXRWvF9l7pVGqODbNtT9kwnUqNlkvJ8+M3wgBF7VpMP5aHDxkbBgDtp0+BTqWGx8DLiOw0SKwAwTh6owGWJ09QkUwSY1A2TCjHvTEamPILsLepK65+UJfro+5pF+T2JHs8La5MS0/YzqXxWQdWtkCnUnMlTjY29uLWXuyJ3QhaEw2lhzs7Zu7Il4wASLKkjC8jUDTBmizCdKMQ8V+uQsZo/uuNTqXGwkHbAQDaC2S/arQ4Hu96R2CX31H0jBzBxrJN3rBk3phKn3v6XqDX0mRK9LPwb8bCj1yJmtsTuPUtBH2X6FRqVjiY4sEhkkb++gRrEqCGX8WxvykbpmjWmGPD6JzYvCKCsTb3FG68rUXg1ETU2kaeo5JXbrOxhtc6y+SgMM7SMjaMvj8pGyacKx3zQZPaAMDYMLoGFmclivq2Rbeh4wAA5rRMu/sdADgcscpY3jVE1B/b75oGctfSshnCNulbWzHZC94niTWevEoSXdHkLDqVWsSGCWWj46uWxqFqRhVOnpuvayFvGSSeaEIKAOBh+zvoH9hCfP4lhLlC9sJ+/tch/SMmQYIECRIkSJAgQYIECS8YUozYPwxhjNjDsa8gcYk17qjksC+L/7H1f96Wd5oVexYet7RT4/GcB6j+7LoJqVkYUv0+eqf2xIHAQ2hxZgRU/a9wlpunPUJR5XASJ9f8zGTM8w3B/ZERuNnZhMZTDCjr2grHN6xF++lT0HK2Ne21EOXd2yC7rwIB06yMBR3r9v7GcO1D0uqnfxUB/5lW1qgyH+rcuVp4fhLHHZM5OrJClSOv5WNbEw+U9guD875EUR+92vaFKSsHpX3D4Pwzf17YDgCyyh8hutdEllYeAGqdqov77azpjG/M1KL/ayeR0NKByVPevQ0cb5Zg4b7NmNOsIyyPH9udl61feEzOKfg5VEePPqNQcfaSXdk6pJTiZLCzXd3YHhPGmjwcFoEaPySI1ocQMqUSN6aHwW1ZHKdTe7KX9QplpQSydrSEz/ALduWlmJ2RwhUOtoXeaMCWB/W4gqDCudnGH9nKxcXMbGuF9E4bnxtncPlpKWZ62y9A7ZfkhKxJvnaLIetUaiiaNYb58nVRv8+bGwD0jByBQ7HbyZoNacbSj9M4NXlwE1hSrlXah4g9rVkTsdd+55gDQ1kZSx//vGvzdjVHo0GXuHPNk+VIuecOeZc81k7Z0A1pb/jA531xIeOsTzVIHbPyuXqm5+6PjGAW9htva9Hwy+fH1wljXC0dWrFCzZXNRwhFg/qIPX8EvrunIHMgiakrmqgRxYv6/TAV/jMTOLmp7PbG0RsN0LwzFTV/SGKpuCu7Vgh7jLGwPb0XAPEAqJXxlLGDyoZuMN0o5OQpfEsLt6/t6084v1zTI0zybMfOyatVg6WkxO51/wlkrZrhprYWamWX46GHEtWNZlQ/m8vkFMpC3y+Ade+kMpo7tcbRbRuYHp63xgGg+bfRcP80DiWDwlFtF3mfKBt5wJSXz9o3iK8pio2j/duCnvc5OAmBk6zvO6WHO0z5BXbb/5VYI73RgLdvtMalEAt33NJODfkpA9eP7btW+I4CSAy3+Xr6n45pK3vq6lAETkmC0tcbB0/tI/tW7VqIvXISwV9GI+XtmOc+txGGQagVmV7p80whjMPUGw3o2XM4+u74HXubugIAIi6UI6GlAztf2fuvsr/tfaZQ1KwJ32NlSAst4/SYM18L51tA3StPoDh+jnsmWnwVDdUX5NmJLTiHSHcrq0r35FU5pzDVqx0UgX64OrMuAqcmoqxXKJx/vwa3XwFjxEPR2kr/OgL+b5H3a8eJk+AYy99TnUqN4rEa1PvlOsxFd3Fruhb1vxM8wzIZyruFwOeTa8iPsHoROJxoiLLpzvjt4ucvbUwU/c467NioFxYj9kOX719affwdkBgxCRIkSJAgQYIECRIkSHjBkP4Re4ngspkvSnsqeA93flpaKjtPiz12GzoO5V1D0KPXSACkSGd1AYu2PtAHAFDe8QZ0KjVU/a8gY1sr1k/OzhachU7p7YnyriGIcCKZ5eRmIHDCWezKPoWiZg7oPHYi8iPNSAstY77xeqMBikA/AMBvm9Yhs/9q0dzuj4xgbBgAZpnudLkvmieM5NqWDLIWgKRsGGC1claUlTEL1Ziad6A3GuC8L5EVaxW2p5ZG558T0ecKYbZYLNcxD87SNdWrHSyXruHhsAgWk3a/XRHGXM9jfuMNv4pjFj+K3zatg+fabHzgE4bcN9Tc+B1SCKsjUyqhU6kx5CqxJhZN0iDaqx3m3W6GirOXKo0loYW5KR4PCK/USntlWgyLp6rxQwKnM4qsxRrWf4XJBLdlcZC3DGJsGL3G1kJJ2TAASO2wGUUTST+KZo25/iMulAOAiA3bmnea+6xTqbGtiYdo3gCxutrLlml7PYu36LQRALgi0u2nTeFid2Z6a6A3Gtj8n+qsRXxj3BOANGs8m/FdLbsOAMyXrz+XubVF5Cv9oVOpGRsGABXJl6E3GtD/ym0WpyZkw2g/uXO1nEWXxZDIFTA/eCCKpxKyYbbW7LJIa4wfZWBo4W0AuBRiwa9BvwAg67NwXxBu9SRsWOoGa1ye4jiJpaCFw4Xj6VRqdBk9AX2uFDGmHgDazkxE7lyix4ZfWuNXhL/pT58rRVzGVyEbRueT+SnPZtLC1XqjAeabt6BTqREw4wybe9118SQTGQgzpFOpkTFsFdenT+xEbj4R707F4/7hXJv4L1ZBn5+MUdkdOf3SH+eTDXBvjPWZomunxVfRXPvIVt1Zv/ReAEC91fH4bct61rZiOx9Tqzca4Pa1VX/LsknxZCHoffBUVmefH4yIELFhwrV6a7oWtsjcTnRBY3coDh/chvor4uB4MAn1VsfD6ZdEZHzjys6X9Qxlf6v6X2EFpqknAdVx/xW/imSWB1uzan6WdYZb4zRu99S31vcJZcMUDepDbzTgdhcTp+eQ5CFsDaSuInIoAnzZeZ1KzdiwWz83gaJZY5jyCzjdCP/O+DIClnZ8rKLwvMzRETqVGl82PMc/rwBM1Uix6PX33dixKoeTUOOPepx+6TsKwHPZMNa3TAa90YDX068xJi9wCslaSdkwAMhe1wg6lRqNduaK+hDun76/jkfJ8fpwPtmAOy7cgwCSQZSyYYqgAOKBc+EqptYmMizPOY1tR9tzYwjhe8S699y3WPd3nUrNxVcLPR6ozACQPrsZsga4Mj0CwL3RGnjNi0P9FXE4um2DyANk94ylrJ9I99bQGw24N4a8CyqSL0NxXIW+50msaOyJ3SyjrOPBJFxf0pSxYe1en8Jke6prA7d4IO1b8i52jE2yy8a6bIpH7MXfAICxYaxdRQUcjpxF/us+nI7KO97A7t278G+ABTJYKl7AD6QYMQkSJEiQIEGCBAkSJEiQ8DdDihH7hyGMEcv7MQQ+w1Jwd5wGNXOfIqu/EgHTz8DSTo0bM8vhPuDyc/3gU2PCEBgtjoOivvpc7EVEMDL7V0Pa6JWi9r1CI2EqMAJ4vv/26+nX0KvqE1EshE6lRur6NgiccPa5MTX2rGb24isiW3TG1c984b1LhiqH+Xo19mJfAMDldB3cj6ovisHJ/FwDU51yBE4kmZbujtfgvj+QOnYls6R1udIHyq653HXP82kHgPzZWjgWV6C0yyN4Dubrb6WtCGcxc7QGGgBkL9TAe444FkeoBwqm00nnsT8vASHfvgH3zyqPG/HZPxlZfdZwuqTxFbbxhQCpCxNeKwuhzpmY5xvC+sqdp8XVKdZMal1GT4DyWLLdMf/Mz9/SoRXShzkgMCqRO0/j0w4UJMNBpmDHhTGFALg4v/W5pzDhWTxM1g/BSH1lC5vrwKu3MLkWyS6qCPTDx/of8JFPKCdX9iINvD8kMUS9wnszS7tQrttRGriujOfWZO7HWlydTPQhjF2pLK7heUxaZe1fN4bCVKFARugTZC3RwGd2vN1rHgyPQM0dCSRrpmAbZ3P8MRjz1b9gY2Mv0bVKdxVWxu/kYoooaE24sshQ9PzsBN6rm4bug16DLO4CNwYAhM6Jwrvvb2fMu735tP4kimVyszd/2leftB6iOmAAoPTx4lgDOl97z8jz9huK9ilPMKfeNbv7FkXm5xqkjbLuCX+2tis0LSGLv4DSfmHoMv8UDhU0RYJ6F/aVVMfKAH+Rpd52Hxc+Z0HJSixreBa9Wutwr703qv90BmmbW8MlzhH1VpP16Lt3CheHS+XSvjUVLmeMMGXzLIg9fdD3grKRB6587IbACWRPtLRTw/hKVVyeLq4npqhZE+YH1pis5+nQFoVvaXHwrc+xtjgcCS0d8FTXBsc3WmssPRoSgeo7CZP/vFgp2/ptAJD7Uwu279LYar3RgDE5r2CL1+/oPug1HNm1mZOvrGcoTqxfa1/msBZA4sW/NK/K9KtwcUHBRjdcCNtR6fqpe9oF232Ok/19QxsEjj8LRdNAmK9Yaw2mfxWBjGGr4LdzKvzfTBDpncbS2aL4YADuXqvLsorS9n6/jUNG540imdXnAUMrPjbdVma6bwpxe39jnGvzI6+nZ3WxaKwmAKSuDENglPX7iTAekoNgP5M7OeG1C9exsbEX3yS0Bas7SuWjsH1PKwL9cDfUlcWs2rat7P5VBlqXk5uvoF//4+PgN/I8q/cnPG/v2dcbDWi8MQp+y9Jhvn0bDyODcebg3Jc2Jop+Zx18bAwcqv33Y8TKS57ipy5bXlp9/B2QGDEJEiRIkCBBggQJEiRIeMFQ/tMCSJAgQYIECRIkSJAg4d8BGsP1Isb5X4fEiL1E8BlGivrVHpUP5bFkBEwnricOV3PhsVgGpbsKOpUawYnDOYpbXq0aADC3RGGALWANmqZuiXqjAUhIge978Vxwbo9ngf/ULbHgfS2CVkdzMr5ysT8U9UhRz4++HMedE9L0jb8rZcd6+ms5ebjg6vN8yl/bfgDAXHQXgRPPosrhJKSuCuPONxp0CUoPd+hUashCW0DhT1ykfvD5jbklCvVRIQMCJ1pdJpMWrmRuiXTsgjhSRPTG21p2fWSTV9iY/sfHcf0W7GkGjyVxuNfUAt9Z1sKqFEIXIuqWqDcacH28tSCnvDkJWs/9qQUXTC28P0Fvp0Gfn4xmP8yo1C2RziFwaiJ0KjXC34+yBo8/c7+jiV4iuwxm19zW3sNdUzXOLREgRWuF7hvKY8kkEP5Z8XHbYsPPQ1ltB2T1XcM+640G3JqmxeFnxZl7u4dA5xECcyeSYti1jzVJxta803hlPnFxyZ2nhcezxAQAeW6onpRejbA7qD6TOfbEbkxc/gYAoPPFEvgcmATvRGd4fxiPvfmJ6PHqSC4dtnAerivjWfFUpo+PrXqnbon0OvpcUJg7tSaJGjoNgt5owKqcUyQoPayFyEUFIIlUdCo1rrcpR0boEzQ+64DU11aypAN03VHU3PHM5eiZGw8tfttxwiRkbFcDadUwrEYx9EYD9xwXvqGFqcAIT2V1VgC9tF+Y9Rkpf4q8j7Q4sW4t3qubhoQnZjz0dib3e7y10CxAnp/1gT5cIgP6U/iWFhNy24ncEun1N/bxhU2pW2LJwHCkL4tgfU46cgwAKawKANVOWoti2z4jwr8pbJMsULfE2/sbs6Q8tvCdFc+t+/RlEaI2wn3lyO7NAADnfYlI7O2LWpHp0KnUeGf/KCYXTULU+3IxdCo1RmV3ZLLS5wwAljUkLoKmwpuo/hMp6Bzw2jlUKzQzeeieovT25HRa48cEzi0RsD7nisb+3HGaWv5ehDsCJ5yFzNEReqMBv+7cxNwShXPM/jEYBROai/ZyvdGAXto+nEuY7dq+eyAQbl/HwUNZHfNdSRmH4xvXcfeFuiUCwLVpdblzQnjOj8PDYRHcfTanW/eDaj0yUfgm2btvakjyD+M7Jvj9OJXrx/FQEgJPvmZ/nETi5kjXk705UQif5TtTrEknzMXFuBC2Q9T+lajJrH1R22J2fdMP86E3GmC+Yk1ccztKA989xP3f/01rAibhO9T90zjInZxE40Q0yGZuiXfHWZ9b/1Hke0DqGmuSFb3RgPiPnz1fArdEW9dMW7dEvdEA1z7XOT0BABJSoGhQH0/qyYBjJLFO1Vwldx0cebe2irZkDH3BM/nWtYHlyRPmlrggiyToeD39GiqSLpJnOMqqb5qgKXeeFpArmDy329VHyzesbtW2e8TzXMppoqK0TSHsWavoXACdSo1i82PuGtrvW62OAiCF14V7T2V7lE6lhveH8TDfvg290QDng2LXfwn/25AYMQkSJEiQIEGCBAkSJPwlWCrksFT897mcFzHGPw0pWcc/DGGyDqWMT4suDHQVwiOhOkrNDkhMaMwF4lJQ6wsNfh549RZ2B9UXnb/1cxPU72u/oKywnW0wa61TdbHTl1iphVawVffcMbV2Adq+MQWnv1ktCqQdkdUJ9Rwf4XqbctEYAJC9QAPvj+JZsO7dcRrU2RiPsiPeONF8HxvPnow0oNlem7Tl4QiYcQbLc04js7wOelQtY0U9bQOf6d80UcOm3FNoqKyOLlf64FjT/ZWOX1lAv95oQA+fcJZyvzJrvT2r3MOhEajxY8Jz+9ap1JCrm8JiuFJp/zqVmvUFABnb1Uh5ZQ36e4SJ5m0L2wDjyqyH9HjXSw9xtHkNdryX5lWYcvJYoHZlY92apsU9dTlXaBUgxWQrzhMLevqyCGYVNh31hEMPIypMJH11z+7DWCFuOkbRJA2UpRWo9b1YhxRPXg0DKgCnA4ms0LK5U2vkTTXBe2gK66+ygHihXpSNPFDh7AhzaoZIX/b0aHsfaWFRitS1oUwfE1KzWEIMmVKJw7lnRfOhuqL90QQSQllPlMpRYHLBlsaNRHMRwrYguNzJCYcyE7DiXiPsb1q30uvszU94jn7O+USDaxMJE02TE9j282eB9LZFw+2t0bRvw+HT9AaONd2PAendUPLKba7tLXMJxvSfAlxIRUX5U9Q6VRclo6oxVsk4SwvV5/x9L+8aAoejyayP0HNDuPT7szNSMO7XiSwVtlA+uhfk726Gy5ptnKx/pXh77lwtTNUr4DvLmkSmadwo1F/vjBvtlPD+MJ5LZGMLe/qUN2/CFbGvrH3OzhbwGkKYIpq0Q1g02vZ99Vfu4YTULHx/Q8MlaXnePhnZaRBCd17FfNfLdvtU+noDFRUwZeWg7mkXFLUtZtcK30vCfYXq/XlyTk7NxMDqD0TnC9/Qwu0b6/qQOznB8uQJ5maewye+rbn5xBacg0Imt/vs3x8ZgXuNZbg2kSTPEu4VTU6NhteQi+h5+R4ONasNADC+o4V7ZA6KtnqizsZ4keylfcNQ9eA5pH/aBn7v8N8RhP3Ywvb5pdCp1Ch8Q4sL78WgV0gPFPbxQb3V/HcTc8fWKHnvPhyX12EFju+PjEDC0lVMtvzdzeAx8LLdsW3lsN07qBy2oHsTO/cs0QpFyaBwlNaR4713+KRC9gp5246b/n0rZHTeWOnYQricroOkM4Fc0XjhNfQ5s52L88kGKO1wk7X76fo5uARmvrTJKeh31v6/jnthyTr2dtv40urj78D//r+aEiRIkCBBggQJEiRIkPCSQfpH7CXB3tSLomN118Wj7mkX9llvNKBBfE2s9zwlYsNoDIPeaIDuam8AxOd+cVYiJtcyMitM4b4gNP+WxItQNqzgfeJPn/WsaKptPAS1jqWuawOFqyvutytifs4xOafY33ubkmKL1X8i8QuPB4Sz63UqNYraFuOXlJaoaKtG3hwyZuCWKOZ/rwh6SObwzEe8/1ukGGJObj1mPXI86cbpQ6dSQxEUwKxQ4e9Z+6NzDphB5Jnh1RZf+wdBp7IW9aT9ZtkUjHVdGQ+Fiwtjw5Rdczl2I3V9GzZ+6oY28Nk/WaSz/lduE+ZxfGuU9Qpl1994W8uKhFLd5M+2FlhN20IsqZTBsrXEdRo/CTf2BbHjFsMV7j5RpK62jhn3NWEL7/wSCL8RBsaGWdqp0X76FHadsKCtsE+fwxP/1CKoNxrwbp0MqM9brzXl5AEAS1vcKzSStd+Wd5rdp/or4pDVa62oT4uzkvVN2TCFvw8cZtfC3ZGhbBxbi77eaMC9TqVI+JxnSfVGA4oPBrD5Ov2SCKcDRLbT75G5K++VwXtoiigOw9586f3Lma+FKS8fsSd2I+MLEr8yJLML6UOuEOnOcowwUnInJ3ZOyIa5xtXm2MHPl45gf1eYTCK2WenhjsMHt3FjyM5cYm2orEv8gjGyBolTtI2PEq4dyoYxeZ+QOJX9TetycQ+0WC4d476llFuHeqMBmZ+RZ8t37xRW8PjI2KVILCPMuJANy/lEw1mSW3wdLZINIOzL5z37wx4eDLfuhQGvn2GlKEpeuQ1ZSDMA1j1pdKO2qDh7CRXlT5EzX4srBxrjYNx+1pfH4buisR2OJrM+AHBsmN5owLjfJrDSEbasAi2cflmzDdEFEdz5tYntRXPRqdS4N0YDpa83Fv9/7H13WBRX2/69LIiIiohYliIdEcUVpOyqsSVZRGOPXaOxAYklphhNTDRGYzRGowlYYonGHmOJIptYo1JF14LoLr2s2EUFBdnd3x/HOTNndzF+75c3r7/3m/u6uNidOfU5Z87Acz+lIAM2HSqgG82zJiqZHB5DLsP+cCb13xkx/X0UbO9gMW6hXLnzZlPxaeTOqQ+bBg2g28T6h3J9cO1wbNiOkhQkXf0TAJD7eQj1UT77RSIz5wOVDRg5CVHdhzy76wO8Ud2tnBlrTEgvmJQdmD3EzdVwLRdpHews9j/3uza/kKY6uPhbEFNXaKVR48ozj+YsZJyODZuv1muwNsAHvQP59eH22IVZCczYD+eTM+oLH5I8eMRVkkbjUbIPYtxCWRZsdBTafxsP7cYwOG1NQ+vPUi1kpZLJcbXLFtL2MxareJ4Sl2YmwNSzDE03ptJytt58iHeH/Rm4OTHcgg17PCACM5wL6Xehj6Ftq5ZUVsL+ue8uOTXkTL9xy4INAwDpiXNo3DuPsmEA4LQ1jWkvW8GfUeb7U3jd/+c4AMDT1zvRcQCAb2Z9qPUa2Hq3pv5bQ84XsnJ7lnaAa/++rxTN1qZifYA3pH7e0K4nbWqX8EnJObw++C36+eGwKPiNPk9lIByvtWfr5ufe9O8Q4Zi5+7MP7LBgHNV6DbLT+DO0eHd7DAxob1UuLxv+kWTO/1BAkP80xH/ERIgQIUKECBEiRIgQIeIfhviP2EsCcy1I/jOG5k7newCItuSV+Mk0ClTuiNVMeb8ZaZifn4XevUcAvUqptiXMvh7V6EiDA9FyQA7V7nPamUqvWgCA3QOieWjQ+gHKpyupRid/CYnmFjDxLAy3WB+LQcs/gk2jRhicc9NiTqe+X2NxLeDts5Cc0cDjyxT4ZtaH98epiPYkGqoryp8B8JqkOc1IMl8u+bJKJscB/2QLv5z6a+7Tay6HtWSsJ3nNljmsabO8P05Fryv9mPtJ2STR5tG2BwCJBNJAPwRl2aK49hEKepNEpLpNYQh4+ywCYjPQ6FQzKvfyGUrENiH2506D9LA/lInVRacBAK2WpeCPXZsQeGos7SuqP++P5D/2HL2u/4CNOFk6W4laBxu0/LoealSdmDmU/RoMlUwOrwyi4S14Y52FPXqzN7RMewX9HdDg13R0nzAJar0Gp36wXDOVTI4hcsICcBH8ALJHzTXSKpkcmo7P7n+toFH5ODz5iY8PxEVvFPYjbKvgKwVyhxHfjT5dBlDZ5i1shOT9W+D8E+8n82BEFMP8qGRsMk1hH35Nblv0BQD11GSfcczS8xhA7TrCNhq6E/by6qQEAEBMh9eoFppjjmE00L64Nm16EabQ+OQJbVMoy1tKsqdlacTfzmUdP9fcn4mAHw+IgM8vUwCA8XVQyeSQuroCRhJlz2fPFAstd9SFpzTprXBsar0GKwpTaDmVTI6SueweVMnkuDGNMCqPfV2Ysh33z2C+q2Ry+MwiY7/cfxVkS0nbkzy70CTbwvlzfmNcf7KlKSjcGQKfX3jW1sbREWe/SIRBm8fUb/ddPGHe20ss/DNUMpKMO/k3sra6TWHQruGTfANA689T4LY4hem//JWmzF4xPzus+dIETMqk118bNh52J1ox/XDICycs4813nlkHTDwL/Qc8M871l744EffDWmCOd4SFf83tyQqmbbVegwZ70+E94oJVdoWD+1dkHcZ5doHPSA2MVVXwH8dHazN/roUY7sGP0eejVBzWnQHAs91cPz/4B9Bytw4E0mdFrdfA/lAm7kwi58ejZB+oBozB09eJlYHh9h20XcX7gD3vOTRnHYS4PC2BWR+VTI6iLxSYoC2A3e9nIQ3wtdpWor8fjWKr1pMk9sW728P4kFhsPEr2QcOJ5Hl7beg4KN9jozECJGH6qnutsb0NYW0aCiIRcv04/ZwG2TcpCBifBckxN6a+ufyFc/Ocl2J13ofO7GfaaHH6Hu69xVp6OOzLYOoeSjkAaTMXaBMjaHLlEVf1zDi5Pux+fxZt2GiAxNaWsoJ1ISjLLEqiAC5nnGn7W0vO4FasAjem8ueMbnQi7ZNDtHck8sKfoEPGCNQWFKGswgkAsCuIWMmYn1McHrfiIzMbcgto4nKfZ+8HYR2hT22jnWkw9AhF+XtKRh40uqPZ2Xls83qo9cRqiYvwyN2PmBOHV+oDUR/FouOX8cx7ymdWKj1PPd+8ZNU66mWEEZJ/7Oe/HeI/YiJEiBAhQoQIESJEiBDxD0P8R+wlQvl0JZQXaogW+2PWBlslk6PsFXa57kzktaFqvQaf+4Rh/r7NFu1ymhtD9jXmO6fhkT6UAgDcFxEt6aXIbQgdcYn6sfh8lMr0w9VdVXQGLVek4PC1U9gT1NyqTb9ar0Hulo5Mvxzywgkb4JNqS9tU6zUonqe00GgL2Q4haktKUfnKLXo96SKJ5ug9gmi23svNsZCHuWx+r7IjdufPfEnMNbEqmRzGLsQ/4W5NA3g+y2GVUHQa+a+vp+087HqbzrvlihS8NoLkfar3WhHUeg1iW3fB4JybsG3ZAgCQHEU0tgXbO2C952mGleB+X5qZgIDNcXS87l+loP7dGkhSL+CVJanMelyO2gqbkDYojHiM1c9894RyN193AHDKfaahPsxGKxTKp2CRAhdDSXDVgNgM2o6TjvUh4H7fnkI03T6zUuExhPdTAoCyu05Q6zVYX3ya1jFnFYK/JxpD7VuJCJxNcoTV5hfilbjJhPEbdhG7HhFtKMdiNt5OfBHkX8VbZS6E3+90vocnfSOoL4JQPlUDI+F9eKLVesJrnP+W9MQ5ACRyHQDKGFNEkah+0saNLeTUZSphs2w6BNHr3NrbtmwBlUyO9g3LcHc8kWdMcA/ce0tB8wA57MtA/pA1sJG3BcAzEmq9Bk/buNMh5A9mWc73c7ORtOIV2if3nHPfZ3jx+fMAwGNBisVeWjGdMPL1kjMpawcA+QPXYFou768n3HPCKJ3mci1YrIBq0FhGBpyvjtewi/Cflk7HYKystMoIXJ5OWEnvOalo/y3vW8b9CJkE/3FZCJhiuedtGrB+TUkfLWFkI5SDxN4eAPD6kLeoP6wQPnunwObUeTztfp3mo+N8UYXjb/4D738o+4a1VlDJ5Ag8NZbmE+OucXNqklcDABhd2B3F83imSjh3jkHlkG/mDyvsTzhX4ZzVeg2qBkXixjQlclewOby4z4cyk+p87lz7XQP3rHDtuawjPlENo/Oh3rcFxzbxecVywmqtjotD7+z7FuP12W3JTD0YybM2Rbva4+pEPu/dtTjiI3TzXaVFvcO/76Dt2h7NQk7nLfRew+h8ymjbnNYgZflqOs7uEyYBILk4pzoXWR27NDjQYl6mnmV0vTTV1ZhxvZPFGgC8PIR5w4TPjBDGy1fh/FMqHP90Zdhkzu8KAKI9O8Fw+w4C4jKg2xQG/YdKrFo+mPE5FyJodTzWFZ+GqbYWiYu+w97SDMoYaRMjmDrmaygcI2fpAwDNpI5wXZ2KFqtSLHK9lf0aTOty/pUtB5B3eqOfG5P3xDMrjStxCZhzI8RCZnlDeeuhmj9aW52XEMJ7R7ZuQMvlKVDrNSj55Jl/6+5NtA8AULnzvpUqmRy3326Bud7hzPPqvIn8DWWSSHD+0wR0m0xyyUVdIH6ymo959nZgG3mdY3uZIPqI/X0Q/xETIUKECBEiRIgQIUKEiH8YYkJnESJEiBAhQoQIESJEvBD+Kbbq/wIjJiZ0/g+DS453T+uDNwNJyNs+kX1RW1KKm/FKNE9Iweqi0/C2a0ip6+BV8XD/KsXCSdyaeYI57o1TUJpcrdegd8xIGv6cq69NiIBdhRROOqDpBj5ZpFqvge/OWJwd8i2cpQ3+si/heB4NjUK5Atg1YCU+iI1HPfVZ7ClNw2D3qDrr5H0TBd8P6k7Ga62O8BoAtE2Mh8eCFOumG906wubkeaY88OKyvD1Zgax5iXwAhgYNILG1heHBA6vlpYF+MFzLtbjO9VW4M4RJIiw0R9FUV2OWd6TV+ar1GsSE9MLTYE86H2E5bh+ZX3c42QL7/NUWbT3v+/u52Xi9ATGniLkWA0MPvYVJJTPnZ4lfrc1XrdegtPYRJnh2Ycw4Psq7hCW+7aHd0AkBb59FZbIPHvzeEq2+TcF7uTlY7t8WeHZsCU35asv5pJi6HyLRoESK1jtKUVtYjPXFp+H+zKS0rr0CEGdqp5/ZkM/XZyrRKuUR1L9uRucZsWi4i03YKbG3p2YzdcFcRrnLozAr+gAmO5Hw1mOvlWBzoAcqRkfB6ec0GLqH4si2DcxYK5N94Chw+ufaMnWWo2ruA6v3XgRcWWmALw2AUfKJEhNHJEPdrrFFObVeg5hXh+LaHEdqJinsTxrkj6Sju5n9+9RkQF+3MPod4J+zaM9OSC7mA/IEZdlSs6bCLxW49jYfrr1v9j0cDCYpPR73j4DDfpJ6QLsmHAFTMvGOTssEibAme7Veg4DNcfD+OBW2Hu6oLSmFrbsbDmUcIut5zA2mnmXYUZKC0a+QwADC+cXpcjHA8RH9Lkw0bt4nt54AMDSnnAYWEELSqR1MZy+TOm4dUR3TCfaH+GTzjwdE4M+Etc99Ls37HpL3Kh52vW1RVq3XoH36SMgGkjNf2sQJ2h984DuKrGNtzzDYHst6oT72PGrMJDmW+nnDkFsAAPi6IB2zvCPx6uWH+LBpHqL7j0Hy/i1QyeTkefqWnEdSV1cLc94nfSNwcu2Lz1dYpsu0KXDckwHthlB08CmliXIfJfsQE0gzWcS0eQVJV/+0OL+4z8YucticZs3ioy48pQmldSsj4T8t3WIcwvaKP1fCaGeC16f8u/TrgnQMPhNLnx9hvZvvKBlzVQDwynBAYcRjq/M2dZZDcoY1961rPtbw5I0IOKbkwnDnLk2CDZCgQMLxmY+zru/C69xYhOW4s66udp73PqlrHNbqCK95H5iMgn5kT0n9ffA4wYB6rxHT0ev7gtBqAOvCoNscCv+xxJR2UUEG5ngT80dhgmrzvhQXBqNxbz6AkFqvwZ9PgIU+pAy3lzhI2wYg6cgu+p1ra0X2n2jX9uZLm8CY+5u1d/Kkfyyh8+HodS+tPP4OiIyYCBEiRIgQIUKECBEiXggiI/b3QWTE/sPgtAvd0R+2EjsAf61hAniNV/CqeDgVGC0SsHJ4fchbqJLVx7sLd2FjYGsLLZUQhh6h2LF5Fc5WN8VyvyB63eFkC6pZtOkQBOMF6wEw7o9VoMlmPsgIN4/x14rwyeFhyBtKNEmOf7riV78/6pzj/4T9ep6srGnVel6qxCwXXZ2aQpOyA37/5SemLd8dscgbTsZuU78+jE+e1Kntq1F1omHQzWHoEQp7bTlqy/QW/YZrDDj3WkvLYA8gIevdv0pBnC4XNjDiB/8AlL+npE7EKpkcFaOi4LSVaN4d/3RF5Su3sLXkjEWIeIBoQOv/lkHr3piqRItVKVhamIYPvaKYsT1We8NBVUDrahMjaHJma/ITXrcmH+FnQ/dQcA78nNx7ZPenmkoOeVs7wlBhh4D4DCqLTcWnMc6zC9OesA+JrS1MtYRV4daEu197xBNH2x5g1/2ZVhkAbsUq4Lqa38dSfx8YdPmwadAAxqoqi7ne3N+GJkevSx634hRwTUyFdm04CvquQ/dJk2B/iA0WYU1GulWRNCE5QAILNP8+BQVfKeA9OxUJRacx5qMP0GhnGqRB/pA8eozaklKrzznHWEzLvYqVfiQ8NyfP/4k2unyGEu57iuvsx/ycujtegcyFidjx0BnDG92DSiZH2a/BcBuUzc71uyj4T2eZJWuoq0/z8Yd8E0+Zl28LUxFcz4EpI/X3gcmxPg4nbXvumaP7IRL+71hnPWxbe9Ck5cJ7Nw2VGPPs2bMm0weHfZHaYQ+93mvMBNhfKITh9h3ovotC/pt8InJra8E9q3tK09DQpj62PnTB5kAPZgwAELogDq6Jlsl3hc+H+ZyswZzFNC9XvLs9cjpvodfLZyjRcgXP6qwrPo1JnnzCcq8MB6xxT2X2OwD4/D4BTmft0fx7Upc7m4TgWFKVTA7PdEd8734C9hI7q2OvixXSfR8J/3fJmgpZ1OLPlPD5qcRiTYX1hfu7T6iKYeLr6pfDi7B6XJmDZVmURQaAmuhw1Eu2HlQJICk1uCBCar0G0f1GI/nAz3U+1+YsNgxGyog/by9IXZrCcOcupM7OMNy7Z7XM8+b1vL9BAKBidBTSlqymbKJJasKOMSswyzuS1m3zYxxNdWHoHoqxqw9g67MARdoNnVAQ/SO8D09EQe8fEe3ZCdcSOyJgUqblvI66A71KmffJ/2Qu/2oZ21YtcUvlTa2TmPn364DM/XNfWgaI+5tVdXjyP8aIqXuvfWnl8XdAZMREiBAhQoQIESJEiBDxQhAZsb8PYtTElwz5ixWM5ojTAHEaFu/DE+l9lUyO7KkJiJ33C56+TsLdqmRy7HnUGDHXYoi/Q8oFnF65BrNPD/5LLU1p3FOM8uiMhR+No/1K7O2xz19Nx2C8kAO1XoP8JXwIZJsQol1vsjkVBV8paDhgTgM3vNE9+M1Io9+F4ear+4Qz86xLsy4N8re4bw3CdmzatbHQwh1r78iU5+6XzlFCelwG22slUMnkmH+rLVRuHaGSyeE3Mw1h80kIeeOTJ9CuJcl8v7zdxqKdeuqz0K20DGWt1mtwZOsGHMpMAgBUGB9jVymvDcuUS5F04Q+r9TjGItHfD/0cqyAN8EXL5Sm4dSCQ9uu0NY3KsfIVwqqN8ugMRDxLFC4hh9n9sQrKhgEklLJmNgn7/aEX769n7EpCXnNsGBcu2iVLyshTOE61noS6rxjNh7c+UJYJ3eZQRpPcJ6IPkce2Dfw+SyHpBoRsmFqvwY1pSviOOo9mmc9SLDyTRatn/l4AENOGD8UOAJWDI1G6iw8RXU99FtK2RONd/p6SJOh+hkfJPlDrNZQNU+s1lA3j6ht0xPfqcG4KVhSS/idoC2gZjg27P0Zhsd84nJtL/Jx6dyTJOjk2jJOb8NnM20r2nd2JVjT0vFpPwqWfn5NAErC+RRKexrfugkY7CYtkyNGhtqQUd99WWDwn0gBfXP3MGWq9hrJh3N4qna1EcpV9nWyYWq/B7ckKSIMDMT8/Cy1XpKC2pBT9rpCE1apBY5m+uDOKayNzIdFcc2wYAPTzZpOWSls0R4s0vj9h3+ay5Nq2bUX8rebnZzFnIle+1bcpuDOBhP6f8sEMpj4AKPdcgc39R1bXjEsjAsCCDauOCUeXqSTBdG1RCR1jUhkfnn2MORMdFUL7yV0Rhca98xhZH92ynqbeyH9zNQblvsbMiRufJCwYj9Xe9FltaFMfr785DuvfGUDL2LrJqIyEbJhwfjXdO9Dvq4rOMP0AgHY9Sa4ssbXFpmepJgCg68UnTLmCr4h8v5LvZWRvW2Vi1q7cYM+IQ8iG2YSQc/q2oRL+47IoG3bvkD89m4Rz8PqUr7vO4wz6uYVbXcP3cnPQJ7IvHg4nsuqYOZze8383HfnbiD9iP8cqqPUa2HQIgucXpG9jt45MW4ULFMx6cD+K34ug3UhYK+0aNmS5EIEb4ixCs1cNJO8J3aYwi3pFXygYNkyt16BecibWFZ+2eB5uTCXv24I+6+i1ofm9YDp7mX4XjkeYroILU18W7Yo++zLgleFgUd68v1XnyPkpZMOKd7eHNXB1vQ9MZq4L2789hfwtwSVYF/roGoIe4Y2+aZjlHQndqkhat/Vn/B6QnjiHsY1v0zoBb5+FSianiZuTi89SptB8n6iDDkKt12CcZxcaSv55eJ4FiMSuHrOOA6/cYvoS4nGwGx74WLZR3Scc13sZLcqL+O+G+I+YCBEiRIgQIUKECBEiRPzDEP8Re0lQtDEYaj1J5NzoVDMAwCMjr3302R2L2iOeVMsj1LxsbeOOwjektK3BDR8gKTAJXxfwmtyACWcttFzcT/l0kkC59dBLKN0TjFPfr6FlTdXVFhoglUwO3WiikZd0DIbxIp/AVftWIpp/nwKJLZ+k+bVh4xmtv8SOtys+sW4doz23BrVeA0OOjpk39zny4zjadskv7Zh6xstXUbiTJHiMeXUoM35hW2q9hiSzjm0Aw527uPmuEoH1rwMmXqvbbE0q1R4GTCbatVMh9S3aAWARRQsAot8YxcxzqLsCY/IGWsjVfH4AoP+ITTjK2fG3+FRiIRMLZFzCuuLTdC7SahMG59ykY0n6YyceGUlibS7xa7fJk2F3uZBp5nBwE5TvC8Kgaceg3RhmwZz000VDJZND1uk60pbw/i32Ejv4jz3HsC21pWVQyeTo+s4UZt17XelnwQC3WEk01JxC/e54opn2+eNtWi7p6p8AQFkvxz3pcBuUTfsbcVUPwxUtAKDl8hR0WBoP7ySStPlMyK+M3IVaenPZqmRyBNUj0UKHNqxgygPAw9YSSI/L6PUtJWcs2i3sRfZ+t4uP6XXuHqeF9x11Hmq9Bk+7X8f12kdUNqbqaig+iEXSxaO4Z2B91V69/JDu1aYbBH4HUSHYWnIGBm0e8l/dQC+r9RoEbiQsr/tXKYxPqEomh6FHKDP2ZmtTkfTHTnzuw2vvV17qQSqk8ZE+AUDqUMvIrffrwxkZqPUaZHXkXz0qmRxX53qj8fY07CpNtVgPjh003+e118sBAJ+PHM9c7+3HPy8u60l7jr/wzyTXTvIX3XAohWdHhYxJSod6dLzajWTOVQOJj4p9UiYc95D27kxUoLiWsGoxbqEwBx3zMxm1y7KBqjM/D5WM+JVy8+T2PcdqC9tQyeRI/m0rZalzV0ThQGUDLPl5DeyOZNFyHOtuMYZnqBwSCbsjhEXUfReFqa0t/Ui594WpthbjPLvQ8X3ajD/rVxSmwHs22WuJ/n7oeakSwamjyHm5NpXZ23O9wy36KFyogHZdOPLmkGfC3J/VZXAJ/LbGWYyf2+c28rbkfdIxGNr1nWCO5X5BOJR+EI12EIaFY665Nlqvs8GKVmfpODnf58q2LWFz8jzzbHvN5Z+p6zOVyNsmh9TPG6dC6iNgPIkyySUI55KCc/2oZHJ4fZoKv/dY/8dTPxC2238cz+hKA/0AAK0/S0XhlwqUfMpblwDAJM8u6B3YlWlHMzuBWmlwOHuOtNP13SkWZxiXjDqj+imN9nnhwwS806QEhRGPKcMnrMPNhWPhhfO7PVnBJLzm8F5uDq0bEEv8iqsGRVr8HdJsDZHtzC6/AwB03/EWFdpXNuNiKAljkD94DQI2Wd8P5u9OAAwz/PT1TpTZNWf++4THAADSOtgxbXJ/T6wuOk3n7r1vMlNGKKPkogxGVnvbujLyE1rK2B3JQuvPWP8wlUyOE+vWwW/aOQtZvowwATBC8m//+b8QxEL8R0yECBEiRIgQIUKECBEi/mGIURP/wxBGTTx6PZu5Z64ZFjIQ3PWAP8fCezjRtmp/7ISCmB+JRrWOnEMcbk9WoNnaVIvr5mUl4e2RvH+L1TFIA3whefAIteU36HXdqkjkD15Dy0Z9GItbvauR13OjRT82jRrh8LVTzHyFY+CingmjRy0oyESEvZ2FHIR1y99T4sKHCVZZNkOPUEg/vQn0KiVzMMt5VD5dCaM9IFvCR+riouVxffkeG291PtbkVxeEUfoAoOSXdvAYctmqfw4ztxlKXPiIzK22ZxgeeNWD7WMTGm+3zGMkhHDtDD1CIT1+DtrVEQiIzbA63kdvRqLh7nTaVnS/0YzPAUDyr9jvb4KmG3mfKi4H3l/JIe+bKOSOtJ6PRThma3NSyeSQ2Nqix/kKzHLR4cwTI6LsgXbr3kXOZH7dhZEk65qXsH/hOB4NjbLIFybER3mXELt7MnRjE+G/OQ66sXyuK7VeY3HtVqwCVTLg6sREzL/VFikdLKNNmY/jzgQFXNanMvekTZwwLkODoQ0raNmweXGobirB5WmWez7knAQX3g3B3aAGOLsgEYHr49BER/w5hQy16WkNzaUFAK8NGw+bU+etyoibk02DBjC284V6H38+UEgklIW1xjiarycjZxspYDTQ3HDS4EAk/bGTlnNNaYJbyvtWZSf8zEVC4yLkSYP8GWadspRfKuD1aarFdWttm3/n8mRx6KN4AwVjPWB/D9TX6UXOA2E5tV6DPp37o7agyOrczKGSySF1dkZS9nHmmtNpF1R0uYMnfSNQ/2CGRT0A8Ex3RHFkJQCgYLECfpFFKPrdi4mkaQ7u/FDrNRia3wsVXe4w+ZWszQsgrHl1t3J6nYs4qdZrsPSuLz5smkfrO5xsAdf6j7DO44zFs2lNXq8PfguS1AtMf8LcUebv0chZcUj/OtHq+fO88/d50G4Mo+yYxb1n0Wa5HHXWZGS+xivueeFwcJM6ywFAde9wNP8kHxVd7pD5XX7A5P4DiP+l4cZNAEDZx0q4LWajUArbPFCWiX5uluylWq/B5gfNsLWNO/K/VsBnluDMF+xV8zoA+8wnFJ2Grx3v31uXrPUfKCH7JgWNTjWj+fCsgXmOFyrg9QkZV78rd3CgrQs+yz+HL3wsmWoOtq1aUmZ9QUEmw9yar4kw5+rjARFoNrMAJRv96PuPg/4DJZ64mqAbw5//tj5eqM0vBADU/NGa+kKr9RpEzI6D80/kPA74KQ4eH/+JE9j/0kYJ5P5m7XkoFraO9n9d4X+J2spqHOuz+qWVx98BkRETIUKECBEiRIgQIUKEiH8YYvh6ESJEiBAhQoQIESJEvBDE8PV/H0TTxP8wzE0TXxs6Djan+bC/fboMwKHT+wBYBpngvueuiKJOtxw4Wn1oTjkmOJVDJZNjxFU9trchwQQKFingv04PY+MGMF7IQcFXCmjfSmRMBWxbtcShrGSoZHLGpMHcPEJI75v3n79EgS1DvsfnPmHMdY6qt2YKIpybfm9bXIpkE64uLUxDSL369Dt3z9bLE7WFxSj+XAnP+cS0JiakFwy378DYRQ6b0xrcG6eA86ZUxqzleaYnN+OVOP8pb/LFJRitq97DYVFotDMNJkUHxlRG6LBrLZiHJLw9TJmXUDE6Co9dbZhkzcL7QnBmUSqZ3KoZnjmE7ZmUHWjIePN7hTtD4PtOGZIuHkXPsRNgdyTLogyH6t7hsD+cabWdvxpHXWXbZdngchgfwle3ORTRQVeQF/6kzjaet4+s9SMN9EPBlw6w/7MRRkz+g0nyzeHByCh8/eVqLPSRY3DOTUx20j933LfiFDCo7qPVEJ1Fstzy6cTpvuV3vFnQ80yizOdgft2aSc/1mUoEDNTiF98jf2k2+7x1Epr2cWkCVDI5pI0bw2Qw4LCOmIvV/NEax4P3MyZU5u3emKZEi5Up7D456g580hRIu4iyWUo0u/QUDT4sQ1JgEqqMNRjoHkFNkziUfKKEx0LyTGiqq2lyV24uNw2VaC51pH1ziY5jOr6Oa7N94DcjjZbXbuiExFe2YLlfkFU5GI96YJ73fnSub0PvDc0px66glrRMi9TG2Nz6T6vrwCVSV+s1iOkxBIZruXWaaHIm2EY7wO1rs3MlKgRIu4jSPcHIVmy1ule4zzbyttRs6q8grK9NiEBAfAa9vuuRE9YHeFvU4ZJyc2O32JsSCR69GYkzKyzNjf8KD4dH0YAaf/VMWJuD+VjKpyvhllSOpJO/Wi3DmR0X724PzzfJmarbFAb/cVl1PnMACWbkN/o8AJJcufPiNBzY0hWtlqVYjCdsXhyarSUma+/nZmPuFxOx4LMfscwvmJmDz54pNGH7rtJUONk41LnO3LjuHfLHwwxX+o7rfHEQGgrcEDhM1uZjbQCJkV7dOxyOV8qhi3WnAVbuHgxA075aSF1dYbh1y6K+ecJm82fgryAcP2cm+7wyz7vGJQg3dA+F9AQfzMJ41AM1K1qh/m/8Ho7p8Bpu9vOzMOsGSKqGqa3Js9ll2hSLID7W9u6u0lQMdVfUuR85024On+RrsNCHLyc0MRf2BVjfZ7uvnYNzQP5La4pH/2Y9GPePmSae6Jv40srj74DIiIkQIUKECBEiRIgQIeKFIDJifx9EH7GXBCWzSWjTP3ZtopqXPp37UwdPlUwO97SGVJMS3YeECR57rQR5Q1czbQk1NxwbVvJLO2xvI4PkmBvUeg2856Ti0Jn9NEGz92wSbvju23yi5trr5VRDJHTwNdfimLNhW0rO0DI+H6Uiqr4Uar2G0Th13peD/K8VdLzC+8L2L0VuY8oAwEcDJ9BxCDWGtYXFAADP+Sn0vuH2Haj1GticJnUzFhGtbrcpk7GjhGf4rEGt1wAS/rNar8HYKcm07UdDo5j6N99VImU5WQtJ6gXoNodaaMI5NkzYp1qvwa1QwjzM/Gw7Wi5PgU2jRky9xF8SaXlJGNGqCp3bOTZMrdcgb1kUnE67WPQhbI9jw4Ry51DzwB5JF49CJZNTNkwSzifsrBoYCWlwIADgXhsS8vfh8Cio9RqU1j6ykKfuBz5sr6F7KO1LJZOjXZYNLa/Wk2S0y1qdg42jI9R6DUlq/OoGhg3j6lr7TZ8Pz04WZW3kbVHwlQKBZ+1guJYLlU8ONLMTKBum1mtoIutvC1PReFsa1WzuCWpO23l98Fv8HG1I2gjdpjC4Jqai5YAcJBezKSZs3d1wYVYCw4aZoy42r094DALPsmGVVTI5TX4KAL2jSdj1Vt+m4BffI/BOnkjHJWyvcnDkc9kK873QyrYhYtp2AwBIjrkh6eqfOKw7A9+jJFw853A+w7nQgoHk2uPSD3BsmK2PFwmU8yyc++XpCbBPyoShB2EbB7pHQK3XQPZNCiTH3CA//0zMBl5Os7wjUbCYP6cAYIxHZ2YPDHtlOLpMmwLDjZvUWoAbW0H0jzRcv0pGAqAIk9za9CrB2H3xRM4JEQDIOSqUZf6yIAsZBq+KBwA0k/JJ45OO/0LO198m1XnOtPo2BS7ZtXQ8AAkNX/JqQ0iDA+E+mKRi4J57ps/vSZ+Hk7Yx13O/jcKe0jSrfVJrgw+UCIjPYMpwbNj190lKk/xncuYCEvTp3J9pg4N2Qyjq336KQbmvIans3F+yYcIUJinfkjOTSwSv1mtg7EaSmhcu5NdZrdfg5jtsOHfus/C7qcc91Lg1sTpnADQID8eGASSEvLV5Cfcyx4ap9SS58pfNL6HVMv5dI/X3wZ0JZLxZ88h53fNSJZb5BaPJ5lS83uApTS5N5VBLXjDv5eZgqDtJzbG6iE+gLVwbbmzOfXSwCeHTZ+xsu5mWubm/Df3MsWEAef4Opf5G2TAAaNpXC7Veg6QLfzD9GI964MkbEQwbBgB7BrBh683lxF0rmq/Eg8O+hKntQJ4zjg0TlrMGtV4D5UyS+Prmu3waipYrUjA/PwvdV/JnqG5zKGx6leBGuJRpoyDen2GghGvKpWpQyUhKC4eTLZhy98bx+822ZQvYusnQfdH7dY4XAAzJLZjvC33IHn5w2BcA8PD1Sot5m5/3NvK29PvAAOvJsUX890JkxESIECFChAgRIkSIEPFCEBmxvw8iI/aSoGHoHQstSW1BEW6+q6Rawq/c1AAATXU1TOdJqPvNgUSTe2eCArrvoiy03dxnr7nVAIBxbim0vejWRNvbfdIkAIT1yPwykfbPaXB6jZ7w3LELtYYA0U7XhYKvFHjl0kBs3dELujHEJy0kYwQzVrVeA0mndvSaOethOs8n6+XQ278zrcslpKxLG7yl5Azq/5aBsOPvWtxfV3ya1vP5fQLOf5KAmOAedBzqdo3hn2mP3tn3qWaVG8v5OQks+zX2HP3++pvj6Jg4ba9wTBUBxFVzfYA3KfPwITPn2NZdoNZrcH+sAqasbGad43S5AICb75C94vt+Gh71N9H7Qi2ssF/t+k7oE9nXYt8FTMpkrlWMiqIpDKQtmsN5RhGS/tiJBQWZuPBhAgCg0Y40qGRyTPDsgpiQXozs/d9Jp985+37u++UwI7O+tWV6AKB+SE+7X6ft3B/LsiDCfSdkZAp3hlj4aAGAUXMF3rNTca3TUwBAThgp02XqFCpPLmT7TC/S18NhUSj7WAnt6gjaDuf7RxolVI3/uCzoNoWh7GP+ee2r7Q0ANIE1N86yWYRt6PH2JGYuFaOj6By4+ZS+6UXHCwB7HjWG5JgbAqZk0jLGi1dpAuo+4TEoiP4Rts2b0fuDcl+DWq+Bw+0a2r65HIVsNJfMuXf0cCRdOQkAMPUso/f9xpzH4wERTB3z/XywjDAM2jXhlGWXHHOj/q51+UgI97WpZxk0hKDE5WkJuDueX3/fBRfx2jDCzMX0epNpY+ldX5S/1gqOv6TDN7M+TZJ775A/bVsq8DUw3K+gSW45+M0kbFJAfAYqkvyYudn6eFHfkrylCjo/9694dsT8d8CUTPQJVVnMl/te/2AGDpRlYn4+kdsMLyU8vkzB1VmOkAb6Qa3XIPm3rbSOsQup574oBb2z71s8w34ziY8cADx9NYy5x4HzwROypJVDCHt98f0EvBI/GT4fp6J8hpLeLxrmBgC4P0bB9Bm06B7uBtnjV78/4H9kIsxh/o4Q+tRwcPqZyLxPRB/YnCTPodcnxJ83dzlhy85/kkDbeTwgAqWz2WT3iApBqwE5kJ7gWTmuz87TyXMuCW9P6wnXtq73xeCcm8xcq4w1uHswwGItk07+SpkYTqazXHRMW412sCyl33tpKP5ciXnaN+i1kR9/QMtHzoqzeKdLOrWD6bwTtOsIK/5qWhwdf/P+V4llQSvel6uuZ427Rt9teg2KP1PCplcJ9bkSwnAtl37uq+0N2LCWLm0T4lH4pQJXJyWgcW+S0oFLkp1URs790mcJ6oXjAoifu25TGJWRoXsozs9JgGtKE1r2c58wnAqpT7/7jz2HxwMi0PrgI3otut9o6jsHEGsEU2f+7DXHPn81rVs0X4mMRbyffG35DVQHtETzBN4HUNgGl2ybOzvUeg1sPdzRLov8Wd24dx7Ueg2udd1scUYK18N3R+wL+3eK+O+EyIiJECFChAgRIkSIECHihWAySWD6B9iqf6KP/zRERuwlQY9WWgC8hmrRbeKDc35OAi0TM+8DqAaNxSzvSHS7+JheV8nkcFmfio9fPwC/E+MAEO3MwbIsqgnK+dAJ2vWdsDGwNQAgYnYc1UraHyL+G5XuDWhdAPA7TjTOR39ej1uxCqsMhFqvQXT/MXQs5lqnz/LPMVo379mpcFAVwFgP6H55AACg1YAcqGRylO/j/TZMZy/j20KiDdVtZhMy2vp48V+OugMgDApXt0C1nnzO6QubBg0YTZSthzvGeHSGNMgf+a9usNBUTfLsQuz9j8vQIMeeMAQCW3npcRl04dU4HNzEYq5cO5wfRe6WjvQ6l7xZJZOjXvFdpl6L1MbIHbGaasP76aIpi2Xr7sa032Qzr3Hl5D3AkWgEm//A28/f7R0AAChcoEDKt6sR9VEsvReuISxOQe8fcSj9IACScDRvqQLRV/vQcrofSGQ6p61p6LCE+MwYbtzE9U3eCDw1FnO9w6GcGcvIQa3XwHCb+ANw/lblM5QW2mmOwRSiLht67vPpr74HANyeooD8PCw0lBy8Xe9AGuDL9GlebmhOOW3bcU86mVv3UOQtZTX9jXamwW1xCvqHE42uSdnBor8nfQlb5j8uC5enJdB2tdebw7Y1YayL5ivRR9kPKpkc301eAwCIXnqCmbfEyLbbLssGTgW1zBw+OD3UakJY40WiCffdf4swi+U3qHyevCmBSibHH9s34v5YBfVt5NpVyeRQvB+Lj/KIz4y+S32oZHIcTt5BWXNheQBw2JdBfUCqBkZi1NVS6pOk1mvQ1y2MMkFNN6QiXGNgxr3joTMt+zyfEQ4qmRxNN6bCN5NoxI2Vlfhj50bsKU2DIUeHe4f8adkPm+ah62RypuWFP6FRCzM67iZy7zMKhgcPLOZUNotouDk/H5VMjltxCjjF5NJypbOVlNUDgNxRiWi6gfdHWVGYUud8astv0M9SV1fkf61gZGAvscOs6XFMHc/tUuLPKGAtAFCfV4D46HHjeziMMEcPh0fROsc2r2fkeOtAoFX5AsDplWRvBn8fjz8T1kKt16DlCmJFYesmg8MNE7aWnEFVS/aPI4Mun54/+a9tsJDBPUMV04/Q/4fKpydh7mpLyyBtQXwya6LDEf5pHPze4yPC2tQn+9NhXwZNPP3kDbJPtZOI7xnHFtX80RrtvouHTaNGaLibPOemzEvInpoAtV6DNPkvjAzUeg1eGzYe12cqcXuKAtLgQOwJak7aiiZtDnSPQGborjplyP3uObZuS5LqmHBaznN+CpxicqnMGm/n59pkC/Hd9kx3RG0vIh/T2cvw+DIFAZPIHm899BJyvyXrzbVbe72cYauoRYJLUyqX1UWnof+AXweVTA7PL/h3CDdf4TM6/loRbFu2wMGAw9Cu7ci8Pz2+TMG1txPRZl08bL08AQASW1uYOssR40ZY9gnP3q9COQGA34w06qcHEMsJlUxOE7dTJjvIn2EIHfZlwGhP+ATlzFiYzl4GAITNi0PRfCVqS8sgOWPme37UnViddO2ImI6v0/Zbf56CztOn4OsC3oLjyNYNzLoJx3wlPgGOf7oCAErmEjmWDfDE5TAjtj50oeVVMjllKK2dDRz7DgD3xikQ9Kf4Z/n/NYiMmAgRIkSIECFChAgRIl4IRkhgxD/gI/YP9PGfhviv90uCz5tnQ9qiOWpUJNrbyRAHJkpWTLdBCJuiodHG5jS7Ru/Z1K8PtV6DPUHN4TuSaK/C5sXBTiLF71V2eOXSQBRE/4iACXw0N8+JvO06QFimBnvTGW2V76jzVPvkujoV0f1GM/bm3L3k/VuQt5Rokf22Eo1u4c4QAMDCSBXTT94y4sfmOS8FJ9rtY+5diNjOaIyC6zkAIL5WHKQuTZlIkuhVymjImM9BB2GsqmL6qC0h5Y25RURT5d2a1hPC0EMPz025zDW1XoOkwCT6PfqNURbyePJGBCpCLXOtCBnE2oIi+vkdnRZ3BhHWjsu1VvN+MxpJrLa0jJa1xkj6HhtP5zs77yLsTrQCQPwtAMBrbip8fplCv0vs7ZEp56NMqWRy5G3tiJanbOD7YSrDWvi/Q/bD6qLTaLmCaEofHPbFkQXfwmsY2YfC/D9ce9xvm1Mkylht1wrapuIDwswZKyvpNU7TK6zLsblC+fV1C4Nar0HW54loJCVRFGOCezByfjAiCqaeZTBo83iNsHuYhQ/NrqCW9FkDSM6wvGG2yB1FfCQ5+/+el0jEK86frMa5HhAVwrR3cu1a2q5KJqe+bN4jLuBWD8LY2lWCRvXs5UAYyWPtHRk/q9RvVjNzTi4Mwp+JpO2wrKHEZySQzxdkzvipZHLqTyZcj0dRXvR++uJENNyVhrKP+ehzUpemaLw9Db0cDDD0CEXr3+7TPkxPa0iZZz5V5n4Ohw9vR4O96djaxh2dl82k9znWFQC6XXyML5tfopHUAFBmXiWTI+SbeKj1GpRPVzL+qGq9Bp/ka6h/no28LRLcyH6TNiMa58HuhN1z7qODpGMwbTMnrBZLC9MgOeZGr3F9m85nW2VfL08nLMnZBXyEUtfEVHhlOND67l/xPraNTjUDQKLEcuOd4aVkZMR9LprPMg+GW7eojyx3rU+oCvV/y6Dnvm5lJOZ+b10j/1jtjYJFfG6jsl+DCfNuAqRtA9BoRxr2lhI/H85Xkc6p3zU6XiGE7In7ItbfDQBgMODIgm8x6MpoyJbWHQHUGpylDZj+zs9JoJFXuT5sj2WRvdY2ALkzSMS5esmZDOPotz0WxidPLMbP+TQV9P4RT96IQMCkTHySr8H1VJI3k/O5Bfi1CJsfx5ydXHt/7NyIVt+moNmaVBiyr0GtJ9Ea6yU/i/zZsgW1mhCOgXvuuWt2R7LQp3N/YiXQg1h13DoQCJVMDvukTIvzzTuZ963jLF64Z7s4shK2R7OY8gBhnADCqtyZoIB9UibujyHjaPcdsWKYoC2g62q4Q6wx6r1WhJOPfXBpJm9xI2xXrdfQ+XLYVHwaGwNbo7b8Bnr7KREw8SxTHgBUA8bAd10RaguLUd07HKbaWkjOaKBbGYnwT+NQ/bsXAMCkIJYFwv0lsbenz7VwPDYhbWj7hhw+32NtrzDkroii7xnuXQQAzdamovXnllGR1XoN1EEH6fvJcOMm8z5tuDsdcnt7yBfHM89D+Lmh1MKl5Jd2KJ5HnvPKV25BrdfAYwE5F7gco5zvPtfu1aWt6Hw5CwqA34scg+a8KRU5r5iZRoj4r4f4j5gIESJEiBAhQoQIESJE/MMQTRNFiBAhQoQIESJEiBDxQhDD1/99kJhMJtN/ehD/l/HgwQM4OTmhO/qjIKELdAMSEePGBqcIOSfBxVDry6TWa9A2IR5X4hOsmudx34VQyeRw/NMVv/r9geBV8Wi9+zoMuQW4PVmBZmtT8W1hKmZ6EbMX/81x8I8sgqGH3qK9wFNjaWjWhKLT8LVryJgsAkBlsg8co/NpPe/fJqHgjXUASDjhM9+twdd3/LH+4KuYM3APlm0YgkszLOdSmeyD0yG/WsyDG8uXt9vg02ZXmXvmcuq4MJ4JaCG8Zx5MgvsuPw9oOgKP3oxEw93pFjKgDt4jxsPm5Hmr7ar1Gux46Izhje4x/QStiYfn/BTcfEeJ5j+koCLJD2nyX2iZOxMVcPkxFRWjo+ByWo/awmKo9RrEvDIQhtwCpv3A9XGQmICrExOZMXCmcumLE63KxHy9nieL50FYb0dJCoZ7KC2u676Lgv904pjcNmU0PIZcZj4L5wwAhh6hOLKVBFQp+aUdLWPbqiUeKFqjwa/8elT3DseJ9euYNbE2bkl4eyTv34KYHkNQPKA53L7mzVe48gVfKVArq4b/W+eYumq9BqvutcbBYGfYtmyBQ+fUtI6kUzvqKP4icPzTFZWv3KLPnOryA6jbNf7rigCKdrVH66GXqEwcTrbAPn8ylpvvKCFLKqPmrxxKZytR5f0UAc+CWJg78Ud9GEuTgpvP2fwsGV3YHbeU963uj7r2kvA+QIK1CM1ThdhbmoGB7hG4M1GBs18kPnePln2sZJLN6zaFMU7/HMI1BmTKpbgZr8T5TxPoeWE+9g4ZI3AhYjudl8SuHvRTO6HVt39timdNVtb2YPFnSiYowvu52VjmxyZrtvXxQm1BEdRl5EwJ/ySOJlUWtg8Q81xDoAdsbz6AbPstrPM4U+ez/nhABP5MWMusPQeuzjs6Lfo5VtV5JqhkcqwqOkOT4wIk4NANxQM0OtUMV34PgMcCfn7Cvea9fzIC4jKY67qVkTTRfeXgSFQ3tkHTjalwPtMU9zrfhdTVFYZbtwAAiwoyMMebmHZVDYpkzgCbdm1gvHwVLmeccaczCbCkXR2BgFjS3/WZSrT6NqXOdTG/zrXDySngz7HwHn7RQm7yxfGodDPBZ1Yqine3h+ebl+rsoy7Utb8fjIyC8+86GG7fQeWQSDj+kk7n/SJ9cGWKdrWHj+sdJAUm1bk3uM+A9TO/ruc5YFMctOP490vBIgW855BAW90mT0b9gxlW3zUc7E+2RHU3Ejwpf7ECPh+TfX5/rAJNNpN2Yl4dCsMVLTOOumRmPOqBSJdCZMqlkDo7WySmZsYQFULdPV5kvnXhYFkW+rqxaXPMx1iwSAGjvQm+75NzdmhOOXYFWaYZ6DlgGE6mL0RFRQUaN36xd8I/Ce5v1sh902DraP9v76+2shrpA1a+tPL4OyAyYiJEiBAhQoQIESJEiHghiOHr/z6IPmIvEdp8fxcxbqGoUXVinGAvRUjpZ+Fv7dpwxHR8HR5fpjCaoYg5cVhQwGu+ewd2BQD0utKPZ6peIWGus6cmIGeOC2waNULWvESYFB2gfsRrZ3VjE2mACnNN4LWumxH9xigAQHzrLnj/eijylkXB+8BkWvZ0yK+4vi+Ifi94Yx0NsMAxTMcmREH7ViK2t5FBtiTFqraWY9WEzu3ri09DJZPD55cp2LazJ70esCmOccAFgIDNcTj/SYKFDD/JZ7VenFM+d1/TkZQVsmHWyt1pW5/eM3aRM1o7gAQnUMnkNLlsn4g+8JyfAu36TpSlC2pKQo5P1uYjd0UUzn5B2C2nn9PQevdN2q+xiSPtS63X4MwTIyYO/B2tP+ND26tkcvRR9gMA1HtotKrJFMpSKBMujLQwwEFd4OTcbmU8AMA9rSGGeygtNKvl05Xwn55Gw8MHuN5C/hIFtj50gfd7PLvSsIxPxCw9zidl5dgwAKi9Xk414Vy9E+vXQSWTI6ZtN9qvcP090x1R8qkSpkwSot1wLZcGZwCAH+570LLes1Ph/9Y5OJxsAbVeQ8O6A4CdhIzv0Dk1oj4ioftbpDambJj5vuWuFX2hYL7/6vcHbBo1QrO1ROOrbtcYar0GFaP40PIlnyoh9ffB0sI0pu7VLlsYmTzudoPKqckAwobR521HCNR6Ddy/SkHA5EyaFFklkwNRIeg5biJUMjnmzt9kMW6AJJCm8zrqDpWMDSnN9bu1hE8fwaGPsh/Ueg1uT1ZgWi7LVt95M4S2W9szDHcmEAa++ncvDHQnjMe97k/oOvYJjyH3e4cz4xOyYQCQ3GMlswbc53MjSWqM5gnkfNFUkLmMv8Yyhy0H5CDmtWF0HqanNWj1bQpqj3jSvV74Jb+W5YKzTbjn8rbJ0X3SJItzCABlw9R6DYxd5Fih6A5tQgS9ptZrMEl9BKpLFVDJ5Hh15Ntw3XuFaYtLHK6SPUuvkXYRtfmFKI6stGoNoZLJUTpbSdMOcNdOPLZhymvXhWNuwrg6Wc0+oST4kpANA4AbCpIO4BffIwwbxvXD/ebYMO67rZcnPnr1IL3muCedMn9TWx0BAMqGHSzLomyYWq+hrBCXbsB4meyxbd7HaXscG6bWa6yyYZxMrbFClFV7Sphb7+EX6biFP5qPE6AbQ85qjg0Tti/8XRfM30EASYbuEa/D404+APjUAg1+TUd173B0fWcKDZtu3p+wLa8MB7QeegmGXjeYParWazD+WpHFGW9NPkFZtui4MB6ris5Y9PHNmz/B+8Bk+t17Dlm/1ffdUP8gmxiaa9vWxwt3JpF1O+CfTPvi2DBD91AmVYvhipb2u/lBM9QJiQQ2vUpw9WEL0s69e/DKcAAi2gMgLKowKArSLqLnpUrYnyTMFJcuRvcTb5WkXd/JatoSoRy4QFIA0OHreAzN70XHrl3fCbd/C4D3nFTkjlhN60xwKmfaoNYV6S9uWSHivwMiIyZChAgRIkSIECFChIgXgugj9vdB9BH7D4Ozt72n9cGbgSTpYcHTR4ht3QUA0br8cN8DB9qyYV1130XB4YYNDTOs1muw+UEzLLmigtugbEYTKkRd9svWynDgfNCE7a0oTMGxqkA6Lmv9SRs3RtLVPy2u2zg6wlhZ+Vx7dFs3GQ5lJlloKc3HLvw950YIsjrWTfJaq2Ou+TUf09hrJfgsox8kUhN8R7Jy4Xzp7o9RoMmWVKuytdaH02kX7PI5SnxQXsC3yJrWTLcqEvmD10Alk2Nd8Wl42jZk6rT/Nh6yb1j/J93KSJwftAJD3Vl2BgD6KN7AodTfoJLJqc+asK75Z2H9iNlxcP6JaC9v7m+D5v2vMvfNZSK8133iJJz4cd1zbf4BknA6II74GnT6LA4uP6Yy/h+ls5VoWGpC+te8T1HMa8NgyObTPAj7NWcBuOSopbOVkEbeQ6sBOfR+ySdKeCxMYcrWtR+Fc+bucbBp1waS0usw3K9g5FK4UAGvT1KZsVX3CaeJ1gFA6u+DhhsrUNHlDtR64rvZ9AoY3z+1XgPfXbHwm0H88PrpolHdrRy1PcNge0yQLLWZC0wtXSmDYD720AVxeNQa8PijhobMtpG3hVFzBV8XpGOWd6SFTG1btmASFgvbjLrwFPNdsy3WXiUjvp9l+qYoiP7R6n1OTvKv4tFiFVkD4d7nyvr88TZaNK9A4955jN+HULYAoLxQg5QO9WDoEYr7PvZwWZ8KmwYNcDiXZeKtrQEi2gMZlyzmNzjnJk36C5AUD6kd9jyXhS7cGUIsCjw7wVRbC2vI2yZHbvdNTDucTyGHm+8q0fx7loGq61zncCtWAdfVqbgxVUnDbatkchR9oUDrz1Jx/X0lLr7P+unGl0UhwS2tTratrv3fZl08DSMuvBfdfwx++CURr5+aisD4PJTEtoNsiXU/PGE/2vWdaBoWAIzPGwfhfheWfzgsChIT0HBXGkpnK5E9NeG5crJ1d8OhjEPkGV2ggNdcXu6lc5RwX5SCgkUKxj/KplEjlL/V3mJNnvSNoOzQ89anaFd7RPvmYEUrfo5cWdeUJnjFWcsnmFZ1Qj01n5JGJZNj4JVb2NuWJBnWro5AQb+1dfZl7TzuNWYCbI+S1CHma5e3TQ4HhxrIBl5B6Z5guA/Oxs13lDj/Sd1yLN0TjGzFVqvnOrcP772loO8P7j2+qMVFq+fBX0H3XRTy31zNyK3kUyU8viTzqP7dC/avF7LtSSRQl52n+/j1wW9BknrBat/mfx/cnqyA400DHPaxzJ85HiX7oOEzq56KJD84xeRCtzkU/mPPQa0nVkvGhw/JGrQKxgnsf2l9ori/WTv9OuMf8xE7O2jFSyuPvwMiIyZChAgRIkSIECFChIgXgugj9vdBZMT+wxBGTTx6ndUaf5Z/DuN+eQfjo4/hZIgDo5kp+zUYboOysbQwDSH16vN25evCUdCHMAxRF54irYMdAKD2iCeOtj1A247p9SYMOTraZlCWLXLCai3YsB/ue+CdJiWkTttuMNyvQPHnSnjOT7HKCvQO7IrD105ZXDfXNnOfhZEXAeDR0CicWbHaKlPF/Q7cEAevT9kIYsKyD4dH4UFrGxoRL06XizVD3oDxQg5q/miN48H7AZCEnlmfJyJobTxyJvOMn9SlKQx37iJ3eRRaBt2EsnkBlrY8X+ccrDFpgWftaHJdbmzm8uDwUd4lLFP2gvZbNyaJtjkKv1Tg2tts9MOqgZFosDfdoqwQXLQtc1kBYNhXgPi8eDvfxeNuN2jdxsd1SLp0jDB4YcFI/o1oOAu+UsB7dmqdTJlKJkejU83wsOtt5vqeR42xNsDHYpzCdsxZHICwQkknf7Xoy5yNAfhoadaYSQAwdu2IP3ZuZK7lLo9C3jDehr8utphjS+we1NJkoty9mOAeTJQutV6De4YqDPcg/l4GXT7Vygo11nWNEwAmaAuwPsC7zrF8kq9BcgXRIgOA745YrO+/Fl/5htCykrBgmLKyUTpbCfevUpj+Yjq+DsONm7Ts9feVaLUsBb2z7+NwcBOo9RosveuLI+0a0TI10eE04WvxPCU851n3v4nuM4omUPY7Mc6C4XkeuD2quDAYztNMMOjymXvWnkFrmvfyfUGIbp0DTUeSSFZ6/hpK3w1Fy8zH+GP7RtqmSiZHwWIF/NbfoH1JXV2RdOGP57IKoWeH4UmmC0xSwHNeCgp2hMB7+EUcKMtEP/cI2LrJaGJ27cYwBIzPonXbL4+HbGmKxdhj2ryCpKt/YsdDZ5r8WrsmHAFTiMw5hsWazM3HKoxK9zzYenmitrAYedvklP1/3r60JoveMSNh1Fyh5987Oi1+8A9gyl3fF8QwzsK2FxRkIsLeDn0i+6K2pNSijHtaQ5RGPcKNaUq0WGmdtQesP7vW+ntRpqXOcjZSwGios8266lUNjMSpHwirK20bAMMVLWqiw3F8g/XIrxWjo1A5+AFG+2VilgtJapy/RAGfjyzfg9bGzTHawmuytEbQRz3Ee7k5WO4XhILtHeA9gjBBErt6MD2tgd2JVri50QsZXyVazEm3ORTOzo/QfHgZDutIpE5hRMfAU2PhNexinXLQ722LS5Hb6Bm20Kdu+XGsmVqvwciCHtR/zzPdEcWRltFX70xQwGV9KhNFVa3X4LWcN2DTi/w9w0VQfdHz6EWh1muQU1OFGV6s/56tmwy1ZXqr5bkxxOlyscqv9f8XjFjYnvf+MUYsa/Dyl1YefwdERkyECBEiRIgQIUKECBEvBNM/5CP2f4ERE6MmvkRQyeQwdusIgGhJvvAJRdPLYNgwtZ5EMXIblA0AlA3jNIFuaj4K1pbThOmoiQ6H7avFUMlIlKf238bDkKOjfQKgNuncd5VMji7TpuBAWxcoZ8YCAAz3KwAAFyevIn1/QyLlvTZsPErmkihexocPAZDcNsJx5S8mfklcBEfvJBKtzWvYRWZeDXelIXgVabdslpIZz92DAVDJ5Lj2diKVkTlsOgSh0Y40Jj9Uor8fvtz3E9R6Deq9VoSRBWRsrptIVL6cyUQr1ieyLwAg6dIxosF/Lw0No/Nx9o4n01/blNGwqV+f0aSZa6WFbJg5LOzyHQww3LiJd+XHGe2YblUkM0evT1Ohksmxq5TXgjbYm05lBwAlv7Sj7T4cFoXc5VFopOY1oQBwd7yC9iFkw6T+PrgQsR2Pu92A1NkZAGA3pRyGO3dxoLIBAMCURVhb25YtoH0rkWrvhRDOIcGLsI+GHqF07oMbkghrlUMiEXjWzqpcjv68nrBnpXzEQIMun9GUcvMxZ8P6XbnDsGFc20ll59A7+z4AwOYUYTh130fS9vzeS6PPiEomx/WZfC407rf3b5MAAPaHMi3ZsI6vw3DvHm5PVjCaeS6nGsey2L9eiBtTlQj65hYzPnMZOP7piorRUViydCSsgXtuFvrI8dv2LrSu38w0dHcwMmM3ZZHzQvZqCbQbw5g2hGyYSdEBrZaloHRPMA4HN6HXE071YubKsWHajWHw3nW7Ts0/x4atrZDBd6QG8q/icX8Mkc+9Q/50Hc2fZbWeRH9VyeRo3DsPSSdJDkFuH3HRHFUyOcYXd4V+b1uL55Fr80LEdhr9VJJ6AcYnTzB+XDJsTpI9ENNtEC3v/XEq7QsgEfuE5xOHqAv8832u0054fXcZOZNJFE7v4Rdxf6wC/dzCoS47j0MZh2hZIRumkskhW0rOKZ+9U5j5Gx48gEomxxz1UHpN8tQG+g/IXjq5di2Csiz1qH26DLAY62WNF/0sfL8IyzwaGoXawmIAgO9IDUyKDlSO2sQIC8aJg1qvYSJxcqwLd/4tWPQWU1at1zBsWO6KKAgRYW8HlUyOR3IZc53r/9wNd6j1Giybvoa59yjZB9rVEfTZFY5z4JVbNBqesC0A6LiIvGskttZ10tbeMQCofGA0wKZBA6Z8RjW/N2K6D7baRoO96fDbTqKucvmx6iVn0rEFZdnSz2WzlEhbshqygVdQUetAIxXX831gdWy6zaEW17h1Afj5b/Q8BbVeg+V+Qbj9WwD2KnhrANPTGgDA0+7X4fwTee8U7SKRB32Pjodar0H+qxvQ7A0tjJUkUqdvZn0mr5vXsIt0za1ZTDRr+CzCZ0R7fN2tr8X4hOB8yFQyOe50voe9pRnQ/RSKU2pB9NVnkU0BwGU9KS9kw1QyOaQSI4002TzB0idR0jGYljd/vqQuTZm1FL4XhFDJ5AwbRt9TZXqrZ51wvyb6+6FyQCeLcYn474bIiIkQIUKECBEiRIgQIeKFYALwTzg2/V/wnRIZMREiRIgQIUKECBEiRIj4hyH+I/aSYK+WJIL8Y/tG3B9LTMfez81mkhoCwPvXebOD0jlKhsbXro5A+aBq3NzfBgDg/w4xWwtacImhxIVhzY1HPZj2uc/dLj6mAR5SvuVNFqTHZeg66x0AgFOhgTgCnzqP5l2JE6pJ2QE+v04BbCRMe4sHbWVMFwtifiTtNXFi+lfrSfJZALg8PYGRkct84hga88pAps5kbT6qe4eT9i/kQGJXD7k/d6Rl1HoNwuzr0fbvdL6H/G1yJBekM+3UlpRSEwau3t2DAYhrfYIp5zHkMg7n8yZzu0pTLUwVOXkPzSmndf98wpoEqfUatPkxDmlPDIBEghnOhbRfqUtTJkQ3Vx4A5AenM+2oZHwiY48hl+kcUpavht97aVTmHGr63ydy7PUmbePh8CgmGAIXcKLeayThLedwLzQH5ORkrKqibQjHqt0YhuZSknz6yNYN9B43p3KFhJow2fp4AQDuHfIHAPQJiyZmjO5RdK66laypptBkrGI0X+6dJiVQ6zVErs/G8o5Oixi3UN7cTiKBJCwY/u+yewAgYaEBWCSAVcnkCJiSidI5xOxEEsabsahkciSd/x29s++j2dpUdH2HmJppEyMY2XMmny1WpUDyqArWcKCMmP396vcHnH5Og8u6VGbeQsS8NgyytEY09HfvwK51lgUAm14ljHkc95v7zIVtdh+cTeuoZHwiXpuQNlTuJkUHBIzPguGKFj67Y2l5tV6DO5MUjNy4kNsOMTew5ctvAADOfXSMKahwTFGaIXDelGph2iQ9fg4AMC+bmDLZnWiF8u5PIRt4BUVfKCz2h3ZtuIXZp1qvwcym+SifwZqMmoMzY+XqcvVlaY0w3zUb03Kv0uucKSGHlK9+YOoKUbAjBDEdXkPBIj6NRP7ANXRswvK+wbxzv/+76WiZ/hiSY8TMblnLDAu5LTm2nY7J1ouYVPtPJ+kMksrOweYkMadddDuQMYk6s2I1sx8kqReg1muQu6UjTRsB8Obowrk13Wh9f94fq6DJmctmEVl3XEjqP+4fAe3qCOQNXU0TfwOAatBYAED93zJgd6IVABLco7YnSZjbvD+ReS8HA6QCx/3esiso6LfWqsxjm5TRYClCWdl6edIw83mbeZNu8z3kcsaZqQfwz4lar4Gxqorp7+3V0+lngzYPKpkcxZ+xgRsA4L3ehyyucX3mhNXixlRSR2hmn9XRhpoZuw/Oxv2xCmZsQVm28B9LnhFD91D47oxFUJatVZNSDtJAPzR7Q4uZXnxbT/ry59b9MeS6x0opMeEec57uMe3acDxK9oFar0Fe+BNaJ/yTOCCiPSOXCdoCSFs0p3Os91oRmWPGJbx99E887h/x3LNLiIHuEWgzsxBXJybSZ4ZzvzCH8kIN/WzqWUYTjgv7uv1bAKRNnDBvz2Y8GBFF14BD6RwlJE6N0faHeLyjI8mlg7+Pp3MBgFFXyd8P2tX8PPKWRZG/h0DeK8JzhHsXCNtQ6zW4E/L/x5/lRkj+sZ//dvz/seIiRIgQIUKECBEiRIgQ8V8E8R+xlwSDBw0mASO6DIDNiJtQ6zWI+20Cvi3kAzP0vFSJ1CURVJPpvpho89V6DXr7RCEgNgO+IzVwtK+h11UyOU6V+hDWJIR1uO/4ZTxsepUwWsDS2Uqo9RqcDHFA4UIFZGkkZLVKJoc0yB9JgUlw+pmwQULHXC5JoiTlAvzfTYfhzl16r2J0FNYGEK2ZLK0RGW/0cAB8ABBr6PH2JDpWAEjev4UwI5NbMvO49qQV7A9nQpsQgRWFKTA9rYHf6PN0Xt4HJkMlk1Pn/0dvRsJHmJzZRsr0w0ElkyMzdBcNHS50dO8yjXeuH+qugPHJE0aOex41hkomxwSncnptoY+l5v/qxERE1Zei4pAvo83j5Me1KRwbl8RYeN88SbBar8GJxzZMXyqZHKWzlWj5zFmeC9gCAI12pNEyAHFwvzOB19gLZSLsFwAq+5HgDxxzSh3OF92zykZw9XzfT6OfD53eB7VeA+c+ZEy119lw29FvjIL/tHSrQS1UMjmcfmYDbahkcnzuE0bv93OsooFM7o9VACYT3t5+ELqVkTB268jI9/jGHy3mW/QFLwv3RYQpM2VlMwzGpJLOOBzcBPlfK2hKASGbAABJ2cchsSfMrnkCZIeTLQAA/dzCrc5RrddgUQGbONSQfQ0GkwRlHxPtufHhQ6jc2WAcXPvrik9Drdeguk84AtfHAQDuvaVgtLRcWWua6btvKyApvo52WSQgkCT1ArTryFjz31xN2UyVTA6Xdfy5ZegRiltxCtj6eKFx7zxMbd0Z7VayzIo58+UUk4u8pezY1HoNpMdJEAfZwCvQfReFgwGHcWc4eS6vTmRDbN98V4nZXQnrcGcCYcseJfvQNi98lICSuUqm79peYbSNGc6FGHutxEIOBQ9cME0fjpV+bRgWCQDynj6CWq9BjBsfnEaIrhefwHv4RRhu3YL3HCKjz/IJgxF23giVTI7cn/n9aNOrBNrVPDthc+o8buwh4exDM0dRponrZ9rb7+LWgUAAwKGUA8yzL5XYQK3XwKZdG5wMcQAARMwm+2CATsU8W1I/cub5jTmPpYXk2XqU7INW37IBDrhgOkK5F32hwP2xCjTZnEoDsrh9TRJmn/+EWDn8mbgWAbGE0astLEbQ2mdBMwwm2s7BgMMAgFYDcnD05/UWz0PS1T8BANW9w3Emqilzf9RVPvS9EMI99kYSnx6Dex8IrSE4cKHSzc9u7pqhRyh59z1jyF8Zcg6FCxXM3vD8IgX5S8gZcn1fENR6DQ60dUGfyL5Me2q9Btq15JlqsSoFUpemtJ8e4yda7Lf0xYnIWxZFxyZkcY5s24C8YauZa8Jx9+ncn8jx+C8AQPsCgPoHM/BgBLFwaLKF7FOb0yxbW7C9Awr6rkPD6HyLfZ65MJEmP+fkObRhBRMYSK3X0CTtW8sj4bA/w6IdYVmbkDb0+8GyLJpS5Yf7HkzZyiGRlCkEgJQO9RBx/k2mLW5c3PessF141C0QH0+NRePtabD1bk3PaQB44mpEwQgZPBam4Ad/EjTMfVEKul18TNvb2sYdAPt+9n0/jVpd1FOfxeMB5FmO0+VapDnhxlTrwTOLIv5vQAzWIUKECBEiRIgQIUKEiBeCmND574PIiL0kMF4mIWxr8wuR2mEPVDI58oatRnA9orlU6zU41t4RjXYKNJBGA+6PVaBDxggYnzzB9X1BcE1pAsfofOi+j6Qan0uR26DWa1C8tiXaZdlQ/ykufKtQC+X+VQp6jZ4AAPD6JBUFD1zo/aSju+lYzH9vLTlDy9n6eEGt12B10WnKVnCayBu9SVhe48WrMHQPZdrx2xbLjIULkd0nVAUAOFDZAFXGGgR8V0TtsNutjKfa3cDpGho2Vq3XIHhVPFQyObp2uAoAcN5ENHsNd/NMnk1IG8BIfIligntgUklnbC05Q+RymQ0PzIW7VsnkOL1yDayh83TClK0N8IGhR6gF22COvtreUMnkqDngaqEZ7Zg5HCqZHCHL4pnrHLi2bxsq6fei+WT+mupqdHcwYlURWZe7BwOg1muQPTUBcbpcpp0b0yz9F/a2dYVNLTA77yJK5ygtxiYEl8CTu6fWa9DrSj8YdPn0uvZH6yF5zRkuzu/DfJ7Jv221Wr+uMVnz9fAYchkA4KLOg1qvwfoAb+QPWUPXFYBFGHSujdafpTLfzbXmAFAcWUkY2zGJjDyEZfso+8FUXW1VDvv81Vbnod3Ay47zdbRpxCdXvqF4gHrKO3wlowHBq+IJq67LhdTVFSqZHJM8SYh7+0OZ8JpLQlJzYaG5vu69RTTJbVNGW4wx88tEGO5X4HKYkV4LmJRJ58ixmQDoGQMA933t4ZqYikOn99F+3BanUIaZm7854xDw4y0AgG9mfVrG0IOEgPbKcID/9DTEhPRCxqJEel/YXvPvU7AnqDmevBGBM1+shEomR8PofKaM5+EHTN9Ht6ynmvDrtY8wtCHR4HNh8wHC/q+UZVqsLQDEt+7CXNNuDKNMnlqvgbMt2SMFixS4+Q557r7wIW1zCbnzevJJpgFWww4AzX8g7FLLATnUj/ZJX3Ie2h7LwrlOO5nywmdBJZPDePkqvffERQK1XkMTuAPA2GslMOQWUJl86EX8L8+E/Er9zjgMdo+CjSPxA3VPawgAqPGqRpPNqaj+3QvO8+sz68rJxvxMbBRO1tqUeYmylvFlUUy9unBi/ToYq6rwjk5Lr21t446aP1rTOQNA5eBIdJs8Ge2yyJ89sU3KoNZrUDEqCrpNYUybfTr3r7M/c3ZfepykQTFlZSMmpBfywp/A65NUZszFu9vD56NU3JmgQKsBOVQOtSWl6D6RWH5wZ6TdHV4/fn0D8alql2WDeuqztN5tQyUqRkchcGMcckesZsYjlJk1iwQOvruJ/+GJxzb4tjCVWmGoZHLUqDqhwvf5fx56j7hgsf+5z4Eb45iyXd+ZwpTNXUFYvNojntD9EInKV24x4+fY+6A15N0XenYYrsY1Rvl08sy8NjkWgaeIP+E7TUpQOluJ2p5kDR1/SUeTzanI28qfL859dLg7XgHtj50Q3ZpnmIUWFA6/ZaE42gbSIH/UFhQhuSCdsvymeiZceSfB4nw+OqOLxf6+d8iff581c6H3Sj5VwmFfBipGRWH10P6MvIR7xf6aw3PlLuK/DyIjJkKECBEiRIgQIUKEiBeC0SSB5B9gq/6JpNH/aYiM2EsEtV6DA2WZCDj5FqPRMte8cr+re4ejyeZUtByQg6WFaWg1IAe3lPcBgNolI6I9ovsR7bbboGxcDjPCb/R5pr2+2fdooloAsD1GbOdv/xYA+9cLmTGaa9m4sY3y6EzLHDq9DyqZnCYLVus1iAnphX5X7iAp+zgA4rMhPUF8IxQXBgMAfD9IYzROjn+6wqZRIxw6R5iCH/wDMNA9ArVleqoldlvM+yxwSSi5NrKnEm3xDcUD5jpAEniqZHIcTt5BrydlH0dxZCVGeXRGxagodHG8ZpX50H3HRwc0v99wN/FjsmnXhkZ4e/oqr21tkUp8x5QzYxFzLYb6QbiuTmXkqZLJ0bz/Vdj6eOHi+wmMxuz2FD4iXfkMJZpJHekYrk4ic57lTRIVT23dmWheDzejdRL9/RCSMYL21WIlL0PdD5FUM1nZ7wG6OxiheWcVM88hea8y+6B39n3mu9+JcbAf8ZiRS5sVjwAQRoiDuQYXIIlshRpwc42hTSPiYyhMBG3sSjSfNdHh6HeFMENf3yFaSafTLjBH0vnfmT0s9BGTDWSTX1t77jhY8ycRali577ZenvR7bWFxnewdV4bz0+QQOOUiE4UQIL5gQvm59rtG27oVq0D2VLJnFuuiYbhF2AZpkD/1R+Lq7SlNY+bKJW91W2FLyxUu4BP2mo9dmxBh9brf6PO0vsuPbOTXztOnQNrMhUbws6ZRf5TsA8M1wtzmhT9hyvhvjsMa91Q0OtUMhtt3ENPhNasy5X7X/y0D/dzCGb8RDqazhCV1PtOUrsHN3YTRH+fZBXsrm6JG1Yk+yxx6B3bFpJLOVvcqAHgnTyTyeX0tZfJUMjkOtHVB2x/i4T0nFfUeEH+ocA2JPht9tQ+tb87Kms+vcnAkU+7mW4+hkslROSSS2XvcT+CGOLpOJZ/yVgPVziaL8W8OZH1u1HoNvNUTCOtjZ6m7NVYSlq806hFUMjmJ2hcVQt4dGZcgDfK3eEYAoGpgJCR29QhT2EcHqbMzrs9UomF0Pl13rjzH+JlDKP8f/APw5I0IKq96rxXRz7YtW+D0qjWofzADl8OMTD2veC1N/MuhtqDIQvZJZewe4GT7KNmHlu1xohDuaQ0hbdEc0iDCpkR7R8LzTeIvFT31NGVu3i0ja2ifRCw/AiaexciCHvCezbPvzfsT9pIbM4dRHp2RtmQ1vD7hGW3huRP6RRxtw5qsij9XYqWM9PuVbwhmeikYP9juS1Lg8WUKU9ccHGtlzlbemKrEtfGJjPwa7E1nIpj6zSDnju2rxfB/h49c67eNRF/l2HvP+WQMrv2uISAuAy2/S0HBIgWuj62G1zDCIBfXPoL7Vyk4+vN6lE/nfT59R53H3bf5OWUuTETAxLP074TS2eQ54KwAKgd1gv/UdOSObQYA8D8xjrL8/u+kWz3vf/lplcX5ndFxN70/OTWdWllciU+ATbs2cNqaBtP5bDpnc7h9k25xTcR/N0RGTIQIESJEiBAhQoQIES8Ek+kfSuj8fyCjs8Rk+r8wzZcXDx48gJOTE+5pfTB05BiaI0R1+QHU7RpbaBJv7m+DZg0rMcnjT6wP8EbhzhCqGUoqO4e+fUbDqCFafYldPSQXZaDNuni0/pzPnWGubVW5dQRMJtwdz+d94XD3bQUyv0xkNEHmnwHA2EUO2/tPEPhTLnLCaun9ztOnQL38Owx2j8LSwjTqbyAcg6RjMJIPba3TDyD/awU6dtZil89Rpn9rrInup1D4v8VqLtV6DdqcHoPWQ4lWskbVCfXUZ3H3bQXuyI3wn0Y0UNdnKmlUMGH7wuuM3Mxsw43dOsLm5HnYtvZAbVGJxdhsvVujtqCIqWvbqiUTIdCahtGcEbU2b/N2zNuqHByJhvmPIMktpmyKsJ1XLg3En+33Mu3fG6eguZysrY1wXM/z4RDu4azqGszxjrC4PqmkM46cC0ZBf5ILyDt5IgLePou7BwOQGbqLGVdtrzDYHs2CWq9BtHckkgv4aIomRQdIUi/g3jgF7gcC3vsrEZJwCRdDTbS/XmMm0Pp1MW/Ca9FvjAKMqHOPqvUaxLTtZhEBNG9rR/iOOv8vycxa2RFX9djeRlZn+Zo/WtO8b/fHKFDhT3zbXFOaUKb8r/riUDpbiebnn1I/TWG5b+/6QN2usdV65przaM9OSC4+azHXdcWnMcmzi8Xe5hDTfTAMWuLL531wEgr6rrPKPNF2JRL6xtZu6ISAt89anZ9ar0HQ2njkTE6g9a09y8Jrj96MRMPd6SjYEQK/uBIY7t2rcx2tzef1IW/h919+eu4zZFJ2gCTlgsX9h8OiqF+w1XnD+hqYfw/+Ph7ui/gzzNi1I2xOnbdax3xuz3v+ubFoV0cgIDYDps5ySM5oLO5bk49KJkfhQgXD6liTDQA8GBmFKZ/9arH/rY3btmULJiIpnfOz83l10WnEtu5S5/zyvolC7sjV6PhlPPWjNgcXFRIAdJtDae4u8zFJGzeGpGkTFI50R/a7CRZyFJYdf60IwxsR65SAKfxzJ5SR1KUpE1EXAHyPjacMtHmb5qjr/QJYXyftmnAUvEGePd3KSLT5NAeGB8TC5MFhXzTunceUt9a+NMAXpvp2MF68ivwlCvh8lMrUuXUgEK79ruFmvBJPejyk7CGH6phw2CefQ/HOtvB88xKKd7eH55uX0O3iY5wMcUDeNjlyu2+yOv7r7yvhsacUtYXF/HjaBsBwRQtEtEdxdCN4fsGvscsZZxol0xzS4EAYsq/R79qNYTQno7ls1XriJ3207QEiu82hCPrkJmpLSrG3NAMD3SPMm6f1Hjw0wjkgHxUVFWgsyJX3soD7mzV454eQNrD/6wr/SxiqqpE9bOlLK4+/AyIjJkKECBEiRIgQIUKEiBeCGDXx74PoIyZChAgRIkSIECFChAgR/zDEf8ReEgwMaE/NEtV6DTX9UcnkaHN6DKW8JRITbHqV0CTD17pupm3EuIXCqLlCnUeTizLQc9xENNHx4aaF1Llar0FMx9epSU/Tjakof493dgWAphssg0hwULwfSz/bnNbAePkqTR7JlW24Ox2D3Ulwi5B69VE6R4mY7oNROltJgySYzmej46J4Oi6ABI0AiFOxz6xUVHS5g4jZcbT/KaXEwbZgRwhignvA78Q4AID/W+eg1mtwb5yCthe4Po6aJQIkYa9ar0HTDanIH8KHob/4QQIzBrVeA9tWLdHq22cJfBUdGDmaO0LbnCRJpA+l/oYJ2gIAQHbNY1qWcwBXyeSwdSMmNibnxng4PAoPRkYx6yNs19z5nprYXSGBLwoXKlB7vZxZN3OcXrUGyYe24sZWGWzd3aCSyanTuEomp2aJQmQsSoT2x05QyeSoGhhp0TY3Lv+f4xiZ3dzfxqIc9zPHm3em565N04cj2vkSYMtbSXOmZeZmidV9wmF7NAuVQyLRJ7IvimaHIXBDHG3z9z0/AQCeNpBA+1YikHYRlya0ZfqzPcqbk1SMInL3PjjJqmmL34lxMGVlU+dq7p45DPcrUDmYyEh5oQZbSs7Arl4tU0ca6PeXZolqvQYPRrDmuyo3EozkeWaJAHA8eD9to8mWVBpy/+7AelbHvqMkhTUvWxNOy2RPTbAwS+QwsykJAZ9URsJ25y6PslhT7oczS1xXfJoZw4SR7zJtqmRyvD7kLVpP8pQ3bw6YTMYhsbWFWq9BlbGG1uFg06AB7kwiz3yb6deg1mtwYxqbrJn77TmPhH/n0mKoZCSRs3B8wufs1qAnKFikgP+MGzQJa13rGHMtBlEXntIy0W+MQlk3RwuzSq8MB2YOkpQL9F7BYgUeq72h1mvwyI1Pyq6SyWli2oLtHZj2ANAgHFyb3HqqZHI0z6rB7Sl84IIeP/DmWENzyq2ah3afNInW51IICPtUyeSI+igWo66W0uBJnFkid184b+7MA4AOS0h6Ba9PUpl+87dZmmADQONtaXT/q/UaJpH1vXEK7ChJoeUPnVPDHNz5bFJ0oEGkVDI5PNP5tbkZT/aL7wckgbXQLLH4cyV0qyLp9yabU2nS6/xXN1jIhkPS1T9xKOUAZo75FZseNLcow8m9OiYcGwNbo+PCeGqWSPfKJ7wpX9KlYxbylVyvT+/fnqzAq6PeJueNIEGzsM7tyQqLa/cMVfT7nQkKxLTvCQDULBEA8oesocGUAFCzRK6N/K9JQCGbBg2Y9g3aPBgvkqAjnFniq5cf0nZbvUPSrzRPSGHMErl+7JMyAaOB3uN+c2lrhGaJcbpcFCzi59dqWQpjlggAhita0nbGJfisy2fWY5s3CSam28yn1uHuG7KvweFkC3q9QLUe1qBbSQLmlKW48e/IsecAI/k7rIENfx5XjCJnp62HO0rmKqGSyTEwoL3Vdl82cIzYP/Hz3w7xHzERIkSIECFChAgRIkSI+Ich/iP2kuDTS7yzL5dwUOpCQipzbI5ar4FXE+Koe3+MAkXzleh+eQCK57EJeVUyOYJXEYbJ7vezcPo5jSZY7XbxMS2jkslhuHGTtg0ALZenMJpIALCpX9/iGgA03k6cyPOXKKDWayDp1A5SZ2eLclzbfsfHI/vdBBi0eXD/KoWGrwaA83PYZIlcSFvP+URrn7siiiafVes1WONOPjsnOeLq/AD4juTrtl8ej4xFfFLdaxMSLeTDzSfmWgxqj3haZZ4A0AAYKpkcktQLFu0AJCAB95ljL9cHEI32GwdmoHBnCDpPn4LqPuG0bm0ZSaZpuKJFox1paLwtzUKbyvXBaeXUeg0eDY2i12xfJZq+o2OW0rqjC7szdYUJWFUyOVz7XUOb/dehXd+JT1MwWYF238VbaLBVMjnckqUAgAZ70+l1IdR6DXSjSTCXT/LJva5ueXTvmpc1ly8ArJRlYm2ADwImZVrsM5VMjj6RfXnt6KFM3B+rgMQA1JaUwnNeCrw+TaVthn9Kwjaf/zQBs27IUT5dCcUmNky6cBwNywi74nzOlrnPjcN3pIYJJy9kS8zn57gnHYHr47DlyCtoLnW0cDrnwrH3jh5uVS4cUpetZvswmSzGzqF8BhnbzXeVyKmpouPj1l27oRN9xgGg57iJNPHucA8l7WdRQQbVxK+6RxLhVowmbGHut1HAUXfaRruVhM2IcSNaY7/30jCyoAfGF3cFQNJqmMv7rWujiAyeJUa2OU3ubX3IJzy1yeAtAmoLiiz2gqm2lmiM3UnI/Kevd6LlD+vOoML/2edrpwAALVaSs6zKWGPBcgFAyShfmqz86Jb1zLqr9Rp4HyYh6G20jtCOS6RpNLh0Cdb2gaGHHmkd7DBApyLXjUD9uyZmz6n1GmRs5lMmVCT50XsA4P1xKv5sv/fZ/jRiWu5Vei+j427seuQE7xEXoNsUxrDkV+ITcCuWZwOcLvMpHu62qYeHPSppOG+OTcj/WoFdQS2h1msQdGYMIwP7Q5nwzyTO+AluaZDY2sLWx4uRkdPPadjahuwNYQJdc/hvicOhzCSoZHIUf6ZEyxUpdNwxbbvRcj4jWZbRpOxA5VQTzTN8rhry3OYuj4LzplQ4S3kWhhnfaRdmHwrP8AcjomgSdgCUAbN2DnvOT4H/1HTkbePHlvQnG9zoxlSlxdnW4WvyHp7gVE4ZPZVMTi0+1HoNHhmf4MSP68gYfrAMFqXWazDwyi2oZHIalh4ggbRapDaG74ep0K4Nx6Gq+mi2NhXVTci6J106BrVeA/2HfLoCtV6DZmtTcfu3AGae/aa9B4C8613Wk+TON6by9bhx356sYMYlfAZ1YxJx920FjFXkHOKY8kUFfEJytV6Du+MVONKOJKTfVHwah9IPWsid+yyxq4fe2feZtVDrNTT5tVD+1b3DMcDxEbznWA/+AgC5WzoydWqvlzPrRdm/Zyyn+RnEJT4XXhcyzwDgP40kguYsErgxH8pMYspJXZrCaSthX2tLSuGxIMXq3ntZYTRJ/rGf/3aI/4iJECFChAgRIkSIECFCxD8MMXz9fxjC8PVvBoYSzeTqeHh+kYLcLR3hN+a8hS+CNMgfhhwd8pZFwff9NKY9m3ZtcG9JLZxicgFYhqtV6zXw3RELSAC3E0Y47M9g6ptr4qgNu+kp7CV2FveqBkWiwa98AkL9R0rIlhDNTs9xE2H3+1mLttV6DZTvxSJl+WqrTNvqotMY8/77OL1yjcX9W3EKuCZaaryEbatkckgDfGn4a5VMjr7Z97CtuBNSO+wBwGuluJDfth7uqC0pZdo7+liKJb7toV3fCQETzuL6TCWmT/oVu4JaWpVXde9w2B/OtBhPcOoouA/mfYw4HCzLQuCv8fCfmm4hdwC4aahE5MH3UNB/LXqOnQC7I1moGhiJUz/wfm0R59/ErdImCJiSabHWwnFMy72KFeOGUyYCEgnUZSSxd+meYLgPzsbd8QpkLky0uib3DvnT5JYFO0LgPfziX66BtXtSfx+sOLIFU1t3hvJCDVI68PbyNdHhqJdsOY/anmGof+06asv0Fv4Vtq1a4lBWMrz3T0ZAXAZsHB1xWHeGYT8YlmP/ZBoiX3hPOM7nQSWTo2J0FJx+TrN637z+6MLuuKW8b1Um1mDbsgUOnVNDJSPh6sc1vok+EX1QW1pWZx3hPAdeuYUt897AmRX8s1U5OBKNL9yEIZf4LX6Wfw6d69tYyCL07DC49rtGxxp41g7XOj2l37kw0UJZqPUaJFfZ4+OVE9BiZQoTGrz7hEko7mMD/3fT0Tv7Pg4HN2HG/P71UCxrdY4Z+962rpbM1L7JKBiwlukTIIlyTdXVdcqlfIYSA8afxHxXNnlq/mIFdGMT0WP8RNRTWz+fzOdofoaaY22FDHs7eQO+HtQfxrzNup6Nm/FKysbc/i0Azd7QAgDuHgzA41PN0Or1Etj0KrHos+elSsxy0TGyii+LQoJbmtW9VrBYAe1Y6893yVwl6t82wTUxlR2rW0eoy85byOL+GAWabLE8hxcUZGKud7jFdd3mUDg7P0JW2C5EfhxHQ78DgH5vWyaRurXxqfUai3rCss5nmuJeZ2It8uSNCNT/LcOiDQ6ytEbQRz2s8745bk9RoNmaVJTOVsL9K8t1sobnPu/PUi1Y21d1nUd1ySRKM8Tqu54L4V85JBKOv6Rb3Yff3vXBzKb5zP5psy4evqvzUXu9HENzyilbGvpFHFxX1800mTO+dc1deK/s12A02N+YWro8r22VTI7r+4LQakAOc8/aftN/oITsG+tpB6yNmXvPczA/h+J0ufju3eE4vvFH+G+Jg88sNvw+ADzuH8H8LcXdk4S3x7Up9giYeNaqXB4PiIDDvgwULFbA+2PSbq3pKU5g/0sbrp37mzVw28f/WPj6ayMXv7Ty+Dvwvwpff/XqVRQXF+P27dtwcHBA8+bN0b59+/9aYYkQIUKECBEiRIgQ8X8ZYkLnvw//Y9PEY8eOYdSoUWjRogWCg4PRu3dvjBkzBkOGDMErr7wCFxcXREREYMmSJbh9+/a/Y8z/lRgS0Zl+ftKqFi5nnCkbBrDRe3KmEz8sjg0T3rv2YQOqIQNgoXGLbh0Bv5lp8HsvDQ77M5i6No0aMeUVH8QCNsRHqMf7U5nxxgT3AAD0nncC2vW8nbhsCa+J4tgwoQb51oFAqGRyNNrJa20/yz8Hz3RHWia2dRfcCLdB1EckKmPhzhB6zzUxFbPzLtJ2Dd1D6TzvvcXbr3Ns2JknRhTtao+Dwc54cKoF41MBkEhzar0Gle1aMbJWyeRYOnwkACBgApnHw4BayoZxZTvN5W32OTasaL6SjkMlk6Ol00NaR/jT1y0M+YPX4Ga8kpG7SiZHxOw4xMz/ALZONVDJ5Di2mURoOvUDYQk7XxxEyjUvrpMNMyk70Gsr/drA5jTpVxLeHjCZ6L0v2v8GAKgIsK55BQDn+sS3UPddFLyHX2RkJRw395teP+qO2l5h9N7dyOaY2prs9ZQO9Zj6HBtmDttjWdSnjls/ro9DWclQyeRou5AwRiVbvOC/Jc6iDU4+HANkzj5Kmzgx14W4bahkfD+cL/GJm4XPD/e7T5cBCP4+HjcNlfjZ6wQtK/TVsFYfAGrLb0A1YAwAEiVRJZOjtrQMar2GjtF8XkLENilDw11p6PrOFHrt9Ko1MOQWED+On0LxhQ95Ztp8wLK0QjZM2swF1zo9ZfoR+mGqZHJo14UjclYclvsFocUqwqR42zWE7rso+J8YB/vDmfB/l2jjDwc3Ib4dz84KlUyOy2FGpv+9bV0BgPEZUsnkCIjPwPCCnvTapJLOUMnkMIa2QbeLjy1kyKHlihSkdSD+MmHz4+g8dGOJz2g99VlUjIpC6Ww22mDApjhUGPlop+Z74nrtI6hkcsi/iqf19gQ1h7GyEoeTd8DYrSPtSzgP7rfwDMhfrEDzBN43pNkbWnovM3QX3L5OoWyY+T7j2LB3dFp6LS/8CVQyOXaUpFjU8UyutugfIOd+vQrgtcmpeJTsw8zX2IWdO1c//etEi31s7iMm6dSOfvYfew74zQUxrw5lWC0AuBS5jWm/5Jd2KJ+utJBf5YAHtC9tYgRGFvSg33d4HyPnGkDZMC4Spvne2Oh5qs49Yz4n3U+haLaG7G2ODQPAsGElc/nnurZnGGxbteRlGNHesp9nf1laPWttpDB1ljPjF47n+vtKSFuQ6IuvD3mLedevvu9Gy3GRIzk27GLNE7qXdT+FknVs15jZDyqZHK0/T6F+0dy7rs2Pf82Gcefj4wHEf9NG3pbeL9jBv79jgnvQqI1ug7KR8VUi0w73u+aP1thUfJq5djFiO3SbQ5m1m+sdDpv6fETP4nlKXJqZwIuzUSOLsXJQuXWESibHEt/2sPVuTa/HNilD1aBIKpv7hgaopybRX4VsmBAO+zNgf7Ilul58QtqWydEitTGS929BwMSzcDrtApVMjurfvWgd7YZO+DNhLTk3P+bl633i388yiXi58MKM2K+//opPPvkEWq0WJpMJbm5u6N+/P1q2bImmTZvi8ePHuHPnDq5evQqNRoOzZ8/i888/x9ixY/HFF1+gRYsW/855iBAhQoQIESJEiBAh4t8Mwoj9Ewmd/+1d/MfxQozYK6+8giFDhsDOzg6LFy9GYWEhSkpK8OuvvyIhIQFffvklli1bhk2bNiEtLQ0PHjzA4cOHMXjwYGzduhUBAQE4cODAv3su/1/DcJ9o+1QyOVDfgG3exxlNk0omR5RmCO5MUtCcLRyE2npU2FnVuBt6EC1YchFhwXK/jWLaV+s1sHFqjKqBfK6UHxctB4wGwmDtSKM5bADQfDonQxxQ0PtHZjzS48/yxUgk/JwAeB+eiHOddlrMvXN9GyZ6FQC0Tq7GU0cJanuFoem+BpDY2tJobF/58ho26YlzdJ6cdo2L9KWSyfGFTyhaD71ENJqLeI0mN+eY4B5QyeSwP5xJfR8A4B2dFqbMS3RM98cqUNBvrUV997H5jJwB4OqkBNi29gBA/Avqj6lh6gnZGJVMbhGtS63XwPmnVLj8mArdM58coUa9YLECDaPzsas0Fbpw3kfGpkMQI9fff/mJfhbK1pR5CVEXntJry/NfRcWoKJjMToMb05SULUCvUqLBf3M1M39rYFiEXqX4eeN3eKwmOXeqWthYlKtI8oPLGT7aJleXW2/ztjl0n0Ryf0n9vKkP1eWorfhzxFIAoGsrHG+fsGgAoDmAZt0g15OunIQ2IYK2HfBTHLJrCAs4yqMzVhfxebCMF3LoOMwZVpVMjkOn9yH73QQ0lzoiYjZhYrpPmIRL77GRQW9MUzL1+2aTZ8pWf9fiGVbJ5DDcr8D1fUH0mrEr0ehmVPPMFTdfzo+Qq8v9DlzOa2xvDQ9B0BoSLbN39HDa52f552C4fYfIKTjQYo5cuwV91iH9a/LMcX5Ewd/Ho3kGeUHf/i2A9mV3ohVht56xy/mLFfBMd0SfsGi8/uY4qPUaPEr2IWfV/QqLvXWv8106t3UeZwAAv+/5CesvKvFuWaQFw2mOrM95zfuH5R1p+aoWNnD/ijBSRV8oUKPqBO85qRjqTs6BGdcJg1fyCc/QjPPsgqSyc5D9nMOwMgsKyBnC5RMUPuvl+4KYPcL91o1NpGXn52cx9UIyRhD2JyEC9icFLItgnvYnW+IHfyLn3v6dIfUnMnSWNqDRbpPKzsH32HhIT5zDzXf5CLthWUPJud+4EdwO6rHnWBTOhPyKG1OVdBw2p84jeFW8BXvTZdoUC5n7jjqPCHs+UqPp7GWmTr2BN2kOJ7WezQUmhMeQy2j5HX9Wc+UvR21F3lJi9fBL9PfMOzJ4VTxzXgPA0S3rsaIwxereYN6ZAuyrbMisk/9bfDTjyiF8pENJx2BazmNBCi1veywLLfc+AkBy2yGDj3hsDt0Pkcx7QyWTA0YDpBVPIA0OxNEt69Fr9ASoZHJ8XZAOlUyOVstSaBRU7nzn6v/2WgeLPgAgJGMEHCUk4qhNgwZwcXnE3FfJ5PDZTaxPbDrw+1S3ORTSFs3R+jM+19sn+RqsLjptMR/uu8M+8reJUXOF3hNaUBju3UOToby/K7cGdyYpsOcRnzv1ePB+tLJtyKyRSiaH/9hzFutmfELYvkanmsFzXgpCMkbw9x7y1ijC/gD+zAJAc3xyZW5E2NC9tb2NzGK+Fvv/qDuupnrjVAjPzs1qpaZlKrqQ8/REu30AgFVFZ2BXTnzuY14ZCAA0T2lB97r9XkX8d+KFGLGqqiocPHgQMTExL9RovXr1oFKpoFKpcOvWLSxevBhabd2OrSJEiBAhQoQIESJEiHj58U8lW/6/kND5hf4RO3v27F8XqgOurq5YtmzZv1xfhAgRIkSIECFChAgRIv7bIOYRewkRMD6LUNbdBtFrt38LQJr8F7isS8XTV1knZKF5g2Ox1ILOV8nkKH7NnvnePJMNWMAFBWiwN522NXrp+/Tzo6FRcO6jw6OhUbTtx/2JKZf/iXHQfc+bNBp66Enbz4x7pf4+AICC3j/SPm1btmDMBbgxlO4JBgA0nFeGrM8TYXs0C423p8FUW4u532+gfaj1Gtw2VFrMEwBjrmcOofO5SiaH4d49Rn5NtqTC+8Bk9HOsomWkx2XUwfzbwlSm/j5/NW4dCAQAvJbzBr1+bVEz2Lb2QNbniai9Xo7J2nyLdTGH0GTJHNNyr8LuRCsAoI69nPkUV8d4gYT2TXhmRmfen1qvQT9dNNR6Dea7ZtP7jtH5cNqaBrsHvOZJrdegxcoUZE9NYNpo9108xl8rsjC9eh5a2TaEg4qETm+1jJjxOJ3mE/mmyX/Bnc73LEzfaqffsWir/bfx9L79IRIcxZBbQM1guf4AALLmTHsxHV7DoaxkRMyOgyG3ACqZHL/ltSPP2rUYJkS69q1EzPQiZlDv5eYgtnUX2lbVwEi8PuQtqPUa9LxE9qD2aSWzfpxJImcuywVy6ZAxAiqZHM5nmqLFyhTGjPZgsDNxtM84RE0mbdq1YWU5IIcxGyvYEYIIez6txNAcPgE5AChnxjLfCwY5UWf5r+espQnTjRevosPX8eijeAMLBo/hTYmyr6HoCwUKvlIw68199j44iY5NJZMj+90EOG1Ng++o88gK2wWAmPm61ufNoco+ViJIUYB1HmdgevoUkjNkPg2j83mT4ZBedN3ujuf3+dhrJcwY/EafZ5534ZnGmbuam6heDDVhaSEJdPQwoBZqvQYR599E689SaTj7ilHEdDsnrBYAcD7+O/R+nZhvdrv4GD2nxCIp+zgqhpMgQ1EfxSLCnpiFS+ztmXHcilWgpVnY7WjPThbmUp/7hFHTWQC4GLEdABD08VUc8E+GWq+Ba0oTqGQkUIhKJkd1t3K6Hw7rzmDTsS3EBHV9HMp3ekHaojli3EKR13MjAKD597wZXVbYLmJKm5mEhUd3wvf9NAT8FAfNbP6ZBwD3r1KgXR3BmD43PsKH6H+Rc0Ct16Bxbz6dCABcnk76kTo7M+XUeg1sOgRBJZOj7GNivhvtTcxPfT8kZnJh9vUYk1kukIa5CW1QvQbUrFglk8PWuzU/1qPuWFDApxuR2Nsj0d+PtqHWa3AznjflvDfiEW3HdD4bmupqqyaH6z1Jf8Yq/h3C9Rl4lphuFn+uhP876cyYOXP2kC1XkfTHzmcmcuR8kNvzARysmbgCsAhoxJnTthqQA1+7hnRMru8boV3fCbqV/Dvbf3oabFu1xM1Isr9GXNXDf+w5agbJjfHtvbGIbd3FYr1j2naDxJbV65ubgj5K9kHVwEgcbWvppuKyLhVrA3yY8uZnTfE8NtiRWq9BySe8eevDrrdh6+OFFsvr0/u2Pl6QBvkz49WuJ8+e4v3YOsfLvWOFydYNPUL5v7N+4VP2BK+KB3qVwvvjVJrEGgCC6znQdss+5seZt02OADtHmnh62ZGtAABJ6gVqMv//A0z/4M9/O/6lf8S++OILfPPNN6ipqamzzMmTJ/HFF1/8ywMTIUKECBEiRIgQIUKEiP9W/Ev/iM2bNw+zZs1Cr169cOeOpdYaAE6cOIH58+f/rwb3fwkFi0hgAk4TdytWAYMun2pXmr2hRcBmomXnQpkLtTz3DFVQ6zWof8dSf/BgZBS856TCeNSDXmu8Pc2qNk+osTz/SQL93HAX0SBXNSNOrOuLT+PPRMIg1LN/ivxBaxht5IORPHNm0JGAFn1CVcTJf0cITVrLBXHgkK3YCrVeg33+agut28SjbwMgSRxLax9hlEdnWINwXosKiPMw19b7m7Yz5biyr456m14LiM2gc5Eel8HQQ0/lMtNLwdRXyeQ414loL7kw09LGjeHzgxG1Rbz2fm0AcaIPO2+0kDMASI6R0MPGrmwIaA4r/dqgei6fSHpaLtFIh5wjTJB2AwkqUDpHifhnCXVNyg6MPFQyOa6meNPP5gyUx0I+aMjvVXZMOY71a9jtJoY3umcxvidv8IEuzNdNJZMz2vSw80ZUdLlDNZ1c+agPYxl21DE6nxkfAJqoU/FBLBlX3LP1MJlQo+pE29LvbQtD9jUAQN5SUsZw6xYAwPmnVJR8qkTF6Ch4DLkMtV6DeV77GU24kNGYnjWMjkOW1ginflgD3RjCehxr70j2jB2ffgEA7EbcoHPTJkZQRo5jRnZ4H4NNuzbQhfNadY4Z8D06HpqOzwKzDHVmncLN5Os9/CJznws5zTl+G+pJmHVu/Vkqmq1NRe0RTyaJqVqvQcvvUlBbVIIbSifaZuGXCrT+LBW+Cy6g+HNeq6vWa+B02gUBkzMhCQu20M5zzIOxa0f0c6zCRs9TtC+3xSmo7kaYO8PtO0BUCIp382NR5fRF+z/u0PYyF/Kh0jcH8meYUCbcZ/e0hsjbSoJx3Ol8D0NzymlgIQAoXEj2wsDTccyzntFxN03VodZr4LQ1jWrM1XoN7CV2qGlB1vhkiAPqHyTnyu3uHoTVXbKa9iGRknZsQtqgffpIq6G/TbW16DQ3jnkOJR2DoZvqTfsckvcq0cQ/eEDlyiUHb7HKMmFtz7ET0FxKxug1NxXnw3dQRqPLtCl0b7dNGY3As3boNmUy7Vtubw+1XgPnZ8Sd8FlQ6zUYFZWKw4e380zp/Qqm7wUFfAoN/Qc8i2T+jvn8VjBN48DNyXDvHu6OV5D12BTHsPtui8k8kwvSmXbqsi5Q6zXoPH0KnvSNoNe97fgAHIfO7KdzkkTfpMFFVDI50weXHsQl5wnCNQZ0mToFVTcdaR9qvQazvAmjJG3mYnW+nOWK8N61Tk/RN/sePOenoHABa9FwKJWkEdF05JnszoP4wC/m85UG+tFr1t4bHgtTLJ7LnpcqYbiWi4AJZ9FYJ2XGVnu9HM3WpkLq543tbWQWY/fZHYu+3c/SQF/C8RjuV+DeCDa4UttE3noBABpG59P0K8Lrwr8VhNeFkPr7wGdNPu1PNWgs5IvjmXcWANTmF8LmJB+E49DpfTDk6Oh35zNNUdD7R7w66m36N5CthzsjI259+0T0QZr8F1rXZMNajNh6uFM2luvf7z0+LU9MjyGYn58FALg8TRBSv5gwZZKOxPonqF4DWj/pz73Yq71kMf+XEZyP2D/x83dCq9Xis88+Q1RUFFxdXdGoUSPI5XIsXLgQlZWVf93AM9TW1mLlypUIDQ2Fo6MjnJycEBoaijVr1vyPx/QvJ3T29vbGmTNnoFAokJSUBD8/v7+uJEKECBEiRIgQIUKECBH/MDZs2IAffvgB/fr1w6hRo2BnZ4fjx4/j008/xa5du5CWlgYHB4fntlFTU4N+/frh+PHjGDVqFGJjY1FbWwudToeioqLn1rWGf9lHbOzYsdiwYQOKioqgUChw5syZf7UpEQA0QzZQzZdKJof0mdWnSianfiKc3bK5BhAAnKUNoJLJ0WznBYt7t8LIZ46xAYi2TiWT4/1c4itU3Tscar0GId/EM6yAkDUCgNoGpP8qk4SOI1uxFe1W8slNAaDxtjSLOZb3Jzbg2lc2E61nFzlqN5L8ct7JE2k5n92EGSmfwYeM1q6OQMBkonWNsLfDBE/eZ8dcg/ZK3GT6Ocy+HlNuuV8QHg6PYsaqkskhPU7CFPeOHk7LzrkRAkMPPa2v/4jX9AIgIaED/Rj7dQAwPHiAahd7ZmycPLM6kkeuyliD3G+jKFNk6klC+tqcOg9zcG0I752tJLK8GGqCNMgfAW8T3xYuRL9KJoduki3Ueg38fyZMqk27NvCezfq4TdYS1rX7pEkM47LML5gp59rvGiqS/LA5+Cf0eJv3C8rfJsftyQrU/y3Dgp0Qfj98eDvaZZG5L2pBEnLffFcJh5Nk/SXh7eG0leyZqI9iGW08ABpeWa3XIHd5FBpvS8Okks5wTSR2+QBJ0MvJWTbwCq3/Ud/9eP3NcczYrsQnUBZDJZNjmPodqPUaKGfyrBwHl70NaFv6qIdQyeTw28aGjH+3jPe3AIj2FxGE5Znf41cAQNKFP+j9mLbdIDFL7Gq4d4+0PYasc7ssG7T+jE8gypUrn1E348BBkkrOgfTFiWR/+3nD1suTJlq1fbUYkjA+BHev0ROIlrdVSzT/gWdbrr2diIJFChirqqg/GTfmXT5HAQCmrGyaWH38tSLE6XJRW0D8CG1OnbfQgAvlBgBIu4iczltomZt7PTG0SYbVOmq9BtNyr2KCtgDSZi4WTMGJ1HbI7bGRXtsV1JJp49r4REAigd/o8/j6jj8rW6MBAJ8Y1y2eJMsdoFMRmR3NQufpU5g69e8baN/cj7GqCiVzlTBevIpLkdvIuXpOYiGHO50MzNxM57Op30iHjBF42PU21HrWD6bkUyXdn7rvohCny8XQfOJPx1lKACTcvkomx9YS8l4+vXINHZ/HkMu41ukpTq4hFg2r7pFkttWmp2hy9RF8fp+A8ulsUvovm1+CSiZHTMfX8frgt5h5qPUazPUOp+O6NJNP0+DzC5HXpgfEXzOtgx1kS1OYdQOAzIXEl1I7jvzeUnIGtb3CaAoLygK5NK1zP3HlnP64ispWUot1Eb5fVTI5ij/qZLF/AEBib497pwmzfGTrBmTKpXDck84kgxfKxnD7Dn1HC8cmXA/hvanO5A81r7n8WWzuQ9xoB2FrCiMe02vc+4eyktdy8fT1Tmh0qhlqP2NTXhwoy8Qn+ZbyOdaeZ+4r3U3UsoLrO3+JgvjcgpVv0Jp4+E9PQ05YLfxm8qzP/Pws3JlI2MwmW/j5qPUaeCxIscrmmb8bGm9LQ+6KKAtrhPLpgneqLh+HspL5PffrZrRYybNh1v4mEs6Lu5ZxNgC9/ZT0fa+SyVGe0ADaNWSfaVdH0PXlUqJIGzfG0sI02B4lvvsPRkaR+yWlzLtCeC4DwBMPJ3zuE8bsF4D8HTe6sDtM57PpGAJ+iqPtDAxoj/8v8P+pk9iQIUNQWlqKrVu3YurUqYiNjcXOnTvxySef4OLFi1i/fv1ftrFgwQIcOXIEycnJ2LBhAyZPnoz4+HgsX74cixYt+h+P6X8VrGPcuHFISkrC06dP8eqrr2LHjh3/m+ZEiBAhQoQIESJEiBAh4m9Hp06d4OTkZHF92DDignD58mWLe0JUVlbiu+++Q//+/dGjRw+YTCY8fJav7l/F/zpqYq9evZCSkoIWLVpg1KhR/9J/g/8bPHr0CIsWLUL79u3RqFEjNGvWDEqlEps2bYLJLCV3eno6Xn31VTRq1AiNGzdGdHQ0NBqN1Xb1ej3Gjh0LV1dXODg4oFOnTti9e/e/bR4DA9oz2iLXP8uphsR4mY9QpdZroFsVCVs3YsMt1Myp9RoYq6po9CUAKJulhO/7aejTZQCjwbQ7QmyXOeZjwDd/QCWT4+IHCVSDs6AgE37bWYbAI+k2VJcfYGpr1j+Ls+U3t/fm+gMAl0tV6DwjFqpBYwEANqc1VPNXEP0jnQeXNLjlCl4zL0xiLRyPkLnjwPmuCeUDgPbbaAdhXjhfBqGGznjxKv3MsVcA4L85Do9dTVT7BwB+o89TraTnPKL9m51H2J76v1km3RbKYqB7BPxmplFfCPNx3BunsND0CfG5K58ws1rWmH4WRq4qUK2HSiaH79xzkHRqB+Plq7RNQw/CYKwN8MHSu76wP0SS0db2DCOs07eWdvtp8l8QYOeIesmZ2PGQ+DPZ1avFFx9thDYxwqqsObw2bDwuhxmZa7K9hVji9SvxDUm8ijsTic+E089E43risQ3CsoaSeT0jD2LavAIXDfF74hL7+r2XRqORCeXM7eM9Qc2hf/8pve97bLxF2YDYDPT270z3I4cPyzui0Y40RqsOAPouvOmCWq9Bb2eeieZwM7wRAGBrG3eLdTTcr4Ah+xpdc/Nk3ACwrNU5VA6JhLFbR6Z+yxVkr92KVaDNuvg6WTHh/jHkFqC2sJhJtGrK4jWytseItrf2ejnzXKhkcsrScGW5/rjIkNf3BeHINhLRdM4fQ5Hoz0ca4xDzGnnJ3Z7C+8VwfQjLLrodiObfpzBMtvI9PrqZSibHSr82GNqwAobbd+i6q/Ukya7QR4PrTyWTQ3X5Ad+PyYSiXe1xrL0jalSdKMvFYW9bVzzpG4GHXW8DAB53u0HvnfluDZVLnC4XJ9esZfoLOSfBwbIseCxIwaqiM7TPi6EmRuO/ojAFAXGs/ypAkvxKmzihpSA65pV3eP8Sjy9TaARL/+lp+GLZGJosttPncbSc114yds6PVjVgDL1X2zOM9uu7MxZTnYugksnRzy0c6n1b4D8uiyZU5sYWtJZYPCSd/x2/7/mJ2Vt+22Px9PVOjAy5qJD+00gU3nGNb8Icuk1kHJJO7SyejzEenWFb+ZRGG1XrNYRxaM77Y6lkcuQt488pLnKv4X4FXNaRPXtjqhLOZ5oid0UU00fFqCjqX8SB24um6mp4fGk9CqN5efN3dF1ntlqvQcFiBW1TOIcWqY2xNsAHeVs7MuW5cpyvlWwJP6bHA4hPrt3vZ/GL7xHUe60IHRfFQ9o2AGq9Bv3cwrHQR07bqhjNnuf5SxTwmZWKlX5tmPnpRifi9m8BFvMQsuHC8u99+g5cfkxl5KRd3wlzboTQsdo4sv6zwr9ZONS7a2PBal2YlcDI2PwdahPCRpQ1b1/YFgBU/+4F/+lpNJqlWq8BJBLifz+F7LOAWNayQyWTo2BGO3zoxcsv9RveH1T4nmm5IoUmsdcmRMDuSBZMnfmxyJ8ZtNREh+NnrxPMGL1nExm2Tx9pdU4vJf4p/7BnPmL+/v5o1aoV/fm7UVpaCgBo0aLFc8udOnUKDx8+RFhYGKZPn47GjRujcePGcHV1xZw5c1BbW/s/7vtf9hETom3btkhPT0ffvn0xd+5c5OXl/VsEZQ6j0YjevXsjJSUFb731FqZOnYqqqips374d48ePR05ODr7++msAQFpaGrp37w43NzcazfH7779H165dkZKSgvbteTr47t276NKlC27evImZM2fC3d0d27Ztw9ChQ7FhwwaMHz/+3z43ESJEiBAhQoQIESJE/PtgMBiwYMEC2NraYuTI5/8zfO0aCQK2YsUK1KtXD0uWLIGLiwu2bt2Kr776CmVlZfjpp5/+R/1LTOa00QvAxsYG8+bNw2effcZcf/z4MUaMGIEDBw7AwcEBT548gcFgqKOV/z1SU1OhVCoxY8YMLF++nF6vqalBmzZtcPfuXdy/fx8AEBERgatXryInJwdubsQHoKysDEFBQYiKisLvv/9O63/00UdYunQpDhw4gDfeILmhDAYDFAoF8vLyUFRUhIYNG/4tc3jw4AGcnJzQtetnsD9NtNVCbZQ542NN26OSyfG4fwQ2rvwWvnYNif37Z0p4fkEiMwlt0YWoUXXC8Y0kt5e0bQDudmyKtKWrmT5KfmlHI8t9ebsNToXUZ8ZX2zMMJa/Ww8nRSzHumd+W8kINPne9UqdmkJvHrViF1YhiAFA5OBKOe9KRuzwKecNWw3dnLIyOBgRMzqRlru8LQqsBLKNkTUbWxqCSkYhuf+zcyNQp+kIB768vwvgsek7tEU8EOd3A927ptEzVoEg0+DWdWZuYXm8i6ehuWib3547wG00iXvV+fTgO/86b7Qr9FbRrw5k5WcPdtxV48kYFZAMt94e179auvXr5IY60a4TCnSHwGnYRNdHhqJeciZBzEqqt58bls3cKzXGj1mvQPn0k9blqmzIaDR2q4dxHB3MI+/wkX4O50yaj/sEMBGXZ0nxMz9vbQvk8b27W+lTrNeg1ZgKObuEjinL3bsUp4JrI7rMnb0RQHxmVTA6TogMkqRdonfLpSsoK6H6IpPKQ2NvDVF1t0bc1HwVra3LisQ26OxiZe3nfRCF3JO+vZlJ2gCTlAtPOtNyrVHstrPtwWBRSlq9mxqH/QEmjSz5PZntK0zDYPeq54xX6a3DyuPmukuajqgvdLj7GyZDnOzwL+wGA+bfaIqUDYcK0GzpRv0db79Y4dGY/HYvU34dGYgWAJ30jUNlSCpcfrZ8l5vOx5kMCANImTkw0QLVegz5h0ai9Xk6v2bZqyXw3nwPXprRFcxhu3IRar0HHhfGM3x1AoqQu8/kFM70sme+CxQpoxybStnSbQ+E/9hwzB/PP1r7X9gqD7dEs5C6Pgt97aS90bljDooIMzPHmo6IK94uwDcc/XaG74wrZwCvom30Pazb3obnChHKPeXUoDFe0FvLrHdgVkgONGL/c3OVRsKmWwOfj1Dr3aZwul7Kw1lA6W4nsqQkI+CkO3rNTcW+cAs6bUtn5SySAyQRbD3fUlpTC2LUj9cm1qV8fefM6Uh9ttV6D96+HYlmrcxYsDTe+/G1yuCTVx4efbcPa0f2BjEvPfZdLA3xh0ObR710vPsGpEJIPS9o2gMqLq3visQ2mronFpRkJVtfU2EWOCl8HOP9Expy3LAp+Pz9E8qGtdZ65A6/cwt62rpCEt4cp8xKkzs5Iyj7+Qu/TjovimTPheXtL+JzZhLSB8eJVi3rc79tTFLjf5Qn8xpxH0a72aO70CA6qAqsyVOs1WF/RkkaOvT1FgWZr+DPB2ntA2OediQq4/Jhq8Yw9NRmwt7IphjYkY/ZOnoj0175Dc6mj1fNf2K75GJk+3cMAowF3DwbgXo4LpDWAQ7kELitP4gT2o6KiAo0bN7ao+58G9zerz6ZPYNOg/r+9P2PVE+SPW/hvlcfUqVPx/fffY9GiRZg9e/Zzy3755ZeYO3cupFIpsrOzERgYSO/16NEDJ06cwJUrVxAUZGnlUhf+1oTODg4O2Lt3L6ZNm4bHjx//dYX/JR48IOYmMhkbarVevXpo1qwZHJ9R4rm5ucjMzMSbb75J/wkDADc3N7z55ps4cuQIysv5l+u2bdvg6+tL/wkDAKlUiqlTp+Lu3btISkr6d05LhAgRIkSIECFChIiXEibTP/fz78TcuXPx/fffY/LkyX/5TxgAGlExKiqK+ScMIEEMAZK+63+Cf+kfMaPRaMGGcZBIJFixYgXS09Nx7Nixf6X5F0ZERASaNGmCJUuWYPfu3SguLsbVq1cxe/ZsZGVlYd68eQCAzEzCOCgUCos2oqKiYDKZkJVFfKauX7+OsrIyREVZ+jpx17j2RIgQIUKECBEiRIgQ8f8X5s2bhy+//BLjx4/H6tWr/7oCAHd3kneuZcuWFvc4l6x7gtyVL4J/yTTxZcKpU6cwceJEaLW8qUOjRo2wefNmDBgwAACwbNkyfPDBB0hKSkLv3r2Z+klJSejTpw/WrFmDyZMnIysrC506dcJHH31E/cs4VFVVwdHRESNGjMC2bdv+pfGa+84ZjUbcvHkT3SI/gV0GsT01p+sBQmW/Nmw8NZfQf6DEpZnELGFBQSZmzJ5Kg1Dc3N8GzfvzzsOAJT1+K1aBp40lFqYN1nDvkD+c++goBX9jqpJJKCo9LoPuenPoum+y2hZnHmnj6EhN/rixjS16BTcUDyD180bOHBcEvH0WhV8qUONai4I31llQ/7qfQhEXdhIfNiVmHN7JE6kJEwC+j2emJhw4s4u64JXhQEMFc+Ypar0G3971gbqddTqcGxdXV2jGJ7wPEBNO22NZFtfN2zL/zCWUfl7/1q63TRkNx/o1aNpXy5StyzzpeeZpMW1egeEZ+1wXGDPNDq8h6cIfFu0K+87fJofPSI3VeZh/F5pmcfe5NoWmnXnLotAyxQTHPelW2zJv19bLE7WFxVbns6AgE3O92QSluk1h8B+XxVxbWpiG/snTGCfvvzITNcdkbT5WzhxOkwQDJPHqLBcduk+aBPtDmZDY2qJwbgQ8/qiCXXkFDTFtDs4kTtg3Nybthk5w1NaD2+IUZu4WcvFujdoCEmLb2LUj9F0c4P6V4HkP9MPgfaepCZB5G8/bl+ZlpG0DYMovxrVlHaj5JweJrS1Mzxyfy2Yp4fY1GcOjNyPRcHc6tBvDYHPfDnnD+BeoSiZH2a/BcBuUbVU+LzJO7l6F8TGGuvPKO+5cru4TjhPr1gEAdjx0xsbA1nW2p9ZrEHp2GE36zpkLVg6JhOMv/HwXFGQiwt6OqS+cP732zGzMvI+M6qeY6x3OjIHbQ88zn+WgkslRsL0DvEew6U9UMjnCzhuR1dGGmjNL/X1wN7I5nH62TFFiPi6ubfM2zcejvFBDzFKjQqD+dbNFneLaR5j0zPRdrdeg6ztTcOoHNnGq+Xlj064NJE+qmWel8EsFvD5NxeP+EXDYn2Fh3s5B930k8getQeD6OPguzbZ6/tU1l7/C/8REVP+RElPH78OeIBL+v/aIJ2xfLUbhAgWuTUiscy8LXQo41NWnWq/BjofO+PS3YfD9II1eM6/DoXieEp7z+NDxQrNE8/4kHYOx+NcNkNvbo9vkyTi5dq2FzKzJ8cHIqP/H3nfHN1X1/7/ThFkoG0paugelUFJKR1IEZAXKBmUqsqFVcE9UhooDERQpe4gsQUEQCgFBUGhLSyGMUkj3CrMUCoVCM35/HM659+SmPurj15+P3vfr1Vdz7z3ncz5n3uQzUeHjgsznhO8n1LTQsXz+1jD4jjrL2lVEhGL/D5sQkTECzQeayDup1wjkvFsXvqPOsnoNf2nOAvIAwLt5pzDPrxO7pub8lEfjgwd4IeE51NmXLhmfmt5z9Fm7ZQlo8540OMzLlztJglhZ7NX/E6aJPmvf/stMEwsmvv+nj8ecOXMwd+5cPPPMM1i7di1cXH6bXio/Px9+fn6Ijo5Gaip/Bq5evRpTpkzBqlWrMHny5BooSPGnmib+/0CDBg3Qvn17vPLKK9ixYwdWr16NgIAAjBkzBgcPkrw99x5FyalTp46kft26dbkyv6esDBkyZMiQIUOGDBky/jcwb948zJ07F08//fSv/gi7fPkyLl68yH3n9/X1RWxsLNLS0nDqlCAgtlqtWLVqFVQqFfr06fO7+PnNP8T8/Px+95+/v//vYub34ty5c9DpdOjduzcWLFiAoUOHYtKkSTh27Bjc3d0xZcoUWK1W1K9fHwDw4JGTvRhVVVUAwMr8nrJ/BJcvX+b+srNJ0APlfSGYgTiEuljCRANLAICKsAKD2Yg5/ccybRgAnI7cyp7RRLaO9J5IOMy0YXefjIbBbMR7+YLJZdkkIUw7DcxApT3GNxM5vqyPm+E3pmapXsvTNpjWdEazgyTU9IP+QpLODd4/Exo5+Wg3i4QP9Xk7BfkDV7H6aQ+qYTAb4VK3LgKfOYUf2zdkbbVdfBdJpacYP7bKShjMRhhKieaQhvml2rBWKW4wrSLtK1QqXH5Zh7LJWhQ8Jzh7W4pL2GeqDaP0lc2aEl5cXRkPVBumV2twLppoSpUOkptDG0kQiWvP6TjJLQWlpfLz4caRasMMZiNyF5A5oX+O413dpzO73+aJ80wblr00GgFHxgMA3roahu9KyFpRubfiJHh6tQYqX28WRnlAJkkwTKXBjjwrg6UO8nq1BoXLWzLe4nqPdColpNowgISktz0WztEQt9X2vVtQNhfCVlMYzEaW5BsA/F9O5bRhlBYtS7VCtHxlOxKmttnxJlC2ELSlBrOR04YpVI8SY4/PYHVHZF3B7adiEFa7LuZ2Jwmb+3cZ4nQP6NUaeKbWHNxneIMKThsGCIlX6+wl/bNbLPCenQyXY0ZUdGzJlY05U42ZOReRWHiM04bRtvVqDcyv6RA08SQ8PiJhqMWaQEeeLfmFUIYS23eXX04zbZjKvRU8UxvAeimHacNc2reFeWc7Mu/zhMATBrMR1b0iJLwAj+ZtPUlgmvTjNtiqqjhtWPbnxATcbrGg5E0SSt/9RBV7TkPIB03IQMCLqeg1diK6nB2G9RUtkfeRFh7DMmEwG3FrHNFmmV8VEq329RUSb+vVGpR8FypZ1zSpK9WG0ee3QhvDYDbiyQX7oVdrELgxHqMalsNgNuLqDLKvP87n11+R5S5aT7st7O9DRKMq1oblbtbgHd9IxHXoAQDI3xrG5lyMiNM2pg0T89zl7DC84xsJl0fvpYoxJACLM22YIjyU9V38B4DThgFAp3kkHH5GuAvKx2uJNqxxI1yc0YJpw5QBvhwvBrOQisH/8ASELE/g+BXvbXss+axObYjkjrVhMBuRP8gVoUsSOD70HuGY4tWFa6f+zhMS/sX9AkhIebE2zGA2wudtEqyh3q403H0ymmnDHN+Pgc+R+fF5JwXWigoUvaur8cym/x3DtFPQs2vQhTIUzdFJnuvVJBUChTiVxZzJG/FdSEu4PBICq3oVMb76+cWg1/k7ULV2R/BaIXVBzmcxaPOEkAtJPCalr+ugbNYUvcZMZP0pt97DumBvpg2jGJbT2+nYeM1JhuKwB6N9+q1E9nzvvbpce/v3boKmTh1cttxl2jDxmDnThhnMRrhtTkXmc4kIWyishbtdyZfh4F/GcTTE2jCD2Qh7Rib0ag2aDzSxctYLJviOOovbY2MQ9ilJ+SHWhgFAbF3+6zC1uqHQ1KmDOvvSWdj8928I4fP1ag36XuzPPud+ygdBosmtrz2rg+VHL7yWSxKkL2x9ir3P/+dAQ8v/FX9/IpYuXYrZs2fDy8sLvXr1wubNm7Fx40b2RxU4APDmm28iJCQEaWn8+3nJkiWoX78+evXqhTlz5mDJkiXo1q0b0tLS8NZbb8HLy+t38fSbw9cXFBT8LsIA8Rf7v8SiRYtQVVWFJ598krtfv3599O/fH19++SUKCgpYMI/S0lIJDXqPBvH4PWVlyJAhQ4YMGTJkyJDx9weN8VBUVIRnnnlG8rxbt27o3bv3r9IIDw9HcnIy3n77bSxevBhVVVUICQnBunXrMH78+N/N02/WiOXn50v+Zs6cCYVC4fRZfn4+8vLy/jPh/wL0h5GzEPk0qZrFYkFkJJFup6RIQ5empqZCoVAgIoJIb1u3bg0PDw+J7SctC5DM3H82bGcvsuSjAC+lzllEklHGdeiBhwe9EZKhQssvk5nkKecdEsXF0W5Zr9ZAcdwokRgCwNGwetCrNcj7RIsG24l0kWoB5uZloOmFe0xSZesi1BfTKH1dmhD5yvPk3uWXBcnfL1+uQH6/1biuu0Xs/Z+0cfwCRLsiDgutV2vQL5AkI33hjRnQqzXYl8fPiV6tge3sRcR5ELvuWkeI/11cWE/GY73vBUnGzT1BMC1th3bvFuO13HOwWyxovfCRbfv3X0PZWJptXfmTGtd3B6PD4kcJTc+RADRiXzcACF4Xz11bKyoYD+XjBT+Tll8mI/8jMs8qPx92/+oMHQrn6mDJK5DwUDk8mvg8WIDIt+NZ3wEgML0O9OcrYDAbcXj9aqfatryhK+A/hsxRRrgLhnsSjYPlylVJ2ZxJaviPJdrEPaFN2H1HiaXBbETF52QeTcuj4PfjRHbfc7jgn7M4aS3Hrxi0bWtFBfN9BABEdeDasmbnwXqjjD2uydeh6F2ptNmxTn7f1Six3AUAHFm9CndHxGCz70/YcOp7VrZ/7GAUzRbW9v6ik9yeUrm3wvZxvVEx5C46po3Glx8+ia+Lj3Nz5ziuJTF3nfJ1Z6Q0KJAjz3q1hiVpvz8kitf6uShxZFYs3jw/FP61GnB71bQsCldeIJJ8mgwWALrGT0Xhtg4wmI1MW2QwG7GzRNgrWTMacYmdAbJeHPthO3+R+UR6v5vCeH77WgeWNB4gWjuKLjOmsSTRztar8oGC3fNeSiT7NGG0OrUhN//ZGzrhx01r4do3D1vaqpEtCvveeEMKlD+poV5A+q5s0QL7808gMF0wO8/UbpKsTc8DCqbRFkvs3baQZNHPNi5mycd9d09FX6/OzGf29UcaN7oXpnh1wd6M/dw9gKR3YJrcR3sz94VgLC88Bt9RZ8nZXUtIaq2I7ID5rQTJP+XJYDbienorGMxGXFpAcmG6bSZ8tksUtAkTLhGfP/tpsjfLn5EGrnLUfLRYLoSMr32H7HXrrdvIe0LwzXJZXSUmgejX41mS+kjfQnjNExIBKzq3Z+U0HybA5b3riMgYAXPMHdx+irzjfN9KQXVYJT9edjssPSKgV2vgn16XWzMGsxEP+kdKfHUcx5uOmfhZ65m57LN4r9E6voZJKH5HhxvTtGh5yiJpI/fTGJhWRUqsMcQomqOD9UYZDGYjdrdrhlp3+DZK3tKhaHsHLvz+vn1bAADVvSKwtnc3KEMCYauqwtw83j91X14qfmzfEHsz9jNNHwAEvJSK20/FoOB96Rx7fJwMa9lNKI8IofdHtXF+bu4IIJoBmlCaIndTOOw9SpnmVa/WsPnpX78KDw74AAAqRsewMZ0Y1AvXrLx/OH1mMBvR9tjTcIbWC4X1QzW2lx7bIKFDP/f16ix5ZjAbcfdJsi+nvP09qlranZ47jvQc4bt3Cvk+dPYiOnyWwNIL0Hr5KV5Mmzm8J/muMiCznKPZcmkyDrXbjU/8O3BjIObH/4jULebviP/VqInr16+H3W6v8U8c8ZCW7d69u4ROWFgYdu/ejVu3bqGqqgqnT5/+Qz/CgN/xQ8zb21vy16RJkxqf0b//S7Rr1w4AGSwxbt26hV27dqFJkyYICAhAQEAAOnfujO3bt8NsFgIfmM1mbN++HT169OAioIwePRq5ubn44Ycf2D2r1YolS5agcePGiIuL+z/tlwwZMmTIkCFDhgwZMv7Z+K+iJs6dOxfz5s37P03a/GsoLCxEp06dUF5ejrFjxyI2NhY3b97EqlWrUFBQgKVLlyIhgUhzkpOT8fjjj8PT0xMzZswAQOw8r169iuPHj6Njx46MbllZGSIiIlBWVoaXXnoJHh4e2LJlC44cOYLVq1dj0qRJf1ofaASacpMfngzuhOJ3dLjvYUHQdEE6/WtSPb1aA5WHGvbKSjx+rASvNs2V2F9f3x2M0X4n2TNKL67bMC4xqphuzKvTkbpgOcIWJqDlqSr8uGmtpO0pxbHIndWWk3zXhBFZV7goa/cHR6HCS4VWS5Il/kNi3rO/iEbeEyvgmzQZQZNPsmdZD+/hBR8dKzf0wnV89f5AuG2WJi4FhMh7jjbp9L+zSJW/FwYzn9j53bxT6Fj7IUuaK56XuA49YC27CYAkf87tsU4icQ1dkoD0Zxfjid5jcTe4Cafd+yNw/bkFKrtel/D8+lUNjOGQ3BfDmZ8XQPwevtg5AD6ziETWMRocTcbrjIZpWRTqXlHBay6/BkIyVDi8OYppKwGiUZnbgkjzY4xPoFEc8al4EBeJI6uJP2HPpycxHxwaVYy2y/hxkpCXSSY9wp2K32gkwryPtPB7IwX587VMo2PpEYFDG9fAN2ky8uNWO9X8OW3LSTmlmxusFRVQtmgBW0UF7A8esHFRNm/GaQUBoPQNHTw+ToGiUzvYM349SiBNWF0TDy7t28J2/iKuvKCD++JkLkKkeG5Urd1xNc4XzdYQbQmNqFk1MAp1f+DX5+2xMWi0iddic7QeRSd1vF8TzDvb4Vz0ZqG+jxdid1/iEkc77uui7R3g9eQ5vJZ7Dj3rWdFj3CTJeWVaHsWdtwDgomkHm/GCU5rO4PiMjvFjz02DW1oJLCXEeuPySzqcfSWRlXM8q3M3hTONtOOZQSMj3h8ShZ8T+ehzv5a0WffidDT8RpiHJsebojz2Jorf0XGR3GhdGuVW3G/NhwlQ/3idS1rvrC29WoOk0lOI8+gEZWgwrJmXfnXc7oyMQcNvUiXvOIPZiA6LEqBeIJwNiohQ2DMyofxJjaTgJHQ6ORItBl1i9RQRoXD5tBzWx80c7wDQP6o/9qbtBUA0G/n9yZlBI1rSqHYPDvjgSPvvAQDdzw9B/Wdd2DvS2buDImDzdHSKycbtLmUoeVOHhsU2NNqYCmXjRki6cNSpHxT9fOOHIGREbPuP6x8Aimfp4LPiEnJeCWIJpgE+6TY9pyjo2UGTVKvcW8Fy5SoAQOXdBpbC4pobjOqAPTvXo5ZC6fS9ubU4GaPa6FiSZjomjhESQ5YnwGteMu7u94P5chNEBhbgdpcySXO/dj4azEb0jx3MIrqK78d1G4akozu48Q04Mh453dczes7WYb2jrXC/GxmL7C+iETjzhIQPZzzdGxaNX75cwZ739erMLCdMKyIRNC2da88eS6yTxGsmclY8at23ozzYBV5zhX34vxI10XvVO39Z1MTCKe/9bcfjz8Bv9hH7O8Lb2xtpaWmYN28eDh06hK1bt6JevXrQaDRYuHAhhg0bxsrqdDocOXIEb7/9Nt5++20oFArodDps376d+xEGAM2aNcPx48fxxhtvYOnSpbh79y7atWuHrVu3YuTIkX91N2XIkCFDhgwZMmTIkPEPw/98+Hp/f3989dVXKCkpQXV1NSoqKvDzzz9zP8IotFotDh06hLt37+LOnTswGAzo1KmTE6okIMfXX3+NGzduoKqqCqdOnfo//RE2NIjY97d5Lxn5g1ayKGtUqiK2I6YRzSiy3moD663bLOeFuB4AtBh0Ca82zUW7pQlAFGkn6q14XF+kYmWvztThswJBitZoE/EzaL0wGT9uWou4sJ4AgIcHBXPTouhKPGws/JZ39DEQS38mNbrC3au3Kw3GN4lkWCxpsj7eCVde0CGuG5m/wJnEf41qw5YUHoffzml4wUewazeYjZjeuJRpw8T36XXguFOYcKkQerUGL+Zk8dqwhg2ZNsylfdtftR2//ZTUp0csMbNmZbP78/w6YbhnDHIXCnVopMGkc4dhMBuxqugYAp46zY1BieUu9GoNPD9MxlDPKFizsmvUhpnWRbCIfwqVivWBRoukyP48BpVdrzvVdDlqw+h9APD7bho6zYtHqxQ35lvF4KLEs42LmTbMYDbC9dsTMJiNyF4fAYPZiL3Hd3FrV9zPoPg0VLV5yElZDWYjsiIsOPtyItdUasdauPHIx4BqwwCgTlI6tK9MJ5rhQxkomkO0pD7vpDiVqu7N2M/aGXuxBJ8VCOVopE3HNZR0+gAZi0dSZqoNM5iNUB3OQFzH3giafJJrL3++EHGP0jOtEnxZ7oyKEdo6RBJEWiuIr5/1+nWUzoiAZ2oDVj7p7CHJvvL4KBmw251qwyaZ8tHoWDPMvd4O9w2+UKScYdH4/LdN5yTH8/PTYDtP1r/7YqKByOuzBuadxPRbr9awaG97M/ajxabT7P78M8SPhGrDlC1awPwqmYOmhmx0O3uf45m2m/1lNBedlM6/XduRixonnguqDVN5t8GAzHJYCorQqX4B50tF6XdMGw0A8HqSRBn8xJ/4Hc5asV4yVkHT0zD6ohCdFIBEGwYA4R8IEQAd/Wa7nhsKlXsrqHy9GR/l1nuov+ME04YZzEa0/kyQfPvunirh23/sackepTxE1SFRZ+t9n4a4cBIemfqBBbyYiuwl0Xj1SjhXz/f7qUheRPKsPYgjPsDlsTehqFMHbd5Lhsq9lYQHqkkWt218MxGKu/cFPkW+Wo5zS312kw5+AwB4qqA7K0fL0nOQ8gaQnJAUEXPimW+fb9JksjYySDRMGkm2xSCibaP9smdkIik4SXLO6NUaXNV7sXMoaEo6+3yqM+HxQjw5b1yfqWJ1jrT/HklHd9T4PujXZxQWl/sAANYOW467Q11wf0gUPD9MxtGPlwAgPnXRrwv+w/SsFmtaaHQ/gPhnO54/ORvDkf0liWx84dlEPJt6nNOGqfx88NzF0eya+klSsPfCL6dxPV7LtGEGs5HThjnrZ97wBogbNZk7v8XnWBNlfdbPgve16OtNIo7W3ZOGuG7DWJ2s6YkwrYrE8bAdCJqQgdtdyrh9PiLrChsXZ/xceZFEJZ1xcD/HH9PCHt0h4T3nUV5TvVqDWkdac2felRfJeXa/21W2LgNnnsDVGeR+n+FCEIf2n5M99mbuWcaTXQH4H5rAeKbaMIPZCG37HHZ/eBaJYntg+3oAQIfPEtgzuwuQ/NlyZE1LxJu5Z9Hr/B1EnOZziv2dYbcr/rK/fzr+53+IyZAhQ4YMGTJkyJAhQ8b/GuQfYjJkyJAhQ4YMGTJkyJDxF+M3/xDr2rWr5G/dunU1PuvatSu6dev2f8b4PxUGsxG+hkm4+BkJ9StWp1M1vNgB2mA2ImDzA4k5g7N6F55NBNLOQfvydDRZnwLl1qYAgO6TpqDVF8l4yUfL2rQ+3omn1awJhl64jtq9C+HSvi2jX/n0bdZu34Fj2eei7R2c8iPGpjvNJOZWyp9OwX1xstMgIpFGK5596jnkDRXCJ1O64v+ObVHa64KJ2dCigBBWdnFBMmx37rCytvMX0em9eJgSoyQO5BVjYpD6iWBK48hDyVt8GGBaP2f0cujVGtwfHAXrpRyOxyleXSTlJ3l1YSZO4vs39wQBIMEFKN6M2YekR+ZhNAGs7fxFlHYjW/tagg45G8MR+HwqGv7SHHq1BmWT+ES1zkCfKaoVaL23GFe1FfBUNeCf26zQfCiYa4nnIHB8BuJCH4c+awCK39ax+47rlAa4MJiNLIGoIw8UY9vEOl1HKZ8Kc+I1J1liliSGmMdNbT0RWpsEevDdPxndzw+R1HFcT7eTiElV8Mla0Ks1uDc0GtVtiWmhaZkwL75vpUAZEsibK/ZfxcaJJmDXqzVAT8FEL/RLMp7qT5PRqk4F7Friv1r0yFz1xg9BLCACRfDJWpIxWRPki9tdypDcsTZsq1qSc+VR4tPcEcs5czLq5O84TjQsPQBkTU1kvNuqhJDlR+4JZtLUrJKalFlvlHGBNEzLonB3vx8xA3pOCOgyPz+NtXn19Ye4HSKkkXC2ly2Fxdj+lh4AMPedCbBXP2TPKN5tt5erp4gk4aI/8e/A3TeYjRiQWY4tbdVO2xNfVz52l91zOcY73rsOvYq9pwzYe3wXVL7eMJiNkrDgerUGV74PEUzkHgUIcVznE4oeA0Q5OB3POJWHmiXuvpAgmPDmDV+Bs53sXL2ghDQEbiDJsy/HqgTTqgcPAABjjp6UnMGOZymdd2pK6pnaALmRgglf1sN7cIa+g54CAFzX3eL2UcXoGHTZfo4lr6f0A1dXszIZc4h53ZLC4+jf8ZzTfU/r1UlK53gXm0y+cLkzFhcks+AyAPBQ3xmtUtzwUN8ZerUGfjunMZqWy1fQ16szXszJQv9OekbvxZwsrm29WoN9B7ZiX2hjAEC1XYmcJa2ZCXkdRS20z3CBMjQYjb9OwdAL18l79fp1xlvfwU9z9GbmXMRsvwju3a1Xa2C3KZA3bAUCj4yHXq3BFwFCImGD2QhLXgEe7GrJ0bo6U1h74jQlLZalIHtpNCvn+I4T0wWAJheISSPl5aG+M4KmpDut4/N2CvYXphGTbU8PWLPzWBt9faO5egazEebHm7B2xIG8xGuClj3zKlnnz+6ZIJmHsFMK6NUaRL8Rz4XMp1AG+aO6+2Wur20G58MZqLtESS9XRuP884nQqzWIPzUWr18lvLl+dwIBT5/m6hrMRnRNmMrdW5zZAwazEb3GTARAznVKt9kawSz+Q/8w/Ni+Iea3OgulW0P8z8D+F/z9C/Cbg3UcO3bsdz/7v07oLEOGDBkyZMiQIUOGDBn/i/ivEjr/p7//64TO/yTsNBGncr1ag6AJGWiwTQg8McmUL5HMiz8f2L6ek2JGzImXSAiXFB5nZdy2EGl86ifLUfqGDnX2EYlir/N3OM0UrW8wG2G9lIOd7Yij8b4DW1nbpyPJZ4PZiP0/bELVQOKs6/XkOYlkS0wPADYEt3FahsJRe5KuUcLlFyGwBU2I7KwuQMIP69UaLC73gcFsxN0R0kAbjV2kzrGDpx9F905ZHK+AkCh1a3EyVz53E3GQf2LkUeYE7EzS+POylVw9Rwmk+NoxRO/6omNI77QNADhJ+tRGZrRPHYvvSoTw1IqIUAS8SK5bJiYjtwfRXN957AYAoFlmJcomkaTSuQu00J15iIa/NAdiwhiNIstdxF2KQ8BLqdh7Yg8AaXABg9mIVkuSoTvzkOOdOmEnZf4EQ8getHmfHy8AML+mY2uzcBsJpLAj4CD6PPEMo0/buPED0QRSLa0jnM2/5UcvLkCAwWzEvWFEEvzC5c5c3XfzTiFo4kmYT7VG4dyak0IDQqCQS51JguL6O0/g4DdkfPMHk/mlc590aPuv0qJlxcF3POcLY5UR7oId21dgeeExpjmljv1xHp1Q8L4W16drcalzNZcYmrZP++v67Qk2RhFz451qjSmo5F5MByDjFPzLOHZNgw60rXNZoi2gqHPUHdlfEB7iOvZGUHwajoftkNCnGjmD2YgzUVuYttCRh8Cv41nderuI5N1tSyqn9ad1VgYRzdv16UT7a08/h359RgEgYfVpcmG9WoMZTcheE2sWqwZEAVEduPapRpG2oVdrULnfD5df0sF27x6jZ8kvlJwdFI1XNyTaqZd1Eg2UytMDAJDzSTsWOAYA3stP52jsTScBKSKNVk77Q+lcnaHDg/4kgMW1Z3XIHrcMerUGlyYsQ9B6PvE8PYMBkoQbAGyHSPLwoReuY3FBMvrFjWHlK8bEYI0XL3gNqV1f0tfdpemwnzyPa7vasvEq/rY99GoN3LakYu/7j8OSV8Dq5S7QQpF8htXPr74Lg9mIoFquyI58wI05/S8eY71ag2bHSV7Tgm/CWJ8Wtz7JpTnRn6/AT+tW46q2AvUyiFYkb+gKooV8hP1FJ9G3/gNOk9S3/gN0mSlozigo3c969oep6wahfP+xOB9hYwFLpjcmAVsUtWqj/RdE662o5tP+9KpHLDNowAbah8BxJPmy3xgja5OClmmxnATvUIYEonCuDq2+IOeIrVs4V85gNiLwWUEb/cLlzmz9UFxLIGfz0AvXkfYhnwKktoFoUNcXHUN8NjkLS9/QMRqdTpKAZpaSUkbzwL1a2J9/glujHRYl4MxrfEAm9t2jcSM21jRoGQCY1nZG7ojlXFmD2YgF7mSvNN6QgivdbOz9Q9uymnKZJQHlIfcnXygD/QAAfgcnSs5DmtZBzLPXk+fwcSv+PS3ee3q1Bj8nrkTqqSB2/4JuI/RqDUtIT/mufGQZUPCeVrKHH2r88L8AOVjHn4ffrBH7v07OLEOGDBkyZMiQIUOGDBn/FsjBOv4moOHrAcCuI34herUGBd+EYU2QL9MKAHxIbKfaAFepBCGoliv7rPImEk+/gxNJCOxHdEyV7gifn4Ci2TpU7PMHAFydqcOR+8IyMZiNzKbe0bfggb0aR1cQrcCNaYK/WdgphVPpsCNMKyK5dpiEd6YOgRvjmSSuzlF3oklYV8WVF8NgNrLEnPtCG0Ov1uD44uVwqV+fKzP+kabh2WwTG+PkjrVhjrnDlQOIFsf8mg5NlLwEmIacTu1YC9+/8AmTjlH+cxbxdutiLQ2FeB7Lx2u5vujVGkx+bDQrQ0OC0za8xhdjuKcQDt2ekYn7Q6LwWi7RspZbBR8OW7dwIPUsTr63DAazETljlyG5Y22iLUsVJP5TvLrA+rgZtm7hTGIXsuimhK/FBcno1fA8N062M1kcfxSKyA6Ye70dDGYjzr1ApKGa08DD+7VYeUXyGcm4TPQn0t4fN61F9gbBd7F9hvT42lZCfEFUvYqYTwWlU38HkQRnRVhYeYPZiNi6LkgqPQXfN1LgPTuZta9q44mC98hcXN8djMsv6VDyXSgAou2haLeMSLjjug5lbTn7Pyi7LwAwDVjEaRv0ag3arCvixg8g/oD5W8Mw3DMG0727sLkU+y76vJ2C1gcuA4AkKS4A/PLlCo6uwWzEA30FAODe0GjJ/gXAtN5isPZGnoVpHUlLYL1OEoMvCgjBF33joPJQQ6/WwD+9Liu/O3A/S5BKy4vXQ58nnoGlRwS7dtRyKJs0Ye3fGxqN7KeXcfzQsn7fTuPqPT5xCvt86t1lULq5QRngy0L0py5YDvtJYc0GboxH9hfR+EKdDlUbTxjMRtS+XQ2kkTGnmioxaD9c++ahzRZi+RHz6nQAQPZXvOZ2bp6QQLrRq0XQqzVcsnLKq6WkFIrwUPzy5Qr09Y1G8Bpy5r3jGykpq/eMwIkyH27clAG+AIBWS5JxZBVJWHx6FvFveTknE+0/T4DvW4KvlOP+SdcocXOCFi49i2EwG/HZ7kF4wUeHWx8KPsgpny7n/W8eaRXo+K8qItqyOopaQEwYWg4mY95t2lS0eYKMOVyUOL6Y97UN2Manxpju3YVbD+/mneL2E52T4LXxbFzKYstJ5RxXrCk6Br1ag+/uuiF/S0dG56WmeTBVV8K0PIpLkC4+79l4tmqJuLZd2f0H48vZc3E58vAhK2cwG2E/nYkbU3lfXIPZiP2FafD4KBn9/GKwL2kzq/N18XF0Wvo8DGYjMsJduDpXXtBxe1Sv1kAZ6Cd5hxjMRlizsnFxSiK773KU92Ny/L7wsXsK1w+D2YiWieQMnN64lNPWGMxGlnZjvFcXLAsMwK1xWpyfmcho0HQAAGCqJulGFgaESrTg514UtGGtUty497311m24fkvOjTVexxjtsZ0EzT5NaaBXa+C7ZwqjFfJmNnv/0PYMZiOzJGDarbnEDz13gRaBzxDrn8fOVpF30KNw/4jq8KtWK87GtGv8VOQNX4G+/cey+8omTdB5Nlmncb1HQhkSCNe+xH/O550URuOx58j3qt2rN0ra+Fvir/AP+5f4if2mH2JXrlz5rxu6evXqf01DhgwZMmTIkCFDhgwZMv4J+E0/xPz8/PD666/j2rVrv7uBvXv3IjIyEitWrPjPhf/FoD5iBrMRiuQzuD2WSJ58Rp6FslVLZERsc6pBcZTSVOzzx5lXE7nn4oTC9w2+sBQSiWfgMyTJMcWqNsfR8stk+Hx8Cm79cmEwG+GxPQ/d6wl+VL2zBjqNWnjgXi0M8hASPWbMFpJKLnA/7ZRfcX/Mr+kQNI2PfkWx+Pnl6N+TJOFsrWqAB92uQK/WYIz7CU4qKP4vlqaKaSpqC34go/J7MN+qpYFBcJ9KtAUtkhtDDMqL+pNkqD8hUY86vRcPlacH80GhZca88Qqrx/wfRhLpL5VsBh19xqmdOf3cZL2QrJNCnHjzreaXuLq3+pHEu5X7/dB34FgYzEbU+z6NRYgb1UaHB/2IVJ1KSMVaO/E8VA6PRsl3oZxEVeXeCkvKvWG9lIO8zQLfUCjwyuOjMc+vE6NJJbW5m8KhdHPjaO/f9TWSO9bmJLDGcKBOfl3Wl8J5WrT/IoEbjx86tmb093cjiVL7PDke5yN4/z6D2Yij95sx2tSnwtl6o9eUlziPTlyy1YIPtLAUl8DnHRLxrMWgS2j9WTK6tCHaj92BQmLRfkNSkf+hFtYcIRJXzmcx+KwgBXZtR05DBADWzEsomqNDWH0ypwVRgoaTlm06wATfUUIC0c969gcA5A8hGmfXnwmve499L9EQOWriYl6bjnvDoqFXa+AxjCR/Ln1cGAdxu2LpN62/9x6ZnxtTtcjXr4FeTXyjKJJ+3omiLxuTeY+sQu/REyRry5n2rbSbK1SHBW0Rhf83RLN0bVhbzL8RDL1ag4aHshC6REiGKgbVuu2uJJrqn9YSbVBc9+HQqzWwVlTAmpPP+tX3Yn+u736vpSDvCXKmVYaRxK/3ZwnRYGlCZoAkUH+o78yNleUyEVQ22vTIt62iFjd+s/0iMCCznGgkuwlCzbjwPpLz2346E3q1BvYHD5i0nI1Lel10jZ9KxrUkAwdDfuCe0/VnMBvR8WNhrAxmIxYGhMLj42TOl5Dunwf9Itm8pH8g+ASZxhGt+Y0zLdFjvKCBoNYSRds7cJHxAKJJd6lfH3q1Bp9tXcHu04TfAKAM9GV80nWyf9fXAIDFBcm4lqBjViF5n5DzlZ4xlF5lmBouHUPg83YKTCsiuT3uMysFY2a+BABYGeQH39HE9yxkZQL0ag1meMciaHoa7u7ntXlixJyphvXqNVgryDvBd9dUNB1ggiOohn5vxn6JJUTzlSnIfHifu0/b2peXyvWnpdIVmc8lcnvYpSOJsHnw5QWI60giylL/MRpVWLx2nGlrxBDvbYpBHpFsjMXlxP0IPDKejMHeKUj+jNeINt6QIhk/vZpEBw2q5crul7ypg99OQXPt99001sYG75/ht306xyPF/nt12Of3W54Tzse0WojrNgw7S9IQNDWd+Q+bZgVzdJy9Z8VnUc5Y4XvKL2HknLNbLKTc91+zcrRfjutEr9bAtFywUvhwERmfhy3qofhtHTq/Gw9reTmarSJ72Zp5CdasbADEl1tMj1owiK2j/t5Q/IV//2z8ph9iL730Er788kt4enpi4MCB+Prrr5Gbm+u0bGVlJY4ePYpZs2bB29sbgwYNgkKhwJAhQ/5MvmXIkCFDhgwZMmTIkCHjfxYKu93+mywwi4uLMW/ePGzZsgX37xMJrpubG1q1aoUmTZqgqqoKN2/ehNlshs1mg91uR1hYGF599VWMHTv2P1D/96KiogKNGjVCdwyGSlELqjaesBSX4MYPQcyuWYya7JTpsy4zp+HYFyskGqjKJ6KZ3bUzSREg1Rw40qD3L1vuoq7CheXJ+TWeHPkWl1V5t+E0PWJceVEH90XJyJ+vhWk8H7nJYDai7aoEeM8mfhYhGSrO70fcnsq9FSxXiFksHVuA+OkkHfwGHRckMA2iaUUkgqal18iv49g4jku/PqNYREnNhwlQ77uMphvKcV13yylvymZNYS27yer3jx0MS36hRGvoOLZsTodHo1HGZVgKipyWUwb5I+nIdwj9MgGe85NRPl6LtPnLuHJ3n4xG/csP4HLMKJkDOj+U9t0RMbgZ4gKvuXwURMr/2YdVeNUnhrtHx0pRqzbs1Q9rXCum1Z0RNPkku47PzsGywACOFq2Xv6Ujk3I7jsmqIhJhUOXeClcH+KHZakGrcHUmiSZGy9q1HaFI4ek49qlGH4GoDjBNq4OgSSe553G9R8KaeQnXdwejxSCS78/vwCTUu1QHnh8mA4c8sT5wK/NNdGyz67mhqKeX5rj5tb3yn/Bx/glkVHlzuXpKvguF5/BMrp+mtZ2R33c1+gx/RjIuOZ/FIOAlXopPxyLn63CWU6fe0VYo/MYfp99OZGUc5/z22BhBe/QItm7hTFvr0rAhVmXug6eqgaQ+bbvz7Hg0W5UCRef22L97I8ePwWzEiLyeyNoVzHKaGcxG9POLga2qCpX7/eDaV4joa+3eCT9uXouwTxPQ+jNphE9nqEkL6Yj7g6NYhEe9WgOXhg1Z3kKD2Qi/HycicJyQE+4/7X3H+42ONcPtLmVOn4mh/EkN6+Nmdp27QIug+ReRlPlTjeeL47VLxxDO/+Y/jcVjZ6vwS1hdqHy8YCkQ/CBTq6yY7RcBlYcallKzhJZerUHeZg0st2sjKD6Nuy/+rGzVkuVTu5agg60W4P65sL8NZiPaJT+FNk+cx7hLxdgQ3AZXvg+BejZwK7QR3DanwtZF4/Tsczz/2fvE15uLaEvvX5+uZZELxc/aJSagzfsCTw/1nVnkQboe9l36hRs/Z58Vndtj/Ka9GNWwHH47p6Ht7BzOx43Se3DAB3X6FHB80DVC97fjXLG+PZqn7KXRXGRFittJAWgUlwPzqzo0O18NczcVYrpl4sShULhYFPCaU/Pe+bX3qaOmqfvkKTiyetWvlnesG9d9OKwm58oBCvMrOqg/JTxmb+iEwHGnsKTwOGZ4xxJN+aCnYD95HkXv6uA1j/fhFPNw+fsQtB7ifB90nzQFR9as+o97yhF0bAdklqP0Vh0s0CXh9u3bcHNz+9U+/f8A/c7aZtkcuNSr+3/enu1+FYrj5/xtx+PPwG+OmtimTRusWrUKCxcuxObNm/Hjjz/i+PHjMJmEHwu1a9eGRqNB9+7dMWzYMGi12l+hKEOGDBkyZMiQIUOGDBn/TvzmH2IUbm5umD59OqZPJza91dXVKCsrQ7169dCoUaM/nUEZMmTIkCFDhgwZMmT8TfBXRTSUoyb+Z9SqVQvu7u7yj7A/AQazEQ/9WuDOqBg0H2hC/oeCRvHWOD4ohLO6nebFc8lbxaBmiTXBWRJog9mIy9+HwH8r+dFtqq6EXk0CZlCzRHH7TY43rZF+X+8oiVmB2NTKYCYhqssmkX66L0qG1wlX+L4lmHuoUxuyzxenCOFvF7cm5mFVA6PYPb1agzpH3WGrJKHbPVMbsMTEAHGa7esbDfdFgglCyMKbXP3r8VpuLIdnXeOugzbEc+Nlv5jDPrdakgxrTj5cVQ9YebuuI2eCQc0SKU1q8hLz6nRUjOZD3tu1HTneAMD1uxPouec8u0dp0yAZ1FTDc34ycjeFS8wSDWYjGmw/gYPb1gMAVD5eEIPOT+zZYQCA2hVWeM1Nxss5mVy5uK5DoVdrEFZbCLohdvYGAHv1Qzx2lqQbyP2UTz5sMBvR4lgt7nqI612u7OMTJrNny6L48L6qNp4shLyXiiQA3XvKwJklVveKYElOWb0bxETMJaytxAm7y4xp0L0oOJCLYTAbgbRzyO+3Gi51edMMayYxR2wxiARU0as1yOuzhpglAkDPEoz36gLzazoJXQCop8/nnMnpZ0thMYrmSJNN98u8BRdXV45PZXAAgk/WYvU1depwZokGsxGewzNR9K6O8QgAzY7XImZQIrNESpOaJdLysc8LyW1ze65jnzNP+KFlYjL6Dn6ambPS9Bc0wEijTUISZmWrlsheH8GF2bbduQNPVQP01w5k7RXOJeMVvJYkdT45l5grO5ol0s/b/A5BvSCZtaNXa1iABLFZIgAoj5DQ6K9M3cbdp3uO0hDPi3h9i9s2rRWShd8bGo2GZ0hwjn6BxPyJmqHRenm91sK0PAozcy467YcY2esjJPe3+R2CwWxkwVNqej9YHzdz68P/1RRYy8u5UP9iXEuQmp3bzmRJyrrUrcvGgn4GSGCit5tfhMFsxB2NO1dnth9JgeDMLHHBTX8YzEZkd1/PEqTf+CEIISuFAD5DsvWo2OcP69VrMJiNMC2PQsvEZLh/TvZYz6cmMZo0ZP6GYJKyxX1IFmxnsuC2ORV3RsY4NUsUj6Pjf3pGP4iL5O47miXeHREDvVrDktnrXiJnSW0DeVf1vDAIALDv0i/QqzV4qqA717b4XZz9VSfs370R6Xd9yZoZugLWG2US828AiGhGTEBdwkgibWVoMIqWBcJgNiJo4knJuUzr2rqFw/4okFXgs3wQLAqazP7ci4loP+8s/D84j8uv+sHn7RR4zUnm9geFeP8BxHy/4AMtl1Dd8XtHnSTiHmBa3Zl7bjAbWcAex74nHfmOtVX+DPkOkb0kmuODmiUCgP8a8u1+hncsu9dmKTEJ95qXzM51cdumVSSoTeshWdx9Mf919qVL9+CjMPj2WIf7IvqN4nJgMBsxo0khTt9qIykn45+N360RkyFDhgwZMmTIkCFDxr8UdgX5+yva+YdDTuj8N4JerYG1jhK3/UhCR983BSlb4w3C536Zt5zWbbFcSNZpWhbFPXeU3Pik1eOeN8p7iP6d9KwshfVEE8RqL8BgNmLcWy87dZ6lNMtjb7JEzuJn3c7ex/7CNPjtIFL0gg+0TqVyvyxdgWZrUljdouhK9kyv1rCkm2KpnpjXuj+kcdLrB92uwHbnDlSt3VESwycMBYD9+ScYPQCwmnI5evUHX0XeJ1pEnLah5LtQfBfSkpU3mI3wfUMY7/yPtLBbSMAQqrmw9IhA2lfhjM8D334FvVqDoK/iMfYiCRoS9ZagVaNIXbAcT846AIBIVgHgwHdf4dqutjC/IkiqDWYjDka3Zjz0GjuR9KOiAm9f68DoVoyOgf/Y01JJnWjsXTTtWNAPACh5S9DYHA/bAQAsLPjCgFBuPdGw2XFhPXE7KYDRpWkAaNlfwojE/LX+uzlJacjyBDRZn4LqPp0ZP5RXF4sCerWGSZIBoGc9K/tsMBthKS5Bm/d4J33fpMlcH2v9SMKk06S35c9oYc3OI33ILZasJ9fvTkD7WhpHg9LuFzeGXWevbcs9B4D+XYZwIaGdrVWa0Fp8/7u7blx5vVqDfnFj2POsqYkSSfXSPf1Q+JUvx6f1Ug7O3vTADWslN+cqPx+OviKsguPt5HvLODri8XTUCh3/XJosGgD8XiN7wp5OQk2b+1rwoX8Y0dp0vc7R16s1sF69hsDxGUxbpjvzkD2zFBbj5kQyjt6zSdoIn7eFBKj0v7PxBYA7I2M47T79XzE6BogSQkS3SnHD1Zk6nLsnSKINZiMOfPcVXH9uwWjQds4+rGJlHDVlIR8KwXd+WboCloIi3Bqnha1SOMscxyBoehq+CJBqZR0ROF4a6p9CrOW7PziKpWIAyPuCO9Mv5bDPtfenc32mPLVMdJJwumcE9GoNYs5Us/u2qir23FYljIv74mQ2Zj8nrmT3qebakTZ9X/3YviEGmPoxPorf0aH5QBOypiaif5chMJiNuN/tKkuvoldrkD9oJdc/1eEMydoVw6VjCACg8YFLqAlUW+zI57VdZJ6OrF7FntHE42I02JaKK88LZ+jl7jbcfoqc5Td+CIKqVxFXngZ00qs10J8nIfM1HyZA2bwZAp85hb6Dn8b5CBvrF33HGMxGuLi6sn4ubH2KaF73b8XNPUGwZl6C8ulr6DFO0BI6W2cuR08j66VmyH2UnqS/bpBkrQ66UMZ4zI58ANudO3A5ZkSk0SrRUA3PIkFUAjfGc3Rs5y/i0oRluBrtxpV3bCtsYQIL3iTev9SyQK/WoOfTpE9VA6K4+k2+ImdQ4AzBCqjvQCFgXPYX0Ti4RdDi22NJ+/T7BkDW8v0hUdzeD5pC9go9owAg7lKc8K6qWxc39wRBgkeJ4RXHyRhRLa5pXYTT82B7wEEpDRn/aMg/xGTIkCFDhgwZMmTIkCHjL8ZvDl8v4/8GjuHrs5dEI3DGCQSfrIXsrrVgu3ePC4Hsu38ygiaeZOGeDWYjOixKYGGaHVFTyGFAkIwllMbgUF4QfEaedc7j6Bi4bSH+FS5166JwYwDaPHGe1Z9WomVJaSlyFsWwRMZM4/R4Jyh/OsVp1cqmaHFy7jLMvxGMn2boSALhGkJ122M1TKpk13bEge++cqrloSHrK0bHIGXhcnSaF49T7/L+URMuFWJdsDcAIlGru0cIMZ27WQP/MUZOqhrXeySSDn7D+iPug2lVJJOWOQMNU6/o3B6KhxbYzhJ/EDH94HXxuDSBD9NP4aiFFN+nED9XtgsCym6x0M7idpzRedA/EvVzyjlJeU3ti9MgiMMBA+BSLlDehmTrcb/b1Rr7YVoehaDpvOaJhnR21GSINR+/dYwo8j7Swk+kwaQ0e4+egINb1v0qbfF9Rz4Wl/tgX2hjFL+tY/4gPmn1sMIzpUY6QT+PQ6MDrmi6NoVbh7/WHsdXVAfY6qk4vyqA+P7cbdsULV/Jw90eFbBXP2S0Dt1X4q25U5lm/fJLOhaq3VFCrldrEHHahlNTO8KecQGwWSXj0ux4E9x83gM35z5AVbUK1hNNmLTaJawt9u3fymg5ouB9LXze5ueiRXJjXNcRzU33KVNQZy/ZT/rzFfhxRGdYL5hQ+UQ0l5rDcbwc2+POkZgwGHZsQN/BT2P/rq+d0nDRtMO+pM0AgI5po3EmagvRzPWI4LQstD29WkPCTg/IR86GMAQ8dRol34Wixer6uKxTSRIyO/JpMBvxcVkgDndwRZPjTbHV9zA31yVv6pA5I7HmdfArfRc/q2ltG8xGPFcajezIB79aDwALu0/v98u8haV7+sHvdcGCoSYeauKFlhenrlAG+rFkxRQTLhViVMNy6NUahJ1S4GynX//KUtMetus6QpV7GUmnDyDgyHj4P0r4DgC5C2NgbWBF0LR0+KTVQ0HUfRjMRozK74Hy2Jsc3UbHmuH08SDWd6WbG6wVFTCYjSix3MX4cTNx268O0t8X3jnflaRiuKfgGys+j8S80pD/4jESI3JWPJquS+HWg+/uqdjT93OE1hasXPRqDfLna/FEv+PICBfk7a4/t0Bl1+vk7BsxHi7HjE7XCA1lT9+5JW/p4Dk/ucaxdRx3u64jFMln2L1VRcfg9SgdBS3b/osEeHzk/HsLrXff4IuHViXzofo95774WfDJWhjWJAPd69nY+Diu2V+jpQwOgK1BHez/YVON9XMXaOH/KlkTPc5V4nAHwXdXr9ZA2S4I1gvk/UjHEwAe9o1E7f3pLMWLxV6NI9j1tw3XTr+zen459y8LX1/y3Oy/7Xj8GZA1YjJkyJAhQ4YMGTJkyJDxF0P+IfY3Qt7HWmbX/IU6HbZ7JOKfOCFo0EQiOaTScL1agxZnHjIb8QGZ5Yxe5fBopg1z9GcAgPD5CdCrNUj0SIXPyLNQNm8Gg9mI5YXHYDAbWZSulIXLWZ1LCzuySFR6tQa6l6Yz6eHllwS7+tyRyzn/DABQ/nSK1aM8qe7ZoVdrcDSsHtPw7U35AfeGRiPslAI5iwUp4sjV+wEAc/MyUCv/Crtf3acz168KnQ8AwG1LKnz3TMGpd4mmqWpAFBoda4aHfSM5LUTdPUQj83FZIADgzXDSTr/AWMZv0sFvEHhkPIukd9lCfM6UQf7I778K4y6RxMd3H0UvozCYjbCWEYmq/eR5vPk90RTsKc1A7PPTUPKWjvi+zErhxuvuk9EoeVMYT+pTJp7Lfv1GI2hDPLpNm8r1P+fduqi9jXdwpdEoFZEdJJLWG+1rATdvc7TFMD4gEvP8+Vou+qZYG2YwG2EXOdXSOf4+0MDdo7Tz52vxbt4pBE1Pw82JWlx5QYe7+/1gMBtR3TlQQodKzml98X9FRCjH78O+kdy1MtAPfm8IvkWU5hO5veDywFqjhkEMWibjwUMEptdhZfaFNgYApg0zmI0oiLqP7pOnSGhQOr6jziL9/WWIOVONUQ0f7VcXJcrHS/3K9GoN1hcdIxJVKg1MO4eyl+/BYDay6G2XX9bBeikH9XalIfNQENOGURo961nReAORpJe8qcPZVxKZn0n3KVM4XwgAyAh3gT39HExLI2BaHiUZo7LYcthPnkda+Ha0HpKFzBmCzxvV+LZLJP5APc5VcnUvTVyG3IXEfyv8A1Jmo88RNqZ19qbj4UGyPw3t3ZD0I4lmSNce9clR1KrNSaWpZu3OSHJmcFFZd2yAXq2BPf0c60vB+7w/q814gdFxH5KFDRXNoVCpoDqcwZVrdrwJW8t1v2wC2Kxo+wbRPnsOz4SrsRg+76Rw+5fyaaquRJeZQsTJ15tlAwC2+h7m5gsA7nlbBK17tY+XGh0AAQAASURBVOBjVvkEiQb3Xn4613dHGMxGhKWNBgDcnCj1ywWALz1OsLKOGnaD2YgXc8j7gyahrrYT/8wXmhTA7/UUFllSzAN3Fi2KkdB0LB80+SS7n3R0BwxmI5TNmwEg5+S6YG9WlmrDHPkVX4vbqRog+Eorks8g6fQB6NUapg17Lz8dt5MC4P9yKvz8r7L9CwBj8h93Oi/b/A7B7/UU5C6MgcFsRHn/duz5JK8uUB45haZryXleMYb0v4ELrzmg55HvbnJ2K1u0gK1bONOGUXriyKGxz09Ds82PLEqyBrD7+YNWIrR2PW5MCz7QwjR+GTLCXbhxqux6nUU3vtylvkQL5HeQ+BlbCoqgDPKH4jgZV6oNE0P8ncJgNqLtsadZGUXyGcafykONKV5duHkBgPMzhTPjoZ74B4++aObGeojHGaRqvmX3mh0X/PF+izaM+vR9oU5H93o29Bg3iatz6L6SG2+K+0OicPllsn9vTtQi6advYc/IJNrgACHarLhPtlYPWNtUG0bLVQ2IYtowAEwbBgh+mvbqh07fPX9b2P/Cv384/tAPsTuPDmUZMmTIkCFDhgwZMmTIkPH78Yd+iKnVakydOhXp6TX7xcj4/aA25wAvnTGYjej4SLJZNkXrWA21Dgj5QfaEChKjsg5KrlzA5unQqzUs+lHLL5Oh8vRgUh3rjTIisa9FbLlplK5xhV0ZjcBnH0mlW7SAwWxEw62pTGra+rNk3JimxeXvQxhNRw2GGHq1BqkLliNvM7EFF0s0f1m6Amc72RHwAvFNy9/SEVvi4wCQPDSWK1cZncPrV0Ov1qD8GS0MZiPq7xCkvPkDVrGxqWytxO0uZVykMPEYU+n0pEZE22YP8mHP9GoNRrbLQJPkEhjMRoz36gKARFrUqzUsT02DvnkonEskZv0yb3FSYoPZiA/8yLgM8IhAg+0nmGSM9f08iWRn7mXjIkSNc7sBgEgMKc2L0xvC940U1P2B97FyPdYA97tdZTTfvtaBRaMUawQozj+fiKQzB4mWLUDHnlNp7uu+RALv+1YKsj+P4ere3BMEg9mIdokJONX5G64vABC8Lp671quJz41p/DJ80PdJqDw90HRtCs68lgj7upZE8/PTKdy1VbE6Km8yttSPhMJgNiLo6DPY/8MmTjLpOL+OPie03J3HbgCpZ7n7jtoFR6n7W75RyI58UKMGgt6nuXAc171pFdFg9dcORPoTwdCrNSSKm82KJusFf5vcBVqmkR7v1QU5G8NhfqY9e15vI9HK0HZaLyRrRRkajKypRNI81ZTH7SmqhfL8kES0S3hyL6yPd2L+WM72aruPLiNoehqLokmjoQFAzmcxnOYuPpv4GBbOJWuIagnF0mEAOHCvFhoFES1xZRs7qy8e+59Cd5HxWtuZG2u9WgNrOdEiKlu1kMzDRp8jaPhNKtcPx/x/FNRPTTxvXxcfR/ZXnQAA49xuwG6xSNZvWWw5q1PaXYWKMTHYm7YXANHGWi6T88PjSCWuztRx9I/cC4Tbjxcl0nzHcwIAFNUKdi+oluBvQjWD7/iSvEbx2Tkst9/VmXy0P5rzqOla3peLtkmji3Z6L57tIdefWzCN+6KAEI7eAI8I7lqRQvyA5uenwbQyEtlfdeL6lTtyObeu6LOcz2I4fiRz/ChPFm3vtdxzqHPUnZsvxzp6tQbW7p3YtcFsZNYOjuNMMe3s00zjcqjdbu7ZZt+foFdroDvzUDJuBrMR/i+nQq/W4OdPl9aoyXDbnCpp98oLwhyN1xJtt/X6dRzcso7tL0bvYTWre/zzFXj4WHty3bME64uI5UpfLyF3HW2LWlhQTWjEaRujWx57E3FhPXF+ZqJEi5nXey2jk3TkO2QvjcaGiubs3NKrNVD5Em11z6cmcfvWewT/bjGYSZ7AvelJAICrM3SYfT3U6Zz/tG41mW9XEoFX2bgRNhUfh6G9Gxvvm3uCUBZbjlVFx7j6BrMR/um8xpE+azn4IgKPjGc81su5DvOrwp78xF+InvpstuDfXO/7NKx+7nMAYHun13niI0ktlcQwmI0IHHcKis7tuZysFEdXCpFDxXUc/9ek4ftbgoav/yv+/uH4Qz/EWrZsidWrVyMmJgYRERFYuXIl7t6VhgeXIUOGDBkyZMiQIUOGDBlS/KEfYrm5uTAYDBg2bBjOnz+P+Ph4qNVqTJs2DSdPnvzPBGTIkCFDhgwZMmTIkPE/B4X9r/v7p+MPB+vo3bs3tm/fjpKSEsyfPx+tWrXCqlWrEB0djYiICKxatQqVlZX/mZAMDlQFD5BAEACY8zgANFtVc0hkRwdmrzmCQ+ia2+7wf4WYSTzbWHBipyY1YjiaF1zVVkhU7dbr16FXa1DwnhZ96z9g5gPNV6Sg9SNexWZL7T8nTvmmVZEcrY4LEuA3xoh6+nxWfsKlQonJhKnbV/hxMzGbGHuxBOXPaNHx4wTkfUxML1R+Pkj7cBneuhrm1IzEYDZKxk7Rub2k7wDQLvkphGSoYD+dyZkLpGuU2HtiDx7PHAyXjiEwmI24PySKtdc/mjhQX5xCEu/uC20sMX1yhDgIB0CCE8zNy0DQtHTJfA7ILMeWtmoAQOCR8QiKT5OYeeRvDYNNxbex+Wgs44GWf9g3EpNMxAyk9wjBdGNfDlkzxd+2R+07xJzFtFIIfhH0yimO9s2cpswMLeZVEsgkcANJUj2pqAsuTVjGtWswG6E6nEHMcUy5sJSUMv6pSRnAO7d7br+B22N5p3/aX9/RxCk8Z2M4u+dSty4MZiPyNmsk65bWV3l6AAoFJlwqZHzFte3KytPE2eJ567AogZUVPzO/qsPDg0JAAfPOdlyZRsdIEJyI0za0m0P6ayksZiaT+/Zt4fgMWZ4A/1dTEDg+A7eeJqbIAU+dhvHNRPQ6fwd6tQYNtqVK1gcAJB38hvGxMsgPfR+ZlZpWRML/ZWF8DWYj9l0LhfKnU5iVZ0T20mhuv1LQgBee85Mxoegx1FZY2LOAl1KRs4gELLg6U4chrndhMBtxcUoiS15rMBthfpU3l1sYEMrSHPi+wZvMmRKjOB7azeL3hxiWklJMMuVLxsBxz9FE7AAJUy6Go8N9S6UrAp8ha/zxCXxScACAQgHr44L5Xas0G9w2pwomlWtXCaaFKWcAOz+e34W0hPXWbXZNAwI5mtt5nXBlgZvE9x3PEb1ag2WBAVgYEArTsii0+kI48313T2VlxOuRW2tvFkLZqiVaLBPOxsqu5Gy3nclC4TzeFJ6Ore/3Uzke3unYC0FT05lpG21jpjmSma2+flXgPeClVBR8QM7uh30juWTuztb1J/4d8KDbFejVGgRsni6YF4+Mwc0JAo/KI2Tucr4OR/AaqYkYQEwDi97V4cqLOpyO3MqNrV6twe5SYqrbP5KYwid3rO103K89R9b1AA8hMW9NJori8XNfTOboxlQtZre4wD1fmy8kgX437xQsl6+Qd9ejADE0Mb3YPN5usXD8PZttwswcEjCn5ZHLAID5rYgJdufZ5GymbgiUFn0/69UaVA0UApwEPnsCm9p6wn+TFcHrSF1LPjkzD21c86t9DVmZAOtVwSy41ZJkzG2Rya1nhUrF2tWrNTj/sCHh79ZtjAsfxGjp1Ro0HUDODC9VA2489WoScMwZyqZo0fDnephqImfthTfcuVQ/4vka5HqPOzfe8RXee0Oy9dj5Xm/Ju8zxXWA/eR4Khz0fabRyvNLPfj9O5Nr3PzQBADAio9RpX2T8c/FfR01s0aIFXn/9dWRnZ+PgwYN48sknkZmZienTp6N169aYPn06zp51np9KhgwZMmTIkCFDhgwZ/0OQoyb+afhTw9f7+/vDz88Pbm5usNvtqKysxMqVKxEeHo6RI0fi1q1bf2Zz/yiUbQtgn+uoLMj7SAtz31YwmI2w9IzAfYMv8rd0RMl3oZK6GQ9IqGpHB2ZAkPjQABTi+1uLk3+Tc2jO1+FcOUrTpX59XJpENB7F7whBHhSd20PZrCnjCQA8PiZSKLcLtdD13FBG68yrQghbAOg1ZiJGNSzH8kLBIZcGiKDSqOVznsD1rtVw/zyZBTjJntwaerUGewpD0fMCkaR1fpdIRAeY+nH8t0pxw80JWuzfvZFrW6/WwLQiEhd0G5EVYXEq3Qw6+gxq9y6E7UwWcdbv6sJoN9pKNMB9nnhGIoUW87/tbiMAwIisKywIR8TceDa2s/0iWHmmGUhMwJ7QJkwK5zfGyNEESHAN31Fn4b6YhBp+qqA7ACDw+VRWLuxTIvmsdfshTtwhGleXY0I/9WqS0LrNE+dR94c0WB/vhPwBgpTfXv0Qd5+MZuXbflrMeEpdQNIcWBoTCWBJzF1hzm55QNmkiUSiSGHpQfocmF4HABCaMhY45AkAKIi6j0oPF24sHbWMS2M2s8+2qiqybrqvR1zPJ51qTCwlpYDdjnXB3riWoMNt231YKyoYTRqaXyz1PPci0XT6b53O0Ywafha1ewuaNeVPjRkdU2IUtvkdgl6tQUa4CyylZjjCcd96zUtmWvHGX6dw2rmfung6rXd9upYbH8qLnaYeGLiK3X/sLBmfy9t9AAAf+GlYEB5aL+8jLfsMAFee18EccwcLs3qxci6adgh4MRUJpTFodv4B8qvvInQJSYnRaCPR2AUdfQbnXkxk2meVh5ob1/n5aRzfQQlpuD9EkMhTjYCYFxdXEriizlF3bLsayepS7bhYy1XvaCtkLyXrtWJ0DDJGLmLBisw723FjqfLx4savtuEkbF2EMe4XoAPsdpaGAxBC6he/LQQA0Ks1LI2F8c1EiQR9QYGwH/PX+bH2746Iwb1hRDN5taoha2NT8XGJk/+dkTEoH69F3ieCNigong9METQ9jaX/EPfLbwcJn39zohbW69dh82rF6OrVGqZ9NpiN8H6XtyKg/atXqsKm4uOsHE1oTPtF27vUuRoAsCwwAEmbdSjfG8jqXJqwjPTFQ4VaB06y8Ylr183pu4zC/xVBA5m8aDmarhN4dKlPQrK33FcHPu8ISdXFc9DCWAWveclwX5SMB/Zqjva2khSEL38epuVRkr0qngNl40Zo+WUyrs7Qcc/E7V1L4DXBjs+br+STvuvVGjSKy0FcrxHo32UIYusKZx4NENPseBNkL4lmaR8c97vBbMTSwCB8EdAWALD32PfcvFCrEIPZiDujyDzHteuG888/eg8rFGj4crGEV+WRU/CZlcKNAX2P16QF9JqTzFKLGMxGzMqTWobYO7fjUtR0r2fDa7nnkP1VJySdPSTRjmZvELTR9wdHYf6NYAmv4v9VzRRwG3YZK4PIPguaTqxIaAoJvVoDhUqFqzN0kjVXuK0DCj4gAcDud7uKht+koniWDqPyeyB/a5jT8b/8fQhOzl3G9TFdo4RerUFc16EstUZczycROO4UOqaNRomFWBIEPE1SEo1ueNPpeMr45+K//iFmtVqxY8cO6PV6BAQE4KOPPkKjRo2wYMECXLt2DQcOHECvXr2wfft2JCQk/Bk8y5AhQ4YMGTJkyJAh4/8H5KiJfxoUdrv9Dyn+CgoKsGrVKqxbtw5Xr16Fi4sLBgwYgPj4ePTp00dSftiwYThy5Ahu3pR/7YtRUVGBRo0aoTsGQ6WoBaWbG6wVFQCkoYYdpW4A8U9RL0iWaAjE14o6dZhk3LGcGJe/D2H+XQsKUvGqTwxXZ0TWFWwLcWf3uk+egjpJ6TXSXF54DNO9u7DrxQXJCKldXyI1VQb6oWCkO9q8n8z1kX6OPDUCTQeYiBbvThMuGTOlo6hTB3d3eeBY2A6JdMzZNf3s9+00NChQovVngt24aV0EPPao4PrdCa4NAHAJawvb2Yt4cMAHR9p/L6HPxiEmjIVGp/cr9vnDrV8uXDTtYDNe4HiafT2U2c+LkfNZDAJeSoWySRNYy8uRvTQagc+ewJ1RMUj+bDkrv6AgFYP3z0TQdF4qrk5tiKJZQVAdykDxt+3R5onzMJiNCNwYD7/XUpD9RTTsDS0ImpDB1aM8i9tRqFSwW4iPUKNjzXC7SxnKn9GiyVcpuB6v5fxMfNLqscSojjCYjdC+Mh1VTVxwq2M1gqbWvIZqqu9YVtm4EaBSIensIQBSX5qKMTG42vch8nqtRcCmePjuroLLL6drbDd7QycEflmN+63rod6uNLyYk4W+9R8w2i/nZGJhQCiUzZrCWnaT0XGpWxf78lJr3IuO7SnCQ2E/ncmu5+ZlYLZfBD4rSMFLPnzCYXG/KJ3Xcs/hE/8OTs+Ga8/pcPqtRPR8ahJUhzOgiAiFPSNTcq448hV8shYuda5max0AspdGI/i187BVVmJ41jV8F9KS1bk/OAr1dvHrriYo2wUBdjusWdnsnkv9+pKQ0ObXdPD4LI2tNwAonqWDW4ENjTYJ/iAVY2Lw3OztLH2E41jTPlb36YxaB6TpD8TjoAzwhTUnn937riQVwz1j2PlZNFsHr7nJvzqflObLlzvhfIQN7+adwjy/TpJ2Hddc1cAoFPUD8oeslNCLa9sVSRd/lrRZPl6LJutTuH7uKc1gId9/bU85ajGcWVI4W8Pz89Pwlm+UU9q2LhrcCqzHNFTKIH9YTbkASMLe2oaTjNZMcyQuda4m2v0DkxA4PgOVT0QzDaO4T6bVnVnSZ2djTe+p/HxgyStA0WwdfDddhjUnXzJX16yVeDLhRS7lBy1TNlmLZqtT2LXKxwsPvZvB5ehpCR3f3VOZdoXet/SMgOpQhoQuxbXndGj5pfCeEcOlYwguvVwPgeNOSZ7VNI/O9vyvfQ9wdk3fK+/lp3M+Ub/WhviZ4/uYol/mLfxwOYxLCbD3Xl2mqbu2qy1aDr4Iy49eqF7izs4P8TsGAGbmXGR1KObnp+Hrmzosbn2S8WYwkzD+NN2EXq2BaXkUex8qatWGvfohbkzT4qGbAudeTESf4c9AkXIGPmn1sMIzxemeFmsT+8WNYe9tZ2MR/n4CWiYm487IGDT8JrXGc2LsxRKMc7sh+R5EYbFX4wh24fbt23Bzc3Pa3v9P0O+sbRa9B5d6df9zhf8StvtVKH7xnb/tePwZUP3nIlLo9XocOnQINpsN7u7umDVrFqZOnQpPT88a60RGRmLXrl1/mFEZMmTIkCFDhgwZMmT8f8Zf5b8l+4g5x8GDB9GtWzds27YNRUVFmDdv3q/+CAOAgQMHYu3atb9aRgaYNgwARuX34OyW6f+SNwXbcxoB6IXLJOqUowTr5ZxMpg0T36/uFcHK9jhXifJntEwbBoBpwyw9I9Dz6UkwmI2cn1lchx44snoVJ50Vt28wGzHduwsMZiNL+ku1YZQPmpzamp3Hkr+KeaTR/Fy2NQMABGyZjlENy7nxomX355+Aa18+cW+7ZcRfpXAesfOmvnTiuoEzTzBtmMFMoscFTchg2jAAWF/Rkj2nGoI6fQokNuVi6ZfigZW7XzEmBm79cpFUegqNlpJxNCVGMRqpHWtxmjqftHoAgNxRxO/q2jAiFaS+PA238lqXsNp1ETQ9DTemark5MMfcYVLaC7qNbL78XktBv8xbCJx5gmnDHDUEVQOi0HAr0T7cTgrgktve7kISrjb5iki/xdowAEwbJqZpMBuhiAiFXq2B2+ZUnJ6ViKCp6YBCgXaJCVw5R98AmjTckd7NPUHI3RQO663bLBKYXq0BXPhk5m6bU1GrDpG0+r+awmnDnPk4BI47BcP3X+PnZSQR56KAEG6+336fRNSzlt1k4wUI/mn2WF6DfWdkDLv++pFvDQDYT2cy/y4AzD/wJR8tNw60bYPZiOvxpLyyWVOWkFTMG6XX8stk9B04FqrDGSjfG8i0YeI9aH5Vh36ZtxCwRfB7o349xXFN2b3AZ09gmvEMchbFsCiEy295wGA2sjGic9I+o+bXivWCCUmHtgMAi8h37Rvpu0P9STL2FwkalK+Lj6PNB8lIXcAnCHbbnIoNwW1g13Xk+gQAQevjWV/rpudy9F3at8Wkoi7cuFlz8nFvKPEna5HcGB32zARAzhYAEm0YbY/yQq/1ag3OR5CIo/P8OqHWkdZc26bqShR8oIX5VR2ux5N5rvtDGoIS0hi9nSWC75y1ogK++yZLznaqDaNt5n4agwEewrl+6L4Sdm1Hxt+NacI60w8bx6Lg6dUaZG/gtXaOUvqOH5P9+ZZvFHf/9lMxyFlE3hW1sorQdJ2goaPaMID429H7GyqaM20YAASOz4AyJJBpwyg2VDSHyrsNS+Ted/DT3LmgV2vwRG4v1j9LXgEA4PEBp2DNyYcywJeMy8IY3DeQz6MmzGTaMJWfD3cGlMUKvtYAkDvBEwe3rJOcD+HzExA0PQ3XdrXlxkmsDaN0xHWpNuzZbBO7TyPX2s5kkTPnP+wfR/rdzw/h7tF3XE3ashF5PbnyBc+RhN1RdWpx9ShClic41YbRd7ejNsxgNuLyyzq80KQAql5F0Ks1CFlO1s4XAW2hDPBFda8IuI8hvsWH2u1GvV1C9F+qDaM+WP3rV0n4ess3ClkRFm7v9nxqEjsvKKg2zGA2wl5NxiVj9jKce5EksqbJyI/tJD7wU015cHF15fZ07NlhjN6+pM14MSeL8aI47MGN8+m3iT8ojf7bP3oAHvaNBA55cmuhyl6b0aTJuHO+DgdAvm9V9eOTpsv45+MPacSysrIQHBz8u+q0b98e7ds7DxcuQ4YMGTJkyJAhQ4YMGf8m/CGN2O/9ESbjt8FR2l8ee5O7p/L0gF6tQeaMRK68MjSYRflzlF69cv4J9rnZ8SbYVkI0F4c3rCGSe21HHO7gyjQbjjj09RrULpP6+ljLbjKJ1IP+kag16ioAqRRQrxbyf7RPHQuD2ciiojnLiSbm/+C29ah8IhqNNxApq6JawUmrHNuhEfdKvguFwWzEhXgyTt7vEvvvMWmTJdpFSgsAYp+fhscjiNagVYobQjJUMJiNWPrJcBjMxK8JAOodFaKMcfPj681oi/1+AKBpKtGCdVj+HMpjiRalyVklbicFMBr3hgq5nAqi7nPzefK9ZXD9uYVEYkmv+/UZhZyN4ciYs8xpH82vCVGhit4lGoMXmhSgeJagXXWU7h9duRIGsxEJpTFI1XwrKeM4hjcnajHhUiHHo9/26Ry/9gxhXEJTxpK6pafh07OA8LmzHfRqDWLPDmNryaV9WywKCEHupzEIfz8BMa9NZ7w0HWCCq2sVJLBZYTAbYVoZCdPqzrB10SCx8ybo1cSnSenmxtno5yyOYeuHIi6sp1NpMABMfG235J643we2r+fGquE3qaxPT7eJ5eq1WJ7C0XDpSKTUERkj0GmeoNVxcXVF7NlhqDOI5Oah2jhH3O1eiWbHm2CqKQ/2jEwUvatDk/7ZbMzE8Dh8G/tCG8P/5VSWS4jy4fERH1V1WWAAAl4U/LN2tmuBaSVaRL1FNCs0FxnVBjnuD8cxujiZRBdrPtCEGz8EsQhrtJxerUGtIyQa6uS84QCAuLZdGU99+49l5RXJZ1h7515MhMrTA75vkXEdkXUF93QBXNv7DmxFScxd7p6yeTPU30m0Mtd1txA0PQ0u9YkW/8rzOlxLIHtI5esNWxcN45PeB4Tcj+J+VHe/zDRtd0bFYMWNx+AzKwXqBcmcJtlgNkIZSKK7DfXkNU/5/Vaz89rZWAJAzhiiLez8DokW+4l/Byb1B4DmK0TnbepZ+MwS/GLafsD7JdPobhQNzEIuJFVrd8ZLo42pyB1J2hVrh53NO23r/R1PsnIj8nqSuiKfQYpxbjdgKSyG688tEGm0wp5+Dnq1BgGb4mHt3gnlz2hx57EbKPgmjFuniR6pKH5Hh6Sfd5JxGb0c9fRE8yTOw6VcV8XVC5qQwfX/QQuinekxbhL0ag3LOai8b4fBbETLwRdhMBsRn53D9bdFcmP2ec1td1zb1ZY9v/K8DksDg6BXa7C4IBlrgny5PtP9Q8vnfBbDnSMF3/B5Muv0KeDqU42lXq2BS8OGbE90O3sferUGt7uQiKF5n2hxOykAbd5LZuWdnele88jzB3F8/s+Tc5dJylI6Z19ORLepQp45SgMgWudaP2bg/fM/1Xi2AoDvKOJf/cLlzk6/19h1HVH6Onl3VYyOgepwBuJ6jwQA9O8yhJVThgajz5PjAQDdzgrfY2i0VgDw/JDwt3rEANge5b6l/WngYGUjzplq71EKvVqD/C2CNl7Mp6W4BHtXL4UhZA/rg62LBlMbmRGyMgHKFi2YBjC35zqYVkVCdSgD+z5fX+O4/K0gh6//0/CHfoht374dPXr0QGmp88RzpaWl6NmzJ3bs2PFfMSdDhgwZMmTIkCFDhgwZ/0T8oR9iq1evRnl5OTw8PJw+9/DwwK1bt7B69er/ijkZMmTIkCFDhgwZMmT8jSBrxP40/KEfYufOnUNkpDTUqRiRkZE4e/bsH2Lq34zXcs8BeBS2d0UkZ+Zxv607fNLqQa/WYHjWNcHJPPMSALCgGgCQ/ygha+shWcxsrCy2HCM8yf2zD6uQvSQaipQzUDZvxtpXhIcidyFvlrIvaTPjqeQtaZLKI6tW4XjYDmYKJlbPl+4IhWltZ+g9wnE+ZhPhtzZZdgazESr3Viz4wLhLxVB0bs+ZORz7YgWjlT1umcQpXoyPWh8lppvaTexZ3seE9t0no9F4rysU4UKCSbGpReV+PzTYfgJrvEgi6avaCixufRIbKpqj6VpiwpPyKQmccb+bYIbJmSLkF+KhvjO7VrZowcwJLXkFMJiNWD5BSGBd7aZAquZbRL4dj2ezTbDU4/NlOJoB3k9o5jQ4AABU+rsht8c66NUa5H2iZQFKGC+PrPcMZiN6DxLCxdtVJMEvhcFsRM+nJnG0cyOr2Dqsd7QVZypiMBuhDA4gZoJrU7Au2Jt7Fvg8CeO7uzSd0Wh2vAnuPhmNTC1ZD7HPT0P5Ki8AgHroBRjMRmYSoldrYDtPTID8X0lF6yM3OF4BwF0UZMZxbPIHrELQ5JNwOWZkgS3q7UpD0sWfoWrtjl5jJgIAAl5IRfoXnbigBTQUviPGXizB9MaCNUDVQCGct7htxzlq0DeP3ROvP2rSyvp7JguTTPloPtDEzBYL52lhq6xEg755SOn4nVO+KHxHnUVZbDlLYuo1LxnBJ2tJTHkBYP8Pm7CkkCQMpknXHVExhpwHLq6uMJiNqBoQxc6Xgqj7aLKe8OiYFNrZHnUGS88INB9oQnVjEgq5aqBgllfd/TIA4EG3K1BEdkDSxZ8Fx34H81/anl6tgaWkFJYeJHDFqvwuqPvjWY4XvVoDlYcasWeHMXrPppJxUNSpA5WPFwxmI66P7Yiid3U483oiWh+6RvjNL8TBbesZnZaJQtoNGqDCYDaiYt8jM8VDnvhl6Qpc+T4EDbem4tD6GKdzoVdrULJAMI+9b+DN1hQqFQ5891WNZ6DYjNlx/cX1fBKKWrUZb45I+ulbbl8nL1rOlTv++Qpkf0WS6VouEzNrRcoZCR3HNU/via+pyShAgv6Iz4uK0XwCamWgHyq7Xsf7Lc8x2oHvnMaPm9ei7m0rVK3d4TNS+j2jzXuCWW3IigTEZ+dA5evN3jV6tQYPul1Bj3PEFC0urCfXbsNvUlnwlFo/EpNFGpiCji/Fl1NGcNcbfY6w4AuLsnqi5eCLbD7cPxf22As+/LtUbKZO6QW8JJgCl1juwmfkWUbLtIKYC2Z/EY1ZeUaO1o2pWtju3GF0ksyh3PPsp5ahUVwObN3C2T1Hs/92y4ipcpPjTVEnKV2y1kxryLuOvvP15ysY/3X3ENO/u09Go2yyFkE/j+Paj6hTm2vT8b0GANlLopEVYeHu0/+K5DMsCXXKwkemsY++B9F37Xv56TBNaIID29cDAI6Gke9O/YIfw5O/EPP2fn1HEXqd28NmJO8eZYsWZM+068Z4SSjl1yX9X92nM3yWCP0q3NYBBe+RNVb0rg5DPaPQrw9pw/ZYOAoG1YNv0mR4zUmG9fp1LCk8zugFTUlH9ucxGBrUATL+XfhDwTpu3ryJli1b/mqZ5s2b48aNG79aRoYMGTJkyJAhQ4YMGf9D+KuSLcsJnZ3D09MTXbp0wdatW2ssM3LkSBw9ehRXrlypsYwMaUJnmiy19A0dzs9MZJKXcZeKMbahID10adgQ+y79IpE4O3NsdcRjZ6vwS1hdJBYeQ4Io4TJFyVs6ZD6XyEmp4i7FISk4qUanXnpNEzXWJBkFgM6z47lAHaZlUfDwvQHXRxoDWufyyzq0XiiElqf3Tas7I6ffSsR5dIJL3bqwVRGNzu2nYtBoYyqKtneA15PnWLJdcds1jZezcaN1fPdOQdCUdMk4xZypZkmYHaXMfYY/gxua+mixLIWj7dKwIWx37khoFc7TwvtdoazisAfsPYjWpbpPZ9zyq4UWy8nzAaZ+qO5+GQazER1OjIF6qJAc2tnch2SokBVhgYurK3NGvvJ9CNyHZHEJZw1mI/p6R7FQv5TelRd0OPMaWQ/K5s2QdPaQ07FqtzQBbT4g8/WfEjqLQWnRhNfiucpeEo3AGSdQ9K6Oc/p2pKdXa1gCXgDI+0iL7HHLatwLVQOjuKSuYtD+xrw6HakLlqOvV2dcnxSJjNmEHl3jNfWr27SpqPtDmtP5iDhtw/xWZ9F2VQK8ZydL6tPyN6Zq0XwlH8ghYk481r21iKWWcKxnj9VAcdzI7itbtICtvJw5hBvMRnQ9NxT19PkS3kzrIiRJvb8rSUUDF6KlEpedaspj2jZncNxTjv+VwQGwXsqpce+Z1nZG0EQhFLWqjScsxSWSMaqp7a7xU1mC2NIdofAYRjRnPc5VYnl6N+T3JYEvHsRF4sjqVRy9/C0d4Tv6DLdGnZ11NZ0n4nIA4LdzGvKGrvhVnq3dO0F55JRE0+y3cxqnZXTWf0d+whYmoPXCZKh8vfHWoZ2Irevyq22bVkUiv/8q1heD2QjffZPR6rAKjTal1tjfnEUxyB25nKOlV2vgommH2A2n0Eh5H3tCmwAAlK1awnr1GnI3hcN/7GnsLk3HII9INDveBJt9f6pxHEdfNGNLWzV3b1tJCrPqoP3n+PoshmmRsjd0+tUEyeKxtPzoBVWvIu45/Twm/3Fs9hWCSyhDg3EjsimXPsAZPzTB9H/Cb9Ei1oTLL+vQflgWymLLoXJvBcuVq+yZ43cER5rZX0Yj8LkTWFV0DFO8uqDkTR0LXAEAUChgKD3NxmpUfg+UP3YbhpIMxq8jzcvfh7A0OAazEVOKY1EUTd45iOqAy29ZcDZqS43vXFqv4ycJUC8/BdSqBdudO7g1TovGG1Ik/TCYjQjcGI/u3c6iKLpS8oy2I/7OUVO7CwpS2dnqaNnwn/gFgF5jJ0L50ynJfXGditExqFtuRe396RJe6Dur4o4NTYLy/rYJjFlC5wXv/3UJnV99+287Hn8G/pBpYmxsLHbv3g2TyeT0+aVLl7B792489thj/xVzMmTIkCFDhgwZMmTI+PtAYf/r/v7p+EM/xF555RVUV1ejS5cu+PLLL2EymVBZWQmTyYQlS5agS5cusFgseOWVV/5sfv+xyFlKbLW/fyyE+Gt8JEimbkzVYkNwG+jVGpTuCIXtsXDsu/SLUzp6tQaJhce4e56pDViIVYPZiC6uJKEk1YY52l97zidt33pasKe3Pm5GhxNj2DXFntIM6NUaXI/X4lqCDo3rk7DrvgYS8jep9BSzOac+DVQyNdVE/ICC4tPQ4M16EtpnX05koX/1ag1U7q2wtTgZ+XGrEefRCQazkWnDACD1EyKhzYr9GgazEXYPwXyWth1zppobG+3L05FUegrRr8dD0ZnkuVv+aPz0ag36awciaEo6S2ApBk3C7NgGQPwnTr2zDIrDHuze7tJ0pg3zTG3ASd39VxYxGvcNvrD3EjTJtQ6cxKl3l7Fr6jejV2twLnoz1z4g1TiZRhPfBltlJXI3kXVG/api67pw80O1YWK4L05Gv76jiB3+jTLumSIilLXX5gPBVyZ5WzhuTiRjdnWGDgazEbefEuzsA36agH4BOo7nlI7f4c7IGG4cA2ecQNgpBdOGOfNvoWW1i19i9/zeEEJzX3lex/pI6x9dQULzKwMEPxz6jGr/Gm0iSbPtFgsX+rvl4Iu48qIO1b0isKZI2GuU77o/pCEkQ+VUazi/FfFnodowpkV7FF4aAMomC9ow+rx/lyGofdeOwftnSsaBServ8GH8k84cRJU+nPl86tUa/NxhJ1eH0hFrw+i+p9pFx7JvfD+WuxbzIvZdDU8fxerT9RWSoYL1Ug5pc0O80/kUa8MAYO+JPaydgM3T2eflDuccbYNqwwAwv1SD2YjDHVwRNPEk42/nis+he2k6bj0t+FOaun3FeBavw5q0uABI0tZHZfI/1HJlxBqtB/2d+1Urj5ziaNJ+OGrDHNut7hXBrimv1ILAkl8oaMMUvGmPeC9QTT/VZunVGuT3W80SZ7N9uEFIo1D8jg7ee4VzVDxONuMF/BJWl2nDAMB6lfjW+Y89DQAYnj0IAFAWWw69WoO7tiqn62BLWzU7dym/mh+el4yHWGOXO0rwbcvrtZbVpf9pH23dwtF2dTzGXSoGABxqt5ujCQD3hkWj03vxjE+KpIPfML9Ier98POFzgKkf+vpGo2iODpa8AuR8RvwBb0x9lIQ9OEDCk5gOANgOtZFox/I+IfVdNO24/rdemIyy2HIYzEZc6+eHqzN1jCb1ETOYjWhyvKlkLftvf4jPClLgpWoAgIRxz/5KlNj7kbEULV8eexOwWSXvvMUFyWh2nMy320Y3rg7ThgFA2jmcjdqC3qMnAAAe2KuxoCCV81G/MU0LvVqDM68lwlZVxd6XJz5aJhkrRXgo9GoNsp9axtpxprESf+eoCVUDovCqT4zT+dCrNZifnyahfXOCFqaVkThwj3wPoNow82u6GnlJWbgctfens9D7nIZyHHnHyz5i/z78IR+xyMhIJCYm4tlnn8Xzzz8vea5UKrFs2TJER0f/1wzKkCFDhgwZMmTIkCHjb4K/KqLhv0Aj9od8xCiysrKQmJiIEydO4NatW2jcuDFiYmIQHx+PkJCQP5PPfyyovW25yQ8HFY3x0+0QfOlBJKF6tQY45AmXlxpi374tAID+0QOYvwSFaU1nBE066Uia2fvTZ45SR/9DExDw9GmuvF6tgaJze9hPnkfO1+EIePp0jTbSLh1DYDuTBYVKBbvFwmzUH/SLRJ196RzdhNIY/PJNJ5x7KVHo2yOUvq5jEdsc28j7RAu/12qWZv1e+3rqAyIu223qVNTdk4bchTHIGb2c0bs6Qwf1xiwkZQp+DM5oD7pQhmcbF9dY5j/5k1CUP6NlibUnmfIlyT5r6p/YT+7FnCy8fOYJZGo3wff7qcgfsvI380WfX0vQ4fTbZJ6C18TjoedDif9Q+d5ApIVvZ9dRb8XDc2IOKrted8qjGD5p9fCJ+jBGeGqZz5yz8jXRWF54DNO9u8C0ujOCJp+EwWxE3/5jWRQ9WxcNXI4ZWfn8j7SobmxF0HRBU2IwG/H6VQ2M4fxYUIjbVUSEskTUIRkqLG59EsYHD/C6bzSKZuvgt7oAllKzhE+D2YiOCxJw5lWiYRP7t4j7Rn2mauLD2TiI/fYc23TkHwAKPtDi0oRlkrmuqV72hk5Qmutwfna2x8Lh8stpSVnTqki41LMg4KnTHP96tQalb+jg8VEy1x71SXHGR8H7WlyauAz6IU8Daec4/vRqDcoma9FsNe8713fQU7CfPI9b47Q48REfMVDMpz1WwxJtG8xG+O6aivzBK4X+OawbcRvUL1MMeu4azEY89tw01N8h1WA566Mjmhxviq2+hxH9Rjzzg/lvQNvL/qoTAp95JKV/VQf1gmRMNeVheIOK37zXxM/jug2DNTsPRXN08JqTDFNiFIIS+D0FSM+T38IrANzcE4SmA0w11nX0/7ltu48RnkSbGf5BAlouTZbMu7jO9elaLnm6GHdGxmD63G8xzu0G9J4RLCG8Xq1B9ucxCHw+VVLHpX597MtJRt/BT8Oefg5eJ1w5DdBv6b+4nGl5FDujqM+mY59jX5iOBttSJbTjs3OwLDAA5p3tOJ/hIdl6fB9oIBqbIH8kHfmuxnelM36pP2zx2zq0eT9ZUq/ku1B4Duejl4rpWHpG4IevlmGoZxQqn4iGW+ZNZL3QGEHTeJ/rnSVp6HF2DGzftGDvQPpedeTPkWftK9PhtjmVb9tFCdisUER2wP5dX6Nfn1Gwnb+I8vFaps2ka6Vfv9Gwncni6z9CwXta+LzDnze9swbCZVYTIPW3RQUv+CYMPiPPwmAm/oanDrXFmqeW1ui/abFX4wh2/W19ouh3Vq+P/zofsaLX/9k+Yn9II0YREhKCJUuW/OeCMmTIkCFDhgwZMmTIkCGD4Q/5iMn48zE0qANWBvnx2jAAijeaYN++LcwW/vvUXQCAojk6fFZAJDWzY3cjf76W2dHTvD8A4P2t4B9AafjtmIZO8+IR/EIhe0ZzQQGA/eR5GMxGvNV5H4pnCblOqI8YACgOe+D1Hd8AAPYXnQRiwrD3lAEAOG0YRW5kFdSfktwucaGPc5JLqg0reVPHSYgeHvRG9lPLON8ez9QGHF2xf8Lll3m762sJOjT8pTkAoH0G8YUSa8MAYFxhV9TdQyLc+b+cyurbumhQ0dYKa3k5ayN/axh6Pj1J0rfd7Zqhv3YgAF6ipvLxkpQVg/apcC7hO+3DZTDvJD4ANWnDAKJ9MpiNMK0leVz25QnSwEUBIfAcTiI50jw4Yj8SWs5gNqJ/7GCn0tDTbycirutQ6NUaXJq0DEETMpD9ZTSUTQS/j/LzzaFXa/DC5c7QqzVosj4FOwIOwmA2QtmqJZNccj4Hj3DwYgjTDFFtmHg8spdGc/w6Yrp3F+Lf8kgbpldrsH/vJvZcrNUwmI3wfSOF04ZR2sZwoU2/A0LuNEeNCtWGAcDi1kS7/Lov4dFrbjIspWay70bz0Qz9dk6D+yJBitzIpR7XPkW/HXwErdAlCVwOG0d+DGYj3BdLIy6KNRKrHvmulbylg0tYW1yasAyXLXfxbh7vjyRuI/DIeGR/SfqV12st52cHAHe868Cu64i4jr25deOaWwterW5y46d9hfhyeXyUDJeGDaHPGsDKT/HqUqPmzuftFPSPHQzD91+z8vnzid+IXdsRJ+ctY/eVocHk/snzAMBpwygferWG+UiJI0oCxDeVaQC/jIbLMSOyl0Qz+gBw44cg9At+DHuC9rF6pW+Q/UotDfRqDVx/4C0LDGYjzK/qMCuPl7CrPIQogNRfszz2JvRqDU58tAwjsq7ApX59jo4YW4trjhxKQduj2jAAUC9IxrVndUwb5rjnAMHPCQBMiUIuNzqe1mzi0+s1h/CQP4T4WUKhcKpN8T884Vf5NJiN6Jg2Gi4NG8JgNiK90zb2LK77cK5e7qcx6DP8GXb9fWUDdF3wMqPXcmky67uzMw8A04aJc0kqg/xhMBvR8JtUbGrribjeI2EoycCCglQ2TlQbZu3On2X7csj7zJ5OcpyV6lWMrng8vE64AiDvJ5V3G8kY0HL0jFJ5qJGvXyMZU71aA9eS+1y/KK1lgcT3TD30AkzrIpC7MAZxHXrgfrereHziFABA9PYs1ifHdUVpOt4/HUkiY1NtGM1tx/o2z8aVL/kulOO5bu51DPUka8n12xOwNKmP/IGruDrVvSIQc/IZNIrLQdqH5H1/Z1QMdrcT8maalkUx/iYV8dp0qg2jfN0ZGQPYrAAA82MNoVdrUDikKQxmI9OG0bJ6tQaWz+5KxoCOg4uVnB3KQD/23KVnMacNy90sjBv1r6X82XUdmTYMIH6R3u+mYJ4fyclHcw3eHhvjdE5k/DvwX2nErFYrLl26hPLyclitVqdlunbt+t80IUOGDBkyZMiQIUOGDBn/OPzhH2LvvfceFi1ahNu3b/9quZp+oMmQIUOGDBkyZMiQIeN/Cwr8NaHl//npnP9gsI5PPvkEb7zxBho1aoTBgwejTZs2UKmc/6abPXv2f83kPxmOCZ0d0SrFDVe1FQB+v/Ovo1NrXMfeuN3dD8c/JwlGx10qxobgNr+L9os5WWjoch+xdV3QYVECzr0oBAy4lqBDy0Q+ISQclpfYJMm0LApB8Wkom6yFbvpJDGuSgQ/9w35TvygNx2eOeDbbhKWBQTXSVHm3gaWwGPnztejb5yQuda5GzmcxsNWzwe9bK1SHMhj9jAcP8ZZvlKQfiOqAa7Oq0XLwRdwbGo36O4l56eiLZox3u8aS6NLAI3dGxiB50XJJX2gfzK/q4LWZDwDhrO+3kwLQKC6He178bXtUXXFF4HPOAwc4YmbORXwR0NbpGBbN1sFrrjCfjglKnY250s0NDyMCoPzpFHIWxyDghVSuPAC8eiUcC9wFUy5GI6oDkHaO62uf4c8g91kX5PZYh7jwPkg6feA3BQNwXPtcO4/ubbvbSGICSsvG9R4Ja+Ylp7Qd27D0iIDqcIbkWc+nJ0F1KIMEvrhSB9lPLeP4qCkgQY/xk1HrwEnJ/d+yP8WoGhiFB24uaLRJmIM9pRkY4BHB0VMG+cNqynXaPwDwTZqMevm10eaDZJRN1uJWWztyxiyH385pQINq5PVeS0zXunfC3LWrMc+vk4RfZaAfTNNawv8VPkkwLVP6ug6VbR9wQWGU7YJgq1+bmR46joWzpNwxZ6qR2lF6jtJAODSYQcXoGDQ5YGIJ313at4XtPEnSHXyyFi51rmYO/+I2Hf/fGxaN+jtOIPfTGDYmgc+ekJgKlk3S4uR7fILx3M0a+I8hIdX3JW2GXq1B2CkFMvu1gPXqNTx2tgq/hEmd4Z2NH8VruefwiX8Hrhwg7GWn6+iQJwwhe6BXa1D5RDRcv+XPDppM3XFP0c/mV3RQf+rcZHLoheuY3riU4/dBXCTqJEnN12uCuK2xF0uwqa0nAEB35iFmtyCBKZztDce+1nQOAGABOpTNm8F6owyq1u6wXr+BOaYTmO0XIaHpUr8+bPfuwbQsCq6tKuExLLPGNfJbQN9DNCm9I683J2jRdB0xq3sxJwuLAkIkfcz5LAa5o8h7pcnxprgzoi72pifh5cudsLC1YKaqV5M0ElnxIUDaObi4usKyuylcehYzevkfaWEaJ5xXBrMR3c8PQZ0+BZibl8GNiTLQD9bsPDzsG4na+9Oh8vTA3rS9AIDgdfFckCCAmOGJz6Sa5sYZirZ3QFbs15Jyw7OuYZmpK05HbmXvZBrsx2A2on8nPSxXrqJyvx9ULjYcaf899GoNG1caKMbZmqH99z88AQFP8SbI92wPmeml43wAYIHLrj2nQ8svkyXvinfzTmGeH2/y+r8SrMP74/fhUvcvCNZRVYVCOViHFKtWrYKHhwdOnTqFFi1a/Nk8yZAhQ4YMGTJkyJAh4+8Iu4L8/RXt/MPxh4J1FBcXY8iQIfKPsD8ROYnhknsqDzVuTGzFrqmkxa7tKHH4deaszSTerVrC//AEWK9fZ9owABjbsIzV9/1hCkdP/Dn/I8EBdVFACHM0hR3o+HECK0e1YQMyy0lhJ9ow/63TWfv5g0lo9WarU3CpczW617NxfRHzEXxSSJ7cL/gxju7ywmNOpZwGsxGDXO8h+4toGMxGmFZESsrsTfkBABC4ogRfqNNhMBtha2hF/uCVOPT1GlZWr9YwbRgF01ClnUPLwRdhMBvxy9IV7PmWtmr0C4xFPX0+AEBhAXMM768dyAUVEEve1AtIAAiVeytBQ9N1KPscdfpJMm4T70jG9355PeQNWyEZv5owZ/4EiVaOImtaIldWrA1zLE//WysqWGLLgBdS4dKwISsfPj8BerUGP67WcmtU6eZGAhc8kmCKnx347isEPHUaerUGChWfJFmv1sClvaDNq+4VAcSEcTQAIODIeIkEVa/WYE2QL4rf0XH869UaRJ4aAWvmJRTN0UHZqiX33BEGs1GiDXPpGEK0IKF1ADwKfPFaChdEwD+9rtM167trKmodOIkHcZGw9Izg6BrMRujO8Am3Ve6tauTv8tgqNNqUiltPa1mQm4HeQiAUutfE2rDL3/NpRzosSkDQ5JNo8wHZ281Wp8D/FSLNDnz2BAsIYTAboTxyClNXPwcA6DV2InI3C/2zZuexes60gN7flCBoQgbezRMSwFsvmLB/90bJmUDrVzVRcvcNZqNEG0afN7hcTfbWo9DebltSkXTuMK49S+Z/34GtrI6xzBMqX2+mDXPGM72uv+MElG5u8H+FBHeg2jC9WoNhOUJQk2ZrhMAn13cHAwBs5WR97EvazJLcnu1kB6xWzM9Pwy9hdbm+06TAlE7/TnqOp4p9/kwbRsvlbAyHaVUkt5fLpggJrG89rQV6knQoXxcfh9uBLDiCJlOn7WZ/GU3242EPAGApSSaZ8iV1d7ZrgXu2h1x9sTaspvNejP66Qez5l7mPs/tHXtNxe4qWufFDEHI3hWNaiRaRRn4OadkJl4RAVX0HPQVDCdnDNGG95fIV2C0WpvkxmI1wcXWFXq3BfYMv9uUQDWH+4JXwGEaC+fQeOYG1Q4NLOAMNhPJiThYMZiPujoiBpZCkP+lw8FnEnKmW1G26LgXXniXJmtvXLmOaiL5enVE2SYs7o2IQGlEAvVqDvM0axDbOxd1OntCrNTgfYZOM0+LWJ4G0c3gt9xxslZUkAMUj3nucq4TvG8J5ZTAb0XvEeNTpUwAAGL/xOW6uko7uAADU3k/en3vT9rK6PrNSJO8JsTbMYCbBxfRqDfp6R6HgA7LG7z7pPAftrqjl6OvVGbeTAqAM8MXtpADUO9oK34W0xOnIrYgLfbQ+HllW0GA5litXYTAb4do3j2nDDGYj0j9YBlUbT04b1u3sfdae+F2U22Md4zn7c8KzWBtGy0UarYg4TYKY1NmXjvYZLjj9ViL3rlD5eqO6VwRi65Kv4Dmf8YGeZPy78Ic0Yq1atYLFYvmzeZEhQ4YMGTJkyJAhQ8bfGXJC5z8Nf0gjNmLECBw8eBAPHjz4s/n51+Jcrw2clCl3swaWUjOuxTaXSAwVKWecSmiLZguh5gu3CZJRnz0VeFZzFADQP6Iv4rNzmPSn8gki3aQJFhUqFWKfn8bR9X1DCPmqEPkCNuh5FWdeJ9LQzIf3GX97QkmY8ysvCtqG/A+JpCvgJT7UrKMmTyy506s1UAYQH55LnatZOeUPRLr/Yg6R3tJw5rQtWj/G+ASRUs8kPg8hQaXcmF15XhgvSyFJHNl2VQLy+68iY7I+HsoAX8S8Ol2o5KIEADywV8O0KpKbhxF5PVmfiubosLzwGGyVQoLPJ/odh16twZUXdei5N9Opv4X4nuXKVUF7ufdnNjY0kbLlylVG2+87Mmf5/VdhSnEsbF00kjUihsrXGwazEU3XpqDbtKmCRmbf5Bol09V9OmN+vuCT83H+CVy23IUyNJjxDJCw3PTzvku/MKl3yy+JFLlWpR3KZk0ZHWtFBVp/WxtJpacka13ch73pSVAG+nH8Ub8eALgaVQcNF5ixvPAYV8Z/DE+z2XGyPnM+i0Gb93hpPwDYdzaDwWxE1tREZL/kz+anuk9nVsaZ/wfr86Pk662+4GnnbiZ+TQBJ5wAAlU9Ec30Oik/DntIM1ElKZ/6JFHq1Bskda3N7m6aMoG2YVgs8+o4iYZMbf52Ckpi7MJiNsFssuB5P9mLghng8njmYtT0/Pw2th/AaEY9+hehxrhIGsxFNjjet0Zej19iJMJiN8Jz/KMx1i9rwH2OUaOtpWwXvaaEfNo7RurKESPiZtl00xnq1BgE/CdoG+qzxhhRu3zhb7/RerQMnEfvCdKK5axfEntGw5wDRZDY73gQ/d9iJsqW1YFoeJeFd3H7VADKX1grBh7fJcbKu1xQd45Kbi/vu/roND/pFIm8o0Vz3zhoIl6On2XPrjTKmfe/fZQjiwvsAAJqvFM7hojk6Nve0nm1zS0n/1TtqI2gKOdsf6snaaLZK0FI0/jqFrLujz6Cl0hWDUnNZ+HwxbXEfqP+pvUcpCrd1wEwzsTR4/0KcpH0AqO9Sm31+Lffcr2rqxdo6+t/8OeGHnn2Un9qGkxxvtsfCkVplRfOBJviPPY28V9siXaPEmkepHMRYF0zOv7juw7F/90Y2r+tFZR3fTfQsr6fPZ+tRjIPfEI2JMjiAWXuIYTAbsbzwGPKHkGd965PvTzRBMwAETchAasdasHULl6znlktJuPxJXl1gqyLnh91iQbM1KWi4NRW7A/ejcr8f/MYYsSe0CY6ukPIgtr4AgOfPjGLPrk/XwietHl5vli2pc3Dbesaj97t8QmS9WoOXczLZ51/bh47aMb1agyvdidbSXv0QTTPJt+4G2537OM/wjkX2ug5oFJcDa04+7tyvg4EthZQ014a35crPXJzArCac8aJXa2ApLoHBbMSmO80AAEfD6nH9c6wHQJLgW+Xng/ytxBojXaPEd3tiWf2FrU+h78CxXH1LfiEOb1gjvBtGLZekP5Hx78Ef+iE2d+5ctG7dGk888QTy86XmCDJkyJAhQ4YMGTJkyPgHwv4X/v3D8Yd+iLVv3x4FBQVISkpCQEAAmjZtCj8/P8mfv7//n83vPxZDgzowm3+D2cik+M1WpzAb+chTI37VV0Uc4e5il6+JTbJ7KyR6pOKlpiQZp+XyFSwLDED7zxOIzfSjCFmB6cRfwW6x4Pjngp8T1WrRNuyPTFK/Lj4Ot365TML1ko/g9zP6Ion2575IiLRlekZItqry8+H6oWzcCC6adlD5eEEZGszqA0CD9RWSflZ3vwy9WoNFASGwPRaOu09GSyRuBrMRjeJyOKldUnASo6NXa+B+4i4n4QYA79nJiJwVDwAwjV+Gm18ocS3GDpUn8YcwlGRgqikPdRS1mKT5/mAivb7dhfgX9HxqErzmJMO3VgOunxnhLsK4tOej/9ycKEiCHX0EDGYjNgS3capdoAiccYJJ+Fa1OQ6XY0bm/0JpUI2TwWyEJb+QtVHPXMnGLWjSSfa544IEVl/l44U6Vysx8fMXABDJtqZOHbRWNYA185KgkVkRiXrGejX61PjumoomX6XAWnZTMvZxHp1Y2/5bp8PWLZz5QhjMRqQ9qIY1O4/VuzVOy7XhOT8Z3/r/iOneXWqUyhrMRpTFlsNgNiLgpVSUTeYTcAJA0pxPoVdrEP5+ArKfXsae1zpwEveG8smmffdO4ejT/1deJP4cd0bFMNo53ddzUf7uG3zh+q0wb7T+AI8IXEvQwbSKaBqKv23P9cd7hKBVeGAXNMUAkB+3mn1WeXpw9ejn7W8sQPl4LfaPXoBbuzzYM6qF0ZwWypev90IthRV6tQbXZvvWOK4/bloL3YvTYX5FB8VhDzTYxvuD3ZyoRf6HWlzfTZIw+7yTgmsRQnL25gNNAICySVpOE0b7mfP4OgSfrMW16bgXVG08JbwBwrze8neBXq2B9YLJaTnbmSyUxZbjsuUuerQ24c1ueziNoWOf6+6RJgnPLW+ODRXNMcmri9M29GoNrFnZqLMvnY2NS89iKDq3x71hZG3ZumhYeUteAaxXrwHgfYO95iRz+6fD4gQ0/lrQmNH79XecYO3WNpxE9BvxTnkydfsKerUG0xuX4qE2RPKc4mHfSG4sLnb5Gpc6E/+7neGrnJ5P4vpiHzb6TKylodo6cb2WgwWtd68xEyVWExQuv5xGTF0lO+MqW5N3muNcsPOmbVfc6tSCozGp70SON1o27JQQMODK9yHwH3taskYpkn76VjIGABD6ZQKme3dBh0XkXO3rTfbboAtlkn3lcvS007E0mI3MSoRaJ4jfccfCdsBgNmKSKZ/RFL8HaDmqvTkfs4ndt/crR0HU/RrrAEQT63jPYDZiYUAo86etCY7adL1aA3VqQ3jtVrDn4uTMdB7FVjgGsxG5Pdcx7ZHn8ExsC3FH/tYw6NUalvCd0m/1RTJs5y/CtFzw2VM+irznqPGkPvMAoKhVWygfHMDul4/XcnNFfdqspZfhO0pI8lzd2MbWRtRb8dj/Axln8ToKXheP4llkPH13T0XKwuW/On4y/rn4Qz5iNpsNKpUKXl5e7J6zKPh/IDK+DBkyZMiQIUOGDBky/qZQ2P+iPGL/gp8Rf0gjVlBQgPz8/N/0J+O34fLz0bBuJr+LHaVj3x/fidLXdWiwxE3yTNXGE/36joJerYF/upDTgZYb9hPxJ1tfQaRVVIrm8XEyRys78gEnsXp40BsA0d6IaSpqEXv/p9vESiRcFOPdiAT3dlIA+scOZmWo1NOSV8DVsd66DZvxAqJ25cCaeQlb2qrZs9tdymBaFoXXcklEveB1gkT33bxTcPnlNG50JMuYSpIdpayOY8KQetap1JHmawGAVM23CJxxApaSUkZjZZAfR6verjSOzqGNayRj83H+Cah8vZm9OtWiqVq7Q6/WoOnaFHRNmIryZ7SY2yITvc7fcSpB9N0zhV33y7wFQJAclk0SoqoZzEbO/wUAHk+YLhkHg9kIe0Ymd03HzX1RMq7OJBI7S0ERbGeycOY14hP4iX8HdJ88RTK+QdPSoV6QjJyvw9k9sdQ4KJ6X4tIyvyxdwd0LeCkVRX3qwlZVxfh5x5doiErf0OHKizo03iDMkzgyG6WTu0DQdpnWdoZLXRKp0PyqINVttjqFle/59CQAZG0DYFFAxX2s/xzvZ5jffxU3dhTui5KR9fAeGm51HilQ5evNommKQaW1LROTETQlHTkbw9FoB9EcXX5Jx9rw+5b4BA7yiOTq/1wl8GEpKcVnBSnIWSzkJRp0oQwJ3l3QZH0KZnQahJZfCmvk7n4/AIAxXKDReEMK06bX+jEDEy4VwmA2onRHKAAwfyK9WoOG36RC/WkylJOJ5qp0RygMZiOO3HdB07Up8H0zBS0GCbnZTs9KlIxbszUpGJTdl2hYStLYuIWnj8Idi3C+XXmBRMyjax4ALMUlEnrs2Y9e8PxQ6KvBbETOYkFbqVdrkP05uR7v1QW3LPXxXUhL1O5dyPrnTCNt13Xk2mw6wMTyXDkDpXFnZAxHa//ujbDUVUCv1qC6YS3cmKpF+d5Art61zq41aiTVn5C+lY/XSs4NMX/iPeNIq3w8GcsHr5ZL6tH+196f7lQLpFdrkPBIEy3RVPoIAlvxmUx9NQGg82ypps4eK/DX41wl3s07hevhdVm0Rkqv4ycJLGKjWLvccKvge+V43gDAlTGhbH/S51RbenWGDtlLiKVFxZgYnO1kZ+vD/ZEfpePYiM9pZ+OQ+RxZ7+oFZK72F5L1vbtdM45P8Rl8dYaw513q1oXVbkPSzzsBAO92HQaD2YiuCVOZRQX1ix7R4DZrt+XSZASfrAWD2Yjitwk9U9cNjNd6R0l03qau91i79N3hOG5ec/g9JB5P69VrjD7VXtu1HSXjrlCpWN11Xr+g+Akr91xMN67rUNgtFslYum0R5s1gNsJ31FmYd7ZDXLtuAEi+MTGt+oWCzoH6dDprj362V5P3SekbOlgvkVydygBfpM0nGrfyvYGIOVMNn1kpuP1UDOwO8RICZwia6CbrBZ+6s53IrwpFnTqo9njIotHmD1rJWaDI+HfhD2nEZMiQIUOGDBkyZMiQ8S+EHDXxT8N//UMsKysLFy9exN27d/H000//GTzJkCFDhgwZMmTIkCFDxj8af8g0EQBOnTqFTp06oX379njiiScwfvx49uzo0aOoX78+du/e/Wfw+K9A6rOrYe/xyOzpkCdTkZfuCMUAjwh4fJyMn9YRR3xlEAmCYjAbYSkuge0scWamIbHpM71ag20h7qgaEMXM/ahDvsFsRMmbOkw15XF8GMxGKIP88VPoLqbeFz+zVz+s0SSRlgGAB/0j0blFMV798QfYuoWjYp8QuKXHuUqOx3tDSQjvn18kpjGz8owczaD4NObk7TNLMK2Z59cJAHBpIjEXEIfYBYC+/ccCIGZpYt4oXBo25MxJ/NPrOjVh+S0QmzVcttxl5inUdGnmCzNgyS9k4dZ/XkZCC1suX2H16n2fhiZfEWf15ae7MtoGsxHX44npSf4AwRRuX2hjrv1ma1KYqUbIcSIUEZvx1NuVJulT29XxvCnIpTjBhCQ8lIVgF5e5/DIxPxEnZqWmoxSBEzMBheCYrFdrkP1VJxS8Jw2OIS5j3tmOtd+ha7bEvFQZGgyPj5KJyeyjVAIA8OP9xoxep/eImVNzoyBKy++7moV8Vi/gAx08VdAdALhw8TRIjaOJUdVitWSN0Ot+gcSkcdWjENgv+PAO75oPE6AMDSb7Nr+Qe+Z1whUAkHTxZ+5+wFOnmQN768+SWXt5T6zAm7lnWR8QEwaD2YgP/Pjw0S/5aBHwQioCN5Ax2d2uGXtmLbsJAGiVQswhG/TNk5jp0CS2FOuCicmy97PEsd127x5uJwnO7Plbw/DAm4S59xhGUjR86B/GntMk1Spfb0Y3rutQ1o/1Rcdwe4EXeo8Yz5KlGsxG3LraEOYYIYG5++JHCabXpHDz0e3sfc6ki5p6Bje6xiWL1qs18Ai5yvoKAHlPCs7yiR6pyF2glcy14/5RJJ+B+VFiYUczOJqaoPukKRIayYuWc2tQr9Yg5dPlsHbvhDr70tF8ZQqa9M/m6rVaIuxFMV/0unRHKD59VwhWIAblb2bORRTO03J8AkC/fqPRZD05e1z75kmei/ehZ2oD7tykz52F+weIWbMiIhQxZ6oR120YK18WW87CxTdbRebRtFIwtVUcJ/269pwOhzu4Ys64iWh1ohL2HqXI+0TL0ji4L07GmiBf5G8hZ63YHK531kBMuFSIqLfi2R6jaLHcuZmmwWxEqyXJyBtOglbR/dcy8Iakb+L1JB4z22PS8POO110TprI6erUGrVKI60G/AB0rS+e89HUd9uWlsoBGAFC8hLy/6n2fhpb7SHCORnE5UAb5I2BTPDcXlxLaQq/WwPv7m9w6vjc0Gt8HGqBXa6DqVcTNj5hnx3ntPXICAjZJzUnbvJ+MfsGP4Qv1o3Q4KWeQ/xFZbzQIl91iYSly9GoN8vqskewzg9kI22PhsOYQk1MalEjMDx03Wl499AKst4hJpteT57jyK6d8KeG1pj6qUxuyMudnJsI/vS4U4aG40sudtdWkfzY2HnoMOOQJ5QPhPVPdK0LSDgCELknA/nt12HVVrzD4bCSfaaoZ6gYSnfzQKY2/HeSoiX8a/tAPsYsXL6J79+7IycnBCy+8gH79+nHPu3btimbNmuHbb51HD5IhQ4YMGTJkyJAhQ4aMfzP+0A+x2bNnw2azIT09HQsXLkRkJO8wrlAooNVqkZ6eXgMFGY4YGtRBkHT2LGFSGnF42bheIwAAVlMuAEGSc+1ZnURiRYNzAJCEWX7QnyQi9vwwGSuD/DjJkF6tQdKR7wAAWbFfA+AlR58VCMlAHdtcUJCK+TdIeOqiPkpkRz7ApF1TURBXF279clm5wx1cYTAb0T92MAxmI9yMVwAAqsNEI/GBn0YgqlBwwRUoXDqGSCRa/aP6c7zZT5MgFEHLiSNt5Kx45H0iaGRsd+7gyguEtl3bEbmRVdCrNdhaLEieKW1lE8GxXAxa9srzghTz1MPmKNpO5lORTJJN1tvFB6mIOv0kVD5eEmmqMoQ46Ac8fZqTOp96ZxnC30/gJO9inhwlhFQi2LlpETdGjrg4eRmrX/q6DtbHhdQBdPxoaGBarvVCPtBLzJlq9KxnZdfVvSJQ3bUDIIqaajAbEfjMKfi8kyJZN2Koh15gn+88JpVAWzMvCf0tIevlQb9IDHK9B71ag2sJOrRYRiTdjTYRSXado+547LlprJ74f+zz03BddwsAWCAaADjzaiL7rFdrUPxte+Ls/qTFqaQ75+tw7Ms+DgCY4tUFJW/xqQMAIt1OOvgN0T6IkiMDQFF0JZTtgpw6+QOAi6sgzderSYLjH25pcH/wo7DMqSLtmBNkjxM0Jcp2QUwzBQBXtUKKCJo8mPH1fEc86B+JrcUkFYX5NdKvvRn7WRlxmogNUeug/OkU9GoNCr4JYzwp3dxgMBvx0E2F/I+0sOQXYkkhGS8q9QZIoIy6e9LgcszIgn3o1RrkD+BDo9PPJW/pEP5+Ars+NpwEEbmrJesh6SJJhJ4bWcWSRdP5cwyWIh57vVoD/1fJOhInWqVaFwqXhg3hceg2dpcKQSz0ag1yFsXg2BcrMPd6OxKq/jyfhqP7lCncNa334+a13P2SN3VOyznbzx7DMpH9wJ17trtUeAfr1Rp8EdAW3u+mMDqm5UTraDtDAlBUDo/mytM+zb3ejrW/xkuaIFmv1iBoehrHW/5HgkbRnpGJ1I61YM0m2rbQFGKtMN6rCwrn6hg/QVMJvw8O+ODZbBMJHPEooEx+AnA5lrw7/F5LwcUuX7O2KodHw3f0GdweGwNFyhmoWrsDIKkB1gV7I23+MhRFV0r2v0tYW5ZcXuXrzfrS7HgTyRg3iiNBG+jeoX0Vl6OfXX45zYJ7iGEwG1mgpvql92FaFoW+/cfi6gwdrmoriCbo3j2JhsgScUdCq/WQLKK11rSD5fIVmF8ha8VqykXO2GW8piftHG5O0DKLDHr/sXeFdAG2buFsfsR1XerXl2gM77eszfaHeDwB8l4Vl/d9g5QTB+GiKXIMZiPev9EWPcZP5ug89tw05E0T3ms0KJHBbMTSW22g9yRz4OLqys7AOkfdJfzQ/9R6RgzK48OD3hiRdYWlIjHH3GHtRs6Kx/n3w7B/7ya0WM6/uwJeSgV6lnDJp2v9mCE5g5XNmiJzRiIWBQhpIersTUetH8n7y+WYEQ8O+LA2T+hqQ8a/C3/oh9iRI0cwbNgwBAcH11jGy8sLZrO5xucyZMiQIUOGDBkyZMj43wINX/9X/P3T8Yd+iN2+fRutW7f+1TIPHz6E5VHyXxm/DXq1BrOvh3L3dC9NR/G37QGQ0LpiaYtpDfF9Oj0rUSK929JW7VRrZTAbUWdvOnftTLoqlvSFvy+EVX3Jh0g5/Q5MktR7M3YYjobVAyD4WzQOvAm/1wUJLGKIlDwurCfzk6HJhR15vW/whaH0NM69mMjdt8dqYDuThQ0VzWEwG2HtTqRde9P2SjRMVBoIkLD0DR0ihrcZkg9l40a42a4+vE4Qaav+7ZcldAqnh7DP4rEb1YZIc90/T2a+Mj/faQuvJ88xDaLBbMTtsTEoflvQmt281QCWgiKJNNWaRfxClM2a4vbYGK5Nx3DqF+cFMT47fCbMkXjeT04Q/HMcn9G6/QJjoVdrcP75RPbsvfx0KAN8YTCT0MDFbzv3mQKA1I61kF99l0m2D29Yg9s+glSvbLJW0k//b6Y7lSRXDRT8TEpfJ+Nl6RmBB/0iOd7p+lxQkMolx6VjRHH5+xDsDtyPX74UkpSL+RdLM2nIYjE/tGybJ86j08mRyOvFayxoGarBpDxmPpcIy4+8xpPS3bdvC7b6Hpa0QUNnOxvjfdnHuXnzH3sa5yNs+HnZStgeC0flcBJq+66tCrmfxuDZbCFpMeXBYDaiX+YtWC+YOH84Ma6ubgzTCsHCwXN+Mo6sWoVRbXRIe1AN9SfJTjUy9HrMD8+ye5ceE0JkWysqoFdrUH/nCfi+kYLs9RGY4R0r6acY1MeMJrTWqzUwrRO0EZS/028nomv8VChUKibR9x9D5iHsU2Ff0NQdyp/U3Fi6dBQk1Xq1hoXxp9c00arBbITv6DOs7pUXdLDduQN7RibqKGqx8gazEQEvppLzvMUFGMxGHLsp+MjauoXjyCrB11OMQdl9uWvPD5NZez3OVdao2abtbgtx5+5TTYJpeRTssRooA/1Y+TdzzyJ/0EpWtse5ShxbsgKO0Ks1SO5Ym31+qqA7tpXwyaNp4nUx9oz+FL3GTpTcN5iNyNQKlh7es8maujpD0P7d3K/G0sAgdl04T4uc7utx7sVE9M4aCAB4qqA7W6vvfrwWBrMRjTaRkPWWy1ckfaD/LT0iGB+2sxeRdO4wACDwW+KjbVoXgbJYEsKf+nQCwK2niTVFTXun9HXCv8rPB7tL0xH4PB8an7ZfPv4uGbNPyhAUnwb7p7dhfFN4xxnMRty1VaFiDDn/7bEa1K/7EL4/CFpUmj5Cr9bAZiRWBOpP+VQz2V91Yp9vj41B+geC9QO9nxEufAV0OXpa0qfltzywL4fQLZsiJFtf+9lnEloGsxGKzu25+o7rgmoqu8ZPBRQkXcMvYXVR3KMWS0EAgCQitwvnfMXoGBTOJeO7u10zwGZFXOjjiEkuZ9YmNrtCwo/jfnGmVf8pdBe2hbgjaAp5j7ycQyxBfA2T0HRdCn5etpLR8d03mTufHd+nM3MuSs/1spuSe46f6/QpYHzvNPH+1jL++fhDURNbt26NrKysXy1z9uxZ+Pj4/BHyMmTIkCFDhgwZMmTI+DvCriB/f0U7/3D8IY2YXq/Hvn37kJaW5vT5gQMH8PPPP6N///7/FXP/JlApyLEXebvyhltTcUG3kUlPPi4LhEtYWxjMRgRNOomXc4jUmEYatOs6IjC9Dn4NplW8T5+yVUtG//ZTMRKJ/H13O2yPhXPSpsDxUltoSykxRc1dIGhA7p5txknkqS+L9UYZo0UjnPUaM5HR3FOagZ877ESHE2Mk9umK46TMOLcb0Ks1KJxqY7T0ag2uPK+D7/7JXB36v8WyFGQvJdHMbo3Torr7ZVhv3cbJ95ZhVZvj0Ks1LHIhRcSceGTOSGRtGMxGXJ8u+Jp1fpdEj6ra3xKVw6NhDBfG5CUfMhapC5ajzfvJLNFls/1SCbJ4PJPOHUbqguXcmIvLKFu0QOCME+g9YjwAIg11pmGyn86UaJIAoN7RVqRgVAfYKivZM1N1JVzq1sU7vpHYeXQbK1/nltB2vwAdXszhBTG+tRrg4hQyRr4/TEGzNSnYU0okx81WCwktKXJHCloGg9nI6N2fXs58NDw+JpJY1aEMpvVifTxEkua+6hODW+P46HYF72lRMYYkzG09JIurp1drcM1aKZFqAoB5J/GDuftkNOzajmzdqlMbYn3RMUzwT3Uq2XQcd3pd+2VXydoVI3tDJ35vPMLDvpHsXtEcwX/GsT1ax+WX03D9jmj2GrjURXMjsDQwCO0zXJCzMZyjL460GXOmmuPHpW5dWA43B1R21o64bVeFNLGqY4RTsRag+2RBgu9Yr0myoGH5f+xdd1xTV/9+koCIiog4A7JBEcUgMhK1arXGUbe1tVbrVrBarV2Otq7aYacD96iz2lpHKxpbV6uAIBq3hD2MExEVASHJ74/DOfeeJFhfX9/++va9z+fDh9x7z/iec889N/mO5wsAiuYB6B3RCx3PlXEWOUS2RrPBF1BSZaUKGiVYI3RGPSztyXz/vnwVLFYeGFqlCk2/Ihal9KVRCHeqgZtvkDhI8Xqg8VEUrsPu2r2/becRJrrQL2OhOKJkzI3iuRKXF38uee4WOyc/dgYtl8fa9KEz6vGo622b+aJtHG5dGz7JzrCGeCxiUE8KnVGPoInJkJ3QM4shAHziz8d+vueeDq1ShcwtwgbG9puQ5uz4luYuhngK+x8AxkgqxmTv9lAcOW1X3k7jx7O2HXy9UfS6mjEEAoQh1NxBGM+VscvZsyXvmg8A2OxzFC4Gsp++sWMsNw86ox4yJ/IepHG3ADAqLZfFIovlAYBvmp4CIKyxB0OiYbqYVmXFUqPeJt4KaA2Pz8haq8zKQV+PCG493BktzBeNg2XxuKKYcIpBntH47pMvAQAFXWqhYd80BE0gniw6ox4XorcIz3/V9wFxgmwACHz9NCvjuiXJpg8AKHpdDUXzANauzqhnTJYAsKtlQ4zIfY60v1p4L/bZ/DbXjqKBO3l/vMF/9zB8qoJDM08Wq0hZgp33JEN3VbDAJQ77Ahv6a7m65hJHJn/dbUm4Mi4OzdfHMFlNRUX4qKEQU5xxswE0b01kx2IPBfE568/W89K9VgW0ShWytWttrgeNOWVTV6tUMbbPxQEtAAA337CNEc6dK3jEyBxrsM8Ofj5cm9crH0DC/xae6ofYrFmz4OLigueffx4zZ87EpUvkYfjhhx8wbdo09OnTBw0bNsT06dOfqbASJEiQIEGCBAkSJEj4f4REX//MILNYLE81zFOnTmHIkCHIyckRGpPJYLFY4OPjg507dyIsLKz6BiQAAO7duwdXV1d4f7wAlkaOjDUKgI2GVVHPleXJsNaS2zsGgOZrY5A2ZjnXDr0evCIWXvNsGQIfaduhhu4UJ2fWZ2o+1ssK4vMyBwccyDvFjsv6RKLmzzxroFapQvZCNQwjl8N373gETUy225b2wj3oWtVF0etquH2XaLeM+Fhn1CMs5RV80eoHTP9mAur0vs7y4gBA4Rg1CiMrkd1nNTcnN6ZooNTdxKDdx23iLKytFl1Gj0OtKzdQmZPHXXfw9ca+E3vQffDrOPjjdzbyfXQrBHMbXvzT+bN3TM9FzIpB/fWJMKyK4NZK5fPhKH+3iBvrk8D6XtvT0lf3n5YR1xNf65XWi2NhBIC43OPwdxTyEBlWRyBoXPXsqjqjHi3WxMD7Q3Lv5aqW2B+/1abvThPGszUGADcma5iGPePraAzunITPGhPZZY41WD482sbcrFR85CfEjgBA7w79UZmVA51Rj14hXWAqKkLhODXLeSSWIe9DDS5PJLGankl1UBBtX6tp7z63f3MCrnWQ2cSU2FsnhnXtkN1jTbVrJXuhGr4zq39OxeXF/UzLuMxYvfJ/bIVmgy9Ue6/t9evQpDEqr9+w25+4vN1xRYdC99NG7prOSNjR9rZ05+rdmKKB010L6m1MfOza7K3pi30Je236E8tsXY+DXAGYTaStiF7M2p/xdTQCpiUxy1jTL6sY/ba1ge9QwpCqqOeK+EvHHjt3bifqo6j9Hbvz5HaiPkJdrmLdeQ38hwlWA7Gcirp1YbonMDF+lZOI5bc6Iz2i3O6zWd1ayPtQg74DEqAPs1/u3n5/FOobIXBpLvalxMP3wFhk91hjM6bq5jLrczX83rV9Xqrb3wAgeFUsEsZ8gQ7J4+A56OKfjqFayGSAxfLY56k62enn2+PVSJ2znKs7Ki2X5dO7OUmDM7Pi8MKQkZAfJ/04NG1iE6MGEEt3jQMp0Bn16PjGBNT66aTdPikevBSFE9+utGuFB4Co92LgnnidYx2l5Xr0fQ2WUxcAEO+J+LO/Pva943SsCYoXeeGaRgHfmWSvVQT5M4bmJ91PHpofYYBnJK6/qUGTbxPslv+z9gBgesZFfBkQYvda9qdqxsRI2wL491XzU45Ia1dhU9fBuxkqc/Or7deenLRta7lz56kZA6m4DAAUD4uG65YkrM47jnFeHWzasy5PcTNWg/rLjuEo9qC4uBh1q/Ig/p1Av7P6zlloNzb0WcNcVobsOTP/tvPxLPBUMWIA0K5dOxgMBuzbtw+JiYm4c+cOXF1dERUVhX79+sHR0fFZyilBggQJEiRIkCBBgoT/Z/xVjIb/C6yJT/1DDAAcHBzQr18/9OvX71nJI0GCBAkSJEiQIEGCBAn/eDxVjJiEZw/fWSnIfnE1SyoJ8IH/OqMeprvFNu4JOqMepi5t8aKhJzuXM1/N6vp8kMjasobXvAS4/NEA8to8qUAN3Snkf6Bhga5lfSLh3voWa6fsxUgbGZqvjWHlLZWVnNw1f06GzqiHYXkkd566QFC3xPGGLBjWtoNWqWJED7pWxBS9ed4XXJ/ioF0KRQhJJt2o3xUsKegG5bY0lO1szAXslrvLEDRBIH6g5xsvTkBFIxfmlqgz6jHsSgEAoMIiJCvWKlW4E+yIypw8G5eER2vM8N8+kSVxtr5Xj3NLtIZ1ucwthHSh/vpEmDuGcW6JAEmGfTz0J5t2xKDU1WIUT7rPCETEfVsHMk8xRjA6ZXEZ8RyIj1smvIb45vFsfIp6rgCAWO8OXLns3kKiXp9kZwy4dIvdLwcPJbRKFUs6DQD747dCq1QhWj8YABgZhdgtEYBABx0disCtJdCHAd/fdyPr8JswJnPBzhD0vVSIj/zCbQK7qVsiAJiKilAwQwP31Yko2BkCrVKFXl1fYmW95glkKdQtkdZ9OIAkyb09QY2ur42xcU+p88NJ5pZIz/XW9GVt3IzV4Op75HkMGi24kWZ/H8rdI5mTE3xnJuLhwCjBZdDHS5iUyNZQ1K2LoA0xrF77cwMBAB8sFGjGa+lcuHa1ShXOPbIlYxCvUeqWaD1mCp1Rj+CVsfbdkZLOsfVDE65rlSpMqpdv00/jxQmcW+KK3OM2azVkaSz2Jexlx5R2O3Or0I4i0I+tw7anXsaUDCHRLQDAbGIJqalb4rW3NGgs3CbmlggAvkPPIn1jW2R8Ew1T8T1OpharBWKOVqnklUvdEsXJoimK2t/BsVBnZHRZz+rpjHoceOiEB0MICQ11SyztT/bit3zUOHWrGetTq1QhQm/i3MZoWTG85iVw5EIAIK9Vi32u2zMTvjMScWU6WUfULbbjJJIgnZIUiMdL6b8BwO9d4f1Dy5Qc8GOfxYnKaTmvOQl4pZkGTeJqIme+GhZ1myfaNz/LPslfs1hwc08Lbm+Sh7awqWu9fsSfU+csR9BG/l1D3RIBoNEy8tzLj5O94/o0DQJ/ERLR33uVpC3Jma9G3jCBTEbsllid6yRNekzRwzeKm8d6mxIR//sumzk596gMllMX2H5munUL1hh0+SZ3XN7pOmr+koxKFzM7lzm/ts0cPxwYhavva7i1JJZ7gCc5L3ZLfPFikU3/9twtr08VCC7e3ESIfqzTcABCgujMLWEsKbx1u2ntKmyu5X+gwa3OnjayiNunSaGzPhOo+qtzoaXu8lqlCj2u8MR0rlvIRjHOqwPezSREbDQdi1hO63at06/8rSHFiD0zPJVFbN68eU9UTiaT4YMPPniaLiRIkCBBggQJEiRIkCDhH4unIuuQy6s3pMlkhPPfYrFAJpPBZDJVW1aCEPjYGf1Q09efEUAAJJHjwR82ABAC1fXvx6FXy06MtIOCESS0fh6mwjs2AcgKNzfEXzwiWG96RODIOp6wQmfUo+vwMXA4lGqXVMCeZmhE7nNIOB6CjGHL0aPfcJQ0q4U/lpIA40e/euNIyB5olSqMSsvF3C1D4TUvAfFXT0Mhk2Png7pYFeSHRz0iAIvFhjTCWltIzwWnOuByuG2y8McFADt4KJlm2165629qcPa9OG4utEoVFAG+TOvYacJ4hM05jRPLIlB/XSLico8j1rsDbk1Uo+GKROR9pIHXXKLRqujeDoc32Aa1P6m8TG4rEgTD6gh47ZGh5i/EAvRwYBRKGsnhfrEM8j/OsDYfDohCrV0nq2uW9c/Jd8gT6Frw2PJBv4+A4TmeWMEa5g4q/LpjAzum9+75EWPg+BuxdMrCQ2BJJdT6EbNjUH+dLTX0k8yPvWBq8XFFt3A4/paKGZnn8Im/kNz67nA1Tn5GgvA35B3HSK8O0Bn16NX6ecSfP2x3rVsH9OfMVyNtDGnjZqwGZ2bbWT8hzRH/63ZS5g0Nzsy0LSPGgwN+cPqqPhwPCs9CyaAoHF+y0m498WdLexVL7fAk85czX80s5gCQ87EaPrMSkb6xLQJHCLTjj2vHom4Dxdl0aFOMjBq/8jcvOHTL4+r31vRFZU4evspJZEnhrcfg8kcD3O94mwv6T18WhcBJJ21k0Jx9hJMvBcNkyMTV9zXw+DSBlSntF8mSvFrXq3w+3Ia+3Brie+17YCyzQtLzBTtDGImE3TmqIh+hx7Oy9PjYT8WIK+zBuKslozUXt5e9UI1+PZKwqMkZ9GrxHDLfDYHPbFuiksfhVowaDZcncu0C5DmVH9ezdaNo3AhZsQHw3v+AkacAwMZ7DbClBW9JMKyIRNDEZCgCfGHKyMbeqylcUmtxv2JCHudjjdHOLRfFlc4415Z89bAmt7Bo2qDlkou4HF4JuaolS1isM+phqCjBgBXvwPMTW5Ipe3g4MAqFLRVwv2hCncximM9dQcEMDS5OjuPeL2Efx+LMrDiuLUoUZX1PdEY9OkyZgNo/2u6vmV9Ew//tJCgaN4Lpxk0b+eQuLjDfv4/7L0fDZbtgXhUTYwDAkMvX8eXmgUiO+QqDPKsSO6vbwFJDDvmxM9XuAdXNyZ+do5/HG7Iwe/Nr8JqXwKywU08PQY0kFzT9isz5lIwrjKbduj02d0oVcne0xrLwrfiqa2/sS9iL8NQhaNDHYFOvOuiMevToMwyW1It2rxtWRjBKf/EY6P9be5ujYd809g6oTl5xnevTNDj7TpzdZ0t8XLQvEMlhP1R7nbYduDEGflUWPLrf0mfHul63C/fxWysX/JB2Gm5BWX9bcgr6ndXvg4VQ/AVkHaayMmTNl8g6bHDkyBG75+/evYuUlBQsXrwYvXv3xsSJE+2WkyBBggQJEiRIkCBBgoT/ZTw1ff3jcP78eURGRuL777+XiDz+BFS70LXFdMjScp+qDXnNmlxCTcURpQ1tuBhUWwfYUlXbA6WOt6jb4E5ILZyaR2J2nh85FmYHGZziU5DxVTQiogwoan8HpTpfOGsJpW7ehxr47L3LtJqhp2U419aCYVcKOC2rzqjHirse2NWyYbVyD7l8HTuCm3Car16hXRF/7hAr88bVKCz1OAmtUoXavzfETwGEtpdaF7VKFcoP+sCpe47dPnRGPTbca4RtLZTcuep8urVKFfZeTcHAdn2YVldn1KP117FotuYyCl9sga5vncCxGwGoPdcFssSzTFvW/s0JqPMD0apmfBONgKlJXNsUrb+JhWOHQjhvdkOdHaQMnb/ceWqW7FR22AOW56+i76VCm/iax93fyq7hcDhENIbUuiCWYcHtFpjd4ApXP31DOLK6k4SXHSdNQK1dJyFv1QLmC3yszfXdwXB1LmPrwRpimuPyXhFwik+BLCwEhmlOCBxBEpJ2mDyBJSzWGfUI2DYR/tOTuHZ0Rj1+LwM+9lPZnBdrN+1Z0K5VPsBIEcWwvboB2ybC7YIMKR/bpoK4PV6NBqsEi0P0uxOR9PkKViZ3R2t4DzmP0NMyLGpy5omsfLSMtSUvfUkUGiXJkLRoBVvLR1vthlapYmUdjzaFg8yM0k437GppqfwOzTyx7+Qv7LoipDlMF9OYFZZ7zqqs8PQctSL+GXRGPdp8Hosm3yTg+lQNmnyTwKidq4PCzQ2mItu4EjE1/+6SOuhT6x4UMrnd+YxJz8DMjSPQbD5ZW/mzNGj2cUK18Th07Naya5UqRoNub2y0HUq3/bi9QtzvtekaLsZM3J64DWopE59bm3ccY6osuFqlCnIXF6y7uB9NHUhaiOLXouG62XYvofXpfViYnYxJs6fAdUsSsraq4Peq/rFjpLj6Uwg8BtpaKR5npbE+5+DrDYuDgksw/aRWPp1Rj84X+nN7uLx2bZaY/kmshABQMFMDz4UJyNwSxtIEiC1V1NPBnvx0DgFw9XVGPdRvT0S9S/dg1l+y+/yJZbsxWQP9DJElrsor4Um9Af5snsTXFQ0bwuzViLMwGd/RQLmIjKO6lAqG1RFQFCvg/7btM2vq3BaKo6ehOfsICW1qcPTw9u5nWZ9IXI9SwGd2YrWW2urGcPvnINy55oqg8Sl2aeiv7w5Gk/6XWb3nYsbjkYucPQuysBAc2LeFSzUgxr1Xo1F3qzDGW3ubo+n4u3bTcvwr3hoBWyfC/+0k9n3FdLuw2vKRZ17CbwHb/zssYrP/QovYgn+2Rew/QtbRunVr9OvXDwsXLvxPNC9BggQJEiRIkCBBggQJ/9X4j7Emenl54cKFC/+p5v9xMF3JwM03NNw5sQbb3uf52SQ55P4sXlNl6mLkGKRUQk5Q6Ix6Zg2zqNug2WByj6y1duL+aCJlWeJZtBxDmP+0ShWMHRzhFJ+Cm7EayB/JcHEX8Rt3GV3O6nrNS0ClqxMAosmtoyAJR0fUvc36cT3uDgDMGiZzcMCQy4J16fruYMhr12bWsB79hjOZTbcLoVWqEPVeDHp1G4KlHsK4S567xcZFrWEAmCZVPEYKrVLFrGE6o57T6imstDH0fF+PCFReu470ZVHs/PlpcTAVFeHkZ8uRGiZHnR5ZOLjzO3ZdqyRseUxrNjWJk2fZ3Wbss/LzBDTsm4Zln31L5AhpzubP+8NEaJUqFI5TI+e4FxyaeWJvS3dOTgdfb3K/3tVw95eym13tVIOVpdYwKueJMjOS7vhy60Nn1DNrmFapYrFo1zvXBwCMSBM0lU36X2bWMNlhD5t5P/teHDvnFE/Ws+XMRWR1W8fKUGuYom5dzL3VEhlDV7BreR9qMC3jMvx+mIiP/VQ2zwmVW6y97NX6edKee320WBPDLDviug+GRMN373gMuETWUMbQFSjrW2xXC5o6Zzkyt4ShtD9hBXXdnMTWhs6ox5UOmwAAPx2L4urbe6atNa1ia1jGV9EInHwSSYuE8Tt1z2Hl500YBQD4JWg/SjsRLW7rr2Mhb0Wey+h3JqJXtyHQKlUwH2rGWcNytofCdDGNzH+V9Ucsh9gaBgAjvTqgsmu4zVyIkbujNbRKFSqrSPioBSFp0Ypq9zYA6HDMyJ2jLK21C2REq9z6eSwPDEDw76O4ejqjHt/nE6vXKo0aG0Z/y641+ziB3R9799B0MQ0lg3imR1auGmtYz55DUarzBQB0r1XB16kCZUyj1+icnZseh4ru7dg1easWqLAILIe7CpKRu6M1KvX1uHYN69phTNV6pWus1bEHGOnTCdr+w6Ez6pH0ubA+aDmxXPQ+zPSNZJbJGk4VNvch/8dWAAgbpxgXordwZcsP+nDyROhNXH/lPSNs1nVldi5kpULyaQcfL2iVJA66w+QJjBE0+xM1qyO2KBnvkL24cCy5LmvayCbmh0LM9qoz6qFwrw/nY43RbBGJ/aPWrBmZ55g1TGfU44E3EKE3sWPxHnj23Tj2fDfa68SVqbs1iVnDxP1qlSqoPonl5rKyCx/rTWN0rcdg/V7WGfVYW9yEyWAPtI3GiWSu4s/+im27V3PlqTUMIGyd9toKGpcC/7eTkPWZGp3OlQIA21MyXyHRLQltauBWjJpZqUyd29rde2v+nMxiHE9/ILDhWj83Fk0bAECL1cJ8NehjQA1X8t1i8e/boDPqkb2Q3P8luSfQpP9lbg0470lmz8KDIdFIm0DYoX/dscFmnDqjHnW38u/ghn3TsO+0Dq1S5dXOsbxNsM05Kjt77iyEN2FCgZpZw/I/0LB+advdho2GW+90u/1I+Gfj38oj9jicPHkSzs7O/6nmJUiQIEGCBAkSJEiQ8Ffjr6KW/x+gr3+qGLG8vDy75ysrK5Gfn4/Vq1dj27ZtGDJkCLZt2/ZvC/lPhpg10UHmyDRnGV9HI2CarU82ZSS7tjsY5yK32fXJn5uVigmLJ+PsuzxDGyBonhQtg2C6JDAYPeoRgZq/X4T54UPS1sARQNI5AEDBDA1cs8xMWzjg0i1MrHfVRrvffH0MAlZfZcyPYqbCxyF9WRRqFMrh/aHABmZRt4Es8SzHwHZ3uBr1NhHrnDLJBcbo+zZtWful33xDg0ZLE5gPO7NAbYlBxjA+3uf6VA0eRj5EeucNKLdUoK8Hr8l1P+GGwvZFNvNNP9MYLXtyAIQZK/7oTgBAb3Ufzse9cJwaH777HZYFBlXbvhjF8QFwn1SByuxc6Ix6vHM9DIuanOHGA4Ax0VnPT858NY6+vggDZrwN1y1JdmNkFA0bIv4sibEr7xkBp/0pMKxth6Axp7jxWUOrVNkwjlGI2aasY6vE82Xq0ha/bVnHtVndvIhZsQJTnJAeIVhknY81xrkcD2S9sK7adqxhrw/6X94mGN/9sgbDm7UHAMaUOT87BR/4RlTbnrjvP+uzOD4Arr0yAJkMuqtnqo2bofF1clVLll9NUc8V8ZeOPbY/nVGPgsoH8HSog77pPVDe6brdchTimCPrseTN0cBrDh/rJHNygqWcWDumX2uLC+Fm7vqTzn11ZXVGPU6UmTHPry07J69VC+aHD23qiO8fjWW0Pv+ka6LLqLE2zK7PnR+A+JBtqCOvyeYl/bu2yHph3RPFKY1Ky8VM3RBkDV7JYmQN69qxfF1imaZlXMbXAcFPtJ4AcGygU6+1wzdNTyHgyChmAbIHGocrHqN1P+mLozC68zEceqcDNx95H2rgNa/6PEiUpZG2qWjgXm28DO2bxtc8Th4AQHQoe1+JyxSOUcN9bSLktWohd5oKlybFYcO9RhhZV8ijZX3/H2nbceOioOyXYpT2j4TzbiEP5gebXsOlGGLlfy52PPK1QMsFBew9mP+BBs3mJ9isP+v99M+eAetryiQXrPf6A347J8DtvByNj96EyZAJnZHEHYktLY9rDwC7L7Rc/NXT6OXRlr2TKRZmJyPcqYbd58peP9bXWsbFotmCBNz+OQimXxtA/34cfHVjEDQqlZWhc2FdFwBarIlhubyqg/V8VicTjRek+LO1/DjIHBxgqaxkbd8ZpUb99bycMscauDq1HZxvWpjHUeE4NQrbmuA38QSOYs/fNiaKxYjN+gtjxD7+Z8eIPZVFzMfHh9HU24PFYkFgYCC++OKLastIkCBBggQJEiRIkCDhvwsyC/n7K/r5p+OpfoiNGDHC7g8xuVwONzc3REZGol+/fnCy8i2XIEGCBAkSJEiQIEGCBAn/Ifp6CU8Oa9dEMcTuCiaLGb082kJ22AMHWuxDm0WxMD93F+ejtrIy6rODULdnpt1+7LnkAYLJ/truYDQVUb/Sa/Rz0LHX4Tv0rI1pP2d7KNI6buTKtzg+HN5DhCD1oVeMGFn3pl0Xq4cDo/DH0pWcLNbjB0hAuMMn9aE4ctrmGkXJAT84f+yKnD41kf4a73b4YEg0o3637iPo9xHwfeWcDX0tvT7FGIG0dhWMbndEWj42NhfINMS07YqGDWG6dYvVpW4b1bls6Ix6+O4bh8nqQ9C1qsuu3Xs1GvV+0rO0BIY17RA0lk8sS10l/8zVhNah81GdLOI1ABDXUvPdYuxPP8G3H9kaSD6PuyPUqLeRuFVQ+n2FmxuMrwWj8RLBrSP9u7ZQOJrh9ypxS1pVrMR4V+MTuepRuXv6RcMcGgjd7k1269lzNbNOcEzpi+k8iOtlfBWNgLeSGIW+vE0wzGeFuSjaF1ite4+1rCFLYh+bcNbabZO6Nz0YEo0T36x4ontp7z62/joW56fFQdt/OJB8HvdejUbNOybUOJBS7f0v7ReJDnOSoO/emK1bCupSY1gRiX4Rp/FN01N/6iJlnayUXqN9i/Fu5nl0dTbZvUbhmVQHBdEP7MqvM+rR9bUxcDicyl1X1HNF4wNmGKPvw6JpA1nCWa5NB08PVBYQF+KSwVFwTcy3caHWGfXQvDURt/uVwtDpO9bfkiJv/BLixo2558W7LJm1GEUj1UheyO9D6d9GI/BNfo+ROdbAgdxkaJUqWzrzqn66D34djsYi3FrmxK3D7G1t4DtUGB9NXcK5RLvXh6nwDmvL2q3TGjqjHt2GjYbiyGm7a42W6dnjFVzrXB/694m8lPo96zM10oeTlBqGde1YQmwKuYsLivqGoO97R/Bi3bMIrVGTtW2dwN5e/53OleJYqDPu7fdn7zvrJOQMVXsVTTgtHgN1EwQEV32acPnOaDXqr0u0+/xaz1V1rsMURSPVcNvAu6YZ39Xg/NS4J2qbfgbsPyfia30vFeKXds0e66Zrr/4LL4+C/A/ismo+1AzyrsRt3rAqAkHjU1gKG+djjXE+1RcBbyVxbeqMegRtjIFDwH2YL7mwlCp0/qsb15Oct4b4vuVsD4XPy+ds7gN1UXc97o7iDoL7q7lTGH7dtl54NqoSaYv7pt9ptEqV3UTrvZ4bAFNGts3cilPnNE6si43evwMAcwfWnH2Ek4OaI/73XTbjpG7Hi3KSMM07/L/CNdF/5l/nmpi58J/tmvgfY02UIEGCBAkSJEiQIEGCBAn2If0Q+5tgl4FojaZlCBSs4XNjoDPqEXxiOHp5EA1mZgqh+W3ydQLT1CjcCW143Z6ZePSrN3cOACq6t4NWqcI718Pg/w6hO8+ueIBeL7zMyjTtfxmK5gFMy6NVqjDo8k2muTF0+o7RkuuMevbn8zIJkF54uzkAopVrsKMWN7ZvFw9m9cSWA51Rjz+WrrSrBcuZr4ZWqcK16Rpkfa6GU/ccu+QNAPBIS2igj4f+BPkfZ5D+2nIbTeKJbwhltiI4kOun+foYKOvfI/O31dZiplWqkNaOUFMveWcZZBGtMcyFBDLLHGtgUU4Sl8Q4/uyvrM9Wi2NRa9dJ3NrbHH4Hx8DcKcxG9vduqBA0LgVyGSE06DBlAnRGQqVLrWE6ox7ZvdZwcwgAd0fVt2mP9p33kYY7pvfUWuso/iw76sbKA8C+lHguSarOqMfOgiSm4bwdJhjTaTJqU1ERZw3Lma9G4OunuWSxqpq5rN9Bl2/iUQ+B5MLBuxksmjY2gevmsjIg+Ty0ShU+zOI13+IxtZ0fI4xHZA0DgPQRLtAqVVC/PdHW6tuQkEvcHks0yeazwnOY96EGbr3T2RyI523I5evo1YWs7y6jxkKrVMHzEyFxcHjqECajvBZ5LqxJTH6PWwWdUY86O5L+VEMu7tu6rHJRAhnP7k3QGfVI/GIFahxIYWXtte28JxmpYXIbaxgA1F+fCFm7VsjuuwqXwyu5+m4n6nNl6bWgicko7R/Jzl97S8OtPfFYPvdvzepSOmzr8RZEP+Dar+waDq1ShfwfW5FA+JZONuMz3S1mRD6yhLNcv53OlaKy4Cp0Rj2ytqpQ+8eTzBr2TU4CCmZqWHsu3yfBd+hZ9I56kZ2b7JYLcwd+D9s/qqON7AUzNEheKOxDmVvJ/+kv7LMpS61hiA5F4yUJbK7E97uyjiMqc/KYNSx3LpHT0Ok7JgdAUpeI4dC0CbOG0bba15RzdQBwqTnC58bgty3rcGOKBkll1VssB28/isaLE9g1l+2E/tvvvUTBSjL6FBQhzVkdnVEP8/37cN2ShGOhzpw1DABLJD7ekIU7vwTZ3bOOhRI25ro9MwlJB4Csbusgc3Ji81bar2oNVu1VfT0isLaYJyFpNj8B5g6kXdMlAz7LPgnzfbJuqDUMAB4O4NMaXH+TTzMjnp+Mr6NtromtYbRN5edkj+x24b5wPjrUphxNaSN+hsRrQ2fUY0KBmvU/qV4+s4ZZt3W0VM7VE68vag0DgF+Df2afg8aT/YMSSpR2usGsYeJxa5UqNFLdQLPBFwRrGMDm/8GQaNav9fq22YvtoO8lwarFrJjNA1AzqQ4nB0V6RDkyv4zGDr9DXB/yY2cQ9nEsDCvI+qiz7q6NTNQapjPqoRxwCZXPC2k6Bmd2gymDpGNpffJVKAL9AADZFQ+YNUxn1GOj9+/snvkPOwPD+nAktKnBrGE07QLF1wGEBv8dH9v187eF5S/8+4fjqWLE/Pz8nqozmUyGzEz7rnMSJEiQIEGCBAkSJEiQ8L+Cp7KImc1mlJeXIycnBzk5OcjPz0dpaSny8/PZufLyclgsFu7PbDb/eeP/w9AZ9fg6IBhapQrpy6LQYCXRLPrGCvTS+175giuvVapgKrzDNDE5uSQpslgLengDsaaca2th9caPmMzoyq++T7Rut9UNibXsEzU25B3HzuBGAIi2SX12EIa5FDItj7WGnWopAaD2j0JSZZ1Rj0ZxgtZUrPGytswY4gRNetoYEltxbnoc/N4l2rjQ5KHEOrStDa7tFmica+gEOnXaFo1zEGtUtUoVTJf5hIlpo5bDqXsOTJ1tYyastXPRToAl5Txrq11KKSZPnsKuyw57cPNCkyOXlDohcGQq5MfO2LSpD6vSqlfFmBxfvJKbK7Hs1nMWf3Qnsj5Tw9xBhSW5J7Ah7zgbr9fcBFY+9LQMDn4+AIDeHfoDAG5NVHNj1Bn1KG1sqdZaRo8HeRKNnYN3M5ZegSam1Rn1cPDx4tr1+YCPjWjzeSyjedcZ9dgZ3Ai3xhMNbtbnJCHoF1tXcuOmGnVZWAgAcBp9eZtgTs6GywU6fApzpzDojHomL7V8ijWxmV1J3IDHwIvceHVGPXzj0rj5KBksaMh3BDdB/JEfAYCjvKZlG/QxoGQQSeSc/R4/n1Rr33nMOFY++myFjfyKlkFQtAxCb3UfKBoIybof9yyJj9M3hLPy2d+H2lhQ0zeEo7ynYJUUJ1M/sHezXWtIcQ9eztx5atL+QjUKusqYBrzpVwncPFOELSSJWul6NF+4ggcvRRFLc3gIK5/5ZTRX3+EQobZ2/INYcFwKKm1kA4D0pVFMvhcu98GtvWQNifcpGrNI/6b6EArrm3tawLCGrOnsbW1QmV/AyTBn4zp+jq1iYADA/RJvQfSvsghbJ1vnkERiXWRhIdAqVegweQIAEkOY05vXmXp/xFNrW9/TlnGx0Bn1qLx23a6VobwXn2oh/gqJZ8EhT6R+RCwajVJKMK+n4DVhWNMOFnUbOHg3g1ap4mju82cLlhudUY+CGcQSmjtXY5MWg8ooLk9B1+qqID+ktN3BLELWuPZWVXL6Ksp6rVKFA9kn2Tw470mGzqhHw4R6rI5YXlpOflzo+z1f24TeWiVJWC9XtWTnm3zLzz1NmFw8jKScsbb8UmR8Fc3t7VqlCr+1coHchVjqSxsL8TZapQpdRo9Do6UJNs85s7JuCYP67YnIiSzlLExXfwphiajF5VvWuA+tkqQi0SpV6HqpLzcO2ka3YaMBAE7HmkDu4sKuKdzcMOASsZzTxM7iuq6xZtanzqhHzsdqTEonKXJofLb4PUY/73jgyo2PQl6rFhQtSTqXfSIrO+3PlJaB+wGmavdB/+lJXH8UjZYlQPaIkM0VdyDfacTeKtZ1Dm1ei5j0DOiMei4VjHLAJZjSswAAE707cDLQujf3EEs/peTv1Y14SLivEd6LzscaV2sJ/DuDsib+FX//dDzVD7Fz587Bw8MD0dHROHLkCMrKynDt2jWUlZXh8OHDiIqKgqenJ86dO4fs7GzuT4IECRIkSJAgQYIECRL+1/FUP8RmzZqFu3fv4ujRo+jUqRMUCgUAQKFQoHPnzjhy5Aju3LmDWbNmPVNh/8kYENSaOw6cJFiVaNxR9rY2CHKsDQC4O4L4hS/KIRo4w3oSO0GZ9WZknmMaLurnPz+b+HsHHBmF/EmCJvnCFJKA0m1DIvpeKoTh9eUY6dUB0zME60DdnpkI+n0EchYQS8qNybymMutT3ufZWgsuPhZrp5qvFWJ6gmKTWVlapsuosVDUIxqzpgMNaH3yVTT6sSY6eGSzMqU6X5v51CpVjGFR3L/OqOdkpdq7GjcfcGUDU5w4ba32wj20WvkGu64z6pGiUqDmz8m4t98fOqMeN3/w4jSTAJD5ZTSLoxP7oiuCA23mKPS0jOuzV6eB7DjrczUcmjax0f6lD18O+XE9Jnu3x0ivDrZzHtkai5qcQWVWDnRGPfYd3w2dUY/THwrMmbSO7wzb5JjWFjmKytx8JovjwVMwrCNxiJU5JNm4VqmCIsgfXidrQ+bgwCwSTb7htck7ChJxIXoLZI41oCiV4eYkjU3cSPyv25G9UI2Hn5Jk473CujOZzWcvo/I3L1b23tBobg4AIHs8OXY7Ud+u5rFhQj2b8YnvTfy5QyjYGcLmwtriC/BWMutrtXeS8lfGxbFrt/Y2R53jGQCAo2tXQ94mGM7HGiOpjSMnv86oh+mSAaZLBuxL/JklWgWAXp0HcWO2HhuNRQgcmcpk933lHNMy03OBI1PhtJ8wKypaBmHN/P7cMyguT0FjaWgZ7w8TsbekFnxnJiJw8kmmARe3M+xKATvXaClZB/uO72Zt1vnhJJ6LHY8DP29hfYm12gCJeVI0boQm3yZA5uSE3+NWQVG3ro0VIvCNk0w+edd8nG63nYylKqajOstvxlfRaNTvCoLGEis7ZSQUl5nn1xa589T4Pj8BPZuT+DBqAQSAyt+84LzHdi+rDtZWkgo3Yhmh6+b3uFUc0yIdq0XdhtXVnH3ErdlmCwQvBHuWbaf4FO48jYNDV+EeyRLPwpRGLAGhp2UIGnsKD7ydWSJ6n2RnVrbZggRu7/P8JAHlvSLgbBt6iIcDhWeFjpnGXQWOTIW+vByGtcQi2Whpgt35a/oVOZ/9qZpr585o8l68OYlY5K7P9OPWxtWfQmwFqkLBDD6uln6ennERZv0lVHQL58rn7mgNrVLF2PFctyRxezwAdB43DoogfwBAwFtJLBZSPKb9aX+g7MVIKMrM3BzW0ufZlKXo1WUwfJdbUHcr6bNXl8Fsn/YYeBEpKoXNWGgSeqf95HvAoZZ7uf5oP79tWQedUY/yTtexP+0Pds1UVISJ9QjbKLUsO3h6YIyBvIsrs3JYn1qlCj6zErEs0HbvuPoe/92hrrwMDwdGcbLojHpcH6XCpL1ERspsSEHnOHASsYLeHcF7eKRvbIvK58PZsWE1bwH23mdin8t7RUBRQiz8iOS/h9G++td+QPaS2rUha9eKuy6O41uRe5y71qgfiR9PXxKFz7JPwnTJYDMfpZ0IS2j64qj/PsuYFB/2TPBUP8R27dqFfv36oUaNGnav16xZE/369cNPP/30bwknQYIECRIkSJAgQYIECf9EPNUPscLCQlRUVDy2TEVFBQoLCx9bRgIPrVKFjG8EzarOqGcaPq1SBd+hZ5kmiOZvGvvRNABAtnYt11ZnZzOrN79jHxTM0OAD3wjojHrUTnaG95DzUJ0R+qU4dodosCzqNvgqrzunoWnZ9AZ8ZhM2KcqMpzPqMSavA/ze560p1lo8/8OjbOIYABJDJGbNs65bQ3cKprvFpE5BKpQDLqH2zpOI8xA0xM7ax7u8ii06Ue/HMFmZ1n3HRKapMqyIJJamiHJW/+HAKLxVPwte8xI4C9Gd0UQLl9hmJyJnxKDh8kSYLMRPPjCFsLllDF3BNH1apQqKBu6IvRqNrLk1Oc3pndFqLGpyBkUj1VCfJZYOU3oWq+f3biIqrwmxglR7G7Ik1ma8OQvUgiZeFL9i7Z+vaB6A6Hcn4sZkDbO2UUtncKoDi/MASD4Ze/NK5zFo9CkYVgpldEY9+u5OQsKeNjiQdwoN+6Zx16h8Z8qJhddS8QjeHyWg0TKyrqimW9G4EVn7MxPxaGNjopm9cZOTw6FbHpvHuttsLQf+w8hCL2p/B34/TcDNWJ7J75bmLtcep63U+aL7SyNxUb2FnaPMm+nLolg7xxevtGuRovFW9Dgu9zhKBkWhYd80FsfZ7qMYmM9exuXrjWF8R2PThpjNVDzvJkMmN2atUoUIPR8z8fOHi7g6AGGIG3qFsOuJLXnBK2NhumTAjLmENeyRth16hXVH5lB31sb9V8j+JAsjFsLi14T9allgEFsnNydpcPV9DXr6CTFeW1p4crKkbwhH74hemJuVyubdeXcynosZz8mbP1vD2qi8dh2mGzehM+pZTFD8FcJQdvU9DWThIdxzZa3tp88UvSaeU51RzzHCPQ7eHybilWYaGMcSDfqttjLWpkO3PDh4KG2sI2LQc4XjeOv8jMxzOLR5rV1LBUC07726vgSfZGcc3PkdO5/QpgYemMuqlVfcj7UMAFCZX8DJoVWqYO4Yxsqca2vB9Tc1cPlemB8amxS0kbD79mr9PLfXHl2zmlk+qcVQq1Sh1k8n0WZRLDu++lMInIqJ6ntSugHv+UYhu+ca1o9471mYzeeo830/kRtH/XVkb6f7iOLoaXQbNprNpzgGVDwH6UujWO6/VcVK9h7WKlXoXot813H8LZWr4z3kPH65mooe3iR+SXWGlA8/Y2Zz4LQvhT2nAImFLBxD7oWlvYrF1tX8JRk1dKfgf2gUK0sZJK3XMgCY0jIgP67HixeLoFWqcPlNnsWUlhfv0bT+6jzBaqNVqhD97kTuWHwP7VlTxdiXvA9D6pD3M43F/TMLsMdnfNzb1wHBGPnxHpt+Gy1LwOKAFjay2Hsu6m1MZLGL8lYtoNzjCIfDqaxM0LgUToYj64X15RSfgpy+Lmh98lXodm9C4Tg1bsba7sMAIKtTG/L7/HNG1zgAjB/2hs3zrjPqUTtPgfd8BYuX797xNvMSOIXsZ5RBW8L/Dp7qh5i/vz9+/PFHFBcX271eVFSEH3/88anZFSVIkCBBggQJEiRIkPA3hERf/8zwVD/EJk6cCKPRiMjISGzcuBE5OTkoLS1FTk4OvvvuO0RFReH69euYNGnSs5ZXggQJEiRIkCBBggQJEv7rIbNYLE/1e/PNN9/EkiVLIJPJbK5ZLBZMnjwZ33777b8t4D8d9+7dg6urKzqjHxxkjpxpP3eeGlfGElIFes58qBlLuNjlYj/UeCHXrjuAtfle7CajVaogO+wBy/NXHytbxuYwBLwmJHqs7BoO97k5uD3PF44HBaru6LMVjGRA7IJnui24pn6fnwA3RS1OJjHkNWvCXFZmMxadUY+ur43Boc1rbcZiPV57YwWAnj2Hwnz2sk2f9uoAQM+Ld7E/pB50Rj38fh0N+e0ayBi6gl1flJPEJV68/0o057LzSNuOozKvTjZrt6XqXDoMyyMRFJP82LpJZSa8uj8WgZNOouzFSNT8RXDhKRynhvtq3nW0cWJd3B7blKOWvj5NgyZfC24W1a2hkgN+qN0ji5WT166N/eknAACqT2KhnxH3p+4pT4L52SnMndbv19EIfP20TRnrORHjzig1Uj5ejuAVsfCal2BTN/S0DL+tU+Ou6hEjuQGIyxBNBi1zcIClstJuX9WtH4puF+5j+7fd2dxblynYGQLPQcRV6vZ4NVLnCM/6k7j40DZpHWuMMWRjbZDvn7aVva0NI6UACJ1yaacbXL2ikWqWmNYzqQ4Koh9w19O/a4vA10/j2u5gnIvc9kTzY33esCISQRPJunU97o4dfoeqfW4A4PYENZa9txQf+YVz81AwQ8PczOzBom4DWSIZb2n/SDjvFp6tnAVq+My2Iq2JbM1cfANTnKB0usvR4D8O1nLfGxqNQ4sWY4BnZLV1jO9qAPVdeL1VgsrsXMzIPIdP/EPtlr33ajRc00tgSanenelxawQQnnvx3JbqfPF7613QeoYDZhN6XryLg8/5wVR4BxnfRCNzyAoAwPMjx7J3gb29u7p9+vqbGkYD/6hHBEs8Dgj3RNG4EXND/bO1U914xfMf9V4M6m0i99b5WGPsDtRVOycrco/D17EOot+ZCNctSXg4IAq1dhHylMxFavi/kwiFe30uTYw18j7S4PIEYS+Myz2OkVOno9auk9AZ9QheFQuvOQnI+lQNvyoXy2V3m2HPuK6QnSBu4uIQgOpktb5W3isCR9esfuL943H3TGfUI2xhLBotTYC8VQuYL1xh18wdVPh1xwZolSoMvWLEyLo3q22LfqZjoveo/dSJHLFP+zcnoM4PAhlSdXKJ8X1+Al5ppoHcxQXm+/e5ex6wdSL837ZNV7KjIBFDPHmiF3OnMMiPneHaLhkchdo/nnzi/bi6cT9JfZmTEyzl5fgh7TTcgrJQXFyMuqJE638X0O+sge8uhMKp5p9X+DdhKi9D+uczn9l8GAwGbN68GQcPHkRmZibKysrg7++Pl156CVOnTkXt2rX/5TZffvll7NixAyEhIbhw4cK/XP+pEjoDwLfffotXXnkF69atw5kzZ1BcXAxXV1e0bdsWI0eOhEZjP/+HBAkSJEiQIEGCBAkSJPyVWLduHZYtW4a+ffti2LBhcHR0xJEjRzB79mzs2LEDSUlJcHZ+MkUbAPzyyy/48ccf/6U61ngq10QKtVqN1atX49SpU0hPT8epU6ewatUq6UfYvwGx1uTK2OXc8bW3NPg1+GcEHh0JrVKFGi/kAgAXEK8z6rlAY4r25wZy/Viev4rSqiSJNJBXZ9RDe+EeK0OtYbRth0OpuLy3ORwPnkL2tjYAgMytKiS1cWRlnoshQajx5w4BAB4cIHGCrzR7/Jowl5Wh+LVou1qjQ5vXosvFfgBIIkmtUsUSFOfOU7Ox0sTUVGYWdG7HGmYNrVLFkulOdcth5wJfPw3/6bxGLbRGTWQvFLRpCV8R7bDMoUqv8fYtZHwtUIqPyeuArK0qltgXADRvCQHSoclDoVWqoExyYTS8YmT3W8XksdawhX4ZS2SvqUDWgJUo1fkya5iiMUnI7b6aD2gHgBvqe8wa9mAIWT/UGibWHGqVKtwdLswxANTukcW1Zy4pgVapQtB3MXAord7ATutsyT9R7TXx53HfvMn6zXphHRQNG7J1Km8TzMkkthDS/zVKLOjZ61VcnhjHtU3/FjU5g0ZLEzhrWEX3dpCd0DOykHnpiSwpJ61vHTyeP4uQf7j80QA6ox6FY0nd31q5cNYwALi335+1Ra1hOqMeqXPIs06DuGnbtC1xG5QshJbTKlXI+DoaI9KElAJFI9UoeOQOnVEP/+3CWoNcAWuIrWGAQKe88HZzdo5awwBgrddx1rfOqEfG19Fo8S4he6jzvSu0ShXKe0Vw98Q60N7e+aCJycjYTAL+izsUYuHt5tVac3RGPRqsTMRHfoRSPKBqTwSAi5OF+20+1AzXRcnfdUY9s4blzlPD570rXPsuIt4ftiaTz6NkUBRy52qQHlGOmQ3S7K5XnVGP/B9b4ZscwRpH54Amra27LYlZw7K/D+X7qYLy8wTUdS5DZXYu0pdFVWsNUwT5o+7WJBzYs4mTRWfUY20VIYPOqEeb5KGMZt9mbACafJ2ArK0q7n45awklua6giqDiVTXSZgXB1LktAqYmIfjEcGiVKs4zwvoeaZUqDLtSwPX1anYX0ue3glXE6dBZLnG38+5kmDuoYHjb36Zd8VyLvUTE17VKFfwOjmF1FS2DoFWqUG9TIgpmknfE7kAdDpWSZ+GrnEQ2bxQTvTsQC+YAktaEWsMAwP8d8iyYCu/YrGedkaSSAcCsYXT/iPXuwKxhANC1dyoUR5SMPKrbq6Oxt6U7s8Y3XpKAshcj2Tg0Zx8BALK2knEr6rnarB2AkE+IIZaNpvCwV4/2Y31MySjMF65w+4f8uPAuGln3Jh6aH8HBQwlFSHPuPSVGw3Ol3L2rsyMJDj5e7FydH07a1KmuLQo3RS10u3CfWcNG5XVksvvvKEHoaRk7pv0O8SSEVvJatdB8PSGbsbaGAWCpSuztP+L/FAr3+kzWu8PVdt9PNJ0BhUNTkmjcUl4Oh6ZNbFIZ/W3xXxojNnjwYBQUFGDLli2YPHkyJk6ciO3bt2PWrFk4d+4c1q5d++eNVOHBgweIjY3FpEmT0KhRo6eW6d/6ISZBggQJEiRIkCBBggQJf3e0a9cOrq6uNudffvllAPiXXAtnzZoFk8mEBQsW/FsyPfUPMZPJhG+//RZRUVFwdXWFg4Pg5ajX6xEbGwuDwfBvCfe/DmvN+7m3iYYt2OM6b5Eo4+lUA6Ym2WiQToT+xNraVUAsJs67k6E4omTng76Lwa4PXgAAXNsdzKw+EbOFpMvKz4l2jGrR/V8V+gDAEpnS/utUxRL9mT8/ANzzlsPpWBObOaDWv4yvonEs1Bk6o54lj2zblWi0DSsiUdrYzNURtz0rS2/Tn7UMx2ZoODnFiWwDtsRwdXxnChYCWt5SWQmdUY8aL+QicGsJACBwcwwKoh/A71U9S9AKgIspa9qfWOyM0fdx8lMh0bLOqGdU61TGoA0x+KyKtltesyaafpmA4FQHrCom97HwQS1W/8pMPwSmOEFeSzinaODOjWNnQRLq7EiC1kOgqrbWQJ/8bLnNvNmzcPjOSIT7mkQiW61aMHVua7fOsKrEouI2afyAeP5pDAm9brp1Cx0mT2BWTqrZLesTybWvVRLrY+2CUpj1lwCQmCN6zfq5Eo+VavgpLfYHvhEsKadWqYLv/rE2c9HsYyLn/Y630frkq3BfY5sYm9av2zOTO5f3kZAMFACLkQKATfkncGrecq6+zqiH6XI6k0F22IOsz2lJ2PRaL5woI8+A24ZE6FrVhVapQsA0stZkYSEo79mWzZu5Q/VaZgCY2SCt2mu0jV6dByHz5RWIP3MQ8tAWcPk+CQ9eisK19uR9oL38IiztVdwYil4XrHw0DYNWqULBzhAEvHaGjfNYqDNaxgnpGSgF+qDLN/HRrRAmR8bmMPi/qufWb6tUOcwdwyDvmo+zVTFr4nkGAMfWxbihJh4A+T+SJK3uaxNRftCHtZXzMZHV2KcS3h8lYH42SYT8XKxAPy1ue2rIYQTXEJ43ep5SfIvh+wpJ9N6z16vcvAJAnR5ZuBmrQeCkk/jlaqrNdZ1Rz2jRrS2PWqUKY0TJ3Zv0v8wScIvLiVMP+L2qxxhDNl4YOsqmXEX3djCfvYyAt5Lw29Z1AADvT8024xHjzi9B0Bn12NLCk9sril8R4i+CNpA91VLxiCXu7niOvMvkx/XM8iRGm88F2ntmHe9KEkw/HBCF8DkxUNRzRVZ3QattumQg44kOhedCYU/p6kyS+vbf/habt5ztvPWx2eALXEoZa/Tu0B8A4LdrApOLppKhMjbqdwWOR5tCZ9QjZ4FgJVnqcRKmLkbW1tXnhHgbOraavyQjbw55RnZu7Ez6elWPz7JPIv7SMfjvmEj2Q5FVUIwpGVegVQoJs8Pq5tvsgTLHGtw+QN/7YjnYcUGqzTna3gDPSFReNcJ0MY3z2hDDqHFm57q/NBIAMPk3IVbPP6WmTZ2wlFdYP9agfbxTX3gWjNH3hQLJ53GurX2TyokyM/ZnJMBnViLXNk09UfZiZLWWr+rGF3/+MLve550jduuaDJlIX0zShjgfa8ylpRF//rtDZvnr/gAgMDAQTZs2ZX/PGgUFxKujcePGT1Q+OTkZS5cuxddff/1vx6491Q+xsrIydO3aFW+99Rays7Ph4uICMeeHr68v1q9fj02bNj2mFQkSJEiQIEGCBAkSJEj4/4HJZML8+fPh4OCAV1999U/LV1ZWYuzYsejevTuGDBnyb/f/VD/EPvvsM/z++++YP38+rl+/jrFjx3LXXV1d0alTJ+h0un9bwMdhzpw5kMlk1f45Ojpy5dPS0tC/f3+4ubmhdu3a6NixIw4fPmy37eLiYkyePBkeHh6oWbMmQkJCsHz5cjwlyeRTQxzTQrUw5Z2uE6tDVZyMtQ/1zUlE+9VyWSzSNxKrhPh6LTnRgGUvVCO+eTy71u65K/hj2UoAQMPFteA7k1gFUhYsZ/3Yk+2Rth0AIPsTPr5JrC0KW0A0mSfKzCyWRizXI207XJoUh72BB1idjM1hAISYmMxXSCyWOIlxYfsi0nffVUzzL+6fWsI+9lNxMtHEzeIxPVA6cDJTTapWqULGMMEyAYAlfBRrZsUomGFG7jw1fHc/RHmvCDZfFNVp22j/91+ORq/QrjgzO47TvBlGLsd7vkSbRi2he86osDOY+Cd7DrqIVqlyPPrVG4FvJmGpx0mYHz4UxiRistQZ9agjr9LCWiwYldeRk4kmJhVbGHVGPWROJFm149GmRBvbQWWjGTQ/fIgfNi2FPVhb3mi7jZckcO0Y1rSDg48Xmw8AOL5kJQzLiQXshaGj0GZRLI6tXIVpGZe5eTy+ZCVkCULs0w6/Qzb3qGgkWa90nVUnnxjZPdfYjVeg1gXlgEvsHNVC33+ZxD5W/kbGIg8VYs685vJjzlkgPEPDm7Xn5uj+K9Fc35lbwmB5/qpgkU05j3l+bbkxiGE5cxE32jmy+yk/rkevTgO5ss+fL8GS3BMYb8iyO87ceWq8cLkPtEoVur80EiZDJrRKFaL1g2E+RyyHZgcZfGZVxd0E/wLZCf75cPuOWDquvk/YDc2dyPzTmDkAhK0PQLMFCXDwbkbqjyasbDuDGzGWVq1SxWJZe3Z/hdW/EG6G/A9yvuvwMey8WA7lgEvI3dEaOqMezQYL7ijfBG5nn31mEVlfakOsUpFOpF/KtKgz6qEQaUN3BjdCwJYYZH8fiqxP1WxdapUqGFZEcv0XjlHj1kQ1cl+sx+0hGV9H4/7L0ezZH5XblfQT6AetUsXWkxhapRAjS9vpefGuzd7Udr5g2XfdzO+Xs04NwK/b1sMahzdUJb+NFqxFltSLKHpdzVtLRJ/rv2jg1k/GN0TmfSd/we0JVTGUry1CzsdCGytyj+N4BO8ypDPq2R6gM+rR5JsEWNRtbGQESBxXg1WJMN0tRpdR5DtJ5iIhvlX300Zkfmlr3ZKZgQGXbgEAKm4JAfc0didgalK1lmPqmRE4SfB2aLU41qZcRedr0CpVjJFTbJWiaHiukjum8+c1pyopdqjg+fKeL4k3DphK7iG1CorrAsCXsa9BZ9Tj7HskbvJwa8EiScdkqXjE1bX29rC2uEbMiiH7ftVzS2PXKJyPNeZkEIPGb+bO1bBYuFjdSJaIPjNCGCONtWvU7wrrQ2fUI+szck+pVcl6PABwbboQL76zIMluObpXWqPyqhFapYrFWt+YLHilsD6iQ+2OT3xudoMr1V4LnHISFd3CsTtQx9qk77j/GvzFMWLp6em4du0a+3uWmDp1KhITEzFv3jw0b978T8svWrQIGRkZWLZs2TPp/6lYE7dt24bnnnsOM2fOBAC7FPa+vr44e/aszflniYEDByIgIMDm/Llz57Bo0SL06dOHncvMzIRGo4GDgwPeffdduLq6YvXq1dBqtdi/fz+6devGyj569AgvvPACzpw5g8mTJyM4OBj79+9HbGwsbty4gTlz5vxHxyVBggQJEiRIkCBBgoT/HD744AMsXboU48ePx4wZM/60fEZGBubNm4fZs2fDz8/vmcjwVD/EcnJy0Ldv38eWcXV1RVFR0VMJ9aQIDQ1FaKgto9SECcRfe8wYQRM6Y8YM3L17F6mpqVCpVACAESNGICQkBJMmTcKVK1fYD8o1a9YgJSUFixcvxuTJkwEA48aNw6BBg7Bw4UKMGjUK3t7e/9GxSZAgQYIECRIkSJDwt8N/gNGw2n7+Q5gzZw4WLFiAUaNGYcWKFU9UZ/r06ahfvz4GDBiAjIwMdr6yshKPHj1CRkYGateu/S/FsT2Va2Lt2rVRWFj42DI5OTmoX7/+0zT/b6GkpATff/89PD090aNHD3Zu79696Ny5M/sRBgB16tTB2LFjYTAYkJIiUL5u3boVtWrVwrhx47i2p06dioqKCmzfvh3/CeiMehjWtcPtn4PYOWvXMGreNr6jwf7922zdEk0laLSMuDI0+zgBgSNIEtz079oi7GMh0Nn/8Cj4zkzk2qWB1PI2wXDKL8KNKYL73cMBAvW62AUgs+IBjqxfg7XFTeA7IxE584nbQO48NWRhIaxcWQNAEeiHeX5tUfixLwDA3FFwCauhO4XU8kfcWBroiNtc/KEfuLHTZK3WJAA0qDrzi2jmRvCxH2nv+3w+wWt2X0IJ37utFq0WxyLjq2icmrccpf2ERKv2XAbp5zOz41gZ6/uTsSkMHgMvQhb8ALKEs4xOmLbhk+yMmr8ks3rhqUOgM5IA7MrniTuGy/YkxJ87hBbHh3NyiwP7AWDoFSOCxp6CrF0r1v6FcDOOhOzh+lxwuwWT13pcQy6TAGGj+gF69BvOzqeG8dtDz0DiKmcpLwdA3G10Rj3kx/U286Uz6rmUBZlbwpjrqngu0xdH2XXxAIDgGbmozMmDzqhHwtcrWN2gGOIyUtDZGU2+Jq59XwcE29wje5/FoJTs1LVtxV0Pu+WzPlXDwdebW4PiMjqjHvVTCzk34vKeEbjvT8gAXLYT15iByjPQGfUwn7ti4+p0ay9xh/CZnWgzj7Q/l++T0DChHnx/Hkee4WFn7LpM6Yx6xF4lzwIl4xl0+SYA4gopRu6nzmztlgyKwuHWtRHkWBurgvxYvzqjHop6xGXsytjlkHclNPnUtQgAklQ/AiCujXW3kfEGr4jlSQEiCC1z+UEfaJUqeHxKZKG00ZyrrtnEqP73Jf4MQ0UJync2hrxNsM2YqXw02azOqGdEOwBJu0HPW+9h3kPOo0efYVx7KicnG9exzxoL7uEx6Rnccy+r6wJFc8Ezw/+dRPi+cg5+7yfi64Bgdj677yqEfhkL49vkuXBfm4jTHy7Hpdg41lbf9B4ImJbE1oxWqcItzV1olSqY0gnxEb0GkBQVpi7ExcrjU+LmSdMOTHXLQY++r3Fjbrg8EYZ17WCN2r83RHrnDWj3EXFdbP/mBGR8E81cuwEASYRc5FYMeY4//3AlWx8RelO1z1n+bA0CpibBoRkh7miwkjx3Xg514DMrEb1CCKX9RO8ObG+h0CpV2Jewl3z2DMfDAVEs/YD1Pfow6zQbZw3dKaQvieIIP7RKFTKGruCODWvbwXdGIibWuwoAyBq4krVxs6cvV1Zn1LN3or1nlM6Vx6cJ3HNrDUUgebZKdaT9wnFkPp13J6PjuTJce0tjd59xTqs+ee7NPS2gMwqpM0r7R8L1uDuuRdewaUveqgVbv5W/eQGRrdn45DX5PnRGPaZnXOTkqL+ezCl9bhPa1CDtX7iHFbnHsTtQZzNHFLSdco9H7HrgpJNIUSmIe+17wjsjaJRAUpPQpgaT2Sv8KiBXwO2CnBubWMamXwr73CDPaKRvCGeutdaulgAgi2jNkQi5/NEAmVUpHWhSba1ShcCjI8nYftrIja9xYl0szE7m9jDads+eQ+3Oh+NvqWi+LoaVu/4c+cWxy1B9cnYJzw5z5szB3Llz8frrr2PNmjV2PfvsITc3F0ajESEhIQgMDGR/V69eRXp6OgIDA21+O/wZnsoi1q5dO8THx6OkpMRuFuqbN28iPj4e3bt3f5rm/y388MMPuHfvHqZMmQKFguS8OHfuHMrLy6FW2+Zoio4mX1hSUlIQGRkJs9mM06dPo23btqhptSlFRkZCJpNxP9okSJAgQYIECRIkSPhfgZjR8D/dz7PGvHnzMHfuXAwfPhzr1q2DXG7fJnXt2jUUFxfDy8sLtarYp7/44gvcvXvXpmxsbCxq1qyJr7766l9mdXwqi9iUKVNw48YN9OnTx4ai/uzZs+jTpw9KSkqYW99fibVr10Imk2H06NHsnNFIKGI9PDxsytNzV68SjVhRURFKS0vtlnVyckKDBg1Y2aeBmH6zadOmCAwkRBRFrxHyiBZfPUBq+A4AggaFavqo5uT+y9Gof7kSY/I6sHJUIzS8WXvkfKxGcCr5jU2DkANfP42yzgKta8BrZ5D1uZrT3FiqKI7NZy/DlJ6FxosT0HIZsaLV2nWSJSBVvz2RyRPr3QG9QrpgR3ATOHgoUVHPjFlZenh/mAiLo7C8Lk+Mw5U3GhFt5QFCAU2D6amGaqZvJApmEm2grF0r1NtENG++ujFo/XWsjUaJauTpeRq4vH3QYgQcGQWtUoX079pCq1ThpeFvsHripNX7Tuvg8WkCMl9ZAa1ShYELD+LBS1FMrmJzqV1yCdaWHe1aZlcS8O710nmb8jqjHjmRpeTgkCcAoCjPDVqlCqPOvQ6Hw4IWUKtUod7e2ly/lI4dAMYbsrCtBbF4HNi7GdYQ0xDTwOGe3V/hZAaAHcFVKQMsFlhSbLVxNDm1uYRQ8tPgeXFiygGXbnFyWmuC/Yedge+MREZXThE45STujFLjtZzO7FzJAT/kzlMj/uyvkFlZJ6i1OP3baGbd4SwpVrA+Z4iLtJGvYUI9AMCulg3t1vF7PxGV2bmMslxn1CN9aRQUDUl5rVKF+EM/cNZrp/0pCJxyEg8HkrV0Y7IGe1sKqQOs70HLBjeq1SDnzhMIDW5p7iJogqAI6tWyE0nMHtmaq5MZUYbK58Pxc9AvAMDIXACiiS/tH4msz9S4qN7C6tD0CtbWvh7ekTDdLYbOKCQmDp/Dp3Og4xGTAfitzuLuDV1bTt1zmIWOEtmI26D9U6p/rVKFyd7tcWrucuzfT6jo6f5GMT31OPccmi7x7yVxuw7NPNF8bYwgV+pFzlIsvjc6I0n6KrZ6Lw8M4OZoX/I+mNIykPWpkOTdHrSe4Wj6ZQKUXxCLibmDivVH65V34umrXf5owEgJxDLRzzKZDIojgiVIfuwMZjZIQ87HhCb9wN7NrKyvjrjqB40mKRpK+5NnwfiOBg+nN0Gb5KFwX52IdzPPo84PJ5E5ZAWmXniZm4/3bqjQcDnZl2miaa1ShRSVwkZGAGhxfDiaLSDPaWU+oYc2rGuHBwf82LhNRUXEInvAD+W9I7j5owQlOqMeNyZFMTKpkgN+NvNMyRcemqsSHw9aydJD6Ix6yBx565CiZRCye67h7oH4f/11fDJ2rVKFxosTuHLiz5QQSnyOWivF94xaNp21JHs4TfoOAH+E1kTTr8j6MKxpB3krgdhHVk3GAJ1Rj8bziEWJps5w3p2MHX6HUNaswqbsqJ/2I/TLWHyTkwCHbnlA8nnojHr09Iu2SYWjVarwZWArmzGIcSuG7E9v1c/CRO8OiH53InfdoWkT/h3WMQw1XB4hu+IBjO8I7wOdUQ+Pz8j87r2aws4pQnjyBIdueYDZhAaryFibn+JJ2Wg9MRZpfgCSzpG9e4nghZH1OXlmD+zZBLfviDeCws0NP/r/xqXmoalYgqZf575v3R1B6t9Q38NM30jEXo2GQxOe/tx89jKbS7F8DwdGwUsnzDclfPmvSej8X4ply5bho48+gpeXF7p164atW7di8+bN7O/XX39lZWfMmIHg4GAkJwtpZbp164bBgwfb/NWqVQt169bF4MGD0b59+39JpqeyiPXu3RuzZ8/GggULEBwcjBo1iGm6Tp06KC0thcViwbx589CpU6enaf6pkZaWhuPHj6Nr167w9RXcCh5WscY5VbG9iUGtXrTM48rS8g9FLHQSJEiQIEGCBAkSJEj4e4N6tOXl5eH111+3ud6pUye88MILf6lMT53Qed68eTh48CD69OkDV1dXKBQKODs7o2fPntDpdJg9e/azlPOJsHYtSaRoTadPTYrlVv7nAMmJJi7zuLK0fC1Rgtx/FWL6zWvXriE9PR0A4LaZ/OLef/B7RMyKgU+ykPiwfU3hNj0cGAWX7Umo+UsyCqIf4JXs520sNT6zEjHB/XcAYL7vOqOeWWgAIH+WBn7v8okM4y8dg1apgoOHktHF1r4myg/3CtEoJX6xgsX7KNzcmEaz8qoRWYNWsrgsJJ9n1hStUoXAN5OqjSOg8FxItIGWUxfYeOqlOEG5KMFmnFRDJ45xMXcMw0zfSPgPO4P079qiRk5N6Ix6xKz6UahTlehWrCX//r4bdEY9prrlwPXMTSaPq9yZxdbR+tb+6AAgCw/h5BHLKS7bs3lHoc77pE/UIVrLnl6XmAaVIulz2wBS2m7cxJcAAPKaNbk+5aEtSPzDSEK5n/kFoY5WJrlg/8HvkblIzWn4xW1a9+HyRwMuLYD7CTcWt1XRyIW1Qa1JCvf61d7jrM/U8PwkgdG6U9Rfn4hbmrvs+HjoT/D+MBHPjxyL4kFCHOHDAVFo0IdYOrJe4mM9/gx0vPJyORsfHeNmn6M2ZRUBvtw8AMDvcaugTHIh/Q9ciYxpAXatKGK0fJ88M+I4A3ty0zgg8XnanveHiWjzeSx3r3YVkHgE091i/B63CrrdfM5GnVEPh8Op6OXR1kYuZ2026qQXw++9RLwwZKSNzDqjHmvzjiP7e0LRbKkg8Ry9Wj+PtUFkXqg2Wiyn9RxUXrtu85yZuhB5xrsSL4VSdweiJe/EpxCwlgcAQr8QnsNvmp5in3s274jP/Vtz9PXielQ2irtqT/h8kIjAFCebcvS4d2RvVm9/Brl3N9/QsNg7MbRKkvTY732BmtweZOEtubm68XZ5tf3TObvf8TYCp5yEzqjHxnsNgEOebC0vyklC5fUbdsdIafe1ShXyKh8AAILfz+f6cN6djNk3W0O5KAEH9mzC2chtAIDP/Qmlf6ukYWjYlyT1jpxBLIj6MODOKLL3mzuo8OLFIhuZxffbewhvYdcZ9cjusQZ1emTZzGHtHlmAmXx2O0Hiy6n1aNEdfy69xa3UxtXO8wDPqvQWl/swq7lWqcKBXPKOVQT5k2fnkgG9I3oxuTbkHefkpP+br42pdn80vqthdPzWMHVuC8WR0zbvDHFb1lYmWXgIk1d50AHmC1dwd7gad0ap4fFpAkal5UJn1HOJp7VKFSyfF9u0qVWqkN17NbMuAUCvri9hbZAvmn6ZgOHzp3PymsvKmCyFYwTrru7qGVYm+h3B2lU8LBoPXopCw+WJ3NhcNyex1CaAKElx1dqV/3EGvq9dwUTvDlAuIveHvqMAoLx3BPp6RLCxxf+6nX2en51CrFaNGyH7+1DojHq82+gI/FNqorwnb11X1HNl41kV5MfmJHCykGrA713ynPRP17J6pqIim71McfQ0FCHNsS/1AJOz9u8NUW8TT42fGVGGyus3uLXJ0m9YodZPJ9Et7jgs7VXsnvW8ePe/J0bsL6avf1bYsGEDLBZLtX9Hjx61Kdu5c+c/bTcnJwcXLlz403L28FQWsby8PNSoUQPdunXjaN//P1FZWYmNGzfC3d0dAwYM4K4plcR9y55LIT1HXRHd3Nzg7Oxst2x5eTlu3779l1v6JEiQIEGCBAkSJEiQ8M/CU1nEfH19WQ6xvwt+/vln3LhxA6+99pqNW2Hr1q3h5OSExMREm3pJSUSj0a4dYZKSy+Vo27Ytzpw5Y2MVS05OhsViYWWfJYpfIVo8rVKF+usTWRxR0evEekHZjGrvTcU3OUSLlPdDaxS1vwOAj4FQBPhiqk8V42H/4dAZ9ejRZxin5Wv2scAqJNbSymvVQuVVI16rl4y8ORqWzBkgCWqpZs93BpnL1oeLWF0xCqq0sJkvr4BKUKixvlRnyGeXPxrY1NcqVeh0rpSdaxRHZM2dy/uTa5UqFrfTo99w1N55ErUXGFmZwNdPw/ujKgZJx0KUDCKxFjHpAuUobWt9c2/Wt6yklOvDudDMyW4NrVIFS+pFrC1uYqNJo59j0jNQ3jsC+9P+gMLNDQDxS9cqVZDfJq69Oy6Fk3iPKvae2xPUCJ8bg6s/CVpSMWg8mdivv82iWJjPXWEMZTqjHv5vkzVujL4PrVIF/3cSWWyOVqmCRd0GWqUKUzKuMH//j26RPu93vM31SRNoa5UqdIoTmN0quhG2x/jzQoJ0a2ub33tkzdDkotbaYOOultw4D29Yg7pbhWSqhcNIjNrcrFT4/URSVNAYCpljDU7OzC8ES6xYDrF1z1p7L5bFlJFNNJQilkqtUsXmkFocxXXtaehzIkvtnqewF3dhb/14xAta1rCFsaglJ/EulGFtd0mdauv6b5+I/FnCs7MwOxnxv24n1tPjetwZTe557o7W0JwlzKWeDnXg+8o5Ti5T4R27slZn5aMscoGbiTXl6k8hLJ6Jlqu3KRHPxYzHsJX72HmdUc8sAxXd27GyTb8SLCId35jA+nnQjawb84UrzJJibx4o6uwgayo9ohw9/aLhu3s8d12rVGFfMpGHMqcBQNPt6Tix2dbCCAAPG/E6TXGZFw09kfllNCwp59n4dEY97htdGKOaooE7ZxG1jid542oUvvn2JaAribO6/3I03vGJtiuLuA8AGOfVgViAbtzkymRsCmOxXRUWE6unOKKEVqmCx8CLeDCE9EHjZ3RGvcCad1yPb37tycls/czTOi5/NMCjX73tehPc3CPEQTntJxaP7335feS3Vi5cHWrxszd+nVEPeasWmOr9K3eOWWWrkpCburRF5VXhfTHb2MOmrFapwiNlhY3MWqUKN2M1UH6ewFggARJ/Ka9Vi8zjUWGtl/WJ5OrrjHq4Hne3mTcarwiQdQqQZyTlY/IeXt+czGFax43I/7GV0GDVuthZkIRenQZybTrJHIWxXyYeONnb2qC4ilhUERxosxe6ryVj8j88ihuz6xYiU+ZW8rnOD4J1yXfPeGiVKpTqfFHR+Robp7WMgG0Saf+3k+DyRwO4nagPp30pXL3glbGsrUgnMhbTjZvwfeUctEoVxnh1QGZEGZz2C3FluXM1yFhB5ir9u7Y2+9TV9zVcH6WdBMuyeLxixP+6HSFLYlmC6IY1HwAWC3RGPYpGqvFVTqLd9ViZmw+tUsXFR9PvY4db14bsBJGt62tjMNUtx6b+3xb/pRaxvyOe6odYvXr10KBBg2cty78F6pYozh1GUadOHfTp0wdHjx7lkkw/ePAAa9asQWBgICIjhY1y6NChePjwIVatWsW1880338DBwQEvv/zyf2gUEiRIkCBBggQJEiRI+F+AzGKx/Mu/N3v37o1Hjx5x7CL/nzAajfDy8kJ4eDhOnjxpt0xGRgYiIyPh6OiIadOmoW7duli9ejXOnz+Pffv2QavVsrKPHj2CRqPB2bNnMWXKFAQHByM+Ph67du3C7NmzMX/+/Gcm+7179+Dq6orO6AcHmX32H62S5OCxx2gnxosXi7BP1RjXJ7ZjMSliv30AaL4+hmkT6XXf3eMRFJuMjK+jETBNsECINUI3J2nQaFkCVucdxzivDuy8g48X9iXshVZJ8ussDxTy6YiRviyKsQLZg7UmicqsfnsiGk7IQXmn68j+RA2vg+X4bcs6u1YGa62XzqjHq9ldsNX3CDee6qwXAIDoUBjGOCFoXAo3H+Ly5k5hLIfKv4Lr0zRo8nWCXTmrG0+3V0eDalZ1Rj2ar4thuaa0ShWyP1XDMEKwzBjf1eD81DhE6wfDtZet5U88D/Rc2/kxjAkNAO69Go3EL1ZUO0fGtzU4/1aczXVF40ac1t26b61SheanHLFYyedVsxdbQj8/HECY0tj1/sOBZOE5cGjaRIhBEEHm5MTlJLLXR9bnahYjcPU9DTw+S0BF93b4fu23GN6sPfJnaXBpUhxX71GPCNQ4kGLTLodDntAF/8LOyxxr2GiAi15XMyuDeC5ozCWF5uwjlqcHIDnoCl5qgJvLnFH/RRIvJ3NwwIG8U6yNBwf8uBgcw/pwZGvX2siZ/m00At/kYxwAYIwhG0PqFHPlSwZHofaPts/v454ldi06FIWtauPUPLJOZ2Sewyf+oXatkfTYoWkT7Es9wJ2zbtde39d2B0O5QMFiTGm5Hv2G2+yfOqMePQM0KBoYCtfNZB4McZEIik3myv1yNRUveoTbHaMY5T0jcHTtapsx9db0hcVBAVNGNtxPuGGr7xFWpmFCPdzS3MWinCS84xMNeWgL7D/wPbRKFW5PUKPBykTIa9a0YbN7HOh6o/2/MGQkft2xgZuzm7EaNIoje1G7D2PgvibR7nwWxwfAz7WQWcLpuKqbf51Rj6Bjr8N36FnYgyLIH4+UrqB7Ws4CNXxmk2cw9LQM59rafh2xXhvNTzkirV0F8j7UoMEFEwbM+xVv1c/iZCkco0YD/T1mYRJfm55xEd1rVVQ7BnGf4n7F2Hs1hbM0Wdd93PxolSp8ln0S7/lG2dQV951UZsJHfuF22ykcq4b7mkSYO4ZB/scZtm8ogvxhMmSitH8knHcn2zZeDaLPViCpDfn+kb1QDd+Z/HcE9lx6KLEvJV6oZ/WeKRyjZtY0iryPNPCamwBDXCSWd/+Oy61njZtvaNBoKfnuUvZiJGr+koz079oS1uc+kaj5c7LNvqF+eyLqbrXdxwpmaHBxMtm/i+MDbN6HDp4eqCy4Wu19AqqP96zuHT4/O4VZ7cQwd1BBflwP52ONUdqJMOR2Gj8eNX9Jtmm3a9MQHMUeFBcXo27dutXO1f8X6HfWFlMWQuFUfW67ZwVTeRmuLJ75t52PZ4GnihGbM2cOOnbsiDVr1tgQY/x/YMOGDTCZTI+VJSAgACdOnMD777+PTz/9FI8ePULbtm1x4MABmzi3GjVq4LfffsPs2bOxbds2FBYWwt/fH0uWLMGkSZP+08ORIEGCBAkSJEiQIEHCPxxP9UNs//796Ny5MyZMmIDly5cjMjISTZo0sclMLZPJ8MEHHzwTQR+HmTNnPlHMWnBwMPbs2fNEbdarVw9Lly7F0qVL/13xJEiQIEGCBAkSJEj4Z+Cvit+SYsTsY86cOTh48CAsFgvOnDmDlStXYu7cuZgzZ47Nn4QnR+hpmU2Qea+QLohJz2BuNXkf8tTf2dvasM+T3XJhqXjE3BIBnpBAX14O33mETjdngZpdD4pNRvrGtpxbIu2fwjWnAjIHBxb4TUHdEgFwboniYHGdUc/cEq3Pi+W0DuTWKlWouzWJJTn1nZEIxzulnFuC+L/fDxNt2i1sX2QTEE0/j0rLZQQerE7SOWT3Xg0ACJiWBEWgH6xh7ZZoTU+rCGlul9Tg7Dtx0Bn1aLGG0CHLDtsmDbeeI8XR05zcPrMTOSIT3/d5NxBLNHEpq9c3B4Z1hFRG0cAdOqMevaNehKGiBDkfC3TLqk9icfoDgZDlzi9BqLvVfpoB1RkgONXBxi3RsLYddEY9bq9z5cZtWNMOirp12fozrIpAWrsKPBc73uY+64x6fFYYyMauVaqQvjgKtXad5Nawbvcmbn4qr123GyB9IFtYb7QPMUyd28Lv3UTIq1JROBWR3f7whjUY3owkY6RuibT+tekaHFm3GndGqzkyEGtQt8TGicSNYmPWESbHixeLUDBTw9wSX3h5FLc2aSqI3HnkHm1IEZ73a7uDkRNZisrcfOaWCACylrw7cHTDHACE7EVn1CNoVCqTk5KqALDrlggAa4N8Yago4ebP2i3R3j5h/Z+NK+kcSzQLgLkldpow3u790V64hwqfxgjYNpGbG0rM0uL4cLtyA0DT/pc5t0QKsVuiWPb9GQlI+nwFDCtIcmPqlkjLZH2mhqNMSFZ8YzJPGCR+lpz2p9gl/qjMyYMpgyTvpfsRxWafo9AZ9Yx4Y/+B79m11I+Wk3NZSXj+fAkUzfn9FQAcfAnJUPriKAy9YkTOAjVzg516jRCdyI8Lc9HrOcIofGZ2HCq6hUOrFJIAi+eatp2k+hGF7YuQ/T2hS8/+RM3amn1TSDyrCA4UnvNO39nMs8zJCTqjHiZDJqhbIgA0STKxz8e/sHXVU1S5Ion3/LR2FZifnQKveQmo9dNJ6FrZuiu5r01Ei1VpQl25gl37MiCEe64BYOgVI4rj+edob0ktm3cNAFR2DUdfj4hq3das26bQGfXo0XsYTJ3bMrdEReNGMKyKsKmvVaqYWyJNpSBzrMH29Ed1yXcF+R9nyLxWuTObDCQJ+u9xfHy79Risj6lbos6oh7xChkda0o9PsjORswFJRl951cjGddtUgtG+wncNAJxbIm3/u5HfAgCCYpPxdUAwyg/6sOu0jPMxkgS50VLiLqsIDkTNX5KxJf8EAl8n66Xmz8lsfhblCHtXzTsmu+kvPD8h5D5f5SRybolrq9IUUEIe6/skO+zBfRd5ODAKOqMeyiQXOHgoOddTClr2A98ILCnyhs6oZ3MIADVybgEQSEG0ShUqa/Ffv2m7/zX09RKeGZ7KInbkyJFnLYcECRIkSJAgQYIECRL+5pBZyN9f0c8/HU9sEdu7dy8MBqKF7dSp0xP/SXhynGtrgdYjDOmLBc2gqaiIWZp0Rj3KlJVcHRoUrTPqkVf5QNCUenqw81qlCvk/tsJ7vlGwlJczywq9rjPqETjitF0ND4XTvhRYKisFa8VGnhLWomkDa1Ctkeaticj7SGMTZCsmFxDL8lzMeFybTjTPDs08uTYf+NVF/gfkWshSQmu78wGxulANPyUIsB5D7/AejDr+uZjxWDprCGrvPMnJCgBR78fgwyyihTOlkyDwvB9aw+tkbQBE+0xlvTFFg32JP3N9mS6m2SUhoH/eHyYi8OhIWJ6/aldLKS4rtjLIqtIyHH85FNXBY+BFAMCBvFOoc4mQPJhuFwIAKvML8GafMYysxcHPhyVJpWkEUtruQOaX0Zy2EgC25J/AqUIvXA6vtBlb0BiSXNetdzo3D0FjT+HKgmBolSoo3OsjaDyhJXbenQwcEu6romUQtEoV3nNPZ3OFQ57IGrySlenRbzg3N6pPY7m5FcsDAGELYln5m5N4KzIgWBr3ZxANbINVidWuT5ootLyeBb6/jEP9dYnwfzvJ7r0Ty3NDfQ95H2owvFl7hKcOAQD8EuIGz4UJcGjaBAAg/+MMV8ewph3CFsTC+0MiT9DYU6xd5Xw5DCsjbPozn7vCyXEhnKRbaLAy0eYZyB9tQnUQ3/PJ3u3tjs2ibgPDikgbi6b4P0Vpf75cp/HjuTo1f06GVqnCkMvXufq6VnUhSzwL/+kCUc7crFRcmVYHiiNKliRYq1SxpMyVXXkyDXv30elYE7ty9gxsj+y+q6BVqpA7T41pGZdZGb/3yBzenkAsQcUthf23y+hx8JmViPSlwn4dFJsMi7qNjdbc+nmyJ2vzP0Ywa/GDISTBLU006+ZQguxXGtmsscrsXABA4JST+OlGW6SNXs76uxxeiZtvaNgxAGaZ0ypVcPwt1UaulsuE5yr9E1d2nqYysHiT1B6KQD9GfQ8QWnSx5doaFqtUMBQ1f0lm/SV+sYJ9ztxCLBzxV363u9ampdkyF+uMJDE4beNyeCW7N7qC1GrnX167NkbWvYmaS92488sCCb977lwNJ0PNi4SG3fiOBtFnK8jJQ5427VMr0r2h0SxBvOXMRVCLoLxmTZhu3ETQ+BSuHm2nZFAUsZwUkJymlopHyO6xBgDgfNuCdh/FcHMirkshTvli751k3a9WqUJFXTNq6MieTtNv0HeIuO6wZu2xM7gRd178X6tUQRHgi0gnYm27GUtkKdqntOm/tNMNKEKas2PT5XSYO4WhgaK23fv2x8NA1kaNAymQHzsDWTtC50/p5Wm9t3wEq7XOqEfnHW+T7yXTJnJt0vJ5h4mVOfyMGTqjHrV+It8RjNH3sS8lHq2/Et4tDk0a28j2S4gbkatqDiu6hTPrmxg0PQFAPJv8txN55t9qaVNWwj8bT/xDbMCAAfj++++5c9u3b8fAgQOfuVASJEiQIEGCBAkSJEj4G0LKI/bM8MQ/xOyx3F+5cuWJyS8kPBk25R2H/06e6lqshQqaKGgQh1y+DpmDA27GatBmUSzGeXVA8ApiJaJaNKp1ajb4AksKTSF3cUEPbyF/mtgSQ+Hg3Yx9NnVpC61ShcytKrT1zePkkyUQy1zWVqIVbf01kaNXl8Gom/EAXnMT7Go2dUY9o9qmfVfWlKPpl8T3vDJfSAIJADUmXYPvpgI4NPOE50JSZlUQH8elqOcK3U8boTPqkblVRY6NelReu460xT7EKrMn2SbuJXhFLGRhIai3MRHta5JHI3NLGIpGqmE21EFeFImbqZuuYPI2XkzGVd4zAityj3MaQRrLZa0tdPD1ht+rem7MVDMtnqPxBmKNO1FmhlapYlplmpSTolfnQexzx3MCzbXyC2LtydhMtMtr846zGBSdUY/KrBxWVpy4OWMooa4vt1SwssOatYdDtzzkzdFUq1EFSByPeLyBU8gcmwpJ4vG282OQM1/NJfc0XSKW9tAvYomWsRlP/w4A931ro3fUi+xY/34c129c7nH2+VaMGo3iEvBK9vOQq1qi0bIEG5nLe0dwaz17Wxub9Zn3oQY9L97F0bWrMd6QBZ8PEplVDwAuP3rIylMrygqRHDqjHl7zEmDuoMKDhzXZOYDEtllrqP1TaiJo7CmWwPz5kWM5mRU3ixE0QdCedxklsMRqlSpoL9yDIjgQxrcFLTi1AFPQdWetZS6OD7B7P5m16zKZe1niWW4PEq9dMXRGPYtTKZhB1gy1fhTtC+QScO8IbsK1oWjYEDqjHllbhWfjI79wZPdcA1MXIyBXYH42mYd7lU64O0KNQ5vWIiY9A+9mCvEVOduJ5diwguxxXrWKkLujNZOPjm1/+gkSm1GQDO8PExm9tnhMbmnk2QuKIXEq+bM0qHEgBdMyLiPwjZPcmj+48zvWNt0HQ5bEVju/tK7Py+cY5TjVlpd2uoH+6Vq87JKJyxNIzOLCbFImfWNbbr4vnPfmrJM6o55RgVvHtIjnQCzXmdhvoVWqcO/VaBie24hOE/iYt0ltjgIgngIx6STupqxPJLceSgbbp2Xv3b6f3fNi2ehn/2G8pdha7vIfGqNxYl0bj4O1m5ZwdbIGEqt6pwlVyYb7Ce+72r83BKJDYS4pgVapQu2LQhoM8b7g/REfB1V5ndCPn58Wh1O9yfuE7mfdLtxH9qckNpNakcrqy2HKyLa5B+ayMrvWHlqOemsA4GK6Fe71UW9jInxGCO+B6LMV3Jqm/61lF8MQF8n1T+tcGrKEK2ddRnxMY6j9fpzAtdH66yrLauFd4pXwhgYNzj2EzqhHk2/51Dr0s+liGufFID92hlufOqMed34hVsq9LUncM50XABi3dS8AYJAnid/1/55YmMpe5L/j+L9NYqBdtpNn7FGPCE72ZgsSYFjXDgsbn7Nr7X/kamHH+07rbKzehrVVcXy/eqO8dwQcf0vl5lI8fxnfRGNG5jn4Dj2LgGlEnt/txEpK+GfjqWLEJEiQIEGCBAkSJEiQ8D8IiTXxmeGpWBMl/OcwvFl7/LptPQCihel7qZBpoUr7E80OZVHaEdwElspKnJkdhyZfEy2Tzxd6rj2x9uXKV6Es9gkAzPfv40CukFBwWsZlGw1dZW4+0+IUtiRa/YzOG3C/420bbZHOqEd65w3QKlVQLiLyxB/5EZZTF1DaPxKZi9S4+lMIa3t+dopdTS3VVAHEakfZ0ozvauDQLQ/XenigMr+AyUW1aDemEEuA6a6QjNb/VT2gULDjd8IP2vRpfJfU85qXgAP7tkBn1ONa5QNSf9gZuG1I5JJg07gq8fw67U+Br2Mdbk6OhToz2YxvC3EGuUNI/J5hZQQQ2ZqVb/VtLKddWxXkB51Rj3l+bZE7Tw1FA3e77FAmQyZCT5PUEbMbkHihN65GsbiZzOfXQ6tUYYxXB5uxZ32m5o579nqVlenrwWsKAcBrDq9h1Rn1KHsxEgVV87X/4Pd2tYgAMCtLD5P2LtLGkDiWa7v5xJ5NvxKsoNbzW2dHko11lJa5t98fsd4dWBxZw+WJULjXR1H7O9gfv5WVb35KSJhucpKz9rVKFbyXCYylOwuSIK9dG5cnxmF/SD2Ez41h9wIAXrjcBwAw1UeIv/k6IBg6ox4TvYVk51S+X3dsgM/LJMam89hx3LgAIHxuDGThIciM4DXkjgdPceOtzC9AcXwAW/NH1q/hngFdq7rYcHADzI7AtenECmV++JBrw9SFWFFirxKtsSyiNXRGPeqPusdkFstAPxtymrBzchcXGyuGVqmCRSPERoktvWYnIODoSFbWrXc6l+BaZySJlbuMGks047duQatUoYHbfQBA1+FjALnwDMNswge+ZG3eUN9DvY0kjmt5YAC6OgsxcGkdNwIAs+AdygmCTAZUPi/Ek2mVKrxo6AkH72aoJSdWOsUR2xgWMXspQBg1ATDrWZvPY2GIIzFxy+42Y+M6OPlzMmcmWyukWAYxbk1Uo3Ac0fTnf6BBaacbGOKpxu9Vxu6ZvsSSETjiNNcGtf7ojHrk/dDapl3qzVBdvwDYM0+ZU4+tFNj3dEY99ofUY59p7DKN9aMQexoU7CT7/cLsZOw7sQc6ox4j0vIBEKu0GBMK1NiUf4K1L/5vDfe1ibihvmczBsrqK16bOQvUjHHPeY/wvit7sRy6nzay48rcfK4tBx8v+A49iwcH/OzKoVWqsC95HyfDTwtfgGHEcq5co2UJbO9hz010KDsWY0Ravo2lSN4mmMX+AYJ3gdiLIamNkETYel7TN/Dxk757xuPFi0XI7r/KrkWbroHqIJbZlE68WYI2PWSx7TqjHspF5B1JWWDPzIxj7J2P86ig5xotE6xmYtR/0cC9831mJyJ9Cel3XdfnWDmdUY/MV1YAAJc0OX82z3o6LeMyahyosq6/Go3yXmTsQaNPQatU4dZE8hw6+HoLfX6QiJzthPlV9Uks84yge152TxLHdyRkD5z2pXD9WY85c8gKfOIfihtTyH59c5IGd/qV2syLhH82pB9iEiRIkCBBggQJEiRIkPAX41/6IWadsFnCs4fOqMdzsUJ+HeoLHbg5Bs67k5H5ZTQsJQ+RsYm3jNA4CKoBLxzHWzpy56kRFJsMF/kjTmMm9sH+9M0RnBxiy4ZWqWJaKrFWR2fUI3MR0Rr1DGzPNF4dz5Wh+LVoVvb3uFXwfycRHgMvIrOCWE9iF0yxaQ8gLFbGXS2JNv3+fVztXh8AoPycxPo0XJFoU8/BuxkaL05A4Vg1k6tlwmvI2ByG+POHWbldLRtydXVGPc5PJdrtqz+FsLGO9BIsGwBwfSqvSZOFhXDXrTW41lo/Gq8FABfeJP0FTUiB4u5Ddt7jswQ2f1qlCndGCTl7vD9MhGFxM8iPnUH2p2SMuwoETd+iJiSmIvQLYlVLjyjHoU1r2XhW5wnxawFHR6J3h/64M1qNwO8ENqy7w9Uw6y/h6nsaGCpKhPgiuZBHyXretUoVjq1aBU+HOuy4Oi32x34qNOkvMNI56OoBANP+3x1B1uytGDXXl9iCAZD8WADYvZ7g+wcAIVeUzqhnWuO+6T1YO2ntKli7fywVGBmztpJcSwCJKxrkGQ1zSQm73mAlWW+UpUzelWitb01UY0kuiS+6/3K0zXip5vaFoaPYuaNrSI46rYfA7tZgZSIsqRehCPRjc3PtLQ0+y7bN3eXaK8Nm/sXWp8GTp8HzkwQ0/ZKsJRpXSGVRHCGWneznHTHo8k1YUs5Dq1Sh/q5H3JzT8r0jegEQmDEBYklX1HO10aanv+aEBbdbcP1plSp4zUmA/6t6lAwW2EZpnYIZ5LkyP3yIGrpT0FfJm/OxGjdukthOh0OpML7F5/uzbscahrXtuHkBAK+XzsPrpfNwOJzKzWFF52voEX+OlTV1MbK8WeK5p3Uoy6dYnibfJCAoNhnmDirsbemO+y9Ho0e/4WwfqZdu4vq0ZnkU99NwRSLcV5M1dykmjp3/2E8FWXgIdEY9x0BJcz1RaJUqeL0kxMqVVLHSZnwVjYzOG7jciMziGReJvpcKbc5rlSo8HBBl10oKALf2Eqa76lhzS6+RfWGmL3k/BR4diWEupB+xtUCrVGGlZyKGN2uPXs8NgOrTWK4tuufR+2C9Dig6nitDwJFR3DXKEGwtu+nePZvzFnUbdrwvgcQc1emRhW7DRrOyNBef+HmlY0j8YgX3TqW48mYIa7dlwmtA0jm7a3dj82bcsVapgvks2TOppVaMb3IEDwU63qOrV5OcV34kfi2r+1oAYO9p5wIHTHbLhd+uCdAZ9WjzmRC/mPdDa0zJuGLTj9iTxt7cW1LOI2vwShbDReOuxM8Nzd/13g0Vy7VJ41kpg6HMsQbujBbivjpOmsDNBf0vnt+sQWQvr8wvwO2fg+yWoXJeio0T3oPbJmJxNHk+SwZHoe7WJNRKzoL2wj0YVkewZ7FwrBqV2bnEayVVDp1RD9+GVUzEXYrxXu5Arg/6Dhb3v+KuB1eGIrvqu9C9tuXsO5bXyIv4b4DsL/z7p+NfihH78ssvsXr1anZ8r2oj8/LyslteJpMhNzf33xBPggQJEiRIkCBBggQJEv55+Jd+iN27d4/9+BKjoKDATmkJEiRIkCBBggQJEiT8oyCRdTwzyCz2eOkl/GW4d+8eXF1dUWTwwyu9B8GUkQ0HTw+Yrt/AgbxTCNoQA9+ZiVyd8t4RfxoESlEwQwPPT2zpYo3vaqD8PAGQyaC7KlAF64x6+O+YiMwhK1jZAZduMZc+2g6F2JXuSVA4Vg33NYk253VGPVqsiYH3h4nIn61BvXQzI+1QuLkh/uIRrj/6WTwu6/8UclVLmPWXbK4/HBiFP5auhFapgtzFBeb7923kmpRuQN/aD7n20pdEIXDySdZ3l4v9UOOFXMgcHHD79Qi4r03E0CtGjKx7U+jPIwyGteEIGs0TMDwcEIVJn+7A+ube3HmLug1kiWdxb78/6vbMhFzVEg/8XHCrjQLeHyVgesZFfBlA3F0cmnnCUloK0+3Caueg8jcvOHTL4+aLYkPecc4VU2fUo/naGPh8kIi8jzTwmmufbti6H51Rj14tO2HHBR0GeUZD5uSEA9knoVWq4Hi0KSrNchxoQYLb5bVqMTfa6LMVSGojEGlQKIL8YTJkAiAEBqc/XC64h4U0Z3THfjsnIGvQSvToNxyWlPN4/nwJDrcmybd7XrzLEQwA/JqVtwmG+exlOHg3swnW1xn16BXaFfHnDsHv19EIfP20zdqzLm/dfnX3w7re9Gtt8WXT09WWZfKGtsD+A9//aR/VfRYfG1ZEonf4WSz1OImgjTGMZKC6sf0rz3rWVhWjyrfXVtDvI2A2y+H/qr7aOaV9Keq5wnS3GFd/CmEJy62xqyAZAzyJ+1v+LA0etSxFRpf17Pq1ygdsjYv7y9yqQkbnDfDdOx5QWBA0LgWl/SMZjTwtPyqvI4zRZH+o6N4OhzeQgPwTZWa0rynnZM+fpYHTXUI4YHxHg/PT4qodH0V116zv26vZXVDYvsjufcjYFIaA4WfY+0Fn1CPouxj4zkisdg1UdG8Hx4OnIHNwgKWyEjqjHgceOmFxj14s+fO/Atru9d3BaNL/Mnfed/9Y5uKqM+rRu60W2WP8cWlSnM2+Ll7n9trXGfXo1WUwDOMbwFSvknOdFZezJx/tQ3wsPmevTtiCWJyZHcf2GABwaNIYlddv/OlcPIlc1tcUzQNgSsvgrvVP10JZqxiZEWUwrIxgqSwaJ9bFDfU95O5ozZKdU5g7hrGk8TqjHkWmh3ilmeBmX/ZiJEdmYS2Lwr0+c+23fv6zt7WB79CzduWX167N0kJYXxeXi9CbsKDRebx3Q4XPGutZ2ermyNS5LVZ/txijYqdx34HEfYjry1u1gPnCFe76i4ae+CVov+Ai36Qx9p3WQTtwBJB0zm6/9uZGPI6HA6Nwp7mCfdeqTh5xfWtkb2sDQ6fv0LVpCI5iD4qLi1G3bt0/leevBv3O2jJmIRRONf+8wr8JU3kZLi2f+bedj2cBib5eggQJEiRIkCBBggQJTwSZhfz9Ff380yGxJv5NMCCoNUr93QGQZMwH8oiGz9oaBghBzlTb0vlCf+5Y/NlaQwMAxneqrGEAynsKQe0UAVOT0GHyBNbOxHpX8ehXb5ZE1Z425/Z4IZgaAGTtWkFnJKQWDj5e7Jr7mkRW5noVfXmEngSye39IxtpsQQJcticJwcAK22Wq+iQW19/UMHkKdoYg+p2JnHw0oSu1hlnPEbWGySJaM2uYzqiHQzNPQiAhk+HNQ69x2loACJx8EoqQ5qyvGi+QOMgDeafQYgzRAm9rocTeklpkbkwlgMWCoNGnoDPq4XysMQzrSNLHWrtOYn1zb8gcHPBwoJDI0TH7OmROTkhss5ON4Y+lKzGwLwl4/rbD86zszGN7mTWsp180VGeAlgmvQe7iwso4dMtjFPdilPaLxEivDjCsD2fjD59DrGE6ox5ecxOQ/YkaDk0as3m9uacFFzgNEBp0rVIF091i1JHXhM6oh6W8nF3/JWg/LM9fZcfUGpaxKcyuNQwAs4YBQJMjt9Bb0xcAoau/2t0dDj5e0CpVzDpZXt8JAPCeezq7X9QaBgDdho2G38ExAIAevoSAwHyWpGy48nEDNn5AoHlfdOoXtP4mFjVyatpYvMSgWs6gDTGsTPanarT7IMauBtQzqQ63hi6Ek6Td5T0jELwqlpMl/8dW6PXcAACA/1rBSqFVqjDg0i2bewGQxNnW8onrbck/gYhWmUiPIPfI9/1EzkpwbbrGph4FfZ7FbeuMehQPEwhLrK1h4nb8fpoA31fOQdWsgCO+mJ+dwtrK+lwgqjHdLcad0WqciFzD2vks+yQr+0jbjlHPZ2wKw6VJcfAfJiSD1Sp58p1DpQIVvv+rVfdtYjKCxpH97fe4VSgcp4bCzY3dO2P0fSgakP358IY1jExinl9b1lbxa9GQt2qBS5PiGLERpfGma+bmG4I1gtbr1eI5bh5vT1CzOtMzLnJzVzzYiavr4CtY0gOGn4HOSMgail4nbSwfsorT4NO2ovWD2VgAsnftKCBroEetcrvWMErYIJaHElcAQKtUOeunSf/LuP+KsB60SkLrnb6U7HHBK2Ox77QOzT4WUoH0av08sYa1aoG5ezbZfc7ElghTWgb8pydhTef1XLnrUzWInEGeu07nSrm9X3wvxM/z46y8WqUKjeKqyG9SBIuTuXF9m/kQo3dbLbuevVBIyGyv/I3JGk4GsTVM4eYGrVKF0k43kBlRhvQlUVxi98yvWwIAVrXbxM49eInMs/yPM1C4EzmDjr0ON0UtVkZn1GPAZwdhfId/1i1qIbk9JT0Sz4X7CfJcGDp9BwDI+Doa16YTgicAMKyKYEmyresCwGs5nVl/KSoFug4fA30YeQ7ovaBkH9b4bes6TPTuwFnDFHXrMgIa63tJrWH0fmuVKuTG+3J73ZX3fUnhKmuYvb1dDEraFP3uRJYOotZPJ22+a3km1eHWW/qSKBtPhQGXbrHyvkPPQqtUYZeBt2pK+OdDsohJkCBBggQJEiRIkCDhySDFiD0zSDFi/8+g/ranLzbCytLuiPNIEqwGncIgP3YG6d9GI+ulFdVq7ahv+OP84rVKFUp1vvi99S52nmpqevZ6Ffvjt3J1c+ar4fOBYI0rezESx1at4uqON2RhVZBAhZz3kQaXJ8RxWkt7cDzaFL8E7WftiGV8ppArALOJO0XnUtx3RbdwOP6WamPxsJanvFcEnOJT7MbfxF89jS6xE7mEodkL1ZxFMy73OKZ0eQ2VWTl2xQ1McUJ6RDlyPlYjpv9+THXLsZGBrglrP3VFA3eYbhNK3fwPNGg2PwEV3dvB+fJ1lvz64ENHFlfmfKwxSjvdIHEkVfFB9ubfwdcbldm53BzRfl8YOgq/bluP5uti4PfDXZjPXubq2pvDksFROL545Z/GDtiDzqhH5JmXkBz2A1f+z/5TGFZFoH6qA1I/Wm73ur16OqMeq4qVGO9qRNdLffG5/4+MitseLJo2kCWc5bSovvFjETT2VLV1AEARHIgbHRugycGrjDZbjOpiTcSxGLfHq9FglRAPdPMNDRotTcC13cFoWhWvY3xbA98+WdgbeECwqjRtgspr1+3KxdqapOGSrNK6G/KOo2lV6gIA6NV5EEyGTC6GMfOLaPi/TeI9aRyTonkArn7miCb9iUWyy+hxLLFq0b5AuPVOxyNtO9TQCfNmfFsD5Rf2E71Wt24qnw/HI1cHTP7se6wN8rU7Nuv/OwoSEXZoErJeWMe1e2OKBo0XC1pvOm/5szRo9nFCtev34YAo1Np1Eg6eHqgsuIrGiXWx0ft3JjeNdxSXBYAHQ6JRZ0cS0je2RVa3dQBIihBzSQkMcZFcQl7r/cj6nHiODGvakfVoZ3+kyPpMDb/3ElHRLRyFrZzQ5Bth3oN+HwHfV4RYGkWAL0wZ2VyftD6tk1nxALHeHZDxTTQCpiZxstLP3Qe9DmOn2rgwxfYdYlG3wcGd3xHr5K6WUA64RMayPhxBo1Lt3leKMYZsrA3yxdX3NPD4zNZDxLren+1DipZBMF0ysD1QfuyM3b6t552i8jcvHGq51+Y8nTPaRvqyKHj8RrwmaNxfxqYwZHZdz7Vr3U/WZ2rse+ULjL48HLV7kITLDj5eqMzJsxmbqUtbltLCWlbxOVofAB4c8EOdqnYpvspJREgNZzT/YwR8XibU/L1CuiD+4hG7e+xXOYl4y4dPSWBvDsWwJ6OpS1v8tmVdtffLXls+yc6Y1OgI3vGJBqJDEbPpJ5acHAC6XbiP31q5/KksWqUK5kPN8Gvwz9AqVZiReQ5HHgRjbsOLjx1P3hwNvOYksP3M+nqlpeK/IkYsZMJfFyN2caUUIyZBggQJEiRIkCBBggQJBJIZ55lAihH7m2B6m47IjCjjNCPyY2fg0MyTWXAcmjSGzqhH4Rg1EC0kHC2/R+IGgo69DlOXtqjsGm7jA68z6vF7612sffH/3N71WFs3JmvgdbI20sYQBjWaXLHmL8no+MYE3lJQZQ2j/XjNTbBpX3ydoqLzNeY7vboqyWNvdR+ufHV+94Btsmp70Bn10BUQTWn81dOszcA3k9Cz51BOPu8FBi5+wLodRXOiLRNbw8p78j7sCpkcznuSuXgE6/i+WO8OqMzKwYi0fJag1NxB6C9jPOmn6YlK7A+pJ1gsmnmyMr9uW89iObI+VbN7S2PEAKB2gQU6ox4FnR1RmV8Ac6cwaJUqdK9Vwdqh1jAAXHwQxYxMovHOH0ASUR7euJabE4CsT61ShbTRy7F//zZ2nibrpG2KY0Vq/3iSa0MM6/gJe1YPt97pnNaaJjIX17Feg7SdoPEpaLBSGGvYQj4WK+j3EXgwRJDV+C6J29gZ3AhapQqHWu61sYbJDntwxwd//I71Tft5nDWM9m26nI4GqxKRNlkJrVKF5utjWBvW88LGJpOxWAydUc+sYQBJGNxoaQLezTyPc5HbWL3zb8WhvNN1bu6oNUzcB40Do22fmRXHrnV8YwJKBpF4h9dfmcTJGX+UxDRSaxgAZg3TGfVQOJjJeNMymDUsZEksjqxbjZh0Ehfj1jsdAJg1TGfUQ167NmcNo/0FryTJaOdmpdqMQWfUw+FwKmrtOom1Qb4s2SwgJHy2dz+GeKoR+PppjMtvz11rvDgBGZvCWLnKa9dR+ZsXyhqRMYnLZ20V7lmtXSdRMEMDw+eEeXaj9+/c+rjXoh5XlqLODjJvWd3Woc3nZJwyZWOUHPBDUGwyq08ThovHTq/l/9gK4XNj2PHcrFRk96qKtTOb4H7CDXdGCQl0Kd7vSzwnHH9LRZNvhGT0Bx46wfDcRr6/m0Ii6E35JwAA6cOXc7JMHDEZAJg1zBpapQr7f1wPj09tra4AIEs8y9bi+ait7LzYGmZtMaFxUtQS6vFZAq69pYHCzQ05C4R3iM6oh8sffIwo/U/jmMXvJNMlA+un//LfoDPqcXNPC3aOlu0V2pXJIo7DotYwui9mfU7m3++9RNzb78/qBE46ydbDrVBHlPeMQK3zzuy6IqQ5bu1tDq1ShZbLSRLhdzPPw++9RIyZ9hazhu0oSGTWrF6tSWzxvaHR5Hk8IiRq5vbLQ57cMa2fsTmMs4ZVPk9iBN/yIe+itI4bWVvXX2lhs3fRNt/yUUPRPICzQuZ9JMRPWj/H16dqbN7Pz58v4eactieGeAz0LyeyFO/3fp2c/2kjZq8dAXPHMFb3t1YuqOgWbmPdFLf9zvUwGFZHQN5VYNr9xD8USW0cbfYVekwTr18eT/ZSup+Jx/tn32sk/DMhWcQkSJAgQYIECRIkSJDwRJBYE58dJIvY3wTpX4XixhSNzXlLHWcsu9sMAFDSlmip3dcmIrt/bZT2IxrtoLGEjc9vxGUojpzGoU1rOU1O8WvR6OEdWa2lgDJXGdaHo/GSBORFlbDrKQuWw+0EYV2q9dNJVl+s9aGfp2fY5vh5nFYJAMZ5dSAaN6scTs+dH8C1If7svpq3NF2r0loCgKKeKyejzqhHL4+27Fz81dMwn72MxomCr7Ex+r5df3sqe9arjdi1jfeI5vTo2tUoHCtokgdndrPrT061+eIxbGzeDNte/hY6ox7bti0DAAy7UgDLGTJ/R9esRvq30YJ1I58kTK/oTrT4QzxJv/47HwAAug4fw/VXfz2x+vjOJBaSa9HOsIbYqqAz6pE3R4O8OcL6+8SfWFybfkW0dh2mTMCotFxhbj0FtjSxRQQATBfTuHlw+V7Qgqcvi2LsWACJ37CHW3ub4/mRY5ms1cHhroJb1+J+C2YIrJq0DfEYGy3l/fMdz9ZBnR1JaP7HCACA5wHCGKZoHoCc7aHQKlWMJS5nPtGoW56/Cp1Rj/zZGpu1Lu57UroBWVUMWwUziQyFYwWLJi1vaVwOnVEPn1mJzAJ+ayIpNyWDz4eDqvDea29pbObA4RCxFHzu35qt+1sThfXqetwdQRMFC67YMqsz6rEvYS8UAcSS4L99IjeHtX46ieNLVuKFoaMgSzhrM17xsRhapYrLOwQAvbq+BHNbwlj69t7X7NbVKlWobBvEsYoGpjhBZ9SzHHcf+ZH78sZVoUzP5h25duq/SCwZFd3CubxT9taPzqhHXlQJDCt5y3dm1/WcFv9Qy724PHgJACAvqoTJLstx5sZycXIc/KpyplnPUe2dJ8Vd2I7fI4zFaMUf+wm1e2Rx96ukCZmLrq+Nsd3bB19Ag5WJSP+uLXRGPaJrKrgyhe2LkPLxctwZrYYiyJ+1uSO4CQBgUU4SdhQIsV5fBwSj3YcCMygAmO7dAwD07P4KGilqc9doPes4KlpGbAkQ79PVzUWHcwPh+/M4YgFp3IifJ6UKmV8QK9Pz50tQ5wd+XgHg3NtxMBUVIW30cu6+3+94m9vHqGxnI7fBEBfJySSWa29Ld2iVKjTqd4W7rlWqcHmePyunXETuX8A24VlK+GoFsj5Vw+9d4X1GWXKtUT/NhKNrVzO2Y23/4TBdTEOddeR912w+eYd/7t8aAHlGad8Dr7wMgMQFUxbEutuSuDFplSqO1U8X/AsAYO6tlujZvCNrK+A14T7mbA/F9Sgntj6ohV1n1CN9aRROf7Dc5p2Y96EGj3pEQGfUw5SWgZ6B7Vnb9Fm29/3i7Ltx3FpxaOaJw61rM4ueVklYNLVKEkMIkH1WZ9Sj8jcv7l7rjHoUh7ixY49PE/Dr9vVosTqW7cWOv/Fxh29cjWJ1r72lwaImZxA0LgXKJBe7a4O+e8TnciJLWZ/iZ0osl4T/TUg/xCRIkCBBggQJEiRIkCDhL4bkmihBggQJEiRIkCBBgoQng0Rf/8wgWcT+JgiYchqNFyeg58W7yFkguBCZLqcz94c9qxbDb+cE6Ix6+L6fyJFDaJUqWCoeAQAz90fMJkHarpuT2DWAmMP3XuWTQgNC4HN5rwj07PEKgjaS+kXt+aSOFOZDxGWyYUI9VP7mxQL0xS4EWqUKrsfdWR17Jnh6jroBaZUqOGv5xLW0vV6dBnLjAICm/S8j70PiCjAk6TJ3zdptoMeVfgCAG+p7dsck7kurVOHBS1EwOwk7wZYWnqyc+5pE+P1IEl/f73gbvToPsuvaSAkVbu1tztqmpA/dFr2DrE/V2NLCk3NRC3wzyUZ2x4PEnYq6jNHkog6HBFp5a7cerVKFZt+eRv6Prbh5abmMEFU4NGmMnj2HwmtOAny/umB3TgBCsrG+uTe0ShVK+0cCZhN0Rj3ujFKzpJZiZGwO447fzSTpFQInnWSuTAAwpE4xtEoViodFo1Uq2Y4yvoqGe+2HbLzVrRkACNh2FxZ1G+YaKF57FyfH2awDrznE/aW0fyR5jg4I7o80IafPy4SoRH7rLgBCLEHPUdISnw+I++e16cQtsNkC4hrUMKEeJzO9B8sCg1iS44tvELmcis028xbwGiFAuf9yNAqGksD9hiuIG0vvWmVsPAcfOmJEGnHndXhoYWOwF/RN3b4arhCISoo7EHKXBbdbQBHgC/lxwd1O9Skhhoj/nRA2BEyzJVjQKlXIHGObIFx8Xdy/NXRGPYr2BcJ0OR2X25NEtAGb7+PmJD65LB2T/I8zuNq/grW91OMkN8e0/FIPgQxGnKRdTOqSPVABABwxC4UyyQU3YwVXz6AJKZz8Yrc1WsZJ5shdBwDDSOL61nncOJv5EJe1Xp8b8o6j+boYft6qXFDdTtRn5RRJwrPqsj0JnceOw+YN37J64v4yv4hG0GKSuPvgQ0e78tRfl4g738hQMiiK6/sdn2h0WDwdQd8JhB/h4/Vcsnjm3nrhCnx3j2cuuBTUndtaNp9kQjzx4sUiGzdFsSsZJZ/qduE+avfIQtCEFLI+zxzk5wlAxquE2Opw69qwh87jxsGwMgLdB79u9zp1baR4YC5DUGwyJ9OHWadtXS+r3M+pLIZVERyhCsWg55OgCGmO2TeJy7Df+4Jb4r1XSd8PBwjutaU6X+iMehYWwJBM9n7n3UK6FPE85M8SXOMcuhGijdIutwEARSN5chZaL2vQSvR6bgA31oQ2NWC+f99mHOUHfZDWcSM8P0nAEE81HJo2QdDEZOEdZLF1Mby5pwW8999HfjcFu9/y+m425ahMOqOeEZpolSr47hnPZKXu+rSsvJaQqJqSuXguTGDjvz5Nw60xSoTzcGAUbsWQ+fD+KIGTQ/w5PaIc8tq10cM7Eg6lFtbWeq8/7O65j9wsUBxRsuN2H8Swz7cmqll4gXjs9uZBwv8GJIuYBAkSJEiQIEGCBAkSnggSWcezg2QR+5tgl4FYDKa65cBntqAlM3dQIXMR0Z6Eb3sLgZNPQl9ebrcNppmsssDUX5doo62h2i4nGaFZFZMuUDjFp8B87goMIwgFsUOTxgCA4FTyuz3rMzXmZ6fg1+CfoTPqcUtzF4da7kXDhHocgUVBJSGTuDeZBH5ba5IzvomGRdOGXQuawFvprDX8WqUKpvQsVl6rVMEQF4mSQVH4ZDihzd3WQomi19U2QetMA9eVJwWxN3/ymjVZ+To/nITv+4nI/j7UrrYqcArRVI4xZMNkyKxWowYADfuSpK3tp05k49G/H8e0ouJAcWuZxJ/jf9+F9A3hqOjerlrLn3iezWVlaDb4AlfGIaII3+cnoPL6DZjPEhpx07170Bn1aH7KkWtLTMKiCA7ktLApHy+H/6vCfXLw80Fl13BkPr+ek4UGkVuDzrPrliRcCDdDq1Qh8L3T5D5FtkbhWIFmOn2D7Vo1n70Mx4JCXIollMAjcp9jY/fdPxbq6RNxd7iQOJSCjiFoNLG6TSgQyhTtCwQg0LrfnMRb28YYsgVr7Jd8gtjNPkcBAP4pNYV7GdmalJcRC5LfLmJFrfPDSdwdoebu+c1Yosmu8cCEJl8LbTc/5YgevlFQT58IAPgysBU2Nq+ySFOLmbpPtZYXCkVLgcJd9Uks/gityZLxAsCKux5Q/nabWAv3jLdpRzyHgSNOozqI58v6WaT3h9LU0+s5/V3RaFkCmw9qSdcqVcidp2ZJjWl99xNuCPp9hI1W+cGQaHb8SEsIboImJrO68b2+AQCc+GYFpmdc5MZkjL6PRnFk3m9MJvfihSEjyd7RqgVn5UxfHIX2UyfaHT+zlu1LsXt+Q95xFMwULG+yCLJGRnp1gFmkHnU82pR9/t73MCO3qewQysaTP0sDp/gUjPTqYHMPAMA1XQZL6kVc3x2MCig4WfJnCzIkqX5E7Z0nYVjTjt3rO6PVUH6eAMPryzE/m1gHL3zRBvvT/gBAyHfE/QXFJjPLL8X2F6IRelrGjR8AIy/4RUScYE9+h0Op0CpVLMmu9VxWt+fas8SGz0tFdp/VjGSGomFCPVjaq7hUC1qlCoM8CWlS7w79WdkthbzVVqtUQe5Sh33WKlUIGs/fdwp9GCEzWtCIWLRkTk7sWuIXK6BVqrgUBs7abLLWvo1m9yR9cRQ3tgcH/Lix64x6+Px4ExcflfLvf7MJiA6F2wbh+4Uhjk/HYcoQPFE0Z3kvGgDsPh5ttZvbD6xTYAROtiVKadTvCiwp57Gwr5DqZHPCDuY9Yc/yvPrTr9m5FtMvcBZpWkerVCF7gz93bH3vz74Tx9r9psiHla3100k0XJ6I4FV8KhPDmnbk/3JhfswlJcje3AKnP1jO2vq9jJ8fet7v3UTEN49n59zXCt/FGq5IhMK9Prv2TU71ScYl/G9AsohJkCBBggQJEiRIkCDhySDFiD0zyCwWy//AMP++uHfvHlxdXdEZ/eBQFWtg7hQGxb1HjM4cEDQ9MicnWKwsYtYxAfZAyzwcEIU/lq1ET79omMvKUDwsGq5bkuyWzf5EDcPrgvanujatIQsLYbIvyknCOz62sRiF49RosPE0NxadUY8H5jIM8ozGtIzL+DogGPJWLZD1QQ2kddyIKcYIpLWrQNHrarh9R7R6yiQX5H7YHI4HCYV/8/Ux8NtWBPOFKzZaMbFFzvo/QOjES5QyeM1L4LSdFKX9IuG8R9Cs02v3hkaj7rYkuJ9wQ2H7Irged0dxByHJae48Nfw3XMO+47vhu2c8svutYm3f2tucWcrsIX1ZFOpeUUA/Iw5aJYlBuqW5C4AkjU3vvAF+OycgcPJJ7CpIxgDPSNtG5AqiDQUwK0uPj/1U3GWXPxrgfsfb1c4N/X9jsgaNl9gmXDWsa4fsHmuwu6QOlgcGYEbmOcyaMR4ue86gaEhb1NuUCMURJUxdjABIgurK/ALojHr47ZqAwEm29N3VrWd6rWBnCDwHXbR7j2+PV6PBKrI+Op4rw+wGVx77fOT90BqX22/iysjCQ2BJFZ4/ea1auL3DE/VfNODGFA307wsaVocmjbHvtK5ajb74/IMDfnilWSp+CXFD7jw1vD9M/NM61vPR8+JdfLe8F87MFJIs27ME0HPy0BYwn7ticz+Lh0WjRCmHclHCE+0hAIkvcduQCHmrFjBfuEKsfFGtIT+fCXNJCSvX/JQj0tpVcO1aW6cft6fc2++Puw9qwesl4ikQkjgMdXe6oO7WJCzJPYFhc95G/fWJuP6mBmffI8+GuYMK8uP6P13H9mBPzl4tOyH+0jEUmR5iaPpLONBiHyd/+NwYDJ+yH/tD6tm0l74hHIEjU23OW8+D+NzRUjk+8Q9lstwZpUb99YnVthF8Yji8Xjr/p+MBCGW/otwM+R9ncDNWw6x+1mXvjFYDFqD++sRq5aR4kvVO8XBgFBfnlP9jKzQbLMS5iWWwqNtAlnjW5jz9/E1OAqb6CDFQPsnOzLpmD9Xti/bkTf+uLbJeWIdWScNwIXoLevYcCvPZyzZ1FQ3cYbpdaHP+6k8h8Bh4kcl68w0NGi1NYO8ze/2W94qAUzyxoBl3tYRywCUA4PYHnVGPgsoHGCOyehaOUcN9LbmeuUgN/3fI5/uvRHMpQ7bkn8CwZqJk45+p4fcev66Kh0UDw26j/hQTs4rtvZqCvh4R0F64B12rulC4ucFUVETGH0ziO+1BPD6Fe31GmW9dho5fEejHPF2qe1arO29YHomgGNt3MkCSaNO0AdXBuk702QoktXG0eSbqr0vEtIzL6FGr/In2EAAo2heI5LAfuHM7ChIRvn0avPZXwPG3VOR8rEYtowyNlgnv1a5NQ3AUe1BcXIy6devi7wb6nbX1mIVQ1Kj5H+/P9KgM59fO/NvOx7OAZBGTIEGCBAkSJEiQIEHCE0GKEXt2kGLE/mbQGUnyywP7tiB7Wxt2nmqDrK1hGZvD7GpoCmZqkPdDa9Zmj74kWWqddMJSlzGP+GW7J17H9TcF7aJY8xS4NJe1LU4mSxMmVqcZspy5CKdjTbAl/wR2FZNEoi9eLCL+7VUxBSXdH8BSXo6be1oAAIZcJj7mgzyJ9YxqD9PercUY69LaEdY0ag3Lma+GMfo+Dm9Yw+RJG7WcaOphy0hE/xvf0UA7kCTtjXpfYChzX5OIyxOJlcH353E2vua/L1/Fyr5o6Mk+u+QQX3wP57sAgB1+h7j59P4wEZVZOQhZEougmGSELIll8jTsm8aSPzZMqMfimYzvknNTOuvQeInA5kStYQCQ3nkDtEoV88fvMvNN1uftn4PY547/x953h0dVtO3fm90UCC1AKJuQXgghsBBSdgHpbAhFEER6lZIoiGLDgqioKKKImFCkCFItIJLAIkgRUgiBJfRNI+3QCQkEEpLN/v4YZs6Z3Q36fj8/Xt/3O/d15cruOVOfmTMnecr9GEVLhdQadnOGFnNzzuFu95tMNnS+5l6dWTnNIuI/T61hUnkaBCPyY77FuMs9sfhtssc+8e8At/gCWKqqUEqINFF0pwkrn5S+G7emktiooDmnWJ+KTqEwCEYEbObjbpRB/iidKLJMAYDn8HPI/oYk2aTypOPPXJDI6v7RwQX9npvMrSMXNwHAcp4k5bw1TYxv3PvrJtT0CYdpZQSuv6BD7f37LCFwy2ViHNOVnSGouXoNgd+L+yjvU54RiybnNghGmDe2wO5QN5T8HIqLzyeymAuKXRX12Rwvf6Rlz+OVV8RndE9oE7RYnoKB2sGsn/vPROHucyLDmN9vU9h4arPE54H+7nBSgcab0nDmZdGqJryq42TzwODL7n2aT/YYjS+hzxgsFiAti1nD7kwgc6fPqu/uadCcIu3RZLZSVkIqFwq6hqkdf8KFrhvxxeVU3K99CM/h59BocxpK3tRhlndXZHxE1rjVVyl4Ko7EsjkcNdrMEwCS7rtwba8vPApr0LKjLwroP2Ii9GoNzHfKyJyV9WHpXYJ2KeO4tpuvTMUct8soeYOXm2lFJLOG2YtTopDOXa/W4NNhIxmTY/7WDsj4KNGmvvQ7tYYZBCOuv6iDUqItLqvlLUSO+zPh8AdJxutyR2TrNAhGTCsSrSUZCxOZFc46Hkd6zR6k5W3Gvexr9rlirx/O675H6UQtN3+AMMJSa5j0OkNkGEKc6nOXLkc+wNYi0aJweaEWn+anI8JIvACumR8+dh0eDI2EMjgAABA48STafxUPj2eINVxqDZO2ceW5YO47rX82ehPuPxPFxt1iORnX7B+ncH1SOV2brWPWMIeOITgTtRm5S6LZe0Par5Rj1SAY0WxNKsr3kNionLHimZfyxQquL6k1DACc7ii4dgs+0KLxpjQ0js1B8pEd2FR0DAbBiCEeEZibcw4H9OQdbS4tRdE7Opi+7YLkAz8AAIre0SF/kXhu5iwVz6DcJdF2rWEAoHtZPOOtrWEqDzWTH41P3nrXze4aUmsY7VP6N9ODVrW4Hq+DaSVJIF3vcEuoWreq06prEIxI68izihoEI4u1p3+TUFQMj4JpXbjNHqZnoNvAbK6dB09HorFDPfjPTWMJo33eTkWLb4hHgqJTKILWx0HG/z3IFjEZMmTIkCFDhgwZMmT8NcgxYn8b5BixfzOov22pyQ/PBne2W4Zqimp7dILD4VPsGkXYF/FQf27rC039nQGgcnAkHB7WwslAWOKuv6hDs7OVUB4izGflY6LRaLNtviDpGCioNi/oyAT4LgVuhboyX3V74wZILJcQfbfO+4+rC5D4rWbfpv6lWBaDYERsx36ovVOGvQUkt0nuZg1j96NxaLSs767pyB+yCv1GT2bylbbVdc5MXIsEY9SyhiIiDKUhDVCrAurdNuNIwiqb+CmpZuxYZS0+8OPXem7OOSwJIBahGcVaFvPgeKg1qnte4cYD1B0TdPVlHWPbo7EBFSOi4PqjGJ9ROF8Hrw/E/ULjDvM+08LvdbKO139pi1MRW1m72Rs6I7PXcoxqQywzRe/q0ObDFFzZGYLWQy9wMRPtMx1wNrwWBsGIHtOn4/CqVTbj1as1MPfqDOXBk9z1PuOmQvU7b03QqzUs7kEaFwEAxfN0LP8XAOQv0sJXkpvHIBgReepZxtBnjdKkQJt70n7VaQ2xzusPzjLg+8t0hLUrxK7AvXb3ooOLC2orK5GzsRNy+6yDXq1BhNGMhS3O2MS7WH/+M+R8Gc3yej0w+MLlg8ZQHDOi4AMtFGYFvN63HxNhrw/TunAETc7k7mUvi4L/9ir8tn09k4F1G0Vv69DmI9IPjY+sq4+bM7T48a3FmOnd7U/nqWzUiDF3Bm2IQ3tdDn4O+A0A0G/0ZPy2ZR0GxIzCnr3ivqyrXwCwdNVAccyIwh/C4PXsGXQ4qUBWZwtXnsbwAIBF1xGKlNM27d2YqWXMlACQXHISsR7881s1MAKHVq9+bNybdH7Ba+MYO65pRSRjdQQA5UE1Llz0hPqgA8t3ZP3c13bvxCxcFJc/1MLn3brPSBobRu9L97Y1cpZGI3fkCmaNzXo1oc61Syg4injvbtxcpVD5eMFcLMBSU8Ou7S7JxCCPcHZWJ5/+jZsfbSd7WRSShnyJOT465H4ezbEa0vLXZuvQcplt7CoA5H+she9bVjJRKGAoOYV2ifFo82EKrr6kw7hpBsbKaO+MFV7Xoc2KszCXlyP7q2gEvpQGZfNmSM46wM6GuVc642y4bW5Aa9AzTOXrjZr8AqjTGqKpYwWWtD6Jfs9NtllXCuu5eaY1QHH0PW7MABDboQ/MN2+x8tIYMUVEGPb+stHuc20NB1dXZumuK0bLur5BMCLGOxKW6oc2ZWlcII0RXno5BUPTZzKPlz/rJ2+zBh912YGe9QSMnDmHMZJSD5Xqnlds1o7Gd1FMvlSAdcHeJM+bhNlSOtc/k4v1fGl/0s/07w2Aj3ms7t8FjvtOQBnohwX7tiHS2ZGbb8H7OhwftRxuQXn/2Jgo+jdrh8lPLkYsa50cIyZDhgwZMmTIkCFDhgwZskXsb4QcIyZDhgwZMmTIkCFDhgwZTxjyP2L/EAwLEhPeWpMJUNP1b1vEJLnSoOl7AcTlI3exlgXLPhgaydwSAcDl1+NwMpzAg6GRUHRpj0NvLgF1SzQIRqR+vgLRp6vrDA63NtHr1Rr4jspC8k/ruWSFtM6NOELGkLeZ1Fvn9Qcj5pC2ARC6XWmA94RLRdCrNXg/LxM5X5L5NPs2Fcp2QTYuFdJ+KUEFAJhv3GBuiQDgP8bIEj133vAyN4b8IcR1LneqAjuKRRcher964i3kjOEDoKWwZJxB+qJENF2bino7xT6V7YIQNOUE9GoN3s4zMveDri62j92SgFDcnE7GJ6Viru55BRXDozDywlWofLxsAuhpm7RPaRJg6o7y8WcrAQAKRycYBCO8PkjBrWkkUL5ycCT2PiJiCEoowZW5hHigxdM8wUPghJNwU4pB8m0+JP3cv08SklK3RINgxJLWJ1ldl92iPKXJuwGIbomPEh7r1RrmlqgMCYRerUHbb+NgEIxouDUN956NQtPz9zm5eX6SgocxEaxv3zdTbWRTl1vizelaHO/0A/tOA70HdtYj6AghcxGi76LvmCmEbGJTHNkvT6/CrsC9rJ5BMLKk5wBJoA0AllInNtcd27qj84nnWBl6XXhVJK6gJB8AoHRzgzKEJJY2rYjEgHN3AIC5JQIk2aviGJmr9/xUeL2fguyvo9iYbk0V27N+bvIXaRE0OdPmXuDsdOaWGNvnWQBATe9w7jmjbokAmFuidTv5W0nC4eYrU9H3yCwYBCN6Pj8NAJD7ebTNs2sQjLiwNIi1o/S/h58DfoNercG5hw8As4W0n1OIgboh0Ks1cD3iDgB4Kp5PPE0TnVPZUFKLrM5Eteq7k5S/9bwWZmex/30/fgcAGHe5J2vr5gzeLVEZGoxYj85s/Jc/JM+RQ7Wt2paWoXJJvniEzbnN/ipcm03cfKVuiQBg7iUgKO44GmxPQ+XgSE62tP5v28R3QfZysuY+76ZyZaVjULYLsqGsz3xE5lTbvRMjiKDIHSmed62/IOQ0NMktQJ7lsmRCUBHv3Q0PhvL08AUfaKFq1RIGwYiklF0QZov3DYIRgzzCoWrjCb1ag+TTZJ0HdtZD2bIFm4NBMKJtWBHm+JAzyf/VNE6mdJ4tl6VwY5fC9y079P8WspfoGeZcZsH+9g1xczpPsiOF57KTMJeXAwACXyJ7/sb6ZpxbGXVLDD8luidSQhI6LwA48SEh1rj4AUnqu87rDyxpfRJ6tYa5JRoEI3I2duLGIB1TyZs6rPEipDM3fw1iY9arNUjOOsC5+EnJOiwZ5FmgZ42DiwvrrzQpEDd2BTMZS1317Lk1KwMImU9apZm7t7dAsp8jw2BaTc5nmq4gKX03AGCOjw4+z2Xh/rAoRnZSbTGj3uGW6PRRPGuCrq3fGCPWBPliUswUHFq9GtGnq9nYqPu+Xq1B+2XxbG9mLEzk2lgX7A0AyB+0mhuzdK4qTw9uzldfIvsv/2Mt+7vGIBiRuySa2yv0s7lXZ+T0XM/6VaSeRoeTClh+Ie3DAAEAAElEQVR0HeG4j4SGJB/+Ge/6RnB1TSsi4f1eCg7c/89wVKOsiU/i578d8j9iMmTIkCFDhgwZMmTIkPGEIZN1/JthL6Ezxaf56XjDl2g7AzOckR1hm8iZoq5AamuyBwBcwmF7gacxQ8bBcuKsTbAqvV9Ycw8z+06E2ZRrt09a7r0boUjr6Iirc3RotZRPktw9qxJ/dHBhAezhp2qR2cnBpp26goorB0Vy1pa/Qnhw/UUdXAZeQ6MBuTAIRgwIILTkXxccQ5Cjq925SjWe9PeVuTpkzU2Ar2EqsypQMom6gpmlbVFI5e738wy0MVjg8iuvHaeoGhCBQ2vskwFI53/5Iy069jChrNstJluVrzeSjv0CAMiseoi3fCMfKy+Vrzdik4i16vNUPRplOWHtnKU4V6XGpraedokmpPMK+yIeLrctjPa3LrlKcWeCFumLiPZyTH4vuKoeojBK1FJefUmHVl/ZJh6WkrDYm0/2sii43FAy7XddcqscHInDK3lSkbxFWvi9aUejbgeKiDBcHtQQ3u/ZJso1CEbEXoplCa0pVB5qNPvxHjZ4H3lsAPzdUdFI+WIF+66ICGOabUR3ANLqDnZXurszi4O9+38G6XrRxKtS8gqDYCR0359ayVeSRJy2EZY+Buph52Fa2wVRwXm4dr8hHpqV2NZuA7rvn4P8GDENBT2j/ipJAEBSdnh+zMt/YLehMBcJsFQ/ZG3mfN8JAeOI5cH1iDsqnrrBxltXfwbBiKWlPpjjdvmxRAdMXkPHw7BzI/bdd0T/+tWPfW7pnO2196/gz9bW3rP3V84r6/LtUsbhvO57dPwsHuXtqrGtXwISr/XG4UuBCJx4En8Fj5tnXQQI9uZn/YxSMoR/BXbHcsAT6FNs96x73Ofin0JRc7ERfN4Wn4+IkyNZ6gsppEme/8oYaXLp6NPVeN/9XJ3PtPW7EQAWX07Daz4Sgqq9zyNoygmb84Mie0Nn4K4jAl9IZ3V6TpvGCDLyNmvg94iMAgCuzNWh9ZIUbCo6hqHnxsM1Jg8GwYi9950RU5/83fJXn2PpdVrP3nd7cwcAVauWqLl6DYBIlNHhpAKLW52qs5/H9e//+2R2XgDAQ30XHFz3bZ3PB/v+SLb0DI5t14OlxHgcaizV/xEJnTtOfHJkHae/k8k6ZMiQIUOGDBkyZMiQIUMm6/gbIbsm/gNBNTEaZ2eovNvg2mwd0hNsqe39fpvCtC9V+3zstkOtYdnfdcblj7RQNmqE7X7Eh3zsxWLo1YQW/8pcHfNxtpw4a3dctK9pXt1srGErCo7alEvr6Ijabhq0WprCXQdIol2DYGR+9x+35LX6BsGI/Op7TBYGwYhzDx+g8AcST+Sy+zgUjk4AgK8LjgEAHNrzMWjWcSit1p1GowG5qBoYgYHawdiTQ8Y1y7srV4eOVa/WoGJElI0cWi8hMRP5+jXsWsOtaSiep0P7tLGsnfxPSHxAv9GTEdtzONdGv9GTWTm9WoPAF9Ph8utx5G7i4wIA4M54LZz3ZGBAzChWp+RNHftME2wDJEHk5dUk1obKtuZyIZvTW76RXKydVEaDzpUCAC5/3gAvNCnCC02KkD/gW7T6KgVv+UZiQqObLBGzvZiMuVc6Q6/WwC27hlEG69Ua5HxP5lT0ro5ds0aTDalM5ncmN8XqNsdYclsASHhpuU0dAIwimCbtVbq7s3slP4didh8D2nyYgh5ZD+xVZ2OhlkiDYGRxE1TTLp2rQTAie1kU9x0A9v6ykbOGZS8Tk7qSuAHeGgYANSUCrmnL0S5lHFsHe1rfhlvT2PfczRpmDVP5eNlos621tFJrWF2wXsu64m1o4lWpNcz312mIGCYmFmZ1a8W4Eb1agw7HR6PNm4TSOmjKCZR2vQ2nfgU41uFneKoasBQPdPzb/Q6gR9YD6NUaqHy92RxuPW8/7g0AZw2j93vuOgNL9UMAYBa2gHGn2Fgvbwngxkv7jzg5EsqQQNwfFgWDYETgxjhcf0i0sbcna1nCdanMqNz1ag1wnKQqqIUDG+eQ87fsytUeanvw54B0TWgCeOvrdOztvonHyzkkEfHdUdHsmajLMi1N3F2XpYdiYORAtBlxFv4HJqPV0hQETc/Au74RWOf1B/L6rQVALAYUyubNEJJpq++1blcZEggoFNx9OkZp4nK6/vRssH5GpdYw6btDCuvv9s7CXKOnzfytLTMU3WbPYNfPaTfBbws5R+m8MzpvhzUMAkkQbN2W9Mwbdv4G9/7Zs2cLit7VIXVmF5txXZstxppSa5hBMLK9Qq1htHzL31XYWpQCReZFm3EBJCZYag3TqzVwTsrA7clE/n5jjBBeI22rWrVE6yUpuPdsFMa26YqjHX5m/XwZEAK9WoOAQ5Ng7tmZ68OUGIn8RVrR0t8plBtLzMCx3Lj0ag2iXyeJoOkZ3T5tLCdDpbs7s4YBgCKVpKPI6myB3qMT155UHtaQPstSaxgAOBlI3DcclFz52m4a6F4RE1XTs5mewRYfD2LZPHeHJKqO7mDTr4z/m5AtYjJkyJAhQ4YMGTJkyPhLUFgsUDyByKYn0ce/G7JF7B+CHaYz7HPvCVPZ55qCIhjfTEDGR4nsmkEw4uYMLfL6rUVpEmFWc+5/GQBQ3TeclSuuIckeVZ4eyOu3Fj5vp8JcXs40PZ9+N5JYAA6fwgN3C7Os2PPNptd0L8+EQ8OGNuP3dWzAfacaTcrAJr1OGbai3ojj+qO/i2vuQa/WYKZ3N86qEOpUDxe6bmRtF20lc58xYw70ag0uP9OU03RlVj3k5lCzi7BUuZ4sQk1BEbtOtcdUC0ZZ4gyCkSVCpvccXF2Rs7GTjeYYAJ4eeRSez2Wze77ziLa2uGc9mE25nJbNOnH0jV3BAAD/sadwe4oWKh8vxmxlJoY/1GZdhEP7ttCrNfBYJEnMOuw819byBcvYZ4NgBB4dZB/mZxAr5HkTNyc6j92hbgCAapPoh22teW2ZlMc+S/3zASDtU7Ku9X4R4xMUnUKR23sdHOrXx/k4khT24W/eZN81bIi7o8S4BdqO2ZQLvVqDBtvT8OBp0iZNgK1Xa6Bs3oybb/Y3UVgWQKyh5hs3WFsez5zDntAmsHTV4HCHeiicr+P2mnSvrC88ymRBWQ8NghH3RkYj4uRI3Nvrx8oGzk5H+Zhobg9YWwkDZ6ejfI8/a0floYY1avqQZ7VBvSr0njAVerUGAwKJddbBxYXX9D5iFaNsXACQlLKLa8/6uS3f42+j7bUX1yDdx3fGa+FrmMoYNqX7w1puerUGQTMyWKJ2qUWLYuSFq0guOYnWQy/AfCnH5n6PGdPRf8RE9n3sxWL2+a3ml3Blro7FNwKEPdV6vgBs2E4pXmsqWu4XX07j1iu2Yz+4J9paPfVqDZoOMsF8IRv1d6RjRrEW2eMT8XHLLHJvXSrUn/FWfr1ag4FRg2z6/zIgBJc/JM/x8u3EsuNzvB4AoOB9HSczg2BE7FPDoPjdA3nPk4TUFLGXYpH3GWlHmsDc3vpWudeyuJyGW9Nw4SMfm/LSekqHWv5+ZBg6LYy3ayl4+jdybgWMP2WzF+g8nAwnxGf55i1cCK/h2rBnqTJfyIah5JTNGPVqDSb+doT1deKDRHY2dM+qrFMO1jKR9m3vvUav++0g1q1XB/yKsC/jbSzV1nOVviPo9eufEHleCK+xKUv7Cv063u7YGmxPY+V2tHOHMKiGa7vNhyksObC0nvHNBABA7hLe8iXdK3QMxfN0SPtsBdyU9Zm1GAC+uJzKjSd7g3jm0vrNT95hn9WLSdtJJw0AAKE/mfeY/F6sjekm8r7wH2OE8tBJ7jzJf3qVyHIb3QGWU+e4sUq/UzxoRv5kpWe0xzMkVm6gbgh5t924wepL5QAAX18+yu5J53l7itauF0BdXhQUDi7OrJ12CfGIWp6JlC/qZlfGxTzo1RrsCW2CL0I64eXvt7FbUsZnVXKrx/Yr478PskVMhgwZMmTIkCFDhgwZfw1yjNjfBtki9g+DQTDi9w0k9shv/xQA4LRIVJuT+R7RDB7v9AOnZaZ1lYF+6LPxNVyP16GmuITVDz7hCGWjRshdrIXnJynsut+bqTgTtZn1J4VerUHM0+MBAPdGl2HPpT/YWArn28b9KJvxlin6mcYI1dtJtNfN0q7hRhzR8lJ/cINgxFSvbjCtisDlhVp2zSAYEbiBWNC2FpFxew4nGjOnvYTJ6cLMBG4cc+aS/EWVgyLhv20mHIcRxqKOyQKn7ad+7FSOqt8z2Xeal422W1tRgdw+JIfPlVd0yN/SEb4GYsH80dAV5cM7s7J3JhD/9wszElDyM+//rjv9EGXjolnZk11E7VjGwkTUXC6E3xtEW99sDfmtatUStWcvMpnE9nkWX1xOZZpMKudIZ5F9U6qxi3R2JJbQ/PQ64ycUzs4YHXuEk0fxT6GsnNT/nt6n2vMG28WcUtnfEW1qwVskRmZPDlmzO+O1cOpXgNCv41H4YhinQdSrNXA81JqLk6DWNakVzHzzFhTOzux74AvpyP1crHPlkUXVIBhR8L6O5ZPyW1uA/s9O4vq7M4HssUle3WANOqemg0w4Jol7AIBGm9O4svb2e6MBuaxOTYlgU/7ARvKs3rjWGI77M5G3WcPy2dRWVnJrar6UY3d8EUazjYWQgvZvLybm2iwdHjwdye5df4FYZ9Z/uAT5+jWwVD+0sV5dfVm04NB28zaL2n7F72L+HVpve0gr9Js4zWYMDq6uAEhs3r4fv2NeAJvaerI+9GoNsuYSTX/R23xMFu2HjqO+g5PN/WHnb6DP+Kl4qCd5xTpYMXwln/6NfR6R2xcRRhIndns30U6XTiR743LkAxtrH82JJ0VNkWjN21WSwT57HCZWB68FKaw9ALg4LYGbi16tgTknH5beJQgYfwr7flgPRZf2AEhuMQVvWLK75wyCEQFzRMsfAARNz8DjcDD0F76942fQIiEF2d9EQdW6FdfPTyFiPiw65uEXrpN3wXtinJI9C1XRj+2Ru1iL2HY9bMpYWymkWBPka9OuQTBi96c9AYDLnSeF5pN4Znmn1mnrctbtBr9JvAt2XtWg9bEKG4swrW9tfb49RYxdfHC8uc0cek96nutLaqkCwOUhlPYXOCkTg86Vsr0IAPmLxM80zybdm/5zbc+lGzP5/Gj0vW89r1d8tFy9vL4k5q/kDR1eyDZBr9ag9vQFboz3h4mxsEHTyD671bWUyWhVkB8qB0dyMq/tJvZrEIxYU9aKxVOZEiLhdqwp9GoN7j1L2q4aKOaJbPWVffbbmsuF3Hyszy5VG0/M8u5q971X1r/CxkqqV2swrNEpmFZGcP2Ye4mx+rX3xZyW5+MTkKFRsn5r+oQz62Svc0/DIBhRW1kpnh/VD/FlQAjzeskM3y6+Y2Ov2p2jjP9eyBYxGTJkyJAhQ4YMGTJk/CU8qWTLckJnGTJkyJAhQ4YMGTJkyJDxt0P+R+wfgmFBYewzNZMHThCTY9YeaGNDDgCQpMkUUnN78uGf0eyMBS0SUpC3iASjmlZE4lKXapjLy+H/WipM33aB/mw5o7jt+Fm8TTvUVL/3l424+WsQWg/liS0eNq3l6vTIegDzrdvcOGPbPoU7E7SobGG2GaN7InGr25u0CXq1Bt1mkWDpoOkZuDQlEcrQYOjVGmwob46glQL0ag1GteHdlK7H61CwPYz1qejSHm/nGVHvCnHvctl9HI4eFYzOnSaOpq6PFDdmatF/xEQ4HxaDZaVuPnTsMV6EPrj1FylwOeHKkjr7vpmKhltF15D0RYlMTo22N+TcJVI6OqHx96Rs2VjioiglQbEXJC51C4zt2A+KB1V4xUfLuZRQmVujzcIU9JoyDXHZOXgzsCvn/iVFzsedkNaRuDZSMolz2k1cubJxfED4qXcSuDYMgpEldvV69gyq+4azuTf/owQGwQjPT1JwbpZYzzf5eQDAjbU+zMWRUoQbBCPMN28xwgqDYISlqgoqHy8mn5wxK9jnrjvnMrl7v5eCuOwcZG/ojKTjScxNkeK51w3cuDucVHD3lW5unEyr9vnYuCVJZUHds4adJ6QhynZiELZBMEIRHsrK6tUaKBydSGJVANk919ukYNCrNTCt7cJ9B4CbM8iaL2xxBuabt+B4qDWTcf4iLXNpA4irprXb1oa5X2Dcot0YGBELANj2+mIAQMoDP0wrEtM5UFIBADj9mrhen+anQ68Wk7rq1RpYepcAICQTvjunM3prx/2ZbNwFHxB3XeqCCQC+v06Dywne9ZKSEFE5tfmIuCSZe3XGxqJjNjKicjIIRgSfcASiO2D5d0/jwMY1jG5ar9ZwqR4AYE0hCeCveKE5MjSEjjqj83ZkfxMFt+9siUGojBUpPGGCtEzZuGgM8Yhg6+a4n5wP1KWsclAk/DNcoFdroGzZgtWr7W6buiJntEiC5PtWKisrvC66Aapat4Jv8vNwqF+fO6s+zU+vc4zS79b7OPubKCAyDIEvpCMpcy8uPLwPa0hdgX8KaQG9WgOv9yXpG76OgjJQJLgpnqeD10cWWFpVIvn8Ya4tZRBPKlOX2/SMYiK/wAxCktB4EzknAmels3lI6yirLGSv3b2LT4N/AgAMjIjl3k3W77rau4R4xtK7BIqU0yh5gxD8xLZ9CoEZzqyeXq3B16WEdAiRYSRdxwFCeU+Tx9O0HQDsJpmW9p100kD2cEIkd7/wPR12h7pxe7FRjlg34OU0G1fPe8+KlPftEuNxcj4h+pKeI3VB6e7O2vbdNR0A4PFpCr4JDOLK0TL1d4hkVvZcPjcWHUPNCzcRG9ab3XM4amRl2h4dj+0hrXD9F3LuBcUfx1bf32EQjLjrRZ5H56QMG9dga9jb1wNiRrFxUbfhHtOnQ6/WIMY7Eg4achYEvnwd2d9EsXOFjn2Ojw75g1ez9m5N02L/prVcX9nfRHF16D6sfK2UuYk69Suo02XXJ/mvEc78I2F5gj//5ZD/EZMhQ4YMGTJkyJAhQ4aMJwyFxfJ/gKT/H4zy8nI0btwYPfE0VApHmFZHsKBXTsP0zAQYft7AtEJUe3LlFR1af5EChw5tUZslJmesK/j5ys4QtB56AQpnZ1iqqtj1W1O1aLYmFSGZKixtfeIvBVLnbdYgcH4ZzDn5rFzQd3EwTUyE787pCIo/zrUBAO2XxXPU61KYVkYgaEYGp31WNm+G5KwDXNnczRqWyNcgGDEguDvTZN78NQjNB5tsxqpwdOKoeqXzqu2mgVNJKSr9mkN1INNumezvOsNrmxKHvl0NvVqD+8Oi0OO9FKZFl85Hqp0NWRkPr/ftzxcAfipOw3DPaJvr9sagbN4M5pu3cGNXMNyHXIJpVQQ89zgwraRDh7ao/fIe0Ke4zv62FqXYWBTvjYzGjWEPYL5WD54HanF45SoAwDM5/VDx1A2bcVi3Tb9bumqYxUnl6YGa4pLHBuEDQMH2MHiPPMNduzcyGseWrmB9+f02BW4pzmi+MpUrQ6merceUu6kT/MeeYtdM68KRr1/DjeN6vA6O9y1wWy/Sl1u3Q/dh6NfxODeLJ4KZfKkAoxqWIrf6HiotSrziI1Igj7vcEzd0d+zOV3hNx2if/0yeBsGI2I79GCWzg4sLo22mUDZrCp+995H1aUdGo101MALOSY8naAAAZaNGqN7RGA59inBlrg6tl4j71KLriH0/fmd3XIou7WE5cfax4+4zbipUv4vPktLNDebSUji4ujJrGLU0UEs1ANzb64cGMXk2Fg69WoOvC45xydfzt3aA6akN3HpFvz4TzY4KSErZZbsvPo+G/6uixbquvSnte0D/UYwgp7abhmnzKaTzUYYEQnG/kqXGqAvWFlXaX8kbOjjUgFuHP3t+DIIRhTX34KVqYNMePS/qqidtd0fxcQzzjETjo81Q1o3UqYqNgHOy/X30V/au9X269+098382vsdd/zMZPa6Nx9V1O9YUpV1v/+m8KBw6tMWevVttrhf92B7ndd/bXFeoVNhbSCxlj3vf0v3SbfYMuP6YDmW7ICTv325T73FzVYYGI/m3bazO1Tk6eCRdZUnaC38Ig9ezZE2aHXPD+W0haLksBVdf1qF+/2toNICkXwlNHctIsqR/n7RLiEebhSl2Zftn8r42S4eWX4t1h1+4jp9CiKXYb99UBE4i58jVl3R1knVIkfN9J+T2XgffXdMRFJcBQ8kpDIwahJqiYm5Mm+42g7HCC2emtcP1yEZwT0zF/WFRuBbpANPERG7MPaZPh7LSzKzb9uQc/dpMpC1ewa2LMsAX5px8XH1Zh5dn/IgtbdVcHc0n8Wj5NT+nHy6dhFtQHsrKytCoUSP800D/Zu08+iMorQiQ/jdgfliJk1ve/sfK4++AbBGTIUOGDBkyZMiQIUOGjCcM+R+xfwhGnyTaGmoNA0RfdL1aw6xhUihUKriZCKex1BpGoWzW1OZa66EXEH26Gg716zP/acdDrRkzzavuh8R+FAo2DoBQ3wOiJsz3awuzhtFyVJMUFH8cBsEIh/ZtOQ2wx6IUXP+lLTeXvmeJNcvaGgYQqnLreTf5nSREZdSyvh7snrU1jFJ7U2uYQiUShZbVPoC5V2f8tn09ko79wqxhUn93qj1rdMIFzskZiO3xDAyCEfV3pNtYw6zHHjN4rF1rmEEwwqFjCAAwa5jyINGUlY2N5soBgN++qTAIRiRnHYBBMMJ9yCUAQL1CRzTILWNla7MuMmtYjHckm8fVOWIiYzdlfW5+24tT0WB7GnxHn0bAnDS4/CpaMU8XesIadC4f5x+3mbvimBjXJrWG0b50px/iyiu8Nc575Bnkf8LHuDXYzifezeu3lrOGAcCxpbzmUQpqDQOAkjd1yNevsZlDi8RUuK1PReEPYaLlbG0Xrr22qwktvzTNA8W6YG/o1RrEe3dDqFM9KAN8AQCBG+NwQ3eH9W8QjFxiXmoNA4Ch2Xq7GuKuWc/g/jASe0ATVAPAnrw0KIP8kb0+nLVtvnUbCR5pcP1RTElArWEqPx8AQMVwMWZEqsU2l5fDoQ+x3lArzL775Bm3joGSriW1hgFiSgoA3JpJrWEAYC4llNb39O2561+fSWZtmXt1RoMYPmH4xzeDWXzJLO+uLKarclAkfEdl2cQvpX22Ag+CWrCxvFgizp1aw7YXp2JXSYatReNRjCa9rlkUj9qzF9metraGAUBNFzF2xnwhm0sUv/rRWOl3gFDq0zNdeh0AVs5YjtZLbBNF03WUlgXA9sg0LzHxfc7GTsQC4u4O881bMK0gMUdzc86x+lfmkvgyaSzRME9SbrvfAXbt0Ler+ck6KKFsFwSDYETPadPY+ArfE/eAb9K0Oi066sVkj1FrmPV83s7jz117ZWjCaymkZVWtWsI9pQkAYoWVnnW0jPVZPdWUz92n90pfFvvpPel5PIyJIH0p+DhSitqsi6xtKd08tYZJz4ScpdGw1JCEz34/zMS12TrMzrmImj7hCF4bZzPentOmoUEB2evm8yZuD1ljwLk7eKjn48HM5y5xsmq1NIVZwwAwaxgACB8FsATRp19LYNawns9Pg/f0K7i6M4RrS6/WoM1Cft/Sz9Z7oX2amKYGIKkiqDWs42ISj7r/VgirFzgpk63J6TcSUNMn3GZP0O80ZUTAuFPkb5CZxwGLBQFbZiIpfTcrT+NUN3XrjKzOFuz9dRNL7A4AbX57iE4LxdhYvVqD+ocv1GkNu/4ieZ4ab0pD+II4br7JR3YQeX+Zgi1t1WysKk8P6NUaGOclwCAYoQwNFs8ICV/APxpyjNjfBvkfMRkyZMiQIUOGDBkyZMh4wpD/EfuHYGSDUqZJuf4C0TBem01+F7wvMmTd2BXMPpe8EgmX3ce5dqSaPnMgb9HI/Twac3POIa2jIy597cPKVfe8goyFhOHPUyWydBlKTnHap2XqDFYHABSpp4kW0seLldGrNZidQ6xz8SXRqD17UbTqPdJsnYrYyrW7v31Drj5t/9os0ZIz7PwNlE4kcTgPGytgEIx4ugvRfO3Zu9WuTE3rwolW+BGbmkEwMp98g2DESE8tlAdP2mgXdS/PRKeMUdyYZsaRpKfm7Dw2l7ujonFrmpbTDNK2DYIRlsxz7LoiPBS3dwcxTV/t6QvI2UhYtZTNmyE5OBkA4FJqttH4BU7KhP7CINaWaVUEDIIRbRamQL3KNh4sYPNMlpAXAO5519rIN+LtOBR8oMVIT6K5rdnPryFANIvSsUjlFO7sBINgRO9Jz9uUGRg5kBtTbK8RAID33M8j61WiaR10rpTVM01MROF8ca2liYZre3QS/e1b8slkpdCrSZJi67F6LBKTlzpo2iHCaCbrV3IKV1/SwTeeJM80CEbkx3zLrAQGwQjv94iWl7K/7SgWrYDSOQdujEPykR3EetZZsJGHNVMjbaNwix+bh0XXkSUJPtbhZ/zxzUrSd5PGjMUwtu9IzN+7ncVM6NUaIDIMuyrq28jk9dwzSDq6EwBwPcLBZk9JUT5aTAq7JIAk7347jy8f4x3J9UFl2ubDFKhat2JzKnlTXANq+ZWeSfV/5pn84r27YUAAWfu8SWI9Wv6t5pdgvnWbydxT1QAGwYh5S78DQJjNpOX1ag1+X/8tDIIRwo52yItxZRYUWq6xQz0M8RATtdK2pYnqAaDaVbRI6NUaVPfvwlk1DIIRPp+ZuDr091vXOsBLcpbSM2NHO3eb/UFl+oGfmCxWOraavMucJccgGKHy9Ub9Hen49FYg1x5NNk8tqUEzyZ5dEhDK+qFJshv8IK6F9Nmi/QYemsT6MwhGoNYM83ky3w7vi8/AhRkJ7HPQtAw2TlNipM3Z3+FznpmXsoROvlSARZ174I1rGm4cYUvj4eDiwuqYc/Kxt20S8/a48ooOc3PIOdtjxnQknTTghu4OFCoVks8dtHtOKBydOAvVmiBfbkxplWbU9ugEw86NyN/SESMvXIXjvhNw2vvIW8VOWD2te2MmeR9IWQ6tx+D76zQo7xOr2qBzpWivuYyWy1KwLKAthO7OCFgjsDZpXeekDFgyzuDlHMJanFxyEkXv6ri1Z5bz0CY4uO5b1rdD+7YQXhP/hpAmVLY3D+fkDMR26o/wU7WsTpf34uCcnAHzrdto9Yg5mbZP+7VmiLXGlZ0hcNvYgNW7NkuHpoNMjDW41ZfkvKUxitI+9GoN+g+fCKGrs901BcCeaen5XDE8Cv5zeQ8LpztE9jT2luL+M1GovyMdqt8zWUJzJtNHZ4O1rACg9bZsdi1zQSLyPhOtodaW4QGxYwAASceTuLmZz13iZCnj/xbkhM4yZMiQIUOGDBkyZMj4S5ATOv99kFkT/82gDDRde72HeoeIH3/wmjj4LjyJvfnpCF4bB593+PgYhaMT9hYct/F1t4aiUygsp85xZZSNGuHmlpY43ukH0bL1iFHw5ZwLiKlfZaPFsdePQTBC98pMLm+WlIkxe3kUAl8kGtc747VosjEVD/Vd4GQ4wbVrDcreRPvrPWEqHPdnIsJoZjFZXPkFOlyYnsD5o9fVtnRO0a/PZHm8ACD6dDXedz+HiJMj4bLWjdPcO3QMQe3pCzbt0u8lb+rqZIKUlrVmSLJXnl67PUWLjIWJj53H5Y+0uDQ50WbOxfN0ODcrAZFvxeH4x4nw3zoTuaNW2G2rpk+4DVPkhEtFSMjvUSd7XV177nHzoTCt7YKgKSdw79koHPtq5Z+Wl36v615dv+sakz30PlOB38NcARAGUfWEfFT1uGpTTsqSBxCLncPhU3W2e2eCFm7bTrLnwtoakv+xFqZJ4jqrvNugpqDI7vMm/S6FQTCiz/khUPUttJmz9DNlIPXbPwVtPyoH7pTDfO16nWO/NluHlstITOepCFs2OGnb1kymPaZPZ9b69/My8Z5fOBr+0Rx3u99kZfqOmYLK5o5onCHgZg9PNNkgMlj2f3YSsyRef1GHFsv558Z353TkD12F2F4jYL5EcpCZe3XG/k1rbfYIAES+FQe39anI+SIaAa+kYWPRMbRQurL9El8SjQSPNPjungbUKDjG17rmTPcw8ChWSnJ2Pe4cMghGdPw0njHArS48imle3Wz2Vl39AsDYi8XY1NYTPbIe4HCHejZlKaT7oMeM6Ti8clWdYwKAT28F4vcwV3K+vzwTDbfZZ5k0CEZceHgfc3x0HBOodTl6dv4V0Hp/xqpoEIzsvTjhUhE2BLexmYe9/W8tw/BTtSynZPFPoYwNkJZ9Kn46zI4K3G+hRItvbNn66jrvNIvi0XKZVfkDnhybrfXv7G+iEPhCOmp6h0P1eyZuzNTirh/g9zrJHReyKh5eC+wzBjoeao3qnlfqHJtBMCJm4FhYTp2DMjQY5nOX6lyXPztDpYypdcm5LtlIce/ZKM4iC5AYzdq7d1ndOxO0aLIhFdnLo6Bq/oBjSJWCvlMMghEBm2dyzKjWczJbaqFUOPyl9450fs6HW2FX4F7R+nb+Fna1a8bK+2e4IDeCMNpKGawNghGxfUcief/2P30P0THUWKpxCL/8Y1kC6d+s4c89OdbEzG3/3ayJskVMhgwZMmTIkCFDhgwZfw1Pikjj/4CpSI4RkyFDhgwZMmTIkCFDhownDNk18d8M64TOX1xORahTvb/sHkg/04Ss1nXuPheNqwMfIq/vWoQviEPmgkRWhtZdU3gUU7261dk+/V08T4ftM5bgFR8tc/HJXhYFn101HLWrsl0QzOdN3PgqB0eyRMHWc/Pd8zzyB3z7WDes6NPVSOso0udbu09UjIhiCW2tQctRl4HKwZFwvlkFReppu+WtE6E+eDoS9X4RXZU0pwBjJ6Bqnw8Otd+JFXc8MLNJCXFrUlqAWgXyB67mXMIUjRqiZJAaLZcRF8Z7tZV4rttI1FwutDtWAIQWWgF4LUhhcgqaeoKVvbxQa+O2at0GAKjaeKKmqBj1DrfEzkCDjfx7Tp2GKV/uwKa2tnT10nIUf8Xt6HGuKbmLtcgZm2gzjpBV8Qjvfx634tXYk7zZpj97Y7AHKhd7Y1CEh2Lvr5ugV2twY6YW7iuI/JSNGmH2yXR8GRDCla8aEAHnPXxSW+v9efUlHZLmfmbzDEn7t+g6Mkr46v5d8Pv6b9Fv5CT8tn09Yns8A3N2HoTXdKhoY0arFAXn8mvdt7Rt6vb3uLIUV+fo0GopOSPUaQ0hRN9F7mIt/F9LxfVf2qLF0xftPlvWiZSlydGV7u649LY/AubYH6+1zKRys3eu2UtaTROYA7BJJj035xz616/myuvVGs5VkiJ/S0f4jj5dp+ugNBH29XgdWiSk2B0jQMgl1gV7c/MbENgVtRUVuD8siiVZl96vyyXwr7j45m3WILvnevR7bjKKZ9fAd8FDRklOXbMAkiIipaPTn7qGUTd0AMitvod47242fd99LhoNt6Uhb5EWfm/anjN/dfxS120ACF4TB593xfak+0l3+iEOzO/GnbcAeQ4PrSFnKnUjB8T1KJ2khdt6+888Rd4iLQK2lqHWeJ6Nc6BuiN0zWNq23WuRYcDxM3bLSkGTL9u7L33PPK4d+v4xCEYM7DaUkbfMFiJgKm+BZ1tnYntIKxs35LqSeVtDWk/VuhWSMvf+5b1K3wEVe/3g+siVnc5D2awpI9oBAP9tM6GqUNiczY/dQ4/k/LgxSK/X1RYd05/Jod+FwfBpcBuFUcRF2LS2C/JjvkWMbxT25qfDb/8UBE44CYC4QisPks9SN9fy0dFIXUJCAUonajnilpwvotEoxwEtElJQOciWbO3+M1Fw+unof4Zr4siPoHL833dNrKmuROb2/27XRNkiJkOGDBkyZMiQIUOGDBlPGPI/Yv8wvOKjZZodqskJWRXPND11aZFaL0mBabVIyUzvOd01I3ACoWhvvioVerUG/UZP5upO9erG6tDrpnVi0lh67dysBLziQ6hZc0eRhLoW51r8vmENV4dSHAMiBb/Lr4RcJGbwWDYvc8/O0Ks1CJp6AqHL+QSKvkkkYajKl2idO9Qr4u5bz9/1x3RYdB05ud2YqeU0ZSzptYVQ73+Yz1s6ABJ0m5x1AHfGk3k2O+aGI4mrYBCM2Fh0DACxhgHArf1q6NUa7GjnDgAImp6B/AHfckm5AZKUOunoTrRcloIOJwl17nDPaNRcLuQsBdI53Z6shdf7KfBakIKcLwm9uNQaBgDB3flEpFL50Gvv52WipqgYVQMj8KDHNcSG9oJBMDKK+N6TnkfRmBpMaHTTRhZS0L0hlbm1NcwgGKHybsONwd74/F+TUDufLWef/5i6GDd0d7AneTMi58XZ9EcRXxINg2BE5aBIrl2aOLl5l2vs2gODL18m8xxrk1rDAMDczoezhtE61BpmShQTZAccmoQ+54ewsk7lFrvWMNqOQTByCZId95F1vKqrD71awxKrqhenIG/ESjTcmoarL+uwooAkBP403751RdjRDu/52SY4pdB7dILwOnn+KgdFotXSFNx/hlAyC9EkKN67UwkAoMXTF9nYrecgtYYBwN6C44zy3nzjBgLmpHHPHUXep1p2vVvWM9CrNRgQMwqK8FCur6fODINercHqwqM21jCDYETzT0UyipxRhP56YGc9umdV4pP8WG6f0N/W1jAA8B1N1uCpuOlsrFdfJvIpTQqEc5KYUL5Fgpig1sHVlXumDIIR64K9YRCMrL5erUFtRQUMghFjP9qN4RcICcqd8VpUDo7k5iP9zFnkYiNYWwbBCIf69Vk5vzFGRBtHoNzHBV7PnoHi1h1Wj1rDHhh8kdLRiZMDxQvZxEOhap8PAODTFyewMvHeZO8qIsK4dW+4jaxr89P26dqlZ6v1+l/+UIuqgSTNhseiFChDAsn6B3dH69QaThZFr4rJh1M6OnHWMINghEPDhnDek4HQr+Nxc4YWaR0doVdroH11JivX96VjcD5M0igo3dxsZK10d4ffm6koX1TJ5Nx7wtQ6PRKkcqDy5GT6yEpj/U62Xl+afNm6D4C8FwyCkaWn0as1bN9IQeWhV2tQk3cZABBzcSCSLraHpXcJDt+RJBXv1RlFb+uQnHXARgYAWGqZiuFRuP5LW9YuLZuUuZcbZ9U+H1QOioSiU6jNPADxHXC0w88oGxfNycN86zZrf01ZKwS8nIZLUxLZtcmXCmzao+g5bRpJ7/IYa5h0bjTtQYfjo2EQjCzVDe3rz6xhtFzueTVWtznGrgVNOYGQVfGwVFWh15Rp8PxZBWFHOwBg1jAA+LhlFhtT6hLyt1FyyUm4fZfK7wuFeLZYW8OgUNik9/hHw2J5cj//5ZD/EZMhQ4YMGTJkyJAhQ4aMJwz5H7F/MGisw+Gpi9k1qXaF/qYJVYOmZeD9PBKrpQwOAACUjKu2qffblnVcfYBQnl/dGcKuO1nFXdDxWH8OmpEB7enhyFkajaDJmVy7MUPGMRpfqv2qbFFf9GM/dJKNy/PjFFQMj2LtB03LgMLZGTX5BTAIRqwK8uNkYE8zRq0Oa8qIPFSDb9poyg2CEa75ZTAIRkQ6k5izh795Y+xFQi1MKWhvdbQg+5soXH+HJPuM7Tkc49t05WSp/ozEPVD5S/vRqzW492wUfI7XY98NghGLW52ysXjak2/TdaK1prG/mOw7LjuH1dsVuBfmXp1t6krbe88vHJWDIlnsi7m0FJFvxaHeL8cRG9YbjvtOIGD8KVb/1jQtHuqJhrrgfR1MqyOwuyTTpm2p3KX91RSIlsvsr6K5cgbByNaYrUd70ed7bJuuMPck86GaRFbfQck0m2yNplRw81ZmEm1vg5g8TDflYWB4DG4fbF2nFlV4TYfsDY+S6KaJGk2ppn/4hetQdGmPoLjjrP+cnutRnOqBwvnEGiJdq6fip0Pl3QaBG0WLnl6tgUKlsmn/zJwEm3E9FU+sNa2+TMGIj18DALzhKz4XC2+2ZZ/PRG3mZCmFQTDCUHIK6s9ScG9kNFx2H0fZuGj8sXwlV+7afhIXmPt5tE0bI3L72lyj/TXaksbNJ7bXCBsrgt8bqThSScof7fAzVG08Eb7hHEt0TuvX0+fDIBgx7ZFVUfps6NWPEmJHhgEA/F9NQ/mYaCSdNCDpk55w6sdr1WmiXzjwqS6o9Wp94VHU++U4Oi2MR7esZ3D6NZKM2G1gNuvP+owtGxzGWUqotX59eQucfi2BlaP1fx3YBT+FkATJTTamMm8Ae3I0CEY0PkposJ2TM7h7lxaFse/Rp6vRODYHTTaSvVZz9RpMK0RL281fg1BPn8/GUj6GX8+FpoHQqzVw7n8ZOV9Gs+TE0nFZMs5A6ebGrWPSfRekLllB4lUftf1hfgard/e5aGaZGqgdDADQvjoTPu+m4tBqEtM1N+ccKgLcYFoVgewFoSh+9E56sYTsa89PUjh5s/PckVj38t5sj6p9PvD8JAXNV4opDiwOotw/bpmFqh5XoVdrEHrgDpuT8CoZ960B5H3YICYPh75dDYNg5OKaKXpOncba16s1uB6vQ/FPoSxpNACYvu3C7XMp+l0YzD7XZS209mqhieMDM5zZvrGG8qCak4+ldwkCxpG0GRu8j7B2lQdPos1HKdx7SOXpwdoZWL8SnmkNUOuowKmIrQAIbbxBMOKne404a2DXOTNRfMMNLruPY2/SJgCEtp2ieJ6YvB0A0j5bgQ/zM5D9VTSz5gNA+0wHbA8h78ho4whYtB3hc7wei7GM7TXCRp6HVq9GwPhT3Jyle7ViRBT3/UzfpjAIRrQeegGrytRw+y6Vu39/mHiGSveaqo0nCheI8wiclW7zrH4ydgMAwGlvBurtPA7F0SYAwLwCqJyVTRpDr9Yg7It46NUadHstnt3TqzUoeluHgJdtqfXZ55JTde6rfyJoHrEn8fPfDvkfMRkyZMiQIUOGDBkyZMh4wpBZE//NsGZNtGft+Sv+zdblaGJIKVqmNsL1WV6wnDiL/K0duASJRe/o0GYh0cw51K+P2vv3ubbHXe6JG7o77JqySWOY75RxZQDAd+/zCJpyAiofL87/vnJQJA6vsp9M1LSmC4KmnmAJqIXXdVB/xievlGqcpXN9nLwMghHauTM57b3mk3gY55EE0IXzdbgwM8HumOpinVJ5t0FS6q9sLIrfPWDpXcL13/3FGXZ9vQ2CbbLP7GVRCJxNylYMj4LrT+lQBgfAfCmHs8zQMZa8oUPLE1VQHchkMukzfir7bk8W1X3DUTqrgsUBAUDO952YRpWWbf9VPDw+tZW7dAw0+exfgUEwYmBnPWquXuOuUdlJ2waAzKqHeMs3ku0Dxe8e2Ns2yWZ9pMnCrZG3SItNzy3Du74kDiR3M7Fg0TZylkbbMPz91WfMug6dhykxEkFxx7lnzt7aAbYMnNYIP1WL07Fq1FwRk0nTZK9SRtW61poyZNLvUlZF6zrmnp2hPHTSZj5SSJOl6tUaDDh3B3tCm7DvD/VdcHDdt+j8QRxOzn/EhKlQcH799qwBZWOj0XhTGm7vDkLTQSYbZsYVBUcx07sb1hcexSSvbuzZoBh0rhS7Q90w+qKALW3VyP9EC98d9+zGlFAGRYNgxMKbbfFHB1umr/ytHRAbeB4Xwkn8kkP7tqg9e9GmHPDnbKVS5kd2TXKmKsJDbayCdE1jvCOxt0CMCRJ2tIN62Hm7/VAUv6WD58cpULYLgqK0nOwdK7Y5gMRt+bxLLM251ffg79gAfcZPRbm3E5QjbqBxLEmMbVoXjqDJmbj6ko4lna6rf3usotL1z/9YC7/5GbDU1NiVpUPHEOzZswWRp55lVkl7yPkyGtuHLsOLb89Go83k+X1g8MWRsB3w3TUdQTP5Z+qBwRf19PlMNtawl4Qa+HNmPYrbk7Vouo7IcmReH9x+1xuqP7LqnKc1XI+4o+KpG1z/9iz30ms7io9jmKdoBa0LBsEI/98nI2DcKewqyYCzwtGmLaWbG8ylpXW2cXO6Fs1X2d/jMd6RjOXS3tjt1bE+763PsFvPa9HsW7E/+p6VvssBsETvdZ2vAPBTcRqGe/IWYXrO0PK3dwcho7PIZknPE4D8nXRNW46/ggdDI1Fv53E2xsDv4+D3umi1lY4xwmhGhkZptx3pPH64dBJuQXn/WJZA+jdrl+ELnxhr4omf3vnHyuPvgGwRkyFDhgwZMmTIkCFDhownDPkfsX8IdpjO2FhzgEe+x49YoF7INsG0KoKrVzWAMFOV1T4AABT/RBjJpNYw00pS55q2HHt3fY/cJdGcNez27iCcjyexEjdmanFrZEfWv+lbEi90Q3cHBsGIvE+1aHy0Gcx3ysR4DIjath97kZgJazaqgHfO28yNwneLBYgMg+UU0RJbW8Os+7B3zZ4GUa/WMAYjKlvjvAQMDI9B9tdR8PqA+NJff0GHBwZf3IjTQhngizWFRxnrFK3bI4vIVxoDRX31q/sTGSWXEHbK0kAlthfbahP1ag2zhhkEI2bnXETeiJW4PUUL4XUd0/hfmOvG/O+vvEIYtQp/IPEijvcA1YFMVPfvAr1ag6g343A10tlm79R200D3CondcNyfyeIBqJxye/Nxgnq1Bh6fpqAqNgLVfcW8VLTNzCqiAZ0mYQeUwjquhtatuXoNl7d1sJED/U3HHTN4LN7yJdpeug/2tk3i2qcIfDEdA87dsenXtDoC2RMSWewfQNjzpM9QwJw0lO/xZ/cdOrQl990J86UyNBhjLxbbzE/ZqBFuT9Zy46DzqOd+H6Y1XXDg+zVsTHq1Bu0zHUhswI/tWT1raxi9fv0Fst4n4jtxzGUbi44h8AWyLwbtfQl6tQaXt3XAkOwYm3UwCEbUFBVzY6PWMMqIJy1LrWG0fN8xU2zac7rCa9P3hDZh3+Oyc+BkOEH2dUop+oyfSuqVnOLa6fB5PAZGDeL6b7yJWDWaDjIhe3kUs4bR9Zz5KK9V5SPDmtQapjkFXHnYGADw/tEhMAhGmCYmwrBzI3KXiJrw2LDeKNgeBv8xhHlPr9bgneYXmdwog6lpbRf4jsqC8Z1OeDCUsGPWniXlysZGI/sbMb4EAMuDBAB9z97lZAiAWcP0Z8vFa/fvs/hHag2zPrP0ag0cGrhycTp/Zg0DwCw+5vMmJGXuJe8AiTXMtKYL3I41hf/SS6yfeO9uCH8/DqoDmWi6NpVZwwCgXi45T6TWsKIf28NB0w6m1RFc/857MqD4XYxBIhO04N5eEtNrmpQIS00NW1fKmJn/MWGlrT19AXq1Bsc7/cDml7OxEycfg2BEwMtpeMs3Eqmfr4CDC9HCHwnbAQAYESla5GhcGY2X8/yYxJ/R/gBA5eOFVmkPuCFbv0ce6kkcWP4iLbtO464BIOOjRBgEIzp/EIftfgegPHiSWcOsn0san0RlcGWujljDFApUDork+geA2u6d2B4ASB42AMwapk5ryMraO4v1ag0CxpF4o7a/vICdFQ3Qa8o07qyk1jD3lCaPBEeeBZUHiUWj1jBaJ++RHLrMj2PWsAdDIxmrcV2xTdL9KvV+sIbrVTPXX3acp913O7WGSdv2z3Dhyg33jLbpp+kgE2p7dOK+S+tQa9j9YVHMGpb9dRTXDh2b9Fq9nccZM69erWHWMCmyHpLzoC5rGJ2bddsy/u9A9e8egAwZMmTIkCFDhgwZMv4zoKglP0+in/92yBYxGTJkyJAhQ4YMGTJkyHjCkMk6/s2wR9bh9+MMBM5Oh0Ewol1CPM7HJzDTte6VmUj5YoVdNz2pG4CyUSOYy8vt3nvcd4NgxOLb/tjfvmGdQbjF83SMcljqXlbdvwtLVktxPV6HFgkpnHsB/fzejVCkdXRk/dP7dc3J+jotT8k+Sidq8erbm7EmyJcrQ6FXa2BKiERQ/HGbdikpwF+RlXX/NAje3j0AyP9EC9PERO6adRmVhxo1JQJrQyo3vVqDD/MzGAGFPVn8WZC5QTDC77cpCJx4Eu4pTXBDdwemFZE4HPsFvFQN6gx8BgAHV1fUVlQ8tm179fM/1sL3LSKXond1aPMhcXWq2OsH15g8GAQjol+bibTF/H5WhgTCfIEE7nulu6IwqgJKd3eYb9ywO8a8z7RobAKqmiig/jwFdyZo0WQDHzB95RUdWn9hG5xPsauiPoa4EjKFutZeGeALc04+IwIASMLxmnxCoR6Y4YzsiCq7Y1SoVDBrw1AwwAW+bxHXttCv4+H5ieiqer/2IReMf+/ZKNQ6KpD6ed3ysQbtu/inUJzTbrKZz5/B2sWVfqYB8OV7/LEwaCc+8yeuslX7fHCo/U4Yq6qgcXbGprvNsCG4zV/uh67vn2HCpSIUP2yKvVfbwalfAfIXaWGakIhpRV1RGFWB6y/oUO9mLRpuS6uzDW5dHpFZqNp4wtyyCSwnznLPoEEwYkBgV+zJPgbfvc8jcE0NlGWVqD17ER/mZ2BCxhR4jyTuf9V9w+1SodN2AH4N6LNM7/n9PAN5z6yEXq2B27GmKO16G7XdO6HZogKUdr0Ng2BE1JtxaLIh1eZZUzZvhgdbGnA0/qsLj7JnGgBq+oRDdYCMz6FjCGpPX4DC0Qllz3ZGo80kaXPgxjj4vcG7VUnfBQDsPkP2yBfuPxNFyIoUChhKSGqM5JKTiPXoXPcCP26tQNzEAmf9/ye7/bOzMvxULTI7OXDlj1XWItLZgkEe4VxZ2tbukkxEnhiLFk8Td1ZKnjTywlVsD2mFIedvYVe7Zo/tWxnoh+TDP9vcvz1Fi4yFiew7ve94qDWubPbBtDm7sO2VWDjtzeDavz8sCvV3iPJSNmuK7NeDkT0+EdUWMzqsmoULM8jfFfR9DpCk4s7JfFvmnp2xf/NaDBgwmiVwru3eCQ5/nGKEV9bjexwqRkShkfE6zDn5dt+1ANDx+Ggc6bIWIz21KPqxPdqMOMvKrCk8iqkSwqjwU7X4uGXWnxK+MFkEByD54I929y4FJYySjqvziedwsss2u+P13fs88mO+ZW2FfRmPe20fImjqCVZOr9agamAEXM9eReDPVxgxkLQtvVqDGks1DuGXfyw5Bf2bNWLokyPryNgpk3XIkCFDhgwZMmTIkCFDhoy/EfI/Yv8w6NUa+Ow2i5+/IRooqi2RWsPsWXzyFmkJNW15uc39u8/xCQgNghH5n2iRvTwKMd5i0DDVgMYMGWcTQFo6Scu0Z9IgXACcNcwgGFE6UYsWCWJZayKNH7f1YN+7zZpB7isUrL/s7zrb1T5J2/NMa8C0Tu+9uw53zSSB8q2pWlam4/HRbL7B6x5wY6ZtTvLqhoLtYZiXm8Vdryt4Vjofag2Tar/pvezvOkN91FbzNTRbj6WlPrg6hwRi1zZrxO4pnJ05a1jF8CjOGmY9pqHZ+rrH+iixrV6tQeBEQs7wvc8hAED+kFUcFf3kwu52A4apNSz7u86sH3t9Ba+LA0A0qJWDImGaJGpylVXi2F1j8nA9Xoey2ge41sOMqYXiGAp/CIPpnQbs+x+GDmQ/37jBkvpSNDtGAqz9Xk/FiQ8Sof6c7LWGRcQqlb2cBMkrnJ05TT6Vh/Tn3W8mod/oyTBWVdnK8NG4zTnECiZNnEutYQCw3OMR2crD+zbyuTc0HL9tW8cshHq1Bl7LRUIFvVqDYZ6RLLkqALi9UMhZwwyCEflbOsJ8IRtl42wTMBfPI8QuV3aGwHP4ObRLGWejoa7a54PyPf7I+1SLhn80B0ASmjto2rFxSMdEQemgGw3IRZ96Znbduf9l6NUaPJM0G3q1BhtDfbm5f5ifwb5XDSRWIJqI+PqLOhy/4gWDYERtd5GgwSAY8fA3byhDg/FgKCm7IbgNSqqa4GDoL6SNCYQqvzCqAgbBiBbfpCDlyxXcXKXjcDzUGn3OD2HXlWXkHEhK3429u76HQ4e26Gm4xNXbk30MANA9xATFMULgcf2Xtnjx/dmYHJLGyjnuz2TjlD4bBsEI/wOTuUB8g2DkrGF6tQaBL6Yj9Ot47C7JRNFXQTD36gyHP05hq+/vAIB+oyczC6818UFeghqV61pzc53m1Y1LLOwslDNSkT17tgAALNUPGQ28Xq1B9njJs9qyBWuPvgsA2DxDAZtn4qG+C2LbPgUAKDXfR/TpajFpuMUCvVqDu6Oi0ePMCABA7iayzvmLCPFNbTcN1hQehUEwYk0hSQJcmhTI9WMQjMgbvhIPY8QzUNXGk1srg2CEQ4e2XB3p57ujormy1vcp0t4gZC3Oh1sx2Xzg1xmDPMKh8vSAQ8cQPHiaJ9gY5BHOUoOEHBvPUolsD2kFg2DEhkWDWHlKhmE9P3N2HgCgLDkARe/q2Jiark3lzimK3UF70HxVKna0c7ebnLv+jnRMN+Wx7+Zbt5nF01GhRKN8CytP3+cAn1Scjk15iJBQ1Z6+AINgRNm4aDj8QQh5aPoX6fhGXxRQ73BLAOAIMihcf0xn1rDYPs9y68Le63MqMNKT7BGpNcwgGDFVQhhV+J4OH7ck72ypNWzQuVIIO9qxOhSOh1rDfCmH88yZcKnI5pw0f17O1e333GRY9jVj95UtW6B8TDQbb37Mt3jqzDAAZB22v/A5+7uEXjMIRtQrvofPD2+Dv4uYusBa3jtMZ+ze+6dBTuj890H+R0yGDBkyZMiQIUOGDBkynjDkf8T+Ibg5VYwN+XDFKpjWEX90SjNr7ccs9W2WwvNgNa4+15Yr2/tMBbGmWWmMDz1wgGliIgJfTMfeguOo7dEJ5WOiWfuWE2dtNEVu61MRfbqafTcIRo7CWdm8GRvv8U8SubrW8RLey8/i5gxCi3vzuUdWBEnIIrXg5H2mtfHhdmhINLXF0fdYu8sC2uKzH4fBIBjRbI1opfKYUML6tWTUrW3yHnkGn/h3gF6tgd/+KfBKd7UZuxRUK9v4qKgpk1o0ACCv31o4J2VAr9bg45vBuPyRFrGd+uNBj2vYE9oErZYSbeSevVvFMT6yymy9Syw+rj+lM5rjoh/bw3/7TDamond0uPKtH6tLtb2DzpF9YyjO5Kx87ilNbCyZ9LcQfZdp+Kw1xgbBiH4hF1h56T5MqyQWEp+3icyVh07CZfdxdHmXWMg2FR1D4zzRyqsM9IPTPQtGemoRvLoSxdH3sKuEaGK9nj0DVU49cU3mp6Lo+RDy5fgZbg/c6iomJNWrNWiZSqyKhf2diXX4mZXode5pKNoS+VCaYYNghMpTpNx+YPDF1jmfw+HwKcx4bw6keFzMgzR2TPp98vkJXDmDYITrj+nsM0BiP2rvis/N4svEOlF79y6Tf3XPKwDANLt6tQamHt8BANI+I8/yx/kiHb7nJykofkuH1kPJOkk1ybRv5/6Xcc3kjsBFF3G3+00AwMHQX7AneTMA4P08Ektk6Vr3vNMqzTbPg6JagXsjo2GpqWFymGrKx7u+EfDbMQMAcGj1aujVGpZ8t8XyFJyO3IL+Iybit23r2BxXlalxMPQXmM9dwpGEVayvS12qEeMdCb1agwEDRjOZWe9jusZ6tYal+6jueQWqvoWsLfOlHNwbKWq0e27K5Kw/9Lru5Zm4pi1nbbZ4+iLc1qfi9zBX1hdAaKyv7Azhnh+9WoPcPuvY546L49m9I5WkD2oRPzcrAYM8wtFgexqUB09y86lqIqZjAIDcxeJ5eLHbRjTanAa9WoPSSSJFu0MfkmYj9/NomC9ks7m9WBKFK3N1MCXyiYFnFIs07etP7IBercGcK11gWhlh9+wDgJwxK+BkOMFikUe10WH7Tz1svA0abk2DawyxzrhmkGfb901yVjgcNcLzUTzb9N7jAQC3ShtwbVCZHly7mvWdlL4bANDr3NPsWm3WRVan/4iJAADPNNJWw63iXrG2Lg3oP0q0bj7y6qjqcZVYg9zdcfVlHQoX6JB0PAm1py+wFBTStAbK4AAoIsLgPVo8I+nv9EWJ2FpEzvmaEoGzAOUu1nJjSdP8iPNxCexazlLR8m3tEWIQjIw+3h6GN+CtOgbBCP9t5N3RZEMqrr6k48rffyaKvcutnymAxGLp1Rp29gDAprvNbMZ2u6YBdgYaAAAOh0/Z3JfCfCEberUGZWOj0XXOTHadpr+x9oix/jvI6/0UZFY95N5ZBsGI3aFuUA87bzNHeqZK95W9mFb6/NB2Hf44hRbLUxCyKp6M+9p1ZlGm5erp85nVNsSpPgyCkaVZAYAY70jUnr6AOT467JzV16bPaUVdoVdr0PedKTb3/pGwWJ7cz3855H/EZMiQIUOGDBkyZMiQIeMJQ/5H7B+C5mtEzXZXFwcETSaa6dtTeI2ZFBZtR05zmP11FJwMJ3ByfiJ3/Y1m2UxbdP+ZKKbdnXJsEiLeIVYLvVoDh8OnUPncHbgeccentwJt+lN5qJG/tQNjOqT19oc1gkEw4uuCYyjtJ9ZbVaZGbfdOrO+f7olxUABgLi9H5nvEaubsVGOjhRt7sRjCjnY2SRINgpGzJjDN8cAIqO4rbOJcpOyR1ug7ZopNzMCd8VoETjiJSe5/2NWgUiSl7yaxAH4HWF/3e4TUGWdzuEM9VDewwHztOtfOjZlaG80fAIxqKFp8XHaT/THA9zwC5qSxBL3n4xPQZGMq04zSse4OdWNav8lHJrPPbRtcZW0qOoXCP8MFhfN1LBE47d96Dnq1Bis9bdehXWI8SxpMkbskmrNKNle6wvXHdJjWPEp8ffhnFvNCLZRDPCJYm97viTELD2MioF6cgtu7g2CN6y+IsRQ5S6OZ5cKpTIwzPBj6CxxukfWnsV0AUDhG1CTX0+czDabZWZxbQsFR5H0mWhkuL9RyWlcGJ0fuetMxN+D3m6jVpFpVs4VolE1ru6Dp2lQonJ1ZvRdfms21OSCwK1uHM1GbbdqioEmwKTw/TsGw8zfsWjTpmga+lMYs7bRNqpWOdiExhRaVgp+jpK33/MJtnoeDwz9Hg+0kboomsKXspTQhNcXIC1ehV5OE0Hq1Bvt+/I5ZVfM+1eKnkBbo/sIMNjaK0qRA7C0gz8GePVvQwYln7KrpI+7DAQFEE54/aDVWFx5F+Wg+PhYAGy8A/B7mipu/Btns/Ybb0nD5Q/J8dloYDwcXF2Svt014DoBZImv6EPk4uLpyZ0erL8V42UWap2AQjGi1NIXr0yAYWeLnkp9DcW+vH44krmJ95H+ihf9rqfD7bYrNWI9/nMitmUPHELTIAEtWDgDZEVVovSQFTc6p4JXuyuL1VnqmojQpEHq1BuPbkL13IbwGQTMybKwN0rlb77MLMxNsPB/MPTuza5OnJduVXW2PTjCvrIZBMLJkxNZl9GoNS/asV2uwtSgFVWtawxpB6+OgSDkNAFjjdZRLgFw5KJJ5bZhWkHgwy6U8Gwsc7cN84wZafZkC749O2Ox5uq99jtfD/D3bYMk4A0tNDTuLcxeTs6Pzh3EY1UbHvWeq+3dByKp4+L8mem6Efh3P9ouDK7G4BsxJsxmXFJWrRWuBdC1Unh4YGDXIZj4BL6eJ+1GSsDvni2jU/zkdW/K6cOOsGC5a/TI7ObD2iueR+YxteIu1rXAmh6ehfSP0mD6d1VOnNUTMkHEwrYhEwXYS53t5WwdEvhXH+klbvII9jw4uLhBe1bE5KVQk3W3M0+NZmz2yHrD79AzsO9b2mVCvPGkjN+lelj4b9HruZg0c2rdFVWwEm5tBMCJ3Uyc43SHvAes6Ku82MAhGHFy7GopOoazPOW6X4ZXuSvbZo0TYAHDg+zU2MWzHfu2I4nk6NNzOx+n9UyHHiP19kP8RkyFDhgwZMmTIkCFDhownDPkfsX8QDIIRYy8WcxqcqiF38FMxHwtBoUg9zWnBFG4PYRCM6D1hKldOatWp/3M6++y9yYHLUUJjIH4O+I3FQEjv1ZQIMD21wVZT/ogda5Z3V6QuIf7jyuAAbHthAByvlrH6ryePgWllhF3NXqtH2mQATKO/qa0n1MPOQ3id9/Om9akWirZ/aPVqlt9MGt+l8rb1ATcIRszOuQjloZPcddPKCDg+IKnc0+8HiFqyz21Z6mKfGga9WoM+40R5U8sVhblXZ1HDqFAg79kVrH8K9xU86+KEgqfYPBdfTmP1CxfosKQ1GS+1JOnVGuQu1nLsfdbI16+B/++TAQB/dHBh/Sjv3EOCRxp2T/0M3vMqbeTzUN+F+36vthLK4ACunPeuUm4uJW/q4D83DYceOLB6dL3yB3zLmKas+6KwvvfeN2uIlWmQycZy2eKbFOjVGhRsD0PuSDFuwWMRz9QpDPXm+unyXhzUn6Vw1zSfEG10s9Wi1S/euxucShWsrcbZfKzmvWeJddl83gSAaPVDU8fCfKeMxTdK+6B5lIKmkDgUS1UV9GoNVK1asriTqSZitduTfQx6tQbK4AC71lLrOByp5W5HO1HLCwDtEsTYpMdBms8t91knrs/cz6Oh6BSK/sMnihUeMXICYOyberWG5S/6uoCwDqpat+LiO7aHEEa6xECyl8bk98J7/mSvUWa36vpE7qbESDYmt4HZ7HPfscTiqPJQo32mAx7GRLBcWQBQe/8+++ylaoBGW8gZqp0rxldSefQ+U4Grc3RoPtiEoMMTYRCMLJ4QEFlRWySkoLayEoGTCCve3vvOnHac4nYIsQxQtlFlaDARlyvRjCscnVAT5ge9WowRuxGnZfKrcnNE7ufRqD7fCMuCt+KZnH6sbd95JJcY7jjhz3CzcxM03JZGGEetcOqtBBRGVcA9VWRVdRuYbfOMUfS7MJhbQ4BYNZg3wgDReiDdmwbBiP2b17J6e0KbcO0qgwMQ/n4cftuyDuhTzMoFHppE7j+yWORu1iD382jk9lnH6rop66Ph1jQbKwhlJqXjObk1jH122X0c5pvEihM08zj0ag2zVEjnYw1qiaWwaDuyz5cjHzCvAINAmFQb/tEc/q+l4uavQTj5rphD8pmcfuj5/DQ47juBZmdE9lG9WsPYC9VpDVFbUSFaW1q3Ym0zuTVvRs6OvoUsrptaoQyCETXFJUhK3/1YaxCFsKMd/H4m57/7kEvcGrr+xMe2+u0j7zrPT1Js2rZUVbFyh1etYvWE6LuwnDiLoJnHcbHbRgBATbUSbusJI6SUDTe2U3882NWKMeACgKWmBtlfR3HvPD/n6+wzRe54B3Zm0r1XWym+1ygbKJ1f1sNK9mzMzrnI2vIfQxhSpQySI3L7Qv2DI06/ngCfd8T91enjeCLvgiLWLs0/Rr8XRlXYyEqv1qDJhoao6R2OAf1HoegdHdosTMG5WQn4j4HlCf78l0P+R0yGDBkyZMiQIUOGDBkynjBU/+4ByJAhQ4YMGTJkyJAh4z8DTyp+S44Rk/HEoE0lJvTNQhR3vfXQCzha2Zh9p8HVUlO3g4sLCcQdR6hiHfeLLjqZVQ9tXE2o2d7JcALTirraDYxWtmwBB007mFZEYkBgVy7gl35WhIfaBGvT3xZnFdat/4olqtSrNQiYk4agGXwgql6tQd5m3m1qRzt35Fffw8PfiEvZmTmiuf7KK8SVx6F9W1yYq+bakY5xdZtj7F5NQRE3bwcXEuS/LIAkAJ1RrGUuMUEzT4hU4+0bses5Y1bAIBhZgtrsr6NgzsnH5EsFUP2eyc2/crBIoFDjIrr+GEpOwR4MghE5XxCXvStzdbimFWmHX/OJRpf3CKGK98LjdgPn/V9LtetO1DXrGQy/cJ3bG2wsj1xo9GoN4r27IXd8C5t94GQ4wfUz3DMa5ks5AEiSZL2aJPnUPyPStT9o/wAGwYhP/Dtwrkz0M6X8LXpbx6jXaX+607Z7tWe9WgRujENtNw27RgO5AeJOVFOtgl6twcf5RD7K0GDWrzLIH6feSmD9xPhGMfdDqUuTcV4C21sUpsRI5iqidHfHO+98x9rJXaxFgx/SOVdFh8OnMMjvHAp/CINnGklKrXQjKQikbkOXt3Vgnw2CETVXrwEA1pS1wpogXyjCQ+H7y3QYBCOSD/7IZHJngpikPPvrKE52Fs8Hdbp4tllI3HzC349j12jZqoERjPZfurfynlkJvVqD2TkXsfi2P/xfTYPl1DnmDn35Iy2Gn7vC2it+Swyup2QWs4fPQM7SaNRcucrJCQC2F6ciZykhdbnVtZRRFNP+331/PQAg/+lVHCkLc3fbtBYAoQM/G17Lktpaz106L4NgRNNUkT48bClx2fw9zBWtviLPkO/o09CrNRyxC4U0Oa1erUFM/Sq0jrwCg2BE3qda1oei/y2OTMB8jiSKpq6KewuO452NZH6nX0/AvdpK3GlXy8ZVf0c6FGYFLk1JxFu+kah4inct1Ks1aPvNDRv3VAqVnw+Z67pHFPGurigfE42SN3RcGwBw/JNElrLAnvxo2wt8f7FZQ5/nSFqMeblZcN6TYTMW6ZkMiAQ00rbNl3LQfGUqcymj8BtDyl0fSq75jzHC/9U0dPyU0IdTF16DYERsrxF25VDdn7i70hQh1nOyLu/zXBYMghGrHyWWlpa3lrUi9TS7r2zWlDs7s7+OYqkhmg82Efe0+UT2Pwf8Budk8g6Ruv1lf9eZtVf4dhBrCwCSMvfayLK2TCSromfq4VWrkL08Cnq1BhXDo+y6I+vVGtycocXe+4QoqPA9HdTDzsPhqFjOOhTg7ijybro9RYuGTe7btHf5I+JWq2rdio0xfEEcJzdpig+DQAhZKKU/jp9hcjBfuw7n/pcBkFQt9Hre8JVcv+uCbWn7qcv3hZea2nWRTT61DwAh46rt0Qmv+YjhBgPrV5Kz6HlbV2ODYMSP/vtRb+dxrs2tRSmInHCqTndWe+1I16P+jnSofs/Enn1b0WahSNpTNiqy7kZk/FdC/kdMhgwZMmTIkCFDhgwZMp4wFBbL/4Fsaf9glJeXo3HjxuiJp6FSOKLkTR08FqXA7VhTlHa9DYBoUqKNI9A4NofTvF2brYPDQwvcVxBtbt+xU1BTXwnnpAyUJQegcSyxXqhat0LNlauchUKv1uDmr0FoPtgE06oIBE0XNcr0vrJRI5jLCSV4yKp4XJiegBG5fZm2z7o9g2DE0Gw9HvS4ZtMWazM0mGmI7UHl54OavMvoe/Yu9rdvyOrR6wCwqySD0Z3b64fKh16r7abhNH4AsVodXrmKabPuPheNhtskVMFDx3OaOoAkZLRUE6tN5Lw4ON6vRYMf0lH8lg7nXkzgNGN3JmiRvihRHIdnOBzaBaL27EW8n5eJD3sNZZY6BoWCWQaEHe2gHnYet6dokbGQtKN0c4O5tBQlP4fC45lzNrKz1tza09Q51K+P2vv3OTkNOHcHJ8p8cEN3h9PYmaorMMu7q418g/+YgEvdNxCZDBkHy4mzdvunsN4j2rkzCXlCZBiTsT3QOmMvFmNTW0+YVkSyZMAUZWOj0XiTuG6HHjgwaxztGyDU524Ds+vsy16/0s9XX9JxdM/29pR1fYNgRGy/52A+d6nO9aAYdK4Uu0OJ9ay6fxc47juB2h6d4HD4FK7sDEFW5BZuf/saprIUF9J+15e3wJa2xFKs6NIee3d9b2PhaPttHLznp2LCpSK8u28EAjfeh37tMbzSlNB4K5s3Y4QGtL+k+y6YnToaAePFBK329ppDw4aovXuXu5a/SAvfiCIYQkgS3oGRA1FTTJKsZ2/ojMAJJ23k1m32DGaZrmtdAFvrDf2+pvAopnp1Q94iLX4a9aUN1f3SUh/McbssauyDA2C+lAPTt12QH/stYsN6o7q9N0tIaw8lb+jg8SnZE8qQQJgviPur8IcwPKxSMUt0XdZK6dgBQnXunihJExEZBsPOjdwzlL0+nBGGdDw+Gq2GXkDO952Q23udXWuWdX/XX9ShxXKRrIber9nvhcqVrXHsq5WsnkEwIix9DNTDztuUl0KhUsHSOYR7nneVZMBZ4Wh3jazbMa2IRP6QVXXKhl5vmdoIvvVv4X33c+wafVdYlzUIRgRujGMEMFIU/hAGr2fP2J3Pp/npeMP3kWfKozP59dwz6FPPTOT/VTQUzaqYvOuaE5ONszMsVVVsTABJis6l/ZCc/VJIzxl77Tseao2al5vC4X4V81agffR7bjIc/jjFzlmDYIRmUTzKO1ehs38BfvTfb9Pf486oa7N0aPl1yp/O1yAQshXVpfrwej/FtqFHZUKXx8Pz4xTggCcMIbsRtD6OI1oBYHPmS/f05YVa+LyTipvTtWi+ivwNFHnqWRzv9EOd86BjVnRpD7OrI37bIj4zpoRIBMWTvhw07bAneTP0ag0eDI1EvZ3Hcfe5aDQy3YXl1Lk/Pc8B4g2RfO7gn8qKzofih0sn4RaUh7KyMjRq1Oixffw7QP9mjY79ACpHlz+v8P+JmupKpCXP/8fK4++AbBGTIUOGDBkyZMiQIUOGjCcM2SL2b4a1RaxwgQ5eC0Qt0l/RvKjTGuIbzwOo7+AEvVqDnC+jEfBymlhAYnmgWvNJja6L7ToogVqzjVUp8q04uK3n42nob80pwNgJdSJ/S0f4jhb96DmLyto4XJoiUvrW9AlHcU8n+Lz7KE5jz/MImnqC1aUWAVreWib3RkajwXZxvtK+rcsaBCMOPFDiM3+RMpdeD9wQB783bZMW69UaTLhUhA3BIg0+tVZc/lCLS1MTObmFfh3PqIgBUZMIAKY1XdD8mCOzclmPsS4LjL259D17F681zbWrBY/xjsT9WA3q/XIcd8Zr0WRjKhxcXVFbUYHo09UsKbeyWVMkn/ndpn+DYES1xYxBHqLW1tyzM5yKS9FrZxZnrawL1Eo7OiEZ20NaQRnohwtvNkXQ1BN/aV/bG4PyoBrmXgIcOrRFbdbFOusWLtDh5ed24qeQFlxf24tT0dihHptjxNtxqFdqxpEEoo2vGhiBQ6tX28jjRpyWt1RYocNJBbI6k6M0JFOFC+E1AIDrv7RFi6fJOB8MjcSRBELr/Gea/7ogvKaDerF9LTMAWLpqoDhmRHXfcNzzdIJDjQWNvxefDdqHV7orCqMquLq13TvB4Y9TcHBxQW1l5V8aj8pDjfLINhi+0IA9oU3sWn4MghER78Sh6VpRfg3/aM4s63VB0SmUUUHTdmIGjoXqy9uo7nmFKxthNCNDo7Ruwi6klqS384z4yI/shV6Tn4fCbOFibP/qPgWAPuOnMgp9g2BEp4xRaNHgHnLOeCJ3JEkNUDYuGmmfrbBp0z2lCW7o7ohz/90DV8ob4fQjSyhAzpFWK04wuvU/8zLI+SIaI3ql4dOW/PmSdN+FxcdSZH/X2SblgrX1sde5p+HUr4Cd/QXv67jk69Z1pW1cfVnHElpXDYjAoTWrAdi3aA44d4ezVtJ7EW/HIeMj8dxUBvnDbMr9S54A1LJCrSfSdq3HYd1Os2NuuPGWD5zybqCmqJiVkVoWAUAREQZLxhmY1oXbWKtpmwO7DUXS0Z3QqzUonaSt8/1qbx6mVRFoctoRLb4hfXqmNcDEFkfxkZ8GRe/qcD5OjIW1Bh3b48A8SHp04ixF0nvKZk1xcYkvAifZWuN9k6bBw+BgY8kedv4GdrRzf+w60XOdouhdHdp8aPv+GxgeA9McX2SPT+TqX90ZglZDLzAvHmtY/11lPQb/DBfk93BgaS/oPdPqCARN472F2n8Vzyzh9uZStc8Hqk+aYv+mtXWu5WPRsin2X131j7UA0b9ZtQOenEUsdY9sEZMhQ4YMGTJkyJAhQ4YMGX8j5H/E/iFQ+hEWoAvTE5iWzlqDlPM9MUGVJgWyegbBiHVef2CYp5j4NPc5q6TBx8/AoT3RgOrVGhZDAgC3dwcBtWZ2j/apV2vgtp5n4zOtiMTOCsIGt3c9z6xkDWqRytusQfE8HRvb16Xe8Ft4ivUBAKoDmbg0VbSQ5Q/4FgCJZwIAzwklCPsintMqRZ+uZp+PLV2B5JKTyP9YC4eOIfAdfRpXXrFlWqMWFmoNkyYs7vB5PPzeJPOt7abB3BwxKaNBMGJDcBvcnkIYlZTNmsLhMLEc+Lybith+zwEA5lzpAr1aTMxJ+6fWMAAImnqCS6JN+9CfLWefAWDcNIONTOlY7o0kbE+HYtqi57RpXF+0vqX6IUsS3GTjo3k9Ym1L6+iIqy/rUPKmDslnfmftS/ebXq3hLFHZX0fB/7MLaLqhlMVjcBrNRo04eRdsD4NercH+TWuxPaQVQjJVhEGzVmFTV7rHHOrXZ2sFAN/c8QcA5C3S4mFMBMy9COudtTXMIBiRs7ETSyzrtSDFxhpmEIwY6allCXL1ag3qjbrK2LAMghHOSRnQqwmTp1Tm7on2mSkpqDXMIBhxIbwGBsEIlacHs4YZBCPrh47nzngtN/8BMaMAADW9w7nrUqgXpzCGPmsYBCP2/bAeBsEIx/2ZuBMEZg2jMqV9F0ZVcG0YBCNuhtUDANRWVqLk51A2d4NgZMyKUpSNjUZNiQDX4vvYE9oEDh1DEF8SzRKSU+jVGjRdm8rtD2l8Ck3aa0qMZAmODYKRs4bRdvYmbcLFE97I3UTOwsAMkjzZ2hpG94M9OerVGpyO3AKDQKxh9JqT4QRnDaPXaX3daWKJsmZ5pWuqOpCJvEUi69qpiK1An2IEzEnDgNgxAMh6WGvHy8dE43ufQ0B0B3Ztb9sktBp6AQGb4lD4HpFJy69TWIwq7RcAs4ZJnxvhNR0CXkmDsRM/hwExo2ysYWVjoxE48SST/e0pWm6MerUGgYcmwakfSRp/s6oBrryiw8VpIpvt456N/E+0zBoGAKoHZiYzazkaBCNWfx8rWr3aiQyClAWSztPcpD4nB+ln+gxRON0g+2PU7H3cePuOnYKuL81g301ru7B2KFNr2skgVLk5MmsYLdtieQocNO3geoTs3+zRrgCAoMmZ3F6Xji3p6E7GWFg19A4ro1dr4KBp99jYpqDpGfB9ToxDLI6+x/Zvmw9T7Mq0cAFZU0sGiRHL+VJkCrw5QwuVr8g+SPum1jDpfooN7UUskLdu21jDaF3VLRWzhlH2wbfzjFiT15XNsWKvHysvHWdJWWNOXm0+TGGfr83SoWIEYYGsuXKVxfzd3h3EyrQaeoHsifJyCK/Z/m1CrWEvZJu4Mb+dZ8Sd8VrkRlRiT06KzbNFrWH0jNKrNajwqWEssQDQ+QPCRqsMJHM71H4nZq/ailH5vQEAoaljublRKJs1BQDsLuHlSVl0//GQEzr/bZD/EZMhQ4YMGTJkyJAhQ4aMJwz5H7F/CMx5BSyvhvbVmew61aL4/z4ZAeNOwbQ6Asc7/cDuUy2Y4ncPG22O1BKwZ99Wu/1mdN7OPtM8TADJ1WRtIQmaeRyJgSSvS9hz52EQjFCGBtvV/tHP9epXofWjHGl5n2qx9FRv9DtxHcXzdFxZa62mytMDlz4NY1ou9ecpKHpbB2UQsZDQGCfPtAbQqzWI9egM06REbNz9Lcw9OyPrVd5fnv4e5BHONH13ApxYn1mvJmBXCdF+ORw1on990eKmV2tQuEDHLFlX1xF/9z15aWR85y5BER7KLCFS0O/Zy6O49mxiEtoTiwPNVUStTtSSSS09erUGDbanYcj5W0g6noRalWhhkmows7+OwoRLVqyMj/Bx/nG0+jIFZ2cTpsdOH8VzbdhD4Kx0XI58gJKKxlw/AGH5M5eXc7L2HnmGrRW1EgHg/O0pymrFnEvUR5/K6LvEWBgEI/zeTMXBtWJcCR1DhNHM8gXl9lnH8hkBZG/47n0e5l6dkf11FPqPmAhhRzsuL1M9fT7T3urVGpbLzG+MEaZEMZ/L9Rd13JrVJSdq1dKrNUg6ngSDYIRXuqtdTTe1VNL57NqzCQBYXjrr9WBnwY/37PZNZab3JNYAykBG++iwJJ7JipaXfr6jIXu+tpsGHs+IzGB6tYbltttURPLzKUMCGVsljT2pPX0BuRGVuKYle6Gmj2iVqO5PrMVfF5D6/Z6bzOZjvnEDyiB/BMUdx+tx25C/yDaXD0CsX3q1BuaGZviPJWyE2RFVXBmppYMyPHZ9aYbNfXsxQQbBCNOqCE7m1DpkEIzY+nNPACTH1cCIWFbm+os6mNaFs31qLV+DYMSe5M3sOrXWKJydcSNOi3ue5DVs+HkD6h1uycqtLzyKoEWXGPMcs2oFd2dlppvyuP7oWNWLRe2+MsCXjaU26yJyN2uQvUw8j9IWEw+KVktTYO7VGRkLE9naqXy82JzpGFq7lKH1F+KYrM/vDsdHczL0nZeK/E/Imlq6arB/81pm6ep84jlOLgOCu7PcfQBgPm/i5i49Yww7NwIg8WfWz6PzOXL2XZtF3jM+75J1UTve4dq5/tIDHPuK5Mz7qTgNQVNOIDDDGXcmaBlbYeCsdNTbKTL3Sde11nienScBr6Qxa4y92CCDYESvc08jpn4V9GoNWg29wI251nhetED1HM5kaxCMmFrYDQBQ8dQN3JzOPx+lk7SoHByJu89Fc+MDREsQbbdploLdy3wvETX5Bdz4XI+4czLWvjoT5aOj8WB7IyQf+onrV/reNwhGtNSIlpwTH5B35Xvx09B0kIm1+XBrS64uBbVoSc88+tk4LwFHl61Eh5MKVlev1uDB0ebQqzVcfjzp3qd7TIpvAoO4/j/y02D+e+tgEIwIfz8O4e/HcWNTtmwBAEg+/RurFxR3nLA9PgJlraY5U2k/lPXa6WBjNh8pzLduwyAYMTQ8Fv+JoAmdn8TPfzvkf8RkyJAhQ4YMGTJkyJAh4wlD9e8egAwZMmTIkCFDhgwZMv5DUGshP0+in/9yyBaxfwgcXJwxqg1xf0r9fAUzj183V8A9pQlLDBo0LQMdlsRj+IXrnAnd0rsE/ttn2mnZDjGCQjTxS/GWbyRuTyZuD2deSbDrqkbdEG7o7uDTW4Ewn7vEu4tYlW899AKK+pDg5OzxiQgYdwqG9o2Q/sIXdcoie0NnuG6tROsj/NjbfJSCi2835vopjr6Hywu1eDuPuCuMbdMVykMnOfc/6e8bu4LZd0oDTO85KxwxIHYM2mc6QK/WYH4eoXN+Py8TXgtSWD33IZcQlj6G62Pvr5tsZKBXa9D/2UkAgLYL+GSbdbm25YzhdSNXepOAXkr3TOvtateMkE08IuRQebfhxhM4Kx0NHR7YuPSEZKrwlm8kXI+446aZkHfc9bHYd9lSKGzGeTD0F9YPdd2bn7iW3c/f0pGNs2hoS5sAcmW7ILgda8rNZaSn1sYN9sorxN3k1FsJLJA94u04bpx6tQYLW5yB474TeCp+OnpNmcaNdY3XUQRNOQHlwZPw+dUMRcpplpj2gcGXlWvxK6HAbny0Gd5zP8/GGxR3nI2rxfIUqHy98X4ecRvsP2IiJ5vppjw41K+PPXu34qG+C1QeajbG4l72XyRSV2AAjBzFOsCfXqOfLRln2OdP89M5FyYALBWFdb3WS1LguO8EVG08cXOGrftf0PQMGASj3UTVpgSy1mPbkATf5gvZXB/NjrlB2bIFTN+Kro8HNq5h9x33nUBpUiBmeXeFXq3B9S71uH1hNuUCABLye6BD12z0e24yq0t/qBti/mDxWSjf448h52+h95kK5H+ihd6jE+bnnYTy4EnWdoMf0jm5UlemoPVxnIwGDBiNdvMLuXlTyn29WgPj9K8YAciDkNbsrGyxPAX5+jXQqzW4NVULU2Ikt64dlhCiIdMKIkPqemqpqoJ7Yir8B+ayvfKgh+jeNcmrG8y3brPvVF61d+8if0tHzMvNwqogP+RuFvsSdtgSPuRMbcXmrvLxgv8YIwJnp3PtUjkoD5Kz0/Htq1A2aYyay7w89GoNI0bRqzXoMj/Opj/Pt0QyjtJJREa+84gcFceIrKnLofuQS2x9Vb9nYthxIouqgcQVuyw5gNvDKj8fm/dZqy9TuDkAgPnadQA8UVLxPB1cHXhX1ixJeoDz1UrcmqpF3lhPNNmQyrVHQc8lOn+DYERZcgAe/kZIL7a/8DkA4tJm/T7UqzVw6leAblnPsGs1fcJtyt3eHcSeBypH41ox3Yo1/f7415KhmHUdDacXQ6FSsev+GSK1eL/nJkOvJoQnpnXhrO3qvjypScVTN7izpNHmNDTakganfgU2Mi4132dEXHq1Bq4xeey+Xq1BztJoOO3N4Oo8cBddI633TYclxEV+TH4vIsNmTclzGdwderWGESJReZ2dnYDczRp4fJoCh4YNoVdr4Ldvqihbt/pc34AYIiCdCyWvab4yFc1XEtkWfED2bfKpfdz+a78snhuz9H3UI+sBlEH+3LxyNnbikqdLUfIGkZ2UnKOuvwtk/H0wmUyYP38+oqOj4e7ujoYNG0Kj0eCjjz5CRUXFn9YvLS3FV199hf79+6NNmzaoV68egoODMX36dBQV2Q8H+TPI/4jJkCFDhgwZMmTIkCHjr+E/lDVx7dq1+PLLL+Hv74/58+dj8eLFCA4OxjvvvAOdTocHDx48tn56ejrmzp0LhUKBF198EcuXL0dsbCy+//57hIWF4fz58//ymOR/xP4hUHh7AiAaEd+d05mWaXybrrihuwMHFxd2381Ug0iXfFaXalEC5qTZtGsd7K9XawCLxUYbRdF0nUggQLV81u3o1RoIr+vwe5irXTIBikHnSgGQQGlry0gDB3E+1hrOwAknsd3vABol2SagpElHY3sOZ+V93knFyQc+dc65eJ6O0fRSDaxerWGWGSn2JG/G2fBaAMCssyTo/D0/ojW8P0wMcD8TtRntMx3szoFey1kaDcUxol28+H4Ak13O0mj0GTcVmlNiWYVKhfLR0QiaQTSIigiiATW+mYCit3XwTZrG6tP5SbWZNQVF7HrgBqLp/yYwiI2LUutSQhFhlT+zbrgG3gEAOLi6sn4NghGwyvWuTmvIzTMojljjPvHvwPo29fiOjVP9mW0CTfN5Ewtitmftoe20/iKFW8cHn91Hxkci7b+iUyjXRr2dx1EWX87aoM8R/X7Hn5C7UA17/YGi5sp8jSQ3zzCJpAbvXA+zsV7W5BewvbDvx+84WawK8mNEI06GE6gpEZOTXvpEpCWX4i1fYiG5P4xQM+d8wQfbU6s3tTJdmStSu1/ZGQIAeMM3CrEd+tg8X7SN92+0Q22PTjAlRorzKCpmml9rSOe0obw5+xwUfxyXP9Iie1kUVD5eNhbMW11LYb52HUHPn+DGYNESC6lDh7ZwG0isaHNzzsFtgGB33RvE5OHuQxf8to0E0Acdngi9WoNv7rTBvWfJ8+drELXeqR1/wraiLvh1QW/4zktFzkYNPvDrzPrP39qBtU/bmjGBkKgEfi2eoQCwZ88W1Fy9BrOlll27+asY8P/jvVbI7bMOAPD7hjXI+CiRjdtvByEEabYmFW1fzoKqVUso3dxgWhmB1kvIcxA0UyR8oDAIRmYFk1qtpPelv6m8fEefxif+ZG45PdfDIBjx8DdvqIedx9U5OtyaSkhGspdHwXdeKmYLxMJUc7mQs3jQ3yGZKujVGlx9WYfr8TpYepcg+fxhAEDuYjFdQvgpUTaASMoAkCTdACHYoOVpwmJpXxQ0HQAA9J70PADgp5AWUDZrCuckYp1tHJuDfhcGo2IEWfuavMtQeagZ1b+1NSno8ETu+ZDi3KwERjZFId1/7/pG4MSHicwaZX2u98h6wEhKVB5qdr9xbA7m+SYDAOb4kGc0d1krm/7pGUwtRwDw83fLAQDry1uw8TQdZLKp23yV/fQZwevisDvUDc79LwPz3GCpEQmjciMq2WeHP06xOvl6Yqmu7dEJikfLKZ1rz7NDbeQqBS03qo0Onp+kQNW6FZcKhtalf4/QtpXtglDVuYJro2a/uNdbL0mBe0oT3OpaCkWnUJhv3UZ133DU3r1L1hz8WPVqDfwfkcg4NCLkVn7fie8s+u6VrmHgi7x13PpvD1reez7ZtwM767kyHov4d1qHz+Nx+SNiPTvcoR7MplwULtCxc+e9iF+58tRiCYAlhX4YQ57NvM0ajgRIxv8ORowYgeLiYmzatAmzZs3CzJkzsW3bNrz99tvIysrCmjVrHlu/bdu2uHTpEgwGA9544w1MnToVX375JXbt2oWysjLMnz//Xx6T/I+YDBkyZMiQIUOGDBky/qvRpUsXNG7c2Ob6c88RBtezZ88+tr6Pjw/8/f1trvft2xdNmzb90/r2IP8j9g9Bzuticsqg+OMYfVHgNJe1lZXsvsuvx/GGbxSnkaZ08FWxESh6V4frL5LvMV5igkpr7Q+9bhCMuL07CAUfaHFvZDQGagfDIBhZPJAU9Lv6sxQu+SqNBZCOaXeYqFG31kDR+Ay9WoPKQSJNuLSfks3EikW16lKYTbmctmtPaBPRIrQxDtdmizTC52YloMa9kc0Yai18rBy9Tqni3YeQ+LcB5+7AIBjR8S0jN755Lf6AytMDerWGaWzpPb1ag9ThS9A+0wGBG+PwfPdD7H7AnDQ4PDTD2Emcj9LLE422iBpEs7MYh3H+hQQETcuAokt7bpyO+zOh8vTg9gkAZE8gmvqCD7SwdCXrK6XW1as1SPuMUFZXDo7E6cgtRB4VFYyKnPYR9kU8a/vwiXY2WlKDYOTosel++jBfpJGfasrn7gGAaWUEcpcQC9Ab1zTc2AyCEQ7163N79lD7ndx3l6U3YY2TXbbhgcEX/Z6bjJjBYxEUL1ogaELmxrE5aHt0PCw1NVwC3du7g5Af8y0MghGXt3VAhkYJvVqD8MyRdVqPadwUtYzS8bunNOGsyYEvpdmskRR/fLMSAFDbgCRWfz+PJISd3lgg58HzJ6B7eSZaL0nB+3mZGBDYFVmP1gwAbgwRKZmp/JwPE438voXd4XD4FILijqNr1jN4MDTS7jgMghEN/2jO3ZvQiJexz9upGKQ7iaSUXdCrNcj9PNqmrQHn7nDyUqSehu/e57kE3EsCQuHc/zJXjpNxn2L4/TwDocvj4Tv6NFStWmJXu2Zo8EM6LLqOyNevwerCo6S//qNQT58P15+Ipjtg3CluTL6jsohcnpnAksxvXEwSBtdcuYrkkpNMZnQMg/s+x2TSfLBInz624S0AQN5nWha7cu4hcWPJG7aSrXFtZSWJ+2jVHB3b8jFWUnlTFGwP42RQc7mQfaaWIntnN5N5AIk1ed7rKBlzVhWarSH7PfDFdBTP02GZOoPT+FvLfWnrE7i9OwitvkxBi4QUrpz/a6ns8w/7unJjkD7Td7vbPpMAWFwdbePKzhDU9uiElI5O7Prv679l5WlcHDsL+hSxNB0AiLU5Lcvmuczf2gG+o0+TeCLJ86FwdraRoRTC6zqbJOQAoFkUz8n6cId6bO6DfzvNtSdNdwIADfe52rRHz2BpmyM9yXtzS1s1fI7Xq/OcuDGTT7Kd+zk5Oy9NFi2SO34mmnxpudh2PWz6pPd/27KOxStKcaj9ThtrNY0ry/6uM5eKxSAYUXPlKhzLq236uDlDC0SGsXaS92+Hqcd3nDVW1Zd/Pm7o7gAA9iZtgkEgiemvvqRDTYmAj/OPo+htPo0IjdmlHgj7N63lxh4zcKyN9RcAjlfx60XHLG3bK90VSScN5J2wUIyppZ890xqg9Rcp6Nf/JNeO14IU+I7KAgBsauvJPSsdM2ps+qVxdH5jjJwnxT8dCjwh+vpH/QUGBqJ169bs5+9GcTFJ2N6yZcs/KWkfZWVluHv37v+ovvyPmAwZMmTIkCFDhgwZMv7PwWw248MPP4RKpcKYMWP+R2189NFHqK6uxsSJE//luvI/Yv8QGLtvBiLDmG/7pEbX0SljlF0fZgppjJLLbeIbfejb1WjzYQpOvZUAg2DE3sITyFlKtGelk4ivvzIkkIsp0as1SOq4Dt7zU9FgexqSUn9l9+Oyc2AQjAhZFW8zjtOvJyC270jcNFfYjQVw6BAMALg1TUyKWtObJD6VJpt12f2I+a9VSwzN1rN22rxIYn4UqafJuJs1tavZ21EsstsZBCP83kiF8c0E1r5erQGOn+E0fABQ1u0W025LtcU0KfDlhURee0KbIOthJWNto2WbK11Z0l7XH3nfc1UbT8R89CqWtD6J7PGJTJtKIWWmu1dbCdcNdwEArkfcbe7T8eUPa8hp9+blZqGmuIRrV+o/7z0/lbGUGQQjTGuIdVTh6MRkcXjlKqwpayVqn11cuPbUnxM/9uK3dMh7hlhulM2bcWOz1Hfm5q5Xa/CubwTr690fCMOkNKYtf/Bq+M8lFsBPW4pzpeOn8Vb2fPkdGjbk2OU2PkoyrFdrcCRsBwauOAhLJklIrFCpbKx1F7ttJO2mZbH50qSjerUGD++I80lsvwn2QC3XBsGIJa15jeil1SE4GPoL97zae46tNd9B08m+e88vHD2fn8bVabgtjd3bk32Mu+d6jdey6tUa7ArcCwA49hVZs+5ZlWgQk4d6O4+j+wszkLuYaHVvzNSi5A0dOi6Ox93uN7lkwXq1Bg7t20Ll5yPOrQvRJGcvi4L/q2ncswMAeyaT+jSZqkEwIj/mW67Nmv0kxowmsJ9uyoPyoJrb24EvpsNnI9GW11y9xqwaipTTGHe5J76+SfqpPXvRRo4Dw2N4eVwYBKQRDXX211G4HSrei/XozPYcTbRsvpDNxiodN/3t9zo5u/Zc+gNzg3valKVIPvADt0/vjOeZKmmScO+RZ8iz9yh5u1QOD5qLMSUf59vGmAHAnhwiR2qxs7ZyND9bA71ag75jp6Db7BlsvKYVxDoafboaerUG/TwuslgcvVrDvCqotwMA+L3BxxYaBCOqLWabMXHWm0dxdRRZkVvgcPhUneWlKK4hycsbbk1DwfYw3BsZbVPG1zAVt3cHMSuEtD2DYISlSjy3peOmODMngSUsl95vuSyFG1flYGIBb/dNPHa0c8fuEiJn6XlqEIy4OV2LEx8m2ozj6qN3u9+OGXatXvtOt+e+f3OnDfvcet8V9rlwgQ45Y1ZwZW9P0WKYZyTrK8aXWK3M5ffYOOhzOvlSAYrf0tk86/berQDQcXE8giaTuQYvvo/gb++y+G9aTpFKLIS3pmnZGJqvTAWO83HeUqtTXWsOgMW9GgQjWn1F9vdbvpE4/wJ5r1OPg2gX4jlyeVsHeKY1sLFqFb6tQMyQcVA2EdmWVX4+7P1Ex2pvLNkL2rH2fN4RY/R83klF6UQtiqOJbJd7pHPPrFc6bw2Vyv7Ui7b9KIP8yf54SWdz7x8Ni+XJ/QDIzs7GlStX2M/fiTlz5iA1NRUffPABgoOD/+X6P/74Iz7//HPExMRg8uTJ/3J9+R8xGTJkyJAhQ4YMGTJk/J/Cu+++i+XLl2P69OmYN2/ev1w/OTkZY8eORXh4OLZt2waFQvHnlazwX/GP2O3bt/Hqq68iICAALi4ucHd3R69evfDHH39w5dLT09G3b180bNgQjRo1QkxMDIxGo902BUHAhAkT4O7ujnr16qFLly744Ycf/tfmMCwoDNcjGzLf9gsP76PF0ySuQqoFlGquKLtfv+cmMxY0qbZJr9Yg4NAkxl7ktp74+lONr0EwYkD/UQCAydHP2tUYJgYGQK/WIEJ/FgbBiNKJWtZ2z2nTkLx/O8a26QrhVR16T3oewSccWRvuicVEM7Yug43pwPdruDno1Roo3dxgEIxIOmnAzkADq19TXMLKxfYcjtnpoiWg8D1RexS+ag67bqquYLnCLDo+tqxqn4+NDLPHiZpL2sZUUz4MghGXpiSya/Oin2btvHa1k41mzzpmIil9N07OT0T7r0gOIWFHO1a/6B0ds0gAhEGyrBvRZlc8dQO9zj1tozHVqzXweTuVtd/um3jGVjjnSheU1T5Arym8FcVawzmhC9HqWaofMlYnvVqDqY2vsnJ78tLsams9P05hczbfvMWVkcb/SPulffm8Tfam4/5MhC+I48rRXEzK4ACY1nThZJlcwlua9GfLYRBIHiWDYITmFGBa2wUtlKIG0m//FDzXkATLdn9hBpwONLexQEnXjsZeUjh0DGHMlVLLnhQF28OwqyTDxtrl0JAwdzVdl4oOnxML8twrncXxW1lYpN+3FpG4HNPqCBgEI5yTxRg7a1hbdg+tXs2u/1ScBufDreC753kU/dgeH98k2r0/OoiWzvpXHsD/NbIm7itS0fRSDVp9SbTOtXfvIvu7zsxqVXv2ImryLrO6xW8RK451Hio2pp0bAYDliaLIXibGlaj6khioUW3IM7xw2TiYe5F4uJI3dRgYEQtl82ao8m/B6lzZ5kes4m5uuKG7g6zOFrvPHwBUteUZ1tCHnEOmhEgEzkqH/08k55i1PFW/Z9q1VBoEwsIntSBQS6uluobl04vtNQJ6tQaK3z1gD002piKh4CgKPtBCO3cm81rQnX5ILFBd3Wy08402p8HcszOUIYEId3aCQTAi9qlh4twejT/ny2jon5nA9UflcnjlKlz/pS2UB0+ixlmBnO87wSAYGYtjWkdyZp/S1kftrdssrrTFcrInj39MYk43Fh2z2fMBhyax/HcAyZ9lDVp2e3EqHgyNZF4Pwqtk/Wv6hDO5r3kU+wcQ5lhPVQN2z3vkGRxbSixBxfN0UDiT/JQtDjrZZRqkfVOLrj0LJwC0SxS9PQZ2G8rJjqJsbDQOr1wFgOSzvDVNi0FtiEVxbwGRY+7n0dC9PBPNV6XiqbjprO7wC9cR+nU8i8VVNa1E37FTuHMSAPIHkuc44OBkGAQjXmgiMrsmHd3JPl+YnmBjVaL57gyCEQMCdMwKSHMKSj0lRjUshefHKajRBLA60n1nbR3y3CrGF9d8VYFa43n8LGhsnhMAaLaaZ3dUtWrJ7ZnbU3irsDSfo0EwQtm8GQyCkb1j0iofWVslLJkA4NSvgH2//oIOl7pvYBaqvEVaNqc2I87iRnhDLDHuES3fkvPM3t88lCnVeU8GqgZGQH+WWEv1Q8djuonIwu07cZ7dX5gBvVpkYc5/I5jlDKSg4973w3ruukEwwmwiufNanHw8bfo/DU8kPuzRz/8WFixYgIULF2Ly5MlYsWLFn1ewwt69e/HMM88gNDQU+/btQ6NGjf5H41D9eZF/NgoKCtCzZ0/cu3cPU6dORVBQEMrKypCVlYWSEtFtKy0tDT179oSHhwc++OADAMDy5cvRvXt3pKSkICxMTJh4+/ZtdOvWDdevX8crr7wCT09PbN68GSNHjsTatWv/R6ZHGTJkyJAhQ4YMGTJk/HuxYMECvP/++5g4cSK+/fbbf9mStXfvXgwdOhRt27bF/v374ebm9j8ey3/8P2Ljxo1DTU0NsrKyHsukMnv2bDg5OeHIkSPw8CAay5EjRyIkJARz587Fvn37WNlFixYhPz8fu3btwuDBgwEAU6dOhVarxauvvopnn30WDRo0+N+dmAwZMmTIkCFDhgwZ/zT8LyRbrrOfvxkffPAB3n//fYwfPx5r166Fg4N958ArV66grKwMXl5eqF+/Pru+b98+DBs2DMHBwThw4ACaNrXNSfuvQGGxWJ6EKP9XcOTIEfTo0QPLli3DrFmzUF1djerqak5gAJCTk4PAwEBMmTLFJlnb1KlTsW7dOgiCgFatCOWzp6cnXFxckJOTw5XduHEjJkyYgG3btmHkyJF/yxzKy8vRuHFj9MTTKP7oKfi8I7oYSF2QYry6YEv+EYxqo0NN73CbgGyDYETMwLGwnDpnUx8AcjdrkPXUKgzzjKwzONW6vQH9R6H27EW799cXHkVrVQN0WBLPEpZONeVjTZCv3fIAcRnInpDI9X39l7Zo8TQJuI8N7YUlp5IQ4iRS+QOAQ/u2qD17EcLrOpYk2N4cKkZE4XaIEm0+rLsMvSa9d3VnCFoNvVBnHQplkD9L9ikte2OmFu4ryLoVfKDFxecTubWrawwAca1zKXSC1wIxUeTtKVrmaiItrzv9kFE+l42NRuNNxOXUoWMIak9fgLJ5M+bSYd2/QTAiYMtMBK24DnN2HgyCEf6/T2Z039Yujdb1r8fr0CKBT2ZZs98Lqr6FWFFwFL6ODeoM+LZ2Z3pcPxTmXp2hPMi7Jl59SccCt6Vt2GsbIAHd1IXFuo+7o6LRcCufAJ3etydHe+Xo7/Ix0Wi0OY19V7VuhaTMvaL7YzcNHI4a7e4963YHBHdH7d27KE0KRPOJt2G+eYvdVzg7Y29+ep1yZf37+XDuN9L2+46dgu5L05DSUXRzSz6yg2vHtCIS7RYUoOFP1Sz5tr15S+Ge0oRRTzu0b4s9+7badZOV1rfXztU5Opx+PQF++6egfoMqeDxzjrt/+SMtc3Wl+DQ/HW88IifIXhaFvBEryZ59dLZQFM/T4X7AQzhec8RgfTrOhtcSF70NcfB9MxX1Drfkkiv7b52JgFf4PeJ4qDWqe15hZQZGDuQIc8y9OuOHDcvhpqyP7i/MQP0dogunQTAiLH0M1MPOM3kEHZ7IaPXzt3SE7+jTyF4Wxbl+GgQjYoaMg+WEbX6a7OVRyHtmJQZqB6OmoIiVt7e/6DlF7+d8GY2Al9PsPkOlE7XM/cpeW0Vv63D+hQTEPD2epbyQwivdFYVRFVhfeBSTvLoBAKoGRqCojxLubW9iR/v1KKipxxKkC6/poF4sPtvW/WZ/1xnZfb9FrEdnWOPOBC2abEhFyRs6liTX+hzK/Twa/q/aPu/W8waALy6n4rVOsTCXlrJr9s4eAOysAEgi7qSUXXbbtAfav99PMxA4SyR7av9VPJsHRf4nWrjcVLB37eNgWhmB5ukqZCxMRK8p03Bw7Wq752xtd5JW4Ldt69g16fPzuPMZAMpHRyN1yYo6n2WDYMSAAaPJu8nq3WkPKg81o28PyVRhaesTrE36rrEH2ve1WTqMnv4bfg9zRcVeP7jG5EGd1hBC9N0/lZkUiogwlIY0QPisU0jwIIREDu3b4sWdO7EsgBDqlI+JRurnK+pcZ4NgRPTrM9H4+zRkfxWNoLknYKmpgUKlwt7CE6ycvfo1lmocwi8oKyv7H7u6/W+C/s3ardcCqFQuf17h/xM1NZU4enDB3yaPb775Bi+++CK8vLzw4Ycf2vwT1rJlS/Tr1w8AMGnSJHz33Xc4ePAgevbsCQA4ceIEunfvDovFgkWLFqF58+bWXWDcuHH/0pj+oy1iyckkm72XlxcGDx6MPXv2wGw2IzAwEPPnz2fCyMgg8RZardamjejoaKxduxaZmZkYOHAgrly5gpKSEowdO9ZuWdre3/WPmAwZMmTIkCFDhgwZ/ylQWCxQPAE7zt/dB/1/oLCw0C7VfI8ePdg/YvZw9uxZVD6KLX/55ZftlvlX/xH7jybruHTpEgBg2rRpuH37Nr777jusXbsWTk5OGD9+PNatI7S5gkC0LNQlUQp6jcaT/Stl/yeQJqRr3bo1AgMD2T1qDQNETYky9BHxRK0Fbsr6MAhGu0HlerWGWcMA4Kn46TCtJXTlCQVH4T/GiGe1z8C0OqJubd0BT+4rtYbd2MXTeXbPqmRaTqmGbr2O9EfHJg3uNghG+L2Ziqfip2NebhYrQzXWerUGH540YI6PjgUV06SVdByuQi2+LjjGzZsi54toOJfWoM2HKah3uCXXrxT25k6tYRS0jkXXkSXtpUG1D54WE+JGziPEE9QaBgDe80VCDQB46gwfWE/HYBCMEF7TIWjKCWYNo+tlbQ2j2PVND1T37wK3Y03ReFMaCn8gcY179mzByzkXOOsJTWgt7dN/bhqSD//MrgWMOyXeyxA1W+Mu9+TqAWDWMC4Q+5GGcqY32Qu13TTQe4Zzc7Rnbcv+JgqTL9m3VAEkgFt58CS3xw2CEaffSIA1OKIIq7V26lfAXdOeHo4XsklQv7LKwt3L/joKbY+OBwAkZx2w6ce6z+wNnVm/UmuYQSAJTqXz+W37egBAbJ9noQz04+4pIsga5mwkBDB7LhGCoQZfNoLlXgUAktDcwdUV5mhC+KJs0hgAcL/2IQBiTZAi6ehOFP8kcrTTtAW+O6dDefAk9i3szuaefGQH9GoNOnxOktcuvpyGoJnHUXP1GtLP+dvM2/q5ej2XUK/f0N1B/iItbj2vxcOl97G01Acv51zgrA7tv+IT5K4pa8U+v55LrCqnX09Az6nTEDjhpI01DAoFfN5O5ZKne6Y1wBu+UazdwNnpiHibPJenIrYyWQGA5ycpyB/wLSYMOoiLQ1qxcfm+SZ63qtm8e0nAK2lQdGnPCCgMghG7g/YAIGeDXq3Bpc/cOXnkTlDATVkfMd6RqL+D0FrTwH29WgPPcQUccYLv6NOsLrWM5Y1YyY0j+I8J2Lvre9hD4IvEQpqU+iu71n/4RDYm6TMkPacAIOBlYiGyJvkACBkBAHR5Lw7K5s1we7eYjgAghBUDuw2FJeMM5uacQ/E8HbI3iNaq1W3IOU3fExXDo+CclAGfDgLSND9iyHuv4T0/QtJxZ7wWZ14Wn23pHsvd1Am5n0cjr99aZg2zJlhosiEV+rPlUFgApbs7xl4sZvKme9aeNUx6dnxxWZTNKz5azhoGwMYaVvyWjrwTbt5CWTIhvaCJuO1ZgqXkDa5H3Nn+0as1yBu+khuTtTUMAEwTE5E1l8io6Mf2MAh8kmEpgmZkoOnaVMReioXT3gwYKXEHeOu5wx+nOGsYIsMQOFu0uNsjN5HKvtEWMX0F/X1tto4jgqo9Td6tZlMuGv4hWg5oO+VjRCKymhKByelCeA36jZyEkjfJ2Sa1hhkEI4advwGAX7eWX6fgjWbZMAhGuMbk4fZkLWcNs/d3A71+bbaOPSuWjDNosiEVf/zQGX4/knQPe/ZtxcD6lXDoQCxijTanIbZdDyhDg7l2pPJyLiNkaoEvpcFSQ1KM7C08wda9rveWjP9drF+/HhaLpc6fQ4cO2ZSl1jCAWMkeV/9/4mT4H20Ru3uXPGQNGzbEwYMH4eRE3LaGDh0KPz8/vPXWW5g4cSLuP8pJ5PwoF40ULo/yCNEy/0pZGTJkyJAhQ4YMGTL+T6H20c+T6Oe/HP/RFrF69UiS3NGjR7N/wgDAzc0NQ4YMwdWrV3Hp0iUWM1Yl0QxRUBMjLfOvlP2fQJqQ7sqVK8jOzrYpI9UIPlhaifl5J4FaM/RqDWIGE5dJqbbPHhqcv8USqcY/sljUFBUjaBoxy76fl4kP8zP4/kJ2s+9Si8bJLtsAAIouJOEkpcK27t/sR2ijB+qGQK/WYHybrjYWqM3LvkDPerUIXhPH9WEQjHi3sx43p2tZm9ZazLTPVmCWd1cAwLmHD9hYFSoVAl5Jg+oAiZujcR5d58xk/VPa3ISCo2zsAPFzl8ogdLlIZaxIOc2S9tLyRxJXoc/4qbi6M4TFUAw5f4vrQ9r+ewG7YBCMXLsAobxVL07BlZ0hMAhG9D5TAQ/1bW7tHVxd4ffTDNZW5oJElLdxREYeSWbp9ewZFP8UCr1agy8DQri+Wy4j1NPt00QXW4NgRODGOJh7dbbRxuVGVLLvNNan6B1RSygta/2Z9ulw1AjUmrlrtJ8N5aI2tEWqAuuCvUkdFxfo1RqUjYuGQSBJu4+E7bDRWEtlat13xV4/m7FZW4wBILXjT3g1cwQAoP6OdK7tvOEr4T3yDNcPu++gRM1+L66twAknoWrV0mZserUGVft8YBAILbn03q0uzWHOzuPasWQQi1Jun3Vszksvp+D3DWuwJ4/s/y+3rMClxGD8toVor813ynB5IUng6vfzDJx5OYF7ZvVqDTyHi7GiQVNJTILbGZL8tMEP6aJWduh4VO3zQesvSHqCDk4ucD5MrEU0wbQUPadN486eJYOeYfd830xFs29ToepbiDlul/FlQAi3ZlTTT69tDxEtYp/5h7F7NKG6DR5pGmnydACMslqKputSceUVYllPPn+YnBGPFGtB6+PwRwcXFotCUbA9DHv2bGHfY8N6ky5PnIX52nUYBCO6vjQDsaG9YBCM2Pfjd8TSMsbIxm0QjCzxraX6IQacuwP9hUHIH7KKtVtbUYFek59nMqF1w0/Vsu/9LgzmxubzXBa3V0ve0DFLkrQNgCTSVqSeZtesNe/KRo1svQLSsrizWIpmq1NhvnkLGf+PvTePj+n6/8efM5MIgojENiKR1RJiIpLMDEppja1qK1q1r0mr1Wqr1VUXWqqbdxNrKbXUVpQwStHKQkQmsYTJKsuIJUIkIZLJ/P44zrn3zJ2o9/fXj7d33/f5eHhk5t6zn3PPHef5ej1f3bayMp38yPqmkupLA4LhtSgBOU/9AICwP/Z1uO4gc3a40x74HpiG5M9i2Vr12HtB8FFaF8Y9S/7jUrnA4VxfPZrBoCahQYydm0C9OAFxab9hYwcvDDEP5Op3tF+J94nX2+kkafM/0DvMb7SYWDgPo8UEt0FZULUP4MqnLLVBrcGq/OPcGqh44houDW7I6qjTQgXE39JoMaHf+aEsXdtRZ2FQazgLGtoP84pw9t36JFnj1H8SAMr2E5abhtcQ190xNkOyd16fybNudbW1YiSpo+V3CfgwdB8AMJapdF8gjBYTtvsfksxh4pe8ZDgNqQAAyuMm7I5aDAB4JUvw9TSoNfilE2GiX2+nY/Og6hjI1rsypAOarU1k7Ci0IXW+P8I+ikLL7xIwqEtfkrdxYxgtJqgXJ8B7fy1Xb236BTY+1pu3YD13EVej9dxvBIr6vwp9oZY1/ltncWnsf2vJ7Nj/Jv6rGTEvL2JKR0U2xKAKiqWlpVCryX8QHJkU0mvU7PDfSStDhgwZMmTIkCFDxv8S/lt9xB5H/FczYhER5JShsLBQco9ea9GiBcLDySlRYmKiJF1SUhIUCgXCwohvS+vWrdGmTRskJSU5TAsA3bt3/3s6UAfEJ4KXLrTCx36C7b0t5ZzDtKojaryWJSj/xR3dIbFVF5+2vJU5igWrpenEbBv9Ky7DduosLG/pOYZEfFJ5p3UDGC0mnP+A+FRcfl1gVGg6Lyci+9/ufWkA6qwYb3iuJNcpcwUA+R/xPjAAEFyvgdCumhrJieWW2+5otFWYw+RPY1E5IhLRPj1ZWlX7ACQuJSdy7f8kfhJeCwX7/KyvCFumm0tOscxryWmt0+EUtBqWwfq1pxMJQun03FWujUaLCYv9u8Cg1uDcy7x/E1VTowG853lkwnVADjfetRUVGK4nQSUB4vtx4uPvETA+laU5p9soOUWjNvqdv41GmxHnGPMJAH7zEpn/FSA9GRbX3/ZTcuo7OGwAOf3fMgtPnnuW5YNSJanbvgx6/+PTQ9g1t5+Eeam9zzy7/UROva0lN+C3cyZrF+176GfRyPyxG0on6Vj5pZN0qBgZycbN0bq1P+n3HZsuaa84nUPUWnG40x6oPJpxa7+m+ApXBv3r0j8PAJjCJb3nedzikGGk7Q36g6zBOe3Ietd8Hs1O6z2alXN56Gk49RF6uYj4SdEAzjRt2IIolsfqoiBBsu/HS8n+UgucPIOjnXdxbXFSCKymPY6uWsXSdvkqGtaMTG6+52ade+CprjgYMU3n1NaL6xvAP/NinzBx3wAgd6GOtTv3cx1yN98P4v5EKYwWE7qdGgODWsMC3PrOT0T5aIEFp+X4jD6DUqtgcn4vpB1j0Wj5qmob4s4dgUGtQdfF0eiUIDhkj8y4yqWt7R2KOe55MOe1wsABY7l21zOekjwnC1um48Nrwbg+UwdlP6J+mPu5lKWhzKJBrYH/LAeKtlfvK/i1UUtuGdQaWMvKuGvXZum4wPcGtQbtTzmjwbGWXL3ryloAShXyP9CjJiePtT1/WxdMvngJTu28Efk28c1r6U2Y/a5fREveOwa1BkFTBD+Zy7s64qXkREBJ2NrASSmS94rRYoKqZQsJ42AtIYqeZyI3sWu+u2cge5OGKVuWj9bC98A0h0xO9/ejWDsogyWeF++PybtAGdJBwsznLBbWHQD033mK6ytVgDRaTBj75huSui9OjsXNCTr4brnCfJrt22i0mPD89kPkmbzvI+Vov6UYFPwkgmaSQPO6N2ZxPpr0b2LXHQCA1l9J/dAywmokLKrnCulvJnv0HzURrjsEC4MNwUQ5ufnpShjUGpwM3YZun0Sx+1lfax9u34VgzUPVCo0WE7K+Js+vk68PuzYq+ym8tXcHbk4g86LII2zgxg73/d6T+H1fjJSPYgEAAUbi6lJ7+zZr69E1q1g7xaDfFWHBaBGTgC7fCBYv5uUR7L2lTasGAARFE3asrdGKVfnHYbSYkLNYh4DNs5D3mY6N+SuWcPxilqqQyvhn47/6P2LDhg1D48aN8dNPP6G8XDBRuXz5Mnbt2oWgoCAEBAQgICAA3bt3x7Zt25gYB0CEObZt24a+fftyrNrzzz+P7Oxs/Pqr4ABttVqxbNkyNG3aFIMGDXo0HZQhQ4YMGTJkyJAhQ8Y/Ev/VccQAYOXKlZg5cyaCg4MxZcoU3Lt3D7Gxsbh8+TL27t2L/v37AwASEhLw5JNPwsvLC7NnzwYALFu2DFeuXEF8fDy6dhVOBUtKShAWFoaSkhK8/vrraNOmDTZv3oyjR49i9erVmDp16t/WfnEcMSeFM5zaeaPf3rN4vZnAjtj7fzT+0xPb/Q8B4P1mBg4Yi9r0CyiZroPHqkTcHqNF45+TuDIo8j/UI2NmjMRumtaTca8Shyo6Ym+wO59XocA7WWlY5B/isD9GiwlrbrXi/D/qSldts2JImzCH98RtLd7VEWXXXZE7aDVr49WX9WjxrwQ8dfY23myWDYNag/xtXeD9HDlNctR3Rydv9uyNo+/ivwP7j8X+g1tYmh5zZqHB1XtQHeVjXtE4VfZliMtVdQpC3KGtMKg1cI9vxsVsctSe/A/0yJgVIzmdo9hYEI9xbXuwfJe2doHPaOKDFF2kZX5gYtQebgtlv4I6mSwA8Ns5E4Evn0D2Ui385yah+qkwOB8S4tjdiguA26AsVkbmt1oEviqwXuXPRSL+WxKb5vqvQUgJ2yoZC/t+A9K50b82i80pxZr846i2gcUxq6tMR/GnHGFh7klsuqHF2TDeQ7iutWGPHYVJGK0ZjLj0w2zeAzZGwf9Nad3iMujYGi0mFlfI0ZqhnwGiyNnAkMuVqWzcGBeWdmD+XeJ8Nybr0GytEKfQ77cpCJx4GqqWLWC9IjA6mcsiWVwjVq6mE/bHbXqgP4v5h+4ImnIKysaNUXubVytz9AwAwhw7+fqgJvcSLG/qcea1GO55fdAzuaUgAWPb6lE+WotGW5O4PeBBUAX6sXh69m2zHzejxYQnJ09DQ/M11OQKap+F7+hRoylHuzHCabs4rpR9OfnbusCa3Qjm+7EUC97T43w0vwcn3bWy2Fr2+a9F6dA8lvil+h2agpynfmD3KkZFIvitdCQU+UI9/LwkP411xxDRBTjJj5N9/Leit/Vo87mUOfFKaoRCbbmE6RLD0dyVH/BDfMhOdm1rYSLclA0crimaf1DXpxGX9pvD/dug1rA29kq/i82ZYfAaec5h3QDg1KolY7HFuPWiFkmLl6PvpGnY+0MMhnsRSxtl48bYf/HPB675uvYB+1ifr2VlcH68FAonJ6aoZ3lDjzOvx0jWY8lUHZpvTkNtZeUDnyHxPf/k+iwG1r8L+/dlXfPjqF5bDw0ObluHgYNeQK3pPJx82mJf4q+S+XO0lwNCHLO+E6bC+VAKW/MlU3Vofuom9u/fTJ6d9/UsXqgY3+QlMIuC6zN18FyR+MD9R9w/+7mcfPES1rYnrJsmFTCFEqZeHPMTAAre16PNkUoUPdkQ56Pq/k1lUGvY3njP0B31jKe4sikq+3VGwqG/L27W3w36m/WJnh88sjhifxz/+LEdj78D/9U+YgAwY8YMeHp6YvHixXj//fehVCqh0+mwadMm9OjRg6XT6/U4evQo3nvvPbz33ntQKBTQ6/XYtm0b958wAPDw8EB8fDzefvttfP/99ygvL0enTp2wZcsWjBkz5lF3UYYMGTJkyJAhQ4YMGf8w/Nf/RwwARowYgREjRvxlOp1Oh8OHHxwjiKJNmzbYsGHD/9+myZAhQ4YMGTJkyJDxz4HNxpRs/8/r+Yfjv9pH7J+EX8zEhKymhRszS6TUNg3QSXG713UAwLBMA7tmUBNpVYBIDuf9HILGPyexMnzjpuFqtOAA771AkN8VU/K90u/CMGw8Bu9+nTNLLJyvJ8ELbTb0acCbbZXuI0GpVS1bQP/6LKx9/1kYLSYEJruguj8RNnEkuEHNEqv7d+ecimlbVJ1IENFWwzIQNI04ePvGTYPRYoJ6H1GwPNS5sdCn584g83siWiDuOy3P3hFZbEJgb0Kk6N5ZYpZoUGtQe/YCV06jrUmgZoniPrjH8wIyjkw9qFkiAGzx/V0yPp2/5SXvqfO4IxNLo8WEcW17cOWL5dgdmSV6n3DlzBLNK8PJ57NlXDk5I1bAaDHBfy4xJfl9/RrWhrzPdEjSbIeth4b1kZolGi0mjLtQiEbbTqDjSuK47/mMuU4zJqe2Xqwtn14nztnXZunQ+E9PGNQauO0W+m35pROMFhOeTZuCWT49H2jCZ7SYSCDgA34AgMz13bAkTzCLEY9nmEs9pL7TzaEZ1IOcygEACgW67H2FmSXSfFnjYlleax+h7Ms1gnkXHds+06czs8DJ+b0ka4Z+Nqg1uBbfGkaLiZN2rr19G7lDVnFjkfmtFsrGjZlZIsW7EXG49aIWcakHub6JA8wCgMK5HpB5CaOyn2IiBY4QNIWY2tCg1F5Jjbi2i/ebwT2Hse/u8c2YyZ96SYLkeS14T9g7Bgbya7zHSiKEQIV5MnqQwzNl5w5cMGdaLwDcHRLBwgj8lVkiRT3jKeyL382tKa9FCbjYaz2XjpolOpo3vzduwvftRHaNiuFQDHp6DD70C4M6SdjTxDj9fizKn4skpszu5TCoNXDy9UFt71C4bj+BvIg7UA8/j5wvpLL21CyRzbPILPGL3BO4FqVD7dkLiL8r7O3ULNF+3ZsXB7OyxfspQAJdGy0mPDllOvpMnc7lbzQgB/OvhLDvQ2e9WudzxfbItN+gfXMWFOFdJHWJ25g4OAA+H9SwvD3m8DLht+ICsO+0UVIPANQbfwWDgp+E88FTaKgkAjuufzRnog1UBIsKeihF4Wtoe8TCKgDg9HsKCufrobmvqyQ2SxT3l5olAoD6S37t332GmEh6rEnE/izSz4GDXmBliMfjxhQdwlJGQ9G9M/J+DpGYJWpSAcXvgtozfS+LYW9K91fYUZgkSaeIv/+eNJ0nv2cuFTh8/yZ8vZwFb7b1EOoLfIXsfdT0vXlsIm69qEXz5FLUpmWwtonNEsVtGPvtG+ya54pEmGMjuPrtx07c19DPojHknBDIe217HxgtJjRPaApTKMmXMSMG5pgIdE5RsnxtP0mA8rgJ56Ni8N5VEoYj/yPHYQmoyfadV2/C5VgrGC0mxF/xY/evz9Ch3qFUST4Z/2z8IxgxGTJkyJAhQ4YMGTJk/N9DYSP/HkU9/3T814t1/LfDXqyDwqlVS1T7tcLB7T9KTmsB4dTqqrUC49v24O7X5aDrcqwVLt9ugmZDzDBaTPj0egcWnNm+bIB3Dh/YvpfEcbnwHT28FiWwOovm6XGndS2yRy/n2hj2URQ8VyZK2ma0EJl56hArxqr847hmrYf5vhHIXaiD7/xEjMy4ih0dWwhjdN/B32gxQWsahRau5ajqXVyns3FdDsZ1iQIErY+C79uJKH8uEo228eIFADDuQiEmNLnu8DTd0TzY1/Nujgmf+WngldQIa7yPS9qWvTEUWU+uddg2WkePObPQaGsSV1/OJg387geadVT3g5zsqaCDfRqPeHds8j3yQMdtR31moikicYC65sG+PApFaDBsqefqrMdRec5HWzMJa/Oa7sgduBoGNQmcmxIqnGamVN3DfF9yMmteGQ6v/UoWWkA8buKxUjVpwmTA7deaON2DnkWjhYQDCHidF5QpmaaDx+pESX76eWTGVSw+bUDDlAZIfyOGCfTY4+Z4HU58EQu/bbMQ+CpZHz1fmQnX7Scw/Pw1FhAVABO+sW/vvd98EOF5iXMkF/dzwOBxsKUKgaMNag1UR9SIax/3l+PgcqwV9gQe4K5b3tCjOuI2Y3IBQOnqitqKClbG3qIUDGkThpsTdGi6nh+nkqk6eKzhrzkaQwnLfV+wxtEcUdS1vsVO96ojahZE11FZtIxBXZ9GRaQvjq1cCd8D0xiTyEGhgLEolVtbmkXRaLksAdCGCHLcos/m5RFcQFwAUDVvDuu1azBaTNxa/3fwoHXMmuviwkIEOIKqfQCsF7Mk5QJgz+WuHT3R9lPCdKiTGuPqyMbYlxxX5zpSNmzImKJXLOG42L1aUq/42af1DbgwGLa+xKIi/yM9GuXb0OyHBwv5XJmtJ2MvaodS04kxPwa1BnOzzmFpQLBQ9w/dkTtgNfwOTUHghNMO3zkrb6kxw83CxiF3c1f4Pk8CclPBJwBQubvDWloKpasr9mfGI2xBFCct/zBzRHF5V0ekR2xmY7Kvsj6Th6dljc3ty8SjFGHBLGyOTd8VioS0h6qHljWoS18WaoCK5IjH4EHvlIpRkbjeRQWfD8nY5/0cgou91iP89GgkdyMWJQrnejhw6SQrp3RfINwHZ7Kysr7WIuC1JBIiodZxaI7AZBfkPtcSNXn5rF2DezzLfl88aGyNFhO6fRKF0+/HPvCdb//53L07CK4nFaupsVXjKHY/tuIU9Ddrb/37j0ys41jCJ4/tePwdkBkxGTJkyJAhQ4YMGTJkPBxkH7G/DbKP2GME8QlsTfEVyclT5YhIdnri1EaNbh9HoYXKlUtD7xfv6oib43XIXBeGK7P1+CL3BPYEHkCzIWYAQPC/ovGe5wVYn+yGe7/5cHbTtB2UDQPAsWGKUHLq57UoAeaV4fjjvvtRmy8SEDAnSXKC6bkyERMuFmD+FUHyXtW8OQxqDbPDNlpMKJmmw51nI/BNXgK8nRph/Oo5uLanPcyTSMDFdQuGcuO0L34363OSZjue9syA4WyZxCYc4O36xeMtPu26NkvHrh+sdIbv2+TEMf7bFSh+TQhODQDFr+qxsYMXnoieIZm7sue1EsbGaDGh44pobmw+8yOf13gfR+D6KJbuVu0dAEDWk2vRf9REyYnZgMFC4G3nacWSPtmzYRS0nA6rorm5vjFZ8G/Y8tESydgZLSbGhhktJuRuCWFtdWrn7XC8KRK+Xk7G5j4bpvJoxsr5JDdZckIsLuf6r0EwWkwcGxaY7FLnCao4796g/ayNQVNPsWDJp6JDcfeZCNb/+b4RLPht0IxkNNwlMApRmVkk3bDxrA6jxQRrWRnXXnG9BrUGTj5toXCu90A2zKDWMDZMnP9WEKCsLz1lpPd3dGwB/3GpKG9HTnYpG1b8KvFfKXqb/G26gfgi+f1yj5Xhup0wfUt/Hcq1P3V+jMNT3yPBu5lvhH07ui6JZmyY+Lr1SYukHEdzXNW7mF2/sTcId4y+OPN6DHxGn+GCEddWVLAy3s0xMb/SJfeDsBotJhhGTCBrscqGL3JPSPpC5639D1G4MlvPzVXhfD3zkwSIZLV4LdF/4rKoHxQAFpyZ9l2cDgCyfgrlxsCg1iAu7TfU30vWWcd38rk8uYt0KN7VEcaiVHRdEs3lZYzMzvXCWIoC1dqzYQBQMjCAlRG14FWubWKI9zb6vfGfngCAweGO42aW3/e59D7h6pANo+X1Tr/D2DBxHVPze7KgzymhSpyPjmH3LdrbqCmy4NPrHVg9BrUGhTsExqm2spJdz3rBG0aLCbU9yd7yVR7Zuxs1E4J0++6fRvrT8iyKd3XE8kvH4f1RgoQNczQ+dOyVDRuy+cidr+LSLA0IRtZXWvY9aMopDPCJQOCE06ydRgsJSEzX1eJ9Q4X3avfOjA1TeXowNgwArKUkQHnOOyEwqDVI+VDwO6XvUnH7r76k576L+5QesRkAMPz8NQAkWHL+ti7cui8b4YTM9cSflbJhALjfJLmLdHBq1RIf5PChW8QwqDWwltxg788b35KfnDZdVzYGNAj7nWEREtbIdfsJxoYBQLsx6TCoNWg2RPA1tlWTPS7vU+Ib6T44k5VjtJiQPYZY6IjZsOszeZ++zPAq7EvYA6PFBO2bs2BQa9BgfQXc45sJY6tQcGNK/xrUGjSPTeT2OUds39NjJnPfX2+nk+yVqgDfOsdSxj8XMiMmQ4YMGTJkyJAhQ4aMh4Kilvx7FPX80yEzYo8R/srG+89/rWAnLeff90Lz5fwpjPhvq2EZaLohETn916DlsgTM843kyvJamIADlS5QHTmNI8G7uboNGUMkp8KBG6IAkBPBA/s2srRBM5LxmZ/Aom0tlPqC3Ziiw/r2bbGwpXB6S/0WxEzcqY9j0WD3SYxY9wYMag3afpaA091/RtgCUrf4hNBoMaHrYkFVcFT2U5jtfglrfxyAipFCXw1qDfI/0LPTU/F18V8A6DzxHLtGbf1pv9LejGH3dhQmodW3xKemwa6TQEQXjklsslmqJgUQpcq67OI3jvkOALCnoiHclA1YmoPbf8TdIeSksMGxlgDAGCIAcOmfx42J+K/9Zwp6wsiYz12Cj5G/M1G6i7l0HEE/RsHv0BSOPTOoNRgQkMHaf/7tVpJ6KGMqBmMNSm7ApusKXdpIjDkkzJ+j00TPZ8zo9dJM7n5muPTk3RFrsfKWmrvuOzYdRosJ037chfq/CsxB2Qta1BRZhPbbbKwNsYGETcDJM6yssI/IWqSKcI78V2ouFbBTWqPFhHX5x7kxeO9qF26ujBYTQk4rcH2mDn5vJaL2rqBwSdMVvqOHeVU4S6/+g19DafPI+mzzeQJyvhBOe1VHiW9Kx+XRaH+K+KD6zeMZAPH81vYKReF8PdcfR/tS2psxjLmjbbz6st7hehNDrNwGAAXv6tFsiBkNDLnC+BUJzFLu5zqogvw5BvnSxzq25xjUGsYKuf2UhC8vEyVZZYjg82JQa+C7fxravZfI+fkAwLmXCQvTf+REqJo0wdr2PpL+Xv81CNd/DWLj5MhHxp51oOMZ8GIqd/32GC33LIkDaQOAeWIs2rx1Dwa1Bq2+TuDKo4gu0jqcEzFUTd1Qtt8fJz6PZdfc1yWibL8/Qj+LlqQXPyuqTqSvt3tdR96nOv75EPW3ZUOiAJcfWeFw3kMXknqOhTRgecTtzitvhlbfJnDjEXB0ElfGe54X0GhADvsuDthM1VSNFhPgpIJBrcFvW9fBoNbg9XbkGRAHtw6aSnzx9ga7Iy1iM2b59ERNvzDWNgDIWazDwIHPAwAsb0nXM32P1PYK5XwZKQJeJ3s/LddWfY88V4fbQuXpQdK8Rt5jxa/q4f9GEvI+JW21nTor7JOioOAUC651wsUpsewz7bv12jWWhqoEKmtsknc4hUGtweE7KnSqX8SuZ/TYwKWxXrkKj2blCH8vimuDeDx830mEza0xFoyfIhkn65PduO+tvibz7DYoCxWjInH3ozKhnPssYINdJyXrmjJ75lXhAMCYzsL5elz6WIe9RSmsT+3eE/a18HejcOdZMhYR8/k+AOAYRTEGeHeH20YyP7d7XUdycpDQ96JUNgaBRyfh9lgtBj01mt3PXBaJJXlJkv2Ufv7t57V1vv9puXF//AJFWCfJPRn/bMiMmAwZMmTIkCFDhgwZMh4Oso/Y3waZEXtcEB5MTksUCnjEuwMgJyRBPwqnOWKfBeoP4OTVxuHp9T2DNE6IQa1BzmIdbkwmttRfB3REg2MtWR6l5v5JTL9CCUNBT9EvLu7CyhOfAp+7R/ya3JRSFaAbXWys/oJ39agcEcn1R9w+APD+iGeOUj4UTnXfzRGup70VA1WQP3IX6bDd/xAMag3USxLguoNXOGx5iqhpUZ8L2nbx310VjbDe5w+YV5CTN4WTEwq2k1hiQeuiWJ3m5RFopKzPtRcnz3DMnvhe8a6O6PxtNCLeiXogWxDh4oyBAXoMda1keXM2kfLq7yUnhXd6XwEA5mNgX5593UaLCX0nTePbapd+gE8ErKUkdsrluYL/jL9zI3LiaVVwp45Gi4mpk/ntnIncoSsBkBhItD32Snr2a+nuR2VoMjAbQdOTYbSYUPA+OfXcW5QCg1qDbp8Ia54qGNrP1+gMoo6Z9Y3W4f1NbwzmYuVQP4o1Qb7YW5TC2uJ+koxp/1ETJQxt4Tv8ibhXUiN4riTPwdE1qxyOvT1W3lJjkndPFM8RxvbTFmfY58D1pK8nPwxnKmj27TBaSMyqoOnEp8539wwUDxcYN1o/jefnNy8R3idc2XM2MECPjFkxyCn3ROF8PUsvfn5pffUKb6B5WjUGDH0R2V+Ssc1dpIOyfn1Ju8TMHQ57IXV+jGQ8hp4v4a4d6LAPABgL0PazBMk6FrfL9+1EWM3Z3H2fD8g4dYqRMqo/tTsKg1qD/Qe2cHkoGwIQ/1q2zrfMQvs/J0CRmMaUMO3h+YwZns+Y2fdrs3Tc85ddXc7N1eW5/Bjr5goxrRr/nMTdo/3tnKJkbXpyp9RfSwxxTEBlSAdc2tpFkjbu/DEMUGcgeBm/5yV23YHmpkruGs0zMoOwc9bzZmR+R9YOZRnE65v6dlY8QawaKFtI3ysUNf1ucm2ifd5SkICb43WoN1fwb2bzUYd/KwVlRowWE4unaVBrYD1v5tLRfhXv6sjqdTnWitUzsH0vAMDE7wU/YwDIfDEWtWkkbph6MWFxaHxFipzFOtQ0VDHmmebNXqJjz4fT4RTm7/NE1Awo+xXAer2Em/dW3yawMbbfu6//KjAxtD8JXUmMM5WnB/ssvq9q0gRBUSfh1KolhkT/wepSurpiT1EySwcA8xbO4CxZuP1LSXzfSm+5IvlTwhw5ebXh0ik1nVB+wA9FA1vg4LZ17HrB9s6kjUdOszmwX7+u209A+S3xP9SkOrbaoEh9l+wpuYPJfkuZTq+FCbgwLRZD2oShaJ7gDzdg8DiUH/BD8mfEugYAmp0lzG3Bu3wsU4NaI/FvE8d1M1pMuPDc9wCAigN+3Bxl9lmHxluSuHUXOPsEQurVh3l1d5ZO+Wcqcr7Qcb/dKG69KLy7zGu6s/u2FIHFlfG/AZkRkyFDhgwZMmTIkCFDxsPBdv/fo6jnHw6ZEZMhQ4YMGTJkyJAhQ4aMRwz5P2KPC5LPwaDWoLpfN/RpdhEA8ET0DJgnxkIV3N4hxW+0mFBTWCQxczFaTLgeUg9ZX2kRsGkWnHzaouB9PfK3dUHmi7FotlYwhdgVaGTl1ZoIJe7UzptdE5vcAEDOiBUYndOPuwcAwfUEgQnz8ghcFpmEtI8RHNLbfpaAhjsF08GcxYJkPIVTWy/y168dK5PiMz+e3reas+H7TiJ3zWgxoeKAH3IWE1MRl7hk1PQLY4IbtMyvbhBzg4pRkYgNDIBBrUHuM8QEwlZTg/P6nwAAgauIeIB5TXfkDl3J+mXroUHRzmDONNTeRK7VsAy0+SIBJxfFwnfvdK6N9mNcW1nJlUNl6GnauVnnUPYCCU7p1LoV1+e+E6aysixvCKZRv69bLanTaDHBvCocth4aJioBAK2XElOZ/G1EfOTGFB2CJqcwyXD7vuWMWAG/X2ZCn3YPBZ+qWHuqDrZj9e8oFEyx6N8/uvyCmxMEQYm2n5B6hxrGIWexjgubUJf55VQ3ItufPXo5VE3dAIDJ0s+7ooHLvmQ4HzyFV7KIEAkVhwHA+mNQa2DNygUAXAt1lcyh16IE+G8VzMrWeB9HxxQnNt+OTG+MFhOqBoez7zQAeatvBOGFjssFc7HMCbF4xRLOBEQ6pyhZ24wWE17LypCs7aCok/Afl8qu1fYiEuli2eb8yAr2nNVWVqLD6ihU97kMr4W8WIW9SZTHplIcXbUKhf2aIOsFEnrAd34SSkdqMNBPy5m6URjUGqBfIVdO8avErHNPJyJQkPcJb8blt7W0Tsf1QU+PwYJrnZiJnzKkg2QMAKDtpwmw6YiU/Nysc1xZjkx36VyJxUACXk+Ct2cpl1bhTMy+Mr/VSub35ngdbvW4y12L9unJyu87aRp7jgBiKkXFe+z3aADIXUjMls6GEWmwwKOTcKhzY2wtJ2s6c1kk13dV+wD2OeS0ArXpF3Ch5wZ2LXB9FHK3kDAhm/b2htciXvDDoNZAEW/irnX5iszp5kJh3bq2JeZcFSMjYV7OB4Fe0HcUthQksPzUbJO+V0qm3n+245vCHga1BmPb6tF0QyJudXCT3KfjA/BS8QAJNh80PRmaRdGIfJsXYLj0sbCf5H+oR6fvo/F0xjNoNSyD1VvVuxhQqmC0mFB7+zbMa8Mwocl1yV6c+S9ilnl7DJn/oBnJXF2ZL8ainvEUMscLJvPZS3QIWniBtdfySye2tzTYfRKZ68JYPU+Nm8L102gxYdyFQhgtJtzYS0wSxaawAGBoE8rSOxLyMKg1LKxGTfEVJHV1ZvtUbUUFhrYJZ+mMFhM81vCiWiXTRQI/7m6w/NIJWU+uZZLrNYVFUDZsCFsPkv5uy4ZwG30daW/FIOjHKCYE1HbUWdwx+krM0sWg72QAXLB48X3aVjpW4uviPgOA18FbAIj8vS31HOJDdrI0FQf8YDt1FgDQbnUWK2OwnoTCefsN3vXDfi04K4iZpusAx0Go9WnC+5NeD5omhLTI+kbLrRNxGXPe/1nIM/UUthYmckJLMv53IJsmypAhQ4YMGTJkyJAh46GgsNmgeARCGo+ijv80FDbb/0AvH2OUlZXBzc0NffAsXIKDHTodA7wAw7JSH+wNFgQ9DGoNnFq1xKZTu6BdNRfeC4RTb0ObUMBmg3ltGIImp/B5fH1wx98TlwY5M9ldcV3m1d2hqFQh4OcqKOLJKa7/75MR8GKqpO59p40sr3l5hCS46Lr845hXNAjrff7g+hJwZDKynlyLyHlRaLqBOIbnfK6D39u8xDZApK9tfYtEFxRMUUd8kjVg6IvsFAwACt7To+2nCdhTlAwXhTOrv7anBrX1VHD6PYU7HbRH7uc6FtxZ4eLCgpeaV4UjaLpwWuqfXB8xbYh8rVMbNZN9FvdXfOo2MECPwpc1UC8WTq3F6ZUhHVjAXjZem2Yh64XlkrY6av8nucl43zccxa/qkTYvBga1Bi7HWpGTYdxn+AauluQrnK9HmyMVOLjjR3bNPo35h+7IHbAa7ddE4eLUWNYv+3SqQD/EHdvJXa893BbKfgWSdquaNGGCCfS6tU83qI6eZtdoWwxny7B6ywC0/TRBUg6F89HWqO5zmX3P3hgKl3MNcO5lMhaqTkEo+6oG1h9bIHGpdEwfBMsvnXAmctO/laculE7Uwf1HYb0rwrvAlnwG937zQb2nL0nSGy0mPPXCFKiOnoaTVxvUFBZJnt2rL+nR4vsEZH6rRc5zyzEwgIRwKJmug8cqchoe8U4UPH85JxlzR/UBJEQEFUgAAMPZMhg7N+HSfpWXyBzqARIeoMmmJC6NfVsX5KTgQz+BdbVnv8TfF+aexHxfnqEBCHtek5PHld/5u2i0+VxYH/1HTUS+wRU+HyYgd6EOvvMTuX2D1XPYC8aOe+scC9/dM5D77ErJcy2GqmMgrBmZuPWiFk0vlLP9aHRGMbZ2bMXS0fkQt9u+PdmbNAialSOZp8u7OqLta5W43lMN1T0bEwKBQgFjUSpCP41Gi5gE1IXanhqokjMeGIzZvo93hkWQkB0O0gBEtlx15DQmXCzAuMZEnOLuMxFcyIjMZZHIGbkCoZ9Fo8X3CVB5NIPn3hpc0fFiKavyj8PbqdEDx/mvIN5zH6YcVYAvY7KWXzqOlyNHYt9pI47eUeJIeUeOaRLX4bdzJoLmpHBiD3eMvqj3uTtUR4T9y9G+TWFQa5C1IRQB41O5e3Xt9dkbQ5H15FrunkFNBLkyX4yV5CsfrUX8N2Sf21qYiMgfXoeiRgHvj4U1UvaCFpFzTyEjrAZF8/Ro80Xd68e+Dw96bh3lccRyG9REdMh9cCayl2rhP5f8LumwOgoNihVIfS8GgyOHoKagUFJW+1POTEjKvq6p+T1RqC2HKrg9rOcusjylk3Q4uTAW/r9PRnbftQ7XyIPmzZ5F89s+EzmjVpDfQau7I2jaKUk+cR5HY1Zjq8ZR7MatW7fQpAm/vz4OoL9Zn+w+H05O9f/P66upuYsjpxY+tuPxd0BmxGTIkCFDhgwZMmTIkPFwkOXr/zbIjNh/GGJG7PDlcwI74OnBbMHpSYnlLT3OzIlByNJo5oeQ94kO7d5P5NI96FTZaDFhfZknNnbwYvdvjtfhxBeOWY2avmFw+p0wab3S72JvYWc0fd8FtpRzklOhulgRWu/LRZEsIK99elXLFiy4qaNyAaBqUDizLbfpukJ1pxq1pvN1sk6dEl5E21FnJadPKo9miDvzO7qdGoPmQy9y7czf1gXez0kDdV6ZrWfBYGk93T+IgsfqRO6afZuVIR2gLL+Lmpw8GC0mtF8TxebLEYpf0+NuM9sD04jrothamMgFgjZaTOj5yky4bhf88VTu7kyqvq55yvpKy9jR/xe250HzHzE/Cu7rEnFzvI6xn47S0T7UBXNMBJqfUHEskqP8A8/dxPaCbjgeshNPvTAFdz2d2XiUTNOxufOId0dJj1KHz03QuijGnNB7YlbUHuITbTHTY99Gg1qDzilKnA2rJevizwloNyYdiOgCnJSuP6PFhN4zZqDMxwm3fWsZK/ow42Vfr3icui6JJoGDtSGodVZB+Wcql36IeSDHKlJG1WgxoUf6CC7Ybl11UtS1P9R1Oi7OAwDB/4pmPm7ifFUDw+GyP5kr586zEUy++pfCkxjuFfHANV3Xnnl9hg4NbtTCdfsJ7vke1PVpxKX9xtLbs/A0bdHOYDRvXI5L51sj8NUk7p7RYsLgnsM4Jq9OpqZlC8SlHmRjAvBrzcnXBzW5l7hyKCOcu1CHveO+xGyfHqw8sYUEq6OpG6w3b+GO0RcNDIQVou+hwvl6NvZ1MdoACQ2wLznugetREd4FB3YTv7Yd5U3QqV4xOtZriMD1UXAtUqDlsgS4/tEcn3nvxpx2fHDx/A/0HIND2+B3cCoCJ5H+UNZOnI9aRdBr9wzdceul2/BY2hDKY6mS8sTt16ZVI6mrsyQNZaUBgQmkeCc7HYv8ia9eXSyuPSjz4/OBsN9o06qxoPk5h+NJ50b8bqLMryIhDXOzzmH25mlo975Qnvg9CwD5H+mRMSOGK//anvZoPvQiSifq0NyYA/edVbimv8nKB8gatPUg/obU8kLMztPyRmZcxa6eHXB1RHvGxA/00/KhL5QqoNaKG3uDkNxtK3s2xOns5/3WOC0LvPxXjJWjcda/PguNtyRJ7tmno/kpO5i7uSt8n09D5YhIOJdbYenpzMJp2OcNWxDFhSQRt6W6f3cU9nVG85RaxH+7gv/N9d/CiIW98+gYsZRFj+14/B2QGTEZMmTIkCFDhgwZMmQ8HGwAah9RPf9wyKqJjxE4W/vrJZLrNMBk+lxB/e/i1FhJOoNag5aJTbjr4hOiCU2uC8GbAZz4gpSRtYGXMMr5QgeXK+UAyInOmvgnUHq6OWwpvEIZ/Vw1KJz59QBEdeq1LKJa5f/zLKR/2hUAYHlLj4H9x3Inw+JTOnYK9baeq+PoaiGIriIxDfvjNiF3SwhLUzEqkhuDHm1zJSdj+R/oEXfmdwCAl9st1jeajrJhNKAmvd5yGTlNLXtBC/Mq0k9HbBitK+unUNwzdMf+A1twfl5zdp2eTtJyjRYTFE5O+CaPnPapV5jqZMMU3TuzPJ0SXsSCnBTcmEKUIUd7CUEjaVtujbvNtS/u3BFWb5WtmgUqNa8KZ23KHructbXgPT2XP3eRDtlfaqHs2hFGiwmlEwXFy+Hnrzlss9Figqo9UaR0X0f61XQDGQNVyxYsHVU9c3SyKR4vAAiKPsmxYTT4LM3/xJnhAID9wU1RZGmGbp9EQXX0NGPDjBYTPFYL/kElPUpRMpUP0gsA2jdnwXc+PxdGiwkHcvmA4XFFgg9Idj/BZ+NDvzCmYOkIVCnPoNYQNgzg2DCjxcSCSod9FIX6e08i9d0YzkcwYNMsGNQaLLsUD6PFhLvPSE/e6fjRPCXTdOzzUy8mQdm4MWqdlBwbxtrleoMrY0/gAXbPng27PkMI6EvXKl2TAGFSXi4S5spoMeHSx6Qtfc9UsDoGBui5fAP9SABze8XHjvHjkfepDi77k1ld9P4fsStZPcO9Ith9qjBpjy7fREPVSQiiS8vyXJmI49+tAAB0+j6a3bNeu8baaFBrYDtFmHfzcp55azPiHOo9fQk5zy2X7EUGtQb7ju9y2B5xPwEgLvUgMu5Vcmu0zXaBpaFsGC3XaDFhb9B+AIDv/ETM9umB4tf0rNygySlcYHMAsN4k+2EDQy6yN4Yi5LQCcemHYbSY4LPyIkv7W8dfARAWLuTLaJhXhKN4Dim7po1HnewE/WxLFtb4yiA/TPxoLgxqDfzeTmT7bMUT1zg2jJbRPK2GK4/21z1BCHD8R8xKpiqbu/B+4HARGwYA9Yyn0HJsAceG0XIXXm/Plb/zp97c/bxPyZq9pqnPronZMACMDQPA2DDxnk/Hy579bXtYxBQBSOrqjM7fRbO04vTW6yVwat0KpndiuDyKhDQAQP+G1exdErCJqL+KrU4UzvVQE1QpKZtaibj/mIjMV/xwTX+TW7tLbvgDAA5uWwcAGL/pFbQ/5czYsKdHT2Ll7ejYAnFnfmd+kIN7PMtYLrZX1VphtJjQbIiZWzv7c4hlRs4XOsaGZW8k6pHqmdmS54ntPaHB3HVHaJp6XbIu6V8nn7aS/NRXzvf5NBgtJjTceQIu8Rm4MC2W7dHiMrp9EoXv5/2L5b9VewcNjrVk350PnoLv24modVKw9W2/rmX870BmxGTIkCFDhgwZMmTIkPFQkFUT/z7IjNhjCuejraHyJDF4jBYT8j/SQxHGx6wSw2gxoWhnMHCY+H5RBSp6ytJ/1ETuBInGDDOv7s7KCBifCoNaw+L3DH4qGd/E/QC346QdQVEn0W5vBQCiJEjLoqc5LnHJKB+tBbWbb/xzEvKrPQhTMGY5/ohdiWtROqgXJ6D27AXuZJiWoejeGaqmbjCoNWjzeQLMP5D2Fb8msGOUPQIA37HprF9ifygAOPFzVxjUGgzLNLBr3h8nsHLEp/v2bEhK2FZ2j2JfZX002ZTElBKvRgtshzhd4Tt6BLyYiiNrSQyvoJnJ3FwY1BoEro+CTdcVurmzYKupQTWUMMdE4NoLXbk+hJxWCF/ub0gGtQZtR53Fgk490OyHRMl6oH05E7kJAKBs3JhjGK7P0GFom3AEzUiGQa1B0PRkdv9gJTllV3UKQuN8fgP0fScRWS8sR20aiW3l8XMqOQF9fjJmNS2SxP0BgKAfo2C9SOK3VI4gbAiNvUJ9XgBwdvbiE07GirTvxe5nfh8Jy5tk7LOXahH4CvHfUXk0gyq4Pf7o8gsb66App3D6fcL4ihk4cT0A4LEmUXKN+iAAwKB+z3HtoSxYwXt6DGrTDUYL8YEL2CzEHQMA9Zc8i2N5S+/w+aVpnr8gxLgyqDXwWkTW69r5X7NrnP+KnqhqzvbpAYNag/q/nkTFAT/JSbu4DjGTezasFrW3b+O3resAgGOFspfo8K825Jnq/n6Uw7LoX6PFhFL9PfR4dSYAoOm3FnaPPs+zvQ8zH1Fals8HiVCEBWO2u8Cy11ZW4u4QgdmzdRZiZ6nc3VkbvJ87g3bvCQyzeE+yPyWnf+1Zv1svklhR6sUJTLFWzMKqPJqh74SpMFpMaPtZgsNTazHjGDTrJAxqDWOf6kJdp99Gi4mL6VT2vBYA0OH4eHSs15D1DyDxqez7J4ZBrUHuIoGlbPV1Apd/qGFcnW3KenIt0rvZ2Fhe+MqH26/zt3WBrYEL7jW1oUnLctz2I6xGlWd93BtAGPaCdwVGSxHeBTlf6DCw/1gAQNCxiay87R8v4dohjh0lrhMA/ohdiR7pIyTtvhFew+XZl0L2djGjbZ+vtrJSMmYxl47jWEgD8i5ycsKyS/E481oMyp7XYnI+2YPavZeImxN0aPVNAkIXSuPqiceS/rWPB5f2lsBiiWOgKY+lAoe9eDbmc2He7PeOmsvF3LU+06dz7xkaZ8//jSRufg1qDSyzu6PZ/gYcs2vf9sZdSiRra8X+/qwMo8WEdu8mMrXCeVc0UB7nf6N0jB/PytsXvxsAYOuhYUqaN/YGSfYVg1oDg1cYYUrnJaJjihOK5unhP478Rql4QrDAoFYHnRJeJIxr6jlJeWKELoyG9WIWl0b8ueZSAZfeaDHhg5zTXNrcLSFQtCO/tWisvgHPjmf3T78fy/yDSyfp4KZswGK2Xn1Zz9rUZLMQZ5OO5y9mqY+wjH82ZEZMhgwZMmTIkCFDhgwZDwcbHpFq4v99Ff9pyIyYDBkyZMiQIUOGDBkyZDxiyP8RewxBHa3j0g/D+mQ3FNaUI2NGDDLHNebSALzpRpsR54B+hVxZ9H7ekIZcPvo5aNopiWkelcb/pvUpzPbpgVs9SWDOzO8jgSQiKuBrF3CZ5m+0NQlbChKQ9bUWJdN12NGxBdfG5rGJKH9OcNh38mvHTBEGPDsetlNnUbuzETF1PNYKuQOIed+diAqW59XniZnUoKfHwGgx4WSVEMSRmgnZ9F2R/kYMjBYTdgUaoTqihtFigtLVlbXF3hSjLlMFmubVXZMAEMEPo8WEFjEJnJNtwXYiUFDTkBzh+G+dxcoxrwznyvPffhuKxDRmmjD8zygERZ/EqY+JGV1tbyIqcHZKR5aHiqQYLSa8m2PC/hxBvtce3U6NEUQSbguiHYFHJyHlo1hOmEVsitK/YTWUmk6wnjfjxOexgDaEjUfhfMHB/MYUHXO6Vh4j5iKZC7pK2hP4bQ7L33AnMSHccLC3pO7iXR3ROUWJXwpP4tICXiQkpeoe34eXTkC9hIy9/1zBfNBacgNXejSTzCu779sKjmC0mODUuhXyPiUmQk6+Plze/A/0sGZkwqDWQOXRDAAwqA0RpGmdWMXWr/u6RLhcV9ZpJgYAZ+bEsDVTfsBPkmaLRVgn7vHN2Oc322m5tLlbyLwknuyAwvmCqcutuAC4DsiRmNramwFnf6mVrPeSqTouoLz/m4lov5Y8ax5r7ExglSqJ2VjgpBQ02kbmuLTHDTYuceePAQCGulZiSV4SVJ4eUIQRh/qsDaGwpZzDcK8Irvz6e4UAwLZTZ1HTl5j50PALFOa1YexZDlwpyOyLn3PxXzGMFhPcfiIB2K9F6aAK8mdp6b+sN9rD+VCKw7zU7M/eZMzySyekvRnDpaVplI0bcyau/Z+bxNL57poBg1qDUwsEAabEpctxe4wWPqPPYNCToyRrS9w/hRMxcKHm3AAxJ7bHwHNEfGH/wS0AgKN3hJ8BYjNLJ792AIj4QeCE06weo8UE9fJ6sJ43w+eDRLQalsGC2LrEJePID6uI+fRnCSy9LfkM/OYlovYsMaWlogef5CZjundPrn574QvxPQCID9mJ6v6kj1de0TPz6rL9/tx4i/d786pw4IcWMFqIUEbezyGS8g1qDaJ9erL8tpoaDNj9OvpOmoYmm5Ng0Qp7UNP1iVA4OeHDV9dz4+ZoXgAgZ+QK7l7SXSv7fK+dXSiMfoWsvKHnS9g+QcuvHC68P7OXatl1p9at4LIvmXv2D+740eEzoAjvgvQ3YuB6RXh33pjCuxvkVpfD8xkzW7u3xt034z1uhcLFhVvHtL59W6QiJBk9NjDTTJpeEU/ue59wRZvGt7ju+8ZNI2UUCs/dbzsi4HSHBEq3H2tq/l2d05iVf/l1PTKXCeNk05N3k6p5c7T4l/Derut5Et8zqDX42I/s9+Y1ZN35jk1H3G8/k3H3aQuDWoMDuzeg75kKlqfwHT1UTZrAY2sau6Zq2QIt/pXAzYV4vAxqDYYHdcF/BWgcsUfx7x8O+T9iMmTIkCFDhgwZMmTIkPGIIf9H7DGBvYMmPT1SHUvDVO+eOFjpjOyxRLa6dJIgtd0r/S5u7BWk1sUnOeLTHvOkWFYuACy7FC85lfmr7znDV0jKdZTOXdUQAa8lsQCORosJXU8+z+432naCnbbuO74LBrUG5hXhTNb4QId9MKg1qOpdzPrp+zw5VVKEd8HBHT/itawMVLsTR+P3fQX5ddqWg9t/5E7g4tqTIKO2X5vCHjTNzQk67rr9Caf/G4R98f44AUE/EqbAVFXF8vtMJhLSVKI+YI7A1lBhDFomlbum9QSMT+Xk95XHiBAGFVURs4gGtQaf+Qkspv34r8k/jubPEmZD4UxknZ3aEsdivxdMmH8lhAWCFZ8e+/0yk4yRSiGMS1I6G9tzL8dgoJ8WurmzkPwpv54AwqAwKEgZNcVXYLSYMDKDyCb7b5mFrHGxEgfxVsMy8NsmLRoq6+HC9BiORZjvG4HOKUpc3d1B6nB+X7SDllPeTziR3FPRkBsXyuY6YsxqLhcz4Yea3EvcXFkb2Fh6a8kN7p7T4RTu+7nZMZL5sK9rUO8RMKg1cJstSQZb3yKWtrQHLx0vLsd3bDrMMREImJMEZY3QpyTNdm58xPVOuFjArtO1XLovkJV76pP7oiYiwY6LkwV2hp6CGy0moNaKsFQhiIw9uyZeV+J7b7bTwnq9BMocIuZB1+GdYXUHvDVaTDj80xquL6rmJCSEOCgxDYwMAPsz4yXl9D1TAZu+K5PKF7ereWwiCoa2ZPVRUEbJoNYga0Mo/H+fzL6bJ8ZigE+ExMoA8U25sWfPdOcO2H/xT8Jede+MrJ9CcSVCtEbt3sZ0/Xd8jQSKvqdu4nBt1fYKhbJzB9hqaqBwrod2P8Nh/RTrs++L5rxOGPs+Dfh5NKhJwGM6npXehFW6MltgqitaC9L5+R/pEZYymrTlcFt2nbJWgMDw0zGi4x/h4syNHxXzsMfVl/iQBs4HTwEAWn5H2I1bcQFI7LqDq8Og1qC2gsx10PRkNNpK2M9W3ySwcBFeSY24euyfM5VnFatLPAbWPt1gq6nB+svCO2Ogn5bltfzSiSvHoNbAqY2ajN2oSHwcOYDl07Qjz2XhO3oYzpaR990ewo6+1LQAjQbk4IOc06zvDX8RRKn85yax67VlAmNn/+yJQ3wAgC35DAb3eBbOB0+xNjb7IZEJGhnUGszy6QltmsCYUfGiBrtP4u6vrR0+81Tm3f4eZQQDk11we6zA7p/a0BX3RlRza6DTZ0SIY8BgIibzbo4JXgsT0PK7BKw7uI6V2e3UGK5Pfm+RZ3XguZto/VUCAmefwI3JOkS8E4XqJuQ9mDNbEP4xqDXoP3Ii+/1kD0fPWu7A1ezzzELyO+xOoDBm8zwy2X2vRQmwlpWhtpKEnVA1b47CFR7svv27zGgxMYsLGf9bkMU6ZMiQIUOGDBkyZMiQ8XCoBaD4y1R/Tz3/cMiM2GOC4UFdcHkX8QcSn8S4/dEUAPB1qODT4b4ukTEMf4bUR7MhZkk+++/0NJGeRgY5k1NO+xPAkRlXcXdIBHfdaDFBFeDLnbJNvniJy0frsD9ppvWmRWzm2kZPWwM2zcLV3R2YxDuVWqegviyZ35MTPVvyGRjUGqy+3AvK4yYm/dvrZcLmZC/lfWmmmnPZ59tjtFAMIT4mit/bwGgxQREazHxxmq6X+r0xHPYSmIqJOnZSPs9XOGksnNWFjReVShazGeYfumPQ02NQ/VQYCyBM7csBsMCx9ih+TY/4b4V74jGnUs/02lNnb2Oqd0/AZkPWN1rYqu/BaDFh34m9LE9KqJI7lTZaTHjqhSmoX6wiY5xyTmI/T0/Pa+/eRZPNSdAsiubCK4jlunVzZ+GpM2Vc/hlu9xmQ1++f4GoFHw2ajvomOsLe/ZEwdlvD/FloHvUSPk+7Melw8muHop3B+D6QnHQa1BrG/PwVDGoNLu/qiMtzBZl533cSubECgG4fR0ny0b+5W0KwKv84AGBjQTy7brSY4P/7ZMQd2wkAsGYKAZHtfRLsyzaoNcj9nA86HRRN/KjUi8kY0LUkZnYNag1yNxP/iG8XjubqAwD3wZmsbyOynibtOm+WtMVoMQEhQdw+khLKvz6KdgaztOLxoPD9dTpUniScRdAhcnqv+L0NspfocOBfQvBT8d5DfTLEbAgAXPnBHWXPax/o62F/bZ5HJhQJafhjaCf0epnI7NOQIADxNSmcLw0vQIOVB4xPRcCLqcyHcfnNNrBV32N10bxnXo/h2kDL339wC7tmO3UWQTPNSHszBpnru6HseS2CZgl+cTRP7pYQFGrLyR7swHfKaDGhWNuA+V7Zqu+hnvGUZOxpWrfjHmg+9CJh2uYQpk1rGiVJT0NvAEQy3mgxQb0lk6WrdlWg3ckGAADvjxLg+YwZOwqToOxXwOqiTJJBrWGBkzcWxHNzaT+vtB/2c9ri+wTmoyROn/cZeSauXHGTlEnDnHT5OhrZXwrvBVsPDaoGESuKNd7HuXpeLhJ8max9uiFo3nXWHgBouSwBtb1CoTp6GtY+3ZiMukGtYT67g7sZoB5+Huok/l2W+y15zxz/bgWs1wT59YonrhGLg9kxMHYmrGfQrJNcXz/26yawdC1bSNZ27uau6JHIS82L66YhPsSgQcDF6cQhRZSurkjqSpjPonlCKAKVpwdc+udJynt6zGRu3tbcEnxyaR1xJzVovEXwbW7xrwTAk4zL1Zf0rF1hqbU4sG8jjBYTPvMjeasGh2N82x4IWRqNgu2dcbo78dFSNXUjf+/7eM5xz0PZC2S+m61NxMlFsTjywyo4tWoJnw8SmV8hACgS09BsiLDfOdpLxDCoNcj7TIeb43U4eCYYxXP0cD6UAlsPjWQs7S0ZFColnFVWrrziV4Vg0Aa1BnFnfofKvWmd9cv4Z0JmxGTIkCFDhgwZMmTIkPFQkAM6/31Q2Gz/A718jFFWVgY3Nzf0wbNwUjizk5Fre9qj+dCLkvS1vUKh/DO1zpMv8+ruyB20Gl2XRCPtTeKv8lKmGd8HBklOExWhwbClCkp8tCxxOqPFBF/jVOQa1kjqYuU4OcFWUyO5TlG6LxANlruzAI60/C9yT2CebyQsb+hxp6WN+Q5RDDx3E3Pc8yRtyv1cB9+3CUtxsNIZSwP4k3hH/im3xmm5AL2XX9ej9VdCsN0np0xHvQPJeC0rA18HCEqFAFA+WotGW0leJ18fdpJ4Y7IOzdYmsrEb4BuJzM9DkT1mOTdWuVtCYH5iPTemEfOj8K8Pv8P7vuFYdikes316SMbdfrxvxQXAbRAJjuy3bRY6fH8NcUd3cOmeOnsbhzoL6prmtWGYHX4Exs5NAAAVIyPhuuNEnXVQ2I+h5S09zszhT/odnbjTe4FHJyGzzzqWXrzWHOURjysA5GzSwO8Fk6QeVaAfxyTVhb/qW5+p0+GyPxkKJyccyD/FpbPpukKRmMa1z1EZg54eA+u5i5K+i2FQa/BW9hks9u/C5bUvc+j5Euzp5IErs/VouSwBmf+KRIMiFWpdgIwZgt8ZHReKG3uD4PmeE0o0bmh+IIf55AGAZlE0Wi6TsozmNd0RNFXwe6HtGXjuJo7fCMDtXtclef4Kde0ft8ZpMf29XZjqVszWEWXwAH6s7ct5UF2az6PRZq+F+Zg+LPYUJWNom3BuvgYMfREH9vyEjvHj4XqgEU59Qvahqy/rkTqf9/mzf0bt6/aId0dJj1KHexAUCqYAlvWNFo3ylPA4fw/XoiqhHn4eZc9rYRt/HUma7VzerG+0nL8phXklCcreOUUJd+dK/BlSX5Km/IAfOrlfQX5kRZ1truvahEtPoGBBe9Q7IASk7/JNNNzNNfgjZqWkf9lfapnvof1+S1FzyBtOT+Vz9QB1P6c900cAq5vDdfsJWJ/shkMbf6hzvh927VDWWDH2GtwGZXH3gtZHSRSBHUFZvz5q796Fyt0d1tJSFLyvR9tPpM+asnMHpk5Z174JkMDwbT8V3keO5iOl6h7eeWE6FIlpuGP0RQNDrnR/PKIGRtyBtZSswW4fR6H58kRJWY7asLEgHuPa9pCkHdzjWW5vrqsc8Zof1O85WDMIg6pwrgdb9T0ub8lUHTzWCO0yx0Yg99mVD7U2ASD/Qz38fixETV4+ru7ugNTwLZJ05c9FolytQqtv+XG98ooeLb8T5qquOh50T+XRDNaSGw7zPAh1jZkYNbZqHMVu3Lp1C02aNPm36/i/Bv3N2q/zW3BSufyf11djrcLhs4sf2/H4OyAzYjJkyJAhQ4YMGTJkyHg4PCpp+f8Brkj2EXuMID4d8VxUn13L2SSctFM2jNqxU7UqitxBq2FQa9DqaxKromJkJD76aqLDk5cD+zaiYmQku+e7bzoAYIh5IGw9RL4ok1MktvxU5SxnsQ5rc45iZMZVGC0mXNrahSnmUZwM3cbYMDHm+ZK61V8mwP/NRKwra8HdF7NhYqwfTfxJBl0cxNgwxe9tJGlpey8t0MNtYxLxp3hVj8uv65H+RgxUHQNxbwCJ20RPfb8O6MjKoL4h8d8sR/YS4nezL343ADIvzdYKimoGtQa2qiqoqhTs+624AMIojk3n2mZQa3ByYSxe2P4KjBYTx4ZRXyv7uVK6uuL6eU8YLSZ0XBmNwFeTYDVnS+blzWbZ2FOUzL4HTU7B681yWN2uO04g/0PBn4tjU5dHYHRGMbdW6N8zcwgz8GZxKLsuHmv7PH4vkO+DOvUmPjH32bC8n0OgCA3m6jdaiFKh89HWrCwxmyaGrcACZVeesaR5ACB/WxdJzBp7GNQaKF4nPpY42FJSzsEdP8K8PKLO09Cr0WT84n77GUaLCQtyUri+R6Q+h4Cjk9g1MRtWNTDcvjgYLSasXPEMADAGK2fECngtSoD3R3zMGcqGUb+CZkPMqDWdh/u6RNQUXwFAfFQMag0ry/okiYGjah+A3M91hA1Tqrj1aF4Zjjnuebjd67pkXsUQK55lLotk958aNwXaN2ch/wMyNh1TnGC0mOC2MQlbO7bChEtPABD82czLyf7x8cYfuPINag3CFhD/u/yPSFmqIH/EXCI+dzsK78fdm3oUNTl5dc6xUtNJ0oew1FoMbRPO+QsBRMHUoNbA+7kz8FiTiEGh/QEAqfNj0DlpHFeOQU3iA9G22qOkRyl3j0tjs8FoMWGGOQcBXQrR6psE/L5uNc5EboLlLT2abE6C26AsGDKGcHnFbBhdb6WTdAiakQyVRzOcDavFnyH1MeRcKVSeHvgg5zRbH/EhOxkbJi5zR2ESchaTPa39GjLe9v61633+4NgwgMzfp1/xbNidZyNw9SU9sl5YztQs6X4rhtFigtNT+TBaTGj8pyfL33VJNFeHuK2uA3Lgup0w+Ic2/oBO30cL78L7McLs8wDApa1d0PdMBecjLH6eK1ormMLounziJzaoU2/Ghjl6Bqg/MgAWQzHu3BEYLSa0/SSBy1P2AvFno36BBrUG5tgI+O2YydL1Tr/Dym/7aQLyPtPhk9xk9Jk+3WG/5vtGMPa4gSFXksZoMSGufRyspaXolX6XvIM62Fh9dE3QMZibxVsojGvbg6k2iuu9HSLdI+k9gLD0IzOucms+7vA2Vh9lw4wWE0qmkTEUs2EAEBTF/z649aIWTq1a4vAdlaSfKo9m8F6QgOrW7gCA1PAt6PR9NFMGBgjrH//tCqTNI1YcFSPJO0Hl7o7WawQGvuB9Pdr/OUFSB0XARt4XWBXgCwC48JEQzywwWcoKid+xNAaiWDl0T1EyrkbrMfdytzrrlvG/A5kRkyFDhgwZMmTIkCFDxsNBZsT+NsiMmAwZMmTIkCFDhgwZMmQ8YshiHf9h2It1OLVuhZrLxDws5OTzKL/VAIETTz9QNIBCfD/ray1aH7dJhBkGdX0a1mvXcDVajxYxCQ7Lre7fnQtiabSY8PSYyVD+KQQBXnCtEz5sfh6R86LQdEMiKkZG4viyFawdRosJo7Kf4hz/jRYTQpZGI32uIPpAhQPE7aBCGrfHaFHrDLj9lCQxhxhyrhSz3S9ha7kb1gT5svKD/xWNcy/HcKYzLsda4eJxX7R7t24nbHH9HvHu6NPsItZ+MhSJXy7nyjJaTBjg3R22mhrumv3403szzDlYGeTHruduCUGzvQ3h9hMxN1K1D0Dcke1cflre0EwS9LP0Gx80/OUEsr7WInvMcpYuKjMLd2udsba9DwCwORXXT8vq/n4UMweh156ImoEGu6WS2RSXa8rR2qkRa5sjAQL7vtvfo5+zNoSy4L2Xd3WE1yQL4s4f48pTeXrAer2Ea0/ghihkjudFXKh4yoPG374/1KTs3Gxh7Vl+6YQzkZscPlf+yfWRHX4XV1/So8X3gmP3J7nJiHBxlsy1/RiIv996Ucvm235cHnQtd3NXFsgcICI1m8d8i/m+EXX2mQrZdE5R4mxYLRbmnsR8X2IG+E1eAua0IyYzYuGXvxI3ENejbNgQtZWVDsVUNhbEY2LvcVxgZYrmCU2R+msnFvD6YdcNhf1+VdcY2o8JFQ6IO7wNAND15PNoNSzjLx30aTkbC+Kx5qYGv3chZnCZ32oR+CovQnFrnBZJS8hzWf1UGH5fvwYGtQZKTSfsj9vECUBcWqBHc5MVrr+mSERithQkYNBbr6O8jRLqL+sWbhC30b6/dfVnwDPjoLxUDOt1InEe+lk0Ut8lz0LQuij4zk+EeXmERDZdDEVYMGwpgjkbTV9XO40WE0IXRhOJchAz9m3PfQONi0udfaqrL+aYCBauofqpMDgfSuHSO7XzRmX7Fky6HyCmhD4f/LXwBgC4xzdDaY8bkvWV95kO7d5NdNg2VacgWM+T0DGufzRnUvZL8pIQUq8++pwdBpf+ebi8qyNaD8uAk187XPjYHa6nGzChqLrGwMmnLfYl/ooBvpGwVVVx94wWIi515IdVDp8FWw8NnLMvM1NlgIRccaqyMel4Me4Mi4DL9Xv4bes6Vk7VwXZw6Z/H6n2zOBTp3WxsPOzh1EaNi0tawF8kJHT91yB4PmNGyTQdPFYn4s6zEfgjlpi1Zv7YDTlP/4BdFY0QGxjA2q2I5/eU22O1Dtv8oLFTHVEjrn2cw/dxXd+1adVI6ur8wDUoRvZSLfznJknS099v6qTGsGhvMxGquvZrR9h28TTcg3IeW3EKJtbRce6jE+vIWPrYjsffAZkRkyFDhgwZMmTIkCFDhoxHDPk/Yo8JfjGfAQDGhhnUGrQeloHAiSSIZ/CyaEAb4tChmZ6ymFeEw6bvCqPFhOwxyzk2jKa78GVbAGDMSf+RE6FOaoyCd0lgQctbejgfPCWph7Jhyy8dxwu5TyKhaz0M6vccrvUjjriuO07gurUCPWfPRNWgcOLka+f4D9gF7VUoGBvGpbl/Wtj45yS4/ZTEBXVVubtD6eqK7fMM6P/cJMaG0fteCxO4U8LrvwahqncxLk6OZelofYU7gtHgmOCIHJVJpIw3+R7BDDcLmmxK4hyQVc2bo2f6CNhqalAyXQiu63doCkun+L0N1xfKhtE6fcemc+yI9WKW5JSMzlVV72LUU9ag4S9kHqksPkVsYADGNi5l5duzYfcM3VlZC95ZyzlrG9QaxoYZLSYonJy4vhrUGvx8uzMMag0y7lWy62ws7gfRFK8/cRoAnPjKqT7fs7paD8uA9eYtds9vOwmuG5d+mHMsB4DAH0uw5lYrhJus7DoNJWBQa2BeES6p11FbjBYTvBaR8aHiBOrh5+G/ZRZL0yv9Lvsc04bUQVkDivd9wzEwkEg8uxxrxeoJPDpJUrdNRwIpU0bX8oYeOfeDMgNgwhYA0GOO0I6aQ94AgFpLAxa4HQDME2IZG1ZeS5zxVR35QNU++0kfzj9Bgu1SNgwAY8MAwH1+PdwZFiFh8exhP7/7swgr1WJXffQ9U8GxW+Pa9kBNTp5kDgHgmv4mY8NouYM69WaO7GJEvBMlERigbJgYde2F9myRNSOT1euIDROnL5mmw/SCHthy2x1GiwnPm8dingcJen35dT3HhhktJjh5tYHbRmGf+H09CfPhfLQ1lNdvof0PvBz6hekxaPjLCdhqaiRr9vS9xrj93G0WEPpB7XwQ++voszL/KmObDWoNWnwviMD4zieMD2W3AjYJa1GMCu9GqBwuBLDPHbqSfIjoAoNag7IXtJw4BkAET2g7/N5KlLBhtH2K8C4PZAsoGwYAzodSWD9sevKM1eTlMzaMlknZsIoDZA/eWBAPhZOTw/Ep7XGDlSn+S9mfQU/xwdCNFhNjwwAwNsxoMeHNdloY1BrkZ7SC0WJCesRmGC0m1OTkIejLKodsGG3H9zfb4uZ4Ha73JsITB3L5dzhtGxVRcYSD29Zh32kj1897bgoukLK4Hw12nYTyuFD+N3kJuFFJ9o/aXqGYfyUE6d2I4VS1Wy0AMl8AsCb/OKBQoKbIgqz7AksUNwqbAgAalNSSEDa7T7I6AieexvKbbQgbdtgLlSMiJWwYgAeyYfnburB+RGVmsWff+qRFktZ+zU0v6MGNRVJXZ9x9huyVNDA0RcH2zih4X4/czwWxFv+5wjtIjJrLxQAAi/Y2rs/QSYJm2489AJRMF8qtax9+LFH7CP/9wyH/R0yGDBkyZMiQIUOGDBkyHjFkH7H/MKi9banZD8+1F6RMSyfp4L5O8OkRszziU6OC9/RQVQHqJfwpG2N9asox1bsnd92g1qC2pwbK4yaHZVPU5YshLod+1nweDdPbwol3wbt6tP1M6oPW4FhL3OlNbNfF9uY2fVcoEtJgD0X3zrCdOisdOKUKuZ9FwDwxVnoPwglUxxQnZISRYNOf5CbjfV8SzNVRoMsHwb4fqgBfxP3xywP9N5aV+mBvsLukDPHfIeaBOJ/ujZxRKwiLNSCc2f7TIL9lL2jRZFMSV4YjWH7pBPXw87ixNwjNhpDT2srhkYh4Lxlnw8ix0rU97dH0u0bsVNm+TSXTdDj1cWyddXB+GW29sO/EXvj9NoUxtzRoLU33StYFfBfQATX9wuB0OIWVQ4N5Z/7YTchrN34D2/dC7e3b5KI2BEhK5/xOxHb31CdKjOWXjmOWT084Ag2GW1ffjBYTfPfMwMCwdGSH33Vo4y8ORiz2lwGAsue1aLKZzJnLsVao6l3M7s3NOodXNk1jJ/a0XvpsOHrOndp5Y1/CHva98B09Y/gc9cFoMaHvhKn4ff0a+G2ficBXpCfrFFwwbYUCxqLUOv0pxOV3WB2FC9McrxVH9Yh9QHqmj4DrgJw601LQYLAKFxccyD0Bg1qDgvf18F17CTWFRSyd0tUVtRVEpt2pVUucX+ANl2Jn+Hzo2BfHqZ03avKEwMJObb1QU1DI2tPj1ZlotO0EcNgL6FfosIzy0VrEf7McYSmj4fmM2WEahXM9fGY+jjCXenXup+UH/NBogDRIuTk2QiLrnbtQB/MkYcxVTZrAWlYGALgyWw/TOzF1jqU9chbr8PmwjRjZqKzOPKogf9R4NoIiIa1OPxv7Z4/6yYjTVA0Mh8t+/nmr7RXKhWOhiMrMwjDXckTMj8LJhfz6uvqyHi1OlQNJ6Q7ba79WAzdEwW+edJ83Wkx48tyzOBK82+F7z1FZzOrhvq+cOAgzDXgftiAKNzvYEPAaz+QoQzqgNv0C+/5OdjoW+Yc4XA/UN3RDQTzG2wVYfljcnKBD0/Wk3+XPRaLB9Wqojgj7rLg94jbkb+sC7+fOsHRlz2vR5OdkoJZYJJTuC8TJ0G3wjZuGoGmCP5496PNF/eOsT3aDU3k1bMlC2armzXFrQ2Nu7dO20N8PFE+dvY1DnRuz79dn6OC5UvDdM8dEIHcYHxCaBt0Wly2Go7nNXaiD7/xE1PYOxWVdA7T5XLAyaf/nBLQbk17ncwAA2RtDkfXkWhjUGrY/0LoelE+M/5aAzk8Fvf7IfMQOmb96bMfj74DMiMmQIUOGDBkyZMiQIUPGI4b8H7HHBMODunDf3dclwvILCUo6Ob8XAHKq0jyhKQYMFoKMtv00gbFhYrtjetLS58/ZAIDbY7Tc9eznXVhwVEd2yTSd346ZzNdFnNb+NKnldwnc/fMvxXDp3somJ2G7Ao2srHbvJqJyBPE5sGfDPOLdUdMvzDEbBgC1Vvi+k4i5l7txfiziE6bCHcHICKth4/K+rxBM9/QHsZJ+O7VRM1858VjmbBLKd2pN/IKsWYIvxLs5JJ39GP/49SAW3DrvE8EOXNzW6j6XkTNqBbt35IdVAMg47unkAaPFhCabkiR2646gHn4eRgsJ8qvUdILRYkLDX05gaWtyEto8oSmafeXKFMfs2wIApz4mDOOdZwXfIkcsKQA8Y0xFl6+iOUbrXv8wrrzZcRMBgGPDAGDU9jkwWkyIf/I7dm1u1jm2ngxqDS4uEoLy1rg6s89UhU081we2k7HP+UIY52dSZkraT78Hrr3HfRefTpbtJ2OdO3QlY8MC10dJTi8pG6asXx+qciUqRkXCvJKssSsD7rF6xWwYACwNCJawYUaLCRUfqLl04vooe2O0mFC6LxBeixJYu51at3I4nw0yLqPvhKlQHyNlWN7Qs/uXd5Gg2Nq0aoENA1jMlroYAv1rs1ibfT5IrJNJMQwbL7mmiBfaSM0wil/V4+kxkyV+O+bYCOR+rsOBS0TFz1ZVxepq+0kC7v2o5AKkUjbs3oBwRBgLkPvMKlyYHsOVKf7c9Zc8OLUS/ENrCgrZmjeoNYj/dgW5f58NuxYlrCuK+G+Wo+fsmfB8xszmomS6Dp1TyGt1SV4SDlw6ydgwAOiRPkLi19doQA68kog6qcrTg12f1fOIpP2+88mYX3nlflDxC38AAF7JuoDKHuUSXxQAGHeh0KFvitW1FiuD/B7IoFnN2WxvNqg1uPtMBCvjiagZMFpMOBtWi+cvEL+c22O1qLlcDPMqwXfzg5zTjA27MVkYR6eyu5ibdU7S5tjAAAzLNMB9XSLya8q59qTOj0GlugHan3Jme6uj9961Pe3R6+WZ8JuXCJW7O3IX6lhaGnS63tOXJPvf089PZnWFLCWBpul7kiJrLtmLKBsGkEDXBrUGnisSmS+vIiwYTn7tAICxT9kbQ2G0mLDIP4SrVzxfvs+n4dLWLowNM1pMkuDLAGD+oTv33fWP5uxz0/WJrMxG207g0P3A6XSexOyceP69nzsDRffOAICthYlosjkJxkLBesJ9cCYAcGyYOUZ4V1yfQcaZ7leth2UAACw96uPA7g1cey8s8UajATm4/msQ/JPrs7aUTNUxaxr671Dnxih7XotfCsl+4LmS7J+lVuK/HLC5Gtq3ZnFjKWbDAGBQaH/2bhH3eVDvEeyz73xSrvJYKmPDACC6SIvWP7pA1bKFhEEVg7JhRouJY8McwVRVxa1dAAg5rWB6ATL+dyAHdJYhQ4YMGTJkyJAhQ8bDQQ7o/LdBZsQeE5SNDkfW1+RUf2thIqANgXr4eWQui4RFe5udmlzT38SBfRtZWoD4XgBAxxXRAnPThpyuZz1J1PISvl6O2l6hrJzAl05gpJcWAwaPwwAf4URLjIJ39fBMUUKRmIbsjaG48oqeOw2qOtgOgHAC1eslwkCUvaCVnAIt9u/CTtLDTVa8lkXUy/781wouHS1rk+8ROB1OYaf93+QJjBtVvsr8Vsv5JtjX6TWSZ1huj9XCyactS2tvr22rqcGLYw5LTs38J55n7aK+D05+7Zh/xBP1wcZY5dGMle+xOhHOR1phbtY5tHs/UXKSZu3TjbUv+F/k9LXaZmV13/vNh7Uh7ugOKLp3xqDgJ1l++5Na8Rjsj9uEAb6EbTSMmAAA+KndUaiO8jHpxO1RNmzI6m50/jpXpnl5BEtP885qWgTvn7IBACVTdSh7XsuUy5QNGwIA802yh/+bZDxonDKAMEW0jgkXCxD4suDXRBm1nukjoGzYEBUjIzk2ifpLZY4njJ4qyB9tRpxj6pYAifdEURJC2nd3COnX4PBBAIDaw23RZGA2GwdaR9cembC8IagOUhgtJlxcHgz/N5Jw/LsVyB2yCrkLdQiceJobY/pPzDTSsaV/lcdS2eeWiU1QOlEnSWtQazA/aD+yv9Sy73RN2qN4sA+cD6Wgz/tkbNRfCn51Lb8ktv1JXZ1R9ryWy0fLre7fHSqPZogrOo0JFwtgUGuQ8PVy1qcH4qT0VNdoMSFnsQ5Gi4n5haTNi8FvP69laZRdCVOX++xK+L4tMG7f5Altv/ebD5b4bcdvm8netrcohTGRR35YhfWHn2D9EKNwRzD7nBKqRE3xFaiOkH3S8paei6kHgMVhyvlCh+axhGGwvKFH+QEhLuDxZSsww5yDYZkGGNQalPWrYHtSSL36GPT0GK7Mm8dawZqRieyNobi0QM/6tMb7OIwWExdH7/curhxba7SYoKxfH0aLCaa3Y3BnGFlLtYfb4ruADvD7gvjxUGVOyqRs7ODFxiL8PYHZDXzpBIre1qPgXT36nqngWLMZ5hxujjOXkeet/q8nkV1NmLcGu0+iy4kXYLSYsLkDGceEr5bDaDEhaHoynLyIgmyP+sLPjGZrBX+t2rQMfNNdeKbE80V9Jaff92+u6RfG2tNw5wl8p06GsUjwL/P9dTqaJzRFxQE/ZH2jxenuP7N3i7W0FN6/VbE6rNeusbqGnCvl2DT6DC67FM8Ufr8vJYqOC3PJ+hDHygKAdfnHAQB7iwQ1RwCwpZzDvuO7uHHNenIt7GF5S8/tFQDgM/oMPslNxqUF5B7dG8Vpcges5uZoZ8BvXLmOmBs6T46sBOi//AHED2e0l46VU92/u0OrE4AoWlYNJM8fZarsLTjOR/PqswCQ058ojNYe8GQqtQBw6hOyh/eZNh0GtQbaNwnT1WRzEoL3v8TV3zPmDWwsiEfusy6cGnHOJg28khpB2bkD619c6kEJMw4Accd2Sq7Zf88Ov4v6b1hgvXIVeZ/qMHDAWBgtJpTt98crFsHSRjxG4t8Q4mcYIMykxsUFfc4OY9dVnYKQ3s0msY6S8c+HzIjJkCFDhgwZMmTIkCHj4VBrAxSPgK2qlRkxGTJkyJAhQ4YMGTJkyJDxN0P+j9hjgiZbk+GznwhLjPbSASeJc27g7BOoHBHJKO4PcogwQsBrSVBqiJiBc/ZlAID3AmK+c2NvEPYlx6H9migsuEbS+O2YCeWfqRJzBVvqOdiqBeECMZU+eGQiTi4kohb+41LR8rsEFvQQAFz657E81/a0R+M/iCMvlVqn5dC/BrUGTq1bIVmjwtcBHR06sRrUREKd3subRJzJ57TT48ZkHfwPT8bVaeHw3T0DtgZWiamB2HTOvJIEls7dQhyjE75ajn2Jv3L1Wvt0Y/Var1zFsZAGnBM4ANiq72GAd3eunn3Hd8HJpy3OhtVyZgjWkhtcf/YG7edM7sRQHT2N0E+JSWKVOzn1GdJGCHB7ewsxI6GBc22nzqKmgzfuGH1htJgw0kswKSt+VTDxofXQYKA3A10BAIN1z0hMJMTpaysr2ee7Pu6CWcYSHQveKs5rUGtwO9IHAOCxJhGVY26xexNTMwRzTgdBe2mgYvs1QL+vb9+Wu07Lch2QA4VXa7juOMHlLX8ukstvNROTSY9VgtO620ZhXaZ8SNb1sZWkXzVFFmL61a+A5L+/LkZlPwUAuN3rOso73ZPMoUGtQeCk+yZJw8aj65Jo+O28DVXHQIfme5XNVaw/1IyVmnAZLSZmSpNs7Az3H0nbNanE1FgsZmBrWSV5thTO9TgTI2omlKxRce0dfv4alMdNqO1JxqrJ5iSHbXU+eArWkhsI2hbN5sOg1mBYpgEv5vUh4z5aK8knbpdYUOPpMZPh9xYv8GFQa5BSdQ+DezwLo8WE/fs3Y8DgcQhaH8W1qWO9hhgcMRgAEVl4J+Qp9syV11axUAQGtQYBryfhiagZkvac023EjsIkbg1bn7QACgXUixO49OI0fvMS4eTVBt0+icKZ12PQZCQxWQxZSkzBVwb5sZAcvmOJvHX7U84wqDWI++1n8uzeFzyiJrT+41Lh8yEffL6u/VDcJmVzT5b2WggxaPmt468AgAP7NpL2vp2I/A8FkzZlSAdWXrMfEnF9pmDy2rDYhrafJeDYmFBW14ChL+KNw2NhUGugCm4PgLyHKKLvh4S4sTcIB8OIZPjNCbwYkdFiQk1hEWp7hWJQv+eQ/6He4RoTB3YXo/qpMG48lDVkn22/Jorbf+jY5D6zCtf0N+E6IAfBoXnc/VeyLkB15LRDs7PZ7pfQOWkcd13VPgCzfQTZ+DW/PoXMb7UsOPryS8dZfgBo7dQIypAO3N5N74vnta45Lg+sZp/F9yNcSPiFwnf03DNFzdjtx8ARwt+NQuM/Pbn1bLSYEDE/ymE7DWoN2n6awMyVFWHk3fX7utUkeLMoD0XhO3q47E/G6AzBRJruv0aLiZmEf3pdWIdiKKttkj3BaDHBJY480+J92zNBMOLSp92D16IEjGvbA/5vJLG9s8s30fB7wYRCbTn2H9zCyqT/xOJjYnEnmo6WDQCdvhfG+kCHfQAA34+SUZt+AeW1d1GS2gIXu1dLyqGiXvag5W/uoIZBreF+Q8Ud2goA/z1iHdRH7FH8+4dD/o+YDBkyZMiQIUOGDBkyZDxiyP8Re4zgfPCUcHJVa4XCxQVGiwkNd56AeVU4yvb742O/bsLp0QXi8L7vNJGEvz1WiypbNTzHFMGg1qDdB0lI6FoPADnRtHf8BnjpX/FJ45zL3bGkVSp34tY5RYljK1Yicp5wmgYQR+rT3X/G8tQ9khM/++/2wgL9R01E1k+hXP1UQh0AfPrnMcnjZmsTMbvbETRfnojcZ1fC4wTv4ihuqzKkA4JmJMNoMcF3bDq7T9NY3iIMEhWvEMNYlMqVBwC2mhqW7vubbYlIwqUC2OOLXEFgwr4M+rl4jsBetYghJ+RZ42K5fABhmQBgx5dPsWuKxDQ0MOSyOXQ7TuSuq3rc5uoR11tK9A9Qc6kAgzr1hqpTkMMTSDGcD6Ww61RYQ9XUTdKnBruJnLDCuR5a3ZcqBoDll3rD0CYUqvYByB0pdUXd0bEFyRcWDFX7ANb3vE90kjUz/0oI10aLoSU3VgY1kRvPXaRzeOptUGuwpUBgPGj5g7sZHM4PABza9ANUnYJwcXcQuxY05ZTDE2j2DJ08g0ZFtbCdOgtrRiYG9h/LtaXD8fHwWJ3I6qLsaYfdl1F1kIi/7D+4Bbde1ML7I8JudznxAkyhhLHrnDSOCUW02kOe66u7O7Cxocx2v/FThVP4s2WsfmVjEhD1l8vkedu8+XsmgtD5u2jcM3SX9A0AAuYQxuzdHNLPXYFGXNPfBAA02pqES1u7cHk4JuO++AEAKP9MxZXZvOCJ0WLCa3Nexr743cKJdeo5mCfEcmxR5Lwo7Du5DyXTyV5AA30bLSb0SZkKJ18fbi6o8IbRYkLH+PGsTaeqGnJtNFpM7MRVndQYuZu7wqDWcFYIRosJ1vVA89hEdFwejS/PHQIAtF5K5oiG4BD3/zt1Mq7N0qH9D1EkkHWiNFg9QAKu0zpuvSiwi7fHaCXhMABg34m9LL33xwkSxoXNg4IEqb73mw8nVX7lFT0a59ewMqobEvbfel6Q4LedOgu3DPLM3m3T2CHbYrSYkNxtKxPbaWquYG1QBbfHoCeG4/KujlD+mQprRibWTlwmea7Nq8Ix5Fwpd610H2GSnQ+lcIJUdB21e588P8HLohnTY7/f0XARVJjpu4AOMFpMeHLKdCKEBZ4FajOCWJ/QEALWi1kAhHeEeVIsAl8VWJlZPj25fcqg1nDBke1BBVYAYglA89H5DZqeLMlDYbQQIaJPr3dA8S5iReK1UBq+w6DW4LKd1D9A3pm3e13nLEUA4OTCWKg6BTFrC4BYPgCEfW9kIeImthRBNn/qfeEUo8XEBKD8k+vDa1ECBp67ia0Tn2Zp7zwbwd7bbhsJC/1nSH2uXxSeKxPhEU8sMOKKTnN9uzaLZ5qSPxN+G/w5h4zfpQVknmrPkjkQs9uOcHDHj6wOv+7COzzvU6GuTXt6AwAXVJo+X4oGDQAAjZT1mdw9DRrOrEAuF7P5FffHUf8BYFX+cUzN7wmjxfRfJNbxqNgwmRGTIUOGDBkyZMiQIUOGDBl/M+T/iD1GMFpMnEwsDWJqtBA54CYDs5ncMgDszyGndAa1BkpXVyR8tRzDNYOwPzMeLRObMGaHgvM38ApjPmb29wGg+G4TyYkbDQx84ov7EuH3A2M6HSbsyXTvnixgJCBIUduzb/RU32gxQZGQhvlh+zmmjtZrXh4B65MW7hRsf3BTAMCgPiNx6hPh1NxoMcEj3p3lpSeU9idR1JfozBxBTteeERLn0aTyzEv7U854qWkB1x9xH+f5RqJyeKRDlol+b/VNArI2kFAC5lXhXJ/9f5/Mle123AMnF8XCEZ6ImoFbPYncdYM/GkMRGszd7/JNNGEE75/a3R6rhfXmLVjPmwEAJdN1eOqFKQCAOZe7S/putJjgt00Ikhl3/hi753y0Nfs8uJsB5UNDuXxHO+/CktxEWC9mIWc4H6KAwqDW4MCvG2G9mCX47NSXptth5sfS9E6M5ITXoNbAPJGsB0VoMIwWEycL3e+zubg2S4dLW4XTxpriK5JyxOXFHdoK9ZcJKH5NyuL0TB+BSx8L8s6UMXRLJb5vozOKcderMVeez+gzXPBl6tM1xSMeDcfcYumoDPPA9r2gHn4eAJD1Uyju5jZmsu+Ntt33kTvYDIXzhX4a1Boc3rBGaGvnJjAvj0D2Ui32X/yTXLwfpHhc2x5wOpwC/8OT4fXlSRxZS+Swy2vvQtmwIbe2DWoNpvwyi/VV4ULk7y1v6OEz+oxDptB+LQHAsXlLoeoUhKsv61m5jTJvPpBJN1pM8PydBN/1WMWfPBvUGqRFbMa++N2SfBQZPTawezSQrjg/Y1q1t2HuTU7Lr4eoUDlcCJFA/UPa7bqB4HoNuHFpuPMElA0bwrw8AlnfCCxW8+WJuDglFge3rZPsFfRzw19OsDGl8260kFAYjX8WWBjx/NbVTwDoM306AMD7owTsO7EX9Z6+xM1Jy+8S4PV+JiuDMvL2z0HL78j139ethkGtQchpwpxBG8LSdv0iWhjLpHSW13ruIqxZuSyYr9Fiwod+Uj/R3MGrELN1MHfNc46VzUnAa459Fw1qDbwWJeB2LyHERuE7eih+b4OincHI/D4S7ddGoeZSASfDX+9AMsL+iJKUR+8XasuZTxwAKGqE+uxBmTkKVacgyRiGLSB10fc0QCwBABJKo/HPSdyaoBYwjvBnSH20GpYBRXgXSRqjxYRre9qjtVMjrjxlw4bs94JBrUH2Ui2gULD1NnXXAczzyGTpqVWGza0RCw0BkPcws+Z4jew1ihTyfr1eRfyPjS/ouJAVDXafRLO1iVy4FXF7aZsqRpH3sWk/+a3QfdHLXNqKJ/mwCuLnlfr9+XyYwEIHOKqjcL6eXTNaTAjYLLzTjB0FhrndnnKW7+LUWKiTGkObVs2Va1BrhH3UAcTz3/jnJGT+i/SPhjhwtO8YLSRMQ/YnZAy6CK54jzdkH7G/DfJ/xGTIkCFDhgwZMmTIkCHjEUP+j9hjhKS7Vvy+bjWAuk+Wba81ZZ/brxVO92oriK03DVaZtrUzK4fmVwX4wqDW4Ny9O0CtFfvjNgEAOn8rKAMpuneG6ogapT1u4OrLelb/0PMlnC3+PUN3xKUJASQLdwTjzrMRXMDI2jSinDezUAff/dNYWY0G8MFCp7oJfmO0/NxFRKmvZLoOT5wZzqWPuXQcVnM2Kmvvsf5lV5ejpEepZLzsTw8bbSM+XAOGvsiuDT8vBPi0P7k23Sd6chcS/6OL3aslTIx4jN3jm+HP71egph85AVa6urK0HZcTlTWFcz0EjCf+d9Q/gNab3ZcE/PTbORMGtQZb/Q6jLogD0N7WV8KWSuz5r+4mPhHqxQnoO2kaS9N4Cx8A2mNVIqiPXEbYfR+4w14wWkxwauuFCZeeQM5zyzl/CorqPpeFgpyd4Xa6mPkb+MZNI6fo9epzY0RBfZHoPfp3UGh/ZI2LRc4mDVP0A4CAt0olvjB0zCjEn+k4nJkTw643X56IDW9/BZ/RZ5D5rVayRp6/YGHKk2GptVy7096Mkayj4yE7Ue+WAkvyBBbDevMWrJmEsfpq/Qg0SCbKYQFHBJaz5nIxq/vApZMwqDV4vZ0OceeOsLJVnYhfGvWDAoCAF1PR4qSwTui/Ft8nwGsh8VUq3RfIjU/Be6Q/Hb8thf/cpDr9FLL7rYWtpoblbaSsj/1ZCRjU4Qk29xUjI+E/N4mdEB/IJT6n6i95fwz7uRGfAFcOj8RoLx2s581o8a8ElpYytPYwWkwI+pHscVTVUgwa0JiuDTomYh9W+3VreUOP/A/Iqb7K04Nrs/iz90cJKOon7Ve5vxsMag1yFxE21LyGrOXaykoEzTqJgDlJLJi5OJ/9+jWoNcxioHgOryi4vsyT6+e1KB33PNCxAUhwazFc9gn+Rv6HJ3NtoHl+ancURfN4lVVHz5aYgUjvRk6lb7x3Fwa1BjV9w9DqW95X6erLeqg6BgJawjoWva3n7t/YK/hbQkv8PjNmxuDS1i6MubFm5uCrvET0nsmrXhotJvgnO6DLIfhR2foWoeKqKwJfPol27xLGamWQH2tD9lItC8bs//tkbm1SZb9h2/9EzSFvAIDtIX8dGc6WwXrezPpJVW2pMqsjRu3afYKQ3uv2SRQO5J5A5Nv82s24V8n6CAC25DOS8gxqDZoPvShZY/uzEogq6P38/nOTYCxKxcLckxiZcRUrg4gisapTEHq9NJN7HsVlBc0S3jNpbxJLkinnLgIAXlcfhHl5BGrT7vsHKwVVWPPaMFhLyTv5mzxhn+g9YwYMag3mZp2D6/YTMMdEoM2xOzCoNUidzwd+bjcm/YFsOV2fcy9r4dTOm7v+SS55Fpwq+Lz+c8meHXRsIuunQa2BcdcGDM0cwNJd+qA9duWGcHXfHRLBjXHxnPtr/j7s96jAl8nvjUn3/evEz5f9M5c/SInJ+b1g3MH7nD62qLU9un//cMj/EZMhQ4YMGTJkyJAhQ4aMRwyFzfY/YID5GKOsrAxubm6YfmwUlgfxp2dGiwn+P89CwGs8k3FpgR4+H/JxbwByspL7uY4pjonvi09ioou0yA6/+1Dtqz3cFsp+BTBaTOg/ciIUiWlQdu7AFIoAwqLZTp3l8tV1EmiP/I/0yJjBn4IZ1BrkLNahT+90HDrbEUFTT3H3M/8VyU6aAODmBB36vJYIUyjQOUWJpa1PcyyMPWtlb2vuiCk4fEeFxf5/rV5k388Pck7jY79uKHteC7esCtiSz3Bp7OfOvozspVp2Ymd/f1X+cUz37oni1/TwGZaDPYEHuPY7GvPMf0UiZ8QKdF0SjVZfJ9TZ5wfB5VgrpkRG66EwqDVw8mmLmktkjQzq0pepAYrHmf4drB+KC3PUTInPfm4AYGNBPMa17fHQa8jWQwNFPPGxOJB7wuF81jVGdO2q2gcg55MG8BktjeFy60Ut3M/cYqe+VYPC4RKXjLyfQ+D+a0PcdVfCqdIGjzUk7teeiob4PlA4/Xc05o76VvyaHq2+JmujZKoOjSw1uDS6Fq0PODN/IXFZyy8dh69zowfOvz2yvtIi4PUkfJBzGu2d78BT5epwDgDg+kwdPFfwvjAcw96yBaxXrnLXxX+Dl0WzuFl1QTIfYcGcUhtNU22zcnGail/TI+3NGAyOGIyawiI4H22N8nsuGOuVjMVHhiDwJUG9NGh9FFR3FPBeQNqiCvSDNTPH4byoOgWxeD4AMODZ8bAln2H7oHg/rGvcVB7NUKEPQP1fCZOgcHKCraYGt17UMj8w86pw5A5e9cA1Ude6dTTWvrtnIChKYC4A4J3sdCzyJz5dnb+NxtlXYyT9pcheokPGC/+Cs0KF0OSxcHaywn1wpqQt/85e76jNuVtC4HSmEdp+luCwv/1HTYQigShMqjw9EJd+mKV56uxtHOrc2GH57U42QF7EHYf1m9eGIWhyisNxC38vCs1+SETJdB3zW12NfwAAhF9JREFUPxSj75kK/JQVznw1xWX7/z4ZAS+mwmgxwW/HTATOPiEZn6sv6dHi+wRk/tgNOU//gFcs4Si+2wRb/Q5zfc//UM/WJ4NCAdhs8Ih3R0mPUv7ZO6JGXPs4AH+9l2d9rUX2mOUPtZfaz4F4HAHCbM0Nf5ZZw7D2BPjCmpULo8WEPtOnc8ysuBwKOv6jc/rhVs8SvJV9Bm8tnoGUD2PR7/xQuNW7g50Bv0nWj/XJbsw3zKDWwPuEK/IjK7h6Mtd3g//KWvy2dR1h/I6oGTM4w5zDWNJfCk9iuFcEa9egTr1hvXkL12fokPIR+Q3l1NYL+07sZfMrhusfzVHxxDWUTtTB/cdEXH5dj/Q3Yhw+s+blERyz6Oi3idFiwhNRM+C8Kx5HsRu3bt1CkyZN/nLOHjXob9anvKPhpHT5P6+vprYKh/JjHtvx+DsgM2IyZMiQIUOGDBkyZMiQ8Ygh/0dMhgwZMmTIkCFDhgwZMh4x5P+IPSbI7F3NmctRupqaJXqfEEQfxKZtGwviYVBrUGWrhirIH75vJ+KpcVO4sqlDbuaySHT/MArZ4XdhtJiw7FI8q0v8VwxlPyHgoSIxDUaLCU9vOcnSmleEc6YY5lXhAIBOsdGwhyrIn+WjMvcZM2I4h9kBFwZjbtY5NE+xIT+yAu7Nb3NlWH7phMCXT6BkGhHPuLq7A058HgtTKGn/2bBaju4fHD6IjYHRYsKdZ3lnW3vkfK5Dfk05vuo7iF0Tj8vlubyUec/ZM4ks8P10H/t1AwAkLl0OW/IZVk/ez8Tp98J03gxTDIVzPdQrJY+kMqQD5zAPACM+fhMA0OrrBFytaMQ5VANA4NFJrB07ConpX+DLxFTPa3u+wz5TgQrxdyoMMDKDmJ1l3w83cPeZCJZOXDc1S4wu0krMEsV1GtQa1OTlI2BOEned4ov7AhDj2vZg9+kYfJWXyAK0iiWmAeC2N3HiL9gkBIYefv4am7f2a6Ik4gPM+f3+2o07sh0uiY3ZPfEz4fZTEhOeAQCXOGJ249boDtx+SsLTkxNx6hPimG+qquLMEtlY3Q+AKr5mD2qW+PwFCzzWJOLomlXINazhZK7F+XydG8Fv+0xJObTd9p+NFhMCN1eg7HktPvbrhnFte0jmSJzPcwUxtcz/QM+NCQU1S6SBou37JzZLVLVsgSuz9ZJ2iftTOTwStpRzMFpMuPy6sC77TJ3OmSUCwljVFBYBIOIxDUeXYlbTImaWSGGeEIuMmeS5a5nYhAmqTM7vJdlzixYSsQHDMBIEmj7DdB/8reOvTAL8VlyAZNyMFhOsJTeYWSIAJoTi9pMwj0HTk1le65Pd2JixNv9AwpjcmKKT3KPocuIFtDvZAKXWSocxT6lUv0GtQZsvpEGAxe32fzMRzgoVDGoNbpY0gvvgTFQNDmfpaL4De35i1+gcGdQauMc3c1juS5lmlqZ0og6qC41YkFz7sTOoNZxJnPU6EYii8uPULLF04v0xaUOUlFSeHsiLuIO7Q4T9iY4pAOQa1qByeCQGRw5hQZFpfc1+IOaIjswSAeD3Lq5QDz8Pc6xQNns33zdLBIAOsUSUwt5ss8X3CSje1RENLtSHQa3Bxe7VsJS7YVT2U1y6RgX8BBotJhZ+pqRHKcyrwlm7R2cUM1O7JTeEd+prWRncs0ivNz/Fz3v2Ui33HIoDuQcdm4iD23+EsnFjTLhYwMaJ4uWssUwQbFC/51g+a1YuS2ut5/hnpf1eM+HSEyz8yi83usNzRSIMag1yclqi4olrDt0HDm38AQCw4FonKJycOLPEmxPIb4LACafh/MlVlp+acF5aoMfAhtehaklCCAyZJAijXLVWwHqThBDxXJnI8tYUFJI2jRRCsNT2IutuZwAxz3zhrf0AgNZfJXBjFbowmu2buUNXonOKkuuPo98hf8SuxJ1feAGexxayfP3fBvk/YjJkyJAhQ4YMGTJkyJDxiCGLdfyHQR0f++BZOCmcAYCJGuxL2MOcTUt+8MGJL2K5UyJAOE25PUYIEPnHXeCJ+sL9DQXxGDX7NTTYdRKf5CYjwsUZBrUGd4dEwDUxq05xhdxFOvi+I3XWF9f7MAIBivAusCWfgZNfO9Tk5LF8cy93w9mwWpbOqVVLFmRXXId92+zvOWq7/fWHSUvv9Z00Dc4HT0EZ0oEFhgaA/G1d4P3cGUk+hYsLqnt2Ru4IJ+QMXyFpp9Fiwrl7dzD5o9fhvi4RN6boUNK7CoETTwsVK1VArfWB4yiulwopaNOqkdRVWDcA0P3DqDpPeB9mvjYWxMNT5YqMe5WY046cRrc72QBt65fiPc8L6LokmskYUxjUGqzJPw4vp0aIeCcK7j8KgXcNag0y14UhcFIK59RN8wEPJ/hitJjwZnEok9IGiPR3G+M1WDOIsMC6/OOY5N2T5Y3KzEJsYIDD8v5qbK5G61HhbYPv24mSNVM6UYeTi2Il66h8tBaNtiZJylY1aYK4C384XMNGiwkDBo+D6vJ1VHVoAxpSQDy29vNM85Y9r0XiUuKIP/z8NcxqWsSVXdc4GtREZGVf4q8Y4BMBW/U9AMCNyTo0W+t47QCCg7r9uFEEHp0Ev/sS4VUDw9EwpxRxR7Zz6Q1qXvTBvn2qjoFsPu3bXNtTw5zwHzSf4vka2L4XCwVw59kILuyDqkkTWMvKeMf62AjkPrsSIV9GI/0NPvC7ffk1/cJweMMaSTtqe2qgPG6C4WwZnm2cjmifntx9yxt6ifR/8a6OaHU/CHL1U2FwPpTC6hLXL24rEzHo0w2qo6eR+7kOvm8nImexDpkvSten/Tqmf/M/0CNjVgyCl0VjyOgEmELBnp3iV/Wo8LLB/01hXTgq0x70WaD3F+SkOAzsDBBRi3q3bWi6nl97V6P1SH2PzEH/URPhZC6E9XoJbo/VovGWJE5IiNZTMTISrjsEVtRRWydcLMC4xiV1rh+Vuzuqg31w5Y0qNF/WkJtjZcOGqK2sRPtTzrjYvVqS96VMM4a6Etl5R+XfelGL7q+mIvOlIODkGdycoJP0m86jfR/EAjl19c//8GRk91vL6r+2pz1OhG1Cz3dexlWdFbnPrmR5I+dFoemGxId6lnqn38GxkAYo3BEMr5HnULC9M9qO4vfsO0Zf3NrfGq2+SYDhbBleb5bzl+8bWkeXr6PRKrESyuMmdo3iYd/pD4u6ynaUxr7uB+V5mHqn5vdEobZccp0+j/1aB/93iHW0mfXoxDqKlj+24/F3QGbEZMiQIUOGDBkyZMiQIeMRQ2bE/sOoixHrM306jq5axU5JtKZRcBuUxfI5ebXBvpP7HngST1kyWqZBTYKYWq+XsDR1nSQZLSbkVpfD17kR5l3RwBQKZP7YDUFT03Eg/xQ6royG90cJUHl6oGh1C1SlucPnQ6kkMZV/BYCnR0/C1e4NkfZWjMM6/ZPrY/+pECbDrGofAJuLE/Yf2OKQSTAvj0CnBfnYl3JAUl7R23q0Pl6Jyz0aotMzF5ktuiM2jErGj8y4iqpaZ+wNdpe0rWViE1ypbAL0K4TRYkLH5dHw/vjB0tyOxvfOsAg02HUSWwoS8EKHp1FbUVF35vtYl38cJ6paMWbHEejp7J1nI3C3qQonF8Xii5JArDjSF4GvnJCyDh7NGBPqaJ04gv3aEfeRos/U6ah8+SZOhm4jrItXG9QUFqFqcHidksa0PioLDwCK39vA1reI3bfpuuLgjh9hUGtwb0A46h1IdnjS3fhPT6Sc82NSwQ86wVS1bIG41IMwqDVQJzXGWu8///KkU6nphFrTeZhXhiNoRrIklIJ9m2jd9gzHg0546Wk/ADi180ZNXj6X9mClM5YGBD+wnVUH28Glfx53jcqoUyzJS8Kb7bTse+aP3RA48TTyfg5BuzHpqBgZiePLVnBtqxwRiYY7TzAJeADI+1SHJpoSLOu0mWM8xP3K+1SHdu/xp/6XtnbBhZ4bWJqKkZGomVrC9jmjxQT9a7PQ+OckToJaDHEdlMkF+PneW5Qi8TGjKN0XCPfBmTBaTIh8Owq3/BXw+TAB5c9FsuDvtB4AGBwxmO27D2LW6fqtq60Or0V0AU7y4RPMq8JZ0HeKzO8iEfjKCdwap4XbRn7Pn2rOxaopw6E8boLlLT3Ui8keNeFiAX567mnUpl9A3qc6XJwSCwAY6KdF7d27MJwtg7FzE+R/pIfv5quIO7KdsEsH/PBEyyykhJIz275nKvB7F1eu7Q9jhUDDJjwMxM9N5veRCHxJ2L8og0lRNTAcLvuTmaw5BZ1zR88/Xd8AWCiW3M1d4ft8GpOZ/yvGNdxkRbKG+BOGnFYgvZuNY1sL39Hj3GzHUuYUmlQw3+a/ZFgOewH9CtnXd3NM+MxPyFPbUwNrQyc4H+RDvTgfbY3qPpfZ95JpOtzoeQ+Bk8hedG1PezQfelFSnXl5BHKHrnTIqA64MBgHOuxzeI9+/iovES+mTUaLZy9w1y1v6dHiVBUO/8SzyNlfauH/huOwLQDQ4FhL3Ol9BQPP3cT+4KYOh6imXxicDpMwBdRqY1CHJ7j18rDMmXhtD3piOPOBo8j7RIeLU8kz1On7aLT97TZ7dsXvBPv6KKtoj5aJTXBFR5j5HlMmIGn/B48tA8QYMfXMR8eIWVY8tuPxd0BmxGTIkCFDhgwZMmTIkCHjEUP+j9hjCINaw7EHBrUG10p4ZbKawiJ0ThoHgJy6iNkw1z+aAwAaFd7l2AoAuPYMH2jW0QktvT7LpycMag2cFcR3KXDiaXai3txE/mZ86o+0iM1MyZGeIhktJlSMikRNQSG7rjxuQqtvpIGoozLJCXh2+F3kPrsSZfv9AQDmGZ6cj5ZBTZSGRmcQn4CgWSdRc7nY4QnX+HG/QXnchDZfJDA2DAoF+kybzqV7JesCC6C8o2MLxobZj9sVXRljw54eMxneHyewfgKANo34ChS/xqsQipk8AGiwi5yYuqsaOmTDaN/Fbei98U0McyU25RsL4tl9VYAva8PF7tUwWkz4I3Yl88/6vYsrAl8hJ3Pp9+5iTxFZU9lLibqhUxs1nHx9GBtG25u1IZRrE21HXPphri/0c7XNCoNag6n5PeGyPxnugzNZv2MTfgYAlKudHI6ruCzKhgHg2DDz8ggoEtPYPDu9WczaarQISpjm1d1xu9d15A5dCaPFhMBkF/SZOh1/iGKXv5V9Bpe2kkDd9zp5sesW7W0Y1Br4J9eX9PHOsAiEm6yYm3UOypvlMFpMCJpB2kpPPi1vkXkPXSiohdL1CgD33JyEtfLWLK7v9uuXsmEAUJOXL/Fn6N+QrLXe6XeYOpxT61ZcGS7983AtSsddO5DPn5aL2TAAyHmaKJKl91wDAFi19GviP/ShoHbYcCfprzggcrv3ElF+x0Xi/yNe++3eS0TezyFQNmwIgIxrbVYjbr9454sf4TYoi2MxGv+cBPPyCAkblv+hHgoXFwQenQSjxYTy5yIlapsAsCr/OJwVKtSFgV7nWZ6m6xPZPiZmwwCg10sz0f+5SZwVgkGtAQ57cfNXsL0zrs3SoWqxmstP17I6qTFqe4U69Psy7togaV/u4FVcGUVv6xH4ygnYemiQtGQ5uw6QQLZrgnyZj437xRqmYjuucQlq0wk7QZlJg1qD2rt3MfR8CYydyUmz90cJqPRzx8Lr7aFwcYHrgBwsbJlOLCS2hGCeRybyP9Q/UH2WfVcoSB8W6RDwOvEVo+8m1mfR2q7u350rI+sbLVPApGWK2Q0AOLqGjI+YDYNShSFtwqDyaMaeQVrP0PMlaNlUUOIt1TSF0WKC7/NErbFeA0G92H7vLt0XyD4na1SoHB4JAMxnlbJhDY615Ngwc2wEvigR8lKY7m+zfaZOZ/sMHRfzqnAYzpYJSpD33z0UE40zAJD9zGgxQXncxLFhbG++z4b1TifBrj1WJzI2zPloa8aGVQ0SFDIBIHfoSqbsaFBrcGOysJeopjrBoNag8B09WUO9QyXM2OvtdBI2DADOzImB0+8pkjXTqvNVqJMaQ+EkvCfo+BfuCMauQCMAYH9wUyzJI/tjy0SBHSnY3hlOh1NYe1t9TRQMHbFhdEypArL9O8n1j+bcGrBm5aL8vnIwRbv3hWeo7WcJHJMd+PIJFGzvLCm3pl8YjoU0wI3JOlybpePq9m1Ygmt72kM3dxbq70/BfwVseESqif/pjv7fQ/6PmAwZMmTIkCFDhgwZMmQ8Ysg+Yv9hUHvbfgFzoMjmT73EJ3IR86Pgvk7wsaBKhACxh6envnX5IFAlpxFZTzPVs7IXtGiySTh9N68NQ9DklAfa/ovr2FOUjFkFfWHR3kbmt1oEvppUZ95/BzRv8a6OSIvYjC5fRXMKY45OK+3t1O8YfdHAQOy6i1/Vo9W3vD+XrYcGB7etczhm2Zs08H/BxF3bUZiEkV48g+DoVJt+fiXrAgY3vPvAsajtFQrln6kSv4cH+VzU9VkV3B7Wc1Jbf3uMu1CIHg3yOBW3B83Vg+4pQzpAUVnFqSACwMD+Y1F79gLnt1EyTQeP1Ymc743RQuLW+D6fBie/dsiZoEbo0xlwUlqx3ocoDCpdXVFbUfHAsa4Ljsax94wZOLZyJTp/G42zr8ZA+9YsuO9MR21lZZ3jTn1yAOIbQE9DxWmuzdKh+XJyvaZvGJx+T8G1Pe0R2qKIKWT1Sr+LP0PqO8xDQdXr/soHCSBx3er/elIyNjZ9VygS0hz6x6zKPw5vp0bCumnqxuLnQKmCsTAFO8qb4M2kUQiccBpObdQoHuyD2+0A3/mCuhrty4NQMl0Hj1W8IhtVwaPfG//pidu9rkvWNW13XNFpDGrTjSvX3tfNaDHh6dGTUO/SddQUFDp8Ruh+QNUF7euh4+l8uwaHNhFmcONtD9yoaYS4CC+H7DUte27WOSwNCIY+7R7y7njAoiWMi9iPiEJZvz5q7xKKtniOHmlvxcB31wwERZ/EU2dv41Dnxn+5trO+1rL4krQd+tdmoUnWbdhSznHXh2UacKf3FYflKMKCWforr+jR8rsEzpfz5ngdU+pVdu6A/QelvrrPX7Dg48PD4d/BAmW/AujT7qGq1on5lFGoPJrho1NGvO8bzsZaHGvNEa5F6dA8ln/WNt72wA/Rw5A32BlnRn+H4V7S+F7i77SdjrAq/zhezh2FPYEHsKzUB9+c7ouA8akO8xotxG+bjo2jd8+DYHlTD/USqU/xL4Un0VBZT7Jeub448B3M/1AP7wXSd6J4fdvjarQeLWISUDJdh1MLYiVzWRce9D560DVH9+t6f2Vv0qC7Tz5Ke9x46LpLpurgsYasD7rX0DQDfCNxIPdEne8L7xOu+D2+CxS1QPMUoMnmJLjHN2P1ixUf6RgN1g/l/HUBooDp9pPwLCq6d8bdFg046w6qFm20mDDo6TGI+41YiRjUGlyZrUfLZYJvvVM7b9zNzf7vUE1sNQNOynr/5/XV1N7DoeKVj+14/B2QGTEZMmTIkCFDhgwZMmTIeMRw+k83QIYMGTJkyJAhQ4YMGf8lqK0FUPuXyf6eev7ZkBmxxwTWrFwUztcz52JKo3c9+TwMag1Gzj0EQDCJsCWfQd5nxOHTWaFyaCogBg0wuTPgN3ZNbJaoCAtG0GTB2dWprZekTHvToaFtwrHW+08AQM5zy4U0ShXya/iAhVy77jtx03Ls/9J6Wg3LIA7uX/LCGAa1Bjlf6Ng4aT6PRm1PDbK/1MKg1uDWOC3+6PILq7PVtwnI+VyHO8MiEJZaC5W7OxotKmL5cz7XwfKWIEjQZpNAtyu6dwYANFIKZlhVg8OhcHHh5sl+fAY3vIues2eSccocgJKpZK5qD7dl9fz2Mwm6Sc0SlZpOAIgcrv140M9zLvMO7RTWcxfh5OvDjSVbK/quKHiPOCZ/eGQEZo17GXOzzrF0tHxVgC/+CuJ1VZt+gcn6tv8hirVn/8EtAIBDG39gaU99TKR+mxwg4giZ30XCoNbA9/k0mGMisO/4Lnh/lICSHqVEGIXWUVEBRHSBQa3BZdGaMqg1mGrO5cRNAGJSYj8+RosJ1j7dYFBrcGwlkWRu8wVx5nb7KYmZJYYsjWYO+DS/0lUQPLm0tQuTLAaAzGWRrI7THwjXnX5PgUe8O5oPvYjsBR1ZG6gpH83TfDkx2xt3oRBVg8NhtJjg/XECu0//dlgdxY195jLSxvq/nkRc0WluHbRMbIKD239E3qc6DOrSF6Nz+sFoMeHWi8Ssdrp3T5Y+a0Mo4s4fE8quJaIrqZU+CJpKArXWFFnguTIR5kmxrE0VoyKZiaU9xNc8ViXC8oYgXvNW9hm03nSOm5fbva5zfbX/LDZLNFpMuD5DhwP5p2C0mJjTvUGtgea7NBYmw6DWoLZXKFcWNVO+Flqfa6dBrYGqUxDuGH3xwTdrcGjTD+y5Hte4BJfvueHCl8GcmEH2Eh1X9vxF0wAACdPDkHCoM6oGkrSftjjD+k1Re/cueqffYWaJANBuN/mhcahzY1je0qPrF9GcQErxro7cGLdfmA2AmPt1TlHCoNZg1oLtnFkibZ/YLFGp6QSjxQQnv3YAwNIbzpah5XfEzO3oqlWsXmqWCABZ8+tz65J+ntTkKgJfOgFlvwIyBl3rISVUyfaf8tFk3VlLbjCzRAA4tkIIKuwe3wzFr/IiR0aLCc1jyfNB92A6J06HU5A9djkzS1yVf5zcHzEBAJFkF7fTvJLUezWa1KGsT9aAt1Mj7AkkoU/2BrtzZokGtQa+v07nvtsLaNnv/wA4IZaNBfFQtWwBAFAvEd5hJdMEoYbhXhEYmjlA8u7z2yYS9DlJBDnuPiOYYTKzRKWKvYsAQHX0NC59rJM8m4qwYJT3JPucx6pElr7LN/y7BiChUOg1R+9o+o4Vw/63Af2c96kOVQfbwaDWQOEsNWN7JYuIcfm/YMIW398l9Tr6DXLP0B1GiwmnPoll+z81S8z6mvwGsFVVwXfPDEn7KApmtUP22OWATYEmm5OAiC44/SdZN8Wv6pl4Dc0buD4K+xL2AABKJwrCJW4/JXF9tjZw5swSAWDf8V0AgK5LomE9dxEGtQa7KhrBaDGh5TJB5AwA9iXsgcqjmWScZPyzIf9HTIYMGTJkyJAhQ4YMGTIeMWSxjv8wqONjqdkPTRqT082rL+mR+q7joMcUf+UcKxbzeBiHXJpucM9hsLk4w5pBgpwOHPQC3L4vRmmPGyw4rz0K3tMjLWoZFzRVfHKWtGT5Qzk0i/P2njmDnZrq5s5C4tLlDk/dfA9MQ+6A1Rj05CgWhLRwRzDO6TY6dICmMKg1uPebD+o9femB7bDPR/P+u+IRZS9oUe92LeuTQa1BbU8Nftu6Dk+PnoTftq5D5NtRiJq/A5OaXGVpbo7XYd0nSzGnnd5huR/knMbHft1QNSgcv6z4Fu6qhtCljURi1x0AgC4nXoB6+HmJUzFtc/h7UWj2AzlNdGrrxcIN0PsDA3tA6d4UNYVFDvt4Ky6ASY4b1BpAGwIkpXNlDOrUWxCEAHDP0B31jLyUusqjGWz3qlF7+zZ/XSQmUbgjGOrv6kF5jJxcQ6kCakloBVX7AFwa2QJ7Zy7GrPtCJOqkxkw4IX9bF3g/xzu80/b57p+GoKmkPevyj6O1SMxCjIHnbmLt6kFo9TXvJO+/ZRYCXk9C9VNh+H29EKi0cngkGv4iyKDnLNYh88VYSdkdU5yQEVbzUE7xgDRA8YOc51WeHohLP8zdL3tBC3ejGXFnfsegJ0fBepGEj7Dfd5zaqFFTZEHOYh383uJFRShuTNGx9UNRfsAP8SE74bd9JnJGreCekSpbNVzuB66XiBLYtT+6SIvs8Lt46uxtHLsehL1B+x2PjzYExp3rJfsDLT+7upyJ05hXhCNopiC4MOip0bCeN6O2p4bJvteFWy9qkbR4Ofx/noWA15K4thstJoR8GQ2bE1gQZXuBAvq34oAfjofsxOT8Xjj/fWc03ZCI6zN1SPkwFj1enSmRzrdH5rJINMpTofVSUo99sGyxIIg9zDERCIqWCrzQ9voemIZD/b7hxHymmnMxutEtGNQa3H0mAsdWrGR7U9MN/NyL10Nd4hnhp0ej2RCztF/3A4oDQkBhAPjwWjCSujpzaSmj2OvlmfjzX3zQcbrXMQGEVi1RU3wFQ8+XYE8nD67vNJi9fVs7pyhxNuzfM4lytJaHn7+GXzo1/8t0FDRguusfzbEz4DeH42dQa3B7rBYlwQomHCReYylV9/DKxbFoNICEmNhXWR/fBXTgyqDlOGpX1tdaOLepgM/oM5w4kTgovSOEpdYyNtT+vbixIJ6FlxD3lc6dUtMJ++M2sXu+e2awgNLi9unSRqLJQMIIO/n6oCaXvL+zl2rhPzfJ4br+d0HL6BQTjbafJjicL/E1KvLxV+koavqF4fCGNVw7xemqI9rj2InPHltxCibW0XzqoxPruLbmsR2PvwMyIyZDhgwZMmTIkCFDhgwZjxgyI/YfBj1d6INn4aRwJjLC/zqB3qZyHAtpAICcljxxZjjzcwCAvM90aPeu9JT6+kwd3LLvwflQClQtWyAu9SAG+mlR+VQI6u89ycqjsD9x6jN9Oo6uWuWQfaIsjvjkmJ28N2mCiws6oWtYNsrfaQNFPJ8GAIKXRcNrETnFtem6wuebLORHVkhOjcJSa/Hbsh5I/jQWByud8dXzY2FLPoPCHcHwGnmOO/UyrwhH7jOkvZnfapHzHM+chX4WjRbfk1Ot0IXRuBlWVadEv9FiwqAnhjO/J4pbL2pxpWctgmadZDLPdUEsz565LowFz1Q2bszYHnHdXU8+j1bDMiTl/BXDpgr0Q9yxneg/aiIObv/xL9kFg1qDrYWJcFM2cMhcUdB2jrtQiAlNrsOg1kikkpWdO6D27AXk/RyCi70IE3F3SATzvwKAnM918HubX591nRj2SB+BRgNyABBp8svbAx2OiSM4mkd63Z5J/atyfA9MQ9AU4n/kf3gyAsanovZwWzgNvob9OUmsHt3cWWiyOUnCeIkxOqMYU92KsfKWGjPcLP/WCW3Be3q0/TQBKnd3WEtLWd+Urq7YnxkPg1oDt+MeLFC5WLr5/wX2zwAgelYVChJUE2ROvY5U48ja1QCAgM2z4LOvGod/WoP1ZZ7Y2MHLYdkA8Y9IezMGIUujMXzCMQnDcWlrF/iMPoPKEZFonH6VPYOs7107ojaNrAmbrisUiWkP3ScAKHpbjzafC2t4a2EiRnuJAl4rFLj5ohZNNyTik9xkzp+p4D09zkdLQwro3piFxC+X41btHYz20rF7XkmNcDSxM5OYp2MQtD4Kvm8nQhXkD6s5m9vHaMiButovTuvUuhX2pRwQ7juQN7e8qceZ1wR2UxEaDFsq70PG1XPYC+gnsOFl+/3RZGA2+1tXuwBA5emBa+s84La0EVRHTiN3c1c0bnQHKWFbWZvryl/X2jVaTJh/JQQpoUqojqhZQG+jxYTr1gp4qly5NXv4jgofvD2N7b3LLx3HLJ+eqBoUjvnfrUP/htUO2QdH/Vl2KR6vdurvMGSB+BkU57cvhz67Dxo3gFgU3DrZAhkzYhC4IQp+88hYUHbJ0bgY1BoYzpbB2LlJncwmvWb//q6rHbmLdBjUPxkZYTUwr+mO3IGrpWzpr9MZm1xXuyZcLMD69m0d3qOfBwb2QG1FBcpe0CLxy+Xs+4NQ1zgD0vA0Tq1aIvNVP1S7W5E7dCV7xz6MFUvzhKa4pr8JgLxjrZk57F5N3zCU+dRDs7WJ3L5oX8472enIq/bE5g5qSUigusZF/L3GVv3fIV/vOeXRMWLXf3hsx+PvgMyIyZAhQ4YMGTJkyJAhQ8YjhvwfsccMLb9LAGqtOD62K4wWEzsloWwYPdW5ODlWktdoMcFzRSJhwwJ8Yb1CfI1+MB/CsZUrYV4RjpvjecUvcZkDfCLgsi9ZcmJE/wGA8rjJ4SmbtawMAa8lYWfAbzi4bR3uGbpzZRvUGpybHcOuKRLTsKptvMMxOPQtYcMMag36N6zGgd0bAADndBtZWbQ94hM659sKGNQaVI6IhNFiQqcYwobRPKnzY5gyZPCyaMk4GNQaxP1B1BavzdKx8Xf7KQlBs4hfhentGMm4GS0mXH2Z+HDdHleG22O0MFpMjA1TBfpxvk/t10ZB1T4ABrWGndSJx9QRQ1E4X8++Gy0mXPnKCb1emglFQhqbg4BNRGmLqmkq/r/2zjssiuvr499dll4UBYEF6UVEcUXqorGLvZcYWxQ1Yos9MZpYo0k0ajRiwRaNxl5jISaWqICgYe1KEaUsKhhFkA73/WMyszs7C0J+QpT3fp5nH5Y7Z245c+fOzj33ntPKi2uX8Z+WaLd8piqPwzt5ZXJluTCzmWvWDOLqYL+I77WS9YroOERlUdsdvgpOx1Reqpw/Zzyesd7fJE4OFVqFWGvYqkfRIKWlFVoI1fXNEiKVcV7T1AmRyjhrWKRSgcSdPtx5uUNUHr+SVgci+4Q7QqQyuI+5htLf7REilXEe1MQd0zhrGERM/3o9JAeRSgUurd+E5+NUVpXk71X5htZ7ghCpDIc8G6H56olc/TV1rtk2AGi8NAp5Z5y5GXVWb+WvX3PfWWtY5kw5zBMKteaVtCqQ97/Y2Jjrp2xa4A2VpSBlWRD85zIeGlnLdWRGPJd34sgN0Iu8hhCpDC1WTITLzBhIzl1nZsLNsrl8Rbp6SPmlBQDAZwmTn0E2M3ts830U9v76AZenTlN35A0KgMNgxqJz6cdNyGtmyeXleWUE0/Ybqj4hir4BiY01xMbG+HuMykNc0mpVe9uOV/VFALg9NZz3P2vBAoAn0+WIzIhH/V1Mn/XX51vrGi8VerIMkcpgtofpF6xljT2WHpgHS49saOL0zz2R3suKk+csVv8E4I5UKlDWnvEUKWrlhZxTrgLZ0swnvHwjj+5S6dPdBZFKBaQronj3G2sN0+x/nIyaNQwAolscQqRSgegWhyBxcuDSt+ZYI30uc0+z3iDLsp/jeYo5Ho5mLI1OQ2/AolcCL/+0eXJ+ef/U5Xlgidb7IkQq4yxCZe2VvOeIujVMYmONEKkM3wd2wEs3HS5fdp/ohS0ROPDcXzDOa7MkAYCOVSNMceBbaNTrVv76NToNGyPQX4hUBtE5W5VOtFjDNMd4ANDd0hD2C5l7jbWGAdBqDWPL0WnYADMaPBTUf1KiSude0cNQ0sUXAZ8x3mxD7FppbS9bD72XIjQxzAQAgTUMAHoE9ESHFqpnVaRSAZFfc177AGCY6XNevpptD5HKcDrxCjY+vgyzPTFoP3qsVl1nzpTz+kWIVIaUZUHo2mMYFj1U7VPTadgANpdzeLKlT54iYdQGuE+IRYhUhhv+v3B5sPXM/TBQ6zX52fEC939Z4kNeOwwSn8LyBKPjR3ubV9iHlrt442OzZ8xvh7/0BTKJ6wO4NPXyJ2bwPVG+85ST2vvUceiLGIVCoVAoFAqFQqHUMnSP2H+M+h6x35S30N3WBwmb/SDSK0e9a/po9GMUxLKmuD/ZCCndVTNVT456cpaDitZPV7TPgEXbOvcmW8Lg8BUzc9vV3hektFSQl+beGPaYjpkZRA3NOU9Gb6oX+1c5S45bM8K1yrJUtIei2XUxvrdhPG2NSwtGROMrWs/XRkV7Baqqx8rapLluXR3WE2DPOy/Q1CAd7QxK0N3WR5BvpFIBp5Pj4D4ujucZ7k31Y6nIg9mrjwK5GHJs+tD7SvzSRKoq9+h4QAS4h8VWuL5dfU9DRWj2uckZAUj0K0L448tw0TXB7tyGGGb6XJB/yrIgOH1R8R6zN3nw0ixb89pq82AouD/sWiEy/ToCPg9D/Z3RFeqhd2JXFLV9IshHXVbbvgtWtlv3j0DuJIG09OBiBmleZ49rulgrVVmrRS29cObk7jf2dfU8pifdw2pXT61yS1Li4K+v+8Z9DADw4uMgxC4Ten8EgDWPouCpZ8T9r2nZrcq9WVF/1swn4zM5bL9V3WOPFwfBsMULxPvt5Z2fMywQ9XbHQBuyeEDRkhlPb/j/IqgvS9CNAci6YwmXWfz7RrNud4oLMMORsbbNzPThPO8lRPjBfVwcl2+3Lh+i/PZ9PA8NwrUlwn6o+X+3bkOR5VsfltdzUK64y6Wz+3bEpqZ41bUpCs3FuL6QWS3RI6AnStPSEalUcPvT1O/bisa8Vx8FAgQoMRJxddPW3rxBASg1FMPoWSn0zjArE7LHB8FiczRvPFHPX/2v88FPuBh96nJAxXueNHk9MADZg/M5i2pF1wYAnk2WM89TtX1ekUoFmq+aCOnKKKQulMN+YZRAL+PSgpEawN/D9GyiHI3CtY/v6uebXrJAcbmENz4AgPdfItz0IYK6qnsmXvEoBrMdGSsJ62k2UqnAb/m6gj1vLudGw3V4PB5+FwT3Hx7jZNwpbi8dqzvLqPr42fECd17S6kBuH6O2+rP6ELXyArl+B6UdWkFyTrjfid3Dlz0+CNcXbhBcZwD4IGw8DI/FQmxkhPL8fFVhWrzsqrdL8xmj2Y+Sfm4J1+HxFV5z7reJxn7biq6XOmy7Sn+3h6RTKicrWz6Ri/+ljcAbJdweWPZ+SNrVEq4j4pGw0Z9bXcPToVUjbgXTozk+SPr2i3d2TxT7m7Wj+aha2yP2x4uf3ll9vA2oRYxCoVAoFAqFQqFQahnJf10BCoVCoVAoFAqF8p5Aamn/1v+DRXt0aeJ/jPrSxD8y73CusQHVcjxtS0g0TfPsMYBZhiBxtMfdz63hPiGWK0s9n+wT7tyGavXjLb6dKFhSV5E5f/aTlrjpw3QfWTzwrRUjp3vBBiXtMis8n6tn3xHQSUjFqbsXuXqzx3oE9ETZk2cgJcW889wufIww7z8R2cwMIl09wfFmayfi9tRwnr7YvDXL7xHQEyev/ormayaiZb/beBr0CoD2ZSfsOW67wuC2/C5EhoZ40ssJFpu1u15utSgM1xdsQOchoyG+VPnSicEPO3LOF55NlsN/ZDwe+RcIdBepVCBQMRCFpxtBMbfypZwAhMtA1Mrklgcd+gRuU64K+lVoQgq2ujsBYJbFnN++RWsfBADfL8PQcKuaHv6wg7hvDspzc7UuD1TXp3ras2NN0KjPfS4Aq2bbNQmcM4ELUp05Uw6r2AKBrtnvBX39YXg0lncdA9rc4zZnV7Y0TOzdBMrFIlj3vccLbguolhhpQ1vb2SDJAKCcJYd0pSr4r/fKibBZFcWlJ64LwMMBm9Dy64mw3nGD29QeqVQgtTQP4+xVQXetos3wNOgVRPr6OJNyFSFSGRfkFOAHMhbp6uHM41heG/8eHYQG27Uvv9RsU3WX/ib+GAC3yVe50A/iZk3wYEI9mCXoQPF5OK8vpZfmIdS+NR5+E4Qy43I8HLAJ3ZwDUV5YyOszaV/K0XhJFEY/eIwPTV/A6dh4wTLa1wMDcHntJrj9HAbnOdEQnbMF6aA9MDkLkbfA/J9/wgcG2pfCJe1qCbe1pSBxt7iAsmy+FaHT1B1ld1VjbXnblpi05QD6Gufx5LSVl/JLCzgN5S/J7t6yC7eMSfO+ZUNNaLt3Klp6zcKGpWCPq7crUqlAq4Vh3HinmQcbHsAtTh+JfkW8ern/FAanuVqWMP+zLI2VVQ/Jwga7D5HKkLg+AG6TtIeJUK8H289YJA6NUfo4TausNnJOuaLo10YwTyqGJK8EmXJjFNcneDBmA3a8asRbaqmJevB4rfpRW0YrauWFMyd2C8Yc4J9n9z/LEyOVCnQYGcpbgs2GeShv0xLiS8xz//XAABgfFG4VAIBh99OZsBL+zZHS3wROn1e8lDxSyYTtSO64nTvfKtoMXiaZONfcuMLzNMtUD7Rc0fLXir4D4AV/1rG0RFlWVpXKVU/bm2uOD01fcH2we8suOBX/GwBGxzr16+HBQk8kD94ouA7q45G27/nlxTAS62H+s+aIkzEOYnQ8XFH2IElr2wBoDVPDhSgQiaBjaoqHM5vBYUEUDjz4C+buD9/ZpXjc0sT6IyER1cLSRFKMP17ufGf18TagFjEKhUKhUCgUCoVSNQgBQC1ibwNqEfuP0bSItbo+mLNUsU4d1Gdpevh152bUAYAEy6CbnInSJ08rLaeyWVH2+8uRQQidewxH/F1QnpvLOeVgZ52rMptVUbkVla1O0qpAuM6IQVE3P1zYGvFGi0/CNl+4j7kmKI+1LGi2OWd4IGdB0VZPzysjcC94FyOvESS1snqMfJAGR90sjPg1DA8Hbqqw3jOT7lQYWFSzLgDgPzcM9RPzeU5K1Hm8OAgOX/FnqFmrUqRSgWXZHrjobcjrP10GfcwF2173+ArcdY0Fs35vqhubnrwyENLmT/Fn8yPMTK6TA5I/toXLT0qcvHwUwdMmwGR/xZvB1VnzKArTHOUV9i2xrCnPSUGIVMYFrXXdHQaXz2JRHuyNs/tUs7n6F625TfKRSlXAZhbWCpQ2T47GXzMu4026PsTDb4O4DeLlrWVIHqsDt4+vo6iHH/RPxgnyE/k2A7l2Gy9GBcH8J+Y81hoZqVRgqtKP52iDReLsiNKHjwR6mZl0B9+7enFp7HWRODvi5OWjWPW3MyKb8WcGc4YFwjizBJJz15Gw2Q/u4/mBVxPC/eE+kbGOm19pgL1O57j6lLX3we+7t/HqR4JlKLTQw58bNmu9HupBdll0GjZA0T4TbmO7Zrs0SdnrDacPmY366pvY3S58DOePFILzFz28jjtFttjvac2lN4sZBtv+qkDFHW69fuPsvY5VI9yf7wQQcM4i2DLsYkyQHpiHhC2+cB97rUKLro6XB8ruPHjjuLo7tyF2ejRG8u6WcBkmtIxX9L96unrwbm1o5iE6Z4uOje5jdoNkLl3d4YD6eR+mdMCL4L95QbIlNtaci3xtFgIW8ysN8Kq/RGCdYx0PsA4K2GMAeJaliqwZ6nmop6sHFH45Igh5diKIS8ELXM06+UmfK+dCMGjTE0/P/UeiqIE+9E/F8Y69HhAA40PC1QIiiYRzYsXyZLoc1quFDhyq+qxM2OILz+9eoCwhmSeraalW/+uyfwJcp8Vo7TP/BvXzX44MQv2dlVvPuGfKgFEQRd/gvv926CdePRJ3tMLDLlsBVPx8iVQq4HR8PG8Fj/ox9txIpQJeP06E3TLtulYvA1AFf9d2TFu7y9r74OEoERd6hkV99YLmeer3Dnu9AGgNtF7U3Y/Xz1hHMep5uq0bg4fL3gNnHfVG1J5FLGfXO6uPtwG1iFEoFAqFQqFQKJSqUV4OiMprvhxSC2X8x1CL2H+MukVMIuIHEtWc6dLcaxCpVGDnKwv89ncznlta9hgAyKdPgOm+GMEse2WWmMpm1VgX2J1u5+L3ZqZa81Cvc9ZxD5Rcbgjpd/zZJLF3E5w+s7fCsiTWVri/Usrtf+Oda2qK0w8uwWvdRNgtjxK0J2GDP1L6MDP5JV18ofvbNUEeFdX7Tei4OaMs8SF3Dssn6UG4v7g5TG5lcvsSQm6/goeBEmtdmyD9kBfsBtzhymFn3NXLrqp1kQ0rwM3IBctgsjwDh13PMuWqre9/GvSKV882kz6B8a/xEJuZIHGOh8D9vLY6hCUmIaJNsMDqGqlk3HWPvz8MOeetcftTZmb6yTQ5rNcw11uzn6QdbAa9i2ac+1/NPTCaen3TNWH3k7HX5U2WvUilgnNLz6a/Ou0Cs+4P4RKrj3DbGEG5kUoFeviEVGh1HnDvGQ55NqowXACLjqsT7s2yhGmCBDarVPfD89Ag/h47aO8TFVkQWNqPGQe9M3Fa7+PKzuWsjv/cV5XNGkvsbJH6oQOkK/kWZ03379rO73i3N7JP2PH2oEYqFdj40hY/f9kTxoe07wNi97qp33sVEalUwOfaEFj2fvBGq25lFpnpSfcQdmk4FwAeUFmK1F3OV3WmvbJ01nIr9m6C8pv3K6wn+3dvWhSGDA7jZuEBJkh51OqNuF5UjJF/jYbdgDtIO9gMjQferlBPbB3mJN/Cdy5McF7Wxbs2yv9oDHHHtArb/CZrX6v4ciyzYiygnldGwH7QLYj8moPE3ULaPDnuTgp/Y55sGls++931lwncfshXQwO5fdaaulN3Ca+Ngj7+MDwWCx2rRrw9RZXJqtdrdGob3l4xbXUQy5ri9Kk9vPta0zJSEW/SMcujfd5wHMLoelJiAta7uQPgh70BgFWPojHDkQlIzu67ZPMN/vQTXPlhE08H3J4zLYx8kIadHo35/UMt7Irxn5Z4/UGWYExTzx8A8gYH4sqajVrbxVq8A2+U4MN6cZjmyAQKZ/vttylX8ZlTgFY9dXML5u2zrWhcXff4CqY4BGtdWeASZ4Bkv0JkzpTD5ntmDNRcpZQ3OBDZA/LhOOQmEtcFAGYlcBv11xvLZSklJbiAY++sBYiziJkOqz2LWO7ud1YfbwPqvp5CoVAoFAqFQqFQahn6IvYOEalUQOLQGIE3SlB81gHdm3wAAExwXQCnft8PgNm3AgDHXxthdxM7ZMlfap1ZCZHKYDclEQDwQ6duAICs4x6MRWZ7K1656ucMu58Oq2hm5uHFqCCeHBsQ9rcJbTA3+SaXnnawGa/s1lM+AQDUW28K6XdRvDIilQqU37xf4UznoyVBKH3ylGcNY49FKhXcrL26NSxSqeBk3MNUHuF0f1Pt85iapJptBhhLxpNpcoh09dAkYqKgLllhQciaEMQr+9TFwwCYtechUhl6+PdAiFSGR/4FMPg1FiejTwAA2t4sQGQzM/QwKgQA2A24w+kXALf/RHO2VNLYDglbfQEwQXzb3GS8xZV08YXTyXEAgDOp17i8IpUKiK4o8PqDLIRIZcznNuP9cafDn4ycbUvumNGRqyAlxSh7/jdnDRt2P51rX5eBo5CwzZeniw1urpwXQ5bSDkz/meEYBJOuD2H7bRRTf1spbswJx9OpcmTOkOPwss5c3pFKBe7Kf4ZibjiXF2sNS/wxgLv2bNs0ZzTVr4PE2ZGpx5OngH9znqWkR+u+3HdWR/IbxUjY3gohUhk8YsXo3rY/l1e9vumIzIjHpQM+vGvEHg+Ryirdg3nIsxEAIG7pBl65AOO5jeX+1EZwnxDLs4YBQMOt0Uje3VKrJbB7uwGCNHVdAEAPv+7ondgV57dFIFKpQMuvJ3Kyu9OucOeKjfl7p7x+ZPr848WMzk8/uISuTgHQ8fLg6q5ZVml6Bjdzz16jjM/kAmuYxzVd3nkAIOmUyrOGiXyZMeNIU0uBNYwtN1KpgPMhxoMoeZKF52ODUNDXn5PRJEQqg2XvBzC8aIUQqQzef4ngcU0X6XPlfAvedDlXX/YeU85RpXU1KsJIH9X+xm53XnL7puxGPkTH4aE8HSiPNIVytpyTd4kz4OpY2qEVXo4IglucPgCgh7w3r+5FbZ8w/yc84tKeTFflxdap6fqJKIh0grmOEWcNY/OJWs1YEL5w8ufGmrvynwEAYgMD5p5xcmDK6+aHTh+N4c79zqU50g95IVKp0GoNExsZIVKpwFnPE4JjEkd7rh5sPUlQC+64+j17vSXzc8P9z5GwH8TsnSFxt6Bjbo7GX0ep7hlnR1hG1QcAdHMLFuTF6pwtM0QqQ9LQjQCAxJ98YPZLDJRz5NCxasSzmgHgrGESW74HRFZGObgEAHAq/jfe/VbQx1/Q31hrmHq9lIG5EDdrwpPt3uQDnh7KFXcFzz7WwvzkqPaA6+z5858156VrjglFPfyQsjwID9rs5NJ7G6s857LWsG53XiIsMQnrs9pzxxovYerwPDQIIVIZTA4w3lc9todx+W953AZJqwMRkXqZVy8AaKzL38dY1t4Hf88v5K7B6w+yuDqnzZejvG1LnrzYuwkAwGR/DFouVT2P1ccgdv9nTAtdLnB8zzsvuH7LWsPU68b+zenF6C71KzlPbwuy+Ptxpzgwfc59fBxXtl2MCQAg2Y8ZK1hrWIhUxrOGAcCVNRvhOOQmAm+UwG3KVbiN+ovLu0dwH64szWunbTx7pyGk9j51HPoiRqFQKBQKhUKhUCi1DH0Re0fI7+WLzTlSnIw+gZgWuihfa4WyV4xlI6XvZm4GRceqEc7u3wEA3LrvmUkqr2EQibiZlfI2LZEbwszgnIw6DgCw7P0Ac5Nv8vY+9JD3BsDMVPW7m4XdTey4mFrmP0Vz+TVbOxE6DRtgd9oVBPx4He0MVZsoxWLC5ZGw1ReX121CpFIBvchrePhtEOTTJwBg1nizM0E6/6z3jVQqkLQqkPvu+CV/v8yyFH7MI3aWNO+MM0KkMrS5WcibJdWcWWLPZa1T7PFDno1gvSYKpKQYDguYGbVXQwO545YbomF9PotXdohUhh2pl7kZ6dJ0fvwgtwsfAwC+sHgAsYGBwLrC/i3pwrc6sXUvTUuHeyhj8VorjcMlbwP4LA6D7m/X4D4uDm3Hj+e1c8XfLtAkspkZxAYGqgQtM0rPxwUhbR4z666+5l8UdYPzLDgpMYGrr/oMnsi3Gf74eSt3TsJmP+xNY/RXmqFEiFQGUce/cXNWOMz2xCBxXQBCpDJ06/Ihd52arZ3I08nD/pvwZLocjl9G82axI5UKJO9uCf8vwtDdqz1Xj78DrVXXOfYWZ8UJkcpQ+vAR0g424+ofIpXhahc7uI++jgH3nuHM776cBS1EKgMpKgIAGLdTeWlTvy7q9QQAHYuGArm0L+WCtCUpcTgZfYI7l/XQpw57LKn9dq1lsV7UAKDf3SzoWDQUWARKM5S4lai6hraDUrjvbDweACh//Zp3f9gtY6wQrOdNVhdmm5mZ62JHC5WV9Z+6Jf7kw7s2kUoFFx9JfWZ3rTQOH0wcr3WWl007c/xnXptZ612kUoHPnqrKZWMplufmouGWaJQYirn6hiUmCfIFgIK2jAX3pg/BA98SGGcSrqyGV8x5Hu7mWzDWeel3UUjc0YrLe5Els6fz5YggnPaqz8kfdYuE5Nx1RCoVeDaJsbTdCtiDW9PDGU9pYGbOQ6QyNF89EZJz11F/VzQS/YqQEO6Pl/5SdHViLMCJawOgnM3M0Cdu9eTaYb1aZSEqb8NYDhp/HQXDkBTBHhP1e9Mx1hAvRzJW/MxSJk5Z0rYmTD/5J7aT/uk4iErLuXPDH1/GnaDdjOwuxjKrbpErz89HiFSGjS9tubKCpzHj+bP2tpy+2DqxY2NKSZ7A8hMilSHhg528PlT24gVP5klnG1jpM88fdk8PAPguCENoQgqSVwRx9Shr78O77qz1QfpdFM/rIgAMvveE+06KipD4kw+vXpFKBfTuGuLxfuYaZh33QBFhLGSGx2IR8HkYJ8+WWdTdT2iplohV98tOH8xTXODKCJHKkD5XzstDXUc2AxMFZajLLG30jxc+sQ6vbSFSGUL6j4T+yTgkjNqAduPGccc0nxGnMv7Caa/62ODminDbGDwPDULqQqZOA5M7Id9GxJN/MHoDV4ZhSAqSh2yEvcQEpR35q2oaigt4ddU5/xdy/2rIpUUqFUj5pQUilQo0XhoF8cV4nvzpM3s5q338/HDO2tok4h8L/x92vH6z/mVjiPT1McX8sWoc/bklvnjqzaxWCejJ/d4IkcpgupexcNsvVt377H3Ofn/xcRCUc5h7ml01FCKVIT2QH/NP/Z4DgCfTGP2x1kSAsdppnsPegyFSGbcKRHOMTVrrg/cBUl5ea5+6Dn0Ro1AoFAqFQqFQKHWahIQEfPXVVwgMDISlpSVMTU0hk8nw9ddf47XaxM+bOHXqFORyOYyNjdGgQQMMGjQIKSkpbz5RC/RFjEKhUCgUCoVCoVSN93SP2LZt27B69Wq4uLjgq6++wooVK+Dh4YH58+dDLpejoKDgjXkcPnwYPXv2REFBAVasWIHZs2fjzz//RHBwMJRK5RvP14S6r/+PYV2Bthq4FOaHFLxj6ktP0kvzEGrfGgC4wLM6Xh4o+qEAfzQ9rloO4OGKsgdJAtM5ALz4OAixy1Rul7nN0U4OnMm8IthAwXmDAmBygL/E6lB6DAbYqZYWapbLou4OlnUx73RyHFJ6RFR4TlhiEja4uVaar7qeUkvzYC8x4cmy7sE1N8iqL4HTzDvnlCvqdRfqMVKpgNOpsZzrec06aKYBjPOIk5ePcsfT5snhtDMVpWnpPHmRX3OcObYLXe/3wJkmJ5nlRB1bQfLHda1118QtTh+JfkU8t/UhUhkeLQ2C43zVck/NJU2aOtDMnw1kXJGb9Y7DQyE5xw+ACTBBQa9+s4GXb/cmH3BLbiujovZqux4V9YvK8lT//9VpF2TfagTnOUzbRPr6OJNyFfnlxejv1BqkpBiRSgVk30yE1dooPJskh2lGKQyPxlaYv7puuzoFgBQVCfSdUpKHSa36oCz7eaX9UTNNx8MV9yda4OGgjWg/eiz0Iq8JZI++NsEGN1cuXT249cPvguA8h38/JK4NEAQ33vj4Mpx0mXtJx6Ihr57amPdQga+dVce0Bb4t7uqH89v493vK8iC4hafh5NVfVWNSYzs03P8K4Y1/wyCPjlrdTmtS1t4HOuf/EvRvsbExd37mUU/Y9L2n9R5Qv3YXCsRoZ1guHBeGB8L8yC2cTlQ5QdHUvXo+vl+F4driDYJ8sj8JgsUmVaiD/Xn1sNXdSWsbn02UQ3oyjQuLATD31rP2xdwSc/acot8cod/lEXc9KxqXqnrPaKO651dl7AZU41/wtAlYsGwrvnf1EgTO7iHvjfR+drylperXsPsH/VCWlKI1/8rGjjd917y2rEv4N41H5W1b4uwv27kwMur5pB/ygv3HqSjPzUWkUoHrRcX4wskfu9KuoJGOMVzPj4bLMH74lqqMfxU901hSlgfBZVE8ygsLEZF6GePsW3O/GzJnyHFzVji6ebTh6sXmM/S+EvuGdMTp07+g7Sfjkd5BDNfp/IDSsuUTYbUuCo6xhvjrWWNYhr4ULBFN/MmHc+fOoh5yAABML1kgt022oO5JqwNhkiqG9eoo5AwPRKdZVxAnUy3TZNveZtInMDpylQvsXVEf1LzWsuUToZirCqOQNl+OxkvfHFaAffZq5pk+Vw7DLIJri1WOnLyih+FO0G7e0mPxJdV1fl/c13cwHFJr7uvPFex7a/q4du0a3NzcUK9ePV76/Pnz8fXXX2PdunWYPHlyheeXlJTA0dEREokEd+7cgYkJ48hFoVCgVatWCA0NxebNm6tVJ2oRo1AoFAqFQqFQKFWjnNTe5y3i6+sreAkDgCFDhgAAbt/WHnuR5eLFi1AqlRg7diz3EgYAMpkM7dq1w759+1BSUlKtOtEXsXcE04OMpShSqUDmDGbjJztj0mbSJ7CTmCDpZ2bTtumXxswm5zsPIOmUihCpDLvSruDvX905a1iPVl15+RdEOqHt1BguT/VZPtYapr45mNt4/A+N+jCu300OXEVRDz+eDGsNU6+zej4sKT0juO9Sp2z4LgiDq/MT7pxnk5l2vx4YwDkgWT9mkKC+mrDnB3/6CcbZt0aIVMblBTDuwctby+D6ywREKhVY8yiKpwdtxMgOAgC6d2ZuTnVnDKw1LPsEMyNa0sUXLZdORMoyvqv/EKkMgbMn8KxhALPpvjQtHakL5Mjvp3K3S+JuIUQqw4OHNvgtn3H/LfnjuqCeFc3ssTNyWWF2EMuaIkQqQ8oyxhqmvkGcPb975yHIHh/E2yisnl+reGaT7IWICIhNTVFvKOOYJOeUK09Wcu46XowKgsTRntdv6u9UOd5gwyaw1jBt15I9N1LJOBoo+s2Rd0zbd26D8898V8gAuPpoyrJpySXMBuwTzXZy1jAAOJPCuG02Eutx1rAQqQxWa5mZ0TJ9wPjMTV7eCeH+gmvEnpc2g9n03SJ2KJcWmtoaTromOHXzDxR18+P1x5bLJkLUkh98PUQq4xywlD1IgtunMTj+2oizhqnPgodIZehrzLQtcyaz8fz2bcZ1ebPrYgzqfIVXRwB4OJBxrtPmZiH6JoYAACY4tIbbz4yDgrLs5zwdakPdGhapVHBBxwFmZrisvQ/0zsQJ8kgYtYFnDQOA0rR0PA16ha7TPuWsT2z5rz7iB+Rl+4zOeWaWfWamD5SzGAcYCVt9eeff9P9FYOXQbFeIVIbJN4ZyaakLVPdOvZ9jcDrxilY9aKaFSGVouEVl9VL/a/6gCEXdmHG0+ZqJGGySwzu+Q809eKPwKDxezcwES+xskXPKFfV3RsN99HXoXrDhlX2h2VEAKscw2sZNzXrq1Bf+KGFhz01cF1ChDEtxVz/ue8oyVdgP1rGHen7PJsqR8ZmcVxcSxziiyPyA4HtXpv+rW8NCpDKUPkrlrGGRSgV377Ayzr8oeeW471A52AiRynhOLtTL9v8ijDtPPb1HcB+kz5XjjwIdLp0EtcDeZypHCz3vqJyNhEhleH3GmeuT4ovxcDo1lrOGqY+1d4J2ozw3F8krAxEiZUIPRCoV0IUILb6byFnDirqrnrdOp8Zybfv7V/cKn4shUhkS1wuvWaRSAae50SgvZJx42UtMmN8SD5IQcvsVbFYxz8bTDy4Jzv2liRSnTzNhKgxOxKKhgu/Uo4iUwGodc20e+RfAzKAQZU+fIVKp4ELdAOC5c8/vx9Qx+nsm/EB5axlyhgUit002dBo2QKRSgTnJtxCpVCBhgz9cp8fAejVj4cptLMaFJ25cvofSVb9vjI5cRfL3gSj04jsQYUn8IZA3DnBj/DrVb4PEHa1wd2I4CntWHC6Dy++fZy/8m/PKujMlnBsD2GtvN+AOT0Z8KR5Tk+5Dx9wcEPF1SlHh5uYGGxsb7vO2SU9nVihZWVlVKhcXx/xWDwoKEhwLDAzEq1evkJCQUK2y6YsYhUKhUCgUCoVCqRqEAKS8Fj41v3uqrKwMS5YsgUQiwUcffVSpLLsHzNbWVnCMTcvIyBAcqwz6IvYOcnNWOADVDIzRkatosWIikjtsR6RSgTPHdnGy7GzOiMbBaNBT5a6bDT76ciTz1m4YkoIV1vFc0FH1mT+JkwP3v465OTyu6XLH9C9acxYwFv2TcbzZoefjgtD2ZgGvziwVzaBf8T6MhhHRKCeMu/3cIYFo9GMUZibdgfHBq1iTxgQCFl+Kx7rHwhl8ddi0Kz9sgo6lJQAIApOKLyvgMjMGLb+eiGmOfFfj3N4bdxdB/uyMLBvsUr1Mi14JCJHKoPvbNVjFvoLTF9HQcXPm8hRJJGhw4i56BPXi1bPZdea2s18UhUvrNwna5T72Gr539dJqpdKsQ+KPAeh99zknK27WBKdP7UGBlLGaOn3BzMbZLWf04bM4DHOTb3IWVYvN0Uj8MQCe1yVcnuzMnWJYE64tKbObQdIpFQBQrzvjMrw4xJcr1/ynaJQ+Sq1wz4xl7we8tC4DRnHfWUvi0mxVeSE/zIF+l0da1/Zr61Ouw+O5AMQsbMgGNo11O8/qe6JDa0SkXsaQB0MF+auXy90n1sxMmc2qKJx+GMOrx7keqwTXhpv5nsLcz9Z976n2DgTmcXq+sDUCS1LiuHMb/RgFEs9YhLt1U9WtvLCQV8/exvk8HatbFAEmqLDN98wMr9ukq0gI98ftVuW4HibUH2uJu+RtgJff2UPUirFIqFsKAVXAbXXUy4xUKiBu1oSrD+um3W55FGexYjH+05L7rvgnhAAAJGzxZfpnex8YH2Ssk+wYAADe025w3wffYyzqzgeZAPLiFp643aoct2YwOk/ptkWrNVm9n2tbCWDb/w5632WsgPc+Ceedq9k/1NvusTWMsx6xQYDVrSDdm3cAAPy+Zxv0TzPX/Na0cK78wNkTECKVod1Ps1H+R2OE9B/J1QcATsaeRIzsIFfmr+6nuXOfTeS7RQcY9+na7peU5UF4Po65lgnzmvKOaVoK1z2+AnFD4f6XSKUCsnjVOXpnVH3Y6YtodG/bH4++DoLJ/hguIC57bvz8cNz+NJxXFnvcbbJqryIAdO09HHtzzQGorJOsbJZM5SI8aNYEzjLRtfdwRCoVcNn3kt/w8jIAwN9j+KsXzHcw/dz1/GhEKhV4PTAAIt9mKE15DLvlUfjOpTlXn6eBxtjjdJ7rK796mSP9C5XujbsyoTG6e3cEwIznhheteOUBQH45Y21P+mgjr00fNpbDeg0zXhf09cdzL12ITU0BAJaXdbkAxA16JvCux6pHKssLALhNUu3lLunEWOW91qkCJWuOb5HNVOFkNGW0/R+7fAPS58rh/FsoIpUKBC+YypM1GFHMfd/8pC2v/ew9ZHSEv4/x7P4dqLeb2St26tY5hEhl6GhYhhCpDO5hzJ7cZteZ8ADGmYTTNQCYiA24vEQtveAyMwauw1V7r14NZSzpg+89gdun/NVBzkc+4dUvaXUgHnbZyqyMSM9DpFKBJhGM7pSz5XCMNeRks8cHcd8jj+7i9Ke+SqLz4I+RtCoQksZMmJHH+5vj9Rln7ry1rk2YMA7UZUOFJCYmIjMzk/u8TaZNm4bo6GgsXrwYHh4elcrm5zMB0vX19QXHDP5ZtcLKVBVJtaQpFAqFQqFQKBTK/1tIOQER1fyLY037E/zyyy/x448/Yvz48Zg7d+4b5Y2MjAAARWqThyyF/0yWsjJVhVrE3hFyhjLrkEOkMnwwcTyXzs66sQE+Q6QydBkwCt07DeZk1Gepsk+4887N9iFcHj2CekG6QuVBSDlHjr1pUTyPiWUvXuCBbwn2pzP7e467nYHBTCWvLo/2eQNgAjyHSGWw3H0DV7pX7NlQx9ONV0/OQuHlgT+aMlYL030x0KlfD12MSpC0qyU2u+zn5KYMCYNyFt+KlXlUFfyUzbf5qokoy8rizeixs06sbKP1FXtAKktIFs4S/pPX/vRoeFwaydT7vJQLUM3KkGu3EalUIGedKr8p92+j7NUrnrczAPje5i9B3TUtGuqBallZp1/H8ep1Jl8fD/tvwvGmjKVHYmON07/tBQBc2KLyTJcVppr9tdwYjeUuTMBLHatGiFQq4Db5KtbYXOPV58k0OU79vp+rz/2xKq9PABMU9/z2LXj4jWo2UBtJu1ri8SI56l1uyOX/6OsgiKJvcG1mrXaXvFUBsCWvmX57/LUR73po9i+JjTX3vfRxGs/Cwcr2aN0XhhetuH1O7LHyti0xzr411wcBxqPgs4lyrdbX0idPeedHKhXIOMzMTo8fNpmZifVtxgUn97wuQcIGf/QI7iPQS3nblrx6+uvrCmQA4PTpX9DvLhNgmb0WxzPiOGskO/urXi/2k+xXiCUpjPX64TdBXGB4xNwUFiQSodGPzNigM/0pMtvUw4tRQuuX09K/BGlseZZR9dFqYRh2nd6K6Un3AIALlq1ef4mzIwDgsOtZzpLurqsKRO8+9hpCpDL8vnsbAEAsa4opDqrA1JeOqfYD7vdkAnu7Tb0KsXcTlN+4x9VJ23ikaaFi/2dny5tsUe0VYu8rQBUMmO1v7UePFfSzEKkMxY1K8XDAJsx7qIDhsVhB+WXP/2b0eFwV7DqhRBXkPmYFYx1x/DIaZz1PoMREF2WkXFB39TLTDjZjxrbwKIT0HcErs16sgaAfRyoVcN3+DA0jGM+ZLrOjOWsxazlhAzonRPhhzbOOSGq3Q6v16tZLaYXjflniQzjOY+7tv3Z6C85Vb4c2SghjvTpz/Gds92D2OJa4F0B5pClXF9bSHyKVIXrlRpBgJj9y7TZzj9+4h4ffBMH7LxFyhqn2FjbYptq7p14Hdl+W8cGrINf4m/ZZuVzXMvRo3Zd3rNSQcDJPp8jhNy8MVr+qLEIFbZ9y53e190XGYS/0s+PvK1W3rHIrWY7G4tb0cJTn5gIAzHdEc4GCe955gXZjx0HcgnkWznDk36/PQ1X/6/7O7DVmrfPqbVIeaYqSLr68NM3nH7s/lV11wOrNrlMq3D6+jhCpaj8kp5N/VuWESGWISXYCAr15etR89qmnASrrsWYfSXndkLNiFkQ64eF3Qbx6P/o6iFtRAADFZx3Q724W55UxubARAKDbnZecjLr1MEQqg+t0lcWsXHEXIVIZHBYwfe3W9HD8keSBdY+ZvaIWm6O5Z0agYiB3Xkpflec88WUFOgTf4jwlOwy+BeOuD5G8W7i3mVJ7LFy4EEuXLsXo0aOxcePGN58AQCqVAtC+/JBN07ZssTLoixiFQqFQKBQKhUKpGrWyP+yfTw2wcOFCLFq0CKNGjcKWLVsgqqKjFD8/ZqtOdHS04FhMTAzMzMzg7u4uOFYZNI7Yfwwbk6Ed+kAiUpsVD/QGYlSe2ZrFDOP2CVS2hjthsx9Sekage7sBKEtIxusBATA+xI8PlLwyEC6zYgSzgSnLguD0RbQgf025/H4BMDrC5NnwijmeB6u8RmliFW2G5x+Z8zwzduv+ER6EmsJtd4HW2XkdD1ecOn8QIVIZ9qdHY7BdkNbZWAAo7OUPZWsdJI5gYvXMSb7FW8+vbcaVjc11KD0GJmIDXhvZ8yqKjSVxaIyT0ScEukna1RJ4ro/kwRuZmdg/GkPcMQ2RSgUCFQPRYDrj7a4ixM2aQJz9Aif/isSybA9c9DasUJbVI1u+fMYEmO5lZvvmJt9EO0Nm4Orq4A9SUqz1/Ef7vOE4hK97TZ1p7gcJkcqQ3z8Al37cpFWvkUoFvNZNhN3yKGav2m97BTO+mjOt7P86nm4ou5cIgNk79PqDLEH+LnEGSPYr5LVdW1216UlbeovYobDue09wTFv91JHYWOPk9TOCtgTf7A8TtT0Lb8pTvW5iU1NB3J7Kztfsr5r5AoDr7jC4zBY+LCqyFN0rzoennhFafDsRNz4Lr7QeIVIZnhz1hN6x+hg6M5LbX6KtDPXvPe+8wK9e5tCxaoRT8b/x6v5qaCC6fH4JiyzvCNqpmW9xVz/onWGsfQklrzFo1WxY/8DMWCvnyCH9LgqvTrvArFsyAODx4iA4fCWMpVfWzge/79kmKCOlJA8THJi4jdkn3HG91f4KrWzakMUDipbM/tmGEdHIPOqJm/6/AAA+TOmAF8F/C3Sjc16KjOOOvBhZ6qjrjK1L86sfQdrvLgwvWqGoex4XL03bddBE85h6LCQAEJ2zBemQUWE+RN4CoqgbKGvnA50LKkupcrYc0hVRKOjrD8OjsTxL+IPRGzirERuvyfO6BPdaMfHmRK28cObEboGuHy8Ogl6OCNZRryGKvqF1DACY/UO3WzHj39zkm1juwlhhytu2hPiiMCZX56Gj8cLNQGDN6XDrNc41N37juFLeWgbxZYXgGMBcoxcfB3H7zwAgeWUgDJ+IIV355thU6uVUlM7GuRI8y39pAaehN5A3OBAm+2O05lWVcfTxIjlnCdJGxmEv7ndJZfVlWfEoBlMnToH+qTguVqe2tgH8+1+kq4eHS1rB6XP+dWLzeLQkCKuGbsda1ybcPQcAOk3dUXaX2Ttf1t4Hv+9m7nVRKy+Q60y9n0yXC+45tlwdS0tulQ2vXSIRt5+LBMvw24EdlT6LKtLLs8lybj97pJKJJ9iVvIC5+8N3Po5Ye53+/N+sNUQpKcH5ssNvVR+LFy/GggULMGLECOzYsQNisXabVGZmJnJycmBvb88tNywpKYGDgwN0dXV5ccRu3LgBHx8fjB49Glu2bKlWfd57i5hIJNL6Uffvz/LgwQP07dsX5ubmMDY2Rps2bXDu3Dmt+ebk5GDKlCmwtbWFgYEBvLy8sGHDhhpfr0qhUCgUCoVCoVDeLuvXr8eCBQtgb2+PTp06Yc+ePfj555+5z9mzZznZuXPnwtPTE7GxsVyarq4ufvjhB6SlpaFNmzYIDw/HN998gy5dusDS0hKLFi2qdp3qhLOONm3aYPz48bw0XV3+m3pycjLkcjkkEgnmzJmDevXqISIiAiEhITh9+jQ6derEyRYXF6Nz586Ij4/HlClT4OnpidOnT2PixIl4+vQpFi5cWBvNolAoFAqFQqFQ3ineV2cdbByw1NRUjBo1SnC8bdu26Ny5c6V5DBo0CIaGhli6dClmzZoFfX19dOzYEd9++22194cBdWBpokgkwqhRo7Bjx45K5QYPHoxDhw7h+vXrkMlkAIC8vDx4eXnBwMAA9+/f59aIhoeHY9KkSVi7di2mTJnC5TFgwACcOHECiYmJcHBweCv1Z828LxKcMcjDh0tnTdlZE4JQ1EAEu2VReHLUs8KlVOoE3ijhNvRq5sdiFW2Gp0GvuPS9aVEw1+F7eqlsaZDEzhYnY0/yzPHdun6I8ptM4Gd1039ly7zU88867sG5Odd2vCDSCYYhKQCA3CGBMN0XU2kbAcYhyKmz+zD/WXPEyZhgniRYBtEVheDcLgNHQRTFuMbOmhAEy43CZV3qpHwTBKfPo5F+yAt2A+4gUqlA0MwJiP5+o9a2ev8lwk0fAh2LhpzjCHYZT0VLPCU21tym57Y3C3DR21CwLC1EyjjeKHv6jDsvfa4cd6aEV7gRmuXpVDkXqDjjczluT1W56tamz/K2LXH2l+1a84tUKuCydwJcZ8Tg5cgg1N/J6G9ZSiwXrFRbHTJnyGGzKopXzwH3niGvzACRzcwQqVTgs6cyKFpWbanVofQYtLgQxnNdzLI3LQofNpZrOZuPxzVdPPAtgcTaCqVPnvKWu6iT+pUc9otVS0s06/bqo0CY7YkRnKeNxB8DONfdgKpvVAeJnS1K0zMQqVTgg4njYXg0lne86DdH6Hd5xKuv5tIk94uj4DSUuQ+ehwbh2hLGUYt626Yn3cNqV09e3gPuPcMhT2Yj/JNP5Tg58zuE2rfmjmsbS7p3HoKyOw94xytaeq2+tE0b6vknfx8Il5n8JVkJW3y5YOzaePhNEJw/5wdgVq9DpFIBt51hkOSLeNc8prAMC5xbCerxemAAjA9eFbT72SQ5coPz4fKRQlBv+6vGSA3gLy9M3OkDt5F/cXIvRgXB/CftzibU/1/xKAazHQN56dxSr5ZeyFpcAquZZShLSOaVp75cij3Xa91E3JkSjnZjx0HZWoKShqVw/4T5QcMu9a6sPpFKBZwPfwK3yVeRtCYQrtMqvideDQ3kHCtUhLhZE5Tfvg+xgQHKCwuRd8aZWxasc16KhMxGcPlIwV1z9no2XzUR4tYvYN33HtdH8gYFwOTAVSbY8z/u7bXpk/2e+GMAJHliOH0ejSefyrklsdrarKkLgN+nNz6+jAkOrZF6oDmO+W/EFIdgpM+Vc05IIpUKOEWGQpQngdsUpi917ziIW8YNAPjDDpGeqoDoU5PuY61rExSfdcB5r2NcmWGJSehrnFfpErrQhBR8vWEYFzRZ/XhBpBP+bH6Eef47OeDklWNwOjMWln/qggx8jjif/Tx59tpUBVY3ZaQcOiJxlZf29bubhSNNmTAY6s9K9XM0r6F8+gSY7otBwyvm2ON0nnf/skstI5UKdPNogycjmqNRuOr6ss9gbXUqb9MS4kvMM0f9GQ8AuhdsUNJO6HJdeaQp1nnv5bYThEhlOPDgr/diaWI7Ub9aW5p4gRx5Z/XxNnjvlyayFBcXIy8vT+ux169f4/jx42jXrh33EgYAJiYmGDt2LBISEri3ZADYs2cPjIyMMG7cOF4+06ZNQ0lJCfbt21cjbaBQKBQKhUKhUN5p3nNnHe8SdcIiZmxsjMLCQpSVlcHS0hJDhgzB0qVLUa9ePQCMdxO5XI558+Zh6dKlvPPPnj2LLl264Mcff8SkSZNQXl4OExMT+Pj44PLlyzzZoqIiGBoaYsCAAThw4MC/qq+NjQ3v/7KyMmRlZaE1uuNEwn30c2/OO34k4ZYgTf0YAPRzbw6d+mYod7CFztO/ceDP39HPvTl3nJURG+ijvLCowjx6xmXjVz8LXjp7jK1Hxs+esNhpiFM//sRLP5JwCyNS2iEvhJkFEhsZ4pAiliejrUyxkSGejPCG1dbrIKX/bNhu6QkSz1j+nk0IQKONKiuBjosjypIfCfJhv/cfNBjkhtBqqNkeHTNTlL3KrVCvA2T+OKRgrAk3i4qwoLkvSEAziK7e1noOADwf7Y+G22N57VXXj+zAGDjNi9N6HAAyPw2AThHQaONV6FhYIHWUC2I/2YJ+7s0FeuDK3O+KhoOZDc/PPgmA9ZUXKL+dwCuXbTMAFHZrBUNlPqcjidQaqSvMIR3G/C9u7oFDhw4CAK4UAmt6dUPp43RemeVybxzbsZt3TZfdjoWnniH6uTdH+i5PxAXsx5xMHyS2LQEA9IzLRmi9TDSPHAXXKX9h7d1oTG0aJNCBxE6K0nQlUr72g2LQNl7dK7pWrAzxbwZRbMXXRxvf3L6Kz5sFcNeOzXNcamtE2F9G22WhaLCDSX8x3B/mP/MtTOp6Zv+2/msALvsc4tWd10Z7W5SmZvDyOJxnBmVJA/wRYCqoo04TVwRuvwUjnWKc9a/HO1YU4oOn/hLYL1HVq7y1N77euBVfNvMT9DX1OlXE36P80eCnWPhFlSBOzp/xzJgZgJbd7+JZR/69o5l359gcnPWvx6X3+XgYxFGMc5iXB11Qf2Ay427+5n14XRKhT714LPOWaa0P24bU+f64PnIr+rk3h8SqEUqfPkPyCl+4zFZZuXRcHLH15H583MQf2fvcYDEkEUcSbsFnTygcFsbi0xt30M6wXKATtu7q17H32OHQ+ZOxDM66eQvXCpxwIcBEUC/2b1GID06t+wkfLA9Fw+2xKD7WGOn3rOH8uWqS7+VH/qi/h9+Hno/xR8NtTFruQD+YHozDm9A2pvZzb46k8Ja41Wknd+z1YUcY93/E6aYs+RGOJNzComdeULQWQ2Jrg9KMTF4+LS4Og/M4oROlL24quGu0+/51GIn1OL09/MYPzp/HCfpBSXsZft20S2uf02niirL7zNiVOTUAMZO3aJXrFvc30osa4FZrwSEAwIwbt9HGkGg997ObN/CtdwvmH5EIRx7c5OpnEtkQeSHPUXTUHvp9U3nnFXfygd7vKgckXpdEuNOG8Op9JOEWvM+NgONuAp1LN3jnZ04LgM2aq1hxJwazvQLf+BxPK83D1KZBUE4PgHT1VS5ds5/2GjcCJyJU+tRp2IALicDKl7VpgZQBErhOu85Lr3/WHC87q1ZdpO1sisYj73L/v+7rC+OjzL2U198PJofjtPYzVn9iYyM8XOsCx9BbvOO/5+thvUwVFPfVQWeYDWSslem7PFGcYQKdQhEcFsYK7j/NducO8IPpoTgM+ysNA01e8upif94Aqe1VFre8w44w6f+owntDk2cTAvDJ2ONYc7IX/hrKjCtZ4wJgGcHov/S4HSS907Xm8aaxNGeoP+r9EsuT19Y+TY4k3ELf7t1wMWk9Xr58yf2GfZdgLWKt0R0S1IJFDCW4jFN12iIG8p7j7+9PVqxYQY4cOUJ++uknMmTIEAKANG/enOTm5hJCCDl48CABQMLDwwXn37lzhwAgc+fOJYQQkp2dTQCQwYMHay3P0tKSBAUF/ev6Wltb8z4WFhYEAP3QD/3QD/3QD/3QD/3QD0lLS/vXvzNrkoKCAmJtbV2rurC2tiYFBQX/ddNrjPfeWcfVq3wrwciRI+Ht7Y158+bhhx9+wLx585Cfnw8A0NfXF5xv8E+gQlamMllWnpX5N2Rm8tcJl5eXQ6lUwtTUtMpxDLTh5sYETU5MTHyDJIXqqupQXVUdqquqQ3VVdaiuqg7VVdWhuqo6takrQghyc3O5wMHvGgYGBkhJSUFxsfbQODWBnp4e91u9LvLev4hpY/bs2Vi0aBFOnjyJefPmcf7/i4qKBLKF/2wmZWUqk2XlWZm3gVgshp2d3VvJB0DdNd2+Raiuqg7VVdWhuqo6VFdVh+qq6lBdVR2qq6pT27p6F5ckqmNgYFCnX4xqmzrjrEMdXV1dSKVSZGdnAwA3s5CRkSGQZdNYl5Pm5uYwNDTUKltUVITs7Ox/5Z6SQqFQKBQKhUKhUFjq5ItYYWEh0tPTYWVlBQBo3rw59PX1ER0tdD8dE8O4yfX19QXAzHz4+PggPj5eYBWLjY0FIYSTpVAoFAqFQqFQKJR/w3v9Ivb8+XOt6V9++SVKS0vRq1cvAIyb+l69euHChQu4cUPl3SgvLw9btmyBm5sb/P39ufShQ4ciPz8fmzdv5uW7Zs0aSCQSDBkypAZa87+RmZkp2H9G0Q7VVdWhuqo6VFdVh+qq6lBdVR2qq6pDdVV1qK4oNcl77b5++vTpiImJQfv27WFvb4+8vDycOnUK58+fR0BAAM6fPw9DQyb4XlJSEvz9/aGrq4vp06fDzMwMERERuHXrFk6ePImQkBAu3+LiYsjlcty4cQNTp06Fp6cnTp06hSNHjmD+/PlYsmTJf9VkCoVCoVAoFAqFUgd4r1/Ejh07hvDwcNy+fRvPnz+Hjo4O3NzcMHjwYMyYMUOwmfDevXv4/PPPcfHiRRQXF8PHxwcLFy5Ep06dBHm/fPkS8+fPx+HDh/H8+XO4uLhg4sSJmDRp0v/k3ZBCoVAoFAqFQqFQ3usXMQqFQqFQKBQKhUJ5H3mv94hRKBQKhUKhUCgUyvsIfRGjUCgUCoVCoVAolFqGvohRKBQKhUKhUCgUSi1DX8QoFAqFQqFQKBQKpZahL2IUCoVCoVAoFAqFUsvQFzEKhUKhUCgUCoVCqWXoixiFQqFQKBQKhUKh1DL0RYxCoVAoFAqFQqFQahn6IkahUCgUCoVCoVAotQx9EaNQKBQKhUKhUCiUWoa+iNUweXl5WLZsGZo3bw5TU1NYWFhALpdjx44dIIQI5Hft2oXg4GCYmZnBxMQEzZo1w5IlS3gyFy5cgEgk0vrp2bOn1nqcOnUKcrkcxsbGaNCgAQYNGoSUlBStsg8ePEDfvn1hbm4OY2NjtGnTBufOnfvflfEGqqKrR48eVdh29rN7925evkVFRfjqq6/g5OQEfX19uLi4YOnSpSgpKdFaj507d6Jly5YwNDSElZUVxo4di6ysLK2yV69eRadOnWBqagozMzN07doVCoXirepFGzWhq8rkmzVr9j+3X6lUYuTIkbC0tIShoSF8fX1x4MCBt64bbVTnPjx9+jQ6duwIa2trGBsbw8PDA7NmzcLTp08F+ebk5GDKlCmwtbWFgYEBvLy8sGHDBq33dnl5OVavXo0mTZrAwMAAjRs3xsyZM/H69Wutda7OPfu2qAk91dXxCqi6vggh2LhxIzeu1K9fH127dkVMTIzWfOvamFUTeqqr49XTp08xYcIENG7cGHp6erC3t8enn36Kly9fCmSr0/fr2lgF1Iyu6vJ4RXlHIZQao6ysjLRu3ZqIxWIyevRosmnTJrJ69Wri7+9PAJA5c+bw5EePHk3EYjEZNGgQCQ8PJxs3biSfffYZCQ0N5cmdP3+eACDjx48nu3bt4n3Onz8vqMehQ4eISCQiMpmMrF+/nixbtow0atSI2NjYkIyMDJ5sUlISadCgAWnUqBFZtmwZWb9+PZHJZEQikZCzZ8++dR2xVFVXeXl5gjazn3r16hE9PT2SlZXFy7tPnz4EABkzZgyJiIggY8aMIQDIqFGjBPVYtWoVAUDatm1LNm3aRL788ktibGxMmjZtSvLy8niy0dHRRF9fnzg7O5NVq1aRVatWEWdnZ2JiYkJu3rz53ukqJSWFACD9+vUTyJ84cUJQj+q0//nz58TJyYkYGxuTL7/8kmzatIm0bduWACDbtm2rMV1VR1+EELJ582YCgLRq1YqsWrWKbNq0iYwdO5bo6OgQJycnXh8oKioifn5+RCKRkOnTp5PNmzeTfv36EQBkwYIFgnpMnTqV0+/mzZvJ9OnTiUQiIe3btydlZWU82ercs++6nurieEVI9fQ1YcIEAoC0a9eOrF27lnzzzTfE2dmZ6OnpadVBXRqzakpPdXG8evr0KXFwcCC6urpk8uTJZOPGjWTy5MlEV1eXyGQy8vr1a062On2/ro1VhNScrurqeEV5d6EvYjVIVFQUAUCmTZvGSy8qKiJOTk6kXr16XNqWLVsIALJz58435ssOFNu3b3+jbHFxMZFKpcTe3p7k5uZy6fHx8UQsFpNx48bx5AcNGkTEYjGJj4/n0nJzc4m9vT1xd3cn5eXlbyzz31AdXVV2/sCBA3npJ0+eJADIjBkzeOkzZswgAMiVK1e4tKysLGJkZET8/PxIaWkpl378+HECgHz99de8PPz8/IipqSlJT0/n0tLT04mpqSnp3Llzldr9b6gpXbE/bLQ9mLVRnfbPnj2bACDHjx/n0kpLS4mfnx9p0KABr2++baqjL3d3d2JjY0MKCgp4svPmzSMAyJEjR7i09evXEwBk7dq1PNn+/fsTXV1d8ujRIy7t9u3bRCQSkf79+/Nk165dSwCQ3bt3c2nVvWffFjWlp7o4XhFSdX3Fx8cTAKRr1668+rx48YJYWVkRNzc33o/bujZm1ZSe6uJ49emnnxIAZM+ePbz0PXv2EABkyZIlXFp1+n5dG6sIqTld1dXxivLuQl/EapAzZ84QAOS7774THPPz8yNSqZQQQkh5eTlxcXEhPj4+3PFXr15VeFOqDxR5eXmCH0PqnD17lgAgixcvFhzr0KEDMTMzI8XFxYQQxoKir69POnToIJBdvHgxAUCuXr1aeaP/JVXVVUWwM8ZnzpzhpQ8bNowAIKmpqbz01NRUAoCEhYVxaRERERW+DDs7OxNPT0/u/8TERG7GWltdRCIRyczMrLTO/5aa0pX6D5uCggLejKIm1W2/ra0tcXFxEcju3LmTACD79u2rtM7/C9XRl7W1NWnatKlAjv0h89tvv3FpwcHBxMjISHD//fnnnwQA+fbbb7k09gXlzz//5MkWFBQQIyMj0q1bNy6tOvfs26Sm9FQXxytCqq4v1mL1yy+/COTGjx8v6Bd1bcyqKT3VxfHK29ubGBoaCp79ZWVlxMDAgDg7OxNCqt/369pYRUjN6aqujleUdxe6R6wG8ff3R/369fHdd9/hwIEDSE1Nxf379zF37lxcv34dCxcuBMCsGU5OToZcLseSJUvQsGFDmJmZoX79+pgwYQLy8vK05v/pp5/CxMQEhoaGcHd3xw8//CBY7x0XFwcACAoKEpwfGBiIV69eISEhAQBw8+ZNFBUVVSirnt/bpqq60kZeXh72798PBwcHdO7cmXcsLi4Otra2aNy4MS+9cePGkEqlvPa8SVf379/nrsWbZAkhuH79etUaX01qSlcs33//PYyMjGBsbIzGjRvjq6++QlFREU+mOu3PzMxERkYG14c0ZdXzqwmqo6+QkBDcvXsXM2fOxL1795CWlobDhw9jyZIlaNu2LTp06ACA2UPx119/oWXLljAwMBCUJxKJBH1LLBbD39+fJ2tgYACZTFatfqh+z75NakJP6tSl8Qqour7Ye8fIyEiQB5umvgeqro1ZNaUnlro0XhUVFcHAwAAikYiXLhaLYWhoiIcPHyI7O7tafb8ujlVAzehKnbo2XlHeXST/dQXqMubm5jh+/DjGjh2LwYMHc+mmpqY4dOgQ+vbtC4B5EQOAffv2obi4GPPnz4eTkxN+/fVXbNq0CQ8ePMC5c+e4AUdXVxe9e/dG9+7dIZVKoVQqsXXrVkybNg0KhQLbt2/nylIqlQAAW1tbQf3YtIyMDHh5eVVZtiaoqq60sW/fPuTl5WHWrFkQi/lzC0qlEk2bNtV6nq2tLdLT03mybLo2WUIIlEol3N3d66SuxGIxOnTogL59+8LBwQFZWVnYv38/lixZgujoaJw5cwY6OjoAqt6vqitbE1RHXz/88APy8/Pxww8/YNWqVVz66NGjsWnTJq79L168QEFBgdY26evrw8LCgtcmpVIJCwsL6OvrC+RtbW0RFRWF4uJi6OnpVeuefZvUhJ6AujleAVXXF3udzp07h969e3NyhBBcvHgRAJCWlsal17Uxq6b0VBfHKy8vLzx48AAKhQIymYxLVygUePHiBQAgNTW1WnWsi2MVUDO6AurueEV5d6EvYjUM6/mwd+/ekMvl+Pvvv7F+/Xp89NFHOHbsGDp37ozc3FwAQFZWFs6ePYtOnToBAAYMGABCCH766SecOXMG3bp1AwAEBwfj2LFjvHLGjRuH7t27Y8eOHRg7diyCg4MBAPn5+QCgdVBlZ8dYmerI1gRV0ZU2tmzZArFYjNGjRwuO5efna20PwLRJvT3/33Vlb2+PP/74g5cWGhqK8ePHIyIiAnv37sWwYcMAvF+6AqquL11dXdjb26Nfv37o1asXjIyMEBkZiW3btkFHRwcRERFvbBPbLs2+VZksK6Onp/ef6utt6wmou+MVUDV9devWDU2bNkV4eDikUin69++P/Px8rFq1Crdv3xbUsy6OWTWhp7o4Xk2bNg1Hjx7F4MGDsWbNGjRr1gx37tzBtGnToKuri5KSEuTn57+19rDy7+NYVRO6Aur2eEV5N6FLE2uQW7duQS6Xo3PnzlixYgX69euH0NBQXL58GdbW1hg3bhzKyspgaGgIgJkVYV/CWEaNGgWAcalaGWKxGHPnzgUAnDx5kktnl3RoLtUAgMLCQp5MdWTfNlXVlSZ3795FTEwMOnfuDHt7e8FxIyMjre0BmDapt+f/u64qYt68eQDez34FVF1f5eXl6Nq1K6KiorB//36MHDkSAwcOREREBGbPno0tW7bg999/f2Ob2HZp9q3KZNXz/K/0VRN6qoj3fbwCqq4viUSC06dPIzg4GJ999hnc3NzQokULxMfH45tvvgEAmJmZcfnWtTGrpvRUEe/zeNWmTRvs3bsXubm56NGjBxwcHNCrVy+0b9+ec51uZmb21trDyr9vYxVQM7qqiLowXlHeXeiLWA2yevVqFBYWYtCgQbx0IyMj9OjRA48fP8ajR49gZ2cHALC2thbkYWNjAwCcqb0yHB0dAQDZ2dlcmlQqBaDd5M2msWbx6si+baqqK022bt0KABg7dqzWfKVSaYXm/oyMDF573tR+kUjEydRFXVVE48aNoaOj8172K6Dq+rp8+TIuXbqEAQMGCPYdsOeyS6TMzc1haGiotU1FRUXIzs4W9K3s7GytD+GMjAxYWFhAT0+Pk2XTtckCNaOvmtBTZbzP4xVQvfvQ3t4e58+fx+PHj3Hx4kXcvn0bN27c4GbCmzRpwp1f18asmtJTRbzv49WgQYOQnp6O+Ph4/Pnnn1Aqldi4cSPS09MhkUjg6uparTrWxbGK5W3rqjLe9/GK8u5CX8RqEPbm0madKC0t5f42b94cBgYGWm9Qdj9Ao0aN3lheYmIiAMDKyopL8/PzAwBER0cL5GNiYmBmZgZ3d3cAQPPmzaGvr1+hLAD4+vq+sR7/hqrqSp3i4mLs2rULlpaW6NOnj9Z8/fz8kJGRwdtbADB7DZRKJa89b9KVh4cHTExMqiQrEonQqlUr7Y39H6kpXVXEw4cPUVZWVq1+pd5+Gxsb2Nraat1oX9P9Cqi6vqqjV7FYDB8fH8THxwt+sMTGxoIQIuhb5eXliI2N5ckWFhZCoVBUqx+q37Nvk5rQU2W8z+MV8O/uQ3t7e3zwwQfcnplTp05BLBYjJCSEk6lrY1ZN6aki3vfxCgB0dHQgk8nQpk0bNGrUCE+ePEF8fDzatm0LIyOjavX9ujhWqfM2dVUZ7/t4RXmH+S9cNf5/Ydq0aQLXsIQwcVFsbGyIubk5F/uFdVl8+PBhnmz//v0FsWOys7MFZRUWFpLg4GCBC9Ti4mJiY2MjiHOhUCiIWCwWBIseOHAgEYvFRKFQcGlsnAs3N7cai3NRHV2xHDhwQGu8HXV+/fXXSmPyXLp0iUt79uwZMTQ0JP7+/lpj8qjHJSGEEF9fX2JqasoL2piRkUFMTU1Jx44dq974alJTutLWr8rKysiQIUO0umyuTvtnzZpVYVye+vXrk1evXr254f+SqupLoVAQAMTb21vgcpkNNHvo0CEu7ccff6wwNo9EIiEpKSlc2s2bNyuNzbNr1y4urbr37NuipvRUF8crQv7dfajOsWPHtAZprmtjVk3pqa6OV5qUlZWRQYMGEZFIRM6dO8elV6fv17WxqiLehq7q6nhFeXehL2I1yKNHj0iDBg2ISCQiw4cPJxs2bCBff/01cXR0JADI+vXrOdnHjx8TKysrYmBgQGbPnk3Wr19PevToQQCQkSNH8vL19fUlvXv3JosWLSIRERFk0aJFxM3NjQAgU6ZMEdRj//79vMjvy5cvJ40aNSJWVla84JaEMPFWzM3NSaNGjcjy5cu5yO86OjqCuFNvk+roiqVr164EALl7926leffs2ZMAIKGhoWTLli0kNDSUACDDhw8XyK5cuZIAIO3atSObNm0iX331FTE2NiZNmjQRBPG8cuUK0dPTI87OzmT16tVk9erVxNnZmRgbG/MG2rdNTemqX79+pGPHjuTLL78kmzdvJsuWLSOtWrUiAEifPn14wVQJqV77s7OziYODAzExMSFfffUV2bRpE2nXrh0BQLZs2fJ2FFMB1dHXgAEDuJeM7777jvz444+kV69eBAAJDAzk/WAsKioirVq1IhKJhMyYMYNERESQfv36EQBk/vz5gnpMnjyZACD9+vUjERERZMaMGUQikZC2bdsKdFude/Zd11NdHK8IqZ6+xowZQ0aPHk1++OEHsnnzZjJy5Eiio6ND/Pz8yMuXLwV516Uxq6b0VBfHq9zcXOLp6Um++OILEhERQVauXMm1STM4d3X6fl0bqwipOV3V1fGK8u5CX8RqmKSkJDJy5Ehia2tLJBIJMTU1JW3atOHNGLOkpKSQjz76iFhYWBBdXV3SpEkTsnLlSsHA980335DAwEBiYWFBJBIJqVevHmnXrp0gwrw6J06cIAEBAcTQ0JDUr1+fDBgwgCQlJWmVvXv3LunduzepV68eMTQ0JMHBweTs2bP/myKqQHV0lZqaSsRiMZHL5W/Mt6CggMybN484ODgQPT094uTkRBYvXlxhoMnt27cTb29voq+vTywtLcno0aPJ06dPtcpGRUWRDh06EGNjY2JiYkK6dOlCrl+/Xr2G/wtqQldbtmwhbdu2JVZWVkRXV5eYmJiQgIAAsn79ekEfZKlO+9PT08nw4cNJw4YNib6+PmnZsiXZu3dv9Rv/L6iqvoqKisi3335LvL29iYGBAdHT0yNubm5k7ty5JC8vT5DvixcvyKRJk4iNjQ3R09Mjnp6eZN26dVpnNktLS8nKlSuJu7s70dPTI1KplEyfPl3wY5mlOvfs26Im9FRXxytCqq6vjRs3Eh8fH2JmZkYMDAxIs2bNyNdff03y8/O15lvXxqya0FNdHK+KiorIhx9+SBwdHYm+vj4xNzcnXbp0qfBHenX6fl0bq2pKV3V5vKK8m4gI0YhQR6FQKBQKhUKhUCiUGoU666BQKBQKhUKhUCiUWoa+iFEoFAqFQqFQKBRKLUNfxCgUCoVCoVAoFAqllqEvYhQKhUKhUCgUCoVSy9AXMQqFQqFQKBQKhUKpZeiLGIVCoVAoFAqFQqHUMvRFjEKhUCgUCoVCoVBqGfoiRqFQKBQKhUKhUCi1DH0Ro1AoFAqFQqHUCsuXL8egQYPg7OwMkUgER0fHap3/7NkzjB49Gt7e3mjQoAEMDAzg6uqK0NBQJCUlaT1HqVRi5MiRsLS0hKGhIXx9fXHgwAGtssnJyRg2bBisrKygr68PV1dXLFiwAIWFhdVtqoDo6Gj07t0bdnZ2MDQ0hIuLC8aNG4eHDx/+z3lT3k9EhBDyX1eCQqFQKHWPhQsXYtGiRTh//jzatWv3X1eHQqG8A4hEIjRo0AA+Pj64fv06zMzM8OjRoyqf/+DBA4wZMwZBQUFwcHCAoaEhEhMTsW3bNhQVFSEmJgZNmzbl5P/++2/4+vri2bNnmDFjBuzs7LBnzx5cvHgR27Ztw+jRoznZ+/fvIygoCKWlpZg0aRKcnJwQHR2NnTt3okuXLjh9+jREItG/aveZM2fQo0cPuLi4YMyYMbCwsMCdO3ewefNm6Ovr49atW7C1tf1XeVPeYwiFQqFQKG8AQLU+58+fJwsWLOC+UyiUus358+erdL8nJydz3728vIiDg8NbKT82NpYAIGFhYbz02bNnEwDk+PHjXFppaSnx8/MjDRo0ILm5uVx6nz59iEgkIleuXOHlsWzZMgKA7Nq161/Xr0uXLkRXV5dkZWXx0iMiIggAsnr16n+dN+X9RVLbL34UCoVCef9YsGCBIG3NmjXIycnBp59+ivr16/OOOTo6YvLkyfjwww9hb29fS7WkUCjvOs7OzjWSr4ODAwDgxYsXvPQ9e/bAxcUFvXr14tJ0dHQwZcoUjBw5EqdOncLgwYMBAOfPn4e7uzvkcjkvj48//hhffPEFtm/fjuHDh/OO/f777/juu+8QGxuLwsJCuLu7Y+LEiZgwYQJP7tWrVzAwMIC5uTkvXSqVAgCMjY3/h9ZT3lfoixiFQqFQ3sjChQsFaTt27EBOTg6mTZtW4T4PCwuLmq0YhUL5f0lJSQlycnJQUlKCpKQkbozq3r07J5OZmYmMjAwMGzZMcH5gYCAAIC4ujnsRKyoqgpGRkUCWTYuNjQUhhFueuHnzZkyYMAGBgYGYN28ejI2NcfbsWYSFhSE5ORkrVqzg8ggJCUFMTAxGjRqF2bNnw8LCArdv38bMmTPh6emJDz/88O0ohvJeQZ11UCgUCqVGWLhwIUQiES5cuMClPXr0CCKRCB9//DESEhLQr18/mJubo169eujTpw+3VyQpKQmDBg2ChYUFjIyM0L179wo3tD9//hxz5syBh4cHN+Pco0cPxMTE1EIrKRTKf0FkZCQsLS0hlUrxwQcf4M6dO/j+++8xYsQITkapVAKA1r1XbFpGRgaX5uXlhXv37uHJkyc82fPnzwMA8vLyOItbZmYmpk6dig8//BBRUVGYPXs2Jk6ciCNHjmDq1KlYtWoVb8yaO3cuwsLCcPDgQchkMtjZ2aFr165wdnZGTEwMTE1N35JmKO8T9EWMQqFQKLVOSkoKgoKCkJOTg9DQUAQHB+P48ePo1KkT7t27h4CAAGRnZ+Pjjz9Gu3btcPr0afTo0QPl5eWCfHx8fLBixQrY2tpi0qRJ6NevH6Kjo/HBBx/gxIkT/1ELKZS6S3l5ObKzs3mfnJwcAEBOTo7gmOZ9+zYIDAzE2bNncfz4cXzzzTewsbHBixcvUFpaysnk5+cDAPT19QXnGxgY8GQAYObMmSgsLESfPn1w8eJFPH78GPv370dYWBh0dXV58gcPHkRRURFCQ0MF7e3VqxfKy8vx+++/c3nr6OjA1tYWnTp1wpYtW3D48GHMnDkTv//+Oz788EOUlJS8dR1R3gP+601qFAqFQnk/cXBwIABISkqK1uPanHWkpKRwDj1WrlzJkx83bhwBQOrXr1/hscOHD/PSW7duTcRisSBdqVQSOzs7YmVlRQoKCv59IykUigD1+7gqn4rGiLfprCMjI4M0bNiQjB8/nku7du0aAUDmzJkjkH/9+jUBQIYOHcpLX7t2LalXrx5Xdz09PbJw4ULi5+dHAJCcnBxCCCFhYWFvbPfixYu5fIcNG0acnJxIfn4+r7wNGzYQACQiIuKt6IHyfkH3iFEoFAql1nFycsL06dN5aSNGjEBERAQaNGggODZ8+HBERETgxo0b6NevHwBAoVDg8uXLGDJkCJfGYmNjg9mzZ+PTTz/FH3/8gR49etRsgyiU/0dYW1vj7NmzvLQbN25g1qxZWLlyJVq0aCGQr2mkUik6deqErVu3Yu3atdDX1+ccYagvP2Rh0zSXLU6ZMgXjx4/HrVu3UFRUBC8vL9SvXx/r16+HjY0NzMzMAADkn+hPO3fuhI2NjdY6sY5JUlNTsXv3bkyePBmGhoY8mUGDBiEsLAwXL17E2LFj/wcNUN5H6IsYhUKhUGqdFi1aQCzmr45nf8x4e3sLjmn7QRUdHQ2AiROkzZlIYmIiACY2EH0Ro1DeHgYGBujUqRMvTSJhflK2atXqP4sbWFBQgLKyMrx69QqWlpawsbGBra2t1v2ibJqvr6/gmL6+Pi/92rVryMrKQmhoKJfm5uYGgHFIpKkLTdhxq6ysTHCMXUqpvqSS8v8H+iJGoVAolFqnXr16gjT2h1xlx9T3Ufz9998AgLNnzwpm59XJy8v7n+pKoVD+G1JTU5Gfnw8XFxduj9bTp09hZWUlkL179y7++OMPuLi4wNLSkksfOnQoVq5ciRMnTnAu7MvKyrBu3TrUr1+f52VRG4WFhZg2bRr09fUxa9YsLn3w4MH44osvsGDBArRr105g6crJyYGBgQH09fXh4eEBHR0dHD16FMuWLeOF+9ixYwcAwM/Pr1q6odQN6IsYhUKhUN5L2Be25cuX4/PPP/+Pa0OhUKrCrl278PjxYwBAVlYWiouLsXTpUgBMLDB1r4cjR47ExYsXkZKSwoXIWL58Oc6ePYsePXrA0dERhBDcvn0bu3btQklJCdavX88r7/PPP8eBAwfw0UcfYcaMGbC1tcUvv/yCuLg4bNmyheet8M6dO/j444/Rs2dP2NnZ4enTp/jpp5+QnJyM7du3o0mTJpysnZ0dNmzYgLFjx8LT0xMjRoyAg4MDsrKycOvWLRw9ehR3796Fo6MjGjRogGnTpuH7779Hy5YtMW7cODRo0ABXrlzB7t274eLiQpcl/j+FvohRKBQK5b0kICAAgGqJIoVCeffZunUrLl68yEv78ssvAQBt27blvYhpo2fPnkhPT8f+/fvx7NkzlJWVwdbWFoMGDcKsWbPg5eXFk2/YsCGuXLmCzz//HOvXr0deXh6aNm2KvXv3YsiQITxZCwsL2NnZISIiAs+ePUO9evXQpk0b7Nq1C/7+/oK6jB49Gu7u7li5ciU2bdqEly9fwsLCAh4eHliyZAlvb9yKFSvg4eGBLVu2YNmyZSgqKoKtrS3CwsKwcOFCbu8Z5f8X9EWMQqFQKO8lfn5+kMvlOH78OLZt24YxY8YIZGJiYuDt7a01SCuFQnl7tGvXjnNgURnqcQX/jWynTp3euCdLE1tbW+zateuNclZWVjhy5Ei18g4ODkZwcPAb5UQiEcaNG4dx48ZVK39K3Ya+iFEoFArlvWXPnj1o3749QkNDER4eDj8/P5iamiItLQ3Xrl1DUlISMjMz6YsYhUKhUN456IsYhUKhUN5bHBwcEB8fjzVr1uDIkSPYuXMnCCGwsbFBixYt8NVXX8HCwuK/riaFQqFQKAJEpCp2ZAqFQqFQKBQKhUKhvDXEbxahUCgUCoVCoVAoFMrbhL6IUSgUCoVCoVAoFEotQ1/EKBQKhUKhUCgUCqWWoS9iFAqFQqFQKBQKhVLL0BcxCoVCoVAoFAqFQqll6IsYhUKhUCgUCoVCodQy9EWMQqFQKBQKhUKhUGoZ+iJGoVAoFAqFQqFQKLUMfRGjUCgUCoVCoVAolFqGvohRKBQKhUKhUCgUSi1DX8QoFAqFQqFQKBQKpZahL2IUCoVCoVAoFAqFUsv8H+8fxdIh1Co8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(500, 1000)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJ9CAYAAADZgogUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTZfv48U+bQgul7JkWOmjLhkBpaQOKghooqCCCDBciqy7kcaGCiojiwsUWQQVEFBWUQlREFDsohbChkxmQTVktNMnvj+M5yWlS9Pn+KvLI9fbVF8k597nXWY2nuS4/l8vlQgghhBBCCCHE/xf/f7oDQgghhBBCCPFvIB+uhBBCCCGEEKICyIcrIYQQQgghhKgA8uFKCCGEEEIIISqAfLgSQgghhBBCiAogH66EEEIIIYQQogLIhyshhBBCCCGEqADy4UoIIYQQQgghKoB8uBJCCCGEEEKICiAfroQQQgghhBCiAsiHKyGEEEIIIcT/nN27dzNkyBBatGhBjRo1qFq1Ks2bN2fs2LEcOnToL9eTmpqK2WwmODiY2rVr079/fwoLC/9PffJzuVyu/9OWQgghhBBCCPEPWb16Na+88gqJiYmEhYUREBDA1q1bmTdvHtWrV8dms1G/fv3L1vHVV19x55130q5dO4YPH87p06d55513MBgMbNiwAaPR+F/1ST5cCSGEEEIIIf41vvjiCwYMGMCUKVN46qmnyi136dIlIiIiCAgIYPv27VSrVg0Am81GXFwcw4YNY/bs2f9V2/JngUIIIYQQQoh/jfDwcABOnjx52XJr167Fbrfz4IMPah+sAEwmEzfccAOff/45ly5d+q/aDvjvuyv+jNPpxG63ExISgp+f3z/dHSGEEEII8Q9wuVycOXMGo9GIv//V+UyjuLiYixcvXrH2YmNjvX4//m++H+VLcXExZ8+epbi4mB07dvD0008DkJycfNntsrKyAEhKSvJal5iYyE8//UROTg6tWrX6y32RD1d/A7vdTuPGjf/pbgghhBBCiKvA/v37CQsL+6e74aW4uJjI8GocPuK4Ym36+/tTr169Cn0A8eGHH/LII49o7yMiIliwYAHXXXfdZbez2+0AhIaGeq1Tlx08eFA+XP3TQkJCAOhCMt/m7KLvkIGQtZ2vc7YC0P/GW/hizfcA9I1tA6CtU98XTo4n8tksXb1f52ylb2wbbttwlKHVD9M3tg19N/zO1x0bALBvfAJRc/fhql4Nx6489k1IIPvuuVqdAIbatfgy4xf6xrbh0GOdaPRupq5uz3KOEyd9tr/3pQRm9Z3N5LYm3fKAMCOlB+xedZUd28EFLVifsERX5qWtG2gbGKi9V9cFGBtSaj/Mgac7ETYlk69zttIvLgnnmbMQ3wqytlN0VzzVP8/S2i3bflnHhybwyzj3vBwd3ol6czLL3e5cn44Ef7MBvw4tcG3c6TVfBa/FE/VMltd2/m2b49yyizP947lQx5/6M/Vt+LdphnPrbt0212ec4/HaBfSNbcOZfvGELPWu15NnfX5xLXFl7/C5bu9HrYkas5cvN6Rx27C7Mfy62auM6tKNJiqtsfms58/6UV7ZZr8EsPv6Uu19/kwTXWNzONDtfLl1XO448tVOQERjCl6sTtV1wdw+bC1P1MnzKnOmXzwvTJjH2+1a0zvrGMNqHLpsv48PTeDizUU0GrzLa93REZ3AD+rNyvQ5V77qLHsu+NrO8/3vozsReXs+C6PWlLsP/spxr677YEc6oQHVtD74BQaCw8FXOzbRN7YNF74OZ1Wr7/jgZASrO4X47Jt6vngeJ6XLw6j0QgiuTTs59Ggn6m6/SOXHD/NV7Pecd15kSPM4fn+oEw2muefq4H86EfqWck5sKrnIxDZxurEcdZyjniFYa/vTXVlU8w/izoTO5D7djKhx7nM+74P2vNnlc2aaYn3OQ+nyMJ6LWEFikL+27rYNR1nesZ5Wpu6PNZjTZJ3P/fDhzgwebJHI1zlb6X9LMqV79uv66rlPv87ZinnqgzgrQaP39Oe8X7sWuDbv5MCnLcjqtMTnsaK+NrSIwbEz1+f+LG//AuS/2ZGmT2zQln95tiYLO3j/z77TgxL46aW5Wt99HZvnb+uI9c15f+m66km9ZpY3tj8bQ9m+HB3ZiUarDvLFDyt9ljl/W0eqLt/AvvmtaHL/dgDyprcnOmVTueccQP7sdjQdoVwLS28w0XHSRqyLkmgwPdOrPze8PIxan64H4CHbbl6dfDfPPvsJH5ha6MbQ7usHiHpauW7P37WeGv5Vyt3Par9OfhHNuaw6hL2utNt9y+1Uv7PAq7/3bNzLpx2UP3W6dKOJKjsPUTA8nCYvK/069nkMde/KxVA9BEfRGa/t/atWwXn+gva+7DnwZzz7X81ah7OW45ctc7llR0d2ot6sTFyJbfDL2KotL10ehuP9+gT+sFHb9s6OZo7f2oKaC9d71ffatkyead2Jr3O20mPs/VT5Ltur3bLtz9+1nvubJ/zlY/qJLVt5s6273KnBCdRctN5rjOD7OPt442bCO+zRfje82ly8eJHDRxzszY6gesjf/2St6IyT8Lg95OTkUL169Qqrt0+fPjRv3pyzZ8+yadMmli9fzrFjx/50u/Pnld9DAj1+B1UFBQXpyvxV8uHqb6B+Eg+gEtVD/AkICAK/StpBG+Af6H7tVwnA671/UJD2WlU9xJ8Av0pUqRage63bxj8QlyEQP79K+AcFaeVUBv/K2jJDYJCu/bLl/Mpp3z8oiGCP8uryAP9AbZyedZUdm6FqoFeZaiH+VA90n9TqOrVOta/KdpVx+lWCP+bVUNlznXf7ZRkq6+el7PZlBVRS1vsZgnD5mC9f+wrA3xCI068ShkpBGAK9+6au9xRUzV1GbfdyPOvz7J9XH6sGEeBXWTseDeXsdwBXQJDX/vur/SivbOVqAQR4/B8q/ypBVK5WmQC/S+XWcbnjyFc7Af6B+FcNwlA5SDePujKVgggOMXidR+X121A5CEPVknLX4Ue5c+WrzrLngq/tPN8bAoOoFFz5svvgrxz36rqQEH+qB7j74OdXCfz83cdcsHJuBl0KKHcc6vmiO06CAwkwBOJSz9UAf62uAKf39QbQndPVKnvv+2KHP9UN+vms5q+c/+o5p12TqgRR9Y/96nMeggMJDvGnepB7nee1E/A5z57zptVd5jrn61puCAzCr5L3seqnzlHVoHKPFW3f/3Ed/yt053oV/XW9KoZyj9+y55TnOEA5X/7qddWT57Xrz84JX2PwumdUDtLum77KqO0p1zn9PJR3zpWdKwKCCKxW9l7jsU8ru8tWDTFgqOy+lniOwfN+UD3En+r+5e9ntV+GqoG6dg3BgT77W9WjPVdAEAH+lXXtGaoq2xn8vO/fAP5+lXH6uf8nV9lz4M949r9ScGWf25Z33Su7zPM6outrcCB+XsdPZd38e9ZXzfP4rOT73lXeef1Xj+ngMuU8++JZJ/g+zqpXU9Zd7V8TqR7iT/UQwz/djf+zsLAw7clgnz596NevH/Hx8Zw/f55x48aVu13VqlUBKCkp8VpXXFysK/NXXZ1//CmEEEIIIYS4Ipy4cF6R/65MkPK2bdvSvn17pk+fftlyapj1gwcPeq1Tl/n6k8HLkQ9XQgghhBBCiH+VCxcucOLEicuWiY+PByA9Pd1rXUZGBtWrVyc2Nva/alc+XP2NDjzdCQDrV59gtduwGE30ik+m9IDySdhiNGHMCMFqtwHQ85aBWO027t29n7xBM3V1qdsDjKhhx2I0sXdJG5a0aIhzdWOsdhsRz6ezIisVx44c5f1z6ViMJk7e546A4jh+AovRhNVuw/hGmrZcrduznKf5+9ZpZSKfSScxyIDVbtP6ZbXbSFqRR+GrSVp/Pdd71r89aaGuDMCzve/V+qGWtdptlB5UvmjY+OU0bb3zzBllu4wtAGS8rszVDcOGs3h/mratL1a7DZe/+7XVbmNwilWr+/wdnXTbHx2VxLr3ZgHg2rCN3PlxujEDRD+e4dWm1W7jaMcaADz24uc0eC8Nv8BA3XYfLJ+jlfdv2xyAp+vkauMP+dxdb/4bSYT8WterDc/6XFlbdePynPNLRZVJ3fULFqMJw8/K37L7m1pq64t7J2CIbQrAiRbK3x2fu7MTVruNfaVnveYz9/1O2mtXZ/c+sxhNtMgO0Mpb7TYMdevwTqMN+FWqrLxfY6Tglrns63ROV6dnHZ7/qnV5jkd9bWjVjD2TkojJCqS0cC+WpjvZOH4Gz9bdrc2NK6kdAG/vSSfk8wxebdoWgK9b1tPq6XHb3V5jzPmoI3Vnp2Psu0M3HgBDvXpsem469T9Iozye/fUcQ3Lb7sRkBerWWYwmcmYmaMuSb7wTgIbvpvFV9A9Epj6oq1ut70KfBG2cZc9htZznurCAavSMSgTAuboxqwozWbVvA1E/PABAFYuSjX5s7QJdnz3HX3+6MuZKPyrfbQhoHEbATftwZSvfddk6djqVvt+Aq9tBLEYTfcMSsNptNJyahnN1Y9puVP40xr/UPU/PRiaw5xV9pKZ7GnfWHQN3JfbjuodG4jh1muixGbq+FSZ/yHvRzbVl/kFBXPwhXKsr4KZ93Lf0ISxGE7kfKMfuiBp23Vzuez3Waw5bv5sCQF1DsLZsxW/LsNptRC4fUe51puG7adTddknrD8A7e9LY36MGhtimNL5zm9LPP857XZvvKW2m/vC5bnn+m4ksPZDhs021jcOPm4l5OFNXZl4zZR4OP2ZW5uqPa3TNT5RfJHrFJ+vqUOXM7UjQ0YvcltuD7w5m+zy+yqNeM88MTHSfh+Z2yn1rons/W+02jo5K8mq/7D3jUrfTXAqt7XPMAFW/Ur7LF3HXFm1Z7AMbfI7L81iOuXej9jpgdTaTG2yh4Tvue01AeGPt/pk1aQYAXbdcYGp0C2oszOCWqpc4d2cnXf3qX909mreLAWFJWIwmZu5d59W+Z99q984BU5G27MvW87Uyh75xf6drbmyk9rrSj9msyF5FxPPuXwjr3bYbq91G6q5fdO1c/CGckp7xOMt8b2RZL/c1p+xx5Xl/3jfBzMkVMcr9o0UMAGeuO+ZVzher3Ubnx0YCcHS0e9/X/yCNCQUb6Tzd/d2l3PlxBNy0j98T9H9at+fR1tSa7x6n5z4dE2HWllX5Zj2Baxvqyp26x92moVYtDHXr0O3lseX2F9BdOwBeiVKO4ZMrlLGf6nHea9xlr/eGVs2093/1u4r/NIfLecV+KtLhw4d9Ll+zZg3btm0jMTFRW3bo0CF27dql+w5V165dadSoER9++CFnz57Vlm/evJmff/6Z/v37U6nSX//zWZDvXAkhhBBCCCH+B40ePZpDhw7RrVs3wsPDKS4uJjs7m8WLFxMSEsJbb72llR03bhwff/wxa9as4YYbbgCgUqVKvPvuu9x1111cd911DB8+nKKiIqZOnUq9evV46aWX/us+yYcrIYQQQgghrmHKd67+/u9DVXQbgwYN4pNPPuHTTz/l6NGj+Pn5ER4ezsiRI3nyySdp0qTJn9bRv39/qlSpwqRJk3jiiScIDAyke/fuTJky5b/+vhXIhyshhBBCCCHE/6ABAwYwYMCAv1R2/vz5zJ8/3+e63r1707t37wrpk3y4EkIIIYQQ4hqmRPK7Mu3820lACyGEEEIIIYSoAPLkSgghhBBCiGuYw+XC4fr7v3N1Jdr4p8mTq79RUIcTXuE5Sw/aOToqSQtPOyV0FQDZJRdxbtsFwCfNGgNw8r4k8t5O9AqzrL6OelYJGXl/WJpXOOYbhyqhm/1NLVn/6gytfTV06M13Db1s38uGnr6/SZdyy+6ZlETnLXeweFE3cu6bgcVoonXGEF1frXYb/u1aaMvKhtt2bHeHzlb1aNJR2zbnQ/frsixGE/P3rSNwZRZxqx/xWj9n3zptu8iVD7Jxwgx6Rpu1fvzYOoSmWUFYthVpIX3VvmycMEPXr5j7s91z3ecerU9qmGHPPp3+Iy3CvGbhSpk/sn+r5VLCu2C12zg9JBHnll36cPs5BQDasdL0yXTO9bigrfcM/+vZbs6ceJLb3+J13MWOzNItOzMwkZWpiwAw1KxByBP7Sf15KS8XZmEbpyTcC/4yE4vRxPAmXejZ7Drd3Mc84g737PebTbdvdsaV6vav49hxAFbtXa+8v9Gu1XN6iDtEqmcdnseqxWii8LN2+OLYvpuI59PJjVfmdndHJfz19SkjtPn0S9+M1W5jbIQSkvdcv07YnzSTM8Mdhti1YZtX3bEPbCDno47YnzRr+zx5txK22nH0qLbMardhf0IJc939nmG6sZwZmKiNQR3PoYHNtP4CLD1bHefqxsSOWq+VcezO00IeJ7ftTmHyhxhq1dLW35bbA6vdRtAR/THl2bZnGgRnlz/6f+OdrCxQwpj7d9+vrY+5byMlveJ125Q9nr87qIRez5mR4E7vsDqMFZnfaW2W1xd1mX/3/WzpoNxYtz4+nVP3usMkR76YzS397gOgV5c+ujqmHI/hd0sTqn6dSZPMYAIilVDJJ75zh0/3C3SHt3cWF1P55r26Opo+ma6E3344kxPfuXOWWIwmAsJCqfKNEhK6YEqSNr7QKe6w3GX/jR21nuRWN3qNV31feVUWXx9Yz4QCJdz3mAgzYa+msevZmgRERWC121i5arF7m0QlRUDoa2lYthV5ncNNn8igmn8QAI4bOujWqRpOdfdXnfcLfZTjfPPT07lh+HAix6Vz5GGztn7foAgAigYl6tpsOfF3TrQMYnnMKmK/H0FZZe8RvoQsVkLHJ7e7Gb805TwMn6Dsh/w3lfY2TnDfn0p6xWN/yqyrw699K0Lv2I7fb+7jSG3zuodHKvcWU0ttOzVcdnl9sxhN9N1xVDfW886LHF3ezGtfrkj/llofp2vbWe02nq27W1dX8Jf60PdNn8hg//NmXtx1m7bs7ief0Mon/WeU1z3dv21z/LKrkzNLybfTLS1F63+jPju1lBZlx+UrPL7n+Wu129j/nJnKN+8lcGWWV9nSgj3a6x67eml1q/1r9X4Ke18ys3PUdGr1ygXAsVP5N/WgclwfKHWHrvach7y3E8n5qCMWo4lqX2Ti6mxi4/gZ1PmtllZ2YlQH0tpV1t7H3J9NSa94wpef1pb17DmIxpPSdGkwSGhTbgj45TGrtG33vWAmc8oM9+8ZJ09yqXlj6s5K90plAnBgnHIMqdcOq92GoUF9WmQrzyFq9cpVfh/p+rHXNVKde4DoRaNwbN+NuHbJkyshhBBCCCGuYf+r0QKvRvLkSgghhBBCCCEqgDy5EkIIIYQQ4hrmxIVDnlxVCHlyJYQQQgghhBAVQD5cCSGEEEIIIUQFkD8LFEIIIYQQ4homAS0qjjy5EkIIIYQQQogKIB+u/kY3hir5INR8CJOONQfQ8noA9H7+CXr0GsKzkQlct6VYW24xmqj1cTpP91xO05+UnFRWu43vDmZr+R12PlOHnNnxWl6sxCdHadtXtm4A4HxYNW1bgKgfHwDgh8/ncXx4ks+8Qla7jZ7Jg7W6yuaSeK5Anwsn4vl0qvUowFkJrt/aF4DQO7ZjMZqwf91SG49z807e3qPkl8idH6erMyAsVHtd+mMTAFbt26BtW5j8IQA377wV/A26/BKGBvW5v0kXDNGRFNwy1yv/xPAmXZT3q8OotrOy0pfz57X1fj+Fkh9fjLV1da+xqvX0SlBygOR+3MG9fP1W7XWlvUd129VLq0nu3TO0HDe9c3pytr+Sm8pQr56u/hoLM3RtWe02+lUrUuqZma6VPX1rGwD2vWhm3XuzMI917++4TU4ACnvNIXXT90pfp3Wi4LUkZc7+kPteJ6x2GyGLM2g/OUXJO3XqNEc/iiB27X2Mj4yny6MjdfNgtdtwnjkDgCtJyTf1+yNmr5wzal4yT571+MrV9uvr0wA4/mASbTf6eeUdUYXXP0FARBNdm2XL9dt5RKu7yjdKTi1XZxMFryXp2g5emonxjTRujd8EgF98G6/2LvZQ8s3EPrCBrY9P1+rNOVSfgIYNANg3wUyvuB5YjCbeGT0LgO5T1+nG7efU19tsQyVqFFzSjeGJXwbg332/Vx8cO5WcKlErzyr76eRJbX5Kb1dynn3/5ccUDU7k/B3uvGdq/pbOj43kqXzlGLVfXxWL0UTqmi995qECCFyh5EIztIyluHcCg3bZWXogQ+tn79A4Jb/T6PXU+jhdOea6H9DqWXimjlb2crmPVBajiZqfpNMkMxgA16WLfL/0Y5YeyKC0YA/HvnXnonq6Ti7m0cr1YF+nc5QW7sVqt5HVYQkAyTffpeWR8xyT/Yk/ch/dn6S1eWxEErV752jl7E+ZWbF+hbZt7j0ztNxGgHbN8sVx8qT22lC9OoWvJenmoKp/ZZ57aKRum4gFSn4hz1xEAGRs0cqMrV2g9e9cv05YjCbO3dnJnZtv0Ue6eTyyrLnP+QX4ZfpsAFq/l8LPc+Zgtduo/4GSG9FQtw5Vj7j4dP9vnGuk/3WgdO9+6s5S5qHQMtdrDk46zuvaOToqibKc17VX5unoUQw1a2AxmijtHkenZ0bT9IkMd0E/5dwPXJGF8XUlp1FJT+Uc3J1SFUDLAXXBGkmbt1Pwq1SZql8puficth1sHTMdq93G+vZf6ObAardxS7/7OPyYmeMPJmGIieLrlso1uLS7ch/qG5bAxo6flzuH6r83DX7Aq4zq0i0dtXKNJ6VRu3eONmfVlrjHWv2zDCxGE2EZ1XB2VebHuWUXYa+mETtSyUUVOXAL+W8o1y21Xsex47ocVGrd/sHK+VPyfQQz967j8OPuPGEWo4nGr6Rp79Xxep6jQ3fvxVCrFquaryBndrzu/hn2ahq7hk+nxawUAho1dA82oQ3JoR2w2m0MU++v6K/x0WMziH1gg/ZezVN2vPNJXVk155v6PnBFFs4g5Y+qujw6EufmnQB0HD+afRPMOI4ehfVbdf10rm6s5JJMakdyy65a/U1eSuO6h0cypdCdi+yHJfN1+82zz9sfmU7gWmWcB55V5vFQv2h2xpWy8Ewdrbx67qhzWVbTJzK05afvTqTZL/8bfySmJhG+Ej//dvLhSgghhBBCCCEqwP/Gx2khhBBCCCHE38L5x8+VaOffTp5cCSGEEEIIIUQFkCdXQgghhBBCXMMcVyiJ8JVo458mT66EEEIIIYQQogLIkyshhBBCCCGuYQ6X8nMl2vm3kydXf6OJ9bdiqFmD0m5K+NNf2wbh39YdMreX+TbapWzBtWk7AM/X3eXe2M8Pq93G0hb1ib57E1a7jY7jR1PJz8D35yvRecsdFCZ/SOwIJXSr1W6j4YhCXfsBYaEEfbdeFyY15t6NWtjTOnPS6dlzkBYyVA3vajGaWJm6iILXlNC6MZ+MBqDwMyUM92um63XtFLyuhB9u/HIav7T5Wrdua6dFulClrSpXUeq8P1tb5h8cTOmBg1ofAm7apwvN6vn6hxbfgtOha8Px+xGsdhuOvEJl+1Cjtp1O9wM0/nC7bpHVbmNVc3cY5p49BnrNR0nPeM7EhVKWZ+j60oN27fVDuTmcuNUfi9HExCgldLvjsZr89q4Srttx9KhW1lco/KgfH9DGOy5/C4Y1ynhCFivhfJu8mEbTz0dp7wGy27tPZYvRRN6n7Wm01o+oZ9J1Yb5jHlVCF8/cu476Hyghek+nRvP95LeJHLQZgOAvM3Xj8zx+/NKVMiXXn9Hq7DxGCQnvKi3VlqkhmD23VdMIeM5f79A4rHYbGybOoJpBCaXdM6azbp7P9u+Ef/f9lO7ZpwtF7BlCVz1X1HMN4OyARPIGB5J7r5L64MA4JbRu1y0XsNpt7O6ohEQvqR2IX1wrXX1rPpqj1Wsxmjg9JBGApoNtHL8pEoBK56D00GEAuldRjsm1bavo+vfbOzN1Y/6hsDk/f6jU3T5rIBajifjm7vO2bKh5i9FEbnyJtkwtc94cq61Pf3MmVb/KxP6kWVvvHxxMtS8y6V7FgbOLifBlx3VzajGa8AsM1LWpSv1xCUHfreez5ka6vD5WW6+G+we4bksxkxts4XRqtLZeTQlhMZpoNyUFq93GkYfN3HzXUN1+Gpe/hZzpCQAYWjVjTuPfAPAPCQGgX5gy13VvzcG/dXOtzt0dL/HGngycq93tqG07tu/2GfZ/69g/wnNPdqe/qDtbCf+ubm98PU0714N/UUJ0f7r/N62/YyP0ofzV1/te0Ie8dhQVkXPvDN0xn9zqRgJXZmnX/bypiTwz8xOvfQFwdlUUe15O0vbr/i9ba+sM0ZEEf5nJ1wfWA5C8O1lXR/3bd2n99eQZtjv0tTRde8rEOfl+8tv03X4Pjd5O479Ry1BV197GCTMwxDbVteH/6yYlbHV0JPlPKGk5AlZnU/MTd6j7mAWj4Y/QzJ71Ba5U7m2FveZQ0jOe2JFZPFdg42haI0AJ3a/aN0HZFx3Hj9bafip/q1bf90s/puG7adT5MB1HbgFWu41jI5MIWK3chwy1amnpOjz7UDQ4Udcvw88b6ZXQSwn73Vlp5/A3LZR0HN9v8Lq+Ra4Yrr1XU62o5/aBxLP4r92kK++p6ZPpnLwviUrfb9D60fYtJX3G0N17tf3qPHdOma9b9rD2QhSbn5yuq8fzHqOOVzV/3zrmNQtX0jyExRE7IktXHqBHryFETs+l9NBhLt30x/V1/VbypibS6ZnRnFsVBYBfx9aA9/VEPa89+2NoEaPVr6YlAOW+kfd2onafUe9FAHXmptNkYprXXFntNn5o8a12f3KcOq27n1b9KhNTYCDtJ6XozocOG+7SUsLsXdKG/eOV9CIlXQ9jtdsIm6xcF+pPV1IDqNc3td5db4dr41VTd4D7WPykqC4ANRZksPt6971RXBvkyZUQQgghhBDXMIkWWHHkyZUQQgghhBBCVAD5cCWEEEIIIYQQFUD+LFAIIYQQQohrmBM/HPhdkXb+7a7KJ1dnz55l8uTJtGnThpCQEOrWrYvZbGb+/Pm4XOWHGXn66afx8/OjWrVqPteXlJQwYcIEIiMjCQwMpGnTpkyaNIlLly79XUMRQgghhBBCXCOuuidXTqeTnj17kpaWxn333ccjjzzC+fPn+eyzzxg6dCg7d+5kypQpXtvZbDbefvttqlWrVu4HsLvuuotly5bxwAMPkJSURHp6OuPHjycvL4/58+f/zSMTQgghhBDi6uN0KT9Xop1/Oz/X5R4F/QPS09Mxm82MGTOGqVOnassvXrxI8+bNOXHiBKdOndJt43A4SExMpFGjRhQVFbFhwwbOnj2rK5OamkqvXr0YO3Ysb731lrb8P//5D2+//Ta//fYbZrOZilBUVESNGjW4gdsp/KALuXfMIDm0g65M62x/tsX5jplitdto9X4K2x+Z7jMcufrek8VoosraBnwTY6X1uymEL9pH6f4DnHggidofpfPGngyejEjEarcR+/FoIhP2Q/cDXvXFrr2PnK4fYzGaeH/vb8RWCtaFaAcoWtmU6j3zte0il4+g8LbZAFz30Eh+nTaLycea8fHyboy7cylvz7mTLf/xHkvRyqakt1vqNQ61Ly8dbckL9Xbo1pWdpw4TR1NvZjpllQ3l7rl9241+bOng4nzfTlT9OlO3jWcfbul3nxYStmy9VruNhWfqMCTkuK6dltNTaDwpjaOjkqg3M50T38WS1WGJVubE0CRqz0vnzMBEaq3dQ+khJexrr069Kd1/QFd/i9kp4IKdI/WhdS1GE0WDE0l/c6bPOSm7vy43F5fjud3i/WkMbGz2Wp43NZHoxzOw2m00X3cP4QO26l4DnLw/iVrzlX3k7GLihyXzsRhN7F3SRitjqFObc+Zogr5dr7V/6aY4fvpkrm6f+Oq3v6klK1MX0avz7ezrF4rxTXe4XrX8nklJXDReIvaBDV5jfOdkBCtb1cRQqxap29e4w0i3a4Fz884/nSdVlbUNuND1d44PS6LO3HRu2naGH1uH/PmGQOHitkQO3KLNSeDahiyPWYXFaOLoqCQafbdPS1egsj9l5mxUKbGj1uvGq+5j8+OjCPk8o2xTPq8lgwtv5Hjnkz6Pj/KOJc/1AD2adNSF4/f09YH19A1L4OT9SayfPOOyx6j9STPGN9xhwXM+6ui130AJDZ/d3p9jI5PIfmGGdr0o2/c2mYPZ2mmRblyHHzPT8N0/Dz3ua658HYP7nzPT+BV3fY/n7WRqdAtdmYCwUEoPHNTmq9PTo6n5qf7apa7rGdMZV2wEhqOnqP9lEfOa/FruuV7SK56f58zR7XuVus1DuTncFny+3GuCer1/JNydBqFeWk2Omk9RZW0Dcr5vqhuf57EW9dVIYh7O1C3PeyeR6DHKsXfh9gRKqhuo+Wk6NdbV4XSX4xiqV8dRVATAy4VZjI9UQlkX35qguwYYmkXj2J1Hrd9qc7LzCQBypicQm6KUUfdjeful7HK1HnWeYn6+n6jBNq95az8phXONXUSOS2fP522JuGtLuW2Up7zj+8xdidRI3Y7zzBku9EmgyjfrtXH/lTbUMoWL2xJZ7wTWFt+Ve2yor8H3Nb+887nZR6PZ/YA7rcCel5OIGJ+O1W7jxgeGU3lVls97jarSz424dMMhAAonJxH5rHKcnx6SSI2Fyv0iuesdOHILdP0ob85Kf2xCpzp7yG7vj3/VqjjPny93HH7tW2npbf7KeMvz3cFseofGaduB931oz8tJOAMh6illfP12HmFpi/q69gBu6t2fNdmvcvr0aapXr/6X2r+S1N9ZN2xvQLWQv/8P2s6ecdKx1e9X7XxUhKvuzwKL/rjgGo1G3fLKlStTt25dgoODvbZ577332LFjB++//3659S5apNxcx4wZo1uuvl+wYMH/R6+FEEIIIYT43+T44ztXV+Ln3+6q+7PAhIQEatasyeuvv05ERASdOnXi/PnzfPzxx2RnZzNz5kxd+b179zJ+/HheeOEFwsPDy603KyuL0NBQGjdurFveuHFjjEYjWVlZ/+c+N2rUSPfe6bwWovgLIYQQQgghPF11H65q1arF8uXLefDBBxkwYIC2PCQkhKVLl9KnTx9d+dGjRxMVFcXYsWMvW6/dbqdly5Y+14WGhnLgwAGf64QQQgghhPg3u1JPleTJ1T+kWrVqtG7dmttuuw2z2cyJEyeYNm0agwcPZtmyZdx8880AfPbZZ6xatYp169YREHD5oZw/f57AwECf64KCgjhf5m94/xuHDh3SvVf/flUIIYQQQghx7bjqPlxt3boVs9nM1KlTGTVqlLZ80KBBtG7dmuHDh5Ofn8/p06cZM2YMw4YN+0uBKKpWrUpJSYnPdcXFxVStWrXCxiCEEEIIIcT/CqfLD6frCuS5ugJt/NOuug9XU6dOpbi4mP79++uWV61alV69evHBBx+wZ88e3nvvPc6dO8fw4cPJy8vTyl24cAGXy0VeXh6BgYHad6yMRiMHD+qjbakOHjxIaGjo3zcoIYQQQgghxL/eVffhSv0A5HA4vNaV/hHmt7S0lL1793Lu3Dk6derks56YmBhatWrFtm3bAIiPj2fhwoXs379fF9Ri//792O12brvttooeihBCCCGEEFc9+c5VxbnqQrGrQSfKJvU9deoUy5Yto1atWkRHR/P000/zxRdfeP20bNmSoKAgvvjiC12erEGDBgHwzjvv6OpV3w8ZMuRvGU/zd4+QHNqB0m5xWs4Dq92m5bjyXAaQMzOB5JZdCXs1TZfvodPTo3mpIFt73yM8AYAbt9+ulbvQ9XcsRhPbHpvOjhca4lepMlmTZuDXsTXWs620PuXcNwNri+907Wrrun5Mzx4DAXgkvDNjDnWk4PUkIr8ZoZVNb7eUg1+10t4X3jabntHKn2aqeaN+ua8jux+YwWfNjTR6K81nDhY1V5baf4vRxNx967AYTTRdMooli2/QljebOxqrXZ+PpNm80WycMMNrDsflb9HlsrAYTbr2t3RwYbXbdDmufJU73sbjT0UT23rlEfqkWWMsRhMBUREAJLe7mcaT0siZE6/l3mpR5zAWo4lhOYXkv5VI1iszAAhZnEHYstNau87a7nxIVruN34qdPHCnlSYvpen61iuuBwCVi5yXzW1SNseJ87r2unouR53nNlNTADBmhDCwsdkrX8qRh81EP55BwWtJWIwmYhscpeC1JD4pqkvTR49o5asduKjV7b/O3Uc1xxWA4/gJLb+Nut1Pn8zFYjTRMypRa9dz/4dlVOPAODNOm5ILrbRwL1vHTtfKvH/SHT004vl0Yh/YQODahljtNp7Kd7ddyU/5Hzmp29dgHjsKq91GvbSaWo6rssetumzfC2bd+29irPhVqkyduUo+mB9bh2C12zgzMFErd2CcmYDwxryxJ0O3bc71n+jmpKTrYW2eqt9xSJcfqWCRMg/G19OIHbWeU/ckafPjF9eKm4Y8gMVo4plJn3j1G2DJ2Rpau87VyjF8vPNJrQ613YX7f9OWqXrFJ2O12zjxQBKP5u3SlluMJk4N7Oiut4uJk/clYbXbOLcqir5hyvXq2I0l2n5Mbtsdq93GpZvidP3zzHEFYO3+rm4fqK9t/ZsCUHdWOhajic2nQ7EYTQzdvVdfX98dJN/QTzeOhu+mcfGHcO1Y3zsxSVtn/7qlV14bgLwF7blx6INe1yFAywFltdsgsS3vdehE7gedtGVWu40HfvqVm7adwWI0cUv/+6n9xSZdXfYnzNr8O8+dw7VpO6UHDmJPPOMzx6HFaML+lJnAFVm68371BYOufM6seCa8f3+5ucqSW90IoMtxBXDUfAqAb2KsuhxXajvqv2qOK/V9QKOGjL1lhbasyrL1Wj6vx4w/AGg5rr47mK3luLLabVqup5P3K/vDsVv5q5TFkT9p9ak5rqx2m88cV+qc+sr1pOXKunQOgKjB7rn0/Nn0/HRy7lOu1WqOK8/6Pf8tT9l7ECj3d+PDeVxMiAXgl+lKfsigb9dz6aY4uo4cwYFn9V9z8JW7rElmMJEDt0D3A7pj1Gq3ce/u/V7XeF/z02xDJTpMHM37e3/zamPKXZ8SuWyE9j5ivLL/pp1qTOVV+sjKat0BYaGcGKrst+9iV2ptqTmuXJ1N1FiYoW3jyC1w30uL6nI5ATftY0eREpXZef48TTKD8TcpvysW35pAZOqDWlnXpu103XIBwxolnY+hXj1AyZenypkTj1/H1l7teM5D71D372ztJ6dwZ/5NWt9z5sRzZFlzIsank3v3DG2bETXsujrUuXFlu/N1imvDVffkasyYMXzyySc888wzbN26lc6dO3PixAnmzJnDoUOHmDZtGgaDgaSkJJ/bf/DBB+zdu5c777xTt7xXr1707t2bt99+m9OnT5OUlER6ejpz587l7rvvpkuXLldieEIIIYQQQlxVHPjjuALPXLz/Lu3f56r7cBUeHs769euZOHEiq1evZvHixVSpUgWTycRbb73FHXfc8X+u+4svvmDSpEksWLCATz/9lNDQUCZOnMgzzzxTgSMQQgghhBBCXIuuug9XAE2bNuXjjz/+P237888/l7suKCiISZMmMWnSpP9jz4QQQgghhBDCt6vyw5UQQgghhBDiynBdoVDsrmsgFPtVF9BCCCGEEEIIIf4XyZMrIYQQQgghrmESir3i+LlcLtc/3Yl/m6KiImrUqMHJnCj6N+uA1W6j8NJZRoUrEQmtdhvvnwznu1a1dNvlTU2kyu/+hL7mDuv7SVFdXtvWg8Z3bvMKha0qGzbYV6jtsqFWW72fwvZHpuvqe3tPOj+fj2V5yzpe9ar8AgNZVZjpvTwgAFdpabl9BDDUrUPqltVe4XHL9t3z36d/N2Fr71WVbly+ti27zrNPQ3Yd4MXM2/AzuIi+e5Ouvjf2ZPBkRCJFgxOpvijD59z6aiPk17p82fRHLEYT/m2b49yyi8vxFa41991ECvrPxGI0MWffOpoEVNNt0+6NFBpOdR8bFqOJvKmJbOw/lQFh7uiZat29OlhYsdGKxWji2Mgk6s5K121b9rXn9olPjaLGAiVs7uFvWtCwz06v+n0db1a7jW73P8hP8z8sd65UudM6EfNQJla7jYRnR1Nrfjo50xO0UMv2p8xUO+Ak/c2Z7vDdN/TDkZPvcz7Lhp+OHZml1eNKPE3oHdu19QfGmQl7VZnLnJkJxI5aX+7x6DlmdZ3K0Cwa194DOIuLdfOyd2IS4RP0833R0pHK1g3atgERTQj85ALnrj+K1W4j9uPR1Nnq0sarbhv92Sia/kc5FpN3J+O40Y7zuvb4/+o+dv1DQvAzNtBCV5fte9yLozkbDk2+L8Z/rbKdoVUzHNt3M6Uwk6cjvfMFGmrVwnHypM85jrc5mFR/q9e+txhNnF0Vhf1AbQqTP/S5XgtvPCmF+tOVfZD3TiL5A/TjjrQOo179Imr1ysUvrhWubGX/ec4tQOLmS2S0q4Szi4nTTatQ6+N08DdgPZDtdf6X3Qf+ppZaKH/P8fXdcZSvW9bTyp1cEcP69l9cNv1B4WftyOn68WVTHeQtaE9+t3m6MseHJVFnrns8R0claakcfLXjy/HhSdSZk87R0UnUm5Guld/3gpkmL6VxeIyZzU9N183vyANJzApLLzfMe3nHf4uZKTSZmOa1Tc+eg3h3+Yf0WPsIscO3Y384jkZv6UO4+2onZ048scPd4b1LesXz85w5un55Hu+e5c/164SfC6p+lYn9KTNbx0y/7DwZ6tUjdfMPyty8aKbJi+7+HXzGTOhraeyZlMTuB2Zo9fhVqsyRB+OoN0O/Ty72iNfCkl9u/xQubsstTXfzQag+ZD1Ard9qc0Ot3dqxVtotjoCf3ClXLEYTt+04rt2Tc2YkUHj77HLb8nU9vnnQUPzXKmH/y+67vAXtqVL1IqF3bGffF21o0n8rR0clsXHCjHLb2PdFG3Z2/tTndV09Dk8PSdTCrqv38SkNvPv2Z2lBAPLeTiR/4EzdvHlev8+tiiK4R4HPsavHcY9bh2jXj7Jtl/394MQDSQT/XkrgCn3I+bJOp0ZTI1m53p74LpbavXPInR9HzP3ZSpvhCbguXcRqt9G9USt+ZhmnT5+mevXqfzrmK039nfX7reEEh/z9f9B27oyTW9rsvWrnoyLIkyshhBBCCCGuYQ6XPw7XFQjFfg080pHvXAkhhBBCCCFEBZAnV0IIIYQQQlzDnPjhvALPXJz8+x9dyZMrIYQQQgghhKgA8uRKCCGEEEKIa5hEC6w48uRKCCGEEEIIISqAhGL/G6hhLW/gdlYf2q4LDzqhYCP3L3mI+5LX8GvbIF1I0P1ftqbxnduYUpiJKTBQW54zK57CW5XQtPE2B1kmAwAl30fwc+tvtLqTr++LI69Qq7PZhkrs7njJKwz7+yfDeaTWXgB6Rptxnj/P/ufNNJ6U5jMcdY/wBFbtXe+1vGyYY/V17Nr7dCGJz/XrxLr3Z/kMka7+23xOCuEveIftVcucu7MTReEGLbTviJwC5vbpgWNHDheskfzS5msAOk4YzYaJM2gxM4Wdo9yh5v2Dg3GeO0f+W4nUbXGMzg0KeKvRxnLH4CuEe0xWILnxJbq+lZ0P1VP5W3krrgu7348i+p5N5Yad3fuSmV3D9eGDi3snEPTdeq+yni70SaDKN/oyan/yL50l5Y+w/wD2r1sSWfsEJV0Pa9sG/7Cdlbm/aaHjV65ajMVoYs8rSUQ8l+6zv+qyKmsbcKHr77rlS87WYG5spFc/PetxdjHhv86mWx8Q0YQVacu92jLUqY3j+AndMjVMu6+Q+AAktsX61Se6ZflvJpI3eKb2vrw0BWqY7kpFl/BL36xbp54jnstOOs4zsLGZgIgmlO7ZxwVrJFUsheRMT6Cwz+xyQ/erhu7ey7xm4eX2ZVz+FlYWtWVKA2W+oheOZtYds3m9aRutrH/r5ji37eLg02ZCp6Tp2ktu2RXHqdNa2cNjzDR8J42e20+xslVNrHYbU47H8FObYK1Mafc4AlYrYaD3jzfT+OU0r75b7TaSb74Lx/bdWO02mv401Cu0+OWox2ii7U7qjC6hdO9+r7FfLhy4+tr+dUt6hO9kSwcXfh1b48rezuExSTTIPMf3X36s1ake09FzDlK6Zx8AhurVSd31y2XDWbfPGkjJ+trgD41fTqNgkYmowTaWH8zittB4DPXq4Th6FICcuR2JHbZB27btmyk0ejvNq+89IjuxqjCTxWdqafteTQMA7tDe5YWU9lTp50ZcuuHQn853QKOGlB46TN6C9lraicsdl77mQt3fTbOCyI8v5qHcHKbFxOrKHfyqlS7VgWfdLxdmkRBYiV4dLJQe/t2rTIP06vyeVMSRh8zUn5bmtf3l0nv4au+vhvj+s3Ll1VnedsW9E1g7Wzn3DdGROPIKKe0ex+pP52r999z2zMBETvc/w5CYDTxbdzcWo4nC15KIfCbdq25f/VJTKXguU+fy8bydTI1uQf4iE00H23Tb+/0UyqmPGpPx+kyvMeXOj6NGrXM06JfHqn0bsBhNFN+aQNC3ynU3du19RA7aXO48HFjaiu1JC7EYTTxXYOOVqPLn7/TdidRYoKSYGFjYjZOdlet9WEY1DiSe9Rr3yfuTlHQdH3Uk9gH3+Xbj9tupfLPy+8yxEUlkv1h+GPn/K6vdxvaLFxgbkaRbbqhbB8ex4z7Lq30YnZvH+9Hh/xOh2L/eHENwiOFvb+/cGQd92+VetfNREeTJlRBCCCGEEEJUAPnOlRBCCCGEENcwJVrg3/99qCvRxj9NnlwJIYQQQgghRAWQD1dCCCGEEEIIUQHkzwKFEEIIIYS4hjnxxyFJhCuEPLkSQgghhBBCiAogT66EEEIIIYS4hjlc/jhcf/8zF8c1kAFKnlz9zSxGEy5zO0DJfTAxqgN1t7h0Oa6sdhtWu43Gd24D0HJcqfk9Gq/003ImLPrFDCg5aQJv2YPFaMJiNNHujRQceYVamwDvGbN07y1GE9enjOC7VrXo/NhIAC1/z+bR7yttv5YCwC397uPAs2al/5cuAkpOLM9+FU5Wcj70CE8AIPLb4ViMJiIHbdaNK3hpJq3fVeq1P2HW9efo8mZYjCZ2DZ+uzVFZhpaxBH+ZqeW4stptzI6N4sUVC7HabVSxFDKgoDsWo4k6H6ZjMZrYOUrJHdWrgwWAlbm/KXl5/pNBjeQ8so830bXXfN094Oeny49RNteMZ46rssqW7V7FgePUaR5qv1aX8yLvnUTdGMNfSMNiNLHkgDu3SdB367W5A9i7pI1W77l+nch/M5GqK2y6/p+6J0lrwzPHVUB4Y7Z2WkRJ18P4V62qLBx9FOe5c3xzrhoAzi27lLwptWqxe+gMLSePJ88xzI76Stmui0kb+4BqSk6lC30SiMkK9DkvPyyZr+TE8hhr6Z59uvwn6njK5rjqvf2kLseVWnfqwY1YthUphTK2KLla3uuk1df0iQztHLEYTRx+zKybN6vdRuTyEQBUtm7wynGV3OpGnOfPc3xYki7fzsDGZq3/AFUshRxJMdNyyiFd/8rOQeDahpwZmMhbrw3EF/W8ebVpW1Z+6j5Xmj6ZTvcqDl3fndt2AdDg5gPkzO2oq8Mzx5VfXCsavpPGvi/asLJVTW35rF+66caq5rjKmduRiM8OlZvPR81xNfNUKNF3b6L9pBSKBinH9bFvY7X9WPZcttptJD41CovRRI3kPFakf6uM44/jaMnZGlr/7917PQeWtvI6H9U6t3ZaxJYOLqx2G64N28Dl4u5hVvzSlGtPr6RbtfIRz6WzIm25u/9FRbrrkyre5tBeb4pfTJM3s9kxejpWu42owTaKBidyW2g8VruN1M0/aGU9c1xZjCYava1cp6KWjtSN31VSouT/WXmXe99c9OPw48qxtOajOTTbUMlrvnsl9PLq686N7hxpnvcXzzLn7+hE6SElt1303Zvw69ham8fcaZ288kiprHYbp+5J0sqquZTy44sBeOXl+3RlrXabLsdV/luJuvoSAispuQo7NNEtV9vf/HsoVruNN8fO0q07nRpNzowE7dz17OdtO45jqFfPqy6ADi+P5nJ83WMAbX4A8Hfn+rHabawvuaS972W+zWcdQd+tJ2bBaKx2m3YvDlidrfWt2YZK7jxtT5hJe3smYf22c9pRhZ49lOuBoal3fieA3PlxXsvU/QLu8X8S/gtWu42p0S04sqw5y8wzvLZzdTtIjQXKdbFwcVsAor4fhtVuo+CWudS/fReu0lIsRhMR66sQ9K07n2LkoM3aPveVB7FOtfNK7kRTS6aYLV7981RjQYa27mTnE3x9YD05H3UkbVVbrb6S7yO0ua41X7lveOa4shhNBPg7OfCscg7Vne2dI8zQqplW3vPeBOAfHKzbl573BU8Wo0mX40q7Tx077vNa53m8zoiJ5vytHRHXFnlyJYQQQgghxDXMiT9O+c5VhZAnV0IIIYQQQghRAeTJlRBCCCGEENcwh8sPh+vvT/B7Jdr4p8mTKyGEEEIIIYSoAPLkSgghhBBCiGuY4wrluXLId66EEEIIIYQQQvwV8uHqb/R1zlasdhvff/kxp4ckYjGa+E/edqovcocgBRhzyB2m8+AzZl3Y0pwZCRy88xKHvmkBQMyjmUpo4Mm7dCFAG051hym/+EO4rn71ddctF6jyjRJW9bd33WFvWR1G1/88BECNQiUEq1/6Zup0PQQoIWqjvhwJBoOuvkl3LtKFai+8dQ6AFvLbM9Rv6BSlf1vHTtfNUYMJSp29km7VbTMsp5BLN8UpoYB35ACQ+0kHrYzVbiMhsJJW/+kux8lf2F4XLhug9PDvWshWdbujy5uRErFGVy58wFasBzdp/VpyIN0rNLs63/12HtG2/fmCv24/WO02WsxKIaNYCes8tnaB1q5/cDD5A2Z61QlgWv6Yrh6L0UTPqER33/4Yw7r3Z9H0iQxtzlXn71BCbydf31er49ydnSjdu18ro4bdr2JRwgTPiInW9cFx8qQ2T66SEq0Oz77mzO1IfUMwoIRWV2khhjsbtJD1AWGhABz7NlbpW5tuStj2sCRtrGVD03uGyD4zMFF7/UitvVjtNm1erXYbo3PzSA7tgLV1dW17/7bNiXk0U9cngNJuSijjhu+meYVzjx21noPPKKF8/Vs31+q3GE2kbl+DZVsRdeam03WkErI9d5o+TL1/sDIf9aen4SryHUp5+UElLcLymFWELM6g9rz0ckNCJ3e9g3ppNbWQ3j3CE8otCxBw0z5dOHD1X/W1K1sJk92k/1ZtG4vRRMxDyjwZWsRo8+7XsTWxwzbgyCuk6eejtPJWu40TDyTp5u3rlkoo7MDeR/jo1bcBqHtrji70vWefEjb1p8aCDK9Qzv7rlPUvbe2t9GeNkd/NZwjrt519L5i9jo+cmQleYe6tdhtP1s7n90f+CJHvcdx70sL2/7Gtun2D9OpMqr+Vh3JzdOeA5zG07o3pum09FSwykdz8eva87A7XXNBvltY3z/JNWh3SXsc8mkmDjHOwOgyAqY0yvebt1XVLtT4FhBoBiB6rzGPqwY34pSnpAyYda64LAf3rB7N0x4NrwzYlpcTHHYh5KFNb125Kin6OjCZqfur7+CwanEjNT5Rw1/YnlLnuMFEJfV6SHE/O9ATyBs2kV3yytn2PXkMACEzNwrBG6f/Br1rhvE65XjfssxOL0UT3Kg78At2hsnuG7qDw9tk+5/yhmvtxHD2qvVfbCgg1Um+G0r/8he21dWWPoRrr6ui2A5SQ/uoyp0PX3rBpj2mv1fQR+58ze83Po71SvZapbe7ueIkjKco2xjfd92tbeyUdBijnaNHgRF3fmm2oRMz9SpoEV2cT0YtGEZMV6DOEviogKoL6t+/Swodb7TYu9ojX1hcNUtqIfOePEOX3Z2vHWM7MBE6nRmO129iTcEHbptPTo/Frr0+PMCynEENNdwoFNSWF07aD+37JoCQ5/rLXLk99wxJo/shOdo6Yrp0zarqZshI3u0Pj+3ffT9hk93yqji5vhn9QEM99+xln+yupBzzTqRx8xox/7Vq0ej+Fh3JzsNpttH4vRRsLwKBdduW+N919Dc5/I0n5fQjlvuJ5HdHSnaC/Nh1r+7/xq7bT5X/Ffv7t/v0jFEIIIYQQQogrQD5cCSGEEEIIIUQFkIAWQgghhBBCXMMkoEXFkSdXQgghhBBCCFEB5MmVEEIIIYQQ1zAnVybBr/Nvb+GfJ0+uhBBCCCGEEKICyIerv9Gdt/bBYjTRK6EXzsHHsdptpHwzjDf2ZGhlum65wIbJcVoI3dDX3CFFLaHtiR29nui7NxEceNG93Ggi7UAEFqMS/ldltduIe3E0lW/eqws/a39KCWe8tm0V9k5MokG6ErraYjQREBWBtcV3hCxW+hT07XqtviqWQi2Eb8yjmTjPnNHWFQ1KZG5sJFa7jQbp1bHabSTfeCfgDvntS/d7hml9BViZukgJDzw6TDeOnOJGVPoxm9z3O/H2HiW0bsy9G7VxRS4bgcVootPTo7EYTZzv24mmQzZ5tVc2DKzFaGJjx8+ZGxsJgMvcTit3fcoIrdyAsCRwuXTzuORsDSxGEyNq2N1hkpu29QqdvHPkdBKDDJz4LlYXRtZ57pxWrmx44NgU97yr65zFxbrQ7Fa7jZ8v+OvashhN2J8yY+y7AwBHXqFWT/CX+pDkt+04zsn73KGiPefEs12A4lsTAFj33ixdmZYTf/cZBlvdrumT7hDOK9avwGq3UfdWJZS+4/gJXbs9ewwkekyGV33q65DFGbqw3hajiRei4rT1fYLPsndJGwAtfPHQL1eSNzURl7mdbn5XL5jrNd59L7hDKYe+poRod27bpQudPXTfdVhbV6fw1STt3PAMYw2wMvc37bXj5EnttdVuI3BtQwBuC433OUar3cbLhVm6eXHkFgBgf1Lpn+vSRa/t1Prn7FunhFm2dKTFbCWM8Om7E3XhgdWyvkIin7o3CVfhflpkByjhxzdsI2eW0tf8u2Zy4rtYrc3aH6Vr2zm7mDg2IomAsFBqJOcxJsJMm6n6kN5lQ67X6pVLwZQkrzDtfj8pIfvD+m0nb2oiqc1SOT1ECXe/c+R0Xdmjo5N4+voVAJy8Xwnpfzo1WqvTNm46B54169p2dm2v1TG2dgFDdh3wmoc9RXV4+GAnpsXE6sKXA+RfOqtc30LdqSA8mTdfJGqwDUdRERHjlTmaULARANMmpXzuJx20+irfvJec6Qna9n7pmzm2pLFSfv3dWohztZ3/3DOaI8uUFAErslJ1577BT0kFYWgWza9tgwBIfEoJoX9bbg/duRUQrrQRc99G3tijnFunU6Np+G6abjxLD+hThVjtNva9YKZocCLVF2Vw4jtljoxvpinX0wkzAPj5wznEpqzHYjRRetBOyxnK8eDndGr1pDZTQpWH3rGdHz6f53VcrypUrlmXboojrX0V3fpBu+z44nmMJf/gTjeg3g8803CoTnc57jVGz344u/yRPqOtMu/mAZvY83KS7tho/Eoaha8p11P71y2x2m1816oWye1v0dVntdvImans7/rT07TUDRajie53D/M63tLfnEn+G+60B7s7usOOf//FfPIGz9SFFPfsd6/4ZCxGEyvWfQO400QAVF6Vxdn+ynlV/bM/fgfJ2KKb4/xFJgpvm02N5Dyv4zxzygxcm7ZrbVntNgZUO43j1GndWOtPV46nRYcSCUzN8hlKXS1raBGjvf/uYDYrc3/DYjTx/slwXdkLfRK0azxARrtKxGUP0NWl9kt9v7Hj51zo1obnR4+g2heZWmoQVXFdJ3vubkLYq2lMi1Hu1aGvpXHdFvd997PmSuoAz/tz0yfTtXQfAT9lU9JLuV6Ozs3T/e7j2adLTbz319XIif8V+/m3+/ePUAghhBBCCCGuAPnOlRBCCCGEENcwh8sfxxVI8Hsl2vin/ftHKIQQQgghhBBXgDy5EkIIIYQQ4hrmxA8nVyJa4N/fxj9NnlwJIYQQQgghRAWQJ1dCCCGEEEJcw+Q7VxXn3z9CIYQQQgghhLgC5MPV38ixOx+A0gMHWd/+CyxGE3mDZ9K2spKPRM09FbxUn4+oaHAibTIHg8vFwa9aUee3WlTvmU/ue520MtuTFmK129jzURNaZAeQ+4mSg6Xu7HRdXQDG19O4+a6hAIRPSKfgdF1tvZoPo2yuDavdxsL9v2nlAhqHYbXbmLl3HRajieqfZWj5RY52L8ViNOHYnYers0lXT8yno3V9CVidDUBym24ALD9XlfPOi0S/lUfOjASsdhtt3k7RcrbEPJLJ2Igkrc4276RgMZpIapsLQM1PlfFW/TpTa8Mzd0bPaDPD9nVh4X4lF9FN29y5ugD80jZreVB+mT4bX657aCQAc2MjcXZx51wqT/JuJdeIa1kdr3wnbdcPwmI00W5Kim65Sq37iOOc9n7fBCXvja2khBuqOHl/r7Jfji5vhtVuY+uY6YzOzdPVc+Qhdw4n1fKWdfAvdTEufwsHnzF79c1T0LfrdceC1W7jxu23U7p3v7ZczYdUVtm8VX6BgT7HuXLVYp/bl9ensrmaLEYT4QOUvDa1UnditduYGxtJ/l0ztf0KcPCrVl45nwCavJSme182Fw6APfGMkqfmvhm6+fAs2yuuh8/+W4wmlses8jmOnA87au8TAisB4FepsrbsqPkU/p1P6rZr804KVruNETkFGKpXx2I0MbxJFyxGE5WtG2jyopJ3qMYCdx49q93G6SFKfpjm6+7x6mPmazNwFhezM65UWxY7MksbY+3eOdpy9RoDcDq6CnVnp7Ni/QqtHeMbaVreOHX8ZfMIxc5UchVFrK+ilXF1O4jVbqNJZjDRj2fQs9l1ZLw+U1vvWV+9Gel83bIeJT3j+fWV95TxJufpyjT57oSu7R8+m6etP1R6lkEhvwNKri5VFUshH4Rmeu1bgJTwLrplOXM7Kq9XK9fEupWUY2TPy0kcG6lcqyZGKXM1pYGyTcFNH+nm3TNvDkDdWelYjCaMfXewdex0AC72iFdyLf26iU3x+nPF81xQr72qC3WU3FclXQ9ry4bsOkDp3v3anDwZkYjVbiPD9CUBjRrq6u4XlohfgPJHLWpOxOKIEqovyuCCNZI64yvp9qs6N2WvicGdjinzvHmnlots+P7Ouu3K89Mnc8Hp4KFc9/H3WXMjF6yR2pgBLtyewI0PDKdFttLfh2oq16czdyWSM7ejrs5e8cnltlc2Z5//uj9ypG3ZRc9m17En4QIR49N1fd7zeVsin0nn5H1JGPvu0ObB8fsRut3/IAA5s5VrZOVjBm27gwubANAiO4CAn7K17Y44zlE0KJHmH44mb8gMXX8858xXnkFV5DdK/q6fL/jzxp4MLbeixWiitFscp6Ld/fCl6WDv41993fzD0bqyXUeM0JXNf0vJr3fxh3By3+vEha6/6/qv5uRT85+1Wz+IXQ/V1u5VtwwbRewv9wLwSK29HHzajPO69gBU+WY91RdlkPdpe639urfmcOreJHJmx3tdJ9SfwNQs9iYHEBAVQekB5Tqj5u5zVnax/ZHpXtfntQ8leR3fnjkr/UNCtHUHxpkJXJHFmbsSmdW3t26+PPtUZXfQZef9auHA/4r9/Nv9+0cohBBCCCGEEFeAfLgSQgghhBBCiAogAS2EEEIIIYS4hjldfjhdVyAU+xVo458mT66EEEIIIYQQogLIkyshhBBCCCGuYc4rFGzCeQ081/n3j1AIIYQQQgghrgD5cPU3s9ptLD+YRfTP9+tCqZYN+av+e+mmOKovysDYdwdTCjMJvWM7x/8IyRzzqBJu3N/Ukp49BgLQ+M5t7IwrJebejbr6em8/SeSyEVo//H/dBMDR5c0I7lGg62PZ8K5q34Y07qyVWZH5HRajiVHhXbT+9mx2Hb23n2RlnhLS+uR9Sfj9prSfsKk/AFFPp+tCnQaubYhfpcqkbv0Jq93GtJhY+oYl4Dh6lNjRSnhi45tpPucRYOsYJUyxOidlw6hajCZSV3+hLV+Zl8aBxLMMadyZM3cl0jV4l8+Q23lvJ+rq8Fxf9etMLEYThmbR+K9TljtucIelrpdWE4vRROfHRmLZ2ZvUZqkA1JmTrptPi9FEoz47CQgLZfPT03WhWo8/6A7/+vsjZuobgrU+7ByljPnpyE4APBLeWVmXWlvbZkZMNG0yB2tt1Z/mnsPc9ztpIXFP9znHDVWcbHrkfd0478i7WX8cbCvSvW/601Cq9Dupm5cWb50A9KHIy4YOBnCVlOhCL5cNVetXqTJWu42YrECtHleSEtK7tHsct+1QwgtPPtYMi9FEyK91KSt1x1rdMewyt9PaCb1ju1e7Zfuo8jw/yy7zrD+gUUPtfemhw+WGjVfL2J/Sh76PfXADJx5I0h0DrksXdfPXsM9Ora7jDyaxdYxyzLyW0wNHUREAAVERPFegH8vSAxm6sdZYmKGErX/bTyu370Wz11yocj/o5HN5zL0bte1rzdenfLjuoZH4h4Tgl7bZa17V16dToykt3KuELU+4oJ+Pj0czp/FvBP9SD+eZMyS37OpzTtV/A1dmcVtoPEWDEynLuWUXACG/1tX2weFvWmC127i/SReWnq1Labc47VxW9QhPYOi+63weqwCRK4YDkNNjlrK++wEl3H7LOrR6P4WI8elULnIBELfJqRwzO3tr25dNB1B2fBduT9CVsw8twWI0caFPgu7YU3+az0nR9tOBcWat3ou1vMN0L2we5jWXkSsfVMoFVqYsV2kpVruN35OU60Ds0Gz84lpRxVKIa9N2AqIivM4RgOLeCVr9tXvn4F+1KocfM1MjWUkVsa+TOzS4Gmq+LM/5nxYTS0nPeG2+qlgKtdeGWrX4ZcZsKq/KYmdcqW67sEdyiR22QVdv6UG719ynHtyoK6PO7enUaK3sDWmHMWaEYKhZA0O0OxR8xF1bALhpzG9ayPCUg8rxWOl7pe3YEVkMLOxGxPPpWn2N/jiv1T6r7mncmfS3ZhI+Id2rPwAdJ4zW6vA1V/vHm/kgVPkd4dWmbXkyIpF9L7hTcnSZmkHYq2m6bctSw6WXDZN/JMXMrgf14eGDvltPzkz3sdn0P8p1p/LNe7XfVSxGEzGfKv1W00Y0flnpQ8M+O4l5OJP609LYMymJg/ddJHKgMqf7Ss8SOiWNHz6fx5GHzVqb0fds4tS9SVq/Ml+bQeyILO39waeV8arpJy70SSDmsQzyHmgEQPSaoVp6iZhHM31e75csmuZ1/c7qsERb/2D2Zg4sVdJ7bH9kOoZm0YR8noFz2y5tzGUZ3870WnY1crr8r9jPv92/f4RCCCGEEEIIcQXId66EEEIIIYS4hjnww8HfH8nvSrTxT5MnV0IIIYQQQghRAeTJlRBCCCGEENewK/V9KPnOlRBCCCGEEEKIv0SeXAkhhBBCCHENc3Blvg/l+Ntb+Of5uVwu1z/diX+boqIiatSowcmcKO7qP1gLDXzTtjP82DrEK4TtoW9aUCf4PCOb/MK8ZuEUftaOyEFKSOPUgxu59ZZBOLbv1rax2m20mJlCk4lp2vuyYX7V96fuSaLmp+7QrqCETF//6gxdCNKyrwFIbIvhxDmiF+1jd8dL2vrrHh7JyvfepV9YIlMKM3k6spNXH/xbN2fl94t9hiUFKHwtibadc/my6Y+69n2F686ZF0fs0Gzd9la7jdhf7tVCt5Z2iyPgp2xO3pfEcZOL6MczADj8mJmG73rPk+dyX/OmvnaZ2+GXtpmAhg0oPfy7V98CwkIpPXBQt62hbh0cx477rLfssrJz7vm+bD1l67pwewLB+UW4dhdoYbw96+m85Q5+a/uVrv7TdydSY0GGzz6V7Vd5+86znwDrSy4xPjLea/mwfV1Yk92Kgr6zAIhMfZDYBzdwdHkzNnb8XNcvZ9f2+K/d5LN9v46tcW3Yxql7kjjVDCKXFtHqw51si3Nq7d08aKhu+7JzWbbfPW9RUhmUd4xa7TZ6Rptxnj+vW573aXui79n0f5ozX2UH7DzMkhYNyy1/wRpJFUshAEWDEjkV60+Tl9Ko9VttTnY+8ZfaUh182kyDDSUErPY+l9440ZQfW4f43M5XuHpfY52zbx3Dm3TxOrZVvTrfroVij1w+gsLbZvsMee5rDnM+7Ejsg/rQ2p7ttJyRwo7R0332z9f+Od+3E1W/zqRgkYnoB3Nwnj9f7n70NZ4et9/DqmWfXvYcUo/bss7160Tw0szLjvty13T1fev3Ugh9zX0NcyW1wy99s89tyo7tcue/2pec6QnEpqyHhDawfqvXel/zYzGa2DsxSRdO3NfcAJwdkMjwiV/xWXNjuWXU14ZatXCcPOlVn3p9nr53HSnhXcodX8HrSeTePYO4F0dTd7bvvp0ekkiNhcp9o+w9R3c9CgzEULsWe++LYtuj073m0bPs0N17GRiipEVRU40AujnyDw7Gee6cti1A1I8PaKkPytZZVnn3F/C9n3JmJmjnXt47icQ8vQlXSYkyB6nR1EjO05X3VX9AZDiuoMo4duZS+FoSkc+k67Y5sqw59W/fxbERSZztfk4LW6+6dEtHKn2/gT2ftyXiri3av9dtKebXtkHkLWhPfrd5Pvt/eIyZsM8LKD10WFtniInCkVuAX/tW7EuuQeNX3OfF5a6VhtimOHLytfc5czvqQviXPRZv2NaHn1t/g8VoInd+HM2f3o/j9yN8fWA9fcMSfLZhtdsoOuOkVmwBp0+fpnr16j7L/ZPU31knZN5EULVKf3t7xWcvMbHTj1ftfFQEeXIlhBBCCCHENUy+c1Vx/v0jFEIIIYQQQogrQD5cCSGEEEIIIUQFkD8LFEIIIYQQ4hrmcPnjuAJ/sncl2vinXZUjPHv2LJMnT6ZNmzaEhIRQt25dzGYz8+fPR42/UVxczJw5c7j99tuJiIigSpUqREVFMWjQIHbu3Omz3pKSEiZMmEBkZCSBgYE0bdqUSZMmcenSpSs5PCGEEEIIIcT/p5ycHCZMmEBiYiL16tUjJCQEk8nEK6+8wrk/gsX8GZfLxaJFizCbzdStW5eQkBBatWrFxIkTKSoq+q/7dNV9uHI6nfTs2ZPx48cTHx/PW2+9xfPPP4/D4WDo0KE888wzAOzZs4cRI0Zw4sQJhg0bxgcffMCgQYOwWq2YTCbWrFnjVfddd93Fyy+/TLdu3Zg2bRo33HAD48ePZ/jw4Vd6mEIIIYQQQlwVXPjhvAI/rgoO9/7RRx8xdepUmjZtyoQJE3jjjTdo1qwZzz//PGazmQsXLvxpHc8//zxDhgyhSpUqvPDCC7zxxhu0adOGF154gVtuuYX/NrD6VfdngZmZmaxbt44xY8YwdepUbXlKSgrNmzdn1qxZTJkyhXr16rFp0yZMJpNu+yFDhtC+fXuefPJJNmxwh9RMTU1l2bJljB07lrfeeguABx98kJo1a/L2228zYsQIzGbzFRmjEEIIIYQQ4v/PnXfeybhx46hRo4a2bNSoUcTExPDKK68wd+5cHn744XK3Ly0t5Z133qFDhw788MMP+Pv7a3UEBASwcOFCNm/e7PV543KuuidX6uM3o1Gf+6Jy5crUrVuX4OBgAOrUqeNzoC1btqR169Zs26bPL7Jo0SIAxowZo1uuvl+wYEEF9F6vb2wbLceV1W7T8shYjCZif7nXnTcDqHzzXuY1Cwcgp+vHWh3JoR1wbN+N1W7Tfm4a8gA1c51aGc88DFa7jeSWXbV1NT9N5/dHzdo6gFofp+vyV3jmkuj82Ej3ADK24MjJZ3fHS1o7FqOJql9l0i8sEQBTYCAHnzHTy3wb9qfMuMztsNptOLftosPE0Vq/AHLf7wTA/ufNRD6TzpnrjpH41Cit/WH7ugBQsMhEz2gzTX8aCkDs0Gysdhun7knS6msxO0XLcQWwesFcrHYbtT5OJ/+umdryzU9P1/XBardhqFObhu+mYbXb8OvYWjePnnlnrHYbfmmbsdptrNhoZejuvQBsv3hBK1t64KC2raFePWXDWjU4d2cnzg5I1O0fz3rVZeqcqu3esK0PoORBcRw7rttvZf0yYzYrv1/MoS+aYmhQH4vRhPO69lq9ao4rTxmvzyRnVjwWo4ni3gk+cxgBxH4yWjdnh79p4VVO/RkfGa/1U1328MFOWGpvxRXgPk7VPEVlc1xdtHTEf+0mLvRJILn9Lewfb6b5nBStzlXLlXOztArsfmAGrk3b2XFfrK49/7Xu3FNnBirzHrl8hM88KU1/Gopz2y6c23bp1pXlPH+eC7crc5S4+RKf7v+NgMoO3TYBURF/muPKardxtn8nr/0OXDbHFcAvbb7W6qj+WQZNXlLytxT10vdDtXh/mj5X0cwErcy2x6Z75bhSPVlbyfWSenAjFqOJ/DcTvfap57FqMZqYs2+drg/D7xytq9NiNNHj9nvc15iL7lx5saPW67Y977yomxcAv4AATjygnPPNRm/Bardx5CGzrl/qv41fTsNiNJHcpptWj7Nre10bnufZoTsvsmdSEjEP7dVymZW3H3vs6kW8zaGV6dljIAe6hXjl6GqSGawbg2vDNm1d4eQkzq6KUo6FUIOuT3HZAwDIX6SvD+DAOLOuTnV/WowmGqwv4fiwJK3s9bMytdf9dh7xmWvsxqEPattHrK+imx91uXnsKAbtsis5rkDLcaWu9xy3ds0D2k9WztnwCem6dvMXtveZd6nakgwtx5XVbsP+hHusp+5JYvH+NK186nbvv0RRr89+ca1ICe+ibRuWUU3b7tjIJKx2G1FPKfc8zxxX+583k/tuova+xsIMAhqHAVBomes1N6pVhZmsyF7Fo/d9w/yi+l5l1Hm/dEtH5jULp8PE0VqOK7WcmuPKarexMvc3r/k12AO19SceSOLmAfdjtdvw/+P3H08Wo0l3HKjLTjrcOfpO3pdEz5jOytg88svlD5iJq6RE65ea40qto/C1JKWsv0FXf2nhXhw7cwG0HFfdtp7T6jWOVHKS1Z2drstxpbZT6XvlXqCuU//9tW2Q0i+PHFejc/PYM8k9vobvpOlyXAE4cguw2m24Nm0nYuYu/TUx8icAcufHaX1Q1zty8glc21BbXtjzQ3zJm5qIxWji9zSj1q+Y+7PBoVwXqvpX1sqeGahcOw0N6nPgWTMWo4m+sW181nu1Ub9zdSV+KlLHjh11H6xUd911F4DX54GyLl26xIULF2jYsKH2wUqlfhYJ9nHuXc5V9+QqISGBmjVr8vrrrxMREUGnTp04f/48H3/8MdnZ2cycOfOy2zudTg4dOkSDBg10y7OysggNDaVx48a65Y0bN8ZoNJKVlVXhYxFCCCGEEEJcWQcOHADw+jxQVpUqVbj++utZtWoVU6ZMoV+/fgQEBPDzzz8zffp07r77bmJiYv6rtq+6D1e1atVi+fLlPPjggwwYMEBbHhISwtKlS+nTp89lt585cyaHDh1i/PjxuuV2u52WLVv63CY0NFTbCf8XjRo10r13Op3llBRCCCGEEOLq4nT54XRV7PehymsHICYmRvek6NChQxXWhsPh4OWXXyYgIIDBgwf/afmFCxdy//3388wzz2ixHfz8/HjuueeYOHHif93+VffhCqBatWq0bt2a2267DbPZzIkTJ5g2bRqDBw9m2bJl3HzzzT63S0tLY+zYsbRr145nn31Wt+78+fMEBgb63C4oKIjz58/7XCeEEEIIIYT43zBmzBjS09OZPHkyzZo1+9PygYGBREZGcu+999KzZ08Ali5dyqRJkwgKCuK55577r9q/6j5cbd26FbPZzNSpUxk1apS2fNCgQbRu3Zrhw4eTn5+PwaD/G+Ds7Gx69eqF0WhkxYoVBAUF6dZXrVqVkpISn20WFxdTtWrV/3Ofy37aLioq8vn3n0IIIYQQQlxtHPjjuAKhGNQ2cnNzqV69eoXXP378eD744ANGjBjBuHHj/rT8+fPnMZvNdOjQgcWLF2vLBw4cyMCBA5kwYQJ33nnnX/qQprrqAlpMnTqV4uJi+vfvr1tetWpVevXqxd69e9mzZ49u3caNG7n55pupUaMGa9asITQ01Kteo9HIwYMHfbZ58OBBn9sIIYQQQgghrn4vvvgikyZNYujQoX8ao0H15Zdfkpub6/W5A6B///44nU7WrVvnY8vyXXUfrtQPQA6Hw2tdaWmp7l9QPljddNNNhISEsGbNGsLDw33WGx8fz8GDB9m/f79u+f79+7Hb7XTs2LGihiCEEEIIIcT/DPU7V1fi5+/w4osv8tJLL3Hffffx4Ycf4uf319r5bz93/BVX3YcrNejE/PnzdctPnTrFsmXLqFWrFtHR0QBs2rSJm2++mWrVqrFmzRoiIyPLrXfQoEEAvPPOO7rl6vshQ4ZUzAA8PLvFpr1Ww3f6Bwdjtdu0MOJWu43IWicAKBqUyL4JZrpsuYP94/U5tyxGE63fTQHAsGYj1T/LIPeTDgBct6VYK2MxmnCcOq3VDdDgvTRdCFwA/Px8ho6u9oUSzrfwNSWErX/b5vj7+JNJte6mq4ey7dHplO7Zh/H1NPzSNmtlNk6YoQuJGvOIUnfjSUq46Py3EqmxIEOrb24T5f8M1FkRRM7ktkTf7Q6v3fbNFDKnuOvbOWK61/yo4+mxqxcl30f4DHkO4Dh+Qlvm2rDNq56y5dWw+fOahWO127jtm8cp/Kwd1z08kosW94dyx9Gjyr+5BQR/mUm1JRk+Q3yroXrVn/N3dNKWBd6yB4Af739D23ZgYTfdtgGNGureN+yzk9jUE+TMicf/V2XOTjyQRJu3U7xCJ1uMJhqvVC44Qd/pwwOrrHYbOffOwGI0MS5fOU6vCy3Qjt2yZcvOF8AHoZnMjY0kdmSW13FmMZro1cGibVvZuoGiwYn4OcDx+xEav5xG+AtpWp0J45QQ39kvzuDJw+058rCZhIVbde179qPafuV8qJNt0K1X+xF99yYOPm32Wucr7H2VZetpMTuFRdbrqW8I1oUVBigt2KOkP+iu/z9eZev57d1ZXm2U/Vf1+yNK346OSmLnxfNa/wJClZCwOR921M5xgJsGP4AxQ0nzMLCxWWvn5cIsLeT5OycjAHeY+vw3E3GudkdObTNVCaOdHKpcU5o+kcHAwm7cu/d6AC7d5A5jrP579857AHB2UeZVDdm98EwdrYwry72fSg/afV5zLEYTfcMSlGvXjR208qv2beB07B+v9yrjqD9NOS7OOou9wqsDHLynOQefUebvh8/m6fa71W4j8jslYXyl3VXY/cAMUrevUfqZ1E7rS9njwNXtIFkmA71zeirLnRB0zKU75qx2G9nz2mrLTq6I0dYBRD6bzm9tv1KOT7uDR/N2aeuy45aw+Ewtmg62kfNRR13I++2PTOf4cHcY6lqb3X8Of6JFIKe7X+DUvcp6NYx14WtJLG1RH6vdRrNf79XNQWXrBppmKeVmhSkhtAPCQnVzFLLYHSI971N3OPuyYj8eTermH7AYTex/zkz9D9K0fveMcoc4bzpkkz7EfnwbbZ5Ku8dp81R/o/Jn+/lvJlLz03RqGdz3Hc/+Bf9ST3ccurK3a+XO9u/EgcSz2vq6s9whz8tqPCmNmMcyyFvgHuOKzO907R1JMXtd29pPVu7DI2rYtXmyGE1aqhGr3cZZZzE/zVfCeteb6e6D5zj67jiKxWii4wR3CoNT9yZRL60mUc+kkzMzgRXng6j9UToXaymhvlfm/obVbuPQWLNWj9Vuo87cdI4sa64bZ5/RY/6YcD9qfZyO89w5jqS4t1P7fXxYkq5fnudgzr0zlOPL6VDu2X+kaJhcqE+lcOqeJH5qo4SqnrtvHSs2Wr3mXReufluRbl9Y7TZyZse71//Rn0s3xdEn+CwRz6dTHjXEuuf93XN/qa8Lbpmre68q6XrYa7lnygOA6MczOPZtLE1eTNP1OXXLal05/+BgQhZnKNey348QNjnN57EnKt7EiRN56aWXuOeee/joo4+8QqqrDh06xK5du3RxFtTPHR9//LFXeXVZfHy817rLueq+czVmzBg++eQTnnnmGbZu3Urnzp05ceIEc+bM4dChQ0ybNg2DwcDevXu5+eabOXnyJI8++ihpaWmkpaXp6urbt68Wm75Xr1707t2bt99+m9OnT5OUlER6ejpz587l7rvvpkuXLv/EcIUQQgghhBD/B9OmTeOFF16gSZMm3HTTTVpeW1WDBg20QHjjxo3j448/Zs2aNdxwww0A9O7dm4SEBFJTU7n++uu54447APjqq6/49ddf6d+/Px06dPiv+nTVfbgKDw9n/fr1TJw4kdWrV7N48WKqVKmCyWTirbfe0gZdWFjI8ePHAeVRoC+FhYW6xF9ffPEFkyZNYsGCBXz66aeEhoYyceJELeyiEEIIIYQQ1xon/jivwB+0VXQbap7affv2cd9993mt79q1a7lRxgEMBgM//vgjr776Kl999RVPP/00fn5+xMTEMGXKFMaOHftf9+mq+3AF0LRpU5+P5zzdcMMNuFyu/6reoKAgJk2axKRJk/5/uieEEEIIIYT4h82fP9/rq0T/bdmQkBAmT57M5MmTK6RPV+WHKyGEEEIIIcSV4XD54bgCSYSvRBv/tKsuoIUQQgghhBBC/C+SJ1dCCCGEEEJcw/7OMOll2/m383P9t19cEn+qqKiIGjVqcDIniv7NOmC122g5LYXGr6SR+3EHYu7bqAvLChAQFUFpwR4KXk8i6il92FFDs2iOvuVP7d45AF7bWu02oheNAiBsjYPAFVm67cuGgFXD5Za4LhHoV8lrXfGtCQR96w61emismUZvKyFFbxryAIY1G73qttptdHl0JOvem+Uz3PLMveu477Gx/DJ9ttf6YyOSqDvbO9SqZ90Wo4mAiCaU7tmnve+5/RSL9sSzvv0XgDsc6gVrJFUshRga1Mfx+xFdfd+fr8Rb0a3ImRNP7PAsDj9m5tFRX7GkRUOvdkEJBVvpx2yv/rT47R6a9N/q1efvDmbT7MuHiHksw2veAY44zpG4bCwFd8zipsEPYPh5I8W9E1g7e7ZWR1z2AE4crEnsqPVe+9qzH4/m7eK9wf21ENie6/Z90YYm/bdy6t4kMl+b4XOfHPs2lrq3KsdUwSITUYNtf7oPfK0LCG/M1F8W80h4ZxI3XyKjXSWtTGn3OAJWZ3tt77yuPZV27sNx7Lg+RK/RhKFObVK3/kTU1yOJeSgTv4AAVu3boAu77TmvUV+NpOCOWbo6yvbzcixGE2cGJhKyOMPn+rLbDyzsxsnOJ3zOiS+GWrVI3b4Gi9HEoF127q9+hOR2N2uh+y/XpsVo4rYdx/lsfDLr3nefWxf6JBCSbad0/wEAJhRspHOQP1Ffj6Sgr3su2q0fRMM+O7W+xmQFkhtfor3PW9Ce/G7zdHNhtdtYdT6QcW8Po/70NGbuXceo8C5Y7Ta63TuMPbdWIuaxDCzbirC2rq7r86P2eN4zZun6vrxlHa9zwXOf+dqv5fn9ETO9h/3KpPpbdeULJyeRc/8Mut89jICfsnV9Khuu3dfx7OsYmXkqlG/aNsK/aQSO3Xk+6yzv3Dg2MkkLA35kWXPq374LgKPLm1G6tg71eh4g4KZ9Xm123XKBZ+vu1s3VyANJzApL9zk36rh9rTvwrJkqR13UmZPus89l56JoUCLVP/M+B14qyOaFqDiv5Tnz4qhZ+xyb4heT9MQoqi9yb3tgaSvC+m3XzVdZVrvNazvPsjXW1eF0FyVoVUnPeAJXZnnVoaqXVpOj5lPlri/r+INJ1PkwHftTZoyvK1GGPfeTL3/lfPd1XJV3PSpvThI29adWr1yv7Q21auE4eZILfRKo8s16n/v0jRNNebJ2vu74aTEzhchpu3AcP8GAnYdZ0qIhVruNjhNGU+fD8kOc+zpG/mzM+79sTfVvqmkpVi5Xt8Vo4uBXrQi9Y7tuna/j7fAYMw3f0UeDvlyf1fu8qux1aHRuHu+PvIvVC+YS+8loIp/xDpdfkhxPYGqWrm6L0YR/uxbsSqlG7Mgsn/NS3DuBoO/Ws+eVJCKeU+otdV3iZ5Zx+vRpqlevztVG/Z115C/9CKxW6c83+P9UcvYSs65fetXOR0WQJ1dCCCGEEEJcw1wuf5yuv//bQq4r0MY/7d8/QiGEEEIIIYS4AuTJlRBCCCGEENcwB344uALRAq9AG/80eXIlhBBCCCGEEBVAnlwJIYQQQghxDXO6rkwkP+c1EEZPnlwJIYQQQgghRAWQJ1dCCCGEEEJcw5xXKFrglWjjn/bvH+E/qF/bjtrrYqODGuvqaDmuQMmboL7e8UR9AC3Hlee6nU/X1HJcAT7zaDR9IoOmT2QQuCJLt61fpcq68p3HjNJed3/sYV1/e0abAbj5lV/ImR2v1d/obXd+CTXHlWdemCPLmmMxmgj+MlNr67kCG2EZ1bQyo8K7cLiTAfNYpf3Cz9pp6+rOTmdc/hatXldnkzbO03cnanWqOa5+KYbCxW1Z2aom53+th8Vo0uVu+aXN11jtNorbNNbNtcVoYmq/OwGIHa7kryhqVqrluFLLJowbrfVNzXG17wWz1g+L0UTDmkXaNp4/vUPjKOg/k2Mjk3TzbjGaSHxyFL3HP4F/rYtYjCZ+XPQRAGtnK7m/Em13YjGa6NRwX7k5rvzi22jL3otuDuu3YrXb8G/XQmsHYFK7ZQCcii0/d1DNKsUA5L2dSNRgm26uPPut/qsuL/2xCc6u7bV1J8yhPBLeGYCMdpV026s5rsry/3UTjmPHtbo992Hq1p+wGE00f7FAmfvFzYn9eLRXHer8eOZL8uy/f1CQbrmnY45zWpsANbec0NVbdi56depN6/dSOOI4x+LIn7Syh8aavebMc3sAx8mT9Og1BIDPmhuxGE04jh5V9tsffSw7Lk8P1dxP8NJMuo4YoS37ZfpsSvcfwGq3kTMvjolRHQCIfSxbt61njiv/kBBy40t07UTfvUl7bzGayJmZQNJ/RjE1ugX1pyu57SIrVSNvaiLRa4ZS6cdsLYebtXV1pf0/rhUWo4ndHS/p2l/esg4APaMSde3EPJzJgILu2rJh+7pgMZrw69ia67YUe82hqsH7aWSZDAB0HD9aG0fO/TMACPgpmzMDEzn4tFlrC6DZ3NGcdl4oN2fPodKzWIwm2k9K0bb7umU9XKWlpK75Epe5nde+KXtuqD+Fk5UcV2rZ+rfv0tZt7Pg5jd5K03JclT3O1BxXD+XmaMv2JCj9Xrw/zWubiBUXvNoH5bpf+TTcODqD06nRuvG6ktzXXs/+p7810+s4zvu0Pf5+Tm2Zf9vm2uvYodkELKtF8vV9dbmqALYnLdTVv3dJG448ZPaav9N3nNXayv2gk3ZMWO02lkStxt/UEkDLceXs2t5rPwAsiPi53GOm7Jhy5sVR50Nl/6g5rgBdjqsDz7rPa2cXJfeeOod+7VuVmzuv3DxYCW2U/l/X3qtvh8eYMdSsAUCP2+/RclyBkmtNLZe6fQ2AluNqy8Vi7VjOmRen3FNah+iOB4vRRJOJaTiOK9c39V7XYlbKn+a4Uq+PJb3ilfyDLWO19QWL3OPsGdOZ48OSAGh85zYyXp+pq0f9t+T7CObuW6dbti1xIbnz43T77oWoOPBz/2na/vFmNj81XXvvV6myV19Vap/fim5FQFiotvyhmvspvjVBm5tTjqoE/JSNxWjS5bjyFJiahWGNEfPmi1rd9dJqsnLlZ8SOzCL4F+V3jwvWSG2bnA87snb2bOXcfM49v03WeF/nxb+bfLgSQgghhBBCiAogfxYohBBCCCHENcyJH84rECb9SrTxT5MnV0IIIYQQQghRAeTJlRBCCCGEENcwh8sPxxUIxX4l2vinyZMrIYQQQgghhKgA8uRKCCGEEEKIa5iEYq84//4R/oOcxUrYY4vRhCvQwZKo1boQpxajifiNAzgxNInYlPW6bT3DRPsXBfgM9ezsYtKFXc1/M1FXv9Vuw79mDYp7J2jbzn59qlZ/8JeZxG8c4O7v+fMA/No2iMLec3T98fspVPde7VvkiuFsil/sNfbrg+BA4lldvyO+u8DFYD+cXdtT7yslNOmlm+IAeLVpW3dbv9m0caphXZtmucNqvxJlInLgFqx2G6GvuUPpqmPuGa2ETa/0oxJqtWiwEgb6odwcnJt3an0qGpxIYZ/ZXts3fKBQN88AO0dOJ6CREsb2+LAkqgw6q9vOMwy4xWii7ix9eFer3UaNhRnUmp9O3o3zdHNoMZoonJxEjeQ8lhxIJz++WKvbM/wtwKpln2qvPefWuXkn8TaHtuzN/Js5MzARl0G3OUdSzNifUsIMB9ykhLbPHzhTN35fPMNXB9y0j08+fZ9zq6IAON/A36vcyRUx1Pqttm6OwL2/y9atunHog1iMJgLCG+M4ehSAHeYFrB3yBoC2bz37m9ymm9KvxmEAPHm4PVa7jZUFGeS+30mru9lHo9l+8QIAQxp3Zvreddo6xw536Ouyof0tRhMrMr9j26PTqW8IJvEpJZ1At3uHseWJ6fq0BA+Zddv33H4KAP8DR7zOYYvRhLO4GPvXLbVlrqR2WIwm1pe4Q5qr4107e7ZuW/XfFm+e1cqduDueltNTsBhNJN94p9bmcwU2nGfOAGCIifIao1pv4W2zSX9rpm6/tH4vhQYZ4HLC0eXNtLb8fgrFYjQRO0IJk134ahJhGdVIbtMNS597sNptnE6NVq5VxcVex9bpLse1sc1touyLVcsX8NEmMykHE3XnlC8bXp6hvf7PoQ5a+XMN/AmdooSR3/eCmdJucUSMT2dAmBIu+lG7Ejr+wDh3aPD7m3Qh9eBGGs63MbCwm9buSwXKNcQvbbPu2gpw6JsWumNE/Tfn/hla2ZcKsnXbtc4YooUdN6wxeqXVAKj0cyOmxSjnfY8mHQkIV1JK1DJUBT8/LEYTqQc3EvXjA/j9ZuPo6CStjvZZA5Xrfo0QjMv38fXqRDJMX3Ikxaz1wy99M63fTfEKG359ygivOY++ZxMJgZW0Ms4tu3Tb+PU7hiOvULtW2p/Qh8BXhQ/YSv1p7mu1Wn6HeQEFU5S0FYt7faC7R7Z5JwWnbYdu///w2Tze2ZPm89jw3DeevjlXTbefYoe60xVc6JOg1ePfurlWLmxymlbef52Nut+VKuMNCMC1abtX26rc9zvp7htqfwynL2CIieKHz+dx811DsRhNTC5cr6T1eCcNx6nTgPv6rm6//PrmZZsAoHXGEIL9SpX6/Q3UqnNWt95iNNF0sXKdMrSM1erLnR+HoVYtmryUpi0bl7+FmXvXeY1HfR+4Qjm/HTvc6WA8U3c4z52j2l2HdG0DnBiaxJKzNbRlP7f+hrCAarp9ZDGaiLk/23u/uVxY7TaCf6lH45fTaJ0xxL3q0kVd/3ydQwClBw7q2jmcaNCOrc+aG73GW/b4L/2xCflp4aS1c4d+f8q4yn2duV65P/3S5msA3t/7G5UPVcJiNNGrU28A/Dq2BmDfje57urg2yJMrIYQQQgghrmFO/HBege9DSbRAIYQQQgghhBB/iTy5EkIIIYQQ4hrmukJ5rlzy5EoIIYQQQgghxF8hT66EEEIIIYS4hjldV+g7V5LnSgghhBBCCCHEXyEfrq6Q2Ac3KCE6zbdpy44sa05WhyXUnpeOs2t7QB+6W31dba+/V/hSi9HEPksV3fsG69GFErUYTTiOHiXou/VaXfe+OlZ7ff6OTtTuncP5O9zhqkuSlTDF0WuGkvtuorbc1e2grg8B4Y0BKOw1xx1utlYtXXhUtQ/7vmgDQNDkw2x4eQb+azdR7YtMAJ6Z+YlWp9Vu45jjnNc4AV14ci+J7jDuFqMJ5/nzuvmrviiDqK9Hclvwea0Mq8OovigDgLf3pOu2Xx6zisPftADgxu23a8t3vd6IgEYN2fDyDBzHjjMip8Brv5TlGaK5rEfzdmkh7iOfVfqghotWt1HD36phw8u2Z7XbSN6djNVuY1L9rdr66j3zCVmcQaUi9/8hstpt1J+extYx03V1tH0rhXt37/cKNX05jQKqEdyjAICG7yhhi0N+rau1s779F5zsfMIr1HfJEye96mr3Roq2vrJ1AwCle/d7tQfgF9ZIV19y8+tJ3foTiU+NonT/ASxGE9/mtVbGsbM3Bf1maePc/cAMxkYoYZ8fzdtFSngXra7i3gn0uF0JH951ixKufefF87r9l/ikEtpYTQ9Q6UclpHObzMFYjCZqrKtD/WlpRKx3n5crW9XEareRuvkHLUS8IbapbmzGvjt0YbILFplICKyktd1v5xGtPoAuj47UvS+8sw7HhynHzaTnP6TxJCXMsmN3Hu0np9Crg4VXbxuo7QtHbgH7XjCzZ1KSbn+rryOXj9D6ZjGa2PbodEI+zyD6nk1s7Pg5AKNz86hf5YxWzv6kmejEvcxtsg7XxUuwXjkWayTnucPSN7tO22+n7nEf5/fu3q/rQ8x9G3Xnu+c1TQ3vXzYk/7Y4J2/sUc7nM7FKSoK47AE0eSmNgJ+U/XTmLiVVxe6OSpj7jQ+/S/IN/bDabVy3pZibho1kZV4aZ/opocfNY0eRGGTwCvlstds4/mASjfrs1O3HsuH7AV6IitNSBQBsS1wIQOx/bKQ2S8Vqt1Hnt1pYjCY6vDwai9HEpRsOacfDqn0bmLdusRJyf3YKh75ujqFmDZJDO1Bw00cA1JuRrrW5KV4pm7plNRN/+YqmT6bT7KPRbHrefc4DhE5JI3daJ12qh+BVW3Rj+bPrgNVuo1avXF2ahq1jlXb8q1bVlbPabRhaxmIxmrA/6U5XYDGaiHo6Havdph3z6jwaX3eHQ/e8jrSoXFV3PQwIdYe0d65uzEsF2Vq7ADNiorU6rHYbx0a4j72jQy5o9Ti37cJWUuIzxPon4b8A4Cot9ZqfmKxAAPY/bybmkUxdnwMaNgCg1Wf5pK796o+Q4Mr1IS7QHeLbV0h/AMex47r21PQBoXdsp2kl5ZqI00GjMSXkzIknb6r7nh09NgNDndocTayDxWhiwM7DxNyfjePkSV0fhy8dyajwLl77u2dUImWVDX1/OjWa4t4J/Nz6G6+yteelMzc2Ule+7LVm/3izrl6r3caBce5w/ueuP0pA4zCMbwZo6wPCQgmIitD1N2dOPFa7jc6PjSy3vxHPKefJyRUxWv3OLu5jq8o37nQ4rd9NIeCmfUQ8l07+W4lambaVg7R67U+6+5m3oD2xlYKJGK+08fqvXwDg2rBN+13pf4Ga5+pK/Pzb/ftHKIQQQgghhBBXgHy4EkIIIYQQQogKIAEthBBCCCGEuIZJQIuKI0+uhBBCCCGEEKICyJMrIYQQQgghrmHOK5RE+Eq08U+TJ1dCCCGEEEIIUQHkyZUQQgghhBDXMPnOVcWRJ1d/oz0vJwDuPB/HhydRumefljOh/u27aDZvNAA/fDYP0OcxOulQ8jUFHXN51X12QCIR49O5+EO4tqzakgyfOTo885BkvzBDe131KyUnx/m6/ljtNubsW8fPH84BoFLlUgr6z9TlGDk7wJ33Qs1DlNzqRqx2GwWLTKRuX6PkplgVpWt/Z+dPsdptLI9Z5ZVLY+SPQwF4qSCbfaVnGdK4s1f/1TGoXi7MAtxz9fiCz3Xl1LI3D7hfWxbzUKY2Fr+fQqH7AW1exkYk6ba3GE1sTvgMi9FE5Zv3AuAXGEjMu5coPXRYa3d2bBRWuw3TJu95BiXnCoArqZ3PMb0X3RzXs3W09w/lKjmtWmcrp2XOhx0BOPiMmZTwLkrfO7bWzYfFaCI/LVx7XTavVNiradrr789X0pVTc3kF3niMISHHvfpX0jNee112v1mMJl2OHNMmOHPdMV3+GgDz46N0Oc+q/ZEby3MMDacqfew8ZpRXHprSbnFaXQeWtsKRkw9AwRSljKOoCIAaCzI4MM5M0aBEwgdsxWq38XLU17r8Np55ih7Puktro0F6ddbOnk3O/VWxGE2sbVsFq91Gi8ruXD0Afncf1caWO62TkmerZVeMfXcAsCRqNYbYpuxJuKCNTc33E/XDA2zp4MJiNFE4qIGuL2XnN2qwvq9LW9RX2v9j3zsq++n2c5OX0qgzN52S7yN4K7qVbn7rf5BG6eHf+b1LLa3OvS+ZafJSGhET1rP/eXeuFqvdRvAv9YgdtR7/ts29cu4EhIViMZpwJbWjT/BZLfcPgPGNNBw32gFwnjmDX1wr9nzuzj/XfcdttF57Vqsvc8oMbQyfNNPngSl7DBszQsj7tD0Wo4mTnU8wYOdhnOfPa2X2TlSOhT6/pOjO9ey4Jbp6Qj7PoPOYUdr7QL9KXGpUHYBf2wZReZVyXTlxYyRWu420t2e6O+VvAMDQIoZW6UOo86E7N56nhHGjdeehf+vm5I9pprXZJ9eizGFJiTavxzufxGq3afmqPN00+AHqG4IBaPJiGlsSPsNx6jQA16eM0I7t5uvuISYrkBuGDdfajgusrOSi2unS5l0tb7XbGGhOJ/XHJVp5Z7E+l+BLBdnaeXP4cbPP/QPw/JE2HBrrPo4AnOfPc+reJKx2G83mjtbl7DO+keaznvJyBlrtNq57aCQXe8Rry5tWqqZtvyIrVRuTf/f9JAYZdONVJdruxGI0UXvHBeI2Obl+9AhKjlTV2rDabTwdqeR89A8J8Tlexw0ddH222m3kxpfQc/spGk9KY+9L7nmyGE2s2GgFYEsHl5afLvHOzV73Cu0ci3Tfz33dN8JeTfM6L7tuuUBpwR5ih2dRPdf9K53VbsNx/AS1P0onoHEYS1o09Op708Wj6NltA/lvJurGaTGacBYXUzRYn+uq1QfunIQANZLzWDt7ttf1zPN3Bc/lngLCGxMxfZfWXo9bh9D+lRTdPQugdP8B/NI2a9utWL+C0oI92vuQX+tS2GsOt/S/n2pfZCo51RrU182Run+T29/C+vZfuDth0OeBNDSor+QRm5Kmtd/0PxlaPb269GFCwUYAtj7uzh1n2Kfkv/Jv3VyZp8pV3Mdn+rd8nbPVa/zi302eXAkhhBBCCHENkydXFUeeXAkhhBBCCCFEBZAnV0IIIYQQQlzD5MlVxZEnV0IIIYQQQghRAeTJlRBCCCGEENcweXJVceTJlRBCCCGEEEJUAPlw9TfadNdcLeSqxWjC/6Ky3GI0YWgWDUDEc+naMpUawrOWQQkNXXPheq91Rzoq4ZjVUOGghIm1GE08nrcTi9HEpZvisNpttJuSogtH7RmuHKA02A+L0USxy0/rx87On9Jmaoqub9WWZHiN8Ug/JfRo7g3zlXKJbeHDegBEpj6olWu6WAnJ/fsjZq3tnOkJxI5aj9VuIzHIwPAmXbzGqbrhweHa64TASrpyU6NbcLZ/J11fLUYT/uuUOpK799fKPnm4Pa5uB7XtD/3HHToXIOrHBwiIDMdiNLF/vHudq6SE4npVdH1T59PWXilz3nmR/DeSMLSIAcC/uxKu3i/dHUbWa3wZW7Rl2ecjAdgW5yQgKoLYBzcAEPpamjam3aODlHDTnygh/A3NorVjSC0zLKcQq93GjUMf1IX69gzTbTGaaNhnJydXxLCwzTy63zNMW5e/sD0nHkgicGWWV1hsz/epPy6h2QZlX0xpoCw/OiqJSj83UsZvaknI58oxk/SfUbow0ABNP3eHxc5/M5FqSzIYtq8LdWenk/+WEso34Cd3OOiwftu17f9z63J63H6Prm/bH5lO+lsztfHdtfIhrHYbnR8b6RWWuf7SIK2u35OKsBhNRC9wh6K2GE2kHNSHE67eMx9/U0sAJnT/WpmDHWu19T2jEnXbgxKS2mI0EXOfEr63RXYATV5yhxpWy/3+SPmhrlWuDdsASH9TSZEQ0DiMgFAjhlZKqO/AW/bg37a5OxXBXUOV8MJ1alNvpvsY2TV8OnteTgKng8aT0nTHyFfRPyj93rILV2elb0N372VETgGlBw4q6QDSN3uFXi47blf2dnZf94lW5uTSUPrXWu9zG6vdxkO5OQzLKcQ/JMQrRPWv61qR332etmxJi4a6OnY9OAOAmHs3MvmYO+y5Zz3TTinh3us9VAhA75yeAPiv3cR1D43UbRN4yqG1raUVcDo48KwZx85ctictxGq30Trb32sejiU4dWNzbttFxHhl7ttkDuZC19+x2m0cGOcOXX5gnFk7PvPeTmR0bh535N0MwI+LPtLqUst9uv83AH6ZPlvrX/iAreTGl/DzXCWVxjsnIwAocV2i5o4zRK56kCMPm3XXx8kNtmAxmkhu2ZUet92tG4fVbuOFqDitX5ufnO513s4vUsJdZ5kMNHo7TTffAJmvKftl9zDl30/3/4aza3su3RSn9QHAPzi43ONJLVfNupWzxgCv/eJ5f/WcS89tVWd+Vfr7w5L5ZLf3p8qy9RT0naWrU33tPHMGQ2xTXR1Wu023PzzXjam1B4DwF9K0dSNyCnTtB3+phAnf1+mctky9/2hhxwv34rixA8G/1KP4xSLdfCw/mMVzBd7zs7ZtFe31ucYuLaWH2nbha0mU7j+gaweg5fQUosdmsLvjJZo+4Q43PqFgIyeGKmH0qy9y3/Otdhthk9N8hpEve2+otiSD/LcSvdJgHHnYfZ0r3buf1K0/adut+nYh9ad5XxvL9rvssbJpQzSWsDj8frNp6w/Nrk3OTCUVTu60Ttr+dfx+BFBSq7yxJwP/tZuwGE2cuStRW+95r/C8LgOUNKnNxKgOuuMFIPLZdAYX3ohzmzu0fLN5o7V6+sa2QVxb5M8ChRBCCCGEuIa5ACd//5/seWdu/feRJ1dCCCGEEEIIUQHkyZUQQgghhBDXMAloUXHkyZUQQgghhBBCVAB5ciWEEEIIIcQ1TJ5cVRx5ciWEEEIIIYQQFUA+XP2N+sa20YUprffTfi00p2N3nlbOareR+24ihrp1AH04cavdBk4HAQ0baOXtT5iJeiqdXp1660LnGn5Wwj1PjW4BQO931mAxmtj89HQtdOjLhVlELxytCzca+t1hbtp2hkfCO+v6b3xDCYt6doA+JLXaHkBd2xm6PDKSHrcOUVZkbNFCzhYmf6iNI3+gEiK7wfvuULWxKe4Q85798QwZr/r5wzm6sqoevZR2q32RCcDhMe7Qttpc78zVXm/p4I5TE/vxaC7Ud3Hy/iRtfcy9G7VwuI1fVsLOjstXwqUHrszSzUHZkLB9wxJo+mQ6jp25unlS15+6J8krxKynl+pt115fbFzLZ5nCnh9iMZqIeiYd/7bNcezO0+p0dlHqnRsbyRsnmlLZukFZfl17Jdz5G0m6uqx2G+vbf0FspWACVmez8Ixy/AVUKuXFZ+dpIWxV6lyrbul3H7s7XtIta7g0jzcilmK122g6J58TQ5U2q3+mhPr9+YI/7bMGAuDn+KPeyE7U3aT0Z26TdQA0/U8GMVmBgH6e1eP465b12Pe0S1sf9eMDXmVjU9bTo0lHqn2RqTuW/nOoA8FfZurCOQMcui5YNzc9arrD5Kt+T6wBwGfNjV770VlcjCMnX9vnhpaxXtu/02gDF/ok4DK3023f4H3lWDs+PIkWs1LKDcfuefyU7j9A6UE7ju273X3Y4g4F7P+rEmbYcfwEhx8367ZXw4OrZdX2Ep9Swmwf/KoV338xH4BnV93F7Ngorawq+YZ+ABwf5n1ceZaddKw59Wak61IodHl0pK79aTGxDKh2GueZM9p+t9pt+LdurgsTrbZnMZq4adsZXTuFi9uytm0VSrvFaeHVVctb1uFij3gudP0dgEs3HNLW/TptljYvo3Pz+HnuHF17rbP9+e5gNmGT03h/729am9vinLpQ02/vSSfmoUyvecp9vxP+QUEY++7Qym5/ZLq2PuzVNPZMUsYUPTaDSVPu4dz1RwGIf360Vi78C6XP9zRWrtOe56PzuvZau9GLRjGm1h4sRhO3hcazasVCYh/YQP0P3CkdAFrOUFJtpO5Yy6rlC3THVsyC0Thu7KCbQ/U4iX48A6vdxv3Vj1BWzkcdAfBv29zr/LincWcMRRep9GM2oOzf3x8x49+gnq6Ngtfdx1Puu8q9x3n+PLU/Uo7Zo6OTqLGuDvlvJepDrQ9MJOxV9/1FbUOlrit7bylbXrtv5ORry3xds612G3teSdLq9BxDvbSazI6NIu/T9rryarlWHyhz3+gtd59KesUDYFizka+if6CKpZAOL4/GEB2J1W7jttB4XokyaXWdGai/Lxe+lkTkuHSmxcTqxpdz7wyOLGvuNQ7PNAye5Z8cl0Lteem6ecqZE8/Tv5u0vvoF6P/oyfN3FlXlE/6691a7jU3PTtfNcdl7qJqipqyy86+WP7cqiujHM8Dp0C2vf/suYkcpv1/EPKS//luMJvY9EceTEe75S5s6U1e3em9o8H4aR5b9kW7m/U4Yft4ICe6w6m03Kk9gSrvHsShyja6PEc8pc9gqXX/fvJqpT66uxM+/nXy4EkIIIYQQQogKIN+5EkIIIYQQ4hom37mqOPLkSgghhBBCCCEqgDy5EkIIIYQQ4hrmcvnhugJPla5EG/80eXIlhBBCCCGEEBVAnlwJIYQQQghxDXPih5Mr8J2rK9DGP02eXAkhhBBCCCFEBfBzuVyuPy8m/htFRUXUqFGDronPUylTyTvjmWOibB4nXzkcLEYTJcnxzJ7xDrGVgrEYTex/zkzjV9LY96KZJi/q83moSrvFsXrBXCxGE4aYKE51qE/a1Jm6NvYuaUP4gK1Y7TZeOtqStHaVdf1zXteefZYgfr73De5v0gWAxM2XeKne9nLzfajjOP5gEnU+TPcqA3ChTwJVvllP/luJ5A2aSfSiUTiqObV8FKDk1wm9w53vqbw58tUHi9GEK6kd3y/9WLfNvhfMhL+yHldpKQAXfwinRc3fmR7qzp9TfGsCQd+u1+2b5Ov7kvrL11qZ3E86EHPvRmXdjXeSuuZLrX11G4vRRM7MBN2YfDl1bxJnby8irN92Xf/LjsfXGFXdtp7jpzbBFH7WjshBmyntHkfA6mxaZ/trOXjUfkV9OZKYRzO1elqlDyGs33asdhvN191DcJUS6t6aU+68AjxXYOOFlOFUXpVFsw2VtBxXlzu2PefncmPz1abVbuPmQUP54bN5Wh3quuPDk6gzR3+clfSM5+e5c7SyfnGtcGVv17Y58rBZy/WT+34nYh7JvGzbZftcdhzq8p8v+HNDFaduXcGUJHLvmeHuS3wbXFlbdfU8mreL96K988+c69eJde/P0vXj8ONmGk71fc579nvpgQz6hSX+6bUF0M3H0VFJ1Jvp+7xVXbelmF/bBl22jGc7AC8cbUVGOyW/Vc6HHYl9cAMAAaFGVmSlan0JCG9M6d792vYXe8RztlEAteddvk++jjfPMfsHBeEsLtaVT27bHcex49oyQ53aOI6fKHcMap2GmjVwnDqN1W6jw8TR3vO1Ooy3m37B2AjvfHZ7Xkli91D38ZAzL47Yoe58T2XPn7LjUzm7tsd/7Sby30yk6RMZf+m64cvkwvU8G5ngNdayx37g2oYUHK9D6B3b6bn9FHPnJbN17HRdWYDkrnfgyC3wmr8e4Qm4VtWH7ge05flvJeJ/0Y/IcenlHqcjcgq03Gq+2J8ys3XMdJp9NJqI59M5fXciNRZ4zweAoUF9HL8fwZXUDr/0zcpCPz8KX0kk8tl0ra9jDnXknUYbvHIvqf3LX9ie+t8GMmbiZ8wb0AunbYfX8efZdkBkOKWFe7X35s0XSWtXWelTdCSOvEJdOz9f8OfR6aPY8p/pvvdpYltON61KjYUZABS8nkT0JydZ+f3icq+5t+04zvKWdfA3tcRp24F/1aqszEv7S/fTssf45Y4tz/PM0CzaK4+n7tr9YBInrish5r6NFC5uS72aZ6nWo8DnHFrtNmafNrK0RX1AyXFXZ667T77uA55tnhiaRO156V7n2CWXg6Vn6zIw5CQAkakPkml5l/qGYJ/Xf896y/bR1/wcXd6MMztqY7gIVQ77UXvaWn5mGadPn6Z69eo+5/CfpP7OmrTsEQKCA//29krPlZB++/tX7XxUBPmzQCGEEEIIIa5hEoq94sifBQohhBBCCCFEBZAnV0IIIYQQQlzDJBR7xZEnV0IIIYQQQghRAa7KD1dnz55l8uTJtGnThpCQEOrWrYvZbGb+/PmUjb+RmZn5/9g777imrvePf0JAVBRExRGGMhVxBJmJWnejuEfdtVoXYPVr7XDVbe2wrlpxW0e11lFHKxrrrMp0RBxgmDKCG0VRkIT8/rjek1wSrKXUn9rn/XrlRe4Zz3nOueeem0NyPw86deqE6tWrw9bWFl26dIFKpTJrV6PRYPjw4XBwcECVKlXg7++PXbt2vYIeEQRBEARBEMTrCf/M1at4ve28dpurkpISdO3aFTNnzkRAQAAWL16ML774AjqdDiNHjsTUqVNZ2ZiYGLRt2xbp6emYN28e5s6di+TkZLRp0waXL18W2L1//z5at26NX3/9FWFhYVi+fDmqVauGAQMG4Mcff3zV3SQIgiAIgiAI4i3jtZNij46Ohlwux6RJk7B06VKW/uzZMzRu3Bj379/HgwcPAACBgYFISkpCYmIiHB0dAQA5OTnw9vZGcHAwjhw5wup//vnnWLRoEQ4cOIAePXoAAHQ6HWQyGVJTU3Hjxg1Uq1atQvrAy1q2bzkV4oucJKnY2xO6xGRBOaVGhXf7fcDkYW9+LMelzzgZ1vnp8fj4849QbRcnF527zxv1eyeyeoCpHOi9MTI8sxWZSLma4+5vXqjdQ22QqQ6Xo06EQepZdNwRKbl1kNL+R7O2eDl4kaUlkzjnfRuW0Q535A9g2cAZ12bWhdfoc7gxV46iulqk91xrInWq/tEPof5/YkotbnxcI0czyWYAJm3w8DKzZeESa4PMoAIABjlepUaFRffdcbRpdbN1eL/4usay5cb5ACdZb3H6okl6aVsm+cecBNLEZdUpnV5aMv1FsuF/JfXfxTUI+qIisz6YsxPS+B1EJv1pYte47dRtvnAfan48Sh8nb/KD54jzgnzeprGUfeoiGSRndKiyP86srdJ2LR0l0OZozPZnfno8ZroGCNLUG/3h9eE5Qdo36bHoc3gCvMLiXkrS3Byj1OmI+N8AWB+KZ2ltE55ieu3raD9yNCopuTYzZ8nhcuQxLHPzBFLkxvAS4MZt8z6p1/uj2vVKkCyKgmX9etDm3jTrn/G46GUtoHnHBo7fGK53S7eG6HUwjkkel7bxonlZuozYwxW61AwkLw9k8v/m0Hwqh+Q7zocnfYJQdW8s1Bv8Ic6zRMqQ1aycQiJF1u6mcO5/xaydl/GTz3tY8hQDnGQsjZeNftYlACc2cjL+2x7VwpZGzmXaU2pU8I0fhIsBnAQ2L4/Oh5rgmZ8ej0Brq79ci3mZ7NJtxBUVY6ZrgMAHfg69KFwAj0IiRep2KdyHqARlFBIppBcBlS9Y+AbLhi7IC5ag+o6YF/pally2OX+CLxUjpoUVRH4+OPzbNpM6mdrHGPM81IdSo0LbsWNxau1akz4Ytyn2cofoaRG0WYb188ZcORrMjkJRSACsI+NNwnnwJH8fhLT+a+C9NhwNvjpvdv0rqy9/xd+RxM/9RI7wUfuxt4kDAKDoSENYv5uBzDlyJI6NKHMuG4dQ4SmrTaVGhW2PamHOvgFwm2KQmy9dhydrphzO86NYuZbzw+CwSliPryv2aYT5v2+Fn3UltP9wDE5sXGcyZubG8fGAYDx0s8CViYY+8lLqpcunbZfCzWjeWjRtjENHdsA3fhDq9Eri7klt+yJ5ri3chqhYPZs/HVDwzh1Wb1baBcxza8mO+fAlvI/ni57hszFhsDp63mR8yrrP8Xk+P4TDaaEwPAYv6Z/oJ/y8otUXvxFS7H57Pn5lUuzn+y19bcejInjtvrnKz88HAEgkEkF6pUqVULt2bdjYcBdGSkoK4uPj8d5777GNFQA4Ojrivffew9GjR3Hz5k2Wvn37dri7u7ONFQCIxWJMmDAB9+/fR2Rk5L/ZLYIgCIIgCIIg3nJeu81VYGAgatSogW+//Ra7du1CZmYmkpKSMG3aNJw/fx5z5swBAMTHc/8RlslkJjaCg4Oh1+tx/jz3n/Hc3Fzk5OQgODjYbFlje+Whfv36gpenp2e5bREEQRAEQRDEq0T/ip63+i+oBb52Uuz29vY4cOAARo8ejQEDBrD06tWrY8+ePejduzcATpwCgOBbKx7jnwj+3bIEQRAEQRAEQRDl4bXbXAFAtWrV0LRpU/Ts2RNyuRz379/HypUrMWTIEOzfvx+dO3fGkydPAADW1qa/D61cuTIAsDJ/p2x5yM3NFRzzv18lCIIgCIIgiNcdPYBXocLwWgk9/Eu8dpury5cvQy6XY+nSpQgNDWXpgwcPRtOmTTFmzBikpqaiatWqAIAiMw+lFhYWAgAr83fKEgRBEARBEARBlIfX7pmrpUuXorCwEO+9954gvWrVqujWrRtu3LiBjIwMJnhh7ud8fBr/k7+/U5YgCIIgCIIg/kuUQPTKXm87r93mit/s6HQ6kzztczlurVaLgABOUjk6OtqkXExMDEQiEfz8/ABwghOOjo6IiTGVmeXT/P39K6YDRlg8KQbAyXPqEpOZtKextOmRPZvZe3GhnuXP6TyAybADQELgzyxP0ft9gR3+b+8JJ5gM+5M+QVBqVJifbhDqyPtAxsryct68zOjFLyIEfuk75MB96MUy5WTrnNdCvS4ANU9xkubPFP7M3k8NTwIAtDey4D0lDQDQYHYU0nsaZHbjioq59kQieI08j+PNbFhb3oseIDLnAvNHr9VCqVGx46Ju3LnnZdgdompAvcYgsX1zkhx5I2TICm3I0nS3brP3vAw7b8/CxgZKjQoiS0vmAy/DrpBIcVW2DQAgKvWz0j9+4eKj3QmTCSSDeXhblk6OwnF8LsOu1KiQ9rWM9c2cfK+ufUuW3mDAZXbeklcEwf34SADAlFtS7Mnm5rHY3l4gHauQSGHp5IiUrb4AgK5XH0AhkTIZ4tI+W7o1RGkUEinSNzRgvoW062dWnpaXYQfASb3LWghsGLflPfs2LKqbyuErNSp4hRok0N0/ixbIsPO2+LIKiRTqdQGs/FMf7h8pdmdqQWwk8arUqExk2JUaFbw+PMfq9ku8jfzBwZBaW2N2+30AgG6B3cxeAwqJFJIY83L+ADCg2kOBDDsAnGpeBQBQSWlo02VeFBCTgEfS+oKyfhdLMD5ZjYgbZwQy7HzbCokUuZ/I4TX6HCSLoqDUqJgMu/EY8WhzNBB7ugEARNGXmAy7uFZN1I22hTYtg8mwixt5IOdXHygkUmTOlgtkknXtWgrsGp+LRhvDoNSoEPnnXkCvF8iwpyw1iAlpPpcDAOpHFbC00yvXcOdj1Dm4fxqDzgNGoFVCX2x4WA/pC2Vw7n8FSo0K+UM4O7mT5Wb7qpBIkbmrmcm8VkcEQiGRMhl2Pv9hi9pQalTou/gIFBIpvLaEYWj1e1BqVLgdLodCIsXCdOH8y9Q+Rv0Pb7N2LU5x895Yhj3lJ1/MdA1A10ZtAABp203XBwCQXgSTYTfOl13qx81XCzEA4NHAYCg1KrMy7BZNG7O+G78ACGTYAcB/dhgATob94bBgWB47D4vKlZH0P4MMu6Wzk8AXpUYFcRMvAIDb0Q/RZGW4wF/BtR3IjX3daFvEtLCCUqNCem9bNFsWLvBDIZFijEtrQTuVf48z8d+4XwCgU6cKZNiVGhUazObmsnVkPJ70DWIy7KXvj/x8dJkTBX1REbJmyMtcs/m/IkvzP+7h167uV/OQNVNukq+QSDFWncaOxd4Gkasvxm3jZNhF3AdM63czmF8KR190uFwAca2aaLzOMGap3wWjwQBD7E7jMdF8KoeFjQ3efW8E60+e7gm2NHJmMuw8vZMVZsfGeX4USo45M9sXZq5i+QefVBa0F/nHL/CzroRc7WMmw248ZuZk2JUaFartjMGViRFo8a2hXw/aPwUAeJ36QGDDrVT4gJIrSVBIpKjTK4mV0yWnwW2ICo8GBqPFN+FQalQCGXYAaFVZ+BGXD/fC42ddCVZHz0PcyAMAMPdOE+EYJ3Zn79O+kQnmvNNCbt29EyrDsz8a4JOUq1BIpFhW/5zg8wrx3+S121w1acJN7k2bNgnSHzx4gP3798Pe3h4eHh7w8PCAv78/du3axQQrAE68YteuXejQoQPq1avH0gcPHozU1FT89ttvLE2n02HFihWoUaMGQkJC/t2OEQRBEARBEATxVvPaPXM1adIkbNmyBVOnTsXly5fRqlUr3L9/H+vWrUNubi5WrlwJsZj7b97y5cvRvn17tGnTBhMmTAAArFixAiUlJVi8eLHA7tSpU7Fr1y4MGTIEkydPhqOjI37++WfEx8dj/fr1qG7mv+gEQRAEQRAE8bajf0Uy6STF/v9AgwYNEBcXh3nz5uHYsWPYsWMHqlSpAqlUisWLF6Nv376srFwux8mTJ/HFF1/giy++gEgkglwux65du9CiRQuB3Vq1auHs2bOYOnUqVq5cicePH6NJkybYsWMHBg4c+Kq7SRAEQRAEQRDEW8Zrt7kCAHd3d2zevPmvC4ILInzs2LGXKuvo6IitW7f+E9cIgiAIgiAI4q2iRC+C6BV8q1TyH/jm6rV75oogCIIgCIIgCOJN5LX85oogCIIgCIIgiFeDXv+Kggj/B6II0zdXBEEQBEEQBEEQFQBtrv5FdEkpuDdaZhIHAgBSFwdDIZGiq2crPFW6otE5KzisimbxJNTz7AAIY4mwv3GXTeKAAMDp5lw8irSvZai6NxYKiZTF9pmbdh41rz4yxCQJbi7w1ThmBt8u3/btj7i0m5MM8TxOrVmL9G7rcK9VHpQaFTIGQOAvAFi6NoDu3n1BG11cuHhYkz/9iPMlxxAbiS+ju56CEEcuno74BBe3KKTxO8xH64OG+EF3f/NC2veN4T09FZ+kcPFN6i3j4p4cPrgNFpUrozSi4464uc8bzRdz8TYOJZ8FwMXTMqbx+jDBsb6oiPnw4H0ZS3dYFY2ML2UsphTP7XA5MmfLoc02DV79tBcXd8dCBwROC2N9B4CGcVXQ6cojKDUqHN220WwMrbR+a+Ax7CKUGhVUvkA/Jy7+jy4vz6Rs6pgG8HifG+dDPjVYeuk4JEqNCg8iuCVBHREItyOjWLrLe4YYK4uPbBX4awyLTVZUBFH0JZYu8vURtKW9kYWSR49YvrEtY7+yZpjGkCldJ73bOmRrHwMAjm9ajyd9g7DT7Ri2XD3EynYL7IasL4Rz2/iaEteqib2D2yGvTwGaxQ7B6vl9sTXrrODclR5XTfAjmKOgX9Bf+qyQSGFZnwsVUdQtwCSWV/S0IMy40hvuVtUE12ryD0G4NYGLz1N/cRRLbzd6DNJ3NIdSo2IxoJQaFfZmG+wmflybXcN8X3T37uOWLF/Qtu56CosV5DI3ivk8/VZziE9eYOUCVIZYhO+Ej0XDL6JZ30qPlbhIxNIcl58HABzZzT1X6xBVQ3D+kzf54Y+dm1CtSxp2eteDesQqZtd2ewxExx1Rf8nzOF017KDUqOAeb7jOE1ttNZmbLocMceqM4/BU2xkDhUSKCfY3kDdCBj0A1/1juZg6EVwb010DWT2lRoUxLq0Refm4IA0ApqUmsPf8tZnxSTNE3DgDtyGmMewsWnjjm7qGceJ9UmpUeBBbF0qNCsnLufWy+i+cnz4rDDGChl/PAgCUXOFi/zwcaoglxlM6nlGtddHsfaXHJVz9wkKkDlzN6ui3lAhsyD4Nhe4aF1/P3+0GnL+MMsQIbN6YlfNdEI6Srx7AN34QbsnykT+Yu8c1nBmNp9InJuNV0pq717nE2gjmjFKjwjOFv2C9MO6P8XHpdaPW/zLYe+Nrja/jemg0sqfLcW+UDHXPF5u0kfaNDOo1hrh5fIxFY7JmylHyiFuff/exh9UjYRs5U+XI+KU51nq5sTqRx3YBAHTtWmJzWxkXT1Cvx9y08wLbypyLON7MBpGXj7P4XQDg/mkMHg0Kxo25puuh5LsolBQUQHTW0OdBzubXzX2eSgCAzw/CuGMpW31h0TELjwcEs7EraeMLhUSKblULUXCY68vjAcFsTEc0aIPc5+uu8RjyY+H153CzPtRbZpg/fBw2dVvDM/alz3fpc8z/fdKHW2dHzdmHwjp6s+tOaXulcT0wlovfdz0FLRaFI6pFJUG9G2edWYy3np24OGldrz4Q2HRYHY0TPvux2MNHMAaCeXdSGCPzdYVXC3wVr7cd2lwRBEEQBEEQBEFUAPTMFUEQBEEQBEH8h6E4VxUHfXNFEARBEARBEARRAdA3VwRBEARBEATxH4biXFUc9M0VQRAEQRAEQRBEBUCbK4IgCIIgCIIgiApApNeXP5xXUlISMjMzcffuXVSpUgV16tRBs2bNYGtrW5E+vnHk5+fDzs4OeWo3vNeoJbKny/HEWQuvMIMs8ovkZBUSKcS1a0H/uADt4u9hSq1kgWSsQiLFzX3eGOJ+juXx9rrJe0KbkWnik1KjgvzjUEQtXY0W34ajzrkn+GPnJpO2R2W2xo2pXjCWXC6Lfom3sce7DjsuCgnAw4ZWqBMRZSKhaux7ytJgpA5cDdffx8BrbDzLS3z2BJMaylm5ntfuYfucbqi2M8asveRNfvAccV4grWz8V+ztCV1i8l/240UoNSqEvNMHkX/uhUIixay0C2hR6Rn6OQULfFJqVOjq2QolBQWcb5tbIq3zRhOp36bLwxE3YRn6txuIJ41qC2Tly4P1qXooanvTxOfPbvoioaXeJN0Y47EypvvVPKzcE4IGszhp7Sd9glB1byzLt3SU4GB8pFkbySuDUDlXDOcFwjnQ6JwVTv0UwGTyAU7Ke0EdTuI98OJ7sO/Gnavid/1xfNN6AEDnwSNhcYqTkc+cI0fi2AjWLo+4di3o7t4z21dzcvEAJ+Gte/AQ6QtlcJ0ejYz5MjScyfW3pI0v/vjlR7j+Pgbp3deVaeNl2hJZW0NfVASxrS10+fmsvEIihUX16gI5egDQfCaHZFEULJo3RklCUpntKSRSiPx8oD9/tUwfxF7u0KlTcWuCHHVXREG9wR9eo84JbACAuFZN3O3RCPabOJnurm7BKCksRFFIAKwjhfPz0cBgVP8lxqw/ACCuWwe6W7dN0ssie48Prsq2sXKW9etBpszA6eYGafXS13XGL83RcGACPkm5inerFqPTkA9Rer1KXhkEz/GxgjRxEy8mKV7apjnKkoFuO24sbOIyWD9v/k+OS1MiWLnSa3XKVl8WCqH0mhFTqMNsNz8UdQvAyXXrBD6lLg6G+yema59So0LrieNgs9vQP7sztfCw9T1kT5fDaWGUoKxCIkXmHDlc5kQJ+u27IBz1j+Syta2sPiskUkTmXECIY0uIPd2gS0574bgV9A+Cze5Yk3ucUqNC8+/CUX+JwQ9+nouOO+Jw44NoETcY9XonsnoWTRtD//0j6DvkCHwHgJAWnRF56Q8AgOtvY5DeYx0AwDd+EC4G7IDPD+FwWhiFgsNuONP8VwBA64S+sBtXDO2NLEH/StsGAM+fwtBCloxHbe4iZ4octjdKUH1HDCyqVsWhlCiT+WP8/vb+xrgYsOMv5z8AZE+Tw+WHy0ib2hQNZ0Sz9IXpcSwMQPpXMrhOM+Txa4de1gKi6EsQ29tDl5cHALCsVxfam7fKbM9C2gQHDm6FlUhs9r65IysKg5zlsKhcGSWFhWxM2n84Bic2GuZok4hwOC+IwsNID9zKrQE/rww8anPXpL0XrY9KjQrdAruZhCtRalToJu+Jg1EHBOPrfnwkUjv8yOyZm4dWJ+ujuF0uACBlaTA8Po4x8cOcT4U9AnFqzVqzY6JeHQiv0Dhhe4HNgLjLgjkTNDUMlk9LkNeIuwfyaPXFOIn9ePjw4Wv5+Zj/zOq1bSrEVf992XjdkyKoh3792o5HRfC3n7k6fvw4NmzYgKNHj+LuXdMLycLCAr6+vujfvz8+/PBD1K5du0IcJQiCIAiCIAiCeJ156c3Vr7/+ihkzZkCtVkOv18PR0RG9evVCvXr1ULNmTTx9+hT37t1DUlISVCoVzp07h9mzZ2P48OGYN28e6tat+2/2gyAIgiAIgiCIcqDXvxqZ9PL/Xu7N4aU2V++88w7OnDmDpk2b4uuvv8bAgQPh4uJSZvlnz57hxIkT2Lp1K7Zt24YdO3Zg69at6NmzZ4U5ThAEQRAEQRAE8TrxUpurJ0+e4Pfff0dISMhLGa1UqRIUCgUUCgXu3LmDr7/+Gmq1+h85ShAEQRAEQRBExUNBhCuOl9pcnTt3rtwNODg4YPHixeWuTxAEQRAEQRAE8SZAQYQJgiAIgiAI4j+M/vnrVbTztlOuOFfz5s3Dd999h2fPnpVZ5tSpU5g3b165HXsb6OPVDADgtDAK6b3WQhJTHYBBspV/KTUqiL3cBXWTZnmgpLAQx5vZsDRjGdB6vRMxpVYyfFaEQ+TrAwAI/jwUN1dUZmVvj5djSYZBvrX6LzFQSKSotywKf+zchJDG7wAAnipdWZns4Md4VsOw5+ZlRkv/BYCxdhpBmnVkPC5+YSqVXdJailsT5Ogm55658/iY84OXYV9x4yzcdo/DpIZyQbvja2QxGXbjdP7Yc8R5DL+eBYVEio9TEgXSqSKrSkyGXdzIw0SG3Njv/MHBZeYpJFLoUtJZ+jy3lujnFIzURTKWZunaAABwKPkslBoV1mWegecHFwRjkKl9DIVECsdvotDHKRC6lPQyZdjVG/whLiVPKvZyR2H3QEFaytJgFLW9aVZivbQMO58OAO47Q+E/OwwOUTWQqX1sUm6C/Q0mw67UqFB1LyerrN7oD6VGhYPxkYK5a9xPz/GxeOpSLJCyVWpUuO5fjEufRwjaiZeKcVfHSdfzMuwAYHXkHOQfh3JSzacuImsmJ8/vMifKrJxvZMIx1s7gJA2WZESbSOCXnkOR104BAFync/3kZdiVGhUsTl9ESON34DU2XtBexnwZK8PbU68OZGUK+gexfO1R7plUfVERlBoVdPn5uPmxHJKY6qz8oeunTfyTLOLke83JsI9Sp8PmTwfMvuODx4fdoD9/FWnbuTF23xEq6PPC9Djo1KkAgLorOOnr9K7rkb2HWysUEimyZnLXW+Tl47DfHMPSv0rkxoaXYRfb2iJ3MncO7CKvok1CocBnJsO/PJjJk/PpSo0KIv+mEDfxEow/Dy/Dblm/HrpefQBt7k34Vs0Q9Ju33yx2CACg4cAEAMBiDx8oJFJM27DZZKw8x8diQOJNQXulZdgBoOW8MEOZ4OYCG60T+kJsbw9LJ0fmR57uCSr/FieQm6+33CC57Lp/rInfHu9fNLlGeR+CK4sBANYH4xHSpC0AwGdFOADA/ZMYpCwLxie5LQX13PaMw5nv1wDgwhYAwMPWXCgCp4VRENvbm/jAhzAwbvviFxHAowJWpmFcFcE1a1w/xJHzIfIUJ2k+JL09K8eXtXRrCADMNwBwjRzN3gd8EYb6S7ixcv19DJQaFUoSkqDUqKDvwElx1+udCKVGxfpVciUJhxsfNFlnFBIp7nbzYOuQ17h49v5iwA4AwNWPuD7bDn3A6pxp/isORv9W5v0gpH1/LLnvBgBY128NnnR7hqJuAXD8JgonFq/gfHryBLJPQ1k9fq02lviu08tw/c5NO2+y/iRvaYnk74Og1KhwdUIEwi6cF8iwWzo5YnziEHas/mCVwFeRJXePFkVfwt2xMibDrtSoBDLs5vqZOsgO3fp/KJQaXxPAxtdeXJXrZ2EhbsyVs3GtdDge3eQ9WZ1r4RFQrwlAjHQ3vEadw6M2dyH29mTt9Eu8zcbFnD+3JnK2w08eE/jH2z8YdcDU9w4/Mn/EJySCNe/WRG49K26Xy+alx8cxuB3OpXfpMZTZabaEu8ampSYwn/QWgNuRUcxn43tYULMUlt7n2h2uzX1bAQAtvg1neXoL4OzyNbgWHoHPUy+jw+UCSC+adIP4D1CuzdWcOXMwZcoUdOzYEffu3TNb5uTJk5g7d+4/co4gCIIgCIIgiH8X/pmrV/F62ynX5goAXF1dcfbsWchkMqSkpFSkTwRBEARBEARBEG8c5d5cDR8+HBs3bsSNGzcgk8lw9uzZivSLIAiCIAiCIIhXgf4Vvt5yyr25AoARI0YgMjISxcXF6NSpE3bs2FFRfhEEQRAEQRAEQbxR/KPNFQB07NgRUVFRqFu3LoYOHYqFCxdWhF8EQRAEQRAEQbwKXtXzVhX8zJVarcasWbMQHBwMBwcHVK9eHVKpFF9++SUKCgpe2o5Wq8X333+Pli1bwsbGBnZ2dmjZsiXWrFnz15VLUSFS7E2aNEFsbCy6d++OmTNnIjU1FfXr168I0wRBEARBEARBECZs3LgRK1euRM+ePTF06FBYWVnhxIkT+OKLL7Bz507ExMSgSpUqL7Tx7Nkz9OzZEydOnMDQoUMRGhoKrVaL5ORk3Lhx42/7VGFxrurWrYs///wTgwcPxo8//viXHSEIgiAIgiAIgigv/fv3x7Rp02BnZ8fSQkND4enpiS+//BIbNmzARx999EIb8+fPx9GjR/HHH3+gffv2/9inf/yzQGOqVKmCvXv3YuLEiXj69GlFmn6jUWpUcI0cjZRvmwCAIDYDH0tBp04VxFXw/OmJSWwMc/WuToiA/uJVtPrfONj9FAPrbTUBAB2Gj0KdlVGY3FDG2ixpLRXYEtWyR89r91BFkQ5xIw9m/8GIR6zdrl0GsfcZvxjiwJSOO8KzJb+2SeweizMq1F0RBW1Gpkl5v4sl+GhQONL6G7525e0a/y3dFm97SyNnAMBSD29WdllGFPTFhhhsuusp8JsThuQVQYIxVUikeDQwGNGLV5v4xbeXM1UuSOfrpwxdBYVEiqJuAdCm3xD4OMaltUn5MS6tWbwc4/Q7BxoBANQRhhhWU2SHEJn0p6BdnToVOe24y/XuWBmSt7SEx8cxqHKqLhd/Z4RMYNccfJ6oWIQ6B1JxR/4ALpbVTPJ9F4SzY+Nz4PXhOXT1bIWO13oie5qcpZeep+nd17H0nsldzPrAM9S5ldl5FLXUcE6c5wvjW5Uub+zjz40l8KnE/WPH9eAYtE7oa1Kn9Hy6/zsXg8kz3hoKiRSFPQKh9eFivyWvDGLlGs6MhtjDVVA3vedaNk42u2OZfctOhrne9HtuPOstjUId60cQ+TcFYIh9dudAIygkUkTmXGB1POOtTcZkg5crCt65g5gWVrBY48DFPBqiAgCkDlotiE003TXQpL5CIoVTv6vs+FpYhOEc6w1PGB8v8Gbv+RhdfHyikkePcLp5ZZafvDII+YfcuTXrfzEsfX56PGszZ0YJ8puYxl4ybkObexP7Pu8MAFg4fYQgj2emz0FBPYsW3lBqVPjWvZmJva5XH2Cndz2z7RkfP3rnqSEtJkHQnk3IDURePYGDcQdh6SiBUqPCIGe5iS3N3iaGeEthcSZ+A8DwG++Y9YH/K3ZwgO7BQwDA1QmGmFSpA1bjil+JoJ7nhFh4bQqDUqNCThsrk7YGRV82WYNLr6XsvvM8XpckpjoyAg1jcfWZ+fs3fz+41ypPcB09fi8IrfYlwtLJUWC/0epCViZ+AReracWNs+jqe9nsdc/XszpyTuC7cfytiZoALMmIhv2maFZG28EPtc7aQ9vBDwqJFG67xzGbunv3oZBIMTElCSE+7Zm9iSnCWHIKiRSRJ3ZD2ZSLW6WDCMmr3Vg8QmuRFbzPW0Ls5Q7b7THoee0eN4b5+cy3rl0HC+yNT1Zjtpuf4N6tkEiBEhHS+q+Bx4mRUEikWOkpjAOnzc6Bdq+DwNbt8Ya5p8vLY32vvTYayd8HsXKl73HGdgGg5hU9RNGXmC/aDn7wGhdvtk6D2VGsb2IHB2gzMgXn17ieUqOCppMDa2ePdx2BzdKfYVRTuXn+v/0jTM5D0/MWXBy4z0Lx+D1D33gsXRtA114j6Gu93ua/XeBjb2Yp7JiNy5MjoJBIMe7cMHx20xdKjQpV9sfBc8R5QV2lRoV2Y8agxOhnbMuudIBSo8K773F+11tmuD/ZbzLEWPzWvRmON7PBN3VVEFmbruevI3r9q3tVJP7+/oKNFc/AgQMBAFeuXHlh/YKCAixfvhy9evVC+/btodfr8ejRoxfW+SvKtbkqKSnBrFmzzOaJRCIsW7YMsbGxOH78+D9yjiAIgiAIgiAI4u+QnZ0NgPtl3Ys4ffo0Hj16BD8/P/zvf/+Dra0tbG1t4eDggOnTp0Or1f7ttivsZ4GlCQgI+LdMEwRBEARBEARRQbyqAL98G56enrCwMHzHk5ubW2Ft6HQ6zJ8/H5aWlhgyZMgLy16/fh0AsGzZMlSqVAnffvstatWqhW3btuGrr75CTk4ONm/e/Lfa/9c2VwRBEARBEARBEK+SSZMmITo6GgsXLkSjRo1eWJb/CeD9+/dx9epVVn7AgAFo3749tmzZgqlTp8Lb2/tFZgS89ObKzc3tpY3yiEQipKam/u16BEEQBEEQBEG8Iv4FmfQy2wGQnJwMW1vbCjc/c+ZM/PDDDxg7diymTZv2l+V5Ab7g4GCTjdjw4cNx8uRJnDx58t/ZXGVkZLy0UR6R6BWcJIIgCIIgCIIg/tPMmTMHCxYswMiRI7F6talYmTmcnJwAAPXq1TPJ48NK5eXl/S0/XnpzlZ6ebpK2dOlSrFixAmlpaX+rUYIgCIIgCIIgXg/+DSW/str5N5gzZw7mzp2LDz74AOvXr3/pL3gCAzl1XV4Awxg+rU6dOiZ5L+Kl1QIbNGhg8rK3ty8zj3/9l9mrvgzguYz16HOo+msskw4deV0o382X41Hu2yqQz/WfGWYiTbvixllWptouTgY6aslqaD6Tw+roeSg1KnS4XCCQROfrKzUqaNNv4ECTWgCAyBO7WdsJgT9zPmhUOHR4B4q6BkAhkaLhwAQTSVVjewCwrbGT2TKsX6Vku8/7WkAUfYmV5eXKzdUFgNYJfaGQSLHkvhuUGhWe9A0yKVPDosQkrfv4P9HaP9FEqrb6LzFQSKTYkRUlKJ+y1RcA0HPgGdyaKDfxnffv5Lp1gnqlpW+Nj7XZOYKyGzLP4IL/LwAAr3CDhHNojRw0iRqGPdkGaWuL5o3h/il3XHttNNI6bQQAPG17CwBQ83I+8kbIoJBIkfa1DMGXimHzpwNEfj7MRqb2MbokdYP7Z9GIvHgEAOC6b6zAd6VGhToRUQi+VCzwXdyEkwo+lHwWx5ocgNNXwvECgNxP5Gxupu9oDoVEigOeh9Gl1/vMPt/G7f2NAYCFByiNufP/7I8GTBaYfz3txS2KEzUBgrqz0i7Aa0w87pyvi8xZchNbxtTsrgYAJAcUAQAq/xaHI3u4h1fT+nAhAvhzH/nn3hfa4suKPQ0/o3b82jBWKl9g9771WH3jDJPsd+jJPUwb4tgSN+bJcG+MDMkBRSjoFySwCQCFPbj+Vt0by8bIf2aY2XAFPH2u3RFIIPMoJFJ4nfqAHYuf/zyjUWUNPk5JNGtLfEKClGXBnL+N34Hn+FhEt9hjYn+mawA7vhy0ncnUl/bBa0sYq2t9MB5KjQrVdsYIwk3wdTZ4uUKpUeHeGC7sQMmlRIS07w8AeDQwGBYtDOEYJtlnABBK2j/rEgALaRNB+7yUPd+GQiLF48NuuPk/OVCiY/a0ORqTtYOn9hobKDUq3JwkN5E+F9flbsgZXzcW1OWl6nkiL/0BpUYF6UXDdWjc/9vhcjxT+AMA7o6TQT2CCwVxfdQqNNoQJrDFr8EAMOUW9/fZH9y9uOe1e1iWEYWQTgNY+ccDgvGjy2mBDZ9KVUz6eiAnHiUJScjd583G68bOZlBIpKi2KxaH5rSDNjuH1Uv7Rgb9OYMEcnrxYyg1KnhZ2SA1oFAw5vxf4zFWSKSwP8uFFkn/uQXr0/eSeExuKGN1Ol15hGM/bcC9VnmoFM9dy2n91wjk75UaFbpVLRRImHerWoh3wg3rn3FZhUSKJa07I7ndJlY+pPNAJPppEXlyDwBgfI0sVqfZUi7cgqhYJ7ClqMrJ60svgvUJADxHnIdCIoX70IusTVbneZla66IBAJZuDZE5W446K7l1RC9vISin1KjgOdFwfU3UBLD5w3N3HHdv6HntHmK+XS2ob3mc+6ywKfMMxqq5f5RrPpMzGy3iOHl53Z07zOaRJ1Ymc7T5d+FQTTOEETDul0Xlymys60YbfgamXheAlMGrBWWVGhUW1+fCUthti0FuO0Ds7SnwWZt+g4Ww4H3IPN4Alg240Cyuh0ebrIdOC6OYfT6v4cAELKp30eS+bTwfT65bh/PnPFl6Umvus9mRXZsEfvMhKW7MlZtcwyW+XiD+XebNm4e5c+fi/fffx8aNGwVCGcbk5uYiKSkJT548YWmurq5o1aoV4uLicOGCISSKTqfDunXrYGlpiXffffdv+UOCFgRBEARBEATxX0b//PUq2qlAVq5cidmzZ8PFxQWdOnXC9u3bBfl169ZF585cHMVp06Zh8+bNOHHiBNq1a8fKrFixAm3atEGnTp0wceJE1KpVC7/88gvi4uIwa9YsuLi4/C2faHNFEARBEARBEMQbR3w890uAzMxMfPDBByb5bdu2ZZursvD19UVUVBS++OILLFu2DIWFhfD29saPP/6IESNG/G2faHNFEARBEARBEP9hXnWcq4pi06ZN2LRp0z8u27x5cxw4cKBCfHrpZ64IgiAIgiAIgiCIsqHNFUEQBEEQBEEQRAXw0j8LfOedd0zSMjMzy8wDuDhXp06dKqdrBEEQBEEQBEG8El6FoMV/AJFe/3KK82XJGr7QuEgEnU731wXfMvLz82FnZ4d26AVLkRUAQBTQDPp4Tpo9/ecWcB18Cbf3N0adXkkAIJCf5Y+N5UFvTZBDNS2iTKlvy3p1ob15C+of/eA18jwr4xRTDRc3N0NhLRFs5bdhF5KC2+Pl+G7yGnzr3ozZcds9Dp4TYwXyrQBQpC+GtcgKCokU90bJUGsDJw/b9LwFFte/UKa//LF6dSC8QuNMytweL0eBsx7q4auQq32MUakDENkoEiHXQ6BrrynTpvEYsTJOfkw22bjO+GQ1Zl/rycbYnJ3cTziZ7oRPIszblkix+sYZhDZoLbCR+l0wk0Y3tlnaBs+D92WosTVakGZZvx60uTcBAG0SCnG6eWWWJ7K2hr6oSOBHUbcAzPx+I751b4YdWVEY5Mz5rpe3gCjq0l/6wGNcvlvr3tCmZQjyl2RE40GJNea5tSxTUp/HQtoEgZsvYa7DVdZu8wsi7L7UUjAPS9vpfjUPv/vYc3PvyCh4juDkgCfl+iPRTytoY2d2NOwsqkAhkSJ1my/ch158oV/8OOj0JQhxbClo37JeXaSFusNlThRu7vMGTtjjWetHcHnvMqxO1kdxu1wAQPZ0OZwWRsGygTO0N7LMtgNw0uSRjSIR0rYvdMlpkF7k5NZdYm2QGVQg8PPOgUZ49LgKk//+JOUqFnv4IPmHIKT1XSMIR8DL9peWqjb3t0nUMDj3v4LC7oE4tXbtX4ZCKJ2v3uCP9K7rBeUtnZ2gLyyC7s4dNIyrgjVOhrn7ovkgCmgGXWVLWJy+aLZdCxsbHEo+CwBoO3asWX+VGhXcfwmFx8cxLF3b0Q/Htm5g9rq4BkFcrw47N6Xre20Jg85aj9SBq9GtpQIHLyjxbr8PIIrm5n1Ii87Q3blTZj/EtWpCd+8+Hg0KRvUdMWxd5duZlXYB89y4uWU8b8yNr9inESL/+IWTi54jR+JY03WcH9dnfzRApc43DOfBaP6Vtv1xSiI+Wz0Kku+iWJr3eUuT64dfe5QaFbw2hcF1ejTyDnoizneX2bli2cAZB6N/Y3mZ2scY49IaSo0KXXoMhf48d60XdQ2A9SGDpLyxfwDQNWQISlTXzI6vUqPC2cISNoYAIHZwgO7OHdyYJ0ODWdECv27Mk+HIiEUY49Iao9TpmH6uD9yHGOTG1cUFUBz8WBDSwtw8FdewQ8nTQuiLiqDUqNDy3EAWCsGkbO1aiEw4xo75e+C5+atMyiokUkAkgjLHIOu9NessOqz8DFcmRphcs9Kvwk3u55YNXXAw6oDBnpkxfdG1x3MgJx49HQ2hKczZML5XtJ44Dme+N6w/+UOCEf3dapPwCgoJF/5lQoNWAtvmbA5Jb4/trideuAYBYOslAKjXBiC9+zqTzw0WVauixEg2+6/GIu1rGdymcuuV/NIzRLWoxPJEvj7QX7xq1pey0opCAnBy/Tp0fXcQSq4kQalRoatnK9wd0Bw1f4zmwm7o9dClmMaCLewRiMq/xWHX9Quw90rDw4cPYWtra1Lu/xv+M6vL2lmwqFL5ryv8Q0qeFiJz7LzXdjwqgn8URJggCIIgCIIgiDebN1XQ4nXkpTdX//WAwARBEARBEARBEC+CpNgJgiAIgiAI4r/MGxpE+HXkpR6kunnz5j9u6NatW//YBkEQBEEQBEEQxOvKS22u3NzcMGXKFNy+fftvN3Dw4EEEBARgzZo1f7suQRAEQRAEQRD/NqJX+Hq7eanN1eTJk/HDDz/AyckJPXr0wNatW5Gammq2bEFBAU6dOoUZM2agQYMG6NmzJ0QiEXr37l2RfhMEQRAEQRAEQbxWvNQzVwsWLMC4ceMwb948/Pzzz4iMjAQA2Nraom7durC3t0dhYSHu378PjUaDkpIS6PV6NG/eHAsXLsTQoUP/1U4QBEEQBEEQBFFO6JmrCuOl41zx5OfnY/v27Th69CjOnj0reJaqUqVKaNasGdq1a4e+fftCJpNVuMNvAnzMgDy1G95rZIgV9GhgMKr/wsVGEtewQ+Q1LsCyuTgvxnEWHkZ6IEa6W5Dv+VMYkoetgkIiRcFhN9h0SWP1hl/PwpZGzkJbIhGg13MxXpp1QOTl48zesz8a4ITPfpNYHEeeWGGxhw/zoywfzb1XalRovjgc9RdHmY0l8XnqZezPa4nr/sWC/OHXszC0+j1BWXPjw6cDgEXlyigpLAQA2J2phY0ND6KfUzA3zrVrQXf3HuzP1kReq/tmx5fn7lgZ6u5Pxe2e7qi1zhDX5/GAYFTbGWPSP4VEitsfyXFxegQ8To5gcVfMxRT5q/gkpfvXesI42OyJRf4hd9T4zAqHjuwwsVHcyQ9WR8+bGitl72mvQNwZ9hSJrbYaYu/Uqol3/0zDIZ8aLHYUj3GcJcAQf8X92Eh4jr6Gw+mxZc5VnqyZcjjP586999pwWBYAlz+OMDseLHZKYDMg7rJJP/YVVMMqT4+/7Ke5Y7GtLXT5+QDA4ucAQM9r93CgSS0A5mNSeZ+3xKFDAWj4hWEepH4XjP39l+KTfqNx+LdtJuc5a6YcM4b9wq69v/KRj3PG2+iZ3AVFbW+azG9zY5w/OBiVHpeg8m9xLC1laTBSB642ey3yGMeAW+nphfsfyhC/gFtHHh92Q7UuaayuT/RQXJVx/dTLWkAUfcnEbunzqflcDsm3UShN6uJguH8Sg7wPZOj5yQmcbl4ZImtr5PzPz6S8sb2w5BT0tnnM8rrJe0KbkSkoCwCdE3vAoqMwHhmf137kaFRSnkP+IXfYdk01GU/1Bn+4bdPD8vj5MmPoJC8PRtp7qwXpXa8+wCT7DOF8e76uv+h6N26/YVwVXJ/bFNYH418Yv0epUcF3YTjq/BBlYqOgXxDOrFgjqFfcyQ/Ht2woc+302hQGlz+KcHTbRigkUuQd9IR9t2Rk/NIcDQcmCMoqJFLAQgyU6LAkIxo+laqY+Gjp1hAHz+wT+M+3uywjCsO++gQO5x9Bf+4K0r+WQT18lUm54nf9UTnrIXSJyWbjIxZ1C4D1wXhBu/w6w/Mw0gN2ISkmYwQAASod4qVidpy8Mgie42NNxjp5kx+Lu2fuXCzKiMFnDYMFacbXGD8G5u4BYm9P6BKTsTXrLEb4dIUuP18Q6+lF8el4W2W1a5xnHOvJXN3Ubb5Iaf8jXA+MRXrPtS8VE0+ztwkuB21ntjSfy1HgpGPxMd12hcLzf4b7pPuOUHhMjjFpf2JKEr73aGzi271RMtQ9loNfzuxEP6dglLSWwuKMCmnfyOA2JdrseJbu/19dQ6XrG/fTGHVEINJ7c+PCx7TTtW+J3ODKsMnVw36TMGYlj0Xzxjh0eIeJba2+GCex/7WN68R/ZnVeNeeVxbnKCpvz2o5HRfC31QJtbW0RGhqK0NBQAEBxcTHu3buHKlWqwM7OrsIdJAiCIAiCIAjiX4S+uaow/rEUu5WVFerVq1cRvhAEQRAEQRAEQbyxUJwrgiAIgiAIgvgvoxdxr1fRzlvOS6kFEgRBEARBEARBEC+GNlcEQRAEQRAEQRAVAP0skCAIgiAIgiD+w+j13OtVtPO287el2Im/hpe1bIdesBRZwbJeXWhv3sLt/Y1Rp1eSSfkXSXUrNSq8Ez4Wf0asNZH3fNo7EFX2xZm1YU7OufSxsXRprvYxrEQiDHVu9Zc+lfbbuCzfV3PcmihH3e+jkDFfhuujVpn44706HC7zOFndRuescN2/2Gx7Ynt76PLyAADiunWgu3Wbe+/phshTv0L6dThUUznZb/WqQHiFCcfoRWNVelxC2vVD5Mk9AADfBeGQHMyC3fbHuNcqz6xvFjY2KCkoYPW7BYRAm6P5S+lXdk57BaJ6XCaT6DaRPH4ui970+3A4fh2Fh8OCEfOtUCL6SZ8gVM19CsQkmJwDY/lvhUSKJ32DcK+JGM4LTOWwAUBVVIQprkGCNH6sSvteGvXaAHiNNUgnhyWnMEn10vMxdbsU7kNUgvq83XWZZzDGpTXE9va426uxQAb39ng56qw0yP2L/JtCf+6KiS/m2iztu8jXB9fDq8JrTLwgP6RdP+jUqbi5zxv1eidCqVHB9fBoVEusBMmiKJQcc8YWz58xwqW12TZbJ/SFzXOJc2P4c1EevkmPRVyhK/Z412FpmbuaweW9y4J+qtf7Iz1kPbr0HGYyLqmLZHD/zLxcc/LmlvD84AIAwPpUPeRsd8X52YZrtvQ5Nw4zwaOXt4AoipNvF1lVwvrU43CyrFamPHjAF2GouTGayRkb+6PUqNA/tRPUe71Qf4mRHLmjL6DXM5l11nYrKY7s2oQW34Sj3nJTaXhzvGz4BF4SnM05q0rQFz9jNtyOjILnCEOIhL+69kunVz9dG4/a3DWbJ+CYE9Axmx2mfS2Dx7xLOJQSVeb6UvqYlwZ/2bGQX3qGqBaVYOkogTZHw8rGFOow282Phb4w13bqNl+UPKjE5M/NjYu4hh10Dx4C4EJjlFQSoc4PhutbqVGh8Zn30WDAZQxNysa2xk7Q7G0C5xlaPGhWk5uDwc3Nrn1lhRAoHXqCT783RiYIycHn+awIh9NXBp+0HfyYjD8/Hw7fiBOMn7n3Fi28MWznEQytfg9ue8ah0fRrKHn0yMQPPtSKMfwc4a/v0ueK9e35eUr+PgieE01l5+//7oWa3dXInSxH7YQi5LSvhID2iTj3RxNYaCGQuf+r8TSXztNhxGgc37T+heVL1y0ddsEcNyfJUW8Z5yMvoc+H9lBqVOjadTBKLiUia4Yczl8a+lLah5xffeDY96rZPnYYPoqFNTDX/7Lgx7br1QfIyauMJa1+f22lx/nPrE4/zH1lUuzZH81+bcejIqBvrgiCIAiCIAjivwxJsVcY5Xrm6pHRf1cIgiAIgiAIgiCIcm6uJBIJxo4di/j4+L8uTBAEQRAEQRDE6wsvxf4qXm855dpc1alTB+vXr0dwcDD8/Pywdu1aPH78uKJ9IwiCIAiCIAiCeGMo1+YqNTUVSqUSffv2xZUrVxAWFgaJRIJx48bh3Llz/8ihOXPmQCQSlfmysrISlI+OjkbPnj3h5OSEKlWqwN3dHWPGjEFamukD5EVFRZg1axZcXV1hbW0Nd3d3LFiwAMXFxSZlCYIgCIIgCOK/gEj/6l5vO+UWtOjcuTM6d+6MO3fuYOPGjVi/fj3WrVuH9evXQyqVIjQ0FEOGDIGNjc3fstu3b194eHiYpCckJGDRokXo0aMHSzt8+DC6desGd3d3fPTRR6hduzauXr2KtWvXYs+ePbh8+TIcHR1Z+YEDB2L//v348MMPIZPJEB0djZkzZyIlJQWbNm0q71AQBEEQBEEQBEH88yDCDg4OmDJlCpKTk/HHH3/gvffew9WrVxEaGor69esjNDQUCQmmsqhl0bx5cwwbNszk9fAhJ886atQoVnbp0qUQi8WIiorC1KlTMXr0aCxduhTLly9HXl4edu3axcpGRkZi//79mDx5MjZs2IDRo0djw4YNmDx5MjZv3oyoqJeT6/27KDUqFLvVw+P3glCnVxIyFshYXv6QYAAoU85TqVHBf3YYquyLM1uGl2Evi4AvwgTSr7zEac6vPvDYFgYAUBcXQCGRor5lNSbDbtx+9dO1y7RvTlLZWIZdqVGhsHsg8j7g+lz3+yg4xVRDw5kGeVuHqBrsfWJoBHv/vYR7nq8oJEDQntXJ+ih5XAAAkMRUR+TFIyxfl5wGhUSKut8bzmWTb24K6t8bIxOMZZ9rdwTHXpvCBOOlU6ey93UioqC9kQUby2esvCigmUBylpdh523ycsXyj0PxeIDwfIv8fAS+AUCV/XFo90cyS+Nti6ytufF9Lk3r+HUUUrb6msiwKzUqVN0bC+WvWwBwct/G8NLfwar+AIBKD7VwXhCFj1MSBeW6yXpAIZFCam3N7PLjYIz8EjcWad8Y5rVSo4JSo0Kd05aC49423E+H077lynYcNorlrQnaKrBrWa8ufH4IBwC4WFYDAERePSGQYde1a4k6K4XXrfhuPvfX21NwXgDgnbCxaD1xHPPJGKVGBf3Fq0jvtg6wEAvydOpUKDUq1OvNjZFCIkV6l/WQLOLatuiYhREurZH7idzELgDYdElj6Xx/Ae5cZM6Sm5RXXMmHyNIwdgBg6doAnvHWrL7U2logw67UqODy3mVkzZAzHwHA4YwVFBKpQIadt8nLsPPl24wfx47TOm9k75OiXVF7TTS6dh3MSUP3C8Kxp9wYWZ/i5lf1X2KYb+IadlBv9Gcy7ACgL34GJ8tq6ObXhbWXOYsbr8brwqGQSBG/gJN6Ly3Dzr/f7X4U9ZdEsXYUEimUORcBQCDDDgCis1z+x2G7hen+TdkYGJ+L0vPbuG31en/2vrB7IGxUnGx3Fxd/KDUqJrvN10t7dwPUEYEYn6w22w9j1Bv9TdJ3ux+FUqNC/iF3s3UYHbMN88OtIdymRqPkyRN0fH+U2Xl4d5xM0FcA0CUmm5YViQxj8fw9ANyaIMdsh2tQalQokDoKqsx284NSozIrw/7NPe5aTGn/I9L6rAEA3N7fGE1WhbO2u6u74mGkB3QPHkKpUUEdEYjaa6NR5wfuGus8cCSz2WDAZQDAtsZOAABJn2vQXVOj+i8xKOgXZFaGHYDJuWVr9HMZ9uJ3heeitAz7k75BUEikcPqK84lfSyyPc7L77a70BgAcvsHdr4ektxe0LQiR8KMfDh36GfGPXbk5028NSh49Mhvuwt+BW/PF3p7cXy93aFZ6QKlRwWv0ObPrskIihV7eArDi1hHPibGC+c5Tszs3RxM+jUDjr67Cdc553Jnsggazo+A8P0pwffAYX38AF64kY74MFs0bm+2rQiKF1RHuF03qtQGCfKVGhWbLwk3aUEikOBh1gLX1cCh370xeHizwg5dhBwCPtVoAwIQGhs8x9dZwoQqcv4wCRCJBO0qNCuo1AVBqVHDse9XsGq2QSGF19LzJ+Ip8fbi0wGYoDV+3Znc1lBoVJtln4NIDR5NyryX6V/h6y/nHmytj3N3d4ebmBltbW+j1ehQUFGDt2rXw9fXFwIED8eDBg3LZLSgowI4dO+Dk5IQuXbqw9Pz8fFSuXBn29vaC8hKJBAAE35pt374dADBp0iRBWf74p59+KpdvBEEQBEEQBEEQQAVsrnQ6HX799VcoFAp4eHjg66+/hp2dHRYtWoTbt2/jyJEj6NSpE3bt2oXw8PBytbFr1y7k5+djxIgREIsN/1VWKBR49OgRPvjgA1y6dAk5OTlQKpX45JNP4O3tjUGDBrGy8fHxcHR0hLOzs8C2s7MzJBLJP1I+rF+/vuDl6elZblsEQRAEQRAE8UohtcAKo9zPXGVkZGDdunX48ccfcevWLVhYWKBHjx4ICwvDu+++y8p16tQJnTp1Qt++fXH48OFytbVhwwaIRCJ8+OGHgvRp06bh9u3b2LhxI7Zt28bSQ0JC8PPPP6N69eosTaPRoEmTJmbtOzo6Ijs722weQRAEQRAEQRDEy1CuzZVCocCxY8dQUlKCevXqYcaMGRg7diycnJzKrBMQEID9+/f/7bauX7+OM2fOoGPHjnB1dRXkicViODo6olOnTujTpw9q1qyJs2fPYsWKFRg0aBD279/P1AWfPHkC6+fPj5SmcuXKePLkyd/2jSc3N1dwnJ+fDzs7u3LbIwiCIAiCIIhXxqt6Huo/8MxVuTZXf/zxB9q3b4+wsDD07t0blpZ/baZHjx7sWai/w4YNGwAAo0ePNskbMWIEoqKicPXqVVSpUgUA0KdPH3h4eCAsLAybN29m9apWrYqioiKzbRQWFqJq1ap/2zeCIAiCIAiCIAiecj1zlZiYiGPHjqF///4vtbECgKZNm+KDDz74W+1otVps2bIFtWrVQp8+fQR5mZmZ2LZtG7p168Y2VjzvvfceAODUqVMsTSKRICcnx2w7OTk5Asl2giAIgiAIgiCIv0u5NleNGjWqaD/M8ttvv+HWrVsYNmyYyU/6+I2STqczqafVagV/Ae5niTk5OcjKyhKUzcrKgkajgb+/PwiCIAiCIAjiPwdJsVcY5dpc7dq1Cx06dHjhN0EdO3bEr7/++o+c438SaBzbiqdRo0YQi8XYt2+ficQ7HxA4IMAQI2nw4MEAgGXLlgnK8sdDhw79R76WhUIiRYm1GA/dxVBqVGj4hSF2hu32GEO5K/lm69ZaF83iJiSvDBLkl47H4BRTTZBvl1aEEJ/2rCyPKMYOwa0SodSoMOLzTwQxK4zLKiRSPGpzF/dGyUzy2iQUQqlRwW03F+sjY77MbKyNU2vXwn5zNKubHfyY5SkkUtyRPxAcl/bVOjJeEJOmuF0u9MXPIK5VE5rgRyZjZuw7AGgzMoX2+t1C2tcySC8CmbuaYW8TB1ZeqVHBdbphvDO+NPQ7ayYXP6ikjS/O/9ictXV4/1YoJFI02hiGwUlcTKugKYZYWTxRS1ej96w/AICLxQLg8G/bkLvPGzc/ljN7So0Kx6T2zIfOA0YAAPRFRZh+qzmz+/i9IHi8f7HMGDgKiRTiJl7Q5t5ktnKmGuIwxUi5+D/HtnLX2FIPb2EMphvcPyFCGr+DvIMG9ctaZ+0Fvka1qASFRIpPehhikigkUjRZGY4aW6Oha9+S+cP7alHMHfPxYQCgYxXDP0n4eGlOC6MM8Yw0Krj+PkbQR/HJCwAAS2fuWc+Hw4LZ+S5JTjeZT1X2x8F/2nmBDd52SOeB7DhlS3NBPgB0C+yG9K9lJunGcyvhE0OcNj59z2NbQXmFRIqQzgNZfmJohEn8mdW/K5Cx3Vvgpzb9BlT3HHFXVyA455ZOjgL7JS0eCXyLW7hKYMd4PEvHejq9co3Ad/6v61Tumii5xK0ZOV11+Nadi+9W1PamwL5CIoXuwUN4fXgOVU7VBQAEXypmedrcmyzuncu8KCgkUjSYHWUyRubGF+CuHeOYffzfx+8FwUJqECxyiKqB2+PluFxgeA5YqVHh8IGfYH2qHrPBt5PwrJCVKR3/qsn8W+z41Nq10OZokD8kGPrn/7wzt+55hcdhpaeX2XhTxnh9eK7MPOPYXUUhARDb2rLjrlcfCGxr0zLYe8tjhjluvB7WXhNtkl7SxhcKiRQBKp0hXa832NbrWXrdFVFszE6uW8fS+Xh0pW3z96vjzWwQcj2E+ZE9XY46vZJwLSwC3YK6s3XdLiSFndP03msF/bM4fdFk7hojbuIFAKh+6LKZkeTgY8CV9jN3H7f2Hd+03tCemccEqv4ai9vjDWtoTkc9Hg3i4i7dOdAI1u9mCMrfa5XH+szf330XhENsawuvkefRNWQIEv20rF/8PUapUUFkacn6uaz+OSg1KkQe24W7v3lBp06F/oM76DTEIPBlbp6Joi4h8bP6SNnqCwDoFhBiMle7XzX4mBpQCH3xMyAmAX4XS0ziTvW5dgcA4LklTGBHp07F9VGrcFtmLyhfuq0W34bDa2w8y+f7LfnWcP13HszFM3vWJUBQ324bF0fP83+Gz0xduxjUoFOWBePI7s2GxgKbQSGRCj8j6PUo6hYguPa9xnH+8GsUAHRJ6mZoWyTCnQOmXyboL17l3sRx842Pzabe4G92Pdjt+YeJDeLtplzPXK1fvx55eXll/pTO0dERDx48wPr169G3b99yOabRaHD48GEEBgaiWTPTQG01a9bEpEmTsHjxYvj6+mLMmDFM0GLbtm1wd3cXPKfVrVs3dO/eHUuWLMHDhw8hk8kQHR2NDRs2YNiwYWjdunW5/CQIgiAIgiCINxoStKgwyrW5unz5Mrp37/7CMgEBAfj999/L5RTAffuk0+nMClnwLFq0CI0aNcL69euxcOFCFBUVwdHREWFhYZgzZw5sjf7TB3DfuC1YsAA//fQTtm7dCkdHR8ybNw9Tp04tt58EQRAEQRAEQRBAOTdX9+/fR506dV5Ypnbt2rh79265nAKA6dOnY/r06S8sIxKJMGbMGIwZM+aF5XgqV66MBQsWYMGCBeX2iyAIgiAIgiDeKl5VgN//QBDhcj1zVbt2baSkpLywTHJyMmrUqFEe8wRBEARBEARBEG8c5dpctWrVCgcOHIBarTabf/36dRw4cABt2rT5R84RBEEQBEEQBPHvItK/utfbTrk2V59++imKi4vRunVr/PDDD1Cr1SgoKIBarcaKFSvQunVraLVafPrppxXtL0EQBEEQBEEQxGuJSK/Xl2sPuW7dOowfP95snCmxWIyIiIgXilG8zeTn58POzg7t0AuWIiukLAuGx6QYeMZbIzlIC5ToUBQSwGTGXQ+OgdeYeOjlLSCKugSlRoXm34Wj/pIos/bF3p7QJSabzePlU8dktcKpNA+4Dr5kttzj94JQbVcsdyAS4cYvTdFgwGVWf1RmayabzpP6XTBShqwGYCT93FoKizMGCW4AuP+hDPELVmHB3cb4c1wQRNGXYFm/HrS5QtlmAEBgMyZnKvJvisMHfjIrLy62t4cuLw+P3wvC2eVr4D87DOfmrhKUHXn9Bn5s1AAAJ+Va6XA88yvlJ194DBPK+Ya064fIk3tYf4z7oF4TwGRazWFhY4OSggJYNG8MUbGOnQ9j+43XhyFp9CrBePGUlr83Tucxzhd7uAJ370P34KFJO+bsPFP4o2ryXYFEc1ntP+kThKp7ublw82M56i01zLvb+xujTq8kgW89k7swCW5z7asjAuEVHidIE1lVwuEbcSYS2saS2y87RjzpC2UC6Xze5rv9P8CR3ZtfaNs4vbQfS+67QdnUFtnT5HD6ihsLl1gbrHM+W6Ydz5MjYK+sAvvN0YJ5+KL2jNsV+fqgpLIlRNHC69XStQEKvOugxpRMPG17S2Dr2FMxvpg5hoV0uPk/Oeotj2L5xigkUkgvAgkjvFFyKdHsuNifrYmHYXVw+8sSFBVbQRRjx2SSxd6eiDy2i9kqzY15MjSYJTwX9mdrIq/VfSg1KrQfORqVlJzseKcrj3Cid3PoUtLxtHcg/oxY+8JrQSA9X68utDe5cRD5+eDwb9vQtetgHDr0s/l1w6cRIv/4BQDQLHYILgdt58JjtPEVyHsbj8f9371Qs7sayVtawnP4BWTuaob6ayoht7U1XOaYrsml59/Cu41wqnkV2J2phZ1uxwTnOmeKHFf+F1HmPHhR343zyprbSo0K4TnBSA0ofGE9gLsm9cXPWLriSj5W/6aA6zRD6IyyfCjLF7688fpp2cCZhXbgGX49C0Or34NCIkXT8xa44ldSZhvmfGd9CGgGi5RsRF49AffjI+Ex7CLLS/tWBq2tDl6hcXCJtUFmUAGUGhX6p3bCozZ3BXarn66NhDOerO8ia2voi4qg1KiQqX2M0YM/wgOPKoj7ynDP2ZMdg35Owaw94/XI2Ff5pWeIalFJMEbGBE0NQ40t0YL54Lp/LH7vuhw+laqwcgqJFBnzZejdPRoqX0P9Kqfq4mlbLlyAou9wICbB7Bxh9+Dn99ycqXI4fh1V5tiWHndRQDPo4y+ztHWZZ+BiWU3QTrOl4ZAsMv+5ha9XcNgNRVpL1Oyu/tvrvnGeZ7w1+tQ8x8J48GPHv/8rW5auDVBiUwWHjuwos37aNzK4TeHmRNuEpzjVvIrArtjDFbqUdABg4wkA2o5+gpAIWn0xTmI/Hj58aCK09jrAf2Z1+WYBLKpU/tfbK3laiMwpX7y241ERlEvQAgDGjBmD1q1bIyIiArGxsXjw4AFq1KiB4OBghIWFwdvb+6+NEARBEARBEARBvCWUe3MFAN7e3lixYkVF+UIQBEEQBEEQBPHGUq5nrgiCIAiCIAiCIAgh/+ibK51Oh+vXryMvL8/ss1cA8M477/yTJgiCIAiCIAiCIN4Iyr25mj9/PpYuXYqHDx++sFxZmy6CIAiCIAiCIP7/EeHVyKS//SGEy7m5+vbbbzF79mzY2dnh/fffh7OzMywt/9GXYARBEARBEARBEG805Xrmat26dXB0dIRarcamTZswf/58zJ492+zrv076VzJ4TOKkkn9wjAVKuG/yeBl2hUQKrzGcZK0oipNhVkikqHOxEEoNJ3He9eoDZu9p70CB7Df/4mk5L4yTSXU+C9fBlyC2tYVSo0LEjTNQalRQb/QHAJxdvobVSf4+EA0GXGZtt544DtnBj6HUqHDzf3JWLmXIak6y10iy1OKMitXjfbIq0EMhkeJ088oQRXPS8gfPH0Zhj0A0PW+B1MUG+dp+m48BAGalXYBFuoal69q3FPTr8TueAIBqu2LhemAszs3lJM6fdQlA9dO1oe3oJ5C/rnSYG9OFdxsBAKb4KQEAXVz8mb+RJ/fA48RItJ4wDgCQq+Wk5y0buiC9xzoMv54FpUaF/EPuMEapUaGkoAAAUJKQhM9/5+Tcf885jzbjxyFnqhwKiRQNZkULxutJ3yDkTDGM5+AkjcCmUqNCSKcBaPRjGNqNGiPof/I8O1jsqyrwI2+EjDsHLbxNJH7vNqsE/d37AtvGqIqKAAAZ82VMhh2AQIbdnJw3ABzwPCxI48tlzJdhVtoFeIXH4cFwGW5/JEf+IXcoNSrogpqY2OElm/n6xn8tmjYWtK3t6Cc4tmzgDNfp0cwOb7NvSmdYFGnLlLY215/zRc/gHl/Z0H5TThqWl2FXalTIDCpAhxHmQ0soJFK4DVEh7qtVCFDpMKh6Hst7OCxYUI7/uynzDBQSKUTW1gAA/cWruDWFk8UufpebozcnyaFNvwHryHiojwrnoEIiRccqOthuj4FSo4LmczkuTYlA1kxufrUfOZqNC9+uyhcouZSI5B+CoF4VaDJGea3uoyQhCef9dsKx71VcnhTB8vg1x2dFOABOltiYpNGrkPatDAqJFC3nhQEAdrgeZ2NaSXkOT5WuAICjTasj8s+9AIAq+zjJfgsbG2bLWA5ZIZGi1ll7FPQLAgAmww4Ah3/bxsmqX0pkfbkxVy6wo7t6ndmR9LmGTfl1uPZOXxSUsz9bk83l6t9z57/xJ5x8uMt7l1H5Yjpc5kQJrl/eT3VxAd4JH8vSp9e+DgDY6XaMpfH+FTQwzM3EZ09Y3tPegQCA+enxgr6XRqlRoWnMUABA3gcys2UiHGNY2dKhHZQaFT5O4aT49cXPAADFeu6eNLlmGlynRUPk52Pig7Gd1O+CTWyWLu81Lp6lH4z+jbumq1cHwK2TWxo5s7K8DHtpf42Pjdt51iWAldHHX0bk1RNQSKRMhn1+ejzyDnrC7fNoNHS/xa5fABiU3gG73Y8K/AeA3e5H4TotGmnfyqDUqPCop5Tlj3FpDdFZFew3c+v54wFc/6tZCCWr+fXIdd9YKDUqiG1toZe1YDLsvL1uLRXsfZvx45gMe+fEHiw9vdda+FSqIhjTG/NkuD5qFVS+wvPxtO0t2J2pBQDQtKlmIj/uqhwFANDm3oRlQxcgjpNT52XYjTH+TKHUqOD153BWRh9v+Iwgrl0LY1xaC84LAFz+2LBmaDtwa/aAxJuCse7ldAnxLXeyNPuzNQXt/5UMe+4+7n73g2MsOlbRodOQDwV1jjyxEow3T1G3ANycxF2/D4bLcPDsfpRcSeLG2MmPlTfuk67uM9Y2L8POl3vWJYDJsANgMuwABDLs5u49ry160at7veWUa3OVlZWF3r17w8HBoaL9IQiCIAiCIAiCeCMp12/56tatC61WW9G+EARBEARBEATxqtE/f72Kdt5yyvXN1YABA/DHH3+g6PlPiwiCIAiCIAiCIP7rlGtzNXfuXNSvXx/9+/dHenr6X1cgCIIgCIIgCOL1RP8KX2855fpZYNOmTVFcXAyNRoPIyEjY2dmhRo0aJuVEIhFSU1P/qY8EQRAEQRAEQRCvPeXaXJWUlMDS0hIuLi4sTa833YqaSyMIgiAIgiAI4vVBpH9Fca7+A1uDcm2uMjIyKtgNgiAIgiAIgiCIN5tyPXNFvDyu06LZe+OYC0qNCs1ihwAA7n8oM6knPnGBxVw45FODpd9tJtwPe27l4lr1vHYPAOCwOhpiBwcWq0GXnw+FRAp3q2pcTK0PzwEAhmW0M9iYwMU54mNi2eyOZbFQ6i2Pwr3RMuT86sNslo5LZIxCIkXU0tVI3eaLgsNugjglp9asxRW/Erh/wsVhSd0uxe7R7wIA5rm1hO7efWbn6LaNUEikeDg0GEqNClX2x7E203uuZWPzWGKJR23uCuJKGI8xH3NmrB0XU0rU2IPlKSRSDGhyHrZn0qHUqDDCpTUAQJuRCYVEii2NnAEAtl1TkTmLi4+huJIviP2i1KjwlXtzKDUqdHf0Q9W9sSzeBd/3TlceQSGRIruzHo7fRLHxGGF7GwAX74q3mTTeHg1nRMP6ULygL9X/rILidrnM5vRbzWG/iZtbxnF+eC5PjkBk0p9cP538WP6jgVyMlimuXNyghjOjkbI0WFD3zoFGUGpU8FkRjosBOwR9AYDG68NM4ueUtPHF9VGrsLBDb4jr1kGNLdG4OD0C4vW1oZBIYXFGhcclhayOZf16ALh4OMYoNSp4nByBQ0d2COKNlD6/2htZJvUAoOCdO9CfvypILx0zqHQsnemugUgNKCwzrhCfbnXknEl9AFCv4eLudGupwMXerlwcGG8uLpvdT4aYQ2lfy1icuREurZG8pSVujfJj+bZbbKGQSFk79ZZxc0Xs6YZrYVz8mLHqNME1xceWknwbBYVEirGDIlHSWopKSqGvxj57L8iAV1gccqbKodSo0C/xNstL/S5YEI9rrDoNAJA5i4vdxsf+Mo75AnCxZao14uJ7PX7+g4bScbb+bMbFtlKv9xeMtUIiZXHjxHXrmJyH7a4nYLMnVtCPPtfumD1fDWZHseuSz9+adRbqH7lx5q+50vM3r9V9Vie7gxUeDQxG5KU/AHAx1vi1yenoQ9weLxfYP/nEEzaHE0xi9JReJwBAVGzB0rwrVWXv+XhfM125uG9j1WlsDb4dboitBQCOfa9ysbk2R5vti+tvYwAA/rPD2DVkfaoei6O31MNbYK+7ozCGnP48Z39+ejzUqwOh/tFP0K+UIasF84rPS10kE/hjco4fPWLrJAB8nnoZVifrC85X6ToKiRT6VlJ2rNSoWAzD0uPMM/rScMT57gIAnPDZL8jb4XocCokUwZeKzcYAc/uci2V1cllEmfGJqu2MMWn31gTDORre6iwUEil0+fk4smcz+ly7IxgXvdYQ6+z0yjXQtWvJrZEds7Ah84zZWE8KiSFu4oPh3DUvfR6qTalR4WHrewhp/A4ufxxhEpssXbGB2TkYdQDJK4KwKb8O1KsDmW1LRwkAoPPAkYLr1nVQgsnaKa5hh8gELobb7XA5pt9qbvacH/tpA5QaFXpV4x4NsahcGduyzuJo0+psvO/+5oW8VvexLvOMoL5So0LDOOEaw+fV750IjxMGP62va5A72XBNLvbwYXXCklOYPeuD8VgzcQUAoMYW7trpcLmA8/15/FFjlBoVPEech0ULb/jPDDOZDyc2rhOMs/F7c9fHGwE9c1VhlOubK2MSExORlJSEx48f4/33368InwiCIAiCIAiCIN44yv3N1YULF9CyZUs0bdoU/fv3x4gRI1jeqVOnULVqVRw4cKAifCQIgiAIgiAI4t+CvrmqMMq1uUpKSkK7du2QkpKCSZMmoWvXroL8d955B7Vq1cLu3bsrxEmCIAiCIAiCIIjXnXJtrmbPno2SkhLEx8dj8eLFCAgIEOSLRCLIZDLEx8eXYYEgCIIgCIIgCOLtolybq5MnT6Jv375o1KhRmWVcXFyg0WjK7RhBEARBEARBEP8+vBT7q3i97ZRrc/Xw4UPUr1//hWWePXsGrVZbLqcIgiAIgiAIgiDeNMq1uapfvz4SExNfWCYhIQENGzYsj/m3DqVGhTsHuG/5LF0bAOBkRSV9rgEAam6MNluH/2ss9ek8P4q9X/tQArcpXN3xNQzS1LyEsDGl5VTvyB+YSIvysu2Zc+ToUrWIyaXWWh8Nx75XBXYUEimaLQkHwElRG9uSfh0O96EXYdMljZUffj3LRCI2pd0mHNm1CQAnR/5wWDB8F4Yj/StOatbSyRExi1bjs5u+ZmVzlRqVydhZtBDKDPM0PvM+Gp2zQsmVJIE86nlfC0RePIJ3LveBuIkXlBoViroZ+tOtpQIAkBjKSfMqm9qaSD2XZmhStuD4aNPqmJt2Hl5hcSbns+vVB/i5MSeD63FiJDzHx5rI2qZtl6LESiSw+ctJg/QsX17b0Q8jr9/g6vYdzqRqldmcjPmNnc1QKZ+TnOVleAHA4+MYge38ZHsmuy2fHAoA8NoUBgAYmdkGSaNXCdpValSwOH0RCokU2oxM6G7dZv7zEtoAUM2iMnsv2fcIjwYZJOCNZZjdh3B2k7e0NIyxSASlRoXUbb4m85avL65bh/Px+RgoNSp0cQ1i5W9+LBeMKwA0/y6clTXOy50sx1OlKzvO3uMjKFP9dG0oNSpILwLeX2QAALQ3b0GbkQkAiDy2S+Bnk5XhcJsaDa8PzyF/MNdvz+EXcPGLCHS4XACFRIqqv8aazA8AiDz1K/NjrZcbe69eHQi3zw3zX6lR4dDNprA4o8K01AQkrwgSXK882pu3AACOX0dh+I13IEYJy3P/NAap33HhD26Pl6NftXwoNSokhkaw86XUqJA7WSgPvtjDB3V6JQEAXKcLJcKTfwgS+OA9JQ1lobt1GyOv3zAZg9LX3N4mDiyPlwDnYfP+uY06Yht4jeSugY7DRpltV9/KMP/qxehQ/ZcYdnxs6waDjPb5q4BeOJ57vOugpNAQZqCLiz/z2XheO8VUg+f/DDLe5s4Nf7zWyw1LPbyR/EMQ6kQY1ny3veNYGeP5KJDa/+w6xDXsUGudYW4Utb3JyYNfUyNztvDc8WPrtmecwIdZjVvDKzSOSXnzbXyUw82rsOQUfHbTl9Vx/ywaN+Zxa7e2ox907VsK/Ct9Tr91b4bidrlQSKTw/MkgdV3QLwgP3jecU9FZLj15c0t4rw03e/3fmiBH1gw5bk2UIyHwZ8HYKiRSHMjhHlEIad4RABDTwsrsuN8J5drt7miQny9Lkt14/Oqu4M7RvVEyzHW4KsjfmC5nNmalXYDu7j1OSv9sTW7dOnmB2Rn1PBwI7w/P+GQ1xierAQC1j3NrzDd1OZsBM7i1mb9/87b4+7NCIkVRV8OjG54TYvFzYwk8tz5D4/VcXW0O9yujP3758YV99V4dDt2Dh6ydOhFRWFg3wURGn29XIZHi0jNbAEBJYSHeb9JFkF+7B9cnF8tqLJ2/btY4mX4uArjQNTVOVGZhIq7NdEH9JVGC+jy9bR4L1o3ZboawAz2Tu+C3OR1M7mWl7wUllxIhKnXN+10sEfjKv3c7MkrQvtsfHwIABpzPMduX1w696NW93nLKtblSKBQ4dOgQ4uLizOYfOXIEf/75J7p16/aPnCMIgiAIgiAIgnhTKNfmasaMGahevTo6dOiA6dOn49o17huYXbt24eOPP0aPHj3g4OCATz75pEKdJQiCIAiCIAiigiEp9gqjXEGEnZ2dceTIEQwYMABff/01Sx80aBD0ej0aNmyIPXv2oG7duhXmKEEQBEEQBEEQxOtMuTZXAODv7w+1Wo2DBw8iOjoa9+/fh52dHYKCgtCrVy9YWVlVpJ8EQRAEQRAEQfwLvColv/+CWmC5N1cAYGlpiV69eqFXr14V5Q9BEARBEARBEMQbyT/aXBEEQRAEQRAE8Ybzqp6H+g98cyXS6/V/u5vz5s17OeMiEWbOnPm3nXrTyc/Ph52dHZr+8inqDcqAUqOC7FI/3FPVgU22CBdnRKDz4JF4Ou0hbt63hZWVDi7vXRbYmJ8ej5muAWbtG0twl5aLzdM9wSBnuaCcufpuf3wIzw8umNiEhRjK7PNQSKTIni6H00JO4tSihTeQkomSggITe7cmymETchPVuqSZbVffSoojuzYhvfgxQhtwUrMpS4KROmg160frieOQoyiB15h4Vi9jvgwNZ0Yj51cf1K5WAOt3M5A3Qoa4hasQcj0EuvaGINUOUTWQvMobsd+sEoyJQiKFenUg0nuuNZEv5kndLmXy3wCQ+l0w3D/lJJPtz9ZEXqv7EAU0gz7+stn6So0KOx7Z48dGDdAv8TbG2mmgkEhxb7QMtdZHl3kesqfJ4fRVVJk2FRIpHg8IRrWdMSxtUHoH5LW6Lygn/Tocdb+Pgsi/KRqvSUKin2l8uZSffOEx7CIAoKS1FH/s3CRo80mfIFTdy8mmi+vWQeTFI6yuQiKFOiIQXuEGdVClRoXVDxyx378BSp48MTsnS9r4wuL0RbjHV0ZqQCEydzWDU80HsOjIhQ3I/USO+ouFErrG5+7gk8r43qOxoB9KjQoh7/RB5J97zY4Xz91xMhyfuQQDnIQy3XxZvl/8e49tYUgZapg7kpjq0AQ/YuV9vwxHnZWcr8k/BCGt75oypfjL4s6BRnDoeR0AcHOSHPWWPb+2KlcWSHnz3BsjE8hpl+6n8fs2CYU43bwy7o6VofZa86EdvDaHwXWaYT7e/kiOOj9EIXuPD5z6cfLRYp9G0F29joZxVZD2SWOs/mkFekV8Dsdvopgdj5MjkNJuE7p2GYSShCSIHRygu3OHjeX5omeY7hooaL+oWwCsD8YL/DGeLyJLS+i1WohPSFDJQoenbTm5+PSvZHCdJpSb75ncBVcuNYDnxFg8fi8IkUuXYcvDxvjdx17QFwCwrF8P2tybwsEIbg7EJHDvLcRAic5kvADu+rw6IYKNcf4hd9h2TTU7f1RFRZjyXPbf68/hcB3E2X/SNwgWxXpU/i0O4hMStmZtyzqL2mIbwblsPWEciqtaIM8HcJ1qXoYaAFIXB8P9E2H4hOTlwfD8XwzyPpDBfnM0LKRNUKK6xsb30cBgVP8l5oUhJLKnyXEifBHed25lcn7Kqpc7WQ6r9ndRu4daIEEdOC0M9pujWVpXt2Czc9wcJm09vye1mhTK1kLjckqNCu++N4JJth/IiUdPR8O9c2d2NOQRn+CJk1awhpVui78Ob4fLUSciysQPpUYFv7lhqL3G/Ll50diKPVwhKirGwdjfTWwOSOuI8+c8YZckgsNq0+sdML038Gml14NW/xuHartiYVG5Mg6lGcIJiI47Qt8hR2DD3Dry+LAbqnVJe2FfLJo3RkkCF9Lkz0LgSzdhOZGfD1KGVGdzVKlR4cgTK4w7PZzJ+hv3KXmTHzxHcKESikIC0Onr0zjd3BC2o/Qc1Hwmh13Hm7DpkiYo8074WFTZZzi//Hk0Jn1Hc1iobVg4EYCb994halzKckJyu00m875Z7BBcDtpudjwsGzjjob8ENntiYenWENq0DGj2NsEhv7VwsqzG6uy6fgH2Xml4+PAhbG1tzY7r/yf8Z1a3WQthUbnyX1f4h5QUFiJt3vTXdjwqgnJ9czVnzpwy80QiTr9er9f/ZzdXBEEQBEEQBPHG8IqeufovfHNVrs3ViRMnzKY/ePAA8fHx+P7779GtWzeEhob+I+cIgiAIgiAIgiDeFMq1uWrbtm2Zeb169cLAgQMRGBiIQYMGldsxgiAIgiAIgiBeAfTMVYVRriDCf0WzZs3Qq1cvLFy48N8wTxAEQRAEQRAE8drxr2yuAMDFxQVXrlz5t8wTBEEQBEEQBEG8VvxrUuyxsbGoUqXKv2WeIAiCIAiCIIiKgH4WWGGUa3OVmZlpNl2r1SIrKwvr1q3DmTNnMGDAgH/kHEEQBEEQBEEQxJtCueJcWVhYMMl1c+j1enh6euL48eNwdHT8Rw6+ifAxA9qhFyxFVhBZW0NfVAQAglggZcVduvmxHPWWmo+zUVbcqrJiUuT86gPHvlzcl2/SYzHFNUhQp1/ibezxrsPSOowYDasj58q0ufrGGRarCgCWZUTBu1JVk5gblg2ckTHE2SSOE/++5bmBcOh5XRAjylx/Hh92w9nmv5rE8zJ3zL93/yUU1TIsUG+5IcaFeoM/nA9YoMr+OJM2xI08oLuegoLDbjjT/FcT+yxWiJ8P9OevCtLzDnrCvlsyiw9k7NMXt5thQZ3LJuPIx9GyqFoVJU+eIHlFEDwnxKKgfxDOfG+In7QoIwa9Dk2EV5gwNotDVA3cmuYKi1MXcWNnMzQYwMXf8twSBrep0UhZFoyS6lp4jTonqMf7XLodnuqna+NRm7t4OCwYdj/FmMRZcom1QWaQaZwz3rb841AU2ouQJ9XBKzTuhfPSXP3SZS0qVwasrHDo+mkAMMl/NDAYN7sWI+3dDVzf9xUAMQlltpu8yQ9eywtRWL8qrCPjMTElCd2qFjLbH6ckYqmHNyxsbFBSUGCwIxJBmXOxzGuxdHvGcwEA5qadx2w3PyzJiMbkhjKBDeN+8XY+T72Mb92bmV0b7oTKcGHWKnQeOBIWpy/ComljlFxJMllXSvvlGW+N5IAiiL09oUtM5sZjRRC8Pj4PvVaLPtfuYG8TB1anKCQA1pGGuFQvQuzpBuj10KWkGxLNxI/KnSxH/SXCuDPZ0+SwSytB9V8M8YseDwjGuHm7sa2xk0k/jMdE174lxCcuCOyVHgdLZydos7JZ2p7sGPRzCmbHWV/I4bwg6oXnk7c5KdcfiX5azEq7gHluLU3aLT3niroGIDPEAmn91pjY6+IahMPpsSZt8teecT9/zzmP7o5+ZbZjru983Rf5yB/zMRXN2g5ujgeeNqixlVsHLBu6QJvB/XNV28EPlsfPM1vhOcFIDSiEUqOC66HR8Bp1Dk97B7LYQ8Z9Uq8NgNfY+DLHmt1HnByhzc5B1hdyuG7OhDYr2+Rc3dYVYMDYSbA+ZBpH7f5IGWr+aIjtZukoQXEDB4iiLpnYcd0/Fl5hwnWrpK0vLE5dLHMM74TJ4LDKfNwrsbcnkqbYshhOLzoXZfXfXNm/OubvK2XFyjTXhnHetke1sKWRs0me4ko+fstthhM++1nagYKqWOnpBQC4uc8b9XonouhIQ2C5gyCunTETU5JM4hcuTI/D5nut8L0knvlm7ppUrwo0uR/eGyXDMzsREj6NQJeew6A/dwVOMdWwweWM2WvaOIZVSKcB0F1Tm/XTOK5ZQb8g2OyJLXOdGJykwQjb22XGhNPqi3ES+1/buE78Z1b36QshfgVxrnSFhUhdSHGuTBg+fLjZzZWFhQXs7e0RGBiIXr16wdra+h87SBAEQRAEQRAE8SZQrs3Vpk2bKtgNgiAIgiAIgiCIN5t/TS2QIAiCIAiCIAjiv8S/phZIEARBEARBEMQbAKkFVhjl2ly5ubmVqzGRSITU1NRy1SUIgiAIgiAIgnidKdfmqqSkBMXFxcjNzQUAiMVi1K5dG3fv3oVOxylE1a9fH5UqVRLUK4cwIUEQBEEQBEEQ/yIiPfd6Fe287ZTrmauEhAQ4OjoiODgYJ06cQGFhIXJzc1FYWIjjx48jKCgITk5OSEhIQHp6uuD1X4SXYQeA/qmdoJBImVQn/1fzuZyVqbeUkyueqOFkVEtLp36ckiiwz6fr2rVkZdsmPMXDYcFMhh0Ak2EvaeuLzoNHQqlRYaydhuV39WyF45vWC2SBjdtXalQIbdAaSo0Kdw40glKjYjLsvB/3R3JS09obWXD6yiC7zMr0HQ6FRArrHfYAAM+fwjCoep7Z/ig1KlTrkibI8/khHAqJFJmz5VBqVDhf9MykrsfHMUyGXalRIfn7IHiNOsdk2AFgw8N6LF93PQUAYNMlTXBuSvtiUagVpD8aGAz7bsmIzLmAamvuAgCSfwhiNuKlYoFEvFNMNQBAypDVAIB7A1pwYzAhlmt/d6yg7eaVKsMrLA73RskE5+CO/AGTB05qvZWdL7ep0VBcyYfHpBgmw15amvpZlwDY7Obau/+7l6DMozZ3odSoYPcTJ4ttLMMOgMmwG9tUalSwaN4YCokU1X+JwYVZq+AVyo2zz4pwQTn+xTMxJcmsvTsHGiFlqy9KCgtR8uiRyTnhqf5LDCwrFwMA3KZGC2TYS8tSA4DniPM4fHAbTq5fBwD43qOxwPacOSMBACUFBWy8AAB6Pfc+UCiPXtAviB1vzTrL2tFdvY57YwyS67PdOBntyQ1lgnHg21ZqVLg7litvYWODb92bsTZ4H3h7Dquj0bXLIFicvoj7v3sxGXbjazB3spybB9vCmH/JAdwalNXdgaV5TohFaGISUr8Lxt4mDgCAlQ+codSo2Bjx56TROSuT8WT9TU5D5J97AQCZs7l17M4+D5Ny9ZdECebx1qyzcPoqClFLVwvSq+2MwbbGThD5NxX0CQAabQhjfbWKTRLYF3u5Y2RmG8G4abOyUdg9EABQ66w9mu//H2sHgIkMO9+ecRneXqIfd/3Pc2sJ0XFhiBF1cQEy5suQO1mOe2O482x9KB6eEwzX9N7sOGZPX1QE14NjTNZ2XoadbzPtGxm6O/qxckeeWLFxUWpUuDfKMM+6dBuKRhvCmL3kTX4CH0tfQ75fctdnabnu/MHBSF3Mrf0WV9NRY2s0a5+XYQcAy+PnWfqm/DpMhh0AvEadg6VbQybDzrMpvw4s69eD11hOcrtr18GCdUEhkaJ3soL1T5udAwBo0/MitFnZsHR24sblWxkKDrtBIZFiyPsTmAy7pZOjYA2427pY0Pe0UQ1xZPdmk/Wh5fwweIXF4eY+b6GsuZEMO2/HuC4vwz4+Wc3SR6m5zzm6xGR4juDGyPv8y/0fWyGRonVCX0Eaf48rS6a9f2onQfnMSVx+oLWVoB5Pk5XhZtfT+x9yc6m0DLtSo8LNSXJMrpmGSp1vQCGRoslKbu6s9PSCpbMTdO1aon7/ZG7taLoP1gfjTdpN2861yYe/MM6f7hqI6/7Fgmu384ARJjZ4GXbj9HPzVyHh0wjuujp3BUqNCrF7m0MhkWKsOg0iS0vBNR2s6s/qRh7diYkpRqEsjjkJxvn87FVQalSw2cPdM0N834W2ox+0R10Ec6GwxLA+8m3x119JG18UdRaGbiDefsq1uZoxYwYePHiAkydPom3bthCLxQC4b7DatWuHEydO4P79+5gxY0aFOksQBEEQBEEQxL+A/hW8/gOUa3O1d+9e9OrVy+RnfzyVK1dGr1698Ouvv/4j5wiCIAiCIAiCIN4UyrW5unfvHoqLi19Ypri4GPfu3SuXUwRBEARBEARBEG8a5dpcubu7Y/fu3Xj48KHZ/Ly8POzevbvcqoIEQRAEQRAEQbwiXsVPAv8jPw0s1+YqNDQUGo0GgYGB2LJlCzIyMvD06VNkZGRg8+bNCAoKws2bNzF+/PiK9pcgCIIgCIIgCOK1pFxS7B999BGSk5OxYsUKjBw50iRfr9djwoQJCA8PN1ObIAiCIAiCIIjXBZJirzjK9c0VACxfvhxnz57Fhx9+CF9fX7i5ucHX1xejRo3CmTNnsHz58or0842ltMw0L3fNI3ZwgEIixeVJEYLyYk83XPcvNpEJBoDPLvdj7+3P1sTObE4O9uj2jVBIpBD5N8Wp5lWYpHZp/vj5R1jdfWKSXlJQwKRQnyn8gSGcvHhp+VmFRAqHntcBAE2ihkGpUaGoGyfnW/PHaBO7AunYX7fgae9A2G7nJIdFWqH0cel2GsZVAQBk7uJksK9+xI2Ty9woKCRSDI4ZYyJrz9sCgDbjx6F1QCKUGhUcomqg0TkrKDUqrP2qD5QaFVpNCgUAWJ8ySLMb+2DpKGG2dVevC/plfzYLANB85Ud42Jp7vrDmJQvc/93LINHaPZD5lR38WHA+4xauQpVTdU3kZvnjkHb9kLylJc7NX2W2j7mfyNn5yprBSVVPrpmG7GkGWf/SstInNq6DUqPCuGwZ4lvuNClTegzzPpBh5PUbAh/dd4QK/C1JMEhie599n9V16sTJNmfv8YFCIoXsUj82l8SNPPC9R2OkfSOD39wwyCeHMl8cel5H1WpFMIdSo4J6dSDUawKA4Ob4wf9nKCRSFHULgMjamtlXSKRIXRwM9/jKgvohjd8xK0MMAO9PP2i2PfZ+31bBWNnsiWV9et+5laCesYy9UqOCuAkne9/y3ED4zzLIiYssLRGs6g9xr7tQSKRMBr40D9s/hf3ZmhilTkdJQhKyZshRs7uajZkxjkfvQ9nUFu6fRaPZEqEcvmRRlKD8Kk8PuH9qWCcONKmFMVmtEDSFk/RO/p4LLXDdv5jZKGu+AkDiOO76dOh5HXcONIJF88aCcgqJFOITEigkUoxIeQ8A0MU1iPkU0nkgK8/LKis1KiR8GgGxgwMazuTGdUDiTRS2aSJoO/LkHmiCHwnSLKpXR+XfOfnme63y4Dk+FrDgQiTc/kiOu+NkUEik3HUe3Jz5yacDgGVDF5P+6jvkMIn3gv5BiLjbFg1nRqP+kiiTc2/ZgJO27uMUKLCT3m0dW6/NjSUAJL/PSUEHTudk9Rd7+LBxAYBaGwxt6S9eRcOZ0cxv73n3BDYL+gUJbFfT6Fi+uFZN5ovtzzFIGczJ45c8egTA9B7A1+Pb+mpXP1auf2onTkY9LQOlGWF7G9rcm7A+VQ9+F0tQcikRCokUnlvCoG/Fhf942vYW0n9uIZina5yikT1djoOxv3PjMmwVbJ6H6RCfvMD80W/VC+p5jTpn6H//IBQ5cH3uNORDKCRSDL/OreGWT7n69Xpz94qw5BRBf2udtWfv1z6UIHefN8u/PV6OlZ5eUEikWJIRjQ1eroI+8zL+fPnU74IF60j6zy0EbdmUCj8y3TWQ2RFZVWLXRJuEQi4kSBvuPp3+tQz3f/eC08IoVt7cmu78JZdf/K6/oN34BatMyvJ2Ln0egXajxrA83gbAhTsQn7yAecnRJmuRMW5DOHsTNQFmP9eIAppB8yl373r8XhAszqgQ0o6bV90Cu7FyYi93KHpz95k2CYUsfX56PHvv+A3n34Y+XaHXagX9sQtJEbTbrWqhYX53zObuHc9l40uHAdHduo3fNq/CsSYHDH0Ibo7QGjlosiocYltbVjbt3Q1Qrw6ExemLiFy5ucxxId5OyvXNFY9MJoNMJvvrggRBEARBEARBvJ68queh6JsrgiAIgiAIgiAI4mUo9+ZKp9Nh+fLlCAoKgp2dHSwtDV+CqVQqhIeHQ61WV4iTBEEQBEEQBEH8O/DPXL2K19tOuTZXhYWF6NixIyZPnoz09HRUr14der1htFxd58FkHwAAzCJJREFUXfHjjz9i69atFeYoQRAEQRAEQRDE60y5NlfffPMN/vzzT8yfPx83b97E6NGjBfl2dnZo27YtlErl37Y9Z84ciESiMl9WVlYmdQ4ePIhOnTrB3t4eVatWhZeXFz766COTckVFRZg1axZcXV1hbW0Nd3d3LFiw4C8DIhMEQRAEQRDEW8sbGudKrVZj1qxZCA4OhoODA6pXrw6pVIovv/wSBWWIRP0VAwcOhEgkQtOmTf+6sBnKJWjx888/45133sH06dMBACKRyKSMq6srLl269Ldt9+3bFx4eHibpCQkJWLRoEXr06CFInzt3LubMmQOFQoG5c+eiatWqyMzMREJCgomNgQMHYv/+/fjwww8hk8kQHR2NmTNnIiUlBZs2bfrbvhIEQRAEQRAE8f/Dxo0bsXLlSvTs2RNDhw6FlZUVTpw4gS+++AI7d+5ETEwMqlSp8tL2fv/9d+zevftv1SlNuTZXGRkZ6Nmz5wvL2NnZIS8v72/bbt68OZo3b26SPm7cOADAqFGjWNrRo0cxZ84czJs3DzNnznyh3cjISOzfvx+TJ0/G4sWLAQCjR49GjRo1sGTJEowdOxZyufyFNgiCIAiCIAjireMNVQvs378/pk2bBjs7O5YWGhoKT09PfPnll9iwYYPZX7OZ4/HjxwgPD8f48eNx4MCBcvtUrp8F2tjY4N69ey8sk5GRgZo1a5bLqdIUFBRgx44dcHJyQpcuXVj6woULUadOHUybNg0ANyglJSVmbWzfvh0AMGnSJEE6f/zTTz9ViK/m+CTlKgAuZoJ6VaAgZsgzH2c4xVSDQiJFn2t3WEwFXTIX66Lz4JGsbMaXnOy9pM81KDUqPBguQ16r+xjgxKWrioqQsiwY+nNXYFG9OmvfomljpC4SSuZH/vEL8ylnqumm8sSP6xEj3c3iChnHesja3RTq9f5QSKS4JufGTWfNTSWlRgWxvT3ujeHaG349CxYtvAUxM/6MWMtsqUesEuSVjn2xWHKCixPSyhBjKP0rzvaTPkGo+XsVWDRtzNo2jtvx+LAbqu6NxZYGfwIA7sgf4HtJPDbl10GNLVxMjrPLVgMAitreNOuDNkcDbQc/diy2tWWxqbTZOVBqVFg1OoLlP7MVIb7lTgRNDUNYcgq0VYWXWOmYUs/GVDOJRcUfP/GsibROXOyytK9lyJwtF8ZIex7iQ6lRoUPv88ym3hKQX3rGyik1KnQeOFJgOyPwKZuHVifrC+KOKDUqWLo2gEIihf3maPzYqIEgz2MyF6PsQE48s2F/tiae9AlCYivuOcs248fh8RonAIBTv6tQalSw7ZrKfNBd5+LIuE2JRt1jNwW+AtwcN8Z4bNJ7roXXuHggJgGLPXwAANYH43E4PRbiWjXx7nsjAADun8Tg4hIpkjcZzl9k0p8wx+AkDcbXyGLHRV0NsViM2y59jmy7prI04/ln6eTIbCkkUuiuqTHy+g049LyOWuu52ESZs+XQa7WwC0lBnO8us37xuA1RIa/VfRZDx/nLKHjGW5vEhQOAQ4d3YFlGFBfX6rsoM9aAxwOCAXBxtpQaFZ51CWDrS2ZQAWps5Xz0nBjL6vDj8aJYNjwlbX3h0PM6tPbcf/6KugawPF17DftrIW2Cw+mxrB+lY8nx7SkkUuju3EFJG18oNSqsSWuDSspzAl8UEinEDg4IVvVn9sIunDecE0cJlBoV7o8IRNYMOS5Oj0C9I5wv2hwNlL9uYXZqr4lm9bQZmaz/DyO5X1Voj7rg1Nq10OxtApvdsTi1IdDsuVBIpLix1BD7puCwm8lYHT7wU5lroHFMvNLzL+SdPqxc6RhUAHDwzD7BdX1mxRpBudMr10C9kVvHdffuA+Bii5Wm9Jzn04yP+fhjAPCozV3BevH4vSBBfcsGzihqexML6yYw227TYnBk1yZUztNBXKsmXAeb/urFaaEhRluTiHCMVafB0skRd8fKmH1dew3aJjwFAHRt1EbQrs3uWHhOiOXmyckLUGpU2NKIi0HGjy9PxIj+guPtrieQvLklAGDZ1Q6o3zuRnY86Kw3X2OSGwvusccxD3p5xXLls7WO4Dr7EbKlXc/MoZVkwZqSpBLbujZJBX/yM2TmY4yPIVw9fhZrd1dDLW7C00jEkfX7g4t7ZnakFqyOm1496HXed8vf8TlcMceOsD3FxpJ70CULeCBk8T44QtB9obSVos/R9DQBSlgULYuYZ/9XHX8blydy99Oxybq7q1Nw9g7/Xzk+PR/KoOlDu4+4zp5tXhkIiRZcGgRh4kouVGNK+PwDAooU3dFevc59JbG2hkEjR1S2Y+TIu2zBvjP/q2reEx1IdK5e+ozky53CfkbJmyNHHKZC1oZe1QHpvG7j+PgbO86Ogy8/HsgxDnDGv0DikLAlGH69mIP49/P39BRsrnoEDubiJV66YrmtlMWPGDOh0OixYsOAf+VSuzZW/vz8iIyPL/C3j7du3ERkZWWHfBO3atQv5+fkYMWIExGIxAG7D9eeffyIoKAgbNmyAo6MjqlevjmrVqmHQoEG4deuWwEZ8fDwcHR3h7OwsSHd2doZEIkF8fDwIgiAIgiAI4r/G26YWmJ2dDQCoW7fuS5WPi4vDDz/8gKVLl8LWKCB0eSjXzwInTpyIHj16oEePHli9erUg79KlSxg7diwKCgowYcKEf+Qcz4YNGyASifDhhx+ytJSUFOh0OsTExODIkSOYOnUqWrRogdOnT2P58uVISEjAuXPnULVqVQCARqNBkyZNzNp3dHRkJ6E81K9fX3Bc1rdnBEEQBEEQBPFfx9PTExYWhu94cnNzK8y2TqfD/PnzYWlpiSFDhvxlea1Wi9GjR+Pdd9/FgAED/nH75dpcdevWDV988QUWLFgAb29vVKpUCQBQrVo1PH36FHq9HvPmzUPbtm3/sYPXr1/HmTNn0LFjR7i6urL0R48eAQDu3LmDdevWMcXCPn36wNbWFnPnzsXmzZsRFhYGAHjy5Amsra3NtlG5cmU8efLkH/tKEARBEARBEMT/H5MmTUJ0dDQWLlyIRo0a/WX5RYsWISUlBfv27auQ9ssdRHjevHk4cuQIevToATs7O4jFYlSpUgVdu3aFUqnEF198USEObtiwAQBM5N55FQ8LCwu8//77grwPPvgAAHDy5EmWVrVqVRQVFZlto7CwkH3DVR5yc3MFr+Tk5HLbIgiCIAiCIIhXyiuWYk9OThZ8dq4oZs6ciR9++AFjx45lmgwvIiUlBfPmzcOMGTPg5mb6XGx5KNc3V5mZmahUqRI6deqETp06VYgj5tBqtdiyZQtq1aqFPn36CPKcnLiH5e3t7U2+keJ/pmesViiRSJCTk2O2nZycHDg6OprNIwiCIAiCIAji9WbOnDlYsGABRo4cafLYUll88sknqFmzJvr06YOUlBSWrtVq8ezZM6SkpMDGxsbkEaAXUa5vrlxdXVmMq3+T3377Dbdu3cKwYcNMNlB169aFi4sL7t+/b/KTPv75qTp16rC0gIAA5OTkICsrS1A2KysLGo0G/v7+/1IvCIIgCIIgCOI15g0NIswzZ84czJ07Fx988AHWr19vNgavOW7cuAGNRgMfHx94enqyV05ODpKTk+Hp6YkxY8b8LV/KtbmqUaMGateuXZ6qfwv+J4HGsa2Mef/996HX67FmzRpB+qpVqwAAISEhLG3w4MEAgGXLlgnK8sdDhw6tCJdNUEikSHvGbfI0n8mR3mstSx+alI2j2zciO/gxAGBfC0cTSV2LUxfZ+4YzDHK3CokUNbYYjuWXnmGKaxCO9PkOAFDy/Jk0ACi5koTK90QmkrCKxO5QalRw/DrKrJQvLwtsW89gS6lRwbn/FXiNPicoW2hnwero8vJwX1qC/EPu2NLIGYcO/czavDlJbiL/qpBIoV4TgMicC1yi0QXx7qeTAACNTg8HAHT1bAXXaVy/T69cg5hFq1FyJUlgi5cJPtv8V0E6zwjb21CvCRCMBU+ASmcirX3spw1QalQQ+TfFrUE+eNrWoESpkEixsFEgO66/OIqdm2k/DUe1nTGGsT3mxMp1Gvoh7o2RQafmpLzFJyTM95xfDfLiPG5To+Ey1yBF3OicFeqsjILI0hIKiRTJAUVoFss9tLlu5A+IalGJ9UEhkcLi9EXB8a0Jcva+pKdQ9VMhkUKbfgNKjQrZ0wyKny6xNgLZ2p6OhjHc4Xocp1euYW1U3RuLajtjkHfQk9XnxyFlGSeH22QlJwusS0lH9R0xgvPBl92TbUhPXygzkYA2pt2oMdDduw/RWRVLs/05Bp4jzrP+yieHMtv3RsvY+6VJHQV2rQ8ZZOYBoCjEICVemim3uHLea8KZDW12jqAfALD4m0GCeonjInBvlAyLMmJM+sTqBQolfMU1DHKzyQHcz5wfP5f3Nr6+JzWUw/WQ8KfUCokUe7K5+ciHINBrtVBIpAj7fqdgfSlNaVl6478KiRTdWvUSlP/j5x8BGNavG/30gj6K63JrYonqGvPtRW3z429x+iKaRA2DfTfup9dtE55Cvd6f+VPo2wAx0t3M3kpPL3g8l4w+GB8JAIhfsArOX0YJ5rlxW8bjVZoY6W647RmHY00OQCGRspABdSKiBOV5OWylRgXHvlfZe43awaz90jLn/F+lRoUW33LzytLJEX8WGvJ1Kelm6/Ny3ny6UqOCel0A5JNDBecQANK7rGfvUxcHm4SzAICQTgMgv/QMXa8+MKQ14Z6nTtnqCwA4kMOtVfZnawpsKCRSVNtlkPPf8LAetDeyWJ5CIsXO7GhAz80P64PxiLx8XOBD6iIZ6x8fVsF5QRTWerlBm52D2mujBWN2qjn3yMDTPbVMxpR/b39WGCYmpG1fPHjfIKNuvIbwdT0/uABLJ0c49zfIOpc1b/kxqNldbVaSnGeUS2uBLa/QOLT4NhwBAWp86SaFuJbBz1oboiGyqsSuOeMwEHz95OXBEEVdwuobZwAAOVPkLE8hkcJpIXevf9j6HpQaFaqfri3w12tMPPc3NA4AcLRpdTSNGSoMxTHlGuw3RcNtiAoiXx/k/Opjsj4Yw6ffmiCHx8exEFlVgkIihezTUEG+8XvPLWEYmdlGMG4KiRSB1lZwm8KtU/dHGs7X4Rtx8Bp5HgCgu85981ByKZGtrbr8fCg1KhxKi2E2MwKfmj134hMXcHj/Vig1KpS0lsJ1UAJc5nDy6tfGR3AS8ddToJBIIYq+BIfzJXD7xSBi5l3J8IhJ+lcypA5ajb3qy2bbIiqOefPmYe7cuXj//fexceNGgVCGMbm5uUhKShJ8KfPdd99h165dJi8HBwc4Oztj165dL/XzQmPK9bPA4OBgXLx48a8L/gM0Gg0OHz6MwMBANGtmPkbA559/jj179uDTTz+FWq1GixYtcObMGWzbtg0dOnRgGvcAJ8LRvXt3LFmyBA8fPoRMJkN0dDQ2bNiAYcOGoXXr1mbbIAiCIAiCIIi3mVclk17RbaxcuRKzZ8+Gi4sLOnXqxOLa8tStWxedO3cGAEybNg2bN2/GiRMn0K5dOwAo8/GmTz/9FNWqVUP//v3/tk/l2lzNmTMHbdq0wfr1602EJiqKTZs2QafTvdC+ra0tTp8+jZkzZ2L//v3YsGEDnJycMH36dMycOZPFxOLZtWsXFixYgJ9++glbt26Fo6Mj5s2bh6lTp/4rfSAIgiAIgiAI4t+Bj1ObmZnJBO2Madu2LdtcvSrKtbk6dOgQ2rVrh3HjxmHVqlUIDAxEvXr1TH7fKBKJMHPmzHI5Nn369Jd6rqt27dpYtWoV+yngi6hcuTIWLFjwjyMvEwRBEARBEMRbw7/4PJRJOxXIpk2bsGnTpgovm5GRUW6fyv3NFc/FixfL/IngP9lcEQRBEARBEARBvEmUa3N14sSJivaDIAiCIAiCIIj/B97UZ65eR156c3XgwAE0btwYXl5eaNu27b/pE0EQBEEQBEEQxBvHS0ux9+nTBzt27BCk/fLLL+jbt2+FO0UQBEEQBEEQxCviDY9z9Trx0psrvd50NJKSkrB///4KdehtImVFSwDA/iA3KDUqSBZFsbz7H8qwrbETFBIpsnY3hV7WAodvxJm1o5BIEfE8bgWPJKY6UrdLAXAxG9pWS4JSo0J4g9Yszfiv49dc2/lDgplNdMyGT/RQw/Fzfs85D4VEirtjZbg7Tga7KoVQalRwPTQaCokUkTkXWFwMPn5GzR+52BOj1FzsFc/xsbD/1NLE9qXPI3BznzerK65VEzuyopDeYx1CHFty/hrNtaglXDye6222cLGmXCSCcVFIpAhQ6QRj0+p/4xCZcwGyT0Jh0cIbAFjcD4VEim4tFfAaFy+Ik8ETLxWbjcMFAPpzV3B+zirgmBNLO5ATD33xM3ZOjON8uK5OYTYeH3YDOmazPPGJCzg31yDComuvYWWvBG8TtA+YxkhJ7c9FCtdrtSzWDB9zp1VlC8H5MUfdFVEIad+fi9mRny/Is2jamLXn9JUhBlrcjhbI+4Abs9vhXNyoR4MM88n92EgonPwEPsf57kJBvyDBOHpMikHT8xZw/jLKbN+M+93qu8kszXV6NEu//ZGc9ZGvf3LDOig1Klg6G+KJ8XmqaRFQSKSovsMQU6rWekNcp3q9E3Frohy6di2xLtNwrfF+W0fGo9E5K7PxqL6py7XhMlfYnzYJhax83ggZam6MFuR3C+qOSo/16BU50WQc+HriR4WC9iKvncIzhT/SvpWxcsbx3IzteI0yxKLLH8ydp35OwWbLzvh1iODY2Jc+1+6w8i3iBrP6/PxqdM4K2vQbXJubwsyez9Jx8SIvHmHteP4Uxt6vLrXO8W1YRxpivl2T/8TyTjWvAq/R55h/ezZ8j9YTxyF/cLAhrlq7Tcxn43lY2k/jc6vt6MfKZHwpE5TxnGCI2/RMYT74vCjqksAm3w/PibEmZY3b1bVrKYglp5BIUW8ZN6+02Tl4p7L52ErG1wIfo0ghkULcxIuLEddtHaKWrBasCV6bwtj77OlyNPztmcAnPk93TY2oFpVwyKeGwc8HDwEAHu9zz1v3ut4bAJDX6j633pUUmp0HO73r4f6HMoHPvvsnmYyHceyjlKGr2Pu0dzewuvxfvo96eQt4rwnH0CRunT3ZdJ/JGD/tFQj/2WHMT57IU7+ixtZoQVk+7lWXpG7cfXqmHNrsHKQu4uLj3RvF5Vu6NTTxydgOADz7o4FJLLP0r7n6Yp9Ggv7XWxaFvFb3uTa6NcLt8XJmU1/8jI2N3ZlaJnPZY8dTLMmIhqtVNQCA4zdRUP/oh9Lw5R+1uWviq0IixbKMKNid4eKE1dxiI6ijCTbEvdRfvIorwdvwbn9Ooa1IX4xFGTGwqF6dlbk3motTppoWAej17H4Z/d1qk7GyaNqYi9c1fBVrx9x8N/7MURbPugTgs4bBZs+HQiLFwvQ4E9sPhsugXh2Iw0+soZBIYXGGq5v7idzEBs/Z5Wtgeew8NJ+allF/wN3j+3iZDydEvL2U65krgiAIgiAIgiDeEt5QtcDXkZf+5oogCIIgCIIgCIIoG9pcEQRBEARBEARBVAB/62eBpYMEEwRBEARBEATxZiN6/noV7bzt/K3N1eLFi7Fu3Tp2nP/8QXgXFxez5UUiEW7cuPEP3CMIgiAIgiAIgngz+Fubq/z8fLahMiY7O9tMaYIgCIIgCIIgXntI0KLCeOlnrkpKSsr1+i9zWbEZo9TpcD1eDMAgx6s96gKH6LtMitb1ozsQRV8SyN+q1wUIbBlLrKvXBkAT/AjuQwwy1O2qcGOdvJmTfy8tGWrRwhsKiRS3FM+YHQC4KtsmKCdu4oXujpx0a+210ai7MwlVFOnoMHwUk3YOceTaGJctw82PDZLYALDByxUAoPlUDt3V64K2eL+eJtUwyPzeu49BznKB/LCxvdLyqbrEZJNx3nFNKDV7dvkadBo1DrY/xyBlaA1ujJ9L094Ol6Mk/xGUGhXiv1xl4h9P96t5ZvN4CXvex56OhvOkCX4klFW+dRsPh3LS19W6pGHk9Rumtoz6LEg3+gnuxJQkeJ99H0qNCsk/BEGpUeFg1AHmHy+HbOxvaTnju2Nl7H3mHDnUG/yhu54i8OHub15QalQ4dISLZxf8eSiqnKrLylz6LAL2mzn52zoRUUzaHABcYm1woX0EUKKDyKqSoC82ewzy07wPV/xKBGV4CW712gBWTuzTiMlQI7i5YOye1NfDbe84wTUDAJ/d9IU2K1vQlrnza9G0MWu70TkrKDUqbPh4GcQnL6DL2s8hdnAwqXPdvxhKjQq3JhqkkfN0T0zGWiGRwtKtIU43r8zaj1u4SiCPr9SooM3KRvVfYuAVzklnS78KN/FVl5hscj1UUp6D2+fRuDFPJpDWLn3NGNez/TkGyZv8kL5QGH5A0Xc4ACB5+CqBLdffxrC1JLRGDrNVr3ciNJ/JTcaFl693nS6UswbA/BT5+hjaNZJyr5FoSAtt0BpKjYqFUAj+LFRwHktfJ6KAZoJ8vwMf48z3a2D783PJ/eDmZUqXh1wPMfHV9fcxAIBjWzegsEcgFBIpGs4w7RNPJeU5kzQAsDtTC0qNil3/ZYVEKI345AWz6XwfXZWjWFruZO48jFWnsTZKrym6a2pBnkAmesQqWDZwBgDoxVzbbr+OM5EMNx5zc9cSAOg75AjK9HMKhkIixZ0DjQTpAFhIAr4dz/GxLH9ntiFcgd/cMJMxMJ43AOA/K4z1URR1CS5zo7CtMReKofWEcRialC3w+c9Va1FrXTRSlgQLbLM+W4i5+Sdt8n/snXd4FFXbxu/NbkggQOhlU0inhLKQugsISlkIqBQFpQkiLQgW7CIgig0RBalKkS6CINIWQUAglZClBtIbQy9JCCRky/fHMGf37GxQ3y/y8srzu65c2TnlOc+pk8kk94M6q+PhnVCT9c3nIzEsReCbYkiI+stEX03ZuZwNbowXRQIAqvXIQ/qycK4f/u/Ei+EsmtdxOrabb9VGnVXxuPtEEbenXQ+IYTiKOl2Dys+XGw9F/HGEVqvOlQ8ZlcLZbZv0PPRqDUK/jYUz8n9qg1f9dCjqdA0AUH1rEmtDr9bA0qU9NheK5/7t/lGIeaw/Moa7AQCe8hLlzy0lJdhSmITr20OgKrOycel7+obTe7uUZjklhpTp+Op4WZ5Ux0XTSrw/NA8Sx2FYtOzMU7YKQbXdtvAN9vXzPhT3zXv+kayOaa8vFO1DUWdVPELGJ2FuUEuuXtM5cZyNnPXtWN3ncp5A/gwdFsQudPrzwl/d+8S/C5JiJwiCIAiCIIhHGIVV/HoQ7fzbIbVAgiAIgiAIgiCIKoDeXBEEQRAEQRDEowz9z1WVQW+uCIIgCIIgCIIgqgB6c0UQBEEQBEEQjzqPwFulBwG9uSIIgiAIgiAIgqgC6OHqH6R/SBssC/HHQi9RtlSS5Kw2xQM79/3EZDq3puwEABR8oMPsXLHs9M6/IPcjLZMWLRlsk47138jLWOvVGgRsGofw6RPQPPYcy1MF+LE2LcfTYBCMeCdyNwrftUkph8YPtTm8zxtv/boJgCgxqggLxc7T+wEArnt5OVcAyI28gyZzRUnu3kE6ToZU/aUoXXr+bR0nRXrH4I/0ETZZagBQJ9Ti7NrLl158VceN3dWxWlQ/2BgA0DJFJUrjDjFy9YfldkW13ckwCEYEvGUn+xvdFkUtzLDctslnZ6/ToMfzo2R92x5aF3066NlYSO2rmjaRlbWHyZ1PE/1OmL0YhZtFCeoVzZtVWi/q7QmizP49CX7D+VRmb15QC/g+exJ6tQbBLyfKJJelcgbBiD4RMVya9DllxiL0ieoLvVqDtLELETL6KDLmRcGlRg3mQ8mp+tCrNZgsRECv1sBzTQK2BhtEads6nkwGOX15uMz/fWktMMhblPm2VtyVyaBnzI/i/HVEkuAOGZvM/N7524+2AgknuDH2ez+eSThL6NUanOhgtclW736JpTvK3VtOnWWf56lFyV5Jmtfn4ziYr1yBQTDi1iBesjlg8zg0nmeT5a2rtI2ffd96/Grrv16tQetvYtE7IJor6yhx3Xi+za6UZi9bLMmdn39HB2XzIJx9aREKTbcwLfuYrH3pOmj/KGTME8c+u+cy+L8Xz5Ur8asBRUQbxLTqwq2bmhmu8G5ygxs/SR5ZPTsOCtdq6JH2JCs/xreTU4llAGg2LR59ImKwe8daVj73I60opR7emguJoAwOEOWej4v67AmzF3Py247Sxtbkk1xbwRMTWX7GN9FAwglkfh3N7APAlW3N0atZJHY238nqSfLyIWOTWR/cf02SzcWF13V4P9vI+aBsUJ99zlzdHoAok61Xa5AwezEGpl0GXJScHXs2FPDzbt+mhNSevax206/icHWcFgNrFnPryb7ezeE26f2Mb6M423q1Bqa8AgCizDgAZA9YwtlxnMuAvS/e10+DYESbxCFQuFaDQTDiWLhtD/fRPcXVy/5ci15P2u4/W0troutnU5i9BktsZ7ezMw8A6n8vllGGNmftS/LkHpsTsbaFN2K6DoRBMOLznEQ2TkGvi/dZa0e+f4bCFHH9Gc/AIBghdDUxu/bjId2zLr6ig6pJY9kYsPmaIK4hZYP6yOn9vWxM9WoNPApuc/2SbC0NCQAAeA88jfRl4cj+QovezTujousFdBsuSvKH/5LF+uRMJt/xnAGAE5HrRbufiHNeujuAa99/ejlXvmBTa87naukXMNBb3FM1tiTCUrcmcp5eytUxd+2AqOSRqNc3HQlfLIZBMKL0mShsD61r258Loph/o/I7c2NXc2MC14fSgba1K3QRQ7nkDWgEg2CE5xq+rF6twZ1vyrk0+/FxEaeUhSHQqzVQdc+HNfU0q5O5pj0rXzzEdm4bBCMU4a3h//xxln+j43X4zojDrACx7aKdokR8yeDoSkMXPKxIaoEP4uvfDj1cEQRBEARBEARBVAH0cEUQBEEQBEEQBFEFkKAFQRAEQRAEQTzKkBR7lUFvrgiCIAiCIAiCIKoAenNFEARBEARBEI8wD0psggQtCIIgCIIgCIIgiL8EvbkiCIIgCIIgiEcZ+p+rKkNhtVofgW4+WIqLi+Hp6YmueBoqhassv2FcHVzR3QTgPJaIM6Ry9uUNghExLR5DSbeWOLRgCfRqDYaeLcTaFt5/y/bkzLOo5VKGx9yBtl/G4sQbC7m4Ug2Wxv+pb4AYLyJjQRSCJybi+igtomKP4Zl6yfg0sO1f6pdkwzHPkQkZmVgUHFSpTVXTJjBduIjcj7To0esYMiLKkfVlNCzVrQjceBcuB20xpJLKK/CBf4SsH4r2oRCmW9C0XxrK+kbCfbsYr+T5swJG1r6MTicGwKNXNrI/0yLgnXiUDozC4flLZH2R+nDhdR28V52D+eq1+/b9+vYQ1OubzuXnbWyDuxc8EPyKLZ7H/ZiYkY4FwSFOx7Bgqg4+H9vi6qh8vGEqKJT5ZI/CzQ3miJZwOWxE1pxoBE5J4MoDwJQLHTCn6TGWLtlQtA+FNfU019deTw5F+ituyO6+HDGhj2Pn6f1OY3M54rj27duR0jaU1JXFE5PKxnQZAHNGtlPbjm1YOreHy6FUWV6P50fB5WAqMlaGQXWxGtJHLOL8cOa/QTCi+9AXodx/TJb+V/anPeW9I3C3thK1frTNwfbzKejrFcbHY/NvBlNOntP+AYD/9jGokeMK70/jcGOkFjdaAhnDFyFg8zhYa5qQo18GvVoDa0cNpq9ejpkBHWT+qvx8kT7BCwFvxzs9n4Q3dLjV8i5CRh9ldZRB/rB6uLM4Vo5jUd47Am67krm8CKMZyRqlrC9FQ6PhuTYBhZtD4T3wNG49G4XaO0/BUloqttU8COZzmQCA4GQ3ZETw8XscfZa+lz0ZCfdfk5D9uZaNSfCkRFncqRsjtUj6ZBE3Jplr2iNoWCqUrUKwc+9GMcZZigvSutWC+WYRdMfvIq5dNafz4jh+ElMyT2NOUChXDrDtZWd1LPt88FvLX8WYP/0iUX1rEpdf8L4OPrPiZHuKxRd8TYcmc53H3+p/5grG1znP+VvRMxyue446Le8M+7aePytgfQs1ACD6eAU+bCjGG3K2Nxz7Wtk5YJ+mrF0b5uJiKBvUh/nqNUzLPoaZAR3kNl2UgMWMjG+j4N6kFD7PnKp0jfwVVE0aw3TxEjYXJmCgd7TMr5sjtKizSry3Ts48i3lBLWR9zJqtReZQcY15Hq6PW/1dsPP4b3j1Qji+bmobb71ag+ZHXZE+JgTW1NNQqFQo3+WFaj3ymL3cWVqcG2U7rwyCEY+d7I/q+hzZmKj8fGHKzYepWxhU+1KgbNwIO1P3AACaL5uAc6P5dV/yXDRqbeDvT5XFvXMk98e2ONd5laxc/zNXsCj9MRyPXA+9WgMXTStYjGeY7ZjQx2G+cQO3dgdAAeBw25+hV2twc7gWdVbH48q25mj41Dmna0bqf8BvLyL4hWNc3m3LXfT3jpSVl6joHgbXvSm4MkGLhoviYemkgcthI8t/P9uIWQF8X0zWChzALygqKkLt2rXvOx7/DaSfWduM/gTKau7/eHvmu2U4uey9h3Y8qgJ6c0UQBEEQBEEQjzD0P1dVB/3PFUEQBEEQBEEQRBVAb64IgiAIgiAI4lGG/ueqyqA3VwRBEARBEARBEFUAvbkiCIIgCIIgiEcZenNVZdCbK4IgCIIgCIIgiCqAHq7+QTK/bS9LUzaojxvD6rBrJlkd3pqT+jUIRpn0r/13Zd26CNj7IszFxUyGHQBG1L7K6vv/MpazZ/85d5aWXc8LaoFZARpRgtwKtJ8Vy8pJMuy9T9902keDYETQuvGs/ez+SwAA9VbEIyOiHF2rW7i+2PsRnOzG6vXyj+LsLs477FRe1yAY0c/jFjLnitK26YsiZWV2pOwGAAQtzMG3XqKEsrmWGdn9l+C39StYWb1aw2TYJSSJVmvqaTTtlwaDYMTBpUtZ/voWavTyDYdHL1HS26VCtOWxORF9OuiZXUf53qZfxcF89RqUdesyP/tE9WWfw1IGAQAaDr8iG9/y69WR/exi2fhVxscfvyCTg5c4E7uQK2svw+5YXvpuLS9nUrOBUxKgcLVJSXeYOQF6tQYHlkZxa1Th5obM1e1hTeVllfVqDXb/uhbBI46JaUoXbp71ag2UIYGsfXPXDlCEhXI2ACDw91Ey6V69WoMVzZuh8D0d579erUGHo4NhzshGwQc6KOt4cvmOGASjTIZd2TIYerUGV1tXBwBk91wG/3fi2VwDgF9SdadrNmDLOCj3H0NFz3BYuvBngkEwIvp4Bd9W3bqV+nd+eAVq/ZiA4uejoU6oBQDo6xXG+intNXsZ9vM/h3I22n4Zi5CxyfD+VJTarrsyHgFvi/s8eFIiQkalsPYVR4wYt/RlAECPQSORucbmvyk3n9VzJj/vuzYbIaOPYlr2MeaXOTMHu3atl50JUv2yekou3SAYZTLsUn5N4S4MghHeA8U1VvOnROzKOIIr48Wzbef+TayO8ZoXVN5enB1n6wcA3H9NgsLNDQFvi/MrybDr1Rr0y9CzcnVXxrPPl38RZbSt18W9sXPvRvR85gUAwKkwC6xmCz7JSUJcu2pc36+/qOXajgl9nPPpxo5gJsMulctY1QHpiyO5vXx9lJbZLH4+Gi7dCgAAqwuOoMau43DEZ1Yc127GN9Hi531iGI/jb4q2R52Ty/lvadUQty13ufr2MuyVnff29AnrxfLnZ3Rl6Ydfi+b2lFTm8i8tkLm6PcYUdERYqoUbD3bvO1fA0nv3fp61bS4uFr/fC4MhSY4bBCMUrtWgV2twa3cADIUpMAhGZA9YAp9nTgEAeg58gbWTsSBKtmYkMuaL96/XMsV7RunAKJguXgIAtDG8jAijWVa3zqp4XBkvzlu7alcBhYK1dWOkFreejUKLiFzo1RpkrW0PXd0s3I7wg16tQVqYSTZO89TJsKaexpTM07CaTKjWI4/Z63LiDvzet51XBsEI/YARqK7PAQC89MPL3FztiNsGAFDtE8dkZ+oeVtfvg3jZfcJeht0gGFEy2DaPeTPFNX67P3+Pl9gatZiFIVE188H17SFwO9gEW1o1xPHI9egdJJ7nFuMZGAQj3s8W96L5xg0YBCNq9spmMuwGwYjEzxdB2bgRJ8Pe+UQZa8/+XpTdYznzOXOu6LO9DLtULizVAs29W4Lr3hS0TFHh2AeLxHvFvXujytsL5q4d8Ng9JfOs2Vr8ryGpBT6Ir3879HBFEARBEARBEARRBdDDFUEQBEEQBEEQRBVAghYEQRAEQRAE8ShDghZVBr25IgiCIAiCIAiCqALozRVBEARBEARBPMIorFYorP/8a6UH0cZ/G3pzRRAEQRAEQRAEUQXQw9U/yMmeqzh508zV7WG+eg2XuzSVy10fPeVUGrhgqo5d52xoyz577b6LCR0OAgBi2nbD2PRsJjt6p18k9GoNQiYksfKdXx7H2fV7P96pz9V7XEbq+6IM7+m7d5h/u0LrAAAuTbbJXOd+LEqNBr5hk2F1lP6W5Fjt5U9VPqLcb0ZEua3hXQ0AiFK2ADC+WSenUs0RxwZBr9Yg6DWxzZAQgfP/8su28TJduAi9WoOWi2OR8+R30Ks1aL5sAlTNfKB7fbys7+XWCqQvjuTm4Zms7qxPBR/osDjvMKwmE8vv11eUpb00WYeuezNZXXuf7dPMN26w6yF7bdK4KWEbAQDmGzeY7cCNoo85Ty3F6PxOQHTbSqWAAUDlpYZBMKLuD/HoOnoMGz//HWO4ObHH/HgHfJJjWyef5yTigukWlMEBzGdAXLvS5915SUxuueHieBgEI1xLrXDx8GB2rOXl8N7oiu3nU2Rr3b4PO0/sg6qZD+efOT2Lfb4Y7Y4acy9jcd5hrkzQsFTOZt0j9QAAWV9Gw/sTXmYaAFSb68EgGHFmwkJkvtOKzY/58Q6sjP2c2acBwM59PwEAGi3gbWeuaY/y3qKcf27kHQDAnX6RXJ+DJyZi2/lkuO45CpeDvMS7Xq1BQjtXbm/vPL2fayN9qS1cQMAQcdxrr0+AEF3C2rk6VtyLISsn4LGT/Vnbn+QkwWvAaa7Nxn0K0OWEuLc9D9d3Oi+AKL1uEIzw+kzs853GbggalioLEyG1lT9Dh15PDmW2hMV1AIjS1477Qq/WIGDvi1y7BsEIz7UJ3L5xtt5ZOIr9x9Bp0jgYBCOUQf4sr+Fi29mmbBWCukfq4XDbn3F5sQfSF0bKfLdv/24vcayt5eUsrdYh8Wz6Lv8w7nS5xNLt+65+rQwV3cOQ/YwYiqLbmaegiDvO8i0lJXjPX5R47hPVFzGtugAA6i23+Zo/TcfmXqqnXFNf1n+fn1QIGS/uWdMTogx/vRU2eeza6xPEEBkHRqKR0gNPpgqAi1zOnguL8cq9M7xbIXI2tMXL50XZ7I9Px8jaB4AaLrZwDG9lnbxviAh7mXjpe8EiMdyAdPZJ/qh+T+F8s2rb4UiZBY2ePoug4anIey0IKe1dsCz/sKydVc3Fc6SP7ins2rWezat9Wcd7k7VClJSv2SubrUd79mz+AQCg8m/GwozYYxCMWJh3GNkDxbxeNcR147E5kbUVMvookjVKWHXtZOu54WJx3kb7dgLsfptfd2U8av6UiO0hu1C8KxCBQ1OxK7QODnz/ncwH+7AfAPCqcTDLu/aSFr6JHnivwTl5nZ9tP5/4fhjHjY9ercGUTFsYjfvtQ0dZdr1agwuP2+Ty658S+1VjS6LMBgC86qdDxg8dUK9vOkx5Bbh1xw19G52w9WFQO678K3NiWbgOZ77o1RqYL12GQTBiVbG4dw+1def651gPAPuZQkLl7YXsdWJ+SnsXbPtFx+p/3fQoevd6jqtvKjyPveuW2+4NQxfh1rPO5ecfWqwP8OtfDj1cEQRBEARBEARBVAH0P1cEQRAEQRAE8QjzoAL8UhBhgiAIgiAIgiAI4i9Bb64IgiAIgiAI4lGG4lxVGfTmiiAIgiAIgiAIogqgN1cEQRAEQRAE8QhD/3NVddCbK4IgCIIgCIIgiCqAHq7+QfqHtEFMmycAiPEVgoaLMW7qrYhHn7BeAIAORwdXGiPEIBjh83Ecu05/TIxLoaxbF9/5HMGb9cR4QOar17A0JABtvoqFQTCi+lYxBkpgsjure+hbW4wOKVaV1IbEyvzD8IzJZHErXvfTspgNg9IuAgAaz4tjsSzOvbiIlVX5eHO2XNzdoWwVAlXTJlAGB7D6AOC21i6+1T0frE+ch16twdyglrBq2+F2/yhZHA2DYES9vulcLA5Dy+3Mjl6tQeP4Ii5uDQD4zoxD1DsTAADnRi/C5QXVcSkaUDZsyMqNTc+Gm8KVxY8p7yPGuynpfBUA0GPwKPh8FAd/15pcP43twcZlb+taXL9uvGCL7xJhNHMxMQyCkcVlqWz+g15NYHE7lvkeBhJO4Mp4LWdj5/ljzIbpvMDaqF5QwsYtZEwy+6z5LJbVVzVtgmqXbmH0V68CAKZknobGzQ1NVTVhzsi2xVlaHAmP1OpO47ABQMDP4+C5JgGW0lJ+7K1AX68w1nbQ2gmw6toBCgUrk1BmhimvgNUrHhLNteH1WRx+DvoN45t1qjTWikEw4kbH6zAIRgS+kYAbI/kxAoDtH38JvVqDsBkTkD5iEctX7j+Gsr6RXH/8t42V9VGKZWYQjCh9JorZznpiBdx2JbPypbsDUH1rkiy+21NeEbg6Tov0JeK6ytvYhuuP/3MnmK/l1gqujzl9bbFtlA0bcvWkzxvfn42iYdHYPvRL3NrahOVJsZXaHlOwtFvLvODqYoJercH1qc0qHdffNq5Ep8njcPE1HbDPGx6bE7k2b47QIvdjLS5ubQm9WgPfGXG4HFGb2Wj09FkAtn0gjYfUz+zuyxGc7Ma16bgXVE0ay3wDbPNaFKgU49pk5jgtZz6Tjhsdr+OC6Rae8ErH2113cHHAHPtcbXeyLC37Rn2sLG6EMb6dnLahV2tgys6F694UNjaq7vlwadcSZU+K449oWxwzU0EhzDeLAACKsFDunLLfP23nxKL2ej72jkEwwv3XJNau6vcUaN+Qx+zTqzXI7LoSerUGE+sUwNK5rSyf+dMtjBuL9MdWISOiHAbBiF/Cljg9n+zrfxHYRpZnH3tJisFlX69pvzRWvuczL8hiIUoo4o+jo7sLO+NKvcR72miHuZB87OUfhaLwppyNsd1GcL5JZVun2H78ubC1JYJHHJOtUYkdR36RjQEAtJ4Xi9hmndD2y1jO976nb8j2lSLuuNOxNAhGqJr5AACLOWh/j4tvtxkGwYhR5/KYzavjtJwNvVrDYjKd0a1h6Xf73kR+VGmldQCg4AOdLM0gGDEnKBTKOp5O+23vu3098R5cG35brSy/5sYErryzGHnZPZbj1iDx7Pd99iQ2t2yE7HXiXCR9Yjuv9WoNGi2Igzk9CxkLbD8jKNzcOH+ksiNqX3XaZ1WAH0u7OVzLzVXeTHGcTIXnETDEZq+8roWtjei3xmPX7g0A+HXU4vsJKHxXHE//rWNx5Bt5bLSHGopzVWXQwxVBEARBEARBEEQVQA9XBEEQBEEQBEEQVQAJWhAEQRAEQRDEIwwJWlQd9OaKIAiCIAiCIAiiCqA3VwRBEARBEATxKENBhKsMenNFEARBEARBEARRBdDD1T/IxZejYN5YAwBksqxbj+6A8IYOdb+uKctTNWmMmG7PQq/WwC+pOkuXyvWLOyfKcxeJksuSfKv6yzjOVlZEGSeVesfgD0CUDXe0CQAjfTvJpFUlRnuKUuo3dgSjT0QMKyPJ7ZoKCrk6lrIymM+kI3x3AcwZ2djYsgnLK33sCjIWROGtrJMARPlSiWnZx6CIP44rGqWYcE/C2FHe15n/AGBNOe1U7rbOqnj2ObnDRgS9mgDzlSvMxtKQAM6W245kzs5vP66Qjc0nOUlQeamhbB4EACiPEWW2lfXrQa/WoO4P8eg6ZgyKhkbj40Yn8cTJUqfStf7bxtquTxUDsEnWSrLiUt8bLrb1AwC6jRknGweDYITl1FnuWhq3xvPicHmiKBVrunAR5jPpML67EAAwJygUT4x8STa+IeOT0PSrOGT80IGl2csVB7+cyNqxr3dw6VIuLfDNeOT3qgFYrcyf6QFhAADhTR0uTdKh9jqbbO9ty12u7wCQ/ZlNTjj9uwhAoYBercGF121ywnVXxrPyPZ4fBQAY7tMRANBgabxsvFSv2sIEAEDOU0u5sZNoPC8OaXdvw2MTL0nO7Hip4dErG45IMsENlsQjZFwyMlZ1QL3NHgCAi6/oWBuBP4qS2k95RXD1D9xxYWXMV67gq9x4ZM2JZml9T99AbLNO8FyTgFda9UTDRbY1UrRTXJsnOlhZ+drrElgYB+WBYxh1Lg8GwYiCTa3FSi5K1j+PTYloMjcOqhfEXzUWbGoNg2DEvjtK1FkVD7+p8WhiJ6t9bNoi2bjV/SEefdN7wyAYsaUwiY1b26TncbPCdr5dmqSDXq3hpPRNFy/J7EmU7/GD+gvbWWYQjMiaE80+69UaZM4Vr0f6dsLNiurY0qohqutzWP+cSUMrItpwbTZ86hzWt1DL2rdvV5Lot7e1a9d6VNRwgV6tQUVNV1wbrcXVX0O4epeiPCuVwm86R+zbzeFa2blh75/9nnG0dXO4OJa33y2S1WNhNPalOJUf16s1iL0XAkEmkd/Udp7bn8l1j9Rj6RFTJ0BGpE22vcuJO3g/24jL4R6w7PPh7Gk+jcWoc3nMD+mr5k+JzBfH8wYAro7owPYn2zMZ4p68HKtDxjfR0Ks1KBkcjVNhFmR+Ja4PSRrecWzsz2ln43Bqsnh2Nv0qjhuL7aF1OT/tz+ArE2zzCYUCZqsFO+J/BQBM0z4Jg2BE1zFjWAiDyFTxZ4Hnat1g7TZYEo/gZDcYBCMK3xXPkIyuK5mvbgebiKFLatxh7TZYEu903Hw+4veQ/XiabxYx+1LYBEV4a9m429dd1ewP5A6ycvn2dvtE9ZX5AYBJtktjFTDEiMLNoegdIM5R7o9tuXo18pWsrrW8vNL2HNsR3tTBlJ0LAFA180Hi5+KZdfXXEEQYzWg2LR7Fz/MhQQAg+JUEZtNzjc3XU2EWVqbcuwLen4rjmdNvKRf65H8F6f+u/smvRwF6uCIIgiAIgiAIgqgC6H+uCIIgCIIgCOJRxmoVvx5EO/9y6M0VQRAEQRAEQRBEFUBvrgiCIAiCIAjiEYbiXFUdD92bqxkzZkChUFT65erqWmndRYsWsXJXr16V5VssFsydOxctWrSAu7s7fHx8MGXKFJSWlv6TXSIIgiAIgiAI4hHgoXtzNWDAAAQFBcnST5w4gdmzZ+PJJ590Wk8QBLzzzjuoWbMmbt265bTMa6+9hnnz5qF///6YMmUK0tLSMG/ePKSmpmLv3r1wcXnonjUJgiAIgiAI4p+F4lxVGQqr9X/jP8vGjRuHpUuXYvv27ejTp48sv3///sjLy0NoaCjWrFmDK1euoEGDBiz/9OnTaNOmDfr374/Nmzez9Pnz52Py5MlYu3YthgwZUiW+FhcXw9PTEzfSA/Bsc1G+2rTXF/tabYNerUHBptbweeYUAJt0q8rPF6bcfJnUuD32eXd7RaDa7mRZfutvYvHh6DVYGhLA0gCgT8ensePIL2h+aAT8Bp+Q2fyzdgHg8VEvoeXHpzCoXhI+GT4cxVNLkaDZBL1agy4n7uBg2+rMTtmTkTi4ZCl6DB4Fl0OpeD/biFkBzu3fr6+O0rAurVvAcuos0r+LQMiYZJnfCtdqsFbcZdd+SdWxxDteJhlbWV8r82NZ/mGM9u0kthHRBtbkkyiPiYDbzmRZ2crayPihA7J7LGf9Cp8+AUc/XMT1rzJbANjcWfb5wKVbQaX9yJ+hQ9rYhSxP8bsXrE+cB2AbP8c2Lr6iw/G3F3L23so6iS8C2+B+pC8Ph3t+NfjOiJPNlWS/cHMovAeeBgB4/NEQPwf9xrWjDA5gcsn2TMjIRD+PW9CrNbg6VosGS+NR8lw0am1I4Ow7YhCMGJLzOK51vMGlX5qsY2EI7OuW947AgWXfOV0jCpUKVpMJ3+Ufxph782/P5Vgdmv52ETsP/izzRZ1QC0J0yV9ab9LY7bujxBeBbWAQjOjVZyh271hbad2cT7Twfy/eaV79I3VZ/x3XUi/fcFhNJln7MW2egPnadQDA9e0hqNc3HQCQvU4Dv4XAbxtXOvXF0qU9XA6mQuWlhum8AECUODbliWv0gukWhox9DdWulwFJJ1l7/tvGImR8UqXjIbXV+UQZDrV1x+VYHVKnLkQv/yjszknEuEItRjQ4go7u4i/F9GoNbu0OQE07OXzHvgevnoCM4Yv+dD4uTNGh6Zw42fl4p18k/li4FE+MGA3XvSmV+mxfr+czL0ARd/y+7TnbOwDQKm4YFrZfh67VLZWu9W2lNfD2mpHw/TCO80HZMhjmtIxK27EvK61Vx7L+W8cip99SzjcJl7YtELbqNFKf9mNzrVdrsDL/MEbe2yvO5tkgGNHhowliyIDotlCYrbAmn0TOZ1rArxTpj61ibWWt0yBwiBGK8NawHhXvmaa9vhjjcwhffzQYoS+fQmG081+mOvbF2X3Ofp3bj499f6U6Vm07KOLvP4/lfSJYGA+9WmPbhy5KwGLm2mnzVSxOvs6fued/DoXXAPGsVNavx/ajys8X6eO9kDHCtnZdNK1gMZ6BsnkQzOcymY2yvpE4uHQpK1fZzxaO11ZtO+T0q4GAt+VnisK1Gnbn2cIo5M7Swu/9eAxKu8jCrNweEIUaP/My+I7t9Rz4AhvDbeeTWdiJ+417ZTj7mcJZHwFgRN5juKS1hTkZV6hF/ovNcEVbF/W/i2f1sr6MRjONgLsLmqLGFrEv5q4doDxwTNb++bd1+HzMcswLagEAuKsPh7LcIpaNbgsk2H7Oan/kNmbrdqKoqAi1a9eutE//LaSfWcMHfgyVq/s/3p6pogxHN099aMejKvifeFVTWlqKDRs2wNvbG7169ZLlb9myBdu2bcPixYuhVCqdWADWr18Pq9WKV199lUsfM2YMatSogTVr1vwTrhMEQRAEQRAE8Yjw0P1ZoDN++uknFBcXY/LkybKHp+LiYrz88ssYN24cIiMjsXDhQqc2kpOT4eLigsjISC7d3d0dGo0GycnJTuv9FZo2bcpdWyyWSkoSBEEQBEEQxMOFwiJ+PYh2/u38T7y5WrZsGRQKBV588UVZ3ttvvw2LxYJPP/30vjYEQUCDBg3g5uYmy/Py8sLVq1dx9+5dJzUJgiAIgiAIgiD+nIf+zdW5c+dw+PBhdOvWDf7+/lzekSNHsGTJEqxduxaenp73tXP79m2nD1aA+PZKKlOtWrW/7eOFCxe4a+nvVwmCIAiCIAjioYcELaqMh/7N1bJlywAAL730Epd+9+5djB07Ft27d8fzzz//p3Zq1KiB8vJyp3llZWWsDEEQBEEQBEEQxH/CQ/3mymQyYdWqVahfvz769+/P5S1YsABnz57FnDlzkJlpU8opKREVj3JyclBcXIyAAFE1T61W48yZMygvL5e9wTp//jwaNGjwH721IgiCIAiCIIj/ZSiIcNXxUD9c/frrr7h06RJeeeUV2QNRXl4eLBYLevfu7bRuZGQkPDw8WMyriIgI7NmzB0lJSejcuTMrV1ZWBqPRiMcee+yf6whBEARBEARBEP96Huo/C5T+JHD06NGyvFGjRuGnn36SfXXt2hUAsHz5ck5effDgwVAoFPj66685O9999x1u376NoUOHVrn//UPEeDUGwQhV93wWf+GMzuZXTJcBAABTbj4AW4yHK+O1XOwHAFhW1IR9doxxdVcfDr1aA6/P47A0JICLM6FXa7DjyC8AgHOdVwHg41B8lRvPYoA4tvl5TiI+vtoCerUG+b1UyIoow0tbxiL3yRrwjLG9MZRiXPWJiIFBMKLmsUIAgMuhVACQxaO48LpONl7KlsGy+Bgx7XpwvkkxmpovvA0AiHp7ArI/0zIb1oq7uDRJtK0IC0Vu5B3o1RpsKJDHN3Kp5M9ApbKXX9axssfvNkDuj21hEIywJouxeqQYV5LPYSmDoGraRBbvRhXgBwAIfuEYS9erNTj64SKEzZjAxfOy90nqszSHUnyyiHp53Bg5kjZ2IasvvKFjMa4AsPHLXqfhfGzyTRxnL8JoRrfqtrgs5q4dYOncnmvHIBgR8uJRLsaVM6QYVwBQ+tgVWb4U48p+/VV0D7PFuBonxrgCwGJcuR5oii7jxrJ69t87Txwni3EFAMZ3bEqierUGeRvF/Zk/WB5DSK/WIGNlGHbnHwUAjPHthPPv2Nas1FajhXHYefBnxHQfhFqHGnDjIESXQBnkz82vPQqV7XdberUGAXtfxK8326M8JkKMq5N6mmvLkfSRi9hnZXAALF1s82Pf/5hWXbh6hW9E4q4+HBsKxHm7MEXs186Tv7My9fqms3ZXRy+Dy2FxHeasb8d8Uri5wSAYcbe2K3JnaWE6L2B+3hEAgCmvgNka6dtJPK+STqJgU2u2pnOeWsr1Tfp8/h0dwmZMYNfxTwYDAIp14l7enZMIvVqD3Mg7mBnQge0PAFyMK2lc7c8UKYbPrWejWJmsdRqujsK1Grx+u45t55O52EhZX0bjj4VLMf1KKFz3pqD7KT4u1OOj+D9dl+rt2fQDly68pXNaztl+9nnmFNLvNuHytp23nf16tQYLgkO4GFfpC0VFXCnG1Z2nI7nyUp+mXwll7a/wPSRrW6/WICQ2ifMtd5btvmQ5cRbJGiWb65ZHhgMQ5zt/mo75I8W4umPwx8SMdOjVGjHGFYDMl5UQOtcS42G9E8/FuLrTLxKBQ4woGRwN69FTUNavBwBQdc/HiubNkPDFYhRG35Ltf2XLYLh4eIhlvb1YX+oeqScbYynGlbR3pL7al2PxAuOPI3NutGycDIIR5TFivKbqhbeQ8W0Uevd8DpdjdbjW8Ybol8Usi+VUHi6Pz+U14DQMghHK0OYwX7uOi6+Ja8WUm8/FuDIIRliMZ3BzhJaLcWUQjIj+yBaPyqprJ/vZwiAYARelLB5UWSM3LsaVvb/Wirtceb/3xXJSjCsAOPTtElbvwyut0H3oi5ydLuPGInOCkp3z9jGu5t9oZhtnlYqdgcr9apk/0ndncTNZ7MI9fhiYdhn+v44BAFzSFrN2o96egHMzWmPXng0sxpVE4BsJUHXPZzGuAEB54JjsDHbx8MCpVxayGFcAUM1wFCweVsIJ3DH4szaTda4yXx9KrNYH9/Uv56F9cyUIAnbv3o3IyEi0aSMPZNquXTu0a9dOlr59+3YAwJNPPskFEW7Tpg0mTpyIb7/9FgMGDEBMTAzS0tIwb948dOnSpcoCCBMEQRAEQRAE8Wjy0D5crVy5EmazWSZk8f/h66+/hp+fH5YuXYodO3agQYMGmDRpEmbOnAkXl4f6JR5BEARBEARB/CPQ/1xVHQ/tE8V7770Hq9WKMWPG/K16K1euhNVq5d5aSSiVSkyZMgXnzp1DeXk5zp8/j6+++go1a9asKrcJgiAIgiAIgnhEeWjfXBEEQRAEQRAE8QCgOFdVxkP75oogCIIgCIIgCOJ/CXpzRRAEQRAEQRCPMPQ/V1UHvbn6h9GrNZh6mVc77DR5HPI2imnmjGxO5jN9qShPemzaIpls7MaWTZzKpRsEI6oZjnLXzmR97SVmw2ZMYOmv+4nyuv67XpLVey8iBofaugMAsgYvBgDUCr4J/3fjWTuK9qKkb+/mnWE6LwAATOcFpxLUt3aLMvEn3ljIpSOyDcxpGVhZ3EiUO+8o+rHz+G8yaXODYGQy1XVWx8MzizelHpALF3d3XG9dG+oEUea397uvy+wUTLJ9th+753xEGeFG38bh+vYQAMCB4pbwG3yCSdcbBCNKnotG4bs2ufabNz1gunBRJuNrys4FALjUqoWSwdFcm5LEuFTn3KdtmZ/tZsdyfkl1Uoe34vprnyfV7eUrSvOffH0hy/swOwWqZj4wCEYEDDGi8F0da9txnpI1SmRV3GKSynvXLUdRoDvLvz5KK+tn0LrxTiWMy3tHMPvCG+J4Wbq0R0X3MM53aX1+npMI170prH6DJTZ5YAA4/3MotofswsElS7kxkLCX0bWHkyIG0GzQSbRLeh7ZPZfJyhoEI4JHpnBhAE5NXojyPX6y/aVXa7Bz70ZsCtwra8OcmcPKOI7x7vyj3LwFjziGtDATDnz/HazadrjTLxJ6tQa3LGXI/kKLCRm85DKTCT9VDHNGNlwOpjrt94UfmiJ9sU2O2+uzOOxf8T2e89EhqbwCTefEOZUCl66H/jKRpaV3+YHlWcvLoVdr4P5rEvzej0f68nBMatbxvrL8Ps+cYjL4Upvpy8K59rw+i0PKjEXo+pL4/7aS1HfQsFQYBCPafW7bFx/l3JMl3+fNjaWyZTDXj6KdQdz1kW9sstGBQ2xr8NIkHawVd2E5cRZuCldW3iAYEfhGAvRqDT5sKMplH7lms2nVtcP+Fd877XPfdD4Wo/oLW+iCLifuVBpSQWp3c8tGXLokYZ2+MBKIbAOVny8r/1bWSeT0s+2LLifu4I9FS+GIXq1BQjtb/4bkPI6Nhfw+g0Ihq/frsC/RY9BIWbpBMCKt42p27TtTXFNXJtjCZBTtbIoFwSHsOn+GDllPrMCJNxbi8dNPAwCey3mCrdX3vvwBBsGIWj8mwCAYYb52XdYH6bsUJsIgGGFOy8CuDDEkQODWy+JYfR+OGx3F+sqQQDb+xc+L53Fle0d4QzwjVd5e2HY+GUGvJbB27P24MloMDWL5qgTBLyfi7te3kTrVdo8zCEbcspSx818R0QbV3Svgv20sK1OwqTWzZz59DgDQZG4c1076ijD2ueS5aCR+tojzR6/WwGgXMUMRd1zWpwU3fWAoTAEAXH9Ry86SJd98LbNlEIxwadeSN+CwLiSJfGm/6tUaxLWrhvyebhh1Lo+Vc/81CbDazvlbz0Yhf5o4vttD6wIAegfpoE25zcKcOPPHcb84C+dwoPVWbG7ZCCHjxHAKr2WmAQD8d72EOqvjceD775gd/+1juPPZ8X46OfOs7Fy3lJbK0hw/V9fbzv4t6SdBPFrQwxVBEARBEARBEEQVQH8WSBAEQRAEQRCPMg8qwO8jEESY3lwRBEEQBEEQBEFUAfTmiiAIgiAIgiAeYUjQouqgN1cEQRAEQRAEQRBVAL25IgiCIAiCIIhHGQoiXGXQm6t/EEl+M3FSOJfusSkRZzutZrKdn1xtDmXLYBgEI0LGJuO1zDTo1Rq8ny3mK8JbIzDZHfcjfUkEd62s48nJzTpKQd9uqoBV246TOQ0ZfZQrAwDmq9cAANmf2aS37xyvy0lBS7LolpISZutyrCjh3fPZkczm9vMpONL2Z7ROGMrJqRoEI5AkjtXI2pehV2uQHatgtvRqDS6/rIP/zpf4Ove+1/8uHhnzomAQjCgaGg3z4wIsZWVI+nQRVvgegl6tgeeaBK7N8A8m4NQrC1kbBsGIa2NsssER74tS9aZdDXDn6Uic6GA7DV73E8ci7qvF8P40DsHJbgCARrvcZPNiP567zh1C3NzF3Jjbl1HWro3gVxKgHzACgCjD60za3HLqrEzCHADcDjYBALhoWsFqMrG89IpSQKHA9IAw/HRks638TavNhncYJmee5XwPdK2JtPHiGPn/MhZ1V8Zj+3lRwrfeinhZ/zKHLGZpBsHI5G9LJxaJc3C4PtRfitLCLgdTmdy65I9prygp/bZ/FIqHRHO282focGuQmOY14DRXT6/W4LK5VCanCwCFm8UwAbf7R0ER3pqt28bxtbEy/zBGBcc7ldR1HHfpusYrrvK1a0fGyjBub0iYuoWxtIIPdE7l3O3tKeKPo/rWJABATRd3NEi1YlFwEFqmqJDxQwe+r61rMzsRRjPnDxQKWPfVA5RW1o592x4Kk6wP0rkjYS8//cRI+R6UaHDYJu0NAKoAP8S07Qbd8bucFLyifSiaDTqJ4l2BAICQ0XwYCUSKMu0Hvv8OjujVGjT5RpQyz/gmGpFurqLcd7dCbj2Y0zK4enWfveB0fsOnTxDl3b+IBfZ5o/F8XvracY/Zf77T5ZKtT3HHEfptrKwNg2BERdcLsvGSbBxsWx2+iR5O++nYLgDk/9SG2QqJTQKSTsKUm8/yvwhsw62l9xqcg16tQeZqmz43O29CAtn1tY43MMjbdv4BcPpP55OadYTLYaMsXa/W4PEXxzDbKm8vFA2NRsNFNnn3Jt/EAZG2sCRpYxeyvVWthyjZvcH/d9Q+K/7O95X1L3LjYD9+yiB/9nnEuQK4HOKl1KV689SipHfIS+Iauz0gCub0LFGef1g0aq9PkPXFHvWX4lozFZ7HU14R3Hq4OcI2Xt4DxXsguhWK/e+eL5u7gd7RWPb5VwCAgu610KRfGkLGi3vcIBhxRrfGNjfNg2AQjKh7pB5nI2RUCitTa0OCrA0AKBoWDVWAH7NrEIxYmX+Y5W9rVR/DcrvCIBhRb7nt/Ou/agpnx6VWLejVGpx9hV+fmXOioGzcCNvOi2NrvnYdBsEIt53J3BzFDfsSq/p05epab6tYmZo/JSJt/EK0+H4C89Vy+zamNzxja+tSA3SaPI5d24fGsE9z/Ow4Lr1qiGEjcnp/L8sPGZssq6tXa9iZNS+oBQDgynjbfEvt50/XOW1f5ePNXV803QLxaEFvrgiCIAiCIAjiEYb+56rqoDdXBEEQBEEQBEEQVQC9uSIIgiAIgiCIRxmLVfx6EO38y6E3VwRBEARBEARBEFUAvbkiCIIgCIIgiEcZUgusMujNFUEQBEEQBEEQRBVAD1cEQRAEQRAEQRBVgMJqdRLMgvh/UVxcDE9PT/jNnAVLY1cWywKALG6Ki7s7LGVlLM8xho6zmDotl8YibexCzo6U32pBLHxmxcnqm54Ig+r3FM7PnE+18H83XtbO/dqXrst7R8BtV7KsT7kfaXFu9CL4bx0rxmFxUrf7qRLsbV0LRcOi4bkmwWkZ+2uDYETbpOcxt81GvPnlWFR/+hJq9spm5W6M1OJKtBk5Ty3lxuTyRB3UO8/j6Z3J2NyykdO+Sb53Gz4a7mfOw3ThIpev8vbCjqQd6PX0cOz+ZbXMv6mX2+DjRif/9vjZp0W9PQF1VscjfXEkt1YsnTS49X4JavfOktm+H45z7Sz2TmXfpTL29bi8tL4slovE/LwjCHH1YPUc++GIQTCi5ZJY+H4orlNlqxDs3LtR1nbX0WPYGgOAy7E6NFoo1sn6Mhr9n0jE7CaplY7xtOxjmBnQgetLn6i+MBUUwiAY0TtIB8vt27j+ohb1lsfL+l/wvg5nJoqxeNQJtSBEl1TaH0cfOk8cB6GzAkGv22JE2du2J/37cOTEfF9pP3I/1sJvauX71L68fTuvZaZhblBLAEDexjZoNuhkpXPtrF1l3bow37jhtD378s7sKNqHYveOtVyeQTBiwU0fbGtVn6t3eaIO7jcsqL0u4b5rs09YL+xI2S1rz95nx3qV+RzTrgfMV64AALLmRCNwSgKLd9Xk63trbJ0GgUNEP13c3bErO+G+Y+d5uD6KOl1z2matQw2g8SzEiuNaBA23xWSy91Ph5gZreTnLm52bgMVXuiIroszp3qysfwXv69BnYDxOdLA6LXdjRzCKUhsg8JtM7Dz+G/x3voScGHn8n8rGMuczLfzfke+Xys43AGi5OBZxY76ELmEcfJ89+ad9+DPut58q8136fG20Fkc/WsTVHXGuAKua+wAQ4xkdm7ZIjDeYcAIAoGxQn8V8tMfULQyqfWLsqS7jxsL91ySnbUrc7h+FQwuWOI2tBwDaN8aj3pHzMOUVyPrTu9dzsJwQYxEqa9fGzrN/3Pe+o9yvxp3PvSB0VMHvAzHemMq/GUw5eU59q2z8blvuor93JC6/rEOjb+Oclv8zewAwJfM05gSFOs3LnaWF3/u2mGiO9x69WoPAZHdkRZTJ6qqaNIbp4iVZ+v38lGw7+p0/XQffD+Ocrq+S56JRa0MCFucdxvhmnWT2HMtLXB2rRZ0lf+AAfkFRURFq164tK/PfRvqZtWP3D6FS3T+malVgMpXhyN7pD+14VAX05oogCIIgCIIgCKIKIEELgiAIgiAIgniUsVrFrwfRzr8cenNFEARBEARBEARRBdDDFUEQBEEQBEE8wiisD+6rKklPT8e0adMQHR2Nhg0bolatWtBoNJg1axZKS0v/tP6NGzfwzTffoGfPnvDx8UH16tXRvHlzjB07FgUFBX9a3xn0cEUQBEEQBEEQxP8cy5cvx9y5cxEYGIhp06Zh9uzZaN68OaZOnQqdToc7d+7ct35iYiKmTJkChUKBl19+Gd9++y1iYmKwZs0atGnTBmfOnPnbPtH/XBEEQRAEQRDEo8z/aBDhZ555Bu+++y48PT1Z2vjx4xEcHIxZs2Zh2bJlePnllyut36JFC5w7dw6BgYFcep8+fdCjRw9MmzYNmzZt+ls+0ZurfxC/aUnIeWopVF5qlqZXazgJUEtZmUyO1SAYYemkQa+zfVha/gwdq+s7I47ZcsRnVhw8/mgIhUrF5at+T0HhezoYBCMMghHlvSPg2eYas1PeO0LmQ8ulsay8fXsGwQi3XckwCEZkLIji0iXJV0mGfXR6DtK/i4BercG286Ks9t7WtQAAq2bN4dps8f0EZkdCGRwAvVqDpv3SMLegJxqvOYW7GxtzfpXVVyBkfBIbHym90YI4mBp7Mhl2g2DE82cFAECF1cza0Ks1uBbqBtOFi7K+3l6hQtD68bAm2+SD7bmfDLsjjuUyV7eHXq1BndXxsGrbyeTLXQ4bEd9us8yOPapmPrK0q5NvIzjZTda21L70/eXzUbg1KFpWxn4M7K9bHhkOQ8vtrH8u7qJk66RmHblyOU8tZZ99Ez3w1JlrbL6UDepDr9YgbdxC1u7OvRuhV2sQmfosACBjVQfo1RpOhh0AUqeKdRTtQxG8uggnOlixtkSU9c6YH8V8zv+pDfqevoGZAR24dQKAybADgOX2bQhv6VBveTzyf2oDvVqDmMf6s7I+s+LYWEky7GzN9Y0EAFwbrUWPwaNkcrw1tiQyGXYprU9EDLNxdZwWwhvifgx56Sgrl72OnyMA8Jsaj7InI1maqmkTlqdoHwqFmxuaL5vA6kUbnwEATJ/5IitXa3dNzq5ercGJu3JZY/t2JRl21ucnI7myBsGIVgtjna5/a+pptn6yP9My2xPrFMjaabQgjpNhX5x3WLZWW8+LxY6U3ez6+otaGAQjMte0Z3ZUfr5sHbZLeh6TM8/K/MpZ307s2z0Z9ouv6NAkznanl2TYASBwiBEZK8OQNScalrIyzqeWi2Nt+yJF/B2lJMN+69koWbslna/iUFt3ZHVbweoZBCN233bD7QFRMAhGJsNe3kc8i9/0i0byJV/Wpl6tQViqhZPJlsra4zMrDic6OPz04qJkH+v2yYDf1HikvxUkjsm9MABdxo4FIIZSkNqUvr+Wmcbq+78Tz/kEALd2B9gk5VX872z1ag18Z8bhOR8dvL9VIX+GDorw1n/p3Pw8J1GWd2FrS+5sUjYPktV1XD/2n49+tAjNV/D3GkmGHQAaLo4XyyacgEEw4tJkHQJ23WL5twZFo/BdHfJn6JAzwjbO9jLslUnFH1qwRDY29uNYe10CdsT/KhuTE3fLYDlxlp1n5uJiONL/zBXu2vy4gGq7k2GqZfMx45M6sjEuezISwps6bi3Z+93fW1wP9jLsvU/flLXvTF7+0iQd+/zqyjEAgIkZ6VzfADAZ9szV7TE/74hTu1kRZbK8wvd0uNbNX+aLvX3XA00BiKFnpPmpLGSAFB5Er9agR9qTXJlaG8TzfHyzTngrS/x5QHhD53St2dttsDRelk5ULeHh4dyDlcTgwYMBAKdOnbpvfT8/P9mDFQB0794d9erV+9P6zqA3VwRBEARBEATxCKOwWqF4AEp+D6INACgsFGNyNm7c+D+qX1RUhJKSErRu3fpv16WHK4IgCIIgCIIgHhjBwcFwcbH9Ad2FCxeqzLbZbMZHH30ElUqFIUOG/Ec2Zs2ahYqKCrzwwgt/uy49XBEEQRAEQRDEo4zl3teDaOcf5tVXX0V8fDw++eQTNG/e/G/X37RpE7788kv06tULo0aN+tv16eGKIAiCIAiCIIgHRkZGBmrXrl3ldj/44AN8++23GDt2LN59992/XX/nzp0YOnQowsLC8OOPP0KhUPxtG/RwRRAEQRAEQRCPMP+G/7maMWMGPv74Y4waNQqLFy/+2/V3796NAQMGIDQ0FHv27PmPH/5ILZAgCIIgCIIgiP9ZZsyYgQ8//BAvvPACvv/++7/9xmn37t3o168fWrRogb1796Ju3br/sS/0cPUP0yesF0znBXatiGjD5FT1ag0uTxSlSl3c3TlJT5fDRuxusUOUvPbwgO+MOE7CV6/WwKVGDU72tNvw0TAIRvwc9BusJhMra+kiyhWffnkhkyF125WM5A4bWV1J9togGNEwrg6CV01A2tiF6B0zBF3GjWXtlO/xY3XWltSHuyBK/Jqt4h/Rjk7PgV6tgalbGExPhGFZiD9Cxoi23RSurA2DYMSkZh2Z3eZHXdFsmk3iV/q+8+DPrL2KrhdgKSlBveWiVG5Mux4AgKZz4pzK8F6eqIPh51XcfKxvoYbKxxuuCiUMghFdR49B86OuqFYk/iYlvUKM5n3tJVE++tJBLwROESVYuw99kfkvtVOZpKuzPAnlvQ0bNDxVbHNxJCo8q7H8sicjcW2MFlZtO07WV5L/tseUx0cPNwhGHI9cj4wIUdbZss+nUj8yIspx5OvFCD4w0qnkvoRerYF+wAikdVzN2tCrNdiVnQBz1w6sXO9ez7HPke+KUsf5UaXY1qo+G4+dJ/bJ2pA+1+2TAQDI7r6cm0/7/QIAJk83WI6n4a2sk1jVXOxf8KREFD8fDYNghO+zJ/FMrdM2v4I7cu3Yyzirv4hjdQAgZ1hT1vbVcVqZH3q1BsrgABxculQc32rAbz+ucCpDLFG0Mwjmxzuwc0Cv1sDjohknX18oG+uAIbx0PCLbABBlniX7pgsXWbY19TSs5eUsBEL+DB08YzIBAHVWxSNvpriOrz12l2vHIBjxpl80nKEIbw24KJncsl6tQfkeP+aDVL9PWC/4fByHr3LjZX2XPlc/2BgB78TDIBixpVAMl5AxTy5VDgDTr4RC5eeL8c06QXhTx9lpcKKCGyvpDAgalooeg8W/hzfl5jN/m/RLw7ygFjJ/0rv8AP+dL7H0428vhMfmRBRskkuDGwQjgkemIHBKAhRhoVz/Fr2wGHq1BjmfaZEWZuLq1fxJlA8v3Bwqs6dXa9B82QS0ThFvvV+HanClnZLb5we++87Wz77pnI2U9i7QqzW4OlYrnuM7kvn1Et1W/H5v3cS06oL86Too2rdg+0gKSRH4Zjx3TuWLkQLQ6lPxn8q3nU9m5ecGtQQAXBsjrqf0JTbZbreDTdCz6VnWJ6vJBGX9egBse04R3hrNj7rC5WAq/H+6BuvRU2xM5ucdgfCWjpW378/b/ra1ws6JZbVQ+K4OZX0jEdPtWZjPZbL6kk2DYMSV8VrZfux+qgR6tYZJf9vXudNPfr7q1RqUelmREVHOzu0jXy+G96dx8J0Rh+AXjkHhWk0s90wUd8ao/JtxtgalXUTo/FjcsthCICjCW8Oqaydr0/F+1raaO/tc2Xm+pVVD7pyUbHwasx4F74vjk97lB+y+7YacDW3R7vNYAOLZMmvsSrjtSHZmlrs35GxoiymZp/Fbz1YwCEZc/qWFrLy9f43n2+TbfT4Wz9pF/Z9yWhYALKWuLLSH/ThI3wcbRwMAu+94fxIHz7W2kBf2vkpjUfizPwyCEf7vyiXR7aXZr/4awo27S7cCp/ehnE+0+CJQ3F8mMcIF/LeOldkFgM+vBQMAtqSflLVNVC0zZ87Ehx9+iOHDh2P58uWcUIY9Fy5cwNmzZ3H79m0ufc+ePejfvz+aN2+Offv2oV69ev8vf+jPAgmCIAiCIAjiUeZ/NIjwggULMH36dPj6+qJ79+5Yt24dl9+4cWP06CH+Mv7dd9/FDz/8gP3796Nr164AgKNHj+Lpp5+G1WrFqFGjsGvXLlkbw4YN+1s+0cMVQRAEQRAEQRD/cyQni29d8/Pzncqmd+nShT1cOePUqVMoKxPfKL/22mtOy/zdhyv6s0CCIAiCIAiCeJSxWh/cVxWycuVKWK3WSr8OHDggKyu9tQKAkSNH3re+9T/wlx6uCIIgCIIgCIIgqgD6s0CCIAiCIAiCeIRRWMWvB9HOvx16c0UQBEEQBEEQBFEF0JsrgiAIgiAIgniU+Qf+H6rSdv7lKKz/yX9qEfeluLgYnp6e6Bb4ChTZ5/8zIwoFvwD3eQPdCistrqzjCfPNIgBA3sY2aDboJBfzwpGiodHwXJsARXhrXG9dC0mfLAIgxnKyuLrAdc9RZM3WooM2HUWdruHW7gDU7JUNACh4Xwe/rddgPn0OANA6xQWnwiwYerYQa1t4szYMghELbvpgW6v6lfo9MO0yNrdsxHw1CEb0bt4Zu84dYmXGFWqxxFuMyVL9YGNsDTaI/YpsA8PW1WKMkd0B8LjnnyMGwYiVxY2wvoWaS3M2NlL6tvPJ6N9WD/O16yy97Zex8FpsxM1+bfHYmwk4eCEIdT5wgzXlNItr0XniONTYIsa5yfwqGkGv8zE4JNrOiYWi8w3UXlUbNX4Wy0vjlz9dh7RxYgwkyz4fuHQrQN/TNzCpbh4AcHFMKptfS5f2cDkoxtES3tRBPTuO8+HDK60wveEZrn768nDk9PoeANBl7Fi4b0+CsnkQzOcyOdvCllaoXb2MrQdHLr+sQ6NvxfYqeobDdc9RuLRugXNveCB4ZAoMghGPTRiL6r/YYjcFr5mAgLfksWf+KANmBWhk6dJasY+FYj8uF0y3MNK3k8w3+zpBayeg/gkg8fNFXH0AuP6iFvWW2+I36V4fj7ivFrMyORvawv+5E2id4oI5TY9VOg+O7QLAW1knWZwUAMj8OhqN44G4uYvZWj7c9mfo1Rq8m3UCnwa2heJ3L1RTmlHe5aLTWDaS/8rGjbAzdQ/LVwYHwJyRDWX9ejBfu87vs4BoWMrKWNrK/MNOx8xZXzSfxqLx/DhcmqRD4/lxKBkcjVo/JlRax6VGDVgc4ooAQO7HWvhNFeNgbS2tiSdrFEOpcHE6nhMyMvH+ihHw/kRcW4Xv6uD9aZxs/iWkvjv6fr+5ss9/LTMNc4Na3vessG/34is6NPkmTlbGfq0CYvwr74GnubRl+Ycx2rcTS1O4ueH7jH3wVtWEXq1B8fPRqL1efpZI9aV5+CQnCZPemYxaPyYga217BA5NvW8fJQo2tYbPM6fuW9ZZPfs0lbcXoFKyeGOV9d8ZBsGITicGcGe4QqXi4jX+2R4DgPPv6OD1WRwyV7dncQRLn4mCxybxjL32khb1v7edM/Z2pTEEwNU3CEZ0fHU8PE/fgPn0Oaf7z963y7E6pE61xbAz7fWFqnv+X+rD31mfAKCsXRtWPzUsJ86ytAuv69D0K7EftQ41QEnnqzI76YsjoSpSIuBteewna0cNFEeMiD5egYR2rlA1aQzTxUtc+/Z+lPeOwMVoVzSbHodrY7So/108V/Z+fbj8SwvcvFAbIeOTuHYkhC2toO5/htXrOmYMymsr2V5QhjbHzt9+hL7fcCBJHkvq1qBo1Nxo2zeXf2mBpiMvwXzjxn39qgxpvqX7lfTziqWkpNLyYSmDsD9kA+qGZKOoqAi1a9e+bxv/DaSfWbtop0Klcv/H2zOZynAw/uOHdjyqAnpzRRAEQRAEQRCPMAqL+PUg2vm3Q/9zRRAEQRAEQRAEUQXQmyuCIAiCIAiCeJSh/7mqMujNFUEQBEEQBEEQRBVAb64IgiAIgiAI4lHGeu/rQbTzL4feXBEEQRAEQRAEQVQB9HD1D2LOysWVCVouzV462dnnD7NFqWrDeQcJ3W6F+DwnkV22Pabg6koy7Irw1mg2SJQkdZSLtW/Pc60oT2o9egohY9OgV2ugV2tw/jF3uO45iqvjtHAxAec2NRfLDytidX1mxcFUW5TrXJZ/GDVV5TAIRoyofZW14/FHQwDgZNgHpV1k+cKWVlCoVEyGvXfMEOazpaQEerUG2jfGI+ax/ljibZOLvdPlkq1f92TYATAJX/s+SujVGibDbhCMnJysws1NVtYgGPGUVwTM164jY14USz/xxkJYbt9G/JeLYWwPeMZkYveva1m+Xq1BjS2JzIeg1xM4f+bfaMY+N50Thyb90vD1nPkwCEYoQwLZ+Pl+GAe9WoPro7Qo/MMHysaNsD20LuenyksNvVqDC1N03PxOyTwNACjsWp2VlWTYJT//KAMSr/tx68MgGJkMu16tgft2USb94hPiPA49awsDoO5/xibDvs9bNu6p7y1kaa57jsIgGGE5dRbZPZexMpIMu8LNDdOvhCJj2CKWV/C+Dq9lpiHwx/GYFaCR7RPJb3vZ3N7NOwMAXDw80HJJLJMUt697e0AU/H8Zi6fOXINerUHm0EW41a/Yqfxu8seLkLm6Pcr7RECv1qDWhgS2NgyCEemPrQIA/LI/kqvvbE87Svzay7BnzdYi6NUExM1dzNI8emWz8h+PHgkA2N1iB8q7iPun7ZexUIYEAgB0r4l7RK/W4O5vzTgZ9pz17WDOyBb9sFhlY2Yvww4AI307wdK5vWws7MnZ0BZ6tQYmD/Fakq6Om7u40rMNADomXOfS7vaKAADULBDL9g7uiEXBQWh+8EWunkEwYkOBKLe+NCIMK8Z8w/K8P41j8+NsDs0Z2bjzdCSX9mcy1zHdB+HW7gAAQK8a5U7rSHtMyrN0Ecfs+NsLYX68A8tTNg9ChdXMxnhLYRJyNrSFNdWTs5v+fThG31uv0hprEWfGaN9O6B0zBAbBiPg5tvUhlbP3S5qH9/wjmSS+azWTbB7yNraBM87o1nBlS++NgeRPWKqFa6+ie5hsXZsKz8NaeofZkc6oyxN1eGzCWGSvE8vmfmy7J9pLmV+6Lkoy3xgp5iubNuHy7f27NSias+Hi4QHXA03h9Zk4DpKM+rtZJ5gMu0EwosQfCEu1sGv7M9D47kK2v5turcaVqbkxgcmw27erV2vQ/uNYbizLnyjmrlXd8532wfG+bBCMWFbUhPngDMlG/SPi/WDn2T+wbsdyrrwkww4AJZ2vOrUVMj4JAW/HI+dTLTqfKAMAdqZkDBX7ntDOFdfGaJk8urWjbc3Zz7vbrmQ0my7u0aMf2s5xx32jiBDXXsvFtvFq9PRZuHqK+2xe4mYYBCNyPxLnf37eEaj7n+HWgNuOZLYXSgdGIe1lT3FMtq6W9dMgGFFzI38PbvT0Wew8vR8tU1SVjrGyVYgsTRHemvmgV2uAe2p3Ywo6Mhn2gvd1rF3Jdo9BI9HgyXSn7RD/bujPAgmCIAiCIAjiEUZhtULxAMQmHkQb/23ozRVBEARBEARBEEQVQG+uCIIgCIIgCOJRhqTYqwx6c0UQBEEQBEEQBFEF0JsrgiAIgiAIgniUsYKJdfzj7fzLoTdXBEEQBEEQBEEQVYDCan0E/vjxAVNcXAxPT090xdNQKVyZZGvWnGgETkmQlb/7WzNU65EHYUsrnIxax8nDSp8/zE7B+LmTYHx3oUxiXbpWBgfAnJHN7Jq6hUG13whYRDngXk8OhTVFlBEW3tLBM8sMj82iTG3/M1cwvs55max082UTELQwB6YLogy0skF9mK9e+9MxyJgXBbdrSvh+GMf6oQhvDevRUyjf4we3nrniWA2JRu114pg0jq+NS9pimS176XS9WoMrE7RouCge0ccrkNDOlY1D8KoJyBixiBuTS5N0uBV9B5mPr0C5tQJPeUVw41r3SD3c6HhdNt7s8z5voFuhUz8AQOXfDDuO/AIA6NNBz2RrAeD6i1q8/+5qLAoOqty+Hde3h6DR+FKYCs+LsuoXOmBO02NcfwDA44+GKH3simx88j7UYf+oLzDwzTdQ68cE2XoAAGXt2th59g/o1RpUdA+D694UpC+NQMjYZK5/jujVGnQ/VYK9rWvJ8q7+GoKUsI3QqzW4NlqL+svinY6XpZMGv21cydmsbFzMXTtAeUDse2CyO7Iiylg9t4NNcDLbCzn6ZZXaccRZG9J3ZasQrDSswHCfjgCAgqk6+Hwch49ykvGBf0Sl9uzb/rM2r28PQb2+6U7bt+fyyzo0+jYOytDm2Pnbj9CrNXCpUQO7MuPu255BMCLfdAu+qprom94bFV0vVOoXAJQ8F41aGxKc9qXgAx18PopzWs8gGPHqhXCkhZkq7auzOo7nimNZg2DEkTILZgbYpMzhogQsZlkd+/HrMnYsCxvgbFz/zK9uw0ZD9XsKl9bxxAAYWq9DTRd3Ni7pK8KQo1923/mWGHGuANN2PYusQYux4KYPtrWqj/Tvw5ET873Mv9cy0zA3qOVfWk8AsDL/MEb6doJBMGKyEIF56mQE7hvFpMedMSjtIja2bML10bGdzK+jMeLxP/DHa1puPAre18FnlvO1AACIbgsknGA2XWrVYtLUzjAIRgSvnoCAt+O5NGf9VoSFsvuVfZkbI7WouzIecFGi8O0onJ60EMuKmmC050VW13H+TU+Ecf2SeDfrBD4NbMullfeJgNuOZADA2PRsTFs5DKdfFsNLdB0zBvm9XdBiRia7Dxa+p4P3J3Gy9ed4nv7ZHnDMaxxfG6ua/YGAn8aj3gkFGv8uwJSTB4NgRMSxQew8+TN7ANi8SOV2nj+GGK8O7J4s8VFOMiLdXNFl3Fi4/8rvK2ftOOaFzo+F96dxuPxLC2BPPaS+vxD+u15CyOijrIw0Fo51AaDlklj4fnif9eZg434+nX9Hx6T5gb+wlv8Cku2bw7Woszpeln/xNR2qX7awUDfXX9TiWgcL/CcexgH8gqKiItSuXfv/5cM/gfQz6xPt34FK6f6Pt2cyl+H31M8e2vGoCujNFUEQBEEQBEEQRBVA/3NFEARBEARBEI8yVjwgtcB/von/NvTmiiAIgiAIgiAIogqgN1cEQRAEQRAE8ShDca6qjIfuzdWMGTOgUCgq/XJ1dQUAWK1WrFmzBs899xyCgoJQo0YN+Pr64qmnnkJiYqJT2xaLBXPnzkWLFi3g7u4OHx8fTJkyBaWlpQ+yiwRBEARBEARB/At56N5cDRgwAEFBQbL0EydOYPbs2XjyyScBAOXl5Rg+fDg0Gg2ee+45+Pv748KFC1i8eDG0Wi1WrVqFYcOGcTZee+01zJs3D/3798eUKVOQlpaGefPmITU1FXv37oWLy0P3rEkQBEEQBEEQxP8ID93DVdu2bdG2bVtZ+rhx4wAAo0ePBgCoVCocOHAAXbp04cqNGTMGoaGhmDJlCoYMGcIemE6fPo358+djwIAB2Lx5Myvv7++PyZMnY8OGDRgyZMg/1S2CIAiCIAiCeDixAFA8oHb+5fxPvKopLS3Fhg0b4O3tjV69egEQH64cH6wAoHHjxujSpQsuX76My5cvs/T169fDarXi1Vdf5cqPGTMGNWrUwJo1a/4x/6UYDIFTEliMBoNgxM7zYhyfai5iHCrl/jponTCUizNUtFN8izc9IAyN58c5jWWR/ZlWtHfwZ67upYllLE4MAOz+dS1r++SrC3FxYDm73tKqIbOds74ds+P3QTx2pOxGzgbxgVeK7fH8WYHriz1lT0Yi+5klSBu3kOu/9egpGAQji3F1x+CPmvm2+EWrmv0h69ut3QHoOfAFZH+mZW01XCTGl/j9w07Mvl6tQcA78ayt7HXid49LFgQOTYVercFTXraYRcHJbgCAjB+aAxBj09iPbUzXgeKHboVQ1vFk7RgEI7qMG8t8MeXksXpSjCuDYET64kgMen0PFgUHsfHRvTYeUCiYrfSlNn8MghH1+qaj1o93WNqpMAvrmz1SjCuDYORiqTSbHoeRvp0QN3cxAMCckY3zP4fyA1rNFb18w2EQjHDdK8Z9CRmbDEX7UOjVGhQNjWZtBq0fD71ag95BOlyZoOViXKWvCEPW2vYAgJSwjVh80wsGwchiXEl9tP/+28aVfF8UCija8/6xmG0HjrFxW+hlFxsusg3Ku1xEyKgU6NUaxPQYzI2DNC4AkDVbXDMVPcNZPCv7NiKODRLH6Uw6hvt0ZPV8PhZj1nzgH8Fsn39bx1yQ2rLvS/dTfGyf8j4R0Ks1uD0gis1tZeNi73Pqe+KeMZ8+B0CMm7IrMw69+gyFXq1ByeBomLqFsTr2e2+Mbyfo1Rrcmu0NTaoY08yRm8PFMbnwmAXByW5O+yLFuJJspy+K5HxPCzPJ2pbqT8k8XWmexKj8zk79nxnQAQbBCEtncV0ZClNYfu8gHRrHi/3p9dQwZleKcaVsaDu/HosdC2WD+rK2DYIRpc9EIWudLcbOvjXL0Pv0Tc6/mr2ysfRmK25cpPV2c7hW5nfmV9Fc/VXNfRD0qrhmt7Wqj8uxOhbjSvLJIBihiGiD+V264fr2EK6trHX8eGGfN/N/pK945vUO7ohz4RVi/MRuKzAt+xgqY2PLJuK4duLt2vch6NUETG94Bm4XinF5oo7l1Tsr3j9yPtXa1sP34TYjCScAAL2aRaJkcDQ6HrmC2bkJnG1l3brss16tQcbwRVz7erUGnU+I9wHpfgcA6ZPcuXoS9Y6LsRC3FSTg9CQx7uPGlk2gV2sQ+m2s7QwJ8hfjK7pWg+r3FNwcYbuHSDjGuAKAA999x8otDQmA9ydxbH7cdiQj+OVEXOsdwsp7fyLul7ZzYrlzyP6749kkrYHKYgoaBCNWNRPjEb7WfRfqr0iCKSfPNgZ2MfMcx0dKt2rbseuyn+uxcumLIxHj1QFFw6JhPXoKrgeasrNSiuvn/msSDIIRubO0aHF4OPKn62yxzDStOF+l9vRqDbw/Fcei0dNn0WiB+FmKceU4FvY+S/Pm+2Eccta34/omfQ9MFtfDgMweXN2ez7zAjWMf3VMAgFOTF7K0nPXtcGaieF24mb/nGAQjVD62PWaf7pdUnaU1jKvD0q/2FNdr9PEKqJr5sDJN5saxGFevZaah3vJ4bO37DYhHj4fuzZUzfvrpJxQXF2Py5MlQKpV/Wr6wsBDVqlVDnTp1WFpycjJcXFwQGRnJlXV3d4dGo0FycnJVu00QBEEQBEEQDz0KqxWKByA28SDa+G/zP/FwtWzZMigUCrz44ot/Wnbnzp1ISkrC8OHD4e5u+82XIAho0KAB3NzcZHW8vLwQFxeHu3fvolq1an/bv6ZNm3LXFssj8M6TIAiCIAiCIAiOh/7h6ty5czh8+DC6desGf3//+5bNyMjA8OHD4eXlhTlz5nB5t2/fdvpgBYA9hN2+ffs/ergiCIIgCIIgiP9ZSIq9ynjoH66WLVsGAHjppZfuWy4nJwfdunWDQqHArl270LBhQy6/Ro0a3P9g2VNWVsbK/CdcuHCBuy4uLoanp+d/ZIsgCIIgCIIgiP9NHmpBC5PJhFWrVqF+/fro379/peVyc3Px+OOP49atW/jtt9/Qpk0bWRm1Wo2rV6+ivLxclnf+/Hk0aNCA3loRBEEQBEEQjx7Sm6sH8fUv56F+uPr1119x6dIlDBs2rNI/6cvNzUXXrl1RVFSE3377De3bt3daLiIiAhaLBUlJSVx6WVkZjEYjwsPDndYjCIIgCIIgCIL4KzzUD1fSnwRKsa0cycvLw+OPP46bN29iz549CAsLq9TW4MGDoVAo8PXXX3Pp3333HW7fvo2hQ4dWmd8SW9JPAgAmZ55lUp3h0ybAIBjR/NAIxHh1AADkJPlAr9ag8bw4eA04DQBw8fAAAHjGZKJ8jx+XBgDmxztAr9ZgyoUOTII8p+IWYroMYGW8BpyGKsCPk1vuf+YKkzHN7LoSQ88WArDJIhsEI/yfPw4A+PhqCwCiZGqTDTZxEACYP3cgqydJx0rXB5csdSoZnz9DB71ag4uv6pDzmRbV9Tn4beNKlm9fx/SEOJdH2v4MRfxxZIxYJJOzPfTtElHCPoj/X7wW309A0/pFAICaGxPgiF6tQUaE+AZz7juL4KJphaG1rjG7s3MTYE7PYuV3njnI8trMjYX7r0m4uLUl/He9BKuuncz3Ny+2R8j4JCgh/nam88RxMAhG1Poxgf3GxiAYkdPXJvkr1S8ZWlNmT2q7YKqOu5bm1L6+Y13Vfk9OXnbniX2wmkzMjkEwYnNhAqyp4rq7ave7icAp4thZbt9m8veAOI8ho1IQODSVpXWonsva7X/mCpMLBwBV0yZQRLTh1olerQGsVlhTT0Ov1sikpO37FDZjgi0j6SRXLn1UXejVGuheGy+TObY0KodBMOLiWPHPfs1n0m1j+b4O9fqmc3LIUnsD0y6jT6d+AIBuw0ZDr9bA6/M4Vq7D0cHMR7iI6qX2MvWAKOdsEIyo8XOi071g30/7th3LNpkrykDv3rEWBsGIuLmLodqXwso6s+22IxnG9oC5uFiWV2d1PFzatkBOv6XIiCjn6nsers+VZTLkE5JQ3scWNuDiKzpu7dn3ZU5QKKurbC4PBm8QjBCiSzj7li7toVdrkLdRXCPXWrvL+me5fRuXtGJ/pJAOEp1PlMF85QoMghFZa9uj+tYkFjLi69w4nH9Hx+x5bEpE4BAjYtr3ZGmv1s0FIttwZ9hvw3h5dQA4/7YOiZ/bzqHMNeJmeVW/y2k/9WoNFGGhaLQwTia9rVdrYKrpCtN5gclq508X/czsupLZAAB0K+RsK+vXg6W0lF3r1Rp0dHfh6wBQ2P1CMnzaBPy2cSUux+qQUGZm9RwZ+PMhNFpgC/nhsTlRvCe8G8/6EPLSUSiDA7i+WivuotaPCTjU1h1tq7lzts03bsAgGDE6PQdXtjV3emYdaivOuWdMJhRh4hrK7rmM2TcIRpTHiGtQOque8orAsqImnB/en8QB0ffChmTm4POcRFgr7gIA6qyKZ+NT1pdXDb78sg6OMGn8OfK1UGe17TyUbDadI0qPS2EZDIKR9cW+3JUJWmbffl3Yr78xBR1Z+5Pq5nEhVext7buj5OrZry9F/HFWfn/oL+xzyHjxF8yea8TzvaLrBQS+6TyERr0Ol9Fs0EmkjVto24vGMwCA0oFRrF3H9e14Fjuj7+kb7LMkZ6/yb4YacR6cHxJZEWXImq3Fz0G/cW0o4o6jw8wJyFgg+lN99W2ZT+ldfmDX3gNPs3APgCjtbioQ91ho/FCo/HzF9ipuYYm3bd2v8TvA5ixoeCrSl4UjoZ0rdsT/Cr1agxsjtZy/c4NaAgDe9JOvn4cWenNVZTy0/3MlCAJ2796NyMhIp3/mV1JSgscffxy5ubmYNGkSzp07h3PnznFlevTogcaNGwMA2rRpg4kTJ+Lbb7/FgAEDEBMTg7S0NMybNw9dunShAMIEQRAEQRAEQfy/eGgfrlauXAmz2VypkMW1a9eQk5MDAJg/f77TMvv372cPVwDw9ddfw8/PD0uXLsWOHTvQoEEDTJo0CTNnzoSLy0P9Eo8gCIIgCIIg/hksABQPqJ1/OQ/tw9V7772H9957r9J8Pz8/WP/mq0WlUokpU6ZgypQp/1/3CIIgCIIgCIIgOB7ahyuCIAiCIAiCIP55FFYrFA/g/6EeRBv/behv4QiCIAiCIAiCIKoAergiCIIgCIIgCIKoAujh6h/GIBgxL6iFKP89Lwr1vxelPQPH5LIyvzw/hyuvV2tgKS1lEqB5OQ0BgJPf3bt2OQDgVJiF1Rv33ESYM7IBAMKborTsNV0T6NUa5M7SYmX+YWxpJdrSqzWITH0WI2pfZfKijtLOkjwuAFTfaosPZhCMaLAkXiaNLtm1/5zxbRS7Thu7EABw/K2F8H9HlH5tnTBUlFBep8H5n0OZLdXvKZxcrzQWPZ8dyUn56tUamDNzuDE/+9IiVNfnwNpRA0ccZWE7ullgMZ5htsJSLZg8YRLLt+zz4cZFPVuUjL1zpxpCRh+FIu64zOaJDlZRArZ1bXEcFyzhxsred8cx2xG3DTmfaoHotpifdwQr8w+z/vp8HMfKt05xgcrbCwDQJ7IPAODaS1qujwbBiDuNrZXKtEvXA71FqVhVk8YIfEOU5zU/3oHZUDVtwtn1nRHH2Wj/SSw+8I9gZba0aogLE0Sp+5zPtDBduIjPNn7P9VsZEggAUIY2F+fBTkpa2SqE87PB0niufQCw6trBIBiZv7V+TODK6NUaZPdYDr1aA59nTnH9NQhGNJt3khuPO/1s0sybWzbCjsNbxTH5PUU2dg2fOoc7/SKhV2uQP9W2vgEwuegnRoxm5SOMZpn/yuAAKIP80aeDHi61bDLu99tL9tfpy8NZ+ex1fJ5BMCJ9eTgqutvk8AelXWR5u3ZvcCrDXdztFudD/nQdDIIRuR9pkd9TidsDxL42+SaOG2eJDh+Jkvl9ovoCAMznMnF7QBQMghEubW1hHbK/0HL1XQ6Kkv7V/xDHoXa+SeYbAGR8E838e/z007i4VZQ6tj+nAoemctLWr/rp4PVZHC5ubYn0JeLcZK3TwHzpMufD+xtW89Lv9+Sm7WlwsoLrb9Aw0e/toXWd+gsA1pTTYv9bi/eAxyaMBQCU94lAzpN80HrfD/l95TinofNjYRCMMF+77lTeuqInH6txd06i2Jd9Pjg6U5SQb5xUjI+62cJ1pC+NgCK8NVRNxfvExpY2afPCd20S9gbBCOEtUYI/f5qO3WfsqUx+W1qry0L8cSz8RyZF7sjFV8T1Zk05zdmRxsFtZzIMghF1j9Rjdez9ZeOVcIKlve3P709pjt23J7GzBwAafcuPfcO4OgCAksHRCJySIAs5IJE1W8ud7Xq1Bntb14LCtRr0ag3KGtfg2u42fDQaLoqX7XMm77+6PTq+Oh75UaWctHnBptYIS7XIyrepVgy9WoOK7mHQqzXoeqof1w/JRo9BIwEArgeaQuFajeW51KiB/meuABBDGjjWrTe2nLVpEIzIm6nFhIxMAKJMv5Tn6NeGEtue4M4aFyULnbK7r136vfZMOXkoDjFXeg4GvhnPtSfRcHE8FBWiEkNJZ/FnGvswKY51fvtxBcamZ8MgGFH62BVmx3vgaZhy8wEAsc06cT5IdS/cO3dCRh8FAMQ81h8AUHelTc7e7WCTSiXoH2pIir3KoIcrgiAIgiAIgiCIKoAELQiCIAiCIAjiUcZiBRQP4K2Shd5cEQRBEARBEARBEH8BenNFEARBEARBEI8yD+r/oeh/rgiCIAiCIAiCIIi/Ar25IgiCIAiCIIhHmgel5EdvrgiCIAiCIAiCIIi/AD1c/YP0D2nDXQdPTmSfd579g8V3allNjIVRNDQaerUGs3PFuBrp34dDr9YgZFwyAOCtrJMsbkVCmRg758NsMQ5P4L5RyH3F9tuAk6+JMaU81ySg7+kbODdqEUb6dsKUzNOsTN0+GQg+MBJ5H4rxTC7H6jh/cz7l45E4xraxv7aPOdFyaaytzy8nsrJSmW7DRsPFXYxN4zXgNELjh0L9YzV09M5mZUp3B8jGU6/WQHHEKPPHIBiR84mWK2cQjFBdLubKBia7czFYup8qQZuFL7N8g2BESnsXuO1KRtHOIBgEI25s8ObijQBA9hda+D9/nOuXQTBCFeAnG6PWKS5cm310T7HrnM+0UNavJ4vpkf7CIiDhBCY164iRvp1kY+6iaYU5TY/BVHgeBsGIHUk7YBCMODpzkWy8/KbGwxHHOFsSpouXmC/K/cfY+jNduIjzP4dCr9ZA5ecL74SaAMDiDDnGiNlYGI8zujWindsKXB2nhcbNjWtv54HNyP1Ii6I5FTAIRsSEPs58Np9JR/keP1b21rNR3BgAQNYEcVxrHWrgNJ5I/SN1Zf2zn5td5w6hYFNrNhaOcdwAPvaVY55UPm38QpZ3cWtLVD8oxkf6fdUyKFuFwO1gEyRrlJz/BsEIc0Y2zJk52HHMAEtJCbc+7Pvs2De9WoMbI7UIefEo8z1giJHFjpHSQl48Cte9Yqw4ZZA/lk/vx+1B+/IS1nJbTBtAjLu0tbQm/D6IR/ArCajxs3wvP39WYGkNF4lrbUfidmazxs+J6DpmDHbt3sDaCngrnpsbZf16UNbxZOvowHffQeHmJostFPxKAvOvWo88HI9cDwBQ+flyfjt+zpqtRZN+aQgZJ8ZJChxilJWZFaBB/nQdNhTEoVczcd6luF4AUL7HD247k2X9rwzH2EemutUBANV/SWJ9DHo9gesfACjCW7O60ccruDXr/Wmc0xg/0rXrnqNcekz7ngAAl24FrA3r0VMw5eTBIBjROsUFIWOTccvPA6YLYhw030QPVtb70zju7FN/EYe7+nBUvyL/rXPZk7a9IvX58svi/STkxaMwlpcj/TsxzljDRfFOx6/JN2L/cmdpOTs3XhBjSV0ZL36//pYvtzYKNrWW2ZIQ3tIxW/b+Tck8DfPpczB37cCVz9nQFnq1Bmv8DgAQ4+fZn/EA8Piol6DybwZAjLskxeyz79PuvCTc7RUBZZmFG0O3Y9myshJ9Oj6NoPkm1Nwottmn49PsnPZ55hRS2ttiAUoM9+kIAHDdK/4ccKD1Vq49Ftdp40oYBCMqul7A7rwklme5fRvj65wHYIsXp2zYEKPO5YnrtqCQtalXa9BsWjwWBQfJ/BDe4H92qKO8jbInIzlfDIIRV8dEYvwuA4tp5XjvMwhGBE9KhF6tQfEQW1w7AMhYGQZL5/bsWopbJ+G3rYJ9rugZDuUt8TxTtA+VjbVercHAmmKMMIVKBZd2Lbl8KRabXq3B4rzDXF7TfmmiP99E4/OcRBZn074v5V3E/ZT5dfT/VrwrinNVZdDDFUEQBEEQBEEQRBVA/3NFEARBEARBEI8yFiseyP9DUZwrgiAIgiAIgiAI4q9Ab64IgiAIgiAI4lHGahG/HkQ7/3LozRVBEARBEARBEEQVQA9XBEEQBEEQBEEQVQA9XP3D6NUaZH4Vza4NghE3R2iZxGrgEJvMq+daUZp37PuvAgByYr7nbHWrbmb1Zkb2hPCWDtMDwmAQjKidWB3+z51A6xQX1q7EwevBAESZ3zl5ek4atKXXRTSbLkruNloYx3wcld8Z/u/yMt6O8rEBe1/k0iS7vjPiYOoWVmld1e8psJSVsTreA0+j+i9JWOJta8+jV7bjUMrsSTa1b4yH/3vxnA+BG8bDnCHaSF8YCb1ag6yIMla/7MlIvFkvCz6z4jhp8psjRAnWBM0mRL85HvW/i4f53ivswGRRqjZj2CImMatXa+BSqxbGFWqR8UltTrL35ggt5jQ9hqJh0Yg2PgMAMOXms3r+78TDfO068+n826KcbZuvbVL2Enkf6lg9i/GMbFwl/1X+zaB7fTwux+qYzLsksd/8qCvOv61jddIXy6XG7SWkQ146ivRFvMRyzM5UJG5tC4NgRJN7krRSnuTf0fKaLN13ZhwaLBHnRpJYVtbxFGXiP4iHdUUjUX79xg3OD7eeuWwca/5kC2EgpQUNTwUAlHS+ioCfxuPqONueMghGXOvI27Nf87d2B0DfbziTiwcAVYAfACBjfhSz88fCpU6l0AemXeauF+Ydxp2nI9GkXxospaUAgIipE2A+k46zQmNceF0ns6Hyb8ZJekvfTbn5XJ/1ag3CUi2cH7/MnM3VAQBzZg4GpYnyv/YS8q0WxsKcmYO3Z60SpZWfCENMqy7IGdaU2Sh9RpQcd2ndAgbBiOLnbefVouAgtk6ujtNCeFMHvZdNDnl9CzXnS/qycMS07cZCRBgEI9x2JKPrmDGcv4Xv6pgN87XrMN8s4tbQ7hxRjll4QweXti24feUoMy3tKSnPfkwNghGBb8rDETjD98M4POejw8UJ4QCAy2E26Wu3nrlQNmwok+W2R0q7/iIfFuKtrJP47ccVTiWyAVH2Oeax/vBOqInd22xrMqGdK25ZbGeWI/btOPoAAOZL/DrVqzVAdFtW5lSYBZdf1sFjk21/5UeVwiAY0XzFBBgEI3oHd+TO2v0rvmeS+5JUvV6tgfuvSdB8FsuuCza1httN8dycmJGOt/2jkNPnO9aO/dnzSY4tDAIA+L0fz/Wj7g9iew0Xi98VR4zoMWgkG0+fZ045HYOMeVFQfyHe0xbf9ELWnGjmX88aomy38sAxro7/cyew/XwK62/bYwro1RpoUm1zVs1wFKacPNs4p2fhxsh7cxHZBoXvivu92u5kqH5PQcCe0bayN27I5MklTDl5QNJJ9D19A3q1BmlTmsAR+/Vtb+e7fJtcuF6tgXbKeO7afg6dyfjbs/P4b3iulnh+WnXt/lLoAfWXcVxf5ga1xNAvtsvabbAkHguCQ2S+ONsXtdclQNWkMfRqDZTNg+C9RQmXQ6msjBSiRmLfmmXss+ueo8gdUA+h8UOxe8daXB+lxdWx/H6R7LjU9IBL8W0uT1rjADB+cKxsvxsEI2rmueBt/yjb2tk6VjYuQa8mQK/WYEv6SVneQwlJsVcZ9HBFEARBEARBEARRBZCgBUEQBEEQBEE8ypAUe5VBb64IgiAIgiAIgiCqAHpzRRAEQRAEQRCPMg/q/6Hof64IgiAIgiAIgiCIvwK9uSIIgiAIgiCIRxkrHtCbq3++if82Cqv1EXg/94ApLi6Gp6cnuuJpqBSunJRp/nQd0sYtBGAnJbzXF/tabQMAdD3Vj8lQO8qfOsqV2ssC69UaYJ830K3wvr5lrOqA4BHH2LWlc3t4flKAm9N8odxvS48wmpGsUXLtuNSqBUtJCSuzoSAOdZU1OJ84FArAapX1xSAY0WPwKPz24wpZXxz766yvABDTfRDMZ9JlTTqrAwD6U8UwtK4Ng2CEv2E0lFerIXPoIpb/eU4i3vaPYnZKn4niJIrNj3fgxqcy3xxlmiuTsM1YEIXgiYn3rZtQZsaQHbEInpSIu70iUG23TXr2+igt6q3gJaYbxtXB9ZH1YU7PYmmXJuvQeF4c57e9X1K7xbsCUbu3rZ5CpcLu/KMAgPYfxyJ16sI/leP9K3yUk4wP/CPEedj9EkJePCorI1vXdtwcrkXi54vQakEsfGbFyeq2TnHB/u+jcKO9CSFj7aR6I9sASXI5XGfjf781+cTJUmya2x31lsc7LVOwqTWThr7+ohbJHy8CgEr74wxnssQSo87lYUXzZn9qK2udGOZBwu1gE5R3ucjVKxoWDc81YvgHdUItCNElXH768nCEvHgUwpZWOBm17i+Nj2O6tM4BoNahBtgUuLfy8wvAtZe0+Oa9BZgZ0IEbh/Nv6+D1uXy+JRThrWE9Ko57Wd9IuG9PYnbzZmrRbBq/VxTtQ2FNPQ1ADLGgdruJQ23dK7XvrH/S91vPRuG3ufPR31se2kDiwhQdzLoi+L1yE6bC83gr6yS+CGzjtGzJ4Gh4nivmQi448wGo/HyR9r392JbuDsDhtj9zZ+JvUU1hKS1F5lfRyHpuMQCg+9AX2Vnn7Oyu7Jy+/LIOjb4V58jULQyqfSmsTHmfCLjtSIaybl0mR/5na6ey/tqPv3bKeNReL65ht4NNsC14d6VjsjjvMPxda0L32njU+jGBrRMAyP5Mi4B34uHi4cHCKTijYKoOZ2JtZ+H8vCMYM/E1tt5aLYqFz0dxyPlEC//3REn5BTd98OsLXWFNPonLsTou5EllvjrmVfQMx+8rv//L58f95swgGNHhowlouCgeyuZBMJ/LtFWObAPD1tXQqzUYlHYRoz0vVmqLzfu9Pklz1GnSOHhsTmRlOk8chxpbbPfSyvyyZ0OBGBZB4VoN1oq73JwHr56AgLf50Ct6tYbVsbdt1bWDIu44Z/tOv0hU35p03/bv5+v97k+V8dO5Y6gbko2ioiLUrl37L9V5kEg/s3ZvOg4ql2r/eHsmy13svbDkoR2PqoDeXBEEQRAEQRDEowz9z1WVQf9zRRAEQRAEQRAEUQXQmyuCIAiCIAiCeJSxWABYHlA7/27ozRVBEARBEARBEEQVQA9XBEEQBEEQBEEQVQD9WSBBEARBEARBPMqQoEWVQW+uCIIgCIIgCIIgqgB6uHoA2MdCSBvHxwu6NFmHfa22IWj/KOjVGrj1zBXreLVnMRwMghGZX0XLbEUbn+Eb6laI8j4RrI701f2ULTaVFONKsu1yKBXpW0Og3H8MWetE25mr2yNZo2Rlur40BgCw69whAEDxrkAAYDElKsVqRclz0U5jQfz24wo8drI/AKDziTLo1RqovL0AiLHApL4Kb9rakOJK6NUapzGuHNGrNYgwmgEAr9fLZmkho1IQ+CYfJ0Pj5obcj7Qs7fC8JZytu+/cQNaX0Sx/VH5nZK1tjztPR7L+dXxlHCvfOmEo9GoNGsfXRtHQaJlv2f2XMH8c42a0+yIWerUG0e5KZA9cglu7A1iMK2UdTwBAvRXxXEwsALiiu8liXN0eEAWDYGQxruzjgejVGhQ/z6+n2r2zOHtWkwl6tQbNl0+A6k7lv2WS6qwtOFJpnv3ncV++wtrN6fU9lLVrs3WqbBXC+WQf90v6Xq3Ugpgeg3Fm4kLOtvQ1p+kxNFwUz8W4Mj/eAUg6iZxPxPn9MDsFF7e25OrbtwkAhe/qoFdrUP1gYxgEI66PEuv+3saDi3EFAEU7g5gtKcaVQTAi+WMxjpr/1rGcbcmWvQ1VgB9Lk+Yo68toDD1byMrcHK5FQUU9GAQjgtaPl423PfYxrgCgvMtFAMDHV1uwNCnGFQCs8D3E2jYIRmR9GY2WU8S15Lm2FvRqDSp6hnNzYh/3xf67fXrwxERkrBJjVpV0voqPr7aoNEaTQTCi/vfxmBnQQezD76NYmVOv2Ob77m/NIGxpxbUrxbjKn66Dz3vpnP3a2XwbAGBNPY07T0cif5oOWRFlmNrgrNP1ahCMyP+pDb7OtcXYksZg4y1xL9b8KZHFuMpex4+JRNM5cahVvRymwvPImBdVaYwrlX8z1PoxAbt2ruN8MQhGLMs/zK7bJj2PXs34uFr2bTaeF4este25+fLolc1d7302DBkz2sLaUYOg1xPQ/NAI6NUaLp6f4xzp1Ro8f1bg2nou5wkAQKNvbbGOVPtSkDVby67ddiQD0W2R8XYLmV37sbaP/Wifr1dr4L/rJVZXGRwAvVqD2usTUPiueI/YFrwb++6IsRm/yo1n4yYxvlkn6NUa3HhGjGMlxbgCgIB3xD1tKS2VrWeDYET6snAAYDGuLtw7PyY168hiXAFA16eOAfu84f+eaK/nsyOxrVV9WJPFGHuNFsbhbq8I1o/o4xUAgKy17QEALu7usrUDAK57+HiA9r7VOtRA1ld7nM1hw0Wif1yMKwBIOsnWyGjPi7htuQtlg/pQBgdw9yl7GhpLubnz2JwIVdMmLK3GlkRZncpsSdRV1sATJ0tZjKsReY8x3wM3FKN1igu7ltp9zkcn2nNRosX3E2AQjLIYVwBQfWuS03FxnHcJFw8P5mvx87afZ+z9V/k34+oo69fjPvcPcb7fHzqkN1cP4utfDj1cEQRBEARBEARBVAH0P1cEQRAEQRAE8ShjsQJ4AG+VLPTmiiAIgiAIgiAIgvgL0JsrgiAIgiAIgniEsVotsFr/+QC/D6KN/zb05oogCIIgCIIgCKIKoDdXBEEQBEEQBPEoY7U+mP+HIrVAoqpxlHw2viNKu4aoL/ESoA6LL+j1BJl0aYJmE7O1uVCUVXbbkQzs82bpzZdPwPZ3ugEAzv8cityPRRnoqHcmMDtN54gyw5J8c9DwVK5tt53JzJ5BMKJ2b1Gi2V5+1R57H4v8XeB6oKlsDPRqDarrc5D1ZTQOtRXlZ02F5wEA7XqeBQCkL4zEnSYWro697fezjbL2HH2IeyuK81MZHMDyg1dN4Or4fRDP+Whvq7o+B8FrigEAIasmQIguQeDQVFT/xSbnW/OnRPbZa8BpAMAlbTESZi/mbF0dp+X60nzZBHyekyi2qVCgyddxaH7UFUuL1ACA6yUerP656S0RmOwOuChZmkutWlw/NhcmoMbPiU5lsyUf4ucslo2bM2ltv6nxqLciXsxzUcLaUeO0zlCfjlxdKe9yrI4b/0YLeElrc3ExHpswlsnrS5LC5b0jOPt6tQZ3+kXCo+A2zKfPAQBqHWrA8hz3lX1fJWlp//dEeebpAWFo0i+NlfffMUY2Ft6fin7e6XIJrROGot6KeDhDr9bAM4aXMy6YagslAAAhsbY1srrgCJJnLeLqGwQjTNm5Nh/2ecMgGBH4RgLWP9cTf5SJyXVWx2Nva1EWPXCKuN9dWrfAXX24TYo5um2l8sYAMLXB2UrzJBt9dE8hc8hi7Dy9H8qWwfDYlIjb/aMgdHIFAPRIexKItEkL69UaLtyA8Jat/wWbWiN4xDHWz0Nt3RE6P5aVLR0YBQAYmHYZUy+3YX5krOqAoGGp3PptftQVVm07VOuRh5NR65zOuUvbIlzR3QQA5G0U7dVdGY87Bn9mK2+meAYWPG2B78w4fJSTDL1ag65jxnB9kr6/Evo7WlarwY2VXq3BoJpFsjEMuHeGxvQYzI0rAHjGZOLqWC2CJydi+/kUWb5BMMKUk8fsO4ZPGO3biV037ZcGa8Vdrr59iAUACByaitHpOej5zAuycubHO8CcloHAN+Ox56eVou+z7sr6Y8+Vbc1hEIxY30LNnRXFA2y/o22+zHamBr4pnhu64/fsJpxgkuf2aD6N5fpsEIxQdc8HAJT1jUT4BxPg4u6OnN7fszrmjGxRajsslO1VAOhWXQy90X/962zccta349rzffYksubIw2NI9InqK47H5nHML6ltycem/dKg3K+GQTAi70MdG4+FXglAt0Jmq7Crbd1Ifau2OxkFH4h7ZOvyLuJYDU3F5zmJ2JWdgMAN46FXazg5ensmZ54Vz9aXRRsdPAucnoH254AUZsTeD8drx7Nbr9agv3ckzFevwZxhk/F3PGMvdPSwtd1vOABg0qH9LM0vqbqsTtuk5zlf7ZHaeLt+BitzSVvM8q2pp3EqzPmflR0ps8BQmIJm0+I528oG9WEQjLjbK6JSyfXK+rcr4wjL7/XOH07rmnLykDlXXFOuB5rCfO06y7P/TDw60JsrgiAIgiAIgniUsT4gtUB6c0UQBEEQBEEQBEH8FejNFUEQBEEQBEE8ylgsgOIBKPmRWiBBEARBEARBEATxV6CHK4IgCIIgCIIgiCqA/iyQIAiCIAiCIB5lSNCiyqA3V/8F7KVPJflP8+MC9GoNlC2DWRl7Od4r40Up1dD5sUhfEQaAl+ut6SLKmed+rIWh5XaW1/7xczi4dCkAoOncavCbKspRJ362iLXjzDfTE2IbknS7hL1MadiHouzukTILqh9szEn9SjZOT1qI7SG7WJ2MVR0AAMogfwBA5hBRprz1NzZ55hsdRenSnH5LmeS0ffvvZp0AAMwK0HA+pS+KlMm1l3i5cj5LEr56tQYZI2yS2ABwdayW899xbPI/UCB/ug4Bm0pQ0TOcjZdEeW/nMq9S+6UDo9C7eWekTF/ESb6eG70Ib/uLktTSofPrMQ02t2wEQJQObpmiwh2DP4JeSxDlfi1mZt9SUsI+GwQjarq4s+sReY9xPmlSbTK7zvqp3H9PZjm6rVwm12LGjxsWwhmOku+S3UYL4zg76UsjoGrahI0HAPyxaCkyFoifez7zAjSfxeLAsu8wOfMs59sfC5fCmnySXW8K3Cubo5vDxTmU1lll/tmT0+c72boBwGStJVl9AEz+uHRgFPRqDcr3+AEA27cA4PMx3+e8D3Xs83CfjtwYlT4TxbWdubo90K2QlbEYz7B17kxi3XLqLC5FVrNJMSecQB/dU1zZLifuYH7eEYxOz3Haz/zpOnQ785Roo99wmHLzoVdrEJn6LMxpohyyRQU0myaeHb+1/BVIOsnZ8Vwr7lPhTR3UX8TBqhPlr32eOcXKSH3y/jQOqibieWEafU0MJdGyEZI1SlYueIQonx/z+DOs/rnwCijijwMAejw/iqXb++E98DRyNohy9M0G2dbK3JAf2edm00Q58Gc0ohx6pJsoMe+2I5mtWxd32x7a0qohgldPQPY6DXI+1eK1zDTbGbIgimv/xgtaXHtJi7yn6nN7K+vLaJQ+E4WUGeLefyG3uyg57ucLvVrD1pM9erUGwps6ro/6U8WyPRs+3SZ/Xns9f16+lzwAezb9AEf2rl0OAFCEhbI0y4mzKBoWLZPplmj41Dl+rX4VDb1ag52pe3DtJXHf/fbCbOTN1LIyi/MOI65dNa5tg2BkZ4BBMKLx/DgowlvLfAQA9+1JqL8sHpayMnQbNhoAkP2Z7Zze/etaZM3WyuopzMBTZ64BAEyXq7N0ZYP6AIDAKQmVhiwwFYhS6sGTbKE12syNlZWT7tnNpscxfxznsJGxgruWxs/nI7FOsaac5b3tL66BoNfFOZTk6O3rAsDcMUNgEIxIfU88iw+2tfWvsj45hhlxlPqPensC9GoN27fRx3m/3Q424Xyw5+Rroh/503RAkrjnYneNRFiqRfyZJPIOK5u+TLxvNu2XxtowCEbkfCrOYebXvES+fX8uvmI7RzcWxjstNzOAP/clzFfFc6babjGszOVYnez+pwgLddo/+7TpDc9Umhf0WgLMXTtge8guZlO6xxGPHvTmiiAIgiAIgiAeYawWC6wPQNDCSoIWBEEQBEEQBEEQxF+B3lwRBEEQBEEQxKMM/c9VlUFvrgiCIAiCIAiCIKoAenNFEARBEARBEI8yFiugoDdXVQG9uSIIgiAIgiAIgqgC6M0VQRAEQRAEQTzKWK0AHoCSH725Iv6/GAQj0r+LwOVfWrA0xzhDUqyEC6/rsHPfT7IYV5fNpWi4WIzr4P1pHEJGifFZ0leEocPMCcxmwN4X4Tc1nrNbPEB8fla2CkG1gmu4PFHHypf1jeRi7khkVdzCvjXLsLRIDb+p8cifIdbJn66DS2tbP+40UEDl54uZAR1QMtMbAGDVtmP5qt9TkFJ+l+tL411izJOdf2zh+u71uRj3A5FtuHHK/EqMe5H9uZbFpPg0UIxjs6EgjhvrnKfFeF4xoY+jzdxYZM3WInnWIpTHRHDzYW/f/nPKDFvsL8f5yVgZBu+Bp2FpdQvWo6fguucoZ8M30QNuu5JZvQ5HB8MgGPF5TiIsndsDADw2J2LXuUNofmgE53dMj8Hc9aC0iwgZmwyXti2Y/bQwE/5os4Vr88MrrZi/jv0amHYZAHBJW4zeMUNYurE91xR6+YbzccAeF0RbCSdk42UQjHjOxxZrJHN1exYHzd5G5txop/FCAKDlG+dgunARBsGIw/OXsLrBE8WYMoVPeKDxPDFO1LygFrI5cvbZnjqrxX0ixUlacNPHafmcT7RQeam5NWhfxiAYUS/xIheTrqJ7GIqDxBuPx2bR34FeqWKcurQMWYyZi1tbAgCaTY9zGjtIr9bAY1Mi6h+pC/9fxooxboanOo1VYxCMGFPQEQCg+N1LbPveHEsxcySyZ3uytXvn6UgcbFsdIa4eWBbiz9q1j+WUNm4hVN3zxXaTbLGhktr/BECMk1XzJ7G/rRbEcuPlohHXYOnuAOjVGqhni74o4o5zfZW+F+0MAgDsOGZAekUpzJsaQtkqxGm8PRd3d5jPZbJrKTYeALgcTGXpjmeY/3Mn0Lvnc5y9MDe7WGD3mN0kldUfm57N7XtFrVpQBfixsgFvxyNgiBH+78ZjblBL21j3X4J2X8Ti4mvivqj7QzyOzlyE05MWMlt903sj8I0EeGxKZON2reMN6NUamHLFWEbSegIAZR1PWDqJfqpnizHDPr4qnruv18tG797Pc32u/1080r8PhyPVDzZG5uMrEDFVvEd0njgOmV9FsziBAGBNEWO4STH+Zn1oi/kWlmqpdJ8VvqtD0OsJUDZuBL1ag/rfi/vOV1UTzabFo3eQOB7jm3WS1dWrNdiRspt9LusbCevRU+zavs1p2cdYP1W/pyDjm2gEvMPHbMocuoi7Tl8aAb+p8ZhYpwAAkP3sYmbjWkwIV9YgGNk90dkelcZKPTuO27eOqPx8AYj7AACuvyiOp9uOZOiO38WlyTqn54zHOTeZLYkLW1vCIBhxfZRoq7xPBDz+aAhB5y6zpQwJZOu3fI8fXDStbPddhYKzaxCMmJJ5mvNDOjelfZvQToz91v1UCRbmHca24N2yMZKQ7JR5V7D84EmJSGnvIsZqe8N2zwgZfZR9Tmjnynz2ChcAAHVPKri+2fvY5BvbOTfIW4v05eEsTptj3C4AcNG0QtEwW9ys6gcbI3N1e+jVGjRaaItNFrRfjJm3+9e1XP/qH6mLj3KSuTNMsh3T7Vmn46E8cAwtvrOdkUIXMX1L+kkQjxb05oogCIIgCIIgHmGsFiusD+B/rqz05oogCIIgCIIgCIL4K9CbK4IgCIIgCIJ4lLFa8GD+5+oBtPFfht5cEQRBEARBEARBVAEP3cPVjBkzoFAoKv1ydXXlyp87dw79+vVD3bp14eHhgc6dO+P33393aruoqAiTJk2Cl5cX3N3dERoaikWLFj0Sf/9JEARBEARBEP8m0tPTMW3aNERHR6Nhw4aoVasWNBoNZs2ahdLS0r9sZ+fOndDpdPDw8EC9evXw7LPPIicn5z/y6aH7s8ABAwYgKChIln7ixAnMnj0bTz75JEvLysqCTqeDSqXCW2+9BU9PT3z33XfQ6/XYtWsXunfvzsrevXsXPXr0QGpqKiZNmoSWLVti165diI2NxaVLlzBjxowH0T2CIAiCIAiCeKj4XxW0WL58ORYsWICnnnoKQ4cOhaurK/bv34+pU6di48aNSEhIQPXq1e9r4+eff8YzzzyDdu3aYfbs2SgqKsLXX3+Njh074ujRo1Cr1X/LJ4X1f+S1zbhx47B06VJs374dffr0AQAMGjQImzdvRkpKCjQaDQDg1q1bCA0Nhbu7O86ePQvFPRnShQsXYuLEiZg3bx4mTZrE7A4cOBC//vorMjIy0KxZsyrxtbi4GJ6enmj/3CzU/zEVyuZB2Ll/Eyft/X62EbMCNKxO6cAouJZa4DfjLFb4HgLAS7bmzdSiZ8xRnAuvwFNnrmFbq/oAgNwf28JvsE1aN/szLTJGLLLJkbq7Y1d2Amer8F0dvD8VpUiz12kQMMSIW4OiUXNjAivjUqMGLLdvQ9mwIc69H4gVTy3GrAANFO1DYU0V5XsNghGBG8Yj67nFTuVppb6ef0cHr8/i4NKuJSzH0wAA6d+Ho9aZajjxxsL71pX4KCcZzx8ei6DhqUhfEYaQUSmw6tox6Vj9qWK8Xi+bG2MmrXyqGFs+6IEaW0S5442F8fB0qS6T3rYfc8f273dt/9m01xeq7vnImB+F4EmJuLi1JZr0S+P6Vvx8NGqvT3Bqd3R6DpPMdtZm8+UT4Dc1nstXNg+C+VzmfaWCHcmaE43AKbb5VnmpYTovQOXnix1x26BXa7h15uiLPeff1tmk9O9xc4QWgePO4lrHGwCAW7sDcD2+CdLGyef7yrbmaPjUOWTOjUbQa/y4OGvXMVRBwM/jkD1gCVeu/pG6rO37+V/eJwJuO0S53YCfxqPFB2dgLi6+b52yJyPh/msSLsfq0GhhXKVrof6Ruljnv99pP/Kn65yOBSDu2Tvd2sBduM32moSlc3vs3rAMMV4duPTS3QFQza8PoZMK6S8suu8acPR3Q0ldrGjeDNdGa1F/WXylZQFAWb8edp783Wmf+p+5gi2tGqKiZzgLVeDMhqN9QFyzzY+64lx4BUvfd0eJbtXN963LpKgbN0LOhCD4zoiTrQ/HuTEIRui9wwCLuVL/pLScT7Twfy/+T88DltZvOAxbV9/3HOmXocfJVH8EvZrg1Fdl3bow37gh87nF9xPQbFo8VzZ9WTgnb13eJwIHvvsObb+Mhde+GyicoYC6/xm8lXUSXwS2gUEwol3S82jSL43Zbp3iglNhlf8PhONezNnQFv7PneDKpH8fjsbqm/CMyeTqaY8PhPvXdbF/xfdsHFTNfGDKK4BBMKL9x7FInSrug+JdgYhvt9npfG8pTEJ/70gYBCNaLYyFz8dxTudAGeSPnX9s+dMz8H5r8s+wdNLA5bBRtr7+DINghP/2MWg55wYLMSC8qWPhCxzL9u75HCynzspt/DoGIeOSuXnZeMsTsxYOxYZXv8SrfjZpeb1X+/vGFKqsD1fHalloEr1ag5LnolFrg229KuvXg/nadWaj58AXkDsZMOgWoN/Xb6HJ3DibD/dsbzufjKe8ImAQjIjpOhDm9KxK5yE42Q0ZEeUyX53dKw2CEYEbxyPoVfHekfOZFv7vxHPj0ztIh12ZcVx9a0cNFEeM3JkGAEVDo+G51nZv9EuqjoLe1bkylY1ll3Fj4Xa1HIr441yeyVqBA/gFRUVFqF27dqU2/ltIP7N2VfSHSuH65xX+n5isFThg3VJl43H06FEEBwfD09OTS586dSpmzZqF+fPn4+WXX660fkVFBfz8/KBSqXD69GnUrFkTAGA0GhEWFobRo0dj6dKlf8unh+7PAp1RWlqKDRs2wNvbG7169WJp27ZtQ9euXdmDFQDUrFkTL730EtLT05GcnMzS161bhxo1amDMmDGc7VdffRUVFRX48ccfH0hfCIIgCIIgCOKhwmp5cF9VSHh4uOzBCgAGDxZjiJ46deq+9Q8ePAhBEPDSSy+xBysA0Gg06Nq1K3788UdUVFT8LZ8euj8LdMZPP/2E4uJiTJ48GUqlEoD4Z4Ll5eXQarWy8tHRYuC45ORkREZGwmKx4NixY+jQoQPc7wXOlIiMjIRCoeAexP4uTZs25a7NZvE3ouaKMpisFbCay1FcYoHJWsG+l977LmGqKIOiwoK7t+6iuERcePb55rIy3L1VAZO1AndumVie5XYZV85SVsbaAAAXqwt3DQDm8jJZfVMFb8fFehcWawWslruwlJUxfxXmcljvlSsuscjas0dKl9pzMZfDIrV7pwzmcsuf1pUoLbEwXy137o2rqQyKe2XKbplQ7MqPsfS97JaJ619xiQUKF96+45g7tn+/a/vPptJywM5H8+1yWf/MDr7Y598uMd/XB0uZvK7VXA7zvf7a9+F+2NsRE+75abGtVft1Vtk8Afx6Yml3y1BRepcbF3Mla0UaI2d9c1bePg8Q15JjOfu27+e/qaIMynu2xDm7C/Of9FlaS+a7ZTIf7T9XlN6ttB+VjQUg7llTRRlMdntNwmJyXs9UWg5UlMFSprrvXDn6WFxiwe1bZq4/lZUFAKul8j5J68Vkty/vN45SHiCu2bu3+P1XegcoNt2/rpRntdyFuYyfj8r2NKtnNVfqn5RmKZPP8X3rOMyPs3oVpXdldu19tTpZg8UlFq5/UlnpnJEwVYjtm8vF9WO+rbh3vzHb7Nzbb5Lt8lsuMN3nhx3HcXO85wD3zvPScllfzaXlsjGRzpriEgvMd2155tLyStcKNw7lzucEAHevvR9/pUxlWExlcPmb563UpuXOvXm5V8fZ2cn8s7tfymw4rJ3bt8z4v/buPCyqsv0D+HeGZWZAEBBFGGQVXHAXXCCDFJfEJTTUckXES3LDrVczd1NT0rRQEVySSzMtLcylF5MsFdIMXNNEUQRMoQwlYBC4f3/4m/MyzoAzNKMw3p/rOtfb+5x7zpzn9pybeWbOOU+FohRFmo69Gn65qq4Pyn8X5TplzRP+5lQ+dYyWl6KyGHhU5d9HZR/w1HFU5W+Wpv6XFYmfWYuKqxzTVf92aDq3yqlM7fXKzw9Va5qy71XjyopMUF5pol1dfVwKk3KFSv0DgHL8f52q4xeKleMx8Bx2UZkPLy8viMX/+43n7t27en2fnJwcAICDg0ONccrP/9WNJ44fP47ff/8dPj4+2r851QOvvPIKiUQiunnzptD25ZdfEgDauHGjWvzly5cJAM2bN4+IiAoKCggADRs2TOP2GzduTN27d6/1/jVt2lRlsbe3Jzw5RHnhhRdeeOGFF154ecmXO3fu1PpzpiGVlJRQ06ZNn2suxGIxOTg4qHx21qfy8nLq3r07mZqa0tWrV2uMnTJlCgGgK1euqK2LjY0lAPTdd9/p9P51/pera9eu4eTJk+jVqxfc3d2F9uLiYgCARCJRe43y1yllTE2xynhlTG08PdqurKxEXl4erKyshHu+asPLywsAcP369Vpv42XBudIe50p7nCvtca60x7nSHudKe5wr7T3PXBERHj16pPNDEZ4XqVSKrKwslJWVPbf3NDc3V7uSTJ+io6ORmpqKFStWoEWLFjXG6jKe0FadH1xt3boVADBhwgSVdgsLCwCAQqFQe01paalKTE2xynhljD6IxWI4OzvrZTsA6uQNkHUN50p7nCvtca60x7nSHudKe5wr7XGutPe8c6XpnqC6RCqVGnSw8zwtWLAAn376KSZOnIh58+Y9M16X8YS26vQDLcrLy7Fz5040atQIoaGhKuuU3wDk5uaqvU7ZJpfLAQC2traQyWQaYxUKBQoKCoRYxhhjjDHGWP2yePFiLF++HOHh4di8ebNWr9FlPKGtOj24OnjwIO7du4dRo0ap/VzXtm1bSCQSpKamqr0uLe3JYzR9fX0BPPmGolOnTkhPT1cbmZ45cwZEJMQyxhhjjDHG6o/FixdjyZIlGDt2LBISErS+LcfPzw8Aqh1PWFtbw9vbW6d9qdPzXA0YMACHDh3ChQsX0LZtW7X1YWFh2L9/P3799Ve0b98ewP/muZJIJLh27ZqQ3NjYWEyZMkXjPFdJSUm4fv063Nzcnku/GGOMMcYYY//e0qVLsWjRIowePRo7duxQeQphVXfv3kVhYSFcXFyES/0eP34MV1dXmJmZqcxzdf78eXTq1Anh4eFISEjQaX/q7OAqLy8PLi4u6Ny5M37++WeNMZmZmejSpQvMzMwwY8YMWFtbIz4+HhcvXsShQ4fQt29fIbasrAz+/v44f/48pk2bhlatWuHw4cM4cOAA3n//fSxbtux5dY0xxhhjjDH2Lyl/PHFxccGyZcvUBlYODg7o3bs3AGDcuHH47LPPkJKSgqCgICFm3759GD58ONq3b4/IyEg8fPgQ69atg0gkwrlz53S+LLDOPtBix44dqKioUHuQRVXNmzfHqVOnMHfuXKxatQplZWXo1KkTjh49iuDgYJVYc3NzHDt2DO+//z4+//xz/Pnnn/D09MQnn3yCyZMnG7o7jDHGGGOMMT1SzlOVnZ2NsWPHqq0PDAwUBlfVCQsLg0wmw/LlyzF79mxIJBL06tULH374Ya2eyVBnf7lijDHGGGOMsfqkTj/QgjHGGGOMMcbqCx5cMcYYY4wxxpge8OCKMcYYY4wxxvSAB1eMMcYYY4wxpgc8uGKMMcYYY4wxPeDBFWOMMcYYY4zpAQ+uGGOMMcYYY0wPeHDFGGOMMcYYY3rAgyvGGGOMMcYY0wMeXDHGGGOMMcaYHvDgqpaKioqwYsUKtG3bFlZWVrC3t4e/vz927NgBIlKLT0xMREBAAKytrdGgQQO0adMGy5YtU4n54YcfIBKJNC4DBgzQuB+HDx+Gv78/LC0tYWdnh7CwMGRlZWmMvXbtGt544w3Y2trC0tISPXr0wPHjx/99Mp5Bm1zdunWr2r4rl127dqlsV6FQYOHChXB3d4dEIoGnpyeWL1+Ox48fa9yPnTt3omPHjpDJZHBwcMCECROQn5+vMfbnn39GcHAwrKysYG1tjX79+iEjI0OveXmaIfJUU3ybNm3+dd/z8vIwZswYNG7cGDKZDL6+vti3b5/ec6OJLufgkSNH0KtXLzRt2hSWlpZo0aIFZs+ejXv37qltt7CwEFOnToVcLodUKoWPjw82bdqk8byurKzEunXr0LJlS0ilUjRr1gyzZs3CP//8o3GfdTlf9ckQuXqZ6xUAEBE2b94s1BQbGxv069cPaWlpGrdrbPUKMEyujLVm3bt3D5MmTUKzZs1gbm4OFxcXTJ8+HX///bdarC7HvrHVK0PkyVhrFavDiOmsoqKCXnnlFRKLxRQeHk5xcXG0bt066tKlCwGgd999VyU+PDycxGIxhYWF0caNG2nz5s30n//8hyIiIlTiUlJSCABNnDiREhMTVZaUlBS1/fjqq69IJBJRhw4dKDY2llasWEFNmjQhR0dHys3NVYnNzMwkOzs7atKkCa1YsYJiY2OpQ4cOZGpqSsnJyXrPkZK2uSoqKlLrs3Jp2LAhmZubU35+vsq2Bw8eTABo/PjxFB8fT+PHjycANHbsWLX9WLt2LQGgwMBAiouLowULFpClpSW1bt2aioqKVGJTU1NJIpGQh4cHrV27ltauXUseHh7UoEEDunDhQr3KU1ZWFgGg0NBQtfiDBw+q7Ycuff/zzz/J3d2dLC0tacGCBRQXF0eBgYEEgLZt22aQPOmaLyKiLVu2EADq3LkzrV27luLi4mjChAlkYmJC7u7uKv/+CoWC/Pz8yNTUlGbMmEFbtmyh0NBQAkCLFi1S249p06YJ+d2yZQvNmDGDTE1N6bXXXqOKigqVWF3O1/qQq5e5XhERTZo0iQBQUFAQbdiwgVatWkUeHh5kbm6usf/GVK+IDJcrY6xZ9+7dI1dXVzIzM6MpU6bQ5s2bacqUKWRmZkYdOnSgf/75R4jV5dg3tnplqDwZY61idRsPrmrh9OnTBICio6NV2hUKBbm7u1PDhg2FtoSEBAJAO3fufOZ2lQVg+/btz4wtKysjJycncnFxoUePHgnt6enpJBaLKTIyUiU+LCyMxGIxpaenC22PHj0iFxcX8vb2psrKyme+Z23okquaXv/mm2+qtB86dIgA0MyZM1XaZ86cSQDo1KlTQlt+fj5ZWFiQn58flZeXC+1JSUkEgD744AOVbfj5+ZGVlRXl5OQIbTk5OWRlZUW9e/fWqt+6MlSelB9UNP2h1USXvs+ZM4cAUFJSktBWXl5Ofn5+ZGdnp3Jc6psu+fL29iZHR0cqKSlRiZ0/fz4BoAMHDghtsbGxBIA2bNigEjtkyBAyMzOjW7duCW2XLl0ikUhEQ4YMUYndsGEDAaBdu3YJbbqer/pkqFy9zPUqPT2dAFC/fv1U9uXBgwfk4OBAXl5eKh9Wja1eERkuV8ZYs6ZPn04AaPfu3Srtu3fvJgC0bNkyoU2XY9/Y6pWh8mSMtYrVbTy4qoWjR48SAFq9erXaOj8/P3JyciIiosrKSvL09KROnToJ6x8+fFjtyVa1ABQVFal9wKkqOTmZANDSpUvV1vXs2ZOsra2prKyMiJ782iGRSKhnz55qsUuXLiUA9PPPP9fc6VrSNlfVUX67e/ToUZX2kSNHEgDKzs5Wac/OziYAFBUVJbTFx8dXO8D18PCgVq1aCf//+vXrwrfLmvZFJBLR3bt3a9zn2jBUnqp+UCkpKVH55u9puvZdLpeTp6enWuzOnTsJAH3xxRc17vO/oUu+mjZtSq1bt1aLU34w+e9//yu0BQQEkIWFhdq59+OPPxIA+vDDD4U25YDjxx9/VIktKSkhCwsLev3114U2Xc5XfTNUrl7meqX8Zenzzz9Xi5s4caLacWFs9YrIcLkyxprVrl07kslkan/7KyoqSCqVkoeHBxHpfuwbW70yVJ6MsVaxuo3vuaqFLl26wMbGBqtXr8a+ffuQnZ2Nq1evYt68eTh37hwWL14M4Ml1uDdu3IC/vz+WLVuGRo0awdraGjY2Npg0aRKKioo0bn/69Olo0KABZDIZvL29sX79erXrp8+ePQsA6N69u9rru3XrhocPH+L3338HAFy4cAEKhaLa2Krb0zdtc6VJUVER9u7dC1dXV/Tu3Vtl3dmzZyGXy9GsWTOV9mbNmsHJyUmlP8/K1dWrV4V/i2fFEhHOnTunXed1YKg8KX300UewsLCApaUlmjVrhoULF0KhUKjE6NL3u3fvIjc3Vzh+no6tuj1D0CVfffv2xZUrVzBr1iz89ttvuHPnDvbv349ly5YhMDAQPXv2BPDkfoRff/0VHTt2hFQqVXs/kUikdlyJxWJ06dJFJVYqlaJDhw46HYNVz1d9M0SuqnoZ65Xy3LGwsFDbhrKt6v1ExlavAMPlSsmYapZCoYBUKoVIJFJpF4vFkMlkuHnzJgoKCnQ69o2xXhkiT1UZU61idZvpi96B+sjW1hZJSUmYMGEChg0bJrRbWVnhq6++whtvvAHgyeAKAL744guUlZXh/fffh7u7O7799lvExcXh2rVrOH78uFBIzMzMMGjQIPTv3x9OTk7Iy8vD1q1bER0djYyMDGzfvl14r7y8PACAXC5X2z9lW25uLnx8fLSONQRtc6XJF198gaKiIsyePRtiser3AHl5eWjdurXG18nlcuTk5KjEKts1xRIR8vLy4O3t/cJyZag8icVi9OzZE2+88QZcXV2Rn5+PvXv3YtmyZUhNTcXRo0dhYmICQPtjStdYQ9AlX+vXr0dxcTHWr1+PtWvXCu3h4eGIi4sT+v/gwQOUlJRo7JNEIoG9vb1Kn/Ly8mBvbw+JRKIWL5fLcfr0aZSVlcHc3Fyn81XfDJEr4OWuV8p/p+PHj2PQoEFCHBHhxIkTAIA7d+4I7cZWrwDD5coYa5aPjw+uXbuGjIwMdOjQQWjPyMjAgwcPAADZ2dk67aMx1itD5AkwzlrF6jYeXNWS8ol/gwYNgr+/P/766y/Exsbi7bffxjfffIPevXvj0aNHAID8/HwkJycjODgYADB06FAQET777DMcPXoUr7/+OgAgICAA33zzjcr7REZGon///tixYwcmTJiAgIAAAEBxcTEAaCyUym+xlDG6xBqCNrnSJCEhAWKxGOHh4WrriouLNfYHeNKnqv2pL7kyRJ5cXFzw/fffq7RFRERg4sSJiI+Px549ezBy5EgA9SdPStrmy8zMDC4uLggNDcXAgQNhYWGB7777Dtu2bYOJiQni4+Of2Sdlv54+rmqKVcaYm5u/8HzpO1fAy12vXn/9dbRu3RobN26Ek5MThgwZguLiYqxduxaXLl1S20djrFeAYXJljDUrOjoaX3/9NYYNG4aPP/4Ybdq0weXLlxEdHQ0zMzM8fvwYxcXFeuuPMr6+1StD5Akw3lrF6i6+LLAWLl68CH9/f/Tu3Rtr1qxBaGgoIiIicPLkSTRt2hSRkZGoqKiATCYD8OQbDOXASmns2LEAnjwitCZisRjz5s0DABw6dEhoV15O8fRlEgBQWlqqEqNLrL5pm6unXblyBWlpaejduzdcXFzU1ltYWGjsD/CkT1X7Ux9yZag8VWf+/PkA6ucxBWifr8rKSvTr1w+nT5/G3r17MWbMGLz55puIj4/HnDlzkJCQgGPHjj2zT8p+PX1c1RRbdZv14RzUJVfVeVnqlampKY4cOYKAgAD85z//gZeXF9q3b4/09HSsWrUKAGBtbS1s19jqFWC4XFWnPtesHj16YM+ePXj06BFCQkLg6uqKgQMH4rXXXhMeBW5tba23/ijj61u9MkSeqlPfaxWr23hwVQvr1q1DaWkpwsLCVNotLCwQEhKC27dv49atW3B2dgYANG3aVG0bjo6OACD81F0TNzc3AEBBQYHQ5uTkBEDzT87KNuXP0rrE6pu2uXra1q1bAQATJkzQuF0nJ6dqf27Pzc1V6c+z+i8SiYSYF5UrQ+WpOs2aNYOJiUm9PKYA7fN18uRJ/PTTTxg6dKjadfzK1yovTbK1tYVMJtPYJ4VCgYKCArXjqqCgQOMf1tzcXNjb28Pc3FyIVbZrigVe/DmoS65q8rLUKxcXF6SkpOD27ds4ceIELl26hPPnzwvfWLds2VJ4vbHVK8BwuapOfa9ZYWFhyMnJQXp6On788Ufk5eVh8+bNyMnJgampKZo3b67TPhprvdJ3nmpSn2sVq9t4cFULypNG0y8J5eXlwv+2bdsWUqlU44mnvMa+SZMmz3y/69evAwAcHByENj8/PwBAamqqWnxaWhqsra3h7e0NAGjbti0kEkm1sQDg6+v7zP2oDW1zVVVZWRkSExPRuHFjDB48WON2/fz8kJubq3KtPvDk2v28vDyV/jwrVy1atECDBg20ihWJROjcubPmzv4LhspTdW7evImKigqdjqmqfXd0dIRcLtd4I7qhjylA+3zpklexWIxOnTohPT1d7QPImTNnQERqx1VlZSXOnDmjEltaWoqMjAydjsGq56u+GSJXNXnZ6pWLiwteffVV4f6Tw4cPQywWo2/fvkKMsdUrwHC5qk59r1kAYGJigg4dOqBHjx5o0qQJ/vjjD6SnpyMwMBAWFhY6HfvGWq8A/eapJvW5VrE67kU8orC+i46OVnvMKdGTeTscHR3J1tZWmJ9E+Qje/fv3q8QOGTJEbX6TgoICtfcqLS2lgIAAtUd6lpWVkaOjo9pcDBkZGSQWi9UmKH7zzTdJLBZTRkaG0Kaci8HLy8tgczHokiulffv2aZwTpqpvv/22xnljfvrpJ6Ht/v37JJPJqEuXLhrnjak6dwYRka+vL1lZWalMFpibm0tWVlbUq1cv7TuvA0PlSdMxVVFRQcOHD9f46GFd+j579uxq54yxsbGhhw8fPrvjtaRtvjIyMggAtWvXTu3RwcqJTb/66iuh7dNPP6123hhTU1PKysoS2i5cuFDjvDGJiYlCm67nqz4ZKldcr9R98803GicGNrZ6RWS4XBlrzXpaRUUFhYWFkUgkouPHjwvtuhz7xlivnqaPPBljrWJ1Gw+uauHWrVtkZ2dHIpGIRo0aRZs2baIPPviA3NzcCADFxsYKsbdv3yYHBweSSqU0Z84cio2NpZCQEAJAY8aMUdmur68vDRo0iJYsWULx8fG0ZMkS8vLyIgA0depUtf3Yu3evyiziK1eupCZNmpCDg4PKhIpET+YDsbW1pSZNmtDKlSuFWcRNTEzU5kbSJ11ypdSvXz8CQFeuXKlx2wMGDCAAFBERQQkJCRQREUEAaNSoUWqxMTExBICCgoIoLi6OFi5cSJaWltSyZUu1iSNPnTpF5ubm5OHhQevWraN169aRh4cHWVpaqhRQfTJUnkJDQ6lXr160YMEC2rJlC61YsYI6d+5MAGjw4MEqk3cS6db3goICcnV1pQYNGtDChQspLi6OgoKCCAAlJCToJzHV0CVfQ4cOFQYNq1evpk8//ZQGDhxIAKhbt24qHwAVCgV17tyZTE1NaebMmRQfH0+hoaEEgN5//321/ZgyZQoBoNDQUIqPj6eZM2eSqakpBQYGquVWl/O1PuTqZa9X48ePp/DwcFq/fj1t2bKFxowZQyYmJuTn50d///232raNqV4RGS5XxlizHj16RK1ataL33nuP4uPjKSYmRujT05NC63LsG1u9MlSejLFWsbqNB1e1lJmZSWPGjCG5XE6mpqZkZWVFPXr0UPlmVykrK4vefvttsre3JzMzM2rZsiXFxMSoFbNVq1ZRt27dyN7enkxNTalhw4YUFBSkNlt5VQcPHqSuXbuSTCYjGxsbGjp0KGVmZmqMvXLlCg0aNIgaNmxIMpmMAgICKDk5+d8lQgu65Co7O5vEYjH5+/s/c7slJSU0f/58cnV1JXNzc3J3d6elS5dWO7nh9u3bqV27diSRSKhx48YUHh5O9+7d0xh7+vRp6tmzJ1laWlKDBg2oT58+dO7cOd06riND5CkhIYECAwPJwcGBzMzMqEGDBtS1a1eKjY1VO/6UdOl7Tk4OjRo1iho1akQSiYQ6duxIe/bs0b3ztaBtvhQKBX344YfUrl07kkqlZG5uTl5eXjRv3jwqKipS2+6DBw9o8uTJ5OjoSObm5tSqVSv65JNPNH4DWV5eTjExMeTt7U3m5ubk5OREM2bMUPsArKTL+apPhsjVy16vNm/eTJ06dSJra2uSSqXUpk0b+uCDD6i4uFjjdo2tXhEZJlfGWLMUCgWNGDGC3NzcSCKRkK2tLfXp06faD9+6HPvGVK8MlSdjrVWs7hIRPTWDGmOMMcYYY4wxnfEDLRhjjDHGGGNMD3hwxRhjjDHGGGN6wIMrxhhjjDHGGNMDHlwxxhhjjDHGmB7w4IoxxhhjjDHG9IAHV4wxxhhjjDGmBzy4YowxxhhjjDE94MEVY4wxxhhjjOkBD64YY4wxxlitrVy5EmFhYfDw8IBIJIKbm5tOr79//z7Cw8PRrl072NnZQSqVonnz5oiIiEBmZqbG1+Tl5WHMmDFo3LgxZDIZfH19sW/fPo2xN27cwMiRI+Hg4ACJRILmzZtj0aJFKC0t1bWralJTUzFo0CA4OztDJpPB09MTkZGRuHnz5r/eNqufREREL3onGGOM1Q+LFy/GkiVLkJKSgqCgoBe9O4yxOkAkEsHOzg6dOnXCuXPnYG1tjVu3bmn9+mvXrmH8+PHo3r07XF1dIZPJcP36dWzbtg0KhQJpaWlo3bq1EP/XX3/B19cX9+/fx8yZM+Hs7Izdu3fjxIkT2LZtG8LDw4XYq1evonv37igvL8fkyZPh7u6O1NRU7Ny5E3369MGRI0cgEolq1e+jR48iJCQEnp6eGD9+POzt7XH58mVs2bIFEokEFy9ehFwur9W2WT1GjDHGXkoAdFpSUlJo0aJFwn8zxoxbSkqKVuf7jRs3hP/28fEhV1dXvbz/mTNnCABFRUWptM+ZM4cAUFJSktBWXl5Ofn5+ZGdnR48ePRLaBw8eTCKRiE6dOqWyjRUrVhAASkxMrPX+9enTh8zMzCg/P1+lPT4+ngDQunXrar1tVn+ZPu/BHGOMsbph0aJFam0ff/wxCgsLMX36dNjY2Kisc3Nzw5QpUzBixAi4uLg8p71kjNV1Hh4eBtmuq6srAODBgwcq7bt374anpycGDhwotJmYmGDq1KkYM2YMDh8+jGHDhgEAUlJS4O3tDX9/f5VtjBs3Du+99x62b9+OUaNGqaw7duwYVq9ejTNnzqC0tBTe3t545513MGnSJJW4hw8fQiqVwtbWVqXdyckJAGBpafkves/qKx5cMcbYS2rx4sVqbTt27EBhYSGio6OrvW/C3t7esDvGGHspPX78GIWFhXj8+DEyMzOFGtW/f38h5u7du8jNzcXIkSPVXt+tWzcAwNmzZ4XBlUKhgIWFhVqssu3MmTMgIuHSwC1btmDSpEno1q0b5s+fD0tLSyQnJyMqKgo3btzAmjVrhG307dsXaWlpGDt2LObMmQN7e3tcunQJs2bNQqtWrTBixAj9JIbVK/xAC8YYY1pbvHgxRCIRfvjhB6Ht1q1bEIlEGDduHH7//XeEhobC1tYWDRs2xODBg4V7LzIzMxEWFgZ7e3tYWFigf//+1d70/eeff+Ldd99FixYthG+GQ0JCkJaW9hx6yRh7Eb777js0btwYTk5OePXVV3H58mV89NFHGD16tBCTl5cHABrvZVK25ebmCm0+Pj747bff8Mcff6jEpqSkAACKioqEX8bu3r2LadOmYcSIETh9+jTmzJmDd955BwcOHMC0adOwdu1alZo1b948REVF4csvv0SHDh3g7OyMfv36wcPDA2lpabCystJTZlh9woMrxhhjepGVlYXu3bujsLAQERERCAgIQFJSEoKDg/Hbb7+ha9euKCgowLhx4xAUFIQjR44gJCQElZWVatvp1KkT1qxZA7lcjsmTJyM0NBSpqal49dVXcfDgwRfUQ8aMV2VlJQoKClSWwsJCAEBhYaHauqfPW33o1q0bkpOTkZSUhFWrVsHR0REPHjxAeXm5EFNcXAwAkEgkaq+XSqUqMQAwa9YslJaWYvDgwThx4gRu376NvXv3IioqCmZmZirxX375JRQKBSIiItT6O3DgQFRWVuLYsWPCtk1MTCCXyxEcHIyEhATs378fs2bNwrFjxzBixAg8fvxY7zli9cCLvumLMcZY3eHq6koAKCsrS+N6TQ+0yMrKEh56ERMToxIfGRlJAMjGxqbadfv371dpf+WVV0gsFqu15+XlkbOzMzk4OFBJSUntO8kYU1P1PNZmqa5G6POBFrm5udSoUSOaOHGi0PbLL78QAHr33XfV4v/55x8CQG+99ZZK+4YNG6hhw4bCvpubm9PixYvJz8+PAFBhYSEREUVFRT2z30uXLhW2O3LkSHJ3d6fi4mKV99u0aRMBoPj4eL3kgdUvfM8VY4wxvXB3d8eMGTNU2kaPHo34+HjY2dmprRs1ahTi4+Nx/vx5hIaGAgAyMjJw8uRJDB8+XGhTcnR0xJw5czB9+nR8//33CAkJMWyHGHuJNG3aFMnJySpt58+fx+zZsxETE4P27durxRuak5MTgoODsXXrVmzYsAESiUR4WETVS/+UlG1PXzI4depUTJw4ERcvXoRCoYCPjw9sbGwQGxsLR0dHWFtbAwDo/2cn2rlzJxwdHTXuk/LhHdnZ2di1axemTJkCmUymEhMWFoaoqCicOHECEyZM+BcZYPURD64YY4zpRfv27SEWq15trvyA0q5dO7V1mj4kpaamAngyj42mB25cv34dwJO5a3hwxZj+SKVSBAcHq7SZmj75mNi5c+cXNq9dSUkJKioq8PDhQzRu3BiOjo6Qy+Ua779Utvn6+qqtk0gkKu2//PIL8vPzERERIbR5eXkBePLQnqdz8TRl3aqoqFBbp7yMserljOzlwYMrxhhjetGwYUO1NuWHs5rWVb0v4a+//gIAJCcnq32LXlVRUdG/2lfG2IuRnZ2N4uJieHp6Cvc83bt3Dw4ODmqxV65cwffffw9PT080btxYaH/rrbcQExODgwcPCo9jr6iowCeffAIbGxuVpwtqUlpaiujoaEgkEsyePVtoHzZsGN577z0sWrQIQUFBar9IFRYWQiqVQiKRoEWLFjAxMcHXX3+NFStWqExdsWPHDgCAn5+fTrlhxoEHV4wxxuoM5SBs5cqVmDt37gveG8aYNhITE3H79m0AQH5+PsrKyrB8+XIAT+aqqvq0vzFjxuDEiRPIysoSpntYuXIlkpOTERISAjc3NxARLl26hMTERDx+/BixsbEq7zd37lzs27cPb7/9NmbOnAm5XI7PP/8cZ8+eRUJCgspT+i5fvoxx48ZhwIABcHZ2xr179/DZZ5/hxo0b2L59O1q2bCnEOjs7Y9OmTZgwYQJatWqF0aNHw9XVFfn5+bh48SK+/vprXLlyBW5ubrCzs0N0dDQ++ugjdOzYEZGRkbCzs8OpU6ewa9cueHp68iWBLykeXDHGGKszunbtCuB/lwcyxuq+rVu34sSJEyptCxYsAAAEBgaqDK40GTBgAHJycrB3717cv38fFRUVkMvlCAsLw+zZs+Hj46MS36hRI5w6dQpz585FbGwsioqK0Lp1a+zZswfDhw9XibW3t4ezszPi4+Nx//59NGzYED169EBiYiK6dOmiti/h4eHw9vZGTEwM4uLi8Pfff8Pe3h4tWrTAsmXLVO41W7NmDVq0aIGEhASsWLECCoUCcrkcUVFRWLx4sXAvF3u58OCKMcZYneHn5wd/f38kJSVh27ZtGD9+vFpMWloa2rVrp3FiUMaY/gQFBQkPeahJ1XnvahMbHBz8zHucniaXy5GYmPjMOAcHBxw4cECnbQcEBCAgIOCZcSKRCJGRkYiMjNRp+8y48eCKMcZYnbJ792689tpriIiIwMaNG+Hn5wcrKyvcuXMHv/zyCzIzM3H37l0eXDHGGKtzeHDFGGOsTnF1dUV6ejo+/vhjHDhwADt37gQRwdHREe3bt8fChQthb2//oneTMcYYUyMibX7vZYwxxhhjjDFWI/GzQxhjjDHGGGOMPQsPrhhjjDHGGGNMD3hwxRhjjDHGGGN6wIMrxhhjjDHGGNMDHlwxxhhjjDHGmB7w4IoxxhhjjDHG9IAHV4wxxhhjjDGmBzy4YowxxhhjjDE94MEVY4wxxhhjjOkBD64YY4wxxhhjTA94cMUYY4wxxhhjesCDK8YYY4wxxhjTg/8DiCcKzLo4SBQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Something appears! It looks like the QPO is changing its frequency. Let's now try to also rebin a little in time!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try to improve the visualization by rebinnin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 1\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 64 s" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "dynspec = dynspec.rebin_time(dt_new=64.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 64.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJ9CAYAAADZgogUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADG3UlEQVR4nOzdeVwV9foH8M+cc9h3AVEQFBH3XUEhS0tbzUyvZWllVpqt17JfaaWpqfdW16XUNpe0tOxa3WzxlmlauS9p7mviArgioCDLmZnfHwY3Avk+wnBA+Lx78erl4cMzw+EsDN+Z59FM0zRBRERERERE5WKr7B0gIiIiIiKqDnhwRUREREREZAEeXBEREREREVmAB1dEREREREQW4MEVERERERGRBXhwRUREREREZAEeXBEREREREVmAB1dEREREREQW4MEVERERERGRBXhwRUREREREZAEeXBERERER0VVn3759GDhwIJo1a4aAgAB4e3ujadOmePbZZ5Gamiqus3TpUiQmJsLHxwe1atXCXXfdhcOHD5dpnzTTNM0yfSUREREREVElWbFiBSZOnIjOnTujXr16cDgc2LFjBz744AP4+/tj27ZtqF27dqk1vvjiC/Tr1w9t2rTBkCFDkJGRgWnTpsFut2Pz5s0IDw+/on3iwRUREREREVUbixcvxt13343XXnsNzz///GVz+fn5aNCgARwOB3bt2gVfX18AwLZt29ChQwc8/PDDeP/9969o2zwtkIiIiIiIqo369esDAM6dO1dq7qeffkJKSgoeeeSRwgMrAGjbti26deuGTz/9FPn5+Ve0bceV7y6pGIaBlJQU+Pn5QdO0yt4dIiIiIqoEpmni/PnzCA8Ph81WNdc0cnJykJeX57LtNW7cuNjvx1dyfVRJcnJycOHCBeTk5GD37t144YUXAAC33XZbqV+3adMmAEBCQkKxz3Xu3Bk//vgj9u/fjxYtWoj3hQdXFSAlJQWRkZGVvRtEREREVAUcO3YM9erVq+zdKCYnJwfR9X1x4pTusm3abDaEhoZaugAxe/ZsPPXUU4X/btCgARYsWIBrr7221K9LSUkBAERERBT7XMFtycnJPLiqbH5+fgCAI782gL9v6X+laL1ksLKe50m7aLsR/9qgzNhjG4pqnWsXLMr5Hc1RZo7e4iWqFbhPFEPQzgxlxtghLCbVobk6s2W3qJTNz1eZ0UJl97/++xFRrjI4oqOUGefhoy7Yk7LRr2ujzJjCNwbHT9vKuTf/o7m5i3I2H09lRk/PLO/uFOGIqKvM7Hu2+BtYSWJf2iHKaeF1lBkz5YSo1sn72yozdb44IKplZmWJckZOrignYfPxFuXMXPVfqE2ns7y7U8hRX/YLpR7sJ8qZv+4pz+4UYWvdVJQztu+1bJtWvp9UBlvzxqKcsXu/Zdu0B/qrQ+4eolri52ZWtiin4kQ+VmNp4e+GVU1eXh5OnNJxZEsD+PtV/Mpa5nkD9TskYf/+/fD3F/xche688040bdoUFy5cwNatW/HVV1/hzJkzyq/Lzr70c/bwKP748fT0LJKR4sFVBSg4Evf3tSkfqDYv9S9Adg/ZwZVDc1PXsstefOzu6v0CAIfgEWTzlNWyy35nhMOuPqAzBPfFFXEIvgfhNm2a+hvVhD8nzerv00IOm+B7qML7rwl+5uKDKwu/T+nPXPQ4s/j+l/zMJa95AOAQ7D8ge66YwlqS1z2HTVbL1GTn6BuaIcpJSH7mAGBq6j5W0se2hOi1AIBmlz02TAsftzbha62l7ykWvp9Uhsq4z+ySx7blz80ru87m8hu89L+qfpmIv58N/n6y3zeronr16hWuDN55553429/+hri4OGRnZ2PUqFGX/Tpv70t/lMrNLf6HrpycnCIZqap58icREREREbmEAROGS/5zTZPy1q1bo127dnj77bdLzRW0WU9OTi72uYLbSjplsDQ8uCIiIiIiomrl4sWLSEtLKzUTFxcHAFi3bl2xz61fvx7+/v5o3Fh2KmwBnhZYyUb2+FqZ+fdjt1i3wZOnRbGAhQdFOaNrO2Wm0euyc9V1RbvMAgfeKN7R5a9ifhOVgj24liiX468+3cAzKEhUS/J9nu8pu3DSP+mYKGfl9ROwyU4bcP6eZN02LZQ5oLMo58hR/3XNd6nsgWbdiV8AWsaKYtqJs8qMPUT2+DeEjzPn8eJ/+furoO3qa/EAwGwWI8oZW3eJchJhszYrMycHdxDVCnm/+Bt1SSSnTRs56lOhAcAQXkviiFRfA+U8dlxUS8KZJLy2MkkWswtea6XvJ8Y26bWy6utljPPnRbWwUXY9oatJ3w/1ndZdf+aoEybKOU+ctGybVjr7sPr3ET0vB/hwiQv2pnx004DugkUl3bT0HREnTpxAnTrFr71duXIldu7ciW7duhXelpqaioyMDERFRRWe6te1a1fUrVsXs2fPxjPPPFPYjv23337DqlWrMHjwYLi5Xdkprjy4IiIiIiKiq85jjz2G1NRU3HDDDahfvz5ycnKwZcsWLFq0CH5+fpg8eXJhdtSoUZg/fz5WrlxZeNDl5uaGN998E/3798e1116LIUOGIDMzE1OnTkVoaCjGjRt3xfvEgysiIiIiohrs0jVXFb90ZfU27r33Xnz44Yf46KOPcPr0aWiahvr16+PRRx/F//3f/yEqSn22xF133QUvLy9MmDABzz33HDw8PNC9e3e89tprV3y9FcCDKyIiIiIiugrdfffduPvuu0XZefPmYd68eSV+7vbbb8ftt99uyT7x4IqIiIiIqAa71MnPNdup7tgtkIiIiIiIyAJcuSIiIiIiqsF004RuVvw1V67YRmXjwVUF6jrhYdjdS2+zO2bkfGUdx/niU6NL4uzWXh3KEbbkXr9dFEtrqm4jHGhvKKplOmTTy2P+T93i+NwgdXtUAPA7lifKuS3foszookqArW1zZSZws6ztrG5hi/WTTyWKcmHT14pySa+qfwYNRsvaVUvk9IoX5WqtTRHlDt+nblft/YWsRbal7LLniTP1hHWbbC6b8aHlqJ9PIe/JfubSt19J+2j9bOlzTgq3ma/ef98U6TNdyK4ebaB5eIhKmbmy9wrj9BlRzipaO9loCVPYVt/S0RJC4jbrFtHc1OM/ANljVkr6PJG2T5eQtli3sv2+VO5tccpM8Bz165nTzLdid+gqwoMrIiIiIqIa7GrtFlgV8ZorIiIiIiIiC3DlioiIiIioBjNgQufKlSW4ckVERERERGQBHlwRERERERFZgKcFEhERERHVYGxoYR2uXBEREREREVmAK1cVKHTNKTjspc8neSnoQWWd/Bdk8zWCvlTPxQj8cq+o1lnhnCjJzBrJHBoA2PO6bB5W42XqTK3dF0S17KfSRTnJVBV7o2hRLX3bbmUmv0cHUS23g4dFOXtYbWUmYvEhUS3T31+Us3KGlYTnaWtnTjkuqjNGl7ayWlsPiHJmM/VjyHYoWVRLMo0pc0BnUa2g7/eLcqbD9W8pOe3U95k9v76oln29+rnp+c1GUS1HtGybu59Xzwxq/Jhsm1JGjmvns9lTZXO1Mvt2EuW8v9hQnt25Klg5vwoAEN9Kndm4Q1RKOpvKSs6mUcqMtk4258oRqZ5hCABYukmWqyY4RNg6XLkiIiIiIiKyAFeuiIiIiIhqMOOPD1dsp7rjyhUREREREZEFuHJFRERERFSD6S4aIuyKbVQ2rlwRERERERFZgCtXREREREQ1mG5e+nDFdqo7HlxVIP1QEjTNrfSQVkdZZ2+Xj0Tbu3XwNcqMLShQVCtovqyN9vcp25SZ4akdRbWSF6hbyQOA1q6FMmNukrWUzRO20rYdOabMZDUNFdXy9vFUZtyWbxHVOn+PsJX2avX+Z7eoK6rl/v1mUc4REa7MZLWNENXy+FbQEnf9dlEtw89PlKs7+agyk9VP1jraJytLlLMfTlFm9HOydsMS0hbr+tk0y7ZpNc+N6jb3emamqFZOzzhlRnPKfjPItWuiXJ2fq+YJJI466hbxgKwtt1krQFRL2mJdi1O3Fbdly1qZ67v2iXK21k2VmVMJQaJablnqx1DAgvWiWjZP9fsJABjCNutWsglea43zslEzjjPqnGT8BAA4jx0XJonKhgdXREREREQ1GLsFWqdq/smMiIiIiIjoKsODKyIiIiIiIgvwtEAiIiIiohrMgAYdsmtFy7ud6q5KrlxduHABkyZNQqtWreDn54eQkBAkJiZi3rx5MM3LXwj6wgsvQNM0+Pr6lvj53NxcjBkzBtHR0fDw8EBMTAwmTJiA/Pz8ivpWiIiIiIiohqhyK1eGYeDWW2/F2rVrMWjQIDz11FPIzs7GJ598gsGDB2PPnj147bXXin3dtm3bMGXKFPj6+l72AKx///5YsmQJHnroISQkJGDdunUYPXo0Dh48iHnz5lXwd0ZEREREVPUY5qUPV2ynutPM0paCKsG6deuQmJiI4cOHY+rUqYW35+XloWnTpkhLS0N6enqRr9F1HZ07d0bdunWRmZmJzZs348KFC0UyS5cuRc+ePfHss89i8uTJhbePGDECU6ZMwZo1a5CYmGjJ95CZmYmAgAC0v3sC7O6lt0kNWKhutxq6NlC03RMvNVRmkm6XtTuP+VTWOvr7L2Vt4q10wwMPKzOa8FFtOGTL0znB6r9D1FqrbqMNAPl11e16bXlOUS3bAXWLdQAwYiKVGe2guvU4ACQ9o26DDABR49cqM/aQYFEt/cxZUc5K9kbRyox+8LCl29Tc1M9PM1/WYvrI+ARlJur7i6Ja2pptopxE8guy19mI19SPHyl7iyainLQtt0T6/er7HwCCt6gf2/puWct849p2opztl63qUOfWolrSEQhVlZWvQZqHh6iWmZurzNhDZaM99NOnRTm6cpKf58Wb2igzzvwcrP/vGGRkZMDf39+KXbNUwe+sm3eFwdev4k9ou3DeQMcWJ6vs/WGFKndaYOYf80jCw4vOyHF3d0dISAh8fHyKfc1bb72F3bt3Y/r06Zet+/HHHwMAhg8fXuT2gn8vWLCgHHtNRERERHR10v+45soVH9VdlTstMD4+HoGBgXj99dfRoEEDdOrUCdnZ2Zg/fz62bNmCd999t0j+yJEjGD16NF555RXUr1//snU3bdqEiIgIREYW/Qt+ZGQkwsPDsWmTYEjpZdStW3T4qmHUhC7+RERERET0Z1Xu4CooKAhfffUVHnnkEdx9992Ft/v5+eHzzz/HnXfeWST/2GOPoWHDhnj22WdLrZuSkoLmzZuX+LmIiAgcP86J3URERERU87hqVYkrV5XE19cXLVu2xB133IHExESkpaVh5syZGDBgAJYsWYIbb7wRAPDJJ5/gu+++w+rVq+FwlP6tZGdnw+My5896enoiOzu7zPubmppa5N8F568SEREREVHNUeUOrnbs2IHExERMnToVw4YNK7z93nvvRcuWLTFkyBAcOnQIGRkZGD58OB5++GFRIwpvb2/kXuYi0pycHHh7e1v2PRARERERXS0MU4NhumDOlQu2Udmq3MHV1KlTkZOTg7vuuqvI7d7e3ujZsydmzJiBpKQkvPXWW8jKysKQIUNw8ODBwtzFixdhmiYOHjwIDw+PwmuswsPDkZycXOI2k5OTERERUXHfFBERERERVXtV7uCq4ABI1/Vin3M6nYX/P3LkCLKystCpU6cS68TGxqJFixbYuXMnACAuLg4LFy7EsWPHijS1OHbsGFJSUnDHHXdY/a0QEREREVV5vObKOlXu4Kp58+ZYtmwZ5s2bh+eff77w9vT0dCxZsgRBQUFo1KgRXnjhBdx3333Fvv6VV17B77//jo8++qjIdU/33nsvFi5ciGnTphWZczVt2jQAwMCBAy3/XgK+2AqH5lZqRjKOaePPzUTb27/wHWUm8dlhygwAOH1l87Akcs18Ue799Eai3I8fzlFmWv/rcVGtiBXnRLmsOoHKjDNJNifKLUc948TIPC+qpUuvFdy6SxlJfk42f6jBV+minJ6gnv9hbN4jqqUprqkEANMpnA3Wsqkop+/cq8zYm8ges1mxtUQ5z282inISUf9VPza0db+Jatlj1TP0AEA/8LsyE/qb7PVAyh5WW5mRzq+SzMOS1nK/IOsamxfmq8zYd4tKyeZXSVXh+VUX74xXZry+lD2XpDP0jK7qGWK2n6y7//UzZ0Q5R4MoUU76/uRqttay12Nju/r12GqSeWSeX6sfZ07h70BUfVS5g6vhw4fjww8/xMiRI7Fjxw5cc801SEtLw6xZs5CamoqZM2fCbrcjIaHkAY0zZszAkSNH0K9fvyK39+zZE7fffjumTJmCjIwMJCQkYN26dZgzZw7uu+8+dOnSxRXfHhERERFRlaLDBt0F42+Ln5dW/VS5g6v69etj48aNGD9+PFasWIFFixbBy8sLbdu2xeTJk9G3b98y1168eDEmTJiABQsW4KOPPkJERATGjx+PkSNHWvgdEBERERFRTVTlDq4AICYmBvPnzy/T165ateqyn/P09MSECRMwYcKEMu4ZERERERFRyarkwRUREREREbmG6aJW7GYNaMVe8SdXEhERERER1QBcuSIiIiIiqsHYit06PLiqQFrzRtDsHqVnDhxR1olZlCHa3ms9Y5WZtVPeFdW648AtotzDR9VdFn/6pZWoVvRXOaLcU59+oMxsf+5tUa2EVFlr+qD560Q5ibQbopUZr1Oy1q1uy7eUd3cKhf9rrSgnazANuNUJU2ac+XmiWpqbdaMBDEGLdUDWst1ws4tqWdliXUrSZl3aSh6mZGiEjMdKWYtv6RY1t9LHXVwJw1v9OHNE1hPV8v7PhvLuToVxRIQrM87kFBfsSVFanOy9Qtpm3Ur2TPVrlZGoHj8BALaN6tEYud3bimrh+82ynIWkzwHnsePKjLFDNtrASvaQYFkw0F8Z0Q8eLufeUHXEgysiIiIiohpMN23QTRe0Yrfub3VVFq+5IiIiIiIisgBXroiIiIiIajADGgwXrLkY4pO+r15cuSIiIiIiIrIAV66IiIiIiGowdgu0DleuiIiIiIiILMCVqwpkbN8LQyt/m+D0VgGiXA9fdXvX1862ENX6KvY7Ua7F9MeVmQbrZC3WL9QrvW19RVg3WdaavnHvB5SZhvfLWnz7f7xelJM4+3CCLNdF3Ua46ZsXRbWMbbtFOeeJk8pM/k0dRbXclqnbDWfc11lUK2CB7P53BnspM7aftopqSdq6AwAOJikjRo7s+SSh7zsoytkbqccHSJ0c0kGUq7tI1qLZvHChPLtTtNamHeqMhfeFlKN+pCxoyK5lML09y7E3FUdy/wOAvXGMOpRxXlRLP3lKlDO3qt9fHUFBsm06ncqMu7DFuj1Q9vvBhW5NlBlpi/vUnrLHY+i76lbsVo55sMc2FOX0A7/LCp45W469ufq4rlsgr7kiIiIiIiIiAa5cERERERHVYJe6BVb89VCu2EZl48oVERERERGRBXhwRUREREREZAGeFkhEREREVIMZsEHnEGFLcOWKiIiIiIjIAly5IiIiIiKqwdiK3To8uKpkKc8lKjPh/1orqnV3u6eVmciWJ0S13vv5BlGu1hn1k8R9j2DWBQD7Ktm8kVb11LO1vE7LnrzvvzJNlOsVu1OZ6bTrkGybj/5NmTHssm46+b6yXOPBW5QZW3R9US1DlJLN5rEfzxTV0gUZ6fwqKbfd6sfticdkc8ZC31lX3t0ptP/teFGu2cwMZUbfJZslpR88LMolv6B+PYt4TfZ6JvmZA4CjXoQ6lK6+LwDZrLSgz7aJaknnD2lBgcqM8/ARUS1L2eyimCMs1LJN5jYNlwVX/mrZNq2knzsnytn9/dW1LmSJammespllkhlW6Q/IXs9qz1G/nwCw9OQvm5+fMiOdX2UPqy3KSWegEf0VD66IiIiIiGowAzYYvObKErzmioiIiIiIyAJcuSIiIiIiqsF0U4NuVvyAX1dso7Jx5YqIiIiIiMgCXLkiIiIiIqrBdBfNudJ5zRURERERERFJaKZZAxrOu1hmZiYCAgLQ6fbxcLiV3iZV0h4153ZZ62WfQ+o2sGmTZT/uoH4popyRna3M2IOCRLUQIsuZPurWswfuV7e6BQDP07K/L+x8+m1lpuEPD4lqNXtR3Q7/y41fi2rd2aWvKAdNfY6z4S1r6Wv4uotyTm83ZcbjaJpsm0nHlBnT6RTVkjo3SN2WOGi+rMW6Q9jmXtJyuyq3EbaHqttyO2Nl7bZ1L9mJFY4V6rbQ+vXtRbXsghbf6ffL2lUHfiR7bGgO9fcpfWw7u3cQ5Tz3n1TXOiYboVEZbC2bKjMXYmWt8L3/s6G8u1Mh7CHBsmBeviimZ8rGXriamdhGlNPW/qbM2Js0EtXS9x0U5aziNPOxCkuQkZEBf0Ebflcr+J117q/t4O0nG8FQHtnndTzUfmuVvT+swJUrIiIiIiIiC/DgioiIiIiIyAJsaEFEREREVIOxoYV1uHJFRERERERkAa5cERERERHVYAZcM+DXqPAtVD6uXBEREREREVmAK1cVyNQ0mIoW2PZmsco6nt+o27UDgC7IuL8na+tuNvEQ5bB1lzJy/KFmolJ1J68V5eyB6ha7MSN2i2odmC9r0Szx+41zRbkpHRoqM26arB3qOz8tFOWGRHVRZk4tUbc3BoALe3xEuaC96ozH1nRRLVtDdStz01v2mNWSkmU5wZ/XpK2vIWgXDgDOG9T1bGeyZNushFbsCAlURiQtlQH5m1PUBvXj8WgndYt1AHBE1lNmpC3WpfZP7qjMNPhW1ordbdlmUU5STYtrJaplbtqhzFy4q5Oolu9iWVt0Y6f6xcX/nKzlv3SAg715Y2VGy86RbTPpqDKjnzkrqlUZHBHC+zZZPdLFtlH9OwQAaH5+yoyrW6xXNwZsMFyw5uKKbVS26v8dEhERERERuQBXroiIiIiIajDdtEE3XdAt0AXbqGzV/zskIiIiIiJyAa5cERERERHVYAY0GHBFt8CK30Zl48oVERERERGRBbhyRURERERUg/GaK+tU/++QiIiIiIjIBbhyVYFOdbTB5ln68av3l9bNZTAT2ygzurvsXFdblmxehx6vnoUinl8VFCTKne6jnsdUa65sFk3ABk9RLjprqDJz+M73RbW8bbminESUw1eU2/+uer7Zm80XiGqNWf6gKBf6Q5Iy4zx3TlTL4ameYXWyW21RrTrpF0Q5K+cZ2YNryXLH05UZff+hcu7N/9haymab5YXJZptJ5nlZPfPoaILstUrCPH9emTk+KlFUyyfVFOVi/65+nF3sLZtP6EhQvwcAgLZOPWvMlpEtqmW2Uc8xlP4spRz1IpQZ53HZPDspffd+S+tdzcy8fFHO3qKJutbhY6JahuC5aTXJ48zMUj9PTDMPkL3VVSodNuguWHNxxTYqW/X/DomIiIiIiFyAB1dEREREREQW4GmBREREREQ1mGFqMEwXtGJ3wTYqG1euiIiIiIiILMCVKyIiIiKiGsxwUUMLowas61T/75CIiIiIiMgFuHJVgRq8shEOza3UjN3fX1lHz8wUbU9bq26v6+fmLqoFL1mLckeWoBV4RLhsm0K1V6YoM6cHJYhq5avvfgBA0+d2KjPtdj4uqpV1bZYy868UL1GtgP2yc5cPv/KOMhP93SOyWqPeFuWim6vb1zf/p11Uy3lE3a7XLbuBqJZ50brW3c7uHUQ5x+9nZPUsbLOuX99eHVr5q6iWx2lZm/vjX6rbcuNn2c/c/eaOopzbBacyo63ZJqqlp2coM/X+IRstkSfcfwmvJRstqwUAjvqRyozzwO+iWrZW6nbbUmcflr1u+6aqf+Yewlbs9tBQUc7ZSP0+JmlxDwA2T/X7q5Fj3euUlD0wQJTTz8hez3D6tDIiuS8uBQWvG4YuqyVkVTt/3ZS1rq9shmmD4YIBv67YRmWr/t8hERERERGRC3DlioiIiIioBtOhQUfFd/JzxTYqG1euiIiIiIiILMCVKyIiIiKiGozXXFmn+n+HRERERERELsCVKyIiIiKiGkyHa66HsranY9XEg6sKlHFvPOzupbcZDdohaLO+dZdoe0aXtsrM+fqytqcBH28Q5SBoE29vFisqpeXkiXJGgI8yEzR/nahWkCgFZNzTWZmp/esFUS19j/pp57ZZ9jM3m9QX5WIWDVNmYj+7KKr1czdRDId7v6/MNMx/VFQrYK+6dXTtt2UtsqUv7La2zZUZx4otolrqxtF/bNPCFs12YZt1ieyOssfZ1FZzlZnu8bKfQLP3ZaMNfI+UPu4CAGqtEZUSudg7XpSzsn26o2EDWTBb9hyWjDaw+ahfZwHA2L5XlJMI/kB4n1nYctvMUo/GAICseurnpmAwCQDZczjvljhRLffvNgm3qiYZRQBcwWNDcN9qPt6iWshJk+WspAkONEyz4veDrjo8uCIiIiIiqsF4zZV1qv93SERERERE5AI8uCIiIiIiIrIATwskIiIiIqrBdNMG3QWn7LliG5WtSn6HFy5cwKRJk9CqVSv4+fkhJCQEiYmJmDdvHsw/Lh7MycnBrFmz0Lt3bzRo0ABeXl5o2LAh7r33XuzZs6fEurm5uRgzZgyio6Ph4eGBmJgYTJgwAfn5+a789oiIiIiIqJz279+PMWPGoHPnzggNDYWfnx/atm2LiRMnIkvYsMY0TXz88cdITExESEgI/Pz80KJFC4wfPx6ZgsZtf1XlDq4Mw8Ctt96K0aNHIy4uDpMnT8bLL78MXdcxePBgjBw5EgCQlJSEoUOHIi0tDQ8//DBmzJiBe++9F99//z3atm2LlStXFqvdv39/vPrqq7jhhhswc+ZMdOvWDaNHj8aQIUNc/W0SEREREVUJJjQYLvgwLW73PnfuXEydOhUxMTEYM2YM3njjDTRp0gQvv/wyEhMTcfGiuovqyy+/jIEDB8LLywuvvPIK3njjDbRq1QqvvPIKbrrppsKFHakqd1rghg0bsHr1agwfPhxTp04tvP3xxx9H06ZN8d577+G1115DaGgotm7dirZt2xb5+oEDB6Jdu3b4v//7P2zevLnw9qVLl2LJkiV49tlnMXnyZADAI488gsDAQEyZMgVDhw5FYmKiS75HIiIiIiIqn379+mHUqFEICAgovG3YsGGIjY3FxIkTMWfOHDz55JOX/Xqn04lp06ahffv2+OGHH2Cz2QprOBwOLFy4EL/99lux443SVLmDq4Llt/Dw8CK3u7u7IyQkBLm5uQCA4OBgBAcHF/v65s2bo2XLlti5c2eR2z/++GMAwPDhw4vcPnz4cEyZMgULFiyw/OAq4JONcGilz2Cx11fP75HOyLkQqZ7DEbBwvbCakGAOhL7ngKWbPPF39c8pIjlUVEs648RvkXX32/kHEpSZwJXnZcW2yOZhafd0UmYcGbL5Sf+8tZ8od93Kz9TbvCBbPNduOavM2FfK5qktXbFYlGv2rvpxFrVNVEpMMv/mzKPqxw8AnGtlKDOxT29WZgDgSD91LQA4q6sn/fxbNg4OLbrvF+WifdSPjd3L64lqGcH+yox0ftXRMbL3k+hPTigzzgO/i2pZSTKjyGpam6ainCmc/ShhZGeLcgE/Ct7HhDMdJe+JVs6vspqVjw39bCXMr5KqYTOsrtZrrjp27Fji7f3798fEiROLHQ/8VX5+Pi5evIg6deoUHlgVKDgW8RHOditQ5Q6u4uPjERgYiNdffx0NGjRAp06dkJ2djfnz52PLli149913S/16wzCQmpqKsLCwIrdv2rQJERERiIwsejATGRmJ8PBwbNpUdV/IiIiIiIhI5vjx4wBQ7Hjgr7y8vHDdddfhu+++w2uvvYa//e1vcDgcWLVqFd5++23cd999iI2V/eGkQJU7uAoKCsJXX32FRx55BHfffXfh7X5+fvj8889x5513lvr17777LlJTUzF69Ogit6ekpKB58+Ylfk1EREThD6Es6tatW+TfhiH7Ky8RERERUWUzTA2Gae31UJfbDgDExsYWWSlKTU21bBu6ruPVV1+Fw+HAgAEDlPmFCxfiwQcfxMiRIwt7O2iahpdeegnjx4+/4u1XuYMrAPD19UXLli1xxx13IDExEWlpaZg5cyYGDBiAJUuW4MYbbyzx69auXYtnn30Wbdq0wYsvvljkc9nZ2fDw8Cjx6zw9PZEtPDWAiIiIiIiqpuHDh2PdunWYNGkSmjRposx7eHggOjoaDzzwAG699VYAwOeff44JEybA09MTL7300hVtv8odXO3YsQOJiYmYOnUqhg0bVnj7vffei5YtW2LIkCE4dOgQ7HZ7ka/bsmULevbsifDwcHz77bfw9Cx6/ZG3t3fh9Vp/lZOTA29v7zLv81+PtjMzM4tcWEdEREREVFXpsEF3QRPxgm0cOHAA/v7q61yv1OjRozFjxgwMHToUo0aNUuazs7ORmJiI9u3bY9GiRYW333PPPbjnnnswZswY9OvXT3SQVqDKtWKfOnUqcnJycNdddxW53dvbGz179sSRI0eQlJRU5HO//vorbrzxRgQEBGDlypWIiIgoVjc8PBzJycklbjM5ObnEryEiIiIioqpv7NixmDBhAgYPHqzs0VDgs88+w4EDB4oddwDAXXfdBcMwsHr16ivajyp3cFVwAKTrerHPOZ3OIv8HLh1Y9ejRA35+fli5ciXq169fYt24uDgkJyfj2LFjRW4/duwYUlJSLttthIiIiIioOiu45soVHxVh7NixGDduHAYNGoTZs2dDE3SzBq78uEOiyp0W2Lx5cyxbtgzz5s3D888/X3h7eno6lixZgqCgIDRq1AgAsHXrVtx4443w9fXFypUrER0dfdm69957LxYuXIhp06YVzrkCgGnTpgG4NB+rMjiPHFNmtMtcK/ZX/p9Y3GZdwBFeV5kxvWT77wyVLQ87BWdw6qdPi2rZQ4q38y+JI7iWMuM8JmuKErz+lDJT/CleMrufnygX85z6sZFzk+wPDEdvlr1s3Na9+F+B/kobK2vp2zRYfZ/tu1bWxlkqN0z6U1A7PkrWlrvOhpJPXS6SWSJry53WtuQ/NBXJDIoX1Tp88zuiXMNlDyszPrtkrwed+/0myq07dfnX/QJv//KxqNb/NeiszBycps4AQKPha0U56x5lgHlNW1HOvv2QulZenqiWLUb9ONN3y9rqW9liXUpzyF7PJC3D7bVl7ycS9kDZpQUXO8m6mHnvFrT8F76H2dqW3Bzsr4xtu5UZR906olrOVPX+SxnXthPl3HYmKTP6uXPl3Buywvjx4zFu3Djcf//9mDt3brGW6gVSU1ORkZGBqKiowsuBCprdzZ8/v0gjvYLbgEsLNFeiyh1cDR8+HB9++CFGjhyJHTt24JprrkFaWhpmzZqF1NRUzJw5E3a7HUeOHMGNN96Ic+fO4emnn8batWuxdm3RN7M+ffoU9qbv2bMnbr/9dkyZMgUZGRlISEjAunXrMGfOHNx3333o0qVLZXy7RERERERUBjNnzsQrr7yCqKgo9OjRo3CubYGwsLDCRnijRo3C/PnzsXLlSnTr1g0AcPvttyM+Ph5Lly7Fddddh759+wIAvvjiC/zyyy+466670L59+yvapyp3cFW/fn1s3LgR48ePx4oVK7Bo0SJ4eXmhbdu2mDx5cuE3ffjwYZw9e2l45NixY0usdfjw4SKDvxYvXowJEyZgwYIF+OijjxAREYHx48cXtl0kIiIiIqppDNhguOBqIau3UTCn9ujRoxg0aFCxz3ft2vWyXcYBwG63Y/ny5fjHP/6BL774Ai+88AI0TUNsbCxee+01PPvss1e8T1Xu4AoAYmJiCpfiLqdbt24wr3B6tqenJyZMmIAJEyaUZ/eIiIiIiKiSzZs3D/PmzStX1s/PD5MmTcKkSZMs2acqeXBFRERERESuoZsadBcMEXbFNipblesWSEREREREdDXiyhURERERUQ1WkW3S/7qd6o4HV5XM3kzdRjWvjqzdtkfSWWUm5VbZsOTab8vaCB98XN2Gt8FL60S1tIOiGOrJyonoZ9T3GQDYmzdWZs49mCCqdTpBPS+h8aPqVskAoGdminK2PzV2uRzPrUdEtRpvFcVghqnbEt/VRFZsQu0dyszTQy+Iai06HyTK/d7nPWXm5ifaimq5nxfFcKaVuk153ZdlL9vaUUGT77+li2oNPnqtKNfoPfVj25EhuzN+bKN+zgGA/binMmM0kb2ZHx2rbplfp6msJXRuT1nrXo/TOcqMLSdfVCs7yF2U8/H2UofyZduUtlmvqswrnF9TGn3PAetqpWeIcl6HZO9hkjbrp4fJ3sNC35W9Cds81c9NK1usS9vq236Rve9YOSaBahYeXBERERER1WCmaYNhVvzVQqYLtlHZqv93SERERERE5AJcuSIiIiIiqsF0aNDhgm6BLthGZePKFRERERERkQW4ckVEREREVIMZpms6+RlmhW+i0nHlioiIiIiIyAJcuSIiIiIiqsEMF3ULdMU2KhsPripQ7k3tobuVPufBY+kmZR2PHPUsKQBwHlbPKfI9UUdUS6reijxlJnWEenYMANSdIhxgZVq3pmyPbSjKGV5uykzQPNn+B29uqt6eqJKckZWlzDhqh4hqSR5nAIDTp5WRRT90EZX6rH5bZcbNTTaVZMVG2fyhe556W5m58J3s8VPnLvWcLgBovkr9c/o5tZGo1u83zRHlJG7qN0iU073VbynaOtlcpEb3iWK4fdc5Zaath3p+GAC8fO+nysxt3sdEteIHPi7KeW1RzzGMeF/2+PH0VL9OAYB+8pQo52rp98vmLAUvU88BrKrfIwDYg2spM3qMbCaldjJdlDszVH3fSudX2f39RTlNME8tr0ULUS3dQ/0LueT3KQCwBwbItimYNWYPUs9NNM08QP0yRdVI9T98JCIiIiIicgGuXBERERER1WAGNBguaJPuim1UNq5cERERERERWYArV0RERERENZhuatBd0IrdFduobFy5IiIiIiIisgBXroiIiIiIajC2YrcOD64qkMeyX+HQFK1xO7dW1tn3Nx/R9mL+T90i2/uLDaJaubfK2lXbdHVb9JwQWet0aVv0tPhQZSZw0WZRLT1Idt9i825ZTsDYudeyWlrHlrLcnsPKjLTFur1ZrCin7zmgzET9kC+q5Z6mfgxdrOMrquV56rwoF91giDLz9y4/iGp98NBtotx/66rbv49z5IhqtdowQJlpV+e4qNa5pt6inCHoBO7rHS+q5Z4ue2wsHZirzMzq3lNW6++vKzM/5cjGWazoMkOUu3XH88qM2bSBqJbuI2vF7i54rdUP/C6qZfNWPzaM7GxRrcCPZK3AZUMXZGyt1aMxAMDco74/7HVqCzcqOC1qo6z9vtNmF+VC3peNEJDQMzNFOU3wc3esOCmq5SFo/y59XEharEvp59Q91nVT9lpG1QcProiIiIiIajADGgwXXA/FboFEREREREQkwpUrIiIiIqIazHTRnCuTK1dEREREREQkwZUrIiIiIqIazDBddM0V51wRERERERGRBFeuKtv67cpIzHrrNidtO+ueKWsdaj+vbgvtnVJLVEvff0iUy70xTJk59rys3XPkD7K23JLWuaYhLOXpqcwYObJ22+bmnbJcfCt1SNj6N7+2rOW5m62JOrRM1jIfHVooI57fbBSVOvdggigX++FFdaiLqBSa3S1rvz/k2DXKzPrP24hqhf9LPXZh64hOslpz14pyjjrq56bzhKz1shYneMwC0L3V7ccjvk8T1brVpm6L7nZeNloi4LDsNXTXB+r2+52OPyaq1fv/fhTlvhvdVZnxErZil7ZZF9Fkf9FOv6+zMiNt625st240BpxO62pJGVY2preWKbg/pCNYtIvqkQuQtoj38BDlcrqrR+V4LN0kqnU14Jwr61T/75CIiIiIiMgFeHBFRERERERkAZ4WSERERERUg7GhhXW4ckVERERERGQBrlwREREREdVghouGCLtiG5WNK1dEREREREQW4MoVEREREVENxmuurMODqwqktWsGza6YpyCYjZRyQ4Boe5LHa+QHspke2lnZXBj4+Cgj4cdkc21ODZHNH6o9Uz1zZ/+sOFEtbN0jiknmdUhJZ1hZ6Vxz9WyqIMjmCtl+2irKWTl9JaeOtzLj1ba5qFbIN/tlGw0OUkZmf3ibqFS3fltEuQNx6lkuAf2E96xg/k3kbNnjX/qzNGupX6vSb5LNtQn8UDanyBFWWx0KUf8sAaDeD+nKjLFtt6iWVMPlDykzv7/2jqjWiot2UW72DdcrMw2yOohq5dZSzxnz/bdwWKMpmyFW60v1fD/h2EFLOVNPVMJWrXPqiURRru7CXaKcnp6hzgjnqUnYQ4JFOf3MWVGuOs2wItfiwRURERERUQ3GlSvr8JorIiIiIiIiC3DlioiIiIioBuPKlXW4ckVERERERGQBrlwREREREdVgXLmyDleuiIiIiIiILMCVqwpkbt0DUyu9TW3yC+rWpxGvqVuPA4C9RRNlRvP0FNWSSnqujTIT8bOs9XjYsuOinKQpetNnZS3n0+/qKMr5fyJsJWyR8/07i3IBu9JFuaB56rbW9uBaolpagyhRLj0+XJmRtmj2+FbdElcLlI0skLQHBgAI2vV6poWKSm08JbvPgnBAmQlYd0xU6/yd8cqM7wHhfXHunCwnaKUtbbEupZ88pczY8/JFtWy+6tESJx6Xtauu/bbsddsUtE/fk5ctqvXIir+LclNvW6DMjGtwu6hW7d7q11pby6aiWsZO2eu2cf68KCfhEL6eOZOOWrZNK9mbxYpyWY3U4wgkY04A+WiGvJvV76/u328WVlOTtliXMq5tp8zYfpGNJqGahQdXREREREQ1mAnAQMWfsiebZnd142mBREREREREFuDKFRERERFRDcaGFtbhyhUREREREZEFuHJFRERERFSDceXKOly5IiIiIiIisgBXriqQfm0baI7SW59H/HRBWUfr2FK2PYf6WDkv0l9Uyz05RZQL26huceyekimqld2sjijn7VQ3gnUK99+RK+tbk92nkzLj/Z8Nsm1G11dmApZsE9UycmRt7m3e3sqMfjZNVAvCnO/RZGVGcl8AgDNM3WZdX79dVCu3Z5woJ2n/HjxL1lb8XH6CKAdBK3bpY9tLkgsJFtWSMt3UbcWPjpG1Mo8aL2sLLWKX/R3RvJClzOjWTrNAkyd/U2aG9npGVKtBlqxJdqdbTigzU1v+W1Tr71/2V2bq3LlHVMvWWtiyfbu6ZfuZR2XPubAvDopy9sYxyowmeG8CAOfvSaKchHHgsCiX2179XHd07yCq5b5mlywnaLNudFW3OwcA20+ub3nutuN3ZUbalv5qwJUr63DlioiIiIiIyAJcuSIiIiIiqsG4cmUdrlwRERERERFZgCtXREREREQ1mGlqMF2wquSKbVQ2rlwRERERERFZgCtXREREREQ1mAENBlxwzZULtlHZuHJFRERERERkAa5cVaDUzp6we5Q+FKXBZ6eUdfR9wjkcgepZQJ45uaJahigFeK1WzxtJ79lCVMv3mGxmk2TOj3R+kv+2k6Lcqa511bUaRIlqOQ8fUWYu3KWeqwUA/vtlM8R0H3dlRlurnrcDAOn3y+bHeJxXTwBxy5RNCfE4cV6ZMeJayWoJ5ldZLWiven4SABwbrZ4BFfmqbP6TrW1zZUbftltUS8rco54L0/DUOVEtp3Cb9maxykx2dKColsdS9WMj8uNDolpHRsrmeUX8U/3z9DminocIALmh6nl2ANBt/v8pM45s2V+XAw5L3y3UJPOrACDrb+rXR7/jskeQUa+2KHeupXpGZNC/fxXVOn9PZ3WtX46Kaunhsll1AQvXi3IS1v3ErZ1f5YisJ8ol3Sd7r476Vj3T0V5X/fgx9Vxgn2iTVE3w4IqIiIiIqAZjK3br8LRAIiIiIiIiC3DlioiIiIioBmMrdutw5YqIiIiIiMgCVfLg6sKFC5g0aRJatWoFPz8/hISEIDExEfPmzYNpmkWyGzZsQI8ePeDn5wd/f3/ccsst2LZtW4l1U1JS8MADDyA0NBReXl7o2LEjFi9e7ILviIiIiIioaiq45soVH9VdlTu4MgwDt956K0aPHo24uDhMnjwZL7/8MnRdx+DBgzFy5MjC7Pr169G1a1ccPnwY48ePx7hx43DgwAFce+212LFjR5G6aWlp6NKlC7744gs89thjePPNN+Hr64u7774bH3zwgau/TSIiIiIiqmY0869LQZVs3bp1SExMxPDhwzF16tTC2/Py8tC0aVOkpaUhPT0dABAfH4+9e/diz549iIiIAAAkJyejWbNm6Ny5M5YtW1b49c8//zzeeOMNfPXVV+jVqxcAQNd1JCQk4NChQzhy5Ah8fX0t+R4yMzMREBCAHvWfgMPmUWo2JyZUWc9z3wnRdp0pgpwha31tJa2DrBW7uWWXKJdxn7qNbcACWdtZR0S4KCdp/37qcVnr5dpvq1sv24NriWqduLuJKBf6zjpRztXsjWNEOdPdTZnRTpwW1Tp1Z2NRLq21uuFw44+yRbXMTTvUISG7v7olNACc7a1+3nmlydpVi9vXd26tjNi2y0ZLaIKfOQDo6RnKzKGF7US1Ygaq20Kb17QV1dLWbBPlJGw+PqKcs6PssS1pf33oX+rXWQDwTlH/jbbuFNn4ACl7qPp9Uz8tez2wks2z9NErBYwc9diRvFviRLW8jqSLcsk3qe+zOm/Kfk769e1FOftKdWv6Q5Nlj7Pwn9Wvx15LNopq5d3cUZRz/36zMmN0Vb+2OJ05+Hn1q8jIyIC/8PXblQp+Z+3w+TNw+JT+O6sVnFm52PK3qVX2/rBClVu5ysy8NLcnPLzoL73u7u4ICQmBzx9vMgcPHsSmTZtw1113FR5YAUBERATuuusuLF++HCdO/O9g4+OPP0ZMTEzhgRUA2O12PPXUU0hLS8PSpUsr8tsiIiIiIqJqrsodXMXHxyMwMBCvv/46Fi9ejKNHj2Lv3r0YNWoUtmzZgrFjxwIANm269JfUhITiA007d+4M0zSxZcsWAEBqaiqSk5PRuXPxv5AU3FZQryzq1q1b5CM2Vj3UkoiIiIioKjBddL1VTegWWOVasQcFBeGrr77CI488grvvvrvwdj8/P3z++ee48847AVxqTgGgyKpVgT+fInilWSIiIiIiorKocgdXAODr64uWLVvijjvuQGJiItLS0jBz5kwMGDAAS5YswY033ojs7EvXOnh4FD8/1POP854LMleSLYvU1NQi/y44f5WIiIiIqKozAbiiC0OVavRQQarcwdWOHTuQmJiIqVOnYtiwYYW333vvvWjZsiWGDBmCQ4cOwdvbGwCQm5tbrEbOHxeLFmSuJEtERERERFQWVe6aq6lTpyInJwd33XVXkdu9vb3Rs2dPHDlyBElJSYUNL0o6na/gtoJT/q4kS0RERERUkxjQXPZR3VW5lauCgx1dL94y3Ol0Fv4/Lu5Sm9J169bhkUceKZJbv349NE1Dhw4dAFxqOBEREYH164u35y64rWNHWWvOK+E8chzQSm8nnHmD+qDO/azsFMPs+HrKjGbIFmS9vpS1NJWQtliXqvXD78qMtOG8pMU6ANgD1T+DustSlRkAyO3eQZlx/H5GVKvOj7J2w5L7Q9oWXd9/SJQTcdhFMWPnXss2GTxb1pY+f7i6tb6VLdal9D86qqoEfuT69vvJXdXjLCLWy07Bzr6lkyjn/6v6edf4ySRRLcnzRNpiXXNzF+XM/Dx1Ji9fVEvSYh0A7EFB6lp5sl+A/vX4LGXmzY9vENVynjgpyh0c0UiZiX1T9triPCl7Dc29Vd1+XDyyQMD9O1ktrX6kKFfv8yPKjGwwA+B+4rwoJ3k+xYyQjU3Z/068MhM6VNZMbEmraaLcwx36KDOZ4erW5Xp+TTgRjv6syq1cNW/eHAAwb968Irenp6djyZIlCAoKQqNGjdCoUSN07NgRixcvLmxYAVxqXrF48WLccMMNqFOnTuHt9957Lw4dOoSvv/668DZd1zF9+nQEBgbitttuq9hvjIiIiIiIqrUqt3I1fPhwfPjhhxg5ciR27NiBa665BmlpaZg1axZSU1Mxc+ZM2O2X/iL15ptv4vrrr8e1116Lp556CgAwffp0GIaByZMnF6k7cuRILF68GAMGDMCzzz6LiIgIfPLJJ9i0aRNmz54NPz8/l3+vRERERESVzXRRm3S2Yq8E9evXx8aNGzF+/HisWLECixYtgpeXF9q2bYvJkyejb9++hdnExESsWrUKL7/8Ml5++WVomobExEQsXrwYbdq0KVI3ODgYa9aswciRIzFz5kxcuHABzZs3x6JFi9C/f39Xf5tERERERFTNVLmDKwCIiYnB/PnzRdmEhASsWLFClI2IiMBHH31Unl0jIiIiIqpWDFOD5oJVJaMGrFxVuWuuiIiIiIiIrkZVcuWKiIiIiIhcwzRdNES4BjRP5MoVERERERGRBTTTrAnHkK6VmZmJgIAAdENvOBRzrmze3sp6RrZsLgw0wXmslfDjlnyPAGT7D8DIyirH3hR1/EX1LCMAaDDXutlOklkuSa8miGpFfyGbeWTLylFmTnWtLapVa5fs8eg4IJghVruWqJZ2Nl2ZcUbJ9h8bXT+bykpmQht1CIBjT5Iyo6dnlHNvrpz09UD8uifRubUst367MmIPlj1mz97WRJSr9ds5ZcbYbt2cN6sd/of6tarWLtn7Tr6P7D0grZ16gpKWK/vbcaN/q18bAfl8s6oq72b1LM8LEaX/vlIgeOGvopwWG63MpLcOFNUK2qh+3zw3XfYzb1nrhCjn77iozHz7rXoen56Tg98nvoSMjAz4+/uLtu1KBb+zNl/0POze6rld5aVn52L3Pa9X2fvDCly5IiIiIiIisgCvuSIiIiIiqsE458o6XLkiIiIiIiKyAFeuiIiIiIhqMM65sg5XroiIiIiIiCzAgysiIiIiIiILlOu0wL179+Lo0aM4c+YMvLy8ULt2bbRq1aratla8UkZCKxgOz1Iz2obdyjpHx8jahUdP36PMnLtF1h7Y/5P1opzEub6yNsg+qfminNvqncqMmZsrquWeLoqJ2qfvfy9OVKvxo+paDUavE9WSNtZXNy4Ggvdb124eALQGUcrMmfaytta1Pj+mDgla9VYH9izZY7sy2qw7IuspM85jx0W18nt0EOU8TqhHMxiCFusAYCaq29zra38T1fI5KXs9k7RZz7ivs6iW+3lDlPNaslGUk9Aaqu//9YM+FNW67vGhotyWO95XZjqMe0xUS9pi3da6qTJjeshamZub1OMgtHYtZLW27hLl3L/frMwEXdNWtk3h+6u5U/3YPvFEvKhWxGPnlZnDPzQW1VptCxPlcuo4lZkF981UZrLOG7h1omiTlYpDhK1zxQdXP/74I+bMmYPly5fjzJkzxT5vs9nQrl079OvXDw899BBCQkIs2VEiIiIiIqKqTHxw9cUXX+Cll17C/v37YZomIiIi0Lt3b9SpUwe1atXCxYsXcfbsWezduxfbtm3D5s2b8corr+CBBx7A+PHjERYm+0sBERERERG5zqWVK1e0Yq/wTVQ60cHVddddh9WrV6Nly5b45z//if79+yMq6vKn/OTl5WHlypX46KOPsHDhQixatAgfffQR7rjjDst2nIiIiIiIqCoRHVxlZ2fjm2++wW233SYq6u7ujptvvhk333wzTp8+jX/+85/Yv39/uXaUiIiIiIisxyHC1hEdXG3erL4Q8nJCQ0MxefLkMn89ERERERHR1YBDhImIiIiIajAT8g7E5d1OdVemg6vx48fD29sbTz/9NNzd3UvM/PTTT/jpp58wZsyYcu3g1cyep8Oul94E2+jYTFknJ1rW9jS7cyNlJvArdQtYAJA19JU511S2BJznV/Jj6a9CV6jvD2kb27orT4tyklbmjR/7VVRLwlG3jijnTD1h2TalNIfsZSOrhbqJTeBHspbzksdj0qsJolrSNvfQBI9b4ZW5johwUS6/QW1lxpC2jvbzU2b0Vg1FtbLqeYlyvv+2boSD2/ItopzksfH767LHRuPp6pb/6ubMl7gtk53xYfPxUWYCF8lqmU7Z3mX9rZMy4/P5BlGtmKfVr0GN/m+YqNaWGVNl21zxuDLT4+Ftolo/tFTfFwAQ+5T6/pC+bqcOUz8eQ9+VvU7ZhaNvjNhIdUj42mIPDRXl9NPq99dr2sguGVl/OFq9PUHrdACI+q8ohp/eU7f8n3ZO/Rqak+MEkCTbKFULZRoiPHbsWLzwwgvo3r07zp49W2Jm1apVGDduXLl2joiIiIiIKlbBNVeu+KjuynRwBQDR0dFYs2YNEhIScPDgQSv3iYiIiIiI6KpT5oOrBx54AHPnzsWRI0eQkJCANWvWWLlfRERERETkCqYLP6q5Mh9cAcCDDz6IpUuXIj8/Hz169MCiRYus2i8iIiIiIqKrSrkOrgCge/fuWLt2LcLCwjBw4EBMmjTJiv0iIiIiIiJXcNX1VhZfc7V//36MGTMGnTt3RmhoKPz8/NC2bVtMnDgRWVlZ4jpOpxNvvfUW2rdvDx8fHwQEBKB9+/Z47733rnifLGnF3rx5c2zYsAG33347Ro8ejUOHDqFu3bpWlCYiIiIiIipm7ty5mDlzJu644w4MHDgQbm5uWLlyJV5++WX8+9//xvr16+HlVXrH27y8PNxxxx1YuXIlBg4ciGHDhsHpdOLAgQM4cuTIFe+TZXOuwsLC8PPPP+Pee+/FBx98oPxGiIiIiIiIyqpfv34YNWoUAgICCm8bNmwYYmNjMXHiRMyZMwdPPvlkqTVeffVVLF++HD/88AOuv/76cu+TpUOEvby88J///AfPPPMM3nrrLWiSOTHVmLl1H0zNrdSMZqgnKDXeYJdtUFBLOr/KUS9ClDNz85SZmMl7RbXy2qjnWABA3s0dlZncQNlD2+9T2VweyWwn6YwZEVu5z9gtwujSVr3J1dtEtaTfp89vKcqM9B6zN4tVZsTzq6SEM6wknMnq+wIANGFOwjh/Xr29tb+JavmWd2eKbFT2vpBze5wo5/n1RmWm4fOyx4aFz2Do3drLgqusm4+Xf5P6tRGQz7CS0E+eUmY0PUZUq93y0n8BKuCWrJ6J+MvedqJaOx+bJsp1rPuQMhPZb6eoVui76tlg0lmNmQ1lz05HjvrdXxO8twKA01v2O0l6rPp1+0KmcFZjqocy0vg52fu5ZLYcADT8/FFlJmCf+r7Q83IArBJtszKZpqVve6Vux0odO5b8uO3fvz8mTpyInTtLf15mZWXhzTffRO/evXH99dfDNE1cuHABfoJZkZdTpt/gDMO47HBgTdMwbdo0bNiwAT/++GOZd4yIiIiIiOhKHT9+HMClM+tK88svv+D8+fPo0KED/v73v8Pf3x/+/v4IDQ3Fiy++CGcZ/nBu6crVn8XFyf7qSERERERElcdVA34LthEbGwvbn87SSU1NtWwbuq7j1VdfhcPhwIABA0rN7tu3DwAwbdo0uLu74/XXX0dwcDAWLlyIf/zjH0hOTsb8+fOvaPsVdnBFRERERETkSsOHD8e6deswadIkNGnSpNTs+T9OoU9LS8OuXbsK83fffTeuv/56fPjhhxg5ciSaNWsm3r744Kphw4biogU0TcOhQ4eu+OuIiIiIiMhFKqBN+mW3A+DAgQPw9/e3vPzo0aMxY8YMDB06FKNGjVLmCxrwde7cudiB2AMPPIBVq1Zh1apVFXNwlZSUJC5aoKY3tCAiIiIiooo3duxYTJgwAYMHD8a7774r+pp69eoBAOrUqVPscwVjpc6dO3dF+yE+uDp8+HCx26ZOnYrp06fj999/v6KNEhERERFR1XC1dgssMHbsWIwbNw6DBg3C7NmzxQs88fHxAP7XAOPPCm6rXbv2Fe2L+OCqfv36xW4LCgq67OcIl1qja6U3ZLS1ba4us223aHPOGzooM46Vsra/emigKGdu3SXKSdhXyf4yIGkC6/XHY1NFt8laylrZZt3epJEyY6SctGx7AOB+7Kwyc1HYxtnzcJool19bvdyvHU8W1lK3G7btEZWC1rGlLLjjgDJyepCs3XbI+7JW4JLHhr7voKiWhOahbm8MAGZurix3TVv1NtdsE9XySFOPeZCyh8neGCVtxbP7dhLV8j2YIcpJxmNk9ZNt0+cz61qsW8k7RfZLjh6bI8rVe0Q9QqCp8K7IMGSPs4tn1bM7HRHholqS0QzS99b0mxJFuQEDVykznxxS/w4BAPaVgaJcbrssZSZgROnjagpkd1M3t7YLTzHLby27zKXxh9nqkOBIwannwLrflKgk48ePx7hx43D//fdj7ty5RRpl/FlqaioyMjIQFRUFb29vAEB0dDSuueYarF27Fr/++ivat7/0vq7rOmbNmgWHw4GbbrrpivaHDS2IiIiIiGoy848PV2zHQjNnzsQrr7yCqKgo9OjRAx9//HGRz4eFheHGG28EAIwaNQrz58/HypUr0a1bt8LM9OnTce2116JHjx54+umnERwcjE8//RQbN27EmDFjEBUVdUX7xIMrIiIiIiK66mzatAkAcPToUQwaNKjY57t27Vp4cHU57dq1w9q1a/Hyyy9j2rRpyMnJQbNmzfDBBx/gwQcfvOJ94sEVEREREVEN5uo5V1aZN28e5s2bV+5s69at8dVXX1myT+qTWImIiIiIiEiJB1dEREREREQWEJ8WeN111xW77ejRo5f9HHBpztVPP/1Uxl0jIiIiIiKXcEVDixpAfHC1evXqK/4chwir2dIvKDNa4xhZsR+3KCNJExNEpXRP2TPMt4u6DawjW1grRdbu3Gevul2y8/ARUS0trpUoZz+Vrt7mkWOiWla20paS7JtXrrD1tUP2spHnr26x690oWrbNn7bKcgL2VFkreaeg/XjQAVmLcnuLJuoQAH3XPlFORPD6a7aT7RfWbxfF7BnqVto5Nwtb/q+V3ReSVuYQtpKX8P5C1uP791dlr7XR7urRAAFrZK9n0oERmpu7MmPmy14PJO3867y5VlQrb1+cKHeht7pl+J4Osp/TbY8/L8o16af+GWR2ihTV8v5C3Ypd6o57Lv+72Z/52dXPTduqQFGt1c9PEeXaf/SMMqOdPSGqFfbeIWXGUIy+KWBbvU2UMyW/wwpasZtmvmh7VH2Ua4gwERERERFd3a7WhhZVUbmGCBMREREREdElbMVORERERFSTXaVDhKsi0QmqJ07IzoktzcmTJ8tdg4iIiIiIqKoSHVw1bNgQL7zwAk6dUjcS+Ktvv/0WcXFxeO+99674a4mIiIiIqKJpLvyo3kQHV88++yxmzJiBevXqoVevXvjoo49w6FDJnVuysrLw008/4aWXXkL9+vVxxx13QNM03HnnnVbuNxERERERUZUiuuZqwoQJePTRRzF+/Hh88sknWLp0KQDA398fYWFhCAoKQk5ODtLS0pCSkgLDMGCaJlq3bo1JkyZh4MCBFfpNEBERERFRGfGaK8uIG1pERkZi1qxZmDx5Mj7++GMsX74ca9aswf79+wsz7u7uaNu2Lbp164a+ffsiIUE256Mmyw8PUma0tb+Jal24q5MyU2edLqrl+c1GUU7CHttQlDvat44o57PNupk1tvQsUc709VZmLvaOF9XyWqK+b3N7yua9ePz3V1Eu5Vn1Y6PeeztEtYzz50U5Z6d66tAZ2cwpKzmTZTNm7MG11KGVsvs/5ybZbCe3XaKYjGD+inR+laNhA1HOuXOvMuO+U1QKKc+oZ+gBQOhW9fwerJL9nKwUM002p0tzV8+ccqYKr3u22UUxe7266m1KZwU2Uc+qy2gRKKrl/8l6UU59j8nVfls2g2t/U/VrqNlT9v7a+At1xh4aKqr1zZEQUU5yIlZ2hOy33kmnZe91geqXAxjn1bM+AcB0qqe4nXtQ9jtn0Lx1opzkNVSyTT0vB1i4RLZNqhauuFugv78/hg0bhmHDhgEA8vPzcfbsWXh5eSEgIMDyHSQiIiIiogrElSvLlLsVu5ubG+rUka04EBERERERVVecc0VEREREVJOZ2qUPV2ynmhN1CyQiIiIiIqLS8eCKiIiIiIjIAjwtkIiIiIioBjNNWZNZK7ZT3fHgqgLZG0XDbvcoNaOvk7VClvBdvEGZObyotahWvZwOopxnirott+HlJqoV8ZqsJa66IesVOHNOFMtro243LGmxLuW94XdRzvTyFOVqbxW0r4+JFNXCtt2iWMBmdctzZ3qGbJsWckTXF+WSe0UoM2FvyR6zbss2i3JWkrRy1k+fFtUy7dad5GDzVo81AACvU4Yo556aqczIGmTL5Nwua0Ntc8p+g3D/bpMyo7VrIaplbpX18pe2WZc401E9TiR03RlRLSt/TjZP2WujkSNo5Q8g5t/q19DJC94V1RrZYpAyY3jLGs7XeUPWfl9bs02ZkY5c2Pa6rE180Bl1y3PZs1xG2mLdUV/2XpcTU9uSbTrNfNH2qPrgwRURERERUU3GVuyWKdOfI88Lh4gSERERERHVFGU6uAoPD8fQoUOxaZP6dAYiIiIiIqrCClqxu+KjmivTwVXt2rUxe/ZsdO7cGR06dMD777+PCxcuWL1vREREREREV40yHVwdOnQI33//Pfr27YudO3fiscceQ3h4OB599FFs3ly+C7fHjh0LTdMu++HmVrQ5wrp163DHHXegXr168PLyQkxMDIYMGYLffy/eECA3NxdjxoxBdHQ0PDw8EBMTgwkTJiA/nxcbEhEREVHNpJmu+6juytzQ4sYbb8SNN96I06dPY+7cuZg9ezZmzZqF2bNno23bthg2bBgGDBgAHx+fK6rbt29fNGrUqNjt27dvxxtvvIFevXoV3vbdd9+hZ8+eiImJwZNPPomQkBDs2rUL77//Pj7//HPs2LEDERH/6/jVv39/LFmyBA899BASEhKwbt06jB49GgcPHsS8efPKelcQERERERFBM03rOs6vWLECs2bNwpdffon8/Hz4+PhgwIABePzxx9G6tawF+OU8+uijeP/99/HNN9+gZ8+eAICbb74ZK1euREpKCkJCQgqzs2fPxpAhQzB16lQMHz4cALB06VL07NkTzz77LCZPnlyYHTFiBKZMmYI1a9YgMTGxXPtYIDMzEwEBAeje8Gk4FK3YzeOpynrSVrHQ1OexGl3aikq5nVS3NwYAff8hZUbaEhduspbttsAAZcZ57Lhsm1KC+1Zzl7XONXMFbdGrsGMvyZ4nkRNlbcol7CHB6pDFwzP0s2mW1quKrG7xLZHfQzbmwW35Fsu2eb5/Z1HOEPy5MXiNesQAACA3TxRzpp6Q1buK5faME+U8vr26r+N2W1VXlDtyTt2+Pnev+n0OAKJHydqPS9j8/EQ5w8KmZtLfSWyrt1m2TcmYCgDQPNTv6abgee408rDizBxkZGTA399ftG1XKvidNXLaeNiE413Kw7iYg2PDx1TZ+8MK1g0vARATE4OGDRvC398fpmkiKysL77//Ptq1a4f+/fsjPT29THWzsrKwaNEi1KtXD7fcckvh7ZmZmfD09ERQUNEXqvDwcAAosmr28ccfA0DhwVaBgn8vWLCgTPtGREREREQEWHBwpes6vvjiC9x8881o1KgR/vnPfyIgIABvvPEGTp06hWXLlqFHjx5YvHgxHn/88TJtY/HixcjMzMSDDz4Iu/1/A/NuvvlmnD9/HoMGDcJvv/2G5ORkfP/99xgxYgSaNWuGe+65pzC7adMmREREIDKy6PC4yMhIhIeHl6vzYd26dYt8xMbGlrkWEREREZFLsVugZcp8zVVSUhJmzZqFDz74ACdPnoTNZkOvXr3w2GOP4aabbirM9ejRAz169EDfvn3x3XfflWlbc+bMgaZpeOihh4rcPmrUKJw6dQpz587FwoULC2+/7bbb8Mknn8DvT0vcKSkpaN68eYn1IyIicPy4xaeRERERERFRjVKmg6ubb74ZK1asgGEYqFOnDl566SUMHToU9erVu+zXxMXFYcmSJVe8rX379mH16tXo3r07oqOji3zObrcjIiICPXr0QJ8+fVCrVi2sWbMG06dPxz333IMlS5YUdhfMzs6Gh0fJ1z95enoiOzv7ivetQGpq0eumCs5fJSIiIiKq8sw/PlyxnWquTAdXP/zwA66//no89thjuPPOO+FwqMv06tWr8FqoKzFnzhwAwCOPPFLscw8++CDWrl2LXbt2wcvLCwDQp08fNGrUCI899hjmz59f+HXe3t7IvUwjgZycHHh7e1/xvhERERERERUo0zVXe/bswYoVK9CvXz/RgRUAtGzZEoMGDbqi7TidTnz44YcIDg5Gnz59inzu6NGjWLhwIXr27Fl4YFXgrrvuAgD89NNPhbeFh4cjOTm5xO0kJycXadlORERERER0pcp0cNWkSROr96NEX3/9NU6ePIn77ruv2Cl9BQdKuq4X+zqn01nk/8Cl0xKTk5Nx7NixItljx44hJSUFHTt2tHr3iYiIiIiqPtOFH9VcmU4LXLx4Md555x189NFHJa74JCcn44EHHsATTzyBvn37lnnnCk4JfPjhh4t9rkmTJrDb7fjyyy8xadIkBAYGFn6uYCBwXNz/Zmvce++9WLhwIaZNm1ZkztW0adMAAAMHDizzfl6OZprQjNIfRXprdWdBTTdE2ztyu+A6L+GDOmr8VllQwiY7hj85sKUoV+c/6tlaUo6GDWRBQ/0zcCYdFZWyN4pWZowjJa+y/pWZL5ulI5lfoglmeQFA9IJj6hAA1AlTRkzhDDf9zFnZNl3s2GjZzK/aW/JFOY+l1s35sQlOdT4VL5sxEpZdfLB7SfR9B5UZ6fyqcw8miHJB89Rzfvw+XS+qJWG0aSbL/SZ7PXAInifOEydFtSqD5PXM+3CGqFbxP5VWPK2j7H0nJ9RLmcl+U/Zed+Fm9Rvx4UHviGrd9lpXUU5PV/8MpPOrxLMrBRxHzohyTnUE9uBaolr66dOinIS9hWCxQc8FZN8mVRNlOriaPXs2zp07d9lT6SIiIpCeno7Zs2eX+eAqJSUF3333HeLj49GqVatin69VqxaGDx+OyZMno127dhgyZEhhQ4uFCxciJiamyHVaPXv2xO23344pU6YgIyMDCQkJWLduHebMmYP77rsPXbp0KdN+EhERERFd1djQwjJlOrjasWMHbr/99lIzcXFx+Oabb8q0U8Cl1Sdd10tsZFHgjTfeQJMmTTB79mxMmjQJubm5iIiIwGOPPYaxY8cWm/y8ePFiTJgwAQsWLChcdRs/fjxGjhxZ5v0kIiIiIiICynhwlZaWhtq1a5eaCQkJwZkzZV8HffHFF/Hiiy+WmtE0DUOGDMGQIUNENT09PTFhwgRMmDChzPtFRERERFStuGrAbw0YIlymhhYhISE4eLD0c+sPHDhQ5DooIiIiIiKi6qxMB1fXXHMNvvrqK+zfv7/Ez+/btw9fffUVrr322nLtHBERERERVSzNdN1HdVemg6vnnnsO+fn56NKlC2bMmIH9+/cjKysL+/fvx/Tp09GlSxc4nU4899xzVu8vERERERFRlVSma67i4uLw9ttv44knnsDf//73Yp+32+1455130KlTp3Lv4NXMefgooLmVHvpdXceML94tsSQNZycpMxfa1RPVktI6tFBmjC27RLVC31W3VAaA7NvilBmPpadEtS42ChHlPA+niXIS+sHDltWSkrTYlbSEBgDnEVkrdjOhjTKjrftNVEvCuLadKJdyrbqlMgDUm7RWmYl8VZ2xWs7t8aKcz351+/rQLbLWy4avhzoEWVtifdc+US1Ji3UAOPuIumV78GxZLUc99TB5w5T92dUeEizKVdk268LRDJLXM8lrAQBIr8SwCdrhG7/tEdXKivQR5fzXJam3WUf2M9e81K3MG37xqKhWbPoGUU7CHhQkymUnyEYzSEZLGMeOi2pJmDm5olyu4HcIQLb/ktcz3ZSN4qh07BZomTIdXAHAkCFD0KVLF7z99tvYsGED0tPTERgYiM6dO+Oxxx5Ds2ayWSBERERERETVQZkPrgCgWbNmmD59ulX7QkREREREdNUq0zVXREREREREVFS5Vq50Xce+fftw7tw56LpeYua6664rzyaIiIiIiIiuCmU+uHr11VcxdepUZGRklJq73EEXERERERFVPg2uaZNe/UcIl/Hg6vXXX8crr7yCgIAA3H///YiMjITDUa5FMCIiIiIioqtamY6IZs2ahYiICPz6668IDQ21ep+qj7gWgEPRcnX9dnWdjTtEm0salajMRL6xUVRL+scLU9hmXULzkLV79jyZrcxI999zfcmDsP9Kz8xUZi7eKWuR7fWl7Gcgobm5i3Inh3RUZmq/LWsrvv99WRvbxkPVbWzPDVK30QaAoH1Zyoztl62iWg2SG4hyTkFG79ZeVMttk6z9uJGl/j69f9wpqqVnq58nUvk9OohyXntSLdum9L6VtFkXjxk4nqwOCTtHS9s9u2dEKjPamm2yjVpJ2HLeEake7+G0cOQCIGuzbvf3F9Xy/V72/uqUPJ+EbfWbvq4eWZDUV9bWXcrmo245r587J6rlveWIKOe8pq0yY+VjW/L6CcharEtJHv8wcsWvG5XK1C59uGI71VyZGlocO3YMd955Jw+siIiIiIiI/lCmlauwsDA4nZK/6xIRERERUZXGIcKWKdPK1d13340ffvgBubmyadhERERERETVXZkOrsaNG4e6deuiX79+OHz4sNX7RERERERErmK68KOaK9NpgS1btkR+fj5SUlKwdOlSBAQEIDAwsFhO0zQcOnSovPtIRERERERU5ZXp4MowDDgcDkRFRRXeZpbQWaik24iIiIiIqOrQTBfNuaoBhwZlOrhKSkqyeDeIiIiIiIiubpz8W4EcKWlw2Eqf3WRlz8WA3w1lxuzYXFTLceyMKHfytvrKTNh/j4pqGWfOynKC2VpahxaiWgfvks1CafjKr8qMlfOrpGwNo9QhAHWXCeYPBdcS1ZLMrwIAe1htZSa3lnDehWQenJDhrZg9dwUca2Qzp4z8PMu2aQjnV4nmDx2TDV/x2CCbB+c8f16UE21zr2DmFICj/6ee71dnnew+cwsOVGb0XbKZZV4/yuYn5XdWvybbBPOCAPnMoPyb1HPv3JZtFtWSPoYkRDODhNuUzCa0XOfWsty+Y8pI5Kuyx5ld+Lqtn01TZhz1IkS1zneQ5byWuP49UUT4c0prpp4NFrpRfb+a+lXyqza7BVqm3D/xPXv2YO/evbhw4QLuv/9+K/aJiIiIiIjoqlOmboEA8Ouvv6J9+/Zo2bIl+vXrhwcffLDwcz/99BO8vb3x1VdfWbGPRERERERUUdgt0DJlOrjau3cvunXrhoMHD2L48OG49dZbi3z+uuuuQ3BwMD777DNLdpKIiIiIiKiqK9PB1SuvvALDMLBp0yZMnjwZcXFxRT6vaRoSEhKwaZPs2gwiIiIiIqKrXZkOrlatWoW+ffuiSZMml81ERUUhJSWlzDtGREREREQVr6AVuys+qrsyHVxlZGSgbt26pWby8vLgdFrZC4+IiIiIiKjqKlO3wLp162LPnj2lZrZv344GDRqUpXy1YZxNg6G5l5qxN4tV1tH3HBBtL/DHQ8rMuR4xolr+62WrjsGz1Lnc69uLatmPy1ovS+QHyNpt1/sxX5Qzc3OVGXtj2X2r71f/nGze3rJa+w6Kco66ddS1Gsra6+a3i5Ztc+8JdSbL9X/C0nLUP0sAyPpbJ2XmZCfZ36caPr9OlLOSpF215lb661OB1MGtRLmIb9SvB5ltwkS1/Deq21UDQPgba5UZyessAJju1rVMzu4ha/fsczhDmZG2f5eStll3OTfZ/W9lK3nJayMAOFPVr2eGm11UK+ca9ePR+/gFUS19225R7sRwwciCaernEgB4WfheXRkcyer26QBQSzACRBfU0U3Z7xmVztQufbhiO9VcmVaubr75Zvz3v//Fxo0lzzBYtmwZfv75Z/Ts2bNcO0dERERERHS1KNPB1UsvvQQ/Pz/ccMMNePHFF7F796W/nCxevBjPPPMMevXqhdDQUIwYMcLSnSUiIiIiIouxFbtlynQORGRkJJYtW4a7774b//znPwtvv+eee2CaJho0aIDPP/8cYWGy0z+IiIiIiIiudmU+wbxjx47Yv38/vv32W6xbtw5paWkICAhAp06d0Lt3b7i5uVm5n0REREREVAFc1cmvJnQLLNfVuw6HA71790bv3r2t2h8iIiIiIqKrknWtkYiIiIiI6OrjquuhuHJVsvHjx4tymqZh9OjRZdlEtWC2iIFpL70luLFph3UbFLQLD/pv6S30C2TdHi/KeX67SZmxr/xVVEsq99Y4ZSa7tuyhHbpK3a4aAFKHJSgzdb+zrj2tzd9PlDMuXhTlRG2EG5U+u66A57Yk2TbPnFVmQt6X3WennlC3Ea49U9ZGWD94WJTz81G38/f5XPZ8krK3uPxg9gJWtuW2R8jaUIe9JbtvDR8fZcZH0K4dAJz5eaKchHY+W5TTBS2m83t0ENXy/KbkbrrFtinISFvmmxbeZ1JauxbqkF3Wetm5eaco55l5XpmR3K+A7LVRyvbLVlHOK0492sAQtli3N28syknbrFvJ7u+vzOiZmaJa6Q+o34MDP5SNvMirHyLK2QTjLBz1I9WFjFzgqGiTVE2U6eBq7Nixl/2cpl16ETVNs8YfXBERERERVXkuuuaKK1eXsXLlyhJvT09Px6ZNm/DWW2+hZ8+eGDZsWLl2joiIiIiI6GpRpoOrrl27XvZzvXv3Rv/+/REfH4977rmnzDtGREREREQuwGuuLFOmIcIqrVq1Qu/evTFp0qSKKE9ERERERFTlVMjBFQBERUVh507ZxalERERERERXuwprxb5hwwZ4eXlVVHkiIiIiIrICTwu0TJkOro4eLbmnpNPpxLFjxzBr1iysXr0ad999d7l2joiIiIiI6GpRpoOrBg0aFLZcL4lpmoiNjcW//vWvMu9YdeD0dgMcbqVmHB4eyjqmYH4VIJ8XISGd0WJr00yZ+f3uQFGt6P+oZ5cAgOcJ9cwa702y2SWSWUwAEPruMXUtUSXZXAznEfX2AMARXV+UM7PV87DsJzJEtXThfeaICFdmjLNpolp1flLnDFElwFFXNtsJZ9XPJ+k27WG1RTkrZ1hJmG6ytwBHgyhZvXT1Y+hi1+aiWj67T4pyeqo6d6FthKiWp2DOldc+2X5JXw8krJ5flSOYYyh+D8jNV4dK+X3hz6SzqaBLn3muZXRpK8qZDvUVGXbhNvXd+4VJ62gO2euGfiHLsm1KZlhJfh8BAKzeJoo56oQpM5L3aqcpeI5UAZqLWrG7pN17JSvTwdUDDzxQ4sGVzWZDUFAQ4uPj0bt3b3gIDhyIiIiIiIiqgzIdXM2bN8/i3SAiIiIiIrq6VVi3QCIiIiIiopqkwroFEhERERHRVYDdAi1TpoOrhg0blmljmqbh0KFDZfpaIiIiIiKiqqxMB1eGYSA/Px+pqakAALvdjpCQEJw5cwa6fqnfT926deHu7l7k60yzBhyuEhERERFdRdgt0DplOrjavn07evTogfr16+Mf//gHunTpArvdDl3X8csvv2DUqFEwDAPLly+Hn5+f1ft81XA/kw2HXdFcNjBAWUc/ecqiPQLODkkQ5YJ/uyDK5fuU3moekLdYNzfvFOWOjklUZqJe3S2qZSWtQwtRzrlll7qWsNOmcfK0KKdFqNuP6wd+F9Vy3tBBts1M9QiBvGZ1RbXclm9RZrL+1klUy+fzDaKc5uauzNjaytqKI1s2TgEWPtclpD9zqdyeccqMx7ebRLVMf39ZTjCqQtpWXPK800/JnnNSkjb96d1kZ4v4fbpelJPcH5KREQDgtLAVuHibgvbXknbzgPyxIWETtvjOvU39PJG2Ype2Hzd+2yOsqJbZr6NltQK3yF7zJK9VWo6s5bld+NriPCEbu0D0V2VqaPHSSy8hPT0dq1atQteuXWG3X3oZsNvt6NatG1auXIm0tDS89NJLlu4sERERERFVANMFHzVAmQ6u/vOf/6B3797FTvsr4Onpid69e+OLL74o184RERERERFdLcp0cHX27Fnk55e+/Jqfn4+zZ8+WaaeIiIiIiIiuNmU6uIqJicFnn32GjIyMEj9/7tw5fPbZZ2XuKkhERERERC7iilMCa8ipgWU6uBo2bBhSUlIQHx+PDz/8EElJSbh48SKSkpIwf/58dOrUCSdOnMATTzxh9f4SERERERFVSWXqFvjkk0/iwIEDmD59OgYPHlzs86Zp4qmnnsLjjz9e7h0kIiIiIqKKw1bs1inTwRUAvPnmm7jnnnswd+5cbN26FRkZGQgICED79u3x4IMPIjFR3S67ujMdNpj20hcH028QnDqpyU6vzGygXohsMD9JVMv08RLlsFE9FNrs3FpUKv0BWZv4qPFrlZkTz8gef3XWyNrEY+MOZcR+4pyo1IFF6vsj+p7tolri1ygLW26fj1K3KAeAoHnq9unqRv6XGF3bKTPSFutSNi9PZUbfJmv5bxeMXABkragz24eLann/x9r7Q0LaZl1Cz8wU5fJuVreF9t6VKqrlPJ6szJy/p7Oolj1P9uz0/kL9c/I/pG7XDlh7to2k3Tkga2st/Vma2TminISVLdat5pWsHnVyUdCuHQA8lsqec/aQYGVGPyO7Tt5vkazlP+JbKSNanqx9uoS+76BltYjKo8wHVwCQkJCAhATZL8RERERERFQFuep6qBqwclWma66IiIiIiIioqDIfXOm6jjfffBOdOnVCQEAAHI7/LYJt27YNjz/+OPbvt25yOxERERERWa/gmitXfFR3ZTq4ysnJQffu3fHss8/i8OHD8PPzg2n+796Kjo7GBx98gI8++siyHSUiIiIiIqrKynRw9dprr+Hnn3/Gq6++ihMnTuCRRx4p8vmAgAB07doV33///RXXHjt2LDRNu+yHm1vxS+C//fZb9OjRA0FBQfD29kbjxo3x5JNPFsvl5uZizJgxiI6OhoeHB2JiYjBhwgTlQGQiIiIiomrrKp1ztX//fowZMwadO3dGaGgo/Pz80LZtW0ycOBFZWVllqtm/f39omoaWLVuW6evL1NDik08+wXXXXYcXX3wRAKBpWrFMdHQ0fvvttyuu3bdvXzRq1KjY7du3b8cbb7yBXr16Fbl93LhxGDt2LG6++WaMGzcO3t7eOHr0KLZvL95trX///liyZAkeeughJCQkYN26dRg9ejQOHjyIefPmXfG+EhERERFR5Zg7dy5mzpyJO+64AwMHDoSbmxtWrlyJl19+Gf/+97+xfv16eHkJO2AD+Oabb/DZZ59d0df8VZkOrpKSknDHHXeUmgkICMC5c7LW1H/WunVrtG5dvFX1o48+CgB4+OGHC29bvnw5xo4di/Hjx2P06NGl1l26dCmWLFmCZ599FpMnTwYAPPLIIwgMDMSUKVMwdOhQto8nIiIioprnKu0W2K9fP4waNQoBAf8beTJs2DDExsZi4sSJmDNnTolns5XkwoULePzxx/HEE0/gq6++KvM+lengysfHB2fPlj4PISkpCbVq1SrTTv1VVlYWFi1ahHr16uGWW24pvH3SpEmoXbs2Ro0aBeDSneLt7Q2brfjZjh9//DEAYPjw4UVuHz58OKZMmYIFCxZYfnBl7NgHQyt9ko+/YHHP3ixWtD3/jw8oM05RJWD/XPXsGABo/ko9ZUZ3GqJaQZ+o5yIBgObjo8xk15U9ezNj1LUAoNbRMGXGmZwiqhV9jyznao56EaJc0Lx1opytTTN1Jl097wUAjF/V80su9pTNhfHZfUqUcx4+osxIZvwAgJ6eIcpBkPPLkM0M0uoIHrMnTopqSeZvAYDp6aHM6AcOi2rB0EUxz7X7lBnneeE8OwnhLwaS+VXiTW7eKcqJH4/CuVNW1Trxd+HcwTfVMwwBIG2wegRMrQ9kr1OVwfhtjzLjnVP8DJ4SNYoWxUxv9XMTwjlXYoL5kNLfSSSPbWcr2UxQbc024VbVzgxVPxb1vBzggyWWbZOK6tix5N9X+/fvj4kTJ2LnTtnrJwC89NJL0HUdEyZMKNfBVZmuuerYsSOWLl162XMZT506haVLl1p2sLJ48WJkZmbiwQcfhN1uB3DpgOvnn39Gp06dMGfOHERERMDPzw++vr645557cPJk0V8aNm3ahIiICERGFv0lITIyEuHh4di0ybrhl0REREREV4vq1i3w+PHjAICwMPUfGgFg48aNmDFjBqZOnQp/4R+qLqdMK1dPP/00evXqhV69euHdd98t8rnffvsNQ4cORVZWFp566qly7VyBOXPmQNM0PPTQQ4W3HTx4ELquY/369Vi2bBlGjhyJNm3a4JdffsGbb76J7du3Y/PmzfD29gYApKSkoHnz5iXWj4iIKPwhlEXdunWL/NswZCs1REREREQ1TWxsbJEzzVJTUy2rres6Xn31VTgcDgwYMECZdzqdeOSRR3DTTTfh7rvvLvf2y3Rw1bNnT7z88suYMGECmjVrBnd3dwCAr68vLl68CNM0MX78eHTt2rXcO7hv3z6sXr0a3bt3R3T0/5a/z/9xmsfp06cxa9aswo6Fffr0gb+/P8aNG4f58+fjscceAwBkZ2fDw6PkZXFPT09kZ2eXe1+JiIiIiKjyDB8+HOvWrcOkSZPQpEkTZf6NN97AwYMH8eWXX1qy/TIPER4/fjyWLVuGXr16ISAgAHa7HV5eXrj11lvx/fff4+WXX7ZkB+fMmQMAxdq9F3TxsNlsuP/++4t8btCgQQCAVatWFd7m7e2N3NzcEreRk5NTuMJVFqmpqUU+DhxQX/tERERERFQluLgV+4EDB4r87myV0aNHY8aMGRg6dGhhT4bSHDx4EOPHj8dLL72Ehg1l1+2plGnl6ujRo3B3d0ePHj3Qo0cPS3akJE6nEx9++CGCg4PRp0+fIp+rV+9SI4WgoKBiK1IFp+n9uVtheHg4kpOTS9xOcnIyIiJkF/MTEREREVHVMnbsWEyYMAGDBw8udtnS5YwYMQK1atVCnz59cPDg/5pnOZ1O5OXl4eDBg/Dx8Sl2CVBpyrRyFR0dXTjjqiJ9/fXXOHnyJO67775iB1BhYWGIiopCWlpasVP6Cq6fql27duFtcXFxSE5OxrFjx4pkjx07hpSUlMt2GyEiIiIiqtau0iHCBcaOHYtx48Zh0KBBmD17dokzeEty5MgRpKSkoEWLFoiNjS38SE5OxoEDBxAbG4shQ4Zc0b6UaeUqMDAQISEhZfnSK1JwSuCfZ1v92f3334+JEyfivffewzPPPFN4+zvvvAMAuO222wpvu/fee7Fw4UJMmzatcM4VAEybNg0AMHDgQKt3X8TZvYM6tELWolxC0sIWALwPyh6UpuBaNXOzrFmIdN9qLz+mzDR8XtaG93z/zqLc2e7qdrc+qeq29ADgcTRNmdEPytpV20OCRbmkYepzjqMXlryy+1f69e1FOaz8VRkxO7QQldLS0pUZj29lHT+lrX8ljEq4VjP9FnWLewDwW7Tesm1mtg8X5bz/Y137cSlD0Gbd1rqprNb2vcqM36ey+9XRIEqUMwWPbXHrdLcyvaWXSPTeBMAheH+StliXkrRZd94g3P8frXt/tZK+Tz1+wmo2T09ZLlg2Zkc0nkT4C7DkOWBli3UAcETXV2ZC3hc8Fs18K3aHSjF+/HiMGzcO999/P+bOnVviSCbg0mU8GRkZiIqKKrwc6F//+hfS09OLZR9//HF4enpiypQpV7RqBZTx4Kpz587YunVrWb5ULCUlBd999x3i4+PRqlWrEjPPP/88Pv/8czz33HPYv38/2rRpg9WrV2PhwoW44YYb0L9//8Jsz549cfvtt2PKlCnIyMhAQkIC1q1bhzlz5uC+++5Dly5dKvT7ISIiIiKqilzVJt3qbcycOROvvPIKoqKi0KNHj8K5tgXCwsJw4403AgBGjRqF+fPnY+XKlejWrRsAXPbypueeew6+vr7o16/fFe9TmQ6uxo4di2uvvRazZ88u1mjCKvPmzYOu66XW9/f3xy+//ILRo0djyZIlmDNnDurVq4cXX3wRo0ePLpyJVWDx4sWYMGECFixYgI8++ggREREYP348Ro4cWSHfAxERERERVYyCObVHjx4tbGj3Z127di08uHKVMh1c/fe//0W3bt3w6KOP4p133kF8fDzq1KlT7PxGTdMwevToMu3Yiy++KLquKyQkBO+8807hqYCl8fT0xIQJEzBhwoQy7RMRERERUbVTgddDFduOhebNm4d58+ZZnk1KSirzPpV55arA1q1bL3uKYHkOroiIiIiIiK4mZTq4WrlypdX7QUREREREleBqveaqKhIfXH311Vdo2rQpGjdujK5du1bkPhEREREREV11xHOu+vTpg0WLFhW57dNPP0Xfvn0t3ykiIiIiInKRq3zOVVUiXrkyzeL3xt69e7FkyRJLd6imyQ5zU2b8hbXsoaHKjGQ+CACYj8hmTuln1TObzj0oqxX6+S5Rzimd+SIgnVlzbpD6e/A4dk5UyzgmmP0hlNdSPYcDAKJe26zMOPPzRLXsh4+IcinPJSoz4f+Szb+RvBY76kfKamVeEOX0c+qfp+m0cmqWjJXzq7L6dRLlfD6Tza/Ku1k9jN39e/VjEQDSHpK9btSaq35Nk8yvAoAzj6q3GfKe7DXUmXRUlLOS5PUYgGi2kNtPv4lKVcbvSY46YeqQxfOrLt4Zr8x4fbnR0m26mt5OPQ8RAIx1sseGSAm/W1YVTuF7HdFfWTdxkIiIiIiIrj5XabfAqkh8WiARERERERFdHg+uiIiIiIiILHBFpwX+dUgwERERERFd3bQ/Plyxneruig6uJk+ejFmzZhX+O/OPxgJRUVEl5jVNw5EjvCCQiIiIiIiqvys6uMrMzCw8oPqz48ePW7ZDRERERETkQmxoYRnxwZVhGBW5H9XSiSc7we7hWWqm7hRZK2qJnDYlryD+mT23nqhW0L4cUe7k0+p22xFLjolq5bWJEeUc53OVmdNxAaJablmyZ3nAoYvKjH7gd1EtCXuzWFHOtmmfKKfHNVNmtLUWtteFrM36sdHqxw8ARL6qruU8InucSTm7d1BmHCtk7Z6z/iZree7/wx5lRheOIrAHqp8D0hbrmkP2VuG996Q6FCl7DZK0WJeytW4qyknbrF/1BO2vbYLHDwDoZ86Wd2/+J76VKObcuEOZsXl7i2oZ2dminKjNus0uqnXyCfXrQdgM4WNR2Mrc0bCBMuO0ssU6AHtIsDJTGY8fCB4/ROXBVuxERERERDWYZl76cMV2qjt2CyQiIiIiIrIAV66IiIiIiGoyXnNlGa5cERERERERWYArV0RERERENV0NWFVyBa5cERERERERWYArVxWo9raLcDjK/2cAvVt7Uc5tubot9InhstbXdabJWsSHp0YrM9IW2TZh7uRjCcpM6DuyNra5PeNEOdvqbaKcRP5NHdWhZZtFtbR2LWQ5i9usS9ibNFJm6k8R7pegrXJGr9aiUn6frhflPLYfVWZ0USXA53NZy/O0gZ2VmYBDstbR+vrtopxE1h3qtvQA4P2F+vs89aTsNaj2DOvmJxrb94pymoeHMpPVs62olt8uWYtpfd9BUU5C2jLfdDqVmfymkaJaGTGNlZmg+cK24ha2yNa8vWRBYSt2EUP2ihA23boRLPbYhqKc08JRIVKWtlmXsLrFuqS1ezVq685ugdbhyhUREREREZEFeHBFRERERERkAZ4WSERERERUk7EVu2W4ckVERERERGQBrlwREREREdVgbGhhHa5cERERERERWYArV0RERERENRmvubIMD64qkG31dtg0t3LXsa/6tfw7U8DqB7Xdro74+4tK6ZmZopxkhpUWJ5hPAcBwaKKchM3HR5Tz3HpEmcntLpsr5Fihnm1mtfP3qGcxAYDfIvU8Kc3NXVTLbNdEvT3h/Cop/fRpS+tJBCwUfA+a7DHrvEH9GHL8KHv8SOZXSdVdtE+UM4XPJ+jq2ULnb28jKuW/J12Zkd4XpqenKOeoE6bM6GfPybaZnyfKSUhn+wWttmyTsDeOkQUzzisj+slT5dybK2fz8xPljPPq/ZfOLDMOq+fxSetJ5p8B8u9Tsk39nOyxbSV7I/V8TgDQq9EMK3ItHlwREREREdVgvObKOrzmioiIiIiIyAJcuSIiIiIiqsl4zZVluHJFRERERERkAa5cERERERHVZFy5sgxXroiIiIiIiCzAlasaJuKDnaKcurnxH7l9B8u+M3+R9lCCKFdrrroVu7lJ1kLV49p2opxT0Brd43iGqFZeuLo1vbTFurT9u5GVJcpJSFqsA4C9SSN1yDBEtbQz6tbFsibC8nbP+v5DyozN21tUy8jOFuXsYbWVmbQeDUW1am1TtziWPs/tgQGyoKH+k6R+5qyo1InhiaJcnWlrlRmfz2Tt0yX3x/n+wlEEwtEAxokcZcbeQj2KAADMQ+oxD5cKqkdoWPmaISV5zlVlkhbrAACb+v6XtkWvDHlxjUU5yagHe2ioqJYhGNWS0721qJbH0k2inISkLb3NzAOED43KxG6B1uHKFRERERERkQV4cEVERERERGQBnhZIRERERFSTsaGFZbhyRUREREREZAGuXBERERER1WCaaUIzK35ZyRXbqGxcuSIiIiIiIrIAV64q0IU+HeFw8yw147tY3SJYc3MXbc/Mz1OHIuuKatm0cFHO2LlXlJMIXXNalJO0S5a2d80Kk923uf7qv0P4uAeJann817o2sGZzWVvu7Eh1y3Dfg7JW8kl9a4lyDecdV2b0UFmL7+xwL2XG6/ckUa09zwaLco2HqdtCS1usS+knTykzQbtCRLWS+qi/z8hdolI4c2dzUS5onnpMgpSkxToAOKLrKzPOw7IW5bm3xikz0hbrVpK2WNd8ZKMB9LNpykzO7fGiWp7fbBTlJI6+Imu/HzVO9tiwkj1Y/bqn+avbcgPyx2NVJWmxLqWflr3vS3j+8JsoZ68fKco5jxxTZiTt9w0zX7S9SsdrrizDlSsiIiIiIiILcOWKiIiIiKgG4xBh63DlioiIiIiIyAJcuSIiIiIiqsl4zZVluHJFRERERERkAa5cERERERHVYLzmyjpcuSIiIiIiIrIAV64qkO/RbDgcRqkZyewMyUwSADCvaauutWabqJbU2SEJykztlSdEtfR9B0W508PU2wx9VzZvxzcpTJTz+XWPMmNc21pU68D89spM7KBfRbXMTTtEOW/BaC1D00S1orbL/uy0/5/qn1PDkbKfk3rKlVzjYbK5PI4GUcqMEegrqmVs2y3bpmD+ilNYK3KbKCYSuipZlHMKMjm9hPOTvpb9nCQzg+xBrp9BJ2WPVc+q0w/8LqqV8rT6tQUAov6tnkEnnV9ldGmrzNhWbxPVajBF9npW+rtqBRG8PpqZ6plHlSW7bydlxvsL9dzNymLl80QyvwoAsvoJ7rPUXGXGdOYA65eItlmpeM2VZbhyRUREREREZAEeXBEREREREVmApwUSEREREdVgbGhhHa5cERERERERWYArV0RERERENRkbWliGK1dEREREREQW4MpVRdqyG9DcSo3oFm4uu46HMuMjrGVvFivKBc8StNIWtJu/EpI265K29ABg27JXlMvq3VGZ8VuhbtcOALGDMpUZSdtZANAuqtvAXiqo/juKtD2tVK1d6kzurXGiWpIW2faQYFEt/cxZUc6ZdFQdim8lqqXFyXI5fu7KzNHH64lqNXxB1uZeQg/xlwWT1BFpi3UrGeeta5Fta9lUlDvdWdb+PXi2dT8nR5YsJ3psC7ntPKzMSN/npD8ne4sm6m3u2ieqJRl/AFj/+miVM4+qR14AQMh71j3OKoO0zbqVfD5Tt6bP7al+D3PmW/mbXsWqCddDuQJXroiIiIiIiCzAlSsiIiIioprMNC99uGI71RxXroiIiIiIiCzAlSsiIiIiohqMc66sU+VWrsaOHQtN0y774eZ2+QYR77zzTmHuzJkzxT5vGAamTp2Kpk2bwtPTE5GRkRgxYgSysoRXARMREREREV1GlVu56tu3Lxo1alTs9u3bt+ONN95Ar169Svy6lJQUjBw5Er6+vrhw4UKJmWeeeQZvvfUW+vTpgxEjRmDPnj146623sHXrVixfvhw2W5U71iQiIiIiqlicc2WZKndw1bp1a7Ru3brY7Y8++igA4OGHHy7x65544gnExMSgRYsWWLBgQbHP79q1C9OnT0ffvn3x+eefF94eHR2Np59+GosWLcKAAQMs+i4uscc0gN1eent0K9uL+h3IUIday9oIa6fTy7czf6KfTRPljC5tRTnb6m3KjLZGnQEgvj/czjuVGT1T3WJdSvq4sIeGinJZnaOVGU9hq+ELd3US5QI/cm3rX2mLdStlNpINN/D/eL0o5xC0dm/8zmlRLfUjVs7cvFOUs7VppswYv8lGFjgiwkU5Q/D6YuTkiGqJtrdTNr4hWHaXwVEvQplxHk8W1ao9c61so1YKE7wGpQvem66AtM26hLOurGU+LGzFbvP2VmaM7GxRLStbrNv8/EQ5K0cbVAbj2nainO2XrcqMx7eCMSFmvmh7VH1cFUs1WVlZWLRoEerVq4dbbrml2Of/85//4KuvvsK7774Lu91eYo1PPvkEpmli+PDhRW4fMmQIvL29SzwgIyIiIiIikqpyK1clWbx4MTIzM/H0008XO3jKzMzEk08+iUcffRTx8fF4++23S6yxadMm2Gw2xMfHF7nd09MTbdu2xaZN6r8+XE7dunWL/NswjDLXIiIiIiJyJc249OGK7VR3V8XK1Zw5c6BpGh566KFin3vhhRdgGAb+8Y9/lFojJSUFISEh8PAofppeREQEzpw5g7y8PMv2mYiIiIiIapYqv3K1b98+rF69Gt27d0d0dNHrRtasWYP33nsPCxcuREBAQKl1srOzSzywAi6tXhVk3N3dr3gfU1NTi/w7MzNTuT9ERERERFUCG1pYpsqvXM2ZMwcA8MgjjxS5PS8vD0OHDkWPHj1w7733Kut4e3sjNze3xM/l/HGxs7fgIlMiIiIiIqKSVOmVK6fTiQ8//BDBwcHo06dPkc/NnDkTe/fuxeTJk3Hw4MHC28//0cXm8OHDyMzMRMOGDQEA4eHh2L17N3Jzc4utYCUnJyMkJKRMq1ZERERERFczDhG2TpU+uPr6669x8uRJ/P3vfy92QHTkyBEYhoFbb721xK+Nj4+Hj49P4cyruLg4LFu2DBs3bsS1115bmMvJycG2bdtw3XXXVdw3QkRERERE1V6VPrgqOCWwpNlWgwcPRpcuXYrdPnPmTKxatQpz585FUND/5lf0798fkyZNwrRp04ocXM2aNQvZ2dkYOHCg5ft/tnNt2N09S80EWTjnytiunr+ScV9nUa2ABbJZLhKSmR4AoG2Szb+x8o8ekvsMALIF91ugQ/Z0Mp3WTSAyhfN7PL/eaNk2A3adE+V0y7YI2AMF1zBqsrOc9XOy/ZeQzq8S27hDGZE+eiQzp7Q8WTV9zwFRTssu+dTrP7O1bS6q5dy2W5RzNa1DC1HOdCt5LMhfOddvL8/ulI1gnprksQgA+r6D6pDFbD7q+XJaRB1RLd3C+1/r2FKUM4Rz41xNOr/KeUMHUc4jVTD78ZRsPqHmr57BpQfL5nRJ5lfVSKZ56cMV26nmquzBVUpKCr777jvEx8ejVavibwRt2rRBmzZtit3+zTffAAB69eqFkJCQwttbtWqFJ554AjNmzEDfvn1x2223Yc+ePXjrrbfQtWtXywcIExERERFRzVJlD67mzZsHXdeLNbIoj2nTpqFBgwZ4//338e233yIkJARPPfUUxo8fD5utyvf2ICIiIiKyHK+5sk6VPaJ48cUXYZomhgwZckVfN2/ePJimWWTVqoDdbseIESOwb98+5ObmIjk5GVOmTIGvr69Vu01ERERERDVUlV25IiIiIiIiF+CcK8tU2ZUrIiIiIiKiqwlXroiIiIiIajBec2UdHlxVoMCFG+HQ3ErN2GMbKuvoFrZrD9opaI0KIKt3vCh3pqX6IRT9SYqoVk50sCjnWLFFmTn9WIKoVug760S5gAXqltuV8XohbZ0rYQ8NFeX03fst26akpTIAmFF11bVOWddiHQAu3ql+Dnh9pX4sAgAMYWN6TVNnhG1sL8T4KzPeX2wQ1dLiBK27AeibZO27Xc3eookop+/ap8yYW3aJajkiwkU56wYzyGm/qsde5N4SJ6rluUY9ziLzVln7+oDfzohyWrZ6BIVz/yFRLSl788bKTL5X6e/3BSrjlCHJ65n3N7+Kanlslf1OIhl7YVzbTlRL1D79iGz8gaNOmCh3rmu0MuP3qcXjOKha4GmBREREREREFuDKFRERERFRTcYhwpbhyhUREREREZEFuHJFRERERFSDsaGFdbhyRUREREREZAGuXBERERER1WQcImwZHlxVoPzu7WA6PEsPLdts2fZsnoptATC27RbV8jstayPstUTdZl3aatjZorYo59FI3R617ldHZNsUpWRSnksU5bxOq19Z7PmyV59cf0HrbgC156hbhue1iBTVsq86LcpJGFlZsuB2dbtnLShIVCpjYGdRLmBhJbTYtfBCX2mbdQlb0glRTtJw3ubnJ6qV20nd+hoA3JarH9vaxVxRLQlpW/eTCbVEueDZslEVEo6GDUQ55+9Jyoz7d5tEtQxBxvffsudSXrf2opx91UFRTlQrMECUk4yg0K5pW869qTheX25UZqSvPpIW61KiFutSwpEXzhMnZTlP9agcopLw4IqIiIiIqAbjNVfW4TVXREREREREFuDKFRERERFRTWaYlz5csZ1qjitXREREREREFuDKFRERERFRTcZugZbhyhUREREREZEFeHBFRERERERkAZ4WWIE81uyGQ3MvNaP5+yvr6JmZou3ldG2pzLh/L5ur5Uy2bvaKlOfX6jkcAJB9W5wy47FUNqMlp1e8KOezP02ZiVgl+zmZm3eKclY6MyRBmfE/ki+qpV3bTpRz2y2YNabJ5nTpZ86qM8LZK4G7z4tylXHmgn69es6Px37ZzCkrn8P6adlss9xb1c9Ntwuy6XKS+VVSppvsrU4y80jftU9UK3iXKGYpyfwqANA6tFBmbDmyn5MzQD1fUVv7m6iWfdWvopyVjOh6suDWDGVEW7OtfDtTyezNYkU5fc8By7Z5+jH1exMA1J6tfj0w8/PKuztFhC5Xv4dZOSuzsmlwUSv2it9EpePKFRERERERkQW4ckVEREREVJOZ5qUPV2ynmuPKFRERERERkQV4cEVEREREVINppus+rLR//36MGTMGnTt3RmhoKPz8/NC2bVtMnDgRWVlZyq8/d+4c3nzzTdx0002IjIyEl5cXmjRpgqFDh+LYsWNl2iceXBERERER0VVn7ty5mDp1KmJiYjBmzBi88cYbaNKkCV5++WUkJibi4sWLpX79hg0bMGLECGiahieffBIzZszAbbfdhgULFqBVq1bYvXv3Fe8Tr7kiIiIiIqrJrtIhwv369cOoUaMQEPC/bq/Dhg1DbGwsJk6ciDlz5uDJJ5+87Nc3bdoU+/btQ0xMTJHbe/bsiRtvvBFjxozBZ599dkX7xIOrCmTk5MLQjNJDOTnKOvbgWqLtSdusS5x8KlGUM0rvNA8AqPfNKVEt88hxUc5nu7rFtLQ9qvexC6LcvmEhykyjZ9YLt+p6wbPWuXybqU+oH0O1Z64V1bKHBCszOW0biGpZ2eLbavaV6lbU0sd21t86KTM+n28QVpPx+K9sBIKVJK2cQ9+x7vHvqFtHlDPzZaMNJGMGHPUiRLWcx5NFOS1fV4eOpYpq2Twj1ZnYhqJaSf1l923kBNnrhoTuL3gTA+AeqW7ZbqSr27UDgBZZV5nRd+8X1cq/qaMo5/7jNvU2LWyxLiV9blZGC4TKGElDV65jx5KfA/3798fEiROxc2fp428aNGhQ4u09evRArVq1lF9fEh5cERERERHVYJppQnNBJz9XbAMAjh+/9Af7sLCwMn19RkYGzp8/j5Yt1TNk/4oHV0RERERE5DKxsbGw2f7X+iE1VbZaLqHrOl599VU4HA4MGDCgTDUmTpyI/Px8DBo06Iq/lgdXREREREQ1mfHHhyu2U8GGDx+OdevWYdKkSWjSpMkVf/1nn32Gf/3rX7jlllswePDgK/56HlwREREREZHLHDhwAP7+/pbXHT16NGbMmIGhQ4di1KhRV/z1S5cuxcCBA9GhQwd8+umn0DTtimvw4IqIiIiIqAarDtdcjR07FhMmTMDgwYPx7rvvXvHXf/fdd+jbty9atGiBZcuWlfngj3OuiIiIiIjoqjV27FiMGzcOgwYNwuzZs694xem7777DnXfeiaZNm2L58uUICgoq875w5aqS5d2sbqPqcar0AWiFzqaVc2/+JytC9peFgIPqjL5PEAJg8/MT5STthsWti7fJhsM1PR2uDjWIkm0z6agoJ2FvFC3K6QcPKzOOOrKOOhfi6oty0jbrIsHqF7nsMDdRKftd6hblAOC72No25a7mv+OMMiNoyG05W9vmotzZtgHqEGStnG1tmolqGR7qt0Tnxh2iWtJtQtCKXQ8LlNVKOSGKGdv3yuoJXIz0UWb81qsfi4C8xbq9hfoaCn3XPlEtx4Y9opxTMDZFc5O1dT/WSz3aI0LYit1tmWwES2W0Mq+q7MLRAHDYlZHKaF9PxY0fPx7jxo3D/fffj7lz5xZplPFnqampyMjIQFRUFLy9vQtvX7ZsGfr06YMmTZpgxYoVqFVLNgLpcnhwRURERERUk12lQ4RnzpyJV155BVFRUejRowc+/vjjIp8PCwvDjTfeCAAYNWoU5s+fj5UrV6Jbt24AgM2bN6N3794wTRODBw/Gf//732LbuO+++65on3hwRUREREREV51Nmy4Nrz969GiJbdO7du1aeHBVkp07dyLnj5XpZ555psTMlR5c8ZorIiIiIqKazDRd92GhefPmwTTNy36sWrWqWLZg1QoAHnzwwVK/3izD/vLgioiIiIiIyAI8LZCIiIiIqAbTzEsfrthOdceVKyIiIiIiIgtw5YqIiIiIqCargOuhLrudao4HV5XMlq9+kJlbd4lq2RvHKDMZbUNFtRqOVM+OAYCzDyeIchJaHdm+2evWVmac+w+Jah19JVGUixpn4cwmAem8FMn8KgCw+ahn0Ugv2vT8eqMoJyGZVwNA9GIcsHB9OfemKHvzxsqMLpxFYyV7sGz+hi58Doi2KZwLox/4XZkxhLPlfMLUMwAB2WNbcxqiWik3qmfthQsf/sZvsvlJEuYW2XuAmGS4pvD1wOtL9R1ieHqKakll1/dXZjyEd5khmF8FAOY1bdWhNdtEtSJec+37CQA4GjZQZvRg2axJ7WK+KGfstG6empUkr1NE5cGDKyIiIiKiGkwzLn24YjvVHa+5IiIiIiIisgBXroiIiIiIajJec2UZrlwRERERERFZgCtXREREREQ1mfnHhyu2U81x5YqIiIiIiMgCXLmqQI4GkXDYPErNpNVXt9wOad1UtD3t1Dllxvff1rVnBoCAw3nKjBbXSlTLELZLlrSmtwcGiGrVXafefwBw1K2jzOwb0UBUK+Y5QctwU3hfSNoDAzAELYLt9SNEtRw+3qKc8/ckZUbftU9UC51by3IC+vXtZcGVv6ozNruslqGLYlrHlsqMvnmnbJsWkrYulrSJNy5kiWp5HToryulZgnp7DopqRQquBZD9JOUcdcKUGeeJk5Zu0+6nbrmtBajbnQOA89hxZUZvLxu5oK39TZTzWLpJlLOSJmyzLiFpiy55/QRkjx9xPWGHcisXHmwtZb/fVNW27o76keqQkQscrfh9oaqDB1dERERERDWYZprQXNBswhXbqGw8LZCIiIiIiMgCXLkiIiIiIqrJ2IrdMly5IiIiIiIisgBXroiIiIiIajITgKyXVvm3U81x5YqIiIiIiMgCXLmqQM6kY4DmVmqm1uEjyjrZt8eLtueTlCLKSaTfnyDKBW88rczo+2RtkKXODFXvW8j760S13NNyRDkjTN1iWtRiXch0OkW5A/erW/kDQOM16szhu0NEtaLGrhXlTj6VqMyETZfVwvrtspyA20ZZ+3fJH/Cye3cU1fL+zwZRLiPWV5nx3ywqBUd0fWXGKXj9AQCbp6cop59NE+VEtQ4etqyWzb301+FC+bLnnZUkbdZtgtbpAGCcPy/K5beJUWbck9Sv7QBg81aPZsiqXfpIkgJeopS1bMJRJ7azmcqMM1n2Hixpiy4ZywAATuFoBitb/tubxYpy+j51b3dpi3XJ/WFaPKbCHttQmXEKxlQ4zXwrdqfCsVugdbhyRUREREREZAGuXBERERER1WQmXNQtsOI3Udm4ckVERERERGQBrlwREREREdVknHNlmSq3cjV27FhomnbZDze3Sxcmm6aJBQsW4J577kGjRo3g7e2NqKgo3HHHHdiwoeSLxw3DwNSpU9G0aVN4enoiMjISI0aMQFZWliu/RSIiIiIiqoaq3MpV37590ahRo2K3b9++HW+88QZ69eoFAMjNzcX999+Ptm3b4p577kF0dDRSU1Px7rvvIiEhAR9++CHuu+++IjWeeeYZvPXWW+jTpw9GjBiBPXv24K233sLWrVuxfPly2GxV7liTiIiIiIiuElXu4Kp169Zo3bp1sdsfffRRAMDDDz8MAHA4HFi1ahW6du1aJDdkyBC0aNECI0aMwIABAwoPmHbt2oXp06ejb9+++Pzzzwvz0dHRePrpp7Fo0SIMGDCgor4tIiIiIqKqyQCguWg71ZxmmlX/5MesrCyEh4fD398fSUlJsNvtpeb/9re/4YsvvkBqairq1KkDAHj55ZcxceJE/Pzzz7j22msLszk5OQgODkbXrl2xdOlSS/Y3MzMTAQEB6NHgSThspc/3SOtcV1kvaNtZ0Xb1PQdEOQnx7I/MbEFIuCIonDHjPHZcVk/A7u8vyumZ6hknjvqRoloXY2srM27Lt4hq7Z8tm7PU+BH1cCTNQzaLxszNFeUk7CHBsm1mX1RmbAGynyWEM4/SO0UoMx5psvkl0p9n5r2dlRn/Q7LTmO1H1DNr9JOnRLXMhDainLbuN2Xm4p2yuX2+P8rm30iem1c7La6VKGdu2iEraCv9PRQAYOiyWlc5R0S4KCedYWUZyc8IuOp/TpqbbFajmZ9XwXtScZxmPlZhCTIyMuAv/J3DlQp+Z72h1Qtw2GW/B5SHU8/Fjzteq7L3hxWq3MpVSRYvXozMzEw8/fTTygMrADh+/Djc3d0RGBhYeNumTZtgs9kQH1/0jd3T0xNt27bFpk2brN5tIiIiIqIqj0OErXNVHFzNmTMHmqbhoYceUmaXLl2KjRs34v7774enp2fh7SkpKQgJCYFHCX+dj4iIwNq1a5GXlwd3d9lfUf6sbt2iq0+GUQPWPImIiIiIqIgqf3C1b98+rF69Gt27d0d0dHSp2QMHDuD+++9HREQEJk+eXORz2dnZJR5YASg8CMvOzi7TwRURERER0VWLrdgtU+UPrubMmQMAeOSRR0rNHT58GN27d4emafjvf/+L0NDQIp/39vbGqVMlX1+Qk5NTmCmL1NTUIv8uOH+ViIiIiIhqjirde9zpdOLDDz9EcHAw+vTpc9lcUlISrr/+ely4cAE//PADWrUqfvFveHg4zpw5g9wSLsZPTk5GSEgIV62IiIiIqOYpWLlyxUc1V6UPrr7++mucPHkS991332VP6UtKSkK3bt2QkZGBH374Ae3atSsxFxcXB8MwsHHjxiK35+TkYNu2bejYUdZ1jYiIiIiIqCRV+rTAglMCC2Zb/dWRI0dw/fXXIz09HT/88AM6dOhw2Vr9+/fHpEmTMG3atCKt2GfNmoXs7GwMHDjQ2p0HYKalw9RKXw3TPQRtYM+ki7ZnD1O3+L7Yrr6olsfK7aKcU9KWWxMOThD+NcMeKDjlMqSWqFZ+Hdnpm2nNvdSbfH+dqJbbkWOinISkxToA2JvFKjMnuoaIaoW+K/s+JfQzsjEDWocWyoxzyy5RrfQHEkS5wA/V32duzzhRLSn/T9ZbVksTtpgW1RK0WAcAm5+fMuP15UZlBgBMQS0AMLqW/Ae1P7Nnyto4a7q6rbWxXdYiHvGy9un2c+rW+mda+IpqhR4LE+WcJ9Rt+lOeTxTVCn99rTJjb95YVMsUju2wXVCPANGTT4hqubzFOgBb2+bKjLFtt6zWnxp3lcZsFqPObJW9hlrJyhbrjsh6opyV41yqFV5zZZkqe3CVkpKC7777DvHx8SWe5nf+/Hlcf/31SEpKwlNPPYV9+/Zh3759RTI33ngjwsIuvdm0atUKTzzxBGbMmIG+ffvitttuw549e/DWW2+ha9euHCBMRERERETlUmUPrubNmwdd1y/byOLs2bM4fPgwAGD69OklZlauXFl4cAUA06ZNQ4MGDfD+++/j22+/RUhICJ566imMHz8eNumgWyIiIiKi6sQAIDzRqNzbqeaq7MHViy++iBdffPGyn2/QoAHMK1xatNvtGDFiBEaMGFHe3SMiIiIiIiqiyh5cERERERFRxdNME5oLrodyxTYqG8+FIyIiIiIisgAProiIiIiIiCzA0wIrkJ55HprmVmomZIm6ra9+7pxoe5I2yO7fbRLV0ry9RTm7oN2ztNXtqSdkrX9rz1S3/kV6hqiWW3qwKBeyWt0y3B4sa/9++o4mykxAkqDFPQCP/bJ2w+aJM8pM6LsHRLWkJC2Cz/ZXt9EGgOy66qtsow74i2oF7coU5SQnLvhsT5XVim0oyukHfhflJCqjxbRx/rxltcyLF0U5209blZnU4bLXljrTBK8tUht3iGLq5u9AkPBxoXdsKcrZBK+PkhbrVjN2ytrcW3k9vGRMBQAcuz1UmQl/Q3afSdqsa+3U4ycAwJC2T7ewzbrerb0oZ1/1q2XblGCL9XJiK3bLcOWKiIiIiIjIAly5IiIiIiKqyQwT0FywqmRw5YqIiIiIiIgEuHJFRERERFST8Zory3DlioiIiIiIyAJcuSIiIiIiqtFctHIl6sV7dePKFRERERERkQW4clXJ8ls3UGbcdst+TEamen5P7m1xoloeS2XzsE4+0EaZCdpfV1Sr7ir1LCkAMNs0U2ayotUzv66E15eCfRN2wKn1wTplJutvnUS13M6li3JGdrYoJ6F5eIhyF29opcwE/yabRxY0Xz0XRjIvCABsew6LcpKf5tnr6olqBSxcL8qJxKvvVwDQft2jzJhOZ3n3pgh74xhlRt9/SFRLum+SeWrS+VWSWkZOjqiWlD0wQJnRhXP7zM07ZTlRyjrGfuvmt0lJ50TpgplTABC+x9o5gCqmcC6V5DkHCJ93Nrtsm9L5VYJ6dn9fUSnpc4DKgddcWYYrV0RERERERBbgyhURERERUU1mmHDJujbnXBEREREREZEEV66IiIiIiGoy07j04YrtVHNcuSIiIiIiIrIAD66IiIiIiIgswNMCK5ntp63KTNbt8aJaXt8J2qNqolIwE9Qt1gGg9pwt6lr5eaJa0lbaEl6/WVhMSI+VteXGxnPKiM/nG0SlnF3biXKSx5mjYQNRLT05VZSTtPOvjJMDLnaTtWiW7H+t5bIW08l/TxTl6rwpaBm+cYeoVmVcMixp93z+ns6iWn6LZO3rrWyNnnFnW2VGul9ax5ainC5sn341s7rlv61tc3UmTT2aBACcV3lbaPFog2vaKjP2rftFtf6/vTuPi6rq/wD+mWEZFgFBFFkEQcUtlVRc4DHJpSxTQ8N80ixE/WVqmWlPi6ll2qJpWZQKLukrK33S0lKfn6ZZueSSuJZbuIG5lKGIsgzf3x8+Mz/HGZkzegdw+LxfL17ZmS/n3vvl3jNz5tx7jvLSHqX239W1nGK9IFltCROf5Wrvr+4R4XZjSk7lKNV1R+BU7JrhyBUREREREZEGOHJFRERERFSVcSp2zXDkioiIiIiISAMcuSIiIiIiqsr4zJVmOHJFRERERESkAY5cERERERFVZYJyGrly/iYqGjtXTvRnahu4eXqVGVPzl0t26/H6ZpvS9lTOV8O39qeXBgDd3WrTVatMs+4eVUeprsLomkpxht/sT31a8scZpbpUufn7243Jae+nVFdB7/Z2Y2Je3KJUl8oU66pKfj+mWV2q3IJrKMXpvMq+jgBA8vOV6lKZYl2Vztv+fgFA7Z/V9k3nbr9J1npaay2pTF1c/ZdzapWF1FIKM577026MW4D96xdQn2ZdhWg4xXp+X7Xp66tvPqkUd6pPlN0YpWUBFLk1iVWKKz18TC1u9692Y4ztmyvVpTuulrNKq00zpTDdpiy7MapLYxQ+GK8U5/3jb/a3ecn+ZyBArW30+15tKnnVZV9U31OIbsTOFRERERFRVcZnrjTDZ66IiIiIiIg0wJErIiIiIqKqrLQU6jeH3u52XBtHroiIiIiIiDTAzhUREREREZEGeFsgEREREVFVxgktNMORKyIiIiIiIg1w5MqJqh8phLu7rsyYoiD76+TkrVRbI8TwaZDdGLcitW8Mqh29qBTnFlPXbozq+knHh0UoxcV8b38NqyPvqa0LU3+U2ro2f/VoYjcmYtkJpbpKTp6yG1Pa4W6luvTFait2FFfzsBuT3cdNqa4m76itIVZ6xv56Rjp/tbXB/ugSajcmOEtxTZJte9XiVJQorpiydY9S2MV+9s9bLddiuvxIW6U4/x+z1Sp0s/99XX5jtbXNzt8VohRXZ/JZuzHGCxeU6nJTWFvLeMb+9rTmt2yHUlyJ4hpotd+3v1ag6vqExpzT9mMOqK0/pCXd5t3lvk1VJZ1b2Y1x/26nWmVatmeKVNcKVJm2wK1+tFJdxiP22yDV61yV8e88Teur9DhypRmOXBEREREREWmAI1dERERERFVZqQAoh1GlUo5cERERERERkQKOXBERERERVWEipRBx/gK/5bGNisaRKyIiIiIiIg1w5IqIiIiIqCoTKZ/noarAbIHsXDmR24+74aYrewpsQ3SU3Xo8ehxX2l7pP+Lsxuh/ylKqS19bbRrk0hD707+rinlxi1KcJMbZjYl9RW162sL7WivFBa06aDemRMNpYEt81S5NzzW7lOIMcfanko8ddkCpLiicswBQWlBgP0Zxmv6QH+1PJW/89bBSXW7BalOBG8//aTem5JT9Ka0BwK2G2nWi5TTrKvx3258uHwBK6tmfCh8ACkLtLy3ht1rt2qy2Qe0aUJwMX60uhWnW9V72jxEA0FBtimldkf3p01XPbS2VHD+pWV16Hx+lOJU2Q5XOXe38EcXp61WO4a9HWijVVX2h2ntdZeXWIEYpznj4d/sxClOsE91p2LkiIiIiIqrKpJxmC6wCI1d85oqIiIiIiEgDHLkiIiIiIqrKSksBXTnM5MfZAomIiIiIiEgFO1dEREREREQa4G2BRERERERVGSe00Aw7V07092Nt4OZZ9rS9eQ3s11PnO7Wpo/+ub7AbU80/XqkurNquFHY13v603F573dS2Wao2qbJHzl92YyS8tlpdfxcqxRk1nGbdLTDQboz38b+V6lKdhvpCU3+7MQFZanWVZKstDaClvLvsT2UeUKI2PXBxiP1cAID+J/tTsasy/mn/nAWA/JS2dmOqLf35dnfH7K+2tZTigv5zVCnOP8/+3+nEyDilusLf3qwU51bf/pTnqtM9X+nVxm6M99fblOqCt/3lAwAAu3+1G+LWJFapKt3Fy0pxqksIqFDat9NqU/5DcSp294hwuzGnUtSWjKg9Q+08U5kmXssp1ou6qb1Xe65Re6/Wkq5EywUQ1KicZ8YDh5TquvyI/XYWAPw3Kkwlf07x3KYqhZ0rIiIiIqIqTEpLIeUwoYVwQgsiIiIiIiJSwZErIiIiIqKqjM9caYYjV0RERERERBrgyBURERERUVVWKoCOI1da4MgVERERERGRBjhyRURERERUlYkAKIeZ/KrAyJVOpAocZTm7ePEiAgIC0LHdOLi7l73OlVu+/XWWShXWQVGl9/FRi6uttv4NCovshpTk5CpVpbqWi8paFm4N1NY8Mh62v44FAOj9/OzHBFVXqqvk+EmlOBVusfWU4oyH1NYpUtpmY4XF2QAYfz2s2TYrLb3aGm76Jmo5Q7b9c6P0stpaRirco9XWAlJd20zv62s3Rsv9V+VeO0Qt0Lvs9hoACuuqrTvotuEXpTiVNllljSXN6XRqcQofIS7+s51SVb5/2H8/AdRzq1SXxu8VWnGvE6EW6KZ2A1LJsRP2gxTbM9U1KVXoWt+lFCc79mm2TS2ptKElpYVYd+xD5OXlwd9fbZ3F8mT6zNrJMwXuOsX1+W5DiRRjfdHSSpsPLXDkioiIiIioCpNSgZTDM1dVYUyHz1wRERERERFpgCNXRERERERVmZSifJ65KodtVDCOXBEREREREWmg0nWuJk6cCJ1Od9MfDw/Lh+0OHjyIhx9+GIGBgfD19UWHDh2wfv16m3Xn5eVh5MiRCA8Ph5eXF5o2bYqPP/64Stz/SURERETkSg4dOoTx48ejXbt2qFmzJvz8/BAXF4fJkyfjsgMTKK1atQoJCQnw9fVFUFAQUlJSkJ2dfUv7VOluC+zduzfq169vVb5nzx5MnToVPXr0MJcdPXoUCQkJcHd3xwsvvICAgABkZGTg/vvvx+rVq9GlSxdzbFFREbp27Ypdu3Zh5MiRaNy4MVavXo2nn34aZ86cwcSJE8vj8IiIiIiIKpU7dUKLefPmIT09HT179kT//v3h4eGBDRs2YNy4cViyZAm2bt0Kb2/vMutYtmwZHnnkEbRo0QJTp05FXl4e3nvvPSQmJmLHjh0ICwtzaJ/umKnY/+d//gdz5szBN998g+7duwMA+vbtiy+//BI7d+5EXFwcACA/Px9NmzaFl5cXfvvtN+j+O53sRx99hOHDh2PmzJkYOXKkud4+ffpg5cqVOHz4MKKi1KYltsc0rWWXqOFw1xvKjFWZHvWvb9SmKDfMD7Qb4/vlz0p1qU5dXPLHGaU4FZf7tFWK87xkfxpY7z1q052r7r++eSO7MaV7flOqS0vF97VWivP43x2abVN16lz9ZfvLDKhO1577QoLdmMjFatOFl5zKUYvr1MpujOFMvlJdxv0HleJ0dze1GyO79ivVpaQCpl5WXQ5Cdfpxt6YN7caU+NufYh0AdFt22405O9z+uQgAYSsUpr4GUPrnX3Zj9DWClOoqOXlKKa68uQXaf28CAOOFC07eE2vuUXWU4rRcQkOF8d6WSnF5dcv+jGESNH/L7ezOLTn5ikK7vSpPqS5N271yViLF+B5fV9qpx02fWZN0yeU2Ffv3slyzfOzYsQMNGjRAQECARfm4ceMwefJkfPDBBxgxYsRNf7+4uBh169aFu7s79u/fj2rVqgEAsrKy0KpVK6SlpWHOnDkO7VOluy3QlsuXL+Pzzz9HREQEunXrZi5bsWIFkpKSzB0rAKhWrRoGDx6MQ4cOYfv27ebyxYsXw8fHB0OGDLGoe9SoUSguLsYXX3xRLsdCRERERFSpSGn5/WiodevWVh0rAHj00UcBAPv2lb1G2saNG5Gbm4vBgwebO1YAEBcXh6SkJHzxxRcoLi52aJ8q3W2BtixduhQXL17EM888Aze3a9+07tmzB4WFhWjfvr1VfLt21xYs3L59O9q0aYPS0lL88ssvaNmyJby8LL/BbNOmDXQ6nUVHzFGhoaEW/280XvuWt6RUYYFdsf8HMxbYHwEAgJLiq5psDwCgsO8O1adSl8L+A4C+xP636Cq5B9T3X29UWOxZw1yoKilRy5lOw33TGRX/Tkb7fwOj4n4ZCxXO7VLF60Rxmyq5dVM4LwD149Qp1Cdanmeqb3Ki4ciVqF2bqteTKOSspESpKqXrxFikdv6rno+lCvnQa3xulzdR/JurXieaqqS5NSq27cYitZuPKuLcUGq3FdtQTdu9claCa/te2W8UK0ExUA67aMpHgwYNoNf//xjP6dOnNd3OqVPXRvJDQsq+E8v0+f9m/Yn169fj0KFDaNrU/p0lJndE52ru3LnQ6XQYNGiQuSw3NxcAEB4ebhVvKsvJuXb7z4ULF3DlyhWbsQaDAcHBweZYLZguoO9PZmhTYYo21ThEu7v91H39dQVsVFHlXBwe+K4CcvZLBWzzPfvbVLvxzgEbK+A4d5fzNitiRly1u/3U/apxffbMUfsbaXoTk9Y5K2/lf7efOrW7N8vfD5X4/VDVVPvHcKQcdqOyuHTpks0Rlorm6emJ2rVr46c/VpXbNvV6vfmxHWcwGo2YNGkS3N3d8dhjj5UZq9qfcKnO1cGDB/HTTz+hc+fOiI6ONpcX/Pd+fIPB+n5j0+iUKaasWFN8geL9/bbc2NsuLS1Fbm4u/Pz8lE+eBg0aAAAOH1Z7BqWqY74cx5w5hvlyDPPlOObMMcyXY5gvxzkjZyKCS5cuOTwpQnnx8vJCdnY2iorURpi14OnpaXUnmZZGjRqFLVu2YMqUKWjYsOznch3pT6iq9J2ruXPnAgAGDx5sUe7z34eiCwuth5SvXr1qEVNWrCneR/EhaxV6vR4REREO/w6ASvmwY2XEfDmOOXMM8+UY5stxzJljmC/HMF+Oc1bOKuOI1fW8vLyc2tkpT6+++io+/PBDDB06FC+99JLdeEf6E6oq9YQWJSUlWLhwIWrUqIHk5GSL10zfANi6nc9UZhrOCwwMhLe3t83YwsJCnD9/3uZwIBERERERVX4TJ07EG2+8gdTUVMyaNUvpdxzpT6iq1J2rlStX4syZMxgwYIDVcF2zZs1gMBiwZYv19KJbt24FcG0GEeDaNxEtW7bErl27rHqm27Ztg4iYY4mIiIiI6M4xceJEvPbaa3jiiSeQmZmp/FhOfHw8ANy0P+Hv74/YWLUlkUwq9TpXDz30EL799lvs2bMHzZo1s3o9JSUFy5Ytwy+//IIWLVoA+P91rgwGAw4ePGhObnp6OkaMGGFznasVK1bg8OHDqFu3brkcFxERERER3b7XX38dEyZMwOOPP44FCxZYzEJ4vdOnTyMvLw+RkZHmW/2Ki4sRFRUFDw8Pi3Wudu/ejZYtWyI1NRWZmZkO7U+l7Vzl5uYiMjISrVq1ws8/21749siRI2jTpg08PDzw3HPPwd/fHxkZGdi7dy++/fZb3H///ebYoqIiJCQkYPfu3XjmmWfQuHFjrFq1CsuXL8e4ceMwadKk8jo0IiIiIiK6TabBk8jISEyaNMmqYxUSEoKuXbsCAJ588kl88skn2LBhA5KSkswxS5cuxaOPPooWLVpgyJAhuHjxImbMmAGdToedO3c6fFtgpZ3QYsGCBTAajVYTWVyvfv362LRpE1588UW89dZbKCoqQsuWLbFmzRp06dLFItbT0xPr1q3DuHHj8Nlnn+HPP/9EvXr18MEHH2D48OHOPhwiIiIiItKQaZ2qEydO4IknnrB6vWPHjubO1c2kpKTA29sbb7zxBsaMGQODwYDOnTvj7bffvqU5GSrtyBUREREREdGdpFJPaEFERERERHSnYOeKiIiIiIhIA+xcERERERERaYCdKyIiIiIiIg2wc0VERERERKQBdq6IiIiIiIg0wM4VERERERGRBti5IiIiIiIi0gA7V0RERERERBpg54qIiIiIiEgD7FwpyM/Px5QpU9CsWTP4+fkhODgYCQkJWLBgAUTEKn7RokVITEyEv78/qlWrhrvuuguTJk2yiPn++++h0+ls/jz00EM292PVqlVISEiAr68vgoKCkJKSguzsbJuxBw8exMMPP4zAwED4+vqiQ4cOWL9+/e0nQ4FKvo4dO3bT4zf9fPrppxb1FhYWYvz48YiOjobBYEC9evXwxhtvoLi42OZ+LFy4EHfffTe8vb0REhKCwYMH49y5czZjf/75Z3Tp0gV+fn7w9/dHt27dkJWVpWleyuKMnJUVf9ddd9ncD0fykJubi4EDB6JmzZrw9vZG69atsXTpUs1zY4sj1+Tq1avRuXNn1K5dG76+vmjYsCHGjBmDM2fOWNWbl5eHkSNHIjw8HF5eXmjatCk+/vhjm9d5aWkpZsyYgUaNGsHLywt16tTB888/j8uXL9vcZ0euX605I1+u3IYB6jkTEcyaNcvc1lSvXh3dunXD1q1bbdbrqu2YM/Llym3YmTNn8NRTT6FOnTrw9PREZGQknn32Wfz9999WsY5cC67ahjkjX67ehlEFEiqT0WiUf/zjH6LX6yU1NVVmz54tM2bMkDZt2ggAeeGFFyziU1NTRa/XS0pKinz00Ucya9Ys+de//iVpaWkWcRs2bBAAMnToUFm0aJHFz4YNG6z248svvxSdTidxcXGSnp4uU6ZMkVq1akloaKjk5ORYxB45ckSCgoKkVq1aMmXKFElPT5e4uDhxd3eXtWvXap6j66nmKz8/3+q4TT8BAQHi6ekp586ds6i7V69eAkAGDRokGRkZMmjQIAEgTzzxhNV+TJ8+XQBIx44dZfbs2fLqq6+Kr6+vNGnSRPLz8y1it2zZIgaDQWJiYmT69Okyffp0iYmJkWrVqsmePXuclisTZ+UsOztbAEhycrJV/MqVK632w5E8/PnnnxIdHS2+vr7y6quvyuzZs6Vjx44CQObNm1cp8iUiMmfOHAEgrVq1kunTp8vs2bNl8ODB4ubmJtHR0RbnQmFhocTHx4u7u7s899xzMmfOHElOThYAMmHCBKv9eOaZZ8z5nTNnjjz33HPi7u4u9957rxiNRotYR65frTkrX67ahok4lrOnnnpKAEhSUpLMnDlT3nrrLYmJiRFPT0+beXDFdsxZ+XLVNuzMmTMSFRUlHh4eMmLECJk1a5aMGDFCPDw8JC4uTi5fvmyOdeRacNU2zFn5cuU2jCoWO1d2bN68WQDIqFGjLMoLCwslOjpaAgICzGWZmZkCQBYuXGi3XtNFPX/+fLuxRUVFEhYWJpGRkXLp0iVz+a5du0Sv18uQIUMs4lNSUkSv18uuXbvMZZcuXZLIyEiJjY2V0tJSu9u8VY7kq6zff+SRRyzKv/32WwEgo0ePtigfPXq0AJBNmzaZy86dOyc+Pj4SHx8vJSUl5vIVK1YIAJk8ebJFHfHx8eLn5yenTp0yl506dUr8/Pyka9euSsd9O5yVM9MHE1tvqrY4koexY8cKAFmxYoW5rKSkROLj4yUoKMjiPNWaI/mKjY2V0NBQuXLlikXsK6+8IgBk+fLl5rL09HQBIDNnzrSI7d27t3h4eMixY8fMZfv27ROdTie9e/e2iJ05c6YAkE8//dRc5uj1qzVn5ctV2zAR9Zzt2rVLAEi3bt0s9unChQsSEhIiDRo0sPiQ6qrtmLPy5apt2LPPPisAZPHixRblixcvFgAyadIkc5kj14KrtmHOypcrt2FUsdi5smPNmjUCQN555x2r1+Lj4yUsLExEREpLS6VevXrSsmVL8+sXL1686QV0/UWdn59v9WHmemvXrhUA8vrrr1u91qlTJ/H395eioiIRuTa6YTAYpFOnTlaxr7/+ugCQn3/+ueyDvg2q+boZ07e4a9assSjv37+/AJATJ05YlJ84cUIAyLBhw8xlGRkZN+3kxsTESOPGjc3/f/jwYfO3yLb2RafTyenTp8vc59vlrJxd/8HkypUrFt/u3cjRPISHh0u9evWsYhcuXCgA5Isvvihzn2+HI/mqXbu2NGnSxCrO9CHkf//3f81liYmJ4uPjY3Ut/vDDDwJA3n77bXOZqbPxww8/WMReuXJFfHx85IEHHjCXOXL9OoOz8uWqbZiIes5MI0ufffaZVdzQoUOtzhFXbceclS9XbcOaN28u3t7eVp8PjEajeHl5SUxMjIg4fi24ahvmrHy5chtGFYvPXNnRpk0bVK9eHe+88w6WLl2KEydO4LfffsNLL72EnTt3YuLEiQCu3Vt79OhRJCQkYNKkSahRowb8/f1RvXp1PPXUU8jPz7dZ/7PPPotq1arB29sbsbGxeP/9963ujd6+fTsAoH379la/365dO1y8eBGHDh0CAOzZsweFhYU3jb2+PmdQzZct+fn5WLJkCaKiotC1a1eL17Zv347w8HDUqVPHorxOnToICwuzOCZ7+frtt9/Mfw97sSKCnTt3qh38LXJWzkzeffdd+Pj4wNfXF3Xq1MH48eNRWFhoEeNIHk6fPo2cnBzz+XRj7PX1OYMj+br//vtx4MABPP/88/j1119x8uRJLFu2DJMmTULHjh3RqVMnANeePfjll19w9913w8vLy2p7Op3O6hzT6/Vo06aNRayXlxfi4uIcOh+vv36dwRn5up6rtWGAes5M15GPj49VHaay658lctV2zFn5MnG1NqywsBBeXl7Q6XQW5Xq9Ht7e3vj9999x/vx5h64FV27DnJGv67liG0YVy72id6CyCwwMxIoVKzB48GD07dvXXO7n54cvv/wSDz/8MIBrnSsA+OKLL1BUVIRx48YhOjoa33zzDWbPno2DBw9i/fr15sbBw8MDPXv2xIMPPoiwsDDk5uZi7ty5GDVqFLKysjB//nzztnJzcwEA4eHhVvtnKsvJyUHTpk2VY51FNV+2fPHFF8jPz8eYMWOg11v2+3Nzc9GkSRObvxceHo5Tp05ZxJrKbcWKCHJzcxEbG1vh+QKclzO9Xo9OnTrh4YcfRlRUFM6dO4clS5Zg0qRJ2LJlC9asWQM3NzcA6ueYo7HO4Ei+3n//fRQUFOD999/H9OnTzeWpqamYPXu2+fgvXLiAK1eu2Dwmg8GA4OBgi2PKzc1FcHAwDAaDVXx4eDg2b96MoqIieHp6OnT9OoMz8gW4bhsGqOfM9Ddbv349evbsaY4TEWzcuBEAcPLkSXO5q7ZjzsqXq7ZhTZs2xcGDB5GVlYW4uDhzeVZWFi5cuAAAOHHihEP76cptmDPyBbh2G0YVi50rBaYZ/3r27ImEhAT89ddfSE9Px2OPPYavv/4aXbt2xaVLlwAA586dw9q1a9GlSxcAQJ8+fSAi+OSTT7BmzRo88MADAIDExER8/fXXFtsZMmQIHnzwQSxYsACDBw9GYmIiAKCgoAAAbDaCpm+oTDGOxDqLSr5syczMhF6vR2pqqtVrBQUFNo8JuHZc1x/TnZYvwDk5i4yMxHfffWdRlpaWhqFDhyIjIwOff/45+vfvD+DOy5lqvjw8PBAZGYnk5GT06NEDPj4++M9//oN58+bBzc0NGRkZdo/JdFw3nmNlxZpiPD09XTJfgGu3YYBazh544AE0adIEH330EcLCwtC7d28UFBRg+vTp2Ldvn9W+unI75ox8uWobNmrUKHz11Vfo27cv3nvvPdx1113Yv38/Ro0aBQ8PDxQXF6OgoECzYzLF36ltmDPyBbh+G0YVh7cF2rF3714kJCSga9eumDp1KpKTk5GWloaffvoJtWvXxpAhQ2A0GuHt7Q3g2rcSpo6VyRNPPAHg2rSfZdHr9XjppZcAAN9++6253HS7xI23QQDA1atXLWIciXUG1Xzd6MCBA9i6dSu6du2KyMhIq9d9fHxsHhNw7biuP6Y7KV+A83J2M6+88goA1z/HSktL0a1bN2zevBlLlizBwIED8cgjjyAjIwNjx45FZmYm1q1bZ/eYTMd14zlWVuz1dbpivm7GFdowQD1n7u7uWL16NRITE/Gvf/0LDRo0QIsWLbBr1y689dZbAAB/f39zva7ajjkrXzdzp7dhHTp0wOeff45Lly6he/fuiIqKQo8ePXDvvfeapwD39/fX7JhM8XdqG+aMfN2Mq7RhVLHYubJjxowZuHr1KlJSUizKfXx80L17dxw/fhzHjh1DREQEAKB27dpWdYSGhgKAefi6LHXr1gUAnD9/3lwWFhYGwPYwsqnMNNTsSKwzqObrRnPnzgUADB482Ga9YWFhNx1Gz8nJsTgmeznQ6XTmmIrOF+C8nN1MnTp14Obm5vLn2E8//YQff/wRffr0sbpX3/S7pluRAgMD4e3tbfOYCgsLcf78eatz7Pz58zbfPHNychAcHAxPT09zrKncVixw5+WrLHd6GwY4dk1GRkZiw4YNOH78ODZu3Ih9+/Zh9+7d5m+oGzVqZP59V23HnJWvm7nT2zDg2jV16tQp7Nq1Cz/88ANyc3Mxa9YsnDp1Cu7u7qhfv75D++nKbRigfb7K4gptGFUsdq7sMF0ItkYOSkpKzP9t1qwZvLy8bF5Mpvvoa9WqZXd7hw8fBgCEhISYy+Lj4wEAW7ZssYrfunUr/P39ERsbCwBo1qwZDAbDTWMBoHXr1nb341ap5ut6RUVFWLRoEWrWrIlevXrZrDc+Ph45OTkW9+MD1+7Pz83NtTgme/lq2LAhqlWrphSr0+nQqlUr2werEWfl7GZ+//13GI1Gh86x6/MQGhqK8PBwmw+eV6ZzzJG86vV6tGzZErt27bL6sLFt2zaIiNU5Vlpaim3btlnEXr16FVlZWQ6dj9dfv87gjHyV5U5vw4BbuyYjIyNxzz33mJ87WbVqFfR6Pe6//35zjKu2Y87K183c6W2YiZubG+Li4tChQwfUqlULf/zxB3bt2oWOHTvCx8fHoWvBldswEy3zVRZXaMOoglXEFIV3klGjRllNYSpybV2O0NBQCQwMNK9BYppmd9myZRaxvXv3tlrD5Pz581bbunr1qiQmJlpN01lUVCShoaFW6ytkZWWJXq+3WqD4kUceEb1eL1lZWeYy0/oKDRo0cOr6Co7ky2Tp0qU213653jfffFPm+jA//vijuezs2bPi7e0tbdq0sbk+zPVrYoiItG7dWvz8/CwWAczJyRE/Pz/p3Lmz+sHfImflzNY5ZjQa5dFHH7U51bAjeRgzZsxN14ipXr26XLx40f6B3yLVfGVlZQkAad68udU0waaFTL/88ktz2YcffnjTNWLc3d0lOzvbXLZnz54y14hZtGiRuczR61drzsqXq7ZhIrd2TV7v66+/trkwsKu2Y87Kl6u2YbYYjUZJSUkRnU4n69evN5c7ci24ahtmixb5cuU2jCoWO1d2HDt2TIKCgkSn08mAAQPk448/lsmTJ0vdunUFgKSnp5tjjx8/LiEhIeLl5SVjx46V9PR06d69uwCQgQMHWtTbunVr6dmzp7z22muSkZEhr732mjRo0EAAyMiRI632Y8mSJRYrg7/55ptSq1YtCQkJsVgwUeTaeh+BgYFSq1YtefPNN80rg7u5uVmthaQ1R/Jl0q1bNwEgBw4cKLPuhx56SABIWlqaZGZmSlpamgCQAQMGWMVOmzZNAEhSUpLMnj1bxo8fL76+vtKoUSOrxSE3bdoknp6eEhMTIzNmzJAZM2ZITEyM+Pr6WjSMzuKsnCUnJ0vnzp3l1VdflTlz5siUKVOkVatWAkB69eplsViniGN5OH/+vERFRUm1atVk/PjxMnv2bElKShIAkpmZqU1ibsKRfPXp08fcYXjnnXfkww8/lB49eggAadeuncUHvsLCQmnVqpW4u7vL6NGjJSMjQ5KTkwWAjBs3zmo/RowYIQAkOTlZMjIyZPTo0eLu7i4dO3a0yq0j16/WnJUvV23DRBzL2aBBgyQ1NVXef/99mTNnjgwcOFDc3NwkPj5e/v77b6u6XbEdc1a+XLUNu3TpkjRu3FhefvllycjIkGnTppmP68bFoR25Fly1DXNWvly5DaOKxc6VgiNHjsjAgQMlPDxc3N3dxc/PTzp06GDxLa5Jdna2PPbYYxIcHCweHh7SqFEjmTZtmlVD9dZbb0m7du0kODhY3N3dJSAgQJKSkqxWIL/eypUrpW3btuLt7S3Vq1eXPn36yJEjR2zGHjhwQHr27CkBAQHi7e0tiYmJsnbt2ttLhCJH8nXixAnR6/WSkJBgt94rV67IK6+8IlFRUeLp6SnR0dHy+uuv33Txwvnz50vz5s3FYDBIzZo1JTU1Vc6cOWMzdvPmzdKpUyfx9fWVatWqyX333Sc7d+507MBvgzNylpmZKR07dpSQkBDx8PCQatWqSdu2bSU9Pd3qfDRxJA+nTp2SAQMGSI0aNcRgMMjdd98tn3/+ueMHfwtU81VYWChvv/22NG/eXLy8vMTT01MaNGggL730kuTn51vVe+HCBRk+fLiEhoaKp6enNG7cWD744AOb3zKWlJTItGnTJDY2Vjw9PSUsLEyee+45qw+9Jo5cv1pzRr5cuQ0TUc/ZrFmzpGXLluLv7y9eXl5y1113yeTJk6WgoMBmva7ajjkjX67ahhUWFkq/fv2kbt26YjAYJDAwUO67776bfuh25FpwxTbMWfly9TaMKo5O5IaV0oiIiIiIiMhhnNCCiIiIiIhIA+xcERERERERaYCdKyIiIiIiIg2wc0VERERERKQBdq6IiIiIiIg0wM4VERERERGRBti5IiIiIiIi0gA7V0RERERERBpg54qIiIiIbtmbb76JlJQUxMTEQKfToW7dug79/tmzZ5GamormzZsjKCgIXl5eqF+/PtLS0nDkyBGbv5Obm4uBAweiZs2a8Pb2RuvWrbF06VKbsUePHkX//v0REhICg8GA+vXrY8KECbh69aqjh2ply5Yt6NmzJyIiIuDt7Y169ephyJAh+P3332+7broz6UREKnoniIjozjBx4kS89tpr2LBhA5KSkip6d4ioEtDpdAgKCkLLli2xc+dO+Pv749ixY8q/f/DgQQwaNAjt27dHVFQUvL29cfjwYcybNw+FhYXYunUrmjRpYo7/66+/0Lp1a5w9exajR49GREQEFi9ejI0bN2LevHlITU01x/72229o3749SkpKMHz4cERHR2PLli1YuHAh7rvvPqxevRo6ne6WjnvNmjXo3r076tWrh0GDBiE4OBj79+/HnDlzYDAYsHfvXoSHh99S3XQHEyIiqpIAOPSzYcMGmTBhgvnfROTaNmzYoHS9Hz161Pzvpk2bSlRUlCbb37ZtmwCQYcOGWZSPHTtWAMiKFSvMZSUlJRIfHy9BQUFy6dIlc3mvXr1Ep9PJpk2bLOqYMmWKAJBFixbd8v7dd9994uHhIefOnbMoz8jIEAAyY8aMW66b7lzu5d2ZIyKiymHChAlWZe+99x7y8vLw7LPPonr16hav1a1bFyNGjEC/fv0QGRlZTntJRJVdTEyMU+qNiooCAFy4cMGifPHixahXrx569OhhLnNzc8PIkSMxcOBArFq1Cn379gUAbNiwAbGxsUhISLCo48knn8TLL7+M+fPnY8CAARavrVu3Du+88w62bduGq1evIjY2Fk8//TSeeuopi7iLFy/Cy8sLgYGBFuVhYWEAAF9f39s4erpTsXNFRFRFTZw40apswYIFyMvLw6hRo2763ERwcLBzd4yIqqTi4mLk5eWhuLgYR44cMbdRDz74oDnm9OnTyMnJQf/+/a1+v127dgCA7du3mztXhYWF8PHxsYo1lW3btg0iYr41cM6cOXjqqafQrl07vPLKK/D19cXatWsxbNgwHD16FFOnTjXXcf/992Pr1q144oknMHbsWAQHB2Pfvn14/vnn0bhxY/Tr10+bxNAdhRNaEBGRsokTJ0Kn0+H77783lx07dgw6nQ5PPvkkDh06hOTkZAQGBiIgIAC9evUyP3tx5MgRpKSkIDg4GD4+PnjwwQdv+tD3n3/+iRdeeAENGzY0fzPcvXt3bN26tRyOkogqwn/+8x/UrFkTYWFhuOeee7B//368++67ePzxx80xubm5AGDzWSZTWU5OjrmsadOm+PXXX/HHH39YxG7YsAEAkJ+fbx4ZO336NJ555hn069cPmzdvxtixY/H0009j+fLleOaZZzB9+nSLNuull17CsGHD8O9//xtxcXGIiIhAt27dEBMTg61bt8LPz0+jzNCdhJ0rIiLSRHZ2Ntq3b4+8vDykpaUhMTERK1asQJcuXfDrr7+ibdu2OH/+PJ588kkkJSVh9erV6N69O0pLS63qadmyJaZOnYrw8HAMHz4cycnJ2LJlC+655x6sXLmygo6QyHWVlpbi/PnzFj95eXkAgLy8PKvXbrxutdCuXTusXbsWK1aswFtvvYXQ0FBcuHABJSUl5piCggIAgMFgsPp9Ly8vixgAeP7553H16lX06tULGzduxPHjx7FkyRIMGzYMHh4eFvH//ve/UVhYiLS0NKvj7dGjB0pLS7Fu3Tpz3W5ubggPD0eXLl2QmZmJZcuW4fnnn8e6devQr18/FBcXa54jugNU9ENfRERUeURFRQkAyc7Otvm6rQktsrOzzZNeTJs2zSJ+yJAhAkCqV69+09eWLVtmUf6Pf/xD9Hq9VXlubq5ERERISEiIXLly5dYPkoisXH8dq/zcrI3QckKLnJwcqVGjhgwdOtRctmPHDgEgL7zwglX85cuXBYD885//tCifOXOmBAQEmPfd09NTJk6cKPHx8QJA8vLyRERk2LBhdo/79ddfN9fbv39/iY6OloKCAovtffzxxwJAMjIyNMkD3Vn4zBUREWkiOjoazz33nEXZ448/joyMDAQFBVm9NmDAAGRkZGD37t1ITk4GAGRlZeGnn37Co48+ai4zCQ0NxdixY/Hss8/iu+++Q/fu3Z17QERVSO3atbF27VqLst27d2PMmDGYNm0aWrRoYRXvbGFhYejSpQvmzp2LmTNnwmAwmCeLuP7WPxNT2Y23DI4cORJDhw7F3r17UVhYiKZNm6J69epIT09HaGgo/P39AQDy39WJFi5ciNDQUJv7ZJq848SJE/j0008xYsQIeHt7W8SkpKRg2LBh2LhxIwYPHnwbGaA7ETtXRESkiRYtWkCvt7zb3PQBpXnz5lav2fqQtGXLFgDX1rGxNeHG4cOHAVxbu4adKyLteHl5oUuXLhZl7u7XPia2atWqwta1u3LlCoxGIy5evIiaNWsiNDQU4eHhNp+/NJW1bt3a6jWDwWBRvmPHDpw7dw5paWnmsgYNGgC4NmnPjbm4kandMhqNVq+ZbmO8/nZGqjrYuSIiIk0EBARYlZk+nJX12vXPJfz1118AgLVr11p9i369/Pz829pXIqoYJ06cQEFBAerVq2d+5unMmTMICQmxij1w4AC+++471KtXDzVr1jSX//Of/8S0adOwcuVK83TsRqMRH3zwAapXr24xu6AtV69exahRo2AwGDBmzBhzed++ffHyyy9jwoQJSEpKshqRysvLg5eXFwwGAxo2bAg3Nzd89dVXmDJlisXSFQsWLAAAxMfHO5Qbcg3sXBERUaVh6oS9+eabePHFFyt4b4hIxaJFi3D8+HEAwLlz51BUVIQ33ngDwLW1qq6f7W/gwIHYuHEjsrOzzcs9vPnmm1i7di26d++OunXrQkSwb98+LFq0CMXFxUhPT7fY3osvvoilS5fisccew+jRoxEeHo7PPvsM27dvR2ZmpsUsffv378eTTz6Jhx56CBEREThz5gw++eQTHD16FPPnz0ejRo3MsREREfj4448xePBgNG7cGI8//jiioqJw7tw57N27F1999RUOHDiAunXrIigoCKNGjcK7776Lu+++G0OGDEFQUBA2bdqETz/9FPXq1eMtgVUUO1dERFRptG3bFsD/3x5IRJXf3LlzsXHjRouyV199FQDQsWNHi86VLQ899BBOnTqFJUuW4OzZszAajQgPD0dKSgrGjBmDpk2bWsTXqFEDmzZtwosvvoj09HTk5+ejSZMm+Pzzz/Hoo49axAYHByMiIgIZGRk4e/YsAgIC0KFDByxatAht2rSx2pfU1FTExsZi2rRpmD17Nv7++28EBwejYcOGmDRpksWzZlOnTkXDhg2RmZmJKVOmoLCwEOHh4Rg2bBgmTpxofpaLqhZ2roiIqNKIj49HQkICVqxYgXnz5mHQoEFWMVu3bkXz5s1tLgxKRNpJSkoyT/JQluvXvbuV2C5duth9xulG4eHhWLRokd24kJAQLF++3KG6ExMTkZiYaDdOp9NhyJAhGDJkiEP1k2tj54qIiCqVxYsX495770VaWho++ugjxMfHw8/PDydPnsSOHTtw5MgRnD59mp0rIiKqdNi5IiKiSiUqKgq7du3Ce++9h+XLl2PhwoUQEYSGhqJFixYYP348goODK3o3iYiIrOhEZbyXiIiIiIiIyqS3H0JERERERET2sHNFRERERESkAXauiIiIiIiINMDOFRERERERkQbYuSIiIiIiItIAO1dEREREREQaYOeKiIiIiIhIA+xcERERERERaYCdKyIiIiIiIg2wc0VERERERKQBdq6IiIiIiIg0wM4VERERERGRBv4PPa3f/CVytIgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now the change of the QPO frequency is clear. Erratic, but clear." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trace maximun" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the method `trace_maximum()` to find the index of the maximum on each powerspectrum in a certain frequency range. For example, between 755 and 782Hz)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "tracing = dynspec.trace_maximum(min_freq=755, max_freq=850)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is how the trace function looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAJ2CAYAAAADlpygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACXXklEQVR4nOzde3zO9f/H8ec1bIyZMafN5ByiHCdzTHxLOlFIOjgTKdFBB9VXvjp9UUppKDlWQnz76eCsnJJDIeWQ44ZiGGYbdv3++HTtc13bsF27ts917Xrcb7fd+rw/+3w+1+uqq/Hc5/15vW12u90uAAAAAIDfCrC6AAAAAACAtQiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wpbXUBBlJaWpvj4eIWEhMhms1ldDgAAAAA/ZLfbdfbsWUVERCgg4Or3BAmGeSA+Pl5RUVFWlwEAAAAAOnz4sCpVqnTVYwiGeSAkJESS8R+gZMmSFlcDAAAAwB8lJiYqKioqPZ9cDcEwDzimj5YsWZJgCAAAAMBS2Xm8jeYzAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4Oe8MhieO3dOY8eOVf369RUSEqLw8HDFxMRo+vTpstvt6cf16tVLNpsty68vv/wy03VTUlL08ssvq2rVqgoKClL16tU1ZswYXbx4MT/fHgAAAAB4lcJWF5BRWlqaOnbsqHXr1unRRx/V0KFDlZSUpLlz56p3797atWuX3nzzTZdzZs6cmek60dHRmfZ1795dixYtUp8+fdS8eXOtX79eo0aN0t69ezV9+vS8eksAAAAA4NVsdudbcF5g/fr1iomJ0bBhwzRhwoT0/ampqapdu7YSEhJ0+vRpScYdw08//VTZeQtLlixRp06dNHz4cI0bNy59/4gRIzR+/HitXbtWMTExHnkPiYmJCg0N1ZkzZ1SyZEmPXBMAAAAAciInucTrppImJiZKkiIiIlz2BwYGKjw8XMWLF890jt1uV2JiotLS0q543Tlz5kiShg0b5rLfMZ41a1YuqgYAAAAA3+V1U0mjo6NVqlQpvfXWW6pSpYqaNWumpKQkffrpp9q8ebMmT56c6ZzQ0FCdPXtWgYGBat26tcaMGaNmzZq5HLNp0yZFRkYqKirKZX9UVJQiIiK0adMmt2uuWLGiy/hqARUAAAAAvI3XBcOwsDAtXrxY/fr1U7du3dL3h4SEaP78+br33nvT91WoUEFPPfWUGjdurOLFi+uXX37RO++8o1atWmnJkiVq3759+rHx8fGqW7dulq8ZGRmpI0eO5Nl7AgAAAABv5nXPGErS1q1bNWbMGFWrVk0xMTFKSEjQpEmT9Pvvv2vRokXq0KHDFc/ds2ePGjRooIiICO3Zsyd9f6FChdSiRQutWbMm0zmtW7fWr7/+mv7sYm555TOGhw5Jn30mPf20FOB1M4gBAAAAeJhPP2O4fft2xcTEqEOHDnr77bfVuXNn9e3bVz/++KMqVKig/v376/Lly1c8v2bNmurWrZv27t2r3bt3p+8PDg5WSkpKluckJycrODjY4+/FK1y8KN15p1SlivTcc9KyZVZXBAAAAMDLeF0wnDBhgpKTk9W1a1eX/cHBwerUqZMOHjyoAwcOXPUaVapUkSSdOHEifV9ERITi4uKyPD4uLk6RkZG5qttrFSkipaZKjhvDH31kbT0AAAAAvI7XBUNHeMvqruClS5dc/nkljimk5cuXT9/XtGlTxcXF6fDhwy7HHj58WPHx8WrSpEmu6vZqAwaY24sXS0ePWlcLAAAAAK/jdcHQ0SAm44Lzp0+f1qJFixQWFqYaNWro/PnzSk5OznT+1q1bNW/ePNWpU0fVq1dP39+jRw9J0jvvvONyvGPcs2dPz70Jb3P33VK5csb2pUtShn+3AAAAAPyb1zWfOXjwoBo1aqRTp06pZ8+eatGihRISEjRlyhQdOHBAkyZN0uDBg7Vt2zZ17NhR9957r2rWrJnelfTjjz9WQECAvv/+e7Vs2dLl2nfddZe+/vpr9e3bV82bN9f69es1bdo0PfTQQ5o5c6bH3oNXNp8ZOVJ6801ju2pVae9emtAAAAAABVhOconXBUNJ2rdvn0aPHq3ly5fr+PHjKlasmBo0aKBhw4apS5cukqRjx47pmWee0aZNmxQfH68LFy6oYsWKuuWWW/T888+rdu3ama6bnJysMWPGaNasWTp69KgiIyPVu3dvjRw5UkWKFPFY/V4ZDPfulWrWNMfffy9dpbsrAAAAAN/m88HQ13llMJSMIOjoSnrffdKXX1pbDwAAAIA849PLVSAPOTehWbRIOnbMuloAAAAAeA2CoT+55x6pbFljmyY0AAAAAP5BMPQngYFS797meMoUKS3NunoAAAAAeAWCob/p39/c/vNPacUK62oBAAAA4BUIhv6mRg3p1lvN8UcfWVcLAAAAAK9AMPRHzk1ovvpKOn7cslIAAAAAWI9g6I/uvZcmNAAAAADSEQz9UWCg1KuXOaYJDQAAAODXCIb+yrkJzb59NKEBAAAA/BjB0F/VrCm1a2eOY2OtqwUAAACApQiG/sy5Cc3ChTShAQAAAPwUwdCf3XuvFB5ubF+6JH36qaXlAAAAALAGwdCfBQXRhAYAAAAAwdDvOTeh2btXWrnSuloAAAAAWIJg6O9q1ZJuucUc04QGAAAA8DsEQ2RuQvPXX9bVAgAAACDfEQwhde4slSljbF+8SBMaAAAAwM8QDJG5CU1srGS3W1YOAAAAgPxFMITBeTopTWgAAAAAv0IwhKFWLaltW3NMExoAAADAbxAMYXK+a7hggfT339bVAgAAACDfEAxhytiEZvp0S8sBAAAAkD8IhjAVLSo9+qg5njKFJjQAAACAHyAYwpXzdNI9e6RVqywrBQAAAED+IBjC1fXXS23amGOa0AAAAAAFHsEQmdGEBgAAAPArBENk1qWL2YQmNVWaMcPaegAAAADkKYIhMsvYhCY2liY0AAAAQAFGMETW+vc3t3fvllavtq4WAAAAAHmKYIis1a4ttW5tjmlCAwAAABRYBENcmXMTmvnzpRMnrKsFAAAAQJ4hGOLK7rtPKl3a2KYJDQAAAFBgEQxxZTShAQAAAPwCwRBX59yE5o8/pDVrrKsFAAAAQJ4gGOLq6tSRWrUyxzShAQAAAAocgiGuzbkJzZdfSidPWlcLAAAAAI8jGOLa7rtPCgsztmlCAwAAABQ4BENcW7Firk1oPvqIJjQAAABAAUIwRPZkbELzww/W1QIAAADAowiGyJ66daWWLc0xTWgAAACAAoNgiOyjCQ0AAABQIBEMkX333282oUlJkWbOtLYeAAAAAB5BMET2FSsmPfKIOaYJDQAAAFAgEAyRM85NaH7/XfrxR+tqAQAAAOARBEPkzA03SC1amGOa0AAAAAA+j2CInHNuQjNvnpSQYF0tAAAAAHKNYIic69pVKlXK2E5JkWbMsLQcAAAAALlDMETOZWxCExtLExoAAADAhxEM4R7nJjS7dklr11pXS078+ac0bpy0Z4/VlQAAAABeg2AI99SrJ8XEmOOPPrKuluxKS5Puvlt6+mnpxhulLVusrggAAADwCgRDuM/XmtDs3i3t3GlsJydLXbpIJ05YWxMAAADgBQiGcF+3bq5NaGbOtLSca9q82XV88KDUvbt06ZI19QAAAABegmAI9xUrJj38sDn29iY0GYOhJK1YIY0cmf+1AAAAAF6EYIjccW5C89tv0rp11tVyLc7BsEQJc3vcOGnOnPyvBwAAAPASBEPkTv36UvPm5jg21rpariYtTdq61Rx/8olUq5Y57tdP2rYt38sCAAAAvIFXBsNz585p7Nixql+/vkJCQhQeHq6YmBhNnz5d9qtMVXzuuedks9lUwvlukJOUlBS9/PLLqlq1qoKCglS9enWNGTNGFy9ezKu34h+cm9B88YV06pR1tVzJnj3S2bPm+JZbpK++kkJCjPGFC1LnztLJk5aUBwAAAFjJ64JhWlqaOnbsqFGjRqlp06YaN26cXnrpJV2+fFm9e/fWyCs8D7Zt2zaNHz/+iqFQkrp3767XXntN7dq106RJk9S2bVuNGjVK/Z2nQyLnunWTQkON7eRk72xC4zyNtEoVqUwZqU4dacYMc/+BA9IDD9CMBgAAAH7HZr/aLTgLrF+/XjExMRo2bJgmTJiQvj81NVW1a9dWQkKCTp8+7XLO5cuXdfPNN6tixYpKTEzUzz//rHPnzrkcs2TJEnXq1EnDhw/XuHHj0vePGDFC48eP19q1axXjvC5fLiQmJio0NFRnzpxRyZIlPXJNrzd0qPT++8b2DTdI27dLNpu1NTkbMUIaP97Yvu8+6csvze+9/LL02mvm+JlnpLfeyt/6AAAAAA/LSS7xujuGiYmJkqSIiAiX/YGBgQoPD1fx4sUznTNx4kT99ttveu+996543Tn/NBcZNmyYy37HeNasWbmoGi7TSXfulNavt66WrPz8s7nduLHr9159VbrzTnP89tvSZ5/lS1kAAACANyhsdQEZRUdHq1SpUnrrrbdUpUoVNWvWTElJSfr000+1efNmTZ482eX4gwcPatSoUXrllVd03XXXXfG6mzZtUmRkpKKiolz2R0VFKSIiQps2bXK75ooVK7qM09LS3L6Wz6pfX7r5ZmnDBmMcGyt56A5srmVsPJMxGAYEGNNfo6ONZxElqU8fY6rpTTflX50AAACARbzujmFYWJgWL16s0qVLq1u3brruuutUp04dTZo0SfPnz8/0POBjjz2matWqafjw4Ve9bnx8vCIjI7P8XmRkpOLi4jz2HvzWwIHm9uefe08TmoyNZzIGQ0kqVcpoRuN4RtXRjCYhIT8qBAAAACzldcFQkkqUKKF69erp6aef1oIFCzR16lTVqFFDDz74oJYuXZp+3Ny5c/Xtt99q8uTJKlz46jc/k5KSFBQUlOX3ihYtqqSkJLfrPXr0qMvXHsddJ3+TsQmNt0zPdW48c911RuOZrNSt69qMZv9+qUcP6fLlvK0PAAAAsJjXTSXdvn27YmJiNGHCBA0aNCh9f48ePVSvXj31799f+/bt05kzZzRs2DD17ds3W01jgoODlZKSkuX3kpOTFRwc7LH34LeCg6WHHpImTTLGsbHS449b34TGORhmdbfQWefO0ksvSWPGGOPvv5fat5cyTBfOUkCA1LGj1LOn+7UCAAAAFvC6YDhhwgQlJyera9euLvuDg4PVqVMnvf/++zpw4IAmTpyo8+fPq3///tq7d2/6cRcuXJDdbtfevXsVFBSU/kxhRETEFaeLxsXFXXGaKXKof38zGO7YYTxz2Ly5tTXlJBhKRjOaLVukJUuM8apV2X+t2bOlqlW95/lKAAAAIBu8biqpI7xdzmL63qV/1pe7dOmSDh48qPPnz6tZs2aqWbNm+tdPP/2kpKQk1axZUx07dkw/t2nTpoqLi9Phw4ddrnn48GHFx8erSZMmefiu/MhNN0nNmpnjjz6yrhbJaDyzZYs5zs5/50KFjIBXs6Z7r7lwoXvnAQAAABbxujuGdevW1ffff6/p06fr2WefTd9/+vRpLVq0SGFhYapRo4aee+45PfTQQ5nOf+WVV/Tnn39q5syZCnU87yZjKurs2bP1zjvvuKxj+M4770iSejL9z3MGDpQ2bjS2P/9cmjBBCguzppa9e6/deCYrpUpJa9ZIn34qZVgTM0vOdxiXLctxmQAAAICVvG6B+4MHD6pRo0Y6deqUevbsqRYtWighIUFTpkzRgQMHNGnSJA0ePPiK57dt2zbLBe4l6a677tLXX3+tvn37qnnz5lq/fr2mTZumhx56SDNnzvTYe/DLBe6dnT8vRURI/6xJqffeM541tMLcudKDDxrb110nHTiQN6+zZYtr6PzrL6ls2bx5LQAAACAbfHqB++uuu04//fSTHn74Ya1cuVJDhw7VG2+8oaioKM2fP/+qofBa5s2bpxdffFHLli3T4MGDtWLFCo0ePVoff/yxB98BVLy40YTGITZWsur3D1db2N6TGjSQSpc2xytW5N1rAQAAAB7mdXcMCwK/v2MoSb/8YoQlh/XrpZtvzv862raVVq82tv/zH+mFF/Lutbp1k+bNM7b79ZOmTMm71wIAAACuwafvGKKAuOkmKTraHFvRhCZj45m8vGMoGctaOCxdat1dUgAAACCHCIbIOwMHmtuffy6dPp2/r+9u4xl3OQfDgwelffvy9vUAAAAADyEYIu907y6FhBjbFy4YS0DkJ+f1CytXlsLD8/b1qlUz1jB0oDspAAAAfATBEHknYxOajz7K3+mVOV3Y3hM6dDC3CYYAAADwEQRD5K0BA8zt7dvN9Q3zg3MwzM7C9p7gPJ10xQrp8uX8eV0AAAAgFwiGyFsNGrg2oYmNzZ/Xze/GMw633CLZbMb2qVPS1q3587oAAABALhAMkfec7xp+9pl05kzev+a+fVJiojnOr2AYHi41bGiOmU4KAAAAH0AwRN6zoglNfjeecZZx2QoAAADAyxEMkfdKlJB69jTHo0dLcXF5+5o//2xu59fdQgfnYPjjj1JSUv6+PgAAAJBDBEPkjyFDpIB/Pm7Hj0v33y+lpOTd61nRkdShZUspKMjYTk2V1q7N39cHAAAAcohgiPxRr5701lvmeMMG6Ykn8ua1rGo841CsmBEOHXjOEAAAAF6OYIj8M3y41KOHOY6NzZsupVY1nnHmPJ2UYAgAAAAvRzBE/rHZpKlTpZtuMvc9/ri0fr1nX8d5GmlUlFS2rGevnx3OwXDrVunEifyvAQAAAMgmgiHyV3CwtHChVLq0Mb54UbrvPik+3nOvYcXC9hk1bCiFhRnbdru0cqU1dQAAAADZQDBE/qta1VjP0NGM5uhRoxlNaqpnrm9l4xmHQoWkdu3MMdNJAQAA4MUIhrBGhw7SG2+Y4/XrpSefzP117XZrG884Yz1DAAAA+AiCIazz9NNS9+7mePJk4xnE3Ni3Tzpzxhx7SzDcv1/680/ragEAAACugmAI69hs0rRp0o03mvuGDDGWsnCX88L2VjWecaheXapSxRwznRQAAABeimAIaxUvbjSjcTRqSU01mtEcO+be9bzh+UIHm41lKwAAAOATCIawXrVqrs1o4uPdb0bjTcFQcg2Gy5dLaWnW1QIAAABcAcEQ3uFf/5Jef90cr10rPfVUzq7hTY1nHJw7kyYkSNu2WVYKAAAAcCUEQ3iPZ56RunY1xx98IH38cfbP96bGMw5ly0oNGphjppMCAADACxEM4T1sNiMI1q9v7nvsMemnn7J3vvM00qgoqVw5z9bnLpatAAAAgJcjGMK7lChhNKMpVcoYp6ZKXbpkrxmNtz1f6OAcDH/4QbpwwbpaAAAAgCwQDOF9qleX5s417iBKUlycMcX0Ws1ovDUYtmolBQYa2ykp0rp11tYDAAAAZEAwhHe6/XZp7Fhz/OOP0ogRVz7ebvfeYBgcLLVoYY55zhAAAABehmAI7/Xcc8ayFQ7vvy9Nn571sd7YeMYZ6xkCAADAixEM4b1sNumTT6QbbjD3DRokbdqU+Vjnu4WVKnlP4xkH52C4ebOxdAUAAADgJQiG8G4lSkhffWU2o0lJMZrR/PWX63HeOo3UoXFjKTTU2LbbpZUrra0HAAAAcEIwhPerUUOaM8dsRnPkiNGM5uJF8xhvD4aFCrkuds+yFQAAAPAiBEP4ho4dpTFjzPGaNdLTTxvbdru0ZYv5PW8MhhLPGQIAAMBrEQzhO55/3phG6jBxojRjhvTnn9Lp0+Z+XwiG+/ZJ+/dbVwsAAADghGAI32GzGV1J69Y19w0cKMXGmuNKlaTy5fO9tGypWVOqXNkcL19uXS0AAACAE4IhfEtIiNGMxtHIJTlZeust8/veerdQMoIt00kBAADghQiG8D01a0qzZ5vNaJx5czCUXIPh8uVSWpp1tQAAAAD/KGx1AYBbOnWSRo+WRo1y3e/twdC5M+mJE8YyHAEe/v1MtWrSZ59JtWp59roAAAAosGx2u91udREFTWJiokJDQ3XmzBmVLFnS6nIKrrQ06f77pYULzX3HjnnvM4YON90k/fpr3r5Gx47SkiV5+xoAAADwajnJJUwlhe8KCJA+/VSKiTHGDz3k/aFQMpfZyEvffisdOpT3rwMAAIACgTuGeYA7hvksLU06fNjo+JnVc4feKC7O88HNbpe6d5eOHDHGo0YZ020BAADgl3KSSwiGeYBgCMu8+qr0738b2xER0sGDUmEeJQYAAPBHTCUF/FWfPmYzm/h4njMEAABAthAMgYKkcmWj8YxDbKx1tQAAAMBnEAyBgmbgQHP7m29oQgMAAIBrIhgCBU3HjlJkpLGdliZNm2ZtPQAAAPB6BEOgoClcWOrb1xxPmyZdumRdPQAAAPB6BEOgIOrb12xCExdnTCkFAAAAroBgCBRENKEBAABADhAMgYJqwABze8kS6fBh62oBAACAVyMYAgXVHXcYi9xLNKEBAADAVREMgYKKJjQAAADIJoIhUJD16yfZbMb2kSPSt99aWw8AAAC8EsEQKMhoQgMAAIBsIBgCBZ1zE5r/+z+a0AAAACATgiFQ0HXq5NqE5uOPra0HAAAAXodgCBR0GZvQTJ0qXb5sXT0AAADwOgRDwB/07UsTGgAAAFyRVwbDc+fOaezYsapfv75CQkIUHh6umJgYTZ8+XXa7Pf24kSNHKiYmRuXKlVNQUJCioqJ05513atWqVVleNyUlRS+//LKqVq2qoKAgVa9eXWPGjNHFixfz6Z0BFrnuOun2280xTWgAAADgxGZ3TlpeIC0tTW3atNG6dev06KOP6uabb1ZSUpLmzp2rn376Sc8++6zefPNNSVLbtm1Vu3Zt1axZU2FhYTp27JhmzZqlXbt2acaMGXr44Yddrn3vvfdq0aJF6tOnj5o3b67169fr448/1qOPPqrp06d77D0kJiYqNDRUZ86cUcmSJT12XSBXvvpK6tzZ2A4IkA4elCpVsrQkAAAA5J2c5BKvC4br169XTEyMhg0bpgkTJqTvT01NVe3atZWQkKDTp09f8fxz586pevXqKlOmjH777bf0/UuWLFGnTp00fPhwjRs3Ln3/iBEjNH78eK1du1YxMTEeeQ8EQ3ilS5eM5SuOHjXG//639PLL1tYEAACAPJOTXOJ1U0kTExMlSRGOLor/CAwMVHh4uIoXL37V80uUKKEyZcro1KlTLvvnzJkjSRo2bJjLfsd41qxZuaga8AE0oQEAAMAVFLa6gIyio6NVqlQpvfXWW6pSpYqaNWumpKQkffrpp9q8ebMmT56c6ZwTJ04oLS1NR48e1ZQpU7Rr1y716dPH5ZhNmzYpMjJSUVFRLvujoqIUERGhTZs2uV1zxYoVXcZpaWluXwvIU337Sv/5j2S3G+sZfveddMcdVlcFAAAAi3ldMAwLC9PixYvVr18/devWLX1/SEiI5s+fr3vvvdfl+HPnzqls2bLp42LFimnAgAEaP368y3Hx8fGqW7dulq8ZGRmpI0eOeO5NAN6qShXpttvMrqSxsQRDAAAAeF8wlIzpoPXq1dPdd9+tmJgYJSQkaNKkSXrwwQe1aNEidejQIf3YYsWKaenSpbp06ZIOHjyo2bNn69y5c0pKSnKZdpqUlKSgoKAsX69o0aJKSkpyu96jjme2/uGYywt4pYEDzWD49ddSXJwUGWltTQAAALCU1zWf2b59u6KjozVhwgQNGjQofX9SUpLq1auntLQ07du3T4UKFcry/MuXL6tt27Y6ffq0tmzZoiJFikgy7jjWrVtXGzduzHROdHS0jhw5ovj4eI+8B5rPwKtdvGgsX+H4hcaLL0pjxlhbEwAAADzOp5vPTJgwQcnJyeratavL/uDgYHXq1EkHDx7UgQMHrnh+oUKF1LNnT+3YsUNr1qxJ3x8REaG4uLgsz4mLi1Mkd0zgL4oUkZyfwX3jDekKa38CAADAP3hdMHSEt8tZdEu8dOmSyz+v5MKFC5KkhISE9H1NmzZVXFycDh8+7HLs4cOHFR8fryZNmuSqbsCnDB0qlStnbF++LHXrJh06ZG1NAAAAsIzXBUNHg5iMC86fPn1aixYtUlhYmGrUqKFTp04pNTU10/nnz5/XtGnTFBAQoOjo6PT9PXr0kCS98847Lsc7xj179vTcmwC8Xfny0rx5xhIWkvT331KXLtI/v1QBAACAf/G65jPDhg3TjBkzNHLkSG3fvl0tWrRQQkKCpkyZoqNHj2rSpEkqVKiQVq9erYEDB+q+++5TjRo1FBISov3792vmzJk6cuSIXnnlFV133XXp1+3UqZPuvPNOjR8/XmfOnFHz5s21fv16TZs2TQ899JBatmxp4bsGLNC6tTRhgnH3UJI2b5Yee0z65BPJZrO2NgAAAOQrr2s+I0n79u3T6NGjtXz5ch0/flzFihVTgwYNNGzYMHXp0iX9mNdff13r1q1TXFyckpKSVKZMGTVt2lSDBg1Sp06dMl03OTlZY8aM0axZs3T06FFFRkaqd+/eGjlyZHqTGk+g+Qx8ht0u9e4tffqpue+996THH7euJgAAAHhETnKJVwZDX0cwhE9JTpZatZJ+/tkYFy4sLV9u3FEEAACAz/LprqQA8lnRotKCBVLZssb40iXp/vulDI2aAAAAUHARDAFIUVHSF19IjvVB//5buu8+424iAAAACjyCIQBD27bS+PHmeNMmafBg4zlEAAAAFGgEQwCmoUOlRx4xx598In34oXX1AAAAIF8QDAGYbDZp8mSpUSNz35NPSj/+aF1NAAAAyHMEQwCuihWTFi6UwsONsaMZzZEj1tYFAACAPEMwBJBZ5cquzWiOHzea0aSkePZ1Ll6Udu2SLl/27HUBAACQIwRDAFm75Rbpv/81xz/9JA0Z4rlmNGfPSi1bSnXrSu3b0wEVAADAQgRDAFf25JNSz57meNo06aOPcn9du13q1csIm5K0ahUdUAEAACxEMARwZTabFBsrNWxo7nviCWnt2txd9403pAULXPd98onR+AYAAAD5jmAI4OqCg40QV6aMMb540WhGEx/v3vW++UZ68UVzbLOZ2088QQdUAAAACxAMAVxblSpGM5qAf35kHDvmXjOavXulBx80p4xGRkobNmTugBoX57HSAQAAcG0EQwDZ066d9Pbb5njDBmno0Oyff+6cdO+90unTxjgoyLgTGR2dPx1QAQAAcEUEQwDZ99RTxh0/hylTjGcQr8Vul3r3lnbuNPd9+KERCiWjA6pz6Ny40bMdUAEAAHBVBEMA2WezGWHwppvMfY8/Lq1ff/Xz3npL+vJLczx4sBEUnQ0bljcdUAEAAHBNNrudX8l7WmJiokJDQ3XmzBmVLFnS6nIAz9u/X2rSREpIMMYVK0o//yxFRGQ+9rvvpI4dzbt/LVtKy5dLgYGZj01Kklq0kLZtM8ZFikgrVxr7AAAAkCM5ySXcMQSQc1WrSp9/bjajOXrUaBqTmup63L590gMPuDabmTcv61AoGR1QFy70XAdUAAAAZAvBEIB72reX3nzTHK9fLz35pDk+f17q3NlsNhMYKM2fL1WocPXrVqniGjrd7YAKAACAbCMYAnDfiBHGHUGHyZOlqVONO4R9+kjbt5vf++ADqVmz7F331luN5xIdNmww1jgEAABAniAYAnCfzWYEwRtvNPcNGSL162csQeHw2GNS3745u/bw4VKPHuY4NjZ7HVABAACQYzSfyQM0n4HfydiMxlmLFtKKFVd+rvBqkpKkmBjpl1+McZEi0urVUvPmuavXmd1uTIONijK+AAAACgiazwDIX1WrSp99Zj4X6BARYSxT4U4olMxmNKVLG+OLF43nDY8ezV29Do4pry1aSHXqSOvWeea6AAAAPoZgCMAzOnSQXn/dHGe32cy1ZAydV+qA6o4JE6Tp043t8+eN0EkHVAAA4IcIhgA855lnpDFjpNatjTt9N9/smet26CC98YY5XrfOtQOqO1asMOp1duyY50InAACAD+EZwzzAM4ZAHrDbjWY0n39u7psyxWh0k1MHDhjPRJ48aYyLFpWSk83vDxxodFgFAADwYTxjCKDgsdmkadOk+vXNfUOGGEtZ5ERSkrG+oiMUFikiLVvmuuzGRx8ZoRMAAMBPEAwB+I7ixaWvvpLCwoxxaqrxXOCxY9k7326XBgyQtm0z902caDSfybjsxuOP5zx0AgAA+CiCIQDfUq2aazOa+PjsPxf47rvS7NnmuG9fY9qoZITOhQtdQ2eXLp7rgAoAAODFCIYAfM+//iWNHWuO166Vnnrq6uesXCk9/bQ5btZMmjTJmKLqUK2a8QyjcwfUrl1pRgMAAAo8giEA3/Tss0Zoc/jgA+njj7M+9uBBqVs36fJlY1y+vLGURlBQ5mMzLruxdq00bJjHygYAAPBGBEMAvslmM4KgczOaxx6TfvrJ9bgLF4wpoSdOGOPChaUvv5QiI6987WeeMYKkw4cfGo1vAAAACiiCIQDfVaKE8VxgqVLG2PFc4PHjxthulwYNkrZsMc95912pZcurXzer0Dl4sLRxo0fLBwAA8BYEQwC+rXp1ae5c81nBuDjzucD33pNmzDCP7dPHuKuYHVk1o8lJB1QAAAAfkqsF7n///XcdOnRIJ06cULFixVSuXDnVr1/f7xd1Z4F7wAJvvCE9/7w57thR+v5787nCpk2lNWuMxexz4rvvpDvukNLSjHHLltLy5VJgoGfqBgAAyCM5ySU5DoYrVqzQtGnTtGzZMp1wPLPjJCAgQA0bNtT999+vPn36KDw8PGfVFwAEQ8ACdrvxXOCXX2b+Xrly0ubNUqVK7l37zTelkSPN8eDBRkdTAAAAL5YnwXDBggV68cUXtXv3btntdkVGRqpp06aqUKGCSpcurQsXLujkyZP6/ffftW3bNqWmpiooKEiPPPKIRo8erfLly3vkzfkCgiFgkXPnpJtvlnbuNPcVLmzc4Wvd2v3rZhU6P/5Y6t3b/WsCAADkMY8Hw9atW+vHH39UvXr19PDDD6t79+6qXLnyFY9PTU3VypUrNXPmTH311VcqVKiQZs6cqbvvvjvn78YHEQwBC+3da0wbPX3aGL/3nvT447m/7rlzUvPm0o4dxjgoSPrhB+O1AAAAvFBOcknh7FwwKSlJX3/9te64445sFRAYGKjbbrtNt912m/7++2+98cYb2r17d7bOBYBcqVHDuEP49ttSq1bZbzZzLY4OqI7QmZIide5sTFH1oxkRAACgYMpV8xlkjTuGQAH27bdGMxrHj87WraVly6QiRaytCwAAIIOc5BKWqwCAnLj9duk//zHHa9ZII0ZYVw8AAIAHuBUMR48erf/+979KTU294jGrV6/W6NGj3S4MALzWyJHGmoYO770nffqpdfUAAADkkltTSQMCAmSz2RQTE6OvvvpKZcqUyXTMv//9b40ePVqXHWuI+RGmkgJ+4OxZowPqb78Z46Ag6ccfpSZNrK0LAADgH/kylbRq1apau3atmjdvrr1797p7GQDwTSEh0ldfSaGhxjglRerSRfrrL0vLAgAAcIfbwfCRRx7Rxx9/rIMHD6p58+Zau3atJ+sCAO9Xs6Y0Z45ksxnjw4eN9Q4vXrS2LgAAgBzKVfOZXr16acmSJbp48aLat2+vzz77zFN1AYBvuOMO6bXXzPHq1dIzz1hXDwAAgBty3ZX01ltv1bp161S+fHn17NlTY8eO9URdAOA7nn/eWNPQ4d13pZkzrasHAAAghzyyXEXdunW1ceNGNWrUSKNGjVLfvn11kalUAPxFQIDRlbROHXPfgAHSli3W1QQAAJADhT11ofLly2vNmjXq0aOHPvnkExUrVsxTlwYA7+doRtO0qZSYKCUnG3cRf/5ZKlvW6uoAAACuymPBUJKKFSumhQsX6qmnntLEiRNlczRkAAB/UKuWNHu2dPfdkt0uHTokde8uff+9VNijP27hD9atk775Rsrusk8hIdJDD0lRUXlbFwCgQHJrHcPs2LRpk5KSktSmTZu8uLxXYx1DwM+99pr08svm+P33pSFDrKsHvmfXLqlBAyk1NWfn1a0r/fqrVKhQnpQFAPAt+bKO4bU0bdrUL0MhAOjFF6U77zTHX31lWSnwUR98kPNQKEm//WbcoQYAIIeY2wQAnhYQIA0dKn39tTH+4QfpwgWJZ6+RHUlJrl1t27aVKlW6+jkbNkh79xrbsbFSx455Vh4AoGDKdjCsVq1aji9us9m0b9++HJ8HAD6vZUspMNC465OSIq1dK7Vvb3VV8AXz5klnzhjbRYtKCxZIYWFXP2fBAum++4zt//1Pio+XIiLytk4AQIGS7WB44MCBHF+c5jMA/FZwsNSihbRypTFetoxgiOyJjTW3u3W7diiUpLvuksqXl44fN5rVfPKJMaUZAIBsynYw3L9/f6Z9EyZM0Hvvvac///zTo0UBQIHQoYNrMASuZccOoxupw4AB2TuvSBGpTx/p9deN8ZQp0vPPG9OaAQDIhmz/iXHddddl+gr757eYWX3P8eWOc+fOaezYsapfv75CQkIUHh6umJgYTZ8+XY4mqsnJyZoyZYruueceValSRcWKFVO1atXUo0cP7dq1K8vrpqSk6OWXX1bVqlUVFBSk6tWra8yYMbp48aJbdQLAVTnfIdyyRTp50rpa4Buc7xbWrSvFxGT/3H79zO2DB2lCAwDIEa/7VWJaWpo6duyoUaNGqWnTpho3bpxeeuklXb58Wb1799bIkSMlGVNbBwwYoISEBPXt21fvv/++evTooe+++04NGjTQSsdv6Z10795dr732mtq1a6dJkyapbdu2GjVqlPr375/fbxOAP2jUSCpVyti22827h0BWMjadGTBAyskjGdWqSf/6lzl2DpkAAFxDrtYx/Pe//63Ro0frcnYX382G9evXKyYmRsOGDdOECRPS96empqp27dpKSEjQ6dOndfLkSR0+fFgNGjRwOf+3335Tw4YNVb9+ff3888/p+5csWaJOnTpp+PDhGjduXPr+ESNGaPz48Vq7dq1icvKb2atgHUMA6e67z2gMIkkDB0qTJ1tbD7zXjBnSo48a20WLSnFxUunSObvG/PnS/fcb24UKSYcPSxUrerZOAIDP8Ip1DN2VmJgoSYrI0E0tMDBQ4eHhKl68uCSpTJkymUKhJNWtW1f16tXTjh07XPbPmTNHkjRs2DCX/Y7xrFmzPFA9AGTgPJ2U5wxxNc53+Lp2zXkolKS77zaa0EhmExoAALLB69YxjI6OVqlSpfTWW2+pSpUqatasmZKSkvTpp59q8+bNmnyN37anpaXp6NGjKu/4g/EfmzZtUmRkpKKiolz2R0VFKSIiQps2bXK75ooZfhublpbm9rUAFDDOwXDfPmn/fqlqVevqgXfaudNY0sQhu01nMipSROrdW3rjDWM8ZYo0ciRNaAAA1+R1f1KEhYVp8eLFKl26tLp166brrrtOderU0aRJkzR//vxrPg84efJkHT16VI86puP8Iz4+XpGRkVmeExkZqbi4OI+9BwBIV6OGVLmyOeauIbLifLewTh1jqRN3OTehOXBAWrrU/WsBAPxGtu8Ytm7dOtO+Q4cOXfF7krGO4erVq3NcVIkSJVSvXj3dfffdiomJUUJCgiZNmqQHH3xQixYtUocOHbI8b926dRo+fLhuuukmvfDCCy7fS0pKUlBQUJbnFS1aVElJSTmu0+Ho0aMuY8dcXgCQzWYsWzFtmjFetkyi4RWcXbhgPF/okNOmMxlVr2585hyBMDZWuu223NUIACjwst18JsCNaSg2my3HjWm2b9+u6OhoTZgwQYMGDUrfn5SUpHr16iktLU379u1ToUKFXM7bvHmz2rdvr7CwMP3www+Z7g6GhISobt262rhxY6bXjI6O1pEjRxQfH5+jWq+E5jMAXHz2mdSjh7Fdpoz0119M7YNp5kzpkUeM7aAgKT7evecLnX35pfGcoiQVLiwdOkQTGgDwQznJJbla4D4vTJgwQcnJyerq+APtH8HBwerUqZPef/99HThwQNWrV0//3pYtW9ShQweFhoZq5cqVWU4ZjYiIuOJ00bi4uCtOMwWAXGvXztw+eVL65RepYUPr6oF38UTTmYzuvlsqV874JcSlS9L06caC9wAAXEG2g6G7i9XnlCO8ZXWn8dKlSy7/lIxQ2L59e4WEhGjlypVXrLNp06aaPXu2Dh8+7NKA5vDhw4qPj9fdd9/tybcBAKZy5aSbbjICoWRMJyUYQjKazvz4ozl2t+lMRoGBRhOaN980xlOmSM89x51qAMAVed2fEHXr1pUkTZ8+3WX/6dOntWjRIoWFhalGjRqSpK1bt6pDhw4qUaKEVq5cqapX6fTX459pXO+8847Lfse4Z8+ennkDAJAVlq1AVqZMMbdr15ZatvTctZ2fZd2/n88dAOCqsvWM4bFjx1ShQoVcvdDx48czLSGRlYMHD6pRo0Y6deqUevbsqRYtWighIUFTpkzRgQMHNGnSJA0ePFgHDx5U48aNlZCQoFdeecVlaqlD586d09c9lKS77rpLX3/9tfr27avmzZtr/fr1mjZtmh566CHNnDkzV+/PGc8YAsjk22+ljh2N7aJFpVOnjH/Cf124IEVGGp8FSRo/XnrqKc++RocOZiC87z7j2UMAgN/ISS7JVjAMDg7W0KFDNWLECJUrVy5Hxfzf//2fXn31Vd111116+eWXs3XOvn37NHr0aC1fvlzHjx9XsWLF1KBBAw0bNkxdunSRJK1atUq33HLLVa+zf/9+ValSJX2cnJysMWPGaNasWTp69KgiIyPVu3dvjRw5UkWKFMnR+7oagiGATM6fl8LCpIsXjfHy5a7PHsL/zJolPfywsR0UJMXFGc2JPGnePKlbN2O7cGHp8GEpl7/oBQD4Do8Hw5deekkTJkzQxYsXddttt6lbt26KiYnJ8i7d+fPn9fPPP+v777/XrFmzdOTIETVu3FhTp07VjTfe6P678iEEQwBZattWcizh8/zz0tixlpYDi7VuLf3wg7Hds6cRFD0tNVWKijKa0EjS668bC94DAPyCx4OhZDRpGT16tObOnasLFy5IkkqWLKny5csrLCxMycnJSkhIUHx8vNLS0mS323XjjTfqmWee8bvn9wiGALL0n/9IL71kbDdtKv30k7X1wDq//SbdcIM5Xr3aCIp5YeRIswlNtWrSnj00oQEAP5EnwdD54nPmzNGyZcu0du1aHT9+PP17gYGBql+/vtq2basuXbqoefPm7r0DH0cwBJCljRulm282tm02Y+mKsDBra4I1nnpKcjRDu/56adeu3C1qfzV790o1a5rj7783nj0EABR4eRoMM7p48aJOnjypYsWKKTQ0NDeXKjAIhgCydOmSFB4unTljjOfPl/55bhp+JDlZiogwm86MGycNH563r9m+vfFcqyTdf7/x7CEAoMDLSS7J9VySIkWKqEKFCoRCALiWwoUl56ZZLB/gn+bPN0NhYKD0yCN5/5rO6yN+9ZXkNNsHAADJC9cxBIACzXk9w6VLrasD1vnoI3P7/vuNu8h57d57pbJlje1Ll6RPPsn71wQA+BSCIQDkJ+dguHevdOCAZaXAArt2mZ1IJdc7eXkpMFDq3dscT5kipaXlz2sDAHwCwRAA8lOtWlKlSubY8dwX/MOUKeZ2rVp514k0K/36mdt//imtWJF/rw0A8HoEQwDITzaba0dIb3rOcM4c6aGHjO6p8LzkZOnTT83xgAF514k0KzVrSu3amePY2Px7bQCA1yMYAkB+c55Ouny5d0zpmzPHWGR99mzp1lulnTutrqjgWbBASkgwtgMDpUcfzf8anKeuLlxIExoAQDqCIQDkt1tvNbf//lvavt26WiRp2zbXaYbnzxvNSk6ftqigAsq56UyXLvnTdCajzp1dm9BMn57/NQAAvJJbwfDs2bOergMA/Ef58lL9+ubYyumkJ08aYeHCBdf9e/cadxAvX7amroLm99+lNWvM8cCB1tQRGCj16mWOaUIDAPiHW8EwIiJCAwYM0KZNmzxdDwD4B+fppFYFw0uXpAcecO2Mevvt5vaSJdKrr+Z3VQWTc9OZmjWlNm2sq8X57vC+fdLKldbVAgDwGm4Fw3Llymnq1Km6+eab1bhxY8XGxurcuXOerg0ACi7nYLh6tZSSkv81vPCCayh9+WXp66+lf/3L3DdmjPFsHNxnddOZjGrVkm65xRzThAYAIDeD4b59+/Tdd9+pS5cu2rFjhx577DFFRERo4MCB+vnnnz1dIwAUPK1bS0WKGNsXLkjr1+fv63/2mfT22+b4zjulV16RChWS5s6VqlY1v/foo9Jvv+VvfQXJggXGlF3JuqYzGWVsQvPXX9bVAgDwCm43n+nQoYPmzZunI0eOaOzYsSpfvrymTJmiZs2aqXHjxpoyZYrOnz/vyVoBoOAoUUJq3twc5+d00l9+kfr0Mce1akmzZkkB//yRULq09NVXUnCwMT53jmY0ueF8R65LF7P5i5U6dzab31y8SBMaAEDuu5KWLVtWzz33nPbs2aOlS5eqa9eu2rlzpwYNGqSKFStq0KBB+vXXXz1RKwAULFY8Z5iQ4NpspkQJ445RaKjrcTfeKH38sTnes8dY45BGJTnzxx/GVGEH5zt1VgoKogkNAMCFR5erqF69uqpVq6aSJUvKbrfr/Pnzio2NVcOGDdW9e3ed5rfNAGByDoabNuX9HbnLl6UePaT9+819M2ZIdetmfXz37tIzz5jj//s/mtHklHPTmRo1pLZtLSslk/79ze29e6VVqywrBQBgvVwHw8uXL2vBggW67bbbVKNGDb3xxhsKDQ3V22+/rb/++kvff/+92rdvr3nz5mnw4MGeqBkACoamTaWQEGM7LS3v/2L+4ovS99+b45deMu4eXs3Ysa4B9rXXjGmmuLaUFNcpmlY3ncmoVi3XoEoTGgDwaza73W5358QDBw5oypQp+uSTT3T8+HEFBATozjvv1GOPPaZ/OXe0+0eXLl20atUqJSQk5Lpob5eYmKjQ0FCdOXNGJUuWtLocAN7snnukxYuN7SFDpPffz5vX+eIL4w6gwx13SP/7n/lc4dWcPCk1aWIua1GihPTTT1KdOnlSaoExd6704IPGdpEiUlycdzxf6Oyzz4y7yJJR45EjUrly1tYEAPCYnOQSt+4YOu4Ovv7665KkF198Ufv379fChQuzDIWS1LRpU505c8adlwOAgsv5btzSpXnzGtu3S717m+MaNaTZs7MXCiWpTBnjLmGxYsbY0YyGn+lX541NZzLq3Nn47ysZTWicl9UAAPgVt4Lh0qVL1aZNG33xxRc6dOiQRo8erUqVKl31nLvuuksfOzcyAAC4BsPdu6VDhzx7/YQEI8QlJRnjEiWMkFeqVM6uc9NN0rRp5nj3bprRXM3u3a5Tg72l6UxGGZvQxMZK7k0kAgD4OLemkv7xxx+6/vrr86KeAoGppACyzW6XoqKMaYaSsX6gJ39unDhhXluS5s837l656+mnpXHjzPGrrxrrH8LVM89I//2vsV2jhtGdNLt3aPPbH39ItWub4xUrpFtusa4eAIDH5CSXuP2MIa6MYAggR3r1yp8pfC+8IP3nP7m7xqVL0u23S8uXG+MiRaTjx6WwsNzXV1CkpEiVKhmhXJLefFN69llra7qWtm3NZTW6dzeePQQA+Lw8f8Zw3rx5ateuneKcfwvtJC4uTrfeeqsWLFjgzuUBwL/075/33SrvvFMaPTr31ylc2AgNjj9cLl5kmYOMFi40Q2GRIq5TNb3VwIHm9oIF0t9/W1cLAMAShd05aerUqTp16pQiIyOz/H5kZKROnz6tqVOnqktupiwBgD9o0UL6/Xdp8+a8uX7JktK//iUVKuSZ64WHG1MNFy0yxsuWXXvZC3/i3HSmc2ff6PLpaEJz8qTZhObpp62uCgCQj9wKhtu3b9edd9551WOaNm2qr7/+2q2iAMDv1KplfPmK9u3NYJhX3VR90e7d0sqV5thbm85kVLSo9Oij0vjxxjg2VhoxwrvWXQQA5Cm3ppImJCSo3DV+AxoeHq4Tjqk0AICCxbmb6p490sGD1tXiTaZONberV/etJi79+5vbe/aYzxwCAPyCW8EwPDxce/fuveoxe/bsUamctkMHAPiG6683Gqw4OJrR+LOUFOmTT8xx//7e24k0K7VrS61bm+OPPrKuFgBAvnPrT6wWLVpo8eLF2r17d5bf/+OPP7R48WK1atUqV8UBALyUzeZ613DZMutq8RZffeXadKZ3b0vLcQtNaADAb7kVDJ9++mldvHhRLVu21Pvvv6/du3fr/Pnz2r17t9577z21bNlSly5d0tM8uA4ABVfGYOjvi907N525917faDqTUZcuUunSxnZqqjRjhrX1AADyjdvrGE6ZMkVDhgzR5cuXM32vUKFC+uCDD9SvX79cF+iLWMcQgF84dkyqWNEc//KLdOON1tVjpT17XJsHLV3qGpx9yfDh0oQJxnatWkbHXJrQAIBPyvN1DCWpf//++uWXXzR48GA1btxY1atXV+PGjTVkyBD98ssvfhsKAcBvVKgg1atnjv25O+mUKeZ2tWpSu3bW1ZJbzk1odu+mCQ0A+Am3lqtwqFOnjt577z1P1QIA8DXt20s7dhjby5YZSxz4G19vOpNRnTpSq1bSDz8Y49hYqW1bS0sCAOQ9H/6TCwBguQ4dzO01a4yQ5G8WLTKbzhQu7JtNZzJybkIzf775/gAABVau7hhevnxZf/zxh06dOpXls4aS1Nq59TUAoGBp3doIQ5cuSUlJ0oYNUps2VleVvzI2nSlf3rJSPOa++6ShQ6VTp8wmNMOHW10VACAPuR0MX3vtNU2YMEFnzpy56nFXCowAgAKgRAmpeXNz2uGyZb4fDPftkx55RLrGer3p/vrL3B4wIG9qym9Fi0qPPiq9844xfv556c03r31eQID0r38ZYTkoyDO1bN9u3MEsVUqaNs214REAwGPcCoZvvfWWXnnlFYWGhurhhx9WVFSUChfO1c1HAICvat/eNRi+9pq19eRGYqJ0551GJ86cqlZNuvVWz9dklQEDzGCYmuoagK9mxgwjFDrfSXXX8ePSHXdIR44Y4y5dpFWrPBc6AQDp3FquombNmkpOTtaWLVtUtmzZvKjLp7FcBQC/sm6d1KKFsR0QICUkSKGh1tbkjrQ0YwrlV1+5d/7MmdJDD3m0JMv17CnNmePeuR99lLs7qBcvGr90WLPGdX///p4JnQDgB3KSS9y6zXf48GH179+fUAgAkJo2lUJCpLNnjXC1cqXxrJ2v+c9/XEPhgAFSjx7ZO/e666SqVfOkLEvNnCk9/bR0jcdGJEl2u/TUU8Z6lpL0+OPGciYxMe699ogRmUOhZCwN0qRJwZm2CwBewq1gWL58eV26dMnTtQAAfFGRIsZyBv/7nzFetsz3guHXX0uvvGKO27aV3n/feG/+LCBAatgw+8cvXGiEtoQE447fffdJmzdLERE5e91PP5Wcl8O65x7p4EFp2zZjnNvQCQDIxK3lKrp166alS5cqxR/bkgMAMnNetmLZMuvqcMfu3caUSceTFVFR0uefEwrdUbWq8e/OsY7jsWPS/fcbzyhm1+bNrstl1K1r3LlcsEAqXdrY5wid8fGeqx0A/JxbwfDf//63KlasqPvvv1/79+/3dE0AAF/Tvr25/ccf0uHD1tWSE2fPSp07G01nJKOpycKFUrly1tbly9q3d+1gun699MQT2Tv3r7+M/x6OXzyHhhrTe0NCrhw6+SU1AHiEW8GwXr16OnDggJYsWaIaNWqodOnSqlatWqav6tWre7peAIA3ql3bdbrg8uXW1ZJdaWnGkgy//Wbui42VGje2rqaCYsQI6YEHzPFHHxnPBl7NxYtSt27mLxVsNmn2bKlmTfOYrELnk096rm4A8GNuBcO0tDQVLlxYlStXVuXKlRUaGiq73Z7pKy0tzdP1AgC8kc3metfQF6aTvv66cXfQ4YknjPULkXs2mzR1qnTjjea+xx+XNmy48jnPPCOtXm2OR4+WOnXKfJw7oRMAcE1uLVeBq2O5CgB+aeZMM1iVLy8dPWoEBG+0ZImxXqHjj8A2baSlS3mu0NP+/NNoRnPqlDGuWNF4hjDjIvXOnx3JaF40f745bTSj8+eNxjO//mqMixQxQmXz5h5/CwDgy3KSS9y6YwgAQCbOi7sfPy7t2GFdLVezZ4/04INmKKxUSfriC0JhXqhWzfW5wKNHpa5dXZvRbNniuvREnTrSjBlXDoWSVLy48exhxmY0R496/C0AgL/IdTDctWuXFi5cqJkzZ3qiHgCAr4qIkG64wRx743TSs2eNu1GOdfmCgoxulzSbyTsdOhjTdh3WrpWGDTO2//7baDaTnGyMS5Y0pveGhFz7ulWrSp99dvXQCQDINreD4ZYtW9SoUSPVq1dP999/v3r16pX+vdWrVys4OFiLFy/2RI0AAF/hzc8Z2u1S796uzWYmT5aaNrWuJn/xzDNGYxmHDz80ng3s3l06dMjcP3u2dP312b9uhw7SG2+YY+fQCQDIEbeC4e+//662bdtq7969GjZsmDp27Ojy/datW6tMmTL68ssvPVIkAMBHOAfD1avz/u6N3W50F83O1+uvG8+tOTz+uOT0S03kIZtN+vhjqX59c9+gQdLKleb43/82nvvMqaefzhw6p01zv1YA8FNuBcNXXnlFaWlp2rRpk8aNG6emGX7barPZ1Lx5c23atMkjRQIAfESbNlKhQsb2+fPSxo1591rffCNVqGC8Xna+XnzRPLdVK2n8+LyrDZkVL25MEw0Ly/y9e+6RXnrJvetmFToHD87bzx4AFEBuBcNVq1apS5cuuv4q0z0qV66s+Ph4twsDAPigkBDp5pvN8dKlefM6aWnSY48ZC6LnVGSkNG8ezWasUL26NHeua7fa66+/drOZa8kYOlNTpS5dpGPHclcvAPgRt34KnzlzRhUztprOIDU1VZcuXXKrKACAD8uP5wyXLpUOHsz5eWFhRoAoX97zNSF7brtNeu894y5u5cpGd1FPLO3kCJ2OgBkfTzMaAMgBt4JhxYoVtWvXrqse8+uvv6pKlSruXB4A4Mucg+FPP5kdQD0pNtbcbttW+v337H0dOUKzGW8wZIh08qT0xx9S7dqeu+5tt0ljx5rjH3+Uhg/33PUBoABzKxjedttt+uabb/TTTz9l+f3vv/9ea9asUadOnXJVHADABzVrJpUoYWxfvmw0ofGko0elRYvM8ZAhxnTE7HwFB3u2FrgvNFQqWtTz1332WeNOocOkSdInn3j+dQCggHErGL744osKCQlRu3bt9MILL+i3f1p/z5s3T0899ZTuuusulS1bViNGjPBosQAAH1CkiHEXz8HT00k/+cQInJKx/uDdd3v2+vBtjmY09eqZ+wYNMu5eAwCuyGa32+3unPjzzz+rW7duOnDggHkxm012u11VqlTR/Pnz1bBhQ0/V6VMSExMVGhqqM2fOqKQnnpsAAF/z7rvmenJ16riuHZgbaWnGs2SOP3tGjnRdPB1w2LdPatJEOn3aGEdGSps383wpAL+Sk1zidguwJk2aaPfu3Vq4cKGeffZZ9evXT8OHD9cXX3yhP/74I1eh8Ny5cxo7dqzq16+vkJAQhYeHKyYmRtOnT5dzjl26dKkGDRqkpk2bqmjRorLZbFq1atUVr3vmzBkNHTpUkZGRKlq0qG644QZ9+OGHcjMbAwCuxPk5w127pLg4z1x32TIzFEpSv36euS4KnowdUOPijCmmFy9aWxcAeKnCuTq5cGHdc889uueeezxVj9LS0tSxY0etW7dOjz76qIYOHaqkpCTNnTtXvXv31q5du/Tmm29KkmbPnq05c+aoXr16qlOnjrZt23bF66ampqpDhw7aunWrhg4dqjp16uibb77R4MGDdfz4cb366qseew8A4Pfq1jXWGHQsF7BsmfToo7m/rnPTmfbtjb/8A1dy++3Sf/4jvfCCMf7hB2nECGniRGvrAgAv5PZU0ryyfv16xcTEaNiwYZowYUL6/tTUVNWuXVsJCQk6/c+0kLi4OIWHhysoKEj//e9/9cwzz2jlypVq6/xsyz8++OADDRkyRBMnTtTQoUPT999333363//+pz179ui6667zyHtgKikASHr4YWnWLGP7oYekmTNzd71jx6SoKMmxFNIXX7g2GQGyYrcbn5P58819n3wi9eplWUkAkF9ykkvcumM4evTobB1ns9k0atSoHF07MTFRkhQREeGyPzAwUOHh4UpJSUnfFxkZme3rzpkzR8HBwerfv7/L/mHDhmnBggX6/PPP9eyzz+aoVgDAVXToYAbDZcuMv6A7L2yeU598YobCcuUkD85WQQFms0nTpxvLlezcaewbNMhoTtOkiaWlAYA3cSsYXm3ape2fP/TtdrtbwTA6OlqlSpXSW2+9pSpVqqhZs2ZKSkrSp59+qs2bN2vy5Mk5rjctLU1btmxRo0aNVDRDa+zo6GjZbDZt2rQpx9d1qFixYqbXAwC/d+ut5vaxY0YDmhtucO9aaWnSlCnmuHdvKTAwd/XBf5QoIS1caKxheeaMlJIide5sNKMpV87q6gDAK7gVDFeuXJnl/tOnT2vTpk2aOHGiOnXqpEGDBuX42mFhYVq8eLH69eunbt26pe8PCQnR/Pnzde+99+b4mqdOndKFCxeyvMMYFBSk8PBwxXmqMQIAwBAZaXQk3bXLGC9b5n4wXL5c2r/fHNN0BjlVs6Y0Z450553G3esjR6Ru3aSlS40lVgDAz7kVDNu0aXPF791zzz3q3r27oqOj9cADD7hVVIkSJVSvXj3dfffdiomJUUJCgiZNmqQHH3xQixYtUocOHXJ0vaSkJElGCMxK0aJF049xx9GjR13Gjrm8AOD32rd3DYZPPunedZybztx6q1SjRu5rg/+54w7ptdekl14yxqtXS08/bSyvAgB+zu3lKq6mfv36uueeezR27Ngcn7t9+3bFxMSoQ4cOevvtt9W5c2f17dtXP/74oypUqKD+/fvrsmNh42wKDg6WJJfnE50lJyenHwMA8CDnZStWrZLc+SXcsWPSV1+Z4wEDclsV/NkLL0hdupjjiROlGTOsqwcAvESeBENJqly5snbs2JHj8yZMmKDk5GR1zdBpLjg4WJ06ddLBgwd1wHkNq2wICwtTsWLFspwumpKSohMnTuSokQ0AIJvatJEKFTK2z52TBg40pvHlxPTpZtOZsmUlNx4pANI5mtHUqWPuGzjQeN4QAPxYngXDjRs3qlixYjk+zxHesroreOmfvxg4/pldAQEBatSokbZu3ZrpruFPP/0ku92uJnQmAwDPCw01/tLtMGuW9N572T+fpjPICyEhxl1ox2MfyclGM5q//7a0LACwklvB8NChQ1l+/fnnn1q9erUeeugh/fjjjzl+FlCS6tatK0maPn26y/7Tp09r0aJFCgsLUw03ni3p0aOHkpKSFOv8nIqkd955R4ULF1b37t1zfE0AQDaMGydFR5vj4cONaaXZsWKF9Oef5pimM/CUWrWk2bPNJVQOHzaa0eTwl88AUFC4tcB9QEBA+rIUWbHb7apZs6ZWrFiR4ymaBw8eVKNGjXTq1Cn17NlTLVq0UEJCgqZMmaIDBw5o0qRJGjx4sCTp119/1eLFiyVJa9eu1bfffqs+ffqoatWqkqShQ4emN4FJTU1VTEyMfvnlFz3xxBOqU6eOlixZooULF+qll17Sa6+9ltN/DVfEAvcAkMGRI1LjxtJffxnjsmWln3+WKle++nnduknz5hnb7doZ3UkBT3rtNenll83xsGHShAmWlQMAnpSTXOJWMOzVq1eWwTAgIEBhYWGKjo7WPffcc8UuoNeyb98+jR49WsuXL9fx48dVrFgxNWjQQMOGDVMXpwfGp0+frt69e1/xOvv371eVKlXSx6dPn9ZLL72kBQsW6OTJk6pevboGDx6sIUOGXDXo5hTBEACy8MMPRrhz3JFp3NjYd6XHDo4flypVMo///HMjKAKelJYm3Xefa4OjmTOlhx6yrCQA8JQ8D4a4OoIhAFzBpEnS44+b40ceMRqBZPXLuTfflEaONLbLljXuOvJ8IfJCYqLUrJn0++/GuGhRae1aqVEja+sCgFzKSS7Js+YzAABkMniw1KuXOZ4xQ3r//czHZWw606sXoRB5p2RJ446h4y9NjmY0J05YWhYA5CeCIQAg/9hs0ocfSs6doJ96ylho3NnKldK+feaYpjPIa9dfb3TNdTh0SOrenWY0APyGW1NJq1Wr5t6L2Wza5/wHfQHFVFIAuIbDh41w6NyMZvNmKSrKGDs3nbnlFqM7KZAf/v1v6dVXzfHw4UZnXQDwQXk+lTQtLU0pKSk6cOCADhw4oMOHD+vChQs6fPhw+r6UlBTZ7XaXr7S0NLfeEACggImKMoJf4cLG+O+/pS5djCl8x49LCxeaxzqvgwjktVGjpLvvNsfjx0tz5lhXDwDkE7eC4a+//qrIyEjdfPPNWrlypZKTk3X06FElJydrxYoVatasmSpVqqRff/1V+/fvd/kCAECS1Lq18Zduh59/lh57zGhG45i+Fx4u3XuvFdXBXwUEGF1Jr7/e3Nevn7R1q3U1AUA+cGsq6dChQ/Xdd99px44dCsyiGUBycrLq16+vjh07auLEiR4p1JcwlRQAsslul3r3lj791NwXHCwlJRnbTz8tvf22NbXBv/3+uxQdLZ09a4yvu8745UV4uLV1AUAO5PlyFZUqVVKPHj309lX+sH766af12Wef6ciRIzm9vM8jGAJADly4ILVqZTxjmNEff0i1auV/TYAkLVrkesf61lulN97I3rmlS0tu9mQAAE/JSS4p7M4LnDx5UhcvXrzqMRcvXtTJkyfduTwAwJ8UKyYtWGA0o/n7b3P/LbcQCmGte+6RXn5ZGj3aGC9fLjVtmv3zueMNwIe49Yxh9erV9eWXX+rMmTNZfv/UqVP68ssv3e5eCgDwM5UrS198IRUqZO7r39+6egCHV16R7rzTvXPfeUc6etSj5QBAXnErGA4aNEjx8fGKjo7WjBkzdODAAV24cEEHDhzQp59+qmbNmunYsWMaMmSIp+sFABRUbdtKs2dLNWpIffoYS1YAVgsIMNY37NhRKl7ceAb2Wl82m3HupUtGMyUA8AFuPWMoSU8++aTee+892Rw//JzY7XYNHTpU7777bq4L9EU8YwgAgB8bOVJ6801ju2pVae9eI2ACQD7L8+YzDuvXr9fHH3+srVu36syZMwoNDVWjRo3Uq1cvxcTEuHtZn0cwBADAj+3dK9WsaY6//17q0MG6egD4rXwLhsgawRAAAD/Xvr3RrEaS7rtP+vJLa+sB4JdykkuY1wAAAOBpAwea24sWSceOWVcLAGSD28Hw8uXLevfdd9WsWTOFhoaqcGFz5Ytt27Zp8ODB2r17t0eKBAAA8Cn33COVLWts04QGgA9wKxgmJyfr1ltv1fDhw7V//36FhITIeUZq1apV9cknn2jmzJkeKxQAAMBnBAZKvXub4ylTpLQ06+oBgGtwKxi++eabWrNmjV577TUdO3ZM/fr1c/l+aGio2rRpo++++84jRQIAAPgc578f/fmn+cwhAHght4Lh3Llz1bp1a73wwgsKCAjIcsmKqlWr6vDhw7kuEAAAwCfVrCm1a2eOY2OtqwUArsGtYHjgwAFFR0df9ZjQ0FCdOnXKraIAAAAKBOcmNF99JR0/blkpAHA1bgXD4sWL6+TJk1c95sCBAypdurRbRQEAABQI995LExoAPsGtYNikSRMtWbJE58+fz/L7f/31l5YsWeLXi9wDAAAoMFDq1csc04QGgJdyKxg+8cQTOn78uO66665MS1L88ssvuuuuu3T+/HkNHTrUI0UCAAD4rP79ze19+6QVK6yrBQCuoPC1D8msU6dOeumllzRmzBjVqVNHgYGBkqQSJUrowoULstvtGj16tNq0aePRYgEAAHyOowmNIxDGxkrt21tbEwBk4PYC96NHj9b333+vu+66S6GhoSpUqJCKFSumjh076rvvvtNLL73kyToBAAB814AB5vbChTShAeB1bHbnlemz6dChQwoMDFSFChXyoiafl5iYqNDQUJ05c0YlS5a0uhwAAGC1lBSpUiXpxAlj/Oab0rPPWlsTgAIvJ7nErTuGVatW1QsvvOBWcQAAAH4nKIgmNAC8mlvBsFSpUgoPD/d0LQAAAAWXcxOavXullSutqwUAMnArGN58883aunWrp2sBAAAouGrVkm65xRzHxlpXCwBk4FYwfPXVV/XDDz9o6tSpnq4HAACg4MrYhOavv6yrBQCcuLVcxTfffKO2bdtq4MCB+vDDDxUdHa0KFSrIZrO5HGez2TRq1CiPFAoAAODzOneWypSRTp6ULl6UPv1UeuYZq6sCAPe6kgYEZO9Go81m0+XLl3NclK+jKykAALiip5+Wxo0ztmvUkHbvljL8ch0APCEnucStO4YreVgaAADAPQMGmMHQ0YSmXTtrawLg97IdDBcvXqzatWurVq1aatOmTV7WBAAAUHDVqiW1bSutWmWMY2MJhgAsl+3mM507d9Znn33msu/zzz9Xly5dPF4UAABAgebchGbBAunvv62rBQCUgzuGWT2K+Pvvv2vRokUeLQgAAKDA69LFtQnNM89IMTHXPq9YMaljR4n1pAF4mFvPGAIAACAXgoKkXr3MZw0//dT4yo7ataVffpECA/OsPAD+x611DAEAAJBL/ftL2ez07uL336X16z1fDwC/xh1DAAAAK1x/vTRjhvTJJ1JKyrWP37XLmHoqScuWSTQDBOBBOQqGGRewBwAAQC707Gl8Zcfo0dIrrxjby5ZJr72Wd3UB8DvZXuA+ICBAJUuWdFkYMTExUWfPnlVkZGTWF7fZdPDgQc9U6kNY4B4AAHjcunVSixbGdkCAlJAghYZaWxMAr5ZnC9wnJiYqMTEx0/4jR47krEIAAADkTNOmUkiIdPaslJZmrIN4zz1WVwWggMj2E89paWlufQEAAMADihSR2rY1x0uXWlYKgIKHrqQAAAC+on17c3vZMuvqAFDgEAwBAAB8RYcO5vYff0iHD1tXC4AChWAIAADgK2rXliIizPHy5dbVAqBAIRgCAAD4CpuN6aQA8gTBEAAAwJdkDIbZW3kMAK6KYAgAAOBLbr3V3D5+XNq507paABQYBEMAAABfEhEh1a1rjlm2AoAHEAwBAAB8jXN3Up4zBOABBEMAAABf4/yc4erVUmqqdbUAKBAIhgAAAL6mTRupUCFj+/x5aeNGa+sB4PMIhgAAAL4mJES6+WZzzHRSALlEMAQAAPBFrGcIwIMIhgAAAL7IORhu3CglJlpXCwCf55XB8Ny5cxo7dqzq16+vkJAQhYeHKyYmRtOnT5c9wyKuGzduVPv27RUSEqKSJUvq9ttv17Zt27K8bnx8vB555BGVLVtWxYoVU5MmTTRv3rx8eEcAAAAe1qyZVKKEsX35srRqlaXlAPBtXhcM09LS1LFjR40aNUpNmzbVuHHj9NJLL+ny5cvq3bu3Ro4cmX7shg0b1KZNG+3fv1+jR4/Wv//9b+3Zs0etWrXS9u3bXa6bkJCgli1basGCBXrsscf07rvvqkSJEurWrZs++eST/H6bAAAAuVOkiNS2rTlmOimAXLDZM96Cs9j69esVExOjYcOGacKECen7U1NTVbt2bSUkJOj06dOSpOjoaP3+++/atWuXIiMjJUlxcXGqU6eObr75Zn3//ffp5z/77LN6++23tXjxYt11112SpMuXL6t58+bat2+fDh48qBKO37rlUmJiokJDQ3XmzBmVLFnSI9cEAADI5N13pWHDjO06daTffrO0HADeJSe5xOvuGCb+Mz8+IiLCZX9gYKDCw8NVvHhxSdLevXu1adMmde3aNT0USlJkZKS6du2qZcuW6dixY+n758yZo+rVq6eHQkkqVKiQhg4dqoSEBC1ZsiQv3xYAAIDnOT9nuGuXFBdnXS0AfJrXBcPo6GiVKlVKb731lubNm6dDhw7p999/1/PPP6/Nmzfr1VdflSRt2rRJktS8efNM17j55ptlt9u1efNmSdLRo0cVFxenm53bOjsd63w9AAAAn1G3rlShgjlevty6WgD4tMJWF5BRWFiYFi9erH79+qlbt27p+0NCQjR//nzde++9koxGMpJc7hY6OE8rzemx7qhYsaLLOC0tze1rAQAAZJvNZtw1nDXLGC9bJj3yiLU1AfBJXnfHUJJKlCihevXq6emnn9aCBQs0depU1ahRQw8++KCWLl0qSUpKSpIkBQUFZTq/aNGiLsfk5FgAAACfknE9Q+9qHwHAR3jdHcPt27crJiZGEyZM0KBBg9L39+jRQ/Xq1VP//v21b98+BQcHS5JSUlIyXSM5OVmS0o/JybHuOHr0qMvY8ZAnAABAnnMOhkePGg1obrjBunoA+CSvu2M4YcIEJScnq2vXri77g4OD1alTJx08eFAHDhxIb06T1RRQxz7HNNGcHAsAAOBTIiONjqQOLFsBwA1eFwwdQe3y5cuZvnfp0qX0fzZt2lSSsbxFRhs2bJDNZlPjxo0lGc8ARkZGasOGDVkeK0lNmjTxzBsAAADIbxmnkwJADnldMKxbt64kafr06S77T58+rUWLFiksLEw1atRQjRo11KRJE82bNy+9uYxkNJqZN2+e2rVrpwpOXbp69Oihffv26X//+1/6vsuXL+u9995TqVKldMcdd+TtGwMAAMgrzsFw1Srp4kXLSgHgm7xugfuDBw+qUaNGOnXqlHr27KkWLVooISFBU6ZM0YEDBzRp0iQNHjxYkrRu3TrdcsstqlSpkoYOHSpJeu+993T8+HGtXbtWN910U/p1T548qcaNG+vkyZMaPny4IiMjNXfuXK1atUpTp05V3759PfYeWOAeAADkqzNnpDJlJMeMqx9/lFq0sLYmAJbLSS7xumAoSfv27dPo0aO1fPlyHT9+XMWKFVODBg00bNgwdenSxeXY9evX66WXXtLGjRtls9kUExOj119/XY0aNcp03bi4OI0cOVLffPONzp07p7p16+q5555T9+7dPVo/wRAAAOS7mBjJ8YjNq69Kr7xiaTkArOfzwdDXEQwBAEC+e+UVafRoY7tlS+mHH6ytB4DlcpJLvO4ZQwAAALjB+TnDDRuks2etqwWAzyEYAgAAFATNmknFixvbly5Jq1dbWw8An0IwBAAAKAgCA6U2bcwxy1YAyAGCIQAAQEHBeoYA3EQwBAAAKCicg+HOndLRo9bVAsCnEAwBAAAKinr1pPLlzfHy5dbVAsCnEAwBAAAKCpuN6aQA3EIwBAAAKEicg+HSpRJLVgOuVq6UBg2S1q+3uhKvUtjqAgAAAOBBt95qbsfHS7/8IjVoYFk5gFdZtky67TYpLU1auFA6cEAqVszqqrwCdwwBAAAKkqgoqX59czxtmnW1AN7kwAHpgQeMUChJf/0lrVtnaUnehGAIAABQ0PTrZ27PnCklJVlXC+ANkpKkzp2lkydd9/McbjqCIQAAQEHz0ENS0aLG9pkz0rx51tYDWMlulwYMkLZty/w9gmE6giEAAEBBU7q01LWrOY6Nta4WwGrvvCPNnm2OW7UytzdvlhIS8r0kb0QwBAAAKIgGDjS3162TduywrhbAKitWSM88Y46bNZO+/VYqVcoY2+1Gl1IQDAEAAAqkmBipbl1zzF1D+JuDB6Xu3aXLl41x+fLS/PlScLDUrp153NKl1tTnZQiGAAAABZHNZjxX5UATGviTCxeMZjMnThjjwoWlL7+UIiONsfN6nzxnKIlgCAAAUHA9/LAUFGRsnz5t/MUYKOgczWa2bjX3TZwotWxpjp2D4b590v79+VeflyIYAgAAFFQ0oYE/mjhRmjXLHPfpIw0a5HpMjRpS5crmePny/KnNixEMAQAACjLnJjRr10o7d1pXC5DXVq2SRowwx9HR0qRJxtRqZzYb00kzIBgCAAAUZC1aSHXqmGPuGqKgOnTIuEPuaDZTrpzRbMaxpmdGzsFw+XIpLS3va/RiBEMAAICCLGMTmhkzjMYcQEFy4YLUpUvmZjOVKl35HOfOpCdOSL/+mrc1ejmCIQAAQEH3yCM0oUHBZbcbzxBu3mzue+cd14Xss1K+vHTjjebYz5etIBgCAAAUdDShQUH2/vvGnXCHXr2kwYOzd26HDua2nz9nSDAEAADwB87TSX/8kSY0KBhWr5aeesocN2kiffhh5mYzV+L8nOEPP0jJyZ6tz4cQDAEAAPxBy5ZS7drmeMoU62oBPOHw4czNZhYsuHKzmay0aiUVKWJsX7ggrV/v+Tp9BMEQAADAH9CEBgVJcrLRbObvv41x4cLSvHlSVFTOrlO8uBQTY479eDopwRAAAMBfODehOXXKaOUP+Bq7XXrsMennn81948dLrVu7dz3WM5REMAQAAPAfZcpI999vjj/6yLpaAHd98IE0fbo5fuQR6fHH3b+eczD8+WfjlyZ+iGAIAADgTzI2ofntN+tqAXJqzRpp2DBz3LixNHly9pvNZKVJE6lkSWM7LU1auTJXJfoqgiEAAIA/adVKuv56c0wTGviKI0eMZjOXLhnjsmWNZjPFiuXuuoULS7fcYo79dDopwRAAAMCfZGxC8+mnft2iHz4iOVm67z7pr7+McaFC0hdfSJUre+b6rGdIMAQAAPA7jzwiBQYa2zShgbez26UhQ6SffjL3jRsntW3ruddwfs5wzx7p4EHPXdtHEAwBAAD8TXg4TWjgOyZPlj7+2Bw//LD0xBOefY1ataRKlczx8uWevb4PIBgCAAD4I+fppD/8IO3aZV0twJX8+KNrCGzY0PhFRm6azWTFZvP7ZSsIhgAAAP6odWvjLokDTWjgbeLijDvbjmYz4eHSwoW5bzZzJRmDYVpazq/x7bfG1FcfRDAEAADwR1k1oblwwXPX371buv12o4vkuXOeuy78Q0qK0Wzm+HFj7Gg2c911efeat95qbv/9t7R9e87Oj42VOnaUHnhAOn/es7XlA4IhAACAv3r0UbMJTUKC6/pwuZGQYPwF+bvvpC+/lN5+2zPXhX9wNJvZuNHc9/bbrktK5IUKFaR69cxxTqaTrl8vPf64sf3FF66/dPERBEMAAAB/FR4u9e5tjmNjja/cuHxZevBB6c8/zX3ffpu7a8K/xMZK06aZ4549PfdLi2tx5znD+Hjj7ubFi8a4dGlpzBjP15bHCIYAAAD+bNw46cYbzfHjjxt3P9z10kvGnUJnP/9sLIsBXMvatdLQoea4QQMjKHq62cyVOAfDNWuMKa1Xk5pqPAd59KgxDgiQPv9cqlo172rMIwRDAAAAf1a8uPTVV8ZdDsm463HffeZfdHNi3jzpjTcy709Lk1atyk2V8Afx8UbIctx5K1PGaDYTHJx/NbRpIxUubGwnJUkbNlz9+CeecP1FyptvuoZLH0IwBAAA8HdVq0qffWbc7ZCMUHj//cbdkOzascN1Wmr16q4LkPth+3/kgKPZzLFjxthx561Klfyto0QJqXlzc3y1z+2UKa5rgD7wgDRiRN7VlscIhgAAAJA6dHC927dunfTkk9k799Qp6d57zU6MjruQ991nHrN0qacqRUH0xBOud+feftu1S2h+cr7jd6XP7YYNZrMZyZiOPXVq/k15zQMEQwAAABieflrq3t0cT55s/GX3ahzNZvbtM/dNn250d3T+C/aePdLBgx4tFwVExqZHDz4oPfWUdfU4f243bZJOn3b9/tGjUpcu5h31sDBjymvx4vlWYl4gGAIAAMBgsxndIOvXN/cNGXL156xeftm16+jzzxvTUCXp+uulyEjze8uXe7Ze+D7nZR4k6aabjCmaVt55a9pUCgkxtjM+H5uaaqzNmbHZTLVq+V6mpxEMAQAAYHJMAw0LM8apqa7PfjmbP18aO9Yc33ab9Npr5thmc6/9P/zD0aOZl3nI72YzWSlS5MrPxw4bZnROdXj9dWMadgFAMAQAAICratVcm9E4ukU6N6PZuVN69FHXc+bMkQoVcr1WxmCYlpZ3dcN3ePsyD1n9QmPaNOnDD8393bpJzzyTv3XlIYIhAAAAMvvXv1zvBq5daz73dfq0a7OZ4GDXJS+cOTcQ+ftvo3sp8OSTRoMjB29b5sG5lj/+MO6ODx5s7qtfX/r4Y59uNpMRwRAAAABZe/ZZ43kqhw8+MJrR9Owp7d1r7v/kE9fnEp1VrCjdcIM5Zjoppk41Ghs5eOMyD3XqSBER5rhbtwLXbCYjgiEAAACyZrMZd0WcQ1///tKSJeb4ueeMvzRfjfMzWARD/7Zhg9HQyMFbl3nI+HysYwp0QIA0d66xTmcBQzAEAADAlZUoYdwdKVUq8/f+9S/pP/+59jWc/4K9erXrs4rwHydOGM1mfOXOW1ZTW8eONZosFUAEQwAAAFxd9erGXRLnuzpVqxr7MjabyUrr1lLhwsZ2UpKxRAH8z3vvGY2MJN9Y5sH5+VjJmFb97LPW1JIPCIYAAAC4tttvl9591/gLfYUKV242k5WQEOnmm80x00n9z6VLRldPh2ee8f5lHiIipIEDje22bQtcs5mMCIYAAADInqFDpePHjcYzN96Ys3NZz9C/LVkixcUZ2wEBrs8ZerPJk6W//pJWrDCmVRdgBEMAAABkX3i4e8+EOQfDn36SzpzxXE3wfrGx5vYdd0hRUdbVklNlyxboO4UOBEMAAADkvehoY0qpZHR4XLXK0nKQjw4dkr75xhwPGGBdLbgigiEAAADyXpEixnNaDkwn9R8ff2wu9xAZKXXsaG09yJLXBcNXX31VNpvtil9FihRxOX7evHmKiYlR8eLFFRISolatWmmJ89o6TtLS0jRhwgTVrl1bRYsWVVRUlEaMGKHz58/nx1sDAADwbzxn6H8yNp3p29fsUAuv4nX/Vbp06aIaNWpk2v/rr7/q7bff1l133ZW+780339TIkSPVsGFDvfbaa5KkWbNm6c4779TMmTPVs2dPl2s89dRTmjhxojp37qwRI0Zo165dmjhxorZu3aply5YpIMDrcjIAAEDB4RwMf/9dOnJEqlTJunqQ9775xvjvLBlNZ/r2tbYeXJHNbrfbrS4iOwYOHKjY2Fh9/fXX6tSpk44fP67KlSurVq1a2rJlS/qdxIsXL6pRo0aKi4vTgQMHVLJkSUnSzp07Vb9+fXXu3Fnz589Pv+57772nJ554QrNnz9aDDz7okVoTExMVGhqqM2fOpL8+AACA37PbjamER48a4+nTpUcftbQk5LG77pK+/trY7tTJ3Ea+yEku8YlbZOfPn9dnn32mSpUq6fbbb5ckrVu3TqmpqerZs6fL9NIiRYrowQcf1KlTp7Ro0aL0/XPnzpXdbtewYcNcrt2/f38FBwdr1qxZ+fJeAAAA/JbN5nrXcOlS62pB3jt82FimwoGmM17NJ4LhvHnzlJiYqF69eqlQoUKSpJSUFElScHBwpuMd+zZs2JC+b9OmTQoICFB0dLTLsUWLFlWDBg20adMmt+urWLGiy1fNmjXdvhYAAECBlvE5Q9+YvAZ3ODediYgwlqmA1/KJYDht2jTZbDb16dMnfd8NN9wgSVqxYkWm41euXClJOnz4cPq++Ph4hYeHKygoKNPxkZGROnHihFJTUz1dOgAAAJw5B8Pjx6WdO62rBXnn0iVp6lRzTNMZr+f1/3X++OMP/fjjj7r11ltVtWrV9P3169dXhw4dtGjRIj377LPq3bu3JGn69On65p91UpKSktKPT0pKyjIUSsZdQ8cxgYGBOa7xqGOe/D8cc3kBAACQQUSEVLeu9NtvxnjZMqlevZxd4/Jlo5GJHyw67rO+/dZsOmOzSf36WVsPrsnr7xhO+6e9bb8sPkyff/65unTpov/+97+qW7eu6tatqy+++EKTJk2SJJcHLIODg9Onn2aUnJycfgwAAADyWG6WrdizR7rxRqlUKWn5co+WBQ+KjTW3O3aUKle2rhZki1cHw0uXLmnGjBkqU6aMOnfunOn7YWFhmj9/vo4ePao1a9Zoy5Yt2rdvnyIiIiRJtWvXTj82IiJCJ06cyDIcxsXFKTw83K27hQAAAMgh52C4apV08WL2zjt7VrrnHuNuY2Ki9PjjPKPojY4ckf7v/8wxTWd8glcHw//97386fvy4HnrooStOA5Wk8uXLq1WrVmrYsKECAgLSF7i/w+kB16ZNmyotLU0//fSTy7nJycnatm2bmjRpkjdvAgAAAK7atJH+aSio8+eljRuvfU5amrG0xa5d5r7ff5d+/DFvaoT7pk1zbTrTqZO19SBbvDoYOqaR9s3BQpg///yzpk6dqjZt2qhly5bp+7t37y6bzaZ33nnH5fgpU6YoKSlJPXv29EjNAAAAuIaSJaVmzcxxdqaTvv66tHBh5v0ffeS5upB7ly/TdMZHee0C9/Hx8apcubIaN26sjVf4LdKoUaO0Z88eRUdHKzQ0VFu2bNEnn3yiihUratWqVYqKinI5fujQoXr//ffVuXNn3XHHHdq1a5cmTpyoFi1aaMWKFQoI8ExOZoF7AACAa3jlFWn0aGM7JkZau/bKxy5ZIt15pzlttFw56a+/jO2gICkuTipTJm/rRfb83/8Z/60ko+nM/v3SdddZW5MfKxAL3E+fPl2XL1/OsumMQ6NGjXTo0CGNGTNGQ4YM0dKlSzV06FBt3rw5UyiUpHfeeUf//e9/tXPnTg0ZMkSfffaZhg4dqq+//tpjoRAAAADZ0KGDub1xo/HMYFb27JEefNAMhVFR0k8/Gc1nJCklRZo5M09LRQ44N525/XZCoQ/x2juGvow7hgAAANdw8aJUurR07pwxXrxYuusu12POnpVuvtlc2iIoyHimsEkT6cknpYkTjf116hjrIbJ8hbXi4ozuo47nCxculO6919KS/F2BuGMIAACAAqxIEaMJjUPG5wztdql3bzMUSsbzhI6Ggf37m/t37br6VFTkD+emMxUr0nTGxxAMAQAAYI2rrWf4xhvS/PnmeOhQoyupQ716xrOJDjShsVZWTWeKFLGuHuQYwRAAAADWcA6Gv/0mxccb299+K734ovm9Vq2kceMyn++8Pt68eVJCQt7UiWv77jvp8GFj22YzgiF8CsEQAAAA1rjhBqlCBXO8fLm0d6/Uo4fZbKZSJSP0ZXX3qWtXKTTU2KYJjbWcm87cdptUpYplpcA9BEMAAABYw2ZzvWv41VdS587S6dPGOChIWrBAKl8+6/ODg6VHHjHHsbFmoET+iYuTvv7aHDvfyYXPIBgCAADAOs7BcMECaccOc/zhh1LTplc/37kJzW+/SevWebY+XNvHHxvPGErGHWDHOobwKQRDAAAAWOfWW7PeP3iw0ZX0WurXl5o3N8c0obmykyel8+c9e02azhQYBEMAAABYp1IlqXZt130tW0oTJmT/Gs5TF7/4giY0WZk82ZiSW62atHWr5667eLF06JCxTdMZn0YwBAAAgLX+9S9zOzLSaDYTGJj987t1c21CM2uWZ+vzdcuXS0OGGHf3/vrLeI7zxIncX/fAAdepvB06SFWr5v66sATBEAAAANZ64QWpWTOpQQPpf/9z7VSaHcHB0sMPm2Oa0JgOHJC6dzcXnpekgweNfZcuuX/dpCQjYJ48aYyLFJFGj85VqbAWwRAAAADWKl9e2rDBmOLYsKF713CeTrpzJ01opMzhzdmKFdJzz7l3Xbvd+Pe9bZu5b+JEI9zDZxEMAQAA4Pvq15duvtkcO6+r54+yCm+TJkl3322Ox4+X5szJ+bXffVeaPdsc9+0rDRzodqnwDgRDAAAAFAwZm9CcOmVdLVZ75x3X8Navn/TYY9KMGdL117vudw6P17JypfT00+a4WTMjcNpsua0YFiMYAgAAoGDo1k0qWdLYTk723yY0K1ZIzzxjjps1k95/3whvoaHSV19JISHG9y5cuPJ004wOHjT+HTvWLCxfXpo/XwoK8vhbQP4jGAIAAKBgKF6cJjSOxjJXC2+1a0szZ5pjR4OaqzWjuXBB6tLF7GZauLD05ZdGF1kUCARDAAAAFBzOyyfs2CGtX29dLfnNcfcvO+Htnnukl182x8uXG91hs2K3G88Qbtli7nv3XWO9SRQYBEMAAAAUHDfd5Nod01+a0DiazTgvXn+t8PbKK9Kdd5rjt9+WPvss83Hvved6h7FPH+N5RRQoBEMAAAAULM5NaD7/3D+a0Eyc6PpMZXbCW0CAcU6tWq7n/fKLOV69Who+3Bw3bUqzmQKKYAgAAICCpXt31yY0zt05C6JVq6QRI8xxdHT2w1toqLRwoVSihDF2bkZz6JDUtav5vGK5ctKCBVLRoh5/C7AewRAAAAAFS/Hi0kMPmeOC3IQmq/A2f37OwlvdusYyFg7790s9ekj33Sf9/bexr3Bhad48qVIlz9UOr2Kz2wvq/yXWSUxMVGhoqM6cOaOSjt9WAQAAIP/88ovUoIE5XrdOat7csnKyzW43mrxkZ/kIu1168UVp82ZjXLiwsVRFq1buvfaoUdKYMVl/7733pMcfd++6sExOcknhfKoJAAAAyD833WRMqfzpJ2P80Ue+EQwfe8yo1R3vvON+KJSkf//bCKVLlrju79VLGjLE/evCJzCVFAAAAAWTcxOaL76QTp+2rJRsSUmRPv7YvXN79ZIGD87d6wcEGM9j1qxp7mvSRPrwQ5rN+AHuGAIAAKBg6t5deuop6exZo6nK7Nnefedr+3bp4kVznJ3n+Ww26ZZbPBfeSpWS/u//jDuXRYsady9pNuMXCIYAAAAomEqUkHr2lCZPNsYffWTcVfPWu1+OZwUlqV49IyhaoWZNadkya14blmEqKQAAAAqugQPN7e3bpY0bravlWpyDYePG1tUBv0QwBAAAQMHVoIGxKLtDbKxlpVyTczBs0sS6OuCXCIYAAAAo2Jyb0Hz2mXTmjHW1XElKiuvUUe4YIp8RDAEAAFCwPfCAFBJibDua0HibHTvMxjMBAcZyG0A+IhgCAACgYHM0oXH46CNjcXhv4jyNtG5dKTjYulrglwiGAAAAKPicp5P++qu58L23oPEMLEYwBAAAQMHXsKFrQxdva0JDMITFCIYAAADwD97ahCYlxbiL6UAwhAUIhgAAAPAPDzxgPG8oSUlJ0pw51tbjkLHxTIMGlpYD/0QwBAAAgH8ICfHOJjTO00jr1KHxDCxBMAQAAID/cJ5O+ssv0qZN1tXiwPOF8AIEQwAAAPiPRo1cw5c3NKFxDobODXKAfEQwBAAAgH9xvms4d66UmGhdLamp0vbt5pg7hrAIwRAAAAD+pUcP72lCs2OHEQ4lGs/AUgRDAAAA+JeQEOnBB82xlU1oaDwDL0EwBAAAgP9xnk66bZv088/W1EHjGXgJgiEAAAD8T+PGRiMaB6ua0DgHUoIhLEQwBAAAgH+yugkNjWfgRQiGAAAA8E8PPigVL25snz+f/01oaDwDL0IwBAAAgH+yugmN8/OFtWubIRWwAMEQAAAA/itjExrnsJbXWNgeXoRgCAAAAP/VuLHUsKE5zs8mNHQkhRchGAIAAMB/2Wyudw3nzJHOns37101NlX791RwTDGExgiEAAAD8mxVNaHbupPEMvArBEAAAAP6tZEmpRw9zPG5c3t81pPEMvAzBEAAAABg40Nzes0fq3TtvO5SysD28DMEQAAAAaNJEevxxczx/vvTGG3n3ejSegZchGAIAAACSNH681KqVOX7xRenbbz3/OjSegRciGAIAAACSVKSING+eFBlpjO1249nDvXs9+zrOjWdsNhrPwCsQDAEAAACH8uWlBQukwEBjfPq01LmzdO6c514jY+OZEiU8d23ATV4XDF999VXZbLYrfhUpUsTl+PXr1+vuu+9WpUqVVKxYMVWvXl39+/fXn3/+menaKSkpevnll1W1alUFBQWpevXqGjNmjC5evJhfbw8AAADeLjpa+vBDc7xjh9Snj+ea0TgHwyZNPHNNIJcKW11ARl26dFGNGjUy7f/111/19ttv66677krf9+2336pTp06qXr26Hn/8cYWHh2vnzp2KjY3V/PnztX37dkU6pgJI6t69uxYtWqQ+ffqoefPmWr9+vUaNGqW9e/dq+vTp+fH2AAAA4Av69DEC3AcfGON584xnAZ97LvfXpvEMvJDXBcMbb7xRN954Y6b9A/9pIdy3b9/0fRMmTFChQoW0bt06hYeHp++/4YYb1L9/f82bN0/Dhg2TJC1ZskSLFi3S8OHDNW7cOElSv379VKpUKY0fP14DBgxQTExMHr4zAAAA+JQJE4wmMT/+aIyff954HvC229y/5sWLNJ6BV/K6qaRZOX/+vD777DNVqlRJt99+e/r+xMREFS1aVGFhYS7HR0RESJKKOy0UOmfOHElKD4oOjvGsWbPyoHIAAAD4rMBA407hP3+3TG9Gs2+f+9fcuVNKSTG2aTwDL+ITwXDevHlKTExUr169VKhQofT9t912m86ePatHH31Uv/zyi+Li4vTdd99pxIgRqlOnjh544IH0Yzdt2qTIyEhFRUW5XDsqKkoRERHatGlTvr0fAAAA+IgKFVyb0Zw6ZTSjOX/eves5L2xP4xl4Ea+bSpqVadOmyWazqU+fPi77n3/+ef3111/6+OOPNXv27PT9d9xxh+bOnauQkJD0ffHx8apbt26W14+MjNSRI0fcrq9ixYou47S0NLevBQAAAC/TrJnxrGG/fsZ4+3apb19p7lzjrl9O8HwhvJTX3zH8448/9OOPP6pdu3aqWrWqy/cKFSqkyMhItW/fXlOnTtWCBQs0YsQILVu2TA888IBLt9GkpCQFBQVl+RpFixZVUlJSnr4PAAAA+LC+faVBg8zx559L//1vzq9DMISX8vo7htOmTZNkNIrJqFevXlq3bp127typYsWKSZI6d+6sGjVq6LHHHtOnn36afl5wcLBSHPO5M0hOTlZwcLDbNR49etRlnJiYqNDQULevBwAAAC/07rtG45h164zxyJHGM4IdOmTvfBrPwIt59R3DS5cuacaMGSpTpow6d+7s8r1Dhw5p9uzZ6tSpU3oodOjataskafXq1en7IiIiFBcXl+XrxMXFuSxrAQAAAGQSGCh9+aXkeIwoLU164AEpi/Wzs5Sx8UzDhnlTJ+AGrw6G//vf/3T8+HE99NBDmaaBOkLe5cuXM5136dIll39KUtOmTRUXF6fDhw+7HHv48GHFx8erCYuLAgAA4FoqVpTmz5eKFDHGCQnZb0bjPI30+utpPAOv4tXB0DGN1HntQofrr79ehQoV0ldffaXTp0+7fM+xWH3Tpk3T9/Xo0UOS9M4777gc6xj37NnTM0UDAACgYGveXJo0yRz/+qvUv7+xnMXVOAdDbkrAy3jtM4bx8fH69ttvFR0drfr162f6funSpTVs2DCNGzdODRs2VP/+/VW6dGmtXbtWs2fPVvXq1V2eS+zUqZPuvPNOjR8/XmfOnFHz5s21fv16TZs2TQ899JBatmyZn28PAAAAvqx/f2PpidhYYzx3rvHM4IgRVz6HxjPwYja7/Vq/2rDG2LFj9eKLLyo2Nlb9+/fP8hi73a6pU6dq6tSp2rlzp1JSUhQZGalOnTrp1VdfVdmyZV2OT05O1pgxYzRr1iwdPXpUkZGR6t27t0aOHKkijukAHuBoPnPmzBmVLFnSY9cFAACAF0lJkW65RVq/3hgHBEjffSe1b5/52IsXpZAQ8xnDNWukVq3yr1b4pZzkEq8Nhr6MYAgAAOAn4uONu3/HjhnjMmWMO4lVqrge98svRgdTyWg8k5jIM4bIcznJJV79jCEAAADg1SIiXJvRnDxpNKPJuEb2zz+b2zSegRciGAIAAAC5ERMjvfeeOd62LXMzGp4vhJcjGAIAAAC5NWCA5NT4UHPmSM7d8AmG8HIEQwAAACC3bDbp/felZs3Mfc88I61YYTSe+eUXcz/BEF6IYAgAAAB4QlCQ8bxhhQrG+PJlqVs36ZtvzG6kNpvUsKF1NQJXQDAEAAAAPCUyUvryS6nwP8uFnzwpPfCA+f1atYxlKwAvQzAEAAAAPKlFC2niRHN84YK53aRJ/tcDZAPBEAAAAPC0QYOkPn0y7+f5QngpgiEAAADgaTabNGmSFB3tup9gCC9FMAQAAADyQtGirs1orrtOatrU2pqAKyhsdQEAAABAgVWpkrR9u7RggXTrrVKxYlZXBGSJYAgAAADkpfBwacAAq6sAroqppAAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcKW11AQWS32yVJiYmJFlcCAAAAwF858ogjn1wNwTAPnD17VpIUFRVlcSUAAAAA/N3Zs2cVGhp61WNs9uzER+RIWlqa4uPjFRISIpvNZnU58FI1a9aUJO3Zs8fiSoDs43MLX8NnFr6Izy08xW636+zZs4qIiFBAwNWfIuSOYR4ICAhQpUqVrC4DXs7xP2fJkiUtrgTIPj638DV8ZuGL+NzCk651p9CB5jMAAAAA4OcIhgAAAADg53jGEAAAAAD8HHcMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQyBLJw7d05jx45V/fr1FRISovDwcMXExGj69Omy2+2SpAMHDshms131a/bs2S7XTUlJ0csvv6yqVasqKChI1atX15gxY3Tx4sUs65gxY4YaNmyoYsWKqXz58urXr5/+/vvvLI/duHGj2rdvr5CQEJUsWVK33367tm3b5tF/L/Bu2fncOnzzzTe69dZbVaFCBRUvXlzXX3+9nn76aR0/fjzTdc+cOaOhQ4cqMjJSRYsW1Q033KAPP/ww0zUlKS0tTRMmTFDt2rVVtGhRRUVFacSIETp//nyWNS9ZskQxMTEqXry4Spcura5du2r//v2e+RcCr5fdz6zdbtfkyZPTfx6WKlVKt99+uzZs2JDldflZi7x0/PhxDRo0SFFRUQoMDFTlypX15JNP6vTp05mO/eOPP3TvvfcqLCxMxYsXV6tWrbRixYosr8vPWljODsDF5cuX7S1btrQHBATYe/fubf/oo4/sEyZMsEdHR9sl2Z999lm73W63nzt3zj5z5swsv0JDQ+2BgYH2v//+2+Xa99xzj12SvU+fPvYpU6bY+/TpY5dkf/TRRzPVMX78eLske5s2bewfffSRfdSoUfbixYvb69ataz937pzLsevXr7cHBQXZq1WrZh8/frx9/Pjx9mrVqtlLlChh//XXX/Ps3xW8R3Y/t3a73R4bG2uXZG/cuLF9/Pjx9o8++sjer18/e6FChexVq1Z1+XylpKTYmzZtai9cuLD9qaeessfGxto7d+5sl2R/5ZVXMtXxxBNP2CXZO3fubI+NjbU/9dRT9sKFC9tvueUW++XLl12OnT9/vt1ms9kbNGhgnzRpkn3s2LH2cuXK2StWrGiPi4vLs39X8A45+cwOGjTILsnetm1b+8SJE+1vvPGGvVq1avbAwED7ypUrM12bn7XIK8ePH7dfd9119iJFitgff/xx++TJk+2PP/64vUiRIvYGDRrYz58/n37s3r177aVLl7aXK1fOPnbsWPukSZPsDRo0sBcuXNi+dOlSl+vysxbegGAIZLBu3Tq7JPuwYcNc9qekpNirVq1qDw0Nzdb5999/v8v+//u//7NLsg8fPtxl//Dhw+2S7GvXrk3f9/fff9uDg4PtTZs2tV+6dCl9/+LFi+2S7P/5z39crtG0aVN7SEiI/ciRI+n7jhw5Yg8JCbF36NAhW+8bvi0nn9tatWrZK1asaL9w4YLLsS+++KJdkn3hwoXp+yZNmmSXZJ84caLLsV26dLEXKVLEfuDAgfR9O3bssNtsNnuXLl1cjp04caJdkn327Nnp+1JTU+0RERH2ypUr28+ePZu+f+vWrfaAgAB7//79c/zvAL4lu5/ZrVu32iXZb7/9dntaWlr6cadOnbKXL1/eXrNmTZe/CPOzFnnpySeftEuyz5kzx2X/nDlz7JLsr732Wvq+rl272gMCAuxbt25N33f27Fl75cqV7bVq1XL5PPOzFt6AYAhk8O2339ol2d96661M32vatKk9IiLiquc7fjP97bffuuzv2bOnXZL90KFDLvsPHTpkl2R/7LHH0vdNmTLFLsk+Y8aMTNevVq2avU6dOunjPXv2pP9mPKtabDab/ejRo1etGb4vJ5/bChUq2OvWrZvpOMdfTL7//vv0fS1atLAHBwdnCpFr1qyxS7K/+eab6fscwXLNmjUux164cMEeHBxs79ixY/q+pUuX2iXZR48enamOdu3a2UuWLGlPTU3NxjuHr8ruZ9ZxR2/u3LmZjhswYECmzxw/a5GXbrzxRnuxYsVcQp3dbtwBL1q0qL1atWp2u92YVRQUFGRv165dpmuMHj3aLsm+cePG9H38rIU34BlDIIPo6GiVKlVKb731lubNm6dDhw7p999/1/PPP6/Nmzfr1VdfveK5586d0xdffKHrrrtOHTp0cPnepk2bFBkZqaioKJf9UVFRioiI0KZNm1yOlaTmzZtneo2bb75Zv//+u86dO5etY+12uzZv3py9Nw+flZPP7W233abffvtNI0aM0K5du3T48GEtWLBAr732mtq0aaN27dpJMp5h2bJlixo2bKiiRYtmej2bzZbpcxsQEKDo6GiXY4sWLaoGDRrk6DOemJio3bt35/rfC7xXdj+zKSkpkqTg4OBM13Dsc37WkJ+1yEspKSkqWrSobDaby/6AgAAVK1ZMf/75p06cOKFff/1VKSkpV/y8SOZnip+18BYEQyCDsLAwLV68WKVLl1a3bt103XXXqU6dOpo0aZLmz5+v/v37X/Hczz//XOfOnVPv3r0VEOD6v1d8fLwiIyOzPC8yMlJxcXEuxzr2Z3Ws3W5PP+Zax0pyuTYKppx8bt9991117dpV7777rurWravKlSvrvvvuU8eOHbV06VIVKlRIknTq1ClduHAhy89WUFCQwsPDM31uw8PDFRQUlOn4yMhInThxQqmpqenHOvZndazE57agy+5n9oYbbpCkTA077Ha7Vq9eLUk6fPhw+n5+1iIv3XDDDTp16lSmhkPbtm3TqVOnJEmHDh3K0eeFn7XwFoWtLgDwRiVKlFC9evV09913KyYmRgkJCZo0aZIefPBBLVq0KNPdQIepU6cqICBAvXv3zvS9pKSkLH+IS8Zv+ZKSklyOlZTl8Y7fJjqOycmxKNiy+7ktUqSIKleurM6dO+uuu+5ScHCwvvvuO3388ccqVKiQpkyZIunqny0p68/t1Y51HBMYGMjnFpKy95nt2LGj6tatqw8++EARERHq0qWLkpKSNH78eO3YsUOScvQ55GctcmPYsGH66quv1K1bN73zzjuqV6+edu7cqWHDhqlIkSK6ePGikpKSPPbZchzPz1rkB4IhkMH27dsVExOjCRMmaNCgQen7e/TooXr16ql///7at29f+l0Vh99++00bNmzQbbfdpsqVK2e6bnBwcPqUqIySk5Ndpkk5tlNSUlSsWLFMxzof43xsVtd1PgYFV3Y/tzabTbfffrsuXbqktWvXpk+Huv/++1WmTBm9+eab6t69u9q3b3/Vz5aU9ef2r7/+uuKxjmOc/8nn1n9l9zNbuHBhffPNN3r00Uf13HPP6bnnnpMk3XjjjXrjjTc0YsQIlSxZMv18ftYiL7Vq1UqfffaZnnjiCXXq1EmSVKhQIfXr10833HCDFi5cqJIlS+bo88LPWngLppICGUyYMEHJycnq2rWry/7g4GB16tRJBw8e1IEDBzKdN23aNElSv379srxuRETEFadrxMXFuUzziIiISN+f1bE2my39mGsdK2U9hQQFS3Y/tz/++KN++OEH3XfffZmekXGc65ieFxYWpmLFimX52UpJSdGJEycyfW5PnDiR5V9A4uLiFB4ersDAwPRjHfuzOlbic1vQ5eRnbeXKlbVy5UodPHhQq1ev1o4dO/TLL7+k3/GoXbt2+vn8rEVe69q1q44cOaKtW7dqzZo1io+P1+TJk3XkyBEVLlxYNWrUyNHnhZ+18BYEQyADxw/Ky5cvZ/repUuXXP7pkJqaqpkzZ6ps2bK65557srxu06ZNFRcX5/IsjGQ8GxMfH68mTZq4HCtJ69evz3SdDRs26Prrr1eJEiWydazNZlPjxo2zfrMoMLL7uc3J5zsgIECNGjXS1q1bM/0F5KeffpLdbs/0uU1LS9NPP/3kcmxycrK2bduWo894yZIlVatWrWu8a/gyd37WVq5cWa1bt05/7nDJkiUKCAjQbbfdln4MP2uRHwoVKqQGDRqoVatWKleunI4dO6atW7eqTZs2Cg4OVv369RUUFHTFz4uk9M8iP2vhNSzsiAp4pWHDhmVqDW23G2tmVaxY0R4WFuay3pXdbrfPmzfv/9u796Coyy4O4N8FZEFCLoK0LBM3BZEGTUFRUqkYcsTLMIZiIgErjngXxfFSQpZSimkqmS5ektEaNTVssgaNmEIYLxOmYiWEWmiCqauErIDn/cOXfV0XE3w1Eb6fGWaY8zv77O/Z2XnYw/5+z2myb9bdvvzyy3/srfX9998bYpWVlWJtbS19+/ZtsrfW3X2SREQCAwPF1tbWqFFtRUWF2NrayiuvvNL8ydNTq7nv2+LiYgEgAQEBJluUNzYR//zzzw2xtWvX3re3loWFhZSXlxtiP/300z/21srOzjbEbt26JSqVyqS3VnFxsZiZmYlGo3no14KeDg+z1t7tiy++aLJpPdda+rc1NDRIVFSUKBQK+fbbbw3x1157TczMzKS4uNgQa+xj2K1bN6OWF1xrqTVgYUh0j7Nnz4qjo6MoFAqJiYmRdevWyZIlS8TDw0MASGZmpsljhgwZIgCkpKTkH8ceNmyYABCNRiNZWVmi0WgEgMTExJjkZmRkCAAJDQ2V9evXy6JFi8TGxka6d+9utLiLiBQUFIilpaV4eXnJypUrZeXKleLl5SU2NjZGf5Co7WrJ+3bUqFGG4nDZsmWydu1aGT58uACQ4OBgow/Ier1e+vTpIxYWFpKcnCxarVYiIyMFgLz55psm5zF16lQBIJGRkaLVaiU5OVksLCxk8ODBRk3IRUR27NghCoVCevXqJZmZmZKeni5dunQRFxcXowbi1Da15D2bkJAg8fHx8uGHH8qGDRskNjZWzM3NJSgoSK5du2YyNtdaelxu3Lghfn5+smDBAtFqtZKRkSF9+vQRALJkyRKj3DNnzoiDg4N06dJF0tPTJTMzU3r16iXm5uYmvY651lJrwMKQqAmlpaUSGxsrarVaLCwsxNbWVgYOHGj0TUqj8+fPi5mZmQwYMOCB4968eVMWLlwo7u7uYmlpKZ6enrJ48eL7NpfdvHmzBAQEiFKpFGdnZ4mPj5dLly41mXvo0CF5+eWXxcbGRp555hkJDw+XY8eOtWzi9FRr7vtWr9fL+++/LwEBAWJlZSWWlpbSrVs3mT9/vlRXV5uMe/XqVZkyZYqoVCqxtLQUPz8/WbNmjUmDZxGR+vp6ycjIEB8fH7G0tBRXV1eZNWuWyQfsRvv27ZN+/fqJtbW12Nvby6hRo6S0tPTRvCDU6jX3Pfvxxx9L7969pVOnTmJlZSXPP/+8LFmyRGpqapocl2stPS56vV6io6PFw8NDlEqlODg4SHh4uEmh16ikpERGjBghdnZ2Ym1tLSEhIZKbm9tkLtdaetIUIiKP+3JVIiIiIiIiar24+QwREREREVE7x8KQiIiIiIionWNhSERERERE1M6xMCQiIiIiImrnWBgSERERERG1cywMiYiIiIiI2jkWhkRERERERO0cC0MiIiIiIqJ2joUhERERERE9tdLT0xEVFQUvLy8oFAp4eHi06PGVlZWIj49HQEAAHB0dYWVlha5du0Kj0aC0tLTJx1y4cAGxsbFwdnaGtbU1AgMDsXPnziZzy8rKMG7cOLi4uECpVKJr165ITU1FbW1tS6dqorCwECNGjICbmxusra3h7e2NxMRE/Pbbby0eSyEi8n+fERERETVLWloa3n77beTl5SE0NPRJnw4R0VNPoVDA0dERvXv3xrFjx9CpUyecPXu22Y//5ZdfkJCQgP79+8Pd3R3W1tY4c+YMNm3aBL1ej6KiIvTo0cOQf+XKFQQGBqKyshLJyclwc3PD9u3bkZ+fj02bNiE+Pt6Q+/PPP6N///6or6/HlClT4OnpicLCQmzduhXh4eHYv38/FArFQ83766+/RkREBLy9vZGQkAAnJyecOnUKGzZsgFKpxIkTJ6BWq5s/oBAREdFDAdCin7y8PElNTTX8TkRE95eXl9es9bKsrMzwu7+/v7i7uz+S5z98+LAAkKSkJKN4SkqKAJCcnBxDrL6+XoKCgsTR0VFu3LhhiI8cOVIUCoUUFBQYjbF06VIBINnZ2Q99fuHh4dKhQwepqqoyimu1WgEgK1eubNF4Fg9VnhIRERFSU1NNYqtWrYJOp8OMGTNgb29vdMzDwwNTp05FdHQ0nnvuuX/pLImI2jYvL6/HMq67uzsA4OrVq0bx7du3w9vbG8OHDzfEzM3NMW3aNMTGxuKrr77C6NGjAQB5eXnw8fHBgAEDjMaIi4vDggULsHnzZsTExBgdO3DgAJYtW4bDhw+jtrYWPj4+mDx5MiZNmmSUd/36dVhZWcHBwcEo7urqCgCwsbFp0XxZGBIRET2ktLQ0k9iWLVug0+kwc+bM+97n4uTk9HhPjIiIWqyurg46nQ51dXUoLS01rPFDhw415Fy8eBEVFRUYN26cyeODg4MBAEeOHDEUhnq9Hh07djTJbYwdPnwYImK4nHTDhg2YNGkSgoODsXDhQtjY2CA3NxdJSUkoKyvD8uXLDWO8+uqrKCoqwhtvvIGUlBQ4OTnh5MmTmD17Nvz8/BAdHd2i+XPzGSIion9RWloaFAoFvvvuO0Ps7NmzUCgUiIuLw6+//orIyEg4ODjAzs4OI0eONNwrU1paiqioKDg5OaFjx44YOnTofTcY+OuvvzB37lz4+voa/qMcERGBoqKif2GWRERPn2+++QbOzs5wdXXFoEGDcOrUKaxYsQLjx4835Fy4cAEAmrx3rzFWUVFhiPn7++P06dP4888/jXLz8vIAANXV1YZvJC9evIjp06cjOjoahw4dQkpKCiZPnow9e/Zg+vTp+OCDD4zW/Pnz5yMpKQm7du1Cr1694ObmhiFDhsDLywtFRUWwtbVt0fxZGBIREbUS5eXl6N+/P3Q6HTQaDUJCQpCTk4OwsDCcPn0a/fr1w+XLlxEXF4fQ0FDs378fERERuH37tsk4vXv3xvLly6FWqzFlyhRERkaisLAQgwYNwr59+57QDImImnb79m1cvnzZ6Een0wEAdDqdybF7171HITg4GLm5ucjJycF7770HlUqFq1evor6+3pBTU1MDAFAqlSaPt7KyMsoBgNmzZ6O2thYjR45Efn4+zp07hx07diApKQkdOnQwyt+1axf0ej00Go3JfIcPH47bt2/jwIEDhrHNzc2hVqsRFhaGrKws7N69G7Nnz8aBAwcQHR2Nurq6lr0AD323IxEREZlwd3cXAFJeXt7k8aY2nykvLzdsUJORkWGUn5iYKADE3t7+vsd2795tFH/xxRfFzMzMJH7hwgVxc3MTFxcXuXnz5sNPkojoEbt7HWzOz/3W2Ee5+UxFRYV07txZJk6caIgdPXpUAMjcuXNN8v/++28BIGPHjjWKr169Wuzs7AznbmlpKWlpaRIUFCQARKfTiYhIUlLSA+e9ePFiw7jjxo0TT09PqampMXq+devWCQDRarUtmi/vMSQiImolPD09MWvWLKPY+PHjodVq4ejoaHIsJiYGWq0Wx48fR2RkJACguLgYP/zwA8aMGWOINVKpVEhJScGMGTNw8OBBREREPN4JERE107PPPovc3Fyj2PHjxzFnzhxkZGSgZ8+eJvmPm6urK8LCwrBx40asXr0aSqXSsLHL3ZeLNmqM3XuZ6bRp0zBx4kScOHECer0e/v7+sLe3R2ZmJlQqFTp16gQAkP92Edy6dStUKlWT59S40c758+exbds2TJ06FdbW1kY5UVFRSEpKQn5+PiZMmNDs+bIwJCIiaiV69uwJMzPjuzwaPxwEBASYHGvqA0phYSGAO322mtoc58yZMwDu9NZiYUhErYWVlRXCwsKMYhYWd0qVPn36PLG+rzdv3kRDQwOuX78OZ2dnqFQqqNXqJu/XbowFBgaaHFMqlUbxo0ePoqqqChqNxhDr1q0bgDsblN37Wtyrcd1vaGgwOdZ46evdl8A2BwtDIiKiVsLOzs4k1vjB6J+O3X0fyZUrVwAAubm5Jv99v1t1dfX/da5ERE+j8+fPo6amBt7e3oZ7/C5dugQXFxeT3JKSEhw8eBDe3t5wdnY2xMeOHYuMjAzs27fP0LKioaEBa9asgb29vdEupk2pra3FzJkzoVQqMWfOHEN89OjRWLBgAVJTUxEaGmryTaBOp4OVlRWUSiV8fX1hbm6OvXv3YunSpUbtkbZs2QIACAoKatFrw8KQiIioDWksINPT0zFv3rwnfDZERI9fdnY2zp07BwCoqqrCrVu38O677wK404vw7l1FY2NjkZ+fj/LyckNLofT0dOTm5iIiIgIeHh4QEZw8eRLZ2dmoq6tDZmam0fPNmzcPO3fuxOuvv47k5GSo1Wp8+umnOHLkCLKysox2Az116hTi4uIwbNgwuLm54dKlS/jkk09QVlaGzZs3o3v37oZcNzc3rFu3DhMmTICfnx/Gjx8Pd3d3VFVV4cSJE9i7dy9KSkrg4eEBR0dHzJw5EytWrMALL7yAxMREODo6oqCgANu2bYO3t3eLLiMFWBgSERG1Kf369QPwv0tKiYjauo0bNyI/P98o9tZbbwEABg8ebFQYNmXYsGH4448/sGPHDlRWVqKhoQFqtRpRUVGYM2cO/P39jfI7d+6MgoICzJs3D5mZmaiurkaPHj3w2WefYcyYMUa5Tk5OcHNzg1arRWVlJezs7DBw4EBkZ2ejb9++JucSHx8PHx8fZGRkYP369bh27RqcnJzg6+uLd955x+jeyuXLl8PX1xdZWVlYunQp9Ho91Go1kpKSkJaWZrh3sblYGBIREbUhQUFBGDBgAHJycrBp0yYkJCSY5BQVFSEgIKDJpstERK1FaGioYUOWf3J3X9iHyQ0LC3vgPX33UqvVyM7OfmCei4sL9uzZ06KxQ0JCEBIS8sA8hUKBxMREJCYmtmj8+2FhSERE1MZs374dL730EjQaDT766CMEBQXB1tYWv//+O44ePYrS0lJcvHiRhSERERmwMCQiImpj3N3d8eOPP2LVqlXYs2cPtm7dChGBSqVCz549sWjRIjg5OT3p0yQiolZEIc35fpaIiIiIiIjaLLMHpxAREREREVFbxsKQiIiIiIionWNhSERERERE1M6xMCQiIiIiImrnWBgSERERERG1cywMiYiIiIiI2jkWhkRERERERO0cC0MiIiIiIqJ2joUhERERERFRO8fCkIiIiIiIqJ1jYUhERERERNTOsTAkIiIiIiJq5/4DI+AYCggLEMYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=1)\n", + "\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot it on top of the dynamic spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJ9CAYAAADZgogUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADuE0lEQVR4nOzdd3xT1d8H8M/N6N4UOikte8vee8oeMgTciuLG8VPcgujjQlDEhQPEjaKgbFnK3lBGW1YHbZndI22ae58/Ki236562adLxefvKC3PyzTmnyc1Nzj1LUhRFAREREREREVWKzt4VICIiIiIiqg3YuCIiIiIiIrICNq6IiIiIiIisgI0rIiIiIiIiK2DjioiIiIiIyArYuCIiIiIiIrICNq6IiIiIiIisgI0rIiIiIiIiK2DjioiIiIiIyArYuCIiIiIiIrICNq6IiIiIiKjGiYyMxIwZM9CqVSt4enrCxcUFLVu2xNNPP43ExEThfNatW4devXrB1dUVPj4+mDx5Mi5cuFChOkmKoigVeiYREREREZGdbNmyBW+++SZ69OiB4OBgGAwGhIeH45tvvoGHhweOHj2KBg0alJnHqlWrMGnSJNxyyy2YOXMmUlNTsWjRIuj1ehw8eBCBgYHlqhMbV0REREREVGusXLkSU6ZMwTvvvIPnnnuu1Diz2YzQ0FAYDAacPHkSbm5uAICjR4+ic+fOuP/++/HFF1+Uq2wOCyQiIiIiolqjUaNGAIDk5OQy43bs2IGEhAQ88MADBQ0rAOjQoQMGDBiAn3/+GWazuVxlG8pfXdIiyzISEhLg7u4OSZLsXR0iIiIisgNFUZCeno7AwEDodNWzT8NkMiE3N9dm5TVv3rzY7+PyzI8qiclkQkZGBkwmE06dOoXnn38eADBy5Mgyn3fgwAEAQM+ePYs91qNHD2zduhVRUVFo06aNcF3YuKoCCQkJaNiwob2rQURERETVQFxcHIKDg+1djWJMJhPCQn1w6XK2zcrU6XSoX7++VTsgvvzySzz++OMF90NDQ/Hdd9+hb9++ZT4vISEBABAUFFTssRtp8fHxbFzZm7u7OwAg1tsR7rsnA86lv8xP7B+imZ9DitiVDp/fIzVjdIEBQnllNHbTDgLgclW7q/RKJwehvFzjhcLgHp2pGSPHCmYmqkmIdsy5WKGsdM4u2kGeYq+/fOmKUJw96DUmkAKA5Ur1rb/cJkw7SPCLQXfifCVrc1OReqNYnJN2nJyZVdnqqOh9fDRj4sfXE8orcEWMWKH1vLRjrqcIZZUyQPs999qbIJQXTDlCYbLZeleLdY5OQnGKwBAXRbZUtjoF9PV9heJkd2ehOOV8XGWqo6JrJPZjV465aLUyrfl9Yg+6hsV/hJZEjrPe97DOVeB70yB2bhT+bOaYxPLTkGPOwUd/v13w27C6yc3NxaXL2YgJnw4Pd7Hfa5WRlp6LRu1+QFRUFDw8PKyW7/jx49GyZUtkZGTgyJEjWLNmDa5du6b5vKys/O9BR0fHYo85OTmpYkSxcVUFbrTEPZNz4Pb7OWBWu1JjHVy0TxgOOWKNK0ej9herzkHsy8vsJHAiA+DoqP0l7eAi9mEV/F0AR0ftNVhkgdeiXBwFXg/BMnUicYLvk9X/TivSC/wNlmpcf1nkPRdtXFnx7xRuXBm1P3eyUa5sdVRE3nORcx4gdj7Lz1Dgs2IU+5HkIHDhw1HwswmL2LEhW3Hqs+hxpkCvHWPNxpXo+UzkMwdAseLnSSdYplXPtVb8PrEH0d8R1nzNdEaRz7lg40r0s2nd02O1nybi4e4AD4+qb1xVleDg4IKewfHjx+O2225D165dkZWVhRdeeKHU57n8952Uk1O80W0ymVQxoqrn4M9aRFp8DDDl2bsaREREREQlUiDb7GYL7du3R8eOHfHJJ5+UGXdjmfX4+OI9rTfSShoyWBY2rqqYlJgF/Bhl72oQEREREdUZ2dnZSEpKKjOma9euAIA9e/YUe2zv3r3w8PBA8+bNy1UuG1c2IC06Cpht01InIiIiIioPWVFsdrOmS5culZi+bds2nDhxAj169ChIS0xMREREhGoOVf/+/REQEIAvv/wSGRkZBenHjh3D9u3bMXnyZBhFh5z+h3OubECKy4DycxRwR0t7V4WIiIiIqFZ4+OGHkZiYiEGDBqFRo0YwmUw4dOgQfvrpJ7i7u2PBggUFsS+88AKWL1+Obdu2YcCAAQAAo9GIDz/8EFOnTkXfvn0xc+ZMpKWlYeHChahfvz7mzp1b7jqxcWUj0sKjUG5vDhjUnYW33bJf87k7P+1kvYqkpAqFuewQWxFLadtEMyZgldgqS/JNVwzKknCPdiPVf5lQVtAJrt5jdtH+qBjdBFf4E/g7s7uILeXvcll7JRzAupPTIWlPhgcAy+XL1ivTirL7tRCK0wnsGeh88IJQXlbtt24ktuKnlJyuGaPzEDtmFcHjzHL9umaMa3R9sTIb+ovFnbfeqmpem85qxqQM0T7nAYDHxgihOJ3IwiOCKwqKrm6m99Vevc8isMqWKMuVq2KBgouH6gTOtaLfJ/IF663yKmcLrih2JloszsZEvw/lWOutnKj38hKKs6SkWK1Ma0ofqv17JCc7C1hvg8pU0o0ZUbYox5qmTZuGb7/9FitWrMDVq1chSRIaNWqEhx56CP/73/8QEqK9OufkyZPh7OyM+fPn49lnn4WjoyMGDx6Md955p9zzrQA2rmxGupAGZdU5YEoze1eFiIiIiKjGmzJlCqZMmSIUu2zZMixbtqzEx0aPHo3Ro0dbpU6cc1WFlPbq/VykBUcAC+deEREREVH1odjwv9qOjasqpDx+i+q+dCYFWCM2jIiIiIiIiGoWNq6q0pCGUNqW0Hsl1/5WOxERERHVDDJstFoge66oUiQJyjMd1UmnkoD1MXaqEBERERERVRU2rqramDAoLbxVSdL7hwErr/NPRERERFQRsg1vtR0bV1VNV0Lv1bFrwN9xdqoQERERERFVBTaubGF8YyiNPVRJ0nvsvSIiIiIi+7uxz5UtbrUdG1e2YNBBeapI79XBK8COeDtViIiIiIiIrI2bCFehF34ZCsf/dnXXWYbiJZ/TqJdUuAX9+edi4P1PE8189NlmofIsbbXzgtkilBciM4XC0oOMmjFuOn+hvBSdJBTnvyxCMyZjkPau6QDgci1PKE5/7KxmjOg4Yl2Y9m7hrmdThPKSZcH3U0DK6FZCcV5/nRaKuzJD+z1o8L32eynK3LW5UJxbRJJQ3OUBvpoxjntyhfKyKsHPiSU52XpFNhTboV6Xq/158tgo9p6LXtvUubtrxsjp6WJlWrTPtc5JVp4xoNO+xikZtc+zAKCYxb4rlNQ0oThrkRprn/MAQDkfK5ahHfaLlLOzbFqepBd8zwWOWVGinxO9l5fVyrSkpAjF6dzcNGPkjIxK1kbN3LmZZoz7Zu3zmYPZZI3qUA3CnisbkfUGbBk6UZXW9OxJuO9j7xURERER2Q83EbYeNq5saF/3QUj2Uu97FbTwgJ1qQ0RERERE1sTGlQ1ZjEZsHTJBleb1TxzcDl+yU42IiIiIqK7jghbWw8aVje3tOQRp7l6qtKBF7L0iIiIiIqrp2LiyMbODI7YOHq9K8/47Gi7Hr5T8BCIiIiKiKqTANhsI1/5+Kzau7GJ3n+HIcFPvexX8IXuviIiIiIhqMjau7CDX0QnbB45VpfmsPw/n09fsVCMiIiIiqqts0Wt141bbsXFlJ//2HYFMF/W+DUEfHrRTbYiIiIiIqLLYuLKTHGcX/NN/tCqt3p9n4HRGbINTIiIiIiJrkBXb3Wo7g70rUJt5nk6Fo0NuqY8f9euDAU6r4WzKBgBICmB6IQErHpisirPcli1Untte7bfTdd9FobzSBrUUivPYqL07uc7dXSivi/f4C8UFHtWOcY8T2xFdl5IpFGcRySvATygv+UKsdnm3NBXKS594WShO5+WlGVNvZ6JQXoqzi1Bcg++1jw1rMqaV/lmrCL1AdkqrxmJ5nU8QilMaah9D0qXrYnkJxGT3ayGUl+sRwfrr9UJx1mRurP2a6SwNhPLSRWp/No0HooTy0vuJlRk30UszJvBTsTJFyWbrfla06JLShOKyeoodj457IitTnRpBsZitm2GzUO2YM9FCWVlSUipTkwqRg+prB0VmCOWl9/UVK/TQGbE4oiLYc2VHJkdX7Bg8SpXWde8O1LvCfa+IiIiIyDYUG95qOzau7GzrsLHIcXAsuK+XZQxf95sda0RERERERBXBxpWdZbp74N+Bt6rSuu/aBu/rV+1UIyIiIiIiqgg2rqqBLbeOR67RoeC+wZKHoetW2bFGRERERFRXcCl262HjqhpI8/TG7n5DVWm9/v0bnslcOZCIiIiIqKZg46qa2DxiAsyGwtX+jHlmDNnwux1rRERERER1AZditx42rqqJFB9f7O0zWJXWZ8dGuKWl2KdCRERERERULmxcVSObRk6E5aZ9YhxyczF44xo71oiIiIiIajsZks1utR0bV9VIkq8f9vccoErrt3UdXFPT7VMhIiIiIiISZtAOoYqSL12GbHQqO0jyVt3dOHoSuu/aBp2Sv56KU44J72/7DMqLXTTLm/thK80YydVNMwYA3LZGCMXNXXZBM+bLpKZCeSVtFzscpcYhmjGK4E7zea0ai5V5VXtp/JxgT6G8HB0dtIOOnRXKK7tvC6E4t1PXNGNyQnyE8jIcEdu1Xu9TTzPG1FisTONBgTIjo4XyUpxdhOK8/xB4z3uJvf6OOSahON1l7UVs5IwMobxEuB5JEIqT06vvBR5jlPbfIGdnCeWV26WZZoxkEcoKZsFLl94nq+dVXL2Xl1CcJSVFM0ZxdxXKy3FPpFCc1CxUOyYnTygvOfaiUJwuNFgzJqWF2PerIUd70onLdrHXQmcU+D4BIAt+J1qTTuBcK/rZ1KVla+cllBNguab9fVgX2apXiT1XZHNX/QJwsHtfdeIXJ4C0XPtUiIiIiIiIhLBxVQ1tGDMJslTYspfScvMbWEREREREVqYoks1utR0bV9XQ5cCGONqlpypN+jQcSK+GvVdpuUCm2d61ICIiIiKyOzauqqn1Y6ao7kvJOcA3p+xUm5L1PbMdUpPlkFquAJadtnd1iIiIiKgCLDa81XZsXFVTCQ1DcaxjN1WatCQcyBKbpFvV3LNTMThiMySLAikzD7qn/wW+OmnvahERERER2Q0bV9XY+rFFeq+uZgPLq0cPUeNr56BX1Gvz6P63C/hWbJVBIiIiIqoeFOgg2+Cm1IGmR+3/C2uwuNCmONmukypNWnwMMNm/9yr0enSJ6dJT/wA/Rtm2MkRERERE1UC1bFxlZGTgrbfeQrt27eDu7g5fX1/06tULy5Ytg6KUvj/E888/D0mS4OZW8l4TOTk5ePXVVxEWFgZHR0c0adIE8+fPh9lcfRdkKDb36lIW8IP9Gy+h18+XmC4pgPTYduBXsX2aiIiIiIhqi2rXuJJlGSNGjMArr7yCrl27YsGCBXj55ZdhsVhw7733Ys6cOSU+7+jRo/jggw9KbVgBwNSpU/HGG29g0KBBWLJkCQYMGIBXXnkFM2fOrKo/p9IuNGsJpV+gKk1adBTItd+UQDdTGnwzr5f6uKQA0sPbgNUlN8CIiIiIqPpQbHir7SSlrK4gO9izZw969eqF2bNnY+HChQXpubm5aNmyJZKSkpBSZEd4i8WCHj16ICAgAGlpaTh48CAyMjJUMevWrcOoUaPw9NNPY8GCBQXpzzzzDD744APs2rULvXr1ssrfkJaWBk9PTzz65ndwdCp7h3KXHdq7sLe9LRFT7/5IlbZh/nScmKRerj15hZ9mXle6GjRjAMD/35zS6xOxB1PXFtZHcTMC97SC9PFxVZxikKAsGwqMDBUqU9TLC4dqxkiCR7WsF9tvweyufR3CLSJJKC+Ld+kXAG6Q8sQaz1KC2E7zSoCvdl6JYnldHttIKK7+z9rzA3UeHkJ5yWlpQnHWpAvQ/jzJiZetWqakN2rGKBaxnvar01tqxtQ/Iri9w2nrXShJuq2VUJzPb9abX6oLCRaKk2MvWq3MzAHarz8AuJ9L14yR4+KF8lJaNxGKk06d0w5qESqUFyKjxeKqKWuegySj9ucXABSB0TI6D0+hvOS0VKE4Kj+R9zO3Q5hmTI4pC4vevBOpqanwEDzebOnGb9aDZ++Am7tDlZeXkZ6LLk2/q7avhzVUu56rtP9OYIGB6t4aBwcH+Pr6wtXVtdhzPvroI5w6dQqLFy8uNd8ffvgBADB79mxV+o373333XSVqXbXiujXFxc6NVWk9Pt8k/APc2kIvFvnR08MfytzuUGa1VSVLeQqke/8GNsfasHZEREREVB4yJJvdajuxbgwb6tatG7y8vPDuu+8iNDQU3bt3R1ZWFpYvX45Dhw7hs88+U8XHxMTglVdewWuvvYZGjUq/on7gwAEEBQWhYcOGqvSGDRsiMDAQBw4cqHCdAwICVPdlWS4lsoIkCXsevhWTH/ikIMkr7hparT2EU+O6lfHEqlG0caX0CgAkCcqbPQGzDOmrwv24JLMM3LUZyvfDgUFiV4+JiIiIiGqiate48vb2xpo1a/DAAw9gypTCxRzc3d3x22+/Yfz48ar4hx9+GI0bN8bTTz9dZr4JCQlo3bp1iY8FBQXh4kXrDQepCjG9WyKxfSMEHI8pSOv+2UacHt0Fit52HZAuWWnwu17kter1X+NSkqC80xvIlSGtKFySXcqxAHdshPLVYKClj0YBBsCv7KGURERERGQ9siJBVqq+V8kWZdhbtWtcAYCbmxvatm2LsWPHolevXkhKSsKSJUswffp0rF69GkOH5s+5+fHHH7Fhwwbs3LkTBkPZf0pWVhYcHR1LfMzJyQlZWVkVrm9iYqLq/o3xq1b1X+/VxIc/L0iqd+EKmm88gsiRna1bVhkaxavniCnOeqDDTfN5dBKUhX2BPBnSTUuySyYLpBmbhMpQegdA+WUE4FwtD08iIiIiohJVuzlX4eHh6NWrF4YOHYr33nsPEyZMwP3334+dO3fC398fM2fOhMViQVJSEmbPno37779faCEKFxcX5OSUvEiDyWSCi0v17y05P6ANLrdWD63r8elGwNrDEMtQbL5VN3/AQa9O00lQPuoHZVLTCpUh7UoEFh+rYA2JiIiIqDxssYHwjVttV+3+woULF8JkMmHy5MmqdBcXF4waNQoxMTGIjo7G3LlzkZmZiZkzZ+Ls2bMFt+zsbCiKgrNnzyIuLq7g+YGBgYiPL3nFpfj4eAQFBVXp32UVkoS9s4arkuqfSUTTLeE2q0KjixGq+0pP/5ID9ToonwyAMlZ7JZ2SSKsEVrMiIiIiIqpGql3j6kYDyGIpvhJeXl5ewb8xMTHIzMxE9+7d0axZs4Lb/v37kZWVhWbNmmHEiBEFz+3atSvi4+NVDS4AiIuLQ0JCArp06VKFf5X1nBnSHteaqRfQ6PnpBsAGK+o75mQh4Gq0OrF3QImxAACDDsrSwVDubgnFoXyHmhSVAkQml7uORERERFQ+XC3QeqrdpJbWrVtj06ZNWLZsGZ577rmC9JSUFKxevRre3t5o2rQpnn/+edxxxx3Fnv/aa6/h/PnzWLFihWre07Rp0/D9999j0aJFqn2uFi1aBACYMWNG1f1R1qTTYe9DwzD62eUFSX6nLqLxjpM4hFJ6kawkJD4SupsacXl6A3SdGpT9JKMOysJ+wHt9oOSVMXxRBqSuP0FKvGnu258XgBbelaw1EREREZFtVLvG1ezZs/Htt99izpw5CA8PR+/evZGUlISlS5ciMTERS5YsgV6vR8+ePUt8/scff4yYmBhMmjRJlT5q1CiMHj0aH3zwAVJTU9GzZ0/s2bMHX331Fe644w706dPHFn+eVUSO6IReH6+HT/SVgrQen27EoVGDAKnqrgiEFZlvddG/KUJEF50w6PJvZRkVCnx50zLuay5AebZTOWtJREREROXB1QKtp9o1rho1aoT9+/dj3rx52LJlC3766Sc4OzujQ4cOWLBgASZOnFjhvFeuXIn58+fju+++w4oVKxAUFIR58+Zhzpw5VvwLCrnuPg9Ho1OZMSKD+aJOFN8favXoqbj348JNkwOPReONV5cDA8veS+q5r24VKBGQS2g0NUpQz7e6ENoaIQJ5mRWxzY4PDu2E3jc3rk5cx5YTBmSFqpdvn//UZs28nvh9pFCZ9Y5lCMWZvItvXl2U5cpVobz0uWbNGCU7WygvuZRFWoo5r72R8/XxrYSy8tufKRQnt9Ceb6ecFdsCQdLpNWMUWew404WI7bcmx2rXTRcUqBkDADmBbkJxxgNR2kGC6h8SODYiLwjlpQsQ6xWXEy9pxnhcyBPKS5TOy0szRuS9BMSODdG8DCaxodp5XmV/RwCALk4zBAAgnbLiXNXIaOvlZWW53ZtrxjjsE/ssyWlpQnFK2ybaQSes9/qL1kvfoL5QnOj3k63pQgXPx9G23y5HMWt/V4ucs2WzyRrVoRqk2jWuAKBJkyZYvny5dmAJtm/fXupjTk5OmD9/PubPn1/BmlUf+/v0w+hffkH9K5cL0qT3D0PRaFxVlDHXhKDE86q06JDW6I8rpTyj/K53C0FOPRc4Xi8cGhi4PgJnH9ZeDZKIiIiIKkaBBMUG86FsUYa9VbsFLUiMxWDA+gnqXjxpzyVgV0KVlBdyMQr6m3oGLJIOsQ21rx6Wi16HxGEtVEkB6yNKCSYiIiIiql7YuKrB9gwYiCRfX1Wa9P6RKikrLPaU6n5CQGPkOjhbvZzEUS1V972PJsA5PtXq5RARERERWRsbVzWYxWjEhnETVGnSjnhgT6LVywot0ri60Ki11csAgGs9Q5HrqZ6DwN4rIiIioqrDpdith42rGm7n4CFI8VYvVy7dtRk4nWS1Mgx5uQiOP6tKiw6pmsaVYtTj0lD1cEM2roiIiIioJmDjqobLc3DAxqK9V9dNkCasBc6kWKWM4PizMFoKV82RISGmYcsynlE5iSPUefscjIPj5fQqK4+IiIioLmPPlfWwcVULbB9+KyLbtFWlSVeyIY3/Czhf+flKRedbXfJrBJOT9tLkFXW1b2OY3RwK7ksKELAxssrKIyIiIiKyBjauagGL0YiP57wIpbufKl1KzII07i8gtnK9Praab3WD7GTA5cHNVGkB6zg0kIiIiKgqKNBBtsFNqQNNj9r/F9YROc7OUH4eAaWTekNBKT4T0ti/gItim+UWpbPkIeSiepO8qppvdbOiQwPr7YuBw3WxzWuJiIiIiOyhWm4iXFtIDQMgObqUHZOgvQlvwL9ZmjEA8FvXUBiX3Yf+07+F94nCFQOl2HRkjlmPbb/ci3fv3yCU1/yETgCAoGPn4WDOUT2W+IQfHH2uAwAWX9VuaJ042UioTL/9hfO6jOYWuMX4V0HZOouC7BezcOiWnhj93N+aeX00YZ1Qmc8l3yoU57bVej1nGe39NGMcUi2aMQCgP3ZWO0iQzx+nheJkwfz0Xl6aMZab5vKVRdIbBaLEXjM59qJQnC5Ee0NuxSB2fcp4IEo7yNoiL2iG6IICxfJSlEpWppAxPFqsSMH8JL2+wnUpVqaj9leivsj2F6Vx3Ft9hzLrfeppxliSrtugJmpSs1ChOId9tv886bK0z1VKyzChvKSoWM0Y8y2NhfLCkTNicVYk+hmwXLumGSNHx1e2OuWm8/AQC3TV3m5GTrxcydpUH7ICyErVz4eSrfd1Um2x56qWMXs645/v7kRKK/UPeLeYZPSfvhy4LNZQu6HRIfWJ+0qTAGT5uFe6nlrMRkdENe6gSmsTua/KyyUiIiIiqig2rmqhXG8X7Pj+LqQ2Uw8R9Dh3HdL4tcC1bOG8Gh1QN65iujQrJdL6TrXorrrfODocTiYODSQiIiKyJq4WaD1sXNVSufVcseOHu5DWRD38Q4pMzl+mPcmkmYdkkdHwiHrYWWxn2zWuIpt0Qp6+cJiOQbag5dlDNiufiIiIiKg82LiqxXIauGPHD3cjo1GRTYZPJkG6bR2QmlPKM/P5RV6EU4a6EWbLnqscRxecCbtFldYmYq/NyiciIiKqCxRFstmttmPjqpYz+Xtg+493IzPYS5UuHbuW38BKyy31uUXnW10PqY+MBl4lB1eRokMDm144BqSXXmciIiIiInth46oOyA7ywvYf70ZWoHqFHOnwVUhT1gMZJa+C1KjICme2HBJ4w+lmXWDRFa4GZrSYgc1xNq8HEREREZEWNq7qiKwQb2z/8W4oAeql4aX9lyHdvgHILNLAkmWEHFbPt4rp0ryqq1mMyckN5xq1VaVJf2ovMU1EREREYizQ2exW29X+v5AKZIbWg/LHaCgN1Hs3SLsTId2xCcjOK0irfy4RLinqlfliujS1ST2LKjo0EJtjgay8koOJiIiIiOyEjau6pplXfgPL10mVLO2Ih3TnJsCU32gpOt8qJcAHqUFiGwda26nm3SBLhRMgpaw8YCuHBhIRERFZg2zDW22nvR09VZgccxGy0Uk7UENmIxftIAAdnLR3ff8tPQQICoTnd/XQ//blcEwp3PNK2noRiXfuxO7PpuC2E3+rnufZ1wcvBx4ult9jf43ULLNBhNgCFCbfkg9HE3xwvnEbND13orCuf16AMjpMKN+yvHvfBqG4Wd0Hasb4fyC207zzP5FCcSLSh7YUi2ul3dMX/KfY+yRf0D7OAMCSkqId00FsHp/+6BnNmKwBLYTyctku9vpbPBw1Y6QT54Ty0oUEC8Uh8YpmiGy23oIucnyCUJwuwE87SFDKMLEecO9/xT5Pikl7WwlRyplo7Rgrvhai9PXrawcBgKKIhTk6VKI2VUfk9QcAXWCAdlCW2H6OssB5CgCU89rnPZ2bm1iZskUzxnBE+5wHADpXV6E4U9sgzRiHfVGaMQCQ3EXsQqvHhmsCUWLHrAhdgL9QnJx4SSzDtLRK1IbqMvZc1VGprfzxz3d3ItdD3fgL3BKFHo/9CuxJVKUrvQJtWb1ijrfvqU7YEAPkaH9BEREREVHZFOhsdqvtav9fSKVKaReIf1bcAbOb+ipm8MYISJeLXPXrJXZFqKqcaKuedyWlm4EdYle2iYiIiIhsgcMC67jkDsH4d/kd6HfnChiySl6SXfFzBpp42rhmammePrgQ2gJh0YVDuqRfz0JpW6/ymUsA/F0AqfZvbEdERERUlKxIkG2wwa8tyrA3Nq4I17uE4N9lM9D3ru9gMJUwN6dnQLVoeIS361mscSX9eraMZ4hTAlyh/DgcaG+fRTuIiIiIqObjsEACAFzrHopdX02HxbF4e1vpLTB52AbC2/WosrylxExID2wBLHVhHRsiIiKiQjIkm91qOzauqMCVPo2x64upsDjoC9IUnQQMFFzprIol+zTA+bBWVZa/dDYV+ON8leVPRERERLUbG1ekcnlAM+z6ahqUYDcoTnoor3YDGtt3vtXNVk5+GEor7yrLX1pwBJCttzQsERERUXWn/DfnqqpvCudcUV10uV9TKMen27saJbraIBjKrslQ0nOtsz3G5ljoZm4tuCtFJENZGw2MqfweWkRERERUt7BxRTWTu5U2wZzQBMoHRyCdTi5IkhYchjI6tFos4kFERERU1WToINtgQJstyrA3Nq7sLGm89hwinz9OC+X1TpPRmjG+ISlCeW080V4ozi1Nu/vIcPG6UF66EylCcY/XG6kZ4yBQLwB47PY1cJ3dHv4P7ShIk45fx6V1F5A1rGFBWreAWM28mn+cqBkDABs/6aUZo+jEGnYWJ7G4wI+0V1WU/BoI5SVKX7++ZozuepZQXiLLjLhsj9QOKgd97DXNmJQRLYXy8lgfUdnqFEiY1VwoLnid9msrx14UyktOvCwUl3SbwPnsN7HzmejSMvp6AtsxZGYK5ZU1oIVmjNuuC0J56VxdheIkN+04y+UrQnlZlaTXjgGg9/KwWpHmYB+xwPBzVivTmuSMDKE4nbOLdl6mHKG8JKNRKM5hX5RmTOZAsfOZ52ax19+aA+yFXrPES2J5eXkJxckpKUJxREXV/uYjkYbMMaHIbaqeV+b9wVFA4dwrIiIiIhLHxhWRXofk2eqeOqcj1+C8I8FOFSIiIiKyHUWx3a22Y+OKCEDGhMYwN3JXpXl/cKxunAWIiIiIyCrYuCICAIMOyU+oe6+c912G026xMdxERERENdWNBS1scavtav9fSCQofUoTmIPVk8u9Pzhmp9oQERERUU3DxhXRDQ56pDzWTpXksjMRjgfEVkojIiIiqolkSDa71XZsXBHdJH1aM+T5OavSvBey94qIiIiItLFxRXQTxcmAlEfVvVeuW+LhGy62HxARERFRTcOeK+th44qoiLQ7WyDP10mV1mHJFjvVhoiIiIhqCoO9K1Cb5XZpCsmp7F3Fff44rZmPuWtzofKCNqZrxmTcpxfLa1m0UJycI7CLvJubUF66AH+hON+jmZoxCQOdNWMA4IMN40pMHzJIwoRfvi24H/r3KdyXuB9oU6/UvB48OkSozOD4FM2YlxbsF8rrzTk9heLg56cZojgaxfJqESoUZnbUPr0YrmofswAg6bSPW0W2COUlKq1LgGaMx/oIobz0fg2E4iyXr2jGBP+kHQMAckqKUJw1+W7W3htObhkmlJfsIHauwvGz2nm1ayKUlcv2SM2Y9AEthfJy3S52bEjZJqE4EXL7pkJxxoQUzRjLtWtCeVmSk4XiROgE89KFBGvGZAe6asYAgONe7ffc2uTsLM0YnYeHUF5KTm5lq1PAdZvYMWvVDUpEzwcRFzRjdEGBYnnFcw/LkiiKBEWp+l4lW5Rhb+y5IirBv4NGIMNVve+V9P4RO9WGiIiIiGoCNq6ISpDj7Ixtw0erE9ecByKtd5WWiIiIqDrgnCvrYeOKqBQ7hoxCtnPhsE5JAaQP2HtFRERERCVj44qoFNmubtg+dJQ68bdzQFSKXepDREREVBVkBZAVyQY3e/+lVY+NK6IybBs+BianwpUDJVmBdPt6IEF7UQ0iIiIiqlvYuCIqQ6abB/4ZNEKVJkWnQxr/F3BJe8UnIiIiIqo72Lgi0rBx7GQoLb1VadLZ1PwG1tVsO9WKiIiIyDpk6Gx2q+1q/19IVEkmZxcof4yC0sxLlS5FpUCasBa4br19aoiIiIhITFRUFF599VX06NED9evXh7u7Ozp06IA333wTmZliUzgURcEPP/yAXr16wdfXF+7u7mjTpg3mzZuHtLS0cteJjSsiEQ3+a2A1Vm/sKJ1KgjRxLZAisJkyERERUTWkQLLZzZq+/vprLFy4EE2aNMGrr76K9957Dy1atMDLL7+MXr16ITtbe4TRyy+/jBkzZsDZ2RmvvfYa3nvvPbRr1w6vvfYahg0bBkUp3yochor+MaRNkSQoUtkHkS5Ye0dx44EoofJkgRjDxuZCeSlBgofG+VjNkOtDGgpl5f3HaaE4naurZoz/12JXKxJnNxGKAwAEuEL5YzQw5k9IMekFyVL4dWDSOnyxSgI8HDSzWd3EXzNGL4ld93j4rR1CcR/f30ozJvWlYKG8THFO2kEAXOO1YzzOi71Pkn8D7RhHo1BeuHJdrEyBD5TcvqlYmcfPCoWJ5KdLE+wpTUkRi7MmD+3PJiIuCGUleuWv/vvax+PVZ88J5aX39dWMcd0eIZSXqIT7td/zBgdEzu6A/ugZoTiLQIzULFQoL+VMtGaMqXcLobycdkUKxcmxFzVjXDLqCeUl8loAgK5hkGaMlJMrVuaVq5oxcgWultuK3kfwtU3SPtdKUdq/IQBAumlblNLI8QlCeVHtMmnSJLzwwgvw9PQsSJs1axaaNWuGN998E1999RUee+yxUp+fl5eHRYsWoVOnTti8eTN0Ol1BHgaDAd9//z2OHTuGDh06CNeJPVdE5RHsBmX1aCjBbqpk6fBVSJPXA+liX65ERERE1YVik2XYJSiKdXuuunTpompY3TB16lQAwIkTJ8p8vtlsRnZ2Nvz9/QsaVjcEBuZ3gLgKXNS/GRtXROUV4p7fwApQf9ikA5ch3b4ByDTbqWJEREREdPFifg+3n59fmXHOzs7o168fNmzYgHfeeQdnz55FdHQ0li1bhk8++QR33HEHmjVrVq6y2bgiqogwDyirR0Hxc1YlS3suQZq+EcjKs045ipJ/IyIiIqoittlAOP8GAM2aNUNAQEDBzZosFgveeOMNGAwGTJ8+XTP++++/x6BBgzBnzhw0a9YMYWFhuO+++/DUU0/h22+/LXf5bFwRVVRTLyh/jIbiq57zIf2bAOnOTYCpEg0sRYH01kFI/l9BavM9sFlsXDoRERFRXTZ79mzs2bMH8+bNQ4sW2nM+HR0dERYWhrvuugs//vgjfvzxR9x2222YP38+3nrrrXKXz8YVUWW08M5vYPk4qpKlbRch3b0ZyBGdLn0TRYH0wm5I7x+GZJYhXcqCdMcmYGOMlSpNREREVEiGZLMbAJw5cwaJiYkFN2t55ZVX8PHHH+PBBx/ECy+8oBmflZWFXr16IS0tDcuXL8ftt9+O22+/HStXrsTUqVPx6quvIjJSbLGdG9i4Iqqs1j5QVo2C4qleKVDaHAfp/r8Bs9hKXwAARUHbNzdD+uKkOi+znN9Y2xJnjRoTERER1Sqvv/465s+fj3vvvRefffaZ0HN+/fVXnDlzBpMnTy722OTJkyHLMnbu3FmuerBxRWQN7X2h/DYSirt6OXBpXQykB7cCeQINLEVB6/e2otnSvSU+LOXK+cMN/xFY45yIiIhIUE3d5+qG119/HXPnzsXdd9+NL7/8EpLGVkg3xMfn/6ayWIqPNMrLy1P9K4qNKyJr6dQAysqRUNyKNLBWn4f0yHbAUnYDq+WH/6DFkl1lxkgmS/6CGbut14VOREREVFPNmzcPc+fOxZ133omvv/662JLqNyQmJiIiIgJZWVkFaa1btwYALF++vFj8jbSuXbuWqz7cRJjImrr5Qfn5VmDyekg3rRgo/XoWMOqgLO5f4tOaL9mJVgvVGwIrEqB8PCB//tavhZvQSll5wNT1UH4dCXTxqpI/g4iIiKi6W7JkCV577TWEhIRgyJAh+OGHH1SP+/n5YejQoQCAF154AcuXL8e2bdswYMAAAMDo0aPRrVs3rFu3Dv369cPEiRMBAKtWrcK///6LyZMno1OnTuWqExtXVSi1qQQHl7K7JR33WrEHomWYZohsEOsmlUxiezUpzUI1Y7z/OC2Ul87NTTsIQFqPYM0Yt78jhPJyiXTQDgIw0zRcM2Zpj435/9MzAMqPtwJT10MyFXYzSz9GAQYdHOePB3SF70PY5/vQ6t2txfJTPuwHTGsOZXJTwCxDWn2+MK/MPGDKetRfNQro3ECzbgkPN9eMmdlwu2YMAHx/bLBQnOeRK5oxlowMobz0RqNmTHK74psIlsQ7M1soznW72DEkQufuLhZ3LVMzRk6w3jlDF6L9WQKAPC8n7SAAOH5WM8TUW3vlJgBw2iU2gfjq/6y3r5ySrX1sXJ/USigvx2SxLRQClmofZ7ndtT+/AKBvof0dAACIvKAZImXmCGUlhTbUjBF9L0Xp69XTjLFcv27VMuU4Dse+QREcIiV0frl8VSgvOTtLO8jKRI4zJUf7c6Iz661RnSp382ITVV2ONR04cAAAEBsbi7vvvrvY4/379y9oXJVEr9fj77//xv/93/9h1apVeP755yFJEpo1a4Z33nkHTz/9dLnrxGGBRFWhbyCU74ZDcVB/xKQVEWjzyqaCvasafXMQreYXb1jJH/QB7miZf8egg/LFICijQtV5pZshTVoHHLtWJX8CERERUXW2bNkyKIpS6m379u3FYm/0Wt3g7u6Ot956CxEREcjJyYHJZEJ4eDiee+45GAzl74di44qoqgwKhvLtMChG9ces0beH0Wru3whZcRhtXt1c7Gkn5w0F7mmtTjTqoHw1GMqwEFWylJoLaeJa4KR1r9ISERFR3WHrTYRrMzauiKrSsBAo3wyBUmQ4ZthXB9H2xY3Fwk+/Mhgx93YpOS8HPZRlQ6AMVA+1kJJzIE1YC0QkW63aRERERFR+bFwRVbWRoVCWDoaiL/tqTcScAbjwYLey83IyQPluGJR+gapk6ZoJ0vi/gDMplaqq5/ZYdOzyDbqFfYLg9/YWDF8kIiKi2ktRJJvdajs2rohsYVxjKJ8OhKIr+aQS9UxfnH+0p1hezgYo3w+H0tNflSxdyc5vYJ1PrVAVPbfFoMU9f8IxIQO6HAuCFx5Ao1f/ZQOLiIiISBAbV0S2MqkplMX9UfSizdnHeuHsk73Ll5erEcpPt0Lp6qdKlhKzII37C4hNL1d2rY4cQ4v71kKXq96LK+CrYwiZt4sNLCIiolqMPVfWw8YVkS1Na45jH45BrqcTLI56RD7fH1HP9QMEdxJXcXeAsnIElE71VclSfCaksX8BF8WWOW9+/CQen/s2dDnFdycHgMDPj6Dh23vYwCIiIiLSwH2uiGwsYUJbJI5pDSgKFGMl97/wcMjfTHjcX5DCC1cMlGLTgfF/QflzDBDgWurTm56MwJOvvQXHnNwyiwlafAiygx7xz3SvXH2JiIio2rFAgsUG+1zZogx7Y88VkR0oBl3lG1Y3eDlCWTUKSmsfVbJ0Pi1/DtaVkjdfDIs8g9mvzIeTyaRKvz6mKc59MLjY8MWGC/YjcPFB69SZiIiIqBZiz1UVavBjFByNTmXG6JxdNPMR3pk84oJmiLPeKJaXg1ic3uSsHeSjvct5eXiGJ2nGpA5qKZSXRfvlBwAEfxOjGTM7ZqRQXqY2Js2Y35MchPJyiS9sAbndNRCPL3oF/pcuFqRJZ1JxaeAOLN0hAb43vVfHrkF69S9I2eoeq0N9uuHzR5+GxWBAn6eb494Fn6oeD/m/Pfhw3tvAY+016zaz4XDNmIa/il3fsVy9qhljyGkglJeSaxaKEyG3byoUp7+cJhRnSUisTHVU5HZNtIPCzwnlZUjzEoq7/mJD7aCTYu+5oWMzsThTycNZVU6fF8pLzszUjKn362mhvPIE6y/CYV+U1fICAH39+poxloRLQnnpQoMqW50C6UPFzttOSdrvufG62N5/Og9PoTg5wEc7KFL7OxgAdEbt87tsLns0QVXQuZY+yuFmcprY+Qxp2osribwWAABJ4GKkInAuKAeL4DGkRTZrf+dXB8p/N1uUU9ux54qolshw98KSJ+bicgP1Mu0BiXH5+2Al/XeCP3Ed0sS1kNLUX95He3TG5y89Bct/u5HvHDEY3z45s1g5ulf3Al+cqJo/goiIiKgGY+OKqBZJ8/TBkifn4apvkWXaTyZBum0dsPcSpAlrISXnqB5XBjfEp68+C4tR3WO5Y8xw/PDovcXK0c3ZDXxzyvp/ABEREdmcAh0UxQa3OtD0qP1/IVEdk+pVD0uenIfr9dTD5KRj16AbuQbSdfUQBaV/EJRvhyKvlKGgWyaMws8P3VUsXffMTuC7COtVnIiIiKiGY+OKqBZK9qmPj5+Yh2Svsue7Kb0DoHw/HHAue/rlpslj8dt904ulS0/+A/xs3fkgRERERDUVG1dEtVSSrx8+fvINpHp6l/i40t0Pyo+3Ai5i69qsmz4Rq++crEqTFEB6dAfw29lK15eIiIjsQwEg2+DGBS2IqEa71iAAHz8xD0oD9aqOSqf6UH4eAbgJrh75nzV3TYHyVAdVmiQrkGZtA9aIrchGREREVFuxcUVUy13xD4bye+E+WMqwkPyNhz0El8C9mSRBebkrlEfVS7FLFgXSA1uA9dFWqDERERHZkqxINrvVdtzniqguaOUD5Z/boORYNOdXaZIkKPO6A2YLpC9OFibnKcC9f0NZMQwYGlLJChMRERHVPOy5IqordFLlG1Y3SBKU/+sF5d5W6uRcGdJdm4HtF0t5IhEREVU3CnQ2u9V27LmqQpn9miPPyaXMGLeYLO2MzscKlae0aqwZk9VAbI6Nyw7BFeCyteuvCw7UjAEAyZwnFKe4OGnGuG217hLhmX1baMZ4ns8Wysv9ovZO84azcUJ5KUH1heIe/PdWzZjAXbmaMQBwsu2N/5OAN/sgyCTD58fIgselHAuUGRux9Gcd0Kfs9/7BPO16AYDLRV/NGM/1p4XykoWiAF2YQO/bcbGFPCyiZRq1h2rKZrH3SRd+TrBUbTlNxY6z+0P/1oy5pbnYO/DIxpFCcc5XtD9PbmKHhpDc7s2F4hz2WW8VTb2fn1hgTo52DADL1auaMTpH7fMsAMjR1ruQ4v73GbFARfQTJSDHpB0DwOSr/dl0itQMASD2Gc7r1EwoL8NhwddMgJyZKRQnfGyIvLZOjkJ5IT1dLM6qRIav1YXlGai8an/zkYiqjk5C/Pt9kTxJ/UNAl22BNG0DsPeSnSpGREREomTFdrfajo0rIqocvQ4XF/VHyjh1z6mUmQdpynrg4BU7VYyIiIjItjgskIgqz6BD3MeDIOXJ8FwbXZAsZZiBSeug/DEK6CA2tIxqEbMFutwiwwCL3gcAow5w1B7eR0REVUMBoAgNhax8ObUdG1dEZB1GHeI+HQzpgc3w2FQ4T1BKywUmroOycRzQzMt+9SPbURQEvb4Hvt+egi5bey6lopeAWxtBWToIcOLXEhER1VwcFkhEVqM46BG7dCjSBzZUpUspOZBe22unWpGtef9+Fg0+Py7UsAL+2ydtbTSkdw9Xcc2IiKgkiiLZ7FbbsXFFRFalOOoR8/VQKP2D1A9suQikiK1mRjWYrMBvYQUbSV+eBJLEVm8jIiKqjti4IiKrU5wNUJYPhXLTPBrJLAMbYuxYK7IFr7/Ow/lMcoWeK2WYIX12wso1IiIiLTIkm91qu2rZuMrIyMBbb72Fdu3awd3dHb6+vujVqxeWLVsGRcmfCmcymbB06VKMGzcOoaGhcHZ2RuPGjTFt2jScPl3ypiY5OTl49dVXERYWBkdHRzRp0gTz58+H2Wy25Z9HVDd4OAAD1b1X0p8X7FQZsglZgf8ida9VdisfnNw/HScOzMCJAzMgH5umuilFVpnEFyeANLG9vIiIiKqbate4kmUZI0aMwCuvvIKuXbtiwYIFePnll2GxWHDvvfdizpw5AIDo6Gg8+OCDSEpKwv3334+PP/4Y06ZNw8aNG9GhQwds27atWN5Tp07FG2+8gUGDBmHJkiUYMGAAXnnlFcycOdPWfyZRnaCMKfLDeetFIJ0/nGsrj80xcD51XZV2aXYn5IZ4wNzQHeaG7kCRm/JcJ1W8lJab38AiIiKqgardskz79u3Dzp07MXv2bCxcuLAg/ZFHHkHLli3x+eef45133kH9+vVx5MgRdOjQQfX8GTNmoGPHjvjf//6HgwcPFqSvW7cOq1evxtNPP40FCxYAAB544AF4eXnhgw8+wIMPPohevXpZ9W9x/ScKjsaydzLX1ddenlp0L3pTfaNmjMsOwS3khWl378oXE6xaYsqYVpoxPtc9xTIT2UEegPO/1nvdsge21IxxDc8Sy+xsrHYMAKlvc80YXZZYD+6vc3sLxbV5cxcwohEUgwQpL7/HWcqxQNkcB0xskl+mSWx4gNQ5XTNGFx4olNdr83cJxT2yXvs4q2/ljjjZrN3wTBuuffwAQGao9oK3AV+cFcrrai+BxXMVBQ2ePaJKymrqjbgRrQFL4XW8ndlFnhfqglYjm6L+usK6WD45gaabziHXtezzJwD4OWkfG3HHfDVjAEBxd9GMcdgXJZTX1anaxw8A+P2jPYTSkmj7zbhlwXOjNUlhQdpBAJTzYuc9EXKO2DxQl+MC32PBYucgke9Ew+EzQnnZgzWPDTld+/NrP3Vh0fBCtlpsggta2EFaWhoAIDBQfZJycHCAr68vXF1dAQD16tUr1rACgNatW6Nt27Y4cUJ95fOHH34AAMyePVuVfuP+d999Z4XaE5GKlyPQr8jQwDXn7VQZqkptDxyF+7HLqrTYJ7oBeu2vmdgnu6nuG1NM6PTTv1atHxERkS1Uu8ZVt27d4OXlhXfffRcrV65EbGwsIiIi8MILL+DQoUN4/fXXy3y+LMtITEyEn5+fKv3AgQMICgpCw4bqJaIbNmyIwMBAHDhwwNp/ChEBUMaEqRP+jgOyxJbophpCUTD6+99USdmhnrgyroXQ0zPbNsD1oeohpN2Xb4Ehm0NIiYhsQbbhrbardo0rb29vrFmzBj4+PpgyZQoaNWqEVq1aYcmSJfjtt98050d99tlnSExMxN13361KT0hIQFBQyUMOgoKCEB8fX+E6BwQEqG7NmjWrcF5Etc6oUCi6wmEAUlYesDXOjhUia2t59ASanVQPnY19vBtgEP+KiZmt7r1yvZ6Ojr+KDeEkIiKqLqpd4woA3Nzc0LZtWzz77LNYtWoVvvzySzRt2hTTp0/H5s2bS33e7t278fTTT+OWW27Biy++qHosKysLjo6OJT7PyckJWVmCc1yIqHx8nYHeAaokrhpYu4z5Tt1rZQp2x5XbxOaG3ZDRwR9JAxqp0np8vRn6HK7mSkRU1biJsPVUuwUtwsPD0atXLyxcuBCzZs0qSJ82bRratm2LmTNn4ty5c9Dr9arnHTp0CKNGjUJgYCDWrl0LJyf1RGgXFxfklDJx1WQywcVFeyJzaRITE1X309LS4OkpuKACUR2gjAmD9O9Nk7g3xAA5oku1UHXWNPw0Wh47qUqLe7QrFKO+lGeULnZ2d/hsL9wLzf1KKm75fQ8O396v0vUkIiKyhWrXc7Vw4UKYTCZMnjxZle7i4oJRo0YhJiYG0dHRqscOHz6MoUOHwtPTE9u2bStx+F9gYGCpQ//i4+NLHTJIRFYwKhQ3X6yS0s3AjooPxaXqo2ivVY6/Gy5NbV2hvNK6BiKlV7AqreeXm6DL5Rw9IqKqxJ4r66l2jasbDSCLpfhV7by8PNW/QH7DasiQIXB3d8e2bdvQqFGjYs8DgK5duyI+Ph5xceq5HnFxcUhISECXLl2s9ScQUVEBrkA39SIzXDWw5guLOIO2h46p0uIe6QzFseKDImJmd1fd90xMRrs/91c4PyIiIluqdo2r1q3zr3guW7ZMlZ6SkoLVq1fD29sbTZs2BQAcOXIEQ4cOhZubG7Zt24awsLCi2RWYNm0aAGDRokWq9Bv3Z8yYYZ0/gIhKVGzVwPUx0OexR6ImG12k1yrX1wWXprerVJ6pvYKR2lW9FUevpRsh5XEYKRFRVZEh2exW21W7OVezZ8/Gt99+izlz5iA8PBy9e/dGUlISli5disTERCxZsgR6vR4xMTEYOnQokpOT8cQTT2D37t3YvXu3Kq8JEyYU7Is1atQojB49Gh988AFSU1PRs2dP7NmzB1999RXuuOMO9OnTxx5/LlHdMSYMeHlvwV0pOQfNT57A6Vs62K9OVGEhZy6gw95DqrSLszpBdq7k14okIXZ2N7Sb8UdBknfcNbRZdxAnxnYv/XlERETVQLVrXDVq1Aj79+/HvHnzsGXLFvz0009wdnZGhw4dsGDBAkycOBEAcOHCBVy/fh0ASt376sKFCwWNKwBYuXIl5s+fj++++w4rVqxAUFAQ5s2bhzlz5lT531Uay9WrmjGS0SiUl/M/kdpBVqb38dGMER0iJHuILSpiKXnRR3VeaalCeek8PITi9O7umjGWa9eE8nKP1K6b6D4QOmdnoTj/b7SPDXMHsS0ErnYS6/Ce+3LvYmkzG+xF8JXClQI7he9ExHDtVeWC3VM0Yy62CdaMKY88L+vtxnF9UiuhOO8o7ZXxvPddEsoro3ED7ZhBYu/50k7ri6VJH6pXblV8HLGgx4PIiSj7mHSMFTifKQpeaXcY/uGxBUl9vtiAmPG3QCmyKXFkql/RZxcz6+0d2mUC+OYB7X25EgViACDgy9NCcVbd86VVY+0YALpo7WNIyRNbpVHy1z7O5Dix+ZXK+VjtICuTdGILr8jp6ZoxOk/t7wlRupt+u5Qlt3mgdhAAx7hkzRjR7zBdWIhQnHxB+/3Ue3sL5WVJ1q6/KKV1E6E4fexlzRg5I6Oy1ak2FCX/Zotyartq17gCgCZNmmD58uVlxgwYMABKOd8hJycnzJ8/H/Pnz69M9Yiogk437qpqXHX85wB+fOq+Yj+YqZo7nVRsOX3l4XbIEWzsa5IkHHh0KMbM+qogyefCFTTdcAxnRnW0ThlERERVgL9oiMhmTjVRLxzjkZyGpscj7FQbqijpgyOq+4qnAzCzrVXLuDCwDa62Uq/i2vXTzYBs1b4eIiIiq2LjiohsJsnTD4n11ENKOu3gSnA1ytkU4PciKz0+2BbwcLBuOZKE/Y8MVSX5RiWi8d8nrFsOERFBsdFiFkodWNCCjSsisqnTRXqvOv5zAJKteyNkBdJbByE1+gZSn1+Bw1dsW34NJi08CkkuHJKtuBmhzLJur9UN54a2w/Vm/qq0bp9sqhuD9omIqEZi44qIbOpUY3XjyvtqEkJPn7NdBRQF0v92Qnr/MKR0M6RTSZAmrGUDS0R0GvDLGXXaA20Ab6eqKU+nw4GH1b1XDU7FI3T7qaopj4iojuImwtbDxhUR2dRVnyBc8VavcNVp+z7bFK4okF7YA+kb9UpuUroZ0m3rgONiq2XVVdKio5AsN/VauRigPFK5fa20nBnRAclh9VVp3T7ZzN4rIiKqlti4IiKbO12k96rTjv1V/2NZUTDu9+WQvih5zo6Umpvfg3UqqWrrUVNdzAB+jFKn3dMK8LXSCoGlUPQ6HHhoiCrN/1gMGu6OKuUZRERUXooNb7UdG1dEZHNFVw30TbyKhlHRVVegomD0mu8xaMvqMsOk5BxI4/8CIqy3p0ptIX10FJK5cG6c4qiH8tgtNik7cmxnpAar99TrtmSTTcomIiIqDzauiMjmLtULQZKHeqhXVa4aeOu6XzB002+qNEUnQf64P5R+6iGK0jUTpAl/wS8+ocrqU+NcygJWFNmI+q6WgL/Yxt+VpRj0OFik9yro4HkE7T9rk/KJiGo7WZFsdqvtquUmwnWJLlh7d/U8b7FhN8Yr2jvIJ3WqJ5SX5/rT2kEAEkfW14xp8J3gPkaJYmH1IrVjRMlpaUJxuoZBmjEZg1sK5ZXWwqIZE/iJUFaQs7OE4nSO2gsO6M6LLegQeF47BgDg5V7mw6eadkOfw2sL7vfeuRPXXu8CSMVPvHd4xWgW98VwU4npHT/Zgu7rNqjSFAmIWDgcVya0hm54e7S7YxW89sUXPC5dzsb8156H8tcYIMyj1DJf+zxMs14AYMgWCkNaI6NmjPcUvVBe0lWBFRh7ZQrldeTdi+icU3jcWox6fD1jMjKueqviAjZoH9u6LLEX43iY+jN3ssd4dGiwBfWuXC9Ia/XBP9j44pCiTy1GCRL7Mr86rZVmjHewWK+muUszoThjqlkzRmfOE8orx03sK93RUXvZfClPrEw5Ll47qBpTZO1jVpR80XoXZORMsc+mwyWx7zDLNe35pGm3in2HeWwQ+07XGbWPM0uy9UYJSDqxcyNOiS2gxB31qKLYc0VEdnGqSVfVfc8L1+AVZd0V+275cju6f7ChWHrU+8NwZVJrAIDsYsSJbycgtXOAKkZKzIQ07i8gVvuiRW3mlpSG9j/tUqWdnNgdGQHepTyjaliMBmyYNk6V1vpwOBpHchNqIqLK4mqB1sPGFRHZRXyDxsgM8FSlhWyw3gaxbZfvRM+31xZLj3p7CC7drt6XyeLmgPDvJiLtFj9VunQxI7+BdTHDavWqaQZ8vx5GU2HviqzX4cBM7d6iqrBz5CCk+Hip0kb99qtd6kJERFQSNq6IyD4kCTG3tlElNVp/ElKepdgNebLm7eb41j/sQZ83ii9esfPVcUi8s32J1bF4OCL8h9uQ3kY91FWKSc9fRTBRbJhObeKSko7ev25RpZ0e2wVpDcWGF1ub2dEBG28fq0prd/gQQs7ZcJ80IqJaiKsFWg/nXBGR3cTe2gatv9ldcN876jLubP5qhfJ6SOPx3XNG48RdfdCqjMl9eV5OOP7TJNwyZSXcThfOUZDOpQLj10LZNA7wdKxQ/Wqifj9tglNW4Vw2WSdh/0NDy3hG1dsxZghGfv873FMLh2uO+m0lPn1ujh1rRURElI89V0RkN1c6hyCrvluVl7PvmRE4/kB/odg8H2cc/2kSlOZeqnTpTAqkD49VQe2qJ6eMLPT7ebMqLWpkR6SENbBTjfLlOjth05QxqrSO+/chKDraPhUiIqoFFEg2u9V2bFwRkf3odIgZ1a5KizjwxFAceXhQuZ5j9nWB8sdoKE3Vc8Lw29mq3+y4muj782Y4Z6hXo9w/a5idaqO2dcJwZLq7qtJGruLcKyIisj82rojIro49ORjX2wRoB5aTrJOw/+lbcejxCg5j83eB8tVgVZIUlwEc1V7SuKZzzMxG/x/VqyyeGX4Lrjez/vtUETkuztg8aZQqrfOe3fC/GGenGhEREeXjnCsisqtcT2es/fMxuCSkQG8qeW+dcR7ae+n8nBqqup/t64Zcd7E94krVth6Uxh6QzhfuJSP9eQFKR+393Wqy3r9thWuqegGPfQ9Xj16rG7ZMHIFhv/wJl8z8fbN0ioKRq37D10/Mtm/FiIhqIFtt8MtNhImIbCQr0Kv0B720V+pLTaqCBo8kAWMbA4uOFqatOQ+80rXEzY5rA6MpBwO+X69KOzewLa62CrZTjUqW7e6KbRNuxajvfi9I67bzX/w5eSquBlSPHjYiIqp72LiqQuYOTaBzcikzxnjojGY+RrPYBHLLZe0NWJ1SrLvxp+/xknsabpY8vpVQXt5/iG4Gar05L7oAf7ESHbR3fnfbIlZ/jzPaP1KtvTO8nGPSjNF7eQjlJXKcAQDSUjVD/j3aWiir3Q0aa8boDWKv2vGoZkJxfUevAwAoY8Ig3dS4ks6nQTmVBLSpB9PrYseP9zsxQnEN39R+n04mizUcvui4WTuoJJ+GQ5eUpkraHDwNSV/5lfKEQrKj9ucEkdq9kAAQ8IF2zPGcNhju8hcMWfn7cOlkGQ/u/BzH3lMveBFmNAqVObXfv5oxnR3FhoU+23+kUJzDOe3e1XobxY4fo1HsK11OSRGKs7XMAS2F4tyPXtKMqa5/IwDo3N01Y2R/se0OpBSxLSLShmu/th4bxL7DdM5l/665QXJ00IyRQ0KE8rIYtS9mifyeAgCdq6t2EAA5U/u11blpL8ikMwucF6sDRcq/2aKcWo5zroiIytLBF0pD9ReotOaCnSpTxUx5kBarV0RUBgUjPqCJnSpUtixHV0Tf2VmV1vC3cDjHpdinQkREVOexcUVEVBZJAkaHqdP+rKWNq+8jIV1SrxCoPNvJTpURc25mD1gcC3tsdHkymn26u4xnEBFRUbJiu1ttx8YVEZEGZay6cSVFJANRKfapTEVpfdvlWIrt46X0DQR6iA19tJecBm6Imd5Rldbwl2NwSkjlNzwREdkc51wREWnp6gclwAVS4k29On+eB26zX5WExWdAengbsPsSpHI2KKp7r9UNZx/uiUbfH4Y+1wIA0OdaMKzHYs3nKa28oSwZAHSo+GIounNpcHpyF/QRKcid2gQ5r3cBjLxuSUQ1i602+OUmwkREBOgkYFSoKkmqCUMDEzMhjfsL0s7E8jesuvsBfWrGqnsmfw/ETbml3M+TTidDGr8WOFaxvcuk82lwGbcBhr1XIKXkwvHz03Ce9S+QZ+0laYiIqKZg44qISIAyVr1ioXT8OnwuCq6caA9XsiCN/0u1R1d5KM90qlHLzZ95pBdkQ/m/0qS0XEgT1wInrpfvebEZcJ2wCbpL2ap04+poOD22C5KFDSwiqjkURbLZrbZj44qISERPfyi+TqqkdlsO2akyZXNNToM0fi2kM9rL4RelSIAyqy0wuHrta6UlO9gL4fOGwyKwbUJRUnIOpAlr4RIp1oMlxWfCdfxG6OJLXqrZ4dfzuOvdzyDJbGAREdU1nHNFRCRCrwNGhgLfFu4F027LQey4e4T96lQCl9QMPPzou5DOJKvSlaaeUL4YBDhrnPbrOwM+TmXHVFMxd3TGxYnt4Byv7q0b4FKkV0pWIL24B9KOwj23pOsmdJi6Ekd/nYKspqXvMSQlZsFl/EboYjPKrEvvDTtgMRrw3TMza1QPIBHVTYqSf7NFObUdG1dERIKUMWGQbmpcNTpxHp6XriNVcMPPquaUnolZj7+LoDOxqnQlzAPKH6OBQLHNM2syi4sDMpr5qhPdivcgKd8PB6auh7QrsSDN8WoWOkxZiSO/TkV24+IbrhuvZsJl0kboL6Sry2ztjZwn28L58V2QcgvL6vfnFuQZDPjpyXvZwCIiqiPYuKpCxqPnYDRqXAFuEaqZT3xPsavI/su053847okUysvcqZlQnE5g1Euuh9hlCl2g2JLPGc09NGNc/zkrlJfsJniF/mycWJxImbEXrZaX1LSRWFzcZc0Yy2Wx+UO64EChOPligmZM/aMWobwMGdrHUK632HtpTMnWDgIws8GwYml65zwsdPsXrhmFvRZj923C+fu7lZnXliFdhMp8zWedZsxP+twS0w3pJgyauRy+p9XH17WA+li08GUkZ/gCUernNPYSGwaXEewoFCcLjMhzdmwulJchU+zYOLTArBmz6ZaSX3+HGUPx6OV5aHL2dEGa4+VMdJ36E1LWDIfcyL0gXbpmgtftm6A/q+4Vy2rug5M/TYTZ1wXeTl5o8cBa6MyFJ8ZBv29Ed79YZMzrUmIDa27MRM36K8ENNGMAQHYSGxJpCNA+18qJl4Ty0jlqHxtyTo5QXq7bI7SDAFhzsKUuVGz4qyJwDtV5e4oVKtLQPhMtlJVFEnvPPTZeFYoTIWdnaQcBkATed93xFKG8DM4umjGix4WcWfJw3oqQM8ruwQYA2WyyWnlVSfnvZotyajvOuSIiEmQxGHC0h/qHeuD606VE244hMwcD7lsB36PqhlVyAx98tORFJPv7lvLMui3XyRmfPvUKLjRWN/j0CVnwmrgZuov5P5yk5Bx4TdoMQ0SKKi67sRdO/jwBZt/8H37JQ8MQ9dkIKHr1j2fXz07D7Y3DdWM8DBFRHcfGFRFRORzq00N1v96BODhe0b56WVX02bnof/93aHBQPRQwxdcLHy55CdcDxXo96iqTsws+efpVxDZSrwapj82A14TN0EekwHPy3zCcVM9hyw71xMmVE2H2Uw+1TBrRBFFLhkPRFWlgLT4J13fVmzQTEVHtw8YVEVE5nOzUHibnwiGIkgIEbBQbbmttepMZ/Wb+AL990ar0bF83fPTxS7jaUGyobV2X7eKGj5+Zi7w26nlW+uh0ePdbA+Mx9YIYpoYeOPnLROQGuJWY3/WxzZG2pDeKrjjs9v5xuC44btW6ExFZw41NhG1xq+0454qIqBzyHBxwtHsX9Ni+syAtcN1pRN/Z2XqFrIiA9PZBSInF5zZM13iqyccFW7+7B5e9xObGUb4sN3ek/DoUXuM3whBZuIS9VGQkX06AG06unIDcYHeUxTSpMZArw/PJ3ap0t7ePQnHUIeuxtlarOxERVR/suSIiKqfDRYYG+u6NgUOS2CRvTSeuQ5r9T4kNKy05ns7YuuIepLbws05d6hjF1wkpvw1DXtOSF82x+Dnj5MqJyAkRW7jANL0p0hb0KJbuPvcwnD+3/1w9IqICttpAmJsIExFRUeFdOiDH0aHgvs6iIGCTdYYGSu8fLtZbIiLX3QlbV9yNlNYBVqlHXaX4OSP192HIC1P3TMn1nZD6+zCYGnuVK7/su5oj7f+Krybp8fIBOH8ttjoeERHVHGxcERGVU66TE8K7dlKlBay3wg/liGTgzwvlflpWA3dsW34XktsFVb4OBNnfBam/D4O5Q/7+ZXlNPZDy21BYmgkutV1E9gMtkf5G8eXgPZ7fj17bN1eqrkRE1nBjE2Fb3Go7zrkiIqqAQ717oMvOvQX3G+y8AGOqCWZPwb3TSiB9cETVa6W4G6GsHg04FO5lsz5DvUiFopeQEeID2YGnc2uSg1yRsnEkdFeyIddzAoyVuxaZNas1kCvD/Y3DqvTp33wCi16PfX0HVSp/IiKqHvhtTERUAce7dYLFQQ99bv5mtzqzDP+/oxB3W/sK5Vf/cgKw6pw68cG2QIf6qqTUVM6nshmdBNlfe/NSUVlPtIWUa4HbO4VLsusUBXd+uRgWvR4He/W3WllEROXBTYSth40re4uM1gzxt+Iqz6K70RuzLWL5Zedqxjgmlb2q1g1yQqJQnLmDl2bMtduaa8YAgO/RbKE4kZVDRbu6dUYHzRjZrP26AoByNkYsrlmodtCZaKG8LF7OQnF6ncCxdvSMUF5oEqIZYjwQJZRVxuCWQnGB27TeA0dc7dsY/lsK/4bA9RElNq6C+1wsllbUyBdXQJILD6JcV0csm3IbTNfU+yhF7g7TzAsAfH7Xfj3Ojxf7nPj8Lbb4gt7LSzPGkpIilJckcswCkB31mjH1DqcL5fW6NFEzxpAt9kF3uVzKOdRxDIb2/QmD/v2tIEmnKLh36SLc0y0cGN+42FOevTZCqMzuE8WWeT/8vfZKhQ6Jl4TyknNyhOLEiE10zxzQQjPGdbvYMF05WvuzKcwi9r1pVYodyhSkyNp10wWIbRch5Zq1g7LFFgGSjEahuNz2oZoxxkOC32FUp3DOFRFRBcWPVDfUGuw4B0NG+X9sesRfR5s1B1Rpx6f3hsnbtZRnUI0lSdg88Hbs6DVOnWxRID24BVgbbZ96ERHdWM2vKm91ABtXREQVdGloc8iGwtOoPscCv61ny51Pj6WboLPIBffNTkYcuW+ANapI1ZEkYcOQO7Cr+yh1cp4C6b6/gU2xdqoYERFVFhtXREQVZPZyxtVeoaq0wHKuGuh+KRntVu1TpZ24vSey64kNp6UaSpLw1/B7oNzXWp1sliHdtQnYasXhakREGmRFstmttmPjioioEhJGqIcG+m07C322wPyA/3T76m8YzHkF9/McDDh8P1eOqxMkCcq7vaHcqT6GpFwZ0h0bgX/i7VQxIiKqKDauiIgqIXF4Cyi6witxhiwzOsxZC9w0zK80rlfTcMvK3aq0U5O6I9OvYvspUQ2kk6As7AtlmnpxEclkgTR9I7BHbKEfIiKqHiq1WmBERARiY2Nx7do1ODs7o0GDBmjXrh08PDysVT8iomot19cVV3s2QoNd0QVpDX8/Admox5F3RwO60odAdPvmbxhzCnu5LEY9Dj44uCqrS9WRToLyUT/ALEP6tXDOnpSVB0zdgEb39UJMqNgql0REFcK12K2m3I2rrVu34quvvsLff/+Na9euFXtcp9OhY8eOmDRpEu677z74+vpapaJERNXVqTmDUG/St9DnFA7va/TLMcgGHY7938gSn+OclI4OP+1UpZ0e3xUZgd5VWleqpvQ6KJ8MyG9grT5fkCxlmPHgF2/gs1mvIy6kmf3qR0REQoQbV6tWrcJLL72EqKgoKIqCoKAgjBs3Dv7+/vDx8UF2djauX7+OiIgIHD16FAcPHsRrr72Gu+66C/PmzYOfHze+JKLaKeWWQOz7cjK63/9LwabCABD2wxEoDnpEPnc3IKl7sLou3waHm/aJk/U6HHyIvVZ1mkEH5YtBgNkCaV3hHnbOpiw89PlcfPrwPMQHF98Hi4ioshRIUAT3mqtsObWdUOOqX79+2LlzJ9q2bYu3334bU6dORUhI6Zt65ubmYtu2bVixYgW+//57/PTTT1ixYgXGjh1rtYoTEVUnV/o3wf7PJqH7QyuhMxfOt2q87CAGwgPbnptQ0MBySslEp+//UT3/1KguSAthT3+dZ9RB+WoIcNcmSJvjCpJdsjMx67PX8Mkj85EY2MiOFSQiorIINa6ysrLw119/YeTIkoe3FOXg4IDhw4dj+PDhuHr1Kt5++21ERUVVqqI1kRQWDMnRpewggbGnSe3FNhIVGcbqu0Vwed/0dLE4RyfNEJ9rKUJZpQ4Tm1Pgue60ZkzCY4LDZ87FacdAbKd5UbI5VzvIyjJCtN8nN4QK5SWdOCcUp72cg7hcb0fNGMew0i/43MzjQIJYoe5umiGbt3VRJ+i7IHxWGO5f8i70cuEr0G3ZVhgcgX3PjAAkCV1++BuOmaaCxxVJQvgjA3D1WRO0uPYSfGUV7WPWd7PY8S/6Xiru2ueqzI7+Qnm5bhNb0l7n5aUd5KH9XgKA79FMzRj5gnX3oHrw6JAS0w3PDMTjSe+izaHjBWmuWRl4dtkcKGvGAC2LDx89liu2RtXm9u00YxqYmgrlZXbXa8Y47YwUykt0Mob7Pu33wJrnH1GW5GQ7lGo9qSNbCcV57xD7DMiZAp+nxEtCeYnQCc73l9PShOKMh85Upjo1jqLk32xRTm0ndCY+ePCgcMOqqPr162PBggV49tlnK/R8IqKa5FiXHlg262nIkvr02unzreiyeBOM6Sa0X66ea3V25C1IadLAltWkai7PwQFL3vgfTndoo0qXrpkgTfgLOJtin4oREVGZuBQ7EZGVHe7eB98++CTkovOsFm/G2Ls/g2Natjr+Yc61ouJynRyx+M3nofRU9/ZJl7MhjVsLXBC7Ak9ERLZTocbVvHnz8P777yM3t/ThTTt27MC8efMqXDEioprsQK/++P7+x4qlNwhXD809P7QtkloE2KpaVMPkOjtB+elWKF3Vi0JJiZmQxv0FxAoO4SYiIpuo0D5Xr7/+OiRJwurVq/HHH3+gXr16xWK2b9+OefPm4dVXX610JYmIaqK9fQdDn5eH6cs+LTXm0KMlz7khKuDuAGXlCGDCWkhHrhYkSxczgE4/Afr8HtJbSnm67GpE0uTmiJ/bq8x914io7lIUCYpig9UCbVCGvVV4WGBYWBh27dqFnj174uzZs9pPICKqg3YNHI5/Xx1f4mPRA1rhWptg21aIaiYPByi/joDSTn0xU5IVSGYZklmGrpSbISUHDZaGw3fZSTtVnoio7qhw4+quu+7C119/jZiYGPTs2RO7du2yZr2IiGqNE3f2wa4Xi29FwV4rKhdvJyirRkFpVbGNpv0+PgIpx3ornxIRUXGVWtDinnvuwbp162A2mzFkyBD89NNP1qoXEVGtcvzefvj3lfHIdc1fVn7/E8NwpQP3K6JyqucE5Y/RUDrVL/dTHRIy4fOL6LLoRERUERWac3WzwYMHY/fu3Rg5ciRmzJiB8+fP48UXX7RG3YiIapUTd/VB1PjOUHQSzG7ae48Rlai+M5SN46CcTwOy8wqSo8zFr5cGv7wTbvsK9xLy++gI9B/lwWKo9Nc/EdUiNXXOVVRUFL777jts2rQJ586dg8lkQpMmTTB58mTMnj0brq5ie8Xm5eXhk08+wbJlyxAZGQmDwYAmTZrgoYcewkMPPVSuOlnl7Nq6dWvs27cPo0ePxiuvvIJz584hIICrXxERFZXr4WzvKlBtoNcBzbxUSdklbCKc+GwXNJv8V8F9x7h0dN/+D3YPGVTVNSQiqnJff/01lixZgrFjx2LGjBkwGo3Ytm0bXn75Zfzyyy/Yu3cvnJ3L/t7Nzc3F2LFjsW3bNsyYMQOzZs1CXl4ezpw5g5iYmHLXyWqXrvz8/PDPP/9g2rRp+OabbzT/kLpAuXARirHsq9NJt2nviO7z22mh8nQh2hPjJaODUF6iLk8I04ypd7L0Jftv5nXkulCcyIyB4K/ihfLK7NNUKM75H9sOpcnu00IozjU2UyjObUuEZozO3V0oL6mB2HCkzOY+mjFOO8VeV+PBM9pBglen5Eyx1wxp2nsIGdM9hLKKShV7zdyQoBnjEnFNKK/s7s01Y5wSs4TyQkaGWJyiaIa4btM+FstDTknRjNHl5WnGAIDkpN2bmDpC+5wNAJ7rxc7bSgkNoqIu5uUI5fXxsTHFE90VvNgqCk1ORxUkTfvzO7R8FvkNtFL81KCrUJmeb17UjBH5bgIAOVY7LwCQswWPWwF6wfOZ5cpV7SA70AUHCsXlBLhpxniuEztmZaEoIK9jM80YwxGBc7sgWeCcXR5K6yaaMdKpc1Ytk8pv0qRJeOGFF+Dp6VmQNmvWLDRr1gxvvvkmvvrqKzz2WPFtUW72xhtv4O+//8bmzZsxcODAStfJqpsIOzs74/fff8cTTzyB7Oxs7ScQERFR1ZEk/Dl9kirJ+XwKfFdb70ctEdV8imK7mzV16dJF1bC6YerUqQCAEydOlPn8zMxMfPjhhxg3bhwGDhwIRVGQnl65/QMr1LiSZbnU/askScKiRYuwb98+bN26tVKVIyIiosoJ79oR0c0aq9KCPzoAyFb+lUNEVE1cvJjfE+7n51dm3L///ov09HR07twZTz75JDw8PODh4YH69evjxRdfRJ7gyIebVdmM1q5dxYYUEBERURWSJPw1fRIem/tuQZJLVBLqrTuL66O1h24REVlbs2bNoNMV9vEkJiZaLW+LxYI33ngDBoMB06dPLzM2MjJ/esKiRYvg4OCAd999F/Xq1cP333+P//u//0N8fDyWL19ervKtOiyQiIiIqp+jPbogLixElRa86ID1x+gQEdnZ7NmzsWfPHsybNw8tWpQ9h/3GEMCkpCRs2bIFDz/8MKZMmYLVq1djwIAB+Pbbb3H6tNh8xBuEe64aN26sHVSEJEk4d46T/YiIiOxJ0enw17RJePitDwrSXE9dg/emC0geXv7vdyKqZRQp/2aLcgCcOXMGHh5ii0KVxyuvvIKPP/4YDz74IF544QXN+BsL8PXo0aNYQ+yuu+7C9u3bsX37drRqJbaYEVCOxlV0dLRwpjdIkg3eJCIiItJ0qE93JDQMQmBc4WqqDRftR/KwMIDf10RUw73++uuYP38+7r33Xnz22WdCzwkOzl/N1N/fv9hjN7aVSk5OLlc9hBtXFy5cKJa2cOFCLF68GOfPny9XoURERGRbil6PtdNuw8x3PypIczt2BV7bY5AyMNR+FSMiu6uKlfxKK6cqvP7665g7dy7uvvtufPnll8IdPN26dQNQuADGzW6kNWjQoFx1EW5cNWrUqFiat7d3qY8RERFR9bJ/QG/c8ctyOEenFqQFLzyAlAGN2HtFRDXSvHnzMHfuXNx55534+uuvVQtl3CwxMRGpqakICQmBi4sLACAsLAy9e/fG7t27cfjwYXTq1AlA/qIYS5cuhcFgwLBhw8pVnypbLZCIiIiqF1mvR/zjXdD0mS0FaR4HE+Gx+yLSeje0Y82IyK6U/262KMeKlixZgtdeew0hISEYMmQIfvjhB9Xjfn5+GDp0KADghRdewPLly7Ft2zYMGDCgIGbx4sXo27cvhgwZgieeeAL16tXDzz//jP379+PVV19FSIh6MSAtbFxVIbl1GGRHlzJjfE5ob7YsNRXrGZT12lcd83x9hPIyJF0XivOK0l7/35AktqF0TkMvoThHi/b+8BbB+uvMQmHI6VH2ajMA4Lg3UigvvZ9297LrvuLDcEsim3OF4nSOjtp5iW6aJxjndDVJM0bktQAAi1fZnyMAkCOjhfIydxFbetp4UHuTVfdNEUJ5ZVhaCsUBCZoRose2wz6BOGtPJjZoL0B7darYpOD6P5dvdaYylXIVsyjFZNKMkR0qWxm1oM+jNWM+7jZOKK8GJu1zIwB4PxQAyyJX6OMyC9JafLgHaQPcC+4/0GinUF5LX+yrGeP1VpxQXrrQYKE4Obr48J2i0oaLfea89ogt/6wLDNCMkQS+mwDAcvmyUJwIJUEsL3MTd80YffumQnkZTseKxR3RPocqbZsI5SWdsP3iaPqYS5oxYu84VaUDBw4AAGJjY3H33XcXe7x///4FjavSdOzYEbt378bLL7+MRYsWwWQyoVWrVvjmm29wzz33lLtObFwRERHVJUYdsp9oC7f/7StM2nkJhn1XkNe9fHMLiKh2UCBBQdUPDbZ2GcuWLcOyZcsqHdu+fXusWbPGKnXiPldERER1TM60prAEqHuEnRcct1NtiIhqDzauiIiI6hpHPUyPtVElOWxLgOHwNTtViIiodhAeFtivX79iabGxsaU+BuTvc7Vjx44KVo2IiIiqiunOZnBeFA7d1cK5Zh6j1gMOeniXMek8u7UPEt7ojexOHEJIVGvU0AUtqiPhxtXOnaVPbi3tMW4iTEREVE05G5D9aBu4vn6oIEnKU4C8vDJnRbgeuoJGD/2NiD23V30diYhqmEptIkxEREQ1l+nu5nD+6AR0STnlep5DXDpc9yYCYgv8EVF1x54rq6nUJsJERERUg7kZkfFRL7jftwNSbvkWlvZcewF4qIrqRURUQ3EpdiIiojrMPLwhkiKnQn8mFdJ/V5WvWIrvjef1+xnUX3qi4L7nuguQZspQBPcRIyKqC4QaV5cuXYK/v3+lCrp8+TL8/PwqlQcRERFVATcjLB19C+5mW5yLhcjuRlXjyng5C6HhZ3HhluY2qSIRUU0g1Lhq3LgxHn/8cTzzzDNo0KB8qwOtXbsWr7/+OsaMGYNXX321QpWsqZJbOMDB2aHMmAa7UzXzkeMThMrTubpqxjjkmoXyEh0c4ng6XjMms0tDobycr4nVzZJ0XTNG7yd2nLqcTxGKS23rrZ1Xg/pCeVkuX9GMMfVuIZSXS3yWUJzsJPBRjxCbV5k5oKVQnDFb+ygyCMQAgCE5WzNGaRYqlJfx4BmhOGtyu2jSDgJwbWorzRjfn08L5aULC9GMkS/ECuUlSom7rBnjn5IhlJdFsExdcKBmTI6f9rkRAIyHtI8N3x2JQnldvU37vQQAn9+030+nK9rHPwCYPYv3NpXkxa0TNGP0OSUvafFy0F4ExhceN52/O4KEtA5C5WqRoy8KxeX01D4/Ol8XO4IUX0+huIwQF80Yt13nhPLK7qtdf7eTYkviy/XcheJcdkQKxQmVabWcAOmE2GsmQu/rqx0E4MoAse/q+gfTNWN03trHjy5X7PNrf9J/N1uUU7sJ9eU//fTT+PjjjxEcHIwxY8ZgxYoVOHeu5A9EZmYmduzYgZdeegmNGjXC2LFjIUkSxo8fb816ExERkY0d6dpTdb99+B5AqQMz1ImIBAn1XM2fPx8PPfQQ5s2bhx9//BHr1q0DAHh4eMDPzw/e3t4wmUxISkpCQkICZFmGoiho37493nrrLcyYMaNK/wgiIiKqeke79MSoP34uuO+dcg0NL55FXMNmdqwVEVUaVwu0GuEFLRo2bIilS5diwYIF+OGHH/D3339j165diIqKKohxcHBAhw4dMGDAAEycOBE9e/YsI0ciIiKqSeIbNsJlv0D4XS4crt4ufC8bV0RE/yn3aoEeHh6YNWsWZs2aBQAwm824fv06nJ2d4ekpNnaZiIiIaiBJwtGuPTH8r98KktqF78W6EXcAUu2fS0FUa7HnymoqvX6q0WiEv78/G1ZERER1wJEu6lEp9a8lIiAxxk61ISKqXrg5BREREQmLDWuC677qFdfah++xU22IyDokG95qNzauiIiISJwkFeu9ahe+106VISKqXqpl4yojIwNvvfUW2rVrB3d3d/j6+qJXr15YtmwZlCJLvu7btw9DhgyBu7s7PDw8cOutt+Lo0aMl5puQkIC77roL9evXh7OzM7p06YKVK1fa4C8iIiKqPY527aW67385Dg0ui+1TRURUm1W7xpUsyxgxYgReeeUVdO3aFQsWLMDLL78Mi8WCe++9F3PmzCmI3bt3L/r3748LFy5g3rx5mDt3Ls6cOYO+ffsiPDxclW9SUhL69OmDVatW4eGHH8aHH34INzc3TJkyBd98842t/0wiIqIa60KT5kjx9lGltePQQKIaS1Fsd6vtJKVoV5Cd7dmzB7169cLs2bOxcOHCgvTc3Fy0bNkSSUlJSElJAQB069YNEREROH36NIKCggAA8fHxaNWqFXr06IFNmzYVPP+5557De++9hzVr1mDMmDEAAIvFgp49e+LcuXOIiYmBm5ubVf6GtLQ0eHp6Ys5di+Ho4FxmrNlfeyEQY3yyULmWpBTtIEVs13prkpqECMUp52KF4rIGaO9u77JdbDd6vU89oThL0nXNmNQRrYTy8lx/WjNG5+4ulFdKnyChOI/1EUJxtqYLDBALNOi1Y1LShLJK7R4oFJcRqn1qDNyeI5SXciZaKE6EztlFKC69u/bnziFD7HxgPHhGKA4tQjVDdNGJYnkZxBazlTMzNWMuPdNEKC//Bee0g1o1FsoLp8+LxQnQOToJxVmaiZ0PpBPaf+ele7XPs9OWLsWgdesL7sc1DMM7ry8sFue9WvucVx46D+3vTTkt1aplitAZHYTiZHOuZkxeJ7Gl7R2uaB//AJDUUfs18/pT7H2S24l9nnThAsfZfdrHGQD4nNQ+Hzvsi9KMAYC8jmKvreGI9nlPaav9WuTkZOH9BfcgNTUVHh4eQmXb0o3frDN+/xYOrmLfL5WRm5mF7yfcVW1fD2uodj1XaWn5P5ACA9U/gBwcHODr6wtXV1cAwNmzZ3HgwAFMnjy5oGEFAEFBQZg8eTL+/vtvXLp0qSD9hx9+QJMmTQoaVgCg1+vx+OOPIykpqWBjZCIiItJ2qMhelg3jLqDe1UulRBNRtabY8FbLVahxlZ6ebu16FOjWrRu8vLzw7rvvYuXKlYiNjUVERAReeOEFHDp0CK+//joA4MCBAwBQ4kbFPXr0gKIoOHToEAAgMTER8fHx6NGjR4mxN+dHRERE2s60aoV0d3WPSIdDHBpIRHVbuTcRBvJ7laZNm4aZM2eia9euVq2Qt7c31qxZgwceeABTpkwpSHd3d8dvv/2G8ePHA8hfnAKAqtfqhpuHCJY3tiICAtRDm2RZrnBeRERENYGi1+N4x27o/c/mgrSOB3djy60T7FgrIqoQRcq/2aKcWq5CPVcNGjTAl19+iR49eqBz58744osvkJGRYbVKubm5oW3btnj22WexatUqfPnll2jatCmmT5+OzZvzT+JZWVkAAEdHx2LPd3JyUsWUJ5aIiIjEHOmsXjUw9MIZeCVdtVNtiIjsr0KNq3PnzmHjxo2YOHEiTpw4gYcffhiBgYF46KGHcPDgwUpVKDw8HL169cLQoUPx3nvvYcKECbj//vuxc+dO+Pv7Y+bMmbBYLHBxyZ90l5NTfEK5yWQCgIKY8sRWRGJioup25ozg5G8iIqIaLKplO2S6qBeD6nCIe14R1TTcQth6KrygxdChQ7Fy5UpcvHgRb731Fvz8/LB06VJ0794dnTt3xtKlS5EpsIpTUQsXLoTJZMLkyZNV6S4uLhg1ahRiYmIQHR1dsOBFScP5bqTdGPJXnlgiIiISIxsMCO+gnh7Q4dBuO9WGiMj+Kr1aYP369fH888/jzJkz2Lx5MyZPnoyTJ09i1qxZCAgIwKxZs3D8+HHh/G40diyW4ksE5+XlFfx7Y67Xnj3FJ8/u3bsXkiShc+fOAPLnRAUFBWHv3uJX026kdenSRbiORERElO9oF/XQwMZnI+CeKraFCBFVE1wt0GqsuhR7kyZN0LhxY3h4eEBRFGRmZuKLL75Ax44dMXXq1IL9qcrSunVrAMCyZctU6SkpKVi9ejW8vb3RtGlTNG3aFF26dMHKlSsLFqwA8hevWLlyJQYNGgR/f/+C9GnTpuHcuXP4888/C9IsFgsWL14MLy8vjBw5snJ/PBERUR0U0boDsp0K93TUKQpuOcyhgURUN1W6cWWxWLBq1SoMHz4cTZs2xdtvvw1PT0+89957uHLlCjZt2oQhQ4Zg5cqVeOSRRzTzmz17Nnx8fDBnzhzceeed+Oyzz/DWW2+hY8eOSExMxPz586HX528o+uGHHyInJwd9+/bFokWLsGjRIvTt2xeyLGPBggWqfOfMmYNGjRph+vTpeO211/DFF19gyJAhOHDgAN5//324C27aSkRERIXyjEacvEU9+qPjQQ4NJKpx2GtlFRVaih0AoqOjsXTpUnzzzTe4fPkydDodxowZg4cffhjDhg0riBsyZAiGDBmCiRMnYsOGDZr5NmrUCPv378e8efOwZcsW/PTTT3B2dkaHDh2wYMECTJw4sSC2V69e2L59O15++WW8/PLLkCQJvXr1wsqVK3HLLbeo8q1Xrx527dqFOXPmYMmSJcjIyEDr1q3x008/YerUqRV9GcpkuXoNFqNTmTFZ7etp5uOR7ipUXk5zX80YSRY7skV3OhehnIu1Wl4A4Hb0smaM6GL4lqTrQnE6V+33wPtoklBeee2basboL6cJ5eV1XCxO5PXQBQZoBwGQExKF4oToxa7vyLEXrVak+2ax18wytpVmjHImupK1KT85W2xlU9ftEVVck+KS2jprxvhEFl9YqCQ5nUKF4lzOaX/uAj/XPmcAgueN0+eF8pL0RqE4xWLWjskrPky+xDJPnBOK07m5acZIeWLTzu8duQkA4CW7APsK05ufOYEHuq+GpZ4z/tzRTigvi8DoFgBIHK99rgr8U+zcYkkROx+YOzfWjDEetN5iVobDYnlJ9esLxdXbfUUzRuwoAwzJ2UJxIp8n/68jhfJKeLi5ZozH8EChvF5utEYo7qOniu+NWlSmj/bP6BxThX9qUw1VoXd8+PDh2LJlC2RZhr+/P1566SU8+OCDCA4OLvU5Xbt2xerVq4Xyb9KkCZYvXy4U27NnT2zZskUoNigoCCtWrBCKJSIiIjGpg0JgcTZAn50/N1qyKPDaeAHXp7e2c82IiGyrQo2rzZs3Y+DAgXj44Ycxfvx4GAza2YwZM6Zg1T4iIiKqPRQXI9IGhcB7bWHPnvfa82xcEVGdU6HG1enTp9GiRYtyPadt27Zo27ZtRYojIiKiai55VBNV48r934vQp4oNAyUiqi0qtKBFeRtWREREVLulDmkE2VFfcF9nluG5Kdp+FSIqrxwLXF45AK+uv2PC7uUw5uXau0a2w6XYraZCjasbS52XtCkvkL9X1eDBg7Fq1apKVY6IiIhqBtndAWn9G6rSfH6z3uJIRFUq1wL3B3bA+bPT0Eeno8P5fehzcpO9a0U1UIUaV19++SWSk5MRFBRU4uNBQUFISUnBl19+WanKERERUc2RPEq9qp7njjgEXouxU22IBOXJcHvoXzhsUK9M2/7CPkCpA10tAHuurKhCjavw8HB07dq1zJiuXbvi+PHjFaoUERER1TzJo5vAXE+9JH/f8PV2qg2RAIsMt0d3wvGv4tvG+GRch3+y9bYCobqhQo2rpKQkNGjQoMwYX19fXLt2rUKVIiIioppHcTHi8iz1PpOt4o7Bjz9QqTqSFbg+sRuOq6JLDWkTe9h29bEryYa32q1CjStfX1+cPXu2zJgzZ87Ay8urItkTERFRDXX1nrbI83ZUpfU9vsFOtSEqhazA9Zk9cPql7I3BW8UerTtDA8kqKrQUe+/evbFmzRpERUWhefPiu2ZHRkZizZo1GD16dKUrWNt5/HtBM0bOEVvK1vGCyNUA258gdI6O2kEARK9myCkpFa5LUdcntxKKa7A5UTsoW+x90h2/rBmTOKOlUF5+e7LEygwM0IxJbesplJe7h5NYmQlJ2kGS2HuuF7hQY6mvHQMAOBMtFOa15rRYfrbWIkwoTHfximaMnJlZ2dqo+Pym/ZqJng8c90QKxVlEglqECuWFyAzNEJ27u1BW6Z1LnpNclHu0dplytHV7feQM7TL9VkQI5fW5NLTE9FHDMjHu5x8L7reOPQznADOu+AWXmleeo79QmRZXWTPm4qSyR9fcELDTWyjOePCMUJytWa5eFYrL69hMM8bUsb5QXu47zgnF6UJKf69vyAx1Fcor+I8U7bweFOsv+D65I6AoGDD3N7T/Qd1RkOdgwP5Hh6HXwnUFafXTLqPdjLNIaV78+Dx4UPu7NTerhvTU2Go+VB1op1ao5+rZZ5+F2WxGnz598PHHHyMqKgqZmZmIiorC4sWL0adPH+Tl5eHZZ5+1dn2JiIiomts6chSyXVwK7usUBYP//s2ONSL6j6Kg71t/oP0Pu1TJFqMeaz++FwdnDUF6gJfqsbAN4TasINV0FWpcde3aFZ988glSUlLw5JNPolWrVvDw8ECrVq0we/ZspKam4tNPP0X37t2tXV8iIiKq5rJdXbF1xEhVWqfD/6LeVYFRAERVRVHQ+90/0XH5P6pki0GH9R/ejZgBrQFJwtlh7VWPh208Ycta2gdXC7SaCjWuAGDmzJk4duwYHnnkEXTu3BlNmjRB586d8eijj+LYsWN44IEHrFlPIiIiqkG2jBoDk1PhMGKdImPwFu5/SXaiKLj1k9/Q+attqmRZr8OGhXfh/JB2BWnnijSufCIvwSOai7SRmArNubqhVatWWLx4sbXqQkRERLVEhocHdgy/FcNX/1GQ1uXgdmweNhnJPmJzooisZejSNRjy9V+qNFknYdN7M3BuuHqFy8ROYcjydYPLtcL5iaEbwnF81kCb1JVqtgr3XBERERGVZdOYccg1OhTc18sWDNr6ux1rRHXRwG/+wvDP1cedIkn4+/+mIWp0p2Lxil6H6GFtVWmcd0WiKtVzZbFYEBkZieTkZFgsJa/Z1K9fv8oUQURERDVUupcX9vYYin7/ri1I67ZvCzYPmYQ0r3p2rBnVFf2+24BRH/9aLH3L/CmImNC11OdF39oOrX/YW3C//ol4uF1MQkawT5XUk2qPCjeu3njjDSxcuBCpqallxpXW6CIiIqLab9vA8ei1eyMMljwAgMGSh4Hb/sDqCffbuWZU2/X++W+MXfhTsfRtr0/Cqck9ynxuYrcwmLxd4JRcuOVJ6MYTOHF/7ew0kJT8my3Kqe0q1Lh699138dprr8HT0xN33nknGjZsCIOhUp1gREREVAuledXDvu6D0Xv3xoK0nns2Y+vgiUj3ENtniqi8evy2DRPe/a5Y+o6XxiN8em/N5ysGPWIGt0aLXw8WpIXV4sYVWU+FWkRLly5FUFAQDh8+jPr1xTadIyIiorpp26AJ6LH3b+jl/NEsxrxc9N++Bn+NvdvONaPaqOvqfzDpreXF0v98ciou3F12j9XNLoxop2pc+R2OgculVGT5e1qlntWL9N/NFuXUbhVqXMXFxWHmzJlsWGlQWoRCcXQpOyYqTjOfq1NbCZXnt1Y7r8xOQUJ5Of8TKRQnIqNnqFCcU5LYEFL96RjNGMVsFsrLkKEdAwCWlBTNmIRHmgnlFfiJdl4Nvo8Qyku0d10kzj3BuvvPSA20zw9pjd2E8nLfc1U76EyKUF41nS5H7NiWMzOruCbF6X19NWMs18SWM7bc0lQozphs0oyRI6OF8kLLMO28Ii4IZeWUInY+k6MvasZkDWghlJchW+yM4LAvSihOhOSn/fq/Nyh/6WspuinwXeF3y4ADa9F/qSdQL3+59hc+HS5U5sLuGzVjnvpxhFBeOH1eKEwXGqwZoxjFflIpZ6I1Y6TGIWJ5nY8VijMcOaMZ49aqsViZgt+vSqz2sZ08qrlQXj4jsjVjLh/N/33Tbed2TP7sm2KP/zFlBjZ0mwwcEioSZi8L9PUboZ/rz3DJLBwaqHx/GXvGdgYAPD1gnWY+Gem5KF4bqs0qtFqgn58f8vLyrF0XIiIiqqWUpzpC0RdetZYy8yB9etyONaLapvPenbjns4+gU9QXGv6aOBUbxk0ud34WoxHHundRl7FrbynRNRw3EbaaCjWupkyZgs2bNyMnJ8fa9SEiIqLaKMwDmFSkR/KLk0AKf0tQ5XU4sBf3LfkAOkVWpW8Ycxv+mnh7hfM92Ken6n7zE6fhnlL2Ym5Ut1WocTV37lwEBARg0qRJuHBBbIgEERER1W3KUx2h3DTlQsowA1+csF+FqFZoui0cDyx+H3pZ3bDaPGIs/ph6ByBVfJ7PyU63wOTkVHBfJ8vouHuf8POd91+qcNk2xZ4rq6lQ46pt27aIjo7GunXr0LRpU/j4+KBx48bFbk2aNLF2fYmIiKimau4FjFPP7ZE+OwGk5VYu3z2JkIavhjTkd2BXQuXyohql8b8nMfGpLwuW+r9h27CR+G3GvZVqWAGA2dERx7upNxoWHRrofOAyGj7wd6XKp5qnQo0rWZZhMBgQEhKCkJAQeHp6QlGUYje5yBUEIiIiqtuUZ9U/VKWUHEgzt0CfJ7ZQQjHbL0KauA7SgcuQDl+FdN8WGHM51LAuCN0bgUlPfAGDWd2w+mfQMPx818xKN6xuONRbvcJgy2Mn4JqeXuZznA9fQaPp66HPrhn7vUo2vNV2FVotMDo62srVICIiojqhtQ+UUaGQ1kYXJEmb4zAjbgG+n/YMLAajeF47EyDN2Agpp/AHrHQ1G61OHcHxDuJLblPNE3LgDCY/+hkMueqG1a7+g/HjvbOs1rACgPCunZDr4ACH3PweVoPFgg57DwClbHnldPwaGk1bD316BS8YUI1WoZ4rIiIioopSXusGxV3diGoTcQDTflkEnUXwSv/eS5CmbYBUQs/ALUf3WKOaVE0FHTmPKQ9/AqNJ3XjZ27s/vnvgESg66/68zXF2xonOHVRpnXaWPDTQ8dR1NJq6DvrUSg51tTXOubKaSh99p0+fxu+//44VK1ZYoz5ERERU2zX1gvLrSChu6gZWu5N7MfXXDyHJGg2sA5chTVkPKbPkbWHahB+EXnA/JqpZAo5H4/aHlsAhW914OdCjD7596AkoOn2VlHuoj7ontM3hY9Clq+vgGJGE0EnrYEjmsNS6rMKNq8OHD6NTp05o27YtJk2ahHvuuafgsR07dsDFxQVr1qyxRh2JiIiotunqB+WXEVBc1DMUOhzfhcmrPoFU2rztI1chTV6fv9JgKZxNWWgRyT20ahu/U7GY9uDHcMxUb14dMaQDvnl4NmR91TSsAOBY9y7IMxQeq8a8PLhvLtzE2eFsChpNXgdDkrpuGd39qqxOVsWeK6up0JyriIgIDBgwAAAwe/ZsREZGYv369QWP9+vXD/Xq1cOvv/6KsWPHWqWiNZEuT4ZOX/aiHkpT7V3fzX5iV99ymgdoxrjuixHKy5pLkWQEi417znMWOxw9jmu/HqK723uHi+1VIfJ6BH56XigvEXpvb6E4S3Ky1coUJQleFTSFeGnGuG6PEMpL5PW/MqOlUF4NvhcrU2zardi3hN6nnlCcxc9TM0Y+LXac6ZxdtPNqJPalb/J1EIpz2hkpFCdCf+ysUJzIsXH5HrFjI/Cva5oxolPT9UfPCMXpHJ00Y1z/EXstFK3env/k9GyhGeO4R+y99F+aohnz0IRby3y8+Qtd8MQb8+GYW9gL0PnIdrRvE4+cD3oBusLPoi78OrLHboVrkR6DI726wCM5FU1OF77ufa9sgnmoT5llH22k/VoAQMAX2q+H6Hk7+Vbt49Fjg9h5SuRzDgBKoK92jOi5xUP7PAUAcpr292urMLGVHSMv+yH4bDSmPrUETunZqseO9uqMz+Y8A3OuBJFPaP1DQkXirUc3FkuTBgYAm+MK7uv+TMSZ0b3hGp2EPpM3wHhVXbdr3Rri3yUTgS4fihVKtUKFeq5ee+01yLKMAwcOYMGCBejatavqcUmS0LNnTxw4cMAqlSQiIqLaKaptWyx5YQ4UR/VPEuN3Z+D4/F5Ayb+IoTudDOfbNsE1PVMVF969Iz5/7SkcHKje7LXxlhPQmWvGSm1UtsALcXj66TfglpahSg/v1gGfz30aFmOF+grKTRkTprrfYNtZuEdeRe/bv4PzZfXqgdc7B2PvstthcRa7OEW1R4UaV9u3b8fEiRPRokXpV3xCQkKQkMC9JoiIiKhspzt0gGn5ICgORRpY30TC4eX9kKJS4DRxI6Qk9VyWk13aY8m8Z5DnYMShvt1VjzmlZCFw/7kqrztVLZ/zl/D00/PgnqpuvJzq3A6fzn8WeQ7lWF2yskaGQtEX9qQaTHnoP/ZruCSkqcKSbwnEnuW3I8/N0XZ1o2qjQo2r1NRUBASUPQQtNzcXeXklTzQlIiIiupllSDBMXw2AYlAPyXX4/DRcBv8J3dUi82w6tMGSN/6HPIf8noEk//q40KKJKqbpxmNVW2mqUl7RVzDl7sXwTFIPMYzs0BpL3noOZkcb9wr5OAF9AlVJhmz1VIWUtv7YvWIa8jy0h/xS7VShxlVAQABOnz5dZszx48cRGhpakeyJiIioDrKMCIFpaX9V7wCAYsutR7VricVvPY9cJ3XPwKH+6t6rxpvDIVmsOYuYbMUjPglT7lkMt6vqXqEz7Vpg8f/NKfbe24oyNqzUx1JbNsCu76fD7OVswxpZCRe0sJoKNa6GDx+O9evXY//+/SU+vmnTJvzzzz8YNWpUpSpHREREdYtlTChyPu0LRVfyojLnWjfDh2+/gBzn4j0Dh/upl8t2uZ6BgMMXqqSeVLWGvvYTPC6lqNLOt26Gj955ATkuduwVGhkKpYRDM62ZL3b9MANmb7FFRqj2qlDj6qWXXoK7uzsGDRqEF198EadOnQIArFy5Ek899RTGjBmD+vXr45lnnrFqZYmIiKj2y5vYGDkf9yn2I9ZySz0seudF5LiU3DNwJcgfcY0bqdKabODQwJrG/1g0wnaqR0jFNA/DondfhMnVzo0XPxegl3pqTHpjH+z6YQZyfV3tVCkrYM+V1VSocdWwYUNs2rQJDRo0wNtvv42VK1dCURTcfvvt+PDDDxEUFIQNGzbAz6+GrO1PRERE1UrelCbIWdwHinP+9g+W7g2Q/eswZLuV/QO26NDAJpvCgdL2zKJqqecnG1T3U3y88MGCV5DtXj0aL8rLXQs2wE5t1QC7froDOX7udq4VVRcVXruyS5cuiIqKwtq1a7Fnzx4kJSXB09MT3bt3x7hx42A02nD1FiIiIqp18m5vCsvAQEhXTZBbe+fveXWx7Occ6tcD47/5peC+2+VU+B2PxeUOoVVbWbKKBifj0GTHSVXaptvHIsvDzU41KkF3fyhHp2F7hBFprf2gGCrUV1GtSEr+zRbl1HaV2hjAYDBg3LhxGDdunLXqQ0RERFRA8XOB4ic+FCwxNBhJjRvA5/yVgrSmG46zcVVD9PhM3WuV5e2GHWOH2Kk2ZfBxQmr7BvauBVVDttl1rY5SzsdDMWpMulS0NzgMjNILFqidl+jACH29emJFmrWX2/f/Q+My43/yQsWGkeZ1bKYZY3YVu4rkvDNSKE7Sab8HimzFzSol614FU1o11i7y9HmxvAT/TqcLSZoxoq+YLjhQM6bB9xGCuYmy3uU1S9J1sUDROAFydpZ2UITYRH/rTh0veZGCosxdtT/nAGA8EKUZ47dM7Niw5nazctsm2kEAcMJ6+zBZOoi9Zo57xM57IuSUFM0YSfYXymv2MbFFsPTXtX+67GvbHyPOryy433DNKZwc8CQgqY+/xSPWCJX5tLf2j3vfd2KE8vLYkKwZIzUOEcor209sVTqdWfvbXxL4bgUAi6PY91NmoPZ525Slfi38z8Sh+ebjqrTtd9yK3Gw3ILvsvAK/ETuudY5iZ7QHd9+qGeMSr/1a5Iqci6lWqVDjat68eUJxkiThlVdeqUgRRERERBVyuFtPjFhT2LjyvXYFDWPOIy5UsNFLdjH4q79U97M8XLF7yiDgmp0qRFQBFWpcvf7666U+Jv13VUhRFDauiIiIyOYuhoThagM/1L9yuSCt0/7dbFxVY/UvJKL95gOqtH+nD0WOqzMbVzbAOVfWU6HG1bZt20pMT0lJwYEDB/DRRx9h1KhRmDVrVqUqR0RERFRukoQjXXpi2Lo/CpI6HtiD1ZPvKDY0kKqHwV//BZ1S+Ms7280ZO6cNtWONiCqmQo2r/v37l/rYuHHjMHXqVHTr1g233357hStGREREVFGHu/VSNa78LiUg8GIsEho2Kv1JAGCWYfjoOPRrYyD39Id5bteqrSihXtwVdNiwV5W2a+pgmNy5Ia/N2GoPqjrQc1Ula0e2a9cO48aNw1tvvVUV2RMRERGVKaZxMyTV81WldTywu+wn5ckwztoB4/8dhu74dRg+PwnDO4ersJYEAAO/+Qt6S+GiGznOjvh3+jA71oio4qpsYf6QkBCcOHGiqrInIiIiKp0k4WiXHqqkjgf2lB5vkWF87F8YVqtX0TR8cQquKWlVUUMC4JVwDV3+Ujd690waiCxvbspLNVOVNa727dsHZ2exJUKJiIiIrO1I156q+0EXY9EgMb54oKzAOHsXDL8WXxpfyszD4F82FH8OWcXA5eugzyvcCMHsaMQ/d2ovg05UXVVozlVsbGyJ6Xl5eYiLi8PSpUuxc+dOTJkypVKVIyIiIqqoc81aItXTG56phfspdTywBxvHTioMkhUYn9kFw49nSs1nwK8bsXnaKGS7u1ZldescjyvJ6PbHv6q0vRP7I93X0041Iqq8CjWuQkNDC5ZcL4miKGjWrBnef//9CleMiIiIqDIUnR5Hu3RH/y2FPU+dDuwubFwpCowv7IVhhXozasVBB5jlgmWjnTOzMXDlRqy7b6Ktql4nDFi+HgZzXsH9PKMB2+8eacca1V1cit16KtS4uuuuu0psXOl0Onh7e6Nbt24YN24cHB0dK13BGk2x5N/KoAvT3oVdvlByT2GxuPZNNWN0x4sPeSgxL0+xq3PKebG6idCdyBCLE4hxcHMTykuW9EJxilz2+1geuiDtXeuVpBSrlQcAhmvpmjG5HZoJ5WW8rJ0XAFi8BFZ5un5dMC/tIcbSRaGsIDXVWCnshpgEzZDUQWJ75nhsjBCKEzk25HjteomSjEahOMVsFsuwVWPtmNPnhbIyZuRpBwnSeXkJxckpKZoxOT1bCOXlnJgpVqZATE4vsTIdd0cKxdmaY5LY0udyYK5QXL3FFzRjgm+6tpuuNAS2FN4PiT6PfsF7kR7sDbyyF4avTqueqxh1SP9mABx/PgfHNTEF6YN+3oANo8bB5FLy+UjvU0+o/pYk7fOe6HdrZsdWQnH9+odrxvxzSfs3BADojov9PjA3NpX5uHtSCnr8sl2VdqRFP+T9VR9Fvz1y2mp/8+ucxVYWtIT6C8UFbsvRDlK0Wwo5OVlC5VHtUaHG1bJly6xcDSIiIiLrS+zWGCZvFzglF/7IDdsYDqekTDh/UaRhZZCQ/mU/mIcFQw5yVTWuXDMyMPCvDVg/ZYLN6l6bDft5LYyWwgs3Fp0e/3YaY8caEVlHlS1oQURERGRvikGP6CFtVGmdFm9Ghy+2q+N0EjI+6wvzyPwRJZY23sgd0VAVM+y3P+FgKrtHhrS5paSh/x+bVGnHWvRGqodvKc8gqjnYuCIiIqJa7cKt7VT3HTLVQxAVCcj4pDdyx4Wq0rOeaa+675Gahv7rNldJHeuSwSvXwym7cNidLEn4t/NYO9aICjYRtsWtlqvQsMDGjQXG1ZdAkiScOyc254eIiIjIGuJ7NkWOuxMc04v3OikSkPlRb+TeVvy3jeWWesgdHASHLYXLt9/66xpsGz0ceQ4OVVrn6qTZoZMYvfQ3mI1G/DnsHsQ1EpufVRLn9EwMWqVe2j68eS8keflVtppE1UKFeq5kWUZOTg6io6MRHR2NuLg4ZGdnIy4uriAtJycHiqKobrIsMnWXiIiIyHpkBwNiBrcu8bHMBT2Qc3vpi9NkF+m98kpKRt8NW0qJrn3a/nsYjz/xDpoejUSrAyfwxPsvI/Sc2CI9RRlyzXhg3mI4Z2YXpMmQ8E9nzrWi2qNCjavjx48jKCgIPXr0wLZt22AymZCYmAiTyYStW7eie/fuCA4OxvHjx3HhwgXVjYiIiMjWig4NBICMd7oh587mZT4vr2t9nOqgfu6IlauhF11FswZrvfsoHnjxQ+gthSvmOuWY8MiH8xASXfq+YCXRm/Pw0KuL0G7fUVX6qaZdcc0nyBrVJaoWKtS4eumll5CSkoLt27ejf//+0Ovzl7PW6/UYMGAAtm3bhqSkJLz00ktWrSwRERFRRcQMaoWLvfO3nLAY9dj16jjk3NdS6Ll/Tp+kul/v6jX0/nu7tatYrbTYfwIPzlkEo7n4tgjOpiw8uuh1BMeKba2gz8vDzLkf4Zbdh1Tp2Q4u2NJjilXqS5XEOVdWU6HG1e+//45x48bBoZTxxk5OThg3bhxWrVpVqcoRERERWYVOh3Xf3I9Vvz+On7Y8h5N39RZ+alT7Nohqq95TauTPv0OfZ7392KqTpodPY9b/FsCYW3rvnEtWJh5b+BoCLkaXmZcuz4J73/wEnf7Zr0rPdnHGirH/41wrqnUq1Li6fv06zBrd4WazGdcFNwglIiIiqnI6Ha61a4jMQO9yP7Vo71X9S1fQfdtOa9Ws2mh8LBKPPPMeHHLUKyruH94bp7qrh0e6Zqbj8YWvwT8hrsS8JIuMu9/5DN227Falm5wd8dF7cxDvX/GFMYiqqwqtFtikSRP8+uuvmDt3Ljw9PYs9npycjF9//bXCqwrWJdJNkzpLowsMEMvs+FnNkCt3iA2BkB3E+m2dWmvvDq/PEczrukU7CIBTfKpmjOXyFaG8pGahQnG6lEztMq9eFcpLjk8QirMmkbo5iM4f+G8YsBazs3acY4DYFUv5hPVWGdUlZQjFWQReD7cEsddMFxIsFCfHXhSKEyNpRiiNBec5REYLhemKLG9dktyOzYTycoiI1w4CILRMkhXnxjjuiRSKuzRD7FzrZ2ikGeNyWux8JnYGBSS9UTNGsYi9ZpJROy+vP09rxgBAXrzYsWHqrv2DPO5psfdp7oiJQnFBva8gNSAYcT+GoWF44fzxcb+uROwdbaHodchqIbZHk+Me61147tb3lFCcs077/dSFu6LR+Sg8svA9OJpyVI8d6toH3094CnpLHt4zPgn9zksFj7mnp+LFT56Dac2tUJoW/iZ8ausY3PnZJ+i59V9VXrkODvh4zss459cWgfsuQYTXhkTNGEUS6y+QTosNZVQEzqEiY9wUcw3ZF81WQ/Y4LLBks2bNQkJCArp164Zvv/0W0dHRyM7ORnR0NJYvX47u3bvj0qVLePTRR61dXyIiIiLbkyTseGiUKsk35jLabjxopwpZV8OYs3hk0etwNqkv+h7t1APf3jcbsl4Ps4Mjcr4fDEsP9YUx6Uo2HCdshHQhLT9BUTDtyy/QZ6t6VcX8htVLiGrTtkr/FiJ7qlDP1WOPPYYzZ85g8eLFuPfee4s9rigKHn/8cTzyyCOVriARERFRdRDVtx0SWoUg8HRsQVq/petw4tYudqxV5XmcuoxHP1gEl+wsVXr4LV2xbOYzkA03/Vx0NSLnxyFwnLIJ+gOFoyJ0iVlwnLAROWtuheGzUxiwSd1jaTYY8On/nkdEe/XS9lQ9SAAkG/QqifQH1nQV6rkCgA8//BC7du3Cfffdh44dO6Jx48bo2LEj7r//fuzcuRMffvihNetJREREZF+ShB0Pqnuv/M4loNWWI3aqUOW5R15Bz+nfwzVLPWT6VNtO+Pqh52AxlDD0092InJ+HwtKhnipZdzETTn1Xw/iFumFl0evx+bPP4WTHTlavP1F1U6Geqxt69uyJnj17WqsuRERERNVaxMBbcLlpIPzOFs6f7b90HQ7fNQyQqsd1eclsQef3NiJoWyT0uXnQlTHRxfF6JgxZ6jlZEa1uwZcPP4+8subUeTgg59dhcJqwEbrwpMKyM9UrKFp0Onzx1DM43qVrxf4Yohqmwj1XRERERHWNotNhx8yRqrSAiDi0ijhUyjNsr/XXu9Dmy53wOncV7nHJcI1LKfVWtGEV1aItvnj0RZgdHLUL8nKE6ddhkFuXvPqirNPhqyefwpEevBBPdUeFG1cWiwUffvghunfvDk9PTxhuGo979OhRPPLII4iKirJKJYmIiIiqi5PDuuBqqHpRh8FbVwJK9VgKLezPYxV63rmmrfD5Yy/B7CjQsLqhnhNMvw2D3Fy9erQsSfjmscdxsHefCtWFbEtSbHer7SrUuDKZTBg8eDCefvppXLhwAe7u7lBuOqGEhYXhm2++wYoVK6xWUSIiIqLqQNHr8M8D6t6rkItn0OxMxRo11uSQmg2f02JLnN/sbLPW+OyJV5Dr5Fz+Qus7w7RqOOR2PgAAxUmP5Y8+hn39BpQ/L6IarkJzrt555x38888/mD9/PubMmYN58+bhjTfeKHjc09MT/fv3x8aNG1XpRERERLVB+MhuGPjZn/C5eK0gbci2lTjT7Ba7zr1qcDAG0k0XvC0OBhz8ZGKZy7SZPZ3wy/VxUHRi+xiWyN8Fps2joTv6/+3deVxU5f4H8M/MMAzDDoLIIrKIuORSirnU1Vtalkvhzay0zLW8qZlWv7Q0XOteTasrN/dMW0zbtFJLyywTy7qamisKIksIKpvAADPP7w9jchzkPINnAOHzfr3mVZ75zPeceTjnzDzznCUXItQDScfvqHktqn036H2uTpw4gXfffRdff/01Tp06hdLSUkRHR2PIkCGYPHkyPDw8HK45dOhQbNiwAe3atcPhw4cdfn2NOlcffPAB/va3v2H69OkAAE0VO5HIyEj89lvd/4JDREREpDaLiw7fj74H98/66yidyNSjiEr5Haej6u4+TkE/p9j8O+fm5si+q5Xi68RX19GxquSihaVL08v/L3cfZ6Lrsnr1aiQmJmLQoEEYNmwY9Ho9du7ciZdeegkbNmzA3r17YTTKj8Z+8cUX+Oijjxx6zdVq1LlKTU3FoEGDqs34+Pjg4sWLNVqoxsTs76kcOpainAFQ2jNWMeN33CJVS79PvfPltMHNpHK5Pao+IfZqbinKd5qXpSmSu3O6MCoff152q/KHFwC4/qTctuVdYqRq6X+Vu9P8hfuUly3gqzNStSxX3QflmrlWAcqhgiLljMrMF85L5bReXsqhQ6ekapV3kvt76tKUM/Ikfh48nipVSRcUpBwCYE5LV8y4SL7HC4PaSOW8T5cphw7L/Z3U1GxzhlRO46L8MWyW/SzVyH051gYo72vN2efkZhmqvG4Uh8v9cmz8Xu7b+HVd5vgqPluPKocAZIZV/fma3XEAbg/ciiY5f41e9dq3AfsebHvNWiFJyvPTevsohwDsO+dtN63Xj5k2//7fTZ2wPbO1Yi1TE7khhY0Fcp91Hsq7A4gSyc9gi1kxU3Sn3H7W85tjUjmZfWjRnRLtWloMbJWcJTnsgQcewLRp0+Dj89c28+STTyImJgbz5s3DqlWrMGHCBKlaRUVF+Oc//4mnnnoKmzdvrvEy1eicKw8PD5w/X/0XlNTUVPj7+9dooYiIiIjqO7Nej63/iLeZ1ubAYUT/LvsFXl2GSyVoftz2B9nkTso/vBLdqLp06WLTsao0dOhQAHDosL4XX3wRZrMZc+fOva5lqlHnqkuXLtiyZQsuXbpU5fPnzp3Dli1b0KNHj+taOCIiIqL6bHffO5HnbzsaOPC9j+pkWSIPJ0Nn/usIFbNOh5T2ciM61MiJWnzUgvT0y0OnQZJHXvz8889YsmQJFi9eDG9v+xFhR9SoczVp0iRkZ2dj4MCBdpdb/+233zBw4EBcunQJEydOvK6FIyIiIqrPKlxdsW3w/TbT2u87gIjjybW+LDH/sz3M8UzbKJS7OXBZdaJaEhMTg+DgYOtDTWazGXPmzIGLiwseeeQRxXxFRQXGjBmDu+66Cw8++OB1z79Gnav+/fvjpZdewnfffYc2bdrg1VdfBQB4enrilltuwb59+zBr1iz06tXruheQiIiIqD77/u67kO9re2jSgDoYvYo+YHs4Ig8JpMZo8uTJSEpKwuzZsxEbq7wNLFiwAMnJyUhMTFRl/jW+ifDs2bPx9ddfY+DAgfDx8YFOp4PRaMQ999yDr776Ci+99JIqC0hERERUn5W5GfD1AwNtpt2c9AvCTqXW2jLoS8vQ4ojtRY6Sb5a7MAxRbR8WePLkSWRlZVkfapkxYwaWLFmCcePGYdq0aYr55ORkzJ49Gy+++CKioqJUWYYaXXQnLS0Nrq6u6NOnD/r06aPKghARERHdqL4beDfu+fAzeBb+dRXUAe9/jKUzptbK/CN+T4a+vML6b4tWg9Mdeb4VNR4JCQmYO3cuRo4ciaVLl0q9ZurUqfD390d8fDySk/86lLeiogJlZWVITk6Gh4eHQ4cu1mjkKjIy0nqPKyIiIqLGrtTdiO2D+9tM6/zDXgSfkbgmuQqiD9heyj69VQRKPdxrZd5EdS0hIQGzZs3CiBEjsHLlyirvwVuVM2fOIDMzE+3atUNMTIz1kZGRgZMnTyImJgZjx451aFlqNHLl6+uLgACJe9gQERERNRLf3H8v7t74OdyLL98PUCsE+n/wMVa+8LTT5x2z3/ZiFjzfihqL2bNnY9asWXj00UexevVqaLVVjx1lZWUhPz8f4eHhcHe//MPDwoULkZeXZ5f95z//CTc3NyxatMjhC27UqHPVrVs37N+/vyYvJSIiImqQSjw98E38PRj43sfWabfu/BGbhz+Ic2HqXhHtSrryCkQesr064clbeL4VydOIy4/amI+aEhMT8fLLLyM8PBx9+vTB+++/b/N8UFAQ+vbtCwCYNm0a3nnnHezcuRO9e/cGgGue3vTss8/C09MTDzzwgMPLVKPOVUJCAm6//XasXLkSY8aMqUmJRkEb3AxaV2O1GcuxVNXm5/aj8t3ts5+LkKoVUNZSKqe/UKKYEa46qVr+Hx9VDgFQvk+7A644Nr46FRHK90lw/emEYkaW4US2XNBVLxXzPV2uHGomORqdkiYVc0++oJgxX+Neec6kC2oqlTsf10Qx4/uF3DqrO3BSKqcmrbf9TRWvZinIl6oltHKHV8jQGuQuC+2ab1EOAXC5qLwPkqskpzyulVROY5b7BuHyP+V1QxMVLlVLnJbbNs3Z56RyMgpaeipmvI8VSNVS8++k1bvKzbO8TCrXbLfyPnTU1K2X5z1DD8tnLtBeunz+k9ZiwfSv30DOG7cBAN4Jv1OxljDIfT3z+/TyL/TN00/D1WT7Xs6nt4Pfp39+Rhw9ffVL7egk7wd0+hPlfQsAeBYo30hZzb+55zdyN27WBQZK5cqDld+nzDz15aVS86Oa2bdvH4DL14MYMWKE3fO9evWydq5qS406V1u3bkXv3r3xxBNP4K233kLXrl3RrFkzu+MbNRoNZsyYocqCEhEREdV3Fn83FIxsDd8lh63TPDeewsWpHVER7uWUeUak2/7Q80dgOEqMzpkXNVC1dYNfleexZs0arFmzRvVsampqjZepxiNXlfbv33/NQwTZuSIiIqLGJm98O3ivOgptyeVjLTQVAr5vHkLuwh5OmV9Emm3nKrU5Dwkkqis16lzt3LlT7eUgIiIiahAsgUYUPhYLn2VHrNO81ifj4pSOqs9LazEjPMP2tIAzYexckWNu1HOu6iPpztXmzZvRunVrtGrVCr169XLmMhERERHd0PKeuglea45Ba7p8ZpGmzHL5UEG3QarOp1l2KtzKbM895MgVUd2Rvs9VfHw81q9fbzPtww8/xODBg1VfKCIiIqIbmbmZOwofsb0AiveaY4g9/auq84k4a3tIYK5/MIo8fVWdBxHJk+5cCWE/jnfs2DFs2rRJ1QUiIiIiagjyJt4E4fLXxb40FQIPbvsPYlIPqDaPqztXKc3bqlabiBwn3bkiIiIiInnmME/kTWpvM83FYsbQrW8iOu3QddfXCAtaXHWlwDM8JJBqQtTio4Grd52rhIQEaDSaaz70etv7+iQlJWHQoEEICwuD0WhEdHQ0xo4di9On7e/pYDKZMHPmTERGRsJgMCA6Ohpz585FebnEPYCIiIiIHHTx+ZtR8Kjt4YF6czke/nIxItN/v67aTXPT4V5qe7/AFHauiOpUja4W6EyDBw9Gy5b2N7A9ePAgFixYgIEDB1qnbdu2Df3790d0dDQmTJiAgIAA/P7771i+fDk+/vhjHDp0CKGhodb80KFDsWnTJowaNQrdu3dHUlISZsyYgeTkZOnr3hMRERFJ02qQu6A7NOUWeK1Ptk7Wm8vxyBeLsG7Q80gLia1R6Yi0Izb/vugTiAJvyRvCE5FTONS5uvomwc7QoUMHdOjQwW76E088AQAYPXq0ddrixYuh0+mwZ88eBAT8tTNp164dxo4di40bN2Ly5MkAgC1btmDTpk2YMmUKXnvtNQDAmDFj4Ovri0WLFmHcuHHo0UPl+08Iy+VHNbRXjcRVRfYO8oDy36fplzqpSrq8S8ohAJbMLMWMVu8qVUtjdJfLeSjnzLm5UrUsRUVSOe1h5fbQSPwtAUBIjJRaCgqkasnSHkxWzFS/pv4ld4jcr6IBG48qhyRpvb2VQ1WcF1plrLhEOQTA9wv1lr8uWAryFTOaqHC5WqfTrndxrMpbN5fKue86rhyC3HpbcpvcF1chsXv0OnpBqhbKK6RiZomMULH91ea545hixtQlRqqWPv16l+Yv8p+bcjRH7Y+Gudq67O7V13ihG+4veBsdtvxsneZaUYZh2xZiyRsvIKX9X+1Unu4mtVwRH/xi8+8U7+aAxLJWRRQUSuUsJcU1ql/lPNtESeVk2l96nia5dUOfcVG5lrePYkZbJvcdiBoOhw4LfO211xAeHm59LF68GABspl35aNGihSoLeenSJaxfvx5hYWHo16+fdXpBQQHc3Nzg5+dnkw8JCQEAeHh4WKe9//77AGDtbFWq/Pe7776ryrISERERXU3otPhs3uP435232kx3Ky7FU5P/hfAjpxwsKBCRm2Iz6UyTyOtdTCK6Tg6NXBUUFKCgil/U09NV/LmpChs3bkRBQQEmTZoEne6vnxbvvvtu7N27FyNGjMBzzz2HgIAAHD58GFOnTkWbNm3w0EMPWbP79u1DaGgomje3/dW0efPmCAkJwb59+5z6HoiIiKhxEy46vD3rn9BWmNFp11+jTsZLJZj49Kt4Y8mLSI+NkKoVlJkJzzLboy9S/eVeS2Snti42wQta/MVisdTooYZVq1ZBo9Fg1KhRNtOnTZuG8ePH46OPPkKnTp2sI1tRUVHYu3cvvLy8rNnMzEyb86+uFBoaioyMjBovX3BwsM0jJkbuEAgiIiJqXCwuLlg9dyIO9exkM929sBgTJ72CkGS5w0BbHbG9GEaBmzcueDRRazGJqIbq3dUCr3b8+HHs3r0bd9xxByIjbYe7dTodQkND0adPH6xcuRKffPIJpk6dih07duChhx6yuQpgcXExDAZDlfNwc3NDcbF6xxATERERXYtZ74KV85/GkVttL9PumV+ESRNfQfDZs4o1Yq7qXKU2iQBq4dx4apg0tfho6Ord1QKvtmrVKgCXLz5xtccffxx79uzB77//DqPRCACIj49Hy5YtMX78eLzzzjvW17m7u8NkMlU5j9LSUri7y11MoSpZWbYXdSgoKICPj/JJjkRERNQ4VRhcsfxfUzD+2YWI/eWvjpLXxQJMmfUyFsyeg3MhVR9xAyHsRq5Sm8hdHIKInKtej1xVVFRg7dq1aNKkCeLj422eS0tLw3vvvYf+/ftbO1aVhgwZAgDYtWuXdVpISMg1D/3LyMi45iGDRERERM5Q7uaKpQumILmT7RUtffIuYmrCywj8o+or8jY5dw7+58/bTEttEuGsxaTGgDcRVk297lx9/vnnyM7OxvDhw+0O6avsKJnN9heyraiosPkvAMTFxSEjIwNnrxpqP3v2LDIzM9GlSxe1F5+IiIioWmVGN/z3tedwur3t+dp+F85jSsLLaHLunN1rrh61uuTqgRzPpk5dTiKSU687V5WHBF55b6tKsbGx0Ol0+Oyzz5CXl2fzXOUNgePi4qzTHn74YQDA66+/bpOt/PewYcPUWWgiIiIiB5g8jEhc/DxS29oe2tckNwdTEmbC76p7N9ofEhjB863o+nDkSjX19pyrzMxMbNu2DV27dkX79u3tnvf398fkyZPx2muv4eabb8bYsWPh7++PH3/8Ee+99x6io6NtztPq378/BgwYgEWLFiE/Px/du3dHUlISVq1aheHDh+O2226rzbdHREREZFXq6Y4lr7+ASRPmI/xEqnV64LlsTJk1EwtnzUW+vz+AqjpXvL8VUX1RbztXa9asgdlsrvJCFpUWLFiA2NhYrFy5EvPnz4fJZEJoaCjGjx+PhIQEeHt72+Q3btyIuXPn4t1338W6desQGhqK2bNn44UXXnDKe9BYLj+qY44Ikagjd0n7c3EeyiHJXwwCP3TwZobV0cr9mpbXK1wq57v3j+tZGhu6oCC5oFD+G5jP5UiV0gYrz1OcuyBVS5jLlUMAtMaaX7DlakHf5SqHAMDXVzEiyuWW31LF/fXqg9yhbaRyPskVyiEA+l9PXs/i2NBe4+qoV8qLkVsvfE3K+ykAsGRkKmZ0vyVL1Sq6s7VUzvObY4oZ4+7jUrVkiIjmyiEAllTlq70BgE5iOzFfdXRGfSKzPzNky12NV52btzhG07KFVK7M21UxY/pc7mCg0puv/UFcCjcsnJOAN2ZNgebIX58DQVlZ+PeCqRCfDwDKLdBmZ9u8Li2sLbQe1/4OYLl0SXG5LCVyfyetXrktZGly5Pbt9ieA2NNecfud6lgK8qVyMrThYcqhsnr7VdtGbV3JrzGMr9bbv/j06dMxffr0ajMajQZjx47F2LFjpWq6ublh7ty5mDt3rhqLSERERKSqS95eEJ/2BwZ9Ac3xi9bpmpN5wP1fQoyw/VGnRG9Eto/cDyBE5Hz1+pwrIiIiokYn0AjxaX+Ilra3ddEcuwjN9D0209ICoyC0/DpHVF9wayQiIiKqb5q5Q3w2ACLS9hQHzVVHFZ5p2rIWF4oaLF7QQjXsXBERERHVRyEeEJsGQIRf+3yiVHauiOoVdq6IiIiI6qswT4hN/SFC7C9YYXJxRZafxEUViJSIy6Oizn5w5IqIiIiI6lYLb4jNAyCa2V7hMy0wGhatro4Wioiqws4VERERUX0X5XP5HKzmngAA4abD923vquOFogaD51yppt5eip2IiIiIrtDKFyLpQYif/wBa+iLtlei6XiIiugo7V0REREQ3CncXoDfPsyKqr9i5ciLzuXMw692qD2VX/zQAiJgIqfk1+/qcYqY0uolULVma6HDFjOVUmlQt723HpHKmzjGKGf2veVK1yoK9lUMA9NmFUjkZliyJP7rKLCXFihmdr69ULXNOjtxMYyOVM8dT5GpJEG3lfsG90M5VKtdk41HFTMCHyhm1lce1ksoZMpTXWZ9TJVK1hJvcR4U2XPkLnyUtXaqW5zdy+4PCvq0VM17b5WrpmijvH4XkMS1ab7l9izkvTypX+zRSKan9mcy+wAHaiOaKGUvqWalapQEKn9F/cj+m/D6Fn9zfXGPQK2bGJfWTqhV86bhUTobW01MqZ4oNlsrpfz2pHMrNlaolpaxcKlYu8R0CkFt+mf2ZpbxUan7UcLBzRURERETUmNXW+VCN4JwrXtCCiIiIiIhIBRy5IiIiIiJqzDhypRqOXBEREREREamAI1dERERERI2YBrKXsbn++TR0HLkiIiIiIiJSATtXREREREREKuBhgUREREREjRkvaKEajlwRERERERGpgCNXzhQTDhjcq88cT1Wuc1IiA+DcA20UMwGfnJCqJfvDgjiVJplUptEr37UeAFzzTIoZ2eXXH8+QyllKihUzZbe2kqrl+pPc30CGRifXZnl3tVTM+Gw9KlUr8ym5u9uHJCrf3b7ojtZStTwzlO9wrzlySqpW0/NBUjmzRMZyU7RULZeTkuuZSfl9Gg6ekaylvJ3IMndUXn8AwPXsRdXmKdu2XtuPKWZ0vr5StcznzyuHJCIAUN5ZbjvRFwcoh46elpupquT2oroA5eU3H0+53oWxYUk9q5jRGhU+e/9k3J8qlTPLbE95eVK1Qj8JU8yc6+4qVUuW1uCmmLEUFUnVMpzKkcpZ2kQph1Rct2X2nwCg/1X5s0mWzPqvKytRbX7OpAGgqYVRJV7QgoiIiIiIiKSwc0VERERERKQCdq6IiIiIiIhUwHOuiIiIiIgaM14tUDUcuSIiIiIiIlIBR66IiIiIiBozjlyphiNXREREREREKuDIFRERERFRI6YRtXSfK45cERERERERkQyOXDmR7nwRdK7majPVP+sY9z8sihkR01yqli6nUCqX1yVQMeP7q9zd3EWB3Dwtp9IUM5rocKlaWT3dpXLNPjilmHH96YRULTVpmim3PwD4HbigHPLykqoVkih3d3utr69ipsJT8l7tx1PlchKEQa9aLd1R5XURACzmctXmaTGZpHK6gADFjDk3V6qW/kSmVM5cUiyVk5pn+nmpXE58G8WM3zHJNvP2VMxY0tKlahkOnpHKVcQq75O1baKkauHoaamYuVOMYkZ3QG47l12HZMiss7LztKi4LkqLjZDLZSgvf8CHcuuZVnK/bSlU/nzVNWkiVaukpVyuLj4TpUj+nYrC3BQz3ieLFDPCpREM1ZANjlwRERERERGpgJ0rIiIiIiIiFfCwQCIiIiKiRowXtFAPR66IiIiIiIhUwJErIiIiIqLGjDcRVg1HroiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSAc+5IiIiIiJqzIS4/KiN+TRw7Fw5kSgsgtBXVJvRhoUo1rGkZ0rNz+PgH4qZS52aSdUyHk+Vynl9fV4xU94+WqqW9rxyLVlmD1epXMBBs1ROlJcrZrQhwVK1LJlZyrUMBrlaGXLrhs7PT7lWsyZStcxRQXLzTL+omNGa6mAnK/G3BABT91jFTF6sRqpW0JpjUjk1mXNzFTManV6q1oU7W0jlmuy7oJgpjvSVquV+Qnn5AcD/06OKGZn9LADARSeXk2DqFCGVM2QXK2YsaenXuTS2dAdOqlpPNTq59jd3ilEuJfkeZfaNAGC+qLw/E5LLb2qjvD4ackulallS0qRyeYPaKGZ8NytvSwDgquJndV3QnS+SynlKfA+ySNSxlMv9LanhYOeKiIiIiKgR432u1MNzroiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXREREREREKuAFLYiIiIiIGjGN5fKjNubT0HHkioiIiIiISAUcuSIiIiIiaszEn4/amE8Dx5ErIiIiIiIiFXDkyolEeDMIg3v1mZOp6s2wvFwx4vFrulQpU1wrqZx+30nFjPbQKalasspviVHMmHx1UrV8Dsndaf5iv9aKGb//qXfXeo3RKBc0lUnFzBcvKmZEsL9ULX3KObl5FhQoZry/kmuz/HvbKGZ8thyVqmXJypbKGQ2uihlD0lmpWrK04WGKGUua3DYsNb8mvlI53y/k2lYY3BQzbvsuSNUym5X3Z7I0JSa5eZ5XXh/NHVtK1dLvOyGVkzn9QKPTS9USKraZLE1UuHJIq5GqZU4+I5XTl5QoZmRP65DZN8rSHJH7rHONiVDMWFLSpGppm4dK5Xw3y23DatIaq//+AwCWkmKpWpf+rvwZ7LHzmFStikBvqZwmN1cxowsMVM6UKa+v9YHmz0dtzKeh48gVERERERGRCjhyRURERETUmAlx+VEb82ngOHJFRERERESkAo5cERERERE1ZrxaoGo4ckVERERERKQCdq6IiIiIiIhUwM4VERERERGRCnjOFRERERFRI6YRlx+1MZ+GjiNXREREREREKuDIlROZDTqYDbpqMzq9XrGOKC+Xmp/snc5l6PedkMppI5orZv64zUOqVtBeubuYu+aZFDOG5DypWuaCAqmc97Yc5VpSleTu6G7OUZ4fAOiCmkrlhKlMOXTxklQti2Sb6fybKGZEYaFULb/DyjmLVCVA5+cnFyxUb3vS+vpK5Sxp6arNU4bQVb9/qqRrqrzOAoC4pNxmZTcp7zMAwO1snlTOclE5VxqlvC4CgP78ecWMa4by/AD5/YEMYZb7DJBVHtdKMSP7GaApl3inGo1ULekftC2yW3vtEm2ipHIWnXJ7yP7ybTmbIZlUj0Yrt9+wlCp/Vsvy2HlMMSPzfQQALEdPS+V0Evttmc9qc3mp1Pyo4WDnioiIiIioMeOl2FXDwwKJiIiIiIhUwJErIiIiIqJGTPPnozbm09Bx5IqIiIiIiEgFHLkiIiIiImrMeM6VajhyRUREREREpAKOXBERERERNWYcuVINR66IiIiIiIhUwJErIiIiIqLGTIjLj9qYTwPHzpUTuRSWwcWkcCdzDw/FOiIvT50FAlB4V2upnFeK3B3FK9yU79QetLdEqpZIPiOVyxnaRjET+OFZqVpq0kSHS+XMp9KUa+n1UrVEXr5UDv5+ihFL1h9SpSwdWkrlNMXlipmK5srLBQC635IVM6busVK1DEnHpXIanfLfQBsp9zeHSbktAAAqbusyZP/mssq7xChm9L+clKoljO5yuXLlttXvOyFVS2a7s+RLbnOStL6+iplLNwVJ1TLullu3ZdpDFxgoVct8NkMqJ0N6njk5ipnyuFZStWTXDRmao6elchWdlbcT2cOKtBHNpXKWVPU+E4t7yn0GyPBIltuepPZV5WapWlrJfYu5lvfH1HCwc0VERERE1Ng1/EGlWsFzroiIiIiIiFTAzhUREREREZEKeFggEREREVEjphGXH7Uxn4aOI1dEREREREQq4MgVEREREVGjxrsIq4UjV0RERERERCpg54qIiIiIqBGrPOeqNh5qOnHiBGbOnIlu3bohMDAQXl5e6NSpE+bNm4dLly4pvv7ixYt44403cNddd6F58+YwGo2IjY3FuHHjcPZsze4Px84VERERERHdcFavXo3FixcjOjoaM2fOxIIFCxAbG4uXXnoJPXr0QElJSbWv/+mnnzB16lRoNBpMmDABS5Yswb333ot3330X7du3x5EjRxxeJp5z5UwaAFpNtZFLHYIkCslkgOIg5b5y02/OSdUSbq5SOZzMUq4VGyFV6tLfW0vlAj88qpjJG9RGqpbv0eo3OquTqYoR7UXlX0gAIPO5CMVM0ALl+QEOHLksc3d7ScWBcrsNz2+SFTM6yXmKm6IVM4ak45LV5Ghc9YoZS0qaVC2th4dUThcYqJgpjvaXqmXYq257yND/clK1WpaSYqlcxc0xihlD2gWpWubz5xUzJbfHStXSVkjFpNZb9z98pGqp+YOwOSdHKqc1uitmZP+WwlQmlZOh33dCtVpqM5wvVcyYOiuv1wCg/1Vum9N6eytmLAUFUrWMP0juW2IiFCOaCrNcLQmWjEzVajVKN+gpVw888ACmTZsGH5+/9pNPPvkkYmJiMG/ePKxatQoTJky45utbt26N48ePIzra9ntG//790bdvX8ycORMfffSRQ8vEkSsiIiIiIrrhdOnSxaZjVWno0KEAgMOHD1f7+oiICLuOFQD06dMH/v7+iq+vCjtXRERERESNmqjFh/Olp6cDAIKC5I7+ulp+fj4KCwtr9HoeFkhERERERLUmJiYGWu1fYzxZWcqnmcgym82YM2cOXFxc8Mgjj9Soxrx581BeXo4RI0Y4/Fp2roiIiIiIGjPLn4/amI+TTZ48GUlJSZg/fz5iY+XOk73SRx99hIULF6Jfv34YOXKkw69n54qIiIiIiGrNyZMn4S1xoRVHzZgxA0uWLMG4ceMwbdo0h1+/ZcsWDBs2DJ07d8aHH34Ijab6C9NVhZ0rIiIiIqJGzBn3oLrWfJwlISEBc+fOxciRI7F06VKHX79t2zYMHjwY7dq1w9dff13jzh8vaEFERERERDeshIQEzJo1CyNGjMDKlSsdHnHatm0b7r//frRu3Ro7duyAn59fjZel3nWuEhISoNForvnQ6+3vPfPll1+iT58+8PPzg7u7O1q1alXlNe1NJhNmzpyJyMhIGAwGREdHY+7cuSgvL6+Nt0ZERERERCqaPXs2Zs2ahUcffRSrV6+2uVDGlbKysnDs2DEUF9vee+/rr79GfHw8YmNj8c0338DfX+5+ktdS7w4LHDx4MFq2bGk3/eDBg1iwYAEGDhxoM33WrFlISEjA3XffjVmzZsHd3R1paWk4ePCgXY2hQ4di06ZNGDVqFLp3746kpCTMmDEDycnJWLNmjbPeEhERERERqSwxMREvv/wywsPD0adPH7z//vs2zwcFBaFv374AgGnTpuGdd97Bzp070bt3bwDAL7/8gvvuuw9CCIwcORJbt261m8fw4cMdWqZ617nq0KEDOnToYDf9iSeeAACMHj3aOm3Hjh1ISEjA7NmzMWPGjGrrbtmyBZs2bcKUKVPw2muvAQDGjBkDX19fLFq0COPGjUOPHj1UfCeAJS0DFr1btRljqnIdbViI1PyM3yvfnVz2XuiZk+TuDt/8/QDFjMUsd4Ct5/enpHIaQ/VtCgAmf7l5lgQbpHKeOb6KGfOF81K1ghbI5WqbrkkTqZznN8ekctqI5ooZzaVSqVrilPIlWk1d5NZZt7P5Ujlz9jnFjNboLlXLcumSVA4SOeNVv7hdi8bXVzFjzsuTqqULDJTKCVf7IwuuZsnMlqoFIbe3cj2WoZgxl8i1mRTJ8wUMScfVm2XyGamc9PqoYnvI1Mob2Eaqlu/nR6VyRXe2VszI7qfqgiX1rGLGUC73uY9gyXvwGJS3TRQUyNWSdTJVMSL7nURm3bZENJMrdvS05FyVFdytvC6aSooB++/rpJJ9+/YBANLS0qq8bHqvXr2snauqHD58GKWll7+LPPPMM1VmHO1c1bvDAqty6dIlrF+/HmFhYejXr591+vz589G0aVPr1UCKiopgsVR9jcfKnuzkyZNtplf++91331V/wYmIiIiI6jshau+hojVr1kAIcc3Hd999Z5etHLUCgMcff7za14saLO8N0bnauHEjCgoK8Pjjj0On0wG43OH6/vvvceutt2LVqlUIDQ2Fl5cXPD098dBDDyE72/bX0X379iE0NBTNm9v+mt68eXOEhIRYe75EREREREQ1Ue8OC6zKqlWroNFoMGrUKOu05ORkmM1m7N27F19//TVeeOEFdOzYET/88APeeOMNHDx4EL/88gvc3S8PJWdmZqJt27ZV1g8NDUV6enqNly84ONjm39caPSMiIiIiqm8awqXY64t637k6fvw4du/ejTvvvBORkZHW6YWFhQCAnJwcrFixAmPGjAEAxMfHw9vbG7NmzcI777yD8ePHAwCKi4thMFR9fo2bm5vdlUOIiIiIiIgcUe8PC1y1ahUAWDtPlYxGIwBAq9Xi0UcftXmu8oS2K4+zdHd3h8lkqnIepaWl1hGumsjKyrJ5nDx5ssa1iIiIiIhql6jFR8NWrztXFRUVWLt2LZo0aYL4+Hib58LCwgAAfn5+diNSlYfpXbx40TotJCQEGRlVX1UqIyMDoaGhai46ERERERE1MvW6c/X5558jOzsbw4cPt+tABQUFITw8HBcuXLA7pK/y/KmmTZtap8XFxSEjIwNnz9peAvXs2bPIzMxEly5dnPQuiIiIiIjqL42l9h4NXb3uXFUeEnjlva2u9Oijj0IIgWXLltlMf+uttwAA9957r3Xaww8/DAB4/fXXbbKV/x42bJgai0xERERERI1Uvb2gRWZmJrZt24auXbuiffv2VWaef/55fPzxx3j22Wdx4sQJdOzYEbt378Z7772HO+64A0OHDrVm+/fvjwEDBmDRokXIz89H9+7dkZSUhFWrVmH48OG47bbbauutERERERFRA1RvO1dr1qyB2Wy2u5DFlby9vfHDDz9gxowZ2LRpE1atWoWwsDBMnz4dM2bMsN4Tq9LGjRsxd+5cvPvuu1i3bh1CQ0Mxe/ZsvPDCC85+O9dk6dBSOXQwWbX5ydzZHgAMWRqpnLjGRUJsMsm5UrVkl83nN+V6QWuOSdUquS1WKlfYMUgx43YxQKqWS06hYsaSla2YAQCtt7dU7lw/5XMKg3adl6plaR8tlcOhU4oRTXS4VClN0SXFjP4XuQvJmKVScmTWf7VduiVMKmf84bhq8yyO9pfKGfaqN09ZlhLlK71qI+TazJKqfEsO426596hrGiiVE4XK67bMewQAuOiUM5KkPpsAaCU+n3w/P3q9i2PD8xvl/buay18XLBmZtT5Prd5VKqfx8pLKmS/IfKbIfdeQ2gaOnpaqJUsX1FQx4/2V8rpoKi9VY3HoBlJvO1fTp0/H9OnTFXMBAQF46623rIcCVsfNzQ1z587F3Llz1VhEIiIiIqIbX21dyK/hXyywfp9zRUREREREdKNg54qIiIiIiEgF9fawQCIiIiIiqgVCXH7UxnwaOI5cERERERERqYAjV0REREREjRlHrlTDkSsiIiIiIiIVcOSKiIiIiKgx46XYVcORKyIiIiIiIhVw5KqOmXx1ihmjZC2tt49iRubO9gAg+raWylkKCxUzRXfK1fLekyaVM8vcqV2ScfdxqVzRHcrvwSWnSKqWyL0glZNRER4olQv8OFkxYzaXS9XSZp+Tyl24v41ixv+zo1K1ZH7o0gXKtYUoKZHKWYqU/57CYpaqpSbjD3LrrAxTj1ipnGGP3Dwrbo5RzLjsPylVq6iP3H7Dc4fyPs2Smi5Vq+Bu5Xl6fyW3DzWfy5HKqUlmf3yZRjGhO5wiVakufoTW+foqhw4q7/McUXZrK8WM608nVJ1nbbNEhcoFj8utG3Lq7zCGWfKzrqHQiMuP2phPQ8eRKyIiIiIiIhVw5IqIiIiIqFHjSVdq4cgVERERERGRCjhyRURERETUmPE+V6rhyBUREREREZEK2LkiIiIiIiJSAQ8LJCIiIiJqzHg9C9Vw5IqIiIiIiEgFHLkiIiIiImrENAA0tXCxCeVbmN/42Llyorz+sXA1uleb8dt0VLX5lUcGKma05QFStTwzyqVyeQPaKGaa/JQrVasiMlgqpytRXrb8mOrbvZJLqdyOxCOrTDFjyfpDqpYMbViIXO5khlTOEhOmHDqWIlVLlv9nyut27lDl9QcAAj5UrmXOyZGqJcvSoaViRnswWaqWqXusVM544KxixlJSLFVL6+GhmDHsOS5VS6PVSeUM6XnKoQDJfdCOY1I5GdoIifUfgPdX6s2zflPe72k8ldcfABAFBde7MH+JiZCKmU+mKma0BoNULYvJJJVz/emEckgjt53k9W+lmPH9QnZdlPsM0wUFKWbMx9X9DNB6eytmLHWw/kBi/SG6HuxcERERERE1ZjznSjU854qIiIiIiEgFHLkiIiIiImrMeBNh1XDkioiIiIiISAUcuSIiIiIiatR40pVaOHJFRERERESkAo5cERERERE1ZpY/H7UxnwaOI1dEREREREQqYOeKiIiIiIhIBTws0Il8UspgMFx/E1tuipbK6X5LVszkDWojVct381GpnP9Fibu+5+RI1dJI5vLuaa2Y8d4qd3f78i4xUjnN0dNSORnmThLzPHBSqpYmKlxupsdS5HIq0oaGKGaafia5XAaDYuRSXIRUKePu41I5l1Tl9VH26AZDktw8i3rFKmbc/zBJ1bIcT5XKySi9taVUTuZ95veX2wf5fJkrlZNhSU2Xymn0esVMaZcoqVrGtEKpnCUjUyonQ6PVSeWExayYMYcGSNW61EV5O/f8Vm5/jJOpcjkZEvsMAIBJbnuSIpTbFQB8v5D7fJWhDW4mlTNn/aHaPGVZCgpqd4Zqrj8AEBNR+/OkBoEjV0RERERERCrgyBURERERUWPGmwirhiNXREREREREKuDIFRERERFRY8aRK9Vw5IqIiIiIiEgFHLkiIiIiImrMxJ+P2phPA8eRKyIiIiIiIhVw5IqIiIiIqDHjOVeq4cgVERERERGRCjhy5USaIynQ6N2uu4728CkVluZPav9goNUpR4zuUqUsJcVSOe+txxQzGpk7qwMQOo1UTobWIPe31p4+p5ip6NBSrtbBZKmcmkpuj5XKGX84rpjR6PRStURUqPL8divPzxGWgnxV68lw3yXzHuTWWYvEOiS7/hiS1Gtbvx8y5IKS2xMsFsVISVykVClj+iXFjHRb6F2lYjpfX8WMpVB5uQBAmMulcjI0R09L5TyPqjZLaEOC5YLFJYoRS17e9S1MDaj5WaeR+GwFAJGdI5WTqScsZqlasu8TOuXf7y1FRXK1VKQNDpLKWU6mOndB6huOXKmGI1dEREREREQq4MgVEREREVFjxpEr1XDkioiIiIiISAUcuSIiIiIiasw4cqUajlwRERERERGpgJ0rIiIiIiIiFfCwQCIiIiKiRk1A/fv1XGs+DRtHroiIiIiIiFTAkSsiIiIiosbM8uejNubTwLFz1cj47zgjlZNd9y0ZmTVfmKsU9WktlfPccUwxIyTvrK5vGy2Vs3RoqZjRni+WqlXhb1SudTBZqpbW4CaVs5hKpXIyjD8cl8ppQ0OUQxa5NU1bUKKYMUtVArQhwVI5S2aWci2DQa6WySSV0/r6KmaKOgZJ1fJMuaSYkd3OtR4eckGL8uEeloICqVJ5g9pI5Xw3H1XMGPbIrbMy7VFyW6xULeNuuXkir0wxog0PkyqlyTonN0+t8kErau4zZMlsc/WZpUTuMwAanWJEWGT3aLWvIkZi3w65zzGtt49ULSHRtmUdIqRq6X89KZWToTW6K2dceJBYY8POFRERERFRo8ZzrtTC7jQREREREZEKOHJFRERERNSY8SbCquHIFRERERERkQo4ckVERERE1JjxlCvVcOSKiIiIiIhIBRy5IiIiIiJqzITl8qM25tPAceSKiIiIiIhIBexcERERERERqYCHBTpRabcYCLfq797t9uNxxToanV5qfsJcrhwK9JeqpYVczpKWLpWT4X20QG6eEhnZu76X+MptAuXuGsWMwcVDqpb+f+rdHV6EN5PKmQIMihlj1iWpWtndvaRyzb7JVcxYfOTarNTfVTHjmp0tVSv9PrnlD3krSzFjMZmkasmy5OUpZjzTvKVqneum/D4D0qRKoaBbc6mc5zfH5ApK8N18VCqnC2qqmDFnn5OqVX5LjGLGuFt5n626LLnlh5vydg4AlsJCxUx5XCupWvp9J6RyMnIeaiOVC1wvt26oSeulvD1p3I1StWTXx/pKezBZtVqWgnzVarkeSJXKaQMDpXLmnBzFjKWkWDlTXio1vzrHS7GrhiNXREREREREKuDIFRERERFRY9fwB5VqBUeuiIiIiIiIVMCRKyIiIiKixoznXKmGI1dEREREREQq4MgVEREREVFjxpEr1XDkioiIiIiISAUcuSIiIiIiasw4cqUajlwRERERERGpgCNXTuSWY4LBoKs2I3PXd0thodwM20Qp1zp6Wq6WpMK7WitmfA5dlKplyciUyhX0U56n97ZjUrXczvlK5Qyn0hUzol2EVK2sydGKmeDXT0nVEidTpXKGk8oZCzRStQJT5X51ynxM+e8UtFbu7+QqlZIT8tYJqZyuaaBiRngYpWpZUtLk5hmoPE+zZK2AFKmYFJ9D56VyZolMeVwrqVr6fXJ/J3P2OcWM1tNTbp7/k9hQVKYNbqaYsWT9IVXrwkDlfQsABO7OVQ5Jtr+Q+NzRSH7uBG06I5WzSKVUplHeP4riklpYkJoxdY9VzBiSjtfCktSMmtuJOSdHKmfqIdFmF8slChUDW6VmWbcEamnkyvmzqGscuSIiIiIiIlIBR66IiIiIiBoznnOlGo5cERERERERqYCdKyIiIiIiIhXwsEAiIiIiosaMhwWqhiNXREREREREKuDIFRERERFRIyaEgKiFUaXamEdd48gVERERERGRCjhyRURERETUmPGcK9Wwc+VMp9IAvVu1ETXvNG/y1StmDJK1tGEhUjmvr49JhLwk5yrHe5vEPNtESdXSJKdL5UpvbamYMf52VqpW8OFixYzM3egBQFMmcXd4ANAqD1LL3rVelmeacqb8lhipWvr/nVTMaL29pWpZCgqkcuZzEu0REyFVSyOZKzcq75Jz7m0iVSvoHYntRJLF210ueE45ot934voWpgZEcYlqtbThYVK5/FhPqZzXdvX+TrpSuZzUui07z7RsxYzs55ylRHnfCMj9DSxpcvt2XWCgVE7t/aNaCu5uLZXz/kq99awuWLL+qPV5GvYcV8yUd1H+DCvX6dRYHLqBsHNFRERERNSYceRKNTznioiIiIiISAUcuSIiIiIiasw4cqUajlwRERERERGpgCNXRERERESNmLAICEst3OeqFuZR1zhyRUREREREpAKOXBERERERNWriz0dtzKdh48gVERERERGRCupd5yohIQEajeaaD73+2jfKfeutt6y53Nxcu+ctFgsWL16M1q1bw83NDc2bN8fUqVNx6dIlZ74lIiIiIiJS2YkTJzBz5kx069YNgYGB8PLyQqdOnTBv3jyHvt9v2bIFPXr0gIeHB/z9/TFkyBCkpKTUaJnq3WGBgwcPRsuWLe2mHzx4EAsWLMDAgQOrfF1mZiZeeOEFeHp6oqioqMrMM888gzfffBPx8fGYOnUqjh49ijfffBP79+/Hjh07oNWq29fUNguC1tVYbUbNu44bsyRWogjlO9sDgCZfvQ6npbBQKifaREnlNEdPK4dkMoB0e7iUmBUzlpJiuXlKkF0vtN4+UjlTbJBiRp+TI1WrtGesVM7ju2NSObVYCgpqdX4AUBJskMoZvz8uldPGRChmQrbmS9VSXmPlieQzUjltRHPFjCX1rFQtnX8TqZyQ2L9YysukasmwpKVL5bzS5Orpmii/T/P581K1fLYclZupmnwl9kEq/4Ap+zeQYfb3kAtK7h9laA3K+w2LySRVy/sr9fazWqO7VE7Nz7q6INpGS+U0R04pZvS/nFTMWMpLpeZX5yzi8qM25qOi1atXIzExEYMGDcKwYcOg1+uxc+dOvPTSS9iwYQP27t0Lo7H67+KffPIJHnjgAXTs2BELFixAfn4+Xn/9dfTs2RO//PILQkJCHFqmete56tChAzp06GA3/YknngAAjB49usrXPfXUU4iOjka7du3w7rvv2j3/+++/4z//+Q8GDx6Mjz/+2Do9MjISkyZNwvr16/HII4+o9C6IiIiIiMiZHnjgAUybNg0+Pn/90PPkk08iJiYG8+bNw6pVqzBhwoRrvr68vBwTJ05E8+bN8cMPP8DT0xMAcM8996Bz585ISEjA8uXLHVqmendYYFUuXbqE9evXIywsDP369bN7/tNPP8XmzZuxdOlS6HS6Kmt88MEHEEJg8uTJNtPHjh0Ld3f3KjtkREREREQNn6jFh3q6dOli07GqNHToUADA4cOHq339rl27kJmZiTFjxlg7VgDQqVMn9O7dGx9++CHKy8sdWqZ6N3JVlY0bN6KgoACTJk2y6zwVFBRgwoQJeOKJJ9C1a1f897//rbLGvn37oNVq0bVrV5vpbm5u6NSpE/bt21fj5QsODrb5t9l8+YAcU1mJ4mvVHC7WmpTnJ0sjsewAYFZx+YVJ7lADTR20WbnJopjR1cHQv7bMVSpnKlVuW9l1UaYWoO7fqb6SbQutbFtIbAO6Otg2ZWklll92PZN9n0KinpqHBapN5n3Wxd9SlraWP+dUJ/m5AzU/d7TKXy4t5XKHBapJ6yL3e3u9/ntKqO3vGqY//5ZC1O+r5Jkqamedq5xPTEyMzek4WVlZqs4nPf3y4cNBQdWfFlH5/b979+52z3Xr1g3ffvstTpw4gXbt2knP+4boXK1atQoajQajRo2ye+7//u//YLFY8Morr1RbIzMzEwEBATBUcaxzaGgo9uzZg7KyMri6yn1ZrU7lBvT6e1Ovu1ajsrWuF4Ck8O/0F7YF0Y2N23DjU0d/88LCwipHWOqaq6srmjVrhjd3vFpr89RqtdBoNE6rbzabMWfOHLi4uCie8pOZmQngcl/gapXTMjIyGlbn6vjx49i9ezfuvPNOREZG2jz3448/YtmyZXjvvfcUV9ji4uIqO1bA5dGrykxNOldX97YtFgsyMzPh5eUlvfLExMQAAE6eVD45ktheNcE2cwzbyzFsL8exzRzD9nIM28txzmgzIQQKCwsdvihCbXFzc0NKSgrKympvhN/V1dX63dsZJk+ejKSkJMyfPx+xsdVfhKu4+PJIZlV9hCv7B46o952rVatWAQDGjBljM72srAzjxo1Dnz598PDDDyvWcXd3x7lz56p8rrS01JpRg1arRViY3FXornwNAHh7e6uyDA0d28txbDPHsL0cw/ZyHNvMMWwvx7C9HOesNquPI1ZXcnNzc2pnpzbNmDEDS5Yswbhx4zBt2jTFfOV3f1MVV+isaf+gXl/QoqKiAmvXrkWTJk0QHx9v81xiYiKOHTuGKVOmIDk52foo/POyvCkpKTh9+q/LcYeEhCA3N7fKxsvIyEBAQIAqhwQSEREREVHtSkhIwNy5czFy5EgsXbpU6jWVI4oZGRl2z1VOq+qQwerU687V559/juzsbAwfPtxuuO7MmTOwWCy45557EBMTY3188sknAICuXbvaXNI9Li4OFosFP//8s02d0tJSHDhwAF26dHH+GyIiIiIiIlUlJCRg1qxZGDFiBFauXCl9Wk5cXBwAICkpye65vXv3wtvbG61atXJoWTSiHl++ZMCAAfjyyy9x8OBBtG/f3ua53377rcpjYhMTE/Hdd99h9erV8PPzw/333w8AOHToEDp27Ij4+Hib+1z95z//waRJk7Bu3ToMHz7cqe+HiIiIiIjUM3v2bLz88st49NFHsWbNGpurEF4pKysL+fn5CA8Ptx7qV15ejhYtWkCv1+P333+3Xo79t99+wy233IKRI0di5cqVDi1Pve1cZWZmIjw8HJ07d8ZPP/0k/brHH38c77zzDnJychAQEGDz3MSJE7FkyRLEx8fj3nvvxdGjR/Hmm2+iZ8+e+Pbbb6/5xyAiIiIiovolMTEREyZMQHh4OObMmWP3XT4oKAh9+/YF8FcfYefOnejdu7c1s3HjRgwdOhQdO3bE2LFjUVBQgMWLF0Oj0eDXX391+LDAentBizVr1sBsNttdyOJ6vP7664iIiMDy5cvx5ZdfIiAgABMnTsTs2bPZsSIiIiIiuoFU3qcqLS0NI0aMsHu+V69e1s7VtQwZMgRGoxFz587Fs88+C4PBgDvvvBP/+te/HO5YAfV45IqIiIiIiOhGwuEaIiIiIiIiFbBzRUREREREpAJ2roiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXREREREREKmDnioiIiIiISAXsXBEREREREamAnSsiIiIiIiIVsHNFRERERESkAnauJBQVFWH+/Plo3749vLy8EBAQgB49emDNmjUQQtjl161bh549e8Lb2xuenp646aabMGfOHJvMd999B41GU+VjwIABVS7Hli1b0KNHD3h4eMDf3x9DhgxBSkpKldnjx4/j/vvvh5+fHzw8PHD77bfj22+/vf7GkCDTXqmpqdd8/5WP9957z6auyWTCzJkzERkZCYPBgOjoaMydOxfl5eVVLsfatWtx8803w2g0IigoCGPGjEFOTk6V2Z9++gl9+vSBl5cXvL290a9fPxw4cEDVdqmOM9qsuvxNN91U5XI40g6ZmZl47LHHEBgYCKPRiC5dumDjxo2qt01VHNkmt27dijvvvBPNmjWDh4cHYmNj8eyzzyI7O9uubn5+PiZOnIjQ0FC4ubmhXbt2eOutt6rczi0WCxYvXozWrVvDzc0NzZs3x9SpU3Hp0qUql9mR7VdtzmivhrwPA+TbTAiBpUuXWvc1vr6+6NevH/bu3Vtl3Ya6H3NGezXkfVh2djaefPJJNG/eHK6urggPD8fTTz+NvLw8u6wj20JD3Yc5o70a+j6M6pCgapnNZnHbbbcJrVYrRo4cKZYtWyYWL14sunbtKgCI559/3iY/cuRIodVqxZAhQ8R///tfsXTpUvF///d/YvTo0Ta5nTt3CgBi3LhxYt26dTaPnTt32i3Hxx9/LDQajejUqZNITEwU8+fPF02bNhXBwcEiIyPDJpucnCz8/f1F06ZNxfz580ViYqLo1KmTcHFxEdu3b1e9ja4k215FRUV277vy4ePjI1xdXUVOTo5N7fvuu08AEKNGjRIrVqwQo0aNEgDEiBEj7JZj0aJFAoDo1auXWLZsmZgxY4bw8PAQbdu2FUVFRTbZpKQkYTAYRFRUlFi0aJFYtGiRiIqKEp6enuLgwYNOa6tKzmqzlJQUAUDEx8fb5T///HO75XCkHc6fPy8iIyOFh4eHmDFjhli2bJno1auXACBWr15dL9pLCCGWL18uAIjOnTuLRYsWiWXLlokxY8YInU4nIiMjbdYFk8kk4uLihIuLi3jmmWfE8uXLRXx8vAAgXn75ZbvlmDRpkrV9ly9fLp555hnh4uIi/v73vwuz2WyTdWT7VZuz2quh7sOEcKzNnnzySQFA9O7dW7z55pvi1VdfFVFRUcLV1bXKdmiI+zFntVdD3YdlZ2eLFi1aCL1eLyZMmCCWLl0qJkyYIPR6vejUqZO4dOmSNevIttBQ92HOaq+GvA+jusXOlYI9e/YIAGLy5Mk2000mk4iMjBQ+Pj7WaStXrhQAxNq1axXrVm7Ub7/9tmK2rKxMhISEiPDwcFFYWGidvn//fqHVasXYsWNt8kOGDBFarVbs37/fOq2wsFCEh4eLVq1aCYvFojjPmnKkvap7/QMPPGAz/csvvxQAxJQpU2ymT5kyRQAQP/74o3VaTk6OcHd3F3FxcaKiosI6ffPmzQKAmDdvnk2NuLg44eXlJdLT063T0tPThZeXl+jbt6/U+74ezmqzyi8mVX2oVsWRdnjuuecEALF582brtIqKChEXFyf8/f1t1lO1OdJerVq1EsHBwaKkpMQm++KLLwoA4tNPP7VOS0xMFADEm2++aZMdPHiw0Ov1IjU11Trt8OHDQqPRiMGDB9tk33zzTQFAvPfee9Zpjm6/anNWezXUfZgQ8m22f/9+AUD069fPZpkuXrwogoKCRExMjM2X1Ia6H3NWezXUfdjTTz8tAIj333/fZvr7778vAIg5c+ZYpzmyLTTUfZiz2qsh78OobrFzpWDbtm0CgPj3v/9t91xcXJwICQkRQghhsVhEdHS0uOWWW6zPFxQUXHMDunKjLioqsvsyc6Xt27cLAGL27Nl2z91xxx3C29tblJWVCSEuj24YDAZxxx132GVnz54tAIiffvqp+jd9HWTb61oqf8Xdtm2bzfRhw4YJACItLc1melpamgAgxo8fb522YsWKa3Zyo6KiRJs2baz/PnnypPVX5KqWRaPRiKysrGqX+Xo5q82u/GJSUlJi8+ve1Rxth9DQUBEdHW2XXbt2rQAgPvzww2qX+Xo40l7NmjUTbdu2tctVfgn5+uuvrdN69uwp3N3d7bbF77//XgAQ//rXv6zTKjsb33//vU22pKREuLu7i3vuucc6zZHt1xmc1V4NdR8mhHybVY4sffDBB3a5cePG2a0jDXU/5qz2aqj7sA4dOgij0Wj3/cBsNgs3NzcRFRUlhHB8W2io+zBntVdD3odR3eI5Vwq6du0KX19f/Pvf/8bGjRuRlpaGY8eOYdq0afj111+RkJAA4PKxtadOnUKPHj0wZ84cNGnSBN7e3vD19cWTTz6JoqKiKus//fTT8PT0hNFoRKtWrfDGG2/YHRu9b98+AED37t3tXt+tWzcUFBTgxIkTAICDBw/CZDJdM3tlPWeQba+qFBUVYcOGDWjRogX69u1r89y+ffsQGhqK5s2b20xv3rw5QkJCbN6TUnsdO3bM+vdQygoh8Ouvv8q9+RpyVptVeu211+Du7g4PDw80b94cM2fOhMlkssk40g5ZWVnIyMiwrk9XZ6+s5wyOtNfdd9+NI0eOYOrUqTh69CjOnj2LTz75BHPmzEGvXr1wxx13ALh87sH//vc/3HzzzXBzc7Obn0ajsVvHtFotunbtapN1c3NDp06dHFofr9x+ncEZ7XWlhrYPA+TbrHI7cnd3t6tROe3Kc4ka6n7MWe1VqaHtw0wmE9zc3KDRaGyma7VaGI1GnD59Grm5uQ5tCw15H+aM9rpSQ9yHUd1yqesFqO/8/PywefNmjBkzBg8++KB1upeXFz7++GPcf//9AC53rgDgww8/RFlZGV566SVERkbiiy++wLJly3D8+HF8++231p2DXq/HoEGDcO+99yIkJASZmZlYtWoVJk+ejAMHDuDtt9+2ziszMxMAEBoaard8ldMyMjLQrl076ayzyLZXVT788EMUFRXh2WefhVZr2+/PzMxE27Ztq3xdaGgo0tPTbbKV06vKCiGQmZmJVq1a1Xl7Ac5rM61WizvuuAP3338/WrRogZycHGzYsAFz5sxBUlIStm3bBp1OB0B+HXM06wyOtNcbb7yB4uJivPHGG1i0aJF1+siRI7Fs2TLr+7948SJKSkqqfE8GgwEBAQE27ykzMxMBAQEwGAx2+dDQUOzZswdlZWVwdXV1aPt1Bme0F9Bw92GAfJtV/s2+/fZbDBo0yJoTQmDXrl0AgLNnz1qnN9T9mLPaq6Huw9q1a4fjx4/jwIED6NSpk3X6gQMHcPHiRQBAWlqaQ8vZkPdhzmgvoGHvw6husXMlofKKf4MGDUKPHj1w4cIFJCYm4pFHHsGmTZvQt29fFBYWAgBycnKwfft29OnTBwDwj3/8A0IIvPPOO9i2bRvuueceAEDPnj2xadMmm/mMHTsW9957L9asWYMxY8agZ8+eAIDi4mIAqHInWPkLVWXGkayzyLRXVVauXAmtVouRI0faPVdcXFzlewIuv68r39ON1l6Ac9osPDwc33zzjc200aNHY9y4cVixYgXWr1+PYcOGAbjx2ky2vfR6PcLDwxEfH4+BAwfC3d0dX331FVavXg2dTocVK1YovqfK93X1OlZdtjLj6uraINsLaNj7MECuze655x60bdsW//3vfxESEoLBgwejuLgYixYtwuHDh+2WtSHvx5zRXg11HzZ58mR89tlnePDBB/H666/jpptuwu+//47JkydDr9ejvLwcxcXFqr2nyvyNug9zRnsBDX8fRnWHhwUqOHToEHr06IG+fftiwYIFiI+Px+jRo7F79240a9YMY8eOhdlshtFoBHD5V4nKjlWlESNGALh82c/qaLVaTJs2DQDw5ZdfWqdXHi5x9WEQAFBaWmqTcSTrDLLtdbUjR45g79696Nu3L8LDw+2ed3d3r/I9AZff15Xv6UZqL8B5bXYtL774IoCGv45ZLBb069cPe/bswYYNG/DYY4/hgQcewIoVK/Dcc89h5cqV2LFjh+J7qnxfV69j1WWvrNkQ2+taGsI+DJBvMxcXF2zduhU9e/bE//3f/yEmJgYdO3bE/v378eqrrwIAvL29rXUb6n7MWe11LTf6Puz222/H+vXrUVhYiP79+6NFixYYOHAg/v73v1svAe7t7a3ae6rM36j7MGe017U0lH0Y1S12rhQsXrwYpaWlGDJkiM10d3d39O/fH2fOnEFqairCwsIAAM2aNbOrERwcDADW4evqREREAAByc3Ot00JCQgBUPYxcOa1yqNmRrDPIttfVVq1aBQAYM2ZMlXVDQkKuOYyekZFh856U2kCj0Vgzdd1egPPa7FqaN28OnU7X4Nex3bt344cffsA//vEPu2P1K19beSiSn58fjEZjle/JZDIhNzfXbh3Lzc2t8sMzIyMDAQEBcHV1tWYrp1eVBW689qrOjb4PAxzbJsPDw7Fz506cOXMGu3btwuHDh/Hbb79Zf6Fu3bq19fUNdT/mrPa6lht9HwZc3qbS09Oxf/9+fP/998jMzMTSpUuRnp4OFxcXtGzZ0qHlbMj7MED99qpOQ9iHUd1i50pB5YZQ1chBRUWF9b/t27eHm5tblRtT5XH0TZs2VZzfyZMnAQBBQUHWaXFxcQCApKQku/zevXvh7e2NVq1aAQDat28Pg8FwzSwAdOnSRXE5akq2va5UVlaGdevWITAwEPfdd1+VdePi4pCRkWFzPD5w+fj8zMxMm/ek1F6xsbHw9PSUymo0GnTu3LnqN6sSZ7XZtZw+fRpms9mhdezKdggODkZoaGiVJ57Xp3XMkXbVarW45ZZbsH//frsvGz///DOEEHbrmMViwc8//2yTLS0txYEDBxxaH6/cfp3BGe1VnRt9HwbUbJsMDw/H3/72N+t5J1u2bIFWq8Xdd99tzTTU/Ziz2utabvR9WCWdTodOnTrh9ttvR9OmTfHHH39g//796NWrF9zd3R3aFhryPqySmu1VnYawD6M6VheXKLyRTJ482e4SpkJcvi9HcHCw8PPzs96DpPIyu5988olNdvDgwXb3MMnNzbWbV2lpqejZs6fdZTrLyspEcHCw3f0VDhw4ILRard0Nih944AGh1WrFgQMHrNMq768QExPj1PsrONJelTZu3FjlvV+u9MUXX1R7f5gffvjBOu3cuXPCaDSKrl27Vnl/mCvviSGEEF26dBFeXl42NwHMyMgQXl5e4s4775R/8zXkrDarah0zm81i6NChVV5q2JF2ePbZZ695jxhfX19RUFCg/MZrSLa9Dhw4IACIDh062F0muPJGph9//LF12pIlS655jxgXFxeRkpJinXbw4MFq7xGzbt066zRHt1+1Oau9Guo+TIiabZNX2rRpU5U3Bm6o+zFntVdD3YdVxWw2iyFDhgiNRiO+/fZb63RHtoWGug+rihrt1ZD3YVS32LlSkJqaKvz9/YVGoxHDhw8Xb731lpg3b56IiIgQAERiYqI1e+bMGREUFCTc3NzEc889JxITE0X//v0FAPHYY4/Z1O3SpYsYNGiQmDVrllixYoWYNWuWiImJEQDExIkT7ZZjw4YNNncGf+WVV0TTpk1FUFCQzQ0Thbh8vw8/Pz/RtGlT8corr1jvDK7T6ezuhaQ2R9qrUr9+/QQAceTIkWprDxgwQAAQo0ePFitXrhSjR48WAMTw4cPtsgsXLhQARO/evcWyZcvEzJkzhYeHh2jdurXdzSF//PFH4erqKqKiosTixYvF4sWLRVRUlPDw8LDZMTqLs9osPj5e3HnnnWLGjBli+fLlYv78+aJz584CgLjvvvtsbtYphGPtkJubK1q0aCE8PT3FzJkzxbJly0Tv3r0FALFy5Up1GuYaHGmvf/zjH9YOw7///W+xZMkSMXDgQAFAdOvWzeYLn8lkEp07dxYuLi5iypQpYsWKFSI+Pl4AEC+99JLdckyYMEEAEPHx8WLFihViypQpwsXFRfTq1cuubR3ZftXmrPZqqPswIRxrs1GjRomRI0eKN954Qyxfvlw89thjQqfTibi4OJGXl2dXuyHux5zVXg11H1ZYWCjatGkjpk+fLlasWCEWLlxofV9X3xzakW2hoe7DnNVeDXkfRnWLnSsJycnJ4rHHHhOhoaHCxcVFeHl5idtvv93mV9xKKSkp4pFHHhEBAQFCr9eL1q1bi4ULF9rtqF599VXRrVs3ERAQIFxcXISPj4/o3bu33R3Ir/T555+LW2+9VRiNRuHr6yv+8Y9/iOTk5CqzR44cEYMGDRI+Pj7CaDSKnj17iu3bt19fQ0hypL3S0tKEVqsVPXr0UKxbUlIiXnzxRdGiRQvh6uoqIiMjxezZs69588K3335bdOjQQRgMBhEYGChGjhwpsrOzq8zu2bNH3HHHHcLDw0N4enqKu+66S/z666+OvfHr4Iw2W7lypejVq5cICgoSer1eeHp6iltvvVUkJibarY+VHGmH9PR0MXz4cNGkSRNhMBjEzTffLNavX+/4m68B2fYymUziX//6l+jQoYNwc3MTrq6uIiYmRkybNk0UFRXZ1b148aJ46qmnRHBwsHB1dRVt2rQR//nPf6r8lbGiokIsXLhQtGrVSri6uoqQkBDxzDPP2H3preTI9qs2Z7RXQ96HCSHfZkuXLhW33HKL8Pb2Fm5ubuKmm24S8+bNE8XFxVXWbaj7MWe0V0Pdh5lMJvHQQw+JiIgIYTAYhJ+fn7jrrruu+aXbkW2hIe7DnNVeDX0fRnVHI8RVd0ojIiIiIiIih/GCFkRERERERCpg54qIiIiIiEgF7FwRERERERGpgJ0rIiIiIiIiFbBzRUREREREpAJ2roiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXRERERFRjr7zyCoYMGYKoqChoNBpEREQ49Ppz585h5MiR6NChA/z9/eHm5oaWLVti9OjRSE5OrvI1mZmZeOyxxxAYGAij0YguXbpg48aNVWZPnTqFYcOGISgoCAaDAS1btsTLL7+M0tJSR9+qnaSkJAwaNAhhYWEwGo2Ijo7G2LFjcfr06euuTTcmjRBC1PVCEBHRjSEhIQGzZs3Czp070bt377peHCKqBzQaDfz9/XHLLbfg119/hbe3N1JTU6Vff/z4cYwaNQrdu3dHixYtYDQacfLkSaxevRomkwl79+5F27ZtrfkLFy6gS5cuOHfuHKZMmYKwsDC8//772LVrF1avXo2RI0das8eOHUP37t1RUVGBp556CpGRkUhKSsLatWtx1113YevWrdBoNDV639u2bUP//v0RHR2NUaNGISAgAL///juWL18Og8GAQ4cOITQ0tEa16QYmiIioUQLg0GPnzp3i5Zdftv4/ETVsO3fulNreT506Zf3/du3aiRYtWqgy/59//lkAEOPHj7eZ/txzzwkAYvPmzdZpFRUVIi4uTvj7+4vCwkLr9Pvuu09oNBrx448/2tSYP3++ACDWrVtX4+W76667hF6vFzk5OTbTV6xYIQCIxYsX17g23bhcarszR0RE9cPLL79sN+31119Hfn4+nn76afj6+to8FxERgQkTJuChhx5CeHh4LS0lEdV3UVFRTqnbokULAMDFixdtpr///vuIjo7GwIEDrdN0Oh0mTpyIxx57DFu2bMGDDz4IANi5cydatWqFHj162NR4/PHHMX36dLz99tsYPny4zXM7duzAv//9b/z8888oLS1Fq1at8M9//hNPPvmkTa6goABubm7w8/OzmR4SEgIA8PDwuI53Tzcqdq6IiBqphIQEu2lr1qxBfn4+Jk+efM3zJgICApy7YETUKJWXlyM/Px/l5eVITk627qPuvfdeayYrKwsZGRkYNmyY3eu7desGANi3b5+1c2UymeDu7m6XrZz2888/QwhhPTRw+fLlePLJJ9GtWze8+OKL8PDwwPbt2zF+/HicOnUKCxYssNa4++67sXfvXowYMQLPPfccAgICcPjwYUydOhVt2rTBQw89pE7D0A2FF7QgIiJpCQkJ0Gg0+O6776zTUlNTodFo8Pjjj+PEiROIj4+Hn58ffHx8cN9991nPvUhOTsaQIUMQEBAAd3d33Hvvvdc86fv8+fN4/vnnERsba/1luH///ti7d28tvEsiqgtfffUVAgMDERISgr/97W/4/fff8dprr+HRRx+1ZjIzMwGgynOZKqdlZGRYp7Vr1w5Hjx7FH3/8YZPduXMnAKCoqMg6MpaVlYVJkybhoYcewp49e/Dcc8/hn//8Jz799FNMmjQJixYtstlnTZs2DePHj8dHH32ETp06ISwsDP369UNUVBT27t0LLy8vlVqGbiTsXBERkSpSUlLQvXt35OfnY/To0ejZsyc2b96MPn364OjRo7j11luRm5uLxx9/HL1798bWrVvRv39/WCwWuzq33HILFixYgNDQUDz11FOIj49HUlIS/va3v+Hzzz+vo3dI1HBZLBbk5ubaPPLz8wEA+fn5ds9dvd2qoVu3bti+fTs2b96MV199FcHBwbh48SIqKiqsmeLiYgCAwWCwe72bm5tNBgCmTp2K0tJS3Hfffdi1axfOnDmDDRs2YPz48dDr9Tb5jz76CCaTCaNHj7Z7vwMHDoTFYsGOHTustXU6HUJDQ9GnTx+sXLkSn3zyCaZOnYodO3bgoYceQnl5ueptRDeAuj7pi4iI6o8WLVoIACIlJaXK56u6oEVKSor1ohcLFy60yY8dO1YAEL6+vtd87pNPPrGZfttttwmtVms3PTMzU4SFhYmgoCBRUlJS8zdJRHau3I5lHtfaR6h5QYuMjAzRpEkTMW7cOOu0X375RQAQzz//vF3+0qVLAoB4+OGHbaa/+eabwsfHx7rsrq6uIiEhQcTFxQkAIj8/XwghxPjx4xXf9+zZs611hw0bJiIjI0VxcbHN/N566y0BQKxYsUKVdqAbC8+5IiIiVURGRuKZZ56xmfboo49ixYoV8Pf3t3tu+PDhWLFiBX777TfEx8cDAA4cOIDdu3dj6NCh1mmVgoOD8dxzz+Hpp5/GN998g/79+zv3DRE1Is2aNcP27dttpv3222949tlnsXDhQnTs2NEu72whISHo06cPVq1ahTfffBMGg8F6sYgrD/2rVDnt6kMGJ06ciHHjxuHQoUMwmUxo164dfH19kZiYiODgYHh7ewMAxJ93J1q7di2Cg4OrXKbKi3ekpaXhvffew4QJE2A0Gm0yQ4YMwfjx47Fr1y6MGTPmOlqAbkTsXBERkSo6duwIrdb2aPPKLygdOnSwe66qL0lJSUkALt/HpqoLbpw8eRLA5XvXsHNFpB43Nzf06dPHZpqLy+WviZ07d66z+9qVlJTAbDajoKAAgYGBCA4ORmhoaJXnX1ZO69Kli91zBoPBZvovv/yCnJwcjB492jotJiYGwOWL9lzdFler3G+ZzWa75yoPY7zycEZqPNi5IiIiVfj4+NhNq/xyVt1zV56XcOHCBQDA9u3b7X5Fv1JRUdF1LSsR1Y20tDQUFxcjOjraes5TdnY2goKC7LJHjhzBN998g+joaAQGBlqnP/zww1i4cCE+//xz6+XYzWYz/vOf/8DX19fm6oJVKS0txeTJk2EwGPDss89apz/44IOYPn06Xn75ZfTu3dtuRCo/Px9ubm4wGAyIjY2FTqfDZ599hvnz59vcumLNmjUAgLi4OIfahhoGdq6IiKjeqOyEvfLKK3jhhRfqeGmISMa6detw5swZAEBOTg7Kysowd+5cAJfvVXXl1f4ee+wx7Nq1CykpKdbbPbzyyivYvn07+vfvj4iICAghcPjwYaxbtw7l5eVITEy0md8LL7yAjRs34pFHHsGUKVMQGhqKDz74APv27cPKlSttrtL3+++/4/HHH8eAAQMQFhaG7OxsvPPOOzh16hTefvtttG7d2poNCwvDW2+9hTFjxqBNmzZ49NFH0aJFC+Tk5ODQoUP47LPPcOTIEURERMDf3x+TJ0/Ga6+9hptvvhljx46Fv78/fvzxR7z33nuIjo7mIYGNFDtXRERUb9x6660A/jo8kIjqv1WrVmHXrl0202bMmAEA6NWrl03nqioDBgxAeno6NmzYgHPnzsFsNiM0NBRDhgzBs88+i3bt2tnkmzRpgh9//BEvvPACEhMTUVRUhLZt22L9+vUYOnSoTTYgIABhYWFYsWIFzp07Bx8fH9x+++1Yt24dunbtarcsI0eORKtWrbBw4UIsW7YMeXl5CAgIQGxsLObMmWNzrtmCBQsQGxuLlStXYv78+TCZTAgNDcX48eORkJBgPZeLGhd2roiIqN6Ii4tDjx49sHnzZqxevRqjRo2yy+zduxcdOnSo8sagRKSe3r17Wy/yUJ0r73tXk2yfPn0Uz3G6WmhoKNatW6eYCwoKwqeffupQ7Z49e6Jnz56KOY1Gg7Fjx2Ls2LEO1aeGjZ0rIiKqV95//338/e9/x+jRo/Hf//4XcXFx8PLywtmzZ/HLL78gOTkZWVlZ7FwREVG9w84VERHVKy1atMD+/fvx+uuv49NPP8XatWshhEBwcDA6duyImTNnIiAgoK4Xk4iIyI5GyIz3EhERERERUbW0yhEiIiIiIiJSws4VERERERGRCti5IiIiIiIiUgE7V0RERERERCpg54qIiIiIiEgF7FwRERERERGpgJ0rIiIiIiIiFbBzRUREREREpAJ2roiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXREREREREKvh/DSBjkRG9Cx8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent, alpha=0.7)\n", + "plt.colorbar()\n", + "plt.ylim(740,850)\n", + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', lw=3, alpha=1)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "source": [ + "This method is, of course, prone to errors in noisy data. We'll try to get better methods implemented in the future!\n", + "\n", + "In the meantime, a Savitzky-Golay filter is often good enough to cut away outliers:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAJ2CAYAAAADlpygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC840lEQVR4nOzdeXyM1/cH8M8kZCOJEFsidq0ltiCIrZSqokqLWtpSlGqpokpL9YufqtZSqhta+xZLrVVrFzuxtvZIgiQokYREZJvfH8eTO5OFJCaZyczn/Xrl5bnPPPPMnUrbOXPuPUen1+v1ICIiIiIiIptlZ+4JEBERERERkXkxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsXCFzT8AapaamIiIiAq6urtDpdOaeDhERERER2SC9Xo979+7By8sLdnaPzwkyMMwDERER8PHxMfc0iIiIiIiIcO3aNZQrV+6x1zAwzAOurq4A5C/Azc3NzLMhIiIiIiJbFBsbCx8fn7T45HEYGOYBbfmom5sbA0MiIiIiIjKr7GxvY/EZIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMZZZGB4//59TJ06FbVr14arqys8PT0REBCARYsWQa/Xp13Xr18/6HS6TH/Wrl2b4b4PHz7EZ599hkqVKsHR0RFVqlTBlClTkJSUlJ9vj4iIiIiIyKIUMvcE0ktNTUWHDh1w4MABvPXWWxg2bBji4+OxcuVK9O/fH+fOncOXX35p9JylS5dmuI+/v3+Gcz179sTGjRvx9ttvo2nTpjh48CAmTJiAy5cvY9GiRXn1loiIiIiIiCyaTm+YgrMABw8eREBAAEaMGIFZs2alnU9MTET16tURFRWF6OhoAJIxXLx4MbLzFrZt24aOHTti5MiRmDFjRtr5UaNGYebMmdi/fz8CAgJM8h5iY2Ph7u6OmJgYuLm5meSeREREREREOZGTuMTilpLGxsYCALy8vIzOOzg4wNPTE0WKFMnwHL1ej9jYWKSmpmZ53xUrVgAARowYYXReGy9btuwpZk1ERERERFRwWdxSUn9/fxQrVgzTp09HxYoV0bhxY8THx2Px4sUICgrCDz/8kOE57u7uuHfvHhwcHNCyZUtMmTIFjRs3Nrrm6NGj8Pb2ho+Pj9F5Hx8feHl54ejRo7mec9myZY3GjwtQiYiIiIiILI3FBYYeHh7YtGkTBg4ciB49eqSdd3V1xbp16/DKK6+knStTpgw+/PBDNGjQAEWKFMGpU6cwe/ZstGjRAtu2bUPbtm3Tro2IiEDNmjUzfU1vb29cv349z94TERERERGRJbO4PYYAcOLECUyZMgWVK1dGQEAAoqKiMG/ePJw/fx4bN25Eu3btsnzupUuXUK9ePXh5eeHSpUtp5+3t7dGsWTP89ddfGZ7TsmVLnD59Om3v4tOyyD2G//wDfPcdMHcuYG9v7tkQEREREVEeK9B7DM+cOYOAgAC0a9cOX331Fbp27YoBAwZg3759KFOmDAYNGoSUlJQsn1+tWjX06NEDly9fxsWLF9POu7i44OHDh5k+JyEhAS4uLiZ/LxYhIQGoXx+oXRv4/nsgkwquRERERERk2ywuMJw1axYSEhLQvXt3o/MuLi7o2LEjwsLCEBoa+th7VKxYEQBw+/bttHNeXl4IDw/P9Prw8HB4e3s/1bwtlpMTkJysxt9/b765EBERERGRRbK4wFAL3jLLCiY/CnCSDQOdTGhLSEuXLp12rlGjRggPD8e1a9eMrr127RoiIiLQsGHDp5q3RXv7bXV87BhgsMSWiIiIiIjI4gJDrUBM+obz0dHR2LhxIzw8PFC1alXExcUhISEhw/NPnDiBwMBA1KhRA1WqVEk736tXLwDA7Nmzja7Xxn369DHdm7A0Q4YARYvKcWoq8PXX5p0PERERERFZFIsrPhMWFgY/Pz/cvXsXffr0QbNmzRAVFYX58+cjNDQU8+bNw9ChQ3Hy5El06NABr7zyCqpVq5ZWlfTnn3+GnZ0dduzYgebNmxvdu3PnztiyZQsGDBiApk2b4uDBg1i4cCH69u2LpSbce2eRxWdefx1YvVqOS5QAbt5kERoiIiIiIiuWk7jE4gJDAAgODsakSZOwe/du3Lx5E87OzqhXrx5GjBiBbt26AQBu3LiBjz76CEePHkVERAQePHiAsmXLonXr1hg3bhyqV6+e4b4JCQmYMmUKli1bhsjISHh7e6N///4YO3YsChcubLL5W2RgeOwY0KiRGi9aBLz1ltmmQ0REREREeavAB4YFnUUGhgDg6wv8+68cN24MHDpk3vkQEREREVGeKdDtKigPGRahOXoUCA4231yIiIiIiMhiMDC0Je++CxQpIsepqcBXX5l3PkREREREZBEYGNoSZ2egY0c1XrsWyKQtCBERERER2RYGhrbmo4/U8Z07wIoV5psLERERERFZBAaGtqZhQ+BRr0gAwLx55psLERERERFZBAaGtih9EZorV8w3FyIiIiIiMjsGhrZo6FAWoSEiIiIiojQMDG2RszPw0ktqzCI0REREREQ2jYGhrRo9Wh3fvs0iNERERERENoyBoa3y9wdq1FDj774z31yIiIiIiMisGBjaMsMiNEeOsAgNEREREZGNYmBoy95917gIzddfm3c+RERERERkFgwMbVmRIkCHDmocGMgiNERERERENoiBoa1jERoiIiIiIpvHwNDWNW4MVK+uxt9/b765EBERERGRWTAwpIxFaEJCzDcXIiIiIiLKdwwMCRg6FHBxkeOUFBahISIiIiKyMQwMKWMRmjVrpEopERERERHZBAaGJNIXoVm50nxzISIiIiKifMXAkESTJsCzz6rxd9+Zby5ERERERJSvGBiS0r+/Oj58GAgNNdtUiIiIiIgo/zAwJOW994yL0Hz1lXnnQ0RERERE+YKBISlFiwLt26vxjh2AXm+++RARERERUb5gYEjG+vZVxyEhwLlz5psLERERERHlCwaGZKxDB6BQITlOSWF1UiIiIiIiG8DAkIw5OwN+fmr8xx9AXJzZpkNERERERHmPgSFl1LmzOr5yBTh1ynxzISIiIiKiPMfAkDJq21YdR0YCf//NIjRERERERFaMgSFl1LAh4Ooqx3o9cOIEEBZm3jkREREREVGeYWBIGRUqBDz3nBpfuQIEBZltOkRERERElLcYGFLmnn9eHYeEAGfPAvHx5psPERERERHlGQaGlLk2bdTx7dtAdDSL0BARERERWSkGhpQ5X1+gVCk1DgmR5aQsQkNEREREZHUYGFLmdDrjrGFIiGQOWYSGiIiIiMjqMDCkrKXfZ6jXswgNEREREZEVYmBIWTPMGMbEAHfvsggNEREREZEVYmBIWatcGahYUY1DQoCUFBahISIiIiKyMgwM6fHSLycFWISGiIiIiMjKMDCkx8tsn+Ht28DVq+abExERERERmRQDQ3q81q3VcXw8cPOmHLMIDRERERGR1WBgSI9XpgxQq5Yaa8tJWYSGiIiIiMhqMDCkJzNcTqotIU1OBk6fNs98iIiIiIjIpBgY0pMZBoZhYVKZFACOHWMRGiIiIiIiK8DAkJ6sZUvA7tGvyoMHQESEHLMIDRERERGRVWBgSE9WrBjQsKEaR0WpYxahISIiIiIq8BgYUvYYLie9fl0dnz0rWUQiIiIiIiqwGBhS9hgGhqdPq6WlycnAqVPmmRMREREREZkEA0PKnoAAwNFRjhMTAXt79VhQEIvQEBEREREVYAwMKXucnSU41GiN7gHgv/+Aa9fyf065cfcucOAAcOeOuWdCRERERGQxGBhS9hkuJz10CPDxUeNjx/J/Pjml1wMrVwI7dgDffw9ERpp7RkREREREFoGBIWWfYWAYFAQ884waF4QiNHfuALduyXFyMrB6NRAfb945ERERERFZAAaGlH0NGwKurnKcmirLSZ2cZFwQitBo/RdTUuTP6GggMFDeCxERERGRDWNgSNlXqBDQqpUa//UXULeuGlt6EZrISFlGOnUqsGIFcP8+EBIC7Npl7pkREREREZkVA0PKGcPlpLt3A35+amzpRWgOHQIOHpQM4aVLwE8/SU/GAweAM2fMPTsiIiIiIrNhYEg5YxgYnj0rQZZhEZqgoPyfU3bo9cCvvxqfu3cP+OUX4OhRYONG4MYNs0yNiIiIiMjcLDIwvH//PqZOnYratWvD1dUVnp6eCAgIwKJFi6B/zFLFjz/+GDqdDkWLFs308YcPH+Kzzz5DpUqV4OjoiCpVqmDKlClISkrKq7difXx9gZIl1XjPHqBBAzX+91/LLEJz+rT8pJeaCmzbBqxdCyxZwmI0RERERGSTLC4wTE1NRYcOHTBhwgQ0atQIM2bMwPjx45GSkoL+/ftj7NixmT7v5MmTmDlzZpZBIQD07NkTkydPRps2bTBv3jw899xzmDBhAgYNGpRXb8f66HRAmzZqvGcPUKuWcRGazAIwc5s5UxWZcXMDtm4FPD3V46dOyTXffcdiNERERERkc3T6x6XgzODgwYMICAjAiBEjMGvWrLTziYmJqF69OqKiohAdHW30nJSUFDRp0gRly5ZFbGwsjh07hvv37xtds23bNnTs2BEjR47EjBkz0s6PGjUKM2fOxP79+xFg2MD9KcTGxsLd3R0xMTFwc3MzyT0tyvz5wDvvyHGFClLA5bffgCNH5FypUsC770oQaQmiowEvL5XJ7NVLis9cvQq89posJdU4OQHjxwOffmqWqRIRERERmUpO4hKLyxjGxsYCALy8vIzOOzg4wNPTE0WKFMnwnDlz5uDs2bOYO3dulvddsWIFAGDEiBFG57XxsmXLnmLWNsZwn2FYGHDlivFy0lu3pKiLpfjxRxUUOjgAffvKcfnyUlnVMGOckCCB4dChzBwSERERkc0oZO4JpOfv749ixYph+vTpqFixIho3boz4+HgsXrwYQUFB+OGHH4yuDwsLw4QJEzBx4kRUqFAhy/sePXoU3t7e8DEslALAx8cHXl5eOGqYNcqhsmXLGo1TrT2gqFwZqFgRCA2V8e7dkkEsV04FhEFBxkVpzCUxEfjmGzX28wOefVaNnZykOmmDBsD778tSWAD4/nvg4kVgzRqgePH8nTMRERERUT6zuIyhh4cHNm3ahOLFi6NHjx6oUKECatSogXnz5mHdunUZ9gO+++67qFy5MkaOHPnY+0ZERMDb2zvTx7y9vREeHm6y92AT0u8zBICGDdW5f/6xjCI0K1ZI/0JAlrY2aQKkC+QBAIMHy3LYYsXUud27JWA8eTI/ZkpEREREZDYWFxgCQNGiReHr64vRo0dj/fr1WLBgAapWrYrevXtj586dadetXLkS27dvxw8//IBChR6f/IyPj4ejo2Omjzk5OSH+KapRRkZGGv1cunQp1/cqMAyXk+7ZI8suLa0IjV4PfP21Gvv6yp5IF5fMr2/bViqUVqmizoWGAq1bAxEReTpVIiIiIiJzsrilpGfOnEFAQABmzZqFIUOGpJ3v1asXfH19MWjQIAQHByMmJgYjRozAgAEDslU0xsXFBQ8fPsz0sYSEBLhkFSxQ5gwzhv/9JxnCOnXkRytCExQE+PubrwjNb79J+wxNQEDm2UJDTZvKMtLJk4G//5Zz0dGyVLZ//8c/V6cDqlaVfwZERERERAWIxQWGs2bNQkJCArp372503sXFBR07dsS3336L0NBQzJkzB3FxcRg0aBAuX76cdt2DBw+g1+tx+fJlODo6pu0p9PLyynK5aHh4eJbLTCkLZcpIhlALvHbvloDIz08FhloRGnPtNfzqK3VcubLMOV1Ro0w9/7zMvVAhYO9eOff770D16sBj2qEAkCyph4dl7K8kIiIiIsomi1tKqgVvKSkpGR5LflQYJDk5GWFhYYiLi0Pjxo1RrVq1tJ8jR44gPj4e1apVQ4cOHdKe26hRI4SHh+PatWtG97x27RoiIiLQ0HB/HGWPYdZw9WpZulmmjBSh0QQF5f+8AODYMeCPP9RYyypnJzC0swNefRXo0AFwdpZzycnAgQPZe+1z53I0VSIiIiIic7O4wLBmzZoAgEWLFhmdj46OxsaNG+Hh4YGqVavi448/RmBgYIafmjVrwsnJCYGBgUZ9EHv16gUAmD17ttF9tXGfPn3y7D1ZrW7d1PHhw8CmTXJs2LrCXEVoDPcWli4tGUPgyUtJNU5O0otRa20BACdOALVrAy1bZvypVk1dd+XK08+fiIiIiCgfWVyD+7CwMPj5+eHu3bvo06cPmjVrhqioKMyfPx+hoaGYN28ehg4dmuXzn3vuuUwb3ANA586dsWXLFgwYMABNmzbFwYMHsXDhQvTt2xdLly412Xuw+gb3Gr1ell1qyy1r1pSllCkpwIwZgLan86WXZK9hfgkJkb1+WtuQV14B6taViqPp+lg+UUyMtOaIjpbxxx8D06ZlvC4yUvolaj76CMik5yYRERERUX4p0A3uK1SogCNHjuCNN97A3r17MWzYMEybNg0+Pj5Yt27dY4PCJwkMDMSnn36KXbt2YejQodizZw8mTZqEn3/+2YTvwIbodMAXX6jx2bPAsmXSRN6wAEtQkASR+WXWLBUUenpKNVIg+9lCQ+7uwAcfqPG8ecCdOxmvK1NGLTsFJDglIiIiIiogLC5jaA1sJmOo6dYN2LBBjsuXl8bwd+8CP/ygrhk40HjvYV65c0fmoLUf6dlTisYAkt1s0SLn97x7V9pc3Lsn4/HjpWppeoGBqhiPnx/w8ss5fy0iIiIiIhMp0BlDKoD+7/+kYAsAXL0q7R7KlAEMK70eO5Y/c/n+exUUurkBzz6rHstNxhCQKqPDh6vxnDkSLKan7WMEZJ8hv3MhIiIiogKCgSE9vRo1gH791Pj//g+IjQUMK73++y+QkJC380hIAObOVeO33jLuoZidiqRZ+fBDtWcwNlaCw/QMA8Po6MyDRyIiIiIiC8TAkEzj888BR0c5vn0bmDlT+hxq55KSpDBNXlq6VPoPAkDhwsZLOd3dAReX3N+7RAng/ffVePZsCRANeXjIj4bVSYmIiIiogGBgSKbh42McOM2YIVmz/CpCk5oqr6np3VsVoAGeLluoGTlSFZiJjga+/TbjNemXkxIRERERFQAMDMl0xo2TfX0AcP++LCk17Gl48yYQHp43r715M3DhghqPHg1ERKixKQLDUqWkt6FmxgxVkEZjGBiGhBgHp0REREREFoqBIZlOiRLSv0/z/fey78+wCE1QUN689ldfqeMOHWQZa2SkOpfbwjPpjR4NODnJcVSUvEdDlSqpfY0PHgA3bpjmdYmIiIiI8hADQzKtESOA0qXlOCkJmDjROGv4zz+mL0Jz8CCwf78af/SRBG0PH6pzpsgYAhJgvvOOGn/9NRAXp8YuLlKRVcPlpERERERUADAwJNMqWhSYMEGNly6VPw2L0Jw5Y9rX/PprdeznBzz3nHG28GkLz6Q3Zgzg4CDH//0H/PST8eOGy0mDg033ukREREREeYSBIZneoEGypBKQYjOffw7Urq0e//PPjBU9cys4GNiwQY0/+kiWcpp6f6Ehb29gwAA1nj5dlo1qDAPDq1clGCYiIiIismAMDMn0HByAyZPVePNm+VPbe3f/PrBmDZCc/PSv9c03qtJphQrAa6/JsWFgaKr9hYbGjpWWGIDsI1ywQD1WvjxQqJAcp6RIcEhEREREZMEYGFLe6NXLuFXFl18Cbduq8fXrwG+/Pd1rREcDP/+sxsOHS0Cm1xsvJTV1xhCQ4K9fPzWeNk3tnSxcWB7XcJ8hEREREVk4BoaUN+zsgC++UON9+4C7d42XlAYFPV2V0oULVeGXokXV8s70hWfyImMISHsOe3s5jogAfvlFPcZ+hkRERERUgDAwpLzToQPQooUaf/IJ0KmTcdXObduAa9dyfu/kZGDOHDV++20pMgNkLDxTpEjO758dlSoBb76pxtOmAYmJcmwYGN64AcTH580ciIiIiIhMgIEh5R2dToIlzZkzwNq1QM+egLOznEtJkf2G6RvFP8mGDWrvnk4ny0g1eVl4Jr1PPpHsKCDzWbJEjsuUUe9Rr5dm90REREREFoqBIeWtgADg5ZfVeMIEyeC99poqRnPvngSHKSnZv++sWeq4SxegShU1zovG9lmpWhXo3VuNp06VKqR2dqoyK8DlpERERERk0RgYUt77v/9TQWBIiPT9q1LFuBjNtWvZL0Zz+LA0tdd8+KE6zo/CM+l9+qnx+1u5Uo65z5CIiIiICggGhpT3fH2BN95Q488+k313AQHymObYMeD48Sffb/ZsdVy/vvE+xrt3VXVQIO8zhgBQvTrQo4caT5sGpKYaB4Z378oPEREREZEFYmBI+WPSJLXn7u5d4IMPJMv28stA6dLquq1bpZVFVq5dAwID1fjDD1W2DjDeX5iXhWfSGztWHZ87B2zcCHh4AMWKqfPMGhIRERGRhWJgSPmjQgUJDjVr1kjjewcH4PXXjYvRrF4N3L+f+X2+/VbtRSxbVgrZGMrrxvZZqVcPeOklNdZadXA5KREREREVAAwMKf+MGAH4+anx0KFAbKxk1rJTjOb+fdmfqHnvPQksDeX3/kJD48ap46NHgT17MgaGen3+zomIiIiIKBsYGFL+KVQIWLBANYW/fl3aPQAZi9FcvQps3278/CVLgOhoOXZyAgYPNn48feGZ/MwYAkDz5vKj+eIL48qkDx7I3koiIiIiIgvDwJDyV/36wKhRavzdd8CBA3IcEADUqqUeO3oUOHFCjlNTjYvOvPEG4OlpfO/0hWfyO2MIGGcNd+8Gzp6VnoYaLiclIiIiIgvEwJDy38SJqu+gXg8MGgQ8fChLSbt0MS5Gs2ULEB4ObNsGXLqkzo8YkfG+5io8Y6hDB6BuXTX+4gvj5aTBwfk/JyIiIiKiJ2BgSPnPxQX48Uc1PnsW+PJLOXZwkIIyTk4y1orRfP21ur59e6BmzYz3NecyUo1OZ1yhdMMG472SV68CSUn5Py8iIiIiosdgYEjm8fzzQP/+avx//ydtHgCgeHHjYjQXLwJ//qmuNWxob8gwY2iOZaSa115TGVEAWLFC7atMTpaWG0REREREFoSBIZnP118DpUrJcWKiLClNTZVx1aoSPALA4cPqOTVqAC+8kPFe5i48Y6hQIWDMGDVetUqypBruMyQiIiIiC8PAkMyneHFgzhw13r/feIlps2aS+TtzRp179VXjhvYaSyg8Y+itt1RwmpysCuwADAyJiIiIyOIwMCTz6tED6NhRjT/+WNpYABIAXrum9ug5OwN2dlKMJj3DZaRubuYpPGPI0REYOVKNt24F4uLkODJSWlcQEREREVkIBoZkXjqdtKwoWlTG9+5J43q9XjKAhhnEhg3l+tWrVZClMWdj+6wMHgx4eMjxw4fAsWNyrNcDISHmmxcRERERUToMDMn8ypcHpk5V402bgHXrpGjLf//JucKFAX9/OY6NBdasMa72aZgxNOf+QkOursCwYWp85Iha7srlpERERERkQRgYkmUYOhRo0kSNhw0zblHx+uvS41ATFgbs2CHH6QvPWErGEACGD1eFZ+LjVdaQgSERERERWRAGhmQZ7O2B+fMlMwgAN26o9hWANLRv3lyqkmoOHwZOncpYeMZSMoYAUKIE8M47anzokPQxjIqSeRMRERERWQAGhmQ5fH2Nm8NrWrYE/Pxkf+ErrwAlS6rHNm8GgoLU2M1N7Ve0FKNGqYA3Lg44eVKOuc+QiIiIiCwEA0OyLJ98Ajz7rPE5w4b2jo6yrNTJScbJydLmQmNJy0g15coBb7yhxgcOSL/GJy0n1euBgwclsJw82TgrSkRERERkQgwMybI4OcmSUq1XYY0aQOfOxteUKAF065Z5P0NLWkZqaMwYNd/oaOCffyQw1OszXnv7NjBrlmRQAwKAmTOBzz4DBg3K/HoiIiIioqdUyNwTIMqgRQtg927gjz+AAQNk/2F6zzwDtG4N7NljfN4SM4aAZEFffRVYu1bG+/YBtWsD06ZJwJiaCgQHA0ePAmfPGldc1SxbJv0PGzZ8/Gt5eACvvSYBNBERERFRNjAwJMvUurX8PE6LFlKN1LBIjaVmDAFg3DgVGP73H3Dxosz35EngxAnJJGbGwQFITJTjjRtlj2Xp0lm/TmQksH070KePKWdPRERERFaMgSEVXFoxmvv3gWvXgDp1LK/wjCE/P+CFF1SbjV9/lcb3mS0PdXaW9+PnJ4VrfvxRrk1OBgIDpdKpg0PWr3X5MhATA7i758lbISIiIiLrwsCQCjZHR+DttwtOEDRunAoMMysm06wZ0KuXBJBagR0AqFULGDxYju/cAc6fB2bPzrjPMjAQiI2VYPP48SdnXYmIiIiIwMCQrIFOBxQrZu5ZZE+rVkDTplJtVOPlBfTvLwFu5cqZP++dd4B//wXmzJHxhg3ASy8BAwcaX+fnJ3szAQkMW7UC7FhjioiIiIgej58YifKTTgesXi1LYHv2BDZtAsLCgClTsg4KNV99BTRqpMbDhgGnTxtfU7++yiLeuwdcumTS6RMRERGRdWJgSJTffHwk47dqlbTiKJTNxL2DgwSVWnY0IQHo3l0CQI27O1CtmhoHBZls2kRERERkvRgYEhUklSoBv/yixhcvAkOGGBewadBAHV+6JPsviYiIiIgeg4EhUUHzyivAiBFqvGIFsGCBGlerBri5ybFWhIaIiIiI6DEYGBIVRF9+Cfj7q/GwYcCpU3JsZyd7DTUnTgCpqfk7PyIiIiIqUBgYEhVE6fcbPnxovN/Qz08VoYmNZREaIiIiInosBoZEBVXFisDixWp86ZL0OtTrWYSGiIiIiHKEgSFRQfbyy8DIkWq8ciXw009yzCI0RERERJRNDAyJCrpp04AmTdT4gw9kv2G1aoCrq5zT62WvIRERERFRJhgYEhV0hQtLT0QPDxk/fAiMGiVFaPz81HXHj7MIDRERERFlioEhkTWoUEEtIQWA3buB/fszFqG5fNk88yMiIiIii8bAkMhavPqqcYZw8mQpQlO1qjrHIjRERERElAkGhkTWQqcDJkxQ499/B44cMS5Cc/Eii9AQERERUQYMDImsycsvA3XqqPHkycAzz7AIDRERERE9FgNDImtiZ2ecNdyyBTh5kkVoiIiIiOixGBgSWZtu3YCaNdV48mSgfn0WoSEiIiKiLFlkYHj//n1MnToVtWvXhqurKzw9PREQEIBFixZBr9enXTd27FgEBASgVKlScHR0hI+PDzp16oQ//vgj0/s+fPgQn332GSpVqgRHR0dUqVIFU6ZMQVJSUj69M6J8kD5r+OuvwNWrLEJDRERERFmyuMAwNTUVHTp0wIQJE9CoUSPMmDED48ePR0pKCvr374+xY8emXXvo0CHUqVMHH3/8Mb7//nu8++67uHLlClq3bo2lS5dmuHfPnj0xefJktGnTBvPmzcNzzz2HCRMmYNCgQfn5FonyXvfuwLPPqvGUKRmL0MTG5v+8iIiIiMgi6fSGKTgLcPDgQQQEBGDEiBGYNWtW2vnExERUr14dUVFRiI6OzvL59+/fR5UqVVCiRAmcPXs27fy2bdvQsWNHjBw5EjNmzEg7P2rUKMycORP79+9HQECASd5DbGws3N3dERMTAzc3N5PckyjHli4F3nxTjnU64NQpYMcO4N49Ode6NdCqlfnmR0RERER5KidxicVlDGMfZTG8vLyMzjs4OMDT0xNFihR57POLFi2KEiVK4O7du0bnV6xYAQAYMWKE0XltvGzZsqeYNZEF6tULqFJFjvV64IsvZK+hhkVoiIiIiOiRQuaeQHr+/v4oVqwYpk+fjooVK6Jx48aIj4/H4sWLERQUhB9++CHDc27fvo3U1FRERkZi/vz5OHfuHN5++22ja44ePQpvb2/4+PgYnffx8YGXlxeOHj2a6zmXLVvWaJzKD9tkCQoVAj79FND+XVi1ChgxQrKHer30MwwOBqpVM+s0iYiIiMj8LC4w9PDwwKZNmzBw4ED06NEj7byrqyvWrVuHV155xej6+/fvo2TJkmljZ2dnvPPOO5g5c6bRdREREahpWKnRgLe3N65fv266N0FkKfr2BSZNAkJDJRj89lvghRdUVdKgIAaGRERERGR5gSEgy0F9fX3x8ssvIyAgAFFRUZg3bx569+6NjRs3ol27dmnXOjs7Y+fOnUhOTkZYWBiWL1+O+/fvIz4+3mjZaXx8PBwdHTN9PScnJ8THx+d6vpGRkUZjbS0vkdkVLgyMGwcMHizjFSuAPn1UYKgVoeFeWCIiIiKbZnHFZ86cOQN/f3/MmjULQ4YMSTsfHx8PX19fpKamIjg4GPb29pk+PyUlBc899xyio6Nx/PhxFC5cGIBkHGvWrInDhw9neI6/vz+uX7+OiIgIk7wHFp8hi/LwoWQFr12Tcf/+QK1aqghNy5ZAmzbmmx8RERER5YkCXXxm1qxZSEhIQPfu3Y3Ou7i4oGPHjggLC0NoaGiWz7e3t0efPn3wzz//4K+//ko77+XlhfDw8EyfEx4eDm9vb5PMn8jiODoCBm1esHQpUKaMGu/bJ0tNiYiIiMhmWVxgqAVvKSkpGR5LTk42+jMrDx48AABERUWlnWvUqBHCw8NxTcuaPHLt2jVERESgYcOGTzVvIov29tuAVuk3ORnYvRvQllqnpgKBgVKMhoiIiIhsksUFhlqBmEWLFhmdj46OxsaNG+Hh4YGqVavi7t27SExMzPD8uLg4LFy4EHZ2dvD3908736tXLwDA7Nmzja7Xxn369DHdmyCyNE5OwJgxarxsGdC8OWD36D8BcXHA6tVAUpJ55kdEREREZmVxxWdGjBiBJUuWYOzYsThz5gyaNWuGqKgozJ8/H5GRkZg3bx7s7e3x559/YvDgwXj11VdRtWpVuLq6IiQkBEuXLsX169cxceJEVKhQIe2+HTt2RKdOnTBz5kzExMSgadOmOHjwIBYuXIi+ffuiefPmZnzXRPlg0CDpZXjzpgSAy5cDb74JbNsmj0dEAFu3Al26SEsLIiIiIrIZFld8BgCCg4MxadIk7N69Gzdv3oSzszPq1auHESNGoFu3bmnXfPHFFzhw4ADCw8MRHx+PEiVKoFGjRhgyZAg6duyY4b4JCQmYMmUKli1bhsjISHh7e6N///4YO3ZsWpEaU2DxGbJYM2YAo0fLsYOD9DE8dgw4eVJd89JLgEG2nYiIiIgKppzEJRYZGBZ0DAzJYsXFARUrArdvy/iDD4CvvwZ+/lkyhoAsL33rLcAg405EREREBU+BrkpKRHmoSBFg1Cg1/vFHCRJ79jQuRrNmDYvREBEREdkQBoZEtua994DixeU4IQH43/8Ad3ege3fjYjRr1kgFUyIiIiKyegwMiWyNqyvw4Ydq/MMPwIYNssS0fXt1PjxcitFwtTkRERGR1WNgSGSLPvwQqF5djfv3B65ckaIzdeuq8ydOSHEaIiIiIrJqDAyJbFGRItLU3tlZxjExss8wMRHo1AkoW1Zd+9tvwNWr5pknEREREeULBoZEtsrXF/j2WzU+dgz46COgcGHg9dcBFxc5rxWjiY01zzyJiIiIKM8xMCSyZf37A2+8ocZz5wLr1mUsRnP/PrB6temL0aSkAP/9J8EnEREREZkNA0MiW6bTAd9/D9Sooc69/bbsN6xUCXjhBXU+PBzYts10xWgePpT+ifPmAUuWsAIqERERkRkxMCSydUWKyFJRbb9hbCzQo4cEbo0bA3XqqGuPHweCgp7+NfV64NdfJdgEgNBQVkAlIiIiMiMGhkQk+w3nzVPjoCBg9GjJKHbubPpiNPv2AefOGZ9jBVQiIiIis2FgSESif3/grbfU+NtvpXJp4cJSsVQrRpOSIhnGe/dy9zqXLgF79qixTqeOWQGViIiIyCwYGBKRMm8eULOmGg8YAFy+DBQrJsVotCAut8VooqKkuI22ZNTNDRg4kBVQiYiIiMyMgSERKVp/Qy1Qu3dP9hsmJGQsRnP9umT4skOvl32E//sf8Pff8rxly4AZM4BnnwVCQowroK5Zw2I0RERERPlIp9ez2oOpxcbGwt3dHTExMXBzczP3dIhybvFioF8/NR46VLKJej2wfj1w5ox6rHNnoEEDOU5MBIKDZf/g+fPGP09aevrll0B8vBr7+cm9DZeaEhEREVG25SQuYWCYBxgYklXo3x9YtEiNV62SvYZJScCcOcDZs8Dt27I81NkZCAuToDAlJXev5+0NTJsmS1c1nToBDRs+1dsgIiIislUMDM2MgSFZhfh4wN8f+PdfGRctKlm88+eBW7dyd09HRwkAmzeX3onFi0s2Ugsm331X2mPcuCFje3spiFO+/NO/HyIiIiIbw8DQzBgYktU4exZo1Mh4iWd2+PhI4FexInDzJuDuDnh6Al5ewODBEmRqxo6VZaSALBv97Tfg1Cn1mkWLynNcXU3yloiIiIhsBQNDM2NgSFZlyRLjNhYaR0egXDnAyQkoUUICv5YtpcpokSKy33DhQgkMAcn+9e8vzzH04AFQu7YsQwUkoFy3TgrQaP95KldO9jwWKpRnb5OIiIjI2uQkLuGnLCJ6vDfflCBw/37JAFavLj8VKkgl0XXrgH/+kWvv3gUuXADq1wc2blRBIQB07JgxKARkf+JPPwHPPy/jc+ckKGzXDtixQ85pFVA7d87Tt0pERERkq5gxzAPMGJJNySwzWKcOcOKEuqZRIwkMH2fAAODnn+W4cGF5/vnzWVdAJSIiIqLHyklcwj6GRPR0HByA11+XzB8ghWQMg8Ly5YEXX3zyfb76CihVSo6TkoB33pGqpGXKqGu2bQOuXTPd3AFZrnrtGhATY9r7EhERERUgDAyJ6Ol5eACvvZax56CrK9Cjh2QRn6R4cWDuXDU+cEAykT17Ggeda9Y8uSdidun1suR14ULp02jqoJOIiIiogGBgSESmUaUK0LatGtvbS1BnWIH0Sbp3lyyhZuxYIC7OOOi8d0+Cw9z2SzR06BBw8qQcJyYCq1ebLugkIiIiKkAYGBKR6QQEAG3aSGGa11/PvNjM4+h0wHffqWDy3j3gvfeAypWNg85r16QYzdMICVHFbTT375su6CQiIiIqQBgYEpHp6HTSsqJ/f6Batdzdw8cH+OILNd60SSqfBgQAvr7q/LFjwPHjuXuN6GggMFC1wzBsg2GKoJOIiIiogGFgSESW5913gaZN1fj99yWYe/lloHRpdX7rVmllkRNJScCqVUB8vIzt7IAuXaR/oubYMSAoKNfTJyIiIipo2K4iD7BdBZEJ/Puv9ENMSpLxwIHA/PnSK/Gnn4AHD+S8qyswePCT9zImJQHBwcCiRRL43bkD3L4t1Ujv3QOqVgX69VOvZ28vmc+cLoclIiIishA5iUsYGOYBBoZEJjJxIjBpkhrv2QO0bi0B3rJlailo+fLAW29JMBcTA1y4ID0Qz58Hzp2TPy9fBpKTH/969eoBr76qrnN1lbYZrq558vaIiIiI8hIDQzNjYEhkIg8fSrB2/ryMq1YFTp8GHB2BDRuAX3+VrN/t21JV9L//gMjIp3vNbt2A2rXV2DDoJCIiIipAchKXFHrso0RE5uToKMtHW7SQ8eXLshfwv//UHsGccnUFypSRzGOdOkD16sDixcDSpfL4+vVSVVX7j+fVq8D27UDHjk//foiIiIgsFDOGeYAZQyITGzoU+P777F9fuLBURa1RQ/68eVMqj5YoATg7y17C8uXV9QkJEnweOybjQoWA8ePVUlVACt/4+Znk7RARERHlBy4lNTMGhkQmFhMjyzuvXTM+7+EhgV9qKlCsGFCyJFCxIjBmjIz1ellueuqUek7HjkCjRhlf49o1oEEDyUYCQKlSwPDhLEZDREREBVZO4hK2qyAiy+fuDuzbB0yfLhVJ//oLuHVLKosePgysXAk0bw488wzg4CD7D1NSgCNHjIPC+vWBhg0zfw0fH+ltqO0lvHVL+idqPQ5TUoA1a4D79/P2vRIRERGZwVNlDM+fP4+rV6/i9u3bcHZ2RqlSpVC7dm2bz5IxY0hkBvv2Abt2qXG1alK9NDVVxt7ekvEr9ISt1XPmAB98oMavvgr4+qoxi9EQERFRAZGnxWf27NmDhQsXYteuXbh9+3aGx+3s7FC/fn289tprePvtt+Hp6ZnTlyAiyrlmzYCICODsWRlfuqQeK1IE6NnzyUEhAAwbJs3tlyyR8bp1UoxGa1nBYjRERERkhbKdMVy/fj0+/fRTXLx4EXq9Ht7e3mjUqBHKlCmD4sWL48GDB7hz5w7Onz+PkydPIjExEY6OjnjzzTcxadIklC5dOq/fi8VgxpDITBITgQULZBmoxs5OMnwVKmT/Pg8eyNLU48dlnFkxmi5dZGkqERERkYUyefGZli1bYt++ffD19cUbb7yBnj17orxhRb90EhMTsXfvXixduhS//vor7O3tsXTpUrz88ss5fzcFEANDIjOKipJ9iAkJMn7pJcDfP+f3uXpVitFoKyPSF6MpVEiWpnp7m2beRERERCZm8uIz8fHx2LJlC06fPo2PPvrosUEhADg4OKB9+/ZYtmwZQkJCMHDgQFy8eDH774CIKLeKF5cMoa9v1hVIs6N8eSk2Y1iMZv16tRw1ORlYvZrFaIiIiMgqsF1FHmDGkMiKzJ4NfPihGnfvDtSsqcYVKgBvvsliNERERGRx2K6CiMhUPvgA6NtXjQMDjbOEYWHAjh35Py8iIiIiE8pVYDhp0iR8/fXXSExMzPKaP//8E5MmTcr1xIiILIJOB/z4o3GhmTlzABcXNT58GDh5Mt+nRkRERGQquQoMP//8c3z88cd4/vnncefOnUyv+eOPP/C///3vqSZHRGQRXFyADRuAEiVknJQEnDsHlCyprtmyRdplEBERERVAuV5KWqlSJezfvx9NmzbF5cuXTTknIiLLU6EC8MUXarx+vbSscHKSsVaMJi7OPPMjIiIiegq5DgzffPNN/PzzzwgLC0PTpk2xf/9+U86LiMjydO8OODrKcWwscOAA8OqrstwUAGJiZA9iSor55khERESUC09VfKZfv37Ytm0bkpKS0LZtW6xatcpU8yIisjzFikmWULNkCVCtGtC6tToXGgrs3JnfMyMiIiJ6Kk9dlfT555/HgQMHULp0afTp0wdTp041xbyIiCzTG2+o4+3bpb9hixZAjRrq/KFDwKlT+T83sh4PHkg2ukwZ+QKCiIgoj5mkXUXNmjVx+PBh+Pn5YcKECRgwYACSkpJMcWsiIsvSvr0qOpOSAqxcKUtJX3nFuBjN5s1AZKRZpkhW4KOPZB/rzZvAgAHA0aPmnhEREVk5k/UxLF26NP766y907twZv/zyC2bNmmWqWxMRWY7ChYFevdR46VL509EReP11tQcxORlYtYrFaCjntm4F5s1T4+RkoE8f4/6ZREREJmbSBvfOzs7YsGEDhg8fjgcPHpjy1kRElsNwOWlQEHD2rByXKJGxGM3atUBqav7PkQqmmzeBt9/OeP7SJaBnT2D37qx//v5bfueIiIhyQafX6/V5ceOjR48iPj4erVq1yovbW7TY2Fi4u7sjJiYGbm5u5p4OEZmaXg/UqiW9DAFg7FjjVhZ//gns3avGL70E+Pvn7xyp4NHrgU6dgG3bZGxvD1StCly4oK7p0cN4P2t6JUsC774L2Jn0e18iIiqgchKX5Nn/ORo1amSTQSER2QCdzjhruGyZcVawZUvgmWfU+Pz5/JsbFVzffaeCQkCq3b72GlCqlDq3eTNw717W9/jvPyA4OO/mSEREVotfKRIR5UafPmrJ6PXrwB9/qMd0OqBxYzW+ehVgQS56nLNngdGj1bhyZSAgAChUCHj/fdnbCki10t27AV9foE4d9VO8uHpuUFD+zp2IiKxCoexeWLly5RzfXKfTIZjfXBKRNSpfHnjuObVkdMkSoE0b48ft7aVyaXIycO2afNgnSu/hQ6B3byAhQcZubsDLL8sXDIUKAaNGybkRI+TxU6fk9+nDD9U9zp0DVq+W44sXJavo6pqvb4OIiAq2bAeGoaGhOb65Tvs2nYjIGr3xhgoM162TSpJFisi4cGEJDkNCZHzlCgNDytynnxr3vezdG3B3l+NatQBnZ2DYMFlmumOHnB87Vr6IqFtXxs88AxQtKpVLU1OBEydkSTMREVE2ZXspaUhISIaf4cOHQ6fTZfpYSEgIrly5kpdzJyIyr1dflQ/tgHwg//VX48cNA0H+95Ays2sXMGOGGr/+OlC6tBo3aCB/2tkBixZJ5VsASEyU5cxaBXB7e6B+ffW848elmA0REVE2ZTswrFChQoYfDw+PLB/TfnLj/v37mDp1KmrXrg1XV1d4enoiICAAixYtglZENSEhAfPnz0eXLl1QsWJFODs7o3LlyujVqxfOaZUC03n48CE+++wzVKpUCY6OjqhSpQqmTJmCJO79IaLccHOTxvYaraehxjAwjIwE4uPzZVpUQNy5A7z1lhpXrizFZjQlSwI+PmpctiywcKEa//sv8PHHauznp46jo1mEhoiIcsTiis+kpqaiQ4cOmDBhAho1aoQZM2Zg/PjxSElJQf/+/TF27FgAsrT1nXfeQVRUFAYMGIBvv/0WvXr1wu+//4569ephr2Gp+Ed69uyJyZMno02bNpg3bx6ee+45TJgwAYMGDcrvt0lE1uLNN9Xxzp0SAGrKlgWcnORYrwdysSSfrJReDwwaBEREyNjeHli8WPoVaho0UAWONF26AIMHq/HcuaqSqYcHUKWKeoxFaIiIKAeyvccwvxw+fBj79u3DiBEjMGvWrLTzQ4cORfXq1fHjjz/iyy+/RMmSJXHixAnUq1fP6Pl9+vRB/fr18dFHH+HYsWNp57dt24aNGzdi5MiRmPFo2c7AgQNRrFgxzJw5E++88w4CAgLy5T0SkRVp21aW/t28KXu7VqyQYiGALP+rVEn1O7xyBahZ03xzJcvx88/Ahg1qPHGiFIvRCtAUKqT2D6Y3Y4ZUwdX6G/bvD5w5I20tGjRQmcILF1iEhoiIss3iMoaxsbEAAC8vL6PzDg4O8PT0RJFHhR1KlCiRISgEgJo1a8LX1xf//POP0fkVK1YAAEZoVd0e0cbLli0zweyJyOYUKiR7vTSPW07KfYYESFbwgw/UOCAAGDfOOMOnFZ3JTJEiwPLl8rsHALduAQMGSBby2WelCA0gX1ScPJknb4GIiKyPxQWG/v7+KFasGKZPn47AwEBcvXoV58+fx7hx4xAUFITPP//8sc9PTU1FZGQkShtu3gdw9OhReHt7w8dwvwYAHx8feHl54ejRo7mec9myZY1+qlWrlut7EVEBZNjs/tQp4PRpNTYMDKOigLt3829eZHmSkuSLhLg4Gbu6AsuWye/G1avqOq3oTFYaNACmTFHjLVuAH36QJamGX5oGBbEIDRERZYvFBYYeHh7YtGkTihcvjh49eqBChQqoUaMG5s2bh3Xr1j1xP+APP/yAyMhIvGW4oR9AREQEvL29M32Ot7c3wsPDTfYeiMjG1K0rDcc1hlnD4sVV6wGAWUNb97//AYZfRH73nSw3NswWpi86k5XRo6WXpmbkSFm2zCI0RESUC9neY9gyk35IVx99u5nZY4D0Mfzzzz9zPKmiRYvC19cXL7/8MgICAhAVFYV58+ahd+/e2LhxI9q1a5fp8w4cOICRI0eibt26+OSTT4wei4+Ph6OjY6bPc3JyQvxTVAuMNCw2AVkO6274QZCIrJtOJ0VoxoyR8fLlwLRpkr3R6aQgyPHj8tiVK0/OBpF1OnUK+OILNe7VS7KHSUnGfQwzKzqTGXt7YMkSoE4dCQATEoC33wYOHpTfOS0gDAoCqlY16VshIiLrk+3AcN++fTl+LDcN7s+cOYOAgADMmjULQ4YMSTvfq1cv+Pr6YtCgQQgODoa9vb3R84KCgtCxY0d4eXlh69atcNIqAT7i4uKChw8fZvqaCQkJcHFxyfFciYjS9O4trQP0eqlMuns38MIL8ljlyiowDAmRa3Lx30cq4BYskH1/gGQEv/tOfg/Ons1e0ZnM+PgAP/4I9Owp40OHZCkzi9AQEVEOZTswDAkJyct5pJk1axYSEhLQvXt3o/MuLi7o2LEjvv32W4SGhqKKQUnu48ePo127dnB3d8fevXszXTLq5eWV5XLR8PDwLJeZEhFli7e3VCjduVPGS5aowLBSJXVdfDxw44a0siDbkZQErF6txh99BBQrJseGy0hr1sy66ExWevSQ/YZnzsh4+XJg6lQpUhMXp4rQtGjxNO+AiIis3FM1uM/OT05pwVtKSkqGx5KTk43+BCQobNu2LVxdXbF3794sX7NRo0YIDw/HtWvXjM5fu3YNERERaNiwYY7nSkRkxLAIzYYNkqUB5AN6mTLqMe4ztD27dgH//SfH9vYqw3frVs6KzmTFsDLuypWSiaxfX507fpxFaIiI6LEsrvhMzUc9vhYtWmR0Pjo6Ghs3boSHhweqPtorceLECbRr1w5FixbF3r17UcnwW/l0evXqBQCYPXu20Xlt3Mfwf6pERLnRtasEgYBkBtevV4+xbYVtW75cHbdrJz0HAbXEGAA8PYHy5XN3/0f/jwMAXLsG/P23cRGau3f5e0dERI+VraWkN27cQBnDb7tz4ebNmxlaSGRmxIgRWLJkCcaOHYszZ86gWbNmiIqKwvz58xEZGYl58+bB3t4eYWFhaNeuHe7evYvhw4fjwIEDOHDggNG9unbtmtb3sGPHjujUqRNmzpyJmJgYNG3aFAcPHsTChQvRt29fNG/e/KneHxERihYFunVTVUmXLgW0CsmVKwPaf6PCwoDkZNWHjqxbXBzw669qrH0RmduiM5kpXx5o2RL46y8ZL18O/PST/N5pAWFQkBSlISIiyoROr3/y2hIXFxcMGzYMo0aNQintW85s2rp1Kz7//HN07twZn332WbaeExwcjEmTJmH37t24efMmnJ2dUa9ePYwYMQLdunUDAPzxxx9o3br1Y+8TEhKCihUrpo0TEhIwZcoULFu2DJGRkfD29kb//v0xduxYFC5cOEfv63G0qqQxMTFwc3Mz2X2JqADYuVPtLdTpZJlguXJAYiLw5ZeAtkz+rbeM9x6S9Vq5UooTAYCLC3DzpnyJcPq0yioXKiTtJp6mENpPPwGDB8uxh4cUQbp8GQgMlHN2dvIaRYvm/jWIiKhAyUlckq3AcPz48Zg1axaSkpLQvn179OjRAwEBAUYFYDRxcXE4duwYduzYgWXLluH69eto0KABFixYgDp16uT+XRUgDAyJbFhKimRvIiJkPG2aVCsFgEWLgNBQOW7RAnj+eXPMkPJbp07A1q1y3KsXsGKFHP/yi2SPAWk58eiLz1yLipK9rElJMv71V3ntmTMlawlIgSSukCEishk5iUuytcdwypQpOH/+PN566y3s3bsX/fr1wzPPPAMPDw9Ur14dTZs2Rf369VGhQgUUK1YMbdq0wRdffAEPDw8sWbIER44csZmgkIhsnL29cSGQJUtU0Q/uM7Q9t28Dv/+uxlrm8L//VFAImKa3ZfHiQIcOarx8ufw+GhahCQpiERoiIspUtovP+Pj4YP78+YiIiMC8efPQtWtXODk54eLFizh8+DBOnTqFmzdvol69ehg5ciT279+PkydPsqgLEdmeN99Ux2fPAidOyLFhYBgRATx4kL/zovy3Zo3sJwWAEiWA9u3l2LBFxdMUnUnP8P+5mzcDsbEsQkNERNmS48oHbm5uGDJkSFrz+aSkJNy5cwfOzs5wd3c3+QSJiAocX1+gXj3pHQcA338PzJ8PeHkBTk7SzFyvl2WlNWqYcaKU5wyrkfboARQuLIGiqYrOpNe5szSyv3dPfs/Wrwf69WMRGiIieqKnbldRuHBhlClThkEhEZGhgQPV8eLFsmzQzg4wKIjFzI2VCwlRlWgBlc07e1Zli+3tgbp1Tfeazs7GexW1wNRwqer588D9+6Z7TSIisgoW18eQiMgqvP02oLXoSUqSiqSA8XLS4OD8nxfln5Ur1XHFikBAgBwbLiOtWfPpKpFmxnA56Z49Up20enXVYzM1VWWziYiIHmFgSESUF5ydgTFj1HjhQuD6dePAMCoKiI7O96lRPtDrjZeR9u4ty0XzouhMem3aSHVSQILAVaskM1mvnrqGRWiIiCgdBoZERHll8GCgZEk5TkwEpk+XAiSG5aK5nNQ6nTolS0Y1Whbv+HF1rkQJoEIF07+2vT3w+utqrAWo6YvQhISY/rWJiKjAYmBIRJRXihQBRo1S4/nzgRs3jAt/WFJgeOaMFCu5ft3cMyn4DLOFdevKktHkZOMlnKYsOpOe1hYDkOzghQsSiFaqZHyeiIjoEQaGRER5aehQ6S8HSJXIr782Xk4aEmIZS/rOnAHWrQNOn5bei7dumXtGBVdKivH+Qi1beO6ccdEZw6WdptawIVCtmhqvWCF/Gi5dPXeORWiIiCgNA0Miorzk6gqMHKnG338PFC2qxnFxwM2b+T8vQzduAJs2qXFiouxLS0gw35wKsr/+AsLD5VinA3r1kuNjx9Q1NWqYvuiMIZ3OuAjN8uXyBUSNGixCQ0REmcpVYHjv3j1Tz4OIyHq9/z5QrJgcP3gA/PCDqlgKmHc5aXy8BIFJSRKkRkVJwBAVJRnE1FTzza2g0rJzANCqFVCuHHD7tnHRmYYN834ehoFhcDBw5EjGTOXx45aRsSYiIrPLVWDo5eWFd955B0ePHjX1fIiIrI+7OzBihBrPmyf7vTTmCAz1euDSJZnXkiXAt9/KMte5c4EtW+SaS5eAP/7I/7kVZA8fAmvXqrEWnBnu58urojPpVa0K+PurcWZFaKKiWISGiIgA5DIwLFWqFBYsWIAmTZqgQYMG+Omnn3Cf+xSIiLI2fLgsKwUkM2cYcIWFSWGSvJScLMHJN98A3bsDXl7AM89IQZwTJ4A7d9S1J05I1UpAlkWeO5e3c7Mm27apFiQODsCrr8o/+1On1DV5WXQmPcOs4erVMhcWoSEiokzkKjAMDg7G77//jm7duuGff/7Bu+++Cy8vLwwePBjHDPdQEBGR8PCQ4FCzbJns5QNkGWdeVALV64FFi4AXXpDXb9hQMoRr18q+wscJDlbHGzZI/z16MsNqpC+9JP/cz52TJbuALOWsWzf/5tOjB2D36H/1t24Bu3bJsWERmvPn5csKIiKyabkuPtOuXTsEBgbi+vXrmDp1KkqXLo358+ejcePGaNCgAebPn484/o+GiEj58ENV+OPePeDff9Vjpl5Oeu8e0LMn0L8/sHNn1tUnixWTgHHuXGDAAHX+0iWgUCE5ZjGa7ImJUctwgcyXkRoWf8kPZcoAbduqsRa4Vq+uit+kpLAIDRERPX1V0pIlS+Ljjz/GpUuXsHPnTnTv3h3//vsvhgwZgrJly2LIkCE4ffq0KeZKRFSwlSghhWg0u3erYMuUgeH580DjxkBgoPF5nQ6oXRto3lyWOH74IfDRR7L88f33jfdBXrwowYPmzh3pcchCJVlbt072GAKAmxvQqZMUnQkNVdcYZuryi+Fy0g0bJHtZqJBxEZqgIP7dEhHZOJO2q6hSpQoqV64MNzc36PV6xMXF4aeffkL9+vXRs2dPRGv7LoiIbNXIkSpTExcnlSIBaW9giozc+vVScMRwX2CzZhL83bkjgeDzzwO+vhK8dO0KlCwp1/n6AnXqqOcdPizP1Vy8yGI0j2O4jPTVVwEnJ6n6qSleHKhYMd+nha5dAWdnOY6LU61JDIPUqCjjAJaIiGzOUweGKSkpWL9+Pdq3b4+qVati2rRpcHd3x1dffYVbt25hx44daNu2LQIDAzF06FBTzJmIqOAqVQoYMkSNDx2SLJNe/3QfzJOTgY8/loDEsKXQ8OHA3r1Ahw6SFTLcO9iypSxtNGSYXVq5EnjuOaByZXXuzz8lI0nGIiLkn7OmTx/5OzFcopmfRWcMuboCL7+sxloAW6KEcaDKIjRERDYt14FhaGgoPv30U/j4+KB79+7Ys2cPOnfujO3bt+PSpUsYNWoUSpQogbZt2+L333/HK6+8gu3bt5ty7kREBdPo0ZJNAqSvodb6J7fLSW/dAtq3B6ZPV+dcXCQA+OYboHBh2c+4b596vFo1oHXrjPfq1UsFL+HhwP79wGuvqT6MgGQlWYzG2KpVailm2bISUKcvOmO4dDO/GQb827fLElfAuJ/iuXMsQkNEZMNyFRhq2cEvvvgCAPDpp58iJCQEGzZswAsvvJDpcxo1aoSYmJjcz5SIyFqULQu8844aHzwoBV4Ms3nZdfiwZKL27FHnqlaVTGTv3jK+eRP49Vf1ePHiklnMLHvl4yOZRM3y5RJkvv66BJgAi9FkxnAZaa9eEgias+hMeu3by987IJlMbf8pi9AQEdEjuQoMd+7ciVatWmHNmjW4evUqJk2ahHLlyj32OZ07d8bPP/+cq0kSEVmdMWOkzx0gWaVjx2QPYHa/QNPrgR9+kCDOsNVF586SgaxdW8YPHkgQl5QkYwcHCfK0jGVmDLNLa9fKUtcyZYyXI7IYjXL+vPFewt695Z+PuYvOGHJwkP6VGi2QZREaIiJ6RKfX5/z/ABcuXMCzzz6bF/OxCrGxsXB3d0dMTAzc3NzMPR0islTvvQd8950cFykCfPCB7EF0dHz88xITZf/foUPqnE4nQWH79qpvHSBBZ2ysGvfsmXFfYXpRURIIasHk+vVSwAQAduwADhxQ1z73nPzYsgkTgClT5PjZZ2VJ5s6d6p9T8eLAsGHm2V9o6O+/jbPBISGyx/D2beDbb9X5t94CKlXK9+kREZHp5SQuKZSbF2BQSERkAh9/DMyfLwFYXJxknRo3Nr4mPl4+uBv+3LhhXGDG2VmWhlapIvsNs9KixZODQkACmZdeAjZulPHy5SowbNtWXl/bD/n33zJnreqlrdHrgRUr1LhPn4xLMs1VdCa9Zs2A8uWBq1dlvGIF8MkngKenBIhahjMoiIEhEZENytVS0sDAQLRp0wbh4eGZPh4eHo7nn38e69evf6rJERFZtfLlgX791Hj/fskybdoE/PKLFJP56is53rxZ9iJeumQcFGr7FatUefxrPfNM5sVmsmK4nHTLFrXE1c5OitFoWc2UFNtuc/D338ZFg3r3lqWlllJ0xpCdndp3CgBLl8p+Q8B4qSuL0BAR2aRcLSVt3749bt26hRMnTmR5TYMGDVC6dGls27btqSZYEHEpKRFlW0iIVAhNScn5c7t1A8aNe/LSU0dHCRzt7bN/7wcPgNKlVRD6889A//7q8VWrVNuKRo2Ajh1zNndrcOOGZEu1DFyTJhK8L14sf68AUKuW8d4+c/vnH7X/FACGDpVlpCkpwMyZKqB94QUgIMA8cyQiIpPJ86WkZ86cQadOnR57TaNGjbBly5bc3J6IyHZUqgS8+aZkBbPi7Cx716pXVz9+fhJQ5hVteeqiRTJevtw4MKxcWQWGuW2zUZDFxwNduqigEAA+/VSKzmhBIWD+ojPp+frKsuANG2T83XfyuzV8OFC3rgS2gCwnbdrUMpbAEhFRvshVYBgVFYVSpUo99hpPT0/c1vokERFR1r78UoKJS5ek1USNGsZBoI+PcUGZ/NKnjwoM9+yRJu5eXjI2bHp/5w4QHW3c69CapaZKMH/kiDo3dSrQqZMUndEUL26Ze/UWL5bWKKdPy/jDD+XvU8t4AvJ3GhYmew+JiMgm5Cow9PT0xOXLlx97zaVLl1DMVj4kEBE9jZIlgb17zT2LjFq3lj2MkZFSZGXVKmDkSHmsRAnAzU1VPA0JAerXN99c89OnnwLr1qlxv37A2LGyX89wi4Wfn2Vm3FxdZd+ov78sh01NlRYm+/cDFSpIQAhICxUGhkRENiNXX0E3a9YMmzZtwsWLFzN9/MKFC9i0aRNatGjxVJMjIiIzsreXgEFj2MRdpzPOGtrKctKffwamTVPjVq2AH3+Ufx7pi85YcqDs4yMFjbRqsnFxkvEsX15dwyI0REQ2JVeB4ejRo5GUlITmzZvj22+/xcWLFxEXF4eLFy9i7ty5aN68OZKTkzF69GhTz5eIiPKTYRXL48fVvkIgY2Bo7Y3R9+4FBg9W42rVpMejg4OMg4LUY9WrS29KS9awoQT7Wlbz+nXgo49UkaKUFODUKfPNj4iI8lWuAsNGjRrhu+++Q3R0ND744APUqFEDbm5uqFGjBkaMGIGYmBh8//33aJy+HxcRERUsDRpIqwuNYdbQMDCMi3t8D8WC7sIFqQKrtXcoXhzYulX+BCy/6ExWunaVPa6aEyeA336T5aWABLvWHvATERGAXAaGADBo0CCcOnUKQ4cORYMGDVClShU0aNAA7733Hk6dOoWBAweacp5ERGQOOp1xT8MVK1SgULQoYFiILDg4f+eWX27flnYc0dEyLlxYqnoaVoU9flwde3hYZtGZrIweDRj+P/vgQWDXLjnWitAQEZHVy1XxGU2NGjUwd+5cU82FiIgsUe/ewMSJcnzlCnD4sFSwBCRrqGUKr1yxvt53Dx9KVs0w6F2wAGjZUo3TF51p0MAyi85kRaeTthVXrkj1WUCCwxIl5L0EBbEIDRGRDTBD/XMiIipQqlaVRu4aw+WkVaqo47AwtdTSGuj1kknbt0+dGz9eWlUYunBBFZ2xswPq1cu3KZpM4cLA2rWyN1KzdasEi2fPqvdHRERW66kyhikpKbhw4QLu3r2LlJSUTK9pafitKhERFUx9+kimEABWrwZmzpRgokIFCYZSU4GkJClgYi3ZpSlTgGXL1LhnT+B//8t4XfqiM0WL5v3c8oKHh7SxaNJEls/q9cCaNcCAAVKEpmlTc8+QiIjyUK4Dw8mTJ2PWrFmIiYl57HVZBYxERFSA9OghjdBTUoD//pM9aB06SEVOHx+1D+3KlYIfGEZFSV/C+fPVufLlgTp1gBkzMl5v2NKhoBSdyUqVKsCvvwJt2gCJibKUdsUKCXYNM6dZ0enkHp07A4We6rtn5eZNCVidnICXX5Y+jEREZHK5+q/29OnTMXHiRLi7u+ONN96Aj48PCpnqfwBERGR5SpcG2rYFfv9dxsuXS2AIyD5Dw8CwTRvzzNEUYmNl+eimTepcsWJA9+4SKCUmZv1cDw/jSq0FVbNmwC+/qKJD0dHAkiWy19Kw2FBWTp2SoLBz56efy/378rsWGyvj1auBfv1MF3QSEVGaXP2Xdf78+fD29sbx48dRsmRJU8+JiIgsUZ8+KjD89VfJlBUpIsHQ3r1yPjwcSEiQ7E5BkpoKrFoFjBghGVGNoyPQq1f2loe2bl2wis48Tu/ewKVLwOefy/jGDeDHH6W4UMuWsoz4cYKCAC+vp8ugpqQAgYEqKARkqfJvv5km6CQiIiO5CgyvXbuGQYMGMSgkIrIlr7wCODsDDx5IULhpkwRNXl4SQD18KPvSQkONi5hYur17pbG74V5BQILb+fOB5s2ffA93d8kYWpPPPgOuXgV+/lnGqamynPTaNWDyZKBFC+Pr9Xr54uDGDRlv2yYZRh+f3L3+jh2Zt8owRdBJREQZ5KoqaenSpZFsTZXniIjoyVxdgS5d1FirTmpvb7yv8MqVfJ1Wrv3zD9Cpkyx9TR8UtmgBnD8P9O0r7+1JP9YWFAKS/VywQArQlCmjzoeFSWXW8eMBFxf1z6BSJSnQ4+ws16WkyNLPe/dy/tonT6piR4B80WA4h23bJEAlIiKTyVVg2KNHD+zcuRMPHz409XyIiMiSGTa7//13qV4JGO+ts/TAMDxc9hHWrSstGQxVqyYN33/7TSqu2jqdTvZXnjsHvPuu8VLZ5cslYFu4ULKJgATI3bur6+7fl8AyJ4XoIiKADRsk8/jPP8CRI8DGjdJLUlvC+jRBJxERZUqn1+v1OX1SfHw82rdvj2LFimHOnDmoVKlSXsytwIqNjYW7uztiYmLg5uZm7ukQEZlOUhJQtixw546M580Dhg6VfXnz5qnrPvxQlldakthYYPp0abXx4IHxY2XLAu3aSWD49tuyVJEyOngQGDwYOHPG+HyLFrIHsUYNGR84IEtBNQ0bSnbWkF4vvzfnzkl29vx54N9/JXsbFZX56/ftK301tY8uPj7AW2+xGA0RURZyEpfkKjCsXLkykpKSEBERAQBwd3dHsWLFMt5cp0NwcHBOb1/gMTAkIqs2dCjw/fdyHBAA7N8vH9RnzlQZnFdesZxG70lJwE8/SQ9Cw8IyAODpKcVUfH0ly9W1q2QSKWtJSfJ3/b//GQfYhQtLm49evSSTvHmzBH3x8fJTooT8nty+LT///Ze7jN/06cYtQjILOomICEA+BIYVK1aELpuV10JCQnJ6+wKPgSERWbX9+40LsoSEyB6zDRukVQEgPf+6dTPL9NLo9cD69cC4cVJh05CHhwQwHh4q29S4sWrBQU925Yp8SaBVqjU1OzvZt1ijhmQStc8TJUsCU6dKhVJN584sRkNElImcxCW5WnsRGhqam6cREZE1aNpU9t9pFSNXrwY+/lj2GWqB4ZUrEpiZq33D/v1SafTgQePzDg7A8OFSJGXrVrUksWJF4IUX8n2aBVrlyrIXc80a4IMPpBF9bhQpIr9P9vaSwfX0BBo1At5/XxWyOXFCAvekJMk0rl0rze5v3ZLHn7YCKhER5a74DBER2TA7OwmsNKtWyZ+GBWju31cf2vPThQuSqWzePGNQ2KePPD52LLBrlwoK3dykYIq9ff7Pt6DT6eR34fx5YMgQFcgVKyZ7AZs0kf6O9erJFwrPPy8N6tevl9YXV68CFy9K9rZbN1nW26qVBO/avQCgfn3JEmp+/11+xwwroK5Zw2I0RERPIVdLSQ2dO3cO58+fx/379/HGG2+Yal4FGpeSEpHVO3lSPqxrzp2TCpXffacCwvbtJRjIDzdvyp63n37KWAGzTRvgq68APz/ptbhggdprWKgQ0L8/4O2dP/O0dklJ8qdWPVSzfz+wc6caN2oEdOwoewV/+gmIiZHzjo7AoEGSNUwvNVUKBO3Zo67dsEGqlmofZcqXl2I0DPKJiADkLC7Jdcbw+PHj8PPzg6+vL1577TX069cv7bE///wTLi4u2LRpU25vT0RElqxuXeDZZ9U4s6xhfrStiIuTZutVq0pBHMOgsHZtWeq4a5cEhXq9tD0wLEDTqRODQlMqXDhjUAhIkaJatdT46FHg2DFZEqoFhQDw6quZB4WAZKoXL1Y9Ix8+lOxvy5bqmqtXge3bn/59EBHZoFwFhufPn8dzzz2Hy5cvY8SIEeiQbrN+y5YtUaJECaxdu9YkkyQiIguj0wGvv67Gq1ZJ4GUYGIaF5ax/XU7t3y/tJT77TJYVary9pbfe8eOStQRkbvv2AWfPquv8/S2ncqq10+mALl2A0qXVuS1bVEEZQJacPvPM4+9Trhwwf74anz4t1U/TB53Hj5tm3kRENiRXgeHEiRORmpqKo0ePYsaMGWjUqJHR4zqdDk2bNsXRo0dNMkkiIrJAhoHhhQuyvLRCBcnsAEBionHlSFO6eVOKj0RGqnMODrJs9K23JHM0ZYosL9V+du9W11aooIJGyh8ODrIf0XDvoKZ6dePM3+O8+qos/9XMmiUFbAyDzq1b8+53j4jISuUqMPzjjz/QrVs3PGu4jCid8uXLp/U5JCIiK1S9unHGbdUq2fdVrpw6lxfLSfV6aUKvNUHX6ST7N3y4NFrPbCmjIRabMZ/ixSWwM6xW6+kp/SNzUsH2m2+AKlXUeOBA2X9oWIxm9WrjTDIRET1WrgLDmJgYlC1b9rHXJCYmIjk5OVeTIiKiAiL9ctLU1LzfZ/jdd9KeQPP889J/sEiRJz/X2VmyVkWLmn5elD1Vq8rfl50d4O4uv0OOjjm7h6srsHy5Cu4jI4ExY6SyqRZg3rsnlUrzcjkzEZEVyVUfw7Jly+LcuXOPveb06dOoWLFibm5PREQFRc+eUgAEkOWbhw5JYPjHH3IuPBxISACcnEzzev/+C4wercaVKkmrg5dfzt7z3d2fnFGkvOfvD9SpI1VhC+Xqo4j0NZw4UfaYAlKh9KWX5IuCXbvk3NWr0tripZdMM28iIiuWq4xh+/bt8dtvv+HIkSOZPr5jxw789ddf6Nix41NNjoiILFzFisYtKVatkuIvDg4yTk2VIjSm8PAh0Lu3BJqABJuvvCK98rTG6E/6YVBoOZycch8UasaNA5o1U+MPPgBKljQuRnPkCHDixNO9DhGRDchVYPjpp5/C1dUVbdq0wSeffIKzj6q8BQYG4sMPP0Tnzp1RsmRJjBo1yqSTJSIiC9Srlzpes0b2ABquGDHVctJPPpEqlJpOnYCyZY3bZpBtKVQIWLZM9o0CQHw80LevZAhLlVLXbdki2WsiIspSrgJDHx8f7NixA6VKlcK0adMQGBgIvV6P119/Hd988w28vb2xfft2lDasEEZERNape3dVifTmTeDPP02/z3DXLmDmTDWuV0+yQvXrs4iMratYEZg3T42PHQOmTpW9i9oSZhajISJ6olw3uG/YsCEuXryIDRs2YMyYMRg4cCBGjhyJNWvW4MKFC6hfv36uJ3X//n1MnToVtWvXhqurKzw9PREQEIBFixZBr9enXbdz504MGTIEjRo1gpOTE3Q6Hf7Q9rVkIiYmBsOGDYO3tzecnJxQq1YtfP/990b3JCKiHCpTBnjuOTVeudI4MPzvPyA2Nvf3v3MHePNNNfbwAF58UY79/HJ/X7IeffoYZ66/+AI4cwZ47TVVjCY2FggMZDEaIqIsPNXi/kKFCqFLly7o0qWLqeaD1NRUdOjQAQcOHMBbb72FYcOGIT4+HitXrkT//v1x7tw5fPnllwCA5cuXY8WKFfD19UWNGjVw8uTJLO+bmJiIdu3a4cSJExg2bBhq1KiB3377DUOHDsXNmzfx+eefm+w9EBHZnF69gD175HjdOsngFC2qMjRXruSumbxeDwwapPoV2tlJ5UlHRwk+ixc3yfSpgNPppFrt/v1ScEavl/2oJ05Ib0uth2VYGLBjh1RFJSIiIzq9haXLDh48iICAAIwYMQKzZs1KO5+YmIjq1asjKioK0dHRAIDw8HB4enrC0dERX3/9NT766CPs3bsXzxl+c/3Id999h/feew9z5szBsGHD0s6/+uqr2Lx5My5duoQKFSqY5D3ExsbC3d0dMTExcNP2PRARWbOoKMkcJiXJePNmaXCv7QmsU0cCupxauFB61Glat1aN0Lt3Ny4yQvT335K9Tk2V8QsvSGuTdeuAR/UQAEjRotx8UUFEVMDkJC7JVcZw0qRJ2bpOp9NhwoQJObp37KPlRl5eXkbnHRwc4OnpiYcPH6ad8/b2zvZ9V6xYARcXFwwaNMjo/IgRI7B+/XqsXr0aY8aMydFciYjokeLFgfbtpcgHIMtJx4xRgeGVK5LFyUkT84sXpWm9pnZtoHlzOS5SBKhe3TRzJ+vRogUweTLw6acy3rEDmDYN+Ogj4PZt4NYtOb9lixSnSfdZg4jIluUqMHzcskvdo//p6/X6XAWG/v7+KFasGKZPn46KFSuicePGiI+Px+LFixEUFIQffvghx/NNTU3F8ePH4efnB6d0vbT8/f2h0+lw9OjRHN9XU7Zs2QyvR0Rkc15/XQWGGzcCM2aox+7fl72GhpUiHycpSfaNxcfL2M1NsjxakRsWnaGsjB0L/PWX9C8EpM9h8+bSc3P+fGl3kpwsrVUGD5YvGYiIKHeB4d69ezM9Hx0djaNHj2LOnDno2LEjhgwZkuN7e3h4YNOmTRg4cCB69OiRdt7V1RXr1q3DK6+8kuN73r17Fw8ePMg0w+jo6AhPT0+Es4w1EdHTefllqQKZkADExcmH85IlJSAEJGuY3cDw88+luqRm4kTjAjYsOkNZsbMDli6VpaIREbKstFcv2W/46qvAihWSvdaK0bzxBr9kICJCLgPDVq1aZflYly5d0LNnT/j7++P111/P1aSKFi0KX19fvPzyywgICEBUVBTmzZuH3r17Y+PGjWjXrl2O7hf/6BtnR0fHTB93cnJKuyY3IrWiCI9oa3mJiGyKqyvQubN82AYkIzNokHFg2KTJk+/z119SVVLTqxdQrpzaI8aiM/QkJUvK71/r1lKFNDJS+htu3y7ntEJJoaEsRkNE9Eiu21U8Tu3atdGlSxdMnTo1x889c+YMAgIC0K5dO3z11Vfo2rUrBgwYgH379qFMmTIYNGgQUnJYatrFxQUAjPYnGkpISEi7hoiInoLhF4LbtskHdE1oqCpOk5XoaMngaHXRypcHpk8Hzp9X1zRoYKrZkjVr0QKYMkWNd+2SLxxatABq1FDnDx8GTp3K//kREVmYPAkMAaB8+fL4559/cvy8WbNmISEhAd27dzc67+Ligo4dOyIsLAyhoaE5uqeHhwecnZ0zXS768OFD3L59O0eFbIiIKAsvvSSZQwB4+BA4eVLtC0xMlGqlWRXDTkiQfYVXr8rYzg5YtkwCSm3vNovOUE6MGWOcDZw4EfjjD9mvavilxebNsuyUiMiG5VlgePjwYTg7O+f4eVrwlllWMDk52ejP7LKzs4Ofnx9OnDiRIWt45MgR6PV6NGzYMMdzJSKidJycgK5d1XjdOuMM3+nTwJEjGZ937x7QsaNkGTXjxknRkKAgda5ePe4Ho+yzswOWLAG0L39TU6W/YXS0ZLe1gnTJycDq1bI3lojIRuUqMLx69WqmP1euXMGff/6Jvn37Yt++fTneCwgANWvWBAAsWrTI6Hx0dDQ2btwIDw8PVK1aNcf37dWrF+Lj4/HTTz8ZnZ89ezYKFSqEnj175vieRESUCcPlpDt3SqEYw1UZv/8uWUBNVBTQrp3a9wXIeOJEICQEuHtXnWfRGcopT08J+rQvFG7ckMx0sWLSW1NroRITI/tjWVmciGxUrhrc29nZpbWlyIxer0e1atWwZ8+eHC/RDAsLg5+fH+7evYs+ffqgWbNmiIqKwvz58xEaGop58+Zh6NChAIDTp09j06ZNAID9+/dj+/btePvtt1GpUiUAwLBhw9KKwCQmJiIgIACnTp3C8OHDUaNGDWzbtg0bNmzA+PHjMXny5Jz+Y8gSG9wTkU1LSgLKlgXu3JHx999LlubHH1VGpkgR4J13gAcPpAn5mTPq+V27Sh9ER0f5oP7vv3K+UiXgrbfy972Q9Zg+Hfj4YzX+3/+klcWffwKG1dabNAFefDH/50dElAdyEpfkKjDs169fpoGhnZ0dPDw84O/vjy5dumRZBfRJgoODMWnSJOzevRs3b96Es7Mz6tWrhxEjRqBbt25p1y1atAj9+/fP8j4hISGoWLFi2jg6Ohrjx4/H+vXrcefOHVSpUgVDhw7Fe++999hAN6cYGBKRzRsyRAJBAGjVSvZ1hYUBixerjIyDA/Dzz0BwsHrem28CCxcChQpJ78OZM9X13bsDtWrl69sgK5KaKlVzteXKOp0UpGndWjKKhgWOunUD6tQxzzyJiEwozwNDejwGhkRk8/78E3juOTnW6YBr12Q56ZEj8sH89m3pNWfYm3DYMGD2bFWsZt8++eAOSIZx5EjuL6Snc/s2UL8+cP26jEuXlgJJHh7A/PnyOCBfTAwYIJlvIqICLCdxSZ4VnyEiIhvWvDng5SXHej2wZo0cN2okVUt/+cU4KJwwAfjmGxUU6vXA8ePqcRadIVNIv9/w5k3Zb1iokOyN1VY6JSdLH8Sn6HFMRFTQMDAkIiLTs7cHevRQ45Ur5c/9+4FJk4w/cL/wAvD226oICCBFZ6Ki1JhFZ8hUAgKkn6Fmzx75wmLPHqBLF3WexWiIyMbkailp5cqVc/diOh2CDfeSWCkuJSUigiwbbdxYjefNA0aPloIzgASCHTtKOwutGM2jgmEsOkN5KjVVgsAtW4zPV60KvPwy4OwsWUQAaNoUaN8+/+dIRGQCeb7HsGLFikhKSkJkZCQAwN7eHp6enrh9+3Za/8GyZcvCwcEhw3NDQkJy+nIFDgNDIiLIctCqVYErVzI+VqgQMGuWZAW1jIyXl2QOExKMi8689hrg65t/8ybbcPcu0KuXtE9Jr1gxoGFD+XF0BF59FahdO9+nSET0tPJ8j+Hp06fh7e2NJk2aYO/evUhISEBkZCQSEhKwZ88eNG7cGOXKlcPp06cREhJi9ENERDZCpzPuaahxcgI2bgTef984ExMRIRmckydVUOjiAlSvni/TJRvj4QFs3w4cOGC8hBQAoqOl8NGsWcDu3cCKFcCjL8OJiKxVrjKGw4YNw++//45//vkn06xgQkICateujQ4dOmDOnDkmmWhBwowhEdEjZ84Yl/13dZXgr2VLGev1EiSePKmuKVxYeiECsh/shRfybbpkw86eBb78UoLA5GTjxwoVkv6GP/0E1KhhnvkREeVCnmcMN2zYgC5dumQaFAKAk5MTunTpgvXr1+fm9kREZC18fVVW0NNTCnxoQSGg9hlqFUwBFRQCsv+QKD/UrCl9Ni9fBoYPl32GmuRkaZ/i6yvLnCMinvxz96753gsRUS4Uys2T7ty5gyTD/3FnIikpCXfu3MnVpIiIyErodMD69cDBg7JfSysuY6hwYaBnT8nGxMWp85UqASVK5N9ciQCgQgVpnTJ+PDB3rvTWvHdPHktNBT76SLKL5co9+V7MeBNRAZKrjGGVKlWwdu1axMTEZPr43bt3sXbt2lxXLyUiIivi4gI8/3zmQaHG3R3o3l31MQTYooLMq2RJaa1y/br0OnRykvOpqcDataq67uMcOqSCSiIiC5erwHDIkCGIiIiAv78/lixZgtDQUDx48AChoaFYvHgxGjdujBs3buC9994z9XyJiMhaVawIdOsGFC8O1K8P1Kpl7hkRAW5uwIIFwAcfqF6bMTHApk2y97Bw4Yw/2nWpqcb7Z4mILFiuis8AwAcffIC5c+dCZ9iQ+BG9Xo9hw4bhm2++eeoJFkQsPkNERGSFJkwApkxR4xkzgJEjM163a5fsSQSk+unw4SpYJCLKR3nex1Bz8OBB/Pzzzzhx4gRiYmLg7u4OPz8/9OvXDwEBAbm9bYHHwJCIiMgKpaQAbdsCf/wh40KFgL//loqlhqKiAMOq7G+8AVSpkm/TJCLS5FtgSJljYEhERGSlIiOBevWAW7dkXL48cOKELIE2tGQJcOWKHNesCfToka/TJCIC8qFdBREREZFNKlsWWL5cLQ29ehV46y3pyWnIsNXK+fPA/fv5N0ciolzIdWCYkpKCb775Bo0bN4a7uzsKFVKdL06ePImhQ4fi4sWLJpkkERERkcVo21b2G2q2bJH9hoaqVweKFJFjFqEhogIgV4FhQkICnn/+eYwcORIhISFwdXWF4YrUSpUq4ZdffsHSpUtNNlEiIiIii/HZZ0Dr1mo8dixw4IAa29vLklNNUFDGrCIRkQXJVWD45Zdf4q+//sLkyZNx48YNDBw40Ohxd3d3tGrVCr///rtJJklERERkUeztgRUrgNKlZZySArz+OnDnjrrGsBfn3btqzyERkQXKVWC4cuVKtGzZEp988gns7OwybVlRqVIlXLt27aknSERERGSRypQx3m947ZrsN0xNlXGJEkClSur6oKD8nyMRUTblKjAMDQ2Fv7//Y69xd3fH3bt3czUpIiIiogLh+eeBiRPVeOtW4/2GDRuqYxahISILlqvAsEiRIrhjuFQiE6GhoSievnQzERERkbUZPx5o00aNx40D9u+XYxahIaICIleBYcOGDbFt2zbExcVl+vitW7ewbds2m25yT0RERDbC3l6WlKbfb3j7dsYiNMePswgNEVmkXAWGw4cPx82bN9G5c+cMLSlOnTqFzp07Iy4uDsOGDTPJJImIiIgsWpkywMqVgN2jj1bXrwO9ewPJycZFaKKigJAQ88yRiOgxchUYduzYEePHj8cff/yBGjVqYNq0aQCAokWLws/PD0ePHsX//vc/tGrVyqSTJSIiIrJYrVsb7zfcuRMYNgwoXpxFaIjI4uW6wf2kSZOwY8cOdO7cGe7u7rC3t4ezszM6dOiA33//HePHjzflPImIiIgs36efAh07qvEPPwDffAM0aKDOnTvHIjREZHF0en3OF7pfvXoVDg4OKFOmTF7MqcCLjY2Fu7s7YmJi4ObmZu7pEBERUX66dw9o3hw4fVrGOh2wfj1w8SIQHy/n2rUDmjUz3xyJyCbkJC7JVcawUqVK+OSTT3I1OSIiIiKr5uoKbNki+w4BKTbTty9QtKi6JiiIRWiIyKLkKjAsVqwYPD09TT0XIiIiIuvg4wNs3gw4O8s4Lg6YMgWIjZUxi9AQkYXJVWDYpEkTnDhxwtRzISIiIrIeDRtKGwudTsaRkbKkNDFRxixCQ0QWJFeB4eeff46///4bCxYsMPV8iIiIiKxH167Al1+qcViYBIepqcD585JJJCKyAIVy86TffvsNzz33HAYPHozvv/8e/v7+KFOmDHTaN2KP6HQ6TJgwwSQTJSIiIiqQRo+WwjPaF+oXLgC7dgEvvACcPMkiNERkEXJVldTOLnuJRp1Oh5SUlBxPqqBjVVIiIiIykpQEvPgisGePOtexowSHw4ap5aZERCaUk7gkVxnDvXv35mpiRERERDapcGFg7VogIECWkALAtm2AhwcQGgpUqmTW6RERZTsw3LRpE6pXr45nnnkGrVq1yss5EREREVkfDw9g61agcWPg9m1pVxEYCPj5AR9+aO7ZEZGNy3bxma5du2LVqlVG51avXo1u3bqZfFJEREREVqlyZWDjRsDBQcYPHwKTJrF1BRGZXbYzhpltRTx//jw2btxo0gkRERERWbWAAGDhQuCNN2QcHQ106gQsXvzkvYaFCgHVqgEuLnk+TSKyLbnaY0hERERET6FvX2DHDmDpUhmfPSttLWrVevJzPT2Bd98F7O3zdo5EZFNy1ceQiIiIiJ7SjBmytFSzaxeQnPzk592+DVy7lnfzIiKbxMCQiIiIyBxKlpQsobZ8NDoauHQJKF8+8x/D5aNXrphlykRkvXK0lDR9A3siIiIiegqvvQb07w/8/LOMd+wAvvsOKFEi47V//gloLcOuXAHatMm/eRKR1ct2g3s7Ozu4ubkZNUaMjY3FvXv34O3tnfnNdTqEhYWZZqYFCBvcExERUbaFhwPPPAPEx8t4xAhg1qyM1127JkVrAMkyfvwx4OSUb9MkooInzxrcx8bGIjY2NsP569ev52yGRERERCS8vYHRo6VtBQDMmwe89x5QtarxdV5egKOjtLjQ64HQUKB69XyfLhFZp2zvMUxNTc3VDxERERE9wUcfAWXKyHFSEjBuXMZr7O2BihXVmPsMiciEWHyGiIiIyNyKFgUmT1bjtWuB/fszXmdYxZSBIRGZEANDIiIiIkvQvz/g66vGo0bJklFDhoHh7dtATEz+zI2IrB4DQyIiIiJLYG8PfPWVGh8+DAQGGl/j6Qm4uqpxSEj+zI2IrB4DQyIiIiJL8eKLwAsvqPHYsVJsRqPTcTkpEeUJBoZEREREluSrr1TT+5AQqVJqKH1gmL3OY0REj8XAkIiIiMiS1Kkj+w01kycDd+6osWFgeP8+8N9/+Tc3IrJaDAyJiIiILM3kyYCLixxHRwNTpqjHXF2BkiXVODg4X6dGRNaJgSERERGRpfHykt6GmnnzgMuX1bhKFXXMfYZEZAIMDImIiIgs0ejRWTe9N1xOGhYGpKTk79yIyOowMCQiIiKyRI9rel+hAmD36GNcYiJw/Xr+z4+IrAoDQyIiIiJLlVXTe0dHoFw5dZ7LSYnoKTEwJCIiIrJU9vbA11+rsWHTe/YzJCITYmBIREREZMnat8/Y9D452TgwDA8HHj7M/7kRkdWwyMDw/v37mDp1KmrXrg1XV1d4enoiICAAixYtgj5dE9fDhw+jbdu2cHV1hZubG1588UWcPHky0/tGRETgzTffRMmSJeHs7IyGDRsiUPvWjYiIiMhSpW96f/gw4O0NODjIudRUIDTUbNMjooLP4gLD1NRUdOjQARMmTECjRo0wY8YMjB8/HikpKejfvz/Gjh2bdu2hQ4fQqlUrhISEYNKkSfjf//6HS5cuoUWLFjhz5ozRfaOiotC8eXOsX78e7777Lr755hsULVoUPXr0wC+//JLfb5OIiIgo++rUAZo2VeOtW2WZacWK6hyXkxLRU9Dp06fgzOzgwYMICAjAiBEjMGvWrLTziYmJqF69OqKiohAdHQ0A8Pf3x/nz53Hu3Dl4e3sDAMLDw1GjRg00adIEO3bsSHv+mDFj8NVXX2HTpk3o3LkzACAlJQVNmzZFcHAwwsLCULRoUZO8h9jYWLi7uyMmJgZubm4muScRERHZuKlTgU8/leO6dYGTJ4FDh4Dt2+VcyZLAe++ZbXpEZHlyEpdYXMYwNjYWAODl5WV03sHBAZ6enihSpAgA4PLlyzh69Ci6d++eFhQCgLe3N7p3745du3bhxo0baedXrFiBKlWqpAWFAGBvb49hw4YhKioK27Zty8u3RURERPR0XnpJHZ86JfsKDfcZ/vcf8OhzFBFRTllcYOjv749ixYph+vTpCAwMxNWrV3H+/HmMGzcOQUFB+PzzzwEAR48eBQA0NVxW8UiTJk2g1+sRFBQEAIiMjER4eDiaNGmS6bWG9yMiIiKySHXrAmXLqvG2bZIlNFzxFBKS//MiIqtQyNwTSM/DwwObNm3CwIED0aNHj7Tzrq6uWLduHV555RUAUkgGgFG2UGO4rDSn1+ZGWcP/SEP2SRIRERGZlE4nWcOFC2W8bRswaJBkDU+flnNXrkgASUSUQxaXMQSAokWLwtfXF6NHj8b69euxYMECVK1aFb1798bOnTsBAPHx8QAAR0fHDM93cnIyuiYn1xIRERFZrI4d1fGuXdKiIn0/Q8sqH0FEBYTFZQzPnDmDgIAAzJo1C0OGDEk736tXL/j6+mLQoEEIDg6Gi4sLAOBhJj17EhISACDtmpxcmxuRkZFGY22TJxEREZFJPf88ULgwkJQE3L8P/P034O+vHr93T/YaliplvjkSUYFkcRnDWbNmISEhAd27dzc67+Ligo4dOyIsLAyhoaFpxWkyWwKqndOWiebkWiIiIiKL5eYGtGihxtu2ybmSJdU5tq0golywuMBQC9RSUlIyPJacnJz2Z6NGjQBIe4v0Dh06BJ1OhwYNGgCQPYDe3t44dOhQptcCQMOGDU3zBoiIiIjykuFyUq2qevrlpEREOWRxgWHNmjUBAIsWLTI6Hx0djY0bN8LDwwNVq1ZF1apV0bBhQwQGBqYVlwGk0ExgYCDatGmDMmXKpJ3v1asXgoODsXnz5rRzKSkpmDt3LooVK4aXDEtAExEREVkqw88sFy4AwcHGgWFoKJDJF+xERI9jcQ3uw8LC4Ofnh7t376JPnz5o1qwZoqKiMH/+fISGhmLevHkYOnQoAODAgQNo3bo1ypUrh2HDhgEA5s6di5s3b2L//v2oa1CV686dO2jQoAHu3LmDkSNHwtvbGytXrsQff/yBBQsWYMCAASZ7D2xwT0RERHlGrweqVFGtKebMkeqk06cDWmX0t98Gypc33xyJyCIU6Ab3FSpUwJEjR/DGG29g7969GDZsGKZNmwYfHx+sW7cuLSgEgICAAPzxxx+oWLEixo8fjwkTJqBq1ar466+/jIJCAChRogT279+PV155BfPmzcPw4cMRExODVatWmTQoJCIiIspTOl3G5aROToBhvQQuJyWiHLK4jKE1YMaQiIiI8tRvv6klpY6OQFQUcPgw8Oefcq58eckaEpFNK9AZQyIiIiJ6gueeA5yd5fjhQ2DPHuN9htevy3kiomxiYEhERERU0Dg7A23aqPG2bUC5coCDg4xTU4GwMPPMjYgKJAaGRERERAWRYXXSbdsAOzugQgV1jvsMiSgHGBgSERERFUSGgWFYGHD2LPsZElGuMTAkIiIiKogqVgQe9X8GIFlDw8Dw1i3g3r18nxYRFUwMDImIiIgKqvTLSUuVAooWVee0XodERE/AwJCIiIiooDIMDPftA2JjuZyUiHKFgSERERFRQdW8OeDqKsfJycDOncaBYXAwwJbVRMZCQoAtW4Br18w9E4vCwJCIiIiooCpcGHjhBTXetg2oVEmN790Dbt7M/3kRWaorV4AlS4Bjx4BVq4CkJHPPyGIwMCQiIiIqyNLvM3R1BUqXVueOH8//ORFZouhoYO1alUWPi2PW0AADQyIiIqKCrEMHdXzzJnDiBODnp86dPs2sCFm/hARp25LV0umkJMkQxscbn+c+3DQMDImIiIgKsrJljQPBbduAOnWAQoVknJAA/PuveeZGlB+io4HGjaWFy+DBGYNDvR7YvBm4cSPjcxkYpmFgSERERFTQGS4n3boVcHYGatVS54KC8n9ORPllzBjJjAPA/PnA+vXGjx86pB4HgAoV1HFkJPDgQd7PsQBgYEhERERU0HXsqI6PHAH++w9o0ECdu3ZNGt4TWZs//5Rg0ND770sWEZAKpDt3qsfKlQP69gWcnGSs17Pf5yMMDImIiIgKukaNgBIl5FivB37/HfDxAUqWVNcwa0jWJiEBeOedjOdv3JAsYnQ0EBgIpKbK+aJFgR49pJqvYfVeLicFwMCQiIiIqOCztwdefFGNt24FdDrjrOGpUyxCQ9ZlyhTg4kU17txZHc+fD0yerIrN2NlJUOjmJmPDfp8MDAEwMCQiIiKyDobLSX//XRre161rXITm7FnzzI3I1E6fBr78Uo3feQdYswZ49ll1bvFi+fcAkOq95curxwwDw6go4O7dvJ1vAcDAkIiIiMgavPCCZEUA+ZB7+LAUoalZU13D5aRkDVJSgEGDVNBXtqwEiU5OwE8/qevu3AH++guoXx9o2ND4HsWLA+7uasx9hgwMiYiIiKxCiRJAkyZqvHWr/Gn4gfjqVRahoYLv22+lyJLhuFgxOS5f3ngJ9f79st9WpzO+h07H5aTpMDAkIiIishaGy0m3bZM/WYSGrElYGPDpp2rctSvQrZscx8TIctK2baXQDCCFZ959V7KM6aUPDNP3P7QxDAyJiIiIrIVhP8NTp4DwcBahIeuh10uQFxcnYzc3yRYC8ju9erUUm3FyytjCRbvOkGFl0vh44ObNvJt7AcDAkIiIiMha1K0LeHmpsZY1ZBEasgarVgG//abG06fL77teD2zZAkREqMdGjpRsoubTTyXbaKhoUaB0aTUODs6beRcQDAyJiIiIrIVOZ5w11AJDFqGhgu7OHeCDD9S4RQspQANIRvDUKfVYvXrS2/Pbb1V7irg4yTamXy5apYo6tvF9hgwMiYiIiKyJYWC4cyfw8KEcGy4nZREaKmhGjQL++0+OHRyk+qidHRAaKu1ZNF5eQKdO8iWJl5dkFTW//SZZR0OG+wyvXlWVTm0QA0MiIiIia9K2LVC4sBzHxQHLlslx+fKAp6e67vjx/J8bUW7s3Ck9CTXjxwPVq0uxmcBAKTADAEWKAD17qmXTgGQVW7RQ4w8+kOyjpnx5wN5ejpOSgGvX8u59WDgGhkRERETWxNUVeO01NZ48GUhMZBEaKpji44HBg9W4Vi3g448ls7d6tSpEY2cH9Ohh3JtQO//TT5JlBCTrOGqUetzBQSr3amx4OSkDQyIiIiJr89lnqtl9WBiwcKEcGxahefAAOHfOPPMjyq6JE1XzeZ0OWLBAMuLpi820bw9UqJD5PapXlyyjZvFiYNcuNWY/QwAMDImIiIisT/XqQJ8+avx//yfVSF1cjIvQHDuW/3Mjyq7jx4GZM9X4/feBJk2Ao0eBkyfV+bp1AX//x9/r448l26gZPFiykYBxYBgRIV+a2CAGhkRERETW6LPP1N6p8HBZTgdkLEKjFfQgsiRJScDAgWr/oI+PfMERFgZs366uMyw28zgODpJt1K67cgV46y3gzBm5h6OjnNfrpaCNDWJgSERERGSNqlYF+vVT46lTJUOSvggNW1eQpdEa2Z84oc59952cX7MmY7EZrdjSkzRpIllHzdq1QJ060triwgWVQbTR5aQMDImIiIis1YQJ6kPzzZvy4TqzIjQ2XKKfLNDXX6t9sQDQuzfw4osZi810756x2MyT/N//ATVqGJ87flz2Hc6YIYHnxo02WZiJgSERERGRtapQQZbjab78Erh3T/ZkactMHzwAzp41z/yI0lu/XvYDavz8gB9/BLZulSXRmhdeACpWzPn9XV2BQ4ckCPT1NX4sNVUKMs2fD5QrB4weDfzzT67eRkHEwJCIiIjImn3yido/dfs2MHduxiI0XE5KluDYMaBvX1kyCgDe3sDmzRKsGS4rrVsXaNw496/j5gaMHAmcPi2v+f77QPHixtfcuiXBY+3aQMOG0i/RyjEwJCIiIrJm5coZ94H7+mtpDG64nDQsjEVoyLyuXgU6d1YVQYsUkZYUycnAb7+p68qWzV6xmezQllXPnSvVSMeMAZ55JuO9g4KkR+LAgWofohViYEhERERk7caNA5yd5fjuXWDWLFlmWqKEuub4cfPMjSg2VoK9GzdkbGcHrFolbSQMi824uOSs2ExOODpKi5devSSb2LGjcXsLQPY9Nm4MnD+f9X0uX1YZzwKGgSERERGRtStTBnjvPTWeNUsCRMOs4cmTpi24cecOsGyZfLBPTDTdfcm6JCcDr78ubSM0M2dKsZk1a4D79+WcVmymWLG8m4vWz7BoUVk+unMncPiwLF3V/POPPLZ8ecbnBwXJ7/zatQXyd56BIREREZEtGDNGlucBkqGZMQOoV8+4CI1hf7in8eCBfEC+fFkK2+zfb5r7kvUZOdJ4qejQocCwYcC2bcD16+p8u3ZApUp5O5eiRYFSpdQ4JATw9wcOHjRejh0XJ3sh33lHLX29dk3mDAD//it7IwsYBoZEREREtqBkSeCDD9T4m2/kA279+upcUNDTF6JJTQXWrZOMpOby5ae7J1mnuXPlR/Pii/J7efy48dLmOnWkB2F+0LKGgOpn6OwM/PADsGKFBI+a+fNlaenx45LdTElR17dpkz/zNSEGhkRERES2YtQoqcgISFA4fbqU/S9dWl2zbZtkP3Jrz56MgWBEhMqsEAHyezZihBr7+kqfwogI4wximTJSlMYUxWaywzAwDAsz7vHZq5d8cVKnjjp35gwQEAAcOCBjnU6WvHp45M98TYiBIREREZGtKF4c+PBDNZ43D4iKkj1eWnGalBTJfty7l/P7//svsG9fxvN6PRAamqspkxU6fVqKyGhFZUqVkgqkOp1x5s3FRX4386LYTFYqVpT9jIDsuTVczgpI1dJDh2QZqebhQ+m/uHkz0LKlcXBZgDAwJCIiIrIlH36oshkPHgBffCHj115TWZl794w/oAPyIX7XLnn+t9+qD/WaW7eAjRvVuHhx4wbk2rI8sm2RkVKBVCsq4+QEbNokPQtXr1bndTr5nczLYjOZcXAAfHzUOLPfW2dn4McfgSlTjIPW48fl34+LF/N+nnmAgSERERGRLXF3B0aPVuMffpCsSJUqQNu26vy1a7Kk7/p1+QBcpYoUAJk9W4qDTJumrn3wQNoLaJUYHRwk01OzprqGgSE9eAC8/LLxUuWlS2Wfnva7pnnhBfNl3jLbZ5je9evy5cg77xgXrDl1Sqr9rlqVt3PMAwwMiYiIiGzN8OGAp6ccJyYCU6fKcUCA7PVKSZFebSNHSr/DCRMyLgWdOBE4ckQVm4mKUo+98op8WDb8gH3nDhAdnYdviize7NnAsWNq/MUXkhVMX/Sodu38KzaTGcPf2/BwICHB+PF79yS7mZIi/x4NGwa8+aZ6/P592Z9YwDAwJCIiIrI1RYsCH3+sxgsWyAfZ4GAJ9ubMkQ++ly5lXDKq7UVMTpaG4Nu2GRebadFCZQpLlFDFbgAp/0+2KSYG+OorNe7bV34HDds8AFJs5uWX86/YTGa8vKThPZBxf2xKChAYqPbg6nRSlGbxYmnRUqQI8NJLwEcf5fu0nxYDQyIiIiJbNHSoqkaalCQZmmrV5MN7bKzxtW5usvz08mXg11/V+cuXgc8+U+OqVYHWrdVYp8vesjyyfrNnqxYmzs7ye3b/fsY2Dz175m+xmczY22e9P3b7duDqVTVu21aWWQPyRcmxYxIk2hW8MKvgzZiIiIiInp6LCzBunBrfuGH8uL098Oyzslfwgw+AGjXkw/ILLxi3GThxAjh3TgrYvPpqxg/E6QNDvd7U74QsXVQUMHOmGr/3nvTVNKx+a2ltHjL7QuP4ceDoUXW+Vi1Zfm2oenW1TLuAYWBIREREZKsGD5ZqkIYqVwb+7/8kK7JggQSHdnYy3r5drpk4EShbVj1n82agVSu1zNRQpUrqOC5OqpeSbZkxQ2WhixQBxoyRYjOGRWjatbOsNg+Gc7l9Gzh7Fti6VZ0rXRro0sW8S15NjIEhERERka1ycpL+ce3bA2+8AezeLfsKP/lE9lk1ayZZEc3Ro5I12bpVCszY28v5Bw9kT1X6/YgA4OpqXLWRy0lty+3bwDffqPEHH0hAaFiExtcXaNo0/+f2OJ6e8rurCQzMuOTVwcE8c8sjDAyJiIiIbFm9epIJXLIEaNPGeCmoTidZEW0vIiA95y5dkmCvXTt1ftcu2UeWGe4ztF3Tp0umGJC9qq+/njHzZu5iM5lJvz9WWwKt08mS6eLFzTOvPMTAkIiIiIiy5uAg2REnp4yP9eol2UbNuHHSxy09ww/YoaEq80LW7cYN4Ntv1fj994EdO4wzb6+/brmZt8yWtj7/vBRZskIMDImIiIjo8YoXl35zhlkdDw8pFrJokXFPxN69ZWmpoQoVVCYyKcl4bxlZr2nT1O+Ch4dUvjUsNvPaa5ZTbCYz6QPDWrVkebWVYmBIRERERE9WtSrw4ovygb5oUcn0ODtL37mff1bXnT0rxUUMOToC5cqpMZeTWr/r14EfflDjUaNkCbKmWTPV5sFSuboCDRvKccWKVldsJj0GhkRERESUPY0bS5GZ4cON9x127gwMGaLG335r3LQc4D5DWzN1KvDwoRx7egIdOqjKpDod0KiR+eaWE506ye/8W29Z7pJXE2FgSERERETZ5+KS+QfkGTOktYWmf3/j1hSGgWF4OJCQkHdzJPMKC5NWJ5qPPwbOn1fjatUAd/f8n1duFSli1ZlCDQNDIiIiInp6Li7AihVA4cIyvnULePttVc3R21uWlAJyLjTULNOkfDBliuwlBSSz3KeP8TLSBg3MMy96LAaGRERERGQafn4SFGi2bgW+/16O7e1ln5aGy0mtU3Aw8MsvajxuHHDhgvqCwM1NMoZkcSwuMPz888+h0+my/CmsfQv1SGBgIAICAlCkSBG4urqiRYsW2JZ+TfsjqampmDVrFqpXrw4nJyf4+Phg1KhRiNN6qxARERHR0xk9GmjdWo1HjQL+/VeOuc/Q+k2apNpReHsDgwYBx4+rx+vXN+6VSRajkLknkF63bt1QNZPeIKdPn8ZXX32Fzp07p5378ssvMXbsWNSvXx+TJ08GACxbtgydOnXC0qVL0adPH6N7fPjhh5gzZw66du2KUaNG4dy5c5gzZw5OnDiBXbt2wY6/pERERERPx84OWLwYqFsXuHtX9hL26AEcOWIcGN6+LcVI3NzMN1cyrfPngWXL1PjTT6U1iWHRGT8/88yNnkin12t5Xcs2ePBg/PTTT9iyZQs6duyImzdvonz58njmmWdw/PjxtExiUlIS/Pz8EB4ejtDQULg9+o/Nv//+i9q1a6Nr165Yt25d2n3nzp2L4cOHY/ny5ejdu7dJ5hobGwt3d3fExMSkvT4RERGRTVm7Vvocavr1k7YWM2eqXnavvALUq2eGyVGe6NULWLVKjitUAC5elN+Dixfl3DPPSJ9Lyjc5iUsKRIosLi4Oq1atQrly5fDiiy8CAA4cOIDExET06dPHaHlp4cKF0bt3b9y9excbN25MO79y5Uro9XqMGDHC6N6DBg2Ci4sLlhl+u0FERERET+e114D33lPjRYskk8jlpNbpn3+A1avVeMIEaW7PojMFRoEIDAMDAxEbG4t+/frB3t4eAPDwUV8UFxeXDNdr5w4dOpR27ujRo7Czs4O/v7/RtU5OTqhXrx6OHj2a6/mVLVvW6KcaN9QSERERSQsLw6WDQ4cCqalqfOWKKkpCBdvEiervsnJl4M03gRMn1DlXVxadsXAFIjBcuHAhdDod3n777bRztWrVAgDs2bMnw/V79+4FAFy7di3tXEREBDw9PeGolUk24O3tjdu3byMxMdHUUyciIiKyXY6OwJo1ah/hgwey70z7zHX/PvDff+abH5nGiRPA+vVqPHGiVKE1LDrj58eiMxbO4v92Lly4gH379qFNmzaoVKlS2vnatWujXbt22LhxI8aMGYNz587h3Llz+Pjjj/Hbb78BAOLj49Ouj4+PzzQoBCRrmP76nIiMjDT6uWSYMiciIiKyZVWqAAsXqvGFC8Du3SqTlJvlpKmpzDRakokT1fGzz0rfwsuXWXSmgLH4wHDho/+QDBw4MMNjq1evRrdu3fD111+jZs2aqFmzJtasWYN58+YBgNEGSxcXl7Tlp+klJCSkXUNEREREJvbaa8D776vxkSPAyZNynNPA8M4d6Y04bRr3KFqCo0eBzZvV+PPPJVsYFKTOVa0KuLvn+9QoZyw6MExOTsaSJUtQokQJdO3aNcPjHh4eWLduHSIjI/HXX3/h+PHjCA4OhpeXFwCgevXqadd6eXnh9u3bmQaH4eHh8PT0hIODQ969GSIiIiJb9vXXxsVHtm0Dbt0CQkNV37snefhQql7+958cb9vGzKG5TZmijmvVktYksbGqEinAojMFhEUHhps3b8bNmzfRt2/fLJeBAkDp0qXRokUL1K9fH3Z2dmkN7l966aW0axo1aoTU1FQcOXLE6LkJCQk4efIkGjZsmDdvgoiIiIjUfkMtc5ScDAQGyj7D8PAnP1+vB3791XhP4u3bwNWreTJdyoZ//gE2bVLjzz6TfYTHjxsXnXnmGfPMj3LEogNDbRnpgAEDsv2cY8eOYcGCBWjVqhWaN2+edr5nz57Q6XSYPXu20fXz589HfHw8+vTpY5I5ExEREVEWKleWXoaa27eBrVuB4OAnP/fvv4Fz5zKeN1yySPnryy/V8TPPAK++Kvs/WXSmQCpk7glkJSIiAtu3b4e/vz9q166d6TUTJkzApUuX4O/vD3d3dxw/fhy//PILvL29sXTpUqNra9eujffeew/ffvstunXrhpdeegnnzp3DnDlz0KpVK5M1tyciIiKix+jWDRg+HJgzR8anT0t/w9ats37OpUvAo6rzAIAiRYC4ODk+exZ48UWAtSLyV0gIsHKlGo8ZI3sLL140LjpTv7555kc5ZrHh+6JFi5CSkpJp0RmNn58frl69iilTpuC9997Dzp07MWzYMAQFBcHHxyfD9bNnz8bXX3+Nf//9F++99x5WrVqFYcOGYcuWLbDjNxlERERE+eOrr4C6ddV4+XLg2LHMr71zB1i3Ti1NdHcHBg0CHlWVR3KyBJeUv776Su0N9fYG3nhDjtMXnSlWLN+nRrmj0+u5Y9fUYmNj4e7ujpiYGKPKqERERET0yOXLQO3awKPq8KhYUQI8V1d1zcOHwIIFal9hoULA228DXl7Ab78Bhw/L+ZIlgaFDJUNFee/GDfn70oo6zpwJfPihZApnzVJB/OuvAwbFICn/5SQuYZqMiIiIiPJf1arAu++qcWgoMGSICir0emDjRuNiM506SVAIGFe6/O8/4Nq1PJ8yPTJ7tgoKixeXDC4gje4Ni85Uq2aW6VHuMDAkIiIiIvPo0QNo3FiNV6wAKlUCRowA5s6Vqpeaxo2BevXUuFQpwHDrUFZLUcm0oqOB775T4+HDgaJFMxadqV9f9hxSgWGxxWeIiIiIyMpVrgy0awdcv65aVoSFAd98I8fOzsCzzwItWgAG1ebTNGigMoVnzwIdOshzKO989x1w754cFykCDBsmx8HBQEyMHOt0Uo2UChRmDImIiIjIPEqWlGIyPXoAFSpkfPzBA+DkSckeli4NdO0qFUzv3JHHa9UyLkJz6lS+Td0mxcfLMlLNkCGylBQwLjpTpQqLzhRADAyJiIiIyDx0OskaurkB/fpJC4tXX5UgMX0hmQcPpMF9v34SJL7wgjS3N6xuGhSk9riR6S1cqPZ8OjgAI0fKcWystKnQGO7/pAKDS0mJiIiIyHwqV1btJu7cAXx95Sc+XpYqnjgB/P67ql4KSJuEnTuBDz6QYEWrTqoVoSlfPv/fh7VLSgK+/lqN33pLFQI6cUL2GAKy3/CZZ/J/fvTUGBgSERERkflUrpz5+VatgI4d5TguTgLBX38FNm8GoqLk/Pbtkln08VF7DYOCGBhmJT5eWn44OOT8uStWSIYWAOzspKE9kLHojJ8fi84UUFxKSkRERETm4+YGeHoanytfHnjxRTUuUgR45RVg0SIgIkJdn5ICrFljvHTx339l2SkZO3ZMMn7ffANERubsuampwJdfqnH37tJuBAAuXDAuOlO/vmnmS/mOgSERERERmVeVKurYzU2K0WSVdXJ0lMc1K1ZkLEKjLU0lceUKsHWrBHhxccDq1ZI9zK6NG4Fz59R43Dj5MzpaMriaypUBDw+TTJnyHwNDIiIiIjKvFi2AcuWAMmWAXr1kn9rj9Omjjg8elGWkdeqocyxCo0RHA2vXGv/ziI4GAgPVvsDH0euBL75Q45dekoI/SUnAqlUqwLS3B1q3NuXMKZ8xMCQiIiIi8ypaFBg4UNoflC375OubNgUqVVLjFSuMl5PeuqX2HNqy9MGboZAQ2bf5JLt3A0ePqvG4cRIsbt4M3LihznfoIME9FVgMDImIiIioYNHpgN691Xj5cqBUKePAxLCvni3KLHjr2BF49lk1PngQOHPm8fcxzBY2by4/hw8bL9f182OLCivAwJCIiIiICh7DwPD8eWmZYItFaBISMs8IHjqUMXhr2BDo2tW42M+mTcbBo6EjR4A9e9R43DjJNO7Yoc6VKyfLS9P3naQCh4EhERERERU8NWsC9eqp8fLlUoTG0VHG1l6E5tix/2/vzuOqqtY+gP8O8yCjOMBhEHDGCAecTTNLDYdQcUgzEfFKmZFoZb6l13JICct7yQGnq2nmPLypXSyzUkjz1XKorpiGgqLeDCXkKPC8f+zOOWzPUcFEDpzf9/Ph415rr7PPPrTY8bDWehYwaJAyDdfVFXBxUbK5tmqlrNn829+AXbuAffuAU6eUpDN79yp7PQ4davw+3W26adnRwkcfVabwll2bWKuWkgjIjjvg1QQaEa7MfdCuXbsGDw8P5Ofnw93dvapvh4iIiKhmSk4GJk9Wjn19lXWFn32mjHQByvTShISaM5oloozgzZ6trP27X4GBSrKe0lLluG5dJTPsiBHKHoUAcPKkEmjrrV6tBJf6rS5sbIBRo7hnpIWrSFzC8J6IiIiIqqdhw5SN1kWUgGXfPmXETB8YXroEnD8PBARU7X3+VSUlwNatwJw5ykjhX5WdbdysHlC2+ggIAL78EoiNBSIj1fsWNmyotMnKMtb17s2gsIZhYEhERERE1ZNWC3TrpkyRBJTppMuWKevezp9X6g4frr6B4c2bwEcfAXPnKhvJ3y48HHj9daBdO+DKFWW94IkTyrTQwkKgTh1ltPTKFeXr4kXgt99Mr1NUpEw3PXUKWLECcHBQpuLqDRoEHD9uLLdsqaxXpBqFgSERERERVV/DhxsDw40bgdRUJQmNPjA8fhzo2RNwdq66e6yoggJgyRIgJQXIyTE936WLEhD27m2cJnvpkrLW79FHlXLLlkC/fupptCLA2bPAN98oX19/rd64Xu/mTeNxvXqAvb2xrNUq2U1ryvRcMmDyGSIiIiKqvgYOVEa4AODaNeDTT02T0NxrSwZLsnGjMkUzKck0KOzTRwnovvpKnQn07Fl1ptA7BW8ajbL/43PPAYsXK+sIL18GVq1Sgk1/f+MaQ70OHYx1rq7AkCFMNlND8b8qEREREVVfnp5KwLR5s1Jes0YJFsPDjRuzHz6srJuz9FEunQ4YOxa4etVYZ2trXEv5yCOmr8nPB9avN2YKrWjw5uOjBIpt2gCffKJkKc3NVe7F1RXw81Pa2dgoGUiZWLHGYmBIRERERNXbs88aA8NPP1UCq9atjYFhXl71SEKzc6cxKNQHhGPGKCN5AHD6tLq9PkupfquJvxK8NWsGPPaYMhoZFGR6vlcv8/VUYzAwJCIiIqLqLSoK8PBQRs9u3lSCxLg4ZUqlfjpmdUhCs3at8bhhQ2ULCf36yfL4q8Hb448r2V1PnVLXR0QoI65Uo3GNIRERERFVb05OyvRRvTVrlH9btzbWnTihZN+0VPn5wI4dxrK5aaN38yCCN41G+T7Wrm2s8/NTpupa+jRc+ssYGBIRERFR9Td8uPH4yy+VkcIWLYxJaG7dAn74oUpurVw2b1bW9QFKMp3GjZUpoff68vBQMpE+qODNyUmZmhsSotzD0KFMNmMl+F+ZiIiIiKq/rl2V0a3cXGXt3ccfA5MmKSNv+k3hLTkJjX6UEwCaN1emwb7wQtXcS+3awMiRVfPeVGU4YkhERERE1Z8+WYuePtAquxF7Xp75fQGrWm6ukkRGr0ULYzZQooeEgSERERER1Qxlp5MePars01e/vjL6pnf48EO/rXtat04Z5QSAWrWUvQYZGNJDxsCQiIiIiGqGiAigaVNj2VwSmuPHLS8JTdlspGFhyrYTvr5Vdz9klRgYEhEREVHNoNGoRw3XrlVG4m5PQnPsWNXcnzk//6wexQwPVz5H/fpVd09klRgYEhEREVHN8eyzxuOzZ4GMDCXLZ9ntH777zjh1s6qVTTpTu7YyUlinDmBvX3X3RFaJgSERERER1RwhIUCHDsayuemklpKERkQdGD7yiDJayPWFVAUYGBIRERFRzVJ2Oun69cr0UV9fdcBlCUlovv0W+OUXY1k/qsn1hVQFGBgSERERUc0yeLCyfQUAXLkC/PvfyrGlJaEpO1qo1QLe3soxRwypCjAwJCIiIqKapU4doGdPY1kfgLVooaw3BKo+Cc2tW8AnnxjL+tFCJp6hKsLAkIiIiIhqnrLTSbdtAwoKlMyk4eHG+sOHqy4JzeefA5cvK8e2tso2FQATz1CVYWBIRERERDVPv36Ai4tyXFioBIeAejrpxYtAbu7DvzdAPY00PFzZ2B7g+kKqMgwMiYiIiKjmqVULeOYZY3nZMuVfS0hC88cfwJYtxnJEhPGY6wupijAwJCIiIqKa6bnnjMd79wJffKEclx01PHYM0Oke7n1t364EhwDg7KwOBhkYUhVhYEhERERENVPPnkCbNsbylCnKmsKqTkJTdhrpk08CdnbKMRPPUBViYEhERERENZNGA8yZYywfPKhM4XR0NGYBBYDvvnt4SWiuXAE++8xY7tbNeMzEM1SFGBgSERERUc31xBNAjx7G8tSpQHFx1SWh2bBBeX9A2bewQQPjOSaeoSrEwJCIiIiIarbZs43HP/0ErFqlrOUrG4g9rCQ0ZaeRDh5s3LIC4PpCqlIMDImIiIioZmvTBoiJMZanTQNu3FCPGh4/XvlJaM6eBfbvN5aHDgXy8oxljhhSFWJgSEREREQ139tvKxvJA8D588CHHyrrDPVJaG7erPwkNGvXGo+DgoCGDYGSEqXMxDNUxRgYEhEREVHN16QJMHq0sTxrFlBU9PCS0Iiop5EOG6asbdTz8TEGqURVgIEhEREREVmHadMAJyfl+LffgORk0yQ0Fy5Uznt//z1w8qSxPHy4+r24vpCqGANDIiIiIrIOWi0wYYKxnJKiTOF8GEloyk4jDQ9X9lIsmwmVgSFVMQaGRERERGQ9XnsN8PRUjgsLgZkz1aOGx449+CQ0paXAxx8by8OHK2sLmXiGLAgDQyIiIiKyHt7eSnCot3gx4OpauUlovvpKSXgDKCOUw4YBly4x8QxZFAaGRERERGRdJkwwjtAVFwPvvKNM7dTLyHiwo4Zlk8489hgQEKBeX8jEM2QBGBgSERERkXVxcQHeestYXrvWmJQGAP77X2DbtgeTobSgANiwwVh+9lnlX64vJAvDwJCIiIiIrE9cnLKPoN4HHwBt2xrLJ08C33zz199nxQogP185dnICBg1SjssGhlxfSBaAgSERERERWR97e2UKqd7OnYCzs7LxvN4XXwBZWff/HsXFSuZTveefV9Y43p54hiOGZAEYGBIRERGRdYqJAVq2NJanTlVG9NzdlbIIsHGjsufh/di0CTh7VjnWaICkJOWYiWfIAjEwJCIiIiLrZGMDzJljLGdkAHv3AkOGALa2Sl1REbBunZKttCJEgHnzjOVnngEaNVKOmXiGLJDFBYbTp0+HRqO545e9vb2qfUZGBvr16wd/f384OzsjNDQU8fHx+OWXX0yurdPp8NZbbyE4OBiOjo4IDQ3FO++8g1u3bj2sj0dEREREluTJJ4HHHzeW33hDGcHr08dYd+lSxZPRfPklcPiwsTx5svGYiWfIAtlV9Q3cbsCAAWhYdiHwn3744QfMmzcPffv2NdTt3r0bUVFRCA0Nxfjx4+Hj44MTJ05gyZIl2LRpE44dOwatVmtoP2TIEGzbtg2jR49Ghw4dkJGRgTfffBNZWVlYuXLlw/h4RERERGRJNBpg9mygfXulfOIE8NFHynrA3Fzg0CFjva8v0Llz+a5bdrSwUyegQwdjueyIIRPPkIWwuMAwPDwc4eHhJvV/+9vfAABxcXGGuvnz58PW1hYHDhyAj4+PoT4sLAzx8fHYsGEDEhMTAQA7d+7Etm3bMHHiRLz33nsAgDFjxsDT0xMpKSkYO3YsOnbsWImfjIiIiIgsUrt2wIABwObNSnnqVCA6GujVS0kSk52t1H/+uTKaaGYQQ+X4cWDXLmN50iTjMRPPkIWyuKmk5vzxxx9Yt24d/P390atXL0P9tWvX4OTkBC8vL1V7vz9/wFxdXQ11a9euBQBDoKinL3/00UeVcOdEREREVC28845xXWFODjBlilIePBhwc1PqRZSEMvdKRvPnIAQAoHFjoF8/Y/nyZSVbKcDEM2RRqkVguGHDBly7dg2jRo2Crf4HFkDPnj1x/fp1PP/88/j++++Rk5ODzz77DElJSWjWrBmGDh1qaHvo0CFotVoEBASorh0QEAA/Pz8c0k8TICIiIiLr06yZemRv4UJg/36gVi11MpobN4BPPrlzMpqcHGDNGmM5KUlJcqNXdn0hE8+QBakWgeGyZcug0WgwevRoVf2UKVOQkJCAjRs3IiIiwjCiGBISgszMTLjp/7oDIDc3V7XesCytVoucnJz7vj9fX1/VVyN9xikiIiIiqj6mTQNCQ5VjESA+HtDpAH9/ICrK2C4vD9i+3XwymgULAH1iw7p1gZEj1ee5sT1ZKIsPDH/++Wd888036N69O4KDg1XnbG1todVq0aNHDyxduhSbN29GUlIS9uzZg6FDh6qyjRYWFsLR0dHsezg5OaGwsLBSPwcRERERWThnZ2DJEmP5xx+N21m0agW0aWM8d/w4cOCA+vXXrgGLFhnLL70EODmp25RNPMP1hWRBLC75zO2WLVsGQEkUc7tRo0bhwIEDOHHiBJydnQEA0dHRaNiwIRISEvCvf/3L8DoXFxfodDqz71FUVAQXF5f7vscLZX/Aoax99PDwuO/rEREREVEV6d4diI0FVqxQyjNnAjExQPPmQO/eymjhuXPKuT17lDWC+lHGpUuV4BAAXFyAhAT1tW9PPMMRQ7IgFj1iWFxcjFWrVqF27dqIjo5WncvOzsaaNWsQFRVlCAr1YmJiAAD79u0z1Pn5+d1xumhOTs4dp5kSERERkZVJTlamgQLKtND4eKC01Hwymo0bgatXlXbvv2+8xujRQO3a6uvenniGgSFZEIsODHfs2IG8vDyMGDHCZBqoPsgrKSkxeV3xnz9w+n8BIDIyEjk5OTin/wvPn86dO4fc3Fy0KTs1gIiIiIisl7e3slZQ78AB4xRRNzclOCybjGbdOiXhjP73TBsbYOJE0+uWXV9YuzYTz5BFsejAUD+NtOzehXpNmjSBra0ttm7dit9//111Tr9ZfWRkpKFu2LBhAID3y/4lp0x5+PDhD+amiYiIiKj6GzwY6NPHWH79deD8eeU4IAB4+mnjuYsXgenTjeVBg4DbcmMA4PpCsmgWu8YwNzcXu3fvRtu2bfHII4+YnPf29kZiYiLee+89tGzZEvHx8fD29sb+/fuxZs0ahIaGqtYlRkVFoU+fPkhJSUF+fj46dOiAjIwMLFu2DCNGjEDnzp0f5scjIiIiIkum0QAffgh8+SVQUABcvw68+CKwdatyrnVrZQTw8GHgl1+AX381vnbyZPPXLDtiyMCQLIzFjhiuXLkSJSUlZpPO6M2bNw9LlixB3bp1MWvWLLz00kv4+uuvkZCQgIyMDLi7u6vab9iwAVOnTsWePXvwwgsv4IsvvsCMGTOwfPnyyv44RERERFTdBAQAs2cby9u3Kxvc6/XurbQpm520XTt19lI9Jp4hC6cRMbcBC/0V+qyk+fn5JsEpEREREVUjJSVA585AZqZSrldP2cbCy0sp79+vnNeLjQVSUgBPT/V1Ll40rlPUaIApU7jGkCpdReISix0xJCIiIiKqcra2yjYU9vZKOS8PePVV4/mFC43HdeooI4jr1hk3uddj4hmycAwMiYiIiIjuJixMST6jt3SpsvYwO1sJAvU6dFBGAy9eVKadlp2Yx8QzZOEYGBIRERER3cvUqUDTpsby2LHAnDnKVFNAWTM4cqTx/LFjxumngHrEkOsLyQIxMCQiIiIiuhdHRyAtzVg+dUo9jfTll4H+/QF/f2Ndejpw5oxp4hmOGJIFYmBIRERERFQenTsD48aZ1teqBfztb4CdnbL/Ya1aSn1pKbBhA5CVBRQXK3UaDVC//sO7Z6JyYmBIRERERFRec+aYjvjFxxuzkLq7K8GhzZ+/ZhcWAhs3GtvWrq2MPhJZGAaGRERERETl5eEBpKYay7a2QGKiuk1goLLHoV7ZDKWcRkoWioEhEREREVFFPPMMkJysbGS/cqUSCN6uTRugZUvTeiaeIQtlV9U3QERERERU7SQlKV93otEAUVHApUtATo6xniOGZKE4YkhEREREVBns7IAhQ4zJaDw9GRiSxeKIIRERERFRZXF3B154AfjxRyA4GLC3r+o7IjKLgSERERERUWVycQFat67quyC6K04lJSIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnJ2VX0DNZGIAACuXbtWxXdCRERERETWSh+P6OOTu2FgWAmuX78OAAgICKjiOyEiIiIiImt3/fp1eHh43LWNRsoTPlKFlJaWIjc3F25ubtBoNFV9O2ShGjVqBAA4depUFd8JUfmx31J1wz5L1RH7LT0oIoLr16/Dz88PNjZ3X0XIEcNKYGNjA39//6q+DbJw+h9Od3f3Kr4TovJjv6Xqhn2WqiP2W3qQ7jVSqMfkM0RERERERFaOgSEREREREZGV4xpDIiIiIiIiK8cRQyIiIiIiIivHwJCIiIiIiMjKMTAkIiIiIiKycgwMiYiIiIiIrBwDQyIiIiIiIivHwJCIiIiIiMjKMTAkIiIiIiKycgwMiYiIiIiIrBwDQyIiIiIiIivHwJCIiIiIiMjKMTAkIiIiIiKycgwMiYiIiIiIrBwDQyIiIiIiIivHwJDIjIKCAsyaNQuPPPII3Nzc4OPjg44dO2LlypUQEQDA2bNnodFo7vq1Zs0a1XV1Oh3eeustBAcHw9HREaGhoXjnnXdw69Yts/exatUqtGzZEs7OzqhXrx7GjBmDy5cvm2377bffokePHnBzc4O7uzt69eqFo0ePPtDvC1m28vRbvV27duGJJ55A/fr14erqiiZNmmDSpEnIy8szuW5+fj5eeuklaLVaODk5ISwsDAsXLjS5JgCUlpZi/vz5aNq0KZycnBAQEICkpCT88ccfZu95586d6NixI1xdXeHt7Y2YmBicOXPmwXxDyOKVt8+KCBYtWmR4Hnp6eqJXr17IzMw0e10+a6ky5eXlYdy4cQgICICDgwMCAwPx8ssv4/fffzdp+/PPP+OZZ56Bl5cXXF1d0aVLF3zxxRdmr8tnLVU5ISKVkpIS6dy5s9jY2EhsbKwsXrxY5s+fL23bthUA8uqrr4qISEFBgaxevdrsl4eHhzg4OMjly5dV1+7fv78AkNGjR0taWpqMHj1aAMjzzz9vch8pKSkCQLp27SqLFy+WN998U1xdXaV58+ZSUFCgapuRkSGOjo4SEhIiKSkpkpKSIiEhIVKrVi354YcfKu17RZajvP1WRGTJkiUCQFq3bi0pKSmyePFiGTNmjNja2kpwcLCqf+l0OomMjBQ7Ozt55ZVXZMmSJRIdHS0AZNq0aSb3MWHCBAEg0dHRsmTJEnnllVfEzs5OHn/8cSkpKVG13bRpk2g0GomIiJDU1FSZNWuW1K1bV3x9fSUnJ6fSvldkGSrSZ8eNGycApFu3brJgwQKZM2eOhISEiIODg+zdu9fk2nzWUmXJy8uToKAgsbe3l/Hjx8uiRYtk/PjxYm9vLxEREfLHH38Y2mZlZYm3t7fUrVtXZs2aJampqRIRESF2dnaSnp6uui6ftWQJGBgS3ebAgQMCQBITE1X1Op1OgoODxcPDo1yvHzRokKr+008/FQAyceJEVf3EiRMFgOzfv99Qd/nyZXFxcZHIyEgpLi421G/fvl0AyMyZM1XXiIyMFDc3Nzl//ryh7vz58+Lm5iZPPvlkuT43VW8V6beNGzcWX19fuXHjhqrt1KlTBYBs2bLFUJeamioAZMGCBaq2AwYMEHt7ezl79qyh7vjx46LRaGTAgAGqtgsWLBAAsmbNGkPdzZs3xc/PTwIDA+X69euG+iNHjoiNjY3Ex8dX+HtA1Ut5++yRI0cEgPTq1UtKS0sN7a5evSr16tWTRo0aqX4R5rOWKtPLL78sAGTt2rWq+rVr1woAefvttw11MTExYmNjI0eOHDHUXb9+XQIDA6Vx48aq/sxnLVkCBoZEt9m9e7cAkLlz55qci4yMFD8/v7u+Xv+X6d27d6vqhw8fLgAkOztbVZ+dnS0AJCEhwVCXlpYmAGTVqlUm1w8JCZFmzZoZyqdOnTL8ZdzcvWg0Grlw4cJd75mqv4r02/r160vz5s1N2ul/Mfn3v/9tqOvUqZO4uLiYBJFfffWVAJB3333XUKcPLL/66itV2xs3boiLi4v07t3bUJeeni4AZMaMGSb30b17d3F3d5ebN2+W45NTdVXePqsf0fv4449N2o0dO9akz/FZS5UpPDxcnJ2dVUGdiDIC7uTkJCEhISKizCpydHSU7t27m1xjxowZAkC+/fZbQx2ftWQJuMaQ6DZt27aFp6cn5s6diw0bNiA7Oxs//fQTpkyZgsOHD2P69Ol3fG1BQQHWr1+PoKAgPPnkk6pzhw4dglarRUBAgKo+ICAAfn5+OHTokKotAHTo0MHkPdq3b4+ffvoJBQUF5WorIjh8+HD5PjxVWxXptz179sTJkyeRlJSEH3/8EefOncPmzZvx9ttvo2vXrujevTsAZQ3L//3f/6Fly5ZwcnIyeT+NRmPSb21sbNC2bVtVWycnJ0RERFSoj1+7dg3/+c9//vL3hSxXefusTqcDALi4uJhcQ19Xdq0hn7VUmXQ6HZycnKDRaFT1NjY2cHZ2xi+//IIrV67ghx9+gE6nu2N/AYx9is9ashQMDIlu4+Xlhe3bt8Pb2xuDBw9GUFAQmjVrhtTUVGzatAnx8fF3fO0nn3yCgoICxMbGwsZG/eOVm5sLrVZr9nVarRY5OTmqtvp6c21FxNDmXm0BqK5NNVNF+u0HH3yAmJgYfPDBB2jevDkCAwMxcOBA9O7dG+np6bC1tQUAXL16FTdu3DDbtxwdHeHj42PSb318fODo6GjSXqvV4sqVK7h586ahrb7eXFuA/bamK2+fDQsLAwCThB0ign379gEAzp07Z6jns5YqU1hYGK5evWqScOjo0aO4evUqACA7O7tC/YXPWrIUdlV9A0SWqFatWmjRogX69euHjh074rfffkNqaiqeffZZbNu2zWQ0UG/p0qWwsbFBbGysybnCwkKzD3FA+StfYWGhqi0As+31f03Ut6lIW6rZyttv7e3tERgYiOjoaPTt2xcuLi747LPPsHz5ctja2iItLQ3A3fsWYL7f3q2tvo2DgwP7LQEoX5/t3bs3mjdvjg8//BB+fn4YMGAACgsLkZKSguPHjwNAhfohn7X0VyQmJmLr1q0YPHgw3n//fbRo0QInTpxAYmIi7O3tcevWLRQWFj6wvqVvz2ctPQwMDIluc+zYMXTs2BHz58/HuHHjDPXDhg1DixYtEB8fj9OnTxtGVfROnjyJzMxM9OzZE4GBgSbXdXFxMUyJul1RUZFqmpT+WKfTwdnZ2aRt2TZl25q7btk2VHOVt99qNBr06tULxcXF2L9/v2E61KBBg1C7dm28++67GDJkCHr06HHXvgWY77eXLl26Y1t9m7L/st9ar/L2WTs7O+zatQvPP/88XnvtNbz22msAgPDwcMyZMwdJSUlwd3c3vJ7PWqpMXbp0wbp16zBhwgRERUUBAGxtbTFmzBiEhYVhy5YtcHd3r1B/4bOWLAWnkhLdZv78+SgqKkJMTIyq3sXFBVFRUfj1119x9uxZk9ctW7YMADBmzBiz1/Xz87vjdI2cnBzVNA8/Pz9Dvbm2Go3G0OZebQHzU0ioZilvv/3mm2/w9ddfY+DAgSZrZPSv1U/P8/LygrOzs9m+pdPpcOXKFZN+e+XKFbO/gOTk5MDHxwcODg6Gtvp6c20B9tuariLP2sDAQOzduxe//vor9u3bh+PHj+P77783jHg0bdrU8Ho+a6myxcTE4Pz58zhy5Ai++uor5ObmYtGiRTh//jzs7OzQsGHDCvUXPmvJUjAwJLqN/kFZUlJicq64uFj1r97NmzexevVq1KlTB/379zd73cjISOTk5KjWwgDK2pjc3Fy0adNG1RYAMjIyTK6TmZmJJk2aoFatWuVqq9Fo0Lp1a/MflmqM8vbbivRvGxsbtGrVCkeOHDH5BeTgwYMQEZN+W1paioMHD6raFhUV4ejRoxXq4+7u7mjcuPE9PjVVZ/fzrA0MDMRjjz1mWHe4c+dO2NjYoGfPnoY2fNbSw2Bra4uIiAh06dIFdevWxcWLF3HkyBF07doVLi4ueOSRR+Do6HjH/gLA0Bf5rCWLUYUZUYksUmJioklqaBFlzyxfX1/x8vJS7XclIrJhwwaz+2aV9b//+7933Vvr66+/NtRdunRJnJ2dpW3btmb31iq7T5KISJs2bcTNzU21UW1OTo64ubnJE088Uf4PT9VWefvt0aNHBYCEh4ebpCjXbyK+adMmQ90///nPO+6tZWdnJ2fOnDHU/fDDD3fdW2v16tWGups3b4qvr6/J3lpHjx4VGxsbiYuLu+/vBVUP9/OsLWvbtm1mN63ns5YetpKSEomJiRGNRiNffPGFoX7QoEFiY2MjR48eNdTp9zFs1KiRassLPmvJEjAwJLrN2bNnxdvbWzQajYwYMUIWLlwoM2fOlAYNGggASU1NNXlNr169BICcPHnyrtfu06ePAJC4uDhZunSpxMXFCQAZMWKESdvk5GQBIN26dZPFixfLW2+9Ja6urtK0aVPVw11EZP/+/eLg4CAhISEyf/58mT9/voSEhIirq6vqf0hUc1Wk3w4cONAQHM6dO1f++c9/St++fQWAtG/fXvULsk6nk9atW4udnZ1MnDhR0tLSJDo6WgDI//zP/5jcx/jx4wWAREdHS1pamkycOFHs7Oyka9euqk3IRUTWr18vGo1GIiIiJDU1VWbPni1169aVevXqqTYQp5qpIn129OjREhsbKx988IEsWbJERo4cKba2thIZGSm///67ybX5rKXKcv36dWnWrJm88cYbkpaWJsnJydK6dWsBIDNnzlS1PXXqlHh5eUndunVl9uzZkpqaKhEREWJra2uy1zGftWQJGBgSmZGVlSUjR44UrVYrdnZ24ubmJl26dFGNpOhlZ2eLjY2NdOzY8Z7XvXHjhkydOlWCgoLEwcFBgoODZcaMGXfcXHbFihUSHh4ujo6OUqdOHYmNjZW8vDyzbQ8cOCDdu3cXV1dXqVWrljz11FNy+PDhin1wqtbK2291Op28++67Eh4eLk5OTuLg4CCNGjWSKVOmSEFBgcl1r169Ki+++KL4+vqKg4ODNGvWTP7xj3+YbPAsIlJcXCzJycnSuHFjcXBwED8/P3nllVdMfsHW27Fjh7Rr106cnZ3F09NTBg4cKFlZWQ/mG0IWr7x9dtGiRdKqVStxd3cXJycnadGihcycOVMKCwvNXpfPWqosOp1Ohg4dKg0aNBBHR0fx8vKSp556yiTQ0zt58qT069dPPDw8xNnZWTp16iTp6elm2/JZS1VNIyJS2dNViYiIiIiIyHIx+QwREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREVVbs2fPRkxMDEJCQqDRaNCgQYMKvf7SpUuIjY1FeHg4vL294eTkhIYNGyIuLg5ZWVlmX5Obm4uRI0eiTp06cHZ2Rps2bbBhwwazbU+fPo3hw4ejXr16cHR0RMOGDTFt2jQUFRVV9KOayMjIQL9+/eDv7w9nZ2eEhoYiPj4ev/zyS4WvpRER+ct3REREROUyffp0/P3vf8fevXvRrVu3qr4dIqJqT6PRwNvbG61atcLhw4fh7u6Os2fPlvv1P//8M0aPHo0OHTogKCgIzs7OOHXqFJYvXw6dTofMzEw0b97c0P63335DmzZtcOnSJUycOBH+/v5Yu3Yt9u3bh+XLlyM2NtbQ9qeffkKHDh1QXFyMF198EcHBwcjIyMCqVavw1FNPYdeuXdBoNPf1uXfv3o2oqCiEhoZi9OjR8PHxwYkTJ7BkyRI4Ojri2LFj0Gq15b+gEBER0X0BUKGvvXv3yrRp0wzHRER0Z3v37i3X8/L06dOG47CwMAkKCnog73/w4EEBIAkJCar6yZMnCwDZvn27oa64uFgiIyPF29tbrl+/bqjv37+/aDQa2b9/v+oas2bNEgCyevXq+76/p556Suzt7eXy5cuq+rS0NAEg8+fPr9D17O4rPCUiIiJMmzbNpO79999Hfn4+Xn75ZXh6eqrONWjQAOPHj8fQoUMRGBj4kO6SiKhmCwkJqZTrBgUFAQCuXr2qql+7di1CQ0PRt29fQ52trS1eeukljBw5Ejt37sTgwYMBAHv37kXjxo3RsWNH1TVGjRqFN954AytWrMCIESNU5/bs2YO5c+fi4MGDKCoqQuPGjfHCCy9g3LhxqnbXrl2Dk5MTvLy8VPV+fn4AAFdX1wp9XgaGRERE92n69OkmdStXrkR+fj4SExPvuM7Fx8encm+MiIgq7NatW8jPz8etW7eQlZVleMY//fTThjYXLlxATk4Ohg8fbvL69u3bAwAOHTpkCAx1Oh1cXFxM2urrDh48CBExTCddsmQJxo0bh/bt22Pq1KlwdXVFeno6EhIScPr0acybN89wjZ49eyIzMxPPP/88Jk+eDB8fHxw/fhxJSUlo1qwZhg4dWqHPz+QzRERED9H06dOh0Wjw5ZdfGurOnj0LjUaDUaNG4T//+Q+io6Ph5eUFDw8P9O/f37BWJisrCzExMfDx8YGLiwuefvrpOyYY+O9//4tXX30VTZo0MfxFOSoqCpmZmQ/hUxIRVT+fffYZ6tSpAz8/Pzz22GM4ceIE3nvvPTz33HOGNrm5uQBgdu2evi4nJ8dQFxYWhh9//BEXL15Utd27dy8AoKCgwDAieeHCBUyYMAFDhw7FgQMHMHnyZLzwwgvYsmULJkyYgJSUFNUzf8qUKUhISMDGjRsREREBf39/9OrVCyEhIcjMzISbm1uFPj8DQyIiIgtx5swZdOjQAfn5+YiLi0OnTp2wfft29OjRAz/++CPatWuHK1euYNSoUejWrRt27dqFqKgolJaWmlynVatWmDdvHrRaLV588UVER0cjIyMDjz32GHbs2FFFn5CIyLzS0lJcuXJF9ZWfnw8AyM/PNzl3+3PvQWjfvj3S09Oxfft2zJkzB76+vrh69SqKi4sNbQoLCwEAjo6OJq93cnJStQGApKQkFBUVoX///ti3bx9+/fVXrF+/HgkJCbC3t1e137hxI3Q6HeLi4kw+b9++fVFaWoo9e/YYrm1rawutVosePXpg6dKl2Lx5M5KSkrBnzx4MHToUt27dqtg34L5XOxIREZGJoKAgASBnzpwxe95c8pkzZ84YEtQkJyer2sfHxwsA8fT0vOO5zZs3q+o7d+4sNjY2JvW5ubni7+8v9erVkxs3btz/hyQiesDKPgfL83WnZ+yDTD6Tk5MjtWvXlrFjxxrqvvvuOwEgr776qkn7P/74QwDIsGHDVPULFiwQDw8Pw707ODjI9OnTJTIyUgBIfn6+iIgkJCTc83PPmDHDcN3hw4dLcHCwFBYWqt5v4cKFAkDS0tIq9Hm5xpCIiMhCBAcH45VXXlHVPffcc0hLS4O3t7fJuREjRiAtLQ3ff/89oqOjAQBHjx7FN998gyFDhhjq9Hx9fTF58mS8/PLL+PzzzxEVFVW5H4iIqJzq16+P9PR0Vd3333+PSZMmITk5GY8++qhJ+8rm5+eHHj16YNmyZViwYAEcHR0NiV3KThfV09fdPs30pZdewtixY3Hs2DHodDqEhYXB09MTqamp8PX1hbu7OwBA/txFcNWqVfD19TV7T/pEO9nZ2VizZg3Gjx8PZ2dnVZuYmBgkJCRg3759GDNmTLk/LwNDIiIiC/Hoo4/Cxka9ykP/y0F4eLjJOXO/oGRkZABQ9tkylxzn1KlTAJS9tRgYEpGlcHJyQo8ePVR1dnZKqNK6desq2/f1xo0bKCkpwbVr11CnTh34+vpCq9WaXa+tr2vTpo3JOUdHR1X9d999h8uXLyMuLs5Q16hRIwBKgrLbvxe30z/3S0pKTM7pp76WnQJbHgwMiYiILISHh4dJnf4Xo7udK7uO5LfffgMApKenm/z1vayCgoK/dK9ERNVRdnY2CgsLERoaaljjl5eXh3r16pm0PXnyJD7//HOEhoaiTp06hvphw4YhOTkZO3bsMGxZUVJSgn/84x/w9PRUZTE1p6ioCImJiXB0dMSkSZMM9YMHD8Ybb7yBadOmoVu3biYjgfn5+XBycoKjoyOaNGkCW1tbbN26FbNmzVJtj7Ry5UoAQGRkZIW+NwwMiYiIahB9ADl79my8/vrrVXw3RESVb/Xq1fj1118BAJcvX8bNmzfxzjvvAFD2IiybVXTkyJHYt28fzpw5Y9hSaPbs2UhPT0dUVBQaNGgAEcHx48exevVq3Lp1C6mpqar3e/3117FhwwY8++yzmDhxIrRaLT7++GMcOnQIS5cuVWUDPXHiBEaNGoU+ffrA398feXl5+Ne//oXTp09jxYoVaNq0qaGtv78/Fi5ciDFjxqBZs2Z47rnnEBQUhMuXL+PYsWPYunUrTp48iQYNGsDb2xuJiYl477330LJlS8THx8Pb2xv79+/HmjVrEBoaWqFppAADQyIiohqlXbt2AIxTSomIarply5Zh3759qro333wTANC1a1dVYGhOnz59cP78eaxfvx6XLl1CSUkJtFotYmJiMGnSJISFhana165dG/v378frr7+O1NRUFBQUoHnz5li3bh2GDBmiauvj4wN/f3+kpaXh0qVL8PDwQJcuXbB69Wq0bdvW5F5iY2PRuHFjJCcnY/Hixfj999/h4+ODJk2a4O2331atrZw3bx6aNGmCpUuXYtasWdDpdNBqtUhISMD06dMNaxfLi4EhERFRDRIZGYmOHTti+/btWL58OUaPHm3SJjMzE+Hh4WY3XSYishTdunUzJGS5m7L7wt5P2x49etxzTd/ttFotVq9efc929erVw5YtWyp07U6dOqFTp073bKfRaBAfH4/4+PgKXf9OGBgSERHVMGvXrsXjjz+OuLg4fPjhh4iMjISbmxvOnTuH7777DllZWbhw4QIDQyIiMmBgSEREVMMEBQXhyJEjeP/997FlyxasWrUKIgJfX188+uijeOutt+Dj41PVt0lERBZEI+UZnyUiIiIiIqIay+beTYiIiIiIiKgmY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFbu/wFpnMXWT8CJ6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.signal import savgol_filter\n", + "\n", + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=0.5)\n", + "plt.plot(dynspec.time, savgol_filter(dynspec.freq[tracing], 4, 2), color='red', alpha=1)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Shifting-and-adding\n", + "\n", + "Shift-and-add is a technique used to improve the detection of QPOs ([Méndez et al. 1998](https://doi.org/10.1086/311600)). Basically, the spectrum is calculated in many segments, just as in the dynamical power spectrum above, but then the single spectra are shifted so that they are centered in the variable frequency of the followed feature. \n", + "This technique is implemented in Stingray's Dynamic Cross- and Powerspectrum. We can apply it here, using the `trace_maximum` functionality from the sections above.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500.0, 1000.0)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJ2CAYAAADL+nZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4+ElEQVR4nOzdd3gUVdsG8HtTSIMEQqjSi4AgRaoiVRBERFQEBWmKqLy86qviJ4gIIjZEEOnSBaT3GkroLXQIEDohIaSQnmza7nx/xBlnZmdLdjckYe/fdXGR3Z3dPdtmzj3PmTM6QRAEEBERERERETnArbAbQERERERERMUfwyURERERERE5jOGSiIiIiIiIHMZwSURERERERA5juCQiIiIiIiKHMVwSERERERGRwxguiYiIiIiIyGEehd2A4s5oNOL+/fsoVaoUdDpdYTeHiIiIiIhckCAISE1NReXKleHmVjg1RIZLB92/fx9Vq1Yt7GYQERERERHh3r17qFKlSqE8N8Olg0qVKgUg70P09/cv5NYQEREREZErSklJQdWqVaV8UhgYLh0kDoX19/dnuCQiIiIiokJVmIfqcUIfIiIiIiIichjDJRERERERETmM4ZKIiIiIiIgcxnBJREREREREDmO4JCIiIiIiIocxXBIREREREZHDeCoSIiIiIpIYjUakpKQgKysLQOGe1oDIlQmCAADw8vKCv78/3NyKfl2Q4ZKIiIiIAOQFy5iYGJQuXRoBAQEMlkSFTBAEZGZmIiYmBhUqVCjyAZPhkoiIiIgAACkpKShdujR8fHwKuylEhLyRA+LvUfx9FmVFO/oSERER0SOTlZUFb2/vwm4GEal4e3tLQ9WLMoZLIiIiIpJwKCxR0VNcfpcMl0REREQEoPh0YIlcUXH4fTJcEhERERERkcMYLomIiIiIiMhhDJdERERERETkMIZLIiIiIiIqUqZNm4bFixcXdjMonxguiYiIiIioSGG4LJ4YLomIiIiIHhOpqamF3YRC4aqvu6hhuCQiIiIil7N48WLodDrs2bMH48ePR/Xq1eHl5YXGjRtj5cqVmvfZuHEj2rZtCz8/P5QsWRJt27bFpk2bFMsMHToU3t7eyMzMlK47duwYdDodAgMDYTQapet37NgBnU6HVatWKR5j1apVeP7551GqVCn4+vqidevWWLt2rUl7dDodhgwZgr179+L5559HyZIl8corr1h83WFhYXjzzTfxxBNPwMvLCxUrVkSnTp2wbds2h96bU6dO4bXXXkNQUBC8vLxQr149TJo0Cbm5uSbL3rhxA0OHDkWVKlVQokQJVK5cGa+++ipOnz4tva67d+/iwIED0Ol00r87d+4AAGrUqIGOHTvi7Nmz6NatGwICAtC4cWMAwPjx4xXLyon303oP9+3bh2effRa+vr6oUqUKfv75ZwBAYmIi3nvvPZQvXx6+vr7o2bMn7t+/b/E9dmUehd0AIiIiIiq6BEGAXq8v7GZY5OPjY/c5AP/v//4P6enpGDFiBABg0aJFePvtt5GZmYkhQ4ZIy82aNQv/+c9/UL9+fYwbNw5AXgjr3bs35s6di+HDhwMAOnfujMWLF+PIkSN44YUXAAB79+6Fm5sbEhMTcfbsWTRv3hwAsG/fPuh0OnTq1El6nrFjx2LSpEno3r07Jk6cCDc3N2zYsAFvvvkmZsyYgf/85z+K9p86dQrr1q3D+++/j8GDB1t8rQ8fPkTnzp0BAB9++CGqV6+O+Ph4nDp1CidOnMDLL79s13uzbds2vP7666hTpw4+//xzBAYG4tixYxg3bhzOnTuHNWvWKNr7wgsvICcnB++99x4aNWqEhIQEHDhwAEePHkXz5s3x119/4X//+x+CgoLw9ddfS/ctV66c9HdERAQ6d+6MN998E2+88QbS0tIsvnZLzp49iy1btmD48OEYNGgQVq9eja+++gre3t5YsmQJatSogfHjx+PGjRuYPn06Bg0ahD179tj9fI8znSAIQmE3ojhLSUlBQEAAkpOT4e/vX9jNISIiIidITk6Gp6cnfH19C7spj1RsbCzKly+vuC4jIwO//PJLIbXINl9++WW+P6vFixdj6NChqFatGi5cuICAgAAAeZ9948aNkZqaiqioKPj4+CAxMRFVq1ZFxYoVcebMGanPl5KSgmbNmiE2Nhb37t1D6dKlERUVhSpVqmDMmDGYNGkSgLzAWapUKYSEhGDs2LH48ssvAQDNmzdHdnY2Ll68CAA4c+YMmjdvjtGjR+OHH35QtLd3797Yt28foqKiUKpUKQCQAvXu3bvRpUsXq6958+bNePXVV7Fq1Sr07dvXKe9NZmYmatSogSeffBL79u2Dh8e/taupU6fis88+Q0hICDp27AhBEPD000/jxo0bOHnypFRtFBmNRri55Q2srFGjBmrUqIH9+/ebtK9GjRq4e/cu/vzzTwwbNkxx2/jx4zFhwgTcvn0bNWrUMLmf+jHFquixY8fQunVrAEB2djaqV6+OmJgYjBw5EtOnT5eW/+yzzzB16lRcvXoV9erVM/9mFwCt36dcUcglHBZLREREJLN161aUL18eNWvWxI0bNwq7OVTAPvroIyk8AUBAQAA+/PBDJCYmSiFk9+7dSE9Px8cff6zotPv7++Pjjz9GWlqaVMl64oknpKAFAJmZmTh27Bi6deuGDh06YO/evQCApKQknDt3TqokAsDy5cuh0+kwePBgxMfHK/716tULqampOHbsmKL9TZo0sSlYiq8NyBuOm5KS4rT3JiYmBkOHDkVSUpKizT169AAABAcHAwDOnTuHsLAwDB061CRYApCCpS0CAwMxdOhQm5e35Nlnn5WCJQCUKFECrVq1giAI+PjjjxXLtmvXDgBw/fp1pzz344bDYomIiIhklixZguzsbMTGxmLTpk34/PPPC7tJVIAaNGhgct1TTz0FALh16xYA4Pbt2wCAhg0bmiwrXicuC+RVKufPn4/U1FSEhoYiMzMTnTt3RlZWFsaOHYvs7Gzs378fRqNRES6vXLkCQRBQv359s+2NiYlRXH7yySdtfano0KEDBg0ahMWLF2P58uVo2bIlunTpgn79+kmvWc6W9+bKlSsAgHfffddqm8VA1qxZM5vbbE7t2rXh7u7u8OMAQK1atUyuK1OmDACgZs2amtc/fPjQKc/9uGG4JCIiIpKRH7uVkZFRiC0pGnx8fKRhnEWVj49PYTdBoXPnzpgzZw4OHjyIY8eOoXLlyqhfvz6ysrKQkZGB48ePY9++fXB3d0eHDh2k+wmCAJ1Ohx07dpgNTuqAm9/hwEuWLMGoUaOwY8cOHDp0CFOmTMGkSZMwbdo0jBw5Mt+vVTzCbvLkyWjatKnmMpUrV87341pj7nVbOvZWa3IhABZDqrnbeGShNoZLIiIiIpmcnBzpb3OdUVei0+ke62NPr1y5gldffVVx3eXLlwH8W9ES/w8LC5Mm6TG3LAB06tQJOp0Oe/fuxbFjx6TqZOPGjREUFIS9e/ciJCQEzZo1Q+nSpaX71a1bFzt37kS1atU0q4bO0qhRIzRq1AijRo1CUlISWrduja+++gr/+c9/FOHMlvembt26AAA/Pz+rw3PFKuu5c+esttHeCZoCAwMBAAkJCYpjLjMzMxEdHY06derY9bhkGx5zSURERCTDcOlaZs+ejeTkZOlycnIy5syZg9KlS0tVxa5du8LPzw9//PGH4nyKqamp+OOPP1CyZEl07dpVuj4oKAhPP/00tm7dilOnTknhUpwZds2aNQgLC1MMiQWAgQMHAgDGjBkDg8Fg0lb1kNj8SkhIUJwKBQBKly6NmjVrIiMjQ3H6FMC296Zbt24oX748fvrpJyQkJJg8p16vl96zJk2aoGHDhli4cCHCwsJMlpVXA0uWLKn5eNaIAVY9m+vUqVNNXjs5HyuXRERERDLycCn/mx5PQUFBaN26tTQ5zKJFixAREYH58+dLFdvSpUvjl19+wX/+8x+0bt1aOg3H4sWLcePGDcydO1cx8Q2QNzR22rRp0t/y68VTc6jDZcuWLTF+/HiMHz8eTZs2xZtvvonKlSsjOjoap0+fxvbt25GdnW33a126dCmmTp2K1157DXXq1IGnpycOHDiAXbt2oW/fvibDi215b/z8/LB06VL07t0b9erVw7vvvos6deogKSkJV69exfr167FhwwZ07NgROp0OixYtwgsvvIBWrVpJpyJJSkrCgQMH0L17d/z3v/8FALRp0wYLFizAN998gwYNGsDNzQ2vvPIK/Pz8LL7GLl26oF69ehg3bhwePnyImjVr4vDhwzh+/DiCgoLsfu/INgyXRERERDLyaiUrl4+/n3/+GYcOHcLMmTMRExODJ598EsuXL0f//v0Vy40YMQKVKlXC5MmTMWHCBAB5lbgNGzagd+/eJo8rhstatWqhevXq0vXisFpPT09p5lG5b7/9Fi1atMD06dMxbdo0pKeno3z58mjUqJHilBj26NixI86ePYutW7ciOjoa7u7uqFmzJn799VfN4y1tfW+6deuG0NBQ/PTTT1i2bBni4uJQpkwZ1K5dG5999pliZtiWLVsiNDQUEydOxOrVqzFnzhwEBQWhVatWaNu2rbTcpEmTkJCQgJkzZyIpKQmCIOD27dtWw6W7uzs2b96Mjz/+GH/88QdKlCiBF198EQcOHFA8PhUMnufSQUXhfDJERETkPM2aNZOOCfvvf//rcIe+OLF2Hr3HiXguR/EcjPQvvjdFE89zSURERFTM8JhLIiL7FLlwGR4ejgEDBqBBgwYICAiAr68v6tevj88++wzR0dE2P8727dvx3HPPwc/PD4GBgXjzzTelcxQRERERmcNwSURknyJ3zGVkZCSio6Px2muvoUqVKvDw8MDFixcxb948rFy5EufOnbM6XGP9+vXo06cPmjRpgsmTJyM5ORnTpk1D27ZtcerUqQI51w4RERE9HhguiYjsU2yOuVyzZg369u2Ln3/+2eKJfHNyclCjRg14eHggLCwMJUuWBJB3Pp3mzZvjvffew7x585zWrqIwtpmIiIicp2rVqoiMjASQd2qIpUuXFnKLHh1XOuaSqLjhMZdOJM6ylZiYaHG5AwcO4P79+xg2bJgULAGgadOm6NixI1atWsVpxYmIiMgsVi6JiOxTZMNlZmYm4uPjERkZieDgYHzwwQcAgB49eli8X2hoKADg2WefNbmtTZs2SElJwbVr15zfYCIiInos8DyXRET2KXLHXIrmz58vnUQVAGrUqIFly5Zpng9I7v79+wCAJ554wuQ28bqoqCg0bNjQrnZVqlRJcdloNNr1OERERFQ0sXJJRGSfIhsue/fujfr16yMtLQ1nz57F5s2bER8fb/V+GRkZAAAvLy+T27y9vRXLEBEREakxXBIR2afIhssqVaqgSpUqAPKC5htvvIGWLVsiIyMDo0ePNns/X19fAEBWVpbJbZmZmYpl7KE+HYp44CwRERE9HhguiYjsU2SPuVRr3LgxmjVrhlmzZllcTjzNSFRUlMlt4nVaQ2aJiIiIBEGAwWCQLjNcEhHZrtiESwDQ6/VISEiwuEzLli0BAMeOHTO57fjx4/D398eTTz5ZIO0jIiKi4k09gQ/DJRGR7YpcuHzw4IHm9SEhIbh06RLatGkjXRcdHY2rV68qjqHs0KEDKlWqhPnz5yMtLU26/vz589i/fz/efPNNeHp6FtwLICIiomKL4ZKIyH5FLlx+9NFHaNOmDcaMGYO5c+fi999/x6BBg9CtWzeUKlUKU6ZMkZYdPXo0GjRogJMnT0rXeXp64vfff8e9e/fQrl07zJo1Cz/99BNefPFFlCtXDhMmTCiMl0VERETFgDpc8lQkBAA6nQ5Dhgyxadnx48dDp9Phzp07iuvPnTuHF154AWXKlIFOp8P48eOd3k4t+Wl7YRgyZAh0Ol2Rfc79+/dDp9Nh8eLFTm9Hx44dUaNGDac/bmEqchP6vP3221i6dCn++usvxMXFQafToXr16vjggw8watQoVKtWzepjvPnmm/Dx8cH333+PL774Al5eXnjhhRfw888/83hLIiIiMouVS9dy69Yt/PTTTzh48CAiIiLg5eWFihUrolWrVhgyZAg6derklOfJzc3FG2+8gZycHEycOBGlS5dG48aNsXHjRpw7d+6RBU2iglbkwmXfvn3Rt29fm5ZdvHix2b0IPXv2RM+ePZ3YMiIiInrcMVy6jlOnTqFDhw7w9PTEoEGD0LBhQ+j1ely/fh3BwcEoVaqUXeFy7Nix+OqrrxSnxbt16xZu3bqFKVOmYOTIkdL1v/32G5YsWcJwSY+NIhcuiYiIiAoLw6XrmDBhAjIyMnDu3Dk0adLE5HZz84BY4+HhAQ8PZRdbfKzAwEC7HpOouChyx1wSERERFRaGS9dx/fp1lC1bVjNYAkDFihVNrjt27Bg6dOgAPz8/lC1bFsOGDVNMIAmYHnPZsWNHdOjQAQAwdOhQ6HQ66HQ61KhRA0uWLAEA6Tr1sX3R0dH46KOPUK1aNZQoUQKVK1fG8OHDERsba9K2sLAwdO/eHX5+fggMDMSAAQM0l7Pk6tWrGDFiBBo2bIhSpUrB19cXzZs3x/z5802WFV9neHg4xowZgypVqsDLywtNmjTB9u3bTZbPzMzEqFGjULlyZfj4+KBVq1YIDg7OV/uMRiMmTZqE9u3bo2LFiihRogSqVauGjz76CA8fPnT4OTdt2oRmzZrB29sbVatWxTfffGP2uOusrCz88MMPaNiwIby9vVG6dGm88sorOHv2rMmyiYmJeP/99xEUFAQ/Pz907NgRp0+fztdrLy5YuSQiIiL6B8OlKaPRaPVUcIUtMDAQbm75q5nUrl0b4eHhWL9+PV5//XWry587dw49e/bE0KFD0b9/f+zfvx8LFiyAm5sb5s2bZ/Z+X3/9Ndq2bYsffvgBw4cPR7t27QBAmqjy0KFD+Ouvv6Tln3vuOQBAREQEnn32WWRnZ+O9995D7dq1cePGDcyePRshISE4deoUAgICAAC3b99Gu3btkJWVhZEjR6Jq1arYsmULunfvnq/3ZP/+/Th48CB69uyJmjVrIj09HWvWrMH777+PuLg4jB492uQ+gwcPhqenJ7744gtkZ2dj2rRp6N27N65du6aYrObtt9/Gxo0b8corr6Bbt264efMmXn/9ddSsWdPm9mVnZ2Py5Ml444038Oqrr8LPzw+hoaFYsGABDh8+jNOnT6NEiRJ2PeeGDRvwxhtvoEaNGhg3bhw8PDywaNEibNu2zWTZnJwcdO/eHUePHsXAgQMxcuRIJCcn488//0Tbtm1x8OBBtGjRQlq2W7duCA0NxcCBA9GmTRucO3cOXbp0QdmyZW1+7cWGQA5JTk4WAAjJycmF3RQiIiJy0Pnz5wUA0r/q1asXdpMeqZiYGJPr4uLiFO9JUfwXFxeX79d69OhRwdPTUwAg1K1bVxg6dKgwa9Ys4fLlyybLAhB0Op1w/PhxxfU9evQQPDw8hNTUVOm6b7/9VgAg3L59W7ouJCREACAsWrRIcf/BgwcL5rrjvXr1EsqVKyfcu3dPcX1oaKjg7u4ufPvtt9J1b7/9tgBA2Ldvn3Sd0WgUevfuLQAQBg8ebOXdyJOWlmZyncFgEDp06CD4+/sL2dnZJq/z5ZdfFoxGo3T9yZMnBQDCV199JV23a9cuzXZs2LBB+gxtYTQahYyMDJPr58+fLwAQVq1aZddz5ubmClWrVhXKli2r+C4lJSUJ1apVM/nsfvvtNwGAsHPnTsVjJycnC1WrVhU6dOggXTd37lwBgDBu3DjFslOnTs33Okbr96l+/sLOJRwWS0RERPQPVi5dx7PPPovTp09j8ODBSE5OxqJFizBixAg89dRTaN++PW7dumWyfOvWrRXXde7cGbm5uSanHXFUcnIytm7dil69esHb2xvx8fHSvxo1aqBOnTrS8E6j0YgtW7agRYsWigmIdDodvvzyy3w9r5+fn/R3ZmYmHj58iISEBLz44otISUnB1atXTe7zySefKE7r0bJlS5QsWRLXr1+Xrtu4cSMAYNSoUYr79u7dG/Xq1bO5fTqdDj4+PgAAg8GApKQkxMfHo3PnzgCAEydO2PWcp0+fxr179zB06FAEBQVJ1wcEBODDDz80aceyZctQv359NG/eXPHZZGdno2vXrjh8+DD0er3UDnd3d3z++eeKx/joo4/g7+9v82svLjgsloiIiOgfPM+la3n66aelYxzv3r2LAwcOYP78+Th06BBeffVVxTDLWrVqmdxfHNaodbyfI8LDw2E0GrFgwQIsWLBAcxmxPbGxsUhLS0P9+vVNlnnqqadMrouLi4PBYJAuu7u7o1y5cgCAtLQ0jB8/HqtXr8a9e/dM7puYmGi2HXJly5ZVvCe3bt2Cm5sbnnzySZNlGzRogPDwcOlyWlqayXGsgYGB0uewevVqTJkyBWfPnjX5fcrbl5/nFHck2PoeXrlyBXq9XnrftMTHx6Nq1aq4desWKlWqZBIkvby8UKtWLc33tDhjuCQiIiL6ByuXpgIDAxEXF1fYzbDIGbOwVq9eHYMGDcLAgQPRrl07HDlyBCdPnsTzzz8PIC+EmSMIgsPPr/V477zzDgYPHqy5jFjBy6+WLVvi7t270uXq1atLldf+/ftj69atGD58ONq3b4+yZcvC3d0d27dvx9SpU2E0Gk0ez9z7Yu978uuvv2LChAmK60JCQtCxY0esX78e/fr1Q6tWrfD777+jatWq8Pb2hsFgQPfu3TXbVxAEQcDTTz+N3377zewyloLn44zhkoiIiOgfDJem3NzcFEMFH3c6nQ6tW7fGkSNHEBUVVeDPpaVOnTrQ6XTIzs5Gly5dLD5GuXLlULJkSc0hq5cvXza5bvny5dKQTeDfkJqUlIStW7di4MCBmDNnjuI+e/bssfpaLKlVqxaMRiOuXbuGhg0bKm67cuWK4vKgQYOkQC8SZ/T966+/4O3tjZCQEPj6+kq3a732/DynWH219T2sW7cu4uLi0LlzZ6sTSdWqVQvBwcFISUlRVC+zsrJw69YtlClTxuL9ixsec0lERET0D4ZL17F7927Nz1ev10vHM2oNiXSmkiVLAoDJbLxly5ZFjx49sH79ehw/ftzkfoIgSNVkd3d39OzZE6dOnUJISIhimV9++cXkvm3btkWXLl2kf23btpUeR7yfXHR0tOapSPLj1VdfBQBMnjxZcf3GjRsVw1OBvDAmb1+XLl2kAObu7g6dTqeoUAqCgO+//96h52zevDmqVKmCRYsWIT4+Xro+JSXFJGgDeQH4wYMHZiuXMTExinYYDAZMmTJFsczs2bORkpKief/ijJVLIiIion8wXLqO//3vf3j48CF69eqFp59+Gr6+vrh37x5WrFiBa9euYdCgQXj66acLtA1t2rTBjBkzMGLECLz88svw9PRE69atUbNmTcyePRvPP/882rdvj0GDBqFZs2YwGo24desWNm3ahEGDBmH8+PEAgO+//x47duxAz5498d///hdVqlTBli1b8jWcuVSpUnjxxRexbNky+Pj4SMNn586di5o1azp0XGm3bt3wyiuvYMmSJUhISED37t1x8+ZNzJ07F40aNcKlS5dsepw+ffpg3bp16Ny5MwYNGoScnBxs3LgRGRkZDj2nu7s7pk6dir59+6JVq1Z4//334eHhgYULF6Js2bKIiIhQPPYnn3yC3bt3Y9SoUdi3bx86d+4Mf39/REREYO/evVJ1Fcg7t+m8efPw3Xff4fbt23j22Wdx9uxZrFmzBrVr13781jGFNk/tY6IoTPlLREREzrF+/XrFKS7c3NwKu0mPlLVTHTxOdu3aJYwYMUJo3LixULZsWcHd3V0IDAwUOnbsKCxYsEAwGAzSsjBzOo9FixYJAISQkBDpuvycisRgMAiff/658MQTTwhubm4my8TFxQlffPGFULduXcHLy0sICAgQGjVqJHz88cdCWFiY4rEuXLggdO3aVfD19RXKlCkj9O/fX4iJicnXqUji4uKE9957T6hUqZLg5eUlNGrUSJg3b57Nr1NUvXp1xek4BEEQMjIyhM8++0yoUKGC4O3tLbRs2VLYtWuXxdOxaJk3b57QoEEDwcvLS6hYsaLw/vvvCw8fPtR8nfl9znXr1glNmjQRSpQoIVSpUkUYO3asEBwcrPnZ5eTkCL///rvQokULwdfXV/D19RXq1Kkj9O/fX9i1a5di2YcPHwrvvvuuEBgYKPj6+godOnQQQkNDhQ4dOjx2pyLRCYKTj0B2MSkpKQgICEBycvJjOZ0wERGRK1m9ejX69eunuM5gMFg9rupxERsbi/Llyxd2M4hIg7XfZ1HIJa6xpiQiIiKygdapRx67YWtERAWE4ZKIiIjoHwyXRET2Y7gkIiIi+gfDJRGR/RguiYiIiP7BcElEZD+GSyIiIqJ/MFwSEdmP4ZKIiIjoHwyXRET2Y7gkIiIi+oerh0ueoY6o6CoOv0+GSyIiIqJ/uHq4BIpHB5bI1RSX3yXDJREREdE/tMKl1nWPKy8vL2RmZhZ2M4hIJTMzE15eXoXdDKsYLomIiIj+4eqVS39/fyQlJUGv1xebSgnR40wQBOj1eiQlJcHf37+wm2OVR2E3gIiIiKiocPVw6ebmhgoVKiAlJQUpKSkAAJ1OV8itInJN4g4eLy8vVKhQAW5uRb8uyHBJRERE9A9XD5dAXsAsXbp0YTeDiIqhoh9/iYiIiB4RhksiIvsxXBIRERH9g+GSiMh+DJdERERE/2C4JCKyH8MlERER0T9c/VQkRESOYLgkIiIi+gcrl0RE9mO4JCIiIvoHwyURkf0YLomIiIj+wXBJRGQ/hksiIiKifzBcEhHZj+GSiIiI6B8Ml0RE9mO4JCIiIvoHwyURkf0YLomIiIj+wXBJRGQ/hksiIiKif/A8l0RE9mO4JCIiIvoHK5dERPZjuCQiIiL6B8MlEZH9GC6JiIiI/sFwSURkP4ZLIiIion8wXBIR2Y/hkoiIiOgfDJdERPZjuCQiIiL6B8MlEZH9GC6JiIiI/sFTkRAR2Y/hkoiIiOgfrFwSEdmP4ZKIiIjoHwyXRET2Y7gkIiIiAiAIgmaQZLgkIrINwyURERERzIdIhksiItswXBIRERHB/MQ9DJdERLZhuCQiIiICwyURkaMYLomIiIjAcElE5CiGSyIiIiKYD5c8zyURkW0YLomIiIjAyiURkaMYLomIiIjAcElE5CiGSyIiIiIwXBIROYrhkoiIiAg8zyURkaMYLomIiIjAyiURkaMYLomIiIjAcElE5CiGSyIiIiLwVCRERI5iuCQiIiICK5dERI5iuCQiIiICwyURkaMYLomIiIjAcElE5CiGSyIiIiIwXBIROYrhkoiIiAgMl0REjmK4JCIiIgLDJRGRoxguiYiIiMBwSUTkKIZLIiIiIvA8l0REjmK4JCIiIgIrl0REjmK4JCIiIoIyXLq5/dtFYrgkIrINwyURERERlOHSx8dH+pvhkojINgyXRERERGC4JCJyFMMlEREREZTh0tfXV/qb4ZKIyDYMl0RERERg5ZKIyFEMl0REREQwHy55KhIiItsUuXB57do1jBs3Dm3atEG5cuVQqlQpNG3aFJMmTUJ6erpNjyEIAlasWIHnnnsOQUFBKFWqFBo2bIjvvvsOKSkpBfwKiIiIqDgyFy4FQYDRaCyMJhERFStFLlwuXLgQU6dORe3atTFu3DhMnjwZ9erVw9ixY/Hcc89Br9dbfYyxY8diwIAB8PHxwbfffovJkyfj6aefxrfffosXX3wRgiA8gldCRERExYm5cAlwaCwRkS08CrsBan369MHo0aMREBAgXffhhx+ibt26mDRpEhYsWICRI0eavX9ubi6mTZuGZ555Brt375bOU/Xhhx/Cw8MDy5cvx/nz59G0adOCfilERERUjFgLlyVKlHjUTSIiKlaKXOWyRYsWimAp6tevHwDg0qVLFu+fk5MDvV6PihUrKk6ADACVK1cGAPj5+TmptURERPS4YOWSiMgxRa5yaU5kZCQAoEKFChaX8/HxQfv27bFz5078/PPPeOONN+Dh4YH9+/dj1qxZeOedd1C3bl2721GpUiXFZR6DQURE9HhguCQickyRq1xqMRgMmDhxIjw8PNC/f3+ryy9fvhydO3fGV199hbp166JmzZp499138b///Q9Lly59BC0mIiKi4sbceS4BhksiIlsUi8rlp59+imPHjuGHH35AvXr1rC7v5eWFmjVrYtCgQXjppZcAAOvWrcP3338Pb29vfP3113a3JTo6WnE5JSVFcxgvERERFS+sXBIROabIh8tvvvkGM2bMwPDhwzF69Giry2dkZOC5557DM888g5UrV0rXv/XWW3jrrbcwbtw49OnTx6aQSkRERK7DUrjkuS6JiKwr0sNix48fj++//x5Dhw7FnDlzbLrP2rVrcf36dbz55psmt7355pswGo04fPiws5tKRERExRwrl0REjimy4XL8+PGYMGECBg8ejPnz50On09l0v6ioKAB5x2mqiRsGbiCIiIhIjeGSiMgxRTJcfvfdd5gwYQIGDhyIhQsXmpxSRBQdHY2rV68iIyNDuu6pp54CACxZssRkefG6li1bFkCriYiIqDiTh0svLy/Fjm2GSyIi64rcMZczZ87Et99+i2rVqqFLly5YsWKF4vYKFSqga9euAIDRo0djyZIlCAkJQceOHQEAPXv2RKtWrbB9+3a0b98er7/+OgBg/fr1OHToEN58800888wzj/Q1ERERUdEnD5eenp7w8PCQrmO4JCKyrsiFy9DQUABAREQEBg8ebHJ7hw4dpHCpxd3dHXv27MGPP/6I9evX4//+7/+g0+lQt25d/Pzzz/jss88KrO1ERERUfDFcEhE5RicIglDYjSjOxFORJCcnw9/fv7CbQ0RERHZq0aIFTp8+DSDvUJqRI0ciNTUVAHD8+HG0bt26MJtHRGRRUcglRfKYSyIiIqJHTV259PT01LyNiIi0MVwSERERQXtYrIjDYomIrGO4JCIiIgLDJRGRoxguiYiIiMBwSUTkKIZLIiIiIjBcEhE5iuGSiIiICAyXRESOYrgkIiIiAsMlEZGjGC6JiIiIYPlUJAyXRETWMVwSERERwXLlkue5JCKyjuGSiIiICBwWS0TkKIZLIiIicnkGgwGCIEiXGS6JiPKP4ZKIiIhcnnrYK8MlEVH+MVwSERGRy2O4JCJyHMMlERERuTyGSyIixzFcEhERkctjuCQichzDJREREbk8rXApP88lT0VCRGQdwyURERG5PFYuiYgcx3BJRERELo/hkojIcQyXRERE5PLU4dLd3Z3hkogonxguiYiIyOXJw6Wnpyd0Oh3DJRFRPjFcEhERkctTh0sADJdERPnEcElEREQuj+GSiMhxDJdERETk8hguiYgcx3BJRERELk8rXPI8l0RE+cNwSURERC6PlUsiIscxXBIREZHLY7gkInIcwyURERG5PIZLIiLHMVwSERGRy2O4JCJyHMMlERERuTyGSyIixzFcEhERkctjuCQichzDJREREbk8a+GSpyIhIrKO4ZKIiIhcnrXzXLJySURkHcMlERERuTwOiyUichzDJREREbk8hksiIscxXBIREZHLY7gkInIcwyURERG5PIZLIiLHMVwSERGRy2O4JCJyHMMlERERuTyGSyIixzFcEhERkcuTh0ee55KIyD4Ml0REROTyeJ5LIiLHMVwSERGRy+OwWCIixzFcEhERkctjuCQichzDJREREbk8hksiIscxXBIREZHLY7gkInIcwyURERG5PIZLIiLHMVwSERGRy7MWLnkqEiIi6xguiYiIyOWxcklE5DiGSyIiInJ5PM8lEZHjGC6JiIjI5VmrXAqCAKPR+MjbRURUnDBcEhERkcuzFi4BVi+JiKxhuCQiIiKXx3BJROQ4hksiIiJyeQyXRESOY7gkIiIil8dwSUTkOIZLIiIicnm2hEue65KIyDKGSyIiInJ5rFwSETmO4ZKIiIhcnrXzXAIMl0RE1jBcEhERkctj5ZKIyHEMl0REROTy5OGyRIkSABguiYjyi+GSiIiIXF52drb0t1i5dHNzg06nk65nuCQisozhkoiIiFyePFyKlUtAWb1kuCQisozhkoiIiFyaIAiaw2IBZbjkqUiIiCxjuCQiIiKXZjAYIAiCdFk+Sywrl0REtmO4JCIiIpcmHxILKCuX8qDJcElEZBnDJREREbk09XBXHnNJRGQfhksiIiJyaerKJYfFEhHZh+GSiIiIXJqlYbEMl0REtmO4JCIiIpfGYbFERM7BcElEREQujcNiiYicg+GSiIiIXJo8XLq5ucHd3V26zPNcEhHZjuGSiIiIXJo8NMqHxAKsXBIR5QfDJREREbk0eeVSPiRWfZnhkojIMoZLIiIicmnycMnKJRGR/YpcuLx27RrGjRuHNm3aoFy5cihVqhSaNm2KSZMmIT093ebHyc3NxfTp0/HMM8/Az88PAQEBeOaZZzB37twCbD0REREVN/JhserKJcMlEZHtPKwv8mgtXLgQM2fORK9evTBgwAB4enoiJCQEY8eOxerVq3H8+HH4+PhYfIzs7Gz06tULISEhGDBgAD788EPk5ubi+vXruHv37iN6JURERFQcsHJJROQcRS5c9unTB6NHj0ZAQIB03Ycffoi6deti0qRJWLBgAUaOHGnxMSZOnIg9e/Zg9+7d6NSpU0E3mYiIiIoxhksiIucocsNiW7RooQiWon79+gEALl26ZPH+6enp+P333/Hqq6+iU6dOEAQBqampBdJWIiIiKv5sHRbLU5EQEVlW5MKlOZGRkQCAChUqWFzu0KFDSE1NRfPmzfHJJ5/A398f/v7+KFeuHMaMGcO9jkRERKTAyiURkXMUuWGxWgwGAyZOnAgPDw/079/f4rLh4eEAgGnTpqFEiRL45ZdfULZsWSxfvhw//vgjoqKisGTJErvbUqlSJcVlo9Fo92MRERFR4WO4JCJyjmIRLj/99FMcO3YMP/zwA+rVq2dxWXEIbEJCAsLCwqTl+/bti06dOmHp0qX46quv0KBBgwJvNxERERV9lobF8jyXRES2K/LDYr/55hvMmDEDw4cPx+jRo60uL84k26ZNG5MgOmjQIADA/v377W5PdHS04t/169ftfiwiIiIqfKxcEhE5R5EOl+PHj8f333+PoUOHYs6cOTbdp0qVKgCAihUrmtwmDmlNTEx0XiOJiIioWGO4JCJyjiIbLsePH48JEyZg8ODBmD9/PnQ6nU33a9WqFYB/JwCSE68rX7688xpKRERExZqts8UyXBIRWVYkw+V3332HCRMmYODAgVi4cCHc3LSbGR0djatXryIjI0O6rmbNmmjbti1OnjyJM2fOSNcbDAb8+eef8PDwwIsvvljgr4GIiIiKB1YuiYico8hN6DNz5kx8++23qFatGrp06YIVK1Yobq9QoQK6du0KABg9ejSWLFmCkJAQdOzYUVrmjz/+QLt27dClSxd8/PHHKFu2LFatWoWTJ09i3LhxqFat2qN8SURERFSE2RoueZ5LIiLLily4DA0NBQBERERg8ODBJrd36NBBCpfmNGvWDEePHsXYsWMxbdo0ZGZmokGDBli0aBGGDBlSEM0mIiKiYorDYomInKPIhcvFixdj8eLFDi/buHFjbN682XkNIyIioscSh8USETlHkTzmkoiIiOhRsRQueZ5LIiLbMVwSERGRS+OwWCIi52C4JCIiIpfGYbFERM7BcElEREQujeGSiMg5GC6JiIjIpdk6LJanIiEisozhkoiIiFyapcql/LJ8OSIiMsVwSURERC7NUrj09vaW/s7MzHxkbSIiKo4YLomIiMilWRoWy3BJRGQ7hksiIiJyaaxcEhE5B8MlERERuTSGSyIi52C4JCIiIpfGYbFERM7BcElEREQuzVLl0sfHR/qb4ZKIyDKGSyIiInJpHBZLROQcDJdERETk0jgslojIORguiYiIyKXZWrnU6/UQBOGRtYuIqLhhuCQiIiKXZmu4VC9LRERKDJdERETk0mwdFgtwaCwRkSUMl0REROTS8lO5ZLgkIjKP4ZKIiIhcGsMlEZFzMFwSERGRS+OwWCIi52C4JCIiIpdlMBhgNBqly+rKpbu7uyJwMlwSEZnHcElEREQuSz37qzpcAjzXJRGRrRguiYiIyGXJh8QCpsNiAYZLIiJbMVwSERGRy2LlkojIeRguiYiIyGWpw6W1yqVery/wNhERFVcMl0REROSy1MNiWbkkIrIfwyURERG5LA6LJSJyHoZLIiIiclnqcOnu7m6yDMMlEZFtGC6JiIjIZcmHxZYoUQI6nc5kGYZLIiLbOBQu3d3dMWDAAGe1hYiIiOiRklcutYbEAgyXRES2cihclipVCtWqVXNWW4iIiIgeKXm41JopFgB8fHykvxkuiYjMcyhcNmvWDJcvX3ZWW4iIiIgeKfWwWC2sXBIR2cahcPl///d/2L59O3bv3u2s9hARERE9MhwWS0TkPB6O3Dk2Nhbdu3fHSy+9hN69e6Nly5aoWLGi5sHwgwYNcuSpiIiIiJzOlmGxDJdERLZxKFwOGTIEOp0OgiBg/fr1WL9+PQAowqUgCNDpdAyXREREVOTkd1isXq8v8DYRERVXDoXLRYsWOasdRERERI8ch8USETmPQ+Fy8ODBzmoHERER0SPHYbFERM7j0IQ+RERERMUZZ4slInIep4TLTZs2oV+/fmjSpAnq1KkjXX/lyhX88ssviIqKcsbTEBERETkVh8USETmPQ8NiBUHAO++8g5UrVwLIO8mw/ED3wMBAfP311zAYDBg9erRjLSUiIiJyMluGxfr4+Eh/M1wSEZnnUOVy+vTp+PvvvzFs2DAkJCTgiy++UNxeoUIFPP/889i2bZtDjSQiIiIqCBwWS0TkPA6Fy4ULF+KZZ57B3LlzERAQoHl+yzp16uDOnTuOPA0RERFRgeCwWCIi53EoXF6/fh0dOnSwuExQUBDi4+MdeRoiIiKiAsHZYomInMehcFmiRAmkpaVZXObevXvw9/d35GmIiIiICgSHxRIROY9D4bJJkybYs2ePYsUsl5qait27d6NFixaOPA0RERFRgcjvsFj5xIVERKTkULgcNmwYbt++jSFDhphUMOPj49G/f3/Ex8fjgw8+cKiRRERERAWBw2KJiJzHoVORDBw4EHv27MFff/2FdevWoXTp0gCAp556Cjdv3kROTg6GDRuGV1991RltJSIiInKq/A6LzcnJgcFggLu7e4G3jYiouHGocgkAS5YswZ9//on69esjLi4OgiDg6tWrqFu3LubOnYt58+Y5o51ERERETpffYbEAkJWVVaBtIiIqrhyqXIree+89vPfee9Dr9UhMTERAQAD8/Pyc8dBEREREBcaWYbE+Pj6Ky5mZmfD19S3QdhERFUdOCZciHx8fkxUwERERUVGV32GxAI+7JCIyx6FhsW3atMHXX3+NPXv2cEVLRERExY49w2LZ5yEi0uZQ5fLChQs4efIkfvrpJ5QoUQKtW7fGCy+8gM6dO6NNmzY82J2IiIiKNFuGxapDJ8MlEZE2h8JlUlISjh07hj179mDv3r04evQoDh48iPHjx8PX1xfPP/88OnfujM6dO6N58+bOajMRERGRU9gyLFan08Hb21sKlQyXRETaHAqXJUqUQIcOHdChQwdMnDgRaWlpOHDgAPbt24d9+/YhODgYwcHB0Ol0yM3NdVabiYiIiJzClmGxABguiYhs4NQJfUqWLIlmzZohMTERCQkJiIqKQnx8vDOfgoiIiMhpbBkWCyiPu9Tr9QXaJiKi4srhcJmQkICQkBCpWnnt2jUIgoDAwEB06NABnTt3xgsvvOCMthIRERE5lS3DYgFluGTlkohIm0PhslmzZrh48SIEQYCfnx/atWuHYcOGoXPnzmjatCl0Op2z2klERETkdPkZFitiuCQi0uZQuDx//jx0Oh26du2Kr776Cu3ateMMsURERFRs2DMsluGSiEibQ+e5/N///ofGjRtj9+7deOGFF1CmTBm8/PLLmDp1Ks6fP++sNhIREREVCFuHxfr4+Eh/M1wSEWlzqHI5ZcoUAHnHXYrHXO7btw87duyATqdD2bJl0alTJ7zwwgsYPny4UxpMRERE5CwcFktE5DwOVS5FgYGB6NOnD2bNmoWrV68iMjISU6ZMgZubG9auXYsRI0Y442mIiIiInIrDYomInMdppyJJT0/HwYMHsXfvXuzduxcXL16E0WgEAJQqVcpZT0NERETkNJwtlojIeRwKlwcOHMC+ffuwd+9ehIaGIjc3F4IgwMfHB506dULnzp3RuXNntGzZ0lntJSIiInIaVi6JiJzHoXDZqVMnAHkr45YtW0rntHz22Wct7v0jIiIiKgp4zCURkfM4FC6/+OILdO7cGe3atYOfn5+z2kRERET0SNgzLFav1xdom4iIiiuHwuUvv/zirHYQERERPVIGgwEGg0G6zGGxRESOcdqEPtHR0Th37hySkpIQEBCAZs2aoVKlSs56eCIiIiKnklctAQ6LJSJylMPhMiIiAh999BF27txpclu3bt0wa9Ys1KhRw9GnISIiInKq/IRLHx8f6W+GSyIibQ6FywcPHqBt27aIiopCjRo10L59e1SqVAnR0dE4dOgQdu7ciXbt2iE0NBQVK1Z0VpuJiIiIHCafzAfgsFgiIkc5FC6///57REVF4eeff8Znn30Gd3d36TaDwYCpU6fiyy+/xPfff48ZM2Y43FgiIiIiZ1GHSw6LJSJyjJsjd962bRu6dOmCUaNGKYIlALi7u+OLL75A165dsXXrVocaSURERORsPOaSiMi5HAqX0dHRaNmypcVlWrRogQcPHjjyNEREREROx2GxRETO5VC4DAgIQEREhMVl7t27B39/f0eehoiIiMjpGC6JiJzLoXDZtm1brF27FidOnNC8/eTJk1izZg2ef/55mx/z2rVrGDduHNq0aYNy5cqhVKlSaNq0KSZNmoT09HS72tmvXz/odDo0atTIrvsTERHR40c+LNbT0xM6nc7ssgyXRETWOTShz9ixY7F9+3a0a9cOb7/9Njp27IiKFSviwYMH2L9/P/7++2+4ublhzJgxNj/mwoULMXPmTPTq1QsDBgyAp6cnQkJCMHbsWKxevRrHjx9XTAduzdatW7F27dp83YeIiIgef/LKpaWqJaAMl3q9vsDaRERUnDkULp955hmsXbsWgwcPxl9//YVly5ZJtwmCgMDAQCxcuBAtWrSw+TH79OmD0aNHIyAgQLruww8/RN26dTFp0iQsWLAAI0eOtOmx0tLSMGLECPznP//B5s2bbX9hRERE9NiTh0tLk/kArFwSEdnCoXAJAD179kRERAQ2btyIs2fPIjk5GQEBAWjWrBl69+4NPz+/fD2euSDar18/TJo0CZcuXbL5sb7++msYDAZ8//33DJdERESkIB8Way1cykdAMVwSEWmzO1xGREQgNDQUbm5uaNmyJQYMGIABAwY4s20KkZGRAIAKFSrYtPzJkycxY8YM/P33306dUKhSpUqKy0aj0WmPTURERI+OvcNiMzMzIQiCxWM0iYhckV3h8osvvsC0adMgCAIAwM3NDZ9//jl++uknpzZOZDAYMHHiRHh4eKB///5Wl8/NzcWwYcPw4osvom/fvgXSJiIiIire7B0WazQakZubazWQEhG5mnyHy7///hu//fYbdDod6tevD0EQEB4ejsmTJ6N58+Z48803nd7ITz/9FMeOHcMPP/yAevXqWV1+8uTJuHHjBjZu3Oj0tkRHRysup6SkKI4PJSIiouIhP8Ni5eESyKteMlwSESnl+1Qk8+fPh4eHB3bt2oWwsDBcvnwZO3bsgJubG+bPn+/0Bn7zzTeYMWMGhg8fjtGjR1td/saNG/juu+/w9ddfo1atWk5vDxERET0e7B0WC/C4SyIiLfmuXF64cAGvvPIKunTpIl334osv4pVXXsHhw4ed2rjx48fj+++/x9ChQzFnzhyb7vP5558jMDAQr732Gm7cuCFdn5ubi+zsbNy4cQN+fn4mx04SERGRa7F3WCzAcElEpCXf4TIxMRH169c3ub5BgwbYsmWLUxoF5AXLCRMmYPDgwZg/f77NB83fvXsX9+/fR8OGDTVvr1u3Ll5++WVs3brVaW0lIiKi4sfRYbFERKSU73BpNBrh5eVlcn2JEiWcNnPqd999hwkTJmDgwIFYuHAh3Ny0R+9GR0cjOTkZ1apVg6+vLwDg119/RVJSksmyI0aMgLe3N3777TdWLYmIiChfw2I9PDzg7u4Og8EAgOGSiEiLXbPFFuTU2zNnzsS3336LatWqoUuXLlixYoXi9goVKqBr164AgNGjR2PJkiUICQlBx44dAUAxXFfuiy++QMmSJdGnT58CazsREREVH/kZFgvkVS/T09MBAHq9vsDaRURUXNkVLqdMmYI///xTcV1KSgoAoFq1aibL63Q63L1716bHDg0NBZB3Hs3Bgweb3N6hQwcpXBIRERHZKz/DYgFluGTlkojIlF3hMiUlRQqTapGRkQ41aPHixVi8eLHTl71z547dbSIiIqLHT36GxQKAj4+P9DfDJRGRKbuOuSQiIiIq7uwZFitiuCQiMpXv81wSERERPQ7sGRYrYrgkIjLFcElEREQuKb/DYhkuiYgsY7gkIiIil8RhsUREzsVwSURERC6Jw2KJiJyL4ZKIiIhcEofFEhE5F8MlERERuSQOiyUici6GSyIiInJJjgyL1ev1BdImIqLijOGSiIiIXFJ+h8X6+PhIf7NySURkiuGSiIiIXBKHxRIRORfDJREREbkkzhZLRORcDJdERETkkjhbLBGRczFcEhERkUvisFgiIudiuCQiIiKXJB8Wy8olEZHjGC6JiIjIJbFySUTkXAyXRERE5JIYLomInIvhkoiIiFwSh8USETkXwyURERG5pPxWLn18fKS/9Xp9gbSJiKg4Y7gkIiIil8RhsUREzsVwSURERC7JkWGxrFwSEZliuCQiIiKX5EjlMisrq0DaRERUnDFcEhERkUviMZdERM7FcElEREQuyZFhsdnZ2TAYDAXSLiKi4orhkoiIiFyO0WhEbm6udDm/lUuAQ2OJiNQYLomIiMjlyKuWgH3hkkNjiYiUGC6JiIjI5ajDZX6HxQIMl0REagyXRERE5HLkk/kA9lUuea5LIiIlhksiIiJyOfaES09PT7i7u0uXWbkkIlJiuCQiIiKXY8+wWEA5NJbhkohIieGSiIiIXI66cmlruJQPjeWwWCIiJYZLIiIicjnyqqNOp4OXl5dN95OHS1YuiYiUGC6JiIjI5ciDoY+PD3Q6nU3347BYIiLzGC6JiIjI5WRkZEh/q2eBtYSVSyIi8xguiYiIyOWoK5e24jGXRETmMVwSERGRy5GHS19fX5vvx2GxRETmMVwSERGRy+GwWCIi52O4JCIiIpdjb+WSw2KJiMxjuCQiIiKXY+8xlxwWS0RkHsMlERERuRwOiyUicj6GSyIiInI5HBZLROR8DJdERETkcjgslojI+RguiYiIyOVwWCwRkfMxXBIREZHL4bBYIiLnY7gkIiIil8NhsUREzsdwSURERC5HPizW3solwyURkRLDJREREbkceyuXHBZLRGQewyURERG5HHsn9OGwWCIi8xguiYiIyOU4Y0IfhksiIiWGSyIiInI5HBZLROR8DJdERETkcjgslojI+RguiYiIyOVwWCwRkfN5FHYDiIiIiB41W4bF6vV67N+/H+7u7ujYsSNKlChhMixWEATodLoCby8RUXHAcElEREQux5bzXB45cgQnTpwAAJQoUQIdO3ZUDIs1Go3IyclBiRIlCraxRETFBIfFEhERkUsxGAzIycmRLpurXB4+fFj6e//+/ZrLcmgsEdG/GC6JiIjIpagDob2zxQKcMZaISI7hkoiIiFyKfEgskL8JfeTDYgFWLomI5BguiYiIyKU4UrlkuCQiMo/hkoiIiFyKI+HSzc0NXl5e0mUOiyUi+hfDJREREbkU+bBYLy8vuLnlrzskr16ycklE9C+GSyIiInIptpzj0hL5fRguiYj+xXBJRERELsWWc1xqMRqNAJThksNiiYj+xXBJRERELsXWyqWHh4ficlZWFgAOiyUiMofhkoiIiFyKo+GSw2KJiLQxXBIREZFLsXVYrE6nU1wWh8ByWCwRkTaGSyIiInIptlYuDQaD4jKHxRIRWcZwSURERC7F1nCZm5uruKxVuWS4JCL6F8MlERERuRRbhsUajUZpdliR1jGXHBZLRPQvhksiIiJyKbZULtVDYoF/gySHxRIRaWO4JCIiIpdiS7hUD4kFOFssEZE1DJdERETkUmwZFmupcslhsURE2hguiYiIyKU4WrnksFgiIm0Ml0RERORSbKlcaoVLzhZLRGRZkQuX165dw7hx49CmTRuUK1cOpUqVQtOmTTFp0iSkp6dbvX9iYiJ+//13vPjii6hatSp8fHxQr149DB8+HPfu3XsEr4CIiIiKMmcec8lhsURE/ypy4XLhwoWYOnUqateujXHjxmHy5MmoV68exo4di+eee87qHsITJ07g888/h06nw8iRIzFjxgz06NEDy5Ytw9NPP43Lly8/oldCRERERRFniyUiKhgehd0AtT59+mD06NEICAiQrvvwww9Rt25dTJo0CQsWLMDIkSPN3r9+/foIDw9H7dq1Fde//PLL6Nq1K8aNG4e1a9cWWPuJiIioaLN3WCxniyUisqzIVS5btGihCJaifv36AQAuXbpk8f41atQwCZYA0KVLFwQGBlq9PxERET3e7B0Wy9liiYgsK3Lh0pzIyEgAQIUKFey6f3JyMlJTU+2+PxERET0eOFssEVHBKHLDYrUYDAZMnDgRHh4e6N+/v12PMWnSJOTk5GDw4MEOtaVSpUqKy0aj0aHHIyIiokfL3vNcZmVlwWg0clgsEZEZxSJcfvrppzh27Bh++OEH1KtXL9/3X7t2LX799Vd0794dQ4cOLYAWEhERUXFhb+USALKzszkslojIjCIfLr/55hvMmDEDw4cPx+jRo/N9/+3bt2PAgAFo3rw5Vq1aBZ1O51B7oqOjFZdTUlI0jxElIiKiokkeLvMzoQ+QFyY5LJaISFuRDpfjx4/H999/j6FDh2LOnDn5vv/OnTvx+uuvo2HDhggODoa/v38BtJKIiIiKC0EQNCuXgiDg2LFjSElJwfPPP685LBYA0tLSOCyWiMiMIhsux48fjwkTJmDw4MGYP39+viuOO3fuRO/evVG/fn3s2bMHZcqUKaCWEhERUXGhHsYqBsVr164hODgYQN7Q13LlymnePzExUREus7OzYTQa4eZWbOZIJCIqMEVyTfjdd99hwoQJGDhwIBYuXGh2hR0dHY2rV68qDswHgODgYLz22muoV68e9u7di8DAwEfRbCIiIiri1JVGcVjs9u3bpevOnDljdlhsQkKCYlgswOMuiYhERa5yOXPmTHz77beoVq0aunTpghUrVihur1ChArp27QoAGD16NJYsWYKQkBB07NgRAHDq1Cm8+uqrEAQBQ4cOxY4dO0ye45133inw10FERERFj3qHtFiFdHd3V1xvKVzWr19fcZ1erzd77CYRkSspcuEyNDQUABAREaF52pAOHTpI4VLLpUuXpD2I//vf/zSXYbgkIiJyTerKpblwae6Yy4SEBJMZZlm5JCLKU+SGxS5evBiCIJj9t3//fpNlxaolAAwZMsTi/QVBePQvioiIiIoEeeXSw8MDnp6eAEzDZU5OjvS3fEJArWGxnNSHiChPkQuXRERERAXF3Dku1eEyLS1N+rt8+fLS3+np6SYT+DBcEhHlYbgkIiIil2HuHJfqyQNTUlKkv4OCghS3q2eM5bBYIqI8DJdERETkMuTDYuUBUT2BjzxclihRAqVLl5Yuq4fGsnJJRJSH4ZKIiIiKhMTERJPZXJ3N3LDYrKwsxXKpqanS3+7u7orTmqkn9WG4JCLKU+RmiyUiIiLXc+nSJaxduxbu7u746KOPEBQUVCDPY25YrDpcGo1G6W8PDw9FuIyPj0d2drZ0mcNiiYjysHJJREREhW7t2rUA8k4BsnHjxgJ7HnPDYtXhUk4dLs+fPw+dTiddTk9Pd3IriYiKJ1YuiYiIqEi5f/9+gT221rBYg8FgcsylnIeHB8qUKWNynUg+sywRkStj5ZKIiIiKFPmQVGfTGhYrH+Kqxd3dHU888YSiWikPl6xcEhHlYbgkIiIil6E1LNbSkFggL0h6eXmhXLly0nWenp7S3wyXRER5GC6JiIjIZWhVLm0JlwDwxBNPmFwHMFwSEYkYLomIiMhlaB1zaS1curu7AwCqVKkiXScPlwV9+hQiouKC4ZKIiIgKlSAIZm9LS0tz6jGY9g6LBcyHS1YuiYjycLZYIiIiKlRaE+oYjUacOHECu3btQmBgID766CPFcY72smdCHzFIyo+5ZOWSiMgUK5dERERUqLTCnV6vx65duwAACQkJOH36tFOey5HKpZubG5588kkAygl9MjMzndI2IqLijuGSiIiICpVWuFNXAxMSEpzyXI4ccwkA3bp1w1NPPWV35TItLQ2bNm3Czp07kZOTY/P9iIiKA4ZLIiIiKlRalcuHDx8qLnt5eTnluRyZLRYAypYti759+6J8+fKaj2nNgQMHcPbsWRw/fhynTp2y+X5ERMUBwyUREREVKq1wGRsbq7gsD3iOcGRYrJx4X1vuLxcaGir9LQ77JSJ6XDBcEhERUaHSCmcxMTGKy84aQmrPsFhr4TI/lUsioscZwyUREREVKq3KpTpc5qc6aIm1YbElS5Y0uY/8mEuRvZVLIqLHGcMlERERFSqtcBYfH291GXtoDYuVh9tGjRqZ3MeZw2LzQxAE7N+/H2vWrDF5P4iIiiKe55KIiIgKlbXzTNq6jC2sVS7LlSsHd3d3GAwG6To3N9N98eJ91fe3RP6YtggPD8f+/fsB5M0yO3To0Hzdn4joUWPlkoiIiAqVLeHMGdVBQRCsHnNZokQJ1KpVS3E/nU5n8lh+fn75bpvWsZlGo9Hs8keOHJH+vnv3rk3PQURUmBguiYiIqFDZUpW0JcBlZ2dbXC4nJ0dRPdQKl15eXmjXrp10OSgoSPOx5JVLWycb0jofpqVzZObm5tr0uERERQWHxRIREVGhsjU4WvLgwQMsXLgQADBo0CBUqVLFZBl15VBrWKyXlxeqVauGHj164Pr162jbtq3m88kn/rF1yK5W5TI9PV1zEiGA4ZKIih9WLomIiKhQOaNyuWrVKmRnZyM7OxurV6/WXEYd7nx8fCAIgkm4BIBWrVphwIABqFGjhuZjySuX2dnZEATB6mvQqlKmpaWZXd5Zp18hInpUGC6JiIioUDmjcpmYmCj9nZKSormMOtz5+PjAYDAojnsUw6U1pUqVkv4WBMGmKqNWuExPTze7vPoxbQmwRESFieGSiIiICpWtlUtHw5W8cqnT6eDl5WVSzfT29rbpsdRDWbWGvMoZjUaHw+WRI0cwf/58hIWF2dRGIqJHjcdcEhERkVMZDAacO3cOANC0aVO4u7tbXN7WYxazs7NtrixqUZ/jUqfTKa5zc3NzKFz6+/trLnv27Fns2LFD83XmJ1zu2bMHALBmzRo0aNBA8xQpRESFieGSiIiInOr8+fPYsmWLdLl58+YWl5cPi61evbrZ0244Gi61znGpFThtIR8Wq35sOYPBgE2bNpl9HHPh0tpQ25ycHIfeCyKigsBdXkRERORUmzdvlv6Wh0w5QRCk04LIK3odOnRAjx49NEOeo+e61DrHpTxcyifpsaZUqVKKymFcXBzCw8Nx8OBBxWPevn3b4uOYC5fWqrmcSZaIiiJWLomIiOiRSk5OxoIFC2AwGPD222+bzNbaqlUr1KtXD3q9HgsWLJBmTXU0XKqrlOrr8hMuvb29UbJkSWnyoP3790tB8eLFi3jvvffg7e2Ny5cvW3wcebi8c+cObt68iaZNm1od8sqZZImoKGLlkoiIiB6p9evXIyUlBenp6dixY4ciKJUoUQIAEBAQgIoVKyqGfpqr5tlaxdOqXMrDXX7Cpaenp2Jo7MGDB6W/4+LisG7dOuTm5uLq1asWH0d8/oyMDCxfvhyHDh3C+vXrNSf/kZO/Z+L7eOjQIc4oS0SFipVLIiIieqTkx1RGRUUpblMfRyiGTcB85TIzM9Om55WfrqR06dIA7K9cenp6wt/fX2p/amqq4vbr169j165dVkNiUlIS5s+fjyeeeEIKjFFRURbPfwkoA/XBgwdx4sQJAIC/vz+aNGli8+sgInImVi6JiIioyJCHSUAZNm0Nl+KQ0uzsbISGhiI8PBwAEB8fLy0TFBQEQBku/fz8bG6nm5ubYnZYMVyKoRUATp8+bdNjRUZGSuFQFBcXZ/E+OTk5UpVSft8NGzbY9JxERAWBlUsiIiJyKk9PT7PHBFo7btJauDQajSbHI6rDpdFohNFoxIEDB3DkyBEAwNChQ/Hw4UNpmbJlywKwv3IJKINkamoq3Nzc8NRTT+Ho0aNSO+wVGxtr8fZTp05h1apVqFOnjt3PQUTkbKxcEhERkVN5enoqLi9cuBBTpkzB9evXLVbkPD09TYKjPFxu374df/zxBxISEhTLaJ0GJCcnRwqWQN6EO9Yql/kNl4GBgdLfqampCAwMlEKrNZ07d7Z4u7VweeHCBaSnp+P8+fMmt1kbiktEVFAYLomIiMipPDyUA6MiIiKQmpqK5cuXIzo62uz91FVLresSExMVoRHQPuZSPflPTk6O0yuX6nAZFBSEMmXKWF0WANq3b493333X7GNbC5eWqI9jJSJ6VBguiYiIyKnU4VJu3759Zm9TT+Zj7jp1tU4rXKrDmbe3t0nlUhAEh8JluXLlpL/T09MREBBgNly+8sor0vtSt25dq8/nyJDayMhIu+9LROQIHnNJRERETmUwGMzepjWEVaRVudQKl+qhp1rhUl0hNRgMinBZtmxZ5OTkKGZdzW+4FIfWigRBgL+/P3Q6neKUIG5ubqhWrRoGDhyIe/fuoWnTpgD+PR2KszFcElFhYbgkIiIip7L1vJNqWkFSK3CqZ3XVCqz3799XXL59+zYePHggXS5btqzJsYn5DZf+/v6KyYtycnLg7u6OgIAAJCUlScsFBATA3d0d1atXR/Xq1aXrCypcRkVFQRAE6HS6Anl8IiJzOCyWiIiInMrecGlr5VJ9PKUtlcvc3FzF/S5evIhp06ZJlz08PEwmIrJGr9ejVKlS0mUxrKqHxpobKuvm5qb5+hyVmZmJ9PR0pz8uEZE1DJdERETkVM6sXGpdpw6TWuEyMTFRcVld3bxx44bisq+vb74rfcnJyYpwKQ67lZ+iBDCdzEf9vAXB0vBjIqKCwmGxRERE5DRGo9HsMZfDhg1DSkoKrl+/jrNnz5rcbstssUBemDQajRAEAe7u7prhUk0+BFan08Hb21txuz0hLz09XREuxaG4tlYugbyhseog7AwMl0RUGBguiYiIyGksTeZTqlQpVKlSBfXr19cMl7YMgQWAtLQ0zJo1C0lJSXjjjTdsClLycOnj42NSpbQnXLZr1w7BwcHSZfEUIOowaalyWVDHXTJcElFh4LBYIiIichpLQ2JLliwJIO9YQ63TlWhVKatWrar5WPHx8cjNzcWqVavyHS61gqQ9Ia9NmzaoXbu2dFmsXKqHxVqrXFqinrzIVgyXRFQYGC6JiIjIacyFSz8/P7i7u0uXtSbP0QqXQUFB6Nixo8Xqn3xmVnPkYUsrXMpPU2IrPz8/9OzZU7oshsugoCDptXp6ejp0zGWtWrXy3S6A4ZKICgfDJRERETmNuXApPzYRsH1mWADo2LEjRowY4VC71MNi1Ro1amTX4z7xxBPS3+KwWB8fH3Tv3h2VKlVCjx49NF+rpbbI1ahRw652MVwSUWHgMZdERETkNLaGS1srlyIPDw94eHjYPROtPFyWLFkSdevWRbt27bBy5Ur4+PigSZMmdj1u5cqVpb9TUlKQlpaGkiVLomXLlmjZsqXV+1sLl/LHt0b+/jBcElFhYLgkIioicnJysG/fPmRnZ6Nz5852H2tFVJgcCZfWzvno7e2NtLQ0u9olD1udO3fGgAEDAACjRo0CgHyfhkRUqVIlxeXo6GjUrVvX5vtbC5eWArda2bJlERMTA4DhkogKB4fFEhEVEadPn8axY8dw+vRp7N27t7CbU2Byc3Oxc+dOrF+/HikpKYXdHHIyc+FSnMxHZOtpR+TUpw+xhRhY5ZXLcuXKSX/rdDq7gyWQFw7lx1SKQ2NtZemYy65du+YrXMrb4cxwKQgCbty4gbCwMIuzARMRsXJJRFRE7Ny5U/r7zJkz6NWrVyG2puCcO3cOx48fB5B3TsQ+ffoUcovImcyFS3VIsqdyqXV7165dcffuXURHR8NoNCI9PV1xe/ny5XHv3j1F2CpbtqzF58mvypUrIyEhAcC/k/rYSl25rFatGqpXrw6dTofWrVvnK8wVVLi8ceMGli9fDgDo0aMHWrVq5bTHJqLHCyuXRET0SMnPC3jp0qVCbAkVBHPhUh0mnVW5fPLJJ9G/f398/vnnePbZZ01ur1ChAgBl5TIoKMji8+SX/LhIR8Oln58fXnjhBXTu3BkeHh6aIdwceWh2Zrhcv3699Pf27dud9rhE9PhhuCQiKiLkp2nIj+TkZLuPQysMWuc3pMeHuXCpDnT2HnOpJj82WesxxeeVh0tnVy61Zoy1lbVjLt3cbO+qFVTlksdvEpGtGC6pyEhJScGxY8cQHR1d2E0hKhT56USKbty4gWnTpuG3337Ld6e2sDBcPt7U4VKn06Fu3bom52t0RuXSzc1NEc60wmW5cuVgMBiQlZUlXVcQw2JF+a1cql+TIAh2t0MetDMzM2E0Gu1+LDl7d3w9DrKzs3H48GGEhoY67f0sTPfu3cO2bdtw9+7dwm4KPaa4haciY926dbh79y68vLzwv//9z66JG4iKM3d3d+Tk5EiXBUGwOtHIpUuXIAgCBEHApUuXFBWUokodLg0Gg0t3Xoub6Oho3Lt3D40aNdKcjEYeLqtUqYKBAwdqViTzeyoSwLSy6evrq/iNaD1mtWrVTH4XRWlYrD07lcxRV0EzMzMtThhkKw8PD6dM5CMIAiIjIxEQEAB/f3+HH+9ROH78OPbt2wcgb0fA008/Xcgtsp/BYMCKFSug1+tx6dIlfP7559zZR07HyiUVCTk5OdJetKysLFy7dq2QW0T06KkDljxompOZmSn9La/MFGXqzox6AhYqutLS0rBgwQJs374dq1ev1lxGHi49PDzMDnVVB8kSJUpY3Zmi3umoPl2P1mN6enri+eefl67T6XQoU6aMxefJL0eGxarZ09nX6XTo1q2bSbh01nBW9brJ3urqwYMHsWDBAvzxxx9ISkpyQssKnhgsgbyd4Plx9epVrF27Fnfu3HFyq+yTlJQkfSf0ej3i4+MLuUX0OGK4LGJycnJw/vx53L9/H0lJSZg7dy7mzZtXbFbC9lK/vqysLBw7dgxhYWEODREiKk7UHThbOobyQFlcwqU6QBSn40Vd3Z07d6TweOfOHc3DGNTh0hxbJvhRsxYu1Y8p3i7O5AoAZcqUcXqlXF25zO92q2nTptLfHTp0yNd95ZMZubu7K97HvXv34vbt2/l6PC3qzzE7O9uux7l69SqAvL5OWFiYw+0qyvR6PVauXIlLly5h8eLFRWJIrXrIujOr5kQi1sKLmF27duHUqVNwd3eHt7e3tEf/0KFDeOWVVwq5dQUnMTFRcXnv3r1SRWbIkCGoUaNGIbTq8WAwGGAwGPJ1rjQqGvR6PQICAiwuUxzDpbqdrFwWH+odAWfOnMHLL7+suM7ecGltMh/A/nD58OFD6TpnH28JKCuXWVlZSExMVEyuY82LL76I8uXLo0KFCopzcIpq166Nmzdvat7Xy8tLcQ5RHx8fKfxdvnwZV65cwccff+xQtVb9Oer1eps+r/j4eLi7u0vPLZ9U6cGDB3a3pzhQD4/Ozs4u9MN95CNdANtGxxDlF3dZFDGnTp0CkBcI5B2u06dPF1aT7JaTk2Pz3lt15VK+Aty1a5czm+VSEhMT8dtvv2HKlCmIiIgo7OaQFepqwONauVR3cFi5LD7U6+qLFy+adFBtDZdaQ1itUQcaW8OlfPifs4+3BPLOpSmvAuV3aKyvry+ee+451K5dW7ouNzcXKSkpAICXX34ZjRs31qxqqt839dBYQRBw/fr1fLXHGlvWTVevXsWMGTPw+++/S4e9yO/3uE/ep64KFoX1s/pzM1eBNhgMWLNmDebMmYPIyMhH0TR6jDBcFhO2HJB//fp1HDhwAKmpqY+gRZadPXsWP//8M/7880+bJgFQVy7lisJQkuJq06ZNSE9PR1ZWVr6PFaFHSxAEk87H4xgutV6nq1Qus7KyEBERUazXacnJyYrLmZmZ0lBHUVGqXIrLF3Tl0sPDQzqfJpD/SX3UoqKiULVqVVSoUAFbtmxBYGAgXn/9dXTq1MlkSK+1cOkM6hAir0Cas3LlSunvzZs3w2AwKB7n4cOHdg+vfVQcmcRIPfzfmevn3NxcHDp0CAcPHszXe6jeppirXF69ehVhYWF48OCB4phTIlswXBYT1obGJSQkYMWKFQgJCcGOHTseUavM27RpE3Jzc3H//n2cPXvW6vKWwqXW7H+5ubm4cOECrl27xmMyLZBPIqDuFFLRkpuba/JdfhzDZXZ2tsnrdIXKZW5uLmbNmoWFCxdi8+bNBf58MTEx+Pvvv7F//36nriO11iPqykZBVi7tmdAHUFYuCyJcAnkz44ouXLjg0GPNmTMHDx48QGZmJqZPn664Tf152hIura1LBEFAVFQUoqKiNL8v6hCS34mCHj58aHIfQRAQExNj0/0FQcDRo0cf+cQ4Wq/T3HlcrS3nzPXzqVOnsHfvXuzbtw9nzpyx+X7qUSPmgql8hEJsbKxdbSyKrl+/jm3bttn8vSP7MFwWE9b2RB4/flzaIFy+fPlRNMks9YbJluFB+Q2XoaGhWL9+PVasWIFbt27lv5FERYzWRt5aB85oNCo6fWLn5caNG1ixYgWWL1+OH3/8EUeOHHFuY63Q6/VYt24dVq1aZVKV1OpguULl8sKFC1IwO3fuXIE/34YNGxAeHo79+/c7ZUIXkdbkcur196OsXHp6eioqwfLHFARBCl7yymVBDIsFgHbt2kl/b9261ab7REdH48cff8SBAwcU1x86dEj6Wz17urVwqfWeW1uXhIeH488//8Sff/6J8PBwk+ezp3JpSxtsHRo7efJktG3bFk8++SSuXLmS7+fWIggCNm7ciFmzZpntR2i9TlvXV+pA7sxwuXPnTs2/rbG1cilfLi0trdB2XIoV2pCQEIfbkJ6ejlWrVkn9Ryo4DJdFiKXhF9b2lKnH9hdmNU9dhbA2K58gCPkOl/LjMNeuXZvPFhIVPfaES/V9srKyEBsbixYtWmDAgAGYNGkSsrKyHK5excTE4MaNGzYP5zx37hwuXryIK1eumHSy1XvOAdeoXKorfgW9jpZPliIey++o7Oxszc62OnA+qmMujUYjPv74Y5QuXRrz588H8O/24tq1a5gyZQrGjBmDzMzMR1K5lE+6d+TIEcUMteb07dsXY8aMQdeuXaXjIrOysnD8+HFpmXv37il+N+rvjnobKW5PjUaj9Hmlp6fj8uXLuHHjhmY71qxZI/29YcMGxW32jKpQ92fc3Nw0vzu2Turz999/A8gLQ/Lhto64c+cOzp07h9jYWCxdulRzmcIKlwU1dN7WyqX687XURytI58+fx969e3HgwAHFb8Ie8fHx0ropJiamWB+eUNQxXBYhlmbtsjamXr1RLszhcepOlLUfcEZGhsXXZ+28Z8VhKGBh4IqzeNH6HmsFMUv3EQQB27dvl36D4eHhMBgMyMnJsfvYppiYGMyePRvLli3D0aNHbbpPcHCw9Le6yuBqlcvY2FjcunXLZP1u7fOIi4vDjh077Drnr3pnpNYOOlFycjLOnTtn02dgbmh9YmKiInwUZOXSy8tLql5euXIF+/fvR2pqKr788ksYjUZpZ+aePXuQnp6OU6dOYenSpY+kctm2bVuULl0aQF64kh+ikpOTYxJULl26hMOHD0u3iztKT506pfidCIJgsfqs3rnctGlT3L9/H9OnT8fkyZNx4sQJXLx4EatXr8ayZcs0RzfJw6D6N6r1XbVWuVTP/eDp6Wl35dJoNCqqqc6a4FD9nmp9v7Vep607w+wJl4IgYNWqVfj5558LZCJHeyqXAGzaUVIQtmzZIv0dEhLi0GOp33/2HQsOw2URYqmzYW26aPVGujA7a+oVtLUVsbU9YkX9gP+iSut9d2RyAls566TdRcWtW7ewaNEiHDx4sECfx57KpdbG8eTJk9LfRqNR6lRbC6rmyEcJ7Nmzx6b7qE/BIP/eabXjcQuXgiBgy5YtmDNnDv744w8sXbrUJJhb69isX78eJ06cwKpVq/I9SZt6eXMBLzc3FwsWLMDGjRvx999/W62mmguX6uAk3145u3Kp0+nw1ltvoWHDhoqKaWJiIi5dugQgb+hsXFycdNvmzZsfSeXS09MTL730knRZrNrHxMSgWbNmKFmyJP7880/p9uXLlyvuLy6vta7Jz2yv9+/fx9KlS6XP68CBA4qdjatXr7b5sQD71k3iLLcig8GgeZ/Y2Fir26WIiAjFfU+dOiV9V3Nzc+1ef5QqVUpxWSvA21K5FI9XVf9+7AmX165dw5UrV5CVlaUIVs5ib+UyISEBx44dw9ChQ7Ft2zant0uuoEZ1qF+7vdvEwpKdnV0kJuy0BcNlEeJIuFSz53gIZ3nU4dJaZdPVZGRkICQkxOQYHqDgg9/atWvx888/23y8UXGwdOlS3L17F/v27SvQSQCcFS7VQyDFNss3pCkpKdi0aRNCQkJsGlmQX+pwKe/Ya7U5IyPjsaq0b9iwAb169cJHH31ktvpgqaOZlZUlVXQMBoPJMXDWqNfB5g6riIyMlEJAZGSk1c9aHuaeeOIJRXCUr8ftrVzaei7eGjVqoFu3borjEoF/Q5m6Mrl3715FhaygKpeAcmjsjh07kJOTgzFjxiAsLAyCIOB///sf4uPjYTQaTcLlsWPHEBcXZ/K6AJgdzqq2ePFivPbaa4rvl16vx7179xTLyfsUWp/73r178ffffyM2Nlaz/2Ft3aT1HVQHTiDv+x0XF4fExESz64Dz588rLsfExCAqKgopKSmYMmUKpkyZgrCwMIvt0aJe52pNFmRL5XLAgAGoUqUKnnvuOcUwX3vCpXpyLKPRCKPRiB07dmDFihWIi4szG77i4uKwdOlSbNq0yWxgt7dyeeXKFXTp0gWLFy9Gr169bJ6watu2bRg8eLDmd1otNzcXS5YswW+//Wbz9z0/inO4TEpKwpQpU/Dbb79JO9GKMobLIsRSgLQWLtW3a+3JS01Nxe3btwu8E6fegFgLl1oTRMg9yspleno6PvroI3zwwQeFdoyBo/bv348DBw5odmoLMlzGxcVJKz31sC5rLly4gHHjxpl0Igqb+nflzIlR1JwRLo1GIy5evKi4TpzpT74h3b17N86ePYsDBw5YnQDMlqGKauodPvKOvdb3QhCEQt0hZgtBEHDgwAGsWrXK6k4G+QQb5k58b2m9Jh/CKT53fqjXwebeW3XotLbOkweG0qVLS0NAAeV6vCCHxYo2b95s8l0Sw6X6N5CZmanYDhVU5RIAunfvLg3NTU5OxowZM7Bo0SLp9vT0dEydOhWHDx82CXyCIGDr1q2aE3DZ0tk+ePAghg4dqhks1Dso5OsyrSGPhw4dQnh4OLZv3675XY2KirK4ftIKkvKdTHILFy7E77//jrlz52r2T7ROo3X69GkEBwdDr9fDaDQqjhm1lfp13b592+S3Zq1yGRERIR0Pevz4cbRt21b6zdsTLg0Gg+JQoYyMDFy6dAknTpzAtWvXsHnzZpPHFX9j27Ztw61bt3D27FmEhoZqPr6t57mULycIAmbOnCm9F0ajEZ9//rnV9VJSUhL69u2LpUuXolevXlb7guHh4bh9+zZSU1Ol4eLOVJzD5c6dO5GVlQVBEIrFPCMMl0WIpc6GtYCl7iSoV4ipqamYN28elixZUqDnOxSnv5ef4ys9Pd3iSqgohcvRo0djzpw5mDdvHn7//fdH9rzOJB8WqWZLuExLS8P+/fvzveJVf462hsvMzEx0794dEydOxEsvvVSkVvjqve+2nG9WS3p6OtauXYvJkyebnVxF63v+4MEDbNiwwexU8Or3ODY21uT9E+8rX1be+ZYfH6lF3eE393vcuHEjRo4cicuXL5t0fuR78819vkV9Up/r168jJCQEV65cMZnwRE0+86S5wKb1+zAYDDAajSad8PwO+1N37GNjY7Fu3TrFUFHAdDshtvX06dPYtGmTSTvkv4eAgABFuLSncunh4aHYEWFr5RKA5qQuBw8ehCAIVoewF2S4LFOmDJ5//nnpslYn/I8//sAff/yhef+ff/5ZM5jZMiz2r7/+kv4Wz4spCg8PV7Tj+vXr0Ov1OHr0KE6cOGH2Me/cuWPyPTl79iy++uorVK1a1ez5PLWGUKt3mojEdUpMTIzJDrzs7GzNquSpU6ccrm7J12VGoxHJyckmv1drlUv1e3fr1i20bdsWZ8+etStchoSEYMqUKfj999/x4MEDpKenK4bU37t3z2R9IP5u5JVXczOEq9e/tlQuw8PDTXb87tmzx+pp7y5cuCC9f0lJSVbXm/LvfUEM/ywq4VIMiflRkDu2CwLDpZN89tlnDu95txSixE6HOdYql0ePHpV+rGFhYTafK+rhw4e4d++ezT+E/v37Y+nSpViyZIm0AjZ3rIXI2vkXnREuBUGwelxHUlISFi5cKF225fycxY36OyoIAi5cuICjR48iKysLBoMBnTt3RqdOndCpU6d8rQDVn5Otn9vhw4elylZ0dLRdw5ssEWcjtuc4Dms7PmwRExODGTNm4NKlS0hPT8eePXs02yLveKSmpiIyMhKCIOD8+fNmz4uo7qxodfS0Kpdy1oaVqzv8WiHw6tWr6NOnD2bOnIn+/fubfPbWKpdA0T/uUl4JsDbDpbxaae67p34fTp06hYoVK6JmzZomlTetsCEIAmJjYzXfT/nyBoMBv/zyC/r06YO2bdsqlle/54mJiYiIiMCWLVtw9uxZxbFVgiAowkFAQADKlCkjXbancqnT6RTVS1srlwkJCZo7RWJiYhAaGmp1BERBhktAOTRW/tmLE++kpqYqqg9dunSR/jY3BNqWICWf/GnMmDEYO3asdDkhIUGxs+DatWvYsWMHgoODTb5vahEREYrL4jGPDx8+xOLFizXvo96uZ2ZmYseOHdK6wNyOBHW4u3//vmbF8/Tp0w7PISCec3fdunX44YcfcPjwYdy9e1exTH7DJZD3PezUqZPJadhsCZfbt2+XZvldt24dHj58aDLjvtYxn1qvTU0QBKkvdvPmTSxatAirVq0CkLedOHXqFNLT02EwGKT7Z2dnmw2Rn3/+ucVRderJyOQ7P7TIt1Hi38487MnZ4TIsLAyTJ0/GihUrbP4u7t+/Hz/99BP++uuvfPVJHsV8Gc7EcOkkCxYsUKzI7SH/kZYuXRpvvfWW2dvVLFUuMzMzTYZI7t69WzPU3bt3D3///TfmzJmDGTNm4I8//sCCBQtsmqVry5Yt0nLZ2dmKlbSlqoRWx0nO0XCp1+sxc+ZM/PjjjxZPNrxgwQLFSvtRn6z5UVCH/Js3b2L9+vUIDg7G4cOHce7cOakTffz4cZNhW5bYcj5D9e2nTp0yqaQ7O1xu2LABv//+e75X5oBpuMzvsc8ApKFboszMTM2Nmvg9T0xMNPndRUZGah43Z0u4TEpKQlZWlt3hUv2eaf2WV61aJW38zp8/b1KhePDggfQ45tqR35n7cnNzH+nkBrZu3HNychSd8dzcXM33TL1eGzNmDOLj4xEREYElS5YobtN6nXv27MGsWbMwa9Ysk9+1fJ16+fJlKQxfv35dEWq0wuXevXuly/JhgiEhIYrOcmBgoMOVSyAvpIr8/f0tLivasGGD9FssXbo0qlevLt32448/Sm3WOj+0v7+/xdlznUEeLkVt27bFqFGjTK4vUaIE/vzzT833SX7ezIiICKu/EXl1s169emjcuLHi+FJ5cE1OTrb5uDn1OSDlw2jNVcjU2/VNmzZh48aNmDdvHq5cuYIaNWpo3k+9zo2IiNAMl6dOnTJZH1s7ZZtadnY2bt68iUuXLsFgMODAgQMmz29tWKw8XLZu3VpanyYnJ5uc3sSWdZx8yH18fDwmTZpkEi5t2S5p9ZtycnKkIsWOHTsQERGB1atXIzQ0FPPnz8fWrVuxYcMGxTp6//790mfp5uaGOXPmSLddvXoV8+bNM/ta1DtK9u7di8uXLyMiIkLasS3/bonrsaSkJJw5cwZ6vd6pp9lzZrjMzc3Ftm3bkJ6eLk3CZM6DBw9w5MgRJCYmSqcFu3XrlsmODEvU25+iPkcBw6UTzZ492+oe7aSkJOzdu1dz76R8ZeDn56fYYALaKxBBEExOpA4oV36hoaGKx46JicEnn3yCChUqKGaC3LlzJxYsWIDw8HA8ePBAsUK3NqFEZmYmdu/erfjhy4dgyTtXsbGxuHbtmvRjsRYuDQaDxY6dtc7x1atXpfMbbd68WXN4UW5urskwpUcdLmNiYrBw4ULMmDHD5hNLqwmCYPH9UHdCN23aJP196NAhk+Fk+Vn5qTvA1nYK7Nq1C1u3blW0Afg3XObm5uLSpUsme3/zIzs7W+pA3bp1y+ZzqomcES61qp+Wwsb58+el5zl9+rT0m9IaUmZLuASUw2XVn4v6+xIWFobt27dLz6d+zVptV5+QWl1lycrKksKHuQ5WfnYiZWZm4vfff8eUKVOknSGCIOD69esICwvL115eWyumtj5mRESEyYZfa2is/H148OCBItTJZ8MEtMOl2KlPTk42mSxDvk5VV1ZmzZol/a0VLtVDZ1NSUnD16lXFuqF8+fKoXbu2w5VLIK9qV6FCBTz77LOoWLGixWVFYrUFAF577TV07txZurxx40bp7w4dOqBFixaK+xbkZD6iJ598Ek8++aTiuilTpuCzzz4zGVr/8ssvo0aNGoogKRoyZIj0t9FolIbGyQO5KDU1VbHdePLJJ+Hu7o6nnnpKui6/E0OJ5OsVvV6v6JQfOXIEV69excqVKxUdbPnO6/T0dFy9elW6vH79erOjmdTHf16+fFkz4MXFxZnsIM/v6Ifs7GxFlTs3N9fkeGpLlcucnBzFjvsffvgBv/76q3T54MGDim2OtXCpdc7vFStWmOxwVbcxNzfXZJ0jrj/k6xHxPTcYDIrtybZt26T1740bN6TXnJKSoji35MCBA/HBBx/g7bfflq779ttvzY4+U1cujUYjPv30UyxcuBAjRoxAkyZN8NRTT2Hfvn0A8tbrSUlJmDdvHlauXIl+/fqZhEt7tsEidZh0ZA4K9fdS/O6fPHkSv/32GzZt2oTMzExkZWVh8eLF2L17N+bOnat4DGt9Xzl1qN6+fTvmzp2r+F0VJQyXTpSZmYnJkydbXGbLli04dOgQVq5cabISkXeuPD09TfauqjtfycnJmD59OqZNm2ZSYcrIyMCePXvQpUsXTJkyRbGi2bZtG/R6PbKysvDzzz8DyNtDZukEtdZWinq93uT1aIXLuLg4zJ49GytWrMCBAwdMKipaG01AuULJ7x4bded+7dq1Jh3kTZs2mQSplJQUk/s6a4rsrKwsLFy4UJrR9fbt25g9e7a0l9bW8wmqicN8zFGvTNUbY0fCpfo9tfadOXPmDDIyMkyCtDgpUEhICNauXYv58+ebPeZQ7cGDB1izZo3UobYlGFmi/vyjoqKwcuXKfA2X1do7ailcyvfkZmRkSB07rfdA/h6rO0byvd3ycKnuLMk33gkJCVi7di1Onjwpzfhr6T0UBAGnTp0yqYBoHR8ivmfm9hbnJ1yeOHFCClzi0M1r165h+fLlWLNmDU6fPo19+/aZVFzU3n33XZQqVQoffvih1ee0tSqiNYGP1vdF/tmtXLlSsV5Thzx1J0T9XqmHgYqdvcjISJOdM0ePHsW5c+cAmP7+tY6ve/jwoWK9EBgYiIEDB8LNzQ2lS5dGTEwMIiIikJSUJL2G/ITLevXq4aOPPkK3bt0sLieKjY1VBPG33noL7du311y2ffv2JlXEgh4SK3rjjTekv99++220bt0a5cuXN/muvfPOOwCAnj17mjxG9+7dUblyZemyuNPmzTfflHYKiSOc5DtN3d3dUbNmTQB557wURUZGOnxss/q7nJycjFmzZuHq1atYs2YN4uLiTE5Now4Zubm5+PLLLzV3usjDpSAI0ncVyPsuycO5emdafl9bcnKySedcfMywsDBMmTJF87er1+thMBhw6dIlaZuq0+nQokULfPTRR6hTp47Ufvnpm6xtExMSEjTXg/Pnz1f8VrV2kmrdTzwVkri8uO5V76xSD3sWP4P79+8rRgEMGDAAAPDTTz9J55p9+PChyQ5ikdbOjAsXLuDu3btS0MrKysLw4cOlET27du2S3tMdO3aY9GfMvYdxcXHYuHEjTp8+Db1ej40bN5pMRuXMyqV6wqR79+7BYDBgz549SEpKws6dO/Hbb7/h/Pnz0vOony8/o2HUTp06hejoaM1jz4sChksnmzFjhtkDbwVBkDoegiCYDNGU/whKlCgBd3d3RVVB/IIZDAasW7cO33zzDR4+fIiUlBTNPXjDhw/H3r17sWnTJmnvWmxsrCKIHj58GGlpaYqOq7e3Nzp37qzY42mt4yevTIjkjymu9A8fPiytLA4ePIiUlBRcv34dK1euxKVLl1ChQgXNx5c/f36Hvqg7ZllZWSYbO3OT98irl19++SXKli2LH3/8MV/Pr+Wdd97Be++9h44dOyI0NNSk8mPvsX7W9sSpO47yDq0gCCYVkPxUb/NbuQRMh1sB/1Yu5b8VayFBtH37doSFhWHHjh2IjIw0aYO1lXlqaip27tyJEydOQBAExeeQnZ2NESNG4O2339Yc9qZFfoyL+nnUxB0t6qnoxQ6ltXAZExMjfZ46nU5ROZGHS3WgkG+4xNcN/BsQLYXLzZs3Y8yYMSbt0topIb4PzqhcqndI5ObmSpNFGAwGDB48GC+88ALq169v9rsTHR2NRYsWQRAEzJ071+p3Xf3dMbcTR+v5tDrR8terPiUFoOyQZ2RkKNZ76vVDenq6tA2Qn/fP3A7D2bNnS/ez5vTp04pO/GuvvSadH/D06dOYO3cuFi1ahBMnTijaILIWLuUOHDiAL774wuIxgJs2bZK+50FBQejcubPFcNmrVy/FdY+icgkA//d//4d3330X7777rvR+A8CoUaOk969SpUro0aMHANNwWbt2bVSuXFkKKsC/64IqVarg008/xX//+1/Ur18fgPL7UqtWLWnndP369eHn5yfdpt725ZfWd1n8zhuNRgQHB5tsc7VCRkJCAv7++2+TDndCQoL024qPj1fsHAkKClKEbfV6IL/h8ujRoyb9iejoaAiCgF27dlkcdp+enq4YFfDUU0/h3LlzmDx5Ml5++WXp+ps3b0rvT2xsLObPn4+VK1fi7NmzJjvK1aOqxB1/KSkpilOLaYVLrQrrgwcPkJCQII1QE9fB6s9HXZwQd2zJ+5XlypWTPqtq1aqhd+/e0m1ak9Tl5uZq7miLiYnBqlWrFOvPmzdv4oMPPsDx48cVYT83N9fk+2Zu+7Ft2zacO3cOW7ZswaJFi3Du3DmcPHlSseNNfV97w2VMTIzJe5aSkoK7d+/iwoULmD17NubMmYMff/zR4mnZbJ2nRasynJOTgxMnTmDNmjUFft5RexS5cHnt2jWMGzcObdq0Qbly5VCqVCk0bdoUkyZNyteQh+3bt+O5556Dn58fAgMD8eabbxbobEtiCMzOzsaoUaOQkJCA69evK1Ye1tov78SVKFECOp1OcdD79u3bsXz5ckyZMgV9+vTBH3/8gcWLF2tOI56SkqJ4vTt37kRkZKTJbF05OTnYv3+/YghslSpV0L59e8UwHVuOn1OvBB4+fCituMWVvnplfePGDaxZswbh4eHYsGGD2ZkVHQmX4g/z/v37OHHiBDIyMhSfxZkzZxShSt4ZEvfk3717F5MnT0ZiYiK+/fZbh/b+btu2TXHc06ZNm0zel6ysLBw7dgzLli3LV/XQ2spS3Ljk5OSYdI7j4uJMhl5u3boVwcHBSEhIwPr166XZGLXkt3IJaHfE7969i9TUVMXj2fp+y/fAnjhxwiQYWRpSo9frsWTJEhw/fhw7duzA+fPnFZ34e/fuSQHv8OHDJsMHtciPcZEzV7m8c+eOyfsrbqC1wqX8dyHvhJUvXx5PPPGEdFk+8Yt6PSQPv+q2Go1Gk9B39+5dxMfHQxAEnD17VnNYjjgZkdbzOKNyqZ4MJCEhAZmZmRAEAZs2bZLalJOTY3avunpvvbXjytXh0tx6SKtDZWlY7LVr1zQ7Z+qOpnwdofV44k4ZcbmUlBTFaWbkh1ksW7YMycnJNm1T5UPyqlatiqpVqwLIC9cTJ06UPuewsDDpOyh/b2w9vjEiIgLdu3fHlClT8Oqrr5odoSKvkr/00kvw8PBAzZo1Fd93IG8nacuWLdGkSROpzcCjq1wGBARgwYIFWLBggWJETsWKFbF37158/fXXCA4OlipATz75JOrWrSstJ25/5dfJvxMBAQGK1yIPjfIdS35+forL6u+9nHg+xVWrVpndFmtdL3/M1atXY9CgQdJ2VzyuUSSGYSBvm6Oe3Tw7O1vqj9y6dUvRN1GHS0crl1ojhGJiYpCUlGR1yGJWVpYiXLZq1Qr79u2D0WhEQEAAGjduLN22Z88e6fscGRmJq1evYtOmTSbBQ344QalSpRQ7TcTjQgHtnZOWXrvYFxTXverXpv5OiNs2+XIBAQGKvmbz5s2lv7VOe3bnzh3FeqB27drS31o7XFesWIFly5aZXK8O0ub6FfKdg/Jtpbxtzqpcak0YFhUVhZdeegmrVq2SvrNpaWkWh63ammnkn0NWVhYOHz6MadOmYefOnbh8+TL69etndWLMR63IhcuFCxdi6tSpqF27NsaNG4fJkyejXr16GDt2LJ577jmbxkivX78ePXv2hF6vx+TJkzFq1CgcPHgQbdu2NXtMkqO6d+8u/b1582b8+uuvWL58ueKYRvVKWd35kneuPDw8sHXrVmzbtk364d+9exfXr1+XzqkE5HV458yZg5MnT5o93hHI6xgtWbJE8/xsu3btUoQKcYMl78BZO+4xMzNT8/WJjyuu+NSzAS5YsEDq8BuNRsUQEjn5e6MOCNaOuUxJSUFqaioWLVqEnTt3YunSpYofojg0GAAaN26M5557TrocEhKCyZMnK5bJycmx63jMpKQk7N+/H8OHD1dcr3VC3NjYWOzatQs3btxQHF9kjbXfh16vx+3bt/Hrr7/it99+U9ymFWLFIbrz58/HhQsXsG/fPrM7afJbubRUkQwLC1Ps1bNlJazujOr1epM2yN+fvXv3YsCAAdLsfGvWrFF0ZEJCQhQbbHVFcdGiRVYDprnPw1y41AomkZGR0Ov1ViuX8r34lStXRvny5aXLMTExUlu0Kpfy36D68eW/t7CwMLz77ruoVasWtm3bhrS0NM1Jn7Kyskwm4RA/T3mb5RWV/IRL9fsaGxsLQRCwfft2k6qXuZ0z6uGi+/fvt/ic6vWfuR0V1iqXWVlZuH79utRRW7FihXSbfAKae/fuSa9Tr9dj165d0nunNbJBDIFiRyQ0NFTaJpQsWRJ9+/aV1ukZGRlYunRpvo9Rk68bDxw4YDKD7t27d6WTvotsrVzOnDlT6uzdvn3b7LpBHrDEoKLT6UyOWXz22WelnbTyKos8rBWWli1b4vvvv0ejRo0U17///vvS3/379wcAzcqlFnPh0tfXF/Xq1ZMua50qqFq1aihXrhxSU1Nx8uRJXL161ewM1ZbC5Y0bN7B582Zs374dS5cuhcFgwK1bt6SQ4eHhgddffx3PPPOMdN/4+Hh069YNbm5uMBqNWL58OSpUqID/+7//w+HDhy2GS7HKKMpPuLx165bm+jYuLs5sAJf3idThUh62dDodPvjgA0U7J0+ejFWrVuHMmTPSukT9/PLL/v7+aNmypVS9FLfd5tjy2s1VLsUJdkRalUt/f3+z4fLcuXMm60d5tbpChQqK90P0wQcfSOs8rSolYFu4tNQ3LVmyJIC8/oYzwqUgCCbHwN66dQuLFy/WHBVgKfTZWrkUP6+kpCTMnj0be/fuNekfySvbRUGRC5d9+vRBZGQkli9fjv/+97/48MMPsWrVKnz99de4cOECFixYYPH+OTk5+O9//4uqVavi0KFDGDFiBEaPHo1du3YhJiYG48ePL5B2N2rUSNoDmZOTI+0Fl698xCnpz507h7lz52LMmDGKjpnYuYqPj8fEiRPxyiuv4MiRI1i5cqViY6AOiDk5OdixY4fiuBitzod8L5K8U2dLuJS3T4tW5RL4dyUlrvjknRlBEEw2YCEhIZorCnsrl4IgSENvxfvFxMRI49R37NiB1atXS8t//PHH0rEqwL/DBNUbdUvhUhx2K//xb9u2DdOmTcO3335rsoPD2jCljIwMk+GrCQkJmsFFfl1QUBBGjx6tONdZRkYGtm3bhqysLKvHXQD/rhjlr0VrqF1KSgpu3Lih2EBZqlwaDAYkJCQoVrzy4WrqIUO2bDi1DtZXd6Lk1bN+/fphxYoVeOutt3Du3DmTzqx6o6AOIwcPHsRff/1ldaeLFnPhUqtDLYbwxMREk9+g/D2Wt08dLvV6vbTe0AoU4uerfi3y91AQBOlYt9TUVPTv319R8S9Tpozit6N+v7SGxcpnB83PRA3qzlFcXBwOHz6sWQE0Fy7Vv+mQkBDNmXF37NiB7du3WxxOLGcpXBqNRixevBgrVqzAiBEjsHPnTsWQ2M8++0xaN4uHUaSkpGD27Nl4++230aNHDxgMBs31e1RUFNLS0pCcnGwy0UiLFi3g6+urqKbMnDkzXzP0+vv7K0KKen6BrKwsnD171mT9bEu4zMjIwJ9//qm4ztypoOThUh681ENj5ZcnTJiAPn36oE+fPjYdX1tYPvvsM2zatAkHDx5E165dATgeLn18fFCrVi1px25OTo7JMdLvvPMO/vOf/yje8zt37mjujNbazicnJyMlJUVRCUxISMCJEycU28ratWvD09MTTZo0ka67fPkyGjRogKCgINy6dUvajkyePBl37twxCZeVKlWSLmdkZCjW0/kJl+ZOixEXF6e5zggICJD6eEBeP01elZL/tsTLDRo0kC5nZmbi6tWr2LJlC3bu3AnAdBsp3wb7+/vD19dXUfGzNJO6I+EyMzNTcX9zlUtx3QJAsYMgIyPDpEIn/z7WqVMHr776quL2KlWqYNy4cYrJuETyeQDUOynl79nu3bvx888/Wzzfpvw4cPX2zZ5wGRUVpfjOlS9fHn///bfZ0RqWDnGydedecnIysrKy8Pfff5sNq+YKM4WlyIXLFi1aaE7q0q9fPwDaVR65AwcO4P79+xg2bJi0xwLIO6i9Y8eOWLVqlUOzTZnj7u6O1q1bS5dPnjxpUmm4dOkS/vrrL2zatAkPHjxAaGgo2rRpI63Q4+LisHPnTsyePVtxPKZer1fsMZJ/ueRVO/meIktfWi8vL/Tt21e6fP36dcUGWwyX6iqjpY6IVuUS+Hd4QmpqKqZPn45Vq1Yp9k6rKz/JyclWZ9JVf37WOvfZ2dkmwWn16tU4d+6cYm9ahQoV0KhRI8VEKOKKQd1OS+FyzZo1WLFiBebMmQODwSCde+3hw4ea07ZrDYVUkwfBo0ePYvr06Zg5cybCwsLw+++/Y9q0aYiLi1OsLL29veHl5aWohuj1es1p3QVB0NygJiUlmbTN19cX6enpUiBJT09HixYtMG/ePMWwa0s7I3JychSd8PLlyyvO9aYedpKfDaf8srnK5bVr16QdKqmpqWan0xcJgmASluLi4qSquDnmNl5RUVE4evSootoYFRWl+J3LJ+IQO5U7d+6UNvjXrl3DL7/8guXLlyM0NFTxuT7xxBPw9/dX7EQSv7OWwqX6Ny5/D+/cuaP4jYtVDtFzzz2HNm3aKF6P+rHUe4/FY8+A/FUu1Z2jBw8emB3arvW9zszMxPbt2xXX3bt3T/GdjI+Px/z583HixAmcPHnS5L0xN3u3VjUkNTUVubm5iI2NlfbEp6am4qWXXlIEhsGDByuOdb927RrWrVsnfcf27duHOXPmmO2w3LhxA6dPn8bNmzel77q7u7s0Y2rLli2lZcPDw/Hnn39qVp5feOEFk+saNGggdfouXrxo8v4BeUNW1b9DdbhMSkrC6NGjMW7cOOm7uGzZMpPth1a4FIeOi+RVSEvhskyZMlizZg3WrFmj2OlS1Li7u6NXr16KKqw8XN65c8fs+QvlnXn5++Lr62sS6OSzUAN5O5Lj4uJMjrm3tMNR7cyZMyaVtYMHDyoCkVhprlOnjvTbNxgMCAkJQWBgoGK2WUEQcPjwYcV3PSgoCKVKlVL07eQ7a20Nl4IgKE4TIt/J9fDhQ5PX7enpifbt2yt2uMvfQ19fX5PZ/TMyMvDaa6+hWrVqJs9/8eJFGAwGZGVlKT4H+TpTbJN8fXDlyhUpxAiCgOTkZOn+lrZDYig2N6GP+LpF4rpN/lmL/XLx8wgICFB8N9VDY+X9uIyMDKxYsUIKpCVLlsTrr7+OrKwsPPPMM4pqdIkSJRTff3XfS3wN4eHhOHLkCPR6veZORflzy++n9Vj5If8+p6en44svvpA+E3d3d/Tt21cxwsMZlcvExESsXbtWkSmaN2+Otm3bSpcZLu0kDkkzN+GLSBym8+yzz5rc1qZNG6SkpDh0QHulSpUU/+Qr8WeffVZa6RmNRmzfvh2CIEAQBMycORNDhgwxWfnev38f7dq1w7Bhw/DRRx/hxIkTmseaiBte9Sxs8g65fIUh70CWL19esbevffv2qFq1qiLEy38wYrj09PRUhFdLnb+4uDjN8CmuGEJCQvDJJ58gODgYy5YtQ05OjtkVgtb4fUvh8syZM6hYsSIGDBhgEoTETqi6g5mTk4O2bdtKHSudTodevXphx44dipWsuCJVBzJzw1MSEhKkzmJKSgru378vXQ4ODpaCsHwPqF6vt3q+PvF1ZGVlScMf0tLSsGbNGiQmJiIpKQmnTp1SdOzEUCmfXc/cMM3ExETNNuTm5pqsAOPj4zF16lT8+uuvuHXrFtatWyftnLh48aL0+VjaGaGu0jVo0AANGzaULsuPFQNs28OnbmdycrLZcKk+J5V8KGVgYCB27dqF3bt3SxuNpKQkk8cXv9uWNhDm3u+HDx8iODgYixcvlpaR7zirXLkyRo4cKV0W9+afOXMGS5YsgcFgwOeff47w8HDcuHFDWtcAeRu48uXLm0zqI3aYLIVLreMxxc/T0jligbzgIt/BphUu1VPm2xMus7OzTd7X8PBwxXpBPjmKVri8dOmS5s4wccSJwWDA8uXLLe511gqXDx8+NPtbTkpKsnje2JYtW6JOnTqK6u/FixdNOrqjR482u3Nr27ZtuHv3ruI116pVS9rJUL58ecV34sGDB1i4cCE2bdokfdcbNWqk2Ekgkv8+5adbkLt//75Je+Xh8v79+2jfvj1++uknTJw4Ea+99hqysrIwffp0k8fS+r7duXNH8f2Rd24bNGiAZs2aAQBq1qyp6OAVZ/LXaDQaNT/7+Ph4RSdW/hmLO4nlOxaio6Olz0k8pEc+UZIoJCTE5Jhs+e9GfioadTAF8rYBYuCTr49KliypqFgFBwcjICDAZMeyfKZYNzc3lC1bFjqdTtGf2bBhA/7++2+cPn3a5Pcq7tBSO3jwoGL7I++kJyQkKLb3I0aMwJgxY9C8eXPEx8fj3r17JhMytmjRQnM2/1KlSmHo0KEYNWoU+vTpI/WnsrKypKGosbGxOH78OKKiohQ7G8VwWb9+fWmHd1ZWFm7evAmDwYCVK1di2rRpWL58OQRBsBisxc/VXOUSMD3VldFoVKzLxPZER0dLj2PpuEt5P1scldSjRw+8//77GDFiBMqUKYPk5GS4ubnhlVdegY+PD3Q6HV566SXFOVDF4/tFWVlZSE5ONjk/tjnODJeCIEinINm5cyemTZum2In31ltvoUGDBorz/1qrXNpyBoLZs2crdkK2atUKPXv2VOwwunLlCkJCQnDo0CGHTrHiLMUiXBoMBkycOBEeHh7ScQjmiHux1Af3y69z5Lx5lnh5eSmmU7979y4uXryIL7/8EiNHjlR0RipWrCitaNLT07FgwQLFyikoKEixx0v8gqr3gsiXSU9Pl1Yi8hWNv78/BgwYgNdeew2//PILunTpAp1OpxhuIe5t9/DwkEKnekIhS2HBXNgS97TIVzxRUVFYvXq1YhiFvEpz69YtPPXUU4rJCswNi01PT8e2bdsQExODFStWmBygL86kq/UDl4eCNm3aSHvP1CsGQRBMwqW5zp16Eg5xY5CTk6NY2Xbr1k0R7q0duyduDIKDg82uOKKiojTDpbxyaa5qL++M+vv7K4alqL9zkZGRUkhYunSpyUH44kbKUlhQHz9Sv359xfFH6k5GWlqaYiX84MEDXLx4UfFdUL8vBoPB5HMTl7E0hOf8+fM4fvw4jh49KlU0tdYZtoRLaxuvrKws6bskD7zt2rVTHMctn9H54cOHCA8Pl4ZWqVWsWFGaaVr+noqvIT/hUnzfMzIyFO1TV4m8vLxQq1YtRbiMiYlRfN8yMjJM1iH2hEut8Cbf8Pr6+iomcElISDDpeGVkZGh2sMTjLu/fv292QhOR1m9J3mH18vJSVI4TExMthsv+/fsjPT1ds9Ihl5qaqvjNyc/jKLZJHvDUFZVXX31VMVwPyOvE37hxA+3bt8err76qOQlP1apVpePM5MeJynewRkdHm2wLxHAZHh6O5557TrEjZ/fu3Wjbtq3mcL+zZ8+adLzk69eKFSsqvj9ubm4IDg7G8uXLcejQIcUOvOKsZMmSivN/ag2Nla+/fHx8FP0f+cy68h0X8fHxGDFihLQjQauzrtfrFRXk5ORkRQCVDwWVXy8Pf6KqVatKOzp9fHzw4osvSrcFBwcjMjLS4k7EmjVrStsy+W8kNzcX165dw9atWzF//nzFYw4bNgyVKlXC22+/rVgXy+dQqFq1qiLMpKSkSDuBfXx8UK5cOeh0Ohw6dAgTJkzAwoULsWzZMhw+fFi6T+vWrU22P/IhpL6+vmjYsKHityhu4+bOnYudO3fizz//1Kxcent7K3YwXLp0CTt37pQ+85s3b+L+/fsWw2V2djYMBoMUXm0Jl6mpqYrfn9hfWb9+PX777TfcvXtXMTTWUrgU+3Lu7u6oXLmy9DmKozgqVqyIjz/+GJ999hmaNm2KcuXKSffNycmR2puRkYHRo0fj/ffft3l7kZGRoXm8JfDv+2JOWloajh07Jn0u8fHx2L59O6ZPn44TJ04oKpb9+vWTPid5307df7p69SpOnDiBrKwsJCUlYerUqZg/f77Z/vWWLVsQHBwsXa5Tp46UM4KCghRV/OnTp2Pv3r1WJ6d7FIpFuPz0009x7NgxfPfdd4pjPrSInST1kE7g32qRraVoLdHR0Yp/6jDRsGFDxQp806ZNir28Pj4+6N27N4YPH46+ffsqOv5iGzt16oT169ejU6dO0vVa4dLPz0+x51DsBALKTmLJkiXh5+eHMWPGYNSoUdIXX77CunXrFgwGAwIDAxXVSnm4tPRjlndm5MNKExMTpSma5eTH5/n5+eHll19WdAjPnDmjCHnmKpcnT55UBAx1RUr93CVLllRsSIC8FZv8vZY/rzgxiXrFZC5cXrt2DRcuXMCRI0eQlZUlPb98xS12+uXhXmuoqlxiYiKGDBmCXr16KSa+kMvNzTUZFgv8Gy6zs7Nx+vRpzWPC5J9fjRo1FCtHS3veUlNTFeecA/4NXZZ2Rhw7dky6XafToVatWorKSGxsrMkec/FyXFwc5s+fj3Xr1imm4NYK3erJAMxVLuXfEXln6vz58xAEwWQyHyBvw6PX622uXJo7h6s4WZa809ixY0c88cQTePrpp6Xr5LevWrVKMUmGfD0iDqMqWbKkovP34MEDxWkqtNqpvk3cqF+4cEFRdV+6dKniPH5PPfUUsrKy0LRpUymYGI1GPHjwAJGRkVi2bBmWLVtm8hnJN4y2dhasdYwCAwNN3mv17zU7O1szpIrHXdpyKiCtcCkfElu9enUEBgZKl9Xhsnfv3tLJyOvUqYMhQ4YgNjYWfn5+imFiQN53R37M0qVLl6TOW/PmzRXr7KysLEUFRB0ufX190bdvX7zzzjuKHXgbNmxQnMJCHhBSUlLw1FNPwdfXF23atJG+exUqVMCkSZOk5aKjoxWdTJ1OBzc3N+zcuRNt27bVrCLLl5dv32NjY01ONWHueEtRUFAQ+vfvr7lzuTizdtylekisfOeg/G959XL79u3S9iIpKUmxHpevN0JDQ6XgKN/h4u3traiQinx9fTFo0CDFdhRQzhJbp04dRbgUR8BY0qBBAymctmjRAg0bNlT0NYC8Sr/RaERubi6OHj2K3bt3S3MsDB8+HBcuXMDp06cVx+g9++yzimGxwL87sKpUqSL9tuSHfNy6dUtx3GqrVq1MtgOJiYkmwUX+fl27dg2CIEjvrTg/hEi+DpNvG8PCwkxGfd28edPqkGDx9FzqiqRIfdYBeV/T29tbsbMmJycHZ8+eVfQ3zp49K73etLQ0RVA2N0OzfBlvb29pe+Dr66vYpol9ih07dmD//v1Ys2aN2RGIVapUkc7HCeT1i3Jycszu6JUPFd62bRuOHj0q9U03bNiAXbt2YfHixUhLS8Mff/yBPXv2KPo2FSpUwNChQxU72eTf/czMTGn5O3fuYNWqVdi5c6e0IzMlJQWRkZEm580UyXfklStXDm+88Yb0mxb7TiKxb6c1m+2jVuTD5TfffIMZM2Zg+PDhGD16tNXlxZWPVsdW/BLJhwk6m06nQ48ePaQPX743r2zZshg+fDiaNGkCnU6H+vXrY8yYMahWrRqeeOIJ9OzZE5988gnat2+P0qVLK0KQVrgMCAiAr6+vYuMhrjTknURx77m4shJXpDVr1pRWztnZ2YiMjDRZCWhVLnNycjBs2DC0bdtWWsnJVxKNGjWS2iQIguLHquWZZ56Bh4cHhgwZIl23aNEixevSqlxmZ2eb/CDVG97k5GRFh6ZGjRp4+eWXFRulDz74QLGn3t/fX9FZ09qYa1Vqs7OzsXPnTmzYsAF79uzB/v37cfXqVZMKWpkyZeDh4aEI0+Lt6o0ckPceTpo0CUuWLAGQt9FSz4iZkpKC8PBwxQZOXDl7e3tDp9Nhz5492Lp1K/766y+T48Lk71H16tUt7nmTu3TpkslQKnFDYCksLFq0SPq7SpUqcHd3R61atRQbMHU1V9x4bty4UfoOyINgfsKlunL54MEDCIIAg8GgCJ6JiYmoVauW2dEO8fHxNlcu5Xtj1a8rNDRU0X5xyJi8einvaMunsG/UqBE+//xzDB48GAMHDpQOCShVqpRi2ExcXBzS09PNVi4NBoPJBjglJcVkCFjjxo1hMBjw1VdfoVu3bmjbti1efPFFpKWlwdvbWxEQTpw4gaVLl+LmzZvYv3+/YhINNzc3RQfCkXAp7xiVLVsW7u7uiqqWemeCOAGJ2v3793H9+nWbwqXWxGLyHTfVqlVT7PyLjY1VPG6VKlXw9ddf48aNG7hy5QpKly4tVaflHRU3Nzf06dMHHTt2VAxD2759OwwGAypUqKBYl4jD9oC8375WFQnIm1zl/fffl7aH2dnZGDt2rHR7x44d4e7uDi8vL/z111+4evWqyW/9k08+UQw/1ev1ivc1MzMTr7zyCl566SXFDoAJEyZonpvyhx9+ULxn6uMu5eviojDr66Ni7nQkInOT+QBAkyZNpOpxjx49pOBtNBqlE9lv3bpV2lni7++vmGQqKSlJek55uAwMDETFihVNqtwtWrSAt7e3IjwCeeupqlWr4o033kDHjh1Rp04dRcdYPrP+c889ZxIc5efr9Pb2Rp8+ffDll18qdnJlZWXh9u3bSEhIQE5OjmIbsnz5csybNw9fffWVdF25cuVQv359eHt7K/o64ndYvg6xdK5lrcql1npWvm5MTExU9AsyMzMVO6zk2+B69epJn6FWX8qWcCn21cwNxVRXLuXbfflIO9G5c+cUrzEjI0Oqxsq/ozqdTvGbljN39gadTqeY4C8+Ph65ubmK7faBAwc0X0dAQIDm8a/WwmVwcDBCQ0MRHBwsHRMr9pPESbDkx5l7e3vju+++w40bNxTrZcC0Hyeu9+X9LvUOT/WhQEDeZy2fxfz55583GZEhL2bdunXLpmG2j0KRDpfjx4/H999/j6FDh2LOnDk23Ufc46vVGRSvK6i9muXKlUPJkiURFBRkcsxn06ZNMXToUJO9ebm5uRgyZAj++usvdOnSRfrilChRQvGlMRcudTqdYu+/GC7lKxp1uBRXmOo9j1euXFHsaQeUFWCx8zdnzhwsWLAAR48exfDhw3H06FFF5atWrVqKqpx6z7Q8wOp0OjRv3hxubm744IMPpBVobGwsjh07ZvLcABTHgKlX6OrQlJKSomhbtWrVEBQUhLfeegsvv/wylixZojhgHsjrzMlXDlrhMjExUXouQRCwdetW/PDDD4rQd+vWLWmjr57xDoBiYon4+Hj4+fmZVFwEQcDu3btNhkBeu3YNH3/8Mdq2bYsHDx5g+vTpmDZtGsaNGyd1UMWOu06ng4+Pj2Koqfz4mJSUFEWnoXr16jYfM6CedRAwrVyqT01w//59xUq6efPmyMzMhLu7u2K4nnpCrPT0dOTm5poNelohTx2M9Xo9DAaDybDbzMxMpKamIjEx0WQjtHv3bkWwk+/0iIuLs7lyWbp0aXh4eJjszU5LS1N0rCpXriwNg5OHyytXriAmJgYZGRmKY5HEPfg1atRArVq1pE5AzZo1FcOWcnNzzZ5+Qn3uV6PRiISEBOkE4PJO2jPPPCN1UNq0aSOtt8RhVPJqa1hYmKLDJB/O6enpqbl+scZauBTXYfLfknrD/eDBA0W75DscQ0JCbDpnmLXKZdWqVRW/I3kbfH19ERgYiDVr1mDz5s1Sh0D8zrds2RLly5eHl5cXevbsiSpVqiAzMxNz586Vvn/JycmIiIiAm5sb2rZtC51OBw8PD0Xno0mTJiaddDkvLy907NhRurx8+XIp0NWrVw9ffPEFunfvbjKyolq1ahg2bBg+++wzk5mJxd/KyZMnMXnyZMXoAjc3NyxYsADjxo3D/7d33vFRlNv//8xudje7m01IZ7NpJCEQEhICJNJCk1CkhGLoRUoUBGm2rx1B5HqV61VBQGzXgv0KFiwgCCIooKCgyKVjCC2UkF7I/P7Ib8bnmZndbNiEAJ736+VLMju7OzvlPOfznPOc88knn3DLIaKiopCVlcXds0pxyTqtfydxWZfIpVJcWq1WTJw4Eb1798awYcO4InYrV67E8ePH8d///lfeNnDgQCQlJXG2R5rEVa631Ol0CA8Pl7cZjUa5WGBCQgLGjRsHo9GI2bNnY/HixZg8eTJat24t2yilAJV44oknkJ2dzW1jI5fs96WlpXH3/LJly7Bv3z7VPSu1m2ILn2RkZMjHojWhyk5+OROX4eHhCA8PdysjLiAggBNN7DjE2jWdTsfd30ajUXVd2XEoNze31uwnCWd29sKFC9w4zdpAZz6z2WzmhKPk67G/y9/f36kNcpWSqhSXx44d4yb08vLyVMXCKisr8fvvv2Pu3Ll466235ElFrSUZElJ/ZNZ3W7NmjWpZRFFREefvPProo3jkkUfkzEAW5eSmdC7Za6b0q1g/XmL//v3cBLky6w4AN0FTVFTk9n3Q0Fyz4nLevHl4/PHHMWHCBLz88su19jKUkNI+WGEi8cMPP8DX11czlcNT2rRpg1GjRmHgwIFwOBzo2rWrPGOckZGB//znP6obUEIQBGzatIlz7oxGI3cjSW1MtKp3sTdlUVERpk2bxhkQ6XWluAT4dIsff/wRkyZNwsMPPyynASrTYqurq/HCCy/I23bv3o2PP/6YSxuMjIzkPpc1CG3atMHo0aNlg9ShQwf4+fmhbdu2cDgc3Cwk24JFGbm8fPmyZksM5cCrNLrSjFZcXBzeeOMNjB8/XnNQYJ1CZ60Mli1bhsrKSuTn52Pnzp2qSpH5+fmy8dRq9cJ+x9mzZxEQECAPnlVVVTh06BA++eQTzXv50KFDKCsrQ9euXbFlyxb5e/bv348VK1bg66+/5gaKqqoqbvA6duyYLNLYip9Wq1WVVuismTRb+ZJFOt8VFRVYv349goKC0K5dO3lwXrFihXxPWK1WJCYmorKyEpcvX+bWCCojl/n5+Rg3bhzefvttTnhK94g7i9hLS0tx9OhRzVlMZWRJ4oMPPpDPryAInKPnTFyeOHECn332GbeWzNvbGxs2bMCiRYvw6aefytuLi4s5sd+sWTP5ucvIyJDXF1VXV+Orr77Cvn375GtrNpu5SSiWm266CYGBgZy9e/TRRzVTokpKSnDq1Cn8+uuv+Oijj/D000/jhRdewOzZszlB6HA4EBoaivLyctVgLUU+lev5WHbt2iVfO6PRyEU96ltcss/X7t27sX79eln4KNc+sumCGzduvOK0WNYBDQ8P5xwv9v6MiIiQx7SCggI5E0I6N1arFWvWrMEff/whF6kpKyuTq55LsELw7rvvxt13380JDXY9pjOU1RrvvfdeWeyazWbO/rRo0QLFxcU4duwYVq5cCZPJBEEQOEF48uRJnD9/Hl9++SXnPKalpWHLli2YNGkSgJrx6Msvv0RmZiaio6PxyiuvQK/Xy7+X/X0StaXF3qiwv7WukUug5rnt1KkTfHx8kJOTIzvlZ8+eRWJiIjfZJ7Wuuuuuu+Rthw4dQnFxMedwS88XO5E8ZswYjB8/Hl27dsXIkSPxxhtvoLS0FM8++6zm79ISl23btkWPHj3w0EMPcdtbtWql6UMFBgZya1L37NmDjRs3avYFZrdFR0fLforBYOAmlCUbI4lLZU/mrKwstGnTBna7HYsXL4YgCG4XUVGmxmrRtGlT1UQz61MJgoDbbrtNFtVsoSdRFPHTTz9h06ZN+P3335Gfn69qZSbBiufLly9z/iVrZ52NMQCfPq8lLp2lxNaGUlxq3fdSKnVFRQXWrFmDp556CvPmzcPSpUtx6NAhfPzxx6ioqKg1cqlMCVYuUwFqIr+Szdfr9dy9q5UNqTVBzwY6ysrKuGPSWufORi0DAgI0s1B8fX25+99VhP1qck2Ky/nz5+Pxxx/HuHHj8Oqrr3Jqn+XkyZP4448/OOeuW7dusNvtePnll7no3S+//IJvv/0W2dnZmhfRUzIzMxEQEIAWLVogJycH8fHxmDx5MmbNmoWnn37arfYnrHNlMBi4B1qqkKglLlmxWFhYCH9/f+6mlQyyFCVgjahyJiQ3NxcLFy5EUlISPvvsMy6yUF5ejq+++op7yNkefOxnKptDAzVrw2JjYxEQEICVK1di79692LhxI+bMmYP+/fsDqEmXkma5zp07J/cJVUYu9+7dqxldkIrnSLARHj8/P+4hdLbODOANg7PZtdzcXBw7dkx21qWokkR1dbUstLQil+w1Ki4uhtFohNFoxOeff45//vOfeOutt7jjj4yM5BoCf/jhh8jPz1el/FVXV2Pbtm24//775W1a/cq2bt2K8+fPcyJdStl2Z80lO9PHTkKcO3dOLrP+0EMP4cKFC9i9ezcGDx6MCxcucFkI7dq1kx2d8vJy1bpLCVEU8dhjj+Hdd9/FwYMH8fbbb8vnWvq/O4N7dXW103ZGzsQye++FhIRws7ha4lIURXzwwQfYuXMnd28VFRXJfVx//vlnWTwXFhZy6d0tWrSQnzuDwYB//vOf8mtHjhzhFusnJCTIxXtYYmJi5Od82LBh8jm+ePEiVxxA4uTJk+jcuTM+/vhj7N271+lALImI8vJyTTFYVFTEra0CamZrWadQSrE1GAxur+lmYZ0eX19fXL58WZWuB/CRiIMHD2LLli14++23UVlZyUWiLRYL57x/++23qnu+urpalW5Um7i02+1O08HYaA/wV+Ew9p4PDQ1Vtc0oKSnh1of/9ttv8m/x8fGBIAhcb+WsrCynk5oSer0e48ePl//+5ptvuHuEnfjo1q2bpiPFisuioiIuNTcgIAD/+c9/8MMPP6gyekJDQ/H111/jyJEjcvsTZ+KyoqKCm+j7O0Uu2Wfq0KFD3GRldXV1nSK6TZs2xZw5c+S/i4qK5Ikis9ksRyz79OnDpfLv379fs1Js//79MWPGDOTk5ODZZ5+FzWZDz5495WN25r8BQI8ePVRRrSFDhgCoSaOdPn06gJp0wPT0dM17z9fXl3uepGdIS1yy5OTkyMdmtVo5v0gZuZSWFEjExsbi3nvvRV5enhypdVdcsqmxf/75p/y57OeHh4erstwSEhKQlpYGPz8/jBw5Ek8//TSXJSJNbH/77bf47LPP5LWJS5cuxTPPPCPfI8pOAqzAdNbyrnnz5twzzqIlLtlstcDAQM3WRrXB3ntnz57VbPH0yy+/YP/+/XjjjTewe/dula9WWVmJY8eO1SoutWoqbNiwgfub7SMfERHBRQy1bKxSXFZVVakqabPjjNYkNTvWR0dHO11awy6LIHHphKVLl+Kxxx5DZGQkevXqhVWrVsnFIN566y2sW7dO3veBBx5AQkICF3kxGAx47rnn8OeffyIjIwMvvvgi/vGPf6B3794IDg7G448/3iDHrQzPm81m6PV6NGnSBGVlZbVWA1ViNBrhcDhUPRdri1xKQoc1EspwOytGrVYrhg0bpkp7KCgowMCBA/Hxxx/LTkJFRQUXtZTYv38/d1zK4iwScXFxsrAPDg5GYmIiTCaTnN4L1Bje22+/XX7Pli1bUFJSwjmeFRUVXFVYtnJcYWEhnnzySTltj01Fu+mmm7hzIQ0GtUUuWZRpDZcuXZKNlpbxO336NERRdBq5ZK/vpUuXsHPnTm6GTMLf3x+PPPIIl8L73nvvYfny5VwUi722W7ZskQdYrSqV+/btw+rVq2WDbLVa5f5S7O/XEvHKNBK2Sqj0ewsLC7lBZs+ePUhPT5ePSafTcZGVsrIyp5HLnTt3ckUYLl26hNWrV3NFrNwt1KVcrypx5swZznnVypYICwtTDXrK7y0tLdWsNKpsrSANNPv27eMEU1ZWFvfdw4cPR5cuXeS/WedAes7Y4l56vV6erAFqHBV2fduvv/6qGoA2b95cazpNeHi47MxoRS6BmuevadOm8jmSquixpf5//fVXVFVVyZMpElJhIyUFBQV455138NVXX6myN5o1a6bqxSo9X1oTJJLwYT/D19eXa3F1+vRpLuJ8/vx5LFu2DE8++SQ3I698RsvLyzknZc+ePU7FJesMAH9FzZUTGWazmbM5xcXFiI+P51pesevjduzYIX+GwWBA586dMXXqVLlPtDPYqqEAsGjRIgA1zzIrLtn+cyys43ns2DEuzfvRRx/F+PHjXYoMFlZcHjlyRL52R44ccdqG5EYnMTGRs8lSOyqgxrazz6I7mVlPPfUUli9frvIN+vXrJws4qeemxB9//MHZtczMTCQkJGDEiBF44YUX8NJLLzktWuaMJk2acGMH8FfkFACWLFmC06dPY9OmTapJKglfX19u0kIaN1hxqexfHRQUxEWezGYzd34leyxFBll76eXlBR8fH5X9c3f8CQ8P58ZpSfSxwZCIiAhVBoggCFixYgX+/PNPvP766wgICODGz8OHD6OoqEhVMR+oGZMksaRsL8JGFlk/hR2TIiMjMWjQIFU0GeDF5a5du1BdXc2lj8bFxaFLly7o1q0bjEajavLRGWzksqSkhBuf2ImAd999l1sqYzKZuOVdhw8f1hSXhYWFWLduHR566CHN5T3KyU52n/j4eO5+0bov2YnBgoICnDt3TrVmnX2etCap2chldHS00/GEFbpHjx51mW58tbjmxKU0g3/8+HG5QAX7H1uZzhnZ2dn45JNPYDKZcM899+Cpp55CRkYGvv/++6tWRU7ZuF5rZsQVRqMRer2ec3ouXLhQa+RSSl1hnS1l9UHlYuOkpCRMmTIFixcvxrx587j1Cx988AFWrVqF0tJSHD58mHPwJZSRs9jYWE1xyRoVrcI1Eo899pj8sJaXl+O7777jHvRffvmFGzj69OnDRViPHz8uNz1nC+907dqVuy5Sieq6iEt2pvDixYu4ePGiS3F55swZXLp0iXNEJaOp0+k4A1pdXc2tB9HpdIiJiUGfPn3kdTLsed26dSuWLl0q/52Wlobp06dzv1EyTlqpvaIocqKzZ8+e8rVnnYTS0lLu/Ofn5+ODDz7g7sW2bduq0ny1jBybatKqVSvu3l21ahX3nBQXF+PEiRP4888/NdtuHDhwAFu3bq1T5BLg71f2XOXl5XGL7NlojkR4eDgnLi9duqQqhHD06FGsWLECzz77LFewgJ0EA/4S/GyRAj8/P66dEVDjVDz33HMqsctWPrZarRg+fDjS0tIwatQozmHw9vZGp06duONmC3gAfJ9bh8OBoUOH4t5775UrTN99992YNGmSPDnEVsBjKSoqQlVVFUaOHImePXti0aJFaNeuHZKTk2VxUVpaiv3796vEJcAP6Hv27MG0adPgcDgwevRo9O3bFzNnzuRme2NiYriJNKvVKtsCZxMkubm5nONks9lgMBi4iZv//ve/qKqqQlVVFT7++GO5oMSnn34qn7fKykqcP38er732Gg4dOoQjR45wdtff3x82m00VmdHpdKpqsGfOnOGeRV9fX1itVnm9tERJSQlKSko4O/Sf//xH/l52dr19+/awWCyw2WxISEjQtLkxMTEYOXIkIiIisGDBAnn75s2bkZeXx6XPA+6Jy3PnzsnPYpMmTTB58mTN9zgjPj6ei1BJ2RtsdM5ut2uuUbpR0ev16Natm/w363Sy58Xf39+tNERBEHDHHXdg7969XK9strcu8FcUEfhrKYbEwIEDMWLECKcFo9yFFXktWrRQiaqQkBDZdjiLXLLrQ8+ePavKAkhISODOX9euXTn7ZzQaOUGiTItlxaW/vz8EQVDZP3fHH51Oxz0vUmqssthXdHS0yg+RnmfJbrITQufOncNnn30mLzmR1nVLnD59GhUVFaqJNXYfdixj95Mm8A0Gg6rDAXv9i4uLVesE+/TpA0EQ0KNHDzzwwAO49dZbnZ0aDqlGgRI/Pz/uerOkpKRg165dXPHPI0eOcOKyqqoK33//PZYsWYKtW7dizZo1ePjhh10KspKSEi7b5aabbuLGYy1xyUbTCwoKNANMWpHLyspKbN68GQ8++KAqjdvf35/LXGFfk46noqKCGwcai2tOXL7++usQRdHpf6xRlfZl16BIDBgwAD/88ANKSkpw4cIFfPjhh9zagIaGfQCLioq4h80dgSsZD3ZfqYy0hJa4LCoq4lIgpYI/rGFl92dJT0/HY489hq1bt3LpsgcPHsRLL73E9ZBiDQp7TNKavfj4eM6pUjZ0d3YMQE2q1D333CP/vX37ds7BYYVGREQEwsLCOJF2/vx5/Pzzz/jzzz+5c3HzzTdzg1NpaanTJsta4lJZcObixYtym5LKykpVygNQ4zSyM24BAQFcujM7+75lyxYu0jdq1CiMGzcOHTp0gMlkwtmzZxEREcGdO2nmS4oCmkwm7vO/+eYbiKLIOSBa6yfsdjtXXEM5Ax0QEICqqip88sknePHFFzmBJg2Cyoie1vlgSU9P5/7Oz89HXl4eN7nx8ssv47XXXuOis2yk+ptvvsHChQuxYMECrF271q3F7Gz0iXVszp49y7X3WLBggUoYOBwOuZCFhFK4v/nmmzh9+jQuXbokR3CkVGUW6fyw93ZycrJmG6W2bdti4sSJ3LYWLVpwaV12ux39+/dXRXRMJhP0ej0GDhwob5NaBAHgquIBNQKidevWsFgsMBgMsFgscsqlhKu02MrKSgQEBCAjIwPx8fEwm82wWq1cOtiuXbtUabHAX9HARYsWITk5GcuXL+citUuWLMGqVatkR8DhcHBOEOsosfdwYWGh/J7c3Fxu9l56nlibc+bMGaxfv17uvydRXFwsTxJcunQJGRkZmDRpElq3bs31zvPx8YHBYNCslOhwOFRLM86cOcM9L2xkk3VciouLUVRUxFUB3rt3r5w+yjoVWr1IlfTo0UOe9OvRo4ds16XUbjZqGR4e7rQHp5YjDADTpk2rswjU6/VcKwzpt7ETU3+nqKUE6+ew6XLK9Zbu1qcAamoQfP311/j++++xZ88eleN68803y/cfO84rq517wu233w673Q4vLy/MmzfP5fE7i1yyk64VFRXypK5ESEgIMjIyMHbsWNx2221o3bo155MZjUbOh1CmxbLiUrrPrzRyGRUVxUVaDx48iKqqKk5oSGuy2eccUIvr2NhYbtKIHdsefvhhPP/88/IYJooi8vLyuMk4m83GTUZIr0nLsNjjYd+jPCb22b/vvvu4c8NWUpWKjikFqhaCIGhOlMTGxiI5OVk1CZGeno6srCwEBQVxabinT59GXl4eysrKcPHiRSxfvhzr16/nxq/jx4/LPa21YIMU3t7eKt9F675UdntwR1yKooj//ve/2LBhA9dOJDAwEDabDU2aNEG3bt0wffp0LsLv7e3NRS/ZpRGNxTUnLm8U2Ifn6NGjstOq0+ncSluRnA9WXLJOrJeXl2xolGmxrKAKCQnBvffeyzl2ZrNZc7ZRchxSU1Oxc+dOzvG+ePEiF3lJTk7m1i9K+Pv7w9vbGyaTifudCQkJ3DmpLX3m7rvvlh3F6upqvPvuu3jrrbdw6tQpzoGSnBD2HJw/fx6FhYV45513ZOFoNBrRvn17VRTAWdNmLUdJesAlLl68iHPnzqGsrAzHjh3TnPk6ffo0J3hatGiBIUOGIDk5GQMHDuRmjd9//335eG02G2csgJrBTBAEzagwGwVkjdo333yDI0eOcM50//79VeWs+/btywkmZbWzhIQEfPPNN6rG5qGhoXLqlFZ1N4mcnBzunouPj1etOwNqBhSlAyt9nyAIuPXWW5Gdnc2tPX3ttdfk6pOvvPKKy0bcAB9hZiNALMnJyYiIiOCuj9FoRHBwMPR6PTfosevLAL7E+PHjx3Hu3DmcOHFCVYjmwoULKCws5MQlmz6qZOHChdwgxh67q3V10kAfERHBvUeacDhx4oQ80AqCoCrj7uwznaXFKteOS3aKTXc8dOgQCgoKVCKroqIClZWVclqmFnv27MF7772HyspK+Pn5cdebvS7KZ1hyGJXiUnLO2rZtiylTpsjbf/zxR83eY99//z3KysqwfPlyOe2+tLQUr7/+urwPKyiV4lL5XAM1kWA2esw+A6xDWVJSgsLCQoSGhnL29/XXX5d7+0koo4xa4pK1h3q9nqvQ+d5773GN4tnKmkqURX2AmueFLQpTF7TWXf5dK8VKsOJy7969srNaWzGf2hAEAZ06ddKsk+Dt7Y0BAwaotkdFRWlGla4Eu92OY8eOIT8/HyNHjnS5rzNxGRISwj377LOk1+tlXyI2Nla2b6y4NJlM3ORoSUkJqqqqnEYuAV5cSjUGnGGxWBATE4PIyEgMHjwYHTp0kEVfZWUljh49ykUNpbGRnfAF1MLOZDJp2pOAgADMnDlTlbWWm5vLiRxnkUvlWMWO1VoZEOzYzrbJMhqNmhNBzjLDlGitMWzevDkCAgLwzDPPyD5Lt27d0LdvXwiCAKvVipSUFO44d+zYgbKyMnz++eeqTCOJTZs24dy5c6p14QDvMzRr1kw1Rmrdl2wwq7i4WLOeAysuL1++LN8LAFQt9IC/7r3g4GDVdRgwYICq20NjQuKygVBGLiVCQkJU0RClAZFmdwB+xoi9Odl1isqCPmz4PjQ0VDOVRCutgDVCgYGBWLt2rWZqoMFgQJs2bTSNhr+/v+zEsOvEZs6cKaedtWzZstbUHZvNhjvvvFP++9dff8XOnTvxwgsvyOdTp9PJn8k6cFI0jy1KERsbywlyoMYhdDbb6Ovrq7pOwcHBnDMsRS5LS0tVzdMlLl26xImHli1bwm63Y+jQoWjXrp3TypopKSlO1yhpiUu22iU72Bw6dIhrTi3NVLL7jxgxQjMiwU4A/Pbbb9yaQT8/P4wePRrPPfccZ/AkTp06xf3u7OxsrF69Gg6HQ65Y6MxRHTRoEDp06MCJVaAmbTcmJgY+Pj7crB1LWVmZZr8oieLiYs6gFxUVaUbRpfMzbtw4eVtUVJR8TVjH/syZM5xjoRxEdu3apdk+AKiZEWWfV62UF4mmTZtixYoViI6ORs+ePbn7zJW4ZCcS2Htn48aNqtRxh8OhmnjQorbIpQSbRqWcZV+4cCG+/vprVcXYbdu2yeJPEAT069cPs2fP5mzhgQMH8N1338FgMHDXk7UDRqORs8OSuCwpKVGlxQI1DbPHjBmjOekRFBQk2+TS0lJ88MEHmksEtI5D6Ug5q7zIRgrY55G9thcvXpTvNTaq8fbbb2PatGmybRQEQTVRUZu4BMCtzdy2bRvWrFkj/+0sJVZCKS7HjRt3xSmTJC7VJCcnc/eVNMnKFihriEr4bGqshJag8QSDweDWek1nabHKSVdWXAYHB2uOpewkvNFo5JYgATVjt9aaSy1xWVtKrJ+fH8aPH49JkybB398fAQEB3CTw/v37OdEn2Tp/f39kZGTIVZSVtsRgMGhm5E2dOhVWqxXe3t5cgOLEiRPc71auuSwoKMBNN93EHVtwcDBnJ7TGSy2fBKjxP7UKaLqaRGVR+gA6nQ7NmjWD1WrFLbfcgv/973+YMWMGunfvLvsT0jp1NroojcHsOJycnIxp06ZxkfnPPvtM5dcqKwXHxsaqzrly/BUEQfWMaPVGVxaOKyoqkrPp2ElqpbgE1Pa8SZMmmDRpksdp6vUFicsGwlnYX+qJxKIcEIxGo/ygsA4kGx1hDTH7sFdXV3POtdJgSkRFRXGiNjo6WjUTqdfrMXPmTIwYMYJLX0tJSYG3t3et4nL+/PmYOnUq5s2bh5ycHAwfPhz3338/Ro4c6VbqzujRo7nCFVu3bsXHH38sv968eXN5sGFnbKTUDjbNTBKhyrWwzqJcyv5dQI2hYw1leXm5nIbMGp9JkyZx55JNVWEjyACcikvlhAOLw+HgBoxWrVpxjreylQhbBl56X/fu3TFy5Ejcd999ePXVVzW/hx3InnvuOa5QyNSpU9GjRw+ugTrrEJ47d46L1n/33XfIy8vDTz/9hIsXL7p0Dq1WK/r06YPp06dj9uzZGDJkCMaOHctNVjRr1gyjRo1CSkoKunTpwq3n3bdvn9O+WmwUWSo/r6zICfzVwmH06NF4+OGHkZiYyK2FZJ9LZVEfZZXCX375xWnJ+Z07d3JtTtjzqcXNN9+MCRMmqBx9V6mHbIohm6ZYUVGBAwcOcPeuq5LzLO5GLlmBp9PpuBSpU6dOoV+/fnjvvfdk56yiooIrBhMeHo709HT4+flh7NixnM3ZtWsXqqqquPMdGBgoT3JYrVbuOWEHcq3IJVAze33nnXdy9slsNsvrWSWUzobS6XMVuXRW8U9C6eiyDjXrGLZu3Vq2M+fPn+eWLSQnJ6uOSUtcKicSOnTowNk99vvY508Lpbi8++67Xe7vCtaW7Nu3D6WlpZxj+HcUlzqdjlvesnHjRuzfv5+raulq3LhS+vXrp0pfr29x6S5ak2iS/8MKHDb1k7XvzjoFGI1G2Gw27nkoLCyUnxktcXn58mV5jKtNXCq/V5nZ9dtvv3GfwT6DN998Mx566CFkZWVpHrfyWvj6+sqTot7e3txnHT58mLPPyshldXU1YmJiOJulnHh2Ji4nTpyIrKws9O7dG0FBQQgICNCcmABq6nywRee0bBOgFpcREREwmUyyTYyNjVUFKiTbzY6lv/32G1fPIiYmBvfddx9CQkJwyy23yNuPHj2K999/n/s8Za2Tjh07qiY5lPelKIrw9/fn9tOqLq4sRidFVZU+RXR0NAwGA/c9WpPANpsNEyZMcLp84WpC4rKBcCYuHQ4HoqKikJKSAj8/P2RnZ6sEIJteqdU0FeDFpcVi4Zwhtn2FM3EJ1Cy0jouLU+Wos5hMJrRs2RI5OTlo3bo1kpKS5H3Dw8NVg05gYKDs2Ddt2hTLli3DY489Js8cupNrL2Gz2TgD8fPPP3NOOus0swbywoULqKys5CJnkrOiVRxDC7PZrDr3QUFB8PX1VVWM/f333zkHd8CAAZwDyRpzZaW0+Ph41axqRESEy8iuIAiYMGGC/Pfs2bO56y8IAvc9bGRMik7rdDpMmjQJTz31lOZsMMA73WxhmqSkJHh7e8NisSAiIgJDhgxBhw4dnBbusNvt0Ol02L17N5YtW4bFixer+tc5o2XLlkhOTtacnY2Pj8fgwYNx1113Yf78+fL2o0ePqu5LCWVLGEEQNMWlJCQEQcCCBQswevRo7pqw98bZs2c5x0C5tkK55ppN/WKLuISHh9e6Ps3ZWmVXkcvExESMGTMGo0aNQkZGBpfmtmfPHm5NoStxyZ5TZ+LyzJkzTiOXQI1AYQWmdAxShKyiokKVccB+/+DBg+V7vaioCBs2bODObUBAgLxW+c477+QcTslBqK6u5rJJ2BluURSh1+tlG6fT6fCPf/wDwcHB6NKli+q+MhgM+PDDD/Hdd99xNoid7GEdpKioKKfPm0R4eDhnE9hry4q9wMBAp86bVmRf6cBJReNYdDqd3FqBxd/f32l0QqJfv36y3Zs8ebLLfqe1wVb3vHz5Ml577TUuTezvuOYS4DMbvv32Wzz99NOyc9qsWTOnhU48wdfXl1seADSeuNSy69J94uz+ZMdiZ8dtNBrlyvUSJSUlcuEe1kaywkuygaz99/b2Vvk5SnHp7e3NTTSz7xcEQRV9cpbFZDQa5XFYolu3bvLYbTKZuAk21heRqu+aTCZu3Dlw4IDT9d+AOi1WmuCKjIxEmzZtkJOTg+nTp+Ouu+7iJuSUpKWlYeLEiejevbtmhhygnoiTnnt3/Ej2WTl//jznc8yYMQO9evWCIAho1aoVV8xt0aJFnK1ks9KaNGmiGXXVui+VFYi1UK5tlfwTNsoZFBQEHx8fNGnShPPztMRldHQ0TCaTpg2/2pC4bCBcRS4FQcCQIUMwZ84cJCYmqma2pdkwwLmzJxlBg8GgKtHNPkSuxKXZbMbYsWMxY8YMp4vzpYcmKCgIQ4cOxbBhw+SbWq/Xq4y1q++rK0ajEe3atZPPJduqQDnzxzp2JSUlOHTokFyAQK/XyzO6yrRYZ5FLq9WqEpdSeg1rXC9evMjNqAcGBiI1NVVzPSqgFpfe3t6qa+zO7POcOXPw3nvv4csvv8SYMWNUr2sVuQL41GfWOI0YMUIlUJwZRimqJ12XlJQU9O3bFxEREZophcpZtNoKHwiCAL1eD4fDgQEDBtQa5S4uLkZqairX8FqqwCqKInbs2IHvvvsO5eXlnPALCgqCXq9XXSuz2axyVJTOAXvNpPRo6fu02pBIBAYGYtasWZqv1ea8AzX3r5aj4UpcCoKA5s2bo0WLFhAEAcOGDZNf+9///ic/J7UV6WAdkLKyMs20WGXJeMn5kdDpdBgwYAAmT57MCYT9+/fj/PnzOH36NFfUKi4uDiaTSXbErFYrFzVevHgxV2gkICAAPj4+iI2NVT3DkrhkhSUAjB07VuVUdu7cGTk5OXj//fcxduxYADXnnq3OCNRkKfzyyy/45ZdfMHfuXHTq1An9+/fn7GJsbCw6duyI4OBgPPPMM6pzpkT5vLDnj7VXPj4+WLp0KebOnYtRo0Zh4sSJmDZtGl544QXcd999qs9VOiPOxiittiWdO3eutZVIkyZNsH//fnz//fdYtmyZy31rw9vbm8sUmDVr1t+2DQkLa9d/++03vPHGG/Lf99xzT72tg1SinMRoLHHpaixwZj/ZyUNn/pRUuZod26Vn7dixY1x0iR0XJXHJjmlms1m19k0rcunn56fpL9ntdrd7sUv7DRgwAC1btkS3bt2QmpoqiyNvb2/4+flpTloGBQXJzzQ7cbpt2zZu0rO2yGVycjL3O9g0bVeFG4Gaybbu3burqmdL1yEgIIC7p6WMBfYaOLsnWrZsye3HFgWcMmUKQkND0bNnT+j1esyaNUu2j4WFhVz2IDupFRMT47btkc69krCwMO76shN8+fn5OHXqFLd2XhrDlDU9tKK90tjYUHagLpC4bCC0Bm6z2awK8wOumwyHhYVppvhJN61WxVhlI25PcBYBklA+aPWZ7202m2E0GlUOHVCTCso+QH5+ftx5ZKO3DodDNvbuRi7ZNg8AX7mMnQy4ePEit76jU6dOEARBU2R5eXlpDsrsDL+WsHF2fMOHD0efPn1gNpu53xUdHY1p06Zpvs+ZuExISMA999zDVSTVMox2u13+DK0IDDsDKFGXFI3IyEg8+OCDeOihh5CTkwOHw1FrpEcqvsDOBEuV1jZv3oy1a9diw4YNePPNN7kI7K233oo5c+ao0vdSU1NVxln5HLDrL4G/2puw6cBa9O7dG+3atdP8Ta5meSUEQdAcsF2JSyX9+vXTtE+RkZEuByX2e51FLgE+/VSrdD1QM8m2cuVKztn7+eef8d1338mOnFR4LDo6mrNj7PPCRjmtVivat2/PXStWiErHxa639Pb2dtq+ISwsDG3btuV+d8eOHWUb3qJFC4SGhuLIkSM4cOAAKisrkZmZifbt23MOj06nw9NPP43Tp0/j1ltvRc+ePeXXunXrxj2TgiCoIn7Orq3NZkNwcDAWL16MVatW4dVXX8WLL76IGTNmaM5qK50RZ+IyLS1N5YTXtt5Swt/fH506dXLbOXbFCy+8IDvF7DMVFhZWp/v9RiIpKYm7V6UsgeDgYFU16fpk0KBBnL1riLWdnuKOuHSWCaYlLqXUeTYlNjQ0lHtutCKXyhYggLa4BLTPo5bv4AzJ1oWEhGDEiBHy2kNpu7e3NwRB0OxQwJ4X1k6uXLmSyxCrLXLp6+ur6lUqUZu4lBAEAVlZWfIaUyljxcvLC71794afnx+6dOkin382Bb9fv37yv9l0eovFojmZ0KlTJ/m4MjIy8MgjjyAnJ4drkfLJJ59g5syZ6Nu3L7fMLC4uTiWEneFMXLZu3Zo73+xk59q1a/HKK69wY5Q0Hih9EJ1Op7LpWllYjQWJywZCa+Bme9G4i7e3t2YESdqmJS5ZPBWXznLhJZo3by6LX5vNVq83t81mQ6tWrZCenq46DmWJbp1Ox50n1jhGRUXJ56cukUvWMPn7+8uON2sw9u7dy0UuJUOnVXEzNjZW0+liGyFnZ2dzv1XrugqCwO0jCAIyMzNhs9mQmpqKMWPGICoqSjVwBQYGcvel0gFV9tTTuu/YlMa6ikvlNdMiICBAjsZLaDmSykh1SUkJFxXes2cP8vLyuFYKUs9MicTERPj4+CA1NZV7LtnrIaG8bj4+PpyTJ6WxsCnIgPoc9e3bFwaDQXPChF1P5QpPxaXVatVMn2Pvd62qc+zsd1VVFRdJ0po0A9RFdVgsFgtycnLkv3fv3s01h4+JiYFOp4PFYuEmdJw14W7durUqHVRLXLLrLR0OBwRBcNp3t0mTJty19/b2xpQpU3DHHXdgxIgRbttzdiY8PT0dnTt3RteuXZGRkYGcnBzMnDkTw4cPx7Rp01Q229nkiruOm4S74lIQBFVaVW3rLRuCmJgYbr24xN9xvaWEct2lxKxZs+q05KSuhISE4MEHH4Rer8fQoUOdVtluTIKDg1VplEoHX1oKoUQSl+y+UqYDKy5jYmK45+hKI5fS2KuswQCoxZwrnE3+S8co/b+2jKL27dvLY+7Zs2e5thy1RS4NBgNat26tGQSpi41KTU3FrFmzcPPNN3PXIS0tDbNnz8YTTzyBoUOHYsqUKdy93q5dO3To0AHJyclcKqxUoZdFp9Op+kgDNTaPXdazefNm5Ofny+0OgZqx4L777nPb5jtLi01ISNDMqPnxxx+xfPlybiLttttuk3+DsrUUoI5QUrXYvwEGg0H1sDmbNQP4xcfsw2wwGDRvUGXk0tlarYaOXPr6+iI7OxspKSnIzs6udf+6kp2djXnz5nHpQH5+fprRMNYBZdNYoqKi5POjjL44qyxqtVoxePBgeZaKXZfFfg8bCQsNDZXXs2mtEdQaSICa/P9hw4Zh0KBBeOaZZ7j7RGstLOuoSrRt2xZ33303srKy5IFM+V7l/acV3XDVLsZisXBOhZYzoxSXwcHBXMuc2mb9ahM1EqyYkcRlbGysfP9VVVXhrbfectkYWZoRtFgsnBDXmoVVOgdGo5GbSJFEKysurVYrty4YgDywKZ11g8HgdgU9T8UlAC41VkIaxJQTNRKu1oM6s23OIpfSaxMnTpTtZHFxMdatWye/Lj1DSnHp6+ur6SwlJCSongtl5ebq6mpuVlia0dcSl6zolCZspIISTZs2rVM/PtYuent7IzMzEz179oSXlxcEQUBAQABatWqlOTnn7NrWtX+kUly6qgrMrgu22WyqdbJXi8mTJ3P9WYG/b0qshHLJg4+PD1dZvaFYsGABiouL8dFHH9V5krw+YVtFKNukKKOXLVu2lI81IiICXl5emtEkrcilNBnljrhURi6VmRDOIpdhYWGq57gukUutyWpBEOTt0jOu9ZnSkgOg5hl3NmGg9LWU9shqtcJgMGjarrpOgEloXSNpPFWeW71ej759+2Lo0KHc9fPy8lItMUpKSnLaaqtbt26c37Zo0SKuvdTjjz/u0g6yY31GRgZMJpPmONqqVStuvDx//jwqKiq4gkNGoxFz587FSy+9hMzMTAwcOFBzDXtZWRn3t7+/P1egqDEhcdlACIKgcmxdFcvo0aMH4uLiEBwczM2sOBOX0kMkvebsIfY0klhb5BKoEU2DBw9GRESEZkUsTxAEAd7e3hgyZAgiIiLktThag5uWMJFSVCUD7ufnxxlaNvrC4uPjAz8/Pxw+fBjHjh3jBIeztYg9evSQhZRWCxhnEZfAwEB8+OGHWLNmDYKDgzFgwACkpqZi4MCBmiLVnVYRgFpcKp2y2sSlyWTi9unduzfnJLsTuWQHJh8fn1odYq30RK33sPtJzaG9vLy4qAY74CtFrV6v587H/Pnz4efnh+7du2sKLy3ngE0Bl4pHscVlbDYbhgwZIr+3V69e8mSPUkiGhYW5fV2Vz7rRaKxzGuKAAQNUETlp7anZbHZZlVELV+LSWeTNaDSiadOmXDowOynkTFwC2lWWtSJa7HFJhXyUkUtAW1zabDZZ+DZv3hwTJ050O7qsXB7gyaTb1Y5cAjXrvv/xj3+gbdu2WLlypVvjQEMgCAJWrlzJTSZ5UijoRkDZruiOO+5QPR8NRWPdByxdunRB+/bt0blzZy4NElCLy/bt26NDhw6Ii4uThaiWn6AVuZQqd7oSl9K6c3adudVqVX2HMsIk2XppPTzLlaTFKrdJ/pH0PWFhYSqfKTIykhsDtbJpAHUklW374uPjI/9ba+K4PsXllaTaN2vWTB4DdDodOnbs6DRLRRAELrX8tddekycPAgICnBYslMjMzESrVq2QnJyMzp07QxAEzd/RqlUrTgvk5+fj8OHDcsTSy8sLkydPRteuXeVJ53bt2mn6vEqNYTQakZ6ejjvuuMPlsV4NSFxeRVyVoDcYDBg7diymT5/O5cdriUvJ6dHr9bLjfTUjl64+U6vIR31gt9sxadIk3HfffU6dC61Bw263w2QyyUZOEASn64fYB15ybE0mEyIjI7nzqyUuHQ4H4uPjZWOu0+lU58lZ5FJJUFAQsrKynK7Nc1eEsL2fAO1iQkqUg6AUzTKZTBg1ahT3mpZzqrw2yl6MtYlLrWuoJXSUIlSqbqd1b8TExGDy5Mm47bbb5G3KtXnDhw/HuXPnsHHjRk0HSktcsoOpFLFkI5c+Pj4YM2YMNm3ahH/9619466235Nc6dOjApf5qpbw4QzlgX8n6Mz8/P2RmZsp/N2vWjKvorPWMm81mzdQnnU7nsiCYq8glwK+ZkWCbRFssFtVv1rrOWhGtgIAAVZ9Id8Wl1nPuroNzvYtLALj//vvx008/aRb4uZqEhobivffeg91uR0pKCtd79u9Iq1at5LHEx8cHc+bMaeQjurpYrVYMGDAAmZmZKnukFJetW7dG3759MXbsWNmmaU1gWiwWVeSyqKgIxcXFtUYuq6uruZ6EkZGRqnFM2aqE/QylX1CXtFgte8R+tvRvZaYNUCNi2Yydpk2bqpaEeHl5aRYnHDJkCMaMGYNp06bJx3AtisuQkBAMHToUPXr0wJgxY9C0aVOn4hKoSUPVqoEyY8aMWsdZm82G4cOHY+jQobJv5U5a7OnTp7llXLGxsQgJCam11oQrroX0WBKXV5ErSSURBEFlfKQHT5ptA5w/xLX1VKsNg8GgOePVv39/GAwGlUNX35FLCek3uzqHWrO3kZGR3AJ3oGYRvdJ5FgQBgwcPxqhRo+RCMiysQdIyGD179uTWQl6+fFllzJ1FLl2h1+tVRsZdcRkYGIgZM2YAqBGa7ohLJYMGDcLy5cvx3XffqaKSWsYvICBAvl9NJhO35sGdyKXWNdR6j4+PDzeISovimzdvzl1rvV4v36uvvPIKnn32WYwYMQLLly9Xfaaz3piAdlosOxlx8uRJnDx5kqt06uPjA4vFgo4dO2LOnDncPacsglAXB74+xCVQIx70ej10Oh13LBaLRdNRMBgMmsLbZDLB19dX8zhcpcVK1yk9PV31TLERe6kpNou/v78q5UkrcikIAjfBUVBQoJkWq2U/r9TBMRgMqjWonohLnU6neQ49TYttyDV69U3Pnj2Rl5eH3bt3X1NFKxoDnU6HtWvX4sknn8S3336rWazl74pSXCYlJan2adu2LWdPmjdvDrvdrhKXQE1F3trE5cmTJ+X0REEQEB0drXq2WJsD8EUcY2JiuEndulTi1SrqokzBl1DeJ+Hh4Sr/TbnW2uFwaI6LUpYQa/O1ijle6dhUX+IyODgYNpsNXbt2lc+rK8HrcDhU9QjMZrPsR9UVb29v7vo0bdoUAQEBnO9w6tQpHDhwQP5bGsfcEZe1VfBuTK7dI7sBYGeBtPqOuYsyYiQ9eDqdzqW4DAwM9Lhqn1KYATUza2lpafi///s/uUy/hKtKmZ6gZWyUaM1IRkVFQRRFVR/Ivn37ygY9LCwMY8aMgZ+fH1q0aKE5WLODDpsuB9Sk3jVr1gwGg0H+zOrqapUT5G7kUonSQLsrLgHg+eefx+nTp7FhwwanRQVcYTKZcMcddyAtLU0l7J05pwsXLkSvXr0wfvx47thri1wqm1hLaL3HbDZrGl+j0citw+natStXJGj27Nl4991369xsXCtyyUbPzp07h5UrV3JreG02m0sHfsmSJcjMzMQ999xTp3USyme9riJDomvXrvjqq68wd+5cToBZLBZNR8GVuBQEQXMdtNFohJeXl6YdYtcFsdX/AD4K6WyQVaYvO1uLpyzqw0YuJRHtbuTSnRLvVqtVM3XZE+qapqxFXdZcEtc2MTExeOCBBxptLey1SlJSkmxX9Hq95jpCu92O++67Dzk5OZgzZw7GjBkj+zleXl7cxND06dM5exETE6Pq98uKT7vdDrPZrBorXfWtNhgM6N27N3x8fJCdna1ZUM4VyhoBrO1m/RRluq3D4YDVauXs5vjx4zk/pS6V3rUmfVxN2LrCy8tLNa5dqbhU4ipyCUCV/jpp0qQrDtIMGTKEG0ekCXo2cllWVsZVjK2LuGRbBGm1pGtMGr8Zyg1Mt27d5NYBnlRXcxa51Ov1sqHTcjDrq+ek0Wjk2g5IaRuS4ejQoQN++OEHAED//v3r5TuVuCMupSIb7LotZ8axWbNmmDlzJi5fvqxqTqsFa5CkdZxS/yMpask6a1arlTPm0dHRLgcYV/j4+HD9GevqFEpGXznLVddeSMpz5Mz4JSYmahancSYue/bsiTNnzjhd86HlWEvrApU9Jb28vLBixQr4+fkhNzdX/kxPnXstcck+06WlpSgrK+McEZvN5nKNUtu2bblWGu6iFBWeRKDsdrvq/FosFpjNZvj7+3PnV2o0rkQ6txkZGXJLFgnpvFksFrkqnvJ9RqMRbdq0webNm1FVVQWz2cw9t9J9lpiYKLf9SU5ORuvWrTF//nxUVlaiTZs2TkU2Ky5//vlnbiCXJpIsFgv0ej23huVK02KtVqvqnHpaAEX5rOn1+lqdJCVKu3Etz3oTxJUQEBCAZ555BkuWLMG0adOcigJvb2/VJLJkj7p164aPPvoIALBz507u9bCwMM4GlpWVcdXi2ahjVlYW1qxZA7PZXGu15Y4dO+LTTz+9omeyZ8+eSE5OxtGjR1FZWamaqJNg023NZrM8sZaVlYUdO3bAbrcjNDQU999/PyZNmgRAXRvAFfXdW9HPz4+z1VdLXA4YMADh4eHIzc2VC+tcKSkpKWjXrh3Wrl0L4K/lHKGhoTCZTKp2Xna7nVsOUhtJSUnw9fWV+4JfS5C4bEBsNlu9iK2goCBYrVa5bQYbuZQMXUOKS5PJJDvNNptN5XR17dpVTt9sqGIL7ohLqViPVLmztrz1ujhnyn0HDx6Mw4cPw2q1ykabdd569OiBPXv2oFevXjh79qxbzdOd4UnkkkU5i1hXhzc2Nhbe3t4oKyuD3W53OphotaUQBAEWi0XzPm3fvr3L6+QscuksWh8UFIRFixZxjdw9Hfi00mKVz1dBQQE3GDore+8pyt/NTqbUFVdFncLCwjhxaTAYXPZPDAsLQ1xcHOdsSefNbDa7FJc2mw2jRo3Cb7/9hpSUFO58S/dG79695c+QytWvWbMG69atw+233+70Nw4ZMkROg2Z7cAJ/iUupMiz7e91NzfLz8+N+m7KghyAITouAuUtERIS8rthoNKJXr151draUEwMkLokbkZkzZ2LmzJl1fp9kjxITE7Fz50558lhCWpfOPkfbt2/n9mHFZWpqqjxm1ja5KQiCR89jUFCQ03ZQQ4YMwZdffomuXbvCarXizTffxAMPPMBlvbG9d6V1h2fPnsXUqVPrdBy+vr6qFOArxdfXVy6UB1zZGK513mvL+DAajfjiiy/w+uuv45ZbbqlTmrIWo0aNksXl6NGjAdTY3ujoaOzfv5/bl13a4Y64VC77uJYgcXkdIAgCUlJSsHXrVgB/iUY2LVan03EClN3PU9gHNCIiQjOCxRYHaQjcEYIWiwVxcXGyuJSiH3Wpvubu99vtdvTp0wc//vijvI11vJs0aYLp06dj5MiRiI2NveL0EKD+xGVaWhp+/vlnAK7PSVRUlDywsuW1TSYTxo4di4MHD6pabLD4+/tDp9NxlXgtFgt0Op2mUKzNSdZ6j7e3N2JjY1WRMmmAVUbzPBFggFqIS5V0WWFRUFDARS6dDfaeorz+zioeu4NW1FMa1MLCwuRIIeA8LZa1D4MHD8ayZctQXFwMh8MhOwRa3yNdd+n9MTExqoGczQjw8/PDlClTuNf79eunWRCIpXfv3nj88cfx2GOPqV5j15YqxaW7kcuIiAiVuDQYDBg9ejR27dqFlJQUjyPnPXr0kHtuJiQkXFHVTuUxXOl6KIK4EZGebWnZzMqVKznbyha308LLy0tVjMfdCewrXdrgDikpKUhOTpb71z711FMu9xcEARMmTLii7xo2bBhee+01AOo2MXWlPtJigZrrwi7XckekJiUleRQQYBk7diwSExNhs9m4FGQtcckWWPKkoM+1AE1dXic8++yz6NWrFzp37iyLJlZcAuoZmfoSl+znNtYsiVYOvhKr1Yrs7GwANeemXbt2MBqN9RI9Vg4SZrNZtU3p9AcGBiI+Pt4jYQmojeyViku73Y4BAwYgOTkZgwYNcrrfoEGDYLfbERERoZo0CA8PR/fu3V1WI9Pr9arCPK6qGtdm7C0WCyfupDV8Wn0NJUGnPEeu+l26g1LASQ4Gu77lzJkzXEGr+nr+lDj7zVeC1r0kDWrKKoFeXl5O11xK+Pj4ICcnB0OGDOHWY2uJS3cEl7e3d71E2B555BE88MAD3Lbg4GDuGJTPs7uRS6VDKYm2+Ph4jBgx4ooKeSnx8vJCWloa2rRpc8XtIARBkCeFQkJC/vb9IgnCGU2bNuWqiwN/iUstW+bl5YXMzMw6CaBevXrJ/87KyrqyA3WTq9WXNCoqClOnTsXEiRM9Xg+snPy6UnHZkMLdXVJTU1X2Vtm+y2q1cpOd17u4pMjldUJ6ejrWrVuHefPmydu0xCXbZ6++nNvOnTvj7Nmz8Pf3d5rPfzVo1qwZ9uzZ4/R1i8WCESNGIDU1FQEBAXKl2ProzaV0PHU6Xa3isr6or8glUJOCWlvBgMDAQI/7JAUFBcl9woC/foOWoKht4NPpdLBYLHJUXhrcrVYroqOjceTIEXlfaY2FciDyVFwqI5/S74iMjMQff/wBAFwKD+C8H2p90KtXL6xfvx42m01V0KEu1Ba5ZLFarbWKS6Dmdyt/u3KgFARBnnRxJTLra4AVBAELFy5EaWkp/v3vfwNQF8JgJ9Gk6KMSLaGrzAK4lgvlDBkyBB07dkRISMhVczgJ4nogODhYzkQJCAjAjBkzsHr1apw/fx7AXwXDEhISsHnzZhQVFSElJQWdO3dGQEBAndM2O3bsCD8/P1it1ms2tfFK0GpdciUobf+Visv+/fvj7bffBoA6F0tqSJR975s3by7bZGUNj+sREpfXGdKaN4CvjAaoZ2jqq2R7ZGTkFa1hqG+SkpJqFZeCIDgtDOMJSiFZWVnZaOLyWmhkXRtBQUFcyoens4c+Pj4qcQnUDPSsuJSieErHub4jl5IjwbbMyM3Nlf/t7e2tKjZUn3Tp0kVOtfFkPalU6ZUVz9L5NZvN6N+/P3744Qe0bdsWFovFLXGphVLEso2+4+LiEBAQIDtxLPU5eysIAv71r3+hTZs2+PnnnzF79mzudTZSWZeJAWXRiIZqx1QfCIKgWQmYIP7u6HQ6jBs3Dn/88QcSEhIQGBiIV199FSNGjEB4eLhctd9ms2HWrFm4fPmyR2O+s2q2RA3KzJErFZdxcXEYMGAALl68iI4dO9bHodULysglmxIrjcvXMyQurzNGjRqFNWvWwN/fH506deJm0pUOfEOl5TUWrCOvRUOmESgd+IqKCpW4bChjUF9psVcTZaqmp+u7fHx8cPr0aQC8UElMTMS6detQWVkJb29vpxV56ztyKV1rtpIzW8jAx8dH1Re0vtHqCVpXpBL8bNU69jlKS0tDWlqa/LeWkNTqialEKS5ZR8HLywt33nknCgoK8PHHH3Mivb6faWk9kdaaolatWmHjxo0oKyurU4aGMvJ6o9ldgvi7EBQUxFV2zcrKQnFxMURR5HwAg8HgcZs3wjVxcXEIDAzEuXPnPKpbIQjCNRWxlGDFpNFo5OoNSAGk6xkSl9cZUVFRqihicHAwzp4922BrLq8VvLy8VJUZWa5mU/CKigrV+a6oqGiQ76rvtgZXA6W49FQksOeAvc7SOttffvkFqampTgd8T8Wls9RNZWqLRJMmTdCpUyePvvNqoRTOrq6VcmJDEAS31u5pRS5ZvLy8EBgYWK9tVuqKzWbD3LlzUVJSUueU5ltuuQVfffUVIiIi6mWNJUEQ1wae1kwgrgy9Xo+cnBzk5uaqonw3Am3atMGIESPw6aefYsGCBfVWZfdagcTlDUB2dja2b9+OwMBAueQxcOOJS6DGiXvnnXcA1DjBJSUl8mtXM120SZMmmtHMhkApLuvaPL0xUEYQWXFnMBjqnDrIRumUEeP4+HhuFlALTyqqAkCnTp2wfft2VFVVcVEtZ31U09LSrriv6dVGKS5dRcaVz1h4eLhbEwfurp9R3ttXu6iB0Wi8osqu6enpLic3CIIgiLrh7e19wxYeEwQB7777Li5fvgy9Xo+nn35aXvpzPSx9qg2qFnsDEBISggEDBqgKVNTXmstriRYtWqBXr15o3rw5Bg4cyL3mabn/2mArrErfzYqe1NTUBvleg8Eg9xJt27Ztg7W4qE+UooA95isRXe3atYPdbkdwcDDS09Pdeg8r/DwpegPUpLnecccdGDZsGPr27Stvd1aI4VpraOwKpfB2VZ1VOeixfblcUVvkUkKZAn6tV8xjzwcJS4IgCKIuSJHxESNGyNtuueWWxjqceoMilzcQKSkpiIiIwJ9//olevXpdF2vzroQuXbqgS5cuXE9PoOHXIkpVaI1Go7zObPjw4Vi/fj1CQ0MbdIatZ8+e6Nat23WVotOnTx+sW7cOTZs2RUJCgrx98ODBclN7d/uj+vr64o477oAoim6nBQ8ePBhr1qyByWRC9+7d63z8SoKDg1XFW5o0aQKbzcb1twRwXRVNqUsPUKXwrC1iLOFqzSVLY0cu68r1dJ0JgiCIa5PIyEjMmDEDFRUVbtUxuNYhcXkDYTKZsH37dmzZsgV9+vRp7MNpcCwWC+x2O06ePImgoKAGfyAFQVDl/tvtdowbN65Bv1fiehKWQE2p9dTUVFXls6ZNm2LatGkoLCystUiTkrqsNw0ICMDEiRPr9Pl1RRAEREVFYe/evdz260l01EVc2u126HQ6VFdXIzAw0O3Ue3cjl4255tJdbrnlFqxduxY6nc5lv1iCIAiCcJfrISvNXUhc3mA0bdoUt956a2MfxlVBEASMHz8ehw4dQrNmzeql2TpRvziLJoeGht4wa4IjIyOva3Fps9ncLibg4+ODkSNH4uDBg2jfvr3bYv9KI5fXorhMT09HREQEfHx8rov1zwRBEARxNSFvnLiuMZvNSEpK8rjVBUFcKVrrLq8ncTl48GD53/369at1//j4eNxyyy11WtOt1+u59Ynurrm8VqP1drudhCVBEARBaECRS4IgCA+43sVls2bNMGHCBJSVlbm9hvJKMJvNcj9NZ5FLi8UCh8OBEydOwN/f/7oqjEQQBEEQBIlLgiAIj1CKS7PZfF1FtQRBcNqvsz4xm824ePEiAOeRS0EQMGbMGBw8eJBS3QmCIAjiOoTEJUEQhAcoe13a7fY6FR76u8BWfnXVNshisSA5OflqHBJBEARBEPUMTQsTBEF4gDJyeT2lxF5NkpKSANS0M2nZsmUjHw1BEARBEA0BRS4JgiA8wG63w2AwoLKyUv6bUJOamgqHw3HdpQ0TBEEQBOE+FLkkCILwAJ1Oh/DwcPlvEpfOCQkJIWFJEARBEDcwJC4JgiA8JDo6Wv53WFhY4x0IQRAEQRBEI0LikiAIwkNycnIgCAKsVitGjhzZ2IdDEARBEATRKAiiKIqNfRDXM5cuXYKfnx8KCgrg6+vb2IdDEEQjkZubCz8/P0r7JAiCIAiiUbgWdAkV9CEIgqgH2HWXBEEQBEEQf0coLZYgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiPIXFJEARBEARBEARBeAyJS4IgCIIgCIIgCMJjSFwSBEEQBEEQBEEQHkPikiAIgiAIgiAIgvAYEpcEQRAEQRAEQRCEx5C4JAiCIAiCIAiCIDyGxCVBEARBEARBEAThMSQuCYIgCIIgCIIgCI8hcUkQBEEQBEEQBEF4DIlLgiAIgiAIgiAIwmNIXBIEQRAEQRAEQRAeQ+KSIAiCIAiCIAiC8BgSlwRBEARBEARBEITHkLgkCIIgCIIgCIIgPIbEJUEQBEEQBEEQBOExJC4JgiAIgiAIgiAIjyFxSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiPIXFJEARBEARBEARBeAyJS4IgCIIgCIIgCMJjSFwSBEEQBEEQBEEQHkPikiAIgiAIgiAIgvAYEpcEQRAEQRAEQRCEx3g19gFc74iiCAC4dOlSIx8JQRAEQRAEQRB/VyQ9IumTxoDEpYfExcUBACIiIhr5SAiCIAiCIAiC+LtTWFgIPz+/RvluEpceotPpEBQUhIMHD0IQhMY+HOJvSPPmzQEABw4caOQjIf6u0D1INDZ0DxLXAnQfEo1NXFwcRFFEWFhYox0DiUsP0el00Ol0jTY7QBA6Xc3SaV9f30Y+EuLvCt2DRGND9yBxLUD3IdHY6PV6AH/di40BFfQhCIIgCIIgCIIgPIbEJUEQBEEQBEEQBOExgtiY5YQIgiAIgiAIgiCIGwKKXBIEQRAEQRAEQRAeQ+KSIAiCIAiCIAiC8BgSlwRBEARBEARBEITHkLgkCIIgCIIgCIIgPIbEJUEQBEEQBEEQBOExJC4JgiAIgiAIgiAIjyFxSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLv8/giBo/ufj46Pad//+/Rg8eDD8/f1htVqRkZGBDRs2aH5uQUEB7rrrLjgcDnh7eyMxMRHLli2DKIoN/ZOI65Dz58/jnnvuQVxcHLy9vREcHIwePXrgu+++4/b78ccf0atXL9hsNvj6+qJv377YvXu35mfm5eVh/PjxCA4OhtlsRvv27fHBBx9chV9DXG/MmzfPqS0UBAEGg4Hbn2wh0RAUFRXhySefROvWrWGz2RAUFIROnTrh9ddfV90vZAuJhuD06dOYOnUqIiIiYDQaERkZiVmzZuHixYuqfckOEp6waNEiZGdnIyYmBoIgIDo62uX+DWXzysvL8eijj6JZs2YwmUyIjY3FE088gcrKyjr/Jq86v+MGJiMjA7fffju3TelMHTp0CJ06dYKXlxfuu+8++Pn5YeXKlejTpw+++OIL9OrVS963oqICmZmZ2LVrF+666y4kJCTgiy++wJ133onTp09j3rx5V+NnEdcJx44dQ/fu3VFUVITJkycjPj4eBQUF+PXXX3HixAl5vx9++AHdu3eHw+HA/PnzAQBLlixBRkYGtm7ditatW8v7nj9/Hl26dMGZM2cwd+5chIeHY9WqVRg+fDheffVVTJw48ar/TuLaZejQoYiLi1Nt//XXX/H0009j4MCB8jayhURDUF1djX79+mHr1q2YMGEC7rrrLpSUlOCdd97BxIkTsW/fPjz11FMAyBYSDcOZM2dw0003IS8vD3fccQeSkpKwd+9eLFu2DJs3b8b3338Pi8UCgOwg4TkPPvggAgIC0LZtW83JC5aGtHkjRozAmjVrMGnSJHTs2BHbtm3DI488goMHD+L111+v248SCVEURRGAOGHChFr3y87OFnU6nbhr1y55W2FhoRgZGSnGx8eL1dXV8valS5eKAMTnn3+e+4yhQ4eKBoNBPHr0aH0dPnED0KVLFzE8PFzMy8tzuV9aWppos9nE3NxceVtubq5os9nEzMxMbt97771XBCB+8skn8raqqioxLS1NDAgIEAsLC+v3RxA3JLfffrsIQPzss8/kbWQLiYZg69atIgBx9uzZ3Pby8nKxWbNmop+fn7yNbCHREMyaNUsEIK5atYrbvmrVKhGAuGDBAnkb2UHCUw4dOiT/OzExUYyKinK6b0PZvM8//1wEIM6dO5f7jLlz54oAxO+//75Ov4nE5f9HEpfl5eVOB5mioiLRZDKJPXv2VL02f/58EYD4448/yts6d+4sWiwWsbS0lNt38+bNIgDxqaeeqt8fQVy3bNq0iRt0KioqxOLiYtV+Bw4cEAGIkyZNUr02adIkURAE8eTJk/I2h8MhxsbGqvZ94403RADie++9V4+/grgRKSoqEn19fcXw8HCxqqpK3ka2kGgIvvzySxGA+M9//lP1WlpamhgWFiaKItlCouFITk4WzWYzJwxFURQvX74sent7izExMaIokh0k6h9X4rIhbd6YMWNEAOLx48e5fY8fPy4CEKdNm1an30FrLhk+/PBDWCwW2Gw2hISE4K677kJBQYH8+q+//ory8nJ07NhR9d4OHToAAHbs2AGgJrXn559/RmpqKry9vbl909PTIQiCvC9BrF27FgAQGRmJgQMHwmw2w2q1Ij4+Hm+99Za8n3TPOLsHRVHETz/9BAA4efIkTpw4Id+byn3ZzyMIZ3zwwQe4dOkSbrvtNuj1egBkC4mGIz09HU2aNME///lPfPDBBzh+/Dj++OMPPPDAA/jpp5/k1EGyhURDUV5eDm9vbwiCwG3X6XQwm804fPgw8vPzyQ4SV5WGtHk7duyAw+FAREQEt29ERATCwsLqfG/Smsv/T3p6OrKzsxEXF4dLly5h7dq1WLJkCTZt2oStW7fCx8cHeXl5AACHw6F6v7RNWht34cIFlJaWau5rMpkQFBTEraMj/t7s378fAJCTk4PmzZvjP//5DyoqKrB48WKMGzcOlZWVmDhxYp3uwbrsSxDOeOWVVyAIAiZNmiRvI1tINBT+/v745JNPMGXKFAwfPlzebrPZ8NFHH2Hw4MEA6nYPki0k6kJiYiL279+P3bt3o02bNvL23bt348KFCwCA48ePkx0krioNafPy8vLQqlUrze91OBzIzc2t07GSuPz//Pjjj9zf48ePR3JyMh566CE899xzeOihh1BSUgKgxhAokWaipH1c7SvtL+1DEIWFhQBqHKiNGzfCaDQCAAYPHoyYmBg8+OCDmDBhQr3dg8p9CUKL/fv3Y8uWLbj55pvRrFkzeTvZQqIh8fHxQVJSEgYNGoROnTrh/PnzWLp0KUaPHo01a9YgMzOTbCHRYMyePRurV6/G8OHD8e9//xtJSUn47bffMHv2bBgMBlRWVqKkpITsIHFVaUibV1JSUq/3JqXFuuDee++F0WjE559/DgBydbDy8nLVvmVlZdw+rvaV9pf2IQiz2QwAGDVqlCwsgZpZ/EGDBuHUqVPYv39/vd2Dyn0JQotXXnkFADBlyhRuO9lCoqHYs2cPOnXqhMzMTDz99NMYMmQIJk+ejC1btqBp06bIycnB5cuXyRYSDUZGRgbeffddFBYWon///oiKisLAgQPRo0cPDBgwAADg6+tLdpC4qjSkzbNYLPV6b5K4dIHBYEBYWBjy8/MBAGFhYQC002ekbVK42d/fH2azWXPf8vJy5Ofna4arib8n4eHhAICmTZuqXrPb7QBq0mrqcg/WZV+CUFJVVYU33ngDgYGBGDJkCPca2UKioXj22WdRVlaG7OxsbrvFYkH//v1x7NgxHD16lGwh0aBkZ2cjNzcXu3btwubNm5GXl4fly5cjNzcXXl5eiIuLIztIXFUa0uaFhYU5Tcs+ceJEne9NEpcuKCsrQ25uLkJDQwEArVu3hslkwrZt21T7/vDDDwCA9u3bA6hZ+N22bVvs2rVLNRuwfft2iKIo70sQ6enpAKCZ1y5tCwkJQVpaGgA4vQcFQUC7du0A1IhSh8Mh35vKfQHQPUg45dNPP8Xp06cxduxYVboM2UKioZAcnMuXL6teq6qqkv9PtpBoaPR6Pdq0aYOMjAyEhITg1KlT2LVrF7p16waLxUJ2kLiqNKTNS0tLw4kTJ/Dnn39y+/7555/Iy8ur+71Zp9qyNyj5+fma2++55x5Veehbb71V1Ol04u7du+VtUk+j5s2bc6WrlyxZ4rSnkZeXl3jkyJH6/SHEdcv58+dFm80mOhwOrhVOXl6eaLVaxfj4eHlb+/btRZvNJp44cULeduLECdFms4k333wz97nSPazV56hJkybipUuXGvBXEdcz/fv3FwGIv/76q+brZAuJhmD27NmabRkuXLgg2u120d/fX26JQ7aQuFpcvnxZzM7OFgVBEDds2CBvJztI1Ce19blsKJv32Wefuexz+d1339Xpd5C4FGsGsw4dOogPPPCAuGzZMvHpp58We/ToIQIQb7rpJrGkpETe98CBA6K/v78YEhIiLlq0SFy6dKnYpk0bUa/Xi19++SX3ueXl5WK7du1ELy8vce7cueLKlSvFIUOGiADEhx9++Gr/TOIaZ8WKFSIAMTExUVy8eLG4aNEiMTIyUjQYDOJXX30l7/f999+LRqNRjImJEZ999lnx2WefFWNiYkSr1coNcKJYM3ESFRUl+vj4iI8++qi4YsUKsXv37iIA8eWXX77aP5G4Tjhx4oSo1+vF9PR0p/uQLSQagqNHj4oBAQGiIAji2LFjxWXLlokLFy4Uo6OjRQDi0qVL5X3JFhINQWFhoZiQkCA++OCD4sqVK8VnnnlGbNeunQhAXLhwIbcv2UHCU9544w1xwYIF4oIFC8SQkBCxSZMm8t9vvPEGt29D2rwBAwaIAMTJkyeLL7/8sjh58mQRgDh27Ng6/yYSl6Iorl69Wuzdu7cYFhYmmkwm0WKxiCkpKeLChQtVzW5FURR///13cdCgQaKfn59oNpvFzp07i+vWrdP87AsXLojTp08X7Xa7aDQaxYSEBPGFF15QNeclCFEUxY8++ki86aabRIvFIvr4+IiZmZnili1bVPtt3bpV7Nmzp2i1WkUfHx+xd+/e4k8//aT5mbm5ueLYsWPFwMBA0WQyiampqeK7777b0D+FuI5ZuHChCEB86aWXXO5HtpBoCA4ePCiOHz9edDgcopeXl2iz2cSMjAzxo48+Uu1LtpCob8rLy8WRI0eK0dHRoslkEv39/cXevXurxKIE2UHCE7p16yYC0PyvW7duqv0byuaVlpaKDz30kBgVFSUajUaxWbNm4vz588WKioo6/yZBFEWxbom0BEEQBEEQBEEQBMFDBX0IgiAIgiAIgiAIjyFxSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiPIXFJEARBEIRTHn74YZjNZuTl5V3V7xVFEe3atUNGRsZV/V6CIAjiyiFxSRAEQTQ4giC4/G/16tWNfYiEBsePH8e//vUvTJ8+HWFhYfL2o0ePQhAEdOnSxel7pX2io6Ov6LsFQcD8+fOxZcsWfPjhh1f0GQRBEMTVxauxD4AgCIL4e2Cz2TB37lzN11q2bHmVj4ZwhwULFqCiogL33HNPo3x///79kZSUhIceegjDhg2DIAiNchwEQRCEe5C4JAiCIK4Kvr6+mDdvXmMfBuEmBQUFWLVqFXr37o2mTZs22nGMGzcO999/P7755hv06tWr0Y6DIAiCqB1KiyUIgiCuCb799lsIgoB58+Zh+/bt6N+/PwICAiAIAo4ePSrv9/nnn6NPnz4ICAiAyWRCixYtMG/ePJSWlqo+UxRFLFmyBImJifD29obD4cCMGTNQUFCA6OhoVcrmbbfdpvo+reNTcvz4cUydOhXR0dEwmUwICQnB8OHDsW/fPtW+0vcWFxfj3nvvRWRkJEwmE+Li4vDUU09BFEXN87N9+3aMGDECDocDJpMJdrsdvXv3xvvvvw8A+OOPPyAIAjIzMzXfL4oiYmNjYbVaUVBQoLkPyzvvvIOSkhKMGDGi1n3rQm0p0srzK33/K6+8Uq/HQRAEQdQ/FLkkCIIgrim2bduGRYsWoUuXLpg0aRLy8/NhNBoBAI8++igWLFiAkJAQZGVlITAwENu3b8fjjz+ODRs24JtvvoHBYJA/a/bs2Xj++edht9tx++23w2AwYM2aNfjxxx9RUVEhf64n7Ny5E71790ZBQQH69euH7OxsnDx5Ev/973/xxRdfYOPGjWjfvj33nsrKSvTp0wd5eXno168fvLy8sHr1avzf//0fysrK8Nhjj3H7r1y5EtOmTYOXlxcGDRqEuLg4nDlzBjt27MCLL76I4cOHo2XLlujRowe++eYbHD58GDExMdxnrF+/HocPH8akSZPg5+dX6+9av349AKBTp04eniEe5W+TePPNN3H48GFYLBZue1RUFBwOB9avXw9RFCk1liAI4hqGxCVBEARxVbh06ZJm1K9ly5YYOXKk/PfXX3+N5cuX44477uD2W79+PRYsWICuXbvi008/ha+vr/zaE088gUceeQRLlizBnDlzAABbt27F888/j9jYWGzfvh0BAQEAgIULF6JHjx44efIkoqKiPPpNlZWVGD58OMrKyrBlyxZ07NhRfm3fvn1IT0/HlClTsHv3bu59eXl5SElJwbp162A2mwHUiK74+Hg8++yzePDBB2WR/Pvvv+POO++En58ftmzZgoSEBO6z/vzzT/nf06ZNw8aNG7Fy5UosWrSI2++ll14CANx+++1u/bYtW7bA19cXzZs3d7rP8ePHnaY6X7x4UXO71v6vvfYaDh8+jI4dO2LmzJmq19PS0rB69Wrs27cPrVq1cufwCYIgiMZAJAiCIIgGBoDT/7KyskRRFMWNGzeKAMQ2bdpofkZWVpYIQNy3b5/qtaqqKjEoKEhs3769vG3KlCkiAPHVV19V7S99V1RUFLd9woQJIgDxyJEjTt/z2GOPyds+/vhjEYB4//33ax7znDlzRADi3r175W1RUVEiAPHAgQOq/cePHy8CEPfs2SNvmzFjhghA/Pe//635HSwVFRVi06ZNxdDQULGiokLefvr0adFgMIgpKSm1foYoimJ5ebkIQGzevLnm60eOHHF5Tdn/lOdYyfr160WDwSDGxMSIZ86c0dxn6tSpIgDxiy++cOv4CYIgiMaBIpcEQRDEVcHhcCA3N7fW/dLT0zW3b9u2DUajEe+++67m60ajEX/88Yf8988//wwA6Natm2rfLl26QK/Xu3PYLtm2bRsA4PDhw5oRuf379wOoWQ+ZmJgob/fz80NcXJxq/4iICADAhQsX5G0//PADAKBPnz61Ho/BYMCUKVPwxBNPYM2aNbj11lsB1EQGKysrVdFgZ5w7dw4A4O/v73K/zp07Y8uWLZqvHT16FM2aNXP5/t9//x3Dhg2Dj48P1q5di+DgYM39pKhzfn5+bYdOEARBNCIkLgmCIIhrCmeVSc+fP4+qqio8/vjjbn2OVLQmNDRU9ZqXlxeCgoKu/CCZYwKADz74wOV+RUVF3N9NmjTR3M/Lq2ZYvnz5srxNSi91OBxuHdPtt9+ORYsWYcWKFbj11lshiiJefvllWK1WjBkzxq3PkFJ1y8rK3Nr/Sjh16hRuueUWlJaWYt26dWjRooXTfaViTdJxEQRBENcmVC2WIAiCuKZwVrDFz88PZrMZly9fhiiKTv9j9weA06dPqz6rqqpKMwqm0+nk15VorSGUvuOdd95xeUwTJkyo/Yc7QRKiJ06ccGv/iIgIDBgwQC7ss2HDBhw8eBAjR47k1qnW9p1Go1EWz/VNSUkJBg4ciGPHjuHVV19F165dXe4vRVJDQkIa5HgIgiCI+oHEJUEQBHFdcNNNN6G0tBS//PKLW/u3bdsWALBp0ybVa1u2bOGigxJSGihbJEdi586dmscE/JUe2xB06NABAPDVV1+5/Z5p06ZBFEWsXLmyzoV8JFq3bo28vDwUFhbW6X21UV1djdGjR2Pnzp2YP3++W9HUP/74AzqdDq1bt67XYyEIgiDqFxKXBEEQxHXBrFmzANSIJK1o5MWLF7Fr1y7579tuuw1ATXVYNgJXVlaGBx54QPM7pPWeK1eu5Lbv2bMHzz33nGr/rKwsREdH48UXX9QUf9XV1fj2229d/7BakFqQzJ8/n1tTKqG1jrV3796IjY3Fyy+/jNWrV6NNmzZO17I6o3v37qiurtYU1Z4wd+5crFmzBhMmTMAjjzxS6/7l5eXYvXs3UlNTnaYTEwRBENcGtOaSIAiCuC7o3bs3Hn/8cTz22GOIi4vDLbfcgujoaBQUFODIkSPYtGkTbrvtNixfvhxATbGZu+66Cy+88AKSkpJw6623yn0u/f39YbfbVd+RlZWF5s2b45133kFubi5uuukmHD9+HGvWrEFWVhbef/99bn+j0YiPPvoIffr0Qd++fdG1a1ckJyfDaDTi+PHj2LZtG/Lz8z1au9iqVSu8+OKLmDp1Ktq0aYNBgwahefPmyM/Px44dO+Dn54eNGzdy7xEEAVOnTsW9994LAG4X8mEZOnQoFi9ejK+//ho9evS44uNn2b59O5577jl4e3vD4XBoFkHq3r07unfvLv/97bffoqKiAsOGDauXYyAIgiAaDhKXBEEQxHXDo48+ioyMDLzwwgvYtGkTPv74Y/j7+yMiIgJz587F+PHjuf2fe+45xMfHY+nSpVixYgUCAwMxZMgQPPnkk0hJSVF9vre3N7755hvcc889WLduHXbs2IGkpCSsWrUKAQEBKnEJ1KTf/vrrr1i8eDE+//xzvPzyy/Dy8kJYWBi6d+9eL6IoJycHSUlJeOaZZ/Dtt99i9erVCAoKQnJyMqZMmaL5nttuuw333XcfLBaL24V8WDp16oTk5GS89dZbWLhwobwe1RNKSkoA1ESPn3zySaf7seLyzTffhNFoxOTJkz3+foIgCKJhEUS2+gFBEARB/E2Ijo4GUNMy40Zk/fr1yMzMxJQpU1Rpvu7y1ltvYdy4cfjkk08wcODAej7C2jl79iyio6MxatQovPzyy1f9+wmCIIi6QeKSIAiC+Ftyo4vLPn364Ouvv8auXbvQpk2bK/oMURSRnp4ur710Vsm3obj77rvx0ksv4X//+59mGjNBEARxbUFpsQRBEARxg7Bnzx589tln2LFjB77++msMGzbsioUlULN2c+XKlVi9ejVOnTp11QVeaGgo3nzzTRKWBEEQ1wkUuSQIgiD+ltyIkcvXX38dEydOhJ+fH/r06YNly5YhICCgsQ+LIAiC+JtA4pIgCIIgCIIgCILwGOpzSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiP+X9RGPOXQZDd7wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f0_list = dynspec.freq[tracing]\n", + "\n", + "new_spec = dynspec.shift_and_add(f0_list, nbins=500)\n", + "\n", + "# Let's compare it to the original power spectrum.\n", + "plt.plot(ps.freq, ps.power, label='power spectrum', alpha=0.5, color=\"k\")\n", + "plt.plot(new_spec.freq, new_spec.power, label='Shifted-and-added', color=\"k\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlim([500, 1000])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ta da!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/EventList/EventList Tutorial.ipynb.txt b/_sources/notebooks/EventList/EventList Tutorial.ipynb.txt new file mode 100644 index 000000000..1a5f3488a --- /dev/null +++ b/_sources/notebooks/EventList/EventList Tutorial.ipynb.txt @@ -0,0 +1,2007 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating an event list object and carrying out various operations such as simulating time and energies, joining, storing and retrieving event lists." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some relevant stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import EventList, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating EventList from Photon Arrival Times" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given photon arrival times, an eventlist object can be created. Times are assumed to be seconds from a reference MJD, that can optionally be specified with the `mjdref` keyword and attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "times = [0.5, 1.1, 2.2, 3.7]\n", + "mjdref=58000." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create event list object by passing arrival times as argument." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.5, 1.1, 2.2, 3.7])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList(times, mjdref=mjdref)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can add all sorts of data to the `EventList` object, it is very flexible. In general, we suggest to stick with easily interpretable attributes, like `energy` or `pi`.\n", + "\n", + "```\n", + "ev.energy = [0., 3., 4., 20.]\n", + "```\n", + "\n", + "is the same as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "energy = [0., 3., 4., 20.]\n", + "ev = EventList(times, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is always recommended to specify the good time intervals (GTIs) of the event list, as the time intervals where the instrument was fully operational. If not specified, GTIs are defined automatically as the first and the last event time." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [[0, 4]]\n", + "ev = EventList(times, gti=gti, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "`EventList` has the following methods that allow an easy roundtrip to Astropy objects: `to_astropy_table`, `to_astropy_timeseries`, `from_astropy_table`, `from_astropy_timeseries`\n", + "\n", + "This allows a better interoperability with the Astropy ecosystem. \n", + "\n", + "In this roundtrip, a `Table` or `Timeseries` object is created, having as columns `time` and all other attributes of the same size (e.g. `pi`, `energy`), and the rest of the attributes (e.g. `gti`, `mjdref`) in the table's metadata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Table length=4\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
energytime
float64float64
0.00.5
3.01.1
4.02.2
20.03.7
" + ], + "text/plain": [ + "\n", + " energy time \n", + "float64 float64\n", + "------- -------\n", + " 0.0 0.5\n", + " 3.0 1.1\n", + " 4.0 2.2\n", + " 20.0 3.7" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table = ev.to_astropy_table()\n", + "table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When converting to `Timeseries`, times are transformed into `astropy.time.TimeDelta` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
TimeSeries length=4\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timeenergy
objectfloat64
5.787037037037037e-060.0
1.2731481481481482e-053.0
2.5462962962962965e-054.0
4.282407407407408e-0520.0
" + ], + "text/plain": [ + "\n", + " time energy\n", + " object float64\n", + "---------------------- -------\n", + " 5.787037037037037e-06 0.0\n", + "1.2731481481481482e-05 3.0\n", + "2.5462962962962965e-05 4.0\n", + " 4.282407407407408e-05 20.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "timeseries = ev.to_astropy_timeseries()\n", + "timeseries" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('dt', 0),\n", + " ('gti', array([[0, 4]])),\n", + " ('mjdref', 58000.0),\n", + " ('ncounts', 4),\n", + " ('notes', '')])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table.meta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, these objects can be converted back to event lists. The user should be careful in defining the proper column names and metadata so that the final object is a valid `EventList`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "table_ev = EventList.from_astropy_table(table)\n", + "table_ts = EventList.from_astropy_timeseries(timeseries)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0.5, 1.1, 2.2, 3.7]), array([0.5, 1.1, 2.2, 3.7]))" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table_ev.time, table_ts.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Loading and writing EventList objects\n", + "\n", + "We made it possible to save and load data in a number of different formats.\n", + "\n", + "The general syntax is\n", + "\n", + "```\n", + "ev = EventList.read(filename, format)\n", + "\n", + "ev.write(filename, format)\n", + "\n", + "```\n", + "\n", + "There are three main blocks of formats that might be useful:\n", + "\n", + "1. (read-only) HEASoft-compatible formats -> read event data from HEASOFT-supported missions\n", + "\n", + "2. `pickle`: reading and saving EventLists from/to Python pickle objects\n", + "\n", + "3. Any format compatible with `astropy.table.Table` objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading an EventList from an X-ray observation in HEASoft-compatible format\n", + "\n", + "Loading event data from HEASoft-supported missions in FITS format is easy. It's sufficient to use the `read` method with `hea` or, equivalently, `ogip`, as format. \n", + "\n", + "Beware: please use `hea` or `ogip`, not `fits`! It would make the roundrip to Astropy tables more complicated, as Astropy supports a generic FITS writer which is not necessarily compatible with HEASoft." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList.read('events.fits', 'ogip')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Times are saved to the `time` attribute, GTIs to the `gti` attribute, MJDREF to the `mjdref` attribute, etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55197.00076601852" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.mjdref" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[80000000., 80001025.]], dtype=float128)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to pickle objects\n", + "\n", + "It is possible to save and load eventlist objects using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(True, True)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.p\", \"pickle\")\n", + "ev2 = EventList.read(\"events.p\", \"pickle\")\n", + "\n", + "np.allclose(ev2.time, ev.time), np.allclose(ev2.gti, ev.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "If the `read` and `write` methods receive a format which is not `hea`, `ogip`, or `pickle`, the event list is transformed into an `Astropy` `Table` object with the methods described above, and the readers and writers from the `Table` class are used instead. This allows to extend the save/load operations to a large number of formats, including `hdf5` and enhanced CSV (`ascii.ecsv`).\n", + "\n", + "Note that columns coming from the `EVENTS` (or equivalent) fits extension, those having the same length as `time`, when converting to `astropy` tables they become columns of the table. All the others, including `gti`, are treated as metadata.\n", + "\n", + "Care should be used in selecting formats that preserve metadata. For example, simple CSV format loses all metadata, including MJDREF, GTIs etc." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.hdf5\", \"hdf5\")\n", + "ev3 = EventList.read(\"events.hdf5\", \"hdf5\")\n", + "ev3.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# %ECSV 1.0\r\n", + "# ---\r\n", + "# datatype:\r\n", + "# - {name: energy, datatype: float32}\r\n", + "# - {name: pi, datatype: float32}\r\n", + "# - {name: time, datatype: float128}\r\n", + "# meta: !!omap\r\n", + "# - {dt: 0}\r\n", + "# - gti: !numpy.ndarray\r\n", + "# buffer: !!binary |\r\n", + "# QUFBQUFBQ0FscGdaUURHRnBuOEFBQUFBQUFBZ0FKZVlHVUF4aGFaL0FBQT0=\r\n", + "# dtype: float128\r\n", + "# order: C\r\n", + "# shape: !!python/tuple [1, 2]\r\n", + "# - {header: 'XTENSION= ''BINTABLE'' / binary table extension BITPIX = 8 / array\r\n", + "# data type NAXIS = 2 / number of array dimensions NAXIS1 = 12\r\n", + "# / length of dimension 1 NAXIS2 = 1000 / length of dimension 2 PCOUNT = 0\r\n", + "# / number of group parameters GCOUNT = 1 / number of groups TFIELDS\r\n", + "# = 2 / number of table fields TTYPE1 = ''TIME '' TFORM1 =\r\n", + "# ''1D '' TTYPE2 = ''PI '' TFORM2 =\r\n", + "# ''1J '' EXTNAME = ''EVENTS '' / extension name OBSERVER=\r\n", + "# ''Edwige Bubble'' TELESCOP= ''NuSTAR '' / Telescope (mission) name INSTRUME=\r\n", + "# ''FPMA '' / Instrument name OBS_ID = ''00000000001'' / Observation ID TARG_ID\r\n", + "# = 0 / Target ID OBJECT = ''Fake X-1'' / Name of observed object RA_OBJ = 0.0\r\n", + "# / [deg] R.A. Object DEC_OBJ = 0.0 / [deg] Dec Object RA_NOM = 0.0\r\n", + "# / Right Ascension used for barycenter correctionsDEC_NOM = 0.0 / Declination used for barycenter corrections RA_PNT = 0.0\r\n", + "# / [deg] RA pointing DEC_PNT = 0.0 / [deg] Dec pointing PA_PNT = 0.0\r\n", + "# / [deg] Position angle (roll) EQUINOX = 2000.0 / Equinox of celestial coord system RADECSYS=\r\n", + "# ''FK5 '' / Coordinate Reference System TASSIGN = ''SATELLITE'' / Time assigned by onboard\r\n", + "# clock TIMESYS = ''TDB '' / All times in this file are TDB MJDREFI = 55197\r\n", + "# / TDB time reference; Modified Julian Day (int) MJDREFF = 0.00076601852 / TDB time reference; Modified Julian Day (frac)\r\n", + "# TIMEREF = ''SOLARSYSTEM'' / Times are pathlength-corrected to barycenter CLOCKAPP= F / TRUE if timestamps\r\n", + "# corrected by gnd sware TIMEUNIT= ''s '' / unit for time keywords TSTART = 80000000.0\r\n", + "# / Elapsed seconds since MJDREF at start of file TSTOP = 80001025.0 / Elapsed seconds since MJDREF at end of file LIVETIME= 1025.0\r\n", + "# / On-source time TIMEZERO= 0.0 / Time Zero COMMENT\r\n", + "# FITS (Flexible Image Transport System) format is defined in ''Astronomy aCOMMENT nd Astrophysics'', volume 376, page 359; bibcode:\r\n", + "# 2001A&A...376..359H COMMENT MJDREFI+MJDREFF = epoch of Jan 1, 2010, in TT time system. HISTORY File modified by\r\n", + "# user ''meo'' with fv on 2015-08-17T14:10:02 HISTORY File modified by user ''meo'' with fv on 2015-08-17T14:48:52 END '}\r\n", + "# - {instr: fpma}\r\n", + "# - {mission: nustar}\r\n", + "# - {mjdref: 55197.00076601852}\r\n", + "# - {ncounts: 1000}\r\n", + "# - {notes: ''}\r\n", + "# - {timeref: solarsystem}\r\n", + "# - {timesys: tdb}\r\n", + "# schema: astropy-2.0\r\n", + "energy pi time\r\n", + "8.56 174.0 80000000.23635569215\r\n", + "33.039997 786.0 80000001.47479322553\r\n", + "7.9999995 160.0 80000001.78458866477\r\n", + "27.84 656.0 80000002.789436236024\r\n", + "8.84 181.0 80000003.428599357605\r\n", + "13.92 308.0 80000004.079430028796\r\n", + "37.839996 906.0 80000006.09310323\r\n", + "40.559998 974.0 80000007.180418133736\r\n", + "5.8799996 107.0 80000008.176021426916\r\n", + "41.239998 991.0 80000008.204034894705\r\n", + "33.64 801.0 80000009.69214613736\r\n", + "8.72 178.0 80000010.36281684041\r\n", + "17.32 393.0 80000010.78324916959\r\n", + "6.56 124.0 80000011.8733625412\r\n", + "21.28 492.0 80000013.92633379996\r\n", + "10.24 216.0 80000014.204483643174\r\n", + "10.68 227.0 80000014.26073910296\r\n", + "26.68 627.0 80000015.256171390414\r\n", + "3.96 59.0 80000018.08373501897\r\n", + "13.96 309.0 80000018.83911728859\r\n", + "28.32 668.0 80000019.98157013953\r\n", + "38.319996 918.0 80000020.76013682783\r\n", + "17.76 404.0 80000021.14855520427\r\n", + "12.64 276.0 80000022.02460347116\r\n", + "29.76 704.0 80000023.50157275796\r\n", + "24.08 562.0 80000023.61806283891\r\n", + "10.400001 220.0 80000024.97833034396\r\n", + "41.519997 998.0 80000025.95996727049\r\n", + "4.24 66.0 80000026.16019311547\r\n", + "23.32 543.0 80000027.089139238\r\n", + "41.399998 995.0 80000028.596908301115\r\n", + "19.72 453.0 80000031.065731182694\r\n", + "36.559998 874.0 80000031.10555113852\r\n", + "38.399998 920.0 80000032.516511276364\r\n", + "24.28 567.0 80000032.808356150985\r\n", + "29.48 697.0 80000033.18797942996\r\n", + "36.76 879.0 80000033.85146795213\r\n", + "10.6 225.0 80000034.861510172486\r\n", + "20.0 460.0 80000038.22435864806\r\n", + "3.3600001 44.0 80000038.39090189338\r\n", + "15.08 337.0 80000042.41919325292\r\n", + "22.48 522.0 80000043.69195660949\r\n", + "4.24 66.0 80000045.52997684479\r\n", + "21.88 507.0 80000052.78282105923\r\n", + "39.6 950.0 80000052.919592529535\r\n", + "3.24 41.0 80000054.28180256486\r\n", + "14.32 318.0 80000056.48970986903\r\n", + "7.4399996 146.0 80000057.49698485434\r\n", + "7.9599996 159.0 80000058.55781446397\r\n", + "21.36 494.0 80000059.284333616495\r\n", + "35.159996 839.0 80000060.359298199415\r\n", + "21.64 501.0 80000063.666031733155\r\n", + "36.44 871.0 80000064.78927731514\r\n", + "35.319996 843.0 80000067.341705307364\r\n", + "26.08 612.0 80000068.267971634865\r\n", + "12.12 263.0 80000070.24889309704\r\n", + "11.400001 245.0 80000072.99266758561\r\n", + "35.839996 856.0 80000073.4422865361\r\n", + "6.68 127.0 80000073.81521306932\r\n", + "28.4 670.0 80000074.7710172981\r\n", + "22.08 512.0 80000076.15446573496\r\n", + "29.64 701.0 80000076.61943152547\r\n", + "34.319996 818.0 80000078.37191092968\r\n", + "9.04 186.0 80000079.364117503166\r\n", + "42.399998 1020.0 80000080.12182110548\r\n", + "14.08 312.0 80000080.4114151746\r\n", + "12.64 276.0 80000083.704568862915\r\n", + "26.16 614.0 80000084.38392549753\r\n", + "21.12 488.0 80000084.49645087123\r\n", + "7.7599998 154.0 80000084.73323458433\r\n", + "5.64 101.0 80000085.518022567034\r\n", + "4.2799997 67.0 80000086.06328216195\r\n", + "39.039997 936.0 80000087.00356020033\r\n", + "14.88 332.0 80000087.108956605196\r\n", + "11.24 241.0 80000087.3983823657\r\n", + "42.199997 1015.0 80000088.44739763439\r\n", + "28.16 664.0 80000088.72279639542\r\n", + "2.48 22.0 80000089.15565529466\r\n", + "42.28 1017.0 80000090.20357654989\r\n", + "5.32 93.0 80000090.7642698288\r\n", + "14.28 317.0 80000090.80305439234\r\n", + "40.319996 968.0 80000091.500082850456\r\n", + "18.44 421.0 80000092.158643990755\r\n", + "32.239998 766.0 80000092.89413803816\r\n", + "4.4 70.0 80000094.805209457874\r\n", + "38.879997 932.0 80000095.04941494763\r\n", + "32.199997 765.0 80000096.56686630845\r\n", + "30.4 720.0 80000096.91533789039\r\n", + "35.719997 853.0 80000098.67825654149\r\n", + "29.32 693.0 80000098.92884159088\r\n", + "17.199999 390.0 80000099.199268594384\r\n", + "37.92 908.0 80000100.14995288849\r\n", + "1.96 9.0 80000100.935947969556\r\n", + "13.12 288.0 80000102.76762147248\r\n", + "30.6 725.0 80000103.05724072456\r\n", + "34.239998 816.0 80000104.193173110485\r\n", + "8.88 182.0 80000107.33343601227\r\n", + "29.6 700.0 80000107.40127386153\r\n", + "8.24 166.0 80000107.56737007201\r\n", + "39.76 954.0 80000109.40503971279\r\n", + "41.399998 995.0 80000109.51361806691\r\n", + "32.399998 770.0 80000111.27798360586\r\n", + "20.2 465.0 80000112.93057106435\r\n", + "22.36 519.0 80000113.545409321785\r\n", + "41.559998 999.0 80000113.71510283649\r\n", + "36.64 876.0 80000115.363516911864\r\n", + "5.12 88.0 80000116.62624913454\r\n", + "24.32 568.0 80000117.5390470773\r\n", + "11.4800005 247.0 80000118.313546299934\r\n", + "10.0 210.0 80000118.64352825284\r\n", + "13.36 294.0 80000119.64161340892\r\n", + "4.48 72.0 80000119.70217871666\r\n", + "5.68 102.0 80000119.87085522711\r\n", + "25.76 604.0 80000120.67677563429\r\n", + "1.9200001 8.0 80000121.80093438923\r\n", + "2.92 33.0 80000122.09129279852\r\n", + "5.12 88.0 80000122.545517489314\r\n", + "33.32 793.0 80000122.93073017895\r\n", + "13.76 304.0 80000123.276563555\r\n", + "37.159996 889.0 80000125.506356075406\r\n", + "30.56 724.0 80000125.6568851918\r\n", + "37.079998 887.0 80000127.336458325386\r\n", + "6.4399996 121.0 80000127.45361994207\r\n", + "11.96 259.0 80000128.36573840678\r\n", + "14.08 312.0 80000129.43040788174\r\n", + "14.36 319.0 80000130.30537183583\r\n", + "34.239998 816.0 80000131.993975520134\r\n", + "29.92 708.0 80000132.51598034799\r\n", + "21.8 505.0 80000132.877141192555\r\n", + "10.84 231.0 80000134.958766937256\r\n", + "15.72 353.0 80000136.26415735483\r\n", + "9.32 193.0 80000136.271308645606\r\n", + "38.44 921.0 80000136.491618439555\r\n", + "34.559998 824.0 80000136.59682570398\r\n", + "29.64 701.0 80000136.81391918659\r\n", + "13.6 300.0 80000137.111403808\r\n", + "15.0 335.0 80000137.99286413193\r\n", + "8.2 165.0 80000140.02283409238\r\n", + "31.0 735.0 80000141.585879951715\r\n", + "18.12 413.0 80000141.88128243387\r\n", + "27.64 651.0 80000142.301297202706\r\n", + "29.44 696.0 80000144.258596763015\r\n", + "4.32 68.0 80000146.35952179134\r\n", + "9.92 208.0 80000146.431891173124\r\n", + "26.6 625.0 80000146.93531550467\r\n", + "32.719997 778.0 80000147.86272408068\r\n", + "4.4 70.0 80000148.20213320851\r\n", + "14.04 311.0 80000148.998638793826\r\n", + "10.76 229.0 80000150.13331639767\r\n", + "8.12 163.0 80000150.40001221001\r\n", + "31.96 759.0 80000150.51030369103\r\n", + "41.6 1000.0 80000158.27798460424\r\n", + "2.96 34.0 80000158.565826013684\r\n", + "19.76 454.0 80000160.18738743663\r\n", + "14.440001 321.0 80000162.67192919552\r\n", + "11.72 253.0 80000163.52692268789\r\n", + "37.44 896.0 80000164.03886182606\r\n", + "32.84 781.0 80000164.495729878545\r\n", + "17.24 391.0 80000165.17495532334\r\n", + "3.44 46.0 80000166.38718263805\r\n", + "25.76 604.0 80000168.38902553916\r\n", + "25.44 596.0 80000169.68685694039\r\n", + "23.56 549.0 80000169.713349059224\r\n", + "19.08 437.0 80000170.805011570454\r\n", + "41.039997 986.0 80000172.42077590525\r\n", + "2.16 14.0 80000172.43760578334\r\n", + "2.16 14.0 80000174.10814335942\r\n", + "37.28 892.0 80000174.15144339204\r\n", + "30.76 729.0 80000174.80246704817\r\n", + "28.24 666.0 80000174.83830589056\r\n", + "23.52 548.0 80000176.110384613276\r\n", + "33.399998 795.0 80000176.43801294267\r\n", + "7.08 137.0 80000177.71353569627\r\n", + "39.12 938.0 80000178.329968214035\r\n", + "9.44 196.0 80000180.91684667766\r\n", + "6.56 124.0 80000181.358734831214\r\n", + "24.96 584.0 80000182.17984089255\r\n", + "14.08 312.0 80000182.2385392189\r\n", + "29.92 708.0 80000183.21093174815\r\n", + "8.52 173.0 80000183.68284714222\r\n", + "23.92 558.0 80000184.32184153795\r\n", + "33.96 809.0 80000187.16848820448\r\n", + "13.0 285.0 80000188.89809964597\r\n", + "2.56 24.0 80000189.59268042445\r\n", + "8.52 173.0 80000190.39239893854\r\n", + "29.6 700.0 80000190.987773641944\r\n", + "8.04 161.0 80000191.39765946567\r\n", + "9.84 206.0 80000191.63218219578\r\n", + "37.399998 895.0 80000191.7998701334\r\n", + "37.48 897.0 80000194.591946706176\r\n", + "2.44 21.0 80000195.17524069548\r\n", + "22.72 528.0 80000195.27073279023\r", + "\r\n", + "33.039997 786.0 80000195.60482543707\r\n", + "15.4 345.0 80000197.01553657651\r\n", + "20.56 474.0 80000198.18857589364\r\n", + "12.8 280.0 80000199.30817961693\r\n", + "20.16 464.0 80000200.066078454256\r\n", + "1.6800001 2.0 80000201.68090777099\r\n", + "12.04 261.0 80000202.814891934395\r\n", + "18.32 418.0 80000203.25650832057\r\n", + "40.359997 969.0 80000203.48255087435\r\n", + "34.28 817.0 80000204.7061804533\r\n", + "34.64 826.0 80000207.248482748866\r\n", + "30.4 720.0 80000208.40996426344\r\n", + "28.76 679.0 80000208.54558329284\r\n", + "3.6 50.0 80000212.2733836025\r\n", + "39.399998 945.0 80000213.37501113117\r\n", + "23.64 551.0 80000214.05003093183\r\n", + "10.24 216.0 80000214.76189556718\r\n", + "15.440001 346.0 80000214.94751133025\r\n", + "33.839996 806.0 80000215.30322690308\r\n", + "2.88 32.0 80000215.606552898884\r\n", + "17.56 399.0 80000216.67295819521\r\n", + "17.199999 390.0 80000216.721879810095\r\n", + "22.0 510.0 80000217.02722400427\r\n", + "7.3199997 143.0 80000218.21801964939\r\n", + "6.3199997 118.0 80000223.690936505795\r\n", + "40.519997 973.0 80000224.71057784557\r\n", + "10.6 225.0 80000224.88408643007\r\n", + "31.08 737.0 80000225.81306296587\r\n", + "21.0 485.0 80000228.288003221154\r\n", + "15.64 351.0 80000229.47965101898\r\n", + "34.719997 828.0 80000229.982017084956\r\n", + "25.88 607.0 80000230.13939705491\r\n", + "16.52 373.0 80000230.207446575165\r\n", + "1.8 5.0 80000233.628895014524\r\n", + "33.0 785.0 80000233.858214601874\r\n", + "36.879997 882.0 80000235.58721217513\r\n", + "1.76 4.0 80000236.03008031845\r\n", + "42.239998 1016.0 80000239.206377997994\r\n", + "31.119999 738.0 80000240.66440632939\r\n", + "34.159996 814.0 80000241.05537928641\r\n", + "13.56 299.0 80000242.91226673126\r\n", + "18.92 433.0 80000243.34091578424\r\n", + "22.44 521.0 80000246.23444570601\r\n", + "40.8 980.0 80000246.39591316879\r\n", + "21.28 492.0 80000248.63243843615\r\n", + "24.28 567.0 80000249.259784281254\r\n", + "9.56 199.0 80000249.85402186215\r\n", + "5.04 86.0 80000250.17666938901\r\n", + "3.0 35.0 80000251.49163559079\r\n", + "25.44 596.0 80000251.50295473635\r\n", + "24.4 570.0 80000252.06601053476\r\n", + "30.56 724.0 80000252.272911697626\r\n", + "38.12 913.0 80000252.985514968634\r\n", + "38.8 930.0 80000253.836741268635\r\n", + "30.76 729.0 80000255.06581965089\r\n", + "41.719997 1003.0 80000255.60727831721\r\n", + "41.64 1001.0 80000256.902037888765\r\n", + "19.8 455.0 80000258.60432396829\r\n", + "42.359997 1019.0 80000260.50080451369\r\n", + "25.6 600.0 80000260.75552198291\r\n", + "11.56 249.0 80000260.88460493088\r\n", + "33.839996 806.0 80000261.36898006499\r\n", + "37.48 897.0 80000262.92271217704\r\n", + "18.2 415.0 80000262.99845524132\r\n", + "23.36 544.0 80000263.33590015769\r\n", + "40.96 984.0 80000264.96524555981\r\n", + "9.28 192.0 80000265.84508921206\r\n", + "10.84 231.0 80000266.91673760116\r\n", + "4.44 71.0 80000268.235334053636\r\n", + "22.76 529.0 80000271.489329367876\r\n", + "23.96 559.0 80000271.64101035893\r\n", + "35.879997 857.0 80000271.98798702657\r\n", + "11.16 239.0 80000273.71523039043\r\n", + "36.199997 865.0 80000275.30799421668\r\n", + "32.76 779.0 80000275.81958813965\r\n", + "27.32 643.0 80000276.46777294576\r\n", + "27.0 635.0 80000277.24329108\r\n", + "11.360001 244.0 80000277.80254943669\r\n", + "3.08 37.0 80000278.42643971741\r\n", + "18.68 427.0 80000278.52543953061\r\n", + "5.8399997 106.0 80000278.78952820599\r\n", + "25.24 591.0 80000279.13904826343\r\n", + "11.400001 245.0 80000279.32166413963\r\n", + "6.72 128.0 80000279.47431126237\r\n", + "34.6 825.0 80000281.05502511561\r\n", + "14.2 315.0 80000281.66787202656\r\n", + "18.08 412.0 80000281.735276550055\r\n", + "14.16 314.0 80000283.60641156137\r\n", + "12.4800005 272.0 80000284.68940325081\r\n", + "22.72 528.0 80000284.771769434214\r\n", + "7.2 140.0 80000285.59601339698\r\n", + "37.519997 898.0 80000287.934347867966\r\n", + "37.559998 899.0 80000288.457227408886\r\n", + "25.36 594.0 80000288.84559759498\r\n", + "37.039997 886.0 80000289.283936053514\r\n", + "32.48 772.0 80000289.74665103853\r\n", + "21.36 494.0 80000290.772457659245\r\n", + "1.64 1.0 80000290.879882499576\r\n", + "19.32 443.0 80000291.225027650595\r\n", + "21.84 506.0 80000291.23198154569\r\n", + "2.8 30.0 80000293.356203347445\r\n", + "31.92 758.0 80000296.29710520804\r\n", + "32.52 773.0 80000297.10793355107\r\n", + "37.159996 889.0 80000298.52665117383\r\n", + "12.64 276.0 80000298.93143287301\r\n", + "7.4399996 146.0 80000299.927507817745\r\n", + "17.199999 390.0 80000300.818491622806\r\n", + "2.52 23.0 80000302.07161732018\r\n", + "2.56 24.0 80000302.72473844886\r\n", + "36.319996 868.0 80000305.32900521159\r\n", + "4.52 73.0 80000305.93047915399\r\n", + "3.24 41.0 80000306.89711469412\r\n", + "16.64 376.0 80000309.568026304245\r\n", + "4.4 70.0 80000310.67230030894\r\n", + "18.36 419.0 80000311.17736788094\r\n", + "8.24 166.0 80000311.37703952193\r\n", + "20.12 463.0 80000313.92710117996\r\n", + "36.76 879.0 80000316.52630840242\r\n", + "3.6399999 51.0 80000316.576121881604\r\n", + "2.56 24.0 80000316.61531569064\r\n", + "4.68 77.0 80000316.991498693824\r\n", + "30.92 733.0 80000318.496204048395\r\n", + "4.44 71.0 80000318.759574487805\r\n", + "25.72 603.0 80000318.99812464416\r\n", + "24.16 564.0 80000323.19316992164\r\n", + "39.64 951.0 80000323.76615965366\r\n", + "2.6799998 27.0 80000324.23196092248\r\n", + "30.8 730.0 80000325.30946139991\r\n", + "13.68 302.0 80000325.49627235532\r\n", + "40.64 976.0 80000325.76096495986\r\n", + "9.04 186.0 80000326.018922537565\r\n", + "23.56 549.0 80000328.51117782295\r\n", + "32.12 763.0 80000330.33366891742\r\n", + "21.16 489.0 80000331.37347571552\r\n", + "38.8 930.0 80000332.161390304565\r\n", + "6.2 115.0 80000332.54631538689\r\n", + "37.319996 893.0 80000333.515790537\r\n", + "2.6799998 27.0 80000335.46171656251\r\n", + "27.8 655.0 80000336.63410934806\r\n", + "38.92 933.0 80000339.03143580258\r\n", + "5.7599998 104.0 80000339.16872346401\r\n", + "18.32 418.0 80000340.030776798725\r\n", + "5.8399997 106.0 80000340.41478018463\r\n", + "17.48 397.0 80000340.533760264516\r\n", + "33.32 793.0 80000341.72407652438\r\n", + "11.360001 244.0 80000344.206543818116\r\n", + "24.88 582.0 80000344.78012427688\r\n", + "32.96 784.0 80000345.00482337177\r\n", + "2.52 23.0 80000345.26880034804\r\n", + "13.2 290.0 80000345.654379203916\r\n", + "34.359997 819.0 80000345.975308820605\r\n", + "42.359997 1019.0 80000346.41354955733\r\n", + "7.8799996 157.0 80000346.86677853763\r\n", + "39.6 950.0 80000347.32460169494\r\n", + "9.32 193.0 80000347.35750260949\r\n", + "16.0 360.0 80000349.31582227349\r\n", + "37.879997 907.0 80000351.124539494514\r\n", + "19.44 446.0 80000352.37143753469\r\n", + "36.76 879.0 80000353.196565657854\r\n", + "2.24 16.0 80000354.17744512856\r\n", + "30.88 732.0 80000355.20202793181\r\n", + "39.8 955.0 80000355.60426925123\r\n", + "40.12 963.0 80000355.82318587601\r\n", + "16.4 370.0 80000356.5162641108\r\n", + "10.360001 219.0 80000357.642409190536\r\n", + "4.12 63.0 80000359.16175606847\r\n", + "7.68 152.0 80000359.8546615839\r\n", + "4.12 63.0 80000362.5537327677\r\n", + "20.8 480.0 80000362.92154058814\r\n", + "17.199999 390.0 80000363.773983463645\r\n", + "39.999996 960.0 80000365.48620200157\r\n", + "36.319996 868.0 80000368.489620789886\r\n", + "19.6 450.0 80000369.631684705615\r\n", + "41.679996 1002.0 80000370.6534255296\r\n", + "39.159996 939.0 80000371.82940942049\r\n", + "34.399998 820.0 80000373.43823419511\r\n", + "29.28 692.0 80000373.8585408777\r\n", + "39.039997 936.0 80000374.209455892444\r\n", + "34.44 821.0 80000374.64683301747\r\n", + "2.96 34.0 80000375.620239943266\r\n", + "32.36 769.0 80000378.87894229591\r\n", + "35.999996 860.0 80000378.97707155347\r\n", + "14.28 317.0 80000379.42757484317\r\n", + "37.839996 906.0 80000379.917373120785\r\n", + "8.92 183.0 80000381.10625052452\r\n", + "37.239998 891.0 80000382.077453806996\r\n", + "31.039999 736.0 80000382.17598539591\r\n", + "34.079998 812.0 80000382.22633959353\r\n", + "25.84 606.0 80000382.22792515159\r\n", + "27.6 650.0 80000382.55412106216\r\n", + "2.8 30.0 80000383.94620233774\r\n", + "37.12 888.0 80000384.37110866606\r\n", + "28.16 664.0 80000387.30780394375\r\n", + "20.44 471.0 80000387.87746040523\r\n", + "25.119999 588.0 80000388.37795352936\r\n", + "2.6799998 27.0 80000389.268874913454\r\n", + "37.199997 890.0 80000392.62231977284\r\n", + "28.16 664.0 80000393.17818275094\r\n", + "11.52 248.0 80000393.43643279374\r\n", + "2.6 25.0 80000395.12563699484\r\n", + "15.6 350.0 80000395.77989049256\r\n", + "6.48 122.0 80000396.31284117699\r\n", + "32.039997 761.0 80000399.1847140342\r\n", + "37.92 908.0 80000399.54459910095\r\n", + "16.84 381.0 80000400.72491231561\r\n", + "20.64 476.0 80000403.17735889554\r\n", + "8.88 182.0 80000403.54358610511\r\n", + "20.72 478.0 80000404.22769507766\r\n", + "5.4 95.0 80000404.47602318227\r\n", + "42.479996 1022.0 80000404.67004515231\r\n", + "16.64 376.0 80000408.95574080944\r\n", + "7.16 139.0 80000410.03962627053\r\n", + "16.72 378.0 80000410.75551979244\r\n", + "8.52 173.0 80000412.09823872149\r\n", + "31.8 755.0 80000412.219870209694\r\n", + "1.9200001 8.0 80000412.81054663658\r\n", + "21.96 509.0 80000414.8682410419\r\n", + "24.44 571.0 80000415.37962676585\r\n", + "27.92 658.0 80000416.70795631409\r\n", + "24.56 574.0 80000417.1444568038\r\n", + "37.039997 886.0 80000418.38563929498\r\n", + "1.96 9.0 80000420.47344271839\r\n", + "8.88 182.0 80000420.53409618139\r\n", + "26.48 622.0 80000420.80564555526\r\n", + "41.719997 1003.0 80000420.863403081894\r\n", + "5.96 109.0 80000420.942480519414\r\n", + "35.8 855.0 80000422.02582614124\r\n", + "8.44 171.0 80000422.79813404381\r\n", + "12.76 279.0 80000424.42955330014\r\n", + "7.8399997 156.0 80000424.81564453244\r\n", + "7.4799995 147.0 80000425.28199738264\r\n", + "40.319996 968.0 80000425.867245197296\r\n", + "33.719997 803.0 80000426.62731541693\r\n", + "40.12 963.0 80000427.133511930704\r\n", + "14.52 323.0 80000427.36044855416\r\n", + "7.0 135.0 80000428.54412809014\r\n", + "15.56 349.0 80000428.88726851344\r\n", + "30.6 725.0 80000429.38063727319\r\n", + "19.6 450.0 80000432.95051422715\r\n", + "3.08 37.0 80000434.64868846536\r\n", + "2.4 20.0 80000435.51728320122\r\n", + "39.76 954.0 80000436.24377171695\r\n", + "23.64 551.0 80000437.577606111765\r\n", + "9.48 197.0 80000438.05216662586\r\n", + "34.039997 811.0 80000438.70308248699\r\n", + "2.3600001 19.0 80000442.052734196186\r\n", + "27.36 644.0 80000442.764658123255\r\n", + "14.4800005 322.0 80000443.238895997405\r\n", + "12.76 279.0 80000445.098355308175\r\n", + "14.6 325.0 80000446.023702159524\r\n", + "32.879997 782.0 80000446.16962249577\r\n", + "10.92 233.0 80000448.83636845648\r\n", + "7.7999997 155.0 80000450.061449572444\r\n", + "9.12 188.0 80000450.52947856486\r\n", + "32.079998 762.0 80000450.55909974873\r\n", + "28.32 668.0 80000451.879113674164\r\n", + "22.28 517.0 80000452.064453706145\r\n", + "10.08 212.0 80000452.13652163744\r\n", + "26.32 618.0 80000452.9472001791\r\n", + "35.399998 845.0 80000453.03071194887\r\n", + "9.48 197.0 80000454.07206726074\r\n", + "3.32 43.0 80000456.48143340647\r\n", + "34.399998 820.0 80000458.18602730334\r\n", + "11.56 249.0 80000459.0324331224\r\n", + "4.2799997 67.0 80000459.4572635144\r\n", + "32.36 769.0 80000459.920432657\r\n", + "41.239998 991.0 80000464.06256014109\r\n", + "10.76 229.0 80000464.33307418227\r\n", + "34.079998 812.0 80000466.34134361148\r\n", + "26.84 631.0 80000467.24169912934\r\n", + "16.119999 363.0 80000467.884447038174\r\n", + "40.319996 968.0 80000468.7550342083\r\n", + "10.72 228.0 80000469.84887549281\r\n", + "22.52 523.0 80000469.8745007813\r\n", + "39.92 958.0 80000472.20344258845\r\n", + "27.4 645.0 80000472.30986727774\r\n", + "31.84 756.0 80000473.21885484457\r\n", + "15.440001 346.0 80000473.694500654936\r\n", + "17.24 391.0 80000476.0327218622\r\n", + "32.84 781.0 80000476.96122226119\r\n", + "39.28 942.0 80000480.92292739451\r\n", + "35.319996 843.0 80000481.06054444611\r\n", + "4.4 70.0 80000481.37218731642\r\n", + "24.36 569.0 80000481.933602169156\r\n", + "26.16 614.0 80000481.98567260802\r\n", + "40.879997 982.0 80000482.9210729748\r\n", + "40.479996 972.0 80000483.857440814376\r\n", + "4.64 76.0 80000484.32165810466\r\n", + "39.8 955.0 80000484.80663745105\r\n", + "29.16 689.0 80000486.771085351706\r\n", + "11.84 256.0 80000487.217004179955\r\n", + "14.16 314.0 80000487.990593642\r\n", + "28.92 683.0 80000491.276099190116\r\n", + "37.999996 910.0 80000491.747016862035\r\n", + "6.4399996 121.0 80000493.35879443586\r\n", + "25.2 590.0 80000494.31928488612\r\n", + "12.16 264.0 80000495.14925374091\r\n", + "14.6 325.0 80000495.4605127275\r\n", + "20.64 476.0 80000496.37845928967\r\n", + "5.16 89.0 80000496.85824956\r\n", + "19.88 457.0 80000497.20662690699\r\n", + "35.92 858.0 80000502.43506611884\r\n", + "25.8 605.0 80000502.71769653261\r\n", + "17.119999 388.0 80000502.80815401673\r\n", + "36.159996 864.0 80000504.42526854575\r\n", + "21.4 495.0 80000505.48890078068\r\n", + "12.4800005 272.0 80000506.024649724364\r\n", + "21.92 508.0 80000506.17142087221\r\n", + "4.56 74.0 80000508.07841642201\r\n", + "4.72 78.0 80000508.71263246238\r\n", + "31.56 749.0 80000509.140583753586\r\n", + "28.119999 663.0 80000509.95569059253\r\n", + "27.28 642.0 80000510.86728909612\r\n", + "12.04 261.0 80000512.479585409164\r\n", + "30.199999 715.0 80000516.56570722163\r\n", + "33.36 794.0 80000516.99862577021\r\n", + "5.16 89.0 80000517.344923987985\r\n", + "11.12 238.0 80000519.38823206723\r\n", + "11.32 243.0 80000519.57560668886\r\n", + "5.0 85.0 80000519.58020955324\r\n", + "33.239998 791.0 80000520.51779472828\r\n", + "6.3999996 120.0 80000520.546872377396\r\n", + "9.72 203.0 80000521.153368234634\r\n", + "30.64 726.0 80000521.42145887017\r\n", + "21.96 509.0 80000521.63308496773\r\n", + "12.6 275.0 80000523.057834371924\r\n", + "8.36 169.0 80000525.05073848367\r\n", + "10.56 224.0 80000527.819232299924\r\n", + "29.24 691.0 80000531.12523216009\r\n", + "24.6 575.0 80000532.10568276048\r\n", + "40.8 980.0 80000533.20108996332\r\n", + "17.0 385.0 80000534.29738210142\r\n", + "23.48 547.0 80000534.340845018625\r\n", + "18.28 417.0 80000534.83431440592\r\n", + "2.08 12.0 80000534.87653042376\r\n", + "41.92 1008.0 80000534.895185917616\r\n", + "8.52 173.0 80000535.94042633474\r\n", + "19.84 456.0 80000537.48509004712\r\n", + "10.400001 220.0 80000538.26394830644\r\n", + "23.92 558.0 80000540.002261936665\r\n", + "37.719997 903.0 80000540.1134250015\r\n", + "13.84 306.0 80000546.718622386456\r\n", + "4.32 68.0 80000546.84028501809\r\n", + "18.56 424.0 80000547.30754908919\r\n", + "3.08 37.0 80000549.5327937603\r\n", + "27.88 657.0 80000550.56298401952\r\n", + "29.0 685.0 80000550.60222132504\r\n", + "35.159996 839.0 80000552.734096348286\r\n", + "38.519997 923.0 80000553.922179594636\r\n", + "5.52 98.0 80000555.44246518612\r\n", + "18.56 424.0 80000558.82404534519\r\n", + "39.319996 943.0 80000558.947059229016\r\n", + "32.399998 770.0 80000559.282619684935\r\n", + "33.0 785.0 80000560.58969677985\r\n", + "29.72 703.0 80000560.70387540758\r\n", + "10.24 216.0 80000561.323437169194\r\n", + "17.88 407.0 80000562.679025664926\r\n", + "27.44 646.0 80000563.71705073118\r\n", + "14.4800005 322.0 80000563.95132599771\r\n", + "25.24 591.0 80000564.861919119954\r\n", + "23.24 541.0 80000565.76752875745\r\n", + "37.92 908.0 80000565.78528097272\r\n", + "24.92 583.0 80000566.29958720505\r\n", + "31.88 757.0 80000567.06900238991\r\n", + "42.359997 1019.0 80000569.15245625377\r\n", + "11.68 252.0 80000570.583770141006\r\n", + "11.56 249.0 80000571.260604158044\r\n", + "22.48 522.0 80000572.77767854929\r\n", + "24.64 576.0 80000574.140301436186\r\n", + "28.119999 663.0 80000574.51526069641\r\n", + "3.28 42.0 80000577.082364201546\r\n", + "35.559998 849.0 80000578.60487310588\r\n", + "5.72 103.0 80000579.25371134281\r\n", + "3.4 45.0 80000579.63681046665\r\n", + "6.3199997 118.0 80000581.21821717918\r\n", + "6.3199997 118.0 80000582.04014620185\r\n", + "22.12 513.0 80000583.46193483472\r\n", + "9.5199995 198.0 80000586.03360375762\r\n", + "3.48 47.0 80000589.798507750034\r\n", + "31.72 753.0 80000591.46542161703\r\n", + "2.88 32.0 80000591.97941620648\r\n", + "10.8 230.0 80000593.13316428661\r\n", + "15.84 356.0 80000594.042805209756\r\n", + "15.56 349.0 80000594.91821274161\r\n", + "37.159996 889.0 80000595.397889867425\r\n", + "28.16 664.0 80000595.763835296035\r\n", + "6.8399997 131.0 80000596.830532982945\r\n", + "37.559998 899.0 80000598.901824980974\r\n", + "31.16 739.0 80000599.64194495976\r\n", + "28.88 682.0 80000600.793473765254\r\n", + "31.56 749.0 80000602.10744164884\r\n", + "7.8399997 156.0 80000602.55246156454\r\n", + "17.24 391.0 80000603.4955958724\r\n", + "7.12 138.0 80000606.650620505214\r\n", + "2.16 14.0 80000608.090855017304\r\n", + "37.879997 907.0 80000609.993093535304\r\n", + "4.7999997 80.0 80000610.186307400465\r\n", + "15.56 349.0 80000611.37006236613\r\n", + "30.48 722.0 80000611.83906060457\r\n", + "19.96 459.0 80000611.8572294265\r\n", + "34.64 826.0 80000611.95349282026\r\n", + "41.839996 1006.0 80000613.84575891495\r\n", + "23.2 540.0 80000617.17802332342\r\n", + "17.56 399.0 80000617.24794691801\r\n", + "34.559998 824.0 80000617.35718101263\r\n", + "28.16 664.0 80000617.732587218285\r\n", + "20.64 476.0 80000618.9578525275\r\n", + "28.84 681.0 80000619.30346444249\r\n", + "39.239998 941.0 80000621.2265856415\r\n", + "18.16 414.0 80000621.38765838742\r\n", + "7.9999995 160.0 80000621.735619053245\r\n", + "33.079998 787.0 80000623.792137786746\r\n", + "37.64 901.0 80000623.85770910978\r\n", + "2.6 25.0 80000626.21549396217\r\n", + "31.039999 736.0 80000627.16449086368\r\n", + "33.12 788.0 80000628.88948699832\r\n", + "39.319996 943.0 80000630.68285809457\r\n", + "11.32 243.0 80000630.789920687675\r\n", + "30.48 722.0 80000632.821838498116\r\n", + "27.199999 640.0 80000632.881889894605\r\n", + "24.84 581.0 80000634.78217072785\r\n", + "20.28 467.0 80000635.002951964736\r\n", + "33.679996 802.0 80000635.41563603282\r\n", + "36.199997 865.0 80000635.88681785762\r\n", + "8.56 174.0 80000637.371477141976\r\n", + "35.519997 848.0 80000642.38429802656\r\n", + "30.4 720.0 80000643.78843893111\r\n", + "25.44 596.0 80000644.600917607546\r\n", + "11.68 252.0 80000644.882760211825\r\n", + "10.28 217.0 80000645.594902947545\r\n", + "9.2 190.0 80000645.93502403796\r\n", + "16.439999 371.0 80000646.383003011346\r\n", + "2.6399999 26.0 80000646.53795617819\r\n", + "34.64 826.0 80000647.63100332022\r\n", + "22.84 531.0 80000648.47574129701\r\n", + "5.12 88.0 80000649.00771085918\r\n", + "42.079998 1012.0 80000649.114930674434\r\n", + "24.92 583.0 80000650.1061706841\r\n", + "22.88 532.0 80000655.68533721566\r\n", + "24.68 577.0 80000657.16480255127\r\n", + "26.68 627.0 80000657.258827999234\r\n", + "19.8 455.0 80000657.33367057145\r\n", + "35.64 851.0 80000658.74945259094\r\n", + "2.08 12.0 80000660.18671748042\r\n", + "17.439999 396.0 80000660.63745248318\r\n", + "33.999996 810.0 80000661.82945792377\r\n", + "6.48 122.0 80000661.90170559287\r\n", + "17.16 389.0 80000662.26141363382\r\n", + "33.32 793.0 80000662.64840815961\r\n", + "41.64 1001.0 80000663.12676268816\r\n", + "14.56 324.0 80000663.227578774095\r\n", + "24.44 571.0 80000664.475006356835\r\n", + "3.3600001 44.0 80000664.552283763885\r\n", + "17.24 391.0 80000665.17621576786\r\n", + "27.4 645.0 80000666.08528217673\r\n", + "39.079998 937.0 80000670.71755500138\r\n", + "7.72 153.0 80000671.198174357414\r\n", + "6.8799996 132.0 80000673.345912232995\r\n", + "34.199997 815.0 80000674.87888632715\r\n", + "35.28 842.0 80000676.18293096125\r\n", + "11.64 251.0 80000676.64919489622\r\n", + "40.359997 969.0 80000676.80372226238\r\n", + "31.44 746.0 80000678.275382354856\r\n", + "11.8 255.0 80000680.48982979357\r\n", + "19.28 442.0 80000682.686058193445\r", + "\r\n", + "26.24 616.0 80000684.38221885264\r\n", + "2.8 30.0 80000685.43452076614\r\n", + "22.0 510.0 80000686.74407067895\r\n", + "31.199999 740.0 80000686.81872756779\r\n", + "30.84 731.0 80000688.30932036042\r\n", + "42.319996 1018.0 80000688.81981065869\r\n", + "20.16 464.0 80000691.197261437774\r\n", + "16.4 370.0 80000692.15807239711\r\n", + "27.92 658.0 80000693.03427194059\r\n", + "10.360001 219.0 80000694.3066085726\r\n", + "36.8 880.0 80000694.962600558996\r\n", + "40.44 971.0 80000697.02309130132\r\n", + "38.48 922.0 80000698.11148573458\r\n", + "21.56 499.0 80000698.516439035535\r\n", + "40.28 967.0 80000699.06620439887\r\n", + "42.44 1021.0 80000701.39014860988\r\n", + "27.76 654.0 80000701.87561401725\r\n", + "11.8 255.0 80000702.62369687855\r\n", + "27.88 657.0 80000702.988359063864\r\n", + "39.159996 939.0 80000705.296378955245\r\n", + "23.96 559.0 80000705.433091163635\r\n", + "11.440001 246.0 80000705.599841311574\r\n", + "2.8400002 31.0 80000709.3684746474\r\n", + "12.2 265.0 80000709.77955941856\r\n", + "3.7199998 53.0 80000709.794584959745\r\n", + "11.2 240.0 80000709.846471622586\r\n", + "27.0 635.0 80000711.9785169363\r\n", + "19.4 445.0 80000712.899810910225\r\n", + "1.9200001 8.0 80000713.0795609951\r\n", + "21.96 509.0 80000713.76596863568\r\n", + "36.48 872.0 80000716.780457377434\r\n", + "22.039999 511.0 80000717.29924210906\r\n", + "17.32 393.0 80000720.5562723279\r\n", + "12.68 277.0 80000720.58715964854\r\n", + "41.239998 991.0 80000722.03180555999\r\n", + "29.32 693.0 80000722.03699606657\r\n", + "7.9599996 159.0 80000722.478862181306\r\n", + "29.96 709.0 80000723.87889204919\r\n", + "5.52 98.0 80000724.7961999625\r\n", + "37.44 896.0 80000726.34677195549\r\n", + "40.28 967.0 80000727.47035036981\r\n", + "26.84 631.0 80000728.90236452222\r\n", + "41.92 1008.0 80000729.3514444083\r\n", + "26.16 614.0 80000730.33039654791\r\n", + "4.2 65.0 80000730.81428743899\r\n", + "4.4 70.0 80000731.42920610309\r\n", + "16.359999 369.0 80000732.61377693713\r\n", + "14.04 311.0 80000733.754086226225\r\n", + "17.08 387.0 80000733.79874679446\r\n", + "3.52 48.0 80000733.991308033466\r\n", + "38.28 917.0 80000734.417156770825\r\n", + "1.96 9.0 80000738.45621095598\r\n", + "11.08 237.0 80000739.78259626031\r\n", + "39.319996 943.0 80000739.904296547174\r\n", + "29.36 694.0 80000742.26487219334\r\n", + "20.8 480.0 80000742.58448088169\r\n", + "18.0 410.0 80000743.84713715315\r\n", + "7.0 135.0 80000745.445721656084\r\n", + "33.32 793.0 80000745.704266637564\r\n", + "4.96 84.0 80000746.49740232527\r\n", + "2.88 32.0 80000748.3739194572\r\n", + "40.76 979.0 80000749.18420062959\r\n", + "39.559998 949.0 80000749.238480210304\r\n", + "40.8 980.0 80000749.36030867696\r\n", + "15.36 344.0 80000751.06558699906\r\n", + "35.64 851.0 80000751.55830208957\r\n", + "39.479996 947.0 80000752.70824530721\r\n", + "9.12 188.0 80000752.72337460518\r\n", + "20.64 476.0 80000752.881983697414\r\n", + "29.52 698.0 80000753.15865902603\r\n", + "35.28 842.0 80000753.76198838651\r\n", + "27.92 658.0 80000754.23456764221\r\n", + "18.08 412.0 80000754.3275937736\r\n", + "35.76 854.0 80000755.37613813579\r\n", + "26.56 624.0 80000756.66476659477\r\n", + "6.7599998 129.0 80000758.372802481055\r\n", + "23.48 547.0 80000759.07206888497\r\n", + "29.16 689.0 80000759.892510056496\r\n", + "36.48 872.0 80000761.603752076626\r\n", + "17.16 389.0 80000762.42036630213\r\n", + "11.0 235.0 80000765.06811144948\r\n", + "31.76 754.0 80000765.382397055626\r\n", + "35.44 846.0 80000765.4667224288\r\n", + "41.28 992.0 80000765.93857854605\r\n", + "37.039997 886.0 80000767.26963350177\r\n", + "25.72 603.0 80000767.7786257714\r\n", + "20.28 467.0 80000770.32975102961\r\n", + "7.3999996 145.0 80000771.69804634154\r\n", + "3.32 43.0 80000773.945546999574\r\n", + "37.399998 895.0 80000774.221253693104\r\n", + "10.92 233.0 80000775.89942243695\r\n", + "24.6 575.0 80000777.312041819096\r\n", + "12.4800005 272.0 80000777.77507701516\r\n", + "31.72 753.0 80000777.79259891808\r\n", + "12.360001 269.0 80000779.33480271697\r\n", + "22.64 526.0 80000779.554390221834\r\n", + "36.999996 885.0 80000780.81437155604\r\n", + "29.28 692.0 80000780.933462917805\r\n", + "35.159996 839.0 80000781.15924490988\r\n", + "24.64 576.0 80000781.26206161082\r\n", + "25.119999 588.0 80000781.72611118853\r\n", + "4.7599998 79.0 80000782.172751545906\r\n", + "20.28 467.0 80000783.125701248646\r\n", + "38.64 926.0 80000785.342386975884\r\n", + "4.92 83.0 80000785.36341136694\r\n", + "34.6 825.0 80000785.92007930577\r\n", + "20.56 474.0 80000786.1086602211\r\n", + "17.279999 392.0 80000786.253573834896\r\n", + "33.6 800.0 80000787.553292140365\r\n", + "32.32 768.0 80000787.658161982894\r\n", + "4.68 77.0 80000790.072870031\r\n", + "24.64 576.0 80000792.274298503995\r\n", + "9.44 196.0 80000792.443054273725\r\n", + "17.52 398.0 80000792.46565423906\r\n", + "14.4800005 322.0 80000792.808876529336\r\n", + "33.879997 807.0 80000795.87703709304\r\n", + "32.719997 778.0 80000795.91278010607\r\n", + "5.44 96.0 80000797.14426906407\r\n", + "11.04 236.0 80000797.26987493038\r\n", + "34.719997 828.0 80000798.51847578585\r\n", + "2.2 15.0 80000799.48481544852\r\n", + "31.72 753.0 80000799.881970733404\r\n", + "31.039999 736.0 80000803.51909430325\r\n", + "18.52 423.0 80000803.731096595526\r\n", + "32.16 764.0 80000803.883781552315\r\n", + "40.92 983.0 80000805.29773187637\r\n", + "18.0 410.0 80000805.306009307504\r\n", + "17.32 393.0 80000807.21232941747\r\n", + "11.88 257.0 80000808.28512185812\r\n", + "21.36 494.0 80000808.454649567604\r\n", + "2.48 22.0 80000808.523783952\r\n", + "41.76 1004.0 80000809.73774009943\r\n", + "39.92 958.0 80000810.001270249486\r\n", + "13.12 288.0 80000810.86777666211\r\n", + "41.319996 993.0 80000811.438306853175\r\n", + "6.16 114.0 80000812.21489995718\r\n", + "28.199999 665.0 80000815.07969661057\r\n", + "29.56 699.0 80000815.974775359035\r\n", + "19.44 446.0 80000816.16485761106\r\n", + "3.32 43.0 80000816.704811513424\r\n", + "33.679996 802.0 80000816.80518731475\r\n", + "6.68 127.0 80000816.81600318849\r\n", + "3.1599998 39.0 80000819.00975045562\r\n", + "19.32 443.0 80000819.48453132808\r\n", + "34.079998 812.0 80000821.329228281975\r\n", + "8.8 180.0 80000821.52698163688\r\n", + "36.319996 868.0 80000822.00912617147\r\n", + "34.199997 815.0 80000824.46000294387\r\n", + "10.52 223.0 80000824.66023361683\r\n", + "11.28 242.0 80000825.05113039911\r\n", + "25.0 585.0 80000827.12451052666\r\n", + "3.96 59.0 80000827.4073446542\r\n", + "24.68 577.0 80000828.5048404783\r\n", + "38.159996 914.0 80000828.622610628605\r\n", + "31.88 757.0 80000828.63124883175\r\n", + "24.0 560.0 80000829.2215629518\r\n", + "20.6 475.0 80000829.66059269011\r\n", + "5.32 93.0 80000830.33870181441\r\n", + "13.76 304.0 80000831.20006233454\r\n", + "11.88 257.0 80000831.21613633633\r\n", + "15.16 339.0 80000832.059845909476\r\n", + "21.84 506.0 80000832.423598602414\r\n", + "13.6 300.0 80000833.69929590821\r\n", + "34.999996 835.0 80000834.46965831518\r\n", + "41.159996 989.0 80000836.12533031404\r\n", + "8.12 163.0 80000836.71061439812\r\n", + "28.4 670.0 80000836.78514607251\r\n", + "19.56 449.0 80000837.03853216767\r\n", + "12.88 282.0 80000839.699784219265\r\n", + "5.2799997 92.0 80000841.037233412266\r\n", + "31.76 754.0 80000843.41804847121\r\n", + "35.48 847.0 80000844.98050430417\r\n", + "31.199999 740.0 80000845.57550364733\r\n", + "28.76 679.0 80000850.37028862536\r\n", + "24.039999 561.0 80000850.423752725124\r\n", + "41.839996 1006.0 80000851.28334981203\r\n", + "36.76 879.0 80000851.615449771285\r\n", + "17.4 395.0 80000851.654990166426\r\n", + "38.999996 935.0 80000851.67317868769\r\n", + "12.32 268.0 80000852.59776712954\r\n", + "11.2 240.0 80000854.87065626681\r\n", + "7.4399996 146.0 80000855.74864292145\r\n", + "14.76 329.0 80000855.829678565264\r\n", + "7.2799997 142.0 80000856.83493223786\r\n", + "21.36 494.0 80000858.589912459254\r\n", + "26.28 617.0 80000859.1553748399\r\n", + "37.44 896.0 80000859.18091611564\r\n", + "5.56 99.0 80000859.44560496509\r\n", + "21.44 496.0 80000859.509354412556\r\n", + "25.28 592.0 80000860.59416265786\r\n", + "24.96 584.0 80000861.303189352155\r\n", + "19.4 445.0 80000861.96652762592\r\n", + "10.92 233.0 80000863.23499922454\r\n", + "20.24 466.0 80000864.197188302875\r\n", + "7.04 136.0 80000865.590956673026\r\n", + "42.319996 1018.0 80000865.72700405121\r\n", + "33.6 800.0 80000866.084478631616\r\n", + "31.8 755.0 80000866.50517678261\r\n", + "32.8 780.0 80000866.850857138634\r\n", + "41.239998 991.0 80000867.7263391763\r\n", + "22.0 510.0 80000868.06848114729\r\n", + "14.4800005 322.0 80000869.2763479501\r\n", + "34.44 821.0 80000870.65760450065\r\n", + "19.72 453.0 80000871.05340576172\r\n", + "23.28 542.0 80000873.14886234701\r\n", + "38.239998 916.0 80000874.297571882606\r\n", + "36.039997 861.0 80000874.73376466334\r\n", + "22.28 517.0 80000879.41517931223\r\n", + "33.999996 810.0 80000881.185400635004\r\n", + "15.6 350.0 80000882.22257082164\r\n", + "21.56 499.0 80000884.97935457528\r\n", + "27.84 656.0 80000885.29664757848\r\n", + "11.72 253.0 80000886.4507638216\r\n", + "37.8 905.0 80000888.94126729667\r\n", + "23.28 542.0 80000889.59991361201\r\n", + "33.079998 787.0 80000890.74508482218\r\n", + "32.719997 778.0 80000893.32567283511\r\n", + "13.32 293.0 80000893.43082770705\r\n", + "35.48 847.0 80000893.56059738994\r\n", + "4.68 77.0 80000894.35489681363\r\n", + "39.64 951.0 80000897.77023650706\r\n", + "23.039999 536.0 80000899.03790041804\r\n", + "14.4 320.0 80000899.37754881382\r\n", + "18.4 420.0 80000900.8128515929\r\n", + "10.84 231.0 80000901.414481043816\r\n", + "20.32 468.0 80000901.48123975098\r\n", + "42.359997 1019.0 80000901.93236474693\r\n", + "25.2 590.0 80000901.972453475\r\n", + "23.64 551.0 80000902.81782488525\r\n", + "38.399998 920.0 80000903.59163464606\r\n", + "30.199999 715.0 80000903.92151616514\r\n", + "13.4800005 297.0 80000904.27971172333\r\n", + "11.76 254.0 80000904.998699590564\r\n", + "16.76 379.0 80000905.63441582024\r\n", + "13.2 290.0 80000905.648124307394\r\n", + "2.04 11.0 80000906.234885290265\r\n", + "12.64 276.0 80000907.07798694074\r\n", + "9.16 189.0 80000908.87027671933\r\n", + "25.52 598.0 80000909.368400886655\r\n", + "4.56 74.0 80000909.811767444015\r\n", + "27.24 641.0 80000910.33445057273\r\n", + "17.199999 390.0 80000910.60975474119\r\n", + "2.16 14.0 80000911.29370170832\r\n", + "34.519997 823.0 80000913.69095006585\r\n", + "12.2 265.0 80000914.1802495867\r\n", + "26.88 632.0 80000914.66017211974\r\n", + "28.199999 665.0 80000916.50571863353\r\n", + "42.399998 1020.0 80000916.718121901155\r\n", + "37.44 896.0 80000919.645673155785\r\n", + "27.6 650.0 80000920.63476088643\r\n", + "18.88 432.0 80000922.45012420416\r\n", + "8.48 172.0 80000925.23763982952\r\n", + "12.28 267.0 80000926.283655911684\r\n", + "28.32 668.0 80000926.6409278512\r\n", + "30.96 734.0 80000928.05741724372\r\n", + "32.079998 762.0 80000933.627166330814\r\n", + "39.44 946.0 80000933.76277536154\r\n", + "30.24 716.0 80000934.16055440903\r\n", + "6.7599998 129.0 80000935.81169986725\r\n", + "24.48 572.0 80000936.16736589372\r\n", + "14.6 325.0 80000936.44196587801\r\n", + "25.68 602.0 80000936.549025550485\r\n", + "11.4800005 247.0 80000938.685712620616\r\n", + "6.2 115.0 80000939.08911083639\r\n", + "36.239998 866.0 80000940.29467050731\r\n", + "27.28 642.0 80000941.77238176763\r\n", + "4.2799997 67.0 80000942.128024578094\r\n", + "12.92 283.0 80000942.38229085505\r\n", + "20.96 484.0 80000944.63000917435\r\n", + "9.64 201.0 80000945.404179006815\r\n", + "14.32 318.0 80000945.718157589436\r\n", + "8.32 168.0 80000945.91892364621\r\n", + "42.28 1017.0 80000948.791864678264\r\n", + "29.32 693.0 80000948.85667587817\r\n", + "2.32 18.0 80000949.93122699857\r\n", + "2.6399999 26.0 80000950.1588781476\r\n", + "8.44 171.0 80000950.502268999815\r\n", + "39.8 955.0 80000951.22832208872\r\n", + "21.08 487.0 80000951.838016077876\r\n", + "20.32 468.0 80000952.52954874933\r\n", + "33.96 809.0 80000952.626723498106\r\n", + "21.68 502.0 80000956.18126910925\r\n", + "33.079998 787.0 80000956.38345962763\r\n", + "23.76 554.0 80000957.466738790274\r\n", + "8.32 168.0 80000959.38979135454\r\n", + "14.28 317.0 80000960.34404800832\r\n", + "29.92 708.0 80000962.452562466264\r\n", + "11.64 251.0 80000964.24332383275\r\n", + "25.6 600.0 80000966.99032564461\r\n", + "28.36 669.0 80000967.36089865863\r\n", + "15.4 345.0 80000968.338882282376\r\n", + "25.48 597.0 80000968.875151097775\r\n", + "16.72 378.0 80000969.143758147955\r\n", + "14.76 329.0 80000971.409240707755\r\n", + "19.6 450.0 80000974.77004908025\r\n", + "28.76 679.0 80000974.80595380068\r\n", + "38.359997 919.0 80000975.64050154388\r\n", + "40.6 975.0 80000975.95903091133\r\n", + "4.2 65.0 80000980.43536031246\r\n", + "3.1599998 39.0 80000980.572394132614\r\n", + "41.679996 1002.0 80000981.61112074554\r\n", + "17.439999 396.0 80000981.74807231128\r\n", + "40.239998 966.0 80000983.25735516846\r\n", + "36.359997 869.0 80000985.01507012546\r\n", + "18.12 413.0 80000985.20637777448\r\n", + "38.28 917.0 80000986.77888666093\r\n", + "40.479996 972.0 80000988.17710210383\r\n", + "29.72 703.0 80000988.92275629938\r\n", + "16.96 384.0 80000990.097374781966\r\n", + "30.8 730.0 80000990.79127365351\r\n", + "21.72 503.0 80000991.06344228983\r\n", + "42.28 1017.0 80000991.80377283692\r\n", + "28.24 666.0 80000993.049590453506\r\n", + "7.04 136.0 80000994.441833391786\r\n", + "36.28 867.0 80000994.527631640434\r\n", + "24.4 570.0 80000995.25695282221\r\n", + "21.76 504.0 80000995.29652753472\r\n", + "11.52 248.0 80000995.99297225475\r\n", + "41.319996 993.0 80000996.40901064873\r\n", + "35.239998 841.0 80000996.557712092996\r\n", + "10.52 223.0 80000997.22821688652\r\n", + "33.96 809.0 80000997.405183792114\r\n", + "11.96 259.0 80000997.93263950944\r\n", + "15.440001 346.0 80000998.813208565116\r\n", + "30.92 733.0 80000999.3882278502\r\n", + "3.96 59.0 80000999.59336720407\r\n", + "18.36 419.0 80001000.09518702328\r\n", + "32.039997 761.0 80001001.49414373934\r\n", + "28.48 672.0 80001002.54425382614\r\n", + "39.8 955.0 80001003.1178855896\r\n", + "18.72 428.0 80001003.56476637721\r\n", + "7.52 148.0 80001005.884933292866\r\n", + "9.68 202.0 80001007.618157073855\r\n", + "3.6799998 52.0 80001009.596397176385\r\n", + "13.56 299.0 80001015.068401411176\r\n", + "40.519997 973.0 80001015.44013249874\r\n", + "24.0 560.0 80001017.39824913442\r\n", + "34.12 813.0 80001017.49642172456\r\n", + "25.88 607.0 80001017.91779854894\r\n", + "7.3199997 143.0 80001017.95813263953\r\n", + "12.84 281.0 80001018.01935687661\r\n", + "6.56 124.0 80001023.587887212634\r\n", + "30.64 726.0 80001023.69297429919\r\n" + ] + }, + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Try the round trip again to verify that everything works\n", + "\n", + "ev.write(\"events.ecsv\", \"ascii.ecsv\")\n", + "ev4 = EventList.read(\"events.ecsv\", \"ascii.ecsv\")\n", + "!cat events.ecsv\n", + "ev4.time[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Transforming a Lightcurve into an EventList." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Event lists can be obtained from light curves, where the standard followed is as follows: as many events are created as the counts in the lightcurve at the time specified by time bins.\n", + "\n", + "To demonstrate this, let us define a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(3)\n", + "counts = np.floor(np.random.rand(3)*5)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0, 1, 2]), array([1., 4., 3.]))" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.time, lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, eventlist can be loaded by calling static `from_lc()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 1, 1, 1, 2, 2, 2])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList.from_lc(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating EventList from Lightcurve" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An arguably better way is having proper random events, reproducing the initial light curve within the errors. Stingray does this by using the inverse CDF method, using the light curve as a binned probability distribution.\n", + "Please note that in this case we will have to create the EventList object before (in technical terms, `simulate_times` is not a static method.). See simulation tutorial for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.60459939, 0.8644437 , 1.47100837, 1.54281243, 1.80725171,\n", + " 2.47032653])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList()\n", + "ev.simulate_times(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve from an EventList object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After simulating event list, the original light curve can be recovered. Let's demonstrate by creating a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1.\n", + "times = np.arange(50)\n", + "counts = np.floor(np.random.rand(50)*50000)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulate an event list." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList()\n", + "ev = ev.from_lc(lc)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.5, 49.5]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recover original light curve curve using `to_lc()` method. Here, `dt` defines time resolution, `tstart` the starting time, and `tseg` the total time duration." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = ev.to_lc(dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us verify that this has worked properly, by comparing the input and output light curves" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYs0lEQVR4nO3dfbBlVXnn8e9PfOuKypsdiqFhGiMzGXwZlA5CtKYIlojaESaliGhgLGLXlDixy0wiJFOFb0zMVEpRY8j0CGUTRGSMBEKBpINgYtWANNIRAR062hTdxUtHoIkjwYDP/HHWlUP3vbdv777nnHvO+X6qbt191t77nLWqT99nP2utvXaqCkmSunjWqCsgSRpfBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwMNIkm2JLkjyaYkG1vZAUk2JLmn/d6/lSfJZ5JsTvKdJK/ue58z2/H3JDmzr/zo9v6b27kZZHskSc80jEzk16rqqKpa1V6fA9xQVUcAN7TXAG8Cjmg/a4ALoRd0gPOA1wDHAOfNBJ52zHv7zjtp8M2RJM0YRXfWycD6tr0eOKWv/JLquRnYL8nBwBuBDVX1cFU9AmwATmr7XlRVN1fvjslL+t5LkjQEzx7w+xfw10kK+J9VtQ44qKrub/sfAA5q24cA9/Wdu7WVzVe+dZbyeb34xS+ulStX7nlLJGlK3Xbbbf9YVctn2zfoIPK6qtqW5BeBDUm+17+zqqoFmIFKsoZeFxmHHXYYGzduHPRHStLESHLvXPsG2p1VVdva74eAK+mNaTzYuqJovx9qh28DDu07fUUrm698xSzls9VjXVWtqqpVy5fPGkwlSR0MLIgk+YUkL5zZBk4EvgtcDczMsDoTuKptXw2c0WZpHQvsaN1e1wMnJtm/DaifCFzf9j2W5Ng2K+uMvveSJA3BILuzDgKubLNunw1cVlVfS3IrcEWSs4B7gVPb8dcCbwY2Az8B3gNQVQ8n+Rhwazvuo1X1cNt+H/AFYBlwXfuRJA1Jpm0p+FWrVpVjIpK0cElu67tN4xm8Y12S1JlBRJLUmUFEktTZoO8TUUfrLng3l225ZtZ9p69czZq1lw65RpK0KzORJeqyLdewadmOXco3LdsxZ3CRpGEzE1nCjnp8X2664NFnlB2/dr+R1EWSZmMmIknqzEykA8crJKnHINLBzHjFUY/v+4zyTct2wJZreis9Supsvgs18GJtKTGIdOR4hTQ4c12ogRdrS41BRHvN7j0NwmwXauDF2kLt/P/yqGWHc8Ef3r7on2MQ0V6ze09dzXUBMlcWooWbL5tbTAYRLQq799TFXH/ojnp8X05fuXpEtZocc2Vzi8kgImmkhvGHToPjfSKSpM4MIpKkzuzOmhDOkJI0CgaRCeEMKc3wgkLDZBCZIM6QGq6lele1FxQaJoOI1NFSvqvaCwoNi0FE2gveVa1p5+wsSVJnBhFJUmd2Zw3BUh2A1fia7zvlulMaJjORIZjreengM9PVzXzfKded0jCZiQyJA7BabK45paXAICJp7GxatmPWCzC7hofP7ixJY+X0lavnvDfHruHhMxORNFbWrL101ps47RoeDTMRSVJnBhFJUmcGEUlSZwYRSVJnAx9YT7IPsBHYVlWrkxwOXA4cCNwG/GZV/TTJ84BLgKOBHwHvqKot7T3OBc4CngJ+u6qub+UnAZ8G9gE+X1WfGHR7JGkpmWv1gmGtXDCMTOQDwN19r/8I+FRVvRR4hF5woP1+pJV/qh1HkiOB04CXAScBf5pknxacPge8CTgSeGc7VpKmxlyrFwxr5YKBZiJJVgBvAc4HPpgkwAnA6e2Q9cCHgQuBk9s2wFeAP2nHnwxcXlVPAD9Mshk4ph23uap+0D7r8nbsXYNskyQtNaNcvWDQmcgFwO8BP2uvDwQeraon2+utwCFt+xDgPoC2f0c7/uflO50zV7kkaUgGFkSSrAYeqqrbBvUZe1CXNUk2Jtm4ffv2UVdHkibGIDOR1wJvTbKF3kD6CfQGwfdLMtONtgLY1ra3AYcCtP370htg/3n5TufMVb6LqlpXVauqatXy5cv3vmWSJGCAQaSqzq2qFVW1kt7A+Ner6l3AjcDb2mFnAle17avba9r+r1dVtfLTkjyvzew6AvgWcCtwRJLDkzy3fcbVg2qPJGlXo1g760PA5Uk+DtwOXNTKLwL+vA2cP0wvKFBVdya5gt6A+ZPA2VX1FECS9wPX05vie3FV3TnUlkjSlBtKEKmqm4Cb2vYPeHp2Vf8x/wy8fY7zz6c3w2vn8muBaxexqpKkPeAd65KkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzkaxdpb20qZlOzh+7X67lA3jUZgab7N9dwBOX7maNWsvHX6FNPbMRMbM6StXzxoshvUoTI2vub47m5btmPUZ3dJCmImMmTVrL2XNqCuhsTTXd2e2zERaKDMRSVJnBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwYRSVJn3iciSX3WXfDueW++9O7+ZzITkaQ+l225hk3Ldsy6z7v7d2UmImng5rq6X6prvh31+L7cdMGju5R7d/+uzEQkDdxcV/eu+Tb+zEQkDcVcV/cab2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTOvE9EkvbSfOttTfpaWwPLRJI8P8m3kvx9kjuTfKSVH57kliSbk3w5yXNb+fPa681t/8q+9zq3lX8/yRv7yk9qZZuTnDOotkjSfOa6I38a1toaZCbyBHBCVf04yXOAbya5Dvgg8KmqujzJnwFnARe2349U1UuTnAb8EfCOJEcCpwEvA/4V8DdJ/k37jM8BbwC2Arcmubqq7hpgmyRpVrPdkT8Na20NLBOpnh+3l89pPwWcAHylla8HTmnbJ7fXtP2vT5JWfnlVPVFVPwQ2A8e0n81V9YOq+ilweTtWkjQkAx1YT7JPkk3AQ8AG4B+AR6vqyXbIVuCQtn0IcB9A278DOLC/fKdz5iqfrR5rkmxMsnH79u2L0DJJEgw4iFTVU1V1FLCCXubwy4P8vHnqsa6qVlXVquXLl4+iCpI0kYYyxbeqHgVuBI4D9ksyMxazAtjWtrcBhwK0/fsCP+ov3+mcucolSUMyyNlZy5Ps17aX0RsAv5teMHlbO+xM4Kq2fXV7Tdv/9aqqVn5am711OHAE8C3gVuCINtvrufQG368eVHskSbsa5Oysg4H1SfahF6yuqKprktwFXJ7k48DtwEXt+IuAP0+yGXiYXlCgqu5McgVwF/AkcHZVPQWQ5P3A9cA+wMVVdecA2yNJ2snAgkhVfQd41SzlP6A3PrJz+T8Db5/jvc4Hzp+l/Frg2r2urCSpE5c9kSR1ZhCRJHXm2llSM83rH0ldmYlIzTSvfyR1tceZSJL9gUPbwLk0dubKODYt2zG16x9JXS0oE0lyU5IXJTkA+Dbwv5J8crBVkwZjrozjqMf35fSVq0dQI2l8LTQT2beqHkvyW8AlVXVeEjMRja3ZMg5Je26hYyLPTnIwcCpg57AkCVh4JvIReneGf7Oqbk3yEuCewVVLeiZnTo2H3Y03afIsNBO5v6peWVXvg5/fde6YiIbGmVPjwfGm6bPQTOSzwKsXUCYNjDOnxoPjTdNl3iCS5DjgV4HlST7Yt+tF9BY9lCRNsd1lIs8FXtCOe2Ff+WM8vZy7JGlKzRtEquobwDeSfKGq7h1SnSRJY2KhYyLPS7IOWNl/TlWdMIhKSZLGw0KDyP8G/gz4PPDU4KojaalwWrUWYqFB5MmqunCgNZG0pMxM1935/o5Ny3bAlmtYM6J67SmD4WAtNIj8VZL3AVcCT8wUVtXDA6mVpCVhEqZVT0owXKoWGkTObL9/t6+sgJcsbnU07bzjWYMwCcFwqVpQEKmqwwddEQnmvmr0jmdpaVpQEElyxmzlVXXJ4lZHWpw7nufrBzerkRbPQruzfqVv+/nA6+k9V8QgoiVprowGzGqkxbTQ7qz/0v86yX7A5YOokLRYXMNJGryuz1j/f4DjJJI05RY6JvJX9GZjQW/hxX8HXDGoSkmSxsNCx0T+uG/7SeDeqto6gPpIksbIgrqz2kKM36O3ku/+wE8HWSlJ0nhYUBBJcirwLeDt9J6zfksSl4KXpCm30O6sPwB+paoeAkiyHPgb4CuDqti42rRsxy53wu7uvoQu52jpm+3fFVyvSZNlobOznjUTQJof7cG5U+P0lav3+L6ELudo6Zvr39VnwmvSLDQT+VqS64EvtdfvAK4dTJXG15q1l+7xYm5dztlTc10Rg1fFgzLXv6vrNWnS7O4Z6y8FDqqq303yG8Dr2q7/A3xx0JXT3jt95WqYZ/kPVzGVtDd2l4lcAJwLUFVfBb4KkOQVbd+vz3VikkPpLYtyEL17TNZV1aeTHAB8md5TErcAp1bVI0kCfBp4M/AT4D9V1bfbe50J/Lf21h+vqvWt/GjgC8AyepnRB6pq5n4WMX+mMylXxZMwpuQzLzSudjeucVBV3bFzYStbuZtznwR+p6qOBI4Fzk5yJHAOcENVHQHc0F4DvAk4ov2sAS4EaEHnPOA1wDHAeUn2b+dcCLy377yTdlMnTZhJGVOaWetrZ46haKnbXSay3zz7ls13YlXdD9zftv8pyd3AIcDJwPHtsPXATcCHWvklLZO4Ocl+SQ5ux26YeQBWkg3ASUluAl5UVTe38kuAU4DrdtMmTZBhjCkNyzg982KucbZxywC193aXiWxM8t6dC5P8FnDbQj8kyUrgVcAt9LKb+9uuB+h1d0EvwNzXd9rWVjZf+dZZyiUN0FzZH4xfBqi9t7tMZC1wZZJ38XTQWAU8F/iPC/mAJC8A/gJYW1WP9YY+eqqqkgx8DCPJGnpdZBx22GGD/jj1cWbY5Jmk7E97b95MpKoerKpfBT5CbxB8C/CRqjquqh7Y3ZsneQ69APLFNjAP8GDrpqL9nrn/ZBtwaN/pK1rZfOUrZimfrR3rqmpVVa1avnz57qqtRTLfFat9/dJkWOjzRG4EbtyTN26zrS4C7q6qT/btupreM9s/0X5f1Vf+/iSX0xtE31FV97f7U/5732D6icC5VfVwkseSHEuvm+wM4LN7UkcN1jTMDJOm3UJvNuzitcBvAnck2dTKfp9e8LgiyVnAvfTW4oLeFN03A5vpTfF9D0ALFh8Dbm3HfXRmkB14H09P8b0OB9UlaagGFkSq6ptA5tj9+lmOL+DsOd7rYuDiWco3Ai/fi2pKkvaC619JkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6G+SyJ9K8JuGJhNK0MxPRSEzKEwmlaWcmopHwmRTSZDATkSR1ZiYy5eZ68qBPHZS0EGYiU2yucQmfOihpocxEpthc4xI+dVDSQpmJSJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI68z4RLdi6C949602IrryrpcKVoYfPTEQLdtmWa9i0bMcu5a68q6XAlaFHw0xEe+Sox/flpgseHXU1hs4r3KXPlaFHw0xE2g2vcKW5mYlIu+EVrjQ3MxFJUmcGEUlSZwYRSVJnBhFJUmcOrC/Q2nNfxabHfwg4tVOSZgwsE0lycZKHkny3r+yAJBuS3NN+79/Kk+QzSTYn+U6SV/edc2Y7/p4kZ/aVH53kjnbOZ5JkUG3ZmVM7JalnkJnIF4A/AS7pKzsHuKGqPpHknPb6Q8CbgCPaz2uAC4HXJDkAOA9YBRRwW5Krq+qRdsx7gVuAa4GTgOsG1ZgL/vD2Qb21JI2tgWUiVfW3wMM7FZ8MrG/b64FT+sovqZ6bgf2SHAy8EdhQVQ+3wLEBOKnte1FV3VxVRS9QnYIkaaiGPSZyUFXd37YfAA5q24cA9/Udt7WVzVe+dZZySVry5lrMFHorJKxZe+mQa9TdyGZntQyihvFZSdYk2Zhk4/bt24fxkZI0p7kWM920bMecwWWpGnYm8mCSg6vq/tYl9VAr3wYc2nfcila2DTh+p/KbWvmKWY6fVVWtA9YBrFq1aiiBS5LmM9tipjsv8jkOhp2JXA3MzLA6E7iqr/yMNkvrWGBH6/a6Hjgxyf5tJteJwPVt32NJjm2zss7oey9J0pAMLBNJ8iV6WcSLk2ylN8vqE8AVSc4C7gVObYdfC7wZ2Az8BHgPQFU9nORjwK3tuI9W1cxg/fvozQBbRm9W1sBmZkmSZjewIFJV75xj1+tnObaAs+d4n4uBi2cp3wi8fG/qKEnaOy57IknqzCAiSerMICJJ6swFGCVpDMx1g+KoF4Q1iEjSHti0bMcu93MM4w/5zA2KO3/OqBeENYhI0gKdvnI1zJINDOsP+Ww3KI6aQUSSFmjN2ktZM+pKLDEOrEuSOjMTkYZsVH3qGg+zfT9mypfid8RMRBqi01eunvUPwagHR7U0zPX9gKX7HTETkYbIPnXNZxy/H2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzrxjXZLreakzg4g05Ub9jIxRMnjuPYOINOXGcb2mxTDNwXMxGUQkTaVpDZ6LzSAiLXF2uWgpc3aWtIT5/BEtdWYi0hJml4uWOjMRSVJnBhFJUmd2Z0nSAE36xAgzEUkakGmYGGEmIkkDMg0TI8xEJEmdjX0QSXJSku8n2ZzknFHXR5KmyVh3ZyXZB/gc8AZgK3Brkqur6q7R1mz8TfpgoKTFMe6ZyDHA5qr6QVX9FLgcOHnEdRp70zAYKGlxjHUmAhwC3Nf3eivwmhHVZWJMw2CgpMUx7pnIgiRZk2Rjko3bt28fdXUkaWKMexDZBhza93pFK3uGqlpXVauqatXy5cuHVjlJmnTjHkRuBY5IcniS5wKnAVePuE6SNDXGekykqp5M8n7gemAf4OKqunPE1ZKkqTHWQQSgqq4Frh11PSRpGo17d5YkaYQMIpKkzgwikqTOUlWjrsNQJdkO3Nvx9BcD/7iI1RkXtnu62O7pspB2/+uqmvX+iKkLInsjycaqWjXqegyb7Z4utnu67G277c6SJHVmEJEkdWYQ2TPrRl2BEbHd08V2T5e9ardjIpKkzsxEJEmdGUQWYJoewZvk4iQPJfluX9kBSTYkuaf93n+UdVxsSQ5NcmOSu5LcmeQDrXyi2w2Q5PlJvpXk71vbP9LKD09yS/vOf7ktcDpRkuyT5PYk17TXE99mgCRbktyRZFOSja2s83fdILIbfY/gfRNwJPDOJEeOtlYD9QXgpJ3KzgFuqKojgBva60nyJPA7VXUkcCxwdvs3nvR2AzwBnFBV/x44CjgpybHAHwGfqqqXAo8AZ42uigPzAeDuvtfT0OYZv1ZVR/VN7e38XTeI7N5UPYK3qv4WeHin4pOB9W17PXDKMOs0aFV1f1V9u23/E70/LIcw4e0GqJ4ft5fPaT8FnAB8pZVPXNuTrADeAny+vQ4T3ubd6PxdN4js3myP4D1kRHUZlYOq6v62/QBw0CgrM0hJVgKvAm5hStrdunU2AQ8BG4B/AB6tqifbIZP4nb8A+D3gZ+31gUx+m2cU8NdJbksy8yTszt/1sV8KXsNVVZVkIqf0JXkB8BfA2qp6rHdx2jPJ7a6qp4CjkuwHXAn88mhrNFhJVgMPVdVtSY4fcXVG4XVVtS3JLwIbknyvf+eeftfNRHZvQY/gnXAPJjkYoP1+aMT1WXRJnkMvgHyxqr7aiie+3f2q6lHgRuA4YL8kMxeZk/adfy3w1iRb6HVPnwB8mslu889V1bb2+yF6Fw3HsBffdYPI7vkI3l57z2zbZwJXjbAui671h18E3F1Vn+zbNdHtBkiyvGUgJFkGvIHemNCNwNvaYRPV9qo6t6pWVNVKev+fv15V72KC2zwjyS8keeHMNnAi8F324rvuzYYLkOTN9PpQZx7Be/5oazQ4Sb4EHE9vZc8HgfOAvwSuAA6jtwLyqVW18+D72EryOuDvgDt4uo/89+mNi0xsuwGSvJLeQOo+9C4qr6iqjyZ5Cb2r9AOA24F3V9UTo6vpYLTurP9aVaunoc2tjVe2l88GLquq85McSMfvukFEktSZ3VmSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwi0iJKcmBbHXVTkgeSbGvbP07yp6Oun7TYnOIrDUiSDwM/rqo/HnVdpEExE5GGIMnxfc+t+HCS9Un+Lsm9SX4jyf9oz3j4WluChSRHJ/lGWyjv+r5lKX67PfvkO0kuH2W7JIOINBq/RG/NprcClwI3VtUrgMeBt7RA8lngbVV1NHAxMLNSwjnAq6rqlcB/HnrNpT6u4iuNxnVV9S9J7qC35MjXWvkdwErg3wIvp7fKKu2YmaW6vwN8Mclf0luSRhoZg4g0Gk8AVNXPkvxLPT04+TN6/y8D3FlVx81y7luA/wD8OvAHSV7R9xwMaajszpKWpu8Dy5McB72l6pO8LMmzgEOr6kbgQ8C+wAtGWE9NOTMRaQmqqp8meRvwmST70vu/egHwf4FLW1mAz7TngEgj4RRfSVJndmdJkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOvv/L9ch5gJVw5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts,'r-', lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "... and their difference" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR20lEQVR4nO3df7BcZX3H8ffHRNAW5WdEJKRBYWqjWBxXEKUdRMBQxVBKLWjH/IHNdCqt1GqNZaYg6ow6VqiKdlJgjD+BUtGoFRr5YZ0ORW6QiqiYiDIk5ZeAWmoLRr79Y09kvd4kN8/N3s299/2aubPnec6zu99nsjefe86zezZVhSRJO+oJoy5AkjQzGSCSpCYGiCSpiQEiSWpigEiSmswfdQHTab/99qvFixePugxJmlHWrVv3w6paML5/TgXI4sWLGRsbG3UZkjSjJLlzon5PYUmSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmow0QJIsTXJ7kg1JVk6wf/ckl3X7b0yyeNz+RUkeTvLmaStakgSMMECSzAMuBE4ElgCnJ1kybtgZwENVdQhwPvCecfvfD3xp2LVKkn7VKI9AjgA2VNUdVfUocCmwbNyYZcDqbvsK4GVJApDkZOD7wG3TU64kadAoA+RA4K6B9saub8IxVbUZ+DGwb5I9gLcCb9/ekyRZkWQsydj999+/UwqXJM3cRfRzgfOr6uHtDayqVVXVq6reggULhl+ZJM0R80f43JuAgwbaC7u+icZsTDIf2BN4ADgSODXJe4G9gMeS/F9VfWjoVUuSgNEGyE3AoUkOph8UpwGvGTdmDbAcuAE4Fbi2qgr4nS0DkpwLPGx4SNL0GlmAVNXmJGcCVwPzgEuq6rYk5wFjVbUGuBj4eJINwIP0Q0aStAtI/w/6uaHX69XY2Nioy5CkGSXJuqrqje+fqYvokqQRM0AkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNRhogSZYmuT3JhiQrJ9i/e5LLuv03Jlnc9R+fZF2SW7vbY6e9eEma40YWIEnmARcCJwJLgNOTLBk37Azgoao6BDgfeE/X/0PgpKo6DFgOfHx6qpYkbTHKI5AjgA1VdUdVPQpcCiwbN2YZsLrbvgJ4WZJU1der6r+6/tuAJyfZfVqqliQBow2QA4G7Btobu74Jx1TVZuDHwL7jxvwBcHNVPTKkOiVJE5g/6gKmIslz6J/WOmEbY1YAKwAWLVo0TZVJ0uw3yiOQTcBBA+2FXd+EY5LMB/YEHujaC4ErgddV1fe29iRVtaqqelXVW7BgwU4sX5LmtlEGyE3AoUkOTrIbcBqwZtyYNfQXyQFOBa6tqkqyF/BFYGVV/ft0FSxJetzIAqRb0zgTuBr4NnB5Vd2W5Lwkr+qGXQzsm2QD8CZgy1t9zwQOAf42yS3dz9OmeQqSNKelqkZdw7Tp9Xo1NjY26jIkaUZJsq6qeuP7/SS6JKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmuxwgCTZO8nzhlGMJGnmmFSAJLk+yVOT7APcDPxjkvcPtzRJ0q5sskcge1bVT4BTgI9V1ZHAccMrS5K0q5tsgMxPcgDwauALQ6xHkjRDTDZA3g5cDWyoqpuSPBNYP7yyJEm7uvmTHHd3Vf1i4byq7nANRJLmtskegXxwkn2SpDlim0cgSY4CXgwsSPKmgV1PBeYNszBJ0q5te6ewdgP26MY9ZaD/J8CpwypKkrTr22aAVNVXgK8k+WhV3TlNNUmSZoDJLqLvnmQVsHjwPlV17DCKkiTt+iYbIP8E/ANwEfDz4ZUjSZopJvsurM1V9ZGq+lpVrdvyM9UnT7I0ye1JNiRZOcH+3ZNc1u2/McnigX1v6/pvT/LyqdYiSdoxkw2Qzyf5syQHJNlny89UnjjJPOBC4ERgCXB6kiXjhp0BPFRVhwDnA+/p7rsEOA14DrAU+HD3eJKkaTLZU1jLu9u3DPQV8MwpPPcR9D/ZfgdAkkuBZcC3BsYsA87ttq8APpQkXf+lVfUI8P0kG7rHu2EK9WzVWVedxS333DKMh5akoTv86YdzwdILdvrjTipAqurgnf7McCBw10B7I3Dk1sZU1eYkPwb27fr/Y9x9D5zoSZKsAFYALFq0aKcULkmaZIAked1E/VX1sZ1bzs5XVauAVQC9Xq9aHmMYyS1JM91kT2G9cGD7ScDL6H8vyFQCZBNw0EB7Ydc30ZiNSeYDewIPTPK+kqQhmuwprD8fbCfZC7h0is99E3BokoPp/+d/GvCacWPW0F9/uYH+J9+vrapKsgb4VHdBx2cAhwJfm2I9kqQdMNkjkPH+B5jSuki3pnEm/cvEzwMuqarbkpwHjFXVGuBi4OPdIvmD9EOGbtzl9BfcNwNvqCo/nyJJ0yhV218WSPJ5+u+6gv5/9r8FXF5Vv/LZjV1Zr9ersbGxUZchSTNKknVV1RvfP9kjkPcNbG8G7qyqjTulMknSjDSpDxJ2F1X8Dv0r8u4NPDrMoiRJu75JBUiSV9NfpP5D+t+LfmMSL+cuSXPYZE9hnQ28sKruA0iyAPgy/U+HS5LmoMleC+sJW8Kj88AO3FeSNAtN9gjkqiRXA5/u2n8E/MtwSpIkzQTb+070Q4D9q+otSU4Bju523QB8ctjFSZJ2Xds7ArkAeBtAVX0G+AxAksO6fScNsTZJ0i5se+sY+1fVreM7u77FQ6lIkjQjbC9A9trGvifvxDokSTPM9gJkLMmfjO9M8npgyl9pK0mauba3BnIWcGWS1/J4YPSA3YDfH2JdkqRd3DYDpKruBV6c5KXAc7vuL1bVtUOvTJK0S5vs94FcB1w35FokSTOInyaXJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1GQkAZJknyRrk6zvbvfeyrjl3Zj1SZZ3fb+W5ItJvpPktiTvnt7qJUkwuiOQlcA1VXUocE3X/iVJ9gHOAY4EjgDOGQia91XVs4HnAy9JcuL0lC1J2mJUAbIMWN1trwZOnmDMy4G1VfVgVT0ErAWWVtVPu6/YpaoeBW4GFg6/ZEnSoFEFyP5VdXe3fQ+w/wRjDgTuGmhv7Pp+IclewEn0j2IkSdNo/rAeOMmXgadPsOvswUZVVZJqePz5wKeBD1TVHdsYtwJYAbBo0aIdfRpJ0lYMLUCq6rit7Utyb5IDquruJAcA900wbBNwzEB7IXD9QHsVsL6qLthOHau6sfR6vR0OKknSxEZ1CmsNsLzbXg58boIxVwMnJNm7Wzw/oesjyTuBPYGzhl+qJGkiowqQdwPHJ1kPHNe1SdJLchFAVT0IvAO4qfs5r6oeTLKQ/mmwJcDNSW5J8vpRTEKS5rJUzZ2zOr1er8bGxkZdhiTNKEnWVVVvfL+fRJckNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVKTkQRIkn2SrE2yvrvdeyvjlndj1idZPsH+NUm+OfyKJUnjjeoIZCVwTVUdClzTtX9Jkn2Ac4AjgSOAcwaDJskpwMPTU64kabxRBcgyYHW3vRo4eYIxLwfWVtWDVfUQsBZYCpBkD+BNwDuHX6okaSKjCpD9q+rubvseYP8JxhwI3DXQ3tj1AbwD+Dvgp9t7oiQrkowlGbv//vunULIkadD8YT1wki8DT59g19mDjaqqJLUDj3s48Kyq+sski7c3vqpWAasAer3epJ9HkrRtQwuQqjpua/uS3JvkgKq6O8kBwH0TDNsEHDPQXghcDxwF9JL8gH79T0tyfVUdgyRp2ozqFNYaYMu7qpYDn5tgzNXACUn27hbPTwCurqqPVNUzqmoxcDTwXcNDkqbfqALk3cDxSdYDx3VtkvSSXARQVQ/SX+u4qfs5r+uTJO0CUjV3lgV6vV6NjY2NugxJmlGSrKuq3vh+P4kuSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpSapq1DVMmyT3A3c23n0/4Ic7sZyZwnnPLc57bpnsvH+jqhaM75xTATIVScaqqjfqOqab855bnPfcMtV5ewpLktTEAJEkNTFAJm/VqAsYEec9tzjvuWVK83YNRJLUxCMQSVITA0SS1MQA2Y4kS5PcnmRDkpWjrmeYklyS5L4k3xzo2yfJ2iTru9u9R1njMCQ5KMl1Sb6V5LYkb+z6Z/XckzwpydeS/Gc377d3/QcnubF7zV+WZLdR1zoMSeYl+XqSL3TtWT/vJD9IcmuSW5KMdX3Nr3MDZBuSzAMuBE4ElgCnJ1ky2qqG6qPA0nF9K4FrqupQ4JquPdtsBv6qqpYALwLe0P07z/a5PwIcW1W/DRwOLE3yIuA9wPlVdQjwEHDG6EocqjcC3x5oz5V5v7SqDh/4/Efz69wA2bYjgA1VdUdVPQpcCiwbcU1DU1X/Bjw4rnsZsLrbXg2cPJ01TYequruqbu62/5v+fyoHMsvnXn0Pd80ndj8FHAtc0fXPunkDJFkIvAK4qGuHOTDvrWh+nRsg23YgcNdAe2PXN5fsX1V3d9v3APuPsphhS7IYeD5wI3Ng7t1pnFuA+4C1wPeAH1XV5m7IbH3NXwD8NfBY196XuTHvAv41ybokK7q+5tf5/J1dnWavqqoks/Z930n2AP4ZOKuqftL/o7Rvts69qn4OHJ5kL+BK4NmjrWj4krwSuK+q1iU5ZsTlTLejq2pTkqcBa5N8Z3Dnjr7OPQLZtk3AQQPthV3fXHJvkgMAutv7RlzPUCR5Iv3w+GRVfabrnhNzB6iqHwHXAUcBeyXZ8sflbHzNvwR4VZIf0D8tfSzw98z+eVNVm7rb++j/wXAEU3idGyDbdhNwaPfujN2A04A1I65puq0Blnfby4HPjbCWoejOf18MfLuq3j+wa1bPPcmC7siDJE8Gjqe//nMdcGo3bNbNu6reVlULq2ox/d/pa6vqtczyeSf59SRP2bINnAB8kym8zv0k+nYk+T3650vnAZdU1btGW9HwJPk0cAz9SzzfC5wDfBa4HFhE/1L4r66q8QvtM1qSo4GvArfy+Dnxv6G/DjJr557kefQXTefR/2Py8qo6L8kz6f9lvg/wdeCPq+qR0VU6PN0prDdX1Stn+7y7+V3ZNecDn6qqdyXZl8bXuQEiSWriKSxJUhMDRJLUxACRJDUxQCRJTQwQSVITA0TaSZLs213l9JYk9yTZ1G0/nOTDo65P2tl8G680BEnOBR6uqveNuhZpWDwCkYYsyTED3zlxbpLVSb6a5M4kpyR5b/cdDVd1l1QhyQuSfKW76N3VA5ea+Ivue0u+keTSUc5LMkCk6fcs+tdfehXwCeC6qjoM+F/gFV2IfBA4tapeAFwCbLkCwkrg+VX1POBPp71yaYBX45Wm35eq6mdJbqV/GZGruv5bgcXAbwLPpX+1VLoxWy63/Q3gk0k+S/8yM9LIGCDS9HsEoKoeS/Kzenwh8jH6v5MBbquqoya47yuA3wVOAs5OctjAd1hI08pTWNKu53ZgQZKjoH+p+STPSfIE4KCqug54K7AnsMcI69Qc5xGItIupqkeTnAp8IMme9H9PLwC+C3yi6wvwge57PKSR8G28kqQmnsKSJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSk/8HiGXKaLOVk7kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts - lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen from the figure above, the recovered light curve is aligned with the original light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Energies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to simulate photon energies, a spectral distribution needs to be passed.\n", + "The `spectrum` input is a two-dimensional array, with the energies in keV in the first dimension and the number of counts in the second. The count array will be normalized before the simulation: the raw counts do not matter, but only the ratio of the counts in each bin to the total.\n", + "Again, the energies are simulated using an inverse CDF method." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[1000, 2040, 1000, 3000, 4020, 2070]]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList(time=np.sort(np.random.uniform(0, 1000, 12)))\n", + "ev.simulate_energies(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.84164641, 3.62741142, 3.68169619, 4.70867585, 4.92065534,\n", + " 4.93644725, 2.26749277, 5.45959615, 3.01137686, 4.86366818,\n", + " 0.63048041, 6.26300006])" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Joining EventLists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two event lists can also be joined together. If the GTI do not overlap, the event times and GTIs are appended. Otherwise, the GTIs are crossed (i.e., only the overlapping parts are saved) and the events merged together." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1, 2, 3, 4, 5]), array([[0.5, 5.5]]))" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[4,5], gti=[[3.5, 5.5]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1. , 1.2, 2. , 3. , 3.3, 5.6]), array([[0.6, 3.5]]))" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[1.2, 3.3, 5.6], gti=[[0.6, 7.8]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb.txt b/_sources/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb.txt new file mode 100644 index 000000000..fb3c8ab12 --- /dev/null +++ b/_sources/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb.txt @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline \n", + "import matplotlib as mpl\n", + "import seaborn\n", + "mpl.rcParams['figure.figsize']=(15.0,8.0) \n", + "mpl.rcParams['font.size']=12 #10 \n", + "mpl.rcParams['savefig.dpi']=100 #72 \n", + "from matplotlib import pyplot as plt\n", + "\n", + "import stingray as sr\n", + "\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum, Crossspectrum, AveragedCrossspectrum\n", + "from stingray import events\n", + "from stingray.events import EventList\n", + "import glob\n", + "import numpy as np\n", + "from astropy.modeling import models, fitting\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# R.m.s. - intensity diagram\n", + "\n", + "This diagram is used to characterize the variability of black hole binaries and AGN (see e.g. Plant et al., arXiv:1404.7498; McHardy 2010 2010LNP...794..203M for a review).\n", + "\n", + "In Stingray it is very easy to calculate.\n", + "\n", + "## Setup: simulate a light curve with a variable rms and rate\n", + "We simulate a light curve with powerlaw variability, and then we rescale\n", + "it so that it has increasing flux and r.m.s. variability." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.simulator import Simulator\n", + "from scipy.ndimage.filters import gaussian_filter1d\n", + "from stingray.utils import baseline_als\n", + "from scipy.interpolate import interp1d\n", + "\n", + "\n", + "np.random.seed(1034232)\n", + "# Simulate a light curve with increasing variability and flux\n", + "length = 10000\n", + "dt = 0.1\n", + "times = np.arange(0, length, dt)\n", + "\n", + "# Create a light curve with powerlaw variability (index 1), \n", + "# and smooth it to eliminate some Gaussian noise. We will simulate proper\n", + "# noise with the `np.random.poisson` function.\n", + "# Both should not be used together, because they alter the noise properties.\n", + "sim = Simulator(dt=dt, N=int(length/dt), mean=50, rms=0.4)\n", + "counts_cont = sim.simulate(1).counts\n", + "counts_cont_init = gaussian_filter1d(counts_cont, 200)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[52.83292539 52.83104461 52.82542772 ... 64.26625716 64.25516327\n", + " 64.24864925]\n" + ] + } + ], + "source": [ + "# ---------------------\n", + "# Renormalize so that the light curve has increasing flux and r.m.s. \n", + "# variability.\n", + "# ---------------------\n", + "\n", + "\n", + "# The baseline function cannot be used with too large arrays. \n", + "# Since it's just an approximation, we will just use one every\n", + "# ten array elements to calculate the baseline\n", + "mask = np.zeros_like(times, dtype=bool)\n", + "mask[::10] = True\n", + "print (counts_cont_init[mask])\n", + "\n", + "baseline = baseline_als(times[mask], counts_cont_init[mask], 1e10, 0.001)\n", + "base_func = interp1d(times[mask], baseline, bounds_error=False, fill_value='extrapolate')\n", + "\n", + "counts_cont = counts_cont_init - base_func(times)\n", + "\n", + "counts_cont -= np.min(counts_cont)\n", + "counts_cont += 1\n", + "counts_cont *= times * 0.003\n", + "# counts_cont += 500\n", + "counts_cont += 500\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8HNW1x7+zTb1XS5Ys2bLHvWAbAzZgCD3UhJZHSEJ/hJaEkNBCNS2hQwKBUMILIS8BXgKEGqqNccO9jWVbzeqSZXVtm3l/jCRLturuzDbd7+fDh907M/eesXbP3rn3nN+RNE1DIBAIBJGBJdgGCAQCgcA4hFMXCASCCEI4dYFAIIgghFMXCASCCEI4dYFAIIggbMEcvL6+1efQm5SUWJqaOow0J+QR9zw2EPc8NvDnnjMyEqTBjoXtTN1mswbbhIAj7nlsIO55bGDWPYetUxcIBALB4QinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBAFkTc161tdtNq3/oGaUhip79+7hueeepquri87OTo4+ejGXX341kjRoEteAfPnl58yYMRNJknjllT/xy1/eapLFw/PSS38kLS2NGTNmsWLFV1x22VUDnvf+++9SVlbKtdfe0K9948b1xMcnUFQ0ORDmCgQRy5+3/w2AU2csNqV/MVM/hNbWVu6553ZuvPFmnnnmj/zxj6+wZ89u/vWvt0bd1z/+8Qbt7e2kpaUH1aH3ZfJkeVCHPhT//vc7NDTUm2CRQDB2aHa2mD5GSM/U//7ZbtburBvwmNUq4fWOXjpm4dRMLjyxaNDjK1Z8yRFHLCQvL797HCt33nkvdrsdgGeeeYLNmzcCcPLJp3HhhT/ggQfuwW63U1NTTWNjA7fffg+NjQ3s3r2LZcvu4je/uZ9ly+7mhRde5cc/vpi5c49gz57dADz88OPs2rWTf/3rLe699yEAzj77VN555yOqq6t46KH78Hq9SJLEvffeTVpabu9xgLvvvo1zzvk+6ekZPPTQvVitNlRV5e67l5GVlX3Y/a1fv653rPfe+ydvvfV3EhOTsNnsfOc7JwOwbdsWfv7z6zhwoIlzzz0fWZ7G6tXfsGvXTgoKJpKdrferaRpPPPFbduzYhtvt4YorriYuLn7Ae3nggXtobm6mpaWZ/PwJzJs3n9NPP5PGxgZuueVnvPzyX3j++WfZtGkDqqpy0UWXcOKJJ4367ysQhDJK027TxxAz9UNoaKgnJye3X1tsbCx2u52vv15OdXUVL7zwKs899xKffPJhr3POzh7H448/y/e/fxHvvPM2xxyzhKKiKdx55329PwgA7e3tnHTSqTz77AtkZGSyatXXg9ry+98/yQUXXMzvf/8iN910M7fffvug565du5pp02bw5JN/4IorrqG9vW3I+zxw4AB/+ctrPPfcyzz++LN0dXX2HrPZbDz++LM8+OCj/OMfbzB16jQWLTqaa6+9sdehA3z11Rc0Nx/gxRdf4+mnn2fnzh1Djjl//gKef/5lfvCDS/ngg/cA+Oij9/nud8/im2++prq6kueee4mnn36e1157mdbW1iH7EwjCjQ5P5/An+UlIz9QvPLFo0Fl1RkYC9fXGf+mzssaxa9fOfm1VVZXU1dVSVlbCnDlzkSQJm83GjBmzKC3dC+jLGgCZmVls2bJpyDGmTDl4rsvlOux4T93Y0tJS5sw5orf/mpqaAc7V/3/mmefw+ut/5uabbyAuLp5rrrluSBv27augsLCQ6OhoAGbOnN3HvqlIkkRqahpdXV2D9lFeXsaMGfp1iYmJXHXVtaxfv27AewHIz58AQGHhRLxeLzU11Xz66Sc8+eQfeOedt1GUnVx//dUAeDweamqqmDgxZ8j7EAjChQ53J//Y9S/TxxEz9UNYvHgJq1evpLJyH6A7l2eeeYK9e/cwYUJh79KLx+Nh69bNjB+vL9MMtIlqsVhQVXWAUfqf63BE0djYCEBNTTUtLc0AFBQUsHnzBgCKixXS09N7x+7o6MDtdlNSsgfQl43mzJnHU089xwknfIfXX//zkPc5fnweZWWlOJ1dqKrKjh3bDlo3wL1IkoSm9b+XgoICdu7cDkBbWxu/+MX1g96L3sfBj9uZZ57DH/7wNAUFhSQkJDBhQgHz5i3g2Wdf4Omnn+fEE08iN3f8kPcgEIQTyyu/Ccg4IT1TDwZxcfHccce9PPLIMlRVpaOjg8WLj+W8885HkiQ2bPiWa665DLfbzYknnoQsTx20r5kzZ7Ns2d386ld3DDnm1KnTiI+P56qrfkxBQSHjxunLP9dd9zMeeWQZb7zxFzweDw888AAAF174A6655ifk5OSSnT2uu4/pLFt2N3/+80uoqsoNN/xiyDGTk5O55JIf89OfXkViYiJOpxObzYbH4xnw/OnTZ/L8888yblwuBQWFACxZcjzr1q3h2muvwOv1ctllVw16L4dywgkn8dRTj/Lww48DsHjxcWzY8C0//emVdHZ2cNxxJxAbGzfkPQgE4YSGz+UjRoXU9/E40PhTJMOs5ZdQxsh79ng8vP76n/nxj69A0zSuu+4qrr76p8yde4Qh/RuF+DuPDSL5njVN48PSzyhtKWNr48Gl3b9f9JzP9zxUkYxhZ+qyLEcBrwATgRbgOkADXu3+/1bgOkVRVFmWrwKuATzAMkVR3vPJYoHp2Gw2urq6uPzyS7DZ7EyfPpM5c+YF2yyBIOKo6ajjvZKPDmt3eg7fTzOCkSy/XAW0KYpylCzLMvAs4ATuVBTlC1mWnwfOkWX5G+BGYAEQDayQZfkTRVGcplgu8Jtrrrlu2A1VgUDgH26ve8D2leXrmJkwy/DxRrJROh34AEBRFAWYBswHvuw+/gFwEnAk8LWiKE5FUZqB3cDsw7sTCAQCgVlr7COZqW8EzpRl+Z/AIiAXqFMUpceiViAJSASa+1zX0z4oKSmxftXpy8hI8PnacEXc89hA3HPk0GodeMNf1TRT7nkkTv1l9Nn5cuBr4Fugb/BwAnAAfb09YYD2QfGnengkb6wMhrjnsYG458iiqaV9wPYX1r3OnMQ5PvU51I/BSJZfFgKfKoqyBPgHsBfYIMvy0u7jp6M7/DXAsbIsR8uynIT+Q7DVJ4sFAoEgQghUKGMPI3HqxcDPujdC7wd+AdwM3Nvd5gDeVBSlBnga3cF/BtyhKMrg6YghSnV1FaeccjzXX39173+vvPIixcUKr7zy4qj7u/76qykrKx2w7f3332XFii8HvhB44IF7WLVq5WHt//rX24PGkwsEguDS7GzlyfXPU9pSDoDLa06Uy2AMu/yiKEoD+kbooRw/wLkvAqP3fCFGQUEhzz77wmHtPVIARnHGGWf5dN3//M8rnHbad7HZRO6YQBBqfFT2GcUH9vKHTS+z7Jg7eHLDHwM6fkh7hbd3v8eGui0DHrNaJLzq6B9r5mXO4ntFZ476ur7qhhdffB6zZs2hvLyM1NRUli37LV1dnTz88DLa2lppaKjne9+7kPPOO3/IPns0zs855/s89tgjKMp2UlPTqK6u4pFHngD0Wflf//oabW1tPPDA/Xz77Sb272/knntu56GHHuvtq6mpiQceuJu2tjY0TePOO+/l448/IC0tjXPPPZ+yslJ+97sHefbZF7j00gvJy5uA3W5j3759LFv2COPG5fD55/9h06aNXHnlf/Pww/fR3Kzve//sZ7cwadLgypYCgaAvWu//Hv322YCPHtJOPViUlpb0CksB3H33sn7Hq6oqeeqp58jKyubaay9nx47t2O12TjrpFI4//kQaGuq5/vqrh3XqPaxY8SUtLc28+OJrNDU18YMfnNd7TJan8pOfXMn777/L22+/zXXX3cyrr77EPfc82K+PP//5JZYsOY5zzz2fLVs29dNyOZTOzk5+8pMrmDJlKv/3f2/y4Yf/5rLLruL999/l2mtv4LXXXmb+/CM577zzqago58EH7+W5514a0b0IBGOZVlcbLa6DCqmVbdUBtyGknfr3is4cdFZt5m75QMsvFRXlva+TkpJ7tcp1pUUnWVlZ/P3vf+XLLz8nNjZuVGvepaWlzJypJyGkpKSQn1/Qe0yWpwGQmprGjh1DKyZ+97tnAzBr1hxmzZrDSy8dfOw7VA6iZ4yTTz6N6667krPOOpf29nYmTixi797drF+/jk8//RiA1lbzhf0Fgkjg1hX39b5u9/ge3ecPIe3UQ5WBVAz/9re/MHPmbM4773zWr1/HN9+sGHF/EydO4qOP3ufCC6GlpaXfD8jAiomWw5x0j2Li5MlT2LhxPStXriAhIbFXMfFQOeGefuPj45HlaTz99OO9a/wTJhRwyinTOeWU02hq2s+77/5zxPciEAiCi3DqBrF48XE88cRv+fTTj4mPj8dqtQ6olT4QxxyzhFWrVvLf/305qalpREdHD7kJOmfOXH75yxt55pk/9jrnSy+9nIceuo+PPnofSZK49dbfIEkSd911Gxs2fNs74x+Is846l5tvvpHbbrsLgB/96HIefvh+3nnnbTo62rn88qsHvVYgEIQWQqUxBCgrK6W4WOGkk06lufkAl156EW+++S4Oh6PfeZF0zyNF3PPYIBzvuaa9lhVVqzln0hnYLfok7LrPfjWqPn5/4m99GtsvlUaB+WRmZvHcc0/z97+/gaqqXHvtDYc5dIFAEFo8/u1ztHs6yIrNoL6jEYsUGjWHhFMPAWJiYnqLRQgEgvCgZyO03d3BpxVfBdmag4TGT4tAIBCEKe/uPVwrPZgIpy4QCAQRhHDqghHzPzv+zselnwfbDIFAMARiTV0wYlZVrwPglIITgmyJQCAYDDFTFwgEgghCOHWBT7i9bmraa4NthkAgOATh1AU+8ftNL3H/6seoaqsZ9tz/lH/Jy1tfP6ztpa1/AUDVVFRNHbUNjZ37eXjNk5S1VIz6WoEgUhFOXeATxQf2AlDTUTfsuf+3+998W7fpsLb1dZsB+OVXd3H/6kdHbcPfd/2TirYqfrvumVFfKxBEKsKpCwKKV/Ue1ub0uqjraACgw93Jyqq1lLfsY2vDjsPOre2oZ2O3xn7PNQKB4CAi+kUQMD4o+ZT3Sj7iqlk/GvB4TXstbxW/x/b9Sm/b0qkL+51z36rfAfDwkrvMM1QgMBlNtYA0+iXHkSBm6gLDcHldrKxaQ5dnYN3390r0zLsXt7zW29Z35n7/6sf6OfRD6bvu7vSh7qNX9R4mWSwQBBq1I56ub7+DtyHXlP6FUxcYxnt7P+b1nW/yVvF7I77mxi9uG9F5+1qruOHzW3vf/8+O/6Wu8+DyS0Vr1YBLOz2omsqNX9zGMxvDvoSuIIjsatrNv/Z84NfkwFNTAJoVyW5OQWrh1AWDsrF+K9XDhC1KHFQArWitBKCy3bgSXt9UfEt1ey2PrHu6X/vuAyX93j+89kn+prw96JfNreqVqJSm3YbZJhh7PLXhBT4u+5zd3YECo0Vz2/E2jkOKaseSVG+wdTpiTV0wIB3uzt5lkpFoPq+oXMWuA3sAqGytQtO0Aas2jZYnvxl5bdSV1Wvp9Dq5cuYP/R5XIAD4vGIF8fY4FmbP69f+WcXIK5v1xVM/HjQrtqxyDPh6DIhw6oIBcavuEZ3X87l8Q3m7t82jedlUvxWbxcZzm18xwbrB2VC3mS6Pk6/2rcRutXNc7tFYLdaA2iCIHN4sfgfgMKc+2L7RUGiahLcuHywerOmVhtg3EMKpC0xhb0sZn5YHR2P6reJ3WFm9FtBrsS4dvzgodggil56n0tGgNmWguWKwZpYj2UZemH60iDV1wbA0O1t5aM2TAx+UJNbVbAisQcPQ49BB37wVES+CUMBTOwEAW2b5MGf6h5ipC4bl9q/vH/RYfUcD/9zz/mHtJc3mfnBHSqenk0/KviA9Ni3YpgjCnDZ3u8/Xqh3xqK1pWBIbscS2GWjV4QinLvCLwR5D9zaXBtaQIfjX3g+GPO5VvUiSFDI1JgWhyb/3fuzztZ7afABsWWVGmTMowqkL/GJ74+DJQqFKTXst2XFZve9vWX43Tq+LK2b+kNLmcs4r+q4hkTuCyKLD0+nTdZrHhrcxB8nRiSV5eK0kfxFTE8GY4/7Vj9Hlcfa+78lOfWnrX/i04iuq2odXnhQIRoqnfjyoNqwmhjH2RTh1wZhkU/1WQJfvPRSvNnhmqmBsomqqTxLPmoYexih5saXvM8GywxFOXTAg/mwKhQNratYD8Or2vwXZEkE4cMPnt1Lf2Tjq69QDGWjOWKzpVUj2keV++ItYUxf0Y3nlKjRN48vKlYOe8/qOfwTQInPokTJod3cE2RJBJNMbxpgVuGiwYZ26LMt24M9AAeAFrgI8wKuABmwFrlMURZVl+Srgmu7jyxRFGbmykyAk+FufzNDB6BsHHq60utpo7GxioCXO/Z1N5CeMD7hNgshC7YxDbUnHkrAfS2xrwMYdyfLLGYBNUZRjgPuAB4DHgTsVRTkWPVP8HFmWs4EbgcXAqcBDsixHmWO2wEgqWqt8SnsOd5qcB/AMsH7e5GwG9Dqsf935JhWtVYE2TRABBDKMsS8jceq7AJssyxYgEXAD84Evu49/AJwEHAl8rSiKU1GUZmA3MNt4kwVGUt/RyMNrn+Tmr+4ac0sRmqYO+WO2quZbvq5aw6OiXJ5glGheq66Xbu8KSBhjX0aypt6GvvSyE0gHzgSOUxSlJ/e6FUhCd/jNfa7raR+UlJRYbDbfxZYyMhJ8vjZcMfqea2oPCgu9uP3PhvYd6jy54Y9YB0g4io+PIiMjAcd+/ZhH8wb8syY+2+GNtz4XVBu2nL1IlsFlKsy455E49Z8DHymKcpssy3nAZ4Cjz/EE4ADQ0v360PZBaWryfWaYkZFAfX3g1qlCASPvubq9ln2tVSQ44nvbihtLhrgiMvFqh5cUa2tzUl/fSnvbwVl8ID9r4rMd3mgaeOomgKRiyxg6jNHXex7qx2Akyy9NHJyB7wfswAZZlpd2t50OLAfWAMfKshwty3ISMA19E1UQgixb/Rivbn+DFldkfJFMQWSVCnxAbU5H64rDmlptWnWjoRjJTP0J4GVZlpejz9BvB9YBL8qy7AB2AG8qiuKVZflpdAdvAe5QFGXs7b6FGf8p/3L4kwQCwYjpDWPMDuwGaQ/DOnVFUdqACwc4dPwA574IiCKQIU7fWp6VbcaVnosUxNOLAKCqbfRyEWpnHGpzhh7GGNdiglXDIzJKxyDCaQ3Nx2WfA/3rrwrGFpqm8cCax0d9naemAABbdqmxBo0C4dTHGCXN5dy58sFgmxHyPLruWb7c93Xv+7d3v0eLq3XYQtyCyOD6z3896ms0tx1vQw5SVEfAwxj7ImQCIhS3102Hp4sNdZtZnLsIu8XG+rrNvLT1L8E2LSwoaemf1v1p+Ve95flGUohbEL70qHaOFk9dXndR6bKg7rELpx6h/OzLO3pfu1U3i8bNFw5dIBiGL/et5O+7/jnq6zRVwlOXD1Y31mHCGM1GLL+MAfZ3NXHbisFL0glGj6+zOUFooWoqv137DP8u+QTAJ4cO4G3MAXc0tox9SNbgSjcLpy4QjJJ39nzIL768k/V1m4NtisBPujxOyloreL/kk35RYaNB03o2SFWso9B5SYoyJ4NWOPUwpm/1nqEo9UHcXzA4H5V9BsCq6nVBtkRgJNsad/p0ndqShtaZgDW1BkvUyFNzbjr6cp/GGw7h1MOUDXVbuPmr37Cyqr8M7seln7Oyak2/tvLW4K7xRSoiNDSyGEixc0TXVRcCYBtXOuJrMmPSmZk11afxhkNslIYpq7o1zZdXruSIzFlEWaOQJIl/7f0gyJaNHSpaD4qhdXmcRFkdomB1GNPhg0qp2hF/UDN9FMlGdqt91GONFOHUw5wDzhZu/uouFmTN5bIZ/xVsc0aM5rajdsWhdcWiOWPRPHZQraB1PzxaPUg2F5KjCym6HUtsK5LNE1yjB6HD3cEty+9hZto0rp1zWbDNEfjIGyMoEHMoB5ONQkcMTzj1MKdnCWBd7caQduqa2463OR21OR21LRnNGTfqPqToNqwpdbpQUmxrSOht3bbifo7LPRqArY07gmyNIJBorii8jTn6pCO5flTXWkzMVhZOPYIItepFmteKd3823sZxqC1p0PNBtrqxJNVjiWlFiu5AiurQ1ewsXiSLiqZJ4LWhuaPQXNFoXXGo7Ymobcl4qifiqZ6oO/jUGqxp1Vhiglcku8XVynslHwdtfIF/+KN95KmdAJoFW3bJqCcY0gA6/kYhnHoE8YdNLwfbBADUzlg8tRP0yi+q/hGzxDdhSa7DmtyAFDP0LPvgobZ+7ZpqQT2Qof9QNGXiqSrCU1WEFNuCLWMf1vR9SNbD9dEDyaflX7Eoez7xjtE/iQgCT6en06frNK9VzyC1ObGmh1a5Q+HUI4g9zaVBHV/tjMNTWYR3fzYggb0L27gSrOlVWKJ8+/L0RbKoWFNrsabW6k8BTZl4949DbU7HXTYdd+Uk7Dl7sGZWDFltxkze3v0eO/cXc93cK4IyvmB4vKqXvc2l5Mbn+Pyd8dTlgdeObfwuJIsvEwnzPp/CqYchFa1VbPUxptYMNLcD977JeOvHAxJSbLPuzFNrkSRzPryS1YstvRpbejWa24GnZgKe2gm4y6fjqZ2APX8nluT6oKy7C9Gv0Objsi94r+Qjn6/XVAlv7QSweLBlhl4OiHDqYUCXx8kbyltcOOcM4kjm4bVPBtskQF8O8VQX4KmeCKoNKboNe54ScGcq2V3Y84qxZZfirirCW5uHq3g+lqR67AXbRpUQYhSVbdXE2WNJjhqyTK8gwLS52v1y6KBLAmiuGKxZpUg2t0GWGYdIPgoDlld+w7rajdz9+ej1nc3C25yGc8sSPJVTwOLFXrCNqFlfY00JzuwYQLK7cUzYQdSsr7EkNqA2Z+g21o1HC/BqzINrnuCOrx8AoLhpLxvrtgTWAMGAvF/6H7+u1zT0SYykYh8XOmGMfREz9TDApeqzgU538KNbNFXCs28KnppCQMWWXYItd3fQRYz6YolpxyGvw9uQi7t8Ku7SmXgPZOIo3IJkN39m1eQ8WG+9rqOeJzc8DwjJ3mBT2lLeTyPfF9SmTL3+aPo+JMfIZDoCjXDqghGjdsXg2jMHrT0ZKbodx6RNQSvZNRySBLaMSiyJjbhLZqIeyKRr62IcRRuxJhwYvgODuHfV7wI2lmBwmp0t/G7ds37349o9DwCbn7N0Mx8cxfJLCLO+bjNvFb/bTz2uw+1/FIkvePdn4dx2DFp7Mta0SqJmrAxZh94XS1QXDnkdtvEKuB24dh6Jp258UGz5ump1UMYVQKurbfiThsHbkgJIWOL3BzU3YjjETD2EGaioxWPf/j6gNmiqBXf5VLx1+WDxYC/cjC0jtOJyh0OSwJ5TgiW+GdfuubhLZ6K5Hdhy9gZ0/f+vO99icc6iwA0oMBRP1SQAbLl7fO5jXsYsNtRvwW4xz/UKpx5m1HQErvah2hmHa/cctM5EpJhWHEUbQ3qGMhzWxP1ETVuNS1mAp3IKmjsK+4QdISE3IDAXf4XW1LbEbuGuRqxJjT71EWOL5vuTz8KrqZxXdIZf9gyFWH4RDIinMRvntqPROhOxZpQTNeObsHboPVhi2omavgopphVv3QTce+agqcKrRyJv7HyLR9Y+ZUhf7uqJANhy9vrVT0p0MtfM/jGZsRlGmDUgwqkLDsNdXYB7z1wA7JM24ijc7mPWXGgiOZxETVuNJWE/3v3jcO2aj+a1BtssgQHUddRT064/za6oWk15H3lkX1E741CbspDimrEkjm6WfvWsH/V5F5jJg3Dqgl40DdwVU/BUTAV7F1HTV2FLqwm2WaYg2Tw45HVYkmtRW9Jx7jgSze0ItlkCP7l31e+4f/Wj/dq8qpf/lH/pc596EQwJ+7jR78HMSp/O4pwjAXBYzNNQ74tYUxcA3Q69dAbe+jykqHYcU9cGJRMzkEgWFcfkjbhLp+Otz8O5fZHu6KODE2EkMIc1tRtYU7Pep2tVZ0y3vG4blpTRyz9YJAtnTzqdNncH3y082ScbRj1mQEYRhDSaKuHaPVd36LHNRE1fHfEOvQdJ0rAXbMOWsxvNGYdzxyLUTvMUFjs9XT4XOBYMza6mgaNSWv0oO+ipLtTldX2IlDpm3EIA4u1xXD3rR+TGj/PZjtEgnPoYR/Nace2aj9qUjSVhP1FT1+ra5mMISQL7+N3Y83eAOxrnzoWoXTGmjPXLr+7ixi9uM6Xvsc7bu98bsP2z8uU+9ae5ovDWj0eK6sCaNnrd9UumXeDTuP4inHqQaHd3oGrB3XzU3HbdgbWkY0muxSGvC9mScYHAll3W69hdykI0V5RpY1W0hlesfzjT6vYt8cjdM0sft3fUaqPj43N8GtMIhFMPAgeczfxq+T28sOW1fu1ur5sdjbvY1bSbzytWmGqD5orCuWNRb4aoY/LGiIpw8RVbdhm23GI0ZyxOZQGax5xtp5VVa+jyhKZ2iECXk/bW5SE5OrGmjz6CJikq0QSrRobYKA0CPXrbWxq292t/s/gdVgQglVztjO2eieryofb8nSIBpw+2nD1oHjve2gJcxUfoTzAG/+B9VbmSxq79/HTO5Yb2KzAGfS3dqs/SfSi4snT8YhOsGhliph5C7GzabfoYamcczp2L0Fwx2MbvEg59ACQJ7Pk7saZWo7am6klYJigwbQuhQieRgFEfY80Vhac2X5+lZ+zzqY/cIC6/DDtTl2X5J8BPut9GA3OBJcCT6GJjW4HrFEVRZVm+CrgG8ADLFEUZeOdCMCBm+1bVGY1LWQDuKOz527Fll5s8YvgiSWCfuBnNFY3aloKnQsaerxg+zoeln3H0uIUkRSUY3vdYw6jfXXfPLD1nj89lEYP59xx2pq4oyquKoixVFGUp8C1wI3AXcKeiKMei+6JzZFnO7j62GDgVeEiWZfN2miIQf/UphkJz23EpC7pn6Ipw6CNAsmg4Jq8HqxtPTaEp6o7v7v2QV7a9bni/YxEjQkU1V5Rfa+nnTz6bO478hd92+MOI19RlWV4AzFAU5TpZlu8GelK0PgBOAbzA14qiOAGnLMu7gdnA2sH6TEmJxWbzPT0QZyjhAAAgAElEQVQ7IyM8ZzfV3tje14kpUUTZ9ExGq9Wc1TDNa9U3/brisWXv9VsLeiwh2d1ETV+Fc8uxuEtnIkV3YE3cb+gYDc7Gwz7L4frZ9gd/77mvL/G1L3fVRL9m6Rcecfqozjfj7zyajdLbgXu7X0uKovTccSuQBCQCzX3O72kflKamjlEM35+MjATq631PKggmB5oP3velb93UWxHH6zU++kRTLbq2SUcS1owKbHm7xBr6KLHEtOOYuhqXshBX8Vxd3MzArFPVq1Ff30qXp4uS5nKOlY+gocF//e9wwojvs8dzcKZeVjX67E89Lj1Pj0v3YZYOjOoe/LnnoX4MRuTUZVlOBmRFUT7vburrfRKAA0BL9+tD2wWHIA2yei4ZvG+taRKu3XNQW1OxpNRgL9gmHLqPWBObsE/Yjrt0Jq7iI3SlR4NK+DW7Wvig5NPegshR8VczMarIkL7HElXtB3WKbll+z6iv12fpFp9n6SlRyaO+xgxG6kWOAz7t836DLMtLu1+fDiwH1gDHyrIcLctyEjANfRNVcAjaIVs6H5V+xidlX9DmY5LEgGNo4N47E/VAFpbEBhyTNgmH7ie2zH1YM8vROhNwl8wwNCKmb4X7iubRZy+OVfa1VlHbUe93P6ozulf3yJruW2LYrUfe5LcdRjDS5RcZ6CskfDPwoizLDmAH8KaiKF5Zlp9Gd/AW4A5FUcaGgMgouOebR6jv7C/f+c7eDw0dQ9PQqxU15iLFHcAxeYPPu/iC/tjzd6B1JODdn4MlvhlbdpnhY7Q4w3NZMRg8tPZJwP+i3p6eWXrunlFnj/YQbzdPM2g0jMipK4ryu0Pe7wKOH+C8F4EXjTEtMjnUoZuBp2oS3toCpJhWoqZ8a9gyga/E2mLo8Pi+Bp0Tl93v0TqYSBYNR9FGurYdjbtcRoprwZrQZOgYqys2cGL2UirbqhgXl02CI97Q/gX9UZ0xeBvG67N0HzReQg2RfGQSmqbR0q0O1+xs4f2ST3B6zRfK8tTm46mcjOToIEpeh2R3mz6mmZw2eSk3z/8pNhNrOo4WyeHEUbQJQC/3Z7AOe1NXM7euuI+nNrzAwwZV7olEXN6Dn+31dZt97ufgLH23z7P0UEI4dZN4r+RjbltxP9sad/LKtr/y75JP+KTs8+Ev9ANPYzbusulgd+KYug7JETraIncfdYtP150/47tE26J5aumDTEudYrBVvmNNaMKWt0sX/9ozx/CM0x6xtwPO5mHOHLvcuuLe3tcDFWkfCWpXDN6GXKTotoiYpYNw6qaxfN83gJ4KXtfRAMC+NvM+NN7WZNx7Z4HFQ5S8Dku07+GiRnPJtAtGXJNxUfb8fu+jrKFbjciWXdpdOSmtt9K8IHAY8eTrqZrUZy3dAKNCAOHUA0CzqwU4XMDLKFRnNK7ieaBZcBRtxBIbWhtt04eYYR9aDaavE//x9It7E7NCEUkCx8StSI5OPJVFeFtSgm3SmKDZ2crzm1/xux+1KxZvg17VyJoaGbN0EE497OkpcoEnCvuEHViTGwI6ft4wwkU5cdnYh6jNeMYQJb7yE/qn5Q8W3x9MJJsb+6RNgKYvw7iNr0O5qX6b4X2GI62uNryql3+XfMSWhh1+9+epnAT0rKX7b1+oIJx6GKNp3Rt1nQlYM8uwZQVezyV+iMiM84q+yx2LftGraXPWxFO5YPI5gTItYFgTDmAbX6yvr5fMMnx9/R+7/mVsh2FIq6ute/P4j3gM0HhRO+L12qMxrVhTQyOyyiiEUzcJb/dGV3HT3mHO9B1PhYzanIklsQH7hODIuA61eXlSfv+o19MKvsPi3EW97xPs+g/CY8fdP+pxM2PTB2y//cifU5iYP+r+/MU2rgRLYgPqgUy8dYEfP9LZ36WHje5pLjWkP3flZEDCPj7yZDOEUzcI7ZDpWZdXz7syK77aUzceT00hUnQbjqKNQQvF8uf7YLXoAkzRtijOLDyFS6YOU9Oxe7AJCXncfdSvDjt81sRTyY0fx09m/OCwpRuz0dfXt4DNhbtcRu0QseVmUdHqmy5LD2pbEmpTFpb4JizJvmejXjDlHK6dfRkAcbbYYc4OHMKpG8C/9nzA9Z//ujfKxWy8Lal66KLVhWPK+qDWFc05pEL65OSJQ55v6fMzEGOL7n19euFJHJOzcERj9sgsTEudwtHjDl5zWsF3AEiPSePXC29kfuac3mOByPaTHE4chVtBs+LaMxtNjbApYIjgz0RJ08BdIQNgy1P8mqUnOhKYkTaVCyafw68W3uh7RwYjnPooOXRGDvBxd/z50xteGPQco1C7YnEVzwXAMXlD0EMXp6ZO5udHXNv7fmH2vCHPt1qs3Dj3auSUIq6aeemQ5yYfUufx0I3S6+deyQ+nXcCyY24fUMO6x/lnxWbwyLF3DzmWUVhT6rBmlKN1JuLZZ0xcfZPzAG3udpxeF5vrtxmiGz5WUZvTdYG7pDqsCf7pDc5Jn4EkSSzNW0x6TKpBFvpP6KTphQG17XXct/pRfjTtIhaNm3/Y8VZ3Gy6vm1u+usuU8TWPTY908TqwF27BmmhserqvFCUXjup8ObUIOXVoFUK7xUZ0n5n8UKREJzNQMOGkpELW121meqo8Kvv8xZ6v6LHrNQVYkusN0V//9fJ7SXDE0+pq44Ip5wS1Bma4omng3jcZ0LDn7fKrrwkJeb3Lh6GGmKmPglU13wLw151v9rYdOiuv72zAoxk/k9JUCdfueWhdcXqhiwz/1hXNIis2E4Apyf4l40RZhyqaNbInoePGH83Pj7iWc4vOAPS490AgWb04Jm0GNNx7Z6F5jJk7tbp0Fc/K1siJqR4JH5Z+xvsln/jdj3f/OL2uQFo1llj/FFGX5B7ltz1mIWbqfrC3uYzHvv19vzYzYqk1Ddxl01Bb0rAk1+rp6UHkkqkX8PrOf/Rru+uoWyhu2kNRciGPHXc/Dqvx8dqj/Ze1SJZ+TxGOAGanWuKbseXsxVNVhLtsereTN4rw1ycZDe8aoGKqqRKeiikgqdhyi/3qyyJZRrz/EwyEU/eRhs79hzl0j+rhT1v/x/CxvLUT8NbnI8W24Ji0OSghWHaLDbeqb8hG2w6fRWfFZpDVLQUw0HEj8dWl9WyW2i123Kr5Qme2nD14m9PxNubgTanFmjr6ajwCY/DW5aO5YrBmVPhdteqswlMNssocxPKLD3g0L+Wt+wY8ZoRgf1+8B9Jxl08FexeOyesDKqN7esFJA7ZnxOgx4vkJuQGzRce/X7NJSQVcLJ/Xb1P10ePu44HFd/hr2IBIFk0Pc5S8uEqnG5ZtOrbm6f6jeey4KyeB1Y19vO9PuTaLjceOu59TCk4w0DrjETN1H/FVFW40qB3xuHbPBUklavIGLFGBrTli6fNIcFrBd3h3r16dJy8hh1sWXE929/p5uCBJEsfmHg3A5TMuoaqtmhhbNFbJvLmNJaYd2/hiPBVT9WWYbsleQeBwV04CrwNb3k6/pajNfgo1AjFTD1E0twPXriNAtWGfuAVLfOAlWPvOCHtiwHsoSMwfcXTKaCjozgadlT79sGNnTzqN5KgkLpxyrt/jzM+aw1mTTgP0tfbLpv+AhVlH+N3vQNiyS7HEN+HdPw5PY7bf/a2r3chnFcsNsCw0cXndvLvnw94sUn9Qu2Lx1uUjOTqwZflXpSpcsg6EUw9BNNWCq3gemisWW24xtrTQ0KYIRNbcwux53Dz/p1wkn3fYsdz4cTyw+A4mJk0wfNwF2fP4yQxzomMkCeyFW8DixV023e+iGm7VzVvF71LWUmGQhaFBTyTZ5xXL+bDsM/64+c+0udv96tNdMUWX1s3b5XNJx0lJBX7ZEGiEUw8xNA3cJTNQ21KwplZhy9lj6njPnvDIiM99aMlveHLpgyZao0cWTEwqwB5ClY6MwBLToa/nehz6+roBC+O/XfcMzc5W3N0VgFRNpanLv4SaYLGpZjvXf/5rNtVv663Z29C5n2c2+F4d09uagtqUjRR3wC/RrsLeSUR4zNWFUw8xPNUTewtG2yduNTXS5fuTz+pVUOwh1hZz8M0hnsdqsUacsx0MM54GrFllWBL2ozZl420cN/wFI+D2r+/nvtWPAvDytr9y58oHqTSxGItZPPDlMwC8uu2vvW1d3i72tVX51F9PGDCAY8IOv75HWphtTQunHkJ4mzLx7JuC5OgkavJ6JItq6ngDZVqeXvAdFuccybzM2aaOHaokRyUBcMXMH/L48csM7fvgMowHd9k0NJcxm277u5po7NzPhu46neUtA0dmhQMug0JNvfV5aB2JWNMr/dqP+s2im3tfh8c8XUS/hAxqRzyuPbPB4tFDFx3mF6keiKy4TE7MPw6AspYK3i/9z5CFLCKNO478BY1dTb3O3Wgs0Z3Y8xTcZTNwlc7Q/9YGeIu7vnm49/Wmhq0cHcLJMWajeey6HIDF41cI41HZC8iOywq7GFIxUx8At9cd0IK/mtveG+nimLgFS1xgytH1+JLbj/x5b1ta9EFhogmJeTxx/LLDSs5FMrH2GPISBq7m9NM5lxsyhjWzAktio6693jh05Shf2NKwY9A8ilBD1VQaO43VMHLvKwKPQ69o5Efx9RPzj+3fECbC62KmPgAPrHmc+s5GChLzmZw8kdMKTiTaFm1KtEGvposrFlvO7qBkHebGj+Ox4+6jrrOB7Lj+seeBTK0PRVKikmly6puPFoPi2fVlmK04tyzGXTYNa2KjX85nIJqdLZBgaJejpiea5dB9mx7+V/k/vqr8xtAx1Y54vHV5SFHtfocwhitipj4A9Z2NAJS2lPNJ+Rf8YdPL/HP3+yhNuw0dR9/Mma5LgabUYMs1tv/hSI9J630dbYsOeGGJcODm+T81pV9LVCf2/J3gteMqmWl4CbxQ4HfrnuX+1Y8Netxoh35wc9SCfcIOn0MYe+hJrhMbpWHI8spVvL7jH4Me39NcyiflXxg+rrcuH299nq7pMnGLaU93PZosfbl8xn+FrHRoKJESndzvvVUy7t/MmrFPL4HXnIG3IdCSC+D0unh245/YZfBkpYey1gpqO+pM6Xsg1KYs1NY0XSvdzwLsJ+cvPez7ER6LL8KpA/A35W1WVq9F1cyNNumLtzkNd9lUsDlN13S566hbOH/y2f3aMsMsxT9UMGpdHQ4uw2B14y6fiuo0LkN3JFW41tSsZ8f+XTzVXdwlnNG8Fl0jSVL1JyAD6YlTn5cRHhFhwqn3QUIytWpRD2pnbLemS3f1IhM1XXpEt7Q+P1gn5C1hfLwxcdJjDaM/H5aort5lGLeByzBv736vV1VzMALxWQ8UnsrJaK4YXZIhxthqYPMyZnHLguu5eOr3DO3XLIRTP4Q7vn7A1P41jw1X8Xzw2rEXbPW7pNZwZHYvvdi79c3tFhvnTz570M0rweH8cNqF5MaPY1JSIaoJ66vW9EosSfWoLel4643b1/j9xj/x913/NKw/I2jqOsA/d79Pl8e4iYzaEY+nRtfNNyoDO6pPgIAkSRQk5odN4l14WBkgNDSaXS3m9a9KuHbP7VO9yLdsuZGQFp1CY1cTi7L1sntHZS+gorWK47pVCgUj5+hxCzh63AIAxscbH4IoSeAo3ErXliW4y6diSWrEEuWf5jdA8YG9FB/Yy4y0acxIOzzRLBi/6y9ve529zcZFpWgaOLcuAcCev8OQZcxjxh3JCXlL/O4nWAin3oc7TZylaxq4y6ehtqRjSa4zvXrRz4+4lnh73MEZutXOf039vqljjgWSosyJE5QcTuwTduDeOxt3yUwc8lrDnO7eAyXMSJPZub+Yqrbq3uQys2hxtfJp+Ve97/+8/W9cNOVc2t0d1HfokWVruktD+ounpgAAKbYZqwEhjNfPuZJpacYUDA8WY9apFzft4cPSz7hy1g9725pd5iX9eGvzdQnQmBYckzaZPkuKd8SHzeNiuJEanWKILOyhWNOq8O7P1pOS6vKwZRmTF/Fh2WfMypjOMxt1caxJyYW4vC76xnOUt+4zLKT1jZ1vs7lhW+/7NTXr8apevq07qCVvxHdNc9vxVEwF8Ct6bF7GLM4oPJmU6CRi+mofhSkj+tbLsnwbcDbgAP4AfAm8ip5AuxW4TlEUVZblq4BrAA+wTFGU98ww2gie3PBHAFZWrTV9LL160TSwO3FMCWz1IoHxHDNuIe+VfMyS3KOYmDiB13b8ryH9ShI4CrbRtSUZd4WMJanB79JrPfxu3bO9r3+7ThfPulg+uPFX0VJpmFMfKBt7T3OpIX33xV2uO3Rb3k6/CklPSZlETrz/OvehwrAbpbIsLwWOARYDxwN5wOPAnYqiHIv+c3+OLMvZwI3d550KPCTLckiUCRkqVNHsxIL+1YvWB6x6kdgGNY9TC07kVwtu4KIp57Jo3HxD++5ZhkG14S6ZZWpS0qGfEVVT2dKwvfcpZKDvjaqpvLjlNdbUrOft4vd4v+STw87pcB8efWK07Ib3QLquZhrbjC3b92WXn827hiW5RxloWfAZyUz9VGAL8H9AInALcBX6bB3gA+AUwAt8rSiKE3DKsrwbmA0MOhVOSYnFZvM9mSMjIwFVValtb2BcwsBx139a9wYf7/mK1773BNH2w+OAuyRjw5/6orkcuHbN16sXTdoY0OpFGRmJ2CIkuSgjI8j57gOQlXlQ8Ov8GWfw5rb3AfjvhZfy/Fr/io9b06rxNmXpEr21E/xyWkMRF38wwuMfu9/hr8pb+viShVe/9wSXvnUT35m4hGsWXtJ7XmVLDRvrt7Kxfmtv24+P7B/q1+I2V7tI81pxl84ASe1edvH9l++YKXMNtGz0mPHZHolTTwcmAGcChcA7gEVRlJ5/yVYgCd3h9/VaPe2D0tTku0PNyEigvr6VN3a+xYqq1fx0zhUD7vB/vEffsNleUUpeQi6vbf9fJiTm9R7/oPhzn20YCs1rwVl8hB47O36XqdWLjh9/DF/uW9mvraG+NSIyRnv+zqFMtu1gRMyshFl+96cvw2ynqzUVd8UULImNfi0vDEbDgYORXj2FNgC8msrOCv2H5NO9K/hewcHEtf3th1ciqq1r7qeLY3b4u7tC1r9XObv9/ncJ5mfLn8/2UD8GI4lTbwQ+UhTFpSiKAnTR31knAAeAFvpLCPW0m8rKav1BYM+BkiHP09BQNZXVNd+aHruraeDaOxutPRlreiW2cXtNHc+Imp2C0EKyu3AUbgXNqn+W1MAuqH1Q+p8Rn3vD57fybe1G1tVuZFX1OhOtAm9LanfAQavpVcHClZHM1FcAN8my/DgwDogDPpVleamiKF8ApwOfA2uAB2RZjgaigGnom6gB4aOyzyhMyu9XsFjf4ddpd3ewrnZjQGzxVMioTdlYEvZjLzC3etFgiOSi8MeaUoc1owJvfR6eysnYDQ6D3VC3ZdBj67sLbvRF1VRaBsnjeLlPxSK7xe6/cQOgea24984CVByFW/0W7IpUhnXqiqK8J8vycehO2wJcB5QAL8qy7AB2AG8qiuKVZflpYHn3eXcoihKYXcFunt/8Kr8/8be97/uu+z2/+VU8w6RNG4GnZgKemkKk6DZd08XkD96Ppl0EwHG5xwAaS3KPorFzv2EysYLgYs/fidqSiqe6EEtSPdZE40Ipy1pHFjJZ3LSX32/6E27Vw5mFpwx7vlczJ7qra+Px4HXoyy4B3J8KN0YU0qgoyq8GaD5+gPNeBHyvFOsD0gBxHqqmIiH1270PhEP37s/Sw6zsXTjkdUg2c8Z85Ni7+fXyewF6oy8ukg8uweQKXZeAMr67qMbinEX92i+Wv8fflLf96luyenFM2oxz+yLce2djmfm1aZ+rwXhyw/O9r3c2FQ97vhnCeJ7aPPA6dJ10sewyJBGZnXLXyod7CxsECm9LCq49c8DiJWrKtwELXRQEnwRHPE8tfRDbIclex+YexdHjFnDTF7f71b8lvhlbzl48VUW4y6bhmDT4sonZ7B5m78oMNJcD9z49y9NeuM3vp99Lpl7A6zsHl9oOdyLyGT3QDl3tiMdVfATQrbpoYjm6Bxf/hhirHpo5UOFoQXA41KH3bTeiHKAtZw9S3AG8jbl4GiMnUWY4eoIO8Nqx5+/Amrjf7z7TY1IMsCx0iciZeiDRXFF6LLrXjn3iZqxJjaaNZbfae7VHnlr6oKEFGwTmEWeP87sPyaLpyzBbj8FdOgNLfLMhol+hjqe6UNdLSqo3RNsFzA+5DDYR59QDWehC89hwKvMPxqKnm6e6CHD5vAt7Xw82MxQEnwcX32lKprIlukMX/SqZhWv3HKKmrY7oCBBvazKefZP1PaqJm8Ol7nPQCVvPsK+lmveKPz9sp/2Gz28NyPia14Jr1xFonYlYM8tNjUW/ad41NHbu54TCY2hsPDz5QxBaJEUl9nufl2CcXK81vRK1JVVfhtk3BXu+YljfoYTmtuvyGoCjaBOS3T3MFaPoO8xqjo6WsF1T/82nj/JZxfKgjK3ros9DbUvFmlqNfcJ2U2cR8fY4js5ZiMUStn+uMc3EpALuOPIXhvQlSWAv2I4U3Y6nphBv0+H1Z8MdTUMPOnBHYxu/G2uC/2Gc3598lgGWhQdh6yXaXeZptgyFpoF772zU5gwsSfXYxWOhYAQYqQIoWb04ijaC5MW1dzZqV6xhfYcCnn1TuusO1Br2BHzC+CXMSJvKBVPOMaS/UCZsnXow0DRwl87Au38clvj9OIo2mLqmuTBrHqDrdwvCnytnXsr3i840pC9LbCv2wm3gtevLgN7I2DT3NGbjqZ6IFNXul0b6oUiSxE/nXM7S8Yt7q1cdG6FVwMJ2TT0YePZNwVufhxTb0q2Lbu6m7E9m/IBLp10YEcJcApiXqYt9vbXbmDIDtvQq1PZEvLUFuPbM0TOYw/ip0duagnvPXLB49O+XSUlW8Y44nl76UMR+r8Jyph6MKujuqon6DCK6nSgTs0V76NHPiNQPnsAY7PkKlsQG1AOZeCqLgm2Oz6jtCbh26Bm5jolbsMSYGxAQyd+rsHTqjV3+JyCMBk/NBDz7piA5OvXakXbX8Bf5wKz0ab2vr519mSljCCILSdL08ohRHXiqivDuzwq2SaNG89hwblsM6FWMrKm1QbYovAlLp97pcQZsLE/NhO5SdF04pq41Nf1/cc4iFmXrWi59Nd8FgqGQ7G4ck9eDxaNvnLYNWcYgpOiJJOvBll0aPGMihLB06lsbdgRkHE9tfq9Dj5q6Fku0+RE3P5p+EU8vfYhoW0hUAhSYwN1HDaSP5x+W2DYcRZtAlXDumo/a6X8Wq9lomoRrzxzUljQsKbVEL/zQ0D2BQwXWxgph6dTfK/nI9DE8Nfm4y6aD3ak7dJPX+PoSyet9AsiMTWdKivHr39bkeuwF28HjwLnt6JAOddQ0cO+Z1Vt3wDFpk+GbvOdOOsPYDsOEsHTqZuOuLsRdPr17hr4moA5dMPa4/cifYzNIx8eWuQ9bbjGoNpybj0NzO4a/KMBomoR772y8+3OwxDfhmPItksX4SLJYe4zhfYYDwqn3QdPAva8IT4WM5Ogkappw6AJzGN9H8z4nLtvQoia2nD1YEhsA6NqyGM0TOpHLmirh3jMbb2O3Q5fXIVmNL6oxL3O24X2GC6Hz1w4ymqaXofPUFOqJDyZvigrGNmdNPI3x8TnMy5yFJEkcOW4+KypXGdK3JIFDXqc7z/05OLcdo4t/OQIXYDAQmteKq3ieni2asF+foZvg0PvGoF8/90qSHInDXBFZiJk6PZmi03WHHtOqz9CFQxeYiMNqZ9G4+Tis+vLIhZPP4TeLbjasf0kC+6TNSFHtaM5YnNsXBXXzVO2Koevbk3vT/82aoUP/PalpqVMMlWgIB8a8U9dUC+49c/DW5yPFNhM1dY3hM5qT85ca2p8g8rBarGTHGRtjLkkQNXs5ttxiNJfu2L0tqYaOMRI8jdk4tx0DgCWlBsfkjYavoZ+Yd6yh/YUzY9qpax4bLmWBruWSsJ+oqWsNlfjs4aT847loynkDHpufOcfw8QThy9yMWYb2J0lgz92DvXALqDZcOxfgqc0PSKEIzWvFtXemnvqvSdgnbiZq8kYkyf/BJyT0z+MYSyqMwzFmnbrqjMa5YxFqa6o+ezAx9T/eEUd23OESqc+c8DCXz7zElDEF4clVsy41pV9bRiWOqWvB5sZdNh3X7rlobrspY4Ge9u/cdjTehvH6E/DMlaYXkRHojEmnrnbE49x+FFpnAtasUhxFxj8OjgQjIx4EkcPzZz1kSr/WhCaiZ67EkrAftSmbri1L8DRmGzpr17xW3JWTcG4/Gq0rHlt2CVHTV5mSuBepKov+MuaiX7wH0vWKKqoNW95ObNmlpirb5SXkmte5ICJJjU02rW/J4cQxdQ2emgI8+ybj3jMXT0UntvHFfs2kNVcUnvrxeGongMehy2oUbsWa3GCg9QeZlzmLCYnjWV75jSn9hzNjxqlrGvoHuUIGScU+aSO2tBrTx7114U3DnnNy/lI+Kf+CgsR80+0RhAfZcVnUtJsjbCVJYB9XijWlFnfZNNTmTD0ZqH481sxyrMn1I4pM0TRQ25Lx1ubjbcoGzQJWN7ac3djGlZgW3QJ6EfYeXfQTxi8BdL36drfIKxkTTl1TLbhLZuBtzNWzRCevxxLfYtp4iY4EWlyt/drslsEz+84tOoOzJ50mlmMEAcUS3UmUvF4vTFE5GbU1FbU1FbekYolrxpLQhBTThuToQrJ40DQLuB2ozlg81YXgOahPJMW0Yssqx5pWZaoz70usPZZnTni493vTo1c/1ol4p665onAWz0NrT0aKO0DU5A2mJ2E8tOQ3XPdZf9GmgsQ8Ti/4DrPSp/Pbdc8cdo1w6IK+FCTkUdNey3cLT6a+s5E1NetNG8uWVoMtrQa1Mw5vYw7eA+mobcmobSOruOWYugZLwv6AFuiQ0AcT35vDiWin7m1J6S1ga02rxF64LWAbojfMvYrkPlXlJUnizJWXdM8AAAwUSURBVImnBmRsQfhzwZRzmJY6mTmZs/hq30rWYJ5T78ES045lfDH28cVoXitqWxKaMxbNFQOqBSQVbG4sUZ1IMa1I0R1BqbQ0JaWIRdlHBH7gMCEinbqmgae6EM++KSBpAdkQvXn+dTz27e97309NnWzeYIKIJ9oWxYJsXWd8dvoM3jaoBN5IkaxerEn7gcAWpBkJN827OtgmhDQR9+yieey4io/As08Gu77Tbx9nrkMHSBPFoQUmkRGbxjMnPBxsMwRhQkTN1L0tqbj2zAZ3NJbEBl2j2YQMUYEg0Ii1Y50Y29iU0x0NEeHUNVXCU1mEp3oioGHL3YUtZ29A1/sSHQnMz5zDtDQ5cIMKBBHKXUfdwtdVq/m0/Kvetstm/BdHjGFJ3ZES9k5dbU/AVTILrSMRKaoDx6RNWOKbA26HJEki5V8gMIis2Aympkzu59QXZM0NokXhw4icuizL64GewO4S4AHgVUADtgLXKYqiyrJ8FXAN4AGWKYpi2u6Opkp4qibps3PNgjWjAnv+zoDFyPbl1oU/G9X53ys6k4bORpOsEUQqtx/5cx5c8wQAC7OOYG2t+RExocKvFtwQbBPChmGduizL0YCkKMrSPm3vAHcqivKFLMvPA+fIsvwNcCOwAIgGVsiy/ImiKIYHhavOGFzF8/TZuaMTe8E209KRh6IouZCLppw3ar3m7+QfZ5JFgkgmIyYN0DXCfzLj4jHl1Cck5g1/kgAY2Ux9DhAry/LH3effDswHvuw+/gFwCuAFvu524k5ZlncDs4G1g3WckhKLzTb62ozexnFoHYn67DxPMU1dcSiunH8xpxQdH/BxMzISAj5msBH3fJD/vfAPSMEIDg8wGRkJJHli+72PRMy4r5E49Q7gUeBPwGR0Jy4pitKj7dYKJAGJQN/F7J72QWlq8k25zTauBGtqNZboTp+u95UfyN/jDeVtANrbXNTXtw5zhbFkZCQEfMxgI+55cB497j5aXa3cu+p3AbAqsNTXt9Lc3NHvfaThz2d7qB+DkcRJ7QL+oiiKpijKLqAR6FuiJQE4gL7mnjBAu+FIkhZwhw6wJPeo3tcLRUabIMjE2KLJjM1ATikKtimmkBWr1yCYnDwxyJaEFyNx6pcDjwHIspyDPiP/WJblpd3HTweWA2uAY2VZjpZlOQmYhr6JGlFcNOU8rptzBVHWwQW6BIJAct2cK4JtgqFcM+vHAKTFpLLsmNu5Ye5VQbYovBjJ8stLwKuyLK9Aj3a5HGgAXpRl2QHsAN5UFMUry/LT6A7eAtyhKErEVG+++6hbADhuvBDmF4QWfQstRwKzM2b0vk6JNk9bPlIZ1qkriuIC/muAQ4ftEiqK8iLwogF2hRRXzPwhmbGHl6MTCEKFo7IXsKpmXbDNEIQAIvd4BMxOnx5sEwSCIbl0+oVcP+fKYJsxYn6z6OYB26elTgmwJZFH2GeUmsElU8/HbrHz6vY3uHXhTdgs4p9JEPpMS5vCfUffxl3fmFPj1Eiy4w7GWvx4+sWcPuNYVu/ZSlFyYRCtigyEt+pDkiORS6ZdwIxu/ZYFWXPHREywIHJIiwl9tdBoa3S/90dmH4HFYhEO3SDG/PJLX/W7pKjEXocOCIcuiAgulr8XbBOIt8f1vrZF2MZuqDHmnbqIgRVEKifkLeH8yWdzbJ/8imBx68Kb+uV5CMxjzDv1H0+/uPd1T91DgSASOH/y2ZyQtyTg454y4YQhj/d8z66e9aN+3z+BMYx5p54Ulcj0VKGBLhAYxTmTTh+wfUb39+zonIUAzMmYyZEiM9twxEYpMCFxPNv3K0xMmhBsUwQCv/ndsfcgBalS0qSkgTc7JUlidsYMlh1zO8lRQ0pCCfxEOHXgtILvkJeQyzQxYxdEALH22EGP/XrBjTS7Wnh+86umjP3fs38y5HGRIWo+Y2755WL5vMPabBYbczJm4rDag2CRQBBYJiYVjOi8x467b9R9x9pFDdFgM6ac+pTkSRybe1C7Jc42+IxGIIhU4uyxPHvCI/3a+i6JPHvCIzx7wiNE2w7Gkw+2rCIIPcaUU79x3tUATOqeqeQm5ATRGoEgCHQHeB2ag3FMzpEHT5Gkw47/7Ihrhu36nIkDb5Dqw4rIskAxptbUez6oC7Lmsqe5VFQmF4wZrp71I9bXbWZ8/MGJzLJjbqeitRJJkkiLTuX9kk986nth1jzW1m5gRvrUQc+JsUUPekxgLGPKqfdw3PhjmJ0xQ+zCC8YMczJmMidjZr+2lOjk3o3LZqdeV94mDZzt2XemneCIp9XV1vv+R9Mv4ryi75IUldjbdnL+Uj6vWM7Dx96FR/XiEPUHAsaYdOqAcOgCQR+SohK5ad7VI5KYfmjxb9jWuJNVNd9y2fQfYJEs/Rw6wLlFZ3DOpNOF1EYQiNg19Qsmn9Pv/fzMOUGyRCAID6akFI1osiNJEjPTp3HlzB8OWaBDOPTgEHEz9QVZczkic44oNycQCMYkEefUL5uhF2nSNI1zJp7OeyUf49W8QhNdIBCMCSLW00mSxCkFJzA7Yzr/3PM+Z086LdgmCQT/3969hVhVxXEc/57Jy5TNGBReIkHI/CGBVlbec4JE68EikkCkUrLMoKiHrgYVZnQlI6IwRLsRlPiQYApRUUJEUWCU/1CiHiIYrJwRarxND2sfO+Go0xz1nL36fZ5mr7Mf1u+cff577bX27GN20mU7p141athIlk1c7IVRswGYNvoyhg9pP/6O1jRKWdQ7zpsBwL2XLG9wT8zytmjCAlbNXHF40XPYMZ4rY82hlNMvN1wwn4WT57O/26vrZqfKM7MeZXCLn4/U7EpZ1CuVCme1ttHZ3c3ySUvY09PNT10/M86/YmR20hzr6Y/WPEpZ1GtdeHb61+TpxYP3zcz+z0o5p25mZn1zUTczy4iLuplZRlzUzcwy4qJuZpYRF3Uzs4y4qJuZZcRF3cwsI5Xe3t5G98HMzE4Qj9TNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjLupmZhlxUTczy0jpfiRDUgvwMjAJ6AFujYidje3VwEkaDKwFxgJDgZXAd8A6oBf4FrgzIg5JWgrcDhwAVkbEJkmnA28CI4Bu4OaI6DzVOQZC0gjgK2AOKdM6Ms4s6UFgPjCEdAx/QsaZi2N7PenYPggsJePPWdIU4KmI6JA0jjpzSpoKrC723RoRj/WnH2UcqV8HtEbENOAB4LkG96dei4DdETELmAe8BDwPrCjaKsC1kkYBdwEzgLnAk5KGAncA24t9XwdWNCDDf1Z84V8F/iyass4sqQOYTsoyGxhD5pmBa4BBETEdeBx4gkwzS7oPeA1oLZpORM5XgIXATGCKpIv705cyFvWZwAcAEfE5cGlju1O3d4FHir8rpLPyZNIoDmAzcBVwObAtInoiYg+wE5hIzftRs28ZPEs6aH8ptnPPPBfYDmwE3gc2kX/mH4BBxdV1O7CffDPvAq6v2a4rp6R2YGhE7IqIXmAL/cxfxqLeDuyp2T4oqXTTSFURsTciuiW1Ae+RztKV4oOEdDk2nCNz99VebWtqkm4BOiNiS01z1pmBc0gDkAXAMuAtoCXzzHtJUy87gDXAi2T6OUfEBtJJq6renO1AVx/7HlcZi3oX0Faz3RIRBxrVmRNB0hjgI+CNiHgbOFTzchvwB0fm7qu92tbslgBzJH0MXES65BxR83qOmXcDWyJiX0QE8Bf//pLmmPkeUubxpDWw9aT1hKocM1fV+x0+2r7HVcaivo00V0exkLC9sd2pj6SRwFbg/ohYWzR/XczBAlwNfAp8AcyS1CppODCBtABz+P2o2bepRcQVETE7IjqAb4CbgM05ZwY+A+ZJqkg6FxgGfJh55t/5ZwT6GzCYzI/tGnXljIguYJ+k8yVVSNN3/cpfuqc01tz9MpE0B704InY0tlcDJ2k1cCPpErXqbtKl6hDge2BpRBwsVs5vI52MV0XEBklnkEZAo4F9wMKI+PVUZqhHMVpfRhrZrCHjzJKeBq4kZXkI+JGMM0s6k3Rn12hSxtXAl2SaWdJY4J2ImCppPHXmLAatLwCnke5+ebg//ShdUTczs6Mr4/SLmZkdhYu6mVlGXNTNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjfwMRw/XZmKvm+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Finally, Poissonize it!\n", + "counts = np.random.poisson(counts_cont)\n", + "plt.plot(times, counts_cont, zorder=10, label='Continuous light curve')\n", + "plt.plot(times, counts, label='Final light curve')\n", + "\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## R.m.s. - intensity diagram\n", + "\n", + "We use the `analyze_lc_chunks` method in `Lightcurve` to calculate two quantities: the rate and the excess variance, normalized as $F_{\\rm var}$ (Vaughan et al. 2010).\n", + "`analyze_lc_chunks()` requires an input function that just accepts a light curve. Therefore, we create the two functions `rate` and `excvar` that wrap the existing functionality in Stingray.\n", + "\n", + "Then, we plot the results.\n", + "\n", + "Done!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# This function can be found in stingray.utils\n", + "def excess_variance(lc, normalization='fvar'):\n", + " \"\"\"Calculate the excess variance.\n", + "\n", + " Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source\n", + " intrinsic variance: the *excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{XS} = S^2 - \\overline{\\sigma_{err}^2}\n", + " \n", + " the *normalized excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{NXS} = \\sigma_{XS} / \\overline{x^2}\n", + " \n", + " and the *fractional mean square variability amplitude*, or \n", + " :math:`F_{var}`, defined as\n", + " \n", + " .. math:: F_{var} = \\sqrt{\\dfrac{\\sigma_{XS}}{\\overline{x^2}}}\n", + " \n", + "\n", + " Parameters\n", + " ----------\n", + " lc : a :class:`Lightcurve` object\n", + " normalization : str\n", + " if 'fvar', return the fractional mean square variability :math:`F_{var}`. \n", + " If 'none', return the unnormalized excess variance variance \n", + " :math:`\\sigma_{XS}`. If 'norm_xs', return the normalized excess variance\n", + " :math:`\\sigma_{XS}`\n", + "\n", + " Returns\n", + " -------\n", + " var_xs : float\n", + " var_xs_err : float\n", + " \"\"\"\n", + " lc_mean_var = np.mean(lc.counts_err ** 2)\n", + " lc_actual_var = np.var(lc.counts)\n", + " var_xs = lc_actual_var - lc_mean_var\n", + " mean_lc = np.mean(lc.counts)\n", + " mean_ctvar = mean_lc ** 2\n", + " var_nxs = var_xs / mean_lc ** 2\n", + "\n", + " fvar = np.sqrt(var_xs / mean_ctvar)\n", + "\n", + " N = len(lc.counts)\n", + " var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2\n", + " var_nxs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc\n", + " var_nxs_err = np.sqrt(var_nxs_err_A ** 2 + var_nxs_err_B ** 2)\n", + "\n", + " fvar_err = var_nxs_err / (2 * fvar)\n", + "\n", + " if normalization == 'fvar':\n", + " return fvar, fvar_err\n", + " elif normalization == 'norm_xs':\n", + " return var_nxs, var_nxs_err\n", + " elif normalization == 'none' or normalization is None:\n", + " return var_xs, var_nxs_err * mean_lc **2" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAADdxJREFUeJzt3X+MZfVZx/H37C52WVjStWxSja0YSZ/EmvBDGuiKFAVausaytsGitg20SOqqTbUuTbEpxdiSslaI1K2xglB/xtBCAqGI/YFCV1oICtSmzwLaJiZVSF3YFVja3R3/OHfY6zj77Pw4954zd96vZLNzz73n3u+c78x8zvM953zP1PT0NJIkHc6qrhsgSeo3g0KSVDIoJEklg0KSVDIoJEklg0KSVFrTdQNG4amn9nrOryQt0MaN66fmWm5FIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSNIdtO3aybcfOrpvRCwaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUGjF83x5qWZQSJJKBoUkqWRQSJJKa7pugKTJtZyP/ezeuw9YXt/D9q2bRvK+VhSSpJIVhaSRGdUe7jjMVBLL+XtoixWFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSp4eq1Ytp4uTZiynC6s8VVNdsKKQJJWsKNSq5bjHO6kXVk3q96Xxs6KQJJUMCklSyaCQJJUMCs2btwyVViYPZkvSHDwJ4BArCq1o23bsfPE6CklzMygkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWn8NCKt2H92kVP19Dnua/6euc+p8ZYfqwoJEklKwppCfq8d+wd7tQWKwpJUsmg6DnvASGpaw499czsUOjTAck+tWU2h1ek0bGikCSVrCh6ZvaecZ8OSPapLZLGx6DQWPRxuAr6OZxmEKtvHHqSJJWsKDQWfd1LdjitfW7TyWNFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJKTAkoTykn51BYrCklSyaCQJJUcepqlT3c6g37egU3SymJFIUkqWVHM0rcDgH26W5hVjbQyGRSatz6ElaTxc+hJklQyKCRJJYNCklTyGIVWtEk87tL1SQddn9I9iX3aNSsKSVLJikKaMF3vUffplG61w4pCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNC0oqzbcfOzqdjX04MCklSyaCQJJUWFBQRMRURp4+qMZKk/llQUGTmNPDBEbVFktRDi7nD3f6I+CzwEHAQIDM/2mqrJEm9sZiguK71VkiSemvBB7Mz8x+AncAu4LHBP43Q7r37PJVPUmcWXFFExO8APw38GPA48F3g3JbbJUnqicWcHvuzmXkusCszzwJ2t9wmDdm+dRMb1q/tuhmSVrDFBMULETEF7ImIC4FouU2SpB5ZTFBcSTNk9avAK4GL22yQJKlfFhMUbwRuB34L+EpmPtRukyRJfbKYs54+kJnnA38KvCUi/qP9ZkmS+mIxZz29EthCc6bT08B7226UJKk/jhgUEbE5M+8cWvRB4LPAJzPzeyNrmSSpF+ZTUfwecCdARFyQmZeNtkmSpD6ZzzGKqaGvrxxVQyRJ/TSfoJge+nrqsK+SJE2k+Qw9nRgRNwAPAEdHxJrM3D/idkmSemI+QbEZOBU4g2Zep2ci4gngYeCRzNw+wvZJWma2b93UdRPUsiMGRWbeB9w38zgiXgKcRBMep46uaZKkPljwdRSZ+QLw1cE/SdKEW8wUHpKkFcSgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVFnzjIkkalW07do7lc3bv3TeWz5uU28JaUUiSSlYUknpjXHvgM5XEpOzxj5oVhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSp5JXZCzSuuWiGjWtemtm8alUSWFFIko7AimKButjLdl4aSV2yopAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVJpTdcNmI+IOAe4CFgHXJOZD3fcJElaMZZFUNAExGXAycDrAYNCksakl0EREe8Fzh08/KfM/EhEHAO8B3h/dy2TpJWnl0GRmdcB1808jojjgWuAD2Xmk501TJJWoLEHRUScDnwsM8+OiFXADuAk4AXg0sx8fI7V/gDYCFwdEbdl5i3ja7EkrWxjDYqIuBx4O/DsYNEWYG1mvjYizgA+Dlwwe73MfMf4WilJGjbuiuIJ4M3Anw8enwncBZCZ90fEaW18yIYN61izZnUbb9ULq1dPAbBx4/qOWyJNBn+nFmasQZGZn4mIE4YWHQc8M/T4QESsycz9S/mc3bufW8rqvXPgwDQATz21t+OWSJPB36m5HS44u77gbg8w3LJVSw0JSVK7ug6KLwObAQbHKB7ttjmSpNm6Pj32VuC8iNgJTAGXdNweSdIsYw+KzPwmcMbg64PAu8fdBknS/HU99CRJ6jmDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSaWub1wkSQu2bcfOJa2/e+++Vt5nsbZv3dTJ5y6WFYUkqWRFIWnZWeoe+Uwlsdz27LtiRSFJKhkUkqSSQSFJKhkUkqSSQSFJKhkUkqSSQSFJKnkdhaQVx+snFmZqenq66zZIknrMoSdJUsmgkCSVDApJUsmgkCSVPOtpCSLiHOAiYB1wTWY+3HGTtAT2Z/fsg/a1sU0NiqVZB1wGnAy8HvCHenmzP7tnH7RvydvUoaclyMzbaTrhPcDNHTdHS2R/ds8+aF8b29SgWIKIOB64HvhQZj7ZdXu0NPZn9+yD9rWxTSf2gruIeAjYM3j475l5yQLWPR34WGaePXi8CtgBnAS8AFyamY9HxKeBjcB3gNsy85YWvwUNiYgPAG8Cvg/YkZk3LGBd+3OJIuJi4OLBw7U0wxgvz8yn57m+fTBLRBxFs4d/AnAA+JXM/MYC1h/bNp3IYxQRsRaYmtmAczz/w5n5rdlfDx5fDrwdeHZolS3A2sx8bUScAXwcuCAz3zGq70GHRMTZwCbgJ2lK6N+e9bz9OWKZeRNwE0BE/BFw43BI2AeLshlYk5mbIuI84CPAW2ae7NM2ndShp5OAdRFxd0R8cbDRAIiIo4G/jYgtEfE+4NpZ6z4BvHnWsjOBuwAy837gtNE1XXN4A/AocCtwO3DHzBP253hFxGnAqzPzT4aW2QeLswtYM6gEjgO+N/NE37bppAbFc8Dv0/yBeTfwlxGxBiAznx8svx64EHjr8IqZ+RmGOmzgOOCZoccHZt5PY3E8zQ/9hRzqzymwPztwBXDV8AL7YNH+h2bY6RvAp4A/nHmib9t0UoNiF/AXmTmdmbtoxuZ+AGDwB+Yq4G5gL/CuebzfHmD90ONVmbm/3Sar8B3g7zLzu5mZwD6aMVf7c4wi4qVAZOaXZi23DxbnN2l+rl9FMwpy82DYvHfbdFKD4p0043NExA/SJO23B88dDTyWme8Cfo7m4OiRfJlmPJHBMNajbTdYpfuA8yNiatCfx9CEB9if43QW8IU5ltsHi7ObQxXAfwNHAasHj3u1TSe11LsBuCki7gOmgXfOJGtmPgd8YvD1PobKvcKtwHkRsROYAuZ9BpWWLjPviIizgK/S7Nz8WmYeGDxnf45PAP82e6F9sGjXAjdGxL00QXBFZj4L/dumE3t6rCSpHZM69CRJaolBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNKkXnAnLVhEHAdcDbwO2E9z5ez7MvOhlj/nKuDzmXlvF+tLC2VFIfHiXP530kylcHJmngz8LvC5iHhZyx/3Og5N1dDF+tKCeGW2xIs3oP8UcGJmHhxavhl4MDOfjIgrgLfR3GTmbuBy4BXAPZl5wuD1HwbIzA9HxLeBW2imf94P/ALwUzQ3l/lP4Ocz89Ghz7qHJqheTTNb6Jk09xw4Bjg4WPaa4fWB54FPAi+jmTX5NzLzn1vdOFrxrCikxinAA8MhAZCZdw5CYjPNHfZ+YvDaE2mmPK+8HPhCZp4C/CPw65n5aeBBmruPzTVp2yOZOTOn0hbg7Mz8ceA2YOsc698MXJ6ZpwKXAX+zmG9eqhgUUuMgzURqh/MzwF9n5vODCSZvBM6Zx/veNfj/a8D3z+P1XwHIzD3ALwEXRcTVNDOIHjv8wog4lqbC+LOI+Bfgr4BjRzBUphXOg9lS40Fga0RMZeaL47ER8VHg7/n/O1VTNL8/0/zfgDmKoRvKDGb+ZI7XHc7zg899BXAPzQyin6MZajpl1mtXA/sGx1Nm2vtDNMNXUmusKKTGvcCTwJURsRogIt5AM1Xz14EvAr8YEUcP7hp2CfAl4GlgQ0RsjIiXAOfP47P2c+SdtNcAj2fmtTRVxhs5dAB7P829lp8BHouItw3aex7NEJfUKoNCAgZVxJuAHwW+FhGPAO8HNmfmf2XmHTT36n4Q+FfgW8D1gz/W24EHgM/T3DPjSO4C/jgiNhWvuRtYFRFfB+4Hvgn8yBzr/zJw6aC9VwNvHa6IpDZ41pMkqWRFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNL/Al/GVmTFouw4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def fvar_fun(lc):\n", + " return excess_variance(lc, normalization='fvar')\n", + "\n", + "def norm_exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='norm_xs')\n", + "\n", + "def exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='none')\n", + "\n", + "def rate_fun(lc):\n", + " return lc.meancounts, np.std(lc.counts)\n", + "\n", + "lc = Lightcurve(times, counts, gti=[[-0.5*dt, length - 0.5*dt]], dt=dt)\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, np.var)\n", + "var = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, rate_fun)\n", + "rate, rate_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, fvar_fun)\n", + "fvar, fvar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, exc_var_fun)\n", + "evar, evar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, norm_exc_var_fun)\n", + "nvar, nvar_err = res\n", + "\n", + "plt.errorbar(rate, fvar, xerr=rate_err, yerr=fvar_err, fmt='none')\n", + "plt.loglog()\n", + "plt.xlabel('Count rate')\n", + "plt.ylabel(r'$F_{\\rm var}$')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "tmean = (start + stop)/2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAARdCAYAAADrBJcrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6B/DvTHonDRIILZRL7x2pFhZlEXVXXcvaK6uLnZ+6rnUVuwgiIoi9YEFEQBEJEHoJhJJcUkhCQkjvdSYzvz+mZMqdySSZnu/neXicuffcO8dkMnPfe855X5larQYRERERERF1LXJXd4CIiIiIiIicj8EgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUG+ru6AI5WU1Lhl3YzIyGBUVNS7uhvkpfj+Ikfje4wcie8vciS+v8iR3PX9FRsbJrO0jyODLuDr6+PqLpAX4/uLHI3vMXIkvr/Ikfj+IkfyxPcXg0EiIiIiIqIuiMEgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUB5dSM+/PkUSisbXN2VDvHqOoNERERERESO8tJnR1BV24zaBgWWDeru6u60G0cGiYiIiIiI2qm2QYGq2mYAQFNzi4t70zEMBomIiIiIiNqpvlGhf6x2YT86g8EgERERERGRjdJzK7D9yHmjbWoPjQa5ZpCIiIiIiMhGr3+dAgAY0ifSxT3pPI4MEhERERERtZNKZTgc6JlDgy4fGRQEIQDAJwASAVQDWAzNT3O99r+nACwWRVElCMI9AO4DoATwsiiKm13SaSIiIiIi8noXy+ux7tc0/G32AAxKiIBMJtPvO5hWpH9cU6+QOtztucPI4D0AakVRnALgIQArALwN4FlRFGcAkAG4WhCEOAAPA5gOYB6AV7WBJBERERERkd19+buIzIIqvPblMXyyNR0NTUr9vm0H8/SPS6sakXG+whVd7BR3CAaHAdgKAKIoigCGAhgPYJd2/1YAlwGYBGCvKIpNoihWAcgEMMr53SUiIiIioq7AcPJncmohFr+z22Lbk5llju+Qnbl8miiA4wAWCIKwEcBkAL0AFIuiqPvZ1wCIABAOoMrgON12iyIjg+Hr62P/HttBbGyYq7tAXozvL3I0vsfIkfj+Ikfi+4vaw9/P9nDpQmktYmMHOrA39ucOweA6aEYD9wDYC+AogJ4G+8MAVEKznjBMYrtFFRX1du2ovcTGhqGkpMbV3SAvxfcXORrfY+RIfH+RI/H9Re3VrFC23UjrtwO5uGH2AAf2pmOs3QBxh2miEwHsEEXxEgAbAGQDSBEEYbZ2/3xoAsVDAGYIghAoCEIENAHkKRf0l4iIiIiIPJharYbahuKAFTVNTuiN67jDyGAGgJcEQXgGmpG+uwCEAlgjCII/gDQA34ui2CIIwnJoAkM5gGdEUWx0VaeJiIiIiMgzLfsqBXUNCrx092Sr7QrL3HOmob24PBgURbEUmgQxpmZJtF0DYI3DO0VERERERF7r7Hnp1WYKpQobk7MxdVgcnlt3yMm9cj6XB4NERERERETu4LPf0rH35EVsPZDXdmMv4A5rBomIiIiIiBzm+6QsvPPdCbPttQ3GxeL3nrzorC65BQaDRERERETk1bYcyMXJbPM6gA+/tweAJih8+7vjzu6WyzEYJCIiIiKiLm3dr2k4lV3u6m44HYNBIiIiIiLyKPkltXj72+OSpR+ULSoolCqbz1VUUY/jmaX27J7HYDBIREREREQe5cOfT+PUuXL8sCvLbN+jK/bivjeTLB6rbDEOFNf+mma3ftlSu9CdMJsoERERERF5FF1A16JqDb7OF9diy4Fcs6QwhkqrGvDkqv1G2zLzqxzTSQ/AYJCIiIiIiDyKTCYDYDwS98bXKVYDQcByfUF7Ubao4Ofr49DXsCdOEyUiMpFfXIsvfhfbtd6AiIiInEem/a/hrMyGJqVRm+/+zDSbtinTH+kYDc0tDj2/vTEYJCIy8crnR/HnsQLsPVXo6q4QERGRBO3AIKyt0Nt2KA/ZF6qNtq3ZfMZxnWqrQ26IwSARkYkmheauXrOH3d0jIiLqctpI2MJZPtYxGCQi6oA/jpxHzsXqthvaQUVNExqblW031GpRqVBcUe/AHtlXdV0z6hutr/EgIiIypF8zaLTNvJ2HDdQ5HYNBIqJ2KqlswFd/ZODF9Ucc/lotKhUeW7kXT3ywz+ZjPtmSjqWrD0DMqzDbV9ugwNaDue0KLh1tyfvJ+Ne7e1Df6D59IiIi96aP+9qK9jys1IOzMRgkImqnZoXzpo+m5WgCurp2BEr7Tl0EAGRdMB+5XL81HRt2ZuHn5HMWj1e2qFBnMFKnVqtRXd9s8+ubsvXYDUmZHX4NIiLqYiTXDJoPDTIUtI7BIBGRG0vLNR7da2xWQqVWQ61WY9XGU9ivDfxsdbFcM320rKpRv61Z0WJUgPf5Tw7joXf36Ld9n5SFJcuTJUca23LwTBGWLE/G9sPn22xbUtnQ7vMTEVHX1JpN1Hq49+Y3x/HoimTHd8hDMRgkInKSU+fKUFhW1+HjaxsUePDt3Vj25TGUVDXicHox1mw+g/LqRqvHqdVqq6OZ97+1C/e+kYRf9uUAAC6UavrYrGhBs6IFWw/maftfbnNfda93KK0IALAnte3MrM6aydPWz4OIiDyB8ShgRn6l0Y1NQ5W1HZ/d4u0YDBIROUGLSoW3vz2BZ9Yc7PA5Hn5vDwAgI7/KKHJ6/IN92LgnW/IYZYsK732fivvf2mVWf8nUT7uzsU0b+AGASg1s2pvTrj5u2JmJjXuycf9bu/DVH2eN9hVX1OODn06ioqYJKRklVqePni+uxblCxyToef+Hkzb9PIiIyHVqGxRY+dNJ5BXVSO7XJYtJySjF8u9T8eoXx5zYO8s8bVoqg0Ei6jIOpxfjh11ZTn3N2gYFTmWXmU337KwTmWVGz6WCNpVKjXvfSEJqlqZtUkpBmyNi3+00XreXX1Krf6wbGayobsRHm06jqLweJzJLoVC2nnPrwTx9X/44km90ro9/TcMRsQQvrD+M9384ide/SrHYj/+uO4SXPj0ClVqNwrI65F6UvhjoiOOZpZr/j5omu52TiIhso1vq0JZtB/NwVCzB858cltxvOC6o+1yn9vN1dQeIiJxl1cZTAIBFM/rDR+6ce2G60TxD+04VorZegSsm9THbp1arUV7dhPomJXp3D7V43q93ZEhuNxxNKzOZProhqTUQPiKWtNl3lUoNuUGe7tyLNRDzKrDvTDEOnCnCgTOaKaCXjkvATZcP0qf5liKTtdZtrK7TjAheKK3D+q1p+jZSFwd3L9upf7xu6Vyz/Wq1ujW9uMFjIiJyTw+9uxu9u4dh6c3jrLazVh9QrVZL5YqhDmAwSERdjsxJ3yCWpiF+vFkTAJkGg8UV9Vi6+oD+uVTwY01dowIvfdpa7mLX8QttHmMtKcyS980X3OeX1GHP8QKjbTuO5WPHsXwLwZrxsaZ2n2h7LaElyhYVHnhrF2aO6YmSygYUlddj2f3TOnw+IiJyvIamFpw9X9nh43/cnYXN+3LRPTLIjr3qujhNlIgIQGZBFTZrE6h0Rnl1o3764S/tPN87G1KNnm/YmYlmK3dGTb3xteVpl1L+OHIey6xM1ZTy5fazbTcyoJu6c764Fqo2pgUVVVjPJvrehhNY/M4uNGmnulbUNKFFpcbOYwU4lV2OkspGKFtUyL1YY9MUJA4iEhF5ns37cgEAxW18Z5BtODJIRF1SfaMSz6w5gKtn9MfsMb3wv8+PAgAmDu2ub2Mx+5iVKOLxdhSHBzRrJy6W1SM+OhhF2rIPOlsNkrnYIq+otu1GBr76Q3qqaUfd+dqfnTq+oqYJG/dkY8G0fpL7T2jXPuYV1SA0yA++Pub3Mz/Zko79py/iX9eORFxUMOKigiGXa35fVXXN+PNovtkxRETkXvafvojULK4DdAYGg0TUJZ3OKUdVXTM+2yZi9phe+u1Kg5G4bYfycP3cgTafs73ZKY+kF+MD7TrG2/4itOtYb7Vpbw585NaH7N7/4SRqGxQY2jfSbN/+05q6i19uP4uKmiZcMioePSKDMHdcAtZvSdMHlB2lVqtRWtWImIhArk8kInKQNb+cMXreolI5ba1/pzmrTpKdeMhPlYjIviwFbu39CH9x/WF9iYT2BoO6QBAAPt0mtvOVvddPe85Z3V/boAAAqxladVN1k1ML8cOubGzccw6lEvUYG5qU+P1Qns2/u90nLuCpD/fjt0PnsfvEBX1Nxq0Hc7Hyp5M2nYOIiNrnoXf3IOVs24nPqP0YDBJRl7R+a7pdzpNzsQbbDrRvOic53/Yj5yUz0337Zwa++TMTT65qe3qvSqXG3lOakceNydlYvzUdz36sqRu5YWcWjtqQoZWIiNqvsbkF7/94En8e41R/e2MwSERdgkpl25hfnXbUyZrDaUVGzw9qn3vYzJAuxzTZgEKpwsVyzba6RmWbo4NvfJ2CzPwqAECzwvbEPkREZF3K2RIkpxbine9OWP0s/uL39iUxo7YxGCQir5JfUiuZsnrp6v36x2ork0GX/2A81e/9H1JR12gcIJoWeNdNSeQdS89iWshY2aKCssVykCd2IhU6ERFJq65vxvs/nsS6LWk4mV2GJJPyRZ7G0+4LuzyBjCAIfgA+BdAPQAuAewAoAayH5ud5CsBiURRVgiDcA+A+7f6XRVHc7Io+E5H7em7tIQDmNfpKq8zXi+ms3nRa/9j0jmRKRil+3J0NH5kMC6b1Q3iIv+Q5ftl7DtsOcbqopzG8cfD2tyeQW1SDj56YLZmp1BYKpQp+vrzPSkRkqyXLjWvacpaNc7nDN9aVAHxFUZwG4EUArwB4G8CzoijOACADcLUgCHEAHgYwHcA8AK8KghDgoj4TkYvkFdWguNK+tYUOnimyun/nsQL8cTQfS95PRkGpeeF0QJP0hF9gni23qAaAZm1KR5mOIks5lV2Gb3Zk2FQLkYioq+Fno3O5fGQQwFkAvoIgyAGEA1AAmAJgl3b/VgBXQDNquFcUxSYATYIgZAIYBeCw+Sk1IiOD4evr48i+d1hsbJiru0BezJvfX7padov/Nhq+PjJcNqmvfl+jwahebGwYUjNL8OmvZzBmcHejc4SEBXX49f+jTRhC3quqUYmoqBBEhNp2v9Hw7y06OhRR4YFW27+tfQ9fd9lg9IwJ7XhHvZg3f4aR6/H95R4s/R5CQjx7rMeW7wF34g7BYC00U0TTAcQAWABgpiiKutsCNQAioAkUqwyO0223qKKi3tpul4mNDUNJSY2ru0Feqqu8v1Z+fwIAMLp/lH7blgO5+sfvf3MMvx8+DwA4m2e81mv1Dyec0EPyVP9ZvR++PjLcceVQDOkTiciwADQpLI8WGv69lZXVoqWp7dFBACgtrYUf74Cb6SqfYeQafH+5D0u/h7q6Jif3xL7Ky+ts/h5wFms3QNxhmugjAH4TRXEwgNHQrB80XJQTBqASQLX2sel2IvIyeUU1uP/NJJw613aB8G92ZGD7EU3QZ7jeTxcIStl1/ELnO0leTdmixppfzuCxlXsBAJuSrdc+JCIi+/hhV7aru9ApERZyC7grdwgGK9A64lcOwA9AiiAIs7Xb5gPYA+AQgBmCIAQKghABYCg0yWWIyMtsO5iHZqVKn0K6oqYJjc3SqaZ/P3weX/+RgaZOrPMiasvWg5aTA53ILHViT4iIiOzHHaaJvgNgnSAIe6AZEXwawBEAawRB8AeQBuB7URRbBEFYDk1gKAfwjCiKltMDEpFHqmtU4IA2oUtxRQM2JZ/DxuRzCA7wxYpHZlo8btO+c8g4X2VxP1FHtbVO9L3vU/WPq2qbERbsBx+5O9xrJSJyH43NSuxMaS0bUdugwJ5UztRxNZcHg6Io1gK4XmLXLIm2awCscXiniMjpquubERbkh/2nLhpt36idnlffpMQFC5k8AWDrAZZ1IMewlEFWygvrNTnN3lo8HZFh1pMgcLkgEXUF1fXNOJFRit2pF5BVUK3f/tm2dBwRS1zYMwLcY5ooEXVxR8USLFmejJ/2nINMJrPYjmv9yFO8/e1xAMChtCKs/PEkyqsbkZxaKJky/afd2fhxd5bRtpSzJcgvqXVKX4mIHCU1qwxLlifjk63pRoEgAAaCbsLlI4NE5PlOnytHZFgAesaEoLZBgbWbz+DqGf3RLy5csv3xzFIcOH0R9/51OPaeKsQnW9IBADuOnse1MwdYfB1dohgid1dQWodmRQs+/Pk0AODoWc1FT0Roa2KB1Kwy/LArCykZmjWHuve+QqnC+z+eBACsWzrXmd0mIuqUi+X1KK5owKgB0QCAI2Kxi3tEbWEwSESdolKr8ZZ2FGTd0rn4/XAeTmSVISO/ymyNX2FZHVZvOo28Is2Ix9xxCdhtMNrX0NQCKwODRB7l/rd2mW2rrG1Nmf7dzkzJ41Qqzh8lIvdTWtmA4soGDOsXZbHN0x8dAAB88OhMBPr7Ijm10Fndow7iNFEi6hyT69aWFs0GRYvKrOnqn1sDQZ3aBuNaPFxHRd5s4x7rJSoKSmqxZvMZo20q7R+FWq3G57+JOJ1T7rD+ERFZ8uSH+/HmN8dR32ie3bu+UYE3vk7RP1e28MvcUzAYJOrCpNYvtfscBtHgqewyfQp+w3OXVzcir6gGjRKFu4sqGoyef7n9bKf7ROSuKmosF1M+X1yL/6w9hGNnW9fR3Pnan7h72U4oW1TIuViDnSkFeOub487oKhGRpGal+Xf5OxtOIC23wmibUuKmsLfz9/W80IrTRIm6qN0nLmD91nT8794piIsKtvm47UfOIzI0ABOGdDfb9/Z3J/SPDe8KPv7BPgBA98ggo/bLDVLyE3V1r3x+xOK++iYlWgymjzY0KREUwK9wInI+qfvIpslhPt2arl8r3VX857YJEBJj0NzQ7OqutIvnha9EZBfrt2qSthzU1vTTKa6oN5u6aejrPzLwwcZT+ufWBhdN7wqaLgesb5IuJE/UFTUrLN9FT8+twG+HWsunvPrFUavnUqnUyL1Yw/WHRORwUp8zXS0QnD+5D/rHhyMi1HpJIXfEYJCIjCxdfQAPv7fH5vbZF6ot7vvid5Mpn8wOQ9QhH/58GkcN0rDnl7TWPqxtUBglpgGA3w7l4YX1h7H1YK7T+khEXU91XTOe/+Swq7vheh58ecNgkKiLU6vVSDpegOfWHoJCafv8/oqaJiiULXjty2MW2xxOL7K4j4g6R9miQnl1Ix5+bw8eXbFXv726vhkbkjR1C09mM9kMETnOp9vSWRMVgMyDo0EuOCAifLZNBADkXLQ8ync6pxw/7motjP3Yyr2Ij7a+1tB02ltReX0neklEhpZ9dcxsnQ4ArPs1TbJ9Q5MSMhkQ6M+vfiLqOMMEcWVVjS7sCdkDvxGISM/a+iKpDIaFZdaDuxaVuktmEyNyBtNAsKKmCQfPFOFCaesUUsN71Yvf2Q2AheyJSFpDkxIBfj6Qy1s/OeoaFQgJ9DNqV17dhNWbTuO6WQOMpqx3ZZ68CobBIFEXkllQBZVKjcG9u0nu33/a/tM6730jye7nJCJzj63c23YjIiIJCqUKi9/ZjT49QvH8HZMAAJuSz2Fj8jk8duMYxEW2zgR69YujUANWl4mQ5+CaQSIvse9UIb40Tdhi4n+fH7X64V1e3Trdo4BrAIi6hBOZpZzqRdRFFVfU4/0fUlFQqvnOzytq/e7//fB5AMCJjFJ8uzNTv505ir0Lg0EiL/Hx5jTsOJYPhUQxWFMpBimfN+3N0T82/IBf8eNJ/bTRxmaWgCDyROL5SjyyIhlvfJ0iub+0qgHvfZ+KJ1ftk9yvUquxbksaTucwEQ2Rt1Gp1Fi3JR0pGaX4anuGxXYtajVauOTDzKIZ/T16eqgOp4kSeRlrdf903v/xpOR2w7VGDU1K3P36TgBARKi/XfpGRM5XVduMqtrWIsgVNU34cXcWrpmRiLoGzY0eNYD6RgW+2ZGJK6f2RVyUZkpYZn4VklMLkZxayLWGRF4g6XgBFAoVLp/YG/9evgd1jZrPAGvZxHceK3BW9zxCZFgAoiMCsXB6f2xKzoEaao8OChkMEnmYwrI6+PnKERMRZPdzV9S01iqrrm8tPG94IUlEnu2L30WkZJSirkGJqy/pr9++eX8ukk8WIutCFV65ZwoATRIonfziWoQE+SEyzPOKKhORhi57+OUTe+sDQVMqtRq7UgpQ39Q1ZwVdPqE3th85b3H/W4un6x+rvWDSLINBIg/zzJqDAIwzAtY3Kiw1R7OiBQ+9tweXT+jt8L4Rkfurrtfc3DmTW24U7DU2a6aY1zVIf548t+4QAGYjJfJGhkFNxvlKfN5GDgJvFhrsJ7n9wUUjjGZQGfPcoUEGg0ReICO/Sv/Y8B7VhdI6bNiZCYVShS0Hcp3fMSJyO7qSFM0KFU5ml5nt9/z73ETUGblFXTuBnNxCXDdhSHezbX+fPRDf7czE+MGxDu6V4zCBDJGXKiipxbMfH8SJLPOLPSIiW9RbmEZGRO6lRaXCc2sP4tf9OZ0+1zc7LCeT8WaXTUgAAIweGINLxyfYdMxfJvfBR0/MRt+4MEd2zaEYDBJ5mXJtivgLbRSEJyIylJSiSRJhmIRq5U/SyaaIyPnOnq/EoTTpesDl1U3IL6nDD7uybTpXUbnxNUJeFx8NBICbLhuMVY/NQkJsKG6+fDAmD+th03G+Pp4dTnl274kIgPG0ruQTBTgqFkNtS1pRIiITtRbWDBKRa7325TF8+PPpdh+363gBVvx40ui6QLcGmDRevHMSACDAz0e/7d6/DsOKJTNc1SWnsfuaQUEQ4kVRLBQEYQaAUQDWi6JoabUlEXWSQqnCnhMX9M8/25IGALj/6uGu6hIRERHZ0YHTFzt87KfaDKJFFQ36bdZKSXQ19y0cjoTuoWbbZTIZggP98NRNY/UJtryRXYNBQRBWAVAJgrASwFcAfgcwF8B19nwdImr1++E8pGSUmm0/k1Phgt4QkTdY++sZhARKZ9TTKa5swHNrD+LOK4di4pDukHlyoS0iN5ZfXIuPfjnToWObFa1BzNMfHbBXlzxefHQwquuaMW9SH0yUSAxjSOgT6aReuYa9RwYnAZgA4L8A1oqi+LwgCIft/BpEbk/ZonL4HPLCsjrER4fgTwvFYHcbjBYSEbXH3pNtj0Is/XA/AODDn0/jiFiCBxeNcHS3iLqkmg5O3f50Wzp2Hee1gBRdLVWy/5pBH+05rwawVRCEYAAhdn4NIreWlFKAe99IQqZBuQdbncouQ522ZmD2hWoUV2qmdBSU1mH1ptNG00R09QYNC8UTEbnCkfRiAEBpVQMyC9r/2UdElnV0zJ2BINnC3sHgZwAKAeSIongQwFEAq+38GkRu7cfdmkxe+8+0b35/Wm4F3v7uBN785jgA4OXPjujvvL/73XEcPFNkNk1k/dY0O/SYiMh2d772J4oqpLMVP7lqP/73+VG0qLgeicheTGdgM0Ec2ZO9p4n+BuA9URR1E5RnABho7QBBEG4HcLv2aSCAMQAuAfAuNEkSTwFYLIqiShCEewDcB0AJ4GVRFDfbuf9ELlOsvbjKvVhjtq/WQq2v3ScKHdonIiIpK360XnJCpQI8PNs6kdtSq80DREOlVQ1QqRgwWnLtzERXd8Gt2CUYFARhOjRTRD8GcJcgCLq3qC+ADwEMtnSsKIrrAazXnmclgHUAngPwrCiKSYIgfAjgakEQ9gN4GJo1iYEAkgVB2C6KIufIkXtq5+cwky8Qkaeoqbd9DdPrXx2DXC7D4zeOdWCPiLoOlVoNuZXJo0+u2u/E3ri3l+6ejNSsUmzYmQUAiAwLwIJp/VzbKTdjr5HBywHMAhAP4EWD7UrYOE1UEIQJAIaLorhYEIT/Atil3bUVwBUAWgDs1QZ/TYIgZEJTuoIJasit2COme/4T1v8hIvdVXddstm3LgVz94/veTMLr909FTLcgpOdVOrNrRF7HlpvFvJ0srVdMCHrFhOCKib0hg4w/KAl2CQZFUXweAARBuFUUxc87eJqnAbygfSwTRVE3rlIDIAJAOADDVem67RZFRgbD19fHWhOXiY0Nc3UXyEHkcs0nTWCQH+qUavzvk0N4/JbxGNxGauKI8ED947yiWv3j9dtENHlxfRtyHwtnJmKTds0rUXt9n5Rl9PzJD/fj5zcW6p9b+95Tq9UoKq9Hj6jgNtsSdZanvb+Ka4xvvkRHh8Lfz/j6duXGU87skkcY3KebS37Xnvb+sveawd2CILwBIAoGsbcoindaO0gQhG4ABFEUd2o3Ga48DwNQCaBa+9h0u0UVFha4u1psbBhKSszXhZF30M3T37ovB7uP5aOuUYnl36bgv7dPtHpcjYWsoLuPS5eOIGrLjFHx2JNq+7rSxg6mLyeyxPC7rqi4GjV1zYBMhoNnijBnbC/4+crx+6E8fPNnJgDglisG44Z5Q/kdSQ7jaddg9Y0KLF2ZbLTtXF45Vm08BWWLGk/fOg55RbU4qs3oS8DYQTFIySjFkN7dnP67dtf3l7UA1d7B4HcA9mj/tWfF1EwAOwyepwiCMFsUxSQA8wHsBHAIwCuCIAQCCAAwFJrkMkQuV9eo0Bdolhlt1yZ+MfhrKK1qwIofT+KO+UPRNy5Mf3xBaS2I7GXK8B64Ye7AdgWD8g7Mce4VG4KCkrp2H0ddz93Ldho9V6vVmDepjz4QBIBjZ0tww7yhzu4akUudzC5DkL8vBiaYT3iTqvm59tc0ZF2oBgCczqnAp1vTHd5Hd9IrJgQFpZa/d+68aigOninCjFHxTuyV57J3MOgniuLjHThOAGA4N+kxAGsEQfAHkAbge1EUWwRBWA5NoCkH8Iwoio2d7jFRJ72w/jByL9bgH5cOwuUTe0u2UWujwabmFnyzIxN5RbV4Yf1h3LNgGNZsPiN5DFF8dDCG94vCVVP7QqUGHlu5V7Kd1AjgvX8dDrVajZGJ0ejdPdRoPZcltsaC0RGBePmuyahvUqKxWamveQkA8yf3wdaDebadiLxek8LyFPfyauZ/IwKAd747AQBYt3SuTe3Tciv0j5c1q1oxAAAgAElEQVR/n+qQPrmru64aiukj4/Hr/hz8sKs1dOgfH45zhZoAOSTQD3PHJbioh57H3sFgsiAIfwXwmyiK5qvLLRBF8Q2T52ehSUhj2m4NgDWd7iVRByiUKvj5mudK15WC+HpHBrpHBkleUecV1eJwejFWmczpZyBI1rxyzxTJ7eHBfqjWZnMc0qcbbps/RHIEUCaT4ZHrRwOAjcGgbdHg+ufmoaSkBgH+PgAC8PLdk/Hsx5qAMDTYD+OFWPj7yrH/dJFN59O5ff4QrG/jDnegvw8auYbWYyx+Z7fFfYfSi7BoRn+z7Wq1Gp9sScPIxGhMGNJdv31DUiZiIoIwZ2wvh/SVyN0UlNTi7HkmYJLiI2+9Hps2Ig7zp/TFfz4+aOUIssTeVYD+BuBnAI2CIKi0//itTR4hObVQXzDe1PniWtz3ZhJ+2Zdj9RzvfZ+qKQAkwTQQJGqv6SPjzKYRTRsR36HpnT5y82P6x4dLtk2IDdUfc9dV5lP4esaE4PUHpmLBtH64dFwCFl8zEv+cN6TdfZoxKh73LRxutc2oAdHtPi+5p6raZnwscUOsqLwee1IL8YHJZ+bWA3n4/DfRWd0jciiVWo31W9Nw6lyZftuxsyX6vAN5RTX4z9pDOHq2xFVd9Bh/mdzH1V3waHYNBkVR7CmKotzkn3um8yQysW5LGjZbCPaOZ5YCAH7anQ21hWCPyNHuumoYnr5lvP55TEQgpo+M69C5Hr1hjNF57v3rMIwXYvH32QO0I36twkM062GnjojD9JHSazBiIoJw7cxEfYY7H5/WYLNfnPHC9R5Rwbh9vnmwKJPJ0CsmxGq/b7p8MOZN6o23Fk+32g4Alt48rs025FoZ+VVGz+salJL30/i5S97mXGE1dp8oxNvfntBvW/HjSdz9+k6UVjXg+U9YOc1WCbGhFm/EU9vsOk1UEITnpLaLovii1HYiT7HjaL7+8V3LduLvcwZg/uS+khco1e0oxkze4Z2HLsH2w+dtmopp6qW7J0tObVl2/9Q2jx2RGG3z1M6gAF8M6xspeZf59Qem6R/Pn9IXGflV+hsgAHDnlUOx5UAurr7EfEqfJb4+rfcan7t9Iu5ethMqtRpXTe2L62YNMLob3h7hwf64Ye4gm9oO7t2tQ69BrpNbZJyFT61Wo6ZegSXvJ1s4gshz7DyWD38/H0wfGa8fAZRi6cY0ta7EUbcrTyVZY+9pojKDf/4AFgLoYefXIHI60wLLG3Zq6mmdK3S/9MHkXGufmoOIEH9cOysRM0e3jprNGdsLl45vXcA+f4r0NBbDkbD/u2UcAvx9MKBXOGK7BVl8zSBt5lp/iTWslqxYMgOLrx1pc3tDUeGBuOUKAWHB/h06XhK/x8kGGflVEE3WTL306WG88XWKi3pEZF1pVQPKqqTzG37++1ms/TUNADQF0C3YfcL2LNCkwa+UjrP3NNEXDP49C2A6gBH2fA0iZ1IoVRbTFxeW1eH7pEzJfeR5+vQIldx+7cxEq8fpRubkMhmG9I3Ub791noDEnq1r8BZdkmhxpOqeBcOwYFo/DErohpWPzDSaCirl4etGYsqwHlgwrZ/VdlL91AWsCbHWp2PaW6B26qnhiKGhoQY/O0sG9DJe0zgiMard/Rg3OLbdx5DjKFpUVve/9uUx1NQb34w7V1hjlE2RyJ08uWo/nli1r+2G7V/qTWgNon3lJt8ljAY7zN7ZRE2FAuCqTnJ7lqZrrPzpJFKzpKezvfzZETQ0MT+St+gXF4a8IvNajwum9bOYWMiWqZw6fr5yjB4YLZkZbuqI1nV/tiSDiY8Owb1tJFqx5Pb5Q3HLFYLFoMxRnvjHWGzen4PLJ2jKr/Tu3hp8TxsRJ5mYBtAUIa+qbcZfp/czS3qzcHp/nMouR3iIv370fubonth94oLFfvzr2pG487U/zbbbksmU7K9JIjNsSWW90fMvfj/rrO4QkYeYObonMvIrMY/JYzrN3msGz6E1NpcD6AbgDctHEDlGRU0Tth7Mxd9nD5QsB2HqcHqx/rFarUZFTROiwgMtBoIAGAh6kVEDorFoRmK7p+aYTuW0Nu0HAIb1jQKQhSsm9sbvh8+3t5t2owsEH71hNLqFBjjlNfvGhWHxNa3TVCNCAzC0byTScisQHx3cuvbR4Ec4f3Ifq7WiBvaKwP1XD8eghG5obFaiuKIBowfGGAWDz/5zApQtKrz25TH9tlfvnYL/++iA/vnIxGiMF2IZDLqJZ2wZVSHyIJkFVWaF4Tkw2EHaH1yAvw8eNPhOiQoPBGDbLBMyZu+RwdkGj9UAKkVRrLbzaxC1SVecOzm1EB88alay0kxtQ2vSl98Oncd3OzNxjUT9K/JOS/4+2i7nGTsoBiP6R+Ey7eiXqb5xYVixZAaCAnztHgzet3A4DqUVISWjtO3GWiP6S5dpcFbmxgcWjcARsRjTR7SutewZE4Kxg2IwcWh3TBnWdqbUSUN1y9IDEB9tPvVVN1X3sRvHIMBXM1W1R1QwYiICUapd1yP06YYAbRbUiBB/VNXZXCaXXOjs+Uo0NCkxemCM5P7q+maEBfnZnGSJyFE+/PkUyqub9M837snGsH7tn+ZO5tmpdYIDfbHykZlm2bCpbfYOBvMA3A/gUu25/xQEYYUoitYXBRBZsP3weRSW1+Of84QOHW+tOPUv+3LQ0KjE9XMHGm3fd+oiAOCnPec69JrkvW6dJ+jrnN10mXlGS38/H6OSDVKCtclf7G3ysB6YPKwHGpuVbY5QtsdDHUw6Y4vQID/MHmNcQFwuk+Gh60bZ/bWGm1x4xUeH6INBQDNauvzfMxDo74N730iy++uT/elGe9c+NQcfbz4DoU8kZo7uCUAzEvO/z4/i8gm98Q+Jv1UiZzL9TN60N4f1AyWsenQWmpQt8JXL8a93dxvtu2ZmImaN7onwEMuJzIICHL36zTvZe9HI6wDmAfgMwCcA5gJ4286vQV3I1zsykJRS0GY7tVoNhbJ90zZ/2p2NbYfyoFCq0GxwLG8iez7D9WjtMW2E9ZGoOWN7Wd1vKlj7xSRV4N1RAv197XZntG+PMIz1wIQrDywagSdutB6U37XAfI1iaJCf09dSUuc1NLVg/+kio2m+Z3LKAQDbj7huOjZ5v9oGBd7dcAKZBVVW25nmOgGAghLp5HRdWYC/D8KD/REc2BrU6b6XB/WKsBoIUsfZO4S+AsBY3UigIAi/Ajhp59cg0hPzKhARGoAvfxdxOqcCqx+fBT9f6xfCLSqVUZKO+95McnAvydmeuXU8vtx+FntSjdcAhgT6oq5RqX/eMyYE4w2CnbsXDNOPDBt67+FLOpSobOSAaFw7MxHjBfOAasWSGWhScNKEI0wc0r3NNuFWymT4yGVoUakRGuSHQQkRRlNvw4P9WEuUiAAAvx3KQ2pWGVKzyrD2qTloMUhGdzyzFGO0U5g5VbnVtBFxkt+zltxx5RAsmNYPcVHBDuxV12bvYNBX+6/Z4DmzbJDDLPvKuNbUuxtS8cAi82omp86VISWjFLdcPhj3vJ5klqLeUIuVQrDkGfz9fBBjkNzlzQenobSqEQmxoahvUuDJVfsBAM/fMdGmkaCO1teTy2QWyz8EB/ohOLBDpyU7GTsoBikZpehjYSR51pieuG7WAJzMLsM7350AANw2fwgC/X3x9R9nkc87+26BxafJVVpaWt97dy3babRv+fepAIArp/RFcUWDU/vlzkYNiLYpGJwgxKKipgk+cjkDQQezdzD4JYAkQRC+1j7/B4Cv7Pwa1EVl5FficFoxbrxskMX0+2m5Fdi8L8ds+9vfai7kdOuTsgos5zW6YKGuIHmuqPBAfaYxw+knHblZe/Plg/Hl9rMYO8jzpk+SsfsWDkd+SR36xxsnJBg7KAZHxBL06aHZPjIxGuuWzjVqc9mE3vppiX17hCG3qMY5nSYzD727x9VdILJoy4FcV3fBrST2DMd/bpuAlz49YrWdYaZQciy7LY4QBCESwBoAL0FTW/B2AKtEUfyfvV6DurZXvziGP47mQ8ytwDc7MpB7UfriS6G0PPXu6z9Yr8pTxUc7587g3QuGIjrccrmFS8cnYO1TcxAd4b3DerpF+EEB3p2Vzd/PB4k9w82mcN21YBieumksJkhM79UZ0b81Ic2D14xw6rpQsiznovSNPpVajcz8KijbKHJPZKi8uhFF5fVtNySbRYQEoH986+ysF++c5MLeEGCnkUFBEMYC2ALgDlEUtwLYKgjC/wC8JgjCCVEUU+3xOkQAcPRsCf48VmAxNX+zSSKZNG0iAQBIzzMv+E3u7+On5uB8US1eWH8Yf5nUB9sO5dnlvFJZN6eNiEeQvy/e//EkBiZESB/n5es/bpg7EHK5DIs6WV7lP7dNQFiQY7KnOlKAnw+EPtZrVUWFB+Ljp+boZym88eA0FFc0GNUzlBIS6AuZTGZUzobs58X1R/DW4unIL67Vb1O2qJCcWojPtJmAn7t9AvrFWV4qQKTz+AeampemMwMAoKiiHrWN/DtuL13t59vnD0F9oxIJHUz4RvZjr2mibwL4hyiKSboNoig+LQjCLmiyiV5mp9chQpPC+jLUvSeN56K/8c1xR3aHHOjluyejoVkJuUyGvnFhWPPkbPjI5fpgcNSAaKRmlQEAIkL9seRvoyFvzwiNhaZjBsXgoWtHYnCfbp39X/BIEaEBuHvBsE6fx/DurzcynK7eLTQA3UIDcMmoeCSnFsJHLsOVU/ril305eOIfY/HG15r1ze8vmYmPNp3GgTNFruq219PVmdV54K1dCDTIsPvi+iNmF/eFZXWI7RZkcQ2xskWFksoGyVqW5Ll2n7iAH3dn45V7JiPEoOzPa18cxdl8yxlC1Wo1/m/1AWd00WvpysCQ69lrmmikYSCoI4ribwCkq8EStUMd7755pY+emC25vW9cGJ6/YyJ6xoRgQM/W0Tkfk/zcc8cl6B8/e+sE9I0L05eV6MysPZlMhrGDY40uDohsEWGQ+vyamYlY/fgsDNKOMCf21ATHt3awbip1TItKbZRFWKe8uhFLV+/Hxj3ZeGbNQaz55YzFc6z7NQ3PrDkIMa/CkV0lJ/pxdxbWb01HdV0zTmWXo6m5BVV1mvyHlgLBi+X12HYwjymLyKvYa2TQTxAEuWlxeUEQ5ABYFIQ67XBasf6xPQtqk2v5+sjRvVsQiiuNM6399/aJ7T5XlMk6vzljeyE9rxILp/frTBeJ2mVkYjR+3Z+LKyb2BgB9qZtVj86Cn5/mZkZ7CiP3jAlhUisHSMspx1d/ZKC4ogGb9uYAAA6nF2NBcS16dw9F0vECCL276UcCdSO52YXVbU4hJs+weV9rYhc11Hh05V40NCnx1E1jzdpW1jbh7PlKfPjzaQBoV2kE0njixjHtm7lDTmOvYHAXgP9q/xl6FoD1dEFENsgzyNSXfLLQSktyZ4uvGYE9qYX6qZ0AMGN0PH7Yld3pc5uu4wsO9MNjN0gXHr/pskHILqy2mJWWqKMG9+6G5f+egZBA46/XAH/jZDwJsSFmpSkeum4kBvfuhpYWNT7YeArXzUrE5n25DAYdwNLygfVb0xEW7Kf/jDKdTnpMLEF6biVmjIrHBBvqWZJnqKxpRkOTZvRYKtB7dIXx1OP8klqzNiTt+TsmoqiiAUP7RbXdmFzCXsHg/wHYIgjCzQAOQ7MSZxyAYgAL7fQa5IF+2ZcDhVKFa2cmQtmiwoHTRRg3OAb+fpoLI2s13pqaW9cGJh2/4PC+kv2Fh/ijuq5Z/zwuKhhThvcwCgY7YuUjMwEAvj4yDOgZjkvHJ7RxhLHLJvTu1OsTWRNqQ9KcR64fY7a2LSosUD81eenN47RbmZbeudRWP5+yLmiylZ7MLpNMKkLuo7K2CWk5FZgyvAdkMhk+/11Er5gQ3DBvqFnb73Zm6h/vSeUNZ3vq0yNMX6aH3JNdgkFRFGsEQZgJYA6AsQBUAFaKosjiP13cT7s1Iz7XzkzEH0fy8d3OTKRkxODUuXK0tKjx8VNz9G2PisUY2CsCEaEB2JlSgM+1md/IvY0ZGIPjmaWS+2aO7ilZ97GzDKfZPfPPCXY/P5GjRYYFQOjdDQMTIvDrfk3AJzVQzcFr11IoVfrsh+RY9Y0KrNuSjgXT+tol2+trXxxDcWUDQoP9MDIxGjuPFQAA5k7q1+lzk7TVj8/GfW8mubob1E52KzoviqIawJ/af+Tlvk/KQq+YEEwdEWdTe2WLSn/n7VxhtVktwBU/nsSxsyUAgKdvGW+xbAS5n9EDo3HXgqGShZ8H9orAmw9Ow++Hz+OIWIzukcE4X2x5es2l4xIwzkptNyJv8pR29E8XDEoZ1i+q0yPpZDu1SWaQI+nFmDK8h2s6o3XqXBkOpxXjtvlDvHpq+/Yj+Th2tgRpueVY+cisTp9Ptxa9rLrRaPvaX07hrvlDOn3+rmpYv0icyTFPpLTs/qlGN07eXzIDjU3Ws7+Te7BbMEhdy5YDmosXW4PBU9nlVvfrAkEA+N8XRzveMXK6+OgQs6ybIYG+ePzGsejTIxQymQw3XjoIN146CADMsrAF+vvqj7n5isHO6DKRx7hsQgIGJUTgpU+5/N4Zci7WGD1fs/kM1myWzjK642g+hvePQlxUsEP79Pa3JwBoZloM6CVd+9QbKFs0N4mbFao2WrbPZ9tEjBvcepOxoUmJpz7cZ9fX6OrkMhliuwUZbQsJ9GNGbg/BYJDsrqC0DkH+PogKD9RvO3u+tdi7aTBwJsd6oEju6+lbx2OgycXJ4mtGQOgTadO6KQCYOToeF8vqMXtcL0d0kchj+Ehk2pPLZBbrNa5bOhd3vqaZjCOVlZcc68vtZwFofg9qtRoymUz/X0d4/esUrH58tkPO7ena+rnnFFbrHx9LL7bYjtpmOnoOdH46+5sPTmuzhjQ5DifCk9395+ODePwD47tuuiLhAFBV25pQ5HROOd5kUXi389p9U2xqZxoIAppC49YCwdgIzd3DnjGalO1+vj64+YrB6BXDYs7UNT1+4xhcMbG3/m+iI26bP8Ri3U6dmy8fjBvmDuzwa5C0b//MwF3LduJ8cS2WvJ+MO1/7U5+Z0p5Ml1eQxvqtafj38mSopKIUrcMMAO0mwM+n7UbtFBUeqC/jQs7HYJA6JbOgCtsO5rXd0IK3GAi6pe6Rwfj4yTltNzTw8HWjcNn4BESGBVhtNzAhAo9cP9ogWyJR1zasXxRuvHSQ1ZGN+GjrUxF7xoTA10dutd2l4xNY58sBfjukWeP+33WHUFOvAABs3p9j9Zjy6kZU1zdbbdMVFJbVGWUOB4AWlRq1DQrUNSpQYsNo9+4ThahtUEBhZXrp3pOsC2gvt0gs5xjSt7X25iv3TO5QrWByHbeYJioIwv9BU4LCH8AH0NQtXA/NjMJTABaLoqgSBOEeAPcBUAJ4WRTFza7pcddw8EwRggN9MTIx2mKb/32uWd83cUh3REcEWmxHnsf0onFIn25Iz2ud7juiv3HNoDGDYjBmUIxN57b2niIicy/cOQnPrT2Ei+X1AICocOmbLpeMjMeGpCyjbT5yWevfs+XBE7KjmjpNUJhXVIPQID+jZRMA9LNnDMtTlFU1IjTYz+rIy4akTPx9tneM7pZXN+KZNQfRKzYEL9012Wjfw+/tgVwmg0qtNivh8eoXRzGgZwSuNxnl/u8nhzCsbyRLUTmIbuaBr48c7/xrOr74/SwWzeiPwrJ6DOvXGgxyhM/zuHxkUBCE2QCmAZgOYBaA3gDeBvCsKIozoKlZeLUgCHEAHta2mwfgVUEQrA9BUKes3nQa73x3wqa2yhYV1Go1yg2ydj3/ySFHdY2cbNVjs/DI9aONtvWK5Qc+kbP4+sixxOBv8PX7pwEA7vnrMEwfGYfwYM3UbKnRxVWPzdLX5iTnOJRehPpGBZ7/5DAe/2Af3ttwAkdFy1MVG5qUeGLVPjy39qDV82490PGZOO5Gl+WzoKQOaokpnpamfWbkVxktPdEprmhgIOggIYG+8PWR62tDR4QGYPG1I9ErNhQThnRHMBPFeDR3GBmcB+AkgJ8AhAN4AsA90IwOAsBWAFcAaAGwVxTFJgBNgiBkAhgFTZF7sqC6vhlhQX4OW9Bu6M9jBfoF9QCQV2S5hAB5FkesESCi9uneLQj3LhyG/nHh+pG+qcPjMHV4a1bnbmH+RsdMGd5DfwFHztOsUOFfBuV2TmSV4USWdKH6Mznl+Px3zXdnSWWj2f62KJQqKJQqyGTA3pOFmD4y3qgWa2ufWtCiUkvua8umvedQWduMf84T9NsKSmrx6TYRd101FD06mVFVl6HcEt21THpua0kDtVqNmgZFp16XpE0d3gMTh/RAZFgA8ktqMaRPZNsHkcdyh2AwBkBfAAsA9AewCYBcW7cQAGoAREATKFYZHKfbblFkZDB8fd3zIjY2Nkxy+5lzZVC2qDBqYOdrrZ3OLsPSlclYNGsA7lo4wmK7+kYFggJ8LQaMhn39NTkb2Reqzdo0qmAUCJJnM31/Sr1fg4MDLL6Pyfvxd+8af51l/ed+5YxQyHx8sPqnkwCAmMhgo9/V1XMG4XhWGeoaFcgzKaNAjvdHygVcPTNR/9wnwM8siVpbf1uxsWFY/m0KBvSKwFWXJOK2F7ahvLoJ86b0xW8HclFep8Div402O27RE5vQolLjl7eubne/N+45BwB47JYJSBGLERLkhy+2ZyCzoAobdmfjhXumtvucJQbJ5H7YlW2xXV5ZPZ5fcwBR4YFGs4/+vTwZtQwG7eaxm8fjrS81S39CggNw+bT+AIAJruyUh/K070d3CAbLAKSLotgMQBQEoRGaqaI6YQAqAVRrH5tut6iiot7OXbWP2NgwlJRIfwk/tSIZACTvHrZXcko+AODn3VlYOLWvZJvK2iY8umIvJgixuHfhcBxOK8bw/lEIC24d8v/k55PILKjCTZcNwofaCwxTL3x8oNP9JfuYP7Uftu7PadcxKx+ZiRaVGntPFmLsoBiz96fueVCArz5LXkN9s8X3MXk3a59h5HqThVh8HuCL+iYlGhsUZr+rJ24cg292ZCDvYg0C/X3Q2MyU7s7y1W/p+Oq3dP3zT342/05t62/rQmElth/Kw3YAk4RYlFc3AQDO5mrKNOUUVKKkpAYqtRotLWp9IfAWldqm81tTUlKD5z7aDwDoH6+5JCurbEBJSQ1qGxQ4mV2GyUN7mK05b1a0wN9khkllpW3XaLuOahL0lJsUj2cgaD8+chmG9Gq9xG5sNP/cINu46/ejtQDVHYLBZAD/FgThbQDxAEIA7BAEYbYoikkA5gPYCeAQgFcEQQgEEABgKDTJZbxWXaMC6bkVGDc4tt3TPKvrm3E8o1Ryn0qlBmSa+lUFJXUAgCNiCfoeytPfnRtqkBnqx92abbrEBeTeHrhuFE5nl1qcpjsiMQqnso1rO+qmDc2b1MfquZ+7bQL+7yMG/kRE9mCtHALQWojd0H1v7pJoCZwrNL4AfX7dIeSX1OGluyY5JODXvV7uxRrkF9fii+1ncfZ8JQ6eKcK/rh2pn558rrAaL316BNfMTMRfp/Vr9+vsPFZgz26TiaF9I/Gva0ca1w9k0uEuxeULCbQZQVOgCfZ+AbAYwGMAXhAEYT80GUa/F0XxIoDlAPYA+BPAM6Iotn9yvQd57/tUrPzpFI6KJe0+9tXPjyK/RDoYeOi9PXh6tfkF/YXSOv3jNIN5+TrFFSxo7Amkbhzcs2CY/vGIflFm+23VIyoYDy4aAV8fGWaO6dnh8xCR+3j2nxNw7cxE/OOyQUbbRw9g1l/Hs37Vfe8bSR0+c772Zu9/1h7CK9rM31IKy+qQV6QJ7DYkZeJIB2ryPbfuEM6e10zWSs0qw71vJCE1qxQqtRop2hvTG3dntxn8kvPFdgs0W0fKWLBrcYeRQYii+KTE5lkS7dYAWOP4HrmHzHzNEsliK3V21Gq1/uLf8HGRYeBm8tnb0KREQ5PSLHvX/tNFdug1uQXtr3bMwBg8/LdRADQjgtX1CqTltI4KvnrfFPhbWVf71uLpaFYY31GeMKQ7Jgzpbv8+E5HdjB4Yg/2nL6JvnPTUIMOP/8Se4UjsGQ4AiI0IwvIfUvWfHVsP5JqVqiD72X/avP6d4Xd5W84Vmq/hT8+rlMzOqd+fW4Hq+maMF2LhI5fjmTWaDKarH5+tz1Zqj6Uq725IBQD9aKAawN3LduLqS/pj4fR+nT4/2YcuEPRhDdIuyy2CQeoYMa8Cy75KwZK/j0K/uHAseT8Z181KxFVT+9l0/F3LduLKKdJrCcmzDe7TDXnFtfoLPAAIC/ZHWLC/UTDYI9J6Bri2CsgTkXu6fb6AGaPiMbhPN6vtTGOO0QOj8dRNY9EvTvPZMW1EnFEwOHtsLySlcNqevSiU5tNAH1mxF9V1thWkf+nTI5Lb71q20+Ixr3+dAgC4fs5A/GWy4dKA1gDywbd3Yf6UvqiubcbCS/rpt5/KLrOpX4ZM32M/J59D1oUqo+Uo5BqThnbHAm2wLpPJEBHqj6raZrPfGXk3BoNuqq6x7YXRWw9q7uBt3HMOV0zS5Nz5YVe2zcEg0HY6Z/JMf589ECP6RxsVgtUZOSAa+CMDi2b0d0HPiMgZ/Hx9MKQDF9symQyCQRr5iNAALL15HF778hgAoFcM64s6mq2BYGdlFlQZPTccjWxsbsFP2nwBO47l67e/bWPtYUNinnmuv1PZ5WZr18m5Hr1+NEYkmkwF198PYDTYlbh8zSBJe+T9vR0+1jTDFmfoe7Z1S+fixbsmYaLE1Mx+cWGYNLS7WQF4P185Rg2Ilqwv1iMyGGuenI2F0xkMEnVVE4dqPk9s+RwY3Lt1dLFfvGelTCfLjp0twafb0ttu2EnieauJ38mB7r96uOWdVuI9jgx2LRwZdKGa+mb4+sglC8BKZRBrbFZix9F8zBjdE+HBxoWFZQZ/1Q+/t8f0UJRXN+LxD/bZodfkCgmxoZ8Wo20AACAASURBVHhg0Qgcfu1P/bYVS2YiOFDz3jmUVoQPfz6NO68catP5fOS8D0TUlQ3sFYHVj8+CXwdq8V41tS9+3W95VklkWAAqapo60z1ykl3HL+gfl1V5dU6+Lkkmk8FHLoNabZ65ViYRDXLwoGviFaEL/Xt5Mha/s9vm9r/szcEPu7Kx7tc0o+1qAM1K62mjdxzNt7qfPI8uEASASUN7YOUjM3HJqHgX9oiIPEl7AsEHF43A+MGx6B8XjvFCrNn+vj1aRwz7WUhaQ+6NZYM812wr2b0/eHQWVj02C927BRltDwyQ+PvXBowcGOxaGAx6kDJtwdWL5fXYdbwAqVmahdy5F2vwyRbrUz1OdmDRNzmXv58cM9oI5j56YrbFfVIjzERE9jBhSHcsvnakWTFxAPjPbROw5PrR+uc3XDrIrA0ROY6/n+UbO36+cvj5yvHyPZOxYslM/fbesaGWT8h5ol0Krx7dRHVdMz7efEZy3/dJWZg/uQ+aFZqpo8UVDfh0m9iu8+vqDZF7MkzjHejvi+1Hzku28/WRQyYzTgtPRORMvbuHYnDvbhgzMAZzxvZCgL/xhajpCAQROc/IxGj9AECCQT4BXx85fH3k+OiJ2ahvUkoGkNNHxmPrwTwMl0g+R96LwaCLGKaTziqosloQFrCeJpq8S1s35FYsmYlmiXTkRETO4COXY+nN41zdDSKS8LfZA/TBYHy0efZfXx+5Wd4JnetmD8Cssb14Q6eL4TRRF8jKr8R9bybpn7cVCJJ3iwq3XMtv/GDztTlBAb6ICJH+ICciIiLvddn4BIv7TEfp20sukzEQ7IIYDLrAf9fsd3UXyE307h6KJ24ca7Qt2GDt370LraSFJiIioi5Fat3uLG0CmTvmD4Ga60ionRgMukBVrXMKypL7ePT60fjLpD5m2/8+ZwB6RAUbbbtiUm9cOi4Br947BX6+/BMlIs8wtG8kosMDJfddP2eg2bawYD9Hd4nI6/TpYZ74JT46BOuWzsWkoT1c0CPydLzSdLLdJy603Yi8TmR4oFlheEC6zk+gvy9uvmKwWZBIROTOnvjHWLz+wFTJfZeOT8Dssb2Mtj38t1HO6BaR13jsxjGYMjzOaNt1sxJd1BvyFkwg42Trt1ovAUHeIyo8AOXVmsLLPaODER8djLUmNSKJiLyJzEoGrH/OE3DL5YNR26hA3sUaDOgZ4cSeEXmGyyYk4I8j0rWhh/eLMnr+8ZNzzKaNcpYotRdHBolsMKJ/VNuNTMgNLopkMhnkMhkeum4kLhlpUEuQpXyIyAvFR2tmNowXYnHp+AT9lHe5XIbwYH+MSIw2at+XheqJMHV4HEIC254+rSsZIbV+MCSQ4zzUPnzHELXhziuHYuKQ7njg7V2dPtfYQbEYOygWyScL7dAzIiL39ORN45CWU47Jw3pYHS0MDvBFfZMSz9w6HofSivDdzixU13FdPZE1z985CS0t0iWmYroF4V/XjkTv7laKyhMZ4MggkRXXzxmIS0bFt91QQs8Y8zWCpjgwSETeKCLEH1OGx1kNBAHg3YcvwarHZsHXR45pI+JZNoe6hIEJ0lOkxw2OxTCTgu83zjVPviSXyeDna7mMxLjBsYhliQiyEUcGiSxYt3Su/rG/nxzjhVgIvbuhV0wI3vjmuNVj/3HZIEwdHoeH39vj6G4SEXksXx85DK9pe0QG4Xxxres6ROQgN8wdCJVajWnD4xARGoD84lpsTD6HY2dLAACjBkRjvKCpLfzOQ5cgJNAXjc0tOJNT7spuUxfAYJDIBjKZDIuvGWm2ffm/Z0ChVOGJD/ZBZbBq+/IJvQEAS28eh7LqRsvntX9XiYg81j//MgTDB8YiK6+C0+nJq8wzKS+V0D0UU4fH6YNBw1IruhHy0CBO4CPH47uMujRLC637x4fbdHxokB8iwwLwyr2TMX5wrNn+wb27YapJGmgiIpIWGuSHv80dhH9cNggLp/fDXVcNNWtjWKJiynDWVSPPpUu0BEiXmiJyBgaD1KU9fet4s20+chn+PntAu87TIzIYC6b1a38H2lhPQ0TUFQUF+GLRjERMHRGHhdP76bffs2AYbr1isP75+MHdXdA7Ivswyi1g4XLA38/y2kAie2AwSF3KUzeN1T/uHx+G+OgQPLhohH7ba/dPxZon52BI30ipw+1Gd3HTj+nUiYgskstkWDSjtah27+6hRklpxg2Owf/dMs4VXSOy6v6rh9vUbvE1mmuQueN6Se4flRiNv0zug//ePtFufSMyxDWD1KUM6BWBF++ahI83n8FD140CAESGB+j3d+9E9i01bK/0umhGIq6+pH+bmfaIiMjcdbMSERcVDJlMhkEJ3VzdHSIzk4b2QHREIF757KjVduOF7lj71ByL1wNyuQzXzzHPKEpkLxwZJK/12n1TJLcnxIbi+TsmoVuoJgiMj9JM05jRjhISz98xEa9aOL+tGAgSEdlm2gjN2uuYboEAgKum9sN4wXyK6LxJveHrw89Wcg8DekqXkDDF6wFyJY4Mktd5a/F0hIf4wUcux6XjExAS6ItNe3MASC/RCw70xZonZ8NHbvu9kT49zKd3qm0fGCQiona4e8Ew3HHlkDY/p/8yuS9yCmsgnq90Us+oK3nqprFY9lWK5L41T87GPa8nmW1/+pbxCDXIFErkbhgMkteJDGud9nnz5ZpEA/pg0MIK7fYEgkRE5HzWPqeX3T8VF0rrEBHij0B/JtygzgsL9kNNvcJoWz8rmcYtvT8tFZgnche8Aiav8v6SGVb3t2ddHxEReYbYbkEYPTDG5vZrnpyNv0zu03ZD6rKumNjbbFuAhcyefzPJQB7AGxLkQTgySF4lJFB6KsbNlw9G1oUqjgASERF85HIM7t0N2w7mubor5IaW/3sGQoP8MHdcApoVLTh6tgQzRvUEoAn0mppbJI/7v1vGoaq2uV03JohczS2CQUEQjgGo1j49B+AVAOsBqAGcArBYFEWVIAj3ALgPgBLAy6IobnZBd8lNPHbDGLz17XGb2l46PgGXjk9waH8s3TEkIiLnuX7uQJTXNKGhSYnSqkb9dt16r5GJ0S7sHXmC0CDNjeWgAF8EBfhi7jjr1w+6BHTMbEueyOXBoCAIgQBkoijONti2CcCzoigmCYLwIYCrBUHYD+BhABMABAJIFgRhuyiKTa7oN9nffQuHY/Wm0za37909FADQIyoY04b3wIBerp2X///s3XucXXV97//X3DKTy8wwSSYkGEggYT5yC8RgCJeQAFFucrGUYqMWRAEpFa0tooL1cvBYrXAUW2gboGitv0OL5Rwbi6DiBbBCxXh+UPQbo2jLUWQIk8yEmEmYzPlj7xkmyZ5JJrNvM+v1fDx4OOu71t77M5OPe+/3Wt+11kEzp7J61eF0HOyHgSRVypwZU/no5Uv5hwfX880fPgvAogUziEPa+NQ7T+SAgfPKC5w1cP7J8wfPMZcKGbjywPJFc5h5wGRWHncQzVMmVbQmaSwqHgaBY4EpEfEguXo+CCwBvpNffz/weqAPeDQf/nojYgOwCPj38pesUmiZOolPXLWMA6Y2cvUt3ym4zR3Xn8ba7/2CJR3tu2xfLfPzVx2/5zkGkqTye+OphzG5qZ4zlsyldWruy/rMIfeSbWzY87SBN5xkGMyqE448kMee/s0+b980qZ7zTppfuoKkMqmGMLgV+DRwB3A4ufBXk1Ia2GfXA7QCLcDmIY8bGB9WW9sU6uurIyRo79rapnD0gtw8+0/90XLe95cPs2LxXL6z7tnBbQ6c1cLbL1w0uNzevuctHuTfRaVnj6mUitVfVx3cNuy6GTOm8csXtnLiMXPoeWk7v3yuhzmzvfJjVt349mWc9yf/Gxi5/2prc8cGJ09p8H1QBY23vqiGMLge2JAPf+sjYiO5I4MDmoFN5M4pbC4wPqyurq1FLlWjdcf7TuPBf/8v/vFbG/a6bffm39LZ2QPAzGkN3PX+03m2c8tgGDw+2gfXa3jt7c3+nVRS9phKqZz9ddbxuXPBWhsnM3f6ZDo7ezhg2iQ2bdk+7GPOWDKXbz7x7LDrVR2mtzTyYnfhM4mWHjGLI+a18fmvpcGxoT03Uv8dfeh0Hv/x87Q3N/o+qD1U6+fjiDs4yljHcC4HbgaIiIPIHQF8MCJW5tefDTwMPA4sj4imiGgFjiB3cRlVsdraGs464RCuvvDoguvramsGT9RunbbnnPtXzZzK6197MH/ypuP4wzceU9JaJUn66OVL+cBbXjO4fOD0KbusH7h/rarbcBeNm9pUzzsvOJoVx71qj3UXrTiMq84/asTnfds5R/AnbzqOE4+eXZQ6pUqrhjB4J3BARDwC3EMuHL4b+Gj+ojGTgHtTSs8Bt5ILhg8BN6SUtg3znKoyr331rILjF61YwH97xwn86ZuO48C2KXusr6mp4U1nHM5R86eXukRJkmieMmmXq0LOnTmVO9532i7bHL7bjcSvcWdlVbju9xfvdZs3n3XEHmNHzs9NJz73xPmccOSBIz6+saGOo+ZPp7amZsTtpPGi4tNEU0rbgdUFVq0osO0aYE3Ji1JZfPiy1zJvdu6wdetUw54kqXr8+VXL+Mdv/YzfX3X44HlihTRPaWCE1SqTy85+NUfMa2POjCksO/LAgleL/dvrVjJnduse0/heNXNamaqUqk/Fw6DGh7raGvp2FnhnHcbrX3sw0wcu372bT//hSfz8V92DQVCSpGozq20Kf/Q7rxzxe/PrOvhNgWsRfPiy1/KL514JF2efcAjnn3IoP312E7fc83/KUut49bHLl/Jndz0+7PpXzZzK/33hpRGf46rzj2Lnzv7BI3ofv2IZAPd//5eD2xw4fQq/eXEr9XW7Togb+G7zuysP299fQRr3DIPaJx97+1JuWPPY4PINf7CEj3/hCQCueMORLDvqQO5/7D9Z/1+beOcFR9E0ac/W+vBlr6VrSy/TW5qY3tJUttolSRqrQuegHTGvjektTTzz61fCYGNDHY0NdRx96Aze/LoO/uHr68tZ5rhz+NxWfvrs5oLr6ur2fsh16RGzqCkwZXPo7uub3rGUHS/v3GObNbtN/5WyqBrOGVQVO3ROM5+4chlzZkzlr//klZm7UxpfCXsnHj2bmpoazlk2j/dcfGzBIAgwb3Yzxy2cWfKaJUkqp7mzpr6yMCSXnLFkLh+69PjyFzSOLHzV8LfzmNRQx2Vnv5r3v/k1HDqnBYDjFs7kjNe8EswLBcHd1dXWDvvdRMo6/5+hEX3o0tcO/jyp4ZV7NjbUux9BkiSAA9umcNnZr+b+7/+SFccetMu6Q+e08Ikrl/GBv/1+haqrHqctfhXfWvd/B5cLXUV8qBrg1Pzf8wNveQ09W3fQlj8F5Zs/HPn2HgNXKp/eUviUFUk5hkGNyo1/cDzP/LqbA6b55ipJ0oBTjz1oMLjsbvfbU3zkbbnzDO++/ycAHHXodP7jmRcH15930nx+8VwPT/58Y+kKLrO3nf1qlkQ7LVMnsXzRHHbu7Kd5yithsKG+lj9903HcufbHPL/pt3s8vr6udjAI7ouTjp7Npi29LDvKW0BII/HwjgB4+7l7Xmq5kMMOahn23j2SJGXBRSsWUFdbw4XLD93nx1xwyivbHnJgMycOCSnv+p1db01RUwMLDmoZ9rkuXrlgFNXum7eeGXuMvf61Bxft+ZcfexBTmhq44JRDmd7SxMwDJu+xzeFzD+DjV56wT8+3aMEMjpjXNuz6+rpazj/5UGYVeB1JrzAMitMWv4qTj5nDeSfN3+fHDNws/iRvuipJypiOgw9gzftO2+V+hKPVUF/Lxact4L2/dyyTGuq46/2n77L+9UuHD2J1Be5l0TJ15CmXd73/dG6+5mSuPP/IgutPW7zrTdjPPXEebzrj8D3qGs7ZJxwy7LrVqw7fp+eA3Pl9rz5k73/X91x87D7dV1DSyAyDE8hn3nXKPm133e8v5rb3ngrk9qwN7A3c9xtH5E7Y/uy1p/CONxT+UJEkSSM7+4R5HH3YjMHlRQtyPx80c+ouFzy58/pXrnp57onzmD1j12mnAJ+4clnBWT6rVx3OFfnP6rbmRpYduetO3AuXH8od1+95Vc3Z0/d8jZFcfNpC5rZP3WP8TWcczqrj9+8Io7dvlErPcwbHkcZJdfRu7xt2/b5cghkYnFZxx/WnUTvkKlyvffUs1n7vF4PLF54y8vSXfbmClyRJ2jfvvOAoNjy7maMOnb7L+NDP24tWLGDnzn5WHHcQxxw2g7/85ycBmNxYz4lHz6Zl6iQ65h7Ar198iSlNDXudJnnGkrm7fBfYHwfPyt20/fo3v4Z3febhXdbNanOaplTNPDI4jtz+3hUjrt+Xt/Khl7je/c3/4FnT+PgVr8zVP38vYVCSJO2bgamdu9/4fKimSfUcfdiMve5sra2t4dKzXs1rOtp3Ha+p4ZjDZtA4qY75s1v2GgTPPuEQpjY1DC4P/Q4wGgPTNYc+16olc3nXRcdw7IIZwz1s79zpLJWcRwbHsbbmRrp6evd5+zuvP22vHzDTm3M3gx/ppGxJkjQ6ZyyZyzO/7uYNozg//0OXHs/O/txJHDe8dQm1Bc4VHIvdn2/OjD2neQ7V2FBH46Q6ul/avsv4wG0cIHcl1H/53i9YdtRsDhvhIji71zD0PMhTjz2In/znpj1u0yGp+AyDZTa3fSrPdr406sctO/JAIHf0rx+Igw/g+je/hrvv/wnf/T+/ym+165v6Ocvm8a/f/+Xg8r5M62ycVMdt7z11l3sKSpKksZncWM+7Llo0qscM3GgdYMEwN2evq62hb+dozvofvXdddAyP/P+/5g/feDQbnt3MJ7+0jsmN9Rxz2HSOXThzl23feOphnHXCIUxu3LevmGcuPYRfPtfDhcsPGxxbdtRsjl04c5+fQ9L+8/9lZTZ0CsWAmhro38v7+EUrcpeRXji3lZ8+u3lw5sQFpxzKcxtf4k2rDt9jNsXQPX5vHMXlr4eetC5JkqrXbe89lZ07S/saiw9vZ/HhuSmpHQcfwGVnv5oj57UVvD0EMKoQN21yA++95LgxPYek/ec5g2XWn09982Y3Dxnc++NmtOambx4fswBYkv/ftuZG3v+WJcyfvedUjDj4lUsze9NVSZImnob63NTNcqmpqeHUYw8aNghKGl/c7VJmA7lvf2f9rzp+LscunEF7gTfhpkl1LHxVK0fOb+OkY+Z4o1VJkiRJwzIMltlAGGwashev/YDJPL/pt4PLk+pr2f5y4TkfNTU1zGorfO+fmpoaPvjWJbuMnX/yfL731HO0NTeOrXBJkiRJE4rTRMstnwZramr42NuXcs6yeXzosuM5a+khg5scNHPkq3mNxoXLD+NTV5804qWsJUlSdlx5Xu4m9KccM6fClUiqNBNCmZ1/8nwAzj1xHnPbp/G7KxcwtamB3zt94eA2HQcfwAffuoTfO23hMM8iSZK0f5YdNZu73n86B07fc6bRxStzF6w7cv70PdZJmnicJlpmRx82g698+nxeeGHLsNuceNRs5s1upnd7HwCHzmkedltJkqRiOXvZPM464ZB9uh2VpPHPMFgBw73B3nn9aezs76euNnfA9sj5bbzn4mNZ8Kq937RVkiSpGAyCUnYYBqtITU0NdUPegGtqali0YEYFK5IkSZI0UXnOoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpg2r6+/srXYMkSZIkqcw8MihJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlUH2lC8iSiKgFbgOOBXqBd6SUNlS2Ko0XEdEA3AXMBxqBm4CngbuBfuAp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOcv8eqm4RMQt4Angduf65G/tLRRARHwDOByaR+yz8DvaXiiD/+fh5cp+PfcAV+P6lIoiIE4BPppRWRsRCxthTEbEM+Gx+2wdTSh8t/2+1K48MlteFQFNK6UTg/cDNFa5H48tbgI0ppeXAWcBfArcAN+bHaoALImI2cC1wMnAm8ImIaASuBp7Mb/sF4MYK/A6qYvkvVH8D/DY/ZH+pKCJiJXASub5ZARyM/aXiOQeoTymdBHwM+Dj2l8YoIt4H3AE05YeK0VN/DawGTgFOiIjF5fp9hmMYLK9TgK8BpJS+Dxxf2XI0zvwT8KH8zzXk9iotIbd3HeB+YBWwFHg0pdSbUtoMbAAWMaT/hmwrDfVpch9Uv8ov218qljOBJ4H7gH8B1mJ/qXjWA/X5GVgtwA7sL43dz4DfGbI8pp6KiBagMaX0s5RSP/AAVdBrhsHyagE2D1nuiwin6mqfpJS2pJR6IqIZuJfcXqaa/BsK5KYhtLJnnxUaHxiTAIiIy4DOlNIDQ4btLxXLTHI7QC8G3gn8A1Brf6lItpCbIvoTYA1wK75/aYxSSl8mt2NhwFh7qgXoLrBtRRkGy6sbaB6yXJtSerlSxWj8iYiDgW8Bf59S+hKwc8jqZmATe/ZZofGBMWnA5cDrIuLbwHHkprXMGrLe/tJYbAQeSCltTyklYBu7fgmyvzQWf0yuvzrIXZfh8+TOTR1gf6kYxvqda7htK8owWF6PkpvXTv4E0icrW47Gk4g4EHgQuD6ldFd+eF3+XByAs4GHgceB5RHRFBGtwBHkTnQe7L8h20oApJROTSmtSCmtBH4E/AFwv/2lInkEOCsiaiLiIGAq8E37S0XSxStHYV4EGvDzUcU3pp5KKXUD2yNiQUTUkJs+X/Feq+nv79/7ViqKIVcTXUTunK+3pZR+UtmqNF5ExGeBS8hNgxnwbnLTYSYBPwauSCn15a9sdSW5HT7/PaX05YiYQm5v6RxgO7A6pfRcOX8HjQ/5o4PvJLcXdA32l4ogIj4FnEaubz4IPIP9pSKIiGnkrrY9h1w/fRb4AfaXxigi5gP/M6W0LCI6GGNP5Q8GfQaoI3c10RvK/1vtyjAoSZIkSRnkNFFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgbVV7qAUurs7OmvdA2FtLVNoatra6XL0ARlf6nU7DGVkv2lUrK/VErV2l/t7c01w63zyGAF1NfXVboETWD2l0rNHlMp2V8qJftLpTQe+8swKEmSJEkZZBiUJEmSpAwyDEqSJEkaF3p39PF811Z6d/RVupQJYUJfQEaSxqveHX1s3tJL67RGGhvG3zkIkiQVU9/Ondzz0AbWre/kxe5eprc0srijnUtOX0hdrce39pdhUJKqiB92kiTt6Z6HNvCNHzw7uLyxu3dwefWqjkqVNe75zUKSqsjAh93G7l76eeXD7p6HNlS6NEmSKqJ3Rx/r1ncWXLdu/QtOGR2Dih8ZjIjLgMvyi03AccCJwFrgp/nx21NK90TEFcBVwMvATSmlteWtVpJKZ28fdhetWOCUUUlS5mze0suL3b0F13X1bGPzll5mtU0pc1UTQ8XDYErpbuBugIj4K+AuYAlwS0rp5oHtImI2cC1wPLnQ+EhEfD2lVLgzJGmc8cNOkqQ9tU5rZHpLIxsLfEa2NTfROq2xAlVNDFUzTTQijgeOSin9LbkweG5EfDci7oyIZmAp8GhKqTeltBnYACyqYMmSVFQDH3aF+GEnScqqxoY6Fne0F1y3uGOms2bGoOJHBof4IPDR/M+PA3eklJ6IiBuADwM/AjYP2b4HaB3pCdvaplBfX53N0d7eXOkSNIHZX+PXyce+iq88/PMC4wcx96ADKlBRYfaYSsn+UinZX+PTH/3eYqZMnsT3n/o1L2z6LTMPmMyyo+dw+XlHUVdXNce3xl1/VUUYjIgDgEgpfSs/dF9KadPAz8DngO8CQ/+6zcAmRtDVtbXYpRZFe3sznZ09lS5DE5T9Nb6dd+IhbP3tdtatf4Gunm20NTexuGMm5514SNX8u1Zjj3krjomjGvtLE4f9Nb5dePJ8zl568C7v9y+++FKlyxpUrf01UkCtijAInAp8c8jyAxHxrpTS48AZwBPkjhZ+PCKagEbgCOCpslcqSSVUV1vL6lUdXLRigeFmH3grDknKlsaGOs+fL6JqCYMBDJ0XdTXwuYjYATwHXJlS6o6IW4GHyZ3reENKaVv5S5Wk0vPDbt943ylJkvZfVYTBlNJf7Lb8Q+DkAtutAdaUqy5JUvXyVhySJI2Nc2gkSePSvtyKQ5IkDc8wKEkal7wVhyRJY2MYlCSNS953SpKksamKcwYlSdofl5y+EGCPW3EMjEuSpOEZBiVJ45a34pAkaf8ZBiVJ45634pAkafQ8Z1CSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGVQfaULiIjLgMvyi03AccApwGeAfuAp4JqU0s6IuAK4CngZuCmltLbsBUuSJEnSBFDxI4MppbtTSitTSiuBJ4BrgT8DbkwpLQdqgAsiYnZ+3cnAmcAnIqKxQmVLkiRJ0rhW8TA4ICKOB45KKf0tsAT4Tn7V/cAqYCnwaEqpN6W0GdgALKpIsZJGrXdHH893baV3R1+lS5EkSRJVF/EP/QAAIABJREFUME10iA8CH83/XJNS6s//3AO0Ai3A5iHbD4wPq61tCvX1dcWusyja25srXYImsGrqr76+ndz1L//B95/6NZ2bfkv7AZNZdvQcLj/vKOrqqmZ/lEapmnpME4/9pVKyv1RK462/qiIMRsQBQKSUvpUf2jlkdTOwCejO/7z7+LC6urYWs8yiaW9vprOzp9JlaIKqtv760jfW840fPDu4/HzXb/nKwz9n62+3s3pVRwUr0/6qth7TxGJ/qZTsL5VStfbXSAG1WnbLnwp8c8jyuohYmf/5bOBh4HFgeUQ0RUQrcAS5i8tIqlK9O/pYt76z4Lp1619wyqgkSVIFVUsYDODnQ5b/BPhoRPwbMAm4N6X0HHAruWD4EHBDSmlb2SuVtM82b+nlxe7eguu6eraxeUvhdZIkSSq9qpgmmlL6i92W1wMrCmy3BlhTrrokjU3rtEamtzSysUAgbGtuonWaFwSWJEmqlGo5MihpAmpsqGNxR3vBdYs7ZtLYUJ0XeJIkScqCqjgyKGniuuT0hUDuHMGunm20NTexuGPm4LgkSZIqwzAoqaTqamtZvaqDi1YsYPOWXlqnNXpEUJIkqQoYBiWVRWNDHbPaplS6DEmSJOV5zqAkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkZUzvjj6e79pK746+SpciSaqg+koXIEmSyqNv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtb9w5KUNYZBSZIy4p6HNvCNHzw7uLyxu3dwefWqjkqVJUmqEHcDSpKUAb07+li3vrPgunXrX3DKqCRlkGFQkqQM2Lyllxe7ewuu6+rZxuYthddJkiYuw6AkSRnQOq2R6S2NBde1NTfROq3wOknSxFX0MBgRc/L/uzwiromIqcV+DUmSNDqNDXUs7mgvuG5xx0waG+rKXJEkqdKKegGZiLgd2BkRfwV8CXgQOB24qJivI0mSRu+S0xcCuXMEu3q20dbcxOKOmYPjkqRsKfbVRJcCxwMfBu5MKX0kIv69yK8hSZL2Q11tLatXdXDRigVs3tJL67RGjwhKUoYVe5poXf45LwDuj4gpgNNEJUmqIo0Ndcxqm2IQlKSMK3YY/ALwa+AXKaXHgCeAvynya0iSJEmSxqjY00QfAD6bUhq4WdFywBMRJEmSJKnKFCUMRsTJ5KaI3gG8PSJqhjz/XwMde3n8B4DzgUnAbcAPgbXAT/Ob3J5SuicirgCuAl4GbkoprS1G/ZIkSZKUNcU6Mvg6YAUwB/jYkPGX2cs00YhYCZwEnAxMAf4UqAFuSSndPGS72cC15C5Q0wQ8EhFfTyl5l1xJkiRJGqWihMGU0kcAIuKtKaW/H+XDzwSeBO4DWoDrgLfnni4uIHd08D3krlT6aD789UbEBmAR4NVKJUmSJGmUin3O4Hcj4i+A6eSO7gGQUrp8hMfMBOYBbwAOBb4C/DlwR0rpiYi4gdytKn4EbB7yuB6gdaRi2tqmUF9fnVdKa29vrnQJmsDsL5WaPaZSsr9USvaXSmm89Vexw+A/Ag/n/+vfx8dsBH6SUtoOpIjYBnw1pfR8fv19wOeA7wJD/7rNwKaRnrira+soSi+f9vZmOjt7Kl2GJij7S6Vmj6mU7C+Vkv2lUqrW/hopoBY7DDaklP50lI95BHh3RNxC7pzDqcBXI+KalNLjwBnkblHxOPDxiGgCGoEjgKeKV7okSZIkZUexw+AjEXEe8ED+SN9epZTWRsSp5MJeLXAN0Al8LiJ2AM8BV6aUuiPiVnJHHWuBG1JK24pcvyRJkiRlQrHD4O8CfwQQEQNj/SmlEU/cSym9r8DwyQW2WwOsGWONkiRJkpR5RQ2DKaWDivl8kiRJkqTSKGoYjIg/KzSeUvpYoXFJkiRJUmXUFvn5aob8Nwk4HziwyK8hSZIkSRqjYk8T/ejQ5Yj4b8CDxXwNSZIkSdLYFfvI4O6mAYeU+DUkSZIkSaNU7HMGn+GVm83XAgcAf1HM15AkSZIkjV2xby2xcsjP/cCmlFJ3kV9DkiRJkjRGxZ4m+p/AOcDNwK3AZRFR6qmokiRJkqRRKvaRwU8BhwN3kbui6NuAw4D3FPl1JEmSJEljUOww+HpgcUppJ0BEfBV4ssivIUmSJEkao2JP4axn14BZD/QV+TUkSZIkSWNU7COD/wB8OyL+v/zy7wNfKvJrSJIkSZLGqGhhMCLagDXAOuD0/H+fSSn9fbFeQ5IkSZJUHEWZJhoRi4GngSUppftTStcBDwB/HhGLivEakiRJkqTiKdY5g58Gfj+l9LWBgZTSB4HLgVuK9BqSJEmSpCIpVhhsSyl9e/fBlNIDwMwivYYkSZIkqUiKFQYbCt1cPj82qUivIUmSJEkqkmKFwe8AHy4wfiPwgyK9hiRJkiSpSIp1NdEPAP8aEW8G/h2oAV4DPA+cX6TXkCRJkiQVSVHCYEqpJyJOBU4DFgM7gb9KKT1cjOeXJEmSJBVX0e4zmFLqBx7K/ydJkiRJqmLFOmdQkiRJkjSOGAal/dC7o4/nu7bSu6Ov0qVIkqRxzO8UqqSiTROVsqBv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtZ9K5Ikad/4nULVwDAojcI9D23gGz94dnB5Y3fv4PLqVR2VKkuSJI0zfqdQNXC3g7SPenf0sW59Z8F169a/4PQOSZK0T/xOoWphGJT20eYtvbzY3VtwXVfPNjZvKbxOkiRpKL9TqFoYBqV91DqtkektjQXXtTU30Tqt8DpJkqSh/E6hamEYlPZRY0MdizvaC65b3DGTxoa6MlckSZLGI79TqFp4ARlpFC45fSGQm8/f1bONtuYmFnfMHByXJEnaF36nUDWoijAYER8AzgcmAbcB3wHuBvqBp4BrUko7I+IK4CrgZeCmlNLaylSsrKqrrWX1qg4uWrGAzVt6aZ3W6N47SZI0an6nUDWo+DTRiFgJnAScDKwADgZuAW5MKS0HaoALImI2cG1+uzOBT0SEE6pVEY0Ndcxqm+KbtiRJGhO/U6iSKh4GyQW7J4H7gH8B1gJLyB0dBLgfWAUsBR5NKfWmlDYDG4BF5S9XkiRJksa/apgmOhOYB7wBOBT4ClCbUurPr+8BWoEWYPOQxw2MD6utbQr19dW5l6W9vbnSJWgCs79UavaYSsn+UinZXyql8dZf1RAGNwI/SSltB1JEbCM3VXRAM7AJ6M7/vPv4sLq6tha51OJob2+ms7On0mVogrK/VGr2mErJ/lIp2V8qpWrtr5ECajVME30EOCsiaiLiIGAq8M38uYQAZwMPA48DyyOiKSJagSPIXVxGkiRJkjRKFT8ymFJaGxGnkgt7tcA1wDPAmoiYBPwYuDel1BcRt5ILhrXADSmlbZWqW5IkSZLGs4qHQYCU0vsKDK8osN0aYE3pK5IkSZKkia0apolKkiRJksrMMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJI+jd0cfzXVvp3dFX6VIkqajqK12AJElSNerbuZN7HtrAuvWdvNjdy/SWRhZ3tHPJ6Qupq3V/uqTxzzAoSZJUwD0PbeAbP3h2cHljd+/g8upVHZUqS5KKxt1akiRJu+nd0ce69Z0F161b/4JTRiVNCIZBSZKk3Wze0suL3b0F13X1bGPzlsLrJGk8MQxKkiTtpnVaI9NbGguua2tuonVa4XWSNJ4YBiVJknbT2FDH4o72gusWd8yksaGuzBVJUvF5ARlJkqQCLjl9IZA7R7CrZxttzU0s7pg5OC5J451hUJIkqYC62lpWr+rgohUL2Lyll9ZpjR4RlDShVEUYjIgfAt35xWeAW4G1wE/zY7enlO6JiCuAq4CXgZtSSmvLXqwkScqUxoY6ZrVNqXQZklR0FQ+DEdEE1KSUVg4ZewdwS0rp5iFjs4FrgeOBJuCRiPh6SsnLeUmSJEnSKFU8DALHAlMi4kFy9XwQWAJERFxA7ujge4ClwKP58NcbERuARcC/V6ZsSZIkSRq/qiEMbgU+DdwBHA7cD/w5cEdK6YmIuAH4MPAjYPOQx/UArSM9cVvbFOrrq3Nuf3t7c6VL0ARmf6nU7DGVkv2lUrK/VErjrb+qIQyuBzaklPqB9RGxEfhaSum/8uvvAz4HfBcY+tdtBjaN9MRdXVtLUO7Ytbc309nZU+kyNEHZXyo1e0ylZH+plOwvlVK19tdIAbUa7jN4OXAzQEQcBLQA/ysilubXnwE8ATwOLI+IpohoBY4AnqpAvZIkSZI07lXDkcE7gbsj4hGgn1w43AZ8LiJ2AM8BV6aUuiPiVuBhciH2hpTStkoVLUmSJEnjWcXDYEppO7C6wKqTC2y7BlhT8qIkSZIkaYKrhmmikiRJkqQyMwxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkoqmd0cfz3dtpXdHX6VLkbQXFb+1hKpD744+Nm/ppXVaI40NdZUuR5IkjTN9O3dyz0MbWLe+kxe7e5ne0sjijnYuOX0hdbUef5CqkWEw43zjliRJxXDPQxv4xg+eHVze2N07uLx6VUelypI0Ar/tZ9zAG/fG7l76eeWN+56HNlS6NEmSNE707uhj3frOguvWrX/BKaNSlTIMZphv3JIkqRg2b+nlxe7eguu6eraxeUvhdZIqyzCYYb5xS5KkYmid1sj0lsaC69qam2idVnidpMoyDGaYb9ySJKkYGhvqWNzRXnDd4o6ZXpxOqlKGwQzzjVuSJBXLJacvZNXxc5nR0kRtDcxoaWLV8XO55PSFlS5N0jC8mmjGDbxBr1v/Al0922hrbmJxx0zfuCVJ0qjU1dayelUHF61Y4O2qpHHCMJhxvnFLkqRiamyoY1bblEqXIWkfGAYF+MYtSZIkZY3nDEqSJElSBhkGJUmSJCmDDIOSJEmSlEE1/f39la5BkiRJklRmHhmUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMqi+0gVkSUTUArcBxwK9wDtSShsqW5XGi4hoAO4C5gONwE3A08DdQD/wFHBNSmlnRFwBXAW8DNyUUlobEZOBLwKzgB7g0pRSZ7l/D1W3iJgFPAG8jlz/3I39pSKIiA8A5wOTyH0Wfgf7S0WQ/3z8PLnPxz7gCnz/UhFExAnAJ1NKKyNiIWPsqYhYBnw2v+2DKaWPlv+32pVHBsvrQqAppXQi8H7g5grXo/HlLcDGlNJy4CzgL4FbgBvzYzXABRExG7gWOBk4E/hERDQCVwNP5rf9AnBjBX4HVbH8F6q/AX6bH7K/VBQRsRI4iVzfrAAOxv5S8ZwD1KeUTgI+Bnwc+0tjFBHvA+4AmvJDxeipvwZWA6cAJ0TE4nL9PsMxDJbXKcDXAFJK3weOr2w5Gmf+CfhQ/ucacnuVlpDbuw5wP7AKWAo8mlLqTSltBjYAixjSf0O2lYb6NLkPql/ll+0vFcuZwJPAfcC/AGuxv1Q864H6/AysFmAH9pfG7mfA7wxZHlNPRUQL0JhS+llKqR94gCroNcNgebUAm4cs90WEU3W1T1JKW1JKPRHRDNxLbi9TTf4NBXLTEFrZs88KjQ+MSQBExGVAZ0rpgSHD9peKZSa5HaAXA+8E/gGotb9UJFvITRH9CbAGuBXfvzRGKaUvk9uxMGCsPdUCdBfYtqIMg+XVDTQPWa5NKb1cqWI0/kTEwcC3gL9PKX0J2DlkdTOwiT37rND4wJg04HLgdRHxbeA4ctNaZg1Zb39pLDYCD6SUtqeUErCNXb8E2V8aiz8m118d5K7L8Hly56YOsL9UDGP9zjXcthVlGCyvR8nNayd/AumTlS1H40lEHAg8CFyfUrorP7wufy4OwNnAw8DjwPKIaIqIVuAIcic6D/bfkG0lAFJKp6aUVqSUVgI/Av4AuN/+UpE8ApwVETURcRAwFfim/aUi6eKVozAvAg34+ajiG1NPpZS6ge0RsSAiashNn694r9X09/fvfSsVxZCriS4id87X21JKP6lsVRovIuKzwCXkpsEMeDe56TCTgB8DV6SU+vJXtrqS3A6f/55S+nJETCG3t3QOsB1YnVJ6rpy/g8aH/NHBd5LbC7oG+0tFEBGfAk4j1zcfBJ7B/lIRRMQ0clfbnkOunz4L/AD7S2MUEfOB/5lSWhYRHYyxp/IHgz4D1JG7mugN5f+tdmUYlCRJkqQMcpqoJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBtVXuoBS6uzs6a90DYW0tU2hq2trpcvQBGV/qdTsMZWS/aVSsr9UStXaX+3tzTXDrStbGIyIOmANEEA/8E5gG3B3fvkp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOctVfTPX1dZUuQROY/aVSs8dUSvaXSsn+UimNx/4q5zTR8wBSSicDNwIfB24BbkwpLQdqgAsiYjZwLXAycCbwiYhoBK4Gnsxv+4X8c0iSJEmS9kPZwmBK6X8BV+YX5wGbgCXAd/Jj9wOrgKXAoyml3pTSZmADsAg4BfjabttKkiRJkvZDWc8ZTCm9HBGfB94I/C7wupTSwHl9PUAr0AJsHvKwQuMDYyNqa5tStYdr29ubK12CJjD7S6Vmj6mU7C+Vkv2lUhpv/VX2C8iklC6NiOuBx4DJQ1Y1kzta2J3/eaTxgbERVeMJnJBrks7OnkqXoQnK/lKp2WMqJftLpWR/qZSqtb9GCqhlmyYaEW+NiA/kF7cCO4EfRMTK/NjZwMPA48DyiGiKiFbgCHIXl3kUOGe3bSVJkiRJ+6GcRwb/Gfi7iPgu0AC8B/gxsCYiJuV/vjel1BcRt5ILe7XADSmlbRFxO/D5iHgE2A6sLmPtkiRJkjSh1PT3V+Wt+IqiWu8zWK2HkDUx2F8qNXtMpWR/qZTsL5VStfbXSPcZLOetJSRJkiRpv1132/e47rbvVbqMCcMwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmD6sv1QhHRANwFzAcagZuA/wLWAj/Nb3Z7SumeiLgCuAp4GbgppbQ2IiYDXwRmAT3ApSmlznLVL0mSJEkTSdnCIPAWYGNK6a0RMR34EfAx4JaU0s0DG0XEbOBa4HigCXgkIr4OXA08mVL6SES8CbgReHcZ65ckSZKkCaOcYfCfgHvzP9eQO+q3BIiIuIDc0cH3AEuBR1NKvUBvRGwAFgGnAJ/KP/5+4ENlrF2SJEmSJpSyhcGU0haAiGgmFwpvJDdd9I6U0hMRcQPwYXJHDDcPeWgP0Aq0DBkfGBtRW9sU6uvrivY7FFN7e3OlS9AEZn+p1OwxlZL9pVKyv8a3uroaoHr/Hau1ruGU88ggEXEwcB9wW0rpSxFxQEppU371fcDngO8CQ/+KzcAmoHvI+MDYiLq6thar9KJqb2+ms7On0mVogrK/VGr2mErJ/lIp2V/jX19fP0BV/jtWa3+NFFDLdjXRiDgQeBC4PqV0V374gYhYmv/5DOAJ4HFgeUQ0RUQrcATwFPAocE5+27OBh8tVuyRJkiRNNOU8MvhBoA34UEQMnO/3XuB/RMQO4DngypRSd0TcSi7s1QI3pJS2RcTtwOcj4hFgO7C6jLVLkiRJ0oRSznMG303hq3+eXGDbNcCa3ca2AheXpjpJkiRJyhZvOi9JkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJklT1Hnv6N2za0svG7m382Z2P8djTv6l0SeNefaULkCRJkqSRPPb0b/ibr/zH4PKznS8NLp9w5IGVKmvc88igJEmSpKr21X/7xTDjvyxrHRONYVCSJElSVfvVC1sLjv9640tlrmRiMQxKkiRJqmoHzZxScHzOjKllrmRiMQxKkiRJqmrnnjh/mPF55S1kgvECMpIkSZKq2sBFYu5Y+zR9O/uZ2z6Nc0+c58VjxsgwKEmSJKnqnXDkgdz77Z8B8LG3L61wNROD00QlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZVDZLiATEQ3AXcB8oBG4CXgauBvoB54Crkkp7YyIK4CrgJeBm1JKayNiMvBFYBbQA1yaUuosV/2SJEmSNJGU88jgW4CNKaXlwFnAXwK3ADfmx2qACyJiNnAtcDJwJvCJiGgErgaezG/7BeDGMtYuSZIkSRNKOcPgPwEfyv9cQ+6o3xLgO/mx+4FVwFLg0ZRSb0ppM7ABWAScAnxtt20lSZIkSfuhbNNEU0pbACKiGbiX3JG9T6eU+vOb9ACtQAuwechDC40PjI2orW0K9fV1Ram/2NrbmytdgiYw+0ulZo+plOwvlZL9Nb7V1dUA1fvvWK11DaesN52PiIOB+4DbUkpfiohPDVndDGwCuvM/jzQ+MDairq6txSi76Nrbm+ns7Kl0GZqg7C+Vmj2mUrK/VEr21/jX15c7jlSN/47V2l8jBdSyTRONiAOBB4HrU0p35YfXRcTK/M9nAw8DjwPLI6IpIlqBI8hdXOZR4JzdtpUkSZIk7YdyHhn8INAGfCgiBs4dfDdwa0RMAn4M3JtS6ouIW8mFvVrghpTStoi4Hfh8RDwCbAdWl7F2SZIkSZpQynnO4LvJhb/drSiw7RpgzW5jW4GLS1OdJEmSJGWLN52XJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSpAq57rbvcd1t36t0Gcoow6AkSZIkZVD9aDaOiOuB21NK3RFRD5wMPJNS+s9RPMcJwCdTSisjYjGwFvhpfvXtKaV7IuIK4CrgZeCmlNLaiJgMfBGYBfQAl6aUOkdTvyRJkiQpZ1RhELgwpfTJ/M9/D0wCpkTEP6aU/m5vD46I9wFvBV7KDy0Bbkkp3Txkm9nAtcDxQBPwSER8HbgaeDKl9JGIeBNwI/DuUdYvSZIkSWL000R7ASKiHXhtSuki4Fzgbfv4+J8BvzNkeQlwbkR8NyLujIhmYCnwaEqpN6W0GdgALAJOAb6Wf9z9wKpR1i5JkiRJyhvtkcG7I+KrwGTg7wBSSjvzU0b3KqX05YiYP2ToceCOlNITEXED8GHgR8DmIdv0AK1Ay5DxgbERtbVNob6+bl9KK7v29uZKl6AJzP5SqdljKiX7S6VUbf1VV1cDVF9d1eruD59Z6RJGNN7+HUcVBlNKd0fEg8DclNLjABFxGPDsfr7+fSmlTQM/A58DvgsM/Ss2A5uA7iHjA2Mj6uraup9llVZ7ezOdnT2VLkMTlP2lUrPHVEr2l0qpGvurr68foOrq0uhVY3/ByAF1tBeQWZBS+hnwq4GxlNLPgd/bz9oeiIh35YPlGcAT5I4WfjwimoBG4AjgKeBR4Jz8+rOBh/fzNSVJkiQp80Z7zuBtEXHl0IGIqI+I393P178a+B8R8W1yVya9KaX0HHArubD3EHBDSmkbcDtwVEQ8AlwJfHQ/X1OSJEmSMm+05wyeDbwvIr4MfAa4CDia3BTPfZJS+gWwLP/zD8mFwN23WQOs2W1sK3DxKOuVJEmSJBUw2jA4jdxFXA4ldwGZL6aUvKqnJEmSJI0zo50m+s/kwuBJwDHA9Ij464iYUvTKJEmSJEklM9oweBrwDXJHBrenlK4lN0X0/mIXJkmSJEkqndGGwRrgGeBfgV9FxHUppQeANxa9MkmSJElSyYw2DPYAh6WUDgWOBU6IiD9OKb1Y/NIkSZIkSaUy2jD485TSbwDyt4B4M7C66FVJkqSSue6273Hdbd+rdBmSpAobbRh8JiLeMWR5J9BSxHokSZIkSWUw2ltL/BHwzxFxDbAOOA54tOhVSZIkSZJKalRhMKX0K2BZRJxI7pzBfwX+dykKkyRJkiSVzmiPDAKQUvo34N+KXIskSZIkqUxGe86gJEmSJGkCMAxKkiRJFfDY079h05ZeNnZv48/ufIzHnv5NpUtSxuzXNFFJkiRJ+++xp3/D33zlPwaXn+18aXD5hCMPrFRZyhiPDEqSJEll9tV/+8Uw478sax3KNsOgJEmSVGa/emFrwfFfb3ypzJUoywyDkiRJUpkdNHNKwfE5M6aWuRJlmWFQkiRJKrNzT5w/zPi88haiTPMCMpIkSVKZDVwk5o61T9O3s5+57dM498R5XjxGZWVJHZxhAAAgAElEQVQYlCRJkirghCMP5N5v/wyAj719aYWrURY5TVSSJEmSMsgwKEmSJEkZVPZpohFxAvDJlNLKiFgI3A30A08B16SUdkbEFcBVwMvATSmltRExGfgiMAv+H3v3HmVXed55/luqAhShkhCiLMMiLeWCn0ieMXYbIwpjIB1jx8jYTDLuTDOZ2ASMMZ52YhLFTuJWt1nOpRtj4iRTMTc1uXVuOKwREIMnFxIjiXLiXIZQ8DjChgkXqwu1bggjoqqaP84p+SCqiirq7LP3Ofv7WUtr1X732aqnznlUql+9734PB4H3Z+Z4p+uXJEmSpF7Q0ZnBiPgZ4FZgaXPos8AnM/NtQB/w3oh4LfBR4K3AO4FfiogTgA8DDzUf+1vAJztZuyRJkiT1kk4vE30M+KGW4zcDf9n8+IvA24Gzge2ZeTgz9wO7gDcA5wH3HvNYSZIkSdKr0NFlopn5hYhY1zLUl5lTzY8PAiuBFcD+lsfMND49NqdVq5YxMNC/2LILMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d+jFqbbXsey31pisuXjQWAfcKD58Vzj02Nz2rv3+fZU2WZDQ4OMjx8suwz1KPtLRbPHutvo2G727H+BickpPvzLf8qm4XWVel8z+0tFqmJ/TUw05kWqVpcWror9BXMH1LJ3E/27iLiw+fG7gC8DXwHeFhFLI2IlsJ7G5jLbgYuPeaxUis0jO9g8sqPsMiRpQUbHdnPTtoeZmGz88Pnk+CFu2vYwo2O7S65MklSGssPgTwGfioidwPHAHZn5TeBXaYS9Pwd+PjNfAH4DeH1EPABcBXyqpJolSepK9+x8fJbxJzpahySpGjq+TDQzHwfOaX78NeCCGR5zC3DLMWPPA+/rQImSJPWkp5+d+faJZ/Yc6nAlkqQqKHtmUJIkdchppyybcfzU1Sd2uBJJUhUYBiVJqolNw+tmGV/b2UIkSZVQ9m6ikiSpQ6Z3Db317jEmJqc4fWg5m4bXVmo3UUlS5xgGJUmqkY0b1nDH/Y8BcN0VZ5dcTXeY3j36+mvOLbkSSWovl4lKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJHbF5ZMfR+24kSZJUPsOgJEmSJNWQu4lKkiRJJXGXWpXJmUFJkiRJqiHDoCRJkiTVkGFQWqDRsd3se+4wew68wJbbRhkd2112SZIkSdKCec+gtACjY7u5advDR4+fHD909HjjhjVllSVJkiQtmDOD0gLcs/PxWcaf6GgdkiRJ0mIZBqUFePrZ52ccf2bPoQ5XIknqBG8NkNTLDIPSApx2yrIZx09dfWKHK5EkFW361oCJySng27cGGAgl9QrDoLQAm4bXzTK+trOFSJIK560BknqdG8hICzC9Scytd48xMTnF6UPL2TS81s1jJKkHeWuApF7nzKC0QBs3rOGk5SewesVSrrvibIOgJPUobw2Q1OsMg5IkSTPw1gBJva4Sy0Qj4m+BA83DbwC/ANwOTAH/CHwkMycj4oPAh4AjwKcz8+4SypUkSTXgrQGSel3pM4MRsRToy8wLm38uBz4LfDIz3wb0Ae+NiNcCHwXeCrwT+KWIOKG0wnvM5pEdbB7ZUXYZ6lFuzS6pW3lrgKReVoWZwTOBZRHxJRr1/BzwZuAvm+e/CLwDmAC2Z+Zh4HBE7ALeAPx150uWNF/TW7NPm96aHfCHKqkk119zbtklSJIqoAph8HngM8CtwBk0wl9fZk41zx8EVgIrgP0t102Pz2rVqmUMDPS3veB2GBoaLLuEl+jv7wOqV1dVVf35qlJd9/3138wy/s+8+4Lv7XA1apcq9Zh6T9X6q+rf87Uwvo4qUrf1VxXC4NeAXc3w97WI2ENjZnDaILCPxj2FgzOMz2rv3pm3hC7b0NAg4+MHyy7jJSYmGtm7anVVVZWfr6r11//3zZlr+efdBytVp+avaj2m3lLF/qry93wtTBX7S72jqv01V0At/Z5B4MeBGwAi4jQaM4BfiogLm+ffBXwZ+ArwtohYGhErgfU0NpeRVGFuzS5JklRNVQiDtwEnRcQDwB/QCIc/AXwqInYCxwN3ZOY3gV+lEQz/HPj5zHyhpJolzZNbs0uSJFVT6ctEM/NF4LIZTl0ww2NvAW4pvChJbePW7JIkSdVUehiU1Ps2bljDHfc/BsB1V5xdcjWSJEmCaiwTVcl8DzhJkiSpfpwZrDnfA06SJEmqJ2cGa+6enY/PMv5ER+uQpMXYPLKDzSM7yi5DkqSu4sxgzT397MzvxfjMnkMdrqS7XH/NuWWXIEmSJC2KYbDmTjtlGU+Ovzz4+R5wkiQ1+AtASb3KZaI153vASZIkSfXkzGDN+R5wkiRJUj0ZBuV7wEmSJEk15DJRSZIkSaohw6AkSZIk1ZBhUJLU1UbHdrPvucPsOfACW24bZXRsd9klSZLUFbxnUJLUtUbHdnPTtoePHj85fujosRthSZI0N8OgpI7wfbpUhHt2Pj7L+BOGQUmSXoHLRCVJXevpZ5+fcfyZPYc6XIkkSd3HmUEBztpI6k6nnbKMJ8dfHvxOXX1iCdVIAtg8sgPwZwupGzgzKEkVtHlkx9EfqDS7TcPrZhlf29lCJEnqQoZBSVLX2rhhDR96z+vpX9IHwOlDy/nQe17v/YJSSdzdV+ouhkFJqhh/mFqYjRvWcNLyE1i9YinXXXG2QVAqyfTuvhOTU8C3d/f1e5hUXYZBSaoQf5iS1K3m2t1XUjV11QYyEbEEGAHOBA4DV2bmrnKrkqT28a0SJHUrd/eVuk+3zQxeCizNzGHgE8ANJdcjSW3lD1OSutVppyybcdzdfaXq6rYweB5wL0BmPgicVW45ktRe/jAlqVu5u6/UfbpqmSiwAtjfcjwREQOZeWSmB69atYyBgf7OVLZAQ0ODZZegHmZ/da9/987v4/rf+eoM41Gp17VKtQD09zd2E61aXXp1fB2707svGGTFiqXc+Ht/y5GJKdaduoL3/cAZnP+m08su7SXsLxWp2/qr28LgAaD1GV4yWxAE2Lt35uVWZRsaGmR8/GDZZahH2V/dbf3pK/nQe17PrXePMTE5xelDy9k0vJb1p6+szOtaxR6bmGhsuFO1urRwVewvzd/601ey8sQTANjy/sYCriq9nvaXilTV/poroHZbGNwOXAL8YUScAzxUcj2S1HYbN6zhjvsfA+C6K84uuZrucP0155ZdgqQm/z1K3aPbwuCdwEURsQPoAy4vuR5JKoQ/TEmSpKJ1VRjMzEng6rLrkCRJkqRu1227iUqSJEmS2sAwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqob6pqamya5AkSZIkdZgzg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINDZRdQJ1ExBJgBDgTOAxcmZm7yq1K3SIijgO2AuuAE4BPA2PA7cAU8I/ARzJzMiI+CHwIOAJ8OjPvjojvAH4HeA1wEHh/Zo53+utQtUXEa4CvAhfR6J/bsb/UBhHxs8B7gONp/F/4l9hfaoPm/4+/SeP/xwngg/j9S20QERuB/5yZF0bE97LInoqIc4DPNR/7pcz8VOe/qpdyZrCzLgWWZuYw8AnghpLrUXf5UWBPZr4N+EHg14HPAp9sjvUB742I1wIfBd4KvBP4pYg4Afgw8FDzsb8FfLKEr0EV1vyB6ibgW80h+0ttEREXAufS6JsLgO/E/lL7XAwMZOa5wHXAL2B/aZEi4meAW4GlzaF29NTngcuA84CNEfGmTn09szEMdtZ5wL0AmfkgcFa55ajL/BHwH5of99H4rdKbafx2HeCLwNuBs4HtmXk4M/cDu4A30NJ/LY+VWn2Gxn9UTzeP7S+1yzuBh4A7gbuAu7G/1D5fAwaaK7BWAP+C/aXFewz4oZbjRfVURKwATsjMxzJzCriPCvSaYbCzVgD7W44nIsKlupqXzHwuMw9GxCBwB43fMvU1v6FAYxnCSl7eZzONT49JAETEB4DxzLyvZdj+UrucQuMXoO8DrgZ+F1hif6lNnqOxRPRR4BbgV/H7lxYpM79A4xcL0xbbUyuAAzM8tlSGwc46AAy2HC/JzCNlFaPuExHfCfwF8NuZ+d+AyZbTg8A+Xt5nM41Pj0nTfhy4KCLuB95IY1nLa1rO219ajD3AfZn5YmYm8AIv/SHI/tJifIxGf72Oxr4Mv0nj3tRp9pfaYbE/c8322FIZBjtrO4117TRvIH2o3HLUTSJiDfAl4OOZubU5/HfNe3EA3gV8GfgK8LaIWBoRK4H1NG50Ptp/LY+VAMjM8zPzgsy8EPh74MeAL9pfapMHgB+MiL6IOA04Efgz+0ttspdvz8L8D+A4/P9R7beonsrMA8CLEfE9EdFHY/l86b3WNzU19cqPUlu07Cb6Bhr3fF2emY+WW5W6RUR8DvgRGstgpv0EjeUwxwOPAB/MzInmzlZX0fiFzy9m5hciYhmN35aeCrwIXJaZ3+zk16Du0JwdvJrGb0Fvwf5SG0TEfwG+n0bf/BzwDewvtUFELKex2/apNPrpc8DfYH9pkSJiHfD7mXlORLyORfZUczLoV4B+GruJ/nznv6qXMgxKkiRJUg25TFSSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGBsouoEjj4wenyq5hJqtWLWPv3ufLLkM9yv5S0ewxFcn+UpHsLxWpqv01NDTYN9s5ZwZLMDDQX3YJ6mH2l4pmj6lI9peKZH+pSN3YX4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZK6wuaRHWwe2VF2GT1joMi/PCKWACPAmcBh4MrM3NVy/hJgC3AE2JqZt8x2TUS8Cbgb+Kfm5b+RmX9QZP2SJEmS1KsKDYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNgGvHWWa94MfDYzbyi4ZkmSJEnqeUUvEz0PuBcgMx8Ezmo5tx7YlZl7M/NF4AHg/DmueTOwKSL+KiJui4jBgmuXJEmSpJ5V9MzgCmB/y/FERAxk5pEZzh0EVs52DfAV4NbM/GpE/DzwH4GfnuuTr1q1jIGB/jZ8Ge03NGSWVXHsLxXNHlOR7C8Vyf7qbv39fUB1X8eq1jWbosPgAaD1GVnSDIIznRsE9s12TUTcmZn7mmN3Ar/2Sp98797nX3XhRRoaGmR8/GDZZahH2V8qmj2mItlfKpL91f0mJqYAKvk6VrW/5gqoRS8T3Q5cDNC8/++hlnOPAGdExMkRcTyNJaI757jmvog4u/nxDwBfLbh2SZIkSepZRc8M3glcFBE7gD7g8oi4DFiemTdHxLXAfTRC6dbMfCoiXnZN8+/6MPBrEfEvwDeBqwquXZIkSZJ6VqFhMDMngauPGX605fxdwF3zuIbM/FsaO41KkiRJkhbJN52XJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJElSSTaP7GDzyI6yy1BNGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqaKDIvzwilgAjwJnAYeDKzNzVcv4SYAtwBNiambfM45rLgH+fmcNF1i5JkiRJvazomcFLgaXN4PYJ4IbpExFxHHAj8A7gAuCqiFjzCte8CbgC6Cu4bkmSJEnqaUWHwfOAewEy80HgrJZz64Fdmbk3M18EHgDOn+2aiFgN/CLwkwXXLEmSJEk9r9BlosAKYH/L8UREDGTmkRnOHQRWznLNCcBtwLXAt+b7yVetWsbAQP+rrb1QQ0ODZZegHmZ/qWj2mIpkf6lIVeuv/v7Ggreq1VVVVX++qlrXbIoOgweA1mdkSTMIznRuENg30zU07h88A/gNYCmwISJ+JTPnnCXcu/f5xVVfkKGhQcbHD5ZdhnqU/aWi2WMqkv2lIlWxvyYmpgAqV1cVjY7tZs/+F5iYnOLDv/ynbBpex8YNa8ou66gq9hfMHVCLDoPbgUuAP4yIc4CHWs49ApwREScDz9FYIvoZYOrYazLzK8DrASJiHfD7rxQEJUmSJPWG0bHd3LTt4aPHT44fOnpcpUDYbYq+Z/BO4IWI2EFjs5iPRcRlEXFVZv4LjWWf9wE7aewm+tRM1xRcoyRJkqQKu2fn47OMP9HROnpNoTODmTkJXH3M8KMt5+8C7prHNa3nHwfOaV+VkiRJkqrs6Wdnvv3rmT2HOlxJb/FN5yVJkiRV2mmnLJtx/NTVJ3a4kt5iGJQkSZJUaZuG180yvrazhfSYojeQkSRJkqRFmd4k5ta7x5iYnOL0oeVsGl7r5jGLZBiUJEmSVHkbN6zhjvsfA+C6K84uuZre4DJRSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSVIJRsd2s++5w+w58AJbbhtldGx32SWpZgbKLkCSJEmqm9Gx3dy07eGjx0+OHzp6vHHDmrLKUs04MyhJkiR12D07H59l/ImO1qF6MwxKkiRJHfb0s8/POP7MnkMdrkR1ZhiUJEmSOuy0U5bNOH7q6hM7XInqzDAoSZIkddim4XWzjK/tbCGqtUI3kImIJcAIcCZwGLgyM3e1nL8E2AIcAbZm5i2zXRMRG4CbgT7gn5rjR4qsX5IkSSrC9CYxt949xsTkFKcPLWfT8Fo3j1FHFT0zeCmwNDOHgU8AN0yfiIjjgBuBdwAXAFdFxJo5rvlF4Ocy863N40sKrl2SJEkqzMYNazhp+QmsXrGU66442yCojis6DJ4H3AuQmQ8CZ7WcWw/sysy9mfki8ABw/hzX/HBm/lVEHA+8FthfcO2SJPWkzSM72Dyyo+wyJEklK/p9Blfw0tA2EREDzeWdx547CKyc65qIWAv8afP8P7zSJ1+1ahkDA/2L/RoKMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d9j1VT9+apqXbMpOgweAFqfkSUt9/kde24Q2DfXNZn5BHBGRFwJfBZ4/1yffO/embfsLdvQ0CDj4wfLLkM9yv5S0eyx7jcxMQVQydfR/lKRqthfVf73WEVVfr6q2F8wd0AtepnoduBigIg4B3io5dwjNILdyc2ln+cDO2e7JiK2RcQZzWsPApMF1y5JkiRJPavomcE7gYsiYgeNXUAvj4jLgOWZeXNEXAvcRyOUbs3MpyLiZdc0/65fBm6PiBeB54ErC65dkiRJknpWoWEwMyeBq48ZfrTl/F3AXfO4hszcAbz12HFJkiRJ0sK94jLRiPh4RKxofjwQERdExL8qvjRJkiRJUlHmc8/gpZl5oPnxbwMfBW6KiMvnuEaSJEmSVGHzCYOHASJiCHhLZv4wsIlv38snSZIkSeoy8wmDt0fEPcAfAP8Vjt7XV/TmM5IkSaXbPLKDzSM7yi5DktruFQNdZt4eEV8CTs/MrwBExHcDTxZdnCRJkiSpGK8YBiPiezLzMeDp6bHM/Drwb4ssTJIkSZJUnPks9RyJiC9k5s3TAxExQGNjmTuKK02SJEmSvu36a84tu4SeMp8w+C7gZyLiC8CvAD8M/E803lBeqqXpe0f8hiRJkqRuNZ8wuBzYD3wXjQ1kficz315oVZIkSZKkQs1nN9HfoxEGzwX+Z+DkiPh8RCwrtDJJkiRJUmHms5vopmOGPhoR7wS+CFxQSFWSJEmSpELNZzfRTwGPAI8CmZnfysz7IuKvC69OkiRJklSI+dwz+CXg+4D/HTgjIk4EXgC+BvxUgbVJkiRJkgoyn2Wi24HtEXE8jfsG/w2wEfhXBdcmSZIkSSrIfJaJfhw4C5gAHgTuyMwtRRcmSZIkSSrOfHYT/WlgTfPjk4Dvi4g3RMQJxZUlSZIkSSrSfO4ZXA28D3hd83g98IHm8buLKUuSJEmSVKT5hEGArwP/HVgG3JCZ1xZXkiRJkiSpaPNZJnoQ+O7M/C7gTODsiPhYsWVJkiRJkoo0nzD49czcDZCZ36TxFhOXFVqVJEmSJKlQ8wmD34iIK1uOJ4EVBdUjSZIkSeqA+dwz+H8CfxwRHwH+DngjsL3QqiRJUiFGx3az77nDTExOseW2UTYNr2PjhjWvfKEkqefM503nnwbOiYhhGvcM/gnwfxddmCRJaq/Rsd3ctO3ho8dPjh86emwglKT6me9uomTmTmBngbVIkqQC3bPz8VnGnzAMSlINzTsMvhoRsQQYoTGjeBi4MjN3tZy/BNgCHAG2ZuYts10TEW8Efg2YaI7/2PTGNpIk6ZU9/ezzM44/s+dQhyuRJFXBfDaQWYxLgaWZOQx8Arhh+kREHAfcCLwDuAC4KiLWzHHN54B/n5kXAn8MfLzg2iVJ6imnnbJsxvFTV5/Y4UokSVVQdBg8D7gXIDMfBM5qObce2JWZezPzReAB4Pw5rvnfMvPvmx8PAC8UXLskST1l0/C6WcbXdrYQSUddf825XH/NuWWXoZoqdJkojbeg2N9yPBERA5l5ZIZzB4GVc1zzDEBEnEtjh9PzX+mTr1q1jIGB/kV+CcUYGhosuwQtQn9/H1Dd17Gqdal32GPd6d0XDLJixVJu/L2/5cjEFOtOXcH7fuAMzn/T6WWX9hJV66+qf8/Xwvg6qkjd1l9Fh8EDQOszsqQZBGc6Nwjsm+uaiPgR4OeBTZk5/kqffO/eme+NKNvQ0CDj4wfLLkOLMDExBVDJ19H+UtHsse62/vSVrDzxBAC2vL+x+KZKr2fV+mt0bDd79r/AxOQUH/7lP/WtOLpc1fpLvaWq/TVXQC16meh24GKAiDgHeKjl3CPAGRFxckQcT2Omb+ds10TEj9KYEbwwM79ecN2SJKnmpt+KY2Ky8QvA6bfiGB1z/zpJvaHoMHgn8EJE7KCxWczHIuKyiLgqM/8FuBa4j0YI3JqZT81yTT/wqzRmDP84Iu6PiE8VXLskSaqxud6KQ5J6QaHLRDNzErj6mOFHW87fBdw1j2sATm57gdKrMDq2m33PHWZicoott426ZEiSepRvxSGp1xU9M6gusXlkB5tHdpRdRuW5ZEiS6sO34pDU6wyD0gK4ZEiS6sO34pDU64reTVTqKS4ZkqT6mL4F4Na7x5iYnOL0oeVsGl7rrQGSeoYzg9ICuGRIkupl44Y1nLT8BFavWMp1V5xtEJTUUwyD0gK4ZEiSJEm9wmWi0gK4ZEiSJEm9wjAoLdDGDWu44/7HALjuirNLrkaSJEl6dVwmKqkjfPsSSZKkajEMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBMTq2m33PHWbPgRfYctsoo2O7yy5JkiRJUsEGyi5A5Rod281N2x4+evzk+KGjxxs3rCmrLEmSJEkFc2aw5u7Z+fgs4090tA5JkiRJneXMYM09/ezzM44/s+dQhyuRJHXK9decW3YJkqQKcGaw5k47ZdmM46euPrHDlUiSJEnqJMNgzW0aXjfL+NrOFiJJkiSpowpdJhoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFvmcc2NQGbm54usvS6mN4m59e4xJianOH1oOZuG17p5jNpqesfaickpttw2yqbhdfaYJElSyYqeGbwUWJqZw8AngBumT0TEccCNwDuAC4CrImLNbNdExFBEfBF4T8E1187GDWs4afkJrF6xlOuuONsf0tVW0zvWTkxOAd/esda3MJEkSSpX0WHwPOBegMx8EDir5dx6YFdm7s3MF4EHgPPnuGY58J+A3y64Zklt5I61krrd9dec66Y7knpS0buJrgD2txxPRMRAZh6Z4dxBYOUc13wD+EZEvGu+n3zVqmUMDPS/+uoLNDQ0WHYJL9Hf3wdUr66qqvrzVaW6nt4z+461VapTC+NrpyLZXyqS/aUidVt/FR0GDwCtz8iSZhCc6dwgsO8VrlmQvXtn/iG0bENDg4yPHyy7jJeYmGgs4ataXVVV5eerav112uplPDn+8rcqOXX1iZWqU/NXtR5Tb7G/VCT7S0Wqan/NFVCLXia6HbgYICLOAR5qOfcIcEZEnBwRx9NYIrrzFa6RKsElQ/PnjrWSJEnVVPTM4J3ARRGxA+gDLo+Iy4DlmXlzRFwL3EcjlG7NzKci4mXXFFyjpAK5Y60kSVI1FRoGM3MSuPqY4Udbzt8F3DWPa1rP/6c2liipAzZuWMMd9z8GwHVXnF1yNZIkSQLfdF6SJEmSaskwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJKnrbR7ZweaRHWWXIUlSVzEMSpIkSVINGQYlSZIkqYYMg5IkSWobl21L3WOg7AJUDddfc27ZJUiSJEnqIGcGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIe8ZlNQR3peqoirsALsAACAASURBVIyO7Wbfc4eZmJxiy22jbBpex8YNa8ouS5KkyjMMSpK61ujYbm7a9vDR4yfHDx09NhBKkjQ3l4lKkrrWPTsfn2X8iY7WIalheqZ+z4EX2HLbKKNju8suSdIcnBmUJHWtp599fsbxZ/Yc6nAlkpypl7qPM4OSpK512inLZhw/dfWJHa5EkjP1UvcxDEpSBW0e2cHmkR1ll1F5m4bXzTK+trOFSHKmXupCLhOVJHWt6aVnt949xsTkFKcPLWfT8FqXpEklOO2UZTw5/vLg50y9VF3ODEpSxbgBw8Js3LCGk5afwOoVS7nuirMNglJJnKmXuo8zg5JUIW7AIKlbOVMvdZ9Cw2BELAFGgDOBw8CVmbmr5fwlwBbgCLA1M2+Z7ZqI+F7gdmAK+EfgI5k5WWT9ktRpc23A4A9Ukqpu44Y13HH/YwBcd8XZJVcj6ZUUvUz0UmBpZg4DnwBumD4REccBNwLvAC4AroqINXNc81ngk5n5NqAPeG/BtUtSx7kBgyRJ6pSiw+B5wL0AmfkgcFbLufXArszcm5kvAg8A589xzZuBv2x+/EXg7QXXLkkd51slSJKkTin6nsEVwP6W44mIGMjMIzOcOwisnO0aoC8zp4557JxWrVrGwED/YuovzNDQYNklqIfZX93r373z+7j+d746w3hU6nWtUi0A/f19QPXq0qvj69jdqv7vsap1qTd0W38VHQYPAK3PyJJmEJzp3CCwb7ZrImJyhsfOae/emZdblW1oaJDx8YNll6EeZX91t/Wnr+RD73n9yzZgWH/6ysq8rlXssYmJxu8Kq1aXFq6K/aWFqfK/R/tLRapqf80VUIsOg9uBS4A/jIhzgIdazj0CnBERJwPP0Vgi+hkaG8TMdM3fRcSFmXk/8C7gLwquXZJK4QYMC3f9NeeWXYIkSV2n6DB4J3BRROygsenL5RFxGbA8M2+OiGuB+2jcu7g1M5+KiJdd0/y7fgq4JSKOpxEk7yi4dkkqjeFGUrfy+5fUPfqmpqZe+VFdanz8YCW/uKpOIas32F8qmj2mItlfKpL9pSJVtb+Ghgb7ZjtX9G6ikiRJkqQKMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmqop99nUJIkSZI0M2cGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1NFB2AXUSEUuAEeBM4DBwZWbuKrcqdYuIOA7YCqwDTgA+DYwBtwNTwD8CH8nMyYj4IPAh4Ajw6cy8OyK+A/gd4DXAQeD9mTne6a9D1RYRrwG+ClxEo39ux/5SG0TEzwLvAY6n8X/hX2J/qQ2a/z/+Jo3/HyeAD+L3L7VBRGwE/nNmXhgR38sieyoizgE+13zslzLzU53/ql7KmcHOuhRYmpnDwCeAG0quR93lR4E9mfk24AeBXwc+C3yyOdYHvDciXgt8FHgr8E7glyLiBODDwEPNx/4W8MkSvgZVWPMHqpuAbzWH7C+1RURcCJxLo28uAL4T+0vtczEwkJnnAtcBv4D9pUWKiJ8BbgWWNofa0VOfBy4DzgM2RsSbOvX1zMYw2FnnAfcCZOaDwFnllqMu80fAf2h+3Efjt0pvpvHbdYAvAm8Hzga2Z+bhzNwP7ALeQEv/tTxWavUZGv9RPd08tr/ULu8EHgLuBO4C7sb+Uvt8DRhorsBaAfwL9pcW7zHgh1qOF9VTEbECOCEzH8vMKeA+KtBrhsHOWgHsbzmeiAiX6mpeMvO5zDwYEYPAHTR+y9TX/IYCjWUIK3l5n800Pj0mARARHwDGM/O+lmH7S+1yCo1fgL4PuBr4XWCJ/aU2eY7GEtFHgVuAX8XvX1qkzPwCjV8sTFtsT60ADszw2FIZBjvrADDYcrwkM4+UVYy6T0R8J/AXwG9n5n8DJltODwL7eHmfzTQ+PSZN+3Hgooi4H3gjjWUtr2k5b39pMfYA92Xmi5mZwAu89Icg+0uL8TEa/fU6Gvsy/CaNe1On2V9qh8X+zDXbY0tlGOys7TTWtdO8gfShcstRN4mINcCXgI9n5tbm8N8178UBeBfwZeArwNsiYmlErATW07jR+Wj/tTxWAiAzz8/MCzLzQuDvgR8Dvmh/qU0eAH4wIvoi4jTgRODP7C+1yV6+PQvzP4Dj8P9Htd+ieiozDwAvRsT3REQfjeXzpfda39TU1Cs/Sm3RspvoG2jc83V5Zj5ablXqFhHxOeBHaCyDmfYTNJbDHA88AnwwMyeaO1tdReMXPr+YmV+IiGU0flt6KvAicFlmfrOTX4O6Q3N28GoavwW9BftLbRAR/wX4fhp983PAN7C/1AYRsZzGbtun0uinzwF/g/2lRYqIdcDvZ+Y5EfE6FtlTzcmgXwH6aewm+vOd/6peyjAoSZIkSTXkMlFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0NlF1AkcbHD06VXcNMVq1axt69z5ddhnqU/aWi2WMqkv2lItlfKlJV+2toaLBvtnPODJZgYKC/7BLUw+wvFc0eU5HsLxXJ/lKRurG/DIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJHWFzSM72Dyyo+wyeoZhUJIkSZJqaKCMTxoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFsi4gPAB5oPWQq8EXhtZu7rYOmSJEmS1BNKCYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNiWmbcDtzcf83/RCIkGQUmSJEl6FcpaJnoecC9AZj4InNVybj2wKzP3ZuaLwAPA+dMnI+Is4PWZeXMH65UkSZKknlLWzOAKYH/L8UREDGTmkRnOHQRWthz/HPCp+XySVauWMTDQv9haCzE0NFh2Ceph9peKZo+pSPaXimR/dbf+/j6guq9jVeuaTVlh8ADQ+kwtaQbBmc4NAvsAIuIkIDLzL+bzSfbufb4Npbbf0NAg4+MHyy5DPcr+UtHsMRXJ/lKR7K/uNzExBVDJ17Gq/TVXQC1rmeh24GKA5j2DD7WcewQ4IyJOjojjaSwR3dk8dz7wZ50sVJIkSZJ6UVkzg3cCF0XEDqAPuDwiLgOWZ+bNEXEtcB+NsLo1M59qXhfA10upWJIkSZJ6SClhMDMngauPGX605fxdwF0zXHd9waVJkiRJUi34pvOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJJVk88gONo/sKLsM1ZRhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZIqb3RsN/ueO8yeAy+w5bZRRsd2l11S1xsouwBJkiRJmsvo2G5u2vbw0eMnxw8dPd64YU1ZZXU9ZwYlSZIkVdo9Ox+fZfyJjtbRawyDkiRJkirt6Wefn3H8mT2HOlxJbzEMSpIkSaq0005ZNuP4qatP7HAlvaWUewYjYgkwApwJHAauzMxdLecvAbYAR4CtmXlLc/xngfcAxwMjmXlbp2uXJEmS1Fmbhte95J7Bb4+vLaGa3lHWBjKXAkszczgizgFuAN4LEBHHATcCbwEOAdsjYhuwHjgXeCuwDPjpMgqXJEmS1FnTm8TcevcYE5NTnD60nE3Da908ZpHKWiZ6HnAvQGY+CJzVcm49sCsz92bmi8ADwPnAO4GHgDuBu4C7O1qxJEmSpNJs3LCGk5afwOoVS7nuirMNgm1Q1szgCmB/y/FERAxk5pEZzh0EVgKnAGuBdwPfBWyLiO/LzKnZPsmqVcsYGOhve/HtMDQ0WHYJ6mH2l4pmj6lI9peKVLX+6u/vA6pXV1VV/fmqal2zKSsMHgBan6klzSA407lBYB+wB3i0OVuYEfECMAT899k+yd69M+86VLahoUHGxw+WXYZ6lP2lotljKpL9pSJVsb8mJhrzGlWrq6qq/HxVsb9g7oBa1jLR7cDFAM17Bh9qOfcIcEZEnBwRx9NYIrqTxnLRH4yIvog4DTiRRkCUJEmSJC1QWTODdwIXRcQOoA+4PCIuA5Zn5s0RcS1wH42wujUznwKeiojzga80xz+SmRMl1S9JkiRJXa2UMJiZk8DVxww/2nL+LhqbxBx73c8UXJokSZIk1YJvOi9JkiRJNWQYlCRJkkowOrabfc8dZs+BF9hy2yijY7vLLkk1U9Y9g5IkSVJtjY7t5qZtDx89fnL80NFj3z9PneLMoCRJktRh9+x8fJbxJzpah+rNMChJkiR12NPPzvx+2M/sOdThSlRnhkFJkmpm88gONo/sKLsMqdZOO2XZjOOnrj6xw5WozgyDkiRJUodtGl43y/jazhaiWnMDGUmSJKnDpjeJufXuMSYmpzh9aDmbhte6eYw6yjAoSZIklWDjhjXccf9jAFx3xdklV6M6cpmoJEmSJNWQYVCSJGkObrgjqVcZBiVJkiSphrxnUJIkSVJXuP6ac8suoac4Myi9Ci4ZkiRJUrczDEqSJElSDZWyTDQilgAjwJnAYeDKzNzVcv4SYAtwBNiambc0x/8WONB82Dcy8/KOFi5JkiRJPaKsewYvBZZm5nBEnAPcALwXICKOA24E3gIcArZHxDZgP9CXmReWU7IkSZIk9Y6ylomeB9wLkJkPAme1nFsP7MrMvZn5IvAAcD6NWcRlEfGliPjzZoiUJEmSJL0KZc0MrqAx0zdtIiIGMvPIDOcOAiuB54HPALcCZwBfjIhoXjOjVauWMTDQ3/bi22FoaLDsErQI/f19QHVfx6rWpd5hj3U3v4ctTNWfLy1M1V5H+6u3dNvrWFYYPAC0PlNLWkLdsecGgX3A12jMGE4BX4uIPcCpwD/P9kn27n2+rUW3y9DQIOPjB8suQ4swMTEFUMnX0f5S0eyx7uf3sIWp8vOlhbG/VKQq9hfMHVDLWia6HbgYoLnc86GWc48AZ0TEyRFxPI0lojuBH6dxbyERcRqNGcRnOlm0JEmSJPWKsmYG7wQuiogdQB9weURcBizPzJsj4lrgPhphdWtmPhURtwG3R8QDwBTw43MtEZUkSZIkza6UMJiZk8DVxww/2nL+LuCuY655Ebis+OokSZIkqff5pvOSJEmSVEOGQUmSJEmqIcOgJEk1Mjq2m33PHWbPgRfYctsoo2O7yy5JklSSsjaQkSRJHTY6tpubtj189PjJ8UNHjzduWFNWWZKkkhgGJUmqiXt2Pj7L+BOGQakk119zbtklqMZcJipJUk08/ezzM44/s+dQhyuRJFWBYVCSpJo47ZRlM46fuvrEDlciSaoCw6AkSTWxaXjdLONrO1tIF3HDHUm9zHsGBcDmkR2A69YlqZdN3xd4691jTExOcfrQcjYNr/V+wVm44Y6kXufMoCRJNbJxwxpOWn4Cq1cs5borzjbUzGGuDXckqRcYBqUFcsmQJNWDG+5I6nWGQWkBppcMTUxOAd9eMmQglKTe44Y7knqdYVBaAJcMSVJ9uOGOpF7nBjLSArhkSJLqww13JPU6ZwalBXDJ0Ku3eWTH0V1rJalbuOGOpF5WysxgRCwBRoAzgcPAlZm5q+X8JcAW4AiwNTNvaTn3GuCrwEWZ+WhHC1ftbRpe95Jtxr897pIhSZIkdZeyZgYvBZZm5jDwCeCG6RMRcRxwI/AO4ALgqohY03LuJuBbHa9YovEb4g+95/X0L+kD4PSh5XzoPa/3N8WSJEnqOmWFwfOAewEy80HgrJZz64Fdmbk3M18EHgDOb577DPB54OkO1iq9hEuGJEmS1AvK2kBmBbC/5XgiIgYy88gM5w4CKyPiA8B4Zt4XET87n0+yatUyBgb621VzWw0NDZZdwkv09zdmuqpWV1VV/fmqYl1Vf860ML6O3a3q/x6rVlfVny8tjK+jitRt/VVWGDwAtD5TS5pBcKZzg8A+4KPAVES8HXgj8FsR8Z7M/OZsn2Tv3pl3fizb0NAg4+MHyy7jJSYmGu+bV7W6qqrKz1cV+wuq/ZxpYaraY5q/Kv97rGJ/Vfn50sJUsb/UO6raX3MF1LLC4HbgEuAPI+Ic4KGWc48AZ0TEycBzNJaIfiYz75h+QETcD1w9VxCUJEmSJM1uUWEwIvqAD2Xm5xd46Z3ARRGxA+gDLo+Iy4DlmXlzRFwL3EfjnsatmfnUYuqUJEmSJL3UosJgZk5FxHkRcXNmTi7gukng6mOGH205fxdw1xzXX7jQWiVJkiRJ39aOZaLfDXw5In4L+Hvg4cx8rg1/ryRJkiSpIO14a4m3Aj9G4+0evh/49Tb8nZIkSZKkArVjZvB44CTgb5rLOyVJkiRJFdeOmcH/B3g3sDMitkfEF9vwd0qSJEmSCtSOmcElmfmpiLgQuBi4rg1/pyRJKsj115xbdgmSpApox8zgP0TEMuC/09hM5sI2/J3qoNGx3ex77jB7DrzAlttGGR3bXXZJkiRJkgrWjjC4C5gEfhr4GPAbbfg71SGjY7u5advDTExOAfDk+CFu2vawgVCSJEnqce1YJvpPwO8DDwI/6dtKdJd7dj4+y/gTbNywpqO1SJIkSeqcRc8MZubdmXkpsBO4JSK2LL4sdcrTzz4/4/gzew51uBJJkiRJnbTomcGI+FHgdc0/gzTed1Bd4rRTlvHk+MuD36mrTyyhGkmSJEmdsuAwGBEXZ+aftAxNAduAzMyDbatMHbFpeB03bXt4hvG1JVQjSVL1uPuqpF71amYGPw38CUBEvDczf7e9JamTpu8LvPXuMSYmpzh9aDmbhtd6v6DaanrH2onJKbbcNsqm4XX2mCRJUslezT2DfS0f/8d2FaLybNywhpOWn8DqFUu57oqz/SFdbeWOtZIkSdX0amYGp1o+7pv1UVIPc8nQ/LljrSRJUjW9mjD4vRFxG/DXwHdExEBmHmlzXZJ6hDvWSpIkVdOrCYMXA/8aOAd4EdgfEY8B/wD8v5l5/Sv9BRGxBBgBzgQOA1dm5q6W85cAW4AjwNbMvCUi+oFbgKAxO3l1Zv7jq6hfUge5Y60kSVI1LTgMZuYDwAPTxxFxAo1Q96+bf+bjUmBpZg5HxDnADcB7m3/fccCNwFuAQ8D2iNgGDDc//1sj4kLgF6avkVRd7lgrSZJUTYt+n8HMPAx8pflnvs4D7m1e/2BEnNVybj2wKzP3AkTEA8D5mflHEXF38zFrgX2LrV1S8dyxVpIkqZoWHQZfpRXA/pbjiZZ7D489dxBYCZCZRyLiN4H/BfhfX+mTrFq1jIGB/vZV3UZDQ4Nll/AS/f2NvYCqVpdenaq9ju++YJA7v/x1AH7jEz9QcjVqh6r1mHqL/aUi2V8qUrf1V1lh8ADQ+kwtadmE5thzg7TMAmbm+yPi48BoRGzIzFl3odi7d+aNK8o2NDTI+PjBsst4iYmJxiaxVatLC1fF/gJ7rJdUtcfUG+wvFcn+UpGq2l9zBdRX8z6D7bCdxkY0NO8ZfKjl3CPAGRFxckQcD5wP7IyI/yMifrb5mOeByeYfSZIkSdIClTUzeCdwUUTsoPFehZdHxGXA8sy8OSKuBe6jEVa3ZuZTEfHHwH+NiL8CjgN+MjO/VVL9kiRJktTVSgmDmTkJXH3M8KMt5+8C7jrmmkPAvy2+OkmSJEnqfWUtE9X/397dxshVnncYv/bF2DVeuwaWLSgISy25hT+EVEXY6xpMpZoQLFoUqapkRWkJL3FoFBQkUtqCpSLaKiWUUkVWwbBK0jaqGpAlTBSMFIWq2LBRq1ZysviubJVIgcTauOs3CHa93n44s2Yway/2zs6ZM+f6fdrzPHO098zcuzP/Oec8I0mSJEklMgxKkirv/i27uH/LrrLLkCSpUgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkqSWcUEnqToMg5IkSZJUQ6V86bw6z6P3rCm7BEmSJElt5JFBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGiplNdGI6AW2ANcAx4A7M3Nv0/ytwGbgBDCSmVsjYgEwAqwAFgKPZObz7a5d0vlxxVpJkqTOUtaRwduARZk5DDwAPDY90Qh9jwM3AeuAuyNiCPg0cCAzrwduBr7W9qolSZIkqUuUFQbXAi8CZOZrwLVNc1cDezNzIjOPA68ANwDfBh5q3KaH4qihJEmSJOk8lPWl80uBQ03bkxHRn5knZpg7AizLzKMAETEAPAs8ONsvWb58Mf39fa2ruoUGBwfKLkFdzP7SfOu0Huvr6wE6ry6dH5/Hauv0v8dOrUvdoWr9VVYYPAw0P1K9jSA409wAcBAgIq4AtgFbMvNbs/2SiYl3WlNtiw0ODjA+fqTsMtSl7C/Nt07sscnJKYCOq0vnrhP7S+emk/8e7S/Np07tr7MF1LLC4E7gVuBfImI1sLtp7nXgqoi4CDhKcYroVxvXDb4EfCEzv9fugiVJkiSpm5QVBrcB6yNiF8X1f7dHxEZgSWY+FRH3ATsormkcycw3I+IJYDnwUERMXzv4ycz8RRl3QJIkSZKqrJQwmJkngU2nDe9pmt8ObD9tn3uBe+e/OklSlYyO7efg0WNMnpxi8zOjbBhewaqVQ2WXJUlSxyvryKAk6Szu37IL8PsZZzM6tp8nn//Rqe2fjL99attAKEnS2ZX11RKSJM3Zd1594wzjP25rHZIkVZFhUJJUWW/9fOZVo3964O02VyJJUvUYBiVJlXX5JYtnHL/s4gvbXIkkSdVjGJQkVdaG4RVnGL+yvYVIAt5b0OnA4XfZ/Mwoo2P7yy5J0lm4gIwkqbKmF4l5+oUxJk9O8ZHBJWwYvtLFY6QSuKCTVD0eGZQkVdqqlUP88pKFXLx0EQ/fcZ1vOqWSuKCTVD2GQUmSJM2ZCzpJ1WMYlCRJ0py5oJNUPYZBSZIkzZkLOknV4wIykiRJmjMXdJKqxzAoSZKklli1cohnX94HwMN3XFdyNZJm42mikiRJklRDhkFJkiRJqiHDoCRJkiTVUCnXDEZEL7AFuAY4BtyZmXub5m8FNgMngJHM3No0twr4Smbe2NaiJUmSJKmLlHVk8DZgUWYOAw8Aj01PRMQC4HHgJmAdcHdEDDXmvgw8DSxqe8WSJEmS1EXKCoNrgRcBMvM14NqmuauBvZk5kZnHgVeAGxpz+4BPtbNQSZIkSepGZX21xFLgUNP2ZET0Z+aJGeaOAMsAMvO5iFjxYX/J8uWL6e/va0G5rTc4OFB2Cepi9lf19fX1AJ37XHZaXZ3+eOnc+DxWW6f/PXZqXeoOVeuvssLgYaD5keptBMGZ5gaAg+fzSyYm3jm/6ubZ4OAA4+NHyi5DXcr+6g6Tk1MAHflcdmKPdfLjpXPTif2lc9PJf4/2l+ZTp/bX2QJqWaeJ7gRuAYiI1cDuprnXgasi4qKIuIDiFNFX21+iJJVjdGw/B48e48Dhd9n8zCijY/vLLkmSJHWhso4MbgPWR8QuoAe4PSI2Aksy86mIuA/YQRFWRzLzzZLqlKS2Gh3bz5PP/+jU9k/G3z61vWrlUFllSZKkLlRKGMzMk8Cm04b3NM1vB7afYd83gNXzVpwkleg7r75xhvEfGwYlSVJL+aXzktRB3vr5zNc6//TA222uRJIkdTvDoCR1kMsvWTzj+GUXX9jmSiRJUrcr65pBSdIMNgyveN81g++NX1lCNdXx6D1ryi5BkqTKMQxKUgeZvi7w6RfGmDw5xUcGl7Bh+EqvF5QkSS1nGJSkDrNq5RDPvrwPgIfvuK7kaiRJUrfymkFJkiRJqiHDoCRJkiTVkKeJSpIkqWVc0EmqDo8MSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVUyvcMRkQvsAW4BjgG3JmZe5vmbwU2AyeAkczcOts+kiRJkqQPr6wjg7cBizJzGHgAeGx6IiIWAI8DNwHrgLsjYuhs+0iSJEmSzk1ZYXAt8CJAZr4GXNs0dzWwNzMnMvM48Apwwyz7SJIkSZLOQSmniQJLgUNN25MR0Z+ZJ2aYOwIsm2WfGS1fvpj+/r4Wlt06g4MDZZegLmZ/VV9fXw/Quc9lp9al7mB/aT7ZX5pPVeuvssLgYaD5keptCnWnzw0AB2fZZ0YTE++0oNTWGxwcYHz8SNllqEvZX91hcnIKoCOfS3tM88n+0nyyvzSfOrW/zhZQyzpNdCdwC0BErAZ2N829DlwVERdFxAUUp4i+Oss+kiRJkqRzUNaRwW3A+ojYBfQAt0fERmBJZj4VEfcBOyjC6khmvhkRH9inpNolSZIkqfJKCYOZeRLYdNrwnqb57cD2D7GPJEmSJOk8lHVkUJJ0Fo/es6bsEiRJUpcr65pBSZIkSVKJDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDfVMTU2VXYMkSZIkqc08MihJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqqH+sguok4joBbYA1wDHgDszc2+5VakqImIBMAKsABYCjwBjwNeBKeCHwB9l5smIuAv4HHACeCQzX4iIXwL+EbgUOAL8QWaOt/t+qLNFxKXAfwDrKfrn69hfaoGI+BPgd4ALKF4L/xX7Sy3QeH38BsXr4yRwF/7/UgtExCrgK5l5Y0T8GnPsqYhYDTzRuO1Lmfnn7b9X7+eRwfa6DViUmcPAA8BjJdejHHwWgQAAAxlJREFUavk0cCAzrwduBr4G/A3wYGOsB/jdiPgV4IvAbwKfAP4qIhYCnwd2N277TeDBEu6DOljjDdWTwC8aQ/aXWiIibgTWUPTNOuAK7C+1zi1Af2auAR4G/gL7S3MUEV8GngYWNYZa0VN/D2wE1gKrIuLX23V/zsQw2F5rgRcBMvM14Npyy1HFfBt4qPFzD8WnSr9B8ek6wHeB3wauA3Zm5rHMPATsBT5GU/813VZq9lWKF6q3Gtv2l1rlE8BuYBuwHXgB+0ut899Af+MMrKXA/2F/ae72AZ9q2p5TT0XEUmBhZu7LzClgBx3Qa4bB9loKHGranowIT9XVh5KZRzPzSEQMAM9SfMrU0/iHAsVpCMv4YJ/NND49JgEQEX8IjGfmjqZh+0utcgnFB6C/B2wC/gnotb/UIkcpThHdA2wF/g7/f2mOMvM5ig8Wps21p5YCh2e4bakMg+11GBho2u7NzBNlFaPqiYgrgO8D/5CZ3wJONk0PAAf5YJ/NND49Jk37LLA+Il4GPk5xWsulTfP2l+biALAjM49nZgLv8v43QfaX5uJLFP31UYp1Gb5BcW3qNPtLrTDX91xnum2pDIPttZPivHYaF5DuLrccVUlEDAEvAX+cmSON4f9sXIsD8Eng34AfANdHxKKIWAZcTXGh86n+a7qtBEBm3pCZ6zLzRuC/gM8A37W/1CKvADdHRE9EXA5cCHzP/lKLTPDeUZj/BRbg66Nab049lZmHgeMR8asR0UNx+nzpvdYzNTU1+63UEk2riX6M4pqv2zNzT7lVqSoi4gng9ylOg5l2L8XpMBcArwN3ZeZkY2Wruyk+8PnLzHwuIhZTfFp6GXAc2JiZP2vnfVA1NI4ObqL4FHQr9pdaICL+Gvgtir75U+B/sL/UAhGxhGK17cso+ukJ4N+xvzRHEbEC+OfMXB0RH2WOPdU4GPS3QB/FaqJ/1v579X6GQUmSJEmqIU8TlSRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNfT/RHyrlUNUVfcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib.gridspec import GridSpec\n", + "plt.figure(figsize=(15, 20))\n", + "gs = GridSpec(5, 1)\n", + "ax_lc = plt.subplot(gs[0])\n", + "ax_mean = plt.subplot(gs[1], sharex=ax_lc)\n", + "ax_evar = plt.subplot(gs[2], sharex=ax_lc)\n", + "ax_nvar = plt.subplot(gs[3], sharex=ax_lc)\n", + "ax_fvar = plt.subplot(gs[4], sharex=ax_lc)\n", + "\n", + "ax_lc.plot(lc.time, lc.counts)\n", + "ax_lc.set_ylabel('Counts')\n", + "ax_mean.scatter(tmean, rate)\n", + "ax_mean.set_ylabel('Counts')\n", + "\n", + "ax_evar.errorbar(tmean, evar, yerr=evar_err, fmt='o')\n", + "ax_evar.set_ylabel(r'$\\sigma_{XS}$')\n", + "\n", + "ax_fvar.errorbar(tmean, fvar, yerr=fvar_err, fmt='o')\n", + "ax_fvar.set_ylabel(r'$F_{var}$')\n", + "\n", + "ax_nvar.errorbar(tmean, nvar, yerr=nvar_err, fmt='o')\n", + "ax_nvar.set_ylabel(r'$\\sigma_{NXS}$')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Lightcurve/Lightcurve tutorial.ipynb.txt b/_sources/notebooks/Lightcurve/Lightcurve tutorial.ipynb.txt new file mode 100644 index 000000000..205cf1859 --- /dev/null +++ b/_sources/notebooks/Lightcurve/Lightcurve tutorial.ipynb.txt @@ -0,0 +1,2226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start here to begin with Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Lightcurve` object is usually created in one of the following two ways:\n", + "\n", + "1. From an array of time stamps and an array of counts.\n", + " \n", + " lc = Lightcurve(times, counts, **opts)\n", + "\n", + " where `**opts` are any (optional) keyword arguments (e.g. `dt=0.1`, `mjdref=55000`, etc.)\n", + "\n", + "2. From photon arrival times.\n", + "\n", + " lc = Lightcurve.make_lightcurve(event_arrival_times, dt=1, **opts)\n", + "\n", + "as will be described in the next sections.\n", + "\n", + "An additional possibility is creating an empty `Lightcurve` object, whose attributes will be filled in later:\n", + "\n", + " lc = Lightcurve()\n", + "\n", + "or, if one wants to specify any keyword arguments:\n", + "\n", + " lc = Lightcurve(**opts)\n", + "\n", + " This option is usually only relevant to advanced users, but we mention it here for reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Array of time stamps and counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 time stamps" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1000)\n", + "times[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 random Poisson-distributed counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 91, 98, 98, 98, 108, 86, 101, 114, 93, 95])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "counts = np.random.poisson(100, size=len(times))\n", + "counts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Lightcurve object with the times and counts array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = Lightcurve(times, counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points can be counted with the `len` function." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note the warnings thrown by the syntax above. By default, `stingray` does a number of checks on the data that is put into the `Lightcurve` class. For example, it checks whether it's evenly sampled. It also computes the time resolution `dt`. All of these checks take time. If you know the time resolution, it's a good idea to put it in manually. If you know that your light curve is well-behaved (for example, because you know the data really well, or because you've generated it yourself, as we've done above), you can skip those checks and save a bit of time:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1 \n", + "lc = Lightcurve(times, counts, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Photon Arrival Times\n", + "\n", + "Often, you might have unbinned photon arrival times, rather than a light curve with time stamps and associated measurements. If this is the case, you can use the `make_lightcurve` method to turn these photon arrival times into a regularly binned light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 2., 2., 2., 3., 3., 3., 3., 3.])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arrivals = np.loadtxt(\"photon_arrivals.txt\")\n", + "arrivals[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time bins and respective counts can be seen with `lc.counts` and `lc.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3, 5, 1, 4, 1, 3, 1, 1])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One useful feature is that you can explicitly pass in the start time and the duration of the observation. This can be helpful because the chance that a photon will arrive exactly at the start of the observation and the end of the observation is very small. In practice, when making multiple light curves from the same observation (e.g. individual light curves of multiple detectors, of for different energy ranges) this can lead to the creation of light curves with time bins that are *slightly* offset from one another. Here, passing in the total duration of the observation and the start time can be helpful." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1.0, tstart=1.0, tseg=9.0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve object has the following properties :\n", + "\n", + "1. `time` : numpy array of time values\n", + "2. `counts` : numpy array of counts per bin values\n", + "3. `counts_err`: numpy array with the uncertainties on the values in `counts`\n", + "4. `countrate` : numpy array of counts per second\n", + "5. `countrate_err`: numpy array of the uncertainties on the values in `countrate`\n", + "4. `n` : Number of data points in the lightcurve\n", + "5. `dt` : Time resolution of the light curve\n", + "6. `tseg` : Total duration of the light curve\n", + "7. `tstart` : Start time of the light curve\n", + "8. `meancounts`: The mean counts of the light curve\n", + "9. `meanrate`: The mean count rate of the light curve\n", + "10. `mjdref`: MJD reference date (``tstart`` / 86400 gives the date in MJD at the start of the observation)\n", + "11. `gti`:Good Time Intervals. They indicate the \"safe\" time intervals to be used during the analysis of the light curve. \n", + "12. `err_dist`: Statistic of the Lightcurve, it is used to calculate the uncertainties and other statistical values appropriately. It propagates to Spectrum classes\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n == len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that by default, `stingray` assumes that the user is passing a light curve in **counts per bin**. That is, the counts in bin $i$ will be the number of photons that arrived in the interval $t_i - 0.5\\Delta t$ and $t_i + 0.5\\Delta t$. Sometimes, data is given in **count rate**, i.e. the number of events that arrive within an interval of a *second*. The two will only be the same if the time resolution of the light curve is exactly 1 second.\n", + "\n", + "Whether the input data is in counts per bin or in count rate can be toggled via the boolean `input_counts` keyword argument. By default, this argument is set to `True`, and the code assumes the light curve passed into the object is in counts/bin. By setting it to `False`, the user can pass in count rates:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# times with a resolution of 0.1\n", + "dt = 0.1\n", + "times = np.arange(0, 100, dt)\n", + "times[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "mean_countrate = 100.0\n", + "countrate = np.random.poisson(mean_countrate, size=len(times))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts=countrate, dt=dt, skip_checks=True, input_counts=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally, both `counts` and `countrate` attribute will be defined no matter what the user passes in, since they're trivially converted between each other through a multiplication/division with `dt:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0\n", + "[113 92 110 97 101 102 103 101 124 89]\n" + ] + } + ], + "source": [ + "print(mean_countrate)\n", + "print(lc.countrate[:10])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0\n", + "[11.3 9.2 11. 9.7 10.1 10.2 10.3 10.1 12.4 8.9]\n" + ] + } + ], + "source": [ + "mean_counts = mean_countrate * dt\n", + "print(mean_counts)\n", + "print(lc.counts[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Error Distributions in `stingray.Lightcurve`\n", + "\n", + "The instruments that record our data impose measurement noise on our measurements. Depending on the type of instrument, the statistical distribution of that noise can be different. `stingray` was originally developed with X-ray data in mind, where most data comes in the form of _photon arrival times_, which generate measurements distributed according to a Poisson distribution. By default, `err_dist` is assumed to Poisson, and this is the only statistical distribution currently fully supported. But you *can* put in your own errors (via `counts_err` or `countrate_err`). It'll produce a warning, and be aware that some of the statistical assumptions made about downstream products (e.g. the normalization of periodograms) may not be correct:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "\n", + "mean_flux = 100.0 # mean flux\n", + "std_flux = 2.0 # standard deviation on the flux\n", + "\n", + "# generate fluxes with a Gaussian distribution and \n", + "# an array of associated uncertainties\n", + "flux = np.random.normal(loc=mean_flux, scale=std_flux, size=len(times)) \n", + "flux_err = np.ones_like(flux) * std_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, flux, err=flux_err, err_dist=\"gauss\", dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Good Time Intervals\n", + "\n", + "`Lightcurve` (and most other core `stingray` classes) support the use of *Good Time Intervals* (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don't apply to the data within a `Lightcurve` object, but become relevant in a number of circumstances, such as when generating `Powerspectrum` objects. \n", + "\n", + "If no GTIs are given at instantiation of the `Lightcurve` class, an artificial GTI will be created spanning the entire length of the data set being passed in:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(times))\n", + "\n", + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5.000e-01, 9.995e+02]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "999\n", + "[[-5.000e-01 9.995e+02]]\n" + ] + } + ], + "source": [ + "print(times[0]) # first time stamp in the light curve\n", + "print(times[-1]) # last time stamp in the light curve\n", + "print(lc.gti) # the GTIs generated within Lightcurve" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "GTIs are defined as a list of tuples:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0, 500), (600, 1000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(lc.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll get back to these when we talk more about some of the methods that apply GTIs to the data.\n", + "\n", + "# Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Addition/Subtraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be summed up or subtracted from each other if they have same time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)\n", + "lc_rand = Lightcurve(np.arange(1000), [500]*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_rand" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counts in light curve 1: [103 99 102 109 104]\n", + "Counts in light curve 2: [500 500 500 500 500]\n", + "Counts in summed light curve: [603 599 602 609 604]\n" + ] + } + ], + "source": [ + "print(\"Counts in light curve 1: \" + str(lc.counts[:5]))\n", + "print(\"Counts in light curve 2: \" + str(lc_rand.counts[:5]))\n", + "print(\"Counts in summed light curve: \" + str(lc_sum.counts[:5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Negation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A negation operation on the lightcurve object inverts the count array from positive to negative values." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "lc_neg = -lc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_neg" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.all(lc_sum.counts == 0) # All the points on lc and lc_neg cancel each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count value at a particular time can be obtained using indexing." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "113" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc[120]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve can also be sliced to generate a new object." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sliced = lc[100:200]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_sliced.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Concatenation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be combined into a single object using the `join` method. Note that both of them must not have overlapping time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lc_1 = lc" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "lc_2 = Lightcurve(np.arange(1000, 2000), np.random.rand(1000)*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "lc_long = lc_1.join(lc_2, skip_checks=True) # Or vice-versa" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2000\n" + ] + } + ], + "source": [ + "print(len(lc_long))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Truncation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A light curve can also be truncated." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=0, stop=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_cut)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : By default, the `start` and `stop` parameters are assumed to be given as **indices** of the time array. However, the `start` and `stop` values can also be given as time values in the same value as the time array." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=500, stop=1500, method='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1499)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_cut.time[0], lc_cut.time[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Re-binning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution (`dt`) can also be changed to a larger value.\n", + "\n", + "**Note** : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "lc_rebinned = lc_long.rebin(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Old time resolution = 1\n", + "Number of data points = 2000\n", + "New time resolution = 2\n", + "Number of data points = 1000\n" + ] + } + ], + "source": [ + "print(\"Old time resolution = \" + str(lc_long.dt))\n", + "print(\"Number of data points = \" + str(lc_long.n))\n", + "print(\"New time resolution = \" + str(lc_rebinned.dt))\n", + "print(\"Number of data points = \" + str(lc_rebinned.n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sorting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A lightcurve can be sorted using the `sort` method. This function sorts `time` array and the `counts` array is changed accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = lc_long[:] # Copying into a new object" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = new_lc_long.sort(reverse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc_long.time[0] == max(lc_long.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can sort by the `counts` array using `sort_counts` method which changes `time` array accordingly:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc = lc_long[:]\n", + "new_lc = new_lc.sort_counts()\n", + "new_lc.counts[-1] == max(lc_long.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A curve can be plotted with the `plot` method." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABPqElEQVR4nO2dd7wVxdnHf88tXHqTK0oTFASxYEHsih3BFhMTjcYWNcW8pvlGNFFjjIrG9FheY01iiRqNGOyKgkZBUHoXUDqX3m+d94+ze87s7MzsbDltme/ncz/3nD2zM7Ozs88+88wzzxBjDBaLxWJJFxXFroDFYrFYkscKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqqKXQEA6NatG+vbt2+xq2GxWCxlxdSpU9cxxmplv5WEcO/bty+mTJlS7GpYLBZLWUFEX6h+s2YZi8ViSSFWuFssFksKscLdYrFYUogV7haLxZJCrHC3WCyWFGKFu8VisaQQK9wtFoslhVjhbrFYPCxauw0ffb6+2NWwxCRQuBPRY0S0lohmccfuIKIZRDSNiN4koh7cbzcR0SIimk9EZ+ar4haLJT+c9rv3cfFfPy52NSwxMdHcnwAwQjj2G8bYIYyxQwH8B8CtAEBEgwFcBOBA55wHiKgysdpaLBaLxYhA4c4YmwBgg3BsC/e1HQB3O6fzADzLGKtnjC0BsAjAsITqarFYLBZDIseWIaI7AVwGYDOAk53DPQHw47nlzjHZ+dcCuBYA+vTpE7UaFovFYpEQeUKVMfZzxlhvAE8B+IFzmGRJFec/zBgbyhgbWlsrDWpmsVgslogk4S3zNICvOp+XA+jN/dYLwMoEyrBYLBZLCCIJdyIawH09F8A85/NYABcRUQ0R9QMwAMDkeFW0WCwWS1gCbe5E9AyA4QC6EdFyALcBGElEAwG0APgCwHcBgDE2m4ieAzAHQBOA6xhjzXmqu8VisVgUBAp3xtjFksOPatLfCeDOOJWyWCwWSzzsClWLxWJJIVa4WywWSwqxwt1isVhSiBXuFovFkkKscLdYLJYUYoW7xWKxpBAr3C0WiyWFWOFusVgsKcQK9yKxevMufOvRSdi8s7HYVUklG7Y34NJHJqFua31R6/H4h0vw4HufF7UOlt0TK9yLxJ/fXYiJC9dh7LQVxa5KKnl60hf4YNE6PP7hkqLW4/ZX5uCe1+cFJ7RYEsYK9yLR4gRCJpJFSbbExW1Xabxpi2U3wAr3IsFYRuxUVljhnk+Yle6W3RQr3ItEs6O6W9meH9wBEbO6u2U3xQr3IuGaZSqsWSYvELLS3WLZLbHCvUi4Zhkr3OWc8fv38dJnyyOfTwnJ9ssfm4y/vLswZi6WNLB03XYMuf1NLNuwo9hVMcIK9yLR7Ap3ewd8MMawYM02/Pif0yPn4b4yWUyj+/sL6nDfmwti5WFJB89PXYbNOxvx78/Kw8PNipYiYc0yapKYBM1q7tYsY0mIrKmvTLDCvUi0tFizjIok5LH7IIbN6+sPfYRb/j0rgRqULovWbkPf0eOwaO22vJc1dvpK7P+L11DfVF67bV739Ke45m9Til2NWFjhXiRcbxnrCumnJQF1O+o7c/LSDfj7x1/ELr+UGTt9JQDgPzNW5r2su1+di4amFqzf1pD3spJk3IxVeGvOmmJXIxZWuBeJFmZdIVUkaUqxZhnL7ooV7kVid1qh+sjExeg7elzWFBVEkr7pury27GpE39Hjsppsmrjn9XkYdMtrxa6GpYgECncieoyI1hLRLO7Yb4hoHhHNIKKXiKgz99tNRLSIiOYT0Zl5qnfZk12huhsI9zGvZWKrNBuq0clMqFJgXl+sy7i0PTwhfYG9Hnzvc+xqbCl2NbKkaQBVLtdiork/AWCEcOwtAAcxxg4BsADATQBARIMBXATgQOecB4ioMrHapojdyRUy7MOQiHA3KcepWbl5QZQTaWrZctPDAkULY2wCgA3CsTcZY03O148B9HI+nwfgWcZYPWNsCYBFAIYlWN+8cd3Tn6L/za8CAPrf/Cp+8PSneS0va5ZJVfdPhiTMMjlXyFxelz02GYf96s1cOcybtpR57IMl6Dt6HHY2FN/rZOP2BvQdPQ7PT1lW7KpYNCShN14FwDXu9QTA3/HlzjEfRHQtEU0hoil1dXUJVCMe42asQpMjcZtaGP4zY1Vey3OFzu4U+8RUIzc0zWvJLmLijk1YUIeNO3Lx88up5R+ZuBgAsGFHOK+TuIu4ZCxdvx0A8I9JXyaetyU5Ygl3Ivo5gCYAT7mHJMmkvYsx9jBjbChjbGhtbW2capQlTc2ZZmnJk1mUMZaXBzsOpi8yk3oHXZ9rc28xaIekVrNGxeReVVZmatnU3GJ8DoCswlIsZKWXYt+Mi3tNpXRdkYU7EV0O4GwAl7DcFS0H0JtL1gtA+lwRYjJ31RZ8tHg9gPxpj7/49yz0u+nVPOUeDdN+b5Lsd28tQL+bXlUujnFNLf/4+Evc+8Z8RX1yJe1saC5ae33/qU8Dy652JmdcYX3QbW/gtN+9H5h3c5GFu4x+N72Kbz06udjVSJSfPj8d/W56FT99PnrIjKSJJNyJaASAGwGcyxjjo+iMBXAREdUQUT8AAwCk6y4mwJQvNmY/J7FgR8ZTZTxkZgajmSf/uxQAsKtBnpgfQj7x4VJ9ZkRF3e7wtVmrA9NUOAsiXGG9vaEZn9dtDzyvsTmPHjMGfVc1nfHBonXJ1qWAyC77xU9XeP6XAiaukM8A+AjAQCJaTkTfBvAXAB0AvEVE04joIQBgjM0G8ByAOQBeB3AdY6z4M0ASmlsYdjUWp2p8hy+hUZyHHQ1NwYlC5mOuuRuYZYISGMyS8nlEmVTd1dicNZPkg50NzdnRRVWFa5YJ12FKUXPPB0k8z3x7yyiDeXcPJt4yFzPG9maMVTPGejHGHmWM9WeM9WaMHer8fZdLfydjbD/G2EDGWMmuorjqiU8w6JbXi10NlOK03puzV2PwrW9g+rJNsfIZO30lBt/6RlbAmNvcQxQS44nLestEzGbQLa/jaw99FL0CGtZu3YUDbn0dD0/ITKRWCpq7KXm1ucd0M5rkmCaT4PpnP4v1PK/fVo8Dbn0dD6RoM/PdwMtazvsLiuehwz8TpahYTViYaZvpyzfFymf8vLWe7+beMiEaRZHUTOw4fu5RpTuAaTFfgCpWbdoFABg3M+O1VVXp2tzNRgpuWIuwmn4h+WTphuBEhoyL6d22Zks9AOCVFK1W3m2FezHhfdt5ObazoRnb65MxhwRR39SMLbvya2eOqtiZiKOgrMWy12+r1+YVdr3Bhu35DYTltoFbqyqN5t7cwrBRqI+r6eteBibv0Pqm5kTmI2TmDveQrC/Krmnrrsa8mVI3Oi6maQoHYoV7keG11MPveAsH3vZGovmrbIhff+gjHPLLN6W/JYUoME11yGRWqObK3tnYjCN+/ba2nDDP9IbtDTj8jrfiVC+Q7H1zKpYT1v7GufvVuTjsjrc8QtgNJS3T3MOIr0v+OglDblf0E5MJVU0YCPdSLpT0xXvfmIfD7njLI+AP/uWbGPnHiWYVDwFjDJc8MilTX5P0JWhKlWGFexHgBQnfTXbmQStRPX/Tl28OPDeuDiMKTFMfYCM/95BlBxEmeaFGVzw6zd31ttnKab9VmpdBGHjPLpco2q3slrpCcoakL77hXNMmYdSweF2wh1BYStE0mgRWuAuYRi4UWbFpp7HnhNdbJr89K2zuyzfuQFQHkAVrtqJua878IYoAY809TKEKORNG/BBRKIFVU52fx2blpp1Z10WxDXSau9uH1m1ryIYniDIBuzJEHxbZsL0B2zQvve0NTVgnmMZKRaiaPoPLN+6MlP+yDTvAGMPmnY1Yu3UXVm/eFSmfsFjhLmAauZBn3bZ6HDfmXdz16jyj9B7NPc8dPMzL48v1O3D8PePxzOTwPvJTv9iIM34/AUfemTN/+DV3s7ySaBOTHa74YkK9ZPN0z44d8y5+9coczzHR5q4Tvuff/yG++uB/M+mdCVhTP/cN2xtw7Jh3ccd/5gSmlbXV4Xe8hZPuHa9MO+pPEzFUNI0ZrkQOQxRlycQldubyzXgxwt6pc1dtwQn3jsejHyzBkNvfxLA738HRd78TOp8oWOEuEMUv2B2mvzPPbOcWz4Rqnu13YXJftTmaZgIAi+sMtmxL0M89ME8DRZx3hQzTTvm8Y+PnZzyMRBlVWWEmrOes2gIg93Iz7c+bnAnFUF5kgiRcr5lkllVDV7Wsrd68Npn0EW6OydzL4nXRtiT8Yn1mjeekJV7PoEKEKUidcF+2YYd2eBgEP8FZt7XeY2ZQ0aoq04z1pvGzeVfIPIfcjqWQhjBVyLYL9E+oZkpYvXmXzxOCh3/olwTYWFUvApOaL3XyDmtCFtt01orNie1Hmsubc9NETnNvlEyQylrAUdyNXSddQtnTQ0yoytC5vEad74kiMk1cb6N60ag2ai/E4sXUCfcT7h2Pr8dYWMILliPvfNtjZlDhakkNEeyV+b7HYbRgscOF6c5S4a4wyxx99zsYdpe6XXmt5uT73pO7v8VsuKbmFvzsXzMy9QSFfAl6E5/95w9w2u/e17pbRsVtwmzgMENhXeXGojH0cw+1biwhd8F82NzjhvNQucRGXVXOj9F58hV2hCd1wh3IDU2jEMUsk/XXNfR2KeiEagyhFQYT4c4j00Cz9RB+0nl8RG0+Mcs4L0GXLbvie9Go2ixnZgmXj2l35k1UhSIfJskoQjOfj6DKFbQQc8mpFO5xiOIt43ZSU82d13yS6ljb65swZ2X0l1pcqqTC3czPffOORixauzWXLqbJfUdDE2YHtIVHsIQ0uquSrttWj/Hz1ga+sL9Yvx11W+tR39SMmQqXVJ/N3WnKZonmLitOtllJWILMm4vrtktHK8s27MCaLcEeISZVC1t9Vfp12+qxuG4bZizflI0kOmvF5kw8Ge6OJr2GSbavgK6eSVKV/yLKiyjeMu77QKeN8ng094Te4d/9x1RMXLgOC359VnYOAAjZiWJURead4nOFVFTmnL98gC837MDSMaOcanjT6QSU7Lcf/3Ma3pitn9w2EyzyRKrjN74wA4vXbcdrPzwBB+zdUZnvSb95DxUEXHB4L7wwdbm8DOe/+4IMrbnDjWdvlj5bInfTvv3EJ/KUzvVvrW/CifeOx+xfeXfhPMHxmnHvp7JE3U2IKGRVmvvIP07EWmf+7JtH9cGNZw7C2X/+AGcdtBfuu3BI3GKVqF4WhVgIZTV3gUiae4zXcFJ2xylLNwLwe1OEMjcI38NoMUY2d8W5X27Y4U1nUmVXM5X89OmXmwJP54WASnFX3RtV/dwFNlsMluu3MHlcGtW8hyvkTZUP93aEVVb4WzaZi/2i6uPbY2z7lx+bu/z4Ws4xYvaKzdjlaO9TvthoFu4iptQX289OqCYIYwzvL6gLFMRRNHf+lFWbd2L+6q3qxPD7uX+4aF3suNtVla43hTefoAfI1Byyo6EJkxavx9qtuzB7pd+UYOQtY9i0ovY1c0WmvE07GnICUZOXzETEs72+ydMu05Ztkq+g9D2QDBMW1AXadXc1md1L/YjE+z0rrIX7O2FBnfQF7mr6pjZoWTJ+NMa3V1ITqmKZcsUq3PMoXu+SdduzXlEuFRXenmnkLRNRp3fbsBhmmd1GuL/46Qpc/thk/PMT/aa+cSZUAeCYu9/FmX+YoE3PPxtTv9iISx6ZhPsUuwWZ4go00e4f9DI77Xf6urr84qVZ+MbDH2PYne9g1J8+8P1uprlH89z45l8zcT8ueWQSzr//Q29aSZayuvBc/8xnnge6vqlF+nIVs35j9mpc9thkPK7Y/MMt13Ri3QS3DbNmGaFSlz02ORvR0Hti5l/YUSUvuCs9wj0ZacTXR8xTVkbYx1Hc6OXk+97D8PveQ5vqyuyxSmHOy1NsyMVvgahcIa1ZJjm+cDb1XR0w0RPF7zzOjXIXj8xfo9f2g3AXuTQ0iWYZc3TX8XmAv7lcc/cVYFYPRTp3kpTX8GR1DtLcZ67Y7BMCsu36xHq4y8ZVvvduucaau1GqDM7tNTYbui1g2p9luVZw0iEp4a6rPj9qztY/ZLmq9HyXqKwgrnMyz8Wrek5ss4z43WruydHo9KrqSv0lxzXLuMxbrfbW4Id4KnOKjqXrtvu8LLKauyjcnbpNW7YJywTbtog4auHr2ZbTfGRUJqjxBGmbHht9BM29qYX5hEBDk0xrzB1bu3WXZ9NtGW7fkvnl75TZpiXZqLxcwtvcM+nDxpvnW86jubdk1gY8O/lLrNzkXckcZp7qnbm5iW6f5i55BBqbGF6buco86JxBvSorcusaGPMrCEFhhWeE2Ocg6y1jMEpJmt1GuLsxOYK0uihmGdmNGvEHdWhSXg5mY4BIhIuK4fe9h3P+4jWNVKpWMDpfz7//w6wXgwrdtbdtpRfuMnyukKaau+K4e43D73tPm7aqQt+tm5pbfPcs6OU66k8f5OzeinbKrVT2C4df/HuWNn+XrNBxvrsv2KCyRVzh/pfxi0KVK8sDyPTx6cs3YfSLM3Hry7M96cIoRNf+faqyTNlz9OD7i/C9pz7F6wb7zIp5bOXWHXjMTRWUTcck9Rjzmj5G1Hvz42/0UwDFPV3CXfd2d4VeVYDmHmkRROgzcqhs5WGprlRo7iFqp1ss1CZAuMvOjLxZh6IaHlup5vwgzb25hfnMA/USUwpfj7qt9YGae9YsIwlD8eWGiKFqRZu7qVnGoO2Z5zPznVdR4RXu7nWJ0R2j7tMqtqPsJeFGYlxnuDkKn6cqhHZlBeW2fmTeJ4TIOzJ0ZUpUq4wqgJ01y4Rg3bZ6vDFb/XZ3l227QlBF3AnVsOQ07ujCfcuuRix1AhSJtvswdfOZZbimCtLcpQtpFLFlglDaTbne6j50sqRB97ixhfnqIr4Ut+5qxNjp3iiAWQ8Uxa1yzTKTlmzArBXyxUk8YWKThxXuScC/I1ta1C//qDHjxbNkZhQ31rvqfb29vgkvT8vdpzv+MxeffbkRgNq8UknkGSHJvKKydXI+RlVU1LFlSsAsQ0SPEdFaIprFHbuQiGYTUQsRDRXS30REi4hoPhGdmY9Ky7jqiU/w3X98qvzdjbEhDtnFRo4m3MOdww8RqxIQ7jf9a2b28w3PT/fWLUQ+umvv0Lra8118EGWCO+mQv7zm7vpXS90ADTR3sQxxQvWG56fjRq5dgWDfcbdrvT13Dc7+s9dsFnelpdvHwpplAH/fkgkqtzz+hUyCWUYVbrg54j6tfjs0X0dvJVWuiLe8PAs/fHZa9vsr01fiKw9kwh7zozH+7ApOc/eVC8Fun5SXkG9hXiLZajHR3J8AMEI4NgvABQA8fnRENBjARQAOdM55gIjCG2sjIPqyiuTMMno7sPu2r6kyH9TEuU9u+aarW2Ws3ar2AArz4tEJji5tvcLdJ+CkmntgEikqDV8mtGWXZzKv4p9Q9QquLzf4wx/n4rXI65dkhM+smST7PYOpfZuXjWF2juLP8wpAptTQo5oUxUuJoljpNr7Qae4t3MjPG37A23eSCkRm8LgkTqAEY4xNALBBODaXMSZzzD4PwLOMsXrG2BIAiwAMS6SmIXluitef3TXLtBJs7mIj/+2jLwAArSXeIf/85Ev88e2FPs8H3f1/ZfpKLN/o9VLhu88Hi9YB8AsXU+av3opPnNWpMmRVU3nNhBleuw/ivNVbMH7+Wq/91rVT+jR3s/xlyV76bLlngiybFsC/P1vheciDbO4AMG7GKs93UUDJYrhkbe6KdhKFU5yh9yvTVzplZr67QsbUM4XX3N0YMZt3NCo3YpFVlb+eZsaUESZ1wl1nzjDxcw/KR2XT3lbfhIcnLJb+9vrs1djhPMMtGenuga9G7rP6QnT3WVXvBTFdn01I2ubeEwAvVZc7x3wQ0bVENIWIptTVxZ99FvnZCzOyvu0AZ5bxae7eGzPWeahaCZr753XbcOO/ZuL3by/AmNfmen7Tdcr/eeaz7DAxWyb3eZUjlKKaZcQFUz07twms23nCQiAXUaB5V/GJaTMHRvxhIq58/BPPA5GzU0b0lpGk+/E/p/sPAtjZ0IQf/XMavvnIx6HK+fU47z0UY/HLtMjcQiKFcBeOyyZpTahvasYzk73KiZu16QuYb3pXGbnhhem46cWZmLXCLMAc3waMqcMNN0a8ThNvGZew/uf3vDYP42ZyL3Ah3b3cokG+VJVZRveS0m1wknOF9B6/6OGPfWmTJmnhLmsC6R1jjD3MGBvKGBtaW1ubcDUy8A+CKzxFf2xVdxLNMrxmvWGHN3aIqk+6Lw5xww/Zmz7uRsYuh/TqJFTCn2aDwvNA934RHzyxvvzQNq6HQRgPH7cavOZuuoiIp96nuUvmENwyFdn75iEi3lL+vOywXlMvGeSxuWfOceOryFfj+vP1mWWa5YIuqllGpTAA5iY9VSgEVR93cRcPggntTfIJVR1av/gAU14+SVq4LwfQm/veC8DKhMvwsLOhGfePX6TUtDZub8BfJyxWasaqNpeZZVxMJhN1eb89d63vmGiWeX7KMiyu24aGphbcP36RtAN9LtnazmcakFdBiswU4aJ7EAFhKOt+MJhQlZkZwrzn+JWMbl8IY2N2EX3TZS/b7CpRQ8096splWfbuMVMhwTe9q3G7QktmtcpOqHLCslkQcm4+4um6Xah01V29ZScue2xyrgzNO0KWz5yVWzBBoTWL/VNm0gMcbxnNfTJpb91+vVFj0iRB0iF/xwJ4moh+B6AHgAEAJutPiccf3lmA/3tfblurIOB/X5iBt+euQYeazKWabtIgau78/RNvuOr+qzqGa0/lEYe8//vCDLSursANZwzEb96YDyLg+8P7e9KMkMSw8V1fCPkiTup6A5yJmrs6zEEYLeXNOTn3VcYYiCiUrdpN2cKAB95bhD+/uyiS25p47VqzjMrmLuQRdTAmjy+eORbFLONem1tv2ZxEkM29pYVl86ngJiQBYHqIFZs8Hy5a7/mu6zey30b+Sb1Q0HTimTG/55Tnd6eb67qUyRxP4fV2A+FORM8AGA6gGxEtB3AbMhOsfwZQC2AcEU1jjJ3JGJtNRM8BmAOgCcB1jLHkoihJ0GlpFUTYsD0zFHUb19QlySfc+Q2zDAWo7LA6Rrj/2K7GFmxyTEAydzOZh43vxRNqEZNOcxcEl5CUvy73o6jRyOrCLzRhzBkWm1aYqxdzNHcg9N4bAPyjFpkAd6/L1OYedUJVNBMAufZuaWFG+cpcId1rkmmaWduyIr8WxrLni6e75pr2NX5xEuZFGyX0h4qgiWfeC8kb/tm75WLO5q6+EJ3rLfEFFZhA4c4Yu1jx00uK9HcCuDNOpcKgGxIBOQHoLmwR7/nbc9dIF+jUVHmPuV4tmTzMBKhM21BtxaaafHP9r8UJXhU6c0kQOndMsd10mruLz26qMTfweYQRilmhx3Krj6NozPe9ucDzXSbc3fu5uE7udrtD8KKS1SOywEdO+za5Pl7euMLXLZrvy7n89bSw3EsiI+hyZ8QNV52tAy9kY1ozzDV3mZti7sA9r8/DLWcP1uahi6uUk+3++sxfvRUD9+pgVM8olP0K1WDh7kykOgZT8eH6wdOf4aonpvjOqxaE6R3/mZP9LD5cYTZ1MNnIgccV+qZ+9/4Xjzm6h9S3VNxv3/KlNd2sQzwvjPzjhV7QytQwyMwfof2wpS+uUKfljnGjhrDxxxudN6Ar8MSXECC/Zyfun3N0aG7J+bmLimpSwl2XTdiXoum98gld4dqe/WQZ/vTuQm0eWpu7Yg9VwO/pljRlL9x1ZNy3vJq7KbrUuuXKQZh0Oj4/10WvJiAqo4t/PiCEWUa0uWtMUXpvGf/5JnVxfw7zGPNZBgUMC4N8ojecgJF6oITMQ+YtY5QFb3N3FASdqUK2NqFTm2rP7yqzjquAxF1Sr3s2wuYceK8U+xgT/H29vrFFKw9Mul0RrDLlL9yDFkm4WkXonWk0v5lqx3w698Eyebj5JK6bmau5//3jL7TnxjLL6GzuQr7id/7F4H4K0tx/OXa2x0vIFYZhQsh6hHuCmvtWyVxOWMVdlt6k//FC8pOlG3DXq3Oze63KVtfK8HrLMDzx4RJtLBs3S36BHn8fPGYZ4VzXnBfXm9f02fzUiR2jQ7XgymW6EwqZMbN5OJ2c0ZllChFDRkXZC3fdkIj3zdUFmgqL3yNFnil/+LNlmQ5pIrj4FK7N3Z0DuCUgdKxMPpt2MF3YYb/NnSm/qybnxGo88d+leHnaSt/vYW4RLxCSNMvICGuWkbV7WLNMfVOLZ6VlS4B3h4s4ofrLV+ZoUufu7+fcfALfts0tuWdJVFDckYFsQj6M7Vyc2OThi7xAWBQYlJcO0eaemdAPd591E6o5c1zhhXwKhLv6N17bYNwxE3Q3I4orZJCnheo81yxjPKEqerUYCgMgnLeMKOh4u2s2qe/JNjN1hHkO+POTNMvICPuARtfc9b8Z+V5zTRGkxWby1d8bPraM2E3ce9/YbObJo66DWf2CYgcB4V7EupdKUlizTAR0LkqM65BZrTCBN+jEheuwdVduYlSV428k+6KaPGgfct4Mrj3zmr9NwZP/XRp47tQvNmKKZ9d6czuv3ltGLcwB7yKsxuYW3PTiDKze7A2+JavGpCW5uuY2UAhhluE+r9rsD/aVJKE1d8mqXXerQBUrNu3U9tGMGSEYz4SqwYSn/EXkLdeNCimuSOW/xzEL6l5a/C9d27XCzS/NVKaV1UNXppjy48UbfOlEMfPZlxvxmzcym3rIqj1xYR3uH7+IkztG1UmUFAh39W8tjJtMStAsA8CzSbLK1OIGIfPWKbgCVzz+SfYzr03fNna2LLmPrz30UfYzMywTgC+kK9/t/UGevOfyL4YJC+rwzORleG7KcqNys+VFeBB4QfjXiUtClReWsIE7ZddxibPZtw4xXIUnTxja3PkJVSNToERzN40Kyb3Y44TR0J3KX/LarfV4epI8AJpLmOiZUWTCVx74L+4f/zkA+fP1rUcn4zdvzM+2q9XcI6AbRrUwlp0kzNq+DJs56IZ7JwLN4TWK8w7tEeLMaAStwOMRNTz+PP+DJ9rcudjZilsSVI2cfTIgIUdCIXmMCDvqCzsx5xIk5MTNvWXwI1pVHHYxX389OJs7Y0qznSyGUxQS9XM3rIbos68qN0jOKInSqROi7IW73uaemwRytSFTYcDvcC97qPnNHUzu29V/m4JlG3Z4hLvRptIx+4RMc1cVK2p43mG5ueauehCCrsUtg19TEEQYz5q4iPuRBpl+ZQ+9yVL1IPNEkOb+2AdLPDFXTASuXLjzv2tC/npMcrk0t78yO5SQ/s7fpypDX/PXbLTc31RzR7xnrKVFbydzf3K3CywkZS/cdZ1HZm82vZEruB3eZfY7mQufjk07GnHXq3M9eQXtGJTJOx6ZCTjvMVWpWrOML9yA97uRAAm4GvdXcatAk3MKwSYhGmjQAjom+WzyQtf6exvY3H8lvBxNtFjZC8M7oaqek+EVHb4P8aZLE9Zvb8DcVfI5Cb5NxD0ZgtIHwadU3h7F8RZmtmJ4veEesElS9sJd94AFDTVNkdnv+HABplm2MObJy2TWPz7M09Ebm1uUk9Diw+s1y4iau2CWiagden6PMKIvxkSVS5Bw50cVbj2NXujaazKzuXvqEdJDS1aP5hamjBrKxwcyse/rUHmFhbXlmwr3JtNFYapymP5+FLV/Fq/o/CPtsFHykfTphqYWrN9Wj1F/mqjc2chXNvN2OpPhZVzVNOPHm8tEF2jNZ3PnPgdFm2wwmG2ct3oLzldsFJIpL/zFFnORSJASftYfc1ELpy3bhP99fnqgKQfQTwaaukJ68gu5tsKFj0Fz68uzlIJ7F7fRyR/e8sboWSbZrlDHbS/Plk6WhjW/mW4+3tzCMIqLLilGqgQyz8WVnJMDT9BIKqhPX/jQf5WjlbiUvXDXdVyZj3cUYSCbSKpvasHL01Zi9sot+OtEechhf3289TXR3KPGBM+d7xXM2+qblGYZMWa8N9KjqNV7vzcbTKje/socTHNWBkrrGuFSCzmhKhKkuW8TXqTPT11u9ELXxdVnkCsbOsKuipWxYM025ehsF7eq9fmp4TykRCYv3YCbX5rpi6XEv/DiPhMiQaOCL9arlbeWmJr7J0s34raXzbzgwlL+wl3TevKofOHLkD1M9U3NWS3MXMAwYWIouPljT6gKmt72+mal8N1Wr94bNijkgoldd0e9PvpzpFFVETX3KFY1VVRQHt1aCMZYaI8Uo1XRBs2oUqR2NSUf1buNEKk1yubZSaF7hzcHhGA2qfW67WrX1ziUtXCftWKzcqMOQK6N3DZ2dihvDED+AtnVmLNdLzEcAr49dy2u+dvU7HeDeaHYiJrFtvpGpTfLtnrvhOGmHY0YdufbmLF8k+8Fdskjk/DuvDWecoII2o5t5B8n4o3Zq7VpRIor3MNLd5ON0IMCaIUVdCpt+k/vLMTPncVAJlmqJlR1i9+iIobcTmobyijo7vPOxmZfVNn123LC+vLHgvcqWr8tP5OtZS3cg1D1h0c/WBIqH5lZprmFRfLF9drcDTT3EHnv1bG1/3zmHXnoHsTtgmb938/XYe3Wevzl3UVSIXrLv3PDSU/gsIjP4eotu/CDpz8NdU4RrTKxfbFV6CYlGdOHiZCxittfVuQpx75tYq4MW24cxNrIJqdLgUVr/FsMLgvp9jisX9ekquOhrIV7ULyVpLQ6WZ9uZix2FAojm7vhNXRrX4Oj9vV3EnFFI2NQunWJNmL3NJNVfHwZcbSssFpgoSdUTx6Yi3Fu4vkSBZ3nEYN5+w7aq0OIfQBM6lW4tvbP6RRPouvK3q6JjW/Kt47eJ3SdTChv4R5g10hKuMvMMoyx2Kpbsnsvyl82v31zAY6/593s94v/+rHPNPCT56ahsbnFd9xtvzdmr8G4mat8efNrAZ7g4t4UcmFRAZVJAN77EcUsY4JOeE9YUIfZK8y8Kxgz62N9R4/DrBWbA9PxcYDyzcSF3t2iimmWke1c5SLzPgurcCQZqpqnrIW7uFuSj4T6g0xYNbfE19yNXCENaWHyIGrvzlsbqJW9+OkK6SRd1JdjIR/EYo7Qowj3QQbbqgVpyP/8ZJlxeaZ1/Mck/T4BxWZHQ06IlpBVxjfaBcJ7cOUrmmlZC/dgzT2ZcqRbrsVX3A2XUZvl1RLTTKS6xijoXPmSptATqnxxUd7NQZPKQLBt2yQPIGOSM61jIU0upnTgNtzeauBlVAz4l45L2JGr1dwlFMwsI7lZjLHYsZ/N/NzNiGuTlHXIqPbsQtpHv/P3qcGJEiSuWUa1uTZPUPuZukKammXC5FlIunfKOQh4hHsJvYdE92EgiuZeJOFORI8R0VoimsUd60pEbxHRQud/F+63m4hoERHNJ6Iz81Jrh4JNqCribhRCcw/lGhCjPjKBUg5mmULDv/DyFT0iqP3CCGLTF1AxJyxVtON83b37J5ROXesb/cI9tM29iGaZJwCMEI6NBvAOY2wAgHec7yCiwQAuAnCgc84DRGS2s3MEgoR7FNnEe0O4yIasJv7KQSRpcwfi7SLjThrzWkRU60qpCIrj+u+R1/x1G8XEIchEEsajyNSjpxRfyHz7lqpZpl4iB0Jr7sUyyzDGJgAQp8nPA/Ck8/lJAOdzx59ljNUzxpYAWARgWDJV9RMkHKNonuLiCVU+C9Zsw00vyneDMRXaSZplgHiapGve4F+YUTV3040S8k0+tkzz2NzzZNQM2mUojGJhEoWyVOGrLtuwvBQQQ3YAwKWPBm/IwpO0kucStXt2Z4ytAgDn/57O8Z4A+Kn85c4xH0R0LRFNIaIpdXV1siSxiaKM1FT7mySsJtqm2mywknT4gTjP8WdfbgIAVFcmINxLZHIuH3KNNwnkyxUyCGObO/JnOnI5tHdnAMCZB3ZPPG9xk2+XEtEdAHgjYkaluky8ZWRdSXorGGMPM8aGMsaG1tb6TSFJEE1z9zdJ2CFre26WX4dJ+AHja0iow/PCPepDVCpD/HyZTVyKJdyNvWUYy9tCK5dqx6RwUI9OiefNjzpKRWEQ2bKzMThRAJUl5i2zhoj2BgDn/1rn+HIAvbl0vQCsjF69eETx9pDZ8a/52xRJSjXtasw0dxPhE7Shsie/BMwQ1VxHi2peKRWbez4emf617bOfTWMKJY24aYiOQu0AFLjmJALlYJYZPz++1aG6xMwyYwFc7ny+HMDL3PGLiKiGiPoBGAAgOHJODMZdfzw6t62W/hZFNslmrjeE3EWlfWt5fXj+ee3RiWt+SWTHT+5E1dxLxuaeh2fm5lEHJJ9pnijEXXAViuo8RMFTPR+l0buSo2g2dyJ6BsBHAAYS0XIi+jaAMQBOJ6KFAE53voMxNhvAcwDmAHgdwHWMseTjgXIc2KOTNGAWEM0eloRAaG+guR+xT5fEo0ImItwr4tvcZZNMxSDpl+dx/feQTriXLIWR7gCAVnkwLahuXzEjgeaDfLlCBhqHGWMXK346VZH+TgB3xqlUWFQP8U+em55YXmFo1yrY5l5ZQXmw2cbPj9cioj5EYffOzBfJt275ep7km4Jq7umS7XaFqo4kX3xJjJDEjv7bC4f40hDlQ7jHJwk/91Ih3xOqpU6+ZeArPzg++1m35qSDoYOByO5y+0y968KSDuGeYC9IIi8xizatKrFfbbu8lKUrNwq8FlHuw9/dRTgUiz071mTHMjrNvUfnNpHy311ezvnyaEqFcJ+xPDhcqSlJdChRaLcwJnUPTPKeJuXTzNv/kliFW0wSN8uUmazJd6z7CqJsm1TnybRgiU4qhLtL/z3bo0/XtqHOGeIswnBJQkCKeTAmX1Ke9Bs7aVfI9YKXUIfW0YbXxSJpYRwkKz+48eRkC4xJPkX7becMRm2Hmux33ShUFwsm7D3qv2fOFfXgnsn71qeJVAn3mqoKo3jZPIP39qZXddJ9u/nNKirEPDK75/i14FK0uevcskx39SkVCj0B2qtLOMWiHFBFXh24l9lzE4T2pSB5m/bdI9fG+0pMnZYc5fW0BtA6wsSEaCtUadOLQyxYEU07jDHpwp5Sd4UUKZG1ScYk7WFWgu/ivKPy5HCFsvsCjeqrHfYs/tkqReWolEiVcK/kbICmiMIsCUuJWAfG5JH8otj3dUPRJLq6zi2r0PuVxqWUXRfzHbESiO4y+PWhvbKfVcHtxLyjmhiJgPE3DDdOzxdTCNn+nZP2zWv+d37loLzlnSrhHiXOsyjMktAGxEh8DEy66XHYslpVVqDPHuqhfxKTwbpIleWmuZewbEfvAphwosY9784tClS5OLqeVG6Xi6MU8bZ7HtnLiT+W74iXPTu3yfvooHObVnnLO1XCPQricDKRCVWhVRmTB9MK3TkJqMnDYhEe3fC6lDX31pJonif071bwenRrn7+HtVDwAk3l4iiaGXWjJF23yaz3UJwneTm9PXdN9nO+lu176pDnLp/PS0iVcI9yI0QBy2u/ndqoY8Q8c83Ryt/8Nnd5MK2wN5ag1qSSErxVmpeHSQkPXXp4IvUIy28vPNR37BtH9vYnzDMTf3YKnrr6qMB0hXhPMgY8fY2/LqpYTC680OQ/D+ndGSftn4ngmlT8IEK4laj8Y5QGP/h8XkOqhDsQ3s7q19xz33UmCt1Mvc8VEnLNPYqdUrcSMJkJ1WgamEuXtsXRXGVzBUSUqPumyYPYplWlUcjnQmwVxxjQURLErmvAPeK7AP981LavyfYPNwSv2yRRr4coer/N8yAWQP7vk9XcDYlyG0Rhxn/VrdDUuQX6XCEV+USx5w2XbAMYJz8RnXA2GR1E8VhKglLS4UzuQ6HmL6KYLnilg7+Wyorcb67mPuKgvQEAffeI5pZIUIfhENegAMCwfl1z9SmE5p7n+2Q19wAeuCS6KUAMlE8e4a4+TzdCkPm5y9MF1c7PKYO649whPRR1Mqdb+1Y47YA9PcdqO9Rgr07yCJs/Om2AkUDKVxCkIFQPSSkJfRPOGBx/R6MfnNw/+zlKbP1Kj0AnXHNCv+xn97cWJ99Lj+qD2befid4hFw/yKIV7r06YffuZ2d2eAOBpzuSVpGAcd/3xwYkUXHhEL1x2zD7aNA9/64js50N7d8ZBPTsCyK/mXl5LDhW4Cy2i2J39mnvuuza2iuam+F0hFZp7xDtruhmIjurKCrQRolfu0a6V8rJqqiqNYs3kK3xpVIphl21oDg55rGrKmgRGPm1a5fKobwofftmjrRNl+wkRodLJujnrLUNoFzEwWKYsvYBrV1Pl+Z2fE0rSk6W7Imy4Ce1qqtBRMz/npnGprCB0bpvxEMqnN05pPYkRceVJlBHU0ft6/Y35xtbP8quHvH6zjDyPYgYOY8z/8pq3eqsyD2ZofdyjSN4iBO8+nqcM2lOdWEPXdvHrX28Qk0fVmsmEv8hkwhiLtGrWY5apyHmzVBDhnEMyZpgD9u4Yv6LIvByCXsAXDpVPjJvY3C8e1seoHnGexepKwgkD9J5ZfO6MsewoOJ+6RyqEO2U7c/hzD+nV2fOdf7h87l7EpyMs/PVZUhc82YSqDH74+8eLDjWorZOfzP8X4bRUBiatmMrcxJjZyKh9TRUW3zUSS+4eicV3jTSuj8vxEvfFTm2qMThAmBABD116BBbfNRKzbj8zOwxWCcvhA2ul9buLW1Qiu7cmGAVcUzRlEnHR3dEoQ0YjvemsQZHzqqzI9QlCxsa++K6R2I/bbtBl8V0jcVifzgCAO843W5zj3h75QqbMrxcpvJ5MRr53GS4SUuVkIlIqKypwZN+uOFkzHyZbtQ7kV3NPhVmGb6C4bcV3GFGzJeRuNjlp5S6OZpq7+LIwRZmfcQ5yzV2sk2m5Im4bkjPkDmP2VdnsdV5CblnkrFDmvVV0tniZcCDNyM20fU2Eu6pJkoiuKF5XHAHCr/rOavCqESt3XOd1JUOXXnUPTa7LVOGR5WVq5nXrrpu8Fn8TF4Hlg1Ro7m67JTGxzXeGa07wLj2WvURMwgoM69eFywPo5wQh4/MLJdwVV3rGgeaTcQwq4a6uh4nNXTw9SCiLyDR3omBhEdYFVjXU53PhJyYBf/867QB5ew/uEWyyUAkOE++Wnlx8dJnXVuD7IeB3vm7fOqZv9vkyEZTuqfyoVNdrdFm6k44qkvSWIUU3NRHwrkKiax/xtl50ZMZcNLB7uECHYUiJcHelu/5GnO3YC/V55T5fdXw/z2/8vdN7y+Q+X3bMPui/Z+4GvvI/x2eHoPyDnISt9Yh9uuKO8w40SssYkzaXWI2OnJ+4iQYutovMzFBdSfjoplOk58tsuTVVFcFCT/Gz7LQnrjwSIw+W9wX+Af2fUwd4Hr4WoQHuvuBgLB0zypdHry5tMfUXp2mrq9bcgx/J5797DPbvnjGL8JOnLm5bRV1n1OCEyrj06D742hG9sm1i0kWzI1susSz0BrLpcqM8nsk/PzVwviDJkNlxcnIVD111xLqeM6QHlo4ZhT1jTOQGkQrhnuTIxqOdi+UYmn90WrhXW+fzNq6i9qEN0+Flwlo8PawNWLwOmWbZtlWV8uUoO1pTVRnoYqkZ1GvPE/HPl+QaSQzbHMWUkM03hs2dKDdp21biXeP2AbfuvqoECP3GpkwCdzPw7PkhmpLv57IFfC4qvcxkJJakG2Es05Xj0RHGPboQxBLuRPRDIppFRLOJ6EfOsa5E9BYRLXT+dwnIJjZJurvpBO6NIwYpf1Pl4f+Nf0HIPwehezZNh6qqCVKxHq5QZYxhtMHEnFi6LB74z0YMVLeR5HhNVUXgw5FUH9BlI4bkF9dIePIJKEc5yW4gsQiE+sZMZVrLNPeYbeGa39wXc25C1SBf51zPRuuOcK/tUOObGHdTiSY/E8GdpMCUZcVgNvoxmV8oQBgcf5lRTySigwBcA2AYgCEAziaiAQBGA3iHMTYAwDvO97xianM3EQAegSt05m9zZhptR9eUo1LMVB2VX6DlXl8SmnsLk1vuxWpUZ9cQAN89ab9ADxixjV2bO7/45JKj9gmlBdYYeK0o3xUhHyrdfRXjqVRrfPqDBI/KllttKChc//W2EuFeEWSWCSjCFbTuamNxQlV/LjznADnN/fErjsSrPzzBWxUnod8zLbgw95wk7NamL4pj9/OHajZ5IZeb5n4AgI8ZYzsYY00A3gfwFQDnAXjSSfMkgPNj1dCAwM4cAo/WE01+awm7ktL0je9eu6mXgnJCVfgu5hd03T7N3RHujaZRBCX3sFVlReTNumWlaAWHaJbhihXNC9qHOqCdVFejC9zG5+2aZdpIzDJuH476OLh5u5p7bkLVPA9emLlCWDa5TkIa8biORseWv6OxybxiISD421DWDU08nMpNuM8CcCIR7UFEbQGMBNAbQHfG2CoAcP5LV5MQ0bVENIWIptTV1cWoBq+567vzFcfqlwgDwHGctwYRcMWxfaXpxFt1y9mDpb99XfDKULltqpXAXKLbz81Mluqukxc4Zx20l3LbwYwrpP/4yc7iH9cjIzs5l62zupN2aF3lEwA3nDEQlRWEfYTl6erFUsD3h++HAdxemTVVlZ6Har/adj6hpsov6Jk6YUA3nMOFcxAfwsu5+98cyuauL/dKRb8ymfQnEG47ZzA61FThR6ft7/s9Tijcsw/ZG7saM6OCKGYZt2/ydXBfim57/fT0/bFXx9aoqarAz0cdAADo2aWNpz1NhKHrcprEXqpSV0hJOl7JcKNrnmywYK4YC7cjF8kYmwvgHgBvAXgdwHQAxq9QxtjDjLGhjLGhtbVq538TTO2tR+zTFf/63rHK35eOGeWJrVJBhKtP6CdNK5Z56dHylXAHCR1P9dwpNXrucHa1HdfrxPCt7iQYANxw5kC8/qMTpflmvGX83bdXl7ZYOmYUDuzhxr4wFxQzf3mm7zrOOHAvfH7XSN8SdVWujAE/GzEIb/3kpOyxmmqv5v7OT4fjr5cNFfJTjYgyxx9UxB/6+7ePwu++PkRZr0uP3gdjf3AcAEB0+tCZwIJabWhfeV/ct7Z9YHyZCgK+cWQfzLz9TBzXvxsm3Xyqcb2C+Ms3D8/Z80WzjIG0cG+TbDGga+L7n1MH4OObT8X8X5+FCw7P7PrUtlUVFvEmP4NLcL16undsjVm3nxl8ggalssHU3w/q0QlLx4wyWgVcbpo7GGOPMsYOZ4ydCGADgIUA1hDR3gDg/F8bv5p6csutk10UQNAtoPB+V20k7D+Pt+lD+lmV3oVpfue9U3RNETRZ5P7Et20cxPYKMwFaU1XhK9+3wCxAc9d5oQQtgnPj5YiukDriTPAGmr6EBOK1Vca8Z649353ryJVnoLlnhTuvuWeEcJigcibvJ3eNSauqitgec6bCN2oI4LKaUAUAItrT+d8HwAUAngEwFsDlTpLLAbwcpwwTsmYZZ9Kvg2Ego6AhMJFuok60RZvdPeXqPsOXSNDvHuEeUCdRQP6aWzKeXR4tuNVFRby+MLvvXHdyf99R2ephGe5x3aSs9yXrz8m1qYqukDpMHmaVyUzkrIP28mjzqnkNl5ysN79nVx3XL2ueuvqEfdG1XSucOKDWU55JF7955AHYq2Nr9OfMaqLmboLJ8+Ta3GuqKqV1+9mIgQCAn488IDCvsHNbgP6Z8N/bMtPcAfyLiOYAeAXAdYyxjQDGADidiBYCON35nld4wXFIr86YdtsZyrR8J/j+8P7KdAC0saZlXH9Kf18ZIqpOJJbj7ngjgzenqLxTAH13qq70asPnDumBS4/OzUm4SmpSGyKI16eLYSNySK/OPjnlSxZg7uJHVmLSoFvsvuDChFEwsU+roimK59488gA8zJmhxLYUJ/SimABGnzUIf774MAAZU+Knt5yOPdq7kQvdegVz/IBu+PjmUz3X5trcdd5FIiZlNXATv3ybtamuxNIxo7LP98VHBQcPM1XOTCf2/QEJjU5LlFixZRhjJ0iOrQdwqiR5wTBtx+DhbzQzj+liBt2iKF25XrOM9zePcNfkUVlBno4qeitkY18kpHH4lncrNXfVcb10D6pntXYHK/25rpkjTGz0OObBwIVgASbB3NoE8zK1jj9OhcK8NPiUWU+uUGaZMJp7hba94/Rgsd+ZdgFxPqsYoadTsULVRbb0WYfbgf508WHKELFBed19wcE479AenvJ18PnxMUL447wvbaBWmXV7864q5H+TUVVBnvr+8LQBnt/dTsybvOLg09xD9nW3Pqc690l86FT5ucqi6ZyIbKjten5E2fgiCqq1BqrfRcHhb2tx1ORH11dcQRXmnsmEWTizTHCaq47vh4HdO+C8Q3vqhXsMuSr2+xvOGBgpnyIo7ukQ7pQVQG4nNLR/O8nOHdIDj11xpOR3CtQILx7WB3+86DBpfeRl5n5sVVWRHVK75XRqU42nuc23ZeXzHU6c8DQN1FVZQdn2eu47x2B/YSGI3+YeD9+EKve5Z+c22XjYqsU97vHvDd8PgH+1qAq3/XTbInrL8R+LItxjae7CPRfvaZBWm3vhhyjTYKQY5pJk+SUR8ZKnd5e2eOPHJ6K2Q01iI0weWV8YtHcH7e/Z34TvRVDcUyLcI97YpM0yJtqtaml4hfCCMkU0Y5oKsaoK0m4YIPN6iINOm8y0s76cXF1d+3e4RS9xfL9d/2tdjBSRWO0WpLkHnJ6N5x6iL+nan7HgNCKy6497vj8Nn7c6HS8f4nZn09PFpi87V8hyJ6izEaLdFN0ZqolF0YvGVCsQ8+vesTV6dm6D7h1r0IMz+4hUVVbgrq8cjFMG7YlDevkXgbjCM/syklSoR6fWOK6/fzm2DJ8pQbgG97va5u7Nx68Z6V+aAHBYn84g8m6ybEK39jUYdfDe+D9uH8wgdH3gVm7Bm8m5osZrOgEs49j99sAfvpEbaf7928NwwWE9tfmFNXcC3mt48qph+NoRvcxPlpR144hBnoWCYiF88sev9I7CSZEuKia7fF13cn9P+Op2NVXo4ayhKYxxLyWbdWjkjxaTYFRhOoOJu6AqbrSyHKlWnStHvIbKCsKHo+XhdHmqKggD9+ogNUcBZpsJPH7lMAzcqwP6jh4XWJ7YkqJvOQVKd+Y5zxdFUFFPXui/9P3jAuspK76ignB/yE3Y+XIrhU1dxFDSunNl34P6rWqUcsWxffHLc70hoU8YUIsTBugXEbIIk+t8HU/av1br/RV0PpAzx/F4NfLcZ9FTxXMOUawJJCLCVcf1w7vz9Mt39urUGv+4+ij0v/lVNLUwVBDw528ejq8++N/IZYclFZp7TpsLd9OCumpkzd3Q5s5XwrcNlyZ//reoo70gM4VolpHVJ0zZ/kVM3Ge+XMWVZ80yXEpPfgHlm/aMKJusy+DrE3YiNq52Kd6zuPnlzDLm56iUGOPzTdJwiUytbnFdEglh+z055xXeLJMOzT2g4e756sHZVYY8wZo7Qj0Z1564H1Zu2oXLj+2L+95cIE2j9nPP/PeZGwLKNJk8u+srB6Ntq0osrtuGdjVVuPu1eYEBxu67cAjuH78IN44YhF/9Zw6uFnal4utsgq6tTUZIYmzykwftia8d0QsvTF3uOe7P2zk/wbHwX755GDZub8h+/+2FQ3wLnPj6vPT9Y/H6rNX4vwmLfXn9+7rj8OrMVTisd2es2bILAPCLsw/A2OkrleXLrvW2cwbj9lfmAMi9uKsSmgzfWp+JKtJOEoFSWceYZeoezXu+ejA+XLQeXdq24tLr+lfu87++dyxenbkaz37yJRgDNu9sVJ7HIA/Rkf3dyD3Om2MhSYVwd1E19jeOlC9iCJ5QpVBv6U5tqvH7bxyqTaMScqH8YD3eMsHJv8kt4piydAOAYM29d9e2GPPVQwBAc03mdfa778lzUd3DrPaY9X6pxH0XDskKd1VdVJq+yIn712LCArMAdmcf0sPz/asSezJ/Pw/r0wWH9ekiFe6H9u6MQ3t39hzbs4N+dx5ZH7ryuH454e787ovnE1Hi1m3NvHRqQ+waFHcCUfc8fOPIPspnWpoX1wsO6dUZh/TqjNFnDcJxY97VCnd5vUIlzz2fCdv9jcouUDl5JWo/Mjkv6Vlu/4Sqe9ybTqsxcIIq7E5JroWgtSRUbFji+D2T0NuDriPINBBUlyAtyySOeqlgWtO2rZLR3bbuymjue4UQ7sVw/VMRy89dzCukaM5G1CxCe6RCuLvInt9nOJ9xEaPd02PUR15muLrINBheUI254JBQ5R+xTxdcdVw//JaLhBiVOC8+UXP/9VcOwhXH9lVOvAV5bKhq4rZf0ID47gsOxhXH9sXx/bvhF6MOwPPfPSbgjMIg89AJGuXtdEL2imaUqKapn486AFce1xfDB5pPihbD9U9FUE1+Mcobe+ber+aeKV+bUTiZ4DZDMVojFWYZXcMdI9k5xcVIuCd8VwLLdDqT6YPYvWNNqPIrKwi3nqN3xTMlTtPw5xIR9uzQ2ufJwRPFY4MvJ6g99+yYK182v1AszjxwL9+xoBbY3pDRtNs6Zpm4XXjvTm1w2zlmG6+XI2I89uMGdFOk9GLiwFHMl1y6NPeQqkkxzDIq23OYcjyXWUQFKZ7mnjvXJJes947KlVRRl6yAKx1FMjZB19LoBNTqIsT6LyQlpbknWJewWbnJCxS5wkM6NHeFp4npeWF45QfHY8aKTeFPzJapMr8o0mvy+urhvYriYuUStv1uP/dAHNk3s4CosoJw4RG98PzU5Ub5BAUyU2Xx4CWH4/kpyz07OxWLp64+Chs4L5uoBAmrUwbtie8N3w/fObF4I5ASku1GLs8A8NClh6N1daU2vWfEafLsZYeOwUmTJhXCPduCBg3I3w6zJc7eNAf36oSDJSs64yJWRXT9k/12+uA9czb8InSesFwubC131fH9MsLd4CEJtLkrjvfo3MYXFK1Y8Fs45pOqygrcOGJQQcpSUVqae9DvmQQjDsrs77Bq804AmdGiP0Ad739lsGgxRNqkSYVZxl2e3aFN8DC0WhPXW0a++6i4P6XJ7HzOLEOJDjnDEmc7NyDnh93J4L5lA5kpRzilI0wsxYlfHhWxqkF9yQ3k1r4muN92bdfKKM98kArNfZ892uHWswdjlMHmwu7eoEBxvGWU5WgK+v03huCAvXP1LhGTe+yy++/ZHr8YdQDOHdIjMG3umsOZtSzytnnp+8di9eZdeSyzdG5IYAwpzc++MBfIeJzddNYgXDi0d2DZ/7j6KIyftxadijD/kQrhDgTH63AhIlRVkBPvIbxZJl+IpfCd6iuHqYMuFfMZSmKhirFnSoQl8BY1h/XpUuwqlAyiVq3rY0SZfvudk/yxbmT06tIW3zqmb4zaRScVZpnImMyH5NssQ97/rvnBHc61luz9yS/oKacJ1Tjs0T7THqpNN0pV6CdZrzDL/y3mqO6RNJ5SGZn/UqO5R8HELpjU8HL8DcMxb9UWXUmeb3ddcDCO2ncPHLGPTMNiuTOK2NfyXfSz1x6dnSN58NIj8O7ctejdtW2eS02OBy453GNOi8urPzwBM1dsTiy/UuTdn56E+au3FrsaWcrAT0HJbincc54XhZOM/bq1Q79u7ZS/i1Xp2Loa3+I2rJafEy72TdLku/340K3d2tfg60eqbZylqFGNPDh4DigM++zRDvvsoe5DQSQV8TKf7FvbHvvWFtZtNYwbcqmOEGXs1maZUprRd4M9mWim0m32iqBjlFJHL6W6lBqdncm8ru3CrWZOsuxCERTtNAwMyUYT5fMtBLE0dyL6MYCrkanvTABXAmgL4J8A+gJYCuDrjLGNsWqZMDm3uvxJhOe/eww6tDZv3ratKvHQpUcozDByCMX1lnHbb9z1x6O+yXBT0zxhhbua84b0RGMTw1cO1++4lDSPXTEUA/dKziwVxBNXHon9EtD6dV0pnrAvbCeNLNyJqCeA6wEMZoztJKLnAFwEYDCAdxhjY4hoNIDRAG5MpLZlhLsS0xgCRhzkjyMig1/QU1SzjPP/wB7JL+oKSymaZUqFigrSmrTyxSmDuhe0vOEDg7e/4zEzUzHhW+mbtlzimmWqALQhoipkNPaVAM4D8KTz+5MAzo9ZRuK4t0elucs8VPJFFJGUDaK1G3nLBFFKdbGUF0lv3F0qRNbcGWMriOg+AF8C2AngTcbYm0TUnTG2ykmzioikr1MiuhbAtQDQp4954P0kUZnn3v3pcCzfuLOgdQkjpJPYZi8JSmmhispFcndi4s9Oxtqt+VuYtLvBK/b/e+ZAHNyzk9E+CNef0j+PtTIn8hNBRF2Q0dL7AegBoB0RXWp6PmPsYcbYUMbY0NracJvnJoVKOPXo3AbD+oU0q8SuS4RzimyKKCHZnsjmI+VO765tccQ+he23qUTSr7u0bYUTDTf5TtL9NQ5x1J3TACxhjNUxxhoBvAjgWABriGhvAHD+67cJLwIH98zYiEtBNkXRfrMaBWdzL4aXWym0n0shTWmWlMM9S673msm+Cf1qM26q7gJEkU5tMoaSQkUojeMt8yWAo4moLTJmmVMBTAGwHcDlAMY4/1+OW8mk+dtVw/B53bbYga+SJExN+F3ti6m9l5L9sabKau6W5PnOifth8N4djSZrf3L6/jhm3z1w1L7yDYL679kBT119VCiPuDjEsblPIqIXAHwKoAnAZwAeBtAewHNE9G1kXgAXJlHRJOnctlXJDV/DaPD8LH9xbe7FK1ukpspq7paE4Pp1ZQUZe+FUV1YEmm4KFfYZiOnnzhi7DcBtwuF6ZLR4iwFR5OPgHh0xceE61HaoyWrPhdIGeEpJcy+lUZjFUgrsluEHSpEwoumGMwbijMF7Zf3Lx11/fKxl6RaLJX1Y4V4ihFGCqysrPJp6sRYRlZDibrGEJtgHoXwWLMmwhkpDdEG/YlHGArIUzDKFjl1iSR9hd2IqF6zmbsDEn52c951UyrFDlUKN37thOLY3NBe7GpYUUU4hBnRY4W5AOcUQLySlobm3Qmd7eywWH9YsU2SKLx6jUwKy3WKJzPCBGbfFdjVeHbddqyrn93CByEoNq7lbIlNKsWUslrD86ryDcN3J/dGpjdfk2q6mCh+OPgW17Qsf/z5JrHC3WCy7JdWVFejVRW7T69m5TYFrkzzWLGOxWHYLhoXdY6HMsZq7xWJJPdNvPQOtW+1euqwV7iVCWtyvLJZSJN+uzKVIql9l5WA3s5OSFoslH6RWc593x4iS8MO2WCyWYpBa4V5uO/MUY7MNi8WSXlJtlikHLjtmHwBAm1bl9TKyWCylTWo193LhJ6fvjx+ftr+NR26xWBLFCvciQ0R2Gb/FYkkca5axWCyWFGKFu8VisaQQK9wtFoslhUQW7kQ0kIimcX9biOhHRNSViN4iooXO/8Lv3GyxWCy7OZGFO2NsPmPsUMbYoQCOALADwEsARgN4hzE2AMA7zneLxWKxFJCkzDKnAvicMfYFgPMAPOkcfxLA+QmVYbFYLBZDkhLuFwF4xvncnTG2CgCc/9LtTIjoWiKaQkRT6urqEqqGxWKxWIAEhDsRtQJwLoDnw5zHGHuYMTaUMTa0trY2bjUsFovFwpGE5n4WgE8ZY2uc72uIaG8AcP6vTaAMi8VisYQgCeF+MXImGQAYC+By5/PlAF5OoAyLxWKxhCCWcCeitgBOB/Aid3gMgNOJaKHz25g4ZVgsFoslPLFiyzDGdgDYQzi2HhnvGYvFYrEUCbtC1WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkECvcLRaLJYVY4W6xWCwpxAp3i8ViSSFWuFssFksKscLdYrFYUkisFaqW3ZNHLx+Kuq31xa6GxWLRYIW7JTSnHtC92FWwWCwBWLOMxWKxpBCruVssJcjjVx6JnQ3Nxa6GpYyxwt1iKUFOHijdndJiMcaaZSwWiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkEGKMFbsOIKI6AF/EyKIbgHUJVacc2N2uF7DXvLtgrzkc+zDGamU/lIRwjwsRTWGMDS12PQrF7na9gL3m3QV7zclhzTIWi8WSQqxwt1gslhSSFuH+cLErUGB2t+sF7DXvLthrTohU2NwtFovF4iUtmrvFYrFYOKxwt1gslhRS1sKdiEYQ0XwiWkREo4tdn6Qgot5ENJ6I5hLRbCL6oXO8KxG9RUQLnf9duHNuctphPhGdWbzaR4eIKonoMyL6j/M91dcLAETUmYheIKJ5zv0+Js3XTUQ/dvr0LCJ6hohap/F6iegxIlpLRLO4Y6Gvk4iOIKKZzm9/IiIyrgRjrCz/AFQC+BzAvgBaAZgOYHCx65XQte0N4HDncwcACwAMBnAvgNHO8dEA7nE+D3auvwZAP6ddKot9HRGu+ycAngbwH+d7qq/XuZYnAVztfG4FoHNarxtATwBLALRxvj8H4Io0Xi+AEwEcDmAWdyz0dQKYDOAYAATgNQBnmdahnDX3YQAWMcYWM8YaADwL4Lwi1ykRGGOrGGOfOp+3ApiLzINxHjLCAM7/853P5wF4ljFWzxhbAmARMu1TNhBRLwCjADzCHU7t9QIAEXVERgg8CgCMsQbG2Cak+7qrALQhoioAbQGsRAqvlzE2AcAG4XCo6ySivQF0ZIx9xDKS/m/cOYGUs3DvCWAZ9325cyxVEFFfAIcBmASgO2NsFZB5AQBwN9pMQ1v8AcDPALRwx9J8vUBm1FkH4HHHHPUIEbVDSq+bMbYCwH0AvgSwCsBmxtibSOn1Sgh7nT2dz+JxI8pZuMtsT6ny6ySi9gD+BeBHjLEtuqSSY2XTFkR0NoC1jLGppqdIjpXN9XJUITN0f5AxdhiA7cgM11WU9XU7NubzkDE99ADQjogu1Z0iOVY21xsC1XXGuv5yFu7LAfTmvvdCZoiXCoioGhnB/hRj7EXn8BpnqAbn/1rneLm3xXEAziWipciY104hon8gvdfrshzAcsbYJOf7C8gI+7Re92kAljDG6hhjjQBeBHAs0nu9ImGvc7nzWTxuRDkL908ADCCifkTUCsBFAMYWuU6J4MyIPwpgLmPsd9xPYwFc7ny+HMDL3PGLiKiGiPoBGIDMRExZwBi7iTHWizHWF5n7+C5j7FKk9HpdGGOrASwjooHOoVMBzEF6r/tLAEcTUVunj5+KzHxSWq9XJNR1OqabrUR0tNNel3HnBFPsWeWYM9IjkfEk+RzAz4tdnwSv63hkhl8zAExz/kYC2APAOwAWOv+7cuf83GmH+Qgxo15qfwCGI+ctsztc76EApjj3+t8AuqT5ugHcDmAegFkA/o6Mh0jqrhfAM8jMKzQio4F/O8p1AhjqtNXnAP4CJ6qAyZ8NP2CxWCwppJzNMhaLxWJRYIW7xWKxpBAr3C0WiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFLI/wM30V3xVHIPEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A plot can also be customized using several keyword arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACQS0lEQVR4nOydd3hb1d2A36NlyXvvvUecvaeBsgulbErZlNKWVSilQJktq2WPlr3KaCkUyt5x9k6c5diO996WLVuy5vn+0NX9ZMcJCSQEqN7nyRNLV7r36I7zO78tpJQECBAgQIAA3xTN4R5AgAABAgT4YRAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAQIECBDgoBAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAb41hBC3CyFeOdzj+CEhhLhQCLFyL9syhRBSCKFTXn8khLhgP/dbLoS49GCONcAPn4BA+R9HCNEohLAJIYaFEJ1CiBeFEKGHe1z/K3ybE7eU8ngp5UvfdD/jBVWAAD4CAiUAwElSylBgKjANuPHwDueHQWDCPXAC5+z7TUCgBFCRUnYCn+AVLAAIIf4ghKgTQliEEJVCiJ/6bbtQCLFSCHG/EGJACNEghDjeb3uWEGKZ8t3PgFj/4wkhThZC7BRCmJWVepHftkYhxPVCiG1CiBEhxHNCiATFbGMRQnwuhIja228RQvxeCNEhhGgXQlyqrKhzlW1BypibhRBdQognhRAmZVuZEKJVCHGdEKJb2cdFfvvdn+/eIIToBF4QQkQJId4XQvQo5+h9IUSq8vm7gEXA44qG+LjyfqEQ4jMhRL8QoloIcabf8WOEEO8KIYaEEOuBnP29vv7akBBCK4R4QAjRq1y3KybQOjKEEKuU8/2pEMJ3/ZYr/5uVcc9T9vkLIcQuv3tluvK+eu6V1y8KIf68j3O2SwjxY7/P65Rx+vY3VwixWrlvtgohyvb3HAQ4xEgpA//+h/8BjcCPlL9Tge3AI37bzwCS8S4+zgJGgCRl24WAE/gFoAV+BbQDQtm+BngQCAIWAxbgFWVbvrKvowE98HugFjD4jWstkACkAN3AZrwaVBDwJXDbXn7TcUAnUAIEA/8AJJCrbH8YeBeIBsKA94B7lG1lgAu4UxnXCYAViDqA796njNEExACnKeMIA/4NvOM31nLgUr/XIUALcBGgA6YDvUCJsv2fwBvK5yYBbcDKvZyHTOV368YfC7gcqFSueRTw+QSfrVOuk0l5fe9E+/W7T9qAWYAAcoEMZZt67pXXLwJ/3sc5uxV41e/zJwJVyt8pQJ9yXTR4758+IO5wP0uBfzIgUP7X/+GduIfxTvYS+AKI3MfnK4CfKH9fCNT6bQtW9pEIpCsTRYjf9tf4f4FyC/CG3zaNMiGV+Y3rXL/tbwF/93t9pf/EPG6Mz6NM8srrXN+kpkx2I0CO3/Z5QIPydxlgGzdZdgNz9/O7DsC4j/M3FRjwe13OWIFyFrBi3HeeAm7DK7SdQKHftrv5egLlS+CXfp/90QSf/aPf9l8DH0+0X+W9T4Cr9zKOrxIoY86Zcp0sQLDy+lXgVuXvG4B/jNv/J8AFh/tZCvyTBOyVAQBOkVJ+LoRYgnfSjwXMAEKI84Fr8U4iAKGMNV11+v6QUlqFEP6fGZBSjvh9tglIU/5OVl77vusRQrTgXYH66PL72zbB670FDyQDG/1et/j9HYdX8G1SxgpeQaH1+0yflNLl99qqHGt/vtsjpRxVNwoRDDyEV2vymejChBBaKaV7grFnAHOEEGa/93R4taw45W//39PE1yN53H5aJvhMp9/fvnOwN9LwajRfhzHnTEpZK4TYBZwkhHgPOBmvZgre83OGEOIkv+/rgaVf89gBDiIBgRJARUq5TAjxInA/cIoQIgN4BjgKWCOldAshKvBOol9FBxAlhAjxEyrpeFer4DWNlfo+LLwzdBpeLeWb0oHXlOMjze/vXrzCqERKeaDH2p/vji/ffR1QAMyRUnYKIaYCW/j/czj+8y3AMinl0eN3LITQ4tX60oAq5e30A/wNPvZ1jr6KiUqUt7B3f44VryD2kQi0fsX+XgfOwau5Vkopa/2O8w8p5S8OYLwBviUCTvkA43kYOFqZ+ELwPuw9AIpzetL+7ERK2YRXS7hDCGEQQiwE/FeVbwAnCiGOEkLo8U68dmD1QfgNbwAXCSGKFA3hVr9xefAKyYeEEPHK70oRQhy7H7/p63w3DK8QMgshovGarvzpArL9Xr8P5AshzhNC6JV/s4QQRYpG8x/gdiFEsBCiGNivvJIJeAO4Whl/JF5T0v7SA3jGjftZ4HdCiBnCS66yIAGvmfRnSiDAccCS/TjGP4Fj8PrlXvN7/xW8msuxyv6MimM/dcK9BPhWCQiUAGOQUvYALwO3SCkrgQfwOte78GoUqw5gdz8D5gD9eCfSl/2OUw38HHgM78r/JLzhy46D8Bs+Ah7FawapVcYPXoEF3smzFlgrhBjC65Au2M/dH+h3H8braO7FG2Tw8bjtjwCnKxFgj0opLXgn0rPxanGd/L/DGuAKvKanTry+iBf2c9zjeQb4FNiGV2P6EK/2M5EZbgxSSitwF7BKibSaK6X8t/Lea3j9H+/gDVwAuBrv9TUD5yrbvuoYHXiv23zgX37vtwA/AW7CK9hagOsJzGXfCXzROAEC/GAR3nDkHUDQON9IAAXhDfd+UkqZ8ZUfDhBgLwSkeoAfJEKInyqmtii8K/z3AsLk/xFCmIQQJyg5Hil4Nci3D/e4Any/OeQCRQjxvPAmiO3we+92IUSbEKJC+XeC37YbhRC1wpvQ9ZV27QAB9sIv8ZpE6vCacX51eIfznUMAdwADeE1eu/DzNQUI8HU45CYvIcRivHkOL0spJynv3Q4MSynvH/fZYrzRHbPxhjV+DuTvJbwyQIAAAQJ8hzjkGoqUcjlep+z+8BPgn1JKu5SyAa/zc/YhG1yAAAECBDhoHM48lCuUpLmNwHVSygG8SW1r/T7TythENxUhxGXAZQAhISEzCgsLD/FwAwQIEOCHxaZNm3qllHEHa3+HS6D8HfgT3hyHP+ENTb2YiRPmJrTJSSmfBp4GmDlzpty4ceNEHwsQIECAAHtBCPF1Ky1MyGGJ8pJSdkkp3X6JYj6zVitjM3ZT8cbiBwgQIECA7ziHRaAIIZL8Xv4Ub44AeKu4ni28JcKzgDxg/bc9vgABAgQIcOAccpOXEOJ1vBVFY4UQrXjj3cuU0h4Sb1XZXwJIKXcKId7AW1bbBfwmEOEVIECAAN8PfhCZ8gEfSoAAAQIcOEKITVLKmQdrf4FM+QABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECfCv8s6uLlzs7D/cwAhxCDldP+QABAvyPcc6uXQCcn5h4mEcS4FARECgBAgT4VpBlZYd7CAEOMQGTV4AAAQIEOCgccoEihHheCNEthNjh995fhRBVQohtQoi3hRCRyvuZQgibEKJC+ffkoR5fgAABvh1EeTmivPxwDyPAIeTb0FBeBI4b995nwCQp5WSgBrjRb1udlHKq8u/yb2F8AQIECBDgIHDIfShSyuVCiMxx733q93ItcPqhHsf3BbPTSZBGg0mrPdxD+Z+l2+EgVq9HI8ThHsoPioAP5YfPd8GHcjHwkd/rLCHEFiHEMiHEosM1qMNF1KpVzN68+XAP43+WltFRElav5u6mpsM9FJUeh4NP+/sZdLkO91C+MVLKwz2EAIeQwypQhBA3Ay7gVeWtDiBdSjkNuBZ4TQgRvpfvXiaE2CiE2NjT0/PtDPhb4LaMDK5PSzvcw/ifJVSr5TfJyRwVFXW4h6KywWLh2G3bqLZaD/dQvhGivBzNsmWHexgBDiGHTaAIIS4AfgycK5Vli5TSLqXsU/7eBNQB+RN9X0r5tJRyppRyZlxc3Lc17EPO7VlZgTj9r8GtDQ0HxeEbpdfzeH4+8yIivvG+XB4PorycvzY3f6P9TA4J4cn8fNKDgr7xmAJ8v3i1qwtRXk6f03m4h7JfHBaBIoQ4DrgBOFlKafV7P04IoVX+zgbygPrDMcbDgZSSR1pb+biv73AP5XtHkEZDnF7/jU0qo243dzc1sW5o6IC/+0l/P7rycszKwy+BaJ0O7Tf0xdTabFxeU8Ou77CG4pGSHocDq9u918/IsrKD7ke5raGB47ZuPaj7PByMut10Oxy4x92/UkqidTpGPZ7DNLID49sIG34dWAMUCCFahRCXAI8DYcBn48KDFwPbhBBbgTeBy6WU/Yd6jN8VrB4P19TWcvz27Yd7KIeN1tFRitavp3V09IC+d3NGBt0LFiC+4eRdY7Nxc0MDl1ZX7/NzUkpsbveYCWC31Yob6Fd8HXqNhr6FC7n2G5owY/R6LkxMJN1o/Eb7OZR0OxzEr169z9IqLo8Hx0GeGHfbbNQf4L3yXeSlri4SVq+m2+EY8/7PExPpW7iQlO+JdnrIBYqU8hwpZZKUUi+lTJVSPielzJVSpo0PD5ZSviWlLJFSTpFSTpdSvneoxzfBeLly927WDA5+24fGIAR3Z2Xx3qRJ3/qxvyust1ioslpZb7Ec0PeqRkZYYTZ/4+OnBQVxQ1oaLxUWqu+5peSiqip2joyo7/U5nQSvWMHf29rU965ITUWWlZFtMgFgc7t5sKWFigP8LeOpsdl4sbOTkX2s/g8Eq9vNzyorabfb9/s7do+H7cPDqvY1nnCdjsdyc1m4D1OhfvlygpYv3+dxGm02flZZiX0/Bc9fc3L4oLR0vz77XWZhRARP5OURNi66s3JkhOc7Ohg9SNf+UPNdiPL6TiGBx9vauL2xESklzaOjDH9L0TV6jYYbMzL4cWzst3K87yKnxsUhy8o49QD9YosrKlhcUUHbAUySExGl13NvTg7Tw8LU99rsdl7s7OTf3d3qeyatlnuyssb4WpweDwNOp6q1DLvdXFdXx2927/5GY5oTFsbf8/KI0+v3+Tmr2801u3d/5f26yWLh9e5ulh+AAK6xWpm8cSNX19ZOuL3X6eSxtjbqvqG28H5fH693d9Ngs+3X55eZzTzb0bHHe0+3t3+jcXzbbLRYeKS1lfFi9OaGBi6prqZqL+bOTrud39fV7WEqO1wEBMo4NEIgy8r4ZMoUrB4PGWvXclZl5bdy7DN37iRjzRo++BZ8KLtGRtgxPHzIj7O/2D0e7m5q+tomkb9kZ5NnMqH7hiavUbebOxobCV6+nFN3eIs7JBoMrJ42jcuTk9XP6YSg3GymTpn4Lti1C8Py5USvWsVmRSOJ0evJNhoPWDiOp8Ph4Fe7d7PpKzSdjRYLj7S1seIrtOvJoaF8MnkyRx5AJFuaYnKJ0k2cuqYXggSDAf0+zv/++FBOiY3l3UmT9tu892BLC39paRnz3r3Nzfyypma/vn+guKXk3qYmLN9wkSml5OGWFtXEFabVEm8w4BknGC5MTCQ9KIjwCc67R0pO37mTv7a0sO078iwHBMo++KaT04Hy2cAAzXY7Px7nQ1lmNo8xtxwMjt22jWO3bfva33d6PJy1cyfvHKSQ7Wc7Ori5oYHSDRsQ5eU8PG6S+CouTEqiZs4cEgyGvX5mw9AQorycOxob9/qZrSMj3N7YiM3jYbGifQi8Ji6rn7DzSEmT3c6wYoqYGRZGvKJBpCqTr0YI6ubO5bq9+FA+7utjxsaNNH7Fatyo0XBBQgKFwcH7/FyW0cjtmZnkj/vcoMvFMrOZAcVcFabV0u90qiavz/r7EeXlPNLautd9R+r1yLIyHs7Lm3B7mFbLisHBfd6no263arYbcrn4xwT+Fg/ec72/TuhEg4HpoaFj3rs5PZ1/Fhd/5XfdUvJcRweuA1jErBoc5MaGBl76hmX4q6xWfltXxx/qvTFHWiFYOThIwzgN7yexsTTNm6eaUcePf9XQEFNDQ8mbYPvh4H9eoDzc0oIoL1cl/IjbjSgvZ86mTQRpNFgXLeK/35JP4+SYGGL1elZMnTrm/bKKCiZt2HBQj9Vit2P7mtrAMrOZXqeTbSMjdB+kcMbfpKQgy8q4LzsbYMIHaF9UWCws+woTjm8y29dklW00cndWFlenpJCsCIZep5OTduzgMT9/SavdTpXVSpDG+wiFaLXcnZ2NLCsjSfme2enknqamvWqCQRoNSQaDuo+9sW1khJe6uvgqo4ZLSpINBkY9njFRatuHhymrqGCjouEMulycs2sXTyumIt/Z6N3HtbS63WyyWPbqQzFqNDyVn88x0dF73YdpxQpCV6wA4JaGBs6vqlI1PB8f9vVxUXU1u/3eb7DZ2LqXc/hMQQHvTJpE8+ioqhmatFrOrqzkJ34LM6fHs8fqf83gIJdWV/PFAZj+poaG8kFpKad/A63TIyWJBgPd8+fzN0VATw0N5en8fHUx4mOLxcLf29pwTnDP+hJdU4OCvvIe+rb4boziINNmt9Oyn7bcLcqN6lM9fTpJgsGA3eOhzW7H/jXsk1fU1PDPrq4D/t55CQksjIwc817bvHl0z59/wPvaF0unTOH9fTgzB5xORHk5943LofBIyXHbtvFSZyfHRUfvUyPYGx/39fHsXmzcpyg+lJMP0I90RmUlZRUV+/QLLI6MxLJwIXdmZu71M3EGAzdmZLDUbOa1ri6K169n1qZNACT5/dZWu527s7KYoayOX+nq4rmODrocDvXh73U6uamhYUIfymXV1Ry5dSuTQ0O/ssTLkZGRPJmfT/BXlOPZaLFwWU0NpRs2MNev2oLPnevzL/nu+eOUyf/oqCisixZxu3Je/lhfjygvHzOJ1VitzNy0idN37pzw2LttNu5uaqJzXJRSh93O2sFBdV8hysR3Q3o6H0+evEduzZAi9FP8znXeunVM3bhxwuOuHBzkrqYmpm3cyAzlOl2pnO/3/UzHwStWqO/7SDAYODs+nkS/Y600mxHl5bzf2zvh8cK0Wo6JiiLua9z3PppHR4letYrXursxKtf0w74+7m5uHuOUH3S5OHfXLn69ezc7JtD8grVaUgwG3u/r20Oz8afRZuOFjg5VQz2U/CAFypxNm/a7fMlLRUXIsjJ+pDxcwVotsqyMd0tLqbJayVu/nmtraykfGODtAzDvfGE2U72fjkUfDaOjvN3bu8dxkoOCvtENPBHxX7Ey9tnCP+kfG7WtEYKS4GAidTr+1d1Nxdew3b7S1cUvamq416+8yYd9fYjy8j2EcMvoKPc1N9Pk98DY3G46xjnf/5aXx8ywMJ5sb5/QlOIbe6hOh34fv3vY5eLWhga2j4zQ73Kxy2qlzeFg44wZXKwknPY4HBy5dSs3NTSwRtEEioODWTM0ROLq1epqOsdkYk5YGCfFxOxxnJWKn+Oe5mbuaWrinqYmnB4PFpeLLeN8JWaXi8travaIYuu028fkfeQoWt1vU1N5q6REfT/fZOKm9HRmh3uLTkwLDWXplCmqSU8jBCatVs2XeVUJPjhu2zYuU8Kns5R9G/Zy7oK1WtKNxj0mlDd6epi3ZQsWtxtZVsbw4sW4pcQpJcdGR+9xLc6Jj+eTyZOJ97vf10yfzhdTpgBe34O/w/6R1lae6uigfOpUliuafYTibxhYuFD9nEtK3hz3XMXq9fw2NZVcP214k3Ltlu/FD7XLakW/fDkP7odJts/pnLBcTpRiGr2mtpbbGxoAr3BLDQoaoz2/1tXFLquVOL0e0wTnPVirJVPxNU2kXUasWMHN9fVssFi4uLqa6FWreOAATckHyg9SoPw6JYUrUlIm3CalZGg/HWppfiaPv7W3c7Ny8feH/5SU7DOEciJWDA7SODrKqeNWgZlr1nBERcUB7eur+PH27SzZsmWv20N1Op7Oz+e2zMwxpoJRt5tnCwo4LjqaOeHhzAufsDLOPjknIQFgzPmsVyaJ3+zejSgv5yHlxq+z2fhDfb26HeDE7dtJXrNmzD6Pjo5mw4wZ7LJa+aS/X3Xuu6VUo542WSyI8nL+UFc34bg2Wywcv307f2pqQgI/jY1l1bRpLJ86lcbRUXqUhzZCp+O1oiL0QqgP8uzwcCK0WjSgOpSFEKydMYPfpaerxxh2uXBLyc5Zs7gtI4Nkg4FuRZPJWbeOmxoauLG+fsxE5JSSCxISmDXuXCetWcOv/JzPGUYj92RlcWlS0phAAJ0QlEVGqrkMUXo9Q243axVh+K/ubkR5Oc8oWuPSKVNYOW0aX5rNPKOYxSJ0OmRZGR9OnjzhucswGlkxOLhHQECkTkeoVovd42HE7abf6eTPTU1krl2LKC9n+7gFiVYI6m02Vg8OqivqWeHhagDBk+3tZK9bxwZl7FohWBIRQWloKIsUzf7OzEz+VVw8xpH9dH4+zxYUjDnW8sFB5mzePKakzdWpqXiWLFFNr+NpVhY2+7JZNNhs3FBXR/Lq1Zy2Y8ce2yN0On6tBHjUKvd1SlAQKwcH1QWK/zHWTJ9OYUjIHvtxejysGhqiODiYSeO2Oz0ehhQzZXFIiGqi+91e7v2DxQ9SoNyUkcHNGRkTbltqNpO2Zg39ys16f3MzorxcXRV2ORyI8nJmbtxItF6Pa8kS3iwp4ZKkJK5OTd3vMdzf0sL5u3bR7XDwbm+verx9cVlSEiEaDZtmzBjzfpPdTvk3yLHosNs5bceOMSvchtHRMar+RPw8IYGyigr+7KdJ1I+OMm3TJt7t66POZttv4eyPbxKpmTNHfc+Xw/Gikv9RoDiWZ4SF8VFpKUV+juYb09O5KytrzD7XDA6yzGzmv5Mm8Wp3Nycq9vO/t7WRuXYtUkr1GuytkvNmi4WVg4P8IT2dK1JSSAsKYn5EhPeB3LmT3ynhmQaNhmyTCaeU/L6+nja7HYvbzQO5ubjLytTVdYfdzh2NjeqEJaUkbvVqHmltRQhBSUgIc8LDuSsri/SgIFrsdmaGhXmFk99kuMFi4aWuLgzjTGMnRkczOzyc9UNDxK9axWtdXYRqtbzS1UXW2rXq59YODXGMXy2wboeDn+zYwR3KdY1WjrVmaIjP+/vJMBpZEBHBiqlTqZg5EwCLy8WawcG9+lAAXios5NRxpspwrZbUoCDcUhK6YgUxq1Zxit9nxms8n/b386vduzli61ZVmF21ezczFZPXEZGR3JaRoS72/l1Swr9KSjinspLjlSCTEbebsyor+ZHfIuyc+HjVxOcjWblO4/0zQoi9JsjODQ/ns8mTuSQpaa/nocvh4IGWFjygLgIebGkhefVqXB4PLo+HWzMzGViwgBeU+z3HaOSlwkJK/QRDrhK1+Pe2tgkrQPiE0fSwMILHnUcBXJ6czNWpqfQ7nbzZ08PzBQUMLFiw13EfDH6QLYBvbWhgmdnMsmnT9tjWbrczpKyUovV6apSL4stu9j20mUYjQy4XrXY72UYjb/b08EFfH7/0Cx3dF7usVi5KTGSzxcJPduxgzbRpzP0KjSVCp+OchASmh4Wxc2SEzRYL58TH0z1//j7DMf3xSLmHTX7U4+E/vb002+1sUIRV+dSphPtNrKft2IFbSt5R/CrNo6NkKJNShl8IZ0pQEBFaLTVWK8dERe3hX9pksfDv7m6i9XpWDQ7y3wn8NKlBQTyYk0P2BKGhJ8XGjgktbRwd5fjt2/l3cTGnx8cDXm3k6HGTw1W1tarTGWCK8mB2OZ30uVxsGR7mR1FR2Bcv3msplLPj4zkjPp5wrZb89esZdLk4r6pKnXg+VCr+aoXgGiUfY05YGAYh+Fd3NyaNhqOjoojX6zFqtbTZ7dze2MjtjY3cmpHBHVlZCLwa7x/q6rivpQWDEFQMD9Nst3N6XBwXKGY1KaU6qf04JoYn8/P3WBW/r2gLb/f00ON08n5fH58ODOzxu2IVE0vF8DCzw8NZrWgRf1aE8o+ionAvWcJfmps5ets2rklN5eHWVgYXLlRX+TtGRpivaLRfTJmyR8jxhqEhbqyv5/Vx0VXTQkN5Kj9f1Y6SDQamhIZSPXs2FrdbXTj4aFQ0gNNiY+lS/DH+wRCFISHc7reYWDM0xBvd3fxTMdNN3rCB7Yq/weds90hJ2MqVXJuaygO5uep3s4xGzktIINdkQpSXc2ZcHJcnJ3Pk1q38d9KkCf14ETod8yMiJryHlmzZQqxezytFRfQuWECETqdewz6nkw6Hg36Xi06HgykbN/JSYaFat+/lri4eaGmhZd48dX8zwsJIDQrigdZWHmxtxTMu5DrRYCBer+eVri7vosTvedJpNPw9Px8pJTU2G0/m53NaXNyE4ccHkx+UhvKGorr/qalprzbQ0+Li6J4/X7UJP11QgCwrU6vLRinhkW9OmsRnAwOUbNjAX1pamBkWtt8aikdKuh0O4gwG5kVE8EZxMXYp9xm7LhUb75cDA7zR3U1ZRQXnV1XRarcTZzAQ+RVJbT7y163jF35lQ0bdblrtdk6IjubHMTFqAlSMTqeGvAL0OJ2qQxRQnYOzwsLUSQ68D9Sx0dHE6vV8MjCwR/z7zE2buK+lhVsaGnh3L/k0T7a3c21d3RiH/xcDA4jy8j0S0lxSsiQigjy/ieftnh7+WF8/ZtX2QkEBRyomj8uSkrhfmThuVTTVGZs28cXAAAaNZq83/QOtrUSuXMkdjY3U2mxsHxlh1OOhfnSUp/PzOSU2FqeUtNntqrno5wkJxBkMLIqI4NOBATLWrmWdxYKUkqmhoRyj3Fe+6J3hRYu4OztbPfcOKdELwaywMF4oKMAjJXGrVnF7Y6MaTuzweLi8poZbxplcf1ZZiX7ZMs6srCQ1KIjfKGbeXyQl8aGfIM8PDuaOzEzVPLk4MpJV06YxV3kthEAjBCfExPBmSYk6OZdVVPAzJQerKDhYTaycKJouUqcjz2TaI5Lqhc5Oliiagiwro23+fNYODvJkeztZfhPgFouFq3bv5oSYGJZOmUK44qMDWD51KluUhdBmi4Vra2tVYfNwayuvdXdTNXs2H5SWqsLEd67h/01HD48Li3ZJyS+Tk5kdHs788HCKgoPVgIW95fx0ORyErFjBH8ddi1qrlVqbjelhYdzb3EzUqlVcXlPDucr5mxMeTrbRiMXtVhcoF1RVcXN9PX1OJ9fV1dHucIwxdb7c2akK2NgJnv8ovZ7JSlBI7QT+2tTVq7mspoY1g4NcXlNDxMqV37hQ6VfxgxIoviiWq1JSeHwv8fLX1tVRVlGxXwX7fA/gbpuNN3t6eHcvkR/j0QjBf0tLyTEaaR4d5UwlAunLfZitPHjNUPWjo/x81y5eLSrigoQEInU6MtesoXQ/w4YXRUaqjjrwmssWV1Rgdrm4vbFRtfmfunMni/1MAh9PnjwmPDpKr+ep/Hx6nE6+8Fv19jmdXJeWxtnx8aQFBe3hcL4zM5Mb09M5Iy6O4/20iF0jIySuWkWb3a5OfH/zEx4+2/TVtbVjfCgtdjvLBgdx+U1Up+7cyV3NzWOyiieFhvLF1KmUhoTwdEeHWhLlY7+ggo+UfIvf7iXb26fV+ExBP09IYNOMGayaNo0tw8O809tLWUUFD7e2quU+XujspNfhYHZ4OCaNhmSDgXyTiZ/u2MHMTZv4ZMoUZFkZv0hOpsvhoHD9ev7d3c3j+flcl5rKjNBQToiJYYPFQtjKlfx0xw56nU52jIyQtW4dTaOjqvb8sl/Agt3j4fXublxSMikkhJZ58zgqKooHcnK4IiWF45Xr0jo6SuyqVQRrNOoEHq3XY/N4eEtxUv+9rQ1RXs5RW7dyaXU1a6ZNY9OMGWwZHuZ1ZVKP1OvpXrCAbTNnjmmv8F5vL/nr1pFpNLJpeHiPRUR+cDBhWi0tdjtDLheddjuPtbXxUGsrMatW8alyfaZv2sRjbW3YPB42K9rk2unTAe89PVWpXPBgSwsPtbaq3xt0ufhxTAwFwcEcFx1N/Zw5fDFlCm+WlBCiLIq0QvBWSckeuSnv9/WxcMsW7m1u5u1Jk7g9K4tr09KQZWXcMc6kanW7+ay/nw+V424YGuKDvj4+U15vHh6m3eHgp7GxzFcsEU93dPBadzd3NjZycmwsdXPnkmMyEWswcJXyDIx33L/tN8f4zJ47Zs2iewJT1W9ra/l8YIBck4kZfpUdwGuibHM4aB4d5cioKOYo22/bRw7WweAHZfL6bVoa2SYTw243R0dFkb12LfdmZ3NmfDyPtLZi93hICwqi3eGg024nMSiIe5uauLGhgQ3TpzMzPJxaJbILvAlSPvPL5/39Y6K23u3t5ee7dhGt09Hop6b6eLGzk/v9IipCtVpmhIaybmiIn1VW8mpR0RgT2Ed+D2J6UBBpQUG8WFQEeIUCE5QUubWhgWyjkQv97LnVViutdjs3Z2RQNTJCldXKAzk53NbYyO/S0ghVHrLdNhuz/W7Cp9rbWTE4yH8mTWLU7Wbhli2cER9P4+goD7S0qBrc5wMDnF1ZyTuTJtHjdOIYtyK9ZS8huRstFrqcTuptNn4SG8vdWVn8zm9iuigpiYuSkviwr48Tt2+nRJncj4mK4uPJk9WkwX6nE6NGw6+Tk/FfEnwxMIBOCP47aRLZ69bx6927ebu3V51UfhQVxVFRUTzY2qrml4yn2M9+/evkZLKNRqaHhdHndPJ3Rfi12u2809vLTxVzyObhYZ5Xosoez8vjYuVanBkfz7bhYW6ur2deeDhJQUFkBAWx22bj7d5ezoiPJ1fxw1ySmMj7fX3U2mycGBPDUVFRnKz8b9JoeF/Rtv39SG4pOS46mlNjY4nT64lYsYLLk5NJDgri3d5ejqyooHXePNWke319PSfGxFCk09EyOsqZO3eiEYLzExPVRMi0oCCyjUY0QlAcHMyqadNU/8qA08lzHR38taWFdyZNUkvOLB8cZLfNht3j4YWCAjXSzEe8Xk+W0YjD4yFi5UoAOufP5zVFUPkmzftzcojW6eiw27lOcRy/WFjIvPBwztu1C4vbzepp07g7O5vpYWGqyc0X/TVv82YyjUY67HZa7HbqR0eZExbGu6WlXFxVxQO5uWMWWgBlikZ7e2MjSwcGuD49nRMniMgDKDebOXH7ds6Jj+ezyZM5ets2lm3fToJeT82cOcwOC2Nw4UIE7FFZY+vwMNfs3s2nAwNUzp6N3ePh+rQ07snOxqjRqAJlbni4Oibf9dYCkzZs4Mb0dO4eFyjg07iOi44eY74GbyDGVSkpqla90WLhV8nJROl03kKeBzlqVD3uIdnrt4zd4+GR1lZOjI7mlHFRFb48ietqa3EDH5SWYna5aFYESqsyUQ8qJohQvwtzV3Oz+sB92N/PMx0d6ur6qt27sbjdE2ZBW91uVg0OcnZ8vGo+qJk9m6SgIIbcbuZHRIxxugKq4zter6fP5WLl4CArlX30L1ig+lB6HA5cUpIUFMQb3d3E6vWqQHFLyd1ZWZi0Wv7V3c3Zyo2dbTQy7Hbzs/h4dYJdNnXqmNpQT7W3qwJTKwSNo6NqFu9P/WzJiyMiKAoO5t/d3RwZGUmN1bqHPf262lo6HQ6qrVY+nzKFSL2e8xITOU8xnb3S2UmcXj9h+O4JMTFjfCgDLhfHbdvGk/n5/DI5mTVDQ4x6PMwICxvjK7q1oYHVfhEyRyhj8/l4BpxOFkREeMt/SKna2jvmzWPU4+GD/n62DQ9zaVISt2RksGjLFiRebSjfb5LsXbCAC6uqOL+qilCtlrLISE6IjuaymhqSDQYWR0SQFBTEzQ0NCBiTHyDLyiiLjMTidvPrmhpG3G7yg4MpVRzOFyUmcpniozt+2zZGPR5+nZLC2fHx6ITgaL/zHKzV8tHkybza1cWZlZU4peTzgQE2+5kgPcCRUVFUzJzJ1I0b+dJspigkhC/NZvpdLjX446ioKGRZGf/t7eWUHTt4S1klX52SwkOK6XDL8DDXK/fDR/39qkD5a04Ok0JC+F1dHW/29PDxuCiw1KAgHsnNJVcRWgUmEwkGA9tmziRCp1Pt/r7n6HpFmFydksLqwUFCNBq1UKhTStKNxjHVm9cODfF8Zydrh4ZUM6SPdRYLszZtotlu54P16/eYlDONRqaFhrJleJhlg4Ms276dTyZP5tht23i7pIRTlMioLoeDaJ0OAZyr+Dh93J+Tw+QNG2iy2/lRVBRbLBb6XC7+kp3N9enpbLJYCBKC//b1sctqZbPFgtXtZlFFBf8qLubM+HgidTruysri0dbWMQm9WUYj8QYDHQ4H9zQ37yFQOubNo2TDBh5va+OPGRljcsJMWi0P5ubilpJqq5WHcnMZdru5qaGBY6OjD5lA+UGYvAZcLq6preWYCUqJ+BLdXEodoaOjohhcuFBVER/Pz0eWlREkBBfu2oVWqeW1QDF3Faxfzxvd3WQbjWpC3BcDA16tAW8phvE4pcTscqmru0uTkqgYHqbX4UAvBK90de2R7PbplClEaLUMulyYXS4uq6nhspoa5m/ZQtbatYQq+4pfvVoNmX2qoEB94MEbenvE1q3U22xjIoLsHg8XJiYSrNViUwRntE6nClPw2pN/pji9+xRHNngngF/4BSIkKWaucJ2OdUNDVI4rWnfM1q08qNi1Nw0Pq6Yqu8fDmsFBOu12XlbyUB7y0+DKFR/KeBtvq93OkogIQrVanmlv55ioKB7MyWHt0NCYgnivFhVxrjL+y5OT+WLKFDodDjV0e9PwML+qqcHh8eCWUjXVGTQa7mpu5ordu3m6o4NnOzp4q6eHZrud/ygmoRqbjf+UlPDr5GTuaGzkn93d9DqdDLvdTAoJ4bbGRkK1Wt7q7SVv/Xp+sn07x0ZFcVdWlnqcR5Xr9OesLNrtdnaMjNBmt/PHhgaSlfIhf8zIYMjlImvtWj7u72dBeDijbjca4PKaGm6oH9sa6Fc1Nfx81y6cynnwTUZnxsWxbOpUNREySwkn9p2LH8fEsGH6dFULdEuJW0oKTCb+6Bcd+UhbGycrC7RpoaEsUr7/SlcXUkr+1NjIebt2cWFVFU91dDA5NHSP6gtPtLWpyZCyrIyqOXMoHxjg04GBMU7kaquVy6urOS46mrXTp5MSFMTTHR0crywwZFkZcQYDK81mLquupkfxoTzY2sqbPT1Uzpql7muq4lcYXrQIi9vNz5Uw9XsmuLfuz8lhZNEi5oSF8VxBgeoT9C/GmLh6NfO2bMFTVsaM0FBiVq3iwsREZFkZP09MZLGiVdTbbFyfnk6m0cjv6+u5oa6OmZs28YXZzE9jYykwmTC7XGrey1mVlfy+ro6m0VFubmig3+Xi/d5edQzPd3bSofzO/AkqRzSMjmJUFmUT+XymbdzI2ZWVLB8c5KraWm5S/D7/7uk54PYQ+8sPQqD4Hqhz4uMJEkK9gYA98iSO2baNM3bu3MOH0u5wsNRsVk04j+flqXHrXw4M8FJXF58rvoQUg4GfxcdzZlyc1yQxzrcSodPxZkkJ2SYTlyUl8WxHByds384FVVVqqZKl4/wpEq+W5FtRv11SwhUpKVyenMyg203S6tXqZ1ODghh0uVhhNhOi1fK3tjZqrFaO2roVgxBIvPkbGUFBvFJURJvDwbTQUArXr1dDJE/fuXOMAK6cPZvnlN8botVyX3Y2v0lOZsDlGiM0a6xWTlWiYfQaDReN6y65JDKSx/PyOC46ml8kJRGrrITe6e1l/pYtPNvRwadTpnBidDTb/ByoPufj75UsbV/iWI3NxorBQd7o7uaymhpe6eri2ro6HmtrGxOynGky8UpxMcXBwTzZ3s7znZ08VVDAlSkpaox+gsFA0PLlXFVby11KmZRovV69R5YoE+a1vlVyaio7Z81i7fTpWD0eXujsVCel1xRz5GOtrSwzm8k3mTBpNKQGBfGF2cxTHR38vr6ed0tLkWVlXJmayiaLhYVbtrB5eJgQrZZPp0zBvngxlycns3l4mJx164hYuZLG0VGuTU3lruZmVvjVd3qzp0ct694yOsqTihnu5vR0fpeWxtKBAR7Py+OG9HR1knustZWIlSt5pasLnRA0j45yf0sLO0ZG+JviZ/pLczO6ZcuYtmkTb3R30zR3rnpdfdnmUXo9y6dNo2f+fNZPn06l1cqtjY28ovh11k+fTpXVOsbPA94AAIm3vcCA00mjzcZH/f38rq6OrLVrebGjA4fHQ+H69TzV0YHV7eaT/n5i9Hq658/fIxz2qY4OnunoUH0ZjaOj6IQgSKl3dm92Nv8oLOS/kyahxbvYDNdq+Wdx8ZiWBACvd3dzlBKe/OXUqVyclMTv0tNpmTuXbqdTDW/31Qp7tLWVJGUxV2+z8UZ3NyvNZl4uKuLa1FS6nU7OT0hQs/99RSuvqa3lqt27eb24mCOjokgMCuK3SoCPBD5R5hWnlJy0YwdHKw3DfD6vDdOnU+0XYu9j/pYttDscZAQFMX/cPNflcLB9ZASrIlD9Kw883tamzmUHmx+EySter+e1KVM4KiqKxYqpQ4u3aU20Xo9HSrRKL+tbMjJ4rauLBpuNLJOJu5qa+GNDAx+VlqIXgrN27mSVojpflJiIZ8kShBAsM5vVXJVNw8OsGRoiTq9nvcXCu319e1RRfaunh1v9HGAFJhMf9verGdK+CclHpGJf/ndxMbPCw8kwGjklLk7NpPWVtPAdZ9fICLc0NnKLcowz4uKYEhrK+319/K2tjevS0jBqNARrNPwxI4PH29qYFx7OaTt3cldWFtU2G8f6mVDe6+vjr83NfDJlChE6HW/39pJnMtHtdHJvczPvKU7oR1tbeb27m8+mTMHqdu8RyurL//nNXhJLfb4YX8hrv9NJudnMcdHR3irP/f0ct20bU5SH+Oz4eKJ0OrYpDt+LlQi2ySEh6gq8w27nLy0tnBIbyzuTJpG/fj2XVldTFhnJkZGR7BgZQQNqUEXRuFDVn8XHk2QwEKvXs8xs5vXubmaGhVEUHExRcDBdDgdzN28eM7n5WrKOeDyMeDw80d7O/Tk5XJeWhsvj4e3eXsrNZn5XW8sx0dEYNRoSDAYuSEig2W4nIygIjRAYFFPW693dakfG55XEUd/xfWZT/0njM2VCeL2oiMLgYKYpZUdG3G4+6u9nxqZNNM6dq2ohO61WpmzYwP/H8Xn5bVqa6kSeERpKjslEt8PBVSkpJBoMXOhXHeDmhgbe6umhYuZMck0m1k2fzo319XxpNhOl0/FsQcEeuU2pQUHkmEz8tq5ODZBwLl7M79LSuK6ujuSgIDxSes2MERG02e2q4/ij0lJcUnJ3czMa4OHcXB7KyWFRRAQeKem029k8YwbhK1eSs24d4M3n8Jlq800mzoqL42/t7VQMD/O54m/x8fOEBG5qaOCa2lrWDA7yk9hYzklIYMDl4tmODhZERDDgcvH2pEm02+3MU8KmT4+L482eHpYPDhKh1dI0bx6XJSdzd3Y2Gy2WPSJMj4uO5mPlvu5asACr282VKSnck51NkEZDwqpVgNeHsnZoSF10+q7drM2b+XVyMhckJvJsRwd/zsoi3mAgRqejz+XinIQENQr0pvp6am02ni0o4Pq0NH4aG0uQEAy4XPwkJoY1yv6njiuoebD4QWgoOiHYYrGw3GzmuG3buKq2lpeUlVKETqeu6oqCgzk+Opq60dH/zz9RLp4QgnkREaowAW8Ej8+ks3RggN/W1SGlZLWyalxvsbA4IoLnx2XgdjscfNjfz3l+mlLVnDnclJ5OjsnEzxMSWODnkPcooaOZRiPHRUcz6vHwcV8fj7S28mxHBxckJDC6eDG/rqlBlJdTbbVSGBzMLMVs9/OEBK8tNySEFwoKeDA3F50QVNtsnLpzJ//o7GS3zcZlSUnEGwxcVF1NSXAwf8/PV8fw1+Zm1UTllpIaq5V/KOfQP1rr6tRUFkREcEN9PWWRkROudG6oq+MX1dVM2bBBXeWdFR+PLCtjXkQET7W387yStFZns3Hazp1qyYtjFcHiEzxuKTlx+3Y+GxjgR1FRnKOYtf6Sk6OWjnmyvZ2HW1spq6ggXwmoKA0JoXF0VO2V4cErlH3awqItWxDl5Yjyci6oquKE7duZvXkzZ8THs2nmTN7p7eWPDQ1oli1Te4BYPR7WKZFHV9bWohOCy/wCIt7t7WXnyAjrLBbOrKyk3GzmgdZWjt22jSUVFRQEB/NiUREXJCbyVEcHv6qp4baGBuZt2cIuq5ULExPpW7CACxMTmb9lCysGB0k1GrksOZkn8/N5vrBQ/c0tdjuRSp6DT5iAN+fIF9J69e7dHBkVRdXs2QB7ZFM3KKveJZGRyLIyXigs5OWuLmZt3sy0TZvodTpVh/16i4VnOjroVyZb8K7cP1Um6bz16zm7snKPcj5GjYb7srNV36RRo0Gn0RBnMPBsQQHBGg1GrZY7s7Kotdm4yC/k/d2+Plb4ZY/bpWSn1covkpK4uLqarHXr9qhe4d+PpcZmU0sDrR4aomj9eh5QSr13OxykGY1qIua/enr42a5dvN/by+SNG7G43ZRFRrKkooJHW1vVMO/JISH8xi8g5KWiIjLXrqVw/XpO8qs+cWtGBu4lS1g/fTpPK89Zt9PJp/39LDObyV63jg8V7e+OzEySDAYaR0fZMmMGa6ZNY9TtZpfVqprN/9beTpvdznt9fapmvmXmTCK0Wu5tblYjXMO0WqJ0OsJ1Ou7MzGRyaCjbR0a4MyuLKaGhdDudXJ+WRpbJNCZ682DxgxAoI24319fXq/Hu/vy5qQmTUp9rUkgIV9fWYl20SHVwPpCbi3PxYoaVdq6LIyIoCQ4mRrmQkzZs4JzKSu5oalJrOfmvvn3+CfDWmOpxOOh2ONhttaor4dPj4nizu5tOh4Mtw8O80tVFhlJ6YqXZjEYIGufOJVav50uzmcL16zl++3auqa3FA/yzuxu3lGqoZOH69QgheDwvj3Pj45kZFkbT6Ch3NzdzUXU1gy7XmEKCEvhJTAxBGg2XJiXxUWkp9+fkjMkQ3jYywm9TU4nR66m12dRQ1WSDgV/7/d48RShvsVi4u7l5j/j34vXr+UtLC892dLBN8RP4qvyuMJupsVp5rauLS6qruaOxkVa7HQ3e8FNRXs6N9fW4PB41x2SjxcKSiAgsbjdbLBbuzMzkvuxs3uvtVQsOphuN5JpM3KH4uH6TnMy2WbOI1OmYEhrKp4o2ZPV4aFAikk7zCzR4w6/GU+batTzR1ka308lOZTHxVk8P702axKVJSWNCx12KwzNSuVeWDw4yacMGFiqTir9/6bmCAm6qr8e4bBkXVlUB3vv2zqYmonU65oSF8avkZGweD1M2bqRxdJTSkBB6HQ6CNBour6nhOr9w59SgIMwulxp4AfDLpCTuampSc1+WDw4ipSQ9KIgHcnJ4obCQ9dOnk2M08khurpobY3O71UXXHX5Res90dLBoyxZe6+ri7MpKNTfpzqYmlg4MoF++HJ2i+YM316LH4aDKz5T515YWjty6lff7+micOxfrokW809Pj7WPS3MyiigrqbDaaR0f5teJXPDkmhuvT0vh7ezs/VnwoK6dP5/OBAcoqKshet45ds2ZxQ1qamvS42i+J2T8Tv9pmY05YGFE6HU12O2/29HDCtm280NnJrpERfpmczD8UU9hHpaXqNQdvS2fw5icdvW0bH5WWsm1khCO2buVEZVxzwsLUOlt9Tid/Uqoe3NnUxF+am5m9eTMvdXaqZrAXOjvVIINTd+7kipoaTFotHQ4HHinZMjxMmE7HA62tnF1ZqT6Hc8PDCdJouDAxkRyTiV6Hg3KzWa1svXJwEJfHw6jHwxUpKdRarZRVVDB5wwZmb97M7+rquFMJ/GkeHeX2xkZ+pJjWDiZiopT+7xuioEAmvfACp8XFoQFMGg33KfbL9yZNUjsgivJywJuF+6ZfzsUTbW1csXs3EVot16enY3W7OTUujiqrlYurqlS/SqLBQMf8+XQ7HNza0ECT3a6q8ZaFC/l0YIDTdu7khOhoPuzv54GcHPqdTu7ycwZmGY1jIn9+n5bGfTk5tNnt/KyykpszMuhzOonQ6Vg1OEi60cjlSr2m6tmzKVi/nmyjkaVTp/J8Rwf3t7Qw4vFwVUoKL3Z2MuR280ZxMRssFj7q7+dn8fHc1NCgRvoAuJYsYdrGjWwfGVFNaFJKPHgjvPqdTl7u7KTN4eCp9nbeKinhiMhIdBoN/+3tZXJICD/dsYOtIyPsnj2bHJMJl5T0u1w81tpKSUgIj7a1cVx0tNekmJHBrLAwTti+nYsSE7k3O5vf1dXhUKKYHmhp2SN/4baMDL4wmxn1eNhosXjNWeN8VV9MmcKkkBCG3W6GXC6mhoVRuG4d1TYbrxQVEa3TEazVMikkhFjFrADeIIlnFK1yxO3mPz09jHo8dDocY8yUlyYl8Yf0dAacTnZZrZyvCALw1rv6RU3NHgJ1ckjIGN/QO5Mm8ZPYWD7o6xvT5+bPWVncpNT4+lt7O1eMC9K4JSODPykTgM9k4rsHI3U6IrRa1ikT02O5uQy53dzX3MyDublMDglhl9VKqFbLbqUWWmFwMJ9Nnkynw8Hr3d3MDg+nYniYm9LTubmhQZ2YF0VE8GpREc90dKjHj9LpGHC5eHfSJI6KisLu8RDtdz4BVk6bxkVVVWrZ+b4FC4jW63m3t5efKI79j0pLvdWBxznHXy4sVM/tAsXcOzs8nAsTE3F6PETqdOg0GnocDuZs3kzD6CgP5uRwdny8GqDycmEhm4eHSTQYOD0ujmqrVS2/89fsbNKNRr4cGCDLZOKlzk6uSU2lymrlodZWioOD6XY62TFrFgkGA4MuFzfX1zM1NJRVQ0Pe0kkuF3/Ly1OF3pKICK5MTfX60JRozC0WCx9MnszFVVV7mL3mh4dzRGSk+tt/mZTEUx0dZAQFqQE+PvJNJt4sKeGymhrWDg2xdMoUyqKiuKWhgSfa2uhfuFCdy8A7p2yaMYOdIyMcu20blyUn75HEOZ4LEhI4Mz6eE2NjN0kpZ+7zwwfAIRcoQojngR8D3VLKScp70cC/gEygEThTSjmgbLsRuARv1e2rpJSffOUxCgrkGytWcEZ8PCvMZr5QIkji9HpOio2l025XnWl/SE/nrZ4eInQ6b/mQ6Og9qpD6OCMujtPi4ji7spI5YWGcEhvLdWlp3N/SwjMdHSyJjORFJQfh8ylT0AvBkooK8kymMf0cwNsz2uc/0QnBO5MmUTkyQrOS8OVzZm6eMYNpYWG4PB4qrVbO2LlTNc+B12Z+dkICK8zmMYmJPvv3Gz09TA8N5dq0NO5pauJPWVkkBwVRHBzMVbW16njBayr7h+LLsbrdzN28mSmhoVyalMSfm5owu1xqOZNbMjK4JSODoOXLuTUjgyG3m4daW6mbM4fb/JyzG2fMGJNklbFmDVekpJBkMHBeVRUfT57MI62tPJCTQ1FICC6Phzd7ethosXBybKyqZd6TlcWNDQ1E63TEGwx7tEAtDg5ml9XKxYmJCCF4tqODldOmEaLRqCageeHhnBgTo5qAioODqbRaebaggAsSEtBNELb8YkcHj7e1MSkkhFPj4jg5NpaW0VHSlTI00Tod/S4X5oULub2xccyD+6fMTP6YmYnV7ebzgQH+3dNDhFbLKbGxHK0EQNySkcHVqamEa7XoNRrsHg9rh4a4ub5eNbdenZLCL5OTWTc0NMYE5CMtKIg3iouZt2ULH5SW8uXAAA8o43g0N5dBl4tbGhvZNnMmPU4nR+1jJZpiMPBCYSHHbNvGEZGR5JlMnBIbS3JQEO/39XFWXBwhWi31o6P0O50siYwkXKfjta4u6mw2fhQVxeqhIY6KjGTA5aLWZqPT4eDq1FQMQlCj9IhvHB1lxC8CrHP+fO5sbGRueLgqTHbOmsV6v99cPnUqZcr9sDAignPj4zlf8SNcXVvLLRkZXJeWpvofPywt5e3eXrUGmD8xOh0/T0jgb+3tVM+ezc6RETRCqEJnckgIv0pO5vKUFHocDorWr+evOTlqUzOL2602pDsqMnJMD5X0oCCv7y44mI/6+jhjLx1e/1NSwl9bWigJCeHoqChmhoWpvh/w5sVstlgYcrtpV8LZs5XtP09I4Ob0dO5tbuaG9HTaHQ6Wmc3kmUyEabVqiPMVNTW83NXF5JAQIpUF1WcDA5hdLtVHA15zZ6bJhBDieydQFgPDwMt+AuUvQL+U8l4hxB+AKCnlDUKIYuB1YDaQDHwO5Espx/sSxzBz5kx5+ltvMSs8nHVDQ9zc0ECoVssXU6YwNTSUQZeL+NWrmRUWxj+KiihU7OzjmR8ePiaXIV/xd9za2MjJMTG829fH4MKFnFNZqUaZnBMfz+ywMM5JSMAjJT/evp0z4uL4V08Ps8LCeKajA5NGg3XxYm6sr+deZYVSGhLCAzk5YyKtjo2K4sXCQtYMDY2pOHxbRgYXJiaSpdxca6ZNY3Z4OMdt28ZnAwNckZLCJYmJvNzVxaKICNKCgrC43RypTCTlU6eyJDKSypERflZZydaREUI0GmrmzGGTxcIvqqu9/qPBQXqcThZFRLDLah1TEvu/kyZxYkwMW4eH+XJgQM1JuDk9nS/N5jFVUm9KT6fL4WDV0BBP5efjkpKzKiv5sLSUUY+HxRUV/Co5mb/l5+PweAhavlydjF/r6iJSp6MsMpJqq5Uck0lNiDs2KopovV7N3gbvhDhRgmWywYBJo8EpJc3KCnB6aCibZs7kloaGMQUvwVuuZX5EBLPDwsg1mUhYvZoBlwujRsNlSUk8qqzgfavpxRERPF9YyId9fVylmKKmh4byWF4eH/f3q6t7f1ZPm8a8iAhe7+riZ7t2cW1qKp0OB691d2MQgmtSU/ljRgarBgc5fvt2lk+dykOtrcwJDydKp2NGWBjpQUHeFbsQ7BwZoWF0VA3tBW8r5N8r1+asuDj+WVJC6+goaWvX7rHQ+W1qKqUhIVyk+IGklGj8TFg/i4/nVSW7/M3ubs6orOTtkhJ222xckJhIqFLyPmzFCpxSYhCC6tmzyTSZOGn7dtrtdh7JzcUpJS90dqo+uevT0vhLTg6f9vdzXV0dCXo916WlsW5oSK1SAP/v/Aavlhap01FltXJTejpnTjBp356ZycOtrZj9ov/8J1GAp/LzubupiSa7ndlhYbxfWkq8EkGZbzLxs4QEble0VFlWxpxNm+h0OHgiL4+Tduxgemgoj+flcdTWrdg8njEaabbRSL1iffhtaip3ZWXxpdnM/S0t/DY1lSfb2zk1NpZfKBaHqaGhqo8nTTFhvj1pEj/aupUUgwGNEHQ5HOq9vW76dM7YuZNXi4rUnkkX7NrFy11d1M+ZQ5bJxN/a2thgsfBCYSHDLhdOKdkxMsKKwUEsbjf3NjdzV1YW00NDWWo285fc3O+XQAEQQmQC7/sJlGqgTErZIYRIAsqllAWKdoKU8h7lc58At0sp1+xl1wDkTJ0q6x9+GPCu7h7xKybnb946c+dO1gwN0W6348G7mpN4TRvPdXRQMTxMpdWq3oA3p6ez1GxWhcwpsbG8VVKCxe1WV0UpBgP1c+di0GgwO52MeDws2rKFhtFRXios5IKqKv6UmclP4+L4dU3NHqrwWyUlnLZzJwKvkHk4N1cVBP50z5/PkooKNRLItmgRNTYbj7W1kWIwUBAczM927QKgYuZMHB4PJ+/YQafDwZlxcbxeXMxT7e04pWRySAg2jwezy8XF1dVqD4aHcnI4Njqad/v61EgZgddEVmW1kmgwEK3X835vL7c3NqITgvzgYAZcLoI1GtKNxjHVAeaEhalmGfDW23JJyZ1NTbTY7VyjTGiXjFuFL4mIoFyxiX/e36+u7ouDg3mzpIT/KA7z8TxXUMAl1dWcEx/PiTEx/KmxkaSgIH6dnKxOQB+WltIwOjph0ysfdXPmqCvHICHw4E2I/aCvD4vbrWbGzw8PZ1ZYGMdGR/NiZ+cYX8x4/llcjAZvNv4b3d3c2dTEDWlp3NfSQpxeT3FwMO8qkYb569fTardTPnUqGUFBpAYFoV++nCMjI/li6lSura3lodZWgoQYU5zzV8nJvK7kTPkSHF1LlmD3eHi+o4P5ERHE6PX8ePt2LkxM5NrUVIQQDDidtDscXFNbS4xOx78m+B1JBgOXJCUxKSSEsysrKQwO3kNrBG/ia5fDQbXNxtFRUQhQC1aunjaNOeHhvNDZicXl4oP+fj4fGGDnrFnE6vWkr1mDXamB9mxBAY+2tpJoMHBfTg4AP6qo4AuzmWSDgS+mTPEWRVQWaFtnzmSKYtK9NjWVBxWN7dKkJM6Ii+P6uroxpkgt3pyqdydNQi8EfS4XC5RF2hdmM1rgg8mTOc5vwfdUfr7aq/6IyEi+nDqVboeDzLVrsXk8JClJiD5kWRl/b2ujcXSUWzIyCFPmDN/iFLxBCrdnZqrPG3j9nRLGmIGPj47mhOhoXFJyYWIitzc2Uj86SrfDwTqLhWcLCojV6/l7Wxv/Kinh9J079xoafExUFC4pWTM0hG3Jkh+EQDFLKSP9tg9IKaOEEI8Da6WUryjvPwd8JKV8c4J9XgZcBkB+/oxL/vtfDBoNsXo9TilVTeCtkhK1N4S/3fHSpCQsLhcVw8PMDAvj1e5ujoiMZFFEBHohOCk2loygIH66c6daOr44OJhts2Zhdbu5vbGR9Uq5c/BOPOcmJPB8Z6dqH70qJQWPcqyLqqrYohzrjsxMVdU+LyGBiuFhFkZE0OFwcGN6uqoZXLF79xh/S67J5C1AFxrKC4WFvN7dzatdXbTY7ZQEB6sOxf8ok26dzcYRkZHc19yMdfFigpYvB7z+nrKKCjYpNvR0o5FfJicjpeSOxkbuaGri0dxcup1O7mtuZnJICJuGh7k1I4PSkBDmRUSo1WMBXB4PO0ZG1M5x8QYDy8xmni8ooGiCGmQ3p6czojjIL05K4vq6ujFmPfAWONxts9Fgs9HmcHC+cm79SQsK4vG8PF7t6uJXycksjowkfc0a2pSHOtto5IXCQoqCg5m6cSPtfg/7rlmzKAwJweZ282F/P+FaLZssFlKCgsg0GllcUcGJ0dE8npfHl2Yz3Q4HNypC7LaMDE6JjeWK3bvRazQcHx3Nvc3NPJmfv0fZDZ92uNxsZklFBWfExfGGX/Mrm9vNGz093NXUxOdTpqgVnv01DX9i9fq9tuqN1um4LzubyaGhDLhcdDkcPK6sWIuDg3lfEab/6enh+JgYrty9mySDYYxWDt4Ooa93d+/RO+OfxcWcGhuLQylF/1WURUZyU3q6qoU/k5/PsNvNb8ftN0Gvp8vpJEyrpSg4mGyTid8kJzM3PJwht5twRRMKX7lSjba6NjXVG3ar3NOeJUu4q6kJnRCcl5jICrOZc5QF1nuTJjHgcrF1eJhH2toI02oZULSY36Wl8VdFYD3Q0sJzHR3smDWLX9bUkB4URLXVSrXNxhZl0vaZ446MjOSq1FSeam/no/5+poWGEqPX81BODr/avVudF06NjeU/iu/vpJgY3lOExFUpKTza1jbmPX8+Ki3l8bY2PujvVysfn+5XxcCfFIOBM+PjeaytjRmhoUTr9Xw0rjHeRDTNnUuGyfSDFihPAGvGCZQPpZRv7Wv/GVOmyI0bNhBnMNA8OsoTioZybHQ0R0ZFUTkyQokysd2RmclLnZ3EKjkkeyPTaKRh7lzVfu6zv5+fkKD6O25KT+duPwejT+WdFx4+xgT0TH4+k0JC1Dj2CK2Wlnnz+KCvj3ubmykIDqZhdJQXCwspDglhx/Awf21pIUij2cMefE1qKg/l5qIrLx+TU6DBG7e+fWSEouBgfqdEwNyZmUlaUBBTQkO5u7l5j5W9f1n90g0bqFbCMpvtdj4fGBjTQe6N4mLOrKzkzZISNHidtWVRUWopdvCW/+9dsIAwnY5hl4upGzfyh/R0bB4PV9XW8ru0NMrNZp7Iy2O2UqdpxO0mNSiI0+LiVJu5j2idjtszM1Wzko9wrZYht5vfpaVRZbXyfl8fq6dNw+7xcISfhnd3VpaaITw9NFRduZ8dH88/CgsRQuyR5Gp1u7li925Oi4sjPSiIyX7tZx/NzeXM+HgSDAYuqarik/5+zC4XIx4PN6Wnc1d2Nmank7VDQzzW1kacXs9vUlLUDqJNc+eOyRBfsmULywcHOTIykuKQEDVf6LWiIj7q71edwOPRAo4lS7C43ZSsX68K0WcLCmhVyuY/mpu7x3nz4ZvE/ZkVFsYJ0dFkmUxMDglh+eAgx0ZFea+l282OkRGOjYpSo6XCtVp+EhtLudnMNbW1WNxuPp48ma3DwxwRGUmcXo9LSs6srFSr+PpomjuXFzo7aR4dVRcKvQsW8EFfHxdUVXFLRgbnxMdTvGED/ywu5pWuLt7v6+PqlBRi9Xpua2zk+rQ07srOJnfdOhpHR71dG83mMYEVc8PDmREayhPt7erzumH6dPpcLmqsVs6Mj2f6xo2EabVq6SHPkiWkrlnDtWlpHB0VRcPoKA6PR9VyZ4aFjWmVMC88nL9kZzMlNJQTt28f02TsiylTVB/Wv4qLebmzk2yTiWyjkZ/GxZHp17fGl1cC3grL+cHBJCrmuJNiYnimoEDNJXoiL48Bl4sIrRaTVssTbW18NjAwxsR3R2YmXw4MEKTR8KlSRNI/iOTLKVM4Mjr6oAqUw5XY2CWESPIzefmM4q2Af3GsVGDi5uN+xOn1vNbdTaLBwJSQEDVDdVFEBJdXV1MUEkKEVsu0sDAuT07mNkVd9CffZEIjhKrGN46OYnO7VRNVjslEpdWqZnQD3N3czHkJCUwLDWW3zcYHfX38KCqKEI2GkuBgWu12Bt1u7mlupm7uXO7IzOS2xkYG3W6CNBrOTkjgnF272Kqo4r56XW/29IzJOP67UnQwaPlyHm5tZaPFgk4ItfTInZmZzA0P562eHh7NzaXP5WLt0BAVw8OcvGMHH5aWMlUIrkxJ4Y3u7jGq/0OtrbyxZQvpQUGqdjfq8bBeqZnlQ4s3NHHbzJnUj46qNdN+nZysJtmBtxz7lbt3oxWCcrOZe7OzyTQaOWrrVt4vLaXAZOL+lhYebGnhnyUlfNDXx4DLxamxsSyKiOCdSZN4t7fXa3MvKuL0uDhqbTbmK9V8I3Q6/tPby5LISN7r6+P1ri51Mp3v14HSqNGQERSkFnUEb9OuL6dOJXLlSv7p10MDvFE3k5SGV3kmE+/39fFCZ+eY2m4AV6amckNdHS12Ow/m5HBjejpnV1ayaXiY9RYLJ2zbxkf9/YRptViU1bQvJ6pi5kzSjUbVH3F7ZqZ6fzWOjnJ0VBS2RYu4rbGRrHXrcC1Z4rWHd3ZyelwcrxUVYfV46HI4MLtcCLz5UW1+mpcGVB+Ary7Wx4rpJlMp0tjucNDldPLX7Gxi9HqOiY5WNU5/Lf4nMTHU2mz8JCaGDoeD86uqWDltmhoWPbBgAXqNhmsVYQJeoT0zLIwLq6p4v6+P/5SU8GhuLs91dqoBIQ/k5JBuNFIWGcn5u3ZxWmwsFyYmcmtDg1qB+ryEBPXz00NDWTowwKKICL40mzkiMhIPcF9LCy2KL6RxdJRVg4OqqcvH43l5akLy3c3NvFlSwkXV1eSaTLytmMJ9muu58fFohECzbBkRWi3XpaVx3q5d/Lu7m3eUz84ND+fp/HyWVFQw4HKRbDCwZmiIRRUVfDllilpV4pLERJ4tLKTaauUnMTHcmJHBzfX1XJSUxM8VzclfyBYpQSZ/zsrijw0NLK6oUNMRwJt4/HBrK1oh+Ftenmp1OXPnTv7d06OmOfhaYz+am8slSUlcmJhIldXKoogIep1OHmlr466sLNxSTljy/ptyuDSUvwJ9fk75aCnl74UQJcBr/L9T/gsgb3+c8r2PPUaT3c4NaWlclpzMTfX1vNPbi11KrkxJ4dG8PM7auZNP+vvVQpBPKk7hnyUkEKIkWJVu2MAOZcLtXbCAo7duHXPhz09I4JrUVEwajWrOGVm0iGCtlg67HaeUqtnCh2+1NXPTJqwej2p/bbPb2aQ04PJpRACJq1apq0ffjebTDvz5V3GxegNH6XSqQ/PoqCg+Gxgg0WCg0+HghOhoPpg8mfuamxF47dxml4sup1PNiQCvml0YHMxLXV3qpARgXriQM3fu5Iy4OC5NTmaLxaIKDZ+m56sL9uesLG5taMDDWHU/z2TimtRULG43D7e20ulwEKPTUaKshMezc9YsMo1GPhsY4LP+fsrNZuINBh7JzeXlri7ub2khUqcb44D12biPiIzk/IQEXuvupt/p5PLkZH5RU8MFCQlqjahep5M0pUvieLrnz1cdtT6ts3zqVD7q66PL6VQnupNiYojT6zk2OpqVg4PeAn1+JXL8+aC0lOOio9EIwcMtLfy2ro6HcnJU88+ssDDenTSJxKAgsteupWF0lHXTpxOs0dBst5NsMKi9Lx5ra+Oa2lr1+oI3WKDcbPZmdvf2qk2yzoqL45mCAl5Tsv/zTSaO3baNn8bGcn16OhUWCw+3tnJiTAyfDQxQGBysVvv1J8do5JTYWM6Mj2eOom2NJ99kYlC5r8BrkgzSaOhzOnksL49zExJwKzXAEg0GnunoYPPwMCunTWNySAhzNm9ml9WqFgJ9r7eX9/v6eCIvD51Gw4yNG9k8PEySwcC7kyaxcnCQRIOBs5UEYp8wfDAnh2vr6vh8yhTVt3fCtm3qQipWrydEo6EwOFj1zywzmzleKS475HbzXEEB/U4n5+zaRZbRyNTQUIqCg1WLxNzwcNZMn06vw0Gccs3vzc7m8uRkCtevV5Non2lvZ5PFwhP5+WrOztFRUVycmMg5u3aRbDBwfmKiaqIXwOvFxTzR1qZqOtelpqpRfOA1uVrcbhpHR7G43Xw2MMBVKSlssljodjqpmTOHX1RXqwmovjQGk0aDzeNRQ5UvSEjgpeLi75fJSwjxOlAGxAJdwG3AO8AbQDrQDJwhpexXPn8zcDHgAq6RUn70VceYOXOmTHrhBd7v6+O61FTuz80lePlyPFJil5K/5+VxeUrKmNXXQzk5VFqtPNPRgQb4mRJCe1N9PdE6HT+OiSEvOJhTduxQ6xkdGRnJl2YzOUYjVbNnc2tj45iCc2fFxbFpeJib09MZdLu5praWOL2ejydP5vmODp5Qihu+V1qKQaNh2saNGITA7vFwS2YmpymrjpVmM4NuN212u+oE9KcoOJipoaGEabWsGxpi68gI3fPnc1ZlJUvNZtU5eHRUFMXBwbzQ2cngokXq718/fTq/qK5m68gIP09I4Ky4ODVXZ9jlImzlSvJNJs5LSOCWxka1Iut92dmkBgVxfHQ0UX6Vin2RWgCNc+eyenCQp9rb+VdJiaqy55tMqp/kr9nZROn1PN/RsYf9fjxGjQaTktD10LjVZ4HJxD3Z2XzQ18e5CQnMCQ8nc+1atff79NBQHsrNpTA4mDqbjQVKBWFAvU+sbjcbLRZCtVqWms2kBwUxW9nP7LAw3iop4UuzmV1Wq/rQv1JUxIzQUC6vqcGD10H7enc3O2bNUs+Dj5XTprEgIoKP+/qI0OnUKr0+3u7p4dLqakwaDaunTyfdaOT93l7aHA41/wi85YW6nU5CtVrVj7AoIgKDELxeXMwbPT3c0tDAP4qK8EjJSbGx2JUaWY2joxQGB/N2SQnViib984QETt+5Uz1XPtrnzSMpKIh/d3ePWcDkmkzcnJ7O+YmJtNntahi1j8khITikHOOoPysujitSUlikmDE758/ns/5+zvNbxPjQC8HCiAgWR0SoHRltbjeDLhexej0bLRbVZAzeSfnTcaVUnmhrY8Tt5sLERHbbbKom1Tl/vhqYcEdTk7pIA28awT1KFV/f8zGyaBE31NfjVipYzI+I4K6mJn6flqaO/bjoaK5MSeG5jg7+09uLSaPhrPh4fpmUxNW1tao53T+f6CcxMfxXmUtkWRl/rK/HpNWqZugkg4FrUlP5vZKf5Ivgejwvb488JX/i9HquTk1V9zM+sm1vjCxaRIhO9/0yeUkpz9nLpqP28vm7gLsO9DhNiinqNiXT97G8PHKMRnqdTmwej3qz/EVJclo7NKT6Jzx4b+i/t7Xx15YWjo2KYtngIO+VlvJeaSnHbN3KpJAQdUKrGx2l2W7ngsREVaAcHRXFeouFhtFRqm02ZiiryR6nk4bRUa5NS+OJ9nY+HRggdtUqhhYt4tKkJO5pamJOeDi3NjRwjGKv9gCvdnWN6ZTo47KkJJ4qKCBixYoxHRZHlYz9pWazGmnS53RyfEwMlyvVgn0RZbP9Vphxer0qTJJXr1YFUa7JpNYJ2zI8TKhWi14Izt21ix2zZvFuXx+5JhMLIiLG+Hle6uzk1sxMzklIoN1upyg4mD9lZdE8Osq9zc38Li2Nf/X0cEdmJrkmE6uHhvhpbCyxej0nxcSMCYH1/a7bMjJUh7iPIKW0TKXVypqhIZ7r7GTD9OneVqdKyPVmpebaUVu3EqPUmvJFlP05Kwub202wVqsWUvQvSy7LyrAohTEv8JsAnysoUKstxxsM7BgZ4dmODtodDm6or0eWldFpt1NltXJDfT1PtrejF4Ljt2/nxOhotYaZj+vq6jg+Oppup5PnOzq4PSuLH8fG4pGSGJ1OzWnodjrRgipMtMDyadMYcDp5sLVVDYMecrnYMTLCyTt28JvkZNVEW2W1jgmQ2G2zjRG8m4eHuSEtjZ0jI6wcHOSoqCieLyhgQUSEqgluslgY9XhwSMnvld5DJ8fEsH1khBlhYaqWumFoiESDgdLQUKSUzAsP58qUFF5TCntGaLWsmzGDLwYGeKKtjUqlnfQzBQVjKkh/3N/PqTt3UjFzplpiZffs2Tzf2clfmpv5Q10d9+bkkL5mDS12O5tmzGB6WBhrBgc5oqJC9f9E6nQEaTRqr5a/5uQQJAQtdjsnxMQQu3IlP/brg6LBW6U83mDg9aIiYpVkR58wyTOZ+Li/X002PTMujkuSkpgeGsrPdu0a45v9UVSUKlDOio8nTOlseXdTExclJZHrl4dybkICv09P58uBAVKVgJOXu7pUYfJ2SYm3fH9tLZckJWHUaHBLSahWO6ZZnU+Y/DIpiUqrlZNiYripoYErUlLQCcH9LS28UFCgZvgfTH4QxSHBGzY47HYTptNRbbXym5oansjPp91up9JqVXsfXJOaypmVlXtkXf8oKopMo5HfpaWxY2SEemU1/XpXF3aPRy3LfVFiIiUhIYRptdzX3MzpcXH8KTOTGL2eGZs2EaH0Ev9DeroaR39/Swtrpk9Xk/V89ua54eG0ORyqWcigXOB3e3t5vbubiuFhso1G7s7O5vS4OHTLlvF0RwfLBweZGRamdoB8Ii+PNKOR8xMTidDpVP/G5uFhjtu2jTeKiylUEvVmhYWxwWIhPSiIeeHhjPoJ2xOio+no7+eCxETVFptsMNDucFAaEsJH/f1UzZ6NR8oxpjJ/ioODuaepiVqbjU/6+/lDejolwcGcW1nJ3/PzOT0ujt/X1/NoaysvFxVxfVoatzc28sXAAH/Ly6Nt3jwea2vj3uZm6ubMoXD9em5saCBBr6csMhKnlPynt5dfp6TwUGvrmCCDuZs3q4EK/y4u5vbGRjUcMykoiPMSEjhNuSamFSsI1WqxLFrE6Tt2YFIaoE0NDaUsKopRt5vwlSv3aFx0sRKx5/B4eCIvj1GPh6tra3m7t5cdIyPkr1vHbpuNUiVAYr3FoiZ93qQUznyvt5eTd+zg7qwsr+lPr8eo1LfyoRGC0+PjuWZoiIdbWzkiMpLPpkzB6fHQYrdjUUoF/be3d0xOjU4I1SzzgTLhVc2eTeH69aQFBZEeFMSqoSHKzWaeyc/HqNFwWlwcJuV3+mvxRcHBrBsa4lcpKawbGuKXNTW0zpvHy52d/KWlhe7589EJwWaLhRCtVq1Pl2k08lBLCyft2MEliYk8kpvLrPBw6mw2bm9s5In8fAqCg3FJyT3NzbxSVMQ58fGcvnMnu202tiul6BMMBgTe6gBHRkVRGBzME+3tLDebceP1oTikZGFEhLdg6cAAS81mFkZEUBgcrDbjAlg/NMTtjY2UT53qLYGj0fDF1KmAt3dIlF7PGXFx/Lunh88GBni9uJiSDRv4wmzmrPh44vV6joqM5NmCAhxSsmjLFrWI4xs9PbzR08ObJSU4lHnizLg4/lVSwmaLhTPi4rg7K4tf1NRwTnw8KwYH+XJgYEwE5/kJCfy7u5u/5uSoTvw3S0owCKHmoVQMD3NKXJwaUg9w8vbtY6LEfEmXX0yZovYp+m9vL7dlZPDHzEzsHg8DTueYpnwHkx+MQLF5POSsW8flyclcqXQqu3r3bkY8HgxCMLhwITfU1xO+ciXnJSTwo6goTlW6mV3l1yv+oqoqamw2IpQH7M9NTVRarfyjqIhMpZLp6Yoq77NrPldQQLhOR/O8eey2Wslfv54so5H1ykphcUQEO0dG1FW2r/d5nF7P0ilTOGLrVhYotXoAdYWzy2rl38XFnFFZyUelpWjwalNVioBsmDOHZzo6WD04qNbb+klsLJcnJ/Nke7sayfNEWxtnxMdza0MDJ8bE8GxBARE6Hc+0t3NPc7Nqi/9RVBQxej27Rka4q7mZbTNnUqokhhavX48H72Rhdrk4OiqKIyMjx2gOLxcWcnp8vDopXZyYyJVKlNGC8HB6nU7+pNSumhIaSrzBQLzBwNMFBQi85b7f6O7m0ylTOC8hgWyTiQ9LS9FrNByzdSsFwcGqlviQ0lDtA7/wyMeU0hhXp6Rweny86gswCEHF8DAPt7ayYnBQLTDpa2W7YnCQCJ2OV7q6ODMujrKoKDUoIjkoiCGrlaVTprDUbOb0HTtYZ7GgF4LLamrQCcEJ0dFkGo3e5mZKOO2gy8U/Cgv5RU0NTo+H8qlT1WKevrDfeCX5st3hYNTjGVP9GeD8Xbs4OiqKVdOmEaTR4JISrRBUW62ctGMH58THc0VKCkdGRnJBYiKfDQyo4apVs2dzfV0dIUoo/T8KCykKCaEkOJhzdu1iQXg4lyYnU2+zcd6uXSQHBeGSkleKiri3uZkdIyPsslrZZbXy07g4nu3o4NfJySTo9VyclESIVqv6mcAbBjvgdHJeVRV/SE9X/XnPdXZSbjZzV3Y2Z8XH07dgAWdVVhKi0TBV6bFSoATEZBiNY3rSz4+IwKOUBro5I0P1VxyjNAS7t6mJ6WFhHBMdzWvFxep995+SErYr4+9zOjlayd+oHx2lrKKCeeHhbLBY+FFFBQ/l5tKidFwdcDrZMjzMgMtFhtHISTExnF1ZSaxez7MdHTyal0e/y8WMTZuYHBJC14IFtNntpK5Zw1lxcSyMiOCkmBgy1q5VJ/ltw8PohSA3OJjNFgvlZjO/TEqibf58DMuWkRoURMu8ebzX26veH3/KzGSdxaL2kdkyYwbTNm3iDiUsOlqvJ8lg4KdxcTyam8t7fX2cGhtL/egoDimRZWVcX1fHubt20TJ3rhra3ON08kBODpNDQ7lq924e3Uub9G/CD0agfDEwQI/TSZ/TSaSSnBWr1zOiqOjPdnTwfGcnox4PMXo9TxcUcN6uXbzS1cXOkRGeUmo7nRQTQ47JpFbYnRIayrTQUNKNRnxr1ZbRUfRC8MeMDP7c1MQ5lZV8oJgyYvR6niso8PaesNvJM5k4Iy5Ora57XHQ0HymfvbCqCqdyA/jzWF4ebXY700ND1QiU4/3qQF2UmMiJMTE80NrKjpERys1mni4oIFjJpXhJcRr7Wsj6YtLvaW4mTKtlQXg4W4eH+U1KCj+OiVHDhh9rbWXV4CD/GB0lUqcjTYn8uaiqSh3HI62t/D49XbVf/0FZdYvyci6truY8ZUW6bmiIWzMz1ZBQh5RqXsXT+fljmnZFK/6YEK2WrSMjYxzbvlpnzxQUjDE9ARSFhPCMsmIM02oRwO/q6nikrY1T4+L4d0kJqwYHOSEmhmG3m4uqqtg+MsJ749oNdCn9uq1ut9qwaFFEBE/m53NcdDSbLBZe6+5m7dAQ2xV/VZzBwBEVFd4CkTYba4eGMGq1atLa+6WllIaG8nPFbPlGdzdbhoeZHR6utjsGuCQpidWDg1ypLH78+UdXl5pd/uOYGN7v60MvhNr/B7yT7hdTp/JUezvv9/XxWlERx0RHk2008s6kSWSvXUvsqlXkKfWh3lTKwRwVFcX0jRv5VXLymNyGv+Xnc25CAjVWKwVKRYljo6P5W1sbpSEh6DQaMoxG7h5XCWBBRAR3KOV6csa12q0bHeXsykqWRESwbWSE//T2kh8czClxcfwqOZm1Q0PMDA8f0yxuImINBnKMRrWV7x/8moGBtyVEq91OWWQk66dPV027sqyM+RERaoSaXggsbjdfmM10OhyUKt//QGnDPC88nBCtlhvS0ykMDvZqYcPDDLlcqh8nw2jki4EB9bm+OCmJBIOBz/v7SVIWaKK8nL9mZ/NadzevdXer98azHR08WVDA7UpIP3hba/taNvxRMdvf1tDAnU1NYyoq/729nXaHw1t9Iy6ODKNRDULwZ8TtptPhYPngoGpdebStjftzcni1q4v1FktAoOyLaaGhvFRYyAlKJM3zBQXkBwez22rloupqdaVcN2cOdo+H39fVqaaIpzs6eKqggI1DQzzY2kqcXs8/u7tZNm0arymlJ+D/+1+vs1gYcLm4MiWFPyurBh93NzV5QyyViWS3kph3TWoqD7W2qnZXgBNjYni4tZWm0VEy/B7CepuNV7q6OLKoCI0QhCuT5aDbzeDChYTrdFxSVbVHoh/AtbW16g3U4XBwe2am2oXPsnAhphUr1MzzeeHhROp0fKgIuLd7ezkiMpLHlPyLSL1+jAkE8BaUlJJHlXyJ2UqPDv/YfJ/GV2O1MjU0lPtzcthksXirQqel8UxHBwaNZg8f0Uxlheaf7PWXlhbuy8lRe8rPDw9nvcXC7LAw7m9pIS0oiLPj43m6vZ0TY2K4LzubK2tridbpmBQayif9/czbvJlBl4vH/Yr7WVwuJBDu14rZv0JzUUgIcXo9b/T0qFn1ekXT9X0nSAisbjcf9fWx02rlVzU1/Le0FH+sbjfbhoc5q7KSU2NjecuvKKmP+Uoy7Xu9veqk4rteszZvVvNs4P+byZk0Gl4rLqbBZuPJ9nY1VN4hJSNuN3U2G1+YzWrhwd02G1M2bkSAGpiwZXiYZWYz5oULOXXHDqaEhrJ2cJANFgtXpqYyuHChWmH4nuxsbyi5241Rq+XjyZOpttk4WSnHUxISwrTQUKweD1NCQ7HHxtLpcGD3ePhVTQ2/SE7mzqYm/t7ezpP5+fxCEajvKv17rvCzEuyLWiUS8v3eXt7s6eG5wkJCV6xg1OOhbd48koOC+LS/n2O3bVNbJ6vnU4kIPF9Z9GSbTGOu//SwMO7LziZar1e7WP4mJYUMoxGdEJxVWckFCQl8MjDAe3196j16U3o6s5V797G2tjFRof4tfU+PiyPdaOQvShDAaXFxFK5fz/lVVUwJCVFL4n/e30+8wcAdWVmsHhpSyzy9XlTE4shILq2uVs+fEEKt5u1DlJfzt7w8HszJIc9k8lbq2LmTs+Li0Gs0rJw2Te2kerD5wQiUVMWHAN5uZRdXV3N3VhYGjYYZoaG4pGRWeDhxej0PtbbyV78SIT6HXJrRyB8zMhh2u9U+BE+1t/NSZyerp0/nF8nJzAkPZ7nZTIhGg8Trv1jsF7ljl5IBl4uyyEg1Y/5vbW18MmUKH5aWqslTACXK6sc27ob40mzmP729nF9VxatFRTTMnatm997Z2MhjbW08U1BAjc3GysFBXi0qUifDP6Sns1zRZpaazSytqOC5ggIuNpkwarUcHx3NR/395BiNXJCYiEmjUYXG7ZmZJCgdDDsdDpwejxqd1TBnDlnr1nFkZCQuKbmmtlYtrTIpJIRPJk9Wm06Bty7U4i1buDQpicLgYI7eupW7s7K4MCmJi6qrKQ4J2UOgzAkLo2f+fMJ0OtxS0qWUbgdYFBnJv4qLmRkWhktK3u7tZfXQEMXBwdTabNzY0MAXZrNabmJSaCjv9vaqSW63ZGRweXIyP09I4NOBAcJXrlR9KBMx6nYTt3o1c/wc9b4+Ez5eLS7GLSV3Njay02qleYK2qqfu2KF25POVVX+xo4OLqqvV8FjwJqX6Vx8ACNXpOCsujjuampgaGsqWmTNxS0nj6CjDbjcjbjeVVqsqTHzn/dxdu7gtI0MNj+9fsIDoVatIMhgoUyLSPurvp3zqVLKMRiJ0OtWfcNL27byv1CeL0Go5NS6OG9PT+WxggGtqazk5NhajVsvciAgyjUaG3G6WDQ5i0mqZoywuRtxuVg8Okh8czOcDAzyUm0tpaChxSvXh2WFhaISgZXSUf3R28vBXaCY+PFJyxe7dnBgTw3qLhZe6uigJCeH46Gje7u0lRHkGso1Gbs3I4NKkJNL8FmrHREfjWrKEk7dv58n2djbMmDFm/+FaLeVmM3PCw5kbHs6SigruysripowMXiwsZMDl4rS4OLU7qi8I4e7mZuaEh3NybKy3f0xfH8dHR/Ph5MmsMJs5Nz6eB3NzOaeykhNjYlR/lX9ofpHio3wY1AXfWyUlnBIby/HR0VxXV8dum42zExLUBaAP/7yyy5KSeLqjgymhoWrjtFWDg1ydkqJqPnqNBj2Hhh+MQLG53QSvWMEdmZlcl5bGLRkZ/L29Xc0zmKX0LVg5OMhN6eneRls2Gx0OB79VbOkJBgOPtbXxu7Q0tfPg/S0tYxKA7mxsJD84GKNyU5wSGzumk1+sXs/jbW1ogCcLCni6o4PC4GC2Dw/zUlfXmH4ThcHBfFhaSuG4xkc+AfPvnh4uTkzk+O3beaukxGsDVXwI/+np4Z/FxQy5XBT5ff/4mBi1lpEvCODp9nYuVlY0H06ezG6rlSAlPh+8/cptHg/ROp3X9tzYyKNtbTTPnUv1nDl0ORxUjoywS8kN0Ws0bJs5k1Ctlux16wjTaul1OseYYoQQnBYXx13NzdzV3Kz6qy7ctYulStHO8eg0GrVlMECW3+rOpNEwPTSUnHXriNbpuDIlhVeLipgVHk6ETsfa6dPxSMnnAwNcq6x2r/Ur2ninEorqL/RuSPPPoR3LMsUXcXpcHKunT1f7fPsTo2hNOSaTWvDwpvp67mluZvvMmUxSalJtHRmhJDhY7V3hSxiNVb7f5XDQareTNK7bIcDtWVmcGheHw+PB4nKhE4IIrZbcdevIN5momj2bNYqP5d7mZnVyOTIqiskhIZwdH8+I282bJSVkKvkUd2RmEqnTjQkC8PF6UREVw8Msqqhg0O3mhc5Ofp2czFs9PVykBH0AamdNHza3mxqlxL8vZ8oXlHJ1SgoP5+VxZFQUrfPnj7mmx8fE7NFBc28IvCYfgTc5MkSrZUlkJNcrYbY+coODuUO53v5oFG1lUUQEbyjtlP0bgo16POy22Rh2uzEIQVlkJDc3NPCT2FjubW7mT8o+fVYJWVZGu93OdXV16gL0L9nZvNrVxTrFf9pstzPgchGvhPJfV1fHJouFV4uLebunh2SDgbb583m/t5cfKT60P2dlsX14WI1WfF2pCK4ujvzmEPBGw80KC+O2zEyOiIzkqYIC7mpqYsGWLYwuXuxtcayY9x73a6p3KPjBCJTtyoPUMDpKiNIBLkKnU+sRTQsN5bmODuL1eo6PiWFWeDj3t7TwRk8P6UYjp8XFIaXkosREtYc0eOsRzfJbpeo1GobdbrUBVMqaNZyu2OvBW4wy12RCr9yozxUUUBISwqtdXfyzu5spISGq7fd3dXVUWa3sUDrq+fBFiM0OD1dXvb6b66XCQhINBuYoE+n4Ve0mi0XNFh50uzk7Pp7N40rMVAwPI0EVKNbFiwG4sb6e3TabWjYmTpnwHmlt5Z7mZipmzlQFaalyjny+iNDlyxnxeMb4Jn6VnKyGM64eGlKj2X4cE6O2LN0bR1RUUG42qy2Y3+ntVc9Bv8vFqqEhlkRGqo2h5oSH02m3s0DpOwHwvtJ/4yS/hktZ69ah8Rv33igNCeH5ggJOiImhaXSUO5qaODkmhql+94KP+tFRNTx3fKJkqtFIqtHIs+3tzAgL81ZrSEnhcr+mZVq8TvzxFZPBW1/qd3V1atkQ/1pepSEhCCGYGxHBCrOZbSMjXJSYyCeTJzM9NJRQnY6zN22icXSUMK2W8qlTEXibpG0bHmbBli08U1DAEuV8gVcrWujr4NjRwTKzmZnh4eSYTEwJDVXL1JwzLsm2IDhYLXnkaziWbzLx6eTJzB3X79xHrMHAKbGx7LJa1eq5+0IIwYqpUylUFnQ3jBMk+0uIEok5nma7nVqbjVCtFiEEt2ZkMD88HKfHw3KzmUHFZLY4IoJuhwOb201yUBCv+5nFhRC8V1rKzE2bEOXlPJWfz4f9/Yjyck6KiWGXn/nyXsW8Bt6Wzr7umL7F7OyWFiJ0ujHdXd/s6dlDoLxUWMipO3diEEK1VPg60a4fGlIXAU+0twcEyv6SazLxelERi/xuzEuTkrB7PLzW1cXCiAie7uhQJ8Jeh0OtDpuvrISFEDw4Tv32NWLyURIczC2NjTygZNgCaktO8JpaJvkJpAGXi16nk2tSU5kSGqqG8oHX4b98cJBBl0u96OBdYeUqN9eI202sXs/v09K8vSqU5EeAD/v6OFEpc+773Vf6JUCdEB1NcUiIGsoI/2/S0AnBmUq0E3hNJTtHRjBqNHxUWkqIVotRq1XNYS8WFjJ5nCblT5bJpFYY8OGQkllhYfwtL4/7W1pICgpibng4R4yLZpoIX0FOoUxgPlv4CdHRXJKUhFUpz/9cQYGqfUXqdLxeXKwKwsKQkD20P/AmS/oeuOi9CLZEg4FjoqMJ1Wq5raGBd3p7WWE2q850fzYMDbHOYuH8Xbv4R1GR2mPGh8vj4Rc1NWMae/kTazBgdrmoslo5edw2X7azLxTYJ0AjtNoxTeKCNBo6lHBiq1JJOlSnU30gFrebGZs24VmyBICdIyPsttl4sbNzjEDxIaXk3IQE9fdenZLCeosFp8eDXqNh6dSp3iZWig8l12Ti6Kgo+l0uJoeG4lmyBMn/awV749WuLnaMjIwJ0tgXPsHzaX8/f29v58XCQrXy91ctEnwcFRXFrLCwPdoV55tMPJSTQ7ay0NIJwTnx8ZSEhPB4Xp56nkY8Hj4ZGCB4xQp1weNPlxLAIpR/Pk6NjWVqaKiaK1cWGcm0TZu4oKqKuUoIv++3Rep0XOunQVfMnEmnw8HCcYmxABuUBWO7w8F1tbU82NrK8wUFPJGXR57JxB8zMtg+MqIutA4lPxiBEq3XqyUYfLilJEavpygkhCMiI7kzM3OM8ABvrH3pBOYXH39pbubDvj419vvEmBjiDQa0QiDwFn6cMcGq1cfNDQ2cGRfHCTExnDNufNkmE1E6HeOrFbg8HvTLl/OTmBjeKClh+8yZROn1BGk0tNvtzN+8mb/m5Kh9Qfxrbt2Qnq7moSQYDFxTW8vMsDCuVsxAvvIk1/g5QX1Cw2fLjjcYVMftsqlTGXG7Od4v8cuH0+PBsHw5iyIi+HTy5D2cg6fs2MHP4uOZGR7OP/0q7O4Po4sXY/XbX1lkJO9MmsTMsDBSgoL4QFnlhfg50lcNDfGjrVtVAftCRwd3Nzezdvp01Tw1smgRqwcHiVm1imCNhhFFOxvPgMtF6po13JqRwa2ZmbQ7HFzlp1X4c1x0tBqoMRE6jYYn8/PVttO3NzRwR1MTn06ezNFKNOECxScxnl8kJfHFwAAXJiZyRnw8bilptdsJGjeJxer1XJiYSL/LxeU1NfyruJgzjUa2KK0MglesIE6vV+/70+LiWOMXMTUeX1+Uc+Pj+UtODh/393NjQwPnJSSgx7sY8gUQzPeb5Hx3lVCej31hdjpZajarQSMHwucDA7zT2+uNWJo+Xe15sz/8uamJjRYLNXPmjHk/1WjkGr9J/KzKSi5LSmJSaCiX+gm8E6KjCc7P9wqMCQTmidu3szAighXTpvFpfz8XJybyRF4eJ+/YwcKICFXLu8GvmnSSUhMMUBt5vVxYiN3j4dLkZO/53svv8S3k1g4NcW92NvEGAxckJqrCPDEoiN3jfushQ0r5vf83Y8YMOeBwSJYulXc1NkofP6+slCxdKpNWrZJ9DocczxtdXfKh5mbpcLv32OYjbfVqydKl6utzd+6Ul1dXq6/rrdYJ9+3j0ZYWucpsllstFnni1q1yu8Uy5rubhob2+I7b45EsXSpZulQuHxiQLF0qP+vrk1JK+X5vr2TpUnnGjh2y226XNSMje3z/xro6ydKl8oX2dsnSpXLK+vV7HZ+UUr7V3S3/1dWlvi5at27Mb94Xf25slNv8ftP4cfynu1t9vXxgQJ64datsHR3dr3374/J45NL+fsnSpfK1zk7ZbbfLN7q6ZJfdrn5m7eCgZOlS+Y+ODimllImrVkmWLpXt445XYbFI7bh7ZTxbLRbJ0qXyhtraAxrn9bW1kqVLZcVezomUUnbb7fK3u3fv877z4fJ4pMfj2e/jj7hc8qqaGjnkdEoppfR4PNLqcsn/9vRMeK/tDd+9w9KlssFqlSdv2yZP2rZNHcs7PT3ypG3bpEU5jpRSPtzSIlm6dL+vr9XlkpdVVcnP+/v3e1w+eux2+VBzs6ya4P7/Ku5saPjKZ0JKKR9obpZNNtse7/+mulrGrFix1+8lrVolU1ev3uP9BZs2SZYulb9T7qmQZctk3MqVUkrvc/1KZ6eUUsp7Ghvlr6qr1fMvpZTDLpdk6VJ5e0PDHvvNXbtWTlq/Xnb4nfcnWlvVayellK90dsoramr2+C6wUR7EufgHo6H4iuRt9XOeTlLMHa8VFU1o2ni1q4v/9vWRaTSOMSX5c2psrJoRC96sWn8TUva6dWNa6Y7nSkUTuK2hgQ/6+5kVHq6axO5ubuaDvj7a/RyV4DUTDC9ahJT/XxHUV2ZlcUQEq6ZNoyg4mCi9fg/H6iaLRS0HszAigh/HxND+Fau3U8f99t+npe2RE7E3bt7H6vLHMTHc0tBASUgI+YqN/YP+fpabzXtoa+M5qqKCL81m1YzxaX8/JyjRa7U2G+ckJHCGn8kOvKu8IyIjSVb8SmumTaPL6VSd4T6mhIbi+grzSJbRyD8KCyc0MeyLXyYn0263U7wPR3OcwbCHaXVv/L6ujqc7OsZEo4ny8jH5TP4Ea7U84pdfYFe0kxyjUQ25BW/C3bHbtvFSYSHHKFqSPxcqpT0+7u8n02Qiy2gkOShIXZFfWl1Nr9PJsNtNqGKu9XVXdO7nvWPSatX8rwMl1mAYo00cCHoh1BI2++Lavex/amgoVVYrLo9nwjbSH5SWThiWm6rch5cqZsSHcnNVs9un/f2qP9TnY50eGqpWz/D5b97q6VFNZj7+VVzMjE2b+GxggPOUyElfBFrj6CiZJpNa4fixQ5B74s8PRqCkG428VVIyxvz0y6Qk5oSFjYnt92F1u9VCbZP24Rt4eNwFiNLpeKytjecKCwFvJ7XjJnggx3NlSgqzwsLGOCijdTrVJj4enyknVKsl2WDAd9uG6XSqieHm+nrubm7GsnCh+lBfptSqapw7lwyjkVeKig445vxglWXwSDnG0fxQbi4/T0jYr0n65wkJY/xK00JDSTQYuDsrSw2/HU+CwcAzBQUkKkI202Qi0y9SzJ9Oux2NEMRPEOkE3vP88wlqqX0VOSYTr/g5ab8p7/f17TH5nRwTs8ciYG/4fE9140Katw0P0+lw8FZPz4QCBeDshATVjDz+OVg1bRrVVuuY8/efkhJ6nc4x/V4OFUsHBrinuZnnCwpIPcDjnRQbq+ZPfR26nE6+MJvZm9hstdvVe9CfY6KjmR4WRoGy2PD3G20dHlYrZ3/c14dJqx1jZkswGGiZO3dMUVYfvurX/lGWlyUlkW00qub8K1NSxvh6DxkHU905XP9mzJixhyonpVct3jU8POE2p9stw5Yvly+0t0+43cfNdXXyqC1b1Ncbh4ZUk8o35ZGWFjljw4YJt7F0qTxyyxZpd7tlo80mR1wuKaWUNSMjMnrFCvmf7m75UkeHjFmxQrr8TCJvdHXJvLVrZZui/l64a5f80wRq8rdB7tq18pdVVd/a8TYODUmWLpXv9vRIKaW8r6lpj/MjpdfkxdKl0rhs2bc2tq/LM21t8g91dd9oH063W46OM69ZXS65aWhon+baD3p75Rk7dqjms+8SV9bUSJYulS99jWfxl1VVMkExNX0daq1W+Vlf315NkSxdKqdO8FwfW1GhmrvGc8LWrXLmxo3q91m6VD7Z1iYfbWn5yvEcW1EhWbr0a90nHGST18EvN/kd4uaGBoo2bFDVRX90Gg0blcQm6z7U3xc6O/lCiTgCeLK9fUyv5/1l6/AwZVu2jAnhvSo1lY0z9145+kuzmZ0jI2SuXcunSrZskEZDv8uFQaPh/MREehcuHNNx8Iz4eGrmzFHNPq93dfGqXyOpb5OLEhM5yi+ia+3gIGVbtlA1LhrsYJFsMBAkhPrb7R4PfS7XHjd5iEZDsEbDbV/DGfxtc2lyslpe/esgpRwT5u7DpNUyPSxsr1Fu4H1+/j1Bf3nwlpIp27Jln8/OoeT6tDSeyMtTAx0OhN+np6ulkr4Oz3V0cML27RM65MFrep3ovOQHB6ulVsbzm5QU/qCEQd+Xnc1N6elcXlOz146b/ox4PMTodHsNGgF4ur2da/ZRAv9g8YMxeU2ET/WutdkmjMS6praWj5QyBydMEMUEcEFi4piqoMEaDXtvHLx3hpWM4v1VO0cXL0ZK6RUefpNkutG4z/DITRYL64eG+GVyMhohmBcRMaYk+LfJ9NBQ7mpuZr7Sg77P5WLZ4CDW/bSxHyhJQUGMKmGx4E0AGx+zD96w7L1Fd/0QiVq1Si1CeCDclpHBu319e3StBG/e17IJGqN9W6QZjWpB1AMley9m0P3lkqQkjtmHIPt4L8Kq3mZj+8jImGK0PnyhwqfFxan9UCbvI/rUn7dLSohbvZpXurr2SPL04eurNN50ebD5QQuUXyUnUxYZScFebqBbMzKI1+uZto8Ld/e41aHd42Gpn8ayvyyIiMC+eLHqZPsqfM66ZKU8yP5+78KqKnaMjHBmfDwxej3vTZrE4REn3uACgxBqUc0TY2IO6BwcSqqtVuL1+glt0j8kfKvo1gMIq/VxSlzcXoNV7szM5NaMDDWB93+JHJNJ7a0yEfU2mxqm7s8psbHY97K422W1qtrie0oC8Fnjgk72hi95+9h9+HL/mJFBwyFo+TueH7RA8TWfCZ5ghQUwNyJCrbS7v1ySlLTPC7cvDmQiFeXlzAwLY8OMGQf0vT+kp/NgS4uap3BtXR0ROh1/9UvE/La4traWkpAQEv3U/O+CMNlttar9QZoPcNX+fUSWle1h8vqmCCHQf0XS4v8qP925k1yTaY/cj3d6e9VIr/G4paRFsYT4msztb6KmU3oTiPel0fxpglI0h4IftED5c1MTj7a10Tl/Pgl7ieY5UP6hZPb+dD+jbL4JGy0Hblw7NyGBc/1CctcMDak1o75tfpmcvNcoqsNJsFZLiEaj9kP5odOjlDsP1f2gH/fvDAl6/R6N2cBrworby7N4fXq6Go3ZOS6N4Kt4JDd3wrI9h4PDdocJIQqAf/m9lQ3cCkQCvwB83sCbpJQffp1j+GoK9TqdB02gFAUHH5LWmeNxK6Urvilvl5SMKeH9bRKn1/NASwvHRUePCQE+3KQEBTH8P+RDiV+9mji9nm6l70uAQ8sXU6cykU1kudlMiFarFqP15+P+fnRCcGJMzAHPVbHfoUXbYXvKpZTVwFQAIYQWaAPeBi4CHpJS3v9Nj3F1aqq3YdZBjIv/1dd0BB4oX1UDaX/J3c9KrocCg0ZDpE532ARagP9n9BAFQgTYkxqrlVCtdo86cucnJmLYy7Ng93hw/wCek+/KsvEooE5K2bS3ULyvg1tKJIwJq/2+IMrLKQwOZte4SsTfJ+5tbiZGrx9TbyvAt8/+2uIDHBzO2LmTopAQto/ztV62jwKYfzvEVYC/LQ6/h9TL2cDrfq+vEEJsE0I8L4SYMD5PCHGZEGKjEGJjz15i5R9qbWX25s17lBT/vlBltR7uIXwjLk9O5vyvKLES4NDTbrdj9isfFODQ8s/i4v1uGvZDQxzs6I8DHoAQBqAdKJFSdgkhEoBevJ1K/wQkSSkv3tc+Zs6cKTdu3LjH+/U2Gw+1tvJwbu73Ukv5vvNkWxtPtrezeebMg2bCC3DgiPJywrVaBvfSnTLA/y5CiE1Syr1nVx8g3wUN5Xhgs5SyC0BK2SWldEspPcAzwNe2+WSbTDyWlxcQJocJk1ZLgsEQECbfAcK/Q0ERAX64fBfusnPwM3cJIZKklB3Ky58COw7LqAJ8Y17u7Nxr8csA3x4BH0qAb4vDKlCEEMHA0cAv/d7+ixBiKl6TV+O4bQG+R1yWnHzYyr4E+H8abTZCtNoJe8gHCHAwOawCRUppBWLGvXfeYRpOgINMnc3GO729/CzgmD+sZK1bh1GjwfY/lHsT4PDwXfChBPiBEqnT7bW6aoBvl+xvoUdJgADfBR9KgB8on/b3j6nUHODwEPChBPi2CAiUAIeMS5KS1NbFAQ4ftVYrIVrtHq2QAwQ42ARMXgEOGcvMZp5qbz/cw/ifJ2/9etLWrDncwwjwP0BAQwlwyMgPDt5r3+0A3y6zvkEP9QAB9peAQAlwyNhX7aIA3x4BH0qAb4sDNnkJIaKEEF+/IXOAAAECBPhBsl8CRQhRLoQIF0JEA1uBF4QQDx7aoQUIECBAgO8T+6uhREgph4BTgReklDOAHx26YQUIECBAgO8b+ytQdEKIJOBM4P1DOJ4AAQIECPA9ZX8Fyh3AJ0CtlHKDECIb2H3ohhUgQIAAAb5v7G+UV4eUUnXESynrAz6UAAECBAjgz/5qKI/t53sBAgQIEOB/lH1qKEKIecB8IE4Ica3fpnAg0Cg8QIAAAQKofJXJywCEKp8L83t/CDj9UA0qQIAAAQJ8/9inQJFSLgOWCSFelFI2fUtjChAgQIAA30P21ykfJIR4Gsj0/46U8shDMagAAQIECPD9Y38Fyr+BJ4FngUA98gABAgQIsAf7K1BcUsq/H+yDCyEaAQteIeWSUs5Uyrv8C6821AicKaUcONjHDhAgQIAAB5f9DRt+TwjxayFEkhAi2vfvII3hCCnlVCnlTOX1H4AvpJR5wBfK6wABAgQI8B1nfzWUC5T/r/d7TwLZB3c4APwEKFP+fgkoB244BMcJECBAgAAHkf0SKFLKrEN0fAl8KoSQwFNSyqeBBCllh3LcDiFE/ERfFEJcBlwGkJ6efoiGFyBAgAAB9pf9EihCiPMnel9K+fI3PP4CKWW7IjQ+E0JU7e8XFeHzNMDMmTPlNxxHgAABAgT4huyvyWuW399G4ChgM/CNBIqUsl35v1sI8TYwG+gSQiQp2kkS0P1NjhEgQIAAAb4d9tfkdaX/ayFEBPCPb3JgIUQIoJFSWpS/jwHuBN7F67O5V/n/v9/kOAECBAgQ4Nvh6/aUtwJ53/DYCcDbQgjfOF6TUn4shNgAvCGEuARoBs74hscJECBAgADfAvvrQ3kPrwMdvEUhi4A3vsmB/6+9+4+9q67vOP58rRXEXwFdN5FCWhRNCtv40RFBZ9wgGaKxwxiHmZPFbdVkJKJmG6z/sC37Q4ZKNjeWKixuMogBpoTxexKXJYIUrYWuoOXHRrFKh9vAzQCF9/44p36v9dtvv1/43J7v/d7nI7n5nvO599y+z5t+++Kce+7nVNWDwC/MMv443Sk1SdIEme8RysUjy7uBf6+qHWOoR5I0oeb1xcZ+ksj76GYcPgx4epxFSZImz7wCJcl7gK/RfZ7xHuDOJE5fL0n6kfme8toA/GJVPQaQZAVwG3D1uAqTJE2W+c7l9VN7wqT3+AK2lSRNgfkeodyU5Gbgyn7914EbxlOSJGkS7e+e8q+jm1vr95O8C3gzEOCrwBUHoD5J0oTY32mrS+juV0JVXVtVH62qj9AdnVwy3tIkSZNkf4Gyqqq27D1YVZvoboAlSRKw/0B58RzPHdKyEEnSZNtfoNyV5Hf3Huzn2bp7PCVJkibR/q7yOo9uAsffYCZA1gIHAWeNsS5J0oSZM1Cq6nvAqUl+GTiuH/6nqvry2CuTJE2U+d4P5Xbg9jHXIkmaYH7bXZLUhIEiSWrCQJEkNWGgSJKaGCxQkhyZ5PYk25JsTfLhfvzCJI8m2dw/zhyqRknS/M13tuFx2A18rKq+nuTlwN1Jbu2f+1RVXTzHtpKkRWawQKmqncDOfvnJJNuAI4aqR5L0wiyKz1CSrAJOAO7sh85NsiXJ5UkO28c265NsSrJp165dB6pUSdI+DB4oSV4GXAOcV1VPAJcCrwWOpzuC+cRs21XVxqpaW1VrV6xYcaDKlSTtw6CBkuRFdGFyRVVdC910L1X1bFU9B3wGOHnIGiVJ8zPkVV4BLgO2VdUnR8YPH3nZWcC9B7o2SdLCDXmV15uA3wTuSbK5H/sj4L1JjgcKeBj44BDFSZIWZsirvP6V7v70e7vhQNciSXrhBv9QXpK0NBgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmFm2gJDkjyf1Jtic5f+h6JElzW5SBkmQZ8FfA24A1wHuTrBm2KknSXBZloAAnA9ur6sGqehq4Clg3cE2SpDks1kA5AnhkZH1HP/YjSdYn2ZRk065duw5ocZKkn7RYAyWzjNWPrVRtrKq1VbV2xYoVB6gsSdK+LNZA2QEcObK+EvjOQLVIkuZhsQbKXcAxSVYnOQg4G7hu4JokSXNYPnQBs6mq3UnOBW4GlgGXV9XWgcuSJM1hUQYKQFXdANwwdB2SpPlZrKe8JEkTxkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDUxSKAk+fMk9yXZkuQfkxzaj69K8sMkm/vH3wxRnyRp4YY6QrkVOK6qfh74FnDByHMPVNXx/eNDw5QnSVqoQQKlqm6pqt396h3AyiHqkCS1sxg+Q/kAcOPI+uok30jylSS/NFRRkqSFWT6uN05yG/DqWZ7aUFVf6l+zAdgNXNE/txM4qqoeT3IS8MUkx1bVE7O8/3pgPcBRRx01jl2QJC3A2AKlqk6f6/kk5wDvAE6rquq3eQp4ql++O8kDwOuBTbO8/0ZgI8DatWurbfWSpIUa6iqvM4A/BN5ZVf83Mr4iybJ++WjgGODBIWqUJC3M2I5Q9uPTwMHArUkA7uiv6HoL8CdJdgPPAh+qqu8PVKMkaQEGCZSqet0+xq8BrjnA5UiSGlgMV3lJkpYAA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqYpBASXJhkkeTbO4fZ448d0GS7UnuT/KrQ9QnSVq45QP+2Z+qqotHB5KsAc4GjgVeA9yW5PVV9ewQBUqS5m+xnfJaB1xVVU9V1UPAduDkgWuSJM3DkEco5yZ5P7AJ+FhV/RdwBHDHyGt29GM/Icl6YH2/+lSSe8dZ7AT5aeA/hy5ikbAXM+zFDHsx4w0t32xsgZLkNuDVszy1AbgU+FOg+p+fAD4AZJbX12zvX1UbgY39n7WpqtY2KHvi2YsZ9mKGvZhhL2Yk2dTy/cYWKFV1+nxel+QzwPX96g7gyJGnVwLfaVyaJGkMhrrK6/CR1bOAPaerrgPOTnJwktXAMcDXDnR9kqSFG+ozlIuSHE93Outh4IMAVbU1yReAfwN2A783zyu8No6pzklkL2bYixn2Yoa9mNG0F6ma9SMKSZIWZLFdNixJmlAGiiSpiYkPlCRn9NO0bE9y/tD1jFOSI5PcnmRbkq1JPtyPvzLJrUm+3f88bGSbJT2VTZJlSb6R5Pp+fSp7keTQJFcnua//+3HKFPfiI/3vx71Jrkzy4mnqRZLLkzw2+t2857P/SU5Kck//3F8kme1rHT+uqib2ASwDHgCOBg4CvgmsGbquMe7v4cCJ/fLLgW8Ba4CLgPP78fOBj/fLa/qeHAys7nu1bOj9aNyTjwL/AFzfr09lL4DPAb/TLx8EHDqNvaD7IvRDwCH9+heA35qmXgBvAU4E7h0ZW/D+011hewrd9wNvBN62vz970o9QTga2V9WDVfU0cBXd9C1LUlXtrKqv98tPAtvofoHW0f2DQv/z1/rlJT2VTZKVwNuBz44MT10vkryC7h+RywCq6umq+m+msBe95cAhSZYDL6H7LtvU9KKq/gX4/l7DC9r//qsdr6iqr1aXLn83ss0+TXqgHAE8MrK+z6lalpokq4ATgDuBn62qndCFDvAz/cuWen8uAf4AeG5kbBp7cTSwC/jb/vTfZ5O8lCnsRVU9ClwM/AewE/ifqrqFKezFXha6/0f0y3uPz2nSA2XeU7UsJUleBlwDnFdVT8z10lnGlkR/krwDeKyq7p7vJrOMLYle0P0f+YnApVV1AvC/dKc19mXJ9qL/bGAd3emb1wAvTfK+uTaZZWxJ9GKe9rX/z6svkx4oUzdVS5IX0YXJFVV1bT/8vT2zD/Q/H+vHl3J/3gS8M8nDdKc6fyXJ55nOXuwAdlTVnf361XQBM429OB14qKp2VdUzwLXAqUxnL0YtdP939Mt7j89p0gPlLuCYJKuTHER3L5XrBq5pbPqrLC4DtlXVJ0eeug44p18+B/jSyPiSnMqmqi6oqpVVtYruv/uXq+p9TGcvvgs8kmTPzLGn0c02MXW9oDvV9cYkL+l/X06j+6xxGnsxakH7358WezLJG/s+vn9km30b+oqEBlc0nEl3tdMDwIah6xnzvr6Z7rBzC7C5f5wJvAr4Z+Db/c9Xjmyzoe/N/czjKo1JfABvZeYqr6nsBXA83a0gtgBfBA6b4l78MXAf3RyBf093BdPU9AK4ku7zo2fojjR++/nsP7C27+EDwKfpZ1aZ6+HUK5KkJib9lJckaZEwUCRJTRgokqQmDBRJUhMGiiSpCQNFWoAkr0qyuX98N8mj/fIPkvz10PVJQ/KyYel5SnIh8IOqunjoWqTFwCMUqYEkbx25J8uFST6X5JYkDyd5V5KL+ntL3NRPn7PnfhNfSXJ3kpv3TI0hTSoDRRqP19JNrb8O+Dxwe1X9HPBD4O19qPwl8O6qOgm4HPizoYqVWlg+dAHSEnVjVT2T5B66G8Hd1I/fA6wC3gAcB9za3whvGd10GdLEMlCk8XgKoKqeS/JMzXxY+Rzd712ArVV1ylAFSq15yksaxv3AiiSnQHdbgiTHDlyT9IIYKNIAqrtl9buBjyf5Jt3M0acOWpT0AnnZsCSpCY9QJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDXx/7jtGO2v5bZtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=('Time', \"Counts\"), # (xlabel, ylabel)\n", + " axis=(0, 1000, -50, 150), # (xmin, xmax, ymin, ymax)\n", + " title=\"Random generated lightcurve\",\n", + " marker='c:') # c is for cyan and : is the marker style" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The figure drawn can also be saved in a file using keywords arguments in the plot method itself." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF1UlEQVR4nO2deZwUxdnHf88uK7cIch8CGiAajAtZwaDihSBiBKMG9I0CEhVFAV8/EFBMjK8oKmrQKAExiBcIogER5VLjrQFRBJVDUVnkFBS5YbfeP3ZqrOmp7q6+pmdmn+/ns5+d6aO6qrr6N08/9VQVCSHAMAzD5BcFcWeAYRiGCR8Wd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8pAqcWcAAOrXry9atWoVdzYYhmFyimXLlm0XQjTQ7csKcW/VqhWWLl0adzYYhmFyCiL6xm4fu2UYhmHyEBZ3hmGYPITFnWEYJg9hcWcYhslDWNwZhmHyEBZ3hmGYPITFnWEYJg9hcWcYJoUvvvgCb7zxRtzZYALiKu5E9C8i2kpEK5Vt/0dEK4joYyJaSERNlX2jiWgdEa0moh5RZZxhmGg4/vjjcdZZZ8WdDSYgJpb7EwDOs2y7TwjxayFEMYB5AP4CAER0AoB+AH6VOOdRIioMLbcMwzCMEa7iLoR4E8AOy7ZdyteaAORyTr0BzBBCHBBCrAewDkCnkPLKMAzDGOJ7bhkiGgvgSgA/ApDvcM0AvK8cVprYpjv/GgDXAMAxxxzjNxsMwzCMBt8dqkKIW4UQLQA8A+CGxGbSHWpz/mQhRIkQoqRBA+2kZgzDMIxPwoiWeRbAxYnPpQBaKPuaA/guhGswDMMwHvAl7kTURvl6IYAvEp/nAuhHRFWJqDWANgA+DJZFhmEYxiuuPncimg7gTAD1iagUwF8BnE9E7QCUA/gGwGAAEEKsIqKZAD4DcBjAECFEWUR5ZxiGYWwgIbQu8YxSUlIieLEOhskOiCq6zrJBGxhniGiZEKJEt49HqDIMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuDMMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuMfExo0b0b17d/zwww9xZyUv2b59O84991xs2bIl1nw89NBDuOeee2LNA1M5YXGPiTvvvBOLFi3Cs88+G3dW8pJJkyZh8eLFmDBhQqz5GDZsGEaNGhVrHpjKCYt7TJSXlwMACgr4FkQBD6FnKjusLDEhxb2wkFchjAIWd6ayw+IeE2VlFZNlsuUeDSzuTGWHlSUm2HKPFhZ3prLD4h4T7HN3pn379nj66ad9nx+WuPfs2RNjx44NlAaTH6xbtw716tXD+vXr486KEawsMcFuGXuEEFi1ahWuuOIK32mEJe6vvvoqxowZEygNJj+YOnUqdu7ciWeeeSburBjByhIT7JaxJwxXCrtlmLCRbSpXYHGPCbbc7YlT3Lt27YohQ4YEvn4288UXX4CI8MUXX7gfHJAZM2agWrVqOHDgQOTXCpO+ffuiT58+cWcjEKwsMSHFnS33dORbTRD8WllvvfUWHn300cDXz2amT58OAHjuueciv9aIESNw4MABbN26NfJrhcnMmTMxZ86cuLMRCBb3mOAOVXvCdKWwW4aprLCyxERlEvcHH3wQRGRskWfKLfPjjz+CiDBjxozA18s2Ro8ejRo1asSdDSZGXJWFiP5FRFuJaKWy7T4i+oKIVhDRi0R0lLJvNBGtI6LVRNQjonznPJWpQ3XkyJEAfnZFuRGmW8ZJ3NetWwcAuO+++wJfL9sYN24c9u3bF3c2kuTTG1SulMXEbHwCwHmWbYsAtBdC/BrAGgCjAYCITgDQD8CvEuc8SkT5r14+qEwdql4fhkxZ7nJfrkVB5BL5VLe5VhZXZRFCvAlgh2XbQiHE4cTX9wE0T3zuDWCGEOKAEGI9gHUAOoWY38jo27cvioqKAABFRUXo169fpNeT1mmuNZhMEJW4n3feeahfv37adXLhHkyYMAFEhL1798adFXz//fcgIjzxxBNxZ4VxIAyz8SoAryQ+NwOwQdlXmtiWBhFdQ0RLiWjptm3bQshGMGbOnInDhyt+rw4fPhx5JIEU91x5xQsD07JG5ZZZsGABvv/+e8/5yQbuv/9+ABXz1HshijJKd9bEiRNDT5sJj0DiTkS3AjgMQA7Z0plA2tYlhJgshCgRQpQ0aNAgSDZyEvlDEoaQ6RBCZJ14mebH5Di38klxLy8vd00v7gFPJveqSpUqAIBDhw4ZnwP83M7iQpfHbGybQZFlyqZy+RZ3IuoP4AIA/yN+LlEpgBbKYc0BfOc/e/nJihUr8PrrrwOITlCuv/76rPPnhynuf/nLX1BQUGA7OEYK9sSJE3HLLbe4Xmfv3r2x1dell17qem3pMpRifeSRR+KEE05wTTtucddRUFCA7t27x52NUBkwYAAKCgowYMCAuLOSxFdrJqLzAPwZwIVCCNUJOBdAPyKqSkStAbQB8GHwbOYX77zzTvJzVJb7P//5z0jSDUKYbpl//OMfAGDrg1b96A899JBjWkSEnTt3GuUtCmbPnu16jIyqkmK9e/duoxGm0tKPApP7adefsXjx4rCzkzF05X7yySdT/mcDJqGQ0wG8B6AdEZUS0SAA/wBQG8AiIvqYiP4JAEKIVQBmAvgMwKsAhgghzOLfMkxZWRn2798fy7XVBp9Nr3Eqe/bsCT2dsN0yTph0kqpp+OlU3b9/f6SW8d69e5N5lG4Zr9fLRss9CsrKygKHfqr1rSMXOt5VTKJlLhNCNBFCFAkhmgshHhdC/EII0UIIUZz4G6wcP1YIcZwQop0Q4hWntOPkggsuQPXq1ePORlaK+5w5c1CrVi3897//DZTOjBkzUKtWrWTYZ5jiLgnywKnRMn7SqV69Ok477TTf13di8+bNqFmzJsaPHw8gO8U9qNi9+eabIeUEuPzyywMN2tq2bRtq1qyJcePGhZanuMkup2wGefXVV2O7tvpQROWWCcKCBQsAAB9+GMyj9vLLL6d8jyJaxi5NL5a7X3EHgA8++MDXeW5s2FARdDZz5kwA6T53N6QPP0q3TFDeeuut0NKS9eSX776r6BrMp9HKlVbc48TOLbN3717s3r07I3k4cOAAfvzxx0iv4beDMogv126/U7itH3H3GpLoFWsMvpPlXlZWlhLiCaT76J2u4cSBAwfwww8/GOXZCbuoGXkNa1vUlWnXrl2RuVLl/cw114sTLO4xo1qpDRo0QO3atUNN3+4BPv3003HUUUeFei0r1gclCreMybX37t2Lhg0bOl7Hy0O9fft2RB2+60XcR44cifr166eIsBR3neXupaznnHMO6tat65hHJ9SQVCty22mnnZbWFm+55RbUr18/ReDr1KmDk046yTTrxggh0K1bt5T8uh2fC7C4x4CT5R42dg3RxJ8e1IrxK+4mbpkwOlT9Hp+ptysVJ3F//vnnASDF+vXro7eiRnZJ/LQLJ8t96dKlafteeOEFAMCOHSmD47FmzRrP13YjG12jYcDibsHvjf7222+NH6RMRst4Tf+bb74xnuDLyqpVq7Bly5bk90xY7nZC40WAvLplqlWrZnysFzZs2JAySEnFSazlsVu2bEkaCH7EfcOGDb5/DLZv346ffvrJdv/u3bvT5nTPFlE1bW9ff/21r/TXr18PIQR++OEHbN68GRs3bvSVjldY3C34EbatW7eiZcuWGDFihNHxmexQ9SKUX331FVq1aoXJkyd7vs57772H9u3bo3HjxsltcbplTPz96nW8XDOqH+RjjjkGw4cPT9lmdcs4dZB27twZp556qvHxKtu3b8cxxxyDm266yfVYXfkbNGiA4447zvbYDh06oFGjRq7pmFwrzOOt59j9yC9btgxPPfWU57RXrFiBY489Fg8++CDq1q2LJk2aoHnz5u4nhgCLuwU/4i4tlpdeesno+Gy13EtLS31fZ/Xq1aHlJQyh9Rotkw3iDgDz58/XXkOK9cGDBx3P//jjjwGYdaiqSPeHlygyL53WTj53p7SzRdz9uoO+/PJLAOlhn5nw2+eduK9fv97x9dANVdy3bNmS4mawo2rVqgBg3JOfrZa79VgvrgrdvPR2lvvGjRvTIiFU1DpZu3at43WDiLtM26sP2XrN5cuXh7YeqUzbrkNVZ4nr6sCpQ9UJL3URNKrJRNy94kc0TZ5Bv/mx+5HKhLhXifwKGebYY49FcXExli9f7ut89UZLF4PbjZAuAD+LAGeT5R5E3KX4OJ0v02/evDmKiopsrVA1H23btsW+ffvS/NxB6+3w4cMYNGhQMp9B6qljx44AKtxzYUfReHHLqHj1uWdq4JhKFIZNeXm55wVwTCx3v2/bduJeXl4e+VxGeWe5Az+/mvrBj1tG3jg/lns2i7sXTCx3FSeRsubDy7GmWIUljHoKIx7crs6kEJi2T3m816UNMxnnHUXb9/ODEeUzGKflnpfiHoQg4m5quUfhltm9ezc++eQT27xFjc5yt1omdnnZuXMnPv/88+T3oCNU9+zZ4/rmZrXWwhD3LVu2YP78+a5pffnll9iyZQsOHDiAZcuWGV3DyYeuu55TfLkpbu7N1atXa/3sX3/9dXLEpxNhhLyaprl161asWbMGS5cuTT6ny5cvT5tPJuwfNxb3LMKPuMsGZfrKHIXlfvHFF6O4uDjN1ZFNlrtd+iUlJSnT13p5EHT7rrjiCteZIIMIi932QYMGoVevXvj0008d0/3FL36Bpk2bYvDgwSgpKXG8hqxDr5a7V3HXWe6/+93vHI/dtWsXjj322LT9rVu3RrNm2jV6tOno8CuyduUtLi5Gu3btcPLJJ2PYsGHYuXMnOnbsiCuvvDIj4m6FxT0GgljufgjLcn/77bcBpEdTZGOHqpWvvvrK6Dhd2rpj33vvPdfz1Xq3s9zt7o1d/mREhYl7pry8XDsvjd098OuW8dqe1XumRnjYldltQJffDlW/2KW5adOm5OePPvooOYPkO++8E7hj2ASdzz1qKo24CyGwYMEC1xsZVNxLS0uxcuVKx+OtlvuSJUsCT/AkJ5ayirtbI1LdIU51s2fPHrz55pvYvHmztk/DS4eqG9Y8S9fFjh07kpOZOaWly4vK7t27U67xwQcfOI6gVL8vXLjQtY2YTj3r5Y1EirXVLbNw4UJtOn597ro0rOmEZd2aCF5Qt8zatWuTywJKCgsLPbtG/ZZZ1iG7ZSLkqaeewnnnnYfHH3/c8bggbhkAaNGiBU488UTH49WG8u6776Jbt2649dZbPV9XxS4O2q0RmazmAwDXXXcdzjjjDDRp0gQdOnRI2x/EcrdiPe7ss88GAHTr1g2dO3d2TdNN3C+77LKUe7Z//35t5I417RdffBE9evTAhAkTtOnKOghzcis3y71Hjx5a/7Zfn7t6z9R7GpalqdapNU2vsfA6rMe3bdsWbdq0SZkOWC2XEKlL44U9twz73DOA/PV2G/qbabeMjPd2s/bdkIJm7dQNy+fuNkgpTMvd7jjZSao+wH7EfdmyZWkioBNka9qy7djF3su3pzAsdyuZ8rmrhCHuTta5dZ9aNr8/TnbHq28hVapUSRFdr6GQfmBxjxDp9pAPoB1hibtTp5raUOzcKU6sW7cuLcrCTdw//PBDrF+/3jFda9nVfNasWdPxXJPYYr9uGSuqj96PuB86dCjtGrr6V4/ZvHlzsj7s2oiTuOsmhXOKcrFzy3j1uXudb97Oci8rK8Phw4cxZcoUfPvttynneBHgefPm2Z6nK9vBgwcxe/ZsX4aBXb4KCwuT+6ziDri/eXlZxMYpzj1qWNwtBHXLSH7961/bHh9U3Nu0aZMWZeHmluncubM2skHFacCLm7jrCNtyl2LTpk0bx2PdxP3w4cNG4q6m3aFDB1eBlSOVdeJ+/fXXO+bJek27aBmvi3WMHTvW03V1aQAVbfzDDz/E1VdfjRtuuCHlOKdnxtoG+vTpY3tN3XM0btw4XHLJJclZIt1Q01BnybT+aDmJ+8iRIx2v8corwReYY8vdI04VlmnL3RTTOUPckOUK4pYJIu5u4uAFN3F3OgbwJ+5ubpnNmze7dlI6We5yjhGvBA2FdEItny4U0uqWkeWyTsnhdyZJE8tdzsRonVHSJE27KbSrVKmSsvSj1S2jezPkDtUY2bp1K1588UXb/dkk7mpDCUPcf/zxx2SfgtV3H0TcvbhlnFwMXvPi9DptTUuXpts9PnToUNp51h/FXbt2Yfr06Snb3AT2iCOOAFARQmgy/YWXyaiiEHfTa8rr2om4X3F38rlL5FzvdobC7t27U+7TTTfdlHRF2fV9uFnuOtdO2HPLZIVbhoj+RURbiWilsu1SIlpFROVEVGI5fjQRrSOi1UTUI4pM6+jVqxcuvvhi2/124m6tdD8NNUhEQhjifvXVVyc/DxgwIGWfF3F3Eo46deqkfDcZvh+VWwb4Ob7arSNQh4nlPmDAAPzpT39K2eYmsHL/3Llzk/PNSLwaAHaC49UtA6QPrtMJlc5CtYYL2oXrhmW5O4Vb2onrkCFDcPnllye/z5gxA6eccgqA1HtqfSNR76HTmIcoooR036PAxHJ/AsB5lm0rAfweQMo8lkR0AoB+AH6VOOdRIvI2i49PrLGsVkzFXf7ae1mQIciNkucGEXd1gIZd+iY4PaRHH310ynerwGVa3J2OdXPLlJWVpT20VsvdOrAKcI/g8LvIiQ6r2Mrvfix3L7OkqudZBdCuffhtuyaWuxtO01T7sdytbTaouGd1KKQQ4k0AOyzbPhdC6GLjegOYIYQ4IIRYD2AdgE6h5NQjU6dOTfkuxV2+OkuslfzII48AAKpXr56W5uOPP4477rgjzZfndKOee+45fPPNNynb1Aa0aNEiAP4fkJUrVyZHp+rQ5c1uRRkvFph8ED/99FO88sorrv5bu7zo0D1QTz/9tHZBbyEEnnnmmZQQVzdxB4CZM2emfLeKu64u3Cx3kx88U6SrwfqD4jVaBvhZ3Hfu3InHHntMe7wur2odlJWV2VruTnMqeRmh6qVjVmLnrvnpp59w3333afe98MIL2LNnTzIPQd0yTvfZ7rxVq1bZnhMWYU/52wzA+8r30sS2NIjoGgDXABUr0ITNVVddha5duyZXhzG13OVDJSMfJKtXr06+pm/btg0PP/xwcp/Tr3u/fv3QuHHjFOtavaa0PPyKu3XAlLUudXk7+eSTtWk5+dyt6chjZVSQ/JGSx1pHAQLBLPcrrrhCe+yePXvwxz/+Ee3atUvOqW5ynZtvvjnlu9UtoxMar+LuZwpoeZ5VhL26ZdS6l0I2cOBAzJkzBxdeeKHReVbL3U7cw7Lc/czvbifuo0aNwqxZs2zPHz16tDYfdm4ZJ3FfsGCBa76tZT3zzDMjt97D7lDV1YC2BEKIyUKIEiFESVQryasPgmyY1ld7uwq2umXUB3X79u1GacjtmzdvTtmua8RBpx+QWIVblzdr/iVOlpOduOuuE9Ry99LoZb7U13PTQUQqJpa7V7eM31d6ne/Zq1tG53OXBobJaFwgtQ5Ut4z1vvr9EXOy3E3bjp3oOq0KBfw8eFDnlvHqc3da2D6M2Tn9Era4lwJooXxvDsB97s8A7N27F3fffbfta/T333+P+++/32hhCBWdW0Zi+vptt123HJ/1AXniiSewZs0aHDx4EHfddZc2VE83ajSIa8DJKoxK3IMOOVcfHtkW/KzEZa3fON0yuvOC+NyluMt61Vm7OgvVznK33ld1fiK7fOsoLS3Feef93J3nVDZdOp988omt1WxNS+fSk+k65dGkLTp14GdyfnwrYbtl5gJ4logeANAUQBsAH4Z8jRT+9re/4d5779XuKygowFVXXYW5c+fiyCOPBGC+SIPVcndyUdg1ALvtM2bMSNtmFZOBAweievXquPPOO3HrrbeioKAAo0aNSjlGN4dNkEUonKIqvIi7F3H+97//nZKG37nVy8vLcffdd+POO+/09UBZf/z9iLv1nDCG7Fstdz9uGXlfZb5NO6bVcqo+94KCgpSyeRmxqbJkyZKU7071pdtXXFxse7zpj2AYoZBhjs4OE1dxJ6LpAM4EUJ+ISgH8FRUdrA8DaADgZSL6WAjRQwixiohmAvgMwGEAQ4QQ4YUQaHCy0goKCpKvZ3Zx0X7E3TQNJwvMZPu+ffuSCxfrHmqdKyeI9ejkGnLr/NJZ7iaLdaivtH7EXeZLWu6A98U3gPT61YmDm/UchuVuF72hdqiapKvWvfzhchJ3NxFzcsvIdlO7du2087z80IYZbeSWlvqjaRIK6VfcnaamjhpXcRdCXGazSztiSAgxFoDZmOcQcBoFSUTJhi2jZKwiNXfuXO0AHau4L168OPnZ1DrWWRt2r4d281nI7dYOXjsyJe5huWV053mxeFVxl53lfizmMWPGpHzX/ZjKdO0mUZMdl9bjVYK6anRhnDp0Pnd5ntr5bZov1S1jfeaCjq5WryEJ6s4Iy3IfNWoUHnzwQcc0/Ir7ypUr0b59e6N8+iHnF8h2G+IuG6QMj7NWct++fbXnWUMmb7rppuRnU7eM7oZ6XWdTirtp3H0QcXd6SP24Zbx2qMooGz9umbKyMteRqV7QibtXy1L3w+VWNru3Dq/i7uSWsf4IAfp71qNHj6RP2+qWUQlL3L106LvhZWFw3ZuSZMqUKahXrx5OPfVU2zTcDEx5HSsnnnhipBZ9zk8/4BZHaw2BNK1ML/G5XlwtJo1OPc+ruGeDz91vtIypANqlGaa464QmiLj7TUPnczepH7XurW4ZHTpxr1u3bsp+ec+tYiaDAYIKldcOVSfcfgzs3Ky6H9f9+/fnpM8978VdNuwwVqZR0zU5Vj3OyyAUNT354EhxnzhxouO5cfncVbE3Ffdhw4alRAkFccsA4Yr7rl27HK9lgt9IILWe3n77bYwYMQJPPPEEAP+W+8MPP+w4l428ptoHYhotI5+xoOF+pue///77rse4GVHqil4mfWh+xT0OUZfkvLg7vRKpDdKPVeiUrtN3iXot2SC9irvVcnebOlYn7qZlDuKWUX8YTN0yDz30EJ599tm0/X46VIFwxV1HGJa7m4BZ79f+/fsxfvz4lDz48bkPHTrU8XiZphwIZs2r6pax1oNsNzrjwG+HqlPb+e1vf+spLSesI1T9dMY7aVCYuuOVSifucVnuXuKU1fOCdqjqhlfbEaRDVf1h8OKW0dVRtop7HJa7bp/fDlWv17S+ecp77iTuQUTMrdwSk+klvPwQh9mRaweLuw9Mfe5ehcPpuIULF6a8ttsde8stt6RtM/G5q/G/Utx79+6Nf/zjH67nvvvuu3jnnXdS8mba0J1EwJqG9VhV3A8ePIhrrrkmbVInXT395z//SX5WJ3MyRT12w4YNxuf5IYwOVbepgL/99ltH8TZ9E9P53J1w+yFSnyVreqprLYhb0K3ckgYNGmDw4MGOaZl2qOqMnzfeeCPtOKvOfPDBB8l1j3VlXLRoEe6+++5YLfe8jpZRfe5qyFwYTJgwAbfddptjmnISMhUTgejZs2fys9pIb7zxRqO8nXbaacnPppYekC7YuggYu+/qA79gwQLbCaqcCOpzv//++z1f0wtexV1XjnPOOcf1POt0FSqm91MXLeOEW+evKu5W1HsfZBoNU3HftGkTJk2a5JiWl5G8foRXTis8duxYbb67d+8OAHjttdcAsOXuizgsdwDajkAT1EanzkMdFV7E3W6JPsDdFaU+1Hb3JIpomUzO2eH1WrpymKxO5SZyUbhl3Cx3p8U61PTDEvdMxbkXFBQ4hkICPw+us8PkR4nF3QemPndpDZk+oOoK97obow46MrlxF154IdavX5/ygGQihEonBnYN1fpg6qJ97L6HKe7qmAI3Minu1vVI3YRalzeTex5U3CdMmJAy54qJW8bE524y5a96reHDh3sS6Ysuuih5vtO86kHrUMWv5a5ex6SvwG6a7SjJeXF3m2fZrw9QnYNdZwV4tdx37NiBESNGpKSV7eLuxXL3KyC6/dalAoOkGSZyKgiJm7jrfO4m99wt3tutzMOHDzdOT+LF525FNXTUYyZMmOB6XZVt27bhk08+0e5TjSKT4AIvLjQ3y52IHKdlMPkhcZulMgpyXtzdLHeTbW7oGoraoE3TLC8vT0nLpNc/KNYfuEOHDtk2VC9uGSfL3SkvTvi5N7HGEXuw3L2IexhuGZUwxN3JLaPGxgedutpOuL0u5Wd6fNAIH7fQVI5zjwhdpfupbDvLfdu2bejYsSPWr19vlI4QIqXRmYh72Ja700RrUVvuK1asSHZE2eXVK5l0y1hxE3e5kAlQEV1x1VVXGfnc3Sz3KMRdV/fqfEpDhgyxFW51/vzbb789ZZ/psyG54YYbMHny5LTtXjuzTRcfLysrQ4cOHZLfrTNVAhVt+/zzz9eeb+qWseP000/HihUrjPLqlZwXd7ch1dbK9SMGOitg//79ePbZZ7F8+XLjKA0/lnsU4m5nuVsXHfDic1fryC79YcOGJVemt8urV7JZ3K0/pFOnTjWy3J2sTi+hrRKTOnI7ZtWqVbbirrYb6/KWXnnrrbdw7bXXplnwapnDtobdrHyn9Znd3DJueX377bdxww03OGfQJ3kv7lbCstz379/vOr+37trZLO5WMfJiuZvUwe7du13z6pVsFncddrOCqriJu1fXh1/L3TRffla+csM6U6tXt0yYON3nMNwyW7du9ZUvN3I6zv2jjz6yXagD0D/4N954o3Zleyd0D8e+ffuSIqlG1jjx0ksvYf78+cnvJlZcUKyWxa5du2zF3Tqfyo4dO9C0aVPMnTs3rS67deuGefPmJb+bCIib66a4uNhooJZKrom7yZJ0buLuVejsrOk77rgDW7duxcSJE43q0e5HJawlIlWsE+Vlq7jv3bsXF1xwQco2tfNUXWnKjqjEPectdyfsGqzb/MxW7KZ/9ROLG6Xl3qxZ+lrkug5VO6yW+2uvvYZNmzbZDtQYMmRI8rNu4jCvbNy4EX/4wx88nZPNHap+cbpHfix360hhlX/+85/JdIPkK2yc3gzjvOdWPvvss7RtXvsZunbtGlZ2UshpcXcLiQrLqrOb/jXoQIswxb1Ro0Y444wztOdbozZM3TLqBGBudanWURAry6uAZNpyVzvW4hJ30/o98cQTfU8VrSOT1rMft19UOJVb52r02ibdJgP0C4u7AbqGVV5enlXibifaY8aMQatWrZLfzzrrrDTXQP/+/XHo0KG07bL+XnzxRcyaNSstbXUswMMPP5z8nMkHMdPirt6PqMTdSUwWLFjgOj+NRAhh5PojIixbtsz1OHUeoKhZuHBhyvc43TJq1JAVXfSZ1zYZ1YR3OS3u1tWSrIT1+haV5R6mz93ux+bll192bWxPPvmk1h/uVzjjtPAyiZ/7p1vU3Irb28uUKVOMr2f6A+S2TkDcqBZyNrllwhD3qMa75LS4Z8pyD9PnrhKm5R70TSKMZeWc0oqKXLPcTcYDuNWf6bJ2ppY7kFl/uilHHnlk8rNJlFEchOGWYctdg5vlXpncMkFdIXZlDCutqLjooosydi0guLjbLa6twuJegRogoIo7W+5muLZOIvoXEW0lopXKtnpEtIiI1ib+11X2jSaidUS0moh6RJLrBLnucw97bpkg+QlT3OP0j0ZN3D53wNuC1KZ5zMZ7VqtWreTnbBV3XYx/LlnuTwCwBmuOArBECNEGwJLEdxDRCQD6AfhV4pxHiSiyYO4oxF03zFjX8E3ild0I+xc7DHFX85Tr4m4yd7pXMiHubla0F3E3tdyz5Z6pqPWbrW4ZdY4pSc5Y7kKINwHssGzuDWBa4vM0AH2U7TOEEAeEEOsBrAPQKZyspuPWcP2Iky50TGfVrlq1Ctdcc42vfEnCjnMPIjbSvaH+YPp1r8QZtqYSxZJpmRD3a6+91nF/FOKejaj3T7dgeTags9zPPfdcT2lkW4dqIyHEJgBI/G+Y2N4MgLrWWWliWxpEdA0RLSWipVFNhxmluDtRo0YNo+PCFvcgYiYX8Fb7MXLdcs9VcXfDi8896jx27twZQDR9H2redWv0ZgPW+Zj8kCsdqrqnSXsnhBCThRAlQoiSBg0ahJyNCsISd69ipfbyOxHmogNhNXhV3P2mmS3iHrWwxSXupi5BLx2qfpHC1LFjx9DTVvOeLW3Kyg8//BA4jWyz3LcQURMASPyXkyOUAmihHNccwHf+sxcMP+Ku8+NfeOGFntKoXbu20XEm4mA6YAUIx1JVrYhcCIV0IgrL/fjjj09+Np1TKGysi4Y4kakVgNwi1/ygPh/Z6pZR54ryS7ZZ7nMB9E987g9gjrK9HxFVJaLWANoA+DBYFp1Zvnw56tWrp93nx/LU/Ypu377dUxomlvt//vOf0C2/sMU9F0IhnYhC3MePHx96mlGRCfeFrOOoxV0lm9wyYRBnKOR0AO8BaEdEpUQ0CMA4AOcS0VoA5ya+QwixCsBMAJ8BeBXAECFEpE96cXGxdsIswJ8/LAzBNbHcu3TpEvorcxhiFka0TBRTwPoh7B/Pc845x2iJt2wh18XdaWm7fCIqcXdNVQhxmc0ubZyZEGIsgLG6fVFhJ5JXXnml57QyJe6FhYVZabmHIe5e186MirAt9yjeBPIFttz9k21umawiTJEMIy3rzZo2bVraMUSUlWFqYfjcs4W4OjyzhahFcOnSpcnPTm80pgEGVirL/TONrvNKXtRetom7NY0aNWrgl7/8ZSTXUskWyz1bYEs7Wpo0aWLkljnmmGN8pV9Z7l9UP2J5Ie6qBRGUKMS9vLxcO+owzJsaVkyzarmHMQo3Tiq7WyZqy72wsDBZJ1G5Fhj/5IW4S44//ngce+yxns7p1Cl1AG0U4m63wEI2dqiqD6l1cFmdOnUCp59JwhZjN7HMVNihKVGK+4QJE9CoUaPkd6e27JQPr/dIDUX9zW9+4+ncykZeiXu1atXw61//2tM5J510Usp3O3Fv27atcZo6cY/acg8Lp577XIoUATJvabds2TKj18sEdu4W67z0ftuy03m6H4Vf/OIXyc/t2rXzdc3KQvapSwCqV6/u+Rxr47WzQNasWWOcps4tkyuWu5O455oPPhv7NHINO3eLrFtZJ37bslOd6sRdvafZaBxlE3lVO6oP0BRr4w2jwVjzEKbl7vQqGrZbxkquhaBlsxhHMWOlFb/366qrrkp+tmsP1rSDiLtfwykT4j5y5MhI05cLlEdBXol7GCNSw2gw1oYelrgfccQROO6442z3s+WeSjZ3qLZu3Tq0tOzwK+5NmzZNfrZzy8gwWVknQZ6bxo0ba7fr8q9uizqUuGXLlpH/gNiNrg+DvBJ3P0Qh7lF1qBKRo987anHPZstd55LzOvVqGDRs2ND9oCxHbZdu4i7x6l6RFBQUeBqsNHfuXG0+oyLqNh/lj0deibufG2FtIGpl161b13p4ktdff912n6m4e72xTuIeViMM6paZPXt2KPnwim6g2KBBgzKej/Xr12Px4sWux2Xih1IIgddeey1tu5u1qD4T6o99p06dcN55Fev2hDXAjYg8ibv69pgPPncWdw94tV6dLHcnK9YpeibKUMg4LXcTt0z9+vUD58EPuh8lIgo1fNOkfmvUqGE0IjNT4q4rv9s9Utuv2kYbN26cbB+yPcs68VseJ3F3gy13l7QjSzkGwva5O4mZbt53XRpO+fJzY3v27Gl8XT84Pfgm9esnYikMsqnz1OQ+ZKr/ws+kVKpoWoVe7pOW+8UXXwwgNUTRC07ibh2DAgBdu3bV5jMKhBCRi3uU7TYvxH3WrFm+z7U2frWynR5Ap5sSpbj36tULl12mn8vNS0Np2LAhfve736Vsa9y4se0Mm7fffruRIMU1UtGu7Nkk+ib06dMncBq33norAPs3Rjesbpmbb745ud0q7oMHD8ZPP/0UqIPY7jk4+eST8dNPPyVXewKAJUuWuJ7nBy/rJlgZOHAghgwZ4njMv//97+Tnzp07Jxc3idJyj2auyQwjXRWZtNy9iLtdOn4tD3VVeL8cccQRqFmzZsq2hg0b2parWrVqRuIe1fSlfolD3E2mbbBrq05vhKaoE1HpFnB2w2qty3aidn6q0TJB2qNThypQ0dbtXKVhCqMaIeSV2rVr46ijjnI8Rq2jwsLCZL8Hu2VckBXkR9zPPPPMlO+q4LqJu504R2m5O+FFyIQQaeVbsWKFbRqmr6hxRYsQUco6nr169fKVThh9BkHEPcxQXCEEWrVq5ft8+VnmqaCgAH379gWQPrLbL0Tk2m4HDhzomk877BaxtxKk3ouKilwjs9Qyqs8ei7sLQcS9pKREmxbgHO5VUFCAgwcPan3MpuKuNs5nnnnGOM928b9exV2XjpO4m1jutWvXRllZGcrLy31FVHTr1i1tW926dVFcXOx4HhFh9uzZKCsrw65du5KvwXYPT8+ePbX5mzRpUvKz3/6DIOIexrzo0roVQqBp06a49957faelDgwkIvz+979HWVmZduh/WVkZTjnlFADAo48+apS+TFs3kEnu+9Of/mSbNzdMBwk5tXs3qlSpgtNOOw3nn3++7TF2b/PslnFBraCgr+FObhkiSt5s2RFkEuJoYqV5cdHYpRfUcrfmyfS61jyoQ9MLCgo8dR7a+ezd5rWRFiARpSyW4uSL15VV3WYtr2n9BhH3MPosnMJ7/aRlHahkl55ppJkOp+Pt6t2kXKb3TJeWqbEo8+70DFv3yWeCO1RdCGK526UFINmRpNsnb4rJyNPTTz89ZV+bNm3SjvPyANqV00tnnJ24B7Xcred7nWxM93pLRK5i4fUhsXvVV9ORHZMSa73bLZzu9pahS0tiIorq/Og6H72boeBWV+p9HjJkSNo8Mk7Icql5cBvEZJe27HS0I8xomSCrPskfZKdn2Lrv6quvBgC0b9/eNIueqVTiLv2FJmkBwPDhw1P2qQ3QtEN1yJAhKdOULlu2LPkKahdy5pcuXbrgkUceMTq2vLzcyC2jdhT5EXedm6GoqAgbNmzQnq+b1bNatWq+xV1Xr6+88gouueQS13TGjBmT8vBZ3TiTJ0/W1mHLli2xdetWx/wGccu8/fbb+NWvfgVAv4qP6nP3w8GDBwEA1113Hfr375/ilnFDXlOtd50BJLFLe9OmTa6zbIYp7kEsaNk2nZ5ha1779u0LIQSaNGni+7pu5IW4h/lq4+TiMXX/mP6C+3UnOT20Xhq8iVvGq5vAxHKvVauWp9DFIOLutW04udSsLjg/rgRduiom9U1EySgYa8QTkC7uuonsnJDiLt8KvFjuErUencIx7QZBmVwrW1Zgk+3AryZERaArEtEwIlpJRKuIaHhiWz0iWkREaxP/7cfwh0RUN9l6s8aNG2d0TT/iHoZbBjAXd1O3jBQbIQTuuece13RNxP3uu++2La+duAd1NZjilI7Vco9C3E3cMqq4O1nufpHtQoq7H8tdzYOst8aNG6e5rGSa1ro1eR7CfO51ZTONEDO5Zzkl7kTUHsDVADoBOAnABUTUBsAoAEuEEG0ALEl8jxRTt4xXa8B6vOqmcUrLaZ9p+KREHaAlyxeGuJu6ZaSbQAiBkSNHukbA2Im7Ovjk2muv9STG1apV831vvYq+F3F3srLdHuYglntBQYEny92KW53IcspoIS8zP+qiQKTlPn/+/LTBQnbibnLf5Dlh+K1Nxffss89O25Z34g7geADvCyH2CiEOA/gPgIsA9AYgZ3GaBqBPoBwaEGaHqiqOfgXcCS8Wq9PxVmTZTaMUTC13pxG8OuzE3ep39RJ6VrVqVd/D9XXX8XJfs90tE4XPXaYdtltG158g07TWrcm1pPtoz549xvmyw66dWOtQV6cm9ywT8+BYCSLuKwF0JaKjiagGgPMBtADQSAixCQAS/7WjWojoGiJaSkRLrWt1esVU3G+88UbXtNRFFIgIQ4cO1R5nbQwPPvigdp+68IGaV+txJqL/8MMPA3Aupyo4F198cdpyaBI7cZeDf2Rnlhozbc2PlTp16qTtHzt2LAoLC9PmoXcS99GjR+OEE05IbrNa7r/85S/TRM2v5d69e3f069cv+d16H9Q2E6a427Urk05/IsKECRNw5JFH4vbbb0/bH0RI+vbti3379gEIzy0j602K4P/93/+hWbNmqFatGu6//34AFe3N6+hTGXIaxlqqpqGQ6jMjR5maDJjLKctdCPE5gHsALALwKoBPABhPZCGEmCyEKBFClDRo0MBvNgCYV1yXLl3w7rvvOuUpZW6VgoIC/O///q/2WGtDv+6667THWcO5TGKE7a4jw6fURmedvlUNjRs7dixWrFihTdfOn9iyZUsIIdChQwfHfOn44Ycf0uqld+/eOHz4cErsOeAs7nfddRdWrVqV3Gad+uDzzz/HnDlzjNKT259//nnt/gULFuDJJ5+0TWfw4MH473//C8CbX9hNCE899VRtW2zbtq1rSGtBQQEGDRqEH3/8Eeeccw42btyYst8q7l4s7hkzZiQtdz9uGV20jFXcx4wZg9LSUuzbtw9XXHEFgAr3kvp2Z5JnKe7NmjXDrl27XI93wvRNUm2HHTt2hBDCaO3cnBJ3ABBCPC6E6CiE6ApgB4C1ALYQURMASPx3jgkLAdVyDzNyhsh+aLT1ZpmOLLSz3L24ZdQGZ92vdmA61YVb3Lr1IQ3q8rLmM6jPXTfATIfc7nR/3KKWpCh5GXEbpB16dX3ZrQMch1vGxHI3wUQM5Y9B1apVAz/3Xt2fUaUfJkGjZRom/h8D4PcApgOYC6B/4pD+AObozw4PVYD+/Oc/G82nDbi/AjuJu3W7aePy2qHq1iis+1XL3S1PVoGcOHFi2r6gQmGXTy+DRm655ZbA4u40IZfbj6wUJS8zLJo8zHYuMysXX3xxijXvFpHk554NHz486Z66+eabUb9+ffTo0SPleiZt/L777kOzZs1SxnY4+dzt8OJzr1atmvb4u+++GwAwfvx417T8iLtT/VrHa4RpdJoS9OdkNhF9BuAlAEOEEDsBjANwLhGtBXBu4nukqDempKQEO3bssD1WreTRo0c7pkvkbSGB2267Le0aVkxFXK54oyMMy72oqCglncsuuwyDBw9OfreKe1BMLXfdA1NSUuLaseUm7k714vbgWae5NcHkYbabTdF67vjx4/Hiiy8mv7u9Nfq5Z/fccw+mT58OAOjQoQO2bdsG6S71Yrl369YNpaWlKWXzY7l7cctYxb1GjRoQQmDUqIpAPZPJw0zF17Rj/4wzzkj5HoflHmhuGSHE6Zpt3wOIfml3Bb9WtMnrr59fXFNxd7IY3VwquvQAc3GvUqVKSkO1WqVhz30RRNx1272Ku5PVGJe4m55rtczd3DLWTnATTPoPvAiUmkeZj7DdMtJyr1q1aqD+Dyfc3hhNz8tFyz2rMInoUJENYvr06doebxPLffLkybj88stTrm9yTQApHTHqdjWW1q0sVp+46n5wynuVKlVS8vvXv/41Zb81XjlOn7uanwsuuECbH7c+C9M5bnTllGIZl7hbxdvNEHDrUNXlzamteH2u7NIL2y0zfPhwtG/fHv/zP/8TSdgykN4e7rzzTl/psLj7RFacX3Hv168f5s2bp93vltbVV1+dNl2vqeV+xBFHJK0ZeU7dunVTBvzo0lIbnNW/6sdyf/PNN5NzlUii9rmreWvZsiW6d+/ueB25Xb5qm1pQOreME7rryzrw4nOP0nI37Yfxcs9M3hS9lMmp7yJofiStW7fGp59+ikaNGkUinrr6U33pTvXLlntI+K24sN0yJg+TW4eqVxF16lB1QhV3px+QsHyFTuJuUs/WNwnTDlVJkBWirItCmxCk3rxa7lb8uGVMxN1LmXTHBrX8nY4xtdy9aoVfkbael3PRMtlGUGG04rVDVT3P9Jp2/kxTq8B6XtOmTdGyZUs0bdoULVq0sE2jqKgIkyZNQq9evXDyySen7Tex3Fu0aJEy6MsJJ3FX35DcLHe740xCSU855RQQUcoUzCY0atQIl156aUqnphtObeDvf/+7p3OtFq9pH4GOs88+G08//XTy+8KFC5Ox5nYEtdxfffVVDBgwwPhc3bXGjRuXMlDQeoz6ef78+UbH+cVk0NItt9ySsvBM7dq1k89jGCPpTciLxTrchMEOE3EP23L3Ov2Am1vGml5hYSG+/vpr13xUqVIF7du317qjALOVYubPn4/27dsb1ZH1GKvVZSrudm84JvX33nvvueZTd/2CggLMnDnT9Vy76xYWFqb464cNG2Z8ru67W7u1E/ehQ4diwoQJKdvOPfdc1yXigvrce/TokQyr9HM+APz5z39OO8ZOtK2RKmGKOxFh+PDhePnllx2Pa9asGRYtWoSioiIcPnwYBQUFeO6559ClS5dA1/dCXljufsXdxC2Ta5a7KW5uCpNBTEFes+0eOLtyW11IXl+XTdtGWFaVmh+vyw2atEsn3Kb89YqfyKmgbgivBoPp9cLIl596iMPnnleWux1TpkzRduaEbbmPGDEC3377LW688UaMGTNGe4xbnLtX0TLx1U+aNAk1a9bE6tWrUbt2bYwcOdJV3KdOnYq77roL48aNw/Dhw9NWpXIqi1M+JV597lah6tWrFwYMGIAnnngiLT3ddcN8FX7uueewffv25Pdp06Y5Toz2/vvvY/bs2bjvvvvS0vrggw8wa9YsnHLKKfjuu+8AAA888EAy5lyHrqwTJkxIvhFIcffje9chh/bbxeWb5tELTudPmTIFS5YswdFHH210vLrv3XffxfPPP4/HHnsMQgjs3LnT9jy7KTrU/W6YGC5RkRfiLrGrvEGDBmm3hy3uRx11FJ566inHY+xemf26f0wEVh3E8c477wBwt9xbt26Nxx57DABsyxQkesKr5W4V96pVq2Lq1Kmu4m76VtejRw8sWLDA8RjJH/7wh5TvV155pe11AaBz587o3LmzVtw7deqETp06pWxr3Lix4/V193zo0KFp4m46n48bmzZtAgBPqwZFabkPGjTI9pl2S6ukpAQlJSUYN24cWrZs6SjuXvOlQ2e5Z8qKzyu3TBTnhd3LHbZbxkvsMPDzK7acFCoIYYq7WzncXAxB3TJhLEydKUzr3Yul7YS03NVJ9dyIww1hR5C8BA1plMdzKGRAdA/w66+/bnu8iXCHfVNMpx9wEjO1nNK6NqVLly4YPnw4pk2b5uk8HWGF+xERJk6ciKFDh9pOu+AWjhfUcp88eTKGDh2Kbt264YEHHsBbb73lWoZMoIvQcWuTe/fuBZAu7n7dAuPHj8ewYcPQs2dP43PiCP2zw62+5LTDkscffzz5WSfufowa9rn7xKnizjzzTNt92STuVhEyfRCbNm3q6fqFhYVpIWV+CVI3VnFv3LhxWiSHit/pEEzFvUmTJsnr33TTTZ6uESW66X/d6mD37t0Afhb3oG24efPmruGbVrLJcnfDGtqohjA6ESQ6LhNkz89rCIQdLQOEf3Ps3BNerqOWM86HKEzL3Q2/lntYApdNuJVFzrmidjhmmlyy3KNMSx7vdyWxIOSV5R52nLuatmTp0qVYunSpp+s4ped3OwD0798/VtHyeu2HH344OYCosLAQAwcOxNSpU43ScbPc7bY///zzmDp1asrKTnGxePHilCgbv7jVV69evTBq1CiMGDEi8LX8kk0/pm5tRv6fPXs2atSoYRx54yVcM9ORMkAlFHevsbHWY37zm9+EsqyXU74AM5/7hRdeGEmonyleH+Abbrgh5fvw4cONxd1vh2qLFi3wl7/8xVM+o8J0NG9QqlSpkpzLPC5yyXKX+3//+98DAEpLSwHoQyG9hjbGKe7ZcwcCICMdjjrqKONjAe8DJaLAaj2Y9M6rQperbhng53DMunXruh7r1y3D/EwmBSabxN0OO4PBrS3JidxMFgWqX7++UZpRkBeW+3HHHYe///3vuPTSS12PlWuDAvF0qPq5zlNPPYWTTjop+T1bfO5Br3388cfjgQceSFmg2o6goZCVGV3dvP/++0kLNVPXjAtTy12Hztjq0qUL7r33XgwcOND12osXL8bLL79sZMCETV6IO+A+X4eEiFClSpXkfA9uZMoCsXPLAMAf//hH4/MySRgDVUwjU1jcw0UOrGK8We7ybdm0P6Nly5a4/vrrA+XPL9n/7hQh2eyWkUuc6QYbZYtbJpPXbtiwIQD7edmzVdzDzFdYg5KYVOzuUdD5lOImbyx3P2TSLbNmzRqsWLHC+DqTJk3CGWecoZ1FrrKI+xtvvJEcuTp79mzMmzcPrVq1ivSaYTJr1qwUd1pQPv74Yyxbtiy09LKR1atX49NPP83oNb24ZXKJSinuYc2W54U2bdqgTZs2tvutealTpw6uu+46xzTjFveoXVbq1K0NGzbEVVddZXtsNlpUl1xySajpHXfccTjuuON8n58LQtW2bVu0bds2o9f04urLxnZmR6V2y2RTj76c7Kl169aux+omDsuFUMgoyaa8ZBv16tUD8LOrL45rZ4ogK25ZcZsVMki6mSBQTRDRTQD+BEAA+BTAQAA1ADwHoBWArwH8QQjhbeq1iAl7CTkdb731FurUqWN8fM2aNfHCCy94msw/Wyz35cuXY//+/bHlA2Bxd+Lyyy/HwYMHXVdcCpt58+bhxBNPzNj1XnnlFbRr1y5wOlG5aTLdRn2LOxE1AzAUwAlCiH1ENBNAPwAnAFgihBhHRKMAjAKQvoxKFhBlZZ922mmejiciXHTRRUbHZpvPvbi4OLY8SFjc7SkoKHB0aUWFyXJ0YWI36ZwdJkJtPSYXXFuSoKZrFQDViagKKiz27wD0BjAtsX8agD4BrxE6bpZ7GNPhmuJHlLJN3LOBbMoLk1t4aTvZ5Mp1w7flLoTYSETjAXwLYB+AhUKIhUTUSAixKXHMJiJqqDufiK4BcA0AHHPMMX6zEQi7G7V69WqjdUjDxEsDy5ZBTNnU0O1CJCsT69evT67mxARHfc7Gjh2LkpISI8PvtttuizJbxgRxy9RFhZXeGsAPAGYRkf1oGwtCiMkAJgNASUlJLO86TvORyJXK486L2zlsuVeQybetbKVVq1Y5FSqarejadf369dG9e3ej88MMfw1CENOrG4D1QohtQohDAF4A0AXAFiJqAgCJ/1uDZzNc5MRf2SBOYbllKnu0DIs7Exbqs3TssccCMFs3QYZw2kUlybmvMjVDaZBomW8BnEJENVDhljkHwFIAewD0BzAu8X9O0EyGzYIFC/DFF19klVvBj1smbss9m+qvWrVqcWeByUNGjBiB4uJio87aO+64A2eddRa6du2q3X/88cdj8eLFniLighDE5/4BET0P4CMAhwEsR4WbpRaAmUQ0CBU/AO6zeWWYevXqZayCTclFn3s2We4s7kxYqO26sLDQOAqnqKjI1XWTqWmfgYBx7kKIvwL4q2XzAVRY8YwBfgSyuLgYCxcuROPGjZPW86mnnhp21lzJJss9m/LCMNlApZx+IBvxIvJ33nkn+vTpk4wvX758eaBh6X7JJsudYZhUWNyzBC9CWVRUhN/+9rfJ73ENImJxZ3IZtyCEXBqwpIPfZQ1xmvQrCLkskNngCsn03CVM/uF1JaZcgS13A7766qvIRSQXG1Q25Hnt2rXYvXt33Nlg8ohct9glLO4GmMzUWBnJFsudrXeGSSf+p7OSkw3Wr19yOe8M07NnTwBA7dq1U7bLFa/OP//8jOcpTFjcGd+wuDO5zCOPPIKvv/46OXJUUqtWLXzzzTeYNGlSPBkLCXbLMAxTKSkqKkLLli21++KazDBM2HJnGKZScPrpp8edhYzCljvDMHnPjh07UKNGjbizkVFY3LOEfAm/YphspG7dunFnIePktVsmF/xm3CnJMEwU5K3lvm/fvqyIw2YYhomDvBX3XJsClt0yDMOECZu2MTNkyBAAQM2aNWPOCcMw+QSLe8zccccdKCsry7k3DYZhspu8dcvkCnEvlccwTH7CljvDMEwewuLOMAyTh7C4MwzD5CG+xZ2I2hHRx8rfLiIaTkT1iGgREa1N/K98Q8MYhmFixre4CyFWCyGKhRDFAH4DYC+AFwGMArBECNEGwJLEd4ZhGCaDhOWWOQfAl0KIbwD0BjAtsX0agD4hXYNhGIYxJCxx7wdgeuJzIyHEJgBI/G+oO4GIriGipUS0dNu2bSFlg2EYhgFCEHciOgLAhQBmeTlPCDFZCFEihChp0KBB0GwwDMMwCmFY7j0BfCSE2JL4voWImgBA4v/WEK7BMAzDeCAMcb8MP7tkAGAugP6Jz/0BzAnhGgzDMIwHAok7EdUAcC6AF5TN4wCcS0RrE/vGBbkGwzAM451Ac8sIIfYCONqy7XtURM8wDMMwMcEjVBmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfKQQCNUmcrJSy+9hM2bN8edDYZhHGBxZzxzwQUXxJ0FhmFcYLcMwzBMHsKWO8NkIfPnz8eePXvizgaTw7C4M0wW0rNnz7izwOQ47JZhGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPISFE3HkAEW0D8E2AJOoD2B5SdnKBylZegMtcWeAye6OlEKKBbkdWiHtQiGipEKIk7nxkispWXoDLXFngMocHu2UYhmHyEBZ3hmGYPCRfxH1y3BnIMJWtvACXubLAZQ6JvPC5MwzDMKnki+XOMAzDKLC4MwzD5CE5Le5EdB4RrSaidUQ0Ku78hAURtSCi14nocyJaRUTDEtvrEdEiIlqb+F9XOWd0oh5WE1GP+HLvHyIqJKLlRDQv8T2vywsARHQUET1PRF8k7vdv87ncRHRTok2vJKLpRFQtH8tLRP8ioq1EtFLZ5rmcRPQbIvo0se8hIiLjTAghcvIPQCGALwEcC+AIAJ8AOCHufIVUtiYAOiY+1wawBsAJAO4FMCqxfRSAexKfT0iUvyqA1ol6KYy7HD7K/b8AngUwL/E9r8ubKMs0AH9KfD4CwFH5Wm4AzQCsB1A98X0mgAH5WF4AXQF0BLBS2ea5nAA+BPBbAATgFQA9TfOQy5Z7JwDrhBBfCSEOApgBoHfMeQoFIcQmIcRHic8/AfgcFQ9Gb1SIARL/+yQ+9wYwQwhxQAixHsA6VNRPzkBEzQH0AjBF2Zy35QUAIjoSFSLwOAAIIQ4KIX5Afpe7CoDqRFQFQA0A3yEPyyuEeBPADstmT+UkoiYAjhRCvCcqlP5J5RxXclncmwHYoHwvTWzLK4ioFYAOAD4A0EgIsQmo+AEA0DBxWD7Uxd8BjARQrmzL5/ICFW+d2wBMTbijphBRTeRpuYUQGwGMB/AtgE0AfhRCLESelleD13I2S3y2bjcil8Vd53vKq7hOIqoFYDaA4UKIXU6HarblTF0Q0QUAtgohlpmeotmWM+VVqIKKV/eJQogOAPag4nXdjpwud8LH3BsVroemAGoS0R+dTtFsy5nyesCunIHKn8viXgqghfK9OSpe8fICIipChbA/I4R4IbF5S+JVDYn/WxPbc70uTgVwIRF9jQr32tlE9DTyt7ySUgClQogPEt+fR4XY52u5uwFYL4TYJoQ4BOAFAF2Qv+W14rWcpYnP1u1G5LK4/xdAGyJqTURHAOgHYG7MeQqFRI/44wA+F0I8oOyaC6B/4nN/AHOU7f2IqCoRtQbQBhUdMTmBEGK0EKK5EKIVKu7ja0KIPyJPyysRQmwGsIGI2iU2nQPgM+Rvub8FcAoR1Ui08XNQ0Z+Ur+W14qmcCdfNT0R0SqK+rlTOcSfuXuWAPdLnoyKS5EsAt8adnxDLdRoqXr9WAPg48Xc+gKMBLAGwNvG/nnLOrYl6WA0PPerZ9gfgTPwcLVMZylsMYGniXv8bQN18LjeAvwH4AsBKAE+hIkIk78oLYDoq+hUOocICH+SnnABKEnX1JYB/IDGrgMkfTz/AMAyTh+SyW4ZhGIaxgcWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUP+H2kbkaeDVWTyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(marker = 'k', save=True, filename=\"lightcurve.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : See `utils.savefig` function for more options on saving a file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sample Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray also has a sample `Lightcurve` data which can be imported from within the library." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import sampledata" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = sampledata.sample_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABiL0lEQVR4nO19d7xVxbX/d9174VIuvQlc4FJVFAFBgt2IBTUJauILMVE0yTPPmPLSMdHEFKMvVf0ZTXjGp0ajIbGRKBaIBQVBROlK7733cmF+f5y9z5k9e9ou595T5usH7z6zp+29Z9asWbMKMcbg4ODg4FAeqGjsDjg4ODg4NBwc0XdwcHAoIzii7+Dg4FBGcETfwcHBoYzgiL6Dg4NDGaGqsTtgQseOHVldXV1jd8PBwcGhaNCxY0e8/PLLLzPGRov3Cp7o19XVYfbs2Y3dDQcHB4eiAhF1lKU78Y6Dg4NDGcERfQcHB4cygiP6Dg4ODmUER/QdHBwcygiO6Ds4ODiUERzRd3BwcCgjOKLv4ODgUEZwRL+IcaT+OCbOXgvnHtvBwcEWBW+c5aDGH15bhnunLkV1VQXGDOne2N1xcHAoAjhOv4ixbd9hAMCeQ/WN3BMHB4digSP6pQAn3nFwcLCEI/pFDKLG7oGDg0OxwRF9BwcHhzKCI/oODg4OZQRH9EsATqLv4OBgC0f0ixgEJ9QvN3ywdhfqjx1v7G44FDEc0XdwKBIs2rAHV/7hbfz6lY8auysORQxH9B0cigRbPbuMRRv2NHJPHIoZVkSfiNoS0T+I6EMiWkxEZxJReyJ6lYiWen/bcflvJaJlRPQREV3KpQ8jovnevfuInNJhGnBq+uUB527DIQ3Ycvr3AniJMXYSgMEAFgMYD2AqY6w/gKnebxDRQABjAZwCYDSAB4io0qvnQQA3Aejv/QsF7XWwh1syHRwcosJI9ImoNYDzAPwZABhjRxhjuwCMAfCol+1RAFd612MAPMUYO8wYWwlgGYARRNQVQGvG2AyWYVke48o4JIDjAMsDbmPskAZsOP0+ALYC+D8iep+IHiKilgC6MMY2AoD3t7OXvzuAtVz5dV5ad+9aTA+BiG4iotlENHvr1q2RHsjBoVixaMMeHDxyTHnfZnFfvHEPfvniYscIOChhQ/SrAJwO4EHG2FAA++GJchSQsSNMkx5OZGwCY2w4Y2x4p06dLLro4FDc2HvoKC6/bxq++dT7ier57J9mYMKbK7DnoHPC5yCHDdFfB2AdY2ym9/sfyCwCmz2RDby/W7j8PbjytQA2eOm1knQHS/z7w82oG/8C1u44AEC+ipYSjh1nOFJfHjrph45mnnPOmp2J6sky+KU+OBxiw0j0GWObAKwlohO9pFEAFgGYBGCclzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XBkHCzz93noAGQOdcsCNj7yLAbdNbuxuFBx0sn2f5lc4ou+ggG0Qla8DeIKImgJYAeBGZBaMiUT0JQBrAFwDAIyxhUQ0EZmFoR7ALYwxX1B5M4BHADQHMNn752CJCm8mHy8xee26nQfw1Sfm4JEbR6B9y6bZ9DeXlM95DovgTEMnr/fvuUNfBxWsiD5j7AMAwyW3Riny3wngTkn6bACnRuifAwefeysxmo8Jb67AvHW78c+5GzDurLrG7k5Rw0l3HExwFrlFhAqPezt2PEj1i30NKLVFLA6i+FHScfHHs5x+4i45lCgc0S9C+BPabeFLB1HEO9p6vGqcMz4HFRzRLyKUuu61W8OApIKZrHjHvUsHBRzRL0KU2oT2udwSe6zGQWnzBQ4pwBH9IoJqPhf7BoA59jQ1+AtoRQrv8o0lW3HgiDPyKjU4ou/Q6CjyNaugkJXpJ6T5K7ftx7iHZ2H80/OTd8qhoOCIvkODY9PuQ9J0x+cHUX/sOCbP35g9y7FZHNNS2dx3KMPhL9+6L2FNDoUGR/SLEMWsmTF9+TaMvGsq/jUv54EjLe60qCGh6BOmrcDNT8zBi/M3WVdzPCXjrLL+FiUOR/SLCCrZfSGJR77x5PsY9JOXlff9qE9zVu/iUv2DXEdpeGzcldkRbd+fiZhl83aK/XzHIf9wRL8IkdPTb7g231u9E3XjX8CyLXu1+SbN3YC9h6Md/jlCBSlFF3X3o7ymtIaG+zalB0f0SwANob//z7kZccybS7blrY00F7EvPzobD01bkV6F+YYjrg4NBEf0yxgvzt+IjzbpOXcR+aBN+VizpizejF+8sDj9ivMMfuFz4i6HfMDWy6ZDASBt2vjVJ+YAAFbdfYUxbz5FSc44Sw6Vawab95TW93IbkNKD4/SLGI3BCeZDlFQs2jvPf7Ae45+e1+Dtiq+lIQhxoX8Lh/hwRL+IIBJcf2IW42GbjIstdHHGN5/6AE+9mwv/vG7nAUxZtLkRe6RGWs74St3fUznCEX2HRkexkpXL7p2GLz82u8HbtSHnovvt6G0U9gLsEB+O6DtYIW0iIK2vyOjM3kNh1dSjx46j/lj0uL5pL3zb9x1OuUaHUkHZE/0DR+ox8d21RbWN9bfuPo1Myxd7YyHnA96M+mPHsXmP3I1DIaD/jybjot+90djdcHBQouyJ/s//tRjff3oepi/f3thdMUIk7cUo05cd2ma1dyzk0D/71yJ87JdTsfvA0Xx0D3+ZsQprdxxIVMeq7dHLW21yInznpEOi0A9y648dx+3PLVD6cXJQo+yJ/ta9mW3wvohWpI0Jfz6WTOSsCBRq6uItAIC9h9Mn+vsO1+P25xdi7IR3Uq/bBNkrKKbFvKHx1rJt+Ms7qzH+mYbXpip2lD3RLyq62Yi+d9LaVfiO1nbuP5JNq/cOHY83MpXz299zMD+7CBtIh2PW70ZD9iSDQl14/G4Vav8KGWVP9IsZWZl+EQ38uet2AwBWbt+fTZvkuXj468w1xvINcfZScK/Tf+Yo4p2ED1EszFDBfasigCP6xQyf+05h6O87XI9fvfQhjsbQPIkDWWSnxuSwixkHjxxzEa4crOGIvodi4pZzu/302LHfvbIED7y+HE+/t07eZmotaeqzaCStc4xHp68qWMOqEAzPPOiOlzHwx2p31kkQhaH47J9moO8PX8xLPxzSg/O946EYtrOqCZjGgnW4/hgANCqnb+cvPp3V+SeTFgII+h0qgiEAIDxW6yWGWEl3fz5DEeV1z1y5I1GbUVAs36oQ4Tj9IoQ/IdNcqBp60SvERbYxN3tRiGsx7UrzjWKyrykUOKLvoRjGzhpBfzwfdNP0GtIyBJNy+hYrQcmoqTo4NBKsiD4RrSKi+UT0ARHN9tLaE9GrRLTU+9uOy38rES0joo+I6FIufZhXzzIiuo8KYAY3egciYMH6TKjBfYKOehrcjslXS9qGYBWSkdeQ4h0ZGnMsyGaC6kkbYtZkv7f3e9/hepx111TMXtVwIpykmLVyB/4+e605Y5khCqf/ccbYEMbYcO/3eABTGWP9AUz1foOIBgIYC+AUAKMBPEBElV6ZBwHcBKC/92908kdIC43L6q/fdRAvLdgYqUyak//JWZnJ8cHaXelVqoHsEDrK8+STX2gMkUGh7TTFtztv3S5s2H0Iv3nlo0bpjwib7/8ff5qB7/3DbLx1/DjDPVOWYFuZ+CtKIt4ZA+BR7/pRAFdy6U8xxg4zxlYCWAZgBBF1BdCaMTaDZWbVY1yZsseY+9/Cfz0+xyqvSDB5grFt32H84bVlsQnXtn1HzJlSgGzORtFGKlVZbmrBT7jX89C0Ffj0g9PTqTgmNu0+hD2HClMld9aqHbhnylL8wGKBMGHn/iOY20CMU1zYau8wAK8QEQPwJ8bYBABdGGMbAYAxtpGIOnt5uwPg7djXeWlHvWsxPQQiugmZHQF69uxp2cXiRhRiu+fQUbw4f2NOw4K7N/wXUwAAZ/friCE92kbuh4qYNoQkrrGFff6TF4DUMYCkvUkSNtIfD/6wOFIfT7tr5F1T0bVNM8y4dVTsvuQLvsbaIU+DLQk+/cfpWLF1v1U0usaCLad/NmPsdACXAbiFiM7T5JWNUaZJDycyNoExNpwxNrxTp06WXYyHApvfVvjFC4vx1SfmYMW2fQDkogFfRr95zyHUjX8B05elE9A8Lf76rYT9KTTCnA/MXJFxAng4JqFNAvH1Pvf+egDAnDW7Yte5sUCdo+W8vCYfUyu27jdnamRYEX3G2Abv7xYAzwIYAWCzJ7KB93eLl30dgB5c8VoAG7z0Wkl6QSCf0oK68S/gnilLUq93l8bTZJPKzACevWonAODxmasTtSWbDrsOHMGKrfti1VcZU3unnLDcIyCrt0cnJFGH89Fjx3Hz4+9ht8Iqen+BWfymOVJyO7wUKy1gGIk+EbUkolb+NYBLACwAMAnAOC/bOADPe9eTAIwlomoi6o3Mge0sTxS0l4hGelo713NlSh73TFmaep05DYvwFK+sUMv9k4Cv55Lfv4kLfxvPd3xFhYTox+1USijUY4KGiJvwu1eXYPKCTRj801cC6VmC2OhfJ38o1fMhFWxk+l0APOtxYVUA/soYe4mI3gUwkYi+BGANgGsAgDG2kIgmAlgEoB7ALYwxX1h2M4BHADQHMNn75xATvq67bMxWeTqRqXEvkgVmy9742g4Sml/WaOxAOFtD31LQ2Szh71WoZzn5gpHoM8ZWABgsSd8OQHoqwxi7E8CdkvTZAE6N3s38oRQ4GBm5qKq0f6668S/k6lLQnrTfU5VEUd9mztmQxqTxYQsNhcBtby4AefxHm/Ziz6GjOKOufTYtFSZdErmt/thx/OG15fjyub3Rsrq0vNU4i1wPxUgmdJxJdZX+09psaf1D4PfX7OTK2fdPB1nXZVa6yvKae7H98jfiINAR9JxnZfsORhVZmN787NU7DTnyj0vveRPX/HEGgHTl77nIbbm0SXM34PdTluDXLxeGXUKaKHui31g7uhfmbcxqZ8RFml0f2SfDPV1ySpds2tuehs1jM1an/p5kBH5/hOhlOpIm0ru9h45i1G9fx4L1u63rb2joCHqcdx913RPbEC1ySxmyGM2+amopuqwuO6LPGMPT763DwSPJdXKT4Ja/zsFnE4bly8rFLWa4KcsJrZsBAJo3qQzdy8dBV5VEqL9iWzrqbiIBfXfVDizfuh+/NViTNqRcvW78C/jaX8PGeKUgbixW8Dtn3XlZsaPsiP6MFdvxnb/Pxc/+taixu5IYOz2VTd24VJEQcTCbDrPSJkUy7Z0o0JVWTVTT/G3oeMn/mhd2uyFbeDbvOYRDR3NMip2Pomh9KdbFJo2FWsbpi+fYpYSSJvoy68H9hzOTZ+vexj+YSgrfT44fgjANmLj6tLj+pNo7UXphS9DeKwC5tQwvL9yMcQ/Pyv62efbk/vQLG7JvunbHAfzvmysi1+WfAfH8jmwTvW3fYYmWU/GhZIn+2h0HMOC2ybhvqlw/PsTpFvGSXh8j8In4uLJJ7ivBMKR/9iEzzkoLcQ9yC3kIRA1QkkSmX3/sOA4ebVzxZxxc9+eZuPPFxQkcp+VeAmXFO7kXOfwXU3DGnVOSdLEgULJEf8nmvQAyRic8Cp2DiQPZBA+LbwwcvCTt4bdWAsgFLle1FQdEhMUb98Qvr7kXt4+xtX5SQJRIVXmJo8C1O3bCO7jivre89EJeCoPYeygjlovaZZlFbinSCR8lS/ST4NHpq7A8pnsBEQ0xaeJofoj9knWT9+0jc+6WBOt3HcRl907Li0aNqo+mT9GY9C3tQ+Sotc3h1HIbSz2TMYbfv7ok0tyTfbOom0h/LvDFSll7qWSJvnGCe3/FAcIYw08mLcSV97+dTTt+nDUYxxOnHb6IST8/Cg4dzYmN8iWNWb39gDmTBLq3FOLYLfteCBPcRhX1tY+2muuJOI5UHiYb8p3sPHAU905dimv/N55WW9y+Zg9yeU7fu27M3V++ULJEX4VcBCiB0xWGzF5Pg2PT7kPo88MX8bd340XgaYgxwxTXeWkr5Qb2xvSxng/xTiEc7KTmIyli/iiGcfmCT2CPHjP3XkeMoz6JzOI5TmD4NHHJ79/IWwyEkiX69QpTfHFsb/f82Pscp/iRfRHHcx+sj9T+nkNHC8odgEpFU/VbRL5IwrF8zKqYKpuN+bVsXkM+g6c3PsnPwaYvD3nnTdOX5wwc4+7GdZx+Y42JJZv35U2brGSJ/lGDRov/MX2tiIemKVS9Ynz1fYfrcdodr+CuF6MHr4g1bjWs/ksLNgHIyNDTQOqy57zQ/GCltgTteEEs0uo+ROtdOs/SkJxulLbW7VSLBaM6TvPHC9++f+3EO0UE1XdX6WwrD/8M5WTY52kR/HPehgbhFHSE+LkPMpo3oqZMWGXV0NM8bf+jTiqbQBwq2m20QYjUk/xA18UonGx0lc3C4fXjdiXKI7+9bBumL8+4GdnkjamXFm7K3v/rzDUAMu5SSg0lS/R5yKJGiaKXnFMrOQpoToQQ4FAUT2Ca1LJSvmsGVVtpIK4ITH/gmbu7bEtYE2TnfnloSttnm7NmZ+q7grQXnEJYwKIi0i4y4QN+/qGZuPZ/ZwLIWDyL2CRJKxWULNHnNU+ufWhm9nrXwcyEn7Y0uBBE5TgPHjmG91abDWYKRc9ZtICNKqbJBfJIF/k49+BrfPD15VlOzsfR43LRn21Prn5gOq7O0yGbdjGLUk9KMv3G8fNPYCy6xpzUnUKEcoEeJGTypi3dirrxLzS6jy8ZSpbof/fvc6XpyhCDSpGAPP0HT8/Dpx+cgY271bJypQ8YzWBOLNJXVCCKpw4diWbFm6+dTlytKFvXyk/PWYfxz8wXyiZ/GN8FRhzs0WgsacdGHulvIexk/e+ybd9h9L71RfS+9cVIYUaz+vYpPEtSbabr/pxxmzFpbjQFkIZAyRJ9FdQcjfdXMbPEMbBgQ8aoKIo74GxbKU9evs+qqo8IB9tvLxdEXpKCUi4v5c7LttY20PbC0EUV99pQu7KjEp9QabcdeSdXAFRf5o/pnilLpdyy7umiLuqyutJ6G9sVosTGRNkRfRVUk848edTDg0g+oNImLXwUKlviYeOmgZe85MsLYz7IrKlOFRfXUJI4vpmVgjvptI6aUxPvNKT2TiOVlz5jSsNd5QDutQ+3YPL8xjkkLmuiX3/sONo0bwIAqG3XQponJydMj+jpt/DRh+7wunaSegx9sJgiUp8+tp2yxPBe4b4nhel8ppkkZgDQcPJrvn+X3vMmnn1/Xa4PWu0d+zaSBlGJW08SRGlL2t0U+5rWbFcdWd34yLu4+Yk52LT7EA4rrKHzhbIm+qf99BVcOaQbAOCzZ/QAEGHcWGSM69c9KuIYONm5P8jV+9S7ayK3YYN8WIKqz1L8vyrxTupdUXQkd3mk/ji+9be52bOm3Qc18v5ITRSGAkEUqDXPZInR64mCtMaliQEZeddUnHjbS6m0ZYuyJvoHjhzLuVCNWNaP8qQbG1v2HrbygJkUvPqgbdWrt0eLUuXrx6fd962x3eCqEXubn2ov1JBxf1MWbzaWy69FbnqL79odB4zGkVJEUKaQEeX43z1cMi1epDAM/oIoO6IvHliJvnjqOb8fuw8cVTpm8xHLQRo3yES5XpwhonI5oYNYRPYYsmrT5iDnpRgAxkdSc/x8oxC5cNX43hHjIPLcX72GHz+/MGGP9JB1N27EM6nKZkqLYAHS/PIj+isEt63ix32V47iu/79ZMMH0UWUTnB9kNz8RjpMaFTLzcRNU286g+mcBjlgP2zQRjGw9rIrg30lcR3A2iPtaoywWaX26uMFU3lxi9gQqIq3Rlsazp8Xp58W3VEKUHdF/UtALz3H6mb+7D+Q4m4XrdxsJXyE5VYsCKwdfMcs1BMb84W3lPfVZin3nr3/YvODn2ov2UmJH9jIUm7liu/b+tKXRCXFDolDGFpCeCqssZGtjo+yIvghfN9gnCHPW7Mres1mlZRPYNF7EInwgkViyUAk2aIzGgHC/bc8eGmNeimqNJpiIu1o9MVfufW4cpI244oRn39cb+nx2Qs4Pvewd+AZDDQ1bxijKopwWJ143/oWsU8JA/elUX5Aoe6Lvr+i+D++AoZPFGJQeKBnELeLgfo6bzBNiBHaWcZpjJ7yDXQfU8libZ5MtaI3BjV1275uR8ptFbor0hpLpxzwr+feHWxK10ZDgfdfEtR3JpssOWjVkOeqjy/zsfLgpfijPQoc10SeiSiJ6n4j+5f1uT0SvEtFS7287Lu+tRLSMiD4ioku59GFENN+7dx8VgBmg34Ffv/yR9H7uIFfe1Q41TSO3KQ5ufkehcgamg4rI+TFD5WXi6ZM2xiEk70fJBrEPcmOVysHWz0pDuOuNc7ifJo4dZ5GNj/LV4zh68A39+h6bsarB2orC6X8TAO8gfjyAqYyx/gCmer9BRAMBjAVwCoDRAB4gIt8a5kEANwHo7/0bnaj3MSCSbvHbqr61cnWKMTjESV/JLShpjrXEhj5SoX7c3jQconDyAXXXuAesXrmdmp1VIL8kLW2L57juLdLE+55/oqRDJqlDtMZ2enbrM/OMefKt7cTDiugTUS2AKwA8xCWPAfCod/0ogCu59KcYY4cZYysBLAMwgoi6AmjNGJvBMqzYY1yZvEPF/f1z7gZDweht8QPyC5yHT1WVlZzTkTiER8U5zlu/K3IZHkVA36UwPdoCTk30lUU5eW7cXYz/Lm1Ly8aijZ5+FNRUV6VaXxz4MRwaWtRUaFpnT86K51QwX7Dl9O8B8H0A/D67C2NsIwB4fzt76d0B8E+5zkvr7l2L6SEQ0U1ENJuIZm/dmq7Ggeh4TAzKoRovMwyaEao6ZktCnoltHOZO+OMQHlWJlVvVB6BqlU2e85XI9GVlCmySmfpzgOP8eNFR3Md4+O2VVu1m25GkzV+frr1CIUR8Wro5HMtAB7X/q2RYvjVaP0odRqJPRJ8AsIUx9p5lnbKNF9OkhxMZm8AYG84YG96pUyfLZvXImeAb8inSVapXcglItEYemb4qdyvGCFeVWb1D7WpBHV2Ku5beb3xiYoKqh75mlFL8E7M936WFtZZKA7zDQvhK/gGpLSOjdp+RTKHgD68tt8rXoWX087lihA2nfzaATxHRKgBPAbiQiB4HsNkT2cD766sWrAPQgytfC2CDl14rSc8LZtx6Ibq0rs5X9YmgmwRxJquKiMxZE95l+Ojetnngt0xGmsSFxMIN6Vva2kLVx3dX7fTu5zIEnjshMbY9/ItzSNipVcSxXAhU30ODi3eE37ZWxQO7tU6/MwUII9FnjN3KGKtljNUhc0D7b8bYFwBMAjDOyzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XJnU0bVNc4zo3SH3HDHriSNuMaoMag9Yo7dX2665NP3igV2UZYb2bCtvP3BtJ945865/h3ZCT7/XeMEjYhs/xWzP30HYni3G6Z7qGyvbiPg0hbCBs1UoW7F1XzTr5ITtlxqS6OnfDeBiIloK4GLvNxhjCwFMBLAIwEsAbmGM+ULUm5E5DF4GYDmAyQnaNyKOPkTcEG08XpYYewTKRKyvsWDL6W/acwizhdCRccz3ddzsbknEM1XUMtU7HNClRtt+3MVi4uzMUZWtRkkcRqJSqFwXfQsAFBEhCxrq4DbB3xf+9o1o88T6rKWAJl8eEYnoM8ZeZ4x9wrvezhgbxRjr7/3dweW7kzHWlzF2ImNsMpc+mzF2qnfvayzPwk1+njSkLPrAEb3jp7RD4inLxFDZNMr0FZUePRZMf3KWnSvmS7jdyFaNP505a8OiqkUb5AY0qj5WV8n96GfLJRwifHmd75k47YgLikkNUdXEdoVX03wSvHxMPZ21/K3PzA/o5tuK0wqJ4conStoiNw6n37Qq2iuRTZYKWdy3QJlo9Zn7kJ92oiyU63ba+OcP43TLICoyIqcKRRflsN60yEUBv7vR+e5JQ7PG5K5D9e0OFaAvGB9RmJcVGs20VxdtxgvzcoZhKlGmbftzE8RDLkSUNtGPYfB7Xv+gttCGXXojF5nGRpWJ6AtFBte2yV7HOeSLQ0TEIr6vGdNisGl3ukY/tl1fJfH/38MQ7SyULj2jyKUlpcXW4p0UdnMmR15K+pnCghPXhTEATJyt1llPk9Hm52XP9vJxIkI1j3TO/YoRpU30uWvbAfWiYDp+39Slkds1Rd0RiU87TlVMbN8GUVTdfEwSjNKy6nVckbFn9AyV275Pzl3HjTRku7ORuWJQqUiaZMP8M85ckTuLSCriaFJpN51s6W63Ns2U90RxWrgN+f00ZP0/enZ+7LLf/4faOjV+nOow/vDasuz1/729yqrMzJU7zJkAHIrpbrpQUNJEP458R8ZR6nDz42F/+MZJLdxv1axJ9vpADJPxOKRqyx5zxKq2LZqE0pQh7WL0AUhGACcvkC+Q5vOKXIanOFfbacr0dbDdmTHFNWDB6SuaeO4DuVZVlGeP6uIh6WIa57ts4c6H0o7Odm8MRrCQUNJEn/dnEndCm8QtMktK0yAX60zqdSVOzFcrNwySLI3lx6uLhOh3VXDCjWWNaq+9Y5lPk1G0LLdtQyWaMfWJf9f5iHam60Ocr8lrO6Xt036XRJOsmFDaRD8GNRUnWhwZaIumer8n4qLQPaIOdqg+S/1mq7qMbSk4/QQr1zXDao15ZO0O6NJKnldVR7Yuy45FhO0rsOf0+fOGYBnzQa6ibcWqbep7n04ts9dxdqM2iCOmVGFvgnMHEwox7m0UlDbR565N3PdnPMITCi4So10z4Qz+7ttJrz9uQhzOVu1amSM0kiepqkh3yDDGUNPM7BxMJotW+g+K+Dr8SdxQkzmNRcdI9FXnGor8aw3aV0nGaNLnTfuzyGw+ouBvmsPoYkBJE/04SIPTN41y8W5SjQq1poa6jM1EktGVob3aSvPqVOh0sH10WTa1/yDVYsCkdR0x+OSxhb22mCWnr1Enjc3pq1Q5I8YsyA/SO8jVYe/h4hbPJEVJE/2gcZY+b1azQ0jfGYMriCoiiTqkRZVQ1bPpaJDNQvPHN8KOqlR+33cdOBpr8WKwI/wyYhU3PrFYlRgnOS7sxTt2+QIHuUKZI/XRGIukSPJurMVZaQr1HZQobaIf4SDX5ybiEC5xu2iqInSwFLHJ5k2DlqWqPusMzXi/RFG6ol9IDIUBnNOvYyjNGNMA8mdUPZ+pG+t3yUUZSTnKtPX0Ex3kpiT68pHkcHyOZbxhVQtFLkKPjCWb9+a1/tIm+twkNA5aBadvg/0GtwsidO4GbGCK/qUC71f8/AFml9WfsThgzfXBjmSKuRhTW9aK+USotHdMxxUPvL5cmp6c07ej+vYElEmuMqg3EP1sOaEtVds92uuVCeK8mqtPz4TLsD0riWJUlwSF7m5h/U65T6m04Ii+h3xrdvDoUBN0LBZ1UIuyY1uubk3Av765TCuLA1YecdRArX2tW9RlrsMwBhKfrSQUY0TI58fANX178Xbcw+84r8b3T2//jeX50ub0KxUW882b6H0zlQpKmujzPLFp3Pjy4TPq2kduZeqHWwK/0/DUqYMoRlBNitbNg0Sbt5pNUz0OADq3amb1HOGDcrv6rSPwQP0MSgveBLs8Hn+ZsdoqXyzOVXgm/1mUh9mKNlQbhG5tcpy+3FeNvs86K9Wki1zazhKbKYj7IM4dSimjpIl+4CDXUjlhUHd1IAWVkccOwTWBBb8bMX8QIfGOooL+nYN67KJ7XhniTq+z+nWwc+IWs4V2kqhGNsTgrL65s4vlnoZRWDzmc825tDh2BxstLVWTaCz5MHH6j05fLa3jmMIPw1n9cu/pU4O72XWQg0xkmZbYrBDEMXEWHp0bDW1beT65Lm2iz12bRA9VlZnculwqNTmRQETdKkcdT6KfG/WWPZjO72ptmvz77HWhNCUtZHbPERbvxIeNske3tmFZdVg8lvk7bWnOHXKNwcAuCew5X7VM/5hBzfQDzzNkWKYvz3/PlJxrAemuiivX2TKKFxP+xkXaRH/LXsXirGknzT6Y1G3zZfzmo6SJPh/M3CjTt+BKoh+/2eZPJtO37QdZiHd4RPGmGPvdJFDns7Avg8HhaaBPq7YfCKXlA3F874jIcfrR6qipjreY8e3IxD9puL6IalsQF9OXbZemH9YQ4zT7cNjgFsK0KCRFSRN93mDIdBj07PsZR1S6bKotnupgSFlPqN5IxUM7i7eXbZO3I9TLR1uyiVLUsqn9wVYMhRQQJSWu5tI2GjXywNvRe7brgF0s1jh662KRLNE3vIOdgmbUJaeoQ2j6kDEVfDujTg7XoVuUbd9lVCviuFC9f53f/DQPk02u1/Md9aykiT4P64Gnyae606Qy+BGjWksmlekv3bJPmk8EH8bR5nV8akj3cNuK8crA7MQ73NOSZT/Ectk0i0NMWX/FOZfWfH5bwUGKsF4fA+KdYClfZbOh5N18OzIVTFk3smclMdrg0VgO9HikGdzIxOnLnDimibIh+kctl2rdAFPdEv3R/Pmtldb9igP7Q0ZRnquWEcvTw7n8w+CQVTEDdh80Wy8HD0vVDxJafGWcpLKwXRuyPhnrTgFpaKPYineqRB//ivyf/1gudoLslfGuimWhCmXzRqk2ajEXu3NnMXFel87GxBQYSYY4fdioCDi0YZdeDz+J80IblA3Rf/q98KGkDB1rNIdUig/fXtAsMRG/ENcQcUSpApmE2mHARdxWnNeAMfmnUdbp/RXnLYM+LqxYPvc7PgG0eW2yuCahg7II5wVpgK/7vs8NVefT9McnnMpDSQ+i1bLqsbq01muavMF9Wymnr31hwXuq+La8+DFoIxL9Y+hCJC7barcz5tGQmw1bI7+4KBuib3sibnKLLINozdiltV67Ial4p97WwhHBgBdxo1sF6lTIaY8zO5tcvpwo3gloF1m8I3WkJb7O8DOL+vqmMIppg2+/WuJKwlcN1hGaZt55Cx+ARwbZjkyeL3dtGiWy8ReFKKrsJW5/bkGuD9x3O86i7454NeoThAUtzk6rEERMaaFsiL79JFbn26k4qBPHw2dO72HZlrx8WmAsKB/UEVVV+VCa935C89ZaNp+DeJAb9bDMJruM6A+ubRusx4LTTxIXVgRfl6x/h+rDDIrYn5F9Mnr1y2NwrTJEWeRkRFv27bJeTcVdimLw7eAOnU/tlrOXYSz6HPmI81/Tr3PQLXTUunp1aJFnzfkgnJ5+WrAlSpp8qlCK4oD/5zy9A7Gwnn5+PrI4eHjRVdyB5Xc1HHfAcvcR4ChJ+S5Ca0oEEczfOX/nMqIq+u+X7iKE30dTjL7Ei+dkXLWfplUq8G7tO6RfjGzFaYGmuHdWKwnwIyPa2rMw4beK0+eT+R1MHC570YY9yvJR6+vWpnmDcvpOvJMS0tCNVt0TJ+cygzZNyOmYRb/iQHzkASfkLHQ37ZY7fYuq982X23fYLEILlJeMbX/ih91P24tgePmzTDvu3zZuMxKK4HRYtDFHkHwdAJkMmimuAykR6YNavCO/ITNukymn6V5h+DxC3gd+joq70qjvf8U2Xl1bOFOIuKW01UxLCxE1wKPXn9/qiw+6j9u2uVx+GnU8vDAvGNA7b+Id4Xdrjnv6n5c+VJTRd8bva0guzoAtNm4IDMQ80oRUZOWrqLCYQTYtprkb821CgJzsWla97hyKGWj+uDN7SetVLtrctemN2XL6qlemOsjlk/lzg+OMJXr/YtGZK3dkr21sbOKcKSSBzZhNVH9eay8g2H6zCdNWKO+pNBw+0Bh1yLB6e9Cfe/44/ZiC92x5SVpWph9vtxIiLgp5r5V4R9EG3zeb6aN7zlydFhXFQIVEBVZqHKV43yqV1Cae2lL4INdMcANVSrLLFmaZGM1/h6Ldilq8w6R5pi3dlmiO6Hb5Nv6owErLp7+R6BNRMyKaRURziWghEf3US29PRK8S0VLvbzuuzK1EtIyIPiKiS7n0YUQ037t3H9nHl0sM1TcTF1WdVZ6qjrsnf4iXF+YMnzrWhJ2D8Ygb8Skp4h7eyu6HVDaZpT99gbiIZfwJum1fUPwU5Y1FZcpsDL90nF5dhxbRGuTgD7/Ih9iW0p1XF222qy/CG5a9irYt1FpEd08O7irVHkBz6TwHPm3p1rzthvlgNCp17Yx4p3Sovg2nfxjAhYyxwQCGABhNRCMBjAcwlTHWH8BU7zeIaCCAsQBOATAawANE5NvzPwjgJgD9vX+j03sUPVQuBXq0jz9heXzlL+9lr7cZ9OjF7W1DDSgromy67/VV1NVmsHPEFbTIlXG0mb/vrAhbt9qrH+Zu6KKHcZ0yJumIsqgdEgU+h8wTvI82ySMn8YFv/GdUW0hnIGodqXdHuetAxDnbA3pZmpe4ydb7KHctugFXvROrei2nVwsFjTgucPoj+5jdr3/l/D52jcrayzNTaJwRLAP/ZLKJ948BGAPgUS/9UQBXetdjADzFGDvMGFsJYBmAEUTUFUBrxtgMlhmxj3Fl8o7zT5RHivI5y76dWobundw16GY5LeKs+6hNZdZEljARxTS6n5XpSyoz+RQBwod4KrHFwvV7tPkyeRWiCu7aZjOpUzf0oZJDZ/Iam1DCf2W8COKwxDc9YzmRDcCJdwy8fkjsolwojV3lqpDtjGTfJ4MQw6Vqi0sPeoRlOGpwSKP1568taUZmFxutlmZVar9VpiG516CRlRRWFIaIKonoAwBbALzKGJsJoAtjbCMAeH87e9m7A1jLFV/npXX3rsX0BoL8Ta/dkTGJln1ScbCmxZCHOf3cdXeJipwMsoETtpKN3mG+Lyu2hbWQ/NshTp9Fn1xEajHK32avDeW3XcRMMn3x8E6uGRSEzIhKlTcK/EUp0OcIriOUnL533/ZQUOWvyFZVNopKrXq3kbvD99tm3tkaLOqgepeZg9zc76R0wFReNvbThBXRZ4wdY4wNAVCLDNd+qia7KsiRdfAjIrqJiGYT0eytW82m/XaIQQAV6Ull8mLxvSkZ/pg5fXO/+cn/7qqdkjYyf+NaZQa4cITfsf9bpnWiyisiIKqQjDqbIDSRON8EVICynH4uTUanw2q+nnjHVL+hnmx6ihKFT59eG5CPq+IXiFAt1jZd061tuu9j42qaQSD6Fv0pZESSJTDGdgF4HRlZ/GZPZAPvr6/8vA4Ab5JaC2CDl14rSZe1M4ExNpwxNrxTJ3MA71RgscX3scMikLcOIpd8mLPATKSaJv6WEE5jHYZMPtFoEhJD2R7kBjlaFfce0rhgskVNRcB44hGmBpYSjwCiGB/FAV+/TDceCPabNz7SwTQmcun2BFeaxiX+90X9vb6yUN06BKZFYLfBEpkr6VrnPeQqNXkYC35/i8dpOBWV6LDR3ulERG296+YALgLwIYBJAMZ52cYBeN67ngRgLBFVE1FvZA5sZ3kioL1ENNLT2rmeK1NUSCrbF3cKvPzatma+C+f06wjArEaZpkxfdCfNBKLcXUG4Ato70gyZP7LdlC2nr1Q/zLYr9j3iFiUPMB3eMRbUxOnbyTs81ri6zha0gM1iYMzsoVWzKq3bbBv2wBTPWdSYijK2eSeEOw/knLypRGGZg9xcA/l2k6A6UE4LNt7FugJ41NPAqQAwkTH2LyKaAWAiEX0JwBoA1wAAY2whEU0EsAhAPYBbGGM+K3szgEcANAcw2fvXIDBzsOY0v45DR5OZ5Isy/enL5UFQbCGL8Zr5XfgbUZXYQvQ5Lp1oEWXGyj5oCF5O5h69vA18MhOI2mVRn38uYTrIteb0+T7F4FKDZwIUPBew7AMP025D1AjSVSm2d8GJnTBlcViVVfXYaVvkNva0NBJ9xtg8ACH/r4yx7QBGKcrcCeBOSfpsALrzgEZDFHn3YYlDrCgQuTr+Z6qDK/Q7eeUqJ1pRa66prgKkB7m6tsU25ZmNxlmWRI2xHAHUvTvZHStVUWV95l2Oj06t9DYhtt9JtIvQ5TeJd7LvLMFwW7cz53P+OLf4+vAZr64WwcfFbpjsaELlmSDTTziNbEO35gtlY5EbB6qXn1RTQKv+l4Awy+TgPGwNdXTwqxTrCk8M+XPwc9e/7MD7+Ve1yyS7AiWHLm9PbNdYD3et5/TtdyFxoXqfby3Vh8q09Tn1/Ae54zXj7kFS5VPv5jROyKsjrfCHKlEh35e4u1p+AVDVcFwYezYt6d6hrKu8SMd52UwJptdo85r9j2XS3rlIEkOUR+8OYZsAsY0oyA18IV14KlVA6GBddlwIH/BC1Z6uPMD5nbFon7GwR0krMYGN+qNSo4VJr22Q7+AwfpblW+WeX33ILKfT7gsAPD0np43ti3cinRMI4NVqPzOsFnsUgYmsQjIK7b2yMMewnGCzU2AMKzkHbjb91w072djg43jk22C/bIi+jwsURloqZm30KSeE0k3ck4nOnNO/oz5DTJgXtmhEWVeHSGwYWFBMZWiHdx+c2b6by4lh7uLOjVaia2UbImuR55uj+sfskdCWZRqgd38AhAmU1TuTjN/BtW24OgzjX6giigjPB8/5EpFUBm9bl5jlGc7hHW/zpSPmD01bqawvar9kRN3k7yhNlB3RbxklMhZjATe9/rcwcfqmgfje6p2xy+rK2Lop0NZl2daTs9Yo7wHqhZEPbuH73tl14Gi8g/aYHNctH+9nrFtMtzlrqIxoUJTpn9m5mrzNTJ6z+qbPQBzg7Eb8nsxdt5trW9af3LW4gMfxRS9qsIhO28T+xZWD28SNPs5YYM7b7GBmrFArZzR2FK6yIfpZwqiUM8rTDx4N69CbD2L095+YGSaYJtgQAlncWh5jhpgNoOMQX79c8ADVsN2hDDcY8g2jaT+Ofv3qbQdCadVVoqW1WqSUa0vdmkx7Ksm0lpZVERpDSyE1XouO3fHPRdr7qhnkg0ABG4ykJI4xFjhziNApr7xtQ+ryNoR68cYcQ7Nsi1rsJhtvQUY/v4tC2RB9HwYXHgGoXr2C6chCG1w9JqzkfIZt9ElcEBV1FblCsvy6Q8/6Y9zEt9CQISIcPmqhmomcGMimLzxsTNrVnH7ujs37b0gOzm/pNSEgTPa+QssqMgm2fCbt4XkM8Y4IVWwBEzNnumfD6TPLfHu5cy6VNhSgFiX70PntSQNlR/RVHv+iHZ7pI2OpLCptoOI6N+w6KE0H+MMsUX4bfXbxzcv9zajrvO/fS6X1qEDZ/5mrZwDeWiZumeWZfWM1EUN6tPVKiYuHBaev07iSiNdsD0zbSWTyUZSB/peTNcuQ1HpcBtv++e+5f5caaboOUxbLFzO7loUcmiy2i3kgn6JCnVZelDZbWriGSIKyIfr+JFQFPDHJKfnffOQjaV1JNDcU6dstJq/pwCzqoRcvxzXVwUS5p8VhH//XBrbPE14cMujkuX6O815sjLMCdMFcJQCgjTQaW7h0aBGxbOBPbwaDAkXlsnXEXAUij9v3sp03ILorFV5bRgeV5potjtss1CzI6OlEnFHbNN0/kmJsZh9lQ/TThI3JvA5fvaBv5LJa3y9MnkcsYTUmIwzIJPDV+ngjHEA/oWJpogh1SNMt8tdr5II+ETx4hD//seyUzLlaCq9YJ6owgbebiIOMTD/X1oOvLw/2waITVwzqmsuvyeffm75crY4stheom9/NadrYxblrUPXf1hEjP4dO6ZZx386/850HjkjzpgVH9DUIczSZ3+LhY6ic4UPZxOUUYRNYISy+TX/A2FZpl4+w60BwB2OjJRO1L6F6DPXK8PfZ65T3/PIPvaUXtcggDSQD8wJnu5s8o66dOZOAz4/slWtHzuqHk7iMFWQwTlKk88xQr4jRyPYfUc9JsT0+CIqNVo4t4bUm0Fy2Oz51CgbXtkFrbsd39Bj/LtP33FY2RN/0OaIYrZgMfmQ1BSzudIRN0dONu83Rh8R61+wQYvHaqAIa8tpubW3eJlEUQxTZEhyP6j82fZVVPXy6LkhHEqiGEh9+MwlE99g2w9zEk5jWgVywd8V7VaQ/wO0IbMeFKpKbDnxWn9MGct9b/NbhsS1vi/cXpQsoFHDyRoTmTSuVEyYf3jrLhujHgYqzbNNcf9BiOh94STOhVZNyocaVropQr99lJzqRta/aqibh9HcK5xLyAAvqdpNz+pkCS7cED+LFem44qy5S/eqFMN6ixFh4kRe/h6lqtSgrWp+swyVy2Qjy+Md5adf7q49sFrzH25jIPGuaNMpUTf365Y+y1+MvO0nZn+//Y26ufdK7rMiHh2ZH9D1IuRcF91pTbbCClB3EcWnLtui1f2QQrUjl7Qq/Y8w6v5+qSRTVzoHHIc5RXS54iD0xC2snpQOxzW5tm4Xqf1txOJy0I7YLn3j2kU+YFxTJ+ObSiPTEyup1RWQuogQ2+pCLtyt14Sx0PhziU17vWm5nrZuv+7mzn8oK0nLzNm5EoqKkiX5/LmB1muJtlUm4D3nMVbu6Vdlstq8mAmqlvcMMeVUcZChd35jPDdpuyxmCdgCZNtP5qCKR9eXRfP3Nmqh1p5NEo5Jb5OblOCZbtzGPIb+pjpx4J50+2CwAcaPZ6dxFqGAj4jQaJ3ro3bGltu0Yx39GlDTR/84lA6zz2ugeJxFt2A5JpWaAngUGAPxZ0NmOc/Lvl1CVtalR52yLR/0xhiPHxK20ol8MmDBtheKuHWyJkMwPEM8dWrdnkUfK6TPg3VU79HWbuHHljswCKaw4RKRpy1y/7YLu59MRfV1VUi+souV3iJmSV8jP0fMVPr5ENK2q0IrCHKcfEVUV4cfjuX8eskmyP2bs2ihy0/CBj7ysyOXKwPu1AWS6zjaTLfNXNYdsDJlULYncz/b9R7Btn6i9o+6jr7N81dDu0jZFLPzppfoMBiTVVErijXHygmQHuXHp9n8Mr9Vy+i2bVhoPcgEv/nGCxSMq1z1PYlNigyCnL2/UdhPBM0pdWpu9d2baz/zXkAGPSpvocyH9fEIsHuLpENJ+sSTm05ZI5L8WHLxuK6fz4e/3a5rgW910YKmr6xP3TVPcV5XLQTXheQI3yuB+WtUvIBfM2sZISNXHQHqI04/GXSWZrnKVTYvFOeZ9E3H51WcGa3eIsrjG0ga5x7p6aNDnU2TxjgU2abTbdO9zl8Rlc5gNs911BH9//mM9jWWyhmwNiJIm+uf064iBXVubMyKavNuERRvDmjY2ct/LB3VVttFcI1NOFV77fPi+wO0EFI4/6PrlVYNi1+8vjmkxR8pJbc3pJxCl5Ms4S6jjpvP6GMs0axImB1IOXqqoIOmD9/d9wQre9HjL7rzM/h14+WZpxGG6uvZLPIqaytv2rXMrM7efdTFuV2UqKGmiX1VZgR9/cqBVXoZour5RYXuop8rWpCo5O+DXvUZB0Pk8Ue9v5nwaNW8iFwG8xIksooYTzOfuN8Tp++kR1QZN9coQ9wDSLA4I3h99ajguBI9+nWtw4UmdY/UFCBssEtcFUcxo6npVZYV1IHLTW2hSaT9v/CbF8xT+E3Vv2zzCuDDnqzAceucDJU30A7B4qaJMPFRFgg9jU1Sn/1/bTm2hGLVfR46pDY3MkbPk93kd5fMGdJL2ycZiVSw3Zki3TDqXtsMzbon63GqZbTA9jRivtpBZZ+eD029aWaGtmzGWFTX1bN8ikL7C8zvTr3ONNK4xjy+f0xtAfg4gZTCN14wOvK48d+3lXB9Sj81l6ta2WarjIiPeaVj5TskTfdvXmU81uUz9Fod6mgOdHu1ynjtHxeTI0hBh2byiLq2bpXYwJRNLZN0GG8qKfvNVYADmrNmZ/R11y60kpBY1yD2ZWrQZMb8uwPvug0exfOt+7DqYOVQXTf/vnZrxnrpsy75oDvIS2HSogqZEBunn3mwuoFFOTz/4lHFUMW0hCxmab5Q80Y8C02CMY/Z/19WDcFbfDvaqjsq2c+hQ01R5Twe//29bxMrVVJJXiO84t/2VyJENC4vIRevEMEs28RG91G3edsXJkj6r69VBea4h1Cj3xKlHWGSlJlaPv7MaQG5cDOuV8dfji+ACQdMtuVLy+iDzU5Wm2CvN4ejXJW6++J1g6+ZV1m0O6t7GKl8Dn+OWD9E3fyhmYYkYvd3PjeiJ4b3a2cn0NW2kyW08MXO18p5ZUhzMwXssjFKPCF91VXx+mfhDxx1F2WGM6O073mJYsCGn8qejayP7dJA1Gvj5/dEnWrV/7cd6StsSH2G3RMMkqp6+TmQlcvZ9OtVg1d1X4OMnysV0unfsV+Xbajw7J+yozsqGw8IRmk1dFTHcQYjziy9fXVVpPcZGndwFw3u1yxpgaeFUNtMDz5nc9eJiZT7G7LiLWI63bLkjTb5n389NnhMtImDJ4I8rGRER89jer5IclPG+1G2hUknVWiRKCZImu3Dva16sXMaAx9+RxPyV1CF7XiCoBBBlUVZ52YyKiwcGVWDFZ9UdGFYqqICsbyafOv4Y9ss+9a45cpkM5/ZPJ/ZvZQQnQP67Eccc71YZEReRbm2bKxeJ+z43NFOlU9nMH8SAEiJE61AZXpi3MXK7WRmxxWquyuMTpRvPrsONZ9dl0zvWVIfKjKhrDxn8XHxghinfPl/IYzrIDf6WuX41HZ5p6xd++/W/v2ZXNq1rG983TjLuSGZ5C/DfK1ymUuY2AXLXvnYaW+G0OOchYrCN0DNpCMuGXfY67ib6FDB2ApMaONp8tzFDuuOv//kxYz5TXdWRVJ0zdemi1PFaSTbQvfc+3A7AyfTzAJsDyt9wGihxIdsJqLbWP5Gok5o+fr/ONYEdgczv+CcHy0UuAHD/v5cGXLvWtguGdtS9p4wr5GCGCyTm5kk4l0wQ7FxkMv9ZJy/ILba+jFsqehB+84feYeKu4H6z4qNwA+JurKoiY6zEB8XWHZqKiO8vnQUWB5nfpXoJEyPr0d5DcstzVde0c0kQ7/BeLO8dO8RcnkONRdhAU13DerVTfoVnv3qWtK77/r0sm/aFkUEDK717CT+P0EdFPv9sTjUCVGE/k6Lkib5q4PJ+tIEMsTF5v2TMTJQf5Xy1f8yTGWeJi5D3xrN7W/VVhxYSs/gBXeTiH8YYfvPKktht1lSHD7E6SYLAHzhyzBhoBgBO7Z77Bt3a5AxZ/vDaslBeXvqT4/TDELlkncjMv7Vxd5Czy5aQyr+Dv8/t3xEMDF9/ck64vAVkeQ8dtdNc4R91YLewEeJBjgHxtYRku4hqiVGWrA3AJ3oamT73RAzBnVGDGRhyqKSgRtxC7uxmaM92gbyypxI1wGy+Le9aRZe/a5scwyVbvB7/snmnEwdGok9EPYjoNSJaTEQLieibXnp7InqViJZ6f9txZW4lomVE9BERXcqlDyOi+d69+6gBFVQPCNtvseXdB48a49DacG68Y66/feXMQFuMMfPW3XBbJmfdf7geC9bvDqTZeucTOU1d/2rbtQiffUja4f2V68A/S1cvmDwT+uTrTG/dezibdlptW6+v4TrFpGOCX9yAC2Dvr8jpqsQ+QFiTpsJzS7B5z+FQ3rjinakGL65+3c9xO6KQ1ShY4D3qdhRNFUJ9qTMyY8/8spmcvHgn7nTnn23FLy8P3otY1+GIMWdlPTbN4fCcMrRhWEjThg2nXw/gO4yxkwGMBHALEQ0EMB7AVMZYfwBTvd/w7o0FcAqA0QAeICJ/uXwQwE0A+nv/Rqf4LFr8v3+HuUcecQwj/ypZiXni5IPX+9YNOhtZuGzeLNm8D5/4f29lfw/t2S7wPCcqOH9AMkAleebcfjHe+N4F2f3KOytyKp9JNIn4pn0XAIwFiUPbFmp1Rak7ACGJfw+ZRZfvgF+P0C+V2AdAB8nORoRu0QjnDb+/tzXxXnl8e+Lc7DW/ENe2aw6woO2BD1mfdFar8t2Uuk/84zAGbJD4xLEV7/jf4bF3ctpmoaAnRoIazKL3xhm+J7Zncy7Mz3Hx+4qBjYDgwpKafYIGRqLPGNvIGJvjXe8FsBhAdwBjADzqZXsUwJXe9RgATzHGDjPGVgJYBmAEEXUF0JoxNoNl3u5jXJm8wX+hBzVaN7bxOBkLci5nSWRuJpn+Sbe/pO4rxTvEEyG6OLjw5M7Z9kWE5pAkT/uWTdGrQ8usnJaXHyfx980XbZbdRrNAhK1OraoDfwG9+uGMFUGCKepK84f5Mr/5fP0+9hxSazvJ3Eir6k0D1wyrzdQtpg+vDfYJwHV/nhVIkxaE2iVGLO2dwF/5IXBUrvbNJVu19/nvk1PDzaCyIugg7un3NLGOJWniGyDYL1q5enMFRt/zpjyPl0XcsecDkWT6RFQHYCiAmQC6MMY2ApmFAYB/YtYdAK+ntc5L6+5di+mydm4iotlENHvrVv0Ht8XBI0FifID7bfsRGYCfTFqozcNb+PmIYtBiQthlgLlUH42esFhepXGRySvTColP9edy7nB5ufImzo9PVu+bbzPb1zDESSN2739e+jB0z2RR+5cZq+UZvN4ozoHzgjN6yzWzeHm5zLJb952Oatx2HwiNBf3DjfNCTdr4qeex64BetKoCA8Npd7yS/X37FUHliCaC6Cqyzr/QZxtRzCcHdwsU5+uVHZrz7+WqB6Zr604D1kSfiGoAPA3gvxlj6oCtCjGYJj2cyNgExthwxtjwTp3sghGo4G+nxG3Viq05J1Cmj9jKQovABnFd5vK7h5cXBuW9izSxc2O1L2Thn90nJjwHWGe5SzLhlG5tpO37bfETo0XTKnlnEXaad0xj5JNdPEQCKeTXiuRI7ahPlqpzAZzrZ67kVwQ3FP7ziM/C2znoLbvDdyaoVJnJLgrcDm5n1q5Fzlp86z45IZcR1ydm2p0DmeoSrdWB4DMfFWMfBuqSiHeElcpmPe/ZntOIs2QAGtA2y47oE1ETZAj+E4yxZ7zkzZ7IBt7fLV76OgA9uOK1ADZ46bWS9Lxi/2GzMZU4DkQ9935dMoFXkm7XT7xNLdoB5KKCfYfrAyKhg96B9PkDMovhtn3hM4QkOHjkWIDA/vzKU4P9AwIqlTYybhv4GjkX/z64/fXFRzzx8Q2kZF9jn3Bgz5d7S4hz68trf/qvRdm0IT3ahmTyr2gC2RPUjvpkw+WXGgNBH7wywPcuDVr3qmTSxwLGYfJ+qvqkg8idZ34HK/lgbW536xNYImCu4FJZd9Yh213G2TF1bRN0Zyxy2s/MWQ8deO0ev7wI2TvkJQlRD3Kj6Xslh432DgH4M4DFjLHfcbcmARjnXY8D8DyXPpaIqomoNzIHtrM8EdBeIhrp1Xk9VyZvsONug3lOFeTAMoMcGUQNIR+2g1e2Bf/j68sDv/2uPnzDGVj0s2iRofYp9LF5PPP++oAsmHfJ60+gv2vkogAw7sxekfoFZNzpyuC/E/6AXEfA/vRGkGvVBQSRWak+fMMZIZm8aPhkgk6UMmluND5HfC9+wG1xXJvsLeIQ0BfmbcRGYWcik2lPWbwFIqTnARHPOmzCfRrFjRGemwG44r63Ammh9yZhzABg0cbcYsETfVtFhwZk9GEjtzgbwHUA5hPRB17aDwHcDWAiEX0JwBoA1wAAY2whEU0EsAgZzZ9bGGP+MngzgEcANAcw2fvX6BBf+CPTVwZ+Z4mDoZ7XPpSfP0TRcBEnsxgb1+dOKysoJ+awxO3P688jfLzHnUsEBr3EMEX2ZG1bhLfYPGQRhVQLq+ygWOcQTYQuRoLMr0+LppU5rR6vqM5SW0tM8zCTTzpBHhSIHwtEJAmVmbxLnVpVS593Bqdt5H9H6XvRvCvZZ9JFi/NhZ+VuzIIRde2xWBL8KCzeCT/E7oNHA7YV3drahUrM1pmSAoctjFSDMfYW1J9rlKLMnQDulKTPBnBquET+YBMYZVD3NgGOZnhde8xamQukcE7/jpi1agdeNLhguOWvc6Tp1pw+1HJnH7+8KvrrSzKcglyLWdPlBu8gD15en0Cv25kL3HJW37DWk+odyTlGr351t7MYoPFTJFtoKijc4rqQf/Uc5nDuIcL9S38i+11+dZFal58AzBcPtDVqqLY4sUsrvLVsW0ibhlcz9HcmOi0UWRe27AmfdaQh9LBluLq3ax6KeDeirn1Ye0dCoAf/9JXAb57psZn7/rcUg7fkCyVvkbv/iFmm307gTEXXAoN7tAVgFwREBpthd27/jrBx5tS7ozywuw68umNU8ITxg7W7QnF4RQzs1jqgFfPi/I2oG/8C7ufsJC4fFI7ipHpHJBmhJq0bHpcIjsh4VEjqrqCgiMCkNy21y4jQv6jwe8a7O1Zm4pMUL3ivRh1VxINfOB1AWPdetijKeC2dWO6Z98OydpNmWM/2LSLZtazdEY4Y99nhmePH9i2bhoj5PWOHSHe2pjZVBo8mBvSaP84w1JwOSp7oy4ZNx5qmmW28BzEUYXx/KIo+WFTXpLJCypWIJvkykYQJ/TpFXyh8mPouTsyTTmgVeI7HZqwCEPS2GEXNUy4lsBO3AXrCWy9RVeS/PWPAFx9516KVHE7t3jqvx3KyV9dOMGDTS5yCzzzojlcUOcMQ1R910LnEFr/clr1yjSbTGdTQnm2tFlaf6Mq0lP7nM6dh1d1XSN9Zk8qKkFGnzdDt0pqzKeHSP3n/W+HMjYCSJ/oyAj68V3sM8bh3wOxfI+kkttliZg/ihEH8z3l5V3DSIqoe/mm1bTFxdobAH64/br29VjUjfr9vXNiPk7nHU4H1IfOMSRQUz5h2NiJO7JKTuUdl9K84Te0oT4ebL+gb+C37ZnG1d4L12ueVaRmpin/9r+9L03cadPcnL1BrVfFt+j0xHciHD4UV+QzvkDcI3HuoHht2H8Ka7QewMIJ6dT5R8kRfhp9deQrO4NQyJ88PyuqjzAuVG2MemyXyShEfP6mzpxIZbF0mPkgLviXm7NsuwpzbL06tXt8m4uQfvxSykFVBNZHEiVdVWRGJ+OgWBhnnSkTZ+kUVTxt0b9tMedCs0u7yITvgDiP88Cd3DR7uSg9xLd7ZFwUHgCKS7ID5oOviJ5m5Mp4s20aryu/y8eMMf5ut9u1PFDTYVOaD2TiLX3Rf8tR9L7nnDWPdDYWyJPotmlbhG6P6Z3/L/IPw0I31if91pjT9yiE5q7xXNIduvsz54yd2BkFvHRkXyv57TXWsqUb7lnqNm3xDJe6U++vPwCcec9bsxB9eWyZ1gdG8qdqzY5VCVOY3+aNnFyjLqnD5aV2V79toMxLz04u7KZ1/mdueUz+TiabLFkmZxosMXVo3i+STyKY/tmDMrCr7nOSMRCb+k9nS2MDWc2pDoOSJvmxVrqmu0srGVVahUfDti3NGNWskB0g+7r/2dLzvcdn/8rSDXvtwi9eP6KMrEhfcoNrBetjoZAMIOGTz+3/1A9Px65c/wsd/83o230PXDweQWeDf+sHHpXVVyU5yYf7eOl9NvHM7/onqjx3HGXdO0dZro3Qg+77+UJ5920WYPv5CYx0qqBZBFaYv24bL7p1mlfe6kb2kGkS63Y84JE5orVeFlDkW9DnzHQYPurIdtTg/Lj2li5XDtUJH6RN9wxcSjVqAzMdN3K7l0GhaVYF2HpftLw43PvIu/vLOarwZUZ4MBIOG+FDJ5VUudW3Rulk67ikA+UTq07FlWE+a1PJpXu2WX9Rr24WJ9A1n1SlDHz7OeXWU4SSNGihxKp98/34/ZYk0Pw9Z0BMreA12rKlGt7bh8QyErc4BYNrS+H6t/t/UpXhWonGjApF8wRr445eVZcSdhWidLOKM3u1CafXHGTbvOYyfcVbXgJ1rFd7fPeCLv4IPUTf+BWM9hYb0Zm2BQvR/zmP2bReheZNKnPKT4MDrI2i7xOGITYvN41/SB0i4XbMN1+Gik8MLlop/+9EV4chdUXDuALlfpGs/1hN/jehLRbar6dSqOmScVcERD90rNu0cats1V3K2Mqd5PFqaCIawEwGAx6brFxLALlynrMcje0uCtQuQvY+3l2035lHht6+aFzEefNW2O1iRqfBFkFO/cz72HDxq5ZzsaUlgdgBZRisK6jzHhYxl/GHpPOYmRVKGTIfS5/Q19zrWVJsnMOTyZt4ISYYaAxcs40rSQJTBfK3VwaEav71msDR9cG0baboOKoIj7lIynHROTCDTvc7UZ25T5frBBN853GBOAyzQR0naXsG3TLc2YVGF6mDSJwAj+8iVBkI+5iUQX8e6nQfwxzeCLj7ivg8bVDepiGRUJ83nVdC3U00o6pUMoptlHj8YfZJlL4QuUKZnw37+aqzytrjxnLq81V3yRN/Wb46Ir328X/ZaxplcfbrUK3QWHQ2OyEQ1URuYdgcAUNch6EZ59m0X5c3VbzNF+Ls47pZl4odWzZqEOH1RTKCSKbcyLLqn92oXORbA+MuChGKoguhnwTJeNb//j7mhW5/kDvp9qDj9Z7xYrjdf0C/Wu51920Uhw6Bz/ue1UD6dIVtS9O1Uk41Mp1qoRSQ1bvvM6bXKe3yoTlswlrOatzl/SYK0bYUCdeet5gLBlUP1xFmFEzhOTDb4WjdTi43yBV0sUx8nevLmeXdcgg9+fDE61lTHOohOgqgL7WNfHCHl9M/t3zFE5ALGU2DKWLxDDAT59J7tIhOVT3l+0k1P52vI3DX5Q4y8ayomzg6LGMZLOE0Vp39q9zZYdfcVWc+qUdGxpjrwrCo5dL4IzZ+uGwYgp0Hz8NurcPDIMXwgeOE0IWrvemoO3Ht1UMeY4MGr0basrmywg9wkwYlMKHmZvioqkAk+d9+rQwspQWqhUQXMF0zj4FaOE22MRen+a4cC0FsNyw7OmzWpxKrtYd3y6yXeOvmadUS7OuZ3BzILhowgqQ5+VdAddMo49nyGyrPpe76ImT8W/R4s3rgHJ//4JfTpFCa8d109iOtPsh5F1UaSgfe426pZE2mAmnygpjp/87fkOf2o8CMQ+bvh8/p3ksqHOxvUx3gM6BLfDUIUqHTt8xnJiccnTstwwjoZM38OMLxXTi47S2KgIyOMw+vaZ5/n1y9/pGwnjhjk3P4dvbLy+y09T5ane/0+b0DYcVwSiDYacRkWGVRaPbZ4+Ibhscv671PcSfCBjHzw4smwe2i7b+ofAJvO1WwgMjCmLkzwdjVJ8aVz9IZySVDynL4InbodADz+5REAcpx+BQGrJVxoFKRl+GSyGDyzr1mLoyGgE+/w89gnAscZCy2sqoDo7Vo0yZu46nMj9Afb/qH/kB5t8eHPRyvPNOJCFO/0loggdIZXSaHjYC88ySzvFwOY+PC/lsIsIpiX+7RRn3SYtxhPv3UUpi3ZqnRDnRQ7D6id1F1seS7yuRE9tPfTXPBFlB2n/9wtZ2vvD+uVOfH35xYRoYuBq+e3pDKIRkBxD8xk3gyvG5kTgcj00QG5WKhDHi1wdUogvKjM167o1Ko6RMyuUpzF8G4S8gWb6tMk+K2bVUlFWZ1bh5UB8kn0TcoHAHB2PzVj8Zlh8oNTX7QUdffVXvB+axKrjBmcGTM11VW4bFA8P0Yq+LtS0xOIz9hREr4RAAZ2U2u4nVGXH80+H2VH9GWTVXRYBeSIU4UFkTFNFrH8hOvjbZVlGgdfGBkmFuEOhJMmff2cWH2wgY0PEwD41sUDMOXb56Nvp5pIXF1Smv9Vyffm640b7F2nIqjDvDsuxc/GnIqTuwZ3ob+8KsxM1GtivMrww8vtVBO/c/EA9GhvjnescyVx2alyQuvv6C46OWw4KIKfn4Miqv7aqK5GxeWDuuK8AZ1w7+cy51Umly0iWinO1r6gUZf+j+H6XUBSlB3Rl+HTEvVLn6mQjSNxC5fPk3YeMrFG3La7J5Tx6rBF5ySOo+6VFYR+neXnHSoRDiEeUe7LHRr6ctooC42N7cHEr8j9MNkj+FwyIhyR5ltHVztFwlD86tOnhdJ0Gjd1HeWLhv++RcdwMujes2ho+eR/jsxev3fbRca6o2Da9zOuO2qqq/DYF0dk54sueI0MKoWPuIxFGnBEH/IP0MWTT/Zo3yJEgOoEVTCxeL4WAdk4sRk8MsdR+cRRjfdDVU+OCdTsE4PlXGP3ds1jcfpP3pQjECbLU5mvJFsVv3wjKqefhLa01lizS9tSfBmf019k4VpYN55Fgyz+DKuDhWjKFs/dcrbVrscGKjGlDvnU0QfKkOjL5IKyl/zJ07rikRvPwHUje4VU6cQDInGwiz5D8qnhZTM+xOZbWqqb/vNrQREQr2LHi5q+cl4f9Gif2zkc1cidVQS3GWesdsNZdThdYnE56WtnZ4LNxJgTTbhzFZNYXKY62UxhI/F3iZfVuKqCNs8VVaZvHZhbUm3U92yKidCAYWATwWTjEQU2O+oLBX9ZNvY4SVB2RF82aWQfhohwwYmdUVFBIX/fZ2kOs/IJqf93i3LiQmcj+/zh5SeFZKp9OZ9EfLCQWy8/GdO+n/PuuF4TU1YVuvGsfjn1x8sVh3D+t4uzNeaf+XNnyOWpvm8VWe0/ulzup4hXO/VhCugtE5sAdpaqUV1vN6IUIQt/vc03MUsCG2v3ODhPYlC39M7LAr9rBFcw+V4cy0pl82sf7yf1L2JSjxKJpsni9NJTwjFgfdzz2SHasip866IBUn1/GwJoE8RFhGz3E3CapZGIi6IaHjZqdKoD0SgOwUTw3LfKUtOXOcveaRuFCmmcBUg13pZs3mssyzd34UmdcXrPtqE8Z9S1w7urMk7jbHsn80EV1emX6lX48yVKuEURNl4xbfH0zeHdmUpFOClk71V8D+K4zrd4p6yI/rcuHhCr3Ok92wVivIYWDu4bXT20O+4WODmeQOrcQrRqVoW9irig37yovzTdxvJUdBF762UnS/M1qaQsJymjr025WMJxvAC+8b0LlPdsVEiTGKy2rK7Cty8egNGn5hbkJgor1S6tmxn9r/N443sXBIK1VJBehKRaMK8bWZd12aDSdOEJwsM3nCHNw6sIn2RxeAoA3dqEd7vnD+iEL57dWxrIXgalTN9bcG1UQlX4xVWnxi4rwlfLbgzIoqOJi0C+FUMKd79VQOADp//iylO1xlbnn9gpvmFFDEbWxtKSz/Nf5/dVetf8ynk5VUaZCIuftEMlHKYPmXijY01T7WGojeppEk4fAL4xqj8GcIE2eLuGb3MMwe1XyBdFFXp1aInOrXK2HCa7DhmBBTIqiu/cOgqPfXEEHhonJ+jDJOIkEf66cO/YIVby6Ve+dZ5091NRQfjxJwdiuEVIUL5dEb7rDdUi6+OBz5+uvDe4tq1VH0z4ynl9pOlpMNfLBLGNDJ+W2DKINhptW+Q3il1ZEf24PjN89wJ9OrY0EieTWESHuDuRKNAx6OefmJM/DpBEIfIxsk/7yLrE944dauiXetZlXWPk0TCJV60TLZujcl6mMfKxPuozoRPaNJPKgX3o3pOIDi3tOOv+CrXZJJj0tbPxjVH9seruK7IeZVWRynyoznKA3HlLEiz/5eUhT6k+0rDytnFNLVNQ4NVqJ1w3LO+W9WVF9OPSjCaVFVh19xX493cvkN7nh4tsUv7qM/KDOxFfVPjb+MRp6VkX6ga33/WhPdtK5a/+4nXZqV21suyPSWTySewCfO72mOXqKbNujQLx2aIOm7jeMNNCLsiMXc/zoTN+Wm3bwO4JiO6wDsh4i537k0uU96d9/+OYcas6ROTv/iPn66mygpTP2pgH3vxZ3SWa88C0UBYy/aaVFThy7Hhi8YAK/ECS+d6obdcCS++8LNap/IAuNbj/WvW2F8iInFQBNkTYxAY2m5rr7199ei1uf35hIK29whzdBr5M2FZd0UYEEgVRv5vJv1O+cULrzAJra5iVBu66epDxoFZ3DrT4Z6Ol6SZvsSZ9et5Lpg6dPa0ycaGyxSvfOi9WOaDhDbWMnD4RPUxEW4hoAZfWnoheJaKl3t923L1biWgZEX1ERJdy6cOIaL537z5qwCfNcj55kg7wYiPVwG9SWWEl6xctVF/51vnGMl8Y2Qv9OtsRGl34SD/qlu1EUUHUWHjjexckcvXcw5MJi6ptMvzmmsFZv/dp4W+cYZcNoohg8oGfjTkFv//sYKvFT+UkTQXZju2Gs+qMzuoAfUD55nlyVW77KTrUVGPBTy8NBE+S4S9fGiFN14lDffzacsefb9iwAo8AuB/AY1zaeABTGWN3E9F47/cPiGgggLEATgHQDcAUIhrAGDsG4EEANwF4B8CLAEYDmJzWg2gf4MYReHzmaqWBTVKkuX75C8jDNwzHwK7JiG9U9O1Ug+duORsDFRof3754AA4cOaZ0rCXD/dcOTWzNevsnBuLsfh2tDhTP7tch1vdQucquqiCtDF4GWftn9umAb108wDpqVBK0rK7CVUPtvlFU9cBPDemGB18Phlm8/RN2sZYbw/VApY1rTw82TMW5/cOiu39Z+rG6Js8+dWxhfErG2JtEVCckjwFwgXf9KIDXAfzAS3+KMXYYwEoiWgZgBBGtAtCaMTYDAIjoMQBXooGI/pl9O+T1cOScfun5Vff3DD3btwhE72oo6LQ92rVsit9yMlIb+IfgSdCsSaX2kA/IGNdUVlBIPdUWZynGB2+QlgS+G4i4TtnSxkkntMKHm/ZGlmXLOOfG3tno4NtniK5T0oSKSfLRs32LgvnuQHyZfhfG2EYAYIxtJCJfqbg7Mpy8j3Ve2lHvWkyXgohuQmZXgJ49kwXvbgjkZ9DnZyLJIlcVCqZ8+/zIu7E+nVpiw66DGF7XLpa74w9/Phqbdh9S6pCnYbSz4KeXmjNFQPuWTSPZEchw/7VDcdHv3oxM9McM6Y4/vLbcnLFAUNuuOf77ov642nLnEwcmC/c3PedthYK0T3pkT8806VIwxiYAmAAAw4cPbxCPHc2bVOLro/TyPB0uH3QCRljqMzcGvjCyJx5/Z02DaAfEhcrjpgwjerfHrJU78MurBmFkRPELj2ZNKqXqgL6hmknV1AY2YoMoeO27F2C/IjawLZpWZhbIlhEPe7t49gj/eW5vDOvVXhnMPQpGnWR2uRwXRIT/vij/qtBJ8ZtrBudN0URE3NG4mYi6elx+VwBbvPR1AHjBVS2ADV56rSS9YLD453LtAVs88Pl0wqTlK1DpL64chF9cqQ/24hBGu5bJOH1T0J44aNO8ifZAXoXLB52AF+dvAgD0aN8c37l4AK6SuBXXtt2iCd677SK0bdE01g53UPc2mL9+d/b3Ny7sh29fcmLkegoFaUW4inJOlhRxezwJwDjvehyA57n0sURUTUS9AfQHMMsTBe0lopGe1s71XBkHDj7NLwRHWeUM3zrZZFBkQpoeG5Pi2hE5+wUiwtdH9VdGW9OhQ011bJHmQ+OCAYQawiAxX5j8zXPxVoGJbmxg5PSJ6ElkDm07EtE6AD8BcDeAiUT0JQBrAFwDAIyxhUQ0EcAiAPUAbvE0dwDgZmQ0gZojc4DbIIe4xQZfe6fYaf7Er5ypDCBRDPjupSfiu5cWLwcqg89IqA6tGwLiGUljBhNJCpugMIUIG+2dzylujVLkvxPAnZL02QDS85pU4ijmyQAUjpZKY+G5W862cobXGGhMv/bVVZVY8cvL0eeHL2r19gsZnz69VukivBhQFha5xYT/Or8vxj8zP2sh6CCHP+nSDFCeJgpJrOOjUNiIigrCn64bVpDvyAZR1ZYLDY7oFxjGjuiJsRbWjeWOu64ehPP7dypawtEY8OXwaR0+JoEu5oRDfuGIvkNRonWzJviPMwrDwrFYcEZde3z9wn64LqFDOofihiP6Dg5lgooKwneKWD3SIR00/j7PwcHBwaHB4Ii+g4ODQxnBEX0HBweHMoIj+g4ODg5lBEf0HRwcHMoIjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGINaY3pcsQERbAay2zN4RwLY8dqexUKrPBbhnK1a4ZytsbAMAxlgoUEjBE/0oIKLZjLHh5pzFhVJ9LsA9W7HCPVvxwol3HBwcHMoIjug7ODg4lBFKjehPaOwO5Aml+lyAe7ZihXu2IkVJyfQdHBwcHPQoNU7fwcHBwUEDR/QdHBwcyggFTfSJ6GEi2kJEC7i09kT0KhEt9f624+7dSkTLiOgjIrqUSx9GRPO9e/dRAUQdVzzbHUS0nog+8P5dzt0rimcjoh5E9BoRLSaihUT0TS+96L+b5tlK4bs1I6JZRDTXe7afeuml8N1Uz1b03y0WGGMF+w/AeQBOB7CAS/sVgPHe9XgA/+NdDwQwF0A1gN4AlgOo9O7NAnAmMrGhJwO4rECf7Q4A35XkLZpnA9AVwOnedSsAS7z+F/130zxbKXw3AlDjXTcBMBPAyBL5bqpnK/rvFudfQXP6jLE3AewQkscAeNS7fhTAlVz6U4yxw4yxlQCWARhBRF0BtGaMzWCZr/YYV6bRoHg2FYrm2RhjGxljc7zrvQAWA+iOEvhummdToZiejTHG9nk/m3j/GErju6meTYWiebY4KGiir0AXxthGIDMJAXT20rsDWMvlW+eldfeuxfRCxdeIaJ4n/vG30kX5bERUB2AoMpxVSX034dmAEvhuRFRJRB8A2ALgVcZYyXw3xbMBJfDdoqIYib4KMtka06QXIh4E0BfAEAAbAfzWSy+6ZyOiGgBPA/hvxtgeXVZJWrE9W0l8N8bYMcbYEAC1yHC2p2qyl8KzlcR3i4piJPqbvW0WvL9bvPR1AHpw+WoBbPDSayXpBQfG2GZvcB4H8L8ARni3iurZiKgJMkTxCcbYM15ySXw32bOVynfzwRjbBeB1AKNRIt/NB/9spfbdbFGMRH8SgHHe9TgAz3PpY4momoh6A+gPYJa3Jd1LRCO9k/bruTIFBX9yebgKgK/ZUzTP5vXjzwAWM8Z+x90q+u+merYS+W6diKitd90cwEUAPkRpfDfps5XCd4uFxj5J1v0D8CQy266jyKyyXwLQAcBUAEu9v+25/D9C5qT9I3Cn6gCGI/NBlwO4H54lcgE+218AzAcwD5mB17XYng3AOchseecB+MD7d3kpfDfNs5XCdzsNwPveMywA8GMvvRS+m+rZiv67xfnn3DA4ODg4lBGKUbzj4ODg4BATjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGcETfwcHBQQIiusZz0HaciJQxc0niPNFLlzqrI6KmRPR/nuO2uUR0AVfmTiJaS0T7YAEiakNE/+Scyd1oKuOIvoODQ9mDiC4gokeE5AUArgbwpqH4I8gYsokYD2AqY6w/Muqu4730/wQAxtggABcD+C0R+bT4n8gZidngFgCLGGODAVzg1dVUV8ARfQcHBwcJGGOLGWMfWeRTOU9UOasbiMwiAMbYFgC7kNH/B2PsHeb5OuLhGZg9TUTvev/O9psH0MozFqvx+lGv668j+g4ODg75gcpZ3VwAY4ioyrP4HYag2wcZ7gXwe8bYGQA+DeAhL/1+ACcj4w5iPoBvsoxbCSWq4jyJg4ODQymAiGYi4ze/BkB7zxMnAPyAMfZynpp9GBlCPRvAagDTYeDOkXEdMZCL2dKaiFoBuBQZy/ALkXEe9yoRTWMaJ4eO6Ds4OJQtGGMfAzIyfQA3MMZuSLH6zUTUlTG2kXdWxxirB/AtPxMRTUfGzYUOFQDOZIwd5BO9g9u7Wca1wjIiWgngJGSCvSgrcnBwcHBIH1JndUTUgohaetcXA6hnjC0y1PUKgK/5P4hoiHe5BsAoL60LgBMBrNBV5Ii+g4ODgwREdBURrUMmPOILRPSyl96NiF7k8j0JYAaAE4loHRF9ybt1N4CLiWgpMlo6d3vpnQHMIaLFAH4A4Dqurl95bbbw6rrDu/UNAMMpE/BlEYD/8tJ/DuAsIpqPzOHwDxhj27TP5RyuOTg4OJQPHKfv4ODgUEZwRN/BwcGhjOCIvoODg0MZwRF9BwcHhzKCI/oODg4OZQRH9B0cHBzKCI7oOzg4OJQR/j+RSFFPhdmq7wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Checking the Light Curve for Irregularities\n", + "\n", + "You can perform checks on the behaviour of the light curve, similar to what's done when instantiating a `Lightcurve` object when `skip_checks=False`, by calling the relevant method:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "time = np.hstack([np.arange(0, 10, 0.1), np.arange(10, 20, 0.3)]) # uneven time resolution\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's add some badly formatted GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [], + "source": [ + "gti = [(10, 100, 123), (20, 30, 40)] # not a well-behaved GTI\n", + "lc = Lightcurve(time, counts, dt=0.1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_lightcurve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/lightcurve.py\u001b[0m in \u001b[0;36mcheck_lightcurve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;31m# i.e. the bin sizes aren't equal throughout.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 420\u001b[0;31m \u001b[0mcheck_gtis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 421\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[0midxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearchsorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/gti.py\u001b[0m in \u001b[0;36mcheck_gtis\u001b[0;34m(gti)\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 227\u001b[0;31m raise TypeError(\"Please check formatting of GTIs. They need to be\"\n\u001b[0m\u001b[1;32m 228\u001b[0m \" provided as [[gti00, gti01], [gti10, gti11], ...]\")\n\u001b[1;32m 229\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]" + ] + } + ], + "source": [ + "# This will fail\n", + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MJDREF and Shifting Times\n", + "\n", + "The `mjdref` keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don't become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time. \n", + "\n", + "`mjdref` is generally passed into the `Lightcurve` object at instantiation, but it can be changed later:" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91254\n" + ] + } + ], + "source": [ + "mjdref = 91254\n", + "time = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, mjdref=mjdref)\n", + "print(lc.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91274\n" + ] + } + ], + "source": [ + "mjdref_new = 91254 + 20\n", + "lc_new = lc.change_mjdref(mjdref_new)\n", + "print(lc_new.mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This change only affects the *reference time*, not the values given in the `time` attribute. However, it is also possible to shift the *entire light curve*, along with its GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0,500), (600, 1000)]\n", + "lc.gti = gti" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first three time bins: [0 1 2]\n", + "GTIs: [[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(\"first three time bins: \" + str(lc.time[:3]))\n", + "print(\"GTIs: \" + str(lc.gti))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "time_shift = 10.0\n", + "lc_shifted = lc.shift(time_shift)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shifted first three time bins: [10. 11. 12.]\n", + "Shifted GTIs: [[ 10. 510.]\n", + " [ 610. 1010.]]\n" + ] + } + ], + "source": [ + "print(\"Shifted first three time bins: \" + str(lc_shifted.time[:3]))\n", + "print(\"Shifted GTIs: \" + str(lc_shifted.gti))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating a baseline\n", + "\n", + "**TODO**: Need to document this method" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Working with GTIs and Splitting Light Curves\n", + "\n", + "It is possible to split light curves into multiple segments. In particular, it can be useful to split light curves with large gaps into individual contiguous segments without gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.array([1, 2, 3, 10, 11, 12, 13, 14, 17, 18, 19, 20])\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.5, 20.5]])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This light curve has uneven bins. It has a large gap between 3 and 10, and a smaller gap between 14 and 17. We can use the `split` method to split it into three contiguous segments:" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=2*lc.dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14]\n", + "[17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This has split the light curve into three contiguous segments. You can adjust the tolerance for the size of gap that's acceptable via the `min_gap` attribute. You can also require a minimum number of data points in the output light curves. This is helpful when you're only interested in contiguous segments of a certain length:" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if we only want the long segment?" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0, min_points=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split_by_gti()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7]\n", + "[13 14 15 16 17 18 19]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because I'd passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.\n", + "\n", + "You can also apply the GTIs *directly* to the original light curve, which will filter `time`, `counts`, `countrate`, `counts_err` and `countrate_err` to only fall within the bounds of the GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Caution**: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array before applying GTIs:\n", + "lc.time" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "lc.apply_gtis()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array after applying GTIs\n", + "lc.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs. \n", + "\n", + "## Analyzing Light Curve Segments\n", + "\n", + "There's some functionality in `stingray` aimed at making analysis of individual light curve segments (or chunks, as they're called throughout the code) efficient. \n", + "\n", + "One helpful function tells you the length that segments should have to satisfy two conditions: (1) the minimum number of time bins in the segment, and (2) the minimum total number of counts (or flux) in each segment.\n", + "\n", + "Let's give this a try with an example:" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The estimated length of each segment in seconds to satisfy both conditions is: 4.0\n" + ] + } + ], + "source": [ + "min_total_counts = 300\n", + "min_total_bins = 2\n", + "estimated_chunk_length = lc.estimate_chunk_length(min_total_counts, min_total_bins)\n", + "\n", + "print(\"The estimated length of each segment in seconds to satisfy both conditions is: \" + str(estimated_chunk_length))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we have time bins of 1 second time resolution, each with an average of 100 counts/bin. We require at least 2 time bins in each segment, and also a minimum number of total counts in the segment of 300. In theory, you'd expect to need 3 time bins (so 3-second segments) to satisfy the condition above. However, the Poisson distribution is quite variable, so we cannot guarantee that all bins will have a total number of counts above 300. Hence, our segments need to be 4 seconds long. \n", + "\n", + "We can now use these segments to do some analysis, using the `analyze_by_chunks` method. In the simplest, case we can use a standard `numpy` operation to learn something about the properties of each segment:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "start_times, stop_times, lc_sums = lc.analyze_lc_chunks(segment_size = 10.0, func=np.median)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([102. , 110. , 92. , 96.5, 99.5, 100. , 95. , 96.5, 100. ,\n", + " 108. ])" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_sums" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This splits the light curve into 10-second segments, and then finds the median number of counts/bin in each segment. For a flat light curve like the one we generated above, this isn't super interesting, but this method can be helpful for more complex analyses. Instead of `np.median`, you can also pass in your own function:" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "def myfunc(lc):\n", + " \"\"\"\n", + " Not a very interesting function\n", + " \"\"\"\n", + " return np.sum(lc.counts) * 10.0" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "start_times, stop_times, lc_result = lc.analyze_lc_chunks(segment_size=10.0, func=myfunc)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10090., 10830., 9370., 10120., 10180., 10190., 9910., 9610.,\n", + " 9880., 10600.])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_result" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Compatibility with `Lightkurve`\n", + "\n", + "The [`Lightkurve` package](https://lightkurve.github.io/lightkurve/) provides a large amount of complementary functionality to stingray, in particular for data observed with Kepler and TESS, stars and exoplanets, and unevenly sampled data. We have implemented a conversion method that converts to/from `stingray`'s native `Lightcurve` object and `Lightkurve`'s native `LightCurve` object. Equivalent functionality exists in `Lightkurve`, too. The users who have not installed Lightkurve package should do so first by running *pip install lightkurve* in their terminal and then following with the next command." + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import lightkurve" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "lc_new = lc.to_lightkurve()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "lightkurve.lightcurve.LightCurve" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(lc_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110, 82, 94, 126, 102, 80, 102, 105, 106, 102, 119, 98, 112,\n", + " 98, 119, 112, 119, 99, 99, 108, 91, 85, 93, 109, 97, 82,\n", + " 87, 89, 96, 108, 120, 88, 97, 88, 109, 120, 94, 106, 94,\n", + " 96, 120, 122, 92, 87, 113, 94, 100, 99, 105, 86, 107, 101,\n", + " 94, 102, 96, 112, 93, 117, 99, 98, 91, 101, 94, 120, 105,\n", + " 91, 91, 96, 85, 117, 104, 102, 91, 94, 100, 115, 98, 74,\n", + " 95, 88, 100, 107, 102, 109, 109, 94, 86, 84, 97, 100, 110,\n", + " 109, 117, 96, 108, 108, 110, 108, 97, 97])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.flux" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's do the rountrip to stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc_back = lc_new.to_stingray()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.time" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110., 82., 94., 126., 102., 80., 102., 105., 106., 102., 119.,\n", + " 98., 112., 98., 119., 112., 119., 99., 99., 108., 91., 85.,\n", + " 93., 109., 97., 82., 87., 89., 96., 108., 120., 88., 97.,\n", + " 88., 109., 120., 94., 106., 94., 96., 120., 122., 92., 87.,\n", + " 113., 94., 100., 99., 105., 86., 107., 101., 94., 102., 96.,\n", + " 112., 93., 117., 99., 98., 91., 101., 94., 120., 105., 91.,\n", + " 91., 96., 85., 117., 104., 102., 91., 94., 100., 115., 98.,\n", + " 74., 95., 88., 100., 107., 102., 109., 109., 94., 86., 84.,\n", + " 97., 100., 110., 109., 117., 96., 108., 108., 110., 108., 97.,\n", + " 97.])" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, we can transform `Lightcurve` objects to and from `astropy.TimeSeries` objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n", + "\n", + "# convet to astropy.TimeSeries object\n", + "ts = lc.to_astropy_timeseries()" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.timeseries.sampled.TimeSeries" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "TimeSeries length=10\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timecounts
objectint64
0.0100
1.1574074074074073e-0592
2.3148148148148147e-0598
3.472222222222222e-0585
4.6296296296296294e-05113
5.787037037037037e-0594
6.944444444444444e-0599
8.101851851851852e-05108
9.259259259259259e-05101
0.00010416666666666667117
" + ], + "text/plain": [ + "\n", + " time counts\n", + " object int64 \n", + "---------------------- ------\n", + " 0.0 100\n", + "1.1574074074074073e-05 92\n", + "2.3148148148148147e-05 98\n", + " 3.472222222222222e-05 85\n", + "4.6296296296296294e-05 113\n", + " 5.787037037037037e-05 94\n", + " 6.944444444444444e-05 99\n", + " 8.101851851851852e-05 108\n", + " 9.259259259259259e-05 101\n", + "0.00010416666666666667 117" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "lc_back = Lightcurve.from_astropy_timeseries(ts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading/Writing Lightcurves to/from files\n", + "\n", + "The `Lightcurve` class has some rudimentary reading/writing capabilities via the `read` and `write` methods. For more information `stingray` inputs and outputs, please refer to the I/O tutorial." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/_sources/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb.txt b/_sources/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..8d23e408b --- /dev/null +++ b/_sources/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb.txt @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScargleCrossspectrum, LombScarglePowerspectrum\n", + "from scipy.interpolate import make_interp_spline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "plt.style.use('seaborn-v0_8-talk')\n", + "%matplotlib inline\n", + "from matplotlib.font_manager import FontProperties \n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create two light curves\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make two signals in units of counts. The first is a sine wave with random normal noise, frequency of 3 and at random times, and the second is another sine wave with frequency of 3, phase shift of 0.01/2pi and make their counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "y2 = np.sin(2 * np.pi * 3.0 * (t+0.3)) + 0.1 * rand.standard_normal(n)\n", + "sub = min(np.min(y), np.min(y2))\n", + "y -= sub\n", + "y2 -= sub" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(t, y)\n", + "lc2 = Lightcurve(t, y2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAPzCAYAAADPqV/6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7xdVXkujj9zrbX3zn3nvgMhIGi4qFhA8GhRqh57t4rSc/y2QbxgiD3fc/SnqIVfo1IpWJVab60CjaIST21FLdRL8Y7UegW8IRAlwA6EhGQne+/s+1prfv+Ya645xpjj9o4xZrJXMh4+fDKz1pjvHJlrzjHe6/MmaZqmiIiIiIiIiIiIiIiIiJi3qB3pCUREREREREREREREREToEQ23iIiIiIiIiIiIiIiIeY5ouEVERERERERERERERMxzRMMtIiIiIiIiIiIiIiJiniMabhEREREREREREREREfMc0XCLiIiIiIiIiIiIiIiY54iGW0RERERERERERERExDxH40hP4FhDu93GY489hqVLlyJJkiM9nYiIiIiIiIiIiIiII4Q0TTE+Po7jjz8etZo+phYNt8OMxx57DBs2bDjS04iIiIiIiIiIiIiImCcYHh7GCSecoB0TDbfDjKVLlwLIfpxly5Yd4dlERERERERERERERBwpjI2NYcOGDV0bQYdouB1m5OmRy5Yti4ZbRERERERERERERIRVCVUkJ4mIiIiIiIiIiIiIiJjniIZbRERERERERERERETEPMe8NNzm5ubwjW98A29961tx3nnnYfny5ejr68O6devwkpe8BF/60pfIMq+66iokSaL9/7777qvgXxMREREREREREREREeGHeVnj9p3vfAe/+7u/CwBYt24dnvvc52Lx4sW49957cdttt+G2227DZZddho997GNkSv3f+q3fwllnnSX9bnBw0HfqERERERERERERERERwTEvDbdarYaLLroIb3zjG/G85z2P++6zn/0sNm3ahBtuuAHnn38+LrnkEpLsCy+8EFdddVXA2UZERERERERERERERFSLeZkq+cIXvhCf+9znSkYbALziFa/Aq1/9agDApz71qcM8s4iIiIiIiIiIiIiIiMOPeWm4mXD22WcDyHqhRUREREREREREREREHO2Yl6mSJuzYsQMAcNxxx5HPveuuu3DFFVdgZGQEg4ODOPvss/Enf/InVk3vTJiYmAgyJiIiIiIiIiIiIiIigkXPGW6PP/44brrpJgDARRddRD4/JzdhMTg4iA996EPkejkRS5Ys8To/IiIiIiIiIiIiIiJChp5KlWw2m7j44osxOjqKM888E1u2bLE+98lPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27RXOPiIiIiIiIiIiIiIiwg1JmqbpkZ6ELV73utdh27ZtWLVqFb73ve/h1FNPDSL3DW94Az784Q9jzZo12LVrF/r7+53k2KRBjo2N4fjjj8fo6CiWLVvmdJ2IiIiIiIiIiIiIiN7H2NgYBgcHrWyDnjHc3vjGN+JDH/oQVqxYgW984xtdgpIQGBkZwdq1a9FqtXDHHXdI2SxDgfLjREREREREREREREQcvaDYBj2RKnn55ZfjQx/6EJYvX47bb789qNEGACtXrsTatWsBALt27QoqOyIiIiIiIiIiIiIiwhfz3nB729vehve///0YHBzE7bffjnPPPTf4NVqtFkZHRwEgCLtkRERERERERERERERESMxrw+2KK67A+973PgwODuJrX/sazjvvvEquc+utt2JychJJklRiGEZEHO1I0xRTc60jPY2IiIiIiIiIiKMW89Zw27p1K97znvdg+fLl1kbbRz7yEZx++uklWv9HHnkEN998M6anp0vnfPGLX8TrXvc6AMCmTZuwbt26MP+AiIhjCHfuGsFXHtyL3xyIfQojzGg2gR07gJ/8JPuz2TzSM4qIiIiIiJj/mJd93G699VZcc801AICnPOUp+Id/+AfpuNWrV+O6667r/n3fvn24//77S8bXyMgIXvnKV+Iv/uIvcPbZZ2P9+vWYmprCvffe223m/YIXvAAf/ehHK/oXRUQcvZhutvDE5CwA4Kd7x/DkFYuP8Iwi5iuGh4HrrwduvBHYu7f4fO1aYPNmYMsWYMOGIze/iIiIiIiI+Yx5abiNjIx0j3/84x/jxz/+sXTcSSedxBluKmzYsAF/+Zd/iR/96Ef49a9/jbvuuguzs7NYvXo1XvziF+PP//zP8YpXvAK12rwNQEZEzFv0BC1txBHH9u3ApZcCMzPl7/buBa65BrjuOmDbNmDTpsM/v4iIiIiIiPmOnmkHcLQgtgOIONow3Wzhy78pwicvP+24IzibiPmI7duBiy+2H3/zzdF4i4iIiIg4NnDUtQOIiIiYv4ienwgdhoezSBsFl16anRcRERERERFRIBpuERERXogx+wgdrr9enh6pw8wMcMMN1cwnIiIiIiKiVxENt4iICC/EbOsIFZrNjIjEBTfeGNkmI3hMzDbRasf1JiIi4thFNNwiIiK80D7SE4iYt9i5k2ePpGDPnuz8iAgAeGh0Ev+x8wl88+F90VkUERFxzCIabhEREV6ISlSECmNjfuePj4eZR0Tv467HRwEA47NNjEzPHeHZRERERBwZRMMtIiLCC9Fsi1DBlzh36dIw84jgMdtq93TKYTs6iyIiIo5RRMMtIiLCC1GHilDh5JOz5touGBrKzo8Ii5GpWXz5N3vw1Qf3Yq4dE50jIiIiegnRcIuIiPBC9H5HqNBoAJs3u527eXN2fkRY/OCxA2inwEyrjV+PTBzp6TghLjkRERHHKqLhFnFUotVOo0FxmBDvcoQOW7YAAwO0cwYGgMsuq2Y+xzL2TMxgqllE2eZ6OF0yIiIi4lhENNwijjocmm3iK51UoNlWTAWqGtE+jtBhwwZg2zbaOdu2ZedFhMV/7ho50lMIgrjkRETMb+yZmMEvnxjDdLN1pKdy1CEabhFHHX7y+EHMtlNMN9u4b/+hIz2dox6poEZFlskIEZs2ATffbI68DQxk4zZtOjzzOtaRHOkJOEJccyIijhQOTs/h53vHMDYTmU5zzLXa+M9dI7h/ZAJ37xk90tM56hANt4ijDuOzhYdnJnp7Kodop8XsqwgZNm0CduwAtm7NiEdYDA1ln+/YEY22qnBUOVSOon9KRG/jmw/vw44DE7hj+OiIZofAxFyhd+0+NHMEZ3J0IpZ+Rxx1YGvbkqRXfcq9g7agRbXTFPWe9eVHVIkNG4Crrwbe+c6sufb4eEb5f/LJvUdE0mqnqNd65zlvHUWG29HzL4k4WhDLMiIOF3psq4yIMIM13GrRcKscMeIWQUWjAWzceKRn4Y6HRydx955RnLB0Ic49bvmRno4VmkfRi3kU2aAREUcdquwRmaYpRqbmsKBRw+L+Y9OEiamSESW00xT37hvHr/aN92R6Dbtm9JBDvGdRMtyiPzziKMdPHh9FOwUeGZvqGYOoV+Zpg8gYHDEfEJ9DOZppdXXvj45P4zvD+/G1h57ATPPYjHJGwy2ihIcOTuK+/Yfwq/2H8NDo1JGejhdixK16RHKSiGMZvaK8yQy3Xl0ej011LWK+oVfefR3SNMXEbDOozGabf0NDth354e6DADIH/a7x3tZPXRENt4gSWGPt4dHJIzgTf8SIW/WIqZIRxzJ6RXk7miJu0TkUMR/QOgoewx88dhD/sfMJ/PKJ8WAyxbWmqshYL9UYh0Q03CJKYL2wvb4uxYhb9RCX5F5RZCMiQqBX7KFmevTEqXrlnkcc3Tga9rrHDk0DAO4fCdc6Saxxm6mIuKXvGDXcjs3KvggtjqZX4Rh9rw8rRO93VKoijmaMTM1yfw+pvKVpih/uPoiD03N41vErsGJBXzDZVRIGHG4cDQpzRO+jfRS9UyEh1rjNtKppy3SsLgMx4hZRAhdxq+jNaDaznk0/+Un2ZzNsinUXyVFlhs5PiE9IVKoi5gMen5jG3Y+P4lDA+o2ZZgt3DO/nPgv5vO8+NINHx6cxMdcK3rj26EqVrEJmivHZ5lFl4EZUi15vsVGZfie8Q6Fq3MS1ttfvvyui4RZRAmvshH4thoezRrvr1wOnngqce2725/r12efDw37yd3fC/jlE4oyI8BDXznjHDz/mWm0cnJ6LtT8dpGmK7+06gJ2jk/iuYGj54LFDM6WIcsg6l5HpIpp3cHounGAcXYZbFcy1vzkwia/tfALfenhffI8irNDrNW5VLQmi8yPU6yTWyh1FSxoJ0XCLKIGPuIWTu3171rvpmmuAvXv57/buzT7fuDEb54I0TfFfjx4QPnOcrOE6EQVEL1iMuBVottu4d984HqqQ5Kedpvj6Q/vwzYf39TwLbCiwCtVUwMJ4WZPdkM/75FyRUtQIXJ8rM9x6VfEJvca02il+9sQYAGBstompZjWpXRFHF3p9r6uqdY+41oS6T+J72ev33xXRcIsogVUXQr0W27cDr3p1imf/wSSe9qwZ5biZGeDii92Mt0fGykpr6JLY3xyYwL//eg92BCzk7XWUUyWPyDTmJR4YmcB9+w/hrsdHg0dQcuyZmOluaKHT63oVYqR9OpAiLiuyr8pwW9RXDyYXKNedAOEVn0OzTTyw/xD376gCodeYvZP8nhSSvvxowNRcCwcqWr96Gb2eVluV3VPq4xZKbkUGYa8hGm4RHJpNYHKyMN1CvBjDw8CllwIveNkU3vCeUbzzEyM48VT9JnDppbS0ySlFTUjo6NhP945hrp3i5wGpc3sdZXKSY3MxleG+/YWBL6bxhoIsCnSsQ3wEx2bC1LnJDJKQuhvrUe6rh424yZTM0K/qd4dH8It94/jerpGwggWEXtdFT36zx3Lgmu02fvjYAfxk98Hg6++DByfw1Qf34lsP78POg73VHmh0Zg7ffOiJyhxavb7XVTX/ltDHLdT7GmvcMkTDLQIAX3v27W8Xn+/c6V97dv31WSTtxZdMAADqdeCSt+oNn5kZ4IYb7K8xNtuUKlDH6Ht9WCHe4njP5aiqM0WvRQcOBzGRqCiMByIomZgrywmpPLA/ZeiaNLEpLhA+VSo3gMYCN/QVEfqRF+XNSe5VCMy12pWk2v/yiXHsGp/Gw2NTeCRwuvTP9o51n5J9AqPqfMf3do3g4EwTOw9OlthgQ6DXDYfKIm4V1biJ72mPbX3BEA23iFLtGdvuZ+0JLfzte1Ln2rNmE7jxxux498NF6s/Zz1OnS+a48UZ7pU7lOQr5XsfaNjnKDbjjfZKhisDYgwcn8LO9Y+EFd9Bst3H//kPdXj8+qJqYiIV4q0MZQVWnSrKyQiuFR5NjK7TBKUYjqyByeWR0Ev/+6z34nlCHHQJsbWto44q9Fb22trP1rVWk7/a64XDYatwCyRXn22vPYyhEw+0Yx/btWU3ZDGNH1YXufq+5csy59mznzoKIZHSE9rjt2ZOdbwPVAhrS2Op171pVKJGTHKF5zDeIz9504F42eydmcM+e6ow2APjVvkP45b5xfP/RA3jw4ITz+1Q1MZGIMtNpmHdXlm4YspcTu8aErp+RKTmhe9CxqLL+J/RSLN6HKqLYP358FCmymtRQNZc52OdmQaM6te5YVZRVEHWCXnPuHr6IW6BUSUHusaqTRcPtGEZeeyaif4B/Gf5wU5HXTq09G2P0ykY/dYbAuGUpmWphCPlaV5mSlqYp7tt/CD/bO1YZbfdsq41fPDGGR8fDptKUyUmOzcVUhPi8iFTGvnhQUm9SD5yPuePARPf4nj1j0muaIDqHli5v4723PIFr/3kfjj+5ifWnZPWuPsREIkRDLdQjWSUzY5qmnKzQho9MWshLiKJCphtWXUcrKoBVpUrmqHKJ7KtVabhVJron0evkJFXt1aKTMtRVxLey4td03iIabscw8tozEY1+9WtGrT1btqw47uujv75Ll9qNU6ZKBlyXquyDtGdiBvfuG8evD0zgvv3VEJ/85PGDeGBkAj947GBQI0JUqqLdlkFMzZkObLiNzZYJfkITWoj4KTEtU+YcuuRtY3jy05o47aw5fPgrT+BDX97HMc1SnUMylNJ3/cRlMlJ53C6U11eUImOB9IFsjXzs0HSw+j9RfEjSnMkSDXgw0VJ5odd6UcGv0rlVZe/S6JTjId6PXrs7Vfyc7TTFbKua512MuB2rz2M03I5RsLVnIvo0hhtAqz07+WRg7drsuFEy3PTXGRrKzreBSkUImcM9VyF73+MTheK6Y2RCM9Iduw8V15CRLLgiRtzkEL32oVMlD82W5VXpbXeBzDn05KeXDc43v/9g95jqHJKhtNIEeCZVynwwpaQUVQqbeqUS9f1ANVdVpRumaYpvP7y/9FlIlOcedq0X19uQ0kXSmSpJZifmWj2XDphj96Hp4AQlIvlor90a8VEJ8dvKHJTByEnEv/faDQ+E+bXLRxw2sLVnIvoNKY2U2rNGA9i8uXMsyK0Z2hRt3pydbwP2BV6zqLhQlRG3kBsYm+JWxVI0U2FD2V4mJ0nTFI+Nh9/QAQlT3WGg7W/Uqo24UaB0DkkejwWL+A8pziEZqogCqwy3vfvCMGPKGOhDRt1UkkJF3MT3PlTEbXKuVSKFCf0miVHT3xyYxERAZsyJueoaB4sN5kPW/Yjv0eRcC/9ZcauHqjA8Po1vP7I/6O/a+xG38DOW1W8GS5UU1uDh8Wk8MWkmujvaEA23YxRjmownXapkDtvaMwDYsgUYGCinStY1htvAAHDZZfbXYNefVQsZw81ehBGiBzmk7KoVbrF5ashMIDGqGbIF0kOjk/jpntHKDM/h8Wl8/7ED+PYj+zEZMAoJyCMoxxJUziGbYAbFOSSDeK9D3HqVQvzBD6VBmDFlynzIGpqqHSrizxrKUZFI6jZD/1tkBDNsfacvxLTpkGuBeJ/DspyWP9s7ORvMKD8crUFE/Drg7yq+n1WmqVaBKuj1Zcy7wchJJPe3Vx0JPoiG2zEKtvZMhEhOIoNt7RkAbNgAbNtWjrjVG+rrbNuWnWcLdrNqsNGrgJuYmJISUneoV2y4VeuV5f8eSnEYm5nDXY+P4jcHJ3FPRZT3P959sHvsQryhQ5XeWCUZzzyKdqqcQ6mlzkdxDpWuIfw9xDN527/LZfT1p0GYMWXGQ0jDrepH43AwMxbXql5eyCi8aOiEfE/F+3w4jH3f9+lwtgapEqX7MH+WXyuU96hqUiVDRchlTuFjzSEKRMPtmAVbeybCxP5IqT3LsWkTcMYZ/Bsmq3UZGABuvjkbTwH78rJGUKWpkoFW6WYT2LcviCglRMUhLA04//dQisPIVPF8PDru30fMhARhjWfZJhPM86gQM5/2MJVzqJ2W77PstlCcQ2V5YVMlt28Hrr6mEPLAPX3d4z5mvfRhxpQpNyFTJSuPuAniQ0VlZOtsaAeFzJG1fEGfZKQbyutvMNGliFtIp5xKls81DndrkCpRagdwhObhCnG+IR4daapkKAKneeSYPJKIhtsxCrb2TIQ84lZ8Rqk9Y7FiFS/3XZ8awQlPzpTzoaHM07ZjB91oA3ilpMbVi1Xn2fTdfFmv4wc+yAv7wKcmgnodKzXcKmqKebiX6APTs0E3BnnfrDCyVc/1fPI+qpxDNhE3F+dQjp/vHcO3HxHILDyeppwZk63DOzRabJ1l0iU3ZszKI27BJMlRHTmJ7FpBRDPyqntXgWrX31LEreJUScD9uZT1jZUhZGuQEgL65+YE71xouyJN00qNlSp6sMpqgUP9E1TP9uFIsZ1PiIbbMYy89kyETBHJvcrU2jMWsnfu+lvH8MADwK5dwNVX09IjOdnMMRtxC7n5llIlPWSJXsc+wVg+8b+NBfU6innnIevQxHvcq00x907OBmX0lCnioRwJh6PhvC9UziEbw83VOTQ6PSetTfJZB3JmzIGFxcTHR4s1RsbC68KMKXtvwirh1T4bVaVMV904HFClYIW7xkxF9OiAJOIWkLlFtZ64PJeqvrE6hGgNUiUOzPBZQ0Edxa02vvXwPnzjoX3BG7bnKGV6BnguZc/GyPRcENljivT5Xkux9UU03I5h5LVnLJIk5VJ/cuTKCbX2jIXshV68JMXGjW5KGgt2I2RbWYXc3sXeJK4Lkczr2C8xoEN6HUse3wo9+fMp6kPFL/aF66En059C3Rtl38Iw4nFgeg7fecQ/f1fmHJLdA/af4+McEtn7uvLdxHHMmAsWKiJuitRyKjOm7L6E7Cd2uGvcQl1Pn/8RBrL3KeS9F9sLBE2VFGSPBMwcCBlxU/WNBYBlK+XvbYjWIFVhutkqkc6EfC7vHzmEgzNNjM028bOKarxFso8Q85fpeeOzTfziCb+9dft24F/+VT7DXkux9UU03I5xbNqU1ZTlypXMaAOAxUtTp9ozFrK1PlTkh6txq4icZKrpv0irvI4yr32eshrC6ygablVSRvdqxC00pBG3UMqsQk4ohfDO4f3YP1WuQaX295Y5h2QRN/bf4+McUvVtdF0HWGbMAYXhJrLl5qAyY0pZJQ9DO4BQKDHUBbqiPFUy7L+m6qheiZykwhT+ZjvFvfsPBZGtTE0j3htd39hL3jaGT3xvL159hdw48W0NIiJULbPI1AyEdY6wbTpGJNcKgXLEzV+myqj3YWnNnd2mNqWVptjOI0TDLQKbNmW1ZVu3AsefIH/pvvdffkYboNgcAzZpzcGRkwSRDkzMNrFngncXuixyKq+jmCoJAIsHs80+hNex1AepQoUwZF1OL0Om9IRSZpUGSgD5aZoq65NqEmp2E0TnUNqWy3AlJmKheqxd7wrLjDmgqHGTOV1yUJgxq1wfVfJDoqqIW9X1Z0DxrrJOv5ARt8NJTgIA9wcy3FTPDHWN1/WNfelrM4X+T14tV+x9W4NUhUMB+8HJwBqYVb275XfW/zqh58o6u6Vp6VPlc+Z7iq0vouEWASDzcF99NfDzX8hfunXHVfNCh/IoqyNuQcTjPx8t9wqhLnI6r6OMEGbJYLEh+3odyxE3d1kixPvQSw24q4QpJdAHSgMlgHwxsszCxXADeOdQn4Ssb8GAOzERC9V64qqQsMyYXKrkQbbGTX0+hRlT9k4GfU/DiZJCdCZUSVIUOqqfZxs2aoW6HG5vKjtCgkbzKnSUqaZJNdx0fWNt4NMaRESoaKcsLTtkhg/bIaiqLbVUlxpAZsg1C+Cd3TL+henJshkzn1NsQyAabhEckprCwxbEE1ONXIBXGuqBWSXTNMWhWckiTZSj8zrKPElLGcPNx+tYteJQJicJJrpSVB0ZlN3jcLUnYQ0UFrIUoBx1R8MNKJxDz352+bsFC9zTI1mo+065yWOZMdlUybED9e7xgsVydYfKjCn77XqJnKSKZr6A4r4Efnfz+1xLkm7GRqj7JWuLUHXELRRUKZHUVEld31gb+LQGERHqNZAabmFEA+CdZJVF3MQatxDkJAEfbtHZLasnrtXl1wudYjufEA23CA6qBTnEu1hlHQE7v1pgVkk1gx9Njs7rKCMnWTLIX8DV6yhXHKpLleyViJtY1J/jF0+EKQSXPu9BJKufyRDyRRIeFqYaAxuEkKFC6P52LDNm/wI2VTLBxHi2zgyukt91KjOmlFWyAnKShQ3+B/Axxnn5ghJYIYNqVTVu9aS4H5I+wk6QpR2HZNwUCTJCodlu4z93lTNNAPpzqWoNUm+IcspyfVqDyBDKGTIhSZUMa7gVx1X5GCupcQv4borObh3juYj5mmIbAtFwi+Cgyuv33WjSVL6Nh3IWskpDLSlatYRYQ5RefOIyrfM6ymrc2FRJwN3rKDPcKiUnCVW3WHFyl+pZf2BkIogyJE+VrPbehBCvm2MtcJPy7jUDyVH9pj73PWfGrBdBNrRaCUb3Z9vn8tXl98uFGbPKjASgeGbEdFe2JtgHlUXcJJ8FT5WsMOImtpEJKXv3oRlMVxRxe+igpHioA+r9V7UGEUsEGpI0atfWIGJNeo4QdaNpmsoZbAM+locl4iaWOQSQGdLZJDq72cykB+/NHgqZ7pQjZIrtfEI03CI4qF4634VDSStcQepYDQnyNS+E8q9OS6PJUXkdAd6bn2PJ8mIZ9fE6isQkALDn0ExAI4JHr0fcAPk9o0JKThLo1qgjSwGUEsfvbCE1UALdGJmSDPjNO2fGrDGGW7sFHHwi+2Dx0rSkgLowY1bNbJjfYtFOC2WKV0F0oJLTTsPKz4PM9VrCRNzCyBebNAPh1oGRqdkwgiTQrY8u76usNQibfgyUDTnX1iDtNFVHCwPc+9m2fKUN6WyscSUf1aAccQuQKtmR0QgQyRed3blh324DM1OZ/HpdnS4ZMsV2PiEabhEc2M2K3eB9FavDWV+RRdyyyYeJuMk/p4pWeR0BeY3b8U8qUjFcvY6APOJ2aK6FR8bUHlUKxHvcK+0AdLZZVexaoe6Man5BIm4O16VAdV98ZDebGbnJ7sdVjidn0QAy0pQXvrAQkqbAwX3F9jm4OvO++zBjSsmbKkiVTJDgOetXBJObQyS1CeakUHweap1hpdSSIgLZStMgz3uVqZJVrrW6SKyL8SNrDSIabmL0xLU1iM7oDnHPmorNI+SvId79R0YnA0rPSgLEvqUh5t813AJE8kVnd54q2ZwDZqcL+TJyt9AptvMJ0XCL4MDWuPXXi8fDdxOumiGelZ8khyviFsbrCMgXnudfOIVFS9teDYkBdc3STx4fdRfKoJRuESpFqgJvICev4lTMKlMldc4E32vozg8TcZNLcVGohoczpsr164FTTwX+7d/Dvasinvzk4njFcuDg/mJ9POXUNrZu9WPGlLNKhoy4ZbKSBDhuyQIs6atzn/tgcq6Fe/fxFPTBWCVVz0ugDEH2HteTRCC38ocsChzOgaP7zu8quoiJazRSbA2iirj5tgbRzS/Ec6lqlxJyixLn+eNA+zWQOVkeGCm3Xwji6O7cmxAp2KKzO3dwz80mmJvTM/v6OLvnO6LhFsGB3WT6a6zhNr8jbqwSXkuS7oM9nyJugNzrCAB9nY3swBM1PHRfJ3e7HzjjmbNeDYmBMGl/Ooj3oQpPOAB8/7EDQeTm0OkeVdVGhotCVGdc6c4PMX/VvaU+ptu3Axs3AtdcUxSwL1ikUKhooo0yvv2tBK95ZbE+/usX2rj6ar/3tOp+ZbmoPAUr6fwZ4hL37S8Xk1RtnPzgsQNhIsDMc1dLEq7JfIh0SZmMkOQkOc5ZN8h957sOayNumjRKE9jWIMcdz89x3fHwdoBk89NE3AL8pqo00pBaTpXO7vEZOd1iCGemrCeiD1hnd54q2ZxLMDfDGm78vH2d3fMd0XCL4MAuamzEzXcT0G1UodOvakmhlIQwWUJTr2/aBPzFX/Cf9TOepDu/vLD7+R//sX9vK1mqJAD0BSIlqKqPmyh396EZ/OeuEfz6gLxRKxW6eYZpf1GWESrKp/e0+wrXfVVdBJtyz7dvBy6+uNzMfuFiuYz9+/3nzT6PjQZw/Nqi6G0uDUFmU55jMKIfRnb+1uevf5i6lvJnwYwTxef7pmbxuIKAgiRf2DtYgyXEOiBT8qtII129sB/rFhfpHL7+Ot0cfe9L3hrkC//Gy/nWt1NvBwigr88LEnFTZLGEzAqhkp9RoGoe7vtcivWiIcA6u3MDrTkLzDKvfqgU215BNNwiOIwynpigqZKa71RpByT5jIgELKtkANkqBj9Hedu3Ax/9KP9ZvvDMzWT52zlu/3qK7dsdL9SBKuLG/r4+EO9DOwV2H5r2lit7LPZMzOBne8cwrWkS7SM/R1V9C1VMZ3TZuoib39x1ZweJRCo+H51R949jMTwMXHqp/LsFi+TSdz2anecD9p+eAOhjQjMhDKxK+1wyYroRN811qZB510PpsLo1XMrsRwRvuPGpkkGiM1JykvARt9LcK3S2hiJugdg3tpbivv2H8Msnxr3uve7fHoKchDUMq+HZra7pNgCMzykibgFJ6EJF3IAixTbv4yZG3EKl2PYKouEW0cWeiRmOsKKfUUy8UyU1i3CIBqLd+g2INW7+UDnvXPYVldKZG26zMwnazeK+NxrZeFelc67dxmPjciNqIJThJrkP//Wof1qjzgBRRRFJ8nWbewDFRKY8PDAyEYQJTvc6entNtWmY1UXcfrbXrn/e9deXI205VKmSSQLccIOVeCU4wy3hWyNU1ecyXNoxE3FL8j/DpUrKiAjCRd411w2gHLIrCdsOAAhEZCFNlfQWC0CIpCZ8D1PfuVe5xuQYmeadNffvP4R7943j/pFDXs4/nTM4xHPZVGQmhU2VrM5yG5+ROzx8r9gSHAkhsWkTsHJlJj9tZ9lJOYaOC5Ni2yuIhltEF3fv4Ytfg6ZK6pTwIH1Vsj9L9RtBIgTh0iLkSmeKgQXZ0dxMghazptbrKWZm3JXOR8enu7/dsn6+UjdUxK2qlA5tDVoQ+Yc/VRJAicQhpGzA/5mvNA0T6t/VxovfbAI33qj+fsFCuYxaI8WNN2bnu4L/txfOISCMkiV75kI4tQAxI4GPuAH+nnZZVlSwZvOatz1EOlYpVTJ0xK3CPm5iJJWtz/PtV6abY4j5T8w1cf9+fi1kU1/3TrpnJ2hr3AKnv7KR9yrJSUJhttXGvilFjzvPS3JEPxVYF/lacNrGBK/cVNz3L305TIptryAabhFdiIoTnyrpG3FTfxcielI0UM3+HjRVUkjDzEGVrFI6+xmWydmZBC0m4lbr2FquSudss7i3pyxfxH0Xgq4XqC6lQyc3SGqa5ruqUiUBuZJLlq35br6nSqreSZs1ZufOgohEBlkDXyDr9bNnT3a+K8SoVeg+S7Jn+uBME8MB2naknIKf/1ltn6hwfdbU3wV5l1j5aYJDo8W+NzHrvzfJoj+HZptB0g35/qUImyqpeSpCrI8Pj+qf66X97pSA2hq3APd9jC0pqbERt3BvUlXkJI+NT2tkh8usCpkqCWTPei69UU+waiXzZVJhXuk8RDTcIrpYILhIwta4VZv2lkvIlZFu4b23ZNGL5O5dUymd/UyUYHoqQYsx0Ood/gNXpZO97wv76tx34WpQwsgpydX8elWlpuUIU7OkTtvzRaWpkjrZgVMll/TXsbQ/p6U3nztmyKbM+/yIyN+j8TL5oRMS8EZD6PQrFj/afdBbdluaKsl87+tprzQdUP1d6HXgn25M8M4ri3XyzW9rYetWv/pIWTuAkek5fG3n3gD9UYvj0GmeVbPumhR7D+JKQ8TNXS6QNT3fxZQf9LGpkj0QcRtTEJNk1/STrdKVQqAlGIWs46lq1vL5hmi4RXQx0OAfh76g7QDU34WMuHWVkk5sLAx9udyLRPWuqZRONr1rdqqcKpnDRenk+9sBp61c3P17MIZDiZwQ9XNVk4dUrRCq5pgEKGevlpxEIztwquTvnLga9aTW+dwsfNky/fcNSSN7IEuVBIClS+3mKAM7vaTzX44qn5cQ4CJuFaRKyuYerGeh1oHjf43bb2fW2FFgZG9huPUtbOOaa7K2E64kUSoGwqlm25vESUzzrIWMuAnnr1hQhLNDPKsmvf7qq+FsNOtq3Hwbqz8iRMBDlRyIqCripiP2CrkOyAmL3OU3BaOQjy47i+1JRMMtogsxdY4nJ/GTrVvowxBNZH8WNW6dz4NECIpjn4ibSukcWFAImplO0GqVUyUBN6WTXShrSPDkFazhFgb5/VnUqAcjPAEM5CEV1qCFkq8SEcIRWXUdmlK27/lMusvKBX0YqNe46LhpYz/5ZGDtWvX3ulTJoaHsfFewM8tSJZnvQtS4aRbZkE3VRXISIAQpQfmzUDVu7D99iKG7F79zwfbtwN++t/h7cy7ByN5iDVs5lCm5MzNZ+wkX4222EzqqS9577/eJOU5KjJh+stnHceOKxXjBSau763sIo8KUKjoxCWejea6pl+2TpioaJP21cO8RC2k7mQDrzHRT/WD4Shd7IoaUz66PjSThiHhkUe2jGdFwi+hCXOjrAUPRugVnNsBL161x6/w994aHUGJZJb7hoeyolE4uVXIyQZvJZGh0IgWuSiefSsMra8FSmTp/JknRGy7EBqOTEKJOQRvR85SfpqlyM0kC5EpqG3B73hrT+T6/rYyWvkZ4JhsNYPNm9fdiI9Yc9UaKzZuz810h9kIL/S7l64zMsJ/SKFs2EJkTxev4ru/yVMnqIvohrpEz/LLptXNzwMieIuKWG245XBh+c4KZgUa99J2vE0es7WYdi/5ZMsX565dm7Fm5ThDit/3ZL/UyOoF4ktE8PJxF6W76tF62j7NYdHDzqZLhTDfZDEOsM3nErZEk+K21vDc5pINe9mz73B7W2K7XaljMlH6MKhqKH62IhltEF+xifMaqJXzxuvcLrf5OlUpCQf5OlyNuIXqT8CF62ec2UCmdXKrkNJ8qWeusTa5Kp+iRZV/4cDVumaBMmc0+q7LxOTC/I26zrTb+48EnlM98iMx/3QbrW4fGnv2kwYU4Y9USLB/ok35PBTu3giSD+d7ivm/ZkvXrEZEkqTbidtlllJmWoYu4haj9y40fWYrRpGe/MmnEjXkS/SNusuiAp9AO2GddlOmzzuQMv+wz05xLcGg0wUwng3HlGv4KVIbfVrtoSCzWkAP+lOnivheSnIQntOGNfV/DbXgYuPN7+l+vJvR4MxnN27dn0blrrgHSRC/bx1nMzurcdYN85N1ZquQ6knscYp2Z7hitCxo1PHnFYpwasHyCX99lETd3+ZwDvZZg1cL+7t/3B2ix00uIhltEF2wO8emrlgT1yOrO91VKss2xo/TUyvUbvmCnXvdML5IpnQMlcpLiGvVGNt5V6WTvO2tYAQFr3DpikiQJGunUskpWHNHzkX///kOY1NQRhEmVrDLiVgh40uAinLF6aTDKa77mUhZxMwvfsAHYtq38eV3j2Fi4yJ8qWqxxY/u4hXje8/VXxvaqe55sIG0HwKV6eonnfrfBgeyHCOE0A8S58fJc9yWW4ZeNuDXnEgAJDu7LPGaDq8sKPoXhl43siDXkQAjDjY+4sY+OP/GJzMkSpnb8459q4QUv17NK1oTbpTOat2/PonJ5q52Fi8sT/Nq/LOwef/VrPlkDxbkLGnUgoANEdZ2ufM8LNNvtbuRqQScCzLYJ8l8HimOp4eYhXyQn6a/XusyjB6fnghCK9Qqi4RbRRf7gN5Iki86wCpWnbN0Gu29qFqNCI04KJuaKXXRJJ3wekuo6FKskIFc6BxYWd3emxCqZYts2d6VT9JomgZVNoDAAs1RM/jM/uWqEZpMTtxifTWDKoGQHSZXUTC9kO4AiOsNc20O+ThnMvreTs2kTcPPNvBNElSYJZKmSvhDvS/A+bkzE7fwTVnLf+fZzY2cntkwBApASKGjAQywx7PO8QEg3dH1NWYbfPs5wy/6c6xgAMpZSCsMvG9npr9dK0VTvdzV3mnV+zbCskuXoSWG4uctuNoHp5QZ6WBSpkixkRnOe8spiQOjnePmFq7HrN4WBcsO2tjNTaHlPlX/nC9mz7bvOsPVtCzqOhJC1rqlkfWfhs4rxqZKZ8DxdMoVf3WKvIRpuEV2IUauwETf992zjTSrGGXrbJR0PTEiqa46chEsfdRMsKp0cOckUT05y0Z9m410hpqZVEXFrd5WHsLWF1dP1F8fiJuOj9IgRk4agrIVYdKtkfuQMlG50JozBn0qVweJ7yjqzaROwY0dW0zI0pCYmyeSSp1qCWOMWMpUc4NffocUD+G/HLy995wpZqmRIxxxbnxeyziqTURyfNLiQ+851DWYZfsVUSQDdrIeGwuC3ZfjlIm71Ghe5BsJFOmX1ot6ymWNZmx3Xe79zJ3Dei8xsmmLEDZAbzXnKK4t+Zk997flr8dB9fVx/vgWL26SUVxY6B07ImJvs3fFdx9jnMWfDDEmypNKVQsgXUyUBerbG0YJ5abjNzc3hG9/4Bt761rfivPPOw/Lly9HX14d169bhJS95Cb70pS85y/7617+OP/qjP8Lq1auxcOFCnH766firv/orHDp0KOC/oDch1lgkAV8K0/k+RsSh2SLCkYfOQ3qT25IFA/Bbolmlc80QY7hNJxhk6oWf9vQwHlkgT2WUf+d1DVZ+wNrCqlMluYibsMn4bJANQePoE2pbQkfczjtuOU4eXCT9zgV8SiD/p/g9FZyxnP/pQfKxYUNGG75rF/D9HxjWmMAbO+cc8q0NSdPuv70uUcJDOs4qaQfA7B1cdDawwVxPEjyXiUa63heW4bchibjlUR1V+q0twy+rKPfValyLHcDv/jSbRX14q5n9nZUecs/2iY6LMPVi7F6zJr8AazSzKa8s+geyc+dmgdH9WVRm/GBxd5YMtkkpryxKJEXcd3R5Ksjur/eeyhx3+QACtjXh91T99aloSqL6oXtp9grmpeH2ne98By960Ytw3XXXYdeuXXjuc5+Ll7/85VizZg1uu+02vPjFL8aWLVvID/Hf//3f43d/93fx1a9+FU972tPwJ3/yJxgdHcW1116Lc889F/v27avoX9QbKDy+2d9D1nAYDTcP+fKIW7jwfzstLxiA/z3Jlc5r3l0Ies+7E/zrv1Rz32sIe18AWRQigNAOqu7fJDNQcvhE9HRtNUKB/fcv7qvzNWgh+7jlaXWBIrW69CvxewoaDeCkJ5mcQ37gPe18jVvIBtZyb7KffPY3kzXg9n2diohbIkR9ArynzHEphd9RPMvwK424df7MvuMvQmH4nWUYivrrtdLa4PIu5cyJ69cDYx0j5je/TrB+PfDJT4bc94rjRKIouzrPZG1xHn6ggVYT+LdtBVGGLFUS4I1mNuWVRZ7FMjtdTJiNuC0ZTEkpryzESGRIkh/uOlJyknAya4HXdkBklQxc42aMuLnL7jXMS8OtVqvhoosuwh133IHdu3fj3//93/HZz34WP//5z/HP//zPqNfruOGGG/DpT3/aWubdd9+Nyy+/HPV6HV/60pfwne98B//yL/+C3/zmN/jv//2/4/7778frX//6Cv9V8x9ixO1wpkr6SJ9rS/K2Wdkhw/+1cApyV05SyDnh+IRjj6xi883/BVUoVSG9d4cz4iZuMiFTJcUGraGNzuC1i9KIWxj58nYAzPc+RqHh+1CkLfl0Q6YYyepoq1p/u+tA0FTJ7M96LREikf4Qo7QhnheW4VcXcQPKUTcKw+8cl5qWdNul5KD+rCxz4t69xdybc9nfb2ZUopC9/+QRNzf5J58MTI7z9+EtL1uNVz9nCD/+VlG0KkuVFI1mVfSuvyOGM9yYiNvS5dnvYpvyykJMO+YNn3CoJOKm0QfE733lB2eVlEbcYqrkvMELX/hCfO5zn8Pznve80neveMUr8OpXvxoA8KlPfcpa5rvf/W6kaYrXvOY1+MM//MPu54sWLcK2bdtQq9Vwyy234L777vOefy+inRavVL0Cb0aVL5VMGQypPKgibqE8PE3B2x5SYWMXStHDFibiVhyHrqET7+8ipm9LgJ7t3HMh7jE+970mxO/6BQ0kSP2fpnYxZDuARPI+hYu45X8y75TH72rq7ReKtEVaIxYw4iZXSvzkc0q48Kf4vQvajNMvfMRNVJTD3Jec4bfMKln8CfCGG5Xhd1qoKaqXDDf7f4DInAgUBmRek9dmeJF+8Uv7ecogS68Nsf81GkDSLNbyQ6MJ2q0Ek+M1rr5bFnETjWZZ9A4oeqPOzjCG21hxvHhZ9rvYpryy4BlaBQTSc56YnJE6D0PqYd2etxXpedX2cQsXAe5FzEvDzYSzzz4bADBsSQs0OzvbrYv78z//89L3J510Es4//3wAwBe+8IVAs+wtyBWH4vvKI24e8qWewYrSPPmIWxi0BMMwZPREHnFLgsgGeCMhdL6/qGg3AnvXeFZJP084J1eYdyniFoJxU/hd+eiPr2z+NwXE2hkf2cVxyIjb8DDwD/+oPzcUSVHazupT2X6LvkZhU7LGsAaQN0MgcyyLuPk+kd00+yQJ9qzk0D3rPutAzvDbKNpBYW62kyrJtGRhCUqoDL9sq5tFjXppnbH1U8iYE5Mk7RqVeaSQNXxu/xq9WTg3N6mTRf49FSsZ0tS//V/FX7j1QdBOZUYzm/LKIq9xYyNuXJudOi3llQX7r64lSfCIW5qm+K9dB6TfBa117UyczRBppn4eUVH+GauWcN/7zF6WKlmFI70X0JOG244dOwAAxx13nNX4Bx54AJOTkwCAc889Vzom//zuu+92ntfExITV//MRslSdkKk0ZnISH9nFsSziFjLyU+cU5DArRUvwJIWcu9TT3o24hTcgwlIL838PSXWdyVd7B32ki1MLzSSXpimemCwajtYQLpURECJu+Z+Bfte2ED0B/CNLefrYp27Wj/vXz9FlA0VN0f33Z3+fnExw6qnAhhOKMUFr3JJcKWHlh18HQjlZ+GyNsKRWoowsVTLcs75pE/Cyl7MRt+zPlpAqOTCQMQFTGX7zVjUJgIV99fI6Yzl/GXMiGwlsNnODk5PuzJwIFM90AveeiyrkdYVTEwl+9ZPCcmbtBpGcRGY0symvBdIuq+QME3Fj702tnpJSXjnpYqpk4Bq3vZOznCOHu7anbFmtK5sRMtfyu4Jo7J+2akm3fAXw05nYuT06nKDZDN+SpVfQc4bb448/jptuugkAcNFFF1mds7NTgbp8+XIsVcTGN3RWhJ0u1aodLFmyxPj/8ccf7yy/Sqj68HSVfG9PT3UvlawfV8jIT+URN0FpC0l6IDVqO38P8ZPoyElCM5HWAyuEM63yJpbDKwIsRtxKqZJ+c39icpbrFddXr4U19pljeR2Eu3x5jZu7Qc6mj+n6uAHA//7fKbZvJ4nnaoryf3eejrZ3b4K5jv28f7/fPZfXuFW0DnQdc8VnIWtPQkZ/ARkpTIEQa8ySE4pG0MuW5qmSxZjL35pixw63tix5xC0z2sR4m938VcyJDeZ5l0XcanVas3ARYnPv7DjMM5m/SwsG+F6MbKp0nippMprzlNccjb4sogYAs0zXAVZ2o4+W8srPnZkjwjM1H5ieVX5XRcSNdSzO+eSqQ3SyZGnT6xYXP47L9HPH2b98rpjbH/xeRsbz7W+F1Ql6BT1luDWbTVx88cUYHR3FmWeeiS1btlidN96pQF28eLFyzJIlWUh3zJar9iiDmK6Xo2i46SffnCrpIzs7mfUMhooQzDTb2DVerP4NztsbZqEQ06R4tjdfJbxsnOT3JghxAHOceR/Za/tBPJ+LuHk+kLsPTWP/FBu1ckthkkH8yUr1cx6yAWCCSb9au6gf/fVaUGNf9siFSgeSpV+5RrHF9DFdHzcgU2QvvdQ+fUysKcrtb1a3ydOvhh8F2ShkIae6DqeUyGpbQinhojLIyv3urhGMzcxJzrJHmQwi3LM+PDaFGaYO7bZbEzzwAPDCFxbXeOtbU1J6ZI7ZVhtznQnmjYLFViA201cxJ7LRopwFs80YaY0+d+ZEoIiO1zh9gPnex4HT+XPBQML1Ymy3iwssWZJ9bjKa85TXHHmaJMDXuLGpkmc8lZbyys+dX8NCOs0A/d4W0gmdrwN9QSNuxXEtgC7GOc6Yz2emEuzdC3zz6zFVct7j9a9/Pb7xjW9g1apV+NznPof+/n7zSYcRhw4dMv7/2GOPHelpSjEyXWyurIKcH1bfx81HdvYnu8GEMn52T/CNQtl6pVDrBLtYiuQkvteQFVKHjbgVxzUIqZIBNxmAdyh47i/4r0cPcH8PG3HjUSYkcBYNgL8vJ3b6t4VNGVEb+0AYJwugirjZyxLTx1iSCRnqjRQzM7BKH5PWFHUNt3L6VaORkoxCEcbav5Ce9jzixl3fJ4rK/6bsszjbauN7wrtGl18cl1glPe/LXY+Pcn/va2SK4qoV8utTwNW3dQ03fozNfVf5kmVsmGzdZa0TdXJhTgTk+2ooZ0KXoTXhezF+8QvFmFdekn1uY2Bt2pRF5QYG+Obbs1PMfBmHy9q1PnMvjkPWRudocfLBRayqYJetMzpH0IhbvncovjdBdJyxGRWzs+XI+B3fPXYst54x3N74xjdi27ZtWLFiBb72ta/h1FNPtT43T4/U1ZflDbiXqWiKLLB48WKr/+cjHjxQ3JvBgcJ1nS9MVbNKejHVdT2DxWehan5Y79e6xQOcdypUZH6ms9s2kgSNWq2Shph8NDL7LkiNm8j4xn7nXZfD/z1kzY+IoOQkQvro8oE+5fcu4KPj+Z8BI27MsSz12MvTLhj6gJsyKEsfaxhSJfP0qY99zJw+JqspyhVhlrkvry2qN2BtFMogY3+titU3hCdcLbscvWYNGBdwz2MSpo9bDpGeX3ZvXJ93Noqap0uLadM281epJNL+c0yqZP68uzAnArxxlSN0lJZ9VhoN4KSTijFJQrvApk1ZdO7Nl5cjbkNDwP//yvL1XcA/j+Uoqi9YneMFJ63GyoVFgMI3W0NV153rNbOedM0mvgFbyBxnfUwkda6zNudkQgBw47bUi4ynl9AThtvll1+OD33oQ1i+fDluv/32LqukLZ70pCcBAA4ePNhNmxSRM1TmY4815OlXtQQ4aXBh9/MiVTKcpycHq2z6aA5yzyDzvbtoIbqxMCjteo7pZjbDgbwHXcDUi1Ryb/KNJnTELTg5iSAhSZLuM+ObKimi5AkPJPe5G1aW7rOv7KoZYGUeZVlPHhdwRm3XQJF/r4MsfYxVZG//7CJ87ysLujVoQBZxA4B9+4APflAtW1VTlJMl8KmS+bWz71xriqSe8KpSJfP7rrg+WTZzXBNq3EJATJWsBVwfGwLjq0jglF3fTbYsTf3UlYuVY1RQMSfWGbbL/JlrN/nvXZkTAfO+6kMQJTMKAf9U+w0bgDe+qTjzD34vS33dtQu4+upqHBW+cxYh1ruG7Bcpvqs5+jsewDnPfVW+ztCd6DLHGRtJnesY5KzhliTujrNew7w33N72trfh/e9/PwYHB3H77bcrWSF1OO2007BoUZZS9OMf/1g6Jv/8nHPOcZ9sDyN/oRb3NaQLdUhykrOHBnHK8kU47/jlxfUDyGY3gXBpQMVxlgrIynUW20WrnXYXywWNch2E7zVyxUB2b4KzSiJcZCY7v/xZHmEK3bPlrKFB4drhnpllAzx1WchmzbJ0Q//efwW6qZLMZyHrodg/KbJl6WNsKs2D9zbwd29agW9/sXBCsSx8b3mLuiZNVVMki7jltUW5bNeaImkLBlZJ9lSoWpL7HspBxPbPqyVAQ9Y52QPi+xTyWW8IloP0mXSULTq1AGCgUcd5xy0vZFtMX86cqOg/J1DeuzInZnPL5LO/ZihnQn5PRYdQiEwZ9llfuybBxo3FPQihz+jJSfz3pRLZT9D65bIzASgibs126rn3ySL7zPcW64zKcdbfWd/nZot0dTZV8uK3jOGmT6XOZDy9hHltuF1xxRV43/veh8HBQXzta1/Deeed5ySnv78ff/zHfwwA+MxnPlP6/uGHH8b3vvc9AMDLXvYy9wn3MLoKvvB5N+LmKZ9dcE5cthBnDQ1iUaNowumz3umiSkBo71o4owoAppmihJw2NyxrWvYnl0ba3by8RGcyBK9yyPq8EskHivqc0KmSKxb04QUnrSqu7SFLvCd99RqeewLTq8hDNsC/S1UwEMqMiGBKvswj6xBxk6WPmRopi+Qlqpo0VU1R8d4UMptCxA1wqymSNYNPGBbCkKmS9a5CFWYt48kaklL6oS906di+96VRSpUsrtO9vuPNEXtc5hio09PtReZEQCAnydsBME6FRn/qzJwIlCNuzSawf3/52XdBN+ImfhHg0VExZGfi/bNNxLTmUMRNAPDI2BQePVTU1deTsGRlslR1INujcvhE3WQRPd6wNctQOc76Os8/G2Vjj5etSPGsP5xwJuPpJcxbw23r1q14z3veg+XLl1sbbR/5yEdw+umn45JLLil9d8UVVyBJEnziE5/AV7/61e7nk5OTuPTSS9FqtXDRRRfh9NNPD/rv6BXk75OYulAFOYmsaDWEccXXuMmvTZbNHIuF976FvEDGWpljQV2WKumHohcPY9Tmm5enbFY+0IlIBjJs0zQtR9WSYiP2JSeRYcWCfizrb3Sv7wre0579uXoRU6dQScSt+L6aiFug35U59om4ydLHuJqfbvE6a7jxwlU1aaqaImnEraO8stE8l5oikeSnexwsVd2w/vqskWzvrSThlMAQEAmWeIPW776Ic+0+kwGiHDzhTHHs4gQRmRMBeTsANlXymc90Z04EinvbnMvYHdevB/76ncX3b/j/pdi61Y2QR+ZQBMI8k9z6KFygqO92R/l5CLdh/3j3Qe7vWaqkf/S3e76yxo0xhjzq3KTrDNGJrnKc5WyhcwxTKLu+A8CLL5lwJuPpJTgG0avFrbfeimuuuQYA8JSnPAX/8A//IB23evVqXHfddd2/79u3D/fffz/WrVtXGnvOOefg7/7u7/DmN78Zf/RHf4Tf+Z3fwdq1a/Hd734Xu3fvxmmnnYaPfexj1fyDegD5+yY6vLrU8Z4LUovxsCWJRHPw8uJnf7KbLbs5fnd4BH9wyhos6qM/7mJqweK+OupJglaa4tHxaUzOtbqMYS6YYgy3gU4EMmSD2VRi1IZKfwXkSn7xnbv8PRMzHE03kD0uVdW4da/RdVS4y5DViFG9jjq0OY9y9mfIiBuL7vwD6SbyiBs9/SpPH+tsEwD4VMm5jiLbZGrcZKyTN94IvPOdfPQiNwpFr6+8xi2be15v5FpTpEphqiWZk6KK/k2hFEKRHl2MYvkif9frSbF31DprsO+7JE41pCNEtg4A7kZhTol/6aWZ04FrwC0hJzl+PW2+LNK0WL1/ek/Sfc9YRXlyKnv/rrsuMypt+9yxskVijxDOXH3ErZiDK1hdiXUiAOFqo3PUhYie9zrAHLP3no+4+RhuxbE84maev8pxlhtus9OM4Sa0vJuZTrB0jdVUexrz0nAbGRnpHv/4xz9W1qWddNJJnOFmwpve9CaceeaZ+Lu/+zv88Ic/xMTEBE488URceeWVuPLKK5XNuY8FqBZS1h+Zpqkzg1L+vrILaaURN2Gedz0+iuduWAUqxIWoUavh5OWL8OsDE0iRNctc1LdQeb4JM2yqZB5x467vs8GkmO4YPzJyiRCbjErhzL5zl/v4xEzps4Spb6mq2WYu30e6qnde0pHr6zWV9VwMWuMmOT1YBDtgtHDLFuC97y2MNHPErSwjr0nbuLH4TGYUAvKI21xHfm74udYUySKRxXFaEauk/HsqxAhwX+Aat1w+3180vEGbywXCpNrL1gHxmGpAbNoEXHBBFin+9g+Lc1tzmdNgy1+4y2bBnsmnphWf546SmZmMtj2fH0V2KeIWwOZnn0exhjHpvE8h1vdibS9/FwK5YcjrYH4yVayS7H3ySSSSR9yY61vIUDnOclbJWeYZZJ9NIKs5diXj6SXMy1TJV7/61ZlXxvD/Qw89xJ131VVXIU1TfPvb31bKftGLXoSvfOUr2L9/P6anp/HAAw/g2muvPbaNNklNS45Qnvx8MQ1N2c967ziFRxg3NuuWkC9TeBYzETZv0gDm/EY9V6j8lQYA+PkTRc4ArziEiaICZa+yC4OUDNL7mgC5YzCFjydcfV6IVB1Z7zyArZHyfGYkqUBhUyXLCmct0DMZipwEAO64ozDaAHlfK9X3LGSpNbKaotweSSV93OoNYGDAvaZIbCHRvWY3NdjXQCkrVKFaSIi/aegat67hxvUX7axhnrLFd6WI6KnH2CJVrgN+kc6879ln/7X4bMtlCXbtAt7x9jDv6SPD5XcpO2YcIUL7Dds+hqpIZP6JbBwF/Poolx6ylUGobArxOZPpNUEj74oMJR+2bKmDiPibqsh4+ixSJZctTZzJeHoJ89Jwizi8YN8lVY0bEIZpj920QnjXVJ5qUbbrpbiFqPNnyEbQsugJECal49dMbz6uboYZ491rTVOo7bMByM7cuGJxkE2sKezaJy9f1D0O2c4AEJ7JAIXxgEBO4mn8yCBTOEMYtEA4chJpnx+u5scu4gYA3/pW+TNZTZE0VZKRv+3j7jVFsrpIoEiFrSJVkjWEfBxQKbeGAX31AAs7gyJVko+4AWFr/9YvXVDIh/86o6JeD7X+JrXi3NWrM4WVj6I6i8YnbiqO2XeIZa0UFWTbPoaqOisgTEq2NlUyd5757E152UfA6CxQ3pdy8BFajwtAnSETqoZZ5rR0iUiWHWcpBjqv5yxjuM0JqZLr1oRde+YrouEWofWAhWu4Wd58+Tm4Rjfkm4D47yh79mzlF8dShcc3esLs7nLFxEu8FFWQnwAotQPwIrFgTv6ttcvw/BNXYUl/gzeaHW9Ok5G9pL+Os9YWSfUh+jepoyed7z3vurGPm2/vP+a4G4GohVkHZGuNy28q6/PDGmZzFuQkOf7qr+SRgk2bgJtvLhSIPFWyxTXgLo5f8f94GLTMccKtA2Gi423BuAL49CiV0mgDsdVA6HYAsohbqF6U7D/7WQxNfwhlWZXJEkoRl/2mIRwszSaw/TPyiFtL6BMnwqaPoepZB8TyCbf5c6mSImtoEFbJDLKykSoMN74WNbwDBwhfw5w5cd0jkqLjrK/g9uIMNzHitmhhNNwijhGocvGBcAqhifnRVbKscW12LAx0fJ9lHqpaAOOhe74q4uZZayVu2k1OiQjjXQPKSn4o7yN77rolA1i5MFu5Q0Q72Q1y5YJ+/rlhxrk+7zLDhz32VzZlUStmc/d8Jtnie/E64vWpkM2dWhiv7PMzUMguDLfi+z6F4aaLFGzaBOzYkbHq5fZI3kNoaAh40knFjblv/yHj3FXgak+Yz0NFllrcOhbWASWmR8lSJV2NiDQt6vtkjq1QKaSsopn93T/iploHQqUds3tPUbfoL3vnTuDgaPF3NsrGOUIkKWk2fQxVdVblccapSsGu73XhAkXEzR1FqmRHJvOdTwS1qVj7QkVRgTKRkOw4RGZViNZMrOOsj13bNRE3VWDgaEM03CKUufiA8NIFf6GZOTjLVUXceLi+zjIPVSNkxE1SrwQUL6az11RY4dlNPmTETfQqh9rEVFFgPvLjf2/KG7u/Uausben8GYqhlVU2Q1JGy5q28waz/zoAFHNmySxsegip+/wU5852WiHZpEoC+khBXlOUs/g99QzggQeAXbuAJz+luOYDIxNyARYwKfkpwqy/QPFbhoheZ7L5NThkJEIVPWHZZX3ui4z4BBBTvt3QZCKze/cWzxfnHAr8LmXHfrLHxuT1ooAQcSPUjLJoK9Z2QP7sUMHVjSe8iptL9yNu4dfHULaCMuLGOVrDOOUAwakYLFXS4KAnCs8dZ2/7S9Zwy/4cGspqO1mEZrSdr4iGW4SwqQqpBYFTJfn3yt+CUG9e6hQMknyJh4ot4fCNuMmo3QGGQMRRrhi5YL15oYwroJz24lt4n0MVBQ5x71vMvSixjrFzcPa0y+febcPgmyopUTZDkpPIEHodyGRmf9aT4r7PWvQQUvX5GVjAGm7liJsqVRIwRwrYZ2HJ4oyFstEARmc8uhAzUDmgKr3vwSJuxbGMvdZHflMSVQIKYz+F730pyxb/Tp368HAWob3yyuLEv3xb1gdt61bg8d1hlOSW4pnxraVdtkzezF48ritIIEw8b7qIG7f+GmcqB/vMiIq8byYLwGQkOJJvqKB6R9j31Kc5NiCv2Qfc6tB08lUOelcynre8rZjTC56fdB1nl79Z7XA5mhENtwhlYTzAPyA+LH75mZVG3JjPS++v4wttYsELGXGrS+6Nq/EwJ+QRtrjf2D+dJsdehra/BrHw3l0uF4FgjkNEfnQbe81zkwHU0cJgqZKdiakcFaHISbhIZ6joDHPMpnf1d9IlbRQTU58fAJi1bAfAQhcp4CNixbGNoWkDZYQ5QMqeeG63VjdQjZuObKI7xtXJooi4sceqFDMb5PMq9XNjxxDu+/btmVF/zTXAxGTxeauVYO/e7PPf/m1GdiAGP+ne4Sj75JOBtUPF39l3iI24NSQ1bjZ9DFWkLUAYxxm3p4qGm6ds9lxpqqSzVPU7yLJYH3Jkx86hKi0JxQYtc4SEkM3uOatWJl3HmciDVIHPcl4iGm4RfIRA+C6EQqgsiFXMgSabjW6UleTiWm6WW5WeavF8Ng3Q12uqqxUKFXGbarbw4MFCO0mScJ67KhVZ7cYeIFWS3xyZ486fc80UO3aYi/hVqDLi1mwCM526gTQt5lgPJF+l5Od1UXMWhlDe50dEH8NCRo24AfpIgep5XLd4QDKaDpVhyJT/BYuK5eJDpXzLjMKzhwa5Ma71qCqGQN5wCxshEP9ue2u2b8/6meWkOfV6cSLb+29qMqySDMhZK8dnW07re6MB/OmfFuexxhpb7yaLuNn0MdS1HwoRMWEN+VLErfNnqw3nNTiXLiNu8nFqqZ7jgXoN/Z1ruLY1yiGyQOcIkRrcTtOu3iFzJIjXp8kujvl9j/99fTOIegXRcIvQtgPoZzSHSTZpnwAbj2yIeqIq2gHIFLZQtSHZ+cWxlFXSUa4uchGqxm2v0CS7RE4SKuLGKbKssukmW5faFcao5Z/3PHXq1zsy6YcmgFNPLVKnbHofsegqm8zq7WvQ5nNcvx54cGd2/thoMcf9+8Ir+eyz0sdE3Ez3XdXnp1+aKslG3NRybSIFMpy5pgj/+RTGK5lIOVp6Z/FSEo5wNW7Fcf4cnrx8EU5g6PVDO1kagdLH8jWktA5wiqxZvqw9Rb0IlHCGG2sITU7ZzrQMbl9l1gL2vbp7z6iT7AtfXhyrIm4iq+TAAKz6GKqiPp1PukeuvyqXUdGRn69vP/1p9vdW230N7rYD6Py9n/FqzXpEf9XtABIsHcis4elm28q5pYIVq6Tjuzo+0+zKHxworHd+T3USrVwHxPc2TP7D/Ec03CK07QCWMS/g2MwcXKBeLPzdayqWpFCevKojbsp0l86f7qmSuohbGGVQ/LcnCElOwir4xechlE29x9dfcWCn9dl/TrqpUzMdwozcE5+nTm3cmHnrbSGLuLH/DuptYdO79u5l2ROLOf4/rwhlQBTHfM0STRGXNcjOUyXb7SLSxjcMVsvTRQqaTWDHr+VzWjrQ6CopPpFIlQMqNJunSna4iFvxeYh1Uh1xK1SXMBE3/nNqpomsPUWNMdxaTKSKbSfx6KM+Rqdi72D+LQ+NulmGa9YWspsMc19Lk3q8bZtdH0NV1AcIo+SL5FPs+lZEQ7OZuKzBRTpg9ucA49z2SZ0WU37ZaP7S/mJxGveIutm0T3K97wcY/XD5guLhCLGn8gyqkB4DMVUy4hiCrh0A6zlxLcSXpdIAYXLDqzQKWfkJVJ5qP/mqAvMum5zjjdEpv+x1HhmbclJ8xmeauGcPzxJRTpV0Bxdxg1zZDN0YN7tWAPnMaa96VaEs5Aobq9AB2fcXX2ynOKjo0ZMkcWKTE9O7AMZwaxXyJw6FcVaoiAmoLQFkDbJzwy1jHcsjbsX3qoibKlLARiGf+czi8zu+w3vpQzA/KgltArCoZudmf4rPTB6RCB1xE6/lKp6Nqqsibq41bmzttZZV0nDfVe0pamyqJNu0nTHiHt/jnjKtTpUM4BBlZKcpc68lEbeBgYy2fdMmumxdpNNZyWeM8f/7mYRb39iIIbsOk9bg7lwLfSB/HH0MN3Zd7a/XcPa6we7fF/UVethU0/0a6hKE4nPXusvRacZwG2AMN+76rnuqykmR4NnHryjke1ft9wai4RahbQewpL/RfandI27mqFjoBtzig+1b48Z5kgMRBojyZX3oXBdR2xq3e/eN4779Bv5mCX4lOaeGJFhql+qZDEFOoiXj8VAcckX/Rz9mFDYuRSoTnjUTLUu/9FJzyo5O6SmaNdvNXJbeBRSGW8o8QqzXfXw8kJLP/LL9bEsAyxxYsUF2bripGrSqyElkkYJSFJJR8qanEs5Lzz6TQRxQyppOR+Eo3hXxec+NoaaXUSh3zIXoLdhURNz6OMPN38FSepcIFOyq9hRsDRhrMHBrQjs19j1TQekQDeCzZGX/n/+drWtDQ7zRuXhJ9vmOHfZGG2BoP8SN83tmamlSWt/yHowAn8qaw7QGy7I1WHKl0ZkmHhhx6+fIPsf/7fjlWNgoJrigUayP044lK4CtLuYme4YxWllCFfZ5fHR82km2KroMAKsXFakUvsRcvYJouEUoewgB2YawoLOAzDoWFSkjHEE2GLnsUo2b47Vyw6mKFCOg8HSXPL6+5CTCb3UO470Tf2OX/lPSBbgUcfOIzKjaAQRIv1LVE2V/d0sZYRX93GZut3lvNauw1SQrr64RdA4dsUphuNnNWZbeBRSRAtb2Z42hBxRpgzZQkpMwdSI2EbccbIPsBYvKhlveiBsoR9xUkQJZFJKPwGR/5l76PXuK79ydCYqIW4AIcyY/+1NcZ/JnKGQfN9mxc6okcx7PKsmkSgZ2+ol/N90aVXsKvsaNNWKTghm2bu57poIqWyOE8srKWD6Y4OqrM/r173y7+PyPX5zi6qvt0iN52eoMHxaHJtwIRHIDaOJQrbS+tbmIW/lGmdZg9gxWJ2DTJX/xhNsPqnJSALzhNuNT48Ycq8jcgjifuMyq4nhkeg5TDoYnJ1tBOANEcpKIYwi6mh8A3s2gWW+rMq/aSbJdzrYPcvHiIsc2gPWBqQGsa/oVe1/OWTeIJw0uKmTTp1nCqoXlgqFWOw3iuRPPZWXyXnxH2Qp5AC1FKoeo6HcNH2F/YhnZxHTJHLpG0IBaWWP/bjNvVXoXACSSVEnWAHroYf/0rgT8O+VDNpE3yB5al503tCbr8/Pgg8BrX1OMyyNuQ0PqSIEyCqlgCASAn93jHxXjnWfFcajG50X6mGC45etYIMZKdr4hMhOqZJXk3yVxHbDfm1TtKdhnpiU8M3kErtFIjX3PVFDd9xB9HGUpzY0G8ORT/Pds1fo7PAy8/e2FUfuLX7gRiOTPzP4nyjsdu2fIIm6Afg1WMQaL+7fLb6CqcwWABcxkfSJu3VYGukyTwI4Q0YE7NediuDGyhe9CtjfqFUTDLULLKpl91vHkO8rnCURYTwwzB8c3jqe51kTc3MQri9dzB5t/O4Bcnhg9KY5drsCeMzjA54iFSKURaZaBLL8/1CKqigKHSZVUe3xrxPnr2OREZa0tqQ8RYWoE3dZ4ZSkRN1V6F8DUuDFy5pgoVhv+6V3l99Mt0skif5cWLcgIYU4+GXjD/ynk/t4rJvGL+1vYtQvKSIE6Csn8G4TfdYYJPoeoi6wiVVK9jhUOqODp6gHeVRtWSdcaN5XhA9Ainar2FKqIW/b37M+BBW5spuK8+PYF/uqrOv21GBPyeWEzFlImGgnQSJzSNO1GYCfGy3sUm+pZU5AR6dZglZN7WoiCuTgTdFwDfKqkP6tkubbbf51RPTNsyifgqM9wBrNGVzpGLLdouEVoc87Zz5yNK2adCd2AW0V2IP47nFMlFQtdsIhbtwGseiF1ue/6OgJ/y02miM210yAbO3uuOFM2xTBIjRvE+y4fp4KUTU4SsQKyJrw5+jTtv3SpU7pcf0rETZXeBcgjhnNMjVt/f+qc3pUrNH1CrqjOQ2uDNE2LqBJLFy2MO7hoVMseqYpCstNl62QAvo7O1XBTkpM4RIBLshlCG3GdyclJUviTQYjyWUPLmZykwoibLlWSosiq2lNwrJKK6PvKVea+Zyqo5h86VVJF+uUcXRbWXzFjoZtGmvAXsCEQYSsEpifL+xyni9TU/wDV+qZKNRSjYC7OBM5ZKXzHpmL6GW6dNVL4PESJg+qZWbGAdxy76AW64AL71xDR5l5ANNwilAx+3c+SfJzjC21F2R9i85VvMNm13IwV1UIXIsWIla/z+Dopspqm6iEibjKDNStIDhMhyE8tkSkESAlSPY/i9Uz3XaXo59E0MTKzd1ehyT3tPElYpwNd6hSrmIi5/vm9sbkvqvQugCHGYfQDrlas3z29K2ddY3sfAQEcFcyxrkHrngn1fddHIYsrpILexBtu5rnKoPIoh2g4z56lirgB4Uk+Qte48RE3loU0wN6hy3iwmLusPQWXKimk3uVrw/IV7oskT5HOR8R9oVojffclUfbYaDljIV93EoV2qiMQYQ2mmSlZxK04ljUQz6Fa31SO4lNXLhHm4eJ8Ko5LDsUkwYKO8TYtegEcrlHSjwJErZRlK0mC01YuZsZ5yha+i6mSEcckdKlj2Wf2KVgy6Ni7ijk4ymaOVUoDUEHELU8x8mRjy8+uC2+ir2eTVwRF2XR5Ith/9/KBPqxd1I8nDS7yTvHsnptvMMIGFqaPW3FcNmrtDQiVol9TpEr+8BtFQ+Jn/56cXcvUCFpFiwwUc7fhEFKldwHF/FkDpdUs/j2Ll7ild7XaRRpTv/DA84oD/XflIzPF55KMXiW0UUgu4sZ/x0Yj3VMl5YpJiFRJVdRK/HuIvoih2XdVc+dYJR3JGlTpqYBoCJkha0/BpUoKUdo8ZU9nPJigrnFzlymToSpvCOGk+N73klLGQtq5V6o6YB2BCPcMt8svP5sFISOIAvRrsMq4esqKxdw4n96CHeEl5GumVwPuLtka/znHBu0qm8mSKRuGfsYVH3GTBBfycTHiFnEsQqbnsA+Jk1JlERVzfd1UDFUBbBMAhVdRVQvVTt0XC13aG/s33whEOR3Q/+7kG1N/LcELn7Qaz92wCvVaIszbfRE13XfAzkCRQdfHrcaN019ApejnCoeYKvnz7xeELutOlHtNdY2gAXUjUoD2nqrSuwBVqmfSbQmwdih1Su+aZSyekuHGHLv8rKrIjMpRJIMuClnT1CsFibgxx6pUydBRK4A3ckPIV7cDcBLNMUayc2drfiYdyRrY9LY+IQLskvIttqdg61jZ+taBAWBwGU22DLpUT1/ooieJZIyr7DvvkHzfTZVUy1ARiLDP4sknSQw3jpxEPn/dGqxqHt5fr+E0JurmFnFTZ8kArLPY/bmxi7j5Rd5la65vyreRQK/z4bFhtkXDLQL6ws/sM2ask3y5N5wb4yA3k10csw9zOVXSRba6NiSEh3OcaWiub0TqsNApZGXXIosrocuGKVLzhiIn6UbcePB1M/4RAl000iRepejnCkGZSS5RNuEG1I2gWegibtSaIll6F1CkBYrKdk6zv3yl231nm9P218SIm32kUwaVE4RiuGmjkJqIW5AaN4UnP0jUSlcXGeB9ajHvqspwczYKmQe5wchr1Grd1LFDs26G2/hssf4u7ec1ddeMB7Y9xWIme67V4tlMFy8qHH+u6Pbmg3zfzuHGSlwcy1oEZXLJYkvnHTxYnndBTqK+gIpAhJ336acnpfWtZWD2Na3BPBkaDx9mXEBf4waE0TmUNW4ByKFUBEgh5Ov0mewz//eplxANtwhtPVT2ma9SVRyXSTg8BEMdQg/hgGRla/v8OJooP91bhGxKrJKetWImD5Uv1P3nCnj1ncrl6VK7KiEnsX/WVYp+EXErf5d/JiuMlzWCFmHTx00cp4IsvWvN8U0MLOzMtZQSmMnXKVQ6cIabLlXSQbaq3ofipNBFIRPm9yoZbqFTJbmIm7+ypro3AP8+TTjQdAPoMp2W0zCZMRVECxf3Zy/aTKvtRAYxzhh8ouHGRd6Jc8/bU/zP/1l89pUvJxybqW/deDav7E/xvovwdbYq244EqHETa/8Ac41bDhmBCPtbLVtSXt9M7QBMazDbv1Tcm1jDreVLTiL5SUMQFakc0SFKHHQRN29HtCm40B13bFhu0XCLIC0YLi+dikCEvZ77YqFO6fCFrjbPN0IA8I2Gj1uygPvON3VBH3HzvzeqiFsoal5VxI1LHXMlJdCQk1CedZWiX1ekSgLy2hZVI2gZWCeIjtDG1qjdtAn4i78o/n75Bw52j8W6nIUDfl5NreHGHLsoJar7Ql0HlFFITTsArsm6axSCOU4UhqdvRAyQpUoWf/+vRw9g/+QsqJCxeYrXChFxE7M1FvcVL5FL1K2KiBsvozjxSU/i0++6qV0ea2Q3wmHQ4lyuwddcyve+EBE3ueGWdK6jlyMjEBENfTF9lb1ejUlltV2Dh8emusfHC3u2b8SN327K//gQ75OyHUsQozCPuJXn7uuA4kpiJN93S1foonsS0XCLMLYD8GUK1NMul+dAgSp6Iv47XMTzi4VaSXaOLDGnnbhsoSA/kQ2zF63ZBMS+KtTUyTaTQioaDwOM7H1TdCUwh6rGLUTqmJ64hfas69jkZORf3fqNmr4RtApty+hJ2/JF3b4d+OhHi79vfMZcIV+ICu7fl/3pqjTMMhZEOeLm50xoCwqbDjpHiCwKCYipkrz8P3mxfB4UsIX93HUDPO+63n/ivfrB7gNk+UX0nf88SLRQ87su6S/Wmok5ekf4/JyBeg19wvMYhj1RLg8o9pMQqZImR5ybs7U4VtUBh2A5XbK4PHexj5sMKgIR2bzZ9NWBAcYp4rAG57VrtQQ4fqnacHNxKpoc6L7ZJmlaPAmh2w8BplRJfh5UsGdII3oesnsRHpxGEUcLVN7eHL5RFD2rZAI30ySXzRhXXIoRP84pr1qXLhKA9j4/TVRiAf8IhK6ZJ6vwAOZUGxHspiE24l7a38DgQAOjM00cmJ7DodkmlvTTlxmbGrfq+7iZ5eeK/sUXF5/pUiVzj++Tn5Ji1y56Dye+Xon/jrqxy5qHs1i0hJeR17i5Rjp1ETef1DRxTiZHRLOdlsgoWOQK3KWXFr2lZBG3gYHstz/7rAS/eKLzneczWY4As7+pk2hD7z/+7zMOPaK60XeN7DARN14++wy5kEHksvskD0wIo1O7znQzTXz2vuxPo+EW2tnqWU/ErqsveAHw5X8Wrm1BTqIiEGkp5p2nr961G3ioU6Fw663AU0+hrcH57yXbs7kWFb57tuR77n3yNAx92uCooEvd9edJYGRJvveNAvcaYsQtwlgP5ftS6zeBXK4bVJ4YcaMM7XUMwcKkMk5K8j1ky+SLhpQpQiGCU6Yk5w4tLkJQrnUz+RV0JDPurJLm55GdgwklNrluOwAhGjlQeJgbfW6Nd3W9p3ij1ixLbB7ev4A/aeFi/u/NTo1bCrdnfoph8VsQuMaN/031z/OcRf0J66UfGuLT3hYu5L30QZT8zp/lmk5mTJA6Mf67kvHvwFykSpsOWeNWS8LXuxbGstqDn41zjSypnWc1T+MnO1ce6SzPw0V2cayqhwrRqPn3frdMIJJ2a9zk8nUEIjryJoB//k/YQGfH1e3Z3hE3wym+5CQ6R0IIR3SXLEdyc7xr9jXvEhBZJSOOQZhC9L5hdG2NW3cOrsaP3OgU/x1O89bWQoVQ1joLneQ77z5uCllAWWkmR9w0XnAA6GM8j769oUrx2SQpGk2H6OOmSRlxZZPLWSXzyAybjrNgQXkOFNhGT0z3XdY8fHAlb2QvXMIbOHMMe+LsHMgYnSlOWjog1BT5so5xiib/3cmDi7i/z1la/LmXftcu4JZbis9f+5qCZALwjxYCxfMubshVR61MfzdBx7zLtwPwm3tDMi/vuhlFOnb2GUt7T5cNhI3sl2Wn3SijkZzEQX5ba3R2xng6KQBgzRo1gYgqVVJHIKJLJQf8WY9VDhaAN9xcyHJYyOT7ZpvYONABdzKb/DxjxM3DyQKU36Xssww+hGi9hGi4RRhfCn9yElaWwnBzjZ4oFLaS4eYtW+51BNzZtYpNoPydb+88XcRN18PFBrq6E/Ez53TGzp/yXH9P2ZoIs8+zniv6/R0P8mmnJnjgAQRlk2N7r+qUbtMGJmsevmwlr2z0C55wlj1x50O0+adpitFO+4uFjbqBVdJXKeHvy1lDy3ACU49iE3Fj0WgAJ5xQ/F2MdIZw4uQzUlGvA2U2S1to+7hp/i02UDWBFmW5RsfzPm7iPRfluxiG+Smq+sqQkSVdLa2LdPZ+NgzsJG6KeHGsqocK0o4F5YwFFTmJDYGIjsE6v14xD+LEoXe28oabw57NHMvk+xJzVZlBpC+H8a/Z1znRASZV0kF2LyIabhEW7QAKhCYnIVsNAlSRpVKqpKNXs5DNfxeCdaxIuwjvGWTPkt3i3zlxVWketmgaIm4hKfuljoRuI1JHhYqVJf6ukjlQwHoeFy8GNm4U2OQ6V/AtAAck5CTMam66N7Lm4YMr9ZYB2wNp/JB2aAmTzVb3uRkcKOcn+d53EwPsMuaabj2W7Ix9X2VWFd3wkU2pcTOl3Wllaxgrneeuibj5NA/n6pcVY/x7Q6n3Pf53pUtmIzpivebxS3iPS+gaN19GTNmezWYs5PJze5RCIMKnSpa/93UQaVMlE7+aS2MDbs/3SRdF9c6qMhlW7FhfR7TM0d19Jo8N0y2SkxzjaLZT/OCxg92/q9JGcoSOXHUjbg5yM9nyxS54xK2UE87I9l0sNAuRq3zee1e+wKqF/eiv1zjCCFuw91wkJwEEhco1nVHj2eymSoYgJ5Eo+bJxLpA6QXwjbtp6JXuDWdY8XIy4iWgyxH2Ll9DmP8XUOsrIavzXGL3Sw0YlvL3hJUXW30DpRn9K7LXhjB/AIlXSp97Vw5GglK+onxM/o8o3RQiyz/OxASJuxlRJ2n1nn2HRqD1raBCPHSrC6S5rDUfyoWoHgGzuVEZYlYGSZyz8x4PAxBywYmWKBx7I2CNta9F0ji127tlY0rQBMIabMVUy/Obhm8mii6L6ZhCx2QDGPm4e9x0wpUrSZfciYsTtGMeOEd51Lm1u6B1GVy+mXcPNM2olyhYf7PBexxARN7Vx4hvl1KVKip+TI26GzZHbYJwNtwzyVMlOxM0xdcw6ehI4LZi9XogaN11Nkem+y5qHUyJuG040zZSHKqU5R1mRpUGnlABijyWH5ria9ykkOUkV64y2j5tnqqSO5dTX6GTr52SRfZ97YyI7AAoF0T2ypIlwsHN3kM1GjRuCB2dBo86lBrvMn60DFSN6vs2a2XPkaW/Zn/V6OWPBBC5VUpZey83DPfIue2RqSfG5S42bydnKO+bI4oXefDyqjrjVPJ930/saUyUjjimwTUgBlRHhpzzoUyWzP9x75chfaNEAddpgtJEZZg6+dVyS7/yLqC0UE8d7ryOCAMJS9ptSJUPn43uTZLCydBuM4w5j25PL9J7KmocvWqo/qckQkog93kzglTWDc4gkOYN2jQFP+e4fcdN4q31TJYXPXZqqi9BH3CD83d1wExXlhBtHEluSLYu4+RiGpIibM3FWcaz7XV3WMC5VUnJvfPePPBOjlujTa51S9ozRE3cl3MQq6R35kcgpZCddB5FbqiQjS/K9dzsAS33G6b6bSGG4efg+M2X4yu81RMPtGIfCjuLg62GzSZV0dZVwRoQm3cSXWUvnCXddJopNQL/QeeeEK8a4Rn9onkE3T7s+4iafC0V+jtLzz8l2m7tKNvuZe6pkcaxLe7O572Lz8LxxuApNJuJG9Zqa74uvx7eAPOLmlyqpS8UMkc6Yn6Ztqn4YatwoEbdmE3joYWaNTEVlMOm+qy7kISb22lA1bqp/sS9lv87Y933euYibzHBj5+Egf6ZjuA3Ua8GYd7vzMUVP8nGhncQI4JjTOBQB+BluzLFp3/OtcdPVXLrpSqwsvSPBj2+zGvKTXkM03I5x6Gp8up8xx27eQfUG7Bvi1hGIcOMcZFuzSnpHlcrgFiLvyI/8xrjee9N82N/YN9dfNnNvw5CVr42kkkULCpWksXquyDreFl2Eg+qRzZuHF/IM12YibtRn3qSU+Keo6hU23/oT9pw+sXl4gHRGFTV9mFRJ9TNTTp00yxsezsgi1q8H/nxTIfv6jyXYujX7vns9j3pUUsSNeHN0BEU5uhkJzjVu8iiqeE2X573ZYiNu6nUGcMmoSLsRN1mjae/6a03kJ/usO5IsW+ek4GW7pkqW5bDI13y3fU/vTPBvB1Ac6zJNnLKq2vr119swNDn+AuhjvYRouB3jKOXeS8f4eTMOddIxEwALGgINuIM8FqoNuK+WYPlAX/fvvt67kpedW+gcDTeFsiZ+Fpr9qnuNrnyy9EKGQUkObVgBfgoboK+38o1wzLQKEo6Bhkyh8nNU6FjTXMggWCpusW/SP11dMJgMDADP/x13Z4IpPYqFd/F6BTVucy11alqQ1iAKT34QVsm25pnRRPhk2L49qzu65pqsnUR/UUqF0QMJrrkm+377dl6eyzpAY6+lyeYdfvJ/c77G+7IGm2s66bKbxoibuyLebBc7jslwc6pX4tYCzTgH2UaSDMU8bGATpe1G3BzS+E3D/VMl1fu2r77BR/P0z2MVjmjf96nXEA23YxziK2DyhtMXoxSH5jLDbXF/XZmK4+rVVClsSZLgghNXFuM8jB9ARjEuH+cqX0TNe6FTG4U5ipQU9w3GGBGrINef9zySxWs3YN9o4Uyz0BwGZEqPYh62aLXVG6Sr0ZlTcT/72cU5/7h1EF/Zvpij4j7t1OIcuhFh8sj6Pe+6wnvAv8ZNl5rmXTejSQ3mG0H7RX4AMxmJTpHevh24+GJgZqb4rK+/kD0zk3T+zMZt315E+Nxqo4tjKTlJze15F2Wr2wG4yc5R/KayyI/f825MleQUcRpYpmHZGsbP3U/JP+ypkh5OaFPWAODntDQZJ76ZJjqWbF/Dx9zHjRnrW4Jg+F19UzF7AdFwO8ZRzl+XjGGOqRvwVLPVPWeplAY8+zNEBEKce6NWw8JO1CP0JhCiriWHvI8bMw8HmVYRN8d7b9xgvCNu+kW6ylRJ35S6GaPSI5+HLXS1BD4G84YNwLOfU/z96r9qlJqH+6TtmQkJCrg14C6Oq6hxm2urU9O86/MMcy+iVnTZ2XnqyJX4d9UlhoeBSy8tf96/oDhjdpqXdemlQLtZnoMtzOtAcUyvcSuO1Q24i+i4Tx9QmXTvVElTSrZkHrZg1zBpxI059mU8ltWl+2QlGFMlmWNyurdF1oDP/mEaTSGfkqGtMX44BxFdtIXBXBx7R9wk3/umYvYaYh+3YxwlWliTd5Aof3yW6d/UJ2u8675Ii+fpimJDK8m+9LaAPl8+8VyIurI1ppsr3bVpEa064sYpPR5EE6ZaKBdlk424iWnBgETJ11nWEqSaudcCGrSnn55gxQL+e9+6GZkcqewKPO1cqqRDHwldapp3mpEm/RUAGvUEzWbqRDEO2PdaA9T3/vrr+UhbDs5wE76fmQFG9idYtLIagiUvVklDBFj83OFVNZBP+Rn7ZlZJuswcsybDzdNpaRO56o5NaX3izJEfn4ibfg0D+J56ZAeRxtAHAqRKKmTlSJJsCqGZmoGwzq0q3qdeQ4y4HeOgRtzI3rtmYbgt6quXvvdJixDno0278FSodDnhrj2KurIk34di7tKmSna/c1fCZfCPuBWoImVEVU+UyS6WxJEDKXbs4BtPm2DyVldZu+jrkaUpykTZzLEp1cVlKTApJbUk6SrivqmSJXISz3fVRMKRK+ZzLsIN8ssRt/I1mk3gxhvlsvsHivFzM+W579mdfdZ2UAhNUbEaEyWgRiNNimAuXzYXW+jeVd/aRVOqpM8zaTTcKkxVV31mC2MDbm4eNNk2tXk+kX2dIxfwizAD9oybLs+6rr+oeD3fVEmZ0cI7WY5+yy0absc4xFcstFJlookt4Pay6fK2AT/DUFfjVlOMs5bNHBvrCisiJ5HNhQr53BmFyreIWvJ9qFRMcfMaHgb+5uriwx/dleLUUzP2PJEtTwVjqiQ7D4/nxmjQOnlk7ZwggF9NkTFV0lMpUSnieYpj00G+LsLhm/5qSu9imerc6iKzPxPIanVFw62MnTszIhIZWMNNTJUEgMlJH2Nfvw4ADGslVUk2KILiNX3o10PXWgEWqZIe+wdrjMmMQl8CJ5Njzud94p0U5e99MllM8wY8UyUNe7bvfefrgNXGlW8bHOPzXoG+xL+rdPm9hmi4HeMovwQy710Bx+i/4lr+NW5GZTNPlXQKz6s3d+90EZMiG2ih06WZOKdKGuYOFMaVk2eQOVYZht2xHmkXrOycLe9v3lUwky1YmA3cuxcltjwVOMOtIYkwe6bY6upmfD2y1UbcTBs7O5YOkzcZYHssubBKMhG3Uo1bgdCEM9n1GGXQRX7nHFk0DwDOXLO0eywTPzamlt0oiHsxN1uWP8ekT4ZuIQEUyjn1ebdrwO37rmZ/VuGoMKVKyuZhCxPRj2+00Jwl4773mSJuXqmSVhE31nBzS21W7ak+ZDyAvS7mSyQkve/cPCrWl8jSew/RcDvGoetjJfuM6o0x9t/I5Tq+bW3DYtqV75kqqfNU+3p4pMYJc+wbLTRdl7yBsTIUY3LvYNNh7zIt0v6RJV42z5aXYGYq+3xgIS+bZctTwVh7ws7Dp3ZRtjl6RiJZyFPTmHl4FfZLrueZbmiKvAOFUjXnkN+Vk5NkUSv+O1+lgWuqLnlm2IiKy9y7hpvCQDlpcFH3WCZ92TLJhx3UG8UZTCeMLmZn3J9JGweRa584m3ol/zrjVCmfN37Ioi1YJT0MFIWcHL61tMY9W2+H+snmxoZ/ZoKQkyhk8/edJBqATRppws+DAGP6q68TxOigl8/laEU03CI4mF46HyILqWczcV8s2Pkk0KdduC1GZTk5vFMZDedwNXQe8rU1bux4wg9rs4H5RNxgkO9Pi1zcGxlb3nQnvWvBQrnsSy9Vp02ao1bMWNsJS+TLZDc8DVqTk8UnAmFSBn1r/2wibj4sgbkS1ldPtM4u3zRPmXHV5+nFz58FleFmWgdOPhlYu1Yuu87wTbWaEieLR92lVcSta7jRZJMjbh7OsypqOvPnsZGUn0dAcPwFJhLiUvZcHHPMsb58wiHNs/usq9aZMLqM0mHpER3XZVMAfEaFW+puAW32U4WyM/lk8UaD3LfOuNcQDbdjHOJLasofdunjJpOj+4wk32Cg+BTc6ppKhtrUAXME4pdPjDtTF2tZJR2NCJup5EZEJaySzKrlkzJSQyJly+tG3BbJtZKZGeCGGxSymeMq+jfpm7b7EXCYFGWv+hCDMhgywqxKD/ZZa/IIh6yeyJceXdcgG8hYJXO4/K75OyKr+QHM60CjAWzeLD+Xi7hJSHxOPsndyWJyJADFOkyP5lnIVszFFrpIp0/kBygMeFm0DfBTlE31qEFTJSXf8/oGTXbBGKwyxpmxZIO2OFaWCHiUUOSjVbpMyPIMeTqjmxOkJNuQGuwzd5OD3lV+ryEabsc4xGdcvlB7eNoNCpWPUQgUi4wqPcon4qbzynpvXsyxTYH2zoOT5GuIckrfBaDQVTOyZX9WcW/8+7gVxo+MLU+VKsnixhvlbJMmr2mo513dR8idgMOkmPh4NauuUbCjd3eff64oy6nX/eZuZpVkUiUdtKrc2FMpszrnTo4tW4CBgfLndaaMU4y4DQwAp24s/u5X46ZSlN1k20TcvKIzadq9hrR5uKcDp+tIkFn68FvbTfWoIduOhI5G5vqJ+jdl5uHwm8rk8PID7KkqXYY59u3jJlP8C13J0xg3PDMut8XkoPeV32uIhtsxDvEhl3rAfLx3BFICF3QVZWXErTzWFjqPr6/RY06p4z99ZGyKKF9vQAAeETdWhmKMT1qa6d54p+p05Dfn5Gx5U51UyYEFQK0mn/uePRnbXkl250+rjd12whL5JgKOKlglfZwVPLts+ftQBm0m30JpI9z9NqOES+uJmGPfVEl58/DiszniA5+mxb9UlSrJj5d/vmEDsG1b+XMuVVKocdu2DVi2lFHyHVn2APM6Q203YJPu7ROdMRnjPqnBaZoWqbuSCDAgPJPkunRGjuTe8FElkuhsPhaRK1eY9AEv5xNzrH4ei2OfBt8ysBkV3qySGmeCW/uhAkZHtFfEzSKSGiNuEUc7yKmSXukFMvh62jPYKWs06FIL/CNuesVB/MhG6eLly+WorkH5Xa3SjDwMFLMB4efxzTemdks++xmGwrxfE3UbHy9/pqtBEz93M/j1BnmeoupSC2VM3/WMQOhlM2NpogHY1bi53vsml8ooo173jLhpGmQDvHLeJLISmAwIwN6I2LQJuPlmPvImS5UcGMjGbdrkq+SbjSvXGjpqxI0eodX/pj4GBPubWqVK0sQb094O5963Y2SCJNs2A0echw1sIsB+hqHZ2eqaGgyI2U8y2dmfvuUNUiZSzxo025IYcS5HK6LhdoyjHHGTeUvcXwq+aNXkrabJzs6p7oXWKYPeNW6G78XrqZQuk3xdOwA43ht+A5OP8YrOGDyyofq41cts/QCKVElATVACAEuXlj8rDGaz4uBGOpPLkcvvRtyIEQhWNmBR2xJY6QkbwbZQxAmyWUWmIdkxebZNguBcPnOOnFXSPeJmMgoB2hq8aROwY0fW13BoiI+4LR9MsHVr9v2mTdlnPnU5lIgbQFsL7JxP8vE2MBlXPhEIE6NkJt/DyWIih/Jcf01EE6zE+0cOEWVnZyvTpb3SvWnPTOgaN8CdjAfQ1+yzslM4ZCdRWB+dyKeyP1UGy7EWcWuYh0QczSjVuMk8MZrxZvl6T7i/p70jx9rDZm8A6YxObwXcoGiK12toDTC1fK3ZRhNZkq27go+32mQY+i7S+XwWDCRYu7acLjnNGG6qOrehoYxtT0TVnkHT7yrSUfcpamB0sgFz7QndGKdE3Fx+U3PEzVURZ+sF67Jmx4p52MLUgLtP+E1psotjdcSNFjHcsAG4+mrgne8EvvubFAc6n9/+H8DKxfxYlhCFTE7CHKvr8wpQpNvI9oqKGXrz+ex77DNglSrpYTDLI27u6wDAZ4PInDgTc5LiYVvZ+fpoVePm43ySj/Fy6HbHq9dsv1TJ4thskAMNgn5g1GcUY63l53Isfle37nm9BSfDrd1u40c/+hG+8Y1v4K677sKePXtw4MABrFixAkNDQ3jmM5+JF77whTjvvPNQUywsEfMDotFhUqpCMzHxn9AMq/wMIHx6VDbeLuLm6+CxSpUkR9z0BoR4DdfeJ5V4Hg1Kvk8fN/E33bw5a67Ngou4LZLL37w5Y9sry8/+tPLi20xYlG/4XUU66j75MKX0HGaDmSRYKad7PXYWLt5k5r6rWSXd3lku4iZVwmmGj06+1BPuZbiZI25Adt8yT7u97EYDWLoMONBp0N3XF1bJt1mTXBVxzpGg2js8nAmswSyLivkYhXOtQjVVRtyYY+ozabo3/ozK+jXs0KykIaAlcv1EqQ84Rt0Bu6i+1/Oey9bs2a59CwFh7zMY5K00RYOgi5n7rCXdNcatmX3nmVF8X+PW9hhx47B3717ccMMNuP766/HYY48BkN+kL3zhCwCA448/Hq9//euxefNmrFU1gok4orB5xr3SDS3Y3lxlZ+cYIhweSpWWVZIb57eIyo1l/lOy4UaMuFH+BXaF/X6bu06+D6sk7zVNsGULcN11fEsAtmlwX39Z/sAAcNllevk2lPRVFGmzdPXODWAV8n02R97bqzd+XDZ2U4pUdo3imKKIc/VKGkU5M3z8ooUyyn6felGbVEkguzdp6lD3Q3GyUB1nwvxkcN2bTDU5gN8aZrrvPpGfJjVVkiTdnNbMBvF96qFCE5MAjANHFUWtPOLGzMUxnVx3V7qGm8Miyesz5e950q8UUJQSmGTrHCFp6rnvWThZjoU+blaG28zMDN773vfiPe95DyYnJ9FoNPDMZz4Tv/3bv42nPe1pWLVqFZYtW4bR0VHs378fv/jFL/C9730PP/vZz/D2t78d7373u3HFFVfgrW99KwZknMIRRwziMy576L0Keg0vtDcNeOckZTEyNxeqssl6qAS5zLx3j85hx0SWOieLwsjAK8lliNcjp0rmsrVedn+lRx1Zcvc8HpyeY+RLDAiPpr5iSl3OlnfxxcwYhrREwkWBbduy82Qw/VO9FKo0NXplxVRJmvziWPpMemyONvUhPsZPEYlUP++uKd+2ZBCZ4UOHKSrGfkJ9l2zISdhr+NQw65jqgI4ySIBdhIMZT2QKLWSYZYe+7z7GuFWqJGeg0OQbmx2HSpVUPI5L+uo4NEePuqWa/ToH/y65y1euYV6pkvqoEsAQiLg4iIw1bsUxvS9icazSxWpI0EZaSaoknwF19FtuVmrmaaedhkceeQRnnnkmXvva12LTpk1YvXq18bx9+/bh05/+ND7xiU/gHe94Bz7+8Y/jwQcf9J50RDiID7ls8/NJCyTlPtNEd84xRdzc5fNGZyFoeBjY9kngGf8j+3ur1sKfvGIWBx7tx+bNWc8jlWIvm4uJPlf2d/28zRuMKJMWcWNlhFV60jTFPXvHCvmSMT4RNybLqCsnJ1K49NIs8sZtQowGMDCQGW35eBnMNW7MWI8NRvW7sgZ+i0odb5HukiM0OQmQPTMZqQpJdDaf3IGjjSq5RfVYhk5V1MpHKTFFZ3zWX1Nz7xx5IpOLM6ErQyKfXQfo0XG9bMBdETc5FDPZoe57WGOcfR6tUiU97rupj5tXqqTi+2cetxzfeWQ/AGBA1TVeAhumUD+24wKh9z1OvuY9Fdvs6MnHBPkKfaYrm3OIVvCudjxzbpwA2TlKg5yLdB79sHorFi5ciH/913/FT3/6U7zxjW+0MtoAYPXq1XjTm96En/3sZ/jsZz8bo23zEOL7KY24sd8T5dNSJR28SIbUCHbzJUdnJHPfvh3YuBG47n389X77D6awd29WL7VxYzZOB9O/VaeAmmCT0gGIRjPBuLIY41rDIY6Vp0oWx9RUHVV0g2XLW7iAuVY9xdAQSmx5KpjSgHwcCTaKSbURN3dF1uTFzz4vlBIq2oaNHXBPT+NZJfW/q4tS0jL8rj41xtYRt+5XNPncMyn5nm8HEPZ5BNwj2DbkJF4OIsN994qIMcehSVvE+chTJd3vC1DMXzX3VQv7sbiv3pkLIYpqoWv4pKhSM03ITu6ubPV76tNew9SA26sEwSI6nj9LTo65rgz5975R4F6DVcTtl7/8pTfJyP/4H/8DF110kZeMiPAQFXbZexFssbOILNFkW6RGcPI9lJIkwfbtRUrdXJOf+Mq1xXY6M1OMMyn65Tl2PhP+7p7KqFHWnOWbI3rOETfhN5Kd6uMZ1ClUOVvez/YAvz6YfXbzduDMU+xTYHPY1FyGZtsEPA03Tr7EI8sc+3hktUpV6ufA0UbcHCMoTQvjJ7+sW7RQL9/PYNZHfkS4KpuA4pkJ9Lxb9ekkRva7MhRjfGjvjX3cPGo67YhV3CNLJgXfu49b17mlRn4NinSTrgF4tgOwqu0ujl0dFTb3JZdfJ9QJmhx/POmXtVgA4rsqH5N/7NO0XZkyLRl7NMPKGgvFDBkZJucf2Jeor5ZgzaL+0hiflBEjCQc7libaKnXB1TjJxhcnPPZolkqXo91KcMX/XNX9+7oTyxTGl16apVXKZcvn2P1M+PdQPO3WETfP+kKdfFeFTRw71SzXOvilSpoVWTY7Z/16mtFmSgNyjXKysnXyOXISsuJgmDunNJBEWylViYOyVshPORky8MQB9jCxSgJMtNBh8pS0OnI/MQNjZfcaTAoWBaZ2Lz7Gj5WDKEBkXxlxY+fuEdmX9nFjjv3o+uXwcrZyciRGp4fjLJNvflfz94n2mxIjbh71+ir4OSps1rBQTsuwsm2cCYUxHv6Z8elb2IuIltQxDvYZf9HJaxReU/l4G5jSOvwaZLOy5WNCsUpu+6eEYx4EgB0/68fuh7OUjuOe1CpdYWYGuOEGuWxuc7TwmpEiYqxn0PYckre6OLYhDaDWuLGYkBSp15LiqlSmOqvUsQB1EDaRyNDRDSBMxE21ObbbxRdjYymahHZLduQkHqk0VhE3+XxMsGKV9FBK+PTd8vc+0RmbPm5AcW/8UmD1e4dzzQ8MdTOS8WbZZkWTNdLJbRiMrJLuv6mVE0Qx3k6+/t74MIWy89ESZzm8T3zarmpfChMBVkf02PmEtyBqHvfeRMjj03Ox6lRJ0zPjw+bZi3Ay3B555BHceuut2LVrF/f5L3/5S7zgBS/AihUrcPbZZ+NrX/takElGVAd2kVZ6k328d9wmIxPOjSbKtlEGC/h4kW5UGGCPP5KFYxYuTjG4qrwF33gjpAquSSkRP3NNldSZbu5Kj1wGC17ZJGy+wt9VNUUFLbKPQiUf4xUVy2VY1FyGjl4DwsbuWOMmbrzDw1mN33P+W/HZl7+SRSO3blVHlTnZzLFJCfcxfvTtANwMchtWyZpDhCAHT+8uafDtsf5a93FzvPcmAyhU3YzqiXe9N9SIGzV6bWaVLI7JbMc2acdwe9YBc92id6pkHj3RjHFR8k0Gp3hNui5DW3/dUyXVd6buce9NzgS/NjsWEbfOny79HE0OUS82zx6Ek+F23XXX4WUvexkmJia6n01MTOBFL3oRvvOd72B0dBQ//elP8ZKXvAQ7duwINtmI8LBSqNh0FKL8tmGx8/EMsnNRKcp8qo67/D175PLHRopXaNGS8gX27AF27iyfZ9oEFjbqWNZf5Oi5kofo01EUJxnlUzcwgmxh7NPXLJOOy72DoUkDAC9fgrFOwStVRyFHLZ8GWcQtJ+O55hrg8ceLL+qNlEjGw8xRpYQ7Gj9tZmNXGVaAu7JsqlcC/NI8c5bABAoWP+bYt/2FCt2IG008jTreo25GrQy6GSimfQngnyVyqqQx/bX4bNf4NEm2XXSDGe+1zsiMTnfjBGCjJ+ox+TOfwv5dtSFtCRZxU4wJIb+qVEmTs8KndYcV+ZRrOjZzrFrD+Bq3o99yczLc7rjjDmzcuBGnnXZa97PPfOYz2LNnDy688ELcc889eNe73oWZmRl85CMfCTbZiPAgbwIe6S7yVEn5WBvYKCU8Pbqbhy3RnMZG02p1+cDxccOFFHN/1vHLmbkYZDCwbgfg6pW1GOyqJLO/6dpF/VixoE8hP7tAFTVufsZPWpLByWbHkpVwVo6F0ekYwc5l5GQ8eYpwa44x3JifJSfj0RlvVMY3CmwMK0CMvtvLt2KV7PzpojTk82/UEgWBk4cyyD4z2ntDj3Bk44tnxpRm71PjFrqWi6sTUzn9PPYOSsRtcq7F9a40waqWizkOnSrJpap7NIJWpTOK17Wd/uGscQvd+8/22fVqCk+qR6XJNul57DX92DzDG+S9CCfDbffu3TjllFO4z7761a8iSRJ8+MMfxjOe8Qxs3boVp512Gr75zW8GmWhENbBhe/PyIhk2AUofEhFWTVQ9iuNNrQYAoM2UYNUVJBZLl5Y/o+SEA26e/EyG3XfuEb2wCyk7dEGjrhyXK1XkVEmL1DG/dMZchhxeDbitUqTKc7GX35GRZOmPLBkPALQYJ0WjryzcnoxH8cx0/vRJAdJF3FzvvR2rpJvhAwBzXcNNvh27NpkGzAyBOVwjhkVtofx7r3YAzLFNLReJyMKmxs0jVZJ3JpS/F685Mj1rLdsm08Snho5SK1Y1OQlg/05xjq3Azwtgl2kSZM/WfOeTppqPryfy++OX1mxxb7rzIIm2SsP0Mch7EU6G24EDB7By5Urus+9///t46lOfivXr13c/O/PMM0t1cBHzCzYvkV/ucwGdhw3wi0ColHCfiFu+0DVqwNq18jEtpi1AXWJnDA0BJ59c/twq3VAyFxvYKMnidV1r6NQbWHFMmbsNOxXAKA7WkjNwETeb5rXBa9wKzKe+Vuz4BAmuvx4lMp7ZmUJ2/0BZujUZj2Hzpc6bN6zUWxr/vLs9k8oG3J2PXQrjcyW/T/k8ejgSWDkW0UjXjAqlA8enqW+Fz7tVxI1LlaStNGanIv9ZH4Fx28TkKUr3acCtrmHO/qyqHYCLIm4XoU2YZ91KLDMPVo56nMu9sZft/j7le59VtDBwKxn28xTu0XGlrhQjbmYsXrwYTzzxRPfvDz30EHbv3o3zzz+fG9doNNCkUI9FHHYUypouelIch6aJ9VGS2cXFxuPrE3HbvFk+psVE3GSpkps3y+nk7RRZR6XEQraffAujM0CNmzaVRjLeBlYRN05psIeV19FRtjjejk3O3Wt6443l75tzCWY7xpysnjM/T0rGY0Uc4Ba1sqHrB9zZGSmefLrzKe0+k2oiHn48Vb5MjghXozn/XVWKhA8DoZWnXTIXG9hEIn1YJTmHpWTygwP8phDaMeeRyGJVr5T/ri4NuE3GfnZdv4ibvvVFPg8fR4J5nXHd97SyPdIZ899K2QYnVMTNYOxTwad4hneI9iKcDLenPvWpuPPOO7vG22c+8xkkSYLnPe953Ljh4WEMDQ05Tez+++/Hhz/8Ybz61a/GmWeeiUajgSRJ8Dd/8zdO8q666qrM26L5/7777nOS3cuw6X/kk+tv8pb4KLI2L3SIPkK1JMGWLcDAQHlMu8VE3AQDbWAAuOwylezi2JRaII43wb7GzVE+K0N1AYY6/vG99tTxthE3183Xqh0AC8f7okLNQSEpxldsGHZOaLeAvXvlY6YOZVvGQoXhpiTjYY5VBrnrb2pD18/KB8J7fF0L702MkqxsF/m2CmH3X0Y1PPOzK3D6kT3trrIr3Dsy+eXva0mC31pbEC8F71cWKN3bFEn1Kp3QjHPpuWidreFIglRlxM0WrqyS080WpprZnawpHhqf593ERArwz2ToGmN2HTgG7DYQWssWeNWrXoX/+q//wrnnnotzzjkHX/7yl7F06VK85CUv6Y6Znp7GXXfdhRe+8IVOE/voRz+KD37wg07n6vBbv/VbOOuss6TfDQ4OBr/efEexSKtXonrN7YUDzPn4rOyZZhuQGEdK2RYeNnahI6dKdmUDGzYA27ZlJAws2LofMVVy27bsPBm4mVhFfhzTLjTjnOVrhg4PA9dfD/xkB7D5Xdln7353ih98OYs+btmivifZPArovKYuXk3AlpzEMRJpE5lxvOdl+fIxrsZ4Np8MbL82EZOHEgyuAhYtUatTMjKettXcHSNuqXljz+QXoF2DHvmxrd1lDTdVqiSQrUHt1CHiZlEXCTARQ1dCG6WX3cPpxxxbvU+UiJtlbXfSmQc14mYTtepjGme5p9VZGMzkdG+zM9fVOLGZu3ht29/Vdu9IOj+qT0aCDrXOU0P7TS2NTodUyTRN8d3hke7f1ene7noe+V1FCr12UqBpsb4fa33cnAy3zZs34/vf/z5uuukmDA8PY+nSpfj4xz+OpQwLw6233oqpqSlccMEFThN7+tOfjre85S04++yzcc455+Daa6/Fpz/9aSdZLC688EJcddVV3nKOFhRpC+ox7FfuUSv598sHCnq6A9NzWLvY3nKz8TzydQrUzZef+6ZN2Z+XXsow7XHkJNn4gYHMaMvHy2BV6OzoNbXdHLlzHNc6Vv727cW9Oe+FxeeNPnSp46+7Tn9v3KKF9oqyTUNiUbYLQkdRAdEgV83dIzrTOaOuycOYPJTJX7g47VyhPA85GY99tNAnaqVjlay5GuTMsS2RkN3TWLQCAICGqrFg97qpc/REnGNJvuO9NzEEssaPS/+m7vwUY1zfJ9v70qglmGunXkZnaAZCW8KZ7lwcnxldqrprqiTvbFWPc0uVtHNS1DqWG7nxOXNsY1y5knLpI5F046qdAuOzhYfZqqzEkYEbsNNnXCNuJnKobC72snsVToZbkiT4+Mc/jr/+67/Gnj17cPrpp2PJkiXcmFNPPRVf+MIX8OxnP9tpYq973eu4v9cIxbsR9hApwGVIkgT1JFN6QzeVXLmgv3tMYdYC7EgDQuRts4vlpk3ABRdkJAw33gi0GXKSVauzhsSXXaaPKmWyi2OTIgtQ8+UtjR/nyFJZfk4dn6PJsFuzDIQ5dTwgN96sN3bOe2evKFtF3JhjmoJvEZnxqJuxSQUKEdHr68vIeGTpknmqZKMP6B9At+Yth5qMh52jnSKr85qzYIkjbCNuNEVZLoNFTXhXbes55izSgHL5rZTuTbZJYQLco5120ZkErTStJDXN1Ri3NX7qHcONyipJbdZMqVeyibz7pI7l98bWOKE4zmwcluK1bdcxm3YprOwqaOkBN9p7fmjYNUwcVYmuxBzbrO8U8Vw6uUo2cxxr3AzYsGEDzj333JLRBgBnnXUWXvrSlzrXuEUcHuSPuElJ6vbNIqcb6iNuS/rrXYVldJpGZGOVKhmiHYCwkG7YAFx9NbBrF/D//u/i8+3bU1x9tdloE2FXzEtJuzDLBkQDxVE+5NTxTabnV0PSik1GHd9sArseZa6TmiIQ+TiLSXdg1YA7RKqkYgz7e/xy37jzJmOjJ7lG9GoJlGQ8ecQNABZK0iVVZDxdZVBzfbbGa46gydrQ9QNhHBVWLH4E6XyqpIYRs6sMWovujDcb+5x8mnhjOwCgiODSHWfFsU3fwtDphkChKFaR5ukcceNkqNYwdi5uc9fdF+fotWWk06XpvM17ChTPUhW09Nm13eTbyHapYRZ/f/W+Vxz7NfeWj3F9Jm1Yg316XfYinAy3er2OS0VNTYLNmzejIdvFjyDuuusuXHHFFbjsssvw1re+FZ/5zGcwbuyQbIeJiQmr/+cTCuNEjyI1gia/G3HTRCAWdvp1zRC7eVqlSjpGONI05RRZGRoNYPWq4suauu2YRH5xbJP2VgVDlaNdWDIMZdTxvOFWFs5Sxw8PZ5HK9euBy7YUY697X/a5rDeYa28rm4gbi6pTVMdm7J0VNv2VfPoistFxFRlPHnEDysySOjKeHDqFiq3xmiPQr9uySvJ1M9birZ4u11SdpnW00FXZLKCt+2HPcYgU2LDs0b345uiMqzFum1aXK7k+NW6he9zZMbSy461Fd+ZSliHCtXa8ymwQm76u2Xe5XB9Hghr5pSnRcVvZTuRWwjh16q57lNYqwlwpOQkzl1jjJkeapvYFo/MsbHnbbbfhtttu4z4bHBzEhz70IVxyySVesmWRx/kOm1QXoMNE1AqfKgkA/fViY2+1Uzu2P1TLKmmr8Dj3WrNKq5OPN8uWy9DLJ4AZ3GolCur44lhmuAFZqunGjZmynxt+Tzqz+H70YIJP/pO8Ls7Vw0ZtB0ABNc8fqOCZ4eZjLZqTnyRqMh4+4sZfQEfGY9PMno04zRF+VGtWSW4+YaMzroYPJVUymwvVgKBF3LJr2Kce26TV5e8ZnYFQPj8Wrsa4TforUPwmKWjpu1UqsjYpgX79HLMzzHVi+XzcooXWz6OlfKpsH9XUJhpJSSO1jea56ATiKNW/m4u4OUZpMzkWUWDCzbepYY4Rt4CYnJxEX58kT+oI4MlPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27Ud6mocdRURMv7g4FyNbbAL9DBvCLMHTbtOA27Xg1knhcY3OqGSz40kRN0uvpjP5STF4+BF5LZQpVRLIqONf9So+WpcTvAAF8UteF8e+nq73hk+VlI9xjj6wMhQ3fu2ifvkXNvItlM0QNW65iE2bgJtv5iNvUxPFBXJmyYGBbJyWjMciVbKPcePPEaLvtqyS7uld5rnzSo897FMlOwaEY/QEMEXfXdeCDFYMsFWkGzLHLlGrRCMbcGfa645NgV//OpG2Q3FNTWPfayUjJjcXx3XA8r441+cFfh7ZcXpnawBHgmYcH/2xlM0c6/ds+Xy0soWBquchRKsa/X1xW3+tIm6SuRzNqMxwO3jwIO68804cd9xxVV2ChFe+8pW48sorcdZZZ2HFihVYsWIFzj//fNx22234P//n/wAA3vSmN2F2lkaQweLQoUPG/x977LFQ/6Qg6HrZDeOc6X8tNoF+RmGZJShsZFZJR0ICPbWwqzLIyAjsNbVReLLv2HPcDJRDh+RjbCJuMtQZI6/V5OfO1sU558tXSU5i8Zv21Wt48vJF3b87M49ZRX7sZbPyWdmbNgE7dmQpq0NDwCSTKnnc+hRbt2bf64w2lWwRQSJuVaYD6iIQjkqPbapkfmfo9OvmNRJwrJ2xdBDl1/XqhaYY47tGmoIh/NfmK+Rp3z/7eTZ2bg449dQsDVxM+3ZNlbTZm3wibl02Zc0Y135itn00ffu4aYl4HKPXbpT91sIZhNU3xHGq99Cr56JEhgj2K4r8Zlo8AapnxqeVQS/C2nA75ZRTuv8DwOc+9znuM/b/E088EWvXrsWuXbvwh3/4h5VNPhSuuuoq1Ot1PPHEE/jBD37gLGfx4sVW/88n2CglAJ/uQlN6zIYhG3GjeNq5hVrxQrM1L64RtyoWI6UQxVfuDFV2l6VF9IrjpYrsYJuImwz1OhNxE7zUbF2ca/1fruQ3aokmpSOAwawZx24+tP55FSqyGtksGc/bLi++vf6f2tZkPGI0T4YgNW7WDbitxRdKvgVTXTbezejUz90/4mZb42b75NjKzveOFB4RbMUYV2O8IFUxuSxZ+frvt2/PUr+vuaYY2+5kDeTtUDZuLDIHXJVNSmsNm3mX5HdlaAwrrrer/QXY/V3Xt9Dld7WvcXOLuNmm1zr1WmOOtRk+7DkOsnVz8jP2yzLK8pk5OezZgLqG2TV63auwrnF76KGHusdJknQjSCr09/fjwgsvxLXXXus1wcOBlStXYu3atdi9ezd27dp1pKdzWJE/47qeLYAYuQIalvtd0cRaE3FjDLcZQt5Fy0JxCBFxsym8B8IpyiySJPuN3PxfhFRJJ+nASSclUup4NuLWP2AvneUyEiNuQFYX9853uhcj5xEOLYkFc0xTNO08si5pQE9MzuAHjx1k5AeOFrIyFHNvNIDjhxI89nj2d0odhE3KNNuQuOnIKmlj/GTzsYdNzY8rOQnLnqlLlexmPJDTX+3WAv4cu3G26eSigaJpV8fPgzm2a+prD5uoknhdnXyxHUpOVNVq8fNm26Fc+D/K87GBVcSNOXZtqm5b40ZJlbRtOO8UWWL3bILxY9/KgJVht3/YG272+oBsPlrZwkCVA9sr4kZMlaSsvzaOOdd9r1dhbbjt3LkTQPYDnXLKKfjTP/1TvO9975OO7e/vx5o1a+Ydo6QKrVYLo6OjAMA1ET8WkCsCprWr7EWyXOwsPO0hIm66tLcE2cvsyn5lnWLk4MUXZYioIUEbtB5I1t47R6WH/Xc2GhkF/DXX8GOmJ4vftH+hvfQaW+MmqQvZswfYuRNImMC1i/dOp+Bba7gCbGsgXO77d4dHeBkq2dx83KK0OqXEmezHwiPrGnGz9rRz83GYu2aMa/TamlXSMeLGDg+d8v2j3QeL8wnPTN167zAbhq4Gs21tt41CKGuHktfqytYwIBv/7Oc6RtwsHEQ+qWN2rJKOEbc2G3HT1HQyx/bkJLSIG0B0JDg4KqzvjO3e4VL7J8xC9TwkFmPU1+jIqMAhatPuJUmSrp4XI24MTjrppO7xq171Kjzvec/jPutl3HrrrZicnESSJDj33HOP9HQOK2yUEkCg/yV5B82GYT8jPHSNW9Y8PEEzTUmeQZteOYAPq2QBYwpWSvOa2kYLufmQFjt+A9uyJWN+ZElGpieL6y5Y5Bpxk48ZHweSJS4e2dTKcHNVwm0iBICfZ1Mmg4WzMa6QUZLvSWijexpda9x4T3tY44Qda5sGRImKWbNKMnOhRAmsSZaYY9u14PGJ4oXXK7LFsSuzr0q86/prEwEuzUchX9YOpd6JuLVb8gvMzAA3fxo4sxN1C90Q3t2Bk1o9765rGPe8aywml3WMuy/WDkuCE1ohQyvfJZ0xcF16KeKmSZXMjR8qwYeNse+6/tq2e6klCVpp6sUW2itwIif5xCc+gde+9rWh5+KNj3zkIzj99NNLtP6PPPIIbr75ZkxPT5fO+eIXv4jXve51AIBNmzZh3bp1h2Wu8wU2izQgeKkoSpXkfBEhWCW1NRbdXjxuRqF+kXZUBonRGZo32SFaaC++pFDl1PEs5mYLw4tiuLGskk1JqiQALF3qtjm202LuDa231/U3tRvtavyoZIjfuMi2TdVxVdisatwcWSWtSQm4+bgZhiq4k5MUg21YJYFq1xmq/Bw6h5t7v7LiODiBk23EzaDTN5uQtkOpdWp1c2ZcGT6+rRB+aCKVMk/KYMOI6VOv1JWh+Y5PlSQYbi27iJtLxJBfB3SOOddIp1yGCKfm4ZxsNVydiizOXKPOKitI6Ggy7VpIFMckchLLdi+uBHq9CCfDbXh4GJ/61Kdw//33K8fcd999+NSnPuVcM3bXXXfh2c9+dvf/L33pSwCA66+/nvt89+7d3XP27duH+++/H4888ggna2RkBK985SuxZs0aXHDBBfizP/szXHjhhTj11FPxspe9DCMjI3jBC16Aj370o05z7VVQ6h/qDgu1rXxWiZ4j1bjZpUbkhuEsQTb7T9RuAg4GBCB4yywiHJS1yNagde3FI1OoytTxSTfqtnBRsVkPDACf/CSwdq1cdp1pYt6WKD1DQ8DJJ7v1QLIngiiOq++f57bJqFPH3GTzP3/4Z8aGDKLhGnFTzE+EC013NrajKFfgBMmdSQkoSo+9fNYTbp3GZC++i6k5tYXCO/3sZdq8T67GuHWNm8GJs3OnvB1KvZM5oMoaAIDdjxWyv/9DOfOkDIWzVT2Ge9Yr2Dvqjr/pHOeosHwerfWN4th6HXB0iIaOLFUrm//7CcsWGuU7t5LRrjFuzi3bdi/5tSn1c70KJ8Ptwx/+MF7zmtdoX6g0TfHqV78a//iP/+g0sbGxMfzgBz/o/r9v3z4AwK5du7jPZ8QcBQk2bNiAv/zLv8SznvUsPPzww7jtttvw5S9/GYcOHcKLX/xifOYzn8HXv/71nmyg7QN+YzRE3ARyEqp869oTywVjqtnCzoOTjHz1WLbBt62yac8q6RjhoEbcSKmSdnPvczSYVQqVSB2fG24LFqUYGkKXOv6SS7K6OBnYdgAsM2WOzZuzdEoXRZmlFa4kVdIiQuAjXyXD5nMTbI1OVwPCxvhhf5Oqo+M0Fr/O+RU4cGxYTrNru8m3ue+ZfL8o8LQm4uYanbFqYu1qjNtG3CTnsBgbk59nSpUEyi1TZMyTMtg4QdhvXHvE2a8DbtGT0BFmvsZNPc41rVklQ/edU08xrb5Bl83+picNLrQyal0jbja6TDbeHmyqpK7dS7ftyDHQD8CJPeT222/HGWecgdNPP1055owzzsBTn/pUfPWrX3Vilnz+859PfuivuuoqXHXVVaXPV61ahb/9278lz+Foh63xALiluzg1sbaSDPzyiXHu77oXuk/oE7egUVeOzWEftWLOMUqVw8ZLRfOy20Yii+8otYVcjZvwTU4d/853Av/xmwQzANasS7FrF1+/JquLA/TtAAYGgMsuK1/Xdp2wjbjBcYOxN37oSokINaukqyPBzuPLM4PRI262TX0p98WWptvd+OmcX4EDJ49A6JRYwJ2RzZb2PkQUWAXXnl82jkVXY9y6xo37vnyBZcvkp9mkSqZpguZc1i6lr7+QzTJPyvoj2kQLXVMlXdiUSamSLBmPrsZNMScd+Bo322ihW1aCPlWS/kxWmdLMvUeGsXmVm2tz8ipSJbs8CdD/rgvqNUw325hptUl1wL0I51TJpzzlKcZxT3nKUzBsivtHHDHYeqgAgZzE8q22XowclJ69k7zGb11DZ2mg2FO7M+cELrwHaMXzOWyJVVxrC23+mY0GsHAgk58i5QwyQF4XBxQpRkCZSnvbtqJnmItiwhtu1da42f5srvn4dqmS9rA1Ol0UZa7mUjPOvX7ObmP37XFnPXeCdCuWU3ikZDP3RiufO8dafBfLB9Q+YPeIW3FsE2F26ePmG3E7+WR52neRKqmXn2cVyHpdXnqpPG2ycCTYzd21nlP3SLK1RhQln9r+ArB3JNjWdrPvmmtKduhUeF4fMDtyAfv31NbgBIr75k5OEnburGyT84l1yOsyAI4GOBluk5OTWLhQnSebY+HChRgfHzeOizgyoLw8LrUttpEfF2VzoRA106dK0mtnrBvXeiqDgF2UwMVDBRjuC5cqSTDcmGOd8pBvkCnkm3u5Lg5oSNoBDAxk41jvM1+nQI+46YqceSe7/X1nveujB6EkG6BGlmT/vtCKrLU32eG+s6Ps07usRHNjTU4OF9IAwLamiG6ctNO0O9ZkuLl48QG7PpqA2QiQgY1cPHPdcvU4RyXfxnnmW080NZGlb6veVe59knyft0MRkTuqZHW6LOZmsz/ZiFuOmRnghhvK59gwNbPfkyJu1qmSdH0A4FOgrfu4OUTcdHXprNOuSXgg25Z7ds1h7m5GYVjZ2ffZAKrZY5OS7dp7Nb/vprYNrE443YyGWwnHHXcc7rnnHuO4n/70p1irYiGIOOKwVcABN3IStmxKl8roomwuKhluavnsBmEbcbM1fpyjBMyxTYSDZhQWx/aRSLqSb1L1+JoluXyxLq7GOO4HlyXdujgxZchFyeeUhoCOhOHhbP4veWnx2U03JUqyAT56YpYvGxK6ITGcFDY7yZQaNBdmsEJpIEStHIhbdAaty7tkGwEG3CJu7TTFZIc0hGKX2Sub2cDBgQYGF0hCRh0croibzfM4PAy8453F3++6K8Gpp6qJQWwMwy1beOcTgKIBt4EpUhdxAzLGStGoLNLS7Ix9irFsS73u2h7Itv2Fi05g22ctRC2trePP/t7bDfS+L4ax3bYjxIibXR2wmwMnX05N6/uCRrGGTjcNHpMeh5Ph9rznPQ8PPPAAbrnlFuWYz3/+87jvvvtwwQUXOE8uomIQXmgXhZAzfqxZ/OzAvqSA3jB0afBt670LQU6iu/tFuou9bFtFuV4rFGVKjZst4QG3QaZq+Xld3K5dwGtfW8z9i1/IPs/TI1n4pkrqN17733T79oxM4JprgNHR4vN2C0qyAermKzNiVAt31WQ5Ln2zSKk6TjWdnXMtvcninEywed4HWMPN0tvLEzWYUpgYpcdKOnD3nuKB1K1hgGN6l4WyBlRb40bx4ufv6vuuK0f1rYhBFOJlad/dVEkNOQkANGdzw00ufM+ejLmSm4Zt+msecaNkDVgaJ64Rt9wwrCcGMh4nfUM+PxF9Fg5Fk3ytI9rjXQJMNW70fY8XoP86v2808ia295/dpV0YYHX3HOBTJaei4VbGG9/4RiRJgksuuQQf/OAHuXTI8fFxfPCDH8Qll1yCWq2GN7zhDcEmGxEWLiF0wF7p4en6tdLJssUFyDZVcta6Ps82SsCcYyW5PNZGvmsDbpPClqdLzlE4nS1RJ26QjQYwuJz9e1iPrK2izMnWyNu+PSMRyAlWakwdH5silZMN5AohdfOV/fOqrXEL6zXlFSr9WBdl06a+AhDYax0jPyqwa8yMQ1RfpyQDbs/7w6NTxfmm+87JN8u2VdYAsR0AXWGzVmQ1otl3laujFWrQSu8q851uDWbTvpMkRR5A1ZGTAAWzpCxVModYbUJNf6WsA/YMfmwU1V5+l1jF9Mw4pAbb1uxT96Uc7L2xb7NjJ9t6/WWO3YhP7Bw4rrXX+uwkuvOJnYvpmVnIRdxiqmQJ55xzDt797ndjamoKb37zm7Fy5UqceOKJOPHEE7Fy5Uq8+c1vxuTkJP7mb/4Gz3rWs0LPOSIQSC80d559qk6OKj1UmQyNh82BPdG6Po+bk5uqbKOYuLNK6sf69LgzPTNsxM2W0Ma6mbLDJmDrTbZJKxsezsgDWLDZbjI7OCcb4A0I87Vk/z5lQ2JONl1JFmWIcEkNtq2byeS7eXzFucng8swAdmQQA56GG8VxVgXbtSshT3auHq5Kfle+pxdffFdldbQi8neV4gjppn2/vfis7UFOkmOp0C/Z+nnvjtePY2G7RnJRVAeCjyrSmm1ZJVlSlKZrNDJ0ZMk64saeYqkrWeoaQPGuUl5TWyZSaomAKN/kqBhgIm62a3CvwslwA4C3vvWt+OIXv4hnPOMZaLVa2LVrF3bt2oVWq4VnPOMZ+PznP48rrrgi5FwjAoMScXPxlrDKq32Nm51sdti56wa1YzkSDsvIki0zo6sXyTo1gjuHvoGZFru+jsLZSlN7ttB8boZnppHQi8D5zVc9jmr8ZLLtjHEWqnt+/fXlVgY1puxS1r8pJxtgL23DQCglJ7GYfhURYCdvMiEC7FLjZh+BkM9JB1tGTBfmWsp76lrYX1xLfw41UmsbIQA8UiUtHEQ27VjEd5XvFSk/pyAGoWWDbNjA19Cdcw5w771y5kmgICdRpUoODWXMlSzYpuo6dN8lB5ZTQF+Dxhp1lBo3+8bnBUK/qyFq3PSlH3SdwPad9tWVaJF3B8MwtEELSpSWlW8tvifhbLgBwEte8hLcfffd2L17d7ch9u7du3H33XfjwgsvDDTFiKpAKVp1WTBsUyVNkRsZ2LkPDmjclXBL8+QMK93cOWWQ7nnMZNgpJrbSKQYKmzJoa9TaNNsE7MhJyrIL2DORhjVoTamMzWZGGiCiVmM8+YpbeeONQLtNex5lY/oVZBauvWtso+++NN3WETcrybx8klLiQtOtkT/gZLjZR8ZdvdU5TMo1VamipL+6KvmTTTOxiqmmU/au8hE3tfAbb3S71+z9W7YUOOMMOfMkUETc+voB2WqzeTPf/5JPUTU5KjrRE0rEzTJVssE5QylKOD83FbxZJbVzp+9LgBhxs1wjrY2fAnp9w0VXYs43jHUjn5Kfr5VtJ5p73o3OVu7ro9tyc2rALWJoaAhDQ0MhREUcRnCLhWGsi4HSsjQgXOpynL1IlvJtU/ZqRI+sbKw+4ibIt1i3Kf35fCIoNMPN0ii0ri102dhdUl3K3+/cmZEZiOAjbnLZe/YAe/cw8m0ibpIxSzV9sxJkz7m7I0E9zqktiOJ8uXya7Gxs51xjNM8vWqgzaOu1BPUkQStNCamSzNwsSVvE82xhiqaT6y4d0q8A+9/1sfHprlKtO8fkwJG9q+x7qqtB27MHGB9j5dtB5pTbsgW47rpylJ5ljKw3+NTNgQHgssvUsq1TJQlKrG2qJOfwcyC2Mu9LxbFtxNDWEeJqdHbZDUEpn7CTbasPOJFDMccmw0+873ULhcPaQe+gQ1KyElzue6/CK+IW0dugvNAubEYu9Ln2FLfyuZlPtBtWZQ+6bKytgSI/RwfbXP/ytWmrnXkToHvYrPPlmePgjgRWtuSejI2VPsrO4zYmtfypKXacclgXMt2CTc1TzYP0PFpG39nvXBpw29e4UQw3h4hb4DQgABho5PWiDhE3I6uk/DxbmGrLqEoPZf3lWslYPjS/eKJ4yXSnmBw4sne1oSEnETHHpFK61Hbnv5uMeRLgo+9iEH3btjKjLqUuvWimbJxyF03LiFufYy+0rtPP+K7SHXO2+oxrxC2v5TM7n+i6EjcutJObklnl7RDV7at+ss2OCvp971VYGW5///d/j9nZWa8Lzc7O4v3vf7+XjIiwcOnvARA87ZbekuoXI1Z+WMMwcVSobBUYN+8dIeLGHLtEIXRwuTfs7xOaoYoN+mk3X8PzuGyZYk4WETcAWLyQNneqnp5vYK5eR1OkM//aaR0wkiDR554PpTSZtl9n2LnpkUchrOtoLaP6gPi8h1dLqGsk5b7wqZJ287GNhJjWL9m7WmfqyVQ1bjn69Vn4UnAGBHN3WObJHOw6kbPSDgxk48TelYCbIkvrmVUMNtW45V9TGIlto+NuDku7aJ5rjVt+bzQ+MwCic4v+rtrGlVwMWhOcyKcs9Tz/KCrFCX10w8pwu/zyy3Haaafh+uuv56j/bTA6Oop/+Id/wMaNG/HWt77VaZIR1YD3UOnHuhhXtjnh3t41w1g+gmIH23RDp7mnKR6fKHJmlvZr0t6cIp3FcSXKbF7jRjAKQ9cpuNT82P+metknnywnG+DaASj0gaEh4LjjWPnmyYub3AlLF2jHu0TcbL2mAMM8Zv2uUiJu+Tl294bkpHB4ZvhhdvelnbrUiRGi1xW4k6nrGOU3ZZ8n2wjHqoX9VuNMCr7sXdW1A2AxNAQMDnoa+4L4LvPk1kw+u06sW5d9vmOH3GgDgDkmlXJyMik152ZRrANuDkXTOtDXbSVTQXTcZX3Po3kEtmOXGjfSnurgbNVmPLg4oRVzk8p3acPglCppK7s4tiUUy+Qf3TE3K8PtC1/4Amq1Gv7iL/4C69atw8UXX4xPfOITuO+++0o3KE1T/OpXv8LHP/5x/Nmf/RmOP/54vOENb0BfXx++8IUvVPKPiHADJe3CKczddnihA0fExO9DLxguXqSxmSYm5jJX69pF/VzjSBEu3juaV7YAtZDaGKV1qG1xSdmzTmGy7MNjep4aDTnZANcOQBFx27wZaNRpz6M45qyhQe34XLpr7z/bOgiXBtyhDRTb1Nrse/Y8l7nrx1KJhNg5PPZoprCrFHGX+hAKqI45yt7BtQWxnDtbgzq0eEA5zrQvyd5Vm3YAQHYeG11xyniQfL9hA3D11cCuXcBzzy/mf++vss/F9Egga02wdSvwW2cVsr/5dWD9+uzz4eHyOU7kJJblDUDxuzYtU4MpRBNcTaeV9OK+GyNuDo4EoHhfzY4t5pzAJEguzlBKdNyFWMVaV3L4TZ11GUv5vQorw+2lL30pfvWrX+G9730vVq9ejc985jN43eteh6c97Wno7+/H6tWrccopp2D16tXo6+vD05/+dGzevBmf/exnsWbNGrz3ve/Fvffei5e85CVV/3siCHCPuNm9FvYRN0Z2BV58lwi6ba6/i0E7zWx0KxboPcturJLM+ZSUFOJGYNvMkyI7FPOjl2zmWLV5bdnCpzwBQqpkuyw/JxsgK8nMqFOWL9LWtwGM4UbYvVzS9tzqFk2ymfMs7g6FiMcnupydrx9LcVQMDwP/8q/FmPe+J8Gpp6oV8eojbgWsIp3suYSIG7XlCACcNaTITUb2m+fSVaQw4rvKRtyaioib/F21VGSZY22tVQNYspiZl8J/t307sHEjcM01wMHR4vO52QR792afb9xYNA3Pkb/HttFrgBpxy76fa6dkZ4JpHXAisuj8aRMRy/9tts9jNjb703RfXPQZ+15o9DUMrmuYpXQnPoAqyEkcdKVehTU5SX9/P97ylrdg586duOWWW3DxxRfjhBNOQKvVwsjICB566CGMjIyg3W7jhBNOwCtf+Up8/vOfx4MPPojLL78c/f12qQ8Rhw+kGjcHxaFKJZxTHAxjXaIzLMFAv4aC0CmFlN0cjaQEzH23uPHNJjB+qBhnSuF32wjyk/Vfu9Tl2CrKLp5H+/YU7HzkkJEN1Jl2ALKIW042QFaSiekiXU+7cWQBl55iLhFgs4OIts5QIu8Aa9Q6eMINY23XyFwR//JXis/mZrNzVYo4tfaErEgTFTbK3uHSDsDW+ZQkSTfV/NBsU3pvxHe1zkTc2oqIm4wYxBYUMh6TYbh9O3DxxQUbZYOrzytOnpnJxrHPjMvexDak1tW4AUUP0BR2vyuNIZDuELVNwwSKiK5TDzoKOYlLlNZ2b3LIGqjEYLacuwsDty2hWIZjx3IjtwOo1Wp42ctehpe97GUAgP3792PPnj0YHR3F8uXLsXbtWqxatSr4RCPCg/eahvciUdIuqLIpqV0u7zNvuKn9Gy6pBXwkUj+W7Q813WxjscL/MTycNZq98UZgy7Upznpu9vlTz0jwyj/PvM4yRYS9PJVAhLIJuBj7OvmcbIdCZ20U1fJ5yetQLr00U5xU5CQDA5kimI+nKsmUiBUL54ibpUHuUidGaTRt8zxS5g1kv22aOtYrWbL4ifNikSvigKiE8+NyRRzInhuq44yqt1DXd8re4RZxszd+BgcaGJttIgUwPtuU9vVk31VdxK30rrJzImYkZOcT9lXhu+HhbL4sdM8MkI2/4ILcQSQoyhbvByXixhp2c+0UDUMYgNamRn6eDvl9t3FuZWNSkvMpH2kkJ/Hcm6ptnWRYw5xq3JjzLedue1/mmsW48VGguZpnhVXJP8rtNv92AKtWrcJTn/pUPOc5z8EZZ5wRjbYegrMnxmkxMsgnyibN3YEmlmXK0lKvOyx0FIN2IVP/NtWUF06xqTR79/KKyeOPJcpUGoBW8JujSJXUg/ew0X7XBPpNxs0jy8xN+++2l82SDSxfzlyrnWBoSE42wEcLLaInBCWWH0P3JgP2KSlOETfDWKq3mlLjBhTPZJWtDFTyRUW8wdgXbPSExaWXZudRWX2pZXDUxuq037Q4bhLXgUy+/grLGENtbEZdtJa/qxdfXAjPa9xU76pTSjZzTKIwFy5w/fXlvm99jONO9szMzAA33NCR7bBnU/YmtiWATS8317p0KkmGjVKbt99w2rOriBaycwu877kycNuu7/b9eu3nntd0vvTC4rOPfzzR13Qyx5T67l5E7ON2DINWJ+YX5jYudmT7gW4UAvZzn+3wVjeShOABs1zoCF7NBX16w01MpQHkXllZKg0gRtzMcweKO09q5mkt2y7dpUpHAn9ts+ycbOB91xWf/c3fZOQDMrIBqmeQyqzVdYKQIm721yiMH7oSbpbNzsnGQKFH3MTztPLZcw1jTXMXFXFT9AQoFHEq0Y/o0X7O+hXa8XRWSeZc47uadAkhXGrcTPKX9Bdr5OScpg8Hsndx08XF31//+gQPPKB+V/k52T7vbooyK7/ZzLInRNg8MzfemJ3v5FQkpPGzTbhtSD5oUf3imFoPZbNGdmvcbGVbElsBbsaPEzOjA/GJCU496BzSPG1Sya+5hi/7aM6qU8nLc7KYeA8jGm7HMCgPt1MPDtu+WSg2mdDFvJ0BDOwukKdK9lkSQQD0XHzAJuLGp0qykKXSAIUnv90uk2TkHvwcThuBZcTNh0CkCnr0bg0E9EYn77mzR8LUuK0b0qV0EJVkgiLIyqfM3SVVkmqMZ3Ozky3OSQVbT3Vxfdq94Q0IyjPJX0GmiDf6WSVcLfvGG4G0TXve2cuvWtiH45bYtZAA7O4NZ4xbPJX5OmdtuBEindQaOvZ5PGF9pgQq31X+RCtQnhnV/rFzZ6akirCJ0u7Zk53v0v7ClpQLABrEJtyktGMHo9PW6QfQ63TZ/oO27VKyOdnBjTjLTjbJycLNKey9sYnqi47oPmaNnDPVdDrR0PUmouF2DIO0wThsAi4RN7feJPqxVEU8TdOu4aYjJsmuzTQktpAN0O6LLlVSlkoDFF5ZmUeWTaUB3CKpsNwgXZp5poxxpYOLcWVrFLpsjuJY3RV4+TaKJnMuJeJGSZVkjm3r0FLYzb/KfmUUBR8o7o1TqqRhrG7uMkW8j1HCc3ISGfbs4c+lRiLZlDYV/J5J4/DCcHOIdJoMwzrV2Cc8j041RZQSAYWSPzYmH89G3HTPzPi4X6pkLSFGlmzSaylZMsSIW5qmThE3+56LzNwNk6e+SyX52oibS0SMnZvd2i6ep4Mt+ZTJYSmv6SyOm5LnnXVExxq3iGMCnCfcMNaH5Qkg1LhVoFBR595sF3fGRL0O0NOvKF7NBZzhVqjXqlQaoFjsVB7ZPJUG8C921sGpmWfnT5JCRczFNxHCuDJt/vKJcakMEXz02gyeYc8M6ruUXYMecRPnpkKVNRaU1hcAa3SGdxDpHBUyRdwm7S3H9CRzz/VDS2Ps6iJpzzw1CpynStr2zeLJp/Rj6b3/KPuSy77Hnq8HK/Ohh9LuurxM0QHB9plZutRt7vnv0yAb+2bZlBo3Ki09955ajKc8M80msPMh5nk3jPdt4WMbpXVJB7RJa+7OKTDpl6m2W17TqX/euZpOTr5uxr2PaLgdwzis5CQmL1WFKUxU42TWkpgkR64wumzsNk1O88WQLQBXpdIARYNZ1caep9IAbt7BIlWS4r0jRtwqVKiqiLhNzDY54gV9xI02d3JUiYmI2YJCTkImsuDOtVfY7MhJqPeG9q7SvNVqZVCmiDcMRBMsFi1i52QTgWDmZaHKUjMqqFFgNuJmG0HpyjeMJafXEu9Nd04O41T3Jidf+Of/W3z2xy8u+vg1GsDateXzbFIlh4aAk0+mv6cAa7jZOEHc31XTrkp14FDqaMUxqihw/hutXw+87KJizCc/kSgJMgDB+KnCyU11PpHeJfY8K/FObZ9EY9ymplMVYe46ormvj27LLRpuxzAom69LzjklL5wecePPs5FtK3+WmXi/jeexcwHrnHBCxA2Q5+OrUmkAc8QNyFJpMtk0zyZQPDckT7il7K5xRTEKrWWnpXlJ4bABTAusarqzqE4QqpJMrRcFqOlj1Igbe65+LLWWlh1BIm6xjrjZG4a6iNvJJ5cVcVVPLhFDQ8D644n3nMpEyp5LVJRt1uA69Zlhjs3tBopju35idCW5PCs1TIoyS74wMVGMqNUK8oUzzgCe85zyuaYIBABs3pwZfuy1bffsnE25z8Jw454Zm3eVsg4QnVvUtiCsP1a2b4tMzf1MA/fRg3qmZjdnKGvUmnQlovNJMTcZeD3PwUGvuYAuS0bliDaxqAKFI5p/Ho9uRMPtGIZ7xM0OLhTjVIXKRimhKuKsYUXxPFZBLQzIo5GqVBqArXFTy166tCOb+Sy0J9wlndE64kb0yLLjSOlRVpLL/75ZDT02NeJG8VQD9HepdA0PA8Uo2zC2yrQ3doxbxM0km3VU8BdoNDKFmvuM8yar5W7eDPQ1aAoVJS1NHGNza6iGIZlAxLLWFRDuO5EkgxR9t5gLoI8wi+QLbL9Htg/kzAzwb//G10ECZmN/YAC47LLO3Im/aZupE7PZ96hRWpc62nxeFNk2z7suSitjau4bKEd+VEzNPg5L8XwZqBkVFCeIC5eBrZ7Hs+7y39nVdKrnMD7uloXTq4iG2zEN+83XRQnna7kM8ruyrURbp+uJY2w3sO65BKXEtvCe2pg8f0nZeck8+DlytrqWwiObp9IAdIPchTZePE8rvytbP86n5rKKVMmWME7H4scbnWbZ1Ihb97yKIm4+zaBpLSSokR/7tYDa+gIg1uVI5G/ZkinWOWxSJXNF3KePG9W3Ra5XsmGVZO6NFQNhLtvKGHc39qtIyValNsvIFzjm5Vr5AuI1TamS27YVLQ2oe3aTc1jaZJoQjX3Cfa/agcM1hWfkq5ma1ZFOLVNz4KgVwOpKYSLAnGyH+m6XVElRtrKm0zKdfOlSSyf+UYKghluapvjkJz+JN73pTfjABz6AiYmJkOIjAoMUcXPYwLqU+rXEouC2HFXSgbKxk5US5riKnjAtgkELsKmYxWcyD373O0OqZJ5Kk8kmRn8cmcHorJIEz6A1Y1r2p7ne0kE28+OcsnwRFjH990Twl6dGT8xzoRh3OUgRN8V5YWRXq7DR60OYcw1jTTWdGzZkinWOPguiiVwRJyuyxIgYvW6RJr9Bjrh15kUgnLGVza9hlloyAapnRka+oIq45Wg2gZe+tDD4VQbEwABw881883Dqu8QZboS0Y8DOiKDUFpLTyQmOp2wMMy9mYiqm5jrz27RavHyRqdnJYUmKuLnpStm5+rHU3xSwX4N166PKEW1T48Y6orvyj/JkSSfD7e/+7u+wcuVKfOtb3+I+f9nLXobXvva1+NCHPoTLL78c559/PqampoJMNCI8XEPotmxDMx3DbaBBYGa0kkxLpaFHlWjKIL0nDDHi1l2oefmiB78rMycnaZa/Y1NpAM/aFgrRhFFyhnwDo20wZrl8DUFY2QD/my7pVzSF6sr3ME4s5tL1yFqMlc3DWF/oqIRncyMobBWkSJHJSUg1bubfddOmTMEeGNBHT0RF3CcSaUfAQXPg+NS42fRyy/cYq4wHH3ISUvTd7qFpStZ3FfkC22dTFeT6/veBX/0qI8pYsar4fG42wdBQ9vmOHbzRBtD3vSYT/iOnSlrIp7xL7NdVrJF8xK3YL1VMzXXGgGhJ9lVfpmaSQzSXbR0Blp2tkO0yd9uIm2bfUzmiG4b7DshrOmOqpARf+cpXUK/XccEFF3Q/+9a3voVbb70Va9aswRvf+EY84xnPwM9//nPcdNNNoeYaERgktiHuPLPsVjvtevAGbCj1JXPSoYi40TyDNssRvwnYR9xse8JQyUm6Rq0gWvTgd2V27IZWsyybTaVhZQPhjVq6slls7ZR0PRvjgSPKsbHG8zlZjnPpWZjJt7gv3LnhPeEArR6VrIQ7p0jZPTPFucbh3XUshfneNJvArl3MtQwFK7YR5k2bMkX7jKcy0ZOON1mliJMJYRTzUoF3zFnIJ0Y4qNH3biq8leOsuigt9y6ZRQMAZpi2LfnepyJfYCNu9br8Cnv2ZM/i1VcDV/11Mebv3589n1dfza/p0rmTUyVt1hnqfS+ObaJK+Ygqajplz4yOqZmLuEkyWTimZqLziZ2DODcZXGqYxXOV3ztkVrUs9w7TvidzRLM1njJ9RnREF/KPbjgZbg888ACe9rSnoc48zZ/73OeQJAn+7//9v3j/+9+PO+64A8uWLcN2Ge1OxLwAt7kbxlJzn2da5c1LL99eNsDWuNFA9ibbeHy5CIR5fL7QJbDcZDR1OawHHwCSJO1uMmzETZZKk83BffM1Rk+oXnzm2KQ3LGzUu2P2T80ZN0gaUQ71qeINGJIySIwWUpVwagQbMM+fGuHgf1d7g5za4y5U9J2lAX8tU+/ygQ/oacApzoQNG4CNpxZjvvkN4IEH1Io4NZWR+syYeiyV5LPRE7N4+jrdPc9GCS+O7VglmXNN8h3eJX7vyxZjFfkCV+Omzq7usgCzTcTWH590U95loKbBz5Fr3Ipjq/RagqMYYDJNAhvjgDxrQMvU3GAiPy35mC5Ts1OqZIURN8K76hZxs5u7KYoqc0TXDenkfE0nfd/uVTgZbvv378fxxx/PfXbnnXdi9erVeMELXgAAWLp0Kc4//3zszN0QEfMOFE8+1Ysk27y08okUt5RUGhd2rRzUnjA2imy3EbRl5KeocZPLzj34W7cCxzGvZbupT6XJ5l4cUxXC8BG34tiksNVrCVYvzCqXp5otHJpT7KaS61vVQnXnRI9YmX5X+vNYHFv15HIibmHON0XcmH9f00pRtlccVLUnKqTEd9V0b0QacJYwYnwcWhpwel+r4vjssxJs3AilIk5ves6ca/PMUIkmuHPN46lGhC27bC6bkq7uSk5iq8nOSpyWKvKFNlMvpbOVchZgGokQcx2LyVNTJalZOK51aDZzpzBWAnxtef486Jia68x7KYv8AAxTM3FPBURHi93+QXVyAxaGm2JOOnB9aQ3kJCajU3REs/edTSdXO6L18o8WOBlu7XYb09PT3b9PTEzg3nvvxfnnn8+NW7FiBUZGRvxmGFEZSIX3RGZGdvPqJ9W42S50nfMsfbndF9piLH0TYLx3FlpVfmts0iTZOaRQL6YbNmSe+t88WHx23nn6VBqAHv2h3Btdw025bJpxtWZRkVdxcFrB7pDLpir4xAgwtcUDRdEk9+Ry8Jq2CIYt/7ybZVMUNrJRyxxTSQnEtUZGA85GQfK0NjUNODOWaEAEb8FAfWaYY3pWgo3BzJxrFk9e34uWLDQHkW1aGmD/Lk2zqZKdvU9FvmATcWPJF5zTPC0mT06VJBv7ROcZIeJGjjBLnK06pmbecCt/zzM1+znObOsuqWUl4tx0ssXzdAjd9ol1RC9bxkQ6m+pUcor8owFOhtuJJ56Iu+++u/v322+/Ha1Wq2S4HThwACtXrvSbYURlIBULc4qDWfZMs4iA2KRKdudEfN9sy5WKOrGwHlnAvQGsdcTNalRnLkydxOJFag9+VzZ18yVvkOXz1LLl81Khr17efFWgbIwA3XNHrlskyKem7vKbL91raqxxq9nf92wOzNxMBgo3JxsniJsymMkvPlfRgLNREJZIAijTgNNrrTpzgvl5p9f+Fcc26we57pKY9uZa12mb/VQw+5rHute42b1Ls51cugRFI2sV+QLHKilpBwDwLMA0Zkba2s4abuQG3MQUVbs6tPw8mmxKXTpQrCE6puY6myopMdzY34i6honjbNmaK4m4EZ8ZgOiAssysyh3Rr3lt8dnn/jUxOqKPFTgZbn/wB3+ARx55BP/rf/0v/Nu//RuuvPJKJEmCP/7jP+bG3XPPPTjxxBODTDQiPKoModNr3Gjh/3yxoBg1tuDTjMyoERXZbqokMeKWydePpbPsFcc2ZA0PPcx8kFpsvpr6PBGuNRA28unMjLTnkUp+QnneuahSBQyB2TzsDU9qTy4XpSSbkxlciio18sNcQEUDXmMcIW1BYSvRgDtG3CiOhOw843AHQhvaM0MxxjP5zLmEtcBWQXFNlbS59zls36V87+uv17h7LyNfMLUDEMkXuLkbbg619s+vxs0M8vpO2Du4jAECU7MoX83UXBw3hVTJElOzk/HDzM2ydtypxo0UpQ3v9DOVfZRPKMaddJKFI5p4b3oVTobblVdeiXXr1uFjH/sYXv7yl+OBBx7Apk2bcPrpp3fH3HXXXXjsscfw27/928EmGxEWpBA6cTFiN4E+i2Zl1AWD6pGlvNDUjV1GLaxD2lXYzHMBhGin4e5TWfZsFDaWrOHlFxWDbvoEtGQNAC3SyY4IXVtIVTSL22K3A7hH3IjRDauoEnOueTgAmnFFjrhxDiLCOmOlsBXHNgqbLPKjowH/40uKXqRtSVooSwPOkxJQDDfjUHIdl19EzAzKb5rJJ0b2JefpQEmVJKV7W129QJqmRRscwWEpI18wtQMQWYApCj5HImSTwk+o0wX8jH1SurqV0Vn8qjbRQlWWjJqpmYm4CeXU4m/E9yszTgWAW9q0bVsmWsSNOc9KOnXuVAc9c67VOgOS/F6FwX6VY926dbjrrrtwww03YM+ePXjWs56FV77yldyYX/7yl3jpS1+Kl7/85UEmGhEe1M29lmQvEjWFqZHYtwOwBbnGLQGQ2noG2fOoaRc0+TagkB5QWB8B80K9fXuWEpZHI1asL747NJ7gI38LXHddtnnJyU+yG29HMU4zUGQF5mrZxbHVfZGcpwO9xi27L5UoyaqTNSCRk7BKD6EnF2CTSsPOiRY9sbrvEsY3FQ34ksE2nnpuUTvZbpXl5zTgGzc6pErmc7I1TpCgjZQk21Y+1XHmV0Nnb+zb7gtdw81q/aVEgGkGZystfh9Z/9J8jczXVD7iVlxhYEC+ppLadpD7LRKdfhIniA70/qid39Q8FHOMB6fPIlqoc/qJvxEg1Lh1SDJUvxEfHaetvwnsnRUuUaXQTNAAzWmZf2urA5GdlsWZdhfoUTgZbgAwNDSEt7/97crvX/nKV5aMuYj5BWoUInup04oKnfl5mc7INwr7iBt/ng4+1MKUmh/bBZqyEVALwHWKck7WwIL1POb0vDlZA6BuAkuvUzCD0tuK/KwTPXe8t9ryJNgq+D4Kle087KM/XKpk4NpFsqLMKQ3m8TJlU0UDvngprzKqjIIuDTjBkcCOsY2813LnUyVRWmJEjODFF+dgF3Gjre/5b09tB0Aia7BKg2fnJJe9aRNwwQVZmu1vRovPa7WMfGHz5iz1TlbHQ4qMS+q4dHCtAwYcanXNw0kR5iYx4sa3Ayh/z/5GN97ItwNYuiTLNFH9Rjl7Ymo5d6B43kmkLcgYlRc29Kzd3AyMjorynEygtDeikodQHVA5YqqkBK997Wvx8Y9/3Djupptuwmtf+1rjuIgjg5TyRoOmzFKphclpF0SPbHecjWzmmEotbFIcOK+meSqlOZjuDUVJFsewolVkDQ0NLbJI1gAwqRHUjZ1QvA7YRNxo0WVyjRtHkmE/dzsiCGZeFdQrAYXSZvW8Ex0VlPpCcuSHmNYsS8VU0YA3+vi/L1win09OA+7aCNpWIcnnTm0HYPe8y89VymeOQ7RhKMnP13diqmQK83NDiizZ64oA7A2rnHzhqncUgz7wQTMLMC0yTou4+bxLdj0XifIJ5Q1cfZ6FB8emF2X+G+3aBbzhDcXnn/50YiTI6O9472ZsUnBAXwty/HyvpvlcB5S9j7oOADSyNYo+wMrOzjWPP1ZSJZ0Mt5tuugl33nmncdx//ud/4pOf/KTLJSIOA+gRt855Nh4wZgw94lZB1IpCBkFcLCgbJPWei+NMee3UAnDVQq0ia+AibgayBqBYYKgU5tXed3tvsssGY1Xj5mrQWszFL+JGU3qonnwze2JxbBVxs4hwsJA97yoa8EY/P4MNTym3nGBpwOkRt/w8W+PEXjb5eSesMYCLI4Sdm9mw6q7vFrIBKlERc54xdYyZl8U8qH0F2RanQ0OpkXzBtRaVbrgZhzvXpQN2e1/h3DLLn2uxETebVMni2PQ+NRrA8pXFmD6LPLUFnTTZ6WabxLhp88xMMT1Ld41Pa0ZmoKwFLsQqlPZG+QhqCqk4N7V8msO1V+FkuNmi1WqhZvESRRwZ0GvcOh5fi7FsqqRdoTM7L/1Y6ry5cy3GUAtiawRFllqvlM1Bfr5UPjcvs2wqWYOpESlL1pDJrzDiRvDiU40fdJUGuy2AWthPMWjJfdzYc603yNxwM4/1acBNqSmiMpFSyUlyA0VFA94nGG4/+uaC0hiOBpwR/vDYFKdMykBPlczX3/CGFeVdAtxTj8VzTaDeG8BspNDaAdDui1e6oVk8rW1HxamStr+Nu3x7I4IjQ/NglVSBum8v6KQvpgBmCcy7Nu+SbRQvB2Xvc9k7uizZgdmUxTmQLImj3HKr1KrasWMHBgcHq7xEhAfcI27msTw5CS3twiTeKWqVn2u1SNMUZT51zCCbqIRn48xpHV35AYwfFVkDADT6igu0JD2vc7KGrvw8SkCtLTSO5lnYzBE3qvFDy7nIn/cENKWETO1uMReqMsjOgxpxs2Grc2kuC9jWFLGRTuNwpYEiowHv6+f//sOv84abSAMuKi6PT0hC1t1rpw4Rt2ycFQGS5DwdyDVoREWWYgBRCZYAvq7UtqdjAos1knhfqD1AfZpYG9t2GOq4RLi2TMnONY+n7qssduxISxkeLPgaNz9yEhmo2SAso+h0s6UZmc+hPK9Q4PY+w1gXBwulvRElayAbx55rv44d7Q24rclJ3vWud3F/v+eee0qf5Wg2m/jlL3+J733ve3jRi17kN8OIysArhGFfijziVk8SUmoaADw6Po2Tly9SjnWJWlHmTl0sSCl71MgPhPQxo9JD3HwlC7WKrAEA12tIpEXOkZM1ZPIJBoqH0Wk0mKmKJs1u6ypGtr35KM8jfe7FmP1Ts1jSr1/mm+2CwrzfQukhs9URlE2qIkuvy5HPK6cBZ8l42IjbLR9bjOYcL1+kARdJAnQ97qiRcaBIOW+lKdI01b4j/Ltklk01mMmOEIJC6OLcoijipDYMwsxMqJrgg3WImsRXTk6ieJdU4Hqtadax4eEsVX9gY4KnPTv77JxzgSULswj3li3l+jJq+yFqWjN1b1rQYA23NgYlveFYUPsWUkBxdPuwSlLaD9nKds02ObrNNoLhdtVVVyFJku6ifs899+Cee+7RnrN48WK84x3v8JpgRHWg9/qxf+nyFCqb+rZMdnF8955RPGlwoXKBdNnYmdw3I6jeNVKqJDsjoqc9m5seVPmJZANTkTUAPLuWLFUSKMgaADHNU69sku87gSSDGqXNo8RzNvzioKWLALSIGweisvnzvWM4aVDtBAGA8dkidLpswLwl8A24zfMh9fnhzjPLJvfP0zhBRBpwtsZtbrY4UUUDDgDPXDeInzw+2pGv/ge4NIFuCAazLpPBdW0HXCJuNJjJQ+iyeeeZ4fpdBr/whpUrmQI7Lxv5CYipklXUuBEcimma4jGmHmthn5wJkW0/c8U/Fp83Gin27gWuuUbefiZvB5CA0o4lAzkl2zy8myoJADOBI25DiwewpxPNXyBpOSGC4vijRtzaTD0qZf1NYdYHMvnMuRbzAdEw7FVYG27veMc7uobbu971Lpx11ll46UtfKh3b39+PE044Ab//+7+PtbKq74h5B6ti4c6fVuQkbaLhZjUqvz57HjXCQZRvFXErjm29vYD9v5niDfdqwN35MydrkKVL1hmmPVnqCkvWkM2B3yB1zlDq70rp+UVVZHNWsHaaPcum5ziXT03dzc/VRk8U56mwZlE/Hh6bAmBnSI7OFD/kINFwo7Z5sKWLBqqJjpuitCwN+I/u4w03E1W7OAfd7KnzBvi1dK6dQqezkR047Lk20XGqfFLEjSYboEVQKEoyPQLMzMkqhbSAVcSN4CCqE1LJAZdooX10ZnSmiUMdUo3VC/uxVJIFILafYR2DLMOrrP1M7mBr1OwyfKj9IqkR7AV1PuJmAiUKfNbaZfiPnU8AsNevujBG3AqQU9WtaguNQziwjgrqOmNCq51iYq6JJEnQX0swYGirMJ9AirjlyA23d77znVXMKeIwwTUFy46cpFhIbSBeX6fks9cn17hZjCWzShJSx6iRn2wO9t5BqoeK95p2jO0OWcM115THNySNSFmwZA0l+Ui1s6I29eUjbvqx/DNjFt7PbLyzrTYaNf2iXtTNOERRDQYtiEbniYOL8ONO1MfGmzzGGW59mpEZ2HeC4smn9CgCaIqsvfziWGUY5jTgDx0A7uo4L9721gTnfRRG1j92CjqFkLrGAHytMIUEiZ4yTYvOWK0zpBo3unPLJVWSWk5E3zvCG4YUBj9qqiSfyUI1xvXy2Rq0FQvKa4ys/UyTqaGu95XlX3pp5mTZsKFwFPdZNtGk7B0AvWaUncechVMxH2Fz3xf3N9BfSzDbtuupS2oHQIy4kTMeQNj3UKwV1i1T8vMsxo7PNvHNh/cBAE4eXISz1w1aXWM+wCmltt1uW/Vxi5jfoBoR3ZfCIi0if59ta37EFUW3EbiwShZzJ3oeLa5A2SBTomyAtkGG8rTLyBoAvh1AS4i4iWQNAM3o5O6NVQTYXlmjpl/1MzvKrAUbRC6e1Ey5AxNxC/etpfzFnVQkm+edZSlTpTBxU0iS7jNPqZ2xi4gVoPRxqyW2z7u9AZHUigFDa8xGG2CfPuYWcSvujq5+DqA7QVxqW0jyHdcw2/eJX4P1Y0kRN25iNIO2Ckp9WsTN3qEI+M5dP9aka8jaz3ARN8m7x7af6TqKbSO0hL0DoBOr8HXp4Z93CjsjRc+js6i6R9woDiLr+5LLJj7vVCfOkUbk6j+GQa+D6Jxn9K4V37umSureO7eFzm4cQH+h2X+jSaHyL7zXj6XXKcg9vjlZgwi2HUBTqHETyRrEOVDSSO3aMNjLZv91NvdFjLiZ0E2VNIvOxhEiS9zGax3Ry/60iY5T02vZcbSIGy0CYTN3CqNZJr84Ns2ci+YRaxcBvUFOrZkBxHVGf3fo2RTMuRZzqTIl0CUV3mWdoUYiR6YlNLol2eycwt93lvTLBK9+ixZzoUQLdenSqvYzXMStIb9C3n7GtSdiNjfqvbHZm+yNZhcnDsVAoewf3HtqRThTHFP6lwK0SKc12yZBz+P1yN6y3KxTJWV47LHH8K1vfQuPPvoopqfljQCTJMHb3/52n8tEVARydMaSUIHafFt2fZ1a4rKxU4pWqQspp1BVUHjPjqNFlvwiHCJZAyCSk2R/6sganBk3rbyaFIOWkW1xX8iGWy67CsWBGAEBin9jFRFmIL/3dqTLtFTJ4tjqXW2z8zHDpRaKIt/WQPElJwntIJKlTIeVb68YVc8qWT5HBXbEE5Oz2Dc5g9WL1BSBVIIl9go2mSzUnlnZW0pPaaZnaxCeR+E7VfsZ1jFYV2iqe/YADz5YSHfp+2fXkoX2u9IyTWgOdIB1optB0TmqT5WUz0sFeu04IRLpoIvNFzgbbm9+85vxkY98BK0OJ7j44uZEJtFwm7+gPri2DIF8xM3On1yOuKlfPadeaN1zzaAu0pQUJqqxnM2BEp0JE3HLwZI13HgjT06yZHGCrVvtyRoodWjUBrChWSU5w82CWZIccTOQZHCy2fOIETEyYxpxB6M4QugNiW08vsSIm2OtlU2POMD+efclJzGmShKdIDKSIh3I6ZSEc10UKj7CoR9Lq3HjB/3k8VH8/ilqwrUqI26sbNuUwEYtwVw7JZGTuDhBTNJ1afCq9jNsKn5DUuOWY/wQgMW57OojbqH3JicHUZ4qSTQ6Q6dK+pCT2PV27ZxH4pQMf1/mG5wMt/e///34wAc+gCRJ8Pu///s444wzsEzHIR4xL0FpzAiUNxnVOawXxlYRFDcWbaqkS9Sq66Gy9zwCDhE3Y42bu3cNMM+fwuAnzkE19Zys4Z3vBL7/YIq9nXE3fQJYP6iXT2qVQE7dLTzKFFZJG7D9zGgRNzv5tBoIl2em8Dwa2zAQn5lsXHluavkdT76FXFeabkv/EPFdokfFbOU7kZNQHESsMkhMO6YqbDZZFaQaN4fn0ZbplCWCoBpWNiA34BbmpkPL4XnMI+NWTduJ9USgOJ+4PZu/gEp1bFlE3ABg8ZK0uwBTasSKvcM8nro31QnrGLUelZ0DvQ+oQS5hXwLouh6VfIocceuOC2+Mzyc4GW7btm1Do9HA7bffjuc///mBpxRxuED15IvpKKqH3SWqJG62WnISB/kUTww117/GbAKk2pPAXvxMvo8xrhfeaAArVgB7R7K/9zXMV6C1SmDnZa+YtNLUfF+Ec0zgUyWr8FYzv6nVGTSI3nDdrKhRWoBNxTSPdY642SgOxIhbjeBRbjls7Lbyq464uTauzeZGU9is0vbYuRnfVboiyxruWsONPYf4PALm58yvIbwevLFsFA2g89u0aO0AqiHNUv+mqvYzzdniWBVxGxoCTjwJuPehXLa9Al7sHUc24pY6rAW0yBJ7ol4+955azIOLuFWwvpNr3HLZNmMcnOjzBU7kJL/5zW/w3Oc+NxptPQ5yPZRlOorLCyHqITq9xOmFo9RYMGlvthtBrlSRGnATw/+AhfHDHJPpqK02AZpSRWqV4BCFyA3DI8kq6cNyKp4vl8+e52AYmjy+LgZKN+JmhnM7AMNYlr3Wdt7svXzscXkvwhxth8wBdhrB2wFwtbRhyUm4cy3GsIYjlQbcJJ9ajwrYk0H4pAUD5jWPqoRTUtOo9UTsODtykvw9tXVSFPBJf83bz4iYZZre9w/IL7B5M1Cru/2mNcu9A3BwhJBqLh32DyajwoQqa9zorJI0h6U7q6SFbPa8Hou4ORluS5cuxXHHHRd6LhGHGdSIGxf+t8kvsJQLyCJuarhErbovtNVcsj8pXp5cqTLXnjh4kyk1bsR7Q/Ww0T2PBAOCnRcx198ccaPddzYtjWSMWyv4hCiqi3z2fILBTDU8bWTnI6ieanMNWnFsUmSHh4GtW4Erryg++8u/TLF+ffb58LBMPl1RtjU8qycnYedklp2njonnqlBpqiRz7NIOIGRtobgO0SJuRvEkenRqPRE7zibillKVZIqTRXFeDln7mdlpxnBbUJaZt59xIVcCit/fzoAojm2uQEmV9Iu4WZluxXkG8eQaN6oDh1vfbZ7J/Dza+kuNuLk4cY4knAy35z3vefjpT38aei4Rhxn0vO3iWLcRuHh7S4abZbqLS9TKtGDkOeeUl7meZK/STDPFjh16T353Ti5efEpdjoVsSq2VKN9m+hRaZH4TsBAOxqMcOOLmzhRKi1gBdh5fKii0+kXzcJcaNzvZAD01jdQ+QiN7+3Zg48asofzBg8W4eiNLz7rmmuz77dv95g7w75w+4kaXTatxc/Hil89VgR5xY+emH+syd9v3yadXWXaOyXBjxlrMnnJf3CJurHzT+5T96cag6vc8ytrPzHCGW1l+3n7GVQEnRdyIWTgkchKXGjfL9Te7PjMvwzNJcbAAQjsAq5RpihOacfoZJdNB1QnmE5zuxzve8Q78+te/xj/90z+Fnk/EYQTVK8v2MtLXEdA3XjEbTZsq6bHQZefrQfHy5J78n/+0MCBOPVXtyXeiXpfMTQWTZ1OED5uczQbP1bgZlE1qvnw2h3xelAiEWfbh7M1nfh79FFmzwkZ3VNjWuFHp0Sle/JaFwrZ9O3DxxUU7i3ar+K7OpFjNzGTjWOPNRr4I3qOsHkenja824gbQ6hZzI6KeWK4zAaMzMtiSIPkYVtl19OPphqHb824bcSOxbXZmUMmeqjiPxaZNwM03F5E3NuI2wBhuAwPZuLz9jGvKWzfiZvG8F0YtTXZ2rr3jz76+0P5dpTyTFEcCQN+zeVZJPfzbsdivkccEOcnY2Bje/OY3Y8uWLbj99tvx4he/GCeeeCJqCmqvCy64wGuSEdWAf65tlHC7TYBKRZ2dI0TcNGPdUgvsX0xbRXb79qLH2Ts/kQ2u1YCBhSn27k1wzTXAddfxPc7cjE7KJkCTz9fkmMdTFU5afyV3xcSklFCNH2fCmQrqFrnzbBUHCuNbV2Gzf0cKj6+dF58iP7/vlBYPssdleDh7P1k055iIWx9KuPTSrP3Fhg1u6Yy2NRx8/Rw9emKMMHN/I0RRU1qqZN2h3QutptMOtqlp1PVRnIDpGfYjJzE4thwibnzbkRSqO+pSL0prrSE/TwTbfuaenXzEbWgoq2kT28+41i0WhptFxC2fu4MBYa4xdnAQMfMysgYz55jmT3GwAA6Rd4JDMYSDXneaS23hfIGT4fb85z8feZ+2W265BbfccotybJIkaNrkjUUcdlBfDFslnPOuVZAqSc03F6HZvzj5Ou9X7snPMT1ZjF2wKMXMVHace/KBbFNyUUpc637oqToWGxhREbc19gE3xcQ23cUlAtHtgWSqW5TMxwTKb+qshHfl2xlXFK9jV3GoQCmpJdmzQqrnlNyX668vIm05uN5QjfIFZmYypfHqqx09vpb3nUoiBBDrTxzWmeI3Na8DzW7EzeG+GMZW2YDbJ3UXMKdw+1CMG1MlnWrcimN7tk0r0cFYJUXk7WceOQj8eE/22da3p3jWJzIiExGu95ySKklpaQJke2MtyeZGIs5yMAxNoFDqU/WBOSZVqs+ivoHC6usWcbO/My73fb7AyXC74IILeu4fGlEG1YhgF3SdMuuy8YridC+1vydGb7mZGrTKPPmi4Ta6n/8+9+T3r2TnZKv02HnxAfq9oXrYyDV0lum1gGuqZDbO5Hl0iYrVO4abucbNM4pqUnqcjH37Z6ZwVNjDtgg8dfhNkyQBUnOFhe5ZbzazhvEimha9oW68MetZ6NKA27axupOXnRlndlS4PpM2lS3F+m9DTAJ4RGeIDpzsfJ3BTLvv4vXNNW7u8k333cmx5fQ8ho8q8emAduhn2s2sWJlKjbZMNv1ZB/hUSVPUilI+wcpvp+ZWNS5p02KqvT6yVD5HBYqDBQDmmGyUPovoO7eGEer1K3HQO9z3+QInw+3b3/524GlEHAnwUQha9ETf5JSRazkXMfVH91J75z5bzkW1Oco8+dOTxaK1YJHak////iV9MeJr3OyiJwDFW23nGSzLt3lmimMSOYlDDUc7VSvYLopslS0eqA2Pu/JdHBWWKaqkVEnmWKf0+LyrPil1O3eW+0IBfMStLom4AcCePdn57QXsxu7wuwZew0h1kcwxPeJmkJ0Wzgzb95Sy/nJ9Ba2k25Mg+UbcSOQkRPmm+846kOzXR3ZugfdU1+fRNjXYspWMO6tkcWw0foj1f6z8KvqXiiUOuseB1I6FyCo5x0y+38K7RSMnKY6dMh4MY1301PmCKshaInoE1AfXNu3NZZEup0pq5Dt4Ymz7lbG5/rLNUeXJZyNuCxfLL3DjjUCTIUdwSwPSj3UpdM5/V2o/m9A1bk4Njy09eC6LdKMzh2Y71bOcuhjLpdoTNexiIDr5+rG5fBI5ieUG6dP+whxdZufDCx8bk5/TYiJuDUmNW47xcbfn0bbNg2/ErYref7l8St1iw0WhIqWOWYnn1urQkSUWplPoEb3imFLjZnvf7VNI3aIP1uRQDns2p29oCWdc507fV2mpmHb7KseKaSmbd4TYva826wA54taiRdxs92vxe2rtH2CTvsuc12MZhNFwO6ZBU6qsWSVdlGThzdQq4cxx6BfO1BtK5cmfmSrGqpqF7tkDPL6n+DtVoQLC1hLk6BJ8WDS0OTSbWZ4JgP66efngN1/9WF/WNB2HiAvzWE6/nsKe8MC+BoI9Xz/W5X2ipNW51bjZOUKqjbipn/Vly+TnNOeKY1XEDQCWLnWsz1PMT4QT8QnBGOdgrfTkiqZ+nMt7ysI0dT5FKnRkyd2wys45chE3zpHgmJGggmvUyjpKy57jYIxrI26gv0uAmNZst9ZQFGZb1kq3iBslcpU75qjPo3mRYSNu5H6OFUTceAH6r10N/vkAp1TJO+64gzTehVXy/vvvx+23346f/OQn+MlPfoJf/epXaLVauPrqq7F161ayvBxf//rX8f73vx8//OEPMTExgZNOOgkXXXQRrrzySixZssRZbi+CW0wtFmuuxk371tGNh/OOW4E7hovCMGtl0E689YJkUkpUnvw5JnWyT2G4AcDUVAp0mom6RWf0Y1024HotAVrmVMa5dhvjs1mu2eCCPqvFlBRxcyInYeRrI24OHl+hl1tdxcjGHLvQl1fRx82l3YB7xC2F6q66RZaSzrz043QG7cknA2vXlp0sXMRNsfsNDWXnP7KruC9OCpVmnDfxibEukv68d6MnBtlNh8gPRdGkNFbPYZsqSSUkEPfF4O0ACAqpK9GP7HwRrr3Qcu5d8xojnmOGfcSNkU24n7bELUDh+KPVuNnJpmaxADSD36UvbTYvM/KIW18tsbo37Htqamnikq1BSt91eCbnC7xYJW3gyir50Y9+FB/84AfJ5+nw93//93jzm9+MJEnwvOc9D0NDQ/jud7+La6+9FrfccgvuvPNOrF69Oug15zN8UiV1PblcIgSrF/XjSYML8dDoVElGWb7LC82crxlnagKt8uTPzhaDdYbbgoXFBOx7thTHPlEIFWybWI9OF+GKFQOaPDMG9sa+SE5iJZ5XTCzDENQaN6DzXNTl41yKqPkibT3cDENGvmXEjbJ52SoOTn0LuwaEHrr70mhk1OHXXMOf02L7uCkibps3Z+cXtSF0ZQ2oIFWSO18/lnfK2WFho46JuRZmWykm51pY1Cd/4F1qUbnnhUBKYHtvbNsBUMmVRJjeEV7ZDBvh4OdeXcSN3BYktdiXHJy51qUZrqmSJIco3fjJ5VNq3Jx0AstUydBkOUARcbNJkwSApf2FyTE6M4cNWKgc60JWxq8zerg8k/MFQVkl2+02Hn74YQx3ug4/5znPQV+fnYIn4ulPfzre8pa34Oyzz8Y555yDa6+9Fp/+9KedZAHA3Xffjcsvvxz1eh233XYb/vAP/xAAMDk5iZe85CX4xje+gde//vX43Oc+53yNXsMJSxdgxYI+pLB7qfmFVGO4MceUTWAJ81LrFiMX+bYvtGmxUHnym4zh1t8vv8LQELBmDTDcObeKGjeXlMD8tzeRcIzPFlrv4IDd0sHXntgpJpQIh3XfLJdIJOcdbENlufHPo5VoPiJmqYRT9hZbwypNizeNFnGzjSyxShXtXaX0/ZNJ3rIl66PIEgnx5CTlcwYGsj5RQKEsurRJAPTKrFsNWtFbsIr2F2sW9WPf1CwAYO/kDJ40uEg6zoUkg1I7wzU+d0oJtIvOUFn2AFr9X2gWP5fUMbcUUqLhhmqIIJzISZydLCaHaPYnZQ3On11Sj1FrJ47d+vvDxw50I1uU9TeF2RgHClZJm1YAADDIOHwPTusDOrPMjbMpyyiBYjD3mOVWCavkz372M7z61a/G4sWL8eUvf9nlEnjd617H/V3V3NsW7373u5GmKV7zmtd0jTYAWLRoEbZt24ZTTjkFt9xyC+677z6cfvrpXtfqFZyyYjFpvK0B4ZKmA9h7wFy8prY1OSalQeXJn51hIm79ctmbNwNJzS4qxIKPzthH3Kje6nyxVjMEFrJtacBtPeFAYTjaetcA+4ibD6skoE/rcFHC2efWmCrpkEpp226A/aYKA8UrVdJ6NvK5b9gAbNvG91tkG3A3+spX2LataO7r4mW3bd3B33d7+bY97vibZ3eBNYsG8Kv9hwAAI1OzSsPNhSTD1pEAuClUHHttQCKL0hCCEh6axc8tVdLSoHWkRu+mSlbgUHQhJyE5tyzvDevcIqVKCjKU+yp7jkvatGLqB6bnsGt8ujiHEM1LLdaYVrsgcrONuC1s1NBfr2G21cbozJx27AxTFG9ruNEcIW7PzXxAJeQkz3jGM/D5z38ed955J973vvdVcQkSZmdn8aUvfQkA8Od//uel70866SScf/75AIAvfOELh3VuvQT23bSPuNnLt00JdIroccPUsm3qrLZsyTzzLEw1brkn30VRdm1aGdqz6XLfbWtP2O8phAf2NW7WIrtoWN8XB4+pS8SNqODbyHepIxDHWkc6iVECUusLxZhNm4Cbby7eV1XEbWAgG7dpEyuf7kgA7Obvft9zo9YUcaPLX9AoFnhdlMCFnMS1lsu6f15SqKVapx9z7NIOwLSMUCP7pJQ37jyXSKRGtmP0oYi42TsUbaXbptm7R9zsnYo5KCsBv6+qxznVcjHHqnVmTmADs0/JtnOccT3cLF/UJEmwtD/LXJlptbUG86yL4WYZiRS/77GAW3Wskk960pNw3nnn4VOf+lRVl7DGAw88gMnJSQDAueeeKx2Tf3733Xc7X2diYsLq/16FWx83+iYA6F86vsDcUrbifBE2edW5J5/FnKHGLffku6SMkGrcmGN7bzXr2dTIdthgbJu2A+b+eXL5zDOpnbv8HB1cIm6h2xiwcI9eh1d6rFklPQrvbdsYAPrncdMmYMcOYOtWYPlgMbBez9KXt27NvmeNNqB4nqhpNF3FR5uVUB5vg3zDrqLGzXadmWsW3x0YSWBTwm4boQXc0/Zs6NfJSrIwSDfzZhOYnCpGtFuawbl4S9lAAHISS8cWKWplyUSqmpNWdpJ0DXfd3uFa48baGlWvkbb6kj0rsb2B0pVNjOaZjHGWUdI24ibOQ7cUsIbbgLXhVqCKyP58QaXtANasWYOHHnqoyktYYefOnQCA5cuXY+nSpdIxGzr5MflYFyxZssT4//HHH+8s/0jDrcbNXj6/0KnHuaVKFtC9z7beZNGTzxluTKqk6Ml3M37YqJIePuQkAOF3tRNtbewDhdHonCqpTQmke3xt74tLlNO23xfAbkCOThBbb6+1dPHZCqv02KZKUpTNDRuAq68G/vPO4rOXvDTFrl3Z53l6JIv8N6eysXXZ5GyfR5eIm/UzQ3gmDcb48HBm5L5uc/Hle98DrF+ffd4pbZfLtnTKAW7987Kx+fl2hptLxE02+fy+rF8P/PRnneu0gRNOSMz3hZBN4eYgYh1bVTyPduP4NdL+AjbEWS6phoBrpom1eKf6QqeafYVoUZS1vmGQm4M1pl3T7HVrpEuqJGUTi6mSEszOzuJHP/oRFi2S58kfToyPjwMAFi9W13TlrQDGVHzvEdbRDVdlkEvvCk1OYumhYiNOJgOC9eQvXlSM7e9PlZ58X084haHKmnbZdgPjIp0OioM2ApF6p0qG3nytm7Y7KD22/b4y+TTZgH1ti4syCNh7Nl02R9vojMs60Ncoxi1eom4JwJO2ECNuFsaVi7GfzaVzvjFVkpsQSbZM/vbtwMaNWW3vxFTxeXMuwd692ecbN2bjZCDVcnEKodXUO2PNETfq8y6OEPcl9r7s3QvU69n3rSbs7gtzgTndpgo3h6UTeZNDHVcVrJIAS/Bha4zby2ajRHOaXEZXBd+2vpt/Ju1kU1JsC9lhHWeu9912X+VTJV0MWvs1stcacDuRk+gwMTGBX/3qV/jrv/5rDA8P4+Uvf3noS8xbHDp0yDhmbGysZ6NuthEIFjQvvqWi7LhgFALUX3H1FRbC/z/2zjw8burc/1+Nx/uW3SGJAwFC0iWXEgjQsm+9bG2hQFsIFGggUC4UugFtQwlbL1sXKFAgpYWW8IMLl7VwKfsSKGugbC0JJCFOIHtiO7Zje2b0+0PW6OjoSDo658gex+/nefJkPCO9OqORjs67u5b81e3AS586733/v2z89TfiRaGS8hOyvwiVnjA+5UfWKisnWjpPgU2iTuJxU3k4qlg1TYcGJ8n9cy9YVY9YlHTVogSyC0JdZd9G+PdWUgqlreDe68Q5bgIZkdsnyimS87j59lHYjpU/f76/wEs5U9Ql1+O9393tbceHnSbK5ZIIVxfh5RbKyZZRfnhR7N/8eQG8vEm2X2DUeSnPWKjOZtCVK2B9Vy/ae3K+kun+sXuvTbcFUVVO3GHER4IE95Gh6HGTLQ6VQHg5c3KilGbVBb60x82n1Mo+m+LXSvwpS9zHLc7AojhHyhr9tEMlY7bVbQ0ykCgpbmVlIQ2NGGzbxrBhw3D55ZerHMIobnhkVH6Zq3Q1hDXqkiDKo+eSz0sEvpco8g8B77V6Fabw7VS8SrILB5Um0IDfkt84zA635GsWspAPq5M/97KNSFXD3iygr2Jl+HYLV7UWX8saBZxxsOMzuzCRbWKt5s3zXi/a0IGpI+uQDckTSLJId5Gv0Mrso2h1lPeKycnzK1fhCw4V2bK/qao1mR2LdHGSBLI9pTDGmqyk1AbPTUsLMGuWf7ss0+GHrdLpMmsWsO++/vDTZAsq77VKjlv075pMdjn/4/ftLzovgNcbUPSYF54Xy8L2w2rx/jonKmhNR3eE4qZnlJMt2pKoj5tEPif/uUqopHQrA2nJQHmZnMdNPYJIIepBUrZvjgzZhn+OJl0rpdFvkZUfdwxXcctYCfq4Jbh2VY0JpYCSomnbdui/bDaLbbfdFqeddhoWLlyIKVOmmB5zYrbbbjsAwKZNm4phkzxu7zl3WyJIRjomXC0swj8ZmZUvu3BQaQLtbMuem/DtVJRO2RBSR37yh1iaOW6A3IOAPe7GLdFlglmkQzHZ8UjKlvXO6CqFAPDp5u6QLdVCJdltl27qDJetkBPJbyurAKl5fkx7OsVj4/G1BUnqcZNQIFSt+NL5f759ZGUz+/d9/1tu8ffBA/xtFHKCW7W7G7j1Vk52ymXvnWME99eVbVkWvjJ+ePFvd2/ReQGcgjeAuDCJ6LwAQF2FZwiPLILEvDbdx81WeG4AjMetb/0XKl81VLIoP3wbVUWfVcp7JD1uylEJhscvM0fyv3fiqpKJ7tMkBnq58+IqbuWZjFIoY5I5ckgUJykUCqH/uru7sWTJEtx6660lowRNmTKlmGv3xhtvCLdx358+fXq/jWuwoRSWlkC+dKU6BUuJSh+3RLlWko2mlRZUkhNdUL6kx002VFJ1kS/5IHDZtrFaWra0VZMdj+EQVaU+PNzfMs1OE1UfZMaxqbsXG7f0CLdTaUzObxud/yceUxSy+ahqBpzkc0zyqpKuDPP3kreQlXfDyvcW9J/3XA6YNy+4nV9xE8ueNw++apOyij6gX1XS9L1ax3nAws4LAGT6NpU9L0CSRtO6HjdJI0iC69ENYbMB9EQ8O9jc8eWfBM9BGKyhQkZBSZTjxnjcpPt0phAqqRaFE78NX4xGpUdcpHzFOdK/adT17vyvHoYpb+QeXGrb4AvtVKKiogJHHHEEAOCuu+4KfP7JJ5/g5ZdfBgAcffTR/Tq2wYT8ROSh3g5ANrQg+WQU6XFTDJX0NYA1bNn09+SKm4zE+0Uh7XFT8HAAch63aqaH1OQEjeGVQiWlH46SyomSbP/fUQ8++SU6K8//92chHj0z4S7h6PZvkg8xMuuBUOkl5pJmcRKV0DRp2b5zAyxd6hTY4IkLlQSA1aud/YuyfWOLHpxqVUkv38q8wszuH3ZeAK84SVgrAP68APKVd9V6IkoaW0P2iaM663kLt+SCX9qtuHnvvd57//mfllQlUn4sYcNXHbvP4xbRB0c9/0/OAKX0u0oYc1Vz3NzNkrXtkJPNyndkhG/nHj/RfZrAQKRizC0VtirF7YYbbsDUqVPx3e9+N/DZhRdeCMuy8Oc//xmPP/548f3Ozk7MmjUL+XwexxxzDKZOndqfQx5UyFqr1cMiZB8y+g/fMJQ9bil6fnw5bjHbqjxkZBuFqngLAbliDe5H1dkMGirLwzfkZacYKinfaiC57GHcd5QJCVT1XgPhyd2q1mTZhbiuhzlywaMiW/JeUvX6ONu78uXOi1rD47jzruKNZPa3bYQVWI4LlXRhsxJUPW5JlOakCrNSWBoQel4ApjhJPlw2n62hFPEQPgQfSiXpJWUDQBWjuHVxihtbcbOn15NfyMtV3JQdv0o5fYDLcZMOlTTvcVMKJ5cwcgdy3BJ63NLyjEsrtCqyE2huKo3PSwWtqpLr16/HvHnz8Oyzz2LlypUAgPHjx+PAAw/EaaedhpEjRyrLXrhwIc4666zi3x9//DEA4JZbbsHf/va34vsPPPAAttlmGwDAunXr8OGHH2Ls2LEBedOnT8evf/1r/OhHP8Lhhx+O/fbbD2PGjMGLL76Izz77DFOmTMHNN9+sPN6hgFJxkgTy/QuH8O2UPG6SY5BpwC3CX5kxfDvVc5OxnEVHGiVupXv9aFkeo7PzisqJ4iIZMF/5UdpQoaD8WJaFLzU14O3VziowWiFPrrnxwwhT3FSrSkqHM6qcd0kPs0x4qQiZe0nV6wPIecVU76UMty4J21dlnuF/07A6XTIeNwBgW6aq57glmINd+XDOr+heVJHNbxZVv6xYnCRCoeVbybKGs5zEAt+C4twubZRL4nHz5pUtvd4sxlfcZOsusd7IqIqbgNz4lYuTSLYDUO51ybyWXs+o5HJJnBd+PFHIevV1PePOMeSud2nZzOtYj5tvHTm4UFbcnnjiCRx//PHYtGmT7+R/8MEHeOqpp3DNNdfgrrvuwle/+lUl+W1tbXj11VcD769YsQIrVqwo/t0tyhAO4Yc//CGmTZuGX//613jttdfQ0dGBiRMn4mc/+xl+9rOfhTbnJhxkrdWqDwHZUMmCijVZcqHJKl2JmnlKe9zUrDxubca4HDf32EkW4dJhnux4VLwEEovwpBOorKdTKS9SWilUXYQn89KqygbCv7NyngLz2rT3nb0G0gjvkrmXfIvBhBdlsSw9whUI5XuJV4BCdlWX74170iRgzJhgWKCMx62pCZg0iR0DO7boScxE7kzYqVEL7/I/O8LOC+AVJwkrHs2fF4B7dkRclO5H6gUyJJWTBPKryoMeN1HFzTJmpSnyRooqbgJ8WF2Yx817neyZ7V3v8u0ApMVz6yWz6xmZEFLZdiQ8ruTUqkomNIimEcLPfz7YQiWVFLfFixfjm9/8Jjo7O/Ef//EfOPXUU7HDDjsAAJYsWYLbb78db7/9Nr75zW/irbfewuTJkxMfY//9909sUZ07dy7mzp0buc3BBx+Mgw8+OPF4CAcZa7XyQjZND0fI/jxJ+7i5pOn5ceXnZTxuRedMggeYSgNuaelyFjz3sZnc4yZnUUZKD0f+M5UQUkDuek96vYhkBGWrelEZGRIJ5vw+0bIlFVrF61HmXlLtJQbIKRA6Y3cp2DbKDKfVF88NnD6Up5/uhLSxsIpbb4jH7fTT/X0sZedfgK/oKTlwBOcC0b4qxXj4sYedFyA+VJI/L0CC4iRwjXLpPpeS2Cl8HrecM4uLKm5mMt4BoipuXnYZt5/E/K5eGddCRVkG3fkCemWLkyjOwaY9bv5rMkyh9b8vu5xWCZVU6bcIhDsAbNt7qqgqVZERFQUbqzu8i1SpH/AAouQhvPLKK9HZ2Ym5c+fi7bffxrnnnosjjzwSRx55JH7wgx9g4cKFuOSSS9DZ2YmrrrrK9JiJAUQqDIjdXtFaEmmhUlj0+Mcht2BLVhbZKt788l4refnuhB6b41Z8uCeXDUTnWKiH1bljC0clj4sfh+mCOTLWXuczZjyKlR+lqgQmODl8lTQZq2w6HjdGvnQBETllXDeXNjrHTTyeJPJ5OX75qveSpDFBIcyIle+O+4wzgMpK/zZxoZKVlcDs2WK5gPyCMGMl9xYWjyGxmJU+74Jnh+i8ANGhkqLzAsi3klEJJ087VLKS6enbnS+EVtxkPW5hhVtEFTdlCnOpVAp1yfYdIBdVnEQrSsZB2rsvK1vCsxRQ3CTLXLnjjo/u8V6rPzvEB/E9NxKdczk+2ujv6ZxEIS8FlBS3p59+GlOmTMEvf/nL0G0uuugiTJkyBU899ZTy4IjSQyrxXtFCJV3FT1GB8PYPx+8hUFuwpRFWJxNu6Bzbv70Mam0eEiweivtHKVZ9C82Ev6dar5zksk2HA/LbyiyqkpwaXnELDTNKPcdNxdPJ7C89z8jjjkO+j1sC4Ui+MElCUkNF0vvJ3dw9783NwG23+beJC5W87bZgyJtPtuSCMHFuoUQov3a0Rt//ovMCAJliqGRQdth5kS1OohIGr9THTVG+jfCKm74ct4L4AKKKmxmp31Rt/mXlRxlxehllsnWTJd3KQLYatNo1Gf9s4i+lpB43Zx9JI7fhZ4d6uLTcc8lteO/tJ32IkkBJcVu1apVUv7Pp06dj1apVKocgShSZyl3KHjdWhqwCYXCiA/SUQvcBHNmAmx1TosR7OSuYSlidbNibuidV3sOh590wqzDLxsurXI8AH4oZf8EnOTNj6/zugDDpqonxMsoJL1++SXa6XgL3XpINmdZRIOLOu4VkY5e14qt6sEXz+8yZwJ13eh6mMI9bZaWznajIhCO7b2ySuTOq1TyBKO9M8vk97LnEnxfLsoU5bnHnhR1HdB+3vu1T8OoXFO5TflvbDq+4mcl6B8hHKD58xU2ZPGPfPBAuWkiUMcFtZXDUUd57f7oN0q0M5KsnKlyTEs9s/lqSNRbJnkPlqpLMa+Mh/D4hivsNApQUt9raWqwJa2TCsGbNGtTWyvdkIkofr7S7ea+SdPn1lEILAN0QqT4Z0vHy8kh73DRDJWX6qgBqk6npSRqQX/SoeDjUwjCTyE+ooCQQXp7J4HMj6zwZoVZZfW9hpFIbsk8UafbmY7eNXMgq9nME5Mav7mEOyogiaQhQ2L06cyaweLGzYK2r93vcmpqc9xcvDldOomTz5O3kc5gjP/5+UprfI7Zjz8s247z38zlL/rxYlmf0M+xxY6/dXFS1Y0NRA2EVN/0et3B5fH04uRw3ZjxJr/cQYwLbyqCt3fssUSsD5rXp/nwyyk8wx03uKZj2WklG6dSJfPJkyzMkipN86UtfwgsvvIB3330X06ZNE27zzjvv4Pnnn8c+++yjNUCitPAUiPBtdD0zcfJVvFZpV9cCWI9b1CJfzaPnhahGo5IHwW5pugeds627v4TFVMPjJnNNJvFwyFe/UgwZYV7LVZVMdm6qmYpvMg/IJJZ8lXMj7elUKVIkKRvwrpm0DDgy43ffT3LOgSTh5MXBJCIqFL652Ske8fIKG6v6UkSee8bCTtsHC26IcKt5xi2o3HOvozCHX++aHjfB5+55+cVFwGNLnfd2nwH8bIXceQGAsozjpZMpDpWoVxnbaiBCY1IpIhTcNrwSacabipDPiQ8gqrjpL+Aks8iPHbIPkYeZb2VQxo6dCYGNa2VgSSidgL/5d7nkRZk03DBqu4Bsfv4KGZKRUMmw+VEzn56XsbWh5HE7/fTT0dvbi4MPPhg33XQTNm/eXPxs8+bNuOGGG3DIIYcgn89jtigblxi0yMSEK+e4+WSYtbRLl7xXXMgCsjlu3muVkJT4qpJ9VllpyQmUH2UPh3tewuSyY5GXC/h/VxnvTJJxy3uAvdfJqo7JnXf30EltgkmtsuoetwhDiG8fWSMLs3+UkUVBNis/rRw3mevGfV81Bw2QvN6TiZcKhWfZYQdLWjlJO1RSZkGYlncDAMrKvA9ra+SVNgByHjeFaArLsooFOCJL3is+99htC7ZXcZOHPTdhwxBV3JSLSlA3tvK9/0StDHxKp6CwyqxZ4rBJWe94d5/iVlFmKVbJjjdSONtJifYXK4ucI8X7xMpnXofOj8oGRY+o7zu4/GtBlBS373znOzjppJOwdu1anHPOOWhsbMSYMWMwZswYNDY24txzz8XatWtx0kkn4dvf/rbpMRMDiEzInnq1N1ZGOP6bWlY28wCQCEfhxyODtzAJR1X58Rab0duplNWXVlCY14k8HKwMwXXj62OTQC7g/55S1mpF2fIeYHn5Kuc9CTLtDNj3U6kqqXuvGvbmOdvGKyfGctxijBVaoZIyHmZFxTC6xYOehzluAekW1tEpChPe80vhmuG8SmHoVDeUidZQzQN2G033RCRfmwiVdCWIKm6yyo+oqmRYxc3kOW5J71X/38JWBozSKcrPc1sZBGXLPT96ioqb/HJcJpwxmOMm9ySpZKyhPRHVNtU9bsyYQudHRWVccuPysoSTS4mh3DD8jjvuwE033YRJkybBtm2sW7cO69atg23b2H777fGHP/wBt99+u8GhEqWATJEM5Twu2cR7dh/JG1W25LKqFR9gPW6S8hPILlrCIeeNTEVB8YWkJFjkxzxkbEW5QIKKmK58hWqYjmxJD7C09CRhb/reGaPl0SEXquN8lvwBLOvNU1U6+QbZIthrKXEfN5+c6MVm0oWmTJU9HfkyofDK1nCJENWV7V2ebJ1QyRgPswX5ucZ3H0Vsp1Pd0O3lFqa46eQBV5Sl53ETzTGiipv+oi1B+WEVN6WMTz7PT+yQfbD3R09YKwOf0ik+gLCVAfM6bB7IF+yioaIyieKWMJ8TAMol5bMKpKzilmSOlKqIybxWNihGbJfNKKs+JYFSjpvLmWeeiTPPPBMrV67EypUrAQDjx4/H+PHjjQyOKD1kwl1UFCtWdqx8hQdkJsNOdPGyVdoM8A8x0XffkvPMjZVZ+cmD90aGDc+zykqLTqCgiPeJIy5m3lRxEtOhkvLKiXifOGTPuyoyVllVpVlGKVSVL+9xE48nDv53Fe2r43mXiRxQuR4B+fOu6qZNXnEz+TGiZH/S6iluo6orEslN0g4g2WJQblvVyoyAt/At2OJnh07OpetxK9iOolAm+NEKCgYWZ1vxHOnmfM2a5Xik3AbcvLetstJR2mQqbhr1orrbMzssW2pjzZqghDK2ImZIDzq3lcHkyWLZYdc8qxipe9zkzssXRtULt+Nhx9Edqbh5r80XJ1G8HpnXUfOjbC5hqaKluLmQsjZ0iMtXAsx4IKR7ckkeQTbHTaXksgu/UBZJ6Oh1Zv7Kskwiq49MwrBte9NgMoVZ1mtlIpwmOHi/50RerrO95DUj2D4OmTAdQOd6Z+WHb+eFeSZelgRk8Kg3nGdkRGyncm6kDQkGQrILti28Jvw5bkm9VvLWcNU82ijZgIaXtm/7qNDdYq9IqBnmZMMwpzJVUWWQK2Shbphz5EZ8plhQAYBPmcrbNrIBxU1dNhsW1lsooIyNW+xDJ+rBguu99r8/cyaw775OGGFllfOeq7g1NTk5bbNniz1tLjJFxXRMXuyc2tYu3iYuzNOFb2Xg946LR8kqRsk8bh4yc/sROzZJK4YqHjfVolxxoeRAUq8+IyNiu6Rzeqkhrbi9/vrr+Oyzz/C5z30Ok1mzgoBFixbh3//+N8aNG4fddttNe5BE6cA/HEWTvM8DkUB2mcQk7chX8LixoZKR5frVFjxAvHKVL9jY0leTuaY8+PCMgl9slsWc2STDV2t4bC40Qqf0L7t11DXjVlTLJnjC+K/18O1UFU9/cZJ4D7bqIpyVwaNsNZWt/BgynkjZSh43tbHLhBklrm7IvI5rwK33m0pcM8nEJ8r/SxzKKCWb2T6F3EJdA06k511jHvM/nwA+GMOExw0AevM2qgSrPr+3MBmW5Xx30fXoVtx8cgnQ3gtUVVlYtMipHilTvIUvfiKCvdYTPz+YzetCHFKZkKqSPHwrAxkFRdXjJhNCyqaEJPEwVSopbgmeqxJjV/W4+a8XOQPRYERKcVu3bh0OOugg1NfX4+23347dfvjw4TjrrLPQ2dmJJUuWYNiwYZrDJEoF3uIryvH0L9bk7zqfV8xwLzRZpVDlwe4SVID8MjqZMMnahIqbTBiQ6sM9qRXfGY+0eK4IR4xcebF947CQsZxxRytuzmdJFDclBUIh1wqI9lqpIqdAKFpNJRUIlfAxpf55itejVO5fwnQIueIkfQaiZKITX5Pqfa3CUaluyG6fhheVH094tbrkY/dvKrcYTPq7sh42UUSIaigj4F+0h+W56XgLi20eJJ4d2TJ/OGGsbIl7VcfYyn7XiRNtp7X2+AABAABJREFUYSsDX0XMkObhwlYGEvdqjxGPW8i1zhT5SfJcSjtU0i8j3ouaaC2TSTY/AsD+E0dKyy8VpK6UO++8E5s3b8Yll1yC0aNHx24/evRoXHrppdi0aRPuvPNO7UESpYPMgk0n98S972TCGZNY2GSLWBQ0HgJxi6rOXk9x0/G4ySzClUMZZfOV5MXHytexVAPxRWEKtl38LJHHTVY5UVQ8/Qv86EVJUtkB+SHbqHo75b2Ret7xaA+H2rnxK4bibXSqSsooEJ7Hzbw3z0fiRXi8fNXqhjLFm1TnGGd7CY+b4tjj5AKaId8xOdi2xvXIFqXoCVPcNOZgmRBYVQ9zkgbcKr8oe81kQlsZeK/DPG6iVgYyayUzOW5i3LknacRA2qGSST1uKv1ueRlh8sszFkYkzKUtBaSulMceewy1tbU4+eSTpQWfdNJJqKurw9/+9jflwRGlh0yYkY7V1LU85kKEr+/qwabu3sSy2QejTNl4lQd7XGhEN+Nxq84m9LglDO9K1ldF1uPGjMdgWJ3OYg2It+Sz11KZpZFXGIKyx415HdfmwZEtLdrZnnktleOWSNmXVa681/LtALzXaTSEZ3NLczHKiTOehAtZietGtQiSjOcdYHLckolPtKhSzUdNozcfP55QS76CYU7lWtdRyEVjV2mB4+LzuIWUVPYphgnlu9Kj5hg3tzt5FVVGjmEjiLMPI8cWtzIoYxQyUXGSsFYGMs9V1ZBsuTmmb9uE50U2VNJdRyUxoDvjCY6RRzUMXrYHnU5kVSkgdY++99572GOPPVBeXi4tuLy8HLvvvjveffdd5cERpYdMyWWdhXhcWeQ3PttUfC2z2C3KZQYS7c3rW5TIiy4SZ2GzQ7aVQcrjZsQDEaXUqi0G484L+0BWKRoQtyBkFTdVj5tsvLyq8hOXv9G3h7xwyFl8VSvhyXhmnOOy45GTr1KkKMmZyfoWsuKFCTtHJG35w37NuAazyRUr73XUPOD27NK5V+M8HKqeSBvxc5hSVV8ZL0Rxfje/YFMt9APEe5Z0PMC+HLcQj5uJNjhh53zxho7i61xES4Io2UDU9ah2rfP72LYtbGXA9nETFScJa2UgE8nCzjOq4YxdOXHFFNU5xu9xM2/klvPqqz1TpdsDaURWlQJS88uGDRswduzYxMKbmpqwfv36xPsRpYvMokTVEg4wjUhD7rqO3oiyThHINuBWtVIB8RY21f5H/HhCc9x826vJjrQoK8gG4sPqVK1rRfkxIVjsYkE1xy3qvKjnFnqvTYcd89vHeX748cTKllgk8/JlxcuGA6p69tlrIMyzbypUMvS89/2vU4wnTParn270ttfy0kafG73KieJtVHPzALnCBO7PvaXLwuLFwd5bYcR5lQC9516ckUingBMbbSIzD6guZsPm3/fXeeUWo3qoipBLEXBQy3ELzvEzZwJ33ul53vweN2/7ykpnu7BWBuzvtHothNebvxea/LjrKryInc094jWROz/qtDOJMli6Smdyw1b8c1X1XpI3trrbD07NTUpxq6ysREdHR/yGHJ2dnajk/c7EoMZfCU+8jU5eTpzHTfU2k2/AbcriK/K4qT8cpQpNKCoQzvbO/zJ93EwrnTrnBUgWKplEcQO8603mAQYke4jJFoUpjiWFB6R6o9P4eYA/rloft/jrEUh2TbIeiHDFTTweGeLCmvX6FrLzmHjsn27uFo5FBrm8SHeOVPPMsDJ4dBbhUSFYLS3AnDneTPPOO8BOOwHjxwNz5jify8iW7S9quq2Jqb6CcQotoO4Fjjo3qsilZgS3VYE9NTNnOorWnDlAYyPjccs5hUjmzHE+D1PaWlqAG2/w/n7gAVt4vanOv047IWf7jl6x9UHVCC0djq0oXyY/WtV7Lfvs0ImsKgWkxj127Fi88847iYW/8847Sp46onSRscj6F2vJ5PONSHn4oh6yFlP5G9r5Xy1ePnoxq+U9SRAyoiRfplS3mzeTWIHwXscVJ1Gq5gn3mjGvuBXDgKLOi6J3Ru5eUl8MpRmSIhOG6cj3XsvKlyke4hxXPJ44fKGSYaFjpjxusSHTyWTLeAt1kLtm3G3NepXYY6osqDIhC875851Khldd7b2XzznbrlkDXHGF8/n8+QoHZdAtqe/Jib5mVNswOLLF2+jIj3t2NFaqtwtOK29RKJ+7V91WBr/8pffeddcBK1Y474f1n3Ovt5v/4L3neu34642N/kkaZl/Xtxbq6M2HeGl17iXn/6iIB1Ujt1TUls/DLC+bvXY/WLcZW0LCSHUiq0oBqd/0K1/5CpYtW4aXX35ZWvBLL72EpUuX4itf+Yry4IjSI+zhyKIT+sY3InVxLKbAm6/4FTdZiylbsCnMUq2ToA3EhzGZCqUJzVfybZ+ex810kQydBQ/ghQKFh0qyiluyX1bG0q7cC83y7g6Zssg6i8HQkBTFHIu431QoX1a2dDEINUNFuYTyw4Zqa4UCxRhwki56siHzoyfb/55OLq3QO257d4KeVyl6DlMynDGv3fMwfz5w4olAdzeQrfCOmevx79vd7WwXprzJGLb05nf2uRq+CHe2TSQ6kfIDqBvmwk4NW4graRuc/qwqGfbbsvWsxo2zIvvPsdebaxwAgLKsX7h7vf3r3+oGoroKbyCiFBKttI+Y9AMd+XLVX9XOCz9Xv7W6VSxfI7KqFJBaxcycORO2bWP27NlobRWfCJZNmzZh9uzZsCwLxx9/vPYgidIhzjII6IW+sSGN7qLKtWBdcQXQ1el93t0lbzGVWjRoen7iLEl6pd0Z2TIeN8VFVZgyvrJ9i3JlsLiFuHaoJCNbZCFkKwcm97g5/8u0kAAUmjXHyfe9n8YDkhlLkuIkCfMikyAdKhkynjiyCUIlrYSyAcRXCFRsHwH4DVuisfPv6Hj2441PyWQnKjShMA/wUQktLcCsWd7nWaa2Wq5XfIBZs8RGQJnh6ClX0edGK8dN5ryz2yeeZ/pkSBifdh3bmEi2VB6wOw7NZ3Z4ASe5+5W/3vJMNFCYsvfc895rnTYPorlARzmRM+T23asJZUud85Dt4+DP4WdM2LhP/lDwuB188ME46KCD8MEHH2DXXXfFww8/HBLyZOOhhx7Cbrvthn//+9/Yf//98dWvftX4oImBIyOxGNQJCWQX1gXb9lmwACBb7gm/7DSvcWKcxTTDeDfCKtzqNDkF4s+NzqJHpoG4aoVAdjxhD1+dggdxC1lbY1EC+BezooWJanESQM7SnlcMdwG87xu3KHG2TSjbJ0fGWKEoW8ZLiwQ5bsxr2Ry3tEIl1Qw48h63xKGSjPlfVMApcLzE1nBWVsy9qhEqGR71oCabl2/Dxi23eM8NAMgyXo9cr1hGdzdw662CD2K8SoC5cxO2tipum0iybI6bjsfNncPEsGNvrJSvTA7IKp1qCgQQnRfpyRePh4e/3vwet5DjZzSUfXaMEfeqyr0klzrRNw6d55LEGjJZwa/4bXUjq0oB6eDju+++G3vttRcWLVqEo48+GsOGDcP06dMxZswYAMCaNWuwcOFCbNq0CbZtY8cdd8Q999yT2sCJgUHO48Zur24dXPGp7bNgAf6Qg0X/DD4EZs0C9t1XHH+esSzkbTsiXEQ8DlniLElaIaRsUYKQJ5j/AZNIPJMnlmw/GeK8M752ACrymXOZt22UcedWL8ctOEaeYtN2qIfAyljCtSybMYseZ/skHjdWRjjFRZWi1XRDV8gKG9zY5cWjnImniasqqWOtBsx73uM8bvzxtDxugs9NRVPEXe9qxaGYc5MH5s3zf8563NhFNc+8ecDFF/u9JEWvUlRxEnYeS9HjplUUJsXqtTKKj6pSCESFearJBswZonO54PXG5t/zoZIubPiuXrEf/2dsSLNO7p9U6kSKBZCApMVJ4rfRjawqBaTPyciRI/Haa6/hxBNPRCaTwcaNG/H000/j7rvvxt13342nn34aGzduhGVZmDlzJl577TWMGjUqzbETA4BMg1admHN2YX3v//otWID/YZoXFCYJtZjCy3MLs/bKhkSEEbdQ1lr0SDQQN5KnEGVi6yNqMhfKZl7HeyASiQYQb1H2KW5JPRCuNTnK8mi741C3bIaHSqpr0okfkIk8bvELHvazRD3imE3benL4tH1LpOyk8mVCJfNav6mHMKeT3Tah+Pgct/CxyBA7di2vUvwinDWCJIVdzKxfb2PNGv/nbLRGb7g9AKtXA0uX+t8rjkdiHgDUDTiOnGiFXKtpe8j4dfq4xeUBm/JExvYVVPEsxRhZALnn9tKlCFxvBaZ1QFlIah/bGjlxUZiIa0bHiMuOJaqqZPFeTWyk8F7/e/3m2GI8Sa5HmVQF3b6xpUCicj8NDQ34y1/+gksuuQR/+9vf8MYbb2Dt2rUAgNGjR2PXXXfFkUceie233z6VwRIDj//BHj3RqSzC2Rvvsf8Lyncfvr09/Gg8RBZTwJ2M7AjFjd82GbGhkhoKiij3j0enT5zMRO0SFmoaRpqeSCDekp/3edyS+fSK+XMR2kmxn42CuzCuepeWtZqVIxVem0C2xIIH8H7vJA9I/t57/bON+Eb9NoHtCor3U5JQyaQ5i85Y5OeBpPdp3DxgtjhJ9IIqlSIZff/r5it1CXR9VnELy3FzaW/n3uh7dkR6lzUMf+l63Fg50UY/HU+nnFc/mWyZ3nw66404QwX/ftj92tYWfE/K48ZckzpeWl667jNVyuMmGIcM/NYfb+zA5BF1vvdUDYpyoZLMWAapx02pTuukSZNwzjnnmB4LMQhIYgFTuSVYz1LnluAByvosVFGhLq7FdPJkbl9XOQkdt54lJm4x61uEJzw7cZZ2R77GA1JionZJ7HGLLXigd95jPW7Me2UJD2BJKLQ6+VBxCrP/mkmGb1ESJl8xzNOnLEecnILCXMD/RPFLh2TXu0xVyVRDJTXu07h2APxPkTiMKdb4pDPHSMxhBhQIAKisCn7ua6Qc8fwAgPp6TrY7voh9tKr6snJictx0znuccqKWD9UnA844+XnERI84QM74lBS5Xpfx576hQbAfm+MWktqXrfBem1TIdb1KXhuc6PsU0AvHBoAlmzoDipuq4ilzDnWKCJUKgzU3jxgg4ia6XA7o7iu1bNuWdJ81F3ZBWFEp8Lj1Wa5EYZIsAYspI7sQtlhjXquVo45+QOpMGDI5bjqhOjLJyC5Jn5O+RUmcx01D+QHEix6d0u5S/WzcUB0NL0GofN/bakpnQAyD6thlrPjscZPlz/m3rQjxkvq8PwnODXsv9cYqbubnAZ3r3W/ACWrMGpG1feNhZBn2jvvu07ACURrjZ6+SYcNs9KXfF/F73MLlNDUBkyaFfBgxPp2Iirg5LHWPm4EKhGEU5wCohGFGeyJ98rXDmsOUFHY8YjmTJiFwvfk8bmUyHjd1I0swx43ZLoUQfr/nXc/jJtpb3eMWv41OuHepQIobkYiwh4DbZ238eGDJEuf99jb5PmsurEekolqguPVZruJCXXiLKTv21Pq4+RY9MdsmlJ00x0218phrNTVJXO6fT2FWkB8fZsQqbmoPmbwNbNoiXu0VQyVVFj0JHpCqeYtAhLVaccHmMyREJrB7Hj1Z+Gu3PCQGVTVU0rKsWCNOMcdNYSUbt1DWKQTBVseVCZVM2sA9SZ5u8mvGex0XKqlbzRMZ4PTT/Z/LtAMAnP34MPu4PC7AnBcibg5LPrfHKz9eefSEwhGtQADMHKAgO26e0X9mM2MP2UbGWJHNBq+3AtNaLayqZHmF+v0U5Y3UzdePWw+YqELqvRHcxv/cM+tx042sKgVIcSMSIZqk2T5ra9YAroG8UJDvs+bCTtSjxwQnDDdWPMqTF2YxLbr/ETYZBbdNQmyCuYalJ2lVSR3Lplm1Ld3wKyD+vLMP/KShkmxj0/fWChIZmGPqeNzCvVYai0GhFE66ssctfjHIyk8inh9LRYhGrJdT5Pwf1+xYRRlPUkVV5Xp3vW7CdgD8sRLezJmYRbhe2Fu0V0nn93Tk+2WdcQZQWem9J+Nxq6wEZs8Ovu+KjjqdWqGSsc8Odc+MTHsNrVDJGIOljmzW2R5fxCKxeK6kvngb2dBm/noDrOJ1FpbjVsFsrzcH8wYbdbn8PlG/KaD3XArbP1WPm2/7wam5keJGJILvlcP3WQOATF8FJbaqUlyfNRd2obTvfiLFzfk/KkdBZDF1xh6zoNJUIGIVFEO5LfmQB4yeVVYsxwRJwq9UKoPFKRH+UMlk8tlQujWdPUGPhm1rhUrGGRN0fgq5Btxq1vCMhAcYUAtj4h++5RKhkqptR2K9GykYcHSvd9f4kItZ4KsQe6/6tjWr7OvIBoLXe3MzcNtt3ue+dgAhHrfbbhO3kikuLyNOb56ZmFevijYu8vhL9gdJMwzTOaaa5x2IDzc0VaxM9NzTLcIRd70D8kW/+OsN8FI6whpwT9pe47yz8wz3ma4x1IqZw0xUIWXeCWyj+rvKjEV3nVcKkOJGJIK9MdatQ6DPGgBk+uK52VABl1mzosMmWfl77c1bsDyraVKLqSPbex1nvUu9j1tC8TJVJXXkx4W76BBXbVO78XlcjhvzVlKP28SGat/f7T3+1Zi+ZVMsS/ReYstmjGyAyXFL7AFmZUQobgqhkvzDN6z3nk4BkShPp67nPd6AExxHEtyWFjIet6Rhz+kWJ/Fex7UyMFWkaOZM4M47nedCVDuAykpnu5kzxbK9UMkgbprAr/7be++s71uJ0gTiinD4i02Y947redzkvDNqPTo92jfbWLzYrxDr3ktxhbMAYH1Xj/Qx2OsNAPJ9xmve4+Zeb43D3DlM0yvGjd2vbCYn1siiEW7IP2tMetxk0DWclQKkuBGJYC+YZ561A33WAMYrJlDcovqsAf6JcdgwO2DBcq2myS2myXKh9C2Pwc91rINSOW7Ma51QnTRz3GKtyQryk4RKJpU/bUwDKpkcq41cnptO4RNnPPELh+K2GkngcdXB0rDiA97vrfPwDVc69Rc9QkOC5jwQq4xrWnyLHjdhjhv3d0LZsmFvgF64d1yvMrV5QDy/z5wJLF4MfOd47003x62pyVGuFi8OV9qixsOmCWQqvNmtbWMmUZrAQLcD0DKCMK+jcpiTzl8tLcBFF1no6WvtsGixjZ128ufN64bXxs2RG7p6fOHyMsdwr7c5czzjtdvHjb/eXKOiStuRqBBYvxHXfNSATtqHzHB0C8VFyqYcN2Kowd5E7y8WaGbwFLewBPB588LDSHjPD2/BCstxi7OYAkmLBuhZwIQKioZnyae4xVTCA9RzfoDwJG1V4kNpmG01LY/CRU/fm2WWlVh+ZVkGO4/xaj33cE3sUg+rSyzRQ67UtTsOdSt+WOguoGfJ92REhzDpnPe4fCK1Pm5iWS66Fl/XA2kL5Ect4GRgRxMXIqXTd0psxWfGoXDe2TYPfH++5mbgO9/x/j73BxYWLQJWrAAuuyzc2BcYI3Mn8WkCDSO852HbRm9pJZMmEF9VUn2xKVOAo9i3UGElGx9pktw4xCrEPd3Ojm4hD1Yh/p972XHojj3I6g6/ZVr2GM3NznU1coSz/YSJEF5vqqHqQPQ1ox3FEldwRqNIkczmrFGq3LB2pTvPlAKkuBGJYO+hI07Z7KuK5BJXst/tsxYn350cWAsWX1VS1mIKyCTem/S4xSmGyZCp4qdjlbUiHgK6Hrj4hsTmPBxRHjeVBtlA9MM9r3HO+X3E3kh1ZTzOEg7oWdrjKjMC6vktXxk/vPg6THxeY+xR1Tx1f9PYtiCai6oyy7uQea8bf7ikVSXjen6ZKAgDpFOchK0+yhtY+GNObHYW/mG5RzzueFwRLS3BNIHGEYzHbUNwsolKE0jfqOjKEZ/3YhXVNEKDi8YbOXiFuNdV3Li0ie5u4PvfZ8eRnLg1AR+mnbwPqPN/eYUtvN7cc6NrIAp42jWNQ37ZZtcyvLIkWs+w929YVWFVdHvclQKkuBFajNom6HUretwiCoiI+qwB4ZNRczNw6aV2scrUF78gtmBFEev+941DZbKL9nDoeJayEh43neqJUdW1dHPe4qyaun1V4nPcPI+bClELE/0KhN7rWAU5saWdkR2ygC8uqgx7rQLyEw5+RLXXmTbUW6gTZiTpcUulAbfGogfwGyDijCyJPW5x3hPftjpeWrPePMBvme8RNSfXMmz5/77lFgTSBBr6FLdcL9DRFpQflSYQ541kFfSVK5IVPmHlxxWFSSW3u7hdvOyWFuDUU/3v9fYZacvLg7IzTH803SIcorGz56s6m/GFzctQNG6F3Ihaxief0S/c867tzRN8ruO14jcXhXz3MopbhaZ2FWyV4L2mqpLEkKCh0m8yEhV8c8MZ8xFNTkV91gDOAsZ9xt5w9XVWIospkL7nJ8oCxstX8Z64+6zr6kFO0MGWVeiMetw0GwTElaPWCSEF4sP28kyopBIRiqd+qGRcSIpwGFLEedxs2zvzKg8C93xG9RX0Fm3JZCfLy1E/7zZED3a93zR2ngnZVpYo73ugEW9C2bEhUloetzjZ3mtVw5m7yOuN8bgln9+96yWXc8L9eVyPmxMmKT5AWJpA2BzpFj654w7v86OPSlb4BGAVt3DDFqDai9Ij6rknM8ecc06wcExvn4JcXhkU7uaOAYqFVZjXorGz52b62GGJ5WeL16Md2Q9NV2GOuu9TaW1kMFRSpLi5HrfyTPL0Bp6oZ/bgVNtIcSMSMryqAjXl3mzJWrwcbJT3GcvDPG5hfdaAaA+EUUt4TMKt0mTnk+WXn8sBbYyXUVRxMwrLsnwT0IcbOgLb+D1uyeRnoh4C2h63GE+kb8GWXL58qKSqx82Dvya1QyUjZDvvseNQV8bjPJ1KY8+EW/EDY0koO0krA21rNSefXUiEVbSMlM28TqdfWfjYA7OxhsfNdN+stEMlAS+sShgq6RtLwnup73/bdsL816zht7CLHjdRmKRLWJqA6Df15Xn1eucml0veH9UdkfC5p2HwA+Jz6GSLkyxdCjz0UPD93p4+j5tAccswipuKfTF+jtRbc1T0XY82gkYW7VYyPiNLULaLyr0U1xDe1HMJcM4L/+xzPeYVBsIkI8NIyeNGDBXG1HjB5rzHjZ1Iw3LcwvqsATFhaex22vlEAvc848VSWbCJHgKuxXT8eOD/Hve2nTHDSmQx5flw/ebAe6zHLZvw/Ph73EVb8ZMSpfg4x2PGodLXKiY/T+fhCEQ/+HyhkprXTOx5VvECF2UHhec0x+5a59PIuZRZ5JsoTgIE54Jen+KW/BEZ34CbHYfePMaHTQdCJROuZstirked3zSuqqSulwDwFnq9heBiUC8iwX1lo60t+Pn4SfmiwbJ1ffQ1I0oT4K93Ps+L7UHHFv2S7Y8aFSrpa5eilOPmEWV8ipN8zTXi973iJAB/R2Uy3t8dQVtmLHGh6n5vZPJz4yuYk+fvTQ9d41NUeoN2ZdyYcPKkp0W0OXuebdv2PG4Kitu+zSN9f0dFEA1SvY0UNyI57MVe5W9z5W9yKvC4RfVZA/jiJH70i1hEL0p0FB8g+BBgLaZr1gBljHdyzepkFlM+vEZkicrb6guTaCu+/43dtxmWSDY7lO6YECa1PIXwsRc0FyW8/Kiwi1TyodhxJBcfeT5zbAK4imcpJn9D5wGZJF/UdDij7nmJ9VppWsOjeugFGvEmlJ2mV4xt2h5XHEoVtll7L3cQ1jCnWqnOBtDQEHz/3Gs3Fl+zFSVFiNIE2Gu4sytY+ITtQSdKQYjrj5pmTmdcDrNMgaJcDrj77pDP+jxumYx/fQF4+fSODBWlM+aaZG4olXnGfz2mWJGYO/N+z7iuNy/4uc78W1GWwbaN/oUje6+yr1Xy20bVVKCp1nMuREUQDVK9jRQ3Ijnsxf7Li/13RZZpNCmK5Y/qswZEL3q0Q7tiFiW6IVLsQ2DhW36LKeD3RrqhknEWU9Zj9+4rXsGG9xdmAx47reIkkud9dE0FJnBNqeNgHxyLNnQE8vN0wi6A6IWszjnxxuRhOtE5PiRFM+TFzc0RyGYLOKhYNlkrvtgqy44jOVHeQu28nIhrpldzHojP+fFeq9gSono66hYn8StXMYaEhGNP0vpCtR5BBXMx8OGSeY3f1d3atp0w/zFj/J83DPeO9drTVaFywtIE2Hlg5afB/qhhHjeXuP6o0R43RoHQfO5FXe9RCsTSpcDGjeLPerz+18hyVaxZh3hFgnz34v4xSqfu84OdV3lDQprPDt08rrTDmncdOwwT6r37hL03fYVJFEMl01RqSwFS3IjEsNf6oYfyfda8z9gHjEyfNUC+gp/KhRu3SPYrbioLWe/1/ff7P9tlny2YcaD3NC4U/BOGyGLKe+yuO39Y8TOrzA547PzNoNU9boHFIDPVJa2qBQA12TLf363dfo3e7ylMLD6yqqTuAh+Itihre9yY16arSgLe2EUhc72anqW4sLrWbs81UFOefFUV2SRb0xIum+NWrhkqGVtwxvDYA/kcGrJFhX50KsDGVZXUNeAA/oUer7hpKeTM2LNZ4Mtf9n/Mhv6//H/hhq2wNAF2OKvXBM9NWYxBFIjpjyrpcdMuS899JlsASRR+6uJ63ACgglfcmCiWsIJnUUQZ5QD954c/VDLK45ZcdlQ4o24elz9vMcYop/hc9adnePQUTChu4etIE7m0Aw0pbkRiMpxyxfZZG7uNP6QjSZ81ILo8r99SrWsJT8Pjxsjnxj5nnt+cyOf/8RZTPscBADauKUPnZucoVdWF4n6ux07HOuhbhHPxVrrnfVhVORqZaqRRTaxVrJpRC1kdZdbF/3D3f+Y3Jpgde3cuj38zuYw6VdNEyo8/dEzPUCFaEK7v8kzlI6vLA5/HEaV0aocZhcgC9HNdRb0oWfRDJaOMLOHHkiHeK6a+2IwLVdcNmQaiPRw6hrnifQRnruWLaJT1hTKuWu43UrFEpQn4nx1B4jxuQFx/VKsoOxA1oGkEiVJ+ZD20ovBTFzfHDQCyFf7P2CgWJW9houIkKXrcVJ4dEeGMJis1C72oIdsmIey66WEsRirPJSB6fteJGigVSHEjEuMLZ+y7DZqbnX5qb7zpffbVQ6xEfdaA6MlI30IV53EzV5ykLPz57RxfUH7LtZiKmru6dHc6x6is9n+BWbOAjk7v7+QeN2ZsgXBAfQvVdo01xddBxY0dh95CmV/I6oYBAZwXmPtMN+wtylCxcHUrVnV4mrtayEtfiJTgM3YhUa5gTo4K2QOADV2ex21kdUXg8zi8vJzgZ2bngvAFvsp5iW/ALR6HLL57NbAYjFbk4ogtIKJhxIkKaQbMLAajjsF6PJYvtRL1QmNHM2uWwCPWN9+HFeQCotMELMsq/q5ZQb8y1uMWdYyw/qhh3g1A36sUpfzIelFF4acuvUyoZAVXWdKnuKmMnXktDMnWNPyl6XGLKqySdlqJCa9VmKeWvR5V1mGO7CiPG7PdIPW5keJGaMHfFGzoQkN9sj5rQExYGnscw8m8gL/Knq7HLZONXjKJCre4FlNRc1eXLV19Hrcav/zubmDlZ+oPmaiFrH9BlUhskagQJt2FQ9RiUzcMCEDkkynNPm6fbQ65CBQQNW33NzlVz3EDxMoVW4imtjzGkiEgKj9PpxAPvw8/dt2qkvGLHu+1rjU8mOMWfqykstPt4xZzXhLK9vYLLtjcPOFXXvcO8IXPJ++F5sLmXLm4KQJhBTK+8Y34iBP3/JRXBM9NNiQFgSe0P2rENal7L0V73OQ8P9msE0YqopfxuPHnhq0qqWbYiv5cVwGKKpajHUHkC2f0k2bLEf49dY+bWLnyjV1xIpDPcVOTP9CQ4kYkRtrCphsvH5F4r7vgic9x01MMVTxugJOgLWru6tLdp7hVVAW/wPoN6ha8qNwW3d8U4BS3CC+BTj8xR5b/M1ZHNBMqafYhEGfx9W2rYZXtzhewsr3L95lPQVHxuMXkLLF91tQWJn1yYnIsTFuUc5rVB+P6WmmHSkZc78FFSjLNLVa5Yl4nPe3+az34ueky3Tb8ecJuYYvuLqCQtxL1QmPHYwlWTa5HTFTxEQBeeSU8/6woo+8g1TXBz3xVJUPkRPVHjXr2pZvjxmwXc7WfcYaXK8/Sy+S4lXOfVzCOfKX1Rkz1RN38a9ZjH6gqqRF2zO8TVV02jeeSiXs1LNrEiAEnMg9Y31s40JDiRiQmKldMdzKSL06i94CJqyqp9gDz9snEKW4hDbhbW0XNXT26tzjHqKzyWxudYzp/l1mW0TAm3aIwQHS1tzQbnxupKhnlBWbHrpnjltQ7IsOWnHeuX/10k+8zfY+b9zqq6IGyRTaqOInJ8C7e48ZYLlQ8bs6YHPl8KCOgX5wkMsdN2+PmvRYr495rlca7UWXpTRiI2N1eeNH25QlX1zoH6Orw/6YyvdDY7xq8JOxiD7cwj1tU/pmLOz81DA+eGzeHzgkbFB8jqj+qbNVg7TyxgCGB3S5aTnOzE07K41PcOI/bRb9k5McNVECUoXjjlh5s3OJo4mWKxiefxy0fft7VjNxRyon3WjciQZjjZsQ7LpanG1kFRK9RffOvkvSBhxQ3IjGyC1kdKzsQtB7rN5WMnoxcxS2bSa74AP5JgO3ZFr+1Q1NTdJI24OW4AUAFl+fmeuH0C3xEeZUUPW6ZiFBJTYU5qoS5bh4BIG9MUPMCM7JivCOm4/F9OW6aoZKiUEx3naLq6XRHJFYKxeOQlh1x3l2PmwX1SqTuPRhXPVHlARy1CA94PBLKjqsUqlOchJUvVApZ2clFA/DPqjff7P+sutb5Xbs6xAOP64VWPAa3O3vrhBnkgPD8Mxe3d2hllR3wPLnFSUQh9oBEf9QIz5Juk2mf4SxQUCzZ9TJzpr9KNeDPcXMVN7dK9cGH6M2/UdFDC1o2FF8r51xKtu5QmgdCZAH6eemxRjnftnqGOcB/7k14xKL70orHMJggxY1ITNRCVncyilwk+9zzZj0zgLdgU2m+zY8pzuMm4vTTgREjordxc9wAoCpMcdNUaoOhkvoTKRsqab4scvjYdcMwgehqoexfaVg2feMw/IzxVZXUDJWMKiCirDBLetzSynErVzTgAN49KFJoC5phRlEKc9IqkkHZ3us08tCi+onp5v45+zG/Kxen6uYFhyluUb3Q2PHUNvoFyzaBjitX7y7yC7Bx223+E+T2Rw0Lk4zrjxpp3Crozb9+r5X/M793Q044W6W6qcmf4zamyfZVqda9HsO8PoDfsKXaHF7a02l4DjP5XIoN91Y2iIrlmfa8B4xbFCpJDEXCYpMB/clIOixNe6ITKW6ex00F9maqEMTqR+FaTKOqawFejhsQrCzpKnIqVtOySK+V91p1ks5mvMd2d0hxEguqoWPea9MPx+LA+ghek+YWPaqLA1X0czqj7yd3Qagc7tK3m8gTuaazO7CdimwgvKqkapgkEO1Z0q1qFl2MJ7E4H8ly3NQ9ncIQUs3z4uzHvGb+yJZ74YxbOsJ/17BeaKzc215cgy/s7l1/ZWz+WUiOW1T+WVEOM+DvHO95nmrqCxi/vePK4wuTyPZHla28q5QiEGnIZbZLINqtUr1iBXDeud6Ot9/hr1Ktez365t8I/7Sop6EM0cqVwWgN4/UAxLK843mvle/VkOeqbrqNs1+4J9V/zajJH2hIcSMSE2WlMho6FhVaoBkWEVWcRL0Erfd6v/2SzfSuxTSquhYAbGFCJXmPm2tRVguV9F5HV5VU90a6XrewWH/lkLrIhazZ8KvIhYnhXjxR4zBBmm0YnPec/9WLwog9bt25AhZt6GDGYVbpdP9W7P3at2+E4qa5YPPnuIXLViFJVUkd77jpHnHCYzHh6lW13uswjxsgl4sGAOf/fmPxNZtXFhbKGJV/5sLO2znbLnqerprnXeuuFzFpf1RZZV/f2GrWu5HNAmNGM3tmzMrne9Kaxj+/mz7v4cqJbu51XNEWE/dqeFVJdhtV2R7BdaR4DIMJUtyIxERWlWReq5UWDp9I06wkly94U1GZoqWdPS/jts0HYvVFiCymYdW1AM7jxrQEqKq2i+GZSnkKEQs2E33c2GPwi9liSJ1ynzVWlv8zI2WLI/bTNVREJcdHbatCJaeJmK1uKLLKuh43BeHwvq8N/1jXdvrbJKR1vSt7aJkxFWxR/on3Wsm4FXHe+Z+hKptsLov1ouoaKopzQPAz3fxoZz/mWEy4upvfBkQrboA4F40fT10j46Vie6wJctzi8s9c2BD9fMFGS4vTGmblOs8FuHJJFiNGAN/7niNTtj+qT9nnYt/8vS7l5LFEGnKZ17qedyAu/1pBNvN9RUYWXdLujxpW7CdNbx6QQjhjWFVJI8Zc/2emq9cOBKS4EYnxT9QRHg7dhWwgDNOMtRcIxm2baPrI3kxrOntw1HG5Yqw+T5TFNKy6FsApbkxLgD8yORG6xUmiKtXpLGbZhThLXnuBH16tzkxxEo+oClVp5BKEjyQ5/CLev+gxq/zYtnf3mliwseIrOAXUdONd97voWGMjixIwr1Ws4WxocMAIwm2757jh6rKFFTHNLAhTa+rLVn9khLBl493KvGHE5aLxsK1fRB63uPyzohxmwA8+ZBfbGJRXeb/qtecOx4YNwH//t1wbAxdZBUK3mnLAkGtCOYnw/uh6T6KqPpogeo4Ub5eEsKgEbeOQZP4yYD6SxUyoJCs7yuM2OCHFjUiMbB6aykSapvck6mY2scDnx7SuqwfNzcCllwZnvhUr/LH6PKLqWgCwpcu7ZSur7aLH7tjjvG2UctwirZpmLFTurmEeCOUG2QjPKTJfnMSPvjGBkR1j8VUpmjOp0WsKxZ9f93iqZz2qLH2aDVp5VDy1YQsTv8KZWGwRv4cjIrxLd1EVIXvP8cMxoroCSYgLJ9dd9Ljnhfeiuu9541AQzu3HetyyTBn5qAbWYblooj3cuZnNccv1+j+XyT9zYa+ZOb+0i20Mahsc+YUC0NHmbSPTxsAlyjDH/s5qOW4eafym0R43vXuJ7dPI91kzQXSvNXMKSmRaiWbrJFH4tZl7VazwmwhljGxOHjKGwQQpbkRipKtKKnncLGaB7/9M18qTZhNSAKgu95eSdI8hWgDF5TsAwepagN/jdvxMu+ixY5sGaxeaCCwGme00bFTusMKUHx1vXli1OtOhkkGLMrOdZi7Bu2vb0Z0LXzzUViQvVbpzk9dfIjD2vv9NWDX5ayZvQGEOW/SYKOISLpvdxpTHzf+Zdl5kVI4b87dKbz7AM+KkU5wkag5mZBspTsJEUYQoVzxhuWj8Vy2zrMDcDDget6T5Z0WZzDVTwURT1DU4c0Jnu4VCIXheZNoYROW4sYYF3Ry3wCLZ9CLcsPfEsqzi8zINxY1dz0SeG82QwGjlRF0uIGPAMWAQZY1nppt7k8eNIGI8bsxr9YWyK9us9yQyx83Qgm3XsY2BY+gsNNnqWosWAT/5sffZscfaRY8dW7pYpRpeZEl95rWex00c1uEuHHQ8HO6+nb15tPd4OSEmPKkskcYETY8bAHywLrzZU32FhLYfkM8aQsSWdtUHL7sY/KTFMSK4Ffl8hhDFp0yYwsxfn3xfQBnC2jCYul4im2T7xqEnOx0rvmsECc5bJq/3KO+JibBmtrKv2wcNCPe4yeaiAY5xzJ2bX3jRG/dR34iPpgiDVdzYisFu+4GONvGNFNXGwMWfF+n/TPc39Ycbhrd6MeKZ4Q0VIdslwR1/VKjkmJpknmuW4v1U4OdfPUM04J3TyMInSsYhVpb5eQAI9+qZMJ5FhtdSjhsxFIkKjTAxUWdCFvjaVZiimpBqNoEWjcuVqFuiG3CswJMnAxMneu+xj0i2tHu5kseNkRsRdqGluAkUcjY0zdR5/8cKr3GqGY+b9zpgTPBtp2Kt9u+zqTvcHVBTrtAcEOG5hcVQSYXT0tIC/L//5+34+xuAnXYCxo93vA0rVvafxy2ncIOFNeA25nGLCJXU9RiWRRRU8Fvx1eRL91rT9haGLzbVCx54+8080Xu/3BcqKd43KheN/67s78vayRob5aIpRGRsRnEretxs1NY7rze3hZ+TsDYGRdnMrlGGBJXzzubOLm/rwietncVr3G+kMDAPGK5aCQAVZWKPG/scnT52mKJ0JpwxonWSssctdK2k98yOqoYJmFGYwyp6mmnA7b027aUtBUhxIxIjGzqmGlZnhU506Vl7TVnaRceI6g+TWH7IZNerGSoZZsXP5YBVq73tbEGoTlL8Hg7vtamF8uZer7Sb6Rw3Hv3y6P6/2d+O/0x3/GHW6qQP3vnzHSPCXXd675VXOtLWrHEKKhz8Ve8z3XYAQLhXDAC2Y/L4ZAkLvzLhsQJiipNoXvPyoWOqC2VnP3ErA0a+trfQ/xmr4Krkc/LstquXJxzlcZPJReNHwyrPJqJMAGDTxqDHrbrWLjb47mgNX67FtTHwnfeIvEiVBSFbrba1O4c3V7Xik9auPtneduqL8PBrplfTYOnslynKZq9B91V9RVbZaAaEG0J0nx1AeHSS7hzjC38VLF9MVMQMi9zSnWMAbv7lr3dW/iBV3UhxIxLj97j5PzMZGhEdlqa34InyFKpUZXQRLTbjik4kks9OdqyCxT7AFGLT+IdjS4vjORk/HvjlLz3ZP/qh835cToWI4u/KvGciF4qXw2JiIS7bokJFPG/c8Ctu3usdh9cqSHcohqhy77vfJcm45893CiJ0d/sXwKxHA9zRjOTQhXjFJg+vVVpUsef2g3Wbsa6zBwC/mNIxJHivgwsHvTmS3SUQ9mbgvEfmuGku2GQanwPqczDvHXfzhE+YyXrcnI0S5aJxwwn1EGisA30Vg/sUt7pGTy3cHBIq6SJqY+ASpTDrhsJXZYP339urWwGYCUuLumbYMGm+2qws7JzLGkBV5kcRoRWPmdfqOW7O/4HnkuY8ELVW4o9nJgUhJOpBNYyf64noOxaFShJDkajQMV1LDxDuIdCvKsk8vLjPTOW4WYKHjIlQSU++2Nup63Fjd1mz1itFvWYNihZfANi4wcIVVyQrRe3iV/jdc8Mu1hIPu0hYuJz5UEk/ugt9fpes74Hpvf/F0QlrlAuOETBW9H0b2culpcUphODS080qbv5t2Sp+nTF9s8IIy21hr5nGSrW4NP47v9Cyvk+2+PhJkfW4qRwhqoCT0YIHIks7Nw5V2Y58/wFMtGTxzTF9/zc3+xW3s89y8oWT5KLxo8kbXmgCQG11UHFzK0oC/oqSIqLaGMi2e1G5IsszQb9FsXqoQQ8wELwmuw0obux+vT6Pm/Nad3GfEZwL5289TyfgnVPzFbjD10qAmVDJUI+bAUMI3xORxaAdfcAgxY1ITKQHwmSJ2xRDJfmb2ZTnR5zjZm6mYG9YX0ijZsgI2wtt2XKvFDUgbjCbpBS1i6gvl6lQyVxIRbC0+7j5w6SSy+a/M9v83V04NFZm9YwJRXl+PIuynOxbboHvuuhlFLeKSr90VpF79x39RXhYjpuJ5HWW/i9OorfoCRrO9Dxizpic//O2Hcj78YfCq8hmz4v/M19lXOPhtd7ric0WJk9OlovGhl8D/t/UlAV/bBOjuFUJPG4RoZJhbQxcohpNa3uALQuVXI/IjOWE2bO5rqqPQVmPW6Wi4uZrCcDIKxZv0tTcwnuMeq91lZ/IeUDpN/Vei3Le13X1FP9WDVENzXHzjUPf42Y6p7MUIMWNSIzvpuY+M5lgbtrjxla/4j00/nYAiUUz4wrKNOtx8177PW6stVrxtu5Ljue9J2yD2YJ//SJVitpFtKjK+867+okPKwjWnx43NQ+E/2/W0+COXUdpA8Qhqs7f8hblXM4pgMDS6z27fR42wB86+dab0YUTwvD3uPNem/5NvWPYxrwnPgUlYq5RVq5CLO1+pVBNNivjvbXt3Gd6C0J2auKNIOZDJT10Q/g3bfFXNGGLJ5oyPlVkg4pbTR3jcWsPn9fD2hi4RFUi1VXGAaCqzB8u2bHZwvjxwOlMlc5rr1ELs4+qEGgiVLJc4HEz4Q0r7h+SM2qyd2ykx02ziBAve1N3b/F+aKzMKlU7BqKqSuqf++g+mswYFOUPNCWvuN17773Yf//9MXz4cNTW1mLnnXfG1Vdfjd7eiGYsAm6//XYnxCTi3+OPP57St9i6iPJAmHH/98ky7HEry3heJd6SzCZs63k3gsqJKY9bLges+oyZkBglKsc8wFQtYN1bnP1470mGmZfzOb9smVLULqJF1T/7ciEAM7HyPGaKk0R4mDUXPbyy5+Us6C/uecLC6mROy9KlTtgsS7THzft700YrsnBCGL5m0Mz7Pu+44iQjuhbytjmPWzZli29o+KvvulGTzXoueIVFNxQzyhNpIlSSJTRvRmHcdVweZd62heHeOqNmz43bx62CaQvA5sCxyLQxiFqIm7geeY/bxo2WE2bPnLa2NrUw+6jwWjdU0oL6NSNqwu0/J0pii4QWJxFsk5SwtZh+VUmxXADYwvQaHVdXpT6H+Y4hfq0cKhk5/5rxkA8kioVr+4fzzjsP1113HbLZLA488EDU1dXhmWeewQUXXIBHHnkETzzxBKqrqxPJ3GGHHbD33nsLPxs/fryJYW/1RHkgjPTgKC5KeNn6i/DyTAbd+QJ68vyiwXutV5bee10siaypt7W0OGFq8+YBEz4H/OIW5/2rrrYxoRI44wygN6u36MnlgM1twPCqoPekrMz7O5/n93TGdfHF8aFHvokaNgALazo9t41KWfc4TPdxC8r3Xit53Li/iwVtmPd0Hy7h4TTuGOIP0NYWfK+3x9uP99KWM4pcb48VWTghjLDFg98iqzfHsOQLhX5pB2BiYeKMjf9FzXitpo6sw5pOp6VGVF6OivQoBaK/PG4qv+vOTY14ZeVGLkTSOQcm8roB/9gzfQpPJdOIO0xxi2pjIBpXMMdNX/HkjYVuywU2zL7Q53V3w+wBuQblvt80JFSyoiyjndPpyPf/D+hXHsxw47eKipz+eedz3t2/jOa4cfepr/qrTiE3QVoJ/1o5VJLZj19XbA0et5JV3B588EFcd911qKurw/PPP4/p06cDANatW4cDDzwQCxYswEUXXYRrr702kdy9994bt99+ewojHjqExSYDhqpKhiXcsmNQVdzKLHTnBR43nxXfzGRUKP6vrpDMn++EI7q5ReN28uRv6QauuBa49lrgr8/ZKBvuvK8SKrl0qedx4ysElkV43ACvFPXkyXFHCb9ugLQUN+91Gn3cdJsG8w8mV5rJhYOo8Xku5y3genqcv6MU74aG4Hs9PsWN97h5r3u7rcjCCaHjDlk8sK9VjSxij5ttri2Iz+Lr/8xn8VWU7y3QzHutRtVUOgoJAPBRD8xr3ZzOle1daKr1umSbaAcgulfyBRtLN3UyY0gut6m2El+b3ISXV2woGpvyBRuZMstYCwl218MOs/H/futvxO3Ozy6VlY7SJqP8sOH/gXYA7BgUx7+l07+ja9TJMB433ug3axaw777JlM6wUEnV/DZAnM9l0ivDj9/9LUwo/H5DMWP01q4qycoNn2NM5F4DUYY5NaJy3HxjGKQut5INlfzVr34FALjwwguLShsAjBo1CjfddBMA4IYbbkBra+uAjG8oE72Q9TCdeG9iUeXmueUKtm+y8Odaqcnmx+WF0qjJYkuvu+SZXCHXE9bdDbz3gV6oZFub97At4xbwrNWXzWtikfGo+C2nwc+3VejH5TKiqtz3tyiMyUxxEk/+stZOrGU8hiaqStqChYOup5A9BtvmwY02f/99r3F2WP7JpEnAmDH+93LMtRBU3Ly/q6uiCyeEkQmZZ/xGluRyHdnBk5or2NwiXP3ER1U1M2lM4O8j1/hhachmxxXsPcWMQUHtbKr1NPrlbV0+Y437uszSCCFlXrv30pJNHWjr8SZOdS+tJVwQ6oaPivadPMVpU3DY4Z7wnj6PW6I2BszYXdLo/ffBe2KPG6t4sqHVgHyYfVhbkFzBLhpFVPPbAP93LhTnd/Hn+vJD5jEjzyZWtve+2nMpaIB28a2VtIzc3us0PW7BiAd9w9lAU5KK28qVK/H6668DAE444YTA53vvvTeam5vR3d2Nxx57rL+HN+QRLWRdTLr/TRcnAfwFStiCHibCMAFxIrVKjhtfet2FtVqy1sz6YXrtABoavIctvwhvGOHJbtsgnjJkPCr8Qtz2KcsWxtdXyQ+YY9dthvn+diWbWSQHQzpWtm/BwlV+o5GKdP5sFr20hhaDgDeuLd3+Ng9uU+J8zio2zg7LP8lmnQIILL52AFyOGxtu+5UvW4kq+LmEWdpTC5XkipNotQNIOTStWGKce99dpOjmiIVVwtP1RAyvqije5wUbaGVy6Nx+S2Wq2jjEi8F3uQIrxqqFFoLGIZ2z7g8NdjxRBxzsyf7Nr63EbQxc/Nej/zPd3zSXA9583f+bub3y6hq8Z0e7oCrmvHnxhYvC5gEThUkc+d5r91zo9rYLk+9T3HzH0H82sfJMVpfdtKUX/1rXXqy4yQYr6aSVhPW83cBUrFSO2rKsogE+OsdYTf5AU5KK21tvvQUAGDFiBCaFmGp3220337ayfPTRR5gzZw5mz56NH/3oR/jTn/6EdevW6Q24j46ODql/g52w2GTAX05XdfHgXpQ2IlzoijdcBeNOY8eaNzUZGfK48aXXXdhQRdczli23MWFH5+m3pbVM6SEwaZI3kToLem/QjYzi1ro+2Gw1rhS1i0/hh//aGcZ5zJJSX5HFqGrPmi8qDKMzR7v7uuI+3LA5uI3Cea/Mlvl6kRU9bj6Lrx7usDo7vWvKspj7ijEGRLV5OOMMJzzL288qGhICOW7M3wfsbyIMKMSarDrHhHjcbANzDMCHSvrnMDavUz2c3JPH4ik/uopbn8eNe99EHtqYGu8i2rDFOxdFpdNY+JV4G1PtXkQeN1M5bq4CwXoLpkxO3sagOC5ftdooj1tyli4F1q/17+lGb9Q1esI7BA3E3TD7KMLmAROtABz5YgVCdHxd+ezcZaKQmyjCxzmO53k3kfv3r/Wb8cE6xwBiqhK06HpftKEDXUzxEx0FxZ2fonPcBqfmVpI5bkv77uSJEyeGbtPcZ25amrBc2UsvvYSXXnrJ915VVRXmzp2LCy64IOFI/dTV1WntP1gIc88D/n43teUmysSKFykl63ETWMD4c7T9sOiQQFHp9aJMZpHthko275hDRd9a6J1Xy/Gt6ckf7tksMGqk8zqTcbx57rEaRjrfJJ8HNrcGz01cKWoX3sLmX/AkG6+IoOXUKv6uGctMPHuwHETw2EmZsc0wPLXMMR55xUn0rOAsrvWb9dD68hbzwQOI8k+am52cGrewAOCEP5XV2AGPG+u1HT1Kbdxh4V1mymgH38sXbCMeWsAfbs0uvhdv8BvuVBcOYVEJJpQfINzjZiIPbThjpGGrVhZDJXXCr9g5JmQbrd9VkLtoLMdNoEDkDSjKAHc9Rnogkh+jrS2Y4+ZGb9QyHjfRswOID7MPU3xMNN8G/OsZL8eN/dzMvcTKd14zx1A24ASvGVa2lvGJ+/vjTZ3YuanRXKgk89oV+f46/8WgH/Vgb5VVJUvS49bedyfX1taGbuMqSW2icmcCxo4di1/84hd49dVXsXbtWrS1teH111/Hd7/7XXR3d+PCCy8s5tUR0YTGJts2NvflEtRky9Qrg0k0UVW938pZjxvj8/dPRorCIU50ZifrEVXl+OLo6LhCUen14jiZRba7EN/hi97i5703KpRKrwPANmM92VnGAdY4wtHg2jZkYNv+My9TitqFt7CxCx4T86eomIW5XmjRn5vq+eWeEf+1rjf2jRv6jpNhFpgRvfmA8PyTmTOBO+/0PG9uziMfXsvmRaon3osXbKZbPLiYLE4SVo6aX5joKp584SP3WMY8bpz24+WhWcqLqlqmtL67+LZtb4GlFeYpsavpUElT3nGRQdRXbMaUQTEkdFdVekMDsIWreJkretziG4jHhdmLFCvAnMdNpDD78xaVRQOQ9LiZKE7CzAVej04dj5h4X9aYYMpQwXv2vW3U5btzYCDHjZWvLn5AKUnFLQ0OPfRQXH755dh9990xatQo1NfXY7fddsMdd9xRrEx56aWXYvXq1crH2Lx5c+y/Tz/91NRXGjDCFKuevF30YtVVBEPqZIkrSqDjPWE9buzEby7HzaMYrse8t21jTWzVxyhbhK84SZ/XZNRYb+W9ckmZUul1AKipZhU393zYxRw3UX6bTClqF97CZiqpP0w+4L9m9GQ7Ajo7naIAvKdDZ/hii6+Zh2MuB6xb2yeH9bjFtHgAwvNPZs50zsGcOV7orqu4uYUTfvgjb3vV4Yct2NgcHRMLHpecQY9bVANuE4gqhRaYHD2dECYg3OOWM6BciRaypnq4iZQfXpqpNg8iw5y5UEkHUx43//Xo/8w9gurQJ00CKrP+nYs5bjGhkjJh9pblrTjCFLcKjYpiIuXHZAGL0MiBkDEkQfTMc46jJzdqX2OhksxrPiqpOAaNs+8aOrbGUMmSVNzq+0wwUflgmzc7OSYNojrVCTn33HMxatQodHd344knnlCWU1tbK/VvsCOKTQaAzb3eKq+2Qj0Kl13Es2WcTXhPWI/bhi7PU2Wqj5sV+2CPlxF1SbPeEdeDwoapdXdllEqv82OrrXNkVtXaqOyrGdLKKG6VlY7nRbaqGRDMjTRd3Ul0XRavGcUjuFUY+6YbLFkK7LQT8MEH/u30FmxBj5spK/7SpUC3W5qbme19HjdBiwcgOv+kudkpkDCuz0s7elwB73+YLxZOqGeuYRM5FmEeN9X1mmhMTqgkc6+qiQbgX2RHFSfSbsANxjtjqL8SwHrcOI+eiXBGwX3qy50zfC/xYzW1mPUW+ezx1WWLqhvmDC2SAS+ccAtnqXEPobqIzWaBA/bz7+t64t1QyUIB6GwPypcNsy8W42HOtbFQSfZ6FBhbdaM1Qr1i7PPPROEsgeKmo5iEfe80qkrqbBOGOzYb/nnM53EbnHpbaSpu2223HQCgJaw2NfOZu60OZWVlmNzXhGrFihXa8rZ2wqw87ERanVW/tNiiIWxFMBPekzF9PYoAp0x0sTKYz/1vxnonCnuTkS0qve7Chkq6HjdWcauvUyu9DviVm5f/4SgsO+zkryipUopahG3bRiyOLFEVPVV+0/nzUazC6Ho6M32eKt4TpbVg8y0cXI8b+7m68LY2T9ln89pkPG5AfP4J+xDvamgvLsJMJPdLFScx+OTNBUIlzXhmovoIqSKaZ3KGFlRAeA5dri+83FQBEZHHzXTeDP87GvOK2Y4iu7ZLryWIty8jW1CcRFcZr+8zpm7JFXzeKi+sTl32kYf7d3bPvRsq2dluoVDwb5MkzF7kATZWVVLYDiAtjxuEr00UJykIo5PMXI8sBVNGlpi+rs426oS1BKB2ACmxyy67AADWr18fWnzkjTfeAABfjzcd1q9fD8Dz9hHhhHa891mr1W+JDUzCOktxMtKQXVeRxZi+pq9527M+muvjFv0QkHn2ikqvu7Chkq4SUcEobl//mlrpdX5sY7excdllwLMveA/HbxyRUSpFLZLveAq8v42ESgo9bmrKPt9Dz02HDIty7ezQeEAyr4ULB41T09DgL9/sVpPM+Jqqh+8fNx3WM551tqediXCUsGpv69ly0UqSxZgsTpJhwrvSaCwvWvSYKBwCOEaJni19sgH09nrhY25kglY4I3Nuih4OYyXGPdw5gB+qXtNg//z+0ooNWN3RzXyujkjpzBswgLg0MPdqO9PXzvO4qbPNWP/E6M6TruImCpNMEmYvqnJqLsfNe+1eMya9MnLFSRQ9biHKT9i1ryqbxUSoOsDVAwgpJaRVnIT58qxRizxuKTFhwgTMmDEDAHDXXXcFPl+wYAFaWlpQWVmJww8/XPt4CxcuxKJFiwAAu+++u7a8rR3/A4a1ZDDbaNwQNeXi/Lhi2JvmE6yK8Qa6iypjeQrMa1E7ANlFLF963cVfVdL5ny29/q1jzYRGFM8HU9Bi5Ah1pRAQVZU0E5bmyffwctz65Cf4TUU99Ow+a3GY4rZ6FfDqq9KH8CEyhPitseq/6aRJQFYQIlnGhkoWxPJl8k92HuPFRHb25r1ePwZy9EQLnmWtXb5tTCj8LnxxEl3R7sJBpY9jHCJLu79Uf/I7im3O/tqr3gG22955/+UlnvtV1/vjhXr2eZYMzb/srVIMlQx43NTF816xdYwRwflcT6H1ZDsUQ1M1isG4NDBtR9q6GcVNcPyk8NeDc/nZqK13pLM93FTC7FP1uAmNrd7n+lUlxR43E3nMcUqh3rUe3DmXA9o2s25Ds95xk7D3feg6dZD63EpScQOAn//85wCAK6+8EgsXLiy+v379epx11lkAgLPPPhuNjY3Fzx544AFMnToVBx10kE9WZ2cnbrzxxmK1SpYXXngBxxxzDACnsTcpbvGIkqgBc3Hh07iqi3yjU92L1lfxrSjb+1z34evuLWrALTuRuqXXeUR93FiP2/hxphQ3///85yrw142JBqR++UHro4rHTdRDz1WYw9bDuV4Le+0l7n8WR3yoZHKZLtks0NTkCXDHz4ZKiqpKAnL5J41V5ZjU6LW3aO1bEJow4vhbazgC310rV0VYhVyBD9/VuybdhQNfDMIEwtLxGgU+2LDgNWu8cu4AsHGjjRtvyWN1zss5N1210kTeItAfoZLMNSnwpJoOmTZVJRRwok1cOph8dC8fSh3+evvc54GJ29nFZ1Rnm6UVZi+qcsq28zFd0MakASfNkO+46Ce9HLfge+PHA/94xTvSTpMtzJnjGH2SEtUP2ASiKtPOscz9tgNFySpuRx11FH7wgx9g8+bN2HPPPXHYYYfh2GOPxY477oh3330Xe+21Fy677DLfPq2trfjwww/x8ccf+97v6enB2WefjdGjR+PLX/4yvv3tb+OYY47BtGnTsN9++2HZsmWYNm0a/ud//qc/v+KghZ0MVrRvKVrZTcUOj6+vxpgaz43U0xdHY6q0e1bQy81UGXAgaE1WnaD50uuAPx/JXXxX1bCLHjMTtWphlSj4B6SpcECRjAIc+e4RZM97WA+94uImI37E5HPObxPWvDoK1qPmSjcZhz9uHHOsvmuGLU6SFxQnSZJ/wlry3QWh6VBJExbkOPIGG3ADTDlqVxk3aFZmh+beo6oFPviwYMCrCgg4rUEquD59un3i3L1FC2VTipULrwia6jaQF/ycpsIwXdFs+wVdykNaVJjIceOvh89/wcb7//KOsddXLCNh9qJ+jro9OkW9V8M+15bv8/zoz/EipdM5TvDYiWUL9l2zBqhgWr18usIx9kyenPy5l7bHLUy+qcJfA0nJKm4AcN111+Gee+7Bl7/8Zbz88st47LHHMGHCBFx55ZV45plnUF1dLSWnpqYGF110EQ488ECsXr0a//d//4eHH34Yq1evxsEHH4xbbrkFb7zxBrbZZpuUv9HWAX8/f7De8WSazFmqynory2L4lYHiJID/IcOHSlrQH3uUNTnp2NnS601N/uIk1TXO+/sfwIZI6Y/bGbP7v6EQJoiqSjKfGZhCfQqQraYwh/XQK3rc+i5LXlyOUX5mzUpmgfQpnKJQHc3zXl3lvfY8bt57ouIkSfJP/BUUgY6eHJa2etVgTYYBDa+qCNlaH6c4CXt8Ux63YDigLqLiJCqFLERhwQCnuFUEx/3qPzJKVnYXPmfJlzdj2Hti0uMW1Q+NP35y2d5rvmiLRq0vRj6juPmKNTj/68zBvEfQtj0jEQA01OuF2YuqnBa9kSYjQYTpDXrEFSfRWXOIrhm/wVJJbOS+rhGntwfFvq7d3cmNlqLcQpOE97hjxzA4VTeNW6l/+Na3voVvfetbUtuecsopOOWUUwLvV1RU4NJLLzU8sqELf6l/vLETO49pNJLX4sLGrPfk1bwnInI5YON6b/+enFlvHuBZQ7yeXMxnCvLd0usXXwx8tAT4oE/ggQcB+5wKPL/cBrrU5bv4FQg9b6FQPvPatv3h8SY8KcFQzOTXY1gPvUJMjhtb4MNtXs0FBIQiDNUxeC+xD6fqaqCrA8hkxaGSlZWO0paozQPzumDbeHHFhtDjJ0FU7Y31GjRWmn18BdoBmFLcBB4xXfyhkkHFUDa0ThQWDPhDJbPlts9DCwBvLQR+MjP5teJSjEoQeNyMhUpyxxJtk1g+s7NIETfd1ypv0OPmbwovOL7WIt9CbXkZOnq9ySRvqOAMIK5yauqZLawqaTCcLixU0oSnU9hKJuTzpPRs8e/rGvhcjxv/OeAYgfbdV87ol7rHTRBOzr4enCqbQ0l73IjSJGwyMOmCZhdovYWCtgLBJt7/7AJv//MvsDFnDtDda8abBwQfMv54efUDZLPAjjuyB3IXbH1/wqA1WVg0QFk0gKCFLdU+borek7AeenbfIsQKmTF7e/zyw5pXi0izjxu//+tvOvcB224inzeTfwI44+/s9bvwVMcfZ0jYY9xwRcli+OIk+qGSzv82nPGbVNxElUiThkqGhQUDQC8XKskrblW1tpKV3cVdLJv27Ivyr/lFoVZYHfNa1Fhdr6+V/z4qMMZKEzluYR43NtpEh32aRxRf2zDXqBnwzrsTqdE3FxTMPLOFOcYGo0HCPG4mPIa80Yz93zm2smh88on/b9fAV9EX9CBS3FyjpQz8c8M0vnuVSc0woTAPNKS4EYkJu95NWqv9HrcCVzEtmWw+8X5LJ6MU5m1ccQXgtu8z4nHrE+EqP2bzxIJWJO8BZsZDAIQVDTDrcTMZDgiIQiWTn/ewHnpeOwDxIybnLy4X2bxaBJ/DYTKcg9193DinzcPjj3tHOP470Mo/ES18WFSvS2G1N+bM6FY25MkZbAcABPsIpeZxY47hInNuwsKCAf/1nC23fcVsABSrBQLJQ4MBQVVJQ72hIJofNaQFpMeESpqKSrBt2+A5cfB73IKhY7q3UzkTjuC0jlB/ZvNEhfGbbZDt4J9/tcRzRhZWYXaPb8bY6hmKxZ8nIZcDlnzs37fAe9y6xbJljZYiD7NJ2Hv1+eXr8dzy9Y4xhDxuxFBENBe8vGKDr1m27mRXXuYvIJK3vcdvkgWbKPG+q8OTXVXbZ/Uqd/7v6oQ2QY+b95nJhwxfSlsnvy0gO41QSd6ibDAc0JHvvS5ALewtrIcen+PGw3vcgPjm1SyuQu4O2aQ30veA7Puf/R7Dh8dXj4xCFGrkO77iFxCFGJnOi2TJF2z0FtTmGRFl3EJZ5KFRReSNzDFzpMxCOSwsGAgWJ+FDhGvqvGMlsbK7uMMzPUf6d3WvGYOeTka+KNzQVL6VDbMN1YGohsR9x9a8n3hvp1/x1BItnAvc828qDBMIiZLRkh6eF5k3YHAV5YmZGPvSpUDHZv97bn59nOIma7QUecdNwt8yG7f0oqWtywuhHsSqGyluRGJEfaVWdfgTJXRvigrmrgt43CQnurDEe9bjVt2nuGX7FLc1qy2tpHsgmOPmUyD0RPswb3lkF5p+2c7nWuIFVSXZz/QnUd4bqboYFPXQi+vjJlLc4ppXs7ALNsBcaw0geF7Wd/Xg1U83evKNLtiCj2BV6X5rssgTqSg4hLxtozvnHWH5kox0uKuIgMeNUyD2ax6pLJv3LrvHcJGp+lhTE/6ZX3EL5rjde1Od7+8kocGAd03yRTgAvXlGZKRgT/teE0ZAB38D7uC1rm08Yww4phqqF2X7lE7W42YmdIyfw/vP46YlWhhuaCs+O0SEFyfpM7hqiBfm5xkYe1ubfw4APONleV+xol5BbqyLjNEyrHm4KURrii25AoVKEkMTmQteu/Ijs0Lmw4xkLeFhifdbOrz9q2qcJXK23Pm7t9tKbD3mcS14aVQIZPvEFRdsxiyP3mtxvLxZi6zpRXigOIniYlDUQy8QKsnJ6+VCJWWaV7MUcziKCweDHjdOsXp++Xp05QrCz1UIW5iIPteVa7JcP8+mNhvvfuCcl+4twNQpFsaPh3KfIp/iZtvIMd68L46ux8ga9QqZYo9b8jkyDLY4SXm57asQuGFNBh+84R970tBgPlTSVEi2MJS87xjlGQtNtZWi3eTlhyg/LqbmyALMhho6sq1ApVMgnWINtm04x42LpjBVrIzfv6jsp1ic5KMNHfi/j1cXWxEZ87j1ne+PN3n9FlUvm4YGYNM6v3rgTF92ca3EK3YsMkbLOIOfLqLTaoOKkxBDFJkLXr+kvvc6z8XLyyxKohLvWY+b2wPN9bj19ia3HvNk+EVJSiGBfH6I/sMxaE02W1WS94gZPi/M64JicRIXt4eeWzbfrajlFifhpeU4j5tM82qWorLf97df2ZeXI5TNvBZZNrUVQ+a1yRLponLO/jLdZh+9vXkbldXOL9DR5vzQa9ao9ymKCpU0ea8+t3w9PtrYkVh+Z0RYONvbjy9O8vL/VUH0qyYJDQ62TAl+pkJUcRIjebTsHCmwUphS3HiPm4kcN8DzCIpy3Ezm0trwX+9GlSvNuZ0nvjiJHrwB6p21bT7DmV5BG++1DaC1uxeLNrCKm5rsSZOALe1+N7tdsIpKGxC+RpI1WvLPJdN5bqLTyir8g7UVAECKG5ESpprXAs5iMOlDLCrxviuguPmtSEmtxzy8x83kQwbwh9M48s2ESpb5Ho5+2Y58LfGCqpLMZyb6uHHj1/UWzpwJvPSSo7y5omRCJZM0r3bxFmyikEB9L62L6NFo1MhicDEbV5zE9HO3stpGbYMj31XcXFQqKPpDJf3hryaVcQB4Z01b4gJOYRVUAb/HrSxr+677QkEsO1FoMPPaZCELXq7zf/AzE/JN9uXz5PfN7YBWQa4weI9barm0vMdNc/wWNxeYrHYsbgcgPraS/JAcN9HniWVzY1+y0W+NUZWczQIzvuRX3DJlNsqYNjJhHjdZo2Wgr6vSSCPkh3z7NMIy+xtS3IjEyExkugtxf5hR8jCgqMT7LZ1McZIaJ3/DXZi4C5Yk1mMe9qZyrIPpeNzcAhyudJPFSUQeN9NVJT/c4GU/mw+VNHPe99gDuOMOoNCXmJ0pc8Jr2QcY4FfckjSvdmEXbIDZBRWLyKqpvWBjTjyfx+V8riY3vjiJWcrKvJzXjjax9CQVFHmPm8m8GdHuSaMSwiqoAsHiJGxVybzA0p44NJhbiBubIwX7ut5aE3NvXHESXVgDjslQQ15OXmgg0pMdbGcQPK4q/FxgMoRfVPDLbHES73VBoJ5o9S3kvIXdeX8rlp6Cek3VbxzuV9yy5UAZo5CxXnmXJEZL3sjCK7Ujqsqhg9DjBmoHQBChGM2bKXAeN01rcs8WL/Stutb2u//7FixJrMc8wUWJ+DNV2KqVZnPQ/Mqy878t/FxXfkt7FzZu8cz6ugUygKBiaOq8z5wJ7LB9n5wMcNuCNRi/vf8Bmet1Hlp33qnWkDhQZc/3mblFvmitabKxusjjpiqdt1SzYS5AuqEum9vEj8YkFRT54iRpVapjj1E8tsQcGVZBFYhuwC1aCyYPDfZeO0YW72+tUEk2HNv932CoZFw7AG35YcVJTHncMpziZjjqwZVgw2yoJ+9ZMqkUsog8bkaLfhkOr+Xz83jxfE/NJGzf7FfcyrI2sozBUmTASWK0DOak+z/fXbNPp+h+t2GuiupAQoobkQraoZI+yyZXnERioouyJgNWMc+tqqZQzG8DHMUtqfU4IJ1blBhvNO3Ktp0QLBfTVk32f0e+lnjfd/9sM1eF1Ig1nH+ImfN0jhrlvXbzIln23MNSal7t4v2mggWV9nlnzotgrWlSiRCFj6kumNm91nf14omla9Hdd8Hr/p5xOawdreGPRtkc2IDHjfnMpLLsknSOBMQVVAFBOwBWccv7ZSuFBnMLcVPeJd544/xvBz4zId9kewcXLz/abKhhUQ4Txu8YQtIJPd60pRftPd5Nol9V0nsd9LhpieYKfpn37LPjE/Vy1DNUePDnBQC6cuqKWzmXF5AtB8p8Rm7vtYrRkn8usUMfW1uJmvKQ3jvS8gXYdvEZQh43guDQtWZkonLcNK3JABjFzeYUt+TWY56wMCALphLk+2TzlccMWjX/vX4zevMFw8VJwlm7Vq8gDC8/UJxEu+R99P4HHajWvJqX7xUnMaPs53JAW6v3d09OpFhpHIDb33STaXZoHb35ogVZd35ZuhRo3xQuo6M9/DPZHFi+qqTvNzUYkcAew/lMfp4RVVAFOMWtwvY1nueisZRCg/09I/2FPrTaAXBGM8C7p4zkFzMyNvdoTlgCXOkFzlhprjgJf00Gj60DO8zlbV3ecQ1e74HQWgNKrSuioxNYvBjI5dO5V0Xzo7lQyaDXqkZnIQNg17GNxdeZDHDK+V4OST7nGLnnzIGS0TLgdWeMCK2tfb+DVpG44In9mMkBHMR6GyluRDroTnaBUtoK1scwazLAK27e+3beSmw95glaB933zUwVoaGSug2DufEtb+tKLRSTZ87P9Uqv8/KDHrf0lE4T8k2HSra0OOdy/HjHEupy7HHmPGIucaFApmSz6N5KbW3AFbNHhCpvUR43QC4H1hc1UDBtSAi+5y4Kk/b8ciuosnMlHyrJ5ra4/Zx0QoPZIbq5ui7mPW7Bz5TlM0J6UvC4Fed2JM9ZlKGMUyJMhx6HGVRM5qEVbNuXX6gj250nN/cZapYus7HTTsAv5njbmCzeJPS4aVWVZBRa+J95WcvCl5oickYk2LaxBqOqvdYfex/pKeNHHG5hxQrgssvUjJbst97SDVx9tff3009a2GknaK0JhHMkc3625NTz/wYaUtwIJQ7YdlTk50bzZvh4f0vusg2zJgN+xc1tKAkAu+6q5zkBBNZBg8nxAJtHYKOn1xv75jY9CxX/kxkPSYn4LJ/XK70OiKyP5qymcfubKtzCt3hQkT1/vnMOr7jCOacFxkPS1W0uB020v+lKe2HXnO6YGxqAxe9U4LR9mvDwn2sDn7dvip5jZHJgg6GSBq9HwXvFtiAKN+rMmY6Fe84cp9BIL+NxK6/wV1OtrbGUrewufAVYUwtxFldkMeLBgNi0rfTFecA2myNWlMNFshgP4w8RYrSqpCFFn50ne/sMFW77F7ZVxssLlMQXsThlmUfnt40qhHb4jmMwolq9V2TxGCHDa2zQi0xiz8s77wB/+EPQq6+zJohbJaZRFba/IMWNUGJ4VTlqI2KQtReDltcstFBQ87gBYmsy4FWWzJZ7leQAYPtJBsIumNdpeNzcr9/ZBRx+pDf2O/+q57XiLYsb12V8YVG643/llfDP2ApVKqXXgfDzDpitiCk8tiFvpDtm1et9/nzn3LGN59ny7V/coyewj8nke5OhkrxsmfdlcXNgc70WujuDstZ+Gj63yebABouTeJ+ZPOcu7jWjukhubnas5ytWAL/9tff+1dfYuIlZVP3sQnUru0t05V0zHgib+990qGQauOLtFBpwA3EeN335YSLM9hjVz1/m50n3+bPNdnmMGZ/zVQ2+7no1Q6KL/5wHvTwmr3d3jimzLGTDetdoHEPm/STYfadjhy/2YtQ4b7GR4ypWqqwJBnOftjhIcSOUiZpwTDzg3FAjvnlt0rAR3poMAF0dnowzz2aaYZp4uIdYNU3NI6194V29vYCd9ca+aV2ZsoWqpQW44Tr/AOdcBLz4kpkFVUtLeEN0IJg3AyQrvQ7EhUrKywmRHvmpSW+krXi9t7Q454yH9bh97ZSOwOcbN8qOUgx7WZgPlQw5pqZcNgd2S1dQ2uoV4YqbbA5sMJ/InHfDZKgkTzYLbDfB+/55q4CxY73Py/RqBgCIDvHSbWtSlNyPHiVTsAactD1ueS4nymRVyajjquDPidQzgojmSVbEudds8l3jhZyV+FnE4guVFHh5dHLcwoq2mIruiZKle4yWFoANnvrP73huznyvYAckWxOYPAelBiluhDJRN4aJ54yrAJlI1GatyYsWAfvu7cmY+V1P+THT60f8cDShzM6fDyxb5rwuy9oY2eStyjeu8W7nJBYqN2Tklxdm0brBkzF55x5Mme55aO75f+rjvuUWoKc7/PsXBIpbktLrQFD5MZufF/25yfw/G1C63m+5xe9pc4lr5fP8c1LiQ2EfIuZDJcOsvfqy3RxYtgefy5oQxS1JBUU+T9e/2Ew01ABRi+wyA5b2yqwnoydfMJ8LxS3E8yncqzbMlnUH0i8hzv5yql73KFil3vH+mAvfdWSIhZj2uOlcL6J5srbBmySnTu8NFONJ+ixiiYtIMNb+wjZbiMclzBane4xbbvH/vdfhW4qv83mx7CS/w2Au9x8HKW6EMlE3rolbxmsWai5RO5t1lJTRIz0ZPXlWcTMRTuO9tg1awVxLoVuOu6ISOP48r0rC+tXBxWachYoPGfnjpV4y80HHeInI+Txw4omWUshILud420TKWVG+oJknIF96HYiusKXdgy7mc93flq+yl2e0LZnr3T3HIvjy7TzPv6CbGxm9MNEhbMFnQnlwc2BznHW3fZOFrg7xozFJBUV/qCTf7NicB4LHRCGLSsbttSVXMO65iurLpe2NZHqhmcxzBdK34rNjVGnvEEdFGauQm68qGUaaDbiTeKzC5slyLhUsIyjGk+RZxMIOz3iOG/vcAFLxuIVFUegcQ/Q7LF/knXRRjzgX2d9hK46UJMWNSAeT+QSBBtwGZLOLm16DpX+BcEu7biU511LIhhXW1ntjZz1uLlEWKlHICFsG3Pd+n+NNJWRk6dK+IhkRnh9RqCQgX3odiAm/0vVwpO1xY14XkDyn0z3HIuI8bnUjctLnWAS/eDDJyJDkelMPrpkzgVNO9p/fNSuDBhCVCop8qKTJBtxRip+JRVt5xrNXd+fz5nOhfNeMd27KLHNGFhtm+3EB6efNsF6C9V1etIMpjxuruPXmC77qtWaqSgbJZix9wxav6PvaR8gLj5onWSoqPfmuRz7Js4gl7rzqVZX0XrcwVaBNetzCoih0PFru7/C3O2qK72WZInFhhlxA/ndIOx91ICHFjVCGb/bIYkYBcv7nFz0mnmFsZUrzHjfemqxvBWMtVGHWqA1rxOFdYRYqUcgI731wcR9eKiEjbW3O/1Gen6jPZEqvA4KCB+xn2ovB6P21i5/wVfYSWtvdcywiytMJAK8+WSV9jkWkGZIydWSd+JgGD/nlPf1/sxUldfoU8W0S2OlSuzhJxGdGcpUsq+h1684XOAXI/BzpeiJMKChsgQ/TiknaCyZ2iGy5clM5bhWMBaunYN6TKqImW2bUwxzo0ZlAdtQ8ycIaRDvavV9dZ54MQ+eSr2SS8brzBfTkU1DcUvC4ub/Do3/xKvpWVrOKW/T+Mr/D1qu2keJGaBCVz6LrXQK8yYfN+UnSXDYK1uOWZqhkwfYqd+mMm7UUipSc7i6go00sX2ShCgsZCfW4Me8nDRlp6Iu+DPOqOfLDP5MpvQ4IipMYauoL9ENVSeY1n/Mjs5htiGjXE6a4bVyTwfUXNOKjd8ulz7GINMPHqsvLMGVEsFy/SWWR/+322cvCm286ubA6fYoCHjeT7QAi9jf1e7h5bt25gtGxA/z1zhZWMbgksf2N7E2cl6g5vNyE0hnyvqmFeHnGb7Bc0LLBO7aBQ4hWBDUR1adl8Sv6fE6kvJyoeZKFzXnrZJ6rOvNkGDpKeU15Gb44Ojgoo6GSYR43jXG7vwPbdqQqgeIm8zvEnQPdHncDCSluhDJR6SxGPG5sOGNfvJcpy6NPcSukV5wkpxjSwcNaCkVKU+uGMkSpF7yFKixkJNzj5r1OGjLS3OxcD1Gen7DPMhn5RTOv/LCLzfSLk2iJ9yv78BsqZMbulrcXwbYDYHnkjlo8/1ANmposqfL2YaQdPjZcEC5p8pC8rLo6YPp0JxdWp09RlltsmvS4lUcUIDG1yHc9bja4cHIDstkhFpgqqiby89gm1uY9heGf7Tl+uLb8sHvJ1EKcDZXs6s1jC2O0TMtzbkJxY89LnstdTHK9R82TLPXDvPOyuc05Z7JtQJKie79OHl6Lhgr/RGXS4xaWt6xzTbq/A1sYqrbBOw7fDoBF9neIei6Nq6vC9sOCBsHBAiluhDKFCM3NxLTBTj69xYVsCopb3twCn5eRM+T1YS2FmwXNgXu2BN7ywVuowkJGekM8bjxJQkZaWvoKBYQoEEB4FalCQa38r5Oo7f2dfnESc6GSLa1daO12tHNZQwVb3j7wWYX4Ps31PTRly9tHkabqJpJtUlnkowNM91sE+npmGQxLi1oMmzoz/gIlnmXFSMihLx/V1u5Bx+JKsPtke8fUFh16bncaUYvRNZUhn8ojGqOpKBPAr7h15/3Jr2Y8bsG5pjprwuPmvf5gXTveXdvOfCY/8Kh5kmVEk3duujabmydFmAizH1vnv/ZMetzCUmJ0oqrc3yEXbCsKINrjJvs7RI2uKju4VZ/BPXpiQIkKlTTxoOGbhfLv6eAvTmLa4+a9zhvyuLGWwk3rgretqKS5i8hCFRYyEhYq+coT1b6/k4SMeDlu4dtETdSySqKvOAlnldUvTpKuV4n1oLy3zvvCSRaybnl7HjYEhaW3J1l5+yjSTAQXiTb54OJPsanvYlleUYaC4ZzLSMXNVFgds8j/eJPXY8mIx415nWMMZ0Y8bn3/d/bm+604SX2FmRW96JFq6pkH+HPc1nT6V80mjiIav+lQSZ6kc3vYPMkyoq/NTke7hULBMjZPijDRJ3tElT8qoV+Kk2ge4owzwscZVpwkye8QdQ5MzDMDCSluhDJRxUlMIJqQTUxyAGDZnvDOnvSKk+RsM0ohaynctC74IIxS3EQWqrCQEVGo5CO31+Kv13qaWtKQEVdJjK4qGT5+6Rw35rVuk1ae8pjVge5lw4e6uCRpaO2Wt+epDFXcrETl7aNIU68VWXbNhkryHjdzsostTXiPm+Yxoq5nU+MPyzczHU7eWzCruLGXyxJW4UzBkyo4pBaiRbLJRXiZFV7h0cRxRDONCe+GyfYXonnyzl/7HzJucZLOvjBJU/OkCBP1AIZXl/v+Nhn2Ora2Svi+7vXS3Azceot4XRBmyE3yO0QNz6QxZCAgxY1QJp+u3iYsk6t7w7W0OFXivv0tT07bZu+LLPrQ0uppBYg9hYD+BO1aCkUet1yI4hZmoQoLGeE9bm88V4nbr2zwWcCShoy4SmJ0VUnx+0mURH/jc7OVSCtiLAa6j4H6SvEJ7U2guAFO5cM77/RblKtqxDJmn24lrpQYRpoGTNEtb7Y4Cfe3QdmuxzTHGxKMHSGI7prEnSN/dZlY0Pp1BrxijAi2OJSJfmVsNcaPNnYUX5u6RkXXnimlUGSoMam4WZYVmh9pmzDEijyGtgnFLcLjpvDD8vPkA/Pq8P7rwVzajnYrcRuQpJhQItiwZsDsfLxzSBEPE8eYOVNuJldpx0IeN4KIIcxjoINoQtN5iM2f7xQcuOIKYO0aT05Nnfe0ueRiYORIZ+GStF+ZN0bvNau46c7PrqVQHCop3ifKQiUKGeE9bj1d/kGrhIy4SmKUx60s5PJJoiSyYUC9ea5vlubJryiLnip18zhMhVoBzsNt8WLnGm5qCve47bO3wQVhilluIskmDab8nJKGx61gm23ADQAjqsqF7+sonuwcufpT8TV/5pnOdjr4PW5M2XtTIRUCTF2jQo+boWtG5HHTDfPmCZurcpqKW0sL0C2I2NhjRkbreQpE35Oqig8/T370bvB+mvb5TKpKG2CqMTw/h5m7aKqzZdh/4sjA+8byLrNBOfXDnTlBpx1L1OiyKc4z/cHgHj0xoLDljws9+nHsPKIJWXWSnj8fOPFEr29ZmCt+VUsWbW3OwmXyZLUFShpVJV1mzgR+cp4gVLI3qGDFWahEISO8x617i/9v1ZCRM84AonSfsmxw0ZBUSWQtyb2FQuJeaFFEKW5fGT/clw+kQnU2Y6ScuEtzs1PGfsUK4KuHihdkJheEqXrcRB4Og4oiL8l0aBrgFHIy3Yty93HDhe+rDp+fIzvaxYK6tzjb6ShvrORewzluocc05XFL0QOctscNAEbWiBX+sOqBMrgKfy4XlLHso4zW8xSINkboFLRh58nTvxeUU1eTvmcmjfxg07eR6L40pTyIvv/J3ytot2MxGV5bapDiRiTGDaW5+pzhyOeB1g0Z/PRU86VV6wReCJX7raUFmDXL/56oCMe6zzJY8r53zO5utQWKX3HzrMkb1juWI91QzKO/LvC4dTvHTGqh4kNG+JDL7j6Pm0qoAktzM/CLX4T/eCIDWFIl0d/iIXkvtCjCFLcdhtVgbJ04ByAJlmVhpKDsvS7ZLNBYL/7upkOw0kJYnCRFj1sa3rw81w7AxEK/prwMOwyrCbyv8luI5siONvE171aHnTVLJypB7HFLc0FlrOiM4LczNWyhx83gOcnlgO5NZhU3VuEXzePus1b1eQrEFSfRPz/ZLDBmdFBO28aMkWf2HuOGhX6WxiW/cYNlZNwuoisjjeq7LiNH6rdjCZsHq7MZjK4x/6ztT0hxIxLBhtIs+HslzjxgDL5/0Gi0bsgEttOlQZD3o/IQu+UWz4rsIirC8d6rlRA52JMuUNghfviRN+Xdc7eFnXYCxo/XC8Xk49kB4OCD1BsGsyEjIzgjfjZjKYcq8Bx+mPj9NSvLsPgdbzGhqiRaloWKvpPfm/c8bhb0HzIVIe4pk8qP6GEydWSdttwvjqoXPhxNJmj394PErHLF/23Q49Z3YmxAuWlwFKLFicpvIZojQxW3vnzU7m7g1lsVDoaIHLc0PW6G5PR/cRJ9ua6xdfx4YP/pYkNTLiqWPUIuq/DL3DoqCn9/eE9E8+Hd8zNGntnj66ux0wixcdvEfNPSAjB10PDgAzAybpe68uBazNQ0Kfr+Uww893ip2zVWY9exjTh4u9GoMtCiYiAhxY2Qhg+lAYANa8rQ3ZUJVDXUDaUBxHk/SSe5XA6YNy/4vqjcbE93SGhQwgUKO8a1G7zZ1PVerVmjH4q594QRvvdGjbC0LFRuyMiH//afg7O+bymHKvCEPWB//I1RKOQtrXh2FzdksbdQKC6CTFisw4qTmFQghlcFFbewh30SaiuyOGyHpkBopKj4jyrpetzSDZVMMz8kLGza1PkSSUkqO2yO7GgTy8kzhYTmzVOz6rN3U6/BkOYozIVKCq5HY8VJgu/pGlhYY+uaNUBXRwa3XREsOLF2fXKPG6/wZyTWwyoKf9T5NWWAev3VoJzW9c6VqvvMBsKff7rzjfv7bmHy0V2RJsYNOM/Q/bg8N1PzJP/7TRlRJ4y2Sgo/vjE1ldi2sUY7raEUGPzfgOgXRKE0LL3dwfd0QmkAcXha0kl66VJn8uIRedyieoklWaD8/XFvjPWN3sOwmyv0oRM6wntnTE2iFVwUTVwZ/CSETZgvPp/RjmcvHqPocbON9v4LC5U0ucjnc9zG1VUaS6KuLMsErIyDJ8dN8F6qHjdzskUVZk2eKhNhpGFz5OZQj5t3gNWrnf2Twi7E2T6aJsMCeUx5ZkRnJc1QSd2CXLyxFQDWrAhqWKvX2omeRSKFX3a6Sqrwh7cwMKM0z58P/O43QTmb1vu/kOozu6UF+Pv/iU/O1Verr5PY35ctUFbO2QB11houfDEkU9c8L6e2wow3jL8s4gqMDSa2nm9CpIoolIZF5K3SCaVxmTba318l6WThNn/m4Yt5ANGKm+wCpaUF+OVF3t+1jUGPG4+KghvoPWWqvx0n1+RCKqz4xvTp+vHsxWP0Tc42gO6+BaGJBVuYDJPhhvwxOjbrt6Zg4cdqMiwtRb0t9QbcwT5uaXncCsbli72RyQibI7s2iyXxEXXt7cLNImEvPeN93EIwZQRJ2wPMo3q9RBlbRc+6xe+UJ3oWhSn8MiRV+MPOgYn51z1P3V3B66N1vfiaSXKeXI/Yww+Ix/rray0ljxj/+/Yya7DySrH3VMeYzl/35qq0cmsOU7lz3PgqDfQTLBW2nm9CpEZYKA1Lb0iYoWoojcukBn+sc9LJokHcggR5keIW0WcMkFug3HIL0MkseNhWA1tCFDcTCm5aDSWN5kH1Q9NLtrKkux408R0sy0JtedASaGqd2dICXHOVX9j991nGchSAoBLeH8VJTBzBRDhgFPxDcN1ac0n9rFez6HEz6S0UvZfwAGFzpG2HhEpy56a+XrhZJOw87s9xS29JYqpqa5oe4KbaysB7qp7xKGOrKFXgjqsbEj2LwhR+ll9+d0ToZ0kU/rCfzoRh0T1PXR3hoZI8sueJ9YitXx3ShqFXzSPG/76s8bwiRHEzsdZwMedxS+e5xIsR1QYYrGw934RIDRnLWlh+mGooDZtMzXLLH6xEC1m3+TNP0lBJIH6B4iq4fL6fC98TjUVXwU1LKRpsZXNFRURMeQ2/PH44tmus9r1n4ry7Ftn/vsI/Hfd0W8ZyFIB0PW68qIqMUyhmn+Zg/5+kiHOKtMUCcOaRK67wC5vzc3MKM5tH6C6lTN5SwtL0CeWHzZEAcOdvgpOeW1UScKrYTpqU7HiAf4zsEtPENRnWE9GUUigao6mfdJemxmB7CoVzEmds5Z81995Yh01rHcVC9lkUpvC7PPznWrz/WlARdUmi8IfNs7o5kex5EkXEbFoXHrYXd554j9i7r4grGbJGZFmPmOj3ZStCl1eE5yvqrjVczFWV5D1uRsQG7iMKlSSGFDKWNVYRWr/af1klDaXhk6l5WUkWsm7z5+B4RaGS4TOGzALFVXBFSiEQ7nED1BVcl7T0q7Q8eWlRLlicmfoODZXl+NxI/2pDVzRrke3hrOOsMcREjgJ/jZj8bXlP+P7bjsLhOzZhlIGyy0IPh4GlsjvPXHWlX1au12BSf8phdcLS9Anlh82RAPDArXWYM9OvfBeY4iSnn64W4hy26DPhFdtz/PDUZAMQet5NeYBryssCRSBU7tM4Yyv//GMX8rLPoiiFH/DnXPEkVfgtiOcBXaMce562dAZltW0IXyLHnSfeI1bIW7j6nGGB7ViDsaxHTPT79kTkuLHorjVcTD0+eH3KlKE1zRD4gYYUNyKWOMuag4VLTh2Bv/+/Glxyiv/Bk8SyFpZM7eJOSEkWsmec4fUpcxF519hqaTwyCxRXwQ3zuIXluLmo5Iq4pDUppVksIA1ExVRMfgf+NOsoP8EcFL+sni1B2To5Cvx5MBpuyInKZqzUQl5Ex0sKO8/wcwGb/6qrMIuuD7M96ILvqZx20Rzpwi/A3XmyshKYPTv5sYBwD5XI8JKU+oosJtQHS96bKrRUIyiNbnIhxXv0VO6jOGMrf83zRkuZZ1GUwg8AdiF83EkVfsuyhJ5OXeMTe554w2pHmxX6LHcJO09hHs9Xn6zGQ7f5KwUXuPMk4xET/b4yOW4uOmsNl/Q8boNrzTEQkOJGxBJnWXN55x+VuPWSRqxc6s3ISSxrYcnU7MKBj92WWcg2NzvNnFkKBSugqIV53GQXKK6CG664Rd9uKrkiLoMhx60/SNPjBpi14sUV/BFVatXJUUjzt+TPi4kFeFG2YJmv8034eYZfxIq88aoKs+j6MKkwC/u4KcgXzZEu/Hzmetxuu029AmyY8mpKuRIZa0xdkzVCj5sR0QBEuajJZcQZW/lrnH8Wyj6LohR+O6QtnKrCL/pNdY1y7HniPW5R3jaXsPMU5fHsEnj2WGQ8YqLf94M3PDfborfFTdZddNYaRdT6tQdIsx3L9sNqYCFY5G6wQ4obEUucZS2KJJa1sIUsu3DgLUmyC9mZM52mzuxDhg9pDMtxk12guAquSqikaq6Iy2D1uIXlo6giimM3msvF/60oWqbgT1jeqHLvrBQVNz4MLf08LpMKczBUkkdVYRalVRitiCn5ngyiORIIno9s1sKdd6r3WgTCq2GaMi6IpJiaB+oE5cpNKuNVZXzbjuSy44ytAY8bo8gleRZFKfyFkIW9qsIvymfTvV7Y88TnoLdtir5To85TlMezEBHZ4xLnERP9vvfeVI+3F1TgvVcrcPfvwxUV3bWGS8GQ5pZmCP+XmhrxtclNmDxCv6F3KUGKGyFFlGUtjCSWtaiFLBsyVlkVnCxkF7IzZzrNnefMcSxWvIeNn1ArK5FogeIquIW8hU3rgrdWVHES1VwRl7T0qzQb4gJOwQ+TiPJY0qyeqLpgG4iCP2kq4Y2VfguvUa+S5HsyyCjMIo8boKYwp+9xE72nLp+dI5uanPdynMftySf0lDYgXLEydW5ESoMpj9vI6go0cAYnk3cWf5+qLGTjjK38s4+9rpM+i8IUft7jlvR5yiO+l9RkubDniQ9Z3ByjuEWdpyiPZyGmejUQ7xET/b49WyxcdtpIXHzySHS2h49dZ63BXvd8X1BVAh43w1pJmpVqB4qt7xsRqRBlWQsjiWUtaiG7fJE3WWxcK2gcmmAh29zsNHlevx6orfF/lut7mDU1OQuXxYuTP2RcBXfpv4KhCmEeN51cEZfB4nEbVe2Fc0wbXY86wx43UZPvNKsnqloHZQr+RKGSo5BmqOSwqujQHB1MVpWUUZjDPO8qCnPqOW6i4iSa8t05csUKYNEi4OGH/QLHj9OTD4jnK9G9q4qokbWpuSxjWThg21G+9wxFjQlR9WxEGVt5A4SrTKg+i1yF3yezT3HTeZ6yiO759m798ohh56k9QnGLO09RHs+oXHpA3iOWtjFdxJfHD8fEhmrM2GaYsfL6/Bw52NIzBgJS3AhpwixrPCqWtaiF7E0XNaJto4X1qzK472axyzvpQjabBSrL/RPE+T91FiorVjgLF5VwDlfBXfavoELSLSg2AejliqSNqdK8Lrtu04ja8jIMryrH9sNq43dIiMjjZvI78KJU14IyBX/KInRalRyFNKNeGyvNKuAsomGrGirkKuSGy046zwi9BCarSgo9bmZkZ7NOVc2dpwWOoC1bNEZTVR8BoCBQ3EwSUAJTPNyWXEiyWAxRxla+j6mryOk8i/j9zjrL0n6esojupQkN1YItkxF2nja3hl+PcecpyuMZFyop6xFL25guorYii922GYZmA+fdhX8+b03VH9MivactsVUycyaw775Ovse8eY4V2qWpyZl0Zs9OPjlELWTXrszi9H2bYNvhBUSUmsByE8S2Ey1MGpZcDs/MmUDZ8KAHoptLSq6sdCZS3bCjNFHpIRRFbXkWX5002mi4GIsox81sVUkurENxEetaZKO8P2Vl4tWgcu8sowFdfqqyZRhdU4G1nT2YYjifQKicKMqSUZjDclSB5POMyGhg8tIXFicx/DsHiweYlwmYLWiTV9N1lDEdjVVbXoaOXmeFL/IeyuI+W2bN8ud18h43C3phjCLGjwMm67dxLMJfd1NG1GLH4WaMf6LvLfK4JXlmn3EGcO21wbz9fESoZFKPWNjvK5JbqmsNPs+dPG7xkMeNSAwfSvPmm/qeqrhk6lyvFaq0qS5k+QeBSR3lwP38t1Y+71XHNBU6kha7jm1ExgImNlQbXUy5pKW0AelXleRRPT0yBX8yISkE6jkK6Xoh9powAodsNxqfH2VYcRNVlVT8SWUq5PI5XS4q84zIaGA2VDKI6cudV7JMiBfJMFVREgBqyv1nRtR7TZc9xw1HmWVhQn0VagUtAnSYsc2w4uudhuvdT6K8Rf5Z+utrLePPojSvw4aKLL4wusFoU2X++3e0ebJVntlhHrEoj5uKR0z0+7qU+loDAEZU+5vODbIORAMCedwIZdxQGlOyTj/daXqbFFNNYE3OF3xeVXmZhTfftFBf7yz+dAqRiDA59m0bazChvnrQ9XADnIVyxvIXJ0jze+h4N0QW2c7NFmrqnMF3bQ7K1slRSFdtc+6n+hRCJk2GSsrMM2GhkirzjGicJqP4hD3ujHvc+GPqy0/b4/b5UfVYtbkbW/IFjK+vwudHmS8HPq6+Cl+ra0oltGtEdQUO2m4UMjBzT7nG1osvdvI0W9uB5czno0eF7qqM6bPCyrNTn82Ai39p4fIfQeuZLfKIiYqT6HrE+N+3vV1v3P0Jb1RJ07C7tUAeN6Jk6O9k26DHzdyEIVLcpk93FN1Sn0iBwdd4m4VfAIr6LplC55oRWWSvmD0CPd3A6hVlePaBmsA+pZwPmRaiU6xTcCZunhGFSqrOM6Lrw2SVM5PeyNBjpOFxM/yb8lRly3DoDmNw1E5jsce44cbbjrikmY/TWFlu3BDiGlt3+RL3mw6CxTJ7rsNaDZhkmyYYeWbzHjHe42bSI+b+voNprWFZFib3hbyOr68a4NEMDkhxI0qG/k62DXjcDD67eMXH5KJEhMmKbIOdCi7kKq1FG6Af1sEX/Pn3wgqctk8Tzjl0tK9/oW4p7cGM6BTrKD9x80yvwOOmOs/YnHvNAtDcYG5xYrodgOoxkyL69UzPkRnLokIHIQSMlikcw/R1yI457eIzgFnjJZtecsWv/J+ZKNwy2Pni6Hr856TR2J0JESbCodUeUVKkWbmSh5+WTRZvyFr+W8tkxTSXfZpHIJuxMKq6AmNqKuJ3GCJUc2bGGkP9ZkSYWBjyFtmOtkwxB2Uw5CikjWgBqLvIj5pn2HYAuvNMnltfHrljE7ZtDHpSVRFdf2k7y03Mk+LflJYj/YWpfpSRxzAtrx88bjuPcaoXVWQsNNUmDP+RIJuNz7EdiliWhdqK7KDw/JYCg8CRSgw10qpcyZNGtTSXYKik+UXJ6JpKHLljEywMjlCX/mJcfSXWdHqJY2meG1PXTH/kKLDX+2CLhLXgz9EzYQhh5xkWu2BunqljwnQbK7PG5wHRWUj7pzXicUs5VJJIxmA49ez8xXuyTbH9sBrUVWRRX1GWmiGhP/LziK0bUtyIkqR/FrL+v00u8HnZaS1KKBQoyIT6ary/th29BRs7DDPn3RBh+vybLPjDs8OwWize0IG8bePL40ekc5CUsCx/UQ9T95M7z9z/offeq69Y2HF7M/NMY1U5po6sw8YtvfjSGIleBAkRFidJO1TSiAyBx43msgEjjVYhpn/O6qynSFWnlLdsWel42lj6IcqT2MohxY0oadJcyKZZVZJXAtMoq0+IqSjLYN/mkdiwpRcTDOYTiRhMinNlNoP/3H40evIFNFQG+wyWMhbnczNtDZ+xzTAsXNWK5oYqTB1rVnYaFQ1dRBUk074kzVSVDL5HHreBw9Spnz62EQtXtSJrWWiuN9ekGQB2GlGHT1q7kCvY2HXsMKOyCWIwQYobMWRJs6okDy1K+pfGqnI0VqWvnAy2n7UqW4aqFHP+0sLiYiVN30/NDdUYX181qBRxoH/aAfQXg7mS7WDHVLTJtg3VqMmWoaa8zHhYcEVZBoduPwYF2x7UxbjI4UboMnivfoLQJM2qkjxpFCchBh7KLewf+LOchiFksCltgPj6S+NrbNvoeE9GGDKGWFYwOI+MWwOHqYWgZVkYU1uJupQq+ZZlrEGttAEgzY3QhjxuxJAljf5EYVCo5NZDmWUhT4kK/YrFudwoH8qhTORxS+Hc7DymEePqqjCy2lz12ozlr7pZRr/pgEGnvv+g4iSELqS4EUOW/gyVpDCgrYf9J47Ex5s6MMFwDgcRDnv3ZC2LPJ19iHL90jg12YyFberM5otaXMUZ8rgNHIPR2zxYIbWN0IUUN2LIwueCpPnsosfi1kNjVTmmU3J8v8Lem7TA9xCdi8GS48arnNTHbeAgva0fIc2N0IRmSmLIEvC4pbjgIQ8BQajj87iR4lZEdC4Gy1TDz4kUlTBwDBZlf2tgXL3nuf7cyLoBHAkxWCGPGzFk4Rc9g2XBQxBDDXaRT54Zj4xlIWMBBcaKP1imMX6+pbzFgYNOff9RV5HFXhNGoKMnh20b0+0zSmyd0BOQGLLwC0DTBt/xjGVtRPXg6ptFEKVEoUC5UGGwCk/ZIMr/Y/OqLAy+1hpbE3Tq+5em2kpsP7yWvMyEEuRxI4YsAY+b4cfXzmMaUJHJoLEqi8ZB1vCYIEqJHFPEolxUSnEIk81k0FPIA3B6XQ0W+PDXwaJwEgRBDCSDZ5YnCMOkHSpZlS3DLmMbsf2wWrOCCWKIkWM8btRaww9rta8YREot63Ejz0P/M2WEk1/VUJEdVAo/QQx1Sv5uvffee7H//vtj+PDhqK2txc4774yrr74avb29SvLefPNNHHfccWhqakJVVRUmTZqEc845B2vWrDE8cqLU4RU3KolMEKUPedzCGUwLcL7FA9G/fH5UHfZtHoH9Jo4kbydBDCJKepY/77zz8K1vfQsvvfQSdt99dxx66KFYvnw5LrjgAhx44IHo6upKJO++++7Dnnvuifvuuw/bbrstvvGNbyCTyeCGG27Af/zHf+Cjjz5K6ZsQpQif40bPLoIofcjj5qfAhJEOJuMTO9TyQaRwbi1YloVRNZV07glikFGyd+yDDz6I6667DnV1dXj11Vfx97//Hf/7v/+LxYsXY9q0aViwYAEuuugiaXmffvopTj75ZORyOdxyyy147bXXcM8992DRokU48cQTsXr1apxwwgmwbWqyMVQIeNwoRZsgSp5yCqvz4VfcBnAgCWHDXweTp5AgCGIgKdnZ8le/+hUA4MILL8T06dOL748aNQo33XQTAOCGG25Aa2urlLzf/e536OzsxMEHH4zZs2cX3y8rK8Mf/vAHNDY24vXXX8cTTzxh8FsQpQy1AyCIwQd5CPywrQDKBtEk1ssqboNJ4yQIghhASvIJuHLlSrz++usAgBNOOCHw+d57743m5mZ0d3fjsccek5L5wAMPhMqrq6vD17/+dQDA/fffrzpsYpARrCpJEESpQx43P4M1VLI3Xyi+zpIyThAEIUVJzpZvvfUWAGDEiBGYNGmScJvddtvNt20U7e3txfw1dz8deWF0dHRI/SNKg2CO2+BZ9BDEUIUacPvJD9JQSTYpgZRxgiAIOUqyj9vSpUsBABMnTgzdprm52bdtFMuWLSu+DpOZRF4YdXV1yvsS/Q8tFghi8EEVCP00N1Tjk1anUNeomsoBHo0aVHCGIAhCjpJU3Nrb2wEAtbXh/a9cJamtrU1aXpTMJPKIrYPBFFZEEIQDH+I81PniqAb05guozJahub5qoIejBBnRCIIg5ChJxW2wsnnz5tht2traMG7cuH4YDUEQxNZHlvq4+ajMZrDn+BEDPQwtqOAMQRCEHCWpuNXX1wNAZD6YqyQ1NDRIy3NlNjY2askLI8pD6JLP55XlEwRBDEV2HtOAf65pw8jqCtRkywZ6OIRhyONGEAQhR0maubbbbjsAQEtLS+g27mfutlFsu+22xdfLly/XlkdsPXxxVD0yFjB1JOUnEkSpssPwWhy6/Rjs2zyCightJUwb7RhUq8oyGD1Ic/MIgiD6m5JU3HbZZRcAwPr160OLhbzxxhsA4OvxFkZDQwN23HFH33468oith51G1uHrk8fi86Pq4zcmCGLAqCkvI6VtK2LH4bXYe8IIHLDdKJSRx40gCEKKklTcJkyYgBkzZgAA7rrrrsDnCxYsQEtLCyorK3H44YdLyTz66KND5W3evBmPPPIIAOCb3/ym6rCJQQoVKSEIguhfLMvCmNpKVFPoK0EQhDQlqbgBwM9//nMAwJVXXomFCxcW31+/fj3OOussAMDZZ5/ty1d74IEHMHXqVBx00EEBeeeddx5qamrw1FNPYd68ecX38/k8zjrrLGzatAkzZszAV7/61bS+EkEQBEEQBEEQhBKWbdt2/GYDw7nnnovrr78e5eXlOOigg1BbW4unn34amzZtwl577YUnn3wS1dXVxe1vv/12nHrqqdh22219vdtc7r33Xhx//PHI5/PYY489sN122+H111/HkiVL0NTUhAULFhRDKtOira0NjY2NaG1t1SqEQhAEQRAEQRDE4CaJblCyHjcAuO6663DPPffgy1/+Ml5++WU89thjmDBhAq688ko888wzPqVNhuOOOw6vvvoqvvnNb2LJkiV44IEHkM/n8V//9V/45z//mbrSRhAEQRAEQRAEoUJJe9y2RsjjRhAEQRAEQRAEsBV53AiCIAiCIAiCIAhS3AiCIAiCIAiCIEoeUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEqc7EAPYKhh2zYAoK2tbYBHQhAEQRAEQRDEQOLqBK6OEAUpbv1Me3s7AKC5uXmAR0IQBEEQBEEQRCnQ3t6OxsbGyG0sW0a9I4xRKBTw6aefor6+HpZlDehYOjo6MG7cOADAp59+itra2gEdD1H60DVDJIGuFyIpdM0QSaFrhkhKqV0ztm2jvb0d48aNQyYTncVGHrd+JpPJYMKECQM9DABAWVlZ8XVDQ8OAX7hE6UPXDJEEul6IpNA1QySFrhkiKaV4zcR52lyoOAlBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQw24CYIgCIIgCIIgShzyuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuA1R7r33Xuy///4YPnw4amtrsfPOO+Pqq69Gb2/vQA+NKCF6e3vx9NNP46c//SlmzJiBYcOGoby8HGPHjsXXv/51PProowM9RGIQcP7558OyLFiWhcsvv3ygh0OUMD09Pbj++uux9957Y8SIEaiqqsKECRNw2GGH4Z577hno4RElxvLly3H22WdjypQpqK6uRlVVFSZNmoSTTz4Z//znPwd6eEQ/8+GHH+L3v/89TjnlFEybNg3ZbFb6ufPUU0/h8MMPx6hRo1BdXY2pU6fiF7/4BTZv3twPI5fHsm3bHuhBEP3Leeedh+uuuw7ZbBYHHngg6urq8Mwzz2DTpk3Ye++98cQTT6C6unqgh0mUAE899RQOOeQQAMDYsWOx6667ora2Fh988AHee+89AMDs2bNx8803w7KsgRwqUaK8/PLL2GeffWDbNmzbxmWXXYY5c+YM9LCIEmTFihX4z//8T3zwwQcYNWoU9txzT9TW1qKlpQVvv/02DjvsMNx3330DPUyiRHj11VdxyCGHoL29HePHj8euu+6KsrIyvP3221i6dCmy2SzuuusuHHfccQM9VKKfcNe3PHHPnd/+9rf40Y9+BMuysM8++6CpqQkvvvgiVq1ahSlTpmDBggUYNWpUmkOXxyaGFA888IANwK6rq7PffPPN4vtr1661p02bZgOwf/zjHw/gCIlS4umnn7aPOeYY+4UXXgh8dvfdd9tlZWU2APuOO+4YgNERpU5HR4c9efJke/z48fZRRx1lA7Avu+yygR4WUYJ0dnbaU6dOtQHYc+fOtXt6enyfd3R02G+99dbADI4oSf7jP/7DBmDPnj3bd73k83l7zpw5NgB72LBhdldX1wCOkuhP5s2bZ//kJz+x58+fb//rX/+yTzrppNjnzsKFC23LsuyysjL7scceK77f0dFhH3TQQTYA+5hjjumP4UtBitsQY8aMGTYA+/LLLw989uKLL9oA7MrKSnvTpk0DMDpisDFr1iwbgH3QQQcN9FCIEuQHP/iBDcB+9NFH7ZNPPpkUNyKUiy66qLgIJ4g41q1bZwOwAdhr1qwJfJ7L5ezq6mobgL1w4cIBGCFRCsg8d4477jgbgH3aaacFPlu2bJmdyWRsAPa//vWvNIcqDeW4DSFWrlyJ119/HQBwwgknBD7fe++90dzcjO7ubjz22GP9PTxiELLLLrsAAFpaWgZ4JESp8dxzz+H3v/89vvvd7+Lwww8f6OEQJUxvby/+8Ic/AAB++tOfDvBoiMFAZWWl9LYlE+JGlBw9PT3FXH3RunjbbbfFXnvtBQB44IEH+nVsYZDiNoR46623AAAjRozApEmThNvstttuvm0JIorFixcDALbZZpsBHglRSmzevBnf+9730NTUhN/97ncDPRyixFm4cCHWrVuHcePGYccdd8S7776LSy65BGeccQYuvPBCPProoygUCgM9TKKEqKurwz777AMAmDNnjq+wWqFQwNy5c9HV1YXDDjsMzc3NAzVMosRZtGgROjs7AXjrX55SWxdnB3oARP+xdOlSAMDEiRNDt3EnOHdbgghj1apVuP322wEAxxxzzMAOhigpfvKTn2Dp0qV44IEHMHz48IEeDlHivPPOOwCACRMm4MILL8TVV18Nm6mbdtVVV2GXXXbBgw8+GPn8IoYW8+bNw+GHH45bb70Vjz76KHbbbTeUlZXhrbfewsqVK3HSSSfhhhtuGOhhEiWMu9YdNmwY6uvrhduU2rqYPG5DiPb2dgBAbW1t6DZ1dXUAgLa2tn4ZEzE4yeVyOPHEE9Ha2opp06bhjDPOGOghESXCE088gVtuuQXf+c53cNRRRw30cIhBwPr16wE4Fu2rrroKZ511Fj788EO0trbiySefxE477YS33noLRxxxBLWsIYpMmTIF//jHP/DVr34VK1euxEMPPYT7778fS5cuxY477oj9998fDQ0NAz1MooQZjOtiUtwIgkjMmWeeiaeffhojR47Efffdh4qKioEeElECtLa2YtasWRg9ejR+//vfD/RwiEGC613r7e3F8ccfjxtuuAE77bQTGhoacPDBB+PJJ59EVVUV3nvvPdx9990DPFqiVHjppZcwbdo0vPfee7jrrruwatUqbNiwAY888gh6e3sxa9YszJo1a6CHSRBGIcVtCOG6gTs6OkK3cRsNkpWKCOPcc8/FbbfdhuHDhxet4QQBOD10VqxYgRtuuIEKAhDSsCFKIu/9xIkTccQRRwBweksSxKZNm3D00Udj7dq1uP/++3H88cejqakJw4cPx5FHHonHH38cNTU1+NOf/oRnn312oIdLlCiDcV1MOW5DiO222w5AdAVA9zN3W4Jg+fGPf4zrr78ew4YNwxNPPFGsKkkQgFN1K5vN4qabbsJNN93k++zf//43AOC2227DU089hbFjx5L3hAAAbL/99sLXom0+++yzfhkTUdo8+uijWLt2LXbYYQfssccegc+333577LHHHnj22Wfx1FNP4YADDhiAURKljrvW3bRpE9rb24V5bqW2LibFbQjhLrLXr1+PpUuXCitLvvHGGwCA6dOn9+vYiNLn/PPPx29+8xs0NjbiiSeeCK3ARAxtcrkcnn/++dDPly1bhmXLlmHbbbftx1ERpcz06dNhWRZs28a6deuEVQDXrVsHwMs3IYY2y5cvBxDtBWlsbAQAbNiwoV/GRAw+pkyZgpqaGnR2duKNN94QKvilti6mUMkhxIQJEzBjxgwAwF133RX4fMGCBWhpaUFlZSX1XSJ8XHjhhbjmmmvQ2NiIJ598sngdEQTLpk2bYNu28N/JJ58MALjssstg2zaWLVs2sIMlSoaxY8di7733BiAOhezt7S0aA3bfffd+HRtRmowfPx6A48lvbW0NfN7b24uFCxcCQGj7I4KoqKgohmGL1sWffPIJXn75ZQDA0Ucf3a9jC4MUtyHGz3/+cwDAlVdeWZzUAMcLd9ZZZwEAzj777KKliiDmzJmDq666CsOGDSOljSCIVLj44osBAP/93/+NV155pfh+LpfDj3/8YyxZsgT19fU49dRTB2qIRAlx2GGHoba2Fl1dXTj99NOLeUiA01T5hz/8IZYvX47y8nIce+yxAzhSotS58MILYVkW/vznP+Pxxx8vvt/Z2YlZs2Yhn8/jmGOOwdSpUwdwlB6WzTZLIYYE5557Lq6//nqUl5fjoIMOQm1tLZ5++mls2rQJe+21F5588klUV1cP9DCJEuDhhx/GN77xDQBOE8ovfOELwu1GjRqFa6+9tj+HRgwyTjnlFNxxxx247LLLMGfOnIEeDlGCXH755bjooouQzWax++67Y+zYsVi4cCGWLVuG6upq3HvvvUXrOEHceeedOPXUU5HL5TB69GjMmDED5eXleOONN7By5UpkMhnceOONOPPMMwd6qEQ/sXDhwqITAgA+/vhjrFu3DhMmTCh6aQEnH3ubbbYp/v3b3/4WP/rRj2BZFvbbbz+MGTMGL774Ij777DNMmTIFCxYsKJmCW6S4DVH+53/+BzfeeCPefvtt9Pb2YocddsCJJ56IH/7wh1TanShy++23S1m4t912Wwp9IyIhxY2Q4YknnsDvfvc7vPrqq2hvb8fYsWNx0EEH4YILLigZizdROvzzn//E7373O7zwwgtYuXIlbNvGNttsg7333hs/+MEPKLR2iPHcc89JFaJZunRpoNjIU089hV//+td47bXX0NHRgYkTJ+LYY4/Fz372s9Dm3AMBKW4EQRAEQRAEQRAlDuW4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEFsFlmUl/rf//vsDAPbff39YloXnnntuQL+DCa677jpYloX//d//VZbR2tqKkSNHYo899oBt2wZHRxAEQaiSHegBEARBEIQJTj755MB7q1atwt///vfQz6dOnZr6uPqTtWvXYu7cuZgxYwaOOeYYZTmNjY342c9+hp/+9Kf4y1/+Ijx3BEEQRP9i2WRKIwiCILZSnnvuORxwwAEAEOk5Wr58OTo7OzFx4kTU1NT01/CMc/bZZ+PGG2/Eo48+isMPP1xL1pYtWzBx4kRks1ksXboUlZWVhkZJEARBqEChkgRBEMSQZ+LEiZg6deqgVto2bdqE22+/HePHj8ehhx6qLa+qqgonnHACPvvsM9xzzz0GRkgQBEHoQIobQRAEMeQJy3E75ZRTYFkWbr/9dnz44Yf49re/jTFjxqC2thYzZszAQw89VNz21Vdfxde//nWMHj0a1dXV+PKXv4ynn3469JhdXV349a9/jT333BPDhg1DVVUVpkyZgvPPPx/r169P/B3+/Oc/o6OjAyeddBIymeDjvbu7G9dccw123XVX1NfXo6KiAmPHjsWMGTNw/vnnY8OGDYF9TjnlFADAjTfemHg8BEEQhFlIcSMIgiCIGBYuXIhdd90V//znP3HQQQdh5513xhtvvIGjjz4a9913Hx588EHss88+WLFiBQ466CBMmTIFr7zyCg499FAsWLAgIO/TTz/FHnvsgZ/85CdYvHgxZsyYgcMPP7yoXO2222745JNPEo3xwQcfBAAcfPDBgc8KhQKOOOIInH/++fjoo4+wzz774Nhjj8W0adOwdu1aXHPNNVi+fHlgvy996UsYPXo0XnvtNXz22WeJxkMQBEEYxiYIgiCIrZRnn33WBmDHPe72228/G4D97LPP+t4/+eSTi/tffvnldqFQKH52/fXX2wDsCRMm2MOHD7f/8pe/+PY977zzbAD2wQcf7Hu/UCjYe+21lw3AnjVrlt3W1lb8rLe31/7xj39sA7APOOAA6e/Z2dlpV1RU2JlMxifP5fnnn7cB2Lvssovw89dff91et26dUPbXv/51G4D917/+VXo8BEEQhHnI40YQBEEQMey+++74+c9/Dsuyiu99//vfx4gRI7BixQocfPDBOOmkk3z7zJkzBwDwwgsvoLe3t/j+3//+d7z00kv40pe+hJtvvhn19fXFz7LZLK6++mp88YtfxLPPPov33ntPanzvv/8+enp6MGHCBJ88l9WrVwMA9tlnH+Hnu+22G0aOHCmU/YUvfAGA43UkCIIgBg5S3AiCIAgihsMOO8yntAGOkjVp0iQAEFZwHDlyJEaMGIGenh5fztqjjz4KADjmmGOQzQa78mQyGey7774AgJdffllqfK5iFqZ8TZ8+HWVlZfjTn/6EG2+8MVHYoyvTPQZBEAQxMJDiRhAEQRAxTJw4Ufh+XV1d5Oeud2vLli3F95YsWQIAuOiii0Ibg990000AnL5sMrS2tgIAGhoahJ/vsMMO+O1vf4ve3l6cffbZGDduHLbbbjscf/zxmD9/Pnp6ekJluzI3btwoNRaCIAgiHagBN0EQBEHEIKrSmORzlkKhAADYe++9scMOO0Ru64YpxjFs2DAAQFtbW+g255xzDr71rW/h4YcfxoIFC7BgwQLcfffduPvuu3HxxRfjxRdfxDbbbBPYz1UKhw8fLjUWgiAIIh1IcSMIgiCIfqS5uRkA8I1vfAM/+clPjMgcM2YMAMS2EWhqasLpp5+O008/HQDw73//G9/73vfwj3/8AxdeeCHuuOOOwD6uzKamJiNjJQiCINSgUEmCIAiC6EcOO+wwAMC9994L27aNyPzCF76AiooKrFixAu3t7dL7TZ06FRdccAEA4O233xZu4xZI2XXXXbXHSRAEQahDihtBEARB9CPf+MY3MGPGDLz22ms49dRThXlsGzduxM0334xcLicls7q6GnvuuScKhQJeffXVwOfPPPMMHnvsMV91SwCwbRt/+9vfAADbbrutUPY//vEPAMCBBx4oNRaCIAgiHShUkiAIgiD6kUwmgwcffBBHHHEE7rjjDtx3333YeeedMXHiRPT09GDJkiV49913kc/nccoppwgrT4o46qij8MILL+DJJ58MNOF+55138MMf/hANDQ2YPn06xo0bh66uLixcuBCffPIJGhsbcemllwZkvvXWW1i/fj123313Yf4bQRAE0X+Qx40gCIIg+plx48bhlVdewc0334zdd98dH374Ie677z4sWLAAAHDmmWfi73//O6qqqqRlnnrqqaitrcWdd96JfD7v++xrX/sa5s6dixkzZmDJkiW4//778dxzz6GxsREXXngh3nvvPXzpS18KyLz99tsBAP/1X/+l/F0JgiAIM1i2qQB7giAIgiAGlLPPPhs33ngjHn74YXzta1/TkrVlyxY0NzejvLwcS5cuRWVlpaFREgRBECqQx40gCIIgthIuvvhiDBs2TBj2mJTf//73WLduHf77v/+blDaCIIgSgDxuBEEQBLEVcd111+G8887Dvffei2OPPVZJRmtrK7bffnvsuOOOeOWVV2BZluFREgRBEEkhxY0gCIIgCIIgCKLEoVBJgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBInO9ADGGoUCgV8+umnqK+vh2VZAz0cgiAIgiAIgiAGCNu20d7ejnHjxiGTifapkeLWz3z66adobm4e6GEQBEEQBEEQBFEitLS0YMKECZHbkOLWz9TX1wNwfpyGhoYBHg1BEARBEARBEANFW1sbmpubizpCFKS49TNueGRDQwMpbgRBEARBEARBSKVQUXESgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgSh9oBEARBEEJ6enqwadMm2LYtVaaYIEoF27YBAJWVlWhoaEAmQ3ZqgiAGPyWpuPX29uKFF17A448/jueeew6LFy9GR0cHRo4cid133x1nnHEGjjjiiEQy586di0suuSRym3/961+YOnWqztAJgiC2CgqFAtatW4exY8fSopcYlNi2jS1btmD16tVoamqi65ggiEFPSSpuzz//PA455BAAwNixY7H33nujtrYWH3zwAR555BE88sgjmD17Nm6++ebEVuCdd94ZX/rSl4SfNTY26g6dIAhiq2Djxo0YOXIkLXaJQYtlWaiurgYAtLW1YdiwYQM7IIIgCE1KUnHLZDI45phjcO6552KfffbxfXbPPfdg5syZuPXWW7HXXnvhu9/9biLZRx11FObOnWtwtARBEFsfuVwOlZWVAz0MgtCmqqoKbW1tAz0MgiAIbUrSlHrggQfivvvuCyhtAPDtb38bp5xyCgDgL3/5Sz+PjCAIgiCIwQTlZxIEsbVQkopbHLvssgsAoKWlZYBHQhAEsXVCi11ia4KuZ4IgtgZKMlQyjsWLFwMAttlmm8T7Lly4EBdeeCE2bNiAxsZG7LLLLvja176G+vp67XF1dHQY2YYgCIIgCIIgCIJl0Cluq1atwu233w4AOOaYYxLv7xY3YWlsbMT111+fOF+Op66uTmt/giAIgiAIgiAIEYMqVDKXy+HEE09Ea2srpk2bhjPOOEN63x122AG/+tWv8NZbb2HDhg3YsGEDFixYgCOPPBKtra04+eSTMX/+/BRHTxAEQZQizz33HCzLKhoFCYIgErFlLZDrGuhREEOAQeVxO/PMM/H0009j5MiRuO+++1BRUSG970knnRR4b6+99sIjjzyCH/zgB/j973+PH/7whzjuuOMSyWXZvHlz7DZtbW0YN26cknyCIIitglwOWLoUaGsDGhqASZOA7KB6HAEAFi1ahDvvvBNPPPEEPv74Y2zZsgU77LADjjvuOJx33nmora0d6CESBJE2a18Gnt4fqBgBfO0joJyir4j0GDQet3PPPRe33XYbhg8fjieffBI77bSTMdlz585FWVkZ1q5di1dffVVZTm1trdQ/giCIIUlLCzBnDjB+PLDTTsBuuzn/jx/vvD/ICk796U9/wm9/+1vssMMO+OUvf4lrrrkGU6ZMwZw5c/CVr3wFXV1kgSeIrZ4Xvg4UeoEtq4FF1w/0aIitnEGhuP34xz/G9ddfj2HDhuGJJ54oVpU0xYgRIzBmzBgAwIoVK4zKJgiCIADMnw9MngxccQWwZo3/szVrnPcnT3a2GyQce+yxWLFiBebPn49zzjkHZ555Ju655x784he/wDvvvIPbbrttoIdIEETadK/3Xve0Dtw4iCFByStu559/Pn7zm9+gsbERTzzxBHbbbTfjx8jn82htdW42E9UlCYIgCIb584ETTwS6u6O36+52tisB5c22bcybNw977LEH6urqUFdXh2nTpuGXv/xlcZvddtsNjY2NgX2//e1vAwDee++9fhsvQRClgD3QAyC2ckpacbvwwgtxzTXXoLGxEU8++SRmzJiRynEefvhhdHZ2wrKsVBRDgiCIIUtLCzBrVrJ9Zs0a8LDJk046CbNnz4ZlWfjFL36Ba665BgceeCDuu+++2H3dyI2mpqa0h0kQRElBihuRLiWbDT5nzhxcddVVxfBIGaXthhtuwA033IDdd98df/nLX4rvL1++HC+88AKOPfZYVFVV+fZ58MEHcdpppwEAZs6cibFjx5r9IgRBEEOZW26J97TxdHcDt94KXHZZOmOK4X/+538wf/58nHjiibjjjjuQyXg2zkKhELlvPp/HZZddhmw2ixNOOCHtoRIEUUrY0fMDQehSkorbww8/jCuuuAIAsOOOO+LGG28Ubjdq1Chce+21xb/XrVuHDz/8MKB8bdiwASeddBK+//3vY5dddsH48ePR1dWFDz74oNjM+4ADDsAf/vCHlL4RQRDEECSXA+bNU9t33jzg4osHpNqk2xrm2muv9SltAAJ/85x33nn4xz/+gV/96leYMmVKamMkCKIEscnjRqRLSSpuGzZsKL5+44038MYbbwi323bbbX2KWxjNzc244IIL8Prrr+Ojjz7CwoUL0dPTg1GjRuHII4/ECSecgG9/+9uxD2SCIAgiAUuXBguRyLJ6tbP/5MlmxyTB4sWLsc022yQOdbzoootwww03YPbs2fjZz36W0ugIgihdSHEj0qUkFbdTTjkFp5xySuL95s6di7lz5wbeHzlyJK688kr9gREEQRDytLXp7d/ebmYc/cDcuXNx+eWX49RTT8XNN9880MMhCKLfsFBU2ChUkkgZcjERxFDCtoGXvwv833Sg7cOBHg2xtdPQoLf/AFX53WmnnfDZZ59h9erVUtvPnTsXl1xyCU4++WT88Y9/hGVZKY+QIIjShDxuRLqQ4kYQQ4lPHwOW/RXY+Bbw4jEDPRpia2fSJKCvR2Zimpqc/QeAmTNnAnDa0fDFSGwuh+XSSy/FJZdcgpNOOgl/+tOfKOSe2DrJ5YDFi4E333T+z+UGekSlg8Xe86S4EelSkqGSBEGkRPtH3uvW9wduHMTQIJsFTj/daa6dlNNPH5DCJABw3HHH4dvf/jb+8pe/YPHixfj617+O4cOHY9GiRfj73/9e7M9244034uKLL8bEiRNx8MEH46677vLJaWpqwiGHHDIQX4EgzNDS4lSGnTfPyVfNAsjBMcicfjpwxhlAc/NAj3KAYTzsVJyESBlS3AhCla7PgPWvAdscCpRVDvRoJKH4e6KfOeMM4Nprk7UEqKwEZs9Ob0wS3HXXXdhnn31w22234dJLL0VZWRkmTZqE4447rrjN66+/DsBpOXPyyScHZOy3336kuBGDl/nznZ6K7r17BoA9AcwD8PIaxyBz7bXAbbcBfV7qIYllMY42UtyIdLFsPu6DSJW2tjY0NjaitbUVDbr5H8TAYReAh3cEOpYCnzsf2OWqgR6RHP/6DfDWj72/T6DbnxCzZs0ajFENc+SZPx848UT57e+8c2gvBAnjGL2ehwL8PVsDR2Fz4W/PoXzP3l0FFPqU2x3PBHan1lJEMpLoBhSMTxAqdK50lDYA+NfVAzuWRJCiRgwAM2c6C7vKGM90ZeXQXgASRCnQ0uJ42lgqYvaZNcvZbyjiK0ZEz1giXUhxIwglBmnIIZUqJgaKmTOdogZz5jiFR1iampz3Fy8mpY0gBppbbgmGNpfF7NPdDdx6a2pDGjyQ4kakCyluxMBTyA/0CJJjD8IxA0hV4Wz/yKlU+e/r0jsGMbhpbgYuuwxYsQJYtMipULdokfP3ZZdRkQOCGGhyOacQCY9MRYR584ZotUlmKU3ZR0TKUHESYmDI5YClS4HVLwKf/gQYuRtw4N+5kIMSZrB6rtJ8qLx4LLDpn0DL/cD4I4D6HdM7FjG4yWaByZMHehREmtg2kGsHYAHlA9OPj1Bg6VKneiRPucS+q1c7+w+1e5tCJYl+hDxuRP/S0uKERI0fD+y0E/DRLCC3EVj9JHDlCYMnRn6wKm5pPlQ2/dN73b44veMQBFH65DYDbYuAtg+BXMdAj4aQpa1N/L6smb+93dhQBg/Ux43oP0hxI/qP+fMdS9wVV3gWPTbh+dG7nc/nzx+Q4SXCTjEcpPNT4Mm9nbDDguHj9JfCaXrcBEEMLjqXM69XDNw4iGSEVbSLK07iUj8Evausx23QGnUHMZ/+H7B0/uBMu1GAQiWJ/kG2HHh3t7ddKRcpKPSkJ/v1M4G1LzmvP54HTP6+Odn99VAZtDmABEEYwReWPUhC4Alg0iSnuTYfLikTKtnU5Ow/5GCubzJa9i8bFgLPHe68tnuB7U8Z0OH0B+RxI9JHVFpYBPucL/XSwoXe9GSvetJ7vfGf4dsp0U9hHGl6JAmCIIh0yGaB008Pvi+juJ1+urP/kIP1uKW4NiCCLLrRe/3muQM3jn6EFDcifUSlheMo9dLCaSpuvgpVpj1k/aS4kdWRIIY45HEbtJxxRrDnYpw+VlkJzJ6d2pBKGjZUMtW1ARFk6OUUkuJGpEtYaWEZSrm0cJqTs8U0zDEdckihkgRB9Dektw0umpuB227zvxeX43bbbUO4nQfrcSvRNctWy9AzEJHiRqRLWGlhGdzSwqVImuEQFntbGla0tgbF7eM/Ae/8EujdnN4xiK0D26a+SgPG0FtQbVXMnAnceafneQsLlaysdLYr5Zz0tGGf2eRxG0CGxjwzFIORif4krLSwLKVaWri/PG7GqyQN8hy3tf8AXu3Ll8x3A7tclc5xCD+2DcDmjAolTiEPtP3bMSI0TAHKKuP3IcxB+nL/s/IxYMX9QMVIYOVDwBfmAJMkioKFMXMmsO++TtrC+9cBYJ7HTU1OTtvs2UPY0+ZCoZIDxhA0zA2ipzAxKAkrLSxLqZYW7i/FzbTHrd9y3FKqurnyYe/1v65O5xiEH9sG2j8ENr4N9GgaYvqT7jVAvsu5FjtK1HMfhW0DW9YAXatKdnFy3333Yeedd0Z1dTUsy8Jzzz3HfMqM2S7glFNOgWUNDYv4gGAXgOePAD6+zZkb2z4E/nGSvtzmZuCyy4DLLvK/v2KF8/6QV9pAOW4DSmnOjWlCihuRLm5pYRVKubRwqoobW5zEdI5bP+We5bekIzfth2Kuy/HqUS8ej9xmJyzVLgDtiwZ6NPKw18pgDKvt2Qh0LHd6oHWvH+jRBFi0aBGOP/54NDY24oYbbsBf//pXfO5znxNvrHk/Pfzwwzj11FMxdepU1NbWYty4cTj44IPx+OOPa8ndqkizRQ0AgIuiGJLVI8Ngn9mkuA0YQ8QwRHcekS5uaeErrki+bymXFk7zIZlmcZL+sgYWElYRlZab8vifOxxY8xww5Txg19+me6zBwmBVYn2e60FI91rm9RqgapRZ+V2fAj2tQO1EIFubePfnnnsOuVwOv/vd7zB9+vTgBr65S28emz17NhoaGvCNb3wDU6ZMwYYNG/DnP/8Zhx12GC6//HL84he/0JK/VZB2Jd+0jHFbBYzXhzxuYmy7HxSroaG4kceNSB9RaWER7D1X6qWF+83jZnjR3F9l+tN6yLPWzIxMY6EEFPKO0gYAH/7OrOzBTJp5bbYN9GxK53oZ5IpbV2cncsWquoYXJPkeoPNTINfhhNQpsGrVKgDAiBEjgh/atn/u0pzH7rrrLixatAjXXHMNTjvtNJx//vl48803sdNOO+GSSy7Bxo0bteRvFaTt6eHv0cFq0EkD1khBipuffA/w1P7A36YCm5eYl1+iYeRpQoobkT6i0sIi2HVWqZcWTrWqZJrtAPrpodIfoZKWYcUtV6KFcAacFK2Y3WuB9o+A1g/MGxUSKJxbtmzB3LlzMWXKFNTU1GDYsGGYNm0afvrTnwa2/eMf/4jp06ejuroajY2N+OpXv4oFCxb4tlm2bBksy8LcuXMD+8+dOxeWZWHZsmXF99z8r7Vr1+J73/sempqaUDtuV6z41KnI29begV/84hf43Oc+h6qqKowcORJ777037r77bp/szz77DN///vcxceJEVFRUYNy4cZg9ezbW8JV92XmAW4C/8MILOOSQQ9DY2Ijq6mpMnz4dt3Hzt2VZuPjiiwEAkyZNgmVZ2G677RiZ3LwVMY+tWrUKP/jBD7D99tujsrISY8aMwSGHHIInn3yyuM2BBx4Y2K+mpgZHHnkkent78eGHasrngLDkDuCDq8zPkf3tcTOtoORywOLFwJtvOv+XaisgEez1Te0A/Hz8R2DN806Y/csGci4DMIobhUoShEHcUsGzZoU3487A8bTddlvplxburwbca54HVj0DNB1gZlLqL2tgPqVQSfahaNrj1juICm/wFHLAohuBbA2ww2mGH2ApWjQ7lvcdouB43kyHA0ryX//1X/jTn/6E7373u/jRj36EXC6HxYsX45lnnvFtd8EFF+Dqq6/G7rvvjl/96ldob2/HrbfeigMOOAAPPfQQDj/8cK1xHHLIIRg7diwuuugidKxbgrraGmxqbcfeR56B9/+1GMceeyy+//3vI5/P46233sLf/vY3fOc73wEALF++HF/+8pfR09ODWbNmYYcddsBHH32EP/zhD3j22WfxxhtvoLGx0TlQiJX6kUcewdFHH42xY8fixz/+Merr63H33XfjtNNOw5IlS3BFX8j7X//6V9x///144IEH8Nvf/hajRo1CXV2dJ4j3xoR4Z5YtW4a99toLq1evxne/+13stttu6OjowCuvvIKnnnoKhxxySOT5WrFiBQCgqakp7tSWBmteBF45xXm9eSkw8VtA0/5mvNphCoOpEDU+/N3OATBQqbWlBbjlFqdvK2tgGDPGSZc444zSNuICfqWZPG5+OpZ5r9e9nPLBSHEjCLOwpYXnzXP6tLEceRjwl1vMTNKFHLD2RWD4l4CK4fryAvL7yePWsxF45iDg4BeBMXvry+63HLd+8LiR4ubx8R+Bhec5r6u3AcYfmd6xHt/NqXRoAp8HtUxvAVs9Fjj0De/vBCE0DzzwAA477DDccccdodt8+OGHuOaaa7DXXnvhmWeeQUWF05H4tNNOw+c//3mcddZZ+Pjjj1FWph6i+cUvfhF33nmn88em94D8Fpz10yvx/r8W45ZbbsFsLny8UPAUonPOOQe9vb146623MGHChOL7xx13HPbcc0/89re/ZTyAwXOTz+dx9tlno66uDq+99hrGjRsHwFFqDzjgAFx55ZU45ZRTMHnyZJx44on46KOP8MADD+Coo47ye9tE8kMUt7POOguffvopHn/8cfznf/5n6HcT8c9//hP3338/9tlnH0wq1SJWPJ/8P+/1R7c4/2bcDEw+Q192mMfNzpmJTgh43Ax4lubPDzfmrlnj5MZfe23pG3NtUtxCyaTdhoVCJQnCTyEHrHgEaP2XGXluaeEVK4BFXIW6Iw83Z1l75yLg6QOBJ/dOJxY/1eIkgtvyzXPMyPZZZVO0TvVLqKRhu9NgVtw+YPrZfTTPsHDuwdi1CuhaaeZf9xrv35bPNOXxyqSc8gAAjY2NeP/99/Hee++FbvPQQw/Btm2cf/75jtLWtQpo/RfGjW7Aqaeeik8++QRvvfVWwnPr5yc/+QnzVwGFQgF3P/AkPjdlh4DSBgCZjDNXtLa24m9/+xu+/vWvo6qqCuvWrSv+22677bDjjjviiSeeiDz2m2++ieXLl+N73/teUWkDgIqKCpx//vkoFAp46KGHJL+JYDHFKdIbNmzA448/jkMPPTSgtLHfTcTatWvxzW9+E9XV1fjjH/8oOaYSYMva4Huvn2lGdlgYvKlnVSDHTVNxmz8fOPHE8Agcl+5uZ7v58/WOlyaDOcdt2d3AwzsAd1nAK7PM5YzZNvDp407UEGEU8rgR0Xz8R+D17wOZCuCbq8x5r7JZYPJk4HXmPZP5Vx9c6fzf+oGzwKoZF719EjYvA976SexmyoiKKphSUnyKzyBX3DKkuHmk+FvyD/LqseZkm/a4+eAVt3yo/N/97nc46aSTMG3aNGy//fY44IAD8LWvfQ1f+9rXigrE0qVOL7gvfOELzrg7nTA9dCxx3gOwZMkS7LbbbspfYaeddmLGa2Pd+k3YuKkNhx68X+R+H374IQqFAm677bZAPprL9ttvz8gOKrG+78fBfj8phIs//3sfffQRbNvGLrvsIiezjw0bNuCQgw/Cp5+u/P/svXm4XEW1Pvx2nz7nZJ7JCYQTBgkBBGTWC4KioBcHRr1eDZPGEPVe9ecM1ygoRmVwBMUQI4PE6YoIovIhKCBymecxAQKcMARC5ulM3d8fu6v32tVVtVdNnT5Jr+fJk+7du6vr7F27qtZ63/Uu/Pnaq7PXrJntmcuAnt/Ha1+HgA32OqmG1rcfMMetpydB2mxs1qyEsdOMtEnqxMbIIx/YBDz9M2DkLkD38eHarVSAOz6cvn/2F8COxwI7Huff9qu3ALcc499OnmXmmhZVsmUtS5w2IInavfB7YLfZ8X4rVnL15sCO290BaC0ma5TjFhNwb0Q5gNDiJEPZccs44aGpI1J77/q/cDTV1wm1ccSOYZ1C2XkoD2j7fdxxx+G5557DX/7yF9x666246aabsHDhQhx++OG46aabarTImg1sTF8P1iMapkLTAwbRhREjRtA/gDSo/UpyZvVvPfnkk3Haaacpzxk+fDh5F1sRMA59aeXKlTjqqKPw5FNP4dpfXoh3HDhEctsA4K6PxW1fh4A1I+I2f34+0iZbb2+SZnHuue6/G8NkBdUYiNvTlwL3fz55/d4ngLF7hGl3YEP9sdfvCeO4PVAv7BTdWuIkLWuZZCFlwSsVYM1j0rFAjltZUjDb9HKYdoW9fnfY9mRTXedQG2W6qFQGgIfPBnb/L2CYY5F0nYVG3CrlRI3tpevTY60cN2JkwQouj6xArhD42qt+J3R7m5YlEWsNUjthwgScfPLJOPnkk1GpVHDmmWfi/PPPx7XXXosPfvCDNcTqsccewxu2z6Jqjz+WzGXiHCGRv3Llyrrf4aNWZUyaOA7jx43BQ488aTx1t912Q6FQQF9fH4466ihW27LRv0+2xx9/PHMO4wdyzxB9fvDBB1ktCqft8ccfxzVXnI93v+PfmH3ZRkwX+AzluA1IRexdA60DA0mOu4stWACcfXZz1XeVFVNjOG4ifxkAnvsl8CaHurgq63tdcWx1mLYbVo6llePWspYZLGA044kLgL/skz0WCnHrlfIINr0Upt1GmWrCC+WkyM7xo98E7oqAooZ23F69rT5iPdQct0oZWHE30B+h7EDG2Q+MpsiOYOgSFbV2Q6NAUr/71qT0RmKDg4NYvXp15lihUKhR+ITzdeyxx6JQKOCCCy5A/+Y1tXNffmUFLrv8cuy0006174wePRpTpkzB3//+9xoaBiRO2x//+Ed2/4vFIj584rvw+JNLlBRI0fbEiRPxnve8B3/4wx9w5513Ks977bXX6IG6cw444ABMmzYNl112Wa1GGwD09/fjggsuQKFQwHHHMSPxDKrkhAkTcMwxx+Cvf/0rbrrpJu3fBgCrVq3C0UcfjcceewxXX301jjnqsJzf2gYtNuK24XmpXUcHZenSrHqkjS1fnnzf1Ta8EH6eka977HIAIfPrexWOW/+a+mMuNsTraDazNVHYomVNbyERtwe/Un8s1IQnO2qPnAOM2weY9JYw7ceO8DQKcRP24nVh2kYBtWsT2nFbphBFCO64BVqwdPb4d4GHvgqM2RN476OBC1s3GnGLYMHbVVyH3hXAqJ0zh9atW4ftt98exx57LPbff39MnjwZS5cuxSWXXILx48fj/e9/PwBgxowZ+NKXvoTzzz8fR/z7h/Gh496Bdes34tIrr8H69euxaNGijKLkf//3f2Pu3Lk45phjcPzxx+Oll17Cz372M+y999645557kGvV+/it//kk/n77A/j4xz+OG2+8EW9961tRqVTwwAMPYGBgAL/85S8BAJdccgne+ta34ogjjsCpp56K/fffH+VyGc8++yyuvfZanHrqqURVsn7z2tbWhosvvhgnnHACDj74YJxxxhkYPXo0fvvb3+LOO+/E//zP/2D69On5/U46zzrr4osvxqGHHopjjjkGp512Gg488EBs2rQJd911F3beeWecd14iunP00Ufj/vvvx4c//GGsWrUKV/3uvrSRUY/j0MPeaoEGNpnFnNuBMBv9wc3Axhezx1zX67WeAbJ1joGvR+cBD88FJh4CHHlDuHx9OeAcU7gMSOawmG0NacStRZVsWcski/xQxHLcNr0E3HwkcMIrQMfYML8R1RQb+lA5bo0qwL3iDuDv7wLe/pcwIiKjFJuy0AtDbMTtoa8m/699Ion8Sg6ElzUyxy2GSmuMdpmXYcSIEfh//+//4eabb8ZNN92E9evX1xy5s846K6OweN5552G33XbDTy/6Ps489yfoaG/Hmw98I351xQIcflS2httXvvIVrFmzBr/85S9xyy23YK+99sLChQtx33338Ry3qo0fNwb/9/c/4Ns/uqpWO2306NHYa6+98OlPp2qz3d3duO+++3Deeefh2muvxVVXXYVhw4ahu7sb73//+/Ef//Ef5Nqor/X73/9+3HzzzfjWt76FCy64AH19fdhzzz3x85//HLOsxCR4F3+XXXbBvffei3PPPRd/+ctfcOWVV2L8+PF405velFHRvO++xFH79a9/jV//+td17Vx22WVD13FrCyAcAujXzxA1NTc8j/p5wHG9HjPGry+jR7t9r+fq5P/X7wYeORc48Pt+/RCmokpWyuECc3Igbj2Tas0xFeLW64iGyrZFELeW49aybdmU0bvID0UoqqQqp21wczJhb28u6OpsoYqcAmrkIXZU1tcqZdQt7K/8DVj+d2D7dwVoX3FNQv8tjcxxW7oE2HPHMLkag33A2qfIgcCOWx1VMpbj1gDETWEdHR34zne+w2519uzZmP0fb80m9o/Yse68UqmE888/H+eff37m+Pvf/36CfCV2+eWX4/LLL9f+5rixY5RtyTZp0iRccMEFuOCCC8x/hOEevu1tb8Pb3mZWsQSAc845p+7vSNuvv/aX/2IBLr/il3XHp06dip/97GfG36K0SVQGgZWk7MK4fYG2jvovDRULofgIxM1xUzkLrvPvLrskxbVd6JJdXcn3XWz1Q+nrlffqz7M1lQM72AuUhtcfd7G+Vdn3654J0y6gdtwUdHIn0zluIfdKor1tzFo5bi2rt40vAX+cBly7c/Z4qAiSLgIYaiPeVy8IAABod4zUcSzkZla1EARTlYzEv9fdu3VLArWv2HwMFcetpweYOzd77P3vAqZOTY739Pi1f7dU3yv6QrZ1OW5B2t64TK3QFuv3vC22qqTCgtWHkvu+Bf6WkFYakX8Ox2LmuK1X5JW5riWlEjDbMa969mz7YNeL1wN/f3d23IQULFMGFQOqKr96W/b95lfCPUsqcZLe18K0r3PcQl2bSqWq6EvVd7cNxK3luLWs3u77TDI5yJTDUM7JZk2kLRRVsn+9+nis2mIAgm4eVNchmDhJLMRNc+9CRe9Uzn5ox21wY/45trZoUVKvcJ6kAjYcScR53rzkc5/iskuvkA7EpkrGcogii6rEtjVPRGw8NIq6JcoBRHLcQt7ngQFgyRLgvvuS/w2lG4JZsTNMOzFz3FT5vz7r9Zw5QKfi7z4ZwEUA9lV8p7MTUBShz7Vb3w+8IhWf3xzQcVM5sCH3Go99O/u+MhguH1uV41bur1cQdTFdoD+EOFelAvzjXcD/jgaWXePf3hCzluPWsnpTRdeAcJt+HYc6lOOmm3QGN4VpX7UBCYkWKCOZgTYnsaiSuuirbixZt6/YfIR2QkM79osWASefnNQfkvco9H1vb3Kej/OWschUyVAOVnS1ygYibsGbj91+ZMctZv/lvm96yf/3BCo+dSqw++7AQQcl/4dCxU0Wat2LibipAmc+/e7uBmSV1OEAjgEwAYBCuwznnx+u+PbAhnDqvqrrEBJxW/No/TEVxdHFdO2EaF/HEgrhFG5YCrxyUzK2M3uaFuLWspZlLdSmf9NyTftDxHFTbXpCbYTKA8C6xYrjgZSqouW4kXs35SjUJtANER234IhbQMetpwegYg6jpM9V6Q+zZoXZIEZXlYyFnEQuB9CIpoNRkSOiSqr2g1sDEbe+VfV5QDZGUfFXXwXeBODtANoQDhU3Wah5TDf2QoiTlBVzo2+/Z84ErroqRd6GSZ/Le/AvfznsPdj0Sv45HFMFnEKuJarrHEpZUkfvDtG+jioZwmGOSktvfms5bi3jWyjnYbPGcYuNuA0EcNwqFTWlLhRa8H+nqI8PBrr2sWrM0E1DaSQwvKrEFxNxi+24+WyW589PkDRhcnqlih3V2wtceqn7b9YssuMWbNMvtRM6/zIqaqVpe/UjYf6OOic2MlUytrOvOeRmivGnytXhGEXFAWAqgC8DmA2A1jEPjooTC7WuNhpxCzHOZ85MkDQAkPVltpPeh74HoeiSSqpkwDwu1X0NhbjpkMEgiJvGcQvh1Gr3ci3ErWUty1qojbJOBCIY4qaJxoRA3AY3ahC3QI7b879RHx9KiFuhBHROSF4PBKKjqBaY0H+LHFV2RYAGBoAFC7LHOIgbkHzPO69mqCJug4FRty3guFUGk+R+X6ubC4dYjhujALd724HmWhkVB4C3ktenKr4TChWnFmxuj+m4KTbbIYKAPT0JkgYAe0uf7aT5Tqh7EEqgJCZVUrfGuQYqZNM5USHa14qThBiPEfLRh5C1HLeW8S1YZFAzGcVA3Hb6SPo6RKRHB/NH3wiFotM0yHETk3aoTdaWyHFz7fvSpfVS17LjJtOChC1fnnzfxwKNxZoEe6wcN9VGPuj43EIy0SGuvzwXRkfEGoC4xaJKcr8mX0MZFQeAvCUoGCpOLPa6GqL9GFRJIL0H+wD4mPTZBM13Qt2DmI5bKKqk7p6GokrqkMGYiFsQx00ThG+pSrasZZIFiwxq2gmG6AnHrQB0n5AeD4G4vfZP9fHgwgqShbr2sZQ1abS3GMFxo1RRUfcoOlXSse9rFYjy9tJ7neMGAOt8UcohIpyh2oCHvKdbgioZrPnIaoZbgioZrGl7x63OaVOh4kC+4wYEQsWJDQnELbA4CZC9B/+l+Ny0B+feA9O43hwgx+3V24G/KCQwoyBu5IIMBaqkLsAXYo4faCFuLWsZz0JtqnT5WqERt9IooI3UyAnhuD35Q/Xx2I5biBy38kA4GWHZ6hC3qqJUpRxmU0gXmIY5bo7jccyY+mOHSO9NjtvoiPUGLaxUKqG3txfR0Bkl5Tikw7IFxElCWcOpkkMIcXNAfDdv3oxOKj+vQsUBgDONh0DFqYWax6LmuKkQN89nld4DlQChBrABwL8HJic/BOL2zxPUx0MFSOm9G06if7EdtxBUyZjlKXR7uW2kGHfLcWsZ36IjboEdt/ZRQIkkE4Vw3HQqiSHoUWXDriHEte9bhWg7Th3iBgS6NhRxE7zDivma2VooxG2XXYDJk9P3kwBMk87ROW5dXcn3fSzQ4jV+/Hi8/vrrGByMpf4YGXEb0uUA5LEXW1UydgmJQD9RKQMbXrDoRgWbNm3C6tWrMYYGVFSoOMBD3IAAqDixcl+YZ1bnuAVRlYyAuNF7oPrzTY4bwLsHpj6GcNx0lMVQ4iR0PhzWlb72UVGlRvu5zzfT170r/duO6rhpELfYTIUmMcsS9C3bpi1YZDB2jltVnKRtJNAW2HETm/vR04FxbwJ6fp+8D4G4mSa0EJNdqCidyug9LciO2yDyV+EcKyuokuJ4Uaf0YWGVikKcxPGelkrA7Nlp0W2VH6Zz3GbPTr7PNaUTFcaxKhaLmDRpEl5/6o+obHoZBUHVGTENmDzS/GWObXwJePUO6eAdwKQ3A6M8nVcAePl+9cZqUPaiHaznLn1UfdzewLh2v/ZXPgysfTJ93zkR2F6X9ONgy+7MKrPtODH7XPnamqeAVQ9lj00uASN28Gt386vAK/KYATBsMjBlbOaQoEd2dnaiq6sLxSKJU6tQcYCHuAHhUfHKAFDwHDNRN8oRctzoPXBx3Dj3wDSHh8pxU1kwxI1c43by9wYLolcdt+HbA7t/Cnjk68n7/tUB2o44HnVUydjMpyaxluPWMr4Fy7NqEFWyfVQEx63aRttwyTkJ4NTK13fY5KpK3euBHLdACc0qK8tUSdlx8zQaGWwjG8xKP/QSjRZWGVCrHLranDnAhRcmifRcx62zEzjjDLvfUaHUAekiHR0dmLz5FuDpS9KDOx4P7H28f+M9/wKe/mz98acBfHgQKHgSQu7/AbDy3vrjh3zGr10A+OdX9c/T3mcDk9/h1/7S3wHPkALFEw4C3jTTr01qt345uznb633AqMna063t1UuBp7+WPTb1emDyfn7tLrtTPWbG7w/s+5/8dgQqLtMlOdoGLqh4Hkpd7gOKvo5bRKpkDMRNdw+EmR5/7j0w9TFEjpvOguW4kXtH171gaSvVfhY7gXYS+Ohb7d92TLEc3V4udEmZJrUWVbJlfBsKVMnBvrT9kuS4+dZxq1TSSFrbsOzG8q8H+lPI5Mm+3A8Uq8VtglAlYyJuJqpkYDSynUg0BlvAVHLXHv3u7gYWVjfeqv3FCMWxhQuT79mYcnEMTHuTn8tQ0WQTnSjEeI9JmzGNjRDKZjI6HjqSLG98gpfWUAUUAvwNulIvtrm7AhWvO874ri0qDuSvbTHHe7OWA9DdA2EmxI17D0zXvXeFf+54+zj18RiIm8w0CdJ+dQ5u60zWbZGGMGQRt5bj1rKWZW0oUCUHycIuO26+iBt1rNqGZZ2T/tXAqxrFSXb7ffXvQzpuJsTNN1csk+PWHtZx61uTVfOkgjPN6rgBSXHZq64CJlc38hsBiLQMyvLp7EzOm+mAqKg2JroC9y5WqQArJGpasGhyZMctVukLIGdsxHDcQqoYDqqDRCFNNccHcdzWq4+7iC7NmZM8e9RkX+B7AHYl711QcSD//oW4/g0vwB2gz+Ie2FAlbe5B3nX3ZaEMk6uEVy3UHEmfo0zAMhT7SSBuVQpIx7jk/xCI2xYRJ2k5bi1rWdZiUyVDIG79ZGEvBc5xo5t7mSoJ6DcV7PYjI26mHDdfqqeujhvgv2G7j1Dbiu1ZSlFMxy3EeJw5E9ixSkHZ2AaI/eUYJHSfuXOBJUvcnDZA/fevfxZ46sdu7cm29JfAmseyx0Il3pui0kEEFbaU4xYA8dz0UvZ9SApQrJpcmfZiIW46x22tPUWYouLCZGdhCoAzyXsXVBzIv75BAhURxUmU82OAPot7oLp1ut2pzT1QXZPM+uF5bTo0eafB5kgdVTIEQlvJIm5AiiBGddwCzDVacZJtI8et5bi1jG+hFnfdpBMiT4w+0G0jEmSs9llIx21YfQ6O76RRh7hRxy3AtTEibk3suC29MtsWXXiDFSZX5XAEWAQqZWCg6q1N3w/Y883J62EAnnsKOPdct41grX3NZu0+RR6Qi915Wv2xoYK4bSmqpG/fKxVg4zLpWMC/RUUZD+64RULc+jWOW7nfjZ4mUHGBvKnYdyPhh4oDDMQtIsIcqwB3qFpaM2cCo0bVH5edaJd7oLruRSKK0qeh3vJ/QH04RgHuts50zxF6vBSr418gboMb/WmkrRy3aNZy3FrGt6GQ40Yno7aOwIgb+X5xWD3i5ru5qrsulcYhbr4bN7kcQDFwjlutrXJWfS0m4vboQwka5lNst38Naot750Rg/E7pZwMBcg5jOif9Gsn0huS4RUTcQpQzMLXh+6z2vq6gMga8z6podagASK29BiButK4V4D5mZs5MnvO5c4ExquRT+KHiQP48FaJOZ6Opkrp8Qxcb1ll/TOxOfZgJqmuylMy773hb0nZPj127wui1PeRScjxCOYBiR9j9QCb1Q0LcAP+ar1sixw2VgOVqmtdajlvL+BbMcYuY4yYjP8W2FKEJibiVFFRJ342JanGkE7WvWqCx3EATI26yNYoq+V8nAbvvDkyd6r6403o4nROytXg2a9TUbCwmHfB1hSIjEIYG1LcGWGygc0bdyIbIJzKMad/rs+nF+mMblgJ3nAJsfs2vbUA9DwbPcWuA4/a264HtjyHte2zYursT9HvOLP3nPpa3toVwnBstThLScVM97x84AVi8GFi2zJ2ZoAp4UH9k7cqkbMv06cCiRQ7tV+9baRQwdu/0eAxxkmJ7WMeNzlMy4gb40yVjqpya9nLbAF2y5bi1jG/RqZKBETexwReom+9kSr9fVFAlvVErxXUREzXgf31M3/fdOBgLcId23Mg1CTUmb7iu/tgXAYxCIlfturj3EcetY2JS4kFYEMctIuI2oClwGyKa/MAX6umAoX8jRo5FT0/ixMekSuquy3NXZfM9Xa0RjlssqiR13EqjkrkmZPvsCtyWtiVz3EKiM5nUg0COW6Wizl2cOC6Zc20VPKn96Y/1xyiRQDTd2wucfLL9/C6ubbE9e21ilAMoBHbcVIgbddx8lSVjUiX7DWNvG6BLthy3ltWbTs56qFElBaVORJN8I+F0wyOrSsqfu5hqss84KZ7X33R9QyNuFTK1LH3aj24oW2jEbdEi4Dvnqj87irx2WdzrEDfquAVQf4xJldQFOkJEk2mNMpXFzPnpc8zNWbQo2Uh+e575vCVPuLUvzOTQPv8bv7YBNc1oKCJupZHZ4FkIilSoNa6u3ZznNATCrLuHvutepZxeFyrGocs3tLXBzVDmivmOyZ4e4Oy59ccp4ib7hLNm2TErRB+LHanzAwwNxK2sQNwoVdIbcdONR4++i8DZXQYF721AWbLluLWMb96I0iDQ80dgxf/FaV9uQ0Rja4u758KeqyrpmaytRNzazZ/bmGlCC5nj9tf/D7jmj+n7o97pRzeULaQ4SU9Pslh3aD7vUhyzWdwziNsEoJM4br0BaG8xqZK6zUeoaLLJgtBpNNdm3zfaj8VFixKnvbc3f9W84zY32pUwX4nyPFMFmELnuDVCnKQ0KjyyH8KBUlne9W3mOm70+50T09ehqJI6pVDfDfj8+cCA4rrT4S87br29wKWXgm06xC2UqiQdNzTHbeMy4MW/+LU9qELcSBHuWDlurnONCJzNmwcUDG387tdu7Q8hazluLeOb7wKw9ArgnyekG79CETjmwfTz0Dx/scEXjptvRFZWlZQfH51ELdee/239MYq4+W4qTFFfbxomuXc3/A3YSKN58KMbyhYScZs/P1ms2zWfq8r02CzusuOWWRg14h82ZnTGfXMudYhbAxw3399YtAjo1TyPq1fYjUXh3AvLWzVLsI/cU4sdMW4E4taIcgClkVLwLIToTKRAyFAuwE3nAYq4haJK6hxAHwbOwACwYIG6FhxtVsXCXLCAzxChiFuROm6BFDfpmk8RNwC49b1+wWIV4hZS+CukOAkNnAH69RoAPjHHf4/R5NZy3FpWbzoRDN8F4C4p8bvQDox/EzCqWuE0NOImJiGxuHs7bhJVshgQcVt5f+LYyhaSKhkTcbuDUBcGkd1D0VnGNZeAWqjFRSzugJ3jBvAXd5kqWSKy1yGoRqbNje/mwYS4LV4clv5a9xseY10s8roCvuI4dywK514Yx3GzjdxTi51c3xBxEkV7voEEIHXc2oZVGRWUKhmg/VhUyVzELcTaF8txI2O/fWy6njYz4rZ0aRIsVD2r9FKrHLfly5Pvc6yGuHUA7aTMQIigHCAhbpLjBgB9q9zbrgtEQ6Ieez5PoXLc5MAZoJ/bxWc+gbMhYC3HrWV8W/MosHZxuPbEJCQQlOBUSbEbj0SVDIm4PfML9fGQyfexHLeeHuCKy9L3g8imLKhmGZ+JNRTiJhZ3QE+V1NRXZS/um19JX3dOAkqj0/c68Q8bM20IfTdWqtpNwvaZEZb+WvfbjoibWOQLSMfd0wCWkHNs8lqocy+MjudHANwifUe0bxO5pxY7ub4h4iSRETcRABkqVMlcxM0TYX7+d+rAHxCAKilt8EvVQtChHDc69rreSY57PAdrq46TaoNPh4lO92Qdc26mVEmKAPvSDGvta6iStWMm6CnHVKqSIZ+nUDlucuAMMHsubfALnA0BazluLas3nTgJACy+ONzvtAnHLWDCbYYqKeW4+SJu8gIWMseNRuuEjdtHmkh968RFctzmz8+2bULchPlMrKFy3NaSqKiL2jdncd/wQvp6xDSgnThu/QEcty2BuAHAWISlv8rmOheIRZ5uyAYAUL/MJq+FOvfC6PRYBvBC9uNa+zaRe2rRETcVVTKgwzLYB7yoUGmN4rgNFXGSvDpuHo5b3yrgjo9kj9H1JCTiVuwM67gNDADPP5O+HzYlfe2z3o2p/v0uVEkAGD1a84FklCpZKCSIJJCUOwlhOnESYT7PlEpVMrPf8N0vVfs+4WDgODJJ2oxHVeAMMCNuYkpwDZwNAWs5bi2zs6d/Fq4tMQkVIiFuNaqkcNw8Nw4DeaqSgR23t/5votAozDcSH6McgCqXoIys46aLA7hMrMOmhEPcxOJ+EoB3a84xrV2cxX1j1WMolJIabpQqGR1x83TcHtbUcQMAolEQhP4qm8tGli7y9NasQ3azplr0dWNxrYLyRFdN1figQXBu5J5abMdtQIG4rX4oXPtLr1QfD+K4VZ0F4TyERtyiUSXzEDcPFcLNK+r/9vc+kToRvmgevSZtHUCbcNw8qN5CHXDqVOBDH0yP/+bq9LWP47bLLsDkyeodbp7j1tWVfD/PKpW0j2KvIa55MMRNKgfQFtBxi4m4lQntRnY4bZ4xVeAMMHsu4jPXwNkQsJbj1jI763pHuLZqcv3V/ysDAYpMG6iSQRG34fV13EIibof+GhgzIyxVkjp+2/+79JmjA6TKJeAgbgB/YqUJ8Uf+Vcpx89hoicX9RMM5uuHIXdyF4zZixyQnspE5bj4R8Z4e4Ka/6j9XUUhD5hW43Fe6yNPHaS3yN2u6sThGEVCRHTc5MEEdQ27knhp9zgs6SMDDVFTJ5f8I1/49n1AfD+lY1YJ+LcRNeV2LpfQa+dI/5VIvwmnuWwU89m175gBVB3z11ezzsoassS8rCtFzrVQCZs+uD9K8hPy5YPZsXu04ek+FQyXEp/pX++9lVL8hI24+wdxcxM3jeZVz86jDabPXUAXOgHyqpDCXwNkQsKZ03Pr7+3HzzTfjS1/6Eg4++GCMGzcO7e3tmDJlCo499lj8+c9/dm77pptuwnve8x5MmjQJw4cPxx577IGvfvWrWL8+UE2SrdGmvCt97YNwyHzsokSV9G0fqJ8wgHiqkiEdt9KI7Hsx0YWkStaig8XEAdr77PQz1+uuyiXgOm4Ab2IVC8jo3YHx+4VD3MTibjIdWshZ3Ac2pKqSI6pczGIb0Fa910EQt0hUyfnzgaJh4VY5bl70V3lD4rDZpIs8Ee/EGrjntQjnnhoXceM697LRe0olxkOZalysecy/bpMwKhlPzTtHt0KoaZLwVIj2gS2HuPnU/VL93QXiuHnnuElrajsJPj30VeDx8/htyeqAQHbtoNP5U0/4ofhz5gCd0sP+fZjFSTo7gTPO4LUvo2EAQTn7w9Ryq0gMopBUyaiIm4HiaTMeVYEzgEeVBNwCZ0PAmtJxu/XWW3HUUUfhwgsvxLJly/DWt74VJ554Irbbbjv86U9/wvve9z7MmTMHFcuIxg9+8AMcffTRuOGGG/DGN74R73//+7FmzRp8+9vfxkEHHYQVKyLXzxmqNoUkDPtE8QuS41bLcQtYl6ssRQcBMhkFVpWUo10+G2XZqaxNpBRxC+W4VdsM4QCpcglkqqRpluFMrGIBEfcxZDmAOXPMn6s2+dzFfQNBn0ZOS1+LPLcgOW4RqJKCcmjKex+vOe6aV1BHO3ZAIOgib0LcdIu+aiyqnHs6niuod+7FmOFG7mWjGyZa1DeELbsuQUmEiYACEI7eRfOUqHk7buT7clAOGNqImw+dUXVd24alYyek41ZoT6mSwh7LKUgvTKUOCGSfJ9mp8kHxu7uBz/xX+v7XAF6GOYizcGHyPY7JNdaA1HEDwjxPpnIAgKdzpVKVjOC40SACYDceVYEzwOy4iXvqGjgbAtaUjluxWMRJJ52E2267DS+//DKuv/56/Pa3v8UjjzyC3/zmN2hra8Oll16KX/7yl+w2H3jgAXzhC19AW1sb/vznP+PWW2/F7373OzzzzDN45zvfiaeeegqf+ISG4rGtmewQFzurKorwc9yK0iwpUyWBIYS4Da93pHwQN3mSrFGBaI5bIKqkynFzdZhVuQRcxI2dS1D9u4sB+y1sxx3zz5H7z13caYFtupkVdEmfHBFhJmfe9VkVlEPquC0DQIRDoQFV3PMKJO/HZbO5yy6p80YdtzUAaHMqX8g0FufMSZx1YXlUyRLsIveyZRwUndypo912XPZ9B/HAVblvLtY5SX08pEqdXOolRPvyb4S0RiJu+3wzYXDEQtxKI/XnmkylDgjUszXEpSrCXx3w8MOybQNqqmRnJ3DVVcDMmfy2ZacKCO+41TmH0mTjM+blYvZAPMQts4+xGI86Vgwnx801cDYErCkdt3e84x34/e9/j8MPP7zusw996EM4/fTTAQBXXqlJglbYd77zHVQqFXz0ox/FMcccUzs+YsQILFy4EMViEVdffTWefPJJ7/4PeatzIkphlKTkfA0lVTLwIgOEc9yoY9Y2rP46+RQklRf2oowWKs5x/Q2VA+S6YVHlEnARN+7EKiNuIYuEcpwn8bfZLu4ZhVMyxgXiFoIqacpxWGkQFzGZoBxSx20egNvIe4nZm7EQeQUuCMRvf5v2nVIl1wKgPomq76ax2N2dOOvCZFVJeQiVYBe5l43e02IEqiQ1mj/qI5BBTXfvQtaFGmpUydwct0CO2/T/Avb5WvK65rh5ipPISs1UGReoR8tVplMHBPQ0e3HcRx2QBjuPelcSoKFNjR2ZiKQsWWLntAFqxK1jXHoshLKkvJ+R9wA+ewK6/oh7Wgz0PMnPaqFAyj5ZPmNy4AzIr+PmEzgbAtaUjlue7b///gCAHiaE3tfXV8uL+8hHPlL3+U477YTDDksiM9dcc02gXg5hkx9YmpDs45zIOW4qqqTvRlxFlayJk/iqSpKJrjRGQZX0WCBlNE04iTHESWoU0kDXfc4coIPMpBzEzWZirVE8I1AlOYVSp2zntriXpQ2PMFHLrdzvN2ZEGzp74gI3OqZArejj2o8sxci0cIbIK/At0iojbtRxGy59lzMWZ85MnPbOznrE7V/IlhsYP9p+E0gtjyoZQvRAWCdx3ELk5ADZMTd6evo6JOJWV6MTTU6VJHPB7v8NTDoUGL8/+TwQVZI6UTEQt0I7MHyH7OclxvOuUwcE6h038eeEUAekjs37jgOWLQOuJHlz/z0HOPdctyBLOQ9xW23fZt1vSGNenu+9EDe6nxH3MFAB7sy1qc5hruNRDpwB+eIkPoGzIWBD0nFbsiSpprr99tuzzl+8eDE2bkw2wgcddJDyHHH8gQcecO7Xhg0bWP+a3lToTw1x86AD6sRJQiIoJqqkb45bvxShqot++USoZPSuep0bhrh5LO7d3cB7iUolB3HjTqyVSrohi+K4MaKiTz7utrjLamzCMiUBPOmSeWNiw/P2bQr6q8lx0wGlofIKbB1amYYl57jRaUtG3LhjcebMxHn/L0KpLyO5Lj+cDPQrHF4Xy1AlFY5bSOeCUiXv/TQvkJFnYp4sdgKHEJQlhuPWKMTNl6ZO16WxbwTe9S/gzeTahELcVI5bpezXf/m603xdICtWojOdOiCgp9mHUAeU0cJSCZi2m/pzW5OLYwOpqiQQhiqZcYA6wu45MohbYKrkoEKx0ieQQANnBZg9l6+d5Rc4GwI25By3V155BZdffjkA4KSTTmJ9Z2k1WjNu3DiM1kSDu6sL91KPug+jRo3K/bfDDjvkN7SlTUaSCiVSu2WDe8RXFiep5bgNEaok3dS0jwnsuEltbV8tLBa0jpugHFbbpIp1vnSaPXZPX5sQN2u6IWloSyFuRcfxrkPcQhbhzvv7XTYmgv5K06tEM2KI6xC3UHkFvkVa6VTTB73jNno08KEP8X+ruxv49H+n799/HLB4MdDzIrBd1WENSU2j1CthKjl/V6NUyZX3Ao98079NsSEcvkNYx8pUozM5wa99QD/uYohmVchzsupVdzpgxtEn15uitT7rqhwMHbFT9nMO4qZTBwTqafYy4ga4o/iq694WaL8hO1VAtqxPiCBIHeImjRGfPYEKcQtVgFt1bWqOm+OzJAJnXz3LfN6Rb3NrfwjZkHLcBgYGcPLJJ2PNmjXYZ599MCdPEa5q66rRmpEj9Um1o0YlEYe1psjQtmJKqqTY7VTco4OyOEkxBlXSkMDuneO2Lm2vbXh9fZxQiNub5qULQEiqpKwq2UY4Y77Fmulm87SPASNIFLaIBIlxoRuqosk0AOC7oeLkIbhGZXWIG3XcfPPcVH3bnTgWrgv7nDlAZzWZiw5zk+PmlVcgOce+RVrpVDMAPVVy3TrgM5+xVK4j88ikyUlNqlLJf2MijI754VPrP/d9Vql1SPKgT37Pv02xIWwfHW4jCGzZHLeQTJDVa5O58AhSE/WPv0+KUc+da6+imIe4AZ4OijSPyYgbZRDoTKcOCOipkuK4D4qfmYNF4I9eF5/0BsV4pGtqjHIA0RA3leMWuNRACOpudzdw9lzzOb57giFgQ8px+8QnPoGbb74ZEydOxO9//3t0dARW3PK09evX5/576aWXtnQ3862OKikpSbkKlMjiJDHKAcjUiOSF+NAvP0RE0NpGAV/7GvBrqcbMSy+6LbxAdpIcu3f6OiRVUizA4rrQ2nG+UXzat0/+N3Dm/6TvL7k4yS1wohsqNiUhHf0BKVAz8ZD6c1ydH53jRgUnvHPcFH3LoLSO16e7G9ixK3lNmzA5bjZ5BXINRNlsNlSqYButAFJBFnGTc9wuuSRxvrg1o7QbZTEuK37UNNr+CIXj5vqsquY+WSHQV8Wy3J/eO9lxe+qHfiiEiU0BBHAMDUFJXyYIDfJ94StJ8elXVqbH2pEEH+bNsxuLANNxC+igyI6bHHRRmalmZp44iQ+Kr0Lcgjm0ClQp47gFQMY3LiO/0V7vTIXOcQumKhmYKkktbx/ky0waAjZkHLfPfvazWLhwIcaPH4+//e1v2H333fO/VDVBjzTll4kC3GNMkH6OjRw5kvWv6c2kKgm4C5Q0ogB33uLOWWR0JjYdr6xJFtg+eZEvuy28gLTAkMkzKFXSgLj5LjIyLbBE7vWULveFN7bjRhG3fb4J7Hyyog+Ov6GjSoakBqv6lkFpPcbMyGo/6U+I5uhmy4b+2tOTBDf6ySb7TgCbpPEno9kmU83Z4hKI/uapSvb2JoWBOc9tZkySuYXeV58AVB7i5uy4KRwbucC3r+MmbwaLkof/UE603GSxc9z6Vunb8F6XyEZ2Y3VQ0ibp0mgzFoH4iJuMdLZLzxsXWVKpAwL1OW40OOSrDqgK5AZz3HIQN9/yGmueBF65OXndPhYYsWP9HsALcaPlAKqTYihVSSNV0jcdJmdN++cJwKqH/H6jyW1IOG5f+MIX8OMf/xjjxo3DjTfeWFOV5NrOO+8MAFi9enWNNimbUKgU527TJm/2CqUwiJvsuIn8ilAiGUB+HoTPZLRpdfX/6nsZdRDvbRdeuV+ZxTeCqmQxMlWyUAq3ocpcF9XCGzDHbcwMtaMTHHEL6HiqELsMldQn+b66IZvSnThbXV3ppqoEe/rrokVJUGPevKyk/kLUx1NsEAIVDUsMP9HfPMdNGKfgb1n3rAaax+h4G6GoM+jsuCnGglxuwNdxk+lXslT84ovd245dx23zK+nrXU4DdiQ173zXpVWEyitug85xE8YtPt1oqiQAHErWNq7jplIHBLK0ZipsVYS/OqBqDi4Gyv2LjbitvAe1iXH6JxLkKmQ5ABFkKY1K90hRqZKO5QBk4/zNt7zX7zea3Jrecfvyl7+M73//+xg7dixuvPFGrSqkyWbMmIERI5LV+t571bWNxPEDDjjAvbNbi5nESYBwVMnO7ZL/gxbgVkTYQtBpXlgKFKqTkZiP5adHfs9deAEpwZxcpxiqkuI+hKRKyot7FMdNgbj5UmvrBGcUfXW97rERt8HNwMMKBKMYCKUVG7KOUQnNddkyYLtqIfHtJ9vRXxctSoIZQvlRDI8lyNIYhT3/DL+fKhqWaJ+Kqoj9pUyVpMYp+JtLlYTfPBaNKqkY2zLipio/YGMy4lZX48uD8RCbKrmJOG7DurJrnu+6dO+d6et+6X9A7bhxi0/rxiO9lzYIdl37iuu+80dSNNim/h9VB6y1ST4fQBpsGTXcXx1QNQdTcRKf66JE3CgN3jPHja4No6pKmPJa5EPJFkEWmnM9FKiSnDVt04t+v9Hk1tSO25lnnokLLrgAY8eOxd/+9jccfPDBTu10dHTgve9NPPBf/epXdZ8///zzuOOOOwAAJ5xwgnuHtxbLo0o6O27SIj5MOG6RqZIhav38nESKuY4bd+EF1EnUQNbZjSlOEjLHrdhAxy0khaltmHpRcP0NLeIWyHFbdl39sSnvksZMAMdNLLylEtBRHTPFMp/+KtdY4wgBPvKAXa6oTMOSETcgfW5NiBuQX/A3OjUtT5wkIOLWJnmxqvIDNpYJhKgcNw+LLU5CEbfhU8KpDw4MJONZ2CD5X4x/3aPEKT7NGY8+ZUeUayrSecHWQRHqgALFp0NkzFhgYhU9LxWUX7cyJeIWKvcvMuKmVK0cmz0nRI5bKYbjZqBK+pan8A1gbwXWtI7b3Llzcd5552HcuHFsp+3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYI+jfMSRNSZUkux1Xx02OtgrErRCIYtS3Gnh6fvpeRadxkYweGAB+e0X6XkeVVK0znIUX4FElfXPc6qiS9J4OAaqk4N+HrPuXVycHCK8qGQyZkfo1dm/g364IN2ZE3+hGp0Z3sei3XGNNzmlRWaHMD3oA9TQscQlo+2KI5zlueQV/oyNu5J7RAtnCYiJuvlTJ3tfS153bIegWo6GI25Rw88zSpUAfmV9pU+K1rvYfp/g0x3G7mShY2prWcauOHRdkqbs7RfG/+Ln0+MLLge2rwYoQG/So4iR5qpKejhtFA0X7B/8se47r2lqppHXmKOIWqgC3SVUS8MwBbjluAQruhLfrrrsO8+bNAwDstttu+MlPfqI8b9KkSbjwwgtr71esWIGnnnoKU6ZMqTv3gAMOwPe+9z18/vOfx3ve8x687W1vw+TJk/HPf/4TL7/8MmbMmIGf/exndd/b5mxgABhUqEoOIzkk6x1r3ckTQQ1xC7RAyonvoRb3pUuBja+n78V8/P8BOJD+nuK7YuGdPt38G6oFBghHlawIeT3EQdwyi1hIx00l5xzRcVMibk1KlZRtv+8mSEEGcXNFCxXjBbB33FQ11jhxlDYk3zv7bD6yJ2hVs2YBbdWNAx16It40HMlG2fQnmAr+NhJxK5SAA34I3P//0mOuz6pqHId23GS6YUjELXqO2/L09fAp4e7n2rVZx2xAet0Jc9H2vOLTuvFIXw+sSzbrBQcUK08d1we1KpWACWMBwWwrdZI6dwE26KoUhIzglw9VnTjjYi2NRZUUY3HcG4EZnwWe+lHy3vUaPfz19DUt5xCsjpuBKgkkf5s897DbbjluTem4rVyZyuTee++92ry0nXbaKeO45dnnPvc57LPPPvje976Hu+++Gxs2bMC0adNw1lln4ayzztIW594mrKcniYwvWABc0JsdGQsWAieQYucr73H7DXlhreW4BYrELJEcfGWOm8PivnYtQOcYsW96DMBFAD4tfk/z/byFV+5XDKqkyokoUcfNE3EbqjluWwRxC0XBku5Z58T63wrudFavPfeaqGqsqRA3OfWpBH7Qg9rMmcARRwD/mA6gN7tJXgFAiBFPBPBK3bdTM64FiqLwQJwct0IbsMdnk2f17mrdUtdnVUmVDJzjRp2fYV31qpI+lkeD9y3AvVlC3ELdzzFjsuspbaoPwEiYHbe8fYlOLGfNY9nzKmU3RzoPcSv3J31wvdeZuaY9nW8q5WqfPVBb1RxcKFSDdH1+5VhUcvqxqZJAVrDIdW1d9sf0deck8jsNoEoCCZpoGvMmayFuzUmVPP3001GpVHL/Pffcc5nvnXPOOahUKrjlllu0bR911FH461//itdffx2bN2/G4sWL8e1vf3vbdtqo2turr9a787+4AjjkA0Cl+lC/frfb79QhblUUjy4GPsnCshUUi7tLFGnMmKygAQ2k3Qng6eprXRiEM7Zii5OoFrBQ0sXLbwFeuj5939AcN99EZ9lxU/TVddOW5/z4tA1kKculUcDEN9e3H8TppIEES8TNVGMNMCNuAC/oIVt3N9BZbYDeTgKaYxL0llfwV6sqGUPFr9p+iGeVRZUM6LgNn9LYHLfnfuWXO9NL6qp1Tgx3P3fZBRhFrquqvIZu7eAUn9YF/WTZfmeRJQXSCWTHjg/qVkezj5DXDWTnYJEm4ONcqQpYl2KxWMhYDLG2UuR1j8+HbRtQUyVD5Yy2ELfmdNxa1kCT1d5UTIpBABv6gOeqD/Lap9weHvk7HVWEICSCQi0UVXKXXYCJJClY7iJtUr5+nIUX4ImT+ExYNPekQJBIMan6LDI3H5l9X2jP/g0+mynVJjlkjhsNFLRpHLdmRdxoPcVDr0oX4xA5brn5ecwi06oaayqQ5PfSOeInXQNqYh6RETdhEw3fzSv4q6vjFmpcivYLxfSehojkK6mSsjiJJ1Vyc4Ookqq5vedq4Pl68TG2USSzNDLculQqAdPJGkAfG9Gs7rJzik/rHLe9zpLOCzAXZAJQVLXSgxaYcQxL2d+457+S3HXntjXzmMjZ92Ga9CscN1peIyTiRp2eIIyK6jVvHwtsdyhpO4KqpJhTQmkZtBC3luO2TZus9gaoR4SgMW0iB1w2JnQiGL17CsuHVJWkRh2U9Afs2ymVgH8/St8EfS9fP87CC/DESZwTkcvAjYep2xQbN1+qJLVoiJtILo+Y49Z9ouKcAHTD2FRJqvoaQlVSdd0B+82sqsaaiip5I4BfkuNt4Ac9ZKuQ+alMIinUcdMhbpyCv43KcctIuwdw3DhUSV9HK0OVnKxuz5VVkZfjBgD3fdatbSCLYLcND7su7UzUQVXiJKolglt8WjceJx6UovCA/yYfUFMlAT/HLeMYtmfnm2cWAM/8PFDb1HGrzpfOQmuQqJLVPLFie7rfeO12YNmf3Nuncwh1ekKsraJtubZuDMRNl+Pmai3EreW4bdMmq70BZseNOiguDzX9zjtuJL8ZkPpGTSkZ7ZgHcfQ709fyn65z3LgLL6DfKIegSm54PlvXRBl59IwOUmtkjltox23SW4C3XJF1hEKUA4hNlaQKoZmI7BameZpqrAHpszMI4AYA68k53KCHbPS670ry4ziOG6fgb6PquBUUARYgnKrkTh9BXQFuX8bDpqrj1j4u2dirHDehZmdrSsRNat8nH0oEr9qGV9kI5H4+co57uwDQQfpFp3GTqiS3+LRuPAJp3isQmSrpg7jJc42U8Lrh+TBtZ56n6nzpo6ZMqZIix03kzwm77Vj39nU5bkEcN4VicKi2AanvKqpkS1XSx1qO27ZqKrU3oF7inhp1UPodOO1iIuicCIzcKT0ekvpGLaRk9IRx6Wsu4sZdeAF1XgsQhu+//pnsexXi5lsOgFqhbeiKkwDArqcCe3+N/EazUiU1iFsxBOKWk+MG8J9VucaaqRyA+Nl28IMestF+TZmaFvyl6XajpO90dibncQr+RkfcRL1F0jYtxxKKKnngj+oRN9/5V1CyhWKwynFzpb4pc9ykLYwPYigCIeJaC/EsIMnr9hGyUFHHgHS8F5GuvTZjETA7biHWDxbi5pPjJlEl1y3R/75125p5TNzjcq87lV9FlQT81SSF0b+bOj0hWDixETfVeA89P27D1nLctlVTqb0BfMTt+WcUJ+aYXABaWKhIjGzKAtyudEPNJhyod9xsF165X6HruK1dnH0fHXErxHXcQiBKte/ropoBBD5ilwPQIm7UuQpN83Rw3OQaayZxEnG7J47nBz1kkxECUfD3/32xvg9dXUkh4CVL/DfKwRG3iFTJ3c4Ahk1SOG6emyIRTBCBBJUjRZEKG+Mgbj5bGhG8aqv2faf/yH7uQyen9NDHSfFperm3n2w/FgGz4xY63zUT9AtElZRVJWWEzadt+qzQZ6gtQCCEFjXP1EILZCzEzRNFjYW4taiSUa3luG2rplJ7A8wjgm6y1mm+bzLVhgQIl7QqW6gcNyA7WXzjW+nCKzf5pS/YL7xAXFXJdQbHrZbjtinJDQplUR23Qvo3xHLcigGcw9gFuHU5bkEQN814dEU7Z85MkS/6+Otox8M8KtWo7ml3N/C1c9Lj/3YwsHhxUgD43HPtnEQO4uaDBJdzHLcQqpK1fFHpOvv2W4xn0V+V4xYi16rQAMStfQyw4/Hp517OSXUjW+wApk1Li0//21vTc/76p6RuoW3Ago24BaZKhhInMQVFAT/FyswcOUL92tUhz1AlZQg/gG2RHLdABbhVVMkYiFv3B4Bp/wHs/hn39oagtRy3bdVUam+AmSpJn+ORw7WnaU3nuNHJ4+G57otA3SJeqD/uSpWkG5qJk9OFd/Fi4K1HpJ+d9RU3pICjKuk6kcrUExVVEghH8QACOm6a62JbCFpntQWkoL/uTStOQssBhBYnieB0CuTrE4QCKR5HgXxNe4Nb29R01C66+Rk5LCmB4pRDx0HcAmxMtM+p40ZTR8emtGCf665CN1SOVEjKXqgct0qlHi0EAqJKxHEDEmGwc84B/o+U1jn0zcDUqclz0NPDb7uRjpuWKunB2Mi0XwLeODf7uc91182R9LWrQImgShY76x2gEKZVlWxUjlugAtyhqZJ0Hhu3D/DW3wK7nu7e3hC0luO2rZpK7Q2oHxHrAbxcfU0Bme6psDaO4wYAL1zt0HZFjxiFmIyUBaxLyeZv3ATSvisVU7P4ZmT1HRdeSumQ2wxBGVFZTMQNSMdMqBy3YgcytW1C54nFoErScgA0ghyCHqWjefrmo3Z3A5/6RPr+xA9kka+O6obfy/HRbDSDOVZkDqEFa0OpEEajSmoEkPb9ZiILDjS346a8r3KwznFLU+5L+0XnxFCOm6COtXVm66ZupJtzJOkL8+Ylny9axGs7g47HoErqnieCuAXLQ2sH9voKsO+30mNe150EOXRUSdf8buG4xaBJAgaqZIj5vdp2QUbcYlIlI5QDEOM7huPcxNZy3LZVU6m9AfX5J3ORIm3U52lTFXzLMa3jJkV9BhxomIObUKdGlf4A6YMr4magcwSJgOkQjhARU+l7tI+hoqay0Q2EV+FwzaYkNOJWF3kMQGdsFFWy2C4hS6FpnrqcywBtT94+i3yFcMi1hWsJqhrCsUp+gLwMtTFRzJMhCvtmNjya4FlDHLeAyE8dwuRIldQK/QRG3DaXs3VT6VCiy0pvb3Iex3mLjrjplBkjICjFEtA+KlsUOgRVUp4jQ1IlS7Ect0gFuMuDqO2VoomT5FElQzn6LcetZduayWpvQNZxuwMAqdvsXQ5ATNByXkWdhLFOq9tgJrpDCN62DoEAwkx2WsQtsCoYkN2ARKuhF7GOG5A6VqEKcLdJjltohzmmOAmNHsu/FZMq6epc6Sh7tP1yv3vOZWbTIC3oIRzD6OIkChGnIDluhuBT7bp4BFmo4yY2xrGokro6bq5bmgylLgLiJsbkilXS75LXKp9z1qx82qTRcQvA2Fj/bPo6g7hFyFkS47ItUP6cYCW0jcweH3KIW8AcNx2SF6Lt2m80iCrZctxats2ZrPYGwCjVTR03l0VAh7jJmxyXTY/suO17bvo6hDhJRbFpqL0PgC7FpErKfdJJUwcVhmkQVTIU4lZ3TwOrscWQjVfl5AAIooiZ5zADHoibRvgEkAQ+AsuXA2Ec/i1RgLtQTCPXoamSQJjrokTcCsCOJ+j7YWObXk5fa8sBuDpulFKnyXHzQX4EdUweFjrETVhvL3Dppea2uaqSLnPBi38GVt1P2ovguCmRVFJHzyvHTcyRUnDLF3Er96fjQXbc9vwy+R0P0ZJYddx01NcQbQuLqSqpokqqRG22Yms5btu6UbU3QC/V3dkJHHZ4+t6nALe8uGx3aPa9y0aZOm67ng7sTRKcQ4iTcBE315ow2nyowMnlgDSpNgBxc70m8ndj57hRKwZwfkJK6quspoInOW4xc9xC9J2D/ADui7tOBY+2H8NxC1WPUqUqCWQVYJ3aZSCdPs/TgMJxA4DDrwbeQGj5LmNyw/PAM6TuaGiqZHTErTrnyn96nuMGJPVWBwzXLGYdt9s/oG8vJuIGpDTVEDluMivBV5xEV2YAAPb5evrax6HQqUr67gkGG4G4RVSVbCFuLcetZUjV3ubOBbYjQhuDyNY52m339LOQjluxHTjoJ+Q8F8SNCHDUcc4j57iFKIgZkyopT+5aqqTDZKpzymIjbu3jkv/7VrlTxwBDjlvgXK7QVMlKJaXq1CFuTaoqmdc2EMb5MVGBxPsYjluonB/RvhwgKnk6brrxCMTLcQMS1G3kTqQfDvPB4+dn34dG3LQ5bgEoe5VKGiyTH8c8qiQALF+e1F3Vts903FwcZvlvjoK46erEVa+9V46bVOKh1rYnVdIUHCqNBMa+MXntQz0Wv1Foy+akDgXELcPqqf5GVMSt5bi1bFu07u5E1e2G69NjHzk5W+fIe8IQjpsiCkUXel/ErW4jq4MRLayhOW6B67iZctx8a+jpnOzYjtv4faufl4E1j7q3L/7mGDluWucnwALWvzZtX84JDSEgokNnGpXjBnj03bAxiZnjFgpxq+W46RA3x5wcI1UyQF1EEwoRau0QFhNxC60qWRlATQxCvrz0zzJ1fd06/WcxqZJygfYoOW4aJ6jNE3GrlNPvynuCEFRJYSq0RzxPXo6bLqgYM8ctUB03cd2pWjP9rcEAgS2ghbi1rGUAACoWOX5Sts6Rz4RRqegRN8CfmpaJwpiKSg4FVcnIiFtZR5V0Qdy2kOM2br/09aoH3dvX1rOhm/AmpEr2rkhfy45baMQtZDkAU9uAlOPm2j7DcfNxUJb/nbTXoBw3gGxkHREIriiMq2VQK8lx83UgRki1MbUFuAPkuOnquJUdHQg6FkyIm4lVN9oggBFTVbJjor69KNQ3qtLq6bhlAgkRETeV0yDGu+vaARDHzZB/7eS4NQBx61uZ/N9BGFwhgn6Aei8mryNbubUct5ZlzegAeQhlUIdJ5bj5UtOMi1cIVUnuZOcrBlFApp5YCHES+XtacRKH665bsKMjbvulr18nRWyt2q4Yctzo4tiEVEmT41YM4HTq0JkgVEkD8hMix82Uw+HroPStAl78E2mPUOmCqUpqHDdfARGjKAxRlXRV89TluAH+84Es8qBD3JpRVZI62i6IW1dXUndVZ1zEzWUu6JQdN1rrMjD1rVDKtu9LldTdU/m9C+KWCQ511H9OETdfdVwT4uZyT9mqkh4FuHtfT/6n4ycmtbZFlWzZNm2xkCXT4gIEQNxM7Tc54jYwAGzemLY9oNnwOzuFBnES7xy32IibBiWYcGC6OXzhf92iphVaz8aU4xYacSO/tfxmYNl19m3HRtxiooUm2nEQxzCiquTGZdn3k48gvxUod1FHKa/l57m2zRSFcX1eo1Il5fslNvgy4uZax03T9xB13Kjj4ZLjNnt2lvlS135MxG2C/rNQ1Lca60F6Vn2pkjoUFfAvaM9F3AD3PYeWDeJLlTTNjwGC3AMb02uqc9y8qJItcZKW49ayrBlzuTwg+lzHrVGIWxPluPX0JMIvU6cCTzyWHOvtT97PnZt8HqSOm7RgZ5CgZnfcdOIko4Cd/jN53b8GeOVm+7aNIhYhJPUZyowAcNtxwKqH7No2Im6BSxmoCp/L57i2bUTcIua4OStWku/tNgfoGKf+LWen08BMqLVf0YsCmcxElQxBgTU6bp5jUu6TQEzkQuKuVEmVCh4QHnErS/3LU5Xs7ATOOMPcfsw6bh3j9Z8FE+MhiFum/eq1rww6CqvQEg9yrUvP8c7NcQM8gmdbIMeNtu+6bgu0DchSbWMVbAeySG1ywL39IWAtx61lWcuoJYVE3AyOD+CfU8R13JzruJkQNwfnatEiYPp0YN484NVX0yexjOT9vHnJ53+8Nv2OM/IjLUxv/kX62pea1kiqpDxuJhyUvu5fbd+2kTISWFUyIzhTqB9Dz15m13Yjc9xC13Ez5loFKE+hk9EG/CmBNFIsOydB8vNMtDfPHBEOVdK1bSAu4kbHwrh9gZHT6ttVvWe3r5kLgjhu5HuHHCZ9Rl6rur5wYSIMZrKY4iQmC019qxuTnjX0TFRJ33nMpCoJBHbc5DnMs+3cvns6bn3EcaNrU+zyEdmT/KieTW4tx61lWTM5WFGpkp45Rdyooy9tAfB3aBctAk4+OSmuKkw8ifTrvb3Apz5N2g6wCT/6dqDrSPK7QxRxAyTqhcPCbkTcItINVb8nyhtwjeu4hc5DC53jVjfHBK7jVqcW6kvJNuS2hMjP4wq3OCnAmhC3AGOmUY7b/heSDwKJk9Dr2aZx3FxzraioyfQ3Zuum6sRJOjuT82bOzG8/pjgJbXvs3tnPQhfgrqNKepZiMFElYyNuQZR9G4C4yfMjbT8E4hY7x81UJ89HGKbJreW4tSxrmcU9oOJQnuPmTaWJLE7CFW3Ja7+nB5g1q/64aEL2K2lzvsIq4w8AtjvMkGDu4jBrvhMq0msaN3Rh90ULY+S4ZZ4laaqVx5CJkqQyLlUyhNOpo3mGEG2JTZWsm8N8N2x0zMiR8ABoIRdxc3pWudfdccxQx01GOHzHpC5v0ciusLBGIW5tw7J1U0cQtcgSsnVTOU4bwHfcXOi19F4dcU32s2Ab8ep3dVRJwO3ac6mSLvOYaR4AAuVIx3LcIiNusR23PPaW6rytzLYtDc2W5Rs7l8tWVdJGnCQw4hZCnIR7XV66IYtoyTZ/fhZpk7sod4++d6KQVtJ7pZrkQiNu/3ZV8n9GbtmjQDYXcXOJhnMKNbu2DaT3S1ZLU/0ezZXiWN9q/XeDqEpGFCcZINfz1deBnQdS8YUgjiEjxw0IEGmPgLj1/CF9HdpxK2tQVLlt1+seU1VSh3DUlQMITJUMUYBbdtyAtG7q4m7g3jnJse+cCxxyplmIRGUxqZJ0/ujcTmo70Ea8f23yf/tYqX1PtLNvTfq6XSqn4B0EsREncVy3o4mTRM5xY1ElXdfUfuDRb6bvTYjbVuy4tRC3lmXNRAnMTEY+iJsqx80zQrVFc9zI7z1xPrB2ibqNgQFgwQL1Z9EcN9KAcoHxddwksYZdqlFiKt89sN6+XWHGTYkn4jZooIy0k/73G4rfmszkMFO0EKjf6Oa2Ta+Lqc5PCJpnoFplQoznrC+nx75yVlaMJwRqNRgRFTMibgGc2jtPT1+b6LXeiFuEwudRqZK6nMtA5QA4iJtrHTeV4yasnVynSRPsnTYgMlWSm4/qSmseAAaq86scgPKlSva+lr6Wnc7oOW4x69IGFPpRooXVZ8gFoQX04iTUMe9b5db26/dm32cUYKU11ackS5Nby3FrWdZi5biZBAmAALknkVUluY4bADz/a3UbS5cmwiMq0zlu9DJvcnCAKgZHHAggTkLabx+Tvm4bll53H8fNRIGNmeNWIhHaAU/HTXXdh+8on2zZdsTNmvw9Og/QXJF+i/tKxXg2kO/JYjyPPkE+c63jRkUJDLktLsjSZvL8ho6Ey2ZUfvTMcTPmFjpueFY/kr6uq//lG5jjIm6OWxpd7b8YVElqIXI6Y9ZxMwraBHDc+gkqJtPFfa89fVaHTc5+1tAcNxfnysQGaRDi5hrkpus9RTop+raZONU2Rud2AJhIBMr+XXLqWjluLdtmbEvluMUsBxCEKkknankBM0Svqa1dq2+fg7gNuDgnOYm83giEbkNVSFE3V8cHaFyOmzzWSwEQt7LBcRu1a/a97bjMyMbL+XMRxUkyDi3TcZPFeHQAeG8v8DtCFXTtO71fpYAUqVduBu4m0ux1m54A8wy1AWmT4k3vMlElPcfMhheAlfckr8fvBwyfkv08GlVyiKlKFiXHLbjYT0zELYLjRinfskCTbw29Xqbj5pTjxizADThSVLlFsgPXcaPtO9dz1AQqSsPTQFqvo+NG+77POdn+j9sb6D4xfd+iSrZsm7EY9crk85XiJDERtxCqkkzqguq9sDFj1FaqaKgAAQAASURBVMeBVJxEvqy0u0WH2iS5XPyAVEmd82ODzMjGpuo4OLWmSHixLV1kfBE3FVVypCTxbe24RazdJH+PjmdKIeVcF5UYj4m5TMe/s+NGAiRybosPsvSPd2Xf+4gUcaxvpfR7nuUGjGUYPOff1+9KX089tv7zWIIKQ0GcpGyaZyKXkPCdC7ilO1wLKtMyLnVUSc+1iSJunYERN5scN5frnskXlVFaz9quJmVcIIDjRtZiue+CsursuOUEon33kUPEWo5by7LGpQTa8p+bpgB3AFXJPKqkDnHbZRdg8mT1ZzrEjR7rcIgmWyFunlRJOU+shrgFynGrQzppDoRLjpthcQRStMY5x63ad9V1r1ORDEmVLKZjPjhVkjhCHIdcJcZD4w/yeKfdjY64WY4Z2bkOTWGSTc4D8aU1s8swOFx36tTI6Ib8e761pxoqThKaKinl4dC/xdX5aUSOW6GtXmApREFlk8iSr7Ofcdxk5d0mL8CdcfZN+aK+aF4ExI32Xc47qzluK91y6Kwc5laOW8u2FWPXK7NVlcyRcPVVwmsWcRJA77iVSsDs2erPTI7bYN0LvuVy8X1rQxmStKnj5lLsGMihSoZE3BTiIO2ejpuusCwAjJiWfW+NBBuokkB6L4IU4CbX3UZ0RifGQ7srDws6xF3VSCkS2C6h3CGoaaq2AP+NpvyMGB23wOIkJTL+qYw617j0KyAAShAZccvUcQusKmmiSkYp2h5IVVIZbI1MlfTNixSoTvu4+qBiSHGSGI6bEXHzCKADDJpnRMRtmBCJqWTVJ7lmYj4B/mNmiFjLcWtZ1owFYEOpSubUcQtegLuB5QAAveMGAHPmpMVXM98Rv6P6bUUfuJbrMHvSXUwKfoJWVxl03/REVZVkIm4D69wcT5M4SfcJ0oGAVEkgvdfBqZIWoi06MR4uVfLVl3M6qTHqaJtkwF03yrW2AueeyBs8Ktwg/57TZtMQfCoRB7ffkIurbZtZGwoInJcTaAujQ9wKxfS9q4S5kZIdom6hwSH3ptUZWAMhhFVocKIOcfPsu0DclAhwwBw31Xj3RX7YiJuvOEnkHDcd4ga4CZSYgAXAP1AxRKzluLUsa8Zcrpg5biHLAcjDOrA4SR7ipprIhXV3AwsX1h83OW4d1ZpovkpyygXGt36eIXpH0ZmbjrBvGzBvNn1VJbmIm6vjaXLc2oYBB15Ezg3suInfdEbcNLQ6G1VJnRiPyXGj3d3kiHRSh1JWlQyhnigspmiA8vciUiU7qFS35DByzAaB8JUwN+W4uSL7JjEI4WzFUJUMgVpFVZU01QBtS3/PWVVydfq6rh6lB8OnPJAGPmSFU0Aaj01YgNtUEzEo7diAuLmWAyhzEDe45bnlUSVbOW4t2yaNSwkMrioZUjEtIlVSxfW3pevMnAlcdVUWeRNfoZe1szM5b3jVAfLNQYtdgFueSKnjtvJetwibaaL2VZU01Z0C/EsCmKiSQHZRC6kqSX/TWalOVzeryBdt0YnxmB5HytIrOVIlBeJWGlV/bWJSJX0DRHlj2NfpNFElaY0lGeljtR2ZKsnNcXMOzJnk16vzzNongBf/7NB2ZMQtZo6bSRkXIGhkZKqkteNGc68VbIpiG2rJtrHLAbhcdxMbZCghbnJOJ801pPXeuJabs9/KcWvZtmjsHDfbOm45Bbh9J7rYqpIm9ETemHOuzcyZwJIlSeHhrsmpqmQFQFdXcnzJkuQ8n8WxkeIkJscNCEyRAqKqSgJZmp1LnptpzADSpjOgOAn9zRj0K67ojE6MxyROQoUUOx1yrYDUoZRpkkBgxy0y4rb/Bdn3bRGpkjQX0MVxa5YcN9fAHAdxA4Bb3wdsesWubXYdt8g5bqERNyCA4xaJKmkKQAsT4yiGqqSvw2xig8RSaK0dE8JWARA3mSrpGwy1ue6tHLeWbTMWqwC3KdoLBIgmR1aVNKEndXQd5oTR3Q2cey7wwgvpsf0OAJYtS453VyXjxeTnKx6imujaPHPcjJFq6fd8FbDkRSajKuniuOUgbjb5XCrLQ9x8ci+N1GCk98JZ8MAwD3DVNnViPCZ/lTpumz1z3GRFScAvTywvl9V3npGf793/W2o/IlXSF3GzyfkJqiopz72RHTcAWPWQXdtbkirprSopctw0ap2+jttm4gTLuWg+pQxMNQuFiXEUJcfNU2ytUYibLNqSad/xWRLjvdCmmGcsVYlli410DhFrOW4tyxo3x81nIpWLhAJxEbcQOW5iclcmaUu/Z3tt2ggEMWJUsuGl1ijEzbsQqTRe5DpUoSkpvpuePMStFBlxM3IG89qunq+j5fpEkwHzxqedibgBajEe05+9Fmme26YX89uXrVLhI262470uMCEjbgW/aDW9Vzv9Z3hanSl4RnPcfMVJYlMlZeouNdf5vRa0KtRfG/k+yPSv3LYbWIDbyDbxKQcQCXHbRIIzw6Si7T57ApOYmLCCxxwZuwA3F3ELmS8qt++rKpm3pvoEQ4F8wZyW49aybcaMOW4e1IXcySJmAe6AqpIhETfV+SbZ5dBURsA/im+KVMs5bb6LjGnj7ESVtEDcbB23SsWsyAaEQdxyI+EhqJIy4kZyLvNQWpUYj8lxqwBoq4oJbFzG7CyxwU3ptVQibh4b5TzHDfDb9JjQZfn3vJV3DYibizhJBtnPmSN9HLdCKZtjHJoqWeyoz2Guc7YU991kXFXJKAW4fUVhGuS4dUyod4ibmSppg/x4I26y41ZEjW/uneMWoxxAdbzLNEkgQPpBq44b0HLcWiabacPmleOWN1mQoehLlZQRvaDiJDnRZMCT1hHYccsrB+BLlaQ1n9pGZD8bvZvUl8C5BL6qZrmIG1EktK1tZaKlCYvquIlNiSv9ikGVBHiomyzGo3schRjPpOnJ+97X7CmwplIAgB8lO48KDHg6boZi9vLvhVbC86ZK5qjXeqsGV/9eEz0V8KdKqtYmE72R1XaTqEr6IG5agaVq/13WjkolddyGb1//uRfDJycYCjR5jltOqZpQ84xxDivDSaW13CDELTfHreW4tWxbMVPkNJTjpuRVF8hEOtQRt8DRQXG9KmVYS/TmlgPw3DgMEIemJDlu+5yTfe+NuKn6X3UGYuS4+Ww2ORFfqtLhrCqpmcJ9aECAeeMjqJIAf/GlYjwjybUuo16MZ8QO6eeiFhPXqCMpi+MAkvNjOd5NVN30YPJfFMTNEx0fMARZml2cpKxz3ALnuKnWJnkDavsbseu41a5noR4t9K2FxkbcHObf/tXp91SOW2yqZC3HLcK6FJMqCaR/k2/euAlxA9yep5iIW14dN995bIiYbkfRsm3VGoK4aXIECiUA/QFoQCaevyP8b+T6S1Ep60WGibgByXUsKiZybduRywEMbEhfy5vBEVOB3c4Anr40eR86hw5I+j+40RFxy4tqxs6xCKAqmUeVrAwkUVN5Q5dnHKokkL3/eSbEeO5+HXj6kuTY1VcDex+bzeukGxXbDWEGtVIVuvdB3GSnISdabWu5eTOem/xBQ5ClrTOZl8u9zV0OIA9xC0GVlK3OcbPsv9Fx61SfZ2OmucBbVTJnnil4OD80v234DvWfx6ZKhspxyy3APUQRt1r7mnuvbV8gbjmOWwxVSVqzz6XcwBCxFuLWstQqFWDFv9L3xgLcthvZnCgPkE6wTgsMrWsVQZyE5ljoPqu9t+z/ANmcbtwMDEjf93GurChMgTeDQDY/JEYitVgcvMsBGKKagGfe4hakSgIBqMdS/6mDPmBJIU0aT19O20UhxuPR90pORJZugjg0z0y/ZLXBiDlueQqwLvfUhLgBqUBJDHGSUKqS8hwQGnGL7bjVyaPTZ8kiCFLrSwVY9UDy2lQWBIhDlSx6rNkZxy0wVdIGcYtegNtlXc1Zm4LNM3mIm0P7ou9KqiQJ+jkhbjnrakfLcWvZtmYvXgeseTx9Lz8YRY8IGMdx8+KcN6gAt2qSlvvLXSB7ehKK2AFvSo/deDMwdWpyvKen+pseIhy5ogEFQndxiPhmqJIj6z/3zsthIG5AAMQthyppPd45VMkGqEoCjgi2CXHzyP0D8nM6fZClvOs+cpf09fpn7NrmiJMUY26oPKmSeVF8kedGiyJzjatUB7hdG12Om7yFieG4yc6Wq+OmEj4pFNO5x8Vx6/l9+lq1NnjnFubVohTHK/bXPpOPOq7+89iBs1DlAKIX4A7suOUKfHjMM5UKeZYUiJu345aHuE1IX8uq1luRtRy3lqX2zw9k38fKcdM6bh687S2Z4yZPbpz+L1oETJ8OzJsHrCSRoTKAV19Njk+fnpxHJ0AvxE2XYF7dxDnlieVE8b2T42PmuOWIk/jQXfJEYYDIiJtvYXWTOIkvSpBHDfZQmM277mN2T1+vXWzXdp38f0RxktwNlQc63jZcTZ3tqG56+tfY59JuLTluSsTN03ET1FOaf0NNBEJcnqXX/mX+3Mv5Ic6Y1vnxmCOpo5lLVR9iqpLRxUk8kM7BnL2YT55Y3j0tlkigwqGOW95+oIW4tWybM3mCCZnjljdZAH6cc3Ydtwg5bvLGOG8yXbQIOPlkoLe3rnsZ4KW3NznvhZf0v5VneQsMQBw3F8SNbDZUVEnfvJy8/reFQtwC57hFFyeJTZU0iJNQxM2JKklpzari4R597ydjeM36etrxsClp1Hedp+MWlSqpQn48ywGIe6V6ToHUcQMS4Qgbs1HZ86FM1zlukgPqOr+bHDdf8am+Vcn/HePVn4vnyQW9pnPY1GPrP/dJb2Ap43rMkZnAmQKdid739vRcW/XE2OM9JlUy1/kZl762ddxoAFWnZSDy3GLUcaM5bn0tx61l26I1UlWS/l5MxO2+z9qjM5WKXY6bqf89PcCsWdljeYy5f92ZvraVXWZFHqtOixdVsqCeqEPltgCaJPAAOW6FkoZG6hNNjixOgjyqpGc+lGnctHkibnliPC75IYJ2fALZvC68vJ52XCgAo6uo24alds9TbMQtJoUJSDf5qo0gkKUZ9VrSjBqFuMnXvNghzTsOiBud31WOm9xfm3msPJhufvMcN6dniYyD/b5T/3kwZVydOEkgx02ulSe37TP/5iFugAMlO0dIyIc1AEQWJ8lD3DxqOuaxWIC0JECMOm7tY1ELiNrOYUPInFQly+Uy7rnnHtx88824//77sXz5cqxatQrjx49HV1cXDjzwQLzjHe/AwQcfjGKx5RsOWTMlgltTaSwQt+COm/T+6UuBGZ+2aHsAtY21KjJo6ots8+enSJuwPMetlxy05pzn1D0B/BC3QRLFV9GvYtaeAkiOWz+s1RPzNrJbjTiJwyZ/Qw9pS3peKWITI8fNNj9v0aIkGNLbC+xFjg8ipR1feGFSCHzmTGDkNGDV/ck1730tUT/lmFU5ABcZ7TzEzfNZEkEWFaUZyDoWtvkhWyrHrVAE3vMQcP0e1fMiqHnKbdr0nyIWOsetjThu1nMYg5omzEcZNzpVMi/o50GVzBMnAarjy6I+X3RVyZjiJBznp2peVMnIiJtyP9CWPGd9K7dqxM3KcXv11Vdx6aWXYv78+XjppYS+VVFAzNdccw0AYIcddsAnPvEJzJ49G5MnTw7Q3ZY11IyIm8cknZfjFlWcBMCml2BleVGkXT8K3P+59L1uoh4YABYsqD9Ou6eah2lzXlTJvBw3D8RNJUwC+HP9a5H2NvWGpk3K/+M41sJM6leAX985iJuP2mkt9yRHphuwf55WPgCsvCd5PfaNQOek7Oe+VEkbxy2v74J2XPsu+Yw+S4J2DAA70Q2bzcZHGn9FFVoYE3HzRFEHLaiSPo5baLGGDCKmaHvMjOQZHtzs6LjlOMw+jpugSQL5iBsqyd9Qsij3YlKsBPzGDCtPNxRV0oAqubRdZqCFwRC3yDluqvEQqo6bshaah+OWh6ICaQ5duR8Y2GQ33vPquAEJXbJv5Vad48Zy3Hp7e3H++efjvPPOw8aNG1EqlXDggQfi0EMPxRvf+EZMnDgRY8aMwZo1a/D666/j0UcfxR133IGHH34YX/va1/Cd73wHZ555Jr70pS+hs9NiY9WyLWtbTFXSZTKycNx0yJPO8njbHWOBt/8VuOWY5L1uMl26NEEAZKPdVe076KX2QdxUkUEg67hZR3yr9B5dFN8718pAYZKPWztuOYibjxy1LeJmrSopEDcNo6FNui42tvLe9PUbPl4/HnypkqFUJVW047xnadYs4E//Tvpic18Z9yhqjpsHiloeTL+jRdyo47ZKfY7O8pB9H8Qtk6+km7vFcxDDcZOpkrEcNyTPk9VGNg9xC1VKJgLilreuBqN55uS4AQ5ObQMdNyWNNADiVmzXiBRFRtxoILD3NaA0jd9+3nUH0uesf439fmaIGMtxmzFjBl544QXss88++NjHPoaZM2di0qRJud9bsWIFfvnLX+Kyyy7D17/+dfziF7/As88+693pljXIGq0qKSa70AW45VROnQOjszKDtz2im/RFM1Gv1dRHytu/NwpxQzWyrctBVFme4EEsUYJa+wHGZB4CDAw9qqSXpD4ZYzLaBviXAwglTpJHO1YNh95e4OlnALE3saF8c+6RVzmAvM2gxz3NkxcHwuW4qca713OaQ0sD0nHkRFGl10ax2YyOuFHq8QYA+Xur9HwbxM026JcTYAE8WQkWqr4xyrHERNxo323z0gFSQqI9PLKft+7FznHrJOy73tcS6jrXWPeVijgN2O/3hoCxEtCGDx+O//3f/8VDDz2Ez372syynDQAmTZqEz33uc3j44Yfx29/+toW2NbOpFjxTjlsUVclQVEnZUYuMuAG8yOMYjRx0nuNGL0eUqCktkm1Bl6xUiMQ4A3HzqZcTw3HLKy4bW5zES1UyhyoZc1MSG3HjJPbraMd5iBsAPPW0ui95xrlHjVKVtHbcaL3FCDluVgiET75SBMetd0X6WhWokAeSjbOfcdwmqM/xoR7nSuq3oTbPeOVHx6BK5iFuPqqSLjluFpahG6rmSBIccRH9EsEEHd3QpxyATuhHmFeOW851AYBhxHHbrGAgGdtnIG6+weIhYCzE7bHHHvMWGfngBz+Ik046yauNlkW0fgUaVOcARUbcMvSuAcOGV2E2OW427QK8KBJnkdllF2Dy5Hq6pA3iZq2IyZBFpn/T4GZ9vSHZyr3pRik24qaNtPvQaQRqxaABxUbcbFUl86iSXhSpnMXRV5wkhKqkjnach7gBwAbyPLtSJYfvoD4lpmhApn6eZQ0k6hCwqJI+iJsBIQAcgiCMtcOHKkk3j53b1X8emyrZRh03y0CIWA8KRfX8Xigk16zc60mzj0GVzMtxi0yVDBLcKqgRMeq4DWyq/zzPxLXR0WZDzDM6Zo0XVZIRZKHPmK3jxgni1DnkFtTjIWIsbyyUMmRLYbKJrW91/TGZGxy9AHckWkddHR7LTTKHt81ZZEolYPbs+uMxqZIcSWfZceMaZzPoi7jp1OSEeY1JUZsvBg1oSxfg9rjulRxqWjOIk+hoxxzEjR53RdyOulVzkgfykzdH+tQoYiFu49LX1hu2nLyZzFi3fE7zakXS9p0Qt9fS18MUjtsbPp59HzvHzcZqlDpNQBFIx1IMtsZQoEpyEDdXx02r1EychUEXx42Zf+2D7HMQN1uqJMexGiZRJW2MI06yDSBuLU+qZYlxktG9qGNb0HGTh7ltzS+OUhIXnZkzB5Apw7S7qnk4E62OkKfg6rhlNoMMVclmy3HLzROjffegd2kLcPuIk+RRJT1odbGpkpkcN8dyADracd6zJP28s+M2ejf1OaEQNyX9alh67W0V0zg5biHGjBYZL7hfG4ouiuLpde17OG6byeaR5t8Im3I0MPHN6XurcgAkwEA3xNR8HDexlplEmQSyYl0DlMHWiCpOEogqGVOcRLcu+bISao5bDsPHq7SGLsdtXPraB3HTXXcfqiRHnMS3ht4QMCfH7YUXXsB1112HZcuWZY4/9thjOPLIIzF+/Hjsv//++Nvf/hakky1rgMkLxtH/qj8negFuSdrdxmyokrZ0Q1vEzXRturuTelLU8vbvHz6VfB7DcaPRwYiIm1Mdty2Y4zYUxEl0U7iXAmEeZc9TnMSUjyr/pm7MCNqxbBzHbRjNP7G4rzVn2bBshspx082RAnWzddwGGIibFzUt5zkFyLWxbDuDuOkCRD6IG9k8qhC3QgHYjTAlbPrPQSAyz5Mj4qbb4APuiFsjC3DnUSWt5186x3Dmd1fETZf24Yu4ifuaV2O0Yj/mhQOvG4+izhpgX2st41jp5Po9qJIcKmYmmOCw5xgC5uS4XXjhhTjhhBOwYUM6yWzYsAFHHXUUbr31VqxZswYPPfQQjj32WCxZsiRYZ1sW0eikvtdZwHaH1p8zZKmSMuJmmSzMESex2fTMnAlcdVWKvOkct87O5Ly3vJV83kSIG53UdRsqH+dnQ08a8dNG8h3HZCUH9QHiUyW9xElsCnCHRtxo/kYEqiQnEu5KOwaAvfZR9yXXRIMMxw0VB0o2Qz1ROG59r9u1zwqy+FDTbBw3H6qkZp7xynGjVElNvVnXeYaDQLgibgMDQF/1vg62Je9V1iiqZOgC3PRWrlml//uUbXOokgEQZg7iZi04Q0p3aMVJfAKWFiV2bFFaW8TNmSpZ0AfQfEsxDAFzctxuu+02TJ8+HTNmzKgd+9WvfoXly5fj+OOPx4MPPohvfvOb6O3txcUXXxyssy2LaJnNmk71sYGOm48IR91mUMq5sG2bI05i66DMnAksWQLMnQtMHJceLwPo6kqOL1mSnBe7Fk/GcbOIDlIaUIeGBuRDR/nnCenr0Ihb7BpFMcVJKpX0fBZV0gNxUzkQxbY0gLHiDmCjZUH73By3iLTjzk5g3/157cuW5ywDWaGCGHOkEBAp99sJlFBklFO30DpQwXHcRLmXJqNK0s2jSpwE8AgQMRwI25zRnp5kfZg6FVhbRV6XLkvez52bfE4tBOIWg5WgW1fF33fY4emxP12r//tUxkELaRDWmoWTQw32QdyoQ5snTgK4zzPaNbWQfuY1ZjjXxnafx5hnfFk+Q8CcHLeXX34Zu+66a+bYDTfcgEKhgIsuugj77rsv5s6dixkzZuDvf/97kI62LLJxaDoNVZUMiCzJOW02qJL8fRZVkrmAdXcD554LXHFZeuyznwOWLUuOd1drw8WuxVN0RNwy+Ru6UgceC/vK+0g7DFqE1YYqdo2iiOIkGbRQF3WMWFwWyC6+zyhk+Y3tBxAnAdS04zxxkoULgbHj1H3JMxuqpG3bQD7SCWQFSmzokpn5PUdiHHBAT3I2skB6bWzbjk2V3PRK+jqm48apO5U3vy9aBEyfDsybl6iqiiYHkLyfNy/5fNGi+vabTpxEwWTJ/H1kfBeh//tUxrnurkwTIN+BKHaiFjC2ddw4+aiu5TUqFV6QJeqYCSEoZlAGb4mTqG3VqlWYMCFbk+TOO+/EXnvthalTp9aO7bPPPnV5cC1rUmMVyB6iVEl54vQRJ+EgbraTBQUEt+tKaGDU2iLl/tXad6zjRhWndIn3oaJfrEXANfckAg2IE/GFq+PGccYjUiUBYPon0te2xZrzaKo2TqeJdkxvmaAdz5zpT681OW6ZexoDcXNUlmTNvz45RZzNYBNSJQc2AaseSF6PmBY+aGmtbmiY3xctAk4+OVt0XnSXPia9vcl5wrlxRtws88R8ygEUO+r/PnqZ6SMn/30q41x313UPYOReF1Kny5YqmXHcGFRJqzxdel10pTXgMWYYOW5BaJ5MxM1FyXoImJPjNnLkSLz2WkoveO655/Dyyy/jsMMOy5xXKpUwYMNLbtmWs9gLO6cAdyzHTZ44fRA3bY5bKAUsFQLhwTmPmePGQdxC8c11UUvnTTjH+fGhjtlSJW02nAzELWYdNwDoJjU5XdU8ASil422dTko7HkuodCraMeDhkNvkuMEe/eEg+yEQN21gLoD8emyqZFtgxG3FHel1n3KU/rwg84xHrlVPDzBrVvYYbU71tVmzku/RTbhNXmRmkx9DnKR63YudCctE/vvorVT9vPj7VBYbccujGwIpzdEacaOB4sBUSc7cDqT7HNsgd6MQN848I/dnKzInx22vvfbC7bffXnPefvWrX6FQKODwww/PnNfT04Ouri7/XrYsvrEcN58ovpikNXV+AERTlZSV72Igbj4FZnOpY3Rht+WEW0YercRJOFTJQIibLp8nZo6bl6pZRFXJRiJuoUVh6Pkha9AJ2vFZX0mP/fRn9bRj+XebiSrJEUHKOG4WSKe14+ZKlTRRmAKoSrYHznF7/a70ddc79OfFpEpyEOb587NIGwDQR1P1td5e4NJLs/fblZUQRZyEKGKq/j56K1WPnPj7lG1HXPcAHjVYiAB5USUDi5OwitkDYfIidWuHDyuBMc+0ygGo7bTTTsOmTZtw0EEH4YQTTsA3vvENjB49Gscee2ztnM2bN+P+++/HnnvuGayzLYtoLMfNUcSCts+ZLOT+cMwkMb79v2ff207SLFXJItk8+CAQigkp49CGFG2pmusCxqFKhop+6dTWMg5zxBw3H6pkaFVJluNGN2sRctwa5bjZOp0Fch2nTqunHQPuzIHoOW4MxI0qQtrMwRzGg1fwyUKcxPaexqZKCtMpSgKBqJKc8a5Y9wYGgAWKPNI8xw1IvlfIaV9nmQCOru8BxEmKneq/T0eVpLZggVptkpVbGMBxM413Z6okA3Fzve6coBzgkePGKZBd8NgrWcwzcn+2InNy3GbPno3TTz8dPT09uPbaazFs2DD84he/wOjRaf2H6667Dps2bcIRRxzh1LGnnnoKF110EU4//XTss88+KJVKKBQK+Na3vuXU3jnnnINCoWD89+STTzq1vVUYy3EjanLWEreWjpurqmShWI/ojZwGHHGde9scxG1gADU+x+YN7tLFqgXSK4l6S4uTBOKbh0bcYiumWVMlbShMHKpkqDpunGsTs/B5DKRzCCNumbwci3mMVUfT1aFlCh7UqGOWc1hMqmReMfjaZ45j0lacRDVHLl2aCHPIxnHcli8HekkfbOaCfsvAnCtVslJS/315VEkg+fuWLq0/HpMqWR5Ebb7mOG5RxEkCIG66eYB+Zp2awQlYAjXXI4Y4ic+6PUTMdGW1VigU8Itf/ALf+MY3sHz5cuyxxx4YNSpLYdh9991xzTXX4C1veYtTxy655BL86Ec/cvquyd70pjdhv/32U342dqxmctoWjAuhtw1PNgwxELcQqpK6xXfqe9PXIVUle3oSmseCBcB3+oFhAJ58HJgzNakzNWdOlqZl6jugcdw8ZItjipNkHLfYiFtox60JELethippe22EAxSQKimMpebp6lwxcty8ygEwELeMhLnNZpM6hTrErYgEBa5YOifk7zRuZAV1zDLoF1NVMq8YfO2zmKqSOc/q2rX1x4Ds7s10uwZJINNmI05zKDsnqc8JIU5S0VyXPKqksHXr6o9R9oWWKkmcIpt1L8NIMOxnRC23cm8yLo2iRsQGYlIluYhbgBy3vJqOlQF3quQ2Xg7AyXET1t3djW7NpnS//fbTOkgc23vvvfHFL34R+++/Pw444AB8+9vfxi9/+Uvn9oQdf/zxOOecc7zb2eqM67iVRgD9q+0X30ZRJbWb8GLyQJf7/XLcKDq1aFGSIC24+WKhaUMqXXzhhYkEuRBGMPUdUC8yPpQOTnK8szgJjcgGRtzkJHrdhsy5HIBlHTdbyeXFP8lvn1UtWtW+JVUyhjhJEKokBy20pXlGzMvh1HELRZWMibgZ5+BScs1jbAbFRrncn1x3Y0SeWMwcNw56Dbg75NaqkorxPkYzt9LbaHpM2gm91mYu6F2Rvqa5ldRClAPQ1SrjUCUBgDC9lH0JjrgxBT7kWm5amq/cfkxxEocct0pFr0sgG+e6AyTf1XbtEOIk23Y5ACfHra2tDaeffjoWyjV0JJs9ezYuu+wyJ2XJj3/845n3xaITq7NlXOPkQABp1DQKVTKAOImxOG6nm+OmioQL6WJqYg5SSRcDeuctT1XSS7aYIUvfKFVJq00ycwPmivyULRE3m7Zf+guw5lF1O5n2I9Zx83J+tnCOm08NupiqZtblACydCIGmF4oGlMAVcWPO74USgH5LqiRzI1siDsTgJqCo2HCrjEOVdM1x4wRB5M+iIm6KdW+XXYDJk+vphHmqkkCiqjp6HLDK0L7OYiJulUo6foeNUv99HKpkV1dyferaj7jusQMVZLwPWDhuLMTN8bqzVSUlQRvT36lrn+W42T6vHKpkqxyA0iqVCipMWVnueS3bwsblPvtK3MZA3NY+Bax5PHltWnzFJGgtTiLluKmkmYEs4iabUbo4jyoZCHHTJcf7Om7FTgO1y3ETzt0chaBKcuq42Wxkn/l59v2WECfxcn6GsDgJp45Qs4uT6NA2+TMb2jQ3MOei/OiKQHAtKlWSyceLOc/klQMolRLavWycHLfZs4ESDfy5Im4ax811jiz3opYn1j5S/fcB+ezk2bPVAkQxVSW5473kON45iJszAmyJuMnfyTNujpsr4tYqwA3A0XHj2saNG9HezvTUG2T3338/zjzzTJxxxhn40pe+hF/96ldYp+JIO9iGDRtY/5rS2DluROKWu0gObEwXX90CIP+uzabk9g+mr/s1+QBAuumxFieRKEwq6WLAvMhwpYtVE5JrlB2wz3FzcdzaDZFz502yNKF3Hak+L0gknKGYZrMAyFHS4OIkDaRKanPcIoqThMpxC15HyLaOm6M4iclxc95s2iBuiBPFzyAQFoyNjOM2Qn1OkBy3CIgbZzxyAhVz5qRF5oXl5bh1dgJnnOE+F8SkStJ72jZS/fcBahZLrU/Vv09lMamSXIQ5E6iwGO9RxUm4fXcMEHFz3IqOjps43+QUbgPlALxy3Ey2evVq3H777dh+++1j/YST/elPf8Kf/vSnzLGxY8fixz/+MU499VSvtmWBliFldEI3weIZustm/UJKbdPL6evhhvHgusCsfoR3npioremG5PxKSS1dDKSLjG79X7AAOPvs+ghhbh03x7yWurYZssg214ZDf3VFfuQJ982/0LQfsTAuFWuwWQDkjXdwcRIGSpAR+rGlBov7VNCjtF6IWw5yFV0UpklVJcV90qHX8mfOqpImRK96zWJIjLsiEFQ2XnvtXamSzBy3mAGiAiNQ0d2d5EpTej5tTtWlhQuT7y13ddyqVMlCEWgfpz7HNbhFHffSSPXfB5hZLOLvUxnLYfZc9wB+oMIKYbakSjYr4hY6x61SRi3AyUbctk6qJNtx23XXXTPvf//73+OWW25RnjswMIBXXnkFg4ODmDNnjlcHQ9kb3vAGfPvb38YxxxyDnXbaCQDw+OOP47vf/S6uv/56nHbaaWhra8NMk4jE1mxsmVg54dbWcdvB0LYHSsCxtgCI24vL1dLFQH5AXkgXT5+ePZ7ruLWj5kBYI24Ruf415IQpzfvidcCGHmBkjsombRsAtn83MGpn9XkxN1RAKtYQG3ELripJ76mts8+plROg4HwMxM1WnCQ0VdJHVZKDuLkKFdkibs6lNbgbWQcEQoc+AM2LuIXIcRMm9iZCEIsOQ9qlzs6sIJYv4tYxwRDACYC4iT2E/PcBasdN/vtUxgngRM9xc0WtGOWHXHO7uWih65ixznFzRa9z1mxh2zri9txzz9VeFwoFrF+/HuvXayS6AXR0dOD444/Ht7/9ba8OhrJTTjml7thhhx2GP/3pT/jMZz6Diy66CJ/73OfwwQ9+EB0dhoXNYKbrIWzt2rXYYQeD87KlzJYqCSRRMx2FgtrmyIgb12pUSY8ct/WGfploHcJUtNy8RaZQSCbwwU0OpQwiUiVZgjDS4vDEhcBBjDIfHERM/sxqEbBp31KsQV5stbSOiKqSrsgMkC6+HKqL3B+Oxcxx41B1XIu2x6ZKNgpxy1OVBCJRJYnjZUOVFHOSbhMLuDtu4CJurmIQdLOpExLKyXGjNnMmcMQRCe3+josAVJV9y0iEOmbPTuiDFIlyXVf7qoibaY13RdwGNXmL9O9bsAAYXF79Hej/PpU1g6qk63XP5KNq5gLXOYyb69qMOW6cfFHAb/0YIsZ23JZWixxWKhXsuuuu+MAHPoALLrhAeW5HRwe22247lFRJo01o55xzDn7605/itddew1133YXDDz/cqZ2RI/NVgwYHLRfzRplNHTdhXPh/40vpaxPi5qMqyTGXaDKQ3SCNNSxiJlqHMKV0MQdB6XRz3Kxz3CwoHSx5dGkOWHUfr21udC024uYi1iAvtltEVdIjL1IsdqZoctOKk9gibg5USR36kHzo1jbQJDluEcVJZFVJrnEQt9p1r8BOvrxBiFuhpO+T7Xjv7gbOPRd4bl/gjv9Ijn3hy8Ch89RCHZnccYt1Vah5lgw5zEEQN2nfJP6+s88G/jAZGFgF7NwNLHtW/feprBnESWwc8kz7jGfVeTw2SY6bk+PGpWG2ELeaCXohAJx22mk4/PDDM8eGsk2YMAGTJ0/Gyy+/jGXLlm3p7mwZs6njJoxLd2kaxE0M9wqsCmLSSX3XGWrpYiA/x00rXcxAf9qGJcphzSROUksUtkDcJhxk1zbA31DZRB650TsXsQb5+dEuMhFVJds8qJIcxG0olAPQqvi50owYkHrmuliiPxzEzVVV0poq6Ui/Mm2oXMVJbBC3pEPIPFsmi53jJsZjDISgQASNJk/ROzUuKQiVMglUmOYBV8eN3H9diYdSCSh1JsIrbQW+0yb3JSriZkKtmBTYuvYZz6orHXBI57hxqZJbP+LmpCp52WWX4WMf+1jovmwxGxwcxJo1CeVgtAoR2RbMlSrJsU2vpK+5jpvtZpNjzouviIR3AO3teuliMa/o5iuOdHHeRtxanISzkXVEZ1wQNzp+OG0DPMoFYLnZtOTLu7ZN25AtpqqkK6VuYADoqyIc5ULyXmVeqpI5uWKZTUkMxM1yHhgYAJYsIdcixgZ/kARCmIibs6BCE1AlQyNuQdDryIibtm3HDT57DnPYhLPVAV3FSRhKoUB63fo2Sc9gjnFZLMJiqEo654kxhIRiq0rGznETc2i09Abxna0TcXNy3Hp6enDllVfiqaee0p7z5JNP4sorrxwSCNZ1112HjRs3olAo4KCDmIjA1mZc7rOLMhg9r2RQ3oyNuLk+0FTVDNBLF4sm21Af8DVKF1sgKDEQt0LBLf+P5bgVgF1PJ9/hLrzcTUlEVUn6mdVGVhq7oamSnLwc201JTw8wdy4wdSrwWjXQ8tKryfu5c+trEEZF3DwWXlY5AGa0ml6T3XcHNlUDVU8+qb4mgH9wCGgSxM1xM8hWJGYG/coD6T3iIm6u6HXMOm5GAae2tP9WlDomuuGyrlaY9zQGVRJIn70Xq2kWK15LnkHdfCQbB3mn655VEKSBjltoqmSz1HFzKQfAbnvrLwfg5LhddNFF+OhHP2osrl2pVHD66afjpz/9qXPnbO3iiy/GHnvsUSfr/8ILL+Cqq67C5s31D+cf//hHfPzjHwcAzJw5E1OmTGlIX5vOYiJuXPg8tqqk62QnNkhi4yCki2Wjc4T8Z5qki1lFWh2FVbiUQ5dSCRzHDQB2naXuD6ftvPaD1FfiIG6OiyNto75x+iV++0KmGzBEk0vpZ3mI26JFidLpvHkJBVg0OYjk/bx5yeeLFql/N7SqZKFAHGaLjWz/euCl69P3nHIAOnqtfE2A9Hb1D6qvidy2q+NWNDgoNYVZRFaVjC1Owgz6ZRxaTo4bYCf0Q841Ur59qZI5c6RwjmwQZvZG1gVx4zongcVJgOyz11e9P+Ly6eYj2dh7juqYiqEq2ZSOG/e+uoog2ea42TyrDjluWylV0kk95MYbb8See+6JPfbYQ3vOnnvuib322gs33HCDk7Lk/fffj0996lO198888wwAYP78+bj++nRxvuaaa2q14lasWIGnnnqqzvlauXIlTjnlFHzyk5/E/vvvj6lTp2LTpk14/PHHsWTJEgDAkUceiUsuucS6n1uNxcxx40S/5N+1megKRd4EkKFgOWyqaCRcJV0sO279yJcuLg8AT5yfvudQJWMk37cNB/rXhEfcALfrzkbEAiBunBw31zyC5Ac0bTugBJUy8PejSBumzWZn8oyakJlFi+prJ4nLQS9nb2963syZ1fEnatwFRtyAZNEfHLDbyD75g+x7V6qk6poAKYoubpV8TQD3Df4gE3ErFJLPBzfbbagEo6JQNDsRNWc/gsS4y9rBqWkFNDHixqBKAsl1K/fGySfKrKvMMcOWdQ+Q40YdN/nZ0wm5qp49amzHzSF3nO38OOZasRw3V5VTbn6eo6BNzBy3VjmAmjk5bj09PSzlxd122w3/+te/XH4Ca9euxV133VV3fNmyZRn6ZW9v/kTU3d2Nr3zlK7jnnnvw9NNP4/7770dfXx8mTZqE973vffjIRz6CD33oQygWnQDIrcNiqkpynQdXVcniMN5GwDUfqkaVlDYOsnTxwPL0s+23Az4yJ1+6eOmV+j5Sy+S29Jo3MdRqk13BnHzvQsXkOm4u6AxbVdJVIdCyfR/HTbtZchAnWb9UasJ0T4XjprmnPT1J4KHue9X/VX/yrFnJmO/uTq5bZcAjxy0nL2dwk9088MjXpTZ06LVhYdddEyC9XTLRhF4TV1XJDOJmcNyA6nxn6biJ62ia2wG3nM6YOW6ZmlYRctzY5QAa4LgBkaiSDg4E9566OhCUKilYPKpnTzSp60Lm2SPGDRa7rHvcAtxNibiRto016Jqwjhs72Lr1i5M4OW4bN27E8OEm2kJiw4cPxzpV3SqGvf3tbzdSMVV2zjnn4Jxzzqk7PnHiRHz3u9916sc2Y2VmRDZDldygP4+aU2TQJspDHs43flV/nnPNL4PaG5Uu/tt7gVU3JscfuAcYw1Bd5aIEskog13HjOle2Cxg3qR9wu+7RZbqZiJ6LWIMcodRRil3ESeSNAov+qtngz5+fosWZ71X/V13O3t4kUHHuuW6OW3mQzAc5Tmc/7PK42oZnHQIXxE13TQBQxfmMydek1raFA8FF3MTn1igB03HLPKtM5V224+ZAs+cibjFrIgLuyBJHVRJI74vNRpNdM8vBuWILcATMcVM9e2L72AFgOADZ36fPHjU24iZSEGzK4AzlHDfS9zYm4tY0ddy4+8itH3Fzgpi23357PPjgg7nnPfTQQ5g8ebLLT7Ss0caOyLokOnMRNwdVyUo5nYyGTQbe9C39ua55ORw56lIJGDMhfV9kbh7kNoMrYEVy3LiImPw5W5zERVUyAu0iBOI28WBN2y4ogeQ1cBBsleM2MJCgxCozOW5AFV0ecMv/u/e/0tecucBm0zCsK/ueI35C76vpmgDpaqm6VeKaBMlxy3PcxLMaEXEDLDb59FniIm5cmn1kxM2lHIBV2ZEmQ9y41GMXxM3HcdM9e2vI6zGatsSzR42dniHmSFdUKXIBbp1zFaIcALvvTVLHjU2V3PoRNyfH7fDDD8fixYtx9dVXa8/5wx/+gCeffBJHHHGEc+da1kBzWdi5Dx2btuDgnNCJaIw+5xKA26aqTBCFXAqTA9WT67i5yoCz89CkHDpuu5y2Xa67bYFswDIvhxtM8FSVfMfNerlrl82m3I88qiSgfpaWLlXXIqSXQnerli9Pvu+y+D49P31t6rvJ6dTZMClIqMsD1W3CddcEyLBaleCofE2AODlugJtQUW1+z2nbJcjCLsBNHTdm3xuZ4xZTBCkPcROb6CgKfi5UycjlAKjjXhqpf/ao4zZW05Z49qjZsnxcHbcoiBsN4jSDOIkj+4mdm858XgfIdVm3gVeqplUOILXPfvazKBQKOPXUU/GjH/0oQ4dct24dfvSjH+HUU09FsVjEZz7zmWCdbVlEY1NpXDbhzMWRJikPMmmYgxaRapcoVUbVLIee6DJRy33WLcDORbKZGwc5hy63XSbVUP7tpqFKWtKMXKOaE/Y3nOhA75I3Xkan04DMrF2r/g69FKY/ed064rg5Lo4m1EU8SzaJ8Z1MdoduzOiuCZB13HS3il4Tue08s0LcHJxaJ6pkYMfNKXDGRNzos7T5Ff1psmU2jTFz3PICZw6IG1sIgjpuDlTJRpQD0D17HMcNSJ49avQ6PrNUv8kXz1JlkI+kOhXgDi1O0qTlALgosE3/RWmIdxNRrl/9Vl8aolUOQG0HHHAAvvOd72DTpk34/Oc/jwkTJmDatGmYNm0aJkyYgM9//vPYuHEjvvWtb+GQQw4J3eeWxTAxsURx3CwgbvH73Pw5mw2PS9+tHEMHqqcL4haTKslt3xVxcxIniawqyXEMK4M8JBLgL45OqpIy4mbKcSMbfLnvYzS8Iw7iBgCjR7shbtT61ug/c3FOOsbxztMFcHTXBMhH3IDkmsRWlQSIQ77Zfkya8loAt2h1TMfNBXH714d5bcv94Khtyt/htp8b3KreFxsVVTZVko73ZhEnIUGbtuH6Z49OEeMM7Y0enfwvNvn33p1+NmNPwybfgRLYyBw3V2Vcnbn03VVVMsRcQEtDrF6VHi/DUKpm6y8H4Cyj+KUvfQl//OMfse+++2JwcLCm9jg4OIh9990Xf/jDH3DmmWeG7GvLYpoL4saOUDGVDYEUdetfz2vbZsPjsshQJyYG4sZ13Kis1nNL9BFE2ZrNcQuNuDmXeHDZ9HDHO9Nxc1GVrIsgGspCmOguu+wCqPKPOY5bV1fyfV/Hrd/guNHcE65zwu2HbjzqrgmQXSlV3RHXpBGqkrV5rmKBikWkwjvRowIjbnRdWf2whXBWoxC3CDluUamSzHtKf/e5XwL9TDG6zBzZqX/2ODlu4tmjm/zB6rURt0q3yXehBDaqAHexw0D3dqWoctXDA+S4+TJlRGkIIVhDH09VqRpxX1viJGY79thj8cADD+Dll1/GXXfdhbvuugsvv/wyHnjgARx//PGButiyhlhtsjBMRIDfJjyPrgekjhuXKhkbcStbOIZtDouA3Gd5kRQRxPmXpcdO/qA+gihbUzhuzUiV5LZPNz0OC7txI+ugKilvvEyLamY8SueVSsDs2fXf4VAlZ89Ovl+jkcZw3OjGgbnZpP3Y9aP683TjUXdNgHyqZO2auKpKctUT4Ya+D1WqJBdxk9tbeR+v/WbJcas5bhaBCjYroUHlAADgxevV58kmIz+6Z49DlZw9G/jtb7ObfJ3AkrzJz+TVO9S4i4FacZ7V6IibZ45boU3vdAIS20TRf1VpCPp4qqbWWbOS720D5QCCFC7r6urCwQcfjIMPPhhdXV35X2hZ8xmntpL8uS1VMq9tACiNSv7nRkytKEYODkRsxE3uB71GNIK4klBLOqGPIOraz4v4+jhuJooR4CZ4YCsrLPcpVPtOtacYEVMgjDjJgKFPtO6galMyZ05SIJ4aHeKqYdDZmdQmBPwRN9P3TE6ntj1ybfY9V3+eaTyqrglgpkqqrglgd11U8ug6sw0mUOVdK0aFg+NmzIeKiLjJQYAV9TVgNT+Qvgxdx61SRm2wcBE3q/YdEDf2/Mvc4A/bLvt+gMmUUTk/qmePAnijFe10dgLve59+k6+bVsUm32XN5o5311pogxEdt0bluOWN97z+q0pD5LFBRGmIFuLWsm3Gahv8nCHh8lBwnQcg3bQMbOBFHp0RNwdxkhg5brJCpLi+Mk2ANke7IUcQ69rnJsfTTT7DQbFB3JpSnIQrmEMUIV0cN6M5iJPIOSqmPuU5P93dwMKF2WN0b6xqeuHCtNitr+NmMpeIL1cwx0T3Vl0TwEyVVF0TuT95RnN+8hy3DPWNMY9xEQIg+6w+/ACwhEHLjom4cQNnfauz7zcsVZ5WZ9x6lJkgi0OeLreOG+Cm/MilM4ZG3NqGATP+X/qe7ZArWAmqZ4/OQarld+FC4E9/qt/ki9ul605tk+8QIOIW4HZha9BzTYHo6KqSnnXcrJhb0tqnKw3BWS4XLADKJMq2LSNuP/jBD9DXZ3HzFNbX14fvf//7Xm20LKI1BHGzcNwqg7yJ1DXHrVkQNxndKrSpaQL0NNWfKSKIsrHLAVhy2mOLkzg5bg6FcQHzuKRRfhO6lWmbS0sLgLiZHDdO7b+ZM4Grrkoj3dRxy4y5zuS8mTPTY+Lax5BcdgqCcEWQcoJP8jUB1FRJ0zUB3BE3WqhaZbZ1uQaZqFVPD/DQo+n7E44Ddt89n5bNRWecHDdKlbRA3JwCRCbErWAfqOCqPgJum3wnVUmXHLecTfiEA0ifLB03mVInP3u6gKV49j70IfUmPw9xA5LvZXLFIua4WYnOMNaPEHXcuIibTb1I7l7PNBfoSkNwHLfly4FlL9X3ZyszluP2hS98ATNmzMD8+fMz0v8cW7NmDX7yk59g+vTp+NKXvuTUyZY1wGoPT86QcKK7iBw3BlWyjUSbOXRJV8SNLU7iIhoAC8dNMSmqaAL0rcp/FBFE2diOm6VTG1ucpFlUJZ2KBnMdNwdxEnnjZUTccqiSwmbOTJCVuXOB7UkiySYkif9z5yafUwcFSJ/nGIibL1XSl15Lr0lXV3ZabO/IvyamtlUm17Uyma3YBMf5EbRs6riJvzmPlu2CuHGFrTJOp2H+lRE3doCIibjRz0OrKQNuAiJOVEmXtmPkvRuQGfrsTepKc22HoX4+ytvkm7qzfDmwnqzTXAeFG6hoa8IcNzaS6pjjVqNkezhuutIQXMXjDeQ+bst13K655hoUi0V88pOfxJQpU3DyySfjsssuw5NPPomKRGerVCp44okn8Itf/AIf/vCHscMOO+Azn/kM2tvbcc0110T5I1oWwLgb/NiIW/uo9DXHcbNC3CJSdYAwiBs61RFEXeSR2oIF9bSmCtNptr02zShOwt0Myu2bFpmoVEkghXK4yokWiJuN89PdDZx7LnDJD9JjX/46sGxZclxQAalZb2SZfyPgny9qdPaZ41Fck2XLgLvuTI8f/S79NWkfl77evDy3yzXL5LjlIG62CEreHEZp2TR+ID92Olp21DpuzJpZdYibA7JvUmgF7Mc7N/gEuDlXbKqkQx03G3qtz33VoXn02eusBpNm7Fw/H+Vt8vPiYfRysKmSTDQyhKqkzrbmHDddaQhuZsHoceQ8P6ZgsxpjJw0cd9xxOOaYY/DjH/8YF110EX71q1/h17/+NQCgWCxi7NixGDNmDNauXYvVq1fXnLlKpYJp06bh05/+ND796U+jo4OzkWnZljFBlYyAuHGdQiAbbeYkOlvloPkW4LbIcWMvAmRT9db/BXpeVUcQ86iSQBJBXLo0iYwLC0FdUJkz4haaKulYDoAbDfcSJ8nZ8ADJ81YZ5CNuNo4bhyopG1VznbpbovamM1tVSbnvb/i4/txM3wNTJW3HY6kE7LIz8KDom6HtUW9IX69/Jr9tYRmqZB7iZpmzZELcZFq2yXETNmsWcMQR6eY58ywFdtxs5hlq1ohbwSwkRH/fpe8xctzYCLNnjlvotYO2nzdHlkpA52hg4xqg2Fs/H+Vt8vO600meNSeqpMm58sxxM7btWA4gttPplOMm3SRRGkLeB+nKAVDr6gJ22R14oPreppTBEDK2OElHRwe++MUvYunSpbj66qtx8sknY8cdd8Tg4CBWrlyJ5557DitXrkS5XMaOO+6IU045BX/4wx/w7LPP4gtf+ELLaWtmq1SaJ8fNhyoZG3ErWiBuXGqEaL99DDDtA/oIIgdxAwCZysxGUi0XAu4mGXAUJ+HSgEJQJbk5bkyqJEcVrPbb1SnYlSppyruj6Ap3ARsg46ekknEjZo1ASH3f/3z9uS5UHe5G2QmlJfdn9Vq9aMdo4rits3DcMlRJmxw3xrNqKjUg07Lp5dDtDmRadkzEjfuc1n0vcJ1Lek6MHLeiwybfBXELXYAbcMxhZjpugFlpOq8epWla7eoCJpDvhi4H4KIqWanwHDeXkiByP9qYiFujc9x0pSHoI6q7r7NnAx1kD2nT9yFk1qqSxWIRJ5xwAq644go8//zzeO211/Doo4/iX//6Fx577DG89tpreP7553H55Zfj+OOPR7HYEq5sfiMUptAbfHqeNeJmSZXMzXFzKabsirhZ5riJiVgXQczLcRM2Wtpsx6LANqU4iYXj9vKNvPajUyXF/OgoTrL9u/TntpOxsPIB/XnUaAHd9oiO25R3AR3j9ee6oNdcFNUWee/pAc77Tvr+7//Qi3Z0TADaq9QuV8TNqhyAhziJSr2N3krTY01p2VEdN4sAke57RmMyTYB03Niue/S72rYblOPGbtvGcXNZV10ct/X1dGvdJp+DuM2eDZRocIvrXLkoM7rcU8P6Ia4JwC/BIPfDWMqggTluquCZqjREHuImyrIU24hwVstxU9rEiROx11574d/+7d+w5557YuLEiSH61bJGGldZC/CLmrIKcFvmuLkibmxxEoq4RRAnEVRJgebpIogcqmRXV/J9ak7iJIxrYxMJzyu2KVt5EPi/U8n3Aztuqx8FVtyRvg9Zx40bMRVmi7jJEfO9vqw/d+px6evFF/PapyIPL682S8FTx42Tv8bdaAJuVMna/S+Y5zGbMSNEOy66KD0mbpVKtKNQAEbvlrze+AIfeadoro2qpDVVkmxUVcIOdBialgJBy5b7EBVxM8wDB/xQ/z1O+xynUDzPToEEG1VJh03+kM1xs1GaLqvRJdUmPw9xq23yXcoBRJTU5+agtbs6bpFz3MRcbVWaSTFmVKUh8nLcaFkW8fstxK1lW63FVgi0KsBtmeNmg7i5UPYy1IIIOW5iIRIbKl0EkYO4zZ6dzQHIUGC3YI4b/X1O20uvVH9X2a5D/txTP9K3IZstVbIyiBqCbaKipD9e/Z4D4nbwz8zozLg3AuP3T15veM7cbk9Pgh79+rL02Hs/YJaCN9XiUZnNZtApCMKcZ7hjnYp2mOq4yaIdY/aonlcGVj/M6bkd4haqHICKls2hSgoTtOwKM4rvqy5rcvZ3/xRwyHz190xWsUHcLDeDVuIkDtLxbOVduiZEKAcQWlVStrxgrmmTr+uO2OQ7lR3hBiocSg1k9jNMxI2yJPKs1veCOVc3prAKwBszcmkIHVVSVZZFrB8txK1lW61lJJFjipNYRNeAuOUA2OIkzAiV/LmtqiTdqKoiiHmIm4ggUsvk/ARWfrR23AQ6w7juK+9Rf9fUrtwnk3VMkNowIW6WVElu4nrtt8Xz5qAqydr0iP5X9PlcAlWaNw+ZgbYJZil420CIzWbQhyqZS9NhoMuyaIeqjptsopbipEPTY6/dbu6LMJrjZqpXBtiLTegQNxUtmyNOIkzQsjNj3uRAWCLv8nlG+ms7MO1D5HsRctxsN4OZZzWP8UCeBy5KG5UqaTHPuOQZu1AlAX0wV7fJl59VeZPvFCAi5xkDFYX073Np2xT4o/nHLoib1V6GO97L6bjJZT8x5wJaGmIc+ZsHkVOqpoW4tWxrN5tNuNMkzdxQARI1jZF0G7scQEzHrVJJJ0UqfKKKIPYhXYRUiBulCdTaj5iHZuu4FS0QN3njGlpVcth2/PZLllRJ7qJeO8dDnIQTCMlzUiiqBOgLcKuk4K1RWuYGH5AoTJbiJCEQN1m0gzpuOh9biHZs99b0GNdxE0GqtmF2m3zOs6pD3FS0bC5VktKy2QgEobDGUJXMqG3aqkpGQNxcxUmCI26WYjYA3xkHPKmSHMeNycKhm3wZcdNt8mNSJQFCr20SqiRXFMZJaM01iJ4zZkRpiO9+Oz323fPMpWpaiFvLtnpzKUIKxMkjsG3fCnFzEVaxQFAyeTkcx20gvfay2pscQQRSuiT9M1U0gVr7ESmwNmgebZ+zcZAdN99iyrLJaolBc9wsETFbcRLb9k3RdhlVArKOm2rNE6gS4PCsMmXjATcKk4uimQqFVIl2cGsILVgAjJyROijrl5r7UvtN4bjl5LcBDlRJDeKmomVzqZKUlu1Cq4uhzMhBUuvar95MzhxWJJtBVk6nRR5wzHIAxTbUIg9O5QBiUCVdEbccFk53N/DNb6Rjd583AYsX6zf5Lg6Kk+PGve5Mx61tOGr31IYqyVU8dkILHYPo3LWvQJ657Xc0l6ppIW4t2+qtwl2t4UY3tCkHYLsINBPiZiv/m1cYl0YQu7rSjfQwmGkCwqwivj7iJBaOG0d+Xb4WoamS8t8XMsfNRkkO8EPcWO0b7quMKgGA2If0QY0sUSl4a8fNNceNGwlniiBlkB/FWFeJdnAQNyAR7Xj+hXTclBmsASClSubltwEO4iQaxA2op2VzqJIyLdtKgdDWcYudfy3OY2yFMmOScd2dVSUdqJLc+d3FcQstTlIpE4eZ4bjZokv0uo8em9C8dZt8l3nGZrzHQtwKxXSuiIG40d8PnZ8H5AfPVGYz3luIW8u2erNC3GxzoSzaBuwdiOgFuF2pkowJg6NYKWgCy5YBXdOSY13jzDQBYY1C3EKLk9RRJQMjbvLmxYS+2pYDsFlcANSK/roU4GZRMTUoswpVAtLNuunxEFLwtkEcqw2PC1XSQgSpNh4V/VaJdpjESWRbty4dw6Y6e9QEkpBXww2AfTkAQx03mZbNieHJtGyXTX5sx41dlJhZvxSwp9U513ELTJUE0jETpRyARwDHOu+d4aRYXXcX5UcbFo647hFomKJcS4wcN3oOu+90rxQjiO6gStxy3Fq21ZprOQBOpMQagWgyxG0wYo5bhlqQU9y7VAKGVSOPhX4zTaDWvs2mp4nESaxy3EI4bobJ3YcqaSrUXDNLcRJbxE1Hq1OhSgAgmjRdSiEF70WVtNhQ2ZYD4GwGTdFklWgHF3EDEtEOMW64tf8EmtvGQdxsxUkMiBuQpWXT2yjvG3W07MwcH9hxs1k/CgW7eYb2g6MqSdcXzpjMbGRjlAOgdHWmY+iU4xYacbOke9NngiNYZlP7z6XsiJXIUnVd5xbJ3riM3zatb8c1G1GYmvMTmSoZI4gjfr9StgjiDB1rOW4ti4zMWBZQbVSOm1M5gMCOWx5VUjbrqOlQFSdxpEqyKRfS9Zv4FkNfLKiSPT3Aheen7//6N32hZmHWVElLRE8n2KBClQAe4gYkqJLt8xS7HIAN4tZmyIFQiXZwVCWBVLSj5rgxNmzlgbTvnHkg44xzxEkMiJswQcs+6r3pMXEL8mjZ3HIAQFzEDTAjqcr2IyJumaBijlKoV45bTt1CgCA/TZDjZjMPANkxy3GubHILnSjZTEl9gNAZGQ7ni38Gbn1f+j7PGReOW/86Xs4lQBw3G8RtC4uT1M6zCfw53NchZEEdt0qlgiuuuAKf+9zn8MMf/hAbNjAGa8uawCKKk9hMonL7nI24M+IWgyrpo/ZmsWGLEZGNTpW03LBRy028F33i3lNy3hHXmhdfbjkAIak//6fkd6r/myT1rQtwW0arCxrETYUqAanjlnebRo92GDOOVMkoiJuBSqMS7eBSJYVoh3ieo5SQ8KFKGhyI7m7gpJPT91/9glnYQRilg3JlwGNs1gCSyxUZcQtFha997pDjZqPWLK5djHIAXlRJS4EljhiPFaXOgSppJawyMm07b0xSpw3IH+/CcasM2OfQ2eS4sZFIxxw3F/Q9BmNjCJmT4/a9730PEyZMwD/+8Y/M8RNOOAEf+9jH8OMf/xhf+MIXcNhhh2HTJiZVpGVbzlypkkMZceOiMzaOm62qmc3Cnvl9Q00ualaUEdvcQsf7ysqFkpyY0OUA6MYhLxLOKQegK9Qsd0clqW+rKmmbH6JD3FSoEpBSJU23SaBKMXNb2izzRYH072OhJznRZFm0g4O4UdGOmjhJb75TbuPQyudYF+DOo2QTWtqUcWZhB2H9a6rfHc1fP6IhbrbtOyJuLKqkxXV3KQdgI/pVo0q6iJMEDvrZIm62yo8uIhaAPVXSxnEDeKgbtbzrLnLcAD5d0gZxa7NE3DLspMhUyTyk0wVJHULm5Lj99a9/RVtbG4444ojasX/84x+47rrrsN122+Gzn/0s9t13XzzyyCO4/PLLQ/W1ZbEsZjmATJ5VhBw3Z151DMTNMvfEJscNsF/cm1GchOUw2zhuHlLUACOanINuyJL6HJXjjKR+ZMRNJ3qgQpUAXo6bQJV8ctxyqZKWap5Aem36BvJzC01USaBetIOT40ZFOzK5kTkbB+uNbCTEDZAU/Jgbzf4q7bZdg+JSazqqpKuqpCXiZuO42aJiNo6bSxmc0FRJm3qOgEPueGTETZxnW4NukDmPCePmuAFM0ZYKGTOxVSWbiCrZQtwSW7x4Md74xjeirS29+L///e9RKBTw61//Gt///vdx2223YcyYMVgkU4Na1nxmg7hZy8bTSTSCqqTNZOFUPJw6bnkLmAfiZuu4cRZ3K8fNssadKwXWttRAXvtOznjAxHtZUt+EuAmjkvqwVJUMWYBbRpWA/Bw3iipZ50XaKKaNS18LREdnPT1JDtb6dcn7Z57Lzy3kqI5R0Q5THTeVaIeNqI3NHCOfYy1Okoe4WW4GgbiOm624lTVVUiBuFgW4Ad5mcNAiMOeS42ZDlfTJcbOZI1mCZZZUyQq5N6+9nCP2hPi5UM2CuNFnlVPLzTpARMRJODl00cVJWjluwpwct9dffx077LBD5tjtt9+OSZMm4cgjjwQAjB49GocddhiWLmUWIG3ZlrOGITNbGnGLXQ4gco6bbW6LlVx0ZMTNRpzEhipZ7EDN+eEqd1mpghnGjEpSn3bV9KfWJPUtVSW5RXeFmca8jCoB+VRJiirZBkJsNg4d49LX/av154ncwnnzUCvQyskt5EaThWjHx05Pj4lbZRLtyAgq5DlulhtZ6wCRBeJmLb1eBgaqm0Yrx42LMDcIcbMRtAGaI8fNqj6quC7NUA6AibyLgMxHP54e+8GF5oCM3H6MXKhGOW5Wwiqc/YDFXkY+hxUgskHciOvBDuI4qErK/dpKzMlxK5fL2Lw5nZQ2bNiAxx9/HIcddljmvPHjx2PlypV+PWxZfLOiSlo+cNZ1rTzKAUSpHdJMOW62jlvECFjM3BN5U2f6TqFgp9wFWOZvGMa7SlKfQ5UEiKS+TwHuAOgMRZUKSFcE+ZKrUCXrEhIWcwF13PpWq8+huYWAvu+q3EIbuejubmA22TyefHK+aIcV4mYpTtIwxI3xPFHnLgpV0jaX1tJxQ0TEzSbHzaUcQDMibqFEimhA5nWCuLfBHJAB7IJbTuq1Fo6bbSkDarlrk2VqhnUurUd5oxjiJDb3tYW41du0adPwwAMP1N7feOONGBwcrHPcVq1ahQkTJvj1sGXxzYYqCdgtvq4iFuz2qw9loWg50TkIWdhMRhzEzSfHjVVuIGJxcptEYcCPKpmHpNUcNya1y1qZUUO/yivUnDfE1q0jX3ApwO0hTkJNoEpzz0yPiVNNqFJMUYK2EWn7KsdNzi0EUrSQk1toXUyZNNq1fb5oR0bUJmf82jrj1si7RWHcDP2K8Tz1kU11+9j8871y3Gwo2ZbtxygH0E9ympavNFP8Yue4iTHjQidvdDkAOSBDu0z/VKXYExpIlWQEWWIibtYiRT6IW85+ozwI3POJ9L1VoDjC2tdC3Ort3//93/HCCy/gU5/6FK699lqcddZZKBQKeO9735s578EHH8S0adOCdLRlEc0GcaPn2CIzMQtwcxCr2OIkmQKwgSPhgP1E3VSIm4iEl/P58vJEnreg2hYitZaj1tA8VZL6XMQNqErqe9Rx8ykHIFt3N/C1s9L3B705H1WK6bgVCinqpqJKyrmFHNVHmltoG03OzJEcdMaCKumjKmntuAUWPOgnwYtmECeJmePG3QwKit/3z0uPfWxOTs6liyy9i6pkmTfX2KAbIcsBqAIyOsdNGA3IAHbBYidxEhuqJCknE9pxs85Lt62fZ4FGPncV0Ps6aT8G+6mFuAlzctzOOussTJkyBT/72c9w4oknYvHixZg5cyb22GOP2jn3338/XnrpJRx66KHBOtuySJZ5cAIjbq5UF277ZQvHrWjZNkAmrIJd/6PUcbPknDuXSrAVJwmNpEobCzbi5kKV5Dg/GrRQJanPRdxqkvqRxUk4iJuq7XET81GlmOUAgFSgRBYnUeUWmsRDqIncQuuILG2UMUdyykjUmo5cDqCmgteW76C0daT3phkcN2vGhm2OW+AC3JTi10cQt37k5Fw6lAOwokraKh7HzHEzUNXlgAyQnUdVtykj9gR3qqRtjputqqQ1VTIv/9pxHgAcELeca7M8WxosejmAVo6bvU2ZMgX3338/vvGNb+CTn/wkLr/8clxxxRWZcx577DEcd9xxOPHEE4N0tGURzVnaPaL6ILd98VDmTRRy27aIW7Ej3WSbrBbZbIIct5j5f66RcE778uc7HGM+X6AEg5t5FFjbyGNBg7ipJPW5iJuQ1IePOElgWp3twm6tKmnZd4G49a3OorR5uYWmISByC32okiwhC0eqpK04CYuSTeYwjtUQbMZGs6GIGwfptEXcbMoBUBRVMWZkih+9lfTRU1H8GkWVpN8zWcPKAZC2VQEZIB9xA9KAjNwHK9QqQo5bgYyZl5fmK2JSs0r9sLyn1vXzcubIjvH676qspSrpZYwnXm1dXV342te+pv38lFNOwSmnnOLafMsaabY0oGbMcWNRJT0QN+6mxybia5O8DjjktjQTVdKifToe9zs/W2hUZZlaORuAYs4G0hVxUy2Oc+YAF16YbtY4DkRGUt9DnMQWccsbk9YLuy06bumgiJypymDiRIgaY3m5hXmXct06aVMSgSrZTOUAbOew9lEJPZWFuNEct4iOW6GNFzizmX8rFdQCJr6qkiqKn85xEzZrFnDEEQkN2UmcRNxXC6okt32b4Ja1uizdE5C2VQEZIOu46W6TCMhMn25HqSsUkr1DuZe3wS8PpnNBniLm/PnAvRcBp1aPnfs14P6LkqDdnDlq+nmmbxY5blFUJS2cfSomBTBy6iNTJVuIW7197GMfwy9+8Yvc8y6//HJ87GMfc/mJljXSrNGTJsxxs0XcuBFZsalrY256bCK+NnV+gLiIm484ibXjlleHh7Q9ds/8tm0FFWzkogF9jhtQL6nPcdyopL5XAW7LDVuu4+aBuIXOcQP0JQFUuYU2jtvo0fbS7qsfSl9zHBT6PA9EVJW0ESVgI24WYj/RETcLVCnTPmcOs81bNGwGVRS/PMeNUvzabHMuK3b53dabfBpksSkR5IH8qAIyQHYeNQ2Ddevq+8AZN2Iu4GzwbRUxXyV/UyfyFTGp5Tpulmt2aEViajLiFoMquXl5+rqUE8zdyhE3J8ft8ssvx+2335573r/+9a86CmXLmtFiipM0E+LmUQ7AFnELLdMNbB3iJJz2K7b5RJZ5BNZUyZzNoE+hZltVSWu00CK3xUvdkLPZtCjDAGSLcFNlyV12qXfebHMLbRf2pb9MX089Nv9853IAERC3GrXLgSqZJyREHbe8zRRAniWGSBGQRdw4ZiOCZLvu6Zx9HcUvz3EDSD1H23s6gBpayApaWlICqQBHHtJpXRZEM95VARmAR5UEkoAMYO+4cWs6AvmsAZkuS6cWept0ipiZfuWhhZERN5v220Zk3wdPzagAq6pK9sOmAMO2y+lPy3FztsHBQRSLUX+iZSEsZjkA2xw3a9qFBeJmG6EC7B23GjoTO8ctcDkAa768h0Oel4dmm09kq4Tn6vyYxqOQ1D/xuPSYON0oqV993gY3MzeytnURbcRJLBd2GmXtY9Tr1FGkdEbl5Skl7+WXgQ2Sg26bW2hLlVzzWPL/2DcCY6bnn08dt3JOjpt1ICEyVVIEQiqD+Zse+jkVZNGZrQy4GDNcx801l9YHcdNR/DiOWy3n0odNwQj6UTS0X4NsUbMR4AiFvKvEnoB8cRIgDcgAdpQ6IL2vLKqk4VlV0WV1jpswWRGT2hZH3Gzal57l0DluG5ela8z4/fPPt625OMQsqle1ZMkSjB3LqO3Ssi1rMYspu6qCcdovDxC+eZMhbs2W4xZ6Im0UVZKzobJF3KzFIJj0q+5u4KTj0/dfOStfUp/+rY9+K78vtuUAbFBa2+vSOTF9TaWgOe2z5Kg1Kqrz5wOD0hjlUCXb2tLcQpuIbKWS3icaJDCZM1Uy9IYKhCrJaBuAXf0m20CC4zzD2YDLfcidZwIhbjqKH8dxA6o5lxHZFADQQerpcoIs4trFSG/Q5emqxJ4AHuJWE3tC4xA3+XlS0WXzHDdZETPTLwtVydg5bnnty0GY0AwfSlUfv1/++Vs54sYWJ/nmN7+Zef/ggw/WHRM2MDCAxx57DHfccQeOOuoovx62LL5Zi5PYJIBbRr9sNvi2i1cjxEnEZBclx82yHMCgxfXxctxsRTIsygGwEDfquG0hxK3WNrnvO+0K7JaDzqx+OH39yNeBffSCT0n7FrknAOzKAVgu7J2T0te9K/LPt6VKqsakjpbGQdxGjgS23776+xaKabYbfMCdKsmqKxgZcbMJELnSjgG7ecYFcSsP6BEa+fdtETe69ugoflzHbfRoO2cZsGNTAO5BFtt7ylH1Nc2/stgTkO+4UbEnwB5xc85xI/dMNy9xKi0tWACcfXb9cRtFzNBKofI5ufOAdN/z2CO2egM0v23Uzvnnb+WIG9txO+ecc1AoFFCp3pAHH3wQDz74oPE7I0eOxNe//nWvDrasARYTcfMpB5DXvu3i5SJOEhNxi10OwKaOW1OJk1gGEjJUSYscN65SnaDvWkveO4v2GtqnfecEWRwRN86GzdZxs6VKquYCHS2N3kbdtLF2bao8l9mE52yUbcc6kA3E5KJWlqqSsamSNvNMdMTNkirpOs9wyEc6eq2g+Mnjkt5KXVcExW+AoGChFYMBoNMScbOiShaQPIAVu3sK1I93IfZ08snpsTyqJBV7kttnBbcE4uZBldTNS3SI5Sli1vUroqokR2zNZk8gI26DOeswzYkb3Kg/Txhd1zmsB5v5fQgae2fx9a9/vea4ffOb38R+++2H4447TnluR0cHdtxxR7z73e/GZBVnuWXNZbYR5Zo8euRyAHntW6ux2SZRV9xz3Fh5YpHFSRqGuIUWJ/GhSlqoSrKV6hwRN277wjhjzCYSDkRG3GgUn+O4BUBndLQ0bo6bUJ6zoko6OG5WdMOI4iSVCqG9RXDcvBgVNoibC1XSZp7xEM4SFL9587Lni8touv2C4leOqBgMAB2WiJtNrTIguTaVAQeqpKJ9kQc8a1aCvOkQt87OxGmT84atVYNFjpuHOIluXuLGBsS8RM2qBl2TIW4T32w+n5b46Vf87bLRdZ2u9zprUSUTO+ecc2qvheN2tgrebdnQs8xDF1GcJPTCHhP1kdtnL2Bikx9ZVTI04ma7CGSuTTOJk1ggbjabEsCeGszZNIzfD1j1YPJ67N755/ugJ6HruGUQN4vNILd91Vygo6VxyjAAqfKcFVUysuOmo19p23ZEUdklTSLmRVrnQ3mIk+TNY671S4H6vqsofuJy6C5hpp6jx9xui7iFpkoCdo5bBj0ZoT5n5sykxt2llyZUwvLyZGvShgSlnD07uXZ5ecM25QAq5WTMmPYpFB2iYjy6eYm7tRo9uv6YDeLGyotsUI7bG/+HUXuVfM4JtvogblshVdJJnKRcLrPquLVsiBh96Gw24Vu8HIAtUkgmwsEcpTfAfqKjv9Fsddy2OOIWkcLkmuNm7Yzb0oAYm4Y3k3mU0x/XvtPvatu2HO/tY9P7aou4udLqdMpzHHESqjwXmypp4xh6lXgIjKICkhOR96w2CnGzLAcg901lz/9a3S9t24a+y/UcgXzHjVL8rHPcLGn2tuIkLo4bwHTcCMJiqv3X3Z2IOi1blq5fe88wiz0B9mPS5trTsiS0XIluXuIsZXReohYTcQstgkTv+/gD8ttup8FWDuJGHbcW4tbS6m+ZO+I2uBFY/xy/7dAiFtbJ5aTtZX8ENi3XngrAbdNTmxAr9bxv2TKLb+C6KoAl4uaBRtqKZIS+r9Tp5UTXXDcltmUSOO1P2N8O0XPNueS0b42IFVK6JEucxPLaqDbKOuU5juNGleealSppK06Si4j5zGFgOPu2tLQmUpW87zPke56IG5Ct5wjoHTdVPUcfNgULcXMUJ7EufM64p7a1/0oloCSuaTF9hnXW+xrplwVVEsifC2hZkg6imK6blziOG52XMv2yUJWMgbhZ7TdsWTK2VElLx20rR9y8sudfeukl/OMf/8CLL76IzZvVCEahUMDXvpajlNayLWs+6MltxwLveVh/rk+Om5VsPKPtzsnAsMnA5moS8UvXA2+YpT/fadMjq5oZvidy3IodTMfTso6bzeJunf8Xk6YaSKZb27xF4j1Ark3VGTfdK1uqpDivMmgXNWX33WLxHXQY7x0Tk+epL0I5AJ2YkIqWlleAW1aeayaqpNd1sXHcHMZM3oYwuqpkRKqkrl+cc3R9pxS/jnkAKqnjZqL4FQpVuuEgbxNOna8YiFstLzIC4kY36ibEjVpNrTnnWRrsAx74EvkehyppUdNRh7gB6nkpT5xEnpeohUbcbJ9VK6qkZbC1lePmZc6O2+c//3lcfPHFGKzW06lI8p9CyKTluA0FcxQnAYDVj5jPjUmVLNuiPm3APt8A7vlk8j4PJaCRQSrvbbK6iK9hAyw2jDEi4bR9wBJx29LiJJa5JzYRU4BsSiyjyUDSd1OfXMRJiqWk3zEQN6ucH8uFHUjRTuvEfg6tTjNmVMpzeeIksvKcK1WSO2babBw3W1XJQnJeuT88/VXuwxZXlbQVJ7FsP/1iuLYFxe+3Fyasil2mA4v/nNDhTGhRsT2pT5g3Xja+CPzzxPQ9h2ZfGlUNEA0Afavyz7cOEDkibnm5ULX2mbXW1j2Vfc+Zl1wRt3apRrFqXspD3OR5KdOvwKqStoE5V1VJ67x0S8StrYW4OTlu3//+9/HDH/4QhUIB7373u7HnnntijC45s2XNb2XLaAknIlhrmybHBy6S7RIJH717+ppGz1S24bn09chpvPZtcopsNyV0sg1dpNVHnCS0WqhPfSUbqiR3U1LnQBi+51IOwKpouy3NMzKtzianMwRVUpisPKejSuqU56JTJS0cQ1vEDaje10iOm5Wa3BDOcaPGyXm2oXlWKmmbo8YnJShy2+9IvpM3Xh6WAuGsUjiFxMEbWJ8/3suDAKqB+CiIG3XcmPtGMSbzxuPm17Lvh++Q37bN+kH3DB3j6j+X5yVdFopuXqKWty+wLuFji45HRNyKpWQ8Dm62Fyeh+XE6ayFu9bZw4UKUSiXceOONePvb3x64Sy1rvFlGS/oZD1qtaVteNXnorcRJmOmadLLNizyuJ7VVRimSh1VmFaWyRH6aCXHzknYPHL2jkzRLdMYxxw1AflFfR8RNtJ1nMRE3FwfChkZqnRzPyCkStLS//wRA9XkuI195zkr1sclUJYHkug+C4Yy7tO2IuMWgSsZUlaTGifpbsUFozSwGIgYkrI7+tflzGEV9AF5AFEjvfx4d0AV5dxUn4eS4AXzErVdy3KYcld+2DTqeoUqOVZ9D56XLLwVQTc0oIn9eopZLlbTNi/RQr7VRleQ+q6XRyVi3pUpy2E9bOeLmJE7yzDPP4K1vfWvLadtazDZawomQCPOJ4sdA3DrGp69tHLeRXMfNRpHNNpocMYHdVpwkc185xcMdxUlYhXFtqZIetdBMfR8YAF4nG4eK/tSMiftqEzV1QdyioDOOjmEo6XhBS/vdb9JjZ8zJV56zWdht6d5A3Bw3el4MVUnXHLeYVMkY4iTUOJtHK8eNBs0sHDcAGNxkPk+WQ+fMvwDf+XFCgB0Qt2Inv0SFOM8GcXvLFUy1ZldxknH688S89Mxz6bE3H5Q/L2X6FRhxs6Vk25SSsd1DAilN1oYq2TaC1/5Wjrg5OW6jR4/G9ttvH7ovLdtSZusARXfcmItAbMdtgwPiZqXiZ+m4xUTcbMVJMm1zkNSIZR7aHKmSLoib6p729ABz5wJTpwKXE3n/95+QHO/pMbfPRdzKg2lk0wVxC13Hzav9wJv8AvGSJ3blK8/ZLOy2ubQArMRPbB1aet7WnONWKaMW/XChSm5JxC1To5PpWAknYyDPcZNyfGwRt9Aqp4Cb48alSdJ+2CBuw7bjtW0TZOlfnb42OW7C2sm9GdaRPy9l+mWhKmmNuNmWHYmBuFUDEDaqkhxhEsBu/h2C5uS4HX744XjooYdC96VlW8psHzpOkWNhPo4bF7Gi38mz9jGoJaLnIm7Ppa9H7sRrv1GOm22OW961t6YwWcpRW12XiOIklQq57q45bsQWLUryV+bNA159NUujXLEqOT59enJeXvuh5frl83IdK0/EjUsNlvulbdtmk2/ZdjNRJX0QN6u8xQhKpFHvqcN1dxUnCY24ZRy3ZkHcuGPGMsACuFElbRw3F6pkJ9Nxswn89RnESVRWKKK237BBgAEGVdIHcbOkSuYi75YsGSBF3Mp9+fTdmuPGyG8DkuteYyW0HDcAwNe//nU8/fTT+PnPfx66Py3bEmYNc3M5YIiMuDlEeQrFNFKW57gNCnh+OH/xLdpEqTwct7yJDsiqVhZyVNPoAmOTayXaz7OY4iQ2C6+TeIhGln7RokRBjMo/q9QNe3uT83TOG9dxc8lXsirA7RJp38JUydrntvXEbMaMi+PWlo5dqxw3W6rkFhYniYmi2tYAlftgep7kGpvBETcPqmRlwPwsyZvX4Dluls44YLFmVwjixsxvAwilsmJeP0SpH8ARccujSq5O/i8ULZwIC6c2873AqpI+9SJz9wSOOW7C8lhc4nMu4gakc/xW6Lg5iZOsXbsWn//85zFnzhzceOONeN/73odp06ahWFRvso444givTrYssrk4QFxrGFXSIgbRMT5x2vIcN3FdbNq22siKxHuuA+GIuHEjsoW2ZNG2pkraqoUGFiexQdxsJekBNY20pydRDqs7l7yWL+OsWUnSupzfwKZKOqAnVuPREkUF7Ci2MTf5tm3HVpUEknE5uImBuHnc1xi1+VwRNxZV0kJ8yrYGqNwHo+Mm/TaHRWI1Hl2okkR0YXAzUNQ4BvLmNWaOW2iqZLk3bd+FKgkk/S9qBCpcEDcbBViBuJXG5AdDa+2XgMEcZ1z3PZPZ0oIzgjmcYKtN0M8jxw1IAiedE9TnVcopCm3juLV1Jg7fVkiVdHLc3v72t9fqtF199dW4+uqrtecWCgUMDFgO2JY11lxgbq455VhEzHED0jy3/tUwKuHZImKAW0Jvkdl+Rv2K47hVrz1341Bz3GLQLiLWcaNoqM0m3CfHbf78LNJW6wt5LdcT6+1NlMbOPVdq3wVxi1BM2dYZB9yokoUi777qkE6V2eZaxaZKit9gOW4eyo9W9NoI4iQ+qpI2yDtbeZe5mbVFP4DGUSWBZNzoZM/lZydmjltoxI1SUksOVEmg2n+d4/Z68n/bcKA0gte2DWOjtqYy7ynAuzYyAgzYIW6sQK4H4pbbvgviRpwwU+BkYKP6O3nWQtyydsQRR6DAjTa0rPnNdWPCMZeIb0xVSSB13CrlJCKji/y5OG4xc9xsVSUHLRG3WiFoyxy30OIk1qqSpWQzUylbKgS6KNUNJuqRCxZo+kJeq/7MBQuAs8/OJqk7IW4xygF4Im5cqqRtFB+IkOMWmSoJxN0oR6VKutJrLes55tETXdQ8XRE3VtuxHTdyninPTf5t2xw3QTfUBQxjlgMYpJtwpmMl98N0X10cq8xckFOKwVbVFyDXxnI8xkTcrMsBRFCVbGM6bvRZ4JQCECbuawtxS+yWW24J3I2WbVGzRThszBaeB+LmuAFZbvrAhrCOm81GNraqpNiI2yButF/GtvvS73AQQ6tEaof7WqOl5UVMXTaDEvKzdGkiRKIyE+IGAMuXJ9+nBXldEDdb9UGAgbg5bDatAhW2ap42KK2lQ94QqqTIKdqCqpKNokq6oKh/Pwr4iCFf2lecxAZx2+MLdm3HLAcA2Dlu7PxrCbXS0Q19ELfBzcCyPwE7vl/TtkP+HMDPHXdJb6AOZJ4wTC34ZLF15gSiVWM1by7wQdyaQlWS6bhlAooWDnnb1ou4Bd6lt2xIWkzEzSvHLUKUh7Yvt1HXvm+OW0RxEs5EbYu4FZjIj1PbNhQph0ACN7rmIk4i0zzXrtWfS2+l7s9cJyENdGGvGDayLkEQm0CCL1WSjbg5iMKEznFrFFWS074XBTZHrKFRqpIuKCpgFsrwFicxze3SZ/t8Pb9tG+puH9mIrl6foPR5VpJy3HQm0+rYDjlzzLsEEkAYWLcdC6xdoj7NhfEg94MjOmPznGYc5o3684D0vjshbqbxqPibmglxs1GV5K7ZXMeNPgvcdYmeuxUibi3HrWWwRjj2/172PXez2Qx13ORzOYu7K+K2peu4NQJxs72nQByHnBtdc9kMyn0fY8jNyKNKAsBoSU2Nu9l02VBZlQPwFSdh5qE55RY2iaokNx8VIEWDI6pKyt+XzVdVkisd76LQCvBRiNBUSers7vBenlAGZzyKmo4fPzU9dv4PkxqPeTUdXRE3rsx8kZkj7VIOgBamBoAeje5B2SFwJp9rRNzEtbHY2nKvO+BGleRQ4VXjKW/ts90P2M4zVlTJiIjboMO6RM8t95r3qEPQnKiSt912m9X5LVXJJjfbjfKMzwIPEGpJpax/WLc1x40dGaT1xJiPYZlENdetTqK4uoKelQpxrmwdN070ztIpdBYnsaBKAvk5Ci4bB5myt8suwOTJarpkHlWyqyv5vrb9AWin5dj5Si6RzahUSRvEzTbHrS1pvzIYnyoZU1USSP52XbdiF+CuIW7MZ0mW/ebm/YQuwO3UdgEJslRRj8dFixLl2N5e4DByvB/JXDFvHnDhhcDChcDMmfXfd81xY6ORkjKjtn2HQIIQBRGmQ66cETcuuuTAkmkjVMm84udOVEnGfsZWcRKwC5oB9rTpzNweoY5bbKpkRi20n89SGQLmpSrJMVdVyaeeego33ngj7rvvPtx333144oknMDg4iHPPPRdz5861bk/YTTfdhO9///u4++67sWHDBuy000446aSTcNZZZ2HUKGZdjq3NbBexYhuw3eHAa/8k3w/ouNUiVA1w3Ey/UXMgLBYBtqqZhXPS05OoGC6aD8yrHrv1ZuCjU4HZs4E5c+ol5jO0Okvnygpxc6BKxijz0OZAlXRB3MpVZ3n27GQjJlse4jZ7dr2zLY8Z7SbcJffEBhFzWCCdxEm4G82IiBsAtuqjTzkAwI4q6YSkctGTCFRJWxR144vZ91zHzYnWHNhxE+eqSqaImo7CaHfpJRQ1HYF6540iPyYHQqZKjts3r9eJ0fX34fuAiRuSIJI8H2WQTuZ9FfXNan3UPK+ujhuXOeBClSxZUCUrluMd4OUwO4nlNBJx24Kqki4UfqA+j3lbd9x0qpLlchnPP/88eqp0gH/7t39De7vFACd2ySWX4Ec/+pHTd3X2gx/8AJ///OdRKBRw+OGHo6urC//85z/x7W9/G1dffTVuv/12TJo0KehvDglzySnibsSdigZHFieJirgF3jjQKC6ds9pgjuKWXfKVqv2wUqx0QH5s6rhxnWau9K83/ap63+bMSa67XBLAhLh1dgJnnJHTPkMxDbAPggAMxK1B5QCiIG4O9C4haBNbVbIyCKOKX0znypeGyVWV5G7CN70kfZ+Z9+MiThLDcRM1uej3VTUd6eOp6oaqpiN13MqmHDfy20feCFY9sZ4e4OHHgXHV9yccC7yChDkgB/9cxqOpj9RcqZJc5kBtzY5AlayU07WpETlueWaLuMVUlXSp40Ydt0ET4uZQExHI/o2DvXYF35vcnHLcbrnlFvzjH/+o+3frrbfiueeewwMPPIA3velNGDlyJG666Sanju2999744he/iEWLFuGJJ57AKaec4tSOsAceeABf+MIX0NbWhj//+c+49dZb8bvf/Q7PPPMM3vnOd+Kpp57CJz7xCa/fGLLmq95ldNyasAA3twist6okh4tvaF9EcYVzQLtKvyKiuIsWpcdcNuHDplTbew3Y9LL5XNf8OYARXXRwyF1y3NgbfMVmsLs7cZbrziWv5T9z4cJ6ZBSwoHe5IG5E7S9XnIRSJWMU+I5IlXSJ5DvlRTo4bgAPFSuUeJtwwMJxc+i7lSiBcMaZ15wWSKbfV7btSZXkipO4BP3o91U1HekQVwGuoqYjNRfEjXPdFy1KVGwfeIT8VvV/EfybPj1dP1zmmbo+bmHEzSrHjakq6erQuua45Vlmbo+sKhmjjhu7HICDQisgUSW3LoGSKOIk++67L/7whz/g9ttvxwUXXODUxsc//nFccMEF+MhHPoI99tgDxaJfV7/zne+gUqngox/9KI455pja8REjRmDhwoUoFou4+uqr8eSTT3r9zpA0p5wiF5TAtiaMjYiFI+KmTESS2rcRJAiFuKmiuDrHTdisWWnyu4vQxJSj09cv3WA+10ecxIoCa4m4Vco5C2SAOm7CZs4ErroqQdKEqVQlOzuT81R5LQD/WXKRdgdSSk2u0IRwxodZOBAWojMxHTcXmXFuDloIx82E6jnVhmI6braFyW3aBkiOG7PvdcJWprXDhf4aMceNniu+r6vpqKNKUluwIKs26SROkjM/0uAf/Zp8OWnwLwTippvjYyNu8KRKDhioks75eZEQN9oPG8St0MZbV61yXX1VJQ3X3WUvI5/bctx4tvPOO+Pggw/GlVdeGesn2NbX14c///nPAICPfOQjdZ/vtNNOOOywJJv4mmuuaWjfmsJcHjonxC1wMc/o4iQuOW5MekFe31VR3ApSP1P159Iorgvitv2709cr/k9/XqVMNuExKHUu0TsSiTNN0r45bnLfZ84ElixJFOO6urL3ZfLk5PiSJXqnTe6H0dmPGPEF0utmk0dglUPnUQ6Ai+bZtM8uIRHAcePIr7vWtQqeJ2ZDkbJUldzxWAuEOaKqZCjHTVfTkd5KXTdETUdhLuIkpr7LwT/aD93tmjULeI2wLWwcFGpbCnETDmMMqqSrQ8sJROcFM3Um+mGDuDlRpptEVdKlHIDcxlZgUcsBbLfddnjuuedi/gTLFi9ejI0bE4/+oIMOUp4jjj/wwAPOv7NhwwbWv6Yzl4fO1nErlOydwq06x80QedRFcYF08dWteSKK6xKlGrZd+tqkzkgXCXY9MRvam0cdN8A8SfvmuKkW2O5u4NxzgWXLgH33Tr+z7MXkuIoeSY2LErjkiwIEccujSlrSXwELalrFIcfNRonUIZIfmyrZxnXcBHpt47hxqZIO492GKinGK9sZLwI7fYi0Hzo/2gFxs2JUSGuTrqYj7a7pEtKajja5VnJ/VCYH/ziOW28vcPON6XvumKwrp6BhsrgEWACLXF0XVUkHx41d3w4EFbNA3A6Zb9m2BeLmlJfeJHXcWogbAEdxEo719fXhnnvuwYgRI/JPjmxLq1GtcePGYbRcQ6lq3dXN1VIaAbO0IatK6SLlauu4WW006YRR1k8ELv0G+LS9LZXjpoviAindRdclEcWd6CFOIvdPNifhExvEzeG+cidplw0+V/CgVAI62oCN1bZ1pRrq2o9IOwYI4sYsB2AV1XTZKDdJjlt0qiQdkwzEzWoz6JLj5oK4cXPcHDay9PsqcxJtiSxOIjtuupqOeTluwuh+JONAMMVJdGujKvhHL4fpT77tH8CHq6+51/3tNwB/O1TdR2ou8y9gERB1KcBNywGYKHsOAki0L9zx+IaPA7spRKxU1jDELW8e8ETcjOIkAcoBtBA3s23YsAH33nsvTjrpJPT09ODII48M/RPWtq4a1Ro5cqT2HOF0rdVF0LZma4Q4iZXjZomIAW5R07z2XaJ33CKnpmtuGoPia6Z1Y906yblyKZJtuC4uuVZWm/CIiJvTRtYB+XGOJgfeyNJzueUAbBZHl024E0U1Ro6bQNz6USexnmm7UVRJizmSXQ7ABWGOqCop9yO4GE+DxUlETUfZODluck3HEhdxY/RdFfwz5bhR20DWH+6Y3O7fgGMeVPeRmkveImCfgmC1Zren5xuvu8McAxBUrAxtIWgXZBxI57DeFfnOiTXixqSnAm7B1kaXA9iKzAlxa2vLH1iVSgXjxo3Dt771LZefGJK2fv363HPWrl2LHXbYoQG9sbCYVEmxybepoVHXtmaSjJ7j5oK4MTdrpr7rorhAPuIGJFHcQSK7HVr50YWGaSNOUqPZFMAWyeBO0k4FuC0EOFwct5jlAGj73HIAURA3l024jePm4Bi2SYiYzmGNnePmIk7ioirplONmaLu/Px2vfQMJysNBmdnCVhHrFoZy3HQ1HTk5bnJNxyIzx42j4KcK/nGokgBASVLtYw0nSsZ5XkMgbsbx7pCXXigkaOfAhjhUSTlNQDU/uQQUAWDy4cDzvwH61wIv/C+wy8n6c22Rfer8xkbcjAW4XcsBtBC3jFUqFe2/UqmEnXbaCR//+Mdx//33Y8aMGaH7bG2CHmnKLxNO1xjTpjnHRo4cyfrXdNYIcRJXxC1UEWtd+9oFpuJGuwjhuOmiuEC6+Oq6JKK4PnXc5P7J5lTiwYEqaRU1pZO0iWbkK3jARH5i0IC8cyzyELfqdXPOceMqBEamSrIdlADPqrF96gAFFieJKfCRh+b19CSiO91T02P3PwxMnZocF8q2OuM+T06FyRusKgkkNdA6pWcmL8dNVdPRCXHTzJGqfUwzOG4hEDfjPOawZgMpXZJNlXSlBnOui0Xf3/Dx9PVr/zKfa424FfhUTCcl6Pa0/djiJFsZ4ubkuJXLZe2/3t5ePPvss7j00kux8847B+6um4l+rF69ukablE0UDW+WPjfMKhXghd+m750EGxgoQWyqZHDHzdEp5G7WTH0XUVyV5SFuIoo76ImKGVFUh4nURZzEKk/BRZzEAXF7ZnGiEjmgGfPeVEkT7c3BYR4YSMdMf6++3+WB9Lq7UiVD0zyj57i50Gtd5xkTFdMTcWNTJQMgbqIm2Lx5wEpSk20Q6ppgKos6ZhqMuAHqmo55OW6qmo5OOW6avquCf/QRMv3Jk0g/OsYZTpSMw6pwltS3RNxsgn5Aeu3ZVElHarB2v+GAjAPAcMLeynNOnAJETJq9Sx03IHWYjUinY44bd08wBC2qqmSz2IwZM2oiKffee6/yHHH8gAMOaFi/msJW3gdsXp6+Z0dLmizHzVWcRNu+Q54VYJHXkrOAqaK4gFlVkkZxoyJuvk5hZMTNKE5iuUD29AB//mv6/mtzgd1316MLvohbqI2sQEWmTgWergourV9j6LdrVNOllAHXgYic48YWtHHd5JPxy0GWrOhXEQtw63LcaE0wIDvlUr+U1gRTts8VEPF09mMibrJjItd01OW4mWo6hlSVVAX/uIjbPm9IXzcLVdK2/IWt4ybQzkEm4ubCeAD0fXfOcWPuN+jnVrm0TJq9C+IGqAMhsrUQtzrbJhy3jo4OvPe97wUA/OpXv6r7/Pnnn8cdd9wBADjhhBMa2rctbs9enn3fDOIkXDGIIBsqTSQ8el5LjrCKKooLmBE3GsWNibh5UyW54iQ2ks4OqpJ5EV+BLvz1/yO/U/1fhy74Im4hVCUpKvLqq9kxo+u36+LYLFRJpzpukamSbEq2izKjQzkAnxw3uSYYoC42T23WLDVtMmaOW/S1w7DRpDUdR5L+DiChsOfVdKSO24AnVRKoD/5xHLfOTmCXrvS9K+IWVZxEM94zwh+2iBsH+fGs4wZEuC4WjptPLm2MOm5AOn5NjIQQ5QBaiFtqr7/+Or773e/i3e9+N/bee2/svffeePe7343zzjsPr7/+eqg+su3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYo5Fd3vI2atfs+2Zw3JqCKhnCcfOMhMtRXEDtuKmiuN6Im2ki9WybK07iKr1upL0xI5sUXTABuzK64KSy5+K4aa67jIoAaf9p3+V+ZxZHG8nlRlElmaIwcp9Mxl3YY1IlXWvzxUTcVDRMuSYYkO+49fYCl15af9wlx62ZqZLURE3HQ/ZPjz36VFLj8dxzzTUdQxfgloN/HFXJhQuBNjLPNAvixkKtyDNmozINpE5zuV8/jznTPBkocOxAcXkwvT5OVMktiLiFKAfQQtwSu/HGG7H77rvjq1/9Kv72t7/h8ccfx+OPP46//e1v+J//+R/MmDEDN954Y35DGrv//vvxlre8pfbvz3/+MwBg/vz5meMvv/xy7TsrVqzAU089hRdeeKGuvQMOOADf+973MDg4iPe85z048sgj8aEPfQi77bYbbr75ZsyYMQM/+9nPnPs7ZE2OqIUUJykPpp85O25McZLQ5QBcJOmB8FF8GsXt6so6bl2T9VFcbzrjEBMnoRM6V1VSt/jK6ALdc+u6JNCFGnoSgSqZ51ypUBHAXEJC9NtlvAAWG2UHqqRrAW6XHDc2ShuYKulCBwQsUCuH6yI7EKqaYEC+4wYk35PzKl2cfTZKuwXESZTti4BlZ0Kt5qhtUsStbMpxs0A3aPCPXg75azT417+6es4wy7mgUYgbw/mxRtwY+YXO5VgY85irQ0vVugdN+w3XAJELVTIw4uZK49+KETencgBLlizBiSeeiI0bN2LffffFRz/6UbzhDQkv+tlnn8Xll1+OBx98ECeeeCIeeOABTJ8+3fo31q5di7vuuqvu+LJly7Bs2bLa+145Cmiwz33uc9hnn33wve99D3fffTc2bNiAadOm4ayzzsJZZ52lLc69VZu86JtUlaixnB/HyaJzYvp67WJgxI6a9psRcQsgTiKbiOKefTbwlzcD6+9P1qUXngc6NBEoX1SMGwHj3tfY4iQuQhO6BVJGF+iaouuSQBf2jkmVzHGuVKgIUI8YyvlIl14KfJE4/q5UyeCbcAuU1qmOG3fTE3GecaZfRS4H0DYs2cD2r1XXBAOye2Pd7Vm+PPk+3QPEzHFjP0uRHbdBB4XWYil5nioDYaiSwmbOBI44Avj15wH8PjkmLlNXV5ILd8YZKRrYtzr53wZtq+uLLgXB4TkFwBMncQy2AryA6zMkeOFMlTSIQ6nOzzPbWpFAHHGSCie6qWrfMsfNtRzAVoa4OTlu3/3ud7Fx40acc845+PrXv173+Wc+8xmce+65OPvss3Heeefh5z//ufVvvP3tb0dFV6xQY+eccw7OOecc4zlHHXUUjjrqKOv+bLUmb7bG7sX7HmtTwszJkW27I4CnqxSbV24CprxDfV5McZLo1AWHibpUAkaMAUS5wKLh+YiKuJFFgFufz4r25qAMFirHTYUucNekBQuAHzYIcZOdKx0qAtQ7nvKeasEC4DPHkXNiiJM4bNgaWseN6+xHpEpGESdx3BC2j03GW98adU0wIBvEMATMISs5N0yJdAsibjXHzYLaBVTria0LQ5Wk1t0NzDwNuLXquH36k8D3P5eoT8poYP+a5H+b/Da5L6FVJTnlAFzzrIDsOqZat1fcBTxHcoKdqfCBg9zs/YZjDdCY5QCSH6j+z8xxayFuABypkoJaqHLahH3ta1/DjBkzcNNNNzl3rmUNMPpA7nMOUBqhPTVjnMWXRg257QLAlHemr5ffrD+vKRE3F6qk6wJmmEyjIm6eFKZcxM1TVZJdDkBxX1XoAjc+sHx52n50xE3aEOpQESBfBnz5cmDZc6Q/rlTJ0PlKNiitiwhHZFVJMKiSzvQr5jzgMs8MDACVKnWsdzUwQjN3c6iSACAzWbgCIt45bjHzoyuAKbAsNptFW8etej5XVdJmC0fXpimTEhRUdtrKgwnKCjggbpZUydAFuJ2dB+Sv28uulc53RNx0e6UQNeJiIG5sqqQYkwWgUOC3XwuEMKmSrRw3AI6O2yuvvMKSzT/ggAPwyiuvuPxEyxpldMPDRdsA3iQ9SIoqtlk4bsOnAGP3Tl6vvDelbsgWtQB3iBy3wKIBAD/S7oS4WcqXy/0xth2ZKumCuKk2Dip0Ic/xEVYAUmGVCOIkJsqIDhUBeI7nBvL9GLlWmUBCs9Rxc6FKBq7f5MpKiIG40RISjz+XHOtfC7ztCGDkyPrzOY5bV1eC6lCLWXA+dgFudhmc6nh3QdyA8IgbwBszAwQdbR/Hb1vuCyeXK3Rwy9WhBfIdN/k+hs5xcy41UEj7HgNxY1MlRbDVEums5bgxqZKuiFvLcQNGjhyJV3XRXWKvvvoqRqom/JY1j2Um0sAStzRfrmQ5DgTqVikDy29Rn7PVIG4RHDcnxK3Am0id6isxN1TJCaJxXtuAW46bauMwZkz9Ma7jRrsbnSopbSRU/a59j7zWdWs4GbfOEV9D33tJsebOScy2baiSEeu4ueZDZTb5gVUl2XRDptMpl5AQfkMRwNoVwIYN9d+hl1k3Fc2eXY/qcGutNbOqpNyGbC45bgCpJ+ZZgFtlnLUps2ZbBFvlvoQWJ2HldHpQJXMdt+HZ98Fz3BwRMYDpuHlSsvMQNzikNwAOiJtjjpspMDcEzclx22+//XDbbbfhkUce0Z7z8MMP49Zbb8V+++3n2reWNcKcqQscx80RcQOAyW9PX6+8V32OKzWCEzVtVseNK0rgqsTEkud1qZllg564qErSSdqw6cnbOOyyCzB5cvYY13Hbnnyv0eIkqn4Ly0PcurqAKdul751RJUPfN6Xqvxi2vUPbNjluzOfJydkPTJV0VpXkUiXp/K7pu6qEBAV8dFN3nuPW2ZmIXsjmpETaJIgbtzafM1WSg7hFVDx2FQ8B7BG30AW4y477AcDecYua4xbDcSOfcfPSgbTvlUEzNTgm4lbre8HuurcQt6zNnj0b/f39OOqoo/DTn/4U69evr322fv16XHzxxTj66KMxODiIM1QTd8uax1w24QCTKumBuFFlSd1DF2RDpVO/cs0jIJNuDKU6lxw3F0nnoUaVdJF2V21kS6UEJaDGddw+dhppOwJqZUJRVf2ufY+8VvV/9mygQEtrONKATH3fTCjzw6fw2nahShaK/E1bMxTgDpHjxqZKKuZ3XQkJKi48vP5jAADd/6ku38KF6rplMQtwN0qcxNR+uR9AdZPrSpUs9xkEPiIGFV2pjHJfglMlGeUAQqlKqtbtUiDELXSOG9AYxA3IeZ5iIm6itEa7Xf5cK8cta//5n/+JU045Ba+99ho+/elPY+zYsZg8eTImT56MsWPH4rOf/Sxee+01nHLKKfjQhz4Uus8tC2nOBTEtETdr2gVjQzikqZKukUemYxgTcXNSCLSp47YFVSUBYM4cddFzQO+4dXYCp52S37bKuIsjre2k2hDK/RZm6r9ARZwpTMz7uok6blzEjZlzSX87RkQ2xDyjU01zzm0JRAnUlZDwQdxoTTCVsQVtyPzmJIK0hRA3VzEF+XxtLTdHSiDH2XehHKv6ElOcRBew9FGVpOu2qn0ZOXWmSgbOcQPSvhtFuTxVJQFezn5MxM2m30BLVVJlV1xxBX76059il112QaVSwYoVK7BixQpUKhXsuuuuuOSSS3D55ZcH7GrLophrjhuH+uaT48aKysYUJ2lSqmSjELdNG5LC3nLxXMBRVdKBKrklctyABCVYuJC0Rz7T3aqFC4EdCJIUWjENSP+uQlHdvtzv2vfIa7n/AhVxpepQf2Tla+rxAkhUSS7iViCBhBxnX2wIrVArGmWP4biR8atDT5zV5BjS64DZITeVkMhD3EaOBLYjqoP9SCi3c+cm84bOaQMal+Nmui4hSjzo2neVLwd4haCdUwRiI24canCDCnDHqONGzZkKH1ikCLBH3ILXzwNxmh0RN1M5APG7to5bC3FT2yc+8Qk8/fTT6OnpwZ133ok777wTPT09WLJkCebMmROqjy2LaUEiYLpyAB45bpyorG8RVVPbrgu7bYRK7k9u+0zVSlvETSjKra6qij3/HLD77onC3Ny5yeeq340hTiIWAZvrnolUM8sBmMb7zJkJatDZmY9YCXTBdVPSToRF+lbqz6vlzRjuJ+23MFUBcRkVsUXcxHg57sT02GUL1eMFSKmShVKWBp1n4tlYeV9OjkU/v+/CMgv7FqJKujrMIWTvTSUkKOKmctw2bADO/p/0/ZlfA5YtA849V02PpBaTKsmuKxjxng7mIOMmyzhumjy3mEHFzDW3ddwKAKpUti1SDiCQqqSKySL/PVHFSWyRpYiqkmyqZPX62KzZyRey31cZpUpaNd1C3Iw2depUHHLIITjkkEMwderUEE22rFHWrDlunNwZ1wibbTkAq+LeBaLEtAXFSWwQN6ooV65ujsWf/OqryfHp05PzAEfRABuhCdH3GIibhTz6zJkJevDRj6fHxFdU6ILrpmQEmTM3vqg/jysxLvo9d27ST3q5t5ugRkVsNsl0vKxYRb4H9XgBUsdtWJfds0rHyuKf6M+rIW5NSpXUjfl+sjlfvU6PWMpWZGwG5c/k624qIZHnuAFAL5GOnzKtXj1SZ9wgjq96rem6DJC5+dUV/OsenSpJLvaAznFzpUoygn4+iBvtjzZ3PGI5AB9VybwC3PJvhg6yeOW4Vecx434jdi6tK+ImHDdOjpsHVXJbRdzuueceXHfddViyZEnuuYsXL8Z1112He+/VqAG2rHksRI6bjjISKsdNW7fFYUM1MAAsJ1FmXZ6Ys/AJUudqS5YD4CJusqKcbv7t7U3OW7QorjjJC/+bRppj5LjZIkvd3cB/fyZ9f9LxwOLFanTBdVMynDhumwyOm3BIOQhqd3fSv2XLgI+Q3LsbrlejItx5QDdegCwaSccLAPRXN/kdlkV96Vi579OG81wKnzeQKilTgQRi+RGSA37xz/SIZV3bzOeplntSqk/sN5WQ4DhuHaQ9q8K4DgW4XSjZKqdQXPczv5weO+urYa97BnGzpUqS68hC3ByFs7SIWyjHLTBVkhOwjEmVlP8e1yC3NggdSJxEx0oYdETc2FRJ1xw3jhiao+O2rSNuK1aswDvf+U588pOfxLhx43LPHz9+PD71qU/hXe96F1avXu3ZxZZFtah13ChV0hJxY0VlLSJstLjsZz+fHv/GOeoF28dxY3HOI+e4cWqfqBTl8gJns2YBq19X98dk3Ej47f+Rvt7wAq9twC3HjRuooM/FhLEJmqRCF1w3PcO60jFgRNxEbSiLTXKpBIwnddN0olyceUA1XvLy/2bNSr5HHYgY5pTjlkOVHBhIkMlXibCKaz4UHXcUsVy/hvwe9Iglt23ZxHVRzTGmEhJ0alFd0q4uYNyo9L3NmHQpwB2CKkmv+waCFpZhcd0ZTqep3mKeWVMlm6gcAJC/EXdlJdgW4G4mx822ALer4wYYrk2IsiMmVNpBCRqQ8iI1TqdzjhvpO92LbgXGGt1XXXUV1q9fj2984xvYbrvtcs/fbrvt8M1vfhOrV6/GVVdd5d3JlkW0mHXcMlRJS8SNQwXiOldycVka/N64XrNgeywCHM55iCTtV27Wn1dzXgy1T1SKcnmOW28v8ABB0mOIkwgbWJd/jrCQqpKysXn+rpuStlSwg4O42UbxOf3n5Laoxgu9laox09sLXHqpe0SWay45broxQ4M8u+8OXP2/6Wc/uSQflRGmGvMyYkkvB72WMmJZ17ZlvTLVPTWVkKBNqh7x2bORqQEg17kyGVeyPySyL193HRiae90bmeOmEydx3CSzctwc5zBhsRA3ljhJxALc8t9jCprKZpvj5qoqCejvK6Xd2jyr1qqSruIkMDi1jjluhUL6t666H1j/nN33m9hYV/kvf/kLRo4cidNOOy3/5KqdcsopGDVqFK6//nrnzrWsAeZMXbBE3Gxz3KypkpqhrCouSwM7AoGQF2xXRAwgiBtTnMQqik8mr8fm6X+jTDb5qtonOkU5DlX90YfS1zHESVyMi7hlUDHmdc/kW3rUzDKZyHPb/Gr+PbVVquP0P3NdFPc0b7wA+jGzYAGhMkZy3GrIkidVUg7yANm/a8HCfFRGWCaaXFYjljrHTZhALOva5lIlc667roQEHSYqQZ4zzsgiQq6IW/AcN1LHT7Stuu50SlSl1/hcd58cN06QxXWTzNmEB8tx29LlACIjbjbUu+g5bgzHzTWIbqsq6YW46UqmOFIlAaDrnenrpVfaf79JjTW6H330Ubz5zW9Gezt/QLW3t+OQQw7BI4884ty5ljXAXFWkWI4bmSx8VCVd67jpisuaNpsytUvXtsk4VEnX9uVFi15jann5UDpFOY7j1kt+k7u429TkcrEMeqKrfwQ3VIwrCOMTra7luVWAzcvrP69U0gi87WawwNkM5swDuvHCKZWwfDlZ2CNRJcXfZYV0SlRJVZAHqN/k56Eyte9Jc6QKsaTdVT0WArHMa1tneQ6troSECXETJSRckSWXHDeXvBwxJlTX3ZB+CEB/3TkiSz7lAFjqia75RMX0OxxVSZdntZjjuDWqHICPqiTLcTOsMbKxCnB7lAOgwiq6nH3XvZitqmRoxK08mK4dLo7b7v+VvrZh8DS5sa7yypUrMWUKs/YOsa6uLrz++uv5J7Zsy1lMlScfcRJrTrtiEdMVlzU5brUF24d2EVGcZO1iqR3dQpBDq9MpynEcNzpM2JHwAljFNl2tUEJth+1bx002OhaXXQOseVJ9XqZgsOWmhyLSqk1BZhMbGXFT3dO88QJkxwU16vhYy0UTM204xN/lSpVct1Id5AH0m3wdKiOMPtcDfWrEkl4O3b5owYJ61UOu88PZ5KtKSNCfEz8ll5Bwddxi5rgBBPUZ0CPFeY4boL7usamSLMTNEd0A8oOKrnRvYbmIm6uKNQf5iYi4yQ4Xp9ZbrW1GXnrFMUghn69F3Bz3YraqktZjMudB9LkuANAxjjRvQW9tcmON7s7OTmzYYJ/ct3HjRnSqaBgtax7L27DpLHY5AF/EzVRcNo/etWBBVi7adRGI4bjtLBW2zYvg6Tb5OkU5juNGP3ORRTZt1trH8dvLtF1IN+Ixc9wA4KYj6s8pDwI3vsW+bdVvKDcOHkp1LNpxzoZKN16oj6nrFh0vPlRJughTG+xNaXs2qpV0I7DkCXWQBzDnQ6lQGdUXX1+hRizzEDcgQSyXLs0e4+aJcZFIuYQEbXL0cHUJiYyD4pjjxi3AbSWcVUrb1iHFHMct97ozqJLWm3ALxM2lmlPe2tRIVcmo4iSRc9x2eI9b2zpELDZVMoO4WezFrFUlQyNuHkgkED9FYwsZ6ypPmTIFDz/8sHXjDz/8sBNS17IGWqNy3GypkqyJ2rG4bJ7jtnw58NIyfdt5FtNxkxcM3bXJo0rqFOXEtdGpDwLAKBJFdoqEGxCCTqKA2H0Sv20g/VtD57jJm8be1+rPWS4JxdhGq/NqLNG/yVapjhM1zQvg6MYLvdQ6x2178r0Yjhu9H5354lk1o8/G888YziOv5U2+CpWpfY/8rZs1lGYO4gYA6ySaj3U5AMZ1pyUk/vTX9PhHPqguIeGa48Yuku2qhCcCRIN6pJjjuAFu1901GAowac0eQj95+deNVJV0LQfgk/OuM5sC3DM+B4zsrj+H0zar8HkT5bixqZKRctz6SL839fPrLQpjq2IOLWON7kMPPRTPPfcc7rjjDnbD//rXv7B06VIceuihzp1rWQMsZo6bTRHouvY9xUlMxWWpOInuCdi4nrTt6LhVBtWTEeC+gBXbgGlEMt+VKqlTlOMgbru/gfTHBXFjbDQB4KCL+G0D9ogbd7xzzpPpjcERt0DPkhahzUHcdONlEKm4oA50+RgRtfLJcWvXoGmbHR03eh1Nzr5pk69CZYTReaNT85zQy2HaV4werW+bJU5icd1LJWDX3evbkM1V9p4j1gBIY9JGwIkg+zqkmOu4uVx3H7ohC3ETm2QXxC2Hxu+LuIkLGxNxy7sutB9cyy3ATf6eKUfZtW3ruEVRlQzguLHE1gIhbkLZd7+902M33cKvt1hrn4kYDjFjXeWZM2eiUqngjDPOwJo1a3LPX716Nc444wwUCgV8+MMf9u5kyyJaTMStdrxgv8j4UiVNxWU58/twshHx4stzioXaRqkY14ZTrFmlKJfnuHV2Am/YifTFAXHjKMkN3wEYvj2/bdoXI/3KYbxz/kYZcQiOuIXKm/GItOsUCEXXVN3q7AROPzV974O46e4XRdyGaeqSqYxec9Mtztvky6iMMPq3jh+nRiw5jltXV4J4Ztq2LAfgRR3TOLUhxEk4VMliO5TKuHntlwf0SDHHcVNed0vHzXYTbrPuRclxcwzkCqshbpqLGrUAd4OoklHKMDQQcbNhP7Edn4CIG1X2pTVjB8CvtyiMi+4PMWPtSI866ii8853vxOOPP44DDzwQ1113HSqKYnmVSgXXXnstDjroIDz55JN4+9vfjne9613BO92ygBYzx81rgfHktJuKy+Y5bl1dQBeJ3MeYqL0WgpyIdaWcXjMTOqNSlMtz3BYuBIaRcWJFYWJQJelmzdaKJNKuM6cC3IxpUnaQQyNuGaqkjziJI+IG6BUITY7bwoXADsQBtx3rh/6adlJ9jiviRq+j6XbRLqu6IKMy6Q+kLwsVNWJJh7luXzR7dn3Bd1tVSetAQk5xckDKu4xYx83a+SHiJDqkmOO4uV53H3VZVpAlgOOmzbVqYDkAW6aJ4O+zgqERVSVtBZby0DzAnRYMMBG3AOIkjVCVDFXnUhhHjXQIGvsq/+Y3v8Huu++OZ599FieccAImTZqEo48+GjNnzsTMmTNx9NFHY9KkSTjxxBPx7LPP4g1veAN++9vfxux7y0JYVMTNcdMAVCcAMVE7IG6m4rJ0oVYFcmfP9hNUoJOFjoIVCnFTTaaDFsnxsqKciMfIMwNVlHNWe2M4Vq6bNfodbpFsNuLGiPbL54RG3LyokjlOIcCnMKkUCFWOW2a8OOQVCtvpQ+nrsmaeySBuNo4buS7DDX8z9Uk2SZ+pUBlh8hypQizzxElEzbS8tnVW21B5jEfdHJYp6msxJrmqkhXHII48z6iue57j5nPdfWqhsZBUH6qkoPFzkPfY5QBCi37FrOPmMYexEDcPEY6Y4iSxVSXpfXpRUb4pj5GQq+xL55ptjCoJABMnTsTdd9+Nk08+GcViEatWrcLNN9+M3/zmN/jNb36Dm2++GatWrUKhUMDMmTNx9913Y9KkSfkNt2zLmuumKjalA8hHUPIibDpqlwlxEwu2F+2CEa0Ohbiprn3ZEp2hinJtZKIuINmYyopy3jLdkRE3bq21kMWg5ftgvWHLy3HzyIGgNDYd7c3mnsoKhMJx60QiRCKPFxeUU1ihgFp0RTduNhMRIhvErVBINz2TJ+rPE/ucfqT5fMJUqEytfbrJL6sRS/pV1bAVNdNkY5cDEDlutiiBBeJW7LDbKNvmuDk7btW2Vdc9z3HTXXcW4uZBN2QVyfZB3HJy3HxonrRPeYibLf0VYNA8G0WV9AnKRc5x0yGpIQpwmxwfV8SNPohX/dJc51K1DcxT9t1KVSWtRuCYMWNw5ZVX4hvf+Aauv/563HvvvXjttSTaud122+HAAw/E+973Puy6665ROtuyCCYexkKb3URqRZV0FCQolAD0Mx03xUQtFuyTT84eNzluYsHuuZe0bZvozCgG7RPBy6MauYjCCEW5G28BVtyeHHviUeANM+o3pq6LTI2mY1J97Muea2O1TQkTcXOJKHPaBTypkooF0qffHBEOW5RAjJezzwZuOBJYWx0zTz8GjJACdj5BCvGdyoB+nnHNcQOSwEa5D5gwGuhcrS4JIBy39dJxHSojTFV0Xjizs2Ylv6XbmHR2JnMRld/PtM2lGzqIkwB2OW42NEnALcfNpX3atnzddY5b3nXPsCk4zo8H4hZbVbJSqV/zfWietE95iJtL39s6kmckBlWyQs5fvSJRL6TrXtljDoud48ahYmYQN5t8VE7hc5I25bOX+c2v6j/n1rk8+2x1AG0rVZV02rnssssu+PSnPx26Ly3bEua8sFtw/V2RjYJiAabGibDJCzagdtzkBdsLEeNslH1QiMCIGzXalzfsqp4MXRPYRS0/Gv3Tte1Ts4UTGaTnhzD5PnhRJXMQN+uNLFmoVcW9fdovlYCxXUBNxFVqv9wP3PWx9H0Mx61vVfq6Y4Jd222dwMA6oK2sDvIAqeMmD1sdKiNMF9yaORM44ogkUrzme6jxLweQIJizZycOoUvbsrlu8gvF5PmoDBgED4TjZimWw3U6Rfu2c5iOkk2v+wpy3cvgX3eqbNqvEWrzyRNjIW4BqJKi/TYpQObjdAIMxM0nMGeBuHHJZD09wPz5wO9/Bny9euxPfwROnZqMhzlzkvHQKHGSQskdiTS1L9bctuF248YGAQYcctzI+Stfr/88j0oOpMq+06fXf8ZRIx2C5vDkt2yrsloemmMCOBBHnASwpEoafkOmdlFdnZGa4rI+EzWHmhYsx0269gMDwLNPkXMj3FeOkIXKhJrVwMZslK72e+V08fVx3NhFfUMibvKiYJtjYYG42fY7Mx51jptH+6VR6et+SWFx8U+AV24ibTs6boB+PFJn1IYGBKSbnvXPAie+oz5/rw1pjptA3Gj+HqffAOr4eAKx/NBJ6bHrb0hqqKlqppna1s6/ZdQmO6d8pRyEXNRxs3bcmIibEFQQAR92+wb1WnHdTyclKq7+A/+6d4xPX9OAATWfWmg29Ut9EDdAHeDyoXnSPuWVCLJ1xgHLHDfGtaHqhcuJ01BCvXphKMdNi9L6pAgw0HHnZ4lBlfShqNLzVUsmR3UXMCj7bsOqki3bis2lzg9gl6TtSknLq/tlM5nS4rLX/yU9/p//oV6wfWrC2CJuXqqS1Wss6p5MnQq8hyi5/u4ay7onNkiqZXSwtmhU1MiPD6qU+U4FWjnqQUfKSJ7Jm0RTLTmVxUTc2hiIm4+qWTtRVZQdN+q0AXGi+K6FoGV7/Pz6IA/d5wx0qIM8OlNRJeuMjJtdFbRkbdsWOcaAJ60uMOLGyc+rlNNn1XazWQv4GSLsBRI42mkX/nWnReB1jpsP3ZAlex8gxw1giHDEQNxy6osa286rQWeB/MjqhfQRon+2UC9c/CRpOyLi5u245VAlbUoByP3hzDPWddyo8q7icw5VEtAr+27rqpIt20qtNmEEFlMAwiFurI0JcyiXSsDOJAezoEB+6tr2SezXRastlB9lk6NINHL46qvZhWfdZru6JyyH3HGRoRswKk8sjI4jl8R4Di2CLmC2lBSTydE8nYOkszwZcNeyHQAvx80LcSOL5oCcCCZd49iIm20kf8KB6WshckKDPP/8a/r5ezRBHp3Rv1WniOk6D9jK0rtswmsF7fMcN8scN04UPIOi2jpuQjmxrL/urvO7LeJmTZXkIG6BqJIq9CdUOQBAHTzzoUq22SBuhmvTo1AvpMNE9Wff9g/S9hB03GpBEEvHjRVI8AlUkGs5SUFz51Aljcq+27iqZMu2UnPNcSuRxfqVZUkUekBaaHwdtzz5eFeI3qp4OGBdt4WDuNENbrsmWqRtn9yrm/6/bOQQyNaGEpeOW/fEhipp7biRRUOV55ZBlRwWdrrIaDeEm+r74mLypkQOLlg7bjkbKrroWG8GGVRJH3pXO6FKDkiIm7yBckIJmI5boWS/cTjo4vS1vOkplYDtSU7TMEuVZBNVUvWbVpL6lnOYF+KmmMMqlfR40SPHTRtgIYEdW5SAOpLa8d6sjltsxM1C9t6Jrq4oqEwtJlWSux+YP79ehEiHuKnaDp2/DJAcN0/HTUfFdEbcGI5PJvhkOxeQ8fIfH6j/nEOV/P/bO/M4KYq7/39md3aXZbmv5VoOAcEYonKpERXF5BGNV1ATRaOGR0l8UDFexAd/+kRNjJooXvGIBhMxXvFKNIpnFE8UTWJUvEAWVE6XY4E9+/dHb01XV1f1UVW9M8N+368XL2a6Z2p6+6iqT32vuJl9yeJG7DToxLjV1gI33uq9f/wvwK67um56vFuerhsmI1K4aQbFxo4PkXw+Dj4Lh2LiwAs3PkYoDvzxXP+b4P6wor5RdU9iJZ1Jy+Jm6ioZw+LWojmAiYjnRrxHVRNGFala3BImJzGxuImukuKzk4bFrVXTZU/8jmxS1bjRe81P2uMQx1WyVdPiFsvd0LQmV4jFjb+Pkp53vr9rrJN/xlcwOKHFjT8evtYcj69uVgIREUe4mcSJRVkjm5s9K2Jjc3CxNIrIGDdLWSUB+X1p4irJCzdpjHSM+UBzs5uFMLCdey37s03qusbJ+pizRKZgcWvlMnNnE1rH47ga8mNd4hqj3Lk8bnqwfFOUq2RkZt+Meh65cSnw9hzg638lOODCgIRbRyepuGJueTfe5m1jz7YY0NtqaHELc5V0HGDbKve1ifCJs1ptEuOmcpVsMhFu3LVqkZwb3oAn6qPIuicJhFviemKcWJIJN5M4KyBe3A9beUw6gImI50YUiqoJo4okMW4myUmUMW4mwpA7l2L7poXJgfiukjrCLarmoknGyljPkqaA8InClGLc2IRT5jXQaiDcSsu9sg3bV8k/YyTcYljcfOnRE/QFvHBrqpN/xlpWSa4dPoa5qe2e+c8HwcXSJO1LLfs2XSXFxS3HTlZJWdtAvLj05cvdeUrgu/CM4rJHxUS4xbG45cIPDM9L5CKLgauk0uJm0BfwJ7a6X3idS1k3F5XZF+DmkcLxPzUeWDbf/b/IIOHW0UkS48YH9PLPgDjPY255jSydcwoWt62fAdtXu6/77Juw3Qg/fMBejFscV8mkwo0/n7InmK9BvF6y/4471Cu1UZPNxq+BbSvbftvA4hbpKmmSnAQhrpKWLG6iMAxY3JImJ4nKKmlSDiCGBdioaHDYxMGCq2Sqwi1i0sMLiDKTBSJVshze4qaZATatGLfYFjeNRZDKQe7/27+Ux6HZEm6qBRTdgsTZrp5ojpVV0qTUS9szKcYws0eqFcHF0ijSXCACwscPXx9jYHEDFAIohpfM5s3y7YAnDGxb3NKOcSuNWHwyEVaxvFgM2hfvlxkz/Jl9VTFucTP7Ap74VC5wFZ8LJQm3jk7cGDcxoJd/hlWLREy4pWFxW/ui97p6SrJ2044PiVMOgAm3TIlZOm3ZofGhODLhxuqeSNuOODf/usx7HVaPTUaUxc00OYls0uNrv8nbbhzjJk5KhHv0G3OTtRc5obJVDiBOAe6kwjDk2EWLW5rCLWl8BSAcu8yypFlsHojpKslZIJImy4ksdmwxq6Tomma0yg6g82D3f6cF2LEmuN8nrAyEW4tCuPksbgn6gkwGKOvhvo4V45b0WRIWn8Tsh4BfuDHixjBHuUqauteGCjfubzBxlQQU8XkxkpN066Zuv12Em0L8pJmcxEi4xXCV9CWHMohxY9ePz+zbk098BTcRSZLMvkB0krsihIRbRydujJsY0BtmcWOwuyuN5CT1K73XPfZM2G7SGLcUXCWZcMt20ZiwRVjcooQbEFL3JOLcfHSD97pBUjAzDF+MW4TFTSwMG4coi5svbXyKMW67nQ90HZGsvTQtbklj3JJO2EJjOGxa3FRWKxOLW6n3fEclhUmj1mUuwYdOMp6orLumMW4hE07TEgxMuAGeyzuPLzmJQYybSrix7ZmS5NeVuUumUg6A+/yWumD2Q36okCVEjoxh5l0lZQsVpslJQu55k0zK4vFIhVuMGLfhw4F+/eT7CsHiZpqcJEq4JRZWKbtKqu4Xltn3isu8bdf8Nn69Rd9vKFwlixgSbh2dODFusoDeOMKtNPAiGWHCzTfJt9RZ8BjVWUvgKpnUTRLwTwbCLG5NADYp2lDVPYlzbnTJRlncDKwbQLTFrVnTPUqGeE/y73vvk7y9NC1uJVnvuiqFG+sHSgwXKqIsbpZj3BzHLDkJEJ6tzijRRBxXybbf1KprFWVxs1QOAAguQNmyuAGeyzuPz1XSIKuk6n7nXaaTLpzlhFud/Lrayiq57P1g9kP+0ZTdUlExzJELRCnGuOnGc+a+k8DippraZrNuFkIZYcKNH2cTzweiBKejlyQu137U2JGyq6TPkmrB4uaDu4cGDY1fb5GHndMidIlUQcKto8MmbGGTElVAL+sjoixujZoPDL/SHki/zg8CSeugxXBh8g1gKWSVbDIQbvzxhAm3DZCvyobWPYk4N2Xdg9viknqMW0RGthZN9ygZofEbOhOeiAmV8blpuydl96PjABuXtB2HqWWmnWPcnGavb0hDuJm4vSGOq6SJxS3KhdQgfk48JvHcGMe4DfReb/8yuN9WjFuUq6TOAk4uQYkDNElipoziRbnPf/qRZD//O4o2wmKYo7LXpirc2tNVMqSfmTUrmL0QCBduWb5QdNIFnBLO6pNCvCh/XjYutevWzD97myX3o2n7kVlIDcMngHADQJFCwq0j09qC3Mw+rDNSBfSyfl825+AXMVUDTBRhKa9NJrKRnUUz8M758s/HIcpV0nG8eldawo07L+JicRkA1vfXKb4ft+6J7Nx02817XZGwrlWSGDfT5CQy9zGbFjexfeNix0nqK+m03zagyu7HT7lMXjruJKExbjaEW1sbsvvR1PIDJLC4JY1XSpBVUssCwSYkirb52LFOCvew0PZDLKmm591XWzAiKYxJOQClq6RBkqKokgAm4oefnDZJntU4wi00hjlqgSjFGDdjV8mIWLG45YFqaoLZC4Fw4fatb3LHYRgvKmJiEePbBoB1LwMf/ta/3+RZ7f5NL5HQl08C2yTWcZ8rZtJyABEWN9PargCkWSUDhgDL3kUpQ8KtIxN3MqgK6GXPgWw+w/dtWc0HLiy9e5qxJ188KXw+4WMSlVWytcH73aSZ6gD/taoQrhvvASnT25F1TyLODf/bkx8MO8ogUTFujmEn7auBFOEqmWaMm1ZsSAKLm87KIxuwZRa3N3nXIZmJNgJfAVjhfrci3EIsS6ar1UA7uUpGWMWMLG6KlWTektVpQPL2w64rL4i0ksJEWcfTtrhtD342Lj7hVhfcb+rWzIhKSx/2qKpimKNcJVPNKpmyqyQSxKWL2QsBzyuPP+8se+GAaq5ty8LNeBFE6Dv4RWfT9kuywNAfuq+dVqDuveBnbJUDkNYV5M6XTtw74N3z/HMZdm8WASTcOjJxO2lVQG+YcOPvrMqEA2+ujZDBPU2Lm/hbti1uvhpuilizMPhr9SMhsxKvsWVjd1TdkzjWSEa/A8OOMojPVTKFAtxRddx0U4DLCBNu1t0NYS4Mw4SbKWHWQnECZbuOm1WLm+WskoiK34B3vtKIcdvxlfe6sn/y9sMybpqed98ii6wcAL/IknD84Gs0vjoD2LHOv99xvL5Ay1Wyh/c6yuKWeGyKEG5xPVlUMcyRVitTi1vIPV8orpIMPnthdbXf4iZmL7RWE1Em3AwT/UQJGtNnlb/fbVsM+XP5/HeC45NJSEzuNySukuK9T8KNKBriroCpAnrjCjediSYgDO6icDOJcYsQJ6KYMikHILO4mdRwA/znZfxe/pVD/tB54Ra37klUQgV2vjIlyYP6fa6SETFuWtm1IlaTrVrcQlwltTL4JYlxM6jJlYZwC51QpVwOwCRjGoNNIqMKEhdcVsm29retkvczvMWtUsfiFuJ6bGrp5M+N1K3ZwOIm3gf//j//+9Ym73qk4Spp0hfw57xSck/EcZUMi2FOlJykgLNKSp/VmK6SPCx74apVwDf3dLdlAdSu9GcvtFlaQ8RmjJuMVsM+Miou0ijGTbhOvNs+YD4nAORZJcPmk0UACbeOTJIVMFlAb1zhZloOAJDEFNmyuEX4Vas+E0ZYNjbAL9y0XCX542/2rxwO5kxum5G87klca6TONc1GuDClnpyE+82kK+099/K/D4u5TNviZuIq2SoTbgkFuEjqMW4hws00PgRIL8Yt0nrd4m3XcR3j77PXfhTc73OV1LG4hUzYjONyIp5Vk6ySWWHyu+Vj/3tTy3uqMW7c52sGBvfzt4kiYXFoDHPYNW1pBFY9xn22yFwl42SVVJHNAlXc2Fki+KGaJCsD2tdVUqTZ0KIX5cZvKzkJECwxZNNV0mdxE+eTqoepMCHh1pFJYrWSBfSGJSexIdziukomLoybQW6yGpXJCJCnqw7DVw5AMlG2aXFj54WtHF57qbfvst8kr3sSW7hZHtQB8+QkvpozUVklE65sivF8gZhLU1fJlC1uOeHWFFyI4F1hdGgvixsQPPb2TE6ik02OIV0gMnQD4s/LygeC+32ukhoWt7CFM+PJYERfwAsiXijFQXy2K3r53/tc00xj3GQWN4N7hu8HBlYHF0v520RmJIiKYQ7rZz7/s/99sWWVREJXySTtt7aTxU3LIpbA4qYlDKPGJt6SamhxE8+tVVfJFi/jJlnciKLF57oQoyMVA3r5e52fZ1dUALfexLWtMQAA6SUnAbxOYMsa1xrFp08WVyKTrlZHWtwMBATgPy9f/8u/r2mj93roN5PXPYkUbsxVUmdQj4hBa+YGmA116pTWKqJqzpi4SnYdAYz8iffednKSyFo8lpKTAP7n3nH81o0hxyVvO7SOmzgw285UZ1G48aUFcr+XpsWNX03WmchGTCC3twm30k56ZTzCJmymk8GovqCR68fKewX3hyH2qeL3TV2mk1jcTApwl5cGF0ujLG6RMcwh11RMalHQWSVlfaSGq2Tc9nN/S8asbalw4z1BUnCVNLbotaPFLUy46bpKygwAAddvEm5EsaBjhubd8vgOowx+t7xjjvb2pWFxa9FciamtdY9xeVtH3Pg5MH5XYNAgd3ttbbBzGnREwuOOyCpp3JFy5+Xze4G1i733DVwgfkXf5G3HTU6iteqouJ7smpwz29t22RX+axKHJMlJTONyAqvJFmPcouormcS4Af5Jd8sOfz+wz90abfPZByMsbjqptNtLuAESgZJijJtNixuAQEprJn7KeyePRwUi+l/TuJyI5CTMZSpTCpQpshqrEO+Dit7+9zZdJZvqgvtz94zGJL+kFLlnprUpuFiqEm5xY5jDJuFVQlxcmhY3HVfJ0pDn1N3IHUdKwk17LpOmxS2iX7Ip3CJj3AzKAQDBsY2/zqaukoD3bAZcv0m4EcWCbkfK3PIOPtTbtuQVv1ueL5jXgsUtYOHQWAlfuBAYNQq48krg39xEZDe4BcavvNLd/8o/vH0Tf5d8shllcTMdwMTz+fop3usGbqVanLDEajumxU1rNVZyPflrso3LptIM/zVZuDC6/cgBhnfVsRyX4xi4RwHJLG4mWSUB/0DLTzwHH6W34pskq6Sxq2Tawk10kTKxuEVkkjDtBwJuo0Km1qZN7v/lGtY2INw6Y5xVUojTFcmJzl4aSZCEe1h0R29O2VWS/T26nia5+nxt7fCLpf17eJ9rQPIY5rA+sutI//s0ywEUQlbJJO3bEm5OS3CBxfhZipjGmwrDJDFuiV0lE1jcTF0lAbXFjWLciKJB12rF4Cd5Qwb63fJMg3kBwfXNMDnJwoXASScBDW0P6EfcvsHc64YG4M7bk7UtwndeUoubqa9/yKqUbxDQWE32ZXuznJxE7EDFa8L/WfxPNzS4n4sSb1EWN5sWjjCLm+mEJzLbm2kMHdcWX4eqrEfydoGICZVt4SamGLeQVTKsXpmJII9aBDGNExPPdRO38NHa5LnAal/XkJhR0xTmUc8qs7iJ8WlxEMVYQOAaWtz4flWWZCnXR+pmwWN1p7h7jy2WLuDGpnMuSB7DHGZxE4u0axWaDvE2SRqaIeITEJaySvKEeQ6YCreKPt7r7av8+0yfpSgK2VUyanywLdzY8VOMG1G0mAYLq1bxAfNgXkC+UpJrP0HMT20tMHOmfxs/3orzMf69TmfhK8AtSU7Samj5Ec+nqm6cjmsB3/baF4L7jWLcuLbrtwSvCX8ZZZ4wM2eGu02GTTQB8/s91AJsWv8oEz9JhmmNO16M8MJNN0mJb0IlCh/hPBVyjBtg2eIWIdxMikwD4cKtabP3Wie+DZBPeBh8XKRtV8nWJqC57W8p1/AaEJ9tsX3TGLfIBSLLFjceh7vf+w/ViGEOmYSrSlYkgRfCvEAGBAuzzriaYlZJIMLiZrBgCQDdd/Neb3rfv8/U7TiKQhZuiSxuujFuknlBwBBAwo0oFkxXwPiHVEwzzg8CNpKTqFZIMiXRK4O33eZZdRj8GCV+nX+vVcumxOuA+QySDNuukj7XTMOUy3zH+f6vg1Y3WzFun38WvCb8WC7zXGhoAG6/XbJD0r40+5VFi1ug4zdMTsIfk1Tsm1r0FJNN3lVS2zJT6p0bZVA/O44idpVMnL02ouwILyBsCLdmXrht8l7rukqGLYSYZH0Ewl0lGwwSk4htAxKLm6GFI24tNN0QAda+NIGToegMTTjD/d7Yy5K3DfiFm1irM21XyTSzSppa3Lrxwu0D/z4bfVgYNrNKykIQjApwR1nc+IUz3Rg3ydgnK4VRRJBw68iYTmTDLG7t5SoZNZlqbgbuuCO4Pa5wC+yMCQuo51e+c79tWbipXL10BESg5pEQN2Mrxm21xHLGnwpVP3rHHepsk2FCH7Bw3kMEhKkrI+BZRvhJd6590yyqikk4b6UpEwrPJ2pfYS0sBuGmWvgAzLKF+soByFwleauVxiRcnGzw19KKC2zIQoixcAt5VvmMkjqukp2H+N+HWsd1shtG9DPsXJkuWMomySaFyYHwSTj/t9R8P3nbgP8+FoWbaf+bKMYtpeQkuteUF26bRYtbgbtKRsW4bXhTv/32yCop8zahGDeiaLHqKin4+jspu0qyBzBqMrV8uZvkQoQfy8WngO+b122EFqHCzSALExAcPGTp2EvK9AavXuP97wMxP5Ysbs2SgZc/FbI60QCwZo17TaXtR9WbMSzmGbuuoObgzibA/KQ7175puQHFIohpGYPcd9suXpRws55ivD1dJU3quEUIt0K0uPkmbCqLWyZ51kcg/JryRXh1XCUzGWDKU+r2TZ/VqIlsmhY30/i8sD7SRkKxNF0lw7K/AuYxbmFZK40tbrt6r7eu8O8rZlfJNS8C9Z/rtx+wuAnvc55VpXoxl4AiqyS5ShLFiqnFjc/W1SS4BNqwQISt+LbGFG6bJcIJ8Cd5Ew+P7x+2y4KtYsAmM82bkSv6mPvtNF0l29rWdSsYcrz/fSB20aQAN/cdWc8TVaOIsWWLfHs+k5OYxrgBXoxZy/agYDaebCpEp6kLJoNNelRB/bnf0LG4hQgg04xpQHqukoD398pcJU0n4WExbj6Lm66rpCIuEvCEW3kPvUly2LPKu+/qWPMAwbJk+VmNtLgZCrc0LW5hotNGXxDX4mbsKikZIAo5qyS/uCGGT5i6MkZhs9yAeM9seMP/PqnnQMCtWbHIYrKoGCurJAk3olgwdV3ghVugM7JgcQutr9QY/IyMborVYP65DbO4VWmsJgNAts3tzGkNWiNN09KHJSdhbetcTwCorAaGncS1p4hdNLWcyG6JuMKtq8KlLyo5SZqukjYmPb4043X+faaWMVWiCRuCE8ifq6SNSU9YVknjpDBtnUsaFjfxHlda3HokbxuQr1QzcsJNV1hFJCdh6NZuSjUDbIl3XcMsbqbJFNo7xs1GXxBmcePvz6yiDw8jqj5qqslJDIVbpsR7xsW5kml22SjStLjxbY843cwrAVALKt2FaEBuACCLG1G0mFog+JiYZsEKYqWOW0j637grMcOHA/36BbfzfXxYjNtAIV4iLvwKm+guaeqiKnaOshgdk44uNOmMSTkA7jsVknsiToxbdbV7TaXtp52cJMRKYMPlkI9FEgv7mlrcVFYCG5ZxIES4CZamQoxxi5tNTqeIdc7iFhXjpiHcRHwWN0646VrcWrm/96tVXmyp0+rdn7rCLSw5iY17MqyGno1nNWcVSyGrJGtbmsGvnWLc0rC4mWawjaqParMcgG3hBngL3e1tcTNtPxNyz/D977ATk7ctShBV7T+T+UxGsqCrMgQUCSTcOjKmAiKuq6Sub3KYz3nc5CTZLHD66cHt/HgbJtzKNH3Ow4Sb9eQkkgFN53oyVElnmps9S2pDszpJiIpMxhv4qvsE98exuJ1+ujoFdqQLk2k5gJSTk/CTGbGwr83kJLzotOUqGdviZlrjLk8xbtoCou3Y6/7lF1aAYHHTsJ6I8BNCX7bQhMKtttYt6nzued62//t/wKBB7vYVH3iCXFu4hSWesrHoF3LP2IhHDbOKmca4sb5JJk5MM5HGzSqZhsXNVLhFWdyQYnISk2zKDJVwsxHjNvoc7o2wwORzldTJZRAyDzNOfBLlKmnb4qaIcZPeT4ULCbeOjHGMW1yLm657gQWLGwDMmgVUCB1WmMXNV8dN13pSxBY3cYBkE7lBA5HL6vKv97yJXFhtNRE2menTO3hNoixuFRXAGWeEtJ0gOYlxNrmwyaBmtxrmKukTWBaKn8teF6OrZOoWN8MYC16cffAb/74Ww0m4iLKOWwJ374ULgVGjgCuvBDZy7ZXATfJ05ZXA5HHe9jRcJW1kJE47HjUsDs1U7LM4pNbGoMXaNBNpaB03C4s4/H0sWtyaDK3AUfVR2yPGzaSPZMJNXOS2kVVyr2u5N45/sYKdq5IyvUX0sHvGWLhFWdwsx7ix9ijGjShaTC0/ZSExbjZcJW3EuAFATQ1w553+bWHlAHzCTVMAhbmRmgYLi+eTH6RMY9wAfwf8zBPeRG7dOu534E3kRo1yJ3xxYANfNhO8JuyQdwAQ8rkAcD9fUxPdNqCwuFmscRfwkedW2XVc6oBwixs/GdRy2VO4kVq3uEUV4C5A4eZbUVbEuJlMHBjv/Z//vWmMmwgvBH0ZVGOel4ULgZNO8uorqha3yri203aV1BZWKcejsuMKs7jpHrvPVV2YUJqK/bQtbqUhFjdmBS7tZJ7FuihdJduuV2uD/1xbSbCUBfod4L13JO1rtx12z1iMGwfUsWe2LG6OwuJGwo0oGmxa3EQ3IFMLASB0GIYr4TNmAPfc41l5VMKtogKYMll+DElI0+ImTjb4Act2jNtvrvImcvx54id1DQ3uhC+OeMvF/DQHrwk7FWIfWlHhfm7GjPC2w5IpAMJCRUpZJU0m+PwkWIxxM50MxolxM1lNZvex0+pf7W3P5CS6E5NO1d7r9a8L7Vu4ripMrSci/P2dtG+vrQVmzhTa417zl43XCztslHoRnyUb3hppx7gxV0nRauVwk3xDV0kgaFny3TMabnVpx7iFFeBmXgTadQUjXCV9Nb904oAVwq252esHGluShwgwfMncuOvIz51MFnBksVyAdw9peyTEjHFLxeJmI8ZNMn5QjBtRtNiMcQu1uFnIKsl3GI6jtxI+Ywbw8ceue1+vvt72UrhJL+bNc/cP46w6ugN7Ns0YN4VfuNPqddi2Ytz4P5/vLSS5FjBzZrTbZEZYqeavSWXbD7DTw1+TKNHGtw0oXJhYTZgSTZeRGMlJTKxW/IQm4CoZM6ZTherYbScnAfyDoO06buIk3IbFbeD3vL/98z/DV77D4SydtjGNVxLh+/Ok2TBvu81boGHEEW5LlyU4QA5fDJrCeg3YiXFL0+IWsBa2BD+TFFWMMeCNs6WVen1Y7DpuunHpvHCr9+9jfZpultOo5CR8/b8Kjfp/vuyyjVyIwCCgoe06fLBML0QAUHsoNbR5spSU6dVEZKjKJ7VaFG5px7ip4lFtCzeKcSOKlhZD17GyEIubjZV8lcXNNzgmnMjW1ACXXw588JG3bf99gVWr3O01NcKkR9dVsh1j3NhExNSCmvsu1wHzP8X3sTJXxoYG4PbbI9qWTHjYNenZNugP2gX46CP/NYlDZB03QzfSOJNBE6tVaHISU4ubYjXWtqskEC7cxMD5OPDn/R9HARuXeu9tCLdOfYB+B7qvt60Cdqzx9tl0lRQxzRAYaE9hcYsS+83NwB13SNrjXquE24tL9CwQYW7NVixuYdZxg6LqufZVFrfm4GeSUhIi3Ng4y4+9idpOO8ZN4SrZ2uKFDFixuEli3JgAAoCKvsH9UfAu02+95oUIbF7rLWDugF6IAKBe6N6xtu2Y++m72QNCLJpFi5sqxq15O7D6Me+9VvvCRMLnDeJwFjeTGDeZxY1cJYlixScgDAtwp21x860gWRAo5ZybSadyf6bCJJMeFbxwa9jo32c7qyTr7EzbzcG1n8TiBrgTwLCJXC6oX5xMOd4KbZfe7qCoyh6pIsy1lt+me8+ECjcLlpnQ5CSGAiKOxc3IVZKbsPFunoHrLClEHQV/3retBBbt6703zZjG6Dbae711uffa1NIpwlvzbGeVVFncovr25cvdyahIHOH25Rb3+0kJdZUsohi3QKyMBVEYx+LGj71JCI0btxHjxo2rvEW5mVu81La4hcS4Lb8H+PJp93WmVO83+Gf8/ns9C3R/7jNfca+ThAgA8vmS0+oJzk6SskVJ8C2GcNfWpqskf8+8fpq/P9fpf0ULG/+sOi3ICTsji1uMrJIk3Ozy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTk8QVKoQFCxYgk8mE/nvqqadS+isKFNPA0mxn5FbQAxY3G8lJFBNxXwY/GxNZRakBQL8AbLddvddfL/XvM66rovALt2Vx47PJ8c3EEW5r1oRP5FT1j1q4jCS6k9gwKyfgCVtdN1J+YFz7JfD2264bZ3OznZXBOBY304km4B/UbVncuuzivd7yMfdbolCTmWojCLjTcPe5acY0RheuNmD9Cu+1jdhFHj6znnEdNzHtt0K4RfWRmyXPChBPuNUD2CL0/XEIc5W0UgOUF24pxLjlygEIYwe/gKlrRQ0TKGyc1SlgDSC0JlfuvGT0M+NmSrzj5y1upqUAgPAYt9dO9l5X9DZPTsLfdrxw44zxOeKECADy8kmNdd79bircpALFsZuchL9nVt4vfE5jXA2zttuaz8RxlSwy4ZaC47495syZg/nz5yObzeLggw9Gly5d8Pzzz+Oiiy7CX//6VyxatAiVlckCdEeMGIHJkydL9w0aNMjGYRcPLYYPRqbEHZyat0qKStpITqKyuBnWtALaJnkZAI6k87AgDLuNcV1CmuqAda+4HShzg2CDTqZEb2VTFHs5V0lDF0xGAzfR4f/8kFAjH2ETOXYviJM1Gxn2+BTT/ASZYWpx28iJqSuvAJ66wn3drx9w7Wb3/Ji4vIUlJzEVhmlb3HiL1eZlQP9D2toXFb6GcAsTZK2GkxJG1TDvdb3E4qZ7bg5aBLzwXe/9jnXexJVZJErK9UTn1OeBF6d5E7NWhatk1P3eTRFXE1e4ddUQEZk2ccDH5TJsjB38xD0Ni5tqAcqXaELXnVHhEtja5F3jMl2LW4yskib9AOBa31t2+C1uvHDTdpXkj5271x2hT9EuUcG1z992Kosbg4UIXH55ePsyi9sOztJdYWpxkwis1ibk+tw0YtwYmVK9Piwso6yNeR4QnZxk1JnAbhfot58HCla4Pfroo5g/fz66dOmCf/zjHxg3zq0ds379ehx88MFYvHgxLrnkElx77bURLfmZPHkyFixYkMIRFyE2JvplXduEWwp13JQxbpYe6JJs22AYkmFIe6JcAvT9NvDFk64rRP1yzyphHGtVAnz3Nc9ljHV2tlaoqnp4r1WukmHCLWwip3IxslHTqpwTbqKrIWAm3BYuBG6ZA/xP23v+ll671p3klgLYbBDknO3iTWbF42eLLLr3TNoxbqJwy/2WxCU2KWH9h6kbEIO3uG1d4b02dZUc8B23OO6y+e77hvUARrmvWf0m3YyS1VOAY+uABzq794zK4hbVhw0f7i4+iO6S/KXjn33+8azs7X5fh0wWcBrDs0qm4SppI8ZNaXHjxkHdODSVq6TPmqdrccu458ZpUce4mSbiyXYGGjf6YzhtnJdMxj03LTv85yXgTrodWjjcPcOfAi7prFS4AW6IwKWXhrv3y5KTNHDPXBoWN1PvHkAd48YTWKCLSSDWrJ0sbvzv9p0MdBmm334eKFhXyV/+8pcAgLlz5+ZEGwD06dMHt9xyCwDgpptuwqZNkpV1Ih42HoxcUckQ4aY9OKYY4wZ4HVJonIKBMKziJjS865uNWms9vuW9Zue6xZLFbcBQ77Wvph33WiXcqqvDJ3JiVkmGjdTopZ28wUm0WAH65z1X34q3TnH7M/BcSj9emSxgnSdT4lkNA3XcDN084xTgNpmwdY0p3EIVv4L2EG6duXu+/nP3f4ezxhu5wHIZ7hq5zHc2jr20wruf+Ulakj4ymwVOPz24nb90/K3BC7dDjop5oBL40iA8aRfgtmpxa/EvRtiwuKmEG1+4WTfGDVCLTlvCLXc/8in1uYU5k9IXuba5sU6sF9coxJTH5SsuuQl/2/Gnuk7x3agQASDa4mYc4yYRWDaSN+W8k6AWbroUgqukqYU5DxSkcFu9ejWWLFkCADjxxBMD+ydPnoyamho0NDTgySefbO/D23mwkcyCBSMHCu+mWMfNlrDKFVFVWNwypfq+/oD/2Hi3VNNJOCCfiNvq6Mq5gTVpjNvpp4evOpZwEx4eW8WIc8LHkqskX9+K1xz8ueAvYwPixzzIYG4+AVdJQ7FfIlmNBewNYJ36ec85P3EqFosbvxrOBJCNxSdAXVDZNE03g90TfH+e1Cth1iyvniIjyuLWCuCmu/TTo6sSFVkvB5BijJvYXpNlixsvxm1YrQBuwTIlV0nWftMOLwa4hbOCZTXqzzFKJfe6WC9ODNuIy3bu2eRPAX+LhOmWqFhPWYybr4RBn4gDjECWqdWGcAO8+11WZscEVVkdwN58JqoAt63EU+1IQQq3d955BwDQq1cvDFes3k+YMMH32bh88sknmDdvHs444wz87Gc/w1133YX169ebHXCxYuPByK3epZDSOc0YN/67AXO9hdoh4vd9CRWYcDPoSGXB/baySvLxQkli3CoqgDPOCG9bmZzEUk0rFj8UKGDt6Almvr4V/zfz54K/TRoRryyCChb/0VjniZzWFm/yqZ0RU1Xjx5LFLZORr+SLk/KuozQaDxmmbAm3qDgIk8FdZf2xdeylMisE628y8frfmhrgzjv926Ji3LbBDZ/RTY+uine1XYA7LGulqcUN8B9/s22LG3dNC93ixuqeffiJ+35HPbDrrq6w//Pd3ud0CoczcosUvKukINz2+JVe2116eK/5244/HWG6JSrWk/+7mSD3JUIz7cMiLG4mccCqe8aUUItbO8W4FaHFrSCPeHmbyXnIkCHKz9S01XZanjAV8SuvvIJXXnnFt61Tp0647LLLcNFFFyU8Uj/19fVWPtNu2Ihx4yfifAIOG4OjyuLGZ60zmlCxY1dklTTNJKcqIJ7L8mRicZNMTGytUMUpwC0TbnfeGV1zTSXcrFncerj/N21xxQ47T75V9pjnRqxvxf/NfEI/0eIGxIt5kMEsbk6Lu3Jc1tXOc6qqm2XTZSRTBmCH/17nB+J9FgBVMWvy+dpVTN4dx15yEt9CCHOnSWHi0JqCcAuzuJWUIXZtKFbkfuZMd/EhSriJQxlLj863FXrcir4g9XIAFmPcgLZz3TYpt2FxUyUnsWVxy03ChUx67DzpiOWFC737huXoYM2sXQs8+RjA1vRMhBt7VlpDLG67ztZru2YY8J+21yqLm6rSTVSIAOB/zlkcng3PJEaaFjexbqGO54SM2K6SKdZxM3UNzgMFaXHb0mZyrqpST+C6dHFXnDarUhkL9O/fH//7v/+LN954A+vWrcPmzZuxZMkS/OhHP0JDQwPmzp2bi6vTpUuXLpH/Bg4caPQbVhk9Bxh3HbDnVZbSjPMPXYoWt6Xnea+trDwqUsMaCzeJq6TjeEHbJrWbMpmgCLKVVZLv4A+a7LlQqYRbRQVwzz3xJmu5uJZWvwuTjRg3gMss6fhLAvgGgZjnRqxvpXKV5HUguwRxYh5k+EoC1LX9rgVB7ksDnkJyEkDuesz6hNLOwC6naLYr6T9Y/Bm7h4xXq2ULIWms+DJXnVaun0nB4qbbh82Y4bq3zZsH9OJct/hLwObdwnw5R1xXYWVNx5QLcNuMcRPbs52cxOcqmbLFTddVMhcD3Hb/sdPBhUb5FrfeEMrjJEG2SMFb3Mb8TD/jZhk37vC3HXuEwjLGR4UIAH7B2iITbqb9b0oxbnzbOeGmmYxEpOde/vf8+TAul9IGxbgVL4ceeiiuuOIKTJo0CX369EHXrl0xYcIE3H333bnMlL/4xS+wZo2sUMdOypDpwJg5wDcuir8qK6JMemCjFo/C4sanetedDAIxLG4WXSXZb7Rs99rXTVvMEF2NrFncuFF26EBvIte3l7e9Be4q47x57v44og1QC31bFjeZ8AEEN9KY50ZcFFJZIPhJCT+469S3ktVys+ECm3aMG6BwlWwTViarybLvtjbam5SIvyN1lTQ4N7J7nr+mJjE/gHwya9KH1dS4qc2XcBNsmeuYyvoQ11VY5SppPcYtrMB3ijFu1pOTWGgbCFpPGDquknwMMEPWT/K34S2/148Bli1SWEt8wl1T/hRE3e9xQgQAQbgxV0mbHg+yuPeUYtxsuUz2nwrUHOu95xf8rcV0Rgg3srjZoWubr3CYW+HWre7qUzdVDZoEnHPOOejTpw8aGhqwaNEi7Xa2bt0a+e+LL74wPt6CwrfKo5oQak7aShUWN/bwVQ0Deu6h1zYgt7ht/xLYttJ9bRq0KnP15LMF6tazybUvWNzSiHFr2eFN5P7+N2/7jJOBVavc7VHukTwZhXCzHeMG+AU+L2rjFlUX+xZVjJvMVRLQq2/F3xPs+LdzfYaNrJK+Z8niACabEJq4X+XalXy3ZYc/4YEV4SZYgHz3jIlbs8xVx1LsCaCwuFlw95bVtYpbEuSOO1xX49D241jcdIUbb0ENSU5iw9OEnevmZmAdJ0hKNAV5nHIAulYlwPP0aN7id3nTEW58DDAjSrjVN+vHALNxzWnhYrv5scNEuCkKcLPHQKVV4oQIAMJ1ZRY3C/c6QzYXS83iZjHWbc+rvNf8+eA9ZoyEm6xMgoXFmzxSkMJt2LBhAIDakFUZto991oTS0lKMGuUGza9atUq7naqqqlj/dip8E3FFbIu2u4uqjlvbQ2fsHiW4dtXXAo9xfuo2Y9zYb/DCzdjiFjLRtBXjxk+OeaNsz97J47cA/4TnLS4WwXZWScBvcWvVELWsvhWDH6v4W0NMTgLEi3mQ4XOTanDTRT/llUPRTyKksIxbdZWUZB5j96bu4g2gsLg12LtnxN/JWcV4YWhgFZMJN5vWQt9kVugLTPqBlau91zLhFuYtFcdVOE45AN37RmVx2/AWsOoxrn0L3iCrV7qeB4MGAX/+g7f90O/rZdv0LZzxyUksWdw6D25re4c/q2FSV0kxBji3nXvNmuL7y0bEE/YyxP4RSMfitguXXyHM4vbTn8b3Nol0lTSMcZMtzqUV42YzSYlqbLJmYY5KPEUWNyvstZfr97phwwZl8pG33noLAHw13kzYsMHtwLrqrJJ3ZFS+/razSsomg8bBvEIdt2XX+yf4VuuqSCxu1l0lbcW4cd/1CWYbhXG57316J7dabSvGjbOS8a4WLRqiVqxvxcf08PN4mcUtTsyDDP7YWhqB/wgZ0rSLtitcu1JxlZT0A2lY3GzF/Ii/Y1tcpS3cfM8ry4BqWDgcALbywlX4Hwi3uAHRrsKsL2hYD6x5wdtuxeKmEG7PTJYfQ1L4Z2XqFDer5tq1AH8pv9iol23Tdz1VMW4GCxWdOVHCvEuA5BY3MQaYIbO49eC2NUI/BtiXuKXtXk/D4raaOy9hFrff/S7+tc2m7CrJf/+TD90QhiZuXLWZVdKmcFM9qzYS/ajapxg3+wwePBgTJ04EANx7772B/YsXL0ZtbS0qKipw2GGHGf/e0qVL8dFHHwEAJk2aZNxeh0K5km+x1AAAfL3OqwljS7iJFjfRwtZZndU0FlKLW523zVS4ia6StguTi23aLowLeKultqwnKjcjn6hNMIDx9a24eSz4+YEo3OLGPMjw3TMNwZpENixurc2uG8riHwKr/+ptt2Vxs+0qKVttbSlSi5ttFybAP5nNCbe25zauW7CMblz/lNRVEoh2FebvyecO9l6nWYBbrDdqI8btO1wfyd8m7PZh2TbjTvCVrpL8/W6wUFHFjWv1nEBJanFTJYYTLW7jABzAbWOnSycGWLZIkYbFTZacRKVV4ibjKZG5SlryeKitBRY9572/4Dy3FMPsWd62QoxxA9TPqo3SGoDfak8xbuly8cUXAwCuuuoqLF3qBUlv2LABZ555JgBg9uzZ6N7dc4165JFHMGbMGEydOtXX1rZt23DzzTfnslXyvPTSS5g+fToAt7A3CbeEqGLcTDOy1dYCV3C+z6+/6tWEaWYFsm25drWVMugs+KlXmQq3KItbD7P2A66SturblXLWPIXFzcZKNeCtlvKDr5Fwk7ijAEI9mwRWK76+FS/c+Ama6CoZN+ZBhmjtFCeuNmLcnGbg3YuBlff7P2MrON62dbyiV3Bb6w77wq0kLeEmS06SksWtxaLFbReu5l5S4RbLVViREMt2cpJ1i4H1rys+p9n+Nu76TQXAdBR/KQWNGHuCn3aMGz/OmVjcVPkFRIvbecJ+NqToeDfJzo0tixv/rCRJThI3GU9W5ippYUxduNC16i563tvGbv/t3Jx3ybt67QOeIG7Z4XqCiDFuQ0/Ub1sV956mxc03HzBMQpcHCla4HX300Tj77LOxdetW7LPPPpg2bRqOPfZYjBw5Ev/+97+x33774fLLL/d9Z9OmTVi2bBk+/fRT3/bGxkbMnj0bffv2xb777osf/OAHmD59OsaOHYsDDzwQK1aswNixY/HAAw+055+4c6CKcTOx/rCO6KprvG3sZ9au9YLNN9Yla1dEzPYmTv6sWtzScJUULW6WCgYDnrjhr2OrjZVwYXBigq2Fn4QbDL5xhFvSifKMGW65g5IKb9VVZXGbdVb8mAcZPlfJhuB5tmJxawJq/xL8TKFa3Molwq2lwZ7rGCMtV0nZiq+twrhAuMXNZFJSVg44beJK5ioZFuMWx1WYPweAJzptuNmLonDRvvKP6S5WvP+R/z3rdtjpbkXQQhN3gi8mh2LYcg2WWdwch3tWY54TMQaYIYtx42mCfgywzFXSlsWt1fEWI9htl4H3N4QZmWIl45FcV9MxlS/FEJnN845kLrs8nQd5r7d/4Q89AIDx8/XaBeQeCYA9i5ss22bDRm+bbHwpcApWuAHA/Pnzcf/992PffffFq6++iieffBKDBw/GVVddheeffx6VlfFWQTt37oxLLrkEBx98MNasWYO///3vePzxx7FmzRoccsghuO222/DWW29hwIABKf9FOyGqGDddERHVEWXg3bWffKbfEQHBB1rMbtbZsOaerK5KqjFulgpWAt6Ez1fU10bsiSjc6v3/Aym5ShpOwll9q0zbxIDvenpxxzvl0ORt85REWNy0Y9z4+IfbgMaN4Z/R+g1mwW7xstXl7hmDoUYq3ASLm0mdH0Z7JiexlaYbCE5mWY07wEI/0PZ9dvniWNziugrzlhLATcQD2Ik/yWT8mSWVn9O4L5ubgfc+8G9j54JNlEVrGyPOBD+Wq6TB/V7JTcJ3fOX+z2fejJsQRowBZvDDqOzyNUA/BpjvCza+1fZ7lixuy5d7ojML13rKh0SGXbY4MXslpd7zJHOVTHqvi6UYZFmP+du7GfGtviI+K22tf5F+xEygU5/kbTJixbgZZI/3CcO29hu5pDwyj44Cp+CdO48//ngcf/zxsT576qmn4tRTTw1sLy8vxy9+8QvLR0YA8E8MVDFuceMsxI7IgTsIlMK7U8WsZjNnAgccoOeaJgorUbiZrsTILG5NdVz7lmLcGta52cFsuUoC7jVrgjrGzUa2N0DuKmkyCU/D4saoqQF6DAC2fgoM6AG8/Zzr7rPlDuDDNuuwycQBCN4z4sRS11VSvB9aGyWfsVwAtrTcTh03qaukEONm4jrGEIVbs6VyA7IC3GkmJ7FRpwxw++MWx+1zZf2vSrjFdRXmrx8A7FgDVNVYsrgBAaubrbic5cv9iVsA77ywS6Eq1swm+KNGKT4AeRwXYM/ixos+1u/qxvzMmgVce62/JAAvcGSXL1OuHwNc831g2XXu68/uAoafJLjZG/S/mzd7ojML4DT4hVvU7RMnZq+00r0P6792FwJ5y1XShTOxFIPsvIvJhJjVV/BWi0QUbvw9ZOzdo3KVtFUOQCIMWTbVsm5UDoDogKgK++pY3MJqwqhiLOK6n8jgO8rVTwTN/32FDGSJ25dY3LZ87G0zrePGH/+rJwvCzbR4uMRV0kZAr+gbb93ixgk3fuLNWw5NJsps5a91C7DXXu4EzGc9MRRu4qTNlqtk5PWKaaEIQ7aIY6McgGyBoz0sbr7rWgTlAFi7NpIUMXf17SxxE/z/A0FXyYoK16U4rqtws2hxa7P+2CpRIS7E8RNBE/gJPoOdlyiLGxA9wZct+AFAEyfcTPoZXtyYJsngY4AZoqukKPBvNYgB7rsf0Knafb3pfff/Fkuukt26ecdeCr9oA6KFW1jMXm2tWxpiY9u1X7XCjdn/093eZ5IsnMlKMcgsnTLXZp1SDFWCcLO5SCxb2ALSLcDdsN79v8LAUphHSLgRZtiKcYuqCRO24qtbE4bvcF49Afj4Ju/9Pn8wt0CUCgPwpg+AL/7uvi/rAXQZZtY+3yF9+Xf/+bflKslfx6VclLnuhEqMawlklcyYTWR9dX6439JNTiLC6sQ5Ld6kx9YAA0Rb3HSPPepetpESWeYabCPGTXY/iBk304hxa7blKilLTmKxeLiYnMR0UsW7q7Om2G0pKwfQvbs7Kf3442TxnWL9th1r2rZbKDsigxW0N6Vbt6AYYeeFXYqwSX5ktk1JHBfgxQGXVpothPi8Etr6X5O09CwGmGXfFUMctoqfPylZ+zyZjLeQk+t/eeFm8JwOHw44bf2t7BSETTHCYvbYIsiVVwI72lzI2fPUyI1LT/w9/rHKSjHw6yBMv8qEm04phsrB3uv6NIWbwlXSxMIstt/a4oWslPfWbzePkHAjzJDFuK17BVjOryTFeLCjasKEZTXTrQkjio/Ny7zXNjINieUA1r8O1/8TwK7/Y6GAuDB42+xMxRi37V8C9SvUvx2XFmEpmgk2NoEorXQHZ11UFjdbMUXlXIFvNhFs5CaEJr74QHDS1irMFnTTu0cJbRspkWUFYG2V7hARLW5pCDdb90x7WtxaG8wsbqK7OjvF7PTK+t/t213XN10rCmM7i7eyWJSYx5bFbfhwoJsgEMRkECqLW5ykHFEWN9OahSUVyLmRNhta3BgsBnjePKCCexazAHZYfvaZVS2X2Ip7lkxcJbNZoFPbuZUdcpgYV8Xs8YsggOdCyy4x/zydf1H8mH1ZKQZeuMmeV15QJy3F0JkTbju+tLtIHFUOIFtl5g0ilqxqqkNuHlZBwo3oiMjco8Qip3EmD1E1YaJiLHRqwoR1ODYmDGI9NH7i0P0b5u2Ly75Ws0oKFjfeQgDor4SLdZRyK77MJctQMKcZ4wYAWU6Ysevp88XvDiNEK61oodS2uEXcDzaEm68vSFu4tUMdN2sWtyjhZtA2YNfiJrqrs1PcGe5kVtb/Njbqu6vzsFVwG0mQpO1bsrhls8AeY/zbSuCeH3apVTFucZJyiLUcGcziZnqvZzKewLFhcWPU1LixU+f8zNu24PfAbhP02lPBjt1pdu91m4sg3driaZNY3FTJeMRFEMATf+yxFC1icZOHyEox8CGj7BaRWciB5KUY+HuuZYfdsIxMCXILCfx9aGuhQux/WXwbQMKN6KCIacaln4nxYEfVhImqI6RTEyZsUmBjolkqWNxspbdlNAtiympyEi7GzXGClh8xsUBcVBY3G7FQgDojm60YN97ixiaCzPKWKTGfVAWsJ2LBYAtZJaW/W8CukjJad9hL1sAo2gLcXD/jNOlb3GTu6vxjzsQbg1/B13VX52H3jI2yIzJsuUoCwJhh/vel8Kdel1nc4mbb5Oto8v2WrYks4N3PtgtBA0AZdz/372uesEmEj2Nr3ua3jJuW1ihvOy+qMgYyVMl4ZDH77NEsgz9DNuAageLG7MtKMYjPKiB/XnVKMYhlamwuEgPBvhfwxj6bnkkB4UYxbkRHREypLxu844iIqJowqqySAFBVpZdaONTiZuHRCLO4mbrUAf4BC0gnxg2Ot7LJs/lDvXZVFjdbE3x+gr32RS8tva3BnRfcTIiz65rtZubmCQgDZGMwgYOuq2SUMLPiKpmicJv4O//79rC42RJXUeUAjOu4ced98zJgMZeFOcmkSuauzscnzYV/QssvnOm6q/PkEtpYsP7IsCncKoTnvAT+eo4yi1vcbJtAMDmU0+r1lTbuddHd0KaVU+wH+LZHzzFrGxCSq2zjntOMvXGvk6QdUbiFJeNRxezzbZRDP3mIrBSDzOImmy/plGLwJc1qtLtIDHjPuU+4WahFCQT7X74UThHWcANIuBGm8J38H+4EBg0KfuaKq6LN/6qaMGGuBW1zctTXA7vtlrymW9ikwMZKr7hKtX4Vt8/QPQqQFLDlLATWhBvarG7CqNV7ol67geQkzOLWNlCZThp44batFnj/18Hf1U2pL343V+KhbUJYbugmCfjP+8r7gJX3C/uLyOLG14YyfZ5G/cQv3tojxs2WxU2W7tqmxY2fKL97kVffCkjWD8jc1XnhNgwA7/UmJujQcVfnEcU+YNfixjLJ2UD0OBAtbrxwS5ptE+A8HiRFpm1Y3LLM4iYpB2BcFkQYO3gL6l7XmrUN+C1uLdu9Z6m0k4WFM1a3UFJdng2B1dXRyXhUMfv8fVEGubCKuwgya5aXEAZwrbzsVMtcJVsQ3+or4otfbrS7SAxwfa+kpJRt4dZi+VnKAyTcCDP4h/bB++Sd1VXXuFmVooSV2BEBnsuJLJiXnzg0NLhBwEnEW9hqtBXhxrX/yEPAI3/23k+Z5nb+OsUwGSoRBNiLcQPaYq2EJeThp+i1K1rcxBVfY4ubMAn+58/d/21NlKW1+domvDasqLww3CF5lnTPT3skJxHjXW0KNwCoGuq9TlO45dwZ04xxs5hVMmzilGTSExU3AwDV3GtRuOm4q/M4KbtK2opxA4LC7ZSTgIHc6n0j4k3wVYgxxrxbsI2ahUz8sPvQVgkGQLKAwwtxC1POrOAqyQs3U9h5d8SbG8B/zwI++ghYtcqN5Quznqpi9sMsbklj9mWlGPiYVEjaT2L15clkuHvSQubaQPsyV0lLce9iAj1+LlOENdwAEm6EKf/8t/daDF5ntCCesJJ1ROwZK4HnF863KxI3uBdI3+L22N+81y0NAD/3W7XRTQ8cR9CqEIUbX+fHVowb4HZ0/Arb6HP14xbEGLc0XSVVv2vimhZYTW7yJj+miUnE9mWIKdRjt5uHrJK2J2y+Ug98OYCMeYIPgLv3HNfFNk1XSf5ZNc4SGCbcEvQDMnd1MZU7r1f4/lcnbqbfgf73AffaEjv3DYNfaTel5lj/+1N/BDz1uPf+Bz+KN8FXwSzrrN/ihZuNmoXseWltciezNjN5Brw1+OtpaBEDgjFuVoVbyPMyeLg7XsdxM1TF7IdZ3HRi9sVSDOwWl1ncfnlV8gUEHt5917pwazunmz90Fywdh7O4Wc5a6bMWWsgengdIuBH61NYCDzzkvWfiSsThXkcJK7Ej4uf5FVCvUDGSFOQOnTAZPhoLFwI/Pct7Xwq/cGNzQh1LIUOcxPODu3EBbiGzma2OOmBxa5sJtlpylVQlN7GV2l2MQbMdtxjlCikmiYlL1AQ4FVdJyy5vYqFp3tJpY0IYcKlJw+LWdv181sI0hVuCfiAqbgbwuwPy/a9O3My+dwPVB3PtMeHG+gLLCW10EyrJGPVT/3unGb5ZeZ+BenHXjIDFjTt2GxY3sQi3jaySue8L2WVtJyjKcs9iC5ecxDRWFAh/XpK4qUfF7ANuvKjMVTLpIghfiqGx7dpVwV3kruLOyRFHx29TBouvTiM5CcsoCwDvXCC47lp2lWwlixvRkbntNqCBm5zx6ZBVxBFWM2YAH3zgJh3hV6jKoV6h4omb4SysWLJJdkOWBljspNl404Jg8HoSS6GKZosWN5llyUbbXXbxvxddJU2zSqpIy1WST3jQLhY3mZnZAmmUA/AN7jaytIoWtzZ3IhuCGZAIN74+lGVXSZuub2ETp6TPquiuLn6df3RY/6sbN1M1FNj3T977XHISNtG3mJgEsCvcSsuBPa703rc2C+UjDDMpBmLcUrK4AW4fbDOrpGoBx5Zwy5fFLUn7qph9cU4gW4jWWQRhpRj25hZC/rMEmH60997WnCCNGDd+dX/5H81qUYoEhBtZ3IiOCsuaxM8jSyG3uInEEVbNzW7SEdHiFke4xQ3uDUvJbzLIsDTA4rlh/f4OyXeSWApVbONWrQpVuO3zB/97sRyA7VV2wLWM2UpOEhBuli1uUcfW2aDI8e4Xq/elYXFb/VfvfacB5u2LpR5sxhYCwSQivmQ/Jq6SkuQkvlIGhhPxsEyjSZPZiO7qnwv7ef3K+jfduBkA0nIyxWBxA4IZlX1JDwyFW8BV0rLFTUzw0VjH7TN0Ow64SlrypmCoskrajHGT7kv4LMli9vlpjxhaYpI8hMEnyBrSF75JkrEgT9FVUsSmcCsJs7iRcCM6Eixrko5wiyOsWHCvaHGLcpVkxAnuDZvw6U4a+DTAKoubUH4tR5JaSDLr3JcrvNdfrInXjgpfPTGLK2zdvwEcy6XjFbOa2V5lB4DGDX7hZjPGrbEdLW4jZwF999Vve8zP1PvSKAew4l7v/UjJ6nNS+HuyeZs3mU3N4tb2oGZKzO55Xx03iXAztaCEWdx0JrO8u/oKAMu4ffycvqQ0ebZEkdDafwVscQMkpXA44WZL/DjN7nHbrlkouhtu4S5y11FmbberxW2rNxFP3eJmuAgChLtKmiQPYfjGJ9HrwVK2UNFVMhXhZrPAN/d3b/kE2MrNPclVkuhQMGHFi6epAIbKPiwhSlix4F5fWmWEZzXjiRPcG+Yqqfto8GmA+ePjLW4q4RbXUrhwoRskLcKPW9/aSz/pCSDEcokdtWFHWtbDi7la+482n/YULW4NG/yxdSYDvFhU3ecqmXKM26RbzdoOO7dWXCWFiSxfL6fvZPP2+evWsM57nZZwY5PlbBezGDrfii+LcWtru7TS3D3Y5mSTwcfNPNvT287rkXPPMxNtgLz2H4u3su023SIItxGGiwk+a6Flixt/3Z4aDzRx46XNOm6Au0CxiavL2X03s7YD3hq2Y9y4Y+djowrN4gYEY/Z54VYGbyG6FeaLIIAgmhuRSpmH1ka/1cpGjJuIzTg0/r7buAT46EaubbK4ER0JJqx4i9sIACGL+j6ihBUL7uVdJQcAOId7rwr3iRvcm4bFTUwDzPROOcJdJRlRgnbhQjeZSUNDcB8/bm1r1E96AggCRXCNMO2oMxn/xOGDa7320xJuacW48ROH8p7BzyduP6UYPyBcnKXhKpm7plk7yUP4iVN7CDdbrpjSGLc2EWFjEm4rLkeExc088oS3bSiXcKFHb/22GWJcJJCixY0TVqPnAON+a9ZeqMXN1FWS62c2LwPq/uW9t2FxE2PcNnPCrdsYs7ZVFrdWAG+/7S4IxPUskVGqEG42kpOEPY82FkE6ce1nAVS03UOl5eaiDZBY3HjhZinTdLG5SobNKcjiRnQomLDSyZUQR1ix4F7e4naC8BmVxS1ucG8aMW5iGmDWb/JzepXFDQgXtCzpiQpZ/J9u0pO0YtwYqgHShnDbdbb/fcBV0mAgyAgrmraFW5qElr9IwVWSTcRtDY68COFr3KUm3NqsqaYusGHJSWxMwkOzShrEczLKufPrcJ2X7YQ2bJLZHjFuu5xqHiuWpsVNvG7buD7chtgXs0oyV8myHkBFX7O2+f5103rg6w3u63UbgQkTgF13BQYN0q9jyh97A2fVt2Fxq56q3mdjEeSCn3vbbr8F2L1NJNtYOAMkfbDNpDOc+y7vwZKG+Hmdm+ekKtzI4kZ0JJiw0hFucYXVrFlAC/fQieOVTLglCe5NI6ukmAaYnR/+p1YqvhslaFnSE8Zjis/xi5m6SU/SinFjqFakbQxg464Dhp7ovW/Y6Am3kgoz649oiSwm4ZYvi5s14aawuIUtwCTBF4vWaC+GTpacpMmicLMd4ybiK3jMeQTYuGcyJcgV5xRdJdOMcbNZewpwJ7NNXPtfbTS0KgkTyg1vea+tWNyEzIxsIaGij7l1nL8f7/o9sFUSVrF2rX4dU5/FzbJwG3S4Oj7RxiJIljvG/n2QOym2FilEV8k0YtwA+8+SyNoX5b+rAwk3guCYNQsoTdgZJBFWNTXACad678W7VSbckgT3hk7INB8NMQ2wbOz+SPHdMEHLJz1hPAZgo+yzwvskSU8YoTFuBW5xK8m6AzCjZZu3Qmg6uKftKpkmaQ9ggXIAlgqoMjJZLzbS4R7+NCxufJY9266STqtnnSkGi5tqImt7sim6StqyQjD4GDfbBecfexi4db73/oenmFmVxOtWz8U+WxFufIZWro6bjXPOi85MizeUququJnXpz6Yo3LJVQOVA+T4bz5JYB9TmeRfbFy1uxjFufHIo/lmy0L8f8Lh6n3FWybAFS3KVJDoaNTXA/5wT/TmepFmT9jtYvY8fCCoqkgf3plUOgE8DLLNILpNsixK0fNITRgOAv0s+K/5m3KQnPGGukqYddW2tuyItY/nn5vXsAP9ks2W7F69k6maUL+H2rSvM28hk1Pe1lUmJKsbNlnDLyI8zFeHG3Z82XSVbhVioQo5xY6jc/mxZxNjxp14OgDvvzzzv1go1sYrxE8JFT/nruDXC0KoU8jxaSU7Ce1RYzvy4dgP3OwgXbowkLv3lXGzl2pe537JwrwPq592kjIysjTRKJQQWz1JwlQT8yXJsLPoNPsLvJeP7XYvJSQJtk8WN6IgcdEi8z+kIKyA8yLsVrnvhvHlu8G/StsNWLk0GMD4NcJOwbxWAreIXEC1oxaQnDNm8Q7YtTnkEHnGAsWVxYxkxP/tCvv+zz/UmOiKiKxCzoJiKq3wJt2/+r512VPe1jUkJPzFIw1USkE/OUhFu3HW1bXGzWXwbCJ98WJlspmxxy4jCLaXkJHxdvjN+CnzjG0CPHsDZZ+stFr3ymve6BG7WYwafO0rHquQ46n1WrLRirTWLwu2Bh73XcYVbEpf+riOBykHuaz6u0EZyEsBfC43HtsWtNQ2LG9fXtjT6F0FMXWB5S2ojJ85Ds3MnQXGDUHKSACTcCDPidDi6wgoID/KefTawapUb9KtT+yQsjs10AGNpgFuEzlK0tsUVtGLSE4ZMpMmsfHHKI/AEBnYLwo3PiNmo+Ewr9CY6InydoqZN3gCfqnDrYda2ik79oj8TF9Vk2LbFzWm2n5wEaD+LW0NKFjdRuKXuKmmptpXsN6xNNtvaYZPM1pQsbjys36yvB268ERgxIll/U1sL3MyV5yiFmzmYIevfkliVeJEpYsPiJiZZsmX5aW4G7nvQe8/XKgsTbkB8l/5MBhg4Lbg9dYub5XID21baL4PDt9+4EdjYFhtpJZEQ1/fu4LP6WqhfCvhrovp+l2LcREi4EWbEcYPSFVZAuMWtb3W8JCc6ZCw8GjNmALvu7t/G4tuSWgrFpCeMOMItbnkEHp9AsRDjJmbEDBNuDN2MmIDfSrCds+7ZFG4tnHDLVtkTKPv+yf/e5gRWNdlOI6tke1nc0khOYtPi5qtv187CzYbFDZBb3WzHuIkWN9sxbjyiiGhqSrZYdNttQAPX+ZZCbXHLbUtgVWoJqRlj20pr0+K2fDmwlo87Q3zhlsSlv/vuwW22+hnV827jWeLP+39+CWxf7b5Ow1Xy9VO57TaEG3fsaZRjaSLhFhcSboQZaQ6uQLjFzcbEofs302sbADoJg+yVNwIffZTcUigmPWGIrphAULjFzeLJI2aQMo1xEzNiquCPXTcjJuAX/GkJt9ZGoKnOTrs8Q47zv7cp3BxFl/+n+/UTKTCUWSUtDo6yyZMNCwQQItxsWtya/YH9pvW+gPSzSgLy47Q12Qy4SlqwuEXdx6psyHEWi1iiKL6NErgFlRmyfhmIb1VqDekrP15pFpsHCNlxG7xkP6bj+ebN/sXEJBY3IL5Lv8y7ge/nTVA977ZdJXlsP0uAJ8bF7brIhFumxF7/2/0bit81jXELkTnkKkl0SGzHIYiETWxsTGinPCHfbmuyLE40R491Y7h0LIV80hNGlMUtSRZPni4jvNdfv2tmcZNlxFS524uDu05GTMDvKlnPTcTKeiRvi4cfvJwmb4JvU7gF7j1L3fTChcCGOvm+Ldv1EykwAoHxlpOTAHLXP9OaWQxlchLLMW4t3KTcivtVylklAfk5TiOrZEuDnRi3224L36/qUuIsFrFEUXxfxVvcWqEWbnGtSmGukruPNYvNAwSXujrvtek17dbNP/4ksbgB8V36ZeJqm8GiU1TbgH2Lm2+7rflGiu2LCW0AINvNPHaO8a3L5dvTtIqRxY3okKRtcQubNNkQjVVDgH5TJG3bmpQInb1pEU+W9IQRlZwkaRZPRq+9PPeoda+YxbjJMmKqeh5xcNfJiAn4Xbu2cYXzbFrcmrd7Lk223PWA4L1n415k8YWqnAfs8prEF6oC4626SubD4mYq3Lib3WmxX1oj7aySgHwBzXZChdYm4MPfeNurhui119wcLb7CRETUYhFLFCVa3FjXoHIDZ8SxKq1ZHb5fNzaPwfdj71/lvTbta4YPB3r28d4nsbglcemXWdzG/CzedyPb3kksbjythhZaQH7sqnOlQ2V/4GjJfZ+qcCOLG9ERsbmaLqOit3pfGkUrc21bejTEiabpRIolPWGWN9lg2AL9LJ6MkjKg9yT3df0KYNsq/74kyDJixrW4AckzYgJqS62xcOP+dt4nX5V5T4dMxn//md7nfHyh6rYWx3Wd+EJ+YuPL9pZyjJsNd0NAbXGzMTlhEzOnxX4x+3YRbpJJq7XJZls7rc3AF09523e/WK+95cuBdevCP6NylQSiF4tYoiiVxS3KIzzKqrRwIbDyU/k+8bCSxuYx0hIQ2SxwChfLnES4JXHpFz0nqg8C+sfMcB1GbS3wxAvyff/vMvNSNSqrXRoxbjytKhNwkrZTTAzF6NQ3uE1lRbQBWdyIDknaFrfSinSLNQMK4VaAFjfGjBluUpN584B+kkll/0H6WTx5uo70XvPxA0knm51lq/WKz8oG90oNUaQSUqaZH321bDhBamuCzODvP1M3Fz6+MK5w04kv9FkjuQQcaWeVtOEq2dwMbOIWCPisklkLkxN2PRs3eYXJATsTh7DFM1uukrLjTMNVkrm7lfcEeu6p156qdAojjvEhbLHotbYyAKJLYByLW5RVqbYW+PGPgecV+29QbE+60KIUbhau6ek/8V7zPxMm3JK69Iv9+Kifmi+2slI1Dz0p32/qSg6EuEqmUICbx7Eh3CRt28oomfuNsuB1TFNcpW14SAkSboQZYfVmAKDmWPPfKO8l355G7RNGWjFutib4NTVucpObfxPcN3QX/SyePHzGO18chIXOLonFTQfZAACYZ/HzCbeULG6A//4zuRfF+ELVeZeN60njC/l7vYkTbjYHR9sWt9padwFk0CBgwR+97cuWeq+tWNzaruHWT4APr/e2F4vFTSrcUnCVZFn2Ohv0X6rSKYwwaxtDZRWrrfUEBt9OGYAeba/DhFuUVem224DGRuAFAA8J+74GsFbyHSD5QkuaAmLIMMBp62j4WzPsvCd16ReFm6mA4EvVbAv5nGmpmjQFM5CuxU1m+bJtcQOC/Uqa4spWbGE7Q8KNMCMsiLrnOGDiLea/oXKXtFYAVjJYpWVxs1UklFFzlOQ3La1Q8ZbOrdyMIelkc5tkJJQVIQfkwm17yD2mIpORiynTiUlJqScI28viZnIvivGFqh5fNqlKGl/I3+tpWdyk5QA0hRtbYb/yymCyiU7cCfnrM3rt8/Cuo+te9l5bWQRph3TXsnZsTXrEbKSAmXAbPhzo2xe4UbHfJNaKt17z7XyHe60SblFWJT42rwXAIwBe5fZHne4kCy1pCwg2ya/gVopk513XpV+0gpsIN7FUTb36ozl0S9WkHeOWZsyW1FXSssUNCP4NabpKFikk3AgzOg9S75t4i9xnOSnlKQu3YopxE+nUB/j2n/3bbHTetbXAC9ysYctX3uvrb0w2aMlWwO+HPBbERvFwhswSM+BQvbZ42OCbqsWNG8hN7nPRbSyJxQ1IFl+YD1fJ0k56zyq/ws7gJ5b8Lffjs8zco8KwMSkJy+pmK+NbmhY3WTsmwi2bdQXS6wB+JdkfpW1UVjHReq2yIKm23357uFVJFpsnumOGkWShJXXLT1v7Nf29bbxzTtI6poH2heM0ERBiqZo4Q5tuqZp8uUqm1XaZxaRcDLE/KNI4tDQh4UaYUTkAmHQ7MPSHwX22ir8qLW4pZmIq5Bg3keoDhd80nCgzS8RTL3rbeF1y0++S+frLiodvBHAWgAeFz4qrsjrFwxmimDro6fRSOheqxU0UzXFj3BhJRDN/bvlaZWla3HTcJMUVdoYq0U8jzIrBh1EsMRbtEePGU2Xo6j1rFlBe7roXioS57IVZxUTrtcpy10Oxfd99Q34Y8ti897nXb4R/HUD8hRbVgoFty0+GMz9O3h94+229OqZR6Lozy0rVNMEdn6LQKVVT1BY3ybHbzKYMuOdTrDVKwi0ACTfCnJGnA/v9ORg/ZCswXhXjZm3ikKKrpCgUPv3cvHhq4DcEgWKSOZG3RKiyozUjma+/qnh4PYD1wjZxMqRTPDz3u+J5UdxHSZEKtxRj3Ey6aVE0q5qSWdySimaVq6TVGDdBqOm4SaqKwUvddNv+NykGH0axpKNO1eImOQeVA83arKkB7rpLfl+HuUqGxVqJwkolAPsotkeJKplnwstw493ehuulEEXchZb2srixcikAUNUNGDdOv45pGLqxVrJSNQBwRYzv6pSqSfu8p7kQJOtr+x0Y3KYDH2u8TlhtufuedBbNihgSboQ9xE7J1kpJ2jFushonNtqurQX+8Yp/2+jRbuc0b569zkgUDRWa7qmiJWKH4nP8hCWuJUJWPBwIxoPwkyrd4uEMcZJvy60jTYtbc7PrPtTMnQiTe1EUzUksbklFs8pV0maMgjh5SGpxk62wM2QTej48U7cYfBjFsprc3hY3GwshM2YAv5WkYZRdwrKy6FgrUVjFSXLCEyWqWGwejwPg9wB+C3VcMCPJQkvqLntt15SPgbedgXrIce7/lQP0ExSpMpCuAXBRjO8nLVWTejmAFPsTcWG+oi8w6Hvm7YqxxuJz9cd7zbN57mSQcCPsEYjnsuUqqVjCtDUQyBKs2Eot/Pzi4L61a+2kFmaInbVuXKFoiVBZ3PiONa4lQlY8HAgXbrrFwxni5M+WW0caFjd+xXHXXYH1G7h9q8xEPi+a4wo3HdGscpVM1eKWsPi2aoUdCLe4AfrF4MMoFoubTHynmdXX1nmZfkJwG99/VVUBZ58NfPppdKyVaL1WWe5elGyLI6pYbJ4uSRZa2svi5lhagJIx8XduHP3UF/VjOcMykEYkzAaQPP66vQRzGojCrf8h5jG0UbHGQHIPnw4ACTfCHgGLmyXh1v0b8u22BgKpcDNom++MwhbobXVGYuepY3GTWSLiCDcgviVCLB4OyIWbafFwhiimCtXiJq44iny+ykzkq0Qzj+hSpiOa2yOrpOj+mtRVMqzGV5RwA/SKwYdRLMKtvZOT2BL7sudyYA3wyCPA++8DdXXA/Pnx7nXReq2yuIlxu0B8UcVi85KSdKElH7FWtoVbRW+3flu3XfXbkMVfM6Jmxzrx18Uc4yaOn0kXzURUscbiVIJ/n1ascZFBwo2wRyARhyXh1nOcfHuqwk3z0RA7ozjlU2x3RjrCTWaJCItx40liieCLh1dXB4XbvvvZKR4OBCf1pgMNw6Zrl2zFUaQV5iKfiWYV7JqaiGb+vKSWnMTQVTJshT2OcNPNcKoiDdemgd9zz/n4+fbabG9XSVvnRSbcuvcEjj4a2G235LFWvPVadr88C6BO2JZEVLHYvKQkXWhpL4tbGm3bRBV/Dagz8DJ04q9V56AYskqKFjfTmqhxY435+YZurPGBfwN67wPs+evk3y1ASLgR9kgrxq1TH6DzkOB2W6tUYbXokiJ2RnFCYmwnPlC5loYhs0TEiXFjJLFEsOLhq1YBDz3q3zflYHuZxjr197+3VuJBIhZ0LG6qFUcRfiAzEfmh8Ts9zdJzA67lV1rvy6bFzTA5SdgKe1SMm0mGUxVprJDvfTtw3GZg9Nn22pRe1yJwlSzJBp97k7Z567WsH5T1mUlFFVtkiSMK4sTmyciUQqpMUi2xU4DCDVDHX/PrmEuEfbrx1yrXwq6jk7cloz1dJU2EW1issfhciXMonVjjQYcD//UaMCLGeFsEkHAj7CFa2Gyu/vSeFNxmayBolhSI1mpHkVo4DjYTH+jEuMksESFGoAA6lohsFhgmDFg2B3fZPWMDWeppHYubasVRhBcUaWU3/NvTdtJzy9yj04xxS2pxC1thj7K4mWQ4VZHGCnm2yn55ina3uNms/SecC9P7MSesJOeEv19MrNczZgCffQacdZYbhyeSJDZPhnKRJUXLj2OppqBtVK7kOwBcDtf19ffCPtP4a5EB37XTTrsKNwMPlrBYY1G4ie9NYo2LJRlUBCTcCHvwD0Wm1J6FA5B3bKaBsSwhxEfvBffpZH2UdUZxtZjNxAc6rpIyS4RMU8j+HqNaa+KkyqJw67OPvbZ4ynoEtyWdKIetOAL+wHhRUKSR3bDckhupNIlFmhY3jeNWrbCHCTfTDKcq0kjfrZthL4w0LSiyc2DVvVZcULQgTmbMAN79d3D7DpgXl2bU1AA33ODG4b3/vhuXpxObpyItMV5bC3y+Orj9/ofsZlO2iSz+GgA+BPAovIyeNuKvh50c3GZrrEpTmARi3AwsbmGxxlEWN0A/1jjbBeg82H29y4/12igASLgR9vCttlteXRtwaHCbo0rrFQM+IUSJxOdFJ+tjWGcUB5PEB92/6b3WqWkjs0TIhJvMRdzEEhEQbhYtGt128173/469dm1Y3MJWHEXE7GapZDe0NODLLG5pxrjpZApVrbCHuUraXmFn2Do332jLXV59kP2064DCgpI0H76qbcnxplm03VbbNcOC2y65wn5x6WzWjcc7+mj92DwZskUW0/6XjavLVwb3bdthN5uybcT4ax5bYhwA9r0b6L67976it717Ms06bmIfYGJxC4s1jiPcdGONMxngO4uBff8EjL9er40CgIQbYY80V3uqaoDdL/Zv0504iAkhnlF8LmlCiLDOKA4miQ/2fxgYPQc45GV9S6RoiWhEcDL7sfDeuNZaiha3klK3kx59DjDhRnvtlsmEW0KLWxKRLxMU1rMbWkoklLZwEy1uqhqPUchW2GVz1qasnQynKmz1mXv8Cpj2DjDlKTvticiOs1XMLKTbdorJSQD7rpK5diU3zKCR9t1p08K2xS0qmzLrxwo5tTsff/3RR8Dbb7v/2xTjmQxQOch7X9bTvE2Gqq/tu5952+K8oszA4hYWaxwl3ExjjauGAsNPspdlOg+QcCPsYSuLpIo9rvS/1xFusoQQT0OdiAOInxBC1hnF1VCmnVG3UcD464B+k/XbkFkieKtbK+ykjedJU7gB7oA1/nqgm6Xgb0Ah3BJa3JKIfJlws57d0NJkU9YH2JyEixY3XeEGBFfYZd3XL65JT7QBFlfaM0DPPe0WO+eRXcMqS4laZC5XVuMiU3CVBBShAAUaxyVDdo51+19xXJUNzWI/Vsip3bNZ1zI4bpz7v20x3vi197qil712Zc/psJOBb6cgkk1cJZPEGovCLY1Y4yKDhBthD1+MWzsMYDqukrKEEE0A/hzynbgJIWSdUdzTUCidkWiJ4IPteXFrq9aaaKFJw83LNjYsbmErjoDfPVJ0lUwju2GqacAL0OLG4FfY5/w0uL+/5fMsUqx13A5dGqypp0u5ZOJaDK6SADDkOP97vgxGoWMzOUmcbMricJ1WoqVigBdu5Sla3HqOA779R9fKZBvT8jqqWGPx3uEXAdKKNS4ySLgR9uAn4Y4420yBpBa3JCloReImhFB1RmEUWmfEWyK2cQN5A+z6+gNBgV+oKaN5bMS4ha04RpGGyJeJUR3aO8at3FC4MbJZoJvs2A1rFTH2ula+vViynInH2Wsve22nLdzEe3LzR/ba3u9+YJfTvPcDLMbSpo00xk2j/5WNq3EsbkA6iZaKgSZeuFm0uInXL2m5lCSYCre4scb8+7RijYsMEm6EPdJy01GR1OIWlhAiauyImxBC7IyWcfueVXynEDsjZokYf5C3rW8f+4H3IsUg3KQiR2OhIt8if+QsYNfZwEFP23NzlrpKFrDFjVFbC7z+YnD7EcfZyYS323nA0auAibf4txerxc0mMouDVeEmHPvmD+y1nckAE24Cxl3nxheyjHXFgNQ6rrEgFDebsmy4TiPRUjHQsNF7bVW4CQuhaWSYzf2WhbFaFmssE/22PHx2Eki4EfbgVzbTcpXsd6D3ms/MFIewhBBxFv3iJoTgO6MNAK4F8ACA+4TPFUNnVMm582Ua03fntJlVMi1E4VZaCXTWELKqFUcR/lGyKfK7jnKTttiqIQSkm30QsBvjxmCZ8N57N7hv9df2MuF1HgSUCqvUxSLc0lyUk8X42BSKLUKdTpaB0xbZzsCYOcDA/7LbbtrYSk4iG1dlM0vVOqvtREvFwJBjvdf9Dkjvd9K0uIl9mS5irLE4XNj08NlJIOFG2KM9rCXfvgcY/iN3lbP7mGTfTZKCVkaShBB8Z/RFNfAYvHgx2+6GacKnW2/Zrv6cLYrB4ibGzHz3NX2Llap+kGjAS0PkpzGoy1wld6yx2L4gdExdJflMeI9J9rM5v61MeOI5L1ZXSZukbXFr3OR/v9uF9touZmzFuMnGVVl3qBJuthMtFQPjfuuWqBl5RjBO0hQ+Y6WtzK+MAx535wRDjnMTotmCjzX+3pH+fWl6+BQpRbC8TRAcnQe7dVB0YAkhZO6SURY3nYQQrDO69FLXHWTLFneQGj68MBKRxIEXKa1iSskUKAbhJloFe+5h1t6MGcABB7iB+nfc4boP8YwZA3y8yM7gdcDjwEtHukXah59i3p6ITMA21tlrX7TkmyTIEDPhfQngcgCXcJ8R1ypmznSvle61EC2GadZdskmqwk1icbN5Xpo5i9DQH9rN4lfMyBZZdPpf2bgqy9UkE25pJFoqBjoPBg5elE7bVUOB7W0F0Os/t9v24COAYzeml0QsmwW693I9lQglZHEjLNIOCUlMCEsIEWVxM0kIkXZq4TRJ09VCRjFklew1Dugywn097jo7bYr1g/r39/bt/g17K46DjwCO+AQ48pOULG6SCf6on9j/HRvIMswuEz4jLuiYZsIThWaxuEqmKtx6SH4vJYubrSQ8OwMyAasj3GTjalyLW6FkU96ZqBrmva5fYb/9tMfoYlnMyiMk3IiUKNB6NnFT0PIUWtbH9iRptkRjiqBLKskC05YCh77lFve2CRP55dxE2XaG1q4jgDLDYvEqxFX8ff4AdB1p9zf2/j3QZSSwzwL9NlQZZuOcapNMeAGLW4H2kyJpCreSMr9LNmDX8t5FFopnAAAf7klEQVTKifO07vtipEJSjkQ3xlgcV2XCTVwc7cjjapoM5lwNh56Yv+PQpRgWb/NMEcySCMIiqoQQYfOwQsz62F70muC9HtAOwfdOkaSGLusG9Bqf3sS7WCb0IqKrZPVB8s+ZMGImcOTHwC4Grp5hGWajMMmE194WbFukbRnkrT8l5end/yTcPDrJhJumYBbH1TgWt448rqbJkOOB0XOAQUcAYy/L99EkhyxukZBwIzoelII2PgP+C9j1LKB6KjDx1vR/rz3i6Ij0ECfGheqaFpZh9gYAHwK4JuT7upnw0kzPnSopTxXKenA/ZXniNolZVjP+mmsdnU7VwW0m1g5+XJUJN3ZZaVxNl0wGGH8dcODjQOeB+T6a5JDFLRI6Q4Q92qPoti3EhBDNQkKIefNcN46OviKYyQATbmi/3ysWixshp/ck/3vRBa5QCMsw+0bbvzB0M+EVq8Utbcr4QueWrW27nOrG0VUNc0syEC42LW4MNq7eex7Q80H/viGdgHnn07hKhFMMJYHyDFnciJQoAlcvPiHEo3/176MUtPmBLG4SimhBpO9+/vclBZollGXC08EkE16xWtzSdt3NcsKttUH9OR1Ksm7drN4Toj/bkUhDuAHuuHnhfcC37wcGnoXcXOD8v9C4SkSTIVkSBZ0hgshmgeEWa5IQ+pBwa4OfKBeRcOs82HvNZzcrNMIyzEZhlGG2SIVb2gtxPuFGfUC7UNE3uM2WtSNTAgw7HphyAzD1BWDK34FB0+y0TezkFNF4lydIuBEEUDxpuXd2yFWyjSKwWKv47mtujbhv35PvIwlHlWE2DNNMeMXaz/DWGVn9L1N44Ua0D51kwi0FC3n1gcDAQ4s34RLRvjiqSu0Eg4QbYZEiXikhv+rCgFbbi58++wD7Lgi6TRYaqgyzYXTUTHhVQ4BvXgr0mgh852X77ZNwa3/Ke7oZWnkoMQSRd4p4HtlOkHAj7DGScz0ab6kwcXuRxkojEY89fuW9HnJc/o6jUCmmpD/FhizDrAybmfC+/Weg34HAlKfM22pPvnUZcOibQO+J9tsuI+GWF/b+vf89jYNEviGLWyS0vELYo9d44IDHgIZ1wPAf5ftokkEDVv4Ycy5Q0QfoMswtDk0Q7YmYYXYNl2G2utqNabOZCW/YD91/hAdZ3AoDGgeJfEMLlZGQcCPsMvjIfB+BHtmqfB9Bx6W0Ahj53/k+isKC4kHaF5Zh9tJL3eLaW7a4Kf+HD9dPRELEh4RbgUD9DhFCc7PbP27e7JZUSaV/JOEWRcG7Sj744IOYMmUKevbsiaqqKuyxxx64+uqr0dSkFwvz9ttv47jjjkN1dTU6deqE4cOH46yzzsLatWstHzlRVJR1Bfb4JdDjW8DU5/N9NARB5INsFhg1Chg3zv2fRFv7UFqZ7yMgANCkmZBSW+vWth00CNh1V2DCBPf/QYPc7bW1Fn+MvwdpIUFGQQu3OXPm4Pjjj8crr7yCSZMm4dBDD8XKlStx0UUX4eCDD8b27dsTtffQQw9hn332wUMPPYShQ4fiqKOOQklJCW666SZ861vfwieffJLSX0IUBbv/HDjsn0D1Qfk+EoLgoMkUsZNTmkKmSoIgzFm40F3EuvJKQDRwrF3rbh81yv2cDfgYN/I8kVKwwu3RRx/F/Pnz0aVLF7zxxht4+umn8Ze//AUff/wxxo4di8WLF+OSSy6J3d4XX3yBU045Bc3Nzbjtttvw5ptv4v7778dHH32Ek046CWvWrMGJJ54Ih/xrCYLIO9yARX0SsbOTRokBIjnU1xA8CxcCJ50ENDSEf66hwf2cFfFGFrcoCla4/fKXvwQAzJ07F+PGjctt79OnD2655RYAwE033YRNmzbFau/666/Htm3bcMghh+AMrg5PaWkpfve736F79+5YsmQJFi1aZPGvIAiC0IEGLKIDQRY3gigsamuBmTOjP8czc6a526RDwi2KghRuq1evxpIlSwAAJ554YmD/5MmTUVNTg4aGBjz55JOx2nzkkUeU7XXp0gVHHukm1Xj44Yd1D5sgCIIgiKSQxa1AIIsb0cZtt0Vb2kQaGtzsvEZw92CmICVK3inIs/LOO+8AAHr16oXhw4dLPzNhwgTfZ8PYsmVLLn6Nfc+kPRX19fWx/hEEQcSHJlPETk5Jeb6PgABAfQ0BwM0eeccdet+94w73+7rwJSlKO+m3sxNTkCmzli9fDgAYMmSI8jM1bTV12GfDWLFiRe61qs0k7ano0oVSGhMEQRBEIvii3qPOzN9xdHQoxo0A3JT/upnW16xxvz9qlN73vzEX+ORWoLUJ2P8vem3s5BSkcNuyZQsAoKpKXVuLiaTNmzfHbi+szSTtEQRBpApl0yI6EuU9gO++Bmx4E9jl1HwfTQeGhBsBt06bCdycOzGdBwLf+whoqgN67ml2HDspBSncipWtW7dGfmbz5s0YOHBgOxwNQRAEQRQJffZx/xH5o6J3vo+AKAS6dTP7fteuZt/vMszs+zs5BSncurZd9LB4MCaSusW4wbpyN1F9fT26d+9u1J6KMAsho6WlRbt9giA6CLyfP2XWIggiLQ55CXj5+0CffYG+++f7aIhCYPhwoF8/PXfJ6mr3+0RqFGRykmHDhgEAakPSirJ97LNhDB06NPd65cqVxu0RBEGkyj4LvNfjrs3bYRAEsZPTb3/gmK+AAx8nF23CJZsFTj9d77unn+5+n0iNghRue+21FwBgw4YNymQhb731FgD4aryp6NatG0aOHOn7nkl7BEEQqdJnb+DQpcDh/wG6jc730RAEsTNTUhr9GaJjMWsWUJGwTEdFBcDVSSbSoSCF2+DBgzFxoptl6t577w3sX7x4MWpra1FRUYHDDjssVpvHHHOMsr2tW7fir3/9KwDg+9//vu5hEwRB2KPXXkD3b+T7KAiCIIiORk0NcOedyb5z553u94hUKUjhBgAXX3wxAOCqq67C0qVLc9s3bNiAM8900wXPnj3bF6/2yCOPYMyYMZg6dWqgvTlz5qBz58549tlncQdXn6KlpQVnnnkm6urqMHHiRHz3u99N608iCIIgCIIgiMJnxgzgnnuiLW8VFe7nZsxon+Pq4GQcp3ALd5xzzjm44YYbUFZWhqlTp6KqqgrPPfcc6urqsN9+++GZZ55BZWVl7vMLFizAaaedhqFDh/pqtzEefPBBnHDCCWhpacHee++NYcOGYcmSJfjss89QXV2NxYsX51wq02Lz5s3o3r07Nm3aZJQIhSAIgiAIgiBSpbYWuP12t7j2mjXe9upqN6btjDPI0mZIEm1Q0MINAB544AHcfPPNePfdd9HU1IQRI0bgpJNOwrnnnovy8nLfZ6OEGwC8/fbb+OUvf4mXX34ZmzZtwoABA/C9730Pl1xyCaqrq1P/e0i4EQRBEARBEEVFc7NbXHvLFjfl//DhlIjEEjuVcNvZIOFGEARBEARBEASQTBsUbIwbQRAEQRAEQRAE4ULCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgCIIgCIIocEi4EQRBEARBEARBFDgk3AiCIAiCIAiCIAocEm4EQRAEQRAEQRAFDgk3giAIgiAIgiCIAoeEG0EQBEEQBEEQRIFDwo0gCIIgCIIgCKLAIeFGEARBEARBEARR4GTzfQAdDcdxAACbN2/O85EQBEEQBEEQBJFPmCZgGiEMEm7tzJYtWwAANTU1eT4SgiAIgiAIgiAKgS1btqB79+6hn8k4ceQdYY3W1lZ88cUX6Nq1KzKZTF6Ppb6+HgMHDgQAfPHFF6iqqsrr8RCFD90zRBLofiGSQvcMkRS6Z4ikFNo94zgOtmzZgoEDB6KkJDyKjSxu7UxJSQkGDx6c78MAAJSWluZed+vWLe83LlH40D1DJIHuFyIpdM8QSaF7hkhKId4zUZY2BiUnIQiCIAiCIAiCKHBIuBEEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwKEC3ARBEARBEARBEAUOWdwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCrYPy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTU1O+D40oIJqamvDcc8/hggsuwMSJE9GjRw+UlZWhf//+OPLII/HEE0/k+xCJIuDCCy9EJpNBJpPBFVdcke/DIQqYxsZG3HDDDZg8eTJ69eqFTp06YfDgwZg2bRruv//+fB8eUWCsXLkSs2fPxujRo1FZWYlOnTph+PDhOOWUU/DPf/4z34dHtDPLli3DjTfeiFNPPRVjx45FNpuNPe48++yzOOyww9CnTx9UVlZizJgx+N///V9s3bq1HY48PhnHcZx8HwTRvsyZMwfz589HNpvFwQcfjC5duuD5559HXV0dJk+ejEWLFqGysjLfh0kUAM8++yy+853vAAD69++P8ePHo6qqCu+//z7ee+89AMAZZ5yBW2+9FZlMJp+HShQor776Kvbff384jgPHcXD55Zdj3rx5+T4sogBZtWoV/uu//gvvv/8++vTpg3322QdVVVWora3Fu+++i2nTpuGhhx7K92ESBcIbb7yB73znO9iyZQsGDRqE8ePHo7S0FO+++y6WL1+ObDaLe++9F8cdd1y+D5VoJ9j8ViRq3Lnuuuvws5/9DJlMBvvvvz+qq6vx8ssv46uvvsLo0aOxePFi9OnTJ81Dj49DdCgeeeQRB4DTpUsX5+23385tX7dunTN27FgHgHPeeefl8QiJQuK5555zpk+f7rz00kuBfffdd59TWlrqAHDuvvvuPBwdUejU19c7o0aNcgYNGuQcffTRDgDn8ssvz/dhEQXItm3bnDFjxjgAnMsuu8xpbGz07a+vr3feeeed/BwcUZB861vfcgA4Z5xxhu9+aWlpcebNm+cAcHr06OFs3749j0dJtCd33HGHc/755zsLFy50PvjgA+fkk0+OHHeWLl3qZDIZp7S01HnyySdz2+vr652pU6c6AJzp06e3x+HHgoRbB2PixIkOAOeKK64I7Hv55ZcdAE5FRYVTV1eXh6Mjio2ZM2c6AJypU6fm+1CIAuTss892ADhPPPGEc8opp5BwI5RccskluUk4QUSxfv16B4ADwFm7dm1gf3Nzs1NZWekAcJYuXZqHIyQKgTjjznHHHecAcP77v/87sG/FihVOSUmJA8D54IMP0jzU2FCMWwdi9erVWLJkCQDgxBNPDOyfPHkyampq0NDQgCeffLK9D48oQvbaay8AQG1tbZ6PhCg0XnzxRdx444340Y9+hMMOOyzfh0MUME1NTfjd734HALjgggvyfDREMVBRURH7swXj4kYUHI2NjblYfdm8eOjQodhvv/0AAI888ki7HpsKEm4diHfeeQcA0KtXLwwfPlz6mQkTJvg+SxBhfPzxxwCAAQMG5PlIiEJi69at+PGPf4zq6mpcf/31+T4cosBZunQp1q9fj4EDB2LkyJH497//jf/7v//DrFmzMHfuXDzxxBNobW3N92ESBUSXLl2w//77AwDmzZvnS6zW2tqKyy67DNu3b8e0adNQU1OTr8MkCpyPPvoI27ZtA+DNf0UKbV6czfcBEO3H8uXLAQBDhgxRfoZ1cOyzBKHiq6++woIFCwAA06dPz+/BEAXF+eefj+XLl+ORRx5Bz5498304RIHzr3/9CwAwePBgzJ07F1dffTUcLm/ar3/9a+y111549NFHQ8cvomNxxx134LDDDsPtt9+OJ554AhMmTEBpaSneeecdrF69GieffDJuuummfB8mUcCwuW6PHj3QtWtX6WcKbV5MFrcOxJYtWwAAVVVVys906dIFALB58+Z2OSaiOGlubsZJJ52ETZs2YezYsZg1a1a+D4koEBYtWoTbbrsNP/zhD3H00Ufn+3CIImDDhg0A3BXtX//61zjzzDOxbNkybNq0Cc888wx23XVXvPPOOzj88MOpZA2RY/To0Xjttdfw3e9+F6tXr8Zjjz2Ghx9+GMuXL8fIkSMxZcoUdOvWLd+HSRQwxTgvJuFGEERifvKTn+C5555D79698dBDD6G8vDzfh0QUAJs2bcLMmTPRt29f3Hjjjfk+HKJIYNa1pqYmnHDCCbjpppuw6667olu3bjjkkEPwzDPPoFOnTnjvvfdw33335floiULhlVdewdixY/Hee+/h3nvvxVdffYWNGzfir3/9K5qamjBz5kzMnDkz34dJEFYh4daBYGbg+vp65WdYoUFapSJUnHPOObjzzjvRs2fP3Go4QQBuDZ1Vq1bhpptuooQARGx4FyWZ9X7IkCE4/PDDAbi1JQmirq4OxxxzDNatW4eHH34YJ5xwAqqrq9GzZ09873vfw1NPPYXOnTvjrrvuwgsvvJDvwyUKlGKcF1OMWwdi2LBhAMIzALJ97LMEwXPeeefhhhtuQI8ePbBo0aJcVkmCANysW9lsFrfccgtuueUW374PP/wQAHDnnXfi2WefRf/+/cl6QgAAdtllF+lr2We+/PLLdjkmorB54oknsG7dOowYMQJ77713YP8uu+yCvffeGy+88AKeffZZHHTQQXk4SqLQYXPduro6bNmyRRrnVmjzYhJuHQg2yd6wYQOWL18uzSz51ltvAQDGjRvXrsdGFD4XXnghfvvb36J79+5YtGiRMgMT0bFpbm7GP/7xD+X+FStWYMWKFRg6dGg7HhVRyIwbNw6ZTAaO42D9+vXSLIDr168H4MWbEB2blStXAgi3gnTv3h0AsHHjxnY5JqL4GD16NDp37oxt27bhrbfekgr8QpsXk6tkB2Lw4MGYOHEiAODee+8N7F+8eDFqa2tRUVFBdZcIH3PnzsU111yD7t2745lnnsndRwTBU1dXB8dxpP9OOeUUAMDll18Ox3GwYsWK/B4sUTD0798fkydPBiB3hWxqasotBkyaNKldj40oTAYNGgTAteRv2rQpsL+pqQlLly4FAGX5I4IoLy/PuWHL5sWff/45Xn31VQDAMccc067HpoKEWwfj4osvBgBcddVVuU4NcK1wZ555JgBg9uzZuZUqgpg3bx5+/etfo0ePHiTaCIJIhUsvvRQA8Ktf/Qqvv/56bntzczPOO+88fPbZZ+jatStOO+20fB0iUUBMmzYNVVVV2L59O04//fRcHBLgFlU+99xzsXLlSpSVleHYY4/N45EShc7cuXORyWTwhz/8AU899VRu+7Zt2zBz5ky0tLRg+vTpGDNmTB6P0iPj8MVSiA7BOeecgxtuuAFlZWWYOnUqqqqq8Nxzz6Gurg777bcfnnnmGVRWVub7MIkC4PHHH8dRRx0FwC1Cufvuu0s/16dPH1x77bXteWhEkXHqqafi7rvvxuWXX4558+bl+3CIAuSKK67AJZdcgmw2i0mTJqF///5YunQpVqxYgcrKSjz44IO51XGCuOeee3DaaaehubkZffv2xcSJE1FWVoa33noLq1evRklJCW6++Wb85Cc/yfehEu3E0qVLc0YIAPj000+xfv16DB48OGelBdx47AEDBuTeX3fddfjZz36GTCaDAw88EP369cPLL7+ML7/8EqNHj8bixYsLJuEWCbcOygMPPICbb74Z7777LpqamjBixAicdNJJOPfccym1O5FjwYIFsVa4hw4dSq5vRCgk3Ig4LFq0CNdffz3eeOMNbNmyBf3798fUqVNx0UUXFcyKN1E4/POf/8T111+Pl156CatXr4bjOBgwYAAmT56Ms88+m1xrOxgvvvhirEQ0y5cvDyQbefbZZ/Gb3/wGb775Jurr6zFkyBAce+yx+PnPf64szp0PSLgRBEEQBEEQBEEUOBTjRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgdgoymUzif1OmTAEATJkyBZlMBi+++GJe/wYbzJ8/H5lMBn/5y1+029i0aRN69+6NvffeG47jWDw6giAIQpdsvg+AIAiCIGxwyimnBLZ99dVXePrpp5X7x4wZk/pxtSfr1q3DZZddhokTJ2L69Ona7XTv3h0///nPccEFF+CPf/yj9NwRBEEQ7UvGoaU0giAIYiflxRdfxEEHHQQAoZajlStXYtu2bRgyZAg6d+7cXodnndmzZ+Pmm2/GE088gcMOO8yorR07dmDIkCHIZrNYvnw5KioqLB0lQRAEoQO5ShIEQRAdniFDhmDMmDFFLdrq6uqwYMECDBo0CIceeqhxe506dcKJJ56IL7/8Evfff7+FIyQIgiBMIOFGEARBdHhUMW6nnnoqMpkMFixYgGXLluEHP/gB+vXrh6qqKkycOBGPPfZY7rNvvPEGjjzySPTt2xeVlZXYd9998dxzzyl/c/v27fjNb36DffbZBz169ECnTp0wevRoXHjhhdiwYUPiv+EPf/gD6uvrcfLJJ6OkJDi8NzQ04JprrsH48ePRtWtXlJeXo3///pg4cSIuvPBCbNy4MfCdU089FQBw8803Jz4egiAIwi4k3AiCIAgigqVLl2L8+PH45z//ialTp2KPPfbAW2+9hWOOOQYPPfQQHn30Uey///5YtWoVpk6ditGjR+P111/HoYceisWLFwfa++KLL7D33nvj/PPPx8cff4yJEyfisMMOy4mrCRMm4PPPP090jI8++igA4JBDDgnsa21txeGHH44LL7wQn3zyCfbff38ce+yxGDt2LNatW4drrrkGK1euDHxvzz33RN++ffHmm2/iyy+/THQ8BEEQhGUcgiAIgthJeeGFFxwATtRwd+CBBzoAnBdeeMG3/ZRTTsl9/4orrnBaW1tz+2644QYHgDN48GCnZ8+ezh//+Effd+fMmeMAcA455BDf9tbWVme//fZzADgzZ850Nm/enNvX1NTknHfeeQ4A56CDDor9d27bts0pLy93SkpKfO0x/vGPfzgAnL322ku6f8mSJc769eulbR955JEOAOdPf/pT7OMhCIIg7EMWN4IgCIKIYNKkSbj44ouRyWRy237605+iV69eWLVqFQ455BCcfPLJvu/MmzcPAPDSSy+hqakpt/3pp5/GK6+8gj333BO33norunbtmtuXzWZx9dVX45vf/CZeeOEFvPfee7GO7z//+Q8aGxsxePBgX3uMNWvWAAD2339/6f4JEyagd+/e0rZ33313AK7VkSAIgsgfJNwIgiAIIoJp06b5RBvgiqzhw4cDgDSDY+/evdGrVy80Njb6YtaeeOIJAMD06dORzQar8pSUlOCAAw4AALz66quxjo8JM5X4GjduHEpLS3HXXXfh5ptvTuT2yNpkv0EQBEHkBxJuBEEQBBHBkCFDpNu7dOkSup9Zt3bs2JHb9tlnnwEALrnkEmVh8FtuuQWAW5ctDps2bQIAdOvWTbp/xIgRuO6669DU1ITZs2dj4MCBGDZsGE444QQsXLgQjY2NyrZZm19//XWsYyEIgiDSgQpwEwRBEEQEsiyNSfbztLa2AgAmT56MESNGhH6WuSlG0aNHDwDA5s2blZ8566yzcPzxx+Pxxx/H4sWLsXjxYtx333247777cOmll+Lll1/GgAEDAt9jorBnz56xjoUgCIJIBxJuBEEQBNGO1NTUAACOOuoonH/++Vba7NevHwBElhGorq7G6aefjtNPPx0A8OGHH+LHP/4xXnvtNcydOxd333134DuszerqaivHShAEQehBrpIEQRAE0Y5MmzYNAPDggw/CcRwrbe6+++4oLy/HqlWrsGXLltjfGzNmDC666CIAwLvvviv9DEuQMn78eOPjJAiCIPQh4UYQBEEQ7chRRx2FiRMn4s0338Rpp50mjWP7+uuvceutt6K5uTlWm5WVldhnn33Q2tqKN954I7D/+eefx5NPPunLbgkAjuPgb3/7GwBg6NCh0rZfe+01AMDBBx8c61gIgiCIdCBXSYIgCIJoR0pKSvDoo4/i8MMPx913342HHnoIe+yxB4YMGYLGxkZ89tln+Pe//42Wlhaceuqp0syTMo4++mi89NJLeOaZZwJFuP/1r3/h3HPPRbdu3TBu3DgMHDgQ27dvx9KlS/H555+je/fu+MUvfhFo85133sGGDRswadIkafwbQRAE0X6QxY0gCIIg2pmBAwfi9ddfx6233opJkyZh2bJleOihh7B48WIAwE9+8hM8/fTT6NSpU+w2TzvtNFRVVeGee+5BS0uLb98RRxyByy67DBMnTsRnn32Ghx9+GC+++CK6d++OuXPn4r333sOee+4ZaHPBggUAgP/5n//R/lsJgiAIO2QcWw72BEEQBEHkldmzZ+Pmm2/G448/jiOOOMKorR07dqCmpgZlZWVYvnw5KioqLB0lQRAEoQNZ3AiCIAhiJ+HSSy9Fjx49pG6PSbnxxhuxfv16/OpXvyLRRhAEUQCQxY0gCIIgdiLmz5+POXPm4MEHH8Sxxx6r1camTZuwyy67YOTIkXj99deRyWQsHyVBEASRFBJuBEEQBEEQBEEQBQ65ShIEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOP8f3beiewtLONcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t0 = np.linspace(0,10,1000)\n", + "y01 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "y01 -= sub\n", + "y02 = np.sin(2 * np.pi * 3.0 * (t0+0.3)) + 0.1 * rand.standard_normal(t0.size)\n", + "y02 -= sub\n", + "\n", + "spline1 = make_interp_spline(t0, y01)\n", + "spline2 = make_interp_spline(t0, y02)\n", + "t01 = np.linspace(0,10,1000)\n", + "\n", + "fig, ax = plt.subplots(2,1,figsize=(10,12))\n", + "ax[0].scatter(lc1.time, lc1.counts, lw=2, color='blue',label='lc1')\n", + "ax[0].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[0].tick_params(axis='x', labelsize=16)\n", + "ax[0].tick_params(axis='y', labelsize=16)\n", + "ax[0].tick_params(which='major', width=1.5, length=7)\n", + "ax[0].tick_params(which='minor', width=1.5, length=4)\n", + "ax[0].plot(t01,spline1(t01),lw=2,color='lightblue',label='source of lc1')\n", + "\n", + "ax[1].scatter(lc1.time, lc2.counts, lw=2, color='red',label='lc2')\n", + "ax[1].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[1].tick_params(axis='x', labelsize=16)\n", + "ax[1].tick_params(axis='y', labelsize=16)\n", + "ax[1].tick_params(which='major', width=1.5, length=7)\n", + "ax[1].tick_params(which='minor', width=1.5, length=4)\n", + "ax[1].plot(t01,spline2(t01),lw=2,color='orange',label='source of lc2')\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `LombScargleCrossspectrum` class to create a `LombScargleCrossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lcs = LombScargleCrossspectrum(\n", + " lc1,\n", + " lc2,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 6.31032111 +4.52192914j 63.18701964+17.6050907j\n", + " 118.96655765-28.2054288j 84.8747486 -42.95292067j\n", + " -5.16601064+18.1110093j ]\n" + ] + } + ], + "source": [ + "print(lcs.freq[0:5])\n", + "print(lcs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Properties\n", + "\n", + "### Parameters\n", + "\n", + "- `data1`: This parameter allows you to provide the dataset for the first channel or band of interest. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `data2`: Similar to `data1`, this parameter represents the dataset for the second channel or \"reference\" band. It follows the same format as `data1` and is also optional with a default value of `None`.\n", + "\n", + "- `norm`: This parameter defines the normalization of the cross spectrum. It takes string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: This parameter allows you to specify the type of cross spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the cross spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "### Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the cross spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the complex numbers representing the cross spectra.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged cross-spectra amplitudes in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points or time bins in one segment of the light curves.\n", + "\n", + "- `k`: The `k` attribute is an array of integers indicating the rebinning scheme. If the object has been rebinned, the attribute holds the rebinning scheme; otherwise, it is set to 1.\n", + "\n", + "- `nphots1`: The `nphots1` attribute is a float representing the total number of photons in light curve 1.\n", + "\n", + "- `nphots2`: The `nphots2` attribute is a float representing the total number of photons in light curve 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the cross spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQUAAAIfCAYAAADJ6rpzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iTVRsG8Pvt3oMORgcte4uMMmRPWZ/IEAUBGUVENoooUxRFlD2U0YKAiIACyh6yZ1myoaWU0bK698z7/fGS1aRt2qRNx/27rmry5iR5WtqMO885RxBFUQQRERERERERERGVGSbGLoCIiIiIiIiIiIiKFkNBIiIiIiIiIiKiMoahIBERERERERERURnDUJCIiIiIiIiIiKiMYShIRERERERERERUxjAUJCIiIiIiIiIiKmMYChIREREREREREZUxDAWJiIiIiIiIiIjKGDNjF0CaZDIZIiIiYG9vD0EQjF0OEVGJJ4oiEhISUKlSJZiY8PMwgM81RESGxucadXyeISIyrMJ4nmEoWAxFRETAy8vL2GUQEZU6T548gaenp7HLKBb4XENEVDj4XCPh8wwRUeEw5PMMQ8FiyN7eHoD0D+3g4GDkaoiISr74+Hh4eXkpHl+JzzVERIbG5xp1fJ4hIjKswnieYShYDMnb6x0cHPgESkRkQJy+pMTnGiKiwsHnGgmfZ4iICochn2e42AUREREREREREVEZw1CQiIiIiIiIiIiojGEoSEREREREREREVMYwFCQiIiIiIiIiIipjGAoSERERERERERGVMQwFiYiIiIiIiIiIyhgzYxdARAWTnp6O2NhYiKJo0C3JiUoK+e++k5MTLCwsjF0OERERERFRicJQkKgEkslkiIyMRIUKFWBiwoZfKrtkMhmeP3/OvwUiIiIiIqJ84jsoohIoJiYGLi4uDEGozDMxMYGLiwtiY2ONXQoREREREVGJwkSBqATKzMyEpaWlscsgKhYsLS2RkZFh7DKIiIiIiIhKFIaCREREREREREREZQxDQaISiBuLEKnj3wQREREREVH+MBQkIiIiIiIiIiIqYxgKEhHpycfHB+3atVM71q5dO/j4+BSLWoiIiIiIiIiyYyhIRCVGTEwMrK2tIQgCNm3aZOxy8m3Dhg1YsmSJscsgIiIiIiIiYihIRCXHb7/9hrS0NPj6+iIwMNDY5eTq0KFDuHfvntoxhoJERERERERUXDAUJCoESUnAjz8CK1cCGRnGrqb0CAgIQPv27TFx4kScOHECoaGhxi4pRxYWFrC0tDR2GURERERERERaMRQkKgSrVgFTpwJjxwLbthm7mtLhypUruHbtGoYOHYqBAwfCzMxMa7egIAj46KOP8O+//6JFixawsbGBp6cnfvjhBwDSFOQRI0bA3d0dNjY26NmzJyIiItRuY86cORAEAbdu3cL48eNRoUIFWFtbo1mzZjh69KhO9WZfU9DHxwcnTpzAo0ePIAiC4uv48eOKy7WtBXj8+HEIgoANGzaoHX/y5Anee+89ODo6wsHBAb169cKDBw9yrOfIkSPo0qULnJycYGVlhQYNGuCXX37R6XshIiIiIiKi0oehIFEhuHhRefq//4xXR2kSEBAAOzs79O3bF66urujZsyd+/fVXyGQyjbFXr15F//790a5dOyxcuBDVq1fHtGnTsHTpUnTs2BExMTGYM2cORo8ejQMHDmDIkCFa73PIkCE4f/48vvjiC3z55Zd4+vQp3n77bRw5ciTf9S9ZsgS1atWCq6srNm3apPiqXbt2vm8rNjYWbdq0wV9//YXBgwdj/vz5sLGxQfv27ZGUlKQxfs2aNejSpQsSExMxffp0LFq0CFWrVsUnn3yCzz//PN/3T0RERERERCWfmbELICqNYmOVp4tq+rBMBkRHF819FUS5coBJAT+GSE1NxZYtW9C3b1/Y2toCAIYOHYqdO3fi4MGD6Natm9r4Gzdu4Ny5c2jWrBkAYMSIEahcuTImTZqEsWPHYtmyZWrjFy9ejHv37qFmzZpqx83MzHDq1ClYWFgAAIYPH45atWph3LhxuHPnTr6+h969e2PJkiVISUnBhx9+mK/rZrdgwQKEhYUhMDAQw4YNAwCMGTMGEydOxNKlS9XGPnv2DOPHj8f777+PLVu2KI6PGTMGEyZMwKJFi/DJJ5+gSpUqetVEREREREREJQs7BYkKQVyc8nRmZtHcZ3Q04OZWfL/0CSz/+usvxMbGYujQoYpj3bt3h5ubm9YpxC1atFAEgoC0vp+fnx9EUcT48ePVxrZu3RoAEBwcrHE7kyZNUgSCAODp6YlBgwbh7t27+Q4FDWnXrl0oX768RofjF198oTF2x44dSEtLw4gRIxAZGan21atXL8hksgJ1PhIREREREVHJxk5BokKg2ilYVKFgaRYQEAA3Nzd4enoiJCREcbxLly7Yvn07IiMj4erqqjiurevN2dkZAODr66v1eFRUlMZ1tE3trVOnDgAgNDS0QFN/DSE0NBRNmzaFqamp2vGKFSvCyclJ7Zg8vOzUqVOOt/fixQuD10hERERERETFG0NBokJgjOnDpdXDhw9x7NgxiKKIGjVqaB2zefNmTJw4UXE+e1imKqfLRFHUq059CYKg9Ximnqmy/PvauHEjKlasqHUMpw4TERERERGVPQwFiQxMFI3TKViuHPDqVdHcV0GUK1ew661fvx6iKGLt2rUaXXAAMGPGDAQGBqqFgoZy584dvPHGG2rHbt++DaBgQVpOwR8AlCtXDtFa5liHhoZqHKtSpQqCg4ORlZWlFnI+e/YMsaq/fACqV68OAHB1dc21W5CIiIiIiIjKFoaCRAaWmqreHVhUnYImJoDKDNpSQSaTYcOGDahfvz5GjhypdcytW7cwZ84cBAUFoWnTpga9/8WLF6NPnz6KdQWfPn2KLVu2oGbNmgWaOmxnZ4eYmBiIoqgRENaoUQN//vknwsPD4eHhAQBIS0vDypUrNW7nnXfewfz587Fx40bFRiMA8MMPP2iMfe+99/DVV19h9uzZaNeuHaytrdUuj4uLg5WVFSwtLfP9/RAREREREVHJxVCQyMCyNWpxTUE9HDp0CE+ePMGIESNyHNO3b1/MmTMHAQEBBg8FMzMz0bp1a3zwwQdISEjAL7/8gpSUFI3di3XVvHlz7NmzB2PHjkXLli1hamqKDh06wN3dHWPHjsXWrVvRqVMnjB49Gunp6di0aRNsbGw0bmfq1KnYsmUL/P39cfnyZdStWxfHjx/HuXPn1NZWBKTNUX7++WeMHDkStWvXxuDBg1G5cmW8evUKN27cwK5du3D79m34+PgU6HsiIiIiIiKikqnE7D78/fffo3///qhSpQoEQcjzDeyFCxfQqVMn2Nvbw8HBAW+//TauXbumdWxERASGDBkCNzc3WFtbo0mTJti+fbvWsWlpaZg1axZ8fX1haWmJqlWr4ttvv0UGF46j1xgKGk5AQAAAoE+fPjmOqVevHmrUqIGtW7ciJSXFoPe/ceNG+Pn5Yf78+Zg3bx48PDywf/9+dOnSpUC3N2nSJAwfPhw7duzAkCFD8MEHHyimI7/11lvYsGEDZDIZPv/8c6xatQoffvghvvvuO43bcXZ2xqlTp9C7d29s3LgRX3zxBZKTk3Hs2DHY2tpqjB82bBhOnjyJN998E6tXr8aYMWOwfPlyPHv2DN988w0qVKhQoO+HiIiIiIiISi5BNPbq+joSBAHlypVDo0aNcPnyZTg4OCAsLEzr2PPnz6Ndu3bw8PDA2LFjAQArVqzAy5cvcfbsWdSvX18xNjo6Gk2aNMHLly8xefJkeHp6YsuWLThx4gQCAwPVpuYBQO/evbF7924MHz4cLVq0wLlz5xAYGIihQ4diw4YNBvle4+Pj4ejoiLi4ODg4OBjkNqnonD8PtGihPN+rF/D334a9j5cvX8Ld3d2wN0oKc+bMwddff42HDx+yg66EyOtvgo+rmvgzISIyLD6uquPPg4jIsArjcbXETB9+8OCBYmH/evXqITExMcex48ePh4WFBU6ePKlYm+u9995D7dq1MWXKFBw6dEgxdv78+Xj48CH+/vtv9OrVCwAwYsQItGjRAp999hn69+8POzs7AMC+ffuwe/duTJ48GQsXLgQAjBw5Ek5OTli0aBFGjRqFli1bFsr3TyUHOwWJiIiIiIiIqLgrMdOHdd3pMyQkBEFBQejfv78iEAQADw8P9O/fH0eOHMHz588Vx7ds2YKqVasqAkEAMDU1xbhx4xAdHY19+/apjQWgscup/PzmzZvz+21RKcRQkIiIiIiIiIiKuxITCuoqKCgIANBCdf7ma82bN4coirh8+TIA4NmzZwgPD0fz5s21jlW9PflpDw8PeHl5qY318vJCpUqV1MZS2ZU9FORyk0RERERERERU3JSY6cO6ioiIAAC1LkE5+bHw8PB8j5WPr1Onjtb79fDwwNOnTwtUc8WKFdXOy2SyAt0OFQ9xcern2SlY8syZMwdz5swxdhlEBsXnGiIiKkx8niEiKnlKXadgcnIyAMDS0lLjMisrK7Ux+RkrP61trHy86lgqu9gpSERERERERETFXanrFLSxsQEApKWlaVyWmpqqNiY/Y+WntY2Vj1cdmx/Pnj1TOy/fUYZKJq4pSETFEZ9riIioMPF5hoio5Cl1nYKVKlUCoD7tV05+TD41OD9j5eO1jZWP1zYNmcoehoJEREREREREVNyVulCwadOmAIBz585pXHb+/HkIgoDGjRsDkNa98PDwwPnz57WOBYAmTZqo3XZ4eDiePHmiNvbJkyeIiIhQG0tlV/Y1BTl9mIiIiIiIiIiKm1IXClarVg1NmjTB9u3bFRuJANImIdu3b0eHDh1QoUIFxfEPPvgADx48wD///KM4lpWVheXLl8PJyQndu3dXGwsAS5YsUbtP+flBgwYVwndEJQ07BYmIiIiIiIiouCsxawpu2rQJjx49AgC8evUK6enp+PbbbwEAlStXxuDBgxVjly5divbt26N169YYN24cAGD58uWQyWRYuHCh2u1OmzYN27dvx8CBAzF58mR4eHjg999/R1BQENatWwd7e3vF2B49eqBnz55YtGgR4uLi0KJFC5w7dw4BAQH48MMP0apVq8L+MVAJwFCQiIiIiIiIiIo7QRRF0dhF6KJdu3Y4ceKE1svatm2L48ePqx07d+4cZsyYgQsXLkAQBLRs2RLff/89GjVqpHH98PBwTJs2Dfv370diYiLq1KmDL774AgMGDNAYm5qaim+//RabN2/Gs2fP4OHhgWHDhmHatGkwNzc3yPcqX5Q3Li4ODg4OBrlNKjoeHoBKkyq8vIDHjw17Hy9fvoS7u7thb5SoBMvrb4KPq5r4MyEiMiw+rqrjz4OIyLAK43G1xISCZQmfQEs2W1sgOVl5vmJF9ZDQEBgKEqljKJh//JkQERkWH1fV8edBRGRYhfG4WurWFCQypvR09UAQ4EYjpcXx48chCAI2bNhg7FKIiIiIiIiI9MZQkMiAsu88DHBNQX3JwzjVLzs7OzRq1AiLFy9GZjH8AW/YsEGtXhMTEzg6OqJVq1bYuHFjod1n9k2QiIiIiIiIiHJSYjYaISoJGAoWng8++ADdu3eHKIp4/vw5Nm7ciMmTJ+POnTtYs2aNscvTavz48WjatClkMhnCwsKwdu1aDB06FE+fPsVXX31l0PvasGEDwsLCMHHiRIPeLhEREREREZVODAWJDCj7zsMApw8bSqNGjfDhhx8qzo8ZMwa1atXCunXrMG/ePLi5uRmxOu1at26Nfv36Kc4PGzYMNWvWxA8//ICpU6fCzEy/h2BRFJGUlAQ7Ozt9SyUiIiIiIqIyhtOHiQxIWyjITsHCYWtri+bNm0MURTx48EDtsmfPnuGTTz6Bt7c3LCwsUKlSJYwaNQovX75UGxcREYEpU6agYcOGcHZ2hpWVFerUqYMffvgBWVlZBq/Zy8sLderUQXx8PF69eoWEhATMmDEDzZo1g6urKywtLVGtWjVMmzYNydkWp1Rd03DlypWoU6cOrKys8NNPP8HHxwcnTpzAo0eP1KYtZ9+VnYiIiIiIiEiOnYJEBqQtFMzKAkQREIQiL6fUk4eB5cqVUxx7/PgxWrRogfT0dIwYMQJVq1ZFSEgIfv75Zxw7dgyXLl2Co6MjAOD69ev466+/8O6776Jq1arIyMjAgQMHMG3aNISGhmL16tUGrTctLQ2PHz+GmZkZnJyc8OjRI6xbtw59+/bFwIEDYWZmhhMnTmDBggW4evUqDh48qHEbS5YsQVRUFPz9/VGhQgV4eXmhYcOG+PLLLxEZGYnFixcrxtauXdug9RMREREREVHpwVCQyIC0rSkISN2C5uaFfOeiCKSkFPKd6MHaWq9kNDk5GZGRkYo1BX/55RdcvXoVfn5+qFGjhmLcuHHjkJGRgatXr8LT01NxvH///mjevDkWL16MOXPmAADatm2L0NBQCCp1TZw4EYMHD8a6deswZ84cVKxYscA1JyQkIDIyEjKZDI8ePcK8efPw6tUrvP/++7C2tkaVKlXw5MkTmKv8cnz66aeYOXMmvv32W1y8eBF+fn5qt/n48WPcvXsX7u7uaseXLFmClJQUtSnWRERERERERDlhKEhkQNo6BYEiCgVTUoAFCwr5TvQwdSpgY1Pgq8+ePRuzZ89WO9anTx+sXLlScT4uLg579uzBsGHDYGVlhcjISMVlPj4+qFatGg4dOqQIBa2trRWXp6enIzExETKZDF27dsXmzZtx6dIl9OrVq8A1Dx8+XO28ubk5hg4dihUrVgAALCwsFJdlZmYiISEBWVlZ6NSpE7799ltcuHBBIxQcMmSIRiBIRERERERElF8MBYkMKKdQMCNDapSjghs1ahT69++PjIwM3LhxAz/88AOePn0KKysrxZh79+5BJpMhICAAAQEBWm+nSpUqitOZmZmYP38+Nm7ciJCQEIiiqDY2JiZGr5pnzZqF1q1bw8TEBPb29qhVqxbs7e3VxqxatQq//PILbt26BZlMluf9q3ZFEhERERERERUUQ0EiA8pt+jDpp3r16ujUqRMAoFu3bmjVqhVatWqF0aNHY+vWrQCgCPU+/PBDDB06VOvtqHYHTp48GcuXL8eAAQMwffp0uLu7w9zcHFeuXMEXX3yhEdLlV/369RU1a7No0SJMmTIFXbp0wfjx41GpUiVYWFggPDwcH330kdb7t9Gj25KIiIiIiIhIjqEgkQHlNn240FlbS1N0iysDt0q2bNkSgwcPxsaNGzF+/Hi0bNkS1apVgyAISE9PzzWMk9u0aRPatGmjCBXlQkJCDFprbvfv4+OD/fv3w8REuRn8gQMH8n1bAneyISIiIiIionxgKEhkQLlNHy50gqDXmn0l0cyZM/Hbb79h1qxZOHLkCFxcXNC9e3f89ddfOH/+PJo3b642XhRFREZGws3NDQBgamqqMWU4KSlJbQffwmRqagpBENRqkE9pzi87OzvExMRAFEUGhERERERERJQnhoJEBmTUTsEyqFq1anj//ffx22+/4dSpU2jdujV+/vlntGrVCm3atMGQIUPw5ptvQiaTITQ0FLt378aQIUMUG43069cPq1evxoABA9CpUye8ePECgYGBcHFxKZL6+/Xrhy+//BLdunVDnz59EB8fjy1btqjtRqyr5s2bY8+ePRg7dixatmwJU1NTdOjQgZuSEBERERERkVYMBYkMiGsKFr3p06fj999/x6xZs3Ds2DF4eXnh8uXL+OGHH7B7925s3rwZVlZW8PLyQq9evfDee+8prrto0SLY29tj27Zt2L17N7y8vDBq1Cg0bdpUp+nH+vr8888hiiICAgIwYcIEVKhQAQMGDMCwYcNQp06dfN3WpEmTEBoaih07duCXX36BTCbDsWPHGAoSERERERGRVoKYfe4cGV18fDwcHR0RFxcHBwcHY5dD+VC5MvD4sebxO3eAWrUMdz8vX75k2EOkIq+/CT6uauLPhIjIsPi4qo4/DyIiwyqMx1WTvIcQka44fZiIiIiIiIiISgKGgkQGkpUFxMdrv6xINhohIiIiIiIiItIRQ0EiA0lIyPkydgoSERERERERUXHCUJDIQLJPHTZT2caHoSARERERERERFScMBYkMRDUUNDMDVNf95PRhIiIiIiIiIipOzPIeQkS6iItTnnZyAkxNlefZKUhERERERERExQk7BYkMRLVT0MkJMDdXnmcoSERERERERETFCUNBIgNRDQUdHdXXFOT0YSIiIiIiIiIqThgKEhlI9k5BbjRCRERERERERMUV1xQkMpDsawpGRCjPs1OQiIiIiIqbxMREvHjxAjExMXB2dkb58uVhZ2dn7LKIiKiIMBQkMpDcpg+zU5CIiIiIioODBw9i165dOHr0KB48eKBxebVq1dChQwf07t0bXbt2NUKFRERUVBgKEhkINxohIiIiouIoKysLP//8M5YtW4YHDx5AFEXFZXZ2dnBwcEBcXBySkpIQHByM4OBgrFmzBtWqVcP48eMxevRomJqaGvE7ICKiwsA1BYkMJLc1BTl9uOwRBAEfffSRscsgIiKiMu7AgQOoV68exo8fj0ePHuF///sfVqxYgStXriAtLQ3x8fF4+vQpEhISkJqaikuXLmHZsmXo2bMnwsLCMH78eNSvXx8HDx409rdCREQGxlCQyEBU1xTk9GHDOX78OARBwE8//WTsUsqsOXPmQBAExZeJiQnKlSuHzp07Y8+ePYVyn0uWLMGGDRsK5baJiIjKku7duyM2NhY//fQTwsPDsXPnTowZMwYNGzaEuerUFgAWFhZo1KgRxo4di927dyM8PBwLFixAVFQUunfvbqTvgIiICgunDxMZSG7Th9kpWPakpKSUumk2c+fOha+vLzIzM3H//n2sXr0avXr1wm+//YaBAwca9L6WLFkCHx8fdlsSERHp6ZtvvsGkSZNgY2OT7+u6urpiypQp+OSTT7B48eJCqI6IiIyJoSCRgeQ2fZidgmWPlZWVUe8/IyMDWVlZBq2jW7duaNKkieJ837590aRJE8ybN88goWBWVhbS0tIK9KaFiIiItJs+fbret2FjY2OQ2yEiouKF04eJDITTh4tOWFgYBEHAnDlzsG3bNjRs2BDW1taoVq0a1q9fDwB4/Pgx+vXrh3LlysHe3h4ffvghEhIS1G7n7t27GDNmDOrWrQt7e3vY2NigcePGWLdundb7vX79Orp06QJbW1u4uLhg6NChiIyM1Lp+YG7Hzp07h7Zt2ypuZ+TIkUhMTCxwbfLpvbdu3cLkyZPh6ekJKysrnDx5Em5ubnjrrbe0fj8//vgjBEHAyZMnc/tx56hx48ZwcXFBSEgIACAiIgJTpkxBw4YN4ezsDCsrK9SpUwc//PADsrKy1K67YcMGCIKAI0eO4JtvvkHVqlVhZWWFbdu2QRAEPHr0CCdOnFCbthwWFlagOomIiIiIiEgTOwWJDEAUOX3YGPbs2YNffvkFY8aMQbly5RAQEIDhw4fDwsICX331FTp06IDvvvsOQUFBCAwMhJWVlVqodvz4cZw8eRI9e/aEr68vkpKSsH37dvj7++PVq1f48ssvFWODg4PRunVryGQyjB8/Hh4eHti3bx/efvvtfNV87do19OzZE8OGDcPAgQNx/PhxBAQEwMTEBGvWrClQbXKDBg2CtbU1pkyZAkEQULlyZQwdOhQLFy7EvXv3ULNmTbXxgYGBqFGjBtq0aZOv70EuMjISMTExqFChAgApNP3rr7/w7rvvomrVqsjIyMCBAwcwbdo0hIaGYvXq1Rq38dlnnyEjIwP+/v5wcHBAzZo1sWnTJkyaNAmurq5qXQlubm4FqpOIiIiUTE1N8dFHHyEgICDXcf7+/li/fj0y+ek2EVGpxVCQyAAyMgDVRigbm6LvFBRFESmZKYV/RwVkbWYNQRAMept37tzB7du3UblyZQDAgAED4OXlhcGDB+Onn37C5MmTAQCjR49GTEwMNm7ciCVLlsDOzg4AMHjwYIwePVrtNidNmoQOHTpg/vz5+OyzzxQLcE+fPh3x8fE4ffq0ovNu7NixGDBgAC5fvqxzzdevX8e5c+fQrFkzAMDHH3+M+Ph4rF+/HosWLSpQbXJOTk44cuQIzFR++UaNGoWFCxciICAACxYsUBw/c+YM7t69ix9++EHn2uPi4hAZGalYU/Crr76CTCbDkCFDAABt27ZFaGio2r/zxIkTMXjwYKxbtw5z5sxBxYoV1W4zJSUFV69eVZsy3KJFC8yYMQPly5fHhx9+qHN9RERElDdRFCGKos5jiYio9GIoSGQA2TsBzc3VOwWLIhRMyUzBgjML8h5oJFPfmgobc8OuFde7d29FIAhInWQ1a9bErVu38Omnn6qNbd26NXbu3ImwsDDUq1cPAGBra6u4PDU1FUlJSRBFEV26dMGJEydw9+5d1K9fH1lZWdi3bx/8/Pw0puJOmTIF27Zt07nmFi1aKAJBuQ4dOmDfvn0Fqk3VxIkT1QJBAKhRowbatm2LjRs34rvvvlNcHhAQADMzMwwdOlTn2jt16qR23sbGBpMnT8Y333wDALC2tlZclp6ejsTERMhkMnTt2hWbN2/GpUuX0KtXL7Xb+OSTT7iGIBERUTGUnJys8QEkERGVLgwFiQxAWyioms1w+nDhqFKlisYxZ2dnVKxYEZaWlhrHASAqKkpxLDExUbEu4ZMnTzRuKyYmBgDw6tUrJCUlaUy/BaD1WH5rdnFxKXBtqmrUqKH1PkeNGoVBgwZhz5496N27NxISErBt2zb07NkT5cuX17n2lStXokaNGjAxMYGTkxNq166tFgRmZmZi/vz52LhxI0JCQjS6C/JTMxERERlPbGwsTp8+rdHhT0REpQtDQSIDyCsU5FIshcPU1DRfxwH1aTADBw7Enj17MGrUKLRp0wYuLi4wNTXFvn37sHjxYshksiKr2RC15dRx17dvX4wfPx4BAQHo3bs3/vjjDyQlJWHkyJH5qt3Pz09t9+HsJk+ejOXLl2PAgAGYPn063N3dYW5ujitXruCLL77IV81ERERkONk/lNyxYweOHz+udWxmZiaeP3+OrKwsfPzxx0VQHRERGQtDQSIDyGv6cFF0ClqbWWPqW1ML/44KyNrMOu9BRSg2NhZ79uzB4MGD8csvv6hdduTIEbXzbm5usLW1xb179zRuR9uxoqxNF5aWlhgyZAiWLVuGiIgIBAQEwMPDI9+bpORl06ZNaNOmDbZu3ap2XL47cX4Yev1JIiKisiwsLExxWhAEJCYmIjExMcfxFhYW6N27N7777rsiqI6IiIyFoSCRARSHTkFBEAy+Zl9pJu/Yyz7F9dmzZ2o7FMvHduvWDTt27MCZM2fU1hVcuHChUWvTlb+/PxYvXowvvvgC58+fx/Tp03PtWiwIU1NTjZqTkpKwePHifN+WnZ0doqOjDVUaERFRmfbw4UMA0muLKlWqoF+/fvjxxx+1jrWwsICbm5vGOsVERFT68JGeyACyh37G2GiE8sfe3h5dunTB5s2bYW1tjaZNm+LRo0dYvXo1fH191db3A4Bvv/0WBw8exNtvv42xY8fC09MTe/fuxatXrwAYtrMtv7Xponbt2mjVqhU2b94MQRAwfPhwg9Ur169fP6xevRoDBgxAp06d8OLFCwQGBirWTMyP5s2bIyAgADNnzkTt2rVhYmKCXr16qW3AQkRERLpR3Zht6NChaN26tdoxIiIqmxgKEhmARqdgehIahR1ET5jjELogI8NS+xXJqDZv3oxp06bhn3/+wa+//orq1atj3rx5MDc3x7Bhw9TG1qxZEydPnsRnn32GpUuXwsrKCj179sTKlStRpUoVtQ03iro2XY0aNQqnT59G+/bttW54oq9FixbB3t4e27Ztw+7du+Hl5YVRo0ahadOmGjsX52XevHmIjo7GypUrERsbC1EU8fDhQ4aCRKr27wcuXgTGjQPKlTN2NURUQqxfv97YJRARUTEhiNnnepHRxcfHw9HREXFxcXBwcDB2OaSDGzeABg2k0yYmQNb+Qzg05yzOngP2oTvqDfNDYKDh7u/ly5dwd3c33A1SgV2+fBlNmjTB999/j2nTphm7nFxt27YNAwYMwJYtW/DBBx8YuxyDyutvgo+rmvgzKeFevQK8vIC0NOCrr4B584xdEVGZx8dVdfx5EBEZVmE8rrJTkMgAVDsFzc0BPHsGExPpvDNiOH24lEhJSVHrCBRFEQsWLAAAdO7c2Vhl6WzlypVwdXVFnz59jF0KEenr5k0pEASA0FDj1kJEJU5CQgJWrVqFI0eOIDw8HKmpqVrHCYKABw8eFHF1RERUVBgKEhmARigYE6MIBU2RVSS7D1Pha9iwITp06ID69esjKSkJ//zzD06dOoUBAwagcePGxi5Pq5cvX+Lo0aM4deoUTp48ie+//x6WlpzOTlTivd40AACQnm68OoioxImIiECrVq3w6NEjjQ3CsjPkmslERFT8MBQkMgDV0M/CTAbEx6uFguwULB3eeecd/PPPP9i0aRMyMzPh6+uLb775Bl988YWxS8vR7du3MXDgQDg5OWH06NGYMmWKsUsiIkNQDQXlHYNERDr46quvEBYWhoYNG2LatGmoXbs2p/cSEZVRDAWJDEA1FHQxiwNkMpiaSufZKVh6LFiwQDFduKRo165dnl0ARFQCsVOQiAro4MGDKF++PI4dOwZHR0djl0NEREZkYuwCDG3OnDkQBCHHL3Nzc53G/vTTTxq3LZPJsHjxYtSqVQtWVlbw8vLClClTkJSUVJTfIhVDqqFfOZNYAGCnIBERFR6GgkRUQDExMWjRogUDQSIiKn2dgn369EG1atU0jl+/fh0//vgjevXqpXHZ4sWL4erqqnZM2/pgkyZNwrJly/Duu+9iypQpuHPnDpYtW4arV6/iyJEjMDEpdRkr6UitU9AkBoAyFDRDJpIYChIRkSFx+jARFZCXlxdkMpmxyyAiomKg1IWCDRo0QIMGDTSOf/zxxwCAESNGaFzWu3dv+Pj45Hq7t27dwvLly9GnTx/8+eefiuO+vr4YP348tm7dioEDB+pXPJVYeXUKcvowEREZTEoK8OyZ8jw7BYkoH/r164c1a9YgKSkJtra2xi6HiIiMqEy0tiUlJWHr1q3w9PTE22+/rXVMfHw8MnOZ4/n7779DFEVMnDhR7bi/vz9sbGywefNmQ5ZMJYxq6OcsxAIo3OnDXCOOSB3/JqhMefRI/Tw7BYkoH2bOnAkvLy+89957ePnypbHLISIiIyp1nYLabN++HfHx8Rg/fjxM5bs/qGjQoAESEhJgamoKPz8/zJw5E926dVMbExQUBBMTE/j5+akdt7KyQsOGDREUFFSo3wMVb2qdgoI0fVh1o5HCWFNQJpNxyjoRwClQVPaoTh0G2ClIRPkyduxYVK1aFTt37kS1atXQpEkTeHt7a31dKQgCAgICjFAlEREVhTIRCgYEBEAQBAwfPlztuJOTE0aNGoWWLVvC2dkZ9+7dw5IlS9CjRw8EBgbio48+UoyNiIiAq6srLC0tNW7fw8MDZ8+eRXp6OiwsLPJdX8WKFdXO8w1uyaMaCjoiFoD6moKGnj7s7OyMFy9eoHz58gwGqUyTyWR48eIFXFxcjF1KscfnmlIkeyjITkEiyocNGzZAEAQAQGJiIo4fP57j2PyEgnyeISIqeUp9KHjv3j2cPn0aHTt2hK+vr9pl2acCA8Dw4cNRr149TJo0Cf369YOdnR0AIDk5WWsgCEjdgvIxBQkFqeSTh35myIC9mACgcKcPW1hYwMXFBa9evQIAxQs7orJEPmXYxcWFj71UtrBTkIj0sH79emOXQERExUSpDwXln2yNHDlSp/EuLi4YPXo05syZg7Nnz6JLly4AABsbmxzX3EhNTVWMKYhnqouFQ1rf0NHRsUC3RcYhDwUdEaeYNlzYG41YWFigfPnyhr9hIiqV+FxTijAUJCI9DB06tFBul88zREQlT6med5iZmYmNGzfCxcUF7777rs7Xk+9EHBkZqThWqVIlREZGIk3LFJ3w8HC4urqyU6UMk3cCOiNGEQYWZqcgERGVYWFh6uc5fZiIiIiICqBUh4L//PMPXrx4gQ8//DDHqb/aBAcHA4BaF1bTpk0hk8lw8eJFtbGpqam4du0amjRpYpiiqUSSdwI6IVa5wUghbzRCRERlFDsFichAbt++jXXr1uH777/H33//rTguk8mQzscWIqJSr1SHgvKpwyNGjNC4LDMzE3FxcRrHnzx5gp9//hkuLi5o2bKl4viAAQMgCAKWLFmiNn7t2rVITk7GoEGDDFs8lSjyUFBbp2BhbDRCRKWTTCbDhQsX8N1336Ffv35o3bo16tWrh9atW6Nfv374/vvvceHCBS7eXpbFxwPR0erHMjIA/k4QUT48efIEnTp1Qv369fHxxx9jxowZ2LVrl+LytWvXwtraGkePHjVekUREVOhK7ZqCEREROHDgAPz8/FC/fn2NyxMTE+Hr64vevXujdu3ait2H161bh8TERPz++++wtrZWjK9fvz4+/fRTrFixAn369EH37t1x584dLFu2DG3btsXAgQOL8tujYkZbpyCnDxORrl6+fIk1a9Zg9erViIiIAKDcSEXVzp07AUhLWowePRr+/v5wd3cv0lrJyLJ3CcplZAD5mBVBRGVXdHQ02rZti7CwMNSrVw9t2rTBqlWr1Ma89957GDt2LP7++2907NjRSJUSEVFhK7Wh4IYNG5CVlZXjBiPW1tbo27cvLly4gF27diExMRGurq7o1KkTpk6dCj8/P43rLFmyBD4+PlizZg327t0LV1dXjBs3DnPnzoWJSaluuqQ85NYpyFCQiHKSlpaGBQsW4IcffkBycjLMzMzQuHFjtGzZEnXr1oWLiwscHBwQFxeHqKgo3Lx5E2fPnsX169cxc+ZMfP/995g2bRo+//zzfC2TQSVYTqFgWhpDQSLSyQ8//ICwsDB89tln+OGHHyAIgkYo6OzsjPr16+P06dNGqpKIiIpCqQ0Fv/rqK3z11Vc5Xm5paYl169bl6zZNTU0xZcoUTJkyRd/yqJTJq1OQ04eJSJuaNWvi8ePHqF+/PoYPH45BgwbB1dU1z+tFRkZi06ZNWL9+PWbNmoXAwECEhoYWQcVkdDmFglz7i4h0tHv3bvj4+GD+/PkQBCHHcVWqVMGZM2eKsDIiIipqbG8jMoCMDMASqbBGijIMVN1oJENzGiARkbW1NbZv347//vsPEyZM0CkQBABXV1dMmjQJ169fxx9//MEuwbJENRRU2RCNoSAR6erRo0do1KhRnjOdLCwsEJ19DVMiIipVSm2nIFFRysiQugQBaHQKAoAsIwv8cyOi7G7duqX38hP9+/dH3759DVQRFXuqoWDNmsCLF9LptDTj1ENEJY6VlRUSEhLyHPf48WM4OjoWQUVERGQs7BQkMoCMDGk9QeB1GGhqqhYKiplZximMiIo1Q61Hy3VtyxB5KGhpCVSurDzOTkEi0lGtWrVw5coVJCUl5TgmMjIS//33Hxo0aFCElRERUVHjuwgiA1DtFDQxAVCuHENBIsq34cOHIzAwMM9xGzZswPDhw4ugIipWRFEZClauDFhZKS9jpyAR6ahfv36IiorC5MmTIZPJtI75/PPPkZycjAEDBhRxdUREVJQYChIZgGqnoKkpAFdXtVDQBFnIYi5IRHnYsGGDTjs9njlzBr/++msRVETFyqtXQHKydNrXV323YXYKEpGOPv30U9SrVw/r1q2Dn58fvvvuOwDAgwcPsGjRIrRo0QIbN25Ew4YN8dFHHxm3WCIiKlRc5IzIADQ6BbOFgmbIRGamcr1BIiJ9ZGVlccpwWaS6nqCvL2BhoTzPTkEi0pGVlRUOHjyI/v374+zZs7h69SoA4PTp0zh9+jREUUTTpk2xa9cumJubG7laIiIqTAwFiQwgIwNwVe0UdHFRCwBNkSXtUMwNQonIAIKDg7n4e1mUPRSMjVWeZ6cgEeVDxYoVcfr0aRw8eBB79+5FaGgoZDIZvLy80K1bN7zzzjsQBMHYZRIRUSFjKEhkABnposaagoKpAEAEIIWCmZlGK4+IirG5c+eqnb927ZrGMbnMzEzcunULZ8+eRadOnYqiPCpOwsKUp319gVu3lOcZChJRAXTt2hVdu3Y1dhlERGQkDAWJDCArQwZzZAB43SloZwdTCzNAfoyhIBHlYM6cORAEAaIofYhw7do1XLt2Ldfr2NraYtasWUVQHRUr0dHK0+7uQEiI8jynDxMRERFRPjEUJDKArHTlLiImJgBMTSGYm0I1FMzIME5tRFS8zZo1SxEKzp07Fw0bNsQ777yjdayFhQU8PT3RtWtXuLu7F3GlZHSq3YCWluprCrJTkIgKICsrC1FRUUhNTc1xjLe3dxFWRERERYmhIJEByDKUoaCpqfQfE3PlooLyjUaIiLKbM2eO4rQ8FJw9e7bxCqLiS/XTJQsLbjRCRAUWFBSEWbNm4cSJE0jL5fFDEARk8kUsEVGpxVCQyABUQ0F5p6CpSijI6cNEpAuZTGbsEqg4U+0GtLBQ372KnYJEpKPz58+jQ4cOiu5AZ2dnODg4GLkqIiIyBoaCRAagOn1YW6cgpw8TEZHesoeC7BQkogKYPXs2UlNTMXz4cMybNw/ly5c3dklERGQkDAWJDEBbp6CJhfLPi52CRJQfEREROHbsGMLDw3Nc50kQBMycObOIKyOjUg0Fzc3ZKUhEBXLhwgXUrFkTa9euhSAIxi6HiIiMiKEgkQForCloYgLBzBQmAiATpTUF2SlIRLqYPHkyVqxYgaws6XFFviuxnHxTEoaCZVBunYIMBYlIR5mZmWjYsCEDQSIiYihIZAiqoaBgZgoIgtQtaALIstgpSES6WbRoEZYsWQJBENC1a1fUrl2b6zyRUm5rCnL6MBHpqFatWoiMjDR2GUREVAwwFCQyALXpw/K1BE1NYWoKZDIUJCIdBQQEwMzMDIcOHUK7du2MXQ4VN+wUJCIDGDVqFMaPH48HDx6gatWqxi6HiIiMyMTYBRCVBmqdgvJQ0MxMWl8Q3GiEiHTz4MEDtGrVioEgaceNRojIAEaNGoUPPvgAnTt3xr59+xTLVRARUdnDTkEiA1DrFDRTdgqqhoLsFCSivNjb26NixYrGLoOKq9ymD7NTkIh0VKVKFQBAWFgYevXqBTMzM1SsWBEmJpr9IoIg4MGDB0VdIhERFRGGgkQGkNP0YflrKzNkMhQkojy1bt0a//33n7HLoOJKHvyZmEi7WrFTkIgKICwsTHFaFEVkZGTg8ePHWsdyMxIiotKNoSCRAYiZuYeCnD5MRLqYNWsWmjdvjnXr1mHkyJHGLoeKG3koKA8D2SlIRAXw8OFDY5dARETFBENBIgOQ5RAKmspPcvowEekgPj4ekydPxscff4xDhw6hZ8+e8Pb21jqlCwDatGlTxBWSUWUPBbnRCBEVQOXKlY1dAhERFRMMBYkMQNQ2fZgbjRBRPrVr1w6CIEAURfz555/4888/cxwrCAIy+WlD2ZJbpyCnDxMRERFRPjEUJDIA1enDphbcaISICqZNmzZcv4lyxk5BIjKw8+fP49ixYwgPDwcAeHh4oH379mjevLmRKyMioqLAUJBITzIZIIjcaISI9Hf8+HFjl0DFWW6hIDsFiSgfHj9+jEGDBuHs2bMApA1HAOXGIm+99RY2b94Mb29vo9VIRESFj6EgkZ4yM6VOQLmcOgU5fZiIiPTCjUaIyABiY2PRvn17PHz4EFZWVujatSuqVq0KAAgNDcWBAwdw+vRpdOzYEZcuXYKjo6ORKyYiosLCUJBITxkZOYSCZmbcaISI9JKeno6oqChYWlqiXLlyxi6HjE3+6RI7BYlIDwsXLsTDhw/RvXt3rFmzBpUqVVK7/Pnz5/D398e+ffuwcOFCzJ0710iVEhFRYdO+nSER6SwjAzCBTHHe1FzeHsg1BYmoYDZv3gw/Pz/Y2trC09MTn332meKynTt3YuDAgXj48KERKySjyN4paG6ueRkRUR527twJNzc3bNu2TSMQBIAKFSrgjz/+gKurK/766y8jVEhEREWFoSCRnnLsFMy2piCnDxORLkaOHImhQ4fi0qVLsLa2VqzzJFejRg1s3bo1152JqRQSRc1OQUFQnmanIBHp6OHDh2jbti1sbGxyHGNjY4O2bdvyAygiolKOoSCRnnQJBdkpSES6+O233xAYGIh69eohKCgIcXFxGmPq1q0LT09P7N+/3wgVktGofrKkOm1Yvq4gOwWJSEempqbI0OHT6szMTJiY8O0iEVFpxkd5Ij3pGgqyU5CI8rJmzRrY2dlhz549aNy4sWIXyOzq16/P7o2yRjX0Uw0F5acZChKRjqpXr47jx48jNjY2xzHR0dE4duwYatSoUXSFERFRkWMoSKSn3DYaYacgEeXHf//9h2bNmsHLyyvXceXKlcOLFy+KqCoqFlRDP9W1BDl9mIjyqX///oiLi0OPHj1w69Ytjctv3LiBnj17Ij4+HgMGDDBChUREVFS4+zCRnrKHgmaWyk5B7j5MRPmRlpYGR0fHPMe9evUKpvIHGCobcuoU5PRhIsqnCRMm4I8//sC5c+fwxhtv4M0334Svry8AIDQ0FNeuXYNMJkPDhg0xfvx4I1dLRESFiaEgkZ5UQ0ETARDMuNEIERWMh4cH7ty5k+sYURRx+/ZtxRs4KiPymj7MTkEi0pG1tTX+/fdffPLJJ9ixYwcuX76My5cvKy43MTHBgAEDsHLlSlhZWRmxUiIiKmwMBYn0pBYKmgDK9kBuNEJE+dOxY0esW7cOu3fvxjvvvKN1zKZNm/D06VO89957RVwdGRU7BYnIgJydnbF161Y8efIEJ0+eRHh4OADpw6k2bdrkuYwFERGVDgwFifTEUJCIDOWzzz7Dpk2bMHDgQMybN08t+IuOjsa2bdvw2WefwdbWllO6yhp2ChJRIfDy8sKgQYOMXQYRERkJNxoh0pNqKGhqCmUomG2jEU4fJqK8VK9eHb/++itkMhmmTJkCLy8vCIKAX3/9FW5ubvj000+RmZmJDRs2wNvb29jlUlHKq1MwK0v6IiIiIiLSEUNBIj3l1inIjUaIKL/69++PoKAg9O/fH/b29hBFEaIowsrKCr169cK5c+fQt29fY5dJRS2vTkEA/PSJiPLj9u3bGD16NGrVqgU7OzvY2tqiZs2aGD16NG7evGns8oiIqAhw+jCRnnLsFORGI0RUQPXq1cPWrVshiiKioqIgk8ng6uoKExN+lldm6RIKpqUB3BSAiHSwcuVKTJ48GZmZmRBFUXE8ODgYwcHBWL9+PX788UcuVUFEVMrx3QWRnrimIBEVFkEQ4OrqCnd3dwaCZV1e04ezjyEiysH+/fsxbtw4ZGZmok+fPvj7779x48YN3LhxA//88w/69euHrKwsTJo0Cfv37zd2uUREVIjYKUikp8zMvNcUNIEMmRkiAMEoNRIRUQmna6cgEVEeFixYAEEQsHXrVvTv31/tsrp166JHjx7YsWMH3nvvPSxYsADdunUzUqVERFTYGAoS6UmXTkEAyErPAv/kiCgvWVlZ2LFjB44cOYLw8HCkpqZqHScIAo4ePVrE1ZHRsFOQiAzk8uXL8PPz0wgEVfXr1w/NmjXD5cuXi7AyIiIqakwoiPSU25qC8pMAIGZkgn9yRJSbuLg4dO3aFUFBQWprPGkjCOw8LlNUF6ZlpyAR6UEQBFStWjXPcVWrVsXt27eLoCIiIjIWJhREespfpyARUc5mzpyJixcvwsPDA+PGjUPt2rXh4OBg7LKoOGCnIBEZSIMGDRAcHJznuODgYNSvX78IKiIiImNhKEikJ112HwYAWQZDQSLK3a5du+Dk5ITz58/Dw8PD2OVQcaLLmoIMBYlIB5MnT0bfvn2xdetWvP/++1rH/PHHHwgKCsL27duLuDoiIipKpXIrQ0EQtH7Z2dlpjL137x569+4NZ2dn2NraonXr1vj333+13m5cXBzGjRsHDw8PWFlZoW7duvj555/znOJFpVuOnYIqG40AgJjJUJCIcvfixQu89dZbDARJEzcaISIDady4MSZNmoQPP/wQ/fr1U9t9+O+//0b//v0xaNAgTJo0CU2bNsXjx4/VvoiIqPQotZ2CrVu3xqhRo9SOmZubq51/8OABWrZsCTMzM0ydOhWOjo5Yu3Ytunbtiv3796NTp06Ksenp6ejcuTOuXr2qmNK1f/9+jBkzBi9evMCcOXOK4tuiYkjXTkFOHyaivJQvXx5WVlbGLoOKI04fJiID8fX1BQCIooidO3di586dGmNEUcSSJUuwZMkSteOCICAzM7MoyiQioiJQakPBKlWq4MMPP8x1zJdffonY2FhcvnwZDRs2BAAMGTIEdevWxaeffoq7d+8qFnJft24dgoKCsGzZMowbNw4A4O/vj759++K7777DsGHDULly5UL9nqh4yrFTUBBgYmYCQAZAvtEIEVHOevXqhZ07dyIjI0Pjgywq49gpSEQG4uXlxc2qiIgIQCmdPiyXnp6OxMRErZclJSXh77//Rrt27RSBIADY2dlh5MiRuH//PoKCghTHt2zZAhsbG/j7+6vdzsSJE5GRkYE//vijUL4HKv5y7BQEIJgpT3P6MBHl5euvv4aZmRk++eQTpKamGrscKk7YKUhEBhIWFoaHDx8W+IuIiEqPUtspuGPHDmzevBlZWVlwc3PDgAED8O2338LR0REAcP36daSlpaFFixYa123evDkAICgoCH5+fpDJZLhy5QoaNWqkMa3Lz88PgiCoBYhUtuTYKQgAZmYAMgBwoxEiytuqVavQpUsXrF+/HocPH0bHjh3h7e0NExPNz/AEQcDMmTONUCUZhWrgp9pFyk5BIiIiIiqgUhkK+vn5oX///qhWrRri4+Oxb98+rFixAidOnMDZs2dhZ2eHiIgIANC6mLv8WHh4OAAgJiYGKSkpWsdaWlrC1dVVMbYgKlasqHZeJpMV+Lao6GWkizl2CpqYs1OQiHQ3Z84cCIIAURTx5MkTbNiwQWOM/PL8hoJ8rinh2ClIRMUcn2eIiEqeUhkKXrhwQe38kCFD0KBBA0yfPh1Lly7F9OnTkZycDEAK9bKTdwPKx+Q2Vj5ePobKnsx0GeRvz7J3CqpNH+aagkSUh9mzZxu7BCqudFlTkKEgEeXT06dPERERkeuSFW3atCnCioiIqCiVylBQm88//xxff/019u7di+nTp8PGxgYAkKZlqo38SVE+Jrex8vHyMQXx7NkztfPx8fGKac5U/KnuKpxrKMhOQSLKQ2GGgnyuKeF06RTk9GEi0tH27dsxY8YMhISE5DouP7sN83mGiKjkKTOhoLm5OSpVqoTIyEgAQKVKlQBA67Rf+TH5dGFnZ2dYW1trHZuWlobIyEi0bdu2sEqnYk41FOT0YSIiKhTsFCQiA9m2bRs++OADiKKIcuXKwcfHB/b29sYui4iIjKDMhIKpqal4+vSpYhOR+vXrw9LSEufOndMYe/78eQBAkyZNAAAmJiZo1KgRrl69irS0NLVpxBcvXoQoioqxVPbk2ilorvwTYyhIRPn1/PlzPH36FID0QVX29ZqoDNElFGSnIBHp4LvvvgMALF26FGPGjIGp6iZ5RERUpmhuZ1jCRUVFaT0+c+ZMZGZmolevXgAAOzs79OrVC8ePH8d///2nGJeYmIh169ahevXq8PPzUxz/4IMPkJycjDVr1qjd7pIlS2BmZoYBAwYUwndDJYHqrsLsFCQiQwgICECtWrXg4eGBZs2aoVmzZvD09ETt2rURGBho7PLIGLjRCBEZyL1799CiRQuMGzeOgSARURlX6joFv/32W5w/fx7t27eHt7c3EhMTsW/fPhw7dgzNmjXDuHHjFGO///57HD16FF26dMGkSZPg4OCAtWvXIjw8HHv37oUgCIqx/v7+WL9+PSZPnoywsDDUrl0b+/btw86dOzFjxgz4+PgY4bul4iC3TkHVUBA6rsdCRGWbv78/AgMDIYoiAKBcuXIAgOjoaNy7dw/+/v44d+4c1q5da8wyqaixU5CIDMTJyQmVK1c2dhlERFQMlLpOwXbt2sHBwQG//vorJk6ciNmzZyM6Ohrz5s3D8ePHYW1trRhbrVo1nDlzBs2bN8f8+fPx2WefwdbWFgcOHEDXrl3VbtfCwgJHjhzBxx9/jN9//x2ffvop7t69i+XLl2Pu3LlF/W1SMaKxpqCJ8s+KnYJElB/bt29HQEAAnJyc8NNPPyEmJgaRkZGIjIxEbGwsFi5cCGdnZwQGBmLHjh3GLpeKEjsFichA2rdvj6tXrxq7DCIiKgZKXafgO++8g3feeUfn8bVr18bu3bt1Guvk5IQVK1ZgxYoVBS2PSqGsDJnitGBmCqh0mJpYqPyJZTEUJKLcrV69GmZmZjh8+DAaNWqkdpmDgwMmTZqEdu3aoVmzZli9ejX69etnpEqpyGVkKE9zoxEi0sOsWbPQrFkzzJ8/H9OmTTN2OUREZESlLhQkKmqqnYKCqXrzLTsFiSg/rl69irZt22oEgqrefPNNtG3bFleuXCnCysjodOkU5PRhItJBrVq1cOjQIbz//vvYvXs3unXrBm9vb5iYaJ9ENmTIkCKukIiIigpDQSI9qW40IpirL9ZsaqFynp2CRJSHpKQkuLu75znO3d0dSUlJRVARFRu6rCnITkEi0tHZs2cRHR2Nx48f4+LFi7mOZShIRFR6MRQk0pNqKGhiph4KqnYKClncaISIclehQgWd1nm6evUqypcvXwQVUbHBjUaIyEACAwMxZcoUAECDBg1QvXp12NnZGbkqIiIyBoaCRHpSmz6cSygIWRZEUW3JQSIiNe3bt8fGjRtzXefp+++/x7179zB06NAiro6MSh4Kmpio7XLPjUaIKL8WL14MMzMz/PXXX+jZs6exyyEiIiNiKEikJ7VOwezThy2Vf2KmyEJmJmBuXmSlEVEJM23aNPzxxx+YPn06du7ciSFDhsDX1xcAEBoail9//RVXrlyBlZUVvvjiCyNXS0VKHvipdgZmP89OQSLSwYMHD9CmTRsGgkRExFCQSF+yzJzXFFQNCRkKElFeatasie3bt2PQoEEICgrCpUuX1C4XRREODg747bffULNmTSNVSUaRUyjITkEiyidnZ2e4ubkZuwwiIioGGAoS6UnMZU1B1Y1GzJCJjAzA2rrISiOiEqhHjx64f/8+1qxZgxMnTiA8PBwA4OHhgXbt2sHf31+nzUiolNGlU5ChIBHpoFu3bjh69ChkMlmOOw4TEVHZwFCQSE+5Th+20OwUJCLKi7u7O2bMmIEZM2YYuxQqLnTpFOT0YSLSwTfffIN9+/Zh/PjxWLRoESyyP64QEVGZwVCQSE+qoWD26cPZQ8GMjCIri4iIShN5KJh9DQpTU2kHK1FkpyAR6WTt2rXo1q0bfv75Z+zduxft27eHt7e31q5BQRAwc+ZMI1RJRERFgaEgkZ5ElTUFTbOFgmZWmhuNEBHp4vz58zh+/DiePn0KURTh6emJdu3aoUWLFsYujYwhp05BQZCOpaWxU5CIdDJnzhwIggBRFPHo0SNs2LBBY4z8coaCRESlG0NBIj2phoKcPkxE+nrw4AGGDBmC8+fPA5A2FwGkN2gA0KxZM2zcuBHVqlUzWo1kBDmFgoA0hTgtjZ2CRKSTWbNmKZ5TiIiobGMoSKQnXUNB+UYjREQ5iYiIQOvWrfH8+XPY2Njg7bffhq+vLwAgLCwMBw4cwPnz59GmTRsEBQXBw8PDyBVTkcktFJQfY6cgEelgzpw5xi6BiIiKCYaCRHpSmz5swU5BIiq4WbNm4fnz5+jbty9WrVoFNzc3tcsjIyMxZswY7NixA7Nnz8a6deuMVCkVKVGE4lOlnDoFAXYKEhEREVG+MBQk0lNunYImFmYQAIhgKEhEedu/fz8qVaqE3377TetukK6urti8eTPOnj2Lffv2GaFCMgrVNnN2ChKRgT1//hxPnz4FAHh4eKBixYpGroiIiIqK5hZTRJQvuXUKwtQUpq8PcfdhIspLdHQ0WrVqpTUQlLOwsECrVq0QExNThJWRUal2ALJTkIgMJCAgALVq1YKHhweaNWuGZs2awdPTE7Vr10ZgYKCxyyMioiLAUJBIT2JW7qGgyeu/MnYKElFePD09kZSUlOe45ORkridYlujaKchQkIh05O/vj1GjRuH+/fsQRRHOzs5wdnaGKIq4d+8e/P394e/vb+wyiYiokDEUJNJXHp2C8lCQG40QUV769++P48ePIzw8PMcx4eHh+Pfff9GvX78irIyMKq9OQU4fJqJ82L59OwICAuDk5ISffvoJMTExiIyMRGRkJGJjY7Fw4UI4OzsjMDAQO3bsMHa5RERUiBgKEulBJgMEkZ2CRGQYM2fORP369dGhQwfs2bNH4/K9e/eiY8eOaNCgAWbPnm2ECskodJ0+LJMBKt3rRETarF69GmZmZjh8+DAmT54MR0dHxWUODg6YNGkSDh8+DFNTU6xevdqIlRIRUWHjRiNEesjIkMI+OY1Q0MyMoSAR6axHjx4wMTFBcHAw3nnnHTg5OcHHxwcAEBYWhtjYWABAixYt0KNHD7XrCoKAo0ePFnHFVCR07RQEpG5BG5vCr4mISqyrV6+ibdu2aNSoUY5j3nzzTbRt2xZXrlwpwsqIiKioMRQk0kOeoWC2TkFOHyai3Bw/flxxWhRFxMTEaN1Q5OzZsxrHBEEozNLImHTtFJSPZShIRLlISkqCu7t7nuPc3d11WueWiIhKLoaCRHrIHgqaWea8+7AZMtkpSES5OnbsmLFLoOIov52CRES5qFChAq5evZrnuKtXr6J8+fJFUBERERkLQ0EiPeSnU1CAiMx0GbiUJxHlpG3btsYugYqj/HYKEhHlon379ti4cSPmz5+PadOmaR3z/fff4969exg6dGgRV0dEREWJoSCRHvLsFFRZUxAAMtOywFCQiIjyJT+dggwFiSgP06ZNwx9//IHp06dj586dGDJkCHx9fQEAoaGh+PXXX3HlyhVYWVnhiy++MHK1RERUmBgKEulBl+nDqqFgVnoWAPOiKY6IiEoHTh8mIgOqWbMmtm/fjkGDBiEoKAiXLl1Su1wURTg4OOC3335DzZo1jVQlEREVBYaCRHrIz/RhQB4KEhHlLC4uDqtWrcLRo0cRERGB1NRUreMEQcCDBw+KuDoyCk4fJiID69GjB+7fv481a9bgxIkTCA8PBwB4eHigXbt28Pf312kzEiIiKtkYChLpIT8bjQBAVhp3GiGinIWGhqJt27aIiIiAKIq5juVuw2UIOwWJqBC4u7tjxowZmDFjhrFLISIiI2EoSKSHzExlKGgiAIJZ7p2Csgx2ChJRzj7//HOEh4ejZcuWmDJlCqpXrw57e3tjl0XGphoKmmtZgoKdgkRERERUAAwFifSg2iloYgKotQUCGqGgtNEIEZF2//77L7y9vXHkyBFYWVkZuxwqLtgpSER6mjZtGu7fv48pU6bgrbfeynXsmTNnsHDhQtSuXRvz5s0rogqJiMgYuA0qkR5UQ0FTU2iGgoKgdoydgkSUm6ysLDRr1oyBIKnjmoJEpIdLly5hwYIFSEhIyDMQBIC33noLiYmJmD9/Pv77778iqJCIiIyFoSCRHvLsFIT6Ma4pSES5qVevHqKjo41dBhU3+ekUZChIRNls3rwZgiDkq+vv+++/hyiK2LhxYyFWRkRExsZQkEgPeXYKAoAZOwWJSDdjx47FyZMncfPmTWOXQsUJpw8TkR5OnTqFypUrw8/PT+frNG7cGD4+Pjhx4kQhVkZERMbGUJBIDxkZgAlkAHLrFFQu3clQkIhyM3DgQEyYMAEdOnTA6tWr8fjxY2OXRMVBRobyNKcPE1E+hYaGon79+vm+XoMGDRAaGloIFRERUXHBjUaI9KBTp6Dq9OF0hoJElLvRo0fjwIEDGDNmTK7jBEFAZiaXJCgT2ClIRHpISkoq0E72dnZ2SEpKKoSKiIiouGAoSKQHjTUFTTSbbwVOHyYiHd28eRNt27ZFbGwsRFHMdWxel1Mpwo1GiEgPTk5OePnyZb6v9/LlSzg6OhZCRUREVFxw+jCRHjLSxXx1CooZ7Oohopx9+eWXiImJQb9+/XDlyhUkJCRAJpPl+EVlBDsFiUgPVatWxYULF5ChuhRBHtLT03HhwgVUqVKlECsjIiJjYyhIpIeMdBECpG6dnNYUFMxVpg+zU5CIcnHmzBnUrFkTW7duRcOGDWFra2vskqg4YKcgEemhY8eOSExMxMqVK3W+zsqVK5GQkIBOnToVYmVERGRsDAWJ9JCZpgz5ct59WDlLX2QoSES5kMlkaNiwIQRBMHYpVJzkp1OQoSARZTN69GiYm5tj2rRp+Pvvv/Mcv3v3bnz55ZewsLDAxx9/XAQVEhGRsTAUJNKD6sYhOXYKmnJNQSLSzZtvvonw8HBjl0HFDacPE5EePD09MXfuXKSnp+Pdd99Fnz59sGvXLoSHhyMjIwMZGRkIDw/Hrl27FJdnZGRgzpw58PLyMnb5RERUiLjRCJEedOkUNDFnKEhEupk6dSp69uyJ48ePo127dsYuh4oLTh8mIj1NnToV0dHRWLBgAXbv3o3du3drHSffxOqzzz7DtGnTirJEIiIyAr1CwZMnT8LU1BRvvfWWoeohKlF06RSEyu7DyORGI0SUs7p16+KLL75A9+7dMWHCBHTr1g3e3t4w0bKzOQB4e3sXcYVkFOwUJCIDmD9/Pjp37oxvv/0Wp06d0tiwysTEBG3atMH06dO5liARURmhVyjYrl07tGvXDv/++6+h6iEqUVQ7BXOcPqyypiA7BYkoNz4+PhAEAaIoYsGCBViwYEGOYwVBQCY/aCgb2ClIRAbSsWNHdOzYEXFxcbhy5QpevXoFAHBzc8Obb74JJycn4xZIRERFSq9Q0NnZGZUqVTJULUQljmrIp8v0YTGToSAR5czb25ubjJAmdgoSkYE5Ojqiffv2xi6DiIiMTK9QsGHDhggODjZULUQljur0YcHUBNDyZl4wYyhIRLoJCwszdglUHLFTkIiIiIgKgV67D48fPx5BQUHYu3evoeohKlFUQ0G1tQNVqHUKZnCqHxER5VN+OgUZChIRERGRjvTqFHzzzTcxduxYvPvuu/joo4/Qt29f+Pj4wNraWut4LohOpY16p6D2UJCdgkREpBfVoM/cXPNyTh8mIiIiogLQKxT09fUFIG1dHxAQgICAgBzHckF0Ko3UQsEcOgUFC+WfGUNBItJFVFQU1q5di2PHjiE8PBwA4OHhgQ4dOmDkyJFwcXExcoVUpDh9mIiIiIgKgV7Th728vODt7Y3KlSvD29s71y8vLy9D1Zyr+/fvY9asWWjevDnc3Nxgb2+Phg0bYt68eUhKSlIbO2fOHAiCoPXrp59+0rhtmUyGxYsXo1atWrCysoKXlxemTJmicbtUdugSCppyoxEiyodDhw6hRo0amD59Og4fPozbt2/j9u3bOHz4ML766ivUrFkThw4dMnaZVJTkQZ8gaN3Qip2CRERERFQQenUKFscF0QMDA7Fy5Ur873//w6BBg2Bubo5jx45hxowZ2LZtG86fP68xvXnx4sVwdXVVO9a4cWON2540aRKWLVuGd999F1OmTMGdO3ewbNkyXL16FUeOHIGJiV4ZK5VAqrsP5xQKqq4piCyGgkSUs+DgYPTp0wfJyclo0KABhg0bhqpVqwIAQkNDsWHDBly7dg19+vTB1atXUb16dSNXTEUiI0P6v4WF1g2t2ClIRERERAWhVyhYHPXr1w9ffvklHB0dFcdGjx6N6tWrY968eQgICMDYsWPVrtO7d2/4+Pjkeru3bt3C8uXL0adPH/z555+K476+vhg/fjy2bt2KgQMHGvR7oeIvKz0L8shPp1CQU+iJKBfz589HcnIy5syZg1mzZmlcPn78eHzzzTeYPXs2fvjhB6xbt84IVVKRkwd92qYOA1L3oIkJIJOxU5CIiIiIdFbqWtuaNGmiFgjKDRgwAABw8+ZNrdeLj4/Pdc3D33//HaIoYuLEiWrH/f39YWNjg82bNxe8aCqx8tspyOnDRJSbo0ePombNmloDQbmZM2eiZs2aOHLkSBFWRkaVVygIKLsF2SlIRHn45ZdfkJycbOwyiIioGDBIKHjq1Cm899578PT0hKWlJUaMGKG4TL4G0vPnzw1xVwX29OlTAED58uU1LmvQoAEcHR1hZWWFli1bYv/+/RpjgoKCYGJiAj8/P7XjVlZWaNiwIYKCggqncCrWVENBtY5AFSYqG41w+jAR5eb58+do1KhRnuMaNWpk9OdVKkK6hILyyxgKElEexowZA09PT0yaNAnBwcHGLoeIiIxI7+nD3377LWbPng1RFBXHVE87Ojrihx9+gKenJ8aMGaPv3RVIVlYWvvnmG5iZmalN8XVycsKoUaPQsmVLODs74969e1iyZAl69OiBwMBAfPTRR4qxERERcHV1haXquj2veXh44OzZs0hPT4dFbi/Yc1CxYkW18zKZLN+3QcahS6egqYVKpyBDQSLKha2tLV6+fJnnuJcvX8LW1jZft83nmhIsP6Egpw8TUR7efvttHDx4EEuXLsXy5cvRuXNnjB07Fj169NDrdvk8Q0RU8ujVKbh//37MmjULHh4e2LZtG168eKExxs/PD25ubtizZ48+d6WXiRMn4ty5c5g7dy5q1qypdnz16tUYOnQo/ve//+Hzzz/H9evXUb58eUyaNAmJiYmKscnJyVoDQUDqFpSPobJFp05BleMCQ0EiykXDhg1x8uRJ3LhxI8cx169fx4kTJ9CwYcOiK4yMi9OHiciA9u3bh+DgYEyePBmOjo44ePAg/ve//6Fq1apYuHAhYmJijF0iEREVEb1CwaVLl8LS0hL79+9Hv3794ObmpnXcG2+8YbTW9JkzZ2LFihUYNWoUvvzyyzzHu7i4YPTo0YiNjcXZs2cVx21sbJCWw6fvqampijEF8ezZM7UvtvGXHGqdgjqEgtxohIhy4+/vj4yMDHTq1AmrVq1S+3AqMTERK1asQOfOnZGVlYVRo0bl67b5XFOCsVOQiAysSpUq+OmnnxAeHo61a9fijTfewMOHDzF16lR4enrC398f165dy9dt8nmGiKjk0SsUDAoKgp+fH+rWrZvrODc3N6OsfTRnzhx8++23GDZsGH755RedryffiTgyMlJxrFKlSoiMjNQaDIaHh8PV1bVAU4epZFPrFMxp+rAl1xQkIt28//77GDx4MF69eoVx48bB0dER7u7ucHd3h6OjIyZMmIBXr15h8ODBig20qAxgpyARFRIrKyuMGDECV65cwZkzZ/D+++8jKysLgYGBaNy4MVq3bo1t27Yhi69hiYhKJb1CwaSkJFSoUCHPcXFxcUW+psScOXPw9ddfY+jQoVi3bh0EQdD5uvJPtVQ3JWnatClkMhkuXryoNjY1NRXXrl1DkyZNDFM4lSiquwnnNH1YdU1BQcYXVESUu19//RWrVq2Cr68vRFFEZGQkIiMjIYoiqlSpgp9//hkbNmwwdplUVESRnYJEVCRatGiB5cuXY+zYsRBFEaIo4syZM/jggw9QvXp17Nixw9glEhGRgekVCpYvXx4hISF5jrt37x68vLz0uat8mTt3Lr7++msMHjwYgYGBMDHR/DYzMzMRFxencfzJkyf4+eef4eLigpYtWyqODxgwAIIgYMmSJWrj165di+TkZAwaNMjg3wcVf7qsKWhpozyenpIFlX14iIi0Gj16NEJCQvDkyROcP38e58+fx5MnTxAcHIyPP/7Y2OVRUVJddkLXTkE+0RBRPl29ehUjRoyAl5cXFi9eDBMTE/Tu3Rs///wzWrRogbCwMAwYMAABAQHGLpWIiAxIr92HW7Vqha1bt+LMmTN46623tI7Zs2cPQkJCiuxNzMqVKzF79mx4e3ujU6dO2LJli9rl5cuXR+fOnZGYmAhfX1/07t0btWvXVuw+vG7dOiQmJuL333+HtbW14nr169fHp59+ihUrVqBPnz7o3r077ty5g2XLlqFt27ZquxpTGZKVdyjoVU25QY1pejKehctQyVOvPJ6IyggPDw94eHgYuwwyJtXpwLmFgo6O0v9FEYiMBHJY55mISC4jIwPbt2/HihUrcOHCBYiiCCcnJ4wZMwZjx45F5cqVAQAff/wx9u/fj759++Knn37CiBEjjFw5EREZil6h4JQpU/DHH3+gT58+WL16NXr27Kl2+YEDBzBy5EiYm5tj3LhxehWqq6CgIADA48ePMXToUI3L27Zti86dO8Pa2hp9+/bFhQsXsGvXLiQmJsLV1RWdOnXC1KlT4efnp3HdJUuWwMfHB2vWrMHevXvh6uqKcePGYe7cuVq7Ean006VT0L2OKywtgLR0wAyZCA6KRSXPckVVIhEVc0FBQXj27Blq166N6tWr5zr2/v37uHv3LipVqsRlK8oKXUPBWrWAw4el03fuMBQkohyFh4fjl19+wbp16/Dy5UuIoojatWtj3LhxGDJkiNbNE7t164bu3bvjn3/+MULFRERUWPQKBRs1aoSFCxdi8uTJ6Nu3L6ytrSEIAv7880/89ddfSEhIgCiKWLZsGerUqWOomnO1YcMGndZasrS0xLp16/J126amppgyZQqmTJlSwOqotFFdU1B17UBVgrUVbCvYI+1xAgDg6dVXwLsMBYlI2tCqY8eOsLe312mXR2dnZ4wZMwbJyckIDQ2Fk5NToddIRqZrKKj6OuvOHaBNm8KriYhKNF9fX8XGId26dcOECRPQuXPnPK/n5OSEjIyMwi6PiIiKkN7tbRMmTMC+ffvQtGlTpKSkQBRFJCQkID4+HvXr18fff/+NsWPHGqJWomJHl41GAMDKW9mx8eLmq0KtiYhKjs2bNyMxMRFff/013HTo7HJzc8PcuXMRGxuLzZs3F0GFZHS6hoK1aytP375dePUQUYlnZWWFsWPH4t69e9izZ49OgSAALFiwAA8fPizk6oiIqCjp1Sko17VrV3Tt2hVRUVF4+PAhZDIZvLy8ULFiRUPcPFGxpUunIAA4V3dDxOlQAEBcCENBIpLs27cPtra2Wpe7yMngwYMxceJE7Nmzhx+6lQUF6RRkKEhEuYiIiICdnV2+r1euXDmUK8fZLkREpYlBQkE5FxcXuLi4GPImiYo1WZZMcTq3UNC9rhtuvT6d8pihIBFJbt68iWbNmsHc3Fzn65ibm8PPzw83btwoxMqo2FANBXP7PXFzA1xdpU1GGAoSUS4cHR3xxhtv4MqVK8YuhYiIjEyv6cMbNmzA06dPDVULUcmjY6egVyPltEDzuFeIjxMLtSwiKhmio6NRoUKFfF+vfPnyiIqKKoSKqNhRXb8rt05BQNktGBEBxMYWWklEVLLZ2NgU2XrvRERUvOkVCg4fPhyVK1dGrVq1MHbsWOzatQvx8fGGqo2o2NN1+rB3YzeYvv5rM0cGgi/FFXZpRFQCWFpaIikpKd/XS05OhqWlZSFURMWOrtOHAc3NRoiItKhevTpevnxp7DKIiKgY0CsU/Oijj+Dl5YX79+9j1apV6Nu3L1xcXNC8eXPMmDEDx48f5w5VVLplqYSC5jn/OZk52MDG1UZx/vFlTiEmIqBChQq4fv16vq93/fr1AnUYUglU0FCQU4iJKAcffvghTp06hQcPHhi7FCIiMjK9QsHAwECEhYXh3r17WLlyJd555x3Y29vj4sWL+O6779CxY0c4Ozvj7bffxsKFCw1VM1GxoWunIABYeiqnED+/wVCQiICWLVsiLCwMZ8+e1fk6Z86cwcOHD9GyZctCrIyKjfyEgtyBmIh0MHHiRHTt2hUdOnTAli1bkJqaauySiIjISPQKBeWqV6+OTz75BH/99ReioqJw4cIFzJs3D+3atUNmZiYOHTqEL774whB3RVS8qHYKWuYeCjpWU4aCscEMBYkIGDRoEERRxKhRoxAXl/eyArGxsRg1ahQEQcAHH3xQBBWS0bFTkIgMrFq1avjvv//w5MkTDB48GLa2tqhYsSKqVKmi8VW1alVjl0tERIXIIKGgqoyMDCQkJCAhIQHx8fHIzMwEAIgiN1agUkglFDTLo1PQrY4yFEwKYyhIxUtSEnD3rrGrKHs6deqEjh074vbt22jcuDH+/vtvrc+Xoihi9+7daNKkCe7evYt27dqhS5cuRqiYilx+QsGKFQFHR+k01xQkohyEhYXh0aNHAKTnF1EU8eLFC4SFhWn9IiKi0svMEDdy7do1HD58GEeOHMHp06eRmpoKURTh4OCAHj16oFOnTujUqZMh7oqo2MjKAkygEgrm0Sno0VAZCoovXyE9TYSFpVBo9RHpKi4OqF4dePVKxNy5AmbONHZFZcvWrVvx1ltv4f79+3j33Xfh5OSERo0awd3dHQDw8uVLXLlyBbGxsRBFEdWqVcMff/xh5KqpyOQnFBQEqVvw3Dng0SMgMRGwsyvc+oioxHn48KGxSyAiomJCr1Dw/fffx7///ouoqCiIoghzc3M0b95cEQL6+fnB1DT3oISopMrIAEyh+5qCvn7KUNBcTMPD6wmo2dSh0Ooj0tWBvVno+moLKuIZjq/qiZkz6+R9JTIYFxcXXLx4EWPHjsXvv/+OmJgYHD16FIIgfWgg7xw0MTHBwIEDsXz5cjg5ORmxYipS+QkFAWUoCEjtv02aFE5dRPl18CAwbx7wyScAlz8wqsqVKxu7BCIiKib0CgW3bdsGQRDQoEEDzJ49G126dIGNjU3eVyQqBbKHgnl1CtpVsIOVoxVS46TFnMOCXjEUpGIh9dYDVIW0A2Ht58eQmloHVlZGLqqMcXBwwMaNG/H1119jz549uHTpEl69kpYZcHNzQ+PGjdGzZ09UqVLFyJVSkStIKCh3+zZDQSo+pk0Drl0Dbt0C3n9f6mwlIiIio9IrFLS3t0dCQgL+++8/DBo0CK1bt0bnzp3RqVMnvPHGG4aqkahYyszMX6cgBAEWHm5IjXsCAHh2/RUALt5MxpccEas4XQ5RCA2RoU49gy85Szrw9fXFuHHjjF0GFSf6hoJExYV8bbroaOD5c2kNTCIiIjIqvULB6OhoXLx4EUeOHMGRI0dw7NgxHDp0CIIgwNXVFR07dkTnzp3RuXNneHp6GqpmomIhv52CAGBfxQ3xt6VQMOpeZKHVRpQfSS+TFKdNIMOj/2JRp145I1ZERAr5DQVr11aeZihIxUV6OhAbqzwfHMxQsBj4888/sX37dty7dw/x8fFaN7oSBAEPHjwwQnVERFQU9AoFTU1N0aJFC7Ro0QIzZ85EcnIyjh8/jiNHjuDo0aP4448/FIuh16hRA3e4Ex6VIgUJBV1ruyF8j3SaOxBTcZHyKlHt/LObUQAYChIVC/kNBb28AFtbaUtxhoJUXLx8qX7+/n2gTRvj1EIQRRHvvfce/vrrL61BICCFgaIoKta3JSKi0smg88NsbGzQvXt3LFq0CBs3bsSUKVNgaWkJURRx//59Q94VkdFlDwXNrfIOBSu9odxsJDPiJUSZ9hdiREUpLSZJ7XzkvSgjVUJEGvIbCpqYKLsFQ0OBlJTCqYsoP168UD/P9wVGtXbtWvz5559o0KABDh48iD59+kAQBNy7dw979uzBgAEDAAAzZsxAaGiokaslIqLCpFenoKqnT5/i8OHDii5B+QLp8l2JW7RoYai7IioWCtIpqLoDsUl6CiJCkuFRw7ZQ6iPSVWZsktqTQfxDhoJExUZ+Q0FAWlfw0iVAFIF794CGDQulNCKdZQ8Fg4ONUwcBADZt2gRLS0vs378fFSpUwJYtWwAA1atXR/Xq1dG9e3e0b98eY8aMQbt27bhbMRFRKaZXp+CuXbswduxY1KpVC5UrV8bIkSPx+++/49WrV6hXrx4mTpyIvXv3IiYmBsePHzdQyUTFQ0FCQbeqDjC1Ur6pC73AKcS6Or7pCZb0Oor/jnItRkOTxatPH055ylCQqNgoaCgoxynEuktLA3btUm6IQYbDTsFi5ebNm2jRogUqVKgAAIopwqpTiUeNGoUaNWrgxx9/NEqNRERUNPTqFOzTp4/itJeXFzp16oROnTqhY8eOcHd317s4ouIsI00GAdKLJxMBEMzyDgUFEwEWlVyQEvoMAPD0ehQAn0KssnSICk/FsRGbIWSkYef5u2jwYgwEE65xYwhJSYBZuvr0YTEqCunpuucPRFSIChIK1qypPM3wRXfz5gHffANUqiRNvba0NHZFpUf2NQVDQoCsLMA079dOZHgpKSmoqLLRi+Xr3/X4+Hg4Ojoqjjds2BCHDx8u8vqIiKjo6BUK9u7dG507d0anTp1QvXp1Q9VEVCJkpim7BE1NofMLW/vKylDw1R12ZOki5OxLCBlp0pnIV3gRloIKVWyMW1Qp8fJpOiyQrnbMQYxDWHAGatQ1N1JVRKSQkaE8rWsoqPqajNM0dXfqlPT/iAjp51avnnHrKU2ydwqmpwOPHwO+vsapp4wrX768YqknAIpmjpCQEDRu3FhxPDo6GqmpqUVeHxERFR29pg//9ddf+OSTTxgIlhDx8cC6dUBQkLErKR0yUpWhoIkJdA4FXWood3WNDY02dFmlUmRYgtr5xzfijFRJ6RP1OEnr8cfX+LtJVCyodgqa6xjUV60KyHcMZSiou/Bw5WlOITas7KEgwN9NI6pWrZraBiJNmzaFKIr45ZdfFMfu3LmD48ePo2rVqsYokYiIiohBdx+m4m3i4Cjs9v8HY1tewZUrxq6m5Ctop2DFui6K08lP2Cmoi9hH8WrnI27HGqeQUijmqfZQ8NkthoJUQH/+CWzbJm1yQforyPRhKyvAy0s6HRzMfwtdiKJ6KPjokfFqKY20hYKc2m40Xbp0wcOHD3H79ZqjXbp0gZeXFwIDA9G0aVP07dsXLVq0QEZGBoYMGWLkaomIqDAZZPfhO3fuYOnSpTh27BjCX7+g8vDwQIcOHTB+/HjUrl3bEHdDekhJAcz27kZjPAYyL2PZRCdsOFnF2GWVaKqhYH46BSu/qewUNEuMQXSUiHIuXB8vN/Hh6p2Cr4JjjVNIKRQXnqj1eNR9BtZFoUOHDgW+riAIOHr0qAGrMYCjR4F+/aTTMhnw/vvGrac0KEgoCEhTiB8/BmJjgagowNXV4KWVKvHxQHKy8jw7BQ2LoWCx8sEHHyAzMxMpKSkAAAsLC/zxxx/o3bs3Ll++jMuXLwMA3nnnHUyYMMGYpRIRUSHTOxTcsGEDRo8ejYyMDLUdq4KDgxEcHIz169dj9erVGDp0qL53RXq4eCIFFbOeKM6nnbqAEyeqoG1bIxZVwhW0U9DzDReYmQKZWYAZMnE/KA7N33YqnCKLkaQkwNa2YNdNfq7eKRgdGqt/QQQASHiuvVMw/iFDwaJw/PjxAl9XvltksbJ7t/L0kiUMBQ1Bn1BQHhoHBzMUzItqlyDATkFDk280YmsrvSAAGAoakbe3N6ZPn652rHnz5nj48CFOnjyJ6Oho1K5dGw0bNjROgUREVGT0CgUvX74Mf39/ZGVloWfPnhgxYoRi3YnQ0FAEBATgn3/+gb+/P+rWrYsmTZoYpGjKv+t/hyl2ygWAGriP77+IRZtzTiiO7ytLgqz0bJ2CJrrNxje1s4a9mxVinksLNz+6Gl3qQ8FPPwV+/hkYOhRYvz7/1099pd4pmPCUawoaSuJzZaegpQWQ9jp/SHnKULAoHDt2zNglGNa//ypPX7gAXL4MqCxaTwWgTygoFxwMtGhhuJpKo+yhIDsFDScrC4iMlE7XqQPcvQskJHBNwWLI2toaXbt2NXYZRERUhPQKBX/88UfIZDIEBARg2LBhapfVq1cP//vf/7BhwwYMHz4cCxcuxO+//65XsVRwT06FQXWvVgEiMi9cwv79ndC9u9HKKtFUOwUFUxOdQ0EIAmy8XBDzXHoD8uxmFIDSO5U7KgpYtUo6vWEDMHMmUCWf3256VAJUs+uUZ7EGqo5SIpWdgs4+jnh+XwpcZZFRyMwEzAyyyATlpG1patd++RK4dUv92KpVQECAceopLQwVClLuGAoWnshIaTkBAChfXjp9+bL0M05LAywtjVoeERFRWabX271Tp06hYcOGGoGgqo8++ggrVqzAyZMn9bkr0kNKCpB656EiFLS1AZKSgUa4gtnT2+Htt810zrNISTUU1HXqsJxjlXIID5LegLy6V7o3dHjwAPDAU7yB/3AT9XDtWuV8hYKyLBFifLxaKGieHIuYGMDZ2eDlljlpUcpOQec3vPH8/g0AgLUsCY/vp6JKHStjlUYljbap0Fu2AD/+CJQrp3kZ6YahoG7S04EdO6Tvu2nT/F8/IkL9/KtX0hqDNjbax5PuVNcTdHcH7O2lUFAmA0JDAa49bjRpaWm4dOkSwsPDkZqamuM4bjZCRFR66RUKRkZGon379nmOq1WrFm7cuKHPXZEeLh5LQrksaS0XUxOgTx9g02bABslIu3Ybf/7ZAP37G7nIEkiWUfBQ0L2WC26/Pp3wyLDTNEVRWle+uARmD0Oy8D62wg6JqIebuHl5Ivr00b0r4OXjVJjIMtWOWSEVobdT0fgtBlb6So9Jgvy316muByz33kZasvS7/fhqFKrU8TBecVSyqE6Frl8fuHEDSE2VWoQnTzZaWSVeQUPBKlWkDnaZrGyEgr/8AkyYIO28HBICeOTzsSt7pyAgrSvIwEp/qqFg+fKAubnyfHAwf8ZGsmzZMsyZMwdxcXkvycJQkIio9NIrFHRycsLjx4/zHPf48WM4Ojrqc1ekhxv/hClOu1W2RtV3qqL6+ZsIDgH8cBGbNjEULIiYyIKHgh71lV0zsshovTbhUJWRAXToAJw5A8yeLX2pio8HTp4Ezp/JQtL+k7B7ehc1BjXF4KWFt97ns1vRsIPUjWaNFDy9GAHAV+frPw9O0Hr86c1YNH6rgiFKLNOy4pWhoIOHPSzcnZEWJq399OxWNACGgsbw7Nkz7N69G/fu3UN8fLzaRl5ygiAgoDhNzZWHgqam0uKh8nWEV60CJk7UfYkFUlfQUNDCAqhcGXj4UApeRBFFvohwSIjUKdqkCeDvX7j3deKE9P/UVOl38cMP83d9hoKFR77JCCCFgqqb3nCzEaPYtGkTJk6cCEBq3qhduzYcHByMWxQRERmFXqFg06ZNceDAAfz777/o0KGD1jH//vsvzpw5g+5cuM5onpwKg/Xr0+Ua+QB+fnjzTSkU9MRTXL30DEBFxfiMDGDvHhEVKwlo1swYFRd/d+8CyxZnoffr844u+QsFvd90gQBABOCMGNy7I0OjJvq/YT58GLhwOh0V8QoL5lfEjBkmirzywQOgeXMgOTIJ/bEdPggDAIQs34/IKXXg6l04U6Si7kdB9acTe/Mp8hMKRobGaz0ecScOAENBfWRlAWKicvqwk6cdrDxckPA6FIy6z81GjGH58uX4/PPPkZGRoTgmDwXlOw6Loli8QsGICODePem0n5+0uUinTsCRI9KDz+HDABevLxh5KCgI+f4ACtWrS6FgQoIUzJQvb7i68ppau3cvMGgQEBcHrFkDtGunPqXZ0FS7IS9cMEwoyHUFDSN7p+DrTQkBMBQ0kiVLlkAQBKxfv55dgEREZZxeKcS4ceMgk8nQq1cvTJ06Fbdu3UJycjKSk5Nx8+ZNfPbZZ+jVq5diLBW9lBQg7e5DxfkqHXwBLy+41lOGKRWeXUGUynv/ldOe4HifpVjTPBBn/815fZGyKjYWeOcdIDlR6hQ0MwU6dMrfGzXLiuUUS2yZIgsPrhhmN90Th9MxBqvgj7XokrobISHKy379FbCIDMfHWK0IBAFAELNw49Azg9y/NnGh6sGSyfNwxMbqfv3oR9o7BaMe5ONGSKvol5mwFJV/4y7etnDwdVGcTwhjKFjUjh49igkTJsDKygrTpk1Di9c7xq5evRpTpkyBj48PAGDixIkIDAw0YqXZqK4nKF9WZMwY5bE1a9THiyLwxRdA797qgQFpkoeCFhb57/SrUUN52pBTiNetAxwcgL59pX9LVTIZ8M03QK9eUiAod/as4e4/u+xTpC9ezP9t5NQpSPrLHgqqhsMMBY3izp07aN68OQNBIiLSLxTs2rUrpk+fjpSUFCxcuBANGjSAvb097O3t8cYbb2Dx4sVISUnBjBkz0KVLF0PVTPkQ9G8CnLKkrh9TE6BuDx9AEODa8Q1YvF7SpRIi8N9/yutEbD0JJ8TCC49xenFQ0RddjGVlAQMHSq9hTSGFgv/7H+Dlk8/uDWtr2JdXdlg8uWaY8OXBoQdwQiwAoD5u4MZV5Vp8989H4yNsgAPiUd4dKKey5mDo6WwLrBtQcrj6RioeCMf1/zSnQuYk7on2TsGYsFh9yiIAkY+UOw8LAMp52cK1pjIUTAnP+/dSy6xW0sPSpUshCAIOHjyIefPmofrrN8/+/v748ccfcfv2bQwdOhSBgYFo3bq1katVobqeoDwU7NULkC8dEpTtuSQoCFiwANi9G/juu6KpsaRSDQXzq7A2G1m8WHpC/Osv4OlT9csmTABmzdJ8cLh0yXD3n114uDRtWO7aNWlXW11lZiqDKycn5XF2ChpG9o1GnJwANzfpfFlY77IYsrKyUnzIREREZZve8xW/+eYb7N+/H+3bt4elpSVEUYQoirCwsECHDh2wb98+fP3114aolQpAdT1B18q2sPaWXoSZVKqgmEXkikhcuyq9eI+LA7IilC/eXpwPLdCb/pePU7H+k4s4Gli8P2UXRWn9venv3MRsp6VY1HY3ZFk5f8Pz5wP790unTZGFt1oCDRog/1O6ANhVVoYvL+7ovwNxbCyQfEf58zaBDKHnVF6IX7kCc0jTEdu2E+DbVLmmz4urhRMKZmQAspfqwZI9EnD7gvbuP20SninHuqhsYJocHqtveWVe9BNlKGhhYwozOytUqKv8vZS9ikJWZs5/D4f+iMEwl78xvtkFtWXPqOAuXryIRo0aoVkOazdYWlri559/hpWVFebOnVvE1eVCHgqamwMtW0qnzcyAOnWk00+eACpT1XHtmvL0oUMFv9/gYGlDk5IgKUnacOXLL6XONl0Vt1AwKgq4fVt5/vJl5en4eGDlSum0IADTpysvK8xQMPv3lp4OtU878/LihfLfRPVvj6GgYWTvFASUXawREeqPDdr8/bc03SE/fzeUqyZNmiCYgSwREaGAoWBISAgWLFiAMWPGYNKkSXj+/Dn++ecfJCQk4Pnz53j+/DkSExNx+PBhvP3224aumfLh6ekwxWmXxj7KqUeurqjwegaxJdJw95L0guzSmTTYQ9mZZRP5GA/uKte10tWvA/bh0S/7cHLEr7h6oHhODfvtN6BePeCdVpEQ/t4FIS4G8Sev4sI27UFmUhLw00+ACyLRBEEYVv8yOnZ8fWEBQkGX6sqEK/aB/p2CJ08CnqL6xj/ysO/VK8AySjk1yqlnK9j3aqc4nxwcXigdX0+eAE6iZuAZfuGpltHapbxQhoJuNZTtjVkxcUhO1q++si42XBkKmtrbAoIA7zeVoaBZVhqe3kvSdlUAwLHP98En5grKXdyPvSvDCrPUMiMmJgZVVdbbMn+9S2dKSorimKWlJVq3bo2jR48WeX1aPXkirRsISAuXqq4zp7pJg3zNQUA9VLp7V7PbTBd37kihY4MGyk0mirPJk6UOu/nzgT//zH2sKEot6Rs2SA/gQPEJBc+cUT9/5Yry9OXLyg5Bf3/g22+VNVy7Jn1SVBi0fW/5mUKsOnW4ShWg4ut1ljl92DDkG42YmkKxdoquU9svXJDWbPnoI2D79kIrsaz58ssvcfnyZeyXf9JNRERlVr5DwSVLlqBOnTr48ssvsXr1aixbtgzDhw9HzZo1cefOHbi7u8Pd3R2mBQhJyLCyrydYtZPK5g52dnDztFScfXpNmmJ883ik2m2YIivHkCwnGWkyJF66CwAQIMO5dbd0vu6NG1JYl9eHxvq6elVag/z2bRH/w98wg3KabcgJLesKQaqrZux5jMUKvGO6F6O7PlRupvn6jXt+qHZkpYRH6/1e6eSRdFTAc7Vj8fektQKvXZGhEqSA0NICqNDcB3U7V1KMM0uJR8g1w//Qw+6nwwGa03+jb2j/GWuTHqm8foWmXpCvqOWEWISG6luhJCsLmDcPmDZN+f67LIiPUP6bmzraAQDKedvBzFoZPtw9+VLjegCQECeD6ZMwxfnHJ8O0jqP8KVeuHJKSlEGss7MUhD9+rB74Z2VlISqqmKz5qG3qsFytWsrTd+5oPw0ABQk4d+6Upn0CwObN+b9+UTp2TH1dxdzW14uLA958E6hZExg2TLkuX0G2qPfxkTo2AcOFgqdPq59X7RRUDeJer4ep2IU6NRW4pfvrgXzRti5dQUNBDw9p12YAePZMfVoyFYy8U9DdXbkLuWooePNmztdV7ST+91/D11ZGVa1aFTNmzMC7776LqVOn4uTJkwgLC8Pjx4+1fhERUemVr1Dw9OnTmDJlCjIzM2FjY4M333wTVatWhSAIePr0Kfr27QsZW/uLjaCj8XDIkrq0TE2AOt19lBcKAtxqK6ePxgRHIi0NeHBeMxEJOZS/5OX28ZcQMpVzCcNP63b90FCgXdMkTPvwCT75WPffo/iXqfh9wnkcXxeS9+DXduyQ/t8UQfDGY1gp81G8/E9zKq0oAquWpKMtpG6U+vVV3p+ZmEhv4PLJu6GyU9BJFqVotCmoO4efwgTqPzeTl88QFwfcOxMJS0jrK1WoAJh4VoJbDWdYO1kpxt46bPgpxBE3lV2CpiqPNukPwxXv5fOSGaPsFHSq7wUHB+m0DZIRetcwc1YXLQJmzAB++EGaOabaxFTSpacDOWVHiS9Upg87S7/QgokA+xrK3cjvH9Me4N44+hJmUCbZL28Uz47gksbb2xtPnjxRnK9Xrx5EUcSePXsUxxITE3Hq1Cl4enoao0RNuoaCd+8qT2cPBQ8fzv/9njunfv38tDsn6L6EgUJoaMGmKiclASNHqh9TDdKy++UXzamvFhZSp2F+mZkBvq8/EAwJMcwioKdOqZ9X7Q68cEF5XD4NVx4KAoU3hVjfTsEIlee/SpWkMFVO5e+RCkAUlZ2CqrtfN26sPJ19zVFVqpepLjtAevHx8cG3336L9PR0LFy4EO3bt0fVqlXh6+ur8VWlShVjl0tERIUoX6HgihUrIIoihg4diufPn+PSpUu4f/8+rly5gqpVqyIkJAQHDhworFopn27tDVOcLudjD2tPF7XLKzVwVXZdZUXi9m3g2XXNUDD2SqjOAQ4A3Dui/gLa7EU4Qm7m/Un7rs2JGJm2AiMQgJg/Dun8nm3tu/twb9kBHPffjPUzdQsg9+wBHBGLTjiCtm2A7t2VlyXe19yJ9/hxwOzOdVhDmsLn19JMekHbuzcwfjzQsKFuxaqw9XaBg7102gmxuHMzK9+3IRcVBSTf1ezodMdL3LyWifCLymDH3tcFsLYGBAF2NZTdgo/OGT4UfHVPGQr6qjSqumVG4P7dvIPf+JgsmKUrg6tyDTwVM48A4OnNWL1rzMoC1q5IQx/8iSH4Fe4Pz6Nji2QcOaL3TRtd6AMR77qewrAK+/HLAs2OzeSXyk5BK1c7xelKTT0UpyOCtIeC2TtqU8Oec11BA2jbti1u3bqFF687a3r06AFbW1t89dVX+Pzzz7F8+XK0a9cO0dHR6Nq1q5GrfU2+87ClpTR9WJXq9GF5KJiQoBm0HDmSv8BKFIHz55XnHz2Czp+sfPONtHPuiBG6319wsDRNuWFDYNcu3a8HSJtuZG9rvnpV+/poGRnAihXSaUEA5s6Vfr7R0cAnn+TvfuXk03eTkqTON30kJ2sGmi9eKEM1eRBnby91OgJFGwpaWQFNm0qn790DYmJ0u372TkHVUNCQ6woeOgR8+imwdWvp6kAMDgaWL9e+k3hMjHLauLu78rj83wlQD5NViaJ6uHvjhvSkTXrz9vaGt7c3KleurDid05eXl5exyyUiokKUr1Dw3Llz8PT0xOrVq2GrMo2lQYMGWLp0KURRxHnVF+lkVGrrCTbyUa4n+JqlpxtcXueEbniFnTsB8zjNUNAx9TmunFIGM3m98Q8/r/5mT4CIM7+FaR+s4tGeG4rQrUHWFfx7OO8XfuGPMhFzTtlxcubbY/jrz9zfWD56BFy/LqIn9sAC6ahdG6joqZzuLkZHIzpC/cX6sqUimkF60VrZG6jYtYG0s2bDhuo7FeZHuXKKzfdMIEPYtdiC3Q6k5bS8IU3vsLIEKrz+MN4UWQg5+xKxt5RveMrVUwY+FRopQ8FXWjok9RUXqmxRs6nuAafXG5FaIB13T0fmcC2lZ8GJEKD89yxfyxk25e0V51/ej9W7xkOHgOqPj6A+bsAXD/E2DmBk/EKs67INmxbnXaOhBQUBDx/mPU4Xv0+/iaYJR9Eo8wLufhGIjcti1S5PjVL+Xdu4KR/Ta3VU/o5kPnqKuFjNv6lnl9V/X+yzYnDzUil6k2sk/fv3R7t27XDtdUdMuXLlsGjRImRmZmLRokWYOHEirly5gsqVKxePTbzCwpShScuWUiijysdHuRaevDtQtWNQ7sWL/E0tDQkBIrP9feqS5GdmSq3BALB+ve7rBfz+uxSqyWTSRiG6BhMXLgBLlkinLS2BRo2k04mJ2qe87typXF+xZ09g5kygbduCTR2WM+S6ghcval8X8MoVKViTh2tNmyqnib75pvL1R2GEgllZykC4WjX1YFrX+8tp+jBguFDw6VPpdcOqVcAHH0jrFo4dK/0ul2SiCPToIX1A2rSpZjivbZMRQHrtJA+Oc9ot+ulT9eunpHC3YgMJCwvDw4cPdf4iIqLSK1+h4IsXL9CkSRNYaFnsulWrVgCAly+1rz9FRSstDUi9G6Y4X6WDj+Yglc1GXBGJgADp/wDgYA94KPMiXPnzIUQRWOAfjE+s1uPzVudyfE8Uf1tzwfj7B3Lv4EtLAxKvKV8YWyAdF//Me8rO3ysfw0xUvkHxxBN8NTAs1+Wa9u4FvPAE1RACRwfpNWq5gW9DUFkX8PZRZTdFWBhw8+9QuEF689isGdR3JywoS0vYV1J2Z4Vc1H0H4uPHpSbFVauk1+PHj2bBE9LP3ccHKF9R+acdejoC4lPlGx7PZsrAp0pr5emMRxFITdEMf+bPl96PmppK7+0t3R+h7lthCA3Nu6sn8bH0PWWZZiG2hgksfBwUlz09n/fGAi8fKNtFLWzMYelgCTtPJ8WxyAdxed5GXJz0PiInv65IwJu4CgAo5yxNczZFFmqJt3FzcgBWfReb530YyrRpgJ8fULeu/rOkMjPV/+6cEIurEzZg5/pYxbG0GGUoaOuuEgp28oTF6z8HWzERF49odhnG39HsILx9jFOI9dW0aVMcPnxYrQvQ398fQUFBmDp1KkaOHIlFixbh6tWrKKfaNmssqht8tG2rebmZmTKUCg6WfjFV5+erdmTJQ73kZODrr6UHuJxoe5DXJRQ8f17aqh2QHjx1nbZ88KDy9N27eW8UIjd9urIj8OuvgXffVV6mukGH3NKlytMTJ+p2H3kxZCioup5gjx7K05cvq3d0+fkpT9vbKztGr1/XHv7o49EjZVBZvbr6fes6hTi3TkFDbTby00/qn6rGxko7NTdqpDmdviR59Ej5e/XkCdCunXowqPq+QDUUBJSvpXLaLVrbtGJOISYiAwkPR75mwwHSw1VBViAhKs7yFQqmp6fDKYeuKIfXC32lc/5YsXDlWBzsM6VAxkQA6vbw0RykEgo6IB6xEUlwhjTVxtMTqFBPuebgo2OhCJgbjoR1W+ElPoLtmYM4ue25xk2+CE2CGK0ZbiVeD831AfT8yXRUyghTO/bwSEius8lEEbi4RXO6WPP0E/jf/4B9+7TPzvrnH6AKQhBcLRghnS4h1N0Mps2awLJyBcWYsHPKUHDVKsBPlDpgHeyBmm/7ar6wLaBKdZVv6q8fi9JofNEmPR3o3x/YvVuahTR0KHD90HOYv17fzcdXgEX9morxwf8+gTuksMbUBPB5SxkE1upQCSavGzisZYm4fkb9H2nlSmDJl8/RIfkf1JTdRobrZaTXXY/bFhvgP/O62tjEmAxs++oaLvylfHOV/iwKIkT898Z/OFfpHC43vwtRkP5RddlsJDJUGUaZOdsDggAnXyfFsfjHsTleNzUV+OrzDHRxvYx2brdw5bLmL9OTJ0Ds/nOKjWY69rDEh6OsYWP9+meCFFybvg3fzc3nK4YC2LtXWtMQ1lFIyUjBTz/pd3snTwLWcepTBR0RizMj1+PwNunvPCtWOX3YQSWgNndxgJuv8vzNg+r/Vq8iMmAarfkBUNh5zccEQJpZOGiQ1BTDF1IF06hRI3z//fdYvXo1Jk6cCEdHR2OXJJFPHQakMEAbeSCUkSG1waoGIJ9+qjwtn0I8YgQwZ450WU6hnep6gnL//pt3B1/2nTZVNzHISUyM+lRlQNpVN681lJOTpT9EQAqZpkxRX0ct+zTcoCBl2Fmvnub6jAVlyFBQdT3BCROUp3MLBQHlFOKMjJzXZdy1S/33KSfPnqlPP1f9nmrUUL/vnKalZief/mxjAzg65r9T8MULaUp4Tl6+VG40Y20tPSBav36iSUgA+vYt/B3WCkv23+OnT6UPCOQdkDl1CgJ5/1sxFCTKU2IiMG6c9BrSEMvGlhVTp0rvd/v10/06kZHSBvVubro/vZRl+Q1cyXjyvfswlQw39yo/2Xb2toetl5aOEmdntY6yGrivmKrp4SnAo7dyvZeMOyG49fUOmEL5huvGds0pYNf3Kbu/LKxNFd1GzrJIHNuVc1fX1Z1harcNAPYvH+T64fm5c4BVuLK78O2uUgDqgzDYRD1Gjx7SGvdLlypfaycmSu8bXZ0uIdwzHCYeifjbIQIiAOc6ys0VXlyTwpSUFOCvNZGoDulNR9OmgOlb2dbM0kPDji6wfj3bziEzSqcNNP/9V33W3KZNQHqI8t/bs0kFuPv5KM77pt5WbEDi4m4KC29l+Gld3gGOlZQdYneOKqeE7twJjBsr4j1sQ2NcxjsWm2FfVdkdc+zOFbVpris778Tt73dhX78A3DjyAvHxgGVSFBIcEhDvEA87N2tkeYmIc5B+D1JC8g4FY5+odAq6Sh88uFd3UhxLexmrdSbb2bNAzzqhSPppFbpl/oNuSduxdNAFjbxg4y/JaCRK08vs7YCaw9+C7/IpGLC2E+xfZ2KVEIFzs/fjq68K78XW8+fSJqOodAlothxosQh/7otSbDpaENt/z4Q7pODOzVXadRoA7GRxOPzRb4iPyUJWvLJT0MlDZXqiIMD1DWV4/Ois+r/VjcPPNTa1AYCXNzRDwYwM4J3/iTi75SH+XPkM77/PJaFKFXmnoKVlzh3U2XcgVu0U7NcPik+njh8Hfv5ZWm9N7q+/tN+mPBQ0MQHefls6HROjvftOlbZQMK8/7KNHNQPAGzeAv//O/Xpnzyo72Dp3lrom5dOHAc0wRbVLcMIEjSU/Ckw1FNQ2ZVlXmZnK0LJiRaBTJ+XyGVeuqIeC2X8X8lpXcNs2qYuyQ4fcOz7/+08KmatWVf4OqIaC1atLX/K6Ll7U7YFb3ino4SH93FVDwdw6BdPTpTUqvb2lf9vvv9c+bulSZcv6qFHSbtnh4dKuZYD0dzFyZMl8R6/6eyzfCSw8HOjYUQo8cwsFVX9PdA0FtXUUyhli3UyiEmbFCulr2rSC7dlVFp07B/z4o3R6927dV3H4/Xfp4S0tTWqcoJxNmCB9zrZwobErIV3kOxQMCQnBxo0btX7pcjkVjSenwhSnnd/00f7mwtQU7rWUYWFtKBO4CrWdUa9PDUWoZyfGw1FUX7D7+cn7Gq9fH55UfnpvUbMKKtZQrv92eUfOa5I8PabZvVARz3BkV86fnG9ZnYDyrzvgPD2A5p3t0bOndJl8l+DgYGkGVtOmUpB25AggS8+AtdNdmJgAzk5AnL0Fnic+h0cTZSiYeF8Kx3bvBmrESW90zEyBNzs4q7/B0pOFhxsaNJBO18JdBK7NyvM9wc6dmsfk6wnaWAOVWlRGlVbKud/mKjvE2viWl96YygkCHGsrxz65IH3fp09LSx654hXKIRp2tkCVEaEY3uUeHF43KIkOT7BomfQm5/TmMKRclt7oC6IMp5dfRdi9NNgiCZEuUoJp524DJ297RLtInaSW8S/xMlxLoqciPkIZClq7S79LFWoqO6QcZLHYskV6z751K/DZFBG9WkZhwVu70erhRkXnKwB43juKTctjFeczM4Frqy/AAlJ38xt+ljBr4QeYmaHywLcw6MeGijUQG+My9n9/FRs25FpugchkUrfnq1ci4P26C8c0A6nlLmHbtpyvl5Qk7T2gTWYmcGrHC0Vw59fCBD1+bAez10tn2qRE4q/v7sI0PVlxnXLedmq3oTq1PPHeUyQrhyL0lDIktLVRHs94/BxJypwRAPD9dyLKX96LofgVH2M1Xuy7hKlTc/6+SPLgwQNMnToVrVq1Qs2aNTFV5Yd24cIFrFmzBnH6pMaG8OiRcgHMFi001xOUy74DsfzTHhsbKUzp1Ek6n5QktZOq2rNHMyiJjwdu3pRON2ggraUgl1ug9Py5ZjfXs2d57yisOnV43Djl6blzcw9xtO3KXL68FDwB6puNRERA8Qfv4iJ1khmKtzdg9/rv+8iRgrfrXr+u/IStVSvpdYU85IyIAM6ckU57eEg7+KpSDQW1BT3yIFgUpXUUtf1cRVHqtoyLk8LWZcuk49lDQUFQdqC9eJH37sGJidLvFKCs28YGikV/c+oUPHdO+v5nzVJOC549W3NtzNhY5eYx5ubAZ59Jp52dpWno8iDtjz+kzTpKGtUg/tgxZdD5+LEUfqqGgqobjQDS36+lpXQ6+1RvmUz5u1KxIhS7jOXUKRgSIgXGnp4l8+dYyExNTWFmZob7rz8YMDU11fnLTPV1IxU7qqt47N5tvDpKiqws7S81dKH6892/P+8JA2VVRIT0MJyRAcybx47BkiDfoeCZM2cwbNgwrV+CIOR4+fDhwwujftIiIwNIuROmOK91PcHXHKq4Kt7UV4U0FddEADzfdINFeWe4VHNWG2+iki1aREXg/mX1NxdR15Qvvt0be8GrbRXF+ScnQrU+eCbEi5DdV35Eo7qW4Y3d2tciTEoCru5QTh2u19wO6NEDjRoBQwYDnX0foA1OoDruwwkxuHtXRO/ewI4d0nqCSQ6xcHYGTMxMAAcHBEcHo3pb5R2LUVGIeZ6GrRtS0RDXAEjrYdt1bKZcPN0Q6tbFm42lH6o9EpBx+36uSyBlZUkzrFrgLKbiB4xz3QJXvFKEgpUrAyY+3nCpUx62dppBsHN9T41jFZsov++oGxFYvlzajTktTfqdsDAH2g2OQ7j7czhlRaHVG6//zQUZAneHIDZGxLGv1D+afHHsNp5ckzYZiXKNgqWVAFNbKzhWskOsuxTUmUCGe8dz/0Q/+Zly+rBdRSkUtPVwgt3rpjZHxOGjj0RM7HQDf36wHVi0EI3PLUdDKN/4O75+v2WODJybuQ/RUdKbzX0701A1St6ZIAIfOuN85DVkyjIBQUCFET0wZGoFuLx+H9IDezF33CuDLS8lFzjnMUwP7UNzh21wswpGebtEqR6X+1i/Xvt1jh6WoZvLRbzncgTdyl+Bf5dH+OnrJEUH6b//Alax0s/WRABqtXJDg/HtUKGtclr5ndUn1TZxcfFW38igVidPRYhYPisC588q/3hfXFV2lFZpUR6mr/8kXMRXuHpJ2QZ4+TJweu6/aAJlZ1AP7MU/i+4jIEDnH1GZ8+uvv6JevXr46aefcPbsWYSEhCBSpT04OTkZn3zyCXZq+4SgKKm+E8lp6jCgvgPxtWvKnXhr15YeT+WhIKAMg+RrvD59KoVRqi5eVL4Sb9FC/fq5hYIHDihPV1B2TKuFftmJovJyS0tpkVV5EHb1qvSqNyRE+yte1VBQ9ecjn0IcH69ce+3nn5VdhR9/rJxaagimpsDAgdLpxETo1JIOSJuw9O4ttTGHhamvJ9i6tfR/1enQ8rUCs08dBoA33pDqADQ7BTMzpQctufPntbe7HDokfQIk988/0hRt1e5H+Yd2eXWgqcq+nqCcfF3B8HAp9IuJkaYAf/ihFLS2bKkZAGZkSJ2Aqi92Vq5Uho5Dh0qhlWq9qp82TZmi+zqI+ZGZKbW4/PabFOJl//QmJ2FhUmB76pQU7mUPa0VR2Sno6iptKrNpk/Lyn3/OvVPQwkK6DiCFu6qfdAUHK39ufn7Sxm6AFO5n3+U4IkLqxn3yRPrZT5ggveAjBVEUIVP5vRRFUecvGZOPYksmU3+I27u3ZDYcF6W1azUnFfzzT97Xi41Vf9kTGVk4e2fpKzVVCjmN2TS9fbvy9zAmRvuKL1S85CvdyGvLem5nXzz8dyoetunSCysB+D979x3fVPm2Afw66d6LFjqAFmgpZZTVsveUJYIsAUGWioAKuEFQ0deFIIL+XICCCwRxoQIiIEuGDNkt0EIps6UDupvz/vFwcpIm6YC2aZPr64ePbXKSPjkZT8597vu50XRgqNltJX91XUGlfLdmTcApWKwnWKt9PYPtu4ypDVd/NaPon6/UYF5ediFyzqvBggZdQxD9gHp73/RzOHjAeKba80sKPLUiUORgD7R9UP3CnHbwrMmkhvXrgcCseN1tmg6uL6J2NWuiXj3g4YeB76f+hTebfo0n8T5G4Dvs2iXjq6+AUJxDhmcGavhBnKHXaHAm5QwatPOHxkE9G7pjzRWkbj6oyyRr0lLvy2t58fJCrc4NdYHQWOzDZ5+Jn7VakXihv173nj1A3rWb6IktcEU2Fow9gy/bfAhXiDSu1q0hDlYcHeESUgNF6TcZUYR31ssqvJGMGTNk3T4P15zDsBEyDtZUMzGivRJ0x+tZzmfwVO8TKLxYpBQ4MwP/Lj+MbJds3Ha7DY2rMyBJkOw0yA4CcpxEl9ptz/2Gq+fMH5zkXFeffK/ad6J73t6616w7bmEsVmEo1qExjsMdamaptxcwcnoARr7fThfcCrx1Bh9OO4Hvvy3A91O3whliHHZtb2Bn8AX8Hv87diTeWQPMwQG+jw3HQxOd4egA2KMAnW9vxMQJcpnODMqyOA6/csX4jOKFk7dx4Y3ViMU+1Av4CR18TmBUgwOIwX64uF7EnsMpRo1a09KAZaN2onvuRnTETrS59hOCN69A5vx38XjUdpw9KxJOgiDei2FhgEeEyIJt/6S6JIBLpnpQZWcvwd3fMAjhFBakOz52QD4O/n5dfTxn1Ofbr1dL1KwlAtD2KMCx7SIYnJMDLHxwD9prRfajuxtQw090Ix+GtXj10UsGX65MWbtWJEzpxyKs3d69ezFp0iQ4Ojri7bffxj///AO5yDf8Ll26wMvLCz+X5ltsRSrNeoKA2mEUMDy1rgQLe/Qw3L55c8MyzF9/Nbxe/9tlu3ailDQsTPy+cycM0lr16ZcOv/66+nNx6wqeOqVmmnXuLDLI5sxRr3/ySRHYcXUVpdBKxtitW2qWU2SkyHRSFF1XMCtLBE8Akck9dar58dytxx9Xf1Y6VJXkxRdFWsTKleK5UrooAyJTEDAsh1aYCgq6uooOSoAIpOk/RwcOwGithPnzDcdYWAijFOPbt8VzqmQKururwV79MbzxhmGzi6LMBQWVEmJZBj7+WOyDRx8VgTX97MOWLcVrUglI7t4tjjoBEaxS9ptGAzz3nPHff+AB9bEVFIjnqrzXWHj5ZREYHjNGvP7c3UUJhZJxa0p6ugiujholXvu1aomy7Pnz1W0uXlTXM2nVSmRpRkeL9yUgsnA3blS3N7Ues34AVz+LVP/nmBhxvwr9EuLUVKBPH8OMTlkWj9WWJo8SaLVaaLVaREREGPxe2n9UNcXFiaCLIjHR+FwFqVJSRP8vhbI8844dxtNQUb/9Znz+T//jraqYNUs0uu/QwbC3VWX67jvD30ubiUmWU6agYFnb17OdvWX893OC7mevEA941C2mQ6W/v0HCBHDnJPadspnOk8LheacCOLazC7p88CD826vls+f/UM/Qn/jrKqSCO5kOkoRm9wXDv009BN05FnLHLXz7wXWjY5GTP6uBRd9wPzQcE6MrW65beBZb/zS8gSwDKz7Xoh5EtkmjRoBbdAPxZVRvYXZ/f/Fdu0ljUZrbAOLvBLoeQ4F9AXz9oFt36FLGJeTI2XCqo35hXf1mElprxek3VxcgfERLtcylPMXE6I6rwnAem7++jiNHxNJKPTtmo1lUgW5t9x9+ADpgFzTQIiRExDTv6ytj6uPAtCeA+jG+ujIxj4ZBRn8qvKtxUDC0fRCc7zwsV2TBC2JW9HAtxOxhCUivfxmX9YJtsRkOaNNYBOskv9PwOGj6gDp377+60mF7DzXg5NMwAKm+d7oSX7qMj9uuwIX/TM/EBalqpqBPnTsvRC8v9OoF1K8nugW38DwHdzcRBGwUCfToDox8zAdT1/VA5KJHETiuNxr3q6O7n4xvf8XeUYtR74Z6ajXnPgeRsQDg38v/Qivf+QLs6wu/sf3Ru7f4NQzncXnrCXz0kUjmeGXYMbwUtALLxuxBQb76Os2+rcXSIVvxtNdydHPYCV+PPAQGimOalBT18a1++iA0hXmQJRnpQdcRGQl4egF+Llloiv/g6HfUqGR59kwtwlKMy+8kyIi8vgO9OuWIoDnEKcLGjaEriYsaWB+eJj4PNO5ukOyKTAfOzvCPUgPL8dvFeqEXzuTA6Zb6IBr2DYNPPTWj+Pwesa7g0ilHEJEgMqy0Gi1CxmcgenwKXJxFkHF44dcYPyjV7JfX774Dhg8Hvv4a6N27+GWkrMnbb78NWZbx66+/Yvbs2YiJiTHaRqPRoHnz5jihvzafJShBweLWEwRE+/I6d96DSudfQA0KhoSoJ1zc3UUZ7dCh6nZFv03qBwXbtxf/V7IF8/LUMlZ9BQVq8M/bW5w5UoI+f/9tPpCon0WodIS+/34RpNCXny9KQb/5Rvy+c6d69FC0YUjRdQVXrVI/GEaMMAxMlZfmzdV9dexYycGSpCTgiy/U33Ny1FJxDw/o1r3QD3AqTAUFAbWEuLDQ8A2tnxWoZBPu2WOY9bl6tZox6udneLkSDFJKhwGxz5VS4MOHRWajuTTvZPVkpslMQQCYMcMwO83FRQSzly0TaTpt2wL/+596/XPPieBuvXpq0GzkSKBBA9NjeP11Nej1779qUBEQ2XJvvy0+DIt+gTpzRtTBff65+aO/W7dML3514IAoC7hiukEUvv7aOJiakSG6aCv7XD/dRv+1oB+E1t+/Skm2PnPNRooGBZVMQUAtIb59GxgwQA1uhoaK9xAgMlfvvx84fdr4bxJZiaI9sADj82ikeuklNSF59GiRvA2I6bq4ogHA9DLCVS0omJWlTt3nz5f8mCpCYqJxZqA1BQWzssR7zNIr+JQ3NhopI61Wi0WLFiEyMhLOzs6oXbs2Zs2ahdulLcWoBPrrCSLWHbsu7kZmrpk1hO50IE7zSsOphqdwMvIkzjY6gz9yj+Ng8kE4tayNad92xLRF9dHvm7GAlxeiBkfobp5/6izSbogDn9Nb1DPnDkEBcPdzAjw8ENxCXUPmxOqDGD6kwCD779ouNQstoH0DOEbW0yV9uOMWdq1Xv4inporve6e3X9ZlxzVvIYkv3oDIyBg+XBx01a0LycUZgwcDtUOAttgLB+TBzfM0PNzvNF7wEcEMGTLiUuPgHaUG0kIv74YnRFCqSVMJ9h3Lr8GIgXr1ENXZD0qSYqOsA2jeXIa8fTuewTt4LO99zH74GrKygE3rMnXlzI0aQbc+YECAqNzRHXgDCIgONPgzrr7O8AzzQ1EaLw/UCFPXfgxBktjHWy6iaWQetiNBHGi5uKARaqAP6qNNzUTYIx8h9nGw81IOtCQE9FEPdu1RgJQa4kDXydsVGkl83DTqGQJtD0/ddtrrN7Ci03K89OgNzJkr47WFKTh7vgB5uTJkvRdKjXpKHbADatZ3x9ix4jjt6afFEk1PvR+GEWsfRKcfZiLyoyfh2KOTOMCUJPRZMgDunuJg0xVZuoxCCUBUbw3s26hBy1t5t5CQlqDuoCZN0GpoKOrfeYn1wR94eloeprXZB/n77+FwORHXv/oDL3Xfg+xsID1Nxry2f+DGDzvglXEBXQu34CksRnvswuljeZgyRRzXHTtSiNQ/xEFPulc6ajSxh5OXCySIhAwXZCPG7yus/qJQF1vYtAnYsSIeHhD7pU0bCQMn1UKLVmLf2qEQbpfjkJkmmoxopDvLuSlZSpKERmP11vZSnisvN6PLAKB2WzVrN+XIJeTlAcc3qwd4Th6OCGxaA/5N1TML145ewQ9fpCNtlchikyUZN+8/i1MDHPFnWxnNxl6FnQZww20MyPgKD/S+bbTk1/79wPjx6u/Z2cCQIYZnw63Vrl27EBsbi45KJpYZtWrVwmVL1oZcuKAGidq2Nb+eoEJ/XUFFVJT68+rV4s28bZsI7oSGig68gDjquS4yVaHVqkdB/v7qZ79+CfHatcaZVnv3qgHJ3r3FZ6cS7c/Nhdm0Vf1v1EpDE41GBLK+/FJk091/v7rNokXiDW5qPUGFfvDkwAFxG8XMmabHUR70Oz1/+KH4/6VLIqWgVSvDtdree08tZ27Z0nAt2vbt1eBd/frqmniAmCtaG3/GADAMpOqXyOoH//QzRJVswexssc6g4ttv70x4EJmMynOtv96vm5soNVZKdc+cEdmNprqXlVQ+rK9/f5EJmJYmxj11qrpvundXP7jS00X2p1JSXaOGYYZdUfb26rqDgDhyTUkRH3q9eokg4+jRoqmJIjFRdPldtkw0KYmIEMHEosHBVavUMtxOncQYlcd28aIoEc/JMR6TUrYAABMmGFZKKA2A9JuM6Ae7hw0zDN4C4ndTa9OZK/XWf420bm06KPjSS+rRZ0CAeF+uWiX2GSC+NPbty+YjVuLAAcM+VeZs3Sri6B98ACxfLs7X6DfosyamgoLWFIApTxcuqE3g3d3Fa2TgQPX64vZbXp4aAPT2Vr++7N9vvJqBvsou5d640XB1iK+/rty/D8DkeugnTqgrx1RnaWniPNaAAWKasyYMCpbR008/jZkzZyIqKgoffPABhg0bhiVLlmDgwIFVIr2+sBC4dSwBAHAp6BKOtv4Xm89txprjZjoW+PnBu2YBjjU5hiuBV3C11lUk1UrGnsyT+PnMz3h3z0J8X/sakkdF44a3I7SyFi0frAd7J3FAYC/nYedXIiiUvE/tPOzTTC0XbzEmCGfaHMG+mH2I9NqEuhsWY2rTv7FrYzqSE/MhXVTP3kcODBeBxJYiY08raXHylzNYuFB8v27aVBzvKesfBvgDoe0CxQGAIioKGDRIrIM0dCjs7cUJ+tbeZ9EaB3DLMx01/CEO7DzUYFhcSpxBsxE3qJ+q4YOj1G6G5aBQq3fAKklw6dgaTZoAGZ4Z8Kq3Fn3dV6Ab/oIGWnggE20SvsWYB3NQK3Ev7CEiRA1buIouKh06iAO0Itk6ddsZZgq61Asy282y65hgyPVT4NEwE2ue/xfffgsEZp/DNdxGJvLEQV9YGHqjPlzggMY5+Rjktwv1cB4pfiLw59etGYZ80A0i1AbkO+Qj3UucRnH2dUFssMgGkDQSwib7IGSUGmSV09OR/8ln+HjdJ3j5lw/QcOxSLPskWVe6DQC1wtXnSndACAAODjjUoT62dgpBTmQDwwPUO1xDA9D6qQ4Gl4XV02Dc+y0R9F4MpCIZoEev6q1hJkmQ+t2HQYM1cHYCPJGBh/El+sHw9KDLzk14rOMxTI/ZC9djhmtYuSILvbAZj+MjbFqfiRUrgI+eOgX3O8G926E3ULtfM6BNG7iEhaPWnYRVB++zaHZjA5Z+IOPwYWDyZKAlRGaGfw2g5+PhaPXpY7j/hcbocye+0QgnEYBrsEMh/COz8L3bEfwv+SdczhQHRd2ebg5HF8MDM3tvwyYjiohuwdBIQJ5jHrykszhwAEjYpR5AO4T7YWfSbhS2VJ+nwuQr+G7KVt3r9GLzRHiMDRJBoxo1cKmvry6G4ocUdEn+GgP75OkCfklJIsZS9Bj13DlRDVYFPmYrVFpaGuroBffNyc7ORp6l6kKA0q8nqDAVFNRfazAqSgSi9ANmSucoWVZLf0+fVqPD7dqpn2ndu6s/f/qpuO+PP1YzAPVLh++7T/xfyfwDTJcQZ2erjzM42DCI6eUFjB0rMrx++EENeB05IgKb5tYTBESQXgnUb9umZjJ17Wq6HLe8DB2qZmqtWycCKG3biiOhf/8V8+a1a+Lo+eOPxXYuLmItxiNHREAsLEwEQhUajeGYGzUy+RkMQPwtxYoV6toKSlCnQQNR96Ts5927RdDRz08t1+3fXwSAlUxS/SOuok3AIiNF1uidckkkJYn5smgA2FxQUP/5dncXr6uffxavuzuZ5UbefddwfnJ1BZ55RmSyldSkrGNH8SEHiGDWjBkiG1E/ODZvnth3N2+K17F+ll9ioljPsEkTNZNPlg2DjUuWiNvv2aMGTP/5x7jz8aFDahZgTIzIRNQ/uly3TvzfXKags7MIJOozVToMiMC+EkBUukXn56uBvwYNRJORyEh1rdEjR8RankoGpIuLCOA3aCC2+f57NYiYkCD2lbWlddgQWRZxcSVhtLiq90OHxEfEc8+Jt9DEiWJlh8BAMaV8/bVhwnpZxcWJ+9NvFm9JSlBQo1GT33fvNt+IrjIdPGg6cb+iabXiPFDRc4ObNqkfc089JZLJO3dWDwU3bjS/csOOHeq5lf79xXSpMJWNd+uWOJldp07ZAnNarZiSS9sNuSilZ5fixx/vvrfY3dIvHdafBu41g/Xff8VqFkpg926ZC9RevSr2vXI+tKiCApF3pFQ4bd5sXaX6DAqWwfHjx/HBBx9gyJAhWL9+PSZPnoz33nsP7733Hv766y98W/SdaAH/7cqAS24KEuomIC4iDgF3OrVezLiIlKwU4xs4OyMntBAuvuIA3ssTcPF20p3N1cpanEk5g/Un12PpvqV4fcfr+PTk57jWLQdajTg6P/WTKCHOPKGm+9RpL75syrKMHSGXEdozDQ5BWTjW5BjsnW6gfuKf2Nx/EZbUW6wLHji62KNRXzGjRfRrgMQ6idjRZQdu1lmF2c/lYepUtQqlAeIREiw+HDTh9c3vkAYNgBo14OYmqsVmRP0Jr8YZqB0CwMsLdX3CdJvGp8ajXqcAo7vw8wUajGlX0q4vtQPJB/B/O/8PKw6tEE0tAKB5c0TGAkebHcWVOudQEP0N7FwLEBYqrvZFKtx+W4sYiMyymgGAX7824kClVy/g+efFwZTeulX1O9SCpNcZxqeJ6ZI0WZZxtO0NSGP+w62RB+HudEjs6LNncR5pd27sA/+6UfCpIYK9EfDTHU+k+KUA9vZ44IPuqBXuAeeGIqCR4psCWRKfvH4BPuhStwvsJBFMztfmo/uyCEQ8rmb3XK5/HI1qfosAXEGhQxrmfPsJbrmJjD5HB8AzWC8o2K2byAqIiMDpET3wo8NZ7LjwN9afXG92v3eZ0xkxjzRFWLQX+s1tjYcPzEDojEE4lm1cUnby+knkF+rNCjVrwqtXrC6WEAIRAA8KBOroLZda89i3CElQZ72waE88OtUeTz0pslV9cBNDsQ5PPK5F9jYROJQlGQ69ADs3kWnVpfsEeNYOhK+vuC7U5098M3MfWrRPxTXNr6jptQ8SRODMIfZO5kajRmjXDuh3HxCOONTBBaT4puBkp39xzjUPV7Kv4/sT36NQWwhnX1cE9Wps8HidfE1nCro0CIZdZAr2tN2Dc21/xpgn9+PUn+IAutCuECfaH8eWc1uw3esf3AgRQcfauIiGeSKoerXuJbiPt4ejj3r/Sb4OCJzSFL3vJHIE4xIan1yL8HqFaBYto/V9x3FZPgxAhkajxoUA8YVtwQKTQ7Uafn5+SCxFN5v4+HjUKrr2Q2Uq7XqCCv0AICAO3OsX89kNiG/eCuUUvqnSYUAEYpRmGoA4cnvsMRFs6N5dZPUplIy/Hj3UjDdT3+r//lsEBgERQDRzUgWSJLIcFa++qmZQNWliumTSVPCvIrMEAXHiaNIk8XN+vsiUTFJP5uHiRXEG7b331GDqpEli/FFR4jk4d04cRenTfyzmSocBUR6rXH/kiNjn27er38B79RJHti+/rN7m/Hn1OZAk0egFEN/MizIVdKtTRzyPSpabknmn3wxDPyio3zW5a1fghRdEVOHIEbEvzL0GFH5+osasXz+RxZaQINJRzAXEinr7bbVT9Ndfq92y9U98Tp4sxqZkPUZEqIFuQLz2hw8XWYp//aWmVnXsqAbKatUS43S902nuq68MszT1O0FNnCj+HxlpGLBNTlZf576+akRC8eijhr+b2wf63aJv3BDP+bFj6pkhJeDu6KiuS3nqlHjPKWn0s2cbZhJ6eoojUGVMR46II3Qlc5NQr169Uv2LjIxEx44d8fTTT+NQ0e7tlaCgQLzk335b/J6fb/hxXpSphvXK/fz6q0i49fER8f/evcVb3FwFfVE5OSIYtG6dCCoVXd7FHK1WVNQ3b266+frdun1bXVWhSRMRrFT+nn5frYo0Z444H1C0n9PBg+I8UMeOIpmjsmRniym/YUPjDsP6far69RP/d3RUzw+mpJjOvAQMS4fvv1+9PWBcQlxYKL6O/PCDmGJHjzZcXaI4b7whshdbtza/4oU5GRnGgbfs7MrtSB0fr04LrVqJ94lCPxPz9GnxGi1tJuWXX4qvfN9+K6aWHTvubnzLlolzVg8/bLg+5MWL4v05cKBIni8aHJZlcZKhaA80cw0hAXEf27YZLhtVlTEoWAbffPMNZFnGU/qvcACTJ0+Gq6srVpe2o18FOvJzAuIbxCMhLAFO7o5w9lHLIk/dOGXyNkmeMlo0F9+Zu0a7oI1fUzQNaAoXe+Puh4VyIa7dvoYbsVexv/V+pHmn4ebe03ir62/Q3kzTbRfVR0RK/rv2H04VXoVju9aI7lUTAaEFOBF1AlpJBBSdtWo2nlvTMGicxFlg99hauBmdAADQ+MTDq476aRylOYWxXZMwYcKd6l9za/QA4svmnewEHx9gyLA81Gp2SzQQ9vZGl9AuurLW3MJcODbOgcbBzuAuwjrXhlTbuGvv3dDKWvx57k8UaAuQmJ6IY9funO50cUF2V2/UCCmAJAFegflo/UQSRk5w1XXPrY+zusy5iCaOhgdfDg5GmQtOHo5w1lsjsUF309lH2xO346jmOuDmBhnAASSLsqjkZJzDnYwcHx/U860vDqY1GkTADz7eImmkMFCLFu90RnCUJ1KzUxEySJTzKaXDANAioilcHFxQ11s9aIhLicNDH3bE4BWD4dv3MgpiL6KWv4zG0inURzw8HK/icPPDyPDIgL2XGyR7veelbl1RtvXQQ/g3W12v9EzKGcPSXz2Sgz36Lx+KcYefRuyrAyD5eONG1g1cuaV+G5TuZDnmFuYiLjXO8A66dkV0ezeMHCHWLXzsUWDiLHdEr26OzN5nsbftXuxrvxN72+9GUkgSmrRzx5itExH4fzPg3a0FhgwRJeuhSMCAvHW6jtH2DW7Cv10N3d9vUrMpGnQYBP8wcWCY4peCjq7r4dPyLfiHrsPR5ocQ0SUTIQ3d1AyYO9kRsbHA8Afy0KTJalzt/h+8axXoDjBTslOwN0l82+ky23A9NFd/00HBHD8vXGgVB1kjQ9ZoIbstQ1bhv5Ah41TkKUihYkbVeLojuWUcMt0z4YB8SJBFsHhIEnybGK9tebiBB9o93hxt7yS2hiMOA9JWQXtrMXJrfIwakZ+iXZ238eeg9/Fj7Ot4o/FXCIE46TB/vmHSl7Vp27YtDhw4gOPFnH7ctWsXjh8/XmKJcYXSX09QPwPMnKKZghERpksJ9bVtK4INgAgg7dtnmJ7RrsjJmlWrxLdz/XLdnBwRGFGCXy1aqM0ovL3V7OqTJw3LZ3NyRO2ZQj+r0JQHH1Qzr7ZtU1Nai5YOK4quxRcRYRgErSiPPmoc2GrdWt0nf/2lBofs7UWwpST6r8OiAUN9kiROYCnefNPwG7ZS8vngg2pNl6enCCj36iVKzJWS8s6dxYkhfeYy8QICxHOiBIPz88URwYsviqMo/TXv9BvCSJI4QvvsM7VMvTTatRNHZgsWmA4IFycw0LjMODBQ1E3OmCF+LyxUIwH+/uIDceNGcTSrjHP/fpGhqP8aLnqE3KKFYSfql14SR77Z2erlrq7i7KtCf63PDz9U6+ZatjR+XdWvb/i+KS4wql9CvH69OJpW6H/XUQJ/SjoNIJ7fZ54xvs+gIPG5oWQhbt0qxv/996KD282b4u88/rj4rHnkkdLVplqJhIQEJCQkIDExUfdz0X+JiYk4c+YMdu/ejffffx8xMTFYUIln5nJyRHxbP0YNFB/k0F8udelSkfQ8e7Zh029AvO03bxYfQ40aibd5SQGKefNg0Pxt6lTRS6ckW7aIoNCRI+LtZKpa/24cOKBONW3bGk4hlbGu4OnTIln+33+Np4qVK9Wgy0svGTfoqAharXgbK8ngy5erCcKyrDa59/AwXM1C/+Szqf5tsqy+5hwcxMdau3ZqAdkffxg+vpkzje/n8ceBhQuLH39hobqyR3q6WL61LH76SX1t6X/FKG2mYk6OeE+8+KJ4fB4e4lzYrVsl31ahnyU4YoSYspXil23bRNbili1iWeL77jPs22ZKfr7o5zZunOE5nenTy/6aOn5cnEvKyxNfF6dOFc9tVpYIBConBzZuFOd29X3wgdoPzsFBTVpftcp0ZqFWK77KdOsmVvmojNf/vWJQsAz2798PjUaD2CJnwp2dndG8eXPsL8/TP3ehUFuIP858g0sh4qy3cy1vSJL6FJsLCl5wyYNGI7IEm2sC0K9ODwyNGorZ7WdjVJNRaBLQBF5OXga3CW7qh2zXbBxufhin6v2NQ1e+wOmI0zhb/yxuBRcirJUvMnMz8VvcnaN3NzdoGjdC+Ni28B3ohWttr6Do+fbw+9XspcOOKWjUTEJYKBBUU0b36I8wOHIznmuzDX888i26ddGKwJ6rq/FMX1SzZqK0BEAyMqHM+fa+NVDXqy7qeKnBsviMeGRGSTjV8BRONzyNAvsCtHiivYk7vTvJmcnILsjW/X78mnrgfyrECZENgc6dRHOUo3XzgJmPoftk44ORsOExusdUnPuW3AefJiFo8FAbtBltHDz97+p/2JawTXyZv/OpfQYpKDwXj0K5EAlIEweGnp4I8wkTwaennkKNSU/Ct1s/1B3bBe2eaovULmexaO8iLPlnCQ63/QP7Yw4gxVcEBSWNhNZRzQEA4b7qQVtcahwKtYVw7O+Im4+6oGGUPaKigDaNHVFHSkIkTqHAoQBHoo8gva7pb1DZ+dmITzXMsd9ybotRt1ZzdEFZAH4ufoisoQYu/rta5JueszPQuzciI8WyTDUaemBlG0f8rD0Mt0d94VtfzFZajRZ5vc4j/y135Hk4ioPaQYPg07ah7sxiY4jnXZZkeA7IgeQt3l9hPmFwd3RHRM0o1OrZBHUaOKKgXgrOxBxGI4eDCMIleHjJSOl0CoXRTdUsJ0dHoEEDFEKLs81OIWToMUQ1BjQSDErktyduR0ZuBsI6BsO3kZpl5h/ubXL/bE7YCr8mjrpquLpSAs41PoDTkadx3f86atTz0P19Zx87HG9yHLmOuTgXdg63BvyHmu3qARoN3B3dEROkfgM7cu0o5IH90fuJcLS6k2TkVmM/atT5EdE4isY4jog2W9CxWQo0hfl4sl8cZnp+jofxBerK5/H2W3Klr9NSWZ544gkUFhZi6NChOKwfpLrj5MmTmDBhAiRJwtSK6FJbGhcuqIvDlGY9QcA4KKhfmmmOvb2aAZWRIQIHSjDE3d147TpJEttv3SqOliZNUrsSK/QDHIBh0KJ9e1EievGieJMrQQc3N8M1C01xcDAOugClDwo+/bTIkqtodesaHgENGiS+qX//vXGQdswYg3Vqzbr/fnH08sILoqS6pG2VbtTbt6sroms06r6ysxNHN7m54sjoxAlR96WfCWpvbxigAtSTJKZ4eoqjNP0GGP/3fyJwpLzPAgLMlwVXphkz1OBnSIjYT5GRIoNzyBB1OxcX8ZiUQGCbNuJ5VJbD+OAD9Ug2KMjwtooHHjDsxK2sW6gcSQ8fblgOrn8f+t2oTTWcAQz3d9FMQn36QcFnnjFcO1H/6F2/A7Hi1VcN5jkDDRuK97HyfenXX8VCUEpJ8pAhIlrzzz8iiqGkW1kgI66ynT9/Hs8++ywkScKDDz6IH374AYcOHcLhw4exYcMGDBs2DBqNBrNnz8aOHTswf/58ODo6Yt68edhcNF2mAmRmiiCXEh92cABq36nMOHPGMDinKCxUk8kDA8VB/5QpwDvviKyr7dtFMKFTJ/V8EyDKiSdPFh9BS5aIbKKPPxYfjcp3jb17xeoA+rKzxctFKSs1R7/c8exZMZ7yoJ/VpmTlKW9XpVPu33+L8xMHDpTP39Snn424c6eadK3VGsb14+KMy1orwvz5hkEp/XUAjx1T+yZ16WI43fXrp57TWL9efKQ0bSq+2rRrJ5bjvSDO46N7d7GP7e3Vrw9paepzsWSJ+AeIbZS+R4AInM6da34ZnO3bDZc//eKLsp2n0N/H772nTt+bNqnLMptz+bL4eO3dW0yNe/eKYODnn4uvWspXr5Lo7//hw8V+Vb5y5OWJIPzgwerSt2++aT57NjNTfKVT9iegBmKPHlVXOSkNrVa8x/UDeJ9+Kp7rCRMMV8IAxOW//CIChtOni8Ck4rPP1POW166Zzsp9801gwwbx8/Hj1WOdTwYFyyA5ORk1atSAk4kOtMHBwbhx48ZdrfEUGBho8C+8pHVnzCjQFsDNLVE00AAQFlYPD0Y9qLs+KSMJt/IMw/2F2kIkOahBqjrw0p3ZttPYoWGNhngw6kE83e5pvNDxBUxqOQmtg1rDrYYLHL1E2UlKjRRcCbyCy0GXcanhNaS/kImvjn2F9SfX6wJg9hp71PepDzg5IbRbfdR6PRBhf4VC+5YjEiemIvsZV3SbJcrLZFnGv9eOwimyHurWFd+Fm0UXYsiID/F/ff9SY4AODsDgwciHFgeTDyIxzUyetaOj7gtr0p3GIbCzQ1BQQ9hp7BDhpx5I7E3ai1NtTojHE3gZSZ0vIrh7w7I/GWYUDWCdvXkW2fnZyCvMQ7ycIpqjODsBdesiOyoc/9w4jOhXH0RYjAfO1TuHY02OQROYizC99fiKE9TDDXXW+CH8LV+DUmIAuJh+ERtObVAvCAgQ5eQowHmkIRmZyEMh4C2Cy6HeoWI7T09IISGICG6mm0UT0xORkSv2rbuvI3Lr2kNrJ2Y9Oxc3hNcQ+zjcT31t38i6gTf+fgNrjq+B7O0NtGwJNxcvPOvXAk/VjdR9OBXaF+Jo48PYc3GPUbDvxPUTKJQNc7yTMpJwOqXkboOyLBsEBZsENEGzms10v59JOYOcgiLByOhoMZt16oTNPUJxsUAs2qLx9UHEoEZoHatBbDs71BvQGKcLr+Djgx8jOTNZ7KfBg9GsszcaNdYiKSQJh5ofwvEBO5HaGrr92CRAHAg28G0AjbML6g1ojKaxhWjVNRc9OhWgW7tctGgB3LC7jZ01DcugChqGYy1O4CjUFY+94ISHosfAyU58ZuUV5mHz2c2AJKHXJ52R3zENzr2AHk82Mdo/iWmJOHj5IBz9vdGkMRDTWiR6yHZaXKl1BW41XODi7YwarjUASYJ/qBtynHPwT9t/kN3qAuo09QRq1IC9xh4jm4xE57qddZmYt/JuIT79PDQjhmHg4yEY+2QWXEadQqNI0VW6USRQt1E+TkliZXBXV/HFqoHmPBY2/QK/P/pDiVV81VWPHj0wc+ZMnDlzBq1atUJERAQkScIff/yBZs2aoWnTpoiLi8MzzzyDtqXJ0NNTXnMNzpxRSxxLUzoMiBeP/rqsRcuJzdEPYCkiIsQ3LKX00ZRWrcQ3vnPnRAnnF1+I7KeiJbozZqgByuxscQQZEaEeQbm6itvpH0GaM2WK4ZgkSRx9mBufws9PZK5VlqVLxZHs66+LIyA3N7HWnn6QR5LEolyloZT8vvFGydmfGo3h/SqLe8XGGq/bW1KATv9oy9vbuLFFUfb24mj/vffUI8Dbt9XUioro+nw3HBxEndsXX4jglPI+tbMTr8UhQ0R05Pvvjbt+t2hh+Dwqc+Zjj6mpDUW98IK6L2/dMiwjVkqHFdHRahBSfzV7c0HBgQPFkXD//iJCY05srOmTC/7+huXp+iXCgPgcKTrGotq2FfWL+iXY5siyqA1t2VKkHFmx48eP45133sF3332HNWvW4P7770d0dDSaNWuGQYMG4bvvvsN3332HhQsXIi0tDS+//DK+/fZbyLKMD5V0JhPKa55JS1OXW3VzE/Fc/UItU9mC//2nrp/WoYNh8qpGIxKMlywRpYc3bohAj/55jO3bxcH/tGniLdOtm3hp/vCD6M+jBHPmzVNXJDhzRpxrevdd4NlnxZSiv+bhlSvGY33jDbVPV1G3bokAm7m17fQVDQoqWWyASIQNCxOPee5cMVWXd7+dosEQZanR/fsNV2UARGBSeUw3b4rpp6xlrUePio9wU709V682PJegUIKT+qXDPXoYbuPvrxY8xMWJ5/fYMXFeau9eNUMMMFxLUL+EeNIk0b9JP3j0ySfAN98YLnuzYIEIlpnKviua0afVlpxJp0hNVVdBCQkRAWLlPFphoenmH4rCQnEO8MwZw8uV6fz0afE+MLWWX06OCM6NHi2mKiVztm1b9TyQ/te4N94wfP60WhGUK7qyQ2qqOBerPG8ODuLv62fAzpmjBjtv3BDPlbkVIj76yLAnlUI/kOzubngea8wY8T7XX5b3xRfF1zX96aFoCfGWLYa90YDSl49bEoOCZZCVlWUyIAiIbEFlG0txsnfC4s//h/5Pd8PAkW3w0kNPopF/I7g5iC9CMmScSTF8x1+9fRX5LuKLtwQgBJ5my12c7J0Q4hmCARED8EjzRxAaoWae2TtqENi2Ljo8FYvgxt6IT43H+TR1xusR1gPDGw+Hn8udL+2ShHNIgCY2D3XH+MKlXxa2JIiF3s+nnUdqdqr4VGvcWPepdBY3cRJ32od5ewMTJ6KgQT18eeRL/HzmZ6w8vBLnb5qZZWNjAY1GDQp6eSHEW5xC0Q8KAkC99rVg7yBBowEcB7nhQmZS0Xu7a0WDglpZi1M3TuFs6lmxvmBYmDgtFRYGSBL2XNyDNE0eMuZJSGuejIygG8ialgt4mG4MoU+WZaw9vhZHrh7Bb/G/IS5FLYfNL8zHmuNrdAE1Jzsn1PII1J2GPYnrBqXDQR5BcLY3/MJedL/pq9FYLRMK8YyAk7143/i5+MHH2Ud3nX5Az97dE6MeeRc+XfpiUOMGmFWnMRztJNhpgLpRrvjj7B/YcGqDug4jijQE0fPnuT+hlQ1PxeUW5GLr+a1YfXQ1/k78Gyeun8CNLLUdXZOAJgj3C9c9zkK5ECeumzhF17w5TkeH4J9UNZMw1DsUgzpNwlOzPkGjB0boAghpOWn48siXokTZxQUY9iC0D5zB7U7xcGyQjvBoCdKdkip7jb0uU9HN0Q0hniGimcGd7BeNBghyFN2J4eWFHWlHce22OO2ZV5iHrwsO4ZSklmzXhiemSK0R0bA9uoWp2Ur/XfsPKw6twJqCtXB4zRs5L8i4IBm2/y3QFuDnM3dqH2rXhl/NMIwP7oCoWE/E9vFBw8410WJ0FLxdfPBI80fQpW4X+IS4o2ULoFFTLaIaA1KD+vBy9saYZmMQ4hkCDycPNPBVPzMOXzkMODoi/+Ex2NTNEe7NAlEzwgu1w+xRM9gekn8NHIj2160QHhCkRa0nj6H1A+lwahhq8nm3Fu+++y4+/vhj1KpVC/Hx8ZBlGZcvX8axY8fg6+uLDz74AG8qa6tZQs+e4lv9P/8YtokujiQZZguWJlMQEEc4ShaQ0i7wv//MB9tMqVtXfIsbPVrNrlV4e4sjmMceUy9TgkRhYeJb5ODBpfs7Pj6G+yM62nwwMfjOorj29uKUcnEBzvJWp44Ikrz4ouH+mDpVZCxKkgjkmGoOUx5GjzYOwJWUiWlKx45qgEq/6UxxlPUfjx4Vz7l+oKi0gerKEBAgXrP6TUsAMY+sWyeiGfpHpPoefVSsDalwcBApEuZIkkgHKRpwa9hQRFaKbmsq49BcgxyNRqRF/fJL8Vmnvr7iqHX0aBHke/ppkX3611+GVRFFMwXfeqvkQDQggpLnz4sIwcsvi2BlmzbiCP6XX0TkZuFCtYweKD7z1Aq8/fbbiImJwdCiGbd6hgwZgpiYGLxzJ7Vt0KBBaNiwIfbpN7+pILVriwyniAgRGOjVy7DRu5KFo0+/qUVJq2tIkvgbX34pgilFk8oVBw6Il7wSoIyNFcGItWvFVzRAZKM984x4qX/wgci2Us536JfRKsGInBzDAKfi2jXxNuzUybBZvCmyrAYFvbzUBGz9EmL9JWNv3y57OWpx9PtwKZTAk36WoDK1nT4tgi+JieJjZc4ckahc2qTc1FQx7U+bpi6Nqzh92vDcwDvvqOeINm4UY9Vvcl80KAgYBvsUSmaqwtHRcDtlRQplDPprAL70kggcSZL4efFidYpat07sA6UfFCCCWd9/L352d1dXsvjhB+P1GgHx+nrzTfGxdfq0OL+nvM5GjBAfvfrJ9cWVEL/1llpaHRQkApmXL4ssRWVayM0VU8uiRertbt8WU/djj4n712+OMnq0+nO3bsZfcTp3VgPrx46JYKHiyhURxFY+Znx8xFQwebIo6FDOoaaliYDigw+KcbdrZ9zfChDvgxdeUH9fs8Y461eSxNK6y5apRQjp6Wqg1NlZrF6jBHj79lWni59/VoOTSUniq51yAkGZnv74w7D78vXrIshZlaqeJLm0dXaEpk2b4tq1a7hqovf48OHDsXbtWuTm5sLxHstPMjIy4OXlhfT0dHia6+JX3O1zM+Bs7wxHOzGOH0/9iENXxKduhF8EHmqqfkrsTdqL34//COzZg1pwx2NSjJjZSnGAkns7CyteW440bToaDW0IJz93nL95HldvG+6fOl51ML75eGgkDa7euopP//3UILCjb1z0OBxIPoDj10V5Zah3KOSs20jctxlIS4MnnDAtdDgch4+C7OKCDac24MjVI7rbB3sEY1LLSZBMHBzI69dj4dH/4RbygPBwDO/9NKL8oyDLMj468JEuwCJBgiZHi9yCHNi7u6COVx080vwRk/dZFln5WXhn1zuQYfiWa+DbAK4OrroAVx2vOkjOTNbtIweNA/K1+SLnOS8PcHXFIy0mGKzPZ0piWiJWHFZPX4T7hmN0M/EpfejyIfx4Wpyi00gajG46GjdzbuKXkz8Ce/fCPV+CH1yQiHQgNhadIvugRz3DWVSWZXx77FucTjmNEM8QNPZvjEb+jZBTkIOzKWexeuHvyE3NxXPPz0DDJmqJ947EHdh6fqvBfdV0q4k+Dfqgns+dA7zCQuDUKcTv3orvc/5BTkRtXUlUPZ96GN10NG7l3cKivers1KteL2w+p5a0DIgYgFaBInvh5I2T+D3+d102Y1E13Wri8Rhxekj//RLsEYxxzcfp3ksAkJ6Tjv8d+J8uC7aGaw1MaTVFt41W1mJ7wnbsSNyhe67dHd0xocUE7L64Gwf2/yhORQLitGJoKPxd/dEltIsuUxAA/k78G3+ev3OKLC4OHS5p0AF1sAz7cDuyPlCrFvxc/ODp5Imrt68iKz9LHOimpqI+fDACTeBYoyYwbRoKtYX4+ODHutd4UfV96mNstHq6/K/zf2F7ovptb3zz8Qj1DsWB5AP45YzIgXfQOGBiy4mo5V4LWlmLr7csQvyuO4FEf3807zEafRv0NQgmH792HGtPiBWn7SQ79I/oj32X9hms69gysCX+vazm8U+LnQY/Z1/8tP1jHDr0G+xy8zHw4QVoHmwmM8WMe/1ctQRZlnHo0CGcO3cOWq0WtWvXRkxMDOxLcxBcCpW+Tx59VD3VfOJE6YMw+/aJo72RIw3XfCtvGzaIIwvlFPW335acfVbUmTOi7igvTwQfSjoKy8urGiWr+goKShdouReLFhlmbW7fXvx6hOacOSOCOiNHGjYJKa30dJFiEhcnxlOacunqIDNTHHX+958IfOlnD5pz4YKoE1OObt55x/Saknv3Gq7n6e0t3jOVlb7dvbs4QuzXTzz35fl3s7PFQmSffCLqLu/mO3g1mWu8vb0xYMCAEtdDHzNmDH755Rek3YlyDR48GL///jtySrkw3r3uj6IfR02biiCCJIl1AfXjuKNGqSWU+/cbrzBRnKws8bJKTxdfQW/dEi8D/VU8HB1FEEs5p/XDD6Zj5ICYSj75RAQ1z54Vlx06JF62SsbeL7+oQbycHBGs2r1b/C5J4u2r9NYpKjFRfIUERBBSyRK7fl1cruSodO0qGj9kZopzQMePqwHEe7Fpk+mldi9eFEGg+HgRmPrmGzUROSxMPE79jMXx44tv1qBYuFD9ONJoxONXKscef1zNxJoyRfw8aZJ4KwMiCDdunHhOAwJE0Knox8bt22IsqaninMHQoSIoeOmSCJgpXa2LnosZOlQE5AARzIuOFisUTJ9uvCLIr7+KQJ1Sbl6jhpj6oqIMX0tjx4qPb+VcZdeuYgySJIJI33wjpiv9cISjo1qSq//aV94vgDhEaNrUcEy7dolga2GhuP+tWw0LQHJyxH5XGr0D4vkaNUoESDdtUi93dhbnh3r1EoFQ/eT0++9Xm7VER4vHnZAgxqm8x19+WZy72bxZDWjXrCl+1x/3lSvifWWqq7IkifvVn8r1//akSaKIRJbFPlSmxgULxJgBcb+xseoSBbGx4uRB0ffNs8+qSwEsXCjed3PnqiXf990nAvwvvqhu/9Zb4nnq2VNMMRMmiHUkzeScmVUR8wyDgmXQp08fbNmyxWTGYIcOHXDmzBlcL6lovxTK+4k+feM0vjn2DQCRjfRsh2d1AYw1x9eIbKhz5xB7WYN+7ceZXwOpFGRZxqkbp7A9cTuu3LoCTydPjIseBz9X9cDqQvoFHLlyBA52DnBzcMPhK4eRki0ynLydvZGZm6nLIBvaaCgC3ALw8YH/QXvjOiDL8K0dgfvC++Hq7avYcm6L0RhGNRmFhjWMZ7y0tCtYvHaWmBVDQzGzw2x4Oon9e/XWVexJ2gMfZx9E14rG9dvX8dV/X5V4n2Vx7NoxfH/ie6PLNZIGDhoH5BaKnOchjYYgOTNZ1xTClCj/KAxvbKL7op61x9fqgquACHZObzMdPs4++Pjgx7pATPNazTE4cjBu5d3Cwt0LIScmqHUNzs5AmzYY13y8WFPQBK2s1TVrKQ2trMWJ6yeQnZ+NWu61EOAWoMskNCUjNwPfHfsOlzLVWoQ2wW3g6eSpCwJ6Onni6bZPY83xNTh546RuOweNAzycPETmaTF6hPVAp7qdAADnbp7Dl0fU1nZ+Ln54MOpB1HKvhYsZF7Hp7CYkZYjZyl5jj0ktJ6GWey2j+/zv6n9Yf3K9LjDoaOeIvMI7M/bNm6jtWAPd2j2EIM9goyxMAMjMzcT/DvwPt/Nvo3WtFuh/KAvS6dM44S9jTaTWOOMJAC5fRuTpFDyIKNhDI9bTvPMt4/zN8/jiyBcmH78ECU+3exqeTp7Iys/Coj2LRCAaIkg3qKF6avTo1aOIS4lDbHAsanupp1Gz87Lw29aPkZF5A207jkRkYFOjv1OgLcDC3QsN1tXU1zqoNfqH98fSfUt1nwltQ9rCy8kLf5z9Q8zieXloUrsVhjYaWqZAfXU5UCuttLQ0vPPOO3hdfz2wMqr0fRIfL9IfYmNN1/lUBenpIkDUsuXdr/G3c6c4mhs3rnIzAKuTW7fEt/abN0Um6I0bVS84Wt3l5IgGOs2amZ4vTNm9WxzR1qwpjg6LlnQDIgWiTh21PrB7d8PavIqWmirSt7p2rbjXjCzfdbCxusw1np6eaNKkCXYrUSgz2rdvj2PHjiHjTiRj2LBh2Lx5sy5IWJLy3h9z5qjLYH7yiWESbJ06Iijl5iayiO713IYsi2DCggUimLZ0qXEm0o4dIuji76/25VGCFS+8oFbj9+wpghvffKNmcHl5icfy6KPifvWbogPi65tSklvUd9+pCcFFzz/t3Sv+DRggls98/XW1DLW4+yyLmTPVrLHoaNFEBRDBUKUxjBLM6tzZsAGMPicn8ZwV15NJqzUMrgIi+PLqq2IKCQkRQVA3N/Gx5OUlAq7Kum9RUWqgZuRI8RyUl+xsETAMCBCJ6yV9bTh1SgSplAy08HBx3nPyZDVT8Pffxcdq48ZqDkFYmPg9PV0Ek8ypX1/cRvn4evNNNUvOw0OU0SpZfEePin2krJdY3HnMV18VZdWAeIxt2qjluJ6e4jXVpYv5VSr27hVB5IYNxXtKCebPm2fc1ENRp47I8DS1AsF77wGzZqm/6wdF9QN8O3eKwBwg/uaJE3ealEK8rr7+Wl37Uf8j/8IF8d5t3FgEZ019lpw8ab7opW5dsU5hQYF4febniyBwUpL4Gqy8RwIDRdC+rOe7GRS0sDlz5uD111/Hjh070El5hQHIycmBn58fOnfujN/KoS1meT/R+YX5eHvX27qD/BGNR6CRfyPIsoyFexbq1hkcGjkETWs1K+6uSk2WZdzMuQlXB1eTAQ99F9IvYMWhFUYZdK4OrpjZbibsNfb4I/4P7EnaU6q/XdOtJh5r/ZhRwEA/O87TyRMz2800dXPd+L848oWuk62/qz8ej3m8TMGvojac2iBKJgE0qtEICWkJRsERjaTBsx2eRX5hPt7/532DjMpQ71DdeDSSBk+2eRJezoYNYBSZuZlYtHeRUQlth9odEOEXYZBBOKXVFAR5iAyL5YeW40LqeXFAe+sWEBEB+1pBeL7j87DXVHDmSDEKtAVYe3ytwVqBzvbOujX/OtTugF71e+H67ev4cP+HRq8lhUbSIMo/CtduX9Nlzbk6uOKx1o/pAsRaWYvVR1fj3E01z9tOsoObo5tRpmH/8P6ICTbs5Ktv36V92Bi30ejyWu61ML75+BLfG7kFubiVd0sE1WVZ9LX39sba0z8YBHwVrXwbo/8Px6CR77z2lRZpd+y+uBv/Xv4XAW4BaFGrBX46/RMy88S31571eqJjnY4GmZzO9s54ss2TcHEoualNaW2M24h9l4xLjxr6NcSwxsNgr7HHnot7RBAQIpiaX5ive06DPILwSPNH4GBn5puHGdXlQK0kGRkZWLhwId5//31kZmaisDQLDxVzX9awT6ia2rJF1AxNnSrqf6hqKE1AbPp0daGl2bPLr3OCFagun6udOnXC7t278cMPP2CQqdpJAD/99BMGDx6Mjh07YseOHQCAtm3bIiUlBXFKtKIE5b0/9u9XG1L3768u4H/hgrqGWUXEqUsbJ/7f/wzXJVOsWSPi7bIsMqn0xxcSomZGubiIjDMlx+TAAdNLdj79tJrltHGj2pPLlNu3RXBQ6a66Z4+6ht7diooSQRGNRgRe2pvoybhkifio2LJFbS4PiK+ljRqpmXyvv65mU5nyxx+GpbqACPAkJoqPISU49MQT6sdSTo4INBZdu+/TT43LjytbWpoImCqBVCVrLDdXBBcvXRJBqDVrDJfOLWrwYJFR+PPP4jnQao0fX1qaeK5Pq4dPGDBA5H4c1zuM6NRJBHDNBdJlWZS86zf9AMTrddOmksv1AZGNqNEYvo/y8kS2oH4Xb0kS41m1ynzyfkGBOLecmCgC3VFRavAwPFw8XkkSJerKUgMrVpR+xZvSatvWuLy7aVMRbFT6helnMPfpo2b1OjuLjMki/WtLpSLmGa4pWAYjRoyAJElYXKQM49NPP0VWVhZG6xfQVyEOdg6o71tf97sSWEnLSTNoPFKnhHLUspAkCb4uviUGPQBRLhsbbPyOiK4ZrQtE9azXEzFBMbpGBfq8nLwworH6qXn19lXdWnCXMi7h1zO/Ysk/S3QBQQBivbYSxt+rnjqDXc+6rgvo3Q1Zlg3WE4zwi0Ajf+PSuTDvMDjbO8PDyQMdaou1fCRIuK/BfRjbbCw8HMXaWlpZiwPJaisxWZYNmnD8e/lfo4Cgcvmui+qiK3W86ugCgoAIVsLOTiwi0aEDEBCAOl51LBoQBERG3pBGQxDgpq4Oq98EpGlNkZXm7+aP/hH94e5ovOZibc/aeLTVo3gw6kFMjZmKGW1mYETjEZjUcpIuIAiIwOFDTR9Cm2B1AfdCudAoIBjlH4XWQcXXpsQGx6JbqGHmbQ3XGhjbbGyp3htO9k5qlq0kidNM9va4P/J+tAtph2Y1m6FHWA881PQhPN32aQxsNgyayDunrTQa8S1QT/va7TEtdhqGNx6OcL9wg8YqR64cQYG2wCBg1yqwVbkGBAGRDagE1yVIiPKPwsQWEzGq6Sjd6yy6lvrezyvMMyjDHtlkZJkDgtXBwYMHMX/+fDz++OOYP38+/i3SCi0nJwdvvPEGQkNDsWDBAmRkZKBRVVoDjaisevYURyEMCFYtpYl8TJyoHj3qL/RG1cbs2bMhyzIefPBBjB07Fr/99htOnjyJU6dO4ffff8fDDz+MBx98EJIkYdadqEtaWhoOHTpU5iZX5alVK3VJ0i1b1KCP/nqCRZfCLA+lTRydMsV4yVt/f/VtIkkiI0w/OKG/9t+qVWpGFiCytxRHjohMrg4dxNqFipKCCm5uoqGC4tln720ts8REERAERFCkXTvjslRAXY63Rw/15wcfFAHRl15S9+lHH6nr4Zmi39dGee6vXBHZafpNIKZNU392djZcX1Fhaj3ByubtLQJVyuokW7aoDTJGjFA/WocNEwHT2Fi1txsgylR//lmUHM+eLQJL16+LwHjRgKeybPK4ceplv/xiGBAMChLr6RWXWStJIjNUvzGPg4MonS5NQBAQh5dF30eOjiKD9q23RJB43z6Rabt9e/Gredjbi/fCypWijLlBA7XsOS5OZCbGx6vNbIKCDNdYLC/PPac+pl69RJbnkSNqQBAwXLJaCQgC4vHeTUCwolj2SL+aadq0KZ544gksXboUQ4YMQb9+/XDy5EksWbIEXbp0wUMV8WorJ5E1InHqhiiOP33jNLSyFhfSL+iu93LyMpt1Vhl61OuB0ymnkZaTprusZaC6cLWdRqw/1rxWc/wa96vo6AqRRTSq6SjUcq+FcN9wxKWKM5dbzm3B/uT9usy6osK8zaworCfYMxhR/lG6AONvcb9BK2vRKrBVmdcXvHr7qkEAtoFvA3g6eRqsnQbAIFDYNbQrwnzC4O7oLjq8QgRU/kr4CwBw8PJBdK7bGUevHsW2hG3QSBr0bdAXDWs0xMHLB3X30yqwFQ5fOYxCuRDZBdkGzWaKBmMja0TqMrSUT7nS7KvK4GTvhJFNRuKTg58YBAT9Xf1R001tbNI6qDVaB7VGVn4Wrt2+hpSsFHg7e6OeTz2D583XxRe+LqabANhr7HFf+H2o71sfG05tEOv13VHHqw6a1WyGloEtS/U66Fy3Mwq0Bdh5YSf83fwxuulouDmWogtiMRztHNGngYnFXAAxO9atK06jFlePAVE6rgSJr2ddx6azm3SvU42kQZuQNsXd/K4EuAVgXPQ4JGcmo2GNhiafA1cHVzT2b2ywXqjSxVg/gGstZs+ejUX6qzcDeO211zB37lzMnz8f+/fvx4gRI5CYmAhZllGnTh3Mnz8fD1dmx1oiIkXz5qL2LC/PuPkHVQv3338/3nzzTbz00kv4+uuv8XWRTgSyLEOj0eD111/H/XciWjdu3MCLL76IvkXTtiqRRiO+5nz0kQik/PGHWNdNvzy1tEGKihrfZ5+JIJmy7OL48YaV7t7eImtp0iSRKH30Ts+8BQvEY8nNFT21LlwQWYCLF4tAjqnsx1atSrf07YQJouTyzBmRlfb44+L3u1nhQj+wobwUhg83zPaKiVEbdUiSCOBdu6aWjdarJzLWfv5ZBEU3bBBZXcuWiSyrgQNFwOXSJTUbNCREBFJ69xa/T58uCmgAkYFVtDfWAw+onWWVv2muoUxlCw0VmYC9ext2mtYPJUiSyKB88UURxL14Uay00bix8Rp0vr7m+5p5eIjgWe/eIkCl36F71CjxN5WS2uJoNKLs1ckJ2LZNNOsoj4+CmjVFoPpejRsnxgUAX3whAodK8Hv69IpZbeKBB8Tr3snJKA9Dp3Nn8dpU1igExHM6alT5j+desHy4jAoLC7F48WJ88sknSEhIQI0aNTBixAi8+uqrcHc3zk66GxWRElq0yUXX0K7IzM3UBY+aBjTF0CjzHcgqw9nUs1h9dDVkyAZNMYrSylocvXoUSRlJaBXYCoEeohD/cuZlfHzw42L/hrezN5oENEHX0K6lyn5LyUrBh/s/NOiSG1kjEoMaDoKrQ+ln0p0XdurWP1SaWhRqC/Hu7nd1JcQSJMxqP8tklpviVt4tLNqzSDceb2dvg0AqYFhmLEHCU22fwp/n/zTq1Ovh6IGn2j4FO43hWkP/O/A/g8YPk1tORrBnkU6RFhSfGo+vjn6ley13D+uOznXvYoH6UsrMzcSB5ANwtndGlH/UXQfPcwty4WDncE8l6BXhk4Of6ILs+prVbIYhjcysoF0JLqZfxOeHPtf9PqTREIPMxrKqqiVdv/76KwbeWfjG09MT4eHhyMjI0DUXWb16NR5//HFkZGTA19cXc+bMwdSpU++5oRVQdfcJEVF1Vd0+Vw8fPowPPvgAO3bsQNKdlLXg4GB07twZ06ZNQ0tznaVLqSL2h345aUyMSDju2FFk6Gg0Yp05S+/6Dz4AZswQ4zh0SG2UXlRBgchmcnAQgTDlXPPy5YYddYtq1EgEeZ56Sm04UhIl8KaIjBQBOKULbGkNGaJ2GN63TzwHp08bBuX+7/+A558v/n70y4pbtBBBG/1SzA4dxFqCSiOS114TGYZRUYYBFsCwaYsiM1MU2ChrzU2erPY6qyref1/tRB0WJtZNrMieTUlJIguvUyfr6aulyMwUQeesLLGuZH6+utbkxYulC3xWlCVLRM8vQGQNr19/98tWA1xT0GZU1BeKr45+pcukA/S62gLoF97PZAlvZUtMS8SVW1cQXSu6VOWVRekap+gJdA9Ei8AWqO9TH74uvmXO8jt14xQ2nNpgkJ3m6eRpVHZanJWHV+oCdcr6dwDw0+mfdNmCdbzqYEILE73Ui/jh5A8GGVTFiawRiZFNRhoFWADzwbTtCdt12YjO9s54tsOzVS6QdSD5AH6P/x2+Lr54pPkj5V7iakv+SfoHv8Ubr4X6aKtHdQF3S/nr/F84fv042gS3KXbtxtKoqgdqgwcPxk8//YTp06fj7bff1jWxOnnyJIYOHYr4+HgUFBSgW7du+O6771CjRo1y+9tVdZ8QEVVX/Fw1VBH7Iy9PZOVcvCh+79hRlA/LskhiPXSoXP7MPdu/X2TxmQsIFqegQAT+4tWVh9CggQgs3H+/moVXVp99JoKV2XeWNHdwECXLxa1dp09pmJCRIf5/9aoa3GjeXF0n79Spkrscy7LIelNKkYtjby+e71q11ICron59kQFpKsgyYIDo+guIdd1K+zgriyyLRhtr1ojMu+LWhqSSPfywccOe6dON10KsbPn5IjtQWQvxXvPIuKYg3ZOBDQfCx1kNkysBQUAEpKqCut510SakzV0FBAGgV71e8HISmVz1ferj4eiHMaXVFMQGx8LP1a/MAUFABNYea/0Y6nqpay5m5Gbgz3OlW8U4tyDXoFS7ga+aX9yhdge4OrjCXmOPLnW7mLq5EVPB2wa+DeDvalwqGhMkAikhniEGHXLtNfZoFWhi5WKIklJl/7cMbFnlAoKAKBF+vuPzmBozlQHBe9S0ZlPYSYbZoqHeoRYPCAJAt7BumBY77Z4DglXZwYMHERoaikWLFhl0tW/UqBEWL16MgoICeHp6YsOGDeUaECQiIqqOHB1F2anSHHvnTrVMsCLWE7xbMTF3FxAERBBsxQqRPda+PbB2rQi0TZt29wFBQJQs//svoCSA5ueLktLU1NLdfu9eERAERKaifiDurbfEeGfOLDkgCIiMOP11AAFxu88+M85+HDpULT1++GHDsufp081nXc2eLQKf4eGm1xi0NEkSa0geP86AYHnQXzsREPtXydCzJAcH0Y9r0aJ7DwhWlKp3tE8VxtPJE+OajzPKbnOyczJo4FCd+bj4YFrsNLzQ8QWMjR5rtI7c3fJ29sa45uPQvrbaXuvo1aMGZbbmXLl1Rdf0w0HjgNpe6mzu5+qHWe1m4dkOzxo0gylOsGcwImuIHH1XB1cMaTQEo5uOxpRWUwwCfTXdaqKej/g2IkkS2oWoXWija0abXdfOy9kLT8Q8gYktJho0W6lqLN38xFq4Orgi3C/c4DL91zlVrOvXr6NFixbQmPhGqyzm3qlTJ3h4eFT20IiIiKqk6GhRRlx0arTkeoLlrWNH4Nw5kQX54IOiUUN5iIwUHYiH3FkhJi1NlPuWxt696s+9ihwi9OkjxrtwYenHMm6cKB12dgbmzAEOHxZl04cOiXUKAfG4Z85Ub+PlJToNA6KBRHEdZbt2FesOnjhRdYMxVH66dhVrTyoeeEBkklLJeFRtY7ydvTEuehxWHF6hayhQ26t2lcwGu1sV1ZlUI2nQI6wHTl4/iZs5NyFDxpZzWzCm2Zhib1egVVtquTi4GAWz7DR2sEPZZvphUcNw5dYV+Lv5w9FOrC3mYOeAgQ0HonFAY1xMv4joWtEGAdFmNZtBK2txK+9WiQ0kPJw84OHEIIStaBnYUteIyN/VH+G+4SXcgspLXl4evLxMr1OplAT4l9AwhoiI6G4cOHAA33//PU6fPo2MjAyYWlVKkiT8aarLhYXFxopGHH36iLXDAOsKClYkR0fRwGTjRtEQ5YMPRMZdSevMKfsZEA0i7pWbG3DwoCgJ12+e4e0tyn2nTRPbFF3a8s03ge7dRfmxma9QOjynajvs7MTakfPmiSzBZ56x9IiqDwYFbZCfqx8ejn4YP5z8Abfzb6NbaDdLD6nasNPYoUe9Hvj+xPcARNOLczfP6TLyTNFvUlK0TPNexmGu+Uc9n3omxyNJEloElnE1YbIJ4b7h6FmvJ5Izk9E1tGu5ZNcSERFR1aV0vlcCgZIkGQQFld+r8neCjh2B338H5s8H+vUzzBKi4tWuLdbme/tt0fF47lzRtbU4StMOoPy6uUqScTdd5fJOnUzfRqMpn863ZH1eekl0Yq5fH7hTcEOlwKCgjQpwC8CUVlMAoEpP9lVRY//G2O2xW9exdfPZzZjSaorZ/VioVYOC1pSRSdZDkiR0rMPT65YSHx+PL7/88q6uf/jhhytqWEREZKXWrl2L9957DyEhIZg7dy7WrVuHzZs3448//kBcXBy++uor7NmzB88//zz69Olj6eEWq1MnoAomMlYLL7wg1vBLTRUNGmbOFKXZ5uSry9HDoWIKs4juiZ2d8VqVVDIGBW0Yg4F3R5Ik9KrXC18cEafTLt+6jGPXjqFpzaYmtzfIFNSU04IgRGQ1du3ahV27dpm8TpIks9dLksSgIBERldknn3wCOzs7/PnnnwgPD8fu3bsBAL169UKvXr0wdepUzJ07F++88w6GK4u7kdXx9haZVbNmiWYtzz0nMi/NqYhMQSKyPAYFie5CmE8Ywn3DEZcaBwA4fOWw2aCg0mQEKL/yYSKyDnXq1OEJGiIiqlSHDh1CmzZtEB5ufg3hV155BatXr8aCBQvw/fffV+LoqDI98QSwZAmQmCiat1y4YH5tQWYKElknBgWJ7lKTgCa6oGBWfpbZ7fTLh5kpSET6EhISLD0EIiKyMZmZmaijF/lxvJP2devWLbjfadOq0WjQpk0bbN++3SJjpMrh5AT07w98+KH4/fp180FBZgoSWScucEZ0l/S7HOt3GC5Kv3yYawoSERERkSX5+/sjLS1N93uNGjUAGJ+oun37NjIyMipxZGQJLi7qzzk55rdjpiCRdWKEgugu2WvURNt8bb7Z7QwyBVk+TEREREQWFBoaisTERN3vLVq0gCzL+Prrr3WXXblyBdu3b0fdunUtMUSqRPpBwexs89vpBwWZKUhkPRgUJLpLDprSZQoarCnI8mEi0pNd3LdvC9wPERFZvx49euDUqVO6zMD77rsPvr6+eOuttzBs2DDMmjULbdq0we3btzF06FDLDpYqXGmDgvrlw8wUJLIeDAoS3SWDTMHCYjIFWT5MRGbUr18f//vf/1BYWFjyxiYUFBRg2bJlqF+/fjmPjIiIrNXIkSMxYcIEXLx4EQDg5uaGFStWwNnZGevWrcOiRYtw8eJFtGzZEi+88IKFR0sVzdlZ/ZmZgkS2h41GiO5SqdcUZPkwEZkRFBSEqVOn4vXXX8e4ceMwbty4YrtBKk6fPo2VK1di1apVSE5ORqtWrSphtEREZA0aNWqETz/91OCygQMHIi4uDj///DNSU1PRqFEjDBw4EHZ2/O5q7ZgpSGTbGBQkukv6mYKFciG0stZkJiDLh4nInP379+Ozzz7DnDlz8MYbb+D//u//EBISgnbt2qFRo0bw8/ODp6cnMjIykJKSghMnTmDPnj24dOkSZFmGv78/PvnkE0ycONHSD4WIiKq5oKAgPProo5YeBlUyrilIZNsYFCS6S/pBQUBkCzraGc+Q+uXDzBQkIn2SJGHy5MkYO3YsVq1ahaVLl+K///7DxYsXIUmS0fayLAMAmjVrhmnTpmH06NFw0f82T0RERFQGzBQksm0MChLdJf1GI0AxQUEt1xQkouI5Oztj8uTJmDx5MhISErB161YcOnQIV69eRXp6Ory9vREQEICWLVuiW7duCA0NtfSQiYjICiQlJSE5ORk5OTlmt+ncuXMljogqm35QsJiXgUGmIIOCRNaDQUGiu1Q0UzC/MB8wMUEaZAqyfJiIShAaGooJEyZYehhERGTF1q5dizlz5iA+Pr7Y7SRJQkGB+bWzqfora6agnR2gYZ4DkdVgUJDoLuk3GgHMNxsxWFOQ5cNEVIwdO3bAzs4OHTp0sPRQiIjISq1ZswajRo2CLMvw9fVFaGgoPDw8LD0sspCydh9mliCRdWFQkOguaSQNNJJGF/TL1+ab3M6g+zAzBYmoGF27dkXXrl2xdetWSw+FiIis1BtvvAEAeP/99zF16lR2GLZxZc0UZJMRIuvCxF+ie6C/rqC5TEH98mGuKUhExfHx8UFQUJClh0FERFbs9OnTaNeuHaZPn86AIJW5+zAzBYmsCyMURPdAf13B/MJSZAqyfJiIitG8eXPExcVZehhERGTFvL29UbduXUsPg6oIZgoS2TYGBYnugX5QsFRrCrJ8mIiKMWPGDOzfvx+//vqrpYdCRERWqlu3bjh06JClh0FVRFm7DzNTkMi6MChIdA/0m42UpnyYmYJEVJwWLVpg2rRpeOCBBzBlyhT88ccfOH36NC5cuGDyHxERUVm9/PLLuHTpEt58801LD4WqgLKWDzNTkMi6sNEI0T0wKB8uRaMRrilIRMUJCwsDAMiyjM8//xyff/652W0lSUJBgemTEUREROZERkZi06ZNGDlyJH788Ufcd999qFOnDjQa099TH3744UoeIVWm0nYfVsqHmSlIZF0YFCS6B6VpNMLyYSIqrdq1a0OSJEsPg4iIrNzu3buRmpqKCxcuYN++fcVuy6CgdXNyAiQJkGVmChLZIgYFie5BqRqNsHyYiEopISHB0kMgIiIrt3z5csyaNQsA0KxZM4SHh8Pd3d3CoyJLkSSRLZidzUxBIlvEoCDRPShNoxGWDxMRERFRVbFo0SLY29tj/fr1GDBggKWHQ1WAi0vxQcHCQkB7p/iJQUEi68IIBdE9KHOjEZYPExEREZEFnT17Fp07d2ZAkHSUZiPmgoL5egVRLB8msi4MChLdg9I0GjFYU5Dlw0RUCn///TeGDx+OkJAQODk5YeLEibrrNm/ejBdffBFXrlyx4AiJiKi68vHxgb+/v6WHQVWIEhTMyTF9vX5QkJmCRNaFQUGie1CaRiP65cPMFCSikixYsABdu3bF999/j+TkZOTn50OWZd31Xl5eeOutt7B+/XoLjpKIiKqr++67D3v37oVWqy15Y7IJJWUKKusJAswUJLI2DAoS3YOyNhrhmoJEVJzffvsNL7/8MoKDg7FmzRpcvXrVaJvY2Fj4+/vjl19+scAIiYiounvttdeQm5uLGTNmIE8/2kM2y9lZ/D87W3QhLoqZgkTWi41GiO5BqdYU1LL7MBGVzvvvvw8nJyf89ttvaNy4sdntoqOjERcXV4kjIyIia/Hpp5/ivvvuw0cffYRff/0V3bp1Q506daDRGJ+8liQJc+fOtcAoqTIpmYKyLLICnZwMr2emIJH1YlCQ6B6UeU1Blg8TUTH279+P2NjYYgOCAODv74/du3dX0qiIiMiazJ8/H5IkQZZlJCYmYuXKlUbbKNczKGgblKAgILIFiwYFmSlIZL0YFCS6B/pBwVJ1H2amIBEV4/bt26hVq1aJ26Wnp3MtKCIiuisvv/wyJEmy9DCoCikaFPT2Nrye3YeJrBeDgkT3oKyNRrimIBEVp2bNmoiPjy9xu9OnT6N27dqVMCIiIrI28+fPt/QQqIrRDwqa6kCsXz7MTEEi68IIBdE9KE2jEZYPE1FpdezYEYcPH8auXbvMbvPLL78gPj4e3bp1q8SRERERkbUqmilYFDMFiawXg4JE96CkRiOyLLN8mIhKbdasWZAkCUOGDMGGDRtQUGD4ufL7779j0qRJcHBwwPTp0y00SiIiIrImSvdhwHRQkJmCRNaL5cNE96CkRiP6WYIAy4eJqHgtW7bEwoULMXPmTAwdOhQuLi6QJAnr1q3D+vXrkZmZCVmWsWTJEkRFRVl6uEREVA18+eWX93T7hx9+uJxGQlUVMwWJbBeDgkT3oKRGI/pZggDLh4moZE8++SQiIyMxb9487N+/H7IsIzMzEwDQrFkzLFiwAAMGDLDwKImIqLoYP378XTcWkSSJQUEbUFJQkJmCRNaLQUGie1BSo5GimYIsHyai0ujTpw/69OmDlJQUnD9/HlqtFrVr10ZgYKClh0ZERNVMnTp12G2YilWWTEEGBYmsC4OCRPegpEYj+p2HAWYKElHZ+Pn5wc/Pz9LDICKiaiwhIcHSQ6AqriyZgiwfJrIuXOCM6B6U1GikaPkw1xQkouKsXLkSSUlJlh4GERER2RD9oGBOjvH1zBQksl7MFCS6B/qZgoVyIbSy1iDwZ5QpyPJhIirGhAkTIEkSwsPD0bNnT/Ts2RPdu3eHp6enpYdGREREVoqZgkS2i0FBonugv6YgILIFHe3UmdJoTUGWDxNRMcaPH4+tW7fizJkzOHPmDD766CNoNBq0atVKFyTs0KEDHHianoiISik7Oxsu+lEfC98PVT3OzurPXFOQyLawlpHoHuhnCgLG6wrqlw9Ld/4jIjJn+fLlSEhIwOnTp7Fs2TLcf//98PDwwL59+/DGG2+gR48e8PHxQd++fbFw4UJLD5eIiKqB+vXr43//+x8KCwtL3tiEgoICLFu2DPXr1y/nkVFVUZZGI8wUJLIuDAoS3YOiQcGi6wrqlw9rJA07vxFRqYSHh+Pxxx/H+vXrkZKSgn/++Qevv/46unbtioKCAmzatAnPPfecpYdJRETVQFBQEKZOnYrQ0FDMmTMHcXFxpbrd6dOn8cILLyA0NBTTp09HcHBwBY+ULKUs5cPMFCSyLlYVFLx06RL+7//+D126dEFgYCDc3NzQuHFjPPPMM0hJSTHafuXKlZAkyeS/adOmmfwbX375JVq0aAEXFxfUrFkTkyZNwvXr1yv6oVEVpd9oBDARFNTLFGTpMBHdjfz8fGRmZiIzMxMZGRkoKBCfM7IsW3hkRERUHezfvx8ff/wx8vLy8MYbbyAyMhJ169bFyJEj8corr2Dp0qX48ssvsXTpUrzyyisYMWIE6tSpg6ioKLz11lvIz8/HJ598gn379ln6oVAFYaYgke2yqjUFf/75Z8yfPx/9+/fHM888oyu5Wrx4Mb799lvs378ftWrVMrrdiy++iEaNGhlc1rBhQ6PtFi1ahJkzZ6JLly54//33kZSUhPfeew979uzBvn374ObmVmGPjaomjaSBRtLo1g7M1xqWD+uvKcgmI0RUWocPH8bmzZuxZcsW7Ny5Ezk5OZBlGZ6enujfv79ufUEiIqKSSJKEyZMnY+zYsVi1ahWWLl2K//77DxcvXjRZxaKcdGrWrBmmTZuG0aNHcy1BK8dMQSLbZVVBwU6dOiExMdEg8Dd58mS0adMGkydPxrvvvot3333X6Ha9evVC165di73vGzduYM6cOYiJicGff/4JOzsR4ImJicGgQYPw/vvv48UXXyzXx0PVg4PGAbmFuQBKLh8mIirOyJEjsXXrVqSkpECWZTg4OKBt27a6IGBsbKxu/iEiIioLZ2dnTJ48GZMnT0ZCQgK2bt2KQ4cO4erVq0hPT4e3tzcCAgLQsmVLdOvWDaGhoZYeMlUS/aBgTo7x9cwUJLJeVhUUbNy4scnLR4wYgcmTJ+PYsWNmb5uZmQknJyc4mvmU27BhA7KysjB9+nSDA7KBAweiXr16WL16NYOCNspeY68LChbXaITlw0RUkjVr1kCSJDRr1gzz5s1D79694erqaulhERGRlQkNDcWECRMsPQyqIkrqPsxMQSLrZROpS0lJSQCAmjVrmrx+0KBB8PT0hLOzM6Kjo7F69Wqjbfbv3w8AaNeundF1bdu2xalTp3Dr1q1yHDVVF/rrChbNFGT5MBGVhYeHB2RZxpEjRzB69GgMGTIECxcuxJEjRyw9NCIishI7duzArl27LD0MqkK4piCR7bKqTEFz5s2bBwAYN26cweWurq546KGH0L17dwQEBOD8+fNYtmwZxo4di7Nnz+puBwDJyckAYLLrVnBwMGRZRnJyMiIiIso8vsDAQIPftVqtmS2pKtLvQFx0TUH98mFmChJRSVJTU7Fv3z5s2bIFW7ZswV9//YVNmzZBkiTUqFEDPXr0QK9evdCrVy+EhISU6b451xAREQB07doVXbt2xdatW8v1fjnPVF9cU5DIdlXJoGBaWhoWL15c6u1nzJgBX19fk9ctXLgQa9euxZQpU9C9e3eD64YPH47hw4cbXPboo4+idevWWLBgAcaNG6dbSyMrKwsA4OTkZPQ3nO/kWyvbkG3RDwoW132YawoSUUns7OzQrl07tGvXDnPnzkVWVha2bduGLVu24M8//8R3332H7777DgAQERGBkydPWnjERERU3fj4+CAoKMjSw6AqpCyZggwKElmXKhsUfOWVV0q9/ZgxY0wGBT/77DM888wz6N+/P5YuXVqq+3JycsLs2bMxfvx4bNq0CVOmTAEA3ZpOubm5Rt23cu6sxnq36z5dvnzZ4PeMjAx4eXnd1X1R5XPQmC8fNsgUZPkwEZWRq6sr+vXrh379+uHIkSP46quvsHTpUuTk5ODMmTNlui/ONUREBADNmzdHXFxcud8v55nqy9ERkCRAlkvOFGT5MJF1qZJBwdDQUMiyfE/3sXz5ckyZMgW9e/fGunXr4FCGUxpKduCNGzd0lyln0y5duoQGDRoYbH/p0iVIksQzbjbKoHy4SKMRgzUFWT5MRGWQlJSEzZs367IEr1+/DgC6rsSm1rglIiIqyYwZM/DAAw/g119/Rf/+/S09HKoCJElkC2Zlldx9mJmCRNalSgYF79Xy5csxadIk9OzZExs2bDBZ8lsc5cyZfmOSmJgYfPLJJ9izZ49RUHDv3r1o2LAh3N3d733wVO0U12jEoPswMwWJqAQbNmzQrSeozEWyLEOSJDRp0gQ9e/ZEz5490aVLF3YlJiKiu9KiRQtMmzYNDzzwAMaPH4+hQ4ciNDTUqBpKUadOnUoeIVmCEhRkoxEi22J1QcGVK1di8uTJ6N69O3788Ufden+mpKSkwM/Pz+Cy9PR0vPXWW3B0dESfPn10l99///2YMWMGli5dioceegh2diLA8/PPP+PcuXN47bXXKuYBUZVX2kYjXFOQiEoyZMgQ3c+1a9fWBQF79OiBgIAAC46MiIisRVhYGABx0unzzz/H559/bnZbSZJQUFBg9nqyHsphMxuNENkWqwoK/vTTT5g4cSI8PT0xYsQIrFu3zuB6d3d3DB48WPd706ZN0aVLFzRt2hQBAQFISEjA8uXLcfnyZSxcuNCgs6O/vz9ee+01zJ49Gz179sSoUaNw6dIlLFy4EJGRkXjqqacq6VFSVVPaRiMsHyaikgwePBi9evVCz549ER4ebunhEBGRFapduzYkSbL0MKiKURJFmSlIZFusKij477//QqvVIi0tTdcgRF/dunUNgoKjRo3Ctm3bsGnTJt1CuLGxsVixYoVBlqBi1qxZ8PPzw6JFizBjxgx4enpi+PDhePPNN1k6bMOKazRisKYgy4eJqATr16+39BCIiMjKJSQkWHoIVAUVFxRkpiCR9bKqoOD8+fMxf/78Um+/cOHCMv+N8ePHY/z48WW+HVmv4hqNGHQfZqYgERERERFVQfpBQVkWzUcUzBQksl5c5IzoHpW20QjXFCSi0jp58iQee+wxXRMrd3d3NGzYEI8//jhOnjxp6eERERGRldHvM5Oba3gdMwWJrBejFET3qLhGIywfJqKyWrlyJVq0aIFPP/0UcXFxyMrKQlZWFuLi4vDxxx+jRYsW+OKLLyw9TCIiqub+/vtvDB8+HCEhIXBycsLEiRN1123evBkvvvgirly5YsERUmXSDwrm5Bhex0xBIuvFoCDRPSpuTUGWDxNRWRw8eBCTJ09GXl4e+vfvjx9++AFHjx7F0aNHsWHDBgwcOBB5eXmYPHkyDhw4YOnhEhFRNbVgwQJ07doV33//PZKTk5Gfnw9ZlnXXe3l54a233uJatzZE6T4MGK8ryExBIuvFoCDRPSp2TUGWDxNRGbzzzjvQarX4/PPP8dNPP+H+++9HkyZN0KRJEwwaNAg//vgjli9fjoKCgrtaF5eIiOi3337Dyy+/jODgYKxZswZXr1412iY2Nhb+/v745ZdfLDBCsgT9TMGiQUElU9De3nCtQSKq/qyq0QiRJegHBYvNFGT5MBGV4O+//0bz5s3xyCOPmN1m/PjxWLp0KXbs2FGJIyMiImvx/vvvw8nJCb/99hsaN25sdrvo6GjExcVV4sjIkooLCiqZgswSJLI+TF0iukfFNRoxWFOQ5cNEVIIbN26gUaNGJW4XGRmJGzduVMKIiIjI2uzfvx+xsbHFBgQBwN/fn2sK2pDSZAoyKEhkfRgUJLpHxTUa0S8fZqYgEZXE29sbFy5cKHG7CxcuwMvLqxJGRERE1ub27duoVatWidulp6dDq9WWuB1Zh9IEBdlkhMj6MChIdI9K22iEawoSUUliYmKwe/dubN261ew2W7duxa5du9CmTZtKHBkREVmLmjVrIj4+vsTtTp8+jdq1a1fCiKgqYPkwkW1ilILoHpW20QjLh4moJNOnT4dWq8XAgQPx7LPP4vjx48jKykJWVhaOHTuG2bNnY+DAgbptiYiIyqpjx444fPgwdu3aZXabX375BfHx8ejWrVsljowsST8omJNjeB0zBYmsF4OCRPeouEYjBmsKsnyYiErQp08fvPTSS8jOzsbChQvRrFkzeHh4wMPDA9HR0Vi0aBGys7MxZ84c9O7d29LDJSKiamjWrFmQJAlDhgzBhg0bUFBg+P31999/x6RJk+Dg4MATUDbE2Vn9mZmCRLaDQUGie1RcoxGD7sPMFCSiUnjttdewceNGdOvWDU5OTpBlGbIsw9HREd27d8fGjRvxyiuvWHqYRERUTbVs2RILFy7EjRs3MHToUHh7e0OSJKxbtw7e3t7o378/rl27hoULFyIqKsrSw6VKwjUFiWyTfcmbEFFx9DMFC+VCaGWtbv1A/fJhrilIRKXVt29f9O3bF4WFhUhJSQEA+Pn5wc6OJxeIiOjePfnkk4iMjMS8efOwf/9+yLKMzMxMAECzZs2wYMECDBgwwMKjpMrENQWJbBODgkT3SL/RCCCyBR3txGk0lg8TUWnEx8dj/fr1SEhIgJOTE5o3b47hw4fDxcUFAQEBlh4eERFZoT59+qBPnz5ISUnB+fPnodVqUbt2bQQGBlp6aGQBzBQksk0MChLdI/1MQUA0G1GCgiwfJqKSLF68GM8++ywKCwsNLp87dy42btyIJk2aWGhkRERkC/z8/ODn52fpYZCFmQsKFhYC2jt5DswUJLI+rGckukf6awoChusKsnyYiIqzc+dOzJo1CwUFBXB1dUWLFi1Qv359SJKEpKQkDB06FFqttuQ7IiIiKqWVK1ciKSnJ0sOgKsZc92ElSxBgpiCRNWKUgugeGWUKatWZ0yBTkOXDRFTE0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MIiKyIhMmTEDdunURGRmJadOmYcOGDcjIyLD0sMjCzHUfVtYTBJgpSGSNGBQkukcaSWOQBaifKWiwpiDLh4moiD179iAkJAQff/wx3NzcdJc3a9YM77//PmRZxt69ey04QiIisjbjx49H7dq1cebMGXz44YcYOnQo/Pz80LZtW8yZMwfbtm1Dvn56GNkEc+XD+i8FBgWJrA+DgkTlQL/ZiLnyYWYKElFRV69eRevWreFooh6nY8eOAIBr165V9rCIiMiKLV++HAkJCTh9+jSWLVuG+++/Hx4eHti3bx/eeOMN9OjRAz4+Pujbty8WLlxo6eFSJSlNUJDlw0TWh0FBonKgX0KcX2i6fJhrChJRUXl5efD29jZ5naenp24bIiKi8hYeHo7HH38c69evR0pKCv755x+8/vrr6Nq1KwoKCrBp0yY899xzlh4mVRJzQUGWDxNZN0YpiMqBfrMRs5mCLB8mIiIioiooPz8fmZmZyMzMREZGBgoKxPdZWZYtPDKqLMwUJLJN9iVvQkQlMcgU1Gs0YrCmIMuHiciE+Ph4fPnll3d1/cMPP1xRwyIiIit3+PBhbN68GVu2bMHOnTuRk5MDWZbh6emJ/v37o2fPnujZs6elh0mVhJmCRLaJQUGicmB2TUEtMwWJqHi7du3Crl27TF4nSZLZ6yVJYlCQiIjKbOTIkdi6dStSUlIgyzIcHBzQtm1bXRAwNjYWdnb83mpr9LsP5+SoPzNTkMi6MShIVA7Mrikoc01BIjKvTp06kCTJ0sMgIiIbsmbNGkiShGbNmmHevHno3bs3XF1dLT0ssjBHR0CSAFlmpiCRLWFQkKgc6AcFlUxBWZZZPkxExUpISLD0EIiIyMZ4eHggMzMTR44cwejRo9GpUyf06tULPXv2RHR0tKWHRxYiSaKEOCuLawoS2RIGBYnKgalGI/oBQYDlw0RERERkeampqdi3bx+2bNmCLVu24K+//sKmTZsgSRJq1KiBHj16oFevXujVqxdCQkIsPVyqRKaCgswUJLJuDAoSlQNTjUb0S4cBZgoSERERkeXZ2dmhXbt2aNeuHebOnYusrCxs27YNW7ZswZ9//onvvvsO3333HQAgIiICJ0+etPCIqbIozUaYKUhkOxgUJCoHphqN6DcZAbimIBERERFVPa6urujXrx/69euHI0eO4KuvvsLSpUuRk5ODM2fOWHp4VIlMBQWZKUhk3RgUJCoHphqNsHyYiIiIiKqypKQkbN68WZcleP36dQDQdSVu166dhUdIlUkJCrL7MJHtYFCQqByYajTC8mEiIiIiqmo2bNigW08wLi4OgAgCSpKEJk2aoGfPnujZsye6dOnCrsQ2xtlZ/D87W3QhliRmChJZOwYFicqBqUYjLB8mIiIioqpmyJAhup9r166tCwL26NEDAQEBFhwZWZqSKQgAubkiSKifKcigIJH1YVCQqByUqtEIy4eJiIiIyMIGDx6MXr16oWfPnggPD7f0cKgK0Q8KZmcbBwVZPkxkfRgUJCoHphqN6K8pKEFipiARERERWdz69estPQSqoooGBX18WD5MZO0YpSAqB6YajeiXDzNLkIiIiIiIqrKiQUGAmYJE1o5BQaJyYHJNQb3yYWYJEhEREVFVcvLkSTz22GNo2LAh3N3d4e7ujoYNG+Lxxx/HyZMnLT08sgBTQUFmChJZN5YPE5UDk2sK6mcKsvMwEREREVURK1euxGOPPYb8/HzIsqy7PC4uDnFxcVixYgU+/vhjjBs3zoKjpMqmdB8GgJwc8X9mChJZN6YvEZUD/aCgqTUFWT5MRERERFXBwYMHMXnyZOTl5aF///744YcfcPToURw9ehQbNmzAwIEDkZeXh8mTJ+PAgQOWHi5VImYKEtkeZgoSlQNTjUb0y4eZKUhEREREVcE777wDrVaLzz//HI888ojBdU2aNMGgQYOwcuVKTJgwAQsXLsQ333xjoZFSZeOagkS2h5mCROWgpEYjXFOQiIiIiKqCv//+G82bNzcKCOobP348WrZsiR07dlTiyMjSmClIZHsYqSAqB6YajbB8mIiIiIiqmhs3bqBRo0YlbhcZGYkbN25UwoioqmCmIJHtYVCQqByYbDTC8mEiIiIiqmK8vb1x4cKFEre7cOECvLy8KmFEVFUwU5DI9jAoSFQO9IOCWlkLraxl+TARERERVTkxMTHYvXs3tm7danabrVu3YteuXWjTpk0ljowsjZmCRLaHkQqicqDfaAQQJcQGmYIsHyYiIiKiKmD69OnQarUYOHAgnn32WRw/fhxZWVnIysrCsWPHMHv2bAwcOFC3LdkOZ2f155wc8X/9oCAzBYmsD7sPE5UD/UxBQDQbMVhTkOXDRERERFQF9OnTBy+99BJef/11LFy4EAsXLjTaRpZlzJ07F71797bACMlSWD5MZHuYKUhUDvQbjQB3MgW1zBQkIiIioqrntddew8aNG9GtWzc4OTlBlmXIsgxHR0d0794dGzduxCuvvGLpYVIlY/kwke1hpiBROSiaKZhXmGdQPsw1BYmIiIioKunbty/69u2LwsJCpKSkAAD8/PxgZ8eT2bbK1VX9OStL/J+ZgkTWzSojFaGhoZAkyeS/GzduGG2fnJyMhx9+GP7+/nBxcUHr1q2xdu1ak/edm5uLl19+GWFhYXByckL9+vWxYMEC5OufQiGbo5E0cLRTT53lFuYaZgqyfJiIiIiILCg+Ph5vv/02pk6diqeffhpffPEFsrOzYWdnh4CAAAQEBDAgaOP0m02np4v/M1OQyLpZbaZgZGQkXnrpJaPLPTw8DH5PTU1Fx44dce3aNcycORMhISH4+uuvMXz4cCxfvhyPPPKIwfYjRozAjz/+iAkTJqBdu3bYs2cP5s6di/j4eKxcubIiHxJVcc72zsgrFKfScgpyDNcUZPkwEREREVnI4sWL8eyzz6KwsNDg8rlz52Ljxo1o0qSJhUZGVYl+UDAtTfyfmYJE1s1qg4I1a9bEmDFjStzuzTffxPnz5/HTTz/pumxNnDgR7dq1w+zZszFs2DC4u7sDADZu3Igff/wRM2fO1C3IO2nSJHh7e+O9997DlClT0L59+4p7UFSlOds7IyM3AwCQW5Br2H2YmYJEREREZAE7d+7ErFmzIMsy3Nzc0LBhOeSaAwAAKN1JREFUQ2RkZODcuXNISkrC0KFDcfLkSWg0VllERmXg7a3+zExBIttg1Z/8BQUFyMjIKHabr7/+GvXr19cFBAHAzs4O06dPR2pqKjZu3GiwLQA89dRTBveh/L569eryGThVS052TrqfcwpyDMqHuaYgEREREVnC0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MqgLc3AClgpyZgkS2wWojFf/88w9cXV3h5eUFb29vjBs3DsnJyQbbXL58GZcuXULbtm2Nbq9ctn//ft1l+/fvR3BwMGrXrm2wbe3atREUFGSwLdkeZ3tn3c8sHyYiIiKiqmDPnj0ICQnBxx9/DDc3N93lzZo1w/vvvw9ZlrF3714LjpCqCklSS4hNZQoyKEhkfayyfLhx48aYNGkSGjVqhPz8fGzbtg2fffYZ/vzzT+zbtw9BQUEAoAsSBgcHG92HctmlS5d0lyUnJyMqKsrk3wwODkZSUtJdjTcwMNDgd61Wa2ZLqsqKBgVZPkxEVQnnGiIi23T16lX069cPjiZqPzt27AgAuHbt2j3/Hc4z1sHLC0hNNc4UtLcXQUMisi5VNiiYlpaGxYsXl3r7GTNmwNfXFwDw66+/Glw3cuRIdO7cGaNHj8a8efPw6aefAgCy7vRZd3JyQlHOzs4G2yg/m9pW2V5/W7I9zBQkIiIioqomLy8P3vqLxenx9PTUbUMEqOsKpqUBsqxmCnI9QSLrVKWDgq+88kqptx8zZowuKGjKQw89hJdeeskgYOjq6goAyM3NNdo+JyfHYBvlZ1PbKtvrb1sWly9fNvg9IyMDXvqtn6haKBoU1A8Eck1BIrI0zjVERFSROM9YByUoWFAAZGerQUGWDhNZpyobFAwNDYUsy+V+n7t27dL9rpQR65cIK5TL9EuLg4KCTG6rbG+qDJlsh5O9mkWaW5gLZ0kNErJ8mIiIiIgsJT4+Hl9++eVdXf/www9X1LCoCtKP46alqeXDDAoSWacqGxSsCPHx8ahZs6bu98DAQAQHB5tcWFe5rHXr1rrLYmJi8NVXX+HixYsGzUYuXryI5ORkDBo0qAJHT1Vd0UxBB406c7J8mIiIiIgsZdeuXQbJEfokSTJ7vSRJDAraGP1K8/R0lg8TWTurCwqmpqaaLCNetmwZkpKS8PjjjxtcPmrUKLz77rv4+eefMXDgQABAYWEhPvjgA3h7e6Nfv34G23711VdYvHgxFi5cqLtcWftw9OjRFfCIqLooGhR0dVDLyVk+TERERESWUKdOHUjsEEGlxExBIttidUHBL7/8Ep9//jn69u2L0NBQFBQUYNu2bdiwYQPq169vtE7h888/j7Vr1+Khhx7CzJkzERwcjG+++Qb79+/HZ599Bg8PD922/fv3x4ABA/Dee+8hPT0d7dq1w549e/D5559jzJgxuu5dZJuMug9r2X2YiIiIiCwrISHB0kOgakQ/UzAtjZmCRNbO6oKCMTEx2Lp1K7777jtcv34dsiwjLCwMzz33HJ5//nmjzlt+fn7YtWsXnn/+eSxbtgy3bt1CVFQUvv32W4wYMcLo/teuXYsFCxZg9erVWLVqFYKDg/Hqq6/i+eefr6RHSFUVuw8TEREREVF1VrR8mJmCRNbN6oKCHTp0wE8//VSm2wQHB2PVqlWl2tbZ2RkLFizAggUL7mZ4ZMWc7NRGI3mFecjX5ut+Z6YgERERERFVdUXLh5kpSGTduNAZUTnRzxQEgKz8LN3PXFOQiIiIiIiqOmYKEtkWRiqIyklxQUGWDxMRERERUVWnnymYkgLIsviZmYJE1olBQaJyYq+xNygTzs7P1v3M8mEiIiIiIqrq9DMFr19Xf2amIJF1YlCQqJxIkmSQLShD1v3MTEEiIiIiIqrq9DMF9YOCzBQksk4MChKVIyd7J5OXc01BIiIiIiKq6pgpSGRbGKkgKkdF1xVUsHyYiIiIiIiqOmYKEtkWBgWJypHZoCDLh4mIiIiIqIqztwfc3MTPzBQksn4MChKVI3NBQZYPExERERFRdaCUEN+6pV7GoCCRdWKkgqgcsXyYiIiIiIiqM/0SYgXLh4msE4OCROXIyc50oxGWDxMRERERUXWg32xEwUxBIuvEoCBROWKmIBERERERVWemgoLMFCSyTgwKEpUjrilIRERERETVmanyYWYKElknRiqIyhG7DxMRERERUXXGTEEi28GgIFE5YvkwERERERFVZ8wUJLIdDAoSlSMnezYaISIiIiKi6ouZgkS2g0FBonLENQWJiIiIiKg6Y6Ygke1gpIKoHLF8mIiIiIiIqjNmChLZDgYFicoRG40QEREREVF1ZiooyExBIuvEoCBROXKyc4IEyehylg8TEREREVF1YKp8mJmCRNaJkQqiciRJEhztDGdMCRKDgkREREREVC0wU5DIdjBSQVTOipYQs3SYiIiIiIiqCzYaIbIdDAoSlTOjoCCbjBARERERUTXBRiNEtoNBQaJyVjQoyNJhIiIiIiKqLlxcjDMDmSlIZJ0YrSAqZywfJiIiIiKi6kqSjEuImSlIZJ0YFCQqZ072Tga/s3yYiIiIiIiqk6IlxMwUJLJODAoSlTNmChIRERERUXXGTEEi28CgIFE545qCRERERERUnTFTkMg2MFpBVM7YfZiIiIiIiKozZgoS2QYGBYnKGcuHiYiIiIioOmOmIJFtYFCQqJw52bHRCBERERERVV9Fg4LMFCSyTgwKEpUzrilIRERERETVWdHyYWYKElknRiuIyhnLh4mIiIiIqDpjpiCRbWBQkKicsdEIERERERFVZ8wUJLINDAoSlTOWDxMRERERUXXGRiNEtoHRCqJy5mRfpNEIy4eJiIiIiKgaYfkwkW1gUJConNlr7GGvsdf9zvJhIiIiIiKqTlg+TGQbGBQkqgD6JcTMFCQiIiIiouqEmYJEtoFBQaIKoB8U5JqCRERERERUnRTNFLS3N70dEVVvjFYQVQCDTEGWDxMRERERUTXi6an+7OAASJLlxkJEFYdBQaIK4GSnNhth+TAREREREVUndnaAh4f4mesJElkvBgWJKgDLh4mIiIiIqDpT1hVkUJDIejFaQVQBQr1DdT/X9apruYEQERERERHdhe7dxf87dbLsOIio4nC5UKIK0DKwJVwcXOCgcUCEX4Slh0NERERERFQmn34KTJoExMRYeiREVFEYFCSqAHYaOzQJaGLpYRAREREREd0VBwegY0dLj4KIKhLLh4mIiIiIiIiIiGwMg4JEREREREREREQ2xqqCgitXroQkScX+u3TpUqm2nzZtmsm/8eWXX6JFixZwcXFBzZo1MWnSJFy/fr2yHiIREREREREREdE9s6o1BTt37oxVq1YZXX758mU8++yzaNGiBYKDg42uf/HFF9GoUSODyxo2bGi03aJFizBz5kx06dIF77//PpKSkvDee+9hz5492LdvH9zc3MrvwRAREREREREREVUQqwoK1qtXD/Xq1TO6/P/+7/8AABMnTjR5u169eqFr167F3veNGzcwZ84cxMTE4M8//4SdnR0AICYmBoMGDcL777+PF1988d4eABERERERERERUSWwqvJhU2RZxvLly+Hi4oLRo0eb3S4zMxN5eXlmr9+wYQOysrIwffp0XUAQAAYOHIh69eph9erV5TpuIiIiIiIiIiKiimL1QcHt27cjPj4eQ4cOhbe3t8ltBg0aBE9PTzg7OyM6OtpkgG///v0AgHbt2hld17ZtW5w6dQq3bt0q17ETERERERERERFVBKsqHzbl888/BwBMmjTJ6DpXV1c89NBD6N69OwICAnD+/HksW7YMY8eOxdmzZzFv3jzdtsnJyQBgck3C4OBgyLKM5ORkRERElHmMgYGBBr9rtdoy3wcREVFxONcQEVFF4jxDRFT9VMmgYFpaGhYvXlzq7WfMmAFfX1+T97Nu3To0aNAAXbp0Mbp++PDhGD58uMFljz76KFq3bo0FCxZg3LhxCA0NBQBkZWUBAJycnIzux9nZ2WAbIiIiIiIiIiKiqqzKBgVfeeWVUm8/ZswYk0HBr7/+GtnZ2WYbjJji5OSE2bNnY/z48di0aROmTJkCQGQVAkBubi5cXFwMbpOTk2OwTVldvnzZ4PeMjAx4eXnd1X0RERGZwrmGiIgqEucZIqLqp0oGBUNDQyHL8j3fz+effw57e3uMHz++zH8fEB2HFUFBQQCAS5cuoUGDBgbbX7p0CZIk6bYhIiIiIiIiIiKqyqy20cjhw4fx77//on///qhVq1aZbhsXFwcAqFmzpu6ymJgYAMCePXuMtt+7dy8aNmwId3f3exgxERERERERERFR5bDaoOBnn30GAMWWDqekpBhdlp6ejrfeeguOjo7o06eP7vL7778fLi4uWLp0KQoLC3WX//zzzzh37hxGjx5djqMnIiIiIiIiIiKqOFWyfPhe5eTk4KuvvkJQUBD69etndrumTZuiS5cuaNq0KQICApCQkIDly5fj8uXLWLhwIUJCQnTb+vv747XXXsPs2bPRs2dPjBo1CpcuXcLChQsRGRmJp556qhIeGRERERERERER0b2zyqDg+vXrkZaWhqlTp8LOzs7sdqNGjcK2bduwadMm3UK4sbGxWLFihUGWoGLWrFnw8/PDokWLMGPGDHh6emL48OF48803WTpMRERERERERETVhiSXR0cPKldKgDI9PR2enp6WHg4RUbXHz1Vj3CdEROWLn6uGuD+IiMpXRXyuWu2agkRERERERERERGSaVZYPV3dK8mZGRoaFR0JEZB2Uz1Mmx6s41xARlS/ONYY4zxARla+KmGcYFKyCMjMzAQC1a9e28EiIiKxLZmYmvLy8LD2MKoFzDRFRxeBcI3CeISKqGOU5z3BNwSpIq9UiOTkZHh4ekCSp1LcLDw8HAMTFxVXU0KoF7gfuAwX3A/cBIPaBLMv4999/ERQUBI2GK2cAnGvuBfcB94GC+4H7QMG5xhjnmbvHfSBwP3AfKLgfKm6eYaZgFaTRaBASEnJXtwNg8wv5cj9wHyi4H7gPAHUf3M3nqjXjXHP3uA+4DxTcD9wHCs41xjjP3D3uA4H7gftAwf1QcfMMT2ERERERERERERHZGAYFiYiIiIiIiIiIbAzXFCQiIiIiIiIiIrIxzBQkIiIiIiIiIiKyMQwKEhERERERERER2RgGBYmIiIiIiIiIiGwMg4JEREREREREREQ2hkFBIiIiIiIiIiIiG8OgIBERERERERERkY1hUJCIiIiIiIiIiMjGMChIRERERERERERkYxgUJCIiIiIiIiIisjEMChIREREREREREdkYBgWJiIiIiIiIiIhsDIOCRERERERERERENoZBQSIiIiIiIiIiIhvDoKAV0Gq1WLRoESIjI+Hs7IzatWtj1qxZuH37tqWHVinOnDmDl19+GW3btoW/vz88PDzQvHlzvP766zazD0zJyspCvXr1IEkSpk2bZunhVKrU1FTMnj0bDRo0gLOzM/z9/dGtWzf8/ffflh5apbl16xbeeOMNNG3aFB4eHqhRowbat2+PlStXQpZlSw+vXP3f//0fhg0bpnu9h4aGFrv9P//8g549e8LDwwOenp7o27cvDh8+XCljra5sfZ4BONeYY6tzDecZzjPF4TxTdpxnOM+YY6vzDMC5xpbmGcByc4393Q2XqpKnn34aS5YswQMPPIBZs2bh5MmTWLJkCQ4dOoQtW7ZAo7Hu2O/y5cuxbNkyDBo0CKNHj4aDgwP++usvzJkzB2vWrMHevXvh4uJi6WFWupdffhnXr1+39DAqXWJiIrp27Ypbt25h4sSJiIiIQHp6Oo4ePYpLly5ZeniVQqvV4r777sPu3bsxbtw4TJ8+HVlZWfjmm2/wyCOP4OTJk3jrrbcsPcxy8+KLL8LX1xctW7ZEWlpasdvu3bsXXbt2RXBwMF599VUAwNKlS9GpUyfs3r0bTZs2rYQRVz+2Ps8AnGvMscW5hvMM55nicJ65O5xnOM+YY4vzDMC5xtbmGcCCc41M1dqxY8dkSZLkIUOGGFy+ZMkSGYD81VdfWWhklWf//v1yWlqa0eUvvfSSDED+4IMPLDAqyzp48KBsZ2cnL1y4UAYgP/HEE5YeUqXp2LGjHBISIicnJ1t6KBaze/duGYD81FNPGVyem5srh4WFyV5eXpYZWAU5e/as7ufGjRvLdevWNbttTEyM7OHhISclJekuS0pKkj08PORevXpV5DCrLc4zAucaY7Y613Ce4TzDeaZ8cZ4ROM8Ys9V5RpY519jaPCPLlptrrP+Ui5X75ptvIMsynnrqKYPLJ0+eDFdXV6xevdoyA6tErVu3hpeXl9HlI0aMAAAcO3assodkUYWFhZg8eTL69u2LIUOGWHo4lWrHjh3YuXMnnn32WQQGBiI/Px9ZWVmWHlaly8jIAAAEBQUZXO7o6IgaNWrAzc3NEsOqMPXq1SvVdvHx8di/fz+GDRuG4OBg3eXBwcEYNmwYtmzZgitXrlTUMKstzjMC5xpDtjrXcJ4ROM+Yxnnm7nCeETjPGLLVeQbgXAPY3jwDWG6uYVCwmtu/fz80Gg1iY2MNLnd2dkbz5s2xf/9+C43M8pKSkgAANWvWtPBIKteiRYtw6tQpLF261NJDqXQbN24EANSpUwcDBw6Ei4sL3NzcEBERYTNfKAEgNjYW3t7eePvtt7F27VpcuHABp06dwgsvvICDBw9i/vz5lh6iRSifh+3atTO6rm3btpBlGQcPHqzsYVV5nGeKx7nGtuYazjMC5xnTOM/cHc4zxeM8Y1vzDMC5BuA8U5zynmsYFKzmkpOTUaNGDTg5ORldFxwcjBs3biAvL88CI7OswsJCvPbaa7C3t8dDDz1k6eFUmvPnz2PevHl4+eWXS1yY1BqdPn0agDiznJqaii+++ALLly+Ho6Mjxo4dixUrVlh4hJXDx8cHP/30E3x9fTF8+HDUrVsXjRo1wrJly7Bu3TpMnjzZ0kO0iOTkZAAwOKOmUC6zhTVayorzjHmca2xvruE8I3CeMY3zzN3hPGMe5xnbm2cAzjUA55nilPdcw0Yj1VxWVpbJCRQQZ9eUbRwdHStzWBb31FNPYc+ePXjjjTfQsGFDSw+n0jz22GOoV68eZs6caemhWERmZiYAwMPDA3/99ZfudT948GDUq1cPL774IsaNG2cTi1W7u7ujSZMmGDRoENq3b4/U1FQsW7YMDz30EH788Uf06tXL0kOsdErZhanPTP3PSzLEecY8zjW2N9dwnlFxnjHGeebucJ4xj/OM7c0zAOcaBecZ08p7rrHuV5ENcHV1RW5ursnrcnJydNvYkrlz52Lp0qWYMmUKXnjhBUsPp9KsXr0amzdvxkcffQQHBwdLD8cilI5so0aNMvji6OPjg0GDBuHKlSu6M2/W7L///kP79u3Rq1cvvPPOO3jggQcwceJE7Ny5E7Vq1cLkyZNRWFho6WFWOuWz0NRnpq1+XpYG5xnTONfY5lzDeUbgPGMa55m7w3nGNM4ztjnPAJxrAM4zxSnvuYZBwWouKCgIN27cMPmCuHTpEmrUqGFTZ9Xmz5+PBQsW4JFHHsH//vc/Sw+n0uTm5mLmzJno168fatWqhfj4eMTHxyMxMREAkJ6ejvj4+BJbm1d3ISEhAIBatWoZXRcYGAgAuHnzZqWOyRIWLVqEnJwcDBs2zOByV1dX9O/fH4mJiUhISLDM4CxIWajYVDq9cpmpNHxbx3nGGOca251rOM8InGdM4zxzdzjPGOM8Y7vzDMC5BuA8U5zynmsYFKzmYmJioNVqsW/fPoPLc3JycPjwYbRu3dpCI6t88+fPxyuvvIJx48bhs88+gyRJlh5SpcnOzsb169fx66+/Ijw8XPeva9euAMQZt/DwcHz22WeWHWgFUxaoVhZk1qdcFhAQUKljsgRlMjB19qygoMDg/7YkJiYGALBnzx6j6/bu3QtJktCqVavKHlaVx3nGEOca255rOM8InGdM4zxzdzjPGOI8Y9vzDMC5BuA8U5xyn2tkqtaOHj0qS5IkDxkyxODyJUuWyADkVatWWWhkleuVV16RAchjx46VCwsLLT2cSpeXlyevXbvW6N+HH34oA5D79u0rr127Vj59+rSlh1qhUlNTZQ8PDzk4OFjOzMzUXZ6cnCy7ubnJERERFhxd5XnqqadkAPJbb71lcPnNmzflwMBA2cfHRy4oKLDQ6CpW48aN5bp165q9vnXr1rKHh4d86dIl3WWXLl2SPTw85B49elTCCKsfzjMqzjWcazjPCJxn6pq9nvNM2XGeUXGe4Twjy5xrZNm25xlZrty5RpJlWb6XKCVZ3vTp07F06VI88MAD6NevH06ePIklS5agQ4cO2Lp1q9UvQLps2TJMmzYNderUwWuvvWb0eGvWrGmzi5AmJCQgLCwMTzzxBJYuXWrp4VSKTz75BI8++igaN26MCRMmIC8vDx999BEuX76MX375Bb1797b0ECtcYmIiWrZsiZs3b2L06NHo0KEDUlNT8emnnyIhIQHLli3D1KlTLT3McrNq1SpdWckHH3yAvLw8zJo1CwBQt25djB07Vrft7t270a1bN4SEhGD69Om621y9ehW7du1CdHR05T+AasDW5xmAc01xbG2u4TzDeYbzTPnjPMN5pji2Ns8AnGtsbZ4BLDjX3F3ckqqSgoIC+d1335UjIiJkR0dHOSgoSH766acNzipYs3HjxskAzP7r0qWLpYdoMefPn5cByE888YSlh1Kp1q1bJ7dp00Z2dXWV3d3d5V69esk7d+609LAqVXx8vPzwww/LwcHBsr29vezh4SF36tRJXrdunaWHVu66dOlSpvf/7t275e7du8tubm6yu7u73Lt3b/ngwYOVP/BqxNbnGVnmXFMcW5xrOM9wnuE8U744z3CeKY4tzjOyzLnGluYZWbbcXMNMQSIiIiIiIiIiIhtj/XnYREREREREREREZIBBQSIiIiIiIiIiIhvDoCAREREREREREZGNYVCQiIiIiIiIiIjIxjAoSEREREREREREZGMYFCQiIiIiIiIiIrIxDAoSERERERERERHZGAYFiYiIiIiIiIiIbAyDgmTTQkNDIUlSsf8WL15s6WFSOTl06BDs7Owwffp0g8u3bdume76Lk5CQoNsuISHhrseRnp4OPz8/tGnTBrIs3/X9EFHVx3nGtnCeIaLKxnnGtnCeofJmb+kBEFUFHTp0QIMGDUxeFxUVVcmjoYoyffp0uLi4YO7cuRYdh5eXF1544QU888wz+PLLLzFu3DiLjoeIKh7nGdvAeYaILIXzjG3gPEPljUFBIgCTJk3C+PHjLT0MqkDff/89du3ahWeeeQYBAQGWHg6mTZuGt99+Gy+88AJGjhwJJycnSw+JiCoQ5xnrx3mGiCyJ84z14zxDFYHlw0RkExYtWgQAmDhxooVHIjg7O+Ohhx7C5cuX8d1331l6OEREdI84zxARUUXiPEMVgUFBolJS1utISEjAjz/+iO7du8PX1xeSJGHbtm267W7evIl58+ahefPm8PDwgKurK5o2bYoFCxYgKyvL5H0XFBRg8eLFaNq0KZydneHv74+hQ4fiv//+w8qVKyFJktGZv/nz50OSJMyfP9/kfSrrSnTt2tXk9cnJyZg5cyYaNWoEV1dXeHh4ICYmBkuXLkVBQYHR9uPHj4ckSVi5ciXOnz+PsWPHolatWnByckL9+vUxZ84c5Obmmt1/Bw8exLhx4xAWFgZnZ2f4+voiOjoazzzzDBITEwEAK1asgCRJ6NOnj9n7SU5OhoODA1xcXJCSkmJ2O32HDh3C7t270bZtWzRs2LBUtykL5bko6V9RynO6bNmych8TEVU/nGc4z5jDeYaIygPnGc4z5nCesV0sHyYqo4ULF2Lp0qVo3bo1+vbti+TkZNjZ2QEATpw4gb59++LixYsIDAxEx44d4eDggH379mHu3LlYt24dtm3bBi8vL939abVaDBs2DBs2bICjoyO6du0KHx8f/PPPP4iNjcWECRPK/THs2LEDgwcPxs2bNxEaGopevXohNzcX+/btw/Tp0/Hzzz/jl19+gYODg9FtDx8+jCeffBI+Pj7o0qULUlNTsWvXLrz++us4fvw4fvjhB6PbvPPOO3j++eeh1WoRERGB+++/H9nZ2YiPj8e7776Lxo0bY/z48XjooYfw3HPPYfPmzThz5gwiIiKM7uvjjz9GQUEBxo4dCz8/v1I93g0bNgAAevbsWbYdVUrNmzc3u47G6dOnsXfvXmg0xudgmjdvDn9/f+zbtw+XL19GYGBghYyPiKoXzjOcZ4riPENE5YnzDOeZojjP2DCZyIbVrVtXBiCvWLGi1Nva2dnJP/74o9H1WVlZcv369WUA8pw5c+Tc3Fzddbdv35ZHjRolA5AfeeQRg9stXbpUBiDXrFlTPnHihO7y/Px8+fHHH5cByADkcePGGdxu3rx5MgB53rx5Jsf7119/yQDkLl26GFx++fJl2c/PT5YkSf7www/lwsJC3XU3btyQu3fvLgOQX3nlFYPbjRs3TjeWl156SS4oKNBd999//8lubm4yAHn37t0Gt/vxxx9lALKzs7P83XffGY3z+PHjBo/7pZdekgHIM2bMMNo2Ly9PrlWrlgxAPnjwoMnHbUrHjh1lAPKvv/5q8nplX5X0kXj+/HnddufPny/x7yYmJsqBgYEyAHnp0qUmtxk0aJAMQF61alWJ90dE1Q/nGc4zssx5hogqDucZzjOyzHmG7h6DgmTTlInR3D/9CUjZdsKECSbv66OPPpIByAMGDDB5fWZmphwQECDb29vLqampussbNGggA5A/+ugjo9tkZ2frJo3ymkSfe+45GYA8bdo0k7dLSkqSHRwcZH9/f1mr1eouVybRVq1aGVyueOyxx2QA8quvvmpwefPmzWUA8sKFC03+vaIuXbokOzg4yF5eXvKtW7cMrvvmm29kAHK7du1KdV8KZYI/d+6cyev1J9HS/itpEr1586YcFRUlA5CfeeYZs9u98MILMgD56aefLtNjIqLqgfOMMc4znGeIqPxwnjHGeYbzDJUey4eJAHTo0AENGjQwujwyMtLosgcffNDkffz6668AgBEjRpi83t3dHa1bt8bGjRuxf/9+9O7dG5cuXUJ8fDwAYMyYMUa3cXZ2xvDhw7FkyZJSP5aSlDTO4OBghIeH48SJE4iLizNKeR8wYIDJ9SQaNWoEALh06ZLusitXruDw4cPQaDSlXhA3KCgIDz74IL755husWrUKjz32mO46Za2KadOmleq+AOD27du4ffs2AJQqPd9c2jwA3Lp1C+vWrSvxPvLy8jB48GCcOHECI0eOxFtvvWV2W2VMV69eLfF+iaj64jyj4jzDeYaIyh/nGRXnGc4zVHoMChIBmDRpktHCt+aEhoaavPzcuXMAgLFjx2Ls2LHF3sf169cBAElJSQCAGjVqwN3d3eS2YWFhpRpXaSnj7NSpU4nbXr9+3WgSrVOnjsltPT09AQA5OTm6yy5cuAAACAwMNFh3pCQzZszAN998g2XLlukm0aNHj2Lnzp2oWbOm2S8ypqSnp+t+9vDwKHH7lStXmr0uISGhxElUlmWMHz8e27dvR5cuXXQLK5uj7LebN2+WODYiqr44z5jGecYQ5xkiulucZ0zjPGOI8wwVxaAgURm5uLiYvFyr1QIA+vbti5o1axZ7H3Xr1i33cZkbj7nLH3zwQbi5uRV7H6bORJlaYLa8tW3bFrGxsdi3b59uMlLOqk2ZMgWOjo6lvi9vb2/dz5mZmbpJq6I8//zz+OabbxAVFYUNGzbAycmp2O2VSd7Hx6dCx0VE1QfnGc4zxeE8Q0T3ivMM55nicJ6xLQwKEpWT2rVr49SpU5g4cWKpz/wEBwcDAG7cuIFbt26ZPLuWkJBg8rbKRJKZmWny+sTERLPjjIuLw3PPPYfWrVuXapx3SzkLd/nyZaSnp5f57NqYMWOwdOlSREdH46uvvoK9vb1B+n1puLq6ws3NDbdv30ZKSkqFTqIffvgh3n77bQQFBeG3334zmMDNSUlJAYASv3gREXGeMcZ5xrvE23CeIaLS4jxjjPOMd4m34TxTvVV8iJzIRtx3330AgDVr1pT6NiEhIahXrx4A4Ouvvza6Pjc3F2vXrjV5W2UCPnnypMnrlbU2ymOcd6tWrVqIjo6GVqvF8uXLy3Tb4cOHIzAwEBs2bMDrr7+O27dv44EHHkBQUFCZx9GyZUsAwIkTJ8p829L66aefMGPGDHh4eODXX381W5ZQ1LFjxwAArVq1qrCxEZF14DxjjPNMyTjPEFFpcZ4xxnmmZJxnqjcGBYnKyZQpU1C3bl2sXbsWzz33nMkzXleuXMGnn35qcNlTTz0FAJg/fz5OnTqlu7ywsBCzZ89GcnKyyb/XvXt3aDQa/PHHH9i+fbvuclmWsWTJErNrRTzzzDPw9vbGe++9h/9v735Cmv7jOI6/ZqxCJnqQ2UFN8aIFohcLFdMRdNEoS8qUhnQaHQIREYM8iLhDKjjBgkoPXgxRCDz356BUoCD+AS87dRDyoBdNlPfvEEn9nH9aG1O/zwfsMPb5fL7vjbHXeI99Pj09Pdra2tozJhwOa2Rk5NDnfBQdHR2SpKdPn0asaXFxMeIXAbfbrUAgoO3tbT1//lzS323I+7uqqipJ0vT0dFTzD/PlyxfV19crKSlJY2NjKioqOvLcXzX5fL641Abg9CBnIiNnDkbOADgqciYycuZg5MwJl8ijj4FEu3jxokmyoaGhI4896Oj2+fl5y8nJMUmWlpZmFRUV9uDBA7t165ZdunTJXC6XZWRk/DFnZ2fHampqTJKdPXvWbty4Yffv37fc3Fw7f/68BQIBk2R+v3/P9Z48eWKS7MyZM1ZZWWm1tbWWl5dnbrfb2traTJJdu3Ztz7yPHz9aenq6STKv12s+n88aGhqsurra8vLyTJJduXLljzl+v//A12poaGjfOru6uszlcpkky8/Pt3v37tnNmzd3j7jfb82VlRU7d+6cSbLCwsKIY45iZmbGJFlJSUnEx9+/f2+S7LCPxHA4vDvu9/eBz+czSZabm2t+v3/f29/WBeDkI2fIGTNyBkD8kDPkjBk5g+ixpyAQQ5cvX9bc3JxevHihiYkJzc3NaXp6Wunp6crMzFRLS4tu3779x5ykpCSNj4+rv79fr1+/1ocPH+TxeFReXq6JiQnNzs5qcHAw4vX6+vqUnZ2tV69eaWpqSh6PR2VlZXr79q3W19cVDAYjzquoqNDCwoIGBgY0OTmpr1+/6sePH/J6vcrOzlZjY6Pu3LkTs9elvb1dPp9P/f39+vTpk8bHx5WSkqKsrCy1trbu+6uS1+tVUVGRPn/+rMePH0d9/eLiYpWWlmpqakpLS0sqKCiIeq1IdnZ2JP38RTIcDu877v8ngf26/y/PDYCzkDORkTM/kTMA/hU5Exk58xM5c/q4zMwSXQSA/Q0PD6upqUl+v//A4+VPo+XlZeXn5ys1NVXfvn1TcnJy1GuNjY2prq5Ozc3N6unpiWGV0dnc3FRWVpbcbrfC4fChp3oBQLyQM+QMAMQTOUPO4PhiT0EAx9azZ89kZgoEAv8UoJJ09+5dlZWV6eXLl1pZWYlRhdELhUL6/v27uru7CVAASBByBgAQT+QMjjuaggCOlXfv3unRo0e6evWqRkdHdeHCBbW2tsZk7VAopI2NDXV2dsZkvWitra0pGAyqpKREDx8+TGgtAOA05AwAIJ7IGZwk7CkI4FiZmZnRmzdvlJKSouvXr6u3t1dpaWkxWbu4uHh3v4xESk1N1erqaqLLAABHImcAAPFEzuAkYU9BAAAAAAAAwGH4+zAAAAAAAADgMDQFAQAAAAAAAIehKQgAAAAAAAA4DE1BAAAAAAAAwGFoCgIAAAAAAAAOQ1MQAAAAAAAAcBiaggAAAAAAAIDD0BQEAAAAAAAAHIamIAAAAAAAAOAw/wGlvKgWpm0YBQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lcs.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lcs.freq, lcs.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lcs.freq, lcs.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb.txt b/_sources/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..b376dfab3 --- /dev/null +++ b/_sources/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb.txt @@ -0,0 +1,278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Power Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScarglePowerspectrum\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.interpolate import make_interp_spline\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "plt.style.use('seaborn-v0_8-talk')\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create a light curve\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make one with signals in units of counts. It is a sine wave with random normal noise, frequency of 3 and at random times and make its counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "sub = np.min(y)\n", + "y -= sub\n", + "t0 = np.linspace(0, 10, 1000)\n", + "y0 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "sub = np.min(y0)\n", + "y0 -= sub\n", + "spline = make_interp_spline(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAIlCAYAAACtuat8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3wcxfn+c9JJcu+2XJDBgG2aKaaExOAAgYTeCQmywcHYBhIgQEggGHAAU00JkBCbmC5KvpRQkhA6hF9CQjEdbAM2lsG49yLpyu+P1Whn97bMzM67tyvN8/n447vT3tzc3u7MPPM87/tmisViEQYGBgYGBgYGBgYGBgaJRUW5O2BgYGBgYGBgYGBgYGAQDEPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSDkPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSjmy5O9DRUCgU8M0336B79+7IZDLl7o6BgYGBgYGBgYGBQZlQLBaxfv16DB48GBUVwZqaIW4x45tvvkFdXV25u2FgYGBgYGBgYGBgkBA0NjZiq622CjzGELeY0b17dwDWj9OjR48y98bAwMDAwMDAwMDAoFxYt24d6urq2jhCEAxxixnMHtmjRw9D3AwMDAwMDAwMDAwMhEKoTHISAwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEwxA3AwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEw5QDMDAwMDAwMDAwSDWam5uxZs0aFItFobTqBgaUYNdhr169UF1dra3dRBK3lpYWvP7663juuefw6quvYv78+di4cSP69u2LffbZB1OmTMERRxwh1ea0adPwu9/9LvCYTz/9FDvssEOUrhsYGBgYGBgYGMSIQqGAFStWYODAgaioMGYyg2SgUCjg22+/1XpdJpK4vfbaazjkkEMAAAMHDsR+++2Hrl274pNPPsEzzzyDZ555BpMnT8af/vQn6V2V3XbbDbvvvrvn33r27Bm16wYGBgYGBgYGBjFi9erV6Nu3ryFtBolCRUUF+vbtizVr1qBPnz5a2kwkcauoqMAJJ5yA8847D/vvv7/jb48++ijq6+sxa9YsjBkzBqeeeqpU28ceeyymTZumsbcGBgYGBgYGBgblQi6XQ01NTbm7YWBQgpqaGqxZs0Zbe4ncmjjooIPw2GOPlZA2ADj55JMxYcIEAMD9998fc88MDAwMDAwMDAwMDAziRyKJWxj22GMPAEBjY2OZe2JgYGBgYGBgYFBOmGQkBkmGzuszkVbJMMyfPx8AMGjQIOn3vvvuu7j44ouxatUq9OzZE3vssQeOOuoodO/ePXK/Nm7cqOUYAwMDAwMDAwMDAwMDHqkjbt9++y3uvfdeAMAJJ5wg/X6W3IRHz549cdttt0nHy7nRrVu3SO83MDAwMDAwMDAwMDDwQqqskrlcDuPGjcPatWsxatQoTJkyRfi92223Ha655hrMmTMHq1atwqpVq/DGG2/gyCOPxNq1a3HaaaehoaGBsPcGBgYGBgYGBgYG6nj11VeRyWTaRAyDjoVUKW5nnnkmXnrpJfTt2xePPfaYVEG78ePHl7w2ZswYPPPMMzj33HNx++234/zzz8dJJ52kXChvw4YNocesW7cOgwcPVmrfwMDAwMDAwMAgPuRywIIFwLp1QI8ewLBhQDZVq2eD9oTUKG7nnXceZs+ejd69e+OFF17AiBEjtLU9bdo0VFZWYvny5fjvf/+r3E7Xrl2F/hkYGHQgfPYZsGJFuXthYGBgYCCBxkZg6lRgyBBgxAhgr72s/4cMsV43+fEMyoFUELcLL7wQt912G3r16oXnn3++LaukLvTp0wcDBgwAACxevFhr2wYGBh0Y//gHsOOOwLbbAmvXlrs3BgYGBgYCaGgAhg8Hpk8Hli1z/m3ZMuv14cOt4wwM4kTiiduvf/1r3HzzzejZsyeef/557LXXXto/I5/PY23rokpHdkkDAwMDAMDhh1v/r18P/OEP5e2LgYGBgUEoGhqAceOApqbg45qarOOSQN6KxSLuuusufOc730G3bt3QrVs3jBo1Cpdffnm5u2agGYkmbhdffDFuvPFG9OzZEy+88AL23ntvks95+umnsWnTJmQyGRJiaGBgYBC6CjAwMDAwKCsaG4GJE+XeM3Fi+W2T48ePx+TJk5HJZHDppZfixhtvxEEHHYTHHnusvB0z0I7EhldOnToV119/fZs9UoS03XHHHbjjjjuwzz774P777297fdGiRXj99ddx4oknolOnTo73/PWvf8UZZ5wBAKivr8fAgQP1fhEDAwMDACgUyt0DAwMDA4MAzJwpv8fW1ATMmgVcdRVNn8Lwl7/8BQ0NDRg3bhzuu+8+VFTYmkzBzDvtDokkbk8//TSmT58OANh+++3xBx+LUb9+/TBjxoy25ytWrMDcuXNLyNeqVaswfvx4nHXWWdhjjz0wZMgQbN68GZ988klbMe8DDzwQd955J9E3MjAw6PAoFsvdAwMDAwMDH+RywF13qb33rruAK64oT7ZJVspqxowZDtIGoOS5QfqRSOK2atWqtsdvv/023n77bc/jtt56awdx80NdXR1+85vf4K233sLnn3+Od999F83NzejXrx+OPPJInHLKKTj55JPNBd4e8N//ArffbnkXDjyw3L0xMLBhdj4NDAwMEosFC0oTkYhi6VLr/cOH6+2TCObPn49BgwahtrY2/g83iB2JJG4TJkzAhAkTpN83bdo0TJs2reT1vn374rrrroveMYPkY999rf8bGozCYZAsmOvRwMCACsUikMmUuxepxrp10d6/fr2efhgYBMFITAbtF2ahbJAkGMXNwMCAAuPHA1ttBbzxRrl7kmr06BHt/eVKSj5ixAgsWbIES5cuLU8HDGKFIW4G7RdbtpS7BwYGNsxGgoGBgW7MmQM8+CDwzTfA/vuXuzepxrBhQGtJX2nU1lrvLwfq6+sBWOWz3MlIimbeaXdIpFXSwEAL1q4FOncudy8MDCwYxc3AwEA3Vq4sdw/aDbJZYNIkq7i2LCZNKk9iEgA46aSTcPLJJ+P+++/H/PnzcfTRR6N3796YN28e/vnPf+Kjjz4qT8cMSGCIm0H7xdq1gCnvYJAUmJ1PAwMD3TBxbVoxZQowY4ZcSYCaGmDyZLo+ieChhx7C/vvvj9mzZ+PKK69EZWUlhg0bhpNOOqm8HTPQDkPcDNovokYaGxjohCFuBgbJxiuvAI88ApxzDrDLLuXujRhMNmytqKsDZs8Gxo0Tf8/s2db74sIBBxxQYoGsqKjAz3/+c/z85z+PryMGZYEhbgbtF2vXlrsHBgY2jFXSwCC5WLECOOgg6/Ejj6Rn/jCKm3a0hoxh4sRg5a2mxiJt7HgDgzhgtmoM2i/SMvEatF/wiyqjuBkYJBNffgkMGWI/T5NbwxA3EtTXA/PnA1OnWolHeNTWWq/Pn29Im0H8MIqbQfuBe2GcpsnXoH2iogLI563HRnEzMEgmfv5zoLm53L1Qg7FKkqGuDrjqKuCKK6zi2uvXWyn/hw0rXyISAwNz6Rm0H7gXxkZxK8WcOcBDDwE/+xmw007l7k37h1HcDAySjzTXvzKKGzmyWWD48HL3wsDAgiFuBu0HLS3O54a4lWL0aOv/P/8ZWL26vH3pCOB3w43iZmCQTKRVbQNsRd/AIEkoFoE1a6yNhZ49zQaDRhiN3aD9IJdzPjfEzR9r1pS7Bx0DRnEzMEg+DHEzMNCLtWuBL74APv/c8pgaaIMhbgbtB0ZxM0gajOJm0NGQz6dvoZZm4ubesDQwSAK+/tp+vGRJ+frRDmGIm0H7gXsC27KlPP1IKswEHz8McTPoSGhqsmJna2uBN94od2/EkWbiZhQ3gySCd5gYm6RWGOJm0H7gVtwoJuNly6zCLWncQdq8udw96HjgJyz39Wlg0N5w333AvHnWWHPkkeXujTjSTNzMhpxBEmGIGxlMchKD9gP3BBZUOVMVJ50EvP46sOeewNtv62+fEoa4xQ9ecTPEzaC9Y/ly+3GarOppJm5GcTNIIgxxI4NR3AzaD+JQ3F5/3fr/nXf0t00NQ9zih1HcDDoS0qr+pJm4pfWcG7RvGOJGBkPcDNoP3BNYmidjChjiFj+M4mbQkcAnJNCNQgF46y0aJS/N96ZR3AySCEPcyGCIm0H7QRyKG4+0pXc3xC1+8BOW2Rk3aM945BHgrrvo2r/9dmCffYDdd9d/L3klDkpLMiFD3AySiAQSt8ceewy77bYbOnfujEwmg1dffdX32AkTJiCTkH67YWLcDNoP4lbcmpqATp1oP0MnDHGLH0ZxM+go+OlPadv/5S+t/xcuBObOBXbemfbzWlqAmhraz9ABsyFkkEQkjLjNmzcPP/3pT/Hd734Xd9xxB2pqarDjjjuWu1tKMMTNoP2AWnFzK2ybN6eLuL3ySrl70PFgYtwMkobGRuDkk4EhQ4CHHwayKVgGuMfeONwOuVw6iBu14lYoAGefDfzvf8Ddd1uKp4FBGBJG3F599VXkcjnceuutGD16dLm7EwnGKmnQfkBN3Nztbdqkt31K/Oc/wNSpztfSZvVMI4zi5o9iEVi5sty96Hi49FJrPHjsMeDOO/W06WUr1LlYW7rU+TwO90Ba7le34qZ7XP/DH4CZM4E5c/RdLwbtDps3b0aOvxYTRty+/fZbAECfPn3K3JPoMMTNoP2A2irpLi+gc/Fw553AmDF21kqd+M9/gO99r/R1ip1aQwb9kZaFYFw4+WSgXz/gllvoPqNYtBJarFhB9xlpAx/X8fzzetr0SkpSWamnbQD46CPnc51jr988oduCuGYNsH693jaB0nFcd7+vu85+/Le/6W3bQAlbtmzBtGnTMHLkSHTp0gW9evXCqFGjcNFFF5Uc++c//xmjR49G586d0bNnT/zwhz/EG2+84Thm4cKFyGQymDZtWsn7p02bhkwmg4ULF7a9xuK/li9fjtNPPx21tbXo2rUrFi9eDABYt24dLv3jH7HjSSeh05gx6Lvbbthvv/3wyCOPONpesmQJzjrrLAwdOhTV1dUYPHgwJk+ejGXLlgmfi9dffx2HHHIIevbsic6dO2P06NGYPXu245hMJoMrrrgCADBs2DBkMhlss802wp/B49tvv8W5556LbbfdFjU1NRgwYAAOOeQQvPDCC0rtqSAFHgkDA0FQK25UxC2ft6woAPD97+snP9de6/+5umxSGzYAP/iBpUK+8AIwcKCedtMOflFliJuNjRuB//s/6/EFFwDnn0/zObNnA5MmAQMGAIsWpcP6Ro1ttrHskoAVL6YDX3xR+ppOC2brgrANOonbxo3er+u8Xz//HNhtN0uB/+QToK5OX9tuotbSAlRV6Wt/wwb7MXVcYZqQzwNffWWtMwYMAGJUcn7+85/j7rvvxqmnnooLLrgAuVwO8+fPx8svv+w47je/+Q1uuOEG7LPPPrjmmmuwfv16zJo1CwceeCCeeuQRHP6971mbZ4o45JBDMHDgQFx22WXYuHEjunXrhjVr1mC//fbDxx9/jBN/8AOcdcIJyHftijkLFuDZZ5/FT37yEwDAokWL8N3vfhfNzc2YOHEitttuO3z++ee488478corr+Dtt99Gz549Az//mWeewXHHHYeBAwfiwgsvRPfu3fHII4/gjDPOwJdffonp06cDAB544AE88cQTePLJJ3HLLbegX79+6Natm/T3XbhwIcaMGYOlS5fi1FNPxV577YWNGzfizTffxIsvvohDDjlE/iQqwBA3g/aDtCpu7n5u3Ah07aqnbcDa6fWCTsVt2jQrBgIALroIeOABfW2nGYa4eYMRB2pMmmT9v2yZFeN56KHxfG6Ssc02wL/+ZT1esEBPm9SKG6VNfcsW79d1Klfnn2/3+bzzgCee0Nc2teLGk0CexKUFu+8OLFliXY8VGk1mxaLzXMuS5YEDgbffVvroJ598Eocddhjuu+8+32Pmzp2LG2+8EWPGjMHLL7+M6upqAMAZZ5yBnXbaCWefcw6+ePJJVG7cqLzJsssuu+DBBx90vHb22Wfj448/xsxLLsHk44+3Xhw0CBgyBAXOUn3OOeegpaUFc+bMwVZbbdX2+kknnYR9990Xt9xyi6cCyJDP5/GLX/wC3bp1w//+9z8MHjwYgEVqDzzwQFx33XWYMGEChg8fjnHjxuHzzz/Hk08+iWOPPVZZbTv77LPxzTff4LnnnsOPfvQjx98KMWahNcTNoP0grYqbu99vv20pb7rgRxh0TvB8QfIPPtDXbtrBn2ND3GzERdx4dO4c/2cmEX372o/91CZZeBEpnYqbeyzXqbj5jYM6x8dVq+zHuq99L8WNqn0Kqyc1liyxNm7aEXr27ImPP/4YH330EXbZZRfPY5566ikUi0X8+te/biNtADB48GD8bPx43HrHHZgzdy722mknZdXtV7/6leN5oVDAI488gh133NEmbUBbjFtFK3Feu3Ytnn32WfzsZz9Dp06dsIKzsm+zzTbYfvvt8fzzzwcSt3feeQeLFi3C+eef30baAKC6uhq//vWvceyxx+Kpp54q6aMqVq1aheeeew6HHnpoCWnjv1scMMTNoP3APYG5iVZUxKW4vfNOPMRNp+LGL9y6dNHXbtphFDdvuK1vulXmv/8dmDLF+ZrO9imh2+rmBkVsKzVxo4wv9iNoOu9XfkzUnVjF/XvqHmf4c0+luF1wgeXYuOsuQGeK9nzeuVGh874qFJznPpuVS8IRIZzg1ltvxfjx4zFq1Chsu+22OPDAA3HUUUfhqKOOaiMQC1rV9J097K07t57jL7/+2iJuihgxYoTj+YoVK7B69Woc6nY2uMI/5s6di0KhgNmzZ5fEozFsu+22gZ8d+P1aX/vyyy8D25DB559/jmKxiD322ENbm6owxM2g/SCtiht1tkpD3MoHo7h5w606rFihl1gdcUTpa7qtLDfdZMXp3XSTlVhIB669FrjySuDyy4FLLtHTphvu+75YjJ71zUu5M4qbDV7t1T2+UxK3YpGeuL38sp2g6Oyz9ZataW4G7r/ffr7XXvraXrbMiptl2HHH2DaHjjnmGCxcuBB///vf8dprr+HFF1/E7Nmzsf/+++PFF190KGwiCCo0nQu4D7oozvXFViI3btw4nHbaaZ7HdDYOCV8Y4mbQfuAeYHI5a7GmS8J2E7fjj7cmhqi7eO5Fie4YhTiskpTE7ZlngAsvBCZOBH7zG71tU8Mobp4ofNXoSGmcW7Ic2a231tN4HFkC168HmAVnv/30JRT67W/t/6mIm/s8FArR49G8yIjOFOCUm1txKG5UxG3pUvuaYdB5nedyzmubwirJZzjkM57qgO7NWx7lqC3IoU+fPhg3bhzGjRuHYrGIiy++GDfccAOeeuopnHTSSW2K1ccff4ztttvO8d5PPvsMALDtkCFtbQGWHdANGdWqX79+6N27N95//33nH1znZvvtt0cmk0FzczMOPvhg4fZ58N/PjU8++cRxjA6wPr/33nva2lSFKQdg0H7gNdHqnHy9rJc6knC4JxfdVqa4FTfdO2VHHw3Mnw9cfDFdsdnrrgMOOMCqVaQLxaIhbi40NlrlBF96cInj9XGHrsDUqZrCf9yp4xl0XjtuxcfvM6Pghhto4kXd50HHefEiI5Rjb9oUNyqr5Flnlb5Ged63bNG/sfjVV/ZjSaUoFO7+6yRX7rZiSk6Rz+exxpVwLJPJtFn4GPk6+uijkclkcOONN6KFuyaWLFmCex54AFsPGoQ9Ro4EAHTv3h0DBw7Eyy+/3KaGARZp++tf/yrct4qKCvz0pz/FJ598gtlPPVXyd9Z23759cfjhh+OJJ57Am2++6Xnc8uXLAz9r9OjRGDp0KO655562Gm0A0NLSghtvvBGZTAbHHHOMcN/D0KdPHxx22GH4xz/+gRdffNGzz3HBKG4G7QdeE0pzs74U4F7EzWO3RxrlUtyoFrKUVsm1a/WnXf7oI1vd+PWvrXIGOuCeyDs4cWtosETTpibgADgz+VWtXY7p04EZM6wM/vX1ET7Ij3zrvK/c987uu1vZWxVSTPviN7+x/hUKetUrL2dC1AWzF3HTqXaUwyqZhhi3J58sfY16s3LDBqBXL32fwRO3oUP1tQuUXjc6bMF8W0HPibB+/XoMGjQIRx99NPbYYw8MGDAACxYswJ133onevXvjqKOOAgCMHDkSF110EW644QaMHTsWJ598cls5gA0bNqBh2jRUckr7L37xC0ydOhWHHXYYjj32WHzzzTf405/+hF122QVvvfWWcP+uvvpqvPzyyzjj6qvx/JtvYr/dd0exWzfMWbgQuVwOD7Rudt95553Yb7/9MHbsWJx66qnYY489UCgU8OWXX+Kpp57CqaeeGpicpLKyEnfccQeOO+447L333pg8eTK6d++ORx99FG+++SZ++9vfYvjw4Won2Qd33HEHvve97+Gwww7Daaedhj333BObN2/Gf//7X2yzzTa4/vrrtX6eHwxxM2g/8JqwdC4evCax2tro7bYH4hZXjNuaNfqJ27PP2o89dtKUQZntbelS4NZbgf33Bw4/XF+7PL74wiKxJ54YqdYPYJG2cePs5zVw3kv9Ye2uNjXZxymTtzjKX7h/y3weePNNQNH2E/pZOpUICsXNK8Yt7cTtxz+2SIWOhT5vp6fewEkbcePjxHTZpRnc54JScYuJuHXp0gW//OUv8dJLL+HFF1/Ehg0b2ojcJZdc4siweP3112P77bfHH//4R1x88cWorq7Gd77zHTz05z9jfz5pC6yab2vXrsUDDzyAV199FTvttBNmz56Nd955R4q49e7dG//5z39wzbnn4olXXsGTr76K7t26YadddsE555zTdlxdXR3eeecdXH/99Xjqqafw4IMPolOnTqirq8NRRx2FH//4x6GfddRRR+Gll17C1VdfjRtvvBHNzc3Ycccd8ec//xkTJ04U7rMohg0bhrfffhtXXXUV/v73v+P+++9H7969sdtuu2Hy5MnaP88PhrgZtB/4KW664NWWjgksLqvkttsCvXvbqft1EkR+gqQMKl69Wn+bfIxF9+762nX/jjqvxQkTgOeesyyeK1Y4M6fpwtixwDffAM8/H6nuVGOjpbTxqIbzXHSFc+E/caL18Up1iuOI6fT6LamKe2/ZQkvcdJwXP8VNl8LhJhBxxLg1NgL//Kee2n9xqu06r3Mv4vbppwBXdysy+BqAnTrpaxcovdZ1xHMyuIlaY6OluOtMyuOB6upqXHvttcLHT5o0CZNYPUuG9euBuXPt5wsWIFtbixtuuAE33HCD49CjjjqqRPm69957ce+99/p+Zq+ePXHDuefihnPPtV4YMMBTTe3Xrx9uvPFG3HjjjcLfx43vf//7+L5AFu5p06YFKnhu+H3HIUOG4E9/+pNED/XDxLgZtB+UQ3HTMSHHpbhVVQF8zReqeDHKeiZ+akoUfP65/XjUKH3teiluuuIgnnvOfsxPwLrQ3GyRNsDbjiWBmTNLbx03ccvCea6amoBZsxQ/MI6YJQri5rdj71cgWhXu80AV4+YuUBwFlIpb0BjuLltB8Rm6Qa24/fCHeuO5+GtH93nyyqCqC+5z0NTkXYg+iXCfh5UrgdaEJSTtG2iFIW4G7QflIG462o+TuPG7jVTETXf/eVAobjwZpIyDAmiynOmMf2JYu1ZLM7mcVZrJDbdV0k3cAOt9Sj9HHNZgr98xanZZvy+ri7g1NQEPPwy4s6LpuOZ5qyRfGkHX9V4OqySgzz3QnogboK8sgPvapiZuOgmnFzkJSaiRGHj1nfrcGGiDIW4G7QfUVkmvSUxHke+4rJJVVU4bBxXBoiKEgH7FrVi0dhsZdBZt9zq/uovCAzTEbd06Lc0sWGCVO3IjTHEDrDC+1hqrciiXVTLqwsev37qumRtvBE45xcrQykOn4lZZ6UzQomv8LUdWSUCfdc/921KMA36fFQV+/dS1meDeiEs7cUsLqPvuPs9pPlcJhCFuBu0HXoO+zgkyLsVt1qxIMUUOFIvxK24623UP+DqThwCW159fuOm8XrzOg27bG5Boxc2P/7mJWyW8rxmlslF+C3FqxS1q+35jia5r5rLLvF/XGePWpYvTMkqluMUR4wboI27u/lPUQ2Og3qAA9F2T7rphuh0JlFbJNJMR6r5TK8zFonUNpvk3iABD3AzaD9qL4gYAJ5wQvV3AmrjY4EZF3CgVQ/dv+uijwH/+o699Xm0D9F4vcSluFHATt+uuU2qmRw/v10WskoBirhhqxe2ii6xsnrrb9+s3BdnnoVNx69LFmUgl7VZJXfG67t9W18LWq39xKG66zr+buOnsu1eMpVHcLFD33b0xofvzFi+2yvhIFAdvTzDEzaD9oL3EuOkEf06orJIrVjif6yRuXovWe+7R176buFErbmkhbm6p7JJLgLfflm5m2DAroZgbIlbJ2lrr/dKgJG6vv24Vm/NC1Ou+XMRNZ4xb165OxU3X9V4uq6Suscz92+oae70yJKbJKklJ3LxIGmVyEgo0N9PMGdTETVcMpB+WLrX+p4h5TwEMcTNoPyiH4pY24qZbcWtqAljKXwbqdNQ6U/a7SWcaY9wo4GWV/OAD6WayWcCdiRoQI26TJilm1qa0SgYVZ0+6VdIPaVTcdJ6ToPFK11hGpbh53SAdlLgV3WTE67pOk+LW1AR8+KH1T6c1GKDvu7u/lJ+XEuWz5PqMAEPcDEpB6b+nQrEI/Pvfpa+nwSrpN1np6Ds1cfu//wMef9z5GrXiprP99qC4Uez8ehE3xQx7U6aUZsoPs0rW1ADK9UwpFbeg0gtUihs12Y96XorF+Ikb9QYLA5WdXBchjJO48TexLsXTPf7q7LvXb/fFF/oW+tSEobHR/oyvvtLbtl/fdXynYpF2M9qNOJTPhMEQNwMnbr7ZKio9ZUq5eyKHjz4qD3GjVNw2bvR+XQZBVkkdixKvQqA6iZXXOdeUOANA+4hxo8gO6pVVRJG41dUBs2fbzyuQR9aVjMRN3GbPViy+DdCWA/j4Y/+/ddQYN75/VMTNfd8Yxc2Cl1WSKiFXz5724wQqbtlsFk18f72u62Kx9DNVUCjonYf8PsPrsQ5QErfm5tJ2KEluCohbU1MTqqKWi+FgiJuBExdeaN0Is2bRZR1ctQr47neBAw7QQ04AZ+HLrl3txzonMa9dRqrkJAANceMneh2Lkp12Kn2NWnHTWRLAS3HTNcnEpbhR3Kdei5IIBabr64EHH7SaqELp4owRt5oa67j6euWPoi3AHRS7kVarZNTzwve7utpJ3HRd7+WySqYxxk3nueF/v1699H+GO0YpAtHv3bs3Vq5ciTz7zSjvJ12F2YNQDnuhjs+MOxwg4cQtn89j1apV6MXfPxGhEkFg0FGwcqV3ZoGoOO884M03rce33gpcemn0NvmJsUcPm/TotF54ESlKxU1HgC+1VXKbbUpf06kAeU2yOnc63TFugHXO+MWnKtqb4hbxeqmvB8aOBe67rQlw5ffoVpPD1Isse6Sy0sZAaZUMWiSkNTlJ1H7z56SiwqnM6orNiYu49erl3BhKo+JGRdx4xU2XVdI9zkQ4LxUVFejXrx9WrlyJYrGIzMsvexfE3n13ay6Mgr/+1f9vQ4dGa5vh3Xft/vfqBfTvr6fdfB549lnv33DAgOglMD7/vDSRVV2ds75jVPDuqp49nddmglAsFpHJZNC3b19U6MpQC0PcDIKwbBkNcXvmGfvxJ5/oaZOf2HnFjZq4pU1x022V9GqD2ipJqbixz9RB3OJS3CiImxc51vA5dXXA1F83lxC3o4/I4dirIjdvgTI5SRBxS7JVMui7R+0333ZlJdC3r/1chy0NKL1vmB1LRw1D/vtvtRUNcYszxi0O4qbrMzQSNwCorq7GgAEDrPN9yineB82aZe0gRcF55/n/zZ2sSxV//CPwxhvW49GjgVNP1dPujBlWSRMvHHdc9DXf738PXHON87UTT7Ta1gX+/I8ZAwwfrq/tFMBYJQ38wVKu6sTttzsXhX366Gm3XMQtzYqbjsUDRSFiHnFbJQF9cTlxKW4UVkmva/2ii7wVSll4nIOKvEbySam4BZ3rJFslg5Qv3Ypbv372cx3XC+B9bnTdS/x14b5Gkm6VjJO4UVgl3YnQdM3XQWM4VQiIbvD91KjW+JI2QM895bXpR2ln1J1xMwUwxM3AHxTEzb0bpYu48QN+ly7er0dFe1DcdFslvc5vmpKTeC0sdS0I06y4eV2Tn38O/OIXNG3r/A6UyUnKYZXUcc0EjSW6FTeeuHlZ1VTgdc3oIg9BxE3Hdfnss8C8ec7X0p6cJIFWSd923KQn6dZjBn6s8fqdKaDj2iGw2Qe2ZYibgQGHZcvoP0OXN5mf2Hkvtc4sgWzxw/vj06y46RhMy6G4rV2rL3DbzyqpA2kmbn4LqEcfjd42NXGjTE5CqbhRWiUpk6rEobhRlWIBnNfFuHHOv+kYy446Kvgzo6BcMW5UVsl8Xo86w48x7vaok2foOjdpJW7Uipt7nNRlx04RDHEz8AeF4uaGrgV4HFZJtrPTo4c9kKa5HACVVZK6AHc+ry8bqRdxu/hiPW3HZZX8/e/17yLrvG/c8DoHcShu1MlJdGZn5KHjty2X4qaDuPnVhaJQ3EaPBk4+2ftvOpGW5CT8eacgbl41Y3Wcm6A2qBU3XWqke0MkDlApbjqJm3ssOOWUeNaqCYIhbgb+iONmoLBGUFslu3a1k1dQWiWN4uY/yb71VvS2N2/2tln85S96rv24FLd//cuqv6gTlMQtzVZJo7iVwr3A5LPf6SBu+bz3Bh8FcctmrUQK/GdTgIoQAnTEjY9xo7JKAvqJ26GHOv+WFuLm3hCJA2kgbl7Xx/XX62s/BTDEzcAfuq2SlAs2asVt8WLg22/t9hlxM1bJ0teoiBufCezGG6O3HRR/o2MCi0txA/SU1OCRZuJGaZVMazmAoLFEt+LWpYudUpwomU3g67JwEzfdCZy8oOv+8urf/fcDX3yhp33+Xu3e3X6s45psbvZuRzdx698fuOce+7khbv7QaZXUncGawev68CKL7RiGuBk4wRfZ1a24edl1KLJI8cRNV4zbYYc522fnKW3JSXQPptTEjT+/kybZC8JFi6K3fdpp0dsIQlyKG4Ou0hpA+7RKJr0cgN84oOOaiSurZGWllaKf2SV1EDfqwuRu4ka14PT7TIp2dKVe5899jx72Yx3n3ssmCegnblVVwK672s+pY9x0ELeNG4EPP4zejix0Km69e9uvUVolAZqyVQmGIW4GTvCWFN2KmxcRoShwqltxy+WAjz5ytt8eFLc0xLjxCwSeMOv4DH5iHDTI+TcdCzavPur4Tf2w887A3XfraSvNiltaywFQKm5BCzKdihuLxWGLttWro7UN+C+EqYhbmhQ3v2tO16Kf7ydP3HSQkziJG19UOg2K24UXOp9Tk00GHeeGKW68tZbaKqmrOHlKYIibgRP8RLV0qb7kIYD3ovWaa7D2J1OQWxVR6qa0SroHsy5d4lHcdMj/aS8HwJ/7mhp7N1y3WviTnzj/RhUPddNNtNlaJ07U007cxO2dd4DPPtPTfrkKcFPVcXvxxei/R9AGU1Ry4pX9jm1s6SA+fmqhrsUsf251K26Utl2d7fiBUnHzm98McQNmznQ+Z9e6zvWYF6LeU3fdZV8zvOJGbZWMy0qaEBjiZmCjUHBOwk1Ner3DPta/no/Owt1bXY6pU4HGRsW2KYmbeyBuatKruPn1UUe9sjitkuyc6Byk+XPfpYvdfx0LFtbGqFGl51pn+27Mnh2tXcpipgxxWyUBYP/99bTf3hS31auBZ56J1jZlQWIvxY2VTMnloi8206y4+fWRMsZNJ/h+6s4q6be20O1icRM3avWKov2mJuC226xSR5ddpr99/nOiYPJk+zGV4uZ1fVDOVwmEIW4GNrwmcI3qwAtP+tvETtp8H6ZPB4YPBxoaFBr3s0rqmATcC4c1a+JR3HTYjOKySlZX223rJG78bnuXLvZn6Og7OzdVVdZvyoMyA2HUa4Z6sQbEr7gB+mp+URG3YjGYhERt391vnsguXhyt7bgVN51lR/wUt//9L1q7DEExblTELe2Km4746zgVNz52PyrpDJsbdNaOZfjwQ+C886x74eqr1dsJ20TRSTr5OHRqq2Qcc2KCYIibgY1f/rL0NU0JShoagFum+w/2hdZLsanJqoEqTd7iVNxWr3YqblF3lP0GejeZUEFcWSV5NY+SuOlS3IpFu41stpQkU8W4AcCQITTtAs7i81FQDuKmC1RWybDFh06rZEMDcO653n+L2rYblIoboJe48ZkNr74aWLIkWttAsOIW9dz4qYW6FbeddtLTnhvuOm5MuQrKyCsKv41J3cStulqvVTKsf0lWf8KImU7ixpN7auKW5HNOAEPcDCy89BLwxz+Wvv7NN5Gbbmy0Qm96wN92WXBdihMnStom4yRua9bYxE3HZ1ASN7dlhIq48Yqbzt0vKuLGTyRVVaUZJikVt6h9D3r/4MHR2magmgg3bAAefpimbQYqxY2auPH97tPHOcZEJW5Bvye14hb1WuLHXz5uBgAeeSRa20D7UNz4PuuEmwDV1lqPdThxeOLG2zDHjwfmz4/WNqXixt+LBx8MPPig/99VQElCwpJj6SRul19uZZgF9G7mUie3SgEMcTOw8MEH3q+ffDJwyy2RBruZM4FCUzMewU99j8nDGVza1ATMmiXxIZQFuN3E7bDDnDvKSSZuQTFuabNKdu6sT9VzJySor3f+nVJxo4qFApyKBNVnRMGZZwIvvEDTNgNVOYAw4qbTKlldrZe4tRfFzU3cdIBScaOOcWP9oyJu/HWTzdpp11esiP67rlplP2aEELAyOB91VLS2veY9do6ikhP3fVpfD9x5p/1a1HvVL9sm/5mqCLO4RiW1FRylOP10+7lR3LTCEDcDAMDqNQF/vOACrPqD2i55LmclGvoBXgo8zq24Adb7hOcGfrDk7WIUMW433BAPcVu7NvqAxw/UNTXxKG6UyUl0qXr8+9nEzlvTdCtuhx6qr+2g706RaU/m88OgFMAqCapMfmG/m06rZFVVPKo+QKO46Rwf+TGgTx/n33RsbnmNBV5/U0HaFTd+fM9kbIJVLEaPSeUVN3cdrrlzo7XtJm6ArbrptEqytnVuskyYEPz3KGuCMMUtSuxisWj3bd99LdJGQdyM4maIm4G1lrpmevAxyy+6XmnNtWCBmKvCrbgBVnjdggWCHxSXVfJ3v7NilOJYVBUK0et+8ZaTYcPoygFUV6crxs2tuAH6zw3fR96qQ2mV1E3c+H5H/AzljLGyiMMqueuu1gbOTTfZr+lUUquqnOQnbYobVXISt9qgwcpPWoCbnztGjbIf65iXCgU7vpraKsmuRV4Zixr/7qe46YAXuWJxbjqtkqxtXffqnDnhGWSjXJNhxCzKRgjfL/ecahQ3rTDErYOjocFKBtKSzzheb0aV4/n7xV2VkoawxFFexIyHl+IGhLsG2kBpleQH+s6drf/jUNyA6DvK/M7liBF05QCoY9yyWeduuG7FDdBP3Pg2+AVn0hW3fN5eEPL3EoPCwqehwcoYK3JcZFBZVPn3DxwIXHQRsOee+tovl1Uy6YobT9zcZTsoiBtVOQDexqy73Egcihugl7gFKW5RQUnc3Pcp/z8Q7V4VySQdlt02CF7f/frr7cdR1hte1yPbyKGu42YUN4OOApY0xAv/xXccz7/EtgDkk4awDMKVCL5x/YibcMiOn+Km2yqZVuI2eLB1MtNaDoARCKoYNyA+xY2SuOmor+S3CaL4GWxzSIRTjh9XiEbeeNLphk6CwhYkOu+nclklqRU3nVZJdyxq0hU3P+KmY0OR7zdVAWK34sYTrKgJSnjFbeDAaG254aWKMeKmM8ZNt1WSX7sEQZW48ffST35iXUNnnWW/RkXcTB03rTDErQNj5kz/MWwhtnE8r4B148kmDRk2zBrrs7Bv6jcwpuQ4L+JWW2u9Xwh+MW66rZJxE7cotdxWrrT+AcDIkdb/lOUA4iBuvPUiymTgNclQKm5pskry1zO73nlIELegzSEvVCIvn1GWR9C9qJOgsGtF5zVTLqskteKm0yq5ww7A88/bz43iZsFNOHXBrbjxxC1qSQA2t3Xtqj/pjJcqpivGzYsU6iJuoteF6tzHf/fddrOu9W7dbIKli7i5x0dTx00rDHHroGBJQ/zQgiocCdtrzStmMklDsllg0iTn+1/BgSXHeVkpJ02SmIv4wbJTJzsNbdqJ21//qt4uvyNaV2f9r3M3OZ+3B2SqGDd27tl519V/r11To7hZ0Ki4BW0OeSGLnHxGWR7uc/PTn/r/TRZhiluSrZJxEVpqxa1LF+CQQ4BddrGe6ygEHVeMm27FzR1T9Prr/n9XBb8xBzjHsajXJFPcevfWlw2XIa1WSWrixl+P7HxkMkCvXtbjtFoljeJm0BEQljQkhyxWoF/bc554SSUNATBlCtA5a9/UW9Cp5Bi34lZTA0yeLP4ZbTduRYW1mGKDddqJ2913q7fL94tNuFTWrritkkC0/ocpbjp28PwUN+oYt6gF4fnrxsu6I8jEwjaHvMCUeamMsjz4vh96KDB7trNDURBWr4zSKmkUNwts/GXnRocVPi7FjXeCUChu3/0u8P3v26/pLGTNzreu37VYtBW3Pn3iIW7s/1wu2hgZZpWMct5FS73oUNx4N4UO4uaVnMRklSSBIW4dFCxpCEMGzoEsh6xDBXPHqAknDYEl9vz8TPv9m1Fqv3IrbrNn2yKRENyWDjagJj3GLZ8PXsivW6c+yXhZOnQqBH7ETdcgWiwGE7co/fdKTqI7cUs5skoCetWZCFZJ0YyyPBhxk90cakNQ3UKNylIhU4H584FP5hJaJU2MmwV3ZlnAPjctLdE3KsoR40aVnETnhiLgP69GbX/VKnsDaMAAJ6nVAS9ypet3jdMq+eijwNixwBVXAHvvbb+uU3EDnMRN9X6KK8aNt0ozGMXNoCOAJQ1hcBOzMOImu0G23772Td2CKhTgzGLJFLeaGuDBB0tj0EPhtnTwE3tUUBI3kfeqDnrUdkC3ZUS34sarR7oVtziSk5QjqySgN/g+glXSvTkkAj4WVmZzqA1uQq5TPeHuw2f+XokRI4Afn2K3//Z/89FKHrjvJxPjZsFr/NVJat2xOXHEuOlOTkJN3LzIT5Rzs3Bh28O1fYbhs69jUNwobPa6rZJ82wccAPz4x8BrrwHTpjmLW+tQ3HjixmIM83l1+3GQi0UXcfvPf7zDR4ziZtARwJKGMFTDOdgEETeppCEM3EB5yGFZtLjKDVRkKzB1qlV2TJq0Af6WjqQTN5FBXgdxY+eFytpFQdy8dtp1LariKAcQp+K2++7244QQN/fmkAh44qbknvriC66xrLXYYfGuEX/Tvz7OuQaarKkzB/t++vD9PIYPj1DSoFxWSQrFjaocgFtxA/QpzOxa0TlG+sW46VbcKMowFIv2Z2hW3Fa8vbDt8fV/2QYnTYyBuOmaOyizSvL9OvRQ59944qZ6z3qtZQBbcQPU7ZJe16PuGLef/cz7daO4lR8tLS146aWXcNFFF2HvvfdGr169UFVVhYEDB+Loo4/G3/72N+W2X3zxRRx++OHo168fOnfujB122AGXXnopNkQtdJwysKQhDDLETSppSFuD9k199LGVqO7ibGCnXSpx1VWS9kgefpaOpBO3NCtu7sK4fHKSqPYlwPu8p1Vxo45x41lS1OB7fiyMYJV0bw6JgBE3pc0hADj3XPsxGws0WHgbGoALzrfvQ+YQ4MdIllhFpd4lgPJZJalj/3QmJ/FS3HRtVHjFAUe9V/m+8fGiaVDcHn7YfuylWim239AAzPi57YNegGFYj1LiFqksiJedUdfcQVmA22tDkYFScdNB3OKIcfvqK+/XDXErP1577TUcfPDBmDFjBhYvXoz99tsPxx9/PPr3749nnnkGRx55JKZMmYKi5OLwlltuwSGHHILnnnsOO++8M4466iisXbsW11xzDfbaay+sWLGC6BslE1Om2HOVKHGTThrC4LqpM65BKVMZ8VJ0WzpSEOPW2AhcdyWh4kYd4/aTn9iPecUN0DNQe+20UyQniUNxo7ZK8rv5URayhYKzqHSn0kRCoufdvTkkAjbOKG0OAc4CzSecYHcEUD7vrKQBv3nFxka/zS2lkgblKgdArbjpVK3Y9ahTcWP3C7UrgSduaYhx460vmpKTsJqOW+UXtr22ENt4EjflDRCgfVgl3QOgjvnVT3Hj5w8VjztAb5UsFn03DQstxipZdlRUVOCEE07A66+/jiVLluDZZ5/Fo48+ig8//BCPPPIIKisrMWvWLDzwwAPCbc6ZMwcXXnghKisr8be//Q2vvfYa/vKXv+CLL77AD37wA8ydOxdnnnkm4bdKHurq7KRrosRNOmlIW4MuGd29mxS1gKjbKqkrxm3jRufsoYm4NTQAw4cDd94Wk1WSIgHHZ5/Zj3v10k98eK89ZTmA9lDHjQ/uj6K4ffqp87n7PvX7fB/wm0MiyCKnvjkE2N+9uho49ljrcUTFjZU0YLUsAW/FjSduSiUN2IKPZcatrLRtnpTlAJKuuLH+sfMC0NhIvYibzgROuhU3L4VDF3FzzzkarJJ8Tcc62LsaizDUk7gBihsg7r65lXcgHVbJOBU3Hdc8dTmAgPP6n9dbMHVqhPqfKUMiidtBBx2Exx57DPvvv3/J304++WRMmDABAHD//fcLt3nttdeiWCziZz/7GQ477LC217t06YLZs2ejoqICjz/+OD7jF6MdAPX1VjKQTpXOQdhN3Kor8mpJQxjck4x7N6lCk+Km2yrpDoTt29f5OfxnC4LtOjY1lRJmLzz6sMYYN52B9/yK/Mwz9RMfXgHv11qagiLGjYq4xVnHjbdKRlHc3C4GL+Im0X9+cwiuzLUX4YaS47PIqW8OAfZ3HzqUa7T191W4XviSBjxxY2MjH+PGx+cBCiUN2P3Kznkmoy/tfZoVN/Z+fs7QWU/MPXdQlUzh40WTrri536vBbsjXdKyBPUZtRFe0oNrzPco1HcM2LXVbJSmIW9AaSbfipmPuC4px06C4/eW+zY7nc7B72+NiSw7TpyNajHGKkEjiFoY99tgDANAoSK+bm5vb4uJOOeWUkr9vvfXWGDNmDADgySef1NTL9KC+Hpjw02DF7egj8uqkDQhX3KIQN15C103ceNvAz35m71IpTpD8riMgRtzO+Xkh+q4jhR2QLfK33x7YcUf96fS//dZ+XFtr/U8R40ZllYwzxk2X4uZ+b0TFDbA3hzpXOyfvm3FBybEzrs1FG2dY/712kxXOO1/SgFfUwhQ3QKGkgds1wD/uyDFuXsSNQnFj96iOJBDutoF0xbi5z2nE5Cfumo5etmM/KNV0bI9WSUrFTTdx0xzj1tAAnDfFJm5P4yiMxrttz6tgnbdIMcYpQiqJ2/z58wEAgwYNEjp+3rx52NQaL7PXXnt5HsNenzNnjnK/Nm7cKPQviehW7Rxsfn5uFq+8Zt/MXWo07srqVtzWrLEHPJYNgd+pjpIog+/3QQfZjxUnMH7XERAjbrnmvNquY1iAtq5yAFTEhyduAwda/8dVgDttWSX53dMoipt7fIqouDHU1wNzP7b7/RrGouCxYDvy0Ijnpm1Lnzvf7HdVWMjy+zZeilsQcQMkSxq443T5x0ZxoydurM1MRl9NSj/F7YUXgEsvjdY2ZVZJ9xjC4o0VCbm7piOvTvOqtReUajqWM6tklPNObZUUUdxUz42XdVdDjBvb7O4Ke27aiK4AMmhpvXbcbgdli21KkDri9u233+Lee+8FAJzAgs9DsKD1ru/Vqxe6++SYrmv15ixQqvpqoVu3bqH/Bg8erNw+KVyT35Ctsxi2vcaFLGWM2zff2I/Z+eXbj9J3/r18HxUmSPeuI+BP3Pg6dxUoRN91pLABuRUCnW0D1ozN4EXcdBfgTrPixrevk7h5ZQhR/G3rBtvfe+99K/HOOx4HRSXj7Nzyu8kRVCvegeqluPGLTi/iJlXSwL0RAui3Sg4YAPzpT8ARR9h/o67jpktx4+9PSuIGRE5oU9I2UFpa45prgP/+V73tOBU3lmlWkZC7813IKG6AQk3HtFoly6W4JTjGbeZMoEvTKnyO4W2vbYZFOllZKaa4MShbbFOCVBG3XC6HcePGYe3atRg1ahSmTJki9L71rXd9V96q4EK3VqvROtWMOmmHe7Dhdx0BvbuyuhU3nrgxFVZXRjaNxM296wg4idub+A7WoCdew1j8HYe3vV6BAs2uY5oUN2aVpNg19VLcdMeg6Mwq6XW98ZNwFKukm7jxmT0ZVPvPva9Lt0qMHu1xTJTz7rcoiUDc+JIGYYqbe9dXuqRBkFVSJzmZMsUibww6x/Y0WiXdWSUBesWNYe5c9bYpFTcR4ibRvrumo4ziBijUdIzbKqkrkZBojJuOOm4psEqyze5pmOZ4nRG3nI/iBihabFOCVBG3M888Ey+99BL69u2Lxx57DNX8QJsAbNiwIfTfNzzJSBLcg02hoNfrH7fipmti99pNBpQmMK89AZ64vYiDMQDLcABedUxmbMGoZddRF7kqFOxzQ0XcwhS3pJcDoMoq+cYbpa9RKW5eF51OK81WW+lpG3B+b/58RLAb8iUNZGPcpEsaBFkldcW4Uajj/BhJYZVk1w0Fccvn7f5TK241NaV1Eb2syKLgr/eIsdeBbQM2cVMcf901Hfl7pdh6Lx2Kfzjek2md95RqOoaVwtFtldSVSKhcWSWpkpNEtEqyze7t8bnj9TDFDVC02KYEqSFu5513HmbPno3evXvjhRdewIgRI4Tfy+yRQfFlrAB3D/fWkAS6du0q9C+RcA82+Tyt4qYzOYkXcdO1kPWK3wCUJkivS4snbs2obs2ulWlbGAI2cZPedaQsQkpdagCwFbeaGqBnz9LP0K246e4/hVVyyxag1SruAN++TsVt/Xrgnnucr+mc2J99Vk/bQLjiprigYiUNZMoBKJU0oFTc3G3rtDKmWXHj30utuFVXlw7iUTafeTVcY31RANoVN3dNR3av5Lj75584FK9j/5JjlGo6eqlilFZJ/nPSUMetqsrZHrXiptgm2+wuuKiKiOIGKGx2pwSpIG4XXnghbrvtNvTq1QvPP/98W1ZJUWyzzTYAgDVr1rTZJt1gGSrZsR0OXoqbTuLmXrQFDUqyiIu4RVTc3LuOgJO4sd0jACXETWnXMSzGTZddRPeOJgMrB9C/v21D0UGumpqA00+3n8dRgFsXcVu3zvt65omKbsVtwgTg8cft13Qobuxc77abM0kDheIWMTMjK2kgUw5AqaRBHDFuFMSNWnGLi7jx10yEEhK+7XsRtyiKm1eiCWriFoGQ8zUd2b3itkm67yflmo5xWyX5z0mD4uZWfnWQWi9HRUSrJNvsdsdBboE13wUpboDCZndKkHji9utf/xo333wzevbsieeff943K2QQRo4ciS6t/vK3337b8xj2+mjPwIsOAGriRqm4eWUf1FXnRyNxc+86AqWKG4ObuEXeddRNTrza5icDHSmd2MKEjw3RMcH84Q/O52kqwO3XL0rFDdCz6PG7l3TthPspbuz6zOWUFxD19cC0qeFWyZoaqNe79LJK6i4H4JW+3ChupW2y76HLKslixt0rySjnhpK4uTd/evcubV/yXuVrOjI1zb0gd8eMKtd09NrEobRKAvSKm86skvz4CCQ2xo1tdqsobkqb3SlBoonbxRdfjBtvvBE9e/bECy+8gL333lupnerqahzRmkXroYceKvn7V199hX//+98AgOOOO069w2lGuRW3KOAtI2xi1KW4aYxxA5y7joAYcetcXVDbdQzz+Uf5Tb3aPuAA+7W//EW9bQavmlw6Jl93Jrc0FeD2ey+V4nblldb/Os67X+C9BuKWywGL5tnErVDtYZUEIi1mf3iwPRZ06sLOR6YtA2zd4Dzmz1ckbcWi/d29dvELhWiEmb2XtacreRPrGwOl4uaXVTLK9e5H3HQrbtXVFnlzE7cofY9TcWOFsSK2z2o6ZjPexI1X3O6eGaGmI2WYAKVVkroAt9ecCtARt4gxbmyz232diMS4KW12pwSJJW5Tp07F9ddfj169egmTtjvuuAM77LADTj311JK/XXzxxchkMrjnnnvw3HPPtb2+adMmTJw4Efl8HieccAJ22GEHrd8jNSi34hal1prXTnsCY9wA564jIEbcbriuoLbr6GXpqKiwbYf/+Y/TAhe17eOOs8/LK6+otcvAF1X3S1usK2VUHMlJdGWV9HrvySfru96ZJQqwSNuYMdZj3VYaTYpbYyMwdSowZAhw8nH2977r/hpMndoq/OpSl7j+//ycCsybB7zzDpCpsvq/1cC82n0K+FukdChLXuSEz4LXkRU3R1FNQsWNtZ0W4sb3a8IEYOxY6zE/ByqOA/X1wPbbWO/NZ5wr68pq+/lJx0c493ymUJ02e8DfKpmG5CRsY86da4EqOYmGPk+ZghJHVpjipmyxTQkSyUeffvppTJ8+HQCw/fbb4w9ua1Mr+vXrhxkzZrQ9X7FiBebOnYuBzC7HYfTo0bjppptwwQUX4PDDD8f3v/99DBgwAP/617+wZMkSjBw5En/iUyR3NIQRtwgFFAGU3tTuCSxK+zxxYwvYBMa4MbBdxNNPB6qbw4nbMUcpnhs/S0dlpf17nHiiGmn2artHD8tSs2xZqXIjC/561F1vJpNxPk9TAW6+XwcfbM1Ohx4KvPWW/bouq+TJJ9vnSse50UzcGhqsQqvs9t4J9vdetbkTpk8HZswAvtihCkPYHzRlmK2oqsRwVlaostK6Hyh38dkx7tgUEfDjH3t/JmN9TnMzveKmixjGaZXUXficmrgxOzmF4rb99vZjdt20tERqv6pVcevVtxLz/m05srt3B7a7KAs81XqQjnhXLzIete0wq2SU805plSwW4yNubqskUJqpXBB1dUBxzwLATXFhipuyxTYlSCRxW7VqVdvjt99+2zcubeutt3YQtzCcf/75GDVqFG666Sb873//w8aNGzF06FBccskluOSSS3yLc3cIUJcDcCtuLEsg/3mqYAtVvj4cNXHTsIufyTgHHD/ipnxu/CaYbFZf8W1322xhGIU8AN6proH0Km4UVsmBA4GTTiptX5dVkp/cE6a4NTQA48Y5X6uB/b2bYJ2Ppibgrfer9RA3P/VdhzoTlvDAfYwMgmL/mptpFLc0Jifh29Q1jrmJm7uWW5S+x2WVdGe+zGYjEzf2m2ayWXsDBACqNNsZvRLOAPrju/nHUcZfUcVNpf9NTfYmrZu4USUn0bT5P7SvcyOYJSdxK241NRZpU7bYpgSJJG4TJkzAhAkTpN83bdo0TJs2LfCYgw8+GAcffLBax9ozvMoBZDLWYBElvoLBrbj16lX6earwstQlWHHjF50iVslnnirgqIukPqK1QZ9d/CgZPBn8Ji/2G0Rd8IjUm9FF3NKkuHmpG+72dSlu/OROtSPrfixwbhobLaXNjU6c4sYmdsB5X0VabPqdex2p48N28QH1RX5QmYSNG2kUN11WyWLRW3HTlXwqjLht3mz1wa3Sy7bPW9V5pMEq6SZuVVXWZ+twDrjnIl0bc6z/fsRNlzrutcmiq76obsWNH9vdGwhxKW6q4PMYAOjUqzOwxlbcqtGCqZcWMXlKpl0rbQyJjXEziBl+g7wur38cipsfcXv+efUYOr/FmuIE6V50ihC3yy4tqCVp9NvFd0+WKuc+jLjxiwoV+C02dUy+7vfFobhls/biT5fixveXIjlJXIqb5HmfOdP7K3opboCzzIYuq6TnJo4uhYO/n3QQcv5e9Mq2mWTFzWsXH6AvB8BbUqNshLiJm5sAJpW4+Z0X/jN0xItSETf3eXd/FsUmC59ISIdLRncdN7+x3d02FXGLMu+5Qi8anuyMefOAnXezz9FVv1PMBZBCGOJmYIGfQKqqgHPPtR7rIm5hihslcbv5ZuCll9TaFlHcJBYO7kWnCHHLtRQwa5bwR9gIinHjofLbhhE33pahAkrixqp6utvUqeZ9+qmV/AWwlWsd95Lf9ahLcWM7m+4EQgkpB5DLAXfd5f03EcUtt4nAKsnOva404PxikxUyAkqvW1EQFSZvQ5ji9qc/qY/vfgpEXFZJINomFCVx8yrATX1eAD0ZN73sr+7nlIobhVVS96ai7uQkcRI3jclJAJQQt2znagwfDnTrpTGWNkUwxM3ASibBih0DwMcfW0UwABrils3GS9wAZ8FlGWi0SnotOkXruN11l8JcIDLBADTEDYi2KBEhbqrXpHsBTKG4HXus/ZgRWB2WOmrFjfXNvWjQQWo1ELcFC6zhygsixO3rhZqskl6kOcp597ufKIlbXIpbSwvw2mv62gbIskrmcsD8+cDqphQQNy/FjSecLnuZFMKskkCyFbdyWiUB9XNDmZyEvx6CiFsCY9xKkp15EX9doRMpgCFuBsAbb9iPL7oIjmhhCqtkZWW8VkmgdPIRhUbi5rXo9CNufN2SChSwdKn1fimEFZdt+zCF39bP2sX/BlGUH0rFbe1a53PWpq4dWQCYN6/0NdZ+khU3kZ3wMsa4BXEXEavk5rWEipuuemL8/cSPk1SKW1TiFqa4AcAjj6i1HaPi9sJr1RgyBBgxAvj7KzYBunn6ZjWrerEYP3Hr1s1+LUpm3yCrJPsdNCQnCbQDptUqGaX9csW4UY3vRFbJtmuS/x6q42MKYYibgZO4sXotDElX3PzqfbknG5U02u5+RYxx8xpXRBU3wEqZLIW4rJJ+FiNdxI3/LXVMvu4fwmv3N8r1/te/er8el1VSh+JGsaDSoLjxApQbIopb1yqCGDfdipufVdK94SCKMMUtqlUyTHEDgJEj1dqOkbg9/1p128YaSzcOAPfcuRnDh9s1qIXB9531d/Ro38+Xhhdx45UUviajLIKskjqScHiMubkcsGaD/RvntkQgP+xeLZdVUpXUtherJCVx239/YM89rcdbb22/Lr2znV4Y4mbglIHcBcjjUtyiDBZsEAsibvzfZKBRcfNadPLEjVcGvIibdLWKclsl06K4sUlBx+TV1GQVIvdCGqySXhn83M/LGOM2bBgwYID33/wUN564DeqvpwC3r+KmGtfpdz+lVXFzZ090X0+iICZub7zsvXHGE7fO2IymJisTsBR58yI/p58O7LST/XpSFbcYrZKNjcDUqcCQIcC9DfZvfPThOUydCnm1kzvv65qqMX9+62XU0a2S5Yhx4xUx1esxn7evx1GjLNs1U6633dY+7ssv1dpPIQxxMwje5Um64ha2KPH6mww0EjevRaeo4lZba71fCuVMTgJEiw2hinHL50snEDa56Ji81qzx/xulVZK/3imskjoUN6+J3f1ZIW1ns8CkSd5/81Pc+A2RbF6T4uZXikF1weZnlYwrxi1KIiGva5LfCQfUyRUhcWtsBO6dZb+XJ/tu4sYwcaIEkfBa4GezwNNP26/rIG41Nfb1yC/Iqa2SGpKTrFxn1XGbPt3aP85xFarWrs5j+nRIqZ2NjcDVl9nn9P+9XYMRIyxS+NdnCKySEcqaeIJScRONcdOpuPXubb+2erVau/x1XFvrtBvzxO2LL9TaTyEMcTMI9lUnvRyA36KEWnHr3t0+V99+K9SU16JTlLhNmqSwaS0a40ZRDgBIpuLmXigdeijw3e9aj3VMXkFkldIqmcnosexRxrj5pXaX/E2nTCm9vQHBOm4U5QD4e0v13PtZJflxksoqCeivLVhRATz6qP06JXFTPOczZwKZnJjixn+UcIZfv/FXl62ZjTW8PT1Oq6QGxe3zBZWOU8ATN1ZUWVTtbGiwSN4dN5cq78uWAU/9nbt+zjhD/X5i35sv8QLEq7ipjMGiMW46k5PoIG5elmMGo7gZdFj4LagAunIAbt9gUomb32Itm7UHjXnzhPvvXnSKELdOVQVMnizXbQD+5MqNNFkloyo//Hc94ADgH/+wJ9+4iBtFAW7AvrCSqrhpquNWVwfMnl36uohVUou9C/BX3HQQt7gUN11xYn6/K9931fNOlFWSZfjlrxkR4gZAPMOvSG0+SuJGZZXknQMqSi03hvFEzf2cETeGILWzocEid01N/nOq+7Nw+eWyPW9t1CPxCUCfnCSNddx0ELegOY8nbibGzaBDwc/CxD/XrbhVVgIvvGC/llTi5rdYA6z0Y4BlQfj6a6Hm3ItOEeL224sVC0uyxVJlpXNn0D3Zpom4Rd0Z5L+r+xqhJm6UVknAWUNPFeycUqTp1hDjxlBfDzz4oPMn9FLcamqAH59CXICb74Rq++W0SgLRCK1IAqeEWSVZhl+/8TeIuAln+PVTrXQotIA3cctm7etRl+LmV4AbUBsLuPfw2ZOBYOLmp3Y2Nlqkrq27Phs47s9qeuN/Ut1uA7tX3JuhupOTpDnGLS7i1rWrHfzvVyemHcIQN4N4rJJe5PDgg+0BRLX9clklAWemNK/07z7gF50ixO2HByuSWr8Jxj3op7UcgEq/gyYB/vd9+GGn1UsU5bJKAvEpbmUsB8Cjvt6quTV1qhX6wC/YuvetwdSp1t/3/C6BsqRbceNTxvKLKt1WSX6RT6246WifiLgxDqxC3ADBDL8iVkkdWSXdGZNZghJdMW5BypICQck12deLDHEDvNXOmTOdt52fiupW3L5ZoVgiyG9e1WmVdG+2AumKcWPt8cRt0qTgGHA/BM3ZANC/v/X/8uXybacUhrgZlCfGjYHdiNSKm+46boCtuAHA559LNcsWnTsMK1041NYC3/2ehjS6fpYOHcQtznIAVIqbn7rM8JOfSBFyAMFFbymzSgLxxbglQHFjqKsDrroKWLwYOPZQ+5r511udcNVV1t8d16cuZUl3KYZVq+zHffvaj9OsuOk470TEjZ1WVeImlOGXUnErFu2xxk3c2KI8iuImYpUElMaChZ/b75GxSgKlaiezvPLgf1NecXN/1lff1qgNZX7zqs7kJF6hDZR13Kg25vr0cR5zxx3y7YYRN5bxbfXq6BlyUwJD3AziV9z4m4+1T03cVNv3W6wBzsyYQQt2H9TVAdsPtSeZ1/5djXnzrEXo2AMiDtKA/yJcN3GLM6ukzhi3MOIGAP/6l1z77cUqSaG4ERA3vonuVfb3znbzIShJVdz8iFunTnb/dScn0UVoRTLv6lbcIqpWLMOvX0KbIOImnOHXj7hVVNjnRvV6aW62Le/UiluQVVLhutmwVl1xA5xqJ7O88hC1Sm5orlYLi6JU3PzGX0Cv4laO5CSAJY9GaTdIcQOAFSvk208hDHEziFdxc1sA4lLcdAxGQdY61fPDDfB77FOF4cNbf4KogzTftnuCSUOMG7+g0am4iVolGWQLt/PErUsX6/233eZsP8lWSZE6bglS3BzwK9quyxIoUg5AB3Hjd6kzmeiEXERxozgvOs67n1ODn0cU2mYZflWIm3CG3yC7YVR1nBtn1rZ0tmuVAbbitnGjepmHb76xH7tL90QkKN272L+pWwXjyZUfcePVTi8RWjQ5STOqxSyvbogQN9VxjM9Y6UbUNYHDT0oQ3x0W4wYA220n366o4gZ0mDg3Q9wM4klO4pf0IC7ipjurGaBnwckm98pKZ/s6iJvf7l3SiVux6NyZK5dVEohG3GbMsFYW55xjPddR/0hEccvn1T6jWKQtwK05xq0E5VKWdBC3lSvtx257UdQxWIS4nXiiWtuAWIybbqtkJmO3r0gKp0wBulbIEbeaGohn+PU776whQOl6aWwErrvC7tMrb3Zuq1U2dSqwpapVcSsW1V0Pc+da/w8Z4izqDUS+X7ceopacBChVO93JqQF/xc2LuAlZXt0QsUpGvd4prJJBKqoO4sZf737Ebaut5NsVjXEDOkycmyFuBk5S5Q6I1a24+WVKSoPiFrTQ1x2HRknc3O0lrY7bnDnOhazuAtwMQUScIari5lYJ3H2QhYjiBqgRCJGyIID+e4k/x1F2TLnv/M4HVbYKoUtZ4n9bP2VJt+IG0BE3vt8ffmgF3arAz06u2yrpvt4jEre6OuDgMfZvypM1P+I2ezbEM/wGETfWd8nrhdUqm3Vbab+XLbMKWb/0ZsSSACtW2NfjDjuU/j2i4pbNqFsl3Wons7zy8EtO4v6syk7VYpZXN+JKTuJG1DpulIrbmjXAffeVtudmxir3alC4CmCIm0EHhR+pAuJT3CgXJfznyyJo0NCpuMVJ3JKuuC1a5HzO79LptEqKKG6ySW34xb2b9PH3kqqFSURxA9QIhGgNId0xbsOH21vnr7+udG4aG4ElC63rbTM6Ya+9M20qxP2PaLDsrV0LXHyx/ZwyOYl7lzrqGMxfk36KG6AeE+VnJ6fMKsm3H4GMbzdETHGrqbEyAdfXSzTul80TsK8Zib7ztcp4MrkJznil9YWIRbg/+8x+zGdOZog6BnPvCUpOUgnn9e6ldjLLKw/R5CTDdqgRs7y6IVIOIOrmlpfiFrWOWxBxi9r3V15xPmdzdkWFtZvAoDLGGKtkCQxxM/AnVfxrxaL6YhOIX3Hr1g34wQ/s50mNcWMTt3ug1kncKMoB+BE3HVkl+f58//vOgVlnchKRGDfZcx9E3PhrX0eyHL8C3IDauQ9SNzIZ+/MoYtzGjrUeL1sGfPKJVLNMhVi7zFqY8AvwZcuA+x/VQCB+/3vH0yVLK+zToCO9OyNu3buX3q9Rs5GKbm6p3q9+myGUVkm+fU0q6pm/7Iza2taXOeL2nVGbMX++JGkDtFol3bXKeOLG9xUA1sNWOb6dq5DQ5ssv7cd85mSGqMpSXk1x81M7p0xx3oKiVsmRu7nIiwjyeft6p0xOEqa4RSVu7ns/6lqGn/cmTnTaay+4wH5MQdz4GEzVzLspgyFuBsGZjHSQE/4z/FQO3cQNAB5/vPTzZRFXjFs5rZJUddxU4yv4/h19tPNvcce4yZ57PnOXn+Lm7ocMKK2SQYtk/jXdMW4AsM8+9uMvvhBuklchWKIJfrEGAC2wr8+P35dfUDU2Av/76zeO1846p7Itpmj1Jo2Km9smCei1SvLXiHvhqbro8dsMocwqCSjbDR3gzs1vruiExYutCiCPP2uPY7vv2CRuj+Thp3QC0sTNXassiLh9jSFtj1+4d7FYX3nwYxhfR5BBI3Hb93uVjkvSi7iFqZ11dRapYxC1Snbvo1AiyK8MDqAnOQmfxM2NJMe48e/ZYw/n32pq7L5HJG5rN1TgnXfgTMYT1WmSQhjiZhAPcYtbcXN/lolxs6HbKsn3XceuY5AqRhnj5jVZyn6GiFUSoLkeKa2S/OdR9J1fSAiec7cKwYgbr7gBzsXbS/9oRmOjWHcBW837aI6TeBRQ0RZTdPk1EYlboRBM3KISZr8Fmy7iJqK46c4qybcfRXFzzR/ZrPV777KXhsWgqOIW4mTxqlUWRNwWYWjb40/+/pX87Sq6geM+VqH9YcOzmD/f2gCprXUSt97dc5g6FUJqZ329Re5qasStkp52xDD4OU0APclJgsJWdClu2ax+91BQCEIm48x0KoklX9tt/9/jFdhrLziS8SxdE9FpkkIY4mYgXjtEdeGwYQPw1VfW47iySgJ6iJtoTFRHU9z8JjAdxI0yrjDIduFlw6CySlIrblGtkhSKm+ZNELcKwXba3YobT9yy+SbMmiXWXV7N4xeDgHP3fmMuInFbsMA+917STlTFze9edSviSrnRIRbjlgKrpNNvp2ExKELcisXQccyrVlkX2KqYm7h9ha3bHvdav0i+VlnYOKBRcUNlJerqgKuusuqX3vx7+/OuvCyHq64STwZTX2+RvKN/WKq41dYCPzsjZANTBH5OE/fzJFslveK2dSpuXvOoInFraACOPNz+rgWOsrCNs+NP0VSCKEUwxM2AXnG77jr7MR+EDySfuFGqPwAdcQtK7U5J3HST5aCdQd1WSXdGVffxInBnleSRdMUtSN3gP0+17yJlRwTb91Ih/BQ3/nkNmnDXXeEf4Vbz3MSNX0DwRHH1twrn/YMP7Me77Vb6d13ELZNxnmc3UdOtuPGPE5hVEoA9f3Tq5Lz/+Xvpww/VFuIiWSWB0P57/SyiitvW+EqejwepSoBWxY1vK5sFBtVxyUmK8m3X1QFHfN9OyHLlTd0wb55FCs8+x3X96HSaAHrXG5RWSbdNEqANQQBs4iaRLIdtnOVavIkbw7oWY5U06IigJm58ViH3Li9VVkm+bSC6dSGT8S+VACRPcQtahOsmbnz7cVolKSYYt0qmU3Hr29d+/Omncu0yJEFx00E6I2atLFUhir6KG0/cOmELli5FqArhVvO6wrlTzC8geEXvv69HJG677lr6d13Ezb0I10Xc/O5XDbXWhBS3lhb1xFnsfvXL+ghYxaj5RFeiEFHcgNDFpletsiDi1ghbohqKRfK1ymJW3BzQQX44crDdbt0wfHhrs+7vonPD0v08yVZJL+KmU3ELIm6Cihu/cVaBYOLGj/cbVxrFzaCjgJq4eUnn7r9RKG6ZTLTFZksL8NZb1mOvwSiq4lYo2P3STdyCJl/3IkdnHbc4rZJRvfhe12W/fs7nOmPc+MXfP/4h165Xf+JOThKVQIgu2ATad3OMKrSgAtZ17Vbc+ImdkbtHH/Vv20vN64uVjue8VZJvf86bTfJDzccf249HjSr9e9KJW9D9ypMrFYgQtyjt84obD550AsC//iVvJRUpBwCE3qtetcqCiFsTOmEZrNpWdRXfyNcqC1PcKImbjs1Q/nfiWav7s3Qm5XI/j+pKoKzjRm2VDCJuTU1C7fMbZ2HEjR/vF3xmFDeDjgKRcgCA+sJh7739/0aZVRKwB1OVgfScc+zHYedGlRgyBKXn1U3cdChufPu6iVs5FTe+mCegN6vkoYfaj//1L7l2GUStkklX3CLGuLlVCGaTBIKtkuy4yy6zrDhe8Iop6ocVjud+VsmWjU3yMUU8YRo4sPTvUS2qfsTNvfutW3HjP5NScYvSvh9x83rNy0ot0rZXWxLEzatWWRBxA+zabr06b5GvVRZjcpKS9jUrbo609DoUN/46C7JKqsx9xaI934StN3RbJSmTkwA2cQNCVTf3xpkMcfv6iy3Kl02aYIibgVgBbv44WfAL2Msvd/6NUnEDoi02Z860H3upM1HVn6BJgFJxS1OMm+4dWVniJntu+EWY+3ocPNg+V2sV6iu5+0OpuAUtHHSUA4j4u7pVCL/aTYA3cQMsK45Xhkkv/uImbn6KWzWa5WOKqJVOP+J2zTXO55SKG0VWSR318/yskkDp/RtFfY9A3IDSWmVBBbgB+5rsWqkwDviM7bmclfzj62UxWSVVr3dKxW3NGvuxu1RC1E1L/j5Ks1XSa63EE+gQ4ubeOOMLsYdZJTPNW+Q3zlIIQ9wM6K2S/KR6xRXOvyWZuPHw2m2NSiIoiZtfDBqgvxwApVVSt+IWZpWMStzCdh7ZAlFHjbu4ywEkKMbNrUKIKm4OgtcEzwyTXjFF3eFkY/xiwm3FlI4pCttMoCJu++wDPPKI/ZxCcYvLKhmH4iY7DmtS3IDSWmVhihu7Jitaoo8DjY1W2vUhQ6w07Lf+wf4dHnogJ1VeA0DwOKBj48+PuLnvH5X7iU+u5i7doVOJpMwqWc7kJEAocXMPQzKKWw2alJPjpgmGuBnQE7eg+iFpIW5e390obhbKZZWk8OKfcILzuey559v3IvvsGlVNWxx0bqiTkyQoxg1wqhBBilseWeRbpzqe4AHwzDBZGlNURCWc1wGfrISvD9Wjc04+pihswcbOTbGoloTDj7hlMsCxx9rPdRA33YqbSFZJ1fZzObt9L8XNvcCVve41ZZVk4GuVBRG3mhpgyDC5At8OcOf8ny9lMXy4lV+MqSB8QfunH2/B8OH+tuOw9qmTkziUHvd5VplXeeLGJ5sCaGP/gGhrgnzebr+cMW5AKHFzb5zxxM1dRB1wJofqhC3yG2cphCFuBvERN68BgzKrJKCPuHm9X6fi5l5UxZmcJGnEjbKOW9gEc8wxzjgjVcWtosKbuEVV3MpZgDvqvcQvqIKKkwue87o64PTTrcdBihv/mpu4eWWYdKt5FSi9/3gFjl/IjtqxRT6mSFRxcx8rCj/iBrRWLG4dl1WJG/tds1n/hA1JjHELmzsSpLgxsFplY0aXErfaWrQVrO47uMbus+z9yo3bl/6uqqR7/PVehRY0NVlp24XJG3VWSSa5dOrkbG/77f37IYqVXJIit+IWNTlJ2PgbZU3A3x/lzCoJhJYEcG+chSluQAZbmDU42yS/cZZCGOLW0VEo2IMAtVXSa8DQqbgFWQBUSQQDheL2zTf2Y/fuXVqJG3UdN2qrZCYD/O533sfLtO+XSZWSuEVV3MLquEUtwL2CixNzW1IVNkEaGoA777Qe84pbEHHjj2Pwstbwah5vi2TgFxD8Qnan4QrjDPu+mYz3dUNJ3ABblZAsjtsGdgJ79CjdrEiyVTKMuLk3GnUqbhHiUevqgH12scePhsc7t9UqaytYzfdddhOHO+e8muz1Whb2sX4xo0HtkyYncUsvVVXAP/9pP6e0SiZNceOvAa91El/uiCJbs4TiFrRx5k3c7PG9tqdCMp4UwhC3jg7RorvuY2UgkoY2KnHLZmlUgiBEVdzmzbMfjxzp/JtO4uZesLnb0xlDR22V5J9TKG7u12WveXa8H3HTaZUsVzkA1Xtp+XL7cRBxEzjn7gLZvJLmtkryr7kVN6B0fQc4Y4rcittCbI0ncVzbc564dauOsGDzW3HERdwkiuM6wJQ6rxNJmZwkCjkBgkt3ANE3uIiIm7vtnffsZNcq82pf9txz4zZ/bXu9VgX7WL+Y0RLEpbjxNkmG4cO9+yGKtFol+WvMax0GRFsrabRKAs6NMxHixsb33p1NHTeDjgDRxRpAq7gBavEbQcHlAC1xi6q48cSNn1CA9MS4ZbPOXXb+eqGwSrLPBOIhblSKW0uLfktKXOUAVMcBRtyqqkoDGSTvJXeBbF5J42MeGIIUt//8x/szWExRl2q7Px9hZ+yAz9DMkcPKak32XZHrMUrZEWri5pXVhX0mH2MjA34M0R3jFqa4Rd3gYu1XVcW/yRKh/UKzmuIGeMeMliCu5CReGwlR1zNBVknKMglAtDpuYVZJIFoMs2bi5rdxFqa4ZXOmjptBR4BoCnBAXRUTiXFTbT+MuEWp4xaGqAuq+fPtxyNGOP9GSdzc0LmLn8nYr1EobkA0AhFGCt2fqRrj5tc2v7OvYpdMguKWz6ttsjCrZL9+pZY6iQWVV4FsfgHppRL4xbgBwOTJ/hav+nrggzl2f77GEDQxW05rTNFLr0fcaQ+KMQaiLTaLRfs9IlZJ2bEml7Ov4yDFDVA7N0HlNaIStzDFLeoGF2vfa26Keq+GLZQjtL9hbTBx81PcAO+Y0RJoLAtS2rkW+/t6KW5RiVs5Fbcoa7EwqyTffgKIG2BvnHWqCiZuNTVA74ERnSwpgyFuHR1xWCVFFTcK4pZkxe3zz63/KyuBbbZx/i0txI3CnhqX4uanisWhuAHR49DKlZwEkD8vxaKtuLltkoDUgs2rQDYfh+aVeSzIKhlm8dpqkN32fmMr8c47cMQUDd5a04KNwrrrF4vKg1/gym4m8AGCXopbVOKmOTOjcNtA6blWVdzCiJtK3wmJW26zmlWSITQdO6VVkleNKRW3iorS6z1qcpJyxrjxn0mxISpRx41HfT1wz2xv4sYn4+nRP0IW1RTCELeODhnLhWrWMVHFTWXAKCdxi7o7yAaw7t2Ds0qqnJeg35UvLK7afpD9KqriFhboHCXWSsQqGeXci8a4AbSKW1SrZBBhBuR/2/Xr7QVqv36lf5dYUHkNQ2HEzbZKNgMoVQsDLV5cf7p2r8Do0XDGFOmySFEobrLETdYu6Vczy+szdZOruImbaoxbWOKThClu1Rl1qyTgfRk4GyBMTkJN3FgB7p49gxNnRVHe3W0x6Moq6Rfjpktxi5icxI3+fe3veu55FSUbZ3V1cMaOq7hBUgZD3Do6wgaLnXayH8+ZI99+oWAPYmFpaDua4haUlIBScTv9dOCQQ0r7odI+BXETtUomOcaNyipZzgLcUfoelFESkFpQeQk7osQN8I5zC7R4he0m67JI+V0zUcYZauLGs2ivhXLUhTglcZO1SkqOBcXWvm9BDebPd339BFslu1SrK261tQhPx665nqMD/EYChVUyaC2TluQkfopbXMlJZMcY7rv27e+xcQbY36lYjJ5BPAUwxK2jI2yxttde9uO335Zvn7+JdFsli0Vx4sbHeuhCVMUtaKedkrhls1bhHYYkK25Byg9F2mL361HquHlBp1Uy7gLcXbrYjzdtkmubJ25eipvEgq20QLZz599LJeAzTXrZJYEAi1fYoiTqgi3NihtP3LwYddSFeDkVN8UYt8ZGy8K1cY117r9orMaIEcCQIdbrjY1INHGryKsrbpMmhTvzSa2SYQpwVOIWdK9S1xhNslWSIMatDSJzdtRNy5TBELeOjrDF2qhR9gSpQtzC0tBGGYxyOfs9YcSNHa8TuuyMugdpvm2AJnYxiLhFVTmTpLil1SoZdTGom7jx35WfxBkkzrm7zg8QXXEDAixeYdeMrvpN1DFufhYpSqtk1M2tIHIV9V4KU9wUYtwaGiw1YPp0oLJofV+mUC1bZr0+fDjw2psa71WvsSbKWMD9TjKKW02NlehHpn1SqySF4hZE3HRt4Pi1T10OIKnETSQuPWpG5ZTBELeOjrDBoroa2Gor6zG/ay6KsDS0UQajsB1TgJa4ZTLR4q0oFTe/Omu62y+H4hZnjJtGq2QuB6zaYi8Q8xs0EzeN5QAWfZMttXdFIW6icYuufviBr/MDyBE3L8Ut0OIVtnCImpRARnGTbb/cilvUhXLQGB+l32FtA9KKW0ODZWRga2SmRrlVq6Ym4NpbIhK3sDEyCnHjrhmZrJKzZ7fGG4WhjIpbrmDfv5s2FuQ/Iii8IWoiHkrFjbocQNj1SK24Rd20TBkMcevoEMk+GCWlPqXixk+8foOR6qJKNMA1im2vXFZJgFZxo05OEkVxE5kEopwbD6sks04NGQLcdpdN3OpP2GJbp0RBpLg1NgJP/MU+n1dfny21d0UhbjKprgXOOV/nB4hO3IIsXrkmu+31mypLLzt+AyfJils5kpNQxrjxn0dB3CSSk7gLwgNFVPkQN8BVJD5hWSX53+nu+7IlU6vbKllTY6Vtr68XbD/ovBMRNzYGD9vePldvvZl3jm8iCJqzo1p3ZYhblDpuKUtOIlTCxyhuBh0KYZnkAHuQUlmUyChuFEUlVScCUbKUVMUtzcSNso4bdXISl1WSt04tWwZshk3cmtZubrNONTRItu/uJ6C8WGN9/MezpbEtvL3roy8JiZtCLBSr81NTIxfj5rZK+lm82GJvzHfta+Cvz1Z6L/aiXPPtOcYtLsUtNAe9B8KskoMGOZ8HjAXugvB80WCv69FRJD5hMW78NXPK+ErMn29d77W1rX/mFLfv7tWC+fMlSBsQfN4JrJL8GLxkuX2uKpF3jG9CYzAlcZOZs2XnJZFxIK7kJNQxboa4GbR7yChuUQuoeu30xDUYAXIDkuixRnEr/Vta6rgRFuBuKVTg6qud1inAqfx0hrWAaWqyjhNaOITZjNhrgpMXb+8KIj9NTcDDT8dklZQ45/X1Vh2fY45QV9y8LF78Ym/NKmfbnos9HddkGhU3fhHmFbuoKzlJRUXpOMYrbirELUxx4yVdwLf/YQXhwzYSCpsjELdMprSYPaBHcctmgUwGdXVW2vXFi6007A88ZH+ffffMidkjeVASN5fi5rav8mMDr9ILj8FJUdzSRtw6dbL7T0Hcop77lMEQt46OsIQEQDSrJGWMm4j8rzoRiC4ydMRbURM3r4E6agIOZiVNWzkAWaukxLlvbAQ2rLeOX/R1JS67rPQYXnFzE4iJEwUsO6I77QKLNbe9i19sepGfTYjJKin5u9bVAccdbbc/9fJKzJjhSrLpQdz8LF7uxZ6fDdOx2NOhuCWhHIDsoiqMuOlKTtKpUylBiWqVDFPcRo0CTjvNfu4zFngVhJchbutXRCBufteMDsXNdb1ks9ZmxY67RkzCEXTe+TE5ouK2bEt3l30VADIowLqO+PuaIXQMDrpXKyvta5RCRU0zcctk7PEhQjkAoRg3Q9wM2j1kFLdCQX82o7gGI/fxYRBdIHVExS0s8UmU64W9j6HcyUkEzw1TaJo2WccXfIZWnrgxxY2hqQmYNSvkg0R2NgEhxc1t7wpbbEYibkSKm9d7tt62EhdeCIfFi18oD+plxRZ6WbxKY5WcCzyv33XiRCBfGYG4BW3gAPSKW5QaS/x1wMdAMuhS3LwUMWrFDXDWHPTpv1dBeBniltuUMOIWZt2Nmj2Rv2bcxC2TQbH1O21clytNkBQG7jp48oVunl+dbb54EbfAMZgvKeR1bjIZe41DYZXUtVai2KAXIVdsnDGKW2QY4tbRIULcoqS7fucd+3GaFDfRY1VJRLGY3nIAYYvBqBM7ZXISghg3XqFhsS1+xM3LKsnjrrtCvpYmxU3F3sUTt/z68se4OeBxvfMWr7MvtPv+0J834aqrvDPgucksEJ74pKkJ2NgU4ZoMU9yi3Kv8GOlH3KJkxQwjbjoVNzeixriJEDeBcdizfJ0EcasupIy4RbUz+ihuLKa0KW+1P+/TfGmCpDBw18HDz3gky0EwcQMCxmARd1IU4kapuIU5cAD6eZX91rIxaLLEzWSVNGj3kFHcALmFeC4HnHWW/dwobjb476o7EBkoL3HTWYg0iLgVi8D/+39ybYtkqJJQ3NwKDSNuXgt8INgqCQBLl1rWK1+ETWKCipuXvYtfyIQRt1VflzerpEz72SzQb2tbVarc4r3j60VmAWeiCb/fde1GRcWtULBtx+UqBxDl3PPEjTLGLUxxo7BKAkLnJmpB+K7VERb5MVol2xB1Y87jvPMxpex8sXMolUCEuw6+WtXN85Aw4uY7BouslZJK3GTWSsWielIuwP+aVLWTG8WtBIa4dXTIEjeZhcOaNc7nurNKigxGqt5nasWN0hZB3X7Y7p1OxS1MndlvP7m2RYp5Sixk/bLJ+SlufjWQeASKB5oUNxV7F0/cWtaWt45bCTRkNfMis0C44gYAWwqKixLqgvCUCZyA8ipu1dX2gq2MiptXQfiwe4nPKlnR3LEVN3dMqZu4MQglEOGug/VQU9xczdigJm5xWSUpxgEZ4iZ7bgxxK4Ehbh0dlIqbe5HhtWCKoiyJWCVVJzBqxa3cxC3NVkm/iUEEGgtweyk0bDHgR9z4BVs1vCcYr3JYbRCNcQu51lXsXTxx61RIj+IGQKgGnReZBcSIW9v5ikLcyhXjFkUVK2eMG2DbJSnKAQDC595dEF5GcYuUyIKiIHGMitvilZ1LYkr9iBtDYAIRTnGLQtw8x+AkWSWTtoEjMq+yc2MUt8gwxK2jQ6aOGyBvleTx8celx1DvIql6n6mzSoZNAh2ZuMnEQ8lCxCopeG68FJowq2SY4lZba1mvPLFmDfDMM979ZOAVt4Ai8l72Lp5I8v1k4Ilbr6oIihsFcQsbxwQUNy8yC4QnJwG48xVFeS+X4hZFFaNU3PJ5u/9+xI2tsCkKcAPC47C7IDw5cWN9SWNyEo643fVg55LuhRG3wAQirQS+mM2iV3/vzdww4uY7BsdplQybs2fNUl+LUSipIuSKt0oGzE1KbZuskgYdCtQxbjwOPrj0GOrkJKoTGHUdt/asuEW10sSluEUsB+Cl0IRZJcMUt0mTAnjpjBn+/WQQnMC87F18shQ+Fo+BJ24VWyIobkFxi+5jVdr3OoECxM2LzAJiilsxq8EqmQTFTZW4VVaGjwWyfefHay+bPWATNyqrpMS55wvC85sybuJWUwPc92DWvg+iKG6UxI3iegHaiFsxk8Gf7i6dt8OIGxCQQKT13s507YpJkz3q28Eem/2Im+8YLLJWYuc9qlUyTHEDgMcfF287CYob/7kyY4HInG0UN4MOBZk6bkC0zIxnnFF6DLXiproTQ624tWfiplNx8xqoVevDuduOmJzES6EJs0oGKW41NcDkyb4fB9xzj+vDAqySQGiCEre9i0+Wwme/ZEhqHTeh9gWImxeZBcSSk/Sp5RQ3md1kWccDteKmapXs0sW7EHSUtkWIFbNKbtok3z5vldRA3AC7IPzPJ5cqbrW1cJahkKi5WII4irYTK27FTp2xbHnpNSNC3EITiFRVlYxvDOwe5u9rhsAxOEnJSQDgpZfE26ZM5AbIEzeZ82OySpbAELeODv4GFbnhVGPcTj3V2zgexbedhBg3ds6iKG4U5QDC6rYkmbiF2er4BZcsNJYD8FJoKiMobrNne6eob8OQIf79ZJC43t32LhnFLcl13EJj3ALqCHkt9sIUt5oaYMAgRXIlq7hRZJXUobh52SSBaH2XIW58X2Tbz2b9z73COFxXB5xzlv1djzkhi3nzrLIUjjIUUdSZMOIWhezHlJwkX+N9zbB7LIi4ASEJRLLZkvHN3b6X4hY4BssQN1k7ICAXPgFYaTZFkQTFjV+jyawLRMIbjOJm0KEgU98DoPVVyy7yZRW3KFbJ007zPk619olR3PwRtsh3L9Bkzo/I7p3gZkKpQmNP1DIxbjU1lsXKXQy6BCLETUJxA2x7V3V1MHGrrgZum8W9Rqm4Uce4BfTda7EXFuM2ezZQ002DnTwJWSVl22ck2KsUQNS2RYib6mIQsDeA/BKTAOrnnvtd+w/MYvhwj2GY9Z1acVMl+37XS0WFPUZGiXHzOe8iihvgk0DEZfPk7asMXsRNaAwWuVejXI+yVslevcTbpiZuIuRKdV1gkpOUwBC3jg6RG1qHVTLMEw7IT2BxKm633up9HBuk+HpMImjPxE1nHTevScBNSFQVDg0FuHmFRiqJBYDuNS1O61QYBg/27yeD4vWeyQRbJTMZoFgZYRFOXYBbQ4wbg3ux56e4ORZ7OlwJ5Ypx05GcpFyKW5SxJixjJaA+DsvMfRTETfW8iNQVBNRrcgFtxC3bvbNnTKkIcQtNIML1ndlXp0613scTtxL7ahBkFDdAnkBQznuUZZ/cfQlLTgIY4hYRhrh1dIgobjqSk/gNFvykqZq2GKDNKnnWWf67W6oLznITN12xhV5t87/Fc8/Jte3uj9dA7bZKykwyGmPcAKdCw8dMiFgljzm82WmdCoP7XAcV4AaErne+hlKQ4tbUBJw2MULpjhTUcePBL/b69XISN8/FnupCOWmKm0zfi8Vw4qar1IAfuYqy2BQhbhoUt1A3SJJi3ESuF0DdaQK0jd+Zzp09Y0oZcQtK1++bQMQnPq+uzrKpLl4MbLW1dW769sqX2leDQE3cwtrfbjv/48OQBKskZYxbB8sqqZRXu1Ao4K233sJLL72Ed999F0uXLsXq1avRu3dv1NbWYs8998RBBx2EvffeGxV+J9ogGQhbhAO0xE1HvRmAtgB30M6je4IUTVUfZzkAr3NDuRjkidVvfwtcfLF34gI/hO3euYmbTP9FJgGFhAQAcPbpBbCwNb9YqN/fXAX8vPXjcxGsNIB3//nrPcQq2dgIRw2lsOQkDjIqe02Wu44bb8sSIG6AvdjLjy4Ax1uv/fKCSky73uOWTarixt8rIqqYTPv89UWhuPEp/v2KG0ZZbLL5wC9jJdDxFDfReU9VcSsU7O/buTOmTLGS5fKnIExxE0og4tP3bBZAp1bFrZiXWwGXW3Hr3Bm49FJg+vTS48OQBOKmI8bNKG4AJInbsmXLMGvWLMycORPffPMNAKDoYQ978sknAQCDBw/GmWeeiUmTJmGAlyZuUH5QZhsS2U1Og1UyKP28e7ALWgTwiFNx071QDrtmBg50Pl+9GujTR7x92eQkuq2SCue+vh74/t4FYGTr2ziSU1tr7RBPngzUda9uI26RdmQvu8z7GInrfeZM5yFMccujwrOOm4O4yV4zYZNvlCRF7vf4Xe+dOllkQzI+j9/571db6T1r6iBuFIpbWJ01QH3BJtu2bN/57BMUxC0sCQegR3ErB3GjVAoB9b67ip4zx8K4cVwXQoibUAIRkd9UdwkfgJa4AcDuu3v3JwxJIG5xWSU7QFZJIeLW1NSEG264Addffz02bdqEbDaLPffcE9/73vew8847o2/fvujRowfWrl2LlStX4qOPPsK///1vfPDBB7jssstw7bXX4uKLL8ZFF12EGtGFrUE8oPQ+yypuxxwDvPcesNtuYu1TJicRJW5UE3tU4hZGaimJ209+Alx9tf18wQJ14iaSnES3VVLx3Gw1yD72u9+rwDu3W+vNYcO4n3hjhMQt/PE/+Yn3MYLJSXI5qxYSD0bcLJtkqULKE7divuBxRABEz3s+Hz05id9Y07WrdU4EFbc2iMRvUCZwinKv8t9VdwIREeKmS3Hjs0fy0JHcKmiRH4filstZbcu4k6gUNxEHDmD/3rJJilzEDbAdCxMnWlM0I24VKCKDAoqt405NjUXahBKIBJFOVeImoo5TWiXdrydJcePvDT93jYlx0wYh4jZy5EgsWrQIo0aNwumnn476+nr069cv9H0rVqzAAw88gHvuuQeXX3457r77bnz55ZeRO22gEbLJSXTbgNxE/ogjLCO6COIqwB00gVHFtkRVIPhz47VZEmUxGLYru/POlp3j0kut5wsXAnvuKd5+2CLfvYDSbZVUXaxxx3bpXonRoz2OoZ7YBa/3BQuAZcucrzGrpJdN0kIGBWRQgSKaNhd8j/KECHHLZtWJm0j7XbsCK1dGI24iu8m6NxJ0pOsH9JMrvm2/zIxGcRNf5AfF2rnB+iKykaC734A6ceM3k7hrpr4eGDsWmDULqLg+C1biMosc+tRW246FsFi0JClussqP7Kai7k10HYpb0CZ3XHXcOgBxE9ri6dy5M/7v//4P77//Ps477zwh0gYA/fr1w/nnn48PPvgAjz76qFHbkgjKlP2yC00A+Ppr8fbjSk6SRsWN/65xK26AM+XXwoVy7YsM1Dwos0rqJoVRFAIRG5Og4rZuXelrTsXNG0x1y7dotkoC9nmnSE4C2ItNauKWpHIAlFbJsM0hIFrfZRU3VeIWpM7EobgB8ot81hfdC3zR5CSMdG3eLJdNOaB9FlP6nf3s8/XJ+znxBCL5vFhGzDRbJeNS3FQLcAetlShj3ExyklJ8/PHHkZOMnHTSSTjhhBMitWFAgCSVA5CFrOImc0OrxriJIklWSYqivttsYz9esECu/TBr2sCBwLff2s8prZIy517EUpfJWOespaWsiluPHqWviRO3PCozmpOT8K9TKW6qKgFljSLq5CSyipvuTZAoxIoyOUmhYP+u5Y5xA+SIW7FoExTdC3xZxa1QsMYx0Xlc4HqvqLJf336bnHgmBtmEYkkjbrK26STGuIkqbsYqGQlCbExXZkiTYTKBKHc5gCjELa4C3OWY2HUSN69zTJ3Nk6855vbkhSFsodya/KgNqqqYhnIA0m0D6hnZNC4Ghw1DSQ2lcKuknS2zJhuhHAAFcZNxDujOiOn+zCSVA6BU3KgTq/BWST/FjXJTEVAfCyiJW1yWuiDFjb+WZDZCZK936t9UZ+1VoP0obkkibiIbooa4GXQolLscgIyv340kJCdRHUipywGEWSX5mJSQtPElkLWo6s5AuO++wHHHqbUvMgmoKm6iFk92bmQnGJF7VdAqmc3CVUOpiC4SVslMIUJgf5iNlEpxY5/LKxaybesuLps0xU1WtWIQsQYnSXFT2ZhLilUyrgW+iOIGqBM3kdCMmTPV2hZJTgKok3GRlPcUxI1ScYtSE5HdG0HzXlwxbh0gq6QScVu0aBGefvppLHYlkfj4449x4IEHonfv3thjjz3wwgsvaOmkASGSVA5AFkkrB6CT1FJbJfkFvju9fhhErpkoVkyRc88v5CjLAegmhUAiFDcAmDLFPrwG9rEixI1EtaKOcaO0BCY9xq2iwn+MzGTs6zUp8aKAmOJGGX8NxKe46bbxU6tW/MafzPwhslGxYoX9+Le/FW+73C4ZILlZJZOQnERHjBsFYU4hlIjbjBkzcNxxx2EjF+S9ceNGHHzwwXjttdewdu1avP/++zj66KMxf/58bZ01IECSygHIIglWSar2qa2SmYz9OgVx05VaWEQVU1UJypGcBNBD3ESu9xAlldVQAsKLb7c136X13MhekzK/KbXi5u6PjrZVd5OpFTc2R3fp4p+mm/9siXsp12T3ZfW6Su+3xlkOgMISmFbFjSfjFMlJKK2S//mPeHs8RNXCpBK3OBS3TIYmHtXEuMUKJeL2+uuvY/jw4Rg5cmTbaw899BCWLl2KY489Fu+99x6uvPJKNDU14Y477tDWWQMCUJYDSEJyEuqskjqIW1g5gKhWSb/fle2aRrFK6t4ZBOSJm25VTEM5AKGdxwTsyNbXAw8+CPSqtsm7l+JWU2MdV12joMy4jy9XjJsOQh5UaoBBJmulyEJWRzkAP5uk+7MFzktjIzB1KnDCsfaxd91TiSFDrNcbG7mDk1oOIGnqDGXGY8rkJIB+q+QvfiHenmzbQPshbioW2CAybohbaqBE3JYsWYJtt93W8dpzzz2HTCaD22+/HbvuuiumTp2KkSNH4uWXX9bSUQMiUCYnUanj5n5fEGQVN4qsklSKm+pOLwP7rlVV/jvtfEpnGcRplaQkbmlW3DSSk/p64N8v2+SdJ261tdZifP781sK3FYRWybhi3AD9ihuvCPFKkUzblDFuYcRNUHFraACGD7fKNK5bY/clj0osW2a9Pny4dVxJ36MobroTq4iqM6rXjEj7cdn4KZRISqvkRRfZjwcOFG+bOsZNdj1DvTGncr0nhbjpjnGrqLD7b4ibN1avXo0+ffo4XnvzzTex0047YciQIW2vjRo1qiQOThRz587F7bffjgkTJmDUqFHIZrPIZDK4+uqrldqbNm0aMplM4L/PPvtMqe1UQ1Y9iUNx43dag5CEAtxxWCVVYn5YX4IUTRbnllSrZBD5iZIGnIFygU+dnESzOjO4t30NHHFCJ7zzDjBvHkprKLHPpbRKJjnGza/vvCIkOn4B8cW4aSBuDQ3AuHH20FIJJ3FjaGqyjmtogPN6VK3j1q2b/uQnSVBnqImbiuIWZ3ISv74PHQpsv731WGaMTMJvGmcBbpW+UxE3kTmbso4b334HIG6iFTIc6Nq1K5YvX972fOHChViyZAmOOuooZ+PZLHIqkzCAO++8E7///e+V3huE3XbbDbvvvrvn33r27Kn98xKPJNZxW78e6NUrvP0kZJUUzOIX2L7XuenZ06739dVX4u0ysMHLj9ACeqySIsRN1VYnsiiRbZ9SzYurHEBlpb+Kqtp3jrz3rO2M0aN9jqNU3Khj3FRVbNlkOTLEjVJxKxa1WSUbG4GJE11v8SFuDBMnAoc8UIm2qhOyawF2Hv3i2wA9c1PaCnAnQXGjtEoCaovwJBC3KGV2KMuOsLkm6LyobtAD5bdKAtY1s2lTh8gqqUTcdtppJ7zxxhtYvnw5+vfvj4ceegiZTAb777+/47jGxkbU1tYqdWyXXXbBr371K+yxxx4YPXo0rrnmGjzwwANKbfE49thjMW3atMjttBvIJidJm+JWWWn9y+eTG+PmdW6qqoCddgLefx/47DOLXMmUTpAhbrKKm8jkHkUxFNm9o7RK6ohxE90ZLBaDk0bwoNw1FUkbD6hlHwSSUcdNR7ZQ3VZJSsWtudk+73wMnhdCFvkzZ5YOb2HErakJeOpvWbRVnVBV3Pzi2wD6rJJxLfJ1W8f4z02S4iayUQGoEbckJCfRVR9V9yZO0qySlIqbIW7eOO200/Cf//wHe+21F0aPHo2///3v6N69O44++ui2Y7Zs2YJ3330XBx10kFLHzjjjDMdzU7ybCOVOTuJFRkSJm2gGrOpqi5ykySoJALvuahG3fB749FNgjz3E25exSubz1rkMOoc8RM47y16VzyfLKimwCM/lgMqKCmQKBWzZmEc2F3wJeLYtWs8mnxdsHPb3pFiU8Ak1ghb5qlZJGaUzaYqbCOmkVNxUY0NEyTgQeO5zOeCuu0rfUgH7vBR8oi6efLpSjbgVi2KKW1Jj3GQzwFJaJZNUDkBkowKwF+EtLeKbW0kj47IEgjKLahKIm2oCEdmNCkWXX5qgxIYmTZqECRMmoLGxEU899RQ6deqEu+++G925yevpp5/G5s2bMXbsWG2dNSCAyASjI47A74aOoriJEjf2GdTJSWQshyKTwG672Y8//FC8bUBOcQPk+i563lUHUkqrZMAkwLLlDRkCtBSs9j/+qOCdLS+sbYoJTIS4qd6rosQtjuQkmzfLXe/ForySmqYYN75tGTWP/00jxLgtWAAsW1b6ljDFDQCWrVa8Hpub7eNFFbe0xbhRZ5WMqrglwSrpvrdF2xYlKJTETTYEYd06+3GPHt7HJFVxY/NBORW3KBt/KYOS4pbJZHD33Xfjd7/7HZYuXYoddtgB3Vw7BCNGjMCTTz6JfffdV0tHdeHdd9/FxRdfjFWrVqFnz57YY489cNRRRzlIZ4eCyM5j3FZJ0R08ftEbNAmoxBSpxLjpLAcAAFtvbT9eulS8bUCeuG3eHLxA4iE6uasOpGWwSjY0WDE57CdkCkIl8m3Z8mbMsOqe1deH9Dus76r3k0icgup5EdntBfRYJf3Ozfvv24+vuQZ4+OHwdtesAQ44wPne9hbjxrfNL+7CwI+jYTbrAOLm95EixM3xusw1I1J8G6Cv46ZK9v/xD/txuZOTUBDauKySgDWXibgSVMg45Ua0rOLGX/N+xC3q9R50ravGiwL270ox7xniVgIl4sZQV1eHurZ0Y07svvvuvklAyolnnnkGzzzzjOO1nj174rbbbsOpp54aqe2NAvV7RI6JFZRWSZFB2otYFIti7bOFSadOwVYKyno2lFZJPkHLmjXibfN9CbJKJl1xi4m4sWx5jsNaF5z84pRlywN8yJtsVkkgfYqbDquk36KHb/ORR8SI27RpTtJWUeE/FqQ1xo1fxMkQN/4+DdrA4T/b47z4bv4LELccFK9H0Y2EOBU30Wv+vfeAt94Kb7+9JCehsEq67cFhijEgbn+lVNxUN3IB+97OZv03WqIqbhRzB98XCsVNdF5VnZtSCCWrZGVlJSa6U0x5YNKkSciKxm8QY7vttsM111yDOXPmYNWqVVi1ahXeeOMNHHnkkVi7di1OO+00NLQVn1FDt27dQv8NHjxY0zfShHInJ/G6EUVvPLbTFxZ4r3JDlzs5CQD07m0/Xr1avO1CwW4/aMHGTw4yky81cROxXWiKcfPKlgfYihsfx8MwcaKPbZJacaOMceMXyhRWSREb6Ykn2o9FnRqffup8Tp2JlFJxEyFuqjbMsHk44F4dNgwYMKDkZSHi1ruvBsWtnFZJFbLvzoZdbsWNIjkJP3dQWiUB8c2tOBU3ihg3Rty6d/fffFIlnR0hxq0DKW5KxK1YLKIoqIqIHkeN8ePH45JLLsHuu++O3r17o3fv3hgzZgyeeeYZnHPOOQCA888/H80doAaEA5Q1uWQWDjxEF4VMJQjbjVOxd5W7HACgrrjxv6mo4kZB3JJolXT13StbHuCtuDE0NQGzZnm0LVsOwN2fMFBmleQVNwqrpMiu6R//aD8Oum55uDcmgs67jmyhfu136mT/TXeMW02N/ZurKm5hiYcC4qGyWWDSpJKXhYjb8T8mVtyi2o4B/Yqbm+XqzioZl+Imqs6oboiWi7glPcbNT+IG1EhnsZgM4masktpAmqpx06ZNqBLNVFdGTJs2DZWVlVi+fDn++9//KrezYcOG0H/ffPONxp5rALtBWRZAL0S1dgFyxE2U7LPFpqjiljarpKrixveDOjmJyASZpOQkXN9zxUrPbHlAsOIGWFn2Sr6WbNpiQL9VkjqrJGVyEn6jQrTvMsSNsvZfJmMTDBmrJN92UIZWtpiTIW6itjcgNB5qypRSLh1G3GpqgB//VIMCnDbFze2qSaviRl3fTlSdEV3ki17vqoqbCOnUEeMWRNxUSKfIGONumyITtA7ipvt6TynIiNuaNWvwxhtvYNCgQVQfoQ19+vTBgNZdssWLFyu307VrV6F/iYKI9zlu4iYyEfDFZcPOqcpiMwlWSb4gvIzi9uKL9uM0WyUpygFwSVsWLMx4ZssDghU3wMoVs2CB+00K5QB0WyVVz4uoVVI1jkCE1KosqNxsgiK1u+hYwAiGjOImugmiQtxE2+b/7nPe6+qsxDw8wojb7NnA4DrFRXJSkpOoKG7u+6fcWSWpCa3uwuRAfIqb7nOjGuPW0mLPwUEbFSpjpEq2TZl5qVi0N9uN4hYLhFfT2267reP5Y489hldffdXz2Fwuh2+//Rb5fB5TpkyJ1ME4kM/nsXbtWgDoeNklRSR0HcQt6Ib+5z+BH/3Ifi4yETQ32zdohBpFvkhCOYDKSmvBtm6dnOJ2wgne/XMjqVZJyuQk3PUetAZmC1E/xQ3wWJ+rlAOQndwBesWN2ioZlK4/k5FLAe6+/soV4waoETfRxSYjbqptiypuhYJv3SyWkIdlX+WJG1/HraaGy766WNGWlmbFzX2c7gyElIqbSrZNik0QlTVHEpKTqP6mIhkl3Z8r2neV8xIhbtwXqvUoDXErgTBxW7hwYdvjTCbTZv3zQ3V1NY499lhcc801kToYB55++mls2rQJmUwGe+21V7m7Ey9EdvEpVSUA+OEPgVtvBX75S+u5yETAB0SXMzkJZTkAwLKPyRI3Hmms4yaSnEQDcQuaH/lyAH4oWU+KTjBRayCVU3GjtEoCVv9bWuitkpRjAcUYyS62LVusRU9YlkhATXEDrO/rc3x9PTB2rBXjufn3BaB1vZlHJWprrVi4yZMthQ6A+n1KrbhRxri5v6ffDlFcWSXzefEi1nEWJhcp4QOkNzmJzJwqUsMNUOu77Hwt0zagRtw01V51wBC3Uixo9QUVi0Vsu+22OPHEE3HjjTd6HltdXY3+/fvHnlHyjjvuwB133IF99tkH999/f9vrixYtwuuvv44TTzwRnVxpVv/617/ijDPOAADU19dj4MCBsfa57IhLcQu7FmQnAtGYHL5tasWNYsHWuzewaJFllRSdfEWhapWUtV4kySrJXe8sW56XXTJMcauttbLtOd8kaJXkr1eZ8iAiyUmoY9worZKs/ZYW8d9UNTmJ6sJBZGHS0iJ+r4reS+7Mkn376msbKL2fAsakujrgqquAfG0esPJ64ZrrKjHrQo+36dhISEo5AJVC0ACw227ex6nOHaL3kjuBSNC1yxCn4pYEq6Sq4qZbRRVV3FSux6QQN9X2ZYkbs27qXCslDMLMamuuGPBpp52G/fff3/Gabrz77rs4++yz255/8cUXAICZM2fi2WefbXv9ySefbIujW7FiBebOnVtCvlatWoXx48fjrLPOwh577IEhQ4Zg8+bN+OSTTzB//nwAwIEHHog777yT7PskFiK7+KrETXSQBpw3pEhyEn6hmRSrpMxAzR8bZGdkCRuamy1yFfZd3ZPoihX+x6oqP3FZJSkUNy7GjWXLmz699LAwxW3SJI9LWnSBzxMj0fPOLGwAzaJENjkJhVUSCMxu6AmZGDcdipto7GIuF06W2HEMIlZJwNqdFyFuMoqbwv3E3xsDh1R6ryZ0KG6iVknVUjW6C3Dzx11xhf+YTZ1V0q3OiBC3OBU33VZJ6uQkInO26nqAV9yCrvdMxjr3fMmfMIieF9UC3CrqNSVxAwJdA+0BSt/snnvu0d2PEqxbt84zw+PixYsdCUSaBG6Ouro6/OY3v8Fbb72Fzz//HO+++y6am5vRr18/HHnkkTjllFNw8sknoyLoomivkFXcKFQlQH4ikLFKqti7RBfhqtYIUeLGZ5ZcsyacuLkXF37ZNwBn8pPWGE8hJCE5iQarJGBly5sxo/SyZopbFqV9r6mx7GAlULFKiipu1DYgpnDU1Igv2GR2NWUzgyVJcVOxArW00BI3EaiUA3D3KQgi54VacVNZbBaLljWfgdIqucsu/sfFZZUErHMjUmIjiclJVLJKUtjJ+TUHH2bAo6LCuiZbWmiIG2D1n4/xDwO14sZ/T7/C4VHaN8StBErfrLGxEa+88gq+853vYOTIkZ7HfPbZZ/jf//6Hgw46CFtttZX0ZxxwwAHSNeCmTZuGadOmlbzet29fXHfdddJ96BAQIW6Vlda/fD6ZVklqxS1osFCNcRMlbrITmAxxi1onrrIyeOEetRyA6CCtaJUE7Gx548Y5D1sPa/LsjvVwY/ZsLoaHB6VVkjrwXra0BiBuv3L3RWecgvv6K2eMG+Vik1/MiZYbkBl/VTZCRM6L6gYLv0gOGt9VFoP//Cfw1lvebbgRVXGjSFKkorjpXuQn0SpJPUby4QRB12RNjdUXmY1c/jsGkR9AfnOLOjkJ/z2TRNzaMZQkpttvvx0/+9nPAolVsVjEhAkT8Ee+qKpB8iBilQTsgZSKuPELsCQobkmxSsoORu5jgohBVOIWsTaUL0SSk6hOvpxVkqG+HnjwQefPsAa9AACd0IQaWBNTTY11HMuu59tvQD9xo1bcRIkbdTY5WbIvmsEPiF9xE4HooirqQjZtihv/HYPGR5X2H33Uvw03oipuFHMHZUxRnIobpVWSYozkiZuf4gbYv6uqO0n0XtVNxvm/UaxlVOdsQ9xKoETcnn/+eey4447YYYcdfI/ZcccdsdNOO+G5555T7pxBDBBdhEcdjMJ25imTk7hTXYtAYHLM5YD5i+yBqriFYLCTPS/uAWvWLP9jqYmbOzheFDFaJRnq64H584GpU63EI4y4AcDwfmswdar1d1/Sxvfb3T83ohI3UbuLzHlhu6Zh6rWOBB86FTf3wouiVIJschJAv+JG2bb77zqJW9RYVCA4g6ZKv92L7nIpbnGVA3C/JwiUsX/u9imzSlKMkaLETSW7rEo8qu6skiqx14BR3MoAJeLW2NiI7bffPvS47bffHo2NjSofYRAXkqK4xZGcBBAnEAGDRWOjtcAfMgQYsXMW+dbb6L3/bsHUqdbfQxGX4vbjH/sfq1rgW6SemPvvKlmqiMsBuMGy5S1eDBx4bK+21+e8sgZXXeVjj+ShoriJTpDUu8nsegxLM09tN5TdTVZV3KiTk6iQK9HdcArFLQ6rpGrCA91xOe75QncB7qRYJVXODXVykiRklVS9JkVi3IDom9yi86puMs7PS6J2bEBNcVPNWmmIGwBF4rZp0yZ0DrpwW9G5c2eslykYahA/RNWTOIkblVVStG3Ad3JsaACGD7cyEVrhYxk0wRqsKnNNmD7d+ntDQ0j7cRC3I44IHuiiEjeZxaDKDpvucgCsnhEQ2PdsFugxtJf9fMMa8fYZkpCcJKKF1BOqCzaq5CTu40RKGQDJsUqmWXET2ajIZOzrXWYtoKK4iZ6XpChumYzavBqX4tZerZJRFbfqajElVSbGTcYqGYfiJlOmxihusUOJuA0aNAjvvfde6HHvv/8+BgwYoPIRBnGgWLQvcFHiprozqDvGTVVxizD5NjRYSSzcp6AZ1rmphjXBNDVZxwWStziskmH21Opq+9xRWyVVrGm6B2nRxSCgZiOltErK7ISze0mG0LJzKEPcKJL9RNlNBoARI/yPpY7PSxpxS4LiBgB9+lj/r1ol1i5Aa5V0zxe6Y9xkCLOKOnP66fZjSsVNtxLp7ofurJLUaekZcQsTLVR+UxmrZJQYt7DzwohXkhQ32U0/wBA3L+y///6YN28eHn/8cd9jnnjiCXz22WcYO3ascucMiKEywXQUxc21y9PYCEyc6H1orjU5q7vm18SJAbZJfrDTWVBZhrgBNkGhJm5JsErKLGSjErdyJScB5OPE+PNSbqtkVMVtu+3C23b3JwwqxE23SkCZsdL9d50xboBdc27VKvEYY5WECmmLcQPkF/lr1gCrV4u1r7JxRq24JcEqGbUcQBhxY+SnpYWG7FMpboBdeoNCcYu7jls7hhJxO++885DJZHDqqafi97//vcMOuX79evz+97/HqaeeioqKCpx77rnaOmugGTK7PEmLcRPNOgZo2U2eOdN/bvWr+dXUFJAbhDVWUxOcUl92oZx24sb/9rqtktTEjbIcgErWMdHzIqNERrVKZjJi17uq4jZ0aHjbfH9EILpwoMwqSa24URI3prg1NYnHdFIqbu5zUa4YN0DeyeI+Luh9KgtlleQkSbRKUiYnCXP4qBRWT0JWScAmbhSKWyajlmnaELcSKBG30aNH49prr8XmzZtxwQUXoE+fPhg6dCiGDh2KPn364IILLsCmTZtw9dVXY5999tHdZwNd4G/oMPLDTzCiu6aUiluMNYpyxUrcdVdAV1oVN69izXfd5TNG8cQtCLI7vqrEbeNG+Z18CvvV/Pn2Y93xSkm0SupOTsJ/tsp5Cbgeczlgw2b7esw1KahWQRMvEL0cgE9d0ZLPVkloAwRfN5SqGHWMWxxWSUDcLkmZnMT9/dKkuLn78O67/seqEBTq5CRxZZVMglUSEI9zo8wqKUMK2dwkQ9xEFTfAEDdNUCJuAHDRRRfhr3/9K3bddVfk83ksXrwYixcvRj6fx6677oonnngCF198sc6+GuiGzEKWDUZ8XFwYkkLcIlolG7+uCKxjzRQ3t1USAJYuBRYs8HiTKHGLyyoJAGvXhh8P0CpuDz9sPz70UP/j0myV5Cd+CqukZsWNz6L64sv299p914J4FlWR2nz831XGmOHDge9+N7xtvj8i4M+PqG0vbVkl41DcAGDlSrG22XfMZoMV2qi1ytxtuEFJaIHoxO3ww/2PTaLiRmmVpCzAXSyKEzeevPAlBIJAmVVSRXHbtEn8dxVV3AD5uQkwxM0DIVdIMI4++mgcffTRWLp0KRYtWgQAGDp0KGpra7V0zoAY/A0XRtzcA2nY4AI4b86wnXbZ5CQx7iav3xQ8+QYpboBPMjW2SyWjuFFYJfnPF1lsFou0xO3NN+3HJ57of5zKokSVuPExJUGQSVvcqZN1DehOTsLad/cnCAHjQEODFavJDmGbFACwamUB06cDM2YAs2eH1LiTVdxUiNvLLwcv8qkVt6QlJ0mK4sZi3ABxxU00y6lKVklVxY3CKikbO+4e604+2f/YJJYDoLRKim5Eq8wdzc329wyzSnbvbj8WVa7iyioZNg643SCMyAVBRnFTIW6mHEAJIhE3htraWkPW0ggZxc1dcyZs8ALEa8QByVPcuBu/W08x4ualuAHOcbwNSVHcZM/Nhg32cT16BB+rMkHyRGbQIP/jotqAwiZHfldVdDdcdGcQsCZIGeJWBsWNZVHlUeBMGux6Z1lUgQDyJpJwhv97oWBtEgQRMUCdnCRRcWvvMW6AvFWSgri5v5/uJEiqipvI9c63XV8fPA8nvRwA5fWuOy5StPg24JzwRUtgUG7MqShugDU3iRA3asWNjb+VlYa4tULZKmnQDqBK3GR3B2WJm0gMHfVuMjcZDR1WiaCqFn7JSQCgthYYNszjTUkkbiLt87bB3r2Dj1UhV2z3LpPRm20TkLveI14zoeeeTf4UVpooMW6t58UviypP3CrgXLAFZlGVtUoC8te7zAaOiuIWtnBIGnFLQh03IJpVMmyhqZJV0v3biyb4oCRuvJNBV9tRbaTUVkndhFl0g0VlXpIhbvyG5rp1Yu1TbszJEDeVItwqipvK+EsRU59SCBG3W265Bc0y2QQ90NzcjJtvvjlSGwaaIZOZkf+7rB+/3IpbxMk3W12BSZMCuhKguE2a5NM9leQkFFZJ2fZ52yBvJ/SCysKBTQKdOoln26SYwCgXsvznUwSYa1Dc/LKo8lZJN3ELzKIqa5UExPpPPQ4AaiRCd1bJqHWtklDHDdBvlayosK8pVcUtaPOEUrUCnCRAZBNHZqMiahxwORU3yo05lbmDWnFTsUrm8/Kb3LKKmwioFTdR9d0QNycuvPBCjBw5EjNnznSk/hfB2rVr8Yc//AHDhw/HRRddpNRJAyIkVXFLmFUSlZWYMsV/TPJT3GpqgMmTPd5QKNj9L7fiJmsf44lbmOIWZYIMmxyprZJRF7KUxI04q2QuB98sql5WSR6+WVRlrZL8e4JAPQ4A4iSCMhMeZeIT92frtkrydj7ZLHth/eaPUY1xCxqDqRU3WeImGiMGJFNxUyFuou2rWCVFf1M++29YmIiK4qZSgBsQOzdJVNxUrJJGcWuDEHF78sknUVFRgbPOOgsDBw7EuHHjcM899+Czzz5D0cX4i8UiPv30U9x999346U9/isGDB+Pcc89FVVUVnnzySZIvYaCIKMlJRCBD3JKWnMRle6ursxIweHbFR3GbPRuoq/N4A3/eRdPnAsmIcRMkbrkcsGaD/bsIp47nFbcgpN0qya5ZStubouK2YAF8s6gGWSWBgCyq7NzIKG66iZvqxC5KIqKQK77Gka62VeJm+D6FQXSsiZJoIuw+5Y8Rbdv923//+/7H8nUHk0DcZNqOqrgF3auqtmPR/qu0L2qVTLripnsckxkHkqy4hY2/qtdkCiGUnOSYY47BYYcdhttuuw233347HnroITzcmra7oqICPXv2RI8ePbBu3TqsWbOmjcwVi0UMHToU55xzDs455xxUiwzCBvFBpRwAIG6VTEqMW9RaPK3vZ4kX+Cx7gK24VbUqbjU1IVn2ZAa6OK2SIucmhLg1Nlo2u7vuAn67LIvzWl8/8tAc9jobmDLFh8wyUBK3JFolKRfhilklgzaJg6ySDJ5rFRXFTdYqGdZ2nIqbLHEL+02jqnky17tugqJyXmSIm+y9xJ+XV18Nv1crK633UBA3Xr3RTdyiZJUMK8OQZqtk0mPcZOemsHukvShuxirZBuHkJNXV1fjVr36FBQsW4PHHH8e4ceOw1VZbIZ/PY9WqVVi4cCFWrVqFQqGArbbaCuPHj8cTTzyBL7/8EhdeeKEhbUlEXFZJCuWHOpuczwRZX2/ViJ461Uo8AtiKGwBcdmkB8+eHpEaXIW4pUtwaGqxSWtOnW4oNv8hftzqH6dOtvzc0BLSvYpWkiHGjtkrKTmAxKm5ByULDFDfAJ4uqaHIS2UUVtQIBiMdYRCnALUPcKMg+pVUySk0uaqukSPtRisLLKG68Hc8PMuNAz57246BCpDxU4oko6rhF3ZjTHePG/zZJySoJyLsSZLIpiybOSori1oGIm3Q5gIqKChx33HE47rjjAAArV67E0qVLsXbtWvTq1QsDBgxAX75ui0FyIZOcJM0xbpptb3V1wFVXAVdcYdnCBp5cCcyx/nbl5QI7YKrEjUJx0xTj5pU6nie0wqnjRRU3fhAXVYCpiZuMVZJ9Pgswl0l7LxO8LgIXcRs2DBgwwHutFxbj5plFtbkZWLzYeiyibjDIKG58kgqRtlUUN0qrJAVxU7lmAFrFTWTu4DMsUlglZVRa/pi0WSVHjLAfz50b3jYgvkiWDW1gED33KveqSlZJlTI1njtTHPidLwqrpGz/ZeY9FWeVjOImW4MOUCNuMtdkChG5jlvfvn0NUUsrkmSVlJ0IZHaooiYn8VkQZrOWgoRektYFVatkEhQ3j3IAfqnjeeLmTtwycSIwdqzLNsnbkcJ2Nfv1sx8vXx7ebyDeGDfZ7Ilhk1KMils2a2VDnT699NAwq6RnFtXrr7cfh1mHVHeTZTeHKBS3KKpYR1HcRPouqpwwRFHcRK6btBK3HXawH3/2WXjbgBxxy2Qskk1hlaSMcVOxSvK2wbDaZjyxo7BKyo4F1MQtrjpuxirZBlPHrSODOjlJOykHoN2C1V6skq3lAERSx7uJm1fq+Nx6e+GyqdApeGzv3t2OD1myJLzfQLwFiUVj3Nz98kOMWSUB+GZRDbJK+mZRvfxy+/HatcF9US0HQKEuM3Q0xU13TKfs3CFzn/Ltq5yXNCtuYdfMNtvY50a34gbYv3nSrJLZrHihZtFrnSdufByYF6itklEUt7C2qRU3Y5XUAkPcOjJUFTfRlM7tLDmJL2QH0jQnJ+EX3j17BqaO97JK8mCp4xsbrZjBXUfY19VL/+6EIUOs1z2LOmcywMCB1uNvvw3vN5Cculbuz5fdNRWd2EV3wz3GAb8sqkFWSd8sqiLXodexHUFxE+1/1DpuMovBcicnkZmX+PZVskqmTXGTLQew/fbW4/nzw9sG6ImbilVSdgOKIhGPjOJGXYC7PShuonNToWD/RkZxa4Mhbh0ZMhMkX2yZV12CkMQYN9FJRjR9ufvz27vixk8CNTWBqeODrJKAlTr+97+3E5psWGEvXDajM5YtQ3BCk0GDrP9XrxabZKiJG6WiR6kw+4wD9fXAgw86L1Evq2RNjXWcb0KevfcO7wODanISmQU4IGeZZsfKKG6y8VYUbcepMOtMTkJtlaRW3FQLcIskJ5Ed31kcclOT3Fggct6jEjfRcgOyMW4yC3wVxU3GKklRgDuKW4OCuMmsIynj8wxxM+gQkElOwscxrlwp1n4SiZvsrqmsBUtkMOIngbBinlEySFHYx1wDqWjqeC/iBgC/+pU9P3SCrbhtgW25YAlNSsgbU9wAMdVNNcaNIvMj5eQbRQF2nRd3FlVecevXu4CpUxGeRZXvzx13BPdFNTkJleImQyKSbJUsp508iuImY5XM5cTcGjEqbu++X4n58wMuZcpyAIDzmpXZ3KK2SoaVG4iycUaxSSFD3Cor7f6rbLKkLTkJ5QaRIW6eMMStI0NmIStL3IpFufgTygLcUZKTiPRdViXgzx+fZMMLcVolFYhbUOr4MMXNDT/ixjBxoss2yRQ3QIy4yUwCmYx9bjqo4sbAsqguXgxM+Jl9vTz9ZB5XXRVSlw+wrdWZDHD22cHHqhbgplLcZMbIpBG3tCpuqlZJQH/tP/4YgeuxsRFY+IV93L77VWLECPjbvqNYJUWuedmFeFxWSYrSHaKKm4pVks8qGUbcAFqVNi6rpKxrgJ8z/SB77qkTiqUUhrh1ZMgkJ+EJxooV4W3zgzml4iYyWETJEChilZRVCfjzF5aRNYpVkuK8u3YGWep4L4TFuLnRGU6rpBslCU14xU0kQYls0oMkTb6qxE3kehScHLNZoHdf+3rJVggu2Bhx69w5vOyBquJGEc8JyKk/SavjJkNQVBTmpFklRdsnUtxYHcuvG+3jmOvA1/ZNmVUSkF+IUxM3plzpdpoAajXoKJKT8J+h4tagzCpJkZxE1O7t/nyjuCnDELeODErFTXZnUDU5CZVFKimKG3UdN9lzwwbS1rpZLHW8Z1cErJI8whQ3wE5oAsBZYJbfEfWDzOQIyGfAissyojvRhIxlWkW14olbGFQ3KmQVt6RYJeMoBxBmS3N/flqtkqLtEyhurI5lU5Nzk6rgWmKV2L6piZuMVZJPBEFF3NimpW6nCZCc5CT8Z6iMM2mzSsqsxQxx0wJD3DoyKIkbtfJDbZGijHHjFTeZCSxJyUm4QdQvdXwL7GOqEL6g4ombl+IGWAlNFixofUJpNwSM4uYFlU0Q0aLqgPpvSjHGAHIkImlWScoFFSA+1lRW2sSR2iopcm5k56aQRbi7jiUjbnlUAPAmzG227zitkmHnXlbplCVuLS12VmKZDUvdVknq5CT8ZyRt7kgbcTNWSU9oJW7FYhH33Xcfzj//fNx6663YKLILblA+yOy019TYAxa14kZJ3CiskrI7eHFZJSmTk3ATgF/q+CbY11QNwicB3irpp7gBXKKupBE3md1BSuJGGUegQn7YglSEuFGWA0ia4sbHAYvEXLLvKKu4ydiCAfkxEggeJzMZucyPspZmWaukquLmM8a461jaxM2/7TbbN3VWSRnFTfa8y8YAr1plP6YgbqJWySiKWyYj5xxQIW6UpWQok5PIjsFGcVOGEnG76aab0KdPH7zyyiuO14877jicfvrpuO2223DhhRdizJgx2Cyyi2RQHsjubDKSQUHcVJOTUO20UypuSbVKypx31yDqlTqeJ19MTaupAWbM8G5axCoJcNmWKckPfwxFVskopFN3MWWZWNcoVklZxS1pyUl0k3HZOGDZemUyCypKxQ2wrysKxU3WKqkxxs2rjqUIcQMs4vbFNzYJKGwkjnGjIm6i9xLlhmWxKG6VjKK4desWbjvmP0OleLiMrbkjWSWN4tYGJeL2j3/8A5WVlRg7dmzba6+88gqefvpp9O/fH+eddx523XVXfPjhh7j33nt19dVAN2QWbICTuIXFoSUpxo26HIDsYMQmsGzWWfPFC3FaJWVi3DwmAHfqeJ589evW1JY6/rzzvBOahCUnAax2hw1rfRKF/FDUb+poihuFVTJpyUlUFTdZ5UeGuIkqbmx8D3NTANGTk4Q5E2T6Tm2V1DgOeNWxZPG8fHImLyxbBhxwhJ2k49nHNntnnuQhSzplEsOoJm9SIW66Y9z431R3LTHAJm4iiUkAdcVNZhwA9CcnkS0fAdAmJ5HZODPELRjz5s3DzjvvjEruRD322GPIZDJ4+OGHcfPNN+P1119Hjx490OBZOdcgEZCdIBnJyOfDJ4EkWSVVFmyqWSVlkpP06yeXZS+hMW48+NTxd8yyF4y/vXBLW+p4v4QmIorbpEncT540qySl4iYz+VLaUVTuU3b+KKyS1AW4ZRYOshn84iJuFEonf1xFRfg4JqO4UVslNSpuXnUsRRU3wLlBVdG02TvzJA9Z0pkkxY13muhW3GQ2WKKUAxCJbwPUs0rKXu9JsEqa5CSxQ4m4rVy5EoMHD3a89sYbb6Bfv3448MADAQDdu3fHmDFjsKAtk4BB4kC5syk7waQ5OYnsYMS8/n36hB9LXcdNQ4ybF7JZYMh29oKxsnmL4+9eCU2qYV+PfGIThpoaYPJk7oWkWSXTqrjJXDOy18sW7nfXnZyEjxGj2sCRWRDKJpqQIeMAreKmokKsWWP9LxNrlQSrpKriViiUuEG86ljKELdm2H1nCZxKMk/yoCwHQJ2cREZxi1KLktIqSaW4ydiaZesWypQyoI5xM8lJtECJuBUKBWzhJuSNGzfik08+wZgxYxzH9e7dG6v4gFSDZEF2guRvOhniVu4YtzitkmHtF4tyu3cpU9wcCJgEvBKa8Gm0vWxGs2e7ij2nWXGLUjQ4rO3eve3HX34Z3rbMNSN7vcgSN5nrXTZGjLoAN//9tmzxP44hzVbJV18FPv9c/HjV5CRJyCoZcN141bGUIW58uQB3rcu2zJM8KJOTyJZhSCpx06248fFzIvcS/xkUVkmZdRhgy8Jdu4rHogJGcUswlIjb0KFDMWfOnLbnzz//PPL5fAlxW716NfqIqAoG5YFMVklAbrGZVKuk6CRDVYCb34mXKeQJJIu4iZz3kIWsO6EJv3DhFz01NdZx9fWuBpJG3FTruOlO6cyPw6+9Ft62KnETOS/87y6SjU1mURVF1acowM2PobKp3WUsUqIZK1UVN5Fzw3udRWKSVRU36qySEa3wXrZvGeLGH+Mmbm2ZJ3lEKQdQbqsk7yvla3B6QXYjV3WBLztviGwk8J8hS9worJIsDXNYPD1gnXf2HQ1xSyyUiNuhhx6KRYsW4eyzz8ZTTz2FSy65BJlMBkcccYTjuPfeew9Dhw7V0lEDAlAqblHquKU5OUlY+3yJjC5d/I9joLZKakxOUgKeuPlMAnxCk57dnMStthZtCU1KSJu7D5RWScFrptBit//FV9ngeYmy71zSKLz+enjbSbJKyiyqVIk4IFd7iiFsjMxk7O9IUZNLJqtkLmePoxSK2xdfhB/DgzI5iWJWyWI2i3fescaXwK8cMn+4bd+6iBtgZax09C2K4qY7OYkscZPdKJYhP6qWOt3kwf0ZSbBKMsLs5ev1AvttqJOTUP6uhriV4pJLLsHAgQPxpz/9CccffzzmzZuH+vp67LDDDm3HvPvuu/jmm2/wve99T1tnDTRDNqtke1DcKIibzETAE7c0Km4yg7SjNoC/dYwlNLnk13bf//inSixejLaEJp6IS3ELabux0SKY/37VnuBH7VmFIUPgnyWOsu8DBgADB1qPv/46vO0kWSVlJvYom0MUihtgq4oiVknVGDeRvvNjO4XiNnx4+DE8VJOTaLZKNjYCSxqte6kpV4m99gJGjEDwvRoyBrtt36pWyQqU3k9Ll1qZKz0/P23JSVSzVupe4GcycjXoZMcAgDarpMwGerEop7gB6sTNKG6xQYm4DRw4EO+++y5+97vf4ayzzsK9996L++67z3HMxx9/jGOOOQbHH3+8lo4aECCu5CTlJm4qO+3sON2KG19kVZa4lTs5SbFot69JcXN0pWj3fXBdZfhPmwCrZEODtYadPt2puOWQxbJl8M8SR5nSGbDvZ9mYH91WSV55SpLiRpGcBLCJm2xyEpmFrMi1zhNHiuQk228ffgwPdu7y+fBxhsgqye7VFcus356Pow28VwXGd972rVNxA+x1d8nny1olk6S4idxLMuRHtu8yiadkxwAgOVbJzZvtPsgqbiKbLPyawBC32CBwpr1RW1uLyy67zPfv48ePx/jx41WbN4gDM2ZYAcNNTfpvuriSk8hMMIBaquswqCpuslbJcituspOjoOLWBtm+U1slQybfhgYr+1tbd2D3gV8UsixxAGf5pCadVMQtTqukjOImcp+qxLrKkgj2HUWud1WrOoXiJmsfE13AMrjv1aA+EVgl+XuV1VnzIlae96rgNVlfb7mUu43IAVvEiBuQQQEZVKDoS9wcQolsXKdqchKKrJKUxFC27zU11ntEVKUoVknZjMS667jxrJ9CcVMNP3C/1w/GKukJJcXt9NNPx9133x163L333ovTTz9d5SMM4sB3vgMccQRw/PHhdXiA+MoBhMW48WmZk1YOQCbGLW1WSdkJjDrLnuwkILtbHbAr29hoZX1zHN62IKxA0WNodWSJi0I6ZXZlZetaJckqGfab8p8vqy6nUXHjr8ewMZLaKslfV/ffH368aqyVBieI+15lBCmoQLbjXpUgtXV1QJdqq/2tt7Vi6D75pDTzJA9G8LyIW22tlbnSPjiCVbKjKG4ibctssKgQt7iySoaNkXxCGIoYN9l5iTK+0BC3YNx777144403Qo/7f//v/5VYKA1SDMpyADILwjgsUjJWSZnBSNYqmaTkJFGIm8gkINv3uKySHvWbZs4s/UpMcfOqQQe4ssRRlgPg2y+3VTKucgCyyrhKCnOR8h2UiptM//mLU7dFFXD2/bjjwo+X2aiIYpX0aNt9rwYpbgyOe1Vx86y6cyVGjwZ23LE08yQPFufmFeM2aZLrdqcsB9BeYtx0x6LK3qeA/FhDZZVMu+ImQ8gNcdODfD6PCpEJ1SAdSEpykihtU1glZQaj9qK4iQ7STMlNs1UScJybXM7K9uYGWxAG7eS3ZYmLUg4gKTFu5U5Own++iGNAZRz49FP78ciR4cezBWE+H37uVRU3IHycoVbcZBNbyShuUaySrra97lURxQ3g7lXVMZh7nzvzpONwH8WtpgaYPNl1cBLLAVAl+pFpX/Z6lMn+GsUqCYT3/+OP7WNEyJXMvMcrbrLErbk5XNmPQtx0lwbhz/nixeFtpxikrGr+/PnoGVavwyA9oCwHIBPjRp0GvFi0ByzdFizZGDdq4iZzbmQnMD49ehoVN5/2Fyywkhm4Eaa4AVyWOOrkJHwGwrDflTLGLUqslUjGNAYqxY0nblzWZF/w5DRsURilHEvYWBCFuMkqbiJjgUzKfo1WSa97VURxA7h7VQNxc2eedBzuQ9xmz/bIqJvmcgCyvyvveAgDf6+J1IuktkrKXDP33GM/FlGv47JKAnLXjMi81Lu3/Xj16vDjVa2Sd99t3cDtFMLJSa688krH8/fee6/kNYZcLoePP/4Y//73v3HwwQdH66FBctAeFLf588OPpyQQSbZKypx30QmsUydrUqVQ3OKySrr6xs+Fju4IKG5Aq3uFuu8yySAorZJRVFTdVknZvheLVoASAGy9tdj9yi8at2wJXiypWscA/YqbqlWyulo+PlpGcYtoHfO6V0UVN6D1XtVA3AA72cnEic6fhxE3ZpWsqbFIm2ftSspyAKrW3SRYJfn5RYS48VbJYjH4Go5qlQzrPxtjAOCEE8LbprZKuu21QeOH7LzEB3uKECtVxQ0A7r0X+M1vwj8jhRAmbtOmTUMmk0GxdZfzvffew3vvvRf4nq5du+Lyyy+P1EGDBCGucgC65Xn+hr75ZuDXv7aivv0guyBsL8lJdMe4AXJ++SRbJbm++a3FRRQ3oHX+pE5O4t5pFyVuYde7atkOQH+NIuoYtxUr7JW/iNoGOBeNlIpbUqySogtZ/rilS4HttvM/VqNV0uteFVXcgNZ7VWYMLhYD46NZ5slZsywr5tKldoxbdWUeUy+x7JG+tStNOQBvqCpugHUtB9m4oypuYfcq//1E1gSqVklRxU1GHZedl/h1l5dtJaj9sGvGPQeIEtUUQpi4XX755W3E7corr8Tuu++OY445xvPY6upqbLXVVvjRj36EAUHplAzShfaQnAQA/vAHwEctBhDNbqi7HAB1HTfKrJKAnCUlaYqbT/vDhlkbh34WrKCd/LYscfMiJCfRTWr5eM4w9YT6epRR9akVN34xKGr5l8mkGiXGTbdVMoriJgL++x1zDLB8uf+xsucl4Fr3uldFFbe2e1U1YY7P9V5XB1x1FXDFFZYVs/s+lcAaYNut87jqquDmScsBJC05iUyMm2y9SPd9qpu4ydyrqtmOgfB7VZbQAurETVZxEyFuMlZM9/0QtDmfckgpbgyMuF1xxRUUfTJIKlStkpSWPVlSKNKfKARCt+LG951CtaKMcQPsRaNsOQDdi3z3MREUt2zWyvY2fbqrOwKKW1uWONXkJJWVYtY0mclXpvQFtVUySYqbyvWeFMUtSgFumSx+Im0DltWUIcxRIXteAs65170qqri13asyxE1iDMtmrYLfqLGOywic90JLvi0xwaKvKzF495ChLI7kJEC43RCwf9dMRm5ukk2CJGOVBKxrplcv/2OprZKUm3IqY5iMrVk2xo0nUyJWSZXwDAbRDYUUQik5SaFQEKrjZtDOQKm4xZWcBAgf2KMsCHXHuPFtz54NfPBB8PFJVdxkSaduWx1g/zaZjPzv6pp8vbLEhSlujixxqslJRM6Lu/2wyZcnhWGgzoapqrjJZpV87LHwHV/ZRQmgrLgtWlKF+fNDvjJljJusei1rlTz/fLHjAPkkFvw4umFDyZ/d96qI4ua4VynVE0BIuWpsBKZOBRrut9s/8thKDBlivd5Wc86NOJKTAHIbIVVVYvdrXFZJ3co4IEfcKEMEVPouc83Iju/dutnnXrfitnKlf9/aGUyufgNxtIfkJED4wB6X4iZrlQSAH/84+PgklQMAnFbJsJ32uKySon0PaN8rS1yY4ubIEkfddxWrpMg55y2Da9aEH0+puMlmlXTbof7xj+DjVXZ7BRW3xkbgiUft73fVDdUYMQLBC/E0WyW7dLHjBMPal01OwhM3fnxthfteFVHcHPcq5SKcP86n7YYGS5mbPh1o2WKfuxyyWLbMen34cOu4EqgqbiK/qyxxY7+rLPmJwyoZhKQRN5m5Iypx0x3jlsnYqpus4hY2940d63zejmu5CVslvfDNN9/glVdewddff40tPhd/JpPBZZddFuVjDJKCuGLcKJOTAOEDO2WMm6ylw70gnTs38PBCc65tN+arxZUYsnPIKYorOQl7f9CCIK7kJKLkJ2TydWeJ81PcPLPEUfedyiopm845STFuffo4n3ss8h0gsko2NFjXzISmZhzPPqqV7LOF+IwZHteManIS3fXzAHmrJP8ZMsRNhEDwhdF9flP+Xq1s8lfcPO9VmUW4SkxRAEFpaADGjeMO5UoG8MSzqck+ztF3meQkqnXWADnFTZTsy8S4RbVKBoHaKimTHApIllVSdi0GWHFuX31lJX/K54PnBRli2KOHpezfcov13BC3UlxwwQW44447kG89OUXXYpslMjHErR1BZlElaxmJMzlJ2ABAmVUyCikMQGMjMHMmsMsjefyk9bVDj6zEqgFWrMaUKT6ZyuIoB8CwebNe4katWglMvnyWuKqrnYpbba117j2zxKn2nWLypSRuScoqCVgrYbayldmt1mSV5BfiTKEFgGY47wvPhXiSygHIWiUBceKm2SrJUF8PjN2/iMqtreuGJz6B96qqFV7EUcG37xp/Gxstouk41Ie4MUycaI1Hbd8hjuQkgLxVUgRx1HED6BU30bWSqEKrmt07CVZJwN5oKRat9oN+L9kxmM/+a4ibEzfffDNuvfVWZDIZ/OhHP8KOO+6IHqKpRg3Si7RmlXQv6mRIp27FLYqV0ec9bAe/qQm4n5vYeSuN5w6+uz2KGDf3zmZQdj7K884fo2KVDJgE6uqAq35XAK62zt+Oo7KY97iVkc73o6gVNyqrZJoVN9n2NStu7oV4NexFkZ+91rEQpywHwOI+CwWx886OoSBumq2SPOoG29fj7ntm8c4sK2t44L1Krbj5KEszZ5ZyrUrX+O5GU5O1idSWnTKu5CQyVklZ1aqjxLiJErckWSVVNrfcxDDg93I4iL6pwpBRIR8jc94//RQ48kjrvJxyCpCi0mVKxG327NnIZrN4/vnnccABB2jukkFiQVnHLc7kJKILWa/3ekFmII2quLkG38hWGurkJBKLKulzk8lY5z6Xo7dKSsR0dutVZWWLC4LMTjhgfz/RyV1m11Rm4cBnX6MgbqqKm0iyA9n2NQf2uxfiQYobg2MhThnjhtb2m5vlLNMqVsl8PjgLoaw1TVBxA+C4Tzt3q8To0eHNSy0GoyhuXNu5nFXnzQ1mxwb8Y/TuussqNVCSvTZJyUlEQBnjRm2VVHHhUChuSbRKCsxNbQ6ih1raHEQ/OjKL1WEOIpl7deNG4MsvrcciiVISBKXkJF988QX2228/Q9o6GuJKTqI7xk1WcYuSVZLaKskNeqpWGkfigyQRN9m0yID4Lj5/jEarZBtkdx5ldsL5Y0QWJQCd4pbN2oVNKaySMmOMbHIS2fZVbEY+14zXQlxEcQOs9+VykNtIUCFurH2ZtlUUNyD4fpIdZ6qr7ePCxhiBOmslKANxW7DAey0ZNr4DVs6HBQtan2Qy9u9PmZxkypTw42UVN8oYtzQrbnFmlSyDFZNPxpPjkvG0oCo8GQ/lnJ0gKBG37t27Y9CgQbr7YpB0qFoly13Hzb2zmybFzb0g5QbHMCuN18TOdvA926dITqKquMnaGctolSz5fJFzI0vc2OJClLipJCcRPS/MLpkkxU2UuKkqbhHJvtdCXERxA7iFOKVVEnAqYkFQUSD49oHgc8/ar6gQX8yycUaGuIleM3FZJbm+rVvn0xUB4gYA69dzT9hvRJmc5OGHw49XVdyKxfDN3DRbJWXKsQDxWiVjVtyYg4gNX7zCzFuDmYOohLyp1s+TrRFXZigRt/333x/vv/++7r4YJB1pLQfA74K63+8FynIAUdQ8oO038LPShMVAANwOvrsP5VbcVFJps36U2ypJrbjJEjeq5CSAk7jpLvGQ9hg3n4WD10JcVHEDWhfiqhsJste7TAyailUy7DNklRnATngQZpWkJm6aFDe/lAF+C1k3mCgOQE1xE7neRccLBtUYNyB8biK0Sua32Nf7kpXVYuXBVBQ3ivjlpBXgBnyJm5eDiN/c8rreSxxEqopbRyBul19+OT7//HP8+c9/1t0fgyQjrQW43YRB906+zHnRZJX0s9KIxEA4rDSqyUlEB2lq4pYUqySl4pbL2Z8vuotPZZUEbOLW0lK6KeJG0rJKUse4+VwzXgtxUcUNaF2Iy+y0qxA30XtJh1Uy6DNk08YDyVHcJIlbLgdsyVntF/P5ttMybJiVNb2kKwKKW22t9f42sLGGMsYtDMWifGZcGTcIgVWSFT2//ir7vEw5pyq86DnQMa2SEYmbl4OIX894bW6VOIgMcfPHunXrcMEFF2DKlCn48Y9/jPvvvx+vvvoqXn/9dc9/Bu0EKotBoPyKmyxxkyUQMotwTVZJPyuN6I5sm5WGuhyATOKANBM3SsVNdjcZoEtOAshlloxLcVNJThJjjJvXQlxUcWtbiFNmrwXitUqKKG4yiymeuAWpwLI1swA5pVOQuDFSMGQI8MHHrcQtl28jBUuWWEkY3BAhbpMmuYYg9htRZpUMg8Z7yRNsjKyuFusXT+58ynawOKumjfZ5EYqzcvdddzmAbNYe73STcfdxMlbJCO37OYjCFDfA5SDqIMRNKSLvgAMOaKvT9vjjj+Pxxx/3PTaTySAnpC0bJB6UO778wkt3cpKdd/Z/vxeSRNx8rJJ+VhoRqyTAWWlkiJtsDASQbqsk5SJfJqskv7Aod3ISwFnSwRFME9C2aPvUipuqVTIi2c9mrQX19OlcVwQVt7aFOGW9SP44Kquk6LmPorjlclb//PqVgBg3vnwLABRa988rUMSyZUVMn57BjBnADTdYX4MfHsI25mpqrFp0JS8CtMlJAL2ZQgE1q6To+OiuL8rBnamZ32Dh71PfTM0AbVbJTMbq/+bN4Rkxk664tbYv4iDy29xiDqLhw2GIWxDGjh2LjOgOp0H7AXU5gEzGGvx1K2777gsccADw6qvWc90LQhnipinGje3guwc7EcXNYaWhtKMAHccqKbvIz2SsCay5mYa4qSQnkU0EAchlCk1CVskyWSUBK/HejBlc7WoBxc2xEKdMgsS3L1NqICmKG4txA6xrUoS4lSGrpJsUAE7lrAIFFFCJpibgvPOAs84C7ryT60qI4jZ7tkea9DiSkwDBxI06wQcbI0XnJR+rZFicldd9WlL0HKC1SgI2caNIrFKG5CR+DiIRxQ3g9g8NcfPHq2wBbNCxQJmcBLAmgnxeP3EDrK3uMWOsx5RWybCBVJNV0msHHxAjbg4rjcyupgqB6IjETXQSqKmhI26UyUn4BWlYjFt7Udw0LDbr6qyFNVu4iyhujoV4XFbJsPMel1VSRXEDLEt2nz7ex5Uxxs2LFABOAlaJPArc87vvBn7/e+DXv7aGCT/iVlNjXSslyg/7I2A1oJNcudspFPzPqco1I7OpyJQnUeLms7HlFWcVRtxKip4D9MStc2fLpk6huJUhOYlIMp4gO3mbg6iDEDelGDeDDgrKcgCAPRFQEDfK3WoVqyRTGMMQUIB7ypTSjeWw5CQlVhoZq6QKgXDvhAeB/11kF+Iii3z2/SiumUWL7Mf9+om1L2phUkkxTmmVpCzxQJ1VUnUM06QS1NcDDz5o/fRBiltNjXWcYyGeFMWNOqtkFKskEHxNRiVuYec94F71IgVAqeLGo6kJWL4cmD/fin3rkrWv2QIqUFtrvT5/vg9pA+zfqFjUWz/PPV8EzR/UipusVdKDPPjFWflZJXk44qyAeBQ3gF5xiyk5iV8yHpFkaw4HkSFuBgYuUFolAXsi1R3jBqgnVhGZ3PnJQpS4iQ7S7s/nBj22g8+DDXQFZFD0uL1LrDTUxE1lkS9TDFNUcVOpESczCfDlUXbdVax9UeKWNKukjOImu4GTVMVN4zVTX28ttHcZWaq4BS7EqWPcRBW3JFoleQIZpBKUSXHzIwWAHeMGOBU1hrvuAgYNshSd3Xeyvluhugbz5mWweLH1eok9kodoPK3sQtZ9nQTNH9Qxbqx90Y0ED1XJL84qTHEDXJmagfZD3CiSk3i0zxxEbrBzn0MlAO+Nbl8HUTsmbkpWSdlMkWPHjlX5GIOkgTodtUchUm1tyyzYZL3+KoqbSnyFx3O2uGPB7mzid9skfa00SYxxk5nARIlblLpWfN/8wBO33XYTa5+SuInaXVRifijtr5WVdqwrdVbJEIKSb2pp2+NdsqIK/XMCl47gNVNXB2C7ZmCu9fyfL1WhS521c+z7GTLKT5QxUmZ8TIpVUrRtlaySGoibHykASq2SbvDJFzIt1rmp6FRjJWMQgXt+4u9fHrLJSdzjStCGK7XiJlvcWzHOKsiu58jTpHKvylolAXGrZEWF2uZWjAW43THAgL0RLRQDDNDGpScIkbJKisBklWxHiEtxo7ZKhvV9xQr7sYjtTSZDIPtuooOo+zgf+9XYsZbPvtN1OSBnE7faWmtHavJkn11ZGcVNJS29SjkAmQmMX2wGxW9Q22s//NDuzw47iLUfF3ELut5VlBlecdNtlWTHtbSE36dRk5P4/KaNjZatrfOtLbi09bUzz63Cm1db99KUKQEKh+LCYbe9q4HuAccK9t3zsylj3HRbJfN5+3eVWUyJbsyVSXHzIwVAOHEDOFLQltlGgtSKKiiUipssKQTENxV5G3wE4uYXZyWa/dVR9DwuxS2ft653v3tFltAC6lZJ0f77XI/uGGCAV9y8v1+Jg0iGML/7LvdBHUBx88sqWSgU8NVXX6GxtTLhd7/7XVSl7IQYBEB14SA6AVPGuMmQTn5rtH//8LYrKqz2W1r0K27u+8znvNfVWZaZ4hM54BOgpmsW8+aE7OC7+5EUq6SK4sbe7/dlqYnb2rXW//37yyUnAWhi3EQXayoLfP431W2VBOx7iSLGLWSBz6dqn+oKjGf1m2bMCEgEIbNgk1X2qa2SrA9sIex3Timtkny/ZdYOovcqdVZJn3vVjxQATqukO8aNoY0UqKiRoo4Q1jZTvcPgHldErZK6FTdNcVx+mZpFsr+WFD1XuVdlNir4eWDzZhdr5BCVuMVklWRwO4j8FDdfB5HoNXP//c44k5TxFJKskh988AEmTJiArl274u9//7vKRxgkEe1FcQtbEC5fbj/2ipj1Qk2NdU5Es0rKkBOv9/sg0/rdKquzYlaaJMa4qShuQPDOo8o1Q2mB5dtvaQleKLcXxU238qM5OYk7VbtfKurA+k2UMRZxKW6sfT9yoMMq6ffbqhB90baBsilufqQACFfcHKSAjUMySqes4ia6iFVV3FSIm+62PeyAfpmaRaySJUXP41LcAGt+CCNuqup1jIobA+8gqrk2B+QlHESi5/2005zPU0bcSJKT7LrrrnjiiSfwxhtv4MYbb6T4CINyII5yAED5k5Pws6sMcQNoFvg8RM+77DkH5IibqPLDHyeaOp5iwaYywfjU+vFEFOIGBC+oKJOTUCtuKsq7aKyVRsVNtX5Tq7nEhoriVlEhHv/HQEHcRMd3aqskg+o4oNsqKaOe+NyrfskXgHDi5iAFlIpbkombqOKmIc4qKFOzcNFz0b4Xi/Z6Jwpx8wO14hZlfA9onzmIth5s9b9X/yrMm4fwZDwy96pfn1IAsqyS22yzDfbee2/cf//9VB9hEDeoywHElZwkrO+84iZilQTsgVR3jJsbugOdVWrlAOIEghWaBsLPjUqQtuiCTeWakSFuKn0XXVBRJiehVtxUxgEVxS1icpIo9ZscoEyoEFdWSb5vXqC0Sqrcp0ByYtz4e83Vfy9SAASXAyghBbLZE93HihA30d/UfY0EbbiqWOpE5yaNmRO9MjXzZNqLuHkWPRe9ZlQ3KtxWST/EaZXUpLjxYA6i6s6Wg0hXcqgSGOJmo3///li4cKHSe+fOnYvbb78dEyZMwKhRo5DNZpHJZHD11VdH6tOLL76Iww8/HP369UPnzp2xww474NJLL8WGsMQJBh3HKpk0xa2hofT9Ye0TKG7FzTaBmN/YSajmNQBxUqvi9RddsFETt6iKmyhx013HLU7FTVb5iUlx80vVLlL8NVL9pijELSmKmwxxE2k/iYob/x2DsowAzt/UtZngRQqA4HIAJaQgjuQkotejTIwbZVZfzbXK+FqLgL/i5llrkUFUHVe93ikVN9XSSSpqZ1j7slZPQ9yiobm5GW+99Ra68LuzErjzzjtx7rnn4r777sNHH32EvMyP4INbbrkFhxxyCJ577jnsvPPOOOqoo7B27Vpcc8012GuvvbCCzyZoUArqNLFJSU7CFLeaGmcB6SBQErdTTgF69rQe67ZKCsQRNDZataXee9OaIArIYMQuVRgyxHq9xC7mBuW5UbFKUhI3GdIpStxUlE7K5CRxZJUEaLJK8t+xtX2R+k1+Wc201G9SuVcprOqi9xKlVVJVcRPtu0o5gFGj7MdvvBF8bIiV0U0KAG+rpCcpyOftMZoyOQmFVTIqcdNtwxSIs2orel7lJG5CRc+N4qa3fYoSEjw6OnHbuHEj3n77bZxwwglobGzEgQceqNTOLrvsgl/96ldoaGjAp59+ivHjx0fq15w5c3DhhReisrISf/vb3/Daa6/hL3/5C7744gv84Ac/wNy5c3HmmWdG+ox2D9XCu0lQ3GTi8xhx699f3IJFHeMmW69Mk+LW0GDVD5o+HajMWeRlCzoByLRl2Rs+3CkKliAu4tYeFbdi0enHS0JykjiySrrf6wUV9YSvZ9TaPln9prCFg6y9Nk6rZNC5jyurJLXiJtr+8OHA4MHW4zfeiKxa8aSgttZJ3Gr75v1JgSphNoqbd9tsbg+JsxrzHbvvH3xUKVb0XPReVU3Gk+YYN5n2jeLmCaWskpUCF1ixWESvXr2UrY1nnHGG43mFakxQK6699loUi0X87Gc/w2GHHdb2epcuXTB79mxsu+22ePzxx/HZZ59hB9E6TB0NlZXWhNHURLPTTpmcRCY+j63EmMolAjaRNjcH1xOLStxEF4MaiJs7y14nWBPEZjjteoFZ9gBa4tberZJz5jglnSQQtzRnlQSsc9PU1HZNiNRvCiJusdVvitMqKaq4URI3VcVNt1UykwHGjAH+7/+sjYqFC4ERI7yPFUwewkjBFVcAm06sAJ6yXn/j9QKyO/m8SZUwJyE5SZSNXECc/MgSlKam8DirvN3+8B2zYnIHteImOjfJKlbuY8uQVdKzfaO4OaDEhorFou+/bDaLrbfeGmeccQbeffddjBw5UnefpdHc3Iy//e1vAIBTTjml5O9bb701xowZAwB48sknY+1b6sB222WSEiRBceN32IIGo2LRth6IxhMB4pOjanISNiDFlJzEK8teZ1jnxVLcSuGZZQ/oGFZJquQkb7/t36cgxGWVTFtWSb4frvpNJYcJxLiV1G9KilVSxRIoSn7iskpSbOCoXjM8Ow8aZyTJTzYL9Ohtf89sJuCaUSXMotlr40pOort+noriBtjfU1RVymT0J7RJu1WSWnGLEvrRjombkuJWCFtYJwzz5s3DptYFxl577eV5zF577YV//etfmDNnjvLnbAwjM4LHJBpduwKrVqWPuAHWzdncHL4oYZ8fhbj5LbCTZpX0iSPwyrLHFDc/4say7F11lesP7NxQqFZJsEoWi/a5003cevVyPhddVFEqbhUV1rnZsiV9WSWBEmIoUr/JL8YtUv2mKFZJUeKmSn7KlVUyiYobIP67qqTrl20bULdK6lTc4rRK6o5xA+zzIqoqyVyPKsRNpn2RualYtNtPo+Km0n9V4iZz7hMA0qySScGCVqtRr1690N2nUGFdq2F5gSPSXA7dunUL/TeYeeXTCkrFTTQ5iUrdFv7YoMGI372SIW78QBo0OVJbJTVklfTLshdG3ACPLHuAvcjI5YJ/W8rFJiVx47+TanISvwnM/XvvuqtY25R13AD73gja7eXbz2TEyRVPrIJ28VWSkwCe44BXqvYwq6Rn/SaZ8hpRrJIURX1VFDfKcgBJKcDtbj/o3KgoHKKLTUqrZLGYXqukKnFjx+pWfQD6rJIiipvqeeHnPYqswaLEjTIu0o2UKW4dgritb41Z6soH1bvQrTV74LqwdL8dHTxxE7VGyCQOAGhi3AD75hQlbjIZUUWtkqrETcQqWSxqiXHzy7LnF+PGoyTLHiB+btJax0118hU5L3y/b75Za5FTAOp9Z+3r3khwHxvUfpQYN8Bxbr1StYcRt0j1m/i/U1olKTZB0hzjpmIhBeRtezILQdGSLKrnXWShrBInFqfiJkKWARqrZFyKm+4YN9Xzks3aa5+1a4OPjZooTsS6K9N2ByFukfTBlStX4q677sIrr7yCr7/+GgAwZMgQHHTQQTjjjDPQt29fLZ1MC0Rqwa1bty7dqhsjboVCsCWQX4SL7rRTWyVF7Iaqiht1jJtI31WUH49dTa+9i0rkUNUa8xOkuAGuLHtA6bnxO69RF/miC7a0EjeZjQRKqyQgb92NEq/k93tpinFjYIl1Jk60fg6/GLeaGou0hdZvKqdVknIThL9WVWPc/K7JOGPcZNoXJRGUVknV8y5yblQW+e55WjNxy/cb0JZvc9Ujz6PH98Z6vzUu4qZ6L6WNuAFWYrZNm8LrFsaluJnkJA4oK27PP/88RowYgUsvvRQvvPACPvnkE3zyySd44YUX8Nvf/hYjR47E888/r7OvymD2yKD4Mka6evilGBNA165dhf6lGnz/g+ySKrtUccS4AcELWd4aQEHcKK2SUe0orefd6xZgahsQTtxK3MiU5yYJVkkd9i6/31V1YqdMTgKIE7eolr333/c/Lipx8+g7n6q9a7Uzxk1r/Sb+75RWSZXxEUiG4paUAtzu9v3OvYrdEFCLcdN93vnfW7TtH/zA+TzIKSOxccbqho6eUY+WVm1h4533+dcN7eiKm26rJGBn1KZQ3IxVMjKUiNv8+fNx/PHHY/Xq1Rg1ahRuueUWPP3003j66adx6623YrfddsOqVatw/PHHY/78+br7LI1tttkGALBmzZo226Qbja2jATvWwAeixE1l4UBZgBsQy1anQ3ETUWcorJJRM3e1nnevLHuixK0kyx4gRtxUd8LTbJUU2cVXvdY9Ck17Ii7iptr3s87yPy5qcpLlyz0XmyxV+9h97fM258MqsfpNSSsHkOYYN1XlnSLGTfZeVVXcKKySssRNdBF7993O5xoUN75u6Acrh+Bj7AwAGIBl/nVDqZOTRB3DKOq4iWyyRCFubPd2/XqxuHRAv+KmWp/Pq29h6AjE7brrrsOmTZswbdo0vPfeezjvvPNw5JFH4sgjj8S5556Ld999F7/73e+wadMmXH/99br7LI2RI0eiS6vN6G13eu1WsNdHjx4dW79SiTQrbrLJSZIU4xaj4say7PHgiVsT/G06JVn2ALHELdQ77SrnJpu1z48ocdMdy6XadiYjpjBHPe+iWcdk2v7kE/txUJZfHerJZZf5HpbJ2d9t+x2rxE6/ilUybTFuOqyS7VFxU10oiybhoDzv/AJatO9DhwKnnWY/j0jcWN1Q/muyeOoaNKMC1rlhdUPbyJuO5CQi8foy4y+/dvARCwBEjzEGaIgbU9yKRSAoBIgyxs0obr5QIm4vvfQSRo4cicsvv9z3mMsuuwwjR47Eiy++qNw5XaiursYRRxwBAHjooYdK/v7VV1/h3//+NwDguOOOi7VvqUMcxC0pyUl0WyVVVSXASdz8zk+Uoueu/rmz7PGJGprhvdvrmWWP/YFBN3GjtEpmMjbpTILiJnvNiFiBkmiV9CwG6AHVrJK8OueuAcCDfbdMJpKC7YuOllVSJNZKh+JGXQ5AhPxQlwNIguIGiCdWCfldveqGAs5EWDVwzh1tdUOjKm582nkvqKxlBg60H3/7rf9xcRE32XT3fLxEkF1Spf9833VnCzXEzR/ffvutkDI1evRofBt00WrGHXfcgR122AGnnnpqyd8uvvhiZDIZ3HPPPXjuuefaXt+0aRMmTpyIfD6PE044ATvssENs/U0l0qy4iVglVWPcRBYlqosGQGxA0phy2Z1lj0/U4FfTyjPLHkBL3CgVN4CWuFEqbkA8ihuFVfKAA8SOU72f1qwRO46dNwqLlErtP2qrpGiCjyTGuIn2XTWrJKXiRl3HTcRGWmbi5lU3FHDa8jvDGcvF6oZGJm6AmPIjcz0OGmQ/XrLE/zhK4hZl7mCKGxBM3FSdLAy6N1tlN0MZOgJx69q1K5Z55Qt3YdmyZcrJON59913su+++bf/+9re/AQBmzpzpeH0Jd1OsWLECc+fOxaJFi0raGz16NG666Sbk83kcfvjhOPDAA3HyySdj++23b1MQ//SnPyn1tUNBlrjJDEZJs0rqJm6qgzQgtnDQZJVkqK8HHnzQWiMEpUavqbGO803YIJs9MW3ETbXvaVbcRDZB+L/LtD1jhv04KAOvKnFbtUrsOMpEEyoZYKmtkqILKnYPV1bqv1epywHoyCopQtxkCK0o+aEsfE7d94DxN5fzrhsKOBU33q7PcNddQH6LorIkWutSZRO6Z0977qAgbiJ9j7Le4BW3oMySKp+hMmfrVNy85kOZGOkEQJKGW9h9993x+uuv48MPP8SoUaM8j/nggw/w2muvYf/991fq2Lp16/Df//635PXFixdj8eLFbc+bguKJXDj//PMxatQo3HTTTfjf//6HjRs3YujQobjkkktwySWX+BbnNuBAqbhRJyeRLQcgE+NGuZvs1b7XjmvUHSqP815fD4wdCzx1VQ5onVwZcauttWLaJk8OSdggq7hRZMJLouImMsmkQXErFv0nPhUCseeeVoabBQtoEk2EFQ1noCRuKoScuhyArOIms8AH5JOTUJBOygLcKnFiAL1VkqocAOC870XrurrGMb+6oUCw4gZYdUNXLGlBLXtBJcYNENvckl3LDBwILFwobpXUPe9FWW9QKm7Mep7PB48zKlZPkXjRsCyiKYCS4jZp0iS0tLTg4IMPxh//+EdH/bINGzbgjjvuwCGHHIJ8Po/JnkEv4TjggANQLBZD//FZIKdNm4ZisYhXX33Vt92DDz4Y//jHP7By5Ups2bIF8+bNwzXXXGNImyjSHOPGBq+gODFVxY2auFGpMwI7pnV1wC+m2IPo8SdlMW8exLLsAR3LKqlbJYiiuMVB3ACxrGMUpFM1q6Qo2LmnWIRHjQ2hyIQnSn4oiVucipvuAtxpsEomMMYtSNAJU9wAoGlDTFZJ2TGM2SVXrvRvPy6rJBVxo7Ta85Z2mTJd/DrPCx2VuP3kJz/B+PHjsXz5cpxzzjno2bMnBgwYgAEDBqBnz54477zzsHz5cowfPx4nn3yy7j4blBNpjnETWWyqxriJLHqixLiVwSrp13b/wVUYPlzi1MeVnCQJxE234qbabyCe5CSA2HlXVZiD2lZNTiIKyhg3FYIiSqz49inuJXYPy5AHgHajQqUAN6XiRlEOgNIqqaoWaiBuQWvyMMUNADpnE07cAH/VLanETdQqSel+4i3tffrIt+03/kq49JIK5dnuvvvuwx//+EcMGzYMxWIRK1aswIoVK1AsFrHtttvizjvvxL333quxqwaJAD9Z67YXUBM3kUVVUhU3qt1q0VTUUTJUidS400EgKK2SuVx5UphHuWbiUtxE2qfoe5SNEBGoWCVF7ycVgiJKTvjPpvhNjeLmfQx1OYB2mlXSq24oQ5jiVlsL9OlBSNyKRfXNJ/5LLV/ufYyOjQpq4kZRzkAk34AqcesAiptSjBvDmWeeiTPPPBNff/01vv76awDAkCFDMGTIEC2dM0ggZGM4qGPcdCscqjFu1MlJZK2SmmLc2hClJkyarZLuIHCv91JejzoUN2riJnLeqa2SgovwXE5i0lMhboAdv5EEq2RSY9z8+k8d46Yjq2S5ygHwljVKqyR1chLX75rNWrHSXpU5eOLmpbhNmgRUFhSSWLiPFXHJqI6/AG0WVQrippKlVbdVkiduffuKt90BiJuWbcohQ4Zgn332wT777GNIW3sH5YJNVnGrqNC/a5oGxU3nIp+PDYpYQNUXIsSNV+J0B967/5aUIPC4ygEEFZilzuapqrix9gsF/+tSgrg1NgJTpwJDhgB/w+Ftr+dQialTfUrHqcS4AeELB/ffRH9XauImm1WSwipJvZEQV1ZJ3TFuhQJw3332cz4GKQxxKW6KyUmA0rqhDLxV0q24tdUNpSwHEGX8lU0+lSTiJprBlv0tk5Fbi4lkJV650n5sFDcHhM/0W2+9haeffhrz588PPXbevHl4+umn8fbbb0fqnEECIau46R6M+LZlB1KRCUwxxi2fsdte+nXOu/kkKm6AGGGmVty4TLGBKeDdoLZKUiqp1OUARAqdUi+Uo1olg9oXTE7S0AAMH27t6C9bBkzBzLa/rUIfTJ9u/b2hwfVGlRg3QIy4RbVKpl1x0z2GUVsly61affop8OWX1uNBgwCZbN0iY6SOrJIRNv7cdUMZgqySbXVDdRA3kTI1HZW4iWxAqa7FKGLcwsZf92/95JPibScEQiPXihUr8IMf/ABnnXUWevXqFXp87969cfbZZ+OHP/wh1ogWOzVIB0QmsELB3n2TuaH5xCc8gXJDlbiJDEa88tOpk/cxHNhO/rkX2H258vIWDBmC0p18XclJqFJpixIfCuLGn6jQNJUcqK2SIoseHXE5FIqbyI4y/3vIKCgii/xiMXpWSSBSsp+GBmDcOOfX/Bpb4XNsBwCohNW/pibrOAd5i2KVBPRbJWVS3rPxV7fiVizGF+OWpOQksvWhdCtuvBPkmGP0uxLKmJyEga8byuCVnKSkbqgqcevWzX7sF8cVhbjJju9JIm5JSD4VR4zbhRcCxx4r3nZCIDRyPfjgg9iwYQN+97vfoX///qHH9+/fH1deeSXWrFmDBx98MHInDRIEyrgcyoyVgPzkG7KQ5XfyV623+5JFDsuWoXQnP4lWScD+nkHZlqIkJ+EJsN9nLFpkP5Yhbmm2SsapuPn1nb/P+PsvDKIbOAwUC4eQrJKNjcDEid5vzcPqTwWci82JE7k9hLiIm4ytWWSThbo8BTvvslZJkXu1vShuuokb/zqFRbWMyUl41NcD8+dbm561tU7FbUD3LZg61fp7G2mL0neRlPdRxl+juPlDZByLwyopu/mUEAiNXH//+9/RtWtXnHbaacINjx8/Ht26dcOzzz6r3DmDBIKSQCSBuAlOAu6dfFaUGrCIG4NjJ5/aKqm6YBMhblEUN5EFmw7FjcIqGYfSCdDGuAHlIW66guMVFbeZMwNy4bQSN6a4MTQ1AbNmQd01ANBZJQHaTKEi5zzKoieuGDeKTKSym366k5NEIRApIm6ANfxfdZXlnr/2ZnvT77orNnvXDdVB3PxS3ndUq6TI3ASoK24iMW5McctmnepoGGSIm+wmSEIgNHJ99NFH+M53voMqiZuiqqoK++yzDz788EPlzhkkEJQEgs/i+P/bO/MwK4pz/3/PzDALw74N27AIKMYQlU2NoETUxCUu1+3qoGK4QGKIexQVfhoR45Yookb0kqgRrop7glEUNYq4sRhjjIJxkAER2YZlgFn790dPTdep03tV9ek+836ex8czZ6nT9Omuqm9933pfHcLNT2fkY/C1W8lv4HLV8cKNMWkSsGmD5tAF2ZT3brXKZBw3P9dMXEMlk+y4+QmV1CncZCY9Qfe4CZPwhgbgkUecm3cSboD5uYZ9Ens6dYVK8seSrUyhUQo3HY6bzqySOsWPqpA9nfvz3JKThPhdCwqAXgdYjlt+vcP4pNNxizI5SZD28/Ot/YXZTE6ic4/bjh3m/7t0cd3DnEGQPW657Lht374dPXv2DNx4WVkZtvF2J5F84hQqGXZCxbch4mNiYreS7yXcamuBp59UFDrmdN4rK+3f74Vux83PsX/zjfn/wkLARzi27bHo3uOmMzlJkh033Su+fhw3YWCvrDQTkTjhJtw2bwbWrY1QuIW5HrPluIXdEwlE517HYY+basdNph/QKTp1ZyXmw+z32RfgjixUUseCpYpQ+GyGSurc48YWkoNk9+aPxU9UVdDfNCb46rmKiopQ4zaRdmDv3r0oSqgVSTigc6Xdr3BjN56Ozshj5dFpJZ8Xbm1g35E+tyjkai/gPQg0NDTnRm4mTnvc/AxgfCcdZHUtyqySOpOTxMFxCxKOEqXjFiJU0inyieEm3ACgplqzcJMNlfTrKrUWxy1McpIklQPQHSoZg+QktvCTdqeIkCSHSvLZkOIk3II62Doct7BJkLz6X5lF6Jjga/bYs2dPfPLJJ4Eb/+STT0I5dUSM0TnI+BVubOUtSIFs8VhCZgZzWsn3ctwAYMc2jQ4Ec6zCtB9UuOlw3GQHACDZoZKq3Wsg+3vcZNwZv1krGYJw69DBvXkv4da+RMGELWmhknHY46bTcTMM4O23rb/jWIDbSfzE1XHTLdx0Om58J5GN5CTV1cDixeHbzwXHza1OZxTCLZcdtx/+8IdYt24dli9f7rvhd999F5WVlfjhD38Y+uCIGBJVchKncgCGAezZk/l+PwQRbnl5tp2R08KcU3KStK+HREfKD2Bue9FaDiKE41Zf72+PhY4QVZ31vsTX4uKK6XQgAL3CLWiKcZmwuhCO28CBQI8ezs1bWSUNAOl7c8rKgH69Yhoq6Ue46bwedYdKyuz5YTidm7ffBhYutP5WHSqpwnHT4bwnWbhF5bjpCJX0mitt2ZL+d5yEm9/kJCrKvXhdk6qFm8yYGhN89VwVFRUwDANTpkzBTqcLnKO6uhpTpkxBKpXC+eefL32QRIwIOsioDpWsrbUGiKDCLcgA5tBZOK3k+3HcpIQb7y7arTyKnbfT6qQdftL1y4RKBpmw6dgLJX5vUh23pCUnkdkELhkqWVAATJ7s3DwTbkCm6zZ5MlBg5EhyEtXXelwdt7w86xpwavuiizI/4xedCT50hmOL7/dTgFtHcpKoHLcgbWc7OYm4JcDH3DoNdt049e1RJCeRddyc2ufrRaruf1uL43b88cdj/Pjx+OyzzzBixAi89NJLMGxuUsMw8OKLL2LkyJH4/PPPMW7cOJx44onKD5rIIjrDu/xklQw70QSCOW4OnYXTSr4f4da9i0QBbn7l0Y9w4+uieeGnQLbu5CQqhFvSkpMEOS/i+/2Q7VBJVY5biKySADB1qvPXOgm3oqLmraIyocFJLQfgZ4KvSrjpEChe+//EibJOxy3IsftZYJFZwPEjauPquAVdVAxagJsdfzb2uInPffVVsPbjECqpa4sD/1xYx03H3uuY4Puon3zySRx99NFYs2YNzjzzTHTq1AnDhw9Hj+ZZ7HfffYdVq1ahuroahmFg8ODBeOqpp7QdOJElsp2cJGwyBSCYcHPoLNhK/uzZ6c/7SU5y5mmNwKM2x+IHL+EmDvhff+2/bT/CTXdyEhWhknFw3MKGd+nMOgZ4C7dUKlj2rrg5bjYJbcrLgfnzzTqKIk7Cbf785moUn0e4x011qGTYCZtXHwPIhUryk3xdIYG1tXqEm85xL6hwCzPZLCgw205aVkk//YDMsXfoYO41y0ZWSfG5Sy4J1n4cQiV1OW4yC0TkuFl07doVH374ISZMmIC8vDzs2LEDS5cuxZNPPoknn3wSS5cuxY4dO5BKpVBRUYEPP/wQ3bp103nsRDbIdnIS3Y6bj7hqu5V8L8etqAg4/VSJjjSo43bttf7b5v8xTvsIWqvj5mficM891uM4OW5BQiXbtg2fzVOH46agADcAVFQATzyR+fWicCsqMt9XUWHznUkOlQzSdvv21uPdu+3fIzOhSqW8s8mpmGw6nRvxGolL6Q7+POpwIvnPJC2rJH8sTn2YzL3K9j5kIzkJ/1y/fsDo0cHaj8px05lV0ql9mX6GubSGYZ8rIQeEW6Cj7tChAx5//HH85je/wV//+lesWLECW5o3WHbv3h0jRozAqaeeigMOOEDLwRIxwM9kkx/0+cmAF36EG0tMIr7fD0Emmy4DgN1KvldykvnzgbJuEQm3Ll2A447z37buPW65nJxk6VLg/fetv8NOBrNdDkDmXvJT80vHfiiXrJI8FRXAMccADz9slvLYvDlduE2/phEXXSbUfY97qKRhmO3bfVaFcOP7WR6ZCRVgHn9Dg54wJi9xEqXjFuS86w6VBLzPTZShkkHOux9RK7OoyLZn+FmwVB0qybd9yinBFs6AZDtuXgtzYfdcAsCAAcCyZebjykrgkEPSX29two0xcOBA/OpXv1J9LEQS8DPZ3L7dety5s/+24+C4+UxBy1bmJ01qjs5xcNyKikzRVlEB4E2JAty8cLNbReI7up/9LNjgmCt73HRk2vMaYP761/S/4+S4+fldw2ZoTYjjxigvB2bNAm66yRzLe1ySD7xrvnbj9Eagq/CBKB23sAsJ9fVqhVthodl+Q4Oz4yYTKglk13HTvcdNRVIYP4kmdDhuKpKT+BFuOvbpytyrXgk+otrjFkaMtxbHLehvOmiQ9fjLL3NSuAXMkEC0evwMYLxw69LFf9t+ygHERLgBphhbuxaYMQPo1DV9j1tZmfn82rVc+BX/nTqTkwTt6ILucdNRDkBXrLzdayodN/E6iavj5vS7qnDc4rDHzef9VFAADBkCdOzi0ReocJh1hkoC6sVPKmW5bj5CJas2F2LtWvfbLoMgwi3oeWd9pJN7Il4jih23pjrr+Q2b8v2fl1xx3PxklZQRbl6hkvn5wV0rdu51Z/P0Em5hBAQ7N0610HQnJ2lqsn7zOO1xGzzYevzll5mvk3AjWh1+Jmw7dliPwwq3bCUnYR24z8GLreQv/9A6Lz89qQEbNpjPp4VfyXSkUQk3HSEjOssB6A6V9BIQousQNjmJjnIA/LHZTXqamqxrKei9FGUdNz9ZJYNO2IKEMcksVPipi6jSARbbDnqvugi3qirgmYXWb3r7PYU48ECgTx9zkaqqykf7XgJC5npn44fT2KHJcauqMv/9f3jAev6/Lyzwf178CDdVk/xsJycJswjCficvxy3ofcp/pqHBXnhGFSoZRox7hZHqDpXUWRRelXD7z38yXyfhRrQ6dDpufsoB6NzjxtcOCdhZFBRbbbcvbrDvD3QKNxWbeQH9jlscQiXDCje7a0YUJKoLHvPnJag48XJSeZHO33t+SKjj1oLXNRnV9Q7ozXIa9H5iAl7Y47ZggelUvvKS9ZvWwry+vvvOzLI7ZIj5Pld0Om7sGt67134SrmGPGzsvs2cDdXut5xuR7/+8BN3HJeO4+SnzoHOPm4zo9HLcwgg3r3OfhFBJQL1w0x0NolO4DRxoPbZbNSHhRrQ6/KzE6BRuOkMlGxutAV9moqlj/0acQiV1Om4ybesQbl7tqwqV9HLcwgzsQYRbkFIAQLR73CSTk9gSJ+Gm2nGT6WeY41ZT0zIRX7DATMRUWwsUwvpN65B+7dfWmu9zFSk6HTc2fhiG/fWuOKskf16A9LIS/J5nz/MSVTkAsR2eqJKThDl2r3BGFY6bU/uqskranXdVLiqQPMfN69hlhBs/ltndTyTciFaHzuQkeXnWTZcN4SaTyShoaFfS9rjpTE5iGOFj5f1MegB9oZIywk2noAWCCTcdoYyqskpm23FTvdIO6A2VVCHcAGDPHlRVmQmYGG7CjTFpkkt4YBSOG2C/R1qh4yaeFyA9KRWftZTheF4oOYk7Oh03r3Mf51DJXHbcZOZiQcQ4CTeiVeBnJSbsHjfAe5+Czj1uMpmM/Ew0k+C4Oe1x05mcROa85OVZx++U0Eb83jgmJ8m248aHy/ohYVklM/CacKra46YzVNIpgYiKUEkA2LMH8+YJiSSRGSopUltrll6wJQrHDVAv3ITfVDwvgLPjxnA8L60hOYnMApROxy3IPjGdoZJxc9x09mHi+1VnlfSai5FwI1odQR23Tp2Cte8l3FTtcfMSbjoct7gKNz973FQlJ9ER68/Ojd15YehyOGTCr4KEo8hMeAC9wi1bddxyZY9b2Otx9Gj7ybIix61hx2488kj6y34cN8Csl2f7s3nttZKZDHolt1LkuDU1NGacF8DbcQMczkscCnDHOVTSK+19VKGSrclx8zM2xXWPGwk3ghAIkpykUyf1mcFUhUrqtOd1CDd+NTnbe9zi5LgBwYRb0CQfXr+r+FzYrJKqyyQA3lklc8lxU51VUrdwU7GQsH8/sHWre9ths0oC+OaL3fjuu/SX/Qq3zZvNenkZZNNxkykHwB3L3l0NGecF8HbcAIfzEgfHLazD4TOrpNH8vfsbC4KXkGDnJ9dCJeOcnIS/N3TMZ7zGVRnhlkq5LxCRcCNaHXl5VmftdEMzcRU0lBHwzgwmUwBWZ6ikn0l4k0QB7jZtrM+ozioZdI9b3Bw3ds34EW6qk5+Iv3WQ4+fvJR2Om85QST8LFbmSVTLoudeZ3l18r51glekLOOG2b8uejJf9hEoybCM5g+xxi1OoJHfeG2vt71U/jhtgc16iLgdgN65qctxYqYS9282+5quqNsFLSOh03IJklVTtWsU5VJI/Jj+LT6rHVZk+DHAvf0HCjWiVeBWYlelImYtmGPb7rXSuhMuu8rD2dawmA+7OUpz3uHmt3qk6L2573MIKoCChNED4vQS6Hbek7XHz077OrJIye9z8LISoCJUE1E96uMW29shUXn4dNyA9z0kLQRw31clJRELuRy1I2R8777i5CbeM88JHAeh23AB7Z4xdR3l5wRefHNplpRLuml2LUsNczN0Oc897oBIS2UxOonMxV2UdN7tjlxVuXmPTFVeEb19nchLAXeyTcCNaJV4rMSqEG2AfLilzQ+vMKgl479+QET+APuGme48b/xndoZJOG+RVOG5+QiXDDmBeq5pxc9z441m71v49ueK46c7SGnZfpNgOQ0Ywc/1vWfu96NEj/WW/wq2sLL2cUgvsXBqGvYDQ6bjJhEpy572ksDHjvADpjptTqKTjefEKB1TV/4ptMcKO2Q7JSfhSCV2xreX5beia9nFfJSSyWQ5A5l7SnZzEaw+zbsft+eetx//4R7i2AfWhknz7JNwIohmvlZiohJtMtiHVmYz49nWsJgP6hJufUB1Z0ek2CKgSbnwBdRH2vGrHTfz3hBUQOsoBRJWc5LHHgA0bMt8T56yS2RZuYSdt4r2vetLD/Vvzm+oxeXL6y35DJSdPdvhnBVkIiVNyEu56yWtsyDgvgD/HzfG8eIkTVZNwp+9QIdya70exVIKbcGO4lpBwC/Pka6/K9pF250Xn1gxZx81rD7Mqx81JuPEMHhysbd1zMXLcCELAb6hkmJtCp3DTGSrJH4/qzF0MNrlWLdz8TJJlj91NoKgSboDzPjcmUlQXmhafc6slZ4fXvZSEUEkAePbZzPdEmVVSZ3KSoP2YzlDJnTvT/1Yt3IRFnKlT0/85fhy3oiJgyhSH9r1+17jucROuF/G8AN6Om+t5ybbjxr43aN9uk5xELJXgR7i5lpBwE1ey45JXqKRO4SY77nn1M7pDJfmxdNq0YG3rTE7Ct0/CjSCa8ZtaOG6Om27hpivlsvgZnRkxvSYOqVRwdwOIxnEDnPe2MJEik4TDzx43p4m6E36TNciGSqrOKike77/+lfkemUlPth23uO5x27Ur/W+Njhvq61FeDsyfzzXnQ7jNnw+Ulzu0H0S4qd7jpiirJBoaMs4L4O24uZ4Xr31cqsoBAPpCJZua0NCAjFIJfoQb4FJCwm18kh1Ts+m4yf6muoWbV6gkE+0HHQSceGK4tgG9yUlIuBFEM24uQVOTFboQpiPlB9+ohZuqPW66QiXdOlKZ0AI/dYRkxDjg33ELc168SiXwzwd13HQLt7g4bkEnJYcdlv73Bx9kvkeVgMhGcpIo97gFueb9OG6K9xZWVABPPGH+s/hQSVG4FRWZ76uocGk/iIMdJ8fNJgMsf14AZ8fN13kJ4rjJhkq6Cbeg14sg3CorkVEqwa9wcywh4dYHyyywiJ+J2nFTGSqp03FzGpvYd9pmIfIgquQklFWSIJpxExCyK2C842Y3+CZhj1s2wg11h0qySX7QwYsRleNmJ9z4DKWqsyeK/564Om6qQyW7dUt32ewSlMhMevwU+NbpuKlaCNEdKql6tdphv2tFhfkTf3+gtZhWA7OvLiszU7uvXeshToDsOm6icAubSIg7bnZeZswwk5YwGpEf7Lx4CTfZxS3+/nYbVyWTk4iGMOBfuAEOJSSiCpX0cNz+XVkUrAad7nIAUTluTuKHtR9mTqA7OUmOO27JPGoiu+gSEIB3qCR/Q4dNvQ7oDZX85htzBBJXolQl+MiGcGO/RdCi54xs7nGrr7fcGd2hksOGBWtfp+OmMzkJAHzve8DhhwOrV2sP2bNFp3Dbw9UwC7qirDNU8txz0zO4RXjey8sB9NgNNLsib31YivadzCyJvuc/QRy3oL+pzuQkgPk71ddnXC/l5cCsWYDxdgPwtvncx/8swIChAc6LV3ISWXemUyfrcXV15utMzPHi1w+C49ahQ+ZbDsBXLY+9hJvtrZalUMmqKmDTO7UY3fz3BRML8TGAHj3MJDNTp7qEvgLe5QCSssfNrn/kvy/M2EFZJaUgx40IjtsNrVu48SuDOhMShOks1q+3Hs+alfm6yg3mYirtuAu3KMoBAPbCjX9OZ3KS//ovYPjwcO3bXY98yvQw10t+vnU+7QZ22cEXsCZudqndVe1x85OcRLVw460Du9moGzpDJfnaSWI7DJ3ZPJmgbdsWw0flY8iQgJeml5PKfgu+tplfvPa6ihkJg14zHu54qsm6jgYflB/svOhOTtK5s/VYFG6GEb5/F4TbwIFIK5XQC99gMv635W834eZZKgGILDkJq0H3r9WZWVR916DLlVBJr3DsMI5bkOQklFUyAxJuRHD8Oj9hbopu3azH77zj3H4YYaUzPApIn0j+8Y+Zr6sKlQQyz72q5CS6hVs2kpPIOEtBHLcbbwzWNqDXiQSsQVWH4wZYx2Un3GRWTYOGSqpexNEt3PjrNEhf0LYtcO211t+as0pmwGLZwuxrAfwvhOiYyIrfF1bse7nj/Hv9wicnsatFKdsX8I7bjh3pr/H1L7kC7L4QskoWFCCtVMIxzIJsZi2GODblWCpBp+Nm07/zNejcyl941qDL5eQkMvujgfR+hm+LoSpUsqkpc2wi4Ua0SnQ6bj/+MdCxo/n4z39OD1ni25cJNQT02PMHHWQ9PuSQzNdVhUoC7sJNdR23xkarc9URKsk7q7LCbc6czNdVCTcdG53dBkfZVU3+c6qzSjLY5NcwMiecul3gJDtun3xiPR7iPJm1RWc/5tdxCzrBZ/jd4xamH+CvYR3CzWsPMzv2MJl32e9kGN7ujGrHjR9jJR03AGmlEvgspLdgJuocav+5lkpwuyYVh0qKNej443eqW+hYgy5XHDcdYxO/8GO3MVKVcAPcE9qEXRDNMiTciOC4TTZlszx16GCllq2vB7ZuTX9dRrjpDpXkRQMTnzwqQyXF45dxC70ma7w7oNpx27sXOPJI6+8wHSm/L+OVV8w9hjyqQiW9CnDHLRyF/5wux81m4tYCO195eeEnyUB2skrySUCCihSvCZVhAKtWmY979QJ69gzWflTCLZuOm24HAgh+zbD2vfahyRaC9iqmHKZ9N8eNF25Br3Wb+58vlcBn2qyC84Yw11IJbudGcaikWIPOT8F5xxp0ueK4eY1NYcYOfn4kJlwC1P6u4vGzv/lMsQmDhBsRHLfJ5hdfWI/Dpo7nP+c0GdQh3GRDJUeOdG8/ro6bl3DjHTHVjtv//q/9+4IgijExp3RUoZI6SzyEWUgAoguVBDL/DTITWa/zfvvtwF//av2ty3Fr3z78BB+wn4SvW2e5HkH3RALe4kemHIDbfqK6Ouu5sI6bl4Mt47jx590u/Er8vqDfwc6NV8IZ2URCXv1MmPbdHDeZ/l3IKslgpRLaFlj/Fqei5J6lEnQ6btxnGvfXZ9Sg8yPcAIcadLlSgFtHqCQv3OwcN1XlAMS2ALlxKSaQcCOC4zTZ3LDBDHVkhBVu/GAgfkdUwk3HHjpZN9LvHrc4Cjena0bstMMMMOIKsij24yzcctlxY/8m1Wm6V68Grr/e+Tj84Fe4BQ2TBLwnVHwSo6FDg7evs3it23nnc7Un0XGTDZX0m7K/lTtujIoKYNZN9rXtQpVKALRmldz+bV1GDTq/ws22Bp3OmoVAspOTBHHcZKOTclC4JffIiezhdEOLmRRlizUD0Qo32VWeIO3LdkZJE25O14w4eQozwPTpk/63mKBEJlTSa0IlK9xYqEZ9PfDaa8AJJ9h/X1jHzc0lkF01BdJ/Lyd3XPW1ztePYwQNeXFbHAL0Cjf+dw2afh3QGyrpdr3LlEhgZHOPm6pQSa/Mj2GO3StEVaXjJgo3mf5dSE6S8bXtreO+8/dtcOWx5qUTqIRERI5b7Z7Msc+t4LxIRg26XAmV1LHHje9X7YSb7LhKjhtBCPCZ5Ph9Jtu3p78v7I3hNhlkg5ru5CS6haHs8TsJWkB9QgKdjptsUVwAOOus9L9F4SbjLBUUWMfotYovI9wA4N57019LmuMWVaik3bHKOG5iH9PYaIkUHcJNJpQRCJZKW5fjpjs5iew1o9Nx8wqVlHXcdPQzbnXcNDluANKOu1d5AYYPR/ASEhElJykucBZutSgE4L44lLGWEWWopJdLK+O4AZm/rewet3btrLFP9x43Em4EAWcBIWaApFDJdFSF1YltAXIdXV6e1bbdAKDSceNrk7HvtntfEIqLgblzrb9VCrdUyj1ESnbV9NRTrcdinI5K4dbUlHlNqmjfbXDXFSqpWriJ54Xvx3QLtzDnPcgClMo6blE4bjKuVSpl/Xv97HELK9waG9379zhOwvnQNJWOm5dwk40yASJLTtKltC6tBh1gCTcvt822Bp3u+UBUjhuQee/885/2x+GXvDyrbyXHLTAk3IjgOHVIqoSbn1BJ3XXcdIdKqnYM+WOXCdXR7bgB6ccuOm5hO1M+5ExlqCTg7lrJhjDdfLP1WJxQqUxOAmQev6zDDPhbZFEdKqlbuMmUAgCChUqG+V2zFSoZd8cNcL9XVYVKAu4ZZnXvzwt7P7H7RuwfVTludvXnZPd1i5/TGCqZ11ifVoMO4B03d3FiW4MuV5KTiG1t2gRcfbX9cQSBLSZkK6skCTeiVaHbcXNaxeeLKSZ9j5uuUMk2bcKluI1SuPHHrsJxA9yFm2xIoNveFhXFPAcNMv8vCjeVjpvYHpCerj/sedeVnIQ/HvGatLu+kyTconTcVIZKxt1xA6z720+oZNiskl7tx3ESzn9OvE91Om4q+ke/jpuCpDB8DTrAquPmJtwca9DFqY5b0P5RPCb+WMVM0GHHJta32mWVVFk6SezHZBeHYgAJNyI4Tje07lBJnY4VIO9ApFLWpDJboZKyq5q6k5MA7o6bCuHGHy8gL9zc9raomJiwxAE7dqRPfqJy3MK2DehLTpJKWdek04qp+P4g8Mf9yivpr8k4EED2HTf++m9Ne9wA/+44EPya8Zv5UecetzDFvRnsc26hwXEXbqqjBoTrna9BB/hz3Bxr0OlOTuJ1zagMleTbEu99Wcdt3z6tTiqFShIEkL1QSdmbWXeoJP8d2arjJpt9MBcdNz5UUsZx0yXcunQx/28Y6WEjKhw3t8Fd9poB9CUn4T/ntGLqdBx+4K+z554zS5kwZJ33KB038dwsXgx8+KH5OJWSc5VEccLfV2GyYQL+E4iE7QeC7HGzu47c8JthVqd7IjPZZPeIm+MWVJB7ZJVUsseND2/n+3IAuPRS67GiCT6rQVdU5C7cPGvQuS20AskNlezaNf19YRNbuZUEoD1urpBwI4LjJCDEfLiqQyV1CzfZCRv/HdkMlQwD+5xXcpKwE7YoHTe3UMkwe9x0JicBLOEGpIdL6g6VlMnQytCVnIT/nNPAyyMj3ACzFAND94RKp+PGJ7ux23Pkhd/9RGH7R36SZyeuZMoBAIH2uP3n6wLbS8mzba/2de5xC3te+M+K92lUjlvYfoDv23nhtm1ben95yCHB23YQ4xUVZo25tvmZws13DbpUCkbz+anZ3Yi1a4XbNanJScRrRDZUEsgMl5S9bki4EYSAkwASQ9TC3hi6QiWDOG6yolNHqKSf5CQ6QiVVrLQ7iU7xPMV5j5uO5CRAeo0lvqSG6lBJUXiqCJXUlZyE/5wfp0QmVBIAunWzbz/Mb+oVwiQryL3KAcjgVk9Mtv8F0hdO3FyxsNeMwx63qiqgsc46Vw9hKgaP7IQ+fcxJeFWVj7az6bipmGw6hUry/aWMcPNKTqLCceOPle8r+/cHjjsueNsu13t5XwNtGs3fYugPirByJbBmjWnOz5rlEB7ZTFWVeV3VN5nXwhefNeLAA5F+venuZ1TucXMbs1UsKrr1NbJ1EUm4EQTsJ+F2q22qQyW5m3vHnjaZK1he6NzUz/DruMmGLkS5x01FvS+nYxe/L6z44SccukIl6+oyJyfs35KXFy4pDJA9x032mgGcHTfDkB8ggzhussKNX/3VvRKue4+bDKmUc4iqioUtt7A3w1DnuDU2tpybBQvM2mH5TebfKzACv8BDAMwKHLNnm68vWODRts49bn7dExnHzSlUUuZ6jKIcgJPjxofXnXJKuLZ9iofijkW+a9Cx6232bKAR5u+VD/P346+3yi8lF/34UjVu10zYscmvcAvbF7jdT/zYIZNsDSDhRhAA7CfhdkJFoXCrqgJ+d7t1A776ZpvMFawQ7aYRVahk2MyPUYRK2gk3FQLCabKpSri5OW6yjiG7FngxwlAxCPDCjV9Fli3UDOhPTuI0ceMfq74mxWs/TOZH8TrjjzfujptO4QY4n3fVoZKicON/A9nkJABQW4sFC4AJE4C6Wqttu/1KtbXm+1zFm1ettbg7bk6hkqqE2733Atdfn/66ilBJJ7HPCzd+v1QQ3M57iP6XXW/so6Jw45v+YLmCMHs/ocFhx1Snfkbsc8RIK7/4yRYqG60BUDkAggBgf1PYTSAU7XFjK1jzHrAmDqwgZqAVU6/NwlGFSurojGSFm1tyEtXCzSn8FdAj3Pi9l2HSmLtN2FQMAnyoJO+4yRRStvtclMlJVKy0O4VKin937x68bXHhhD92WcctL8+6D6N23GQcGYbTnk7doZIqUt5zwnDjV7WYNMl8XADrPLHJtB2TJrksAvoNTZN13FS7eQynUEmZ31W8j26/3azzxVARKunUt0cp3Hz0v1VVaLneGE7CLeM5nXs6ZctH8G2Jj4Hwws2PK6a69l9TkxU1Q8KNaFXY7bFQ6bhxk8E3XmtsWcFqA+sGrEd6275WTL32V0QVKqlC0KrOKsmvsovhgCoEhO5QSbdyALLp3d0mbComVE4rj7qzSupMTqJiwubXcQsj3Kqr0/9W6bgB7hMqnVkle/QI3p6IH8dNR6ikikQ/3Pn88//WtpxqXrg1wLnt2lrg4YcdXnRzCPgJoU7HTUdyElWOG4Pvf1XvcYvScQvoMM+bZzM8NAs3/vpjpD0ne727iX0Vjht/LsT+94wzwrWv03FzEm4qFhRjAAk3Ijh2G3o1OW733WN1Em7CjeG6YsrvgxJLFwDRhUrG0XFzS3ig2nG79lrrsSrhVlhoTSJ0Om7iyKxyQgUkr46bk+OmIkTK7x63MMJty5b0v51WlHUIN52OGx92Gxan864iIsEtq6SKRD/c9f7MAuvc8+6Gm3ADgEcecYhAdXPFZEWn332RKu5VlY6bnXBTmVAMyJ7jFuB6bGgwrxsRv45bgxHyenfb4iAbDcKPlfwYyp+X6dPTI0aC4GePm2rHTcW4FANIuBHBsbsp7IRK2A6D6yQbG6yJrB/h5rliyjoLO+EWVahk2Ladwg2bmqy/VXd0gBrhtnGj9fjFF52/K+w1k0pZA7wo3GTSXQP6QyWdQlJUJyfhj72x0XIIdDhuOkMlxXtr2LDgbffu7dymCpcgKsfN7dzcf3/wtgF/oZJhBUSEjtuebZYw9BsqCQCbNwOVca79aAAAZypJREFUlTYvuLnXsqLTS7ixPi1sVl9Af3ISBi/I4+645edbv5dTNAV7nwuVlea2DRG2SOAl3L7eILFgCdg7buz8hNkDLH6OP9f8eTn44HBtA/5Kj5DjZgsJNyI4dislmkIl+c7Nj3ADXFZMAWvi7ibc8vLk48KjDJVUsaqpW7iNGGH/vCrHDbAGeCfHrbQ0XFpkPxO2JAg3vj0Vbh4QjeO2fz/w/vv2bQPAddcFb/u889L/1uW42U2oZEOP3dxx1nbHjsAvfxm8bb59HaGSbslJVDhuXPuseDLgP1SSIZYkBeDuEOis/WcYaoSbU6ikaseN/13jvscNcF5kCfCbimXIWppwcdz4a3L3PsXh5IZh7ZcO64g5FchW0T8C/rNKhsGPcCPHjWhV2N0UdkpJwabYMMLNccUUsPY42W2oVRGOko1QSRWdEf9v1iHcLrvMetypk/N3hRFWDPZvF69FJtLD7G8Dsue4qQ6V/NvfLJdNhXsCOGeVVLGyyV/LRx1lPebP0WOPhVtRLigA7rjD+lv1/jy/jpvqUEl23sM4y4yo9ri5JSdR4Ljxwi1IqCTgEFHtpx8A1IdK1tVZ16cKx80pVDI/P3j/6+W4qegHnBw3Xi3pEG58n+Axl3Hqgtz2uPHXZLuOih23ffus58KGTzsJNxX9I+Bvj5uK6CQSbgQB/46b3XN+4DrJPFidZyGsm9tNuAEOK6aANXl32+OmS7jpCpVUMQnX7bj17Akccoj52C05iV0tIL+w8yOee/Zbh9nfBrhPqlQkJ4nKcVu40HKuVIQFA3qTkzh9jm877HkBnN3CKPe4qQ6VVLH4lK1QScV73Hp2snfcvEIly8qAgQNtXvCTpAhQ77jJljNheCUnCdMP2JW1cQqVlInAYedHp+MmkeV04ED7vEA7YR5XT2zGFbgHh+DTltf4a3LAYMWOG5+dWIXjxotkVY6bzlprfNuqw+BjAAk3Ijg+HbdNGxrDlRnyESrJygE44ThH54WbU/ZEFRPZXAyVzMuT6+zsCvt6ZQwMAjs/4kXHVHxYx01nSAeg13ETP8fCCpMUKimiauLgJ921CuEm9jM6HTcVwi2q5CSa97ideZL9Hjcvx23yZIev99MPAOodN1XCzctxC3PNRBEqCViCX/UeN0BJqGRBgXndiHwHS83dg6vwKYYh1bwYzc9tCookk5PwxeuB9HqgYYWbnz1uSXDcVM+VYgAJNyI4Njfcpg2ZE+4rL28MViCbIRkq6bhiCliTd8PInDjoDpXUVcdNtXATO1E2oMm4G/x38MfuNgEKil0yi7o66/zocNxUZ5XU6bgB1jlQNYBFkZxERNVk0Om8qwyVBNwFkOpyACqFW1MT8MEH9uG1OkIlFTtup55Y1/InP464OW5FRcCUKd5tK9/j5ubmqRZuKh23KJKTAPb7l3kXKOyiHKBEuAHA1KmZtzMv3Fq+rjmEV0kdNyfxo9pxcwqVjOseNxJuBCEguDMLFgAnjrfffBuoQDbDR6hkLZwnPI4rpoB7SQDdoZIqV5GcnBmdjpvMeQHSQxntJoPsNRXtM/iYWRWOW1TJSbZtA554wnpelXBjq6hROm5hz41dmKH4PTrKMKh03AD3wr5h7teoQiUB4MgjgXfeMR+r2kvLwuvcHDcFtae6d27A/Pnm42JYYmI/isVPtTB/PlBe7vCi36yScXXcvJKTqHLcnPa4yUyU2b+bv2bY4+Jiub3RioRbeTlarjfGZpRlvC8Fc+xrcYHz8uxDTv3gNG7zwk31HrcoQiXJcXOFhBsRHK6DX/ZGHSZMAJrq3QtM+iqQzeA64eICq5PwM/i6rpgC6ZN3MUGJzlBJPpQhjp2RW3ISdl5UOW6AdfxeNbqCYBcqyYtzFY5bVKGSfMkEQE1yEsASbqqSk/jZ4xb2mhQn9qx9Vav4OkWn3/p5YSZsTlklDUPN4pP4e1VUmP9Xcc2kUla4pJvjpmilvaLCXP/o1MYSP/tQkvGxoiLzfeyfaovPrJLbd+Zj7dqAXVk2QyVVO252oZKplJy4snPc2PeUZP6egXAKaw4hUNj1xpq0c9zy0ISiImDQAMkC2YCz+FERKulHuOkIleSL2at23GiPG9Fq4TqLPz1sdhZ26W7fwdiM51wLZDO4jmzSRKvdElgDgpNwc10xBdKFm+i46QyVVNFhRLXHTVeopF2Ilw7HjT83Khw33clJ7ASEmBZVlePGBmNVyUl0ZpUUyzqw3zVJe9wAZ8ctbD/jZwFHleMGWAJL1TVjt18JUO64sXNTUQE8v9D6rr2wxE9ZmRnKv3ath2gD0n/TV19teVhVBdxzl/U7LF5SgAMPRLBtAm7XC3+edIRKyoh9v8lJJPrHhgZgf57luDXUGy2PAagTboaRfj+FvB4rKszracYMYH+HTOE2/ddNWLsW6NpBQZh9LoZKqlj0I8eNIAS4Gy7VYN5wonA7G4vwFQZlfNS1QDaD6wyOHNXYsoLl5rj5WjEF3IWbylBJftWIbxuIZ1ZJfkIgOpGq97gBehw3u1BJFY6b0wBTV2cdb7Fz+JUndgJC3GzPl1AIgng9sHOQhOQkTlkHde9xi0q4hb2fnCYlqn5T8feyW2SRmfSwe0VHchKHPrJHO2sRYNK0tli5ElizBtiwAZg1y2Oxj8Gf07ffBv7zHyxYYG4DmPeHzD10gbYJRBkqaRjW2LRokRmWDejd4xai7aoqU/z06QO8/4klzg7oU4sZM4DGGsXCDUg/9xL9QHm5eV3d/VimcJtxfaN5vamozecnVDKscCsttYR5lFklVe+PJuFGEEi74FnCED4s8j78Cs/ibMePuxbIBjJW8dkK1inHZQq3QCumgLNwMwy1oZLNx96CauGmujNyWl0DkuO48W4nm5iwSQkQrt4X4Dyw82137RqubcD+muF/36eeCr8Hwuk305mc5L33gAsusJ5X5bixa0P3HjcVwtBtP5Sssx+1cLNbZFHhuOlITuJ0bjiR2LVvCYYPNwVVoJ9XOKdvzFuLCRPMn9ctcZavbQJRhkoC5vVeVwece671nM49bgHvIyaIZ882BTAf3rp7yz7Mng3s3xFf4dbysV42NQJYX1Ndbf5fJiOmH8ct7B63vDxrzIwyVFLFop/O6KQYQMKNCA53w7EBy2/WLsCjQDZguxJeXg78+FhrQLhzTnHwFVPAOTkJP9nX4UCoEBA6O6MohJsfx00Gu9X2f//bem7w4HDtOk3CdQg3dtz87yszWRN/M9auTsfthz9Mjw9THSqpe49ba3fcxM+KiyxhCjXz+AmVVL3SrkL8fO97aX/ef4/Vd5XCilLgQzF5XLcJRJFVUlyoEEPiVYVK2u1xC/B7LliAFkHc0gxXwsFcJDZatk5s3Rtf4WbrdrFoHDbOygg3nXvcAMsdT/sxNIdK6nTcaI9bNCxatAjjxo1D586dUVpaikMPPRR33nkn6gNO+B599FGkUinX/1555RVN/4ocg+ssWKbHIAVOAZcC2YBzCBO3kjf4+8XBV0wB5+QkOhwI/tjXrbMeDxgQrm0/EzbVwq2pyfou3Y5b27b2xXDCtM/O/WefWc+xAuBBidJxs3OVVK1q8u3qLgfAozpUUvcetyiTk4TBqRyAbsdNRUQCkB4qyYeTT51qPdbouIV2aDp3Tj/GBuvct4UlrmpQCjtctwnk5Vnn9dNP01/jhFvl5rbBE5/w38FobMyMbgjzu/bpAxx/fPpzEnvcqqpMgSvCzyny0YhC1CGvOTvjvytLgpUbEtEp3EptroXGRvMcsXtXh3BTESoJ2O8b1x0qSXvcPIm15LziiiswZ84cFBQU4LjjjkO7du3wxhtv4LrrrsNf/vIXLFmyBCUBO+FBgwZhzJgxtq/16dNHxWHnPjahkrzj5lXgFPDYbuSU8IAfEMLuKeLdLhaqAOjfN/P119bj/v3Dte1nj5tq4aailhjDy3Fbu1bNIMPaLyoC/vUv8+9UCjj44HDtOmXcjMpxk7kenZLk6HDcnIRb2ON3CqNN+h43lamuoxBu7HeVPW4GG7NZFszCQtMZ//hj6z1xdNwAYOjQlod8eRpeuDk5boC5TeCmmxz+eaWl5phUUwO89BJw2mmoqgI+fW4vTmp+yzU3tcVzNwE9ephrXFOnBog2Ee9VUf2FddyWLDHr/R11lPmcXaikz2tm3jz7KiCicOMTldUYJXj4YTPyJhRRC7empvQxNuz+ZcBfqKRM+3a1V3WHSqp23FTPlWJAbIXbCy+8gDlz5qBdu3b4+9//juHDhwMAtm7diuOOOw7Lli3DzJkzcffddwdqd8yYMXj00Uc1HHErgrvh2OAVJFTStUA24MtxCy3c+Ak2H06gexVfhXDzEyoZdsIWhXBzc9w6dgR695Zr3+78fP65+f8BA8JP2JwGmK1brcc6hZvM9ThISBBkJ5hVlQNw2p+oKiRFtePmJDp1CzddxWVVZX10uh5UCzfAdMIKC9PvJUC948YLN5k9UTaLlkB6qKST4wZY2wSGDLF58dxzLUvuiSewYPdpmDQJuLbWEm5MFLLEJ3ffbWZS9rW/W3THVThugCneunWz/g4ZKtnQAMyd6/CaECrJC7d9KHEXxF5kQ7jxyT50Om4dO8r1keyEOjlilFUyK8Q2VPK2224DAEyfPr1FtAFAt27d8OCDDwIA7r//fuwU9+MQ+vFITuIl3FwLZAN6hRu/UZd3TDQLt6av1rU8/jo1IFyoSzaSk/Adqk7HTUUnKq6yGYY1QHbvHr5dP45b2A3ggF7HLS8vLXV5S/u6ywHwhG3/Rz9K/zsqx013qKRsCYlUyjqnYpZThkrHjaEi6y6Q3nezPl3sc1WLWlUp9W0WLQH/jhvgsk3gwQdbjr/mjQ9a9nm5tR22PioaG9U4bgy73xQIJNyWL0/XMzxujtt+FHvvm3dDp3Czu5caG9PHWJ173GQiWIDshErSHjdPYincNm7ciI8++ggAcAGfnayZMWPGoLy8HLW1tXj55ZejPjyC6+BL8jMdN7dQSc8C2YDzvhl+QAi7ahqx48ZSGr/7pBWEP+yn/YPV+GEkPVTSzXFTLdwaGtLPi8yxO9W4S8IeNyB98I4iOYlI2OOfPz/971yo48bXilIRZhRFqKTYvmrHDcgUtwlz3IIIN8dtAvn5wNFHAwBKt61HT2zy3XbQ+qi2oZIy95KXcPNxzTz2mPNr/JxCFG4s46Trvnk3dAo3O8RQSdVZJQ3Dctx0CzfdWSWpHIAtsRRuq1evBgB06dIFAx1i6kaOHJn2Xr98+eWXmDFjBqZMmYKrrroKf/zjH7FVDNMISU1Nja//Eg93wZ98QjDHzbNANuA8GUyY4/bsoqaWlMYF9dbguxvtg9X4gdn3VH1jtd1UF5HjpmuPmw7hJoZKqjp2pwEmCXvcxM9nIzlJ2OMfOBC46CLr76jquOl03PhzJHPsOh033aGSfN/NhJuYQVRnchINjpvfUEnPbQKHH97y8ECsAYAMd8kOX/VRvfa4yZRisRPjgO9yAA0NwAsvOL/OzynsQiWB8GU6067HqIQbv79eteO2Z4917LLCzW6PW5RZJSlU0pZYeoWVzZ53v379HN9T3jz7rwzoj7/77rt49913054rLi7GzTffjOuuuy7gkabTjs9YmMtwN9zBB9ThiSeAFyY2gmk3O+FWVBQyFl+1cOM7Ms2O269+2Qg2DDBhW48CAFYKZRbqAtifm6oqc8P2I48AB3xXgPean3/kDw2oKmnenK4i7I1P2hKF4xZFqKQO4eaUuUtnqKTspMFu758ux43PEsiQ+W3tRGfS9rg5rSarCDOK0nFTFSrJT/JZny4Kt7gmJ5F03Ly2CTSVlLasprP2i2D1Y7Vw7sc893l5hUrKlGbhr3f2mzY1+RZulZXpw7GIW6jkPpSgWzcPQexG1I6bylBJO/GjalwCsp9Vkhw3W2LpuO1u9rxL7TZ2NsNE0i6noGiBnj174sYbb8QHH3yALVu2YNeuXfjoo49w0UUXoba2FtOnT2/ZV0d4INxwFRXAH+63D5UMXCAb8BcqGVa45edbWZY0O258+CgTbk5hpHahLmIRUv6z7fdtbnHs3n9H0QoVm9Ak1XETO2sV1wvgHCrJt6+qMG42HDdVyUnsVvHF75dpPyrHTUUokNNkUNWxs9+Mvx7feivzdZm2RXQlJwHSS7MA8SwHANg6boWoxaV4sOV5J+HmZ5vAjt1ivbJ0Z89NuAWqj2qXnESs6xaEggKr/dpaMxnXkCG+w2u9pnFiqGQxrL53H0pw+ukSt1O2QyVVZH0ErPtTVQ03wDqpTU3WXCzKrJKqHTfa45YsfvKTn+DWW2/F6NGj0a1bN7Rv3x4jR47EY4891pKZ8pZbbsHmzZtDf8eePXs8//vmm29U/ZOyh80N162TdUNcd30+Vq5EuALZgHOoJD/4yogIFtbGd3Br1liPsyDcxFAXryKkF+D/0BdVqK0FHpuvaBLOVv4++8xatVO1ig/od9yiDpVUdW5073HzctxUJiexE26qHLds1HFT4bhdc43996gIlWT3T21tej70OO9x8xMqGdb9yYLjNgUPowe2tDzvFCrpZ5vA/oZM4ebXcQM89nnpdNyAdHdm8mTgq68yX3OAD/iwwytUko+oDgz/5d99x31pAhw3O+HGh2HKiELA/n6KMqskOW62xFK4tW8OVnbbD7Znzx4AQAevO94Hl19+Obp164ba2losWbIkdDulpaW+/ks8dp0F18l171WA4cMRrkA24B0qWViYPggFhQm3HTvM9j/4ADjxRPvvD0hTKpxwA8xQl4YGf0VIAXPCAKSH7Eh1Rs37RgEAc+aY/1cp3KJ03HSFSkYl3HQ5bqpDJcVjt5v8yRy/nVuow3FTHSrJn9M9e4AVK8zHuhw3PjxKtm2nTHgBEk24YhcqKY71opDziw/HbfXnJaGLWH9Xnem4zcVlae+xc9zmzPEXcVJU6u641cH9Xg1UH1U8ATKOG5Au3PiafPxrDgwcaNamc8ItVNIoKsEPfxj0YDm42nz47DPuSzU6bvz1LTMntBub+HFPxl0G7DNBR5lVkva42RJL4TZgwAAAQJVLmiT2GnuvDPn5+RjSXFhlw4YN0u3lPHadhcpOzku4yYS9AVbct2GYq1Pnn+/8/QHZsy+8cGOhLk5FSMXPGs175ZQJt1//2nrMHEidjhufYU9HqKQq4eY0wLBzk0qpc36YgNC1x011chI/jpvqUEkde9xUJycR9zu//766toFMx00Me+MjCIJid5/zsWwq97g5OW4KhVtVFfD1v632Ro8rwYEHIlRm35f+Zr/HjcfOcduyxeaNNnTuEd5xC1Qf1e5eVem4ifelRx9TUGCadE641XE76rgSubWtQw6xHv/rX9ZjHf0MYJ57HWH87PfTHSWjOmoAiM5xo1BJfRzenFlp27ZtjslHVjSvYPI13mTY1rzfqX3o1EStCLvOQuVE0ylpgCrhxv/GNTWZ8SUSx1/XFF64AebC+SOP2L+Wh/SsfWwVkp9ANOZJTMIPPNB6zFbAVa5QideNikKbPNkKlSwsNMVbWHSHSup03ETxYzf5Ux0qGeUet7B9wdix6X+vWGEuVPzpT/JtA5mOmyjcvve98G3b/V58aJfKUEnNjhvbJ7xtg9lePQrQAPP4w2T2fX5xpuO2FekZZe0cNxZN4UV+obtwc3PcPOujiveqyj1uQLpwEw/Ex306dapzN+3muB19vKSr1L27VefTSbjJRPiI97nKaJAohZvquV5entU+FeAORCyFW9++fTFq1CgAwMKFCzNeX7ZsGaqqqlBUVISTTz5Z+vtWrVqFNc0rlKNHj5ZuL+fxctxU7snR4bjxK75792amMZfojNoUyQm3nTvTw+x5qpC+QaITqgGkh9J8u02iM+JdguZQZK2rd6o7UTGsTtWqph/hJkO2ywHoTk4iMzHRmVVSZ3KS0lLTTWKfX7HCLIQ+fbp820C648Y714xLLpFvm0elcIvIcVvzWUPLPmE20bcTVX6LWFdWApt3ZDpum1GWfug23+G7QDR3bsVQySakHMePUPVRo3TcfPS/5eWZpRsZbsKta19J4QZY4ZKbN1uLCDr6GUCt4+YVKqkjE7TK6Cqv7Lhh+xq7SA3xe0i4qeeGG24AANx+++1YtWpVy/Pbtm3DpZdeCgCYNm0aOnIbO59//nkMHToU48ePT2tr7969eOCBB1qyVfK8/fbbOOusswCYhb1JuPlAt+OmW7jxm9P37VMq3Np3sj57GD5uecwGYbcad2Vl7pu0d6EjfoX7Wv7uDHNfC59hq6ZJYhDjJ1RROG46hVuUoZJxF25RJiexm/ypEoY6HTe+D1DVlxUXm/F4ALB1K3Dffemvq8rIJronEybIZZOz+710OW5OWSUVCLd33rR+R5au3y1Vv1cR61270h0vJqhE4cbqion4KhDNHb9YDsD8bntnP1R9VJ3CTby2ffa/FRXAE09kvl0MlWyfryhLKIMfeNm1x/cJcRVuuh03uz1uKscmu+y4KsZtctyywxlnnIHLLrsMe/bswZFHHomTTjoJZ599NgYPHox//vOfOProozGLz6IFYOfOnfjiiy/wn//8J+35uro6TJs2Dd27d8dRRx2F8847D2eddRaGDRuGY489FuvWrcOwYcPw9NNPR/lPTC6697jpDpUUV3wVCre8NtZnn8CFKGwedP04bpMne5ddeQZntzxmjhtfQ6iki8QglpdnbZROuuMWdaikDLrruNm5VlEmJ5FpX+eKr9MeNx0ryqr3/on7Q1RGPNjdi3ymuijquPXvH65t7t+earLOOXNonEQV4F3EukMHoB6ZjtsWdBfeaS+ufO3C4I5/6qQGFBVZws1uf1tRkSl0fJXa8dqPmmXHjVFRYZYPmjHDXMwE0hc8Lzy/EVddqli42bnAuhw33dEgUe5xk+0foxZutMdNP3PmzMFTTz2Fo446CsuXL8fLL7+Mvn374vbbb8cbb7yBEp83bNu2bTFz5kwcd9xx2Lx5M/72t7/hpZdewubNm3H88cdj3rx5WLFiBXr16qX5X5QjeGSV1BIqaRj6hJtYNFhhJ90bZvkHL+HGQl28smtVo1PLYybc+LCRXoMkUl0DlnBLouMmXjdJFm66ywFEmZxElXDTmVVSdXIS8fOqhZtYFF6l0Le7Hr791nosm8nZK1SySxdg5sxwbRekOzMMP44b4L4XbeBAoH2XTMfNcBBqPJ6JQxjc8R85ogFr1wJlnczv4YWbkvqo4j/0t7/12ZADbsItYP9bXm5Wt9iwwcyzM/nn1nm5eEIjOrbhhJvsfADQK9zOOy/97yQ5bnZ73HSHSqoYt/PyrH3n/PHmiOMWe8l57rnn4txzz/X13okTJ2LixIkZzxcWFuKWW25RfGStmLw887+mJquT0B0qyXdGsnHbGve4iZ8diEpchMfRuVlkOQk3PtRl8mRz07wd+1GC/ShCMWptHbeCDpLCrV07c5Mdc9xUdnRJddzy881BwDCSv8ctG+UAVIdK6kgaoMtxcxNuqlJpq3bc7H4vlcLNK1Ty668zs3L6xVa4Gb4cN8Dai9acZDqj6XMuaAPcb/7NHDd+L/PjuNC2Xc/EITbHj4YGc0worQWqgc5lhVj5suncDRwY4md2S05ywAHABRcEbFCAHVBjo5TjJjY5ZAiAcqEfUFVQ3a4N1cLtjjvSM45FKdx07HFTOdfT5bgB5rGLi1o5Itxi7bgRMYbdcDpWYexCJVUlUwC0hkqKn12CE/Eb3Nzytyjc7EJd3LJrAZbrxva48cJNehATHTedddx0CzdVgyOQeb0D6oSbXcheLpUDUJWcRJw4MEEdFtGBqK0FTj8d+Nvf7L8/DHYryiradsvQqsNx27TJeixTMBjwDpWUKZBtI9wKUYf85oy8Xo4b4L4X7YKJmY4bL9ym4/aMz/hKHMJwWWRpU1qkrj6qeK9Onqx2kUI8QNn+V+zDkiTcOncGrrvO+psPlczPV+e82yUn0RkqybtaYfESbiqiNUi4EUQz7IZiN5nuUEmVDoTG5CTiZwu4QR2whJtbqItbdi3AEm52oZJSkx7AWunety/TQYm746YrVBKwH2BUCbdUyhJASXPcdCcnccsqqXKBqLEReOgh4KWX0t+jcjIrhmSrnLDp2HfCwws3naGSxcVyLqqNcOMXtrwcN8B9L1qfAZl73HjhZpd8ylfikJZGM5NBGM392L6mwtCFwwG4L7Ko2O+jMFTSsW1Av3BjokpXbVrecZMVtNlITqKq/+Xbr683f9MpU4Crr7ZeV7Hox467sjLd+aQ9bkSrg03wWUhdUhwCIFLHTeTg7xdgzRozdn/WLOcB3Sm7FgDsgJkxriN2oaSwESOGKlqtBizHDTAnUzodN1WZDRm6QiUB6/jYMRuGdU3KnhcgU7jpcrB1lgOwy1Snsn3RcVO9QMRlL7Z9TxjYMTY1ZfYzuhw3HclJ+FBJWcfNLlSSXY8KJ/hMuPELW16Om+deNO5aLk5lOm68cAuUOKTloK3jr95ajxkzgNpdZj/2xbqi0IXDAbhnlVQxCVeUnMQWsR9IkuMGZIrmpAg3tzpuKoQPvyB6++2ZRWxVCrcLhTBmctyIVgcbvFm2MZWOm1eoZIKFW2nHAt+hLnbZtQBgF6wV7zWr9qCsfbNwS6XkO2qxlluSHDedwk0MlVQZugtY143ouLH9pDKkUlb7SSsH4Baqo3qByG7RQ0cNPbvvD4pOx80rVFKl48YmsKomgx6Om5dw89yLxp2bo48whVXbwnThFipxiM3x3/e7BsyebbSEZLLkJEELh7fgFioZd8ctyaGSQKZoViXcsplVUoXY58fVRYsyX1cl3OrqgHffTX+dhBvR6ujUyfx/TY15YyTVcbNLTiIzUeY7TTsCDpBidq2VK4Gjx1udfd/utVaYUdu28jHnvOO2Z0+y9rhFGSqpS7ixa5Hfx6UCPnEAoC85SZRZJVU6bk1N9sJNZSkG8dyodNyiTE6i03FTKNxOxt+wDEe3ZPYF3EMlfe1F4857caoOs2YB446xzv2KVfme0RSupF3vDShAA/JghtjyNeQA/4XDW3BLTqJSuAGZ45CsQHHbv5wE4RZlqGRUBbhVhkoC6cfNUCXcvv7a/bsTBgk3IhxMuAFmcVZdnVwUoZIqywHwK4F2hBwgWXat4cOBdl24zmz/fus7ZcMkgXTHraYm2Y6bjuQkOlY1gXTH7YkngNWrzb9VxeGLjpuu5CR2jptsRk+G6omDOJEV7x8Vm++dircDySoHwF/vCXHcAOBoLMfvYO2ZcXPcfO1Fy8+3rpvm3zOvyRr7Bh2YL/VP+G57umPIargB9nXcAO/C4S1EtccNyBxTdSUnyctTM3ZEHSrJRIpK4aZjbHIrwK0yVBJIH68ZKh03p9cTCAk3Ihz8qmt1dbKTk7h9f1DEQrIiKjoLvrOv5Rw3FSuPbo5b3Ou4RbnHTadw42PxVQ0uYry/ot+V39Oz89MqND32eOabVIdK6trjJk6iVO77AdQKt6gLcPOozCrJ+l9Nwg0ARmGF9XU2jlvgvWjiIo7CCf5LL6cLNxYmCWQ6bgyvwuG2xyYKN9XXuijcdIVKlpTIL66wdhhJDZXUvcdNZ6gkoFe42S0okuNGtDpEx03lIBD1HjeRuAu3IsFx40MlZXFz3FQPAjpDJXXvcdMp3HhUO26ig11QECo0uKrK3Mfz3xdYn+246H+R99STzt8dBrfi5KqdfZV7XRm6QiV1Om5e17Os41ZQYB2jauHm8W/nHbfQe9HEEg+KJvgNDcDzf7X6Qb+OG+BeOLwFt+Qkqh03EdWhkrxwU0GUoZJ1dda5T2JyEl2hknbCTVU5ADvHTXZOkEWS6xUS2YUXbqLjlqRQSTuhFcNQyTREx03lICY4bk3761pWd9ZvaoPeNiV6fBOl46Z7j1tUwk1cuQ6Lk+MW4rwvWGCGZ9XWAj/SvfbnVspA9pqxq+Pm9N1hcXPcVBXgvvVW4LTT1LQrtm2HrOMGmH3Vnj2ZoZKyvykLb3W4b351bQnOOE+iiDXg7rhJ7I+urAS+22EdUBvU+xZuboXDW4gqOQkQreOmgigdt3nzrMeqxiXAfmzSWYA7SaGSYt97yy3pc52EQcKNCIco3FQOAlHvcXP7/qBE7bjxmR8VO27PPFaD/a/VY0Lz3yefWYgtPczMa1Onhth8n+Q9buz4mprMazIq4WYX4hEGp+QkAY99wQIzIQLDrm6VUuwmDqr2dIoOhLgqmxTHbelS8z8V7QLu92Iqle7Kh4UJN9WOG2vD4b7p3q8tug+XbN/NcZMQbrt2WXU+Af+hkgy3wuEZx6Y7OcmOHemvqXTcdAg3u4Q5uoTb66/bf28YvJKTxL2OG398YsQDoGZ/tDjXuO46YObM8O3GAAqVJMLBr7qqTk7iFSopO8gkXbjxnT0/QKoQbtwq1Bt/2YPG/dbEoR5twqeiBtwdNxXix024qVzZfPxxfcJNzDKgSrg5JScJIJirqkynjafJxxASuN4Uj7iIYxjqJm1uWUgB7wyxfuDPr8owWLffTbb/ddsz1LWrfHkKwOrDdAk3J1T0kU6Om2Qymw4dMoWbX8cNcC8c3nJ8DN2O25o16a+pdNz4UElZ4cOIMlSSJ0mhkrqzStqhIzmJivE6y5BwI8IRdagkP8jIujM6k5NEESrJd2a8cFOw+vj2Kms1vRQ1aANLOPArvoFTUQPRlwPYts36u3Nnubb53+1nP9Mn3ERi5LjNm5epbfw4br4SJzhh59Kyf4PsJNxLuHndy36IIjmJ23eGwe289u0r1zaD9VWqs0p6taHCoXFy3CTHvYEDgY5dwjlunoXDxePTnZxEoGpLsfcePDec9i8nMVSSJ+5ZJaMqwO2EjlDJBCclYZBwI8JBoZL2zJ7t/nqMHbeqKuCuP1iOWzvsSZs41CPzvPtORQ1kxuPrDpX87jvzcWmpfDz7xo3pf0cl3FTtcXNy3Hwee0ODmQBBxI/j5itxghPib8o72rKTNtGBUOGwiegSbm6/m+wks21b4MEHgWOOyXytTx+5thm842YYVj+fZMdN8rwXFABnnRfOcfMsHA5kNTnJT88tRp8+ZjKYUA483/aePdbjpAg3XY6bTXkK7XvcdIVK2qFCuIl9Owk3otXSpYv1eMuWaEMlVdQTYze16uQkP/4xcO65zq9LZh1buxZY/52D4yY5KZk3D9hR789xY/hORQ1EL9w2bzYf9+gh3/bnn6f/rVq4qQg/c0MyOUllpaWDefwIN5Y4IRROSQkAtY7bW2/Zb46XJYrkJG7fGZZf/AL4+98zz7Fqx622Vm0YvFcbKh03xcINAM6bEDyrpK/C4UCm46Zzj5tALYrkwuz5Y9ct3Fg/kATHDci8HpkbmUqpTVTEwl+jCpXMy5O7LvnP8uMGhUoSrRZ+5XXjRv113FRP8llHrdpxS6WA885zfj3EuWGp1/v0AQ48ELj1bquzf/8VTrhJDALMUalBuuPGCzc7xw0I4Kjwq2c6hBv/u+3fD2zfbj4uK5NvW3S+HnzQeqzTcVOFmPwkYKjkrl32z/tNTuKZOMEJnY6b2M/83//JtWcHf/yiMIyr48YjnmNVjhvfLj8RT4JwY/u7WUZfhRPZ3v3Ss0r6CZX0VTgc0L7H7ct1zm3shzU2hQqzj1K4JSlUEnAuVVNYKF/jjr8ubrsN2LTJum50O24q3UJ+nkeOG9Fq6dnTunE3blQbL+8l3FQM7rqEG+DeGQU89gULzBXK2bMtx4Nfef1y5U7rzRKDAHNU9iDdcfMKlQQCOCpROm7/+pf1WIXjNn58+t/PPGM9ToJwExw3o/nc761vg7VrvYW3U+kuP44b4CNxghNO2eQAtY6bHa651X3CH7/o7sd1j5vb96hy3Pi+ilf1uoWbinu1e3frMR9tonifWGGeu+MWuHC4xlDJqirgzXfcHTeRQGH2/PHx14sq4cb3Jew+jSJUUsWiorjnMmTGYFvE62LuXLVZrN2OUeX+PL7vJceNaLXk5wO9epmPN2zQtzr17rvAWWepj1FmnU6MhRtLvS7mTOBXLzvCEm6frg2/QsUcFTfHzW1zvC9HhT8vYoiUauH29NPWYxXCbe5c59cSJNyMxkbMuNFAqvl++ueaQhx4IDz3nwwcaH8a/ThuvhInOCEmJeAHYJXlAEROPhl49FG59gH7dNqMJDhu4n3J+nxZsuW4qWg/IuF2wrgGTDjTut5Z8fDQhcM1JieZNw+obfLnuDEChdnrdtyKi61rvbra/D/fGepy3FTcT041RnUIN36gV1HP0W3cJ8fNERJuRHhY2MzmzekTKtnBUezknnvO/I8R51BJQIlws0u9zuBXLzvAimF7/uWi0KnXmaMSxnEDfDoquh03nauaBx8MDHcoAJUE4dbcvlHfgNtvsxZZmBj32n9SUGAmQBDx47j5SpzghBgqyd+vspM2tzCiZ58FfvhDufYBfSLCzV3XKdx0hKbxk0HVCzhBXvNLRMKtpE0Dzj2lpuXvK29sizVrzHXSWbNC1NHU5LixMPsGl7LATot+vsPs+XNbY50TZeUAUikr8/D27cCyZea+V4bsHmSnz/fuLdcu4Oy4yQofvm0Gv4rsFIYRhKhCJclxI4hm+LAZlatTdm2sXWs9VincVCcnAZQIN7vU6wxeuPGOW01jUejU68xRcXLc6lEAwH6i69tRiTJUkoefaMng9LsmQLhtqTbPTR4MFMPaayWKcbf9J1OnZo6lfhw3X4kTnBBDJVU6bm6oGtzd7neZ39xNVOoMlVS1Wp2tUMkECTfRYe5/cCmGDJH4J4h73BTtS2dh9k7CrQp9W9xCEd9h9vzx8YJK5SScJVzbsQO44IL013SFSuoQbmzioMNxS6pwW77cekyOG9Gq4YXbV19Zj1XcGOIKFd/xqRRuYlFc8bvCICncnFKvM/iwE95xq0VR6NTrzFFpQj72NbfPO25ubptvR4XPEhWlcAu9wUrA6Rh1uoUKqKoC1nxptV8Cy7VyWgm3239SXm4mQuDx47gFdgZ43EIlVbk/IgUF6rJ86hIR3bqZyQLs0Om4qZr0UKikPWJoLe8uqdzTqTA5CQuzdxJuY7AMhks/4SvM3uncqnCVGMxx273bykjs9f1+0em4RRkqyddGVSHcdIZK8otDr73m7zsTAgk3Ijz8phd+gFExURY7Sj6tncrkJH6+OyiSiQOcUq8znBy3WhRJpV5njgpz3XjHzWmC7zsVNYMNJjr2uOke3J0GwqFD5dvWKNzmzQPqDC4EixNuToLcaf9JRYWZEIGdUr/JSULD3y81NcDZZ1t/63LcVK7i6xQR06fraZdHvC9VnZskO278uKfTcauvT1+okK1F6RYqKXHsbP7uJNzWo7/r531NF6IQbnyJI7Gmow7h1ratWvETRXKSTZusxyr2uOl03CZODP6dCYGEGxEevqNjtG+vZnAU007zSkZlchI7suy4OaVeZ7g5bkD41OvMUWH73Pw4br5TUTP41UHVwk1nKCNgf4yDB6vZC6VJuDH3lg9p9OO4Ac77TyoqzMjlGTOAzl0jyoYJmIqRR5fjpnIyqDP7YyoFHHVU5vOt3XFTmNXXFt5xW7vWFG+AmvPOT/BFx01WuGly3FiYvd/SIDy+w+ydjk+H42aHjlDJXr3k0/UD1j25d6+ZyI2JfRX7/8Tj5oWb7lBJ2XH7xz8GPvgg83ly3IhWTdeumc916qSm7QMOSP9b9QZ2nY6b5MTBqz/kHbc2aMh4XsbwrKgAOvXxdtwCp6LmPwjoEW7durl/pwQNDcCeepvf9ZVX1Ay+moSb3f4TP44b4L7/pLzcTJCw/H3NQ4jbedHluKmcDOp2f+zOTxL2uDklJ9Gx6Mejon2+n3n2Weuxins4lUov3aEri6pC4cbC7N2SkzjhO8ze6dzq2OMW5Pv9Yue42c2fwsCfAz6Jm4qFLX5RBVAv3Nz6ExW/7ahRmZk7yXEjWjV2HZ0q4eYW+51k4eZjku+Uep1hl1oZMIWbVOr1Zjr1MR23ttiLkjxzMzKb4IdORc3Q6bg5nTSJjpovfv7K0vRjfPzcv6KqcFDottPQJNzs9p/4FW6At3tbUORx3Kef7v66F26TVV2OW1ShkjqSOKlqlxFFchLVYfDioh+PivadxjhV550XbiodNzFUUlFyEsAMs0d+sDYChdkn3XGzE25u3xcEp3tSRf+4c6fza7odNxV9TSoFjBunvt0sQ8KNCI9O4TZ1qvNrSRZudslQBJxSrzPsipmy56VSrzOaJ8t5MNANWwEAPfsXyaWiZugUbk6hISEn4mLxc9F1fPjpjo7p8wOjSbixsZUPY2oHaxV1H9wHd0/31i0c58c/DlCoyYFevZwnrEl33JIo3FSJWp2hkgMGOL+man+0XX+lQ7ipdNz44/v5z9P7X8nzUl4OnHlOsDYChdlHvcfN7/f7xe7zqoSb0z2pQri5rQLrruOmSmCJCzkk3IhWjV1Hp+JmBsy9G06TvrgnJ5EUboB96nWGk+PW1KZILvU6g+vYUk1NAIDiEd+XS0XN0JmcxIkQg7td8XPRndqPYtf0+YFQlcVQgLm3vOjkE9q4CTdf7q3bQs1DD8kXP8/LA773PfvXVE7adLXrdsOoCLG1u25UhkqKbSUhVFJ3tEYqZX/dqxJu7Bh1Om6AGebNUHDsw0f7++1ChdlHmVUyyPf7JamO29ixmaURGCocN34OIKKqrxGPk0IliVaNzj1ugGk72QnBJCcn8Zmr3y71OsPJcbv810VyqdcZdud3zBgFDUOv4+b1nT5xKn4uOm686Ln4Yvt90L7R5Lgx93Y3LOusDFaqa6dFAMDn/pM2bZxtOVW/6SGH2D8fNguPF1GFShqGfPsaHLeGBjMUeuVKYE9dBKGSvOOmon2+TI2IKlFrNy4lyXEDoi3DAMkwe6e2Vd6rg1zC3pMo3FQkJ0mlgD/9yf41FcJN3EPHo6qvEccnctyIVk1paeZNoFK4AfadW46HSjLE1OuMfShBk00x7BNO1Zj2XkXmRCA9Ock+a6+VkkHGiYCDu1Pxc9Fx44VbYyNw9NESzpvTNXf//SEbtJg6FdiTb000eeHm5LgF2n/iFGKkalL1/e/bP69qMUEkqqySuoRbyEk4v5/zwAOBkSMz93Uqm/Tw55h3lVQIiOHDnROUqBJuOh03doz19da5yc+Xv5/cXH2Nwm3lSsiH2UfhuI0eHfz7/ZLUUEnWvs1v+9XWDqFqxqaRDeFGjhvRqkmlMidtqoWbXXtxF258J3fooemvBezp+NTrZWXmc40owJcYnPlmVYOY3fnlU2DLwDpNw0h3THQlmgACnRe34udujhtgirfQYZN219y55wKXXhqisXTKy4Fxp1mro36EW6D9J04TEFUDr7i5HADuvlt9X8NohY6buJ+TIS5W/N8zmh03VZk2V6xwfk0FUQg33nFr21Y+tDZLwm34cMiH2Uch3AoKgMMPt39NNpTd7vPt2sm1ydAZKtlMU9vMMN3vje2CPn3MuUlVVciGjzvO+TVy3Bwh4UbIoVu42dnxcRduqRTw4Ydmj/bii+mvhViiYqnXN2wwVy5XrgR6nzgs842qXCu786tqpZqfFPMZq1Qlmrj+evfv9MCt+Lmb48YzaVKIgczumjvySDX7oAD8YIw/xy3U/hMn4aZKAB1+ONCzZ/pzRxyhpm07VC4iuN03zftHpVDguNnt52SI1/wFE9vg8ccDNW+PTscNsA9lzMtTt5c0qlBJdm5k97cB7scXQaiklrZV73N9+mn752X7Ybtzr6qf0SzcFiwANu1Kv/72oBS1KMZ335mLPaGTdA0b5hyKScLNERJuhBzihFtVchK39nQnJ1ExuI8aZaqt/v3Tn5eILSgoMDvI4cOBdn07Zb5Bp+OmQ7hVV5v/T6XUTfJvvNH9Oz1wK34uOm6OZRlqQyRT1LTHrQVuAWREn29bHrN/g9T+E6f7RdUAmZcHjBiR/pyqRYpf/jLzOZVhu7qFm925D3AtOe3nZGSWi0jh4ouByy6TWGUH9DpuTu2oFBbZcNxkcbpP8/LUTPJ1Crco6rgBwODBehaF7M69ylBGOxS0zxZ1apAu3LYhPb+BVJKuiRPtrx0KlXSEhBshhzjJUbEyyKPYcWMb7//zrcbkJCJ8pyQdFN7MKadkPqdKuNl1bKoGZf4YmXBTEQbEKC0F7rzT+Ts9cNtvLU5inZLEAGa4ZaCf2i5sRsXEnsEtgJQXWpbiDbeUyO8/qauzf17lRE4cfFVd63PnArfckv5cVI6bW70xv0g6bk77ORlOdf7mzpVYZQfSfz8dwi3qwuRO3ynTtmrHzUm4tWunpv/NhnDTkVlW/G3ffVe+TZ3CTVNyEn5RRxRuW9HN5hMho00A+zkHOW6OkHAj5BA7TtVJJhRllRQ33l8+XWOopFt7AZKTuHL66ZnHmTTHjYVKqt7fJg4CAVbY3Iqfi44bbBLEMDZvNsMufWO3gq9iDxSDV6SbrVDJAQeXyO8/cUrprEqMA5kTV1X9TCoFHHaYnraBzHupY0fgnHNM5eNZa8EHEnvc3PZzMtwKtEutsut23PLyMq8/lcKCu4daULXQwo6TT+CkwnFzuk89izX6JBdCJYHMe1bsH8Jgd0+OHSvfLqDNceMXdbwcN0aoaBPA/t+gyhkjx40gBHQLNwWOm93G+2/gUutHtXA79VTrsYpBADCP8amn0p9LmnBjE4kYCTe34uduk1g7AmWrj1K48SnGVZx7J8dNJaIjqXLCJvZZOkMlDz3U3EczbZqa9iWEm9t+Toafaz7UKrvuPW52bals2+4aUbUox46Tt0JVJLJwigNPgnDLpuOm4t8lOm5vv60uH4CGPW7ios5epC8cOAk3IES0CQD06pX5HDlujpBwI+TQOekBpB03p433/8Qw1MBhFVO1cHvwQTN70jnnAP/zP+raFTv+pAk3hqrEJE7fEXCFzan4eabj5k6g+ZDdda5SuDntPVVxv06dKt+GF+LEVWU/I7alM1RSVSY5hkRIoNt+ToYf4RZqlZ0/5/wsLynCbebMzPZUCzceFeKKTwbFo+qazIU9boCe60YUbir30WkQbuKijt9QSSBEtAkA/P73mc+pElji9U3CjWj1ZMNx89mRum28b0AbfAj7ui2bvlMs3Hr0AJYuNVfadW6QVzWIRS3cdDtuAYW4U/HzII5bWVnASLgoHTceFef+kkvsk8KoRAyV1Oi4bd9bjJUrzb2w0ltSxftGlbvBkHDc/KyX+L3mA6+yO/1+KidV4nlQ2fcefDCwbl36Ta5TuKkodsw7mzyqrkmdE+KCArOwoEgUjpuKZGU6r0WncV9iLiYu6vgNlWQEijYBgJ/8JDPmWmVyKx6VIfxZgoQbIYfYOajuSJ3SOvvAa+P9ctgXlV74lOYMf6oQz42qDimq5CQM3Y5bCFjxc368DSLcJk8OeMp0Czcnx02FcGvTBrj1VuDyy+XbciJCx+33D5Vg5EhzL6x0nSLdjptdX6hwUuj3mg+8yu40TiTFcQPMi4Mv9K0q8ZTdhFWFuHJaxVQl3MQMyipJpYA33gC6CU5PFMJNBeJ9qqosBaBlj5u4ThBUuIW6pC64IP3vHHDGdEHCjZAjasdt1KjM2nE2+Nl47ybcVI3BWtFVgNiuw1Q10GTDcQtJRYWZUIyJN7+T2KIiYMqUgF+mW7iVltoL+6gyKMoiCh6FIVIvLkk/B3yZB+k6RTF23Pitjk4EWawItMruNE4kSbgBehJP6QqV7NkTeOklPW0DwKBBatpxon174KST0p/TESoZhXBTidPCp0TfLibpEoXbDjjU7kSIaBMnSLg5QsKNkEP3HjexvXfe8eUs+dl4/z6OtH3+2635wWO0s4HqmnkMHZuzGdnY4ybBEUcAjz1mPk7Bn5CaPz9EWn074WYXGhSWvDz76yWqmmWyiKGSitzlBQuAX16Tfg7sCquHzqAo3ksx2uPmJ/quAf5/00Dzf6dJmcprSGd4mt13xF24AfZ9iqoSPlFk69NVFoRH93WiGqc+RUK4iUm6ggi3wNEmTqgUbgsXmgsLc+eqazOLkHAj5NDtuImug8+O2s/G++3oiir0zXi+EfnBY7Szga4VqaiFW0wdNwYLmywucJ+YFRWZ7wtcwBrIFG7XXw8cf3yIhlzobDPYJtVxUwDbAysWUncqrA6EyKAo/q4xctzcSl8w/DpugVfZnYQ3OW56hZvd/a7S2dfNgAHpf+sYA5PmuDkJb8m+nU/SJQq3anSy/UyoaBMnVP4O558PfPmlumy+WYaEGyGHbuH2/e9bj3/6U98f87uX+wS8ht9ietpzjchXPr/SBpt5HXywujZ1Cje7Hybmwg0wxdjsW+wnZmVl5j6otWtDijYgc4J/223qN1HbhRi3YuHG9sAGEW6BMyj265f+dxSOm0/h5lb6guHXcVO2yk7CTa9ws4tucKrvFob/9//UtWWHWLReR6KJXBFuknMxPkmXX+EWKtrECQqVdISEGyGH7uQkvXub9couvzzQjMnPajIAfIGhuAG/TXuua/d8NTHaUbBsmbkJ569/VdemKHxUTngOPTTzuRiHSvJ06ZC+8XHlSmDNGmDDBmDWLMkBS4MwyUC345aNyUlI+D2wolCzC5XkCZRBUZxYVlf7/KBPJEIlAefSF0FQusqetFBJvs0kCDe7ybBK4Xb99cCxx6prT0QUbjrIhVDJdu3MuZMkLNqkrsBduElFmzhBws0REm6EHOKoryPm/NxzgXvvNTdX+8TParITEy7O12oeKGXIEOCGG9QOaDodt+HDM57avKtETep1hq69FsLEbPhw8/QrOT15eUDX5kxdxxyjoEEbROGWl6f2t9UZcqVY2PJ7YBsFV8nNcQNCZFAcO9Z6XFYW4IM+sBPLASaJTqUvgqB0lV2n46ZjIqjDcdOVVRKwd6hUCrfiYuAXv1DXnkgUwi3pjtvEiWaBb0ULohUVwOx709tiwk1JtIkTUeyZTCgk3Ag5RMctRoon7GryxInKDyVZ6BRunTqhfsDgtKceXtBWTep1hq6VOt2pRt97D/jd74D/+z9lTTY0mIPqypXAznwhVLKkRG2oUVOTurZEFAs3tz2wXo4bEDCD4sKFwNChwFFHZaa8lkUiVJLBVtWD9pWxX2WPOlRSVf+g03Gzg9+OoIJx46zHV1yhtm1NCbn4fnL7noQJN7FvvPRS4PDDlX5Ft37p4vCdFW3VRZs4sGlrm2Rk984CJNwIOXQ4bIoIu5rctzz5BRql0CjcFiwA3v06vZdnE2Xp1OsMXYPkCSdYjy+9VH37Q4YAV12lJMSlqsoUwX36mPXIRo4EHnxScNxUh2fqdNwUh0q67YH1ctyAgPPovn2Bf/8bWL5c/X5OUaTl54e6/isqzInrjBnepqDWVfakhUombY+byJFHmn2OSsrKTMdn7lxzVq+a3/3O3BN8zz3STdn1k3/4X83OrGrEvlGHUyV8x/ARKXXRJrB+B55Lr2ijbjE3xyDhRsihOhmJYvyuJv86//fmgxNO8J/ZJAbwK4XKwg017XFbsMBMqb7bSB8ERIcjdOp1hi4BMWwY8Oc/myPJb3/r/f4ssWCBqQFnz04viSGmcN5aKiTOkEWn46ZYuLntgfUSbsrqFKlAnBBKiPHycnOevWGDuXdz5Upg5oz0e0n3KrvShcBcSk6ickzi+/f33lN+bwEww4OnTdOzd/eqq4Dt26XdPKd+UkzII7WIyIgyVDIC4aYS/nfgqUcbdYu5OQYJN0KOGDtuDLfVZLZ6fFnllcDXXwOvvJKdgwyI3UqhinDDhgbgmy3qHTeWeh3IzFAl/s0InHo9CiZMMGetMRX3TBzX1ma+th3poZJLvxqodjDU6bi1aWMmJzr2WLOWoyRue2C9QiWVZVBUgSjcFEywCgrMidLw4UCP7umvqVxlz2DUKGDECHXtRSHcokpOolIALV8O/OxnpiuWVCRDvN36SbEEhtQiIiPK5CQ6hJvqBGLN+P0dpBdzcwwSboQcCRBugP1qcsbqcb9+elfGFOG0UgiEDzfkheAlU9MHri078qUFFEu9DmQKtd2wDwMKnHqdwadg15nhLGbw4tgO0XGrxEC14lin4waYiumtt4AxY5Q057QH1s1xU5pBUQUahFtWWLgQ+PBDtaGkuRQqqfJ3HTHC3EPAJ81pRXj1k3a1C6X7SZ3zCvGe0SHcNPTtWfkdcoT4z1KJeBPzUEkRfjVZ6+qxJtxWqHiCrFCJQlDsMDdvK5AKVeBTrwPAXqSv3u2B82pyoNTrjI4dgZdfBq65plUt0fHi2I6N6JP2dyUGhhfHdugWbopx2gPr5rgpzaCoAnFCGEVZCR2o3vsHJDdUUtxjnJdHGfYU4tVP2tUulO4ndQo30X3Uca0MGmQ9PuccJU16/Q52wk3peJVgSLgRciTEccsFvFao7PBaobITgmKH2YACqVAFPvU64N9xA0KkXmecdBJw112mhdgKEMWxHR9idNrf62E6k6HEsR0JE26AtQeWx27ipiWDogp0O246w195dIwjSRVu4nG2baun0HQrxE8/acD+XEv1k1H+fjqEW7t2Zmjt7NnAgw9KN+fnd7ATboDC8SrBkHAj5EiaZZVgvFao7HBboXISgnVI7/j5iWyYUAUx9boo3NwcNyBg6vVWiiiO7TCQh7OxCADwLcqwDGbIYWhxLJJA4QaYYmz/WCtj6E5YKce1ZlBUgcLkJL7aV8mRR1qPhw5V337UoZK6ygFo2l/UGvHXT9qLLKl+Msq+UZc7O3asWTO2Wzfppvz8Dk7CTdl4lWBIuBFEAvCzQuWE0wqVkxC0c9wYYUIVxDweQRw3QG8Jo1zBrS4Zz7M4GwNQiYPwBfZw512JOI7KndFA8dOPA7Nno2H5h/j3mgL7PbBxRLfjdtFF1g24cKHathcsAM4/H/jDH/Sk6cwVxy2p+xZjiN9+0onQ/WSUwi0BUVB+fge7yAdGa1/MJbuEIBKAnxUqJ9gK1ZAh1nNuQtBNuAHm5266yf88aOBAc+5RU2P+HWSPW2lpjFKvx5ggSS6/xoCM55SI44Q6bgCAnj2BG25AAYAhnm+OEbqFW4cOZg26DRuA0aO93x+EAw5QLwZ5ohBuZ54JPPCA+fiaa9S0SY6bNmSTAYfuJzt1sh73U1yGBTAH97Vrzcc6XXJF+Pkdmlx8pda+mEuOGyEHhUpGguqVQjch6CXcwoQq8GZMUMeN8MatLpkXyuqS8T9yArKz5gRRJCfp0wc44ojk7bOKIlRy/Hiz0PT112dWEA4LCTdt+OknnUIlpfrJtm2B554DLrkEeO21kI248Le/AVdfbZZKScB96ud3cBJusaqjmSVodCXkYAXEADPkhdCC6pVCNyHoJdyAYKEKlZXA3r3W337ruAGmS9fa49n94FaXzAtldcn697cejxqloEHCk1wpB6CDKBw3wCw0fdtt6kSzmFWShJsy/PSTTsJNup8880zgj3+05ksqGTQIuPtuZaVSdOPnd3ASbrGqo5klSLgRcuTnA6tXA//6F/Dzn2f7aHIW1Y6KmxB0S07CCBKq4JWcpAnuoR2tPZ7dL051ydxQWpfsl780nZkBAzJTNRJ60J2cJMmIJQaSMtsjx00rXv2knXCLXf3GHMDrd7ATbvQ7mJBwI+Rp2xb43veyfRQ5jWpHxU0IejluQUMVvJKTeNHa49n94lSXzA2ldcmKioD33wf+8x9g8GBFjRKukOPmjChiSbgRiEE/SQDw/h3EvfAA/Q4MEm5Eq6ShwdzLu3Kl+f8k1AVR6ai4CUFRuDUKjljQUAVRJNp1yE5QPHswWF0yr+tEa10y2t8WHRqFWxL7yDRIuBEO+O0ngZjWb8wRxN/hTDyH3WiHJ1CBDbAUWmzraGYJGmGJVkVVlbmHvE8fM9ScbdHr08d8PmiNsihRvVLoJATdHLcwoQqiSAziuFE8e3AqKsyJ9owZpvDliX1dMiIYGkIlk9xHpiGKWHHvWFxJuHBLiuB36ifFUEnqJ/XC/w7vlZ2JLtiOC2GG2tN4ZQ8JN6LVsGCBmTV39uzMjIrffWc+P2gQ8Pjj2Tk+P6h0VJyE4D6k7w3hhVvYUAVeJIp76JygePbwlJeb9cc2bDDrkSWmLhkRDNHdlHTc/PSRQ4aY74s9oohNQH0rAIkVbkkU/Hb95ExFyUEJ//C/w2dr2tB45QEJN6JVsGABMGGCfcFpnvp64OKLgTPOiOdAA6h1VOyEYION4yYbqsCLxGp0anm+xiVskuLZ5SkoMCfaw4eb/yf3MsdQ6Lj57SNra833xV68ieeCr6UVZxKYVTLpgp/vJ3uUxT+dfq5C45U/SLgRoUlKSERVFTBpUrDPvPhivAcalY6KmxAEgO8NK1ASqsBE4r6izrgMc/AGfoRj8HbG+yienSB8Igq3kHVDwvSRkybFd3ELQKb7mBThptFx0zFm55zgP+aYlofbTpoQ67mNSFLmZIQcJNyIwCQtJGLePO9BxQ5VA43OzlTVCpUoBHkOH1WgzPliIrHjjMtwQdkbWIURLa9RPDtBBEQUbiFTsIbpI2trgYcfDvV10SA6bp07Z+c4gqJBuOkas3NN8FdVATOe/gGuaD8fv8NVGPK3ObGe2zCSNicjJDGISNm5c6cBwNi5c2e2DyUUTzxhGEVFhgE4/1dUZL4vDtTXG0aPHu7H6/VfUZFhrF8f/LvXrzeMG2/M/P4ePcznw7QZGfwBT5mi5Svq6w1jzRrDWLnS/H99vZavIYjc5YUX0u/VqqrATcj0kWVlMb5vX301/WDfeivbR+SP559PP+6HH5ZqTueYfeON4a6bGTOk/klaSNrchpHU4ybSCaINyHEjfJPEkIjKysyY+6CEWVlOesx/2j4LTendKZ6dICRR4LjJ9JGbN5ufjyVJ3eOm0HHTOWY3NACPPBLuuB55JF5hfFHNbVRH3yRxTkbIQ8KN8EVSQyJ27VLTTpCBJic60+Ji63FdXfaOgyAIZ8RFlRDJSWT7yN275T6vDXGPW1JDJUMKTt1jdq4I/ijmNjpCGZM6JyPkIeFG+CKpeyBC7tXPwO9AkzOdKS/c9u/P3nG0MmhzOREI0XET//aBbB8ZcludfpLquIlZJUMKTt1jdq4Ift3nSVf0TVLnZIQ8JNwIT7IZEiE7kR04EOjRI/z38/gZaHKmMyXhFim0uTy7JFYwhxBqIjJ9ZFmZ+flYIgo3BcXJI0F03EIItyjG7FwQ/LrPk67om1wKUyWCE3vhtmjRIowbNw6dO3dGaWkpDj30UNx5552or68P1d7KlStxzjnnoKysDMXFxRg4cCB+9atf4TvZjVA5TDZCIlRNZAsKgMmTg3+/HV4DTU51prxw27cve8fRCkj8fsgEk3jBrEC4yfSRkyfHeG+qGCqpaa+uchQItyjG7FwQ/DrPk87om1wJUyXCEeue7IorrsC5556Ld999F6NHj8ZPfvITrF+/Htdddx2OO+447As4oXzmmWdw5JFH4plnnkH//v1x+umnIy8vD/fffz9+8IMf4Msvv9T0L0k2UYdEqJ7ITp2aXmA6DH4GmpzqTMlxi4Sc2A+ZUHJCMCsQbkC4PrKoCJgyRcnX6yEBhattUSDcohizc0Hw6zxPOqNvciVMlQhHbIXbCy+8gDlz5qBdu3b44IMP8Oqrr+LZZ5/F2rVrMWzYMCxbtgwzZ8703d4333yDiy++GA0NDZg3bx4+/PBDPPXUU1izZg0mTJiAzZs344ILLoBhGBr/VckkypAIHRPZ8nJg/nz/x2CHn4EmpzpTEm7ayZn9kAkkZwRzmAKVNoTpI+fPh7L6jlrgHbaDDsrecQRFHGhCrDpGNWYnXfDrOk+6o29yIUyVCE9shdttt90GAJg+fTqGDx/e8ny3bt3w4IMPAgDuv/9+7Ny501d79957L/bu3Yvjjz8eU7heIz8/H3/4wx/QsWNHfPTRR1iyZInCf0VuEFVIhM6JbEUF8MQTQGFhsPYB/wNNTnWmJSXWYxJuWsiZ/ZAJI6cEc02NsqZYH+k1ES8qMt9XUaHsq/WxYgVw/fXA4sXZPhL/KLCiohqzky74dZ0n3dE3uRCmSoQnlsJt48aN+OijjwAAF1xwQcbrY8aMQXl5OWpra/Hyyy/7avP55593bK9du3Y47bTTAADPPfdc2MPOWaIKidA9ka2oAL78Ejj99GDf4XegyanOlBw3reTUfsiEkVOCWaFwA8w+cu1ac39fWVn6a2Vl5vNr1yZEtAHAiBHAbbcBgwZl+0j8I2aVDEGUYYxJFvy6zpPu6JtcCFMlwhNL4bZ69WoAQJcuXTDQYTY7cuTItPe6sXv37pb9a+xzMu05UVNT4+u/JKI7JCKqiWx5OfDCC8Bjj3m7b0EHmpzqTHkFqqqmAtFCTu2HTBA5J5j797ceDx2qpMnycmDWLGDDBmDNGjPT5po15t+zZsXHLclZmpqUNBNlGGOSBb+O8xRF9E3Sw1SJ8MRSuFU2z0r69evn+J7y5tGj0scMZt26dS2PndoM0p4T7dq18/yvd+/eodvPJrpDIqKeyF50kem+qR5ocqYzveMOc3N/mzamRUEoJaf2QyaInBPMY8YAv/wl8MMfAi++qLTpggIzOcvw4eb/Y7WwlMvs2aOkmajDGJMq+HWcpyiib5IepkqEJ5Zd8e7mWUmpmM6Xo11zTZZdPmZAu7lZjlObQdprrTARM2mSe6hRUZHZQQQRPdmYyLKB5qabzAnZ7t3mStfAgeEnKawznTDB/2di2Zn27m2OuLW1QM+e2T6anCOn9kMmiJwUzPffn+0jIFRy2GFmsfDqanN/ngQ6x2wnmOBPEqrPE4u+mT07+LEEib7Jxu9LZJ9YOm5JZc+ePZ7/ffPNN9k+TCl0hURkcyKremU5yTH/aXTuTKJNEzm1HzJBkGAmYk9xMbB8uZnKNEDmbCeSHMYYJarPU1TRN/T7tj5i6bi1bx4d3faD7WkOJ+jgYyRuz422NTU16Nixo1R7Trg5hIzGxsbQ7ccFHU4Vm8iGCWOK40S2ogI45hgzocEjj5hhVoyyMnNVbcqUGDptRCREtSJLpJNr/QyRoxx8sPmfInSM2bmIyvMUZfQN/b6ti1j+pAMGDAAAVLnkX2avsfe60Z/bwL1+/XoMGzZMqj3CRGVIRC5OZKkzJdyYOhW4++5gGQ5juR8yQeRiP0MQfkliGGM2UHWeog5lpN+3dRDLUMnDDz8cALBt2zbHZCErVqwAgLQab0506NABgwcPTvucTHuEHnImsYcAbfIn7KDN5dkhV/sZgiDiB4UyEqqJpXDr27cvRo0aBQBYuHBhxuvLli1DVVUVioqKcPLJJ/tq88wzz3Rsb8+ePfjLX/4CAPiv//qvsIdNSEITWaK1kTP7IRME9TMEQURJUjNuEvEklsINAG644QYAwO23345Vq1a1PL9t2zZceumlAIBp06al7Vd7/vnnMXToUIwfPz6jvSuuuAJt27bF66+/jke4Qj6NjY249NJLUV1djVGjRuHEE0/U9U8ifEATWaK1QSuy0UP9DEEQUUPRN4QKUoZhGNk+CCcuv/xy3HfffWjTpg3Gjx+P0tJSLF26FNXV1Tj66KPx2muvoaSkpOX9jz76KC655BL0798/rXYbY9GiRTj//PPR2NiII444AgMGDMBHH32Er776CmVlZVi2bFlLSKUudu3ahY4dO2Lnzp1SiVBynaoqSuxBtD4aGmg/ZJRQP0MQBEFkmyDaINbCDQCefvppPPDAA/j4449RX1+PQYMGYcKECbjyyitRWFiY9l4v4QYAK1euxG233YZ33nkHO3fuRK9evXDqqadi5syZKBOXuzVAwi0YNJElCEI31M8QBEEQ2SKnhFuuQcKNIAiCIAiCIAggmDaI7R43giAIgiAIgiAIwoSEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwpyPYBtDYMwwAA7Nq1K8tHQhAEQRAEQRBENmGagGkEN0i4Rczu3bsBAOXl5Vk+EoIgCIIgCIIg4sDu3bvRsWNH1/ekDD/yjlBGU1MTvvnmG7Rv3x6pVCqrx1JTU4PevXsDAL755huUlpZm9XiI+EPXDBEEul6IoNA1QwSFrhkiKHG7ZgzDwO7du9G7d2/k5bnvYiPHLWLy8vLQt2/fbB8GACA/P7/lcYcOHbJ+4RLxh64ZIgh0vRBBoWuGCApdM0RQ4njNeDltDEpOQhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxh4QbQRAEQRAEQRBEzCHhRhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxhwpwEwRBEARBEARBxBxy3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3FopixYtwrhx49C5c2eUlpbi0EMPxZ133on6+vpsHxoRI+rr67F06VL8+te/xqhRo9CpUye0adMGPXv2xGmnnYbFixdn+xCJBHDttdcilUohlUrh1ltvzfbhEDGmrq4O9913H8aMGYMuXbqguLgYffv2xUknnYSnnnoq24dHxIz169dj2rRpOOigg1BSUoLi4mIMHDgQF198Mf7xj39k+/CIiPniiy8wd+5cTJw4EcOGDUNBQYHvcef111/HySefjG7duqGkpARDhw7FjTfeiD179kRw5P5JGYZhZPsgiGi54oorMGfOHBQUFOC4445Du3bt8MYbb6C6uhpjxozBkiVLUFJSku3DJGLA66+/jhNOOAEA0LNnT4wYMQKlpaX47LPP8OmnnwIApkyZgoceegipVCqbh0rElOXLl2Ps2LEwDAOGYWDWrFmYMWNGtg+LiCEbNmzAj3/8Y3z22Wfo1q0bjjzySJSWlqKqqgoff/wxTjrpJDzzzDPZPkwiJnzwwQc44YQTsHv3bvTp0wcjRoxAfn4+Pv74Y1RWVqKgoAALFy7EOeeck+1DJSKCzW9FvMade+65B1dddRVSqRTGjh2LsrIyvPPOO/j2229x0EEHYdmyZejWrZvOQ/ePQbQqnn/+eQOA0a5dO2PlypUtz2/ZssUYNmyYAcC4+uqrs3iERJxYunSpcdZZZxlvv/12xmtPPvmkkZ+fbwAwHnvssSwcHRF3ampqjCFDhhh9+vQxzjjjDAOAMWvWrGwfFhFD9u7dawwdOtQAYNx8881GXV1d2us1NTXG6tWrs3NwRCz5wQ9+YAAwpkyZkna9NDY2GjNmzDAAGJ06dTL27duXxaMkouSRRx4xrrnmGmPBggXGv//9b+PCCy/0HHdWrVplpFIpIz8/33j55Zdbnq+pqTHGjx9vADDOOuusKA7fFyTcWhmjRo0yABi33nprxmvvvPOOAcAoKioyqqurs3B0RNKYNGmSAcAYP358tg+FiCGXXXaZAcBYvHixcfHFF5NwIxyZOXNmyyScILzYunWrAcAAYHz33XcZrzc0NBglJSUGAGPVqlVZOEIiDvgZd8455xwDgPE///M/Ga+tW7fOyMvLMwAY//73v3Ueqm9oj1srYuPGjfjoo48AABdccEHG62PGjEF5eTlqa2vx8ssvR314RAI5/PDDAQBVVVVZPhIibrz11luYO3cuLrroIpx88snZPhwixtTX1+MPf/gDAODXv/51lo+GSAJFRUW+3xubEDcidtTV1bXs1bebF/fv3x9HH300AOD555+P9NicIOHWili9ejUAoEuXLhg4cKDte0aOHJn2XoJwY+3atQCAXr16ZflIiDixZ88e/OxnP0NZWRnuvffebB8OEXNWrVqFrVu3onfv3hg8eDD++c9/4je/+Q2mTp2K6dOnY/HixWhqasr2YRIxol27dhg7diwAYMaMGWmJ1ZqamnDzzTdj3759OOmkk1BeXp6twyRizpo1a7B3714A1vxXJG7z4oJsHwARHZWVlQCAfv36Ob6HdXDsvQThxLfffotHH30UAHDWWWdl92CIWHHNNdegsrISzz//PDp37pztwyFizieffAIA6Nu3L6ZPn44777wTBpc37Y477sDhhx+OF154wXX8IloXjzzyCE4++WQ8/PDDWLx4MUaOHIn8/HysXr0aGzduxIUXXoj7778/24dJxBg21+3UqRPat29v+564zYvJcWtF7N69GwBQWlrq+J527doBAHbt2hXJMRHJpKGhARMmTMDOnTsxbNgwTJ06NduHRMSEJUuWYN68efjv//5vnHHGGdk+HCIBbNu2DYC5on3HHXfg0ksvxRdffIGdO3fitddew4EHHojVq1fjlFNOoZI1RAsHHXQQ3nvvPZx44onYuHEjXnzxRTz33HOorKzE4MGDMW7cOHTo0CHbh0nEmCTOi0m4EQQRmJ///OdYunQpunbtimeeeQaFhYXZPiQiBuzcuROTJk1C9+7dMXfu3GwfDpEQmLtWX1+P888/H/fffz8OPPBAdOjQAccffzxee+01FBcX49NPP8WTTz6Z5aMl4sK7776LYcOG4dNPP8XChQvx7bffYvv27fjLX/6C+vp6TJo0CZMmTcr2YRKEUki4tSKYDVxTU+P4HlZokFapCCcuv/xyzJ8/H507d25ZDScIwKyhs2HDBtx///2UEIDwDR+iZOfe9+vXD6eccgoAs7YkQVRXV+PMM8/Eli1b8Nxzz+H8889HWVkZOnfujFNPPRWvvPIK2rZtiz/+8Y948803s324RExJ4ryY9ri1IgYMGADAPQMge429lyB4rr76atx3333o1KkTlixZ0pJVkiAAM+tWQUEBHnzwQTz44INpr33++ecAgPnz5+P1119Hz549yT0hAAAHHHCA7WO792zatCmSYyLizeLFi7FlyxYMGjQIRxxxRMbrBxxwAI444gi8+eabeP311/GjH/0oC0dJxB02162ursbu3btt97nFbV5Mwq0VwSbZ27ZtQ2VlpW1myRUrVgAAhg8fHumxEfHn2muvxe9//3t07NgRS5YscczARLRuGhoa8Pe//93x9XXr1mHdunXo379/hEdFxJnhw4cjlUrBMAxs3brVNgvg1q1bAVj7TYjWzfr16wG4uyAdO3YEAGzfvj2SYyKSx0EHHYS2bdti7969WLFiha3Aj9u8mEIlWxF9+/bFqFGjAAALFy7MeH3ZsmWoqqpCUVER1V0i0pg+fTruuusudOzYEa+99lrLdUQQPNXV1TAMw/a/iy++GAAwa9YsGIaBdevWZfdgidjQs2dPjBkzBoB9KGR9fX3LYsDo0aMjPTYinvTp0weA6eTv3Lkz4/X6+nqsWrUKABzLHxFEYWFhSxi23bz466+/xvLlywEAZ555ZqTH5gQJt1bGDTfcAAC4/fbbWzo1wHThLr30UgDAtGnTWlaqCGLGjBm444470KlTJxJtBEFo4aabbgIA/Pa3v8X777/f8nxDQwOuvvpqfPXVV2jfvj0uueSSbB0iESNOOukklJaWYt++fZg8eXLLPiTALKp85ZVXYv369WjTpg3OPvvsLB4pEXemT5+OVCqFP/3pT3jllVdant+7dy8mTZqExsZGnHXWWRg6dGgWj9IiZfDFUohWweWXX4777rsPbdq0wfjx41FaWoqlS5eiuroaRx99NF577TWUlJRk+zCJGPDSSy/h9NNPB2AWoTzkkENs39etWzfcfffdUR4akTAmTpyIxx57DLNmzcKMGTOyfThEDLn11lsxc+ZMFBQUYPTo0ejZsydWrVqFdevWoaSkBIsWLWpZHSeIJ554ApdccgkaGhrQvXt3jBo1Cm3atMGKFSuwceNG5OXl4YEHHsDPf/7zbB8qERGrVq1qMSEA4D//+Q+2bt2Kvn37tri0gLkfu1evXi1/33PPPbjqqquQSqVw7LHHokePHnjnnXewadMmHHTQQVi2bFlsEm6RcGulPP3003jggQfw8ccfo76+HoMGDcKECRNw5ZVXUmp3ooVHH33U1wp3//79KfSNcIWEG+GHJUuW4N5778UHH3yA3bt3o2fPnhg/fjyuu+662Kx4E/HhH//4B+699168/fbb2LhxIwzDQK9evTBmzBhcdtllFFrbynjrrbd8JaKprKzMSDby+uuv43e/+x0+/PBD1NTUoF+/fjj77LNx/fXXOxbnzgYk3AiCIAiCIAiCIGIO7XEjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgiJwglUoF/m/cuHEAgHHjxiGVSuGtt97K6r9BBXPmzEEqlcKzzz4buo2dO3eia9euOOKII2AYhsKjIwiCIMJSkO0DIAiCIAgVXHzxxRnPffvtt3j11VcdXx86dKj244qSLVu24Oabb8aoUaNw1llnhW6nY8eOuP766/HrX/8ajz/+uO25IwiCIKIlZdBSGkEQBJGjvPXWW/jRj34EAK7O0fr167F3717069cPbdu2jerwlDNt2jQ88MADWLx4MU4++WSptvbv349+/fqhoKAAlZWVKCoqUnSUBEEQRBgoVJIgCIJo9fTr1w9Dhw5NtGirrq7Go48+ij59+uAnP/mJdHvFxcW44IILsGnTJjz11FMKjpAgCIKQgYQbQRAE0epx2uM2ceJEpFIpPProo/jiiy9w3nnnoUePHigtLcWoUaPw4osvtrz3gw8+wGmnnYbu3bujpKQERx11FJYuXer4nfv27cPvfvc7HHnkkejUqROKi4tx0EEH4dprr8W2bdsC/xv+9Kc/oaamBhdeeCHy8jKH99raWtx1110YMWIE2rdvj8LCQvTs2ROjRo3Ctddei+3bt2d8ZuLEiQCABx54IPDxEARBEGoh4UYQBEEQHqxatQojRozAP/7xD4wfPx6HHnooVqxYgTPPPBPPPPMMXnjhBYwdOxYbNmzA+PHjcdBBB+H999/HT37yEyxbtiyjvW+++QZHHHEErrnmGqxduxajRo3CySef3CKuRo4cia+//jrQMb7wwgsAgOOPPz7jtaamJpxyyim49tpr8eWXX2Ls2LE4++yzMWzYMGzZsgV33XUX1q9fn/G5ww47DN27d8eHH36ITZs2BToegiAIQjEGQRAEQeQob775pgHA8Brujj32WAOA8eabb6Y9f/HFF7d8/tZbbzWamppaXrvvvvsMAEbfvn2Nzp07G48//njaZ6+44goDgHH88cenPd/U1GQcffTRBgBj0qRJxq5du1peq6+vN66++moDgPGjH/3I979z7969RmFhoZGXl5fWHuPvf/+7AcA4/PDDbV//6KOPjK1bt9q2fdpppxkAjD//+c++j4cgCIJQDzluBEEQBOHB6NGjccMNNyCVSrU894tf/AJdunTBhg0bcPzxx+PCCy9M+8yMGTMAAG+//Tbq6+tbnn/11Vfx7rvv4rDDDsNDDz2E9u3bt7xWUFCAO++8E9///vfx5ptv4tNPP/V1fP/6179QV1eHvn37prXH2Lx5MwBg7Nixtq+PHDkSXbt2tW37kEMOAWC6jgRBEET2IOFGEARBEB6cdNJJaaINMEXWwIEDAcA2g2PXrl3RpUsX1NXVpe1ZW7x4MQDgrLPOQkFBZlWevLw8HHPMMQCA5cuX+zo+JsycxNfw4cORn5+PP/7xj3jggQcChT2yNtl3EARBENmBhBtBEARBeNCvXz/b59u1a+f6OnO39u/f3/LcV199BQCYOXOmY2HwBx98EIBZl80PO3fuBAB06NDB9vVBgwbhnnvuQX19PaZNm4bevXtjwIABOP/887FgwQLU1dU5ts3a3LFjh69jIQiCIPRABbgJgiAIwgO7LI1BXudpamoCAIwZMwaDBg1yfS8LU/SiU6dOAIBdu3Y5vudXv/oVzj33XLz00ktYtmwZli1bhieffBJPPvkkbrrpJrzzzjvo1atXxueYKOzcubOvYyEIgiD0QMKNIAiCICKkvLwcAHD66afjmmuuUdJmjx49AMCzjEBZWRkmT56MyZMnAwA+//xz/OxnP8N7772H6dOn47HHHsv4DGuzrKxMybESBEEQ4aBQSYIgCIKIkJNOOgkAsGjRIhiGoaTNQw45BIWFhdiwYQN2797t+3NDhw7FddddBwD4+OOPbd/DEqSMGDFC+jgJgiCI8JBwIwiCIIgIOf300zFq1Ch8+OGHuOSSS2z3se3YsQMPPfQQGhoafLVZUlKCI488Ek1NTfjggw8yXn/jjTfw8ssvp2W3BADDMPDXv/4VANC/f3/btt977z0AwHHHHefrWAiCIAg9UKgkQRAEQURIXl4eXnjhBZxyyil47LHH8Mwzz+DQQw9Fv379UFdXh6+++gr//Oc/0djYiIkTJ9pmnrTjjDPOwNtvv43XXnstowj3J598giuvvBIdOnTA8OHD0bt3b+zbtw+rVq3C119/jY4dO+KWW27JaHP16tXYtm0bRo8ebbv/jSAIgogOctwIgiAIImJ69+6N999/Hw899BBGjx6NL774As888wyWLVsGAPj5z3+OV199FcXFxb7bvOSSS1BaWoonnngCjY2Naa/99Kc/xc0334xRo0bhq6++wnPPPYe33noLHTt2xPTp0/Hpp5/isMMOy2jz0UcfBQD88pe/DP1vJQiCINSQMlQF2BMEQRAEkVWmTZuGBx54AC+99BJ++tOfSrW1f/9+lJeXo02bNqisrERRUZGioyQIgiDCQI4bQRAEQeQIN910Ezp16mQb9hiUuXPnYuvWrfjtb39Loo0gCCIGkONGEARBEDnEnDlzcMUVV2DRokU4++yzQ7Wxc+dOHHDAARg8eDDef/99pFIpxUdJEARBBIWEG0EQBEEQBEEQRMyhUEmCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiY8/8BrlIMUgEQKCQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.scatter(lc.time, lc.counts, lw=2, color='blue',label='lc')\n", + "ax.plot(t0, y0, lw=2, color='red',label='source of lc')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `LombScarglePowerspectrum` class to create a `LombScarglePowerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the power spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lps = LombScarglePowerspectrum(\n", + " lc,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has only real component, and imaginary component is zero." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 15.49526224+0.j 120.05686691+0.j 96.589673 +0.j 127.2231466 +0.j\n", + " 30.42053746+0.j]\n" + ] + } + ], + "source": [ + "print(lps.freq[0:5])\n", + "print(lps.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "- `data`: This parameter allows you to provide the light curve data to be Fourier-transformed. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `norm`: The `norm` parameter defines the normalization of the power spectrum. It accepts string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: The `power_type` parameter allows you to specify the type of power spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the power spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "## Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the power spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the normalized squared absolute values of Fourier amplitudes.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged powers in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points in the light curve.\n", + "\n", + "- `nphots`: The `nphots` attribute is a float representing the total number of photons in the light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQEAAAIfCAYAAADAARoJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yT5frH8e/TQlt2y8YOygYZIrvIKFsQFJkuQMAicgAVOIgyj4oCylBBZRQREBUQQRGQLchQpgtkVwRk792R3x/8GpM2bZM2zRPK5/168TrNk7vpFY+S5pvrvi/DYrFYBAAAAAAAACDL8jG7AAAAAAAAAACZixAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOKymV0ApISEBJ04cUJ58uSRYRhmlwMAdz2LxaIrV67ovvvuk48Pn3fxOgMA7sXrTHK81gCAe2XGaw0hoBc4ceKEQkNDzS4DALKcv//+WyEhIWaXYTpeZwAgc/A68y9eawAgc7jztYYQ0AvkyZNH0p3/Y/PmzWtyNQBw97t8+bJCQ0Otf7/e63idAQD34nUmOV5rAMC9MuO1hhDQCyS2y+fNm5cXTABwI7Yj3cHrDABkDl5n/sVrDQBkDne+1nCABQAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWVw2swsA4Jzbt2/r4sWLslgsbh0RDtwNLBaLJMnf31958+aVjw+fYQEAAACAKwgBgbtAQkKCzp49q6JFixJ+4J5lsVh08+ZNnTp1SkWKFOG/BQAAAABwAe+ggLvAhQsXVKBAAUIP3NMMw1COHDkUGBioy5cvm10OAAAAANxVSBSAu0BcXJz8/f3NLgPwCgEBAbp165bZZQAAAADAXYUQEABwV+FMTAAAAABwHSEgcBcg9ADs8d8EAAAAALiGEBAAAAAAAADI4ggBAcAF4eHhioyMtLsWGRmp8PBwr6gFAAAAAABHCAEBeKULFy4oR44cMgxDc+bMMbscl82aNUuTJk0yuwwAAAAAACQRAgLwUp999plu3bqlEiVKaObMmWaXk6qVK1dq3759dtcIAQEAAAAA3oQQEHCDv3+/pGkdVmrV+3vNLiXLiI6OVqNGjfTSSy/phx9+0OHDh80uKUV+fn7y9/c3uwwAWd2GDdLGjWZXAQAAgLsUISDgBvM6LdaJrzZr04tf6vD282aXc9fbuXOndu/erW7duumpp55StmzZHHYDGoahZ599VmvXrlVERIRy5sypkJAQjR07VtKdLcU9e/ZU4cKFlTNnTrVu3VonTpywe4xRo0bJMAz98ccf6t+/v4oWLaocOXKodu3aWrNmjVP1Jj0TMDw8XD/88IP++usvGYZh/bN+/Xrr/Y7O8lu/fr0Mw9CsWbPsrv/999/q1KmT8uXLp7x586pNmzY6dOhQivWsXr1azZs3V2BgoAICAlSlShV9/PHHTj0XAF7qp5+khg2lBg2k7dvNrgYAAAB3IUJAwA1uHjtj/frv3edMrCRriI6OVu7cudW+fXsVLFhQrVu31qeffqqEhIRka3ft2qWOHTsqMjJS48ePV5kyZTRkyBC99957atKkiS5cuKBRo0apd+/eWrFihbp27erwZ3bt2lVbt27VK6+8oldffVXHjh3Tww8/rNWrV7tc/6RJk1S+fHkVLFhQc+bMsf6pUKGCy4918eJFNWjQQIsWLVKXLl00ZswY5cyZU40aNdK1a9eSrZ82bZqaN2+uq1evaujQoZowYYJKlSqlF154Qf/9739d/vkAvIRt8PfLL+bVAQAAgLtWNrMLALKE2DjrlwnxFo/8yIQE6bwXNx3mzy/5pONjhps3b2revHlq3769cuXKJUnq1q2bvv76a33//fdq2bKl3frffvtNW7ZsUe3atSVJPXv2VPHixfXyyy+rb9++ev/99+3WT5w4Ufv27VO5cuXsrmfLlk0bN26Un5+fJKlHjx4qX768+vXrp717Xdvm3bZtW02aNEk3btzQM88849L3JjVu3DjFxMRo5syZ6t69uySpT58+eumll/Tee+/Zrf3nn3/Uv39/PfHEE5o3b571ep8+ffTiiy9qwoQJeuGFF1SyZMkM1QTABDdv/vt1fLx5dQAAAOCuRScg4AaWOM+HgOfPS4UKee+f9AaUixYt0sWLF9WtWzfrtVatWqlQoUIOtwRHRERYA0Dpzvl8tWrVksViUf/+/e3W1q9fX5J04MCBZI/z8ssvWwNASQoJCdHTTz+tP//80+UQ0J0WL16sIkWKJOtgfOWVV5KtXbhwoW7duqWePXvq7Nmzdn/atGmjhISEdHU2AvACtiGgg65oAAAAIC10AgIZZEmwSDYhoCXBMyFgVhUdHa1ChQopJCREBw8etF5v3ry5FixYoLNnz6pgwYLW64662oKCgiRJJUqUcHj93LnkW7YdbdW9//77JUmHDx9O11Zedzh8+LBq1qwpX19fu+vFihVTYGCg3bXEsLJp06YpPt6pU6fcXiMADyAEBAAAQAYRAgIZdPuG/bashDjenKXXkSNHtG7dOlksFpUtW9bhmrlz5+qll16y3k4ajtlK6T6Lxdyg1jAMh9fjbMLk9Eh8XrNnz1axYsUcrmErMHCXYjswAAAAMogQEMigG1fsgxtPdQLmzy+dOZP2OrPkz+/693zyySeyWCyaPn16si43SRo2bJhmzpxpFwK6y969e/XAAw/YXduzZ4+k9AVnKQV9kpQ/f36dd7Bf+vDhw8mulSxZUgcOHFB8fLxdqPnPP//o4sWLdmvLlCkjSSpYsGCq3YAA7kI3bvz7NZ2AAAAASAdCQCCDbl2zDwE9dSagj49ksyv2rpeQkKBZs2apcuXKeu655xyu+eOPPzRq1Cht27ZNNWvWdOvPnzhxotq1a2c9F/DYsWOaN2+eypUrl66twLlz59aFCxdksViSBYJly5bVV199pePHjys4OFiSdOvWLU2ZMiXZ4zz22GMaM2aMZs+ebR0MIkljx45NtrZTp0567bXXNHLkSEVGRipHjhx291+6dEkBAQHy9/d3+fkAMBmdgAAAAMggQkAgg8wKAbOalStX6u+//1bPnj1TXNO+fXuNGjVK0dHRbg8B4+LiVL9+fT355JO6cuWKPv74Y924cSPZdGFn1alTR0uXLlXfvn1Vt25d+fr6qnHjxipcuLD69u2rL774Qk2bNlXv3r11+/ZtzZkzRzlz5kz2OIMHD9a8efMUFRWlHTt2qGLFilq/fr22bNlidzaidGeYyUcffaTnnntOFSpUUJcuXVS8eHGdOXNGv/32mxYvXqw9e/YoPDw8Xc8JgIk4ExAAAAAZRAgIZFDSENASz5uz9IiOjpYktWvXLsU1lSpVUtmyZfXFF19o4sSJbv35s2fP1scff6wxY8bo4sWLqlKlimbNmqVmzZql6/FefvllHT58WAsXLtTHH3+shIQErVu3ToULF9ZDDz2kWbNm6a233tJ///tfBQcH64UXXlCNGjXUpEkTu8cJCgrSxo0bNWDAAM2ePVuS1LBhQ61bty7ZWknq3r27ypYtq3fffVdTp07VxYsXVbBgQZUrV05vvPGGihYtmq7nA8BkdAICAAAggwgBgQyiE9A9FixY4NS6ffv2Wb9OacDHrFmzNGvWrGTXIyMjU/yeXLly6YMPPtAHH3yQ6s+PiYlJdm39+vXJruXMmdMabDrSrVs3devWLdl1R/WFhYVp4cKFTtUiSQ899JAeeuihFH82gLsQnYAAAADIIB+zCwDudreuxtrdJgQEALid7WAQOgEBAACQDoSAQAbdvm7OdGAAwD2ETkAAAABkECEgkEGEgACATEcICAAAgAwiBAQyKPZGkjMB43hzdjcZNWqULBYLE3MBeDcGgwAAACCDCAGBDEo2HZhOQACAu9meCUgnIAAAANKBEBDIoGSdgAwGAQC4G52AAAAAyCBCQCCD4m7SCQgAyGScCQgAAIAMIgQEMihpJ6AlnjdnAAA3oxMQAAAAGUQICGQQnYAAgExlsdAJCAAAgAwjBAQyKPZ6rN3tBEJAAIA73b59JwhMRAgIAACAdCAEBDIo/lbS7cCEgAAAN7LtApTYDgwAAIB0IQQEMojtwACATJU0BKQTEAAAAOlACAhkUNJOwIQ43pzd7davXy/DMDRr1iyzSwEAOgEBAADgFoSAQAYl2w5MJ2C6JYZvtn9y586tatWqaeLEiYqLi0v7QTxs1qxZdvX6+PgoX758qlevnmbPnp1pP3PSpEmZ8tgAvBCdgAAAAHCDbGYXANzt4ggB3e7JJ59Uq1atZLFYdPLkSc2ePVsDBgzQ3r17NW3aNLPLc6h///6qWbOmEhISFBMTo+nTp6tbt246duyYXnvtNbf+rFmzZikmJkYvvfSSWx8XgJe6ccP+Np2AAAAASAdCQCCDEggB3a5atWp65plnrLf79Omj8uXLa8aMGRo9erQKFSpkYnWO1a9fXx06dLDe7t69u8qVK6exY8dq8ODBypYtY3/dWiwWXbt2Tblz585oqQDuNnQCAgAAwA3YDgxkUMLtpNOBeXPmbrly5VKdOnVksVh06NAhu/v++ecfvfDCCwoLC5Ofn5/uu+8+9erVS6dPn7Zbd+LECQ0cOFBVq1ZVUFCQAgICdP/992vs2LGKz4SumtDQUN1///26fPmyzpw5oytXrmjYsGGqXbu2ChYsKH9/f5UuXVpDhgzR9evX7b7X9kzCKVOm6P7771dAQIDeffddhYeH64cfftBff/1ltw15/fr1bn8OALwEZwICAADADegEBDIoWQhIJ2CmSAz/8ufPb7129OhRRURE6Pbt2+rZs6dKlSqlgwcP6qOPPtK6deu0fft25cuXT5L066+/atGiRXr88cdVqlQpxcbGasWKFRoyZIgOHz6sqVOnurXeW7du6ejRo8qWLZsCAwP1119/acaMGWrfvr2eeuopZcuWTT/88IPGjRunXbt26fvvv0/2GJMmTdK5c+cUFRWlokWLKjQ0VFWrVtWrr76qs2fPauLEida1FSpUcGv9ALwInYAAAABwA0JAIIMSbsXa3fZYCGixJD8nypvkyCEZRrq+9fr16zp79qz1TMCPP/5Yu3btUq1atVS2bFnrun79+ik2Nla7du1SSEiI9XrHjh1Vp04dTZw4UaNGjZIkNWzYUIcPH5ZhU9NLL72kLl26aMaMGRo1apSKFSuWvucq6cqVKzp79qwSEhL0119/afTo0Tpz5oyeeOIJ5ciRQyVLltTff/+t7NmzW7/nP//5j4YPH64333xTP//8s2rVqmX3mEePHtWff/6pwoUL212fNGmSbty4YbdlGkAWRggIAAAAN/DaEPDtt9/Wzp07tWPHDh05ckTFixdXTExMiut/+uknDR06VD/99JMMw1DdunU1ZswYVa1aNdnaEydOaMiQIVq+fLmuXr2qihUr6pVXXlHHjh2Trb1165ZGjx6tOXPm6MSJEwoJCVH37t31yiuv2L2Zx73LEmvfCZgQ76EQ8MYNadw4z/ys9Bg8WMqZM13fOnLkSI0cOdLuWrt27TRlyhTr7UuXLmnp0qXq3r27AgICdPbsWet94eHhKl26tFauXGkNAXPkyGG9//bt27p69aoSEhLUokULzZ07V9u3b1ebNm3SVa8k9ejRw+529uzZ1a1bN02ePFmS5OfnZ70vLi5OV65cUXx8vJo2bao333xTP/30U7IQsGvXrskCQAD3IAaDAAAAwA28NgR87bXXlD9/flWrVk0XL15Mde3WrVsVGRmp4OBgvf7665KkyZMnq379+tq8ebMqV65sXXv+/HnVq1dPp0+f1oABAxQSEqJ58+apU6dOmjlzprp372732J07d9aSJUvUo0cPRUREaMuWLRo+fLgOHjyoWbNmuftp4y6UNARkO3DG9erVSx07dlRsbKx+++03jR07VseOHVNAQIB1zb59+5SQkKDo6GhFR0c7fJySJUtav46Li9OYMWM0e/ZsHTx4UBaL/f9PFy5cyFDNI0aMUP369eXj46M8efKofPnyypMnj92aDz/8UB9//LH++OMPJSTp5HH08227HgHcw+gEBAAAgBt4bQh46NAh6xv4SpUq6erVqymu7d+/v/z8/LRhwwYFBwdLkjp16qQKFSpo4MCBWrlypXXtmDFjdOTIEX3zzTfWrp+ePXsqIiJCgwYNUseOHa3TN5ctW6YlS5ZowIABGj9+vCTpueeeU2BgoCZMmKBevXqpbt26mfL8cfdIFgIyGCTDypQpo6ZNm0qSWrZsqXr16qlevXrq3bu3vvjiC0myhnjPPPOMunXr5vBxbLv/BgwYoA8++ECdO3fW0KFDVbhwYWXPnl07d+7UK6+8kiyUc1XlypWtNTsyYcIEDRw4UM2bN1f//v113333yc/PT8ePH9ezzz7r8OfnTGcnJYAshsEgAAAAcAOvDQFtO3hSc/DgQW3btk09evSwBoCSFBwcrI4dO+qTTz7RyZMnVbRoUUnSvHnzVKpUKbttf76+vurXr5+6du2qZcuWqVOnTta10p1zw2y99NJLmjBhgubOnUsIiOQhoMVDnYA5ctzZcuutbAK4jKpbt666dOmi2bNnq3///qpbt65Kly4twzB0+/btVMO3RHPmzFGDBg2sIWKigwcPuq3OtH5+eHi4li9fLh+ffwezr1ixwuXHMtJ51iKAuxSdgAAAAHADn7SXeLdt27ZJkiIiIpLdV6dOHVksFu3YsUOS9M8//+j48eOqU6eOw7W2j5f4dXBwsEJDQ+3WhoaG6r777rNbi3tX8k5AD4WAhnHnzD1v/ePmoGr48OHy9fXViBEjJEkFChRQq1attGjRIm3dujXZeovFojNnzlhv+/r6Jgtor127ZjdhNzP5+vrKMAy7GhK3KLsqd+7cunDhgucCZwDm4kxAAAAAuIHXdgI668SJE5Jk1wWYKPHa8ePHXV6buP7+++93+HODg4N17NixdNWcdAJpRrchwjyWBIsUx5mAnlC6dGk98cQT+uyzz7Rx40bVr19fH330kerVq6cGDRqoa9euevDBB5WQkKDDhw9ryZIl6tq1q3UwSIcOHTR16lR17txZTZs21alTpzRz5kwVKFDAI/V36NBBr776qlq2bKl27drp8uXLmjdvXroGDNWpU0dLly5V3759VbduXfn6+qpx48YMEYEVrzNZDJ2AALwQrzUAcPe560PA69evS5L8/f2T3Zc4RCBxjStrE792tDZxve1a3JtibyVIsg/9CAEzz9ChQ/X5559rxIgRWrdunUJDQ7Vjxw6NHTtWS5Ys0dy5cxUQEKDQ0FC1adPGurVfunMmX548eTR//nwtWbJEoaGh6tWrl2rWrOnUduKM+u9//yuLxaLo6Gi9+OKLKlq0qDp37qzu3bun+GFDSl5++WUdPnxYCxcu1Mcff6yEhAStW7eOEBDIqjgTEAAAAG5w14eAiQfn37p1K9l9N///l+bENa6sTfza0drE9ek9tP+ff/6xu3358mXly5cvXY8Fc928Gpf8Ip+CpltkZGSqW1wrVKig+CRvfgsWLKh33nlH77zzTqqPnTNnzhTXJf2ZadVh69lnn9Wzzz6b5jpfX1+9+uqrevXVVzP883PmzJniRGRA4nUmy6ETEIAX4rUGAO4+d/2ZgPfdd58k+228iRKvJW71dWVt4npHaxPXO9pWjHuLoxCQTkAAgFsRAgIAAMAN7voQsGbNmpKkLVu2JLtv69atMgxD1atXl3Tn3Irg4GCHQwQSr9WoUcPusY8fP66///7bbu3ff/+tEydO2K3Fvenmldhk1xIIAQEA7sRgEAAAALjBXR8Cli5dWjVq1NCCBQusgz+kO0M9FixYoMaNG6to0aLW608++aQOHTqkb7/91notPj5eH3zwgQIDA9WqVSu7tZI0adIku5+ZePvpp5/OhGeEu8nt6462AxMCAgDciE5AAAAAuIHXngk4Z84c/fXXX5KkM2fO6Pbt23rzzTclScWLF1eXLl2sa9977z01atRI9evXV79+/SRJH3zwgRISEjR+/Hi7xx0yZIgWLFigp556SgMGDFBwcLA+//xzbdu2TTNmzFCePHmsax955BG1bt1aEyZM0KVLlxQREaEtW7YoOjpazzzzjOrVq5fZ/xjg5W5dc7AdOJ43ZwAAN2IwCAAAANzAa0PA6Oho/fDDD3bXhg8fLklq2LChXQhYt25drV+/XsOGDdOwYcNkGIbq1q2rBQsW6IEHHrB7jAIFCmjTpk0aMmSIpkyZoqtXr+r+++/XF198oc6dOyerY8GCBXrzzTc1d+5czZkzR8HBwXr99dc1ZMiQTHjWuNs46gR0dqAEAABOoRMQAAAAbuC1IeD69etdWh8REaE1a9Y4tTY4OFhz5sxxam1AQIDefPNNaxciYMtxJyAhIADAjegEBAAAgBvc9WcCAmZyeCYgnYAAAHdKOhiETkAAAACkAyEgkAEOtwMzGAQA4E5sBwYAAIAbEAICGRB7w1EIyJszAIAbsR0YAAAAbuC1ZwICdwNHIaDoBAQAuBOdgADc4OrVqzp16pQuXLigoKAgFSlSRLlz5za7LACABxECAhlw+1pssmtsBwYAuFXSMwHpBATgpO+//16LFy/WmjVrdOjQoWT3ly5dWo0bN1bbtm3VokULEyoEAHgSISCQAXE3ORMQAJDJ6AQE4IL4+Hh99NFHev/993Xo0CFZbIbW5c6dW3nz5tWlS5d07do1HThwQAcOHNC0adNUunRp9e/fX71795avr6+JzwAAkFk4ExDIAMfbgXlzdq8xDEPPPvus2WUAyIosFs4EBOC0FStWqFKlSurfv7/++usvPfroo5o8ebJ27typW7du6fLlyzp27JiuXLmimzdvavv27Xr//ffVunVrxcTEqH///qpcubK+//57s58KACATEAICGUAnoHutX79ehmHo3XffNbuUe9aoUaNkGIb1j4+Pj/Lnz69mzZpp6dKlmfIzJ02apFmzZmXKYwN3vbi45B8u8WETgBS0atVKFy9e1Lvvvqvjx4/r66+/Vp8+fVS1alVlz57dbq2fn5+qVaumvn37asmSJTp+/LjGjRunc+fOqVWrViY9AwBAZmI7MJAB8bcIASHduHEjy22bef3111WiRAnFxcVp//79mjp1qtq0aaPPPvtMTz31lFt/1qRJkxQeHk43JeBI0i5AiU5AACl644039PLLLytnzpwuf2/BggU1cOBAvfDCC5o4cWImVAcAMBshIJABDrcDWwgB7zUBAQGm/vzY2FjFx8e7tY6WLVuqRo0a1tvt27dXjRo1NHr0aLeEgPHx8bp161a63qQA95SkQ0EkOgEBpGjo0KEZfoycOXO65XEAAN6H7cBABjjsBCQEdKuYmBgZhqFRo0Zp/vz5qlq1qnLkyKHSpUvrk08+kSQdPXpUHTp0UP78+ZUnTx4988wzunLlit3j/Pnnn+rTp48qVqyoPHnyKGfOnKpevbpmzJjh8Of++uuvat68uXLlyqUCBQqoW7duOnv2rMPz/1K7tmXLFjVs2ND6OM8995yuXr2a7toSt+v+8ccfGjBggEJCQhQQEKANGzaoUKFCeuihhxw+n3feeUeGYWjDhg2p/eNOUfXq1VWgQAEdPHhQknTixAkNHDhQVatWVVBQkAICAnT//fdr7Nixik/SpTRr1iwZhqHVq1frjTfeUKlSpRQQEKD58+fLMAz99ddf+uGHH+y2IcfExKSrTiDLcdQJSAgIAACAdKATEMgARyGg4nlzlhmWLl2qjz/+WH369FH+/PkVHR2tHj16yM/PT6+99poaN26st956S9u2bdPMmTMVEBBgF6KtX79eGzZsUOvWrVWiRAldu3ZNCxYsUFRUlM6cOaNXX33VuvbAgQOqX7++EhIS1L9/fwUHB2vZsmV6+OGHXap59+7dat26tbp3766nnnpK69evV3R0tHx8fDRt2rR01Zbo6aefVo4cOTRw4EAZhqHixYurW7duGj9+vPbt26dy5crZrZ85c6bKli2rBg0auPQcEp09e1YXLlxQ0aJFJd0JSRctWqTHH39cpUqVUmxsrFasWKEhQ4bo8OHDmjp1arLHGDRokGJjYxUVFaW8efOqXLlymjNnjl5++WUVLFjQruugUKFC6aoTyHLYDgwgA3x9ffXss88qOjo61XVRUVH65JNPFBfn4HdbAECWQQgIZIDDENBDnYAWi0U34hxsE/MSObLlkGEYbnu8vXv3as+ePSpevLgkqXPnzgoNDVWXLl307rvvasCAAZKk3r1768KFC5o9e7YmTZqk3LlzS5K6dOmi3r172z3myy+/rMaNG2vMmDEaNGiQ9cDsoUOH6vLly/rxxx+tnXV9+/ZV586dtWPHDqdr/vXXX7VlyxbVrl1bkvT888/r8uXL+uSTTzRhwoR01ZYoMDBQq1evVrZs//413qtXL40fP17R0dEaN26c9fqmTZv0559/auzYsU7XfunSJZ09e9Z6JuBrr72mhIQEde3aVZLUsGFDHT582O7/45deekldunTRjBkzNGrUKBUrVszuMW/cuKFdu3bZbQGOiIjQsGHDVKRIET3zzDNO1wfcM+gEBJABFovF6V0q7GYBgKyPEBDIgITb5g0GuRF3Q+M2jUt7oUkGPzRYObO777y3tm3bWgNA6U6nWLly5fTHH3/oP//5j93a+vXr6+uvv1ZMTIwqVaokScqVK5f1/ps3b+ratWuyWCxq3ry5fvjhB/3555+qXLmy4uPjtWzZMtWqVSvZ1tqBAwdq/vz5TtccERFhDQATNW7cWMuWLUtXbbZeeukluwBQksqWLauGDRtq9uzZeuutt6z3R0dHK1u2bOrWrZvTtTdt2tTuds6cOTVgwAC98cYbkqQcOXJY77t9+7auXr2qhIQEtWjRQnPnztX27dvVpk0bu8d44YUXOAMQcBWdgAA84Pr168k+cAQAZD2EgEAGxN+MTXaNT1EzR8mSJZNdCwoKUrFixeTv75/suiSdO3fOeu3q1avWcwX//vvvZI914cIFSdKZM2d07dq1ZNtpJTm85mrNBQoUSHdttsqWLevwZ/bq1UtPP/20li5dqrZt2+rKlSuaP3++WrdurSJFijhd+5QpU1S2bFn5+PgoMDBQFSpUsAv+4uLiNGbMGM2ePVsHDx5M9u+9KzUDSAWDQQBksosXL+rHH39M1sEPAMh6CAGBDHDUCcibs8zh6+vr0nXJPpB96qmntHTpUvXq1UsNGjRQgQIF5Ovrq2XLlmnixIlKyIT/3zKztpQ66tq3b6/+/fsrOjpabdu21Zdffqlr167pueeec6n2WrVq2U0HTmrAgAH64IMP1LlzZw0dOlSFCxdW9uzZtXPnTr3yyisu1QwgFXQCAnBR0g8hFy5cqPXr1ztcGxcXp5MnTyo+Pl7PP/+8B6oDAJiJEBDIAEusoxDQM52AObLl0OCHBnvkZ6VHjmw50l7kIRcvXtTSpUvVpUsXffzxx3b3rV692u52oUKFlCtXLu3bty/Z4zi65snanOHv76+uXbvq/fff14kTJxQdHa3g4GCXh5qkZc6cOWrQoIG++OILu+uJ04Nd4c6zI4EshzMBAbgoJibG+rVhGLp69aquXr2a4no/Pz+1bdtWb731lgeqAwCYiRAQyACHnYAe2g5sGIZbz9zLyhI78pJuWf3nn3/sJggnrm3ZsqUWLlyoTZs22Z0LOH78eFNrc1ZUVJQmTpyoV155RVu3btXQoUNT7UpMD19f32Q1X7t2TRMnTnT5sXLnzq3z58+7qzQga6ETEICLjhw5IunO7xYlS5ZUhw4d9M477zhc6+fnp0KFCiU7ZxgAkDXxtz2QAWYOBoHz8uTJo+bNm2vu3LnKkSOHatasqb/++ktTp05ViRIl7M7nk6Q333xT33//vR5++GH17dtXISEh+u6773TmzBlJ7u1cc7U2Z1SoUEH16tXT3LlzZRiGevTo4bZ6E3Xo0EFTp05V586d1bRpU506dUozZ860nnnoijp16ig6OlrDhw9XhQoV5OPjozZt2tgNTAHuWXQCAnCR7SC1bt26qX79+nbXAAD3LkJAIAMcbgdmMIhXmjt3roYMGaJvv/1Wn376qcqUKaPRo0cre/bs6t69u93acuXKacOGDRo0aJDee+89BQQEqHXr1poyZYpKlixpNyDD07U5q1evXvrxxx/VqFEjhwNKMmrChAnKkyeP5s+fryVLlig0NFS9evVSzZo1k00WTsvo0aN1/vx5TZkyRRcvXpTFYtGRI0cIAQGJwSAAMuSTTz4xuwQAgBcxLIwyNd3ly5eVL18+Xbp0SXnz5jW7HLjgf7nGyXL9ut01n3x5NeLiALf+nNOnT6tw4cJufUy4bseOHapRo4befvttDRkyxOxyUjV//nx17txZ8+bN05NPPml2OW6X1n8T/L1qj38ed7FJk6SXX7a/5uPDlmDAZPy9mhz/TADAvTLj71U6AYEMoBMw67px44Zdx5/FYtG4ceMkSc2aNTOrLKdNmTJFBQsWVLt27cwuBUBGsB0YQAZduXJFH374oVavXq3jx4/rpqO/V3TnuJNDhw55uDoAgCcRAgIZEceZgFlV1apV1bhxY1WuXFnXrl3Tt99+q40bN6pz586qXr262eU5dPr0aa1Zs0YbN27Uhg0b9Pbbb8vf39/ssgBkRApv1pWQcKcjEABSceLECdWrV09//fVXsoFeSbnzzGMAgHciBATSKfZmvGRx0I1BJ2CW8Nhjj+nbb7/VnDlzFBcXpxIlSuiNN97QK6+8YnZpKdqzZ4+eeuopBQYGqnfv3ho4cKDZJQHIKEdnAkqEgACc8tprrykmJkZVq1bVkCFDVKFCBbbqAsA9jBAQSKebVx1sBZbYppVFjBs3zrr9924RGRmZ5qf8AO4ytp2A/v7SrVt3vo6Pl7LxaxyA1H3//fcqUqSI1q1bp3z58pldDgDAZHyEDKRTiiEgIQwAwF1sQ0Dbidl84ATACRcuXFBERAQBIABAEiEgkG63rhECAgAymW0ImDPnv18TAgJwQmhoqBL4+wIA8P8IAYF0SikEZDAIAMBtUuoEjI/3fC0A7jodOnTQxo0bde3aNbNLAQB4AUJAIJ082QnIOW+APf6bwD3DdjAI24EBuGj48OEKDQ1Vp06ddPr0abPLAQCYjBOlgXRKOQTMnDdmCQkJ8mESJKD4+HgZhmF2GYBnpLQdmE5AAE7o27evSpUqpa+//lqlS5dWjRo1FBYW5vB3SsMwFB0dbUKVAABPIQQE0un2dc91AgYFBenUqVMqUqQIQSDuabdu3dK5c+dUsGBBs0sBPIPBIAAyYNasWdYPzq5evar169enuJYQEACyPkJAIJ1SDAEz4UxAPz8/FShQQGfOnJEkuqBwz0nc/ps9e3YVLVqUMBz3jsQQ0DCkgIB/r9MJCMAJn3zyidklAAC8CCEgkE4phoCyyJJgkeHj3qDOz89PRYoUcetjAgC8XGIImCOH5Ov773U6AQE4oVu3bmaXAADwIrRSAOkUez323xs+vnb3JcQztAAA4AaJg0ECAiTbDlg6AQEAAOAiOgGBdLLtBDT8ssty8983ZAnxFvlmN6MqAECWktgJGBBAJyCADNmzZ482b96sM2fOqGLFinr00Ucl3Rk+FxcXJz8/P5MrBABkNkJAIJ1ib9psB/bzszu8nU5AAM5ISEjQtm3btGbNGu3cuVOnTp3ShQsXFBQUpCJFiqh69epq3LixatasyTmI9yrbEND23wFCQABO+vvvv9W9e3etW7fOeq1bt27WEHD69Onq06ePVq5cqSZNmphVJgDAAwgBgXSKu/FvCOjjn122G7Pi4wgBAaTs9OnTmjZtmqZOnaoTJ05I+nf4ia2vv/5aknTfffepd+/eioqKUuHChT1aK0yWUgjIdmAATjh//rwaNmyomJgYVapUSQ0aNNCHH35ot6ZTp07q27evvvnmG0JAAMjiCAGBdIpNJQSkExCAI7du3dK4ceM0duxYXb9+XdmyZVP16tVVt25dVaxYUQUKFFDevHl16dIlnTt3Tr///rs2b96sX3/9VcOHD9fbb7+tIUOG6L///a/8/f3NfjrwhMQzARkMAiAdxo4dq5iYGA0aNEhjx46VYRjJQsCgoCBVrlxZP/74o0lVAgA8hRAQSKe4m/YhoK34WN6cAUiuXLlyOnr0qCpXrqwePXro6aefVsGCBdP8vrNnz2rOnDn65JNPNGLECM2cOVOHDx/2QMUwVVzcvx1/dAICSIclS5YoPDxcY8aMkWEYKa4rWbKkNm3a5MHKAABm4IAhIJ3sQsAA+4OU6QQE4EiOHDm0YMEC/fLLL3rxxRedCgAlqWDBgnr55Zf166+/6ssvv6QL8F5hc9Ysg0EApMdff/2latWqpXmurJ+fn86fP++hqgAAZqETEEgn2xAwW44knYCcCQjAgT/++CPDAz46duyo9u3bu6kieLWkISCdgABcFBAQoCtXrqS57ujRo8qXL58HKgIAmIlOQCCd4m/9GwL6BtiHgHQCAnDEXRN+mRR8j7ANATkTEEA6lC9fXjt37tS1a9dSXHP27Fn98ssvqlKligcrAwCYgXcRQDrF34y1fp0tp/12YEsCISCAtPXo0UMzZ85Mc92sWbPUo0cPD1QEr5I4FESiExBAunTo0EHnzp3TgAEDlJDChwf//e9/df36dXXu3NnD1QEAPI0QEEgn207A7DkZDALAdbNmzXJqGuOmTZv06aefeqAieBXOBASQQf/5z39UqVIlzZgxQ7Vq1dJbb70lSTp06JAmTJigiIgIzZ49W1WrVtWzzz5rbrEAgEzHmYBAOtmFgLkYDAIg88THx7MF+F6U2pmAhIAAnBAQEKDvv/9eHTt21ObNm7Vr1y5J0o8//qgff/xRFotFNWvW1OLFi5U9e/Y0Hg0AcLcjBATSKeF2yp2AhIAA3OnAgQMc2H4vShoC2m4BZjswACcVK1ZMP/74o77//nt99913Onz4sBISEhQaGqqWLVvqsccek2EYZpcJAPAAQkAgnWxDQL9chIAAnPP666/b3d69e3eya4ni4uL0xx9/aPPmzWratKknyoM3SToYxPaMQDoBAbioRYsWatGihdllAABMRAgIpFN8KiEgZwICSMmoUaNkGIYsljsfFuzevVu7d+9O9Xty5cqlESNGeKA6eJWkg0Fu3fr3Np2AAAAAcBEhIJBOFtsQMDfTgQE4Z8SIEdYQ8PXXX1fVqlX12GOPOVzr5+enkJAQtWjRQoULF/ZwpTBd0u3AV6/+e5tOQAAuio+P17lz53TT9u+WJMLCwjxYEQDA0wgBgXSyxP4bAvrnTtIJGEcICMCxUaNGWb9ODAFHjhxpXkHwXqkNBqETEICTtm3bphEjRuiHH37QLduO4iQMw1BcXFyK9wMA7n6EgEA6JdiGgLmySTIk3Qn/OBMQgDMS6OZCapKeCejr++9t/t0B4IStW7eqcePG1u6/oKAg5c2b1+SqAABmIQQE0ut2rPXL7DmyST6G9P/bgNkODADIsNQ6AQkBAThh5MiRunnzpnr06KHRo0erSJEiZpcEADARISCQXnFJOgENw3qbwSAAXHHixAmtW7dOx48fT/GsJsMwNHz4cA9XBlMlHQxi2wnIdmAATvjpp59Urlw5TZ8+XYbN76oAgHsTISCQThabENAvZzbJ8JF0500ZnYAAnDVgwABNnjxZ8f8f6iRODU6UOESEEPAeRCcggAyKi4tT1apVCQABAJIIAYF0ibudYPcGzD93dvtOQAaDAHDChAkTNGnSJBmGoRYtWqhChQqc1YR/MRgEQAaVL19eZ8+eNbsMAICXIAQE0uHWNfvJaUm3A9MJCMAZ0dHRypYtm1auXKnIyEizy4G3YTAIgAzq1auX+vfvr0OHDqlUqVJmlwMAMJlP2ksAJHXjSvIQ0PDhTEAArjl06JDq1atHAAjHkp4JSCcgABf16tVLTz75pJo1a6Zly5ZZj54AANyb6AQE0iFpJ2BAbjoBAbguT548KlasmNllwFsl3Q5MJyAAF5UsWVKSFBMTozZt2ihbtmwqVqyYfHyS94IYhqFDhw55ukQAgAcRAgLp4DAEtPllKiGeEBBA2urXr69ffvnF7DLgrTgTEEAGxcTEWL+2WCyKjY3V0aNHHa5leAgAZH2EgEA62IWAhqHs/j52nYCEgACcMWLECNWpU0czZszQc889Z3Y58DZ0AgLIoCNHjphdAgDAixACAulw+7pNCJjtznmAho+hxOiP7cAAnHH58mUNGDBAzz//vFauXKnWrVsrLCzM4TYtSWrQoIGHK4Spkg4Gsf33ghAQgBOKFy9udgkAAC9CCAikw62rsdavjWz//5+RbSdgHG/OAKQtMjJShmHIYrHoq6++0ldffZXiWsMwFBcXl+L9yIIYDAIAAAA3IgQE0iH2ps2br2z/vz2LMwEBuKhBgwacwYSU3br179d+fmwHBpAhW7du1bp163T8+HFJUnBwsBo1aqQ6deqYXBkAwFOyRAh49epVvf/++/r8888VExMjf39/lS1bVr169VK3bt3s3mD99NNPGjp0qH766ScZhqG6detqzJgxqlq1arLHPXHihIYMGaLly5fr6tWrqlixol555RV17NjRg88O3si2089IDP84ExCAi9avX292CfBmid1+Pv9/7iydgADS4ejRo3r66ae1efNmSXcGhEj/DgJ56KGHNHfuXIWFhZlWIwDAM+76EDAhIUEtW7bU5s2b1a1bN/Xr10/Xr1/X559/ru7du2vv3r0aO3aspDuffkVGRio4OFivv/66JGny5MmqX7++Nm/erMqVK1sf9/z586pXr55Onz6tAQMGKCQkRPPmzVOnTp00c+ZMde/e3ZTnC+8QH2cT8hECAgAyQ2LQl9gBSCcgABddvHhRjRo10pEjRxQQEKAWLVqoVKlSkqTDhw9rxYoV+vHHH9WkSRNt375d+fLlM7liAEBmuutDwJ9++kk//vijXnrpJU2cONF6vU+fPipfvrymTp1qDQH79+8vPz8/bdiwQcHBwZKkTp06qUKFCho4cKBWrlxp/f4xY8boyJEj+uabb9SmTRtJUs+ePRUREaFBgwapY8eOyp07twefKbyJfSegYfe/kmSJ580ZANfdvn1b586dk7+/v/Lnz292OTBb0hCQTkAALho/fryOHDmiVq1aadq0abrvvvvs7j958qSioqK0bNkyjR8/3tooAQDImhyPH7yLXL58WZKSvaD5+fmpYMGCypUrlyTp4MGD2rZtmzp27GgNAKU7Z2F07NhRq1ev1smTJ63X582bp1KlSlkDQEny9fVVv379dP78eS1btiwznxa8nF2nX2IHoA+dgADSZ+7cuapVq5Zy5cqlkJAQDRo0yHrf119/raeeekpHjhwxsUKYgk5AABn09ddfq1ChQpo/f36y90uSVLRoUX355ZcqWLCgFi1aZEKFAABPuutDwFq1aikwMFDjxo3TggULdPToUf3555969dVXtWPHDo0aNUqStG3bNklSREREsseoU6eOLBaLduzYIUn6559/dPz4cYeH5CZeS3w83Jvspv8mdmbYdGhYEggBATjnueeeU7du3bR9+3blyJHDelZTorJly+qLL75IdXIwsijbMwFt/9f2PgBIxZEjR9SwYUPlzJkzxTU5c+ZUw4YN+bAJAO4Bd/124KCgIH3zzTd67rnn1KlTJ+v1PHny6KuvvlLbtm0l3RnyIcmuCzBR4rXESVmurE2PYsWK2d1O4NP8u45tp591OzBnAgJw0WeffaaZM2eqcuXKmjlzpqpVqyZf224vSRUrVlRISIiWL19u1yGYGl5nsgg6AQFkkK+vr2JjY9NcFxcXJx8f1/pDeK0BgLvPXd8JKEm5c+dWpUqVNGjQIC1atEgzZsxQ6dKl9dRTT2nVqlWSpOvXr0uS/P39k31/QECA3RpX1uLe5KgT0GA7MAAXTZs2Tblz59bSpUtVvXp1uw8TbFWuXJkOjXtRamcC8mYbgBPKlCmj9evX6+LFiymuOX/+vNatW6eyZct6rjAAgCnu+k7A3377TXXr1tXEiRPVu3dv6/Unn3xSlSpVUlRUlA4dOmRtgb9161ayx7h586YkWde4sjY9/vnnH7vbly9fZhLXXcZRJ6DtdGAGgwBwxi+//KLatWsrNDQ01XX58+fXqVOnnH5cXmeyiMSgj8EgANKpY8eOeu211/TII49o2rRpqlixot39v/32m55//nldvnxZnTt3dumxea0BgLvPXR8CTpw4UTdv3lTHjh3trufMmVOPPPKIJk+erJiYGOtBuI628SZeS9zq68pa3JvszvxLfFPm+++bMzoBATjj1q1bTr1hOnPmTLJtwrgHsB0YQAa9+OKL+vLLL7VlyxY98MADevDBB1WiRAlJ0uHDh7V7924lJCSoatWq6t+/v8nVAgAy212/HTgxlIt38Il4XFyc9X9r1qwpSdqyZUuydVu3bpVhGKpevbqkO+dbBAcHa+vWrQ7XSlKNGjXc8wRwV7LdDsyZgADSKzg4WHv37k11jcVi0Z49e6xv2nAPSW07MJ2AAJyQI0cOrV271np2+o4dO7Rw4UItXLhQO3fulCR17txZq1evth57BADIuu76EPD++++XJM2aNcvu+sWLF7VkyRIFBQWpdOnSKl26tGrUqKEFCxZYB39Id4aALFiwQI0bN1bRokWt15988kkdOnRI3377rfVafHy8PvjgAwUGBqpVq1aZ+8Tg1exCvsQ3ZbbbgZkODMAJTZo00Z9//qklS5akuGbOnDk6duyYmjVr5sHK4BXoBATgBkFBQfriiy905MgRzZkzR2PGjNGYMWM0Z84cHTlyRJ9//rny589vdpkAAA+467cDv/TSS5o9e7aGDBmi3377TQ899JDOnz+v6dOn659//tGUKVOsW6jee+89NWrUSPXr11e/fv0kSR988IESEhI0fvx4u8cdMmSIFixYoKeeekoDBgxQcHCwPv/8c23btk0zZsxQnjx5PP5c4T0S4h10AtoNBuHNGYC0DRo0SHPmzNFTTz2l0aNH2025P3/+vObPn69BgwYpV65cbNO6F9EJCMCNQkND9fTTT5tdBgDARHd9J2Dx4sX1888/q0uXLlq3bp369eunMWPGKDQ0VF999ZX69OljXVu3bl2tX79e4eHhGjZsmIYPH67SpUtrw4YNeuCBB+wet0CBAtq0aZPatm2rKVOmqH///rp06ZK++OIL9ezZ09NPE17GYjsYxDf5dGAL24EBOKFMmTL69NNPlZCQoIEDByo0NFSGYejTTz9VoUKF9J///EdxcXGaNWuWwsLCzC4XnkYnIAAAANzoru8ElKRSpUrp008/dWptRESE1qxZ49Ta4OBgzZkzJyOlIYtydCagbYcG24EBOKtjx46qUKGC3nzzTa1YsUKXL1+WdOccp2bNmmnkyJF68MEHTa4SpkitE5AQEIAL9uzZo/fff1/r16/XsWPHZLFYFBISokaNGqlv376qVKmS2SUCADwgS4SAgKc5OhPQfjswISAA51WqVElffPGFLBaLzp07p4SEBBUsWFA+Pnd9wz4yIrVOQLYDA3DSlClTNGDAAMXFxcli+fd31AMHDujAgQP65JNP9M4773DsBADcA3h3AaSDxfZMQN/kZwLSCQggPQzDUMGCBVW4cGECQNAJCCDDli9frn79+ikuLk7t2rXTN998o99++02//fabvv32W3Xo0EHx8fF6+eWXtXz5crPLBQBkMjoBgXSw7fQzEt+U2Z0JyJszAEAGMRgEQAaNGzdOhmHoiy++UMeOHe3uq1ixoh555BEtXLhQnTp10rhx49SyZUuTKgUAeAIhIJAOjs4ENDgTEEA6xMfHa+HChVq9erWOHz+umzdvOlxnGIbTZ9oii2AwCIAM2rFjh2rVqpUsALTVoUMH1a5dWzt27PBgZQAAMxACAulgG/I5mg7MmYAAnHHp0iW1aNFC27ZtszunyRHDMFK9H1mMxfJv0EcnIIB0MgxDpUqVSnNdqVKltGfPHg9UBAAwEyEgkA4OpwMbnAkIwDXDhw/Xzz//rODgYPXr108VKlRQ3rx5zS4L3sC2049OQADpVKVKFR04cCDNdQcOHFDlypU9UBEAwEyEgEA6OOwE9LXpBIzjzRmAtC1evFiBgYHaunWrgoODzS4H3sS2049OQADpNGDAALVv315ffPGFnnjiCYdrvvzyS23btk0LFizwcHUAAE8jBATSweGZgHQCAnDRqVOn1Lx5cwJAJOcoBKQTEICLqlevrpdfflnPPPOMFi5cqK5du6pEiRKSpCNHjmjOnDn6+uuv9fLLL6tmzZo6evSo3feHhYWZUTYAIJMQAgLp4LgTkMEgAFxTpEgRBQQEmF0GvFFanYCEgACckBj4WSwWff311/r666+TrbFYLJo0aZImTZpkd90wDMXFxXmiTACAhxACAulgiXdwJqAPnYAAXNOmTRt9/fXXio2NVfbs2c0uB94krU5AtgMDcEJoaCiDpQAAVoSAQDrYTv9N7AD0IQQE4KL//e9/+vbbb/XCCy9o8uTJdAXiX3QCAnCDmJgYs0sAAHgRQkAgHWw7AX3+fyCIYRsCxvPmDEDaPvzwQzVv3lyffPKJVq1apSZNmigsLEw+tmHP/zMMQ8OHDzehSpiCwSAAAABwM0JAIB0cdQLavjmjExCAM0aNGiXDMGSxWPT3339r1qxZydYk3k8IeI9hMAgAAADcjBAQSAdLgoPpwDadgLYhIQCkZOTIkWaXAG9FJyAANzt27JhOnDihmzdvprimQYMGHqwIAOBphIBAOlgcdAIanAkIwEWEgEgRnYAA3GTBggUaNmyYDh48mOo6pgEDQNZHCAikg8MzAX0JAQEAbsJgEABuMH/+fD355JOyWCzKnz+/wsPDlSdPHrPLAgCYhBAQSAfbkM/aCWgwGARAxpw8eVLHjh2TJAUHB6tYsWImVwTTpNUJyHZgAE546623JEnvvfee+vTpI1/bv0cAAPec5OMHAaTJNuSzngnoazMYxEInIADnRUdHq3z58goODlbt2rVVu3ZthYSEqEKFCpo5c6bZ5cEMdAICcIN9+/YpIiJC/fr1IwAEABACAumRYNsJ6GAwiIXBIACcFBUVpV69emn//v2yWCwKCgpSUFCQLBaL9u3bp6ioKEVFRZldJjzNNgT0ST6Fnk5AAM4IDAxU8eLFzS4DAOAlCAGB9LA9EzDbnf+MfDgTEICLFixYoOjoaAUGBurdd9/VhQsXdPbsWZ09e1YXL17U+PHjFRQUpJkzZ2rhwoVmlwtPYjAIADdo1KiRdu3aZXYZAAAvQQgIpEPanYC8OQOQtqlTpypbtmxatWqVBgwYoHz58lnvy5s3r15++WWtWrVKvr6+mjp1qomVwuPS2g5MJyAAJ4wYMULHjx/XmDFjzC4FAOAFGAwCpIeDTkDbEFCcCQjACbt27VLDhg1VrVq1FNc8+OCDatiwoXbu3OnBymA6204/OgEBpFP58uW1cuVKPfHEE1qyZIlatmypsLAw+fg47gXp2rWrhysEAHgSISCQDhZHnYA2g0ESOBMQgBOuXbumwoULp7mucOHCunbtmgcqgtegExCAm2zevFnnz5/X0aNH9fPPP6e6lhAQALI2QkAgHWxDQEedgEwHBuCMokWLOnVW065du1SkSBEPVASvwZmAANxg5syZGjhwoCSpSpUqKlOmjHLnzm1yVQAAsxACAulgsXnzlTgQxG47MINBADihUaNGmj17tsaMGaMhQ4Y4XPP2229r37596tatm4erg6nS6gQkBATghIkTJypbtmxatGiRWrdubXY5AACTEQIC6WCx2e6buA2YwSAAXDVkyBB9+eWXGjp0qL7++mt17dpVJUqUkCQdPnxYn376qXbu3KmAgAC98sorJlcLj0qrE5DtwACccOjQITVo0IAAEAAgiRAQSB8HnYCJ24IltgMDcE65cuW0YMECPf3009q2bZu2b99ud7/FYlHevHn12WefqVy5ciZVCVM4CgEN245zPmwCkLagoCAVKlTI7DIAAF6CEBBIhzTPBGQwCAAnPfLII9q/f7+mTZumH374QcePH5ckBQcHKzIyUlFRUU4ND0EWk1IIaBh3JtDTCQjACS1bttSaNWuUkJCQ4kRgAMC9gxAQSAfb7b5G4pmAvjYdGnQCAnBB4cKFNWzYMA0bNszsUuAtHIWAiV/HxdEJCMApb7zxhpYtW6b+/ftrwoQJ8vPzM7skAICJCAGBdLDrBPz/MwF9OBMQAOAuKYWAiZ08dAICcML06dPVsmVLffTRR/ruu+/UqFEjhYWFOewKNAxDw4cPN6FKAICnEAIC6ZHGdGDOBATgqq1bt2r9+vU6duyYLBaLQkJCFBkZqYiICLNLgxlS6wSU6AQE4JRRo0bJMAxZLBb99ddfmjVrVrI1ifcTAgJA1kcICKSDwzMBfW0+UU0gBATgnEOHDqlr167aunWrpH8/RDD+fwhE7dq1NXv2bJUuXdq0GmECOgEBuMGIESOsrycAABACAumRVicgISAAJ5w4cUL169fXyZMnlTNnTj388MMqUaKEJCkmJkYrVqzQ1q1b1aBBA23btk3BwcEmVwyPoRMQgBuMGjXK7BIAAF6EEBBIB0edgD6+hIAAXDNixAidPHlS7du314cffqhChQrZ3X/27Fn16dNHCxcu1MiRIzVjxgyTKoXHpdUJSAgIAAAAFxECAumRRicgb84AOGP58uW677779Nlnnzmc2FiwYEHNnTtXmzdv1rJly0yoEKZJqxOQ7cAA0uHkyZM6duyYJCk4OFjFihUzuSIAgCclHwsFIE0OOwGz+Ti8HwBScv78edWrV89hAJjIz89P9erV04ULFzxYGUxHJyAAN4qOjlb58uUVHBys2rVrq3bt2goJCVGFChU0c+ZMs8sDAHgIISCQHpwJCMANQkJCdO3atTTXXb9+nfMA7zUMBgHgJlFRUerVq5f2798vi8WioKAgBQUFyWKxaN++fYqKilJUVJTZZQIAPIAQEEiHtM4ElIUQEEDaOnbsqPXr1+v48eMprjl+/LjWrl2rDh06eLAymI7BIADcYMGCBYqOjlZgYKDeffddXbhwQWfPntXZs2d18eJFjR8/XkFBQZo5c6YWLlxodrkAgExGCAikB2cCAnCD4cOHq3LlymrcuLGWLl2a7P7vvvtOTZo0UZUqVTRy5EgTKoRp6AQE4AZTp05VtmzZtGrVKg0YMED58uWz3pc3b169/PLLWrVqlXx9fTV16lQTKwUAeAKDQYB0YDowAHd45JFH5OPjowMHDuixxx5TYGCgwsPDJUkxMTG6ePGiJCkiIkKPPPKI3fcahqE1a9Z4uGJ4DJ2AANxg165datiwoapVq5bimgcffFANGzbUzp07PVgZAMAMhIBAelgcdAL62jTWsh0YgBPWr19v/dpisejChQsOB4Bs3rw52TXDMJJdQxbCYBAAbnDt2jUVLlw4zXWFCxd26oxaAMDdjRAQSA+bTj/f7HQCAkifdevWmV0CvFVanYBsBwbghKJFi2rXrl1prtu1a5eKFCnigYoAAGYiBATSw8GZgHYhIJ2AAJzQsGFDs0uAt6ITEIAbNGrUSLNnz9aYMWM0ZMgQh2vefvtt7du3T926dfNwdQAATyMEBNLB0ZmADAYBALgNg0EAuMGQIUP05ZdfaujQofr666/VtWtXlShRQpJ0+PBhffrpp9q5c6cCAgL0yiuvmFwtACCzEQIC6WBYEpQYA/pm+/9OwGw2ZwKyHRgAkBEMBgHgBuXKldOCBQv09NNPa9u2bdq+fbvd/RaLRXnz5tVnn32mcuXKmVQlAMBTCAGBdLDtBEzsALTtBORMQADOunTpkj788EOtWbNGJ06c0M2bNx2uMwxDhw4d8nB1MA2dgADc5JFHHtH+/fs1bdo0/fDDDzp+/LgkKTg4WJGRkYqKinJqeAgA4O5HCAikh+104P/vAEzsCLxzPyEggLQdPnxYDRs21IkTJ9I8S5RpwPcY25DPx6bTnE5AAOlQuHBhDRs2TMOGDTO7FACAiQgBgfSwnQ6cLXknIG/OADjjv//9r44fP666detq4MCBKlOmjPLkyWN2WfAGdAICAADAzQgBgfRw0AloOx2YTkAAzli7dq3CwsK0evVqBQQEmF0OvAlnAgJIpyFDhmj//v0aOHCgHnrooVTXbtq0SePHj1eFChU0evRoD1UIADCLT9pLANhKiLcP+BwOBiEEBOCE+Ph41a5dmwAQydmGfI46AQkBATiwfft2jRs3TleuXEkzAJSkhx56SFevXtWYMWP0yy+/eKBCAICZCAEBFyUNARPDPwaDAHBVpUqVdP78ebPLgDdKqxNQIggEkMzcuXNlGIZLXX1vv/22LBaLZs+enYmVAQC8ASEg4KL4WPs3XdZOQLYDA3BR3759tWHDBv3+++9mlwJvk9aZgBIhIIBkNm7cqOLFi6tWrVpOf0/16tUVHh6uH374IRMrAwB4A0JAwEXxcUm2A2d3cCYgb8wAOOGpp57Siy++qMaNG2vq1Kk6evSo2SXBWzgTAjIcBEAShw8fVuXKlV3+vipVqujw4cOZUBEAwJswGARwUdJOwMTwjzMBAaRH7969tWLFCvXp0yfVdYZhKC4uzkNVwXRsBwaQDteuXUvXlPncuXPr2rVrmVARAMCbEAICLnKmE5AzAQE44/fff1fDhg118eJFWdL48CCt+5HF0AkIIB0CAwN1+vRpl7/v9OnTypcvXyZUBADwJmwHBlzEmYAA3OXVV1/VhQsX1KFDB+3cuVNXrlxRQkJCin9wD6ETEEA6lCpVSj/99JNiY2Od/p7bt2/rp59+UsmSJTOxMgCANyAEBFyUtBMwcRswISAAV23atEnlypXTF198oapVqypXrlxmlwRvQScggHRo0qSJrl69qilTpjj9PVOmTNGVK1fUtGnTTKwMAOANCAEBFyXEOe4ENHxsQ0C6MwCkLSEhQVWrVpVhGGkvxr2FTkAA6dC7d29lz55dQ4YM0TfffJPm+iVLlujVV1+Vn5+fnn/+eQ9UCAAwEyEg4KKUzgRM/F9JdAICcMqDDz6o48ePm10GvJEznYCEgACSCAkJ0euvv67bt2/r8ccfV7t27bR48WIdP35csbGxio2N1fHjx7V48WLr/bGxsRo1apRCQ0PNLh8AkMkYDAK4KKUzAe06ARkMAsAJgwcPVuvWrbV+/XpFRkaaXQ68iTOdgGwHBuDA4MGDdf78eY0bN05LlizRkiVLHK5LHDg1aNAgDRkyxJMlAgBMkqEQcMOGDfL19dVDDz3krnoAr5cQn0InYDbb7XwWWRIs9sEgACRRsWJFvfLKK2rVqpVefPFFtWzZUmFhYfLxcdyoHxYW5uEKYRo6AQFkwJgxY9SsWTO9+eab2rhxY7LhUj4+PmrQoIGGDh3KWYAAcA/JUAgYGRmpyMhIrV271l31AF7PqenAuhMW+hICAkhFeHi4DMOQxWLRuHHjNG7cuBTXGoahuLg4D1YHUzEYBEAGNWnSRE2aNNGlS5e0c+dOnTlzRpJUqFAhPfjggwoMDDS3QACAx2UoBAwKCtJ9993nrlqAu0JKnYCJU4Jt1/lm91hZAO5CYWFhDAWBYwwGAeAm+fLlU6NGjcwuAwDgBTI0GKRq1ao6cOCAu2rJkPPnz2vQoEEqXbq0AgICVKhQITVq1EgbN260W/fTTz+padOmypMnj/LmzauHH35Yu3fvdviYJ06cUNeuXVWoUCHlyJFDNWrU0IIFCzzwbODNknYCJnYAJu0ETDpABACSiomJ0ZEjR5z+g3sInYAAAABwswx1Avbv31+PP/64vvvuOz3yyCPuqsllf/31lyIjI3X16lX17NlTZcuW1aVLl/Trr7/aTV3cunWrIiMjFRwcrNdff12SNHnyZNWvX1+bN29W5cqVrWvPnz+vevXq6fTp0xowYIBCQkI0b948derUSTNnzlT37t09/jzhHew6AY1/34w52g4MAEC60AkIAAAAN8tQCPjggw+qb9++evzxx/Xss8+qffv2Cg8PV44cORyuz6wDzZ955hnFxcXp119/VbFixVJc179/f/n5+WnDhg0KDg6WJHXq1EkVKlTQwIEDtXLlSuvaMWPG6MiRI/rmm2/Upk0bSVLPnj0VERGhQYMGqWPHjsqdO3emPB94N7tOQJsz/wgBAQBuw2AQAAAAuFmGQsASJUpIujNePjo6WtHR0SmuzawDzTds2KAff/xR77//vooVK6bY2FjFxsYqZ86cdusOHjyobdu2qUePHtYAUJKCg4PVsWNHffLJJzp58qSKFi0qSZo3b55KlSplDQAlydfXV/369VPXrl21bNkyderUye3PB97P2U7ApNuGASAl586d0/Tp07Vu3TprB3twcLAaN26s5557TgUKFDC5QnicM52AbAcGAACACzJ0JmBoaKjCwsJUvHhxhYWFpfonNDTUXTXbWbZsmaQ7XYZt2rRRjhw5lCtXLpUtW1Zz5861rtu2bZskKSIiItlj1KlTRxaLRTt27JAk/fPPPzp+/Ljq1KnjcK3t4+HekxD3b7hn2HQCJg4Isa6jExCAE1auXKmyZctq6NChWrVqlfbs2aM9e/Zo1apVeu2111SuXDm7TnXcI+gEBAAAgJtlqBMwJibGTWWk3759+yRJUVFRKlOmjD799FPdvn1b48ePV5cuXRQbG6vu3bvrxIkTkmTXBZgo8Vpi94Ura9Mj6ZblBH6Jv6vYDvyw2HQC2gaCSdcBgCMHDhxQu3btdP36dVWpUkXdu3dXqVKlJEmHDx/WrFmztHv3brVr1067du1SmTJlnHpcXmeyAAaDAPByvNYAwN0nQyGgN7hy5YokKU+ePFq3bp38/PwkSW3btlXJkiX12muvqVu3brp+/bokyd/fP9ljBAQESJJ1jStrce9JsRMwG2cCAnDNmDFjdP36dY0aNUojRoxIdn///v31xhtvaOTIkRo7dqxmzJhhQpUwBYNBAAAA4GZ3fQiYOITkySeftAaAkhQUFKRHH31Us2fP1r59+6xnBN66dSvZY9y8eVOSrGtcWZse//zzj93ty5cvK1++fOl+PHiWXbjnk8p04DjenAFI3Zo1a1SuXDmHAWCi4cOHa968eVq9erXTj8vrTBZAJyAAN/j444/VtWvXDL13SQmvNQBw98nQmYCJNm7cqE6dOikkJET+/v7q2bOn9b7EM41Onjzpjh+VTEhIiCRZB3rYSmxRv3Dhgu677z5Jjrfx2h7CLsmltbj3pDQdmDMBAbjq5MmTqlatWprrqlWrlmmvo/BSdAICcIM+ffooJCREL7/8sg4cOGB2OQAAk2U4BHzzzTcVGRmphQsX6sSJE4qNjZXF8m/4kS9fPo0dO1aLFi3K6I9yqFatWpKkY8eOJbsv8VrhwoVVs2ZNSdKWLVuSrdu6dasMw1D16tUl3QkPg4ODtXXrVodrJalGjRrueQK46zg9HZgzAQGkIVeuXDp9+nSa606fPq1cuXJ5oCJ4jcQQ0DDu/ElEJyAAFzz88MO6dOmS3nvvPVWoUEEtW7bUd999Z3ZZAACTZCgEXL58uUaMGKHg4GDNnz9fp06dSramVq1aKlSokJYuXZqRH5Witm3bKk+ePJo7d66uXr1qvf7PP/9o8eLFKlu2rEqXLq3SpUurRo0aWrBggXXwh3RnCMiCBQvUuHFju27CJ598UocOHdK3335rvRYfH68PPvhAgYGBatWqVaY8H3i/lM4ETBoCWhIIAQGkrmrVqtqwYYN+++23FNf8+uuv+uGHH1S1alXPFQbzJQZ8tp1/SW/TCQggDcuWLdOBAwc0YMAA5cuXT99//70effRRlSpVSuPHj9eFCxfMLhEA4EEZCgHfe+89+fv7a/ny5erQoYMKFSrkcN0DDzyQae3nQUFBevfdd3X8+HHVqVNHEyZM0JgxY1SnTh3dvn1bH3zwgV29t27dUv369TVp0iRNmjRJ9evXV0JCgsaPH2/3uEOGDFHx4sX11FNPaeTIkZo2bZqaNm2qbdu26d1331WePHky5fnA+9l3AjIYBED6RUVFKTY2Vk2bNtWHH35o92HW1atXNXnyZDVr1kzx8fHq1auXiZXC4xJDQJ8kv6rZ3iYEBOCEkiVLWt8vTZ8+XQ888ICOHDmiwYMHKyQkRFFRUdq9e7fZZQIAPCBDIeC2bdtUq1YtVaxYMdV1hQoVytSzjHr16qWvvvpKuXPn1vDhwzV69GiVK1dO69atU/Pmza3r6tatq/Xr1ys8PFzDhg3T8OHDVbp0aW3YsEEPPPCA3WMWKFBAmzZtUtu2bTVlyhT1799fly5d0hdffGF35iHuPXYDP1IZDGJ3diAAOPDEE0+oS5cuOnPmjPr166d8+fKpcOHCKly4sPLly6cXX3xRZ86cUZcuXdS5c2ezy4UnOdMJyHZgAC4ICAhQz549tXPnTm3atElPPPGE4uPjNXPmTFWvXl3169fX/PnzFc/fLQCQZWVoOvC1a9ccDuRI6tKlS0rI5E+r27Vrp3bt2qW5LiIiQmvWrHHqMYODgzVnzpyMloYsxrbDz0hlMAjbgQE449NPP1VERITeffddHT58WGfPnrXeV6pUKQ0aNEjPP/+8iRXCFCmFgHQCAnCDiIgIlStXTsWKFdOECRMkSZs2bdLmzZtVvHhxjRs3Th06dDC5SgCAu2UoBCxSpIgOHjyY5rp9+/YpNDQ0Iz8K8BopdQIa9o2ADAYB4LTevXurd+/eOn78uN0UeibR38MSA77UQkC6dQCkw65duzR58mR98cUXunnzpnx8fPToo4+qRYsWmjNnjjZv3qzOnTtr2rRp7IACgCwmQ9uB69Wrp927d2vTpk0prlm6dKkOHjyoRo0aZeRHAV7DtsPPthPQ8LGf4MiZgABcFRwcrFq1aqlWrVoEgPc6BoMAcKPY2FjNmzdPdevWVY0aNfTJJ5/I399fAwYM0KFDh7Ro0SI9//zz+vHHH/Xdd9/J399f7777rtllAwDcLEMh4MCBA2UYhtq1a6fFixcrLi7O7v4VK1boueeeU/bs2dWvX78MFQp4C7sOv6QHttuGgHG8OQOQ3LZt2/TNN984NTBr//79+uabb7R9+3YPVAav4sx2YDoBAaTh+PHjGj58uMLCwtSlSxdt3bpV5cuX14cffqhjx47pnXfeUfHixe2+p2XLlmrVqpUOHz5sUtUAgMySoe3A1apV0/jx4zVgwAC1b99eOXLkkGEY+uqrr7Ro0SJduXJFFotF77//vu6//3531QyYyhL/b7hn2wn4/xck3bmfTkAASZ09e1ZNmjRRnjx5nJrEGBQUpD59+uj69es6fPiwAgMDM71GeAk6AQG4QYkSJayDPlq2bKkXX3xRzZo1S/P7AgMDFRsbm9nlAQA8LEOdgJL04osvatmyZapZs6Zu3Lghi8WiK1eu6PLly6pcubK++eYb9e3b1x21Al7BLtzzTbkTkMEgAJKaO3eurl69qv/9738qVKhQmusLFSqk119/XRcvXtTcuXM9UCG8Bp2AANwgICBAffv21b59+7R06VKnAkBJGjdunI4cOZLJ1QEAPC1DnYCJWrRooRYtWujcuXM6cuSIEhISFBoaqmLFirnj4QGvYrvNN3kn4L+3GQwCIKlly5YpV65c6tatm9Pf06VLF7300ktaunQpH6rdS+gEBOAGJ06cUO7cuV3+vvz58yt//vyZUBEAwExuCQETFShQQAUKFHDnQwJex7YT0EhyJqDhYyjxXjoBAST1+++/q3bt2sqePbvT35M9e3bVqlVLv/32WyZWBq/jTCcgISCANOTLl08PPPCAdu7caXYpAAAvkKHtwLNmzdKxY8fcVQtwV3C6EzCWN2cA7J0/f15FixZ1+fuKFCmic+fOZUJF8FrOdAKyHRhAGnLmzMnZ7AAAqwx1Avbo0UOGYahMmTJq2rSpmjZtqsaNGytv3rzuqg/wOnZnAiadDmxzm05AAEn5+/vr2rVrLn/f9evX5e/vnwkVwWvRCQjADcqUKaPTp0+bXQYAwEtkqBPw2WefVWhoqPbv368PP/xQ7du3V4ECBVSnTh0NGzZM69evZ6oUspzUpwP/e5vpwACSKlq0qH799VeXv+/XX39NVwch7mIMBgHgBs8884w2btyoQ4cOmV0KAMALZCgEnDlzpmJiYrRv3z5NmTJFjz32mPLkyaOff/5Zb731lpo0aaKgoCA9/PDDGj9+vLtqBkxldyZg0unAPoSAAFJWt25dxcTEaPPmzU5/z6ZNm3TkyBHVrVs3EyuD12EwCAA3eOmll9SiRQs1btxY8+bN082bN80uCQBgogyFgInKlCmjF154QYsWLdK5c+f0008/afTo0YqMjFRcXJxWrlypV155xR0/CjBdap2Ahm0nYBxvzgDYe/rpp2WxWNSrVy9dunQpzfUXL15Ur169ZBiGnnzySQ9UCK9BJyAANyhdurR++eUX/f333+rSpYty5cqlYsWKqWTJksn+lCpVyuxyAQCZzK3TgSUpNjZWV65c0ZUrV3T58mXFxcVJkiwWuqKQNaTWCWjhTEAAqWjatKmaNGmiNWvWqHr16powYYLatGlj9wGCdOc185tvvtHAgQN15MgRRUZGqnnz5iZVDVPQCQjADWJiYqxfJ74fO3XqlMO1SV+LAABZj1tCwN27d2vVqlVavXq1fvzxR928eVMWi0V58+bVI488Yh0aAmQFqU0HNgxDidEf24EBOPLFF1/ooYce0v79+/X4448rMDBQ1apVU+HChSVJp0+f1s6dO3Xx4kVZLBaVLl1aX375pclVw+MYDALADY4cOWJ2CQAAL5KhEPCJJ57Q2rVrde7cOVksFmXPnl116tSxhn61atWSb9JfXoG7nF2HX9IzARkMAiANBQoU0M8//6y+ffvq888/14ULF7RmzRprB0Zip4aPj4+eeuopffDBBwoMDDSxYnicbbiXWicg24EBpKF48eJmlwAA8CIZCgHnz58vwzBUpUoVjRw5Us2bN1fOnDndVRvglWw7AX2SdgIyGASAE/LmzavZs2frf//7n5YuXart27frzJkzkqRChQqpevXqat26tUqWLGlypTCFbbhHJyAAAADcJEMhYJ48eXTlyhX98ssvevrpp1W/fn01a9ZMTZs21QMPPOCuGgGv4mwnoO0AEQBwpESJEurXr5/ZZcDbpBYC0gkIAACAdMpQCHj+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEh7qoZMFVCfMqdgLYdGnQCAgDShU5AAG721VdfacGCBdq3b58uX77scGijYRg6dOiQCdUBADwlQyGgr6+vIiIiFBERoeHDh+v69etav369Vq9erTVr1ujLL7+0HmZetmxZ7d271y1FA2aypDIdWGwHBgBklLMhIJ2AANJgsVjUqVMnLVq0yGHwJ/3/YDuLhenAAHAP8El7ifNy5sypVq1aacKECZo9e7YGDhwof39/WSwW7d+/350/CjCN7TbfZNOBbW7bbRsGAMBZzm4HphMQQBqmT5+ur776SlWqVNH333+vdu3ayTAM7du3T0uXLlXnzp0lScOGDdPhw4dNrhYAkNky1Alo69ixY1q1apW1CzDxgPPEqcERERHu+lGAqRJS6QS0/QTVdoAIAABOoxMQgJvMmTNH/v7+Wr58uYoWLap58+ZJksqUKaMyZcqoVatWatSokfr06aPIyEimCQNAFpehEHDx4sXW8wAPHDggSdZW8kqVKqlp06Zq2rSpGjZsyNRgZBl2nYC+KZ8JSCcgACBd6AQE4Ca///67IiIiVLRoUUn/fmBtu/23V69emjRpkt555x01btzYtFoBAJkvQyFgu3btrF+HhoZaQ78mTZqocOHCGS4O8Ea24Z7hw5mAAAA3YzAIADe5ceOGihUrZr3t7+8vSbp8+bLy5ctnvV61alWtWrXK4/UBADwrQyFg27Zt1axZMzVt2lRlypRxV02AV7PtBPRJ0glotx2YEBAAkB7OdgKyHRhAGooUKWI9pkmStVHj4MGDql69uvX6+fPndfPmTY/XBwDwrAyFgIsWLXJXHcBdI9UzARkMAgDIKDoBAbhJ6dKl7QZ+1KxZUxaLRR9//LGmT58uSdq7d6/Wr1+v8uXLm1UmAMBD3DodGLgXpDYdWHadgLw5AwCkg20ImOzYCQaDAHBe8+bNdeTIEe3Zs8d6OzQ0VDNnzlTNmjXVvn17RUREKDY2Vl27djW5WgBAZnPLdOC9e/fqvffe07p163T8+HFJUnBwsBo3bqz+/furQoUK7vgxgFew7fBLth3YpjPQwnZgAElk5MB1wzC0Zs0aN1YDr8VgEABu8uSTTyouLk43btyQJPn5+enLL79U27ZttWPHDu3YsUOS9Nhjj+nFF180s1QAgAdkOAScNWuWevfurdjYWFks/4YeBw4c0IEDB/TJJ59o6tSp6tatW0Z/FOAV7KcDJ+nQ4ExAAKlYv359ur/X9sxRZHHObgemExBAGsLCwjR06FC7a3Xq1NGRI0e0YcMGnT9/XhUqVFDVqlXNKRAA4FEZCgF37NihqKgoxcfHq3Xr1urZs6dKlSolSTp8+LCio6P17bffKioqShUrVlSNGjXcUjRgJvvpwEk6ATkTEEAq1q1bZ3YJuBvYdvjRCQggE+TIkUMtWrQwuwwAgIdlKAR85513lJCQoOjoaHXv3t3uvkqVKunRRx/VrFmz1KNHD40fP16ff/55hooFvIHddOBsDAYB4LyGDRuaXQLuBnQCAgAAIBNkKATcuHGjqlatmiwAtPXss89q8uTJ2rBhQ0Z+FOA1bLe9JxsMYhsCMhgEAJAenAkIwM1u3bql7du36/jx47p582aK6xgOAgBZW4ZCwLNnz6pRo0Zpritfvrx+++23jPwowGvYDvxI3gloMxiETkAAQHo42wlICAjACe+//75GjRqlS5cupbmWEBAAsrYMhYCBgYE6evRomuuOHj2qfPnyZeRHAd4jwXYwSMpnAjIYBICz/vnnHy1ZskT79u3T5cuX7TqOExmGoejoaBOqg8c52wnIdmAAaZgzZ45eeuklSXcaMypUqKC8efOaWxQAwDQZCgFr1qypFStWaO3atWrcuLHDNWvXrtWmTZvUqlWrjPwowGvYhns+vpwJCCBjPvjgA/33v/9VbGys9VpiCJg4EdhisRAC3kvoBATgJpMmTZJhGPrkk0/o8gMAyCftJSnr16+fEhIS1KZNGw0ePFh//PGHrl+/ruvXr+v333/XoEGD1KZNG+taIEuwedPl45vymYAJcbw5A5C6NWvW6MUXX1RAQICGDBmiiIgISdLUqVM1cOBAhYeHS5JeeuklzZw508RK4VEMBgHgJnv37lWdOnUIAAEAkjIYArZo0UJDhw7VjRs3NH78eFWpUkV58uRRnjx59MADD2jixIm6ceOGhg0bpubNm7urZsBUth1+RrJOQM4EBOC89957T4Zh6Pvvv9fo0aNVpkwZSVJUVJTeeecd7dmzR926ddPMmTNVv359k6uFxzAYBICbBAQEWD9QAgAgQyGgJL3xxhtavny5GjVqJH9/f1ksFlksFvn5+alx48ZatmyZ/ve//7mjVsAr2E79TdoJyHZgAK74+eefVa1aNdWuXdvh/f7+/vroo48UEBCg119/3cPVwTR0AgJwkxo1aujAgQNmlwEA8BLpOhPw4MGDWrRokWJiYuTv76+qVavq22+/lZ+fn86dOydJKlCggHyT/uIKZAG24V7y6cCEgACcd+HCBUVGRlpvZ8+eXZJ048YN5ciRQ9KdILB+/fpas2aNGSXCDHQCAnCTV199VU2bNtXy5cvVsmVLs8sBAJjM5RBw0qRJGjx4sOKTfPo8fPhwLVu2TJUqVXJbcYBXSuVMQEJAAK7Inz+/rl27Zr0dFBQkSTp69KjKlStnvR4fH2/9kA33AAaDAHCTUqVKadiwYXr88cfVv39/tW7dWmFhYfLxcbwhLCwszMMVAgA8yaUQ8Mcff9TAgQNlsViUK1culStXTpcvX9bhw4d17NgxtW/fXnv37k3xRQXIClI/E9AmBIznzRmA1IWFhenvv/+23q5UqZIsFouWLl1qDQGvXr2qjRs3KiQkxKwy4WnOdgKyHRhAGsLDw2UYhiwWi8aPH6/x48enuNYwDMXFxXmwOgCAp7kUAk6ePFkWi0XdunXT5MmTlStXLknSr7/+qvbt2+vgwYNasWKFWrVqlSnFAl4h1enADAYB4LyGDRtq4sSJOnXqlIoUKaJHHnlEuXLl0muvvaaTJ08qLCxMn376qc6fP68nnnjC7HLhKXQCAnCTsLAwGYaR9kIAwD3BpRBwy5YtCgkJ0dSpU+Xn52e9XqVKFb333ntq3bq1tm7dSgiILM3ZMwET4gkBAaSuY8eO2rVrl3bv3q0WLVoof/78mjBhgnr37q0JEyZIkiwWi8LDwxmydS+hExCAm8TExJhdAgDAi7gUAp46dUqtWrWyCwAT1atXT5J0+vRp91QGeClLKp2AtrfpBASQlpo1a2rVqlV216KiolS9enUtWLBA58+fV4UKFdS9e3fly5fPpCrhcXQCAgAAIBO4FALevn1bgYGBDu/LmzevdQ2QlaXWCSjOBATgBtWqVVO1atXMLgNmcTYEpBMQAAAALmCCB+CqVKcDcyYgACCDnN0OTCcgAAAAXOBSJ6AkHTx4ULNnz07X/V27dnX1xwHex8kzAS0WQkAAzjl06JCmTp2qzZs368yZM3rsscc0btw4SdJPP/2kX375RZ07d2ZL8L2CTkAA6eTr6yvDMLRnzx6VLVtWvkn/DkkF04EBIOtzOQTctGmTNm3a5PA+wzBSvN8wDEJAZA3OngnIYBAATvj000/Vu3dv3bp1S9Kd18uzZ89a779+/bpeeOEF+fn56dlnnzWpSngUnYAA0slisdh9EO3Kh9J8gA0AWZ9LISAj5gHnpwOzHRhAWrZu3arnnntOOXPm1BtvvKGGDRuqdu3admsaNmyofPny6dtvvyUEvFcwGARAOiUk+Xsh6W0AwL3NpRCQEfOA7N50+WZLeiYgg0EAOG/cuHGyWCz67rvvVK9ePYdrfHx8VLVqVe3Zs8fD1cE0znYCsh0YAAAALmAwCOCiVDsBfW1us6UCQBo2bdqkWrVqpRgAJipatKj++ecfD1UF09EJCAAAgExACAi4KtXpwP/eTuBMQABpuHjxosLCwtJcd+PGDd2+fdsDFcErMBgEAAAAmcDlwSDAPc/CdGAA7lGgQAH99ddfaa47ePCgihYt6oGK4BUYDALATUqWLOnUOj8/PxUsWFA1a9ZU165d9eCDD2ZyZQAAMxACAq5yshNQnAkIIA116tTRt99+qz/++EMVK1Z0uGbTpk36448/9Mwzz3i4OpiGTkAAbpJ4prthGCl+QJ143/79+7V582Z98MEHGjVqlIYNG+bBSgEAnsB2YMBFdmcCJgkBbTsDmQ4MIC3/+c9/FB8fr/bt22v37t3J7t+7d6969OghwzDUp08fzxcIc9iGez5JflWjExCAC44cOaLBgwfLMAx16NBBX3/9tXbt2qXdu3dr8eLF6tixo3x8fDRo0CBt2LBBo0aNkp+fn0aOHKlVq1aZXT4AwM3oBARcZbHpBGQ7MIAMaNKkiQYMGKAJEyaoevXqKlWqlAzD0Pfff68qVapoz549SkhI0ODBg1WnTh2zy4WnpNYJaBiO1wGAA3/88YfeeecdzZ8/X+3bt7e7r0qVKnr00Ue1aNEidezYUQ0aNNCIESNUtWpVtW3bVh9++KGaNWtmUuUAgMxAJyDgKpsOP99sKW8HtjAYBIAT3n33XU2dOlVFixbVwYMHZbFY9M8//+j3339X/vz59cEHH2jMmDFmlwlPSisETOwOpBMQQBrGjRunmjVrJgsAbbVr1041a9bUO++8I0l69NFHVa5cOf3888+eKhMA4CF0AgKuSq0T0HZ7MJ2AAJwUFRWl5557Trt27dLhw4eVkJCg0NBQ1axZU9my8VJ9z7EN95KGgNKdEDAhgRAQQJp2796t1q1bp7mudOnSWrp0qfV2uXLltGLFiswsDQBgAt5ZAK5KpRPQx64TkDdnAJxnGIaqVaumatWqJbvv4sWLeueddzR69GgTKoPHpdYJmHgtLo7twADSlJCQoMOHD6e5LvEDqETZs2dXQEBAZpYGADAB24EBF9wZ9mEzGCRZJ6DNYBA6AQFk0OXLlzVy5EiFh4ezJfheklYIyHZgAE564IEH9NNPP+mbb75Jcc0333yjrVu3qmrVqtZrf//9twoVKuSBCgEAnkQnIOCChCTn/HEmIID02LFjh7799ludOnVKRYoU0aOPPmrXAXjz5k1NmDBB7777ri5duiSLxaL777/fxIrhUc6GgHQCAkjDoEGD9Pjjj6tDhw7q3LmznnrqKYWHh8swDMXExGjevHn64osvZBiGBg4cKOlO9/muXbvUqVMnk6sHALgbISDggvg4+2AvaSegD2cCAkjDoEGDNHHiRLtrb7zxhoYPH65Ro0Zp27Zt6ty5s/766y9ZLBaFhYVp1KhR6tq1q0kVw+Oc2Q4s0QkIIE2PPfaYxowZo6FDh2revHmaN2+e3f0Wi0U+Pj4aPXq0HnvsMUnS2bNn9dprr+nhhx82o2QAQCYiBARcEB9r/4Yr9U5A3pwBsPfdd99pwoQJkqS8efOqTJkyunz5sg4fPqw33nhD5cqV0wsvvKDLly8rf/78GjZsmPr06SM/Pz+TK4dH0QkIwI0GDx6s5s2b64MPPtCGDRt07NgxSVJwcLAaNGigvn372nWjly5dWiNHjjSrXABAJiIEBFyQZieg7W06AQEkMX36dElSv379NG7cOPn7+0uS9u7dq/bt26tbt26Ki4tTo0aN9OWXX6pgwYJmlguz0AkIwM2qVq2q6Ohos8sAAJgsSw4GuX79ukqWLCnDMNS3b99k9+/bt09t27ZVUFCQcuXKpfr162vt2rUOH+vSpUvq16+fgoODFRAQoIoVK+qjjz5i6MM9yqVOwAT+HQFgb8eOHQoPD9fEiROtAaAkVahQQZMmTVJcXJzy5s2rxYsXEwDeyxgMAgAAgEyQJTsBR4wYoTNnzji879ChQ6pbt66yZcumwYMHK1++fJo+fbpatGih5cuXq2nTpta1t2/fVrNmzbRr1y7169dPFSpU0PLly9WnTx+dOnVKo0aN8tAzgrdI2gnomz3lMwEJAQEkdebMGT3yyCPy8Un+GVydOnUkSfXr11eePHk8XRq8ibOdgGwHBgAAgAuyXAi4c+dOTZo0SePGjbNOuLL16quv6uLFi9qxY4eqVq0qSeratasqVqyo//znP/rzzz9lGHeCnBkzZmjbtm16//331a9fP0lSVFSU2rdvr7feekvdu3dX8eLFPfbcYL6knYB2g0Bk3wnIdmAASd2+fVv58uVzeF/evHklSYUKFfJkSfBGdAICcLPt27dr4cKF2rdvny5fvuxwV5NhGFqzZo0J1QEAPCVLhYDx8fGKiorSww8/rHbt2iULAa9du6ZvvvlGkZGR1gBQknLnzq3nnntOI0aM0LZt21SrVi1J0rx585QzZ05FRUXZPc5LL72kRYsW6csvv9TgwYMz/XnBeyTEp94JaBcC8uYMAJAedAICcKPEqfSJwZ9hGHYhYOLtxEYIAEDWlaVCwIkTJ+rPP//UV1995fD+X3/9Vbdu3VJERESy+xK3YSWGgAkJCdq5c6eqVaumgIAAu7W1atWSYRjatm2b+58EvFpaZwLaDgZhOzAARw4ePKjZs2en6/6uXbtmVlnwJnQCAnCTBQsWaMKECQoJCdHw4cP11VdfadWqVfr+++914MABffbZZ9qyZYuGDBmiFi1amF0uACCTZZkQ8MiRIxo5cqRGjBih8PBwxcTEJFtz4sQJSVJwcHCy+xKvHT9+XJJ04cIF3bhxw+Faf39/FSxY0LrWVcWKFbO7ncAv8XeNtM4EZDAIgLRs2rRJmzZtcnifYRgp3m8YhtMhIK8zdzlnQ0A6AQGkYdq0afL19dWaNWtUpkwZbd68WZLUrFkzNWvWTH369NHw4cP1zjvvqFOnTi49Nq81AHD3yTIhYO/evVWyZEkNGDAgxTXXr1+XJLuJjIkSu/0S16S2NnF94hrcOxLiUu8EtLvNmYAAkggLC2O7FdLm7HZg3nADSMOuXbtUu3ZtlSlTJsU1//vf/zR37ly9+eabWrhwoQerAwB4WpYIAefOnatVq1Zpw4YNyp49e4rrcubMKUm6detWsvtu3rxptya1tYnrE9e46p9//rG7ffny5RQPiod3cakTkBAQQBKOutQzA68zdzk6AQG4yZUrVxQWFma97efnJ0m6evWqcufOLUny8fFR7dq19cMPP7j02LzWAMDdxyftJd7t1q1bGjBggFq1aqWiRYvq4MGDOnjwoP766y9J0qVLl3Tw4EFdvHhR9913nyQ53MabeC1x+29QUJBy5MjhcO2tW7d09uxZh1uFkbWl1QloeyYgHRoAgHShExCAmxQqVEgXL1603i5YsKCk5B9KXbt2TZcvX/ZgZQAAM9z1IeCNGzd05swZfffddypTpoz1T2RkpKQ7XYJlypTRjBkzVLlyZfn7+2vLli3JHmfr1q2SpBo1aki684lYtWrVtGvXrmTdgD///LMsFot1Le4dSTsBfXztQ0D76cB0AgIA0oHBIADcJDw83NocIUkPPvigLBaL5s2bZ7128uRJ/fDDDypevLgZJQIAPOiu3w6cK1cuLViwINn1M2fOqE+fPnr44YfVs2dPValSRblz51abNm20aNEi/fLLL3rggQck3WmHnzFjhsqUKaNatWpZH+PJJ5/Upk2bNG3aNPXr1896fdKkScqWLZs6d+6c+U8QXsWuE9Aw7EM/MRgEQOpu3LihHDlyeM3jwEs52wnIdmAAaWjSpInefPNNxcTEKDw8XC1btlT+/Pk1duxYHThwQGFhYVq4cKGuXbum9u3bm10uACCT3fUhYPbs2dWhQ4dk1xNb3EuVKmV3/9tvv601a9aoefPmevnll5U3b15Nnz5dx48f13fffWd3YHtUVJQ++eQTDRgwQDExMapQoYKWLVumr7/+WsOGDVN4eHhmPz14GbtOQCN5Iy2DQQCkplSpUhoxYoSioqLk6yjcSUNcXJymTp2q0aNHWyfeIwuiExCAmzzxxBM6ceKE/v77b4WHhytXrlz65JNP9MQTT+irr76yrqtevbpeffVVEysFAHjCXR8Cuqp06dLatGmThgwZojFjxuj27duqVq2aVqxYoaZNm9qt9fPz0+rVqzVs2DB9/vnnOnfunEqVKqUPPvhA//nPf0x6BjCTXSegT/IJn/bbgXlzBsDefffdpz59+mj06NHq1q2bunXrlurExkT79u3TrFmzNGfOHJ04cULVq1f3QLUwDYNBALhJhQoVNH36dLtrbdq00YEDB/Ttt9/q/PnzqlChgtq0aZOuD6cAAHeXLBsChoeHpzidtUKFClqyZIlTjxMYGKjJkydr8uTJ7iwPd6m0OgHtBoPQCQggiW3btmnGjBkaNmyY3nrrLb399tsKCQlRRESEKlSooAIFCihv3ry6fPmyzp07pz179mjLli06fvy4LBaLChUqpGnTpqlnz55mPxVkJgaDAMhk9913n55//nmzywAAeFiWDQGBzGDbCZj0PEDJflAIZwICSMowDEVFRalLly6aM2eOJk+erN9++01///233XEUiRI/zKpSpYr69u2rp59+mrMA7wWubAe2WCQH/+4AAAAASRECAi5IiP832LP4OOgE9OVMQABpCwgIUFRUlKKiohQTE6O1a9dq165dOnXqlC5duqTAwEAVLlxY1apVU6NGjTiD9l7jbCegRAgIwGnHjh3TiRMndPPmzRTXNGjQwIMVAQA8jRAQcEF8rE0noIM3XXbdgYSAAJwQHh6uHj16mF0GvImznYCJax18KAUAiRYsWKBhw4bp4MGDqa4zDENxcXEeqgoAYAZCQMAFtp2Ajt50+Wa3ucZZTQDSsGHDBvn6+uqhhx4yuxR4E1c6AXmtAZCK+fPn68knn5TFYlH+/PkVHh6uPHnymF0WAMAkhICAC+ymA9MJCCCDIiMjFRkZqbVr15pdCryJbQjoaKuvDx84AXDOW2+9JUl677331KdPHyYAA8A9jhAQcIFtJyCDQQBkVFBQkO677z6zy4C3SQwBfXwch4C2b+JtA0MASGLfvn2KiIhQv379zC4FAOAFOEQGcIFdJyCDQQBkUNWqVXXgwAGzy4C3SQz2UurYoRMQgJMCAwNVvHhxs8sAAHgJQkDABfFxzncCysIbMwCp69+/v7Zt26bvvvvO7FLgTRKDPWdCQDoBAaSiUaNG2rVrl9llAAC8BCEg4AJLfBqdgNlsrtEJCCANDz74oPr27avHH39cvXr10vfff699+/bp6NGjDv/gHpFWJyCDQQA4acSIETp+/LjGjBljdikAAC/AmYCAC+ynA6fRCciZgADSUKJECUmSxWJRdHS0oqOjU1xrGIbi4uI8VRrM5Mp2YDoBAaSifPnyWrlypZ544gktWbJELVu2VFhYmHwcfJgtSV27dvVwhQAATyIEBFxgHwJyJiCAjAkNDZXhaPAD7m10AgJwo82bN+v8+fM6evSofv7551TXEgICQNZGCAi4wHYwSJpnAsoiS4LF4ToAkKSYmBizS4A3YjAIADeZOXOmBg4cKEmqUqWKypQpo9y5c5tcFQDALISAgAtsOwGNtM4E/P/1voSAAABXuNIJyHZgAKmYOHGismXLpkWLFql169ZmlwMAMBmDQQAXuNYJmGT7MAAAzqATEICbHDp0SA0aNCAABABIIgQEXOLSmYCS4uMIAQGkbePGjerUqZNCQkLk7++vnj17Wu9btWqVXnvtNZ08edLECuFRdAICcJOgoCAVKlTI7DIAAF6CEBBwgSWeTkAA7vXmm28qMjJSCxcu1IkTJxQbGyuLzWChfPnyaezYsVq0aJGJVcKj6AQE4CYtW7bU1q1blcDfFQAAEQICLnG5EzCWX7gApGz58uUaMWKEgoODNX/+fJ06dSrZmlq1aqlQoUJaunSpCRXCFK6EgHQCAkjFG2+8oVu3bql///66ffu22eUAAEzGYBDABWmdCeibPflgEABIyXvvvSd/f38tX75cFStWTHHdAw88oAMHDniwMpjKle3AdPcASMX06dPVsmVLffTRR/ruu+/UqFEjhYWFycfBh9mGYWj48OEmVAkA8BRCQMAFdtOBfdPuBCQEBJCabdu2qVatWqkGgJJUqFAhbd682UNVwXR0AgJwk1GjRskwDFksFv3111+aNWtWsjWJ9xMCAkDWRwgIuMDVMwEZDAIgNdeuXVPRokXTXHfp0iXOc7qX0AkIwE1GjBghw0j+OysA4N5ECAi4wNUzAekEBJCaIkWK6ODBg2mu27dvn0JDQz1QEbwCg0EAuMmoUaPMLgEA4EUYDAK4IMGmEzBp4Cc5OBMwjjdnAFJWr1497d69W5s2bUpxzdKlS3Xw4EE1atTIg5XBVK50ArIdGAAAAE4iBARcYKETEIAbDRw4UIZhqF27dlq8eLHi4uLs7l+xYoWee+45Zc+eXf369TOpSngcnYAAAADIBGwHBlxgNx3YQScgZwICcEW1atU0fvx4DRgwQO3bt1eOHDlkGIa++uorLVq0SFeuXJHFYtH777+v+++/3+xy4QkWy50/EoNBALhs9uzZGfr+rl27uqkSAIA3IgQEXGBJsJkO7KAT0DebfQhoux4AHHnxxRdVvnx5jRw5Utu2bZPFYtGVK1ckSVWqVNGbb76p1q1bm1wlPMY21GMwCAAXPfvss+keBGIYBiEgAGRxhICAC1zuBIzlzRmAtLVo0UItWrTQuXPndOTIESUkJCg0NFTFihUzuzR4mjMhIJ2AAFIQFhbGNGAAQIoIAQEXpNkJmHQwCGcCAnBBgQIFVKBAAbPLgJnoBASQATExMWaXAADwYgwGAVxgSWM6cNJrbAcGkJpZs2bp2LFjZpcBb0InIAAAADIJnYCACxJcnA7MYBAAqenRo4cMw1CZMmXUtGlTNW3aVI0bN1bevHnNLg1moRMQAAAAmYQQEHBBWp2AkiTDsE52ZDswgNQ8++yzWrt2rfbv36/9+/fro48+ko+Pj6pXr24NBR966CFlz57d7FLhKa52AhICArBx48YN5ciRw2seBwDgXdgODLjANtQzfFP4z8f497rtIBEASGrmzJmKiYnRvn37NGXKFD322GPKkyePfv75Z7311ltq0qSJgoKC9PDDD2v8+PFmlwtPcLUTkO3AAGyUKlVKH3/8seLT+XdDXFycpkyZolKlSrm5MgCANyAEBFxg2wlo+KTSCfj/6AQE4IwyZcrohRde0KJFi3Tu3Dn99NNPGj16tCIjIxUXF6eVK1fqlVdeMbtMeAKdgAAy4L777lOfPn0UHh6uYcOG6cCBA0593759+/Tqq68qPDxc/fr1U3BwcCZXCgAwA9uBARfYTwcmBATgfrGxsbpy5YquXLmiy5cvKy4uTpJksfD3yT3BNgR0cPZssut0AgKwsW3bNs2YMUPDhg3TW2+9pbffflshISGKiIhQhQoVVKBAAeXNm1eXL1/WuXPntGfPHm3ZskXHjx+XxWJRoUKFNG3aNPXs2dPspwIAyASEgIAL7DoBU9gObPgYSnyrTggIwBm7d+/WqlWrtHr1av3444+6efOmLBaL8ubNq0ceecR6PiDuAQwGAZABhmEoKipKXbp00Zw5czR58mT99ttv+vvvv2UYyT/ATvyAqUqVKurbt6+efvppzgIEgCyMEBBwgW2ol+pgkMT1nAkIIBVPPPGE1q5dq3PnzslisSh79uyqU6eONfSrVauWfFMKgpA1ubodmE5AAA4EBAQoKipKUVFRiomJ0dq1a7Vr1y6dOnVKly5dUmBgoAoXLqxq1aqpUaNGCg8PN7tkAIAHEAICrkhIuxPQYvPmjE5AAKmZP3++DMNQlSpVNHLkSDVv3lw5c+Y0uyyYybazj05AAG4QHh6uHj16mF0GAMALMBgEcIH9dGDHnYC2Wy1szxAEgKTy5Mkji8WiX375RU8//bTatWun8ePH65dffjG7NJiFwSAA3GjDhg3atGmT2WUAALwEnYCAC2wP5vdJoROQwSAAnHX+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEhZpcLT3D1TEC2AwNIRWRkpCIjI7V27VqzSwEAeAFCQMAVtoNBUpoO7EMICMA5vr6+ioiIUEREhIYPH67r169r/fr1Wr16tdasWaMvv/xSX375pSSpbNmy2rt3r8kVI9PRCQjAjYKCgnTfffeZXQYAwEsQAgIuSLDZ3uuTLYXpwIbNdGAGgwBwQc6cOdWqVSu1atVKv/zyiz777DNNnjxZN2/e1P79+80uD55AJyAAN6pataoOHDhgdhkAAC9BCAi4wolOQNvBIJwJCMBZx44d06pVq6xdgGfOnJEk69TgiIgIkyuER9AJCMCN+vfvr8cff1zfffedHnnkEbPLAQCYjBAQcIHFxU7A+DhCQAApW7x4sfU8wMRODYvFIsMwVKlSJTVt2lRNmzZVw4YNmRp8r3A1BKQTEEAqHnzwQfXt21ePP/64nn32WbVv317h4eHKkSOHw/VhYWEerhAA4EmEgIALLDadgD4pTQf2YTowAOe0a9fO+nVoaKg19GvSpIkKFy5sYmUwjavbgekEBJCKEiVKSLrzAVN0dLSio6NTXGsYhuLi4jxVGgDABISAgAtsQz2D6cAAMqht27Zq1qyZmjZtqjJlyphdDrwBnYAA3Cg0NFSGkcIwOwDAPYcQEHCBM52Atm/ObNcDQFKLFi0yuwR4GzoBAbhRTEyM2SUAALxICq1MAByhExAAkKkYDAIAAIBMQggIuCLBtTMBCQEBOGPv3r3q3bu3ypUrp9y5cyt37twqV66cXnjhBe3du9fs8uBJrnYCsh0YAAAATiIEBFzgzHRgMRgEgAtmzZqlBx98UNOnT9eBAwd0/fp1Xb9+XQcOHNDUqVP14IMP6tNPPzW7THgKnYAAMsHGjRvVqVMnhYSEyN/fXz179rTet2rVKr322ms6efKkiRUCADyBEBBwgcWZTkDb7cBxvDkDkLIdO3YoKipKt2/f1iOPPKKvv/5av/76q3799VctXrxYbdq00e3btxUVFaXt27ebXS48gU5AAG725ptvKjIyUgsXLtSJEycUGxsri+XfD6rz5cunsWPHck4tANwDCAEBFzjXCWgzGIROQACpeOedd5SQkKDo6Gh98803euyxx1SpUiVVqlRJjz76qJYsWaKZM2cqLi5O48ePN7tceAKdgADcaPny5RoxYoSCg4M1f/58nTp1KtmaWrVqqVChQlq6dKkJFQIAPInpwIArnJoOzJmAAJyzceNGVa1aVd27d09xzbPPPqvJkydrw4YNHqwMpnE1BKQTEEAq3nvvPfn7+2v58uWqWLFiiuseeOABHThwwIOVAQDMQCcg4AJnpgMzGASAs86ePasKFSqkua58+fI6e/asByqC6VzdDkwnIIBUbNu2TbVq1Uo1AJSkQoUKcSYgANwDCAEBV9i82fLNlvaZgGwHBpCawMBAHT16NM11R48eVb58+TxQEUxHJyAAN7p27ZqKFi2a5rpLly4pgQ8VACDLIwQEXOBMJ6Dtm7OEeH6ZApCymjVravPmzVq7dm2Ka9auXatNmzapdu3aHqwMpqETEIAbFSlSRAcPHkxz3b59+xQaGuqBigAAZiIEBFzhTCegzXZgC9uBAaSiX79+SkhIUJs2bTR48GD98ccfun79uq5fv67ff/9dgwYNUps2baxrcQ9gMAgAN6pXr552796tTZs2pbhm6dKlOnjwoBo1auTBygAAZiAEBFzAmYAA3KlFixYaOnSobty4ofHjx6tKlSrKkyeP8uTJowceeEATJ07UjRs3NGzYMDVv3tzscuEJrnYCsh0YQCoGDhwowzDUrl07LV68WHFxcXb3r1ixQs8995yyZ8/Oh00AcA8gBARc4UQnoDgTEIAL3njjDS1btkyNGjWSv7+/LBaLLBaL/Pz81LhxYy1btkz/+9//zC4TnkInIAA3qlatmsaPH6+zZ8+qffv2CgwMlGEY+uqrrxQYGKhHHnlEp0+f1vjx43X//febXS4AIJNlM7sA4G5isfwb6vlkS7sT0MKZgACc8PDDD+vhhx9WfHy8zp07J0kqUKCAfFMKgZB1MRgEgJu9+OKLKl++vEaOHKlt27bJYrHoypUrkqQqVarozTffVOvWrU2uEgDgCYSAgAuMhAQlxoA+vil0Atq8OaMTEIAjBw8e1KJFixQTEyN/f39VrVpVnTp1Uo4cOVS4cGGzy4OZGAwCIBO0aNFCLVq00Llz53TkyBElJCQoNDRUxYoVM7s0AIAHEQICLrAN9ZzqBCQEBJDEpEmTNHjwYMUn6eAaPny4li1bpkqVKplUGbwCnYAAMlGBAgVUoEABs8sAAJiEMwEBV9h0XKTUCchgEAAp+fHHHzVw4EDFxcUpZ86cevDBB1WqVCkZhqFjx46pffv2SqCz695mG+r5pPBrGp2AAJw0a9YsHTt2zOwyAABeghAQcIHdmYBOhIB0AgKwNXnyZFksFnXr1k0nT57U9u3btX//fu3cuVOlSpXSwYMHtWLFCrPLhJkYDALAjXr06KHixYurfPny6tu3rxYvXqzLly+bXRYAwCSEgIALDNtOwBS2A8v33+sJcbw5A/CvLVu2KCQkRFOnTlWuXLms16tUqaL33ntPFotFW7duNbFCmM7VMwHZDgwgFc8++6xCQ0O1f/9+ffjhh2rfvr0KFCigOnXqaNiwYVq/fr1iY2PNLhMA4CF3fQi4f/9+jRgxQnXq1FGhQoWUJ08eVa1aVaNHj9a1a9eSrd+3b5/atm2roKAg5cqVS/Xr19fatWsdPvalS5fUr18/BQcHKyAgQBUrVtRHH31k1w2Ge4ttZ59vthQ6AQ06AQE4durUKdWoUUN+fn7J7qtXr54k6fTp054uC97EtrOPTkAAGTRz5kzFxMRo3759mjJlih577DHlyZNHP//8s9566y01adJEQUFBevjhhzV+/HizywUAZLK7fjDIzJkzNWXKFD366KN6+umnlT17dq1bt07Dhg3T/PnztXXrVuXIkUOSdOjQIdWtW1fZsmXT4MGDlS9fPk2fPl0tWrTQ8uXL1bRpU+vj3r59W82aNdOuXbvUr18/VahQQcuXL1efPn106tQpjRo1yqRnDFNZ0u4ENHwJAQE4dvv2bQUGBjq8L2/evNY1uIfRCQggE5QpU0ZlypTRCy+8IIvFou3bt2v16tVavXq1Nm3apJUrV2r16tUaOHCg2aUC/9feXYfHUe1vAH9347Jx17q7QwuF0kKR8sOlUIoVuVDctVzswsVuBS5WilwKFHctBSrU3dMmTSNN47bR3fn9MZ09M7uzm02yyTab9/M8fbo6ezKzydl593vOIaIO1OVDwIsuuggPPvggIiMjbbfddNNN6Nu3L55++mm8/fbbuPXWWwEADz74ICoqKrBx40aMGDECAHDVVVdh8ODBuOWWW7Bnzx5bFddbb72F9evXY/78+Zg7dy4AYM6cObjwwgvxzDPP4JprrkFmZmbn/rDkfe7MCchKQCIiaivOCUhEHaypqQnV1dWorq5GVVUVmpubAYCjnYiIuoEuHwKOGTNG9/ZLL70UTz/9NHbs2AEAqK2txddff41TTjnFFgACQHh4OK6//no89thjWL9+PcaNGwcA+PDDDxEaGoo5c+ZotnvHHXfg888/x8cff4z77ruvY34oOn6phwMHOKkE1KwOzJMzItLKysrCe++916b7r7rqqo5qFh0vWhsCshKQiNywZcsW/PLLL/j111+xcuVK1NfXQ5IkRERE4Oyzz8bUqVM1o6KIiMg3dfkQ0Jm8vDwAQGJiIgBg27ZtaGhowAknnODw2AkTJgCALQS0Wq3YtGkTRo0aheDgYM1jx40bB4PBgPXr13fwT0DHJfVwYGeVgH7qCg1+o0pEWqtWrcKqVat07zMYDE7vNxgMDAG7g9YOB2YlIBG5cNlll2H58uUoLS2FJEkICAjAhAkTbKHfuHHj4Ofsbw0REfkcnwwBLRYLnnzySfj7+2PmzJkAgIKCAgBAamqqw+OV2/Lz8wEA5eXlqKur031sUFAQ4uLibI9ti+TkZM11Kz/AdwlWizbQc1YJCA4HJiInMjIyNFMGdBT2M10YKwGJyIM++eQTGAwGDBs2DI8//jhOP/10hIaGemTb7GuIiLoenwwB77jjDqxZswbPPPMM+vfvDwAwm80A5BDPnlLtpzzG1WOVxyuPoe7D0qT9YOOsElB9u31wSETdW05OjrebQMc7VgISkQeZTCZUV1dj69atuOKKK3DSSSdh2rRpmDp1KoYPH+7t5hERUSfzuRDw0UcfxcKFC3HDDTfgwQcftN2ufOPV0NDg8Jz6+nrNY1w9Vnl8e75BKyws1FyvqqrSLGxCxydLs3uVgOo5AVkJSETewH6mC+PCIETkQWVlZVi3bp1tJeDff/8dP//8MwwGA+Li4nDaaadh2rRpmDZtGtLS0lq1bfY1RERdj5PxjF3TvHnz8NRTT+Gaa67Bf//7X819KSkpAKA7jFe5TRn+Gx0djZCQEN3HNjQ0oKSkRHeoMPk2dysB1XMCSlwYhIiIWqO1lYAcDkxELvj5+eGEE07Ao48+ij/++APl5eX49ttvcfvttyMpKQkff/wxrr/+emRmZmLgwIHebi4REXUwnwkB582bhyeeeAKzZ8/GW2+95TDn0tChQxEUFIQ1a9Y4PPfvv/8GIFYaNhqNGDVqFDZv3uxQDbhu3TpIkuR0VWLyXe5WAtrPCfjNU1vx/ND38duiPR3ZPJ9zNLsWu34v8nYziIg6V1sqASsrgUceAb75pmPb5otqarzdAqJOFRoairPOOgsvvfQS3nvvPdx9990ICgqCJEnYt2+ft5tHREQdzCdCwH/+85944oknMGvWLCxevBhGo+OPFR4ejhkzZmDFihXYunWr7faamhq89dZb6Nu3L8aNG2e7/fLLL4fZbMYbb7yh2c4rr7wCf39/XHrppR33A9Fxyb4S0M+/5TkBK/YUYuOjX8C84wD+uvcrNNWzYsMdudsq8Grfl/DJlNfwyT3rvN0cIqLO05ZKwOuvB55+GrjwQqCsrGPb50vuuguIjJT3HVE3kJeXh3feeQdXXHEFkpKSMGrUKLz44ouor69HQEAATjrpJG83kYiIOliXnxNw0aJFePzxx5GRkYGpU6fiww8/1NyfmJiIadOmAQCeffZZ/Pbbbzj99NNx5513IiIiAm+++Sby8/Px3XffaaoH58yZg3feeQd33XUXcnJyMHDgQHz//ff44osv8Mgjj6BHjx6d+WPSccC+EtDo3/KcgI0H88QddXUoy69DYu/wDmmfL/n73b22E+EDX+8EXhjXwjOIiHxEaysBt20DDh2SLzc1ATk5QExMhzXPpyxeLFdSvvMO8PDD3m4NUYf48ssvbfMB7t+/HwAgSRIMBgOGDBmCqVOnYurUqZg8ebLHVg0mIqLjV5cPAdevXw8AyM3NxezZsx3unzx5si0E7NOnD1atWoUHHngA//rXv9DY2IhRo0bhxx9/xNSpUzXPCwwMxK+//opHHnkES5cuRWlpKXr37o0FCxbglltu6fgfjI471mb3KgHVIaC98nwzQ0A31FeKYfgWc70XW0JE1MlaGwIqAaCitNTzbfJFkgRUVcmXKyq82hSijnTBBRfYLqenp9tCv9NOOw0JCQlebBkREXlDlw8BlyxZgiVLlrj9+IEDB+Krr75y67FRUVFYuHAhFi5c2MbWkS9xe3VgP+ej7KuK6jzaJl/VWNtou2w166/STUTkk1o7HNgehwO7p65ODgIBOQyUJM2cvkS+4rzzzsO0adMwdepU9O3b19vNISIiL+vyISBRZ3F3TkBXlYAMAd3TVKMKAesZAhJRN9LaSkB7rAR0T3W1uNzUBNTXAyEh3msPUQf5/PPPvd0EIiI6jvjEwiBEncFqcbMS0EUIWFPMENAdTapKQNQ3QLJKzh9MRORL2lIJqK5gYyWge+xXBVaGBhMRERH5MIaARG5qcyWgqrLAXGL2eLt8UbNZFQJKVpgrm7zXGCKiztSWSsDrrxeXWQnoHvsQsLLSO+0g6iS7d+/GTTfdhP79+yM8PBzh4eHo378/br75ZuzevdvbzSMiok7CEJDITe7OCRgWL1ZWC+yVhqjRfWzXzWWsBHRHc12j5np1CYcEE1E34U4IGBAARETIl/v1A267TdzHSkD3sBKQupElS5Zg5MiRePPNN7F//36YzWaYzWbs378fr7/+OkaOHIl3333X280kIqJOwBCQyE3urg485fahCBncG4E9UnHJ/85DULQIBesZArrFYmYISETdlLuVgIsXA5dcAnz2GaBe4ZOVgO5hJSB1Exs3bsScOXPQ2NiIs88+G1988QW2bduGbdu24csvv8SMGTPQ2NiIOXPmYMOGDd5uLhERdTAuDELkJm0loMHp3H/xPcJw/45ZtusrY8Rw4IZKhoDusNZrQ8CaUoaARNRNuBMCAsCFF8r/AKC5WdzOSkD3sBKQuol///vfsFqtePvtt3HNNddo7hsyZAjOPfdcLFmyBNdeey1efPFFLF261EstJSKizsBKQCI3aSoBXSz+YS80VoSATRWcE9Ad9iFgbWm9l1pCRNTJ3A0B1fz9xfBgVgK6h5WA1E389ddfGDFihEMAqHb11Vdj1KhR+PPPPzuxZURE5A0MAYncpKkENLj/q6OeI7C5hpWA7rA2aENAczkrAYmom2hLCAgAsbHy/6wEdA8rAambKCkpwcCBA1t83IABA1BSUtIJLSIiIm9iCEjkprZWApoSRCWgpZohoFsYAnYoc2UTlly9AkuuXsGVl4mON20NAWNi5P/LygCr1fVjiZWAnWHnTuDtt4Hqam+3pFuLiopCbm5ui4/Lzc1FZGRkJ7SIiIi8iSEgkZuslrZVAkYkihBQMnM4cEusFglSozYErK9kCOhJ3zyxCTnvrkDOuyvw5cPrvd0cIlJrbyWg1cpAyx2sBOxYDQ3AqacC118PzJvn7dZ0a2PHjsXq1auxfPlyp49Zvnw5Vq1ahfHjx3diy4iIyBsYAhK5ydIkKiucLQqiJzJJhIBobkZdFSuvXNGrTKuv4JyAnlS09YjtcuHalqsDiKgTtbcSEOCQYHewErBjFRQAxcXy5ZUrvduWbm7u3LmwWq2YMWMG7rvvPuzcuRNmsxlmsxk7duzAPffcgxkzZtgeS0REvo0hIJGbtJWA7oeA0amhmutl+RwS7EpteaPDbY3VrAT0pKYaEarWFZZ7sSVE5KC9lYAAFwdxh/0QVVYCelZFhbh88KDXmkHAGWecgYcffhh1dXV48cUXMWzYMJhMJphMJgwfPhwvv/wy6urq8Mgjj+D000/3dnOJiKiDMQQkcpN2TsBWDAeOD9KEhpVHGAK6ohcCNlQxBPSk5moRAlqKyyFZJRePJqJOpQ4BW9HXsBKwlTgcuGOpQ8CSEu5fL3vyySfx/fff49RTT0VQUBAkSYIkSQgMDMSUKVPw/fff44knnvB2M4mIqBP4e7sBRF2FphKwFcOBjX4GGEJCbPMBVhZyXkBXzBWOIWBTDUNAT2quFftTamxE8SEzEnqGebFFRGTDSsDOweHAHct+fx48CIwY4ZWmkGz69OmYPn06LBYLSo/9jYiNjYVfa/7OEBFRl8cQkMgFq0XCjl8KMWByorYSsBULgwCAMTwUlmMhYPVRVgK6UlfpGAI213BOQE+y1Gr3Z972coaARN7U0AAEBspV48rKvgZDq6ae0ISArARsGSsBO5a6EhBgCOgFWVlZ+Pzzz5GTk4OgoCCMGDECl1xyCUJCQpCQkODt5hERkZcwBCRy4eUTPkH1+t0ISE/GxEdOtd3emoVBAMAvPASWo/LlmmKGgK7ohoBmVgJ6klSnDQELd5UD56Z5qTVE3dzGjcDUqUB6OrBunagEbG11jno4MCsBW8ZKwI6lVwlIneaVV17BfffdB4u6shjAo48+iu+//x5DhgzxUsuIiMjbOCcgkRO15Y2oXr8bANB0uBCHNxSJO1szTxOAwEixQrC5lCGgK3ohoJUhoMdIVglSvTYELNnHqiEir/nwQ7lqavt24I8/2h4CshKwdVgJ2LHsKwEPHPBKM7qjlStX4u6770ZzczNCQ0MxcuRI9O7dGwaDAXl5ebjwwgthtVpb3hAREfkkhoBETpQe1s7dV5VbYbvc2kpAdQhYV+q5OQGtFgmfPbQB713/JyqLfGPIbEO1YwhoYQjoMebKJjHc8JjKHK4QTOQ1xcXicm7u8VkJWFAALF3quKJuV6YXAjIY8Ry94cDUKRYuXAhJkjB79mwcOXIEGzZswL59+7Bp0yb07t0bWVlZ+PHHH73dTCIi8hKGgN1ETVkjPrxlFb7713auBOqmigJtWFebXyGutLISMCg61Ha5vtxzlYDLX9uL7c9+i4NvL8end67y2Ha9qb7KMQSU6hkCeopeWGzOZwhIHrJrF/Drr4DEfsZt6hDw8OHjsxJw+nRg5kzgtts8u11vsg8BJQmorfVOW3wRhwN7zZo1a5CWlobXX38dYWFivt9hw4bhP//5DyRJwt9//+3FFhIRkTdxTsBu4r1Zv+Do9+sBAFGpYZg4q5eXW3T8s1/Ft6Gowna5tZWAITGiErChwnMhYM7KPNvlkm0FHtuuNzXWOIaAaGyApckKvwB+b9Fe1SWOgWpjEUNA8oBDh4CxYwGzGXjvPWDWLG+3qGsoKRGX2xMCRkbKC4lIkmcrAWtq5KHKgDxnoS+QJMcQEJCDK5Op89vji+wrAXNygOZmwJ+nHh2tqKgIZ511FgIDAx3umzRpEgDg6NGjnd0sIiI6TvCMuhuwNFlR/PsO2/Ws3w97sTVdh30IaClTfavdykrA0FgRAjZVeS4ENB8VJzHN1b4x12BDlX7VX02ZTjhIrVZd7FgJaK2sRn1NsxdaQz7l88/lABAAVvlGZXKn8FQI6OcHREfLlz0ZAhap5sP1lbkGGxrEflbjvICeY18J2NwM5OXpP5Y8qrGxEVFRUbr3RURE2B5DRETdE0NAH1Jb3oj5p32FF0YvRcEe8UF2y3f5kOpEQFR7lMNd3FFz1G7uPosISVpbCRgeL0JAS7Xn5gSsLxXH0lLjGyFgU63+B9OqYg4J9oTaUr25IyUc3l7R2U2hruqvv4A773Qc3vf99+KyOjgi1zw1HBgQ8wJ6MqyzDwF9Yai3XhUgwBWCPcm+EhDgkGAiIqLjAGvyfchPL2xH2fLNAIAPrzTgng2XAQC2fZ6leVxdiZMPv6RhLnER1rWyEtCUKOYEtNR6LqxrKhfH0urB7XqTsxCwppQhoCfoh4BA/o5y9D0hrpNbQ12OJAEXXywHQ+vWiYq/mhrgzz/F4xgCuqeuTjsP3eHDQNyx38O2hICxsUBWlhzAeGropfpYNjbKbQ4Ndf74rsDZAiesBPQcvRDwwAFgypROb0p3lJWVhffee69N91911VUd1SwiIjoOMAT0ISV7xJCimk37cPRgDRJ6haPwz/2axzWWMgR0R12J84rJ1lYCmhJEJaBUWwfJKrV6G3oslapj2VDvE/PmNZudhIAlvrH6sbeZy/T349E9PjLMjzpWZaUIhVavBnbvBgYOBJYvlwMiBUNA99gP262rE5WB7akEBOQQJs4Dwb79sSwr6/ohICsBO57evmQlYKdZtWoVVjmZlsFgMDi932AwMAQkIvJxDAF9SF2pqnJNsmL5f7Zjyu1D0XhIu2BEc6U23LI0WbHtxwIMmJyIkIiAzmhql1Bf7rlKwKhkEQLCakFtRRPCYxwnbG4Nq0WCtUZ7LCuO1CM2vWufnDkLAc3lrAT0hPpK/f1YfpCLg5Ab7CeTf/dd4F//An74QXu7XghYXw8EBLQt3PJV6vkAFfXHgvq2VgIqSks9EwIeOaK9XlYGpKW1f7vepA4BQ0PFXJasBPQMSRKVgBERYr8yBOwUGRkZMBja/0UzERH5JoaAPqShTBsIZX26BWHxjoGQtUr7DfiCKV+gYuV2fBsXgwcO34KAYJ6gAUBThfMQsLVVfDFp2uNQlmdudwhYXlAHWK2a2yoK67p8CGipYwjYkeor9CsBq3MZApIb1PPXAcD77wNPP+0YAtbWykFLeLh8fedOYOJEOaTavFkOBshxf6q1NwT01LyAepWAXZ06BExNBfYfGzHBSkDPMJvF3JbDhslVw1YrQ8BOkpOT4+0mEBHRcaxrjxskjaYKbQjYXFCEra+tdnic1NCAuqom+TGNVlSsklcOtpSUYduPBQ6P766aq1yEgH6t+9UJiwoAjOKErvJI++fvKznkOFy5qqjrzwvoLASsq+iYENBqkfDxnX/j1XO+R/5u368CaahShYBBwbaLdYUMAckN9pWABQXA/PnAoUOOj1WHR0uXygHLwYPAzz93bBu7Er1KQEV7hwN7aoVg+xCw3Af+VtiHgIqOrAQsKQHeegsoLOy41zheqOcDjI8H0tPlywcOeKU5REREJDAE9CGWKsdQqLlAf16m4hz5sUf2V2tW+ivNcTJZdjfkahXf1lYCGowGGMLEkGBPhHVluY5zGlUXd/1586z1+iGgswq29vrottXY/cqPOPrdOnx87U8d8hrHk0ZVCBjcM9l22VJcDsnqA6t+UsfSq1x7+GFxWT1XnDo8yssTlwv4ZZONp0NAVgK6Rx0CpqSIyx0VAlZVAWPHAnPmALNnd8xrHE/UIWBUFNCrl3y5vNw3QmQiIqIujCGgj5CsEqw1LuawMxg0lWilh+QPwEX7tR94Kw4zBATk6jDJ7Lk5AQHATxUCVh9tfwhYflgnBPTAdr1NahAhoEEVKDiby649dq8owr7Xl9uuV+/UqWbyMU3VIgSMGZQk7mhuwtFs54vhEAFwrAQE5MUsFBddJC47CwG7QyWUuzw9HLgzKgF9OQTsqOHAd94JKEM0f/9du4iOL1Lvx8hIEQICQHZ257eHiIiIbBgC+ojq0kbA0uz0/sCeaTBGmmzXyw7LJ/sl2drQr7qQKwcD8gIb6gpJewa/1k+47GcSgVbNURcBo5uqCh0Dm9qSzgsBq4ob8Nure1FZ5NkKPXUI6Bct3rMNVZ4NARvrLPjsyi/EvEUApOoalOS2/9gcz5prxH6MGxAnL9RwTO4WHzi5p46lDq3GjdPe16MHMHmyuM5KwJZ1xUrAzq7kKiryfGjWmcOBv/4aWLxYXG9uBvbu9fzrHE/sKwF79xbXOSSYiIjIqxgC+ojSXG0gFDqkt+Z62ql94R8VbrtemS9/AC4/pP3AW3uElYCACEmdMbShEjAgQlQCmkvbH9bVFDkGtnVlnRMCSlYJC8e+i79uWYoFo96B1eKZYaSSVYKkOtkLjBUhYNOx8Ko4pxaLzvoWb132KxrrLA7bcNf7161Ac/4Rh9uzVutUOvkQS60IbcNig+EfF227XrSHw7SoBepKwHvv1d535plAYqK4rqwqK0msBHTmeJ8TUFngRa0zKwG//16u1Bs4EGjw4BdB7lQCLl8O/Oc/jj9/axQXy0OA7e3Y0fZtdgWuKgG5OAgREZFXMQT0EerQyhAYiFE3jtXcP+KiPgiMESGgUvFXlacNAeuL2xYC5m6rwCd3r0XOZt8IEcrzXVeDtXZOQAAIihIhoCfCOvNRx6CyvrxzQsCCvdVoPCRX8zQXFCF3W4VHtltX3aypwAxJECuIKsNYP79rJYp/2IC8j1fi26e2tOl1Nn2dh8MfrdS9L3eDb4eAUp0IAUNjghGcLELAkv2uf3+3/lCA1y/4CRu/PNxh7aPjnLoS8PTT5ZU/FWedBSSphpgrFWSVlXKYpGhrJaAkARs36g9J7qrUIWBv7Zd3x0UloH0VoKe2665ly8Sqshs2eG676mAvWcyNaqsELCqS38933AG89FLbXkOSgBtvFO9XdcWhr4eAzuYEBFoOAZuagE8/BbZs6YCGEREREUNAH1FRIEIrQ3gYTr6uL/yTEwAAAT1SMWRaMkLiwmyPqT0WINUWakPAxtLWh4CWJivenfo+dr30A96f9h6aG61t+RGOK1VHWggBW7k6MAAER4sQsKG8/UNOG0odqxMaKjonBCw+qH2ftFQ56a6aMu2Qr/BkUQnYXCtXgZRtz7fdlrembWHU8if+soWNxsgImMYPst1XvEN/MR1fYVWFgOFxwTBlisqhqkPOQ8Cmegu+uvwjFH6xBt9e+ZFthXHqZpRAIygIMJmARx+V55wdNAiYOlVbCagESOoqQKDtlYDvvw+MGSO/VrWPVK0roWpwMDBggPa+46ES0NshoPq9oteWtlK/fyIi5PcyICrYtmwRlYerVrXtNTZuBL74Qr4cFwd89pm4b/v2tm2zq2jPcOC33gIuvhg48UTfCvyJiIiOEwwBfYR6fjj/yDAEhvjh1k3X4rTFV+L2jbNh9DMgNEFUAtaXyAFS/VFtCGipbP2wl7ydlbAUyycbltJyj1WFeZM6BPSLi3G4vy2VgCGxYk7Axsr2h3WN5Y7Bmye26w5lYRmF3iIlbWGu0IaAEakiBLSY5ROyxiIRVNUcattJrvmgGAY86r6pSJ2QYbteleW7Jx1N9Ra5yuIYU1wQonuJSsDaPOchYOG+algr5b8XUm2tT/yeUxsooVV8vBz+XXSRfNvWrXKQlZAgHussBCwrA+rbMJfozz/L/5eWAps2tf75xyOlEjAuDkhP197XlhAwIgLw95cvd1QI2JlzAqqrRj0ZAqorAcPD5SGrgKgEVFertXX+PnUl20MPyXNohh/7HObrlYD2w4Gjo8U+bqkScPVq+f+6OmDbto5pHxERUTfGENBH1BSJQCgwSg6bopKCcdI1fRAeEwgACE8UlYBKFVlTqTYElMxmNNQ6X2BET3G2NgA6mtUBE2t3stpiEQIGp8YC/gGa+9tSCRgaKyoBPRHWNVc4Bm9NVZ0TAlbkaatwKgs8UwmoCQENRkQki/esxdwAc2UTJFUFR1Ohi/m0nKivaYa1QrxHe09MQvpoEVw05h2FZPXMHIfHm8qj2jm1IhKCkdBfhICNRc4rfOyrP+0XFaJuwGoVIaA67IuNFcFTYKB8wg+IOQHtQ0D1fa2hDoTy850/rquQJG0ImJGhvb8tIaDBIKoBfWE4cEdVAqpDQJNJDk8BEV6pg6rcXO0K2O7KyhKXhwyRj82QIfL17GzfqWbVY18JaDCIIcG5uZovoxyojznnDyUiIvI4hoA+wlwsQpigmDDdx0SmikrA5spaWC2SrbJHrehA66q6yg5pP8iWZnf9ENBcIkLAoJgw+EVHaO5vSyVgeLwIAS017QvrJKsEqcYxeGuu8exKvc5UF2jfI/arSjfWWbBu2SF8NW8z3p75G+af9hV+fHFni9vVhICBgQiNDrJdtdY1IHertgJFqqtr9Wq+8jZEyJc5Ihp9ThSBhtTQgLxdXf89rKfqqPb9EZEQjLRhotJVqq5BdYn+5PtluR1T/UldSEWFWE07Pt7545Qhwc4qAYG2zQuoDgR8IQSsrJRXigXk/emJSkBAhIBdfThwY6N2zkS9tjQ1Afv3Az/8ALz6KvDnn+5t21kloNksHxP1kFVJkl+jtdQhYJ8+8v9Dh4rbdu1q/Ta7CnUlYFSU/L+yDywWOQR1hiEgERFRh/L3dgPIM+pKRRCinvtPLTpdhIDWqhoU59TKlR12SnJqkDEsyu3XrsjThgEVh7v+t9v1ZapKwJhQ1MVHoq5YnFC1pRLQlCBCQGtN++YELC+sB6yOK+NaazunEtB+Fela1SIlteWNeLHvf2Et1Z4o/r18CwaeloLMEdFwpq5ShICGoECExwXbrkv19SjY6TgMLXt9CeLsK2hcyNsm2mWIiEBoZABCTP4whIZCMsvH5cCao0gfEun2NruKmhJVCOjnj+Bwf2QOjwKMRtvfguwNpRg2PcXhufa/11UFDAG7HfX8XOpKQHtJScCePfJiILW1+iFgW07ufS0EVAdcnhoODIjFQWpq5CAtMLBt2wG0FZuBgfL2qqrkoMy/gz9C2od+9teXLAH+8Q9tlZ7BIA8VHzHC9baVENBgAEJCRCUgIP989kNW9+7VLoLjDiUEDAgQx1apBATkeQHHj2/dNrsKdSWgErD27y9u27sX6NdP/7kMAYmIiDoUKwF9REOZCGHCEvRDwJh0cbvU0IDcLfrf5pfmtC7Eqy7QPr46v+tXUan3Z2h8KEIS218JGJks5gSU6upgtbR9yGlJjn4AI5nrnA5llaySx4a51hVrX1+ZYxIAVr9/wCEAPNYC7P7NdfVPfZUIAY3BgQiLEZWAaG7GkR2Ow3/zt7Wu2uXoHtG2oGS5YsZgNCAoXYQaeZt8c3GQ6mIRAhpC5IA1INgPfvGiGvDwZv0h1vbVnjWFXT/sp1ZSrwzsTiUgIAc3eoFdaysB6+q01UUMAZ1TLw7S3qo9dfCmDm3UIU9HsQ+A7EPA5593HKYrScCKFS1vWwkBw8PlIDBS9aVPZaVjCLhvn1tN1rRDCQF79hSBqToE9OV5AdXvDyVgVS98s2eP/vPq67VzTjIEJCIi8jhWAvqI5koRWpkSQ3UfE98zXHP94Er9k7DWVvI5VIUVdf1woKlSVOqFx4eiqTYS6lOptlQCRiWLSkBIEqqKGxCVFOz8CS44XY3XakFtRRPCYwJRll+HL+5djdLtBWgoroK1vBIIDsbkf5+DU25w8g28m+xXkVaHpqUHVSfqISEw+PlBOnbCdXS368DOPgSMiA/S3H90m+M8YiV7WjcvYFmWOJJh6eJkObJfIur35gAASnf55uIgtaUiBDSGiH0bkhaHmiJ5Pzo7RrVF2hCw9igrAbsddysB7UNAT1QC2j/eF0PA1FTt/e2tBATkEDApqW3bAbTB24ABIrgqK5PbDMir4H77LXD4sPzPbAbuugs4//y2vy7gOgSUJHluOUAOPWfMAN59V77uTmCnDgEBbSXgwYOO8/W1dnGQoiK5ChYQw2AB7XBgX14hWAnsw8NFAGpfCajHfq5QhoBEREQex0pAH2GpEiFMZIp+JaApNlCzwMWRzfofrqryWxfiqavAAKChuOtXAlqqRQhoSgxFVEb7KwGjU0I01ysKWzd0t65KTKStHoJtjNS2TdnuxzevwOGlf8G84wAsRcWQGhshVVVh5bxfW9t0B03l2mOuXqREXQkaPa4fEk8TlQ/lWa5DwIZqEQL6hQTCFKcNAav3O4aAlQdbVwlYkytCwOjeIgRMHCpCjeoDXTME3PpDAZ5MWohner+NFW/sc6j8NJeL+f78wkQAHdUnzna5fL9+qFpfbBf8Fnf9sJ9aqS2VgEeOiBDQqPrI0dpKQF8MAe33Z1CQdt95ohKwvfMCKsFbZCSQopomQKkwzM8HTjgBmDcPePtteQXnlSuBG26Qg7r2cBUCVlaKkG3ECOCFF8R9bQkB1ZWAmzc7Pr61IaDefICAfJyVAL2rVgJKkny8L71UPtZ6lEpAZT5AQBsCOqsEtD/mDAGJiIg8jiGgD5CskmaOOWchoMFogNEk7qveq38SZl/x05LGMm0Y0FTW9cMBdQgYkRSK2F7a+eEMfq0PAUMiAjQhbEWBe/MCWi0SnhvyPp6LfhYf3rIKAFCZL45RYFIMYBC/ypVH5BCwbOth3e01FxajtrxR9z53WJqskKq17xF1CF1TKELAsGQT4vqLqpTaXPdDQP/QQASH+wNGcSJsOeoYUJkPt+4kt6FQhIDx/cXJcuZYEQI2HylGc6PjfJkA0FTvOBfj8eLnB3+HpagEjQcPY8WNH+K5we9h20/iJKquXFQC+oeLEDB+gDhG5sP6IWBjmfaY2wfB1A20Zk5AxcGDIhAYNEjc3tqTe/vQsKBAd07bLsW+EhDQDgk2tvEjmn0loLt++02e9+6ZZ8RtSvCWlCRWfQbEkM316/VXei0pAQ4dcv+19di/R2pq5CpDQBsCp6XJP7PSPncCO1eVgM5CwNaEms5CQEBUAx49qv2d6irWrweeeAL45BPgpJPkik/74FWpBFSHgCaTCJKdHSP7Y96WVcSJiIjIJYaAPqDyaINmkYjYDP0QEAD8o1QrBB9RnYCoghb7ip+WWCq0YYBUVd2u+e68raG2GWgUFVPRaWFI6GNfCdi2Xx1DqKgGrD7qXiXgxi8Po27nAcBqxb43V6Cp3oKaItVq0HHhmu1WFcnbbS6psN3WY/YpqmMsYd/Ktp94lB42A5LdyXdDPepr5FUu64+K909kWgSSh4gT0qbCEpfzEjbWqCoBQwNhMBpgCFZVA+qchFmKy5wGdg7br7PAUlZhu546VISAfSeqQg2LBQfXa8NFq0XC88M/wNOmf+HT+9e79XqdSbJKqN2nHXZZvycbn09/HZ89tEG+XqEfAqaNEJWAzUWlsDQ57s/mCu3fBWtl1w/7qZXaUgm4caO4PHSoXO0GtL8SsLlZ256uqKUQsLMrAZ96Sh6i+sgj8r41m8Ww2MRE/bkG1UHfv/4F3HGHuK4XprWG3ntECc3UIWBqqjyvn1JplpcnqgT1NDaK4LKlSkDlGFRWti6wcxUCtjQv4PLlwNixwH/+4/7rdabVq7XXv/xSDvhfeUW+3tgowtpIuwW2lHkBS0r035v2v+fV1a6PJREREbUaQ0AfUJqr/YAUl6E/JyAABEarA0IRqARkiMoN+8o+V5rqLZDsP6BZrfLKw24wVzahpqztVWkdoSxfG87FpIUiZaD2g6yxDZWAAOBncgzrWlK4U1XJ0dSEXb8Xwayajy0kLhzGUBHo1JTUo7a80bbSLQCc9I+h8E8WJ+0HV7f92/WjB/UrwEoOyce8qVQ1HDgzApmjRAgo1dejJNd5BWRjtQhfA0LlFS3Vc9fpslqQu60CAPDjCzvwz+iXMX/Kl7ph4+HtFZogUb1ScUR8EIzRUbbr2Wu1J3xrPsyGeVsW0NyEnYtWuG6TF2RvKnecJP+YXW//DQBoqBQhYGCEeM/0HCtCQDQ3I2+nal5HHKv+rNH+TksNDTBX6lQAke9qy5yA6hAwPR1ITpYvt3dOQEB/rsGuRB0CKqGqJ0LAtlYCKsGVJAFr1miH37oTAk6YAEyaJK5v2eL+a+vRO+ZKm9THPi1N/l+9cIk6hLNXo+rD9CoB1VVqEyc63l5fD8yZA9x8s34VpP3rO6sEBPRDwEcfBTZsAO691+nfdK9at05cVir9LBbg8cfl9456AR91JSDQ8ryAepV/HBJMRETkUQwBfYB6kQhDUBCCwpyv9xISH657e/QgMdePpdz9ELDogH4gVLS/5XkBd/52BM8nvIAXkv6Nzd8cPydzmkU3DEZEJQUjIj4IhiARRrVlYRAACIgQAW1lnnv7uexgheb6np9zUV8q2hieFK4JF2uK6xxCnNRBkYjoJ4LeI1vaHgI6Wz26NLdWHppeKY59XE8TUgZEaIZB52x0XpnSVCsC4YAw5yGgITAQhnDxXs7dVILGOgv+fuw7WCsqUfb7Fmz4wnE4dN42cUJsCA93mHMwJFMEGwVbtCHg4Y3iulRbi4oj9Tie7PlNVMYYoiIx/JFzbdctJWVoqregsUq0OShC/OwxqSEwhIkvCA5t0h6j4pxa3SrMoiz998LuP45i4Rnf4McXuuicV6RPHQK6WwmoHiaYliZCwNJSoKEBbtMLAtydF/D224GMDOCXX9x/vc6grmT0ZCVgnCrUd7fisrFRuz9Xr259CJiZKc/Pp+jIENC+EhDQhoCu5gVUL/qhFwKqh5lPny4uK6HVokXAW28B//0v8NVX+q+hhIB+fvJ+UVNXAtovDiJJ4ramJiA72/nP4S3rj1XCBwfL7ZswQb5eVSWHeOoQ0FklIKA/L6DeMXcWAkoS8PHH8qI0RERE5DaGgD6gslBUVhnCnQ8FBoDQBP0QMG28WJVQMpvRWOfevGfF2fohYPHBlgOuP17aKA+7bWrCny8eP8Mr1XP1GUJDbFV/xhjxYbatlYDhmaJCo2S3e0PZqnIrNNcL1h7WzMdmSgpDgCoENJfW4cge8RyDyYTgcH8kDhchYOXetoeA5Yf1j3n54Rq5ys8i3jtJ/SJg9DPAP1GcPBZsdxECmh1DQPUCFgq/+GgEpYh9WbijFGs/ztFUTeRudBy6VbRbhICBSTEO90f3FyFg2R7t80v3aI9X7pZWVNg4kfV3Cd6e+RvWLWvn3FkADv8tTorD+6fitNsGizutVuRuq9BUWgZFavdrYLLYnwXbtPMCOq3+zNG//bOZn6Hk5434+77PcHBD+/cTHSeU0CokBAhz0dc4qxJMS9MuLtGa+b7aGgIWFADz58ur1j7/vPuv1xnUlYBK9Z4nQkB1tdWuXe495/BhbdC/apVjCKg3J6ASAhqNchjXs6c89xvQ/uHA7lYC6oWAruYF1KsEtA+rADlMHTPGcZuffipu01vhV5JECJiZCQQGau8frPrbbF8JmJ+vDSkPHND/GVrrr788sxpxWZn42UaOlCv9xo8X9+/bJ+YABRwrAdUhoN4xak0I+PnnwGWXyStDr13rRuOJiIgIYAjoE6oKRVWYf6TrEDA8Uf/+fqekaK47q/CzV3ZIP+wrP9RyJWDVQXECVJN9/MztVF0kQkA/k6jcC4oXlQJtrQSMHySqZ9z9mc0FFZrrVTsPa1bjjUwNR2CkCAHryupQckB8Ex8QL5/cZI5XDfk+XKQ775s7nK0eXZFfq60MMxgR30N+v4WmiYCpeK/zENCiCgEDTfKJk3+YYyVgSEoMwnuIapeyfSXY9pH2ZLdsv2P4VJYlbgtLdwwBk4eL8MKcXaS5T/1+BYCCneW6P4O7muotWHrO/3B46V/4/ooPULCnfatql+0QFT+JI1Pk6lWTCP0PbylFc42oBAyJ1oaApp5if5bu0/6szn7Py3Id/07k7axEc8GxfSdJ2Pmj/gI11AUplYDx8fIcbM4EBWkDI4W6EhBo3TC/toaA6mqjnTvdf73OoISAUVFAwLFqaU+EgMnJInxx92fOydFeX79eDgYVLVUCpqbKP4PRKKoBDx9u++rEFos2hFToVQIqw4HV4aerSsCWhgMrevd2HL6alwf8/be4TW/YcWmpqIazHwqsvGbPnvLlHTu0lYe7d2sf64kQcOlS4OST5bDOfvuttWGDuDxunPy/fQWmu8OB21sJqK4A/P13/ccQERGRA4aAPkC9SERglPP5AAEgIkWnEtBgRJ8JcZohmyXZ7g1VrcjTDwudBUVqDQXi5KCpsOS4WUxEHQL6q4bvJo3NsF1Wh0WtkTZKPK8xv9jlIhm2xx2t0FyXqqo0Q25j0sM0IWBDRR3Kc8RzQpKiAAADT1Wt2NnchAPr2nZyVnNE/5hXF9ag5KBolyHSBL8A+U9MZC8RAlYecP66zaoQMChcDgEDwh1DQFNGNGL7iW1WHShGyUrtCUVltmMIWH1I3BbVyzEE7DFOHB9LSblmzrvGfG1oW7zXeYVbY50FW38ocLlgyR9v7oOl9FiQ2NSEP//rZsWOjuZGKxpyxIlS75PkypggVXXfkV1lLkPAmH4iBKy2CzydVX/qDWnf/r029DuyVedEnroei0UEOq7mA1SohwQr7CsBW7M4iN5j3QkB1WFQYaE2oPA2pbJSPXx3yBARnAwb1rbtGgxiJea8PHmYZkvsh502NAA//iiuJyU5hoC1tSLIVA95VQ8J3rq1VU23KS4W4Zh6/9iHgP7+4v2oDtzcDQGVqkW9SsBeveT3bMix/nXvXuCLL7SP2b/f8Xnq2/RCQEDMC1hTA+TmitvtQzpXcxsC8nFytWqxJAHPPSdfrqsD3n3X9fZasl41amPsWPl/+xBQXQlov1/T07X7055e4OesYnjlSnFZb25FIiIi0sUQ0AeYi0UIGBzruhIwOs3xfmNEOPwDjTBGmmy3OZv3zZ6zsK+mwPVJR01ZIyT1iUlTI/J3t68SylNqi0UIGKAKVS/89wT0uWkqBt55JqbdMVjvqS3qc4JqHq3GBuTtcv0zNzdaYa1w/ZjYzHCExGhDwOo8caJrSpM/hEcmBsMYI6pzsla2bUhwnZPVo2uP1qI0R7Q1IEa8nxIGiZM4c57zENBarwoBTc5DwJje0UgaIrbZkHXYYYGa+nzH16kvEMFdfH/HELDPhDi5kgUAIGHPH/IJZ3FOrWahFQCoyNavBLQ0WfHCoMX44qw38NKYD50GvZve2KC5nv1d20PAvX8dBZqVwNKAwdPkoEU9/LxsfymsZhEChsVqQ8Dkoar9WaDdd9WFzoNfezl/5mqul+9r+0rUdBwpKxOhjKv5ABX2IaAS1rSlErCxUQSQ6koid0JA+6ChvZVQntLUJMISdcgVESEPxV22DLjttrZvXz3k1J0hwfaVgIB2DsXERG1VV1mZ43yACk/MC6h+b6i3Zz8cOCVF/M0ODRWVlHv3Og/H3K0E7NVL3rYSch08CHz0kfYx+/c7vo46uOvdW78N6sVB1MOmW1MJ+MMPcsXtlCmaaTg01q7VBrGffuo6NGyJelEQvRBw/37XlYDq/XnggHZhFYtFVBurpxtwNixcvZ89MdSZiIiom2AI6APqykQ4ERLnOgSMzXSsBPSPlT/8BkSL+5xV+NmrLVI9TjU8rK7IdXB1cL1jQJOz3vnw2D8XZ+GTe9Zh20+FbaoYLMk14+WJn+LfIz/EynddD68xl4j9GRwj9mdYdCCufG0SLn1pPAJD2jZMK75HGAyhIlg8+LfrgKRgTxUguR62G98jTBMCNlXVoU41hDiqR5TtclhvUQ1YsKnlEFCySji4oQzVJWIuuYYSccwNIaphyCU1qFJVhqmHT6cOE2GU5WiZ06HIFlUIGBwhh4D2c9cBQEL/aGSMVK2ACcf3RHNxuea90txohaW0wnY9ZYhjCBgU5o+AVBFeZP0hhwwH15U4PLb2sH4l4M7lRWjMkZ9n3p6FI1k6Qdnmcph3aN+HDVm5bR4SvG+FqJLyS4xFRLwcnEb3EfuoOqcUUp0qBIzRhqvq/SlVV6OqWBzzmkInwe8Rx9vLtmhDwLochoA+Qb2IRVsqAVNS5OGtbakEVFcCDRokL0gAtL4SEHAdAprN8rDCo+14z/74IzB3rrywhivqVXvtQ9VBg4CLLnKcS6411CGgO0OC9ULARvH3GImJ8nBfpXKuvFwbAvboIS6PHCkut3VeQHXwM3y4uFxUJFe/KRWIynyACiVgqqjQzrmo5u6cgEqApwTPFovjca2ocFyB2dXKwAr1XIPq6rrWhIALF8rVfStWOA9b//tfx+21NZiVJBECRkWJny0tTfxOtlQJCIh5AZub5WBVcfSo+KJBHfzqhYCrVmmv79njfKVmIiIi0mAI6AMay0QFVFiC6xAwvqdjCBh8LKwJjheVW+4M5wWAuqPicf7JqqGupa6fn7/NMQTM36r/gf3vj3Kw/LoPsOvF7/H59NfxZMS/8fJJn7m9orBklbB4xueoXL0DtVv24der38eLEz5B7rYK3cc3lKtC1VjXw6tby2A0IChNnPDlb3E9L2DBrgrX2wsJQWCIH8LiRBjXXF2H5hLxvLje4kN43BARApbtch4C7v7jKN6e+RuejPsP3hs7Hy/1WiAv+gGgWbV6dHAPsb2G0lpU54sQKyxJhIA9RqsCO0uz06pPSRUChkQeCwEjHCsBU4dEI3NENGB0EcbavU7+rkrAKqolMobrzFkGIGqwOKks3CCHDHk6x6nxiH4IuH+FNpg4uNbxub8+t1H3uSvfbFuVUv468ZqRA0X7EweJ/V6fVwJJtRqrKV4brtrvT3XwWVesCn5VwUR9iTbgrCpuQFO+dvivVFWF8oI6UBfn7srAiqQk7XVl3ra2VAKqH5eSIoIfT1cCzpghV1UlJgKjRgEPPABs2+ZeGwE5zDnnHDmcmTgRuPpq50MZ1QGVuhLQU9oTAuot+qKEusqQYFeVgIMGyZWfgOvASZLk+fVuu00+rhkZYliyOiDu00eEdUVF2vuU95XCnXkB9ULAkBDHORh79XLcpsKo+vhsPyTYnRBQqaIDtNV19lWbOTn6VX7qQA7QP8bl5fLqufbUC5u0Rn6+eD+PGSP2gdEI9O0rX87K0s4DaV8JCDifF1D9ez5okDy3qP3tCvVQYEAOrPWGZhMREZEDhoA+oKlShICmRNehlSk2UHw4PyYsWQ5rQhJECKhX4aNHHfZFDBAVHi0NYS3a6Rj42a++qtj+ufaDnWQ2o3Lldnx10fsoy285XPjy8c0wb9POq1O9dhcWj16Er+Y5Vik0lov9GRrn2RAQACL6iLC0ZJfripOj+yrEFT9/h/uNEfIJTHicCHSaK2thrRInOYn9o2yX08eKE/O67CMOQ1WLc2rx/ND38fEpr+Lw0r9gLZdfX6quwYpFOyFZJc22oweK7TVX1KD+qDjuEani/RSTGqKpgDy0UT/wlRpUIWCUfAIQHGkfAhqQPjQK/oFG+MXrBHmq93fuZnEycnirCO0MoaGITgmBntSx4n1ctUc+2Sze5dhea2U16muaHW4vWK8NJvI2a9/XjXUW5H+ret+pqikPfNO2IcGVu8RrJo0WIWD6CFV1X1WVZhiYfQgo709RHZm3RfzMDarf88BMEeI0lmn/Tmz9Lk93qNn+VawG7PLaWwmohDVtqQRUhwDJySIErKyU56VzprHRca47ZyFgVRWwfLm4vnmzPJfauHGO29BTXw/Mnq0NbN59Vw483n7b8fHq/Xk8hYAJCXKAqRYRISq93AkBg4LEnIS7d8v7xt5338nB0QknAAsWyMf48GFgyRL5fvtjrryfior0VwZW2M9Pp0cvBDQYHKvWXIWAl10mLtvP26dcNxjENuylporfhQ0b5Aq40lLt+wKQq9vUC7QoDh3SBsl6Q77fe0/s+8suE6M1li1r25BgdcWisiiIQtnvTU3a4FwvBHS2QrD9MVe+SHCnEhDgvIBERERuYgjoAyxV4iQoMsV1JaDBaIDRpK0GjEiTQ0BTightlHnfqoobXA7BVa9SmzJGnNxJDQ2oKWvUewoAoEJncQj71VcVZTudVIs0NuCXF1xPOp67rQJbn/9J3KAO0pqbsPmZ79FQqw1ymqpEJWBLoWpbqFcIrm5hheCygxW2y2FDejoEuAFR8vE2JYggSaquhnp4bNpgcWLT72QR2km1tZqhqjt/O4LXRr3pMExVUbAuDxVH6gGL2F8po8T2LFW1aCwRIWBUhnaOpUDVIhWFOxyPv2SVIKmGn4VGyRVnShioMEZF2IZjh6TGau4L7JGKgDQRPhzZLYK/I7vE5YBEx6HAiv5TxEml5WgJKo7Uo+qA3nGSkLvVcV7Ayt3aYMM+6F2+aLeYv9BoxIQnz7Hd17A/F0f2uw7gq0sa8PzwD/B0xuvY/E0ezJVNaMoXr9H3FNH+HiOjAeiv4hqR4DjMOjRDhBHqoL65XD/4tVRoKwGzlmuHAityNzAE7PJaWwnoLASMiRHDXNUn943O+wunISDguhrwwAHtyquA8xBQXbGmnh+uoQF4803nr6F47DGx7T59RPhRVQXccINjRaA6wHFnf7ZWUpJYobmlELChQQSyPXoAJ56ovV99LJVtNjdrt6sOAQExJNhi0YYzkgQ8+6xcdak31FVZeddZCFhRoR1C6qkQENAe98BAEdLZh4AZGcCll4rrzioB1cNk9ShBWmWlvA1n7029xUHUgRzgeIwlCXj9dXH9scfkFYKV9rozh95XXwGXXCLPKwjozweoUCoB7R+nNxzYWSWg+nckOVlUDZeUaP8+1NYCmzY5bpfzAhIREbmFIWAXZ7VIkGpFaBWV6joEBAD/KG0IqIQ1kani9sbSGlQW1eM/g17H59Nfx4IpdiviQV4AQVJ9mO59Uorm/iP7nFcD1uY6hkD2q68CcjBUny1OBkY+/n+ImiQm1N7/0UanCy9YLRKWXv410CgPgTQEBmL22n9gyH1nA4Zjb/2mJuxarj05s1aL/RmR5PkQMH20qKJpyi92OcdhVW6FaEvPWAT30p7wBMXKxywySb+qzRASAlOcCNFSB0Zo5vHb+4f8s//8yi4sO/NtW+UfAPgnxSN8lPiwXrkzD0VZ6oDKgJ4TxMmhZDbDUiYmBI/tqQ0BwzJEYFe6T+f411k0J+zOQsDAJBHgRfbWVtBkTB+I0DRxf+k+EfyVZYnL6sfY6zcxHggQQ153/lKA+sP6YW3eNu2Q4NryRjQXagMv+wBxy1tiQZCIcQMx7baBMNhORCX89YbrIcHL7lgF87YsNB0uxNeXfYjfX9sj5o00+mHQqeKYBIX5wxgT5bgRgwHhMY7zjUX2Fseo4qB8jOTqT3HcU0aLSkCp1qxZAblovX4IeHQHQ8Auz1OVgAaDOLlXgqfFi+VFHS66SL9CSV0x2JoQUC8Eys7Wr0xThwovvCAHTcqXLosXu55vbPVq+TmAHB59+aX82tOny7dZrcCaNdrndPRwYINBVAPm52vnabN3+LDY7z16OFYCqod2q1cIVu+zjAztc/QWBzGbgZkzgYceEq930kny/lVeY+1aeX85CwEB7TyD9sOB1SGg3uqzgPMQUB1Y9ewphgertwkAF1ygDb3UIWBZmZgj0NlQYIX9kGB1CDhkiLisF5aqgzbAsRLwr7/E9k4+GRg4ELj4YnH/smWu21ZZCVx+ufy400+X96XeysAK9T5Sf2GgVwmofqyz4cDqSkBALAgDyD9787EvI6dMEbezEpCIiMgtDAG7uIoj9ZrgJDaj5RAwMFr7mLheclgTnSEqAS0V1fjywbWwlMgfZsv/2o7acm2lRkmuWXPCljo4SjPk8+gB/YomySqh6YhOJZjZbJt3TnF4RyWkOjHkd/wVfXDGUyfZrjcfKcaGL3SGygD4/KENqNslKgaG3H06eo6OwUXPjdVUi+1bLoYWSVYJVlWoGpns+RCw9wRV1UdTI/J2Vjp9rDlfVJpF9YhC3Kh0zf3KQjARifohoH9clOa6wWhAcE8R4hxefwRL567G6js/0Zzk9rpuCh7O/wfOefk0222W4lLkrBMf7g1hoUjsqw361JV89vfZL1Jhr7pU+/5SQkD7VWzD0sQQ4PgB2krAE68bhKie4iS1Klu8TlWOCOyiejkPAf0CjAjqIfbRnh+yYa0UgbZBddJ4dK+2EnDnr4UOIUZDfrEtqM76uwT1e3Ns9024dQz8AoyIP3mg7TZXQ4Ilq4S878VQK8lsxvqHv7RdD0xPRFCYtlo02K5aEgAMQUEw+jlWCCYMVK3inCuHFOWF9Zohjn1OUs3pBglHD8on1E31FtQfEL9LoUPFCXDlfoaAXZ6nKgEBbYVPaSlwzz3ye+yzz/SH3tqHA+ptuQoB1SGQ0jdZrfrhoDpYGjlSDoHOO0++XlQEfPON/muYzfLcf8rv/ZNPyuFbfDxw003icUqFm6KjhwMD7q8QrJ4PsEcPYPx47Zx36mOpDgGVfZ+QoJnWAIBjCFhSApxyinZ13aeeAv74A7jmGnlYMCCHT7t3a495YqK2Derw0b4SsEcPeQEToH2VgOphvBER2rksL7xQvl8ZXquu1FMHdi2FgOohtevXa4/RjBn621Q/Xi07W34vKtQLgijvwwsucH9I8Oefy4uOAHI167nnitdUz8upsA9KFXqVgOHh4nd4zx7RDvvfc/U+V1cJqocCz5olfrdZCUhEROQWhoBdXNlh7XxIsekth1bBcdpKQCWsiespQkCpthbZH6lOWiQJ23/SDnPUhHxGI+IyQuEXLbZRlqNfCVh0oMZWnQdAs6qw/SIK+/4QHwoN4eFI6mvCwMkJCOotwrDVCxwXWTBXNmHnAjG/U+iQ3rjgqdG269FDxUlkwXoRXFSXNmoCj6iUDhgO3IoVghuPVtgux/WJQq+TtSFgWKJ8LKOT9YccBSc6fgBXD+c8+L812LvwZ3FnQCAmzb8UV711MgxGA/pNjIchSFTi7f5CfGvvF2VCTGqIqKq0k9TXpLmuWaQi3zEENFdoQ0ClUs1+FduoniIEHHJ2pu39E9grHb3GxCC+vzhJrS8o070c1895CAgAscPECU7+D6r5jYxGRI0SJ4flB7SVgAf+1Akk6upwNFv+PV3/oagY8YuLwQmX9wAAjLxikGjn3kO2YM3ehi8Oa6o1AWgWO1EvaqIw9dAJAUP03y9pI0QYYTlaCkuT1S7MN6DPhDjNBPrF2XJbd/52RATJBgOGXzPK9pjGw0VOK3api2htJaCzhUEA7byAjz4qL2CgUIYeqjlbGATQzg9nTx0CKVV5gP6wSyVY8vcXVVg33CDuf+MN/ddYtEhUgk2YANx9t7hv/Hhx2f7n6ujhwID78wLah4AmEzBsmLjNWQiosB8KDGhDwN9/l6vRlBApPFyulnz4YdH/KyEgIAemyjGPi5OrK92tBPTzE+FbVpb+ohrVqr9pzioB7efyUyrO+vWTh0sHBYnqx/37RZDlzqIgCvUKwfaVgOeIaSIcQkCLRZ5HUE2SRFWdxSLPuQjIx+uCC+TLycnApEny5b17Xb8n/vc/7fV9++QwEHCsAgT0Q8DAQOfDoZV5AcvLxe+CqxBQfZ96UZCTThLv84MHXc8RSkRERAAYAnZ56hDQEBxsmyvNldB4bSWgEtYk9tGGNlBV4AFA1h/ak63SHPFB2hAeDqOfAUFx4pv0isPy/X8uzsJ71/9pCzZyNooAyBAYiIA0cbKoXowAAHLXig9+Ib3EB8LBV4lAr3zlTocFQr5/ZouoIPTzx8yPzoXBKMLGjBPFiUP1LvFzleVpKxHjMluurGyLoHRxEu1sheCmeoumAi1pQBSGna0NAU3J8glMQLAfEOi4im5YapTDbep5/CRV5YAhIgKX/HQdps4VVWlGPwOC+4h9VblBhFiBsfIxN4Q77iNDaCiCw7UVaepFKqzllair0g6v01aaGhBikp+vHs4MAPH9RAjYZ3wsTlp4GdIunYQrv7hQ/vmGitdpLi6H1SLBapHQXCyChpQhrkPAjAnqRW5EpaZffCyi+4qgrDpXWwl4ZJP+QgdZq+Wgt+BvMVw2/sS+tvfkuIszYbCtyCnhz9f1hwSvX6yqdDA6/vlOG+8YAsb2cwwB/cL0T8x6jlGv4mxB7rYKlB5SrQwcForAED/NvKLK34E9P4ufLSAtSfNelerrUbiv5bkOXxi9FE8lL8LWH9xcMII6T2srAe2DQr1KQEA7bxngOgT095dDIb3hwPX1wM8/awNFdSXg//2fuKweggjIFVRKFdbgwSK4OO00uSIQkLdtX6XY1ATMny9fNhjkBUDUK8wmJYmAbP16MYQR6PjhwID7IaD65+rRQ/5fPS+g3pyAaspz1KKixO27domAKyVFHj6tPh6ANgRcvVpUfinvFfX7SV3Jpw6UFUog1dCgv6iGO5WAvXtrn/Pqq8CHHwK//ir+9ipDgisqxIq4rQkBo6JEW7dsEQtqREbKVYLKcHT7OQH37NEPu5RjvH27COxOO02ssgu4NyQ4P18skpOW5hj82i8KAsjvYfuhv1FRmi95NfQWB7Gv/tQLAS0W+f0ByL9fvXoBQ49NESNJriteFT/9JAej9isMExERdRMMAbu4ykIR4hhN7gVWSnAEyOGdEhxGJgQ5LDyhVrRBGwKWHxYfpP1j5AAxJFF8iK7Or8Kmr/Ow/Lr/4eDby7Hk/C8BAAXbRQjonxiLsExxAlS8SxuIle4UQ0DihooPhFNvHwwEHTtRszTjlxdFtZbVImH3O6KKMW7KMM3iGAAwcJo4IbWWV8jViQDK81UhoH8AQiMD0BEieouT6NLd+pWABXuqHIZbx2WEwj9VnJClDhOhjTHMcUhwVKZjJWDviUkOt/nFxeCav67VzCenSBilOnlXVXAGx8nH3D/S8X3nFx3hcFuPUTEQi1RIyNmsDdDqKlUhYGCgLSALj9WGgEkDtSehp/2jP67/aCoyhkUBADJHqk5YLM3I21kpv5ZqQZOMEa5DwIFTHcM0AAjNjNNUGjYUaisBq/foD03M3yIPCa7ZJYKynpPFHFp+AUbEnSTC14Pf24UUkOdMLP5dzHk0YO7pCOqjnYer3ymOJ8TJgx1/VmchYHRKiCqMlCtz1b/nfsfmE/VXVfxW5Mn3568VJ9sxIzKQ1Cdcu/LxGtdDgj+e+xdqNu1F85FifH3NF6wcPN4olYBhYWL4nStBQSIUMBq1lYHq4MZ+4Q77YbOACAASE+Vt6YWAs2YBZ5whD6NU/m4qlYBJSdrgwr4ScPt20Y5RooIVRiMwZ458WZIcV/ldtkxUIp57rlgRV23CBPl/s1k7Z9nxFALaVwICwNSp4raB4m+T25WAgLYaEJADm5UrRWijNnq0+Pzxww9iIQglCLIfXg7I+y3I8csvzcITekOC3ZkT0L4SMCJCniMvXfVFnHpeQCWoU7+3WgoBAfG+bGgQ7/OBA+V9oRyLAwe0Q3fV8wEqi30AIgD76y9xm1L5p7jwQnH5yy/12/TRR+L1rr0W+OQTbbitVwloMDhWA+oNBVaoj5Hy3rSv/tQLAXfsEJWckybJr6ueP7GleQFLS+V98MUXciDqakEiIiIiH8UQsIurKhTfBuuFMXrUC1MEZ4oP1gajAX6RJr2nAABq9uZpTsyr8kVlT1CM/EE6PFk831xUjRXProGyUq15Wxbyd1ehZK8IAUMz4xDTXwRilXYrBJsPiG+G08eJD4ShkQFInCaGK+1TLRDy++v7YCkWrzHtMVWFwTG9xsRoFsjY8aN8IldZoKqsDPf8UGBFwhBxDKoPyifXX83bjCcTF+Kdq34HABTsqhBtCQ5GVJIc3Jy58BwE9++BtEsnYcz54oREL9iJ7R3lcFvfE+LEnEkA/FOTcOPaa20hmr3ep6Tr3q4MRQ6IDne4LyjO8X0UEhEAY7Q4Kcjbqh0SrA4BDUFi0YrolBD4xcknnoawMPQ90XUVUkxqCAyqIUiHt5Zh7XuiIsgYFYnYNP05FBUZw7TzW9ra0jdeU0VoKa2ApUkOD0pyzbCWiWBTHdAV7yrGgXWlYlVgAMNnaAO8oReLygjzrhxUFTdo7l+5JEtUtxqNmHrXMFz30yUwxsihaGDPNHlRE/ufZaRjJaB/uPMVK9UVt3u+3a/5PQ88FvYrC9IA8t8BySqhZqc24DQYDQhWVbwe3ug8BCwvqEPe52KOK0tRMdZ+csjp48kLlErA1gxdVU7OBw3S/M3RnNwD8ol87LH36ebNciCiaG4Wr608LzlZVBjl58vhx6efytdXrZKrqioqxPP695cru5SQyT4EVM8xpw4BAXm+Or0FQiQJePFF8bi77tLbAyIEBLQBpxKq+vu7DkvaIyFB7FclaCkrA268UZ67UAl69ELA884DnnsO+Oc/xdyIQOtCQHVYNHSoHAAqlZX2QkJEaGg//BvQDwHthwIrWlocRB0Cqv/OK4FcaKh2KLcz6pBv/345UPrhB/l6eLjjqsJ69AI1JXRVqhFra7WVuOr5AK++WlxWQkB1hZt9CJiSIn7Obdv05+BUDwW+4gq5mnDRIvm9OnCgPARXj30IqLcoiEL9e/bTT/J7UTnu6t9zhXKf+mdTFrBRh4AtzQu4YIGoojxyxHkQSkRE5MMYAnZxNUUiVAiMci+0Gn9JJjKuOBnho/pjxoLTNfepK3wAIHyk+FAnVdcgb5cYnlpbJD5IhyTIz4tMFxVgtVmFqFqrPdn687WdqFIFfdG9Y5E0RFRB1B8W9x3ZXw1JNXdP/1O0J46n3C2GBFsKj+KX+fJrrZ8vVmEMHdYX/Sc5nrQajAaE9BUnENkr5RCwNFv8fP6mjgsB00aKNjUVFuPvj3Kw+YmvYTlagkPv/4HN3+Th6L4K0ZZ4Uf02+rx0PLDnalz/0VTNEGd/k2Owldg/yuE2/0AjBt46FQgMgmnsQNy64Wok9HIM8hRDp+tXxZlS5GMeHOsYPocmOVYCAkBQigikNr+9Cbv/ECc26hDQGCxCQKOfAZd8cTkyrjgZ//fxTIRFO65qq2YwGuCfJF7nyK4y5HwvhgglnjpIs9+cbSOkj+PPnTg4DhnDVZWIVgvyd8vvmV2/iiGshqAgZJ4hQr2qA8XY8b0IyYyxMQ5zJo6/tIcY0m21YPV72iFgW98X1a7hw/sgLiMUCb3Ccc/Bf2DK21filjVX6i72kTY4UlvFASDQpFM9c0yvM8WJa8nKvZoQUJlPVPl9B4DaozXI3lSuWSlcGQoc0UeEgCW7nIeA3zy2XjtPKIA189c7eTR1uuZmseKpO/MBKt54A7j/fuCDD7S32w/hvOgi4Oyz5cuNjWI1WUAOP5QqPSUUCAgQ7cjPlwMKtY8+0laA9esnP0ep3Nq7VztXnKsQMClJrvID5CDiww/ly3/+KZ43erTzYEQvBLRaxYrHcXHOh0y2l3qF4MJCeaj0VVfJx+Wxx4Bvv5XvU0LAxERRvWswAPfdJ8/ZqB4hoDcc2FkIeNNN8nGdNQtYscIx/LV3guMXdi4rAe0Xp1Cow6jvvtOuLg2IEDA0VPu38aqrgB9/lOfbs5/TUo99JeDvv4tVmGfM0K9StKc3tFapKFUPSVbPC6hUAhoM8rBWJcjcuVMO05SgzH5uR4V6KLb9gje7dok5F8eOFfvyxhvl99D27c7n+VPvD8B1CDh+vPgd/vFH+fdYqcpT9r36GCghoHpRECXgVFeWuqoErK4Ww/cVr77q/PFEREQ+iiFgF2cuFiGgXhijx2A04NoPpuCejZc7DP/UVHAZ/XDpe2fDYBK37fxJDAmuOyrCAaUqLCZTPNZaXgFI2qFeB7/Zgbo8UQGWMDAWGaPiNM9R5obbs0K1GlxICNKH2A3pPSURgb1EkLf6rmV47dwfNKuvTrxH56TimMTR4rklW+QhZfs+FUGLqXcrTnZbqc+Jqm03NeGn65dBqZgEgLVv70DZwQrb9eCkqBa3GRDhGAKmDtKvMLn0pfF4zPwA7l53qa3C0JnolBD4JToOV4tKOxYIxTm+78JT9EPAiF6q1We37cfHp7yKZ/suxqav81BfpR8CAkD/SfG49oMpGHG2k5M+O6Fpolol968cNBwQQ1VHXTFQ7ykOEkY6vlb6qHhEp4Rohrke3iqHI9krxVDg4F4pSBsljnFj3lHkrhQhYNQwbRUgAASF+SNilKgs2fOlGBJcVdyAyvWiomXITHFiFxoZgJOv7YPIRP3j6BdghH+8tnonMML5MT/xGhECStXVOPqXeN2wJPn3W/l9B4C6ozVY9YYYamiMjkLKAPn4Jw4Tf1+qs4p0X6+mrBHZSx2HgFau3Y0j+13PI0idpLRUVI21phJw4EDgX/8Chg/X3m4fBj3yiPOKOfvFAhRKAFRYCLz7rnZ7H32knfdPqchSKqwaGrTVb0qYZzDohybqBUKuvVYOEuyrAJ0FeSNHykMb1T/X8uXyisOA/ut5knqI8j33iAUjADnQbGgQIZne3H72WlMJGBMjB43vvaf/PHvq94DCVQjorBJQXYH300/yAh4XXigCIiUENNlVrBuN8pDyge71EQ6VgJ99Jq6rh926MmKE4zQs9pWAgAgBGxrE3IEDBshVpMoxPnhQDvGU43nCCfpTvCihNgB89ZX2PvsqQLW4OIcvlDRaMxzYz0+0o65O+zusngdS+b0qLJSH1H//vXw9LEz8XUlMFBWvrioB//tf7ZyhgLw6tTvzCBIREfkQhoBdXH2ZmMNOL4xprdiBIriInzYC6UMiEd5fhCG5q0UI2FAqKn8iUuUP0/G99cMfRVNOPiwlYh61tOGx6DU2VrPC7IF1ckioWRSkR5Ju9dZpz04D/I59yJUkFH0jJpX3T03EiVc4GXoEoNfJ4gSi/kA+dvx6BA1ZIqgZf/Movad5RFxGqGbuNcluku+i5TtQmSM+rIanRbW4zaAouxAwIFBevdcJvaoxZyIHOw4Jju3hGAjZHp+mP6z85NtHagI0AGjIysU3M5dqqlrtQ8DWiuopTjgrV4sP+AaTCaPP0x/ebK/HRPsQ8NjKuAACE0Q1TNEe+TgVbxEhYOzwVPQcJ8ISqa4O5WtFZVL6RMcQEAD6zRAnr5Ub9qOpXq5WWvHabtuiAobAQJw8x41hZiohadohwUGRzkPAlAERCOypmjNTNcRZmU80IkUc88aSKmR/KlboTjldDM3KGCP+njQVFtuGTqt9+8RGsUCNn78Yhm214ufnNjs8nrygtSsDt6RXL1G9dMEFchCmHn7pLARUVxAqIaDV6rhIQm6uHDwplHBCHe4oQ4IbG0U41L+/do44xemnA5dcIl7v9ttFBVVamnaxBXtBQXIQCMgViOXlchihUOYc7CjqeQEXL9be9/XX2qHRng4BW8tVJaDJ5FiB5qwSMCFBDmaVBTwsFuDzz4HJk+VAWwkB9Y51a/TqJV5jzx4xtDQkRLsatSvBwY5BsPI+VYeMypyDW7eKIenKUGIlBJQk4K23xHPshwIrBg8Wcx7+8YcIxqxWEQIajcCll7r3MyhaMxwYAM4/X1xWLxCkHHN/f/H35sgR4OOPgcpjC3VdcomYYsBgENWAR45o59tU1NeL4N5gAG6+Wdz32muu20lERORjGAJ2cQ1l4uQnLKH9IeCMJ8ch7vTRiJ8+BrM/PAMAkDhGBAKlW0UI2FQuqnSUqjCHFYYBwGjUVBOqJ7juOSYWgSF+8IsTocrhTfIJZ/F2cfIXM1h/GNH4SzJx7udXw6DzYX7YDSe4HPapGeba1Ihv/vGD7ap/UjzGXaQf1HiKeoVge1J1DSrWigqsqB5RLW/PLgT0j41scdiru9ImOFZcxPeSj2lEsuP7Lranfhg8+LQk3J51GwbeeSb8ElUhWW0t9i8TgY9/aPtCwPgBqtBLVY0af/JAt8PPwdO0QxaN0ZG2hWJCVJWGZVllkKwSaveJEDDzhFSkDYqAIVD8HOqVmIeerf/eOnF2X1sgLtXXY/1nubBaJOxYssH2mOiJg1q9YE1kL20IGBzluvozQzWUWbOdY+FuVLr4fW48VCBX/R5z2r0iPO87UfUeb25G9iZtFUZDbTP2LVltu55wxkik/Z8Y5p/z6QY0NzoGh9TJWrsycEvCw+UKsSeeEMHU0KHiCwL1CsHOKgH1qsDuvVdc/u03cdm+EhAQ4deuXWIYov1QYIXBACxdCjzwgON9t92mne9Qj7rC7csvRViUlOS4Sq6nqUNAhRLAms3yHGmKtoSAUVGem9OwRw/Hij/lmBsMjvc5CwEBOfDJzpaHMyvbKCuTQzJPhYBBQXKVISAPoVXC8rPOkivV3KWeFzA4WISqepWA6kVBlKHE6mOsrqhzNkTdYBBVeBaLmMfwl1+AQ8fmYp02zb0h0Wr2w4Fbel+cdpqoxlSv4qz+PVcuHzmiDetuukm7rZYWB1m8WFTfXngh8Mwz4vfg3Xe180QSERH5OIaAXVxzpQgBTYntn8MuJjUEt/40A7f8cA7CY+QAo89kcbLVkFOIxjoLJKsEqUp8aIrrabI931aZd0zkCYOQds4Ih9cymEwwxclz5oRkiBPLop3yt7i1+8XJX+oY53MJjTo3Ddf9PQcBaeIDq8FkwvR7dVYgVIlKCtYEUQ37xUIE/WaO8ViA5kxkH+3JtF9iHIJ6q6rUVHOkxfWJanF7ITHaEDAwoeXnuEu9mrJCmUcwMtXxRCqul/OK0OiUEFz60ng8UvAPRE0Sx8hSKIKG9oaA6sU71EbOdHOYF4D4HmEwRkfZrgeni+MV2UNVaZhThrxdVZpqzoGnpcBgNCAgRWc+ytBQ9B7nuFgHIP/+BPcTAeG2ZXvx6X3r0JgtwvfR17R++GBcf+3rhUS7DgEnXK2/n2Iy5GMdm6l/8hw6pDd6jhb7JiopGMZI8V7IXqudF/C7Z7bCWnXsywSDEec8OxHTHhgNZRVpa2UVVryhs7ondS5PVwICwKmnyvPSKUFBQAAwZox8OTtbnLC3NBxYMWUK8PDDYuitwt9fLEahFwK6mg9QzWgEnn0WeP99MdebyeReJZ86BLzvPjEf4fXXtxwgtpd9CJiRIQeaivffF5fdCQFDQ7Vt9lQVICCHU/ZDgtXH3D4EdDYcWJGRIS9s8tdfYljpggVi4Zn2hoCA/grA7g4FVqjnBezfXwy5Va9QrISA6kVB7CsBAVHV5++vP9+gQh0+f/WVXE37j3+I22bPdr/9CpNJe7xaqgQMCpIDU3t6IWBzs/jZR4xwXFBFPS+g/ZDgpibg+efF9Ycekts2c6Z8vbpazPVJRETUDTAEbIHVasXLL7+MAQMGIDg4GOnp6bj77rtRaz/8yEssVaIdkSntrwTUM+T0FPEB2tKM3SuKUJpXB1jFxOpKVZjBaIBflLYacNKd43DCnCGwp14kIqqvmCuufH8xyvLrNNVF/Sa7nlA8bXAk7th2LRJnjEdgr3Sc8caFCAxxMXfNMZGDdU4iAgJwxn3DHW/3sIShqpNpgxEz3j4f/S8dofvY5IFRLW4vNFYbAoalem7FyX4T48WiFQAQEoLgcDnsjUl3fN8l93c9LByQ3ytTHtafs7G9IWDmSMcQ0BAWhrEXte6E1TRQvD+i+4vjFdtHVK7W5ZdjzTti/jGDKRypA+WfP7yXY2ASPijDZcDcY7qowitavgO7Fvxqux42vK/LIe7OpAzVhoCh0a4nrO8zPhb+SY4BpvJ7rvxvb+ScMQ63qVcgz/5DDLfP3VaB7S/9YrseM3koMoZFIWNYFMJHiWFlm17nAiFe5+lKQGfUQ4KVakB3Q8Bbb5UDRftQoVcvEVqp54prbQiouPJKeXGCm26Sw5OWgg5AG2wpQxWNxo4fCgzIoa06uH3nHXmxDmVfKkNLAfdCQINBWw3oyRAQcBwS7CoEdFUJqNa7N3DOOfLlfFGx7ZEQ0L76LTBQLHLjLvX7Qx1mhYSIIfAHDshDWpVFPwICxJx4etWeo0drVz62N2mSWOTlhx/kKtqDB8V9rR0KrFAPCXbnd0M9JFihPuZ61Yg33ug4B6e6EnC9XZ8xb56ocDzzTDE8Xz0keNEizSgVIiIiX8YQsAV33nkn7rrrLgwaNAgLFizAxRdfjPnz52PGjBmwWr0/TK3v1RORcuGJiJ48HKlDdFbt84DwmED4p4gP33t/y0PxQfWE/QbE9xBBkH+MCIAC0pIw5vx0DJyc4LC4hKmHCCYSB4sTy5o9+fjjNdU8boGB8ryBLQiLDsTNX5+Jhw5chwmX9XDnR9Md5ho7eajTRRY8afJNg2xVUgPmTsOIs1Mx+aaBYo4hdTuHRLW4vfB4bQgYmdHyc9zlF2DUrJbrHylOnuJ62J1IBQQgMsGNVREBDJueoq1+VDYR1r4QMDY91GHuwdiJA+Af2Lo/edOemASDyQS/2Gic8YioPEgaJE6CmwuKsOslMZQ8rF+aLeSLG+gYmKRMcD3MfMJs9cIcNeIkPSgYV3w0o00VqpmjtL8/YbEtv79TTnOsBlSqP+Xfd207DCYTTrmhn8Nz4oaKE7qCL/7Gb4v2oLHOgg/+bxmk+nr5Dj9/nPWvk22PG3uzCBPNOw7Y5gklLznnHOCTT+QTZb152zxFHYYoIaB6ZVdnIWB6urwaKwBcdpl2m+pQIixMDN9UFlBQh4BKONCS0aPloYmnnure4zMzHSsozz5btKWjPf20/FqvvCJXTPr56Yc87oSAQOeFgJGR2r/jra0EVJs71/G2jggBzzgDiGj5SzCNQYOABx+Uwzf7IefKkODiYjkkV4K6UaNERWpmpmPg52wosMLfX4SV1dViqG1wsDx0VudziFvUv2/uDBM/80zH6l29SkBFeLjjgiWAHJ4q23n/fXlxIEBeGOaZZ+TLfn5yZahi1CjxxcO2bcCaNS23l4iIyAcwBHRh586dWLBgAS644AJ8/vnnmDNnDl566SW89NJL+P333/GR8iHDi2YuPBE3fHo6bl9xPnqM7JgQEACih4gTroJ1eSjJEUOBDeFhmnAlYYw4sRl560QYjAYYjAakT9dWA8b0E6Fg5hjV/HBVVdj69De264EZSa1axKI1Bkx1PIk4+S7HaqaOEJcRintz5+LWQ/fhsv/IJz6x6aEIG9pb8zhDSAgi4lsO1cLjtMFOTE/PVQICQPxIsa8CYsVJTmx6KNSBkF9URKuCqhE3jne4rb0hIAAEJGqrAYdf5v5QYMWQqUl4tPwuPFx0GzKGRdluTx+m+l1TVw/4+WPakyLMSh3hGAIOOMP1SXOPkdHwT3asIBxx/xm2VXdbK6FnGAwmccLrTmXpmCu18wIagoJscxH6BxphCNdWgKafOxIBwY7Vt2c+NlbM2SlJ+OuOz7Bg8qdozBEVOcPuPxN9xoug8qRr+sAYo+xjA7Z9cwjkRT17yotf/OMfjqGHJ+mtEKxUAtrPCaeudLrvPrEK6jnnaAMRdfUfICqGqqrkwGLDsfk2e/Z0r3KpLfSGudrPadaRrr9eroS6/XZxm31YCrgf6HVkCDh6tDiW9iGf+viHhbUubJs61XHV344YDtzaocCKZ56Rhy3bV/Wpt6+sChwSIoItQA7s7H82Z4uCqOnNR/nUU+37HVcH6T3dqFqPiJCPjZqrEHDmTMdVnQH5tnnzxPXZs+Vh71deKW579lkx5YBCqQYMDuYqwURE1G0wBHRh6dKlkCQJd9xxh+b2OXPmIDQ0FB988IF3GuYF6oq5qm05WLtATE7tH6X9IH35aydj4J1nYvzzF+Gs+8XQlok3akPApMHipH/ItGSEDNT/wBg9yPVQ4PboPykeCBCBU2BmCoafmeLiGZ4VEhGAuAztN/gDL9buJ/+4KLe2FZGorXxL7O/e89w17YHR8smH0YgR14nFG/wDjTCEiZ9BHRC6Y+rcgTBGaD/UB4a3PwQMUy3egZAQTLi89cNoAXkVZfsQOqmvCfDXzuVljI3BRT9er3n/qFcIBgD4B2DI1JYnW0+Zog3gQof2wf89PqJ1DVcxGA2Y+Mw5CEhPRo/Zp6DXGP05E9WGnp4MQ5QIko2R2mPkp6oGhcFwbC4/R8n9TDjvk5liSGZzE6rXixVJIycNxflPaodhGv0MGHLTJKRffhKu3Xq7w/3ko1JTRYXfunXyMMX9++XrCQkiHALkIGrbNnkBkFtuEbeHhYmqQMBxxdL77hNhX22tqLR1Zyhwe6hDwMxMuWLMm8aN04Y0iYkO1dNORau+BPF0CBgWBjzyCBAXB9xzj/Y+dQiYluY4JNQVg8GxGtDTlYD+/mLBDU/prf1SEP36yVWyU6Zob1fPCwgAEye2vO0zztBW4U2YANh93m21a66RV2Z++mn32gBohwSbTNpFVexDwBtvdL6dBx6QA29AXuxn5kwx/P6cc4C773Z8ziWXAP/5j1wVrDyXiIjIx/m3/JDua/369TAajRhnN7lycHAwRowYgfX28454gSRJqGuu6/DXyTw1BuueOXayZC5Fw/ZS4Ng5fVBKCMxNYuVThAIznpPDP/XtqWNC4T88DXW7soGgIPQ/K05z/z82XIjvnt2K7QtWyKsWHhM3Nlq7fQ8LGJYM87YsAMCgq4d06Gu5Y8w1GVjzlNU2eXxQaohbbQpKAJoCxPxOUf0CPfqzxPYPwG35N6OqpAEJPcI027bEBMDSKL92WFIrX9cPSL5kKHLe/UPcZrK2u+1RI2NQvFZuU8xJg9Hk16CZ/qq9/AYlon53NgAgfFR/XP3pOYhMDNa0O7Z/AJpCYQsagvqluNWOIVdk4sAnxx4UEIjz3jsNdZY6wOL6ea6ceGMGTrxxFgC4vW+jTu6Boz/IlVJ+CXbHNSEQTUflNoYO64PY/gFOt9t3ahQmLDgHf839RHO7MS4GMz+ZovuzTZ8nKlvMTWaE+IfA0JqTfuqaJkwAPvtMXq1TPb+f3lDV3r0dQxJAXrH300/l4ZJnnqm9b/JkICtLrhp67TWxSIf9QgOeNnWqvCABIIeWfi3PWduhDAa5GvDZZ+Xr7lRtKeJUU3u4O4S4NR5/XF40xv73XT2k2t35ANVmzZKH3VZWytc9EQL26iUH0mVl8nst2sMjMiZPFpcvuURe3VivEk5dQThwoPYYOWMyyUOCv/hC/l1ZvLj978vgYHll5tY491w53LNaHY9riupL2TFjXIf1BgPw6qtAXh7w44/i9vR0YMkS/SHOISHy3wsiIqJuhCGgCwUFBYiLi0NQkONQzNTUVKxevRqNjY0ItJ/PpAXJdt9stmduwbrmOjy/6vmWH9hOklXCqpP/FidMioAA9DvfjOdXZbu1nfqnmnF4azkS+kTgjQPzgQN2DzgNsE5oxs4fDqNqXyH8I8JgGOeHHat+1N2eJ5Tdacben3IQHB0C/5N/wq5VP3fYa7lr/YW70Zgvr8gZMeQwGlYdbPE5kiRh7bk70VxagYCEaAQcfQ042uLT2iZfe3X1hK1oLpZXJYwYchi1q/a2anO1ZzVi/YE1tqG1B0wlOLDq93Y1sfFMC7aYD8LaZMGwC4DnV+1s1/bsVT5UjwN/5cOUbEKfEw/g9az5QJbj49acvhHWCnkOzchheXh+VYHjg+yFAFkPFKP8QBl6npyBDyteB1Z5tPluKb+0DltrNwAWC1JOLdW0fc+5hTgSuRcwGNDvEjOeX9XCkN3+wP77i3F05bHVfg1GDLpyFF7b+x/AjbfLfRPvQ2hA+1dA7y482c90qvHj5RBQLSNDhFXuOPFEefhrYKD+QiaxsfIqsTffLFcs1dV1/CIdY8cC//ufvOqx3vx03nD55WK/2g+bduWqq+RjNGpUx1VQ6gX+6krAtoSA4eHAtdcCL78srrdXYKC8QMyPP2pX1/WUSZOAX36R+8apU51XP6pDQHcr8AA5CB8+HJg+3XFIcWdJSJCrPhct0g5ZB+Tgb9gweajuU0+1vK2AAHn+0pNPBrZskaszP/5Y/p2nDuHJvmbMGODIkfa2iIjo+JSUJGah8TaDJHE5LGd69+6NpqYm5ObmOtx31VVX4f3330d5eTmiWjmPkF6HefToUVRWViKilRNKm5vMnRICAsDa9/agLlvunY2mMMSPSEWfExN15wHzBEmSum3lT3lBHbYt3QGD0YDhVwxBZIJ7C5VYLRJKDtUiLjOsw+ZR1LPt21yUbZSDyt7nD9fOmeemjcsOoHrXYcBgxMibxrn9Mx/v9qwoxJE/9gJ+fhg5Z2ynLDrjSQ3mZtTXNOsej+LsGgSE+CEqyc1hhAD2/nEEpftKkDYuFRnD3X+ftDYErKqqQmRkZJv+rvoCT/YznerAAXmS/7o6ecjj3Lny8F5vV875qpdeAlasAP7979YFgY2Njgs6dLTqarnysKxMDlRnzmz9NvLy5KShpkaeg8/dxWCOd/X18mIgOTnyEPlhw7zdotazWvWr9Zqb5Wp6d4erA/J75I035IVm1NWUHtbd+xnAs31NWpp2AW8iIl+Smip/DGmtjuhrGAK6MHToUBw9ehRFRUUO911yySVYtmwZGhoaWl0JaK89B7YzQ8DmRityNpYgJDIIKQMjum1AR46aG604uLYYQeEByBzZ8nxzeiSrhPxdlTDFB3e5oKwllUX1CA73R1AYi6/biiFg+3Sp/VFUBDQ0dN7qudR1FBfLKcHw4a2bE1Ctvl7+11ELwXiLJMlBGgPzTtOl/q52kvbsE1YCEpEva2slYEf0NTwjdSElJQW7du1CQ0ODw5Dg/Px8xMXFtTsAbK8Q/xDcN/G+znvBUzvvpaiL8cR74yQPbIN8Uoh/K6pAqGtTD/skUouP1x/i3RrBwfI/X2MwMACkLu14GSZHROTrGAK6MHbsWPz8889Yt24dTjpJpBP19fXYsmULTj75ZC+2TmYwGDhPFhERERERERERuaQz+QYpLr30UhgMBrzyyiua2998802YzWZcccUV3mkYERERERERERFRK7AS0IWhQ4filltuwcKFC3HBBRfgrLPOwu7duzF//nxMnjwZM9syKTUREREREREREVEnYwjYgldeeQU9evTAG2+8ge+++w5xcXGYO3cu/vnPf8Kot4oZERERERERERHRcYYhYAv8/Pxw99134+677/Z2U4iIiIiIiIiIiNqEpWxEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4f283gABJkgAAVVVVXm4JEZFvUP6eKn9fuzv2M0REnsV+xhH7GiIiz+qIvoYh4HGguroaAJCenu7llhAR+Zbq6mpERkZ6uxlex36GiKhjsJ8R2NcQEXUMT/Y1BolfX3md1WpFQUEBTCYTDAaD28/r27cvAGD//v0d1bTjHveBjPuB+0DB/SDvA0mSsGnTJqSkpMBo5MwX7Gfah/uB+0DB/cB9ALCfcYZ9TdtxH3AfKLgfuA8UHdXXsBLwOGA0GpGWltam5wFARESEp5vUZXAfyLgfuA8U3A9iH7Tl76qvYj/TPtwP3AcK7gfuA4D9jDPsa9qO+4D7QMH9wH2g6Ki+hl9bERERERERERER+TiGgERERERERERERD6OcwISERERERERERH5OFYCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgF2Q1WrFyy+/jAEDBiA4OBjp6em4++67UVtb6+2mdYp9+/bhsccew4QJExAfHw+TyYQRI0bg6aef7jb7QI/ZbEavXr1gMBhw6623ers5naqsrAz33HMP+vTpg+DgYMTHx+PUU0/FX3/95e2mdYqamho888wzGDp0KEwmE+Li4nDiiSdiyZIlkCTJ283zuGeffRYXX3yx7f3eo0cPl49fu3Ytpk6dCpPJhIiICEyfPh1btmzplLZ2Vexn2M/oYT/TffsZoHv1NexnOl5372cA9jXOdNe+hv0M+xlXPNnP+LfpWeRVd955J+bPn4/zzz8fd999N3bv3o358+dj8+bN+PXXX2E0+na2u3jxYixatAjnnnsurrjiCgQEBOD333/HI488gk8++QR///03QkJCvN3MTvfYY4+huLjY283odIcOHcIpp5yCmpoaXHfddejXrx8qKyuxbds25Ofne7t5Hc5qteLMM8/E6tWrMXv2bMydOxdmsxlLly7FNddcg927d+O5557zdjM96qGHHkJMTAxGjRqFiooKl4/9+++/ccoppyA1NRX//Oc/AQALFy7ESSedhNWrV2Po0KGd0OKuh/0M+xk97Ge6Zz8DdL++hv1Mx+vu/QzAvsaZ7tjXsJ9hP+OKx/sZibqUHTt2SAaDQbrgggs0t8+fP18CIP3vf//zUss6z/r166WKigqH2x9++GEJgLRgwQIvtMq7Nm7cKPn5+UkvvviiBEC65ZZbvN2kTjNp0iQpLS1NKigo8HZTvGL16tUSAOmOO+7Q3N7Q0CD17NlTioyM9E7DOtCBAwdslwcPHixlZmY6fezYsWMlk8kk5eXl2W7Ly8uTTCaTNG3atI5sZpfFfob9jB72M923n5Gk7tfXsJ/pWOxnZOxrHHXXvob9DPuZzuxnfP8rFh+zdOlSSJKEO+64Q3P7nDlzEBoaig8++MA7DetEY8aMQWRkpMPtl156KQBgx44dnd0kr7JYLJgzZw6mT5+OCy64wNvN6VR//vknVq5cifvuuw/JycloamqC2Wz2drM6VVVVFQAgJSVFc3tgYCDi4uIQFhbmjWZ1qF69ern1uKysLKxfvx4XX3wxUlNTbbenpqbi4osvxq+//oojR450VDO7LPYz7GfssZ/p3v0M0P36GvYzHYv9jIx9jVZ37WvYz8jYz+jriH6GIWAXs379ehiNRowbN05ze3BwMEaMGIH169d7qWXel5eXBwBITEz0cks618svv4w9e/Zg4cKF3m5Kp/v+++8BABkZGZgxYwZCQkIQFhaGfv36dZsPkOPGjUNUVBSef/55LFu2DLm5udizZw8efPBBbNy4EfPmzfN2E71G+Xt4wgknONw3YcIESJKEjRs3dnazjnvsZ5xjP8N+pjv2MwD7GmfYz7QN+xnX2Nd0r76G/YyM/Yy+juhnGAJ2MQUFBYiLi0NQUJDDfampqSgpKUFjY6MXWuZdFosFTz75JPz9/TFz5kxvN6fTZGdn4/HHH8djjz3W4mSivmjv3r0A5G+Oy8rK8O6772Lx4sUIDAzErFmz8M4773i5hR0vOjoaX3/9NWJiYnDJJZcgMzMTAwcOxKJFi/DZZ59hzpw53m6i1xQUFACA5lszhXJbd5lnpTXYz+hjP8N+prv2MwD7GmfYz7QN+xnn2Nd0v76G/YyM/Yy+juhnuDBIF2M2m3U7TED+9kx5TGBgYGc2y+vuuOMOrFmzBs888wz69+/v7eZ0mptuugm9evXCXXfd5e2meEV1dTUAwGQy4ffff7e978877zz06tULDz30EGbPnu3zk0uHh4djyJAhOPfcc3HiiSeirKwMixYtwsyZM/HVV19h2rRp3m6iVyhDKfT+Zqr/XpIW+xl97GfYz3TnfgZgX6OH/UzbsJ9xjn1N9+tr2M8I7GccdUQ/4/vvJB8TGhqKhoYG3fvq6+ttj+lOHn30USxcuBA33HADHnzwQW83p9N88MEH+OWXX/Daa68hICDA283xCmXFtMsvv1zzQTE6Ohrnnnsujhw5Yvt2zVdt374dJ554IqZNm4Z///vfOP/883Hddddh5cqVSEpKwpw5c2CxWLzdTK9Q/hbq/c3srn8v3cF+xhH7GfYz3bmfAdjXOMN+pm3Yz+hjX9M9+xr2MzL2M/o6op9hCNjFpKSkoKSkRPdNkJ+fj7i4uG71rdm8efPw1FNP4ZprrsF///tfbzen0zQ0NOCuu+7CWWedhaSkJGRlZSErKwuHDh0CAFRWViIrK6vF5ca7urS0NABAUlKSw33JyckAgPLy8k5tU2d7+eWXUV9fj4svvlhze2hoKM4++2wcOnQIOTk53mmclykTC+uVyCu36ZXWd3fsZ7TYz7CfAbp3PwOwr3GG/UzbsJ9xxL6m+/Y17Gdk7Gf0dUQ/wxCwixk7diysVivWrVunub2+vh5btmzBmDFjvNSyzjdv3jw88cQTmD17Nt566y0YDAZvN6nT1NXVobi4GN999x369u1r+3fKKacAkL9R69u3L9566y3vNrSDKRNKKxMoqym3JSQkdGqbOpvyx1/vm7Hm5mbN/93N2LFjAQBr1qxxuO/vv/+GwWDA6NGjO7tZxz32MwL7GfYz7Gdk7Gv0sZ9pG/YzWuxrundfw35Gxn5GX4f0MxJ1Kdu2bZMMBoN0wQUXaG6fP3++BEB6//33vdSyzvXEE09IAKRZs2ZJFovF283pdI2NjdKyZcsc/r366qsSAGn69OnSsmXLpL1793q7qR2qrKxMMplMUmpqqlRdXW27vaCgQAoLC5P69evnxdZ1jjvuuEMCID333HOa28vLy6Xk5GQpOjpaam5u9lLrOt7gwYOlzMxMp/ePGTNGMplMUn5+vu22/Px8yWQySaeddlontLDrYT8jYz/DfkaS2M8ounNfw37G89jPCOxr2Newn5Gxn8l0er+n+xmDJElSW1NJ8o65c+di4cKFOP/883HWWWdh9+7dmD9/PiZOnIjly5f7/KShixYtwq233oqMjAw8+eSTDj9vYmJit5w0FABycnLQs2dP3HLLLVi4cKG3m9Mp3njjDdx4440YPHgwrr32WjQ2NuK1115DYWEhvv32W5x++unebmKHOnToEEaNGoXy8nJcccUVmDhxIsrKyvDmm28iJycHixYtwj/+8Q9vN9Oj3n//fdswkQULFqCxsRF33303ACAzMxOzZs2yPXb16tU49dRTkZaWhrlz59qeU1RUhFWrVmH48OGd/wN0Aexn2M84w36m+/UzQPfra9jPdLzu3s8A7Gtc6W59DfsZ9jOd2s+0Pqckb2tubpZeeOEFqV+/flJgYKCUkpIi3XnnnZpvDnzZ7NmzJQBO/02ePNnbTfSa7OxsCYB0yy23eLspneqzzz6Txo8fL4WGhkrh4eHStGnTpJUrV3q7WZ0mKytLuuqqq6TU1FTJ399fMplM0kknnSR99tln3m5ah5g8eXKrfv9Xr14tTZkyRQoLC5PCw8Ol008/Xdq4cWPnN7wLYT/DfsYZ9jPds5+RpO7V17Cf6XjdvZ+RJPY1rnTHvob9DPuZzupnWAlIRERERERERETk43y/zpqIiIiIiIiIiKibYwhIREREW85TYgAADrpJREFURERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISB1Gz169IDBYHD575VXXvF2M8lDNm/eDD8/P8ydO1dz+4oVK2zH25WcnBzb43JyctrcjsrKSsTGxmL8+PGQJKnN2yGiroF9TffCvoaIOhv7me6F/Qx5mr+3G0DU2SZOnIg+ffro3jdo0KBObg11lLlz5yIkJASPPvqoV9sRGRmJBx98EPfeey/ee+89zJ4926vtIaLOwb6me2BfQ0Tewn6me2A/Q57GEJC6neuvvx5XX321t5tBHejTTz/FqlWrcO+99yIhIcHbzcGtt96K559/Hg8++CAuu+wyBAUFebtJRNTB2Nf4PvY1RORN7Gd8H/sZ6ggcDkxEPufll18GAFx33XVeboksODgYM2fORGFhIT7++GNvN4eIiDyAfQ0REXUk9jPUERgCEulQ5trIycnBV199hSlTpiAmJgYGgwErVqywPa68vByPP/44RowYAZPJhNDQUAwdOhRPPfUUzGaz7rabm5vxyiuvYOjQoQgODkZ8fDwuvPBCbN++HUuWLIHBYHD4Vm/evHkwGAyYN2+e7jaVOSFOOeUU3fsLCgpw1113YeDAgQgNDYXJZMLYsWOxcOFCNDc3Ozz+6quvhsFgwJIlS5CdnY1Zs2YhKSkJQUFB6N27Nx555BE0NDQ43X8bN27E7Nmz0bNnTwQHByMmJgbDhw/Hvffei0OHDgEA3nnnHRgMBpxxxhlOt1NQUICAgACEhISgtLTU6ePUNm/ejNWrV2PChAno37+/W89pDeVYtPTPnnJMFy1a5PE2EVHXxL6GfY0z7GuIyBPYz7CfcYb9TPfF4cBELrz44otYuHAhxowZg+nTp6OgoAB+fn4AgF27dmH69Ok4fPgwkpOTMWnSJAQEBGDdunV49NFH8dlnn2HFihWIjIy0bc9qteLiiy/Gl19+icDAQJxyyimIjo7G2rVrMW7cOFx77bUe/xn+/PNPnHfeeSgvL0ePHj0wbdo0NDQ0YN26dZg7dy6++eYbfPvttwgICHB47pYtW3D77bcjOjoakydPRllZGVatWoWnn34aO3fuxBdffOHwnH//+9944IEHYLVa0a9fP/zf//0f6urqkJWVhRdeeAGDBw/G1VdfjZkzZ+L+++/HL7/8gn379qFfv34O23r99dfR3NyMWbNmITY21q2f98svvwQATJ06tXU7yk0jRoxwOgfG3r178ffff8NodPx+ZcSIEYiPj8e6detQWFiI5OTkDmkfEXU97GvY19hjX0NEnsR+hv2MPfYz3ZhE1E1kZmZKAKR33nnH7cf6+flJX331lcP9ZrNZ6t27twRAeuSRR6SGhgbbfbW1tdLll18uAZCuueYazfMWLlwoAZASExOlXbt22W5vamqSbr75ZgmABECaPXu25nmPP/64BEB6/PHHddv7+++/SwCkyZMna24vLCyUYmNjJYPBIL366quSxWKx3VdSUiJNmTJFAiA98cQTmufNnj3b1paHH35Yam5utt23fft2KSwsTAIgrV69WvO8r776SgIgBQcHSx9//LFDO3fu3Kn5uR9++GEJgHTbbbc5PLaxsVFKSkqSAEgbN27U/bn1TJo0SQIgfffdd7r3K/uqpT9/2dnZtsdlZ2e3+LqHDh2SkpOTJQDSwoULdR9z7rnnSgCk999/v8XtEVHXxL6GfY0ksa8hoo7Dfob9jCSxn6G2YwhI3YbSCTr7p+5slMdee+21utt67bXXJADSOeeco3t/dXW1lJCQIPn7+0tlZWW22/v06SMBkF577TWH59TV1dk6CE91mPfff78EQLr11lt1n5eXlycFBARI8fHxktVqtd2udJijR4/W3K646aabJADSP//5T83tI0aMkABIL774ou7r2cvPz5cCAgKkyMhIqaamRnPf0qVLJQDSCSec4Na2FEpnfvDgQd371R2mu/9a6jDLy8ulQYMGSQCke++91+njHnzwQQmAdOedd7bqZyKiroN9jSP2NexriMhz2M84Yj/Dfobcx+HA1O1MnDgRffr0cbh9wIABDrdddNFFutv47rvvAACXXnqp7v3h4eEYM2YMvv/+e6xfvx6nn3468vPzkZWVBQC48sorHZ4THByMSy65BPPnz3f7Z2lJS+1MTU1F3759sWvXLuzfv9+hfP2cc87RnQti4MCBAID8/HzbbUeOHMGWLVtgNBrdnrw2JSUFF110EZYuXYr3338fN910k+0+ZZ6JW2+91a1tAUBtbS1qa2sBwK1Se1dL29fU1OCzzz5rcRuNjY0477zzsGvXLlx22WV47rnnnD5WaVNRUVGL2yWiro19jcC+hn0NEXke+xmB/Qz7GXIfQ0Dqdq6//nqHSWqd6dGjh+7tBw8eBADMmjULs2bNcrmN4uJiAEBeXh4AIC4uDuHh4bqP7dmzp1vtcpfSzpNOOqnFxxYXFzt0mBkZGbqPjYiIAADU19fbbsvNzQUAJCcna+YMacltt92GpUuXYtGiRbYOc9u2bVi5ciUSExOdfmjRU1lZabtsMplafPySJUuc3peTk9NihylJEq6++mr88ccfmDx5sm0SZGeU/VZeXt5i24ioa2Nfo499jRb7GiJqK/Yz+tjPaLGfIXsMAYlcCAkJ0b3darUCAKZPn47ExESX28jMzPR4u5y1x9ntF110EcLCwlxuQ+9bJr3JYD1twoQJGDduHNatW2freJRvzG644QYEBga6va2oqCjb5erqalsH1VEeeOABLF26FIMGDcKXX36JoKAgl49XOvTo6OgObRcRdS3sa9jXuMK+hojai/0M+xlX2M90LwwBidogPT0de/bswXXXXef2tzqpqakAgJKSEtTU1Oh+c5aTk6P7XKXTqK6u1r1fWaJer5379+/H/fffjzFjxrjVzrZSvmErLCxEZWVlq785u/LKK7Fw4UIMHz4c//vf/+Dv768ppXdHaGgowsLCUFtbi9LS0g7tMF999VU8//zzSElJwQ8//KDprJ0pLS0FgBY/ZBERAexr9LCviWrxOexriMhd7GccsZ+JavE57Ge6to6PxIl80JlnngkA+OSTT9x+TlpaGnr16gUA+PDDDx3ub2howLJly3Sfq3S2u3fv1r1fmSfDE+1sq6SkJAwfPhxWqxWLFy9u1XMvueQSJCcn48svv8TTTz+N2tpanH/++UhJSWl1O0aNGgUA2LVrV6uf666vv/4at912G0wmE7777junQwzs7dixAwAwevToDmsbEfkO9jWO2Ne0jH0NEbmL/Ywj9jMtYz/TtTEEJGqDG264AZmZmVi2bBnuv/9+3W+zjhw5gjfffFNz2x133AEAmDdvHvbs2WO73WKx4J577kFBQYHu602ZMgVGoxE//fQT/vjjD9vtkiRh/vz5Tud5uPfeexEVFYWXXnoJL774IhobGx0ek52djQ8++KDFn9kdjz/+OADg4Ycf1m3Trl27dDv9gIAA3HzzzWhubsYLL7wAoHWT56qdeuqpAIA1a9a06fktWbduHS6//HIYjUZ8+umnGDFihNvPVdo0ZcqUDmkbEfkW9jX62Ne4xr6GiNzFfkYf+xnX2M90cd5cmpioM2VmZkoApHfeecftx7paRn3Hjh1Sjx49JABSVFSUdPLJJ0szZ86UzjvvPGnQoEGSwWCQEhMTNc+xWCzSjBkzJABSYGCgdMYZZ0iXXXaZ1LNnTyk4OFi6+eabJQDS7NmzHV7v9ttvlwBIfn5+0imnnCJdcMEFUu/evaWAgADpgQcekABIkydPdnjeH3/8IcXFxUkApISEBGnKlCnSFVdcIZ1zzjlS7969JQDS+PHjNc+ZPXu2y331zjvvOG3n008/LRkMBgmANGDAAOnSSy+Vzj33XNty8862WVRUJAUFBUkApGHDhuk+xh2bNm2SAEjjxo3Tvf/333+XAEgt/fnLzs62PU79PpgyZYoEQOrZs6c0e/Zsp/9a2y4i8g3sa9jXSBL7GiLqOOxn2M9IEvsZajvOCUjURoMHD8a2bdvw3//+F1988QW2bduGNWvWIC4uDmlpabjnnntw/vnna55jNBrx+eefY/78+Xj77bexYsUKhIeHY9KkSfjiiy+wefNmvPbaa7qv9/LLLyMjIwNvvfUWVq9ejfDwcEycOBGffPIJqqqq8K9//Uv3eSeffDJ27tyJhQsX4rvvvsP69evR0NCAhIQEZGRk4Morr8SFF17osf3y0EMPYcqUKZg/fz7+/PNPfP755zCZTEhPT8d9993n9BujhIQEjBgxAmvXrsUtt9zS5tcfOXIkTjzxRKxevRq7d+/GwIED27wtPRaLBYD8bWN2drbTx9mv0qVcb8/PRkTdD/safexrZOxriKi92M/oYz8jYz/jewySJEnebgQRyZYsWYJrrrkGs2fPdrnUuy/at28fBgwYgMjISOTn5yM0NLTN2/r0009x8cUX46677sKLL77owVa2TX19PdLT0xEQEIDs7OwWV9wiIupI7GvY1xARdST2M+xn6PjFOQGJ6Ljw2GOPQZIk3Hzzze3qLAHgoosuwsSJE/H666+jqKjIQy1suwULFqCkpATPPvssO0siIi9iX0NERB2J/Qwd7xgCEpHXfP3117juuuswYcIEfPzxx0hKSsJ9993nkW0vWLAAdXV1ePLJJz2yvbaqrKzEv/71L4wbNw5XXXWVV9tCRNQdsa8hIqKOxH6GuhLOCUhEXrNp0yYsXrwYJpMJU6dOxUsvvYSoqCiPbHvkyJG2uS68KTIyEqWlpd5uBhFRt8W+hoiIOhL7GepKOCcgERERERERERGRj+NwYCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/3/7cKdH8m+83AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lps.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lps.freq, lps.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lps.freq, lps.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb.txt b/_sources/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb.txt new file mode 100644 index 000000000..41881ffa0 --- /dev/null +++ b/_sources/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb.txt @@ -0,0 +1,500 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1f2bd82", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import copy\n", + "from stingray import EventList, AveragedPowerspectrum, AveragedCrossspectrum, Powerspectrum, LombScarglePowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "ev1 = EventList.read(\"nustar_A_src.evt\", fmt=\"ogip\")\n", + "ev2 = EventList.read(\"nustar_B_src.evt\", fmt=\"ogip\")\n", + "\n", + "ev_tot = ev1.join(ev2)\n" + ] + }, + { + "cell_type": "markdown", + "id": "c5a1d8f4", + "metadata": {}, + "source": [ + "# Observations with frequent data gaps\n", + "\n", + "Many X-ray missions are in low-Earth orbits, which means that their target is often occulted by the Earth. Additionally, these satellites can pass through the South-Atlantic Anomaly, where the flux of particles increases the background (and, in some cases, might even damage the detector, so the Science Operations centers often just switch the instruments off for protection).\n", + "\n", + "This observation of an accreting black hole is an example. Here, transparent red stripes indicate occultation and other bad-data time intervals, while data in good time intervals are plotted in blue:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "487d4764", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAGwCAYAAAC99fF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLj0lEQVR4nO2deXwU5f3HP7NnNscmISeBhPsWBEEhaj0wBRGtB7XVH0W0HtWCVmnR0iIqtmKtRatFba2CrSKW1hMRBERRCSDhDCA3hCMHSUg2557z+2Ozm91k9pp9Zmdm9/t+vVbJ7Owzz/PMc3ye7/M834fjeZ4HQRAEQRAE4YdG7ggQBEEQBEEoERJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBdHJHQAm4XC6cPXsWaWlp4DhO7ugQBEEQBBEGPM+jqakJBQUF0GjY231IJAE4e/YsCgsLJQvfDGA+gJyOv88B+AMAi889FwJ4E8BxAE0CYeQBGAvgHgCfdAmza3i3Avg7gDIApwPEqetvAsURXa4LkQQgF8D9AA77XBeKY6jwLgAwBsCfAcwL8sxUAD8B8CCAoxDOs8EAxgH4PYDng4TVNa5CZAAYDuAuAJtDhPU2gNsBHAPwjcD32XC/758DWB9lvAoAXAx3vt8LYE8UYQHCZVNsWOkAJgB4CMB/g9x3KYBlAPYDOB/gnlQA/QHcDWBXkLDuAPA3ANUAtgKwB7k3VFqnAngFgBbA9gBx0wMYBHf+nw0RXqg80wEwAajp+H+wOD4I4Dm46/hhdMdTxmYDuBzB257fAXgS7nzdFyBuvr8L1p558n87gJMC4Qi9x0DhXQngnwB2AqgMEC9bx/+fg7sd8NC17WmEux04DWAHgDaBsDx16X4A/wnwPKHwhRjQEdajAF6OMqxwy344YXXtR6IJ61K40/k/AD8NEVYsOHXqFHr37s08XI48bgONjY3IyMjAqVOnYDabmYfPVVXB+OSTgKmj6Wtrg/XJJ8Hn53vv0f33vzA9+CAcP/gBXIMGdQ+jtBT6sjK0zZkDxxNPdIbJ8wDH+YWnmzsXpn/8A46RI+G68sruYbW2dotDoDgC8F7nk5OF03fqFHSbN6PtH/+Ac+LE7un2iWOo8Lh334W+rg5to0bB8fXXgbIUXFUVDHPnwrBuHRxXXCGcZx9+CP3p02i7+mo4PvwwYFhd0y8Yr/Jy6L/5Bm1/+hMc99wTNCzdoEEw1dTAYTLBdffd3cMqK4N+yxa0LVgAx5w50cVr0ybo9+wB9Hq0vfYaHD/+sfiwBMpFVGFt2gT9kSNou+8+OP7854Bh6f75T5geewyOyy6Da+RI4ecdPgz911+j7eWXg6ZRN2sWTG+/DT4tDY6pU8FnZwuHF0ZadU89BdPixQDHucuYQNy42lpot2yBc/RowGQKGl7IPKuthXbnTrj69QNfUOC+GCCOuttug+mzz+Do2xeu66/vHpanjD3yCHSVlcHbnilTYNq8GY6CArhuuSVkXgVrzzz57xg6FK6Sku5hCbzHQOFp//53mBYvhmPsWLiKi4XjdewYdIcOoW3JkqBtj+PkSZg2bwav18N53XVwCQyKPXUpVHntGmfBd7lqFfQnTqBtyhQ4VqyILqwwy35YYXXpR6IK6/XXobda0ZaVBcexY0HDkhKLxYLCwkI0NDQgPT2defhkSQK8U2xms1kSkYSWFsBgADIy3H87nTCkpQG+z0pOBjgO+pQUICurexhGo/s2o9H9O0+YRiNgtfqH13Gv3mQSDstg6B6HQHH03J+RAXj+7kpDA6DRICUlxT9NQnEMFZ5W606nXu8fVldaWgCdu/gGzLOO75MNhuBh+cY1ULxMJoDjkGwyhQ6rIw16jUY4XklJ7rCSkqKPl8Hg/WdycnLoPAsVllDZFBuW5116ymwgOvI24HsEgLNn3XkWKo0d+cFxHAxmc+DwwklrRz0CgpQxmw3QaqFNSQF0uuDhhcozT1h6ffC2wiedeoMheBkzGkO3PZ6w9Prw2otg7ZknrKQk4bCE3mOg8MJpx3Q6gONCtz2ecgFAk5YWODyEUV67xlnoXbJse8It++GE1bUfiSasjn4zWasNHVYMkGqpDC3cJgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIGKG0+lCS5tV7mgQBEGEBYkkgiBixtV/+AgjnlqPynqL3FEhCIIICYkkgiBiRkWbAQDw3qZymWNCEAQRGhJJBEEQRFxgaWnHx6X7YXc45Y4KESfo5I4AQRAEQbDg5sVrcLRFjztzm/Ck3JEh4gKyJBEEQRBxwdEWPQBg44lWmWNCxAskkgiCIAiCIAQgkUQQRMzh5Y4AQRBEGJBIIghGHDtbi3MNzXJHgyAIgmAELdwmCAZU1lsw8aWtAIAT8kaFIAiCYISslqS+ffuC47hun1mzZgEA2tvbMWvWLGRlZSE1NRXTpk1DdXW1XxgVFRWYOnUqkpOTkZubi7lz58LhcMiRHCKB2fr9KbmjQBAEQTBGVpH03XffobKy0vtZt24dAODWW28FADzyyCP45JNPsHLlSnz11Vc4e/YsbrnlFu/vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAlnSEwn/+WoPvtx9VO5oEARBxIwjVefRanVg36lzckeFIMJCVpGUk5OD/Px872fVqlUYMGAArrzySjQ2NuKNN97A4sWLMXHiRIwdOxZLly7F5s2bsWXLFgDA559/jv379+Ptt9/G6NGjMWXKFDz99NNYsmQJbDabnEkLSk1DM/78TQ3ufPd7uaNCEN1ot9klfwYn+RMIJXKytgk8gC/KDkj6HJ5KGMEIxSzcttlsePvtt/Hzn/8cHMehrKwMdrsdJSUl3nuGDh2KoqIilJaWAgBKS0sxcuRI5OXlee+ZPHkyLBYL9u3bF/BZVqsVFovF7xNLzje3x/R5BBEudZYWXPHnLzHzpU8lfQ7tbktMrLx7GSzvcskcE4IID8WIpA8//BANDQ248847AQBVVVUwGAzIyMjwuy8vLw9VVVXee3wFkud7z3eBWLRoEdLT072fwsJCdgkhCBWzt6IePDh8dVbumBDxRovVARdZeAiVoRiR9MYbb2DKlCkoKCiQ/Fnz5s1DY2Oj93PqlHoW3W4sr8Adf/0ULhqJKQqeTCOi+Kb8OF5euxsul7wZuK7sEG549iPsPV4pazzimbrmziUQVF8ItaAIkXTy5EmsX78e99xzj/dafn4+bDYbGhoa/O6trq5Gfn6+956uu908f3vuEcJoNMJsNvt91MKeGhs2VQIbdtGib0IdnK1vCrhJ4a639+JMqxYOmUXSvSsPY2+DDvcs3cIkvHabHcs37kadpYVJePHAuWar3FEgiIhRhEhaunQpcnNzMXXqVO+1sWPHQq/XY8OGDd5rBw8eREVFBYqLiwEAxcXF2Lt3L2pqarz3rFu3DmazGcOHD49dAmTA0koNjhycrrdg/IIP8OKHm+WOimr4dH8t7nz3e5ytbez2nR3aqMNfV3YI739THnU4AHDeFn18AODhNzbgd2tP48cvfs4kvHigVgUiiQfwTukRLHz3K7mjQigE2UWSy+XC0qVLMXPmTOh0nb4t09PTcffdd2POnDnYuHEjysrKcNddd6G4uBgTJkwAAEyaNAnDhw/HjBkzsHv3bqxduxbz58/HrFmzYDQa5UpSSDiFTcsveHsjrl70Gc430aGQofjv1mOothnw4pbzfteV9k6VyPHqeu+/eYbzLfeuPIw5q06iouZ86JtjxMYKtyA43moQHQbP81i7uwI/ffGzuJher22KTCTZXS4mC/xdLldE+dfq1OLN3eQ5Pxo27TmGEb/7EIs/+FbuqESN7CJp/fr1qKiowM9//vNu373wwgu4/vrrMW3aNFxxxRXIz8/H+++/7/1eq9Vi1apV0Gq1KC4uxs9+9jPccccdWLhwYSyTIBPsOpl/lbei2aVH2fFaZmHGK3ZH9PnOA3C5eOw8RutfWHLqXIPcUWCKpdWKJgeHYy16VNU3yR2dqHC6eNS3hO+Wpd1mxxubDkfdytkdTny88zS2Hye/TFKy88hpPPT6WlTVu3eKP/Kf3Whx6fHS1gZ5I8YA2Y8lmTRpUsBRZVJSEpYsWYIlS5YE/H2fPn2wevVqqaInCUpdtKi0aJ2tbYTJqEdmWrLcUWFKVUMzcgGsPtiIMXJHJoYotdwrFZbWNrk532qDM4L0bD90GlZXFFOfHY86XdsIBzi0RxNWHOF5A9uPVOJihuH++J874YQGJ1/fiI8euxFOPn5M67JbkghCiFa7A5c+/w3G/HGj3FEJi0j6sza7U7qIREmoZDz3328w46+fwumMbvqHo/nJhCLS9UhK0YdV9RZM+/PHeO+rPXJHhQnnmlrBA9hcwXZDgbNDShxtVMiLYwiJJBnw7R8WvLMRP3r2I9ii7HTijTar9B7T7Q4n/vv1XtQ10g6kcHlleyO+rgTe/zbyhdKqsIyQdpOE2qYu9VkNZQHAb/61CWV1Wjz2mXLdxGzacwzXPP0hNuw8EvJem6N7P9PSbsPURR/hj+9tijou6nirkUEiSWb+tbcVexp0+GL3MbmjwoQNO49g1VZpjxxgxYJ3vsRvPq3A1L9EsAMpzjvRcJN3vkX5O5UI5aCGnW1d+d835TjXovzD0u9ZXo6jLXrc815kx1wdPeteg/riR1uwr1GH13eqe92bVJBIUgjtNuVXxlA4XS7c/d5BzP7gmOB2b6Xx+RH3IsMqm/gdSIQ4orUqvfjhZoz83Yf4pvx41HHZ+n2F99+chGPhaKYo1+44EvUUp5x4fCTp0ZmGt7/YiZWb9soVpZD8etVJ1LYr3zZi63CjEel5dZNfcrsxsbSxP6uxwalnHqZckEgimOHrD/BkTYNs8SCUg1RdzItbzqPJpccj7+3yXtOIXOf002XsO+quHdZv39qAHzy7DtXnxY3Wn/qiCsPmr8K+E4GPW1IqbTYnWqzuQaCec/+/zcVj/udnMXd1hbQHKkdZABvs0u1tOna2FnPeWIcTVXVh/8bucKKlzYrXVm/DSx+VRvV8BwMfZUJYWuLrbFLZd7cR4lDilL7Gp19w8SoY9TLMQ1qHHBnHatj4oXEqsB4IseJAO3Kgxc6T9bh2YF9RYdh4LRb+7zu89+sb2EZOYjxTbekmvXdUbuc7x+cOh3I3MkjJ9L9/jUqrAd+Xb0W4+7PHP/kx6h2dlu+bi6P3DcYzbAhbXHqMenpD6BtVBFmSCElgfRbXiap6/Pj5j/HZd5HNu8eKk+csckdB8fgK+3Un2I82XUocORBekZSdGr6D33CnY8+3tEv63qWcfq20usXOOXv40/2+AgkA6hTgALjVrv6lIsEgkURIgpOxSHrgzU3YXqvFA/9T3pl1lfUWvFBaH/rGOEIpW/i7dhqRcPRsHf7vr58xjE1ooq0VCsn2iDjXFLlI8qWlVVgIHDp9DnvONqHGIt30TqTrfGKNQ2C3WqxpkGBNk5IgkaQQPj/WBoeKF2Z2haVI+uea7TgrwS59VjHcdfQso5DkRw22GBYLmJ0uF3ZWtuJws7oWmCq7yxamttm9/T8nrVPQRlLOmpqFp2YPVrmtt65gueLzlZLLdrB1WXYXjzabA//+svvaOXuUdeGyJz7AlpPR7WoLmv9xAIkkBWFVwKiAFSzPmvrDl9VojHK3xJrtB/Hm2jJGMXJz7Gwtnl35NZrjfCQllnan/1qT/5Qe9v7byuvwyD/XiQr3pU+2CF6PZOH21oNnBK9beR0Wrfwa5xoiXzN1svo8Pti8z/2HRD2yUix44eJy8ahric6SFBVRvodop9vCPTeupT2wX7hjVefh4oHSs92ntZxRtrNnrAZUtNHu3mCQSCKY4Ws8Utr6kPv/ewQLN1Zh+yF2TuF+9Ldv8FqZBc+vD+3ELRgtbVbJDjBtaYvMPw3LLrje0ub396rj/o38B0fEOQz9+nD0ZwyebgicL38vs+COV9ZHFJ7DxeO70814ZmMljp31j188HE4bipc+2YL/fdPdwWhDmx1OFw+9VoN0k8iBjoxtSTQ7wHgAXx2oxFVPf9StDLRZwx9YOYKUn0hnH5TVKqsDEkkqQk0FXGkiycPhs9GuHeqUEc0ud6NfHYWfpR2HT2PEU+vx08WfRhmvTuosLbC0tGP5xt0Y8dR6zF0aWYefGAQvnwcskXXoviP6iS9t9fquAdxr1jzYo9RLpdXAopVfh3Uvz/NYs+s4jlZ2bjG3O52oFWElC8aZ2kb8e08zfr3qZLfvPOuRslINklrB6ppapHUlIJJWXouKNoNfGQCAp1ZE792aiA0kklSEb7MerTM+nuex+8gZ2H223zYzbGN+99EBnKqJfntqvLP4010AgO9qo6uKLh5YvKoM3+47jrHPfIkLn16PP65zO1pcedDK1IImFzzP48iZ8H3KBIPxvoKgFjiOoX2OB4e/l1nQYgttheMBHKx3YufZzoXPn+46gylLtjB19trUFjgu4exs+82/N0U9bfTge+UoXrgqqjBiyYGqCIQqS1clIb6vqrfg8Jlz7B7Yway/r8GzYYp7pUEiSSWcZTz623msCve8dwD/92Knhw4nw8b8vMOAR98VXjsSDL7j09iivFGhknG4XDhi0WD6v/cDcHemvm/zx2/uwSufbosozGl//hjP/Ed4xCvHyph2uxOLv6rAjrroneBZnLE7FZ7zdSDGKOfC2nUt0Lk6Op4/5YWNoteERYJHJOUEEUlltRocOBV9x3w+ip2OscDlcmHt9oOi1ruxIpTemvDc1/jhy9uwfONuZs9cv+MwPj3uxGtl6nSTQiJJJVQ2toW+CW7T/t6K6pCV4USDW4REa8EIxrnwouxHQ7s7Xuet0k/Xidk+znHSx2vu0vUYOu8jbNoT/nl+QrHq2h1/VB7ZWp6yOi3+sUN458vfyxqwsfxUTA+tZW39CcWOY5VhD+KDSR+tzzSTUiahG5160WvCumIN4gzSs7OtuyXJP8fa7f5h+Do4VEqeRYPLxePNz3fgF/89gonPrVd8mn639jQ27o5uraWHOf/bxyQcuSCRpBLsfPCRr2dh4NTFG7ClQn4HY2Lp2liyRuzRFbFi7/FKrDxoRTuvwy/eje64DFZJdTpduObpD3Hb4k/8rtdZgfKTNWwewoAV3x5iGt7XJ1rC78yCZPbVf44vD8RdOV4vLLba7U40dQx6stPCH5BsO3QWv/nE50w+EYqijdfB0qqs4zFW7XbvqGxyRbiAPUg9rrVI19Zv2i+8AzRSLCo/x41EkgqwOVxBnZo5XS5c//waXP/sR1E51+vK5n0n8Pz7m5l7z44VLnRvX1//+hh2HjktR3TCYtexzrO52vjoTg0So5GE3vTHWw7gaIseW2q6Nxen6gM7sIq01Jytj24a4qOjdmzYc9w7ZasUWiLtFBXI4TO1eCfAFEygYY1nqi0tSQ+jzn+QF6w9q2jqGqK4t/nFAeUI+K7sOR9B3Q6S/N+vDt/aHCmbKyRwTqdCSCSpgAaBhZG+uqWqvgnn7AaUN7A7iq/VasOvPjyC9w604sDp8NYLxHLqJRQulwv1DQ0AgPrmzhHlkWY9bv7nLkmf3RqFqGSZh5ouU4NiBfTyUnENcbMtsrRYInRXIERlu7szdjiUeVSCgqoIgPDcE1jtDuyuasOLm8+hzhJ+x+l1IpnaWe480qjameZ3rxT54lCYk0MpXr01yoFUMOodBjS2BF8zobDiLAkkkmTg++rIFHpja/dFzH/5ptr7b9YF9ev9FVhd3hl+YyubtQuHTtegNYjTNJY0Nzd73RDsON11wSCH+17xP47i/W/DmzcPZ6dSraVd1DspP14JB8MTW5XVRcSWRPBNxIL5b3+Jg5XB3WL47oBtag1fyIo5s02IeOiIFZOGCCPSGsSfk3oXdUSGdDKUCIiNj0ybCp2NI+WZQgfqHOjh+ywGNfxMbSOmv7UHWTob1kQfXNR8XuHfib741SncIlNcPFz/9x0yxyByr++JLMTigeX723BtswuDEfhdBqv+e09UB2yLvGe2pcngaVtCvt13HK++/SUWNzQjNysrrN888tbX4uuKjJUsaNsfR8doBYMsSSqgQcCSpDaO1bitOXUK3aYb7fqfeMDhdKLZ2b1J0JASUhxiFuW3MzitXdOlMJSeEraKu3gedQF3tqmbu/69FwebdPj2aPiOacvqtKhsEScqPIvfw2HdjsOhb4oAJS2hkAsSSSqgIcR0ly3IFtxY4lKOUTlu2LzvRMyeZQ2ws9DGcAowGEotPSzjxSosMX2XS+TI3/dA4dXbD2PDztAdsdXJw+FyQavhkJEc/sL15hhNx0eDx5t6pH7lxHpbr43AlcrvPjuJqnp2/oiUWidjCYkkFdAY4gDVXWfkc07mged5zFsenvPIxhbpt+ZKcQQCq1GVb8yqmoOP7n/1YXBfJU5I35DtrI+N40WWuyipce+O2Dz53sfL+bObzuG3q0+GPDPM48ojO9UYkdsNJa8ls0VpiQu2cYJla1XTyG61EFmSSCQpHrvThWZr8MrpUsDKEKeLR7XNf8QY6ATtbYfPxiJKTDnf1g67k8c5G9tpuSPN0W0Pb+jYwccCuZtDsdMRQjhc8tcJKREzBhD7fnkB8RpKzFh9RFK0KEU2DX58LRZ/8K3c0YgppJFIJCmeUFYkscgprFpieCQEKw5XKtOlvrVdWQ7ziNig9M6r05IU3hpEZxArosUem/aiviX0zr2XtjZI8uxYvc7In6PwghYDSCQpHCkWbVefFz5qQiyW1na/dQtC+LaBDmhCWscIaQj2nsi0Lkyi54qY9Lc73L/qakkKVPqarIHXVTY7OMnLZvX5JhyrF3GOUgDqYrCkIBBnG6P3N+aBmgQSSYqnMcgJ22I5eDb8XRmh4Hken39fC0sI0XOuS5tR1UgWEDnYH+Qg0f2nIjvbLVFQongMZ7qtW6xjlA4enee55XTZ/t/CR7671QUNTp9nJ2CEOHC6LvRNEVDbJt9mGqEdqmJRXsmPPSSSFE48bP8XoqZJWpEkxcJttSG0UDTY2XhWBlvEpaCq3oL1+9icI5XIsO3wQtevVKMOSfrwpspaQxS9/WeVOd0d7yhxgBBrSCQpHCFHkkpCbB0KZElSapVsj9DJolJRY5v32Z4zaHfFR1MV6bbxQHxztC5oXYnFaw61GzGSRdt2Pni+HK5phi1O6qAQTRLMGAjRZousP1Fhc8Gc+Gh54hgpLEksrSy8yGpU12pXVaPHsrFwOOWz2NQHKU8nG5Tpo8YhKvNj3LzHXH0Gr8OW9u7rUsRaBZrahcorj5qG7q5Hth+t9P5bjKftQFF0uFw4XMN2LaUvctud98XIUlYfoQG/TmKLvxogkaRgHC4XmiPwtqo0GpwGOANsFeZ5HlUW9VRAG0NLRmurMk89anOpb9dhIBJ9BMwy/SebhUMTuvp9XWd7Fe7ONl/aBM4K03Qs9+465SZmXZZSh2VKLa8nLcpwVCwnJJIkpKXNitL9J0Q7SLO0OcAD0GsV/JpC1O79FYEXCp9tELcYs/x4Zeib4og9x6vkjkJAAh34a3Moc32Tmmi3qTsPc0T4SPr6UHW3ayk6dyNzpqFN8LDveEBuSxYRGAX3vurn2j+txu3/2oe3NuwS9XvPzrYMU3QOB6OlslX8OKc1SEMvViTtPFaFLQdO4ssDZ4P6V4kXDtWz6xjanLFpjo+ePB2T58Qza/Z3FwzhUtso7W6wUN06x3HITI7ckiTkgF7PuVDUIxkAsD9Cf2Xhlna52xE1rhVUY5zFQCJJQk61uxuJV7aJ23LvWY8UydlHsSbkmqQgX1c1tsMloqZtP3YOv37/ezQ7uIhPrU90nODQ3MbOj0ogzp1LLHcCYspxV45W1uFodSNqG92Hxtp48c3zmSbpp0mCCZAknabbYbjRMLzADAA4UGnxrq1i2UnL3d+3R/Gu5cLpSoypOPW9GZUTybllHpGULmJExppA8RbbUOk1GticLu9J4ZHAcZ2HTAa+J74M2CzPNWtojsVasPjK/1CcOhf9wtvNFS1w8hz2nFH/dvdwt/6Hy4CcVBi0Glja7ZL4TIqz5oJgCImkGBNoIbMQnu3/rKfbapoiFyYWkR5kA3XteWb3egUxU26xNvMqwVfImdpGdoHFoENItE7HybOzaDolaJZj7QMrSS8uDfYAFhW9VoPBeWkA3NYkQKRDTSJiIumz4hHZRdKZM2fws5/9DFlZWTCZTBg5ciS2b9/u/Z7neSxYsAA9e/aEyWRCSUkJDh8+7BdGfX09pk+fDrPZjIyMDNx9991obu6+PVUNnG/tFCONrR1rkhhPt9XZ2L32/RU1on6Xm5YEADgr+dqJ6LG0ietgWDYtgRr7VnH749mRYGJIrdgdsZ0a4VzsRZlnyk0Sn0mkpgJyvLZF7ijIiqwi6fz587jsssug1+vx2WefYf/+/fjLX/6CzMxM7z3PPfccXnrpJbz22mvYunUrUlJSMHnyZLT7HOw5ffp07Nu3D+vWrcOqVauwadMm3HfffXIkKSShpoE8W2CdLh6WDv8kGabA022e9QtSEyje3x4PbuEItCAyP71DJDX4W6jCOXg31lYKsd7BHTFYDCrGOSHTqUjqXABQNnRF7I7eYPRMT0KGSQ+704UjNeocBKuRRPd2rpPz4X/6059QWFiIpUuXeq/169fP+2+e5/Hiiy9i/vz5uPHGGwEA//rXv5CXl4cPP/wQt912Gw4cOIA1a9bgu+++w7hx4wAAL7/8Mq677jo8//zzKCgo6PZcq9UKq7Vz8arFErtCUN8UwkdOR2vb1G6Hi+eh03BIMQrP77fb7LAGOWaCJY2tVvQW8btWu3BjmZtmBAd3OpvbHUhN0jGb1rI7XThW1wYzz6Z41zSJW+hsd/EQlrfyml9isV6L7RPIXBUtPNism5KDlo7NnRzHYXiBGZuP1mF/ZSOSRIbXbHWg4Xwrmq0ONLc70Gx1YM85Oy5nFuP4oqrJihpLO3LNYnNc3chqSfr4448xbtw43HrrrcjNzcWYMWPw+uuve78/fvw4qqqqUFJS4r2Wnp6O8ePHo7S0FABQWlqKjIwMr0ACgJKSEmg0GmzdulXwuYsWLUJ6err3U1hYKFEKu/P10fNBv29pdVuGPOuR0k2GgJ0az/Mx6z6qG4XFXagdOByETf0Gncbrkdcz5XbuXGCfSqGwOVw4WNWEVbvP4u9fHcWGQ/Wwh1jcHS7VIp1eOpwu70GfftdFVDuWloqYVPpEW5SkAr6tiJ31heXbd/mU2KE93VNup8+3od0R+VPsThfW7qvCf8tOY015Fb45UotdpxpYRTVuSeQ8klUkHTt2DK+++ioGDRqEtWvX4oEHHsBDDz2Et956CwBQVeV2opeXl+f3u7y8PO93VVVVyM3N9ftep9OhR48e3nu6Mm/ePDQ2Nno/p06dYp20bpyocoujUKKC7zBTN4a5/T+YVeBQtQVbj9Whor416jl8sZ00H+TXBekmAJ2Ltx1hOiDsanDaXnEef990FJ+VV+LIuWY4XDzSjGysSDzP45xISxLPA4erlTct4FTAQvS4Q6YsletdchxkMfCZk/Qo7PCZVC/yFB2NhkOGSY/emSYMzU/DuD49GMYwPjlY3RTU5108I+t0m8vlwrhx4/DMM88AAMaMGYPy8nK89tprmDlzpmTPNRqNMBoj9wYbDdvPNKPviPDvZ+EjqcnqROmxOgDu9iw7zegVJpFytNGFa0T8jkPg/qMgw4Tdpxu6rUsKxbE6/8Xe1Y1WOI08Mkx6DMpLw6DcVKRonajcHiCAADidrm62p2arA21RTGnuP2vBBb3SRf/eA8v+6EjVefTq24thiMrDFeLAVKVR1SDuqJpwJZIkOzRlEobDe5pxql5cfnEAbhrdC9yAfn7XD1Yklhf/SMhOMaDCzqP8TCMu6Zcld3RijqyWpJ49e2L48OF+14YNG4aKigoAQH5+PgCgutrf82x1dbX3u/z8fNTU+O+wcjgcqK+v996jRho6vG2nh9r+H6QvSNbyGJKXhrQkPXgA55qs2H26gVkcwyZAY1qQ4Z7jPtdsjcjS1TW4gbkpmD6+D2Ze2heXDcxGrjlJ1LqbM3XdF6FXW6JwvMi5pxLPtyrr4Fi9hl21D+RMVF0SRX6+PVondxRUw8Dc1KiOahIqm5zYg7pbbKhttnb7xBMjCtyDvN2nG2X3TC4HslqSLrvsMhw8eNDv2qFDh9CnTx8A7kXc+fn52LBhA0aPHg3Avch669ateOCBBwAAxcXFaGhoQFlZGcaOHQsA+OKLL+ByuTB+/PjYJYYxnZak4I4kg4kBk5bHlJE9AbgXSFc2tqOyoR0Hj8Z2232gapWWpEeaUYcmqwPVlvawVxCVN+iQ4/P3kLw0QMSJ410RWgR/LopTsHUdYuTAWQsuHZjtvW5zyVrtVIdTBe1yNFE8WdeCU+fbIOUYXexi/fqWIAI/ZkrYP3fdPpNScfyE/FvT/7fjNFoN3a3zU2SIi1T0y05GcmU7WqwOHKlpxpD8NLmjFFNktSQ98sgj2LJlC5555hkcOXIEy5cvxz/+8Q/MmjULgLtiP/zww/jDH/6Ajz/+GHv37sUdd9yBgoIC3HTTTQDclqdrr70W9957L7Zt24Zvv/0Ws2fPxm233Sa4s00NuHgeFsaOJNOS9Bicl4Yrh+SEvpkxwSz9PTM61yXJ7SVbaJAUjSVJp3WnZ3+lxe/YilDewoVQgU7w45RN3LSuEGIHr2rIMxfP4+vD4o9wCbfGiJ1u23Uq+EYTuRjeM/opbBaY9FokG3R+H53s3gfZotNwGNmxZCDaBdxSuIaQGlmHtBdffDE++OADzJs3DwsXLkS/fv3w4osvYvr06d57Hn30UbS0tOC+++5DQ0MDLr/8cqxZswZJSZ3bEd955x3Mnj0b11xzDTQaDaZNm4aXXnpJjiQxobndASfPQ8txSE0K9oq4oJuInE7ln61TkGHCoeomnG1sR5GJXesiTnB170jEbv8H3I2LUadBs9WB0/VtKMpKFh2Wmjhzvg0WPrZr/oRoszsRqxxvarNBjGnl+8om1DZboWN4zhkr2mxO7D9rCeDGQl48U/WhkVYqz5jQB0jzt6xs3nM4wN3qZVTvdHx3oh6VjW2otrQjT6Q7gHU7DmPyuCGMYyctstv9r7/+elx//fUBv+c4DgsXLsTChQsD3tOjRw8sX75ciujJgmf7v9mkhyYK64pLAq+3Ygh2CG5Bh1PJyoY28HkpsYqSIMdrW+FbfVusDrTaHKJnFXQAhuSnYc/pRuyvbIxKJCmvCxXG4XRh3QHxp9ezpMXqiJlIOtXMAxEKHYfThdKjbivS6N7pOL4/8oOwnTzPyNFFd/aeaYQjoK8veZHb6pxopBh1GJyXiu+rmrDrVAMmj8iHmFapTYU75OLMMBgfNERwHInam4rsVCP0Wvdht41WeU2xzU7/6uDxj9QjRXw34ZkWOFLTLOgzKd7YcqzeW35ZIbaMN1uVnd87TzWgyepAmlGHUb3ErfNoEHlkTiicLh6748A3jpX18SUxJtbHyQRjdKH7JIxDVU1osYord8OLckPfpDBIJCmQRq8jyTgQScF8AMDts6RnhzWptlU5DQLQOdXmOWdODHlmI3qkGOBw8VH5TFLD+ppqSzvKKtxrWMTuFhJC7MJtsQ15LGizOfHdcbfl6NKB2aKn2xrb7JL4rzlU3YQWmwMpjPyNycWxc8rzUxYJdgUtmchPT0J+ehKcvNsdgBjUaAAkkaQweIS/s00VhNHB9ezw3aQ4kdSxaDvXLH59DcdxGN7hJTiez0Byunis218NnucxOC8NJs7OLGwxHsoBt48rpbL1eB1sThdyUo0Ymp8mevqI54Gyk2wXV/M8jx0dYY4uzGAadqyRY3Bhd7Ar+5zChsGe8rDntDiRFM3yEbkgkaRAvCIpyp1tSimORyuDr7XwLMJkKZJYrFnwHGwbjSUJcB+lwEE5PpOCrRETy/YT9ahttiJJr8VVQ3LQyssv8JVqSWpss3s7mR8Myom6rO4+1cjUmnT6fBvONVuh02i8u5qEUEr7ojR4Fe7gCpdBuWlIMejQYnOEdRh5V9RYZkgkKQ0eaGwLf01ShdIPreSAfdXBveP2TDeBA9AS4DBcOWi1ObyWiJwofTClGnXok+VelH4gzqxJPIC6Ziu2dUwdXTU4B8kGZUzRKFUkfXfiPFw8jz5ZKVHveDTqODhcLmw/wc6atKNjynR4gRlJeuFl4aE8CvAuZViF5VmWxlAKKEBV+LqP0Go4jOrtFs5ihloaho5sY4X6Yhzn2FyAw8WD4zikJYUWSbYgc9aKWccSoqIbdBpkp8q/ZdwXz1RbZrIBBgaOT4YXdEy5VYoTSYGy0CpigyprE/66A9Vw8jz6ZacoytFcs9UpzXEcUXKs1r1O5nIfB6NirUmeTQV7TjcwEYXnW2w4Xut20jgmiqk2p5PdgCea0tru6lp3pS8P8b7z7oJe6dDGeRp9IZGkMGwdbYs5SQdtlL5TpNscHBmOEIf6Am5/SUqic9E2G/HWPzvF6zNJDIGadjsfuUjKy2C3Mf50C1DV2A6DVoOJQ3MV1UE4eR4tNmVYNLoyvKc5agsl4HZmmJ+eBIeLD2pNClcr7uxwHtk/OwWZQXd1Kk98RgPLUsu0Cigwm1OMOgwWORjSKNAfWChIJCkMl8bdMIW7aDv42asKrGEB6Bm2c7jY4F2PJNJpWld0Wo1irCxGPfvpsMsHZYdl+Yw1Hs/1SkKn4VA8gM0hJByA4v7usPacaYhqsXq7w+HdXDCmKDPovUdCrDNUU9vDGoZGNMUidkG/+iQSiSTF0d6x3zncRdunmuOjRirOkmRha0kClHOUAuv+q3emKegCXzlRoki6oFd6N0EZjfWhqEcyCtJNcLp4r1sBMbS0O+Bw8chJM6J3ZvD6WN8SX4e4sqSySf7NGVIj1uO2XqeM2Y1IIJGkMNo7Fi+nh+NIMkTDytJXjdSYk/QwapUxzmi3O2Fpd3euLKZEPHh8JsUbJcPyFDXN5ovnPSqJC3uzFZQc12mZKj/TiCaRaW7tmOu/qCgz5PtstamnbYk1LDtVKXaiygmJJCJqbI7wLUkNzeJPqFciWQzPbosGjxUp3aQPuLtHDL4+k+IJJfvzskjkkToajAIdRdfF9JEuOO+daUKvDBOcPI/vToizJrkApBh0GJwXelrYxfPqnDuJARzHUNjEl0aCgUQSwYpwOh6xjWFMiaCSK0YkMfKPJMTQOBNJSrdWNirQkiREV8NNbWNknqL9rUni3UxcWJgR1oaRrkf4EJ1oFF4n5IQsSQQzzKbQi2utYewaUxM9kpQxNPXubIvC03YgUlV+zENXlPHGAqPENUnhUN3QEvFvemcmo3dmstvKI5JRjKcCExGlDxzkRK9Vn0iKrxY7TkhL0kOnQqdb0ZKpFJFk8ViSlOW7iRUsfQex7g4+3HkGVocLNocLNocTVpFbhbQdUx5N7Q64eF6VxyGIobh/FlaWBXfeGgiTnmM6vUxEhqXNAXOXmc54k1tarfr6NRJJCiQcT9tqIZJKnpmRgSbJYhIeVocTDR3WBymm24jgnKiL3IISCA3HwcXzaLE6/HaTtduUZ11itfC9V6YJRT2SgYrIf5tqSGSBJL8cWbG9AsaMRvTJSkafrJSQOwyJ2EAiSYFEe2ZbJ/JX/EhQwg6p2mb39t20JD1MUXYaPJQ/HRUtrNP3w+F5MOo0MGi1MOg0MOg0WFF6RFS8UoxanIN7hO4rko5XsT0QVgqi8Yo+oX8WDu/yvxaO9VCFfv6YwdT/o8hmV8NxON9qw/lWG3adaoBWwyE7xQBleFdLXEgkKZB4siQ12jkoxPF3WNR1iKR4nWpTMhx4jCjoviZGz0U+5cYDSDXoAJfbDUAvqGtUHs3wpiDDhMPMYkLEihkTinDKrsOJuhacrG1Bk9WB6iYriSSZIZGkQNJNyt1SHe/UNbN3Iqk01GVfFE+KUQu0dV+8nSjp90UKK60Cj8VTNUadFgMzUzEwNxU8z6O+xYYthyvB17AJX4nnGKoB9a2iSgDiyZKkNs55RBKj40iUSKI0lSkdOwkbVbrDjSVSdJAnqhuYhlffJG7BOQvYSsjoQ+M4DlmpRvTPoL5AbkgkKZB0ZmuSiEjpXLStNEsSy05OXTKphRdnWfW4W7C0K8+hZKyx2tnngYOx8GpoiQ/nuOqqXaFJdAsUiSSFYdBx0DPaJpnA6zCjItWo81oh4hGhNk/sURZKJjXJI5K6pC0BG/19p+rkjkIUSP++9FzQk8LlQwGbWQKh3JixhUSSwjDp1fVK0vXx1+Eoz4oEBGqSWOX+1igORmUF65KUanCLpKZ2B1yuztBd8VdkQ6LgvjYk2hiIJAPYWdoMRlpTGk+oq0dOAJJ00rdmffVsvBGdPt/q3r0WZ+Qo0j8SSweQ/mE1tNqw/6z4oyxYwbozNOm10HAceJ5Hs1VdU25KcIcRDUqNfaB4sYxvklGJ7UdCGlCZQCJJYcTCkmROin4qqcXqwGd7qxjERnnkSXAciS8aRL6lPZqjJkKx9Xi9pOGHS7qmjWl4HNdZ1rtNuRGKI9HXvgihVLGZSJBIUhgmhpYkqSqYi+exprwKLTZ1jc7DRYmeto/WtqOZ0QJk376ovsWK7yvltyIB0kyrmDs2QST8DjfqbWOGUrdYdLUgR0uinFFHIklhmFWwYHjLsTqcOt8KvVaDCzIUuuBRJCa91u1fR0LE9FfH6tvxxjfH8NGuMzhS0wwno4U1pUfrwQMYkJMq6veuGPS+SRAvcDwiydKmLkGvitk2FfaRashWtaBRYwEQgfJ75ATDGIM1SdFwvLYF2zoW+ZYMy8P56tNokDdKTMlONXZbD6KEaYA0owatvDv/j9e2INmgxbCeZlF+pD3pqWlqx+Ea9/q04gFZeP/MOYYxZkcKZxP9W3PHcSS+022sR9RqIJpjTmKFFNUsSeMCr+JxnPLfWvxDlqQ4Rg+2rYOl3Y61+9zrkC7snYEh+fHnMD87VZk7UyYOyMAdxX0xtk8mkg06tNqcKDsZ3RlkW466t4UPyUtDdqoSd/S5iaajMJs61iRFOd3G2idQPBBPOWIwKLPes4SKsDjIkqQ0GNrZWY9CVu+pRLvdiTxzEn4wOFt0OEOSles0TslioUeKAT8YlINLB2TjRG0L9p1tBCI/+xU8gMrGNhyrbQEH94GoAJDOKfe9iKXTkhTddFur1QkziwiFSWpS/Hfa4ZLEST9VqtWq6IBJEVgdTmw9Vg9yUxw5ZElKRIKMKIJNLVVZ2mHUaXHdyJ7QacQXHXNy4A5AJ2LnF0uUKpJ8X4tWw2FAbip+NLqXyMCA0g4r0rCeZmSmuN9HEhd/i5s93uub2+2d67hEjKibrbHNG6OBbaetijVOAYjGh1FmUmJ3cS4Xjz2nG7Ds2xPYURGd5TlSrhbZPCkNsiQRfpypDb7T6doL8iQ9NoWVSBK7jihV4kXbYmFpKT/XbEfFeRs0HIfxHVYkJSBFP55s0EKr4eB08WhudyA9WS8qL5ttsV3Y4gxRDbQK8xBt1toRzoq2YOvLAq0VC1QuUjhryOelJulQ3ySNwE0L8HylTGtV1LVi0+FzqO04jzIzyOBUCtKSdABDJ51ykdgyOw5I0kQuKoLVYScfOLyL+/ZAv2xxu6DUgtqd+IXD9+fc/ogu6JUeteDN0rA8lDRAJynilXi2J3McJ7B4O/JejJX7hXA5URfcZ1QBGmMUk8DkmDu3Ddw6yl9sB9oenm8KZsaObMdUahQL+rsiptYreXfX2n1VeH/nadQ2W2HUaXHV4Bz8bEIR03WqodI/aVQRs2fJCVmSVI5JB7QyHCgFGwUVK8jqoGbEyTB2DbLdxUOr4XBJvx5Rh9W/h5j9ddLj24CbTXqcb7VFtXg71iIplIuHSDtoKaS/3mcdT/GQXsDh6pC/MeoCj8vPWdqg5xgLDwl1DMujTFhzsr4VGmMyRvVOx4T+WUjSa0VZ1/O4ZlHP72OyIT8zPgbUJJJiSH0Ty1G3eMRUlpIiPTSa7k2tJgEsL0og0CsTezDnhb0zkMrAJ1cSw7UzUpUkj9ftxii8btucLrTZnDAxXivki68/KOXaKDrxjSPHceifHNqyo9cFzr99tTYYIioEoW9ut4dZP0QUvpyUQPVH/rdX1CMZl4zsgx4p0U2xpWlCT2kKEYvjtWIFTbfFkDYVe6gOdFpKz8wUJDM0exPCBBK2Ykz+Og2HcX0zo40SALbTk1Kdq9XVoaTYNSOetR1SEetuJVnDtj167a5LmYYXinBe47nW8ESSVsNS/DKsEyKDunZEftQCiXAjq0h68sknwXGc32fo0KHe79vb2zFr1ixkZWUhNTUV06ZNQ3W1v0m3oqICU6dORXJyMnJzczF37lw4HMoUI0pwSggEb1wijSHHcSjQsDkwlwgMy5IzKCsJyQY2RuQUA7tF/Kz9enkQcigpBqlFklIJ5Bqia3vWIy05ZFgs28BwNnm0u8Lr4opErLVUgq3EFKV7hPvHxtKxhTqR3ZI0YsQIVFZWej/ffPON97tHHnkEn3zyCVauXImvvvoKZ8+exS233OL93ul0YurUqbDZbNi8eTPeeustLFu2DAsWLJAjKaFRhkaKmEwu8CJSpQi/eEcfZC1HOGRoOwXC0Fx2Z9Pp9eGPwC/JEbdzUa+NrjtK91qS3Hkg1gdRbXN8WUzDPXtrUErodHezeIh4ZXyEPwrWLkVKTnpKxL8JlHsMzg+XjK5x/u2tP4jZs3sa1Vl/ZBdJOp0O+fn53k92tttJYWNjI9544w0sXrwYEydOxNixY7F06VJs3rwZW7ZsAQB8/vnn2L9/P95++22MHj0aU6ZMwdNPP40lS5bAZlPeCwlHUASavjAzbBCCWpIE4miMgTM3IjjmZGFhE+6hsI9PGYgfJR/CQG0d9Frhat8rTVpXc//59Q2ifpeR1F2IpWrCtwp5vG43Wx1wuFzQdaSfA7Dql+PDDieWlqRoxx7GLj6vopkW1Wo4aIWsNhKMj6x8+F0SywNWWQ72itI4yayi4SDns4MxIFOdrixlF0mHDx9GQUEB+vfvj+nTp6OiogIAUFZWBrvdjpKSEu+9Q4cORVFREUpLSwEApaWlGDlyJPLy8rz3TJ48GRaLBfv27Qv4TKvVCovF4veJBfK6SQyPWNiFyPrEjnA7Cg5AUY/go+X0ZAOzjqevRthxXVoE4iYYpfOvDftek14LXcemg+Z2h7f8acEjLzP8o3Xqmq1wiSi7ozLjb5CRYeD9/BpxHJeQZ+IJoeE4Zo5ZU0RYPZXgmmDe9SORm+E/halW9yqyiqTx48dj2bJlWLNmDV599VUcP34cP/jBD9DU1ISqqioYDAZkZGT4/SYvLw9VVe7zw6qqqvwEkud7z3eBWLRoEdLT072fwsJCtgkLgFLEgVLiQURPepgehcN943pGUj6Vs8LEqKMQalyTIlgLxXGc3+Jta8eOJ0cE0ztaDQeHi0djhP42kjgHPn7sxoh+E4gJuS7cNiwJswdE7iMp2v6pZ5d1hwYtpwinieYwHEqGi+f4E6Om0xJj4JwRW2bCaV//+ZPBOPbMlJD3ZaaakMZwY4yei81Q/aoLB6Ao139zyLi+0bsckQNZRdKUKVNw6623YtSoUZg8eTJWr16NhoYG/Oc//5H0ufPmzUNjY6P3c+rUKUmf5yHUSEsDXvbzA6Ru+AZr5TlpXmi6oIfOhom91Tm68dD1eBglWS0MCvIK7Vm83dhuR+mx2oh/n9yx9T/SKbdL8v0XqGRzLWH9TqgaZqca8OzMa3BBYeSdTZ459KLqYAidn+br/qNnptk/0jESUKmclZmw93jQNvo0CZ/OLsbLPx7CJHxfjHotNBqNn9uHQKh59/Dm31yO6/pqce+YNMy+PvypbSUh+3SbLxkZGRg8eDCOHDmC/Px82Gw2NDQ0+N1TXV2N/Px8AEB+fn633W6evz33CGE0GmE2m/0+aqWFscd9sSbzcI8T6aNtEBV+tPzjp8P8/tbBiR1/uBmD88KfbgnGMLMyzj37ycXx4eWWNWafxdstDn9h/P7dF4b8vcenVKSLt7uOecIfyXevh0KNddi1tUs8bhnEYHu4T5hZ6Slhx4XlWiIAMDBeM3n1iJ4oMtnw1DU9MahXDq4dx14kqXXqKVIKstPxyv3X4vc/vQLaAGshlY6iYt3c3IyjR4+iZ8+eGDt2LPR6PTZs2OD9/uDBg6ioqEBxcTEAoLi4GHv37kVNTY33nnXr1sFsNmP48OExj3+kDErt3rFGWnVsAgsdjSFG8EGtRSLbL1MgR0oMYLFw/JoxA6OMQ3ARFO0OLFZwitiY7E8PoxMLS3oCEHvESPR4HEoKuQG4aFBvXFkQ/PedIilGi7eD1EMWHeziu38YdRgejBFO4WjBI1sTnkVNDnLNKdj0xM2Y+cOLvNeenxr+4IPjYlcLI3bZIkks4htZRdJvfvMbfPXVVzhx4gQ2b96Mm2++GVqtFrfffjvS09Nx9913Y86cOdi4cSPKyspw1113obi4GBMmTAAATJo0CcOHD8eMGTOwe/durF27FvPnz8esWbNgNCrzNHdfPnl0qt/fGsYu+TmN8OtVwFKCgHACFqmtv5+E3knympxzNK1BF0ROHhHYcqkE5FyHNu3igbij5KLQNwaCQcve1Q1AV96cNQX/uXMkrgkw/ZqaFFuRxPptSfH6u5apcJ/BccCMi3uyj5CE/PgHIyO6P1SR9ejcWIsWjU/76hm4EMGRVSSdPn0at99+O4YMGYKf/OQnyMrKwpYtW5CTkwMAeOGFF3D99ddj2rRpuOKKK5Cfn4/333/f+3utVotVq1ZBq9WiuLgYP/vZz3DHHXdg4cKFciUpKF0bka6LT2M3+gjcmgl1prGsyELPykg1ITclco+4nu3xQmtjPM+54+pRYceL4wJblPrkmLHl0R8gJ4yzjkJZ+rqSgsgEolBHr4RFtmIJt/zdOSrw7r2uXre7otVqcMnQIjwydYzg9ynGjjVNbXbYHGrYp+rP95XdF3sPzfS4QhCxdkxh5SlFG/u1eIGywLcNTdMJ523XnV/h8vWc6Lyap3Ssb7ok1xVy4NJfWxfVs+IFWUXSihUrcPbsWVitVpw+fRorVqzAgAEDvN8nJSVhyZIlqK+vR0tLC95///1ua4369OmD1atXo7W1FefOncPzzz8PnU7B3rwUgG+H+dG9Y3DHBcmC30XK1UXSucG/qDA94t+YOhqE/h3+Of778+6CqCA78nADkd/D7GcNDJSVGbrwRc9Pk/ehpzYyj+ZvzL4O+54o8bt2/fihAe6OLYEanEjXqWgFzhF88v+uwkCN8MYAz8LtFpsDLj6w7LqgX89ueccBSNJyXi/ldS3BrUlXCAzQhyS3wMy1I1UbWJBE6z05GA3W7sLutXsn4nJzHXJE+mDzvDFPbqYatTB1HHUi8HrijzAay7H9c/CToUZ8cM+F+O0P3IP/8TkuDOqVE/Zjkjj3PsyiFCd6ZaejyOTfftwyyOBXdkJasQBcOKRf0Hv2zL8al+hPA1CcHo45ilqTRMS+QF44oMCvVkXz/HsnjcHXcy7FLyRwdf/Yjy+P+Deewm3q6NzGDe509ZCkEen9OUCNcYU4td0XoQ4+EJ5T0yOdLksx+U83m4yxdeSWk5sreL1femcGTuzFoafRhvG6ExF3qhqNBseemYIBKf6WvUDONZP0Gq8TTWeIbqRr3nnITnUPAmqbgovc+dMu6Xbt3/dfhSmGg0HffQZDh7HhkJORil9PGQmtyNPsuxZJjuNQiHoGMYsfUgwGPHdnCcYM7I37p16CY89MwXt+TlXDcDAMHjrOhd/eOA4ajQZfPn4jCjq8V1/aS4/Fd/8Q+/54A2YMdu/2y9WEtmaHWtcWqA4kIiSSCL+tvNGuXSnMzcQ8ka7ugz072OnhkfDn64pQYLTh1f8LvaNJiJ+M7SXsfVgkeQZlb+8dktZ9evGpa3riEt0p9AngMBJwT4UL4ds2v/ngdSh96mboQnQUgZpzjUYTtrjiOM5rTQqHq3oB6Zo2v2fnpLk7jlDrkgKV43DXWwe0qkVhnWFt2An0xhLBgORBzAJ6TZd1oikifIlpNBp8+HAJ5l+Vh5fvKfFee+DaMbje+D1SDOK79QKjDX+c1Cui37Derag0SCQlIF3bcF3InoZlJQgvrNSOuXwWfow0Ph32rVeMxOanbsblFwQ3NweiMDcTy6aP6Hbd44l5YmF4U70ceJT0NWDzEzciX8FCKTe1u7CY+cOLMGloj5g5pmPlO8xzPEk4LHtwKvpy/laR7NTwRJIv3gW6Hf8IdxDCfOE2gzBMXdbGedLCaje7rxUwUY5CenJyEXpqLOilicxBaG5mGu65dpyfR+5odz1q4MLmp27G9ImjI/qdUaQlUi2QSIohTqcyFnx2baiT9J2dh1LGBL0yk/HOjOF4/YHwj58IRHpK5IdXRoonS//v8iFIDsNBHAAM7tmjm++QTK30gilYR91D0+r391/uuELwvkg7/WhIMfhbpa6KbKDrxbPDTSxZnum2ZmvY6Y6k2wo1Ii/sIW6xLyuW3DwAF2d3tmFdY8vS9881fU2yOZ6NJcMKc3Cl4Th6JKvzXDMg/q2HJJISkK6N25SxnYvlu60zAM90QWk61x7WfZxGg8tG9GPigKyriVsKfDtNITcG4fL2vcWRPtjvz2AdVchOjOeR6uPd16y1IzeCs83CQUyD2isrDZmaNmjhwuPXDsSbszqPcxiSawo7nEim24TokWIAx3GwOlxotko7enb6rHH73dU9cW0fLR6+cULYv5fCypeWbESfHp0HLbPWx77BcXBbruK9A44HOPDY9pjwYCoeIJEkMx7/Pz0YOFfzHB2QEkqIdGnceph9d7d1fvnq7aOwYIyT6YGJOta+oJiGFh7jhxYhW29Dv+ROQeHd6RPlaHpE33zMvyoPOjjx5DXR+TG5bZi7Q5txQXRHUiiBdK4dOq0GPXuk+YneRT+7ErcOMeKdGaGdx0Yy3SaETqPxjviDed7ukdaZ33qRIt/uY3W++dIReO2Ba73r8sIpY+k6B8JaFBxVeeW7/J8dkUbr5gvC3y1GsIf1YEpJ0F55mfA49Xpv9tVYun43hp2K/NDKrnz0y2Ks/PYAcjcEF1zhOtzW67RIMii3iOjhglYT+wlCg16HrU/eCI4D+v/uM/EBeaasuly+59pxuOuHLmi1Gry88b+ig3925jX4o9PF9DiAH/WPrjywPo0hLTkJf76rJPSNiN6SBABZqUbUtdhQ22xFv2zhadwcHx84Bp24vLdG6YtJK5HXZyFRJcVzXK7I0j957EBgY2zXxsSLlavIZENFmwGXCG9ITXjIkhRDeJ6HocMM/uvL3f6eemVnYP5tV3p9sETDkMJczL/typC7r3qkBPZn5GtC913PLafH5kCkadpj0lAJpV2r1fhZNFjnDythE0046fruaXrpvsnRREdWzFGuSQJ8Fm83hbd4W6wwszuVV9+6IuV0W6RoNRpM7cdmB2y4GPWxfZ5U/PehEjx6eTb+8YvOo2oS5Wy5cCCRFEN4ANqO6ab0lCS/72JZKNOTDeitacRvRgb3tKt0h3AuBRXfcYNEriZWID8tbMbAVDtemRn+Ghg1YNRpYIhSfOakeRZvB19g/8tx6RhmtuO30yL3kMyDg431Jo8gDjRFB8k8xE4U3vTEFbmZafjl9eNh7tInEW6UO5cShyjJGJPEOVCU093po28UNRzHVLxdkGZFmBu/wqLBFftK3TU/vp5zKRpb2tE3v4fg9+Fw14ReeHbTOYzO7D5dIMeI7sphvfCbH/1IkrDlPICX4ziYTfqozl/L6rAknW+1weFyBWxAH/3x5XhU9FOAVjtbkdTucxA2izfA81DOVliCkBASSQlMqA5Yw6iDNmlccDmBIantQGD/g6qkMDcThaFvC8r9112Cq0fWYGBBNpM4EYGJViSlGXUw6DSwOVw432JHIi8XJo1EJALKma9IAPQiF3FKja8U8rV20bR07BhSmMtkHRK9s+CYk6JdeM4hR4RTSSURTRnx/S0vcI2IDJaW4lj6LhPCs1O7XzLD6QIFoMxeO04x6kIdwCAPvnFqtXYW8GgqsKBvpSjbAwMn4rTyCNCJOQ2dUBXROpQExHneVhJq0DRi1kNe0p+2Z8nJu7+8CneMTMY7v7xa7qgwhUSSTGgibAVi1bCdPt/pcTma6bZZl+YBgHc3HxB9GqQ+I0jMOUqJBIsjYsTAcmTMxg1AeIu3lQrrDRmsgov2Lc+4ZjR+d2UuPrhH3LmMkRDv55WJoTA3EwunX42C7HS5o8IUWpOkNAJ0CB5HkT01Tcwf6dvI+Z5mH41ISuk4dV6nQZyf7OOP3K4SLhks3S67kb0zog5D7qkZ5m4A8sP3+M2KaKdoUvTix8btNre1tdYKpDncNVuK45bEJFGj0eC+KRczj4sQRdqGmDyHkB+yJMWaKPpQDkAuZ2EWlZDPi6It9goshppBDdMEcqHjOPz66iIMkHDxdyQCMNC9vdLl3WYcrddtoFMktdgcaIvS6aMcpOrF16Svjjd7/11bW8ciOj5wAf5NsEDuAZxaIZEUQ/zP95IenT66UXM0liQhjUQOyqSD44ABPbPkjkZIFv7fD3BlAfDn64pkeb5RF70DQINO47VINbSym3ILt3pE29klG8TXQ73Pur1mp7v7kMaztwSBMiQV6lyP5oHa4vCh6bYY085rIfVJWpoOcZSSHPmTuvpJEh0HgYUPkZ2Irk7M5u6+p4hO0pKT8NZDU2WNg1EbfenKTjXC0mZHQ6sd0Z2wF3sMPjox0s7Sdy1Okyuw5/5oCSdW+T17wlldDZ0u9t1YHy1bXyZk5VEuZEmKIe0+c/fHq1ibqjtRQkcthdNANQinvLw8uaMQkHA7xHDuU/NINCfF3amadeKnynI6Fm+Ha0lSc375wvvUQhvkPZZDp3U/3/d4oFgRH2+TCAcSSTHk5PlOE21za7uMMQmMnyUpim0wXp8dEOdPxWSQbpRKJDYpUUw3eej0vB37HZHRCi72Rgv2VpBo05ilU+fOw2iIFyGuNEgkxZBjdW3efyvJuBpoWi2a6TZtlPuM5ajwoQ4GZg01avKQqo9+LY1n8XZjm119UyVRlLtgKVVSee4eE/KBRoiDRJLqib6Bdvk08v5rksSH6eiYWmx3Kb+I3XeBDoXaBmTpE2/0mYgUputh5qzINooXxRnJemg1HBwuHg6XNCLJACcGGmK3mzUceIYTTSPSpXMOIoVeG5jq42hXUcNc9ihJ8MqN8nuwOCXS0ae2Y/69X//+ftc1ApU10gLuCtDIR1NPPi8/I/7HAZCq2v685EJcpj8JXRhrGxK58SjMkn+tGwuSdByKNOdh1osXSRqOQ1aK25pkk8gNQDJnh46ToDOOIkiWsfngN1MDOn5krTtZ1NoReVJvuSGUCIkkhRCq89V37FgzJvn7mWFyorf/Rn3vvzQcJ1oUCI2uo45r4uoTWVlY0hO3DjFi2uUj5I6KosjuWLxtk8CZIhD76d9w8K3Vnk2CYqulQa/DmIG9o42SIFI0FYN7xpcnaSI8SCTJhJKWMTh9BI2fOzcWziSJqFCC5eqOkovw57tKZNlFpGSy0zosSfZOMcPy/D8NJ5FI8ilSkZevzvtzk927BKXYgh9t+9g1WSymCf/vypFRh0GoD2r1YkhOsjKzOzO182iFnmmdDiij8pMk8NNoO/x4XwdAqIt0o7s+t9k7hZGeoUjSSlXeGU235ad1iCQN+3heUNTpGFXLRISxbXvlH7oQsUKZvXac8PCETBSZOhcD6x1tQe4OH9Zm+LTkzik8rdZ/uk0sWoHfKr1hUd0uJUJW7G3NoW+KAiVOt/nSJ12PQk0DCpLY7xy7sXh4VL9XelvjQQmWYiI4JJIk5OGbLsWmJ26WOxphYdK4d5r47nSjKTOCkA+hTRlMiKJa+05bcRyQzrVDy3BxOQceA7TSOdoNRDgDJBcNohISEkkyoQarRVQaSQJ9lZOk/DwjCFboAogkX+tDrNsRoaextIYY4GTSdCTi8I6sUtJAIkmFSNEseqqXb5sbTaUT+mW0lfhnlxRG9ftYw/Q9BeoMVSC24xXB8hxVEfd/l1JNt/1oUIok4UZCoLbAwHWfuhO1MFwKvcAH/COuUcOAXkrogNtY4lfWlKn6WR1LIjxVF11lM+rlPSsqHNQ8mkv0xlBuupYcDWORxAHor62Htoc+5L2BYOlMUgiDz8L3JJN7Q4lJxEHdUuA73RasmpvNZvLvHUeQJSmW+FSsXr0K5ItHEHz7SVZrkjzOKltaWpiEFw7U4RNywFJCsFzrAwB6DR/VOqdYDAAMXKcXbnO6eL9EUsQ01WT0/lsfRMCqeaBEdIdEkkzodErLet7nv26iEUlpSZ1GSk+YTRZpdwMRIfAcOhxCQFIjrwxYT7fpGbzW8dluG0kSpDlSxGNJUmIZNBn1+OdPBuPXo3jopfJhRSgOpfXUCQOnuOk2d3xcPNflijimXzEsyvgkAArsCIjwieTtie30oxULKZrO88b0DPwZ/fbGi3C1/ij6JLFxZ9IVA6OJKqlqVslFg/CD4dJ4CSeUCYkkwg8n11kktFrxxcOod1uS/B1ARtdIS6UpQnVENHXXHS5MqxQhDiE/Y2LQcQL/9gk7UhGm02qQp22GPoq2IRhCC7cJQk5ElfQdO3Zg79693r8/+ugj3HTTTfjd734Hm03cSerPPvssOI7Dww8/7L3W3t6OWbNmISsrC6mpqZg2bRqqq6v9fldRUYGpU6ciOTkZubm5mDt3LhwO6U6XZoVSbQiNbe5GKkvjP1KMtDMU3N0mNlLeOEQZAEGwREJLoEECDcLCkhQ2IisrK6/6ZKQlWCGqKv7iF7/AoUOHAADHjh3DbbfdhuTkZKxcuRKPPvpoxOF99913+Pvf/45Ro0b5XX/kkUfwySefYOXKlfjqq69w9uxZ3HLLLd7vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAjHJiim9MpJC3xQAaVwAuENtsrnn2pMUOKLTKuDsMCYHCpPaI0Kg07Lp5X1DkXoZpBLXESUSLPOf3mUnoqrNoUOHMHr0aADAypUrccUVV2D58uVYtmwZ/ve//0UUVnNzM6ZPn47XX38dmZmZ3uuNjY144403sHjxYkycOBFjx47F0qVLsXnzZmzZsgUA8Pnnn2P//v14++23MXr0aEyZMgVPP/00lixZItqiJTWDdA3I45oxNM/fV0kkhdIo4QZTT/dt7NhlwrSyRBnUDeOHsIkHQTBAym7EIIG3Cz2D3XLUeSofGoSxRZRI4nkeLpfb4rB+/Xpcd911AIDCwkLU1tZGFNasWbMwdepUlJSU+F0vKyuD3W73uz506FAUFRWhtLQUAFBaWoqRI0ciLy/Pe8/kyZNhsViwb9++gM+0Wq2wWCx+n1hh0tiRprFGFcavRuuRybWhl7aJUaz80cEJHdPtx2waVr1O+X6SCIIFuiA+ysQKFcVtqO2Gf5ujdDmmZjFCYjd8RFWbcePG4Q9/+AP+/e9/46uvvsLUqVMBAMePH/cTLKFYsWIFduzYgUWLFnX7rqqqCgaDARkZGX7X8/LyUFVV5b2n6/M8f3vuEWLRokVIT0/3fgoL1eXJecKQAkw2HkKeWfyUXTBMHIM1XRIccJuIZ8lRY6YuUrnoBkAe9BIIGgNjv0usyeTaJQubFoQTYhFVFV944QXs2LEDs2fPxu9//3sMHDgQAPDf//4Xl156aVhhnDp1Cr/61a/wzjvvIClJms4+EPPmzUNjY6P3c+rUqZg+X+kkcfbQN4WAunYikUjXWJHK2fBgcb6o33e1SuijXJMkZOVgaUmSworCss3oOrYwIvo2TQpoEKR8RB1LcuGFF/rtbvPw5z//OexzdsrKylBTU4OLLrrIe83pdGLTpk3429/+hrVr18Jms6GhocHPmlRdXY38fHdDlJ+fj23btvmF69n95rlHCKPRCKPRGPB7qVBLdTBJ5CiOIOKVLJMGnK0J+hwzk/CCTbdFgm8oMd3dFgCW4ipYWKfaDMyeQyQ2osYW/fv3R11dXbfr7e3tGDx4cFhhXHPNNdi7dy927drl/YwbNw7Tp0/3/luv12PDhg3e3xw8eBAVFRUoLi4GABQXF2Pv3r2oqanx3rNu3TqYzWYMHz5cTNIIAEk06iKIkPiWRgPjoinFdJtnnSHVIoIIH1GWpBMnTsDp7D7Ha7Vacfr06bDCSEtLwwUXXOB3LSUlBVlZWd7rd999N+bMmYMePXrAbDbjwQcfRHFxMSZMmAAAmDRpEoYPH44ZM2bgueeeQ1VVFebPn49Zs2bJYimKhEAdvtyLAQ0ajvH8va/nE/lHsgTBCpdPcdZreaZDC72GY7qHlQOg5ZCwB68qfs06oVgiEkkff/yx999r165Fus8BhE6nExs2bEC/fv2YRe6FF16ARqPBtGnTYLVaMXnyZLzyyive77VaLVatWoUHHngAxcXFSElJwcyZM7Fw4UJmcVAiUlhUPCFmmDQAg/WTUhh9EnHhNqFcHD4DGlGjzSDoNWwFjV6jvIOQYos6B2hyD5qJCOv2TTfdBMDdSc+cOdPvO71ej759++Ivf/mL6Mh8+eWXfn8nJSVhyZIlWLJkScDf9OnTB6tXrxb9zFhi0HFgvdwnU9OOJqcevTSNTMJLN2oZiaTAu9sCVfx4aBCUPCUYbsyUnAYlkWXSwsy1w8g50MZ6uk3LsaiGXgysnFP6lA3W9VX9tV9eqN5KQ0QiyeMbqV+/fvjuu++QnZ0tSaTijQm6k0jlrBhZWIATx9mIGQ/D8lNx9kwNHrg4g0l4GUlatLGNIhzQQAsn+AQfy3aFGjV1w3EcCjQWGDkn2nyusSBJy4GlF7RonFPGavAS6EiSeBg8hSIR0qhWRE3VHj9+nARSBFzeNxX5mmboJDhWgwOQxDlgjNLRYqbODg48slPYOmz0rfrNruh2nJCmIBKFYNv1xQgxKTx4s0aJRyERhOip9A0bNmDDhg2oqanxWpg8vPnmm1FHjAgNy9HH5PRq9NOeR5K2N5PwhJpx1mMlDbPDMEl9EdISaRkLVrLF1Pto/S5JyY8yK9GDa0Pfgp6oqmwBoOw6qeS4EewRJZKeeuopLFy4EOPGjUPPnj2p0MQBWg3HTHQEonfvXkBVg+jfa7pY4gwsPINHCJV0N1LU+ZTUVOZhKo1wBQ6r3PWEY/QRSUprr8f2zUIPTSsYuYYiCKaIEkmvvfYali1bhhkzZrCOT1wSi0ZJaQ1fi80lcFVZcSSUQf9Bg4C1a6HX6+WOingYWHW1cEHPuWDibEgzGVDJIFoelGxJItRNrE/MiDWiFsnYbLawjx8hEhO7U0gkEYR6SJbBspXC2ZCjaWU26NFp3PUwTa9ckaS0AR4RHt73JsFaWyUhKnX33HMPli9fzjouCY1Smgkpd1mwDlkpeUbEJ/0Z+nxjSSSioq+xDb00jchlvCFDfdDuMUIcoqbb2tvb8Y9//APr16/HqFGjupnJFy9ezCRyhPIJ6PMoxvFIVCifpSMeLBycxr37NVBa/PwehRNekDyJNCyCLfFQXpWIKJG0Z88ejB49GgBQXl7u9x29KOkJlceJ8g7YHp+iTBLlXaqRRFxrSBCJhiiRtHHjRtbxIGSGfWPcGV6m1gabk8eITOBQFbsnpHMsfRITRPxBEkvZkAhWPqyPHCKIbvQ2tMHlbEM142URUrssIAi5kGJtoCdE6pgJInxEiaSrr746aEX74osvREcoHknERoknAcOUWBxbQEcjRI9S63qiv1sNaLctIQ5RIsmzHsmD3W7Hrl27UF5e3u3gWyJBSew2WdUotaMnIkdN71KqJsMIB7LSTADUlR+siVQoJ3Je+SJKJL3wwguC15988kk0NzdHFSFCGURbQUgjhZEHMW6EqNGLEMqvuKBAa4GGj29fPlJCVkiG/OxnP6Nz24KghsLGKoaJ2iGrId1qKIexQA3viogeWrvYHSr54cNUJJWWlsa9i/J4hXWHMSw/FWauHSbYJXtGrCBRQSgJtdYjuaDcIqJB1HTbLbfc4vc3z/OorKzE9u3b8fjjjzOJGKEsIhUKeq0GUwwH0UtrAWCSJlIEoRASRUZLIdBI9LHBk480qGOLKJGUnp7u97dGo8GQIUOwcOFCTJo0iUnEiMCopVFRSTQjyk+15D2hLJRabhKm7IeIOwkLIhCiRNLSpUtZx4MgCBWh6g4zkRB4T/TuooPyL7GIyplkWVkZDhw4AAAYMWIExowZwyRS8UYiVqpETDNBJAq+lheq60Q8I0ok1dTU4LbbbsOXX36JjIwMAEBDQwOuvvpqrFixAjk5OSzjmBjI3NCEcwCmWMiUHb/QuyUIIp4RtbvtwQcfRFNTE/bt24f6+nrU19ejvLwcFosFDz30EOs4xiU0+iIIN2qtC1LGm8QnQSgDUZakNWvWYP369Rg2bJj32vDhw7FkyRJauK1yErlxTuS0E/FJKCFHZZ4ggiPKkuRyuaDX67td1+v1cLnojBxCGLVaDOSE8kxd0PsiiPhClEiaOHEifvWrX+Hs2bPea2fOnMEjjzyCa665hlnkCHFQM00QhC+BLEaRijrf+7uGqESBaIBT7igERYl5RvgjSiT97W9/g8ViQd++fTFgwAAMGDAA/fr1g8Viwcsvv8w6joQKocpPEMrCI5QSqW4aOWWLJJYk0nuNJaLWJBUWFmLHjh1Yv349vv/+ewDAsGHDUFJSwjRyCYlMawSoghEe4r0sJNI6HDW9SZbv5f961sHMtSNdY4PCjUmKJd7bgXCJyJL0xRdfYPjw4bBYLOA4Dj/84Q/x4IMP4sEHH8TFF1+MESNG4Ouvv5YqrqqFdWFTW+FNpE4pEmL9FtVWbghCLCOLspCraYEWtEaWiI6IRNKLL76Ie++9F2azudt36enp+MUvfoHFixczixxBdCWJc8gdBSJRUKio7NWrl9xRUAQ0+CJiQUQiaffu3bj22msDfj9p0iSUlZVFHSmCCES/NGU3jGStIaRm0KBBckdBUVCNI6QkIpFUXV0tuPXfg06nw7lz56KOVLzCeuSj5JGUVGLhhlE9AQBmrl2S8ENBDXLsUXI5lwMS4pFDOUaIJSKR1KtXL5SXlwf8fs+ePejZs2fUkSIiR6jhjKRr8fxeyg6JReN+/3UX46aUQ/ih4TCDGLlRc6dD8oEISoiyLVXZF9P2EIQSiUgkXXfddXj88cfR3t59FN/W1oYnnngC119/PbPIxSU0Ko4KjUaDMUU9oOdoQSYRvyh1sEKCJjRk+YwvInIBMH/+fLz//vsYPHgwZs+ejSFDhgAAvv/+eyxZsgROpxO///3vJYkoQUQCNVTyQvnvD4kLQmqojElDRCIpLy8PmzdvxgMPPIB58+b5OSebPHkylixZgry8PEkiGu9Q8SYSnXiQVdRRKQMp34PS3zENUNgSscftPn36YPXq1aitrcXWrVuxZcsW1NbWYvXq1ejXr19EYb366qsYNWoUzGYzzGYziouL8dlnn3m/b29vx6xZs5CVlYXU1FRMmzYN1dXVfmFUVFRg6tSpSE5ORm5uLubOnQuHg7aJs0Jsg+B3fAFVWoIAEPu6oNTuXKnxIoiuiPK4DQCZmZm4+OKLo3p479698eyzz2LQoEHgeR5vvfUWbrzxRuzcuRMjRozAI488gk8//RQrV65Eeno6Zs+ejVtuuQXffvstAMDpdGLq1KnIz8/H5s2bUVlZiTvuuAN6vR7PPPNMVHFTMkofyRBEJFBplh4aqBC+UJ0LH9EiiQU33HCD399//OMf8eqrr2LLli3o3bs33njjDSxfvhwTJ04EACxduhTDhg3Dli1bMGHCBHz++efYv38/1q9fj7y8PIwePRpPP/00HnvsMTz55JMwGAxyJEuVxEJ4kbiLnFjmGXWkhJKg9oJQAqIOuJUCp9OJFStWoKWlBcXFxSgrK4Pdbvc7D27o0KEoKipCaWkpAKC0tBQjR470Wwc1efJkWCwW7Nu3L+CzrFYrLBaL34cgCIKQD0l39EkWMhHvyC6S9u7di9TUVBiNRtx///344IMPMHz4cFRVVcFgMCAjI8Pv/ry8PFRVVQEAqqqqui0U9/ztuUeIRYsWIT093fspLCxkmygVQ9YEgkbwkSNVraF3Ed/Q+1U+soukIUOGYNeuXdi6dSseeOABzJw5E/v375f0mfPmzUNjY6P3c+rUKUmfFwnxIlGo8rOFxCvhi5j65bsbWQoSrc5TnUwMZF2TBAAGgwEDBw4EAIwdOxbfffcd/vrXv+KnP/0pbDYbGhoa/KxJ1dXVyM/PBwDk5+dj27ZtfuF5dr957hHCaDTCaDQyTglBKJtE68QI9lAZShzoXbuR3ZLUFZfLBavVirFjx0Kv12PDhg3e7w4ePIiKigoUFxcDAIqLi7F3717U1NR471m3bh3MZjOGDx8e87gHQg2FTco4qn28JXbEGOhXso9A5X4+QfggRdujhjaXNZIdMZPg7YWslqR58+ZhypQpKCoqQlNTE5YvX44vv/wSa9euRXp6Ou6++27MmTMHPXr0gNlsxoMPPoji4mJMmDABADBp0iQMHz4cM2bMwHPPPYeqqirMnz8fs2bNIkuRAknEhotQL3KWV6V3S74dJ9VrIp6RVSTV1NTgjjvuQGVlJdLT0zFq1CisXbsWP/zhDwEAL7zwAjQaDaZNmwar1YrJkyfjlVde8f5eq9Vi1apVeOCBB1BcXIyUlBTMnDkTCxculCtJcUssGm01jFhCdQfUYRAEorJWJmIdUkPbl6jIKpLeeOONoN8nJSVhyZIlWLJkScB7PB7A1YBvNUjEhkCp0LsgCIIghFDcmiQiNGro1BP57CQicaGyGQIpLCaU54SEkEiKZ+LUhEumaUIJqFUQqTXeBCEHJJIINx0NJwkQgmCPUoVJNPGitoJIBEgkKYU4bES9SOzEjog9krxL6nSlg0HechynmjqslngSyodEUgygCksQcQ4JvKiR1DLFsA1Wanuu1HipHRJJhCRQhU0MWHRsVFYSG3r/hJIhkUTEnGg71kRqVGVJawLlL0EQRDBIJBEAQjtJJNiTSGKPiAxaFB1b5MpvagOUD4kkpUGNIyER1CAnHkJvXC3lQC3xJOIbEkkqJNEbDxplE0RwhOpIQtebBG8zxZDo/YwHEkmEH6waUt8KltCNM0FIAXVgRIRQOywOEkmE6pBzhBPRs6lRSjiUNvpmHZtg6VNa2gmCBSSSYkAsGg/Wz6AGjyAIQl6ksv5Q6x4+JJJUDMsKlMiiiGXaEzkfCUIMVGfYQPkoDSSSYgjNCRNEfKLWmi22Y6W2TLnQu2ELiaQEJBaViEY1BEEEgkX7QFJAIcR5W08iiSAIIs7xHRgpdeepkuJCEB5IJCkEpWpxJiM+avyIBCfSesSszsT5KJ8gpIZEEuFPAguaRBdzkaSfplMTB1H1Qua6ROWTYAWJJBUiRQOgRjcFhDTQWxJBggtsgohXSCTFgEQUB4mY5kihPHIjVz4kQv6rwX+a2t6D2uJLRAeJJIKIMYk+rUcoB+rw4wd6l9JAIokgEgRqRAlCWVCdVD4kkhSG2mwMiWAVUUIalRAHQt1QGSKIyCGRJBNKG0EoLT6EdFBnqR6oXqpv4EjEFySSiJgRDw1+PKSBIOIdqqcEK0gkEX4EsjJEan2gRoog5EfV9VDNcY8jEt3yTCKJSHhU3ZEQcUnIjkkBZTbRO08iMSCRFAPU4KuEYAO9m8TB710niGAIVr7Fln3v7xIkDwl1QSKJIAgizglk9UkUUZ8YqSSkgERSDFGyeTpRGkuCSCgE6jXV9fiE3qs0kEhSMTzPK1p4dYUqMUEQBKEmSCQpBYUKCBI2BEEQRKJCIimOEWNlYmmZIoGlTuR6b7GyisphfaW6EFu65jflPiEWEkkxRk3TY2pGDflMDXf84CltiSiGEjHNaofeWPiQSIoBamhE1BBHgiAIIjRqGCSqBVlF0qJFi3DxxRcjLS0Nubm5uOmmm3Dw4EG/e9rb2zFr1ixkZWUhNTUV06ZNQ3V1td89FRUVmDp1KpKTk5Gbm4u5c+fC4XDEMimqhISR8mH5jiR539QYR4SaOy+O4yQpQ2prh9QWXyI6ZBVJX331FWbNmoUtW7Zg3bp1sNvtmDRpElpaWrz3PPLII/jkk0+wcuVKfPXVVzh79ixuueUW7/dOpxNTp06FzWbD5s2b8dZbb2HZsmVYsGCBHEkigkCNC0HID9VD5UDvQvno5Hz4mjVr/P5etmwZcnNzUVZWhiuuuAKNjY144403sHz5ckycOBEAsHTpUgwbNgxbtmzBhAkT8Pnnn2P//v1Yv3498vLyMHr0aDz99NN47LHH8OSTT8JgMHR7rtVqhdVq9f5tsVikTShjqGIRRHwjhcVJKEw1W7YIf+hkB2lQ1JqkxsZGAECPHj0AAGVlZbDb7SgpKfHeM3ToUBQVFaG0tBQAUFpaipEjRyIvL897z+TJk2GxWLBv3z7B5yxatAjp6eneT2FhoVRJihlKLNBKjBNBJAJSi59YiTiCkBvFiCSXy4WHH34Yl112GS644AIAQFVVFQwGAzIyMvzuzcvLQ1VVlfceX4Hk+d7znRDz5s1DY2Oj93Pq1CnGqSEIgiDkggZoBCtknW7zZdasWSgvL8c333wj+bOMRiOMRqPkz1ETidyoJHLaxUJ5pi4UZ6Wh8kOoBEVYkmbPno1Vq1Zh48aN6N27t/d6fn4+bDYbGhoa/O6vrq5Gfn6+956uu908f3vuIcInFo1poGcoriEnEppE6MalErtMa7JC2wWW7RW1fcpFVpHE8zxmz56NDz74AF988QX69evn9/3YsWOh1+uxYcMG77WDBw+ioqICxcXFAIDi4mLs3bsXNTU13nvWrVsHs9mM4cOHxyYhIYj1qDsRGneCIMKALDZhQSKFCISs022zZs3C8uXL8dFHHyEtLc27hig9PR0mkwnp6em4++67MWfOHPTo0QNmsxkPPvggiouLMWHCBADApEmTMHz4cMyYMQPPPfccqqqqMH/+fMyaNYum1GRGKnFIUz3SQN1EFFAny75eUj0nFICsIunVV18FAFx11VV+15cuXYo777wTAPDCCy9Ao9Fg2rRpsFqtmDx5Ml555RXvvVqtFqtWrcIDDzyA4uJipKSkYObMmVi4cGGskhE2NFohCCISlOa8kQYoRKIhq0gKRzQkJSVhyZIlWLJkScB7+vTpg9WrV7OMWsyRu/EJ9HzFe3xmCIlYN0p/T0qG8o4g4gtFLNwmIiPRG2LVi5mO+Cf2Wwwf1b9vgogBid4vSAWJJJmgAk0QiUOk9Z2VMIzndiZYHsVzuonYQiKJ8IPlqJ0aKoIgIoXaDUJJkEgiVEesG9GIhaNCG3nqfKRDrROCVCbYQ9PD8QWJpBhADREhFrWWHeoo4h/WU4KJWGbUWr8TCRJJBACqrEon8boPggVC9VrOuh4P5ZjaysSCRBIRM6hxUQaJOGInIOjwMtKyQHVYHbCo4/Su3ZBIIsKCOlaCUC9UfwkqA+IgkUQkPDRiIsRA5Ua5JOK7ScQ0xwISSYQgVOGIYFD5iI+ROb3HxCSStx4P5TwaSCSpEKWd50QQhDopKiqSOwoEoWhIJBF+JPaYQX0k+ihPaTAbbMTovWo01AUQRDCohsSAWFtplGIT6ppuslapA3pP8Y3S3q/S4kMQvpBIUghimolYWBGoASMIYahuEET8QyIphtDUCEHEJ4lSs4MJw2hFI7WPhBIhkUQQBBGnqNnaFU3M1ZxuQlmQSFIbVPkJQnVQp00Q6oREEkEkCNRRE6wINTVGE2exh+q3NJBIihOUWEFodxsRDnFRLhS6niYOcpYgZIVEksIIp6mVslOhxZPKIi4EBEHIjFJrEdVv5UMiiSAIIs7xHfoooWP2jYMS4kN0h96LGxJJBEGIRmmWx+TUVLmjoFiU9q7UComHxIJEEgEgsSt+Iqc93sjLywMg33EbrMqS2gWNXquVOwoEwQQSSYRkkPggEoVoJQ1zUSSRyAq3TptMJkmeHy6J3vaoXWQrCRJJBEEAiKxhTfROSDXE4D35lgVzZqbocKhj7w7lifyQSJKJROxkEjHNhHqh0krEChJDyoVEEkHIhUJFI4lZglAfVG+lgURSDFBD4fXEkUY0hKpRQV2TG6W1R0qLT7hQW5kYkEhSCgptKKJpwNTa+BFExETQYTLpXBVQt0gkEIkAiaQYwqpRIfFBEIkB1XWCkBcSSYTqiHXHES8jZupwiaAotJyLiRWVdYIVJJII1REvooUg1Ea8io9Ea1Pi9T1KAYkkgiAIiYm0U2LdaatRBFA3TigBEklKQ6bGTIqRBY1WoicRdh3GQzmJ37dDEIkNiSSCSDDiWXDJjRoEH4s4KqEMKSEO0cKyvKih7KkRWUXSpk2bcMMNN6CgoAAcx+HDDz/0+57neSxYsAA9e/aEyWRCSUkJDh8+7HdPfX09pk+fDrPZjIyMDNx9991obm6OYSpC41t4Y1mxWT5JbQ2S2uIrlsRIJcECoToRTj2Rui517dyps1cG9B7cyCqSWlpacOGFF2LJkiWC3z/33HN46aWX8Nprr2Hr1q1ISUnB5MmT0d7e7r1n+vTp2LdvH9atW4dVq1Zh06ZNuO+++2KVhLhDDeKCdeWlxoAg5EfSlofqOCESnZwPnzJlCqZMmSL4Hc/zePHFFzF//nzceOONAIB//etfyMvLw4cffojbbrsNBw4cwJo1a/Ddd99h3LhxAICXX34Z1113HZ5//nkUFBTELC0EQRBKg6QBe2hQlVgodk3S8ePHUVVVhZKSEu+19PR0jB8/HqWlpQCA0tJSZGRkeAUSAJSUlECj0WDr1q0Bw7ZarbBYLH4fNaGkRdZyWJ7UYO0iIidW71WS56i0TFKHTxDBUaxIqqqqAgDk5eX5Xc/Ly/N+V1VVhdzcXL/vdTodevTo4b1HiEWLFiE9Pd37KSwsZBx79cOi8ZR72zMhDuo4CYLwkuDtsmJFkpTMmzcPjY2N3s+pU6fkjlJCQJ1vF1ScHwnxLkOkMSHyoAuh0pyIeaJEaMDJDsWKpPz8fABAdXW13/Xq6mrvd/n5+aipqfH73uFwoL6+3nuPEEajEWaz2e+jRnieT8jKIFVDnIh5ScQ3JFkIIjoUK5L69euH/Px8bNiwwXvNYrFg69atKC4uBgAUFxejoaEBZWVl3nu++OILuFwujB8/PuZxjgaljsCUGi+CiGekFOxUpwkifGTd3dbc3IwjR454/z5+/Dh27dqFHj16oKioCA8//DD+8Ic/YNCgQejXrx8ef/xxFBQU4KabbgIADBs2DNdeey3uvfdevPbaa7Db7Zg9ezZuu+022tlGEAShAki0sYHyURpkFUnbt2/H1Vdf7f17zpw5AICZM2di2bJlePTRR9HS0oL77rsPDQ0NuPzyy7FmzRokJSV5f/POO+9g9uzZuOaaa6DRaDBt2jS89NJLMU+L2pHi+AuqtESsoRJHCEJtESESWUXSVVddFbRT5jgOCxcuxMKFCwPe06NHDyxfvlyK6LGHTOgEEdfErB7SztGgUHtIsEKxa5KI+IMaLoIgAGoLCPVAIikGUINAEIkNtQEEoU5IJKkQVg2uXA13opn+o4E6V0JJSFkeaUcfoURIJMmE0iqtko46IQgiNrAQJlTPxaPkvFNy3GIJiSQi4Yl1Y6BUOxpZ+OIber8EETkkkgiCIAjZIIsFG0LlI4lkcZBIImIGNYbqIJL3pOaGl8pj/ELvNjiUP+FDIikeoQpAEKqGlfhk2Rl2DUvNAjkaSGAkFiSSYgDThopZSAEgj9sEQRAEAYBEEtEBCRoiEhKhvESUxgS1qnRF8aWC3hMRISSSEpGOhiIROjqCIPyJpt5Tm0EkGiSSFEIkjQ81VLElUddeEJGjtLqptPgEq0ty1rN4q+OxSE185VhgSCQRRIKgtA6TiB2BRIDYMsFSVFC5JJQMiSSCUDNxNgImCIJQEiSSYghrk67aRnM0YuwC5UfcEElNjKTexrLOxJPcTsS2JhHTHAtIJBEEQRAEQQhAIikGsPRgLPVYId4WMMYLLN8LveHYI9son6wLBBEVJJKIsCDxJA+JYEKnM6e6I2WKffM7EfNWSSRC/VY7JJKIhIcaKoJQgSNIIqZQu+iGRFICI3UloEqmTui9xZ5YWHRYPIHKBpFokEhSIVI0VNT4EUQcooJ6HbLtoSlBQkZIJBF+SDmiJSFGa0AIghXB6pKcbQ3V8fiCRBJBEAQj1DwQkLtr7yYuVJyXciBV2Ut00UciKQ5Rc0NNEGoksbsReYl1aydF+5roQkTJkEiKASwqVawrEYs4k1iLXxLi3cZBGtWfAoKQFxJJCkGpnY5S40UQRPj4DrKoThNE+JBIiiG0KJqQEyojhFKgskioBRJJCYxQQxWpkKO5dEJqqIwpBxI3RKJBIikBkaLTCafxZNXAUkNNKA7GdYqEYXRQG0GwgkQSIRnUUBEEEa8oWcgqOW5qg0SSCiHxIR3UuBDxBLUUBBEdJJIIAOoSXiRkpIHyVT0oorZSeVEUamrD1QSJpBhAhVfZMH8/DMNLiLIT4zTKIQaV9B5946LT6QSvJxpyDRCUnOd0pp4bEkmEH2RNIJTccCsVtdYarVbr/bfcbz0WbY9a3xMhHySSiKiI5JBJ2t3mT7ykg+hE7DsNVI9YlpFAzzAmJTF7BkHEG3EjkpYsWYK+ffsiKSkJ48ePx7Zt2+SOkuKhTpogiEhQa5uhzlgTSiAuRNJ7772HOXPm4IknnsCOHTtw4YUXYvLkyaipqZE7agRBKAyPRUWtHX68IcV76BYmvWtCJLrQtyifxYsX495778Vdd90FAHjttdfw6aef4s0338Rvf/tbmWPXicPpDHmP0+lEe3t7t+tCpnKe5+FyuQKG5QoQllMgHp5GxRkgvEBhORyOgM8PGC+XC+1WK6DX+1232WwwRhwaYLXbwXeJm9VqFRES0G61gmMUFni+W56JXXdht9kE8x9B3n/AsOx2wbCClaVAOAKUC1cYZV3o+azKGAC022wAo/BsdjtcXcKy2Wydf0TwXtutVmhClDGhOiqE0+mEU6i96PK3y+kMWfZ4QLjtCXB/sHx0CZR9IHj55wOUPz5AuXA5neFbiHxEktVm69ZeiCkTPM8LtmN2u11UxyoUlti2x2a1diuvdrtdXFh2O7RCbU+CoHqRZLPZUFZWhnnz5nmvaTQalJSUoLS0VPA3VqvVr/BZLBbJ4wkAVZWVIe+prqpC+ZYt3a4X+TbIHdhsNrTW1QV8iS3NzdgjEJbBakVygN9YGhsFr9fV1aFSICwAyAgQViBaW1uxo6wMNmN3STQqjN8nJ3fGnud5HDl8GOcE3uHwCOMFADt37BCMV76IsOx2O7YJ5FkvEWEdPnwYtoqKbtf7iRAjFSdP4khVVbfrwcpFIKoqK1FRXy8YVnqEYbU0N+NIgDKWHWFYLpcL5Xv3ouX4ccHvDRGGd/z4cVQK1MEUn+dBE55hftfOnYJlLMXn3+fCtIJbGhuxP1gZ6xAHdXV1AAB9tzs7aW1uxt4I2ouzZ88GDKvJYsFhgbCyW1sD/qalpUXwenNTk2CbaLBakRMwNH98xdT333+P89XV3e7pF2ZYHtrb2wO2Y0MjDMvpdAYMK9KyDwB79uwRDKtIRFgH9u8XDOtiEWGpEdWLpNraWjidTuTl5fldz8vLw/fffy/4m0WLFuGpp56KRfQAAP3790ezVgtNRyOalpYGk8nkd09BQQEAgNNovPf54qnkqWYzMvLzkZ2dDY7joNFooOM4FBV1Fv/MzMygYWk0Guj1euQWFnqvDRgwAO2eOHIcMtPdXVyfPn1Qp9dDEyAsANDqdH67ZDwMGTLE+7u05GTkDBiAsrIyb7wFwwvDLH7FFVegeteuzp9EERYAmEwm9O3bN2i8OIQ/LaD3GQ0Ge5dJutDVb/Dgwd44BQsrnLgNHDgQ6HjHgcqFwWBAz549Q4bVr18/tOh0QcPShJlf2dnubsCT/0JoO54VClOHgOY8cQgSXnp6cBmX4lNHg8UNcJdBY1IScnKEu22DwYD+/fsHLWOea95ncVzAOJrN5m6/84tPx/9zcnJgO3rUe4/JZEJWVpZ/Oj2DjiDxSupIm75LXeE0Gr84ZmRkePNDMF4dZSKrRw/vtT59+qDW5/162q8eHfEM1o5ptVpoBepRYWEhavR6uACkp6bC4GspCvAuwylfANCrVy9kZmZG3Y4B7rTm5+cHb3tClD1fhg0bBm7DhpDtRTgMGTIkeBo7SAozbmpF9SJJDPPmzcOcOXO8f1ssFhT6CAbW9OvXDxg5EvA0TnV13SrRwP79AYMBw4cOdd/bFasVOH0ayQYDYDBg5syZwPffA0aj+7tenfaJrI5GpnevXuh9xRXdw2pqcsfBp0EfNGhQ9zgCyM/PR/6IEe7raWnCCTx6FBAYVV522WXAqFGdcTSbcc8997jvDxTevn1AkNEmAGRlZeH+++8HysuBkycD59nx40BDQ9CwAHcjNG3aNGD79sDx2rYNOHkyZFgAYDaZgIYGJBuNuEIo/wGgoiKshrS4uNidh4Hi1dQEhGGhBICRI0d2vuNAYdXVBX7PPvTr1w+44ILQYXWUo2BkpKUBWi0GDxqEwRcHGJ/u3et+nyFINrhtRElJSRg7ZgwQSPB54hcEnY9oCRi3ykqgsRE9LrgA0OncZV0AjuNw8803u8tRoDyrrARaW5E7YAAwaJD7WoA49s532zZzs7ORG6SMZaSlIcNTfz3hdZnS8QiWrIwM4fLqySuDAehaV7rEMacjrIL8fBQIhbV3L1BRAUNKp90sPz8f+Z6y5BNelmegVlSEPoHitWcPcOBAt69ycnKQM2JEZ9vTUXd1Wi0uHDkSGDBAOLwzZ7pf70JycjJ+/vOfA4cPB36Xp04BAhbWrmi1WkyfPt3dlgUKqyPPwuG6664Dvv46cFgd/Ug4XH311cDnnwcOq7QUaG+P+7V9qhdJ2dnZ0Gq1qO5iPq2urkZ+vvAkidFohDFAY0YQBEEQBAHEwe42g8GAsWPHYsOGDd5rLpcLGzZscI/CCYIgCIIgRKB6SxIAzJkzBzNnzsS4ceNwySWX4MUXX0RLS4t3txtBEARBEESkxIVI+ulPf4pz585hwYIFqKqqwujRo7FmzZpui7kJgiAIgiDCJS5EEgDMnj0bs2fPljsaBEEQBEHECapfk0QQBEEQBCEFJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAIgiAIAUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAceNxOxp4ngcAWCwWScLnmppgtNmAhgb3BZsN1qYm8Ckp3nt0ra0w8TwcLS1w1dV1D8NqhR5Am9UKh8XSGabVCnCcX3g6qxUmAI62NuGwWlu7xSFQHAF4r/M2W8D06VwutLW0wOmTh0JxDBUe53S602m3wxHkfXBNTTA4HDAAgfPM4XCHZbMFDatr+gXj1dYGPc+jra0tZFg6p9Od/y6XcLza291htbdHHy+bDfqOf7e1tobMs6BhCZSLqMLyvMuOMhsIXVtb0LIPAFxLizvPQqRRZ7PBBHeddlgs4A0G4fDCSKunHgFBypjFAq3TCWdLC2AyBQ0vZJ51hOWy28EHaSt80+mw2YKXMasVulBtjycsuz2s9iJYe+YNq71dOCyB9xgoPG047ZjDAR3Ph2x7HJ5yAcDZ1CQcXkddClVeu8ZZ8F2ybHvCLPthhdWlH4kqLJ53h+V0hgxLSjz9tqcfZw3HSxWyijh9+jQKCwvljgZBEARBECI4deoUevfuzTxcEkkAXC4Xzp49i7S0NHAcxyxci8WCwsJCnDp1CmazmVm4aoPywQ3lgxvKBzeUD5QHHigf3IjJB57n0dTUhIKCAmg07FcQ0XQbAI1GI4kC9WA2mxO64HugfHBD+eCG8sEN5QPlgQfKBzeR5kN6erpkcaGF2wRBEARBEAKQSCIIgiAIghCARJKEGI1GPPHEEzAajXJHRVYoH9xQPrihfHBD+UB54IHywY0S84EWbhMEQRAEQQhAliSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIkpAlS5agb9++SEpKwvjx47Ft2za5oxQWixYtwsUXX4y0tDTk5ubipptuwsGDB/3uaW9vx6xZs5CVlYXU1FRMmzYN1dXVfvdUVFRg6tSpSE5ORm5uLubOnQuHw+F3z5dffomLLroIRqMRAwcOxLJly7rFRyn5+Oyzz4LjODz88MPea4mSD2fOnMHPfvYzZGVlwWQyYeTIkdi+fbv3e57nsWDBAvTs2RMmkwklJSU4fPiwXxj19fWYPn06zGYzMjIycPfdd6O5udnvnj179uAHP/gBkpKSUFhYiOeee65bXFauXImhQ4ciKSkJI0eOxOrVq6VJdBecTicef/xx9OvXDyaTCQMGDMDTTz/td2ZUPObDpk2bcMMNN6CgoAAcx+HDDz/0+15JaQ4nLlLkg91ux2OPPYaRI0ciJSUFBQUFuOOOO3D27Nm4yodQZcGX+++/HxzH4cUXX/S7rro84AlJWLFiBW8wGPg333yT37dvH3/vvffyGRkZfHV1tdxRC8nkyZP5pUuX8uXl5fyuXbv46667ji8qKuKbm5u999x///18YWEhv2HDBn779u38hAkT+EsvvdT7vcPh4C+44AK+pKSE37lzJ7969Wo+OzubnzdvnveeY8eO8cnJyfycOXP4/fv38y+//DKv1Wr5NWvWeO9RSj5u27aN79u3Lz9q1Cj+V7/6lfd6IuRDfX0936dPH/7OO+/kt27dyh87doxfu3Ytf+TIEe89zz77LJ+ens5/+OGH/O7du/kf/ehHfL9+/fi2tjbvPddeey1/4YUX8lu2bOG//vprfuDAgfztt9/u/b6xsZHPy8vjp0+fzpeXl/PvvvsubzKZ+L///e/ee7799lteq9Xyzz33HL9//35+/vz5vF6v5/fu3St5Pvzxj3/ks7Ky+FWrVvHHjx/nV65cyaempvJ//etf4zofVq9ezf/+97/n33//fR4A/8EHH/h9r6Q0hxMXKfKhoaGBLykp4d977z3++++/50tLS/lLLrmEHzt2rF8Yas+HUGXBw/vvv89feOGFfEFBAf/CCy+oOg9IJEnEJZdcws+aNcv7t9Pp5AsKCvhFixbJGCtx1NTU8AD4r776iud5d4Og1+v5lStXeu85cOAAD4AvLS3led5dmTQaDV9VVeW959VXX+XNZjNvtVp5nuf5Rx99lB8xYoTfs37605/ykydP9v6thHxsamriBw0axK9bt46/8sorvSIpUfLhscce4y+//PKA37tcLj4/P5//85//7L3W0NDAG41G/t133+V5nuf379/PA+C/++477z2fffYZz3Ecf+bMGZ7nef6VV17hMzMzvfniefaQIUO8f//kJz/hp06d6vf88ePH87/4xS+iS2QYTJ06lf/5z3/ud+2WW27hp0+fzvN8YuRD145RSWkOJy6sCCYQPGzbto0HwJ88eZLn+fjLh0B5cPr0ab5Xr158eXk536dPHz+RpMY8oOk2CbDZbCgrK0NJSYn3mkajQUlJCUpLS2WMmTgaGxsBAD169AAAlJWVwW63+6Vv6NChKCoq8qavtLQUI0eORF5enveeyZMnw2KxYN++fd57fMPw3OMJQyn5OGvWLEydOrVbXBMlHz7++GOMGzcOt956K3JzczFmzBi8/vrr3u+PHz+Oqqoqv/ilp6dj/PjxfvmQkZGBcePGee8pKSmBRqPB1q1bvfdcccUVMBgM3nsmT56MgwcP4vz58957guWVlFx66aXYsGEDDh06BADYvXs3vvnmG0yZMgVA4uSDL0pKczhxiSWNjY3gOA4ZGRkAEiMfXC4XZsyYgblz52LEiBHdvldjHpBIkoDa2lo4nU6/jhEA8vLyUFVVJVOsxOFyufDwww/jsssuwwUXXAAAqKqqgsFg8FZ+D77pq6qqEky/57tg91gsFrS1tSkiH1esWIEdO3Zg0aJF3b5LlHw4duwYXn31VQwaNAhr167FAw88gIceeghvvfWWXzqCxa+qqgq5ubl+3+t0OvTo0YNJXsUiH37729/itttuw9ChQ6HX6zFmzBg8/PDDmD59ul8c4z0ffFFSmsOJS6xob2/HY489httvv917UGsi5MOf/vQn6HQ6PPTQQ4LfqzEPdBHdTSQcs2bNQnl5Ob755hu5oxJzTp06hV/96ldYt24dkpKS5I6ObLhcLowbNw7PPPMMAGDMmDEoLy/Ha6+9hpkzZ8ocu9jxn//8B++88w6WL1+OESNGYNeuXXj44YdRUFCQUPlABMdut+MnP/kJeJ7Hq6++Knd0YkZZWRn++te/YseOHeA4Tu7oMIMsSRKQnZ0NrVbbbZdTdXU18vPzZYpV5MyePRurVq3Cxo0b0bt3b+/1/Px82Gw2NDQ0+N3vm778/HzB9Hu+C3aP2WyGyWSSPR/LyspQU1ODiy66CDqdDjqdDl999RVeeukl6HQ65OXlJUQ+9OzZE8OHD/e7NmzYMFRUVADoTEew+OXn56Ompsbve4fDgfr6eiZ5FYt8mDt3rteaNHLkSMyYMQOPPPKI18qYKPngi5LSHE5cpMYjkE6ePIl169Z5rUie+MVzPnz99deoqalBUVGRt708efIkfv3rX6Nv377euKktD0gkSYDBYMDYsWOxYcMG7zWXy4UNGzaguLhYxpiFB8/zmD17Nj744AN88cUX6Nevn9/3Y8eOhV6v90vfwYMHUVFR4U1fcXEx9u7d61chPI2Gp8MtLi72C8NzjycMufPxmmuuwd69e7Fr1y7vZ9y4cZg+fbr334mQD5dddlk3FxCHDh1Cnz59AAD9+vVDfn6+X/wsFgu2bt3qlw8NDQ0oKyvz3vPFF1/A5XJh/Pjx3ns2bdoEu93uvWfdunUYMmQIMjMzvfcEyyspaW1thUbj32RqtVq4XC4AiZMPvigpzeHERUo8Aunw4cNYv349srKy/L6P93yYMWMG9uzZ49deFhQUYO7cuVi7dq037qrLg4iWeRNhs2LFCt5oNPLLli3j9+/fz9933318RkaG3y4npfLAAw/w6enp/JdffslXVlZ6P62trd577r//fr6oqIj/4osv+O3bt/PFxcV8cXGx93vP1vdJkybxu3bt4tesWcPn5OQIbn2fO3cuf+DAAX7JkiWCW9+VlI++u9t4PjHyYdu2bbxOp+P/+Mc/8ocPH+bfeecdPjk5mX/77be99zz77LN8RkYG/9FHH/F79uzhb7zxRsFt4GPGjOG3bt3Kf/PNN/ygQYP8tv42NDTweXl5/IwZM/jy8nJ+xYoVfHJycretvzqdjn/++ef5AwcO8E888UTMXADMnDmT79Wrl9cFwPvvv89nZ2fzjz76aFznQ1NTE79z505+586dPAB+8eLF/M6dO727tpSU5nDiIkU+2Gw2/kc/+hHfu3dvfteuXX7tpu8uLbXnQ6iy0JWuu9vUmAckkiTk5Zdf5ouKiniDwcBfcskl/JYtW+SOUlgAEPwsXbrUe09bWxv/y1/+ks/MzOSTk5P5m2++ma+srPQL58SJE/yUKVN4k8nEZ2dn87/+9a95u93ud8/GjRv50aNH8waDge/fv7/fMzwoKR+7iqREyYdPPvmEv+CCC3ij0cgPHTqU/8c//uH3vcvl4h9//HE+Ly+PNxqN/DXXXMMfPHjQ7566ujr+9ttv51NTU3mz2czfddddfFNTk989u3fv5i+//HLeaDTyvXr14p999tlucfnPf/7DDx48mDcYDPyIESP4Tz/9lH2CBbBYLPyvfvUrvqioiE9KSuL79+/P//73v/frBOMxHzZu3CjYHsycOVNxaQ4nLlLkw/HjxwO2mxs3boybfAhVFroiJJLUlgccz/u4iyUIgiAIgiAA0JokgiAIgiAIQUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAUx5133ombbrpJtufPmDEDzzzzTFj33nbbbfjLX/4icYwIgpAD8rhNEERM4Tgu6PdPPPEEHnnkEfA8j4yMjNhEyofdu3dj4sSJOHnyJFJTU0PeX15ejiuuuALHjx9Henp6DGJIEESsIJFEEERMqaqq8v77vffew4IFC3Dw4EHvtdTU1LDEiVTcc8890Ol0eO2118L+zcUXX4w777wTs2bNkjBmBEHEGppuIwgipuTn53s/6enp4DjO71pqamq36barrroKDz74IB5++GFkZmYiLy8Pr7/+OlpaWnDXXXchLS0NAwcOxGeffeb3rPLyckyZMgWpqanIy8vDjBkzUFtbGzBuTqcT//3vf3HDDTf4XX/llVcwaNAgJCUlIS8vDz/+8Y/9vr/hhhuwYsWK6DOHIAhFQSKJIAhV8NZbbyE7Oxvbtm3Dgw8+iAceeAC33norLr30UuzYsQOTJk3CjBkz0NraCgBoaGjAxIkTMWbMGGzfvh1r1qxBdXU1fvKTnwR8xp49e9DY2Ihx48Z5r23fvh0PPfQQFi5ciIMHD2LNmjW44oor/H53ySWXYNu2bbBardIkniAIWSCRRBCEKrjwwgsxf/58DBo0CPPmzUNSUhKys7Nx7733YtCgQViwYAHq6uqwZ88eAMDf/vY3jBkzBs888wyGDh2KMWPG4M0338TGjRtx6NAhwWecPHkSWq0Wubm53msVFRVISUnB9ddfjz59+mDMmDF46KGH/H5XUFAAm83mN5VIEIT6IZFEEIQqGDVqlPffWq0WWVlZGDlypPdaXl4eAKCmpgaAewH2xo0bvWucUlNTMXToUADA0aNHBZ/R1tYGo9Hot7j8hz/8Ifr06YP+/ftjxowZeOedd7zWKg8mkwkAul0nCELdkEgiCEIV6PV6v785jvO75hE2LpcLANDc3IwbbrgBu3bt8vscPny423SZh+zsbLS2tsJms3mvpaWlYceOHXj33XfRs2dPLFiwABdeeCEaGhq899TX1wMAcnJymKSVIAhlQCKJIIi45KKLLsK+ffvQt29fDBw40O+TkpIi+JvRo0cDAPbv3+93XafToaSkBM899xz27NmDEydO4IsvvvB+X15ejt69eyM7O1uy9BAEEXtIJBEEEZfMmjUL9fX1uP322/Hdd9/h6NGjWLt2Le666y44nU7B3+Tk5OCiiy7CN9984722atUqvPTSS9i1axdOnjyJf/3rX3C5XBgyZIj3nq+//hqTJk2SPE0EQcQWEkkEQcQlBQUF+Pbbb+F0OjFp0iSMHDkSDz/8MDIyMqDRBG767rnnHrzzzjvevzMyMvD+++9j4sSJGDZsGF577TW8++67GDFiBACgvb0dH374Ie69917J00QQRGwhZ5IEQRA+tLW1YciQIXjvvfdQXFwc8v5XX30VH3zwAT7//PMYxI4giFhCliSCIAgfTCYT/vWvfwV1OumLXq/Hyy+/LHGsCIKQA7IkEQRBEARBCECWJIIgCIIgCAFIJBEEQRAEQQhAIokgCIIgCEIAEkkEQRAEQRACkEgiCIIgCIIQgEQSQRAEQRCEACSSCIIgCIIgBCCRRBAEQRAEIQCJJIIgCIIgCAH+Hxv0Fo15d/gbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_10 = ev_tot.to_lc(dt=10)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts, color=\"grey\")\n", + "lc_10.apply_gtis(inplace=True)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts)\n", + "\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Counts\")\n", + "\n", + "for g0, g1 in zip(lc_10.gti[:-1], lc_10.gti[1:]):\n", + " plt.axvspan(g0[1] - lc_10.time[0], g1[0] - lc_10.time[0], color=\"r\", alpha=0.5, zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "id": "f28ccbbf", + "metadata": {}, + "source": [ + "When we study the variability of this light curve, we usually use periodograms. It is well known that these gaps are like square windows, whose Fourier transform has infinite harmonics, and that gets convolved with the actual variability of the data. If we were to ignore the good time intervals and just get a `Periodogram` of the dataset, we would get something like this (the black vertical line indicates the orbital period of the satellite and some of its harmonics):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8cd9cfbc", + "metadata": {}, + "outputs": [], + "source": [ + "ev_tot_dirty = copy.deepcopy(ev_tot)\n", + "ev_tot_dirty.gti = np.asarray([[ev_tot.gti[0, 0], ev_tot.gti[-1, 1]]])\n", + "pds_dirty = Powerspectrum.from_events(ev_tot_dirty, dt=0.01, norm=\"leahy\")\n", + "pds_dirty_reb = pds_dirty.rebin_log(0.01)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "904a460c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACChklEQVR4nO3dd3hUVfoH8O/09IQQCBASegsloYuABA0iIFJEsaxSFNc1qGys4K6oi+CKBUsUywK6P3VRV8C1A9Kkt9B7DYEUStokmXp/fwxzk8nczEwyN5lM5vt5Hp5nznnPnHvuFZPDveeeVyEIggAiIiKiAKb09QCIiIiIfI0TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOCpfT0AX7Narbh48SLCw8OhUCh8PRwiIiLygCAIKC4uRqtWraBUen9/J+AnRBcvXkR8fLyvh0FERES1kJWVhdatW3vdT8BPiMLDwwHYLmhERISPR0NERESeKCoqQnx8vPh73FsBOyHKyMhARkYGLBYLACAiIoITIj9kNBrxzjvvAACefPJJaLXaeuvPXVtXcalY1ToALsvenisRUWMg13IXRaAndy0qKkJkZCQKCws5IfJDer0eYWFhAICSkhKEhobWW3/u2rqKS8Wq1gFwWfb2XImI/Jncv78D9g4RNQ5qtRpTpkwRP9dnf+7auopLxaTq3JWJiEgevEPEO0RERER+R+7f39yHiIiIiAIeJ0REREQU8DghIr+m1+sRFRWFqKgo6PX6eu3PXVtXcalY1Tp3ZSIikg9XZpLfKyws9Fl/7tq6ikvFqta5KxMRkTw4ISK/FhwcjOPHj4uf67M/d21dxaViUnXuykREJA++Zca3zIiIiPwO3zIjIiIiklmjeGR25swZTJ8+Hbm5uVCpVNi2bRt38Q0QJpMJH3/8MQDgkUcegUajqbf+3LV1FZeKVa0D4LLs7bkSEVGFRvHIbNiwYZg3bx6GDh2Kq1evIiIiwuOdfPnIzL8xdQcRUWBi6o4qDh06BI1Gg6FDhwIAoqOjfTwiqk/XyszoODAVRrMVb605ib/d0curRH8qlQqTJk0SP3vT1lVcKiZV565MRETy8Pkdoo0bN2LhwoXYvXs3Ll26hBUrVmD8+PEObTIyMrBw4ULk5OQgKSkJ7733HgYMGAAAWLlyJZYtWwaLxYLs7GxMmjQJc+bM8fj4vEPk377cfh5zVhwQy5ueHY746BAfjoiIiOpDo1tUrdfrkZSUhIyMDMn48uXLkZ6ejrlz52LPnj1ISkrCyJEjkZeXBwAwm83YtGkTPvjgA2zduhWrV6/G6tWr6/MUyIfMVqtD2WSxVtOSiIioej6fEI0aNQrz5s3DhAkTJONvvfUWZsyYgWnTpiExMRGLFy9GSEgIlixZAgCIi4tDv379EB8fD51Oh9GjRyMzM7Pa4xkMBhQVFTn8ISIiosDm8wmRK0ajEbt370ZqaqpYp1QqkZqaiq1btwIA+vfvj7y8PFy7dg1WqxUbN25Et27dqu1zwYIFiIyMFP/Ex8fX+XlQ3TGUl+FCxoO4kPEgrKZyr/srLS1FXFwc4uLiUFpa6lVbV3GpWNU6d2UiIpJPg15UffnyZVgsFsTGxjrUx8bG4ujRowAAtVqN+fPn46abboIgCLj11ltx++23V9vn7NmzkZ6eLpaLioo4KfJnggBLydXrn+XoTsDFixfFz960dRWXiknVuSsTEZE8GvSEyFOjRo3CqFGjPGqr0+mg0+nqeERUXzRaHVpOfRcAoFB7vy9PUFAQ9u7dK372pq2ruFRMqs5dmYiI5NGgJ0QxMTFQqVTIzc11qM/NzUWLFi286jsjIwMZGRmwWCxe9UO+pVSpoI1tL1t/KpUKycnJsrR1FZeKSdW5KxMRkTwa9BoirVaLvn37Yu3atWKd1WrF2rVrMWjQIK/6TktLw+HDh7Fz505vh0lERER+zud3iEpKSnDy5EmxfObMGWRmZiI6OhoJCQlIT0/HlClT0K9fPwwYMACLFi2CXq/HtGnTfDhqaijMZhNKDqwBAIQmpnjdn8lkwhdffAEAuP/++92m7nDV1lVcKla1DoDLMlN3EBHJSPCxdevWCbAth3X4M2XKFLHNe++9JyQkJAharVYYMGCAsG3bNq+P+/777wvdunUTOnfuLAAQCgsLve6T6t/Haw+Jf2fi//qtcCqv2Kv+SkpKxP5KSkq8ausqLhWrWueuTEQUyAoLC2X9/e3zO0QpKSlu35iZOXMmZs6cKetx09LSkJaWJu50Sf5HEAScvVKG4Pb9AAAKpfdPgFUqFUaPHi1+9qatq7hUTKrOXZmIiOTh89QdvsbUHf7r7dXH8c7aEw51vz81DO2bhfloREREVF8aXeoOX8nIyEBiYiL69+/v66FQLZ3MK/H1EIiIqJEI2AkR3zJrPF4Z1x0RQT5/+ktERH4sYCdE1DhYTeV49u7hOPbedNlSd3Tq1AmdOnXyKHWHq7au4lKxqnXuykREJB/+s5r8mwDkXjgrfva6O0EQt4Fwt7zOXVtXcamYVJ27MhERySNgJ0TcqbpxUKg1eGHxN/hq+3mYZUrd8ccff4ifvWnrKi4Vk6pzVyYiInnwLTO+Zea30r7Ygx8PXMIr47rjjV+PoajczLfMiIgCBN8yIyIiIpJZwD4yo8ZBsFqw4/cfUXjoItBuoNf9mc1mrFixAgAwYcIEqNXV/y/irq2ruFSsah0Al2VXYyMiopoJ2EdmldcQHT9+nI/M/FDaF3vwv91nkPX2JABA/F+/xfrZI716ZKbX6xEWZvt+SUkJQkNDa93WVVwqVrUOgMuyq7ERETV2cj8yC9h/YjJ1RyOhUKBr74HIuloKKBRed6dUKjFs2DDxszdtXcWlYlJ17spERCSPgL1DZMdF1f6Li6qJiAIXF1UTERERyYwTIiIiIgp4nBCRX7OaDPj7lNE4sfgxWE0Gr/srKytDcnIykpOTUVZW5lVbV3GpWNU6d2UiIpJPwC6q5k7VjYQg4PyJI+Jnb1mtVuzbt0/87E1bV3GpmFSduzIREckjYCdEfMuscVCoNXhm0ef4ZtcFWGVK3fHbb7+Jn71p6youFZOqc1cmIiJ58C0zvmXmt/iWGRFR4OJbZkREREQyC9hHZtQ4CFYLMjf/jqLjFyC0Tva6P7PZjF9//RUAMHLkSLepO1y1dRWXilWtA+CyzNQdRETy4SMzPjLzW0zdwdQdRBS4mLqDqDKFAu269kJOUZlsqTv69esnfvamrau4VEyqzl2ZiIjkEbB3iJjc1f9xUTURUeDiomqZpKWl4fDhw9i5c6evh0JEREQ+FrATIiIiIiI7TojIr1lNBvzjz5Nwakm6bKk7Bg8ejMGDB3uUusNVW1dxqVjVOndlIiKSDxdVk38TBJw8sBsA0FSm1B1btmwRP3vT1lVcKiZV565MRETy4ISI/JpCrcETCz7CysxsQIbUHTqdDitWrBA/e9PWVVwqJlXnrkxERPII2LfM7LgPkf/iW2ZERIGLb5kRERERyYyPzMivCVYLjuzZhpKz5yE07+p1f/lFZVj635/RsVkYxo26BSqVqtq2FosFmzZtAgAMHTrUqa2ruFSsah0Al2VXYyMioprhhIj8mmA24bWZ9wKwpe7w1tRPN+Onp+4E4D49Rnl5OYYPH15tW1dxqVjVOgAuy0zdQUQkn4CdEFXeqZr8mAJo1a4TrpQYAO8zd+BoThE0TRNsXbtJBaJQKJCYmFhtW1dxqZhUnbsyERHJg4uquajab9XFoupOL/wEk8X2v8TZ18bINVQiIpIZF1UTERERyYwTIiIiIgp4nBCRX7OaDHj9yT/hzL9ny5K6w2oyIPc/f0Puf/7mUeqOESNGYMSIEdWm7qguLhWrWueuTERE8gnYRdXUSAgCDu3cDABoIsdyOEFA+blMAJ6l7lizZk21bV3FpWJSde7KREQkD06IyK8p1Br8ee7b+HH/JShkSN2hUGvQ9PanAHiWuuP//u//qm3rKi4Vk6pzVyYiInnwLTO+Zea3+JYZEVHg4ltmRERERDLjIzPySwcuFOLHA5cgWC04fXgfSrPPQWjS1ut+BasFhksnAQAWy21uU3fs2bMHANCnTx/J1B3VxaViVesAuCwzdQcRkXz4yIyPzPzSwPlrkFtkgNVYjqy3JwGwpe5YP3ukV4/MOjzzHU6/4VnqDr1ej7CwsGrbuopLxarWAXBZZuoOIgpkcv/+bhR3iNq2bYuIiAgolUo0adIE69at8/WQqI4VlJoAACN7tMCvCW2QU1gmS+oOKABVRHPbRw9Sd7Rp06batq7iUjGpOndlIiKSR6OYEAHAli1bxH89U+B4aWIffDL9LHq99CuKys1e96fUBKH1X5YAAEJCQly2DQkJwdmzZ2sVl4pJ1bkrExGRPLiomoiIiAKezydEGzduxNixY9GqVSsoFAqsXLnSqU1GRgbatm2LoKAgDBw4EDt27HCIKxQKDBs2DP3798cXX3xRTyMnIiKixsLnEyK9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxzR9//IHdu3fj+++/x/z587F///76Gj75WHl5OcaPH49z/3kZgtnodX9WsxF5381D3nfzUF5e7tGxx48fL9nWVVwqVrXOXZmIiOTj8zVEo0aNwqhRo6qNv/XWW5gxYwamTZsGAFi8eDF+/PFHLFmyBM8//zwAIC4uDgDQsmVLjB49Gnv27EGvXr0k+zMYDDAYKnJeFRUVyXUq5ANWiwWrVq0CAESOliGdhdWKshPbANhejXfFUunYUm1dxaViUnXuykREJA+fT4hcMRqN2L17N2bPni3WKZVKpKamYuvWrQBsd5isVivCw8NRUlKC33//HXfffXe1fS5YsAAvv/xynY+d6odGq8XHH3+Ml78/BIXK+7/OCpUa0SNnAgC0Wq3Lttrrx66urau4VEyqzl2ZiIjk0aAnRJcvX4bFYkFsbKxDfWxsLI4ePQoAyM3NxYQJEwDY/tU8Y8YM9O/fv9o+Z8+ejfT0dLFcVFSE+Pj4Ohg91QeNRoMZM2bgvWx53jJTqNQIT75N7NuTY9cmLhWTqnNXJiIieTToCZEn2rdvj3379nncXqfTMTEmEREROWjQE6KYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYGMjAyuxfBzVqsVhw4dQnneWQjhrbzuTxCsMOafF/tWKqt/78BqteLIkSMAgG7dujm1dRWXilWtA+Cy7GpsRERUMw16QqTVatG3b1+sXbsW48ePB2D7RbJ27VrMnDnTq77T0tKQlpYmbv1N/uGrHefx4qqDYkb68rIy9OjRA4AtdYe3BJMRl5akAQDK3p3iMj1GWaVjS6XScBWXilWtA+CyzNQdRETy8fmEqKSkBCdPnhTLZ86cQWZmJqKjo5GQkID09HRMmTIF/fr1w4ABA7Bo0SLo9XrxrTMKLOuO5omTobZNQxATpkNMTAyuXU/lIQdlsGc5caxWAWGR0RAEAXnF5WgnMUGJiYmp9vtSsap17spERCQPn0+Idu3aheHDh4tl+4LnKVOmYNmyZZg8eTLy8/Px4osvIicnB8nJyfjll1+cFlrXFB+Z+bc5o7ti+uB2UKuUyM/Ply91hzYI8U98CQBu78CcLjCj6aOfAwBWHriCv7Zo6hAPDQ1Ffn6+5HelYlJ17spERCQPn0+IUlJSIAiCyzYzZ870+hFZVXxk5t9CdWqoVb5dQ1NqrJhMl5k4sSYi8mdclUlEREQBL2AnRBkZGUhMTHS5ZxE1fOXl5bj//vtx/rt/ypa6I/9/C5H/v4Vu02MYDOViW5PR4BS3j+3++++XTN1RNVa1zl2ZiIjkoxDcPa9q5OyPzAoLCxER4dliWvKdRz7fhd8O5+LVCT1w/8A20Ov1CAsLA2B7y6xF00g8clN7PDy0fa367/DMdzj9xp0A3L/J9fuB87ilVxsAwNz/7sJLE/s6xCuPrWpfUrGqdQBclvmWGREFMrl/f/t8DRGRN7RaLd5++238648zKFKpkVdswPKdWbWeEClUajS5eYbYtysajVZsq1I772ptH5tUX1IxqTp3ZSIikgcnROTXNBoNZs2ahb/MtOC7PdmY/d0BeHPLU6FSI6L/OLFvV9QajdhWakJkH5urcburc1cmIiJ5cA0R1xA1Cjq1Cm2b8hESERHVTsDeIeJr942D1WrF+fP2VBveT4gEwQpzYZ7Yt7vUHebC3Ouf27ocW0JCglPqjqqxqnUAXJaZuoOISD4BOyGixqGsrAzt2rUDAKzdf67W/ew9fw2v/3IMxnIDshc/ZOv7jckuFy4bysvEtuYRu1yOTSp1R9VY1ToALstcVE1EJB9OiMjvhYSEeN3H17uysPX0FQCAQqPz+Hvu2roam1Ssap27MhERySNgJ0RM3dE42F9XB4Ctp67Uuh+L1bYUW6kNQkL6f8W+XQkOCRXbaoOcJyqhoaHYfzYX647mIa8MaBfqGLOP21WduzIREckjYBchpKWl4fDhw9i5c6evh0KN2PRlOzHvxyP487+dH6kREVHDEbATIiIpHZrZbuNoVApZ+jt3pRQAcDy3RJb+iIiobnBCRH7NYDBgxowZmDFjBowG5/QZNTWwTQSu/Pwu8n56FwY3/RkNBlz5+V1c+fldmE3OaUMMleKC2VTtuO3HqVrnrkxERPIJ2DVEDUlxuQn3fLwN56+W1ur7kcEaLP5TX/SIC7ztA8xmMz799FMAwL1P/N3r/qwWM0r2/yb2rdNVv2jaUqmt1TJfcmz2eJNbHql23IsWLYJOp3OqA+Cy7GpsRERUM5wQNQCHLhbh0MWiWn+/uNyMDcfzA3JCpNFoMG/ePACAWmK36JpSqTSIGvoAlMrqd6rOKy7H09/sx6ajFxE19AEAgFLl/L+SRqMR4wqVqtpx248jVeeuTERE8gjYCVFDfMssIToEn00fUKPvLPz1KH46kFNHI2r4tFotXnjhBQDevWVmp9JoEHnjZGhUimrzhW04lo+Nx/MBpa0tAKg1zm21Wq0YdzVuV3XuykREJI+AnRA1xJ2qNSoF2sXUbLO9cB3vFNQ3wZtkaURE1CAF7ISIGgdBEHD58uXrn71/M0wQBFhKC6FUKiAIAhSK6vsUBAHWsiLxc3V9AYAyOKLaccfExEChUDjVAXBZdjU2IiKqGU6IyK+VlpaiefPmALxL3WFnMpThwnv32/p+9Q6XmzMKJoPY1pTivM9QaWmpGI//67fVjtuehqNqHQCXZabuICKSD1+7JyIiooDHO0Tk10JDQ8XHVXIsqtYGhaDNcz9Ao1K4vQOj1AahzXM/iN+TGps9LhWr+phNqs5dmYiI5ME7RERERBTwAnZClJGRgcTERPTv39/XQyEiIiIfC9gJEZO7Ng4GgwGzZs3CrFmzZEndYTYZcXXNx8hf/bHb9BiC2YSraz7G1TUfV5u6wx6XSt1hH7f9OGVl5eh/+5+QdNt9yLtW4tRG6jtERCQPriEiv2Y2m/HOO+8AAO54KN3r/qwWM4p3fy/27So9hmC1iG2tlhcdYkazFTtP54nxqJserHbcr776KnQ6HY5cuoZdP34BANh07B+4rWcLhzYAnL5DRETy4ISI/JpGo8GcOXMAyJe6I2LQ3VAp3KfHUKhUiBh0NwDn1B3PfrsPK3afE+NSqTvs47YfR6FQi+0FlVKyTdUyERHJgxMi8mtarVa8eyJX6o4mNz3oMnWHnUJlaws4p+7Yff6aQ9zVuO00Wq3YXqPRSrapWiYiInkE7BoiIiIiIjveISK/JggCSktLxc9y9Gc1lsOq8ix1h2AyVHvsynGFRucUs487JCRETN1hNZZXfLdKGwBO3yEiInlwQkR+rbS0FGFhYQDkS92R9fYkW98vuU6PIZgMYlvTEOfUHZXjUqk77OO2p+EoKysV2xvuOu7UBoDTd4iISB58ZEZEREQBj3eIyK+FhISId0/2XSoDAJzMK0HW1VLERzun03BHowtG/F+/hUalEB9TVUeh0Yl3fjS6YJfxqo/MKo/bfpzg4BCxvS4oWLJN1TIREckjYO8QcafqxkGhsOUcCw0NhUpZsabmljc34JreebNET/pTaoOg1AZVu0Znf3aBR21dxSuP2x6r2r5qG6nvEBGRPAJ2QsSdqhufpPgojOweCwAwWqzIL5F/N2eD2YL/23Ze9n6JiMi3AnZCRI2D0WjECy+8gBdeeAFKwYKPHuiHpqGu9w9yxWIy4drGz3Fl/WcwGp3vMBnNVvGzYLG1vbbxc8nUHZXjgsUxdUflcduPYzIaxfYmk9GpjdR3iIhIHlxDRH7NZDJh/vz5AGy7OLvbTNEdi8WEoq1fX+97icv+BItFbGu1POsyHnnD3W7HbTJXHNtinufUBoCs50pERBU4ISK/plar8eSTT4qfa+pKiQE/HriEr3ddAGBLwRHe9w4olQq3/SmUKoT3vUP8nqu4QumYukNq3OrrxwYAlUol2cabcyUiourxpyr5NZ1Oh0WLFtX6+++sPYHPt1bsX6TWaBGd+gg0KoXb5KkKtQbRqY+I33MV92TcWp1ObK/R6iTbeHOuRERUPa4hooBWUGpy34iIiBo9ToiIamlccitfD4GIiGTCR2bk1/R6vazpLIzlpTj3z9ttfc9x3d/cUR3w7r19bN8b4Jy6w2osrzZ1h9S4S0v14rHLxx13agMwdQcRUV3hHSIiIiIKeLxDRA3S+mN5mPnlXuiNZrRrGorvHx+CMJ3zX9eQkBDk5eWJn72l0QWj9eNfQKN0n7ojJCQEc778A59vPVdt6o7Wj38hfnY37uDgELG9PXVH1TZynisREVXghIgapD9OXEaJwQwAOH1Zj+O5xeiT0MSpnUKhQLNmzWQ7rkKhgCokEiqVwm16DIVCgdDIaKhCCqpN3aEKiaz2u1XHXbm9PVVH1TZynisREVVoNI/MSktL0aZNGzz99NO+HgpRtfKKyzHm3U0Yl7EZxeV8w42IqKFoNHeIXn31Vdxwww2+HgbVM6PRiIULFwIAnnnmGe93qjaZULhlOZRKwGhMddmf0WjEuv8sRuHZazAPesopLlhMKNr+HQAgYuBEAMDOM9dw6GIRBIsJ6XPmom3TUHHcJqMRhVuWAwBMdyY6nRsAWc+ViIgqNIoJ0YkTJ3D06FGMHTsWBw8e9PVwqB6ZTCb87W9/AwDMmjVLltQdBZv+fb3vD132ZzKZsObf7wIArLOedIoLFovYV3i/cU6xT99e4DBuk7ni2Bbz353ODYCs50pERBV8PiHauHEjFi5ciN27d+PSpUtYsWIFxo8f79AmIyMDCxcuRE5ODpKSkvDee+9hwIABYvzpp5/GwoULsWXLlnoePfmaWq3Gww8/LH72llKlRlivWz1K3aFWq9Fv5CQcvVRUbeqOsF63ip+rxm6/609oERnkkLrD3t6euqPquf1pyjQUlJogKBrN024iogbB5xMivV6PpKQkTJ8+HRMnTnSKL1++HOnp6Vi8eDEGDhyIRYsWYeTIkTh27BiaN2+OVatWoXPnzujcubNHEyKDwQCDwSCWi4qKZD0fql86nQ6ffPKJbP2pNVo0HfWER6k7dDodJjzxCj7eeLra1B1NRz0h+V2FWoNnX30LQztVLJLW6nRie3vqjqrnlt3zQZzO1+O9DWcxe1S3mp4eERFVw+cTolGjRmHUqFHVxt966y3MmDED06ZNAwAsXrwYP/74I5YsWYLnn38e27Ztw3/+8x988803KCkpgclkQkREBF588UXJ/hYsWICXX365Ts6FqCae/+8BDO7YFC/d0R0hWs/+VzydrwcA7DhztS6HRkQUcBr0fXej0Yjdu3cjNTVVrFMqlUhNTcXWrVsB2CY4WVlZOHv2LN544w3MmDGj2skQAMyePRuFhYXin6ysrDo/DyIp2QVl+HrXBWw9dcXXQyEiCng+v0PkyuXLl2GxWBAbG+tQHxsbi6NHj9aqT51O5/ZRCPkPvV6P5s2bA7BtWihH6o7zb91p63vOFZf96fV6vDSxL8xWK4wDNjvFrcZyXHj/fgBA65lfVBsrnngYAFBaqhePXT7ugNO5ARDjPf/5Q63PkYiInDXoCVFNTZ061eO2GRkZyMjIgMViqbsBUb0oLS2VtT/BZHDf6DqToazWfUnFqtZVPbeajI2IiDxXowmR1WrFhg0bsGnTJpw7dw6lpaVo1qwZevfujdTUVMTHx8s6uJiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyUno3YWr4goODcebMGfGztzTaIMQ9+i+olQq3/QUHB+PpJavx1Y7zUGuDnOIKjRZxj/5L/FxdTBtk+25QUHBFnS5I8tzscZWGdzmJiOTk0RqisrIyzJs3D/Hx8Rg9ejR+/vlnFBQUQKVS4eTJk5g7dy7atWuH0aNHY9u2bbINTqvVom/fvli7dq1YZ7VasXbtWgwaNEi245D/UiqVaNu2Ldq2bQul0vslcQqlEurIWGiiYt32p1Qq0SQ2DupI6bYKha0vdWQsFFVek68cs39XqXSsq3puleMKGc6ViIgqeHSHqHPnzhg0aBA++eQTjBgxAhqNxqnNuXPn8OWXX+Kee+7BCy+8gBkzZng0gJKSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+vFt85qq64fmWVdLYXZKnjUNqewvE7G4I8sVgE/H7yEgxcLfT0UIiIKIB5NiH777Td06+Z6z5M2bdpg9uzZePrpp3H+/HmPB7Br1y4MHz5cLKenpwMApkyZgmXLlmHy5MnIz8/Hiy++iJycHCQnJ+OXX35xWmhdU3X9yOxP/9qOc1fkXdsSCLaeuoKZX+51qi8uN8NksTrVm0wmZGRkALD9N5WarNeExWxC0c5VUCkBk0l68l/52JtXfo6iU1dguXGmU1ywmFG850cAQHifMdXGzJN7if0V7Vxlq7uzu9O5ARDj1rj7vTlNIiKqwqMJkbvJUGUajQYdOnTwuH1KSgoEwfWdlJkzZ2LmTOdfOA1ZiFaNcJ3nS7QUCmB8clwdjsg/XCs1AgCahmpxa/dYfLPrAsxWAVOW7EDzcB06Ng9zaG80GvHXv/4VADBjxgxZJkTXfv/ket9vu+zPaDTip09es30v7c9OccFiFvsKSxpZbcxseh4AYDIZK+rMzzidGwAxbr397tqdIBERSarxW2Zt27bF9OnTMXXqVCQkJNTFmOpFXT8y+/nJoXXSb6DoHBuOBRN7IUijwtLNZwEAecUGaFSOa2dUKhXuu+8+8bO3lEoVQhKHQalQuO1PpVIhKWUMTuSVOKXmAGzrkUISh4mfq4spr5+T6vqxbeNQSp5bdf0REZF3ajwhmjVrFpYtW4ZXXnkFw4cPx0MPPYQJEyb43d4+fMvMP8wd2x1/H5OIG1/7HTlFzmutgoKC8MUXX0h8s3bUWh2ajX0GGpUCQUHOb45VPfbdzyzExxtPQ6N1/vuvUGvRbOwzkt+tHNPqbMfRBQU51Emdmz3Ot8yIiORV439mzpo1C5mZmdixYwe6deuGxx9/HC1btsTMmTOxZ8+euhgjBTilUgGFwtejICKixqzWGzP26dMHffr0wZtvvokPPvgAzz33HD788EP07NkTTzzxBKZNmwYFf4s1GE/+Zy9+2H+p2niLiCB899iNiI1wfVeE3LNaBWRddb1hIxERNSy1nhCZTCasWLECS5cuxerVq3HDDTfgoYcewoULFzBnzhysWbMGX375pZxjlVWg7VT984EcWFxsA5BdUIbMrAKM7O7dhpf1Ta/Xo23btgCAs2fPOqTaeHHVQXxwf19Ehzpnoq+OsbwUWe/a1u3o51x0m7rj1XsHo9xkgXHA72L9b4dzANjSc2Qvng4AiHt0icN3K8fKJ9reqist1YvHLh+3y+ncAIjxnq/+1+NzIiIi92o8IdqzZw+WLl2Kr776CkqlEg8++CDefvttdO3aVWwzYcIE9O/fX9aByi1Q1xB9P3MwWlS5C/TQZ7twINt/9/25fPmyQzkqRIMreiO2nb6KHw9cwgM3tKlRf9ayIo/blhZdc6rLK65Ir+GqL6lY1bqq51aTsRERkedqPCHq378/RowYgQ8//BDjx4+XfC25Xbt2uOeee2QZIMkrJkyH5lUmRBqV/z7aDA4OxsGDB8XPAPDRA32R+tZGAIDBVLM7gBptEFpOz4Ba5Vnqjic+WIVvdl2oNnVHy+kZ4ufqYpVTd4h111N3VD03e5yLqomI5FXjCdHp06fRpo3rf3GHhoZi6dKltR4UkaeUSiW6d+/uUNexeTjGJ7fCysyLNe5PoVRC26wNNCqFR6k7Ytt0gvacqtrUHdpm0v+vVI5VTt1RuU7q3OxxvnZPRCSvGk+I7JMho9GIvLw8WK2Ouwf7895E/qywzITzLnbGFuBZGhEiIqJAVOMJ0fHjx/HQQw9hy5YtDvWCIEChUPjNIuXGtqj6442n8fHG074eRr0zmUxYtmwZAGDq1Kmy7FRdnPkLVEqFR6k7dv7yDYqP58Nyo3PuPsFiRsmBNQCAsJ6p1cYqp+4ozvzFVnc9dUflcwMgxq1xk2p/kkRE5KTGE6Jp06ZBrVbjhx9+QMuWLf321frGsqg6NTEWa47kotyDtTLJCVFOC6r9ndFoxCOPPAIAuO+++2SZEF399f3rfS9wm7pj5Xtzbd97ZKpTXLCYxb5CE1OqjZlfsaXnMJmMFXVzn3A6NwBi3DpyXG1Oj4iIqlHjCVFmZiZ2797t8FYZ+c6IxFiMSBzh62HI4sCFQuw9X+CyzaVCx/19VCoVxo0bJ372llKpQnCnG6BUuO9PpVKh2w034+yVUizdch6PpXZ3WLCuUCoR3OkG8XNllWOVU3eIdddTd1Q9t+r6IyIi79R4QpSYmOj0KjCRt07nl2Ds+3+IZXWVN986NAvDpcJy2LdSah9jS/IaFBSElStXVtvv//ZfwtikVh5vOKnW6tB84t88Tt0xL+MzpH+9DwCw8+w1jOnVUowr1Fo0n/g3ye9WjlVO3VG5Turc7HG+ZUZEJC+PJkRFRRV7n/zzn//Es88+i/nz56Nnz55OjxQiIiLkHSEFhNwi2949QRol+iQ0wcND2zvEl0ztj+O5xQCAJqFaxEW5fiVedf0Oyr6sAjz02U788HjdJNud2Kc13ll7AudcLGgHAKV/PlkmIgoYHk2IoqKiHNYKCYKAW265xaENF1U3PoIgoNzk+BahQgEEabx/NFWd+CYh+HLGDU71WrUSPeI8X+v14KA22HzyMnKKypFXZHD/BS+0iAiSnBDd3LU5IoLUWJl5ER2ahdXpGCrLKy7H1lNXkNKlOSKDvVtTRUQUKDyaEK1bt66ux1HvGsui6roiCALu/WQbtp2+6hSbMqgNXh7Xo0b9bTt9Bf/dfQGVs4fc1DkG45LjvBpnaWkpEhMTAQCHDx9GSEgIACApPgpLpvbH6Hc31ag/k6EMFz6cDoUCKH3hjNhfdcfu0qsn8osNaDr1fae42mrE8qfvRH6xAe1nf+4Qs5rKcfHTxwAA5XduBQCUlZXiwoe2dB6GcZudzg2AGO/5cvVpcf78793Ye74AY3q1RMZ9fWznZbHCbBEQrK27ySwRkT/zaEI0bNiwuh4HNTAmiyA5GQKATSdqvoZswU9HsO+CY3qQH/Zf9HpCJAgCzp07J372liAIsBTledRf5WM3lWoqADnZWfbGTjH7ccwWK8a+9wf2ncmtODYEyXOzx536q8S+MH314VwAgMFswS1vbsBVvRE/PD4E7evxbhURkb+odXLX0tJSnD9/Hkaj0aG+V69eXg+KGpZts29BRLAau85ew4NLdtSqD/ujt3sHJKBZuA7vrj0Bg9mKce//AaVSgZ41eBxWWVBQEHbs2CF+9pZao0OLB9+CWunZouodO3Zgznf7cdzi/GhKpdXi0+9+w99WHoSyauoOtQYtHnwLAJBfasWB7EKHOo1WJ3lu9rhK43nC2rwiAy5cs72dd+RSMSdEREQSajwhys/Px7Rp0/Dzzz9Lxrkmp/EJ1qoQolVLrh36emcWDl2suPMTqlNj+pB2iAmTfgtqbK+W6NOmCZb+cQbFBrN418jd6/bVUalUsiYSVqpU0LXsDI1K4dFr9/3790f0HjMUZ5zvpimVKiT26gPddiMUSse+FErbcezHrFqnUqkkz80er9pfmdGCDcfzkBQf5fnJEhGRqMYTolmzZqGgoADbt29HSkoKVqxYgdzcXMybNw9vvvlmXYyRGqi8onI8+9/9TvVBGhXuHZCAvy7PxOUS24LmM1f0DvGfZw3FsZxi7MsqwLu/n6y3MbvTsbn/3D3JKSzH678cRXJCFM5fKcWnf5xB26bVr3kiIqLq1XhC9Pvvv2PVqlXo168flEol2rRpgxEjRiAiIgILFizAmDFj6mKcVA/OXdFj/4UCALY1RO6UXd8dW6NS4NFhHbDpxGVkZhWg1GjBHyfz8cdJ57VGra6/Lt+6SQhaN/H+l7fZbMby5csBAJMnT4ZaXbunwH+6IQF/vqkDIFhQcmgd1EoFzOZbnforq7QjuNlsxrfL/4Nz209AiOnj1KfVYsavq75ByaGTsDYd5RATrBboj2wEAFhGdHSuM/dwOjcAKDlke8HBGjcW/9l5Ht/tzcZ3e7PFR45n3bz+T0RE0mr820Ov16N58+YAgCZNmiA/Px+dO3dGz549sWfPHtkHWFf42n0F+5YK8386Wk3c9fd1ahWeurULyowWZGYVAADsOX97xkXiudtsu5rHNQlG25hQWcZsZzAY8Kc//QkAMH78+FpPiNrHhCE+OgSnLl7GlR/evN73S079vfT9IfGz0WAUjx3/12+d+rSYTHj5qb8AAE50GuSQXkUwm8TjmNOmONWZ5vzZ6dwAiHHrzbeh1FipPybvJSLySo1/e3Tp0gXHjh1D27ZtkZSUhI8++ght27bF4sWL0bJlS/cdNBB87b7C5H7xyCsuFycxlQ3q0BQRQbXfy6ZJqBZDOsV4MTrXlEolUlNTxc/eUiiVCGqTDIVCur9rehMAoH2zUARp1UhNTcWBC4WSs0aFUoGBQ4ZhX5Yt/vPBS9Da1yUpFAhqkywe06lOoZA8t4o4U3cQEcmpxhOiJ598EpcuXQIAzJ07F7fddhu++OILaLVaMTM3+Ze7+8fj7v7xvh5GrQQHB2P16tWy9hd7zzxoVAoEB1e/G/ZfUzuLx5780VZsl1hUrdYGYcuGdWg/5ycAQGGpCc3CbRMipUaH2HvmAahI3VG5ThcULHlu9rhKy9QdRERyqvGEyH4LHwD69u2Lc+fO4ejRo0hISEBMTN3dCSCqrbxiA+asOID5E3rW+7GVSgVu79USP+y/VO/HJiIiz9X6vrvRaMSxY8eg1WrRp08fToaoVqourI6Plu8tqRaRQWIOsS+3n0dxuUm2vomIqHGp8R2i0tJSPP744/jss88AAMePH0f79u3x+OOPIy4uDs8//7zsg6SGJbugDJM+3IJys/cL0ru0CMfvTw1DTmE5FAoFeidE1ej7paWl4l49O3fudEi1ER2qxYZnhmPo67Y3szxZdlxaWoqLnz52PXXHEbepO/r3748L18oQee9Cp7jJUIbu3bvjUmE5wia/7hCzmsqR81k6AMA4/EenOsO4tU7nBkBM99Hzb0s8OBsiIvJUjSdEs2fPxr59+7B+/XrcdtttYn1qaipeeuklTogasdgI27oVg9mKXeeuOdXXVvtmYbXePVkQBDHPl1SqjdiIGu5eLQgwXTlfbX/VHTuymtQd9nhY1bgA5+NUrrueuqPqudnjrlJ3EBFRzdV4QrRy5UosX74cN9xwg/i6NgB0794dp06dknVw1LC0aRqKn54YivNXHfe66dMmyqFsMFtQaqqf7QyCgoLE5MNypO7QBQUh9t75UHmYumPdunV4+ftDOK2WTt2xbt06vLPmOPYYHeMKtQax984HYEvTIVUndW72eE1SdxARkXu1St1h34eoMr1e7zBBosYpsVUEEltFuGyzdPPZ+hkMbCkuUlJSZO0vKKGXx6k7UlJS8OExHc5Uk7ojJSUF316MwN4qi6oVSttxAMfUHfY6e+qOqudmj1dN3UFERN6p8aLqfv364ccffxTL9knQp59+ikGDBsk3MvI7gzo0RZCm4q+USqnAsM7NfDgiZ0XlJvx2KMe2d1Ad2V+HfcvlcokBx3OLfT0MIqIGo8Z3iObPn49Ro0bh8OHDMJvNeOedd3D48GFs2bIFGzZsqIsx1gnuVC2/W7rF4tDLt8F6fX2LAoBaVbcbCJrNZvzwww8AgNtvv93tTtXpyzOx5kgeAODXWTdJ9ld6fCtU1aTukDp2duZRCOGJAACrVcC3uy8AAASrGStXrsTpXacgqDs5fFewWlB20pbJvnLqDrHueuqOyucGAKXHt9qOEzfC5Xm6YrJYMfyN9SguN+OLhwdicEe+IUpEVOMJ0ZAhQ5CZmYnXXnsNPXv2xG+//YY+ffpg69at6Nmz/vd5qS3uVF03VEoFVKi/R6cGgwETJkwAAJSUlLidEOUUlUt+tjMaDMhf8er1vp932V/lY9tTd1Re6nx37xYY3nNglbithWA2iccxPzLZqc70zBSncwMgxq1DU1yepyulRguKy80AgDOX9ZwQERGhFhMiAOjQoQM++eQTh7q8vDzMnz8fc+bMkWVgRJ5QKpW48cYbxc/eUiiV0MV1AwCUmaxwlXnNfuxjOcWSqTu6tIzEjTfeiNP5ejH+yv8OXz+QQjxO5dQdYt311B1Vz60iztQdRERyql0mTAmXLl3C3//+d06IqF4FBwdj8+bNsvUXGhKCFn+y7Sn0+NeH8NUjN7g9dnWpO+zxmV/uEXeqDtZWpO6wH6dy6g57nT11R9Vzs8eZuoOISF78ZyZRJc3DdejaIhyAbQNKX/low2mfHZuIKBBxQkRUiUKhwKs+yHlWVVk97eNEREQ2nBCRXysrK0P//v3Rv39/lJV5f0enrKwMD95xCy599ldYTAaPjr16wXRYJdra49/8/QGnuNVkwKXP/opLn/0VRkO5U53VZHA6t7KyMjFuMboeGxER1YzHa4jS09NdxvPz870eDFFNWa1W7Nq1S/wsR3+H9++1FQTX/VU+dphEKo3K8fiqcUGAMefE9cNYneogWCXPTfyOm7HVRlG5CRuP52NQ+6ZoGsY1SkQUWDyeEO3du9dtm5tuct7Xhagu6XQ6ca8enc77X+I6nQ6LlvwHr/50BEqV6/QY9mO/9vMRnJdI3WGPf7j+JA4onFN3NJs0FwCgvp6Go3KdQqWVPDd7XFnleAezi2p6qk5eWnUI3+3Nxo0dmuLLGdUvJiciaow8nhDZcyoRNSRqtRpjxoyp1XevlBjw/b6LTv0NuflWhBwLg8JN6g77sT+/EI0sibfM7PGfC/fgoETqjpAOtkz2qut7HVWuU6pUkudWEZftBVHR//bbrsWWU1dk75uIqKGT/6cqUQOV/PJvsFZ6cvWPHw6Ln7VqLqcjIgpkHv0WeO2111BaWuq+IYDt27c75DojqksWiwWrV6/G6tWrJdOwVN4v0VplGc+1UhMAIFijwuieLcX+tm1ah7IzeyFYXb/pZT92zuEdkm3t8awD25zigtWCsjN7UXZmL6zXx125TrBanM7NYnGMExGRfDy6Q3T48GG0adMGd911F8aOHYt+/fqhWTNb0k6z2YzDhw/jjz/+wP/93//h4sWL+Pzzz+t00JUVFBQgNTUVZrMZZrMZTz75JGbMmFFvxyffKi8vx6233grAlt4iNNRxb2mNSonHb+6IH/dfwunLesk+5k/sgehQrdjfzAfuBAB07Ol6Yl/52PbUHJ7GBbMJeV//HQBgmjbOqa5r0k9O5wZAjFtuWO1ybEREVDMeTYg+//xz7Nu3D++//z7uu+8+FBUVQaVSQafTiXeOevfujYcffhhTp05FUFBQnQ66svDwcGzcuBEhISHQ6/Xo0aMHJk6ciKZNm9bbGMh3lEolkpKSxM9Snrq1Cx4d1gHd5/7qUX+du/XAmSt6wE16DPuxz10plUzdYY9fuFbmHFcooGnezvaxUuoOex0USslzE7/D1B1ERLLyeA1RUlISPvnkE3z00UfYv38/zp07h7KyMsTExCA5ORkxMb5JEKlSqRASEgLAlmxTEAQIEq9AU+MUHByMzMxMWfv78ueNuPPDLVBpXL+1Zj+2q9QdmZmZDqk77JQaHVpNew+AY+oOe51Ko5M8NzHO1B1ERLKq8T8zlUolkpOTMW7cONxzzz1ITU31ajK0ceNGjB07Fq1atYJCocDKlSud2mRkZKBt27YICgrCwIEDsWPHDod4QUEBkpKS0Lp1azzzzDM+m5wRERGRf/L5fXe9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxTVRUFPbt24czZ87gyy+/RG5ubrXHMxgMKCoqcvhDREREgc3nE6JRo0Zh3rx5mDBhgmT8rbfewowZMzBt2jQkJiZi8eLFCAkJwZIlS5zaxsbGIikpCZs2bar2eAsWLEBkZKT4Jz4+XrZzofpXVlaGlJQUpKSkyJa645HJY5Hz5fMepe5ISUnBujfTqk3dkZKSghXzHoHVZMDxvBLbeiPY0nTkfPk8cr58Hvrr6/BUViMif39VPHbVcysrKxO/w9QdRETyatD7EBmNRuzevRuzZ88W65RKJVJTU7F161YAQG5uLkJCQhAeHo7CwkJs3LgRf/nLX6rtc/bs2Q5pSIqKijgp8mNWqxUbNmwQP8vR357tm20FD1J32I/tlJqjavw2AbvPXqsICgIMWQcBAO+tPQGodVArFNi/c6t4bKlzs3+nLlJ3EBEFsgY9Ibp8+TIsFgtiY2Md6mNjY3H06FEAwLlz5/DII4+Ii6kff/xx9OxZfbZynU4nS4oHahh0Oh2+/vpr8bMc/b2WsQRv/Hbco9QdX3/9Nd5efRzZ1aTu+Prrr/GvP07jSKX4TZ2bYcPRHMSMex4AYFWqoQDQqmk4pr6/BG+tPi6m7qh6bvbvVE3dQURE3qnRhMhkMolvvvTo0aOuxlQjAwYMqNVbRhkZGcjIyJDczI/8h1qtxl133SVrf6ljxuPD81s8St1x11134durW3GxmtQdd911FzaY9uBopbfMdGolFEoVQrsOcWj/55ROaN+sNz7K2iqm7qh8bsdyisXv1EXqjsq2n76CZ/+7HxN6x2FWauc6PRYRUUNQozVEGo0GCQkJ9TaJiImJgUqlcloknZubixYtWnjVd1paGg4fPoydO3d61Q9RfcnMqnjk1rpJSJ0ea/GGUzh3pRSL1pyo0+MQETUUNV5U/cILL2DOnDm4etX5X8Ry02q16Nu3L9auXSvWWa1WrF27FoMGDarz41PDZ7FYsHnzZmzevNnlRF2lVEDpvHeiZH+Zu7ah/MJhj1J3bN68GZdP7q82dcfmzZtx6VimZOqO8guHHY5jtViwb9d2sa7quVktFd/RKut2ry29kXdOiSiw1Pi++/vvv4+TJ0+iVatWaNOmjVOqhD179tSov5KSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+sxbdq0mg7dAR+ZNQ7l5eUYMsT2GEkqdYddkEaFl8f1wLZTV/DjgUuSbez9PTxpNACgwz/cp+6wH7u61B3VxQWzCblfPCvGFFoVjEYDHrnbdmxt82+RV1DscG5Go0H8zjfNv4VSW387whMRNXY1nhCNHz9e1gHs2rULw4cPF8v2N8CmTJmCZcuWYfLkycjPz8eLL76InJwcJCcn45dffnFaaF1TaWlpSEtLQ1FRESIjI73qi3xHoVCgY8eO4mdXHrihDR64oQ3mFJRh8Gu/V9tffNv2uFRYBsB1f/Zj5xSWSza1x/OLDc5xBaBu0lL8bG/ftl0HXCgoBRS2dTyVz02hUDh9xxWjmW+iERF5qsYTorlz58o6gJSUFLepNmbOnImZM2fKelxqHEJCQnDiRM3WucRFBaNDs1CcyndO9hoSEoIV63fZUne4uQNjP3Z1qTvscXvqDmulv+dKTRDiHvnEob0uKBhnTp9Ez5d+RXG5GcVmlcO56YKCnb7jzjW90aF85FIRhnTiTu5ERFXVamPGgoICfPrpp5g9e7a4lmjPnj3Izs6WdXB1KSMjA4mJiejfv7+vh0KNnH0adCKvxKP27WJsj/3+vuoQFvx0xKtjmyyOd4l2nq37tX9ERP6oxhOi/fv3o3PnzvjnP/+JN954AwUFBQCA7777zmEDxYaOb5lRfekdH1Wj9vsvFIqfV2VelHUsoboGvfUYEZHP1HhClJ6ejqlTp+LEiRMICqp4pDB69Ghs3LhR1sERuVNeXo4xY8ZgzJgxKC8vl6W/J6dNRt43L8FqMrptO2bMGGx6/ykIZue29vjXr6Y5xQWzEXnfvIS8b14SY0aDrb29TjAbce6rv4vnZjSUO32HiIjkUeN/Lu7cuRMfffSRU31cXBxycnJkGRSRpywWC3766Sfxsxz9bV63GgAgCO5fu7cfO36E8wJmh3jiww7roAWrFWWnd4mfFbBtKWFvL1xP1ZFzcCt+OmjryyrxHSIikkeNJ0Q6nU4yQ/zx48fRrFkzWQZVH/jafeOg1WqxdOlS8bMc/c1d+D7eX3cSCpXr9Bj2Y3+w7iRyVWq8ufoYbuvRwimuN5jx+knH/9UUKjWajp4lfgYAtUaDpUuX4ulv9ol1/R98AY8N7witVgu1RuP0HSIikkeNf6recccdeOWVV8QcSwqFAufPn8dzzz2HO++8U/YB1hW+dt84aDQaTJ06Vdb+xt51H5Zd3uI2PYb92FuUu/Db4Vycztc7vElmj1/TG7HwH6sdvqtQqRHWM9WhTq3W4E9Tp+KloxX7H7W9cQymTh0kxqt+xx2LIMBg5qSfiMidGq8hevPNN1FSUoLmzZujrKwMw4YNQ8eOHREeHo5XX321LsZI5FNWq4Cnv9mHce//ga2nrzjFXxlXd3n9dpy5ii2nLtf6+2Pe/QOpb3FtHxGROzW+QxQZGYnVq1fjjz/+wP79+1FSUoI+ffogNbVm/3IlkoPFYsGBAwcAAD179oTKTUJWT/o7dugAjLmnIUR1AwCcuaLHt7svVHvswjITBKsFCqXKKZ6ZmYkiibhgtcCUfw4AoGnWBgqlCtbr7Y25p6Fp1gYAYMo/h6cX52DTa1NhtVhgzD3t8B13rurdL76+VFiGf/58FCZL3aYDISJqyGo8ISovL0dQUBCGDBkiphUg8pXy8nL07t0bgOvUHTXp7/4xwwAA7a6n7qhu49DKx7an3/A0LphNuLTsCYeY0WhA7xsr2gPApWVP4BKA8pfugdFocPqOHL7Ydh4rZX69n4jI39R4QhQVFYUBAwZg2LBhGD58OAYNGoTg4OC6GFud4qLqxkGhUKBVq1biZzn6axbbElf1BniSuqNVq1awCtJN7XFBKq4AVGHR4ufK7XOLKlKBqMKiobyetkOhUIjlri0jcPyKPK/eF5WbZOmHiMif1XhCtGbNGmzcuBHr16/H22+/DbPZjH79+mHYsGFISUnBiBEj6mKcsuOi6sYhJCRE1h3SQ0JC8PP2Qx6n7sjOzsZVvRF9qiyarhy/pjeid5W4UhOE1mmfO9TpgoKRnZ2Nts9XLKpunfY5okO1CAkJgS4oGK3TPsctXZvDZBVw/Eq+F2dKRESV1XhR9ZAhQzBnzhz89ttvKCgowLp169CxY0e8/vrruO222+pijESNipvUfX7DaLai1Gj29TCIiGRRq81Mjh8/jvXr14t/DAYDbr/9dqSkpMg8PKLG56Eh7bDmSK6vh+EVk8WKW95aj8vFRvwyayjaNPVu7RYRka/VeEIUFxeHsrIypKSkICUlBc899xx69eoly/oNopoqLy/HAw88AAD497//7ZBOprb9PffYVOSfuoLWD/zdo2MbzVYIHf4EhVrrFL9ryv1O8VZRQRDMRlz+4U0AQMztT0Gh1sJoKMddd92F/AOXEHP7UwCAyz+8iUK1EuXPDIXRUI78lQvwe7gONz78klfn6a2reiOyrpYBAI7lFHNCRER+r8aPzJo1a4bS0lLk5OQgJycHubm5KCsrq4ux1Slmu28cLBYLvv32W3z77beype5Y+9P3KD222aPUHd9++y2+X/mdmGrD07hgtaL02Gbbca7HrFYrvv32W7HO3qbg0CYxdUfpsc04u+t3WCWOVxtf7TiPr3dluWwjCAJyi8phtTaSZ31ERBJqfIcoMzMTBQUF2LhxIzZs2IA5c+bg8OHDSE5OxvDhw/1mc0Yuqm4ctFot3n//ffGzHP09+8rr+HTTaY9Sd7z//vvQG8zIuOT8v5I9Xmow4/1Lzqk7okc8Kn4GbKk73n//fby46qBYFz3iUYRo1WLqjugRj6JzbDhUbsbmqUMXndPwVDVnxQF8tcM2aXrr7iRM7NNalmMTETUktVpDFBUVhTvuuAODBw/GjTfeiFWrVuGrr77C9u3b/WZCRI2DRqNBWlqarP3d/eDDWK73LHVHWloaruqN+EDiLTN7/JreiIwq8RE94rBGdbtDnVpta78wq+Its/A+tyM6VAuNRoNjeWUI73M7Eq+/ZVZf7JMhAEj/eh+WbTmL9jF8REZEjUuNH5l99913eOKJJ9CrVy/ExsbiL3/5C0pKSvDmm29iz549dTFGIp84f7UUhaU126OnqMyz9hn394ZK6fm6u+yCMny+1baz9fG84hqNSW77LxRyI0cianRqfIfo0UcfxU033YRHHnkEw4YNQ8+ePetiXEQesVqtOHXqFACgQ4cOUCprPMd36u/i+dMwXc2GuklLJL3yG7577EaXxy4xmCAIVigUSjz02S6H+IkTJyAIghi30ygV6KgrxsHsQqibtIRCoRTb248NAOZrl1BersXJ3CIIghXma5eQVaRE2+i6y59GRBSIajwhysvLq4txENVKWVkZOnfuDECe1B1lZWW446Z+AOzpMYKwbPNZt8fu/eL3uGoAMrMKxLhaMIvx+av24qMt2Q7f/e2lexyOYzSUo3PnbmIdAFz85M+4COABZUUZAAZ9sN6r8yQiIke1WkNksViwcuVKHDlyBACQmJiIcePGeZ1Yk6g25F4UX7W/QhePwextJ/VtjY+3VDxGmnpjW6iUCpdj0wSHwVxlLVBkZCSKyis2O1ToHCd4Cl2om4QivqE3mGG2CogMlmexNxFRfavxhOjkyZMYPXo0srOz0aVLFwDAggULEB8fjx9//BEdOnSQfZB1gbnMGofQ0FAUFBTUSX///OUoPlx/yqO2b/52zCGmUioc4m+tPu703bFv/ord566JdUHBISgoKHBI3ZEwa7nD9xJmLYdWrYRGFwygpIZnVzdKDGYMWrAWBrMVG58djtgI7/aCIiLyhRovuHjiiSfQoUMHZGVlYc+ePdizZw/Onz+Pdu3a4YknnqiLMdaJtLQ0HD58GDt37vT1UMgHElvZ7tyolAp0ah7u49H4t0uF5SgqN8NgtuLMZb2vh0NEVCs1vkO0YcMGbNu2DdHR0WJd06ZN8dprr2Hw4MGyDo6orrwzORlPjeiMyGANmoS63r/IYOZdRCKixq7GEyKdTofiYufXfktKSmTZGI+oJgwGA/78Z9tC448++gg6nc6j7ymVCrSV2Euncn+dJqYDALadvur22N0mPeUynnjX006xXZ/Pw5USI5qOnAmFWgOT0YCpU6fi8u4LaDpyJgDgyq+2TScrl5VKBSyPzfXoPOvDwl8rHhcWlplQWGbiWiIi8js1fmR2++2345FHHsH27duvv04sYNu2bXj00Udxxx131MUYiaplNpvx2Wef4bPPPoPZ7H3m9cr99U2I8Litxep87MrxcG3FUujwIA3MZjPOb/sZ+oNrIVhtd6AsFgs+++wzsU6wWqA/uNapXLx/DazWhnnX6s//3o0b5q9FQanR10MhIqqRGt8hevfddzFlyhQMGjQIGo3tX4Fmsxl33HEH3nnnHdkHSOSKRqPB66+/Ln6Ws7+bE1thaKdcbDpx2W1bq8Su1pXj9w5qh6ZREYhrEozoUC2MRqDHhMdw4VoZFNffzlSr1Xj99dcx/6cjYl1UyjQAcCirlQq3u2j7UpnJguyCMkSF8I4xEfmPGv9UjYqKwqpVq3Dy5Enxtftu3bqhY8eOsg+OyB2tVotnnnmmzvpTKqp/yb1y26pvmUn1dXf/EIdYp9T7UHy+QKxTa2ztM65UvGUWOfBOhz4jB94JrVoJlZqPpIiI5OTxhMhqtWLhwoX4/vvvYTQaccstt2Du3LkIDg6uy/ERNVqn8mv/RpYgMPM8EZGcPF5D9Oqrr2LOnDkICwtDXFwc3nnnHVmTahLVhtVqRXZ2NrKzs2G1Wuu8v3CdGtGhWvRqHem2rau41WpFeUE+zMWXIQhWh/b2OkGwwlx82blcdBnaGuRBIyIi9zy+Q/T555/jgw8+EN+aWbNmDcaMGYNPP/3U6/xRRLVVVlaG1q1bA5AvdUfl/iprEqLBzhdSoVAooFIqoNfrxbavrnJObOxqbGVlZTi+6E8AKlJ3hKmsYnt76o7sD6ZKlt/ddQprj+V7da5ERFTB45nM+fPnMXr0aLGcmmr7xXDxon9mvc7IyEBiYiL69+/v66GQl9RqNdRq+RYZu+pPrVI6ZKl3d2yXcaXK9ue6YV2a2dpWqlOqHMtVv0NERPLw+LeI2WxGUJDjlvwajQYmU/V5nhqytLQ0pKWloaioSPZcWFR/QkNDZf07WJP+KreVWlTtqq/Q0FB0/9uPKDFUvK4fGREOk8nkkLrjw9+PYv5PR8Vym2dWIal1JDq3bgbgiEfjrKmuLbhzNxEFHo8nRIIgYOrUqQ4b35WXl+PRRx91eBTw3XffyTtCogBmlVg7vWBiL3SODcf3Mwfjjvc318lxd5yR3oySiKix8nhCNGXKFKe6P/3pT7IOhqixiHaTDsRTZovzYu3EVrYNIxOiQ5xiDcXKvdloEqJFqyi+hUpE/sHjCdHSpUvrchxEtWIwGJCebkux8dZbb3mcusPT/jxtmzDqUbF+yqA2mD64ncuxGQwGXPzpfZgsAqJvfhgKtUZsf2XrOUTf/DAA4Ot3XsKVrEKxHJ75JdLSfro+tpq/afb70Tws+eNMjb9XU59sOoOtp6/gnXt6I7eoHIPaN4XCxZ5ORES+phACfEMT+xqiwsJCRES4TtVADY9er0dYWBgAed4yq9rfY8sPYcNx29tcTUI02PvirZJtX121Bx9vsb1g8N1jN6JPQhOXY6sci//rt1Bqg3Do7ykOdQCQ9fYksfzjE0PQq10LsT+TQoPkV1Z7db5SurYIx9Ec53yFtaFWKmC2Cvji4YEY3DFGlj6JiAD5f3833P3/iTyg0Wgwd+5c8XN99le5raqa1B3V9aXRaNDspvthtFihUKkwfXA7sf2iNcfFVB2jHpyJLaeuQKFSoWV0mEN/Ju9Tt0kqKJVvkbr5+iKo7GtlsvVJRFQXOCEiv6bVavHSSy/5pL/KbatL3VFdX1qtFs1THhDfMntxbCIA4KWXXsKy8oq3zEZPeQKHfzsu2V+ZpW7e8MwpKq+TfomIGjLuqEjkpyKDNXhwUBtfD4OIqFHghIj8miAIKCgoQEFBgSz5vWrSn7u2ruKCIMBSXgJreYkYs7e31wmCgNKSIody1f5eGdcDr03s6fV5ExEFOk6IyK+VlpaiSZMmaNKkCUpLS+u1v8ptjQbnNTKu+iotLcXR1ych6517IJgMDu3tdYLJgOfG9RPLcp9rfXr2v/vx4qqDYvnL7ecx9PXfseZwrg9HRURUgRMiIqoXn289J36es+IAsq6W4eUfDvlwREREFfx+QpSVlYWUlBQkJiaiV69e+Oabb3w9JKpHISEhMBqNMBqNCAnxfqPCmvRXua1W57wBoau+QkJCkPjCD0h4eiUUGp1De3udQqPDzlN56PXijxjctRVim0TIeq4NQX6xwddDICIC0AjeMlOr1Vi0aBGSk5ORk5ODvn37YvTo0V7vR0P+QaFQyPK6fW36q9xWatNBV30pFAooVGooVM7tFZVe4e/Xvhn2vVyRVFmp9Pt/wxARNUh+/9O1ZcuWSE5OBgC0aNECMTExuHqVeZjIf80Y2g4AcFff1j4eifzKTRZfD4GISJLPJ0QbN27E2LFj0apVKygUCqxcudKpTUZGBtq2bYugoCAMHDgQO3bskOxr9+7dsFgsiI+Pr+NRU0NhNBrxzDPP4JlnnoHRaKzX/iq3NZuc27rqy2g0Imf1J7i2bgmE6/sJ2dtfW7cEfzw9FPPu6OrwfbnP1RduWLAWhWV1s38SEZE3fJ664+eff8bmzZvRt29fTJw4EStWrMD48ePF+PLly/Hggw9i8eLFGDhwIBYtWoRvvvkGx44dQ/PmzcV2V69exdChQ/HJJ5/gxhtv9Pj4TN3h3xpL6o7zb93p1B6Ay7K9v00n8vHAv3ZAp1bCYHZOBtvQ/PD4ENz+3h8AgCCNEkf/McrHIyIif9ToUneMGjUKo0ZV/wPxrbfewowZMzBt2jQAwOLFi/Hjjz9iyZIleP755wHYEmWOHz8ezz//vNvJkMFggMFQsZCzqKhIhrMgX9FoNHj66afFz/XZX+W21aXuqK4vjUaDpoPuhMkiiGk6pNq7KwPAkI4x+H7mYDQN02Hwa7/X4Gx945X/Hfb1EIiInPh8QuSK0WjE7t27MXv2bLFOqVQiNTUVW7duBWDbzG7q1Km4+eab8cADD7jtc8GCBXj55ZfrbMxUv7RaLRYuXFgv/VmF6ttWl7qjur60Wi1ajJghpu6orr27MmBbjN2rdZTkcRqiHWe5xo+IGh6fryFy5fLly7BYLIiNjXWoj42NRU5ODgBg8+bNWL58OVauXInk5GQkJyfjwIED1fY5e/ZsFBYWin+ysrLq9BzIv7VpWvF6O9e+EBE1Xg36DpEnhgwZAqvV83UTOp0OOp0OGRkZyMjIgMXCt178mSAIMJttd1nUarXk6+/e9Pfi7YkOGwpW17a61B3VjU0QBAgWMwSLGVCqJNsDcFn29lyJiKhCg75DFBMTA5VKhdxcx+39c3Nz0aJFC6/6TktLw+HDh7Fz506v+iHfKi0thVarhVarlS11R+X+1Krq/xep3La61B3Vja20tBSHX70d598Y75C6o3J7d2UiIpJPg54QabVa9O3bF2vXrhXrrFYr1q5di0GDBvlwZERERNSY+PyRWUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/XiW2e1xUdmjUNISAiuXbsmfq7P/iq3/XR7To36CgkJwXs/ZeLDDSdxz+Cu1bZ3VyYiInn4fEK0a9cuDB8+XCynp6cDAKZMmYJly5Zh8uTJyM/Px4svvoicnBwkJyfjl19+cVpoXVNpaWlIS0sT9zEg/6RQKBAVFeWT/iq31ajyxXrt9cdsrvpSKBSYOSoJM0cluTy2u3Jj8Mw3+7Dl1BUsndYfnWPDfT0cIgpQPp8QpaSkSC5IrWzmzJmYOXNmPY2IqOYm9onDqfwSxITpkNjSdxt8dm0RjqM5xYgK0aCg1D/eivtm9wUAwKrMbDwzsquPR0NEgcrnEyJf4SOzxsFoNGL+/PkAgDlz5kCr1dZbf1Xbvntvb4/7kopVrQPgsiw1tu9nDkFBqRFv/nYcy3f515YS5qobPRER1SOfp+7wNabu8G91nbojNDQUbZ//UYyffW2Mx8f2NHWHPVbb1B1Snvt2v99NiP48rD1mj+qGM5f1CNWq0DwiyNdDIqIGrNGl7iDyhlqtxmOPPSZ+rs/+3LV1FZeKSdW5Kzc2J/NKkPrWBmjVSux78VYEa1W+HhIRBQjeIeIdInKjujtEDZknd4juSGqFdjGheGftiXoalWt/vqk9TuSV4PejeQCArbNvxo4zV7H55GU8PbILmofzjhERVeAdIplwDRFRw3IqXy9Ohuye/E8mACAmTIdnb+OCayKqOw16Y8a6xJ2qiRqWMpO52lh+saEeR0JEgShgJ0TUOOj1emg0Gmg0Guj1+nrtz11bV3GpWNU6d+XGZvPJK74eAhEFsIB9ZEaNhz3hqS/6c9fWVVwqVrXOXbkx25dV4OshEFEA4YSI/FpwcDAuXLggfq7P/ty1dRWXiknVuSt7w9rA36d49P/2+HoIRBRAAnZCxEXVjYNSqURcXJxP+nPX1lVcKiZV565cHZPF6rZNTJjOo76IiAJBwK4h4qJqasz6tm3its3NXZvXw0jk897aExjz7iYcyyn29VCIqBEK2DtE1DgYjUa88847AIAnn3xSltQdnvbnrq2ruFSsah0Al2VXY+veyjlh8euTeuHC1VK8+/tJsa6hPzazEwC8ufo4AGDp5jN47c5evh0QETU63JiRGzP6NabukHboYiHGvPuHQ90Pjw+BVq3ErW9vBAB8Pn0AQnVq3PnhFvcXpgG5vVdLvH9fH18Pg4h8jBszElWiVqsxZcoU8XN99ueurau4VEyqzl25Ot1aROCRm9pjzeFcnL5c/Sv60aHe3VEjImosAvYOUeVF1cePH+cdIqqWP6busFt/LA9Tl9rWyUndIYqPDsHwN9a77ad/2ybYefZaXQ7VY7xDRESA/HeIuKiai6qJXOrUPAz920b7ehhERHUqYCdEROS5O/u29vUQiIjqFCdE5Nf0ej2ioqIQFRUlW+oOT/tz19ZVXCpWtc5duT51aBZWr8cjIqpvXFRNfq+wsNBn/blr6youFata565MRETy4ISI/FpwcDCOHz8ufq7P/ty1dRWXiknVuSu706FZGNRKBbRqJVo3CUYes8YTEUnihIj8mlKpRKdOnXzSn7u2ruJSMak6d2V34qNDsOtvqVAqFYgI0jhNiDQqRY36IyJqrLiGiKiRiwrRIiJIIxlr3SQEs1Llm1CSfxEEAZ9tOYtVmdm+HgqRzwXsHSImd20cTCYTPv74YwDAI488Ao1G+hd/XfTnrq2ruFSsah0Al2Vvz9VuVmpnhGrVePWnI1731Tk2DMdzS2QYVfUEAB+st6Uf+cuwDlAoeJertvZdKMTc7w8BAAZ1aIrm4UE+HhGR7wTsxox2TN3h35i6o2aO5xY7bMx4U+dmAIBPNp6udkLUqXkYVqcPc7gO1dn07HAMfX1djcdVE+2bheJ0vu0tuzXpN6Fj8/A6PV5jJQgCPlh/Cgt/PQbAlux3ydT+Ph4VkeeYuoOoEpVKhUmTJomf67M/d21dxaViUnXuynLp1lKefwzER4fI0o8r9skQAPxyMAdHLp3AE7d0QpcWnBjVxNojeeJkCAB+P5rnw9EQ+R4nROTXgoKC8M033/ikP3dtXcWlYlJ17spyGdIpBhufGY6bFtbt3R25vfGb7a27onIT/v3QQB+Pxr/8eijHoTygHXcjp8DGRdVEBABIaFr3d3fqyqm8ul231BhtOXXFoRwVLM+aNCJ/xQkREYm0Kv5ICBTtYrxbb0fU2PCnH/m10tJSxMXFIS4uDqWlpfXan7u2ruJSsap17sp14fvHBzvVNY/Q1cmxyLeCtbZ1aNyLisiGa4jIrwmCgIsXL4qf67M/d21dxaViUnXuynLr2iICm54djsUbTqHEYEZekQHPjuzq9nt/SemAGzs0rZMxeWpfVgF+PZSDBwe1RYtIvj7uqa4tInAgmylhiDghIr8WFBSEvXv3ip/rsz93bV3FpWJSde7KdSE+OgSvTujpVB+iVaHUKL1v13O3VT9p+u9fBuHOD7fKNr7qTF+2E1f0RlwsKMOie3rX+fEam98O5/p6CEQ+xQkR+TWVSoXk5GSf9Oeurau4VEyqzl25Pn1wfx98teM8CstM2Hb6arXtpt7YFsu2nBXLbZrWz1qVK3ojAGD/Bd7t8MTq6xOg2AgdDmTz0RlRwK4hysjIQGJiIvr350ZkRJ5I6dIcHz3QD0mto1y2e+mO7g5lpUKBoZ1i6nBkznacuYp1x7ivTnUqP3K1v25vsggwWay+GhKRzwXshCgtLQ2HDx/Gzp07fT0U8oLJZMKyZcuwbNkymEymOu1PqfC8rbu4VKxqnbsyVbhYWC5+vlZqxN0fbcW0pTtxPLfYh6NquA5fKhI/39ihYrL60YZTvhgOUYPA1B1M3eHX6iN1x3d7LuCnA5dwe69WGN87zuNj+1PqjppY8NMRfLTxtENd5ZQmABzSfOz5+wg8+Z+92HTico2PVRsqpQIWq+3H2n8euQE3tPftYu+GaMvJy7jv0+22z8/fjBtf+x0AoFAAZxaMcfVVogaDqTuIKlGpVBg9erT4uS76m9inNSb2aV3jY7uKS8Wk6tyVfUHNtSaNRpdYx3Qngf3PYwp0nBCRXwsKCsKPP7pPOloX/blr6youFZOqc1f2hfHJcfjlYA5OVcop1pDY7w4BtvQUvEPkbOvpil2qVVWfBRMFqIBdQ0REtdMpNhxrn0rBlEFtfD0Ut5ZuPit+/npnFiZ8sBmZWQU+G09DUW6ybZ9w9ooezcN1YnLftn6cvoXIW5wQEVFAePa/+7H3fAEW/nrU10PxOYXCdldoyo1toVAo8PfbuwEAtGr+SqDAxb/95NdKS0vRqVMndOrUSbbUHZ72566tq7hUrGqduzJ5xmi2Yt4Ph8VyXpHBh6NpWPiwjKgC1xCRXxMEASdPnhQ/12d/7tq6ikvFpOrclRuqm7s2x+9HG8Y+QL8eysGnf5zx9TCIqIHjhIj8WlBQEP744w/xc332566tq7hUTKrOXbmhuqtv6xpPiF4Y3Q2v/nRE9rF8vStL9j793bXru3oTUQVOiMivqVQqDB7snKG9Pvpz19ZVXComVeeu7EutooK97qNDs1DxbbUZN7WvkwkROfvffluSYIOZO1MT2TWKNUQTJkxAkyZNMGnSJF8PhShg3H9DGzx7Wxd8OWNgrfuYeXNHqJQKTBvcVr6BuXEirwQPf7YTmVkFOHKpCFZrw378WBdaRtomsx2ah/l4JEQNR6O4Q/Tkk09i+vTp+Oyzz3w9FKpnZrMZK1asAGCbGKvV3v2Vrkl/7tq6ikvFqtYBcFn29ly9FaZT47GUjpKxynvbqBTSS3efvKUTJvRujdu6t0Swtn43mlxzJA9rjtge6T00pB3+fntivR7flwxmC85ctt2V69DMcbfz47klEARBfAuNKJA0iglRSkoK1q9f7+thkA8YDAbcfffdAGzpLLydJNSkP3dtXcWlYlXrALgs+3pC5MqgDk0xpmdLxEeHIDJEI9lm+uB2AFDnkyF3KUP+9ccZPH5zR+w6ew1DOsUgSOO7XcDrw+WSivVD3VtFAgDim1TsP5RTVC7eQSIKJD7/ibpx40YsXLgQu3fvxqVLl7BixQqMHz/eoU1GRgYWLlyInJwcJCUl4b333sOAAQN8M2BqUJRKJYYNGyZ+rs/+3LV1FZeKSdW5KzdU4UEaZNzfx9fD8NjjX9lyrU0f3A73DUxAy8gghOp8/uOxTmnVSkQG2yar8dEVE6IG/gIjUZ3x+f/xer0eSUlJmD59OiZOnOgUX758OdLT07F48WIMHDgQixYtwsiRI3Hs2DE0b97cByOmhiQ4OFjWu4M16c9dW1dxqZhUnbtyIBjZPRb3D2yD9K/34XKJbQ+hZ0Z2wcJfj8l2DPtdpCWbz2DJ5jPo2iIcv8y6Sbb+G5KVe7MB2PZnqkyrVjrVEQUSn/8zc9SoUZg3b564RqKqt956CzNmzMC0adOQmJiIxYsXIyQkBEuWLKnV8QwGA4qKihz+EFHdGt2zZa2/+9ED/XBT52ZO9Z8+2M+bIbl0NKe4zvr2NXcTybLraT2IAo3PJ0SuGI1G7N69G6mpqWKdUqlEamoqtm7dWqs+FyxYgMjISPFPfHy8XMMlomrc0z8eq/96ExZO6uVR++bhOkQGa3Bnn9ZiXXSo41qk1MRY7Pn7CGx6drisY7ULtLfP7HeHtp++6uOREPlGg54QXb58GRaLBbGxsQ71sbGxyMnJEcupqam466678NNPP6F169YuJ0uzZ89GYWGh+Ccri5u2+bOysjIkJycjOTkZZWVl9dqfu7au4lKxqnXuyv5EoVCgU2w4dG4WLEcE2Z7i3zMgAZkvjsCbdyeJsdmjuomfO8eGAwCiQ7UO61/kdPBiofj5aE4Rvth+DqVGMwDbm1qPf7UXc1cdbPC7hldmtlQ8EntmZBeHWFQ1i9+JAoXP1xDJYc2aNR631el00Ol0yMjIQEZGBiwW3h72Z1arFfv27RM/12d/7tq6ikvFpOrclRubL2fcgF1nr2JSv3inV7+Hd22OrbNvxoVrZejXpolDbELvOKy4vjZGLpU3Lbz34224VmpCQakJE3rH4fzVUvxvn21zw8n9E5DYKkLWY9eVvVkF4ucHBrVxiPVvG43Vh3Pxf9vO4b6BCfU8MiLfa9ATopiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyMtKrvsh3goKC8Ntvv4mf67M/d21dxaViUnXuyo1Nj7hI9Iir/v/HlpHBkq+Evz05GU/d2hlD/rlOtrH8uP8StColurWMwLVSEwDb+puFvx5Dy8iK6z/63U14555kjEuOc+rjmW/2Yc/5a1g2bUCt72QZzBYcvliEXq2jHPZ3qo0f918SP0cEOd4Rsj8yO3yJ6yopMDXoCZFWq0Xfvn2xdu1a8VV8q9WKtWvXYubMmb4dHDUIKpUKI0aM8El/7tq6ikvFpOrclf2NVlXxC13unQNaN3E94birb2t8s/uCx/0t23IWy7acRZjE6/eXCssdyh+sOyU5IbIf79dDOXh4aHun+JnLehy9VASNSon/7DyPKTe2xdBOjgvIn//vAazYm40/D2vv8NiwNjTXr3+zcJ1T7LGUDthwPB8AUGIwS543UWPm87/xJSUlYgZvADhz5gwyMzMRHR2NhIQEpKenY8qUKejXrx8GDBiARYsWQa/XY9q0aV4dl4/MiOrfkE7NcGef1mjbNAThQfW7ZuX5UV1rNCGyKzGY3bYxSzzCNJgrfrZYqizQLiwzwWCyYPgb6x3qt5+5igMvjXSosz8KXPrHWa8nRAezbXd/JvZ2nrwlxUeJn/dnFeDGjjFeHYvI3/h8QrRr1y4MH17xlkh6ejoAYMqUKVi2bBkmT56M/Px8vPjii8jJyUFycjJ++eUXp4XWNcVHZo2D2WzGr7/+CgAYOXKkLKk7PO3PXVtXcalY1ToALssNeafq6oTp1A4LpeU2fXA7/HooBx890Bf3fLxNnMw8P6ormobpoFQAdfHy2Kl8PTLWncQt3ZpDqVDgg3UnHZLfHrxYhM+3nsXk/vH4/Uge/vLFHsl+isvNOJhdiL98sRuje7Z0mAAJEHA6vwR7zhdgTM+KdCcXrpXil4M5uL1XK7SIdP0o9USebcfzUqPzPwSDNCq0bhKMC9fKsPPsNU6IKOAoBH96RaIO2CdEhYWFiIjwj4WRVEGv1yMszJagsqSkBKGhoW6+IV9/7tq6ikvFqtYBcFmuzbkezy3GrW9vBAB8Pn2A5P4+jcVXO87jxVUH8dStXfDosA4AgJFvb8SxXN/tMfTyHd0x9/tDLttM6tsa316/kzV7VFcs+PmoZLt543vg/oEJmPzRNuw4a3tV/ug/boNOrYTBbEWQRgW9wYxlW87iPzvPI+tqxZuJH9zfR3JvqM4v/Azj9TfRzr42plbnSFRf5P797X//xCSqRKlUol+/fuLn+uzPXVtXcamYVJ27MlXv3gEJmNS3NTSqimv16oQemLS4dnuYycHdZAiAOBkCUO1kCAD+tvIgNhzPFydDAND3H6uhN1qgUAA/Pj4UqzKz8dHG007fjQ7VSvY5fUg7LN5wCoBtR+vxEo/WiBqrgL1DVHkN0fHjx3mHiAJCIN0hqk7615n4bo9tXc5LYxNx5rIen2095+NRye/pWzvjh/2XJHfdPvTySMlcbdtOX8E9H28Ty8fm3QadunEnuyX/JfcdooD9Z2ZaWhoOHz6MnTt3+nooRPUmJqzi7aKWbtabNFZNK90dmTq4HdJHdHHRuvF58pZO1SauTa60sBoA9p4vqPsBETUQATshIgpE0aFarH1qGH56Yig6Xd/tOdBMG9wOo3u2wOsu0oi4SzHStUXDv3arj+TVOCdbkEblkCPuPzvOyz0sogYrYCdEGRkZSExMRP/+/X09FPJCWVkZBg8ejMGDB8uWusPT/ty1dRWXilWtc1eurQ7NwvxmZ+W60CoqGB/c3xd395POY5gUH4XberTAB/f3qbaP+RN7Yt/cWxEX5bxJZG1p1fL+ON5XaVfqmkhNrHiDd2XmRVzVGz3+rtUq4JONp7FS5l3DiepDwC6q5mv3jYPVasWWLVvEz/XZn7u2ruJSMak6d2Xynk7jOBF5dXwPhAdpJN/CqiwyWINJfVvjnbUnanS8xJYReGBQG8z+7oBD/bv39Maj/7e7Rn3VRnhQzX7s3/3RVnw14wbJzRyr+tO/tmPLqSsAgMslBsnNKIkaqoCdEFHjoNPpsGLFCvFzffbnrq2ruFRMqs5dmbwXpFHhnXuS8eR/MgEA6kq7aSsUgKvXTm7qHFOjCVH/tk3wzaM3otRodpoQDevcDL0TorD3fAGevKUTPtp4CuWm6ie+c0Z3xfyfqn8Lza5lZBC6tYzA70fzMKpHC0zs09rj8QLAybwSPPz5LqxKG+yy3durj4uTIQCY9+MRTojIrwTsW2Z23IeIiKxWAS/97xAEwbZXkPJ6zrDd565i7/kCpHRphoW/HsOvh2x5Fb977Eb0SWiC/RcKcMf7m132ndqtOdYcyQMArH86BW1jbPtH7ThzFe+vO4mN19NlnJo/2iFXmd5gxuB//o6C63nUKjuzYDQUCgVWZWbjwrUyZBeUYWC7aNzeqxU2HM/D9GW7AAC/PzUM7ZuF1fh6PPX1Pvx3j+Ou3hN7x2HBnT0l3zrLulqKoa8755E7+o/bEKThW2pUN+T+/c0JESdEROSBk3klSH1rA4CKCZHFKuC1n4/gk01nHNpOGdRGfJX/20cHwWIV0D0u0ik/2DW9Ec9/tx89WkXi8Vs6OR3ztZ+PYvGGU7i5a3PERgThq+uLnN1tmnj4YhHKTBb0bdOkVucqCAKulZrQ5x+rHep7xEXgkZs64I6kVg71W05exn2fbnfq58P7+2CUm0ePRLXF1+5lwkXVjYPFYsH69euxfv16WfLS1aQ/d21dxaViVevclal+tYwMQnSoFmE6Ndo2td3lUSkVeGFMIib1dXwMFaStuCsSolVjYPumkslSm4Rq8dED/SQnQwCQPqIz/u+hgXjnnmSH7QLcSWwVUevJEAAoFArJzRsPZhfhia/2OtX/d0/FIuoPKy1Gry5FCVFDxDtEvEPk15i6g+pTmdECqyA47eNzIrcYI65veJkQHYI5o7uJC6Ttj7e8lVdUjvk/HcGQTs2cJmB1pe3zP0rWn54/GvklBsRGBDm1O/vaGDy0bCfWHs1D1xbh+GXWTfUyVgo8TN1BVIlCoUBiYqL4uT77c9fWVVwqJlXnrkz1K1grvR6mU2w4NjyTgn9vPYfxvePQIy4Svz81DC0jg2X7b9U8IgiL7uktS1+e6t+2CXaeveZU337OTwCAMb1aoqvEflbTh7TD2qO2fZAEQeDfV/ILvEPEO0RERJIKSo04kF2Iz7acw5ojuW7b39A+Gv95ZBDOXtYj5Y31AGyLsd+anFy3A6WAxDVERERUL6JCtBjaqRkW/6kPvnvsRrftP76+y7X9TToA+G5vNi4Ver9pKlFd44SIiIhcUquU6JPQBM+P6lptm/kTeiIiSCOW/5raWfw8PmMzzBZuJkoNW8BOiPiWWeNQVlaGESNGYMSIEbKl7vC0P3dtXcWlYlXr3JWJ6tujwzrg7Gtj8PCQdm7bTuwTJ37OLTLgxwOX6nJoRF7jGiKuIfJrfMuMqP4Vl5uwKvMiCkqNeOO34wBsd4juG5jg0G7uqoPifkyhWhUW3NkLwzo1Q2SIxqlPopriW2ZEleh0Ovzf//2f+Lk++3PX1lVcKiZV565M5AvhQRr86YY2OJ5bLE6I8osNTu0eGNRWnBDpjRY88dVe3N6rJaYPaYf1R/Pw4I1tERPGv8vUMPAOEe8QERHVmn0Por+mdsaTqc4bTD7+1V78b99Fye8+cEMb/GN8jzodHzVefMuMiIgajHsHxKNt0xCMTZJO0fFXiUmS3b+3nUO5yYJjOcWwWAP63+bUAPAOEe8Q+TWLxYI9e2zpAfr06QOVyrtEkjXpz11bV3GpWNU6AC7L3p4rUX2a8MFm7D1fUG28W8sIpHRphiEdYzC4Y0z9DYz8FpO7yowTIv/GRdVE/kEQBOQVGzBw/lq3bU/NHw2Vkrtbk2tcVC2TjIwMZGRkMEmmn1MoFGjTpo34uT77c9fWVVwqJlXnrkzkLxQKBWIjgjB/Qk/MWXHAZdsOc35CarfmyLi/D3Rq3gml+sE7RLxDRERUrwRBwIHsQlwpMeJUfgnm/XhEst0nD/aDTq3EjR2aQq3ikldyxEdmMuOEiIjItwRBQLvZP1UbH9WjBd67tzcnReSAb5kREVGjolAocPDlkVg6VTpzwM8Hc9DxhZ/x2Zaz9TswCiicEJFfKy8vx/jx4zF+/HiUl5fXa3/u2rqKS8Wq1rkrEzUmYTo1hndtjs+mD6i2zdzvD+GBf23H1lNXsC+rAE99vQ+7z12rx1FSY8ZHZnxk5tf4lhlR43NVb8RtizYiLEiN0/l6j75T3caQ1HjxLTOiSrRaLT7++GPxc332566tq7hUTKrOXZmoMYoO1WLHC6kAbOuL0r/ehxV7s11+5+01x5F1rRRv3JUEADBbrCg3WxGm46858gzvEPEOERGRX3C3+Lo6KV2a4elbu6BHXCTKTRZoVEruc9QI8A4REREFJIVCgSdv6YR31p6o0ffWH8vH+mP5DnU3dmiKBRN7IqewHJM/3gYAWDCxJ+4dkCDbeMm/8A4R7xD5NavViiNHbHuYdOvWDUqld+8J1KQ/d21dxaViVesAuCx7e65E/k5vMAMAyk0W3P/pdhzNKfa6z/sGJuDIpSKHNCNhOjVKDGaM6tEC6SM6I65JMM5fLUXn5uE4kF2IwjITklpHITJE4/XxyXPch0gmlXeqPn78OCdEfoqLqokIAPKKyjHgelqQnnGROJBd6NPx3DsgAcEaFTYcz8Op6wvDHx3WAQ8PbYcwnRqCABSUGbFs81n0adMEI7u3EL9bXG5CmE7NHend4CMzmaSlpSEtLU28oOS/YmLkTQRZk/7ctXUVl4pVrXNXJiKb5hFBOPjySJzOL0HPuEgIAlBsMGP9sTxoVUp8v+8ifj6YU2/j+WrHeae6xRtOYfGGU9V+J1Srgt5YkU5qQLtoBGtUOHSxCG2ahmD3uWtI7dYcJ/JKUFhmwqPDOqBfmyZQq5S4cK0UN7Rvis0nL6NnXCQOXSyCxSrgSE4RHhrcDnnFBgBAm6YhCNWqca3UiIsF5dh86jJaRgahe6tIhAepsfvcNUQFaxARrIHBbIFOrcKWU5dxucSIpqFanM7X41R+CfKKDRjVowUSmoZgf1YhBAgY3qU5tp6+gosF5VhzJBfx0cGwWoF/jO+Om7vGyn+RZRawd4js+MiMiCgwlBktyLpWinYxofhh/0Vc1ZtwZ584RIVoYbUKWHs0D7lF5dhx5iruH5iA5hFB+HZ3FtYdzUdhmQktI4OgUAA7z3Lvo5o6+o/bEKSRNy8dH5nJjBMiIiKqiVKjGSFaNYrLTfj5YA5aRwVj34VCJESHQKNSICZch18P5iCnqBwmixWD2jdFSpfmmPzRVlwsLEdcVDCyC8p8fRr1at/cWxEZLO8aK06IZMYJERER+Uq5yYIjl4qQEB0CpUKBqBANDGYrlAoFzFYrdGoVTBYr3lp9HGVGC6YNbouYcB1CNCqczC/Bij3Z2HXuGm7u2hx9EpqgeYQO64/l43/7LmJgu2hEBGuw5I8zuLNva2QXlMFgsqB1kxAM79ocRy4VoVmYDtdKjYgO1SJIo8LgjjE4dLEQOYXlCNGqsP9CIYZ3bY7+baNRVG5CbmE52sWEepRXzmC2oMvffgHACZFf4ITIv5WXl+Ohhx4CAPzrX/9CUFBQvfXnrq2ruFSsah0Al2Vvz5WIqC4ZzVZ0/tvPADgh8gucEPk3vmVGRNQwVZ4QrUm/CR2bh8vaP98yI6pEq9Xi7bffFj/XZ3/u2rqKS8Wk6tyViYgaKpVSgSYhGlwrNfnFFgK8Q8Q7RERERHXidH4JMrMKcGv3FrLnleMdIiIiIvIL7ZuFoX2zMF8PwyOcEJFfs1qtOH/etgFaQkKCLKk7PO3PXVtXcalY1ToALstM3UFEJJ9G8cjshx9+wFNPPQWr1YrnnnsODz/8sMff5SMz/8ZF1UREgYmPzKowm81IT0/HunXrEBkZib59+2LChAlo2rSpr4dG9SQkJMRn/blr6youFata565MRETy8PsJ0Y4dO9C9e3fExcUBAEaNGoXffvsN9957r49HRvXBfmfFF/25a+sqLhWTqnNXJiIiefh8EcLGjRsxduxYtGrVCgqFAitXrnRqk5GRgbZt2yIoKAgDBw7Ejh07xNjFixfFyRAAxMXFITs7uz6GTkRERI2EzydEer0eSUlJyMjIkIwvX74c6enpmDt3Lvbs2YOkpCSMHDkSeXl59TxSIiIiaqx8PiEaNWoU5s2bhwkTJkjG33rrLcyYMQPTpk1DYmIiFi9ejJCQECxZsgQA0KpVK4c7QtnZ2WjVqlW1xzMYDCgqKnL4Q/7LYDBgxowZmDFjBgwGQ732566tq7hUrGqduzIREcmnQb1lplAosGLFCowfPx4AYDQaERISgm+//VasA4ApU6agoKAAq1atgtlsRrdu3bB+/XpxUfWWLVuqXVT90ksv4eWXX3aq51tm/olvmRERBaaAesvs8uXLsFgsiI2NdaiPjY3F0aNHAQBqtRpvvvkmhg8fDqvVimeffdblG2azZ89Genq6WC4qKkJ8fHzdnADVOY1Gg3nz5omf67M/d21dxaViUnXuykREJI8GfYfIvmB6y5YtGDRokNju2WefxYYNG7B9+3avj8l9iIiIiPyP3L+/fb6GyJWYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYHExET079/fq36IiIjI/zXoCZFWq0Xfvn2xdu1asc5qtWLt2rUOd4xqIy0tDYcPH8bOnTu9HSb5kCAIyM/PR35+PuS42VmT/ty1dRWXilWtc1cmIiL5+HwNUUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/WYNm2aV8fNyMhARkYGLBaLt6dAPlRaWormzZsDkGehcU36c9fWVVwqVrUOgMsyF1UTEcnH5xOiXbt2Yfjw4WLZvuB5ypQpWLZsGSZPnoz8/Hy8+OKLyMnJQXJyMn755RenhdY1lZaWhrS0NBQWFiIqKoqv3/upyjs3FxUVeT3BrUl/7tq6ikvFqtZVJlXmZJ6IApn956Jcd8wb1KJqX7hw4QLfMiMiIvJTWVlZaN26tdf9BPyEyGq14uLFiwgPD4dCoRDr+/fvL7m+yNN6V2X7Z/sr/1lZWbK94Vbd+GrbntfBdVyq3pM6XgfnMq8Dr0NDvA6etOV1cN2mrq5DeHg4iouL0apVKyiV3i+J9vkjM19TKpWSM0uVSiX5l87TelflqrGIiAjZ/oJXN77atud1cB2XqvekjtfBuczrwOvQEK+DJ215HVy3qcvrEBkZ6dH4PdGg3zLzpbS0NK/qXZWr60MONe3bXXteB9dxqXpP6ngdnMu8Dp4d2xu8DjXv25O2vA6u2zT062AX8I/MfImbQtrwOtjwOtjwOtjwOtjwOtjwOtjU5XXgHSIf0ul0mDt3LnQ6na+H4lO8Dja8Dja8Dja8Dja8Dja8DjZ1eR14h4iIiIgCHu8QERERUcDjhIiIiIgCHidEREREFPA4ISIiIqKAxwkRERERBTxOiPxI27Zt0atXLyQnJzskxA00paWlaNOmDZ5++mlfD8UnCgoK0K9fPyQnJ6NHjx745JNPfD0kn8nKykJKSgoSExPRq1cvfPPNN74ekk9MmDABTZo0waRJk3w9lHr1ww8/oEuXLujUqRM+/fRTXw/HZwL1v39lcvws4Gv3fqRt27Y4ePAgwsLCfD0Un3rhhRdw8uRJxMfH44033vD1cOqdxWKBwWBASEgI9Ho9evTogV27dqFp06a+Hlq9u3TpEnJzc5GcnIycnBz07dsXx48fR2hoqK+HVq/Wr1+P4uJifPbZZ/j22299PZx6YTabkZiYiHXr1iEyMhJ9+/bFli1bAvL/g0D871+VHD8LeIeI/MqJEydw9OhRjBo1ytdD8RmVSoWQkBAAgMFggCAICNR/17Rs2RLJyckAgBYtWiAmJgZXr1717aB8ICUlBeHh4b4eRr3asWMHunfvjri4OISFhWHUqFH47bfffD0snwjE//5VyfGzgBMimWzcuBFjx45Fq1atoFAosHLlSqc2GRkZaNu2LYKCgjBw4EDs2LGjRsdQKBQYNmwY+vfvjy+++EKmkcunPq7B008/jQULFsg04rpRH9ehoKAASUlJaN26NZ555hnExMTINHp51ce1sNu9ezcsFgvi4+O9HLW86vMa+BNvr8vFixcRFxcnluPi4pCdnV0fQ5cV/37YyHkdavuzgBMimej1eiQlJSEjI0Myvnz5cqSnp2Pu3LnYs2cPkpKSMHLkSOTl5Ylt7GtCqv65ePEiAOCPP/7A7t278f3332P+/PnYv39/vZybp+r6GqxatQqdO3dG586d6+uUaqU+/i5ERUVh3759OHPmDL788kvk5ubWy7nVVH1cCwC4evUqHnzwQXz88cd1fk41VV/XwN/IcV0aA14HG7mug1c/CwSSHQBhxYoVDnUDBgwQ0tLSxLLFYhFatWolLFiwoFbHePrpp4WlS5d6Mcq6VRfX4Pnnnxdat24ttGnTRmjatKkQEREhvPzyy3IOW3b18XfhL3/5i/DNN994M8x6UVfXory8XBg6dKjw+eefyzXUOlOXfx/WrVsn3HnnnXIMs97V5rps3rxZGD9+vBh/8sknhS+++KJexltXvPn74c///auq7XXw9mcB7xDVA6PRiN27dyM1NVWsUyqVSE1NxdatWz3qQ6/Xo7i4GABQUlKC33//Hd27d6+T8dYFOa7BggULkJWVhbNnz+KNN97AjBkz8OKLL9bVkOuEHNchNzdX/LtQWFiIjRs3okuXLnUy3rokx7UQBAFTp07FzTffjAceeKCuhlpn5LgGjZEn12XAgAE4ePAgsrOzUVJSgp9//hkjR4701ZDrBP9+2HhyHeT4WcAJUT24fPkyLBYLYmNjHepjY2ORk5PjUR+5ubkYMmQIkpKScMMNN+DBBx9E//7962K4dUKOa9AYyHEdzp07h6FDhyIpKQlDhw7F448/jp49e9bFcOuUHNdi8+bNWL58OVauXInk5GQkJyfjwIEDdTHcOiHX/xepqam466678NNPP6F169Z+/8vSk+uiVqvx5ptvYvjw4UhOTsZTTz3V6N4w8/TvR2P771+VJ9dBjp8FatlGTHWqffv22Ldvn6+H0WBMnTrV10PwmQEDBiAzM9PXw2gQhgwZAqvV6uth+NyaNWt8PQSfuOOOO3DHHXf4ehg+F6j//SuT42cB7xDVg5iYGKhUKqeFr7m5uWjRooWPRlW/eA1seB0q8FrwGlSH18WG18Gmvq4DJ0T1QKvVom/fvli7dq1YZ7VasXbtWgwaNMiHI6s/vAY2vA4VeC14DarD62LD62BTX9eBj8xkUlJSgpMnT4rlM2fOIDMzE9HR0UhISEB6ejqmTJmCfv36YcCAAVi0aBH0ej2mTZvmw1HLi9fAhtehAq8Fr0F1eF1seB1sGsR1qNW7aeRk3bp1AgCnP1OmTBHbvPfee0JCQoKg1WqFAQMGCNu2bfPdgOsAr4ENr0MFXgteg+rwutjwOtg0hOvAXGZEREQU8LiGiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOBxQkREREQBjxMiIiIiCnicEBEREVHA44SIiMhLRqMRHTt2xJYtW2Tt95dffkFycrLXWbyJyD1OiIjIwdSpU6FQKJz+VM4zRI4WL16Mdu3a4cYbbxTrFAoFVq5c6dR26tSpGD9+vEf93nbbbdBoNPjiiy9kGikRVYcTIiJyctttt+HSpUsOf9q1a+fUzmg0+mB0DYsgCHj//ffx0EMP1Un/U6dOxbvvvlsnfRNRBU6IiMiJTqdDixYtHP6oVCqkpKRg5syZmDVrFmJiYjBy5EgAwMGDBzFq1CiEhYUhNjYWDzzwAC5fviz2p9fr8eCDDyIsLAwtW7bEm2++iZSUFMyaNUtsI3VHJSoqCsuWLRPLWVlZuPvuuxEVFYXo6GiMGzcOZ8+eFeP2uy9vvPEGWrZsiaZNmyItLQ0mk0lsYzAY8NxzzyE+Ph46nQ4dO3bEv/71LwiCgI4dO+KNN95wGENmZqbLO2S7d+/GqVOnMGbMmBpeZeDs2bOSd+NSUlLENmPHjsWuXbtw6tSpGvdPRJ7jhIiIauSzzz6DVqvF5s2bsXjxYhQUFODmm29G7969sWvXLvzyyy/Izc3F3XffLX7nmWeewYYNG7Bq1Sr89ttvWL9+Pfbs2VOj45pMJowcORLh4eHYtGkTNm/ejLCwMNx2220Od6rWrVuHU6dOYd26dfjss8+wbNkyh0nVgw8+iK+++grvvvsujhw5go8++ghhYWFQKBSYPn06li5d6nDcpUuX4qabbkLHjh0lx7Vp0yZ07twZ4eHhNTofAIiPj3e4C7d37140bdoUN910k9gmISEBsbGx2LRpU437J6IaEIiIKpkyZYqgUqmE0NBQ8c+kSZMEQRCEYcOGCb1793Zo/49//EO49dZbHeqysrIEAMKxY8eE4uJiQavVCl9//bUYv3LlihAcHCw8+eSTYh0AYcWKFQ79REZGCkuXLhUEQRD+/e9/C126dBGsVqsYNxgMQnBwsPDrr7+KY2/Tpo1gNpvFNnfddZcwefJkQRAE4dixYwIAYfXq1ZLnnp2dLahUKmH79u2CIAiC0WgUYmJihGXLllV7vZ588knh5ptvdqoHIAQFBTlcx9DQUEGtVgvjxo1zal9WViYMHDhQuP322wWLxeIQ6927t/DSSy9VOwYi8p7at9MxImqIhg8fjg8//FAsh4aGip/79u3r0Hbfvn1Yt24dwsLCnPo5deoUysrKYDQaMXDgQLE+OjoaXbp0qdGY9u3bh5MnTzrdiSkvL3d4nNS9e3eoVCqx3LJlSxw4cACA7fGXSqXCsGHDJI/RqlUrjBkzBkuWLMGAAQPwv//9DwaDAXfddVe14yorK0NQUJBk7O2330ZqaqpD3XPPPQeLxeLUdvr06SguLsbq1auhVDrevA8ODkZpaWm1YyAi73FCREROQkNDq31EVHlyBAAlJSUYO3Ys/vnPfzq1bdmypcdvpykUCgiC4FBXee1PSUkJ+vbtK/nGVbNmzcTPGo3GqV/7a+vBwcFux/Hwww/jgQcewNtvv42lS5di8uTJCAkJqbZ9TEyMOOGqqkWLFk7XMTw8HAUFBQ518+bNw6+//oodO3ZIPnq7evWqwzkSkfw4ISIir/Tp0wf//e9/0bZtW6jVzj9SOnToAI1Gg+3btyMhIQEAcO3aNRw/ftzhTk2zZs1w6dIlsXzixAmHuyJ9+vTB8uXL0bx5c0RERNRqrD179oTVasWGDRuc7tzYjR49GqGhofjwww/xyy+/YOPGjS777N27Nz788EMIggCFQlHjMf33v//FK6+8gp9//hkdOnRwitvvgPXu3bvGfROR57iomoi8kpaWhqtXr+Lee+/Fzp07cerUKfz666+YNm0aLBYLwsLC8NBDD+GZZ57B77//joMHD2Lq1KlOj4VuvvlmvP/++9i7dy927dqFRx991OFuz/3334+YmBiMGzcOmzZtwpkzZ7B+/Xo88cQTuHDhgkdjbdu2LaZMmYLp06dj5cqVYh9ff/212EalUmHq1KmYPXs2OnXqhEGDBrnsc/jw4SgpKcGhQ4dqcNVsDh48iAcffBDPPfccunfvjpycHOTk5ODq1atim23btkGn07kdBxF5hxMiIvJKq1atsHnzZlgsFtx6663o2bMnZs2ahaioKHHSs3DhQgwdOhRjx45FamoqhgwZ4rQW6c0330R8fDyGDh2K++67D08//bTDo6qQkBBs3LgRCQkJmDhxIrp164aHHnoI5eXlNbpj9OGHH2LSpEl47LHH0LVrV8yYMQN6vd6hzUMPPQSj0Yhp06a57a9p06aYMGFCrTZP3LVrF0pLSzFv3jy0bNlS/DNx4kSxzVdffYX777/f5WM7IvKeQqj60J6IqB6kpKQgOTkZixYt8vVQnGzatAm33HILsrKyEBsb67b9/v37MWLECJw6dUpycXltXb58GV26dMGuXbskN8YkIvnwDhER0XUGgwEXLlzASy+9hLvuusujyRAA9OrVC//85z9x5swZWcdz9uxZfPDBB5wMEdUDLqomIrruq6++wkMPPYTk5GR8/vnnNfru1KlTZR9Pv3790K9fP9n7JSJnfGRGREREAY+PzIiIiCjgcUJEREREAY8TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOD9P/y4sOr8Fg3lAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 9):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "07f28d13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.005)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGwCAYAAABfKeoBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM8klEQVR4nO2deXwTZf7HP5M0SVuucpbDUlwRBVdBKSCKAlpEVBRUPFalgKKsRcGuF+iC6w9PFFCs4rGA1yrqCux6K6Iggty4WkVBRKCUQ6SlV87n90eZIUmTdOaZJ82Tyff9evFimibvfJ5nJpOnM8+hMMYYCIIgCIIgiAaxJToAQRAEQRBEskANJ4IgCIIgCJ1Qw4kgCIIgCEIn1HAiCIIgCILQCTWcCIIgCIIgdEINJ4IgCIIgCJ1Qw4kgCIIgCEInaYkOkGgCgQBKS0vRrFkzKIqS6DgEQRAEQeiAMYYjR46gY8eOsNka7zpQyjecSktLkZOTk+gYBEEQBEFwsGvXLhx33HGN9n4p33Bq1qwZgLqKb968eYLTEARBEAShh4qKCuTk5Gjf441FyjaciouLUVxcDL/fDwBo3rw5NZwIgiAIIslo7G42SqqvVVdRUYEWLVqgvLy8wYaTx+PBU089BQCYNGkSnE6n4fezkkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8sY8eORdu2bXV9fwuFpTjl5eUMACsvL2/wuZWVlQwAA8AqKyu53s9KDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKUlpbq/v4WScrequMhLS0NBQUF2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA92qM3CrjiAIgiAIOUjU9zdNgEkQBEEQBKETajgRBEEQBEHohBpOBqiqqkJWVhaysrJQVVWV8g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdww1SXl5Ojjh4rOQQ5SFHfDxWcojykCM+HnLExyMqCy/UcDJARkYGfvrpJ2071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhORY4lbdjh07MG7cOOzbtw92ux1r1qxBkyZNhL+P1+vFCy+8AAC4+eab4XA4UtohUxZZHDJlsZJDpiyyOGTKYiWHTFms5IhHlmuuuYYrh2kadZ7yOHHuueeyFStWMMYY+/3335nX69X9Wt4lV44cOcKVVZbp72WdQj/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyhZPvv/8eDocD55xzDgCgVatWcXsvm82GTqcPxh/VHtwwfx3evW2Q4VWZ7XY7rrzySm2bB1kcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7Zspgh4Z3DV6xYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvgCAJUuWYOHChfD7/dizZw+uvPJKTJ06Vff7G+lcVu3xoce0j7WfSx4cikxn0rc9CYIgCCLpSNnO4VVVVejZsyeKi4sj/n7RokUoKirC9OnTsXHjRvTs2RNDhw7F/v37AQA+nw8rV67Es88+i9WrV+PTTz/Fp59+2phFIAiCIAgiRUh4w2nYsGGYMWMGRo4cGfH3s2bNwvjx4zF27Fj06NED8+bNQ2ZmJubPnw8A6NSpE/Ly8pCTkwOXy4WLLroImzdvjvp+brcbFRUVIf8IgiAIgiD0kPCGUyw8Hg82bNiA/Px87TGbzYb8/HysXr0aANCnTx/s378ff/zxBwKBAFasWIHu3btHdT7yyCNo0aKF9i8nJ0d3nurqauwuHo3dxaMR8NZylam6uhqdOnVCp06dUF1dndQOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcwgdQedgwcPwu/3Izs7O+Tx7Oxs/PjjjwCAtLQ0PPzwwzj33HPBGMMFF1yASy65JKpzypQpKCoq0n6uqKjQ3XhijMFfeejoDwYLE+QoLS3VtpPZIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYsZpG446WXYsGEYNmyYrue6XC64XC4UFxejuLgYfr9f9/ukp6ejw5inAQBKGt88Funp6di0aZO2ncwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcyQ8FF1wSiKEjKqzuPxIDMzE++8807ISLuCggIcPnwYS5cuNf2eNKqOIAiCIJKPlB1VFwun04nevXtj2bJl2mOBQADLli1D//79E5iMIAiCIIhUJOGXSyorK7Ft2zbt5x07dmDz5s1o1aoVOnfujKKiIhQUFCAvLw99+/bFnDlzUFVVhbFjx5p6X55bdV6vF5X/+wwA0KTHIK739Xq9eP311wEA1113HfeU8zI4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyDJ8+HCuHKYRMf24GZYvX65Nnx78r6CgQHvO3LlzWefOnZnT6WR9+/Zla9asEfb+RpZc2ff7YS1fzh3vsCq3/qVdVGSZ/l7WKfST3SFTFis5ZMoii0OmLFZyyJTFSo54ZEnZJVcGDRrUYM/4iRMnYuLEiY2UKDKMMdwwfx0y/pQHAFBsfHc57XY7LrroIm07mR0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymEGqzuGNSfCtup9++qnBzmXhHcMB6hxOEARBEImCOoc3MoWFhSgpKcG6desSHYUgCIIgiCQhZRtOBEEQBEEQRqGGkwEC3lrseWE89rww3tSSKyeeeCJOPPFEU1POy+CQKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQwp20GHZzoCMMD3x15tmwfGmDb9Am/3MlkcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspghZRtOhYWFKCws1DqX6UFJcyD7use1bR7S09Px1VdfadvJ7JApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDCk7qk5Fb698GlVHEARBEPJAo+oIgiAIgiAkhy6XGIAF/Kj+aTUAILMb31p5Pp8PixcvBgCMHDkSaWnGd4EsDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKcf/75XDlMI2L68WTkmWeeYd27d2fdunXTNWV7ldvLcu54h5ZckTSLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKLrmSKHg6h0NR4Mr5s7bNg81mw8CBA7XtZHbIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgbqHE6dwwmCIAgi6aDO4QRBEARBEJJDDSeCIAiCIAidpGzDqbi4GD169ECfPn10vybgdaN0wW0oXXAbAl431/vW1NSgV69e6NWrF2pqapLaIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYspGrUruoSUl5fTqDqJRkkku0OmLFZyyJRFFodMWazkkCmLlRzxyEKj6pIAJc2Bdlf9n7bNQ3p6Oj755BNtO5kdMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspiBRtXRqDqCIAiCSDpoVB1BEARBEITk0OUSA7CAHzU7NgIAMo4/g8vh8/nw8cd1V66GDh3KPeW8DA6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyy9O/Pt/SZaRq1R5WEUOdwuTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncMbmeLiYhQXF8Pv9+t/kaLA2f5EbZsHm82GvLw8bTuZHTJlkcUhUxYrOWTKIotDpixWcsiUxUoO2bKYgTqHU+dwgiAIgkg6qHM4QRAEQRCE5FDDiSAIgiAIQifUcDJAwOtG2Wt3oey1u0wtuXL22Wfj7LPPNjXlvAwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwQoaQ60HXmfts2Dy+XC4sWLte1kdsiURRaHTFms5JApiywOmbJYySFTFis5ZMtiBhpVR6PqCIIgCCLpoFF1KQRjDNUeH1K8zUoQBEEQSQddLjEAC/jh3v09AMB13ClcDp/Ph/Pumoef9h3B2WcPwDu3DoBicDJNv9+PlStXAgDOOecc2O12wzlEOGTKIotDpixWcsiURRaHTFms5JApi5Uc8cjSs2dPrhymadQeVRLS2J3D9x86bJkO5jJlkcUhUxYrOWTKIotDpixWcsiUxUqOeGShzuGNDN+SK4CjdWdtmwdFUYQ4evTooW0nyiFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGahzeCN3Dg/3UAdzgiAIgjAOdQ4nCIIgCIKQHGo4EQRBEARB6IQaTgYIeN3Y9+b92Pfm/aaWXBHhGDJkCIYMGWJq2nqzDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiWHbFlM0ahd0SWERtXJNUoi2R0yZbGSQ6YssjhkymIlh0xZrOSIRxYaVZcEKGkOtL7kb9o2Dy6XS4jjtdde07YT5ZApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDDSqjkbVEQRBEETSQaPqJCe1m5cEQRAEQQC05IouGGMYNW81WMAPz77tAABn9glcLr/fD/fen0w7Nm7cCAA444wzuKetN+uQKYssDpmyWMkhUxZZHDJlsZJDpixWcsQjS9euXblymKZRe1RJiJ7O4VVuL8u95z3qHC5xFlkcMmWxkkOmLLI4ZMpiJYdMWazkiEcW6hxugi5duqB58+aw2Wxo2bIlli9fHp83UoCczp1RerjW1HIp9ubtNB+vIzc3V9tOlEOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJIVsWM1iic3iXLl3w3XffoWnTpoZfq6dzWXCH7vX35yNvxmcAqHM4QRAEQSQK6hxOEARBEAQhOQlvOK1YsQLDhw9Hx44doSgKlixZUu85xcXF6NKlC9LT09GvXz+sXbs25PeKomDgwIHo06cPXn/99UZKThAEQRBEqpHwhlNVVRV69uyJ4uLiiL9ftGgRioqKMH36dGzcuBE9e/bE0KFDsX//fu05X331FTZs2ID//Oc/ePjhh/Htt9/GJSvzeTD6mlHY/+4MMJ+Hy1FbW4v9784w7RgxYgRGjBiB2trahDlkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUWjdkVvAABs8eLFIY/17duXFRYWaj/7/X7WsWNH9sgjj0R03HnnnWzBggVR36O2tpaVl5dr/3bt2kWj6iQaJZHsDpmyWMkhUxZZHDJlsZJDpixWcsQjC42qi4DH48GGDRswZcoU7TGbzYb8/HysXr0aQN0Vq0AggGbNmqGyshKff/45rrrqqqjORx55BP/4xz+48ij2NMx6uhgz3v8Bip2v6pxOJ1oNnaj5eB0vvPCCtp0oh0xZZHHIlMVKDpmyyOKQKYuVHDJlsZJDtixmkGpUnaIoWLx4MUaMGAEAKC0tRadOnfD111+jf//+2vPuvvtufPnll/jmm2/wyy+/YOTIkQDqJsYaP348Jk2aFPU93G433G639nNFRQVycnJoVB1BEARBJBGJGlWX9N/Yf/rTn7Blyxbdz3e5XHC5XCguLkZxcTH8fn8c0xEEQRAEYSWkbji1adMGdrsd+/btC3l83759aN++vSl3YWEhCgsLtRZrLNRrcowF8OMPJfAc2AlHmxyu9w0EAvAc2AkAphw//PADAKB79+6w2Yz38RfhkCmLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0unTp24cpimUXtUNQCidA6fOHGi9rPf72edOnWK2jncKA0tuRIIBNiwOSuk7Rx+5MgRw68Pd8jU2S/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHlpTtHF5ZWYlt27ZpP+/YsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKowdO9bU++q9VVfj9aNkbwUA4OT2zVDdpg3+qOKbRkDFlmHuXixjDM6mWfD5A7j+pW+weNJ5XFPPt2nTxlQOkR4rOUR5yBEfj5UcojzkiI+HHPHxiMrCS8I7h3/xxRcYPHhwvccLCgqwcOFCAMAzzzyDmTNnoqysDL169cLTTz+Nfv36CXn/hjqXBXfm/v4fQ6Eo0H5OVOdw6mBOEARBpDop2zl80KBBaKjtNnHiREycOLGREkUnQesJEgRBEAQhCQmfOZwgCIIgCCJZSNmGU3FxMXr06IE+ffrofk1tbS3GFtyAA/+dCebzgOcmZ21tLQ78d6bm4EGU47rrrsN1111negp9sx4rOWTKYiWHTFlkcciUxUoOmbJYySFbFlM0ald0CWloVJ263EruPe/VGxE3bM4KFggEDL2fiFF1sizbIspjJYdMWazkkCmLLA6ZsljJIVMWKznikSVlR9UlE06nE7NmzcILK35BtT0NJXsrUOP1G+qY7XQ60fK88QDMLbkiwjF79mxtmxcRHis5ZMpiJYdMWWRxyJTFSg6ZsljJIVsWMyR8VF2iCJ6O4KefftI1qk4dvVbl9uGU6Xwj62hUHUEQBEGYJ1Gj6lK2j1NhYSFKSkqwbt06w6+l0XUEQRAEkZrQZQoDBAIB/Prrr6jx+MBYAIpirN3JGENlrRe+8rolZOzN23LnEOH47bffAACdO3c2NYW+WY+VHDJlsZJDpiyyOGTKYiWHTFms5IhHlqysLK4cpmnUHlUSYqZzeO497+numB0IBNjlz66SctkWmTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncOThMzMTK7X1Xj92LDzDwCA4nCZziHCoZaFmezmxlsnVnWI8pAjPh4rOUR5yBEfDzni4xGVhRfqHM7ROTzSYw0R3qFbJVGdwxljuHLeamzY+Qfyclvi7Qn9uda7IwiCIIhEQJ3DGxkzncOtQPAVsPU7/0CNN/ZixwRBEARBpHDDKZGsvLv+osYEQRAEQcgPNZwM4Ha7MX78eBT+9RYwn5fLwXxeTC2aiN8/fJrb4Xa78fuHTyfcoXrGjx+P8ePHw+12p7xDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZeQxhpVp3p4R9UFAgFW5fayQCAgzbItjMkzYkMWh0xZrOSQKYssDpmyWMkhUxYrOeKRhUbVNTLBncP14nA4MGPGDHj9ASw4Yud6X8Vux5RpD+C55duh2PU5WFhH7hev74Wsc27QfDw4HA7TDtUzY8YMbTvVHTJlsZJDpiyyOGTKYiWHTFms5JAtixlSdlSdSkO98uMxqm79/fnIm/GZ7teHj6ILfr2RDLGctGwLQRAEkUzQqDqCIAiCIAjJoUsMBmCM4cCBA6j2+MAY45r3iDGGgwcOwF9dDlsGXwuZMQZ/dTkAJNSheg4ePAgAaNOmDX+dWMQhUxYrOWTKIotDpixWcsiUxUqOeGRxOp1cOcxCDScDVFdXo127dgCAnDvegeJMN+xgXje6/ylHc/Dm2D33uoQ7VI9aJ5WVlWjSpElKO2TKYiWHTFlkcciUxUoOmbJYyRGPLKWlpVw5zEK36giCIAiCIHRCV5wM0KRJEzDGoi6fogebMx0HjtSGdO7myZF7z3vcrxflUD1mxxdYySFTFis5ZMoii0OmLFZyyJTFSo54ZKmoqDCdiQe64kQQBEEQBKGTlG04FRcXo0ePHujTp0+io6Q86lU8tdM9QRAEQchKyjaceBb5dbvdmDx5Mu76W5GpJVfuu+dOHPrsBVPLpRz67AXDDrWBwhjjdkTKMnnyZEyePJlr+nvGGEbO/RLtz7oC7c+6ApfP/ZKr8WQ2hyiHTFms5JApiywOmbJYySFTFis5ZMtiCtNzjyc5ybDkSnCG3HveY7+W/W7YEQgE2OXPrmK597zHrnh2Fdv3uxxLrlS5vdzL0IjMIcohUxYrOWTKIotDpixWcsiUxUqOeGShJVeSAIfDgalTp8LrD2CRn3/Jlcl33o35q341tVxK8/5XaT491Hj92LDzDwDA+p1/wAebYUe0LFOnTtW2eVDsdtNZROQQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxAS66kyJIr8Vi2RQSRRijS8i8EQRBEQ9CSKwRBEARBEJJDf9YbgDGGqqoq00uuVFVVIeCpheJwcecIeGoBIKEO1VNdXQ0AyMzM5K4T5nWbyiIqh1mHTFms5JApiywOmbJYySFTFis54pElUTfM6IqTAaqrq9G0aVO0a5WlfdEbhXnd6NK+NXbNvpLbUV1djV2zr0y4Q/U0bdoUTZs21Q5mozCvW0h5zOYQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxADSeTpHYPMYIgCIJILehWnQEyMzNRWVmJao8PeY+uBACMmrca798+QPclR8Xhwq9lv+Ocx5brvi0V3jjLzMzUFublvbUlwqF6KisrtW0eFIdLSHnM5hDhkCmLlRwyZZHFIVMWKzlkymIlRzyy+Hw+7ixmSNmGU3FxMYqLi+H3+3W/RlEUZDZpgsxMhlM6tkDJ3gqU7K1AjdevexSYoiho0qQJbM50Xc9njGHUvNX1HHpfHyuHWYfq4V0pO9ihCCiPiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlqrrpHhmTlcRVEUvD2hfxxS1afG60fJ3tCDo8ajv7FHEARBEIQ4UrbhxIPH48F9992H++67D16vh8vB/F489I9p+GPFK2B+vqVOBjzyCf5Y8Yoph8fjMe1QPWqdeDz8dSKiPGZziHDIlMVKDpmyyOKQKYuVHDJlsZJDtiymiPfU5LLDu+TK/kOHtcdjLRESCARYldvLDhyp5VpyJfj9h81ZkdBlWyJBS67Im8VKDpmyyOKQKYuVHDJlsZIjHlloyZUkIC0tDZMmTdK2G4IxhivnrdaWOgEAxWbHzbdOxBvf/AbFZmx5kbcn9EeN14/eD3yIZr0v1Xw8pKWlmXaoHiN1EgnFZhdSHrM5RDhkymIlh0xZZHHIlMVKDpmyWMkhWxYz0JIrHEuuxHo82muDMbLkSvj7AOBaooSWXCEIgiCsBC25QhAEQRAEITnUcEoyMhx25OW2THQMgiAIgkhJqOFkgKqqqro5hxQFVVVVXI6ApxZtm6Vj52OXaGvFGUFRFCy84TTsfOwSbgdQVxazDtUjok5ElMdsDhEOmbJYySFTFlkcMmWxkkOmLFZyyJbFDNRwikEgwBCQsAcY7wKLBEEQBEGYg3rgRiEQYPjT1A9CHsvMzMT+/fu1bR4Uhws//LILQ2avMLW8yK+7SzHAwLItkRzH3fa6lokXUXViNouIHCIcMmWxkkOmLLI4ZMpiJYdMWazkiEcWp9PJncUM1HCKwqHq+hNrKYqCtm3bAqgbDcaDoiho07Yt7JktuLOpOcw6jL6eMYYarx8ZDrt21Su4ThozSySHiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyxSTV1dXIzc3FnXfemegolkSdk6rHtI8xat5qpPgsFgRBEESKYpkrTg899BDOPPPMuL6Hx+PB7JmPAQAKJ93B5WB+L2bNfBTlX29H836Xc+d4/NHHUP71z6Yc5V8vAgBdjhqvX5vIc/3OP7SFjT0eD2bOnAkAuOuuu7gunTK/FxXfvKs7SyRE5BDhkCmLlRwyZZHFIVMWKzlkymIlRzyy3HLLLVw5zGKJCTB//vln3HvvvRg+fDi+++47PPHEE7pfG20CrYOV7pAJIgFg3T0D0K5VFgBg/6HD6PPYVwCMTYAZ8NRi1+wrAQA5d7yDHx+9zNAEmJnONFRVVaFp06a6HZGyfHlHf3Rp35orR7QslZWVhle+rvb4cPK9Sw3VSSTM5gh37D90GG2ymnN1xBedhRxyZZHFIVMWKzlkymIlRzyylJaWomPHjo0+AWbCrzitWLECM2fOxIYNG7B3714sXrwYI0aMCHlOcXExZs6cibKyMvTs2RNz585F3759td/feeedmDlzJr7++uu4Zk1LS8NNN92kbfOg2Oy4vmAslmzaY2p5kTHjxuGd9btNOZqedoGWiRdRdWI2i4gcdrsdXc4ejoNH3Mh7aDn6nNAOb0/ob7jxJCILOeTNIotDpixWcsiUxUoO2bKYIeFXnD788EOsWrUKvXv3xuWXX16v4bRo0SKMHj0a8+bNQ79+/TBnzhy8/fbb2Lp1K9q1a4elS5fiq6++wsyZM7Fw4cIGrzi53W643W7t54qKCuTk5Oi64iTDkitG3j9WFqNLrkS74gRE7jSuF5mWXJEpC0EQBBGbRC25kvBvhGHDhmHYsGFRfz9r1iyMHz8eY8eOBQDMmzcP77//PubPn497770Xa9aswZtvvom3334blZWV8Hq9aN68OaZNmxbR98gjj+Af//hHXMqSigQvZJyX25LrCg1BEARBJAtSj6rzeDzYsGED8vPztcdsNhvy8/OxevVqAHUNoV27duHXX3/FE088gfHjx0dtNAHAlClTUF5erv3btWtX3MthZSJ1GicIgiAIqyJ1w+ngwYPw+/3Izs4OeTw7OxtlZWVcTpfLhebNm4f800tVVRWaNGmCJk2amFpeJDe7FX6bdYWp5UXatmxh2vHbrCtMOUR5Ap5a0w4R+0ZknYjIQg45s8jikCmLlRwyZbGSQ7YsZkj4rTqRjBkzRvdzi4uLUVxcDL/f2BWS6upqg6nkdTCvu+EnNZJHhEOmOpFlH1vJIcpjJYcoDzni4yFHfDyisvBiqOEUCATw5ZdfYuXKldi5cyeqq6vRtm1bnH766cjPz0dOTo7QcG3atIHdbse+fftCHt+3bx/at29vyl1YWIjCwkKtc5keMjIysGPHDm2bB8XhxIbvfsSlz6yC4uCbCyMjIwMlW38+umwLv6PThH9qmXgR4VEcTtMOEftGZJ2IyEIOObPI4pApi5UcMmWxkkO2LGbQ1XCqqanBk08+ieeeew6HDh1Cr1690LFjR2RkZGDbtm1YsmQJxo8fjwsuuADTpk0TNhGl0+lE7969sWzZMm2kXSAQwLJlyzBx4kRT7oauOEUaa2iz2dClSxcAZpZcsaFzbhektdjG9Xo1R26XLkhrsdWUI61FdsNPbASPoph3BO8bMw5RdSIiCznkzCKLQ6YsVnLIlMVKjnhkSdSSK7oaTt26dUP//v3x4osvYsiQIXA4HPWes3PnTvzrX//CNddcg/vuuw/jx4/XFaCyshLbth1rROzYsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKm2UHS+xrjgxxnDV86tN+QmCIAiCsB66Gk6ffPIJunfvHvM5ubm5mDJlCu6880789ttvugOsX78egwcP1n4uKioCABQUFGDhwoW4+uqrceDAAUybNg1lZWXo1asXPvroo3odxkVS4/Vjx8H6nc68Xi/mPPsMAGDseL6p3pnfh3nFc1Gx7ic0O+NiLofX68UzTz+NinVbTTkq1i0FAG6HKA/z+3Bk4/umHF6vF8XFxQDqGsWRGvd6HMFlUex8XQBFZSGHnFlkcciUxUoOmbJYyRGPLDfccANXDrMkfALMRBNpAq1oE1fSkiv1J8A88Ee5Vic8y6XItORKeFlsznSuCTBlWeLASg6ZssjikCmLlRwyZbGSIx5ZkmbJlS5dumDcuHEYM2YMOnfuHI9MjQLPqDq73Y6//OUv2jYPis2GK666Gh9+VwbFxjcbhN1ux1XXXIP3vt1rypHZY6CWiRcRHsVmM+0QsW9E1omILOSQM4ssDpmyWMkhUxYrOWTLYgbDV5zmzJmjLW0yePBg3HjjjRg5ciRcLle8MsYVI1ecrLTkysq7B+Ocx5dHLJue16vPj7UUix5kWuZEpiwEQRBEbBK15IrhP6snT56MzZs3Y+3atejevTtuu+02dOjQARMnTsTGjRvjkZEwCWMM1Z7QK2vBjSaCIAiCIPTBfT/ijDPOwNNPP43S0lJMnz4dL730Evr06YNevXph/vz5SKWuUzIXVV1LLnzBYoIgCIIgjMPdcPJ6vXjrrbdw6aWX4m9/+xvy8vLw0ksv4YorrsDUqVNx3XXXicwpnOLiYvTo0QN9+vTR/Zqqqiq0bdsWbdu2DZnqfdS81bobigFPLU7uchx2Pf0XU8uL5HbqoMsRvJYcAPTObYl19+XXdVJ/+i+mcqhZzHpEZIm2b4w6RNWJiCzkkDOLLA6ZsljJIVMWKzlky2IGw503Nm7ciAULFuCNN96AzWbD6NGjMXv2bJx88snac0aOHGmoQZIIeGYOB+rWzwOADIcdPTo0R8neCpTsrUCN16+7L8zvvx/kyhwphxHW35+P1k2c2kK8gRoxk4eJ8Ihw8NRJPHIAYrKQIz4eKzlEecgRHw854uMRlYUXww2nPn36YMiQIXjuuecwYsSIiPMwHH/88bjmmmuEBJSJjIwMfPfddwCAzMxMvD2hP06ZXr/zdywUhxMr127EVfNWm1peZN2mzbh0rrFlWzKddiiKouXoMK5Y2+YlIyPDtEdEluB9Y2Yqf1F1IiILOeTMIotDpixWcsiUxUoO2bKYwXDD6ZdffkFubm7M5zRp0gQLFizgDiUrNpsNp5xyivazogQMOxTFhpO794CzbampHD16nAJn293cDkWxwdk29n7Um8WsR0SW8H3D6xBVJyKykEPOLLI4ZMpiJYdMWazkiEcWqZdcCUZtNHk8Huzfvx+BQGjjIVnmduKZx4kgCIIgiNTGcMPpp59+wo033oivv/465HHGGBRFSZqGCE8fJ6/XixdfrruSNmbMGACK4fdlfh9eXfBPHNn8A5qemm/49WqOBf/8J45s/p7bwfw+VP6vbqQdr0PNcmTzR6Y8IrJ4vV4sXLgQQN2+4Z3KP7gsZpZcEZGFHHJmkcUhUxYrOWTKYiVHPLJcfvnlXDnMYngCzLPPPhtpaWm499570aFDB63PjErPnj2FBow3kSbQqnL7IvZdCl5ypbKyEorDFXMSysZacuWHRy5DE1dkR6TX8yxzEl4WtaP5wcMVtORKHLKQQ94ssjhkymIlh0xZrOSIR5akWXJl8+bN2LBhQ8goOivBGMOoeasj/s5ut+Oyyy7TtgMhr9PnV2w2DLt4OL746YCp5UUuGX4plv24H4rNhlHzVuP92wfUa8Q2lCPjxDO1baPkzfgMebkt8fxfTjPlEZEFqL9veB1mc4jMQg45s8jikCmLlRwyZbGSQ7YsZjB8xalPnz6YPXs2BgwYEK9MjUr4FafgKyvdOzRHptOODTv/QF5uS7w9oX9I4yT4uT06NK/XeInnkiuMMVz89Fco2VsR0xPtipPRpUX0lEWPR4+XllwhCIIgGkLqJVcqKiq0f4899hjuvvtufPHFF/j9999DfpeoHu7x4p0J/fHOhP4oeXBovUYTcGwuJwDaXE6NhaIoeHtCf67XZjjsyMttyf3eK+8ezP1aovGoW2rHp/1Lpdn8CYIg4oWuP6WzsrJCGg2MMZx//vkhz0m2zuHho+qOfckcy68odQ2UaFcc1MaL0bmcRGHgzlzY6+py/17l4VqKJcOZmMujhH7UpXaCZ42PdNWUIAiCMIauhtPy5dZbEDZ8VN0N/1yLb/d7Yr6muroaPXr0AACUlJQgMzPTcOMl4K3FGad0Q+nhWnS86Vmu7GoOBoBd8SRsjnTDjpqaGvT+cw/s+aOGO4eaZfdz4wCgQQ9jDDVePzIc9pAv74C3FqUv3arLEStH+L7hcQSXhadeRWYx46jx+rFu296Qel2/8w9DM9yLyAHUdebscXTelQ2bv0XrFs24Gm8y1KtMDpmyWMkhUxYrOeKRZc2aNVw5zKLrDDpw4MB450g4m3cdhs0VeycyxrBz505tmwsG7PrtN22bSxGUI8eE47ejDt4cqsdfsb9BT/AVkHpXPhh0ORrKYXbf6C1LY2URcawlul4ZY/jLi2u0Y+2MBz9F3xM7cF35kqVeZXHIlMVKDpmyWMkhWxYzcPd6ra6uxm+//QaPJ/QqzWmnnWY6lCyE75P09HSsXbtW2+ZBSXPgky++wuj5a6Gk8c2Foeao9fpw/ZID3I4Vq77GVc+v4c6hetqPngUAMT3Biw2HX/lQ0hy6HA3lMLtv9JalMbK4XC6sWPW1ts2DWq+vjOuLm97/ncthtiw1Xj82l1aF1CvPlS8RWazmkCmLlRwyZbGSQ7YsZjDccDpw4ADGjh2LDz/8MOLvk6WPUzSym7uwr8INoO6kHzw/kt1uN714sWKz4/TeeXB9eJjboeao9vig/Ievf5XdbkfvvD5w/ecQdw7V4+rQzZRDsZl3iNg3IsoCHF0SoOfpAAC3nyHDxgxdXWGM4eoX12oNzbwta7mu0Kj1enrvPCgfGu/LBog75l0dumHl3YNxzuP8t/1F7WOrOGTKYiWHTFms5IhHlkQNSDM8Wc3kyZNx+PBhfPPNN8jIyMBHH32El19+GSeeeCL+85//xCNjo/L2LWfFxauOvsvLbYkMh/7O1TQQKrlQb0n2mPax9m/UvNWGLikHX50Djl2hS3ZoUAFBEFbA8BWnzz//HEuXLkVeXh5sNhtyc3MxZMgQNG/eHI888gguvvjieORsNGL9Ue/z+bBo0SIAwNVXX420NP3VV3fFAHAoDK/+61+o/P5bNOl+bszXRJuMU83h9vnBAllQbMa/kHw+H95841iOak/9Ttt6PZXf111FaKg80WABP6p+WGHKYWbfBDuCy8JTrzVeP9bvOBhSHp5bUyLqRHW8s+gAWKAV93Fitl5F5BCVxUoOmbJYySFTFis54pFl2LBhXDlMwwzSrFkztmPHDsYYY507d2ZfffUVY4yxX375hWVkZBjVJYxnnnmGde/enXXr1o0BYDmT32K597zHfvu9iuXe8x7Lvec9duBIbchrKisrGeq62bLKykrGGGNVbq/2/Cq3N+T5kX4X7Mi54516r4n2+mFzVrBAIBDREem9Y2WI5rji2VXae8TyHDhSq23/Wva7rvIEvz6kPmq9LOeOd3TXSTQi7Ruj7D90WHe9RqPKXb88Rj2RHInIwZj5ehWVQ0QWqzlkymIlh0xZrOSIR5bS0lIGgJWXl3Nn4sFwc++kk07C1q1b0aVLF/Ts2RPPP/88unTpgnnz5qFDhw5GdQmDZ5Ffm82G/Px8bZsHm82Gweedj9Xbfzc0EVNwHxc1hz/AsI1zTh7V8e3uw1oOnisjNpsN6bm96n7gGCU1at5qQFG4HcE5ROwbsznU16bn9kK/P7XCL/yTbZnPIiCHiHoVUh+CsljJIVMWKzlkymIlh2xZzGC44TRp0iTs3bsXADB9+nRceOGFeP311+F0OrUVi61KRkYGPv3006i/19ONJSMjA+99+FHE5UtiEfx9o+aItgyKHlQHY4x7IkzVk33NDK7X1nj9KNlbAZvDhTMnzsaOg1VcHjVHrH2j18FblmBsDheyr5mBd8KWo+FxJDqHiHoVkUNUFis5ZMpiJYdMWazkiEeWRHUON9xwuv7667Xt3r17Y+fOnfjxxx/RuXNntGnTRmi4ZINnsd1EUzczeuI77b51S3/0eYj/S5UgCIIgGgPu61wejwdbt26F0+nEGWecYZlGU8smTm27VaYzxjPrSOR6dVYiidqaBEEQRApjuOFUXV2NG2+8EZmZmTjllFPw29FZsG+77TY8+uijwgM2NjYF+OXhi/DLwxfBZgv9Nq+ursYpp5yCU045BdXV1QCML7ZbXV2NvF49UfrSrQh4a7kyqjnyevU07QguC6+n9KVbTZUn4K3FgD6nC6kTM+URURbg2BIyA/qcbqpORNSr2Rwi6lVEDlFZrOSQKYuVHDJlsZJDtixmMHyrbsqUKdiyZQu++OILXHjhhdrj+fn5eOCBB3DvvfcKDZgIwhtMKowxlJSUaNsqRq6WMMbwww8lR3/gyxecI+fCBp6sw8FMTqHv/d3cEjJgwNYffzDlEFEeIWU5+lrv779h6+9ADu9o2aMOU1kE5BBynIioD0FZrOSQKYuVHDJlsZJDtixmMNxwWrJkCRYtWoQzzzwzpC/PKaecgu3btwsNJxvp6enagsdmpov/8JPPMGaBuSVXli9fjlqvH7d8ytehWkRZ1NdmX/swAP5lSpQ0B5Z88DFueXWD6TpRt3kdZsuivjb72ofx/A29cftyvissqsNMFhE5RNSriByisljJIVMWKzlkymIlh2xZzMC15Eq7du3qPV5VVZVUnaJ5sNvtGDRoUMznMAZUe3xRZwe32+04d+BApC/j/wJRc1R7fFCWxR5VF61BHlyWao/PVJb0zubWJ1Rsdpx9zkCkf+k1laOhfaPHYbYsQF150jufhrPPGQjlS74O76oj0TlE1KuIHGazMMa0/od9zxoAgH8os6hjzaxDpixWcsiUxUqOeGRJmlF1eXl5eP/993HbbbcBgNZYeumll9C/v/6+PjJidDmUSFw5bzV+2FuBvNyWeHlcX0HJ+NDmSSKIFIYdXQYneBkboO7zzrMGIEEQqY3hhtPDDz+MYcOGoaSkBD6fD0899RRKSkrw9ddf48svv4xHxrhQXFyM4uJibVHitfedj+zWLWOeRH0+H9577z0AwCWXXBJxuvgf9ta1gKOtL+bz+fDfpUtR/dMmZHTla1ipOdxeP1jAEXUJC3WeJKBurbzgRmFwWc67gLOj1FFP9U91jTPe8rCAHx/89z+o/mmL6ToBou8bPY7gsvAuDcICftRsW4sP/lsNFnBxeVSHmiVROUTUq4gcZrIEr/0XXK/rAn0NT/hqJodoh0xZrOSQKYuVHPHIcu65fMtRmcVw6gEDBmDz5s149NFHceqpp+KTTz7BGWecgdWrV+PUU0+NR8a4ED5zeKYzrcG/PN1uN0aOHAkAqKys5Nrpbrcb11x1JQAg5453uBbxDc6Rc8c7UHTMwxT+l3WwY/+hwzFfyxhDtSfyNAtutxsHFj+kZeGB+bwo+MtVphyi9k1wWfTUaySYz4sDix9CwWJ+j+pQsyQqh4h6FZFDVJYVfxuALu0vA5D4Y82sQ6YsVnLIlMVKjnhkKS0t5cphFq7Sn3DCCXjxxRdDHtu/fz8efvhhTJ06VUgwGbHZbDjrrLO0bV7Hmf37Y9NvhwFF4Zo0U80RYAx7dL4u/Gl6yxLtNkewx9Wpe+Q30YuioE+/M/Ht7nJTS66I2Demy3L0ta5O3XHacS1QZqJORNSr2Rwi6lVIfQjK0jTdEfL5S1QOIfUqURYrOWTKYiWHbFnMwNdsjMDevXvx97//3dINp4yMDKxatcq04+tVq3Dx01+hZG+FNmmmkdsFag6zS66oZYnVOTz4NgdQvx9YRkYG2l8/0/D7V3v8msfmcOGDz77QluNQf2ekMSlq3/CUJRybw4X218/EByaXXDGbRUQOEfUqIoeoLBkZGVj2xQruz43IHGYdMmWxkkOmLFZyxCNL0nQOJ8yjTpp5ynT+k3ciWH9/Plo3cQqZHT1vxmfajOuRfkcddwmCIAgZScx1LiIplxjJdBq7CtQQasd1oG7pmrzcltrP0TrXEwRBEEQioYaTAWpqatCnTx/06dMHNTU1phznnHUmAl53wh1myqJ69r58B/a+fIfuLCvvHhzyc8Drxrlnn4md8ydh5d/O5s4hYt8YLUskAl439r58B4YMPJvbozrMZBGRQ0S9isghKktNTQ3OOetMU/Uq8jxg9vNXXV2N3nl56J2Xh9/Lj3DNpCxLeWRxyJTFSg7ZsphB9626oqKimL8/cOCA6TCyEwgEsH79em3brCPnXL7p4kU7eMuivtZT9nPdDzpP2hnho6oYw8YNGwAA6Wl8V7RE7RujZYkIY/CU/YzNZUDOQKbp1L5kuvpvHXWYyhIhh1GEHCcCcojKEggEtGONt15Fnwd4HYwxXPvCaq08p//jE/Q9sYPhW9yylEcWh0xZrOSQLYsZdDecNm3a1OBzEjWnQmPhcrm0+SNcLleDz490XlYdbq8fd3xtLocIh7rNi8vlQtsrpwMwtzTIvxcvhcth584iojwiyqK+tu2V0zHn6l6Ysrbuoq46MSqgb+JF1WEmS6QcRhFRryJyiMricrnw78VLMeH1jdz1KiqHWUeN14/NpVUhx4l6i9vIYBNZyiOLQ6YsVnLIlsUMuj9d6towqUxaWhouvvhi3c+/6vn6s3arjmqPD0Vr+DqHi3QA5pZcSUtLQ+YJfbhfD9QtyXHhRUOR6UzjzmJ030RzmC0LUFeezBP64IIL8zF1fd0osh+C+nPp+XJTHaJzGEVEvYrIISpLWloaLrzoImSu4V8hQFQOsw7gWN2uvHswznmc7xwtS3lkcciUxUqOeGRJ1Kg66uMUR3YcrFuAN3zWboIgCJHUu/1NEETc0HXF6dFHH8Xtt9+OzMzMBp/7zTff4ODBg0Jap7Lh9/vx+eefAwDOO+882O11J6sMhx09OjQPGSUWTPBtGdVR6/WDBfxcy0+IdADAmQP4b7H6/X7U7Ki7jZuey7coLQv4seyzz5DusHNnibZvjDqCy2JmyZXand/ii8/BvX9Uh5olUTlE1KuIHKKy+P1+fLF8OWp2bOKuV1E5zDoAefaxlRwyZbGSIx5Z8vLyuHKYRVfDqaSkBLm5uRg1ahSGDx+OvLw8tG3bFkDdujElJSX46quv8Nprr6G0tBSvvPJKXEMHc/jwYeTn58Pn88Hn82HSpEkYP358XN6rtrYWF1xwAYC66eKbNGkCoOF5mYK7sgQ7eJefEO1oaMmVhjz73/q7loUH5vPi0osvM5Ul2r4x6ggui5klV/a/9XeMesvckivh9coY06Zo0NPBXEQOEfUqIoeoLLW1tbj04mEA+I9XUTnMOgB59rGVHDJlsZIjHlmkXnLllVdewZYtW/DMM8/gL3/5CyoqKmC313Xkra6uBgCcfvrpuOmmmzBmzBikp6fHNXQwzZo1w4oVK5CZmYmqqir8+c9/xuWXX47WrVsLfy+bzYaePXtq28HoHcSiOgKM4bCJJR9EOdRtXmw2Gxztjq/7wcTSIKeedhpsimJqGn6z5RFSlqOvdbQ7Ht2ym6HCRJ0EZ2EMIUvf6JogVEAOIceJiPoQlMVms+HU007Dj2VHTC25IiKHiM+fLPvYSg6ZsljJIVsWM+juHN6zZ0+8+OKLeP755/Htt99i586dqKmpQZs2bdCrVy+0adMmnjmjYrfbtVuIbrcbjDGuuUz0kJGRgc2bNwtxmF0uRZQDMNc5PCMjAx3HzuV+PVC3JMeadRtMdQ4XtW/MlgWoK0/HsXPxhcklV4KzhC99o6eDuYgcIupVRA5RWTIyMrBm3QbTS66IOg+YRZZ9bCWHTFms5IhHlqTpHG6z2dCrVy9cdtlluOaaa5Cfn2+q0bRixQoMHz4cHTt2hKIoWLJkSb3nFBcXo0uXLkhPT0e/fv2wdu3akN8fPnwYPXv2xHHHHYe77rorYY24VCRObVSCIAiCkJKEj6qrqqpCz549UVxcHPH3ixYtQlFREaZPn46NGzeiZ8+eGDp0KPbv3689JysrC1u2bMGOHTvwr3/9C/v27Yv6fm63GxUVFSH/iOg01DCKNOVCfQdDtefY8inhy6uELxxMEARBELKS8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz+/3nOzs7PRs2dPrFy5Mur7PfLII2jRooX2LycnR3fWmpoaDBo0CIMGDTI1XfygQYNw4ZDzTS35IMoRqyyMMYyaV79hpI4iBIDtew+h7F/3ouxf90bMwhjDlfNWh9xGUJS6kYYlDw5FyYND8UpBLwwePFhIvZp1xCqLXgJeN8r+dS8uGzbE1HIpZrOIyCGiXkXkEJWlpqYGFw4531S9ijwPmHEA8uxjKzlkymIlh2xZzKB/etkE4PF4sGHDBkyZMkV7zGazIT8/H6tX132h79u3D5mZmWjWrBnKy8uxYsUK/PWvf43qnDJlSsjyMRUVFbobT4FAAF9++aW2zUOwI6f37VI4opWlxuvXplgInosqZBQhY3Dv+q7uBREuT4X3zVGvLimKovXPqfK6hdarGUessujmaJ18vQvI6TPJlMNUFgE5RNSrkPoQlCUQCGDlihVarkTmMF2vgDT72EoOmbJYySFbFjNI3XA6ePAg/H4/srOzQx7Pzs7Gjz/+CADYuXMnbr75Zq1T+G233YZTTz01qtPlcpma6v2tt97Sts043D4/7tvEv+SDKIe63RDhI7jUTSXNgTaX3attx2L9/flo3cRZbySYyHrldTDG4FfSdJclFmqdPHrFqXjwf/zLpZjNIiKHiH0jIoeoLC6XC6/+6w3csWiLqSVXEn28qsiyj10uFxYtWgSPPwC/Yje2LqPgHCLqVZYsVnLIlsUMhhpOXq9X69H+5z//OV6ZDNG3b1+uXvrFxcUoLi6G3+9v+MlHSUtLw6hRowy/VyRHtceH+7fwL5ciygHoG1UX7dyn2OxocvIAXe+Z6Yx8EjWaJRJm9o16O3HDzj90lyUWap1cNjIf//c930gnI/UazxwijnkROURlSUtLw+VXXIn7tzRLeA6zDkCefWy327Ho9+OwYecfuH/LMu1xXdNmCMwhql5lyWIlRzyyJMWoOofDgc6dOxtqbJihTZs2sNvt9Tp779u3D+3btzflLiwsRElJCdatW2fKQyQ/4bcT1f5bBEHoI/wzpKJOm0EQVsLwrbr77rsPU6dOxauvvopWrVrFI5OG0+lE7969sWzZMowYMQJA3T3NZcuWYeLEiXF970j4/X6sWbMGAHDmmWeGTBevjhRbH+HkEclR6/WZWiJBlAMATjuDf9p6FvDDXboVAODqeBKXI1qWao9f96X+WPtGLyzgx7NDmsGVFsCNe0LrNXjWbiD2LQi1Tr5ZnWlqyRWz9Soih6h6NZtDVBa/34+136xB7e4SIcermRxmHYA8+9jv96N2dwkAYEtxIex2u+F5pWSqV1myWMkRjyw9evTgymEWww2nZ555Btu2bUPHjh2Rm5tbb8r0jRs3GvJVVlZi27Zt2s87duzA5s2b0apVK3Tu3BlFRUUoKChAXl4e+vbtizlz5qCqqgpjx441Gj0Enlt1tbW1GDBggJY7uOxqh+lqjx9XzluNH6KsWxfsMLNEgkiHmSVXmM+Lfa/frWXhIVqWvBmf6b7UH2vf6IX5vLjkgvMAhNZr8K08LVuMXGqdXPJ69P2jTs8QrQEmol4j5WjofcMRVa8N1YceRGSpra1F/uBBAMQcr2ZymHUAYupWVHnU49U292ZkZjgTlkNEvcqSxUqOeGSResmVYNQrP6JYv349Bg8erP2sjngrKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhaioqECLFi10vUZRFHTt2lXbjvT7Jq40vBNz3bo6B2OAh3s1DnEOdZsbBUhr2UHbNpsl05kWcuVOzwzZ4Q7u8ijACSfUOYLrNdJtiJi5jtZJTqtM+KJEUf8aj9oAE1CvkXI0+L7hCkH1Gp7DyNVEkVkURcEJJ3TFzkNVQo5XMzlEfv5iHWuNkUVRFO14TWSdiKpXWbJYySFbFjMYbjhNnz5daIBBgwY1uETKxIkTE3JrLpzMzEz8/PPPDT4v1r5UHWaWSxHpAEI7ZBsdoW1zpKPTzS9yZYiUBagbwfd7lUf7kmcsNGOkL1y9+yYWNkc6vi35AQCi1uvKuwfjnMeXA4j+5a/WydoIy2D06NBcm+IBiN4AE1GvquN//xiKgvlrQ24j622QiqrX8PowcjVRZJbMzEx8W/KDqSVXROUw6wBiH2uNmSUzM1M7XtUlsBKVQ0S9ypLFSo54ZElU53Cu6QgOHz6Md955B9u3b8ddd92FVq1aYePGjcjOzkanTp1EZ4wLPLfqUoFR81bj/dsHJKwlD+DoHE/HbjmE3/o0+oVrBsYQ2rcpKBfPl3/dc+saXWbWbTOCcnTC0Rqvv1HfN5zwfoB6G28EQRAyYXjm8G+//RbdunXDY489hieeeAKHDx8GALz77rshE1XKDo2qO0bwTOAleyukGwUT3l+sMUfqhM96Hr5cjNEsilJ3OzKTs58PL+qEo439vqEZ6hpw6+/PT1gGgiAIsxhuOBUVFWHMmDH4+eefkZ6erj1+0UUXYYU6I69Fqa2txcUXX4yLL74YtbW1phyXX3YpmM+TcMfFF18Mt9uNtyf05/Iwnwf7334A+99+QEiWWPW68u7BUX8nYt8wnweXX3ZpSL2GX+nKdNob/PJX6+TaK0Zw14meeq32+GPe5lYdl192qenj1Wy9qjncbjd3403U5+/yyy5tlOM13g5AzLEmqjzq8ZrIOhFVr7JksZJDtixmMHyNfN26dXj++efrPd6pUyeUlZUJCSUrfr8fH3zwgbZt1pHT/Uau/qmRHEY724aXRXHw3S5hgQBqflmvbfOgt14zYnzhitg3LBDAxx99CKD+vgmf9TzWl79aJ5/9AuScchPXPtZTrw3dKlQdH/8i5ng1U6/BORQb37Em6vOn7uN4H6/xdgBijjVR5VGP10TWiah6lSWLlRyyZTGD4TOYy+WK2CHrp59+Qtu2bYWEagx4+jg5nU4sWLBA2+ZBdbh9fjy8le8LJJLDaH+b8LJ4OZdDU+xpaH3RZG2bB5H1asah2NMw78WXAKDevok263k0T+uLJmP68B54YjtfncSq1+AO5rH6CamOh0b+OeH1GpyD91gTdZzMe/El3Lf4u6Q/XgExx5qo8qjHayLrRFS9ypLFSg7ZspjB8Cft0ksvxYMPPqitFaMoCn777Tfcc889uOKKK4QHjBc80xE4HA6MGTPG1PuqjmqPD49EGNmjTrSoLqgby8EYw6fzVnN1tg0vi5dzqRPFnoamp5rrs8JTr8Ej7TIcdiH7RrGn4YbRBQAQcd8Y8TQ9NR/XXp+PJzk7YseqV7Wjd0OdvFXHDaOHwsF5RTH4WKvx+rXjxMjVzfAcvMeaqM/fDaML8Mg2/v0r8jxgFhHHmqjyqMerw8G3Zp5M9SpLFis54pElaUbVPfnkk7jyyivRrl071NTUYODAgSgrK0P//v3x0EMPxSNjyhA80WJebku8PK5vzOerk24GD91PFYJH2jXmKDsZqOtg3nidvI1OAErExsgs9ARByIfhhlOLFi3w6aef4quvvsK3336LyspKnHHGGcjPt/5IGb/fj//9738AgFNPPZV7uvj//e9/qImwXErwRIvrd/6BQ1WRO3uG5+D5Eg138MICfngP7AQAONrmcjl46vWHsLmQKms92L71B0OOcFjAjy1bNmvbvEuDqHXyv2+3mFpyxWy9qo4tWzaj7xmn8y9RsnETVq/dAEfbXK0sRq5uhufgRdTn77vv/gfPvl8a9XhVURuh63cc1PZv/7xeeOdWvilARBxrourVs+8XbdvMudFsDrMOmbJYyRGPLLm5fJ9hsxhuONXW1iI9PR0DBgzQpj1PRniXXDn99LoTv5np4lVHQ0skqBMtNpRDcbhM5eB1AHVLPuxdeDsAc0tYiKxXM0uDnNW3DwDgstmfYXNZ3YiNvNyWMW+dRvLsXXg7zlvIvwyGiHpVHWctjFwnegYU1NbWanWSc8c7+Or+/KjHpd4cvMeaqOMkuDyNnUP94yh4/65r+Q73fFYijjVR9aqWp3bW6IR9hkU4ZMpiJUc8siTNkitZWVno27cvBg4ciMGDB6N///7IyMiIR7a4wrvkSseOHbVtHlQHA0wt+SAqRzQHY0xb1yy2CLA3baVtxyNLYzmgAB06doQC4PXxZ2pf8IZvpRytk7bN0k0tl2K2XlVHu+bpEfPrGVCgKAo6dOyI/RW1gBJ7ZCNvDt0aQcdJcHkSlQMKkN2+Aw5Wuvn371GP2WNNVL2qx2siP8NC9o1EWazkkC2LGQw3nD777DOsWLECX3zxBWbPng2fz4e8vDwMHDgQgwYNwpAhQ+KRUwoyMzOxZ88eIY6GlksJXtqjoRzVHJ1tYzkYQ70+LdGwOdJxXOErht8/VpZEOWyOdGzbsdP0TNZqnaw3sQyGiHpVHSUPDtXKZHT27szMTGzbsdPUEiXhOXiOVzWLiOPEbHlEHWvf/bzDdN9EEceaqHpVj1czS67IcB6QKYuVHPHIkqjO4YYnwBwwYACmTp2KTz75BIcPH8by5cvRtWtXPP7447jwwgvjkTEl4frLXhDhi9oavVVFyIs6oIBm7yYIQg91dx989f41tMasleH60/qnn37CF198of1zu9245JJLMGjQIMHxiEQTPvEjkfyErwVIEAQRiUgjalVSeWSt4StOnTp1wplnnomPPvoIZ555Jj788EMcPHgQixcvxqRJk+KRURpqa2sxatQojBo1ytR08aNGjcL1115jaokEUTkacjQ08SPzeXBgySM4sOSRpChPLJjPg+uvvcaUQ/UcWPIIxt3wF1NLrpitV9Vx/bXXmKrX66+9JuE51CwijhPe8qh/eR+qqMTlV1yJy6+4EjU1NVw5mM+DcTf8xVS9qh6zx5qoelWP10R+hoMdhyoqua+QyHJOSrTj2GCG+ucjnjVDE10eURi+4tS2bVv8+OOPKCsrQ1lZGfbt24eamhru+9qJgmdUnd/vxzvv1I3EWbhwIdf7Bjty7riWe4mE4Bw8S1iIcAB1Sz5Ub11Vt33RHVwO0fXK62CBABa/+29TDtVTvXUV/rsVyLnjL9xLrpitV9WxeCvg97/M5fD7/VqdiMphZskVEccJT3mC//IOeGqx66jj2uf/isWTzjP8VzcLBPDfJe8azhHJY/ZYE1Wv6vFqZikNkeeBb3Kugc15bD3Vhq6QBM+vVVXj1jzqLNVmsiTyvCbq3Kju3xVf/gcDZ69OWJZgx9NPP83lMIvhM9jmzZtx+PBhrFixAl9++SWmTp2KkpIS9OrVC4MHD06aSTB5RtU5nU4888wz2jYPqsPj82PObv4lEoJz8CxhEctRo2c03VEUexpaDZmgbfMgsl71OoJPkuofooo9DbPmPAVnmt30MhithkzA3ReejGf38i+5YrZeVcf9F3c3Va+z5jyFGe//ICyHmSVXRBwnPOUJ7vcXvG827ankmkpAsafh0Sfn4PGPfuSu1+AsZo41UfWq1kljfYajOaLt31gDIcJvSTG/TyvP6IUb8e/Ccww3jnnLE3xu8sGGWXOeAsA/I7uIeg0+N2Y15R9Fn4hzfTzg+qRlZWXh0ksvxdlnn42zzjoLS5cuxRtvvIFvvvkmaRpOPDgcDhQWFgpxVHt8eOroyB6jfezCc3jDRsSZdeiZpyd4dFazMy7R96Y6s8TbEX6S7NGhOYC6k8Mtf73V9Kg6xZ6GZmdcghtvzsdzJpZcMVuvquOWv5pbcuWWv96Kp/aaW4ImOIeZJVdEHCfB5VGn3DAy5cSG6RcCuNDUiDjFnoYbb56A5/abG1Un4lgTVa/q8WpmyRXR+1cdBNHQvgofEBP8+du4+whX45inPJH7FJ0AAFj1z/VcfYpE1GvwuZF3VKyoLMGOpFly5d1339U6hZeUlKBVq1YYMGAAnnzySQwcODAeGS3PJXO/wrIiMXU3at5qvH973SzERhpk4cPUG0IdnVXj9aPa0/C6aYkm/ApT8ImpZG9iPnxE4lGPWyMdXaljffLAs6/W35+PTKc9Iee18AZcSC4Ds/UT8cXwHpgwYQLOPfdc3HzzzRg4cKCp5TqSjUAggO3btwMATjjhBNhshvvWaw7GGLpnN8UP+yqx42AVLpn7Fd6e0J8rR4bDjh4dmqNkbwVK9lZoiwSPmhf9PnSkshhd905RFKSn2bDt55/hPbQHaS076Hqdniw8jp9//jmiI9oVpnAYC2Dbzz8jw5nGnUP1+P7Yi+3btoGxABTFuEd1AEBayw6Gbp+GO7b9/DP+3P0kw+VhjKHK7cX3P5rbv+E5eBF1nJT+9itOyqjEj9WZ2r4x8qUUCATwy/btputk+7Ztphyqx+yxJqpevYf2aNtmzo1mc5g9H2U67VKc19bfn4/0NAXf//gzLn92VULPr8Hnxg45/MuciPwOBer6XCcCww2n/fv3xyNHUlBTU4Nu3boB4J8uPthRUXEElz6/HjsOVmkNHt4cb0/oj1OmH7udUuP1a1dSenRoXm8epkgOnmHqNTU16PnnHgD4l7AQXa/hjvC/4qJdYWJej1YWM8sKMK8HpS/egjNfVJfBSG/4RVEcQJ3D6DInwY6eLxovj9rYXPfzXuyafaWWg4fwHLxLrog6Tk46qa7xtv/QYSiOdMNXFUQc88zrwZmn/9mUQ/WYPdZE1at6vNY8drXwz7ARh9l9I8pjtjyZTjuY1x1ynISv5qDnFrOIeg0+N+4/dNjw60VmCXYkzZIrQF2v9iVLluCHH+oWVe3Rowcuu+wy7oX/kgm9Hcn1OGw2Be/dNiCkwcObI9ZnJ9otCBFlUT0Vtfz3vUVlkcUBAIqrCZqlm+wr5WoCe9h+Uycj1dvIVlxN0JwjR0hnaFfdye2MzlncE6Hy5ghH5D7OdKZB4SyPiGO+eYsWOGLSAYg51kTUq3qcJDqHiH0jyiO6POGNfL23mGU6N8qUhRfDn7Zt27bhoosuwp49e7S/3B555BHk5OTg/fffxwknnCA8ZDzgmY6gSZMmOHz4sKn3DXfwdLQzmiPSZ0pEWVRP6f6DppawiEe98mBzpqN0/0HzS64409F58iJzS64cdXz/j6Eh+0/PX5jqOoOqI3jJFZ4c+w/+jkyn3VCDLdwRnIO3c6lMnz+zx7zNmY7tu/eZX3JFwLEmql47T16kbScyh9l9I8ojqjx//PEHRs1bHbH/qZ5bzKLPjWY6h4v+DCdN5/Dbb78dJ5xwAtasWYNWreoWdfz9999x/fXX4/bbb8f7778vPGQ84JmOQC/BHa1puRJxhHdgV/t1AXUdvtUPtOFFeSVGUWCo0RNrpl9eMp126pBKEAkieCCOSjIMyLEyhs+GX375ZUijCQBat26NRx99FGeffbbQcMlK8IFu5Es8hZf+0YWiIOQEwhi025xXzluNH442olJ5KQBaZ5AgrEdd/9PU/eMleFR0MGaufpnBcJd2l8uFI0eO1Hu8srIyYZNRNRZutxtjxozBmDFj4Ha7Yz5XPdDDv7xjOa56Xt9srEZyxNOhem6+aRwOvj8bzOeNexa1Xuvq9tjjJbt+x8H3Z+Pg+7Oxbvt+rltKzOfFzTeNM10nzOfFwfdnY+ItN3HXieq4+aZx3FlW3XUOmn7zAsaOHcvtEFEnIsoCyHPcizjmmc+LibfcZMqheswea6LqRP38Jfu+EeWR6Xg16xB1buTJol5F7zHtY/SY9jG6T30P7XpfiHa9L0Sff3zEncUMhhtOl1xyCW6++WZ88803YIyBMYY1a9ZgwoQJuPTSS+ORURp8Ph9efvllvPzyy/D5+Fq64Q51KgEA2HGwSkiOao+/3ugLvQ71dhig72qFz+fD66++iqrvloEF+JZaEFGvLOBH1XfLTOVgAT9ef/VV7hxq3yI1y6J/vWYqS9V3y/D6q69y14nTxoTUq5k6UR1mywLE5/PH6zB7zLOAH4v+9Zoph+oxe6yJqhP185fs+0aUR6bjVYbzAG+W8KvoIs71ZjF87e/pp59GQUEB+vfvr80Q6/P5cOmll+Kpp54SHlAmHA4HHn/8cW1bhEO9rWdkZF1DOfTc+47mMHqb0eFwYMbDj+KJT7ZCsdvr9TUSUR49KHY7sgaN1bZ5HTMefhTONJvhHMF9i9Qsk84/EQvK+bNkDRqLOy84SdixxpsjuE54TpnhZeE97cbj88eTJfyY50Gx2zH9/x7GU8t+5naoHrPHmqh6VT9/iTxeRewbUZ54HK+Jcpg5N4rMsv7+fKTBj+K2j8LrD+Cf+xPTDcFwwykrKwtLly7Ftm3btOkIunfvjq5duwoPJxtOpxN33XWXcIfRrjjxynEsj/776U6nE3f87W94sTxyX6OXx/U1lUUvit2BFv2uMO24429/M9yXoNrjD5mNXLE7cP5VN+GucX2xUEeDuNpTv5GqlueOvw2Fk7Nvg6h6Da4TH0efgvCy8DiA+Bz3PFnCj3keFLsDEycXYWGl2SVX6up24uR8LOTsLCyqXtXPn5k1yETkMLtvRHnifZ5uTEfwecBMvyKzWeoGqrhw35R7UO3xYf49i7ldZtB9Rg4EApg5cyb+85//wOPx4Pzzz8f06dORkcG/4B9hPX4Imlxy/c4/cKjKk8A0jUPejM9CZiNff38+Wjdx6u5nlTfjs6Ts0M6zzhtBEESyo7uP00MPPYSpU6eiadOm6NSpE5566inTi/UlG4FAAHv27MGePXsQCATi6ojV16gxc+jxlO7ZA9+Rg2CsvkfPjNe8WYLriLEA/pThjppDD4zVlUVPjuD3BkJnI09PU1BaWorSPXuiZgl/vTofS3AW35GDKE3wPo5VJ3kzPkOPaR9j1LzVYDGGhIooCyDPcd/QMa8HxgLYW2rMUdeHzhf0z6/V7d7S6MdaQ4iqE9+Rg/AdOZj0+0aUR6bjNZ7ngcbOojpinV/jje4rTq+88gqeffZZ3HJL3bT6n332GS6++GK89NJL3Gt6JRs1NTU47rjjAJibLl6PI3joffhf9I2ZQ4/nxD91ARB7yYdYHc15swT3x6qqqkK7VllaDh6Y16OVpaEc6ntHWtsvuDzR6iTW69Use54dgxOfTew+Dq+TzMzMeotBNzQJX3hZzCy5Ivq458kSfszzXHljXg9OO+kEzdHg86PMz6XW7WnPmltyRUS97nl2TN32jBEJO17D9w0vIjyynKdFnwfMLrkisjydbn2FO4sZdDecfvvtN1x00UXaz/n5+VCUur+s1UIkEzwzhwNAWpr5uTT0OmL1NWrMHHo8vkD0Kw7qratYXyq8WdQ6Yt60kBzBndSNzI9lJEestf30eBpcG9BmR5rN3C0w0cdJcGPV0CR8AsoSniXRDvVYU+vA6O3Whj43wYSPLApGsdlhl+A4gc18R13R+ybRHpmOVxkcojyisnC/v94n+nw+pKeH/jXjcDjg9fLPlZFIeGYOb9KkienyWsmhesqramIuTZDpjP2XuKjyBOcI7qR+fJvof9UEzz7e98QOeNvjMdRfJ3w287zclmiT1RxerxfVHh/3kg02Zzpy71pqarkUEfVqc6ajvKomJIPRyfjCy2JmyRXRxz3vkisej6feMhh6lr9QsTnTsfePSq7Zn9ffnx/S4M540osar5/7WOOt1+BJCRVH3T5WfY2ZI9zR0PmosTyynKdFnwfMLrkiqjzVHh9Olr1zOGMMY8aMgct17NJ2bW0tJkyYEPJBeffdd8UmJAgOgjupx5ofq+4KQd02Tyfn8OUQqKN0asB95U0AMiyBE4+lfQgiWdD96SsoKKj32PXXXy80DCEO9UpKqi+5cXybJlrDKfjqkorRteAiIWo5BPX2YkOTl6YK4cssyNYoTeVlMKLdOlTPNzwz9xNEsqD7U79gwYJ45kgK3G43ioqKAACzZs0Kufomm0O9khLty0ZEDtVzx6TJ+H3tLrQ67yYoacYnNRNVJ5FyvHfbAO2KUnqaHVc9vzrktlpwo1JknRQVFcHnD4A1Haq7ToJvLzKfF4c+fwl3HH4PTz81h7tO7rpjEgD+8jCfF3fcfhvS7DZTjuCyQGm4IR/pisZJbdOR+/M7UAA8OvMJZDXNNNyQCq8TPVni4WA+L+4umoTf1+9Gq/NuMvz64Cw8x1okB8B3nKy/Px925sO9d90Je4UCj6c3d72KPg/wIsKTTN8XDRF8Hpjx6OOGXy8yS8gx7ziHO4sZUvPPJU58Ph+effZZAMDjjz/OtdMby9HQlRQROVTPC8/PAwC0HDQWCoyfuEXVSaQc4fUQ67aayDpRPTl35Ouuk+DbiyzgR+Wm9/HCJmDWk08k7FhjAb9Wr2YcwWVRdFwBjXRF44c9h/HJ0SwfZubX9UkzOPdVeJ3oyRIPBwv4seDF5wHUHa+88B5r0Rw8+zjTaQfzHvv8zZw5U0i9GsmhXp2sqq4NOQ/wEn4+4XUky/dFQwSfBx6Y8bDh14vMEuzodOtZ3FnMQA0nAzgcDkyfPl3bTnWH+tqp9/8dxcu3hSxNYORWoajyRMoRTqzbKyLrZPr06fD6A3it1vgXiLqswOxm06Aoiq4s6hdH8G0+EeVR7HZMvf/vcNiNLbUQnEex29Hi7GtROLgr1zIn6+7LR8H8tfh+txctzr5Wy9XgNAg66oR3yRWzDsVux11T7sMLK34xvTSI3mMt0grzGQ57XM4nIupVL8FXJ5k/9BjhRe/5JFYmL1Mw9f6/AwC8TEG1x2f4drMs53re80A8sgQf869wLjNkFmo4GcDpdOKBBx4gR5jnvr9Pw+ve0NEnDd0qFJ0lWg6jDlF18sADD4Axhq3zot8ajIa6rMA//vEPXe/HGCJ21BVRHsXuwH1/n2aoL0/4bTbF7kDWgOtw39/5llxp4rLj/dsHHP3Sv0RXZ+xonZfD64R3yRWzDsXuwN1T/463AuY6latZqj0+vB5jBFi0+lCnUBB9PhFRr3oJvjqpHmuAuf5WZs4noXXdDwDw+ozlWiYjV0llOdcHnwfMLrkiqjzVHh9elX1UHUEYQUSn62SnsUbcRbqtlchBAfHIY7Qjtmx1kmiideY2MoVCMhA8VUOiBhPEmnPLavWdqtDeMwBjDOXl5QCAFi1acH0oreRQPYcPH0agthKKq0lCyyNDjkgenpMkbxb1i0NtIBw+fNiwIzzH4cOH4XGmcTnW35+PDIcNnupKlJeX654zLVqW8vJyVHt8YIwJqRPeHCIc5UHHKy88dbL+/nwAxybuDC+PiM8ODyI+f+qxBgAZJo+1wyb3D2MMn9/WBxlOOxwZTdHnoWVcDhnO9cHnAUeG+ePVbJbgYz4RpMZaKYKorq5Gy5Yt0bJlS1RXV6e8Q/V0ym6LXU9dA+Z1JyyLLDlEeXgd6hw/iqIIycG8bnTKbsvtyHTaAZ8HrVq1ElavnbLbGtrHZurk2Ppwx273iKrXrjntTR2vwVmM1EldfRy78ibL+UQWh+oxez5R93Gn7LaAL7HnxkSfB0Rm4T0PiISuOBEEQUSAJnkkCCISSX/FadeuXRg0aBB69OiB0047DW+//Xbc3iszMxMejwcejweZmZkp71A9hyur0fnOJdyLt4oqj9vtxsi5X2o5jPZpEVknMuwfEQ7F4cLhyuqE5wj2HK6sbpRjLVo/qdYtmgmp19JDR0x9boDGr5NUcKges+c1WT47spwHRGURccybJemvOKWlpWHOnDno1asXysrK0Lt3b1x00UXc6yXFQu/Q8FRxBHsUO/+hJKo8TqcT/y48h7sztug6sZLD4Ujs/g3JwhTu/me8WYL7SSmKApvN3N+cIj43wR7zdSImh1lHWloaarx+eCNMm6CnfCLKcswj5rzmcKTByzkSTcbzAG9ZhGcxccybJekbTh06dECHDh0AAO3bt0ebNm1w6NChuDSciMYj0uK5eq4epfIyGET8kGF9OKsT69ao0WH8BBFPEn6rbsWKFRg+fDg6duwIRVGwZMmSes8pLi5Gly5dkJ6ejn79+mHt2rURXRs2bIDf70dOTk5csno8Htx1112466674PF4Ut6heqbeew/+WD4fzM+36nWkLOpQ/pIHh6LkwaENnjRlqxMZsohwML8XU++9J+E5gj1T771HO9aqPX5Do2sSUa/HOpgf62TO/F48cN8UU5+b4CzBdcLrSPQ+Lq+qwWcLn4xYJ+ow/sbIoXrMntdk+ewk+jwQfPwfrqzG5KK/YXLR33C4spprVJyIY94sCf8TqqqqCj179sS4ceNw+eWX1/v9okWLUFRUhHnz5qFfv36YM2cOhg4diq1bt6Jdu3ba8w4dOoTRo0fjxRdfjPl+brcbbvexnvgVFRUxnh2K1+vFE088AQB44IEH4HQ6db/Wig7V89TsWQCAFmf/BYrd+GXYaFmMXD2SrU70eqJdWauudktRHub3a/tXVA7efgnBnpw7zoJid2hD6vVekRCRxYgj2lUU5vej+OnZAOo+N7xEqhMzjkTuY6/Xi4q17wIAvv3Pi2jbsrmuyU5j5RB1Xgsm0gzsQP3bicGfnbun3s+dQ7bzgJGyhB//AU8tdh31vIuzuJZNCi5Pp1tf0f06kSS84TRs2DAMGzYs6u9nzZqF8ePHY+zYuvWC5s2bh/fffx/z58/HvffeC6CuMTRixAjce++9OOus2GvXPPLII7pnZA7H4XDgzjvv1LZT3aG+dtIdRViw6lfuJQ5kKY/IOtHriTZJpizlUex2TLqjyNRSC+E5eHtIqB7GGH7JbYONeyq13+mdWFBEFiOOaJMh5h3fBpeb/NwEZ/H6A1gc589fcIMheHqGSA7eem3et+6P5xZN0rlujcb7vKbndqJKPD47iXLwliX8+Ffsdm0f61k2KRLBx/y/fbTkSj08Hg82bNiAKVOmaI/ZbDbk5+dj9erVAOoO5DFjxuC8887DDTfc0KBzypQp2urMQN0VJ7239pxOJ2bOnGmwFNZ1qJ6HH30MS2Is99AYWWRx8HgiXVmTpTyK3YGHH3rMVP+e8Bw8y3GEe4LXoTNyRUJEFl5H+KzWNd6ztc9NcEPEyKAGNUu1x8f9GdRznDQ0NYOoem05eJy2zUO8z2t6ZgVXCf7s8C5TIuN5gLcsx45/fcsmRSP4mH+Xllypz8GDB+H3+5GdnR3yeHZ2Nn788UcAwKpVq7Bo0SKcdtppWv+oV199FaeeempEp8vl4l71Pl5kOOzaorgEkWjq+iQYX9+rMUnGQQCxOpgHf4nI2BE66pWzFF7GRm0ImGkEpBJWGmCR9KUYMGAAAoGA4dcVFxejuLgYfr/+LwjGGHy+utZ2Wloa93Tx4Q71ds0p0/X9xRivHDwwxuD1esH8PsDGtzaULOURWScyZOFxhF9ZUPevV2HCcvASjzoRkYPXkYYAzjiuGTbsqggpi5HbF2oWr9fYMjThDq+3rpOtnnqNtB6cqDphfp+2zeswUpaGPOp5LRINNQSCPzu8K4PIdC4xW5bgLGaP12BHIkj4qLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3Trdr6murobT6YTT6TQ1XXwkh5HjJ545eDxZTTPx2xMjTC11IkN5RNaJDFl4HOFXFk7vkIGsppkJL4soj0wOl8uFxbcNxPp7z0HJg0O1NeR4smQ1zWy0z5/aYFCXseFxRMvx2xMj8NsTI6Q41sye15jXLcVnR4RDRFmCs4g4Xs04zCJ1w8npdKJ3795YtuzY4oiBQADLli1D//79Y7ySIAizrL8/H6/d1C/RMSyP2ggJXj+OIAh5SfitusrKSmzbtk37eceOHdi8eTNatWqFzp07o6ioCAUFBcjLy0Pfvn0xZ84cVFVVaaPseOG5VZeZmYk//vhD2+bBSg71tYcOHULB/LXYsr/uEjnPUicylEdknTRmlpoo/ZHM5qibKdspvCx65uPR40lUlng4eFE91R4f+j+5hk+S5sKefQcAABkZGaZyqNu8dZIz6U1tW0QOXjIzM7Fn3wGc+fAyU0uu7Nl3AJnONDgykvu8JqIswVnMHK/Bjn4Pf86dxQwJbzitX78egwcP1n5WR7wVFBRg4cKFuPrqq3HgwAFMmzYNZWVl6NWrFz766KN6HcaNUlhYiMLCQlRUVKBFixa6XqMoCrKysky9b7wcwfMB6Wm4iMihelq2bImlRReYWupE1npNhiznPL5cihzxdDRGlvCRbYnKweNxenzc/Xn6PHTsij5vx3RRdWJLb6pt8zpE1quax4zDzEg0WY41EWUJ9pg5XkU4zJLwhtOgQYMa7OA1ceJETJw4sZESJSfB8wEZbbiIen+rjJhIBsInzgQSP8IpeIoAvajPTcQxG07wyKgeHZrj5XF9E5gmvkQ6fgBjHdMJOQj/vMnwWbI6Kfvp4LlV5/F48PDDDwMApk6dyjXXSDwdRhovInKI8ljJ0VhZwifOBOqfMBuzThhD1Hl+wh3BXSuNzPwdj/JkOBwRGxAleyvQ56HIQ8xjlYc3h9ljzesPgPnP0D1zePDxozpeWPELWvS/ylQOwFydHP7q9aPbg7kabx6PB48/PEPLYaZeH/q/GTj81TbuOmF+Lx76vwfhsNsw+c67uXM0dJyET4UQ/lkScayJKEtwFqPHa3THydxZzKCwRI3nkwT1Vl15eTmaN28e87lVVVVo2rTu0m1lZSXXQsLRHNUeH3oETbZW8uDQqCeOeOZIhMdKDpmyxHIEH2/Bx1r448zr1uVYf39+1BN4dXV1iCMzMxOj5q2u31iJkSPTmRaxPHrLoT4eyRE8IzZjwKh5q0PmVAv/Igp3KA5XxPcymiPac/V6cu54BzZnesRzRyx3uOPHRy8z9HqjdRKNA3+Uo12rLADA/kOH0bZliwbfNzzbunsGaI6G6jV8JnT1+A0/7oPrJJIr/DEA6DHt46PLi1yplafPY18BCJ3OAQj9g0fv548xFvEzpNLQsaYXNU+0sjS0b2OVJ9bxqtfR6dZXsOfZ0bq+v0WSsleceEhLS8Ott96qbae6Q6YssjhkypIoh/rFoH4hhDuCr3YYmTwwXuUJv1L7/u0DYl7JC3fwdHUXfaz5/AF8FGW+IT2Om2+ZgH+t3QXFhENEnTQ9/WJtW0SOaDQ0E7qIOlFsdtx8ywSk2W0hWRq6QhSeI1J5Il1xjvZZEnGsRSuLUUQdr6rjA06HWajhZACXy4Xi4mJySJhFFodMWRLlCJ8YMJKDp09cY5WnoWzhDp7OsqKPtWqPDx9zLrnicrkw++m53K8PzqHCWyetL/irti0iRzQamgldUdJM14mS5sDsp+ci05kGxljEW8JA7H5lscqj9zMk4lgLLouZzuGijlfV8SEtudK48PRxIgiCIKxFpJnQRWPkChEhP1JPgBlPeGYOJwiCIJKXao8f1R5fyEi0SDOhxwP1ChFNeJr8pGzDiYeqqio4HA44HA5UVVWlvEOmLLI4ZMqSjI66BYZDv9iMeGK93miWaMjiCPa0aJKBgKeW29GiSQZ2zrzMlENEneyceRl2zrwsbvWaN+Mz9Jj2cYNXekTUScBTixZNMhJ+nIhwRCvLsYbosX+xxpuJOl7NOsySsrfqeFEXSySHWI+VHKI8jeUInkspkTliTWmgx6Pn9XqzNIQsDlGeeDoMzTMUMN91IjxHtDmrgNhzn8lerzI4IjVAG5paRJbymCFlG048fZwyMjKwe/dubZsHKzlkyiKLQ6Yseh3BcymFT/rYmDkOVXnqNXqCv9ga8kTq8Bv+xRiP8tT6AqYdvKieGo8P58/7ltvx8y+/YtATX0Bx8M17FKtO9I4iy8jIQKdbF2rb4YTP7B7pizlSvUbqX6THY7ZOFIcTP//yKzKcaUlxHohFcFlaNW8atSEKxO7sLup4VR2Dn+JcZsgkKdtw4llyxWazoVOnTqbe10oOmbLI4pApSyxHpL/C1RNeY+YIJnjpmPApDYxmifR6o45o1HccayToXbZF9LFW7fFBUb7jdnTs1AlpzdqYzqGS4VAMjyKz2WxaBputfi+S4AZYtMZXtHo1OopTRJ0oSp3DzCzsspxLwssSqSGqp7O7qOP1mCMxvY1StuFEEKlMtLmUoi0YHC+iLR3TuonTVEfd8CkRGovwL3crL9sSC1GjyFJlaRi1wW1kuaJEkupLbKVuyTnweDx46qmnAACTJk3iXvLBKg6ZssjikClLQ45IJ7/wBYPjnUPP0jGNlYXXEW3ZlkhX8ETmCPZ4fAEw/0ncS1jMfnI2yr/ZiuZ5l5rKARwrj54v1+DZuw9X1qD8m38f9Q3WRrkFHx/Bja9IjQ2Px4Pip2aH5OAtj9k6YX4vZj/5JJxptgazRGtQynLMGymLnixmj9ennnoKjDH07PBn7OJKYg5acoWWXLH88iKN6ZApi15HpOUboi2XomfJlVhLeoiuV70ZRGZpaNmW4C/3aJn0lCV4bqEarz+pllyJVK/hjgyHPaQzf/iyHm1b1u9CEX6eDCfSkis8RKsT3iVXImWJtWyKns9fOEaW99FLpCVX9O7fSHUjesmVPXv2oFOnTrTkisykpaWhoKBA2051h0xZZHHIlEWvI9ZVH1nKIsoTL4fRWxcN5dB7y0/1+AIBrDSxhMV1N9yAJZtKTS25YrRewzvzKzY7mvz5fLRp6kSzjMgzhzc0Qq5ZhkvYsRZcJzy30hSbHdfdcAPSbJGXKdHTaV2WY76hshjNYvZ4VcvjcBi/YiWClG048Yyqc7lcWLhwoan3tZJDpiyyOGTKYsQR7YtflrLIlCVejob688TyNHQlpqEsL7w0H1+ZXHLFTJ1oV9geviTmdAV6GhuijrXgOuGZ4VtJc+CFl+bHbFDrWd5HhuNVT1mMZDF7vKrlqaioiP3kOJGyDSeeUXUEQRDxIlZ/HqtjpDN/Y3VM5p3/KZkJvuUMJE9n9cYmZRtOBEEQsiGiUaBnvqN4vt4q8Mz/JCPhjSGV8DIwxnRNIEvQkiuGqKqqQlZWFrKyskxNf28Vh0xZZHHIlKUxHbGmMaB6jY8j2NOxXRtt+Ql1WZEe0z7GqHmrYy6BoTo6tmuD3+ZcjYCn1vDrRZVHFkewp2XLlmBed9gac/rWtAt4atGxXZuElocxhhFPfY6mzbPQtHkWTr53adR9G2kCWZVe7dNNlyW4PMHHK6/DbBYz0BUng5SXl5MjDh4rOUR5kskRPo1BPHKI8jSmI1aDUnSdDOqchc1loV9GsfpH6cmi9/WxHEaQxSHKk2hHjdePTb8dBnPXb2DEmgsreFQnUNcIbHaH2Ho1MwZO1D7mhRpOBsjIyMBPP/2kbae6Q6YssjhkyhJvR7TJK8P7fqRyvUZrUMajTv70pz/B7a+7gmCkf5TqYIyhY+cusNlshvtXJeO+ibdHcTix5bsS00uuiMjRcfzzePfWs3HKySei1sca3Lfhfc4CaZlC67XG48PwV7aZcpjNYgZqOBnAZrPhxBNPJIeEWWRxyJQl3g69k1emWr3qaVDGq04yOforJ0u9NpZDlEdRbOh64omml1wRkcPRqhNO7XESMp1psHmML5Arul7rlkv5BYDBRaDDstCoukaGZzoCgiBCSfWlFyJhZDZ0gkh19C4CLRMpe8bjmY7A6/XihRdeAADcfPPNXJNvWckhUxZZHDJlsZJDpix6HA01KI3miNZXKpnqJFkcojzM78Pzzz0LZ5o9oeVhfh8qt3yE55/bjom3/hWA8QaJ6HpljOGM407Dxt1H6j2noXUIg7Ncc801XDnMQkuu0JIrKbW8SLwdMmWxkiOaR5YlV+LhiDZJoJ7lNKItAxL++mgOI6/nKU8kZ/BSGjIea9HgXXIl3jnUJU9OvndpSA7F4Yq4L/UuyyNqyZUjR47A5kwPer0/4uc3lqO0tBQdO3akJVdkxm6348orr9S2U90hUxZZHDJlsZJDpiyN5dDTVyqZypMsDlEexWbDyMuvgN2mJLQ8is2GzJPOxtBT2sNutyOQoBzhnrS0NKRHuTgQ3O8pvA+UqCxmoIaTAdLT0/H222+TQ8IssjhkymIlh0xZGsuhp6+UHk9Dsz8nU500hkOUR0lz4rU33jTVB1BUjrYjpuC1B4ci/ehVoETkMOKJNeov2EGdwwmCIIgQRHS+N7tsSzyW3aClPOQg1pWdxibWEjeAXMvcUMOJIAjCYkT7EuL58onHenmpsgaf7Mi0H2ItcQPINTKVllwxQHV1NTp16oROnTqhuro65R0yZZHFIVMWKzlkyiKLI5ZH/RIqeXBoyL9Iw7wjOdSGVzjRGl56ytOQMxnqtcHXefzalZuAtxZdj89NeHkC3lrsLh6Nrsfnorq6Oup+UIm0jxurXtUrrJH+qcetqCxmoCtOBmCMobS0VNtOdYdMWWRxyJTFSg6ZssjiaMij9zZfJEe0v/6j/dWvpzwNOZOlXmMRcgWHAXtlKA8D/JWHsLeyzsFzZSfR9RqPLGaghpMB0tPTsWnTJm071R0yZZHFIVMWKzlkyiKLI95ZjPSv0psjljNZ6zXabdE+J7TD0o0boShKQsujpDnQYczT+Pet/TWH0b5zyXC8NiYpO49T8MzhP/30U6PPAxGOkXmcCIKow+g8TgQRDxhjuq/OxQs98yjF8zORiPc3Mg+jSFK2j1NhYSFKSkqwbt26REchCIIgkphIfXNk6chMiIf+JDOA1+vF66+/DgC47rrruKfQj+QIvtzb0MiXeOZIhMdKDpmyWMkhUxZZHDJlsZJDpiy8DrWDerXHD+b3oarkC7z6ShnGFYy2VL0OHz6cK4dZUvZWnYosS64Axy73NnSJV5ZlI2TKIotDpixWckTzWHnJlWTKYiWHTFl4l1wJprGWfjG65IqILLTkShJgt9tx0UUXaduiHXo77MU7R2N7rOSQKYuVHDJlkcUhUxYrOWTKYsQRrZO6YrOh/Sn9cUZuS6pXQdAVpwR1LiMIwjzUOZwgjhGpkzrQOB3VU6lzOJ1ZCIIgCMICiFiih2iYlB1VRxAEQRAEYRRqOBmguroaJ554Ik488URTU+hbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGeiangEYY9i2bZu2neoOmbLI4pApi5UcMmWRxSFTFis5ZMqSrI7g6RASnSUeUMPJAOnp6fjqq6+07VR3yJRFFodMWazkkCmLLA6ZsljJIVOWZHWErNmX4CzxgEbV0ag6gkhaaFQdQcgBYwyj5q2uNx0CAOTltsTbE/oLH9lHo+pMMHLkSHzxxRc4//zz8c477yQ6DkEQBEGkFIqi4O0J/RM2HUJjYomG06RJkzBu3Di8/PLLcX0fn8+HxYsXA6hrrKWlGa8+KzlkyiKLQ6YsVnLIlEUWh0xZrOSQKUuyORqaDkF0lvPPP9/w64XALMLy5cvZFVdcYfh15eXlDAArLy9v8LmVlZUMAAPAKisreWJayiFTFlkcMmWxkiOap8rtZbn3vMdy73mPHThSq21Xub1Sl4eONXkdMmWxkiMeWUpLS3V/f4sk4VecVqxYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvo2e1WazYeDAgdp2qjtkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUPCO4d/+OGHWLVqFXr37o3LL7+8XsNp0aJFGD16NObNm4d+/fphzpw5ePvtt7F161a0a9dOe94XX3yBZ555psE+Tm63G263W/u5oqICOTk51DmcIJIQ6hxOEKlLojqHJ3wCzGHDhmHGjBkYOXJkxN/PmjUL48ePx9ixY9GjRw/MmzcPmZmZmD9/Ptf7PfLII2jRooX2Lycnx0x8giAIgiBSiIQ3nGLh8XiwYcMG5Ofna4/ZbDbk5+dj9erVXM4pU6agvLxc+7dr1y5RcQmCIAiCsDhSN5wOHjwIv9+P7OzskMezs7NRVlam/Zyfn49Ro0bhgw8+wHHHHRezUeVyudC8efOQf3qpqalBr1690KtXL9TU1BgvkMUcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspjBEp0APvss8iylsSguLkZxcTH8/vpzTkQjEAhgy5Yt2jYPVnLIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgapG05t2rSB3W7Hvn37Qh7ft28f2rdvb8pdWFiIwsJCrXOZHtLT0/HJJ59o2zxYySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGRI+qi4YRVHqjarr168f+vbti7lz5wKoa2F27twZEydOxL333mv6PWnJFYJIXmhUHUGkLim75EplZaW20jEA7NixA5s3b0arVq3QuXNnFBUVoaCgAHl5eejbty/mzJmDqqoqjB071tT78tyqIwiCIAgitUl4w2n9+vUYPHiw9nNRUREAoKCgAAsXLsTVV1+NAwcOYNq0aSgrK0OvXr3w0Ucf1eswbhSeW3U+nw8ff1z31+3QoUO5p4u3ikOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8s/fv358phmkadp1xCaMkVuabQT3aHTFms5IjmoSVX5MhiJYdMWazkiEeWlF1yJVHw3Kqz2WzIy8vTtnmwkkOmLLI4ZMpiJYceT42n4c+yLOWhY01eh0xZrOSQLYsZpOocngioczhBJC/BncODoc7hBGF9UnbJFYIgCF4yHHbk5bYMeSwvtyUyHPYEJSIIwurQn2QEQSQtiqLg7Qn9UeM9dpsuw2GHoigJTEUQhJVJ2StOxcXF6NGjB/r06aP7NTU1NTj77LNx9tlnm5ou3ioOmbLI4pApi5UcsTyKoiDTmab9i9VokqU8dKzJ65Api5UcsmUxRaN2RZcQGlUn1yiJZHfIlMVKDpmyyOKQKYuVHDJlsZIjHlloVF0S4HK5sHjxYm071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhOSk7K06ngkw/X4/Vq5cCQA455xzYLcbH/JsJYdMWWRxyJTFSg6ZssjikCmLlRwyZbGSIx5ZevbsyZXDNI3ao0pCqHO4XJ39kt0hUxYrOWTKIotDpixWcsiUxUqOeGShzuFJgKIo6NGjh7ad6g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdw6lzOEEQBEEkHdQ5nCAIgiAIQnJStuHEM3M4QRAEQRCpTco2nAoLC1FSUoJ169bpfk1NTQ2GDBmCIUOGmJou3ioOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwS4XC689tpr2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA42qo1F1BEEQBJF00Kg6giAIgiAIyaFbdQbw+/3YuHEjAOCMM87gni7eKg6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyydO3alSuHaRq1R5VEPPPMM6x79+6sW7du1Dlcos5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/BGprCwEIWFhdo9Uj0oioLc3FxtmwcrOWTKIotDpixWcsiURRaHTFms5JApi5UcsmUxA3UOp87hBEEQBJF0UOdwgiAIgiAIyaGGE0EQBEEQhE6o4WSA2tpajBgxAiNGjEBtbW3KO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZcQWnJFrlESye6QKYuVHDJlkcUhUxYrOWTKYiVHPLLQqLokwOl04oUXXtC2U90hUxZZHDJlsZJDpiyyOGTKYiWHTFms5JAtixloVB2NqiMIgiCIpING1REEQRAEQUhOyt6qKy4uRnFxMfx+v+7XBAIB/PDDDwCA7t27w2Yz3u60kkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8snTp14sphmkbtUSUh1Dlcrs5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/AkoU2bNuSIg8dKDlEecsTHYyWHKA854uMhR3w8orLwQp3DqXM4QRAEQSQd1DmcIAiCIAhCcqjhRBAEQRAEoRNqOBmgtrYW1113Ha677jpT08VbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKRq1K7qE0Kg6uUZJJLtDpixWcsiURRaHTFms5JApi5Uc8chCo+qSAKfTidmzZ2vbqe6QKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQw0qo5G1REEQRBE0kGj6giCIAiCICSHbtUZIBAI4LfffgMAdO7cmXu6eKs4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyJKVlcWVwzSN2qMqTvz3v/9l3bp1Y127dmUvvviioddS53C5Ovslu0OmLFZyyJRFFodMWazkkCmLlRzxyEKdwznx+XwoKirC8uXL0aJFC/Tu3RsjR45E69at4/J+mZmZ5IiDx0oOUR5yxMdjJYcoDzni4yFHfDyisvCS9J3Dv/76a8ycOROLFy8GAEyePBn9+vXDtddeq+v11DmcIAiCIJKPlO0cvmLFCgwfPhwdO3aEoihYsmRJvecUFxejS5cuSE9PR79+/bB27Vrtd6WlpejUqZP2c6dOnbBnz57GiE4QBEEQRIqR8IZTVVUVevbsieLi4oi/X7RoEYqKijB9+nRs3LgRPXv2xNChQ7F///5GTkoQBEEQRKqT8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz8fANCxY8eQK0x79uxBx44do76f2+1GRUVFyD+9uN1ujB8/HuPHj4fb7db9Oqs6ZMoii0OmLFZyyJRFFodMWazkkCmLlRyyZTFFo3ZFbwAAbPHixdrPbreb2e32kMcYY2z06NHs0ksvZYwx5vV6WdeuXdnu3bvZkSNHWLdu3djBgwejvsf06dO1HvnB/2hUHR+yZJHFIVMWKzlkyiKLQ6YsVnLIlMVKjnhkoVF1ETh48CD8fj+ys7NDHs/OzsaPP/4IAEhLS8OTTz6JwYMHIxAI4O677445om7KlCkoKirSfq6oqEBOTo6uPA6HAzNmzNC2ebCSQ6YssjhkymIlh0xZZHHIlMVKDpmyWMkhWxYzSDWqTlEULF68GCNGjABwrOP3119/jf79+2vPu/vuu/Hll1/im2++4X6v4uJiFBcXw+/346effqJRdQRBEASRRKTsqLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3TpTHoIgCIIgUgepG05OpxO9e/fGsmXLtMcCgQCWLVsWcgWqsWCM4cCBAzhw4AB4L9RZySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKcR0leLnyJEjbNOmTWzTpk0MAJs1axbbtGkT27lzJ2OMsTfffJO5XC62cOFCVlJSwm6++WaWlZXFysrKTL3vM888w7p37866detGncMl6uyX7A6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKdg5fv349Bg8erP2sdtwuKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhSgvL0dWVpauaQmqqqq07YqKCvj9fsPvayWHTFlkcciUxUoOmbLI4pApi5UcMmWxkiMeWY4cOQIAjX7lSarO4Ylg9+7dukfVEQRBEAQhF9u3b8ef/vSnRnu/lG84BQIBlJaWolmzZlAUJdFxUgp1Kohdu3bRiEYJoP0hF7Q/5IL2h3yUl5ejc+fO+OOPP5CVldVo75vwW3WJxmaz4bjjjkt0jJSmefPmdCKSCNofckH7Qy5of8iHzda449ykHlVHEARBEAQhE9RwIgiCIAiC0Ak1nIiE4XK5MH36dLhcrkRHIUD7QzZof8gF7Q/5SNQ+SfnO4QRBEARBEHqhK04EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EN8XFxejSpQvS09PRr18/rF27Nubz3377bZx88slIT0/Hqaeeig8++CDk94wxTJs2DR06dEBGRgby8/Px888/hzznoYcewllnnYXMzMxGnSk2GWjs/fHrr7/ixhtvxPHHH4+MjAyccMIJmD59OjweT1zKl2wk4vNx6aWXonPnzkhPT0eHDh1www03oLS0VHjZkpVE7BMVt9uNXr16QVEUbN68WVSRkppE7I8uXbpAUZSQf48++qix4I26pDBhGd58803mdDrZ/Pnz2ffff8/Gjx/PsrKy2L59+yI+f9WqVcxut7PHH3+clZSUsPvvv585HA72v//9T3vOo48+ylq0aMGWLFnCtmzZwi699FJ2/PHHs5qaGu0506ZNY7NmzWJFRUWsRYsW8S5m0pCI/fHhhx+yMWPGsI8//pht376dLV26lLVr14797W9/a5Qyy0yiPh+zZs1iq1evZr/++itbtWoV69+/P+vfv3/cy5sMJGqfqNx+++1s2LBhDADbtGlTvIqZNCRqf+Tm5rIHH3yQ7d27V/tXWVlpKDs1nAgu+vbtywoLC7Wf/X4/69ixI3vkkUciPv+qq65iF198cchj/fr1Y7fccgtjjLFAIMDat2/PZs6cqf3+8OHDzOVysTfeeKOeb8GCBdRwCiLR+0Pl8ccfZ8cff7yZolgCWfbH0qVLmaIozOPxmCmOJUjkPvnggw/YySefzL7//ntqOB0lUfsjNzeXzZ4921R2ulVHGMbj8WDDhg3Iz8/XHrPZbMjPz8fq1asjvmb16tUhzweAoUOHas/fsWMHysrKQp7TokUL9OvXL6qTqEOm/VFeXo5WrVqZKU7SI8v+OHToEF5//XWcddZZcDgcZouV1CRyn+zbtw/jx4/Hq6++iszMTJHFSloS/Rl59NFH0bp1a5x++umYOXMmfD6fofzUcCIMc/DgQfj9fmRnZ4c8np2djbKysoivKSsri/l89X8jTqIOWfbHtm3bMHfuXNxyyy1c5bAKid4f99xzD5o0aYLWrVvjt99+w9KlS02Vxwokap8wxjBmzBhMmDABeXl5QspiBRL5Gbn99tvx5ptvYvny5bjlllvw8MMP4+677zaUnxpOBEGYZs+ePbjwwgsxatQojB8/PtFxUpq77roLmzZtwieffAK73Y7Ro0eD0QIRCWHu3Lk4cuQIpkyZkugoxFGKioowaNAgnHbaaZgwYQKefPJJzJ07F263W7eDGk6EYdq0aQO73Y59+/aFPL5v3z60b98+4mvat28f8/nq/0acRB2J3h+lpaUYPHgwzjrrLLzwwgumymIFEr0/2rRpg27dumHIkCF488038cEHH2DNmjWmypTsJGqffP7551i9ejVcLhfS0tLQtWtXAEBeXh4KCgrMFyxJSfRnJJh+/frB5/Ph119/1Z2fGk6EYZxOJ3r37o1ly5ZpjwUCASxbtgz9+/eP+Jr+/fuHPB8APv30U+35xx9/PNq3bx/ynIqKCnzzzTdRnUQdidwfe/bswaBBg9C7d28sWLAANhudUmT6fAQCAQAw9Ne0FUnUPnn66aexZcsWbN68GZs3b9aGzy9atAgPPfSQ0DImEzJ9RjZv3gybzYZ27drpL4CpruVEyvLmm28yl8vFFi5cyEpKStjNN9/MsrKyWFlZGWOMsRtuuIHde++92vNXrVrF0tLS2BNPPMF++OEHNn369IhDSbOystjSpUvZt99+yy677LJ6Q0l37tzJNm3axP7xj3+wpk2bsk2bNrFNmzaxI0eONF7hJSQR+2P37t2sa9eu7Pzzz2e7d+8OGd6b6iRif6xZs4bNnTuXbdq0if36669s2bJl7KyzzmInnHACq62tbdwKkJBEnbOC2bFjB42qO0oi9sfXX3/NZs+ezTZv3sy2b9/OXnvtNda2bVs2evRoQ9mp4URwM3fuXNa5c2fmdDpZ37592Zo1a7TfDRw4kBUUFIQ8/6233mLdunVjTqeTnXLKKez9998P+X0gEGB///vfWXZ2NnO5XOz8889nW7duDXlOQUEBA1Dv3/Lly+NVzKShsffHggULIu4L+nusjsbeH99++y0bPHgwa9WqFXO5XKxLly5swoQJbPfu3XEtZzKRiHNWMNRwCqWx98eGDRtYv379WIsWLVh6ejrr3r07e/jhhw3/YaEwRr0GCYIgCIIg9EAdEgiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIEzi8XjQtWtXfP3110K9H330EXr16qWtOUcQROKhhhNBECGMGTMGiqLU+7dt27ZER5OWefPm4fjjj8dZZ52lPaYoCpYsWVLvuWPGjMGIESN0eS+88EI4HA68/vrrgpISBGEWajgRBFGPCy+8EHv37g35d/zxx9d7nsfjSUA6uWCM4ZlnnsGNN94YF/+YMWPw9NNPx8VNEIRxqOFEEEQ9XC4X2rdvH/LPbrdj0KBBmDhxIiZPnow2bdpg6NChAIDvvvsOw4YNQ9OmTZGdnY0bbrgBBw8e1HxVVVUYPXo0mjZtig4dOuDJJ5/EoEGDMHnyZO05ka7QZGVlYeHChdrPu3btwlVXXYWsrCy0atUKl112GX799Vft9+rVnCeeeAIdOnRA69atUVhYCK/Xqz3H7XbjnnvuQU5ODlwuF7p27Yp//vOfYIyha9eueOKJJ0IybN68OeYVtw0bNmD79u24+OKLDdYy8Ouvv0a8ujdo0CDtOcOHD8f69euxfft2w36CIMRDDSeCIAzx8ssvw+l0YtWqVZg3bx4OHz6M8847D6effjrWr1+Pjz76CPv27cNVV12lveauu+7Cl19+iaVLl+KTTz7BF198gY0bNxp6X6/Xi6FDh6JZs2ZYuXIlVq1ahaZNm+LCCy8MufK1fPlybN++HcuXL8fLL7+MhQsXhjS+Ro8ejTfeeANPP/00fvjhBzz//PNo2rQpFEXBuHHjsGDBgpD3XbBgAc4991x07do1Yq6VK1eiW7duaNasmaHyAEBOTk7IVb1NmzahdevWOPfcc7XndO7cGdnZ2Vi5cqVhP0EQcYARBEEEUVBQwOx2O2vSpIn278orr2SMMTZw4EB2+umnhzz///7v/9gFF1wQ8tiuXbsYALZ161Z25MgR5nQ62VtvvaX9/vfff2cZGRls0qRJ2mMA2OLFi0M8LVq0YAsWLGCMMfbqq6+yk046iQUCAe33brebZWRksI8//ljLnpuby3w+n/acUaNGsauvvpoxxtjWrVsZAPbpp59GLPuePXuY3W5n33zzDWOMMY/Hw9q0acMWLlwYtb4mTZrEzjvvvHqPA2Dp6ekh9dikSROWlpbGLrvssnrPr6mpYf369WOXXHIJ8/v9Ib87/fTT2QMPPBA1A0EQjUdaYpttBEHIyODBg/Hcc89pPzdp0kTb7t27d8hzt2zZguXLl6Np06b1PNu3b0dNTQ08Hg/69eunPd6qVSucdNJJhjJt2bIF27Ztq3dlp7a2NuQ21imnnAK73a793KFDB/zvf/8DUHfbzW63Y+DAgRHfo2PHjrj44osxf/589O3bF//973/hdrsxatSoqLlqamqQnp4e8XezZ89Gfn5+yGP33HMP/H5/veeOGzcOR44cwaeffgqbLfRmQEZGBqqrq6NmIAii8aCGE0EQ9WjSpEnUW1PBjSgAqKysxPDhw/HYY4/Ve26HDh10j8ZTFAWMsZDHgvsmVVZWonfv3hFHmLVt21bbdjgc9bzqcP6MjIwGc9x000244YYbMHv2bCxYsABXX301MjMzoz6/TZs2WsMsnPbt29erx2bNmuHw4cMhj82YMQMff/wx1q5dG/GW36FDh0LKSBBE4qCGE0EQpjjjjDPw73//G126dEFaWv1TygknnACHw4FvvvkGnTt3BgD88ccf+Omnn0Ku/LRt2xZ79+7Vfv75559DrrKcccYZWLRoEdq1a4fmzZtzZT311FMRCATw5Zdf1rsSpHLRRRehSZMmeO655/DRRx9hxYoVMZ2nn346nnvuOTDGoCiK4Uz//ve/8eCDD+LDDz/ECSecUO/36hW1008/3bCbIAjxUOdwgiBMUVhYiEOHDuHaa6/FunXrsH37dnz88ccYO3Ys/H4/mjZtihtvvBF33XUXPv/8c3z33XcYM2ZMvdtR5513Hp555hls2rQJ69evx4QJE0KuHl133XVo06YNLrvsMqxcuRI7duzAF198gdtvvx27d+/WlbVLly4oKCjAuHHjsGTJEs3x1ltvac+x2+0YM2YMpkyZghNPPBH9+/eP6Rw8eDAqKyvx/fffG6i1Or777juMHj0a99xzD0455RSUlZWhrKwMhw4d0p6zZs0auFyuBnMQBNE4UMOJIAhTdOzYEatWrYLf78cFF1yAU089FZMnT0ZWVpbWOJo5cybOOeccDB8+HPn5+RgwYEC9vlJPPvkkcnJycM455+Avf/kL7rzzzpBbZJmZmVixYgU6d+6Myy+/HN27d8eNN96I2tpaQ1egnnvuOVx55ZW49dZbcfLJJ2P8+PGoqqoKec6NN94Ij8eDsWPHNuhr3bo1Ro4cyTVJ5fr161FdXY0ZM2agQ4cO2r/LL79ce84bb7yB6667LubtQoIgGg+FhXcqIAiCaAQGDRqEXr16Yc6cOYmOUo+VK1fi/PPPx65du5Cdnd3g87/99lsMGTIE27dvj9hJnpeDBw/ipJNOwvr16yNOQEoQRONDV5wIgiCO4na7sXv3bjzwwAMYNWqUrkYTAJx22ml47LHHsGPHDqF5fv31Vzz77LPUaCIIiaDO4QRBEEd54403cOONN6JXr1545ZVXDL12zJgxwvPk5eUhLy9PuJcgCH7oVh1BEARBEIRO6FYdQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6+X/DiLPOFtt7bAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 5e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "42b87c7c", + "metadata": {}, + "source": [ + "Yes, we do see a nice QPO there, but how can we be sure about the low-frequency continuum when it's so polluted from the harmonics of the observing window?\n", + "\n", + "A proper treatment of gaps is not possible at these long timescales, but gaps can certainly be ignored at shorter time scales. As we've seen in the `AveragedPowerspectrum` tutorial, we can study the short-term variability with" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a71841b4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:00, 1671.53it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum(ev_tot, dt=0.01, segment_size=256, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "11aff354", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2e0lEQVR4nO3deXxU1fk/8M/sk8lCEgLZSAi7rImGgChKsFFERKEVrbUaELG2waVUq6hfqf1RbOuGfo1SV2xrFbUF+1WLC7Ioe8CAENkDJEA2ss++3N8f6VwzZDJL5s5MJvN5v168nLnnzLlPLpg8Offc88gEQRBAREREFMXk4Q6AiIiIKNyYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT1luAMIN4fDgbNnzyI+Ph4ymSzc4RAREZEPBEFAW1sbMjIyIJcHPr8T9QnR2bNnkZWVFe4wiIiIqAeqqqowaNCggMeJ+oQoPj4eQMcFTUhICHM0RERE5IvW1lZkZWWJP8cDFbUJUWlpKUpLS2G32wEACQkJTIgikMViwQsvvAAAuP/++6FWq0M2nre+ntqljpuIKFpJtdxFFu3FXVtbW9GvXz+0tLQwIYpAer0ecXFxAID29nbExsaGbDxvfT21Sx03EVG0kfrnd9TOEFHfoFQqUVxcLL4O5Xje+npqlzpuIiIKDGeIOENEREQUcaT++c19iIiIiCjqMSEiIiKiqMeEiCKaXq9HYmIiEhMTodfrQzqet76e2qWOm4iIAsPVnBTxWlpawjaet76e2qWOm4iIeo4JEUW0mJgYHDlyRHwdyvG89fXULnXcREQUGD5lxqfMiIiIIg6fMiMiIiKSWJ+4ZVZZWYk777wTtbW1UCgU2LFjB3f+jRJWqxWvvvoqAODuu++GSqUK2Xje+npqlzpuIiIKTJ+4ZTZt2jQsX74cV1xxBRobG5GQkODz7r+8ZRbZWLqDiCg6sXTHBQ4ePAiVSoUrrrgCAJCcnBzmiCiU7HY7rrnmGgiCgNOnT+Oiiy4KqNCfQqHATTfdJL4OpK+ndn/OQ0REwRf2GaItW7bg6aefxp49e3Du3DmsXbsWc+bMcelTWlqKp59+GjU1NcjNzcX//u//YtKkSQCAdevWYfXq1bDb7Thz5gxuuukmPProoz6fnzNEke3s2bPi01oAMHnyZD61RUQUBfrcomq9Xo/c3FyUlpa6bV+zZg2WLFmCZcuWYe/evcjNzcWMGTNQV1cHALDZbPj666/x8ssvY/v27fjiiy/wxRdfhPJLoDC6MJ/vA3eAiYgoDMKeEM2cORPLly/H3Llz3bY/99xzWLRoERYsWIAxY8Zg1apV0Ol0ePPNNwEAmZmZmDhxIrKysqDRaHDdddehvLy82/OZzWa0tra6/CEiIqLoFvaEyBOLxYI9e/agqKhIPCaXy1FUVITt27cDAAoKClBXV4empiY4HA5s2bIFo0eP7nbMp556Cv369RP/ZGVlBf3roOAxGo2YN28e5s2bB5PJFPB4BoMBmZmZyMzMhMFgCKivp3Z/zkNERMHXqxdVNzQ0wG63IzU11eV4amoqDh06BABQKpVYsWIFrrzySgiCgGuuuQbXX399t2MuXboUS5YsEd+3trYyKYpggiCgoaFBfC3FeGfPnvVpPG99PbX7cx4iIgq+Xp0Q+WrmzJmYOXOmT301Gg00Gk2QI6JQ0Wg0eO211wAAarU64PG0Wi2+/fZb8XUgfT21+3MeIiIKvl6dEKWkpEChUKC2ttbleG1tLdLS0gIau7S0FKWlpbDb7QGNQ+GlUCgwfPhwScfLy8uTpK+ndn/OQ0REwder1xCp1Wrk5+djw4YN4jGHw4ENGzZgypQpAY1dUlKCiooK7N69O9AwiYiIKMKFfYaovb0dx44dE99XVlaivLwcycnJyM7OxpIlS1BcXIyJEydi0qRJWLlyJfR6PRYsWBDGqKm3sFqtWL9+PQC4LL4PZLx33nkHAHDbbbd5Ld3hqa+ndn/OQ0REwRf2jRk3bdqE6dOndzleXFyM1atXAwBeeuklcWPGvLw8vPjii5g8eXJA5+18y+zIkSPcmDFCHT16FCNHjgQAfPrpp5g2bRp0Ol2Px2PpDiKiyNDnSncUFhZ6fcpm8eLFWLx4saTnLSkpQUlJiXhBKfIIggCz2Swmx1KUwFAoFLjuuut8Gs9bX0/t/pyHiIiCL+wzROHG0h2R6+TJkzh58qTLsUmTJgU0Q0RERJGhz5XuCJfS0lKMGTMGBQUF4Q6Fekiv14c7BCIi6iOiNiHiU2Z9x4gRI6BUhv3uLxERRbCoTYiobzCZTJg6dSpuvfVWyUp3jBgxAiNGjPCpdIenvp7a/TkPEREFH3+tpogmCIK4jkiq0h3ObSB8Kd3hqa+ndn/OQ0REwRe1CRF3qu4b1Go11q5di7Nnz0pWuuObb74RXwfS11O7P+chIqLg41NmfMosYh08eBD19fUYMWIEKisrYbPZ+JQZEVGU4FNmRERERBKL2ltm1DfY7XZ8/PHHqKurw2WXXRbweDabDWvXrgUAzJ071+PTa976emr35zxERBR8UXvLjKU7It/Bgwdx+vRpccdnlu4gIooefa50R7iwdEffIJfLcemll8JkMkEuD/wOsFwux7Rp08TXgfT11O7PeYiIKPiidobIiYuqIxcXVRMRRS8uqiYiIiKSGBMiIiIiinpMiCiimc1mXHPNNViwYAHMZnPA4xmNRuTl5SEvLw9GozGgvp7a/TkPEREFX9QuquZO1X2Dw+FARUWF+FqK8fbt2+fTeN76emr35zxERBR8UZsQ8SmzvkGtVuMf//gHampqJCvd8fnnn4uvA+nrqd2f8xARUfDxKTM+ZRax+JQZEVH04lNmRERERBKL2ltm1DfY7XZs2LABNTU1yM/PD3g8m82Gzz77DAAwY8YMr6U7PPX11O7PeYiIKPj4XZgimsViQXFxMYCO0h2BMpvNuP766wF0lNTwlKh46+up3Z/zEBFR8PG7MEU0uVyO3NxcmM1myUp3TJw4UXwdSF9P7f6ch4iIgi9qF1WzuGvk46JqIqLoxUXVEikpKUFFRQV2794d7lCIiIgozKI2ISIiIiJyYkJEEc1sNmPOnDn45S9/KVnpjssvvxyXX365T6U7PPX11O7PeYiIKPi4qJoimsPhQFlZmfhaivG2bdvm03je+npq9+c8REQUfEyIKKKp1Wq8/vrrqK2tlaR0h0ajwdq1a8XXgfT11O7PeYiIKPii9ikzJ5buiFx8yoyIKHrxKTMiIiIiifGWGUU0u92Obdu2oaamBmPGjAl4PJPJhPXr10On0+FHP/oRFAqFx3N//fXXAIArrriiS19P7d4+S0REocWEiCKaxWLBzTffDECa0h1lZWWYO3cugI6SGrGxsd32NZlMmD59erd9PbV7+ywREYVW1CZEnXeqpsglk8kwcuRIWCwWyGSygMfT6/UYPHiwOLa3cztnpdz19dTu7bNERBRaXFTNRdURKxiLqjdv3gzn/xKFhYUSRUpERFLjomoiIiIiiTEhIiIioqjHhIgimtlsxq233opf//rXkpTuMJvNePDBB/Hggw/6VLrj6quvxtVXX91t6Y7u2r19loiIQitqF1VT3+BwOMTH16Uq3bFnzx6fxnM4HPjyyy+77eup3dtniYgotJgQUURTq9V48cUXUV9fL0npDpVKhUcffRSAb6U7/v73v3fb11O7t88SEVFo8SkzPmUWsfiUGRFR9OJTZkREREQSY0JEEamtrQ319fWw2+0oLy/H999/L8kmm3a7HYcOHcKhQ4e8jme327F7927s3r3bbV9P7d4+S0REocU1RBSRvvvuOwAdpTuuv/56ANKU7rBYLPjlL38JALj99tu9lu6YNGkSgO5Ld3TX7u2zREQUWn0iIcrJyUFCQgLkcjmSkpKwcePGcIdEQWaz2QAAAwYMwODBg2E2myUpgSGTyZCamiq+9tbXU5kPT+3ePktERKHVJxIiANi2bRvi4uLCHQaF2Lhx43Dy5El88803YpIUCK1Wi/feew8AvC7O1ul0OHnyZI/avX2WiIhCi2uIiIiIKOqFPSHasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS7tMJsO0adNQUFCAd955J0SRExERUV8R9oRIr9cjNzcXpaWlbtvXrFmDJUuWYNmyZdi7dy9yc3MxY8YM1NXViX2++eYb7NmzB//+97+xYsUK7N+/P1ThU5iZTCbMmTMHS5cuhcViCXg8s9mMxx9/HI8//jhMJpNP554zZ47bvp7avX2WiIhCK+xriGbOnImZM2d22/7cc89h0aJFWLBgAQBg1apV+OSTT/Dmm2/ikUceAQBkZmYCANLT03Hddddh7969mDBhgtvxzGazS82r1tZWqb4UCgO73Y6PPvpIfB0oh8OBrVu3+jSet3N7apc6biIiCkzYEyJPLBYL9uzZg6VLl4rH5HI5ioqKsH37dgAdM0wOhwPx8fFob2/HV199hZtvvrnbMZ966ik8+eSTQY+dQkOtVuPVV1/F0aNHoVKpAh5PpVLhN7/5jTi2L+furq+ndm+fJSKi0OrVCVFDQwPsdrv4GLRTamoqDh06BACora3F3LlzAXT8pr1o0SIUFBR0O+bSpUuxZMkS8X1rayuysrKCED2FgkqlwqJFiyR7ykypVIr7GnlLsJzn7km7t88SEVFo9eqEyBdDhw7Fvn37fO6v0WhYTJOIiIhchH1RtScpKSlQKBSora11OV5bW4u0tLSAxi4tLcWYMWM8ziZR7+dwOHDw4EFUVlbC4XBIMl5lZaVP4znPffDgQbd9PbV7+ywREYVWr06I1Go18vPzsWHDBvGYw+HAhg0bMGXKlIDGLikpQUVFBXbv3h1omBRCZ8+exebNm8Ukwmg0Yty4cbjjjjtcFsv3lNlsxp133ok777wTRqPRY1/nuceNG+e2r6d2b58lIqLQCvsts/b2dhw7dkx8X1lZifLyciQnJyM7OxtLlixBcXExJk6ciEmTJmHlypXQ6/XiU2cUXRobGyEIAgAgJiYGarUaKSkpsFqtkp2jX79+PvUTBAHJyckAOh4AcFePLCUlpdvPe2ojIqLQCntCVFZWhunTp4vvnQuei4uLsXr1atxyyy2or6/HE088gZqaGuTl5WH9+vVdFlr7q7S0FKWlpXzkOUINGzYMgwYNgkwmQ319vWSLqmNiYsTNQb0VXHU4HPjnP/8JAGhpaUFSUpJLe2xsLOrr691+1lMbERGFXtgTosLCQvE3/u4sXrwYixcvlvS8JSUlKCkpQWtrq88zAtR7KBSKsBdF7bz2h4k1EVFk69VriIiIiIhCIewzROHCW2Z9g8lkwsKFC1FfX48HH3ww4PHMZjP+/Oc/AwAuvfRSaLVaj+devnw5AODFF1/sNjYAeOONN1zG8tRGREShJxO83a/q45y3zFpaWpCQkBDucMiLAwcOoKGhASNHjkRGRgb0ej3i4uIAAJ9++in69euHrKysHm+2uX79erGUTHt7u8d1RGfOnMGgQYMAAPv378f48eNd2jvHduFYntqIiMg7qX9+R+0MEfUNarUazz//PKqrq6FSqWCxWHDu3LkeJ0QqlQolJSXi2N7O7ezrbldrZ2zuxvLURkREoceEiCKaSqXCAw88AIfDgZqaGhw5ciSg8ZRKJW666SZxbG/n9tTXGZunuImIqHeI2kXV3Km6b5HL5dDpdOEOg4iIIlTUzhDxsfu+weFw4PTp0wAgyT1kh8MhlopxOByQy7v/ncE5KwUAmZmZHmPLzs52GctTGxERhV7UJkTUNxiNRgwZMgQAUF1d3eNxWltbceLECZhMJtx6660AgNmzZ3tc7Gw0GsW++/fv9xjbhQunPbUREVHoMSGiiCfFrbJz586hubkZAPx6BN5bX0+x8RYfEVHvEbUJEfch6htiY2Oh1+sBQExoeqJzfbT//Oc/4tjezu3s6y65cZbnOH/+fJddtTvHTURE4Re1CxdY7Z5C4bvvvsPx48dx8ODBcIdCREQeRG1CROSOc6ZHqjppRqMRADgbRETUy0XtLTPqG8xms1j411lGIxCxsbH4/e9/D6CjdIdGo/F47meeeQYAxHIf3bXfd9993cb90ksveTwPEREFH0t39ILSHTabDeXl5TCZTD36vFKpxNixYxEfHy9xZL2Pp9Id1dXVOHr0KHQ6HSZNmuTXuIcOHUJNTQ2SkpKQl5cHQNrSHZ9++qlYEuTCNj5lRkTkP5bu6IPa29vR3t7e48/bbDY0NjZGRUJ0IZVKJc4MedtZ2hdKpVIsutrdeBaLBYcOHUJtba3YV6ns+r+SSqXqtl3quImIKDBRmxD1xqfMtFotJkyY4NdnKisrUV9fH6SIej+1Wo3HHnsMQGBPmXUe7+c//zlkMlm3NcYaGxvR2NgIlUqFn//85+LnuhvLW9xERBR+UZsQ9cadqntSfsLdzAQFV5TfZSYi6pP405QimiAIaGhoACBNcigIApqbmyGTySAIgsenzQRBQEtLCwCIa4ncjQWgS9LdOe6UlBTJnmojIqKeYUJEEc1gMGDgwIEAAivd4WQ0GjF37lwA3hc7m0wmsa+70h0Gg0Fs//TTT7uNm4uqiYjCj/sQERERUdTjDBFFtNjYWHFNjxSLqnU6HTZu3AiZTOZ11iYmJgYbN24UP+cuNme7uzauRSIi6j04Q0RERERRL2oTotLSUowZMwYFBQXhDoWIiIjCLGoTIhZ37RvMZjMeeOABPPDAAzCbzQGPZ7FY8NJLL+F///d/vY7n7PvSSy+57Ws2m8V2i8XiNW5BEHD48GEcPHgQVqs14K+FiIh8F7UJEfUNNpsNL7zwAl544QXYbDZJxvvnP/+Jf/7zn17Hs9vtYt8LN/h0OBw4f/58t+3u4tbr9Th37hzq6+vR1NQU8NdCRES+46JqimgqlQqPPvqo+DpQSqUSt912G2QymdfxnH2drzs7fPgwqquru213F3fnRdZccE1EFFpMiCiiqdVq/OEPfwAgXemOu+66y2PpDieVSoW77rpL/FxnLS0tLu2e4iYiovDjLTMiIiKKepwhoogmCAIMBoP4WorxjEajz6U7TCZTt+fu3K7VaruNW6fTsXQHEVGYMSGiiGYwGBAXFwdAutId1113HQDfSnc4+7or3dG53V3pDmfcLN1BRBR+vGVGREREUY8zRBTRdDod2tvbAUDc68dgMMBkMnW5TeWLmJgYfPrpp5DJZG7LcXSm1WrFmZ+YmBiP7RfG0jlub+chIqLgi9oZIu5U3Tc4a47Fxsa6rMPZuXNnjzY3lMlkiImJQUxMTLfretra2nzq66m9u7iJiCg8ojYh4k7VfU9CQgJSUlIAdCxavnB3aCk4HA6cPXtW8nGJiCi8ojYhor7BYrHgsccew2OPPQabzYZx48YFtEGjxWLB66+/jtdff91tQuVwOMTXVqvVY9/O7RfOVnWOOxiJGxER+YcJEUU0q9WKFStWYMWKFZLU/7LZbHjnnXfw97//3et4zr7vvPOO2zIfntqljpuIiALDRdUU0ZRKJe6//37xtb8sFgvq6+tRU1MjjvGTn/zEp/EUCoXYV6FQ+NUeaNxERCQtfiemiKbRaLBy5coef/7UqVM4c+aM+F6tVmPx4sWQyWTQaDQeP+vs64zDU7vUcRMRkbR4y4yiGm9XERERwISIqMcGDhwY7hCIiEgivGVGEU2v10taAsNgMGD69Ok+jZeVlYWxY8cCcF+6o3MZkAtLd0gdNxERBYYzRERERBT1OENEvVJjYyMOHjwIu92OmJgY5Ofnu30aS6fToa6uTnwdqJiYGKxdu9an0h06nQ47d+7E2bNnuy3dsXbtWvF1MOMmIqLAMCGiXqmxsRF2ux1Ax60ng8GAhISELv1kMhkGDBgg2XllMhkSExMhk8m8ltSQyWTo378/DAZDt6U7EhMTu/2slHETEVFg+swtM4PBgMGDB+PBBx8MdyhE3bJYLCgrK8OePXvcbuZIRETh0WdmiP7whz/g0ksvDXcYFGIWiwVPP/00AOChhx6CWq0OeLy///3vAIApU6Z4HM9iseDll19GS0sLfvOb33Rpt1qtWLNmDQDglltuAQA0Nzejvb0dVqsVy5Ytg06nkyRuIiIKTJ+YITp69CgOHTqEmTNnhjsUCjGr1YrHH38cjz/+uGSlO9544w288cYbXsezWq147rnn8MYbb3RbusM51oXtNpsNK1askCxuIiIKTNgToi1btmD27NnIyMiATCbDunXruvQpLS1FTk4OtFotJk+ejF27drm0P/jgg3jqqadCFDH1JkqlEnfddRfuuusuSUpgKJVKzJo1C7NmzfI6nlKpxM0334xZs2Z1W7rDOdaF7QqFArfffrvfcVssFjQ1NbkUmSUiosCF/ZaZXq9Hbm4u7rzzTvz4xz/u0r5mzRosWbIEq1atwuTJk7Fy5UrMmDEDhw8fxsCBA/HRRx9h5MiRGDlyJLZt2+b1fGazGWazWXzf2toq6ddDoaXRaPDaa69JNp5arcaDDz7oU+kOjUaDFStWoKqqqtvSHd2taVOr1Vi5ciWSk5P9iq+8vBwGgwFZWVkYNmyYX58lIqLuhT0hmjlzpsdbXc899xwWLVqEBQsWAABWrVqFTz75BG+++SYeeeQR7NixA++99x4++OADcW1GQkICnnjiCbfjPfXUU3jyySeD8rUQ+ePw4cNISkrCiBEj3M4wuWMwGAAALS0twQyNiCjqhP2WmScWiwV79uxBUVGReEwul6OoqAjbt28H0JHgVFVV4eTJk3jmmWewaNGibpMhAFi6dClaWlrEP1VVVUH/OojcMZvNqKmpQXNzc7hDISKKemGfIfKkoaEBdrsdqampLsdTU1Nx6NChHo2p0Wi83gqhyKHX68WaYnV1dZKU7nDOWDY0NHgcT6/XY/z48RAEocu6NqBj/yTnbeB//etf3bZ9//336N+/f0BxExFRYHp1QuSv+fPn+9y3tLQUpaWl4uZ/FLmct5GkYjKZfO5rNBp7PJY/5yEiouDyKyFyOBzYvHkzvv76a5w6dQoGgwEDBgzAxRdfjKKiImRlZUkaXEpKChQKBWpra12O19bWIi0tLaCxS0pKUFJSgtbWVvTr1y+gsSh8YmJiUFlZKb4OlFarxbvvvuvTeDExMdi0aRPOnTvXpTQH0DEb6RzrwlnJzm1SxE1ERIHxaQ2R0WjE8uXLkZWVheuuuw7/+c9/0NzcDIVCgWPHjmHZsmUYMmQIrrvuOuzYsUOy4NRqNfLz87FhwwbxmMPhwIYNGzBlyhTJzkORSy6XIycnBzk5OZDLA18SJ5fLkZaWhvT0dK/jyeVyDBo0CGlpaW77Osdy1+6pjYiIQs+nGaKRI0diypQpeO2113D11VdDpVJ16XPq1Cn84x//wE9/+lM89thjWLRokU8BtLe349ixY+L7yspKlJeXIzk5GdnZ2ViyZAmKi4sxceJETJo0CStXroRerxefOuupYN8yM5lMPu8V03kbgGgnCALq6+vR3t4e7lCIiCiK+JQQff755xg9erTHPoMHD8bSpUvx4IMP4vTp0z4HUFZWhunTp4vvlyxZAgAoLi7G6tWrccstt6C+vh5PPPEEampqkJeXh/Xr13dZaO2vYN8y27dvn9f1JdRVc3MzKioquhy32WxuE0yr1YrS0lIAHX+n7pJ1f1itVnz44YcAgMsuu8zjeFarFW+99Raam5uxePFitzE7NxqdM2dOt20jR44MKGYiIgqcTwmRt2SoM5VK5deGcYWFhRAEwWOfxYsXu/2B05spFAqf95YBOqqfB5rk9QXOMhYqlQopKSmoqamBIAjYv38/1Go1dDqdS3+LxYJf//rXAIBFixZJkhA5E6w//elPHsezWCz4wx/+AAD4xS9+4XGsWbNmddvGgsREROHn91NmOTk5uPPOOzF//nxkZ2cHI6aQCPYts4kTJwZl3GgRGxuLUaNGQaFQoLq6GkBHAiKTyVz6KRQK/OxnPxNfB0qhUOBHP/oRZDKZ1/EUCgVuuOEG6PX6bkt3/OhHP3Ibm6c2IiIKPb8TogceeACrV6/G73//e0yfPh0LFy7E3LlzI25vHz5lFhmGDx+OYcOGYceOHW7XWmm1WrzzzjuSnU+j0eDxxx+HTCZz++TYhed+7rnnPJbuePzxx91+tnObt/MQEVHw+f14ywMPPIDy8nLs2rULo0ePxr333ov09HQsXrwYe/fuDUaMFOUunBUiIiKSWo83ZrzkkktwySWX4Nlnn8XLL7+Mhx9+GK+88grGjx+P++67DwsWLOAPsl6koqIC9fX13bZrNBpcfPHFETfT1xsJgsBNF4mIIkyPEyKr1Yq1a9firbfewhdffIFLL70UCxcuRHV1NR599FF8+eWX+Mc//iFlrJKKtp2q6+vrPS5eN5lMaGtri7iESK/XIycnBwBw8uRJl1IbR48exdixY/1aaG0wGMQnws6cOeO1dEdBQQEcDge+/vpr8XhDQwOAjv27br31VgAQN2F06txWXl6OAQMG+BwjERFJz++EaO/evXjrrbfw7rvvQi6X44477sDzzz+Piy66SOwzd+5cFBQUSBqo1KJ1DVF+fj7UarXLsQMHDqCtrS1MEQXOmYA4qVQqWK1WNDc3o66uDpmZmX6N508l+aampi7HLBaLT2OxYj0RUe/hd0JUUFCAq6++Gq+88grmzJnj9rfvIUOG4Kc//akkAZK0VCpVl1mgSL61GRMTgwMHDoivAWDs2LHYvXs3APi8OaaTVqvFm2++CZlM5lPpjk8//RQ1NTXdlu548803xdfdtbF0BxFR+PmdEJ04cQKDBw/22Cc2NhZvvfVWj4Mi8pVcLsfYsWNdjsXGxiI1NbVLDTxfxxsyZAhkMplPpTtGjhyJmJiYbkt3DBkyxON5nK+JiCi8/E6InMmQxWJBXV1dl9/AI3lvokhms9m4MzYREVEP+Z0QHTlyBAsXLsS2bdtcjguCAJlMFjGLlPvaouqqqipUVVWFO4yQs1qtWL16NQBg/vz5kuxU/fHHH0Mmk/lUuuO9995DU1MT7rrrri7tNpsN69evBwBce+213baxdAcRUfj5nRAtWLAASqUSH3/8MdLT0yN2/UlfWVTdv39/NDQ0+LRWJiEhIeKeIvPGYrHg7rvvBgD87Gc/kyQhevbZZwEAv/vd77yW7nBurlhcXOxxLOeu1O7aIq0sDRFRX+R3QlReXo49e/a4PFVG4ZOSkoKUlJRwhyGJtrY2tLa2euxz4W7VCoUCN954o/g6UAqFApdffrlP4ykUChQVFcFoNOLcuXMYOXKkS8LpaSx/zkNERMHnd0I0ZsyYLo85EwXKYDBgz5494vsLZx51Op1LMuQs8qrVasWq8e7U1dVh4MCBPs+MaTQaLF++3OfSHX/7299w6NAhAB2P0Q8cOFBsV6vVWL58udvPdm5j6Q4iovDzKSHq/Fv7n/70J/z2t7/FihUrMH78+C63FBISEqSNkKKCc+8euVyOhIQEZGVlubSPHz8eer0eQMfWAd6SCGdC1dbWhu+++y5oxXbT0tJw6tQpLmgnIopwPiVEiYmJLr+xC4LQZU0EF1X3PYIguF2bFMxbPFqtFnl5eV2Oy+VyxMfH+zxORkYGmpqaYDabXTZKDAaNRuM2Ierfvz+USiVqa2vFGa1QsFgsaGpqEs9PRETe+fTdcuPGjcGOI+T6yqLqYBEEAfv27UNzc3OXtszMTIwYMcKv8Zqbm1FTU+NyLCkpCampqYGECYPBgDFjxgDoqNfmTDwSEhIwfvx4lJWV+TWe0WgUNxU9ceKEx0TGYDBg3LhxsFgs4iaLnZnNZsyaNQsWiwXvv/++S5vJZML8+fMBADt37vQrRm8OHDiA1tZWDBgwQNyjyeFwQBAErlciIuqGTwnRtGnTgh0H9TKCILhNhgCgsbHR7/GOHz/epTxIXV1dwAmRIAg4deqU+DpQgiCIGzp6G8/buQVBELdCuLC983kcDgf27NkjWfkU5y3u8+fPi+Pv2rULVqsV+fn5IZ2tIiKKFD2eTzcYDDh9+nSX2xETJkwIOCjqXaZMmQKlUomWlhbs37+/R2M4b72lp6dDrVbj1KlTYiIgk8n8uh3WmVarxa5du8TXgdJoNHjllVd8XlS9a9cuHDlypEt9OOdYGzZscNuuVqvxyiuviO+DWUvOYrHAZDIBANrb25kQERG54XdCVF9fjwULFuA///mP23auyel7FAoFFAqF2xIT586dQ3t7u0vfQYMGuU0QAGDgwIHo168fqqurYbfbxUTA2+P2nmKTspCwQqHARRddBJlM5tNj9wUFBVCpVG5n0xQKBS655BLI5XK3j907t66Q4jaW3W5HY2MjH2ogIuohvxOiBx54AM3Nzdi5cycKCwuxdu1a1NbWYvny5eJGcxQdzGYzDh8+3OW4XC5HRkYGvv/+e3EGsfOiY7lcjoKCAuj1erS2toq3nXqDSJo9MZvNOHHiBBISEmA0GlFdXc1CsUREPeR3QvTVV1/ho48+wsSJEyGXyzF48GBcffXVSEhIwFNPPYVZs2YFI04KAaPRKM7Y+LLztbOPTCZDdnY2mpqa0NraCofDgaamJjQ1NXX5jPM2lFarleQWl81mw5o1awAAt9xyS4+fqsrIyEB2djbsdju++OILyGQyXH755V3G63xdbDYbPvjgA5w6dQqTJ092G9v777+PU6dOdfn/wm6346uvvgIALFy4sEcxnzt3DrW1taitrRVvOfLxfyKinvH7p4derxc3n0tKSkJ9fT1GjhyJ8ePHY+/evZIHGCx87L6r48eP9+hzzsrtdrtdvPXlXEQcHx+PoUOHAuhYUyP1DIbZbMbPf/5zAMCcOXN6nBDpdDpotVo0NjZixYoVAIClS5d2Ge/o0aNuz/3pp592GdNiseAXv/gFAGDq1KkuyZTFYhHPc/vtt/co5s7/dqVYUE5EFM38/ukxatQoHD58GDk5OcjNzcVf/vIX5OTkYNWqVUhPTw9GjEHBx+5/kJ6eDovF4vaHalJSUkB72ahUKiQlJQUSnkdyuRxFRUXiaynGy8/P73Y8q9UKoCOBUiqVKCoqQltbm9u+crkchYWFYnt9fb24n5e38xARUWj5/ZPu/vvvx7lz5wAAy5Ytw7XXXot33nkHarVarDpOkSU9PT2iktnOYmJi8MUXX0g63jPPPAOZTOZxNisnJ0c8d3l5udtF1VqtFl999RU2b94MoCOZci4212g0eOaZZ8R+REQUXn4nRM5bBACQn5+PU6dO4dChQ8jOzu4zRUapb7FYLDhy5AhGjhwZ8nPLZDIMHDgQdXV1IT83ERH5rsdz9RaLBYcPH4ZarcYll1zCZIh65MLZESnXGHUu6Hr27FnYbDbJxiYior7F74TIYDBg4cKF0Ol0GDt2LE6fPg0AuPfee/HHP/5R8gCp9zGbzfj2229x8ODBgMeKjY3FpEmTkJubi7y8PLEMh68MBgPGjh2LsWPHwmAwuLSpVCpceumlfo83f/58zJ8/v8t43Z37Jz/5ibjxYWdGoxFjx47FDTfc0KXdWbpj/vz5fDKMiKgX8DshWrp0Kfbt24dNmza5/HZfVFQkPv5MfZNzxsXhcKClpUXckLHzTExP6HQ6JCUlITEx0e9NCgVBQEVFBSoqKtwuCu9ug0hP4506dQonT570qXRHRUUFTpw40W3pjoqKChw/ftxt6Y5Tp07h1KlTfEKMiKgX8HsN0bp167BmzRpceuml4hMzADB27NgeP7ZNkSEmJgYTJ07sMqNx4VN6DocjZNsZaLVasfiwFIuTtVotnn/+eZ/Gc5772LFj3Zbu2LhxI06ePOm2dIfzPIEmlEREFLgele5w7kPUmV6vd0mQqG+Ki4tDXFycxz7V1dUhiqaj7EVhYaGk4+Xl5flcuqOwsBCJiYndlu4oLCxERUVFl0XVzvM4XxMRUXj5fcts4sSJ+OSTT8T3ziTo9ddfx5QpU6SLjCJOUlKSy546MpkMycnJYYyoK5vNhoaGhqAWUw3m2FKxWCzQ6/XhDoOIqNfwe4ZoxYoVmDlzJioqKmCz2fDCCy+goqIC27ZtE/dbiQTcqVp6/fv3xxVXXCGuiZHJZEGfNbTZbPj4448BANdff73XTSS///57nD9/HgDcFoW12Wz45ptvAMBt6Q53566srMSECRMAdKwNqqmpAdCxk/S6detQVVXVZbG43W7H9u3bAQDZ2dm+fKmScTgc2LVrF2w2G3Jzc4O6cSYRUaTwOyGaOnUqysvL8cc//hHjx4/H559/jksuuQTbt2/H+PHjgxFjUHCn6uAIRRLUmdlsxty5cwEA7e3tXhMis9ns9nXnY//zP/8DAPj1r3/tcbzO53ZXuqN///7Izc11226xWMTz3HTTTR5jlprD4RC3IDAajUyIiIjQg4QIAIYNG4bXXnvN5VhdXR1WrFiBRx99VJLAiHwhl8tx2WWXia+lGG/s2LEAvNcHc55br9e7PXd8fDwuu+wyGAwGsf3YsWNdzsPSHURE4dfzIlUXOHfuHP7nf/6HCRGFVExMDLZu3SrpeC+99BKAjuTFufDZ07m7K93hbO+8qNq5gFqj0YjnYekOIqLw46+mRJ2o1WrExsYCgNvNFkOlqqoqbOcmIopGTIiIOpHJZGGpeXYhLvYnIgotJkQU0YxGIwoKClBQUCBJCQyj0Yjp06fjnnvu8TpD5Dz3bbfd5naBtrP95ptv7tJuNptxzz33+HQeIiIKPp/XEC1ZssRje319fcDBEPnL4XCgrKxMfC3FeN9++y0A74uqvZ3bU7vD4cDhw4cli1sKNpsNjY2NSExM9LvkCRFRpPM5IXL+kPDkyiuvDCgYIn9pNBpxHyIpSmBoNBqsWbMGx48fh0ql8uncJ06c6LZ0x8cff4zTp0+7Ld2xYsUK8XWgnHXlAnH06FHU1tYiMTHR42JyIqK+yOeEyFkviqg3USqVmDVrVo8+a7FYupTUUCqVmDFjBr799luvexo5z93dU2bO9u5Kdzh3dvd2nlBxxujuayEi6ut6x3diohBw7kDt1LkYMfcCIiKKbj79FPjjH/8Ig8Hg04A7d+50qXVGFEx2ux1ffPEFvvjiC7+fzLJarQA6kqEBAwaI423cuBFlZWVex3Oee8eOHW77Otu3bdvWpd1ut6OsrMyn8xARUfD5NENUUVGBwYMHY968eZg9ezYmTpwo/gCx2WyoqKjAN998g7///e84e/Ys/vrXvwY16M6am5tRVFQEm80Gm82G+++/H4sWLQrZ+Sm8TCYTrrnmGgAd62icewg5yeVyDB48GHV1dd0+hTZq1ChxvZDJZBLLcXz11Vc+n9td6Q5P7RaLBQ899BCAjhpsREQUXj4lRH/961+xb98+vPTSS/jZz36G1tZWKBQKaDQacebo4osvxl133YX58+eHdOfd+Ph4bNmyBTqdDnq9HuPGjcOPf/xj9O/fP2QxUPjI5XKxXlh3t72GDBmC7OxsfP311z6NN27cOBiNRq812ZznNhqNbs/tbDeZTF3a5XI5hg0b5jFuIiIKHZ/XEOXm5uK1117DX/7yF+zfvx+nTp2C0WhESkoK8vLykJKSEsw4u6VQKKDT6QB07O0iCILXx6Wp74iJiUF5ebmk433zzTf49ttvvSb2znN7Kt1RXl7udlG1RqPB66+/DoClO4iIegO/fzWVy+XIy8vDjTfeiJ/+9KcoKioKKBnasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS3tzczNyc3MxaNAgPPTQQ2FLzoiIiCgyhX2uXq/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDJffuBMTE7Fv3z5UVlbiH//4B2pra7s9n9lsRmtrq8sfIiIiim5hT4hmzpyJ5cuXiwtZL/Tcc89h0aJFWLBgAcaMGYNVq1ZBp9PhzTff7NI3NTUVubm5HteKPPXUU+jXr5/4JysrS7KvhULPaDSisLAQhYWFkpXumDVrFh544AGfSncUFhbirrvu6rZ0R2FhIebPnw+z2QyDwSDGaDab8cADD+CBBx4Qj8lkMowbNy7gr4GIiPzXq/chslgs2LNnD5YuXSoek8vlKCoqwvbt2wEAtbW10Ol0iI+PR0tLC7Zs2YJf/vKX3Y65dOlSlzIkra2tTIoimMPhwObNm8XXUoy3detWAL6V7vB07gvbW1paXNr27dsHAKisrIRWq4VMJus1mzQSEUWbXv3dt6GhAXa7HampqS7HU1NTcejQIQDAqVOncPfdd4uLqe+9916MHz++2zE1Go0kJR6od9BoNHj//ffF11KMt3r1alRWVvpUuuP999/HyZMnuy3d8f7776O6utqlPTk5GfX19Vi2bBkAiOfh4moiovDxKyGyWq3ikzO9ZWp/0qRJPXrKqLS0FKWlpdwUL8IplUrMmzdP0vHmzJnjc+mOefPmeSzdMW/evC5PmcnlcigUChQWFrr09zZTqdfrff46AtXc3IzDhw8jNTUVOTk5ITsvEVG4+LWGSKVSITs7O2RJREpKChQKRZdF0rW1tUhLSwto7JKSElRUVGD37t0BjUMUKp0fAAj2bNLp06dhNBpx8uTJoJ6HiKi38HtR9WOPPYZHH30UjY2NwYjHhVqtRn5+PjZs2CAeczgc2LBhg1gYk6Kb3W7H1q1bsXXrVkkSdbvdjh07duC7777zqXTH1q1bUV5e3m3pjq1bt2Lv3r1uS3d89913Pp3HnWBv5siZUyKKNn6vIXrppZdw7NgxZGRkYPDgwV1KJezdu9ev8drb23Hs2DHxfWVlJcrLy5GcnIzs7GwsWbIExcXFmDhxIiZNmoSVK1dCr9djwYIF/obugrfM+gaTyYSpU6cCcF+6w0mhUGDEiBFobm5GfX29x/GuvfZaAL6V7nCeu7vSHd21WywW3HfffWJbTEyMS7vRaITNZuv2tl1NTY3H2IiIyD9+J0Rz5syRNICysjJMnz5dfO98Aqy4uBirV6/GLbfcgvr6ejzxxBOoqalBXl4e1q9f32Whtb9KSkpQUlKC1tZW9OvXL6CxKHxkMhmGDx8uvvYkMzMTmZmZMJlM2LFjR7fjDR06FGaz2et4znN319fZbrFYurTLZDJkZmZ2ibvzwvCmpiaxZmBPSPHUHRFRtPA7IXI+GSOVwsJCr483L168GIsXL5b0vNQ36HQ6HD161K/PaLVa6HQ6sQ7fhePt3bvXp9IdznN3t6ja2e5cVN3537lWq8Xf//73Lp+JiYmBUqmEzWaDxWLx6+tyx2q1urzX6/VITk4OeFwior6mRwsRmpub8frrr2Pp0qXiWqK9e/fizJkzkgYXTKWlpRgzZgwKCgrCHQr1cc5EyF0C5o7z9tnRo0dx/PjxgM594SxR572QiIjoB34nRPv378fIkSPxpz/9Cc8884z4m/G//vUvlw0Uezs+ZUahkpCQ4Ff/trY28fWFRWEDpVAoJB2PiKiv8DshWrJkCebPn4+jR4+63FK47rrrsGXLFkmDI/LGZDJh1qxZmDVrltdSG76Od/PNN+ORRx5xW47D3bnvvfdet7e3nO2/+MUvurRbLBY88sgjeOSRRzzeGuNmjUREoeH3GqLdu3fjL3/5S5fjmZmZfPKFQs5ut4tPcEn12P3nn38OwPuiZG/n7tx+7733dmnbuXOnZHETEVFg/E6INBqN2wrxR44cCeiJmFDjY/d9g1qtxltvvSW+lmK80tJSnD592mvpDue5nX1Pnjzp8v+As91ut3cZS6VS4eGHHxZfExFRePmdEN1www34/e9/L9aPkslkOH36NB5++GH85Cc/kTzAYOFj932DSqXC/PnzJR3vtttu86l0h/PcBw4cQENDAwwGg8uTZM52q9UqFox1UiqV4n5Hwcakn4jIO7/XED377LNob2/HwIEDYTQaMW3aNAwfPhzx8fH4wx/+EIwYicJKEAQcOnQIe/bscft4/YgRI4J27paWFjQ1NfX482VlZXxwgIjIB37PEPXr1w9ffPEFvvnmG+zfvx/t7e245JJLUFRUFIz4iDxylsAAgPHjxwf8FJXdbsf+/ftx7NgxjB49GkDHrtHu1sc5z221WmG327uc22634+DBg27b7XY7KisrAQBDhgzxGPexY8d6vD3EhfsQuWM2m3HixAmv+4EREfVlfidEJpMJWq0WU6dOFcsSEIWLyWTCxRdfDMBz6Q5/xrvyyisB/FC6o7tEofO53ZXf8NRusViwaNGibj/bmRQbNHpy9uzZLgWUiYiijd8JUWJiIiZNmoRp06Zh+vTpmDJlisdv5r0VF1X3DTKZDBkZGeJrKcZLT0+H1Wr1qXSHp3N7apfJZEhJSelR3Gq1Gmq1Gu3t7X59rjs2m02ScYiIIpnfCdGXX36JLVu2YNOmTXj++edhs9kwceJETJs2DYWFhbj66quDEafkuKi6b9DpdJLukK7T6fD999/7XLrjzJkzbhdNe2vXarX44IMPehRjfHw8b28REUnM70XVU6dOxaOPPorPP/8czc3N2LhxI4YPH44///nPIXtqhiiS9ZVkxuFwcIaViPoMv2eIgI49hzZt2iT+MZvNuP7661FYWChxeER9T1ZWFs6fPx/uMALicDiwa9cuWCwWFBQURORtcyKizvxOiDIzM2E0GlFYWIjCwkI8/PDDmDBhgiTrN4j8ZTKZcPvttwMA/va3vwVc6sJkMqG4uBjNzc148sknfTq3w+HAL37xiy4bQ5pMJvzsZz/r0q7RaGCxWLBixQoAwKOPPirJppKhZLVaxVIper2eCRERRTy/b5kNGDAABoMBNTU1qKmpQW1tLYxGYzBiCypWu+8b7HY7PvzwQ3z44YeSle746KOPsHnzZp9Kd3z44Yf417/+1W3pju7a7XY7Nm/ejM2bN4f1ttPZs2dx7tw5j30EQYDZbO4zt/qIiNzxe4aovLwczc3N2LJlCzZv3oxHH30UFRUVyMvLw/Tp0yNmc0Yuqu4b1Go1XnrpJfG1FOM9/fTTqKqq8ql0x0svveS2NIe3dpVKhfvuu098HS6+PKl25MgRMWm66KKLkJaWFuywiIhCrkdriBITE3HDDTfg8ssvx2WXXYaPPvoI7777Lnbu3BkxCRH1DSqVCiUlJZKOt2jRIp9Ld5SUlHT7lJmn9tTUVMydO9ev2KR6zN5fnWeQDh06hDNnzkCn04UlFiKiYPH7ltm//vUv3HfffZgwYQJSU1Pxy1/+Eu3t7Xj22Wexd+/eYMRIFBYmk8mnnZ4783VPn7Fjx/q17s5kMonbC+j1er9iklpbWxs3ciSiPsfvGaJ77rkHV155Je6++25MmzYN48ePD0ZcRD5xOBw4fvw4AGDYsGGQy/3O8buMd+LECVRXVyMjIwNbt27FJZdc4vHcNpsNDocDcrkcBw4ccGk/evQoBEEQ2ztrampCe3s7MjIyvMZtMBjE1xaLhTM0REQS8zshqqurC0YcRD1iNBoxcuRIANKU7jAajWIC5CypUV1d7fXcX375JQCgtbVVbLdarWL7gQMHUF9f7/JZ5y0zb6U7nPXViIgoeHq0hshut2PdunX4/vvvAQBjxozBjTfeGHBhTaKekHpR/IXjeboN5uyblpbmkvBkZmZCJpN5jC0uLs6nJ7e8Pe3WG9jtdgiC4HXdFRFRb+X3d69jx47huuuuw5kzZzBq1CgAwFNPPYWsrCx88sknGDZsmORBBgNrmfUNsbGxaG5uDsp4J06cwOnTp33q66xc7ySTyTy2x8bGYvPmzS4zSpHKZrNh+/btcDgcmDx5MjQaTbhDIiLym98LLu677z4MGzYMVVVV2Lt3L/bu3YvTp09jyJAh4mPEkaCkpAQVFRXYvXt3uEOhMIiLiwPQkbhwPU5gzGazuI4qEvckIyICejBDtHnzZuzYsQPJycnisf79++OPf/wjLr/8ckmDIwqW0aNHY8iQIVAqlV73AYqEW1ZERBQYv2eINBoN2trauhxvb2+PuPIDFPnMZjPmz5+P+fPnw2w2+/w5mUyGmJiYLsmQu/G6uyXn7dye2s1mM5YtW4Y//vGPsFgsPsfdG3W+HWiz2XzeeoCIqDfxOyG6/vrrcffdd2Pnzp0QBAGCIGDHjh245557cMMNNwQjRqJu2Ww2vP3223j77bcl+UHceTznbTVf+rpbi9a5vfNj9UqlEjabDR9//DE+++yzPrWO7cCBA9i2bZvf+zcREYWb37fMXnzxRRQXF2PKlCnib9c2mw033HADXnjhBckDJPJEpVLhz3/+s/hayvFSU1PR2NiIpqYmr33dPV3VuT0rKwvx8fHQarVQqVQQBAH3338/TCZTn3syy+FwwGw2h7UkCRGRv/z+TpyYmIiPPvoIx44dEx+7Hz16NIYPHy55cETeqNVqPPTQQ0Ebz9Nu0p37XvgUmbuxOu81pFarcccdd/SJp8yIiPoCnxMih8OBp59+Gv/+979hsVjwox/9CMuWLfO4oRwRda/z7tP+YuV5IiJp+byG6A9/+AMeffRRxMXFITMzEy+88IKkRTWJesLhcODMmTM4c+aMJE+DeRtPoVBApVIhPj7ea19P7Q6HA3V1daivr+9R3IGWKCEiIlc+zxD99a9/xcsvv4xf/OIXADpKFcyaNQuvv/46vzlT2BiNRgwaNAiAdKU7Oo/XmUqlwmWXXQag41aaXq8X+3auYeZLbEajET/5yU8A/FC6w581NxkZGTh//rwfXxkREXnicyZz+vRpXHfddeL7oqIiyGQynD17NiiBBVtpaSnGjBmDgoKCcIdCAVIqlZIuTPY0nkwmc1lX5O3cntoVCoVLuZv+/ft36RMpO78TEUU6n3+K2Gw2aLVal2MqlSpiH68tKSlBSUkJWltbJa+FRaETGxsr6b9Bf8br3NfdompPY8XGxmLjxo0uj9x7WsB94Wcv/H9RSoHOshERRSKfEyJBEDB//nyXOkUmkwn33HOPyzfQf/3rX9JGSBTF3C2eHjVqFGJjY5Gfn489e/YE5bwtLS1BGZeIqLfyOSEqLi7ucuznP/+5pMEQ9RVS7cHjLiFybhgZzFmiQNXW1kKpVPbqGImIOvM5IXrrrbeCGQdRj5jNZixZsgQA8NxzzwVcaf3C8Xzte++994rHMzMzMWjQII+xmc1mPPfccxAEAb/61a98LnszYMAAv76eC50/fx7V1dUBjeGLqqoqNDU1YcyYMTCbzUhMTPT5liARUTjIhCjf0MS5hqilpQUJCQnhDof8pNfrxRkTKZ4yu3C848ePo7GxEUDHrE/nAsad+x44cAD19fUAgEsuuQQJCQkeY+vc5nzKrLCwEACwadMmsd+QIUPE9UmTJk1CTEyMmFhYrVZs3bo1oK/XndjYWOj1eknGkslkEAQBubm5SEpKkmRMIiJA+p/ffatmAEUdlUqFZcuWia9DOV7nvt2V7uhuLJVKhfnz50MQBCiVSvHxfE/UanVIZlmkLM7q/H3LZDJJNiYRUTAwIaKIplar8bvf/S4s43Xu213pju7GUqvVuPPOO8WnzHpS+iZYyZHZbA7KuEREvRl3VCSKUEqlEpmZmeEOg4ioT+AMEUU0QRDER8T79esX8KzJheP52tfdUjxPsQmCgLa2NjgcjoDWPY0YMQJxcXE4fPhwj8cgIiLOEFGEMxgMSEpKQlJSUkDFUnsyXue+RqPRr7EMBgNmzZqF2bNnR8X6msOHD+Po0aPi+7Nnz2LHjh1oaGgIY1RERD9gQkREIXHmzBnx9ZEjR2AymXDs2LEwRkRE9IOIT4iqqqpQWFiIMWPGYMKECfjggw/CHRKFkE6ng8VigcVigU6nC+l4nfvGxMT4NZZOp8NXX32FL774wuPmhUlJSVAqlUhMTHSpe9ZXWCyWcIdARASgD6whUiqVWLlyJfLy8lBTU4P8/Hxcd911rMcUJWQymWS7Qvs7Xue+7tYueRpLJpNBqVR6XfOUkJCAqVOn+hQPERH1XMTPEKWnpyMvLw8AkJaWhpSUFHEjPaJIlJWVBaDj33Nf07mYLRFRbxL2hGjLli2YPXs2MjIyIJPJsG7dui59SktLkZOTA61Wi8mTJ2PXrl1ux9qzZw/sdrv4A4X6PovFgoceeggPPfSQJLdf/BnPW19P7RaLBS+//DJWrVoFq9Xq0jZ06FBMmTIFo0aNCvjr6W22b98u6caPRERSCXtCpNfrkZubi9LSUrfta9aswZIlS7Bs2TLs3bsXubm5mDFjBurq6lz6NTY24o477sCrr74airCpl7BarXjmmWfwzDPPdEksgj1e577ufsh7GstqteK9997DmjVrunxWJpNBo9H4vIWAs0aaXB72/529stlsbp/IIyIKt7CvIZo5cyZmzpzZbftzzz2HRYsWYcGCBQCAVatW4ZNPPsGbb76JRx55BEDHzrpz5szBI488gssuu8zj+cxms8tOvK2trRJ8FRQuKpUKDz74oPg6lON17ttd6Y7uxlKpVPjpT38qlu4IRFJSEvLz86FSqbBjx46AxgoFPllGRL1R2BMiTywWC/bs2YOlS5eKx+RyOYqKirB9+3YAHRvczZ8/H1dddRVuv/12r2M+9dRTePLJJ4MWM4WWWq3G008/HZLxLtx8sXPf7kp3dDeWWq3Gr371K0nW1MhkMsTHxwc8Tqg4N6skIupNevUce0NDA+x2O1JTU12Op6amoqamBgCwdetWrFmzBuvWrUNeXh7y8vLw3XffdTvm0qVL0dLSIv6pqqoK6tdAka3z4/Rc+0JE1Hf16hkiX0ydOhUOh8Pn/hqNBhqNBqWlpSgtLeVTLxFOEAQxUfHlMXZ/xxs+fLjLhoLd9e2udEd3sTnb7HZ7n9xfiIgo0vTqGaKUlBQoFArU1ta6HK+trQ34keSSkhJUVFRg9+7dAY1D4WUwGKBWq6FWqyUr3dF5PE8JVue+3ZXu6C42g8GAq666CldffXVUlO4gIurtenVCpFarkZ+fjw0bNojHHA4HNmzYgClTpoQxMiIiIupLwn7LrL293eWpk8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq8XnzrrKd4y6xt0Oh2amprE16Ecr3Nfd5uBehpLp9PhwIEDOH36NIYPHx5w3EREFBiZ4G7xQwht2rQJ06dP73K8uLgYq1evBgC89NJLePrpp1FTU4O8vDy8+OKLmDx5siTnb21tRb9+/dDS0oKEhARJxqS+ZdOmTeLrwsJCt31OnjyJkydPAgDy8/PD9tRX51gjgVwux8CBA9HU1IQJEyaw5A4R+Uzqn99hnyEqLCx0uyC1s8WLF2Px4sUhiojIf6mpqeKaobi4uLDFERsbC71eD6VSGTFPxTmfGK2trcXQoUPDHA0RRauwJ0ThwltmfYPFYsGKFSsAAI8++ijUanXIxruw75gxY3weS+q4nfLz82G1WnHy5EmcO3dOkjFDJcyT1UQU5cJ+yyzceMsssun1enFGpr29PeBbLu7G6+6Wmbdze2qXOu4LHT58OOISoqysLAwbNgwGgwEKhUIsSUJE5E6fu2VGFAilUolf/epX4utQjuetr6d2qePuKwwGA3bt2gW5XI7LL7+cezQRUchwhogzROSFL4uqextfZogGDhwInU4nLgYPt6ysLBgMBpw/fx4AMGXKFDQ3N6OpqQlDhw6V7LYiEfUNUv/87tX7EAVTaWkpxowZg4KCgnCHQkSASzLk9P3336OmpgbV1dVhioqIokXUJkTcqZqod/FUgsdisYQwEiKKRlGbEFHfoNfroVKpoFKpoNfrQzqet76e2qWOuy9wbmJJRBQOXM1JEU/q/Xb8Gc9bX0/tkbJPULi0traGOwQiiiJMiCiixcTEiOtLYmJiQjqet76e2qWOuy86ePBguEMgoigStQkRN2bsG+RyOTIzM8Mynre+ntqljvtCntbjOKlUqqCdn4go0kTtGiIuqqa+rF+/fl779O/fPwSRSOfUqVMoKyvjmisiCoqonSGivsFiseCFF14AANx///2SlO7wdTxvfT21Sx33hdzVUxs1ahRMJhNOnTolHoukbcgqKysBANXV1Rg1alSYoyGivoYbM3JjxojG0h3utbe3o6yszOVYfn4+5HK5OCs6YcIEKBQKfPvtt5KeO9gGDhzYpW4cEUUflu4g6kSpVKK4uFh8HcrxvPX11C513BeKjY1FVlYWGhoaYDQau+3HdURERB2idoao86LqI0eOcIaIuhWJpTucGhsbsX//fgDuZ4i0Wi127drldRznb2G9AWeIiAhg6Q7JcFE1kW90Op1Pi7SJiCJZ1CZEROS7tLS0cIdARBRUTIgooun1eiQmJiIxMVGy0h2+juetr6d2qeMONp1OF+4QiIiCiouqKeJJvbbFn/G89fXU3lvW5BARERMiinAxMTE4cuSI+DqU43nr66ld6rg9xSiTySCXy6HValk1noioG0yIKKLJ5XKMGDEiLON56+upXeq4uxMTE4PLLrsMMpkMSqWyS0Ikl/OuORERwDVERH2eSqXqdq8jrVaLnJyc0AZEvYYgCDhz5gxqa2vDHQpR2EXtDBGLu/YNVqsVr776KgDg7rvvDnijQX/G89bXU7vUcQciJycHCoUCx48fD3is2NjYoC8SFwQBp0+fBgBkZWVBJpMF9Xx9WVtbG44ePQoASEpKkryEDFEkidqNGZ1YuiOysXSHf/R6vcvGjMnJyQCAqqqqbhMinU6HSZMmuVyH7kyePBk7d+6ULN7u4jEYDACAgoKCkF27vkYQBJw6dQqHj3XUiEsf2B8TJkwIc1REvmPpDqJOFAoFbrrpJvF1KMfz1tdTu9RxB8pdMdieCOYCcSdnMgQADQ0NOHnyJHJycpgY+amhoQF3vfc9jjU7AAAjEk34fPx4zrhR1GJCRBFNq9Xigw8+CMt43vp6apc67kAlJSWFZHZHapWVHbMbNpsNubm5YY4mspypqReTIQA42uyA0WqHTs0fCxSduKiaiACEZnYnWDrPGpFvmpqbwx0CUa/ChIiIRLxdEj10ushNgImCgQkRRTSDwYDMzExkZmZKMkvgz3je+npqlzpuqeTn53c5ptFowhAJBVtvWLtG1JvwZjFFNEEQcPbsWfF1KMfz1tdTu9RxSyUuLg6TJ09GVVUVbDYbLBYLhgwZ4vVz2dnZSExMDH6AHrS2tqKhoQGZmZlM4nzQi/7ZEfUKTIgoomm1Wnz77bfi61CO562vp3ap45ZSTEwMRo4c2eW4QqHodt+uoUOHdjvexRdfLH6twfTdd9/BarXCbDZj9OjRQT9fJBMEAQ9/XhPuMIh6FSZEFNEUCgXy8vLCMp63vp7apY47FMaOHYuzZ8/CZrOh2cOC3MzMTJw5c0Z8H6rF2larFUDHTBF5ZrTacaKp43plxCtxts0W5oiIwi9q1xCVlpZizJgxKCgoCHcoRBEhOTkZ48aNQ3x8vMd+F9Zok8lkSEpKCmZoXTQ3N+P8+fMhPWck6Xyb9pWbfvj7cjgc7roTRYWoTYhKSkpQUVEh7tpLkclqtWL16tVYvXq1OEMQqvG89fXULnXc0c5sNouvbTYbysvL8d133wW9jEik0ut/WMjfr18/8XV19Rl33YmiAm+ZUUSzWCxYsGABAGDevHkB1wRzN95FF12E+vp6DBw40K9ze2qXOm76gc32w+0fJpvu2TpdF5Xyh397p06exEXDvS+iJ+qLmBBRRFMoFLjuuuvE18EYLy0tDWlpaX6f21O71HGHEvcqIqK+iAkRRTStVotPPvkkLON56+upXeq4Qyk1NRUNDQ29av+kzjqvj2loaAj7dgC9UXNLi/iaCS5Rh6hdQ0REPRMbG4tJkyYhMzMz3KF4VV1dLb4+d+4c9u7dy6fQ4Lp4WqX+4ZaZNoLLtxAFigkREUWFw4cPo7W1VSwISx06zxDJ5fyRQNGL//opohkMBowYMQIjRoyQrHSHr+N56+upXeq4qXsOhwPHjh0T33d+Io2IyIlriCiiCYIg/rCTqnSHr+N56+upXeq4e5v+/fv3mn2AGhoaXG6dRTtBEPDA/51y34a+92+RyFdMiCiiabVafPPNN+LrUI7nra+ndqnj7m3S0tL8ToiGDRuG48ePSx7LuXPnJB8zkhmtdhw73zFLNry/BjGqH55yfGJTMzZeKnChNUUlJkQU0RQKBS6//PKwjOetr6d2qeMOBykKqOp0OvGWYVZWVlASIurec7OyoFMrMGpgLA7X6XGyxQaj1Q6dmj8aKPr0iTVEc+fORVJSEm666aZwh0IUNTIyMjB06FDk5ub2eIzBgwdDJpNh0KBBEkbmmcFgwHfffYfW1la0t7f3yVuWvtLpYiCTyfDmbePCHQpR2PWJXwPuv/9+3HnnnXj77bfDHQqFmM1mw9q1awF0JMZKZWD/pP0Zz1tfT+1Sxx0OSqUS2dnZbtt8ueWSk5OD1NRUpKSkhHxzyvPnz4u39AYNGoThw4eH9Pzh1PmRe12MDgDQ+W8rmhNEim6R913YjcLCQmzatCncYVAYmM1m3HzzzQCA9vb2gBMLf8bz1tdTu9Rx9zaJiYkYMGAAYmJiui1L4tzHKNjJUFNTk8f26upqDB48GC0tLUhKSoq4ncP9ZbH8ULYjLj4OgOv+QxaLFbEalpKh6BP2W2ZbtmzB7NmzkZGRAZlMhnXr1nXpU1paipycHGi1WkyePBm7du0KfaDUK8nlckybNg3Tpk2TZA8Vf8bz1tdTu9Rx9zZKpRJjx47F0KFDwx2KTyoqKnDgwAFUVlbCYDDAbreHO6SQcCbiWu0P68E4Q0TRKuy/lur1euTm5uLOO+/Ej3/84y7ta9aswZIlS7Bq1SpMnjwZK1euxIwZM3D48OEuxTYp+sTExEg6O+jPeN76emqXOu6+LCUlBRkZGTh06BAsFgsAYMiQIZJusOicRaqurkZ1dTViY2NRUFAg2fi9SV1dXbhDIOqVwv6r6cyZM7F8+XLMnTvXbftzzz2HRYsWYcGCBRgzZgxWrVoFnU6HN998s0fnM5vNaG1tdflDRME1YMCAHn923LhxSE5Odns8WPR6fdDGDrdTJ096bLc7omN2jOhCYU+IPLFYLNizZw+KiorEY3K5HEVFRdi+fXuPxnzqqafQr18/8U9WVpZU4RJRN9LT01FQUICLLrrIp/5qtRpKpRJpaWnisQvXIqWkpODyyy/H5MmTJY3Vqa/eOvL2Vf3s9bI++7UTedKrE6KGhgbY7Xakpqa6HE9NTUVNTY34vqioCPPmzcOnn36KQYMGeUyWli5dipaWFvFPVVVV0OKn4DMajcjLy0NeXh6MRmNIx/PW11O71HH3djKZDLGxsV7XSznXtKSnp+Pyyy93SaA6r0eKjY0F0JEkxQSpIGl7e7vL67Nnz4prixwOByoqKnD06NGISh4cDgdW7DR1OR6jUmBwQsffzdEGI4xWzhJR9An7GiIpfPnllz731Wg00Gg0KC0tRWlpadQsnuyrHA4H9u3bJ74O5Xje+npqlzruYBIEoUc/IGNUCr93PM7NzUVLSwvS0tK6fLZ///6YMmUKTCYTEhISXNpSU1NRW1vrd4yedP572bdvH6xWK6xWK1JTU2EymcS1OOnp6YiLi5P03MFSe74Zp9s6vq7R6fHiLtUymQzPzMzEvDX8BZGiV69OiJz7k1z4ja62ttZlKr0nSkpKUFJSgtbWVvTr1y+gsSh8tFotPv/8c/F1KMfz1tdTu9RxB5PRaseYJz7z+3MTByfhg3um+JUUxcfHIz4+vtt25y80Fxo9ejSGDBmCHTt2+B1nd+rq6iCTyRAXFwerteNR9crKSlRWVrrEUFZWhtGjR3eZyQaAQ4cOobW1FRMmTOjx37PD4UB7ezvi4+MDKqkhCAJ+/tZe8f2H91zmMp4g9O7EnCjYenVCpFarkZ+fjw0bNmDOnDkAOr45bNiwAYsXLw5vcNQrKBQKXH311WEZz1tfT+1Sx90blZ1q6lIGovMPYKnrZXlLONLS0lxutXtz5swZnDlzxu2+RGaz2eX96dOn3SZEzvPV19e7Xa9oMBig1+shk8lw7tw5ZGZmdllAfvjwYdTW1iIrKwvDhg3zOf4LGa12HG/siHtwggI6tevXlTUoC8AZAB0bh4LlOyjKhP1ffHt7u1j1G+j4Day8vBzJycnIzs7GkiVLUFxcjIkTJ2LSpElYuXIl9Ho9FixYENB5ecuMyDcxKgUqfj/D5/4Gix0Tl7u/jZ2UlIS0tDTExMSEfDPKoUOH+pUQOfnyPcLdOqLOt9wubLfZbLDb7V32VGtpacHUqVNdjjlnyKurqwNKiDor/fGwLglpfMIPM3Ptbe1I0PXumUsiqYU9ISorK8P06dPF90uWLAEAFBcXY/Xq1bjllltQX1+PJ554AjU1NcjLy8P69evd/jbmD94y6xtsNhs++6zjds6MGTMkKd3h63je+npqlzruYJLJZJIV+1QqlT4/adYTgwYNQn19PcaNG4fy8nIxmRk6dCjUanXQzmswGHDq1Cn0798fMpkMp0+fdrmt1t7ejjNnziA9PR3nz5/HwYMH3Y5js9nQ1taGgwcPYsCAAV0SIIPBgNbWVgwYMECcuTKZTKivr8fAgQN9LrjrLsnrvOC9pbUVGakpPo1F1FfIhEh6RCIInAlRS0tLl4Wa1Pvp9XpxQWt7e7v49FEoxvPW11O71HH7Sq/XY/fu3QCACRMmuN3fJ1AGi01cc1Tx+xlhq5x+9uxZHD16FEOGDBFrru3evTusewyNGDECR48e9din8629oUOH4sSJE277jRw5Eunp6SgvL0dLSwsA4Morr4RMJoMgCJDL5bDb7aiursa5c+fQ3G7EPV8aAABb7stHdobrOszOf29/KdJhRtF0EPVmUv/87r2/lhL5QC6XY+LEieLrUI7nra+ndqnjpq4yMjKQlpbmcn1HjhyJb7/9NmwxeUuGALjc1jtx4gQEQYDFDqgVruuujhw5gsbGRjQ3N4vtW7duFWd/Jk6ciNraWlRVVUEQBJfH7VVKz7XKzPaOOAJ9eIUokkRtQsQ1RH1DTEyMOOMR6vG89fXULnXc5N6FyWa/fv1cHtEfPnw4jEYjzpw5E47wxGQH+CHh6ZwAAcAfdppwrNmBEYlyLJ2shbVTclRfX+/S/uhkrZg0nT9/HufPn4fZJsBsh/i4fXa8HAOSPS8TuG+jAdll3+Krh6+BUtm3i90SOUVtQsQ1RBSNOq+j8XW9SV/T+RoMGjQIVqs15AmRIHQkKSt2mlwSld9dpsWK/yY42fFy/GaiFseaO9qPNjuwbJsJVW0/JD9mO1zazXZABgFqRcc5/mdzMw6ft7qce9XNI92uWYtRKZA/OBF7TjUD6EigZr34Ndb/eprkTwQS9UZRmxARRSOVSoVJkybB4XCEbN1Sb5OZmQmTyeRx/dRFF12EQ4cOddseGxvb7VqkzrM+Tp1nfy5MhJxOtzmw9Gsjag2C+P7+jQaXPlVtPyQ/rRZgxU7XXc6Xbev4/PBEOZaq67okQwAgg/vkRiaT4cN7LkPVuTrMe30Pag0CDtfpu2yd4IlzE8+ebMpJFG5RmxDxllnfYDQaxVp3X375ZcBlHPwZz1tfT+1Sx+0PnU4XsnP1RlqtFmPHju22PT4+HikpKRg7dmy3T4ONGjUKOp0OZWVlMJl+WJsjCIJ4C6uz4Ykdsz1PuUmEsuLlsNgF1BoEMRnyxYXJEgDx88eaHVj4f/U+j+Ukk8mQnZGKJy+LERdgt+hNiFHFek1wBEHATau2Y8+pJkzIiMNH917JpIgiStQmRLxl1jc4HA5s27ZNfB3K8bz19dQuddzUc503XhQEAYNyhsHiAGL7JUEQhG5/qDuLz57sVD3e0ukWVmfHmh345ZeuCUx2fMdtL42iYxHzPRe0vzBdh2fLuiZQF8qKl0OjcH/ezuc6/d9bbbEa/77tT/nTZlyS1Q///NXlHhMco9WOPaeaAAD7z7bjyIlTGDUsx69zEYVT1CZE1DdoNBqsXbtWfB3K8bz19dQuddzUc3K5HKNHj0ZFRUXH7M5nW8U2Z9JyYRpgsNihtNigiU2A2dYxK3PBxs94cXrHTNx9F8zkjElPwHuLJmHPzm1igqFRCC7rd8al6ZColePJyzrWCT1T1nXWaUSKFr/J60iGgI5kTID7vs/MzEBTYyMy0wYgPT3d6zW58Jbf3qoWr7fOTp465fJ+0XvfY/OjgzlLRBGDCRFFNKVSKZZ1CfV43vp6apc67t7KcOFPVglJuU5l4MCBqD3fjGPNx1yOn25zdJm5AQB8ua3LIeciaCeNm4ezvnlwKjL7J0Amk+Hiiy/G6dOn0djYCJlMhg9+MQUmW0ciE6NSwOFwYPv27ZDJbHhsslZMUlQKYPJlU6FTK1FXVweTyQSz2Yx+/fph4MCBmJh3Htv2fOeSiI0bN9av/aCGZ6cBcN3/6PChw8gdN9rtNhFGoxH3vH/E5djpNgfaTRbExzDhp8jAhIiIgqa7Eh5SGJOe8N/isb5/prskSiaTYfjwYQA6EqLdjxWh+M1dqDjX6vPY7hZBqxVA3qAElFe3Ij87UUyGACAxMRGxsbE4fPgw4uPjIZfLoVP/kGwoFApkZGTg9OnTSElJgVqtxrlz5wAAsZqOfYTc7difkpKC6ZdNRN7RcpRXt2Li4CSxqr2vRl90Ebb9NguX/XmzeKymrg76XQaMGJLd5bxNrXrx1l6qTiauZWpqakJ8DPcyosgQtQkRF1X3DXa7HV9//TUA4IorrnBbiDNY43nr66ld6rh7kxiVAhMHJ6Hsv+tJgqXiXCvGLvvMr894SqI6z2bFahT45L6pMFp/ONZRe2w3HA4HJk0qgErVkZQIAnDDCxtxvNEi9h2XGiM+Wfa34jwoNDFukzGVSoVx48Z1G29OTg6SkpIQHx+Pqqoqn7/O+Ph4rC2Z2uMnvmQyGdISXZ9C7FgDZcCIxAZ8/vC1LmPW1dWJr9++Iw/XrurY/LKi4vsuO2IT9VYs3cHSHRGNpTt6J+fj18EZG5i3artfszf+6q7kiPMXqAsT2Pb2dmzd0bHRpkarxZiRw1BRUQEAmDZNmn18zGYzTpw4IRbIDYX/fLmxy2JwADj45DVQwiGuf1v/5Ubx1mLZ40XizGBOPyU2PnIN1xFRULB0B1EnMpkMY8aMEV+HcjxvfT21Sx13byNlQVh3Lpy98cafJMrTLabuZvLi4uJw5eWX4syZM0hNTUV8fDzi4uKg0Wgk+/vVaDQYPXq0JGP5KjW5H4Yndl2kvWHTN9AogMy0AYiLi3MpCxKjUmDUwFgcrtPjZIsNBotNvMVH1JtxhogzRERRwddZK24q+AOr1YrW1lYcP1WNc/WNXdZIZcXL8ZuJGjywsWODyCGJKnz18NU439qOiU9tAQD862c5uGRC9/s+EfUUZ4iIiHog2LNWfZFKpUL//v2RnJyM1tZWjPh2G452mi2qanOIyRAArPvvZoy6ThuN/nLdKWwaMQwxMVoQ9WYss01ERB7JZDL069cPr986Bn8p0uHpK93vrK5SdSScMSoFhvfvSIBqDQKufX4TNyClXi9qE6LS0lKMGTMGBQUF4Q6FAmA0GnH11Vfj6quvhtFo9P4BCcfz1tdTu9RxE4XC4MGDMaNoOnJHZHVpm5AeK669kslk+HfJZUjVddx6PNVqx6kzNSGNlchfXEPENUQRjU+ZEYWezWZDTW0tLBYrTp6shNUOjBs9EpmZmS799lccxg1/7djbaXCCHO8vvATJycnilgVEgeAaIqJONBoN/v73v4uvQzmet76e2qWOmyiUlEolBmVmQq/X4/Spk9AoOxZgX2jY4EHIjj+B020OnGp1YGd5BYYNGoisrCycP38emZmZUKvVYfgKiLriDBFniIiIemzTpk0AOjaRzMnJ6dK+Z98B/OTdH+qcZXUqapuRkYGLRo0KUaTU13CGiIiIeo309HQ0Nzdj4MCBbtsvGj4EIxKrxKfTqtocnTZ7PIaj/28YLBYzdDodtzugsOIMEWeIIprdbsfevXsBAJdccokkpTt8Hc9bX0/tUsdN1JsJgoBtu/ag5NM6NJtdf+Q8fWUM+sfIoI6JQ/qAZCQnJyMpKSlMkVIkkfrnNxMiJkQRjYuqiSKDIAg429iGy5/+uts+wxPleHCiFtdcNQ1yedQ+BE0+4i0zibC4a98gk8kwePBg8XUox/PW11O71HET9XYymQzpSfHi+6x4OaraXPcmOtbswD1fGjC87DM8e10mxo8bx8SIQoYzRJwhIiIKGYdDgCAI0Ovb0aI34c53vsPRBpPbvpvvm4g4jRLJycn8xYG64C0ziTEhIiIKH0EQoDfbMGfll12KyAJAdrwcz80ahEsmjOVsEblgQiQxJkREROFntVpx8tx5XP3yHrft2fFyvFM8Hv0HpiFGpYDzJ5dczpmjaMU1RESdmEwm/PSnPwUAvPfee9BqAysg6c943vp6apc6bqJIp1KpMDwrFaMG6nC4ztCl/XSbA1e8tA/APkzIjMf+M20AgG8fuRwaXRxiVAreVqOAcIaIM0QRjU+ZEfUtDoeAWS9+je9r2jAqWYmF41T47Zbu6/2l6mSoNQgYl6bD/91fyKQoinCGiKgTtVqNV199VXwdyvG89fXULnXcRH2FXC7Dp/dfAaPVjhiVAg6HgN9u+U+3/WsNHb/TH6gxYEf5QUzOHQuTzQ6tUg6bzQ6lUsnbauQTzhBxhoiIqFdzODp+TBksNsx89ssuj+u7MzxRLi7Sfm9eJsaMGIqEhAQ4HA4IQsc2AEyUIhsXVUuMCRERUeQ4UVmJ+f84hNM+JEWdZf+3hppaAdz5WccapQP/Mx2teiP2798PGYDhI4ZjaPYgyGQyMQnrmG3q2EleLv/hOJOp8GNCJDEmRJHN4XDg+++/BwCMHj064Mdy/RnPW19P7VLHTRRNBEGA0WqHSgYYrHbk/v5LycYelqzB76cl4ra1tV3a/n3bYNzwTkeh2p0PXY6UxATUN7XAarUhLj4OapUKMaofkifgv/suAZCBSZTUmBBJpPNO1UeOHGFCFKG4qJqIHA4BJrMZN7yw0e1eRuHwafEw2AQ5bvjrUfHYF3ddhJTUdLF2oc1mw/m6c9Dq4pGZ1lEcVyYD2oxmxGnV4i9KnWel/JmhCsZsli9jOvvIZIDR2lENIhhPATIhkhhniCKbXq9HTk4OAODkyZOSJES+juetr6d2qeMmoo69jBpb9UhJTIDJ1jGDdLauHjFqJarO1uLXn1R3u/7oz1fGeHyaLVScJU2y4+X449UDIVco8NMPzgAAXinS4Zdfdtzue+3aBGRnZSEhIQExagVa2g3o1y8Rzc1NiIuLR1t7O6a/1FFAumLZj9Bm6NgNPCk+FlYBsFptMJvNaG5uhkajRlxcPBQKBdraWqFUKKFQKuFwOCCXy9HS0gKLxQKlUolrX68AALw1KxkDBqQgJkaL9rZ2CIKA5P7JaGpqwY1/OwYAWHVtEu5Z39QRw+9nQKeW9jkuJkQSY0JERBQdbDYbGtv00Gpj8PNXt2H/OT0uyU7Eh/dcBkEQMOyxjqfZPrx1MDLS06FSqTB/dRkO1oY/UYp03y0rQnyMRtIxmRBJjAkREVH0ca5D6nwrx93tIGc/rVIhLrDWmy2I1ajRbjKjrbkRGo0WbW1tiInRwmwH7n7vexyu02NokhonmiwAgFGpcThc2x76L7QXGJEox6e/KYJKpZJ0XO5DREREFCCZTNblFo67dTGd+zn/65zpSNBpkaDLAACk9E8WP7P+1wPFZMs55eBcT+N8Ys1Jb7bAbjFBkKsgk8mgUimhUchhstkhCALkcjnsdgdOnz4Nu92OjMwMqFVqKJUK6PUG/OyN3Th23ozhKVr89Y48qNVqNDU1or6+HvHxCfj1x1U4dt6EYckaOAQHKpusGJaswdt35EKv10OtVsFqtUGlUkKhUCAxMRHtbe0wW8z/vYXWjuTkZPTrlwCbzQaT2QxdjM7jGiLn1ywIDmz9ZivUCkTEhpmcIeIMUUQzmUxYuHAhAOCNN96QpHSHr+N56+upXeq4iSg6uZvp6q4dgMe+UnM4HNiyZQsAYOrUqVAquYaoV2NCFNn4lBkRUe/UOSEqKCiQ/Pscb5kRdaJWq/H888+Lr0M5nre+ntqljpuIqLfpuAWogtVq5S2zSMAZIiIiouAwGAxobW1FSkpKr79lxhkiIiIiCgqdTgedThfuMHzChIgimsPR8fQFAGRnZ0tSusPX8bz19dQuddxERBSYPvFd+OOPP8aoUaMwYsQIvP766+EOh0LIaDRiyJAhGDJkCIzGwDdP82c8b309tUsdNxERBSbiZ4hsNhuWLFmCjRs3ol+/fsjPz8fcuXPRv3//cIdGISL1dKw/43nr66k9UqaRiYiiQcQnRLt27cLYsWORmZkJAJg5cyY+//xz3HrrrWGOjEIhNjYWer0+LON56+upXeq4iYgoMGG/ZbZlyxbMnj0bGRkZkMlkWLduXZc+paWlyMnJgVarxeTJk7Fr1y6x7ezZs2IyBACZmZk4c+ZMKEInIiKiPiLsCZFer0dubi5KS0vdtq9ZswZLlizBsmXLsHfvXuTm5mLGjBmoq6sLcaRERETUV4U9IZo5cyaWL1+OuXPnum1/7rnnsGjRIixYsABjxozBqlWroNPp8OabbwIAMjIyXGaEzpw5g4yMjG7PZzab0dra6vKHIpfZbMaiRYuwaNEimM3mkI7nra+ndqnjJiKiwPSqjRllMhnWrl2LOXPmAAAsFgt0Oh0+/PBD8RgAFBcXo7m5GR999BFsNhtGjx6NTZs2iYuqt23b1u2i6t/97nd48sknuxznxoyRiaU7iIiiU1RtzNjQ0AC73Y7U1FSX46mpqTh06BAAQKlU4tlnn8X06dPhcDjw29/+1uMTZkuXLsWSJUvE962trcjKygrOF0BBp1KpsHz5cvF1KMfz1tdTu9RxExFRYHr1DJFzwfS2bdswZcoUsd9vf/tbbN68GTt37gz4nCzdQUREFHmk/vkd9jVEnqSkpEChUKC2ttbleG1tLdLS0gIau7S0FGPGjEFBQUFA4xAREVHk69UJkVqtRn5+PjZs2CAeczgc2LBhg8uMUU+UlJSgoqICu3fvDjRMCiNBEFBfX4/6+npIMdnpz3je+npqlzpuIiIKTNjXELW3t+PYsWPi+8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq/HggULAjpvaWkpSktLYbfbA/0SKIwMBgMGDhwIQJrFyf6M562vp3ap4yYiosCEPSEqKyvD9OnTxffOBc/FxcVYvXo1brnlFtTX1+OJJ55ATU0N8vLysH79+i4Lrf1VUlKCkpIStLS0IDExkY/fR6jOuz23trYGnOD6M563vp7apY6biCjaOH9uSzXL3qsWVYdDdXU1nzIjIiKKUFVVVRg0aFDA40R9QuRwOHD27FnEx8dDJpOJxwsKCtyuL/L1uKf3ztfOR/6rqqoke8Ktu/h62p/XwXO7u+O+HON16Pqe14HXoTdeB1/68jp47hOs6xAfH4+2tjZkZGRALg98SXTYb5mFm1wud5tZKhQKt//ofD3u6f2FbQkJCZL9A+8uvp7253Xw3O7uuC/HeB26vud14HXojdfBl768Dp77BPM69OvXz6f4fdGrnzILp5KSkoCOe3rf3RhS8Hdsb/15HTy3uzvuyzFeh67veR18O3cgeB38H9uXvrwOnvv09uvgFPW3zMKJm0J24HXowOvQgdehA69DB16HDrwOHYJ5HThDFEYajQbLli2DRqMJdyhhxevQgdehA69DB16HDrwOHXgdOgTzOnCGiIiIiKIeZ4iIiIgo6jEhIiIioqjHhIiIiIiiHhMiIiIiinpMiIiIiCjqMSGKIDk5OZgwYQLy8vJcCuJGG4PBgMGDB+PBBx8Mdyhh0dzcjIkTJyIvLw/jxo3Da6+9Fu6QwqaqqgqFhYUYM2YMJkyYgA8++CDcIYXF3LlzkZSUhJtuuincoYTUxx9/jFGjRmHEiBF4/fXXwx1O2ETr339nUnwv4GP3ESQnJwcHDhxAXFxcuEMJq8ceewzHjh1DVlYWnnnmmXCHE3J2ux1msxk6nQ56vR7jxo1DWVkZ+vfvH+7QQu7cuXOora1FXl4eampqkJ+fjyNHjiA2NjbcoYXUpk2b0NbWhrfffhsffvhhuMMJCZvNhjFjxmDjxo3o168f8vPzsW3btqj8/yAa//4vJMX3As4QUUQ5evQoDh06hJkzZ4Y7lLBRKBTQ6XQAALPZDEEQEK2/16SnpyMvLw8AkJaWhpSUFDQ2NoY3qDAoLCxEfHx8uMMIqV27dmHs2LHIzMxEXFwcZs6cic8//zzcYYVFNP79X0iK7wVMiCSyZcsWzJ49GxkZGZDJZFi3bl2XPqWlpcjJyYFWq8XkyZOxa9cuv84hk8kwbdo0FBQU4J133pEocumE4ho8+OCDeOqppySKODhCcR2am5uRm5uLQYMG4aGHHkJKSopE0UsrFNfCac+ePbDb7cjKygowammF8hpEkkCvy9mzZ5GZmSm+z8zMxJkzZ0IRuqT476ODlNehp98LmBBJRK/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDNTV1Yl9nGtCLvxz9uxZAMA333yDPXv24N///jdWrFiB/fv3h+Rr81Wwr8FHH32EkSNHYuTIkaH6knokFP8WEhMTsW/fPlRWVuIf//gHamtrQ/K1+SsU1wIAGhsbcccdd+DVV18N+tfkr1Bdg0gjxXXpC3gdOkh1HQL6XiCQ5AAIa9eudTk2adIkoaSkRHxvt9uFjIwM4amnnurROR588EHhrbfeCiDK4ArGNXjkkUeEQYMGCYMHDxb69+8vJCQkCE8++aSUYUsuFP8WfvnLXwoffPBBIGGGRLCuhclkEq644grhr3/9q1ShBk0w/z1s3LhR+MlPfiJFmCHXk+uydetWYc6cOWL7/fffL7zzzjshiTdYAvn3Ecl//xfq6XUI9HsBZ4hCwGKxYM+ePSgqKhKPyeVyFBUVYfv27T6Nodfr0dbWBgBob2/HV199hbFjxwYl3mCQ4ho89dRTqKqqwsmTJ/HMM89g0aJFeOKJJ4IVclBIcR1qa2vFfwstLS3YsmULRo0aFZR4g0mKayEIAubPn4+rrroKt99+e7BCDRoprkFf5Mt1mTRpEg4cOIAzZ86gvb0d//nPfzBjxoxwhRwU/PfRwZfrIMX3AiZEIdDQ0AC73Y7U1FSX46mpqaipqfFpjNraWkydOhW5ubm49NJLcccdd6CgoCAY4QaFFNegL5DiOpw6dQpXXHEFcnNzccUVV+Dee+/F+PHjgxFuUElxLbZu3Yo1a9Zg3bp1yMvLQ15eHr777rtghBsUUv1/UVRUhHnz5uHTTz/FoEGDIv6HpS/XRalU4tlnn8X06dORl5eH3/zmN33uCTNf/330tb//C/lyHaT4XqCULGIKqqFDh2Lfvn3hDqPXmD9/frhDCJtJkyahvLw83GH0ClOnToXD4Qh3GGH35ZdfhjuEsLjhhhtwww03hDuMsIvWv//OpPhewBmiEEhJSYFCoeiy8LW2thZpaWlhiiq0eA068Dr8gNeC16A7vC4deB06hOo6MCEKAbVajfz8fGzYsEE85nA4sGHDBkyZMiWMkYUOr0EHXocf8FrwGnSH16UDr0OHUF0H3jKTSHt7O44dOya+r6ysRHl5OZKTk5GdnY0lS5aguLgYEydOxKRJk7By5Uro9XosWLAgjFFLi9egA6/DD3gteA26w+vSgdehQ6+4Dj16No262LhxowCgy5/i4mKxz//+7/8K2dnZglqtFiZNmiTs2LEjfAEHAa9BB16HH/Ba8Bp0h9elA69Dh95wHVjLjIiIiKIe1xARERFR1GNCRERERFGPCRERERFFPSZEREREFPWYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQEREFyGKxYPjw4di2bZuk465fvx55eXkBV/EmIu+YEBGRi/nz50Mmk3X507nOELlatWoVhgwZgssuu0w8JpPJsG7dui5958+fjzlz5vg07rXXXguVSoV33nlHokiJqDtMiIioi2uvvRbnzp1z+TNkyJAu/SwWSxii610EQcBLL72EhQsXBmX8+fPn48UXXwzK2ET0AyZERNSFRqNBWlqayx+FQoHCwkIsXrwYDzzwAFJSUjBjxgwAwIEDBzBz5kzExcUhNTUVt99+OxoaGsTx9Ho97rjjDsTFxSE9PR3PPvssCgsL8cADD4h93M2oJCYmYvXq1eL7qqoq3HzzzUhMTERycjJuvPFGnDx5Umx3zr4888wzSE9PR//+/VFSUgKr1Sr2MZvNePjhh5GVlQWNRoPhw4fjjTfegCAIGD58OJ555hmXGMrLyz3OkO3ZswfHjx/HrFmz/LzKwMmTJ93OxhUWFop9Zs+ejbKyMhw/ftzv8YnId0yIiMgvb7/9NtRqNbZu3YpVq1ahubkZV111FS6++GKUlZVh/fr1qK2txc033yx+5qGHHsLmzZvx0Ucf4fPPP8emTZuwd+9ev85rtVoxY8YMxMfH4+uvv8bWrVsRFxeHa6+91mWmauPGjTh+/Dg2btyIt99+G6tXr3ZJqu644w68++67ePHFF/H999/jL3/5C+Li4iCTyXDnnXfirbfecjnvW2+9hSuvvBLDhw93G9fXX3+NkSNHIj4+3q+vBwCysrJcZuG+/fZb9O/fH1deeaXYJzs7G6mpqfj666/9Hp+I/CAQEXVSXFwsKBQKITY2Vvxz0003CYIgCNOmTRMuvvhil/7/7//9P+Gaa65xOVZVVSUAEA4fPiy0tbUJarVaeP/998X28+fPCzExMcL9998vHgMgrF271mWcfv36CW+99ZYgCILwt7/9TRg1apTgcDjEdrPZLMTExAifffaZGPvgwYMFm80m9pk3b55wyy23CIIgCIcPHxYACF988YXbr/3MmTOCQqEQdu7cKQiCIFgsFiElJUVYvXp1t9fr/vvvF6666qouxwEIWq3W5TrGxsYKSqVSuPHGG7v0NxqNwuTJk4Xrr79esNvtLm0XX3yx8Lvf/a7bGIgocMrwpmNE1BtNnz4dr7zyivg+NjZWfJ2fn+/Sd9++fdi4cSPi4uK6jHP8+HEYjUZYLBZMnjxZPJ6cnIxRo0b5FdO+fftw7NixLjMxJpPJ5XbS2LFjoVAoxPfp6en47rvvAHTc/lIoFJg2bZrbc2RkZGDWrFl48803MWnSJPzf//0fzGYz5s2b121cRqMRWq3Wbdvzzz+PoqIil2MPP/ww7HZ7l7533nkn2tra8MUXX0Aud528j4mJgcFg6DYGIgocEyIi6iI2NrbbW0SdkyMAaG9vx+zZs/GnP/2pS9/09HSfn06TyWQQBMHlWOe1P+3t7cjPz3f7xNWAAQPE1yqVqsu4zsfWY2JivMZx11134fbbb8fzzz+Pt956C7fccgt0Ol23/VNSUsSE60JpaWldrmN8fDyam5tdji1fvhyfffYZdu3a5fbWW2Njo8vXSETSY0JERAG55JJL8M9//hM5OTlQKrt+Sxk2bBhUKhV27tyJ7OxsAEBTUxOOHDniMlMzYMAAnDt3Tnx/9OhRl1mRSy65BGvWrMHAgQORkJDQo1jHjx8Ph8OBzZs3d5m5cbruuusQGxuLV155BevXr8eWLVs8jnnxxRfjlVdegSAIkMlkfsf0z3/+E7///e/xn//8B8OGDevS7pwBu/jii/0em4h8x0XVRBSQkpISNDY24tZbb8Xu3btx/PhxfPbZZ1iwYAHsdjvi4uKwcOFCPPTQQ/jqq69w4MABzJ8/v8ttoauuugovvfQSvv32W5SVleGee+5xme257bbbkJKSghtvvBFff/01KisrsWnTJtx3332orq72KdacnBwUFxfjzjvvxLp168Qx3n//fbGPQqHA/PnzsXTpUowYMQJTpkzxOOb06dPR3t6OgwcP+nHVOhw4cAB33HEHHn74YYwdOxY1NTWoqalBY2Oj2GfHjh3QaDRe4yCiwDAhIqKAZGRkYOvWrbDb7bjmmmswfvx4PPDAA0hMTBSTnqeffhpXXHEFZs+ejaKiIkydOrXLWqRnn30WWVlZuOKKK/Czn/0MDz74oMutKp1Ohy1btiA7Oxs//vGPMXr0aCxcuBAmk8mvGaNXXnkFN910E371q1/hoosuwqJFi6DX6136LFy4EBaLBQsWLPA6Xv/+/TF37twebZ5YVlYGg8GA5cuXIz09Xfzz4x//WOzz7rvv4rbbbvN4246IAicTLrxpT0QUAoWFhcjLy8PKlSvDHUoXX3/9NX70ox+hqqoKqampXvvv378fV199NY4fP+52cXlPNTQ0YNSoUSgrK3O7MSYRSYczRERE/2U2m1FdXY3f/e53mDdvnk/JEABMmDABf/rTn1BZWSlpPCdPnsTLL7/MZIgoBLiomojov959910sXLgQeXl5+Otf/+rXZ+fPny95PBMnTsTEiRMlH5eIuuItMyIiIop6vGVGREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT0mRERERBT1mBARERFR1GNCRERERFHv/wMSzZujiI3MSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.loglog(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "b7af40af", + "metadata": {}, + "source": [ + "Note that, while the \"clean\" and \"dirty\" periodograms at high frequencies mostly match, at low frequencies the two diverge. The low-frequency periodogram cannot be trusted if one does not use some trick to avoid the gaps. \n", + "\n", + "# The Lomb-Scargle periodogram\n", + "\n", + "Fortunately, a method exists and is called the *Lomb Scargle periodogram* ([See this review from Jake Van Der Plas](https://iopscience.iop.org/article/10.3847/1538-4365/aab766/pdf))\n", + "\n", + "The method is slower than the standard periodogram, so we will limit its usage to the interesting frequency range." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5d995bbd", + "metadata": {}, + "outputs": [], + "source": [ + "maxfreq = 1.\n", + "dt = 0.5 / maxfreq # Using the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "69759093", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGpCAYAAACTcAx5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfV0lEQVR4nOzdeXhTxfoH8O/JnnTf6AJdWAtFbNmFIqCCLIqCgrgDItcFVC6ignpZVEABlatUwQVwwSuKgv4EUUE22bciFigUCpRCWwpdsy/z+yPkkDRJkzRp07Tv53n6eHJmzpxpic3bOTPzcowxBkIIIYSQACLwdwcIIYQQQjxFAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOH4JYPLz83HbbbchLS0NXbp0gVKp9Ec3CCGEEBKgOH8kcxwwYADeeust3Hrrrbh27RpCQ0MhEokauhuEEEIICVANHjXk5ORALBbj1ltvBQBERkY2dBcIIYQQEuA8foS0Y8cOjBgxAgkJCeA4DuvXr7erk5WVhZSUFMhkMvTu3Rv79+/ny06fPo3g4GCMGDEC3bp1w/z58736BgghhBDS/Hg8AqNUKpGeno4nnngC9913n135mjVrMG3aNCxbtgy9e/fGkiVLMGTIEOTm5qJFixYwGAzYuXMnsrOz0aJFCwwdOhQ9e/bE4MGDHd5Pq9VCq9Xyr00mE65du4aoqChwHOdp9wkhhBDiB4wxVFVVISEhAQKBD6bgMi8AYOvWrbM516tXLzZ58mT+tdFoZAkJCWzBggWMMcZ2797N7rzzTr584cKFbOHChU7vMXv2bAaAvuiLvuiLvuiLvprAV0FBgTehB8+nc2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv2AAB69uyJkpISlJWVISwsDDt27MBTTz3ltM2ZM2di2rRp/OuKigokJSWhoKAAoaGhvuw+CQDZ2dmoqqoCAISHh6NLly5+7hEhhBB3VFZWIjExESEhIT5pz6cBTGlpKYxGI2JjY23Ox8bG4uTJk+YbikSYP38++vfvD8YY7rzzTtx9991O25RKpZBKpXbnQ0NDKYBphoKDg2Eymfhjeg8QQkhg8dX0D7+sXR42bBiGDRvm0TVZWVnIysqC0Wisp16Rxk6n0+HLL7+ERqPB/fff73Vb//3vfwEAL7zwAiQSSZ3rOiv35B6EEEI849U+MBzHYd26dRg5ciQA8y9shUKBtWvX8ucAYNy4cSgvL8dPP/3kbX9RWVmJsLAwVFRU0F/fzYxSqURwcDAAYOPGjUhISEB6errXbVVXVyMoKKjOdZ2Ve3IPQghp6nz9+e3TERiJRILu3btjy5YtfABjMpmwZcsWTJkyxZe3Is2QSCTC3XffDb1eD6FQ6HVb48aN44+9qeus3JN7EEII8YzHIzDV1dXIy8sDAHTt2hXvvfcebrvtNkRGRiIpKQlr1qzBuHHjsHz5cvTq1QtLlizBd999h5MnT9rNjfGE9SOkU6dO0QhMM3X48GFUVlYCACIiIuo8AkMCg9FohF6v93c3CCFuEIvFtf5x6esRGI8DmG3btuG2226zOz9u3DisWrUKALB06VIsWrQIRUVFyMjIwAcffIDevXt73VmAHiE1dxTANA+MMRQVFaG8vNzfXSGEeCA8PBxxcXEOJ+r6PYDxNwpgmi+VSmWzqzMFME3X5cuXUV5ejhYtWkChUNCmlYQ0cowxqFQqlJSUIDw8HPHx8XZ1GvUcGELq0759+zBixAgAwPfff4+IiIg6t6VUKtGyZUsAQGFhoctJvLXVdVbuyT3IDUajkQ9eoqKi/N0dQoib5HI5AKCkpAQtWrTweq6iKwETwNAyaqLT6aBUKn3WXkVFhc/qOiv35B7EzDLnRaFQ+LknhBBPWf6/9cViC1cCJoCZPHkyJk+ezA9BkeZHKpXiq6++QmJioteBrFwux6lTp/hjb+o6K/fkHsQePTYiJPA05P+3ARPAECIQCNCqVSu0bt0aZ8+e9bqt9u3b+6Sus3JP7kEIIcQzPkgHSQghhDQtq1atQnh4uL+74Rfjx4+32Yy2sQqYACYrKwtpaWno2bOnv7tC/MRgMGDdunX44osvYDAYvGpLr9fz86pc7TPiqq6zck/uQQLf+PHjwXEcOI6DRCJBu3bt8MYbb3j9Xm1qAuXDcezYsfwj4Kbq3Llz4DgO2dnZNuf/+9//8tuiNGa0jJoEjN9++w1Dhw4FQKkEmjKNRoP8/Hy0bt0aMpnM391x2/jx41FcXIyVK1dCq9Vi48aNmDx5MubNm4eZM2f6u3vQ6XSNIh/X+PHjUV5ejvXr19daT6/XQywWN0ynGjGj0QiO4yAQ+H684dy5c2jdujWOHDmCjIwMn7RZ2/+/vv78DpgRGEIEAgEGDBiA4cOHez27XSgUYvTo0Rg9erTLtlzVdVbuyT1I0yCVShEXF4fk5GQ888wzGDRoEH7++WcAQFlZGR5//HFERERAoVBg2LBhOH36NADzHhoxMTFYu3Yt31ZGRobNXhp//fUXpFIpVCoVAKC8vBxPPvkkYmJiEBoaittvvx1Hjx7l68+ZMwcZGRn47LPPbD5M1q5diy5dukAulyMqKgqDBg3iV/dZRkfmzp3Lt/v0009Dp9Px7ZpMJixYsACtW7eGXC5Henq6Tb8BICcnB3fffTdCQ0MREhKCW2+9FWfOnMGcOXPwxRdf4KeffuJHq7Zt28aPBKxZswYDBgyATCbD6tWr+e/B2pIlS5CSksK/tvR5/vz5iI2NRXh4OD/y9dJLLyEyMhKtWrXCypUrPfq3dPQI6a233kKLFi0QEhKCJ598EjNmzLDpn6UvixcvRnx8PKKiojB58mSbEdja3gfW9/3555+RlpYGqVSKCxcuQKvVYvr06WjZsiWCgoLQu3dvbNu2rdbv4eTJk+jXrx9kMhnS0tKwefNmcBzHB4+tW7cGYN5Vn+M4DBw40Ob7sKjtPeNPNImXBAypVIo5c+agTZs2Xk/ilclk+P77731S11m5J/cgtWOMwWQyNfh9BQKBV6sq5HI5rl69CsD8oXD69Gn8/PPPCA0NxSuvvILhw4fj+PHjEIvF6N+/P7Zt24bRo0ejrKwMJ06cgFwux8mTJ9GxY0ds374dPXv25JepjhkzBnK5HL/++ivCwsKwfPly3HHHHTh16hQiIyMBAHl5efjhhx/w448/QigU4vLly3jooYewcOFCjBo1ClVVVdi5cyesB+K3bNkCmUzGBxYTJkxAVFQU5s2bBwBYsGABvv76ayxbtgzt27fHjh078OijjyImJgYDBgxAYWEh+vfvj4EDB+LPP/9EaGgodu3aBYPBgOnTp+PEiROorKzkA4rIyEhcunQJADBjxgy8++676Nq1K2QyGZYvX+7Wz/nPP/9Eq1atsGPHDuzatQsTJ07E7t270b9/f+zbtw9r1qzBU089hcGDB6NVq1Z1+rdcvXo15s2bh48++giZmZn49ttv8e677/JBgMXWrVsRHx+PrVu3Ii8vD2PHjkVGRgYmTZrk1vsAMG/a+c477+Czzz5DVFQUWrRogSlTpuD48eP49ttvkZCQgHXr1mHo0KE4duyYw8UCRqMRI0eORFJSEvbt24eqqiq8+OKLNnX279+PXr16YfPmzejcubPDETp33jP+QgEMIaTRM5lM2LlzZ4Pf99Zbb63T6BljDFu2bMFvv/2G5557jv/A2rVrF/r27QvA/IGYmJiI9evXY8yYMRg4cCD/gb1jxw507doVcXFx2LZtGzp27Iht27ZhwIABAMyjMfv370dJSQmkUikAYPHixVi/fj3Wrl2Lf/3rXwDMj42+/PJLxMTEADCn4jAYDLjvvvuQnJwMAOjSpYtN3yUSCVasWAGFQoHOnTvjjTfewEsvvYQ333wTer0e8+fPx+bNm9GnTx8AQJs2bfDXX39h+fLlGDBgALKyshAWFoZvv/2W/0Du0KED375cLodWq0VcXJzdz23q1Km47777PP55R0ZG4oMPPoBAIEBqaioWLlwIlUqFV199FQAwc+ZMvP322/jrr7/w4IMPetw+AHz44YeYOHEiJkyYAACYNWsWfv/9d1RXV9vUi4iIwNKlSyEUCtGxY0fcdddd2LJlCyZNmuTW+wAwPz776KOP+EfkFy5cwMqVK3HhwgUkJCQAAKZPn45NmzZh5cqVmD9/vl1///jjD5w5cwbbtm3jf9bz5s3D4MGD+TqW90VUVJTDfw/AHMC4es/4S8A8QqJJvISQxu6XX35BcHAwZDIZhg0bhrFjx2LOnDk4ceIERCKRTU64qKgopKam4sSJEwCAAQMG4Pjx47hy5Qq2b9+OgQMHYuDAgdi2bRv0ej12797ND/EfPXoU1dXViIqKQnBwMP+Vn5+PM2fO8PdITk7mP6QAID09HXfccQe6dOmCMWPG4NNPP0VZWZnN95Cenm6ziWCfPn1QXV2NgoIC5OXlQaVSYfDgwTb3/fLLL/n7Zmdn49Zbb63T/JUePXp4fA0AdO7c2WaOSGxsrM2HrFAoRFRUFEpKSurUPgDk5uaiV69eNudqvrb0xTrojY+P5+/rzvsAMAeRN998M//62LFjMBqN6NChg83Pffv27Tb/3jX7m5iYaBOYOOqvK+68Z/wlYEZgaCM7otFo8Mgjj0AoFHo9Q16lUvHDrqdPn65111dXdZ2Ve3IPUjuBQIBbb73VL/f1xG233YaPP/4YEokECQkJEInc/xXbpUsXREZGYvv27di+fTvmzZuHuLg4vPPOOzhw4AD0ej3/V3t1dTXi4+MdzoGwnrdRc+K4UCjEH3/8gd27d+P333/Hhx9+iNdeew379u2zexTiiGW0YcOGDXyaDAvLSJA3mzbW7K9AILB7VOFoRV/NYInjOIfnGuIxpC/uK5fLbR5dVldXQygU4tChQ3YjgpaFAvXF2/dMfQqYAIYQxhhKS0v5Y2/bsjx3d9WWq7rOyj25B6kdx3EBMRE6KCgI7dq1szvfqVMnGAwG7Nu3jw9Crl69itzcXKSlpQEwf4+33norfvrpJ+Tk5KBfv35QKBTQarVYvnw5evTowX/Ad+vWDUVFRRCJRDYTWt3BcRwyMzORmZmJWbNmITk5GevWrcO0adMAmEd31Go1H4js3bsXwcHBSExMRGRkJD+p1PI4q6abb74ZX3zxhdNVRBKJxO2dtGNiYlBUVATGGP+BXnPJb0NJTU3FgQMH8Pjjj/PnDhw44FEb7rwPHOnatSuMRiNKSkrcDuRTU1NRUFCA4uJixMbGOuyvZc6Lq38PV+8Zf6EAhgQMiUSCTz/9FC1btvR6OahMJsORI0f4Y2/qOiv35B6kaWvfvj3uvfdeTJo0CcuXL0dISAhmzJiBli1b4t577+XrDRw4EC+++CJ69OjB/2Xdv39/rF69Gi+99BJfb9CgQejTpw9GjhyJhQsXokOHDrh06RI2bNiAUaNGOX0Us2/fPmzZsgV33nknWrRogX379uHKlSvo1KkTX0en02HixIl4/fXXce7cOcyePRtTpkyBQCBASEgIpk+fjn//+98wmUzo168fKioqsGvXLoSGhmLcuHGYMmUKPvzwQzz44IOYOXMmwsLCsHfvXvTq1QupqalISUnBb7/9htzcXERFRdU6oj5w4EBcuXIFCxcuxOjRo7Fp0yb8+uuvftlC47nnnsOkSZPQo0cP9O3bF2vWrMHff/+NNm3auN2Gu++Dmjp06IBHHnkEjz/+OD/J+cqVK9iyZQtuvvlm3HXXXXbXDB48GG3btsW4ceOwcOFCVFVV4fXXXwdwY7v/Fi1aQC6XY9OmTWjVqhVkMpndv4c77xl/CZg5MIQIhUK0a9fO7hlzXdvKyMhARkaGW8uoa6vrrNyTe5Cmb+XKlejevTvuvvtu9OnTB4wxbNy40WaUYsCAATAajfxcF8D8IV7zHMdx2LhxI/r3748JEyagQ4cOePDBB3H+/Hn+r21HQkNDsWPHDgwfPhwdOnTA66+/jnfffRfDhg3j69xxxx1o3749+vfvj7Fjx+Kee+7BnDlz+PI333wT//nPf7BgwQJ06tQJQ4cOxYYNG/jHCVFRUfjzzz9RXV2NAQMGoHv37vj000/573PSpElITU1Fjx49EBMTg127djntb6dOnfDRRx8hKysL6enp2L9/P6ZPn+7uj7xWAwcOxPjx492u/8gjj2DmzJmYPn06unXrhvz8fIwfP97jP07ceR84u+7xxx/Hiy++iNTUVIwcORIHDhxAUlKSw/pCoRDr169HdXU1evbsiSeffBKvvfYagBt/UIlEInzwwQdYvnw5EhISHAZR7rxn/IU2siMBY8eOHTCZTPwy6oiIiDpvZEcar0DdyK4pcHeTuaYgOTkZc+fO9SiIqWnw4MGIi4vDV1995buO1aNdu3ahX79+yMvLQ9u2bevlHg25kV3APEKybMnubRZiErgMBgN+//13xMTEeB246PV6rF69GoD5L6va/vpxVddZuSf3IIQ0nJycHISFhdnMZ3FFpVJh2bJlGDJkCIRCIf73v/9h8+bN+OOPP+qxp95Zt24dgoOD0b59e+Tl5eGFF15AZmZmvQUvDY1GYEjAoFQCzQONwPhPcxqB8ZRarcaIESNw5MgRaDQapKam4vXXX6/TvjUN5csvv8Rbb72FCxcuIDo6GoMGDcK7776LqKioersnjcAQ4oBAIEDv3r2hUCh8Mgdm+PDh/LE3dZ2Ve3IPQhqDQEjg5y9yuRybN2/2dzc88vjjj3s0yhRoaASGBAyaA9M80AgMIYGLkjkSQgghhNSCAhhCCCGEBBwKYEjA0Gg0ePTRRzFgwABoNBqv2rJs89++fXuoVCqv6jor9+QehBBCPBMwk3hpGTVhjKGwsJA/9ratvLw8t9pyVddZuSf3IIQQ4pmACWAomSORSCT44IMPkJCQ4JNUAn/99Rd/7E1dZ+We3IMQQohnAiaAIUQoFKJLly78KiRv28rMzPRJXWflntyDkEA1Z84crF+/3m9JFknzRXNgCCHEx/bs2QOhUOgwyV5TN2fOHHAcB47j+GzZ//73v1FdXe3vrjUqc+bMQUZGhr+7EdBoBIYEDIPBgB07duDEiRPo0KGD122tW7cOADBq1CiIRM7/V3BV11m5J/cgTcvnn3+O5557Dp9//jkuXbqEhISEerkPYwxGo7HRvbc6d+6MzZs3w2AwYNeuXXjiiSegUqmwfPlyf3cNRqMRHMdBIAiMv9/1ej2lIXGGBZiKigoGgFVUVPi7K6SBbdq0iQFgANjGjRtZdnZ2nduqrq7m26qurvaqrrNyT+5BblCr1ez48eNMrVb7uyt1UlVVxYKDg9nJkyfZ2LFj2bx58xhjjD300EPsgQcesKmr0+lYVFQU++KLLxhjjBmNRjZ//nyWkpLCZDIZu/nmm9n333/P19+6dSv//u/WrRsTi8Vs69atLC8vj91zzz2sRYsWLCgoiPXo0YP98ccfNve6dOkSGz58OJPJZCwlJYWtXr2aJScns/fff5+vU1ZWxiZOnMiio6NZSEgIu+222+z+P1uwYAFr0aIFCw4OZk888QR75ZVXWHp6Ol8+e/Zsm9eMMTZp0iQWFxfHGGNMo9Gw5557jsXExDCpVMoyMzPZ/v37+brdu3dnixYt4l/fe++9TCQSsaqqKsYYYwUFBQwAO336NN/eiy++yBISEphCoWC9evViW7du5a9fuXIlCwsLYz/99BPr1KkTEwqFLD8/n23dupX17NmTKRQKFhYWxvr27cvOnTtn8z0sW7aMtWrVisnlcjZmzBhWXl5u8319+umnrGPHjkwqlbLU1FSWlZVlU15QUMAefPBBFhERwRQKBevevTvbu3cvW7lyJf+7wfK1cuVKxhhjANhHH33ERowYwRQKBZs9ezb/PVhbt24ds/4It/T5888/Z4mJiSwoKIg988wzzGAwsHfeeYfFxsaymJgY9tZbb7H6VNv/v77+/G5cYTshtRAIBEhPT4dcLvf6ryeBQIABAwbwx97UdVbuyT1I7RhjUOsbfgWiXCwEx3EeXfPdd9+hY8eOSE1NxaOPPoqpU6di5syZeOSRRzBmzBhUV1fzObJ+++03qFQqjBo1CgCwYMECfP3111i2bBnat2+PHTt24NFHH0VMTAz/XgKAGTNmYPHixWjTpg0iIiJQUFCA4cOHY968eZBKpfjyyy8xYsQI5ObmIikpCYB5W/nS0lJs27YNYrEY06ZNQ0lJiU3fx4wZA7lcjl9//RVhYWFYvnw57rjjDpw6dQqRkZH47rvvMGfOHGRlZaFfv3746quv8MEHH6BNmza1/xzlcuh0OgDAyy+/jB9++AFffPEFkpOTsXDhQgwZMgR5eXmIjIzEgAEDsG3bNkyfPh2MMezcuRPh4eH466+/MHToUGzfvh0tW7ZEu3btAABTpkzB8ePH8e233yIhIQHr1q3D0KFDcezYMbRv3x6AeUuDd955B5999hmioqIQGRmJjIwMTJo0Cf/73/+g0+mwf/9+m3/rvLw8fPfdd/i///s/VFZWYuLEiXj22Wf5BK2rV6/GrFmzsHTpUnTt2hVHjhzBpEmTEBQUhHHjxqG6uhoDBgxAy5Yt8fPPPyMuLg6HDx+GyWTC2LFj8c8//2DTpk18egLrxSlz5szB22+/jSVLlkAkEuHPP/9067135swZ/Prrr9i0aRPOnDmD0aNH4+zZs+jQoQO2b9+O3bt344knnsCgQYPQu3dvt9ps1HwSBjUgGoFpvrZv3862bt3Kzp8/z7Zu3erVCAxpvBz9BafU6lnyK780+JdSq/e4/3379mVLlixhjDGm1+tZdHQ027p1K3/85Zdf8nUfeughNnbsWMaYeSRBoVCw3bt327Q3ceJE9tBDDzHGbozArF+/3mU/OnfuzD788EPGGGMnTpxgANiBAwf48tOnTzMA/AjMzp07WWhoKNNoNDbttG3bli1fvpwxxlifPn3Ys88+a1Peu3fvWkdgDh48yKKjo9no0aNZdXU1E4vFbPXq1Xy5TqdjCQkJbOHChYwxxn7++WcWFhbGDAYDy87OZnFxceyFF15gr7zyCmOMsSeffJI9/PDDjDHGzp8/z4RCISssLLTp0x133MFmzpzJGGP8aIf174urV68yAGzbtm0Of3azZ89mQqGQXbx4kT/366+/MoFAwC5fvsz/XL755hub6958803Wp08fxhhjy5cvZyEhIezq1atO71FzpIox8wjM1KlTbc65OwKjUChYZWUlf27IkCEsJSWFGY1G/lxqaipbsGCBwz75Ao3AEEJIAMrNzcX+/fv5uU8ikQhjx47F559/joEDB+KBBx7A6tWr8dhjj0GpVOKnn37Ct99+C8D8F79KpcLgwYNt2tTpdOjatavNuR49eti8rq6uxpw5c7BhwwZcvnwZBoMBarUaFy5c4PslEonQrVs3/pp27dohIiKCf3306FFUV1fbZSpWq9U4c+YMAODEiRN4+umnbcr79OmDrVu32pw7duwYgoODYTQaodPpcNddd2Hp0qU4c+YM9Hq9zeo8sViMXr164cSJEwCAW2+9FVVVVThy5Ah2796NAQMGYODAgXj77bcBANu3b8dLL73E38doNNrNidNqtTbfh0Qiwc0338y/joyMxPjx4zFkyBAMHjwYgwYNwgMPPID4+Hi+TlJSElq2bGnzfZpMJuTm5iIkJARnzpzBxIkTMWnSJL6OwWDgR1Kys7PRtWtXREZGwlM1/33dlZKSgpCQEP51bGwshEKhzQhwbGys3chboKIAhjRbJpMJOp0OUqnU48cEpGHJxUIcf2OIX+7ric8//xwGg8Fm0i5jDFKpFEuXLsUjjzyCAQMGoKSkBH/88QfkcjmGDh0KAPwqnQ0bNth8cAKAVCq1eR0UFGTzevr06fjjjz+wePFitGvXDnK5HKNHj+Yf27ijuroa8fHx2LZtm11ZeHi42+0AQGpqKn7++WeIRCKbfZuKi4tdXhseHo709HRs27YNe/bsweDBg9G/f3+MHTsWp06dwunTp/nHadXV1RAKhTh06JBdxnfLYzrA/Air5v/jK1euxPPPP49NmzZhzZo1eP311/HHH3/glltucdlHy7/Vp59+avcoxtIPuVzush1nav77CgQCu80w9Xq93XU1J/tyHOfwnMlkqnPfGhMKYEjA0Gq1eOaZZyCVSvHee+951ZZKpUJGRgZMJhPWrVuHLl26OK2rVqvRp08fAOblsTV/MTkrd3UdcR/HcVBIGvevK4PBgC+//BLvvvsu7rzzTpuykSNH4n//+x+efvppJCYmYs2aNfj1118xZswY/gMmLS0NUqkUFy5csJnv4o5du3Zh/Pjx/Fya6upqnDt3ji9PTU2FwWDAkSNH0L17dwDmEZ+ysjK+Trdu3VBUVMQvfXakU6dO2LdvHx5//HH+3N69e+3qSSQSfo6KtbZt20IikWDXrl1ITk4GYP4gPnDgAKZOncrXGzBgALZu3Yr9+/dj3rx5iIyMRKdOnTBv3jzEx8fzIy5du3aF0WhESUkJbr31Vvd+WFa6du2Krl27YubMmejTpw+++eYbPoC5cOGCzQqyvXv3QiAQIDU1FbGxsUhISMDZs2fxyCOPOGz75ptvxmeffYZr1645HIWRSCRu7ywfExODqqoqKJVKPrihfXcCKIChVALEZDLxQ9ne/gVhMBhw+vRpAEB5ebnL+x49etTpfZ2Vu7qONC2//PILysrKMHHiRLvdwu+//358/vnnePrpp/Hwww9j2bJlOHXqlM2jl5CQEEyfPh3//ve/YTKZ0K9fP1RUVGDXrl0IDQ3FuHHjnN67ffv2+PHHHzFixAhwHIf//Oc/Nu+5jh07YtCgQfjXv/6Fjz/+GGKxGC+++KLNyMSgQYPQp08fjBw5EgsXLkSHDh1w6dIlbNiwAaNGjUKPHj3wwgsvYPz48ejRowcyMzOxevVq5OTkuJzEaxEUFIRnnnkGL730EiIjI5GUlISFCxdCpVJh4sSJfL2BAwfiww8/RExMDDp27MifW7p0KcaMGcPX69ChAx555BE8/vjjePfdd9G1a1dcuXIFW7Zswc033+x0H578/Hx88sknuOeee5CQkIDc3FycPn3aJjCTyWQYN24cFi9ejMrKSjz//PN44IEHEBcXBwCYO3cunn/+eYSFhWHo0KHQarU4ePAgysrKMG3aNDz00EOYP38+Ro4ciQULFiA+Ph5HjhxBQkIC+vTpg5SUFOTn5yM7OxutWrVCSEiI3UibRe/evaFQKPDqq6/i+eefx759+7Bq1Sq3fuZNmk9m0jQgmsTbfP35559s0aJF7Ouvv2abN2/2ahKvVqtlixYtYosWLWJ79+6tta7BYGC///47+/3335nBYHC73NV1xLFAXUZ99913s+HDhzss27dvHwPAjh49yo4fP84AsOTkZGYymWzqmUwmtmTJEpaamsrEYjGLiYlhQ4YMYdu3b2eM3ZjEW1ZWZnNdfn4+u+2225hcLmeJiYls6dKlbMCAAeyFF17g61y6dIkNGzaMSaVSlpyczL755hvWokULtmzZMr5OZWUle+6551hCQgITi8UsMTGRPfLII+zChQt8nXnz5rHo6GgWHBzMxo0bx15++WWXy6itqdVq9txzz7Ho6GiHy6gZM0+y5TiOn+DM2I1Jq9b9Zcw8CXjWrFksJSWFicViFh8fz0aNGsX+/vtvxpjjCbBFRUVs5MiRLD4+nkkkEpacnMxmzZrFT3a1fA8fffQRS0hIYDKZjI0ePZpdu3bNpp3Vq1ezjIwMJpFIWEREBOvfvz/78ccf+fJz586x+++/n4WGhjKFQsF69OjB9u3bxxgzT9q+//77WXh4uN0y6nXr1tn93NatW8fatWvH5HI5u/vuu9knn3zicBm1tXHjxrF7773X5lzN94WvNeQkXo6xwMoyZ8mFVFFRgdDQUH93hzSgHTt2wGQy8akEIiIikJ6eXqe2jEYjdu7cCcD8rLyuk+aI72k0GuTn56N169aUQ6oeXbx4EYmJidi8eTPuuOMOf3enUaH0CHVX2/+/vv78DphHSIQQQuruzz//RHV1Nbp06YLLly/j5ZdfRkpKCvr37+/vrhFSJxTAkIBhMBiwb98+5Ofn85tzedPWnj17AAC33Xaby7q//fYbAGDIkCEOUwk4Knd1HSENSa/X49VXX8XZs2cREhKCvn37YvXq1bRNPQlY9AiJBIzffvuNX3K6ceNGJCQk1PkRkuV9BJgfTdW2gkGpVPJLMqurq+2WODord3UdcYweIRESuOgREiEOWJYwSqVSn6QSSE1NBQCXe8AIBAJ+joyzVAKOyl1dRwghpO4ogCEBQyqVYtmyZfwkXm/I5XIsW7YMAFz+lS+Xy3HgwAGPy11dRwghpO7oz0JCCCGEBBwKYAghhBAScCiAIQHh2rVrUKvVmDJlCu677z5otVqv2rO0NWXKFGg0Gpd1MzMzkZmZCbVa7Xa5q+sIIYTUHc2BIY2eWq3G33//DZPJhJycHADeb81v3ZarhXgmkwm7d+92el9n5a6uI4QQUncUwJBGz5J1VSKR4JNPPoFYLOaz29aVVCrFm2++CcA+g6ujuuvWreOP3S13dR0h3tq2bRtuu+02lJWVeZwxurE6d+4cWrdujSNHjiAjI8Pf3bHjq595SkoKpk6dapPEknjGLwFMSkoKQkNDIRAIEBERYZPQjBBngoKCMGnSJBQXF+PEiRNetSUSidCvXz/+2FXdkSNHelzu6jrStIwfPx7l5eVYv369v7viktFoxKJFi7Bq1SqcP38ecrkc7du3x6RJk/Dkk0/6u3uNWt++fXH58mW7hJ2k4fltBGb37t38Jl+EEEIazty5c7F8+XIsXboUPXr0QGVlJZ9Jub7odDqvR079Ta/XQyKR8BmpG7um8DOvDU3iJQHDaDRi27Zt2LVrF4xGo9dtZWdnIzs722Vblvtu27bNYV1n5a6uI83L9u3b0atXL0ilUsTHx2PGjBkwGAx8+cCBA/Hcc89h6tSpiIiIQGxsLD799FMolUpMmDABISEhaNeuHX799Ve7tnft2oWbb74ZMpkMt9xyC/75559a+/Lzzz/j2WefxZgxY9C6dWukp6dj4sSJmD59Ol/HZDJh4cKFaNeuHaRSKZKSkjBv3jy+/JVXXkGHDh2gUCjQpk0b/Oc//+Ef9wLmhIgZGRn47LPPbHZlPXnyJPr16weZTIa0tDRs3rwZHMfVOnL1zz//YNiwYQgODkZsbCwee+wxlJaWOq2/atUqhIeHY/369Wjfvj1kMhmGDBmCgoICm3o//fQTunXrBplMhjZt2mDu3Lk2/yYcx+Hjjz/GPffcg6CgIMybNw/btm0Dx3EoLy/n6/3www/o3LkzpFIpUlJS8O6779rcp6SkBCNGjIBcLkfr1q2xevVquz5fuHAB9957L4KDgxEaGooHHngAxcXFNnXeeusttGjRAiEhIXjyyScxY8YMm8ds48ePx8iRIzFv3jwkJCTwm3V+9dVX6NGjB0JCQhAXF4eHH34YJSUl/HWW7+m3335D165dIZfLcfvtt6OkpAS//vorOnXqhNDQUDz88MNQqVROf+4NztP01du3b2d33303i4+Pd5r2e+nSpSw5OZlJpVLWq1cvPn24RUpKCuvWrRvr0aMH+/rrrz26v6/TcZPGr6Kigm3dupX9+eefDAADwDZu3Miys7O9atPS1o4dO2qtW11dzdetrq52u9zVdcQxtVrNjh8/ztRq9Y2TJhNj2uqG/zKZ3O73uHHj2L333uuw7OLFi0yhULBnn32WnThxgq1bt45FR0ez2bNn83UGDBjAQkJC2JtvvslOnTrF3nzzTSYUCtmwYcPYJ598wk6dOsWeeeYZFhUVxZRKJWOMsa1btzIArFOnTuz3339nf//9N7v77rtZSkoK0+l0Tvs6ZMgQ1r9/f1ZSUuK0zssvv8wiIiLYqlWrWF5eHtu5cyf79NNP+fI333yT7dq1i+Xn57Off/6ZxcbGsnfeeYcvnz17NgsKCmJDhw5lhw8fZkePHmUGg4GlpqaywYMHs+zsbLZz507Wq1cvm8+S/Px8BoAdOXKEMcZYWVkZi4mJYTNnzmQnTpxghw8fZoMHD2a33Xab076vXLmSicVi1qNHD7Z792528OBB1qtXL9a3b1++zo4dO1hoaChbtWoVO3PmDPv9999ZSkoKmzNnDl8HAGvRogVbsWIFO3PmDDt//jz/My8rK2OMMXbw4EEmEAjYG2+8wXJzc9nKlSuZXC5nK1eu5NsZNmwYS09PZ3v27GEHDx5kffv2ZXK5nL3//vuMMcaMRiPLyMhg/fr1YwcPHmR79+5l3bt3ZwMGDODb+Prrr5lMJmMrVqxgubm5bO7cuSw0NJSlp6fzdcaNG8eCg4PZY489xv755x/2zz//MMYY+/zzz9nGjRvZmTNn2J49e1ifPn3YsGHD+Oss39Mtt9zC/vrrL3b48GHWrl07NmDAAHbnnXeyw4cPsx07drCoqCj29ttvO/25M+bk/9/rfP357XEAs3HjRvbaa6+xH3/80WEA8+233zKJRMJWrFjBcnJy2KRJk1h4eDgrLi7m61y8eJExxtilS5dYWloaO3r0qNv3pwCm+bEEMFu3bmVpaWmsQ4cO7Ndff/UqgKmsrGTJycksOTmZ7dy5s9a6SqWSpaWlsbS0NP6Dw51yV9cRxxz+AtRWMzY7tOG/tO4HnrUFMK+++ipLTU1lJquAKCsriwUHBzOj0cgYMwcw/fr148sNBgMLCgpijz32GH/u8uXLDADbs2cPY+zGB8+3337L17l69SqTy+VszZo1Tvuak5PDOnXqxAQCAevSpQt76qmn2MaNG/nyyspKJpVKbQIWVxYtWsS6d+/Ov549ezYTi8U2QdKvv/7KRCIRu3z5Mn/ujz/+qDWAefPNN9mdd95pc6+CggIGgOXm5jrsy8qVKxkAtnfvXv7ciRMnGAD+D+o77riDzZ8/3+a6r776isXHx/OvAbCpU6fa1KkZwDz88MNs8ODBNnVeeukllpaWxhhjLDc3lwFg+/fvt+uLJYD5/fffmVAoZBcuXODr5OTk2FzXu3dvNnnyZJv7ZGZm2gUwsbGxTKvVOvy5WBw4cIABYFVVVTbf0+bNm/k6CxYsYADYmTNn+HNPPfUUGzJkSK1tN2QA4/EjpGHDhuGtt97CqFGjHJa/9957mDRpEiZMmIC0tDQsW7YMCoUCK1as4Ou0bNkSABAfH4/hw4fj8OHDTu+n1WpRWVlp80WaJ5lMhpycHOzYscPrJH8KhQKrVq3CqlWrXLalUCiQk5ODnJwcKBQKt8tdXUeajxMnTqBPnz42ebcyMzNRXV2Nixcv8uduvvlm/lgoFCIqKgpdunThz8XGxgKAzfA/APTp04c/joyMRGpqKj/RPTg4mP96+umnAQBpaWn4559/sHfvXjzxxBP8Iw7LBN4TJ05Aq9XijjvucPo9rVmzBpmZmYiLi0NwcDBef/11XLhwwaZOcnIyYmJi+Ne5ublITEy0mUPSq1cvp/cAgKNHj2Lr1q0230fHjh0BAGfOnHF6nUgkQs+ePfnXHTt2RHh4OP9zOXr0KN544w2bdidNmoTLly/bPCax5DNz5sSJE8jMzLQ5l5mZidOnT8NoNOLEiRMQiUTo3r27XV+s20hMTERiYiJ/Li0tzaa/ubm5dj8rRz+7Ll262M17OXToEEaMGIGkpCSEhIRgwIABAGD372X9/ouNjeUfD1qfq/ne8yefTuLV6XQ4dOgQZs6cyZ8TCAQYNGgQ9uzZA8CcoddkMiEkJATV1dX4888/8cADDzhtc8GCBZg7d64vu0kICTRiBfDqJf/ctyFvV2NJP8dxNucsAZAn+wplZ2fzx9YZgAUCAXr27ImePXti6tSp+Prrr/HYY4/htddeg1wur7XNPXv24JFHHsHcuXMxZMgQhIWF4dtvv7Wb++GLDOzV1dUYMWIE3nnnHbuy+Ph4r9qdO3cu7rvvPrsy6z9qAi2LfM3+KpVKDBkyBEOGDMHq1asRExODCxcuYMiQIdDpdDZ1a77XHL0fG9OeVj4NYEpLS2E0Gvm/EixiY2Nx8uRJAEBxcTE/emM0GjFp0iSbKLmmmTNnYtq0afzryspKmyiVENIMcBwgCawPEmudOnXCDz/8AMYYH4Ts2rULISEhaNWqldft7927F0lJSQCAsrIynDp1Cp06dQIAtGvXzq020tLSAJg/8Nq3bw+5XI4tW7Y4XFa9e/duJCcn47XXXuPPnT9/3uU9UlNTUVBQgOLiYv5zwlXC027duuGHH35ASkqKyy0PrBkMBhw8eJAfpcjNzUV5eTn/c+nWrRtyc3Pd/vk406lTJ+zatcvm3K5du9ChQwcIhUJ07NgRBoMBhw4d4j/rLH2xbqOgoAAFBQX859vx48dRXl7O/7ukpqbiwIEDePzxx/nr3EkWe/LkSVy9ehVvv/023/bBgwe9+p4biwZfRt2mTRscPXrU7fpSqRRSqRRZWVnIysqi1RzNmEajweDBg6HT6fDqq6961ZZareZXXCxZssRl3XvuuQeAefVGzb9OnZW7uo40PRUVFTYjHgAQFRWFZ599FkuWLMFzzz2HKVOmIDc3F7Nnz8a0adMgEHi/GPSNN95AVFQUYmNj8dprryE6OrrWPYhGjx6NzMxM9O3bF3FxccjPz8fMmTPRoUMHdOzYESKRCK+88gpefvllSCQSZGZm4sqVK8jJycHEiRPRvn17XLhwAd9++y169uyJDRs28Js21mbw4MFo27Ytxo0bh4ULF6Kqqgqvv/46ANg8XrM2efJkfPrpp3jooYfw8ssvIzIyEnl5efj222/x2WefQSgUOrxOLBbjueeewwcffACRSIQpU6bglltu4QOaWbNm4e6770ZSUhJGjx4NgUCAo0eP4p9//sFbb73l8nuxePHFF9GzZ0+8+eabGDt2LPbs2YOlS5fio48+AmAOPIYOHYqnnnoKH3/8MUQiEaZOnWrz+2DQoEHo0qULHnnkESxZsgQGgwHPPvssBgwYwD/Ceu655zBp0iT06NEDffv2xZo1a/D333/bPOJxJCkpCRKJBB9++CGefvpp/PPPP/wmngHPmwk0qDGJV6vVMqFQaDex9/HHH2f33HOPN7fi0STe5ufatWu0CqkZqW0SYGM2btw4/t/b+mvixImMMca2bdvGevbsySQSCYuLi2OvvPIK0+v1/PUDBgxgL7zwgk2bycnJ/ERPC+vfu5bJl//3f//HOnfuzCQSCevVq5fLhRGffPIJu+2221hMTAyTSCQsKSmJjR8/np07d46vYzQa2VtvvcWSk5OZWCxmSUlJNpNeX3rpJRYVFcWCg4PZ2LFj2fvvv8/CwsL48tmzZ9tMMLU4ceIEy8zMZBKJhHXs2JH93//9HwPANm3axBizn8TLGGOnTp1io0aNYuHh4Uwul7OOHTuyqVOn2kyKtrZy5UoWFhbGfvjhB9amTRsmlUrZoEGD2Pnz523qbdq0iV8RFBoaynr16sU++eQThz9ri5qTeBljbO3atSwtLY3/OS1atMjmmsuXL7O77rqLSaVSlpSUxL788ku7f9vz58+ze+65hwUFBbGQkBA2ZswYVlRUZNPOG2+8waKjo1lwcDB74okn2PPPP89uueUWvtzZRPJvvvmGpaSkMKlUyvr06cN+/vlnm5+xo+/J8jO05uzf1FpDTuLlGHORCKYWHMdh3bp1NpF+79690atXL3z44YcAzM9qk5KSMGXKFMyYMaOut+JVVlYiLCwMFRUVNs9zSdOUm5uLy5cvAzBPyjt//jwqKiqQmpqK6OhopKen16ldrVaLN954AwAwYsQI3HLLLU7rGgwGrFmzBgAwduxYu2FsZ+WuriOOaTQa5Ofn2+wdQpquXbt2oV+/fsjLy0Pbtm190uaqVaswdepUm8c0TdHgwYMRFxeHr776yt9d4dX2/6+vP789/o1aXV2NvLw8/nV+fj6ys7MRGRmJpKQkTJs2DePGjUOPHj3Qq1cvLFmyhN+IiRBPWf8Cio2NRb9+/XyWSmDw4MH8sau6d999N0pLS6FWqxESEmJX/sgjjzi8ztF5QpqzdevWITg4GO3bt0deXh5eeOEFZGZm+ix4aapUKhWWLVuGIUOGQCgU4n//+x82b96MP/74w99d8xuPA5iDBw/itttu419bJtiOGzcOq1atwtixY3HlyhXMmjULRUVFyMjIwKZNm+wm9nqK5sA0bxkZGX5NVnf06FGYTCZcuXKl1tEaQkjtqqqq8Morr+DChQuIjo7GoEGD7FYvEXscx2Hjxo2YN28eNBoNUlNT8cMPP2DQoEH+7prfePUIyR/oEVLzsm/fPqjVanTt2hXBwcE4fPgwrl69CrFY7NUjJJ1Ox+9N1LVrV/Tu3dtpXaPRiE8//RQA0L59e7u9MYxGI7+XUbdu3fhJhc7Ok9rRIyRCAlejfoREiL9oNBp+BcHGjRu9buuZZ54BAOzYscPtuo7ua92v6upqfh8GZ+cJIYR4L2ACGHqERDiOQ3JyMoxGo9Mll560ZXms6aotV3Ut/apZ7uw8cU+ADQ4TQtCw/98GTAAzefJkTJ48mR+CIs2PQqHAuXPn+Em8arUaly9fRlxcnMcBgkKhwLfffgsAbqUSsNStrV/unie1s+z+qVKpaO8cQgKMJQ1DzV1860PABDCEWFjmkmg0GuTm5kIikSAqKsrPvSK+IhQKER4ezudcUSgUNIJFSCPHGINKpUJJSQnCw8MbZM4fBTAk4ERGRiIlJQWXLl2CTqeDwWDwd5eIj1mS/TWmxHGEENfCw8NtknXWp4AJYGgODNFoNHjwwQcBAN9++y0qKirskpF50pZlC3NHSeKc1Z01a5bLflkeSTk7T1zjOA7x8fFo0aIF9Hq9v7tDCHGDWCxu0NWWARPA0BwYYjQa8dNPP/HH3rZlScDmKruqdV1H93XWL1/2t7kSCoW0/JwQ4lDABDCESCQSfPLJJ/yxt229+OKLAFxPNnNV11m/fNlfQgghtiiAIQFDLBZj0qRJXrdTWFiI06dP4+677wbgOpWAWCzm63rSL1/1lxBCiD3v87gTEmCuXr3q7y4QQgjxUsAEMFlZWUhLS0PPnj393RXiJyaTCTk5OcjJyXE5b8WdtvLz85Gfn++yLVd1TSYTDhw4gM2bN0OpVNZLfwkhhNgKmEdINImXqNVq3HTTTQDMW/N7Q6vV4oknngAA/PXXXy7va6nrKJWAWq3mUwbs3LkT/fr1c9hfSiVACCG+EzABDCEAEB0d7bO2wsPD3d722lXQbCmvqqqyOe/L/hJCCLmBAhgSMIKCgnDlyhWftCWXy7Fz506Ulpa63K4+KCgI69ev97jcl/0lhBBiiwIYPzOZTDhz5gy0Wm2dro+Pj6dt9AkhhDQ7FMD4WWVlJQoLC+t8vUajoQCmHlVVVaGsrMzf3SCEEFJDwAQwTTWVgGV1ilQqRXJystvXqVQqXLx4sUFTl/ubRqPBxIkTAQCff/65V23pdDq88sor0Gq1ePPNN53WO3LkCDQaDRYuXAgAePnllx3266233rIrr9lfSiVACCG+EzABTFNfhSQWi5GQkOB2/bKyMly8eLEee9T4GI1GfPPNNwDA73DrTVuWFUVz5851Ws9kMsFoNGLLli0AwO/IW7MtR+W+7C8hhBBbARPAECKRSPD+++/zx94Qi8V4+eWXoVQq3dqJd/Lkyfyxo345KvdlfwkhhNiiAIYEDLFYjKlTp/qkLZFIhMceewylpaUucyGJRCKMHj261n45KvdlfwkhhNgKmJ14CSGEEEIsaASGBAyTyYQLFy4AAJKSkrxuq7CwEGVlZQgODnZZt6SkBADQokULh+VFRUV25TX7KxDQ3wuEEOIrFMCQgKFWq9G6dWsAvkklMHz4cACuUwlotVo89NBDAJynEnBUXrO/lEqAEEJ8hwIYElAUCoXP2pLL5W4vQ3e1BNpZuS/7Swgh5IaACWCa6j4wxH1BQUE22Z69IZfLsX//frdSCcjlcvz666+19stRuS/7SwghxFbAPJSfPHkyjh8/jgMHDvi7K4R4paKiAseOHUNpaam/u0IIIQErYAIYQhorg8HgUf1Tp07h6tWryMnJqaceEUJI0xcwj5AI0Wq1mDJlCgBg6dKlXrWl0+kwZ84caDQavP766y7rfvDBBwCA559/3qbswoULOHnypMPymv2VSqUAzJN7ATSrNBCEEOJrNAJDAobBYMBnn32Gzz77zONRj5qMRiN++OEHbNiwweW8KqPRiA0bNjisW1pa6rTcl/0lhBBii0ZgSMAQi8V80kRXu+e6IhKJ8Nxzz0GlUrlMJSASifikjI7qOiv3ZX8JIYTYogCGBAyJRILXXnvNJ22JxWL861//ciuVgFgsxqOPPupxuS/7SwghxBY9QiKEEEJIwKEAhgQMxhiuXLmCK1eueD0BljGGa9euoby83GVbjDGUl5c7reus3Jf9JYQQYoseIZGAoVKp+FxD3qYS0Gg0bqcS0Gg0GDVqFADHqQScldfsL6USIIQQ36ERGBLwzp49C41G4+9uEEIIaUABMwJDqQRIUFCQzaMYoVAIwLzfyoULF9ChQwe325LL5fxuuM5SCahUKr7u1q1ba23LUXnN/hJCCPGdgBmBoVQCpKa2bdvyQUx9BLaFhYU+b5MQQohvBEwAQ0hNcrkcycnJ9da+yWSqt7YJIYR4hwIYEjC0Wi2mTp2KqVOnQqvVetWWTqfDO++8g6VLl0Kn07msu3TpUqd1nZX7sr+EEEJsUQBDAobBYMB///tf/Pe//63T1vwGgwHFxcW4du0ajEYjvv76a/zwww9upRL44YcfnNZ1Vu5tfwkhhDgXMJN4CRGLxXj11Vf5Y0/l5+fz81pEIhEmTZrkdiqBRx55hD92t9zb/hJCCHGOAhgSMCQSCebNm1fn660f74jFYjz//PNupxJ48sknPS73tr+EEEKco0dIhLhgvcyaRlIIIaRxoACGBAzGGJRKJZRKpU9SCahUKqjVapdtxcbGIiEhAWq1ml+2XbMttVpt15Yv+0sIIcQWPUIiAUOlUiE4OBiA91vzazQa3H777QBcpxJQq9VIS0sDAIcb1lmnJaiZSsBX/SWEEGKLAhjSKBiNRly+fBkGgwFyuRyxsbH+7hIhhJBGjAIY0igUFRUhLy+Pfx0cHGw3YqFQKPgkjgqFwqv7yWQy7Nu3D1evXoVMJqu1rlwux8WLF/H33387rCuTyfiRF+tyX/aXEEKILQpgSKNQc58UR/umcBzns8cwHMdBoVBApVKB4ziXdYOCgiCXyx3W5TjOLp8SYwzV1dWQyWQ08ZcQQuqB3ybxqlQqJCcnY/r06f7qAiH15tKlSzh06BD2799PE3gJIaQe+C2AmTdvHm655RZ/3Z4EIJ1Oh9deew2vvfaay+3/XdHr9fjggw/w2WefQa/Xu7zvm2++6bSuXq/HZ599ZlOuVCqh1+vx8ccf49VXX/W6v4QQQmz5JYA5ffo0Tp48iWHDhvnj9iRA6fV6zJ8/H/Pnz3cZdLhiMBjw6aefYvXq1S63+TcYDHjvvfec1jUYDFi9erVdueX822+/7XV/CSGE2PI4gNmxYwdGjBiBhIQEcByH9evX29XJyspCSkoKZDIZevfujf3799uUT58+HQsWLKhzp0nzJBKJ8MILL+CFF15wuf2/K0KhEI8++ijuv/9+h3u71Kz79NNPO60rFApx//3325Vbzj///PMe9Vev16OkpISCHkIIqYXHnwJKpRLp6el44okncN9999mVr1mzBtOmTcOyZcvQu3dvLFmyBEOGDEFubi5atGiBn376CR06dECHDh2we/dul/fTarU2mXwrKys97TJpIqRSKZYsWeKTtiQSCV555RWUlpZCIpG4vO+CBQuQnZ3tsK5EIsGUKVOcnr/11ltdBknWcnJyUF5ejqioKHTp0sXt6wghpDnxOIAZNmxYrY9+3nvvPUyaNAkTJkwAACxbtgwbNmzAihUrMGPGDOzduxfffvstvv/+e1RXV0Ov1yM0NBSzZs1y2N6CBQswd+5cT7tJSKORm5uLyMhIxMXFuVW/vLwcAHD16tV67BUhhAQ2n86B0el0OHToEAYNGnTjBgIBBg0ahD179gAwByQFBQU4d+4cFi9ejEmTJjkNXgBg5syZqKio4L8KCgp82WVC6l1JSQlOnjzp724QQkiT4tN9YEpLS2E0Gu12UY2Nja3zL3CpVAqpVOqL7pEAp1QqfbY1v1qt5h/PuEoloFKpkJKSAsBxKgG1Wu0wlYCz84QQQrzn143sxo8f73bdrKwsZGVlwWg01l+HCCGEEBIQfBrAREdHQygUori42OZ8cXGx28//nZk8eTImT56MyspKhIWFedUWCUwKhQIlJSX8sTdkMhm2b9+Oa9euuZVK4PTp0/jnn3+cphJYt24df+zqPCGEEO/5dA6MRCJB9+7dsWXLFv6cyWTCli1b0KdPH1/eijRDHMchJiYGMTExLrf/d6etyMhIhIeHu5VKIDo62mldjuMQHh5uV+7sPCGEEO95PAJTXV1tk3QvPz8f2dnZiIyMRFJSEqZNm4Zx48ahR48e6NWrF5YsWQKlUsmvSqoreoRECCGEEAuPA5iDBw/itttu419PmzYNADBu3DisWrUKY8eOxZUrVzBr1iwUFRUhIyMDmzZtspvY66lAeoRUUVHBP+pwxXqPm+bIZDLh2LFjbu3vo9PpsGjRIgDASy+95HL/ltro9Xp88sknUKlUmDRpksv7Ll68GEVFRQ7nben1eqxZswYAMHbsWJfnCSGEeM/jAGbgwIEuk9NNmTLF4cZezYVSqURhYaFH13iy0VlTolKpUFZWZnf+ypUrduf0ej1ef/11AMDUqVO9CmAMBgM+/PBDAHA5OmgwGDBv3jwAwKOPPuqw/PPPPwcA3H///S7PE0II8Z5fVyE1VcHBwUhOTvbomhYtWtRTbwKDWCxGRkYGcnJyoFKpcPHiRRQWFtpswS8SifDkk0/yx96wbPOv0WjcSiXw+OOP4+rVq05TCdx11138savzhBBCvBcwAUwgzYEJDQ1FaGiov7sRUDiOQ1BQENq2bYuioiJcuXIFjDGb5IhSqRSffvqpT+4nkUgwZ84ct1MJ/Pe//601lcD06dPdPk8IIcR7fslGXReTJ0/G8ePHceDAAX93hdSjqKgodO7cGQJBwLw1CSGE+EHAjMCQuqttzhIt7yWEEBKIKIBpwhhjOHbsGK5du+a0TosWLZCWltaAvao7pVLJzxUqKSnxOpVAr169wBjD5s2ba62rUqmQlpYGk8mEX3/9lT/PGEN1dTXUajWfmf3HH3+0uYej84QQQrwXMAFMIM2BaSwYY7UGL4A5f1UgUalUDs8XFxcjISHBoyX2arXaq/tWVlbCZDIBADQajcPrnJ0nhBDinYAJYAJpH5jGqHfv3jYrdzQaDQ4dOuTHHnlOLpcjPz+fPwZsVyOdPn0aPXr0cKstqVSKTZs2oayszGWyUJlMhqNHj+L48eM2dS17+EilUvzvf//jj63v4eg8IYQQ7wVMAEO8IxaLbT7sA3EkSyAQ8FmhLWJjY3Ht2jU+E7onbbVs2RJSqdTlhGGBQICkpCRcu3bNYV2BQOAw15ez84QQQrxHSz1IQBMKhWjVqpW/u0EIIaSBUQBDAoZer8eSJUuwZMkS6PV6r9oyGAz46quvsHbtWpdt6fV6fPzxx1i7dq3NvjTWba1du9au3Nl5Qggh3guYR0g0idcxjUaDv//+29/daBA6nQ7//ve/AQCTJk2CWCyuc1t6vR4LFy4EADz00EMu67766qsAgNGjRzssz8rKAgB+593azhNCCPFewAQwNInXlmVHWKPR6HKlkVAobBIbwwmFQjz88MP8sbdtDR8+HFqt1q05MKNHj0ZZWZnDukKhEHfccYddv5ydJ4QQ4r2ACWCIraCgIGRkZLi1FDgkJKRJBDAymQyrV6/2SVsSiQTvvPMOSktL3VqF9OmnnyI7Oxsmkwkmk8nm5ymRSPgkkzXv4eg8IYQQ71EAE8DCw8MRHh7u727UWWFhocOs08CNHYItuwj7e8dg6/tfuHDBbjUUIYSQhkUBDPELxhjy8vL4AKVmksTk5GQ+uJHL5QgODnbZplqtxrlz55CcnOzzgCckJIQ/tuz/UpumMOJFCCGNGQUwxC8YY3zw0q5dO0RFRdmUJyUlISkpyeacUqnkRz7OnTvHpxKwnsx77tw5REZGuswGrlar0b9/f5hMJmzYsKHWuiqVCrGxsTCZTPj6668dtmWZCLxu3ToA5hEb6/OWDe0IIYT4RsAEMLQKqeFotVp+i3wLdzZ8q6vY2Fi3VxQ5Sn0QFBSEzp07IycnBwDs+u5MWVmZ232sLeVCWFgYKioqAMDu+7Cc97Vr165BpVIhPj6eJggTQpqlgAlgaBVSw7h48SLy8vLszsvlcvTq1cvtRzOMMZw5c8ZmkrFYLEabNm3sHhe5Sy6X459//uGPrcXExEChUDjNlVSTVCrFunXr3E4l8M8//+DSpUsOgwWpVIq//voLp06dskslsGLFCv4YqD0zuLtMJhO/dF4oFCI+Ph6Aedm2SCTy+3whQghpCAETwJCGUV1dDcD8CMQy4mI0GqFWq2Eymdz+a7+qqgoXL160Ox8SEoKWLVvWqW8CgQCdO3eu07WO2mrXrh1KS0vdWkbduXNnBAcH87mYapZ37NgRer3epi2BQIDWrVvzr0tLS3H8+HG3R4icsb7esglfUVERTp48iZiYGJ/9jAghpDGjAIY41Lp1ayQlJcFoNGLnzp0eX28ZabCMuly6dAlVVVUoLCzE1atXbSbFNhfFxcVeBy/OXL58GQCcruoihJCmhgIY4rHKykp+pAYwBynR0dEOH12IRCLEx8dDqVSiqqoKKpUKKpXK5eZ7juj1eqxatQoAMH78eK924rVs819dXY0xY8a4vO+nn36Kq1evOsx2rdfr8eWXX6KwsNCmLYPBgE2bNgEAhg4d6vXjI8YYNBqNw+/bF4+mCCEkkFAAQzxiMBhw5MgRuw9MyyOWwsJCmEwm6HQ6m/KUlBSEhobCZDLh5MmTdbq3TqfDv/71LwDAww8/7HUqgblz5wIARo0a5bKu5b4bN260KzcYDJg2bRoAYOTIkTbXvfvuuwDA78jrKaPRiOLiYgQHB6O4uBiFhYVo0aJFndoihJCmhAIY4hGj0cgHL9HR0aisrIROp4NOp0NBQQEuXbpkU18kEvH/tXzw5ubm1mnEQCgU4t577+WP6yoiIgIdO3bE0KFDUVVV5dYcmHvvvRcqlcrhfQUCAYYNG4bKykqbtoRCITIzM73q76VLl3DmzBmbcyUlJXVqixBCmpKACWBoGXX9MJlM2LdvH/+65siJMxzH4aabbkJOTg4/78IyvyMiIoJfKRYTE+OzvspkMqxfv97rdqKjoxEXF4cvv/wSOTk5DlchGQwGfl6J5b7nz593OIlXKpXiq6++wrFjx2xWWEkkErz11lte9VWj0Xh1PSGENFUBE8DQMmrfEovFEAqF/AqjmmouU/ZERESE3SZ0gaaqqoo/dmcXYIvq6mq3l3ITQgipu4AJYIhvCYVC9O7d22HwIhKJ+F1umzuJRGK3S7Aj1kGOdfBDCCGkflDClmZMIpEgLCzM7quxBi8qlQopKSlISUmpdZTDnQzdKpUK3bt3x4MPPlhrfbFYzN83MzPT4SMdtVqN1NRUPPzwwzblGo0GDz74IB588EGH19EOuoQQUnc0AkP8zpPdfc+fP88fO5Obm4ugoKBa8yExxlBQUOCz+zoqZ4yhuLjY6XUymcyt+xNCCLFHAQxpcC1btuRzC4WHh/MrlVyRyWTYv38/f+yo3dOnTwMwj4rUFsDIZDL89ttvOHv2rMvUBpb7Xr582WFdiUSC/fv349SpU3aTeD/++GP+mBBCiO9QAEPcVpcdeR1p164d2rVr5/F1QqEQPXv2dFpuCYzcSdIoFArRtWtXSCQSl49yLPd1tgrJui3rewuFQnTs2NFlXwghhHiO5sCQWgkEAoercGglGCGEEH+iERhSK47j0L17dz5poEXNXXCNRmO95fmxMBgMWLNmDQBg7Nixbj96ctbW2rVrcfHiRX5zPFf3LS0txU033eSwfPXq1Th//jx69+7Nnzcajfjzzz8BALfffnud+0oIIcQeBTDEJY7jXM7hOHv2bL33Q6vV4tFHHwVg3rLfmwBGq9Xi2WefBQAMHz7c7fs6SiWg1+sdlut0OsyfPx8A0K9fvzr3lRBCiD0KYIhXIiMjUVpayq+yEYlECA8Pr5d7CQQCDBo0iD92hTHGb/9fc9KvQCBA//79oVQqXa6CstxXo9HY3NcyKsVxHAYNGmSXlkAgEKB79+5u99fXdDodxGKx26u8CCEkkARMAEOpBBqn+Ph4xMXF2Zyrrw9MuVyOP/74w+3658+fx7lz5wAAGRkZdm2tXbsWOTk5LpczW+5bcxJvXl4eAHMqgT/++ANHjx61mcQrlUqxePFit/vrS5a+tmrVqk4TpgkhpLELmEm8kydPxvHjx3HgwAF/d4XUwHGczVdjYb3ZXX1s72+ZBxQdHe3ztr1lCdwuXrzo344QQkg9CZgAhpDGKjIy0u6cu5vk1Ze6ZPsmhJBAQgEMCRgqlQqdO3dG586dvR5RUalUuPXWWzF+/HiUlJTg6tWrLu87ePBghykBLOX33XcfNBoN/5hTo9Fg/PjxGD9+PGWVJoQQHwuYOTCEMMZw/Phx/tjbtnJzc/njK1euOE3a6Oq+zspdpSBQKpVgjDWqx26EEBIoKIAhAUMmk2Hr1q38sS/aKiwsdCuVwNatW1FUVOSwrqU8Ly/PLpXA+++/zx87UllZSZsCEkJIHVAAQwKGUCjEwIEDfdrWhQsXXO5hY6lbWyqBgQMHIiIiwi6VgPXqp5qb/wHmTfAIIYR4jubAENJA/LEXDCGENFU0AkMChsFgwC+//AIAuPvuu71OJfDLL7/gypUraNOmjVt1S0pK0LZtW4fl69evR35+Pm6++Wb+vNFoxJ49ewAAffr0qXNffUWr1eL8+fOIjIxslEu/CSHEExTAkICh1WoxatQoAEB1dbXXqQQsbTlKD+BJXWflOp0O//nPf9y6R0MoKCjApUuXcOnSJZ89iiOEEH+hAIYEDIFAgL59+/LHntBoNLhy5YpdW1qt1mVbrupaypVKpV0qgc6dO9epv/WBlnITQpoSCmBIwJDL5di1a5dbdU+cOGHz+sKFC/yxUCjk23JnEq+lrrNJvJZyR6kEli5d6lZ/CSGEeMb/fxYS4kOu9lSRyWSIiYlpoN4QQgipLw0ewJSXl6NHjx7IyMjATTfdhE8//bShu0CasJYtW9a6r0pycjKEQmED9ogQQkh9aPAAJiQkBDt27EB2djb27duH+fPn17qNOyEWarUaPXv2RM+ePaFWqx3WiYqKQteuXaFQKNxqa8SIEdBqtW7VveeeexzWtZQ//PDDNuVarRZPP/00nn76aZf3IIQQ4pkGnwMjFAr5DxetVgvGGCWeI24xmUw4ePAgf9xQbbmq66zcZDLx6Qq87S8hhBBbHgcwO3bswKJFi3Do0CFcvnwZ69atw8iRI23qZGVlYdGiRSgqKkJ6ejo+/PBD9OrViy8vLy/HgAEDcPr0aSxatIj2pCBukUql/D4wUqnUJ22VlJS4TCXgqq6l/OzZs3apBObPn88fE0II8R2PHyEplUqkp6cjKyvLYfmaNWswbdo0zJ49G4cPH0Z6ejqGDBmCkpISvk54eDiOHj2K/Px8fPPNNyguLq77d0CaDZFIhLvuugt33XWXV3vAWLd1xx13uJwTY6l7++23O6xrKe/fv79NuVAoRJ8+fdCnTx+ad0MIIT7mcQAzbNgwvPXWW/zGXTW99957mDRpEiZMmIC0tDQsW7YMCoUCK1assKsbGxuL9PR07Ny50+n9tFotKisrbb4Iacz0en2t5WKxuFHsC0MIIYHMp79FdTodDh06hEGDBt24gUCAQYMG8VuqFxcXo6qqCgBQUVGBHTt2IDU11WmbCxYsQFhYGP+VmJjoyy6TAGI0GvHHH3/gjz/+gNFo9ElbO3fudNmWq7qW8j179sBoNOLSpUv8+YMHD+LgwYMwGo0oLCwEACQkJCAoKMir/hNCSHPn00m8paWlMBqNiI2NtTkfGxuLkydPAgDOnz+Pf/3rX/zk3eeeew5dunRx2ubMmTMxbdo0/nVlZSUFMc2URqPBnXfeCcCcSsCbIMC6LVfb/LuqW7NcJpPxZS+99BJ/Xi6XA6D5MIQQ4gsNvgqpV69eyM7Odru+VCr1esImaRoEAgHS09P5Y1+0pdfr3UolkJ6eDp1O5zSVQHp6OtRqtU15dHQ0n/zR+nxCQgKKioq86r8vqFQqyGQyepxFCAlIPg1goqOjIRQK7SblFhcXIy4uzqu2s7KykJWV5fWjAxK45HK5R8GvO225m0ogOzu71lQC2dnZdqkEZDIZPvvsM5u6HMfVuluws/1tfO3y5cvIzc1FWFgYunbt2iD3JIQQX/Lpn14SiQTdu3fHli1b+HMmkwlbtmxBnz59vGp78uTJOH78OA4cOOBtNwlptHQ6HX8cGhpab/exJLasqKiot3sQQkh98ngEprq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiUmTJjg044TUhtvl1k3BrT0mhBCnPN4BObgwYPo2rUrP+w8bdo0dO3aFbNmzQIAjB07FosXL8asWbOQkZGB7OxsbNq0yW5ir6eysrKQlpaGnj17etUOCVxqtRoDBw7EwIEDXT5qSU1NRevWrZ0+rrG0NXbsWLdSCdRW11I+ceJEm3KNRoOpU6di6tSpTu9hGQlxpKysjF+5RAghxJbHf6YOHDjQ5db/U6ZMwZQpU+rcKUcmT56MyZMno7KystZkfaTpMplM2L59O39cm6CgIAQFBSExMRE7duzwqi1XdZ2Vm0wmHD161OF1lr1iVCpVrfd2pby8HElJSV61QQghgSjwx9lJsyGVSvHdd9/xx+4QCAQICwuzm+thaau0tNStVALfffcdrly54jSVwHfffYdz587ZpRKYPXs2f2ytdevWOHHiRK0Tet1RXV1td45yixFCmoOACWBoFRIRiUQYM2aMT9tyZxWSpa6zVUiWcssqJMvoikgkwsCBAx22aVm6XFFRgezsbKSnp9cpmLHMk7GeL+PtqA4hhASCgNkAglYhkcaurpNuy8vLXc7DccWS4R0ADAaDV20RQkggCJgRGEKMRiP27t0LALjlllu8WqVjaauoqAjh4eFe1TUajdi1axfUajU4juP7ZTQacezYMQBAWloarSoihBAfogCGBAyNRoN+/foB8E0qAUtb7qQSqK1uzXJLygCtVovnn3/e7jwhhBDvUQBDAgbHcWjXrh1/7Iu2DAaDy7Zq1rUkI61ZzhizaYvjOLRs2dIn/SWEEGIrYAIYmsTbTDEG6M2TUhVyBU6fPu2TZhUKc1vuTOKtWbe6utpmoqylXKlU2szRksvl+Prrr33SX0IIIbZoEi9pvBgDVgwB5ieYv1YMNZ+rZxqNhl9JZC0mJoY/tt7y3xfquvTZZDKhqKjIblSIEEKauoAZgSHNkF4FFOy78bpgr/mcpO5zX1y5dOkSTp065bBMLpdDoVDUyzLlQ4cOITMz0+PrtFotTp486fP+EEJIYxcwIzCEaAwMd917P+666y5oNBrv2tJocNddd2H8+PE2oylKpdJp3bvuusvhcmdL+f3332/TllarxYwZMzBjxgyXIzYGg8HljsB1ZTAYsH//fpSWltZL+4QQ4g8BE8BQLiRiNAEbN/2GjRs3ej0Xymg0YuPGjdi6dWutbTHG+LobN250GGRYyn/77TebtoxGI/bt24d9+/b5de6WUqmkze0IIU1OwDxColxIRCIEVn66DBBJXW7/77ItiQQrV67E1atXIRaLndZTq9V8XQAQi8V2oymWcq1Wa9OWWCzGK6+8wh97Qi6XIzg4uNZkj4QQ0pwFTABDiFjIYfzjj/pkDoxYLMb48ePdWoVkqQsA+/fvtwtgLOU1VyGJxWIMHTrU674SQgixRwFMfbFa/usTYgVAe4kEFE9HXRqbmvvaEEJIY0IBTH2wLP+1XkHjrcRbgCc2NesgxmhiOHb0b0AsR5cuXbxOJXDs2DFcvnzZ5eMo65QAjuayGI1GZGdnQ61Ww2g08v1q0aIF/vzzTwDm7NOBlEqgqqoKR48eRUREBDp37uzv7hBCiB0KYOpDzeW/vtAAS4gbO40B6NqrLwDfpBLo2rUrAPdSCVjqbtu2zWVblpQBBoMBkyZNsjsfCEpKSmAwGGgODiGk0QqYACZgd+KdngdIFK7rOaNTAYvb+a4/AYzjgISEeACcT1IJJCQkwGg0upVKICEhgT+uuemcpdxRKoHo6Gj+2F+qq6v9dm9CCKkvARPABOwqJImiWY+a+JJCzKEw/7RPfp4KhQKFhYVupxIoLCwEYJ7EW3NJsqW85iRehUKB77//3uu+estV+oWLFy8iLy8PwcHB6NKlC6RSaQP1jBBC6i5gAhhCAk2gTIDNy8sDYB6pOXv2LMLCwhxu2EcIIY1JwGxkR0igEYlEaNu2rUfXWEZL1Gp1fXTJpeLiYpw6dQolJSV+uT8hhLiLAhgSMDQGhjEPPYoxY8b4JJXAmDFj8Mwzz0Cn06GoqMhp0GCpO2bMGH5koqCggN8PxlL++OOP2+wRo9FoMHXqVMyZM8et5I+MMZqvQgghbqIAhgQMowlY++N6rF271iepBNauXWuTlsDZlv+WumvXroXBYAAAXL16lS9njGHt2rX48ccf7a778ccfsX37drf6W1FR4c23ZCOQVjwRQkhd0BwYEjAkQmDpknd9lkpg6dKlYIwhLi6ODx4cjYBY6gJAx44dkZuba1MeFhbGl0dFRaGqqoq/bsmSJTh79qxbm9pZ9prxhaCgIL89hiKEkIZAAQwJGGIhh8nPPOWzVAKTJ08GYB5B2b59O39cW13rkRcAiI6OhkQi4cv//vtvm+ueeeYZ7N692+v++pPRaMS1a9cQFhbmdeBICCG+EjCPkCgbNakvHMdBofBir54m7syZM8jJycHx48f93RVCCOEFTAAzefJkHD9+3GafDdK8mBjD6dN5OH36NEwmk9vXxcTEQCQSQS6X83sImUwmnD592q22XNV1Vm45f/HiRY/629hYduMtLy/3b0cIIcQKPUIiAUOtBzrclAHAs1QCrVq1QqtWrWzbUqvRoUMHvq1a72tV9/z587WW79mzx+b8TTfdBCDwUgkQQkhjRwEMCSi+3IXZui3L3BelUlmn+zorDwsL41cuBSq9Xs8fWyerJIQQfwqYR0iEBEk4lF88jfKyMq8SOQJAkEKB8pJCvq3Q0FDndYOCUF5ejvLycof3tS6PiIiwOV9SUoJffvmlyYy+7Ny5k0+rQAgh/kQBDAksi9sBK4YCDlYLuY0xYMUQYH4C31a7dr5JmNm6dWu0adMGGRkZPmmvMcrPz/d3FwghhAIYEiDiutw4LtgL6FXO67qiVwEF+3zSVs3JuRKJBElJSQgPD697/xq5gMsITwhpkiiAIYFhwiZon8vB+PVqjF+v9jrZoNbA3G5Lq9Vi/PjxGD9+vF1dvV7vtFyr1eLJJ5/E22+/zacScLTPDCGEEM9RAEMCA8fBIJDgi6N6fHFU7/XEWIMJbrUVGhoKg8GAL774Al988YXDus7KDQYDvvrqK/z22291GrUI9Mm/hBBSn2gVEgkYYrEYCwdJ+eM6YQzQqSAWota24uLiEBERwU/KXbhwodO6YrHYYblYLMb8+fNx/vx5iESe/6/WsmVLlJWVeXwdIYQ0BxTAWDDm3bwKazoftUNsSCQSvJQptbzwvAHL5N2CfZAIOZu29DWqSqVSxMbG8q9feuklAPapBPh+XS+vef7FF190mUqgXbt2yMvLszsvENAAKSGEOBMwAUxWVhaysrLqbwKhXmVelUKaLuvJu35Sc0M9AE73VeE4rr67QwghAStg/sQLyFQCibcAYsqx4ysmkwmFleYvb7fmNz13xO22TCYTCgsLUVhY6DSVgKNyy/krV6543N/g4GCEhoYiJCTEo+sIIaS5CJgRmHonVgCvXvJ9m/RXtM+o1Wq0et+87X/1f9QIktX9w11tENi0JQmW1X7f6yMnzlIJWMqtUxyo1Wq0adMGgOepBLp06QKhUIguXbrUSzbra9eu+bxNQghpSBTAWHAcIPFud1dS/0Q+HDP0pC1nk3AjIyNrLReJRHVaOt2Y578wxnDp0iUkJNAjV0KI/1AAQwJGUFAQ9P8JtbzwaVs1J/Ha1b2eD8h6Em9iYiJSUlLAcZxNviDr65RKpccjKNHR0XVatWSRk5NT7/mKTp06BYVCAY1G43V/CSGkLui3DiF1JJPJfD7RtnPnzoiJifGqDcumefXt2LFjMBqNiIuLQ8eOHRvknoQQYtF4x6kJaYJatGjh7y74jGVF4JUrV/zcE0JIc0QBDAkYWq0WkzeoMXmDD1IJeNCWVqvF5MmTMXnyZId1nZVrtVo8//zzWLJkCXQ6HVq1alVr1mtCCCHuowCGBAyDwYCPDurx0UEfpBLwoC2DwYCPPvoIH330kdNUAo7KDQYDli9fjp9++qnO+xeJxWJERUXV6VpCCGnKaA4MCRhisRizB0j444ZqSywWY/bs2U7rOisXi8V4/fXXUVBQUOdJrhzHoUuXLjh16hQuXfLxMn9CCAlgFMCQgCGRSDBnoMzywqdt1bYKSSKRYM6cOQCcpxKwlNc8/5///Kde9nFpTIxGIwoLC9GyZUsAgFKpRElJCeLi4jza+4YQQjxBj5AIIV47ffo0P//n+PHjOH/+PE6fPu3nXhFCmjIagSH+ZZ1E08XOxYwxVGjMm8KFMQZvFjDXbKu2xhhjqKio4I9rKw8LC+OXVjPGUF5ebrM7ryPWj5e8fTTmT5Z0CUqlEgDt9ksIqV8NHsAUFBTgscceQ0lJCUQiEf7zn/9gzJgxDd0N0hhYZYcGYM4d9cQmp0GMSqVCxDtVAIDqV1QIkgbX+dY125IES532UVV+BRGR5szUjlIJqFQqREREmNuyClZUKhWf0Xrjxo1O+yKRSJCRkQGDwYCwsLA6f0+EENKcNHgAIxKJsGTJEmRkZKCoqAjdu3fH8OHDa/0LlTRRNbNDF+w1n2ssKR0sAdaZvT5v2noDPIFAQEkbCSHEQw0ewMTHxyM+Ph4AEBcXh+joaFy7do0CGOKSQqGA7nXzB71I4V2W75ptOVxIfT3AUohhrjvjAirU9jUVCgW/+6314yCFQoHq6mrs2bPHbmv/iIgIxMfHQygUIji47iNJjcnVq1f5ibyEEFLfPJ7Eu2PHDowYMQIJCQngOA7r16+3q5OVlYWUlBTIZDL07t0b+/fvd9jWoUOHYDQakZiY6HHHSRPGGKBTmv9rheM4iIXmL2+38PekLb6uWOywLseZy2qWW86LRCK764RCIVJTU9GuXTufpyPwl7y8PJSVlfm7G4SQZsLjAEapVCI9PR1ZWVkOy9esWYNp06Zh9uzZOHz4MNLT0zFkyBCUlJTY1Lt27Roef/xxfPLJJ7XeT6vVorKy0uaLeMESHDj7qkPmZJ/3b8UQYH4CsHKof/vSiLRo0QICgQBSqZO5Oo2ERqPxdxcIIc2Ex4+Qhg0bhmHDhjktf++99zBp0iRMmDABALBs2TJs2LABK1aswIwZMwCYg5KRI0dixowZ6Nu3b633W7BgAebOnetpN4kjNSfNOuJiIm2906tv9K/omE2RTqfDa7+bPyDnTddB4sVcmZptcVIH+8pcD+Z0RobXtmiBytcw7aVXHLf12mvmtubNg+T6HjU6nQ4zZszApUuXMHHixDr3FQDCw8PRr18/KJVKHDp0yKu26tOpU6f83QVCSDPh031gdDodDh06hEGDBt24gUCAQYMGYc+ePQDMS0vHjx+P22+/HY899pjLNmfOnImKigr+q6CgwJddbl5qTpp1xDKR1lM1R3bqYSRHr9dj8R4dFu/RQa+vbes5H7TFGD8CpDfCXPf9/zqsq9frsXjxYixevNimXK/X4/3338eaNWu8Tn0AmP9fIoQQYubTSbylpaUwGo380lGL2NhYnDx5EgCwa9curFmzBjfffDM/f+arr75Cly5dHLYplUob/bB5QJqeB0isJsLqVMDidnVry9HITj2M5IjFYkzvU8dUAoyZv0cnbdWcZMsZNPwIkFgIc91bnnGaSmD69Ol2/RKLxfj3v/+NS5cu1TmVACGEEMca/Ldqv379+A2vPJGVlYWsrKw6J8UjNUgUvluu7Ghkpx6WREskEiy68/r2/2KxeaTHxeZ3ABwGWDZtSSSAQICOHTvygTZwYwRJIuTMdWe+havV9tmoJRIJFi1a5PD822+/3eRTCRBCiD/4dEw6OjoaQqEQxcXFNueLi4sRFxfnVduTJ0/G8ePHceDAAa/aIfXshaMNc58VQ80TfVcMdf24Sqe0Hx0S2+fo4UdJGEP8pgn27ax0416EEEIahE8DGIlEgu7du2PLli38OZPJhC1btqBPnz6+vBVprMRWIy46lU8/8Blj0BvNX6zob/NJV3N2rOayADA/OntiExhwo60afRSYtJBeyzW/iO0C1uImc93Cv8Ec3IsxBr1eD71eb9OW5bzBYHCYgoAQQkjdefwIqbq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiW/Kqmu6BFSAFrczqdzYVQqFYLfur79/8wQBLmTkFqvurGaKa4LEBQNcJxtW9NqSUvwxCaolEoER5lHEM9PUDvu1/XN6GqmErCc37hxI2VmJoQQH/I4gDl48CBuu+02/vW0adMAAOPGjcOqVaswduxYXLlyBbNmzUJRUREyMjKwadMmu4m9npo8eTImT56MyspKyhfTmInl5qCl4Pr2+40pPcCEOgRSHOeT4Ktbt25oERMNmExAM1pNdPXqVWg0Gn7jS0II8RWPA5iBAwe6HA6fMmUKpkyZUudOkQDGceYRF2Vp7auaaqwKcodCoUDZK+bt/xV1Sdps9QFq05aLtATWdaVRUTh3sRiMMX50RaFQ8DvQWrdlfT4sJATcG5HmglllN4IYSzZudyYjA3arpRq7Y8fMo19yuRyRkZF+7g0hpCmhtZ1NjeUD0REPA4Y64zjbJdo1ubOhnrXEWwCxApxehXCZb/6K5zjuRltupBLg68rlyMzMBGOMn/TLcRzCw8MdX2c5X33lRoHqKhAcY/tzcPNRm1wuR7t27WAymXD27Fl3vtVGwRf74BBCiLWACWBoDowbPA0M/KXmsuu4Lna77gK4sVeNq9EJyyZ6YsWN9t0c0agLm1EQy5YABrXn97T+Obj5qI3jOLRq1QoAAiqAIYQQXwuYAIbmwLjBnZ12AX5EwylnIzX1ERRMzzPPm1ngIItxjb1qdDod5m8zb///6q1SSITX+7JiKFB8DEjsbX5tPaLhhE1bLtISOK1rMgFvREBnZJi/UwuEtsKr3x+H5PrGizqdDvPnzzdf9/wkuDPnuCnT6/W4dOkSIiMjERIS4u/uEEICXMAEMMRDNXfateYqEHE2d6U+8iTV9qipBr1ej7nbdQCAl/pKIbEMhBRfH72xDt5cLK+2aUuvtwkuuBpzvJzWVV01lxtxvfwsXlJVQCKJAfQq6HWMz+P10jPj/RLAJCYmNpr0G+fOnUNhYSEuXryIzMxMf3eHEBLgKIBpqjzdaVessF095IifVxSJRCI828M8e1fk5UIem7ast/lnDBnZM92raykX4Ea5UMg/xhPF9cKzzzwDcJx7qQSsH4X5KEiMiIhoFAGMXq9HYWEhf6zX63H8+HEoFAq0b9/ez70jhASigAlgaA5MPbOsHnI0auFNniQfkkqlyLrLN3up2LRllWtLYNIipDrf/CKuCyBWQAo4rMu3JeJulAtM/EiQtGg/shZ+Y957RlnqulP8ozA/ZwSvB5cvX7Z5XVZWxn+1bt2ackURQjwWMBtSUCqBBsBx5tEVuy/3H/M0KS73jXFjd93F7a6nO3Aj/xf/KKyOGcEbMVqFRAjxtYAJYAjhH3M1FFcrn1YMdV5urWAv8MkA3/QpQGk0Gn93gRDSxNC4LWlc9EqnRUqVCuFP/wkAKL94GkEfp9f5NkqlEuFvVprbekGJoFrm9Tisq1cB186Yy3UM4e+Y0xKUP6OEpSWb868wBEmuB0QOEkk2N3XJSE8IIdYogCGNy39rD0r4RxE+eKxl8OAz1K5ujZVKztpyeL4JzW2pq5MnT/q7C4SQABcwAQxN4m3CHK2AcrBXjVwux8WLF/ljb8jlclz8d7BbbdnVrZHhWi6Gw7Zsztcl9YEPBFrqAUIIcVfABDC0kV0T5mgFlIOlxAKBAC1bXt/wTuf8UZM7BAIBWoYKLC88q2ud4RqAgOPQMpSza8vmvJ8EQgJFk8mEwsJChISEIDQ01N/dIYQECJrESxqHmiugAuCDFwAw86J500BPuEiG6q6YmBi3zjV2RUVFOH36NA4fPuzvrhBCAggFMCRg6HQ6LFq0CIsWLYJOp/O+rV1aLNqlddlWrXU5AXQQOSzXGdmN80aroGXlUJ8FMTV17tzZ5nVQkH82HfQE5XQihNRFwDxCIkSv1+Pll18GADz75DivtubX6/V4ebPW3JayApKgcPfq6vWQSCS1lOv4fumNuHG+p+RG6oOiYz7Z5yUqKgpXrlyptQ7NgSGENFUUwJCAIRKJMG7cOP7Y67bSr2///+HNQOs+wD1fu67rKJWAdfnqUTfOC3DjfD2MdcbFxSE8PBx799aS/oEQQpqogAlgaBUSkUqlWLVqlfmFl5N4pVIpVo20Wn1UsBcwqF3XdZRKIDgCq57uZR5Zqcy/cV7E2d7DGmOA3vH9bOuoas2NJJPJwHEcmBePpBQKBRhjUKtd9IcQQhqRgJkDQ6kEGiFL8kFdI932Xqeqn77VDBY4zpx2wBMrhtaeX4oxc1LI+QnXUxHUz5wZwLzKKjg4uN7aJ4SQ+hAwIzCkkbF8wF5PXNgo1UcCyhp7wPA8XTVVfKz2cr36xs/W3SzgzATUcYfbtm3bupxPQwghjUnAjMCQRkavsg9eHGw+50tKpRLh4eEIDw+HUundIySlUonwtysR/nYllLraRzds6paX3tgD5nq2aqVSifAWLe3aUuqY63u8cNSr74PHTBi4fRTwRoR7iSNrkMlkvukHIYQ0EBqBId6bnmfe2r+WuRq+UlFR4bu2tPbnOCePahzVtc5W7axfdtdFtuVzKAEAxN4vc+Y4DiJ95Y0m9ZXQS8K9bpcQQhozCmCI9yQK1483fEAul+PUqVP8sddtTTH3md/mnzFkZM+sva71fa8HL3K5HKf+yQaWZdqkDJCLYX+PJzYBi9u70UP357wkJSWh8NQ1t+sTQkhTQAEMCRgCgQDt21//8Hd3FVJcF/MjnxqPtwQCAdpH2e6RItBcQ0i1eRWRNjIV0uv1beo6SDtg7lc7oGZ7U/9Ge7vklG6OUK1wMM/GiZSUFMSFCIHdbl9CCCEBjwIY0rRZHvO48Xgr8suB/PHloSuR4u3jMG8eD1k/ZnKDTOp8DkuHDh1w5swZ2oKgiWOMoaqqCjKZzG6zRUKaooCZxJuVlYW0tDT07NnT310hfqLX6/n9gPR6vXsXWXIs1QhG9Ho9svbrkLVfB73R0eMaznFdB/fV6/XI+ni5bVtxXaAXhyLrZHQt9wA8eVRkrn596boHy6oTEhKQnl5zJKhxMhgMKC8v92pfm+bq2rVrOHz4MA4dOuTvrhDSIAJmBIayUROdTocpU6YAAMY/PAZiF/VdtvWrxtxWhhjiWnbct6mr09ndV6fTYcrUF23bmrAJOoMBU9acvXE+5RZAXGPujicpBayXrifeYp5P42CUiGPMvBKJ8+3fJ3FxcSgqKvJpmzX9888/KC8vR+vWrZGcnFyv92pqKisrodUbwUwqVFZWUmZv0uQFTABDiFAoxOjRo83HshDzh3hB3bbRFwqFGJ1mfvsLXXzO29R1kFtIKBRi9H0jgZO/3GiL42z7O2MZEBLpXQ4k66Xr1nvDmEw2S6f77hkPANg2YB1/TuBg7k5dREVF4erVqz5py5Hy8nIAwJUrVxAVFQWFQuGzvjdl1dXVmLTmJPLKTejB5WJWVBRuTs/wd7cIqVcUwJCAIZPJ8P3339848cQm84e4TuXxpnUymQzfj3Fvzxqbug72S5HJZPj+f1+bd82trb/1wWQy7/3igNhqaXVQUBDatm2LM2c8m1vjL9XV1Th48CAiIiIC5vGXP50+ex555eYg9iBLBWdopLtjE+JD9KcNCVyW+S2S+ts8r94pom4cv3jKeT1mcrxBncq90RCO45CYmOhh5/yvrKzM310ICMXFxTavxSJvHrASEhhoBIYQf+IEwKzrH9JOkkkCABa0apj+kIDDGMOC/bbvHSainZVJ00cjMCRgqFQqtGzZEi1btoRK5d0QuUoPtPyvFi3fq4JKX/uKF5VKhZbvVZnrOrivSqVCy9bt7dpyu78CgcP9ZepDQkKC60okoKh1Bpyvqnm2fnfEJqQxoBEYEjAYY7h06RJ/7FVbAC6Vm/f5ZzMKAU7jdB4NYwyXqpjT+5r7dfn6sRf9FStubLznDp0Kni7D7tChA6RSKfLz8/lzISEhbl0bFhaG0tJSj+5HGoDe0cgdLUMnTR8FMCRgyGQyHDlyhD/2WVsKBWB0PgIik8lw5Kkgp/eVyWQ4sn838PlgyEQ1znvSX44zb7y3oKV738TidubcSu5iDNCrkNiqFYKCzN+PUqlEfHx8rZcJBALcfPPNfgtgKisrcfHiRbRs2ZK2UHBT3O9PA2l/1XtuMkL8iQIYEjCEQiEyMjLqp61aNqkVCoXIiLu+fNrBmmuhUIiMHrcAf2ealzdfT1sg5DjP++vpB467O/Za7SEjSLwF0df3kImOjnZ5qUQiQXh4OAD7ZeTJyck4f/68Z332UG5uLpRKJSorK3HLLbfU672aCmn56RvL7AlpoiiAIcQTznIUcdyNZd2+zMpdM3t1XTnbQ8bKTTfdhIqKChQUFDhtJjExESUlJTbnQkNDUVlZ6eQK7ymV5rxXGo2m3u7R1NADJNIcBMwkXkolQPR6PVatWoVVq1a5l0qgRgLHuralhxir8ltgVbYO+it5ztv64gvoOQkfvHjcX0ee2FS36+ogOjoabdvW/kgqJCTELhN4Q04MVqvVqK6ubrD7BQKTyX55/RjdbErHQJq8gBmBoVQCRKfTYcKECQCAMWPGQCyuZa+L6XlAULTTkRD7tmzLrS/T6fWY8KU5cBmTZp92wFm/HJ4XK27sIFxLgGXVExflzcu+feZRpF69ekGhCOD9f3yoyiqgSwoT40KFHsdZCkrKKhEbF+zHnhFSvwImgCG4vurEi/IAJxQKMXz4cP64VpLaH+PYt2U7CSY6Osa27tAhwJktDtMOOOuXw/P19ajJU442xQsgWq2WApjrDAYDf/zZqATcuco8J6m6qgqxcf7qFSH1jwKYQOLhdvlNjUwmw4YNG+qnLZ3SpjwoSGFb96cf7FIFuOqX0/5adhB2xG6ERu64nrcWtDJvoEd5hpoU63C4tLQUbdun+q0vhNQ3CmAaO+sPNHe59WiCNEo1R2i8Sf7oiuoqEBxjd7ply5YoLCysv/v6gPWoQ3On02odnhfV9oiVkCaAApjGzvoDzV3+fDThDzWDvEAP4GobofHU9b1f4MGEznbt2iEhIQEHDhzwTR/qQU5ODgYOHAjAvOOxVqtFeHg4uOb0vr+uqvrGNrxy+Y33vUjk4jErIQGOAphA4MsPtACmUqn4zMRHjx69MQeiZpDnRgBn11Yt/yeY62YAFTocnSSGQsw5KLfvl9P+NqTre78grot9mZN5MBzH8RvdNXaMMRw8eBAmkwk333wzIiMj/d2lBicU3njzervBIyGBhAIYEjAYY8jLy+OPbXgY5NXaVq117YflnbXlyT3qg9CovbH3i6P0BO92CPh5MIwxfhmxSqVqlgEMIc0VBTAkYMhkMvz111/8sU/bMjrfJI2vq1dD9ud9bvfLl/2tN07mwdQmNjYW586dq5/+eKCqqgrZ2dn+7kajRdvAkKaOAhgSMIRCITIzM+unLRepBDIzM80rlbbZP5py1i9f9rdBWc+bcfAoLjk5uVEEMPn5+TAaa/mHawYYY5i6qcRh2Yu/l2JzBmuW84JI8xC4Y8ckcOhU5g9/+pOw8bPkTJqfgK5HZjr8N6vLB6KvclhZKysr83mbgUatN+LMNfMuz2ncOUQqREjjzgEAzpQZoNY37wCPNG00AkPqn2X/msRbvNoa32AwYN26dQCAUaNGQSSq+9vXri136ho0GGViEAk4x+U1+uXL/jYYq5xJYZUnIDBpEROTZC6zjMy4ucJLIpFAp9MBqJ9HaBzH0Xb5Vt//95K5EHAP4HvJXHTWrrQrJ6SpCYDfqCQgOdq/pmAvoCytc5NarRYPPPAAAKC6utqrgMCurVq2zLCpOzMEIol7/fJlf+sPs31UVGNlUufOnRHRoqVNNmsk3gK0meFypVf79u1x5swZpKSk1FPfbZ09exZlZWVo27YtOI6zy9nUJOnV/KExqiOgiII+ogNQZFUupf1gSNPkl9+oo0aNwrZt23DHHXdg7dq1/ugCqW/WS5t1qhujMF7sJiwQCDBgwAD+2Bv2bTnfWp+vy4wQcEfd7pcv++vUC0eB/6bX/frF7c0ByYRfAb3SvEOvlajISPMqJZ3SJpu1IEULk1DmNKVDy5YtERMTg5gY8wTh+sgkLZPJoFLd2B/JZDLh6tWruHr1KgCgZ8+eAbMcvK6sEzkqR69GqECA4iHLgS/O+a9ThDQQvwQwL7zwAp544gl88cUX/rg9aSiWpc3OdhP2cMM5uVyObdu2+aRrdm3VSCXgsK5O6TCdgLN++bK/Tol98AFdsBdY3h8odrDU2om2bdqgXKVHXFwcrl27ZlfesmVL7/vlgnXw4oharYZQKIRQKKw98WcAszyiA4Aghfm9QJN2SXPhlwBm4MCB9f+LnTQeznYTbm47BteFdfAX2Ra4dqZ+7uNB8AKYA5SWPtpcMSgoCEql8wCyrtRqNf755x9+NRjHcU36w93yiDIsPNy/HSGkgXg8rr1jxw6MGDECCQkJ4DgO69evt6uTlZWFlJQUyGQy9O7dG/v37/dFX0kgs4zGWH81pg8TS6AANK5UBJbg79VLXk2AbqzCwsLQoUMHm3O+mrty5ow52DMajTh06BB2795dL4+y/Emn1/u7C4T4jccBjFKpRHp6OrKyshyWr1mzBtOmTcPs2bNx+PBhpKenY8iQISgpcbxXgStarRaVlZU2X6R5UqvVyMjIQEZGBtRqtesLPGmrZqBgFVzxdXv2gVpvv6rDWb981l9+l2HPAj5hzc35nj9S9z7Uoq6PZyQSCbp27QqJxHZWdMeOHX3RLRtKpRJ6vd7h465AduzY3/7uAiF+4/EjpGHDhmHYsGFOy9977z1MmjQJEyZMAAAsW7YMGzZswIoVKzBjxgyPO7hgwQLMnTvX4+tI02MymXD06FH+2OdtOUlHYFP3rhC3++XL/tZFz4PP257g6mcicWRkJDp27AitVov8/HyX9QUCAUwmE+Li4hyWh4WFoVevXrh27RqfioE4Yap9mbSesnaTJsync2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv21KnNmTNnYtq0afzryspKJCYmet1XEnhkMhl+//13/rih2uLr6jWQ7X3E7bZ82V+/0bne94XjOMTFxaG8vNytJtPS0iAUChEWFgbA8QiOQqGAQqHweQBTUlKChAT7idgWluXugfDvxUwmvLuzEIDt9xNklTR07Iqj+PXfA5v03B/SfPk0gCktLYXRaERsbKzN+djYWJw8eZJ/PWjQIBw9ehRKpRKtWrXC999/jz59+jhsUyqVQiqV+rKbJEAJhUIMHjy4wdvi6+qUwH7HqQQcteXL/vqE9YTgxN7Aoz8AK4aBFR2DGk7+H1vUGWjVE3jwG4DdqCNnzKMHWlKpFFFRUdDpdAgPD7fZE0ckEuGmm27CmTNn0LZtW5vrQkNDffrY2Pq+ly5dwrlz59CuXTu0aNECSqUSBw8eBMdxuPXWW+tv6buPlJdfw0mjOXhJExdBrggGAARJzbvxHmcpOFmiglpvhELSGPcgIsQ7fnlXb9682eNrsrKykJWV1exznxA/sgkAGtFEX7dZrQazrAB7YhPU89sgzbJzqyNnAMz7C8CNOj0+P4Lvn+ln+5c9YxAYNTAJ7IMhjuPQpUsXp7eIjo5GdHS03fmbbroJx48fd3t0xxOnTp0CAJw4ccJmSTZjDKdPn0a7du3s9rlhjKGqqgoymcxu7k5DYozhwZU39iT67qX7wV0PuDiOs92Nl5AmyqcBTHR0NIRCIYqLi23OFxcXO33e7a7Jkydj8uTJqKys5IeeSfNiMBjw22+/AQCGDBnidSoBd9uyqfv4LxAxnc0ScGdt+bK/DiXeAog9XLFTc55PHR8tHLxQCbXOAIVll1fGEPzd/eh/+RAqQjsBvbbUqd2aJBIJMjIyfLbtQmlpKfbu3YvWrVvz5xhjdskpL1++DJlMhuTkZLvrc3JyIJPJcMstt9R6L8YcJ1IsLy9HWVkZWrVqVecJ0GqdAblXzJO007hzCJIOsCmnB0akOfDpb1SJRILu3btjy5YtGDlyJADz5MUtW7ZgypQpvrwVaYa0Wi3uvvtuAL5JJeBuW3Z1a+zu6qwtX/bXzgtHgfBk+7116kAOLY5LJ9Re6Zk9wMd9oIIUPbTLzOest6nXqyC6fAiAOYeSHm4u77XOr1THYCo+Ph6XL192u75Go8GJEydc1quurrY7V1FRwbfh7JrCwkIYDAZcuXIFCQkJdsvEjx49CsYYGGNo06aN2/22YZVC4Iuor8FJnnVel/IhkSbK49+o1dXVNhPr8vPzkZ2djcjISCQlJWHatGkYN24cevTogV69emHJkiVQKpX8qqS6okdIRCAQoEePHvxxQ7Xlqq6zcl/21464DvvoKKIcnuY4QAFt7dcu62b+s97Nz0K3RhZq5leqsXzdkZqb3olEInTo0MGjAMZdjv7NnC3D1mg00Ov1OHTokM35S5cuoUOHDjAajRAIBDYJKF3tJOyuy4OyEGP9cxMrYIzuBBRef035kEgT5XEAc/DgQdx22238a8sKoXHjxmHVqlUYO3Ysrly5glmzZqGoqAgZGRnYtGmT3cReT9EjJCKXy3HgwIEGb8tVXWflvuwvANsAxEkwYq0quDVCqvPNE3YnbDLnNKrJ07/OQ+LgMNZhdVgmbpX5GgV7za+d7O570003obi4GK1bt8ahQ4f4P2S6dOlSbytsLI/CW7ZsibKyMpSVldmMvJw5cwaRkZEIDg7G3r17nTWD8vJy/P3334iMjMRNN91k87MqKSmBwWBAfHw8H9xcvHgRHMehVatWTtu0ZjTV+KOO42B4+Htgkfm9p9PpEGiztQhxh8cBzMCBA12msJ8yZQo9MiLE1wQCYFbZjWMXsjMW4Nb+/Wt/PKN3sMFebBfnqQUeXQcsOWl7zmSySwLpa9aTfFNTU5Gfn482bdrU+x8zxcXFdnP6LAoKClBQUICkpKQbJxmDwKQ1T2S+/jMvKiqCyWRCaWkpzp/Lx8DtowAA2wasQ2mpOTv72bNncdNNN0EikfA7CMvlckRFRcFkMkEgEIAxhuLiYpw6dQpazY1RqIiISLu+SSQ3JlIXXLyI8Ej7CdKEBDpaW0dIIPHgURRzsjGfDeuRnFnXAIPGPCqzwEkyRptVRyZz8KK66uDm9TfvokWLFmjRooXNuc6dOyMnJ8f7xi2jI842/XMQoFy4cIEv63pkBsIqT6IiNBVHur4NcAIUFRXx7V48dRRJDFBDCpGuEgZpOADzhO/s7Gy0bt0ajDHojMDff/+N4OBgKJVKtG7dGiEhITbbUVg4yghuPSp1/uIlpHXu4jRzOCGBqnFvdGAlKysLaWlp6Nmzp7+7QvxErVYjMzMTmZmZPkkl4G5bruo6K/dlf+uNZVRnVhkgEN7IU5VY+wobAMDiDsAbEY4fH60cah/EmK4HPIC5TOebOSAAEBMTw7crMGqQWPPxCzO5fszFTBi4fZR5hKRm3evXdz0yA/13jkXXIzNtvz/GINZXIKzyJBgDxBXnMGDbKP46vl0Tw2jdbKRpV+K9HRdhMpmg1ZvAGdQAYzh79izm7dPgqc0qzN+n4ScS5+fnQ6vV3vg+rHbgDQkOrvXbmrKDYfi7m12OnBMSaAJmBIbmwBCTyYTdu3fzxw3Vlqu6zsp92d+6iIpyPU8GgP2ojiUvlLIUWNzO9fXvp9mfKzpmO6fFZDIHO4A5WFo59Mb8FwvGzJsFiuSAQe340Vdtq5asRkBw7haU3fwWqpVKPoAAzI9tnI2uiPWVNsd6Sfj1dm9cbxFWecI8EiOUAYwh4/AMSCrzoYQUY3SzcZylII07h+/2TcHRjHlQXd8EsPXB/+AQewcAcNjYGnN2q3GhGujB5eKz6O+w9+b5yCs3v1dOl5ugNZjAcQJIhAAzGdFr24NgAO4zvAXAPErmaD8auSIY3SUFOKQz71qee81AG9qRJofezSRgSKVSrFu3jj9uqLZc1XVW7sv+1kWH9u3rfjHHARI3p36a3Mi3Y/2YqeKCffACACuG2s69qbkyqeaqpQm/2gQ6ndolI2z79UcsBXsh6GyecGsdmLRvGYnTl8rt780YhEbHK7FEuko+ALGQW81kFhhUmFg6FodYqk2d4ywFYyomQ7azEEeM1zeVq3GLC9dXah9kqdBXFmLOHtuRujm71ShSc2gXLoDs8HH8U2Nzuk6iy/wOvNY4gQBrX30EVxek8cvejQYDQAEMaULo3UwChkgk4vcXasi2XNV1Vu7L/tZFXTdJ8xlmAkxGuL2tWs2JwwV7zaNAQdHmIKbmqqXl/c3XXA903FnpGBlsHjGxnctjNXJT81tgDHMPC3G6RuDQg8vFcyYT9AYluu5+GofYMof3O8FSADd3fuiptW+jSG3up3lUxn4U763hbfkdeGvipMGQxrQBLppf5508hq7d3HsEzxhDhVIDhUTo1x2HCakNzYEhhNSPBa2ANyKdz5Nxx+J25pEZR/M3LAGPZQl2DdLrCRkZA1RMChWTgi3vj9TDs8D4uTgmCI1qh8ELGINBr8HpCvtfkwdZKuZvu4RJW3FjYz8AB6VP47h0Av6RPmF3zQHp00jjzrn8ljtx59CNO+W0vDVn3vOmB5cLcVCE84Y4DurR/+NfllwphVKrdzkXhjGGUVl/IeOtP3HXe1scbuhHSGMQMCMwNAeGGI1G7Ny5EwBw6623erWqwpO2XNV1Vu7L/jYaCvslu25RXqn7PS0BiqtJqDXKW6e0RsmRY/YjKFeADvuUmNlbjoHb74caUqiuJ7OUQwuOA7jrozLiinxYckAdlD4N4EbAkmuMt7lfDy4XUagEx5m70l10FocMbfgyhTwYG/AqriLUJuixSOPO4XvJXCigxc5+3yA1ew6Cq8/jcd0Mm8dT30nmIghaHOy3Ei1bJbr44d0YaXpqqwnY+ju6JYbhh2czne6fo9IZkH3R/NjtdLkJf+09gKGDbnNYlxB/CpgAhhCNRsNvolhdXY2gIBdLhH3Ulqu6zsp92V+/qJm9esImQHXjr3EVpPY78z6fDXyQYd/Wx7cDlozXWqNNZuuaLEGEDWYClg9wWN9czswjNVYUCjmi41ridMVpu+qnKgS4afsE3KWbj+MshT9vCSIydj8FAHxgAzjfrfig9GkooLXpN8cBK54ZAsEvz0N46TBkiRm4PPR3mL4dgaiqfGSILyBbb94/JkNcgHcnDkfS/70F8VUtKkI7gYmDIJn4G4oLT2Pt2jtxkcXgVt1/zW0DkMd1QN+Bd0Lk4jGhdWZqi8MFFVDpDAhysjvvzp1/2byev0+DIXc4zutEiD9RAEMCBsdxSEtL448bqi1XdZ2V+7K/fmFZjeRk1Y+jUQQsOgLrrNUOLTlZa50eXC6+l8y1vd3yAcC1M87b1Kvt59AwhjZtWgMwBzA1R1AczTk5zlI8zuKsgBYKzj64kUa2guxfv/I/v5Ych+09loAzavCiWAGV1gAB00Ik6oC2KUnAlN2AXoVQkRyZJhNEIhEiInpBt6sb5JfzbNrmntjkMngBAEVYFFbH/g9di2banM/JzUPPLh3t3pdqtRrz99nmebpQZUJ5tRoRIbSfL2lcAmYODCEKhQI5OTnIycmBQuHdL1NP2nJV11m5L/vrN5bN8K5/0MnFAvTgcuv1lgdZKq4ilJ+3omJSqK5eNP83PNX2vGVui9XjI37Oy+cjoNbeWCGlgBZRqLTrfxp3Dv9In6h1fkoPLhfy66Ms1tf3SA6HPO56ssbE3sDMQqheKoRy+kXI5Aq7n1+ntDTIQiLRKS0NUrEAYon8xiTc63U5geBG4k+Og+SpPxE54zh/z8jENNcbFF7HCQSQTtxgd/6Bb85iyKLf7PIxKbUGXKgyzw9K4Yr480XFRSCksQmYERhK5kiIG+K6mPdgSbzFPGriYxzH4XvJXKjh5BHQS9dHCha5sX9MDdaZrh2O7gCAk8/RtM9y8P31x1KWfVhwAcD8P29UikgBFxyG7wts+2959LNB8qrT78v68dD3krlQTz8PiBWQS8XgsNNmlEpRy4p5612EY2JicOXKFbtdhe1wHATyEJydNwzQqyCQDvcokac8KMRmTxiLU9eMKLhcgtS2Kfy5iwUF/PH3kjn8KNXT353CtpmtA3MkkTRZARPA0CReQhywmadivzdKfdyPi+sChbNcSRKh+d7xHcyBlAfkzDy6cbDGfiruOF6sQmcXj6XkT28BpMHglKVQ1Nyg75k94D7uY57nEtkWuHYGphadUaUxIKwyF5oWGeAASEuyYUjoDkVwmO3P180REWsdOnRATEwMIiJqWUlkRSAUAMLad911hBMI8Mkzw6H6+HZ+Ho2FiZlQXl6O4OBgCIVCPP9zPl+mgJafP3O+0kgb4ZFGh96NJGCo1Wrcc889AICff/4Zcrm8QdpyVddZuS/765SjeSp1+DD16H6P/Qgsvr5JXkg8UHXZvs6ETc7zKdXSdK2jOwDwwt/mDfauj/AwWI24WLFMxrWEGHJowQmecr5BX7jV6MSUg4BBDYFYAblOh6tlJYiISYBAIAD0Koh9FByKxWLXoy8+EhQeA6lCAuhsz4//5iTm9pVDKgSi41riQpX5fBp3Dgpo8b1krsdzgghpKBTAkIBhMpmwefNm/rih2nJV11m5L/tbq/oOWuxveONwwq+OVx05+4C3POJy1jIHKF48BrzbwXGF8BbmESarSbM2j34iWgMTf4N88cO2XYjrcuORmlhhnq9i2RQvsTcgCbbN9H395ymRShEVZxXcNOjP2XdkcjkML2bj7FstwADcrZuHEywFxSqGpzerkBgiwIs9LvL1v5fMBTf9FLjFXfhz586fR1r7tn7oPSGOUQBDAoZUKsXXX3/NHzdUW67qOiv3ZX8bLUviR8sjLGfzbmZeNOcgEsmBlcNuLM12lFLAWSboF085zMbNcVZLnJ/fcz3AqVFpglVKAo4DnvjNnHfJ8j1wXP08cmtERGIJMPsaTNoqbHg7GXfr5vEjVwVVJkzdeiONAQfY/TtM+F8udr2aApGoCexnRJoECmBIwBCJRHjkkUcavC1XdZ2V+7K/jYrCKkmkItrxUuuac3MkwTfKrOvrqs079rrDWWBjMfOiwwDHfC1n/1rq+XySgCcQQCALhbFFGjaUvGqzv4yN2M6AIgryuA5Iu2CeB1OsYhj6/jb8Mf12msxLGoWAWUZNqQQIaSQEAvPjllll5uMaS4UB3Jib8+ol24SMljJ+1MPBryCx3Bz0AOYJtXblihvl1ixtiRXmR0bEMY6D8Jm/wIXGoyVXalfcg8uF/ImfAYEA3BOb8IvkNT59Qd5VDcqr1XbXEOIPARPATJ48GcePH8eBAwf83RXiJ0ajEQcOHMCBAwe8Xk7vSVuu6jor92V/Gx2BwPloh4WjwMYdNYMfZ+XT8+zLLOUTHFxHbhAIgH8fh4BjOCO9MUr4j/QJrI5aCc4yOsVxEHAMv0he5euUlJQ0vfczCUj0CIkEDI1Gg169egHwTSoBd9tyVddZuS/722RZRktqTuy1BD86+ySNN8pr2eeGHnG4JhAAs65B+EYkzl4PYgQcw9G+7yG9xs/P+tWT357AG5nn0L1bN8hkMnAc5//M56RZogCGBAyO45CcnMwfN1Rbruo6K/dlf5ssjgP+tQP4pL/jDfhs5ttE2V/vTM05OPWwqV+TIBACs65B8MaNJJ0Gg9XoyvUAU375GL8nTEGVCRM2KbGCHYLeCMjEAmRmZt7YPZiQBsIxV7nVGxnLRnYVFRUIDQ31d3eaB50SmJ9gPn710vW/jB2cI6SuGHOacwmWJeg1H1lZEjhagpSac21qa5PYMhmB60FM/uOH0bqN1dwjkwlY2gPKqxcd7gmTFCLAhhduRUhwM5wUTTzi689vCpkJIf5X2142ta0sqiXZZMPvjxPABELoXy1BVVUVkiMia5QJgKe2QzG/FbpzuThUY6fkC1Um3LnkL6wc0wZSqQStU1Iart+kWaMAhhASuChI8RmxRIrIKCf7Fek14DhgrWQulJDhdu27KMGNFAiXq40YutKc9fvjQfkID5KhW7duTXf/I9IoBMwqJFpGTTQaDUaOHImRI0dCo9E0WFuu6jor92V/CfGr6/OPOA4I5jTYK53itOozm1V45c9ynMzNhcFgcFqPEG/RHBjiWiOZA6NUKhF8/Tm7t6t6PGnLVV1n5b7sLyF+Z5mLpLoKLG4HE+PAALTVrnZYPVbBYU5fObrf3LnBcj6Rxo3mwJBmSyKR4JNPPuGPG6otV3Wdlfuyv4T4nWUuUlA0kNgbgutpIM5KH3EYyBSrGJ7ZrELygcP46tHOaBETA5lM1sCdJk0ZjcAQ1xrJCAwhpJFgzJwGYnl/4NpZAKh1RCZWwWFuXzlu759JwXwz5uvP74CZA0MaCZ3KHLw422CMENL0cRwgDQGe2smfEnAMQo7hrPQR7Jc+Y1PdkvV6+HtbcOp0HlQ6AxhjMJnMX4TUBT1CIp5Z3M5vtzaZTDhx4gQAoFOnThC42sreR225quus3Jf9JaRRss5GHmvOPyUoPoZoVumwel65CXd+ngsgF+ktQ3C0sAoAcGLOIEglEggEtF8PcR89QiKuWW8YVpOjDcTqCU3iJaQRst4wEDAf61QwLmrPP046IH0aPbXLXDaVPbMfwsPC6rO3xI9oEi9peNYbhtXUwLucRkdH+6UtV3Wdlfuyv4Q0SjX34pEEAWIFhEm9cfaCOccSB+ZwE7yaBr63Czum90ewVbBPozLEGRqBIYQQ4nuWkRn+JYOKSVGtNaD3gj/dbubjQQqkpCQjPjoS4eHhAMDPm6HgJrDQCAwhhJDGr8bIDAcgCIBCKkJqlAi5V93b5O6ZzSoAJ9AuXIC5t8VAqVLhX7+Z584cn30HTJwQ+fn5MBgMSOvQlt/9l4Kcpo9GYAghhDQoxhiuVSohFAqhVVWhUqXF4GV/e91uYogAv04dAIFAgLS5WwAAh14diGCpGGqNBlKJBEwogkwkhPUHHwcKdBqCrz+/AyaAycrKQlZWFoxGI06dOkUBTDOk0WgwceJEAMDnn3/u1aZYnrTlqq6zcl/2l5CmzmhiaPvqRr/df9OTaTAajeA4DgkJCQhVyKBSqyGRSKBSKSGSyqGQiAEAGoMRMpEQKp0eQVIxOMp27pZmG8BY0AhM80WrkAhp2oxGE87m5wNgCI2IxvkLF/DAmgJ/d6tWHSJFWPNsf4jFYly+dAkmkwmtE1tCJBJBYzACACQCDhqDCeA4cADkYvMIEIcbwRCuH8vF5mO13nzeUm4pcxQsMcag1tuWm0yMv4dab+RHnKyv5jjwbVvaMZ/nnN7LGzQHhjRbEokE77//Pn/cUG25quus3Jf9JaQ5EAoFaN+uLf86NiocZ9PN+8toDEaY9Frk5eVBJFXg3z/l4XSZCe0jhFg3pT80Gg1GLduHgipTg/b51DUDur5Vc1JyTp3bSwwx7xfl6PtoHS7CrMwQ6LRa/hwDsGC/BucrTUgKEeDV3jIwWOYO1d3e6X0RFx3huqIf0QgMIYSQgONo1IExBpXOCL3BAKFQCAHHQcwxlFerIFeY96npMud3h+0lhggaPPhpzH56tA3Sb+rk0zZpBIYQQkizx3EcFBKR3bkgqQiQ2p5vEXljc7yz84fzxybGwEwmaI0miGCCRCI1P2q5HhwZTSZwHAehQACjTo1KpQZSqRQ939kJZ6wDodpGUxqDlDARzlUY0CFGjg9HtkF1VRVKS0sBACEKqZ975xoFMCRgmEwmXLhwAQCQlJTkdSoBd9tyVddZuS/7SwjxDevVRgJwgFAAsbhmLQ7Bwhr/v0pDEPr/7d1/TBvlHwfwdykDxq/O0u/AFlg1yhKYaxOgaDLiMCSkf6yZUf8UtkT+MNOYdKgYE4mJkT/czOIkMWr8lcyEzAQ0U5NFZCFuGpSF6f5YHAkaLFJGcFsps2Pt8/0DaaC0tF2fu+Po+5Vcwj3Ps+PzvmvDs+tdr6QEwPIkKPYalpV1gwFYvL18TUlhnhFCCPwTWISpaDsMOTnRa1JuLy1haek2LKZS3FpaHm8IL2F2/h+YzWYU5m2Df24eZlMJbi2FkZ9rAIzbEIlEEIlEkJubi0gkAqNx+ZqZlYuKc3Jy/ruWxRCtaeWaG2D9NTCxZ7GuXr0Kn8+niwuTOYEh3bh16xbuu+8+AJlfFJvOtpKNTdQvs14i2jxWT4JizwIBWD4L9B+DwYAyU/G6/uUx22PG58JeuD06zlbxPwDA9u1ISXFB+tfaxatfL/RbOWWlwv8+x1Z7W8nGJuqXWS8RkVqmp6ej/wHbrDiBId0oKipCMBhUfVvJxibql1kvEZEaVu6YNJvNGleSHCcwREREBACoqqpCUVFR9JEMmxknMERERAQAyMnJgcVi0bqMlPC2CNKNUCiEzs5OdHZ2IrTqi5yU3laysYn6ZdZLRERr8YvsSDf4KAEiIv3aEl9kd+bMGRw9ehSRSAQvv/wynnnmGS3KIJ3Ztm0b3njjjejPam0r2dhE/TLrJSKitVQ/A3Pnzh3U1tZieHgYJpMJ9fX1uHDhAsrKylL69zwDQ0REpD+y/36rfg3M6Ogo6urqYLPZUFxcDLfbjbNn4z+bgoiIiCietCcwIyMjOHDgAKxWKwwGAwYHB9eN6evrg91uR0FBAZqamjA6Ohrtm56ehs1mi67bbDb4fL67q56yihAC165dw7Vr15DpicN0tpVsbKJ+mfUSEdFaaU9ggsEgHA4H+vr64vb39/fD6/Wip6cHFy9ehMPhQFtbG2ZnZzMulrLb4uIidu7ciZ07d2JxMbNHxaezrWRjE/XLrJeIiNZK+yJet9sNt9udsP/tt99GZ2cnDh8+DAB477338PXXX+Ojjz5Cd3c3rFbrmjMuPp8PLpcr4fZCodCaW1Bv3LgBYPmzNMouq7/V9ubNmwiHw6psK9nYRP0y6yUi0ruVv9vSzkiLDAAQAwMD0fVQKCSMRuOaNiGEaG9vFx6PRwghxNLSknjggQfEX3/9JQKBgKipqRFzc3MJf0dPT48AwIULFy5cuHDZAsvU1FQmU48oqbdRz83NIRwOo7y8fE17eXk5rly5AgDIzc3F8ePH0dLSgkgkgpdeemnDO5BeeeUVeL3e6HokEsH8/DzKysrWPe67sbERP//8c0q1JhubqD9ee2zbRusrP9+8eRNVVVWYmpqScjX2Zske2xZvXwwNDWmWPZXxPPbMnqyd2Zk9Xttmy55sfLp9qRzr2L7V+UtKShAIBGC1WlOufyOafA+Mx+OBx+NJaWx+fv66ZzLs2LEj7lij0ZjyCyTZ2ET98dpj2zZaj+0rLS2V8qLeLNlj2zbaF1pkT2U8jz2zJ2tndmaP17bZsicbn25fOsc6UX6TyZRy7clIvY3aYrHAaDTC7/evaff7/aioqJD5q+I6cuSItLGJ+uO1x7ZttJ5OjenYLNlj25LtGxnS3SaPffr9zL5xG7PHX9/q2WPbNlv2ZOPT7UvnWCuVf7WMvsjOYDBgYGAABw8ejLY1NTXB5XLh5MmTAJY/8qmursZzzz2H7u7ujAveKrL5C/myOTuQ3fmZndmZPbsomT/tj5AWFhYwMTERXZ+cnMT4+DjMZjOqq6vh9XrR0dGBhoYGuFwunDhxAsFgMHpXEi3Lz89HT0+PLh5ZLls2ZweyOz+zM3u2yebsgLL50z4Dc+7cObS0tKxr7+jowCeffAIAePfdd/HWW29hZmYGTqcT77zzDpqamqQUTERERKS7p1ETERERqf4sJCIiIqJMcQJDREREusMJDBEREekOJzBERESkO5zA6ITdbsfevXvhdDrj3gW21S0uLmLXrl3o6urSuhTVXL9+HQ0NDXA6ndizZw8++OADrUtSzdTUFPbv34/a2lrs3bsXp0+f1rokVT3++OO455578OSTT2pdiirOnDmD3bt348EHH8SHH36odTmqyrZjvULGe5x3IemE3W7H5cuXUVxcrHUpmnj11VcxMTGBqqoqHDt2TOtyVBEOhxEKhVBYWIhgMIg9e/bgl19+2fDZYVvF33//Db/fD6fTiZmZGdTX1+P3339HUVGR1qWp4ty5cwgEAvj000/xxRdfaF2Oou7cuYPa2loMDw/DZDKhvr4eFy5cyIrXOZBdx3o1Ge9xnoGhTe/q1au4cuUK3G631qWoymg0orCwEAAQCoUghJD3GPpN7t5774XT6QQAVFRUwGKxYH5+XtuiVLR//36UlJRoXYYqRkdHUVdXB5vNhuLiYrjdbpw9e1brslSTTcd6NRnvcU5gJBgZGcGBAwdgtVphMBgwODi4bkxfXx/sdjsKCgrQ1NSE0dHRtH6HwWDAo48+isbGRpw6dUpS5ZlTI3tXVxd6e3slVSyPGtmvX78Oh8OByspKvPjii7BYLJKqz4wa2VeMjY0hHA6jqqoqw6rlUDO7HmS6P6anp2Gz2aLrNpsNPp9PjdIzls2vBZnZ7/Y9zgmMBMFgEA6HA319fXH7+/v74fV60dPTg4sXL8LhcKCtrQ2zs7PRMSvXOcQu09PTAIAffvgBY2Nj+Oqrr/Dmm2/i119/VSVbMkpn//LLL1FTU4Oamhq1IqVMjeO+Y8cOXLp0CZOTk/j888/XPShVK2pkB4D5+Xm0t7fj/fffVzxTqtTKrhcy9odeMXvm2TN6jwuSCoAYGBhY0+ZyucSRI0ei6+FwWFitVtHb23tXv6Orq0t8/PHHGVSpDCWyd3d3i8rKSrFr1y5RVlYmSktLxeuvvy6zbCnUOO7PPvusOH36dCZlKkKp7P/++69obm4Wn332maxSpVPyuA8PD4snnnhCRpmquZv9cf78eXHw4MFo/wsvvCBOnTqlSr0yZfJa0OOxXu1us2f6HucZGIXdvn0bY2NjaG1tjbbl5OSgtbUVP/74Y0rbCAaDCAQCAJYfpvn999+jrq5OkXplkpG9t7cXU1NT+OOPP3Ds2DF0dnbitddeU6pkaWRk9/v90eN+48YNjIyMYPfu3YrUK5OM7EIIHDp0CI899hiefvpppUqVTkb2rSSV/eFyuXD58mX4fD4sLCzg22+/RVtbm1YlS5PNr4VUsst4j3MCo7C5uTmEw2GUl5evaS8vL8fMzExK2/D7/di3bx8cDgcefvhhtLe3o7GxUYlypZKRXa9kZP/zzz/R3NwMh8OB5uZmPP/883jooYeUKFcqGdnPnz+P/v5+DA4Owul0wul04rffflOiXKlkveZbW1vx1FNP4ZtvvkFlZaVu/+Clsj9yc3Nx/PhxtLS0wOl04ujRo1viDqRUXwtb5Vivlkp2Ge/xXGkVk2Luv/9+XLp0SesyNHfo0CGtS1CVy+XC+Pi41mVoYt++fYhEIlqXoZnvvvtO6xJU5fF44PF4tC5DE9l2rFfIeI/zDIzCLBYLjEbjuosv/X4/KioqNKpKHczO7Ksx+9bOHk827w9mVz47JzAKy8vLQ319PYaGhqJtkUgEQ0NDeOSRRzSsTHnMzuwrmH3rZ48nm/cHsyufnR8hSbCwsICJiYno+uTkJMbHx2E2m1FdXQ2v14uOjg40NDTA5XLhxIkTCAaDOHz4sIZVy8HszA4we7Zkjyeb9weza5z9ru5dojWGh4cFgHVLR0dHdMzJkydFdXW1yMvLEy6XS/z000/aFSwRszM7s2dP9niyeX8wu7bZ+SwkIiIi0h1eA0NERES6wwkMERER6Q4nMERERKQ7nMAQERGR7nACQ0RERLrDCQwRERHpDicwREREpDucwBAREZHucAJDREREusMJDBEREekOJzBERESkO5zAEBERke78H1FGNSxfcukbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "\n", + "plt.loglog()\n", + "plt.ylim([1, 1e6])\n", + "plt.legend(loc=\"upper right\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "06d734f5", + "metadata": {}, + "source": [ + "Now we're talking! The Lomb-Scargle periodogram nicely connects to the low-frequency part of the periodogram. Now, we can try to model the low-frequency continuum more confidently. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "59da1227", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.003)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAGwCAYAAABiu4tnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACO7klEQVR4nO2dd3gU1frHv7MtDUKIgVAMoNgIYighGEQJGqQpRcWGEooo16BorqioF9QfilcUsUSxXIpeVMAr4BVBBUWQJh019Iv0UKTE7CZbz++PZYbdzW6yZebM7O77eR4eJ5t1PvOemZ19c+ac8wqMMQaCIAiCIAgiZHRqHwBBEARBEES0QokUQRAEQRBEmFAiRRAEQRAEESaUSBEEQRAEQYQJJVIEQRAEQRBhQokUQRAEQRBEmFAiRRAEQRAEESYGtQ9AbVwuF44ePYr69etDEAS1D4cgCIIgiCBgjOGvv/5Cs2bNoNOp1y8U94nU0aNHkZWVpfZhEARBEAQRBocOHcLFF1+smj/uE6n69esDcJ+I1NRUlY+GIAiCIIhgqKioQFZWlvQ9rhZxm0iVlpaitLQUTqcTAJCamkqJFEEQBEFEGWoPyxHivdZeRUUFGjRogHPnzkWcSNlsNrz55psAgLFjx8JkMslxiOQkZ8z4yElOcmrXGW0xyvn9HQmUSMl4IsxmM+rVqwcAqKysREpKihyHSE5yxoyPnOQkp3ad0RajVhKpuH20pwQGgwFFRUXSNjnJqXVnPMRITnKSU5s+tZxyQz1SGsloCYIgCIIIHq18f9OCnARBEARBEGFCiRRBEARBEESYUCIlI2azGWlpaUhLS4PZbCYnOTXvjIcYyUlOcmrTp5ZTbqJzZJeGOXfuHDnJGVXOeIiRnOQkpzZ9ajnlhBIpGUlKSsLu3bulbXKSU+vOeIiRnOQkpzZ9ajnlhmbtaWTUP0EQBEEQwaOV728aI0UQBEEQBBEmMfFob//+/RgxYgSOHz8OvV6PdevWcVmR1Re73Y4PPvgAAPDggw/CaDSSk5yadsZDjOQkJzm16VPLKTcx8Wive/fumDRpEq6//nqcPn0aqampQa+QqlSJmBOnzyIjLVXxYorRtqQ/ObXljIcYyUlOcmrTF6lTK4/2or5H6vfff4fRaMT1118PAEhPT1ftWHQ6HZp36IEzFhtyX/oBnVtnYv7ofEWTKb1ejzvuuEPa5gE5Y8cZDzGSk5zk1KZPLafcqN4jtXLlSkyZMgWbNm3CsWPHsGDBAgwcONDrPaWlpZgyZQrKy8uRk5ODt99+G3l5eQCAhQsXYtasWXA6nThy5AjuuOMOPPPMM0H75cxoLTYHsid86/Va2Yu9kGyK+nyVIAiCIDSFVnqkVB9sbjabkZOTg9LSUr+/nzt3LkpKSjBx4kRs3rwZOTk56NWrF06cOAEAcDgcWLVqFd59912sXbsW33//Pb7//nueIRAEQRAEEaeonkj16dMHkyZNwqBBg/z+furUqRg1ahSGDx+O7OxsTJ8+HcnJyZgxYwYAoHnz5sjNzUVWVhYSEhLQt29fbN26NaDParWioqLC6x9BEARBEEQ4qJ5I1YbNZsOmTZtQWFgovabT6VBYWIi1a9cCADp37owTJ07gzJkzcLlcWLlyJdq0aRNwn5MnT0aDBg2kf1lZWbIdr8ViweHSoThcOhQue7Vs+63L2bx5czRv3hwWi4Wc5NS0j5zkJKd2nfEQoxJoevDOqVOn4HQ6kZmZ6fV6ZmYmdu7cCQAwGAx4+eWXccMNN4Axhptvvhm33HJLwH2OHz8eJSUl0s8VFRWyJVOMMTgrT5//QZZdBuU8evSotE1OcmrZR05yklO7zniIUQk0nUgFS58+fdCnT5+g3puQkICEhASUlpaitLQUTqdTtuNITExE02FvAQAEA5+1MBITE7FlyxZpm5zk1LKPnOQkp3ad8RCjEqg+a88TQRC8Zu3ZbDYkJyfjiy++8JrJV1RUhLNnz2LRokURO2nWHkEQBEFEHzRrLwhMJhM6deqE5cuXS6+5XC4sX74c+fn5Kh4ZQRAEQRCEBh7tVVZWYu/evdLP+/fvx9atW5Geno4WLVqgpKQERUVFyM3NRV5eHqZNmwaz2Yzhw4dH5FXi0Z7dbkflr8sAACnZBRD0yjev3W7HnDlzAABDhgzhtqQ/OWPDGQ8xkpOc5NSmTy2n7DCV+fHHHxncQ7O9/hUVFUnvefvtt1mLFi2YyWRieXl5bN26dbL5z507xwCwc+fORbyv43+elY4/6/EvWMunvmZmq12GowxMZWWl5KysrFTURc7Yc8ZDjOQkJzm16YvUKef3dySo3iNVUFBQ50j9MWPGYMyYMZyOKDwYY7h/xgYkXZoLABB0fJ6a6vV69O3bV9omJzm17CMnOcmpXWc8xKgEmhpszhPPR3u7d++OeLCa50DzSzJSsP+UGQANNicIgiAIJaDB5ipTXFyMsrIybNiwQfZ9z3uIBsITBEEQRDwQt4mUkgiC2kdAEARBEAQPKJGSEZe9Gkc+GIW89m25loi5/PLLcfnll3Nd0p+cseGMhxjJSU5yatOnllNu4nbwjhLLH4ABjjPHsP8MkMWxRIy4fASv4W7kjB1nPMRITnKSU5s+tZxyE7eJVHFxMYqLi6XBanIgGIzIHPIq/lWUi4e//0uWfdZFYmIifv75Z2mbnOTUso+c5CSndp3xEKMSxO2sPRG5Rv17ztrb+Fwhcie5F+akWXsEQRAEIT80a48gCIIgCCLKoa4SGWEuJyy712LRgnNgrnoQdMovLuZwOLBgwQIAwKBBg2AwKH9KyRk7zniIkZzkJKc2fWo55SZuH+0psSDnVU8vwqE37gAAZD3+BXSmRMUf7ZnNZtSrVw+Au25hSkqKYi5yxp4zHmIkJznJqU1fpE6tPNqLvtRPJpQYbA5BQELW1ejUsiEOcVpMSqfToXv37tI2OcmpZR85yUlO7TrjIUYliNseKREabE4QBEEQ0YdWeqSiM/0jCIIgCILQAJRIEQRBEARBhEncJlKlpaXIzs5G586dZduny27F0ZmPoKBrHlx2q2z7rY2qqiq0b98e7du3R1VVFTnJqWkfOclJTu064yFGJYjbwTuKDDZnDPYT+/H7CSCrkM/QM5fLhW3btknb5CSnln3kJCc5teuMhxiVIG4TKSUQDEY0vvP/UDqkA/7+s4w1/GohMTER3333nbRNTnJq2UdOcpJTu854iFEJaNYezdojCIIgiKiDZu0RBEEQBEFEOdRVIiPM5UTV/s34bqkdzKXjViLm22/dPWG9evXitqQ/OWPDGQ8xkpOc5NSmTy2n3NCjPRkf7VGJGHJGmzMeYiQnOcmpTV+kTq082ou+1E8mPGvtyYYgwNTkcmQ3S8WfHEvE5ObmStvkJKeWfeQkJzm164yHGJWAeqRosDlBEARBRB1a6ZGKzvSPIAiCIAhCA1AiRRAEQRAEESaUSMmIy25F+b/HoW9hAdcSMddddx2uu+46rkv6kzM2nPEQIznJSU5t+tRyyg0N3pETxmA9sgMbjgBZXfmViFmzZo20TU5yatlHTnKSU7vOeIhRCSiRkhHBYESjQc/itcE5+McWIxdnQkICFixYIG2Tk5xa9pGTnOTUrjMeYlQCmrVHs/YIgiAIIurQyqw9+oaPchhjqLK718JKMuohcFq/iiAIgiAISqRkhbmcsB7+HatXGcFcTsVLxDDGcPu7P2PN6p8BANdd1w1fPNxN8WTK6XRi1apVAIDrr78eer3ypXDIGRs+cpKTnNp1xkOMSkCP9qK4RIw/585XBij+KDHaygiQUzs+cpKTnNp1RluM9GhPZZQpEQMYL2qBSxulwMLrCdt5p7jNRSkIyM7OlrbJGb3OeIiRnOQkpzZ9ajnlhnqkoniwuadThAa3EwRBEPGAVnqkaEFOgiAIgiCIMKFEiiAIgiAIIkwokZIRl92K458/hzv69+VWIkZ0Hv/8Oa5laXr27ImePXtyLSNAzuj3kZOc5NSuMx5iVAIaTCMnjKH6wFb8dADIav8wV6e4zQOXy4Vly5ZJ2+SMXmc8xEhOcpJTmz61nHJDiZSMCAYjLrrl75g08GpM3sWnRIzoFLd5kJCQgH//+9/SNjmj1xkPMZKTnOTUpk8tp9zQrD2atUcQBEEQUQfN2osx4jsdJQiCIIj4hLouZIAxhsHT14K5nLAd34ctm9K4lIgBIDkBwJTZWnEf4F7Sf/PmzQCAjh07cisjQM7o95GTnOTUrjMeYlQCerQnQ9eg+IjNZaumEjHkjCpnPMRITnKSU5u+SJ1aebQXEz1SrVq1QmpqKnQ6HRo2bIgff/xRnQMRgBYtWgICwDiWiNGnNpa2uSgFAS1btpS2yRm9zniIkZzkJKc2fWo55SYmeqRatWqF3377TcpqQ0HOHinAPdgbgNfPNNicIAiCIORFKz1SNNicIAiCIAgiTFRPpFauXIlbb70VzZo1gyAIWLhwYY33lJaWolWrVkhMTESXLl3wyy+/eP1eEAR0794dnTt3xpw5czgdOUEQBEEQ8Y7qiZTZbEZOTg5KS0v9/n7u3LkoKSnBxIkTsXnzZuTk5KBXr144ceKE9J6ff/4ZmzZtwldffYWXX34Z27dv53X4XjCHDXfdcTvuuuN2MIeNm/PEl5Nw4stJ3JzV1dUYOHAgBg4ciOrqanJGsTMeYiQnOcmpTZ9aTtlhGgIAW7BggddreXl5rLi4WPrZ6XSyZs2ascmTJ/vdxxNPPMFmzpwZ0FFdXc3OnTsn/Tt06BADwM6dOxf2cZutdtbyqa9Z1uNfMAAMAMt6/AvW8qmvmdlqD3u/wXh9nUr6RCorKyVnZWWl4j5yxo6PnOQkp3ad0RbjuXPnIv7+lgNNj0q22WzYtGkTxo8fL72m0+lQWFiItWvXAnD3aLlcLtSvXx+VlZX44YcfcOeddwbc5+TJk/HCCy8ocryC3oB33n0PAPDq//g0raA3IL3XGGmbByaTCR988IG0Tc7odcZDjOQkJzm16VPLKTeamrUnCAIWLFiAgQMHAgCOHj2K5s2bY82aNcjPz5fe9+STT+Knn37C+vXr8b///Q+DBg0C4F7Ya9SoURg7dmxAh9VqhdVqlX6uqKhAVlYWzdojCIIgiChCK7P2ov4b99JLL8W2bduCfn9CQgISEhJQWlqK0tJSOJ1OBY+OIAiCIIhYRtOJVEZGBvR6PY4fP+71+vHjx9GkSZOI9l1cXIzi4mIpow0XxhgsNuf5bRfKyn6XtgVB+bH8jLlgP3UIAGDMyFLcBwAulws7duwAALRp0wY6nfJxkjM2fOQkJzm164yHGJVA04mUyWRCp06dsHz5culxn8vlwvLlyzFmzBh1Dw7uJOqO6Wux6cAZ9892Gzp3aA/AXa5FMCUqfwx2G47NKJacPLBYLLj66qsBAH/99VdYC6GGSlVVleTkVbogHpzxECM5yUlObfrUcsqN6olUZWUl9u7dK/28f/9+bN26Fenp6WjRogVKSkpQVFSE3Nxc5OXlYdq0aTCbzRg+fHhEXjke7VXZnVISBQAdW6ShKiMjouMKB10Sv2fDjDEM+Wi95Lzvo/VYMPZGLkv7Z6jQtvHgjIcYyUlOcmrTp5ZTTlQfbL5ixQr06NGjxutFRUWYNWsWAOCdd97BlClTUF5ejvbt2+Ott95Cly5dZPFHMljNc7D3xucKcVGKCYIg1Bh8HkuDzWmAO0EQBKEFaLD5eQoKClBXLjdmzBhNPMqrjWSTPmoLLhIEQRAEER7RN6qLIAiCIAhCI8RtIlVaWors7Gx07txZtn1WV1djyJAhGF50v1SuRekHp8xhw8n/TsHJ/07hWpaGt1Ns2yFDhnAtXRDrzniIkZzkJKc2fWo55Ub1MVJqI9cYqbIXe4HZrdIMtqzHv4DOlIjspqlY/Gg3RR77WWwOXPX0Ihx64w7JufOVAYqPkeLtBNwr2Itty2tmRzw44yFGcpKTnNr0ReqkMVIxiMlkwhtvvAHGGL5l6dh5woKyYxWosjsVSzQEvQENbxwlbfNADafYtuI2OaPTR05yklO7zniIUQnitkfKc/mD3bt3y9Ij5Zksma0OtJ2o7Mw9mrVHEARBxCta6ZGK2zFSxcXFKCsrw4YNGxTZP03gIwiCIIjYh7oRZMTlcuHgwYMAgIwmzRTzMMZQZXfCYnOCMRecFScBAPrURoo5vf38nZ5t26JFC26lC2LdGQ8xkpOc5NSmTy2n3FAiJSNVVVW45JJLAAAnTp9VxOGvLM2R6SMB8CsRo4bTs215li6IdWc8xEhOcpJTmz61nHJDiZTMJCcnK7p/37I0ACAYExR1+oO3kzEmtS3PYX1Kn08tOOMhRnKSk5za9KnllJO4TaTkqLXnS0pKCsxmMwD3oGwe6EyJaFHyHy4utZyMMRR9sh2NHpkHABj2yXbMH52v+ErynueTF7yd8RAjOclJTm361HLKTfQ9jJQJpQeb8yC7aarXf2MV3164jQfOoMouXwJMEARBEOEStz1SsYC7V8a9erq41AJBEARBEPyI2x4pJbBarRg1ahRGjRoFq9WquE8QAD1zYszDD+HPJW+BOeyKOwGAOez4c8lbMe/kfT7VcMZDjOQkJzm16VPLKTsszjl37hwDwM6dOxfy/2u22lnLp75mLZ/6mpmtdlZZWckAMADsxOmzXr+Ti9qcWY9/IavL5XIxs9XOzFY7c7lckj/r8S8Uc/pDDSdjzKttKysrFfep4YyHGMlJTnJq0xepM5LvbzmJ20d7Sgw2NxqNmDRpkrTNA6PRiIkvvIg3l+2BoNfLtl/ms8xCbsuGmD86HwAg6PVIu/5+aZsHajjVOp88nfEQIznJSU5t+tRyyk3clogRkbNosWeZlNp+Fwn+9quEK1ApGABUloYgCIJQHSoRQxAEQRAEEeXQn/QywhjDqVOnAADJqWncnCdPnoTTcg66JD4ZOWMMrqoKAIh5p3g+MzIyFF+3Sg1nPMRITnKSU5s+tZxyQ4mUjFgsFjRu3BiAciVi/DlbXeyu68evRIwVh98eEvNOz/PJq3QBb2c8xEhOcpJTmz61nHJDj/YIgiAIgiDChHqkZCQlJUWqA8erRExKSgrMVnuNwdhKojMlouVTX3PzqeX0PJ+x6oyHGMlJTnJq06eWU26oR4ogCIIgCCJM4jaRKi0tRXZ2Njp37qz2oRCEBGMMFpsDFpsj6v9KIwiCiAfiNpFSomix1WrFY489hscee4zr8vrj/l6C08s+4Fqu5fSyD2R31pZEKOWsDd7nkzGGQW//hCZdb0eTrrfjtrd/UjyZUuuaJSc5yak9ZzzEqAS0IKeMC3IyuxX16tUD4J611/mfP0u/U2pBTk9n1uNfYOcrAxRfkPOqpxfh0Bt3yOoMtJK6IAiw2ByKOOvCbDZLbctlxowKcfKOkZzkJKd2ndEWo1YW5KTB5jJiNBrxzDPPSNu8nOOeehrvr/wf13Itqfl3SttyUGV3SkkUAGw8cAZVdqeURCjhrAs1zifvONW6ZslJTnJqzxkPMSoB9UhRiZg6PSJKloiprQxMvJSIiZc4CYIg5EArPVJxO0aKIAiCIAgiUuhPXRlhjMFisbh/MJi4Oc1mM1y2agjGBG5OZncPCox1p3g+k5OTuZVL4BmnWjGSk5zk1J4zHmJUAkqkZMRisXgNNuflbJyeBoBvuRbPAdGx6vQ8n7wGXvKOU40YyUlOcmrTGQ8xKgE92uOAxeakNYEIgiAIIgahHikZSU5ORmVlpfsHj0d7uZOWeU3nl9t54vRZdPq/ZbI9CnKv5+QM+HvBmCD1lvB6zKaG0/N8Jicnc3HyjlONGMlJTnJq0xkPMSpB3CZSpaWlKC0thdMZOGEIFUEQpG5JxhhyWzbExvNT+n2n88vt1JkSZdmf73pOgZyCTL5gUcvJu5uZd5xqxUhOcpJTe854iFEJ4vbRnhIrm3siCALmj87HxucKFdm/Uviu55Td9MKUUvcjSjWOiiAIgiC0SdwmUkpgs9nw7LPP4tlnn4XNZoMgCEg2Kbuoos1mw/MT/oEzKz8Gc8pbOmXjc4WYPzpf+jl30jIMnr4WzGnHmZUfK+IMhBpO3/PJA95xqhEjOclJTm064yFGJaAFORUqESPOPpBjsUzGGKrszvPbQNuJypWI8T3eJKMeg6evlR5RAoDLVi17GZO6FuSkEjHKEG0lIchJTnLGji9Sp1YW5IzbMVJKYDAYMHbsWGlbDnzHLHk+ahM9D495BJ+sPQBBJ3/vl/iI8k+zDbmTlrlf0+lRv1N/aZsHajiVOJ91wTtONWIkJznJqU1nPMSoBNQjpVCJmFDeE6zDFyVKxATaVzDHEQlUIoZKxBAEQYSCVnqkaIwUQRAEQRBEmFAiRQRFklGP3JYNpZ99HzESBEEQRDxCiZSMmM1m9zpAggCz2czNmZJgxIF/3gKXrVoxjzhWquzFXtjwVDcseewGxZ2euGzVOPDPW7g61TifvONU65olJznJqT1nPMSoBDT4IgQ8Z88lGfkMeNYS7uUcDGB2umwIgiAIAqBEKmh8Z8/ltmyI2SPyvN6TnJyMEydOSNs8SE5Oxh+Hj6LbP3/kWjqFt1MwJuDiR+ZI2zxQ43zyjlOta5ac5CSn9pzxEKMSUCIVJL4rfoslXzwRBAGNGjXielyiU5/cIOadcvp8exf91UBU63yqcS55Qk5yklObzniIUQliZoyUxWJBy5Yt8cQTT6h9KITGEXsXsyd8i+wJ37pXa4/vVUAIgiCIMImZHqmXXnoJ1157rarHYLPZMGXKFADAuHHjYDKZuDhffeWfOLdmD1K73Ka4Ty0nc9pRsf5LAIjYGah30Xe9JjXOp5xxBoNa1yw5yUlO7TnjIUYliIkFOffs2YOnn34at956K3777Te89tprQf+/wS7o5W+xxI3PFUqrfStVIqauhTCVLhHjb1+eS/pHY4mYYBe+pBIxylBZWYn69esDAE6cPouUlJSAj1flItpKX5CTnGo4oy1GrSzIqXqP1MqVKzFlyhRs2rQJx44dw4IFCzBw4ECv95SWlmLKlCkoLy9HTk4O3n77beTlXRjo/cQTT2DKlClYs2YN56P3xmAw4IEHHpC2eTmHjRiBLzYe5lo6hbdT0OlR75qbpW0eqHE+ecfJO0bGGO6bsVGKMfelHyEYjMht2RDzR+crlkyp9dkkJzmjyRkPMSqB6kdtNpuRk5ODESNG4Lbbaj7KmDt3LkpKSjB9+nR06dIF06ZNQ69evbBr1y40btwYixYtwhVXXIErrrgiqETKarXCarVKP1dUVMgWS0JCAj788EPZ9hess/S99/FjgF6rWHEKBiMu6vMoNx8AmEwmvFn6HgDACXcSoGSvCcA/Tt7XbJXdia1HzTViDPR4VS7U+mySk5zR5IyHGJVA9USqT58+6NOnT8DfT506FaNGjcLw4cMBANOnT8fixYsxY8YMPP3001i3bh0+//xzzJ8/H5WVlbDb7UhNTcWECRP87m/y5Ml44YUXFImFiB18l7sAoHivSbyx8blCAJAejxMEQUQjmp61Z7PZsGnTJhQWFkqv6XQ6FBYWYu3atQDcidGhQ4fwxx9/4LXXXsOoUaMCJlEAMH78eJw7d076d+jQIcXjIKIP3wHpgP8lL4jwSTbpkWyKv4VtCYKILTSdSJ06dQpOpxOZmZler2dmZqK8vDysfSYkJCA1NdXrn1yYzWakpKQgJSWF6/L6jRo2wMGpt3MtncLb6bJV4+DU21Vxnnj7zpiNU41rVoyxUcMGfEspqfDZJCc5o8kZDzEqgeqP9uRk2LBhQb+3tLQUpaWlcDrl7WGwWCyy7o+cF2B2a91vUsBZZefv5Ila59LCuV3j5XNCTnJGk08tp5yElEi5XC789NNPWLVqFQ4cOACLxYJGjRqhQ4cOKCwsRFZWlqwHl5GRAb1ej+PHj3u9fvz4cTRp0iSifRcXF6O4uFiaPikHSUlJ2L9/v7TNg6SkJJTt2oOeb6yEYOSz/oYaTsFoQvPR/5K2eTq/GnMdBn28m6tT3FYaNa5ZMcbvH7+B6+dEjc8mOckZTc54iFEJgkqkqqqq8Prrr+O9997D6dOn0b59ezRr1gxJSUnYu3cvFi5ciFGjRuHmm2/GhAkTZFsY02QyoVOnTli+fLm0JILL5cLy5csxZsyYiPYdao9UMKtt6XQ6tGrVKqLjChWdToeWrVrB0GBXTDsFQQdDg8y636iAs0XLVhCEvVydvFDjmhVjbMnRq9Znk5zkjCZnPMSoBEElUldccQXy8/Px4YcfomfPnjAajTXec+DAAXz66ae4++678eyzz2LUqFFBHUBlZSX27r3wJbV//35s3boV6enpaNGiBUpKSlBUVITc3Fzk5eVh2rRpMJvN0iy+cAmlR4oxhsHT10bkIwiCIAgi9ggqkfruu+/Qpk2bWt/TsmVLjB8/Hk888QQOHjwY9AFs3LgRPXr0kH4uKSkBABQVFWHWrFm46667cPLkSUyYMAHl5eVo3749li5dWmMAupJU2Z0oO+Zeb+qSjBTsP+UeEOfbS2W321FaWgrAnaj5Szjlxm6345233kLFhl2o37Gf4j61nMzpwF+bFwMAd+f00h1gzssh6DksWMk5TjWuWTHGd97aiYf+9rDiPkC9zyY5yRlNzniIUQliokRMJASzxLxnSZENzxai80vudW88kyoqERNbJWL8OXWmxLDOYSjHFeslYnxjPHH6LDr/82cA4X0+giXaSl+Qk5xqOKMtxqgtEdOqVSuMGDECw4YNQ4sWLZQ4Ji6EO2sv2aRHdtNUlB2rkJIoEb1ej3vvvVfa5oFer8edd9+Nr7cfg6Djs5qFGk5Bp0Nydndpm6ezz9VNsCFG41TjmhVjvOWaplw/J2p8NslJzmhyxkOMShByIvXYY49h1qxZePHFF9GjRw+MHDkSgwYNQkJCghLHpxjhztoTBGD+6Hy0nVizlygxMRFz5syR8zDrJDExETNnfxKw1yqanRabO8llDBAMJjS6dZyiPl9E53SP4tS8nLxQ45oVY5z5Yi9uTrU+m+QkZzQ54yFGJQj5T97HHnsMW7duxS+//II2bdrgkUceQdOmTTFmzBhs3rxZiWPUHFQhRD4YY7DYHFLS5EnupGXInvAtDfQnCIIgNEvYzw46duyIt956C0ePHsXEiRPx0UcfoXPnzmjfvj1mzJiBOB965ReLzUnt4oFYzy57wrdePT7ZTb2fdYsD/QmCIAhCa4SdSNntdsybNw/9+/fH3//+d+Tm5uKjjz7C7bffjmeeeQZDhgyR8zhlp7S0FNnZ2ejcubNs+zSbzWjUqBEaNWrkd6n73EnLMHj6WlmTKbPZjJbNm+LQW/dyLREjh9NfPbvclg3x9SPdUPZiL6moLeAuK3LorXu5xik6r2p1MXcnrzjrumaVQIyxZfOmfEspcY6TnOSMNmc8xKgEIY+R2rx5M2bOnInPPvsMOp0OQ4cOxRtvvIGrrrpKes+gQYNkTVCUQImVzQF3fUBPkox65LZsiI3nEwax8K2cs5N8nTyQ27nxuUIkm/RIMuohCILf9nFV8e+ZclVV4M8qIJmzkydqXD+uqgqcquLrjIXPCTnJGWs+tZxyEvK3eefOndGzZ0+89957GDhwoN81Hy655BLcfffdshxgNJGUlITffvtN2gYAQRAwf3Q+/jTbFBmwnJSUhA1btqL/26u5loiR25ls0teaXApGE5qOKJW2eSA6543Ox5AvDnN1ittK4++aVRoxxq8euY5rGQrecZKTnNHmjIcYlSDkROp///sfWrZsWet7UlJSMHPmzLAPKlrR6XRo27ZtjdfdPSzKTOvU6XTIzm4LUyM+X/RqOQVBB1Oj2q87pZxXtcmGIBzl6uRFoGtWScQYs7P5edWIk5zkjDZnPMSoBCEnUmISZbPZcOLECbhcLq/fR8vaUuGuI0UQBEEQBCESciK1e/dujBw5EmvWrPF6nTEGQRCiJjFRYoyU3W7HrFmzAADDhg3jtrz+zH/9C39t/R312hXW/T9EqZM5Haj81f1olLfzk5kHwJzNuZWI4RmnGtesGOPMfx3CfUOLFPcB6n02yUnOaHLGQ4xKEPI3w/Dhw2EwGPD111+jadOmEOJgUaVgJ9nZbDY8+OCDAIB7772XywVhs9kw5uG/AQBSsgsU9/lzWmxOaZC4UjCnA6e/fUdyyo24jpVnHKKz5Ft3uRZeiZSScfqixjUrxjjmW+DOu+9R3Aeo99kkJzmjyRkPMSpByN8MW7duxaZNm7xm6cUyjLGgF4TU6/UYMGCAtB14n7IcmuS55db+WL7zBNcSMZ7O3EnLkNuyIeaPzlcsmRJ0OiRdfq20LTfiRAAxDk9nwRWN8DvHEjFKxulLsNesnIgx3nRVY65lKHjHSU5yRpszHmJUgpATqezs7KifqhgKVXantCBkdtNUJBndJ9pzSYPclg3P92QYsHDhwjr3OXj6Wix+tJssSUdiYiLmfvEf7iVivlq0EIOnr1V0WQdPBIMJjW97Tvb9inUTRcQ4PJ0fcy4Ro0ScgUhMTAzqmpUTMca5nEvE8I6TnOSMNmc8xKgEQX3rVVRc+KL55z//iSeffBIvv/wy2rVrV6MbTs0KzErj2eMyf3S+9IUbzGOtJOOFYsdlxyoUTTp4oPSyDkDNNbh8kx45cJ9T96M9XskSQSgFY0y6L4ko/didIOKdoL7J09LSvD6IjDHcdNNNXu+JtsHmgWbted6IxN4nEc97UaBFIwMhJh7+ih1HK0ou6yDu3zNhZQyyt58gIKoTWoIQEUsu+asWoORjd4KId4L6Bvnxxx+VPg7u+Ju153sjym3ZELNH5AW9T4vFguzsbABAWVkZkpO918NW4j5msVjQJjsbR85UodkD78ovCOAU49y4dbuiLjFhFZ0843TZq3H0o4fR8bNE4I6p0BkTQ96Hbw9BXb0DohMAlzjrumaVQIyxzedJ2KTw9SOiRpy8nVV2JzbsPeZ1/eiMiYo/ducZp/h5slgs6NT+GgDApq3bcVGD+oonivFwDcVDjEoQ1Cere/fuSh+HJvCt/bbxwBmcNtuC/v8ZYzhw4IC0zQPGGA6ed4JTPeR4iRMMcFacwKEKICsMp78egjp7B847xW2lUeNcijEerOB7/ahxzarVtgCw6ske6P5GcBNlIlJyitPz8+SyVePQeWfHF79H3uVNFe91i4drKB5iVIKw/0SxWCw4ePAgbDbvROOaa66J+KDUwGJzoH5CzdevfzX43rjExET88ssv0jYPEhMTsXL1Gtz5/joIBj7TRuMlTsFgRJOhU/HxiDw8sPjPkP9/f0WZ6+odEJ3ittKocS7FGOc9dC3X64dnnIwxuHQGrFztXm/PpTNIwx+UxLNt01NTFHWJ8Gpbz8+T7+dE6V43QL37Hk9nPMSoBCFfdSdPnsTw4cOxZMkSv7+PljFSvuS9tBxtWzWRfg5nYLNer+derFmv16NTbmckfHWaq1OM02JzcHPyjlPQ6ZHQ9Ap06JQLYUlkA9FXPdkjqKRcdPJCjWtWjLFTLj+vXq9Hbm4uquxOWJ0McLqvWyUGYvsdq/SV8kuEAOq1Le9raNOEXkg26blOElHr/s7TGQ8xKkHIidRjjz2Gs2fPYv369SgoKMCCBQtw/PhxTJo0Ca+//roSx8iNHR6JkzjIWUszuTyTO3HJBTlhjEkLUxLykqTgoHyibngOxPbXEwkov0RIPFFXkXOC4EnIV+IPP/yARYsWITc3FzqdDi1btkTPnj2RmpqKyZMno1+/fkocJ1eym6Yi2aQPeXC4w+HA3LlzAQB33XUXDAZ5P+jiVH3gwl/SDocDn3/2KSp/346UNjeEve9AXzT+8Izz1kG3h+0MBd84/a1ELjfM5YR5x0p8MfckmCsdgk75ZEh0AojofAaL0tesP8QYP//sT9wx+E7FfQDwV5UVP33zJQB3u4rnUsnkhrmcGH+luwd18i6+1w/PtlXjGnI4HJgzfy6sDieYK41L26oVJ09nPMSoBCEfsdlsRuPGjQEADRs2xMmTJ3HFFVegXbt22Lx5s+wHqBS1FS0O9y9Uq9WK++67DwAwcOBA2S8If1P1rVYrRg5z1ytLvjw/7H37/hVdW4+XZ5wnTt8StjMUfOP0XYlciWSKOez48+vX8bevz5eIUahXSZqJZHNKTiCy8xksSl+z/hBjHPk1cGv/AYr7AHecYrtu+ugZpKSkKN7bzBx2/O2B4QCUvX58nWq0Le9ryNPJq23VjpOHMx5iVIKQj/jKK6/Erl270KpVK+Tk5OD9999Hq1atMH36dDRt2lSJY1SE2ooWh/udrNPpUFhYKG3zQKfToceNN2Htvj9lW19h43OFuCjFFDA5USvOwsJCbD981itORR+XCAISW7ZHl0vT8T+ler18ewLPO8VtpVHjXIox5re+iOv1I7ZrvUQjn0etgoAeN7rX29vLaw0nldpWrfuB08W4ta2acfJyxkOMShDyt8/YsWNx7NgxAMDEiRPRu3dvzJkzByaTSargHK8kJSXh+++/D+q9chX6TUpKwtdLlspaIsb9WDPwcXnGyWuwuej07L1RukdBZ0xA5t2T8IWCJWJ8ewJ1xgT0ePwt2VdwD0Qo16xciO36NccSMUlJSci8e5K0zQOdMQFfL1kKANxKOKnVtryvIdFpsTm4ta2accaqTy2n3IScSIldcADQqVMnHDhwADt37kSLFi2QkZEh68HFMjwK/cYioa4oH01sfK4QySa9Iiu4EwRBEMoQdj+azWbDrl27YDKZ0LFjx5hMosRab4A8s+Q89wd4F8glCHEmEuXVBEEQ0UPIiZTFYsHIkSORnJyMtm3b4uDBgwCARx55BK+88orsB6gmYq23shd7BdVzZLFY0LZtW7Rt2xYWiyXg/jY+VyjbMVosFuS2z8HRjx6Gy14t237rctYWZ6w4xVIm3Tp34Nq2PM+nmu2a2z6H6/Vz9KOHcfSjh7nGmds+B7ntc7hdP2q1rVr3A55tGw/3vXiIUQlCfkYyfvx4bNu2DStWrEDv3r2l1wsLC/H888/j6aeflvUA1SaUR0mMMZSVlUnbgfcn30BXxhh27Cg7/4Nsu63TWVecSju5dNowwP7nQez6E8jqw0PI/3yqcS7Fdt3xJ9/rx/7nQWmbjxTSuczqXcd7ZXSq0bZq3g94ta3acfIqERPrMSpByInUwoULMXfuXFx77bVePTRt27bFvn37ZD24aCMxMVEq8Mxzef0l3y3DsJm/cC0Ro0acnk6rU/kPnGAwIvOel/H+/Z3w6I98/urlfT7VOJdiu84ansf1+sm852VpmweCwYgl37knKTz0vZmbU422Vet+UG13cmtbLdz3Ys2nllNuwioRI64j5YnZbI77QdN6vR4FBQVh/b/ibDQgtEUm9Xo9bujeHYnL+XzRi04xznBn7YW6inqNtnUqP1tQ0OmR2OIaXHd9dwg/8StDwfN8RnLNhovYrjdwLIau17ud4jYPBJ1eilFYzmfygFpty/saEp0Wm4Nb2/KK0/O7AADyunYDwGdpADXPZTQTciKVm5uLxYsX45FHHgEA6Qv/o48+Qn6+8gsIKkWHrDRsO2FTpPRKXfiuJRTrs/lCWUWdIAgiXqjt3hjr3wvRTMiJ1Msvv4w+ffqgrKwMDocDb775JsrKyrBmzRr89NNPShyjIviubP7xyDwYk1IiWtvJ4XDg66+/BgDccsstQa/Q6ruWUCiLTDocDvx30SJYdm9B0mV5YR13qHjGeePNoQ9QCGUVdX/OW27hs5o6czlRtfcXfPNfC5grgVsZCp7nM9xrNhLEdv3vomr04VRSyuFwwLJ77fntm7jF+d9Fi85vG7mViFGjbXlfQw6HAwu/+RpWu5Nb2/KI0/feKJ5PANjgylO8VqNa55K3U25CPuJu3bph69ateOWVV9CuXTt899136NixI9auXYt27dopcYyK4LuyuRzrE1mtVgwaNAgAUFlZyW15/bvvvAOAu1SCXAt91uUU4zxx+mxE+6prFXV/zsrKSgjGhJBdnot5BvV+hx0nF7yEogV8y1B4nk8ePt7XrNiudy+I/PoJFqvVipMLXjq/PY5bnJ7nkleJGDXaVo37nujk+dnkGefG5wrB7NVonO4u9ROr9wM1nHIT1hG3bt0aH374oddrJ06cwMsvv4xnnnlGlgOLRnQ6Hbp27Spt83Jem5+PLQfPAoLAZaFPOeOsaxX1QM5Qh5qH9ThREJDQvA2uubgByjmWofA8nzx8vK9ZsV07tEjj+jlJaN5G2uaCIODa88MdjnAsEaNG26px3+vatStcjHFrW95xJpv0EPSmmL8fqHIPkhnZUr9jx47hH//4R1wnUklJSVi9ejV355rVqzF4+lpsPJ8kKFp/Dt5x8iwR49m2oXp9u8yBuh8p6owJaHLfFHwjc4kYsUfMnzspKQnLV6yUyl549p4p0dOoxjUrtutyzmVMmtw3Rdrmgc6YgOUrVgLgWyJGjbZV4763evVq7iVi1IjT837Aw6fWuYxmoq8PjaiBuNDnn2ab4vXnYgGxFIvSj0ADIZ6j3JYNMXtE7eOgPM8nDTYlCILQHtHZj0bUQO6FPmOZC6VY+CUkvuWBgMAlgvy9t7b3EwRBEOpBiZSMVFVVoXPnzujcuTOqqqrIGeVOl92KY7MfR8/u18Flt0a0L0GAVG6othJBVVVVyMvLw4EZY7Fp/A11vj9S1GzX67tey/X6OTb7cRyb/TjXOK/vei2u73ptxNdPKE412lat+wHPtlUrzuu7Xotjsx/nEme83NvlJuhHeyUlJbX+/uTJkxEfTLTjcrmwceNGaZucyjkFHp1vjMFWvgdby4Gs7pGvpB7MzFDPOBMNOkWnOvv6eJ1LsV03l/O9fmzle6TtmofEavT2RfzolzFs3rQJAJB1A7f6Taq0rZr3A15tq1ac4jUEDuVT1D6X3O5BMhP0XXrLli11vueGG26I6GCinYSEBGk9jISE0Kfn+xLM6t9yO4NBC04bh8+bYDCi0R0TMe2u9hj/C5/OW95tq8a5FNt1+pCOXK+fRndMlLY9YQx+Z3RGOiZNMBjxnwXudaQeXxPWLsJyqtG2at0PrHYnt7ZVK87/LFiE0XM2cykZpYV7ezQSdCIl1sIhAmMwGNAvxEXwAiVKgW7utTl5zaBT2wkANg5eQadHcuvOuLl3IZ7ZyGcQfzjXUDT5gAvt2rsvv5llBoMBya07S9ue+JvRCUQ++1XQ6aUYS9bxKxGjRtvyvoZEp8Xm4Na2asXZu29fJK/jM/5VzXMZzdCsPZUJNMsunNW/CYKIDHE8Gs1+JQgiWIJKpF555RU8+uijSE5OrvO969evx6lTp6I+wwwHp9OJH374AQBw4403BiyOKs7K2hjk4pC1rf7t6by2G59Hq2o7b7zxRi5O5nKi+sB2rPjBvc2jDEWw11C0+oAL7bp8mR4FPXoo7gPccVbt33J+uzBgnHLOfGUuJ5YvWyZt8yoRo0bb8r6GnE4nvv/+R1TbnTH72RSdy5ctQ9X+LUhseQ0Xnxox8nbKTVCJVFlZGVq2bInBgwfj1ltvRW5uLho1agTAXSenrKwMP//8M/7973/j6NGj+PjjjxU9aE/Onj2LwsJCOBwOOBwOjB07FqNGjeLm96S6uho333wzAPdS9ykpKX7fJ677JJYrqeuv39pW//Z08ioJobYz3BIxocIcdpyY9w8MnsevDEWw11C0+oAL7dp/Ht/r58S8f7i3pz/CLc7+/S6U9/C8fhQZ3A712pb3NeTpjNXPpujs368PAD4lYtQ+l7ycchNUIvXxxx9j27ZteOedd3DvvfeioqICer0eCQkJsFgsAIAOHTrggQcewLBhw5CYmKjoQXtSv359rFy5EsnJyTCbzbj66qtx22234aKLLuJ2DCI6nQ45OTnSdm3IUdsvVKdcaMHJZZ6OIMDY+BJckVkfFRzLUPBsWzXOpdiuVzWpz/X6MTa+RNrmgiCg3TXuXoSzHtdPoHJFsiy4qlLbqnU/cDHm1bY8nOI2L2e7a67BzvK/uJWIUfveHo0E/U2ek5ODDz/8EO+//z62b9+OAwcOoKqqChkZGWjfvj0yMjKUPM6A6PV66ZGj1WoFYwyMwzRRfyQlJWHr1q2qOXmWa1HTycurMyag2fC3sULmEjGeVPlMNuB9DalxzYrtuo5zGZNmw9+WtnmgMyZg3Qb31HXPEh9KDW4XnWq0rVr3Pd4lYtSIc92GTTEfI2+n3ISc/ul0OrRv3x4DBgzA3XffjcLCwoiSqJUrV+LWW29Fs2bNIAgCFi5cWOM9paWlaNWqFRITE9GlSxf88ssvXr8/e/YscnJycPHFF2PcuHGqJXVEbGCxOXks2QIAuP5Vmg0bz2x8rlDRBVcJglAe1fvRzGYzcnJyUFpa6vf3c+fORUlJCSZOnIjNmzcjJycHvXr1wokTJ6T3pKWlYdu2bdi/fz8+/fRTHD9+PKDParWioqLC6x8R2wSzHpcnuZOWYfD0tRH6HAGd/krA0KzM+MRdrojOO0FEM6onUn369MGkSZMwaNAgv7+fOnUqRo0aheHDhyM7OxvTp09HcnIyZsyYUeO9mZmZyMnJwapVqwL6Jk+ejAYNGkj/srKyZIulqqoKBQUFKCgo4Lq8PjkDI45HqevRnG9yU3asAi67FeWfPo0BfXoGXZ5B9GVP+DagU5xsUPZiL+mfODaGd9uqcS7Fdu3d8yau10/5p0+j/NOnucbZu+dN6N3zJq4lYtRoW7XuBzzbVq04e/e8CeWfPs2tREy03Nu1hKbXkbLZbNi0aRPGjx8vvabT6VBYWIi1a909BsePH0dycjLq16+Pc+fOYeXKlfjb3/4WcJ/jx4/3KndTUVEhWzLlcrnw008/Sds8iFdnsCVigl2PS0xu/jTbLiRAjMF66DesOQRkdR4bli+QM9BkA95tq8a5FNt11SG+14/10G/SNhcYw6qVKwEAWZ0e5eZUo23VvB/walu14hSvIV4lYtS+t0cjmk6kTp06BafTiczMTK/XMzMzsXPnTgDAgQMH8OCDD0qDzB955BG0a9cu4D4TEhIUW4Y+ISEB8+bNk7Z5EK/OcErE1LYeFyAmNxcSHsFgRMaAp/HK7e3w4q+hl2fY+Fwhkk36kKa1825bXj5xur/F5pTa9Y27crhePxkDnpa2eSAYjPjk088AAM9uUb68h+hUo23Vuh9YHU5ubatWnJ98+hken7uNW4kYte/t0UhIiZTdbpdG2F999dVKHVNI5OXlhTXiv7S0FKWlpXA6gx87UxcGgwGDBw+WbX+hOnmWa1HTCYRXIqa29bj8Iej0SLmqGwYMKsT//R76rD33+JfQ/lbhfQ3x8PlO9xfb9bbb+ZYxSbmqm7TNA0Gnx2233wEAeG4bvxIxarStWvc9i83BrW3VivO22+/Ac9vqc/Op+R0WrYQ0RspoNKJFixayJh+1kZGRAb1eX2Pw+PHjx9GkSZOI9l1cXIyysjJs2LAhov0ohe+0eIKIVoJ93EkQBBGNhDzY/Nlnn8UzzzyD06dPK3E8XphMJnTq1AnLly+XXnO5XFi+fDny8/MV94eK0+nE6tWrsXr16qCTTc9BztlNU6XXg50WH44zUuLFyVxOVB8uw/q1a8Bc2ojTYnPCYnPItlYa73bd+Fwhfp1YiMfaubBmzZo6nRdmQF74F07sTqf7XFYfLuN6/axdsxpr16zmdv2I1+zaNbH92RSdPNtWrTjXrlmN6sNlXOKMl3u73ITcx/3OO+9g7969aNasGVq2bFljOffNmzeHtL/Kykrs3btX+nn//v3YunUr0tPT0aJFC5SUlKCoqAi5ubnIy8vDtGnTYDabMXz48FAP3QslHu1VV1ejWzf344Ngl7r3LBeTaNDjzvfXBl2Dz9fJsySEmk6eJWKOz3kSt8zhW4aitmtIHAgvyyrYQfjkJtmkB7Nbcf311wOo/fqRcwXw6upqHJ/zpHv77QeDjtNzCYtQS7gwhx2FPQoA8Lt+xGu2cI532/ouxSFHORoR3teQr1Mrn02lnJ7XEA+fmucypkvEeDJw4EBZD2Djxo3o4VFcU5xRV1RUhFmzZuGuu+7CyZMnMWHCBJSXl6N9+/ZYunRpjQHooVJcXIzi4mJUVFSgQYMGEe1LRBAEXHbZZdJ2KP+fOJamxswxhZyREC9OCIChYVNkpSfDwUvpJ05/Ra7lWAU7kE9pgnXKuQK4IAgwNGxap9MXz89hyAmcALRu7Y7Txun6Ea/ZlukpXsfpez+RKxEH1L2GGLvQtkomi55OcZsHgiCgdevLcOC0GeCg1PL9QMuEfBeeOHGirAdQUFBQZ1f9mDFjMGbMGFm9SpCcnIw9e/ZEtA/fmWOhOHkN/Fbb6eu12Jyy3zQBQGdMRPMHP8QvCpaI8cXfNVRbkWt/xW9FgmkTOa7ZUAnn+hFX/xZjD7WnKDk5Gc0f/FDarg1/iSsQegKnMyZie9kOAOBW4kO8Zre/2CtgHIB8iTig7jXkWSJGyWTR08mT5ORkbC/bwe36Uft+EK2E9Sk6e/YsvvjiC+zbtw/jxo1Deno6Nm/ejMzMTDRv3lzuY1QEJR7tEeqQO2mZ7DdNreFv3SnG4PfRl0i0tonnUgkivn9cRNRTVAeeiSuAGslrtOAbBxC9sQSCV7JIELUR8hW2fft2FBYWokGDBvjjjz8watQopKen48svv8TBgwfx8ccfK3GcsqPEoz2CH7430Hi8aQZ69CUSjW0SaFwUIF9PUTAEWjA12oiVOAIRD8kioX1CnrVXUlKCYcOGYc+ePUhMTJRe79u3L1aKK7DGKdXV1ejXrx/69euH6upqciroFG+gShZ8ZQ4bTsx/HvfcPhDMYVPM40m4bbvxuUKp3EwobaKFc+lJbUsl+JbWCTXOE/Ofx4n5z3OLkzlsuG1Af9w2oH/Q1484KzPcGYriNXvbgP6aOJ88nFarFckmg8c/ZQaeqxXnbQP648T857ncg9Q+l7ycchPynyobNmzA+++/X+P15s2bo7y8XJaDilacTie++eYbaTvenOKjGCXGK/lzhjqeLFSYy4Wq/23Esv8BWW0f4DHWM+zzGc7in5H4IiFYp7+V4cPtYXE6naj638Y6nXLCXC58u3QJACCrzcigrp9Ix/mI1+y3/9Pe+SRneE7xGmIcyqfES7vKTch3pISEBFRUVNR4fffu3WjUqJEsB8UDucZIMcZQ5XAXWjQajZg5cyYA9xpYPDCZTJpxyj01Pxinkgh6Ay7q+xgm3pqN1/bxeTzCO04tXT++hJscBnJe1PexOp1yIugNmP7hRwCAl3cFjkPOcT7iNfvSoKs1dz7JGZ5z+ocf4dkFv0HQK38Pipd2lZuQz0z//v3x4osvSrVxBEHAwYMH8dRTT+H222+X/QCVQo4xUowxDF0yFFtPbgUAdGjcAbOLZnMd3Gs0GjFs2DAAwc+A8pzpFU7vkaeTMabY1PxATl4IegPqtSvEPfcV4nVOYy6UiNN3Zp/nOVejXcO5ZuVw1mtXKG3zQNAbcP/QIgDA5FpmXck5zke8Zu8f2gtGI5/kXzyf4nVm9zmnSvRQq33d8nTeP7QIk/fymbUXL+0qNyF/0l5//XXccccdaNy4MaqqqtC9e3eUl5cjPz8fL730khLHqFmqHFVSEgUAW05sQZWjCsnG2qdXq4nvYF6x9yhcapuaT6iPv5l9Wp3N57sOUDwR7YPCa5skoNXrjVCPSJdt0Rohf3IbNGiA77//Hj///DO2b9+OyspKdOzYEYWFyg36jRaYi2Hb1m1IMiahXbt20OuVX23X6XTi119/BQC0vrJNne/3Hcy78cAZ/Gm2hVT3zNMpxqn0l4A/p9IwlxP2kwfw6/ZtYC4nBB3f8ylHnP4Gb3v2GKrRroGuWSWTcKfTCdvx/0nbvK6fbdu2Sts8rh/xmt22bSvyOnbgdj5/2bwFa3/ZBGOjljXiVKKH2ul0YuvW3wCoc93ydG7bthW24/+DsVFLLj6lY/RNusVrFgCMjVqi8yUZUZd4h3xlV1dXIzExEd26dZOWdY9GlFhHitkZuuZ1BcB3ef0OHToACL9cS+6kZV51/kJxqhEnLydz2HFs1qO4cRbfMhRKxbnqyR41ajiqfS7/+usvv+OD5C5qXF1djWOzHnVvTx3K7frpmtcZAN8SMcdmPYqus+o+n5GUv/GkurraK85NL/ZCskmvaA+12tctT6dn2/LwKR2j7x934jULuGOMxmVbQj7StLQ05OXloXv37ujRowfy8/ORlJSkxLEpilLrSDVt1hQCBK7L6zdr1kzaDoXspqkoO+aeOCD+V2lnuITq9LeoY+hSQF8vHY3qJ3IpzwAo27ZJfr7I1T6XOp2uxvggQJnyHvp66dI2FwSg6fk4eV0/4jXbODWxzjjlWtRUEAQ0bdYMJyqqAUHeSQK1ObV+D5LL6dm2PHw8Y9z4XCHgsOKauc3AGPh9TmQm5Kt92bJlWLlyJVasWIE33ngDDocDubm56N69OwoKCtCzZ08ljjMq0CXosPePvVzHSCUnJ+PIkSMAQh+4K36BhfpXo6eTF6E4axuvEQo6YyIuLv4YGzmXiOHZtlo5l0p/8SYnJ+Pi4o+lbR7ojInYu9/9yIJniZiLiz9G2Yu9/LapEouaJicnY+/+A9xiFJ1auG55OHm2Lff7j0mP5HqpOHrkiFe5n2gj5E+N+EjvmWeegcPhkNaVevXVV/HKK69E7ToQ8Ygg1Cy9EQvUtqgjQcQzsVL+hiC0RFh/Bu7evRsrVqyQ/lmtVtxyyy0oKCiQ+fAIIjL8LepIEPFMtM8QJAitEXKJmObNm+Paa6/F0qVLce2112LJkiU4deoUFixYgLFjxypxjFGDy+bCfXffh8GDB3NdXn/w4MHkDIA4XiOcJIo5bDi5cDJG3H8v1xIxPNs2ms5lpM6TCyfj5MLJXEvE3HfP3bjvnru5XT/iNXvfPXdzbdv77rkbJxdOjtnPiZpOpduWMSaVJDpdUYnbbr8Dt91+B05XVIZcoigcxHbl+TmRm5D/LGnUqBF27tyJ8vJylJeX4/jx46iqquI27kAulJi1BwYs+HIBAGDWrFny7bcWnE4nvvjCPZvj3Q8+4u5UI05eTuZywbJrNf67C8h6/F5uJWJ4xhkv59LpdMKya7W0zQPmcmHBl/8BAGQ9fg+X60e8ZhfsApzO2RyM7vYU42R9H+fmjJfrVsm29R1P6rJV49B538aW9yDv8qaKL0Xg2a68PidyE3IitXXrVpw9exYrV67ETz/9hGeeeQZlZWVo3749evToETWLcioxa0/QC5j65lSY9Cauy+u/88470nY8O8UZenL9ESXoDUjvORpP9r4K7x7jVyKGZ9vK6attBXWlnMFiMpmQ3nM0V6egN2DqtDcBANMO87l+xGv2uX5tuLbt1GlvYtLiHVzKmIhOLd6DlHAq2ba+40nF60fc5rEUgdiuNoeT2+dEbsI66rS0NPTv3x/XXXcdunbtikWLFuGzzz7D+vXroyaRUgLBIOChvz3Eddae0WhEcXExAO9ZexabU7FxQZ7OQMjdIxyMUxw0G8qaWL54zmoS9Ab0GHQ/xozIw3sT+ZVoqCtOLfr8zZQMtGo+7xhFZ/2Ot0jbPBD0Bjz0t4cBAG9ymo0k6A2o3/EWPPQ3viViHvrbw3jzGL8ZV2pdQ2o4PdvW33Iuct3nxfGkQD+ukxDEdrXYHNw+J3IT8iftyy+/lAaZl5WVIT09Hd26dcPrr7+O7t27K3GMRBiIi2x+/Ug36HT8O0sHT1+LxY92q/EBdz+Pl+/Rir/p3KGsieWL76ymJKM+YCmDeMRfaQexjQKtoE4QhDz4S27kKsHDY/2vWCXkVhs9ejRuuOEGPPjgg+jevTvatWunxHFFJczFsHfPXiQZk9C6dWvodCGP5Q8Zl8uFffv2AQAuvfRSr6Si7FgFbnn7Z78JjVxOzziTjHppkc+yYxU1uoQjWd8pkFOJWn/irCaXy4W9e/eiyuYAYy4IAt/zyeMaCsUX6PzltmyI2SPypJ/9raAerlMuXC4X7KePSNs8nIy5sHfPHmlbEHSK1xNkzAXHmWPYu2cPrm5zpaJxikm1y+XC7zv3wH76CAwNmyrm88TlcmHP+bZV417L03n4j//hyqRK7LQk+70Hyfn4TYxRjXseT6fchNzyJ06cUOI4YgJmZ8hpmwOAXwmBqqoqXHHFFZJz/uh8WGxO3PL2z9h/yuw3oZHbKcYpJjVtAzwG8+21CGVtp0BO0avEX1KeTneJj0TZHbU5eVxDofj89ToBNXue/K2gHq5TLqqqqnD0w4fc2/+8i0+JGLsNOVdnA7hw/Sj9uITZbTj64UPI+VDZtvVMql22ahx64w4AfMqYAOpdQ2o4r7zySgDuEmCeTiUev6l9z+PllJuwvn2cTicWLlyIHTt2AACys7MxYMAALkUctY6c5WbCcQqCgJQEA75+pFvAhEZupyfBdnxtfK4QF6WYQuopU7tto9FZFUQPSDi+jc+5i5SHeyNXo12FBOW/+HwR4+zYIg1by72nzCu1SKyQkILURGUf0dQYpHy+bTu2SOO28G20fzZDdSabDFwevcVLu8pJyGdl79696Nu3L44cOSJlypMnT0ZWVhYWL16M1q1by36QSqDE8ge6BB2OnjzKdbB5SkoKzp49W+N1JdeeDOQMhWRTaAMk5XCGiujkWbpA7jhre8QWiS+SFfHVOpctHpsrbfNAZ0rE0ROnkGwyBBxbFskjd999WmxO6EyJaPHY3IAlYpRg84u3IPmVswDkr5EYCDXvB7HsVPOeF1clYh599FG0bt0a69atQ3q6uwjon3/+ifvuuw+PPvooFi9eLPtBKoFSRYvlwHMANZU2IULF3wD8QNdRsEsWEJEh9+NnuepJygENUibinZCv/p9++skriQKAiy66CK+88gquu+46WQ8uXvEcQC3HF5uSSyEQ2sN35iHgf/ZhbUsW0LWibQKNVwOoriRB8CbkRCohIQF//fVXjdcrKyu5LVKmVVx2Fx4c+SAMOgPef/99JCQkhL2vYP+CtVqteOgh9yDaQM7cScsCrukTDsE45UZNp8PlAmt8GwSD8usPyRVnMNdPld2JjftO4M9v3YsMXtRrDJcF+NQ6l6cWv+HefraAi5M57HjwgREw6HSKxnlh/R93nI8/Uozh6z/g2rYPP/gAAL7nUw1nrN/31Lzn8XTKTcjzDG+55RY8+OCDWL9+PRhjYIxh3bp1GD16NPr376/EMUYPLmDOJ3Mwe/ZsOByOut8fAYwxWOwWVFRVYPbs2TWc4uMdETnX9HE4HH6dAY/zfB2nSBbpDMbpG3Okf5mLzjmffALm4rMeUihtKwfM5YT5t+Uw/7Y85mL0vPYqLFYpTh7tCrjbds4nnygep/hoLdlkgEkHrtcPwP+aJafyPjXueTydchPyn51vvfUWioqKkJ+fL60Q7HA40L9/f7z55puyH2BUoQcy78xE83rNYTAo9xc9YwxDlwzF1pNb4XK40HFER9x15V1eKzaLj3f+NNtknyJrNBrx6quvStuBjxNej44iWXE8GKe/xTQjeUQlOm0OFz44fSEhU3JcUbBtKxeCXo+0guEYe9PlmHmOz+MgHjH6PrZkTjvSCoYr6vRF0Osx6eVXYDLouDl5Xz/kjC1noHterDnlJuRv+7S0NCxatAh79+6Vlj9o06YNLrvsMtkPLpq4Kv0q7Dy9E436NoINNjh1ymXWVY4qbD25FQCgM+hgu8GGMfeOgcno/WjV/XhH/gvTZDJh3LhxdR+nzziOSFYcD9Yp56Be0WmxOfDh+dkkvskhIO+4omDjjBRxYUhBb0SDLrdjzGOFmMWpJIQSMYrxiEltzRpi7jhzWzZEg5SksHtnPRfUrCuBFvRGPP73v3MdiM3r+iFnbDr93fNi0Sk3QX/CXS4XpkyZgq+++go2mw033XQTJk6ciKSkJCWPL2qY3Xs2qhxVKJhXoPahEApSWymUJKNe8ZWr5YJXHS1eiPH4GwvoOYYo0t5Dz3ajgfnB4/u5oMkvRCwRdCL10ksv4fnnn0dhYSGSkpLw5ptv4sSJE5gxY4aSxxdVJOgSYD9jB+BOPOWEMYYqRxUASP8F3GVpHOccOHrkKC5tcWnIZQt8p8oHM67I5XLh2LFjAICmTZtyK5WgljNQ6QLPUij+eqoicQLyx+lvWQTGXLg6zYUzJ8q5loSQI0Z/8fgbC5hs0iPRoMOxY8dw5rwzUo+nK1CPE2MuHD1yBEkmQ8x/To4cOVKr0zdxjzQJDcYpN/Fw36vrnhcrTrkJOpH6+OOP8e6770ozCJYtW4Z+/frho48+4nJBRQNVVVXY9fgu9/awKtRLqCfLfj3HRNX4nZ1h1+O7cPnjl4dVtiCccUVVVVW4+OKLAfAtlaCm01/pAs9SKJGUvwnklDtOf8simM1mNE5PwzfPKFOewV8PnVwxBqqzGIxTMAY/+8m33YItzcHsNlx+aSvJGQ+fE09noAQUiLw+nJbijCWnv3uev8+TnD2Kdd1no4Ggr+KDBw+ib9++0s+FhYUQBAFHjx6VGiGaUGJlcwCAAmPlPMdEeXJV+lUoO1YG6AGDEP44jHDGFSk5mD7aneGUv4nUGSy+55rZDX59/gbUh0OghEOuGP1du0o4wx17Fy3XrBJOf4m7nPXhtBJnrDl9ff7Ol9yPtdVoVzkJ+ugdDgcSE70zRaPRCLvdLvtB8UCJlc1TUlJw9b+ulraVYMWdK5BkuDAurcunXXD1v67G+nvXcytNk5KSwv28q+kMtXRBqOVv/Dl54S9Gf48ps5umYvaIvKD2GagnQuylE0zyxxiq02JTfiq5zpSIc+YqroPNtfbZVKqguNbijBWn6GOMYfD0tX57E4HIexT9OeOiRAxjDMOGDfNaEKy6uhqjR4/2Shq+/PJLeY+Q8CLJkCQlTBa7ReWjIWIRfwPqy45VoPNLgXsSPIsjCwJq9EQAyg4w9tf7obSTIGKVQJ8nOXsUY4mgE6mioqIar913332yHgwRu2Q3TZWWP6ASFtHDhmcLUTTjF6+lK8Tz53mT9S2OrFRPRG2o4RTxfBQaLTM3iZr4Ky4tEm9JuZqfp2gj6FaaOXOmkscRE1itVhz9+Kh7+3Yrl0dtLrsL5Z+V4/F1j+OtaW9xK1tQUlICAJg6dWpQTvfzdPd2ODekcJyRIjodThdYvV61li6okunLk3ecdcWYkqDH4ke7+V2ANJTiyP6cAP9zKTohyJfIByogzBx2PP7oIzDodarFycs57vGxUe+sqxD0lY0S0XLPFxAAvDLlNSQkJCieXKl1P+Dl83QGc5/VKpRuyojD4cDpH05L21xwAad/OI0PfvgAU1/jc+E7HA68++67AIBXX301KKcgIKK/bsJxRoqnM+vxQggI/AH37ZGRw8kjzmBiDPSXaaDiyHV9sah9Ll999VUIHslepElwoALCHS6ujw8eny45tfrZJKeb2gpBA8COI2fx3fvu87kkuRA6U6Lia4mpeT/Q4n1Wq1AiJSNGoxGNBjSStrmgBxoNaIRR7UZxLVswceJEaTvWnXanC/+urtmDEW6PTDBOcVtp6oqxLsLp/tfC9eP5Z45cSTDgvfinnjkx+ax8cQbz+FALbSsXvo/ZPGNWOk7P88gYMHj6Wvx+2I4G190DwF3+B4hs0LW/x4i+51Wt+wEvn6cz3HuQFqBESkZMJhMyB2VK2zzQGXTIHJSJZ+99tkaJGKUwmUx4/vnnubi04LTYHJjjZzaJv0HVkXb1846zrhiVdPLE12lkTPYkGLhQQNiNQbY463rsJKKFtpWDuuJVOk7v8wiPx9u3AIh80LVWz6cW77PRACVSBBEBNCAzOgn3saRaBHrsFKsTN2p7zKZGzHJ/zut6jBir5zVWoW8AGWGMwWl2Stu8nC6LC2fPnkVSRhKXLwLGGM6dOwcAaNCgQcw7LTYHGGMxGWc8xBjIqXQSrFSctdUOVKttz549q5jTM17gwuKwSjr94dm2xiT51gn0jQ+4cF7Vuh/w8nk6ed6D5IZqu8iIxWLBjuId2FG8AxYLnzWemI1hR/EONG/cnJvTYrGgYcOGaNiwYVw4m2c2ArNbuTp5xekvRrlmINbljJfrR26n+Ngp2WSo8aUTS3GKeMYrxhxLcfrG53le5XQyxmCxOXz++YzRipP7rNxQj1SQiEWDkwx8en0IQi3kHHxNEIT6BDsmiwiPqO+ROnToEAoKCpCdnY1rrrkG8+fPl90hFg3u8mkXFC0tCvjYLjk5GW0/aou2H7VFcjKfci2CSUDbj9rirPms7E7GGCx2i/RPjDs5ORk2mw02m41bnGo6z1ZaQipyK4czmDjl6DkSfVarFZ0va+L1O6XGacTb9UNOcqrtDHZMVrzcZ+Um6nukDAYDpk2bhvbt26O8vBydOnVC3759Za1151k0eMuJLahyVPldbFMQBAgGQdrmgSAIgME9hVROp5g8ehZL7tC4A2b3ng1BEPgt73AeNZ1GJnA9n8HGKUfPkafvi7915TL4Ot6un/hw8l/FXs22tXOo1ejrlIvaxmQBHJfuOY8a91m5ifpEqmnTpmjatCkAoEmTJsjIyMDp06cVKxocL3gmjyK1JZEEH5RYu0qEZiCGDpWDIaIN36UdiMhR/dHeypUrceutt6JZs2YQBAELFy6s8Z7S0lK0atUKiYmJ6NKlC3755Re/+9q0aROcTieysrIUPmp3weAqR5XXazabDeWfl6P883LYbDbFjwEAXA4Xyj8vxzNPP6OYc8ltS7x+ttlsGDduHMaNG8ctTjWdzzz9FJiTTwX2uuIUp+2XvdhL+hfJysrxdi7lduZOWhZwPaFYipOcgZ0Wm9NrALecM7Z5xym3L5gB7mrcZ+VG9bTUbDYjJycHI0aMwG233Vbj93PnzkVJSQmmT5+OLl26YNq0aejVqxd27dqFxo0bS+87ffo0hg4dig8//LBWn9VqhdV6YWZARUVFLe/2z9AlQ7HrzK4ar9vtdpxaekra5oITOLX0FN5c+iZeevElRRYCTTIkef1st9vx2muvAQCef/55LouPqu3MerwrBL3yXd7BxClnz5Ha7RqNTn+9gkDNnsFoj5OcgZ1PPvOc9LpvIi1n2RjeccrpC3aAuxr3WblRPZHq06cP+vTpE/D3U6dOxahRozB8+HAAwPTp07F48WLMmDEDTz/9NAB3cjRw4EA8/fTT6Nq1a62+yZMn44UXXqjxujiwGkCdM/P8JVGA+9lyRu8MaZsLeiCjdwaGZA+p02mxOYN6BCTOUAyE0WjEE088IW3zQE2n3enCAj2fxfF4xxlv51IOp7/FPIGaY8qiPU5yBnamJif6TaaByMrG1OaMtvtBsAPc7eB/n5Ub1ROp2rDZbNi0aRPGjx8vvabT6VBYWIi1a9cCcH/pDxs2DDfeeCPuv//+Ovc5fvx4qbo14O6RysrKwoPfP4gycxkA70HVoWAymdDk7ibSdqSICU1tSY3OoEOTu5vg5XtfrrNETO6kZchumlqn03eQuS8mkwlTpkypdT9yo6bTYnNgIcfyKTzjjLdzKRfB9ArGQpzkDOz0TaYjLRsTjFNplPLVNsDd333W39hDLVce0HQiderUKTidTmRmZnq9npmZiZ07dwIAVq9ejblz5+Kaa66Rxld98sknaNeund99JiQk+K1o/eupX6FPcp9ouQZVW+yWsNedCiahCQbfxxBlx2p/lOk7yLxD4w5ej/bEpI7W0yKI+KG2AsLxCk3OCJ5QB7j7S0jlfGQqN1F/FXTr1g0ulyvk/6+0tBSlpaVwOuW7ITDGwBzugYb3f3M/dp/dHVbvFmMMp6tP10iifJMa8b1wup8zM0PN5fXFxxB/mm21/rXkr/drxZ0rkJ6Y7vVawbwCMMbQ/qL2mNFrhuzLLtR2fA6He8qxwVBzRWclnXY73/IpPONUs13JGR3Ousa6MMakMaHRHCc51Y3RAIZOLdKw6eBZv++T85Gp3GjviDzIyMiAXq/H8ePHvV4/fvw4mjRpEuD/Co7i4mIUFxejoqICDRo0iGhfIhaLBb8/8DsAgL3PoEvQhdy75a8nasWdK5BkSPLbC8RsDGUPlSHtgTRUVlb6XfbB/ZdT4GfPgXq/RF+SIQkdGnfAlhNbJOec/nMwB3MCOuXGYrGgXr16AKCKM+vxLyCYErmUT+EZp9rtSk7tO+sqIMzsVpjq15fVWRex0rZac6od419//QWdKdH79wo8MpUbTSdSJpMJnTp1wvLlyzFw4EAAgMvlwvLlyzFmzBhF3UVLizDvlnncuxH9PVpLT0xX9Dj8rRnl2fslCAJm954t9Vjd8MkNwe03Brv/qXwKEc/4KyDMqyYbEftE6+NS1Y+4srISe/fulX7ev38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7gEerTXMrUlDlQcwM7TO0MeJ5WcnIw2pW0AuEu3RIr4aK22JEowCWhT2gbLBi+TZUn/QL1fgiBIbRGsU86kIzk5GWfOnJG2eSA6GWN44LMyry7nQItg+pvxGMp4Mt5xqtmu5AyOUMYjKR2nv7Eu0dy25FTXp5ZTblRPpDZu3IgePXpIP4sz6oqKijBr1izcddddOHnyJCZMmIDy8nK0b98eS5curTEAPVQCPdqb1XsWesy7cDx1LQXgiSAI0KfIN30zmC9g0ZmWliZLr1WSIanO5LE2p1IrbwuCgLS0tIj2EYkzmPIpgR6RhjJOLtI4A12vga4ltduVnHUTymONaI6TnOE7fZPtcGe4aTlGLaN6IlVQUFDnSrBjxoxR/FGeiADvi6+2mXNXpV+Fnad3So/Bgk24Yhl/a+xoedpqsATT5ezvESnAr7RObTM9w13Sg1CHYBf9jBWUmhXouZ9YuA8FwjfZzm6aen6Gm/tnmmWpLKonUmoRzKy9QF+MIrN7zwZw4a99m82G4wvcA+Mb3doIOsOFCjyei32K+/b8f8PF5XDh5H9P4qW9L2HiPyZyWeG3Lmcoz7l9e1DE9vB9Xe/SY/LkyQCAZ555hkucNpsNL7/8cljOFXeuAOCe5cjLWdv1GiiZi8QXLuSsm2AX/ZTTGS6ROoNdATscp2eCEen0ea21baBkG3Avc9N2Yuhr32ktxmhBYHIWBopCxEd7bd5rA32SHivuXCF9+XluL7ltCfp86b0C+/p713t9MZ08exKNG7rL1mS/nw1dgjuRurLhldJq6O0btQcA6QvPt6fAYregy6dd/O7fF4vdgs4zO6PsIfdCorXNsrDYHMj2WVSy7MVeSDYZFHPWhb8elA6NO2BW71koWlLk9frVqVfj89s+j9gZCmazOaQZLL7tCCDodg3XGcgvjnWrclRJ17C/Y4jEFy7k1I7T874g3g9CfU8oTn/78ndvEgmU/NTmZIxh8PS1/hOMADHKEWcwbRnqe+ty+vbkMQYMnr424HqBdSWTWoyxtv2I39/nzp1Damrti00rSdz2SIWK7/pN/jAYDEi/Md39g0c5aM+SMr49BhE/9tEB6Tem444r7oDBENrpFMvihPxIMgKnJ/56ULac2IIz1WdqvL79z+14cPSDMOgMITkjGfxtMBjw8MMPS9s8kMsZzFg3OX2hQE5yBsLfrEB/n9XanL69eXJNn9di2/rr/V/8aLcaPZkidfVoajHGaCA6j1qjJCQkoNnQZlydOqMOzYY2wxv3voEEY80V2wPD8OCy4dh+ahtHZ2D89fh5vq4z6vDGW2+ElHBGOvg7ISEBpaWlQfvkgLczGF8oEy6AuhPVeGhXcoZHsCtg1+VUYhp9tLRtJLFHS4xaI24TKSVWNo8qBHuNJMrfyuly4/ml7Ds2yh+RHE9dg7/9TRCg0jfehFOqiAa2EwQRT8RtIqXEyubRSm0rp8uJXPUDw8Hf4O9IlyoAAieGsUJdEy78wWuWIkEQhBaI20RKCVxWF34f+TsYGLLfvTDYXGln2cNlaPBAA5w9ezasAa3BjqeJ1BnoSzmYnjCX1YUGye6EN5w4ffcfzFIFZrNZWt/En1OJxLAup9yE4hMT7kB4DmyXyykX5CSnL6EuuRCu09cTjCtSZ7hE67lUG0qkZEQQBDCnexLkktuWoN/ifnzETsABBx+XTE7PL2XfR2yBenbEYppyU9tSBbU560oMw+2hUirOSH2hJtxyOOWEnLUTyaKO0RQnEN6SC+E4w/VE4oyUaDuXWiBuE6lQx0j5Fu7114uSlJSEw4cPAwAa1OfzuFAwCrjyjSvx9cCvkZSk7PimcJ3i4y/fMVGBvpT9DToXjAL27N+DJGOS7HEGHJ/lcT7rcvomhuE+Ig3FKQe8feTUrtN3Zps4VV5JZ7iE6xSTRYut9kLM/hY9DcdZW8Hn2lyROCMhms6llojbRCqcMVJi4V7A/5elTqdD8+bNAVxYgFNpBJ0AY0MjmjVvBp1O+UeJoTqDffzlm6gCPoWTdQKaNW/GddyN5/msC7l6a0JxygFvHzm15axtUceNB84EnEYfiVMOwnX6WwYh2CUXIo3T11ObSy5nqITi8/d4MpzV49W4fuQmbhOpcPAs3EsEh7/HX/568wRB8EpUgZqP/KIZmh1IaBF/K6h7rrsUC6VFaksWc1s2xEUpJi6fxWCXdogW/CWlka4eH63EzlnVADabDW+++SYAYNTDo7g4XQ4X/vzuT7xx7A2MKxnHrURMOM66ZgfWlqi6HC688fobMOlNGDt2LLfSBeL5jNTpO/4q0OxAOZ3BwNtHTu05a1t3KJiFLLUeZ6ByO0BoPShaj5OHr7akFLjQixlKwqhGu8oNJVIyYrfb8eSTTwIAho0axkfqBI7PO47n5j2HB0c/iBTBPeNB0R4PD+djjzwW9IUf0eMvJ/Dc+OcAuNs2w5jhNz45lyPwPJ8PP/xwyB9wf48rRQItERCpM1R4+8ipfWeoBZOjIU45FuiMhjiV9gVKSiNZPT6UGH17SC02bQxSp0RKRgwGA4qKiqRtLuiAtOvS0CChAQq+KIDO6B6zpOiiiOed/S7txz1OACj4ogCdmneqEZ/cyxFEej79Pa6sa4kA3teQGtcsObXtDLVgcrTGSc7wfHKvGh9KjL7JmsvKZyxyXcRtIqXEyuYJCQmYNWsWAH6DzXVGHS4edXGN15VcFFF0fnDvB7KViAmEZ6+OZ5z+4pN7OQLP8xkuoY6rC+QMpkxLOD1wcsTIy1lXG9TWCxtNcWrBGcqXZTTHSU51fcE463qcqAXiNpHS2srmciVegWrW8cbfkgfh4NurE+yij3ItR6AF1FwRXisE0wZUmiZ+CLb+Y7R/9onaHyd2/MdXKh2VN3GbSGmJoUuGYteZXQCAq9KvimhfStfKCwa5v/jDmS1Z13gsLcwGDHYmX6hlWnjUTORNMG1ApWnig1DuL5RcxwZKFKGWE+0emQpclX5VRF9AZrNZWg9jzx97gv7/xCQKAHae3hmS02V1Yedj7v/nqmmRJWGhOpuNbYYjR47UWNI/2CUPQsGzbZu/2jzi8jvB9Np5Ov3FGSn+ZvK9e/27uPjiiwM66yrTAoT2V7jSMSrh9G2DYHopozHOWHd6Lo4ZClWOKmw+vNnrvhfofiBnch1NbRstPrWcckOJlAeze8+OeB/nzp2T4UhCw1XlCuHdDBDsEHS2iJ3nquqOVc6CyGLbNkd4i7fVtuhnoB4quc9nMDP5anPKWaZFRI1rNhJnuG0QbXHGujPcWV4i4n1vxZ0r/P4xF8wQgFCJlrZV0xdOgqxGu8oJJVIykpSUhN27d0vboXJV+lVSj1SwPTiCUcDlr1wubdcOQ3LL6dAnHwj52Pw5v7j1izrjlOuLX2zbKnsV7l1/b1j7CLToZ6AEL9LzGewxeN70lXDWBm9fME5/418ifRSrxTjj0VnX4pi1lUvxxPMedFHqRVyqOmi9bbXiCzVBVqNd5YYSKRnR6XS4/HJ3UhPO4HHPHrFge3AEnYCEJoFnzonHUeVwAoKtRhIVziM30XnZ5ZdxK0sjtq3FboGwwbtdQhnYHsx4K8/9NG/l7v2qdlYD5//AirR3rbZjEOOUkgmnMuO5PJMV3xiVHqDr+Tnxd1xKDKyvzakU5KyJXItjqnkP4glvZ7i+SBJkNdpVbuI2kVJi+QM5kPOxjecgdgBIbtVU2q7c/Rw2PtsX6Un1onogphJfvHU9Ergq/aoavUpyovQsvbr2r+YA3boGlcfaQPpIlnSIVrQ+cJgIHbkS5Gglbq9mJZY/sNvt+OCDDwAA9w2/T5Z91gVzMJxecRoAkF6Q7vU7zyQKAPSJxy78fy5T2Ddp0fn+ufcx5m9jYDQawzjy0BDb1ua0gaUwCAb3ccs1sN3f2CXfthWdO0/vRJdPu0QQTWDsdjvef+99LN+w3MsJyJdEeLaZvxi3nNiC09WnFat16Pk5GTVqFBzChdWJPX3+BtbXdc36O94kQxIcDofkfPDBB7les4GcSizpUJdTCdRw8rwHicmu3W7HjI9mAABGPDDCz/mU/xh4t20kvnATZDWuH7mJ20RKCWw2G8aMGQMAKCoq8vpi9hz/JCfMyXDs3+4EqeH1Df2+R+61pURnyb9L8OBIPhe+Z9tmv5/tlWCIRDKw3d/YJbPZjMYPNAYAbHt7G1JSUlC0tKjGeZSzl8Rms6FkbAkA9/n86d6fZFsPy1/pnG8GfIOWD7QEAKx7Yx36Le4HoO5euUjwPJc/N/0Zv/31m9/3hTO+zt9xi7MhReewYcO4X7P+nEos6VCXUwl8nQaDoc4EPNJrmdc9yDPZdVldKBtbBgD4KPGjGjMFr8loD+AuAPL1vvA+n1q4fiiRinP0ej3uuOMOAO6l7n2/mBXpxRCA1NxUadsfsj8KOe+8qcVN0OuDGxwaKWLbOl1O7BJ2+X1PpAPbfccu6RJ10vmsn1gficZEzLtlXtDrP4WDXq/HoNsGYfnB5YAg7yw9f0lGvYR6UoyNUhoFnFEoZ7LoeS63/7kdOlPNMS6h+GqbCQm4kxEbs0lx8r5mg3GGs6RDpE658HTqdLqgHktH/PiY0z3IK9mt4167/dRWQLgNYPLVw+N9PtW+fkJxJhn16JCVhkNKHVgIUCIlI4mJiZg/f77Xa+KXoFIlY3QmHVqMaaHIvuty/vvefyPRmMjFKbatxW5R7LFaIKcn4SwOGqrz35//W7YYa0syOjTugIb1GnrFGGjsl5zJor9z6ZtIhOLz15sIeCcj/s6lP8Ids+T3/9MDsz91TyBJMNReSkmuhDnYOOXE02mxW4Ia2xfp+k5q3INW3rcSScNqJvdKLbUA8D+fal8/oSAIAj4emYe0vytwUCFCiRRBxDCBkgzAf1IgV6IYajImd29iOIQ7ZonK1/jH3xg3JZMOpVFiDTciMrTyeaJEKorx7W3o0LgDGiY2rPFaLM1y8kQLZV6iAaV70fwRaKySlpOJcMcsUfka/1DiQcQLlEjJiMVikdbD2LNnD5KTlb2JCIKA9254D5df4Xa+t/s96ASdVw+EEjOvXFYXdj+1G5c9cxn27tmreJzAhbZlYGg4sSF0CTrF/7LlfT5F5zXZ1+Ck5SSu+OcVXHxyxRjMWKUqRxVgR41zqTQWiwWXZwcfZ7hjljz/P4vFgnZt2uFU1Sku51J0im27vWx7wDjlfFTreQ1tK9smyz7rQrV7UAjXkGxOjvcgte55vJ1yQ4mUjDDGcPToUWmbF8eOHvP6mUcPhOOsA8fOHoPZZkZSkvJr3Xi2bfdG3fFbhfdMLyV63tQ4n4yxGudTaZ9cMQYzVsnX2RD+Z5rKjcVukZxmmxkwKvOo0fP/YwaG8mPl4R90GLhcrgufk7ndAyapcvYOqnXfE+9BPD+batwPeDrjIUYloERKRhITE7FlyxZpO1adglFA6xdaAwB6LOiBjk06Kv7IxjPOq6++GjbmXStQiYUL1Tqfa35Zg/uX3B9EyR95fHLGGEwSLzqr7FUY9duoiJ3B0Pe/fb2uWUEnKP6okfe5BNzJmxhnbU45HzWqeQ/6pM8nMX2v5e2MhxiVIG4TKSVWNtfr9Wjfvn3Q7w+ntl6kzkhJMiShY5OO2KK78PiGx/gP3zgNHC5d3m0LADZmwxVXX4GkMj7j2tSIUXRa7BYIZcolGJ6PGgWdgKSW3m0a7nUbbB1AvV6PnPY53M6l6BTj5DXY2/MaUmp2si/i+cxpn8N1mr5an5VY9anllJu4TaSUWNk8VMKprac2no9vonkGjlah9pSPYB81hkq0nCMa7E0QfIjbREoJ7HY75syZAwAYMmRIUCu0RnqjC8cJAB1bpAVdad0Xh8OBeXPmweq0goH5XWVcbsKNMxqcnj0nzMFwdu1ZAEDBgALFZ1zyblex1Mbnn30Ou9MOplf2+hEfNXrGOejOQSHvp66B9EDNXmW73Y5PPv4EZ9aeQVp+WshOkUA9Xv7++LLb7Tizyl041j7YDnBYJDrStg0H8XPyieMTjBhas1yLEtjtdsyaMwtA7N2D1PKp5ZQbSqRkxGazYfjw4QCAwYMHc1tePxznJyPzwu4B83QGKtciN9HUtqHi2XPiWZZm+rTpivdS8m7XgnkF7lIbD7lLbahx/fQb2C/k/7+29bhEfBMbm82G0Q+MBgA0yAu/1ztQD5i/MV42mw1H/nXEvf2aDeDQIRVp24YDczIc+dcRjP7XaNx3930xdT9Q0xkPMSoBJVIyotfr0bdvX2lby85IvqBFp5M5cUhwL9DvudyCEkRT24aD2HOiS9RJToOBzzgwpWOs0ZsjAPWuqSdt81jrTI44Q50Nq9fr0atPL6w+sjrk8mvB9ID5G+Ol1+ulto3Fz4nE+WvouubXxXScvJ3xEKMSUCIlI4mJiVi8eLHf3/lbPFOOL4/anEohOj1LfIh/NXdo3AHTC6cr5uRJPDh5+Pz25gy7sMljfKBnnLwGRCcmJuLLRV+GVe6nth6w2sZ4JSYmolVJK2m7NsIphRPIybttdSYdWpW0wpf3fsm1TFUs3w8YY3DpXZi/0F2uxQVXredTrs+tGu0qN5RIccL3xhgtg8trw99fzdKiiwThgRqrq0c7SrdZbYPmtb4KPSEvwZQ58oWukQtQIsWRWPsyoRl8BBFdBPPIEIjPkjbxTDBljnyha+QClEjJiMViQU5ODgBg27Zt3JbXJyc5o8WnBefajWsV94nOa3KuwaG/DuGyFy/j5tz91G739kALkht4t21dg+bD+YNIjbZ1WV3YO2Evrpl0DbZvC1wKR04sFgtycmP7s+KyulD1ahV0gg7rNq7z65P7j2Y17gdyQ4mUjDDGsHfvXmmbnOTUujMeYlTTuW/vPi4uT6ftuE3a9kewPePBPqI328xS2/IaIwUAtuM27Du+L+avId7O/fv2A+C3DpkaMcoNJVK1wBDaSU1MTMTPP/8sbfOAnOSMJl+8OZetWIZR34/iViImMTERlzx7ibQdCcH2OjAXk5x9/9sXgk75WAWjgEuevQQf9vww5q+hSJ2MsTqTYvH3glHAshXLkGhIjKoY1YYSqVq46+u7Qnq/Xq/Hddddp9DRkJOc0e/TgpNXr4ler0d+13yk/JHCxSc6Uy5PkbZDJdgxVJ4IOkFyiii9pIXozO+az3WafrR9VkIdRC7oBOR3zZetJyqYJA4AOuR1AABYXVbAFdy+lV4yJRRiIpEaNGgQVqxYgZtuuglffPFFRPtKMiRJNfBOWE7IdIQEQRDaJ5iFR4MhFmYlxwKhDiKXMwEOZyZgKHRo3AFvd31bkX2HSkwkUmPHjsWIESMwe/bsut9cB4IgYO4tc3HX13eFXFDY4XBgwYIFANzJHY8FFclJzmjyacHZ65Ze0uueCYPcy3Y4HA58+cWXOPfLOaR2SpV137U5z/1yzr19pyOsEjGhzi5W43wyJ0PFpgp8afoSdw++m9s1JK6xFI2fFX9FrH0xwih1RkTqCzaJE88lAKR2SoWgDy4B33JiC85Unwn7+OQkJhKpgoICrFixQrb96QQd5t0yL+Q1n6xWK+68804AQGVlJZcPGjnJGU0+LThPnLnQ06zkkh1WqxX333s/AHcpHB5YrVYcetddbcD6khXg8PRDjfPJHAyH3j2E+9+9H4P680lq1L5uI3UGM3jcbDYrEmNtSZzZbEbjke6yWCfOnEBKSu2Pwj1nDfZd0FeW44sU1ROplStXYsqUKdi0aROOHTuGBQsWYODAgV7vKS0txZQpU1BeXo6cnBy8/fbbyMvLU/S4wlnzSafToXv37tI2D4Jxyr2qulbjJKf2fVpwpphSah0HJNfjDZ1Oh+tvuB6bjm8KuURMJM7kK5OlbV5O3ucTApB8ZTI6ZXaK6Thj5X5QWxInJAiSs15CPSQZa//shTOOT2lUT6TMZjNycnIwYsQI3HbbbTV+P3fuXJSUlGD69Ono0qULpk2bhl69emHXrl1o3LhxyD6r1Qqr1Sr9XFFREdHxe5KUlCRrz5hcTrlXVddqnOTUvk8rztrGAck1vicpKQlLly0Nq0RMJM5Lx18qbfNy8j6fOpMOl46/FEvvXVrnF69caOG6jTVfOE7P77OKigo0/VtT5Q4uSFRPpPr06YM+ffoE/P3UqVMxatQoqTr09OnTsXjxYsyYMQNPP/10yL7JkyfjhRdeCPt4o5VYW1WdICKBPg+EVgl2phsQv4P6xc+vw+hQ+1AAaCCRqg2bzYZNmzZh/Pjx0ms6nQ6FhYVYuza8FXTHjx+PkpIS6eeKigpkZWVFfKzEBajWHkEQhDeMsaCW3ihaWiRNdKoLqnenDTSdSJ06dQpOpxOZmZler2dmZmLnzgsXWmFhIbZt2waz2YyLL74Y8+fPR35+vt99JiQkICEhQZHjraqqkrxr167l0rWuRWefLwP3MCrlVIJ4cMZDjGo6r732Wuw9sxeX/uNSZRw+f7Sc/us09v7DvUp01SA+ddDUaFuXzYX//d//cO3Ua7F+3Xpu57Nr564AAscp6GxgrvPnRdCjyuEEBBsAhqFL78Hus7tCcopxAsCl/7gUOpP3uCW5693Fy2dTbjSdSAXLsmXLQv5/SktLUVpaCqfTKdtxuFwubNu2TdrmgVac/gYAyrkmiVbijDVnPMSopvPX7b+6f1Co8oXvrEOX1YXqQ9WSnwdqtC0YUH2oGr8e+lVTcda7YhIAoGD+BOm1+le5/7v7bPCuq9Kvwuzes90z2h50jwVeMXiFNKNNqSLx8fLZlBtNJ1IZGRnQ6/U4fvy41+vHjx9HkyZNItp3cXExiouLUVFRgQYNGkS0L5HExER899130jYPtOL0t5CfnM/vtRJnrDnjIUY1nV998xUe/eFRWUvE1DZrSTAKaPVEK7ROa42G9RrK5qwNudu2rjFCVY4qKc63bnxL9WsolFlkYoJUF+K9M6F+guRMr5/udxX3utoqFEI9l3K41fhsyo2mEymTyYROnTph+fLl0pIILpcLy5cvx5gxY9Q9OD/o9Xr07Nkzbp1KDuDVUpyx5IyHGNV03lR4E+qdqAeg5hdLuGMJg1l9nOcgZDnbNtjVsAWdgHpX18NNhTdxLRET6L43u/dsnK6qRKf/cz8d2fSPQiQZ9aiyO71eS0+qF9J5CaZt5eyZCvVcyuFW47MpN6onUpWVlVLlZwDYv38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7go8WiPIAgiEHJ+4cXqrMNQSpooXc8vFARBcB8LMwEQ100yAMzh9ZpcyW2oaynJ2VZqurWK6onUxo0b0aNHD+lncUZdUVERZs2ahbvuugsnT57EhAkTUF5ejvbt22Pp0qU1BqCHihKP9hwOB7799lsAQK9evbiVECAnOaPFF2/OH779AY3+aIQTWScClr6Q84smltq2ttWwHQ4HVi5fiW+++YZrnIu/WwxA/bYNtSZisElcMOdSbrca16zcCIwxhYZBRgdiItXmvTbYOHJjRH/lmc1m1Kvn7savrKysc6l7OSAnOaPJF6/O2kpfyNlToXacdTktdou0QOn6e9fXuN/W9ftgncHupy489/PDgB/QuGHjwE6bA9kT3AlB2Yu9kGwy+H0tFOh+UDvi9/e5c+eQmsqnnqU/oi/1kwklHu3pdDrk5uZK2zwgJzmjyRevzmBKX8jtjJe21aLTYnN6/ZeHUw603q5ahXqkZOyRIgiCIAIjV49UpB4l9uPZ++SPcHqkiNrRSo9UdKZ/BEEQBKEhkox65Lb0v+REbsuGSDLymV1I8IfSY4IgCIKIEEEQMH90PqrsNR/nJRn1VMYlhonbHqnS0lJkZ2ejc+fOsu2zqqoK1113Ha677jpUVfGpN0dOckaTj5zk5O2sclTBYrcE/Bfs6JZgnIIgINlkqPEv3CSK7gfRQdz2SCmx/IHL5cKaNWukbR6Qk5zR5CMnOXk761q/K9jCv1qPMxp9ajnlJm4TKSVISEjAggULpG1yklPrzniIkZzx5wxl0chgC/9qMc5o96nllBuatUez9giCILjgOQvO34KbnsV4I5ltBwRXs090BVr8U87jIeRHK7P2qEeKIAiC4I6cJXP8EUoZHaWPhYht4jaRUmJBTqfTiVWrVgEArr/+ei7FNMlJzmjykTO+ncE+cqurbI4ccYby+K9D4w4wCSasWLEiImeo0P0gOqBHe1Qihpxx7IyHGMmpLWddj9yAusvmyBVnMMciHo/FYtF820abL1InPdqLQQRBQHZ2trRNTnJq3RkPMZJTW85QHrnJ5ZTjWKKhbaPNp5ZTbqhHigabEwRBEETUoZUeqbhdkJMgCIIgCCJS4jaRUmJlc4IgCIIg4ou4TaSKi4tRVlaGDRs2yLbPqqoq9OzZEz179uS6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZSUhIwL///W9pm5zk1LozHmIkJznJqU2fWk65oR4pmrVHEARBEFGHVnqk4naMFEEQBEEQRKTQoz0ZcTqd2Lx5MwCgY8eO3JbXJyc5o8VHTnKSU7vOeIhRCeL20Z5nrb3du3fTYHNyxqUzHmIkJznJqU1fpE6tPNqL2x6p4uJiFBcXSydCDgRBQMuWLaVtHpCTnNHkIyc5yaldZzzEqARx2yMlQoPNCYIgCCL60EqPFA02JwiCIAiCCBNKpAiCIAiCIMKEEqnzXNPoGiQZkiLaR3V1NQYOHIiBAweiurpapiMjJzljx0dOcpJTu854iFEJaIzU+WesZ8+ejXjQebTNeCAnOeMhRnKSk5za9EXq1MoYqbidteeLHLMFTCYTPvjgA2mbB+QkZzT5yElOcmrXGQ8xKgH1SGkkoyUIgiAIIni08v1NY6QIgiAIgiDCJG4f7XmubC4XLpcLO3bsAAC0adMGOp3yeSo5yRlNPnKSk5zadcZDjEpAj/Zk7BqMtoF65CRnPMRITnKSU5u+SJ1aebQXtz1SSpGRkUFOckaVMx5iJCc5yalNn1pOOaEeKY1ktARBEARBBI9Wvr+j72EkQRAEQRCERqBEiiAIgiAIIkwokZKR6upqDBkyBEOGDOG6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZMZlMeOONN6RtcpJT6854iJGc5CSnNn1qOeWGeqQ0ktESBEEQBBE8Wvn+pjFSBEEQBEEQYUKP9mTE5XLh4MGDAIAWLVpwW16fnOSMFh85yUlO7TrjIUYliIlHe19//TX+/ve/w+Vy4amnnsIDDzwQ9P9Lg83JGc/OeIiRnOQkpzZ9kTq18mgv6nukHA4HSkpK8OOPP6JBgwbo1KkTBg0ahIsuukiV40lOTiYnOaPKGQ8xkpOc5NSmTy2nnER9j9SaNWswZcoULFiwAADw2GOPoUuXLrjnnnuC+v+1ktESBEEQBBE8Wvn+Vv1h5MqVK3HrrbeiWbNmEAQBCxcurPGe0tJStGrVComJiejSpQt++eUX6XdHjx5F8+bNpZ+bN2+OI0eO8Dh0giAIgiDiHNUTKbPZjJycHJSWlvr9/dy5c1FSUoKJEydi8+bNyMnJQa9evXDixAnOR0oQBEEQBOGN6olUnz59MGnSJAwaNMjv76dOnYpRo0Zh+PDhyM7OxvTp05GcnIwZM2YAAJo1a+bVA3XkyBE0a9YsoM9qtaKiosLrn1xYrVaMGjUKo0aNgtVqlW2/5CRnrPjISU5yatcZDzEqAtMQANiCBQukn61WK9Pr9V6vMcbY0KFDWf/+/RljjNntdnbZZZexw4cPs7/++otdccUV7NSpUwEdEydOZABq/Dt37lzEx19ZWSntr7KyMuL9kZOcseYjJznJqV1ntMV47tw52b6/I0HTs/ZOnToFp9OJzMxMr9czMzOxc+dOAIDBYMDrr7+OHj16wOVy4cknn6x1xt748eNRUlIi/VxRUYGsrCxZjtdoNGLSpEnSNg/ISc5o8pGTnOTUrjMeYlQCTc3aEwQBCxYswMCBAwFcGEi+Zs0a5OfnS+978skn8dNPP2H9+vVhu0pLS1FaWgqn04ndu3erPuqfIAiCIIjgoVl7QZCRkQG9Xo/jx497vX78+HE0adIkon0XFxejrKwMGzZsiGg/BEEQBEHEL5pOpEwmEzp16oTly5dLr7lcLixfvtyrh0orMMZw8uRJnDx5Erw6+shJzmjykZOc5NSuMx5iVALVx0hVVlZi79690s/79+/H1q1bkZ6ejhYtWqCkpARFRUXIzc1FXl4epk2bBrPZjOHDh0fk9Xy0JxcWiwWNGzcGwG95fXKSM5p85CQnObXrjIcYlUD1RGrjxo3o0aOH9LM4ELyoqAizZs3CXXfdhZMnT2LChAkoLy9H+/btsXTp0hoD0EOluLgYxcXFOHfuHNLS0mRZBsFsNkvbFRUVsiZp5CRnLPjISU5yatcZbTGK39tq92RparC5Ghw+fFi2WXsEQRAEQfBl3759uPTSS1Xzx30i5XK5cPToUdSvXx+CIKh9OJpGXCri0KFDNMNRBqg95YXaU36oTeWF2lNezp07hxYtWuDMmTNIS0tT7ThUf7SnNjqdDhdffLHahxFVpKam0k1ARqg95YXaU36oTeWF2lNedDp1581petYeQRAEQRCElqFEiiAIgiAIIkwokSKCJiEhARMnTkRCQoLahxITUHvKC7Wn/FCbygu1p7xopT3jfrA5QRAEQRBEuFCPFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJVAxTWlqKVq1aITExEV26dMEvv/xS6/vnz5+Pq666ComJiWjXrh2++eYbr98zxjBhwgQ0bdoUSUlJKCwsxJ49e7zec/r0aQwZMgSpqalIS0vDyJEjUVlZKf3+jz/+gCAINf6tW7dOvsAVQo32fOmll9C1a1ckJycHXLn34MGD6NevH5KTk9G4cWOMGzcODocjolh5oNX29Hd9fv755xHFygPe7fnHH39g5MiRuOSSS5CUlITWrVtj4sSJsNlsXvvZvn07rr/+eiQmJiIrKwuvvvqqfEEriBbbk+6fFwjm896/f3+0aNECiYmJaNq0Ke6//34cPXrU6z2yXJ+MiEk+//xzZjKZ2IwZM9jvv//ORo0axdLS0tjx48f9vn/16tVMr9ezV199lZWVlbHnnnuOGY1G9uuvv0rveeWVV1iDBg3YwoUL2bZt21j//v3ZJZdcwqqqqqT39O7dm+Xk5LB169axVatWscsuu4zdc8890u/379/PALBly5axY8eOSf9sNptyjSEDarXnhAkT2NSpU1lJSQlr0KBBDY/D4WBXX301KywsZFu2bGHffPMNy8jIYOPHj5e9DeREq+3JGGMA2MyZM72uT899aBE12nPJkiVs2LBh7Ntvv2X79u1jixYtYo0bN2Z///vfpX2cO3eOZWZmsiFDhrDffvuNffbZZywpKYm9//77yjZIhGi1Pen+GdrnferUqWzt2rXsjz/+YKtXr2b5+fksPz9f+r1c1yclUjFKXl4eKy4uln52Op2sWbNmbPLkyX7ff+edd7J+/fp5vdalSxf20EMPMcYYc7lcrEmTJmzKlCnS78+ePcsSEhLYZ599xhhjrKysjAFgGzZskN6zZMkSJggCO3LkCGPswo1gy5YtssTJCzXa05OZM2f6/eL/5ptvmE6nY+Xl5dJr7733HktNTWVWqzWkGHmi1fZkzJ1ILViwIMSI1EXt9hR59dVX2SWXXCL9/O6777KGDRt6XYtPPfUUu/LKK0MLkDNabU+6f0bWnosWLWKCIEiJp1zXJz3ai0FsNhs2bdqEwsJC6TWdTofCwkKsXbvW7/+zdu1ar/cDQK9evaT379+/H+Xl5V7vadCgAbp06SK9Z+3atUhLS0Nubq70nsLCQuh0Oqxfv95r3/3790fjxo3RrVs3fPXVV5EFrDBqtWcwrF27Fu3atUNmZqaXp6KiAr///nvQ++GJlttTpLi4GBkZGcjLy8OMGTPANLzcnpba89y5c0hPT/fy3HDDDTCZTF6eXbt24cyZM6EFygktt6cI3T9Db8/Tp09jzpw56Nq1K4xGo+SR4/qkRCoGOXXqFJxOp9eXKwBkZmaivLzc7/9TXl5e6/vF/9b1nsaNG3v93mAwID09XXpPvXr18Prrr2P+/PlYvHgxunXrhoEDB2r6ZqBWewZDII+nQ2touT0B4MUXX8S8efPw/fff4/bbb8fDDz+Mt99+O6R98EQr7bl37168/fbbeOihh+r0eDq0hpbbk+6fobfnU089hZSUFFx00UU4ePAgFi1aVKfH0xEMhqDfSRAykJGRgZKSEunnzp074+jRo5gyZQr69++v4pERhJt//OMf0naHDh1gNpsxZcoUPProoyoelbY5cuQIevfujcGDB2PUqFFqH07UE6g96f4ZOuPGjcPIkSNx4MABvPDCCxg6dCi+/vprCIIgm4N6pGKQjIwM6PV6HD9+3Ov148ePo0mTJn7/nyZNmtT6fvG/db3nxIkTXr93OBw4ffp0QC8AdOnSBXv37g0iMnVQqz2DIZDH06E1tNye/ujSpQsOHz4Mq9Ua0X6UQu32PHr0KHr06IGuXbvigw8+CMrj6dAaWm5Pf9D9s/Z9ZmRk4IorrkDPnj3x+eef45tvvpFmOcp1fVIiFYOYTCZ06tQJy5cvl15zuVxYvnw58vPz/f4/+fn5Xu8HgO+//156/yWXXIImTZp4vaeiogLr16+X3pOfn4+zZ89i06ZN0nt++OEHuFwudOnSJeDxbt26FU2bNg09UE6o1Z7BkJ+fj19//dUrgf3++++RmpqK7OzsoPfDEy23pz+2bt2Khg0bql4YNRBqtueRI0dQUFCATp06YebMmdDpvL9S8vPzsXLlStjtdi/PlVdeiYYNG4YftIJouT39QfdPN8F83l0uFwBIfxTJdn2GNDSdiBo+//xzlpCQwGbNmsXKysrYgw8+yNLS0qTZXffffz97+umnpfevXr2aGQwG9tprr7EdO3awiRMn+p1umpaWxhYtWsS2b9/OBgwY4Hf5gw4dOrD169ezn3/+mV1++eVeyx/MmjWLffrpp2zHjh1sx44d7KWXXmI6nY7NmDGDQ6uEj1rteeDAAbZlyxb2wgsvsHr16rEtW7awLVu2sL/++osxdmH5g5tvvplt3bqVLV26lDVq1Cgqlj/QYnt+9dVX7MMPP2S//vor27NnD3v33XdZcnIymzBhAqeWCQ812vPw4cPssssuYzfddBM7fPiw13R8kbNnz7LMzEx2//33s99++419/vnnLDk5OSqWP9Bie9L9M/j2XLduHXv77bfZli1b2B9//MGWL1/Ounbtylq3bs2qq6sZY/Jdn5RIxTBvv/02a9GiBTOZTCwvL4+tW7dO+l337t1ZUVGR1/vnzZvHrrjiCmYymVjbtm3Z4sWLvX7vcrnYP/7xD5aZmckSEhLYTTfdxHbt2uX1nj///JPdc889rF69eiw1NZUNHz5c+pJizH0jaNOmDUtOTmapqaksLy+PzZ8/X/7gFUCN9iwqKmIAavz78ccfpff88ccfrE+fPiwpKYllZGSwv//978xut8sev9xosT2XLFnC2rdvz+rVq8dSUlJYTk4Omz59OnM6nYq0gZzwbs+ZM2f6bUvfv8+3bdvGunXrxhISEljz5s3ZK6+8In/wCqDF9qT75wXqas/t27ezHj16sPT0dJaQkMBatWrFRo8ezQ4fPuy1HzmuT4ExDc/rJQiCIAiC0DA0RoogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCCJCbDYbLrvsMqxZs0bW/S5duhTt27eXaoQRBKE9KJEiCMKLYcOGQRCEGv+0XGFebaZPn45LLrkEXbt2lV4TBAELFy6s8d5hw4Zh4MCBQe23d+/eMBqNmDNnjkxHShCE3FAiRRBEDXr37o1jx455/bvkkktqvM9ms6lwdNqCMYZ33nkHI0eOVGT/w4YNw1tvvaXIvgmCiBxKpAiCqEFCQgKaNGni9U+v16OgoABjxozBY489hoyMDPTq1QsA8Ntvv6FPnz6oV68eMjMzcf/99+PUqVPS/sxmM4YOHYp69eqhadOmeP3111FQUIDHHntMeo+/Hpy0tDTMmjVL+vnQoUO48847kZaWhvT0dAwYMAB//PGH9Huxt+e1115D06ZNcdFFF6G4uBh2u116j9VqxVNPPYWsrCwkJCTgsssuw7/+9S8wxnDZZZfhtdde8zqGrVu31tojt2nTJuzbtw/9+vULsZWBP/74w2/vX0FBgfSeW2+9FRs3bsS+fftC3j9BEMpDiRRBECExe/ZsmEwmrF69GtOnT8fZs2dx4403okOHDti4cSOWLl2K48eP484775T+n3HjxuGnn37CokWL8N1332HFihXYvHlzSF673Y5evXqhfv36WLVqFVavXo169eqhd+/eXj1jP/74I/bt24cff/wRs2fPxqxZs7ySsaFDh+Kzzz7DW2+9hR07duD9999HvXr1IAgCRowYgZkzZ3p5Z86ciRtuuAGXXXaZ3+NatWoVrrjiCtSvXz+keAAgKyvLq9dvy5YtuOiii3DDDTdI72nRogUyMzOxatWqkPdPEAQHGEEQhAdFRUVMr9ezlJQU6d8dd9zBGGOse/furEOHDl7v/7//+z928803e7126NAhBoDt2rWL/fXXX8xkMrF58+ZJv//zzz9ZUlISGzt2rPQaALZgwQKv/TRo0IDNnDmTMcbYJ598wq688krmcrmk31utVpaUlMS+/fZb6dhbtmzJHA6H9J7Bgwezu+66izHG2K5duxgA9v333/uN/ciRI0yv17P169czxhiz2WwsIyODzZo1K2B7jR07lt144401XgfAEhMTvdoxJSWFGQwGNmDAgBrvr6qqYl26dGG33HILczqdXr/r0KEDe/755wMeA0EQ6mFQN40jCEKL9OjRA++99570c0pKirTdqVMnr/du27YNP/74I+rVq1djP/v27UNVVRVsNhu6dOkivZ6eno4rr7wypGPatm0b9u7dW6Pnp7q62uuxV9u2baHX66WfmzZtil9//RWA+zGdXq9H9+7d/TqaNWuGfv36YcaMGcjLy8N///tfWK1WDB48OOBxVVVVITEx0e/v3njjDRQWFnq99tRTT8HpdNZ474gRI/DXX3/h+++/h07n/bAgKSkJFosl4DEQBKEelEgRBFGDlJSUgI+yPJMqAKisrMStt96Kf/7znzXe27Rp06Bn+wmCAMaY12ueY5sqKyvRqVMnvzPYGjVqJG0bjcYa+xWXD0hKSqrzOB544AHcf//9eOONNzBz5kzcddddSE5ODvj+jIwMKVHzpUmTJjXasX79+jh79qzXa5MmTcK3336LX375xe8jwtOnT3vFSBCEdqBEiiCIiOjYsSP+85//oFWrVjAYat5SWrduDaPRiPXr16NFixYAgDNnzmD37t1ePUONGjXCsWPHpJ/37Nnj1QvTsWNHzJ07F40bN0ZqampYx9quXTu4XC789NNPNXqKRPr27YuUlBS89957WLp0KVauXFnrPjt06ID33nsPjDEIghDyMf3nP//Biy++iCVLlqB169Y1fi/2uHXo0CHkfRMEoTw02JwgiIgoLi7G6dOncc8992DDhg3Yt28fvv32WwwfPhxOpxP16tXDyJEjMW7cOPzwww/47bffMGzYsBqPr2688Ua888472LJlCzZu3IjRo0d79S4NGTIEGRkZGDBgAFatWoX9+/djxYoVePTRR3H48OGgjrVVq1YoKirCiBEjsHDhQmkf8+bNk96j1+sxbNgwjB8/Hpdffjny8/Nr3WePHj1QWVmJ33//PYRWc/Pbb79h6NCheOqpp9C2bVuUl5ejvLwcp0+flt6zbt06JCQk1HkcBEGoAyVSBEFERLNmzbB69Wo4nU7cfPPNaNeuHR577DGkpaVJydKUKVNw/fXX49Zbb0VhYSG6detWY6zV66+/jqysLFx//fW499578cQTT3g9UktOTsbKlSvRokUL3HbbbWjTpg1GjhyJ6urqkHqo3nvvPdxxxx14+OGHcdVVV2HUqFEwm81e7xk5ciRsNhuGDx9e5/4uuugiDBo0KKxFMzdu3AiLxYJJkyahadOm0r/bbrtNes9nn32GIUOG1Pp4kSAI9RCY76AEgiAIDhQUFKB9+/aYNm2a2odSg1WrVuGmm27CoUOHkJmZWef7t2/fjp49e2Lfvn1+B92Hy6lTp3DllVdi48aNfhdEJQhCfahHiiAI4jxWqxWHDx/G888/j8GDBweVRAHANddcg3/+85/Yv3+/rMfzxx9/4N1336UkiiA0DA02JwiCOM9nn32GkSNHon379vj4449D+n+HDRsm+/Hk5uYiNzdX9v0SBCEf9GiPIAiCIAgiTOjRHkEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYfL/ol9URXwtYe8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 3e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "81a65e58", + "metadata": {}, + "source": [ + "We might still expect to detect the satellite orbital time scale in the periodogram, due to the imperfect frequency response during the orbit, but it's a lower-order problem now.\n", + "\n", + "Looking into more detail, the two curves do not exactly match, in particular close to the maximum frequency:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "afa946e8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNsUlEQVR4nO3de3hU5b03/O89k5nJ5DThfNAQUREECQkEAxFEHvDAtm69nmd7etVSradu3Oi22or7UUqtRi27B1svaX0V2K1KRUX7tgoV5RwSCYSTBwqWQmxBFMlMjjOTNff7x2StzJpTMsmazKzM93Ndc5lZs2ate1YWmZ/3/bt/t5BSShARERGZgCXVDSAiIiLqKQYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBCxEREZkGAxciIiIyDQYuREREZBoJBy5bt27FNddcg9GjR0MIgbffflv3upQSjz/+OEaNGgWn04n58+fj8OHDRrWXiIiIMljCgUtLSwumTJmC559/Purrzz77LJ577jmsWLECtbW1yM3NxZVXXon29vY+N5aIiIgym+jLIotCCKxbtw7XXXcdgGBvy+jRo/H9738fDz30EADA7XZjxIgRWLVqFW666SZDGk1ERESZKcvIgx09ehQnT57E/PnztW0ulwsVFRXYuXNn1MDF6/XC6/VqzwOBAL755hsMGTIEQggjm0dERERJIqVEU1MTRo8eDYsleSm0hgYuJ0+eBACMGDFCt33EiBHaa+GqqqqwbNkyI5vRa8LmwJgH3wQAHP/Z/4H0ew3dn4iIaKBraGjA2WefnbTjGxq49MaSJUvw4IMPas/dbjfGjBmDhoYGFBQU9Fs7FEXBls0f4oHa4PNjhz+Fa9CQuO9p9pxB5a8PAgC++Nsh5BUMSnYziYiI0pLH40FRURHy8/OTeh5DA5eRI0cCAL788kuMGjVK2/7ll1+itLQ06nscDgccDkfE9oKCgn4PXHJzcwAEAAD5+fndnl9IRfs5P78A+f3YXiIionSU7DQPQwehxo4di5EjR+KDDz7Qtnk8HtTW1mLmzJlGnoqIiIgyUMI9Ls3NzThy5Ij2/OjRo9i7dy8GDx6MMWPG4IEHHsBPfvITjBs3DmPHjsVjjz2G0aNHazOPiIiIiHor4cClrq4Oc+fO1Z6r+SkLFy7EqlWr8IMf/AAtLS24++670djYiFmzZmH9+vXIzs42rtVERESUkRIOXC677DLEK/0ihMCPf/xj/PjHP+5Tw4iIiIjCca0iIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgUsMNpst1U0gIiKiMAxcYkj2IlFERESUOAYuREREZBoMXIiIiMg0GLgQERGRaTBwCRVn8UgiIiJKPQYuKilRsn9pqltBREREcTBwUflbkd98rOu5zZm6thAREVFUDFxiSXA6NAeZiIiIko+Bi0FuWrkPkjkyREREScXApQ+cNgsmir8DAD452YI2v5LaBhEREQ1wDFz6QAiBtfZlqW4GERFRxmDg0kdcGICIiKj/MHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi4hWD6OiIgovTFw6SSlxPU+LrJIRESUzhi4dGrzK/hEngMAmDgyF06bNbUNIiIioggMXABASlh+/3+0p2tunwKR4CKLRERElHwMXADA3wpx6mPtqbA5e3ccLrJIRESUVEkJXJqamvDAAw+guLgYTqcTlZWV2LVrVzJOlRw97W2x5aApr7jrub8tOe0hIiIiAEkKXO688068//77+N3vfocDBw7giiuuwPz58/GPf/wjGadLHSGwv4SLLBIREfUXwwOXtrY2vPnmm3j22Wdx6aWX4vzzz8ePfvQjnH/++XjhhReMPp0hZF+GeJgLQ0RE1G+yjD5gR0cHFEVBdna2brvT6cT27dsj9vd6vfB6vdpzj8djdJO6FQgEdM8tFqb+EBERpSPDv6Hz8/Mxc+ZMPPHEE/jnP/8JRVHw+9//Hjt37sSJEyci9q+qqoLL5dIeRUVFRjcpYZxRRERElJ6S0rXwu9/9DlJKnHXWWXA4HHjuuedw8803R+3JWLJkCdxut/ZoaGhIRpOIiIhoADB8qAgAzjvvPGzZsgUtLS3weDwYNWoUbrzxRpx77rkR+zocDjgcjmQ0g4iIiAaYpCZz5ObmYtSoUThz5gw2bNiAa6+9NpmnIyIiogEuKT0uGzZsgJQS48ePx5EjR/Dwww9jwoQJuP3225NxOiIiIsoQSelxcbvdWLRoESZMmIBvf/vbmDVrFjZs2ACbzZaM0xEREVGGSEqPyw033IAbbrghGYdOa32qB0NERETdYsGSPrBYLMjNydWeh9eDISIiImMxcOkDIQQmT56c6mYQERFlDAYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBC4KF41rBhR6JiIjSXVIq55qJlBI3rNyPPd4VqW4KERERdSPje1za/Ar2NHi059OKCuC0WVPYIiIiIool43tcQtU57kXh7QchhEh1U4iIiCiKjO9xCZUDL4MWIiKiNJbxgYuRKzofOHCAK0QTERElUcYHLuErOlssiV2S0P1bWlu4QjQREVESZXzggrAekkSHiji0RERE1H8YuPjbtB/l8EmALSeFjSEiIqJ4GLiECNz6JsAeFCIiorTFwEWHQQsREVE6Y+BCREREpsHAhYiIiEyDgQsRERGZBgMXA3kVYwvaERERkR4DFwPdtyWAG1+sZfBCRESUJAxc+shps6BcHNKe7z7WiDa/ksIWERERDVxpG7hIKaEoStr3XgghsNa+DHWOe1PdFCIiogEvK9UNiGXfvn0IBAJwuVwoLS1N69L6QgA50pvqZhAREQ14advj0tTUBABwu91cuJCIiIgApHHgQkRERBSOgQsRERGZhuGBi6IoeOyxxzB27Fg4nU6cd955eOKJJ9I+yZaIiIjSn+HJuc888wxeeOEFrF69GpMmTUJdXR1uv/12uFwuLF682OjTERERUQYxPHCprq7Gtddei6uvvhoAcM455+C1117DRx99ZPSpiIiIKMMYPlRUWVmJDz74AH/9618BBKc1b9++HQsWLIi6v9frhcfj0T2IiIiIojG8x+WRRx6Bx+PBhAkTYLVaoSgKnnzySdxyyy1R96+qqsKyZcuMbgYRERENQIb3uLz++ut45ZVX8Oqrr2LPnj1YvXo1li9fjtWrV0fdf8mSJXC73dqjoaHB6CYRERHRAGF4j8vDDz+MRx55BDfddBMAYPLkyTh27BiqqqqwcOHCiP0dDgccDofRzSAiIqIByPAel9bWVlgs+sNarVZWvyUiIqI+M7zH5ZprrsGTTz6JMWPGYNKkSaivr8fPfvYz3HHHHUafKn2xZg0REVFSGB64/OpXv8Jjjz2Gf//3f8epU6cwevRo3HPPPXj88ceNPlV6sOVAFlUAx/d2bfO3AQ5byppEREQ0UBkeuOTn5+MXv/gFfvGLXxh96PQkBAIL38XO9/8EbEl1Y4iIiAY2rlVkBCEQsDLBmIiIKNkYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5ERERkGgxciIiIyDQYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5JIKVMdROIiIgGJAYuBrBYLMjNydWeBwKBFLaGiIho4GLgYgAhBCZPnpzqZhAREQ14DFyIiIjINEwfuEgpmVNCRESUIUwTuCiKEhGgSCmxZcsWbNmyhcELERFRBshKdQN6or6+Hs3NzXC5XCgtLYUQAgDg9/u1ffx+P+x2e6qaSERERP3AFD0uzc3NAAC3280ZO0RERBnMFIELEREREcDAhYiIiEwkowMXKSUURUl1M4iIiKiHMjZwkVKivr4eu+p2GX7sAwcOcJYTERFREmRc4KL2sgQCAXg8HsOOa7F0XcqW1hYmERMRESWBKaZDG0XtZfF4PMjLyzP02OoUbSIiIkqejOpxCe1lUadYExERkXkYHricc845EEJEPBYtWpTYgaSERWkHwnJFolXQJSIiosxg+FDRrl27dDN1Dh48iMsvvxzXX399Qscp2f8jFPkOw11wIerLqoDOoZjq6mqtgi4RERFlFsMDl2HDhumeP/300zjvvPMwZ86chI7javor4BBweT6FJeBFwJqtvdabCrqc+kxERGR+SU3O9fl8+P3vf48HH3wwZvKq1+uF1+vVnhs500cVmpRLRERE5pXU5Ny3334bjY2N+M53vhNzn6qqKrhcLu1RVFTUq3PV1dXFzH0xeupzTzAPh4iIyHhJDVxeeuklLFiwAKNHj465z5IlS+B2u7VHQ0NDj48fOvTj8/mwe/futAkYtm/fnjZtISIiGiiSNlR07NgxbNy4EW+99Vbc/RwOBxwOhyHnbG5uRiAQ0IrBJVpbJbSInBH8fj/sdruhxyQiIspkSetxWblyJYYPH46rr746WaeISkqJLVu2YMuWLQn3eLCIHBERUXpLSuASCASwcuVKLFy4EFlZ/Vuc1+/3R/2ZiIiIzC8pgcvGjRtx/Phx3HHHHck4PBEREWWopHSHXHHFFaZJTDVJM4mIiAgmXqvIiMBISomf1HEVZyIiIrMwbeCyffv2Ph/DpwDHm4I/TxR/h9NmzOXwKqzjQkRElAymDVwAY5Nv19qXGTar6L4tATxV287ghYiIyGBpG7hICbRKB1qlI6EAoLa2tlfn62vI4rRZUC4Oac8PNwbQ3O5n8EJERGSg/p2rnICF+BH2escDAMbVBfBohUzrOitCCKy1L8NpFKDcuwIAULdrF4YPKURpaWlat52IiMgs0rLHRdgc2Ivx2vPDjcF8lHDp1pshBJCDrgUjvQrQ2NiY8ErWREREFF3a9rj0RH19faqbENfiTa0YV2jB7NnpFWARERGZVVr2uJiZE16UZf1de364MYA2f5TuIiIiIkoYAxej2HKAkZMhBPCW9VH8eg4vLRERkdH47WoUIYDb12s/Oqwpbg8REdEAZOrARUoJb0fw0atEXaOTe2PMHNq3b3/aJRITERGZkWmTc6WUeLK2HUcagzN2xhVa8GhFdkLTji2yawYQRkwKDvckQUtzMwKBAKxWdsMQERH1hWl7XHwKtKAFCCbBRpsy3WO3vR2zx4SIiIjSg2kDF8MxaCEiIkp75gpcpIRFaY+dmyJ7XuhNSglvEmcpWxRv9zsRERFRQsyT4yIlyuqXwOX5DO6CC1Ez+amIXbI6mgBbYQ8Opc+PSYaZNXcDWJm04xMREWUi0/S4WKQXLs9nAACX51N9Ym2CwvNjysUhOG0GXApbDmRRRcRmr5J+yxMQERGZkWkCl+CXv/HHrXPci7X2ZcYsgthZy+XAVet0mxdvasWNL9YyeCEiIuoj0wQu920J4Hrf0t4HLzHyY3LgNTQvV1gsuKjsYjjhRbk4pG3ffayRpf+JiIj6yDSBCwDUyfFogyPxN0qJsvpHcOm2G1FWvyQieAmMuMjQGi5CCAgBrLUvY+l/IiIiA2XGt6q/NW5+TMdt/19SpkOz9D8REZGxzDOryABSAm1wRBluYg0XIiIiM8iYwCUgBb7lexKfyHMwpi5506CJiIgoedJ0qKj3PSDqwouhM3iklFrQAgDHm/raPiIiIkqFtOxxEbbuE3Cjzi6S0ArLjSu04E+VwZ3a/AEtaCEiIiLzSsseF4stO+7rUgI/iTLc4w10FZY73BhAmz8NhoRYu4WIiMgwaRm4nHXvS3Ffb4NDG+4ptnzVDy3qvZL9S1PdBCIiogEjLQOXRLxhe0z7OWCxp7AlIWw5wMjJAID85mMpbgwREdHAYfrARZfGm4RaLL3SWfqfiIiIjGX6wCVtpUsQRURENIAkJXD5xz/+gVtvvRVDhgyB0+nE5MmTUVdXl4xTERERUQYxfDr0mTNncMkll2Du3Ll47733MGzYMBw+fBiDBg0y+lRERESUYQwPXJ555hkUFRVh5cqV2raxY8cafRpTkpwaTURE1CeGDxX98Y9/RHl5Oa6//noMHz4cZWVlePHFF2Pu7/V64fF4dI94WuFAa4wVov0+b9Tt6WL//v0MXoiIiPrA8MDlb3/7G1544QWMGzcOGzZswPe+9z0sXrwYq1evjrp/VVUVXC6X9igqKop7/HLvCpR7V0R97T932vQbZCCtAgWP24NAIA2K4hEREZmU4YFLIBDA1KlT8dRTT6GsrAx333037rrrLqxYET3YWLJkCdxut/ZoaGgwrC27t7+PLVu26IKXieLv2s/l4hCcSO9eGiIiIupieI7LqFGjMHHiRN22Cy+8EG+++WbU/R0OBxyO7tcmimXvlCeBj7qeb7Pfj9m+X+r28fv92s9r7csgADTlFWN481/hcV0Ipy2n1+cnIiKi/mN44HLJJZfg0KFDum1//etfUVxcbPSpAACKVb+ukVPE70ERAHKEF7vLfoxDQiBgcaCSNVeIiIhMwfChov/8z/9ETU0NnnrqKRw5cgSvvvoqfvvb32LRokVGn6rHAoHIPBcpBALWbBaKIyIiMhHDA5fp06dj3bp1eO2113DRRRfhiSeewC9+8QvccsstPT5G+xcfA9Dno4RSt5eLQ8i3SZSLQ9rzaDkre/fVJ/YhiIiIKC0ZPlQEAN/61rfwrW99q9fv//KVH+LED4ci3y4wybsy4nU1T8UJL6qzVuP/Hfo67J6/wQkv2kKmSgeEHR0dEiJ9JhYRERFRHyQlcDFCjvBCIDvqa2qeimrv1CrY/G5cUr0QCAlSnqiTON7cijH5SW4sERER9Yu0DVwSIkREki4AHG/u/G9TP7dngJFSos2vQEoJh1XAarVCMDeIiIhSYGAELpQ0Ukr824qd2H3sDABgXKEFz1wxAmVlZQxeiIio3yVldehkKrUdZ9G4ftTmV7SgBQAONwbw1TduVgAmIqKUMFWPy68vFcjNHo+28TXIeXFGqptDRERE/cxUPS6OLAFhsUBGqXQ7o6Ki18e12Wzd70REREQpZ6oel7hsOQicfTHQsK9Hu8+eNQuw5wIAczWIiIhMwlQ9LiqbLUq8JQQ6bvsTds74bY+OIYTQHtQ7iqKk1erbREQ08JkucJkzZ07sF4VAls2hVdJNN14FaPV1DIgv+/r6emzbtg179+4dEJ+HiIjMwVRDRdPLp3fbQyKEwFr7MrTBgVY4UO5dEblT0QwgBStCL97UCmzaiPLiQXj9nplo71AAAE6b+eqiNDcHi+S43cEZRlarNcUtIiKiTGCqwKU7apKtEEAOvLoqupr79wODRqR0ccW6Y2dw9a+24dMTwcp45cWDsPbemWkZvLA3hYiI0klaDxU54dUvoGiL31whRDDpNh57Tv8ELWqycAxq0AIEA5k2v5L8NvUC67UQEVE6SeseFyGgDfs44YVf3A4AsLlGavv4bQVh70mTXovOZOE9m99D+eZDqJPjMSbfXMsPSCnR6kvPgIqIiDJTWgcuQMiwT+g2ixXy8W/g9/uBnTUpalkPCIFAVrYWfG0vX427N5mjByO81H+oyksq4bAKVFdXp6BlRESUydJ2qGjbJa9g26zXYr4uLFbY7A7teToXkROic7XrNOkM6onwUv9j8rtuFavVymRcIiJKibQNXCAskKL7nJY5c+Zgzpw5XUNEthzIEZP7oYGZ47m5OXi0Qr/6tpQS3o7gY8+ePUziJSKifpH2Q0XdichpEQKB7/wZ1mfGpKZBA0RoIOKwhr8G3PjiR9h9rBUAMK6wHe+VKcjKMv3tREREaS59e1wABCwOKGdNBwC4Cy5MoPZKeo7JTC8vT3UTeix8NlGBqysJ+psWX8SK0ek6K4qIiAaW9P5fZCHQfvPb2F27HQGLA5VmShJBZN6N7bUbADyUmsYkQEoJRekKXCpmzAgus/DmSQDA7Gc3pappRESU4dK6xwVAcOjHmp3SgnG9JYTA7LlXQI4M5tyIUx+nuEXdk1Kivr4etTVds7WsVgty7FkoLx6k23fiqPz+bh4REWW49O5x6SWLJX3iMWGxALevB6rOSnVTeiQQCMDj8URsF0Jg7b0zdUNCHR0KSn68sT+bR0REGW5ABi5pU4ROlW7tiUHtbYlFCIEce9ct06Qwr4WIiPpX+nRNGMmWE1xIkXpMSgm/368tnkhERJSOBmSPC4QA7lgPtDQBP9mW6takPbWnJdoQERERUToZmD0uQDB4sfd0+nRmC89rycvLS2FriIiIYhu4gQslRK2EW1pegdLS0oTfrygBVs8lIqKkG5hDRelGzbk5HjvxNVg7RYHFYun35GIpJZ6sbceRxgCw8UNMHJWPeyYkdoytO2pw9jAXysrK0i85moiIBozMC1xszv4/p5pzc+ZL4NndUXfZt28ffK3NcLlcKC0t7dcv/za/EgxaOn1yogn3n+j+faHTzhdvag2W/i9h6X8iIkqetB8q6suqz06bVVc0rbx4EJz2FH2pdpNz0+RpAgC43e6Icvv96Zwh+jaOK7TAaYu+EnR4UTqW/iciomRL2/81njVrFgoKCuD3+3t9jPCiaU6blcMY3fjjokoIAVTvqAYA2K2x6+Ko1/eUpw0VVVwGgIiIks/wHpcf/ehHEELoHhMmJJgwAWjv7Su1aFqOPYtBSw8IEexJcWQJOLK6/x0Er2/0HhkiIiKjJaXHZdKkSdi4sasUPHMezMViscDlcsHtdsNVUABLRxugdAYwthzTVAImIqKBJykRRVZWFkaOHJmMQ1M/EEKgtLQUAUWBZfW/QPyxtuvFohnBRGMGL0RElAJJSc49fPgwRo8ejXPPPRe33HILjh8/HnNfr9cLj8eje1DqCSFgDXghGmr1LzTUAP7W1DSKiIgynuGBS0VFBVatWoX169fjhRdewNGjRzF79mw0NTVF3b+qqgoul0t7FBUVGd2k9JGKqdhGuX9f18++VoDF5oiIKAUMD1wWLFiA66+/HiUlJbjyyivx7rvvorGxEa+//nrU/ZcsWQK32609GhoajG5S2nDaszCtqEB7Pia/+/eohelSXpXWltv18/LzgZevYvBCRET9LulZs4WFhbjgggtw5MiRqK87HA44HI5kNyMtCCHwh9tL4HtmHABge/lq3L0pds2W0MUPU1GYTsfmDOa3NNQEn6tDRvbc+O8jIiIyUNIL0DU3N+Pzzz/HqFGjkn0qUxBCIEd4kSO8cfNbpZRobvfhq2/ckFKmvDCdVv33oegBqGrfvv2p7x0iIqIBy/Ael4ceegjXXHMNiouL8c9//hNLly6F1WrFzTffbPSpBiwpJf5txU7sPnYGQLB67aMV2SluFWJW/w0t/d/S3IxAIACrlbVdiIjIeIYHLl988QVuvvlmnD59GsOGDcOsWbNQU1ODYcOGGX2qAavNr2hBCxAspe9L40r6LOxHRET9xfDAZc2aNYYeL3Stor6sW0RERETml/YlbYUQmDNnjvbzQOVVAEDCVNXzfZ31XKRdt7m+vh7Tpk0b0L8vIiJKjbQPXICBHbCoFm8KBgHjCi143Lmvm72NE5xu3cuk3+XnB/971iwA/65tbmaeCxERJYkpApdMcrgxgDPuln45lzrd+qtv3D1/ky1HPy0aAL7YZXzjiIiIomDgkkIWxQsgdXk7gUAgcokFXytg7Qj+HG1aszot2t8a3FftdSEiIuoHDFxSaGbN3QBWproZOtafjQeEN/hk5OToOwnBwnNERJQSSS9AR2FsOXAXXJjqVvTMyQMJv8WrAN4OySJ0RESUFAxc+psQqC+rwo7K1aluSWz39z45ePGmVtyzsRU3vljL4IWIiAzHwCUVhIBiTYNKuLHYEhsGcsKL8jEFum27jzWizZ/GVfOIiMiUGLikkBNelItDAICJo3qwVHR/URdUVBXNCM4mikEIYO13y3Bg6Xw8Nzf2fkRERH3F5NwUEgJYa1+GtvsPocNRiJInPgAAeJUUD7GEzhwCgkFLN7V0hBDIsWfBwdItRESUROxxSTEhgJznxsP66v/Wtj28tS2FLeqkzhyy53YbtBAREfUXBi79zGKxwOVyIWBxoHnwRdr2nC924AKXvoLtxFEF4W83nJSyc7kBIiKi9Mehon4mhEBpaSkCgQAsc7YBraeB5edDCGBD+61oczjgLhiPvO+9D4s1C5OWbkhaW6SUeLK2HUcae1nyn4iIqJ8xcEkBIUTXOj72nJDtQA68yGnaD0X44BXJ/fW0+RVd0FIuDsEJb1LPSURE1BccKhoAggslKn2qm/LrORastS9jOgsREaU19riYnLpQosfjgcvlQmlpaa9W03ZYmYNLRETpjz0u6crfGn2RwzChCyW63W4EAj3LVwn20iQ3t4WVc4mIyGgMXFLNlqMVe2vKG6tttv5sPPA/1yXllGovTW1NjbZtevl0w8+zf/9+Bi9ERGQoBi6p1lnsTS75B478r5f0CzB+sUv70atE9mCoAUiiQntpVFqycG/5WmHpaENBQVcF4K++8UBRONeaiIiMw8AlHQgB4chDadlU5C3eDvnQ4YhdFm8KLlwYCAS0RNxAIIDm5ua4hzYicbdHlp8PUXUWSvYtjWgze12IiMgoTM5NI0IIWLOygtVqEVzLaNrZudj9RQuA4MKFNXV74GttRkFBQcx8FkVRYLEEY1IjEndjUoe5GrqGnHK+2I5pRY9gd4NHa3ObX0GOnbcaERH1HXtc0pgQwBtfXYsPh/63tq3J0wQA8Hg8Wm+L0+nUXq+vr8e2bduwd+/euIm7hlTMVdc0evSfwENHtE1/uL2Eiy0SEVFSMHBJRyEJu0IAI5sOxtxVSonxk0rg7ZCQUmrBjNvtjplfolbMXbyptWujvzXqvt3S1jQKLaQndIst9stQFRERZQT236cjtSej5Wtg+fkxd9NK9m/4EAAwrtCCRyuy4w4HSSlRU1evq5hbZm9A3q/+H8CgUSSLxYLcvDwAwWCoekc1hg8pNH6oioiIMg57XNKVELpeDNWk0qnwdkh4OySafNAFIIcbA/B1M/wTCATQEpLQW/tQBd4SP+wqPlc0I9jj06emC5SVleq2JVJjhoiIKBb2uJjMrOXbDT1efra9K2h56AiQO9SQErrsWSEiomRgj4sJOOHFuMLYr184Mj/2i4mw57DuPxERpTX2uJiAEMD/LbegHdmomDFDV/EWAC6uKEfZk5tS1LoofK2AzZ7qVhAR0QDEHheTyAp4MXywC67cbAwpzIcjS2iPWMMyvamqa4jl5ydtuQIiIspsDFxM4pLqhSitXwIBYNq0acjLywMAuFwuWK1dv0YJaMm7ra29nOLcGyFTuAHolitQcVo0ERH1VdIDl6effhpCCDzwwAPJPtXAExYMiIYawN8KIQSmTZuG2bNno7S0VPeWJ2vbcc/GVtyzsRVP1bYjIKUWyEQNGnwGBTfqFO7OQnShvEowmNqxYwf27t3L4IWIiHotqTkuu3btwm9+8xuUlJQk8zQDV5x6LkKIqAsjNjTpp0cvrW7Xtk07XIs/3FWhf8MvSwyr3xJrCrda6C5YZ6YRgUCg74s6EhFRRkpaj0tzczNuueUWvPjiixg0aFCyTjPwhQcDvlYggR6L0EBm97FGtPqU6KX+DajfEsoJL8rHFOi29aTODBERUTxJC1wWLVqEq6++GvPnz4+7n9frhcfj0T0ojuXnAy9f1RW8SJnQcM8Nv63Rl/oHgsM7d6w3dCq0EMDa75bhwNL5EesWMdeFiIh6KymBy5o1a7Bnzx5UVVV1u29VVRVcLpf2KCoqSkaTzC088bUz1wVSAi9fCevPxvf4UJ+d7KqaWy4OwQlv0uq3CCGQY8/SrVsEANXV1cx1ISKiXjE8cGloaMD999+PV155BdnZ2d3uv2TJErjdbu3R0NBgdJPML1riq68V8LUADbW9OuSv51iw1r6s3+vNqbOeTp1ujLkIJBERUSyGJ+fu3r0bp06dwtSpU7VtiqJg69at+PWvfw2v16tLzHQ4HHA4HEY3Y+AJz3VZfj4wcjKAznwScQh1MtjzMnFUPj450RT3cA5r/xTJtVgsKHAVQF1w8RcHLVqvz7TDtXjj3kouD0BERD1meI/LvHnzcODAAezdu1d7lJeX45ZbbsHevXs5m6QvwoeMTh4A0JlPYl+GTxy348X/ZcGa8JlDKSSE0M0qCx2q2n2sEW1+9roQEVHPGd7jkp+fj4suuki3LTc3F0OGDInYTgmKOz0ayIEXDquI2pMyJt+C450zjMYVWmDvx9KD7FEhIiKjcK0is4lRK0V7OcYso0crsiEAVMyYgfpdNRABbxIbqee0WVFePAh1x84A0AdRUkooigKLxcIAh4iIutUvgcvmzZv74zSZQx0yaggutihHToboHDaatv+/4Nz2OcrFUi3nZVpxIRxWX+csH2u/BwhCCKy9dyba/AoURcGOHdW4d2MwuNq3bx98rc1wuVwoLS1l8EJERHGxx8WM1CEjf/DLX0gJVJ0FAMjxfA505ry0wQE8fAT27Bxs3769/9up9vzYcrSp0YoidIV6mzxNcGQJuN1uVtQlIqJuMXAxKyEAe27wZ19L1Jdz4AVsFij+VliUdgQsDkBKWJR2WJX25LdRzcMpmmF4gTsiIspMDFwGupevgvXLA7gUgLtgArI+z8elUVZuNkzYMBaAroJ5aqBFRETUSwxcBrovD2g/ujyfAeErKhi8RpFuGMvXGjH7yWKxIDcvD2pdFyIiokT046RYSic7KldD+WFDcoZw1GGsKLOfhBCYMoWrhRMRUe8wcMlQijU7GFww74SIiEyEgQulDa4aTURE3WHgQmmDq0YTEVF3GLgMBOFrGHUuvmgGXiW4WrQarKj1XIiIiKLhrKKBIKwgHUIK0qW7xZuCbb5wZB7uvygAB+vPERFRHAxcBopuCtKlk1yHDROG2vHZ1z5t26cnm3HvyeACkLNnxx4qklJqPTJc34iIKPMwcKH+EVL+32Kx4N0H56HF64eUwE0vfoRPTgQLzBxuDKDNryA/K/LWlFKivr4eHk9wX65vRESUeZjjMhClY87L8vOBp0YDL18VXHbAYkG+04GCHAf+vHgWapfM7fYQgUBAC1oA5sMQEWUi9rgMROmS89LD8v/qqtVERETdYeAyUKVDzks35f/jUXNZmMdCREShGLhQcoUGUAlQc1mSkcfCBF8iIvNi4EJpx+fza7ksah6L1WqFlBLejq4ZR70ZXWKCLxGRuTFwof4XMsMo2lpJdbt2wZGl397R0YEbflODPQ1dq0p3N3U6mlgJvlYrc2yIiMyAgQv1PzXXpWhGzNWppZTwKcGft9fsQltbmy5oAYJTp5vb/ch3ClgswQlyzIshIhrYGLhQ/+jhDCMAkACe+8SG+gZ355ZWjMnvmrn/00udeHhrGwCgtqYGjiyBgoICAIibFyOlhKIohn80IiLqPwxcMoEtB7JoBkRn0OAuuBD5g4ZrvRT9opsZRrq2OPJQ33BK9/rxpq56LQ5rZG9Kd8M/4bktRERkTgxcMoEQEHesh/S1IBAIIM+Wg1Krtf+HU+LMMApty71/7gpaNn//Ulz231vjHjZ0WMluRdTPFZ7bkpeXh+bm5kRaT0REaYCBS6YQAsKRh3RNQXXarCgvHoS6Y2e0beXFgzBmSJ5u+7hCi242kQTwZG07jjQGtNcfrcjuel1KtPkVKIoCb4eE3QpccsklsFqt2LZtW798NiIiMg4DF0oLQgisvXcm2vxdOShOm1Xb3tzuQ/WOatit0HpXAKDJJ7WgBQgm7KqvSynxbyt2YndIMDQm34I/VUgIpQNSSibxEhGZDAMXShvB0v+Rt6S6vWuKdNcUaDVJN5o2v6ILWoBgrkzJjzcC6OqdkVKi1deh7aMGTERElH4YuJDp2K3AtOJC7D7WqG0bk2/RJfCG++XcHPx3Xbtun8ONAXgV4Ibf1mLP8a5jlRcPwtp7ZzJ4ISJKQwxcyBQsFgtcLhfcbjcKCwux9p4paO8IQFEUVO+ohgRw78bWmO/PtgLLKrNRPqMSXgUo/0mw18WnQBe0AEDdsTNo8ytRe3+IiCi1+JeZTEEIgdLSUl2BuRy7BVJaMXxIIU6dbtT29SpAU5sPWVlZEcfIsWfBqkSvthtaH4aIiNITAxdKPSmD9V1UMZYCEEJElOZXA5rmdh+wMdiLsnhTK7DpQ4wt7P729oYEMdHqw3Tf9K4FG1Ws3EtElDwMXCi1fC3Ay1cCJw90bYuzFEA0QgjkZdsjplMfbeyI866gvvSwxCpqx4UbiYiSx/DSqS+88AJKSkpQUFCAgoICzJw5E++9957Rp6GBYvk4fdACdC0FkAB12vTHy67Azh/MibqPy+WCxWKB02bFtOJC3Wvh9WF6IryonUqt3EtERMYzvMfl7LPPxtNPP41x48ZBSonVq1fj2muvRX19PSZNmmT06ciMoq1bNHIycOtbwUCml4QQyHXYogYNFTNmwJWbrfWC/OGuCnywuasAXXh9mERVVlYCAKqrq3v1/vAhJw43ERFFZ3jgcs011+ieP/nkk3jhhRdQU1PDwIWCQtctUtlyIntZwnNf4omRF6OyWvWBgBAipC6MdkLtJ0VRIGXsei7qgo3qcgNqrkysonahgUl4UBJtyInDTURE0SU1x0VRFKxduxYtLS2YOXNm1H28Xi+8Xq/2nIvgZYg46xYBiJ77Ek+CeTHd2bGjGi5XAUpKSiCE0BWlCwQCqKnbA4+nCU/VdtaG2agvahcqPDAJD0qiDTlFWyiSiIiSFLgcOHAAM2fORHt7O/Ly8rBu3TpMnDgx6r5VVVVYtmxZMppBZpbokJGaF2PPRa7DhglD7fjsax8AYMJQO3IdtoQO92RtOxqaWoE3TwIIFrz7w10VACIL1oVSlxyQUqKprSsgd7vdWqASLyipqKhAbW1tQm0lIsokSQlcxo8fj71798LtduONN97AwoULsWXLlqjBy5IlS/Dggw9qzz0eD4qKipLRLEp3sXJfbo/Tk+JrBZaf3/UzAIstB+8+OA8tXj8AINdhg8WSWB56Q1gV3t3HGvHuB8GcmD3H9cNXE0cVYPUdF2P6k8FeFwng6p9/iEOn/do+oT0xPgVo9XXAapVw2vTBC3tYiIjiS0rgYrfbcf75wS+TadOmYdeuXfjlL3+J3/zmNxH7OhwOOByOZDSDzCZW7ktPh3/UAKZoBix3rEd+tj14rI6QadFxjpeblwdAH5SEFqVbvEn/2nNzczD30krkZdt1i0P6FOiCFiDYE+PxoWvZgc6hpfLiQVhz18U9+3xERGT8dOhoAoGALo+FKCY190V9dBe0qL00oRpqunJknhqtf7x8FSCltoSAyuVyofLiabpp0uMKLRjiFJgwJHKYaVyhBWcPcyEv2x43gfanlzq1n+/f1BqxnpK6vICUEt4OiVafAm+HhJTRq/sSEWU6w3tclixZggULFmDMmDFoamrCq6++is2bN2PDhg1Gn4pI30sTOmzkbwMaouSKdObCCHuutoQAAFiEgOhowxt3TEGbPwApJRzZORAWCy6bI9DeEdxPnR3ktFlhtUafdRRajXf0kAKMK/TicGNXwDIm34K1981BRdWmzmMGc2qONAaAjR8CCAZGs2dLbeVqtZ29GfYiIhpIDA9cTp06hW9/+9s4ceIEXC4XSkpKsGHDBlx++eVGn4ooqLsZSg8dCf5XDWq0t3UuISBlsHemoRYCQI66Q8hMpRx7z4OF0Gq8paVT8N40oQ0lVe+oht0K5IRUu2vzK8GgJcThxgBOt/hw+6o6fHKiSds+Yagd7z44j8ELEWUswwOXl156yehDEiXO39L1sz0n9n5AsLcmTu9M3KCok9NmjVhyoLx4EHLsWRBCID8rC4qiaLVjFCV6Zd0P/nMW5v18OwBoPTKhPvvahxavH/nO6HlhLGRHRAMd1yqigemXU2K/1jn7KGqibozeme6oSw6EJumG1n4JV1tTE3X74BwbxhVaIoaW/mtWIe5575u4bWAhOyLKBAxcaOCINp26aEZkVd6Q2Ue4Y73+GN31zsQhhECOPfY/KTUh2O1267a3haw1IITAoxXZuuUHLptdCV8AwHsb455fLWSnVvMFgFOnG9Hc7us2iZiIyCwYuNDAEW86dbSgpqeLOUZbeiCRadpa8wRKS0vh9/uxaesObftl/701Yj9HyL/MrKws+HzxV7oOXYJAS/RVbdyI8uJBWHvvTAYvRGR6DFxoYImVqBtr9lF3QhJ3dXq5xIAQAjabDcMGuzCusF03JDSu0AKnrfukW0UJQFEULX8ldIjIpyAi0RfomnYdr0eIiMgM+FeMMkd3s4+i6WZadcLHQzB4KSsrw58m+bB5W9dq0nZrsHcldDjJ5XJFzCDauqMGDitQ4CpAxbQySCmjrvH13NzgsFd44TwiIjNj4EKZzZfAl3qsxN1eDCUJIZCVlRVlhWro68t09qqEBi9dgUgrptXt1NZQAoCKGTO0WjCOKKsHSCl7nECs7h9rVWsiolRg4EKZLZHZQ9ESd/swlBSerKv2rmj1ZULk2LMiplsDwTWU1Mq7PkVf/C5aU/9txU7sDjnGxFEFnbkvweehgUx3q1oTEaUCAxfKPNESdYHoM5Di8XXmy/RyKElN1u1Jj0bodGtFUbBpa7XW87J3376QyruRtV9UbX5FF7QAwCcnPJi0tKuqdWgSrzpLSRVvVWsiov7CwIUyT7TZR0DiM4XCe2t6UQMmWu9KvH1z7FmQ0ophgwugLgh5xt0SkZA7rbgQdqtPN61aUbqefPToPHxn5Ue6qrxAMIlXnT5NRJSOGLhQZuppom5oBV4gfm9N7lB9MOTr5SrX3RBCoKSkBHjzZMRrtUvmIt9ph90CbN++HUDX0FFtTVfP0JHPDuLhEgW+ScHhL6/SlTtTvaMaw4cUBs9BRJRmGLgQxRNegTeR3prQnpeRk4HbQ3Je+hjIxBpSyrFbkWPP0vWuRNPkaYIjK1gvJi8vDxdMvAjY9AGAYBBz6nQjOjq6aseoOTStvg5YrcFgKDwfhksNEFF/YOBCFC5eBV4gfm9NrB6ZkweAqrP0xwtN3jWoyF08U6dNBTZt122rrKyEzWbTzTRSe16m/rUO/3FhMEjpyqHpqt6r5sNIKVFTtwdNnq5hp2GDXSgrK4savDDIIaK+YOBCFC5eBd5E3yslsPKqYOASqqEGaPk6OFMp1j497KUJnUkUb9VoqyUyl8ZqDfaaRFskcs/xRvguCAZrsYrafdXkxcKXP8KnJ/W5MuMK2/FeiYKsLP2fGK6nRER9xcCFKJreFKuL9d57tnUFMqFVe7tL4g3vpQkNZEKybh/e2tZ16t61WJu11Nzu081Y8oaNOIUXtbv4qQ+iHu9wYwBtfgX5YYFL+EwlgLOViCgx3dcXJ6K+UQMZe24wgbdoRvT9Rk4Glvwj+Bg5OfJ1NZB5ajScPy1CuTike7lcHILzd98CpNRqxISyWOP/cxdCIC/b3jljKWjxplZd5d1LL5mBfHtweYJQY/ItePV/j0TtkrnaNkUJQMrYdWUqKipivkZEFAt7XIj6U6zkXkA/FBTaSxNlKEkIYK19Gdrg0LY54YX4AoC/FcKei9LSUjS3+7S8lNBVqGM3T6BiWhmm1e3E7mONutfKiwchL9sWcwVru90ePF+nrTtqMGxwAUpKSpBjz9LWVfJ2BIMZrwJ4OyTsvexoCa8CDHRfCZiIzI+BC1F/68kwVLzhJnUXAFot3ygLR4bXiAlfhTraOkhAME/mjXsrowYF6vvcbre2grXL5YLdbo+xNEEr8OZJlBcPwmt3Xowbf1uDPQ2dn6NzaYJxhRbMnh27ZyYaKWVEFWAgWL9m7T0z4+b69AWDJaLUY+BCZAaJ5NyE1I9xSonyMQWoO96VVzKtqADzKkuCibkxEpDVYnfRhFb7BfSzgmItTVB37Aze+3BbV9AS4nBjAF952pHntAXbbLNqScOxRKsCDASXQKjdXY8Z5VMNDybiBUt/uKtCC9wYxBAlFwMXooEmpOdFAFgrgTZHyJDSKS/Es1He14P1lYD41X5Dk3yrd1TrCtuFWnntCEycOBEVVcElCmY+u0V7bVyhBU/NG4qpU6fq3hPa29EaMk4VnjDscXuSkuwbL1j6YPM2OLKENkMKAKd8EyUJAxeigSBW/RgE45AceLs/RugUbfWYoV+24bVmYkzPVntrgitfRx8CunjqFDhtVkwYasdnX/t0rx1uDOAbdzO2bdumFb6TAJ6qbcfxpshp2dFWwe6NROrL7PzBHOzatSsiKFNnSO3bt083eyovLw9lZWU9OrbaFg5JEUXHwIVoIIiX9NudWFO0Q6dfR6s18+g/Yw5fqbOaTp1u1LbZc/Kgrq+kDqu8++A8tHj9AIK9KGoPjFcBJGTMYEU1rtACuxXIzutauwnoWpeppz0dPakvEzpDav+eXbqAqWLGDOytq9XOHT7lu7k5GIjFOnZoOxRFwQ2/rcWe44261yaOyseauyq0WNFisWhJz0SZhIEL0UDR29ozPa32m1BTRMSspnv/fCpiP4vFgnxncBjLau1aYiDa8BIQ+eWt9kK0dwR0azdVV1cDQI+HbnpSXyb0/eGsnVPNpZRo9SnazKmKGTNw+NODaGnRr3nldrvh9/thtVq1tqjB01ffuLHneOTn/+REE0p+vFG3LXQ1b6JMwcCFKNP1tNovoO+FseVEvq47bLAuTHiybnnxIG2GUqho1XsBYOKogs4v59jDJUKJPiQVa+gmXrXeiooK1NbWRmzX7TNjRjBYCVkCQUoZXBphw4ddO278EBNHFWDNXcH2K0oAtTU1sFu7gquCggKMnzQZgUAAX33j1hX9e25uDuzW2MNkdcfOoM2vxEykJhqIeLcTUY+mXwNIeP0kNVk3NF8jZvARZd94+8dSOr0CDqtAbU2wB6mjoyOhar09Seq1Wi26/Vp9Cpp80ZdG+OSEJ6KnZFyhBY9WZAMAfvCXL3Hk9RNRz+OwAo4sgWWV2bA58zBlSgkUJYCtO2pi9kqF5+oATA6mgYWBCxFF6suSBxGHij21ui/7xqLmyaguPFiL+y+SEADKp0/H/j27dHkrbX4FitI1vBOv2m9Pz6n2lDz3sRWfnGiK2P9wYwBl02egtqYmarADBHum5l12sdZWNfhQFCVmQnK0XB2A60HRwMLAhYhML9YwEwB8erIJ96rpLxu3YEx+sLejxduBm178CJ+c0H/JhwY6TW0+rVqwougDjFjnnDqmEPl2H4QQ+OOiSvhC3tbqU1D+k2Dvi1eRumGh2iVzsXdXcIiq8pJK5GXbEwo0pJRobvfhq2/cuu12a1cPk8ViYW8MmR4DFyIyvfBhJkVRsGNHddTckONNAdy7sVWXnxJKH+h8qAU64SsmhJ5TURRU7wjmrMyuLMNHH32k7ZMTY02D8F4ah1V0TiFHwrOFAoEA/m3FzoiZSAC09je1+XDw4EG0NDfDboV2/HTpjTFiiIvDZJmBgQsRDQihw0xSWjFiSCGWVTZqAUd+QQF+srMlYuhG/WIHoifBaoFOCHVJAfWcitIVdKhBSzSxemnGFVpQv6umV1+wiqKgek991KBF1/6NXUnDao6NECJqvo86hBYeCOQ6bD1eTiGRIEId4nK73boAscClX+uqu/N1N0wWrU3x2tUX/XmuTMPAhYgGHHU6dvgU6D+VS9TurofH3fXlFtr78IsFIzB+UnBlbkUJ4KYXayMCnfLiQRF5OGrdGre7a5gm2lpQob00Ukrs378fHrcnogckkbWWNm2t1j1/bm4Ohg0uwOTJJbjhNzURQ2FAV46NWnsmOI27o/Nn4PoVO6O+b8JQO959cF7c9qnH2rdvH5o8+muXmxdMMNaedwZCgUAAbrc7OCtLl/MTXOtKXVYh3lIQ0aa0A/phMjWwUQsbxmpXeHDRkwTx8EClvr4ezc3NEfulSw+XmTFwIaIBKdrSBEIIzCifGrMmS/gX1p8Xz+7RLKdYgVKs2VNq4BOtLd39H7nFYkGBq6vgXvjsormXduXH/HnxLLT6OrRzhBb5C609E63gXTSffe1Di9ePfKcjao9C98dqBd7uGqJTAyEA8CnRZ2UBXcsqDB9SGPNLP3Tl8YoZMwBAm1mmtlUNWqIGSG9HHzoEul+8M1aPkSo0MI03o416hoELEWWUeGstRds3kRlRiX4Z9fY9FdPKMK1uJ3Yfa9S9Vl48SJfUK4RArsOmvR5a5E/lUxA10LhwZD7uv0iBADCpdCpmLd+uvRbri9qrIGrxvFg++9oHT6s3Ig9o13/Nw5HPPsZX33h0gVmsL/2ugEm/8rhq4sfVWHNXBbwdwYToWAFSLOGLdwYCAa3iMxDsnTv1jTtmvZ1pxYV49Y5y7Ny5M6HzxtPbfJ5kDGGpx1QrVieb4YFLVVUV3nrrLXz22WdwOp2orKzEM888g/Hjxxt9KiKijGSxWPDGvZV9qnmjVvgNndn00reGoaM9WOXXblW0Y+Vl23XvjT2000UdsiopKYnIL2lu82sLa9bW1Gj5QapcRxZmlE8NVl7eFNkTEr6WU6tPidtjFK3qMADU/d/5cNr0M6327duPls4hntBFQtXFO4UQWPDfG3HotD/ieLHsPtaIxvauKfetvg5YrbLHv69owUa0oajuhqFi5QH15L3x2qYeM7xCdLIYHrhs2bIFixYtwvTp09HR0YFHH30UV1xxBT755BPk5hpTF4KIKNP1teZN+KwmAOhob4kIIlwulzasBHStzB2r4B4Q7GH4l3mxc1J6ksMT3hsVDLBkzGnsqufm5mDupZUAEHNmGRDsnRqSGznl/JKK8pChtY6IwKnF648btIRWeg6d/q673p0z2robggKCgcGePXvw9ZnonzfeMFR4wNPR0RExXV516nQj3C3tut+12gsTL8CKlVuUTIYHLuvXr9c9X7VqFYYPH47du3fj0ksvjdjf6/XC6+1auba/LwARUaaIV+9GXbAy2krWze1dK3hHC3jq/u983XBPdz0Joa+VTq9Ajt0aDIg2Rh5bpQ0ZxZjGrn6GfDu0gC67s+pw2XR9zku8OjmhAZPVGr8Y4c4fzEGes2soLnzhy3jXGwj2xFR/tBszp0/VbQ8dtlEUBT98/1TMIHHiqHy8ckc5PupcpkLtzcnOsmDv3r3ad2r03J4wYUNsqp6uiVVRURH3daMkPcdFzbIfPHhw1NerqqqwbNmyZDeDiCjjhde7Cf0/cjXYiJbr4LRZMa7QgsNRvvSmFRdG7bnoqWiBUOh5Y33xq9PYQ89qtwKFhYW6QntCCG32VG/r5ADBHp+mNh/aQpJ68pw2bZHQaGLNIgsdgvrG3YyNm7bq3qdOAxdCoKnNFzfY+OREE8qejOzNCc1RUtufaG6PKtqaWNGqTkdLTE4GIXtT37qHAoEA/vVf/xWNjY3Yvn171H2i9bgUFRXB7XajoKAgWU0jIqIeUhQFW7dujfrFNO+y2cjKSuz/gaWUuH7FzqgBSfj/3avTq9UvfZU6RBKth0jNqdm7d69uijqQWC5Hq68DEx/fEPP1A0vnxw1cwqmBYquvA5OXxe45iqV2yVzkO+2dx4o9bb07u/5rHnId+iAkdEhJXQw0NMAKzQeSElFLBQDAsWe+lfTv76T2uCxatAgHDx6MGbQAgMPhgMPR8188ERH1L4vFgsLCwqhBQG+m9cZaUBOIHGZSZ0bFmsYeb9p5+BT1ePtHE6/HZ8JQu27GVk+ow1B52Za4Q0jRjCu0YEiuXRck/nnxrIjeHInYq4kDwcBwaJ4j7jVQFKWzd6qrX0PN1UkHSetxue+++/DOO+9g69atGDt2bI/f5/F4tEJO7HEhIkoPmVpOX+3xCf/siVQRjnXc8MAtNAAJN2ywC2VlZXFnDKltDD12b4rpKYqCbdu2QUqJX31qjzljK3S4rsBVgHPOGYvRw4eYr8dFSon/+I//wLp167B58+aEghYiIkpPvak5MxCE18Ix8rjRZoUl2rMUerzQ309+gsN3sY75Hxf64LsgR7e9YsYMWK0WXRBksVjQ1BQ5dJQMhgcuixYtwquvvop33nkH+fn5OHkyuFqZy+WC0+k0+nREREQDRjoEiKFLWAghEJIOA5fLBVdudkp72gwfKor1YVauXInvfOc73b6fQ0VERESp1ZsKu/31/Z2UoSIiIiIyr3To+Yml95lFRERERP2MgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkYHrhs3boV11xzDUaPHg0hBN5++22jT0FEREQZyvDApaWlBVOmTMHzzz9v9KGJiIgow2UZfcAFCxZgwYIFPd7f6/XC6/Vqz91uNwDA4/EY3TQiIiJKEvV7W0qZ1PMYHrgkqqqqCsuWLYvYXlRUlILWEBERUV+cPn0aLpcraccXMomhkRAC69atw3XXXRdzn/Ael0AggG+++QZDhgyBECJZTes1j8eDoqIiNDQ0oKCgINXNSQleA14DgNdAxevAawDwGgDBEZMxY8bgzJkzKCwsTNp5Ut7j4nA44HA4dNuS+YGNUlBQkLE3p4rXgNcA4DVQ8TrwGgC8BgBgsSR3wjKnQxMREZFpMHAhIiIi0zB8qKi5uRlHjhzRnh89ehR79+7F4MGDMWbMGKNP1+8cDgeWLl0aMbyVSXgNeA0AXgMVrwOvAcBrAPTfNTA8OXfz5s2YO3duxPaFCxdi1apVRp6KiIiIMkxSZxURERERGYk5LkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTyPjA5fnnn8c555yD7OxsVFRU4KOPPoq574svvojZs2dj0KBBGDRoEObPnx+x/3e+8x0IIXSPq666Ktkfo08SuQarVq2K+HzZ2dm6faSUePzxxzFq1Cg4nU7Mnz8fhw8fTvbH6LNErsNll10WcR2EELj66qu1fcx0L2zduhXXXHMNRo8eDSEE3n777W7fs3nzZkydOhUOhwPnn39+1FmDiVzTdJDodXjrrbdw+eWXY9iwYSgoKMDMmTOxYcMG3T4/+tGPIu6DCRMmJPFT9E2i12Dz5s1R/y2cPHlSt5+Z7oVEr0G0f+tCCEyaNEnbx2z3QVVVFaZPn478/HwMHz4c1113HQ4dOtTt+9auXYsJEyYgOzsbkydPxrvvvqt73Yjvh4wOXP7whz/gwQcfxNKlS7Fnzx5MmTIFV155JU6dOhV1/82bN+Pmm2/Gpk2bsHPnThQVFeGKK67AP/7xD91+V111FU6cOKE9Xnvttf74OL2S6DUAgiWtQz/fsWPHdK8/++yzeO6557BixQrU1tYiNzcXV155Jdrb25P9cXot0evw1ltv6a7BwYMHYbVacf311+v2M8u90NLSgilTpuD555/v0f5Hjx7F1Vdfjblz52Lv3r144IEHcOedd+q+tHtzb6Vaotdh69atuPzyy/Huu+9i9+7dmDt3Lq655hrU19fr9ps0aZLuPti+fXsymm+IRK+B6tChQ7rPOHz4cO01s90LiV6DX/7yl7rP3tDQgMGDB0f8PTDTfbBlyxYsWrQINTU1eP/99+H3+3HFFVegpaUl5nuqq6tx880347vf/S7q6+tx3XXX4brrrsPBgwe1fQz5fpAZ7OKLL5aLFi3SniuKIkePHi2rqqp69P6Ojg6Zn58vV69erW1buHChvPbaa41uatIkeg1WrlwpXS5XzOMFAgE5cuRI+dOf/lTb1tjYKB0Oh3zttdcMa7fR+nov/PznP5f5+fmyublZ22a2e0EFQK5bty7uPj/4wQ/kpEmTdNtuvPFGeeWVV2rP+3pNU60n1yGaiRMnymXLlmnPly5dKqdMmWJcw/pRT67Bpk2bJAB55syZmPuY+V7ozX2wbt06KYSQf//737VtZr4PpJTy1KlTEoDcsmVLzH1uuOEGefXVV+u2VVRUyHvuuUdKadz3Q8b2uPh8PuzevRvz58/XtlksFsyfPx87d+7s0TFaW1vh9/sxePBg3fbNmzdj+PDhGD9+PL73ve/h9OnThrbdKL29Bs3NzSguLkZRURGuvfZafPzxx9prR48excmTJ3XHdLlcqKio6PF17W9G3AsvvfQSbrrpJuTm5uq2m+VeSNTOnTt11wsArrzySu16GXFNzSgQCKCpqSnib8Lhw4cxevRonHvuubjllltw/PjxFLUweUpLSzFq1Chcfvnl2LFjh7Y9E++Fl156CfPnz0dxcbFuu5nvA7fbDQAR93ao7v4uGPX9kLGBy9dffw1FUTBixAjd9hEjRkSMzcbywx/+EKNHj9b9Eq666ir8z//8Dz744AM888wz2LJlCxYsWABFUQxtvxF6cw3Gjx+Pl19+Ge+88w5+//vfIxAIoLKyEl988QUAaO/ry3Xtb329Fz766CMcPHgQd955p267me6FRJ08eTLq9fJ4PGhrazPk35cZLV++HM3Nzbjhhhu0bRUVFVi1ahXWr1+PF154AUePHsXs2bPR1NSUwpYaZ9SoUVixYgXefPNNvPnmmygqKsJll12GPXv2ADDmb62Z/POf/8R7770X8ffAzPdBIBDAAw88gEsuuQQXXXRRzP1i/V1Qf89GfT8YvlZRpnj66aexZs0abN68WZecetNNN2k/T548GSUlJTjvvPOwefNmzJs3LxVNNdTMmTMxc+ZM7XllZSUuvPBC/OY3v8ETTzyRwpalzksvvYTJkyfj4osv1m0f6PcC6b366qtYtmwZ3nnnHV1+x4IFC7SfS0pKUFFRgeLiYrz++uv47ne/m4qmGmr8+PEYP3689ryyshKff/45fv7zn+N3v/tdCluWGqtXr0ZhYSGuu+463XYz3weLFi3CwYMH0yYnJ2N7XIYOHQqr1Yovv/xSt/3LL7/EyJEj4753+fLlePrpp/GXv/wFJSUlcfc999xzMXToUN3Ck+miL9dAZbPZUFZWpn0+9X19OWZ/68t1aGlpwZo1a3r0hyed74VEjRw5Mur1KigogNPpNOTeMpM1a9bgzjvvxOuvvx7RVR6usLAQF1xwwYC4D2K5+OKLtc+XSfeClBIvv/wybrvtNtjt9rj7muU+uO+++/CnP/0JmzZtwtlnnx1331h/F9Tfs1HfDxkbuNjtdkybNg0ffPCBti0QCOCDDz7Q9SiEe/bZZ/HEE09g/fr1KC8v7/Y8X3zxBU6fPo1Ro0YZ0m4j9fYahFIUBQcOHNA+39ixYzFy5EjdMT0eD2pra3t8zP7Wl+uwdu1aeL1e3Hrrrd2eJ53vhUTNnDlTd70A4P3339eulxH3llm89tpruP322/Haa6/ppsPH0tzcjM8//3xA3Aex7N27V/t8mXQvbNmyBUeOHOnR/8ik+30gpcR9992HdevW4cMPP8TYsWO7fU93fxcM+35IKK14gFmzZo10OBxy1apV8pNPPpF33323LCwslCdPnpRSSnnbbbfJRx55RNv/6aeflna7Xb7xxhvyxIkT2qOpqUlKKWVTU5N86KGH5M6dO+XRo0flxo0b5dSpU+W4ceNke3t7Sj5jdxK9BsuWLZMbNmyQn3/+udy9e7e86aabZHZ2tvz444+1fZ5++mlZWFgo33nnHbl//3557bXXyrFjx8q2trZ+/3w9leh1UM2aNUveeOONEdvNdi80NTXJ+vp6WV9fLwHIn/3sZ7K+vl4eO3ZMSinlI488Im+77TZt/7/97W8yJydHPvzww/LTTz+Vzz//vLRarXL9+vXaPt1d03SU6HV45ZVXZFZWlnz++ed1fxMaGxu1fb7//e/LzZs3y6NHj8odO3bI+fPny6FDh8pTp071++friUSvwc9//nP59ttvy8OHD8sDBw7I+++/X1osFrlx40ZtH7PdC4leA9Wtt94qKyoqoh7TbPfB9773PelyueTmzZt193Zra6u2T/jfxR07dsisrCy5fPly+emnn8qlS5dKm80mDxw4oO1jxPdDRgcuUkr5q1/9So4ZM0ba7XZ58cUXy5qaGu21OXPmyIULF2rPi4uLJYCIx9KlS6WUUra2tsorrrhCDhs2TNpsNllcXCzvuuuutP3HqUrkGjzwwAPaviNGjJD/8i//Ivfs2aM7XiAQkI899pgcMWKEdDgcct68efLQoUP99XF6LZHrIKWUn332mQQg//KXv0Qcy2z3gjqlNfyhfuaFCxfKOXPmRLyntLRU2u12ee6558qVK1dGHDfeNU1HiV6HOXPmxN1fyuA08VGjRkm73S7POusseeONN8ojR4707wdLQKLX4JlnnpHnnXeezM7OloMHD5aXXXaZ/PDDDyOOa6Z7oTf/HhobG6XT6ZS//e1vox7TbPdBtM8PQPfvPNrfxddff11ecMEF0m63y0mTJsk///nPuteN+H4QnQ0kIiIiSnsZm+NCRERE5sPAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZxv8PlCOWE1nGswQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "f26a6319", + "metadata": {}, + "source": [ + "That little \"wiggle\" happens somewhere between 0.5 and 1 times the \"Nyquist\" frequency when data are mostly evenly sampled as in our case. The solution is simply to use a smaller sampling time while maintaining the same maximum frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e0fece49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNJklEQVR4nO3deXxU5aEH/N9zJjOTyTIT9qWGiIrsIYFgSASRF1y41qv3vnW7tkWtCy1WvVar9FYxdQkut622vqJeC9xWRalF78cqVFDCHgiETRTBIkQFUSAzWWcmc573j8mczMnMZD2TzMn8vp/PfMw5c+acZw5j5pdnFVJKCSIiIiITUHq7AEREREQdxeBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESm0engsmHDBlx55ZUYPnw4hBB4++23dc9LKfHwww9j2LBhcDgcmDNnDg4dOmRUeYmIiCiJdTq41NXVYdKkSXj++eejPv/UU0/hueeew5IlS1BeXo709HRcdtllaGxs7HZhiYiIKLmJ7iyyKITAqlWrcPXVVwMI1rYMHz4cv/jFL3DfffcBANxuN4YMGYJly5bh+uuvN6TQRERElJxSjDzZkSNHcOLECcyZM0fb53K5UFhYiK1bt0YNLl6vF16vV9tWVRWnT5/GgAEDIIQwsnhEREQUJ1JK1NTUYPjw4VCU+HWhNTS4nDhxAgAwZMgQ3f4hQ4Zoz7VWWlqKkpISI4vRZcJqx4h73wIAHPvt/wvp9xp6PBERUV9XVVWFs846K27nNzS4dMXChQtx7733attutxsjRoxAVVUVnE5nj5UjEAigbP2HuKc8uH300Cdw9RvQ5mtqPWdQ/Mf9AIAv/3kQGc5+8S4mERFRQvJ4PMjOzkZmZmZcr2NocBk6dCgA4JtvvsGwYcO0/d988w3y8vKivsZut8Nut0fsdzqdPR5c0tPTAKgAgMzMzHavL2RA+zkz04nMHiwvERFRIop3Nw9DG6FGjhyJoUOHYt26ddo+j8eD8vJyFBUVGXkpIiIiSkKdrnGpra3F4cOHte0jR45g9+7d6N+/P0aMGIF77rkHjz32GEaNGoWRI0fioYcewvDhw7WRR0RERERd1engUlFRgVmzZmnbof4p8+bNw7Jly/DLX/4SdXV1uP3221FdXY3p06dj9erVSE1NNa7URERElJQ6HVwuvvhitDX1ixACv/nNb/Cb3/ymWwUjIiIiao1rFREREZFpMLgQERGRaTC4EBERkWkwuITr+rJNRERE1AMYXEKkRO7eRb1dCiIiImoDg0uIvx6ZtUdbtq1pvVcWIiIiiorBJRauTE1ERJRwGFxisFp7ff1JIiIiaoXBJYZ4LxJFREREncfgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgYhCuckRERBR/DC6a7kWP65fugeQijURERHHF4AIAUkJZdkWnX+awKhgnvgAAHDhRhwZ/wOCCERERUTgGFwDw10N8s6/TLxNCYKWtJA4FIiIiomgYXLpJtzAAm4qIiIjiisGlO6xpqMnIadn2N/ReWYiIiJIAg0t3CIG9uWwqIiIi6ikMLt3FVaSJiIh6DIMLERERmQaDCxEREZkGg0sYjgkiIiJKbAwuzaQErvEt6u1iEBERURsYXJo1wI4D8mwAwLhhmXBYLb1bICIiIorA4BLFitsKIThaiIiIKOEwuETBzEJERJSY4hJcampqcM899yAnJwcOhwPFxcXYsWNHPC5FRERESSQuweXWW2/FBx98gD//+c/Yt28fLr30UsyZMwdfffVVPC5HREREScLw4NLQ0IC33noLTz31FC666CKcd955eOSRR3DeeefhhRdeMPpyhpBcHJGIiMgUUow+YVNTEwKBAFJTU3X7HQ4HNm3aFHG81+uF1+vVtj0ej9FFapeqqrptRWHXHyIiokRk+Dd0ZmYmioqK8Oijj+Lrr79GIBDAX/7yF2zduhXHjx+POL60tBQul0t7ZGdnG12kTuOIIiIiosQUl6qFP//5z5BS4nvf+x7sdjuee+453HDDDVFrMhYuXAi32609qqqq4lEkIiIi6gMMbyoCgHPPPRdlZWWoq6uDx+PBsGHDcN111+Gcc86JONZut8Nut8ejGERERNTHxLUzR3p6OoYNG4YzZ85gzZo1uOqqq+J5OSIiIurj4lLjsmbNGkgpMXr0aBw+fBj3338/xowZg5tvvjkelyMiIqIkEZcaF7fbjQULFmDMmDH48Y9/jOnTp2PNmjWwWq3xuBwRERElibjUuFx77bW49tpr43HqhMb5YIiIiOKLE5Z0g6IoSE9L17ZbzwdDRERExmJw6QYhBCZOnNjbxSAiIkoaDC5ERERkGgwuREREZBoMLkRERGQaDC5ERERkGgwuREREZBoMLkRERGQaDC4ApFRRDy70SERElOjiMnOumUhVxXVPvoGd3iW9XRQiIiJqR9LXuDTU12Kn9yxte8qILDisll4sEREREcWS9DUu4f54kcDllxZCCNHbRSEiIqIokr7GJZw9RTC0EBERJbCkDy5Grui8b98+rhBNREQUR0kfXMJXdE5PS4eidO6WhB9fV1/HFaKJiIjiKOmDS7iJEyd2uqmITUtEREQ9h8GFiIiITIPBhYiIiEyDwYWIiIhMg8GFiIiITIPBhYiIiEyDwYWIiIhMg8HFQN6AsRPaERERkR6Di4HuLFNx3cvlDC9ERERxwuDSTQ6rggJxUNveebQaDf5AL5aIiIio70rY4CKlRCAQSPjaCyEEVtpKUGGf39tFISIi6vNSersAsezZsweqqsLlciEvLy+hp9YXAkiT3pYdCR62iIiIzCpha1xqamoAAG63O7EXLrSmQWYX6vf5G3qnLERERH1cwgYX0xAC6rz3sHXaS71dEiIioj6PwcUIQkC12Hu7FERERH2e4cElEAjgoYcewsiRI+FwOHDuuefi0UcfTfhOtkRERJT4DO+c++STT+KFF17A8uXLMX78eFRUVODmm2+Gy+XCXXfdZfTliIiIKIkYHly2bNmCq666CldccQUA4Oyzz8brr7+O7du3G30pIiIiSjKGNxUVFxdj3bp1+OyzzwAEhzVv2rQJc+fOjXq81+uFx+PRPYiIiIiiMbzG5cEHH4TH48GYMWNgsVgQCATw+OOP48Ybb4x6fGlpKUpKSowuBhEREfVBhte4vPnmm3j11Vfx2muvYdeuXVi+fDmeeeYZLF++POrxCxcuhNvt1h5VVVVGF4mIiIj6CMNrXO6//348+OCDuP766wEAEydOxNGjR1FaWop58+ZFHG+322G3cygxERERtc/wGpf6+nooiv60FoslsWe/JSIiIlMwvMblyiuvxOOPP44RI0Zg/PjxqKysxG9/+1vccsstRl+KiIiIkozhweUPf/gDHnroIfzsZz/DyZMnMXz4cNxxxx14+OGHjb4UERERJRnDg0tmZiZ+//vf4/e//73RpyYiIqIkx7WKiIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhc4kBK2dtFICIi6pMYXAygKArS09K1bVVVe7E0REREfReDiwGEEJg4cWJvF4OIiKjPY3AhIiIi0zB9cJFSsk8JERFRkjBNcAkEAhEBRUqJsrIylJWVMbwQERElgZTeLkBHVFZWora2Fi6XC3l5eRBCAAD8fr92jN/vh81m660iEhERUQ8wRY1LbW0tAMDtdnPEDhERURIzRXAhIiIiAhhciIiIyESSOrhIKREIBHq7GERERNRBiRtcpIQSaATiNFpISonKykrsqNhh+Ln37dvHUU5ERERxkLCjinL3PoJs3yG4nWNRmV8KNI8k6i4ppdbB1+PxGHJOIDjtf0hdfR1UVYXFYjHs/ERERJTAwcVV8xlgF3B5PoGieqFaUrt9zlAti8fjQUZGhgGlbCEMClZEREQUW+I2FcWBqqpaLUtoiDURERGZh+HB5eyzz4YQIuKxYMECQ84fbQZdIiIiSg6GNxXt2LFDN1Jn//79uOSSS3DNNdcYcv4tW7ZoM+gSERFRcjE8uAwaNEi3vXjxYpx77rmYOXOmYdfoygy6HPpMRERkfnHtnOvz+fCXv/wF9957b8zOq16vF16vV9s2cqRPSHinXCIiIjKvuHbOffvtt1FdXY2bbrop5jGlpaVwuVzaIzs7u0vXqqioiNn3JbxTbk9hPxwiIiLjxTW4vPLKK5g7dy6GDx8e85iFCxfC7XZrj6qqqg6fP7zpx+fzYefOnYkRGKTEpk2bEqMsREREfUjcgsvRo0exdu1a3HrrrW0eZ7fb4XQ6dY+uqq2thaqqkFJ2KTSETyLXHbl7FwFSwu/3G3I+IiIiCopbcFm6dCkGDx6MK664Il6XiEpKibKyMpSVlXU6vHRrEjmrQ/sxs/YoFNXbxsFERETUFXEJLqqqYunSpZg3bx5SUnp2ct7wWo4erfHgzLlERERxF5fgsnbtWhw7dgy33HJLPE5PRERESSou1SGXXnqpaTqmmqSYREREBBOvVWREMJJS4rGKzk1k11GWQCNTERERkcFMG1w2bdrU7XP4AsCxmuDP48QXcFiNuR31sKN48zyk/Pn7DC9EREQGMm1wAYztfLvSVtK9UUVhCrxLcI1vEUTVdsBfb8g5iYiIKIGDi5RAvbSjXto71SxUXl7euYs0625kcVgtmJKTpW1XyNFoQOfKTkRERG1L2OAyD49gnHcpxnmX4rEKNS4BQJFhc60MGQ9Y07p8LiEE3ritEM/N0p9j7969DC9EREQGScjgIqx27MZobftQdbA/SmuGBoIfvd3tuViEELBbWrbrYUd1F1ayJiIiougSMrh0VGVlpXEnM6B/i6IoSM/I0LYLvEviVltERESUjEwdXBKNEALTCvIxKqtl36FqoMEfpbqIiIiIOq1vBBepBh+dfp3xNSFCCPy6QEGFfb7h5yYiIkp25g8uUsXFZf+Gi8v+rXPhRcrgKs5xIIRAGrjIIhERkdFMHVyklAg0epqHTANWv6fDr1VULzJrj7bsCFvd2Wh79nBkERERkRF6dulmA0kp8Xh5Iw5XWwEsRYE4iHu6kw3iuLpzXW0tVFWFxWJp/2AiIiKKybQ1Lr4AcLi6pWmoQo6Gl6OOiYiI+jTTBhciIiJKPuYKLlJCMWjVZSkl6mE3oFBERETUU8zTx0VK5FcuhMvzKdzOsdg28YlOv15RvVAVOySAx3eoOORdEpeiEhERUXyYJrgo0guX51MAgMvziX6dofZIifzKB5tDzxhsH78Ih9wtT08+KxMOa/w6znoDBi9PQERElKRM01QU/PLv4ov99WGh51NcuOUm7akK+3y8Pm8ChEGjihRFgcvp1O2766N6XPdyOcMLERFRN5kmuNxZpuIa3yLDJ7tNg9ew0AIEJ5/Lzc2FA14UiIPa/p1Hqzn1PxERUTeZJrgAwSHPDSboUCuEgBDASlsJ/jjTVLeYiIgoofFbNY6EAOwKm4eIiIiM0qeCi6rY2nxeSgSXB+ih8gCI23pIREREycg0o4o6pI2+KqoU+L7vcRyQZ2Oc+CK+5bCmAUMnAif26ddDIiIiom5J0BqXrneWlVLC2yR1I3iklFpoAaD9N26EAG5eHd9rEBERJaGErHER1vY74EYbXSQlmhdeVDEqS8G7xcGDGvxq/MNKa3FctJGIiChZJWSNi2JNbfN5KYHHKiJXVPSpLQsvHqpW0eDnqotERER9SUIGl+/Nf6XN5xtgx7Ga4M8jxfEeKBERERElgoQMLp3xpq2kt4tAREREPcT0wYU9SYiIiJKH6YNLOCXQiYUXiYiIyHTiEly++uor/PCHP8SAAQPgcDgwceJEVFRUxONSOhfs+Hncr0FERES9x/Dh0GfOnMGFF16IWbNm4f3338egQYNw6NAh9OvXz+hLGcLtHI0B1rTeLgYRERF1gOHB5cknn0R2djaWLl2q7Rs5cqTRlzHM3twSzOqhOVek0UtbExERJRnDm4r+7//+DwUFBbjmmmswePBg5Ofn4+WXX455vNfrhcfj0T3aUg876sNWiN496XHt5wbZauI62YF5XHpwori9e/cyvBAREXWD4cHln//8J1544QWMGjUKa9aswU9/+lPcddddWL58edTjS0tL4XK5tEd2dnab5y/wLkGBd4m2HbC0TFY3w/es/uD6UwkVFDxuD1SVk+IRERF1leHBRVVVTJ48GU888QTy8/Nx++2347bbbsOSJUuiHr9w4UK43W7tUVVVZVhZdu7ahbKyMl14CV9gcVSWApvFsMsRERFRnBnex2XYsGEYN26cbt/YsWPx1ltvRT3ebrfDbm9/baKO2mi7O6Lmxe/3az+vtJVAANh84XKkWFMhuKYQERGRaRhe43LhhRfi4MGDun2fffYZcnJyjL5UVA7RMpeLqtginhcA0oQXdotgaCEiIjIZw4PLf/7nf2Lbtm144okncPjwYbz22mt46aWXsGDBAqMv1b7mYKKqidPPhYiIiLrO8OAydepUrFq1Cq+//jomTJiARx99FL///e9x4403dvgcjV9+DEDfHyVcaH+BOIi0VBvyrMe0bQciZ8/dvaeyc2+CiIiIEpLhfVwA4Pvf/z6+//3vd/n137z6AI4/MBCZNoHx3qURz4f6qTjgxRaxHHfPGo0mfyOm7n8DImw0tZSAt0lCsMKFiIioT4hLcDFCmvBCIDXqc6F+Ktq2osBqT8PuyYsRaHQDZcH9j+1Qcay2HiMye6DAREREFHcJG1y6RAioFjuA4Fwpx2qDu4/V9F6R+gIpJRr8AUgpYbcIWCwWdmwmIqJeYcrgUn/bVqT9z+TeLkbnJdBkeB0lpcQPlmzFzqNnAATnvnny0iHIz89neCEioh4Xl9Wh42lUloJUa/dmjXM7x0JVjJs7JiprGmR2oW6XIiM7Die6Bn9ACy0AcKhaxben3ZwBmIiIeoWpalz+OFNBemr3Jo1ruGM79h08Ev81ioSAOu89bP3gXa3PDREREXWPqWpc7BbEDC3FxcUoLi5u9xypmf0iQovVajWkfBG0PjdERERkBFPVuBhBCIGZM2dG7CMiIqLEZ8rgYrV2r9gMKsYIBAJQFIX3k4iIeoypmooARNSWtGZTgjPoJiJvAKj3NelWqzaryspKbNy4Ebt37+4T74eIiMzBVDUuUwumtvvXvRACK20laIAd9bCjwLukh0rXvjvLVKBsLQpy+uHNO4rQ2BQAADisCTwvSoxQUlsbnCTH7Q6OMLJYujfSi4iIqCNMFVzaE+pkKwSQBi+QoBUBFUfP4Io/bMQnx4Mz4xXk9MPK+UWJF16khPzfqwAsiNgfnL+YiIioZyVsU9HGC19FxfSlWrNPgTgIh7Xt4gohMGP69J4oXocEAoGYz4VCCxAMMg3+2Mf2Gn89xJcVEbvNOB8NERH1DQkbXCAUQLFgpa0EB+w3BxdWbK6RaGv4srClQw6Z2FOlbFdKih35KV8AiL3adaKSUqIeHM5NRESJI3GDSzMhmhdcDGuZEGkDtZ/9VmfEC9Sb/t5DpWufUBT858yRWvgyCyklfvA/lVH7CE2bnIvioqJeKBURESW7hA8uUSkK8PAZyIdPB2tm0LoWJsH6XyhK82rX5tHgD2BnlUfbzslo6TBk+UM+rH+50pRrLxERkbkldHBRFTuahk8FEFxfCNa0licVBUKxYObMmZg5c2bidWztQyrs8/HrglYflWPl8Psb4W2S2LVrF4dEExFRj0jsUUVCwPsfb2NL+Saoih3FUcKJGQKLqthR0288LKcP93ZROiw8iKTBCygCoWFaEsAPfIuw80MVQD1GZTXi/fwAUlIS++NERETml9A1LgCa1/tJ7dyiiNa0YA1NohAC9vkfwfezyBE6iar16s/OzJa+RKelEzvlaG37ULWamKOiiIioz0n84NIVQqAyvxSbL1zeq8UI73djtdlgSc3sxdJ0nJQSgYA+uEyYMEH7eYbv2WgvinexiIiIErypqDuEgKqkAqjvxSK0LOhohiYtIBhaKisr8e1pt25/ms2Cgpx+qDh6Rts3TnyBA/Ls4Ia/AUBqzxWUiIiSUp8MLoqiwOVy4eSp6t4uimkCS4iqqvB4PBH7hRBYOb8o2CQkJeBvQFNjHnKf2d3zhSQioqTVJ4OLEAJ5eXmobfQBa9f2dnFMI1TbEosQAmm25o+M3YqaNmYGJiIiioe+2ccFwS/ZRFv4T7Gn93YRYpJSwu/3a4snEhERJaI+WeOSqISSmDkxVNMSrYmIiIgokSTmNyn1KK1fi5RQAo1wplqgqI29XSwiIqIIyVfjYnX0dgkSklRVjKl8GC7PZ3DAiwbYASzt8OsDgQCklKbrjExEROaSfMElQb9Yg3OnBKAoSo9/+Usp8UR5Aw65FwIIDnNeblvcqXNsKt+B4UOGID8/n+GFiIjiJvmCS4Las2cPfPW1cLlcyMvL69Ev/wZ/AIfCpm05IM/G1CirQremhPXZubNMxaisb/B+Lqf+JyKi+En4Pi76VZ87x2ENTpoWUpDTDw5rYo00Cqnx1AAA3G53xHT7PWmkOK7bLhAH4YA36rFpNgsKxEFtm1P/ExFRvCXsn8bTp0+H0+mE3+/v8jl0k6YhGGTYjNG2d22/gvrzSlj+kA8AcMAbs3VNCIGVthKcghMFHaihISIi6i7Da1weeeQRCCF0jzFjxnT6PKHXdldo0rQ0WwpDSwcIBGtS0oQXaSJ2aNGOF82rRxMREfWAuNS4jB8/HmvDZqxlnwdzUezpqO0/ARmn9wMAZPY0CGtaL5eKiIgoTsElJSUFQ4cOjcepqQcIoSD9zo0IeGuDo5xs6Qk7GouIiJJLXDrnHjp0CMOHD8c555yDG2+8EceOHYt5rNfrhcfj0T2o9wlFgcXhhLBndC60SBm/QhERUdIzPLgUFhZi2bJlWL16NV544QUcOXIEM2bMQE1NTdTjS0tL4XK5tEd2drbRRaIepLz67wwvREQUN4YHl7lz5+Kaa65Bbm4uLrvsMrz33nuorq7Gm2++GfX4hQsXwu12a4+qqiqji5QwHFYLpmQ7te0Rme2/JjQxnUzEMGBNA7Kn6XaJLysAf30vFYiIiPq6uPeazcrKwvnnn4/Dhw9Hfd5ut8Nut8e7GAlBCIE3bs6F78lRAIBNBctx+0ex52wJX/ywNyama5cQwC2rEfBUA6Vbers0RESUBOI+AV1tbS0+//xzDBs2LN6XMgUhRIeGGkspUdvow7en3ZBS9vrEdDEJAdj0I44SsnaIiIj6BMNrXO677z5ceeWVyMnJwddff41FixbBYrHghhtuMPpSpqcEvAAiZwaWUuIHS7Zi59EzAIBRWQp+VZjaw6XruPCp/4HgatOJOT8xERGZneHB5csvv8QNN9yAU6dOYdCgQZg+fTq2bduGQYMGGX0p0yvadjuircDc4A9ooQUITqXvS+CZ9BOq+YqIiPo0w4PLihUrDD1f+FpF3Vm3KGFY0+B2joXL84l+v5QIzltLREREsST8IotCCMycORMzZ87sG3/ZC4HK/FJsLl6u2z1qz2Pw+tU+0T9kz549feJ9EBFR4jHFXPx9IrCEEwJ+qwtu52jg2+Cu/+e7XwDrGjAqS8HDjj09VpTgcGtjO/3W1tUF+7lY2NOFiIiMZYrg0icJgb25JcC6Bt3uQ9UqzrjreqQIoeHW355298j1iIiIuivhm4r6tFg1ST3UzKKqKpdYICIiU2FwSUAT9j/W20UgIiJKSAwuCchZc6i3i9Bl9bDDG5DsnEtERHHB4EKGKvAuwW0fqrju5XKGFyIiMhyDC3W7T43DakHBCKdu386j1WjwJ/CseUREZEoMLr3IZgGmjMgCAIwTX/ROIaRE7t6Hu3UKIQRW/iQfB+w3o8I+36CCERERReJw6F4khMAbtxfCF5BoaqxFbvMKyw0yymrZcWp2UVQvXJ7PWi5zVgFgTWvjFdGFFo8EW4eIiCiOWOPSy4QQSLNbIcJWWJ7hezbiOEV6e6Q86o1/iz1Mu7PYx4WIiAzG4NLDFEWBy+UCALhcLm1lZYfVglFZ+n+OcSnH414eKSXqEVbD09XQYk2DzC7U7/M3RD+WiIioi9hU1MOEEMjLy4OqqlAURVvOQAiBXxWmwtckoUgvphVOgyIUjH9iU9zKIqXEYztUHPIu6f7JhIA67z1s/eBdoKz7pyMiIoqGNS69QAgBi8USsQaTEAJ2qwKrzYG0DCeEEt81mhr8ARwKm+1/VFaw5qfLhIBqidI/h4iIyCAMLn1AcKHEQOfnTQk7vsI+H78uUPregpZERNSnMLiYXGihxI0bN2L37t0dDy9SQvnLv2mbafAytBARUcJjcDG58IUS3W43VFXt0Oukrw7iq53atts5Gpn9BmudhY3AmXOJiMhoDC5JSEqJPXv26PY5bl+DvPx8Q2td9u/fz/BCRESGYnBJELGGSYf4fV7IVrUpoWaizlJVFZ6aGt0+S0pkZ+HOUhQFzsyWqf+/rfYgEOC0/0REZBwGlwQRGiY9Y8YM5OXlRYSIn22y4vrHl0ENBLSOuKqqora2ts3zdrnjbhcIITBhwgRt+84yLrZIRETG4jwuCSQ0TDrEkZaBgtSvUdE4HABQ0Tgc28u3otHXBKfTGbM/SyAQ0GpsKisr4fF44HK5ogYio6XZLCgQB1EhRwNoWWwxzcaPGhERdR9rXBKYUBSs+K+b8P9N92v7amqDTTwej0erbXE4HNrz4SOM2uq4GzFjrlFlFgIrbSVcbJGIiOKCwSXBCUWB1RY7YEhVxehR58Lva4AMazpyu90x+5eEZswtMGLG3GhlFsHh1SE91VRFRER9H+vvTUyqKp796DPs/kdwTaA860HcPWs0RBtDmqWU2FZRqZsxd+wAC9Lt1riVc8vmLRg8IKtHmqqIiKhvY42LyYydkAdvk4S3SaLO68Vuf7b23G7/CDQ1tb2KtKqqqAvr0Fthn4+///xCQ+dviaYzc8wQERHFwhoXk5n+3C5Dz5cGb9xDCxERkVH4jWUCNgUoEAdjPj9OfNFzhSEiIupFrHExAWlJxf8MfBM2zz+jPw9gvHdpzxaKiIioFzC4JDhFUeDKysLuyaXol2FHbm4u9lRsRd4HP9COqZdho46khBJoBABU7toV3Fa92nMAoKiNPVb+luuyUy4REXUfg0uCC82oq6oqFEWBEAKTimajpmICMs/sBwDIweOBquDxk/Y8goy6LwAAPudICAG4PJ8GjztyAQDgwqo9AHquhiZ37yIcnPwbbWI8jiwiIqKuinsfl8WLF0MIgXvuuSfel+qzQjPqhr7whaIg4+cbEXigCnLhV1B/+JZ27Lwz8zDOuxTjvEtx63fXIdN9EPXSHqyVqdoO8eV2/cnPmgpY04wrrDUNyJ6m3+X5An5/IzZv3ozdu3dzThciIuqyuNa47NixAy+++CJyc3PjeZmkJBQFFkfzgoaNZ7T9n8iztZ8r5Ghc4Xtc21cgDmKlrUR/oh+/HZwxzrCCCeCW1UBdDfDYxuB1vUuAD1WMymrErwqroaqqbmkDIiKijopbjUttbS1uvPFGvPzyy+jXr1+8LkPtaB1k6mHXT/Ufj2YbIeBIz0TBCKdu96FqFT4uFk1ERN0Qt+CyYMECXHHFFZgzZ06bx3m9Xng8Ht2D4ucHvkVxm+o/nBACK3+SjwP2myPWLeISAERE1FVxaSpasWIFdu3ahR07drR7bGlpKUpKSto9jowRXgMzJScLDmv8mmyEEEgT3uB47RApsWXLlh5brZqIiPoWw2tcqqqqcPfdd+PVV19Fampqu8cvXLgQbrdbe1RVVRldJIrijzMVvHFbYY8Hh9w9i+D1qzh5qjrmIpBERESxGF7jsnPnTpw8eRKTJ0/W9gUCAWzYsAF//OMf4fV6dR0z7XY77PbYqx9T+xxWBQXiICrkaADBmXQPhNWsRGO3IP6hxZoGmT0NOFap7brl1PX4ZF1wUcgph8rx1/nFrHUhIqIOMzy4zJ49G/v27dPtu/nmmzFmzBg88MADHE0SB0IIrLSVoKG5023CzKQrBMQtqyFrPcDjmwDom6p2Hq1Ggz+ANBunEyIioo4x/BsjMzMTEyZM0O1LT0/HgAEDIvaTcYQILpgItJpJt1l4LUyBOAibMrbHCibs6T1zLSIi6vP4p26SWGkr0Sbdd8CLjeKNHru2w2pBwQgnKo4FR4yNyASO1QSfk1JyRl0iIuqwHgku69ev74nLJC3FnoHa/hOQcTq4BEBqdh4KvvwaFY3DAQAF9iqkwRuXKVs6IjQ0uuGJcwAAmwqW4/aPVADAnj174Kuv5SgjIiLqENa49AFCUZB+50YEvLVQFAWKLR0rpURDfS0AwKaoEE890LtlDA2NBmBRvQCsAIAaTw3sKQJut5sz6hIRUbvivlYR9YzQEgDCnhHsV6IoSMtwIi3DCSES65+5aNvtLRuciI6IiDohsb7RqO+KsvgiACjS2wuFISIis2JTEfWM5sUXpa8Oe7dtAd7393aJiIjIhFjjQj1HCAh7BsbnTe3tkhARkUkxuBAREZFpMLhQwuCq0URE1B4GF0oYW7Zswe7duxleiIgoJgYX6lXeAOBtklpYCc3nQkREFA1HFVGvurNMBVCPsUMzcPcEFXbOP0dERG1gjQv1uHR7CgrEQd2+T07UYv7aejxR3thmU1FobSP2hyEiSk6scUkCipJY+VSxZ+DNc9egsWoxJIBrfIu0lasPVato8AeQmRL50ZRSorKyEh5PcLFGrm9ERJR8GFySQMJ9sQsB5SerkeavB3z1+PvT5+EUnCjwLmnzZaqqaqEFANc3IiJKQgwu1DuEAGzp2o9pnPqfiIg6ILHaECg+rGmQ2YXapts5Fqpi78UCtUNKrS8L+7EQEVE41rgkAyGgznsPm8vWAkAwtCRa81EY5dV/R+XkR+GpqYlLPxYppTbkWlGUxGtKIyKimBhckoUQUC2pvV2KSKFVo49VarvElxWoPedbwJKq68cipYS3qaUGxtaFri3s4EtEZG4MLtS7mleNDniqgdItMQ9ramrCtS9uw66qem3fqCwFM2Z0rimJHXyJiMyNwYV6nxCALU23K7x2ZdO2HWhoaNCFFiA4dLq20Y9Mh9CGfKuqyuYfIqI+jMGFEo4E8PsDqaj8OhRU6jEis6Uf+dMzUnH/xkYAwI4t62G3CGRkDQKEgMfjidn8E+rwS0RE5sXgkiQURYHL5YLb7QYQ7NuRSBPThZfltHSGhZagYzUt6xdN+eQxAPcBAC7cPA9pwgu3cywq80sBIaI2/7Tu20JERObE4JIkhBDIy8tL2NE04WWZ4XtW+3mj7W7dNgA4aw7rtqUErO5/wu9vRIo1Ner7at23JSMjA7W1tUYVn4iIekji/MlNcSeEgMVigcViSajQAgAOqwUFOf10+wrEQXxPfKdb1+h8F+BAy2R1Wwtfwg98izDOuxS3fahGrHUkpUS9rwn1viZtFeri4mLk5+fH/00REZHhWONCCUEIgZXzi9Dgb+6DIiUcf34O4kuJlbYSNCA4Yd6eSX+AKG95XbVqx045Wts+VK3Cp51C4gdLtmLn0TPa8yMyFbxbKCECTZBSJlyAIyKitjG4UMIQQiDNFvaR/MlqwF8P4atH2jPnAQCKtt+OerTM+vuLTWrr0wTbjgA0+AO60AIE+8rk/iY4Ed+oLAW/KkzVamVCHNbEq5EiIqIgNhVR4gqtZ5Q+ULdkgQNeFKR+rTt0nPhC+zl37yItvIQ8OytNNzIJCNbOeAPAtS+VY9zDa7THNUu2cqkBIqIExRoXSnxCADevxp6d2+D2eOByOvHm5EI0BiQCTU2ofeESOD0HMd67FADg8hwE/PWApWVumFQLUFKcioJpxfAGgILHgrUuvgCw61i17nIVR8+gwR/Q1/4QEVFC4G9mMgWhKMgtKNJNMJdmAaTVgsOznsX+774BPgw2G9XDDp+nGimOlloTRW2ERQikwYtYc+Q+fZED929o6IF3Q0REXcXgQqYRGhXVel9efj5qG33Ah8FalALvEuB3+5qbj84G0DLfCzYCkHYAwdoZb1NLHxm7pfP9WsIXbAxJtKHmRER9CYMLmZ4QAhmpNhTk9ENFWGfcA/Lsdl8bmoG3K2JNaseFG4mI4sfwzrkvvPACcnNz4XQ64XQ6UVRUhPfff9/oyxDphIZTf/zIJdj6nwURz2++cDn2XPE+5MKv4Lhvv25uGCA4wqizq023ntQuJDRzLxERGc/wGpezzjoLixcvxqhRoyClxPLly3HVVVehsrIS48ePN/pyRBohBNJTbVBlVsRzU4svhiu9eVZdIbS5YbZOewmqxQ6bAvjUsNoXXz1gzQx2DO6A4uJiAMCWLbFXuG5L6yYnNjcREUVneHC58sordduPP/44XnjhBWzbto3BhXqNxaIPAkIAafBidvk8bV99WN8XPH0e5Ih8iFtWRw0voQUbpZTwBQBvQGr7owWO8GDSOpREa3JicxMRUXRx7eMSCASwcuVK1NXVoaioKOoxXq8XXm/LFO5cBI/izpoGmV0IUVUe8xAJoOFYJWStB8KerpuUTlVVbKvYBY+nBk+UNwYXgFwbmtQO+HWBoptHpnUwaR1KojU5RVsokoiI4hRc9u3bh6KiIjQ2NiIjIwOrVq3CuHHjoh5bWlqKkpKSeBSDklS63YoxA2349DsfAGDMQBvS7daWA4SAOu89bC5bq3udNyC1IdU/8C3CJ/Js4PFNAIApOVl447bgJHjXvlQeMfdLyKFqYOrGeRBf5KHmP/5Pq61xu91aUGkrlBQWFqK8PHagIiJKdnEJLqNHj8bu3bvhdrvx17/+FfPmzUNZWVnU8LJw4ULce++92rbH40F2dnY8ikVJQlEUvHfvbNR5/QCCQUZRWvVDFwKqJVW3S5USQD0ABENLmJ1Hq/Heuo0AgF3H6nXPjRNfYLltMaZ6lwAI1tZc8/nl2PmbddoxoeUFgOCkd/W+JlgsEg6rPrywhoWIqG1xCS42mw3nnRdcW2bKlCnYsWMHnn32Wbz44osRx9rtdtjt9oj9RN2hKAoyHZ37XKVnZCAUXEL+e7qirYd010f6556blYZZ0/KQ8dv/0BaBBIAG6Bd+BILLC3h8wH9X6JuWCnL6YcVtF3SqnEREyaxH1ipSVVXXj4WotymKApfLpW27XC4UXzAFU3KytH0F4iAG2iXyrVURr89P+QIj+lmRYfG3OfDo6Ysc2s93f1QfDC1hQssLSCnhbZKo9wXgbZJcK4mIKAbDa1wWLlyIuXPnYsSIEaipqcFrr72G9evXY82aNUZfiqjLhBDIy8uLGOnz1/nFaKirAZ4+Dw54oRYexEWbbkBDq1pBB7wQ7wF4L/LcDbLl2LOybBiV1YBD1S3Pj8gEVi64GIWL1wMI9uN9vLwRh6tVYO2HAIJNSzNmSG3l6lA5ozZ7ERElEcODy8mTJ/HjH/8Yx48fh8vlQm5uLtasWYNLLrnE6EsRdUusJQTSbBZABGsILYoFaB46jfsOA1YHsPRy4MQ+/cnOmgp8Hvxxhu9ZbfekNf+Of8CrCz4Onxf1Ky8EsAAA0OAPBENLmEPVKk7V+XDzsgocOF6j7R8z0Ib37p3N8EJEScvw4PLKK68YfUqixGBLA2zpwB0bg6tPh3GkOFDw4jbdkgMF4mCwZiYUfMKILyuiXmLdgsmY/fwuAEBh6UcRz3/6nQ91Xn/M/jucyI6I+jquVUTUFn9d5D4hggEmfBeAlfOL0OAPBNt+/A1wWGdCiDu0YwKBALZt/BAXbpmnP19Yf5ah/zMJBeJBVIR17h2RqeC/pmfhjvdPt1lUTmRHRMmAwYWoLc9O6vChwWam5v+lwueNaaZIiYx+gyP2N9S3hCMBaMsRAMDWaS9h+vSL4FMF8H7bywmEJrILzeYLACdPVaO20YeMVBvDCxH1CQwuRK1Z04DsaUDVtpZ92dOC+7tBCIHc3Fzg7/r9Fz+3Q/vZ97MKVO7ZpdXKzC6fB5QDgfDlCKIIX4JA6+gbsnYtCnL6YeX8IoYXIjI9Bhei1oQAblmt78diTevwgottnzp4Dge8ON+l4jN3SyfbAnEQjrQi+K0uuJ1j4fJ8EvUcgYCKQCCg9V8JbyLyBRDR0RdoGXat1QgREZkUf4sRRROlH4vRp1/T+EP9aCN4oabcCldWFirzS6GoXricTuSOPQ94eoJ23IbN22C3AE6XE4VT8iGljLrG13OzgjVErSfOIyIyMwYXop4U1gzVerSR2zkWGda0yPllWo1gagki9ZiyYyveuL1Qe65w2jRtLhh7lNUDpJTBDsTNwhePjKatVa2JiHoDgwtRTwprhpJSYu/evXA315Zk9huMPIsl6vwyDnhRIA7qRhsBwM5j1WjwNWkdcr2B2DPuSgn8YMlW7Awbsj1umLO570vzdcKCTHurWhMR9QYGF6Ke1twMJQDkFhS1X6NhTYMYMQ0rj7WMNqqHHQXNizru3bU9bObdlrlfFLVRd5oGf0AXWgDgwHEPxi9qmdU6vBNvaJRSSFurWhMR9RQGF6JeFK12JcpBwC2rIfz1SEOwJuTjHeXAu8FgcqamLqJDboE4iDmbQ0EnOBopEGhpItr+q9m4ael23ay8QLATb2j4NBFRImJwITKDsM7CAsC4SQXAu5siDquwz0cavNqMvQhrOSrfVq79fPjT/bg/NwDf+GAHXm+gpe/Mls1bMHhAVnDoNhFRguGCJ0QmFN6kpARaOvimwYu0+z+G+mAVNhcvj/n6Gk8NhBCwpwgMyMrExTOKtOe8geDEdU1NTdq+ltWrm7RH+ArWoXlkQg+ubk1E8cIaFyKTu2DHzwEsadlhSwMsqQhYUnXHTZ4yGfgoWEujqI1QAgLTCgthtVrR4Pdpx4VqXiZ/VoGfjw0GkJY+NGu140L9YaSU2FaxCzWelmanQf1dyM/Pj9pnh+spEVF3MLgQmZHVof3YIFvmgpFnTQ0OuVYjJ6GzKC19aS7cPA9pwgtsDG47JFBgfxIV3mztmF3HqtF0XrBSNtakdt/WeDHvT9vxyQl9X5lRWY14PzeAlBT9rxiup0RE3cXgQmRGYV/yM3zPtuz+8dtdmuFXCGClfAANdrtuxFL+5tubjwhufzjwv7F/wq9x1/oGAMAFT6yLer5D1Soa/AFktgourUcqARytRESdwz4uRCbksFpQkNNPt68gpx8czVP6K4oCl9Ope16x6P9331y8HIEHqoCFXwFDJwYnxBNe3aR4Bd4lWogBgKE1++FK8WJUlv5cIzIVvPbvQ1G+cJa2LxBQ2+zrUlhYGPM5IqJYWONCZEJCCKycXxRzFtzQgo4N77a8psEX0J0jYEkNjlSyWIA7NmprM6WqKqa8shs7q/Q1IwXiYPNoJYFfFdoRfrqLZxTDZrOhtrGlr8yGzdswqL8Tubm5SLOlaOsqeZuCYcYbALxNErYuVrS0ngW49T0gor6JwYXIpIQQbS6a2PoL/OL/3qDbdjmdUBQldLA23FoB8NefTdeHAl89HE//B4QA+qXbcKbOC7vFDggBl8sFm80GIUTL+RDq5FsPvHUCBTn98PqtF+C6l7ZhV1XzkgXNSxOMylIwY0bnRiFJKSNmAQaAKTlZWHlHka4cRmJYIup9DC5EfVi0pQJCNSe5ubkxv3AjQ5ElOIEMgImr/w0Ags1MtnTdqKA0WwoKcvqholWgqDh6Bu9/uLEltIQ5VK3iW08jMhzWYJmtFlgsbYeBaLMAA8DOo9Uo31mJaQWTDQ8TbYWlN24r1IIbQwxRfDG4EPVVUZYKAIJhRoyY1rnVr8MWhwyxWCzBZqYwoSas2kYftmzeopvYLtzSq4Zg3LhxKCwNLlFQ9FSZ9tyoLAVPzB6IyZMn614TXttRH9ZO1XoVbI/bE5fOvm2FpXXrN8KeIrQRUgA45JsoThhciPqqVksF6FjTOjf6KGxxSN05oh4arK2xp7SaujfMBZMnwWG1YMxAGz79zqd77lC1itPuWmzcuFFbPFICeKK8EcdqIodlR1sFuys6M7/M1l/OxI4dOyJCWWiE1J49e3SjpzIyMpCfn9+hc4fKwiYpougYXIj6srC+Kz15LkVR4HK5cPJUtbbPlpYBoL75VMFmlffunY06rx9AsBYlVAPjDQASMmZYCRmVpcBmAVIznNq5gZZ1mTpa09GR+WXCR0jt3bVDF5gKp03D7opy7dqth3zX1gaDWKxzh5cjEAjg2pfKsetYte65ccMyseK2Qi1vKoqidXomSiYMLkRkOCEE8vLygqOMmmfbnf/3kxHHKYqCTEewGctiaVliIFrzEhD55R2qhWhsUoG3TmjHbdmyBQA63HTTkfll1CiT+oVYmoeaSylR7wtoI6cKp03DoU/2o66uLuLcfr8fFotFK0soPH172o1dxyLf/4HjNcj9zVrdvvDVvImSBYMLEcWFEAIZqbaIzroFOf3gsEa274TmpmndsXfcMGfzl3Ps5hIRiN4kFavppq3ZegsLC1FeXh6xX3fMtGnBsBK2BIKUMrg0wpoPWw5c+yHGDXNixW3B8gcCKsq3bYPN0hKunE4nRo+fCFVV8e1pN7xhLUTPzUqDzRK7mazi6Bk0+ANtji4j6mv4aSeiuGlvvpn2jm3r+FjyphbCbhEo3xbsSNzU1NSp2Xo70qnXYlF0x9X7AqjxRV8a4cBxT0RNyagsBb8qDK4l9ct/fIPDbx6Peh27BbCnCJQUp8LqyMCkSbkIBFRs2LwtZq1U6746ADsHU9/C4EJEcdXefDNdPTaWUD+ZkLH7y3H3BAkBoGDqVOzdtUPXb6XBH1zROtS805WVrVtfM1RT8tzHFhw4XhNx/KFqFflTp6F827aoYQcI1kzNvvgCrayh8BEIBGJ2SI7WVwfgelDUtzC4EJHpxWpmAoBPTtRgfqj7y9oyjMgM1nbUeZtw/cvbceC4/ks+POjUNPiQkWptDgz6gBHrmpNHZCHT5oMQAv+3oBi+sJfV+wIoeCxY++INSF2zUPnCWdi9I9hEVXxhMTJSbZ0KGlJK1Db68O1pt26/zdJSw6QoCmtjyPQYXIjI9Fo3MwUCAWzevCVq35BjNSrmr63X9U8Jpw86H2pBp9WKCbprBgIBbNkc7LMyozgf27dv145Ji7GmQetaGrtFNA8hR6dHC6mqih8s2RoxEgmAVv6aBh/279+Putpa2CwtMysnSm2MEU1cbCZLDgwuRNQnhDczSWnBkAFZKCmu1gJHptOJx7bWRTTdhL7YgeidYLWgEya0pEDomoFAS+gIhZZoYtXSjMpSULljW5e+YAOBALbsqowaWnTlX9vSaTjUx0YIEbW/T6gJrXUQSLdbO7ycQmdCRKiJy+126wKi06Vf66q967XXTBatTG2Vqzt68lrJhsGFiPqc0HDs1kOg3y2QKN9ZCY+75cstvPbh93OHYPT4iQCCI4Cuf7k8IugU5PSL6IcTmrfG7W5ppnG5XBFf8uG1NFJK7N27Fx63J6IGpDNrLX20YYtu+7lZaRjU34mJE3Nx7YvbIprCgJY+NqG5Z4LDuJuafwauWbI16uvGDLThvXtnt1m+0Ln27NmDGo/+3qVnBDsYa9vNQUhVVbjd7uCoLF2fn+BaV6FlFdpaCiLakHZA30wWCjahiQ1jlat1uOhIB/HWQaWyshK1tbURxyVKDZeZMbgQUZ8khIgYISSEwLSCyTHnZGn9hfX3u2Z0aJRTrKAUa/RUKPhEK0t7f5ErigKnq2XCvdaji2Zd1NI/5u93TUe9r0m7Rvgkf+Fzz0Sb8C6aT7/zoc7rR6bDHrVGof1z1QNvtzTRhYIQAPgC0UdlAS3LKgwekBXzSz985fHCadMAQBtZFiprKLREDUhvR286BNpfvDNWjVFIeDBta0QbdQyDCxEllWiBpq1jOzMiqrNfRl19TeGUfEyp2IqdR6t1zxXk9NN16hVCIN1u1Z4Pn+QvxBdA1KAxdmgm7p4QgAAwPm8ypj+zSXsu1he1N4Cok+fF8ul3PnjqvRH9gHb812wc/vRjfHvaowtmsb70WwKTfuXxkHEfb8GK2wrhbQp2iI4VkGJpvXinqqrajM9AsHbu5Gl3zPl2puRk4bVbCrB169ZOXbctXe3PE48mrNA5QzNWx5vhwaW0tBR/+9vf8Omnn8LhcKC4uBhPPvkkRo8e3f6LiYioXYqi4K/zi7s1501oht/wkU2vfH8QmhqDs/zaLAHtXBmpNt1rYzfttAg1WYVWIQ//wqxt8GsLa5Zv26b1DwpJt6dgWsHk4MzLH0XWhLRey6neF2izxijarMMAUPHrOXBY9SOt9uzZi7rmJp7wRUJDi3cKITD3v9fi4Cl/xPli2Xm0GtWNLUPu631NsFhkh/+9ooWNaE1R7TVDxeoH1JHXtlW20DlbzxAdL4YHl7KyMixYsABTp05FU1MTfvWrX+HSSy/FgQMHkJ5u0JopRERJrrtz3rQe1QQATY11ESHC5XJpzUpAy8rcsSbcA4I1DP8yO3aflI704WldGxUMWDLmMPaQ52alYdZFxQAQc2QZEKydGpAeOeT8wsKCsKa1pojgVOf1txlawmd6Dh/+rrvfzSPa2muCAoLBYNeuXfjuTPT321YzVOvA09TUFDFcPuTkqWq46xp1/9ahWpi2AlasvkXxZHhwWb16tW572bJlGDx4MHbu3ImLLroo4niv1wuv16tt9/QNICJKFm3NdxNasDLaSta1jS0reEcLPBW/nqNr7mmvJiH8ubyphUizWYKBaG3kuUO0JqMYw9hD7yHTBi3QpTbPOpw/Vd/npa15csIDk8XS9mSEW385ExmOlqa41gtftnW/gWBNzJbtO1E0dbJuf3izTSAQwAMfnIwZEscNy8SrtxRge/MyFaHanNQUBbt379a+U6P37WmlVRNbSEfXxCosLGzzeaPEvY9LqJd9//79oz5fWlqKkpKSeBeDiCjptZ7vJvwv8lDYiNbXwWG1YFSWgkNRvvSm5GRFrbnoqGhBKPy6sb74Q8PYw69qswBZWVm6ifaEENroqa7OkwMEa3xqGnxoCOvUk+GwaouERhNrFFl4E9Rpdy3WfrRB97rQMHAhBGoafG2GjQPHa5D/eGRtTngfpVD5O9u3JyTamljRZp2O1jE5HoTsyvzWHaSqKv71X/8V1dXV2LRpU9RjotW4ZGdnw+12w+l0xqtoRETUQYFAABs2bIj6xTT74hlISenc38BSSlyzZGvUQNL6r/vQ8OrQl35IqIkkWg1RqE/N7t27dUPUgc715aj3NWHcw2tiPr9v0Zw2g0troaBY72vCxJLYNUexlC+chUyHrflcsYett2fHf81Gul0fQsKblEKLgYYHrPD+QFIi6lQBAHD0ye/H/fs7rjUuCxYswP79+2OGFgCw2+2w2zv+D09ERD1LURRkZWVFDQFdGdYba0FNILKZKTQyKtYw9raGnbceot7W8dG0VeMzZqBNN2KrI0LNUBmpSptNSNGMylIwIN2mC4l/v2t6RG2OROzVxIFgMByYYW/zHgQCgebaqZZ6jVBfnUQQtxqXO++8E++88w42bNiAkSNHdvh1Ho9Hm8iJNS5ERIkhWafTD9X4tH7vnZlFONZ5Wwe38ADS2qD+LuTn57c5YihUxvBzd2UyvUAggI0bN0JKiT98Yos5Yiu8uc7pcuLss0di+OAB5qtxkVLi5z//OVatWoX169d3KrQQEVFi6sqcM31B67lwjDxvtFFhna1ZCj9f+L9PZieb72Kd8+djffCdn6bbXzhtGiwWRReCFEVBTU1k01E8GB5cFixYgNdeew3vvPMOMjMzceJEcLUyl8sFh8Nh9OWIiIj6jEQIiOFLWAghENYdBi6XC6701F6taTO8qSjWm1m6dCluuummdl/PpiIiIqLe1ZUZdnvq+zsuTUVERERkXolQ8xNL13sWEREREfUwBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg3Dg8uGDRtw5ZVXYvjw4RBC4O233zb6EkRERJSkDA8udXV1mDRpEp5//nmjT01ERERJLsXoE86dOxdz587t8PFerxder1fbdrvdAACPx2N00YiIiChOQt/bUsq4Xsfw4NJZpaWlKCkpidifnZ3dC6UhIiKi7jh16hRcLlfczi9kHKOREAKrVq3C1VdfHfOY1jUuqqri9OnTGDBgAIQQ8Spal3k8HmRnZ6OqqgpOp7O3i9MreA94DwDegxDeB94DgPcACLaYjBgxAmfOnEFWVlbcrtPrNS52ux12u123L55v2ChOpzNpP5whvAe8BwDvQQjvA+8BwHsAAIoS3wHLHA5NREREpsHgQkRERKZheFNRbW0tDh8+rG0fOXIEu3fvRv/+/TFixAijL9fj7HY7Fi1aFNG8lUx4D3gPAN6DEN4H3gOA9wDouXtgeOfc9evXY9asWRH7582bh2XLlhl5KSIiIkoycR1VRERERGQk9nEhIiIi02BwISIiItNgcCEiIiLTYHAhIiIi00j64PL888/j7LPPRmpqKgoLC7F9+/aYx7788suYMWMG+vXrh379+mHOnDkRx990000QQugel19+ebzfRrd05h4sW7Ys4v2lpqbqjpFS4uGHH8awYcPgcDgwZ84cHDp0KN5vo9s6cx8uvvjiiPsghMAVV1yhHWOmz8KGDRtw5ZVXYvjw4RBC4O233273NevXr8fkyZNht9tx3nnnRR012Jl7mgg6ex/+9re/4ZJLLsGgQYPgdDpRVFSENWvW6I555JFHIj4HY8aMieO76J7O3oP169dH/X/hxIkTuuPM9Fno7D2I9v+6EALjx4/XjjHb56C0tBRTp05FZmYmBg8ejKuvvhoHDx5s93UrV67EmDFjkJqaiokTJ+K9997TPW/E90NSB5c33ngD9957LxYtWoRdu3Zh0qRJuOyyy3Dy5Mmox69fvx433HADPvroI2zduhXZ2dm49NJL8dVXX+mOu/zyy3H8+HHt8frrr/fE2+mSzt4DIDildfj7O3r0qO75p556Cs899xyWLFmC8vJypKen47LLLkNjY2O8306XdfY+/O1vf9Pdg/3798NiseCaa67RHWeWz0JdXR0mTZqE559/vkPHHzlyBFdccQVmzZqF3bt345577sGtt96q+9Luymert3X2PmzYsAGXXHIJ3nvvPezcuROzZs3ClVdeicrKSt1x48eP130ONm3aFI/iG6Kz9yDk4MGDuvc4ePBg7TmzfRY6ew+effZZ3XuvqqpC//79I34fmOlzUFZWhgULFmDbtm344IMP4Pf7cemll6Kuri7ma7Zs2YIbbrgBP/nJT1BZWYmrr74aV199Nfbv368dY8j3g0xiF1xwgVywYIG2HQgE5PDhw2VpaWmHXt/U1CQzMzPl8uXLtX3z5s2TV111ldFFjZvO3oOlS5dKl8sV83yqqsqhQ4fKp59+WttXXV0t7Xa7fP311w0rt9G6+1n43e9+JzMzM2Vtba22z2yfhRAActWqVW0e88tf/lKOHz9et++6666Tl112mbbd3Xva2zpyH6IZN26cLCkp0bYXLVokJ02aZFzBelBH7sFHH30kAcgzZ87EPMbMn4WufA5WrVolhRDyiy++0PaZ+XMgpZQnT56UAGRZWVnMY6699lp5xRVX6PYVFhbKO+64Q0pp3PdD0ta4+Hw+7Ny5E3PmzNH2KYqCOXPmYOvWrR06R319Pfx+P/r376/bv379egwePBijR4/GT3/6U5w6dcrQshulq/egtrYWOTk5yM7OxlVXXYWPP/5Ye+7IkSM4ceKE7pwulwuFhYUdvq89zYjPwiuvvILrr78e6enpuv1m+Sx01tatW3X3CwAuu+wy7X4ZcU/NSFVV1NTURPxOOHToEIYPH45zzjkHN954I44dO9ZLJYyfvLw8DBs2DJdccgk2b96s7U/Gz8Irr7yCOXPmICcnR7ffzJ8Dt9sNABGf7XDt/V4w6vshaYPLd999h0AggCFDhuj2DxkyJKJtNpYHHngAw4cP1/0jXH755fjf//1frFu3Dk8++STKysowd+5cBAIBQ8tvhK7cg9GjR+NPf/oT3nnnHfzlL3+BqqooLi7Gl19+CQDa67pzX3tadz8L27dvx/79+3Hrrbfq9pvps9BZJ06ciHq/PB4PGhoaDPn/y4yeeeYZ1NbW4tprr9X2FRYWYtmyZVi9ejVeeOEFHDlyBDNmzEBNTU0vltQ4w4YNw5IlS/DWW2/hrbfeQnZ2Ni6++GLs2rULgDG/a83k66+/xvvvvx/x+8DMnwNVVXHPPffgwgsvxIQJE2IeF+v3Qujf2ajvB8PXKkoWixcvxooVK7B+/Xpd59Trr79e+3nixInIzc3Fueeei/Xr12P27Nm9UVRDFRUVoaioSNsuLi7G2LFj8eKLL+LRRx/txZL1nldeeQUTJ07EBRdcoNvf1z8LpPfaa6+hpKQE77zzjq5/x9y5c7Wfc3NzUVhYiJycHLz55pv4yU9+0htFNdTo0aMxevRobbu4uBiff/45fve73+HPf/5zL5asdyxfvhxZWVm4+uqrdfvN/DlYsGAB9u/fnzB9cpK2xmXgwIGwWCz45ptvdPu/+eYbDB06tM3XPvPMM1i8eDH+8Y9/IDc3t81jzznnHAwcOFC38GSi6M49CLFarcjPz9feX+h13TlnT+vOfairq8OKFSs69IsnkT8LnTV06NCo98vpdMLhcBjy2TKTFStW4NZbb8Wbb74ZUVXeWlZWFs4///w+8TmI5YILLtDeXzJ9FqSU+NOf/oQf/ehHsNlsbR5rls/BnXfeiXfffRcfffQRzjrrrDaPjfV7IfTvbNT3Q9IGF5vNhilTpmDdunXaPlVVsW7dOl2NQmtPPfUUHn30UaxevRoFBQXtXufLL7/EqVOnMGzYMEPKbaSu3oNwgUAA+/bt097fyJEjMXToUN05PR4PysvLO3zOntad+7By5Up4vV788Ic/bPc6ifxZ6KyioiLd/QKADz74QLtfRny2zOL111/HzTffjNdff103HD6W2tpafP75533icxDL7t27tfeXTJ+FsrIyHD58uEN/yCT650BKiTvvvBOrVq3Chx9+iJEjR7b7mvZ+Lxj2/dCpbsV9zIoVK6TdbpfLli2TBw4ckLfffrvMysqSJ06ckFJK+aMf/Ug++OCD2vGLFy+WNptN/vWvf5XHjx/XHjU1NVJKKWtqauR9990nt27dKo8cOSLXrl0rJ0+eLEeNGiUbGxt75T22p7P3oKSkRK5Zs0Z+/vnncufOnfL666+Xqamp8uOPP9aOWbx4sczKypLvvPOO3Lt3r7zqqqvkyJEjZUNDQ4+/v47q7H0ImT59urzuuusi9pvts1BTUyMrKytlZWWlBCB/+9vfysrKSnn06FEppZQPPvig/NGPfqQd/89//lOmpaXJ+++/X37yySfy+eeflxaLRa5evVo7pr17mog6ex9effVVmZKSIp9//nnd74Tq6mrtmF/84hdy/fr18siRI3Lz5s1yzpw5cuDAgfLkyZM9/v46orP34He/+518++235aFDh+S+ffvk3XffLRVFkWvXrtWOMdtnobP3IOSHP/yhLCwsjHpOs30OfvrTn0qXyyXXr1+v+2zX19drx7T+vbh582aZkpIin3nmGfnJJ5/IRYsWSavVKvft26cdY8T3Q1IHFyml/MMf/iBHjBghbTabvOCCC+S2bdu052bOnCnnzZunbefk5EgAEY9FixZJKaWsr6+Xl156qRw0aJC0Wq0yJydH3nbbbQn7P2dIZ+7BPffcox07ZMgQ+S//8i9y165duvOpqiofeughOWTIEGm32+Xs2bPlwYMHe+rtdFln7oOUUn766acSgPzHP/4RcS6zfRZCQ1pbP0Lved68eXLmzJkRr8nLy5M2m02ec845cunSpRHnbeueJqLO3oeZM2e2ebyUwWHiw4YNkzabTX7ve9+T1113nTx8+HDPvrFO6Ow9ePLJJ+W5554rU1NTZf/+/eXFF18sP/zww4jzmumz0JX/H6qrq6XD4ZAvvfRS1HOa7XMQ7f0D0P1/Hu334ptvvinPP/98abPZ5Pjx4+Xf//533fNGfD+I5gISERERJbyk7eNCRERE5sPgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbx/wM3J5Fg0MWcegAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "maxfreq = 1.\n", + "dt = 0.2 / maxfreq # smaller than the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n", + "\n", + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "81bffa81", + "metadata": {}, + "source": [ + "# The Cross spectrum\n", + "\n", + "A great new addition to Stingray is the Lomb-Scargle *cross* spectrum. The cross spectrum is the basis for many of the spectral-timing techniques that Stingray was born for (e.g. the covariance spectrum, time lags). \n", + "\n", + "Here we show a simple usage of the cross spectrum as a proxy for the (Poisson noise-subtracted) power density spectrum, using two datasets from two identical instruments onboard the same satellite.\n", + "\n", + "Time lags measured with this cross spectrum make sense in our tests, only when the light curves are sampled at the same times. Also, we do not provide error bars on the time lags at the moment. Use with care!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b047a2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:02, 107.72it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE6klEQVR4nO3df3xT5dk/8M9J26Qt0ApUWsqvggpbQNvZ0q5Mt6LdWJ04cfCwZ5tWfMbEpVPXR/cA7kvHprIfythctioOQacb1s1uAwVGdUOlrrRYpxYQtEAFWiiFhqYlocn5/nHaNGl+pyc5ycnn/Xrl1eScO+dcJdZeve/rvm9BFEURRERERDFCo3QARERERMFg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFlESlA5Cb3W7HyZMnMWbMGAiCoHQ4REREFABRFHHhwgVkZ2dDo/Hdt6K65OXkyZOYMmWK0mEQERFRCNra2jB58mSfbVSXvIwZMwaA9M2npaUpHA0REREFwmQyYcqUKY7f476oJnkxGo0wGo2w2WwAgLS0NCYvREREMSaQkg9BbXsbmUwmpKeno7u7m8kLERFRjAjm9zdnGxEREVFMUU3yYjQaodfrMXfuXKVDISIiojDisBEREREpjsNGREREpFpMXoiIiCimMHkhIiKimKKa5IUFu0RERPGBBbtERESkOBbsEhERkWoxeSEiIqKYwuSFiIiIYgqTF4ouppNA52FAXaVYREQkI9XuKk0x6OB24E/fkJ5PLQbKtwEJqvlPlIiIZKKanheDwYCWlhbs27dP6VAoVKdbhp4frwde+C/lYiEioqilmuSFVMg5mSEiIhrA5IWiT/a1SkdARERRjMkLERERxRQmL0RERBRTOJUjkjqPAG+uBy71juw6E/TA5x8EBEGeuIiIiGIIk5dI2rcRaH5+5Nf54GVg9m1AxpUjvxYREVGMUU3yEhPrvPRbpK9XfQm48ouhXaNuLWDtAWwW+eJSm3PHgH1PA+NmAAXLlI6GiIhkpprkxWAwwGAwOHaljGqTCoCi74T23j2/kJIX8m7vE1IvFwBccQMwdpqy8RARkaxYsEvq41xTNNL6IiIiijpMXoiIiCimMHkhIiKimMLkhdStaTNgOqV0FEREJCMmL6Ru/64Gtt2vdBRERCQjJi+kfuZOpSMgIiIZMXkhIiKimBJ1yUtbWxtKSkqg1+txzTXXoKamRumQiIiIKIpEXfKSmJiIDRs2oKWlBbt27cL9998Ps9msdFikhAungGe+AlzqUzoSIiKKIlGXvEycOBF5eXkAgKysLGRkZKCrq0vZoCiy0icBSanS82NvAu3vKRsPERFFFdmTlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHB47Wamppgs9kwZcoUucOkaJYyDvj+B0OvRVG5WIiIKOrInryYzWbk5ubCaDR6PL9161ZUVlaiqqoK+/fvR25uLhYsWIDTp0+7tOvq6sIdd9yBp556yuf9LBYLTCaTy4NUIHWctLEiERHRMLInL2VlZXj44YexaNEij+fXr1+P5cuXY9myZdDr9aiurkZqaio2bdrkaGOxWHDrrbdi5cqVmDdvns/7rVu3Dunp6Y4He2mIiIjULaI1L1arFU1NTSgtLR0KQKNBaWkp6uvrAQCiKOLOO+/EDTfcgNtvv93vNVetWoXu7m7Ho62tLTzB223ApYsje9j7wxMbERFRHEmM5M06Ozths9mQmZnpcjwzMxMHDx4EALz11lvYunUrrrnmGke9zHPPPYerr77a4zV1Oh10Ol1Y4wYAfPw68Ievhf8+JJ+pxcDxeqWjICIimUU0eQnEddddB7vdHvT7jEYjjEYjbDZbGKKSUWIyMLVI6SiIiIhiVkSTl4yMDCQkJKCjo8PleEdHB7KyskZ0bYPBAIPBAJPJhPT09BFdy6PpJcBKGYakErRAUvLIr0NERBSnIlrzotVqkZ+fj7q6Oscxu92Ouro6FBcXj+jaRqMRer0ec+fOHWmYniUkAslpI38wcSEiIhoR2Xteenp6cOTIEcfr1tZWNDc3Y9y4cZg6dSoqKytRXl6OgoICFBYWYsOGDTCbzVi2bNmI7hv2nhciIiKKCrInL42NjZg/f77jdWVlJQCgvLwcmzdvxtKlS3HmzBmsWbMG7e3tyMvLw44dO9yKeImIiIg8kT15KSkpgehnRdSKigpUVFTIet+YKdil6NFvkWaQHdsLLP49MNvz2kRERBRdom5vo1AZDAa0tLRg3759SodCvogicGI/cPgfwNE3AZuCa9+cbgGOvgGINqDmTimZGXTqP8Bjs4A/LOb2BEREUSbqpkqTyh3+B/DCkqHX838IfOFBZWIZnpT0XwQSB9YM+qgO6GkHjrQDFhOQzDoqIqJooZqel7DPNiJ5dLf5fk1EROSHapIXDhsRERHFBw4bxaNzx4Dzx9yPXzYVGJsT8XDQ2wX0nQP6zkf+3kREFHOYvMSb7hPAr/MA0cMWDIIGuP89IH1y5OJpfw94bCZgvxS5exIRUUxTzbARa14CZDohJS6aJODyTw09NEnS8e5PIhvPmYPKJS4nmpS5LxERjYhqel64wm6Q0icDhn8Pvf71tUDXR8rFo4Q3Hlc6AiIiCoFqkhdSQM8Z4O/3AebTQ8euWQoULpf3Po2/B47sBmZ+GZic771dvxXYXgk0P+//mqaTwIVTwcXR0QLU/Ri4Yj5QdHdw7yUiItkweaHQHfkHcGi767Fzx+RPXv6zVfr6Xg1wX7P3dicagXee8389ux3YsSr4OOp/A3z4qvTwlbzYbdIaMgn88SIiCgfV/N+V2wPITBSlYtqL512Pj5sxVNBrH/i3npgH5H0DePUH0oJuOx8Cxl8J5N8JCIJ8MVlM3s/t/Q3Q8GRg13nlf4GWWun5mImB98Bc7Pbf5tJF4HfF0uyp4grgk33AjWuAzNmB3YOIiPxSTfLCmheZffAy8JKHnb4TtEDlQWDU+KFjozOBWWVS8tJ/UeqhAIBp84DLZ4U/1q5WYNdDgbf/cOfQc/1XgX9X+27f1gBccYPrsRfvAOZ+Gzh7BDjfBlx3v7QKb3cb0PWx1Oa1nwzcbwfw/Q8iO4uLiEjFVJO8kMwG14HRpQNp2dLzzg8Bm1VaNt85eQGkNWIWPSntF9T4jNRLYumJTKz9F8N7/ecXS9sYOGv5K3DoVenfAwDGTQeuvcP7NY6+BeQuDV+MRERxhMmLWplOAmc9zB46czC463z6ZuDW30rPf3GVa3HucLlfl75+8LLnIZ7Ow8DJ/f7vmTref5tIa/+P+7HBxAUATr4DfOb2yMVDRBTHmLyo0cVuaepzf5/3NkKEl/jptwBPzQesFzyfz5wDzP0fab0Z/Vf9X892SRqeiZahmMZNQFKqVOdDRERhxeRFjXrODCQugpeaE0FKFCLpUu9Q4nLFjVLydOQfQ+dHZQAFdwV+vWe/Chx7Cxg1Afhmje+29ktScbEmIfDrv+2nDsaTps1MXoiIIkA1yQtnG3mQnOa6EF20+MaLwFu/dE1egtXxvvTVfBro6/Ld9tS7wOOfAu7eA6RNDOz6vZ3BxySKwb+HiIiCpprtAbirNPlkPu25bsUbTVL4YiEiohFRTfJCRERE8YHJC8W+916S71rvbgUeznIvdtYkAge3yXcfIiIKGZMXin2B7GUUqHee8zxLKzFZvnsQEdGIMHkhZV3qVToCV8FMIR81IXxxEBGRV6qZbUQxJvNqAAKAgRk6E/P8v0e0A7XfBTo+CGyfoVCMDiIhSWBRLxGREpi8kDJmfRl44LC09osmKbDF5vrOyTtENNyex0Z+jWjrSSIiUiEmL+Rq7xPAf16U1kYJt9GXA7g8/Pfxxbn35NxRIFEX+HtNJ1xfXzIDT37eS2MReONxwNoLlKwCEvz86PWdA1LGBh4LEVEcUU3Ni9FohF6vx9y5c5UOJTYlp0lfD24DGn8PnGiUXuvSlIspUm6SocfFn66PgbofA288Ju395MvuHwE/y5ESSSIicqOanheDwQCDwQCTyYT09HSlw4k9XzUCB7dLdSWDEpOBvG8oF5OaWM1Dzw/+Hbhmife2b/5S+vraw8C874U3LiKiGKSa5IVGKHO29IhWgsY1sYq0d18Y2fvrfzP0XDs6sPf0XxzZPYmIVEo1w0ZEREQUH5i8EPlyzdeVvf+vrwUumpSNgYgoyjB5IVLChXZpF+qzHwGmU97bdX0EnD4QubiIiGIAa16IIq35eekx/QtA67+kdW7+rxXQjVE6MpKTuRMYlaF0FESqxJ4Xih+n/gOcfEfq8QiEdjSQqQ9fPK3/kr7aL0m/6CwXpBlfFPtefxT4xRVAvVHpSIhUickLqUvO9d7Pvf4w8FQJcOGk/+sUfgf4/vtA4d1SD0kkbH8A+BOnpsc8qxniP3+GXlEHccdqwK7gLDkilYrK5GXRokUYO3YsFi9erHQoFFMEIP9OeS41drq0wm1SMvDNl4DxV8pzXV/+86fw34PCTnx1FRZbq6C3PIMl1iqIpgCSZSIKSlQmL/fddx+effZZpcMgkiRqgU8v9HwuQRvZWEQReHkF8MxXOAspSvXt/xOaxFkAgEZxFvouseeFSG5RmbyUlJRgzBgWLxK56e0C3v0jcOxNoK1B6WiIiBQhe/KyZ88eLFy4ENnZ2RAEAbW1tW5tjEYjcnJykJycjKKiIjQ08H/CFGGXTZMKcmeUjPBCgvuhaZ8b4TWHObzT6YXo5TkRUfyQPXkxm83Izc2F0ei5yn7r1q2orKxEVVUV9u/fj9zcXCxYsACnT58O6X4WiwUmk8nlQeTX3XuA1SeAK0tHdp15Fe7Hsj8z9Hx05siuDwD2/pFfgyJnTJbSERCpnuzJS1lZGR5++GEsWrTI4/n169dj+fLlWLZsGfR6Paqrq5GamopNmzaFdL9169YhPT3d8ZgyZcpIwicamc98Cxg3Y+j1/IcCe9/GG8ITD0WcW3/YJe5RRSS3iNa8WK1WNDU1obR06K9djUaD0tJS1NfXh3TNVatWobu72/Foa2uTK1zy5t0/Ant/A3xUp3QkgP6rSkfgauq80N7X1+X7fNNm4LfzgNY9oV2fIkIURSw5e7frwfZmRWIhUrOIrrDb2dkJm82GzEzXrvTMzEwcPHjQ8bq0tBTvvvsuzGYzJk+ejJqaGhQXF3u8pk6ng06ng9FohNFohM1mC+v3ENcSk6Wve58YdlwX+VgGlawGWv7qv13ufwMf7gD6zoV2n/TJ/tt88SdA3jeAo29Kr1PHA9pRQ+cTU4D+vtDu//f7pK//WDN07NS7wFVfDO16FBZ950+jRcxROgwi1YvK7QF2794d9HsMBgMMBgNMJhPS09PDEBXhpp8D7//F9ViCFij6TvjvLWgAcQRTTlPHA5PnAod3hfb+a8ulIt/nfaw9lJ0HCAIw/Xrg3mZpnZjBVXQBQJMQ2r2ddTv1LL72E+DaO4DRE0Z+XZJH54fux7Y/AFz7X5GPhUjFIpq8ZGRkICEhAR0dHS7HOzo6kJXFIregXOoDrGYv53rDc89ZZdIjUM8vBsbmAN/6s/RLfSQm5QPJ6cC5Y0DnoZFdKxQJSVIvx5jswFboHTfd/VjGVdL2BHJqfgGYdy+gicpVD+LPuaMAxrke62fNC5HcIpq8aLVa5Ofno66uDrfeeisAwG63o66uDhUVHmZtBCHuho2evlHpCLy7/FPA+eNSHUdfF3Dg7yO/ZlIK8M0a6fnPpvuvEYlG0z4nf/Kyu0rq8Rk+5bv9PWnDxwmfkvd+5JvgnkSKAGDtBbSpEQ+HSK1k/3Otp6cHzc3NaG5uBgC0traiubkZx48fBwBUVlZi48aN2LJlCw4cOIB77rkHZrMZy5YtG9F9DQYDWlpasG/fvpF+C9HtyiCSlisUSnC+/gKw4k1gwmzp9d/vlR6A9D/3kfbCkKuGjUC/dej1+Tag+jrgt0XSonYUOYdedTu0xFoF8VKItU5E5JHsPS+NjY2YP3++43VlZSUAoLy8HJs3b8bSpUtx5swZrFmzBu3t7cjLy8OOHTvciniDFTc9L4uqga+sD6ytUn/pJSQBWVe73z/7M8CcxfLUfgwSNNJic9YeaVgmHh3cBvz7d8DnBop6e5zWTDJ3AqnjPL+P5Jcy9G89PQ1oNQEtYg76LtnBfhci+cievJSUlEAUfa/8WVFRMeJhouHiqmA3Vrufv/xTYOpn5b2mIAAr3gA+aQKmzQOOhzblHgBw4G/yxeWJLoxbXhx9ayh5oajwomE+5q57XekwiFSJVX4U+8bNAK5ZAqRPUjoS32bM998mnFr3APW/BfotysahYs5/tnF0lCh8onKqdCjiZtiIfJtSCIydDtisUhHrSHpiYsng/ke2fqD+N57bbBnYGTvlMmk9GpKVKIpY8oHMPYtE5JFqel7ipmCXfLtsKnBfM1DZAkzMVToaV2OygIl5wb/PFuDeRp80AdvuBz74i+923SeCj4H86rtkQ0uvNGStT7uIlCQZa7uIyIVqkheKI9rRTs9HeW83nCbJ6bkCv1gEDXBHAKsBD+cvGRn09A3AO8/5b3fmoP82NCI1xcc4bEQURqoZNqI4suh30pTUzDlAWnbg7yu6G7h4HphSJF/xbGrG0PNRl8tzzeEunJL3emePyHs9ciMkBZFUE1HQVJO8sOYljuRcJz2CNeML0kNOl88Ebq8FIAITPj2ya827F9j7azmiGnKiCRh/JXCudehYsspn4ynl4oWh51OLXM+ZTgCXhSm5JYpDqhk2Ys0LKeaK+cAVN3g+lzlHGuYamwOM9rOW0We+JXtoqF0hJUTOvTf+4qDQOC9ElznbdbXd89ztnkhOqul5IYpK468AHjwi1dskJIZv3ylfml9wnbf73ovAwg2u9UKiCLxXIy2ydlVpxENUHbeCFxbAEMlJNT0vRFErKUVKXPzxsC+OLDoPAaeHFek2POX6uv094C/Lgee/BlzsDk8came54PWUePF85OIgigNMXoiiwbV3AOlTwnf94TOWdv8I+Om0oU0zP3h56Bz34QmJ+OT1Xs8t2aHxu/I4EQVONcmL0WiEXq/H3LlzlQ6FKDifNQC3PBHeJVn7L7ofu3ge2PVD6fmbAe6XRR6Joogl1iqXYylJCdAndwIAWnrT0XeJkwmI5KKa5IUFu1EofbLTCyG4ac0UFFEEekVdQA+XDoC+c4rFrCZ91n60iDkAAP2YXqQkJUAQBNQUHVU0LiK1YsEuhc+tvwOuLQdEG3BZjrT6LYVFH3TQW54JqG2BcAg12rVSR0+/Fag3hje4eHCh3fG0ZvlcCAO9aIIY4OrIRBQU1fS8UBRKSpGmEV9ZCmRcqXQ04SHE3hLwjeIs9EEnvejvA3auDu4Ch3YA1dcDH+4aOnbqXeDt3wGWHvkCjSXt7zmeCs49jFxThygs2PNCFKpP3Syt1hsFUmBBi26Zzza90KHAUj3ym9WukIab/vpdaRo4ADx7K9DXBVh7gM8/OPJ7hIN9oObE29YQtktAQpLnc34JcOwprXH6m/CqLwK7PpGed34MZM8M8fpE5Iw9L0Sh+vrzgDZV6SgASLW+qYLF9wOW4C7aeRj487eBj16DS6HMYJ2M+Qzw+y8Brz8qJS6A1APjzG4DTr4jJQaR0HfOcx3P4d3Aj8dJj+Y/um92eaIJ+FkO8PKKkG7rdR7RBP1Qm+7jIV2biNypJnnhbCMime18SFq47rlFwOabXROYQW3/Bv71M8/v/6RJShaeKgG2fd/1XOdhwGqWN96+88B6PfCz6cBFk+u557829Lx2BdBS63p+/7NSr9G7fwz6tqIoYkmtlzVenGaQLfnLOU6XJpKJapIXzjaiuJAxa+i5VqbNJb053TL0/NibgMXkve0g5wXutlcOPXfe7frDncBvCoBHs4FXHpSSDn/e3AA8/UWg62PvbUwnB1YwFqV7+NLxgbRw39ZvAYf/MTSkFAxLD9D8AvoatqClR1qtWC8cRUrS0LBUSlIC9Bppa4CWC6nos7KAl0gOqkleiOLCXTuAm38pDUeUVvlvL7fuE77Pt+4BjuyWnnd84LnN4HlAWul3/7PSc2sv8IfF7r00ALC7CvikAdixCvjnT4HuT1zPiyJcBm+sA4XDtn7gH2s8x7Hj/6RF+p5f7Hr8PzVSUrPr/0lDUCf2A0/kA+/8AehqBf72PeDom8Cr/wfU3gO88gPHW2vGbHDMNAIgTZe+dqiYV2z38m9CREFhwS6R0lLHBtYuMQVIHQcU3CU9Olr8vycUjZuA8Ve5H7fbgF/q3Y8P17RZmmEWqJ4O6esnDcCRf0jPb6wCUi4D7HbXGpYPd0iPTxqBb70kHbP1A78vlWprhju8C3jrVwCk/GZwllXyG7/ERWgB6JACC4QDf3OcT/nzt4dGe2xWiPv/gD7rJaTUGgAMtHn/rxCsUi+T80CQcOWNbiEITvEv2XoC2x/MdUlwiCh4TF6IlDIpH8i6Bsj3PUvI4ZYnAmuXlArMfwjY9VBocXmrYXEe+vEl1LoO0T70/OR+oOVv0vCP847Yg478Q+oJ6TwM5Jd7TlwAx3vtooCbrY84FpJzpheOYhsewhJrFZrEWcgXDuFZ7U+lAue3q7HY6TgANImzUGCV1soRIeBm66NDF/PQG5Zy00+gb9mBFjEHLV1A3yUbUrX8Xy/RSPAniCiStKOB0ZlSb0Ppj4Dpnw/sfd99G5jwaddjY3M8t13wiDQEI7fXH/XfZpDdDthHMMPouUX+2/xV6gnBWxs83L8fsNscKw/fbH0UreJEj5dpEXMwz/JrtGM8ACk5mW15BnrhKLZof4omcZbj+KBGcRbMSMZC6yOO6+qFo0gZe5Pb9YXxV6BGuxazA1xEkIj8Y80LUSQlJALfawLufz/wxMUbbSrw9WGzY6Z/QRpSCgdP+yN5s+fn7sf+/G1pSOr8sCnD9b+RemtGsKu28/YIogjglQcg/vZzWPzPsZhtecaRYGThrMv7Bl8PJi7OWsQczPWxLo5zQjRdOIVt2oe8DgcJhcuHXhzdG8y3RkQeMHkhijTdGOAymXaQ1gzrPE3QynPdkXpzg/ux92qkYtwPd7ifO38cgOBxjyZ/o1CiCCy2VkFveQZ6yzNYYq2CXRRw9swJNHXpHO30wlHs1d2LgoHhnwLhEPbq7oVeOBrSt3hUzAIgJS512gegEXwEWvA/Q/H+7V6/1xZFEb0XutF7+A2IPZ0hxUekZqoZNjIajTAajbDZuHMrqZB2dJDtR4UnjkDZrMG1P7gd4tmPHPUlzvTCUWkvJqdjKbA4imr7oHMb0vmK9REccKpvadStwHiYIAhAjXatVHQ7cI3t2tXog85tBeJ9uhUot65Ei5jjqIMBpETJ+drbtKt9Jy7DLDm7HNtPH4IwYZbH86IoYvETr6HppNTTVXB5PWoqb2aRL5ET1fS8cJ0XUq1bq4PvqZm9CEibJMvtA9mx2q13RAzyj4idq9C37zm3xAWQhm9mD/SqDD6+Yn0UZh+9Ms7JRYFwyJG4AAOrEX/hPtfXHlYgHgULtmtXo0W3DC9p12KUYMEowYLt2occvTUFwqGh9/mYYZWSJDje0yLmoHfXI17b9lr6HYkLADSe0aDvEv8oI3Kmmp4XIlUaNQHI++/g35dyGbCoGtiycES3HxyS8ZRUOHPdqTqI2hgvGnUrkAILllirPM4QciQ0A0W1vq7jnLg43PAQULJS2ufo/HFgyy2ATQOcdm0mjL8CqV0fSYsDlv0UGJMNzW+LHL01jh6gadcB33zJaxxCYrJL0e6SD4qw/aIJQnKaSztRFLHkl9sARMnwH1GUYvJCFId6ofOxIY9rO3+JCyAN1ZxFGlJFC3D4DWBgPRXn4R1PnNde6cVQfUoqpP2YBpMER3vAJaEZXlSrF446zg3vcXEzuEHjZVOB7zUhRRRR8PBmNPZNRIFwCCkPHZM2WTSdAMbNcHmrIEgxwtAApI4HUsbB5zeaNhGpsDjiaxFz0Fl9MzK+UwshdZyjWd8lG1q6pcRlunDKURDMXQWIXDF5IYpmw6dHB0PwsnsyENLu0o26FW5DK851Ip6u6dIjM0wgvTqOJMHJdu1q9ELn1itTIBzCi9ofDyw+5yNx+uKP3Y9pEiAAqJnyMvqO7ZPeqx3Y3mBY4oLCu6WF+P77j8Dl/hM7x/dSdQ41W76G2Ye+DQCY2/5/yP/JZrz0X1kQPvMNt/Yvatc6ErMl1fXYfu91rHshGsDkhSgaXbUASBkLXHd/6NeYlA98+hbg4DZAtCMFFhSM7kRjT0bQl/LWi5EiWlAgHEKjlwTEpUdmGG+9OgXCIaT42AFbEIbqUZx7ZQaTFUeyMykfOHdUKnY+f0w69q0/+6xNEWZ9CanH3wSyr/XaBjf9HPjST4BEnfc2nmg0SB2V7tKj0iTOQl/tMqR6SF5S590N/cE0tJwyoeWUiYvbETnhTwJRNJpRAhR/d2TXSEoGlj4HfPQa8NwiCEkpqNE9gr5L54O+lLdeDOfZO8789cgM59yr42+oyfnew3tlAAB3vyH1iCTqpC0NRLu0s/VFEzC50PdFi+6R6lsm+UhegOATF6eY67QPYIblec8N+odmaQmn3kHNipWYXeVnk0miOMTkhUjtZswHyv8OpE2C8MS1SJV55MFTEuGvR8aZ39qUUAIaTC40CQASgBVvSuNUGj8TLBO1wKwvyxSIBwlaaAQR7+vuwhzLJgDDSo+cp5j3dMr3b0KkMkxeiNROEEa+mm8It/TUI+OJx56W9KnA7X8BGp8B3jYGfuPEZM9TxAXBd0FtpMz9NvCfrdA4pSw3Wx9FXds+aDreA8bNVjA4otgRleu8bNu2DbNmzcJVV12Fp59+WulwiCgEggCkXnePtIaKj4fXnCLjqsB33AaAT90MVB6Qdt6OVlMKgTVdSKlqh35MHwCgVZyIG3/7Lsx/Xwn7lluG2k68RqEgiaJf1CUv/f39qKysxGuvvYZ33nkHv/jFL3D27Fn/bySKR9mf8b5BYyAW/gpIH+FWBV/+KQAvGUgQs3FG7EsPR3fiMkiTAEGjwbab7cgR2gFICcxsyzOOoSQAwOcfcHkbp0sTDYm65KWhoQGzZ8/GpEmTMHr0aJSVlWHXrl1Kh0UUnUZfDtz37siucf3AlODPfEsa1hhutp8dnke4qWLIStcOPdffCoybHvkYRkAz4/Oo0f7I4zm9cBQpGVNdji2profIDIYIQBiSlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHBce7kyZOYNGlozHrSpEk4ceKE3GES0aCCu6Rdrhc+4fn8+Ct9vz/VfUfmkF3+KenrFSWBtV/8jDSt/IYfyhdDpIzJwvgFK90OZ6IL225JgCAISElKgH6itApvyykTeq3cJoAICEPyYjabkZubC6PRc5Hd1q1bUVlZiaqqKuzfvx+5ublYsGABTp8+7bG9PxaLBSaTyeVBREG6bIo0E+eyacG/N1MvXxz/9Zy0iNyNP5JeZ/gZdppzG/DNF6X6mBikmWfAx/dPQ4PuHsexbbrV0Fw2GQAgCAJqVhQ7zrH3hUgie/JSVlaGhx9+GIsWee5qXr9+PZYvX45ly5ZBr9ejuroaqamp2LRJGuvNzs526Wk5ceIEsrOzvd5v3bp1SE9PdzymTBnh+D2RLwlJSkcQXgXL3I+NmRi5+18+E/jcfcCogd6cT30F+NrvPbeVs8dHQRpNAjIw9EfXeFxwOZ+qde194SaNRBGuebFarWhqakJp6dAKlxqNBqWlpaivrwcAFBYW4v3338eJEyfQ09ODV199FQsWLPB6zVWrVqG7u9vxaGtrC/v3QXHsc/dJy+4X/I/SkYSHboz7sfFXAPPulVaq9UbO3hdnmgTg6sXAD88Aq08CMwfWYPnsd6VeFzUYkwVNYhI+1n0TH+u+CY0gApf6HKeH977YRcBuZ+8LxbeIrvPS2dkJm82GzMxMl+OZmZk4ePCgFFBiIh5//HHMnz8fdrsdP/jBDzB+vPe/sHQ6HXS60Fa7JAra3P+RCltDXGE1Zn3pJ9LjR+mez9+8AXj9Uam4928V0rGkUb6vmX+ntEdQIBK1ALTAN7YG1j6WpIwFvt8Cjb0fWD9Q89Pf59LEeTr5nIEVdz9+9CZoNFGwdg2RAqJykbpbbrkFt9xyi/+GToxGI4xGI2w2dqlSmMVb4uJPxkzp3+T2vwCmk0PHb/+LtCS/J3MWAwvWBZ68qN3oywG7Pai3dPVakTGa/y1SfIrosFFGRgYSEhLQ0dHhcryjowNZWVkjurbBYEBLSwv27ds3ousQUZC8JnMCMOFTnk8t/j2gTQ1bSDFP69pr5TzraFCf1cbiXYpbEU1etFot8vPzUVdX5zhmt9tRV1eH4uJiH+/0z2g0Qq/XY+7cuSMNk4i88TcURKHTaKTeqLxvDdX2DBhe9wIA1//8dXzl12+y/oXikuzJS09PD5qbm9Hc3AwAaG1tRXNzM44fPw4AqKysxMaNG7FlyxYcOHAA99xzD8xmM5Yt8zDLIQjseSEKQVKQvR+3PQlkXg1c/unA2icmBx9TPCv+LnCr0a3nBXCddTSo5ZQJNz/xJntgKO7IXvPS2NiI+fPnO15XVkqrd5aXl2Pz5s1YunQpzpw5gzVr1qC9vR15eXnYsWOHWxEvEYXZmGy3v/D9+vRC6XF4N/D814DMOb7bj54AfPlngOUC8PrD7udTxgF9XcHFEKcGe19mDxTsDhqcPp2qjcoSRqKwkP2/9pKSEr9/BVRUVKCiokLW+7JglyhItz0JJKf5b+fJVaVARWNga8B8doX09aPXgON7gQlO06oX/x54zs/2A+TgbRNLs8UGUZR6Z4Ro2D2bKMyibm+jUHHYiCjCMq4CdMPWfknNkFbpTU5331Zg4a+Awu8Atz01dOyKG4BZN4U/VpVISUpAwTRpp23nIaS5j+zG7KqduIk1MBQn2M9IRK4+/yCw5xehvTdRK/XIiDYgKcX13OUzgZtCvC4BGBo66rsk9bQMH0I6MFADs/3e69gDQ6qmmp4XzjYiihKJWvfEhWQjCAJStYlI1Q71wjjjFgIUD1STvHDYiChIY3P8txk3A8i6JuyhUPAGe2HeX+t9+xQitVJN8kJEAdA4jRRfNtV/+3vfAVLHhS8eGhFBEDBal4iPHmXdEMUXJi9ERDEuQSO49MBw2RdSO9UkL6x5IaJ45rxH4+Lqes46IlVTTfLCmhciimfO+x8dOGXCjNWvMIEh1VJN8kJEFM887X904nwftw4gVWLyQkSkEsP3P7r+569jSXU9ExhSHdUkL6x5IaJ456n3pfHYOa77QqqjmuSFNS9ERJ73P+q12tj7QqqimuSFiIg8K3h4N4ePSFWYvBARqYjz5o3OOHxEasKNGYmIVMR588bkxAR09VpR8PBuAABnTpNasOeFKJ4kpSodAUXA4OaNGo2AVG2C4/icqp2w20X0Wvs5hEQxTTXJC2cbEQXghv8nfb3+f7230SRFJpZBoy6P7P3i3A2P/xP6NTuxuLoeZguTGIpNqhk2MhgMMBgMMJlMSE9PVzocouhU9B3g6sW+N1u8ejHQ/DwwoyQyMV13P9D9CTD71sjcL84dPdsLAGg6dg6zq3aiYNpY1KwohuBpmhJRlFJN8kJEAfK3S/T4K4D7/xOZWABg3Azg9r9E7n5xZnDbgJZTJo/nBwt5U7VDvw4GtxXQaJjQUHRSzbARERG587RwnS92u4gZq1/h3kgU1Zi8EBGpXDAjQl29Vo/PiaIJkxciIpVzXvtFPzENHz96Exp/WOo4z5pdijWseSEiUjnntV9SkhIGplIPTaFeUl2P7fdex6JdihnseSEiigODa78MJiiDhbwA0HLKBLNVWn3Xzm4YigFMXoiI4tDwQt45VTths4sofKROwaiIAqOa5IWL1BERjcyHHReUDoEoIKpJXgwGA1paWrBv3z6lQyEiignDN2os+9UbCkVCFBzVJC9EREQUH5i8EBERUUzhVGkiojg1LlUbVHtRFNE7MCspVZvAqdWkGCYvRERxSqMR8P7aBZhTtdPjebsowm4XodEIsNtFfOWJN3FgYI+k/Glj8RI3dCSFcNiIiCiO+dp7sfCROsxY/Qp6LP0uiQsg7Uo9vOCXKFLY80JERD5565khUgp7XoiIiCimRGXysmjRIowdOxaLFy9WOhQiIlVz3rRxesYohaMhCkxUJi/33Xcfnn32WaXDICJSvcFtAlp+vADbvned0uEQBSQqk5eSkhKMGTNG6TCIiOLC4KaNqdqhzRoDMbiHo90uwmaXZiZJ06n7IXKDRwqjoJOXPXv2YOHChcjOzoYgCKitrXVrYzQakZOTg+TkZBQVFaGhoUGOWImIKIyGb9boz5LqetjtImasfgVXrH4FM1a/gtt+txf6NTuxpLqeCQyFTdDJi9lsRm5uLoxGo8fzW7duRWVlJaqqqrB//37k5uZiwYIFOH36tKNNXl4e5syZ4/Y4efJk0N+AxWKByWRyeRARUWj8Ldvy/toF+PRA70zLKRM+Odfncv6d4+cBAI3HzuGs2coEhsIi6KnSZWVlKCsr83p+/fr1WL58OZYtWwYAqK6uxvbt27Fp0yasXLkSANDc3BxatB6sW7cOa9eule16RETxbLCAt/HYOY/nNQJQs6LYMX369k3/9nqtgod3I3/aWDx7VyFX5CVZyVrzYrVa0dTUhNLS0qEbaDQoLS1FfX29nLdyWLVqFbq7ux2Ptra2sNyHiCgeOBfwfvzoTWj8Yalbm4tOi9MdO9vr83pNx85hdhWHkUhesi5S19nZCZvNhszMTJfjmZmZOHjwYMDXKS0txbvvvguz2YzJkyejpqYGxcWex2F1Oh10Oh2MRiOMRiNsNq74SEQ0EoMFvIC0h5GzUPOPxmPnHPsiDV6XPTEUqqhcYXf37t1Bv8dgMMBgMMBkMiE9PT0MURERxZ+UpARMzxiF1k4zAKDvki3oDR0Hfe13e3Gw/QKAob2RBq+ZksRkhgIn67BRRkYGEhIS0NHR4XK8o6MDWVlZct6KiIgiQBAEvHi3a8/34IaOwRpMXABpOMlstWFxdT1nJ1HQZE1etFot8vPzUVdX5zhmt9tRV1fnddhHLkajEXq9HnPnzg3rfYiI4o2nDhFfGzoGak7VTjQNFAYPH1Yi8iXo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF4PBgJaWFuzbty+s9yEiouD868GSgNqx94UCFXTNS2NjI+bPn+94XVlZCQAoLy/H5s2bsXTpUpw5cwZr1qxBe3s78vLysGPHDrciXrmxYJeIKHKcp1TnTxsLURSxf2CNl+HGj9YFdM2WUyb0XbI5ioWJvAn6v5CSkhK/mXFFRQUqKipCDioULNglIoqcwSnVg8W2ABzDPslJCbhi9SsAgI8evQmWfv5RSfJiektERD45zy5yfu48pRoARumGnn/86E0ApOLeYNntYsjvpfigmuSFw0ZEROGh0QhBJyPO7fyt2uusx9IP/Rpp9d6PHr0JCUxgyIOo3FU6FCzYJSIKH41GCLknZHCI6Y0fzPfbtvCRodmqV6x+xdELQ+RMNckLERFFL0EQkDJstd5AdPVawxANxTomL0RERBRTVJO8cJE6IiL1GZzJRORMNckLa16IiGLH9IxRAICCaWN9bjUwuLqv3S6y/oUcVDPbiIiIYseLdxdjlC4BKUkJ6Lvke5ao3S5ixsC6MR8/ehOnUJN6el6IiCh2CAKQqk30u5N0r9WGTrPF8ZoFvASw54WIiKJYwcO7lQ6BopBqel5YsEtERBQfVJO8sGCXiEgd/C1mN7x4VxRF9Fr7uSN1HOGwERERRZVkH9Oj7aJr8a4gAIur69F07ByunXoZXloxjwW9cUA1PS9ERBTdvG3wmJKU4Jg6DQAXfcw+umi1O56fNVtx1mxF08CeSfuPn8cMbikQF9jzQkREEeFtg0dBEFBX+QVHj8rYUVqP75faDj1fXL0Xx872urXp6rUiY7ROpqgpGjF5ISKiiPE2pOOc2Fzs997z4lzW4ilxofigmmEjzjYiIoptgexcvbh6b4SioWimmuSFs42IiNTv9AWL/0akeqpJXoiIiIbjNGp1YvJCRERR718PlgT9HlEUsbi6Hvo1O7Gkup4JjIoweSEioqin8bMHkid9l2yOadSNx8753QCSYgeTFyIiUh1puMg27Bg4hKQSnCpNRESqIopDq+46W1xdjwOnTCiYNhY1K4r97mhN0Ys9L0REpCoXnYaLnB04ZQLAISQ1UE3ywnVeiIjUISUpAQXTxrocm3RZiuNY/rSxyBmfOqJ7cAeB2KaaYSODwQCDwQCTyYT09HSlwyEiohAJgoCaFcXou2RDcqK0SaNGM3QsJSkBnT1WzH1kd8j3mFO1Ex8/ehM3cYxRqul5ISIi9RAEAanaRJdVdwePCYIAOcpVunqtI78IKYLJCxEREcUUJi9EREQUU1RT80JERBROzmvHpGoTONVaQUxeiIiI/BjcamBwCnb+tLF4iWvFKIbDRkREpCrhWEC3b9jaMU1cK0ZRTF6IiEhVljy5V+kQKMyiLnlpa2tDSUkJ9Ho9rrnmGtTU1CgdEhERRZlxqVqv5zpMlghGQkqIuuQlMTERGzZsQEtLC3bt2oX7778fZrNZ6bCIiCiKaDQCGh66cUTXEEXAbOmH2eJ7s0a7XeSKvFEm6gp2J06ciIkTJwIAsrKykJGRga6uLowaNUrhyIiIKJponIplp2eMQmtncH/oLqnei6NnewF4L8C120XMWP3KyIMlWQXd87Jnzx4sXLgQ2dnZEAQBtbW1bm2MRiNycnKQnJyMoqIiNDQ0hBRcU1MTbDYbpkyZEtL7iYgoPrx4dzEaf1ga1HsGExfAewEuV+GNTkH3vJjNZuTm5uKuu+7Cbbfd5nZ+69atqKysRHV1NYqKirBhwwYsWLAAhw4dwoQJEwAAeXl56O/vd3vvrl27kJ2dDQDo6urCHXfcgY0bN/qMx2KxwGIZGt80mUzBfktERBTjBEFae2Wk7APjQ3LteST39UgSdPJSVlaGsrIyr+fXr1+P5cuXY9myZQCA6upqbN++HZs2bcLKlSsBAM3NzT7vYbFYcOutt2LlypWYN2+ez7br1q3D2rVrg/smiIiIhrGLcAwRybFpo/OQEzeBlJesBbtWqxVNTU0oLR3qutNoNCgtLUV9fX1A1xBFEXfeeSduuOEG3H777X7br1q1Ct3d3Y5HW1tbyPETEVH8uvHxfzqeDw4XpSSF3pvjPOTE4Sd5yZq8dHZ2wmazITMz0+V4ZmYm2tvbA7rGW2+9ha1bt6K2thZ5eXnIy8vDe++957W9TqdDWlqay4OIiChQ0zOkCSGeplhzAd3oFHWzja677jrY7fag32c0GmE0GmGzccVDIiJylZmm87r+y4t3F2PuI7tdjtkHpk6HY7VeURTRd8mGlCTujxQqWXteMjIykJCQgI6ODpfjHR0dyMrKkvNWbgwGA1paWrBv376w3oeIiGJPzd3e6yc95Q+Fj9TBbhexpNp7yUMwiY1dFGG3i449kvRrduJrv9vrKOil4MiavGi1WuTn56Ours5xzG63o66uDsXFxXLeyo3RaIRer8fcuXPDeh8iIoo9oXRwnDjfh5ZT3mewLqmu97m4nbPCR+owY/UrMFuH9kjaf/w8Zqx+BbaBBMZuF5nMBCjo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF/a8EBHFt3AM8fjScsoU9OaM58zuhbtXDCQwM1a/ghmrX2ECE4Cga14aGxsxf/58x+vKykoAQHl5OTZv3oylS5fizJkzWLNmDdrb25GXl4cdO3a4FfESERHJKZZ3eT5yusfxvKvXiozROgWjiX5BJy8lJSV+u8kqKipQUVERclChYMEuERFRfIi6jRlDxWEjIiJSM1EU3TaSFEURvVbfG0uqUdRNlSYiIop1oiiizyrfSMDgLKXBYt/8aWNRc3cxljwpHSuYNhY1HjaWVCvVJC8cNiIiii/jUrUuz6NlFdvhiYYc+i7ZXK7XdOwcunqtjmONAxtLpmpV82vdJ9V8lwaDAQaDASaTCenp6UqHQ0REYabRCPj40Zscz6PF8ESD5Kea5IWIiOJPNCUtFDmqKdglIiJSihoLZ6P5e1JNzwtrXoiISAnONS4F08Ziy12FSoc0YsO/p2grBlZNzwunShMRkRKca1wGC2djiadtCaL9e1JN8kJERETBscfotgRMXoiIiEYghn7nu3GeXh4tU80DoZrkhbtKExFRpNlFYE7VTqXDiDuqSV5Y80JERJHmaZdou9PsnDd+MN/tvBKieeZQKFQz24iIiCgaFD5S53ieok1QMBJJtM8cCoVqel6IiIjUxtNMoGBF+8yhUDB5ISIiikIuM4E85C+eNn6UI9mJBUxeiIiIopDz7B9PtTXX//x1l9d2ETE57TkUqkleONuIiIjimXOCE0vTnkOhmuSFs42IiIgkfVabz5lFQ7OPIhiUjDjbiIiIKMoFkmQ4t7n+5687ZhZ5ajc4+2h6xiiP1/I26jQ4HKX0bt6q6XkhIiKKNHuEui4WV+/122bJk65tvM0scp591Nppdjtvt4seF96Lpq0EmLwQERGF6Au/+Kcs1xHhOxk4fcHi9xodJv9tAuGtXiaathJg8kJERBQh3jpqbv71m5ENxAu7XYxYb9JIsOaFiIgoTFKSEpCZpnP0inhbIK7faRgmJUmZVXntojQsFAvY80JERBQmggDU3D0v6Pco4WxP7EyvZvJCREQUJqKoXDISrLJfveHzfDQNJ6kmeeEidUREFG3UsI8QIE2ddt5wUmmqSV64SB0REVF4eNqeQEmqSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGJK1CUv58+fR0FBAfLy8jBnzhxs3LhR6ZCIiIgoikTdxoxjxozBnj17kJqaCrPZjDlz5uC2227D+PHjlQ6NiIgoYpTaoDEWRF3PS0JCAlJTUwEAFosFoihCjKL9FIiIiCIhVvZEUkLQycuePXuwcOFCZGdnQxAE1NbWurUxGo3IyclBcnIyioqK0NDQENQ9zp8/j9zcXEyePBkPPvggMjIygg2TiIiIVCro5MVsNiM3NxdGo9Hj+a1bt6KyshJVVVXYv38/cnNzsWDBApw+fdrRZrCeZfjj5MmTAIDLLrsM7777LlpbW/HCCy+go6PDazwWiwUmk8nlQUREpEYND92oyH2jbQAk6JqXsrIylJWVeT2/fv16LF++HMuWLQMAVFdXY/v27di0aRNWrlwJAGhubg7oXpmZmcjNzcUbb7yBxYsXe2yzbt06rF27NrhvgoiIKAZpFBpLWvLkXkXu642sNS9WqxVNTU0oLS0duoFGg9LSUtTX1wd0jY6ODly4cAEA0N3djT179mDWrFle269atQrd3d2OR1tb28i+CSIiIkRfb4OSOkwWpUNwIetso87OTthsNmRmZrocz8zMxMGDBwO6xrFjx/Cd73zHUaj7ve99D1dffbXX9jqdDjqdDkajEUajETabbUTfAxERERB9vQ2hsKs0AYu6qdKFhYUBDys5MxgMMBgMMJlMSE9Plz8wIiKKK9HW2xCKOVU7lQ4hLGQdNsrIyEBCQoJbgW1HRweysrLkvJUbo9EIvV6PuXPnhvU+REREscyugvEwWZMXrVaL/Px81NXVOY7Z7XbU1dWhuLhYzlu5MRgMaGlpwb59+8J6HyIiolhW+Eid/0ZRLuhho56eHhw5csTxurW1Fc3NzRg3bhymTp2KyspKlJeXo6CgAIWFhdiwYQPMZrNj9hERERHRSASdvDQ2NmL+/PmO15WVlQCA8vJybN68GUuXLsWZM2ewZs0atLe3Iy8vDzt27HAr4pUbC3aJiIjiQ9DJS0lJid/l+isqKlBRURFyUKFgwS4REVF8iLq9jYiIiIh8UU3ywtlGRERE8UE1yQtnGxEREcUH1SQvREREamAXAbtal8aVCZMXIiKiKDKnaidmrH5FtUv7y0E1yQtrXoiIyJPpGaOQnJSgdBhBO2e2Kh1C1FJN8sKaFyIi8uTFu4shCEpHQXJSTfJCRETkCRMX9WHyQkREFCFq2BQxGjB5ISIiipCyX72hdAiqoJrkhQW7RERE8UE1yQsLdomIiOKDapIXIiIitWPJjITJCxERUYy4eMmmdAhRgckLERERxRQmL0RERBRTVJO8cLYRERFRfFBN8sLZRkRERPFBNckLERERxQcmL0RERFGIWwl4x+SFiIgoCn3hF/9UOoSoxeSFiIiIYgqTFyIiIoopTF6IiIgopqgmeeE6L0RERPFBNckL13khIiKKD6pJXoiIiCg+MHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYkrUJi+9vb2YNm0aHnjgAaVDISIioigStcnLI488gs9+9rNKh0FERERRJiqTl8OHD+PgwYMoKytTOhQiIiKKMkEnL3v27MHChQuRnZ0NQRBQW1vr1sZoNCInJwfJyckoKipCQ0NDUPd44IEHsG7dumBDIyIiojiQGOwbzGYzcnNzcdddd+G2225zO79161ZUVlaiuroaRUVF2LBhAxYsWIBDhw5hwoQJAIC8vDz09/e7vXfXrl3Yt28fZs6ciZkzZ2Lv3r1+47FYLLBYLI7XJpMp2G+JiIiIYkjQyUtZWZnP4Zz169dj+fLlWLZsGQCguroa27dvx6ZNm7By5UoAQHNzs9f3v/322/jTn/6Empoa9PT04NKlS0hLS8OaNWs8tl+3bh3Wrl0b7LdBREREMUrWmher1YqmpiaUlpYO3UCjQWlpKerr6wO6xrp169DW1oajR4/isccew/Lly70mLgCwatUqdHd3Ox5tbW0j/j6IiIgoegXd8+JLZ2cnbDYbMjMzXY5nZmbi4MGDct7KQafTQafTheXaREREFH1kTV7kdueddwbc1mg0wmg0wmazhS8gIiIiUpysw0YZGRlISEhAR0eHy/GOjg5kZWXJeSs3BoMBLS0t2LdvX1jvQ0RERMqSNXnRarXIz89HXV2d45jdbkddXR2Ki4vlvJUbo9EIvV6PuXPnhvU+REREpKygh416enpw5MgRx+vW1lY0Nzdj3LhxmDp1KiorK1FeXo6CggIUFhZiw4YNMJvNjtlH4WIwGGAwGGAymZCenh7WexEREZFygk5eGhsbMX/+fMfryspKAEB5eTk2b96MpUuX4syZM1izZg3a29uRl5eHHTt2uBXxEhEREYUi6OSlpKQEoij6bFNRUYGKioqQgwoFC3aJiIjiQ1TubRQKFuwSERHFB9UkL0RERBQfVJO8cLYRERFRfFBN8sJhIyIiovigmuSFiIiI4gOTFyIiIoopqkleWPNCREQUH1STvLDmhYiIKD6oJnkhIiKi+MDkhYiIiGKKapIX1rwQERHFB9UkL6x5ISIiig+qSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiimqSV4424iIiCg+qCZ54WwjIiKi+KCa5IWIiIjiA5MXIiIiiilMXoiIiCimMHkhIiIKk3GpWqVDUCUmL0RERGHw/toF0GgEpcNQJSYvREREYcC8JXyYvBAREVFMUU3ywkXqiIiI4oNqkhcuUkdERBQfVJO8EBERUXxg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCREREMSVR6QDkJooiAMBkMikcCY3YRRtgkT5P9F0Cgv1Me3qH3m+2eH9/T99Qu0HmvuDvN1L9Fqd4g7z/SP6diFTigtnq+fiFC77f5+d8qEymC+jXJuBCz0XZrnmhp0e2a43EhQsXoLVbZL3m4O/twd/jvghiIK1iyCeffIIpU6YoHQYRERGFoK2tDZMnT/bZRnXJi91ux8mTJzFmzBgIgqB0ODTAZDJhypQpaGtrQ1pamtLhUBD42cUufnaxKx4/O1EUceHCBWRnZ0Oj8V3VorphI41G4zdjI+WkpaXFzQ+i2vCzi1387GJXvH126enpAbVjwS4RERHFFCYvREREFFOYvFBE6HQ6VFVVQafTKR0KBYmfXeziZxe7+Nn5prqCXSIiIlI39rwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCUau3txfTpk3DAw88oHQoFKC2tjaUlJRAr9fjmmuuQU1NjdIhkQ/btm3DrFmzcNVVV+Hpp59WOhwKEH/OOFWaothDDz2EI0eOYMqUKXjssceUDocCcOrUKXR0dCAvLw/t7e3Iz8/Hhx9+iFGjRikdGg3T398PvV6P119/Henp6cjPz8fevXsxfvx4pUMjP/hzxp4XilKHDx/GwYMHUVZWpnQoFISJEyciLy8PAJCVlYWMjAx0dXUpGxR51NDQgNmzZ2PSpEkYPXo0ysrKsGvXLqXDogDw54zJC4Vgz549WLhwIbKzsyEIAmpra93aGI1G5OTkIDk5GUVFRWhoaAjqHg888ADWrVsnU8Q0KBKf3aCmpibYbDZMmTJlhFGTJyP9LE+ePIlJkyY5Xk+aNAknTpyIROhxT86fw3j9OWPyQkEzm83Izc2F0Wj0eH7r1q2orKxEVVUV9u/fj9zcXCxYsACnT592tMnLy8OcOXPcHidPnsRf//pXzJw5EzNnzozUtxQ3wv3ZDerq6sIdd9yBp556KuzfU7yS47MkZcj12cX1z5lINAIAxJdfftnlWGFhoWgwGByvbTabmJ2dLa5bty6ga65cuVKcPHmyOG3aNHH8+PFiWlqauHbtWjnDJjE8n50oiuLFixfF66+/Xnz22WflCpX8COWzfOutt8Rbb73Vcf6+++4Tn3/++YjES0NC/TmM958z9ryQrKxWK5qamlBaWuo4ptFoUFpaivr6+oCusW7dOrS1teHo0aN47LHHsHz5cqxZsyZcIdMAOT47URRx55134oYbbsDtt98erlDJj0A+y8LCQrz//vs4ceIEenp68Oqrr2LBggVKhUwDAvns+HPGYSOSWWdnJ2w2GzIzM12OZ2Zmor29XaGoKBByfHZvvfUWtm7ditraWuTl5SEvLw/vvfdeOMIlHwL5LBMTE/H4449j/vz5yMvLw//+7/9yplEUCOSz488ZkKh0AES+3HnnnUqHQEG47rrrYLfblQ6DAnTLLbfglltuUToMChJ/ztjzQjLLyMhAQkICOjo6XI53dHQgKytLoagoEPzs1IOfZeziZxcYJi8kK61Wi/z8fNTV1TmO2e121NXVobi4WMHIyB9+durBzzJ28bMLDIeNKGg9PT04cuSI43Vrayuam5sxbtw4TJ06FZWVlSgvL0dBQQEKCwuxYcMGmM1mLFu2TMGoCeBnpyb8LGMXPzsZKD3diWLP66+/LgJwe5SXlzvaPPHEE+LUqVNFrVYrFhYWim+//bZyAZMDPzv14GcZu/jZjRz3NiIiIqKYwpoXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYgqTFyIiIoopTF6IiIgopjB5ISIiopjC5IWIiIhiyv8HsaIGE8ncHK0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray import LombScargleCrossspectrum\n", + "from stingray.gti import cross_two_gtis\n", + "gti = cross_two_gtis(ev1.gti, ev2.gti)\n", + "ev1.gti = gti\n", + "ev2.gti = gti\n", + "lscs = LombScargleCrossspectrum(ev1, ev2, dt=dt, norm=\"leahy\")\n", + "lscs_reb = lscs.rebin_log(0.01)\n", + "\n", + "cs = AveragedCrossspectrum(ev1, ev2, dt=0.001, segment_size=256, norm=\"leahy\")\n", + "cs_reb = cs.rebin_log(0.02)\n", + "\n", + "# plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "# plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "# plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.plot(cs_reb.freq, cs_reb.power, ds=\"steps-mid\", label=\"AveragedCrossspectrum\", zorder=10)\n", + "plt.loglog()\n", + "good = lscs_reb.freq < maxfreq / 2\n", + "lscs_reb.freq = lscs_reb.freq[good]\n", + "lscs_reb.power = lscs_reb.power[good]\n", + "lscs_reb.unnorm_power = lscs_reb.unnorm_power[good]\n", + "plt.plot(lscs_reb.freq, lscs_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle cross spectrum\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7fe119a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb.txt b/_sources/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb.txt new file mode 100644 index 000000000..15cfb62df --- /dev/null +++ b/_sources/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb.txt @@ -0,0 +1,733 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gaussian Processes Inferencing in Stingray\n", + "\n", + "## Gaussian Processes in Astronomy\n", + "\n", + "Please Note: this functionality is still under development. Testing and comments are welcome!\n", + "\n", + "Gaussian Processes (GPs) are a powerful class of Statistical Models, that help us model both the deterministic and stochastic part of a random process. We model the covaraince between pairs of samples (using the kernel function) and the underlying deterministic function (using the mean function) and fit or infer from the data set. \n", + "\n", + "GP Regression and inferencing (GPR) has become increasingly popular in the astronomical community over the last decade as it can model non-trivial random or unkown signals. Sometimes, we are interested in the stochastic behaviour itself, and we can\n", + "infer its characteristics or predict its behaviour using Gaussian Processes.\n", + "\n", + "\n", + "While we can use GP's to produce models for various signals, we often have to identify if the particular time-series has a particular signal and we resort to Bayesian Model Comparison. We compare the two models by the Bayes factor, which is the ratio of the evidences of two comparing models. Since Evidence Calculation is a difficult problem, we will use Nested Sampling, with the Jaxns library to get the Bayes Factor." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Sample Lightcurve\n", + "As an example demonstrating the use of gpmodeling in Stingray, we will make a sample lightcurve based on a QPO (quasi periodic signal), and use the ratio of Evidence of the following two models to identify whether the signal contains a Quasi-Periodic Signal or not. \n", + "\n", + "The two models being:\n", + "\n", + "1. A RN (Red-Noise) model, which has a Red noise kernel and Gaussian function for its mean.\n", + "2. A QPO_plus_Rn (QPO + RN) model, which uses a QPO kernel and a double skew gaussian function for its mean.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note:** It is important to enable 64 bit precision for the Jaxns sampling to work properly." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Importing the necessary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import jax\n", + "import jax.numpy as jnp\n", + "import seaborn as sns\n", + "sns.set_style('whitegrid')\n", + "\n", + "from tinygp import GaussianProcess, kernels\n", + "from stingray import Lightcurve\n", + "\n", + "# suppress warnings\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "# Important to enable 64-bit precision\n", + "jax.config.update(\"jax_enable_x64\", True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For making the **Toy Lightcurve**, we will use a GP with a QPO_plus_RN kernel, and a Skew-Gaussian Mean function and take a sample from it. We will also add a jitter term to introduce some noise into the sample.\n", + "\n", + "We will need a kernel and a mean function to make the GP. We can either make our own kernels using Tinygp or we can get some useful kernels using the `gpmodeling.get_kernel` function. \n", + "\n", + "**`get_kernel`** function takes the kernel type (QPO_plus_RN and RN), and the kernel parameters and returns a TinyGp kernel for it.\n", + "\n", + "Similarly for the mean function, we can make our own or use `gpmodeling.get_mean` function." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling.gpmodeling import get_kernel, get_mean\n", + "\n", + "times = np.linspace(0,1,256)\n", + "\n", + "# We will take suitable parameters for a high amplitude QPO with a double skew gaussian mean\n", + "kernel_params = {\"arn\" : jnp.exp(1.5), \"crn\" : jnp.exp(1.0),\n", + " \"aqpo\": jnp.exp(-0.4), \"cqpo\": jnp.exp(1), \"freq\": 20,}\n", + "kernel = get_kernel(kernel_type = \"QPO_plus_RN\", kernel_params = kernel_params)\n", + "\n", + "mean_params = {\"A\" : jnp.array([3.0, 4.0]), \"t0\" : jnp.array([0.2, 0.7]), \n", + " \"sig1\" : jnp.array([0.2, 0.1]), \"sig2\" : jnp.array([0.3, 0.4]), }\n", + "\n", + "mean = get_mean(mean_type = \"skew_gaussian\", mean_params = mean_params)\n", + "\n", + "jit = 1e-1\n", + "gp = GaussianProcess(kernel = kernel, X = times, mean_value = mean(times), diag = jit)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting the Sample Lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAINCAYAAABI07hMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU9f348dfM3tlcnCFkuS9BLgVvrQcoalU82p+1h7TSSm3VamutWDWittazHm0VKyrf1l62ile973qjoiiggAgkECCQc+/dmd8fs7PZJJtkk+yV5P18PPZBluxuPpvs7M68530ouq7rCCGEEEIIIYQQQoh+R831AoQQQgghhBBCCCFEZkjgRwghhBBCCCGEEKKfksCPEEIIIYQQQgghRD8lgR8hhBBCCCGEEEKIfkoCP0IIIYQQQgghhBD9lAR+hBBCCCGEEEIIIfopCfwIIYQQQgghhBBC9FMS+BFCCCGEEEIIIYTop6y5XkCmaJpGJBJBVVUURcn1coQQQgghhBBCCCHSQtd1NE3DarWiqp3n9PTbwE8kEmHt2rW5XoYQQgghhBBCCCFERsyYMQO73d7pbfpt4MeMeM2YMQOLxZLj1fRMNBpl7dq1ffo5CJFusl0I0ZpsE0K0JtuEEO3JdiFEa/1hmzCfQ1fZPtCPAz9meZfFYumzf0hTf3gOQqSbbBdCtCbbhBCtyTYhRHuyXQjRWn/YJlJpbSPNnYUQQgghhBBCCCH6KQn8CCGEEEIIIYQQQvRTEvgRQgghhBBCCCGE6Kf6bY8fIYQQQgghhBBCZJeu60QiEaLRaK6X0iFzbYFAIG97/FgsFqxWa0o9fLoigR8hhBBCCCGEEEL0WigUYufOnfh8vlwvpVO6rmO1Wtm6dWtaAiuZUlBQQHl5eZfj2rsigR8hhBBCCCGEEEL0iqZpbNmyBYvFwsiRI7Hb7XkbVNF1Hb/fj8vlyss16rpOKBRiz549bNmyhUmTJqU0tr0jEvgRQgghhBBCCCFEr4RCITRNY9SoURQUFOR6OZ3SdR1N03A6nXkZ+AFwuVzYbDa2bt1KKBTC6XT2+LGkubMQQgghhBBCCCHSojeZKaK1dP0u5S8ihBBCCCGEEEII0U9J4EcIIYQQQgghhBCin5LAjxBCCCGEEEIIIQasKVOmMGXKFHbs2NHue3//+9+ZMmUKd999dw5Wlh4S+BFCCCGEEEIIIcSAZrPZePnll9v9/4svvpi3DaBTJYEfIYQQQgghhBBCDGhz585tF/hpbm7mo48+Ytq0aTlaVXpI4EcIIYQQQgghhBCZoesQ8Wb3ouvdXua8efN47733aG5ujv/fq6++yty5c3G73a1u+49//IPjjjuOAw44gO9973t8/vnn8e/t2rWLiy++mIMOOojp06dzxhln8MEHHwBQVVXFlClTeP7555k/fz4zZsxgyZIl1NfX9+x3myJrRh9dCCGEEEIIIYQQA5OuwwtHQu1b2f25w46A+W9AN0q0Jk+eTFlZGa+//jonn3wyAC+88ALz58/nySefjN/u5Zdf5g9/+APXX38948aNY9WqVZx77rk8//zzlJSUcNlll1FcXMw//vEPdF3n1ltv5dprr231GPfeey+33347uq5zwQUX8OCDD3LppZem7/m3IRk/QgghhBBCCCGEyIw+1B9n3rx58XKvUCjEm2++ybx581rd5v7772fJkiUce+yxjB07lksuuYSKigqeeOIJdF1n/vz5XH311UyYMIGJEyfyne98h02bNrV6jIsvvpiZM2cya9YsTj31VNauXZvR5yUZP0IIIYQQQgghhEg/RTEyb6K+7P5cS0GPAk7z5s3j4osvJhKJ8PbbbzN58mSGDBnS6jabN2/mlltu4fbbb4//XzAY5KuvvkJRFM455xz++9//8uGHH7JlyxY+/fRTNE1r9RhjxoyJf11YWEg4HO72WrtDAj9CCCGEEEIIIYTIDEUBq7vr2+WBOXPmAPDBBx/w4osvcvzxx7e7TTQa5corr+Swww5r9f+FhYVomsZ5551HY2MjJ598MscddxzhcJgLL7yw1W1tNlvmnkQSEvgRQgghhBBCZITX66WwsBAwpuO0bZAqhBD5xGq1cvTRR/Pyyy/zyiuvcP7557e7zbhx46ipqWmVtbN06VLmz5/PqFGjeP/993n77bcZPHgwAA8//DAAeg8aTqeL9PgRQgghhBBCCCGEwCj3euSRRxgyZAijRo1q9/0f/OAHrFy5klWrVrFt2zZuueUWnnnmGSZMmEBxcTGqqvL0009TXV3Ns88+y9133w0YPYNyRTJ+hBBCCCGEED3SnYye6upqJk+enK2lCSFEjxx55JFEIhHmz5+f9Psnn3wytbW13HXXXdTW1jJx4kTuuecexo4dC8C1117LH//4R26//XbGjRvHVVddxa9+9SvWrVvHsGHDsvhMWkjgRwghhBBCCJERK1eujH89depU7rvvPhYvXpzDFQkhRHuff/55/Gu3280nn3zS6vt/+ctfWl0/99xzOffcc5M+1tlnn83ZZ5/d6v9OOeWUpD8L4KKLLurRmrtDSr2EEEIIIYQQaVdVVdXqgEbTNJYsWUJVVVUOVyWEEAOPBH6EEEIIIYQQvVZdXd3q+saNG9uNMI5Go2zatCmbyxJCiAFPAj9CCCGEEEKIHmlbyrVixYr49UmTJqGorQ83LBYLEydOzNr6hBBCSOBHCCGEEEII0QNdlXJVVFTw7UuXAQpgBH2WL1+Ox+PJxXKFEGLAkubOQgghhBBCiG7rrJTL4/GwpynIzONO54nXPkALNPHKX+/koFn752i1QggxcEngRwghhBBCCNFtkyZNQlXVVsGfxFKuTXuaAVAdBaiOAgYNG5GTdQohxEAnpV5CCCGEEEKIbvN4PFx/8+2YpVyKqvLb2+6Kl3Jt3uNtdXt/OJrtJQohhEAyfoQQQgghhBA9dPKZ3+J3/3gVLdDExb+8gmmzpwFQ7wtR2xTEYXew/Pc3sqM+gGJ15Hi1Qoi+wuv1UlhYCEBzczNutzvHK+rbJONHCCGEEEII0SNNwSiqowDFaqd06Ag2VNeh2p2MmDyLcDiEZ5CL0gI7IBk/Qoi+4+677+Z73/tel7cLhUL861//ysKKekcCP0IIIYQQQoge8QYjAETqdjC8yIGm69iHj8M6eBQAE4YX4rJZAPCHJPAjhOhfnn76ae69995cL6NLEvgRQgghhBBC9EgIK5WVlbzzxqvMGTccAHv5FKzFQwGYMMyNy24EfnwS+BFC9DO6rud6CSmRwI8QQgghhBCiR5oCYQAKnVYmjyjEZlEBhUj9bqz+OoqctnjGT0BKvYQQPVBdXZ3xn7Fp0ybOOeccZs2axbnnnktdXV38e4888ggnnngi06dP55BDDmHZsmVEo1Heffddli5dSnV1NVOmTKGqqorm5maWLl3KYYcdxvTp0znxxBN58cUXM77+rkjgRwghhBBCCNEjzQGj1KvIacVhtfDlm0/RtHoV3s9e4pf/7xhWrFgRz/iRHj9CiFStXLky/vXUqVNZsWJFxn5WKBTi/PPPZ9SoUTz66KMsWLCAf/7znwC899573HDDDfz85z/n2WefZdmyZfz73//mpZde4oADDuDKK69kxIgR/O9//6O8vJzf/OY3bNmyhQceeICnnnqKuXPn8utf/5pQKJSx9acirwM/oVCIZcuWcdBBB3H44Ydz++2395lUKiGEEEIIIfqzcFSLl28VO21UVVXxp98sjX9f0zSWLFlC3e6dgPT4EUKkpqqqiosuuih+3XwvqaqqysjPe+utt6ivr+faa69lwoQJfOc732H+/PkAFBQU8Jvf/IYTTjgBj8fDiSeeyLRp09i4cSN2u52ioiIsFgvDhg3DYrFw0EEHcd111zF16lTGjh3LeeedR319PXv37s3I2lOV1+Pcb7jhBt59911WrFiB1+vl0ksvZeTIkXzrW9/K9dKEEEIIIYQY0MxsH5tFwWFV2bhxI5qmtbpNNBpl57avwDpGMn6EECnp6L1k06ZNeDyetP+8TZs2MXbsWAoKCuL/N2PGDF577TWmT5+O0+nkrrvuYtOmTXz++eds3bqVI488MuljnX766bz44ov861//4ssvv+Szzz6Lrz+X8jbjp76+nv/85z9cf/31zJw5k8MOO4zzzjuPjz/+ONdLE0IIIYQQYsBrDpplXjYURWHSpEmoauvDC4vFwtT9JgMQimhEolq7xxFCiEQdvZdMnDgxYz+zbWWRzWYD4I033uDMM8+ktraWo446irvuuosDDzyww8e5/PLLuemmmyguLuacc85h+fLlGVtzd+Rtxs8HH3xAYWEhBx98cPz/zj///ByuSAghhBBCCGFqjDV2LnIahxQej4e7776bn/70p4BxoLZ8+XImjB2NunkTmq7jD0cpsuTtuWchRB7o6L0kE9k+YASavvrqK5qamigqKgJg/fr1gNHY+ayzzqKyshKASCTCtm3bOPTQQwFQFCX+OM3NzTz11FP861//YubMmQC89tprQO6nf+Xtu+727dupqKhg1apVnHjiicybN48//vGP7VK+hBBCCCGEENnXFCv1KnS0nEtetGhR/Ot169axePFiFEXBZTcOO6TcSwiRimTvJZly+OGHU15ezq9//Ws2b97Mo48+yn//+18ASktL+eijj/j888/ZuHEjV1xxBXv27Ik3a3a5XDQ0NPDVV19ht9txuVw8//zzVFVV8cYbb3DdddcB5Ly5c95m/Ph8PrZu3co//vEPbrzxRvbs2cM111yDy+XivPPOS/lxcl1L1xvm2vvycxAi3WS7EKI12SaEaE22iexp9IXQdQ23XU36ex8xYkT8usOi0qyHafaHGVJgy8l6BzLZLkQ2RKNRdF2PX3oj8f4jR45Me8aM+Xi6rmO1Wlm+fDlXXXUVZ5xxBlOmTOHb3/42n376KT/96U9ZunQpZ599NoWFhRx99NGcc845rFu3Dl3XOeSQQxg9ejSnnnoqDz/8MLfccgs33XQTf/nLX/B4PFxwwQXccccdrFu3jvHjx/donbquE41G222/3dmeFT3XOUcduO+++7jtttt4+eWXqaioAOChhx7i73//O88991yX949Go6xZsybDqxRCCCGEEGJgem2rn5rmCAeNdDJ+UOfBnJe/8rHHG+VQj5MxJRL4EaK/slqtjBo1CofD0avH8Xq9lJWVAbBr1y7cbnc6ltfnBINBtm/fTiQS6fA2s2fPxmKxdPo4eZvxM2zYMBwORzzoAzBu3Dh27tzZrceZMWNGl7+EfBWNRlm7dm2ffg5CpJtsF0K0JtuEEK3JNpE9awNboTDEnJkVjBlS0Oltd1hqsOxuYsz4YcweVZqdBYo42S5ENgQCAbZu3YrL5cLpdPbqsRLzUwoKClpN3EoHXdfx+/24XK5WfXryjaqq2Gw2Jk6c2O53am7XqcjbwM+sWbMIBoNs2bKFcePGAfDll1+2CgSlwmKx9Pk3t/7wHIRIN9kuhGhNtgkhWpNtIvO8IQ1FUSl1O7r8XbudVhRFJRjV5e+SQ7JdiEyyWCwoihK/9EZhYWFWGiKnY62ZZK6vt9tu3jZ3Hj9+PMcccwxLly5lw4YNvPHGG9x3332cc845uV6aEEIIIYQQA1ogHCUUMYauJDZ37ojTZonfTwghRHblbcYPwK233sr111/POeecg8vl4jvf+Q7f+973cr0sIYQQQgghBrTmoNFvwmmzYLd2fS7ZFQv8+EIS+BFCiGzL68BPUVERN998c66XIYQQQgghhEhgjnIvcqZ2OFFgN27nl8CPEEJkXd6WegkhhBBCCCHyU1MgDKQe+HFJqZcQA0aeDg7vk9L1u5TAjxBCCCGEEKJbmruZ8eO0G4cdfgn8CNFv2Ww2AHw+X45X0n+Yv0vzd9tTeV3qJYQQQgghhMg/jfHAT2oHI2bGjz+koet6Xk/REUL0jMViobS0lN27dwPGGPZ83dZ1XScYDKKqal6uUdd1fD4fu3fvprS0tNfT+CTwI4QQQgghhOgWs9QrlYle0BL40XSdYESLT/kSQvQvI0aMAIgHf/KVruuEw2FsNlteBn5MpaWl8d9pb0jgRwghhBBCCNEt5lSvVEu9rBYVu1UlFNHwh6IS+BGin1IUhfLycoYPH044HM71cjoUjUbZsGEDEydO7HU2TabYbLa0rU0CP0IIIYQQQoiU6bre0uPHkXrfCZfNYgR+wlEGZWpxQoi8YLFY8jagAkbgB8DpdOb1OtNFmjsLIYQQQgghUuYLRYloOooChSlm/AC47Jb4/YUQQmSPBH6EEEIIIYQQKfF6vZQMLWPZsmXY0LCoqffGKLDLSHchhMgFCfwIIYQQQgghUqY4CgBwO7pXHmH29ZGR7kIIkV0S+BFCCCGEEEKkTHW4AShKcaKXqWWkuwR+hBAimyTwI4QQQgghhEiZolqJ1O/C37CnW/eTHj9CCJEbEvgRQgghhBBCpGTlypUEqz7D+9lLLDrxMFasWJHyfc2MH+nxI4QQ2SWBHyGEEEIIIUSXqqqquOiii+LXNU1jyZIlVFVVpXR/M+NHevwIIUR2SeBHCCGEEEII0aWNGzeiaVqr/4tGo2zatCml+0uPHyGEyA0J/AghhBBCCCG6NGnSJFS19eGDxWJh4sSJKd3fJVO9hBAiJyTwI4QQQgghhOiSx+Nh2U23AQpgBH2WL1+Ox+NJ6f5mqVcoohGJal3cWgghRLpI4EcIIYQQQgiRknmnnU3R3IU4Rs9k3bp1LF68OOX7OqwqqmIEjSTrRwghskcCP0IIIYQQQoiU1PnCqI4CFEWhoqKiW/dVFAWX3Tj8kMCPEEJkjzXXCxBCCCGEEEL0Dd6IQmVlJQv2H4Hb7e72/V02C95gVBo8CyFEFknGjxBCCCGEECIl+7whAIYU2nt0f1WPsmzZMibttz9erzedSxNCCNEBCfwIIYQQQgghuuQPRfHFMnUGFfQs8OOyGYcfis2RtnUJIYTonAR+hBBCCCGEEF3a6w0CUOyyYbf27DDCGRvpLoEfIYTIHgn8CCGEEEIIIbpU5w0DMMTds2wfAKdNRQv60CMhqqur07U0IYQQnZDAjxBCCCGEEKJLZsbPoF4Efl5c9U+aVq8itONzpk6dyooVK9K1PCGEEB2QwI8QQgghhBCiS/HGzj0M/FRVVXHTNZfHr2uaxpIlS6iqqkrL+oQQQiQngR8hhBBCCCFEl8zAz+AeBn42btyIpmmt/i8ajbJp06Zer00IIUTHJPAjhBBCCCGE6FQwEqUpEAF6HviZNGkSqtr68MNisTBx4sRer08IIUTHJPAjhBBCCCGE6JSZ7VPosMYnc3WXx+PhptvuABTACPosX74cj8eTplUKIYRIxprrBQghhBBCCCHyW2/LvEzf//4irnv4ZbRAE+8/8kem7jclHcsTQgjRCQn8CCGEEEIIIToVD/wU9i7w47CqqI4CVEcBQ8vK07E0IYQQXZBSLyGEEEIIIUSn4oGfgt4FflRFQY+GAQhFtC5uLYQQIh0k40cIIYQQQgiRlNfrpbCwkKI5p3HVdb/pdamX2+3mtpt/R1Mggmp3pGmVQgghOiMZP0IIIYQQQoiOqRZUpxuAIb0s9QLizaGDYcn4EUKIbJDAjxBCCCGEEKJDqqOQSP1uAvV7KLD3vmDAYTUOQQKRaK8fSwghRNck8COEEEIIIYRIauXKlWj+BryfvcS135vPihUrev2YkvEjhBDZJYEfIYQQQgghRDtVVVVcdNFF8eu6prFkyRKqqqp69bjxjJ+wZPwIIUQ2SOBHCCGEEEII0c7GjRvRtNZZOdFolE2bNvXqceMZPzLVSwghskICP0IIIYQQQuQZr9eLoigoioLX683JGiZNmoSqtj5csFgsTJw4sVePKxk/QgiRXRL4EUIIIYQQQrTj8Xi4++6749dVi4Xly5fj8Xh69biS8SOEENklgR8hhBBCCCFEUosWLcI943jc0+fx6jsfsXjx4l4/psNmHIK0DfzkQ5aTEEL0RxL4EUIIIYQQIo9VV1fn9OdbCoqxlpQxdnTvMn1MTquR8SOlXkIIkR0S+BFCCCGEECLPrFy5Mv711KlT0zJGvSd0XUex2oGWTJ3e6ijjJ1Gug11CCNGfSOBHCCGEEEKIPNJ2jLqmafzwhz/MSQmU1eGisvJaKisrGVxclJbHdHSQ8ZMvwS4hhOhvJPAjhBBCCCFEHkk2Rj1XgmFjHTaLgtWSnkMHZyzjJxTR0DQdSB7sWrJkCVVVVWn5mUIIMZBJ4EcIIYQQQog8MmnSJBQ1P3bTgxEjK8fM0kmHxMcyy72SBbui0SibNm1K288VQoiBKj8+UYQQQgghhBCAMUb9B7+8AVAAUFQV+8j9QLVkvfdNIJbxk67+PgAWVcFuNfv8GIGlSZMmobYJdlksFiZOnJi2nyuEEANVXgd+XnjhBaZMmdLqcvHFF+d6WUIIIYQQQmTUgcefQdHchahFQznlBz8jtGMDaNGs974xAzPONGb8ADhigR8zsOTxeLj77rvj31dVleXLl+PxpGeSmBBCDGTWXC+gM5s2beLYY4/l+uuvj/+fw+HI4YqEEEIIIYTIrKim4wtGUR0FaP4mnn7wzvj3zN43CxYsyEpQJBMZP8bjWWgKROKBJYBFixZx+X1PQjTMDcsqWXzmUWn9mUIIMVDldeBn8+bNTJ48mWHDhuV6KUIIIYQQQmRFUyCMjg5aFCJB2rZ5NnvfZCPwk4keP8bjtc74AdB0HWvhIEChYNDwtP48IYQYyPK61Gvz5s2MHTs218sQQgghhBAia5oCEWw2O3fe+ju2b9+e0943mcr4cdqMQFJixo8/FMXsa+RrM+pdCCFEz+Vtxo+u62zZsoX//e9/LF++nGg0yoknnsjFF1+M3W5P+XGi0b77oWGuvS8/ByHSTbYLIVqTbUKI1vrDNlHnDaLrGm67Snl5OXfeeWd81Lmqqtxzzz2Ul5dn5Tn6Q2F0XcOupvd3alNB1zX8wUj8cSOKlWuuuRoADQiFI1hUJW0/cyDrD9uFEOnUH7aJ7qw9bwM/O3bswO/3Y7fbueOOO6iqquKGG24gEAhw1VVXpfw4a9euzeAqs6M/PAch0k22CyFak21CiNb68jaxdneQmj0hCoI21ih7mD17NmpBKa7xc/j+eT/kwAMnsWbNmqys5fOqADUNYbZRh7Nxe9oet7omSM3eEJ9F9mGtN3p47miKUFPjj9/mvQ+acKU502ig68vbhRCZMFC2ibwN/FRUVPDuu+9SUlKCoihMnToVTdP45S9/ydKlS7FYUqsznjFjRsq3zTfRaJS1a9f26ecgRLrJdiFEa7JNCNFaf9gmdq/bxT5LI7MnDGH22MF4vV70cABrSRmjJu/PjJlTs5YJs0WvJuTyMWNaGVPLi9P2uMEt+2j8ci+ekSXMnmr087FUNzAitDt+m4n7jWZYkQx2SYf+sF0IkU79YZswn0Mq8jbwA1BaWtrq+oQJEwgGgzQ0NDB48OCUHsNisfTZP6SpPzwHIdJNtgshWpNtQojW+vI20RyMoigqJQWO+PPQwwHQNRRFIRDVKbZlZzc+rIGiqLgctrT+Pl12K4qiEtL0+OP6wzqK0pLhE4zqffZvmK/68nYhRCYMlG0ib3Mn33jjDQ455BD8/pZ0z/Xr11NaWppy0EcIIYQQQoi+pjEQAaDYZQPA7Xaj6zq33fRbbDY7zbHvZ0Mg1mTZbMacLvHmzglTvXyh1s/LLw2ehRAiLfI28HPAAQfgcDi46qqr+PLLL3nttde4+eab+eEPf5jrpQkhhBBCCJERmqbHAzvFztZZPUUO43pzMHuBn2AkNtXLmt7Dhvg494SpXm2fly8kgR8hhEiHvA38FBYWsmLFCvbt28dZZ53Fr3/9a84++2wJ/AghhBBCiH6rORRB03VURcFtbx34KXRmN/Cj63o8IycbGT/eoBHoMTOd/BL4EUKItMjrHj+TJk3iwQcfzPUyhBBCCCGEyIpGfxiAIqcVtU0D50Iz4ydLpV6hqIam60B2Mn7MUq+hhXYa/WEJ/AghRJrkbcaPEEIIIYQQA01Tm/4+ibKd8ROIZeNYVQWbJb2HDWbGTyiioes6mqbHM36GFRqTvHzS40cIIdIirzN+hBBCCCGEGEgSM37aKspyxk8wlo3jsKX/XLGZ8aPrRh+hqKaj6TqKAkNigR9/KHu9jIQQoj+TjB8hhBBCCCHyRHyil7PjjJ+mLGX8ZKq/D4DVomKzKPGf440FeVw2C25HbLy7lHoJIURaSOBHCCGEEEKIPNEUMDJ+il3tM34Se/zosd47mRTP+Elzfx+Tw2oEeAKRaLzMy+2wUhBrai2lXkIIkR4S+BFCCCGEECJPmKVeyTJ+3HYrigKarmdl1LnZ48cM0KSbM1ZCFgxreGNZTIUOKwX2lolfUS3zAS4hhOjvpMePEEIIIYQQeUDX9ZbmzkkCP6pqjHhvDkZoDkZwOzKwKx+ohbqPoOFTgtsaYbsN5+7NUPU/0EKghY1/FQVspWAfZFxcI6BoChRPgeL9oGgiqO2fQyIzoBSMROOBnwK7BYdVRVUUNF3HH47GM52EEEL0jLyLCiGEEEIIkQd8oSgRzWhwXJikuTMY/98cjNAUiFBW3MsfqOvQuB52vgC7XoZ9H4C/Ov7tQNMs8O6PI/wFKF+0v39gd8ePbXHB0MNg+Ndg2FEw9FCwFrS6idk0OpDQ46fQYUVRFFx2FW8wii8UkcCPEEL0kryLCiGEEEIIkQcaY/19Ch1WLKqS9DbxPj89bfCsRYwgz9Z/ws5nwb8jyQ+ZCINmEmyYA00VOMacAROGgcVpZPGoNtA1CNVDqM64+LZD4+fQ9Lnxb6TZ+Dm7XjYeU7XB4LlGEGj412DYEa0yfpoTevyA0eTZG4xKg2chhEgDCfwIIYQQQgiRBzor8zKZmUDdGumu67D3Pfjqr7DtX60zdSxOIxgz4ngjQ2fQTLAZqUSBtTuhpglHxTAoG9SNn6dBw3rY8wbsft24+Kuh9m3jsv5mQMGhfQOiRxAo8OBlP8DWEvixW4EQfmnwLIQQvSaBHyGEEEIIIfJAvLFzkolepqJ4xk+46weMBozMni/uNsq4TI6hMPqb4DkDhh0JVlfSu5tTvcwmzClTVCjd37hM+rERePJ+BbvfgD2vG/82fYHTtwGabQT9D+MNjgTbWNx2KwQOo4DpgJKVJtZCCNHfSeBHCCGEEEKIPGCWehWlkPHT1FnGT6gONtwJG/8EwT3G/6kOI9gz9tswYn6XjZchjVO9FAUKxxmX8eca/+evwbH2TVhfRQAFnz8KgT24t62C6ttwNc4F7SgCkRJQZxvlYfZuZB0JIYSIk8CPEEIIIYQQOeb1ejn1zLOxDa7g+Ydu6/B2nfb4CdXBhjvg8zsg3Gj8X4EHJv0EJvwInEO7taZguIcZP6lwjcDpOR4aaqgvPp1oXR14t+IePRh2v4KrOQC+Xfi2vgl11wIKDJoNZccal2FHgb0k/esSQoh+SAI/QgghhBBC5AHV6QZayrmSKXIYmTrNgQi6rqMoCkR8sP422HBrS8CndAbsfxWMOhPUnu3yByJpyvjpgDnVa19zCCwFuIZOx3LQQgAKNm+Bjz7Gp64FeyM0bjDGzNd9BBtuN8rJBs2JBYKOMUrWbEUZWacQQvR1EvgRQgghhBAix3RdR3XEAj/OjgMtbofxvYimEwhFce38F6z5FfiqjBuUzoDplTDqDCM40ov1BGOlXhnJ+AGctpbnAi0TvQBchUOhZBqB0jlw0NXg3wm7XoVdr8DuV6FpI+x737isvxkUCww+yAgEjTgOhh7RYe8iIYQYaCTwI4QQQgghRI4FIxp6JEy0aR8NtbvwDEvez8ZqUSmwW/A1bKfpuZ/gan7J+IZ7DMz6HYz5f70K+JhCUQ1NNwIyGcv4sbZeZ6Gj5ee47MbXvlCspM1VDmPPMS5gBLrMQNCuV8C7Bfa+Y1zW3Wj0NBp2hNHPaMR8GHQgqJl5HkIIke8k8COEEEIIIUSO3f/AQzStXgXAzOn7c99997F48eL2Nww3U7jrMXzVa2guXc9wtxv2vxKmXBrPcPF6vRQWFgLQ3NyM2+3u9nqCsTIvi6pgsyg9e1JdMDN+TG57y6FJQexrX0fj3As8MO67xgXAu7UlCFTzkjE+ftfLxuXjK8FWamQClc0zAkFFk4ym00IIMQBI4EcIIYQQQogcqqqq4spfXhq/rmkaS5YsYcGCBXg8npYb7ngG3r+Awj1j2K17aC47C45damTDpFkwPtFLNfoIZUDbjJ9WpV6xoFAwrBHVdCxqF2twj4Hx3zcuug5NX0DNi8Zl1ysQroftjxoXgIJRRgCobB6MmAeuEel7YkIIkWck8COEEEIIIUQObdy4EU3TWv1fNBpl06ZNRuAn3AirL4YtKwEock+H8u/QPPlgcHVvUleqAvGJXpkrj7KqChZVIZqkx4/TpqIqCpqu4w9H49PMUqIoUDzFuEz+KWgR2Pch7IoFgva8Cb7t8OWDxgWgZHqsLGweDD9aGkULIfoVCfwIIYQQQgiRQ5MmTUJRVfSE4I/FYmHixImw+w14+1zwfmX07plyCYXFP4ctXpqSjXRvo7q6msmTJ3d7TcFIS8ZPpiiKgtOm4g0aQabEHj+KouCyG9/zhSLdC/y0pVph6MF4XftTOP3XuOywb8PjOOvfNAJBdR9Bw6fG5fM7QLHC0ENaysKGHgqqrZfPVgghcidz7+RCCCGEEEKILnk8HpZc8RvAKGeyWCwsv+ePeGr/CC8ebQR93ONg/utw4G0UFhjZKM2B5IGflStXxr+eOnUqK1as6PaaspHxA60bRxfYWwd3zHKvQKh1NlRv+UMQHT4PDrgJTvoAztwNR/4LJi6BwgmgR4ysoE+vgxe/Bv8eAq+fDhvvgeYv07oWIYTIBsn4EUIIIYQQIscOXnAWDz//Lt4Nb7D+f48wqeYKWPee8c3xP4A5d4CtGACLFmLZsmVo/kZOfP0frZo3V1VVcdFFF8Wvd9gvqAvZyPgBULQIy5YtA+Bbj/8RaBnB7rJbgRC+cNeZTb3iHAqjv2lcAJq3GA2id70ENS9AcC9UPW5cwAgOlS+A8hOg7DgpCxNC5D0J/AghhBBCCJFjjYEIqqOA4/ePMPGLsyBcZ0yiOuR+GH1Wq9uaZU+K3YUeG7lu6rJfUIqCWcv4aQksFdhb/6yC+Ej3DiZ79UKnJXCF42DiD42Lrhn9gWqeh53PwZ63oHkzbPyTcVGsMOxwGHGCEQwafKBRkieEEHlE3pWEEEIIIYTIoWAkSjAcZt50ePxCL0q4DgYfBCd92C7oA1DgsKAFfUSb9rFl2/ZW35s0aRKq2noXP94vqFtryk7Gj8OqogV9hPduZ9fOna2+11LqlZ7Az0MPPRT/OuUSOEWFIXNh/yth/mvwjX3wtcdh0k+gcKJRFrb7dfjkKnjuIHh0OLx5Dnz5EPh2pGXdQgjRWxL4EUIIIYQQIoeaGmqxVT/C/P2CONQITL4Ijn/DyDxJ4u9//QtNq1fh/ewlZs+Y3iqA4fF4WLK0pV+QqlpYvnx5t7J9oKXHj8OW2cOFV5/8F02rV+Hb8Ea7YIwrjRk/VVVVXHzxxfHrZglcVVVV9x7IVgSe0+CgP8JpG+G0zXDQPeA5HaxFRlnY1n/AOz+AVRXw9Az48DLY+QJE/L1+HkII0RMS+BFCCCGEECJX6j+l8cWF0PwlxbYwHPFPmHsXWBxJb95RD5/EAMaM406naO5C3NPn8e+X32Hx4sXdXlZLxk/mSr2qqqq4+4al8ettn0u81Cvc+8DPZ+s3dFgC1yuF42HSj+Frj8E39sL8N2D/q2DIwYBiTArbcBu8cgL8ZzC8chJ8fjc09fLnCiFEN0jgRwghhBBCiFzY/hg8fyiNTXVgL6Vo9lIY8/86vUtnPXwAmoMRmmL9gqwlZRQNLuvR0lqmemXucKGr59LbUi+v14uiKCiKwl6KUZTel8B1SrXB8CNh1vWw4F04aw8c8Q8Yfx64KiAagJ3PwgcXw5OT4MnJsPpnsONZyQYSQmSUNHcWQgghhBAim3Qd1t8Ma64AoKn4cKj4EcVDR3Z5V7OHT2LAJDGAUdMQwGazU1lZCYCm2nq0xGxk/HT1XFpKvXo31UuxF7Az6ubMiyr5z13XAjoWS89K4LrFMQTGnG1cdB0a1sHOZ2DHf2H3G9C00bh8cRdYXFB2LIw8GUaeZGQSCSFEmkjGjxBCCCGEENmiheG9JfGgD5N+QuOU68BaQLGr6yCNx+Ph7rvvjl9XVJW7/3hPPIBR0xAAwGYxevz0tD9ONnr8tH0ubYMxejjIsmXL+NkvLsfr9fb45zhHzyCq6Zz+/75NwdSv4Z4+j/++sbpHJXA9pihQuj9MvQzmvWyUhR31KEz4ERR4IOo3AkKrL4QnJsCTU+CDS2Hn80amkBBC9IIEfoQQQgghhMiGUAO8egps/jOgwJw74aA/0hg0RrIXO1NLxl+0aBEAzgkHc8WDz3HMaWfHv7ezwSgZGjPEDfQs8KPrejzjJ9Pj3M3nArBu3bpWwRgz40ex2olqerv7pkJxFqI63NTX1nDouEHokRDWkjIcJcN6t/DeshXDqDPgkPtg4TY4+ROYfRMMP9oYEd/0BXx+B7yyAP49BF49Fb74EzRvye26hRB9kpR6CSGEEEIIkWm+anj1JKhfC5YCOOLvxnQooCkQBqDY2c2yrEiQ0qEj2FLrZWp5MZqms6vRyA4ZP8zNpt3NPSqTCkf1eKAl0+PcE1VUVLS67rSqaIFmtICXL7/axuwZ07r1eCtXrkQPNOP97GV+94NXmXDffbz63FO8uakWv5bZgFa3KAqUzjAu0y43AoQ1L8bKwp4B/w7Y8ZRxASjeD8pPgoqvw7CjwGLP7fqFEHlPAj9CCCGEEEJkUsMGI3PDtw2cI+CYp2DwHADCUQ1v0MjKSaXUK1F4XzUAX+31EtV09nqDhKM6dquKp7QAMDJ+dF1HUZSUHzcYMdajKgp2S+4KBP7v//6Ppg+eAGDO7Bncd999KZdntZ1+pscmhr3y/hGASp0vlIklp4e9BEafZVx0Heo/MQJAO/4LtW9B4wbj8vnvjRHy5Qug4hSjN5BzeK5XL4TIQxL4EUIIIYQQIlNq34XXvg7BvVA0GY59DgrHxr/dFDAycuxWNeXsGrfbja7raJrOfW98iT8UZUe9Px7MGFHsxO0wMlqimlG21Z2SrX0NzSxbtgw9HOSHh63E7XanfN/uMp9LWx2NrV+wYEFKDZk7mhi2r2YbWMeyzxvqdkAsJxQFBs0yLvtfAaF6Ixtox3+NS2AXbP+3cUGBIYcYQaCKU6B0pnF/IcSAJ4EfIYQQQgghMmHHs/DGWRD1weCD4Jinwdm6t0xLmZe120EIVVUYO8TN+p2NbKn14o81ZC4vcWK1qNitKqGIhi8U7VbgJxTr76NHgt1aTzp1Nuo9lcBPRxPDZk3bjy0bA/Hfi9vRxw6H7KUw+hvGRddg3wdQ/SRUPwV1H8Hed4zLJ1dBwahYJtApMPRruV65ECKHpLmzEEIIIYQQ6bb1X/DaqUbQp3yBMcnJ2b6hcKPfyPjpbpmXafwwN+FwiFPOOY9vnvsjwuEQI0qcALh7OA49ECv10qPhHq0pHczATaLEUe9d8Xg8XHjVjYASv+/y5csZO2Z0vJfSPm8el3ulQlFhyEEw8zo46UM4fTscvBwqTjXGw/u2w8Z74LWvo64azoSqS1E2/9noNyWEGFAk8COEEEIIIUQ6bX4A3joH9AiM+RZ87QmwFSa9aWMs46coxYlebY0eXICiKKiuYlRXMQDlJS4ACuzGY3Z3slcwoqEFfUTqa6iuzk2QoO2od1VtPeo9FYef9A2K5i7EOmhkq4lhg91GM+R6X+4CWxlR4IGJ58PRT8BZe+Hop2Hij6HAgxL1U+p9A3X1BbDKA88cCJ9cA3vfNzKHhBD9mgR+hBBCCCGESJcNd8K7i42D6Qk/gsP+2unUpR5P9Ipx2iyMLHHGAjW70Jr3xsegu+IZP90L/PznHw/TtHoVga0fM3XqVFasWNGjtfXWokWLsJdPwT19Hiue/l/KjZ1NjYEIqqMAtGiriWGlBbGMn3xu8NxbVhdUnAwH3wMLtxE94QOqh16APuQQQDHKwj69Hp47GB4bCe8shqrHIeLL9cqFEBkggR8hhBBCCCHS4bPfwoeXGF/v93Oj7EbtvLdOb0u9AD59ZRVNq1fh/ewlrjznuHigxmzw3J1Sr6qqKm6+5vL4dbOpclVVVY/X1yu6hrWkDPeg7k2r0nU93jhbC3pbfc/M+Knr66VeqYo1iK4Zshht/ptwZg0c+iCMOgushUaD6C8fgNdPh/8MhdcWGllrgd25XrkQIk0k8COEEEIIIURvrb0OPv618fWMa+GAW1OaqNTbUq+2gRo9IVDjssVKvYKpZ/x88cUXHTZVzgU9HAAgEOleOZI/HEWxWLn22kqCzQ2tJpMNKogFfvpzxk9nnMNh/PfhqH8bJWHHPg+TL4KC0RD1Q/UTRtbaoyPg+SNg3c3Q+HmuVy2E6IU+1sZeCCGEEEKIPLP2OlhbaXw960Zj7HYKoppOczCW8dPDUq/Opl8NnjgbAF849cBPyYhRKIqKrreehpVqU+V0crvdfLlxA4+sriJK6lPJoCWTqtBhxWppfa57UCzjp8EfJhLV2n1/QLHYofx44zLnTqj/xCj5qnoc6j6E2reMy5pfQfEUqFgIntNgyKFdZrMJIfLHAH6XE0IIIYQQopfWLmsJ+sz+XcpBH4DmQARdB6uqUGDv2UF0Z9OvzMf0d6PUq14p5syLKls9VnebKqeTKzaGvjvBK2jJpEoWUHPbLditKroO9f5+1uC5N2IlYcy4Bk76ABZug7l/hBEngGozsn7W3wwvHAmPlcf6Aj0hfYGE6AMk8COEEEIIIURPfHItrL3W+Hr2TTDtV926e2KZl5JCWVgybadfJQZqXLGpXt4US73CUY3PdzVx8IIzsRQNBWg1DSsXzMlkwbBGVNNTvl9jLKBT7Gpf4KAoSsJkrwFa7pUK9yiY/BM47jk4cw8c8Q8Y822wlUBwT6wv0ELpCyREHyCBHyGEEEIIIbrrk2vh02XG17NvhmmXd3brpOJZKb1o7AzG9CtTYqDGbWb8dJEt4/V6URQF94jxNPsCFDmtRJtqAVpNw8oFp02Nt0rq6nkk6izjB2CQOdnLKxk/KbGXwJiz4YiH4aw9cNyLHfcFeuFIWH8rNG3O9aqFEDHS40cIIYQQQohU6bqR5fPpdcb1A26BqZf16KHiE7162N8nmcRAjTnOPRTRCEU07NbOz/nay8YDMKWsMG3r6S1FUXDZLPhCUXyhCIWO1A5fupqWNuAbPPeGaoMR84zLnDuh/mOj5MvsC7TnTePy0S+hdCaMOtO4lExPqeG5ECL9JPAjhBBCCCFEKtoFfW6Fqb/o0UN5vV7mnXQK9uHjefy+m9O3xgR2i4rNohCO6vhD0U4DP4q9AGvpCADmjCtD11Mvq8q0ArsR+AmEUp/s1WXGj9tOOBziG99eRPMnz9Pc3Nxq8pdIkaLAoNnGZcY14N1uZP9sfwx2v2o0i67/xNhuCie0BIGGHAyKFJ8IkS0S+BFCCCGEECIVn16fEPS5Dab+vFcPpzoKgJ6Pcje53e6kgRpFUXDZrYT9YXzhCCV0nFlkG+whUr8bZ6iOkoL0ZSClgzPe4Dm1JtW6rnfa4wdaMn5UV3EaViji3KNg8k+NS3AvVD9pBIF2PgfNm2H9LcbFVQ6eM2DUGTD8aCOLSAiRMX0mzHr++edzxRWpT0kQQgghhBAibdbf2jK9Kw1BHwAUC5H6XXj3Za4hrjnZq7MGzw899BChmi/wfvYSl551DCtWrMjYenrCbPDsC6XW48cfjhKO6igKHZaGlRbYUFBQrHYUmyNtaxUJHENg/Pfh6MfhrFo48hEYcw7YisG/Ezb+CV4+Hh4tg7cXGaViEX+uVy1Ev9QnAj9PP/00r732Wq6XIYQQQgghBqKN9xj9SgBm/SYtQZ+HHnoI79oX8H72EsccMjtjwZaWke7JgyZVVVVcfPHF8euaprFkyRKqqqoysp6eMJ9DIMXAj9nfp9BhxWpJfrhjs6gUOi1oQR+KzUl1dXV6FiuSsxXC6G/AEX+DM3fDMf+FCT8CxzAI1cGW/4PXTzcmhL3xDdjyMITqc71qIfqNvA/81NfXc/PNNzNjxoxcL0UIIYQQQgw0X66E939ifD1tKex/Za8fMpvBlpZsmeRlUhs3bkTTWvfOiUajbNq0Ke1r6al4qVeqgZ8u+vuY1rz4GE2rV6H5Gpg6dWreZTr1WxYHjDwJDrkPztgJ81+DKZfEJoT5YPt/4O3vwqPD4ZWTYNN94N+V61UL0aflfeDnpptuYuHChUycODHXSxFCCCGEEAPJtn/Du+cZX0++2Mj2SYNsBlvMbJmOgiaTJk1CVVsfElgslrza9y7oYCy9OYZeURS8Xm/8/7vq7wNG8O3PN10Vv942+NbRY4s0Uy0w/Gsw5/ew8Cs48QPY/9dQMg20MOx8Ft5bAo+VwwtHwYbfg3drrlctRJ+T182d3377bVavXs2TTz7Jtdde26PHiEZTOzOQj8y19+XnIES6yXYhRGuyTQjRWtq2iR1Po755DoquoY07D332raClPlWqM+PHj0dRVfSEx7NYLIwbNy7t27LTqqDrGs2BcNLHLi8v5/wrbuDe3/4a0LFYLNxzzz2Ul5fnzfuKI/YcvG2eQ9uvzev13iC6ruG2Wzp8Dhs2bGj1+zcf4/PPP2/33BMfu6/qM58VJbOMy/Rl0Pg5SvUqlKrHUPathj3/My4f/hx98Fx0z1noo86CwvG5XrXog/rMNtGJ7qw9bwM/wWCQyspKrrnmGpxOZ48fZ+3atWlcVW70h+cgRLrJdiFEa7JNCNFab7aJIu/7TKz+GYoeYV/RCWyxLYGPP0nb2vwRjfnnXsILD/0e0FFVlaVLl1JbW0ttbW3afg7AtoYwNTUBoo17GBmtSXobz/6HUDR3Ib4v3uRfD97LmDFjWLNmTVrX0Ru7vRFqavx496mssbb8fvz+lkbAn3zyCS6XC4C1W/3UNEeoUetZ07Q96WOGQiFUVW2VeaWqKsFgkDVr1rR67BdffJExY8ak+2nlRN/7rFgAwxZgK62htPlVBjW9TKF/Dcq+1UYw6JOleB37UVc0n/qieQTto3K9YNHH9L1tomfyNvDzhz/8genTp3PUUUf16nFmzJiBxWJJ06qyKxqNsnbt2j79HIRIN9kuhGhNtgkhWni9XkpKSgDYt28fxcU9GNVd+xbqa5eh6CH0itMoOfyfzE7zqOkPttZx3Fnf58133se34Q0+/fRTJk+enNafYRpa52NLpJpBBXZmz04evHin7gtjtLyuMX/+fNxud0bW0lN7vSHWB7bitFmYPbsluyOxBGvIkCHx3+HawFb0whBzZlYwZkhBh4975513ctFFFwFG0Ofee+9lwYIFANxzzz3x233zm9/k3nvv5bzzzkvr88qm/vFZcSIAWmAXStUqlKr/wO5XcQc34A5uwFP7B/TS2eijzkQf9Q0oysw2JfqH/rBNmM8hFXkb+Hn66aepra3lgAMOAIyoPMBzzz3HRx99lPLjWCyWPvuHNPWH5yBEusl2IURrsk0IQattoEfbRN0aeP0UiHhhxAkoR/4LiyW9o751XefzXc2oqkKkbgcAo0ePztj2W+i0oygqgYie9Gfouo4vbGS9aEFfXr6XFMWeQzCig6JiURUA/vrXv8ZvM336dO677z7OO+88moNRFEVlkNvR6XP5wQ9+wM8uvwrXhLlcevlSvvetY7BYLFRVVfGzn/0sfjtN07jgggs46aST8Hg8mXuiWZCPf99uc4+EKT8xLoE9ULXK6Me16yWU+jUo9Wtg7TVQOgNGfdOYJlYyNderFnmqX2wTKcjb5s5/+ctfePLJJ1m1ahWrVq3iuOOO47jjjmPVqlW5XpoQQgghhOhvGjfCKwsg3AjDjoSvPWZMH0oTs1mwrXgoO+uasagKodptaXv8jphTvQLhKFFNb/d9XyiK1Wrj2msrifi9eZftA+C0qShGrCfe4LmqqiqerQMtzZk3bdlKOGo8zyJn1+e4NX8DitWOo2gwJaP3Q1EUPvnkk6TNt0eNGiXNnvONcxhM/BEc9xycuQsOWQHlJ4Jihfq1RgDo6Wnw9P7wybVQ/yno7bcDIfq7vM34qaioaHXd/BDqL/W1QgghhEjO6/VSWFgIQHNzc14eiIr8V11dnXqpl28HvHICBHZD6Sw4+imwdlwi1Bu24Uap0tSKweiRUEZ+RiKnTUVVFDRdxxeKUNRmxHlz0BjzXuiwosYyafKNoii4bBZ8oSj+UJRCh7XDyWhr130BjrEUOqxYLamd4w7v2QKAffh4QjWbmDBhQrvm26pqQdP6bhPYAcExBCacZ1xCdVD1uJEJVPM8NKyDhmXw6TIo3g9GfQNGf9PIClLy83UvRDrlbcaPEEIIIYQQ3bFy5cr419OnT2fFihVd3ylUZ2T6eL+Cwglw7HNgL8nMAhUV+zDjJOa08h70H+rJj1SUlnHoSUa6NwVaAj/5rO1z6GgM/dCK0UDno9xNbrcbXdfZu3ktDocdS9FQVFcxdWoxZ15YCRgBAUVV+cbFlajOwjQ+I5FR9kEw/vtwzFNw5m447P+g4lRQ7dC4AT67AZ6ZBU9NgY9/Dfs+kkwg0a/1mcDP7373O373u9/lehlCCCGEyKLq6upcL0H0ER2V/lRVVXV8p4gXXj0FGj4FVzkc9wK4yjK2RkvJcKLN9YQaahk9ODMZRckUOIygiTdJ4Cee8ZNCWVQuOW3Gc/CFjfV6PB6uvOEWEoMzl1b+jhNOPZNly5ZhV7SOHqodt8PK6EEutKAP25BRPPPueg5ecCa24WMBuOM/rzLn+DNwjpsDKPK+1NfYS2Hc9+DoJ+CsPXDYX8FzOqgOaNoIn/0Wnj0QnpwEa66QIJDol/pM4EcIIYQQA0Ni1sbUqVNTy9oQA15HpT+bNm1KfgctDG98E2rfAlupkelTOC5j61u5ciXR+hq8n71E5Xfn8eCDD2TsZ7VlZsv4QpF232vuMxk/xvoSs5a+dso3KZq7ENfkw7niweeoOORkVHcpAMXdDGStf+1xmlavIlj1GdefezxfvPEk4d1GCdj/O2omH774GL71rwG6vC/1ZbZiGPcdo4fXWXvg8L/DqDPB4oTmzbDuJiMI9NQU+PhqqP8s1ysWIi0k8COEEEKIvNGjrA0hMEp/lCSlPxMnTmx/Y12Dt78PO58BiwuOedro9ZEhuX5dq1qEZcuWMefgw9s1Jm4OhoHUGiHnUrJytXpfGNVRQLR5L2NHjyIU0bAPGwt07/lUVVVx/ZWXxa/rusZDt1wdv964dxeP3Hlt/Lq8L/UTtiIY+y046j9w5h444p8w6iwjCNS00SgH++90eHo6rL0eGr/I9YqF6DEJ/AghhBAib3Q7a0MMaOakLEVRUJyFnHVR674sv7rhtvbjt3UdPrgEtv7NmPxz5L9h2OEZXWeuX9dm0ESxO9t9r6XHj63d9/JJvNQrIfBT5zeCVpqvgbmjS42vg34i9bvw7tud8mN39Pd55ZVX0HWd6upqeV/q72yFMOb/wVH/jvUE+musJ5ANGj4zpoM9NQWeOQA++x00b8n1ioXoFgn8CCGEECJvdNSwNWnWhhAJPtzWwEEnnIlr0iFYSsr41YpnGXnQAhTV0noE96c3wBd3G18fthIqTs742nL9unbFgiaKrf14+r7S4yee8RMb565pOoGoSmVlJbU7tjF77HA+fcUo1/J+9hLzDzsg5XKsrv4+uf77iSyzFRnlYEc/YQSBDn2wZUR83Rr4eCk8MR6eOwTW3w7e7blesRBdksCPEEIIIfKGx+Ph7rvvxszaUFULy5cvb5+1IUQC1eFmw65mAEI1G4k27mHEyAq8wQi2IQmvnY33GGfuAebcBWO/nZX1eTweliY0IrZYsvu6LrBb0II+9FCgVWNiXdf7UI+f1qVeDf4wUU3HZlEodlrZsaOah2+/Jn777pRjtbzvGNr+fdp+X96X8l9iNmDb8sZusZca08GOfQbOrIGD74Oy40BRYe978NEv4PHR8MKR8Pnd4K9J11MQIq0k8CNyKm1vykIIIfqN737vXIrmLsQ9fR6PvPQOixcvzvWSRJ6zDhlF3Z6djB7kItq0F3SN/UcYo7ft5VMAsFT/G97/qXGH6dfAlIs6eriMmHfa/6No7kLsI/dj3bp1WX1d//c/f6dp9SoCX33UqjFxIKwR0YzpRfke+Gkp9TICVXW+EAClBXYURel1Od2iRYviXyf7+yxatAj7iIm4p89j+RNvyPvSQOQYAhN/BPNegtN3wNw/wLCjAAX2vAkfXAyPjYQXj4WN90JgT65XLEScBH6EEEIIkVfCUQ3VUYC1pIySoSNyvRyRx8wJcKEdG/jd9xdQvfp5IpEIq1ev5qCJZSiKgupwM3tyIXue/yGgw6SfwIxrs77W5mAU1VGAYrFSUVGRtZ9bVVVF5RW/iF9PzIRpijV2djssWFQla2vqiZZSLyO4YwZ+BhXYgfSWY3X099EjYawlZThKh3X7MUXmdXRCOTHLLW1cZTD5p3D863D6djjw9zDkUECH3a/C+xfAY+Xw8gLY/ACE6tK/BiG6QQI/QgghhMgr4age/9rs5yFEW20nZem6xq8uvShe2lPosPLVW0/RtHoVa75oZuzFEVZ8chDMvRuU7Ac5wliorKzkg3f+h9vtztrP7SwTprmPNHYGcMUCP4FwlKimU+c1glaD3MbauyrXSgctaAQTzIbYIn89/PDD8a8Ts9wyoqAC9rsEFrwNC7+C2TfDoANBj0LN8/DuYni0DF49BbY8DOHmzK1FiA5I4EfkjYxE44UQQvQ5NoeTyspKKisr0dX8PyAVudFVaU9VVRX3/vbK+Pc0HZbc+iFV1Tuyuk6T2US5KMtBls4yYfpKY2cAp9USj9f5w1H2tcn4ga7LtTrjdrvRdR1d15MG5txuN/V7dlJZWUlIV9E0PcmjiHxx2WWXxb/uTr+nXnOPgWm/hJM+gFM3wswboHQGaGHY8TS8/V14dDj871tQ9QREQ5lfkxBI4EfkQGIa5n333Rf//4xH44UQQvQJkvEjUtFVac/Gtf/LqxHc8bHpWQ6ydNaYuCXjx5LVNfWEqirx6WT+UJT6WOBnsNue9PaZKKdz242SOF2HpqBk/eQvJT+2/aKJMP3XcPIn8PXPjN5ihRMh6odt/4TXF8JjI+DdH8GuV0CTzzuRORL4ETmVs2i8EEKIvBWKtOywByTwIzrQLqCRUNpjjexjyp6radu2JlcjuIORaPx1nYsmyosWLcJWNh739Hn8YdVr8UwYM3jRF0q9oKXcq94Xwhs03htKC7K3dkVRKIoF7poC4az9XJEas+cXtM/GytW2H1cyDWYug1O/gAXvwZRLwVVu9P7ZfD+8dBw8Pgo++DnsfR90ySgT6SWBH5FTeRGNF0IIkVdC0ZbPBnN0sxDJLFq0CPeM+binz+PVdz4yAhrhRiZWXcwoxxbuvWBw/LaKqnL1736fkxHcZmaNw6Zit+Zm91vzNWItKSPqGoweO6jsK6PcTWbGT3W9HzDW7bC2ZCt1Va6VDkVOI9DU6JeMn3zStudXosQst5xTFBhyEMy5HRZuh3kvw4Qfgq0U/Dvh89/DcwfDk5Phk2ugYX2uVyz6CQn8iJyxlBjTNlr9X66j8UIIIXIunBj4CUfjB6lCJGNxFWMtKWPMaA9EA6j/OxN3cAO6YxjfueYlwBj3fsWDz1E+94SkU38yzSzzKsphgCXqrQNdwxeKxjN94n2H+kCPH4ACu7HOHfUBILvZPibJ+MlPyXp+ATjHHsi9T7zRrX5PWaNaoOxYOOTPcGYNfO1xGPMtsBRA8yb49Hp4eho8cwCsuwW823O9YtGH9Y13edGvmGmY0YZdQEvgR1FV7r333vyIxgshhMiZxMCPrkMwouG05X8PEpF9uq6jWI0eLw5Vgze/jbL7VaKqG772FHrBJAAi9TsZPmIk9b4w1sEVRPZld6BES4AlNyVVbrcbPRrh4Xe3srsxyK6GAEUOa0tz576S8WM3zlnvaQoCHff3yaTi2N9QJnvll0mTJqGoKnqb4I9t6GhKhpblaFXdYHGA5zTjEm6G6ifgq7/Dzmehbo1xWXM5DDsKxp4Do74JzqG5XrXoQyTjR2RV+zRM4yyua/IRXPHgc3zn3B/kZmFCCCHyRmLgB6TcS3TM4Sqg8tplVFZeQ+kXS6HqMXTVwaaK22DwnJYbRiNMLy8y7lMxNevrbMqTkqoRxU4AahoDBCNaS9+hPpLx47IZ69RiWYClBdkP/JgZP42S8ZNXPB4P3/35dZgnlS0WC5bCwaiOglblw32CrRDGfhuOedLIBDroXhh+NKDAnjfg/Z/AY+Xwysmw5a8Qbsr1ikUf0Dfe5UW/0VEaJgqUDh1BvT+Ey+7K/sKEEELkjVCkdWmXPxxlUI7WIvJbMBa4UHa9hF35M6gq2mF/o7l2DNDS8wWM0pyPqhpRHYWozmKqq6uZPHlyVtaZL2PTy4qdQAM1DYH4mpw2CzZL3zgXXGBvnfmXi4yfEpdk/OSjqKYz47jTKXp1NU1r/su6z9ZiHTSSx9fsQLVk/3WSNo4hMGmJcfFVwdZ/wld/g7oPYeczxsXigopTYex3oPxE6MvPV2RM33iXF/1GstGrBmOnrM4rZ0+EEGKga5fxI5O9RAeC4SjUvoWj9mUUBTj4z+BZmPS2RU4bW996iqbVq9ACjUydOpUVK1ZkZZ3NQWP/JtcZP2WxjJ/dTUEa/bE19ZFsH2iZ6mUalOMeP9J/LH80+o2/h2KzQyRERUVFPKDZ9jOlzyrwwNRfwEkfwCkbYHolFE2OjYf/V2w8fLmREbTnTZkMJlqRwI/IKo/Hw0+u/C2JaZj3338/Tzz6KDabnXp/KLcLFEIIkXOJ49xBSr1Ex4KbHoadL+BQwzD7JphwXoe3raqq4p7fXhm/rmkaS5YsoaqqKuPrNKdn5bqJ8hC3HbtVJRTR2F5nTMbKZcPpbosEWbZsGcuWLSMaCcf77WSTGbwLR3UJSueROp9xDKH5W8qeHLEJem0/U/qF4ikw81ojAHTiamM8vHMEhPbBxnvghSPhiQnw8dXQsCHXqxV5QAI/IuuO/Po3KZq7EEtpOevWrWPx4sUMchsf3PU+yfgRQoiBru3Z2YAcXKWd1+vNyXSrtNr2CMGPrgbAMfJYmHZ5pzdPVm4ejUbZtGlTxpZoasyTHj+qqjCsyAHApt3NQO7X1B2uhCbvJS4bqqp0cuvMsFrU+O9Myr3yR50vhM1m5x8rV6DrOm63O57x0+d6/HSHohj9zObcDqdXwbHPw7hzwVoI3i3w2Q3w9FR49iDYcCf4d+V6xSJHJPAjss4XjqI6ClAUhYqKCgBKXEYtqgR+hBBCmDvp9tjZ2q7OqveLIIbonh3PwVvfIajZYPAcHGPP6vIuycrNLRYLEydOzNQqAQhGonnVRNls8NwXS72cNgta0EekfhdaU23O1hFv8OyX/dZ8YbaLSCz/s1lbSr0GRFmeaoHy4+GwlXDmLjj87zDy66BYYN9q+PASWDUSXjkx1hS6OdcrFlkkgR+RdWbKvh4Oxv+vNPYmXecLDYw3ZiGESMFADWiEo8bnQHGsiWpfKvUaqH+zrNrzFrxxJmhhgmVfh5En47BZurybx+Ph7rvvxiw3Vy0Wli9fjsfjyehyzTIvh03FYe16nZk2osRJOByKl0xZtb4TvPjX3/5C0+pVeD97iZ+cflTWejS1Zb43NUrGT94wS70GJTT8tscyfnS95XNlwLAWwNhvwTFPwRk7Yc7dMORQ0DXY+Ry8/T14tAze+i7seAY0eS33dxL4EVml6zpRLFRWVrJ3907cbjcApS4bimLU4PbXemk5GBBCiNSYpV7FsbPq3flcqK6uzsia+rPq6uq+8xlV9zG8ejJEfVB+EsGp14Cixnt5dGXRokUUTDsa9/R5vPjWhyxevDjDC26Z6JUvvXTKipytrrvzZF1dqaqq4uKLL45fz2aPprZkpHv+MasGBhW0BH5slpZSwH7T4LknnMNgyoWw4G04dSPMuBYKJxrvo189bLynrqqA1T+Dve9LU+h+SgI/IqtCUY2IZryZJNZpJ9ZLS7mXEEIMbPHAT+yselc9flauXBn/OpuTmvqytr+zxOt5q3EjvLIAwg0w7Ag46t8ENWNXNpWMH5NisWEtKWPw8BGZWmkrZh+YfCmpKnZZcSb8vgoduc9CSkUuezS1ZTaVlh4/+SEYicYDrKUJpV6KosRLhgd04CdR0USYUQmnfgEnvAuTLwLHMAjshi/ugucOhqf2g7XXQ/OXuV6tSCMJ/IisMtP17VY1/kZsMiP0ZqqmEEKIFgMpk8Xsh2IeXHVW6lVVVcVFF10Uv57LLIC22v7N8iWrJtnvLDGTIi9fa74qeOV4COyCQbPh6KfAWhB/raSa8eN2u/nrygeprKzEYnNkcMEtzAPSQkf2J1AloygKZUWOeK+chtq+0ew1Vz2akkkc6S4yJ9X3zIbYSeMCu6VVUBNayr365WSv3lAUGHowzL0LzqiGo5+GMeeAxQVNX8Daa4ypYM8fDl/8CQK566kl0kMCPyKrfLGdd1eSM3NmhL5hAGT85OVOtRAi7wzUTBazuXOJyyz16niHPZ+yAKBv/M06+p2Z8m7dgVp4+QTwboWiSXDMs2AvBSDYzcAPtDQNz9akn+Y8meiVaPXzj8Z75cyasX9+/b070NKjyWDJUo+mZIpiQelGv2T85IN9Zn+fhDIvk1nu1a8ne/WWaoOKk+GIvxlNoQ/7PxhxAigq1L4Nq38Kj5XDa6fB1n9CxJ/rFYsekMCPyCoz8FNg7zjwU9dPAz994WBACJE/OspkyYeMkUzSdZ1wJNbcOXZwFYxE0bTkPQfyKQsgn7OPEiX7nSXKq3WHG+HVk6BxPRR44LgXwFUW/3Yw0pJJnCpzxHM4SxkATUFjv6YoT0q9qqqquH3Zr+LX8+rv3YVFixbFv163bl1WejQlUxwLSgfCUckkyQPxiV7uJIGfeKmX9K1Jia0Ixn0PjnvOGA9/4O0w6EDQI1D9JLz5LaMp9Dvnwa5XjWbRok+QwI/IKjNd35U08BMb6e7vf6VefeVgQAiRfj0t7+kqK6O/imo6WqyxZJHTaPyv6xCIJH/uHo+HH1x+A+akplxmAXQn+yiXmZ8ej4ff3vp74tOtkgSBcpk1FRfxw2sLjTHEjqFw7AvgHtPqJsGwmfGTep+aXGX85EvgJ9+y5HqqoqIiZz/bYbXgsBmvI2nwnB2dNaGvj2f8tC+ntEmpV8+5ymG/S+GkD+Dr62D/XxvvwZEm+PJBeOlYeHwcfHwVNH6e69WKLkjgR2SVN2Ts/BTY2+/8lMaaeNb7wv1upPsXX3zRL3ayhBDZkywro7Msjf4i8aysw9oy/rqjPj9RTWfq0adRNHch7unz+PSzz3KWBdBV9lE+ZX6e+o1zKJq7EOeEg3nllVfyJmsqTgvDm2fD7lfBWgTHPgsl+7W7WY9KvbJ8INgUzK9Sr3zKkuvLpMFz5qXahN6sFihNUurlkObO6VEyFWbdAKd9CfNfhwk/Alsx+LbBZ78xGkI/d6jRDyi4N9erFUn0/z1IkVf8nZR6lSSMdPd10sizL3IO9aAospMlhEidx+PhjrvuwszKUFSVMy6sxD5iMtB/e4WZWRhWVUFVFVyxs+odjXTf3RQgqumojgKsJWUMH1GetbW25fF4uPjqG0mWfZRvmZ++UBTVUYDF6WbOnDmx3im5z5oCjNKBd84zygosTjj6SRg8J+lNzVIvM/siFfGMnywEfkIRLZ6VlC9TvfKpV053ud1udF1H13XcbndO12JXoixbtoz9Zszut6W3udRVE3qTruvxwTCdZvxI4Cc9FBWGHwWH3Adn1MAR/4SRXwfFAnvfbekH9PqZsP0xiOZnJYfX68VqtTJ37twBs/1K4Edkla+TUi+rRY03y6v39/202cR01C8aFM68qJK82akWQnQok5OXuhusOevs71A0dyEF047hyVffByBU8wWQ+4yRTDHPypp9GczPi45Guu+oD7S6HsxxOv9xp50dz6RJ7EGSb+U1usVOZWUl//7H33C73SxatAj3zPm4p8/j1Xc/ylnWFLoO718AX/0VFCsc+QiUHd3hzXtS6uXIYqmXOdHLnpC9lg/ypVdOX1YUy+BSHbkNQPVXXZU7m5+nvpDRZ0lRjJPIbWW7p9eAYnXBmP8HxzwFp1fDgb+HQQcYGZtVj8EbZxpBoPd/CrXvGu/vImck8COyyhcv9Uq+82OWe9V58zM63BPWQSPZ3RTk8JO+gXvGPNzT5/H06+/LTpYQA0Rvynu8wVhWhquISWWFPPqHZfHv5TpjJFPMwI9ZjmOO5vWHku+072zwY7MZQYzKykosdmd2FtqBSCz7yDZoRKseJPlWXuNNUn6kqFasJWUMGZ6jrCldhw9+BpvuM84qH/YXqDilw5tHohqRWNPv7pR6ZbPnR77190kml71y+jLzbyqBn8xI2oReUeJfmp+n+2LHDMVOG1ZL+/eBbPf0GrBcZbDfJXDSh3DyWph6ObhGQmgfbPwTPH+oUQ726W+MCY0i6yTwI7LKTNV3J+nxAzDIHRvpHsv4yeSZ92xxjp4BwPSRRUS9dVhLytDdQ3K8KiFENvS2vMfMFtCCPjZt2oSeRxkjmWJO9Ipn/JiBnyQZP7qus6PeGCtrHg8EOxn9ng2R2MGFYml95rmlvMZsqJzbzM/4lE1Hy4kYPWq83nLSC0PXYc3l8EWsBOmQB2Dstzq9i5ndpSj5Oc7d6/UycdoMli1bho38KmHPp5KpvqrIYUUL+tAiwX5beptLHo+HGxOa0LdtmWB+nm7Y/BUAg5NM9IKWce7S4yeLSqfDATfBwm1w7PMw9rtgKYCmL+CTq+DxsfDisbD5QWNyY44NlO1XAj8iqzor9QJwxOqlTzj1jD4b6ElkKSlDj0Ro3rubA0aVEG3cA8DOhmCOVyaESEVvdwZ6W96jWWxGOc7f/8LMmTPzKmMkU0KxVH57bGfd/LxIFvhp9EfwBqNYVIWhhQ4g96Vellj20fW/ubHdAfWiRYsonL0A9/R53PXoqznN/DSDiuaJGLfbzV9XPhjLmnJkf0GfXAPrbzW+Png5jF/U+e1p+VvbrSpKQiZAV7LZ40d1FAD509hZpM8zj/6DptWrCHz5Qb8tvc21b3zruxTNXYhr8hE89NCD7UqFotEoXz91IcuWLcOpJg+utjRzlzKjrFMtUH48HP4XOLMGDn0Iyo4DFKNx/7vnwaMj4M1vw45nQcteo/TEbOzp06cPiO1XAj8iazRNj/do6KrUS3UWZW1dmfLQQw8RbdiF97OX+M33j+eJRx9h7/ZNVFZW0hDS4w0phRCZ153swXROXupteY85LcbtsLZryKqoKkt/e3u/6xVm7pyb5TjxjJ8kTf93NBjZPsOLHLhjmSu5fm+NxKaSRTU9nv2TyOIqwVpShmvQ8GwvrRVfsH3pdc7GHn96A3x2g/H1nLtg4vkp3S3e2LmbvXPMA8FsZACodjPwkz/9fUTvVVVV8evLL41f76+lt7kWjmpGubO7lEMPPbT9pEuLBUuRkUVfmqSxM0ipV96wFRkB/XkvwcKvYNZvoXg/iPph69/h1ZNg1Sj48DKo+ySjS8m3YQvZIoEfkTX+cBRdN1KynR3spJW4YvXSzsJ2I937UhpeVVVVq8kD5htKQ+0uil02dB1qGgKdPEL+6g/ld0J0pKOdgZ6+5j0eD1f95lZ62ti9uU0fFrMhq3XQSK548DlGHHgCVpu9X02liDd3btPjJ1lAZ2cs8FNe6oof/Oc64yeckOGVOJoejGAQqrFObzC3ASpvLJDmTshEyWYmTNz6W+GTq42vD7gFplzU+e0ThHowyh2yPM5dVYnU78K7b3fmf5bImo6yOUeNGiX7R2lk9vBCi1BRUdHu5Mf3fr4MW0kZ0HLyuC1p7pyH3KNh/6Xw9XWw4H2YfBE4hkCgBjbcBs/Mgv/OhvW3g78m7T8+34YtZIsEfkTWxMu8bBZUNXlKdrHThhb0Em3ax6Yt29J65j2bOntDqSg1Go+2nUQjhMi9rqaI9MQp3ziHorkLcU+fx/NvfdCt8p6OGsNG6muoGOnBG4pgGza2V+vLN20DP/FSr2QZP7H30ZElzvjBf+57/LQEe9oGFmwOV7wJdVSxoGm5KT0IR7X42hIzfszAT9uAVTJpOQnw+d3w0S+Nr2deD1Mv69bdE0u9uiPxeWbyb7By5Ur8G9/B+9lLLDzmoD6zDyO6liybU1UlqyvdrHYnlZWVPHD/n+PTBwGw2Lj2Ly8y7ZiFoBjBVV9d8uCqLYsZfqKbFAWGzIW5d8HpO+Brj8Oos0C1Q/3H8NEvYFUFvHIyfPV3iPjS8mPzbdhCtkjgR2SNudPeUZkXwF//8n80rX4c72cvccCs6Vx44YXx7/WlNLxJkyahdPCGMrLUBRBvSCqEyK7OsgeT7QwoqgrWnvc8Mac8WUvKKBxc1q37tmT8tDmTqWvM8hQDYB8+DuhbWZGdMdPx7dZYj58kzZ29Xi+K1caFly0lHA61yfjJbSZN4sFFsE3QMDEQpOvgDWWvn0EiXyzbyKoqrbJl4pkwvQx2pmTTffBBLDN2/6tg+lXdfoiWUe49C/xA5so/BmopwUCRrPT2mxdXgt3Yx+sv78e51vZEQFw0zCmHTuO95x6lafUqvJ+9xEGzZyQNrjqk1KtvsNjBcxoc9W84YyccdA8MPQx0DXY+A2992+gH9M5i2P268f895PF4WHrDLfQ0G7uvksCPyBpf2NjBdXUw0avtThKxaROJ+koansfj4Qe/vIFkbyjlJcZOQU1jIGdne9NFdmxEX5Fq9qDH4+Guu+6iZfKSypkXVuIadwDQs9d8YiDA7NmTCk3T4+VAZv+axEk8B00s48MXH8P76UtA/2lOaGab2C3Gc+5oqpe1aCigUOy0Ueiw4rDFMn5yXeqVkC3TNnOmbSDIlySLKRvMgJPbYW3VFNkMtmW8BGrjvfDeEuPrqZfBzOt69DA97fFjURWssczjTB0MDtRSgoEknn0C/P7frxplSSHjpF5fylLPZx0GfgB3uJ5H/7Asfr2j4GrOepeJnnMMhkk/hhPeglO+gOnXgHssRJrgywfgxaPhiYnwybXQ/GWPfsQJp59N0dyF2CumsXbt2pwOW8gWCfyIrPF1kfGTbCeprb6Uhjdr3ukUzV2I6ixk3bp18TeUoYV2FD3Cr6+uxF4ytM/VgffV8jsxcHX3zPs3zjGmiLj3P5b/rV6DqoJ/4ztAz17zVpsjXt4TJvUDVF84iqbrqIoSn7yUaE/NTh6589qUn1dfYfZhsLWZ6hUMa0aPnBjVVUqkfhdW/z6g5axurgM/iQ2d2x5otL1uZnRlmy8e+Gn9ejSDbcl+h52VdnUrIPr5H+D9C4yvp1wCs2820v17wFynGfTrDluG+xkN1FKCgeqICYN59O6ugxCie8zguTX2eZB48mPHjh3oKQRXW8a59+2TrQNW8SSYuQxO2wzzX4cJi8FaBN4t8OkyeGKCEQja/ACEm1J+2GDEaByu2p1UVFRk8AnkDwn8iKzxdzHKPWmJRcLOoKr2nTS8QDhKIBxFdRSghQOt3lAURaG82OjzYykamqsl9oikrou+qLtn3hv8YWNnwFnEELeD/9zVu535cEKworEbGT/NgZaD82R90VJ5Xn2xGbuZgWEemDusajwuYE6GXLlyJaGdG/B+9hJLTjuSFStWtJR6JRn7ni26rrc0I6V9T4m2QQZfjho8m5lkBW0Cit3p8dOjkwAbfg8fxD5Dpv4SDry9x0EfSMz46f7ubKYbPHs8Hm667Q4GWinBQLW7aiu6Lhle6WYG0u1JMn5SDa4mNq1vW0kg+hBFheFHwSH3G6PhD/srjDgeYzT86/DuYni0DN76HtS8CFrnn6+BWKmwHg5mYfH5QQI/Imu85uhYW/LAT9t6aYvFwh/+8Aec4+finj6PR195t8+k4dX7wgDoYT9E2x/olZcY/UKsxcOyuq7ektR10Rd198x7CBuVlZU8dN8fqa6u7vVrPjEDpNEfTvl+bSd6tdVfMwrCbXb0FUVpVe7VUQB63+6dQG4zftoGTNpl/ETzI+PH21HGT4pZMO+9v7r7JwHW3QIf/tz4ev8rYfZNvQr6QGKPn+431c3GBLMzzv42RXMX4pp8eKvMX9E/JGafzJw5s1++H+daqJNSr2THDcmCq+Z9NV1vlTUq+jBrAYz7Dhz3PJy+DWbdCMVTjNHwX/0VXj4enhgLH/8aGr9I+hC6xcY111zNygfux+12Z3f9OSKBH5E1Zn+GtmcYEyXWS69bt45FixahqBasJWUMGjYi42tMl3p/CJvNzp//eCe6rrd7QxlR7EAL+tBR+lS2TGdNq4XIVx6Ph6sTRqp3lT3YEAvOlBbY0hJcScz68AajKff2MoMC7g4CP213etV+klEQirTf0TdHuvtD0Q4D0Du2bQFyG/iJtFlX27WEI63/9r4cNXfuKOPHLIkIJWmQnZjhc9xxx3YvIPrZb2HN5cbX06+BmTf0OugDCaVePcn4yULD12DYKCWwuIoHTCnBQOXxeLjjzpb+cJLhlR6RNqVebbU9bkgWXE3MFpJyr36owAP7XwFfXw8nvAOTLgBbKfiqjM+ep6bAc4cZveVCdfG7mRnEncwc6nck8COyxtdFqVdb5k6SHjUOwvrSm7WZ8VPqsiX9/nOP/ZOm1avwf/4/pk2b1mf65Hg8HhZfnrxptRD57KSzvhUfqX7fk290eubd3H5LXLakk1sWXXY9o0aNipdPdVVOlfjepek6zSke7JulXoXOzoPlrsmH454+j8dfeafT51VdXd0nSr/M35ctYUffzPgJhKMdBqAnT54E5LaBZ9vPqXalXm2aO+e8x08HpV5tgyHJhi+01WFAdO11xllXgBnXGb0a0hD0gZZSL2cPevxkutQLQIn193poxZ8HzBnlgey8H3yfogNPwT19Hu9+9LFkeKVBZ82d2+oouKqqSkJQWxo891uKAkMPgYP+BGfuhCP/BSO/DooF9r5j9JZ7tBz+dzZU/5dA0NjXs3cQVOyPJPAjsqar5s7QOm3W7Xbjdrt56fnnqKysRLXZs7XUXqv3hQAY5G6/5qqqKi752cXx632tT47ZtNo9fR7Pv/mB7NiIPsFs4mctKUMrGNLpbc2MnxKXsf3Gzyha7Vz10AtM+dqpWAenfva+bRZIqpO9mmM7JUUdZPzE6XqHo+Lb9mFJvJ6vku3oO+0tpV4jykdy9s+W0TYAPX7MaMAIBuSqj0Oki54+ZoZKUSyY5811j582pV6OWHPntgGsroYvJD0JoOvwyTWwttK4PutGmHF1GlbfoiXjpxelXhnM+DHPKDs7KHEX/Y9itWItKWPIsPK0Pm5fCNpngtkjz9bLg/P4ZC8Z6T4wWJww+ptwzFNwehUccCuUzgAtCNv+Ba99ncCaZVDzIoV6ba5XmzUS+BFZ4+/gDGNXzAaf4T4Upe8s4yff++R0tnMRCEfxhaLxA+jCIe0PNIXIR4kH4PW+cDxTIJl6vxG4LS1os/1GQnxttpFVYi+fArSfZpRsulHb8p5U+/w0xw7OO8v4gVgvMdqPBk/WC+fiiy8m35mBn8TyHVdCqddXe30cMP903LMWAC3p/ebtdT13O/dd9viJXR9UYAQVc1Xq1WXGT0RrVZLYUcmje+YC3NPnsWbtp61PAug6rLkCPr3euH7ALUYqfpq19PjJz4wfs3loTzKSRN+khY3Pj1xPF+yOfA4qhZOU/iZqe8K4I+b922ZhigHANQKm/gJO+hhO/BAmX4xuH0ogFEKpfZtJe27I9QqzRj6JRFaEIlp8hzjVUi9TX4zS15mlIm0PHOnbDVn3eo3eReZo6gjdC+IJkSuKteV1a7XZ2N2YfIpDIByNH0yWJAncHji6hI9eXIXvs5cBI4tmyZIl8e8nm24UjgV6zWzHlDN+Asb7SGfBcrfbzesvv8D55/8ITW293o6CzKZujeDOomTNPBObO2+oaQQg2rALaEnvt1pULLHpZ7k66Gp7UNHRVK9BbuNv5Q1mPztJ1/V4xk/b5s6JZ9UTP3M9Hg+/XHYziVlWd911F5aCYqwlZZQkngTQIvDej2D9zcb1A38PUy/LyHMJRdOQ8ZPJwE9EMn4GErfbzf3L/xTLUndk7Ofk63t3JpgZs73N+MnG9i7ynKLA4ANg7p2ETt1OdPS30Utn0TzopFyvLGt6HPjZvHkzTU1NALzxxhssW7aMRx55JG0LA9i6dSuLFy/mgAMO4JhjjuH+++9P6+OL7DFHudssSrffvM3b95UovTnKHaDU1b7Uq11DVlXN2z45bXcu9jWHWl1vylF/CiG6q20gYHdTIOntzGy9Qoc1HnhIPKPoa2rkX3dWxm+vaRoPP/xwq+ttSzfN5pSDY6WfTYGuM350XY/3fynqIuPHbP7sbbM9JgsyJ/ZWSXkEdxbput7S3DkxiyMaYtmyZZxy5tlsqDaaM4b2bGl3fzPzwwzeZVukTePuticszOulBXYUxej55M/y+PlAWEOLBZvaNndODJ61Xfvxp59N0dyF2Monx4cvaEEjOyD+WRANwJtnw+YVxujdQ+6H/S7JyPOIai2vFXsPMn6ykQEQDPe8B5Hom8wgX7qDz23LdvPtvTtTQvGeb73bhuyS8SMSBDQLFE/BMvp0GktPzvVysqZHW9E///lPTjvtNNavX8+6deu44IIL2L59O3feeSd33nlnWhamaRrnn38+gwYN4rHHHmPZsmXcc889PPnkk2l5fJFdvrCxU+iyW1G62dQx/mYd6RvNneti/X0KHdYOd0YXLVqEpWgo7unz+O0/Xs6rPjmd7Vzs9RpZEmbmQnOKmQtC5JpZ2mUGX3Z1kPFjlnkly9aDrnudQPvSTXNHsyXw0/V2E0zIkuxoqpfJHdsevW1KvTweDxdffSNmlkbb99587C8W0fR43+DEkwTmgbN1UDmarlM+qJBI07526f3xwE8npXyZ1FWPH/O602qJZzFlu8GzOcrdZbfEgzyJ7B2UVwfCRpmvanVQUVGB2+3mLyvuo7KyEk21Q7gJXv06bH8UVDsc+W+YkLnPtsTfba+memUwA8AM6vUkI0n0TeZrMZDGgG6yst1MvXfnWzaR+Z5q7WXgx2ZNHtAWA1MgISjf3ePSvqxHW9H999/PTTfdxMEHH8x//vMfpk6dyv3338/vf//7tGX91NbWMnXqVK699lrGjh3L0UcfzWGHHcYHH3yQlscX2ZVKY+eO9LVSr3h/nw4OHE16OIi1pAxb0bCcNSJtq6udi31e46B4zJACIHcTaVKRzzXrIvvMXhujY6/dmobkGT8NCRO9kkmaRdNG29LNcJuMn8YUMn7Mbctlt3R5ptPM2kjWL+bIk79J0dyFWAd7ePDBB9tNY8qn/mLQ+mysTW1f6mUGsfYrL066s+bI0Nn2VJl/a3Np7TJ+EjJUzICeL8sNns2f5+7g89jewWeu+TvVIy1BUzMbrbGxFl46Dna9DNZCOOYZGHVG2tfeej2xUbxWFTVJAKsrjqw0dzZ7/EjgZ6DIxHtQpntDtj3h96c//Slv9p9amv2np7lzX5oQLDLHDPy4Bth7c48adOzatYs5c+YA8Morr3D22WcDMGLEiLS9QQwfPpw77rgDMFK/P/zwQ95//30qKys7v6PIS/7eBH6sfSs9syXw0/kUMi3kA4z65WBEy4sdw852LjweTzzwM3qwm/U7m2gKhNF1vffRci0CkSbjjHG4CbSA8X9aGPSIcdHCxv9FQ5Q2bYHq7WCxGWMak1zUYIg54yAcBaXpC2CI0eXf4jIuqvQnGkjMkovRgwtYs62eBn8YfyjarudYvb/jxuzQUqr505/+FDCCPN/61rd4+OG/ATpqkulGkSQZP11tN2Y2XVfZPom3CUU0QhGtVaZhUzCC6igABQ477DBUVW21jedbfzEzs9NmUVodzDttKlrQh+ZvoqF2F1NGTEl6/9yXehk/12Wz4AtF22f8JDSudjss7GnKfgDd/Hlty7xMtg4yYXTVRmVlJQv2HxHPsip0WCHcQNN7N4FtNTiGGkGfIXMz+AwMLRO9epYJYI9nh2VjqpeUeg0Umcj4MU84ZOK9O9+HAJiBGlsXJ1y6ko1m7qLvMIPyjgH23tyjI5/x48fz5JNPMnjwYHbs2MH8+fMJh8M88MAD7LfffuleI8cddxw7duzg2GOPZcGCBd26b2Ijy77GXHtffg6m5kAIXddwWJRuPx8LOrquEQxH+8TvYl9zAF3XKHZaOlyv0+kkEgpy3xtb8Ici1HuDDCvKXCPAVI0fPz7pzsW4cePwBUI0xspgPKUOdF0jFAFfMNw6aBUNgb8aArsguAclsBuCuyG4BwJ7UIK7Ibi3JdATaUKJ+lNeowWYALCj89u5gNVmo/6XD2z3fV2xtASBEgNCVjfYitFtJWAtBnux8a+tpOX/bUWx6yXgGGL8qwysD4++xh+OousahXaVYqeFBn+YnfW+ePaaqa45iK5rFDk63n6/+93vxgM/a9eupaKigsfW7EBRVJ748y0cfdDM+H01TScc+7rEaYm9l2ntt5s2GnzGOtw2tcv3PQsaFlVB03Sa/MFWQWezn5Ae9DFixAgqb7yVyl/9AtCxWCzcc889lJeX5817ayAcRtc1LKq11Zoe/cdfaVq9CoAbf/AKY4P3ct5557W7v01V0HUNfyick+cUDEfQdQ2XzYY3GG73uRUIGd+3KDouq4quazQHQllda1Ps89hlS/55bFOI/Q4jrb7vCxl/G7ulZb/EHd4Gmx+gWa1DrxiFdvQzULwfZOH5+ILGemxq++eRyv6TRTH3LSIZ+/37Y39vew/2fUTfZI+/B6XvdVVeXs7Nt/2eyy69BNBRVJXf3X5Xt9+7k20XGzZs6HQIwLZt25g8eXKv1t9Tuq4TCkfR0VEVvVe/T0vsfS2Qwe1d9B3e2OegPXaCqS+/Jrqz9h4Ffn71q19xySWX0NDQwLe//W0mTJjAddddxwsvvMC9997bk4fs1F133UVtbS3XXnstN954I1dddVXK9127dm3a15Nt/eE5fFoTpGZviNLIPtaEdnbrvs0hjZoaL1ZVYc2ahgytMH3Wfuljnz9Kja2BNXWdb2L1u33UBaK8v6aBkUX5kYFyyc8v4/Zbb8HcuVi6dCm1tbV8vm0XNTU+CixRqj5ag786QDjk5Sv/bZSrW7GHd2IP12CL7kWhZ6m0GlY0ixtNcaIrVnQs6Iol9q8VYl8DKERB14x/0VH0KKChxP5P16J88nkN2/bC3EkFjB4SQdVbmlMrehQizcYlie7kMOlYiFhKiFhKO75YSwlbBhO2DiViGWRkJoms0HWdrdu9aLrO5+ub8O8LUdMQ5n8f1lE3rHVm3vrNXvwRjaqCRvw1yf9Gfn9LoHLv3r3s3bsX1WLFUjSMPXWNrFmzJv79cFSnpsZ4jX2+rpm6Wh/BiMbbHzQyyNnxa+DT3UFq9oQoCNpYw+4un6PTqrB79y7eX9PEsALjcaO6TtVOL+ef/yNOm3IJGzduZNYBcyiau5BI427+euMvGDNmTKv15lqtL0pNjQ+3XY2/3+/atYsrLvt5/Da6pvHjH/+YiooKysrKWt2/ekeAmrown2l1sLfzrMtMWL8nRM3uILrbyi5vBEubz62tVc2EozpfrG9iZ32YmtoQn4T2YavPXuB/bezzuCS8jzXhmnbf31ntp6Y5wqeWerw7WjLfvtzqxRvS2OxqpKHKQoH/U9xf3gDhg9nnGMXaET8n/GUAWJOV57G9MUJNjZ9IgYU1a/YlvU1n+097Yq+15n0qa+zJ798b5vuOjvH3dvUwM0n0LV/Vh6mpCaA311Ieab99dcTv93PUUUcBxtAcl8vV6vv7zZhN0dyFaIEmvnXuYvSyMqxWa4e370zidhEKhdqd8ENR4mXB06dP58orr+T0009P+fHTJaLp7Ix9fq7/tLlX5V7bdgWpqQ3xeWgf7qbt6Vqi6KM+i31WFwRtjB7p7BfH2qno0ZHmYYcdxttvv01TUxMlJSUA/OQnP2Hp0qXxSV/pNGPGDACCwSCXXXYZl19+OXZ7ajt0M2bMwGLpmwdY0WiUtWvX9unnYKr5tIZGWxMzJg1l9uhB3bqvLxThgyZjesusWRPzugmXruu807AFeyTKoQeOZmhh5zvz29WdfLmnGc+44cz0lGRplZ0r84zl/te+wKk18cMfnsOVRzbj8D3Auto6yhtKGaNuYNrWV/iw+ST2hAfh2vcqgx2t0290ixOcI8AxDBzD0J3D41/jHI5uHwy2YuNiLTIyaKxFYHGgAJ292lPdLu655x4uqjTSl1U1wL333st5P/g+RIMQ9RsXLQARf8v1qB+iPpRQA0QaIdwA4cb4RWlznXA9SqQZhSi26D5s0dQOHnTFAs4ycI4EVzm6ayS4RoBzJLqrHFwjjYtjqGQSpUE4qvH6vs0AHHTABFw7Gmj+bCcX/PxCfOtfp6GhAbfbTSii8drezZQAR8wd32FGTmJJ88yZMwHQo0b5zPiJk5g9viUY4Q1GeKt+CwoKcw6YwMZIFbubAoyeUM6EYYUdrnnv+t3stTQwY9xgZo8f0unzi0ajvLTlXdylZYydOJJJw43HbfSHKdv3FaqicOicCSiKwtA99aiOAmyDRjJ//vxWjZHzwda9Pj7zVzOs0MHs2aMBo6S87RlpTdNwOBzMnj271f83F9bi21rHqNGlzJ40LFvLjvNuqqVWrWO/EUUoNcb+0MyZE1FVBV3XeX3vZnR0Dpg9juLdzdR9sYcRwwuZPaM8a2uMfx5PHMrsMe0/j3daa9B3NTFuwjBmjyqN//87DV9SFIly4KwxDN73JOq7P6YRC7hG4hv3babNnZHVz2drdQNfhnczbqib2bNGtvpeKp8Ttc1B1vm34bJbmT17XNrXFwhHKdv3JWC87/S2Oa3oG4r3NLMtupOyYiezZ49K+X5tP1favjd/Ub0X1VGAYrEyadp0ojqormI0f2PS2yfT0Xax7MZbuTqWCaooKnrCyTtN07jxxhv54Q9/mPXps/5QlDfrjG1ozgETe9TLyxT5qo46ay2e8mJmTyvr+g6iX6v/fA+1aj1TRpWAb0efPtY2t+tU9CjwM3XqVN58800GDx4c/7+hQ4dSXV3NKaecwkcffdSTh22ltraWNWvWMH/+/Pj/TZw4kXA4THNzc6uf3RmLxdJn/5Cm/vAcAhHjw6TQae/2c3HaFZTYwa+GGq/TzUf+UJRQ1HiugwudWLpYa0mBHUVR8Ya03P2Nw81QvxbqP4a6j7Ht/Jwrv1GO3VoAvpepfu91Jjqr2Nd0AISnMtjdAPbBFBWXsScygWbPRBg1GNyjjUvBGBTHkFZjozNxKNDZdlFVVcXPfvaz+HVN07jgggs46aSTYjsuHR9wd1s0aJSuBfdAsLb1JdDm/wI1ENhtZBv5dxiXuk5+P6oj9nsdY1wKxrR87R4DBR7pVZQCf+z9R1UUnHYr5aUFqKqCpdD4HDFfS82+CIqi4rCpuJ0dn1woLi5u15D97w//lU27m7E5C1q9LjWiKIqK3apitVopKbCzpznU5TbvC2soikpJgSOl9wanVSGiKvjDLY/ri4RQFJVily1+ZtgV6wekWG2oqpp3ny0axP4G1vja9ttvv6QlqFOmTGm3fpfdhqKohKPk5LlFUeKfdebnVhQFm8Vi9JZQFBQUXHYbRS7jNol/s2wwt4figuSfxw6bFUVRiWgtv0NN02OfbQruL+/Csu4KANyeUyG8CE21E9J61scvFV6vl8JC4327ubkZt9tNRDdeKy67tcPfX2efE87YayUS1TPy+w8HW7Z9h73zYQ+i/3A5jNdVqJuvq8TbJnvdmm3LNH8DE4YV8mWtF4dnGv6N73T7OKHt7eed/i1ufuR1Qru/5L7rf8GiRYta3T4ajbJlyxbGjBmT8s9IhyjG56BVVbDZerev47Ab72tRPTefDSK/hDXjc9DtsIGvfxxrpyLlrWjVqlU8+uijgJHV8NOf/hSbrfUH2e7duxk2LD1n2Kqqqrjwwgt57bXX4qncn376KYMHD0456CPyg9fr5fs/WoKloJQT/35nt+9vVZV41mkoqnU4Ij0fmKOgi5zWLifxABTFDsKag11P+UmLcBPsWw217xr/1n0MzZsh4exONDQUu7WcqAaqcwhbi85g4qQC9u2aCYEyhsyYCOPHULRhF2xvoHncYJg4NDvrT1FXTarTyuKAgpHGJRVaBAK7WwI//p0JXydcD+wGLQhNG41LMooFXBWxQNBYKJoYu0wy/rV3L7uuvzKbbDpiYzuHFzlRUFDtBSj2lvT4hnhj5+6XCNk7aEJvNqa0xs5UFseaRnc10r0p1oC3MIXmzgBOq0ozLRMUjZ9hPB9z8hLAoOKi+JAEmzP10oBsMRvtmqN3IXlD7bYNtE2OLDTs7Uwk9vd2WFUsqkJU0wlFjeb9ZmNnRTGaV5tNub3ZnuoVm/7m7qC5sz3JtKtgRAM9CtVP49h9pRGtnvIzrAfchvt/X+ENRmkORDpsGJ0JZgPvno5KN18rEU0nqulJR9v3Rrx5aB7vs4j0c6Zhqld1dXW7vjqqzUFlZSXjh7k5eNxgvqzdjLV4OFgdSW/fHfu8ISObSFE49NBD82YIQLpGuUPLVLC+MihGZFbixMUsHYHlhZQ/oY8//vj4SOf33nuP2bNnt0srLCgo4Pjjj0/LwmbMmMH+++/PlVdeydKlS6muruaWW27hxz/+cVoeX2SXanMC4LJ3/81bURRsFpVQRCMc0SD3PZA7VOdNbaKXqchpHAQ2dnEQ2CNaFBrXGUGevbFLw2egJ/nQc5VD6SwYNIuwMhu2j8JiHwKKylcuG/qssdT+bwuoEQYPHg5AoSODa++lTE7A6DXVmlqgSAuDrxq8X4F3a/uLbxtoIeNf3zbY80b7x7APbgkCFU2CwoSgkGPgBNDbTv+xW1UGuW1oQR+Kwx3faW6IBW5LC7p/dt7MRAy32dk3pzyZgWAzCNNV4Mec6lXoTO1j2mVVaMYoLWv7GImBH6uqxAMSwYjW44PmTIlPcGmzo79o0aJ44GfdunUdHuSYEzpyNbnFPFCxWVVsFpWoFo2/JhJHuSuKEg+8eINdT3lLJzPQ1FF2Tvy1nHCAFPDtha/+it23EUsZMOcPMNn4exQ5bXiDURoDEYYXZ3btiXo71SvxNRaOaljU9G4LLRO98msbE5mVOFmwO9t125Hq9913H4sXL47/X/wEhtVCeYmLL954kqYPnujw9t3hjahUVlZy4vQRTC4vbhVoV9WOA+2Z1vJ50Pv3RkcH0wrFwORPmLgogZ8k3G43F154IQAVFRWcfPLJOByZOwK3WCz86U9/4vrrr+fss8/G5XLxve99j3PPPTdjP1NkhqbrKDbjtVLQwx0guxn4yeNIvdfr5cDDjsQ5agZ/vfu3Kd2nMMWDwJREQ0YWz+7XjMueN5M3Li4YBUMOgSEHw+ADjICPsyVTL7y7CXbvZFiRgzpviEZ/mF2NwfgaB8eCWubBZLZHEafC4/Fw02138MtLf4bZpPqa3/0+JzsuPabaoHCscUlG18BfkxAM2gJNm6B5k5Eh5N8JoX0tQb+2HEOheCqUTIXiaca/JdOMDKI87qPVE8GEHWbTxy8+Fp8SZe40jzviFABKOhjl3pn4aOi2GT+R1juuxbHtpjGQfFfD6/VSWFxCyWFnc+WVS7uR8aOABt5Qy/ZobrNmkBaMQLrDquILRY2MCWdKD5815nt8ZxmTFRUVHX7P/BvnKuMnrLWMHrZbVQLhaDxzJh74iT03t8NYayQWhMtGgCAS1eIHkO4OXlv2tgdITZsJvnQONE/CYVPga09Cxcnx2xc5rdQ0tGSYZZoZqA0mBNJ6wqIqWFUlY7//QEQCPwOR+ffWdCPbL5XgerKR6kuWLGHBggXx/RbzQNVlt1BVVcWDN1/V6e1Tpes6e73GSY8hhcb+3aJFi/j5b+7GOriCP95yA4tOPLRbj5kuqXwepMp8jFC0JcM9WQmpGBjMz0GXzUL6uxPnrx7l5J5xxhls3bqVTz/9lHC4/Qd9ujq/l5WV8Yc//CEtjyVyJxDW0IJ+NH8Te3fXMHxw95sYmwdNoTwO/ABYXMbpzlQPHM3gSY/O+EYDsPc92BUL9NS+ZTQnTmQthCEHxQI9h8DQQ4zsnk6EYgeqboeFAruLTTX1TDh4HrZhY7nh2qtwxc4SmwekzVna2e+uBWeczXUPv4wWaOLiX17BlKm5GUeaMYrakjk07LD23w83G2V8TbFAUPOmlq/9O4yeQ3veaJ8pZC0yxjGXxIJBxbGAkHscpPmMeLa0zQyoqqriT7+9Mv59c6fZPuFg7MPG8eJDt3X7Z9g6yPgJa61T1YudZqlXx9uNGis/s6pqytkMTqsCodZlQ2a5WFGbrKF44CeSf+NLw22CI93VUuqVm+fWUpqgYDdLC2LvqaE2r0OrxegnFQxreIORrAQIvLFSQIuqdPjaMn/3wYhmnEB4/XQCjTawzcG5//eg4vBWtzc/C9JyAqMDybIhhs45Eeh5qRcYQaNIKJqRLICWUgIp9RpIepJVmUp5evz1ZFXTWs7uDUUJhKMoSsuJPQA9GsZaUoajJPtN8k2ZCPy0/YwWA5M/3gKgb+7X9lSPAj/3338/t956KyUlJe2io4qi5GTkn8hfDz70UPzM+vT9p/UoHdUW75/RszHh2aI6jTMHpa7UNq1CuxVFgaim4w1FOz+7r+vQsA52Pgc1zxvBnmig9W0cQ2H412D40ca/JTO6fbCe+EFbXmIEfmxDjek6gxJ2ChJLVrJZppCqfd4wqqMAzd/IoKHl7KgPsM8bYrA7+yOec8JWCIOM8r12Il5o/MJ4PTWuNy4N64zAUKQJ9r1vXBJZCqB0OpTOjJUFzoTSGX2ij1A88BM7AOtop9lss92TjJ+OgtORNqVLZnmnNxglEtWS9i5Q7AUAFDosKW9Xrljgx9cq48cILrUtF7NbLUA4L1PeQx3s6Lvd7nYNtZPJlx4/NouS0Csn2urfxAyVQoeVYDiENxhlSBp7znfEfH0U2Dt+bcXXvfM12PAD0EIEik6CET/EWdJ+Go75mk7M/kznmfSOsiHufvwtsJfGt+uesMeCoJk4qRQv9cqzckqRWYlZlYFwNB7s70wq5emJpYMVaSxn39scBIz9u8TPIy1gZIw35jCrOxLLoLSmodQrWe8yMTBpmh7vEecaYIH5HgV+HnjgAX75y1/2uJZUdF9fTUesqqpi6WWXxq/3NB3VlqTnQL7RdR0UC5H6XfjqdsOY4V3eR1UVCh1WmgIRmgOR9oGfQC3UvGgEenY+D/7q1t93lsWCPLFLydRej/9ODPyMHWIcgJqPOTih94m51oimEwhr8UygfGGmLkfqdzJ6sIut+3xU7H8wga0f96ltKCOsbqPMb/ABrf8/GjIygxrWtw4KNW6AqM/IMNv7Xuv7FIwygkGDZsWCQjONPkJ5NG0s2OYALNlOtqpasBYZTcqLUwzcJuq4ubO5PRk7rk6bih6NcN0Nv+Gy056gsbam/QkUq51I/S4CDXuAKSn9fKfNeHxfKIqm6aiqkrTHD+Q+ONIZM7jf0/Idew/7a6RLPMMrVuoFLb/nZKVJBXYrewm1KtHLFK/Xy+jx++Ge+jXuuPHaDm9nVyKw42nCjc/BkBB4ziAw+o+wsSlp9kpx/CRAZrI/OwrUbt/6JcMmHdir5smZzAKQHj8Dl9NmaSmnTUFLA/sLAT1pX53E15NnROvbd9bwviu1zca+UuJJMbfbTe2O7Tzw5haCUSVnJ/falsf2Rlfbem8bZIu+I3HfZ6AF5nu0Zx4MBjnhhBPSvRbRD6UrHbUvNGW7/4GHaF7zXwAOnzMr5cymIqcR+GkKhBlR7ICGT6HqCah+MnaQnXCW2+I0AjwjToDyBUYJTpo/jM2zIXaLymC3nUKHFS3oQ/M3EW7aAxjZP1aLSoHd2LlpCobzLvDTHFGorKzk9AMqiEQ1tu7bim34OAJbP8n10vKXxR4r8ZoGnNXy/1rUCAjVfQz1n7RcvFvBt9247Hg64XGcRlbQ4Dkw+EDj3+JpxuPnQKBNxk/bKVGKqnLWRdfw7JsfEanbQf2eGsq6WZLa0ty5dVaKGfixqsb3FUWh0GlsK6qjffBx5cqVRPZVEdlXxSVnvYI7xfcRh8UYE67r4AtHccbOOAMUOVqfcTZ/D/kZ+GkdKOsus6xC03XCUR27tevHSeeJFfOgwmpREk5YtC71sieMjC2M9fnxZumsumo3mjp1OHbdX4P9vcWwt5SQ1Q4zroPpvyawpQ5IXlZVFC9fzMxz6CgborRsVIdrSlUmswCk1Gvg6knJ6aJFi/jV/f9FDwe45bfLWHzqEa2+b36Oma+nRYsWcfk9xrTlZx74PUcdNKNHazUzfsz+PqZCp5GRHtF0fKFohz3BMimcUDrbW+ZndETT4ydHumqoLfons8zLblVR0zzNMd/16NPo1FNP5W9/+1tKaddiYDN32BL1JB013zN+qqqq+MWlP4tfNzObzEl4nSm0KdC8mcY1N8MT4+C/M+GTq2INeXWjnGbqZXDs8/CNOjj2WZj6cyjdPyNNeBOn6iiKwobXn6Bp9Sq8n73EGccczIoVK+K3zfQOf09Folp8wtrQQjvjhrqNgwMdVPcgqquru3gE0YpqgeIpMOb/wawb4OgnYOFXxutx/hsw9w8w8XwYcqiRTRQNGK/fjX+Cd38IzxwAjxTBswfBe0tg032wdzVEg1lZfrLmzosWLYp/fcd/XkPTMV7n615l2rRprV7nqeiouXOyVPXiWDBVV9RWr8W2JS16N95HVEWJB199wUi87MaqKu0OPOM9XML51+PHDI70tKeDzaKgxt4Xc9Hnx/x72yxq/PdsPqdQBxk/0NJ7J+MUK5H6Xfjrdrf/3u434Nk52Pa9BRYHoXHnw4yrQVHjQcJkQYzChEb/mtZ+v7C377cej4ef/PpGzFJMMxvCPdgoO+tNxk8mTyoFpbnzgGX+zQMpZvyAMQHSUlCCtaSMgkHtM8aDSTLIFNWCtaSMQcNH9Hit+2LZ0UMLWw/sscQy0qHjYQSZlvh+2luJ77uhqNZhCWkqn7eib0ts7DzQ9Ch829zczL///W+eeuopPB4PNlvrs4n/93//l5bFieSSpSPmaymYx+Ph/KW/4d7fXElv0lHbnjnNN93ObAo3Q/VTUPUYRZ9XQ8MYmt0boGirkS1RNh88p8HIr3c99jvNwpGWM+5VVVX88Yal8e+1LdUrdFrZ1dgyNjpf1PnCaLqOw6ZS6LCiKApb3nyy3RQnObPTS/ZSGH6kcTHpmtEraN+HUPeB8e++DyFcb0yd27e65baK1egbNPggo/H4kEOMZtJpbiLd1djnoycO4ZKzlsWv96QktcPmzklS1d969j9JX4u9zZB0Oyz4wxreUDT+nIuc1nYp+mYzw3zsdRDPOOzhwbyiKDhsKv7Y76AonYtLgfkZZVWVdtOxkpWxmWfRs5Hxs3LlSkI7NxDauYHzvv4KEfM9UNdh/S3w8ZWgR3GUHAhDfkiooKWpa2dlS267Jd7MtjkUodhpS/uZ9CNP/gYrn3kbLdDEpZcv5TvfOoZ7Xt0M0LseP4mNrNPMH2oZFywGlp5k/CQGiZIFjNr2jHK73fzfQyv4qtaHYutZNm2riV5J+h8Wu2w0BSI0+iOUd38uS6/1ttl/IktC0+1QVEtrg2zRt/gHcBlujwI/Y8eO5cc//nG61yI60ZfTEecefyZFz72Ld8MbrPvgrR7V0MYbp+ZhaQKk1piPcKMR7Nn2COx8Nt6YuUifDNZpNA09BQ6phBHzwVqQ7afQskyz1CKFyRFFjpYzvfmkNpa6PNTtQFGMANbdnQSwRBopKhRPNi5jv2X8n64b4+b3mYGgD6DuQwjuhbo1xmXzn43b9mASXVfaNnduq3rbFvRe7gB2lJUYbpPx01kwNaX3kU647VZqCeMNRuJZL4VJGos6Evrg5Jt0THFxWFsCP93V2z4PkYT3T3ub14TZ3DmxjM2ihVi2bBmRhl3seufxjJ206XBc9LGH4Nl+pVFaDDD2O9hn/RHe2kU42lIS0VmjYkUxMgMa/GHjILF2V5ejqbvLF46iOgpQHQUUDSnj85qWAby9OSjMZDZxIEmmoRgYzAPK7rzHqjYnlZWVAETaFGSEo1o8cJz4OWa+tnoauGwMRAhFNCyqQmlBksCP00Y1/pxl/LT9/Owtm0UlqkUJR7Ref96Kviue8WMfeEH5HgV+LrzwwnSvQ3Siwx22PnDQqus6Df4IqqMAIkEqKip69Dhtd6Dzjcfj4bJlN3Hz1ZfTKrNpeBFs+Qts+7cxjUtLKG0pnAijv0GR6xTYNpTmEhd4RufsOZgSe/x09cFYlKSpZz5kn+2NNSs0a9blzE6OKQoUjjcuo79p/J+ug2+bEQTa+x7UvmtMEos0w65XjIupYFRLEGjIIUbPoG4ER82zrokHYIlToqqqqnq9A9g2u8MUadPjp7PX4jHHHMOllTdxW2Wb95EUX6Nm3xZvMBLP8mnb2BnyvLlzQsZhTzliU8tSLWVL14kVTdNbShOSNHduO84dWv5mqt3V7Z/XHR2+7v42H8/4XaDaYc5dMPF8bJoO7DLWHNVwqpb4AWxH2StFTjPwE2ZnBt5vzeyZSP1OANZWNwDG6yTZZLxUdbTdpoPZkyXf+t+JzDO38UC3Mn5abhuKaISjWjwwaX5PjU0Ma/tzehrEb5noZcOSpNeJOeig0Z+jwE8vS3/bsltVAmFjip/H4+GaG2/l2l/9AtBRVJXf/f5u2SccAOL91wZgUL5HgZ+lS5d2+v0bb7yxR4sRyXX3oDWfOtM3BSNENA10DS3g7fHj2DLYgDFd5i88m3sef5PIjs/45B8XMlF/Gh79CWihlhsVTTYOfEd/05h+pCgUNQZg27a86ZOT2OOnZXKE0QS37YFoYcJI93yy12s2KzRq1uXMTh5SFHCPMS6jzjT+T4tC4zojCLQ3dmn4rKWB9PZ/x+5rMXpfDTkEhh4KQ4+Aookd9rzq6qC1bbPnnpSkJmscCS3BarPJcGevRV3XmXTUqRTNfRPfF2+z7v3Xu/VebpYN+UJR9FhT+KIkDTnbjhnPJ/FyqF5m/EBqga10nliJJPS3ad3cuc1Ur4Tmzm670e8p6m/K6Gd30tedChNLdhkB2SMfMRqxx9aeWBLhtFniB7AdZa+YAcbmQCTt77e6rhPBQmVlJafNHskTa3awY18Tv/3tjWghPz945S89PsGQqcCPrusy1WsAc/Qg48ffJlDtD0cTAj8tn2GJpbstGT89ey83+/sMadPfx2SOos9dj5/enwhIZI89jjmE4bjTzua2R15HCzRx8S+v4KBDZ6Xl54j8NpDfm9MSQo1EImzZsoX//ve/DB48OB0PKRKk0iC57RnL7jYmzZQGXxibzc4dN/8WXdd6vHOW782d0aIEaz/h9MMLeOpXdiZu/xlUPWYEfYr3g+lXw8mfwCkbjOa4g2bFD1LN5nneUIRoksaY2dZ2qk5iE9x169a1OhNemLelXmazQiPjxzywNyUblSrygBoL6Ez8IRzyZ2Ob+UY9zHsZZt0IntONsi89apSHbVoO7/wAnpoMj5bB62fA+luh9h1jNH1MVwet0PnrPBWJO6aJAeqWni+tJ4rFn7Kqxl+LuxqDNPjDKDY70ea93c6QdMcyC5qDkXgwtihpqVf3D0qypbc9fqB7U8s6O7HSXZGEx0nW4ydZc+f//ONhmlavwrf+tYx+dns8Hn5/x52YDZItKixfDJ6558JJH8WDPqa2a+8646el0b/H4+G8y2+gbTPmnr7fBiNa/LNxzOACBhW0vKb1SKiju6UkU1O9ghENc/5Jb5pPi76ptxk/0JLllvi9tgeqvZ3QaO4rJevvA1DiigV+/LnZxwslnIhMB/NxzO293hdGdRSgWO2UDh3Bpt3NORtc5PV6URQFRVHwent+olx0bSAHfnqU8dNRRs/999/PF1980asFifY8Hg9X//ZWll1hpCMmHihAfpeC1fmMD5VktcPdYR5U5V3gp24NbPkrbP072s6JHDDGw9CCIJqzAnXcd2Dsd2DQzE4fosBuwaoqRDSd5mAk/kGbK5312Gh7IGru7DcHIui63q6JbC6yz4KRaDwteYi75SzWokWL+Nmvb8DhmcZ111ay+Kyjsrou0UO2Iig71rhArESsqiUjqPZt2Ps+BPdA1SrjAkaT9MEHoQ89gtC+I6HAk/IBWE9KUq0WtV2WBLQEAxJ7FCxatIifXnoZ7smHcfEvl7LwTOO1+Pkuo29JZF81aN3f0S6IZ/xE4gGnwj5U6qXrepp6/JiBra4PutKZndKSLWnsvLcNKrQNalVVVXHpJRfH75/Rz25d58zD7excupBg414u3f9DRp10H4z9dtKb2y0qfqKEIlqr7BVHBzvKZsZPY8Ao95p81GkUvfgeWqCJ315XyeIzev5+6wuZP1vFalGZVFbE7gYvWtBHpGFXrz5nMlVGbgbKbAmZX2Lg6EmPH3+byX6+hOstE+Jav5Z6+l7u9XopKSmhcNb/Z++84+Sq6vf/3DZ1+26yKZME0iAQIEAEVEDpiHTs4DcgdpqKUtVlBaQK0stPhEVRQIWgiCCGKCIgBAmEBEgnmU221+m3nN8fd86dO7PT594pu+f9evEis7M7c6fcc8/5nOfzPCfiJz+/JbfiJyynnePZTWqrdKmkFrQjGo+Ojg4cu6Qd/9rYh7GwjP7xKKY3uCx5PkZ1kjB3nnpjs6Wv+MQTT8SLL75o5UMy4hx24lmoX34avEuPwQ2Pr07ajbZyx9JqRkL6ArzJU1oxw5icKZVXxCAyAHxwB/DcMj2m+oNfAOFdiHBNQMtBcH/iQfBn7AAOvCln0QeIG2Om8cqpFOl2pTNR5xShyDJ+0nENBKcbwWAQjzzyiHF/JdRn1N+nzilO8FbQokGIje3g61ortqvDKBGOA7xzgLmfAw68BTjuFeDzY8Bx/wGW3QzMPhVwturm6f3/RnT9L0C2/w7YcDOcLx4I/PebwNZHgfEtgMXfgXTJXnTMmtC6FAuDKDE0tc3Aaxt7wHE8TjnnWwCAd//9PAghBSskvYbHj2oofurStHoVkzhTDmSVGB9JqebOQH6LIZ/PhzvvvBNWqFNo8YB6zkwwd04ZW8t27Q7vBv51KiLvXIvpbR60NLnRetbrGYs+5mOUVQ2Kybso00SZfs/GIwo29gZAQMCJEsTGdriaJkZTFwJNPPPEF9OL2uvwxgtPYXzNSkS2rinpOpPqw2QVERblPqUxFD95+owBE1u9QrFE8T/R6pX8fUoUmIoZyzkIHj2qK5Pip84lguP0NtZQrPzXi9RW6VJJ7R6ga5Rp9U7Ma/VClmOYu98hTHUzyaHn01T0XytK8ZOOUCiEJ598Es3NzVY9JMPErtGIkWgh1LcmVd6r2b+EKn6aS1b8VNjjR1P0JK6tD+vpJ1q8QMM7gNmnAHucg8iOpUBIg2uGT082KoA6p4iRkFwVLVNyirTWbIKbisBzhis+7/Do6rOLy7SDnYFUY2czWiQAEA0xVUMgqqRtg2HUIIITmPYJ/T/8SC/ojG8E+l9BtPsNYNQJMdYHcew9YOy9RIKYawYw7XBg+qfgnX4kiKYWfO6aMRtHUmQtuRhgJrrrQwDAxr4ApFYfeIcbDpHHvJbiUv28ptZL2hqT3tw5HudeZYofs+qiNHPnwnxbvnj2V3HlI//Q1SnXduD804tTpyimKHdg4u6yUfiJfxdsv3YTAmz/HfDWxUBsCCNkP7z4HvDyqwF8/8o9s/4pPcaYoiUZy2byXhI0GZ2dnSByFL+89QZIkgPPPHI33t4xArnEPUa64KSKtuhIP566u9O4v5TrjPl1WkkuhRRjcmMUZAr4XqVGuJuLRpkS4hItZROfJ1fQBuf0QBkbwPhgLxrd+6Y9JoHXE/vGIwrGIrJxjSkXqa3SpWIu/EQV1ZhzN3kkLJxeh/e7hyC1zkF0xzpLnq9YqsmrdTKSLaVyslPUGbz33nunlfs5nU5cd911JR8UI5mIrGIwQJUgBKpGEIypxg6bz+fDldfdguuv+iH0VrDq8S+xTPEjJlfpy8bYh8CWh/RkrkhP4uctBwN7nqvvmDp1X6vw1i0Aitvh0wsQ4aowSU71+MkF/R5yTg+e+ffakmOxS2UgxdiZ4vV6QTQVXa9ux1AwhqFgjBV+JiscBzTsBTTshej0s4HoDjj5MLD4S8DAf4D+/wBDa/RzeucfE6bRjhZg+hHAtCOB9k8BTQcAfP6XyVTjSGBiMQBIFFMJIfjdGzvQPTgO55z9oIz0olEdKzqliCZE0aKPQ+TTtrdRXwhZ1a8n6dJcKoFsaoUqpaXAWeCiK2KKCpcaphX9vHJKK1fqhkWq4ifVVNzSa3fwI+CNb+sbFgDQfBDGFt+H4+Y24cdXteRUk5mVMJmMZc3Uu/T3nJOc6B+Pwulw4sA5zXh7xwhiioaYohXt20SVD16Hfi5u3rzZsuuMXebOidSYqddKwEiMsRFZy7tFKlEs5BGVtSSFTSSDx1Yhba1mHn30UZBoEMH1q3D9uauxRyxzkmGDW9ILP2EFMxsLepqSMeajFp1HVDkUUzWMxtcnHocAlyRgzzYvOI6D4GkC76q35PkKwap0SUZumMdPgTz66KNJtzmOgyRJWLhwoVFdZljHrpEwREnCHTdfD1UjGA3LGA3LSRL+Iz/7edz51L+hRcarxr9Eix8rYIXHTxkLP2oU2PmUbhzb96/Ez51twB7nAPPPm9DCpXsgZDe/zEZDlbR6qRoxFo35tlrUOfVUGrF5JnYENHAcD0LKrz6ju1vepUfjpzfdYRg7p9LsdRiFn3mt5Y+aZ5QXw5TW0wjMOV3/DwCUsB4f3/dv/TwfeBWIDQH+Z/T/AECs1xVB7Z/Si0GtywE+c7EwsdBPTMJTiwFmOI7DgXOa8fTvuhBY+xwA4Osnr4ZW5IRPEnhj0QDoap90Cw6zaiOqqPA4yruLm4lYgUXnTBTayhY27bQHImrRxTDaDkV3p81FBdXULmUuxq1YsQI/uOEeiE0zcd8vrsdXjz+04OdNQlOBjXcD714NKEGAd+rhAvtchtF3egGE0JCHj5zZnyihNsh8TXAIPIgqgxP0x57X6kGjR4JD5BFTNIRiChxicfMAQ/ETL2xaqZSyy9x5Ki8sGAklgUYIZJXk1apEW71avQ7sGomkFH4ymDsX0arY29uLSy65xLhNcijmGlwSuhGuSLKXYvJNswKaqBhTNAzHCz+0I8ElCfA1uaBFQxDqWixX3WRTYGXyav3617+e9vcZpUHPJ/cUHJ+Lmu0dcsghAIDt27djy5Yt0DQNe+65Jyv62IR/JAwAmN3kNoo+oyEZs5vcxu+MhmVjxxLe1oqYsKUyHlGMCXS6SOFCsEuOncTYRmDzg8C2R4DooP4zjgdmngQs+Bow67OAkH7iGlU0aPF2qGIGEoHoMnl5yI++N5+r2ACf3GqRX+HnP8/9AeNrVgIA7v3BOfjkiafjlb89DYAUFYtdKoKnCQDQlsGssNXrwBYkYkwZk5uokmHRKrqB6Ufq/+FqvX1z6H96EajvZaD/34A8Buz+m/4fAAgeoO3jwPRP6cWg1kN0E+k4iYV+QvEjp1H8mPHII5a1rQC6KiIqJ3yu0sHHE6eoEqPEurxlpLaZFkuhiyFOdKKjo8O4HYgoaCxCpWoYkcYXKfS6RYie2khJfX1EVSA2tsNTohcO+l8D1lwADL+t355+JHDIg7r6DTB2uPMJEHCY/Kro+5itiMFxHJTxQXDgMDLQg70OnAtAL9bEFL21ttgNIMPjJ174SVVKlXKdSefLZQWs8DO1kQQOPMdBIwRRRc1L7Ua/M80evfCTlOqlpF+oUmVRTNGgaQR8huuMuYixc+fOjN5iaQs/7rhxe7j8hR9jM8CyVi8aFEMMKwrzWP/e6pXGfLacqptMfm8M65FVzZhrOKeguXNRq/GxsTFceeWVWLVqFRobG6GqKoLBID72sY/hnnvuQX19+SVyk5nu4QgAwNfiBob0n42mDMDhuDM9ZSxc3MTVSkbCNNFLyngxyhdJTAzW2S5uBaPG9Nj1zQ8AvasTP/f4gAVfB+Z/TTeSzYE5waOYNg1aGOOdla3ox4wEBS6vHW+/3487r73SuE2Ihlf//gy8+x8PNTSKd/7aVd4+ZdEJNTiK0YFetHj3SfsrdHdnkBV+pgRUiZctyh2AruRpO1T/b5/LdOXEyLumQtDLekG4d5X+3zroaoq2Q43WMIlbACC5gKqkGP6msm3rFkvbIz0OAUNxT8pMhR9AL47ETIv6akBWMqujCsFZoOFpqgHrWEQu6vopp+xO6+le8cJPvHiRbmwlMX1zJ1iseWqkD1h7ObD1Ef221KSHCyz4uuFZpWkEY/FW4nxem5RG8ZOtiNHV1YXQ+pcAADeeuxpz778fS775DXgdun9dKcawVAlh9hdZsWKFUfjZsGFD0dcZWiRUNGvbHiNGsWzqLSwYeiHUJfEIxVREZA31eYREGYqfuFrZfM7QItBExU/idkzV4OITt1ODNszFUo7nk6472RRzNNkrdd1hN0kpjxa1ekkm24iRFA9Sv9+PG39ymfG75fSo3GP+ggmfCc8L0DRW/LEas2edU+QnFNwmO0WdSddddx16enrw3HPP4b///S/WrFmDv/zlLwiFQhmj3hnFEVMJ+sd1z5LZTW5jwmYegDWNGDt59KJAfU4qyXDImjYvIHmHVLbiJA3vBt69BnhmHvCfL8WLPpyu6jnyz8Cp24D9OvIq+gDmaMDidvfohJZ3FGfqahV04ZXvRTbdLoWmqoCmQGqeWVQsdrF0dXUBShTB9atww3nH49FHHk77e3RSNcwKP1MCWtjIN8rdgBeAlgOBvb8HHPkUcGYfcNI6YPk9wNwvAK52QIvqRaH11wEvHQfHf78KbHkIsQ/uBbqfgxYdNdp7Mpni0rYVM6W0RwpEQWdnJzo7OyEhs2eYoYopIG7YbqyIcgcS73W+Ra3UNJ1iFzgKNfKOf54cl4jyDsSLLqlFLa/Xi4+2fIiOjg7ESIGvW40C7/8C+MviRNFn/teAUzYCC7+ZZFQeiCUUuHV5tPaZVbaZoqQpqW0KhGi48Lvfgd/vh8dJk+aK968LRuNqhwwJLKVcZ8znpZWKYqb4YRTScqppxBiLaSEiKdUrQyFR4Dmj0Gwey/1+Py5OCdqgt3l3A077ztWgSYa5FHNUIVhuxY+qJVIeMylmC8U8ro0YrV766ytnQnJ3dzeCwSA4jgPHcdgdEXHmhR2gnwnH8zjjwp9CaJph/H6tYn6d1ZCUlo9n3WSmqNnVSy+9hGuuuQbz5883frZw4UL89Kc/xapVqyw7uKlMMBiEKIo48sTTEI3F0OSRUO+S0g7A41EFSnxCt0erXjigyUaVhMoom/KQledC5PWdUyCxq1owhAADrwP/OVsv+LzXqZu7umfqHginbQc+/SzgO6UgQ1eg9ElevUuAFg1BDY5g+46dRT2GFRTaapFp0XrplT/F9TfcVLaWtQkLj/hOjd/vn/C7iUmVmiSlZkxOjFavUnfeOR5oWgos/i5w+BPAGbuBkz/UW2n2OAfwzIEDUSDkh7ztCeBfn4X8x+l6++juFyDufjbRQmqCtq1QSm2PNKsisil+HAX64JQDqjjMVCTLF/pZRxUtYyKhmdRxoNgFTqriB0gs/mh6TDo1E/2cglE1r+MFIcBHTwDPLgHe/iEgjwLNBwHHvwYc9hDgmmhQTTeHGlxiXopZsz+RoZrLcH3LtmCi38dSFD+p5s5WwpsWzrYUfqZgagxDh84HU9O60kFbuTgOaIlHq4djifEgmmWOmUgQS5xj2VqH3AsPxUHHnAbXQt22Y8OGDVnbmajiZzyi5Dc+WYR5rl/qNcF4HJOScYiuUeJzQqs3YVJJNW82bvMC/rdzFIeccCakNr1F9tHnXwMAqCM9xu8/9NBDlhzHVGeqF+WLOpOcTueEkwPQd7dYT6K1iI16zz/186GFH/OOJJUrNroltNXrviaDgcorfkZTjNNKwbxzWnAvvhrVU7leOAT4+8eBj36n+3m0fQL4xO+BU7cD+/8M8M4t+vjCJRqFPf7YbzG+ZiWC61dh/6X7VmyAN4xo8zTSS7dovfve+9A0bQYUjRhtLnZTyE6NQ+SNiGt64WdMXhKKH4sv8hwHNCwGFn4D+MRvgNM+gvSJhwHf6Yi1fxaoWwBF44HwbnCDr0F85XTgT23Ac/sDay4CdvwBCPcC0NtWKLkm4bnwmFQR2Vu9Co8bthu68LbK48dsqJyNVMVmsSamspqs+AESryVb4cfrEMFxuhFs1gIJIUDPKv069p8vAcFtgHsWcOivgRPeANoOy/indM6QbwubswBz52wLJlqsCRSp+CGm94Sqh4DkZLxSNxhS09esILG4YK1eU5VEATr3uogWn52iYJjtKxoxih/ZColGpLupwJTunOR5HlL7AkDTEBzqNyLLcynm6lz6+KTEE4XLBVX3Czxnmb0DPdfHwrKhkKKpw6nzWStTFtOZN1MFlmPGQoRiKupdIuRBfeP34DmNab3/0m1m1hLVoFyaysbOQJGFn6OPPhqdnZ3YsWOH8bPt27fjuuuuw6c+9SnLDo4BiA164cfXrCt5aOEnEFWMSaY5Mr01vlMwUAVtLIbixyKvIUehyV6hXcC7PwWemQu89n96fDPvAPZcAZy4Bjj+P8AeX8po2FwIpVSQM7n5V2KAjxXRapG6aP3WN75uqLMiZVpUFrpTQ3fUhqpAGcewl6jh8WPzAozj4KifBTQfgNjCi4FTN0M56QNgzlmQWg8C17hE/72RdXrq0itfAJ6eATy7BI61F+HLnwBmt5TWtgIAHklXDyojvRgf7Mn4e8WkwdhJMBjExz95BDo7O6EppZ2XDoE3xqB8Xh8dv2c06hsnRbd6USNvU+GcFnpoq1O6nWue53IXSPpeAVYdDbx0LDD4X0D0Avv9TG/rWnCe3pqYBapiysfYGTAVQ/Iwd86mWqOFSHPbSiFE44logP7dtgM7kr0S7QRTc3HBSBRp8lH8JDYPeThE3lChhWMqlBxmtIkifqIo4/P58N2rbwBtHeJ5HsuOOhly7xYE16/CLd/8LEgslNfrEHjO2EQoZ7uXbNFGgBl6ro/HW2/rXWLS469YsQLOWXvDu/QYPPzcfywzds6owHK4ITZMw8hADw6e2wTEE3Gzef/VGqlKp3vvvbeirV/0XJuKxs5AkYWfH/3oR3A6nTjhhBNw6KGH4tBDD8WJJ56IxsZG/OQnP7H6GKcunACiyhgd6MHsZl3x4xR548tKB+Bhk1yxNZ5kNByMGZOlSqBqBGNhJX5c1hR+DDl2rslZ/6vAK1+Kt3NdqxtfumcDB1wPnO4HPv4I0HKwJcdECZewu1fOvuJclOqxMXv2bHAcl5iI5GmuWio+nw+XX3sz8u1ZNwo/TPEz6Un4k9i/ADMnhgBAzDEDaFoKcd4ZwMkbgDN7gcP/ACy+CGjaX/+jsQ8gffQwfncB4L8LcL+4H/D613TPlsA2oEBp/d+e/r2hHvz4wQdkVA8WshtdLjhBX1yUGt1b6BhEd9vb4w6s9NpVKHSH2lzcoWPpeAaPH0pdXIVIfw+A/tn3vQysPhH4xxFA3z/1zYvFFwOnbAb2+4leAMqD0QILP+ni3LO1LWVSrZnb2IqBqn2cEl9UcEI+mNvarGKqtxMwChtjUwuF7nghOCQrxgYaNaPN/DzJ39/DT/oc6pefBrF5Fv76/It4e/Wzxn2apkEQBOzcuTMvxZxhM1HGSHeq1rQqyj3dY6XrSCCqDLGxHc7GiS2zxZJucxIcB8TCCH3wCm487wS8s/pZQ8W4//7729p2Vi6yKZ0qBT3Xpqrip+CG6Y8++gizZs3Cb37zG3z44YfYsmULnE4n9thjDyxYsMCOY5ySdHV1AURFcP1q3HT+v7BQ1SMFOY5Do1tCnxzFaFhGa50zyaCswSUaMb0joZhRCCo3Y2EZGiGQBC5ru0EhOEQBgJze40dTAf9K4P1bgcHXEz+fdgSw10WA73Q9tacEgsEg6urqAACBQCDpYhktYSChFwQtz4QFO5HjMdSlJii4JB4RWS2b4gcA9j7yNNQvfwXhbW9h/av/yJry0urVz4uhKjBBZ9hL2RQ/MC+W9Ym+YfZLF6yu6cDcz+n/AUB0COh/JZEcNvw/8KFtwNZtwNa4OblnTjx2/lP6/+sXAxkMCf1+Pzouv9S4nS2VxCHoY5WVi92SMQo/pX9WTlEfg/JR/NDC/fQGvfATiCpQVK3gQkNC8ZP4u1TFT6bvodcokCh6wWfXX4H1NwADr+q/wInAgq8B+/4479ABM0UXfhQNXLygnu/Ghlm1Vqq5M/07O/x9KGbDVysghCQZiDKmJi6j+Jy/6pAamHscAsbCehoeHQ+dGcxoM5lIh2QVvNMDcBw0OVJSeqSTU9HZ2YkrP3oHgx/8tyz+jVa1/ppJVVymbkx7vV5sWv8u/vQ/P6KFmu1ngaoiL7jgQgAEHM8DhICuZoim4Tvf+TY+85kT4fP5Jvx+qd5/laIaY+qnelE+7281IQTXXXcdPvOZz+Dtt98GAOy111446aST8Kc//Qknn3wybrzxxrIaf01WchnVpvr8mCMJOY4z2r0qGVdNVUiN8WOygsRuumkQUULAxnuBZ/cCXvmcXvThHcD884DPvA0c9zIw9/MlF31ykZAOFj6QTOwr5is2wMcK9PgB0nstlFvxMxKKoWcsAt7phjo+kLNdptmrfx+GguVNqWBYR75JEYa5cxlMVo121HgBlRYCMp5PzhbAdypw0C+AE98EPjcMfPo5YJ8rgLaP64v90E5g+2PAG98Ent0beHqm3ib24d3A8Fq96B2nEPVgpl3iiqKpUEZ6Mdy/u+SHKuT10fG7xeswCh5jkcILFdTTLKnVKw+PHwCod4qAJiOw9RndB+pfp+hFH94BLPwWcMqHwCEPFFX0ARLzhYZ8Cz+m1up8JsqZPHdowSYsq9CyqJAznc9U8ZMp0csK6GdC5xalptDEVA1afC48VRcXjAI9flLOMdoiGY6pOT1JnBkKTCoEdHR0YOfWzSUrSKgvIu8sT2AHkFD8iBYqflLH33Spww3uRFublWva//u//0P9wafAu/QY3P/gryY8duq1esWKFfDsexS8S4/BP17734S2s2pLy0pHJq8piPrmayU8f8Ky/deUaibvws+jjz6K5557Dvfccw8OOeSQpPvuvfde3HPPPXj66afx+9//3vKDnGrkmrybCz+aRjAal6VT00aq8hmokMFzMBjEkmXL0dnZCQ9v3aIiSY4d7k3496y5AAhsARwt+m7oaR8Bh/0aaF5m2XPnolSzsBUrVoD3NMG79Bhc89t/WNZXXChWxSnTXc58ettLgV74Zux9MGIxGcpID0gsnPPvqOJnLCwbu0q1cBEthsn6uvLFMHcuw857qklszCgE5PncUgMw6zPAshuA418FPj8CHP0PPXVw+pEA7wQivbox9FsXAX87EPhjE/h/noCZAw9gUePuvCf31ebx09XVhcj2tQiuX4UvHntY6Qb3qh5rv9eSfbN+71VTjLJbEtDgKt7LQqatCabPwCEmt/9RpVUSwR2o2/kQ8MHtGN/wADD6HiDWAUt+pKdNHnI/UDd/4t/lSVRRjQIKTejJRVKql1E8LfwccksCeI4DIboCoVDsTPSi0CKXVecCve6JPGdZDDWj9nAW4PGTWlyl/w+ZCj+Z1GPpitxmU3S3Qyg5PbLeJUKLhkDUWNkW61bNR82kPlZzGiuKOqduZi2rxCgSWIFKCHhXHcTGdnzi4x/P61rNARAb21Hf0m7ZcZQTn8+HW277Jcwx9cuOOhlQ9PVpudPKgsEgzvz8F9HZ2QlSopdgrZL32fTkk0/iJz/5CY466qi09x999NH44Q9/yAo/FpDLqNZc+BmL6C1VIs/pO4YAWuviip8KGtcKrnoAQKPbusmaJPBAdACxd3+e8O+JDgLePYGD7wJO3wEccC3gnmHZc2Yi9cJXiscPRYsGjL7iSJmUMqlYdaFNZzZoJ45pe8DhkPDG31fmlfLidghGtX+E+fxMahKpXmVs9Yo/p9H6U+ziT/QCM47RUweP/ZdeCDr2X7qp74zjAbEeUALgeldh1uD/w7xN/4cHziegTyfwPB648+dpJ/flVuVlww6De/p5c2J28346dnOc/jcNJXhZpFf8JBd6jB1nTQZ2PgWs/gzwzB7w7vh/gBpGUJoDHPgL4PSdwIE3A+6ZBR9HKtSzyO0Q8lagJBQ/xPg+F6Ne4XnOUC/k2+5lvr4aiV5lUPwU0+qVrrBujt62SvHMqD1cRaR6uVMUP6GYktMoPN18y2yK7o0/ltmHa926dQVtML7w9OMYX7MSke1ry7ZYT6TMWnftjoZD6Oy8Bp2dnZDlWFqPH1HgTWbWxbWopiOmJBQ+e8zNrxCnyfpGZjFF82rh1M9/BfXLT4N78Sfwl+f/PsFrqtxhNrykb/yWY05YjeT9qru7u7H//vtn/Z3DDjsMO3fuLPmgpjq5KvOGyVpYxjBN9PImWqravJWPdOfdeuGnKU9ZeVYIAfr+Den9nwMb74G886+AFgVaD9GNUk/ZBOx1Yd4ml8WS6kxvvvAZZmGlTE5VBVo8ZWGoQm16tab4AQChvhW8uwEiz2Ph9Lq8/65OJOjs7IRv4ZIpqYSZTGTagVS1xKK1HK1ekqk9xvz/TO09BSO4dOXPfj8Bjn5Bbw37zFpoB92FwfoTQTzz8PVPE3x0B7D6amD7LzWc33Q5sHKO3h72/q26l5AcsCXJqFjsMLg3Cj9C9msQXXC5JAE8zxmFn2KSvWihz2wgmmwmSuAIfQj871L9M/n3WcDu5wEQ1LcfAMz7IgJLbgCW/ABwNBX8/Jko1N8HSP7O0o6EYtuW8vH5yXR9pX9TlsJPmnOhu7u7YNUk8/dhAIUpfsJy+sJPRE4ofjJdw9LFudOCqUNMb4peSHqk3+/HT9N4x9m9WJfTpCSWCsdxIIps/DtT6ytVRlppZi05Xejo6MD113airq4uoyE+xev14oVnn0FHRwdULvsmejXEpGciGNO9pgSXF5wcrXhaGRdvM3NP0fE571fd2tqa84vV09ODpqamUo+JgeyVebPix0j0Mg1erXUOyHIM37v8anCCWJlFrSBCGelFeKS/+McgGuD/C/D3TwD/OBLSsG5yKbcdCRz7b+D413WT1BwxtlaQa0c6n9STbFB/hEfuvwuS5KhY4YfuSND2hGIpp+JHbJ4NZaQX9epoQQtsauonuBsm3FfNF9FSmEyvK1shlmL+/lVC8UMLP2JqmodV8ALQfADIou9g+6zroJ2yBaHjN+IHjwHv7ABmLjgI4AQg5Nfbw97+EfCPTwF/bITz5RMA/58R3fUKMPS2rkCpELlUrsXgEHlo0RA0JZr1e5/apmtM+IvY6Y2l+bwdAg9E+3UD7433QHr9bOCD2/SWPdcMYJ8rgVM2oe6oJ4CGvRGIWV+IK6bwI6S0KTlEHkKRyjW6e04Xo6lku77SBbHXopCIdKSaO6eOLebb+WC0xjF/nylNIR4/0ZRioVtKnDO5ConplEUJU/TEd9Dr9UJRFKxZs6Ygc+ZKJc/a0eoFAESL22O4xIxjmtnnxyro+JJOwZSpEOdxZB4785kDVQP0u6jFwli4cGHF08qIpkAZ6cVQX0/ZnrOayPtsOu6443DXXXdBltOfBIqi4O6778bhhx9u2cExdFIHhHqXZPSf7hrRZYBmuaLHkHNzaRe1dvPrRx5B8N0XEVy/Cp8+dFnhg5GmANt/B/xtGfDyqXHDZiccs08EFl8AeZ9rgOmHZ0y2sYNsFz6zqqBUs7BmGjPOFD958fAjjyC6410E16/Ct089vKDvWotH0nvWCUF3d3fNXEQLZTK+rnxbg+hk2iHy4MvgtUEndIpGoGnEFnPKXHjaFuHJ1wkueZRAOOkt4POjwDEvActuBOacCXh8ANHgDKwDht9G9KOngecPAv7QAPz9k8Bb3wO2PQaMvp9kHG0nPp8PN9x6O6gPgBUJJv945gmMr1kJuXdL1u996k57KbHFRqsXR4D+14C3L4fj1TP0AILefwLRQb0oPveLwJHP6O3Jy34O1C80ChsxRbO8YD5WROEHSFb9lFI4pYuXQAbFT7brK42Bt9OIU5Wj6OzsxOlnnoWNGzdmjR/OVkSk90311BiGDv38I7KW0yQ4k7lzssdPrlavxDlEH89jQcHUjsJ8PiTmo9ZeP7XwOJSRXijjAxl/xw7FTyxFAZzJEN8MLZqnjp12tEfbhcpL6OjowF9X/gmLFy9ODrMpc1rZI488gsDa5xFcvwqfXH7ApJgPF0reV/Lvfve76O3txZlnnoknn3wSGzZswM6dO/Hee+/hiSeewBlnnIGdO3cmfREZ9iDwHOrjg9KOIb01yBxJyHEcWuKpRbynqazH5vf78T3TJKmgwUiNApsf1BO6Xj0bGFmne1jsczlw2nZISy8FnG0VaU3IduFL9YgohdZJUvgph+LH7/fjkmK/awBW/flJjK9ZiejOddh7771x4YUXFv1Y1UotTQ4KId8dyHL6+wDJE9SYqtniUVAwohdoP0ofR4/4k+4dc8YuOA7/DTD9CMS8e4OIjYAa0VOkPrwDeO0c4K/7AH+oB144FHjjW8Cm+/Rihhyw5TCPO+2LqF9+GlzzD04rey8Ev9+P26653Lid7XtvtHrFF1p0p7fgVq+QH0rff4Edf4Tjhf2BFz8BvH8zHOGtuuqqfhEw5ww4TvwPcPjjepqbKW3SIfKGQiBQRKJYNopR/ADJ14FSihhek19JOrJdX8tp7swJEjZ8uDFr/HBqETG1sH7vvffikI8fjs7OTnAqS42cytDrjmraBMhEatJQUqqXkqvwE1f8mDbarGyRTNhP6Ne3ci3WZaN11rrrZ1dXF4LvrUJw/SpceMaRGRf+9SUoPzNRTDy9UQBMKfxUSoVVDPR6RotYK1asgHvxx+Fdegz+8s83yxZm4/f7k4r4k2U+XCh5X0kbGhrw5JNP4tZbb8WNN96IcFhXmhBCUF9fj5NOOgkXXXQR2trabDvYqQSVZK5duzZtJbjRLWEsLBsDfVOKM32rxwEtGgJ4Ht3d3Vi8eHFZjjvbYJTxIiEH9ILPB78Awrv0nzlbgb2+Byy+AHA0AwAkYUT/9QoUfnw+H269/Zf4wSWXACDg+cSFj6anWWHkSJVbtV74MaTHORQ/wWAQdXW6L08gELBMfpxrQuL3+3HNFYme9XS7cfk+VjVTyntUzdCFovm1pduBjJa55UIU9HYYVSPxwk/5FT954Z4J59yTgS2boQGQP32NXqAYfAMYfBMYehMYeRdQgvGfvWH6Y05PmGrcF2jcJ/Ffw94l+awNBmPgnR5wHF+Q/0Q6Cvnepyp+6E5vOKYipmjp20eJBoxvBvpfAfr/rfsmBbZC7jsL0JwQpUHA3QDMOgmO+jOB3XvriWwAHK7MKtx6p4ioHEMwqqI1f7uynBhR7nkmelEsU/zEJ/xUvZOKz+dD542/wE8u+wHM19fZs2cj9OHm+GPYdw5LJiPwnWoTOI4HIemvXXSxcMIJJwBAWnWQOHNvAFPXPJSh4xB48BwHjRBEZDXjvIrE7wdMqV4mxU/ChyxDqleajTbaGmRVwXTFihX40b1/BMfxePbXt+HTH8vu+WoFisWt0qkbYcR0LqdeF4xWLxsVP/lAlaDBlFavRYsWgeP5JL+ccrdM5QtVK9W5kr+LYmM7GtrKl1aWbV4wlWxqChoRmpqacN111+GnP/0pdu7cibGxMTQ1NWHu3LkQ0kWUMmzDyano7OwEAFx11ZUTnOn//dwfML5mJQB9F+rBBx8sS1U13wUZACA2DHx4N7DxDj2dCwDcs4ElPwQWfmPCIsKRYpxabr74la+i4zcvQYuM48Hbfo6vHHcIANOOsQWTPJrINhaRIaua5b3NuYgZkcPVr/gp5cKX7gKQSrVeRAuhoPOxhvD5fLjqultx3VWXQl8o8ml3IMut+AH0oqmqqZAVzfKJq5VIAmcsSqIqgaNhMdCwGNjzHP0XiAaMbwFG1uoeQMNr9X+HdwOBLfp/3X9OekzNPRfPv7YDG3cD37nsFjhblgB1C4C6PQHBmfV4BoP6BFsNjZb82gr53qcWflyS3iodkVWMRWS0eXi9yDP6HjD0v3hhbA0gpxwnx0Nx7wF4F0H89HeAWYcBvAjHaBjoTYReZJv0e50iBgIxjEetWWzQwnrjJ76Eq66+uqRWr1IUP3XO7IofAPjsWV/GzU/+C1pkHD+7pgPnn3UEIrJqJBN5bCzeOgQ+HlWtYvdYBJ+/5Bo8+cufAsCEawyQWCwQQtIuJHglBmWkF2ODPQDm2HbcjOqG4zg4JR7hmIqooqE+w+9FFc0wUDfMneP/1wgxCrfuTIofKZHAp6gaRIFPinK3Co4XITZMQ/M0+5NzAXM4gjUbJ4VsCCS83mQQQixJ5zM8fgoq/AjG35o3Inw+H86/7Dr86sarARBL2qPtIuE3lSg5EFnfMC9ngnG2ecHAQOa2v8lGUaVgh8OBBQsWWH0sjAIwx6RLAp8k5/T7/bjpJ5cZt7UsVW2r8fl8+PH1t+JnV+oLsrSDUbhXN7fcdC+gxNsG6hYA+1wB7PnVjAsEOvjLSnbJrF0oGgHv9IB3euBsnGb8nBY3rLjAehwi3A4B4ZiK4VAM0+tdJT9mIchUilrihbYYj59ClWmNbTNw5oUd+NOd16DQC1+6CwDHcYbyp9x9x3bh8/nw81tuxxWXfg+pSrVa55MnnYX6p16GFhnHpZdfha+dfdSE36GKs3IWfhwij4isJil+rJq4WknORQnHAw2L9P/mfj7x83AvMLoeGN0AjG3Q/z+6AYj2gw/vwEnLgJOWAVj3I/ODAZ7Z8SLQAv3f7lnx/2YC7lkYj2no6OjA55f74PV6SnptPp8Pd955Jy688CIAJOv5HImpAFHgVnqB3vVAYDMaBgKIjAYwOroKbcp/AC2NApN3Aq3LgWlHAtOPgNbycSj/7gMASNMXGKEDqcX7bJN+w8/BwlYvzuEGOB4cx6HeVdiUz2lR4Sfh8ZN5kh9RNOP6qnpaEFM0Y8HglNInE1nFyicfMzbKbjx3NTpuvNW475+rV+Ooo47KWERMvY6A4yD3bILcswlfPPawsm26MaoTp6iPsdkWuGFTAhc1GxYFHg6RR0zRMB4fD7K1enGcnr4XMwo/1rdIEkUfB2NKeTZfDcWsRRsnhWwI0LFSVgnCsmqMYaVQTOu3Q+AhCRxklSAYVeAQE5v8Bx93Jp74xxtQxgew9s8Pla2zoxAIIYbih76nXq8X/1r1Iv6zeQAaX9hmRCn4fD5c/rObccOPf4TUNQMr/DCqngbTBK7JLSVVoyvd3nHSWV/C7X96GbG+rXj3xT8kBqNwD7DhZmDz/YAajh/8fsA+V8XTubJ/HekEOlohxY9q6tEeM03MwzGauGDNzkqLx4HuWBhDwQoUfsrs8ZPqj1DIJNk/HMIhJ5yJv734EkLv/wsbNmzI+8JHe9YvuOACAPrF/84778Slt3VBcNfjsXtuwmlHHpzXY1U7J3/uy7j+96uhRcZxx03X4vyTPl7pQ7KEgXhrEO/0wNsyHWMRZYKiwUjXKUOUO8UhJArUtqd6lYhD4BGGWthE3t2u/zfj6OSfRwYQ7vsfvnfeCVjYDnz/G6dADO/QlUFKQE8WC/n1dKsUIpqE8b7PA2Id2iJvAe56Pc5caoz/vylxW/Tq1wpOiv9fTPyfE/UijRrG+ce34PHjD8W45sV13zgKJ+83DKzrBKJDQHQg/l8fwjvmAsE6uHa+Bri3AQAaRo5AX2QOxkg34IkBYp3e2ta0P9D6MaBlOdC0NMmjR1E0AHrhx9zal1royTbpp1L4YBZlTC7M7bO9vb3gXfq/651iwQbnyR4/xX+H6eIzFFUy7p6HTQtjQgh2j4bBx3/PTn8fv9+PH1/2A9Nza7j2qkTR8uCDD8bPb70dV/zge0i3wWAuMHIcD4LEPKGcm26M6kSfF8pJxsupZPLw8TiEpLE5U2osx3FwiDyisoaIrMHjgOWKH6/Xiz89+Xu8v3scvJRdvWkVVqd6pZv3ZdoQEAUedU4RgaiCsbBiSeGnGAUyx3HwOkWMhGQEY4oRAKNpBONRBbzTA4fDh1mzZpV8fHYQVRIbYOZkRsPDqkTFT6F2EUed+gXcvfIVRLo34L1//gWLFy9O8nCbCrDCT43S4NITibTwOJSxfgCLjPsq3d4RNe3czZ49W28N2HATsPkB3UAUAFoPAfb9MTD75LzTuejgL5dpt2HC8ztd6OjoAACEVM6YwOYy3iuUFq8D3SNhDAXK7/NjWeEnjfQ4lUzGw/lOkncO68VDLTQCIHMcZiZWrFhhTAA2bNiA2bNn49JbH4LY2A5X0/SCHquaCcQnB7zTA6lhWu4/qAEIIRiNAh0dHcZu2FAwNqHwkxqRWw7ouRNTNSjxMbjqPH7iOCUeCCProiRvXG3QWj+JB1/Sb552za16IZYQvcgS2AIEtur/hXfp/4V2AZHdGBzVWxnqSR9c428B4xYcDoCbz9oPrwfmQxp8Fnj79bS/F47pbQtugQB1C4H6BfB6DsYLK7djZXcd/va79fC07a0roLKgmK63STHoprGP47In1FDFz7iVih/JBWWkF/JYP4C9Cvpbh2CN4oe2KygaQVTR0j4WiSe/ULqHw2it0xeYdiZ6ZdooM3P+eefi+t/pxfM3/nA39tl7b+O+L5/zVVz5yD+gRcZx16VfxdfOO3fCY9W6pxqjeNIZL6dCFT+prVweh4CRUKLt05nlOuYUBUTlRCKg0V5joTcWLWLb2cJvRjHMna27fqbO+7JtFja444WfiIwZjaVvwhZj7gzohe+RkJzkkTYeL6IDADgecg7z8EoRMKk204UFhNPE1NvJeESxzEuwVmGFnxrlz3/8nSFN/vZpq8GblBKpVe1yt3fwohMdHR04sF2F9/0rdeNmTe/nROthwH4dwMwTCo5jlyrs8UMvQgCN3NUnsAnjPWsusEake6i8hR9NI4nWlJIVPwnpcVRJX/gpRZlGCMHOeKKdMtpb0rECiaKRFtFbD61ceFUasylgwUlFFSbTbs5oWEZM0SDyHOa1erG5L4ChYBR7tiXv9kQrofiJT45jpp2uiqZ6ZcFqL66MCj7XNP2/tsPS/t3gjiFg/Xa01oWBBd8EYqO6h448AsTi/8mjui+cGgaIAmhK8v+JAmiyrsIR3FDhxNZ1O7FRBZqXHgXssQgQPXpwgKMVcLYBzjaE1zcAWh3chy0GmvQWM/fG3Xj91h9CHqoD8czLWfQBEi3IksAlKVrMn71D5LN6RWSK7i2Wxx57DMrgTiiDO3HJWavhKbDtyCpzZ1HQE8uist6+le5aSXd+p9U70T8ehX8kbBjc2qn4ybRRtn37duM6RAIB8JITvNODprZkf5NAVNUXEoKAT37i45PSU41RAqqMzs5OXLHtLQxtfCutIiGR6JV8jrlN33ue47Keg+YCEyHEmJd6JOvOnXSx8XYSs1jxk0quhX+DS8IuRDBm0bypGI8fwGzwnLgujIVlSJLDKJbzUnm7A/KFFiDrncnfQ4/JvLycxIiAjo4OnLz/zILCZCYTrPBTg/j9flz6vUuM2+mUEitWrMClNz0AoWFakhFxOYgG+4Bdf4dz+6OA9239h9M+CSztAGYcW3DBh1Jpc2clpUgxGpYNE1Ags/FeoVQq0l02vb5Sd1g4joNT1N+biKwmSTwppSjTAjG9b9jldCI00G3JxMDr9eL9d97CM2t3IUqqc6FeDCqX2ElXoJvpWVWkrBT943ohubXOiWn1TmzuC2AwjULOkFZXQPEjm+Lc7fQnKQVzkapU8lHwZSrkDYRkvc1rxhxgljWqNAHAaUcr6Ht5K0Y4IHbIwrQT7siHmwCVJC2yGlyirqiNRfL2HpO19J81z3OGKi1XAdBo9bKo8HPppT80/p0twSYTVpk7A3rxJirHEIqpaE1zP12oLpxeh/7xKHpHI2hv0BczdiZ65dP+wXEctFgIvKt+QroO3YXXYmHMnj0771YSxtSAFmQ4wZHxd6gXYmorl9nQ3CllLxobhZ/4piSNj7fy3MlHvWQlNBxBstCjz+v1pk1xTUdDXEFs1UZgMaleQOIzDEUzb+JFZLVg8/5yEDCUZ+kLP6W2epnJ51pNP8uGKnyvykV1zkYZWcmmlDCjyRGIje0QG9rKc2DBHcCb30X09e8Cg2/CiRAw7Qjg6H8Ax/4bmHlc0UUfIGE4LKsEWvyiFgwGwXH6DmswGLTkZWRCVpMvFlSCGzZiOK05najiZyQkG6+zHNDXx3OcYTBYCuaJSDp8Ph9uvu2XAPTnKkSZ1hvU3/OZja6iiz50AkAIMRag9GJQa8qYbARSEoImw2vrixd+ptc7jULpYEqhNBgM4gtf+go6OzuhxRMkygGd1MmqZqgERQvOJztIPUdTx9NCxtdM16U5c+bk/PuBeNGu1Wutd0SdU0SdUwQhQH9g4ndANhlwmwsbz/3p9xhfsxKRLW9gyZIleOihh3I+V6ItYeJ4RH+WSzVTZ4o9V4sc+82qq9RI8nTzhGyochSdnZ2WnEPpdq3N0A2UWY1ueJ0CFI1ga7+uwLQz0QvQN8ooGzZsmKCK8nq9+NX996CjowMan7yAV+Mtao8+9AC8Xm/Ox2JMLei4wknZCj/xOWRKS6O5xTFXaqxTSqg3QyazaCvVMlTxEyvT5isdm6UKXT+NZC+LIt2LMXcG0itBU4+pnOlYhUCDCupSCj/0vNCV0cV/n1JVxtmu1YqqTTCanoqwwk8NQpUSZtIpJbR4LO5wyOaFXnAn8Ma3gb8sBDbdh6jKAd55cB52D3Dsv4AZx5RU8KGYL2ByjihuO0idiNMFNN39sErx0+AS4RB5qBrBSBkX6eZELyuiK+nAnu2CdPoXvoL65afBu/QYPPzcf/KeJPcG9cF7Tktp6T+p0Au9bpJYnRfSQqFJOvQjHbF7PLCJ7u5u499947pX2LR6J1pMCrnUnTwunoBR1lQvIaGikYvc4SsXVu7gprsu8ULuMZEQYqi12uozL46KZXqDXkzqHYtMuI8W7c1tFH6/H1f88PvG71Dlkt/vz/o8CX+05LEzGAziR5d+Xy+eqNnPPbckGEX3Ytq9UlVXqRTadpTk8VPid9gbX8RmUjMZGygOHrPjLXd0rEqnGLWLTO0f9cbiK/kzpJ9TnXPiDvJU9ZBgJHCIvK4ejIaTrmFmMnn8JBV+cswvXaYiPk308ljsjWV4/JRpbmR3q1cuGuLpyda3ehU2v060RZlbvZLHUSuVM1ZCC/2phR+nKcGu2GPPpDLOdK2mY7UkcJat12qR6pyNMrJCpcmUdHJir9eL4V4/Ojo6EFY5QzJpKeHdwJqL9ILP5gd0f4X2oxDb+2pg/rlwth9qScGHIvKc8XCp6ptykFqVpoWfhOLHmoGE4zh4RILOzk60z1tgu5KJUuxuRCZyKX4AfWebd3ogNrbD2Zi7xSMYDEIURfzkhl8iFpMx1+LCj0PkjcmWVbs8lYYutGhC3EiZvaNKIdNuDm31mt7gRJPHAZ7j9NjblEVlJQo/ZnNnueoVP/l7/GRatFB8Ph8uv/ZmUAUfx/P4yvc6jVjz1L+ntwNRBRFZBc9xaPFYX/ih7UJ9aQo/ESP5JtFGka+iNhXaWpEuwY0o+liSa2zlOM6k+im88JPu2CnFtB2Zj7fUdkmPSc2Uiu5Joh+3xyFidrMbshwz1EacWvkxi7bhpbZ92GGiy5g8vPD04xhfsxKx7g0ZFQnZUr0oueaXhuJH1gzFj9XeWPnM6ayCEJJQzFYoHCGh+FHybg/LhlH4yWNDxEy6awKdn9Lkw0iZ2u8KhY6XdSkKG47jEu1eRfr8FHqtpsWyepdkyeZ2rcIKPzVKPnJir0OAU+JBiMWqn0gf8L9LgT/PBzbercfnTv8UcOzLwDEvIerRdxStXmzRyEogfbJXroVJqSQm9vqAQQs/EYsLPwDQHG85EtyNlj1mLqzeXclH8RMy3TeWpo86XauJ4G0GJzkhCZyxqLMS2ieduqNSiyiqZlxUZze7AaCsKrJSyLSb8+GW7QhGVXAc0FbnhMBzaPbqn1lqEh7RFCgjvRjq6ynbcZt9c5Qa9vjp7u4uSEYNAMef/iXULz8NzjlLcd3vVulFcU01/v68878+4fGo2qfZK9nyPhmFn/GJrUrhNP5s+SpqU0l81hMnlETTx5J8iuqlGDwvWrQIXJrCE1Bc25EkctCiISgjvRjsLe0cqnNO3LWmRBUNWnxh5RJ5zG5yJ91v9+5surbfVOoyFK6M1oG44iefx2JMDfx+P2748Y+M25kUCZkUP1BMxU8t+3Wbzrcjsmp5lLvxHFL5Cj+qRowxoVKKH9oOFFM0Swor0SLNnWmUvNlfjKqQWuv0zZJyp2PlCx0v06k26RqhWIPnQq/VtFhGlVxTleqcjTIKIpOcmOM4a42Co0PA2iv1gs8Ht+nR7G2fAI5eBRyzGph+hP5rsn2GqqkGz4UuTEqBPif14BkNyyCEJIz5LHy9LfGFLO9psOwxcyFn8agohnx2h7S48XBHRweiGpfXrorY1A4AmNXkssSLKBW6yzMZvHDoRVfkOcyIL4BHa6TVK9Nuzlvr3gcAtHgdxne1JY3PzyOPPILA2ucRXL8Kn1x+gK1jgxna6qPHuVd7qlfyOWoeT/fee29ceOGFxu18Wp4iMk04EnHE/FY8dVdn0t//4YnHJzze+k1bAVjv70OZXq8/7lAwNkHZlE6tmaqo5Xke999/f06ljJwlelgNB6CM9GJsMHcCYSZlST74fD585fudoKorwbSzXEzb0con9fTQ4PpVOGC/fUs6h7h4utHnvnzOBBVr2ORJIgo82uoccIqCUXQaGShf4TYTdRlavejnxBQ/jFTyVSRkCggx3861kWoey0M2qdDMbcx2o5isFSpV+BEF3jjvrVCAGymfBRZ+6DGEY7r3m6oRo+BMNzYiFiVzWg0dL1NTvQCUrPhJXKupTyifVdVKP8P6NG25U4nqnI0yLKPZQxdEJRgzxkaAdzuAZ/YANtwIKEGgZTnw6b8Bx70CzDg6qaXLiFAuUM6YD/QCEFW0gvs7S4XKTtviFfbxiIywrBq7ElbuSja5JWjREIgq265komTyqCiWfBQ/5h0MWSV59fryniYoI71whIdLP8g0GH3dk6DVazx+0a1ziWjy6Be7kXDl2ybyIZ16QRAE1E/TL+p0QQ8kigaDcQNfv9+Piy++2Ljf7rHBDB2jzAkclZKq58Jl7OCqE8ZTqlowk6vliRbBiRzFeP/OCebCqaiqijM//yXIcswYV63G6xRR74obPKeofsIZdsZXrFgBcAK8+xyFyx9+Aad/6atJ96dTItLUx9RWr66uLkQ2v47g+lU4/+RP5iyeCERBZ2cnDv/0MQW3+SqqhgOOPgP1y08DBAkbNmwoWn3i9/vxk8t+YNwu9Ryik3xOck+4L1V5xXEc3v/XM0bR6WPL9itb4TYTuVq9UlsZGIx8FQmZNg/N8e45W71MbbuG4sfCKHcg2UDaitanbFAFusBbEzZSLE5eQ2dnJ+bMX1yS7QIhxCiYFTrHdkkJP5xgTMF4RAYh+uPQTeJIFSp+NI0k2g6zFX7k4tX1K1asQN1Bn4V36TH42WOrsqpa6dg9lY2dAVb4qVnylRNTGeBwsIhFrDwOvHc98MyewHs/A5RxoOkA4MhngBPeAGadOMHDRzH5Wtih+DFHJRfrxVAs1Ny5wSVBEjgQAvSNRePHxVnapvD3lY/HU2XW2K5kosSKlKFmIh9ZcKqPRbb2qu7ubjz8yCMIb9IXUV847jBb3pdEq1ftF37MMlv6uoJRNS9Pl0rj8/nwrSuvh9kzRtUIvvT1CyDLMUyrT7T50XGOKhvLPTaYoTuv5paWavX4oV4DMSX9eJpKzpYnQVfwrfnva9h///0nLHrSITZOBwC01tmj+AGA6Q0uyHIMC5YenFSsSdfqZUBUAARNbTOwbSD3hD9d4XxCMS2P4gltieKdhfuXjUUUEBBwogSocknmwlafQ3SSzzsmtucan0P8d/x+P/7fjVcb95ezcJsJc6sXXfQqasJPZarvIjMmkk49eN99yepBQojJ2Dx5HHKZVG+jOVRv5vkWNdS1WvFDr22E2J/sVWl/HwotEvCu0to2FVPrWqFzbLMfTjCqGPPkBrdkFASr0dw5GFNAiO5DlM5o3B1vYSu21QvQN1wEdwPExnY4GqZlTcNkUe46rPAzyWnxUpl7AYofJQRsuEVv6Xr3x4A8AjQsAQ7/A/CZ/wG+UzOaNpsvBna0N9BJtaySor0YisWY2Iu8sYimSTFW+vv4/X5cfmnhqTKlIlvt8SPmo/hJKfykqGzMrSd77b13WRRehqHfJCj8JBJnRLgkwbj41kob2xEnfd5Ifbv0gb/COWtvCHXNAJIVP+ZWL0IIFixYmFYtZNfYYIaeP1TNJgnWpOTZgXmxkG48NR93Lhk1kNw6lS6E4Oyzz048Ns9DbJoJqVFv3ZxmY+GnPf5dEetakn6eqcWCIg/pastt/ZkLP1SRma5VtpjiSV18Msw5Ci/8UON2LRIo+G9Tsfr66nXoi1g1MIKPdu5Muo8qr+j4VMnCbSa8DhEcB2gksYtNz3GR5yxt9WZMHnQ/Tg6eJUfi8odfwHFnfDnp/piqGYvV1HHot7951FC9nXnUIVk3upymxK2QcT5Zq2wQTeobu9u9rA4bKZaGeOGHc9aV9Djm96uY1+Q1FZ7p/K3BJRnfmWo0dw6YWg7TzYHosZfiTyQ43IZdhChJWb3x6JyeKX4YkxqakjIckqFlqYQC0D17PrhDL/isvQyIDgD1i4CP/xY4aR0w93MAl/0rQ/19HCIP3oZdbsPcWdXg8/nw9csTioBiUksKwWzuTCvGPTYUfio16bXc46cAxQ9VbJiLLROiiQnR/zNhx/tCP1urkhwqibnwA8Bo96oVn5+oqoF3ekDkCBrb2uH07QM+PgGbZir8NJuSvQJRBYq7GWde2IFyjQ1mUg2TK+VPkA9mXwifz4cLf3wDzO/Z3XffDTjc8C49Blc88nd8dcV5WR8vYXSvP25qCMEDDzygP3bTDFz6wF/hXvAxKGMDCA712Wq4SH0QhJTCD02SSm31oora/m3rIUkO7BoNJ01O03nLJXaoE593McUTj1OIxz8HC27zHQ7JkCQHft/1q5LNhfNJDy2Exx/7jbGI3W/fZL+gVK+lcm/q5APPc0ZKEh1XEwsbsWqLu4xqgECLBNDUNgNrtvYltYnSBbvIc0nXikKtDFxGG5ZmKvxYq/gxB6zYbfBMCz+VVsvWu0TddkGJlWS7YBSyRL6oscJrSvaiG6SN1a74SZl/ppJo9Sr+2FM3ljNt2BKS8EViip8qpre3FxdffDEOOeQQHHHEEbjhhhsQjZbgVTMFaXCLkAQOqkYy7/JrMrDpAeDPC4H/fQ+I9ALePYBDfw18dgOw59lGJG8u6MXArvhkc1QyIQT7HnWaoQj453/fLji1pBASFyJ7FT+VmvRa7vFDe84zDOrm/t+Zjbrvg1nxY0nrSRE0WJzkUEmCpoUJADS69QJbrSR70eJJdPcmNLpFEFVP6VLHB5POOYHn4Bb1XvyWmXPx5pY+HHLCmXDO2RdAcYlGxZJa6KnWRC8g4QsRU/Rd50VHnIL65aeB97Zgw4YNeuEmFgbvqkNjazt6RidGopvJ1jplbjtSR3rQ98EbGH/rzwiuX4VrVxyHX//61xa+smSmN8SLhLwI8IIxgU9tMUqlwSVhWr0TsVgMjb5F4DgOGzduTLsg27VLX5BJpoVKMcWTP/9BN1QOb3y14Dbf0bh/F/X2K5V80kPzIZfnVmqqkdVFJ6tI9fkJRLIvbBgMSqx3CwBg22AInKQXooPBIFqnz0BnZyd4JM+TCt0ATKR6mcydLVb8mJ/H/sJPfCPSprVEvvz9ad12Ibrj3ZJsFxJR7sW9Hi9t9YopRnGjwS2aFD/VV/jJFOVOodfdUlq9JhR+MnhzBqIKVI2A5zhDVTtVqdoZKSEEF198McLhMB577DHcfvvtWL16NX75y19W+tBqCo7jjBSqwdRkL6IB238HPLsEePPbQLgb8PiAj90PnPwhsOA8faJcAIaxs03xq4bHj6JhLKIYKTJiYztap8+05Tkp5p7jpvjEmnqoWGnsPKEvvEyT3pjF0tpcip+QrIIQvWuQJk6ZPX5ytZ7YtRiwOsmhkhhRw65kxc9IjSh+wIvo6OjAbv8O9L/9D0MxcPVXjp4wAWuNn5Niiw8fDYUAAHL/dgDFJRoVS+r5Y1Uh1Q7MXgM7hkIIxVRwogQtNJL0niljfQAA/0go42NpGjEUn5kK4VRJs3PnTvz29kTiVz7eN6XgcYh496WVGF+zEtBUYwKf1eMnzvw2XTUjtcwCAGzevDntgmzHNj2dLLXQV0jxxO/347IffM+4XWg7Kz2vG23Y0bTTLyhdAc6qopOV1Jl23QGTonKKtw4wMkPHPDU4grltDSCEwDF9T+N+TtSL0u6UVsFCNwBpEV8jxFCnWx3nbn6eTBt6VqFYbD1QDH6/Hx1XXGrcLsVeoNgod0rGVi9H8uZNNZEtyh2wptUrdXM2UxqmuQhlRzdKLVG1hZ+tW7di7dq1uOGGG7Bo0SIsX74cF198MZ599tlKH1rNMSHSnRCg+1ngbwcCr54NBLYAzmnAQb8ETtkELPoWIBS3Y2i/4ifh8dM7FoEkORL9nQ77PCKARGqLJHATJtZW9/evWLECniWfgnfpMXjhlbfKMumVaWuKRZ9dLo8fuivlcQgJQ2VToSVdK9/dd99t3L9u3Trb3hfadlIrXjiZCESSFT+08DMcqv5kL0KIMZ4M9O7C9Vf/MHFfmglYczzdwjlDnxgvntkMNTxecstLoaRO7Kq51UvgOWNM3bBrTG8TevAOEE2F1+s1Fi3/XfU3SJID3cPhjI9lLvDSwk+mEIJyt7P6/X787vYO4zadwO+Of3+yFX72nKYft9g8C+B4cI0zwXETF2Tts+fpv5el0JereFLq+0ILP/Q8L5V8QyRykWsRm8trqZyF22wkIt1TCj9M8cPIg6WzGwHExxIAu3btAjgeykgvAkN9Sb9bqOpNEjjwpo0xh8hbFtRhhs7t7TZ3jlmsQC8GK69TMbXEwo9hhJxo9WpwS3CKvGG5Wm3tXtmi3IHMrV7pUjMzkRpUkqnVy4hyZ0X66i38TJs2Db/61a/Q1taW9PNAoHTTwqkGlX0PBWNA77+AFw8H/nUKMPIuIDUA+18LnLoV2PsSQJiYuFEIdMfXrsKPw5TqRdusjOe2WXqa8PjhJxR+rFT8UDhBhNjYjrb2GZY/djrs8viRVZJ2J8Lsj2BEqIflJF+d/Y85XW89cTcmWk/i2LkYqCWD50wXSUJIosc6Pmloird61YLHj6Ilvjc7tm/JOQFr8Uh6AspoP0YGerC/r7Gsx0tJnahW2qMgG8FgEFddcTk6Ozvxwa4hAMCCaRNNLGc16deFntFIxl1FOnlziHzO+N1yt7Nu2rQJJM33Z+dH2wBMTNMxM6PBBbckgCgypNY5eHXrEM68KOEfxfP6gqwxrjiVUl5XIcWTUt4XVSPG5LbJolYvq5iYbpS8iDXip21QKFhJaqtXaistg5GNxe31eOvFpxF8bxUA4KCDDoIy3I3g+lX43lmfmqBiLUT1xnFcUpKuHXNSIFG4iNrcBq9YPB8tBiuvU6WaVXuciWAOqqRpdEvgOM7YaKm2dq9ALsWPSa0kF1lIpIofWvTMpfhpYIUfVO070NDQgCOOOMK4rWkafvvb3+Kwww4r6HFUtbpOhEKgx17qa2hyiyChbgz+735AvB0AQAQXyKILQfa+DHC20Ccs6XkAIBSTQYgGiedsee8FHiBEQ0RWMDauPxfPcdAIQSSm2Pp5x2RVfz4QeCUOIAQE9OJk7XdNVVVA0x8vKqtl+R5HZQWEaBBALHk+kSPGexSMxCYM/uPhGAjR4BZ5eCQeIEQ3543E4HGICMUUjIdl8E4PtFgQM2bMSDouVbXvffE6BRCiYSQYrfoxJNN7Eo6pkOP/don6ffVOHoRoGI/EEI7KtuwIWkU4qn8fOXDYa9FC8DyfVPwRBAF77rmn8Xqff+r3eisPgBvPW4097ruvIu0hHAAOiehWgbP/OlTstUJVVUCVAbghKxpcAsGcJueEx2l0CXCKHCKyil3DQcxqck94rGBEP5+dopDzOGbOnIk77rjD8MoRBAH33XcfZs6cact7NX/+/LTfn+YZPhCiwcFnf+8+fPkZ47t1/Yrj8fUrroNz7lKIDdNxz83X4pzjD8HTb3fHr0fFj5+p74se/5zf+zIUjEHTNEgCD5fF1yMrOOecc3DJT2+Cc+Yi/PxnHTj31E8YxxiMyhM+B5fLBUVJTOKL+m4X8XfZ8Ej6+DkWjkFVVYyF9O+8R7JnvsOYXOzu9uMPd15j3DZvclEV67HHHmsURM3fqdT5TzokHgiRuGG9xKf9/VLPCyk+Bw/HZFu/85H4fJRH5cayieNx8dcpOp8RclxrMuEWORCiYXA8CgICh8hDjF9rHAKHENEQjMTQbGNIQqEk5vjpx0cBxJgrBSMx1Mc3XAuZ54fi145mrxMDgShGQunn7KPBKAjR4HVMnJ/Yca0oN4Uce/V8Q3Jwyy23YMOGDfjjH/9Y0N+tW7fOpiMqH6W8Bmd0Ozy7Hwb3USNGeBmxZmCw+TT0t38bMpkGvL8DwA7LjnVDbxQ9AzHUx4awVt5t2eNStg/J6OmJQAgOoC+oQtYIWj0CBkMqNmjD4Ibs2+n8aGcQIVnDBx+Mod8toL9nBPc+qBuS3nPVN8EPlRb3mMrPr78W/jEF2z76COK49e9lKlu2hdAfUrFFGkWsz5qhYaA/AFkleGvtOBqcyUWG9f0x9PRF4YlKWIc+jAwGEZY1vPbWGFrdAnoCCnp7x6FFxgFVwbvvvgu32401a9YA0NtB7aJ3WP+ecYEBNEd22fY8VhAOJ9pv6HsEACMRFT09ITgFDu+tSyiBhvoDiKkEr64ZQ5OrenfYx6IaenqCkAQOg611+NGPfoSbbroJgL4gvvLKKzEwMICBgQH09vbi6ssSvfhE0/Cd73wHPp8P7e3tZT/2gT79PQYAKSRhLfpy/IU1FHqtCIfDIIre9tfb24s5zS68vz69qlYZDaNnTMG/1gxjSdvEcbZ7XEFPTxhRt4C1a0dyPveyZcuMfz/55JOYN28e1q5dW9DxF4L5+8PxPH5w2RWIqEB/Xy/Wr8ssJ+/t7cW9119t3CZEw0M3/Rh840y45uyHHUNhrF27Flu2hzAYUrFZGkWkp/jxc9myZQAvwLvkSHxpxTew19KFeb0vu+Lvf5NLwDvvjBf9/HYRDodB5AjExnb0B2JJr2nbRwHIGsGWD8fR57S2GG3lHLAvqL/HwWEea/l+fLg1iKCsYYd7DKHd1TuWMqqDNWvWTFAemlFVFc8//zyWL1+e9DeArlrMRV9PCMNhfQEohkSsXTuQ8XeLPS/8PVH0DMawQRmCNGKfvcL7fVH09MdQFxu0ZS2RL8uWLYNr7v4QGqbh6ku+hYMOnF/UdeqDgRh6eqNwRSSs1XoL/vuQrM+HKI2mcb6/R7/2rF03ioGG6lnWb9oegKIRbN80jsEM4/rwgD7vf/PtMbS4461fpjntP/7xD8ybNy/jc7y/O4KeIRmuJgk9IzL6OA5vu4cnJKet+yiMnoCC3fwI1o7vTPtYk6FekA/V8w3Jwi233IKuri7cfvvtWLx4cUF/u99++0EQavOCrKoq1q1bV9xrCO4At/5acB91QdMAnvsi1nwk4Re3erB2w6OYbpPnxfAHfRgWR7FkzxYsm99q+eM7d4+hm/TC45LQ6pUh8jyWzm7A2p0jmDevGcsWtuV+kCL579hWRGQVB+w3F211TqwPbTHu22/JXth37jRLn69X6oXSM4Y9F7Rh2bxmSx87HRtiOyCMR7HfvrOwR6s134+3Q9sxFpaxcC/fBJXA8Ad9GOBHse8eLVi2oBWbFD92jYYxZ/4MLG6vx5qPhjEnOoDHfnUfTtrvaePvSjov8qRlKISdWjeaPA4sW5b5olMNmNu7WltbjTFy+2AQM4K70FbnxLJlc43feSewGT+4+me4/YOXMbh1fVn9bwph92gEbwd2osElYdmyPbBo0SJj4f7ee+8lXQtWr149oRVM0zQ4nc6kAkO5+F9wO8bjbTcLZzZg2T72Fp+KPSeCwSDU8BiIqsIlEBx18D4ZW+RIywhe3tQPT6sXy5bNmnC/Y9cYNsd6MS/D/emem3Lsscfa/j1ctGgRbrnrAbjnH4xLfnQFzjvhEPz5nV2oj3+/MrF69WoQMvG7RQKDAABX83Qs3W8vbIj6IQWi2G/f2ZjX6in6OIPBIKCp4AQRC5csRePs2YY3SDbIjhHMiPVj4fQ6LNvP3qCDYggGg9Ci+mfe0NqO/fffGzzPQVE1/GtQv5Z+7KD5liVk2nGdGA7F8H7kI0gCjwMOmI9/D21BPSE45MA9pnxEMCM3bW1tE5SHZgRBwIknnlh0YMU20o0d8WCDJbMbsWzv6RN+p9TzIrJ1EGPbhjAnw+NbxfimAQwJw1g8txnLFtk3r89FMBiEpsTgbGzHov0OynqtyEZoyyB6uSEs9jVh2V6FrxU0jWDN2Bajy2D+tDos218f53dwu7BtIIh5C6ZjvzyuFeUgqmhoi4/rhx68IKO6fENsB/rHo9hz0SzsGQ9SuO+++4z7P//5z+P+++/H1772tbR/v1vsQcAxjuUL2xDdPAgCgkX77DnBd+29yA6QuiiW7z/x+lyONYXd0NeQD1Vf+Ln22mvx+9//HrfccgtOOOGEgv9eEISa/SApBb2GSB+w/ufApvsATd/JFXynwtv6TTz9p/+HYLDR1vdEIQDH8XA7JFuew+UQwXE8AlEVHMdjRqMbHqcEjuOhaLD1s9bir80l6a+t2ZvY7fC6rH+9TkkAx/HQCFeW77CqxV+fhZ+d2yFiPKJCTvPZhBQCjuPR4HZAEAQ0eR3YPRZFMKZBEAQMBWVwHI/2Rnfa47Hze9zsdRrfM57nJ+weVBO//e1vjX8vXboUDz74IM4//3yE5eT3l0K/t4KrvqrHRzV+vjkd4oTjnDt3btLtvffeO20rz1577VWR1+eSBKO/3SmV7z0u9PP87W9/i/Cm1wEAN31tNXz33ocDv/3NtL87t9UL5f3dOO/CSzH2+h8RCIwnFWtimv5988Q/r3yOtdjjLgZBEKCFRsAJItwNrVh23FkQG6bj9p9fk/W5M323tm3ZiOe2xhCKqRgKKxO+r8XS0KAn/7y6ZQD/3TqE7tEoDpib+/HG49fEFq+rKs/phoYGKKFx3PXSZmiEIKwSNEgiwvHrAM9x8Wu5tWOtld+tRo/TmGsEYhoIdG+1Bo8zp68VgzFv3jzcdddduOCCCwDovjy03YuaN2dTN+TC7ZAM4/k6lyPr977Y88Idn2+nm9NZiTGeSqWNp6XS0NCADWvfxJ/X7kIUxR+LaqyNinsMQQA8TtHwQ2vyJD5fugaKqfZ+JoUQDivxz4+H25m5KO51ShgIyIiqBIIgwO/345JLLjHu1+Lq7c985jNpC6IxVb9+1LkcqHdLGI8oCMkaGj2J94EQgkBMvz42eZ0Z36Nqng9bSfUaPAC4++678fjjj+O2227DZz/72UofTnUTGwXe+Qnw5/nAh3foRZ/pnwaOexX41DNobpkHLRoCBBHd3d22HYb9qV7Jj9ve6DIqyTEbzZ2JKSKTprY0uETdTHakF0N9PZY/J40FLldEY8Lc2boJLE32Sme8HTKMMfXfMQyV40qJ/kAUADCt3t60tnTUuyRwnG4wHCoharJY8k018Pv9Rv85kBw3GshgPNro1r+3hBBbx4JSSR1LspnkFpqAYjfmcapaU71SvzuEaLjkwu9mjKptq3PCIfDgBAmCt2nC/dRkMZtRshmrEqMKJbp7IwBAbNB3q3MlMmb6bs2ZMwczGnXT692jEeP6IFlUAJjbou9K7hwKJXmBZGIkrG/0WJXoZQc8zxmpKtQ4PxTTxym3o7oL7IB+LlNF0u5RPVzC4xBY0YeRN2bD5v/973/Gv3OZN+eDed7tsckonT5HapqS1dgxHy2WpriabyQk5xyLM83d6PqklPmAxKno7OxEZ2cnHEj4n7mrzNw5GAxihm8eOjs7ISH7uox+T+mxF5qkZsw7JN4UypJs8BxVNOP9Z6leVVz42bJlC+6991584xvfwMEHH4z+/n7jP4YJJQRsuEUv+Ky/DlCCQMty4Ki/A8e8BEz7OADgtef/hPE1K6EM7sSSJUsmpAdYRdR0EtqBHI0YA58sx9De4DRc8u2Ml1Q1Ajre08LPS39+EuNrViK4fhUOO2h/y99TuoCQs/SEW0msxNSBdNCUiXQXpNTCBJXKj4UVyKqmp9ChMoUfgefg4DR0dnaicdrMnJGSlSLbRTKYIWp49Z//gPE1KxHb9YGtY0GpFJoQWEgCit2YZc0iX52X2UInWDzPYWa80CE0TpT4h2PUSLw6d8xooSm4azPqPS6jaJ8ao5yOTN+tGQ2JtDO6UBEtGj9nNrohCRxCMRUDgVjO3x8OWhvlbhc0EXM0XviJxKgZbXV+b1Kpi29U9MRTRevYQoJRJLNmJVpirUgpJWrMmB9zau4xoxicdDPP5lQvWS29UGIVenqWXrwpdiOw1Dh3APCYxkhzAYMWo6spzp1z6BsXdLzMhNuIqdePfdGiReAKSFKjawuXJBjpwLTNnkI3GTwOoSq+T5Wmat+BVatWQVVV3HfffTj88MOT/mMA0GRg0/3AXxYCay8DYkNAwxLgiD8BJ7wBzDwOiO+e+f1+3N55eeJPTaoAq6G7AA6b5HKpJ+2MhoTix844d8WkuhF5Hn6/H9dd/UPjZ3a8p3QBQWMt7YQQYsuFNpPih5CEksYTH/jNip+BQBSE6Gqg1MJFuaCxj7yzdDVC6i5QvoqeXGSLGw2kKfz4/X78/Mf2fm+tIhZPKShGPWjFJLoUkhU/ld+xTEcxUbUzG53QoiFwgmOCWiyi1EYktyTw+Oi1Z42i/bdOPbyg4qf5u0UVPz2jESjx8VO06PMWeA6zm3VftJ3Doay/W81R7qmYC/xAYrFilbeP3dBCT29c8VOp6xOjNrFT6Wi+Vto1DtPnsHOjNRgM4stfORudnZ1QYlHbnidfRIE3EqdGwnKO305gvkZSxUkpG6tm9TadLwPVp/gBAE6QoIz0IjycfWOFHjtdD/h8Ppzzg59Bz0cF+BzqbTrvcEmC8RmNmQo/wWAQs/dcpKuk+PJsolc7VVv4+eY3v4kPP/ww7X9TGqIB2x4Dnt0bePM7QHg34J0HHPYIcNI6YM6ZRsGHUujObikY7Rk2KX7MiyinKKDRLSUUPzYWfmhRhOc4CDxXlveULiAUGy+wFMWkaLKy8JNJ8RORNaOFzRufoNBq/VhYRt9Y5dq8KHRHhXdZm9ZWKNnasRJtKPp3heN5XH/rnfD5fCZFVWICWM6xoFQSip/aWBCaqYVWr2La41557o8YX7MS0Z3rJqjFDMWPTWO/Vfj9ftzxsyuM26SE4md7XPEzGpZNrV7Wvf45zR7IcgxHnHhG1iLxWFgGIfr10VvlhbdUxQ8t/FR7wZBSF/er6BuPxm+zwg+jOKwuAjlE3lAyjgxYbz8AmFq9bFb8QNDPM6sK6aWSaPfKrqTq6uoy/m2+RspWKH4cgvH5jg8mksHcjszK+krQ1dWFWM9GBNevwjdOyb6xktrqFZFVLD3qNNQvPw3epcfgT6tez6je1jSS1GVCi2HjkeRWL96ln1sNbKwGUMWFH0YKhAD+PwN/Wwa8dg4Q2Aq4pgMH3wmc/CEwfwXAp584FbOzWyzl8PihA58QHgTHcWXx+FHUZH+fcrynotHqZb/ih16UOM5ijx8pveInGPd1cEmCoWyivjqySoxkiml1LsuOpVCohxPR1LJ74WSaPKTj//7v/1B/8CnwLj0GVzz8Ag4+/iwAQCB+8TO3IpRzLCiVQseSSnnGpMN8zNUycU1HIe1xfr8fP7nsB8btVLVYRKmNlp1iip+ZvlsuSUCLN1lhY+XnTX1+xMbpAJf5PKC70I0eR9X75BgF/viuLC0YVvv3hkILPXTjghV+GNXC3/70eMJ+4EDr7QcAU6tXisePVSpmClFkKCO9GOyrXJS7GdpCOxrKrPjJ5rloheJn1TNPGJ/vAfvta3y+9DOJ2F2My4Ns70E6aMGfKn564kpK3umB2NgOoT5zApp5XeEShQn+cRSq2mdtuTqs8FML9P0TePGTwMunASPrAKkROOB64JQtwF4XAUJ2VYTP58Ntv7wDVBVgl/GpqhFjcLNrl/7x3/3GGPguOfNTeOihhxKFHxuVMcZubnxSXw4zWeoNUg7Fj6zQ12etwSZdAKfuRATTqFEEnjMm0R8N6hOHSip+qIeT1V44qUWk1NuFXjgjigbeVQexsR1NbTOwdSAARU30opsXJqkKoUqbIGeDXtRL2SGrFLWg+EklV3tcroJJJFYbLTtWFz9puxegF85FC41+p9U74RQFEEUG76rLWICmu9BNNRAp3mi0esU9fmpO8ZO8eEg1z2cwKkE57AeAhIpbVoltwSNdXV0Ivf9PBNevwnEfP6gqfAhp4Sdbq1e2a2Sp8xm/34+bfnqZcdv8+dKxs1IeP+ai37vvvlvQxkpqqxf1TiOq/j4PBjMrrOi1wyHy4Hku0UYcUZJNuHkBykgvIiO5/fymArUxI52qhHuwcOeFEFYfCwy8BghuYJ8rgFO3AvteBUj5t6Ccf965qF9+KrxLj8Gate/aYnxqVtzYofjx+/343sUXG7fpwNffs2vC81uNEh/IzEatdpvJSkarl/2Kn5jh72PtbnFGxU886trrSJ40U6kmNUqtVOFH98L5kXG71ElUqoLn3K99Pem2eWJTqCKB7pgTVYZD5BGMqtjSrxfOBJ6bsJO+YsUKePb9NLxLj8E/XvtfRU2Qs0F3FGux1cs8uauVwk8ushVMCCFJJovVjNVF+5mNLsiybqra8ZMfIxTK7sdTCBzH4cOXn8H4mpXQwmMZC9Aj8V3o5ir39wESY3wgqiQVqGtG8ZOya8xSYhjVQLnauM2KlUxz7lIU0oVufJWLRrc+tg5nafXKZkxcqrlzts/X7PGTTwKkncxfsKAgc+bUVq/esQgkyYGnfn0XOjo6EFS4jK/J7O8DJMbimKIZa46uri5EtryJ4PpVOPOoQ6qiiFhpJseMdJLCbfs1GkOvg3AisOi7wKlbgGU3AM6Wwh+L48DxIsTGdrROn2nD0ZqMnePVV6vJNPDt3L5V/7dGbFPHpLZ6pWKHmSxtgSpHqpddCQqJfvAUxU9souIHABymuEpoSsV2sK2cRKWbyPzxyceTbpsnNoWmGkB0oqOjA3f+4mbsNbMZshzDwcefpUdpcmpaBRfH8XGFUHvBr6dc2O0XZifmAqqVChCrKaQ9LrVgwvOJgomsEkMVWe0eP4C1RXua7AUA0KzdcfX7/XjghqsTD59mERQMBnHKWV9EZ2cnnJyS7mGqCj1ZhQMhuhdD7Xn8iFlvMxiVoFxt3DzPmQJVEuNdIe3p2ahWH8JmqvjJEunu8/nw9cuuQ6qievbs2YaqvtjCT7bPlxY+CLE35CYf+rQ6nHlhB/JVldNxP6ZokFXNaPXaa0Y9BJ5DTNEmxLNTIikp0pLAG4WksYhctUXESlP9M7QpDFn4HeyY/kNoJ20APnYP4C6tYEMU3YzQrj5Qu/19Mg18ey9ebNy2q92LFkbKGc1MF4zlUPzYVfjJrPhJjnKnmHdPW70OWwqI+WDlJCrdRCYV88Rm9uzZ+PL3O5HvhdO8cFo4XVcBig16X3SqoopCx4JwFfSEZ8KKnvhKocaiRgFTjkYqfTiWsWLFCjhmLIR36TG4/8//NgomdOdN4Lma+7xKLdq31Tkh8rr3nDzSY6kfWL6LIN5dDwBodFd/EYLjzJJ8OTF+1Yjih1dN57YcY61ejKqgHPYDFGdKkq6VC+xq9SE0R7pna6k65MSzUL/8NHiWHGlsKigagUaS7SIKJdvnK5iKceEi4+atgHN68fc1H+CQE86E2KJ/73JtrDgE3ljr9I5FEIqp4DkOMxpchn/eQDB9spuhMjapwo1kr7BStUXESlNbM7SphqMZ/c1fAurml/xQXq8XD953Dzo6OsBJ9rTPJFJ47PlaZRr45s6dYwx6tKpuNXQ326z4sdtMlhZh5HJ4/Kj2LLIze/wkR7lTqKGyMtILBActPZZCSP2ucTyP++67v6hJVLqJTCrmic1oWMYBR59upBr89eU3s144aauExyFgXqsXgqlYVuecuJjyer34y9N/REdHB4hQvZ4gNa34SWr1ql7FTzEQOQqxsR3OxoTpYsSU6FXt5sJWw/McNvxLb8cKb3zVUj+wfBZBus8GB2WkF8Gh2vAwMCd7RWqs1csp8oaySxJ42+Y7DEah2G0/QEkNVLFyge3z+fCdq36OavMhFAXeUPeNZDF4DkZV8E4PpBYfprXrm/X0feK40ubY2T5fuskaUcpf+KFqLxIN4ucrjsfW/zwLZWgngNwbKxzHGaqfbQMJb09R4NFWFy/8jOco/JiuHTQ8YDwiY+HChYWp56cI7Io1hXBJyb2UVlMOT45MAx8dTKOqPa+Nqm7KuYgz4twtNtBLl74Qo+bOoj0eP6lGgLTVK1Um/8LKRCrFeSd9oqL9uPS75tn7CFzx8As47owvF/U4Pp8Pt97+S5gnMmeffbZxP8/zSRMb/3BY/3k81cDRmDnVAABCVD3lEOEQecxpdhvFs+Bw+oUg/VwquTuUi1r2+Elq9ZpEhR+v14udWzeio6MDUS0xfaAq0lpZvFtZtPf7/Xj45h8bt62Uk2drr6M8+NDDGH/rzwiuX4Xly/arCQ+DBtOubK21enEcByUwCGWkF7HR/ilX6GTUBnbYD1CcKa1eVqp0VI1g4RGnoH75aeDdjbYWsAqlKe6hlqnwo6haUvtbID43o4UfK8NTUj9fd4XmdKlqL0I0/OqmH2f5i4mkFn5mNOrihNY6/f+ZDJ5TW70Ak+InooCvbyuo7WyqwAo/Uwh6cqTGMFpFuXfozQOf3ZHu6cyd7UYqZ6qXTa1ecjRsyOIHR8eMn9Nihcc02ff7/ei4/FLjdrX042qxMJraZuCDnvGiH+OML56ty3/3PhwbNmzAAw88AEiueAT73/GVr55r/G73iF74oakGIxn6mymGOWr8vVz30kqjeHbuZ9IXz6jSqlIpELkgJJEQWIupXg6BN4pvfburI47WKlLNeYHE98hZI4UfK7FbTr5ixQpI0/aAd+kxuOOpfyYtgvx+Py6/9HvG7WoZM3NBW736AxFjQ6DaTcEpXV1dCK77B4LrV+HKLx9dE4U2BsNKUuPDfT4fLvzxDbBige0fDiGmaOB4Dlp4zNYCVqEkfH7SFyJCsgpJcqCjowMdHR1Qeb1QRC0oSlUHZtuwcDvirV5lntNluv6tXr06740Vug4YDOjva3vcN6+NFn4CGRQ/ykTFjwMKOjs7cdJpZ+K1jT045IQz4drjAAD2quBqidqbUTOKxiklD9ZWk9ihL//XihYs7Cr8yBVU/Mgqsd2p367CD89xIIo+mJs/m2CaqPFq68elF9nNb70MSXLg/e4hcIKYpJTKl4isgXd6wLsbEhMZOQJOdKCxrR07hhJJQN3DYUiSA08/rKcahNTs37mQnGj1yjeNLDVCs9qIqRroV74WWymeeuIxo/h20AFLJ9Xi0CXxRjFuLKIXJSM15tNiJeXwpFCDIxAb2yG7WpKUk9U2ZuYL9SLqGdUn9A6Rr4n0uwm72zVSaGNMDey2H6CkevwAwGFxbxvv0qOxfv36ohfYm/sCAAB5sBtAZROqUskV6U69KynjkYmKH7twifau7zJhxfWPU5Uk3zQamNAab/UaCspJ1z1K1Gj1Sjw/tTcQ6qdh24A+r4716gFA1VRErCTVf6VlWEZiYLBZ8WNja0amC5uh+LEt1Ut/XKGc5s6mIpPV7V4UakQas8njBwCIqhd+6AUppmjGhdBj8qCpVlO/WY0u1LtEyKoGqXlWUY/BxZO3fv3g/UnfW2WkBwCwfVAvJI1HZIyGZXAcsO+sRgDZUyQAIBxLqKfyXQimRmhWG3QsEXiuqlOx0uH3+3HlD79v3K4VFUa+cByHhrgJ+1h8AhyukSh3OyiHqaoWGgFRopBVDf0mv4OCEwCrBKr4SefRUM3UaqGNwbCSdAr7sYgSb0+fgekzi5snEUKwpT8ASXJgw+sv2V7AKhQa6Z6p1Yt6V1LGI/rvlRrlng+uCs3pEte/4tVe5jZfh8Abps71Tt2+QCMEQ2navSLyxDUnDYjhHW4QEMxr8UALj03426kMK/xMIWhVtFZTvbJhf6tX9jh3OzC3lVmZ7JUudjOhaLL+s1ODY1BGerFjp77wpbsiDpFPGrDLmUpRCBzHYe8ZDQAAadoeRT1Gqo8FLWB+uOYVSJIDOwZDIIQYbV7T611oq3OC5/Q4y0A0c7tXotVLzLt4VimPn3T+Uukwt3nVmofGVFgcmlOZgKmt+AHsNVWlY8Wj998BSXKgeyShDvQ2T69JDwPaLkiple9NtW5OMBjlhM7bqMpf04ih/gQAucB5OJ0XSI3TMRIIwynxmNPise6ALSKh+Iml3YyboPhJ8fixM/HS7o39bJzz1f9D/fJT4V16DNasfbfg65/bpNiZVu805nwcxxkGz4Npkr3SbRzUOxMBMSMDPfj4ohllUcHVEqzwM4Vw21wRNlK9KpDC47C91Ssu1Syj4kfgOSOhSc4RB54vmWI3Tzz+eHR2dkKV0/fSFktXVxdC7/8TwfWrcNwnDsK9996LabN86OzshIiJ38NypVIUyuIZeky64GkCeKHgyOZwhuSaWU0uSAKHQFTBQCCG7rix8+xmNwSeMyYaw8HMKRJGqpck5F08o2NBWFZtbyMshkoWkUtlKiwOjcJPOLnVy1WDCWxWY5ec3NfsBpAwfweALf0BHHLCmXAv/jiA6hozs+GShKTJOvWnqHaqdXOCwSgnTim51Ws8okAUJcPbRnC4inpcqXUOAGB+W3I6abXQ6JYgyzFc9eMOCA73hM0rGlpC35/UVi87FT/mOV25CcVU8E4vxIZpWLjH3IL/3i0JRrGGT0nzTfj8pFP8TJx3PP7Yb4w2+xvPOwF/f/p3BR/PZKc2rrYMS6AVYbsGBlr9dwjl371z2qz4USug+DE/n2qR4ieTGoEaCVvpYZSuyHTxxReDE/QKvjdHiks19eNOq3Ni/epnMP6/vwCaWnBkc6aWBlHgMbvZDVmOYc6SZTj97PMhyzHMbtIXebTwM5TBTFBWE21z9MKfT/GMFqAIKX9PeD7Q3u1aTPSaCotDqtgYDVPFD03XqL3Pq1aY3aTvgO8aiRjF2i39uh+GOtav/04VjZm5oLG7AOCWxCy/WV1U6+YEg1EuUj1+RsLJ85NiLRdo4WfBtLoSjs4+JFOkO++un3A/bfVqr9cLX7TVSy5Dq1elUr2ARHqZFgsVpdD+21OJNN9zTvx40ty6tc4JWY7h+FPPmqAUj6TYi/j9flx88cXG/UTT8O1vf3vStNlbBSv8TCHsj3OvoOKHXohs8viphLkzkFAYWaX4SadG4HgeQn2b/nwWSlEzFZkQf35PjcT3AroX0m9v+6lxu1DflmweKPNadfmpNG1PCB7d14cWfmiv83CGOEv6uALPpVXHZFoICjxnnKehWPbUMLvIppoqR0+8nUz2xSE156WtXlPZ4wcoj6nqtHonHCKPiKxiIBBDIKpg10gEACAP1d7E1sVphqEnp2VWNFYztVRoYzCsItVaIdXzppgNWM7dAC0SxPhgrzEnqkYa42pX3jWx8EPnUjMb9cJPIKIkJ5Ta2epFrTxs2vzOhiboSWa/uvfugq9/fr8fnVdmTvNtjc+BBW9T0t8RQowuE/rap0KbvRXU5qyaURSuFHmm1Uxuj5/ymzsDCcWPVR4/qUZsPM/jzAs7IHiboYz0YqjPuujpTEUmsWU2lJFeBIf7JvxNuVIpCqXUC0o2D5R58V52wdsMQL/QUfVOsyde+Mmg+KG7Ox6HUPBOi0cqvzQ4nb9UOoy20Rot/JiZjIvDRKtXisdPDRVzaw2B54wFRfdIGFvjap+5bQ3QoqGqGzNzQU04gWSPBwaDUd2kevyMhksr/HR1dYGExxBcvwrXn3s8ftP1sDUHagONbt1DBtzEzSuqfJne4ATH6d6gYVk1NqTLofiJVEDxQ1va6lyFKzdzza1pqxfvrAOExOPHVA1aXPlKN5ymQpu9FbCr7RSCnhwxRUsbjVcqlWzPoJV02bZUr3irV5n7jsX467LS3Pnsr341Hrt5DP795lqIAmfILE86Yrll0dOpLS88L+DAo05GZNPrCK5fhXM/84maibku9YKSau5spsXrQJ3JkM4RGU66D0DaRAMgYSZoftx8i2dGT3iZJgqZ/KXSqaZq2eNnKkBbvUIxFTFFSyh+2OdlK7Oa9LbQTx53Mj5xwhmQ5RgWTK/OtohcmFu9akkpVq2bEwxGuTBavWTa6pVc+Clkczl1XkCqPAXz33/9I8bXrITct23C5lUo3urV4JLgdejj23hEKYvHj9PU0VFu30Y6D6VtcIWQa27tdgjwOvT5Me/wGMU22l4u8pzRqTAV2uytgM3SphBOkQcVBdjR7jWZFT+GubONUs10iBabOwP6gMk7PRAbpqHV68Af7rjGuM/q6Glzy8tLL63C26ufte257MTn8+GXd9yJYtNzMpk7A3pywfv/+rNRfDv3pERBjCp+zJMHM9TYmU4yCsEd/5tyKX4KUU0ZfmE1WkiY7ItDlyQYrYKjYdlYADDFj73QFlCxcQbEphkAqtcPIxcNpmL3aH9PpQ+HwWDkiTHfjs+LqeKHFnALKfzUUnuO3+/HrR2XGbfNc1hNI4a5s8cpGuqX8Yic8Pixcf1A55aKRgxrinJBlU7FKH7yKda889LTGF+zElp4zCi2RTO0l0/2NnsrqM1ZNaMoOI4z1DhWF340LdHHWkmPn0ln7sxb2+oFAJzoREdHB26+4Trs2rWrbBfdYDAIUiMX+HR87bxzUbfsBF0p9cbbBV1QsrV6+f1+3Hv9lcZt82TC7RCMxXSqgSKQXUmUC3osoTIpfhYtWgQuT9VULMW0j1F9UNVP33jE+JmLfV62MqPRBZ7jwElOgOPR7HEYqsBa47mnfm8Uu088/OCaUX8yGFMds+KHEILReCv6tHq9LaeQeXgttedkK1LpCakAx+lt9PWuiYofOzeOY5EQOjt+is7OS+WGiAAASu5JREFUTgyOjtn2POkIRIpX/ADZizV+vx+/uunHxm06P9720U4A2ZNEJ2ObvRWwws8Uwy4DMLOLfyVbvYpNE8iFHC/8lDPOHUhcKKxsYQubihDlvOguXLiwZi7wGSEEYmM76lrb8/4TWdWMHRhXmtjiXDteLdTnJ02ke8jk8VMonjLHf/p8Pqz44c+Qj2qqkkbxjPygJpd9Y1EA+mfFV2EE72RCEni0NzgNpUy9MlrpQyoKv9+Pyy/9vnG7ltSfDMZUh87xNUIwGpYhqwQcB7TV6XOVQubhPp8P1950G4pVU5eTbPNl2u7kcQjgeQ718Y2RcrV6cRwHTdELcNEyJ7WOl9DqlUpqsWbTpk1pN4w3btoEINHiRpnsamsrYLPqKYbbpmQvOtBIAgehApN/282d4xcyoUJx7oqFnkwJlYhoe0+seRBevHhxTfffer1e/P7RX6OjowMKJ+X9d+bkrXRS31zFt+YsPj/hWGKyUSiuMpsBRmQV+3zqdMNf6uUsqina6sU8fqoXavDcO6Yrfpjapzy8s2qloZQ5+4TDalIpU0vtHQwGIxlJ4MDHfSP6xvXCf71LgifePl7oPPy407+I+uWnwbXHsqpuz5kQjmKawwaNTTj9PUhS/KjlscEgsn4tDpex8EMISXj8FNHqlYtM8+MZc+YBqC1/uGqBzaqnGPQksdrQNbFQq8xJSBfUdiWW0VYrqdzmzjw1d7ZQ8ZPiN1POntha77+luzhjkfwj0COm9ztd8lau4luzR3/OdMleIeOxi/D4ybPVKxgMguM4cByHYDBY8PNQ/MMhEBDdX6qxHS3TZ2b83Rgzd656GuKTvIGAPvFn/j724/f7cXvn5cbtWlXK1FJ7B4PBSIbjOGOzlRb+m9xS0RuwI2EZvNMD8GLVt+esWLECroWHwLv0GDz10n+NOWyqwXG9M+HxUw7FDwCo4TEoI73YsXOnrc9jJhRToWq64qsYr0kgu0rH5/Phzjsn+ms2tunzRxYoUTjsHZtiJCLdrS78VLY1gw6osqrZ4mhPzZXFMps7S3HFj5VmbUbhJ03bUTkvutV+gU9Hg8mwL1+MxKMsC+NsBbFmrwOyHMMXv/q1CcWXWmr12jkUTrqdTY4cZR4/VQ9V/BhtjKwtz3Ymi1KGpa8wGLUN3ZShrb6Nbsm0AVvYnCKiCejo6MCrq/9eG+05cgRiYzukhmnGj8ytXkBikzAQTSh+7PT46erqQvjD/1iezpsLauzsdYi2dXuce+65cC86VC+2rdaLbZEM5s6M3Fivy2JUNYnIP2uVMZVuzaCFH0L0/mKrF4yqWiFzZxrnbmGqV8LjRz/9abWdkRtz33a+hLMYO6cjtSBGPX54T8PExy6h8FP2OPfhECTJgWs7r4GiEfCSM+Pv0qIQU/xUL9TcmZLv95tRPFQpYy7+1KpSZsWKFbjgggsA6MXuxYsXV/iIGAxGvjglHggnWr2aPCUofuJqZppiWu2oId08ecikwqaJXobiJ75JSAsjgH2KH7/fj4suusi4TZWgJ5xwgu3F9FISvQpBiwThmD4fxNMKAKzwUwJsVj3FcNmU6lXpHXqRT/QcW+3zo2nE8Ngpu7mzDalepSRBlUqtG681uPWL21i4AMVPlij3/J5T0luteBGcw2P8nBCSaPUqpfAjq3kX/rq7uwt+HgAIxRQMBPRJ0txW/TVEsuwK0h2yWo1znwrQc4GSarLIsJ7JqpSpRfUngzGVSU0IbvJIxkZNIebOhBCMhGTjMaodr9eLHZs2oKOjAyElsREcjMY34eKFH49DgMBzIETfkAbsi3OvpBKUJnp5LTB2zoY6PgAA6I0rzGhAEVMaFw57x6YYRqqX5Yqfyu7Qm3uOrS78mI2VK6X4sTLVK1RiIWIqQ1UOoZia92eSKLRlPjeyFcQEnkOjW4QWDYGTnEbxJapo0OIzCk8RvdX081c1ktUbq6ury/j3kiVLipIQ+4f1Nq+2eqeRBpWp1UvTCItzrwGcopBUcGTjSXmodZ80BoNR+6RuyjS4TYWfAubgYxEFikYg8NwEFWm10uzVjzMYVY3CV8hQ/OjXQY7jklKuOC5h3WA1lfRMo4qfehsLP16vF+N9O9HR0YGgwiEcU5nipwRY4WeK4bI51auSO/QJnx9r25bMbVZiuc2dbUj1op99Me1BUx2nyBvfs0Ce7V5WXKDefvFpjK9ZCS04bBRfaE+5SxKK6q2WhMRryTQeZJIQ52smS42hl33yGMhyDHOa3RN2ClMxF6GY4qe6cfIaOjs70dnZCaJMNB9n2EstK2VqXf3JYExlUjd5G03mzoWErIzG1T6Nbgl8BRKBi8EpCkYrF01bDVDFj2kTrt7U/iQJfNpwDytIVYLyPF82JSi1PbC71cslCWiJJ9z2jEUQpfNqtjlYMGxWPcUwCj+WmztXNtULsC/SnRaSRJ6zbeDOBG0ts1LxQ1uPWKW8cDiOMwyex/I0eA7H9M+uWEWE3+/HgzdebdymxZct23YAKK2A58qR7GWVhFhsbAcA+Jo9JoP59N9pev5KAmebWSDDGhpMu3xuJrkuC6xgwmAwKo258ON1CnCKQtIcXMtzs5KmldZCm5cZWoQYCsb0tvvoxJanepOCye5uiBUrVoBzuOFdegyufuRFfO1rX7P1+SiBlDQzO5nR6AIA7B4NG10rrNWrcNg7NsWwvdWrgiehU6D9xdYWtVSNGjuX/7VRxY9qkeKHEFJRj5/JQKEGz+ESFT+Zii8fbtoEoLTPMVey16JFi8CVKCHmHG7w7gZw4ODLS/FT+SIyIz/MPj/s82IwGIypgVmNS9u3zR42+fr8DNeYsTOl2VT4iSqaocr3muZjZsVPOdTLRI5CbJyOutbpZUtrDcQ3QMtR+JkZL/z0jEaM+SPzFiwcVviZYrhtaPUKBoM48/NfRGdnJzQ5atnjFook6kWSQmSm+aCoCQVCuaHPaZW5c0TWDKM55slRHPRinq/Bc6TAVK9UMvVvT/fNA1Ca4oceU6Zkr8a2dpx5YQcAznjeQiXEgrcFykgv+NAQXJKQU/FTDUVkRn7Uu3TvKWWkFyP9uyt9OAwGg8EoA0SJGW2+Ll6/ZosCb9gh5Fv4qSVjZzOtpsKPue3evEGcVPgpx8Yx0aDFIgAKS54t+ukISXj82NzqBZgVPxGj0MYUP4XD3rEpBlUdxBTNMhUJAHCCPmhXMn7ZISRem5XIWqLVq9yItNXLojj3sFEl51kbTZE0xHe3xgr0+ClWmTOhfztefKlv1dunrGj1yrQ7tHs0gkNOOBP1y0+Dd+kx+Nsrawoyk+3q6oIy3I3g+lW47IufxkMPPWTs0OTy+CnLRIlREi8+/QTG16xEcP0qHP6xZUUZfzMYDAajtnCars8NaZQt+c7Da1bx4zEXfvS5jNeZPBcTNdkojmlK/kmwxUBbgP/fPb+EJDkKSp7NB+rXyHEcgsEgAH2uRq0w7E71AoA2rxOSwBnfLZ7j2DyxCNg7NsVwCDyoTY2Vqh9O1AfBajB3tjzVK75zIVSw1csqxQ9NHmBqn+KhOxvjeXj8EEIs8VRasWIFnHOWwrv0GDz07Cs4//zzTTHxxV9wjVavDIqf7hE9jYt3eiA2tkOsb8v7sTMZQw/17gKQTfGTKE4yqhe/349rrrzUuF2o8TeDwWAwahOHyBtqz8hIf9LPgfyU96pGMBbW56Q1p/ip09c8YxEZo/EiizclXdVcDCnX2ohaEeS7MVkKAZPSSSrD+ojnOTQ5OaOYxhOl7L6rkwE2s55i8DyX02OjGIimQBnpxVBfj2WPWShG4cdCI2QgYe4sVVLxY9FrYolepVPIhVVWiSFJLbXYpgaGIDa2I+xo0s0EY6V/llSFlMnceVe88KOO6xO7gUD+yU2ZvIn8H20HoBd4CJlY0IyyKPeawCrjbwaDwWDUFn/+4+8MtefJRy431J6FbMCOhWVohEASuLJ4xFiJWxLgkgQQAnSPhABMVPzUuxK3HWWyiihkY7JUAmVK9DLT3uA0/l3JDpNahr1rUxDD4NkiZUxXVxeC776I4PpV+NQhlZP7U8mf5YofLdG/XG6sjnOnCVMs0at4qKw5EFFyJlfQFiqR50r2iFJG+wCiYTyiYCQkGyodKzx+0hWBo4qK/vEoJMmBN1/4Izo6OjAm5/8aMnkTLdlrEQCAkPS7gjHW6lUTZPp8CzH+ZjAYDEZt4ff70XF5erVnIfPwRKKXo+aUGxzHGT4/O4f0DbLUdienKEANjUIZ6cXoYG9ZjquhDIqf7u5uAAnFT30Zi3bt9abCD1OFFwV716YgLgsNnjO1c1RC7m9fq1dc8VMJc+f4wkqxSPHDWr1Kx+sQwXMcNEIQjGW/uJr9fUqZ2Hi9XhBVxq/uvAWS5MBHQ6HEZ2mT4qdnNAJCdE+jPVr12OixsJz3uOHz+XDdzbch1Rh6j3lzDb+saJp0QWbuXBukek8VY/zNYDAYjNoim9rTKeXvtTlco8bOFJrsRQsgnpRWr66uLgTe/iuC61fh3M98oiyb4nYpfrq6uox/L1myBA899JBhIF1OtdaMBqfRYhgc6ivb804m2Mx6CpKIdC+98FNNcn+nTa1eimHuXDnFj6yStG0xhcKi3EuH5zlD2pprV8UKfx8zc1s8AIAdQyEEDcWPBR4/acYC6u8zu8kFlyQYka394/kn95101pdRv/w0uOYfjA0bNhjG0PT9oH4+ZqLUgJy1elU9K1asMP5t/nwZDAaDMTnJpvY0FD9q7vXFSI0aO1NavMkFK3MBpFKb4tSKwMpUr0yvZdtHOwCUt9Xrj48/ZrQYXnjGkSxQoghY4WcK4jI8fkovkFST3N92c+dKePyYVEZWtHsxjx9raEjZVUmXeACYCm0WFX7mteqFn51DIeN7bk2c+8RJwu4RPRZ0VpMbADAtLrHtD+Rf+AnFVPBOD3iHB7NnzzZ+7jSKz2laveLnWyWN4hmFY/58GQwGgzE5yab2pBuw6dS8qdRqlDulxeuELCdi7Tk1MTeq1KZ4g1ufm4ZjqmVroUyvZesW/bWUS/GTWoAiLFCiKNjMegriii8UoxYofnw+H269/ZdIbeeohNw/sdNgk7lzBVu9AGuSvWghgnn8lEa+uypWK6ym1zvhdggIhiP6ZOOaDijRcNGPR78HskqSDMRVjaBnLEPhpwDFD20h02LJx0iLz+kVP9TcmV2eGAwGg8GoNjKpPY1UryzzcLpRdt63L4Qsx2pX8ZNy3OZUr0ptijtFwdhYs6rdK9NrqW+fA6B8hZ9q6jCpZdjMegpCF13p2juK4Qtf+Srql58Gz5JPVVTub5vip4LmzjzPGUojWSv9dYVi1ipQpipU8TMWzn5hjVj8fnMchznNHuO2JkdK8g5yirzx/aLjQTAYhLOxDVf/pAMcUQwDw2IKPyonoqOjA/988Xl4vd7E82ZR/CRSvdjlqdrxer0gRG9DNX++DAaDwZgamNWeec/DeQG8U79m1Krip8EtJllAmNXXlfTAs7rdy+fz4YedN4Fu8HM8j5t+cTt++vNb9Vh1Lf+011Kopg6TWobNrKcgriyLrmJQNQLe6YFY31ZRub9kW6pX5eLcAVOylxWKHwt8YRi64TGQ/sJKEw8AexRWtN1Li4YgD3UnPV+hcBxnavdKFIKFhmkAgJkNLqOwRAs/Q8EY1DzbDmmhMV3aBZBe8ROL/4y1ejEYDAaDUTs48yz88K56APp1vlY3IjmOQ5NH1Odiw7vQ17Mr6f5KeeAZG5MWGjyfcMaXUL/8NHiXHoMrHn4BCw8/BZyozwnrnOX5/FighDWwmfUUxMpULwDGIpAQax6vWOxO9aqE4gewNtkrYrHnzFQlNTkhXeIBYI+Z9txWD9544SmMr1mJyJY3k56vGOixmQs/vLsBykgvhPCg8bN6pwiXJEDVCAaD+al+aNrFhMJPXoof9h1lMBgMBqPayKT2NFq9cszDOYcLykgvtPHBmotyN/PWi09jfM1KhDb8E/vss0/GuVg5N8UbbDB4VlR9g5/jeTS1zcCHvQEAAFFlw2ajHLBAidJhhZ8piFH4SbPbXgwOlxsdHR248/bbKir3pzsNikbyViTkQyXNnQFTsleJrymmaIZfkcvBTv1SqHdJkOUYLvzBZeA4LmN6Q9iG1rqxgV48dXdn2ucrBnpsVJ3zyCOPILLlTQTXr8IXjz3MmMhwHFdwuxeNnPemFL6yevywOHcGg8FgMGoORx7K+66uLqgjPQiuX4UffuHTNZvM5Pf7cf/PrzJulyu5Kxf1eVoRFAL1gJSHezCryQUgrjof3Ildu3Zl+1PbYIESxcFm1lMQy1u94sUEoUKKGIq56myl6ocWXCph7gwklEalKn6o+kTkubJW6Ccj9MLKCRLAixkN5+xQWG3atAnEQoM7nijo7OzEgR87FBs3bsTFF19s3Jc6kamXCDo7O7H88KOT0svSoWkkc6tXhjFIUTWjaMu+owwGg8Fg1A4J5X36jeXJlMyUy2y4Uh542awIikWQnOjo6MArL/8Tn9p7lqE6D296vWTVOaO8sJn1FCQR526N4scwP66QIobC85xRnLGy8EMLLiJfqVavuMdPAYqfdPHiEVPbUS1La6sBSUj0pYuN08Fx6Q3naGHDZaF6xWqDO3f82HjJiU2bN2edyLTFjZ4Fb3POxw3JKggBOG5i4SuT4mdobDwejXpNSWllDAaDwWAwygtt0c6UrjuZkpmq1Wy43gaPH7rOkwQeXGjIUtV5IbBAidJhhZ8pCG31iimaJS1R9DEq1QplJhElaZ3fkFI1ip/SPiuqvmBR7tZQ59JN/RwzF+P4ryZUMhzP49pb7sDs2bMT5s4WevxYbXBHizKc5MSQ2JqxiAUAbXUOaNEQiCLnvMiHqL+PQwSfMjZkUvzQgi1RZFacZDAYDAajhsjltVmtxZJiqFazYZrqFYgqltleJLxOOctV54zywgo/UxCnyIOuqdJ5bBQKLYxUWvED5NdfXCgVN3emHj9FtnrR1KdEohcr/FjBmy/8yTD1+/tv7gR4EdLMxbji4Rdw8PFnIWZqW7LaTNtKgzuXxEOLhsCJLrzfM44zL+ow7kudyPzlj7/TX/MHL2c1MgQSxs6eNIkPtPiYOv7ElLhRvGrdThWDwWAwGAz7oV6bsprea9Pn8+H2X94BGg1eLcWSYqlGs2GvQ4DAcyAkMQ8rFbr+kAR+UhXvpiI1UfiJxWI4+eST8d///rfShzIp4HnOkGNa4fNTXYqfhJrJKirdykZbzApp9UqXMhVmiV6W4ff7cf8NVxu3CdEATYEWGEJT2wxsGwgiFNXfb0ngINlYNCzV4O5vTz1uFHNuPPcELJiWkM+aJzJ+vx+XZPH/ScXw93GIE+6jk8PU8SeqaPFo1N0lxdQzGAwGg8EoL/l4bZ7y+a+gfvlp8Ox9eNUUS6ygWsyGOY6bkDxbKjQYRuS5qlU6MfKj6gs/0WgUP/jBD7Bp06ZKH8qkgnqOhC3w+ZEr7IFjxmHabbAK2SRxrAT0efM1d041z6ML9I927ARgbdvRVCWd1BUA1PFBOEQeoZiKrQO6t1I1t9b5/X5ce9UPjduEaPjFNZcbt80TmUJ78zNFuQPJih9CEufqE4/9Jh5T/wYzDGQwGAwGo4bIx2tzJCTr0eCSq2qKJZMN2u41FrZG8WP2+AGqU+nEyI/Kr9SzsHnzZnzhC1/Ajh07Kn0okw4j0t2Cwk91KX7saPWqbGGLKo3yLWZlWqBv3aIv0D1VXIioFTJJXXfu3IG9ZurGxxt2jQLQzbStxiqDu0zflXQUKu/NFOUOJBQ/hCTi2/1+P669OlGEqpZoVAaDwWAwGPlBOwoyeW1GiIiOjg489fvf1LxBb7WaDdul+EmnXmfFu9qiqgs/b7zxBg499FA88cQTlT6USQenyujs7MSSpfvnjGXORXV5/MR3GiajuXMahUk6Fi5cCC7NAr1l1lwA9hQiphrZpK4LptdBlmO46EdXo7OzE7xmXaSm1WQuYO2cMJFJfc08z2eV9waj6aPcAX3yQMcLWviZTGkfDAaDwWBMRXJtwI6EYgCA5nhKKMN6GlzWRrobG+AVWgcxrKOqCz9f+cpXcNVVV8Htdlf6UCYdTprkIzpLfixD8VMFA4KR6mWR4ocQUnlzZxrnnqfiR2qYhjMv7AA1z+PjRQlv83QAzOPHKjJJXee1esCbEqmqudWr0F7tFStWgHc3wrv0GHT85h9Z5b1Bo9Ur/eunyV7RuOpw0aJFaQuWzDCQwWAwGIzaINc8fCSsq1CaPVLZjmmqIRF9c//0L3y55M19wLQBHp+jVavSiZGbiVuxk4xMbQu1AD12O16Dg0c8ljmGHTt2YPHixUU/VkxRQIgGHqTi77fI6T4lkZhiybGoGoGq6Y/DE60ir4/nCAjREJXze03v7x7B8uPOwN9f/R+0SAC3/bwT5550GLpe+wiEaHAKXMU/p1Kw87wo5jgAYMaMGcZtkQNmNuix51p4HGMDu6Gqcyp1mDk555xzcMEFFwAA1q1bh8WLF2d8b1VVhRYLQWxsh6OhDaGobLRtpRKIyFm/bw6BQ4BoCEVlqKqEmTNn4pzvd+I3v/gpAAJBEHDfffdh5syZFf+sq51qOScYjGqBnRMMxkTKcV6IfOZ5OCEEQ4EoCNFQ7xTY+WkTHim+8ev0QlXVkt5nQghisgoCAg6VWQfZyWS4VhRy7JO+8LNu3bpKH0LJ2PEannhYT/IBgKVLl+Kqq67C6aefXtRjbdodQc+QjO3qEOoClfXj2Ogfx89u+X+I9W7B3x++tWS1WEwl6OkJAADeWxeoiI/RtsEYenqicIQHMS22O+vvEkLwz00hjIVikPu3w+nbF5sHw3jr7bex9aMgYirB5o3j6HdWtdgvLyp9bofDYePf7777btJ3bdUTifPrvJNWY/PVxZ9fdmN+HYODg1i7dm3231VlEDmK3t5evLomjGbXREUPIQSbPwpCIwTbNo6jzzHx+9a7O4TBkIq1741isEGERgim73sY6pefhsA7z+PJxx/DvHnzsh4PI5lKnxMMRrXBzgkGYyJ2nhe7/WH0jCl4jxtBpCdZ1RNRNHzkD4IDh+0bA/BXgUXEZKR/VFf5cE4P3nnnHXg8nqIfS9EIdsfXQRveC1TM9sJupsq1YtIXfvbbbz8IQvW2WmRDVVWsW7fO8tfg9/vx2H23Gbc1TcMNN9yAr3/960XF8fU7ehFwjGHvBW1YtkezZcdZDBFvDwCAEyXsv//+JUsQA1EFr41sAwcOBx24ABxX/gFP6B7FbvRhdpsXyw6YlfV3d42E0TjkR2OzisjO9+Bon4+Wtna0zJmHlqFdAICPHbgnPGkitmsFu86LYlCUif3Tfr8fXfckzi9CSju/7MYsA87nnFEUBU+8uRM9YxH45s/Eoul1E34nIquYPrQVAHDowQvStknu4HZh20AQey6YjqWzGzEWltHWswm8wwUiR3HssccyCXGeVNM5wWBUA+ycYDAmUo7zot/RC2X3GPaYP3FNsGskjBmjftS7JCw/aA9bnp8BjI4HDNW5t7EZB+y7pOjHCsdU/GdYn88dfOBC8JOsWDcZrhX0NeRD7a7+8kQQhJr9IClWv4atW7emNVHdtm0b5s2bV/DjEXDgOB6SVPn32iWJ+mAXCaCnp6ekFjYAIFDBcTwcIg9RrMzp4pREcBwPjXAZ399gMIi6ujq45i9H510PY/+5bSCqglXv9+Jd/yg29ATAcTw4DvA6HZNi4K7Wc9vq88tuGhoakiLV86HZ60TveAyBqJr2MwiHFXAcD5ckwOlI38fvdujfa1nTP8uxaAROpxN33HIDVnzi90W9lqlOtZ4TDEalYOcEgzERO88LV8q13cxoRJ9Tt3id7Ly0kcd/95ihOv/YgQfgwQcfLDpyXeM0cJweyCFJk7dsMFWuFbXf78EomEJjmXNRTalez/7pdxhfsxKR7WuxZMkSPPTQQyU9XjW8NiqrzJ3qxcHRpnvJ7DWjHgCwYJqeMPV/371UT5gi6qQo+lQzVp9f1Uhj3JRxJJQ+KjRkJHplvohSg3lqAEkfq4kZPjIYDAaDUZMYqV5pfEdGqbGzl13n7cLv9+Oiiy4ybmuahm9961vw+4uz4qh0wA3DWtinOAXx+Xy4/Y47QVOfciX55MJI9apwQcHv9+NnV/7QuF3qYAdUx4AnxosIco5UL7FxOjjJDacoYG6L3s87p8UDh8ADnP4YLomd8nZTaFJWLdLk1mNYaTpHKsGY3gKXraWQmkJH4qlew/GI1yYPi3hlMBgMBqMWcWaJc2fXefvZtGlTWtX55s2bi3o8OR7lPlm9faYaNbMK/PDDD3HooYdW+jAmDeefdy68+x8L79JjsPq1t4uWAAJmVUxlv05WD3ZAYsCrpOJHpIofNbviR2yaCWWkFw3qqFGEE3gO81oTpm4syr08ZIp6nyxQxc9opsJPPMq9Lovix5Wi+BllEa8MBoPBYNQ0TjH52m5mOESv86zwYxdWq86rYR3EsI6aKfwwbECR9VjmprbSHiY+KFRa8WNHi41R1KpgpVuKq43osaTj4UceQeSjtQiuX4Wvn/zJpBa3+a0eaNEQlJFehIb6bD9eRjKzZ8+u9CFYTpNbL86MR+S0BclgTFfxFKT4Ceo7gWxCyGAwGAxGbeLIoPghhGCUKn7cbIPHLlJV5xzPo+OmXxatOqedD5LISgaTAfYpTmHU0CiARAW+WKrBBwdIP9jddc99JbXY0EWtVEE1E31fMxV+/H4/Lrn4YuN2aovbv/76B4yvWYng+lX4zulHlOx7xGB4HAIcIg9CgLHIxGQzqvjxOjMXfsyKH00jGA3rf9PIFD8MBoPBYNQkjvhmZariJxBVIKsEPMehgRV+bIWqzqW2PXDFwy9gyadPL/qxqL9oJddBDOtgn+IUxev14s1XVqOjowNBpbSvQbV4/ACJwc614GO44uEXsPiTnwHHceA4Lim2Ol+qQfFD/YUytXp98OHGjC1ufr8f378kURQiFvgeMXLj9XpBCAEhZFJGknOmiVu6dq9E4SeLubNJ8TMWkaERApHnUJ+lWMRgMBgMBqN6yaT4oQEOjW6xKtYLUwFlrA/NbTOxcyiUsTU/F7Ja+XUQwzpY4WcK01qnt1QMxVssiqUaiiOpKCO70dQ2A+u6xwCh+J2FajB3poZqskqM2O1gMJgoaEmN4Lj0LW52+B4xGEBCqj0Smjh+hOKtXt4srV5mxc+wKdGL46pnHGEwGAwGg5E/iVSv5LknNXZu9rJ27nJBYiHMbnJBlmNo3+ugojbBDY8fluo1KWCf4hSmJT74BqKK4bNRDKpGjb+q5+ukDPrR7HEgpmpwTNsTANDd3V3w48iGxLGCih/T+5ra7sWJDnwU9eDMizqMn5lTpKZCtDijMjRmUfwE8mj1ooqfqKyxpA8Gg8FgMCYB5lQvulkJJGwlGlmbl+2YVecH7jkNAOCYPr+ox6KKn0qugxjWUT0rdUbZcYoC6l36wqwU1U+1ePwAyYPdEXvPwBsvPIVYz0YAwJIlSwr2t6GKn0rKUs3vq5IS6e707YuIrOKEM75k/MycIjUVosUZlaEpQ7KXrGqGxNvjyJ3qpRGCvrEoAGbszGAwGAxGLUMVP6pGDCsIIKEOZtf58rJgWp3uu8Tx4D2NBW+CK0zxM6lgn+IUh6p+Sin8qLQ4UkWtXgDgiY3iqbs7jduppsf5YJg7V3DA43nOKDzJprYtzumB4G3CyEAPPjm/2fh5aorUZI8WZ1SGJrc+doykmMNTfx9J4Iydv3SIpu9171hEf0xm7MxgMBgMRs3iEHjQjm1q8BwMBvHV87+Nzs5OOLmJgRAM+3CIPLb851mMr1kJLTRa8CY43dyXqmyNxygOVviZ4tDCz2CRhR9CSFUpfsxs2bIZpER/m2rxL6LPTxU/XV1dINEQgutX48bzTsDqvzyZ1+NMxmhxRmUwt3pppl09c5R7Nr8ejuPgkvRLEC08s8IPg8FgMBi1C8dxxmYpVf9qhIB31QFgUe7lxu/3497rrzRuF7oJLlfBBjjDOtinOMVpq3MCAIaC0aL+3izjrDaXfiv8bZQq8S+iMYqKqsHv9+Oiiy4y7iOahksuuQQ7d+5MmyI12ROmGJWh3qUnc6gaQSCm7+AFg0HsuXAvdHZ2QkRu3zCnmNwKxjx+GAwGg8GobZwpBs9jEQVaLAJleBdGB3oqeWhTjlJDXoxUrypb4zGKgxV+pjiG4idQnOLHbDZc6eJIKj6fDzf94pcA9MGqGH8bw9SsShQ/skZYUhejKuB5Dg1xj7BRU7sX53ADALxZ/H0oVPED6HLkfP6GwWAwGAxG9eJMiXT/9a8fwfialQhu+Cf22Wefgv02GcVT6iY48/iZXLBPcYpDCz/jEQVRpfBkL6r44TigGovB53/tXNQvPw3epcdg7br3CvK3CQaDOPOsz6GzsxNyrDhFlFXQAVdRNZbUxagaGtMYPPPxwk82Y2eKWfHDotwZDAaDwah9qMFzVNFV6tdcealxXzF+m4ziSQ154fnCNsFl5vEzqWCFnymOSxJQF49cHg5OjGXOhWKSAFbjos0h8OBECWJjO5qnzSj8AXj9vam0xJHGKMoqgc/nw9cvvx6lKJkYDCtIa/DM8VBGehEc7s39AKqMzs5OdHZ2ws1ruX+fwWAwGAxGVUMU/dq+z377439r32Eq9QqzYsUKuPZYBu/SY/DEP14raBO8GkJuGNbBPkWGyeC5cFUL9cARqqzNywyR9cSgULRwRRMn6IqEShd+DMVP/P3e/5jTUb/8NPDuBpbUxagYTk5BZ2cnTjj1DASDQXR1dSGy/W0E16/CF489LKec25z61cgMHxkMBoPBqHmo4ocTJIxIbeA4plKvOBwPsbEdDa2FbYIrVWJ5wbCG6l2tM8pGS13xke5qlSZ6UbxeL3513z3o6OgAEQs3jiWKDGWkFwN9u204uvyRTKle4ZiKYFQB7/RAi4VYUhejYjS49GIN76xDd3d3kul4PnJup2Qu/Ij2HSiDwWAwGIyyQNUhUqsPPaoXZ17UYdzHVOqVgcj65n5UKUxdTQ26q83HlVEc7FNkoNXrgCzHcOJpnwfHcQgGg3n/LTV3rrZELzPeeCtbMKoU9HddXV0IffBvBNevwomfPLiiZnR0wJVVDQOBKCTJgdtuvA5EkVlSF6Ni0GIN767Hhg83Fizndoo8tGgIykgvwsP9th4rg8FgMBgM+6HXdhAOIwM9+Np55xr3MZV6+fF6vfjvq6/om+BCYerqhLlz9a7zGPnDCj8Mo9VL8DQW/LdqDZh+eZx6u1Yoln+rV2pkeqXN6OiAq2gEAwG9at9W76zIsTAYlAa3CC0ahDo+hNd3hguWcz//1ON60sf6Vfj0octY0geDwWAwGDXOi888YVzbbzzvBGx+5S/GfUylXhlckr4WisiF2V4oxjqPlQwmA+xTZKDVqxcQeJfXMDPOl4Tip3q/Sl6H/poCBSh+qi0y3dzqNRDQW/La6gpvXWMwrOSx3/wG42ueQXD9Ktx84ZdwyHGnGvflknP7/X78/Mc/Mm5XurjKYDAYDAajNPx+P2675nLjNtE0/OB7l1TwiBgA4JISSWuFIKus8DOZYJ8iA26HALckQIuGwTtc6O7uzvtvVY32flax4sdBFT/5F36qLTKdtnopmmYofqbVMcUPo3KkquII0bBmVWJXL5ecu9qKqwwGg8FgMEoj07V99erVIIQwe4IKQRU/0UIVP6zVa1LBCj8MAMA7L63E+JqV0CIBLFmyJO+Wi9ry+Ml/sPP5fLjh1ttRLZHpdMCNKRoGaasXK/wwKkimyR0ll5y72oqrDAaDwWAwSoNd26sTl1h4q5emkUSrVxV3djDyh32KDPj9fvz65h8btwtpuaAxf9VcCfY6C1f8AMBJZ34Z9ctPg2vBxypuRkcllgOBKGSVQBI4Fn/NqCiZJnf54vP5cNdddyX9LUv6YDAYDAajdmHX9uqEpqjKKoGs5tfuJZs296p5ncfIH1b4YWDTpk0gRbZcqLWg+Il7/IRiKrT48ebDeDwynZecFTejo610fWO62qe1zgm+it9zxuQn0+SOEJK3nHvFihXGvytdXGUwGAwGg1E67NpefThFHjynrxvy9fmhm/scV92WHoz8YYUfRkmyTCoBrOYBwS0J4DiAECBUgMRxNCwDALRI/vH2dpHw+NHfb9bmxagGrJzcVbq4ymAwGAwGw1rYtb064DjOUP3k2+6lmIydOa5613mM/GGFHwZ8Ph9+cv2tKMbPhpp+VXOqF89zCYPnApK9YhDR0dGB115+qeJmdKkSS5boxag22OSOwWAwGAwGozpxiYUVfuQaCPBhFEZh2d2MScsXz/4qbvvTy5CHd+Gd536DxYsXG/cFg0HU1dUBAAKBQFIRRK0BxQ+gGzwHoyqCsfwVP2NxxU+Dq/KniTSh8MMUP4zK4/V6QUj+7ZNW/z2DwWAwGIzqgl3bqxM92UtGRM7T48dI9KrezX1GYVR+RcuoClwSD97pgdQyq6Cd+1pI9QKoz08UwQIUP2MRvfBTDSbKsWgEnZ2dAICrrroS0+pZ4YfBYDAYDAaDwWDkhka6F97qVd1rPEb+sBIeAwDgiMv/OKGwIoeh+KnyQcFo9cpT8RORVUTjFfF6V+ULP+YYxTqnaAzeDAaDwWAwGAwGg5ENV9zjJ6rk2epFFT9VbOfBKAym+GEAAFob69HR0QEAcLk9GX+vu7s7qQ0sYe5c3YOC16l/1fNV/FC1j8chGEWxSmIurLV6mb8Pg8FgMBgMBoPByA+nofjJM9WrRjb3GflT+RUtoypwmPo3UyvBXV1dxr+XLFmChx56yLitatTcuboHBar4CcbyLPxQf58qaPMCdA8lLRqCMtILEhis9OEwGAwGg8FgMBiMGsElFtbqRRU/DubxM2lgnyQDgJ58RZUtUVMl2O/346KLLjJua5qGb33rW/D7/QBqI84d0NujACAUTQx2wWAQHMeB4zgEg8mR7aNhvUDUUAVtXgDw5O9/i/E1KxFcvwpnn3BYUvGNwWAwGAwGg8FgMDLhMuLc8zV3ZoqfyQYr/DAMDNMvk+Jn06ZN0LTkAUJVVWzevFn/d42YO3toq1e+ip8IVfxUvhvS7/fjsh98z7idWnxjMBgMBoPBYDAYjEwUbu7MPH4mG+yTZBg40yh+Fi1aBD7lhBcEAQsXLgSQcHyv9mqwl7Z6RZW8IiZpq1c1JHrlKr4xGAwGg8FgMBgMRibSbfBnQ2apXpMOVvhhGBiFHyVRZPD5fLjzzjsB6Cc9zwt44IEH4PP5AJhSvapd8ePQlTuyShBTJ0ocu7u7k26PRaqn1StX8Y3BYDAYDAaDwWAwMlFoq5cS33QWmcfPpIF9kgyDTBLAL539VdQvPw3epcfg0edfxfnnn2/cpxitXtX9VXKIvOFhRH1+MplWE0KqytzZ5/PhrrvuMm4LQnLxjcFgMBgMBoPBYDAykcncOZPnqcIUP5OO6l6tM8pKOsUPoFeGeacHYmM7Glrbk+4zqsFVrvgBTO1eMSWraXVU0RCLvwf1rsp7/ADAihUrjH9v2LAhqfjGYDAYDAaDwWAwGJmgG/wxRTM6NrJBOyQkpviZNFTHqpZRFWRS/HCSEx0dHQAAXnQk3UerwdVu7gzoBs/DIRmhmIruLL45UkMbAMDrFKpysJs9e3alD4HBYDAYDAaDwWDUCHSDHwCiimrYYGTC8HGtgTUeIz+qb1XLqBiZFT+JQlBMTS4K1YrHDwB44wNcIKpk9c0x2ryqwN+HwWAwGAwGg8FgMEqB5zk4c/j8mD1PaVdHNW6CM4qDfZIMA2dc8RNNcXsPmws/KUUh6vFTC8ZfHqf++kJRFT6fD1dffyuoaTXH87ju1jvg8/lMUe7VU/jxer0ghIAQAq/XW+nDYTAYDAaDwWAwGDVEOp+fTJ6nco0kNzPyp/pX64yykcntPZKl8KPGq8G10OpFFT/BmJ7YddCxZ+im1fsehSsefgHLj/8cAGAsrN9fDVHuDAaDwWAwGAwGg1EqqbYe2TxPFebxM+lgnyTDwClmUPzEEsUecxsYISSh+KmFwg9V/MQUEEKwczgM3umBGhhCU9sMbBsI6oleEdbqxWAwGAwGg8FgMCYPqZv8m7J4nsq08FPlyc2M/GGfJMPA8PhJUfwktXqpifs0ApC4KXxNKX6iKvrHowjLKogqI+JfD0ngEYgq6BuPmqLcmfc5g8FgMBgMBoPBqH0MxU98kz+b5ylr9Zp8sMIPwyB1MKCktnqReLVHMVWIa0HxQz1+glEFHw2FIEkOPHrf7SCKjIUzmgAAW/oDGGXmzgwGg8FgMBgMBmMSQTf56drO5/Phh503gXqe8oKABx54AD6fz1jnscLP5IFJGhgGdDCgxR2O0090s+KHEF314xQFI9ELqC3FT1hWsa0/CACY16obJc+f5sX73UM48Uvng3fW4aqrrkS9i50eDAaDwWAwGAwGo/ahm/zm7o5PfuZzqH/mP9Ai4/jD/bfgM588EEDC3Jm1ek0e2CfJMKCFH0KSvXzMih8gYfBs9vehRaJqxi0JUGQZ11zTiW9+/wrIcgx7tHoAAHu2ecGBA++sA6AXiWohqYzBYDAYDAaDwWAwckE9fsx+riNhBbzTA7GxHd6W6QDiPq608COy9dBkgX2SDANR4CHF5XzmSnA4lr7wo8YHBKFGJIA8z8HjEIzbDS4JTR4HAMDjENHe4DTuY2ofBoPBYDAYDAaDMVlwGnHuiXXecEg2/h2I6ms+jQAaqZ0AH0Z+sNUtIwmnKEBWlXglWAIhxBgcRJ6DohHD4FnWEj+vFcyFn7kt7qT79mh1Q4uGoIXHERvtB7CwzEfHYDAYDAaDwWAwGNaTGucejqnQOAEdHR0AABn6/bIpzIfFuU8e2CfJSCI15i+qaEbFt8Gtmx0bip94q5dQQ72fHocALRqCMtILKTKUdN/rz/8J42tWIrh+Fb516uF46KGHKnSUDAaDwWAwGAwGg2EdiXWeXvgZCsWS7g9EFQCJwg/PcTXh48rIj6pesUejUVx11VVYvnw5Dj/8cPz617+u9CFNeqgEkPZ+0oHBIfJwx9UyhscP7f2skVYvAHjluT8axZ0TP3mwUdzx+/248offN35P0zR861vfgt/vr9ShMhgMBoPBYDAYDIYlJBKc9bXccFAv/NCOiEBEL/woLMp9UlLVhZ+bb74Z7733Hrq6utDR0YG7774bzz//fKUPa1LjNEy/9AGBJnq5JMEwf45OUPzUxqDg9/tx7/VXGrfNxZ1NmzZBM8XTA4Cqqti8eXO5D5PBYDAYDAaDwWAwLMXc6kUIwUjc32dOix52E4qpUFTNsPOopc19Rm6q1uMnFArhD3/4A/7f//t/2HfffbHvvvti06ZNeOyxx3DiiSdW+vAmLQnTr0TvJ6AnYjmE5MKPOdWrFshW3Fm0aBF4nk+6XxAELFzIfH4YDAaDwWAwGAxGbeNKSXCmrV4zG13Y0heAohEEo6qpq6OqNSKMAqnaT/ODDz6Aoig48MADjZ8dfPDBeOeddyYs3hnWkVnxw8MRHyxq1eOHFnfM0OKOz+fDXXfdlfTzBx54AD6fr9yHyWAwGAwGg8FgMBiWkprgPBIv/LR4HaiLJxqPR2XD40dkhZ9JRdUqfvr7+9Hc3AyHw2H8rK2tDdFoFCMjI2hpacnrcVRVzf1LVQo99nK+BokHCNEQispQVRWhqAxCNDgFDmL8vois3xeTFRCigQepifd55syZuOOOO3DRRRcB0Is79913H2bOnAlVVXHOOefgggsuAACsW7cOixcvronXNdWoxHnBYFQz7JxgMJJh5wSDMRF2XjAAwCFwiCkqxiMxDAWiIISgwSnA6xAwHIxiLBSDKHAgRINQI2u8YpkM50Qhx161hZ9wOJxU9AFg3I7FYun+JC3r1q2z9LgqQTlfw87BGHp6onCEB9ES2YX3eqPoGYihPjYEp8ihpy+KD6ODaAh2Y/OQjJ6eCMSQiLXoK9sxlsKyZcuMfz/55JOYN28e1q5dC0D/zlEGBweNnzOqk8lwbjMYVsLOCQYjGXZOMBgTYefF1Ka/N4TRiIr/vDWCXbsjEDgOWz4IYGB3FD0jMt4mw3BLHHp6ItDGRayVBit9yLYzVc6Jqi38OJ3OCQUeetvlcuX9OPvttx8EQbD02MqFqqpYt25dWV+DY9cYdqMXM1u9WLZsFgbf78OwOIp957fCKfIY4Psxe3o9lu03A2THCLpJPxa012PZ0hllOb5SCQaDxr+PPfZYeL3etPftv//+SfcxqodKnBcMRjXDzgkGIxl2TjAYE2HnBQMANmt+dA+HUd/egBlkDG11Thx44FyEGgYR2T6EGb4mtNU5sF3pw55tXiw7YFalD9k2JsM5QV9DPlRt4ae9vR3Dw8NQFAWiqB9mf38/XC4XGhoa8n4cQRBq9oOklPM1eFwSOI5HTCUQBAFRlYDjeHidEiSBB8fxUIh+H+E4cBwPSayd99h8nKnva0NDAwghlTgsRhFMhnObwbASdk4wGMmwc4LBmAg7L6Y2HocEjouibzwKjuPRUueEIAhodDvAcTyCsoYW6Gs8pyROie/KVDknqtaxacmSJfj/7d1/bFX1/cfx173n9hel6nRIlnYWZ0G7WUpFw74J3+8SUSdE1hKVUEhaIrJmi5R8mQOdGbabJsLcN5lsyToDE6JzdANR94VFha9Z4uaYbONH+y1p3QLcYJoyy9eO2/Zy7znfP+i93NML2DPuPefe0+cjadJ77ml539z7vpfz7vvz/oRCIdtym0OHDqmmpiZtQC8yJ7lle2JXr5Tt3McPd744+Cs/dvWSpNLSUlmWJcuy6OgBAAAAMGkktnQfHNvK/fopF0apJIY7/3MkpvPx/Nq5GROTsxWUkpISNTQ0qK2tTUeOHNE777yjbdu2qampyevQfC2xnXtiV69EAaikwEgWhfJ1Vy8AAAAAmKyKC+zXbdeNFX7KisYKP6PnFRv74z7buftLzi71kqQnn3xSbW1tam5u1tSpU7VmzRrdd999Xofla4k3g5HzpizLutjxUxhUYhVUoigUM6kGAwAAAEA+SHT8JFxfau/4iUTjyWu9fFrVgU+X04WfkpISbdq0SZs2bfI6lEkj0fFjWpaicVPD0QuJX1JgKDbW9pd4M4jTBggAAAAAeaE4ZC/8XDelQNKFaz0jGFDctHR2+MKGSiFWdfgKzyZsCoyAgoELhZyhkZjMsTaf1Bk/5+MXuoGSHT9UgwEAAAAgp5mxUbW3t6u9vV0FgXiyAygQCGjq2HKvwXMX5v8UhrjG8xMKP7AJBALJ5V5nx4Z+FRgBFRjBZOHHsqRo3GTGDwAAAADkieLQxeu260oKbPcllnt9MnLhGpCOH3/h2USaxBDn/xtr80tUgkPBi91A0ZipmGkmjwMAAAAAcldRynDna8cVfhIDnhNzXVnV4S8UfpAmUehJdPyUFF5sAUy8WURjqR0/vCkAAAAAQC4rDhkyRyOKne3X+U8GbPeVFdsLQezq5S88m0iTKO4MJgo/KdPfC8feAKJxk129AAAAACBPdL76soY+2KNzXfv18IJ52rp1a/K+xFKvBK7x/IXCD9IkdvY6G7Ev9ZKUnPNDxw8AAAAA5IdwOKz/XNuavG2aplpaWhQOhyUpOdw5gY4ff+HZRJrEcOd/jsYkjev4GSv8jMZSO354GQEAAABArurt7ZU5NqM1IR6Pq6+vT5JUVkzhx894NpEm0fGTGOyV2vFTlNLxE4tfeOMwGPwFAAAAADlr5syZCo77g71hGKqqqpKU3vHDcGd/ofCDNEUh+8siMdxZujjjZzRlqRfrPwEAAAAgd1VUVGjLli3J24ZhqKOjQxUVFZKkKYWGbYRHAas6fIVnE2lSO3ykSy/1iqYs9WLGDwAAAADktubm5uT33d3dWrVqVfJ2IBBQaUrXDx0//hL69FMw2Yzv+EnM/JFSCj/xix0/VIMBAAAAIH+Ul5enHSsMxNXe3i5JWvnfP1VpUZnbYSFLKPwgzZU6fhLzfy7M+Bnr+KEaDAAAAAA5rbS0VFZikOul7k8Z8UHHj7/QqoE0aR0/helLvUbOx2VazPgBAAAAAD+YWhSSORpRbPC0Pjp92utwkEEUfpAm0dWTYJvxMzbceTgaTx5jxg8AAAAA5Lf/ebNTQx/s0bnud1VdXa2tW7d6HRIyhMIP0hSlzPQpMAIqMNJn/JyLxpLH6PgBAAAAgPwVDoe1eeP65G3TNNXS0qJwOOxhVMgUCj9IExsdVnt7m9rb2xWw4rb7EsvAImMdP0YwoECAwg8AAAAA5Kve3l6Zpmk7Fo/H1dfX51FEyCQKP0gTCARkxc5LkkoK7C+R1O3cJZZ5AQAAAEC+mzlzpoLjdms2DENVVVUeRYRMovCDS7JiUUlS8bh5P4WG/SXDMi8AAAAAyG8VFRXasmVL8rZhGOro6FBFRYWHUSFTKPzgkuKRTxQ7269zH/fbjheO2/GLjh8AAAAAyH/Nzc3J77u7u7Vq1SoPo0EmUfhBmu3btyvyv+/qXNd+tdT/u22a+/it3un4AQAAAAB/KS8v9zoEZBCFH9iEw2GtWbMmedsaN83dCAZsXT4hg5cQAAAAAAC5iqt22HzaNPdAIGBb7kXHDwAAAADkv9LSUlmWJcuyVFpa6nU4yCAKP7CZyDT31AHPzPgBAAAAACB3UfiBzUSmuds6fgwKPwAAAAAA5CoKP0jzadPcUws/RpCXEAAAAAAAuYqrdlzRpaa5FzHjBwAAAACAvEDhB44x4wcAAAAAgPwQ8joA5J7ENPfLKSqg4wcAAAAAgHxAxw8cKzSM5Pd0/AAAAAAAkLso/MAx265eDHcGAAAAACBncdUOx+y7etHxAwAAAABArqLwA8dShzsXGBR+AAAAAADIVRR+4BgdPwAAAAAA5AcKP3CsiBk/AAAAAADkBbZzh2Ox6Ija29slSf+x/b8kXettQAAAAAAA4JJo14Bj9l29WOoFAAAAAECuovADx1KHOzPjBwAAAACA3EXhB44VhgIyRyOKne3XQP9HXocDAAAAAAAug8IPHHt5xw4NfbBH57r2655/q9PWrVu9DgkAAAAAAFwChR84Eg6H1dramrxtmqZaWloUDoc9jAoAAAAAAFwKhR840tvbK9M0bcfi8bj6+vo8iggAAAAAAFwOhR84MnPmTAWD9peNYRiqqqryKCIAAAAAAHA5FH7gSEVFhbZs2ZK8bRiGOjo6VFFR4WFUAAAAAADgUij8wLHm5ubk993d3Vq1apWH0QAAAAAAgMuh8IOrUl5e7nUIAAAAAADgMnK+8GNZlh555BHt3r3b61AAAAAAAADySk4XfkzT1DPPPKP33nvP61CQorS0VJZlybIslZaWeh0OAAAAAAC4jJDXAVxOf3+/Hn/8cYXDYV1zzTVehwMAAAAAAJB3crbjp6urS5/73Oe0a9culZWVeR0OAAAAAABA3snZjp+7775bd99991X/nng8noFovJGIPZ8fA5Bp5AVgR04AduQEkI68AOz8kBNOYves8DMyMqL+/v5L3jdt2jRNmTIlI//O0aNHM/J7vOSHxwBkGnkB2JETgB05AaQjLwC7yZITnhV+Dh8+rKampkve95Of/ET33HNPRv6dmpoaGYaRkd/ltng8rqNHj+b1YwAyjbwA7MgJwI6cANKRF4CdH3Ii8RgmwrPCz7x583T8+PGs/zuGYeTtE5ngh8cAZBp5AdiRE4AdOQGkIy8Au8mSEzk73BkAAAAAAABXh8IPAAAAAACAT1H4AQAAAAAA8Kmc3c491YEDB7wOAQAAAAAAIO/Q8QMAAAAAAOBTFH4AAAAAAAB8isIPAAAAAACAT1H4AQAAAAAA8CkKPwAAAAAAAD5F4QcAAAAAAMCnKPwAAAAAAAD4FIUfAAAAAAAAn6LwAwAAAAAA4FMhrwPIFsuyJEnxeNzjSP51idjz+TEAmUZeAHbkBGBHTgDpyAvAzg85kYg9Ufu4koA1kbPyUDQa1dGjR70OAwAAAAAAICtqampUWFh4xXN8W/gxTVOxWEzBYFCBQMDrcAAAAAAAADLCsiyZpqlQKKRg8MpTfHxb+AEAAAAAAJjsGO4MAAAAAADgUxR+AAAAAAAAfIrCDwAAAAAAgE9R+AEAAAAAAPApCj8AAAAAAAA+ReEHAAAAAADApyj8AAAAAAAA+BSFH4+Njo7qO9/5ju68807Nnz9f27Ztu+y53d3devjhh1VbW6sHH3xQx44dczFSwD1O8uLdd99VfX296urqtHjxYu3fv9/FSAF3OMmJhHA4rLq6Ov3xj390IULAXU5y4vjx42psbNTs2bO1ePFivf/++y5GCrjHSV68/fbbWrhwoerq6tTY2Kiuri4XIwXcFY1G9cADD1zx/0R+v9am8OOxzZs369ixY9q+fbuefvpp/fjHP9Zvf/vbtPMikYi+/vWv684779Tu3btVV1enlpYWRSIRD6IGsmuiedHT06PHHntMDz74oPbs2aNly5Zp7dq16unp8SBqIHsmmhOp2tra+IyAb000J4aGhvTII4+oqqpKb775pu6991499thj+sc//uFB1EB2TTQvent79a1vfUstLS16/fXXVV1drZaWFg0PD3sQNZBdo6OjWrdunXp7ey97zmS41qbw46FIJKJf/epXeuqpp/SlL31J9957rx599FG98soraefu3btXRUVFWr9+vW655RY99dRTKi0t/dT/+AP5xkle/OY3v9GXv/xlNTU1qbKyUitWrNC8efO0b98+DyIHssNJTiS88cYbOnfunItRAu5xkhOvvfaapkyZora2NlVWVqq1tVWVlZW++0su4CQv3nvvPVVVVamhoUE33XST1q1bp4GBAfX19XkQOZA9fX19Wrp0qU6ePHnF8ybDtTaFHw/19PQoFouprq4ueWzu3Lk6fPiwTNO0nXv48GHNnTtXgUBAkhQIBHTHHXfor3/9q5shA1nnJC+WLFmixx9/PO13DA0NZT1OwC1OckKSBgcH9YMf/EDf+9733AwTcI2TnDh48KAWLFggwzCSx3bt2qWvfOUrrsULuMFJXlx33XXq6+vToUOHZJqmdu/eralTp+qmm25yO2wgqw4ePKh58+Zp586dVzxvMlxrh7wOYDIbGBjQZz7zGRUWFiaPffazn9Xo6KjOnj2r66+/3nZuVVWV7edvuOGGK7asAfnISV7ccssttp/t7e3VH/7wBy1btsy1eIFsc5ITkvTcc89pyZIlmjlzptuhAq5wkhOnTp3S7Nmz9d3vflcHDhxQeXm5NmzYoLlz53oROpA1TvJi0aJFOnDggJYvXy7DMBQMBtXR0aFrr73Wi9CBrFm+fPmEzpsM19p0/HhoeHjY9uYsKXk7Go1O6Nzx5wH5zklepPr444+1Zs0a3XHHHVqwYEFWYwTc5CQnfv/73+vQoUP65je/6Vp8gNuc5EQkEtHPfvYzTZs2TS+++KLuuusurVq1Sh999JFr8QJucJIXg4ODGhgY0MaNG9XZ2an6+no9+eSTzL7CpDUZrrUp/HioqKgo7cWUuF1cXDyhc8efB+Q7J3mRcObMGTU3N8uyLL3wwgsKBnlrg39MNCdGRka0ceNGPf3003w2wNecfE4YhqHq6mq1trbqi1/8or797W9rxowZev31112LF3CDk7x4/vnnNWvWLK1YsUK33367vv/976ukpES7du1yLV4gl0yGa22ujjw0ffp0DQ4OKhaLJY8NDAyouLhY11xzTdq5Z86csR07c+aMbrzxRldiBdziJC8kqb+/XytWrFA0GtWOHTvSlr0A+W6iOXHkyBGdOnVKra2tqqurS855WL16tTZu3Oh63EC2OPmcmDZtmr7whS/Yjs2YMYOOH/iOk7zo6urSbbfdlrwdDAZ122236fTp067FC+SSyXCtTeHHQ9XV1QqFQrahUYcOHVJNTU1ax0Jtba3+8pe/yLIsSZJlWfrzn/+s2tpaN0MGss5JXkQiET366KMKBoN6+eWXNX36dJejBbJvojkxe/ZsvfXWW9qzZ0/yS5KeeeYZrV271uWogexx8jkxZ84cHT9+3Hbsb3/7m8rLy90IFXCNk7y48cYb9eGHH9qO/f3vf1dFRYUboQI5ZzJca1P48VBJSYkaGhrU1tamI0eO6J133tG2bdvU1NQk6UKVfmRkRJJ0//3365NPPtGzzz6rvr4+PfvssxoeHtbChQu9fAhAxjnJi46ODp08eVKbNm1K3jcwMMCuXvCVieZEcXGxKisrbV/Shb9i3XDDDV4+BCCjnHxOLFu2TMePH9eWLVt04sQJ/ehHP9KpU6dUX1/v5UMAMs5JXixdulSdnZ3as2ePTpw4oeeff16nT5/WkiVLvHwIgKsm3bW2BU9FIhFr/fr11pw5c6z58+dbP//5z5P3zZo1y9q1a1fy9uHDh62GhgarpqbGeuihh6yuri4PIgayb6J58dWvftWaNWtW2teGDRs8ihzIDiefFalmzZplvf/++y5FCbjHSU588MEH1pIlS6zbb7/dqq+vtw4ePOhBxED2OcmLzs5O6/7777fmzJljNTY2WseOHfMgYsA94/9PNNmutQOWNdbPBAAAAAAAAF9hqRcAAAAAAIBPUfgBAAAAAADwKQo/AAAAAAAAPkXhBwAAAAAAwKco/AAAAAAAAPgUhR8AAAAAAACfovADAAAAAADgUyGvAwAAAMglTzzxhF577bUrnrN//35VVFS4FBEAAMC/LmBZluV1EAAAALliaGhIIyMjkqS9e/dq27Zt+vWvfy1JMk1T8Xhc06dPl2EYXoYJAAAwIXT8AAAApCgrK1NZWVnye8MwNG3aNI+jAgAA+Ncw4wcAAGCCwuGwbr31VoXDYUnSrbfeqn379mnhwoWqra3VunXrdOrUKTU1Nam2tlbLly9Xf39/8ufffvttLVq0SLW1tXrooYd08OBBrx4KAACYJCj8AAAAXIUXXnhBzz33nDo6OvTWW2+psbFRjY2N+uUvf6mBgQG9+OKLkqSenh5t2LBB3/jGN/TGG2/oa1/7mlavXq0TJ054/AgAAICfsdQLAADgKqxcuVK1tbWSpOrqat18881auHChJOm+++5TT0+PJGnr1q1aunSpFi9eLElqamrSn/70J7366qt64oknvAkeAAD4HoUfAACAq/D5z38++X1xcbHKy8ttt6PRqCTpww8/1L59+7Rz587k/efPn9f8+fPdCxYAAEw6FH4AAACuwvjdvYLBS6+kj8fjWr16tRoaGmzHi4uLsxUaAAAAM34AAADccPPNNyscDquysjL5tXPnTv3ud7/zOjQAAOBjFH4AAABcsHLlSu3du1c7duzQyZMn9dJLL+mll17SjBkzvA4NAAD4GIUfAAAAF8yZM0ebN2/WL37xCy1atEidnZ364Q9/qLvuusvr0AAAgI8FLMuyvA4CAAAAAAAAmUfHDwAAAAAAgE9R+AEAAAAAAPApCj8AAAAAAAA+ReEHAAAAAADApyj8AAAAAAAA+BSFHwAAAAAAAJ+i8AMAAAAAAOBTFH4AAAAAAAB8isIPAAAAAACAT1H4AQAAAAAA8CkKPwAAAAAAAD5F4QcAAAAAAMCn/h9kSyh5xotarAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Sampling out a lightcurve from the GP\n", + "counts = gp.sample(key = jax.random.PRNGKey(6))\n", + "yerr = (jit)*np.ones_like(times)\n", + "\n", + "fig, ax = plt.subplots(1,1, figsize = (14,6))\n", + "ax.errorbar(times, counts.T, yerr=yerr, fmt=\".k\", capsize=0, label=\"data\")\n", + "ax.plot(times, mean(times), color = \"orange\" ,label = \"Mean\"); ax.legend()\n", + "ax.plot(times, counts, label = \"Sample GP\", alpha = 0.5)\n", + "ax.set_xlabel(\"Time\"); ax.set_ylabel(\"Counts\")\n", + "\n", + "lc = Lightcurve(time = times, counts = counts, dt = times[1]- times[0], skip_checks = True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter Posterior Analysis\n", + "\n", + "We will now make our two differing model and then compare the evidences (log evidences $log(p(D|M)) $ ) of fitting the data to the model to check which one fits better.\n", + "\n", + "The main function that we will use will be:\n", + "\n", + "* `gpmodeling.get_gp_params`: This function gives us a list of the parameters of the model based on the kernel and mean type we select.\n", + "\n", + "* `gpmodeling.get_prior_dict`: This function will be can be used to get a suitable generater prior function for a jaxns model. We have to give it our parameter list, and a dictionary with suitable tfpd distributions for the priors. \n", + "\n", + "* `gpmodeling.get_log_likelihood`: This function will give us a log_likelihood function which calculates the log likelihood probabilty of the data for the given parameter $p(D|\\theta, M)$. Here we will have to provide the parameters list, the kernel and mean type of the GP model, as well as the Times and counts of the lightcurve.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "### Model 1\n", + "\n", + "The first model which we will make will be a Red-Noise model ,we will use the get_prior and get_likelihood functions to make a suitable prior and log_likelihood function for our Inference. \n", + "\n", + "The model will have a Red Noise kernel \n", + "\n", + "$$\n", + "k_{rn}(\\tau) = a \\; exp(-c\\tau) $$\n", + "\n", + "where $\\tau = |x_i - x_j|$ and the mean function as a gaussian distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "parameters list ['log_arn', 'log_crn', 'log_A', 't0', 'log_sig']\n" + ] + } + ], + "source": [ + "import tensorflow_probability.substrates.jax as tfp\n", + "from stingray.modeling.gpmodeling import get_prior, get_log_likelihood, get_gp_params\n", + "tfpd = tfp.distributions\n", + "tfpb = tfp.bijectors\n", + "\n", + "params_list = get_gp_params(kernel_type= \"RN\", mean_type = \"gaussian\")\n", + "print(\"parameters list\", params_list)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a parameter list as jaxns requires the parameters in the prior function and log likelihood to be of the same order. Thus if one is using the standard kernel and means then parameter list comes handy, otherwise one can make our own prior and likelihood function." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prior and log likelihood\n", + "\n", + "We use Tensorflow_probility to make the parameter priors and put them into the prior_dictionary. The prior types and bounds can be set according to the user discretion. \n", + "\n", + "**Note** : The priors can be Tfp priors or bijected priors, but we cannot use tfp.joint_distributions in our priors. To make multi-parameter priors or conditioned parameter priors, one can use the priors in `jaxns.special_priors`. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "total_time = times[-1] - times[0]\n", + "f = 1/(times[1]- times[0])\n", + "span = jnp.max(counts) - jnp.min(counts)\n", + "\n", + "# The prior dictionary, with suitable tfpd prior distributions\n", + "prior_dict = {\n", + " \"log_A\": tfpd.Uniform(low = jnp.log(0.1 * span), high= jnp.log(2 * span)),\n", + " \"t0\": tfpd.Uniform(low = times[0] - 0.1*total_time, high = times[-1] + 0.1*total_time),\n", + " \"log_sig\": tfpd.Uniform(low = jnp.log(0.5 * 1 / f), high = jnp.log(2 * total_time)),\n", + " \"log_arn\": tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)),\n", + " \"log_crn\": tfpd.Uniform(low = jnp.log(1 / total_time), high = jnp.log(f)),\n", + "}\n", + "\n", + "params_list2 = [\"log_arn\", \"log_crn\", \"log_A\", \"t0\", \"log_sig\"]\n", + "\n", + "prior_model = get_prior(params_list2, prior_dict)\n", + "\n", + "log_likelihood_model = get_log_likelihood(params_list2, kernel_type= \"RN\", mean_type = \"gaussian\", times = times, counts = counts)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sampling Model 1\n", + "\n", + "We can initialise the GPResult class using a stingray lightcurve, and then perform a Nested Sampling for the given prior_model and likelihood_model." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO[2023-10-19 22:11:44,231]: Sanity check...\n", + "INFO[2023-10-19 22:11:44,432]: Sanity check passed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Complete\n" + ] + } + ], + "source": [ + "from stingray.modeling.gpmodeling import GPResult\n", + "\n", + "gpresult = GPResult(lc = lc)\n", + "gpresult.sample(prior_model = prior_model, likelihood_model = log_likelihood_model)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check the Evidence for the data given the model $Z = p(D|M_1)$, as well see the sampling outcomes for the used parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log Evidence: -252.0393784723225\n" + ] + } + ], + "source": [ + "print(\"log Evidence: \", gpresult.get_evidence())" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the plotting functionality of the GPResult class, we can visualise the posterior distributions of our parameters, look at sampling run summaries and diagnostics." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHFCAYAAADlrWMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABltElEQVR4nO3de3yL5/8/8FeOTdM612EMq0MpqlQxxpznVJsZ42dlfLcxhjGbszl02GZsjDEzm8/qMzamNsrYsNnGVJ2KmkNNnUY7p2nSpEnu3x/9NGvSNrmTpr2T9PV8PPpw586d5J3Lu+k7133d1yUTBEEAERERkQ+TSx0AERERUXGxoCEiIiKfx4KGiIiIfB4LGiIiIvJ5LGiIiIjI57GgISIiIp/HgoaIiIh8HgsaIiIi8nksaIi8FOe8/BfbgoicYUFD5MSwYcPQqFEjm59mzZqhc+fOmDdvHu7du+fR1zMajVi4cCG+++47jzzfsGHDMGzYMI88l73ff/8djRo1wu+//17o/R9++CEaNWpU5G1n/vrrL4waNQrXrl0rdqy+zGQyYdq0aWjZsiWioqJw6NChAse42rYlaciQIWjUqBG+//57qUOhMkQpdQBEvqBJkyaYM2eO9XZOTg5Onz6NpUuXIjU1FV9++SVkMplHXuvWrVtYv349Fi1a5JHnyx+31AYNGoSOHTuKPv63337DTz/9VIIR+YYDBw5g69atGDt2LNq3b48mTZpIHVKR0tLScOzYMYSFhWHjxo3o2bOn1CFRGcGChkiE4OBgtGjRwmZf69atkZWVheXLl+PEiRMF7vcWDRo0kDoEqxo1aqBGjRpSh+Fz7t69CwAYMGAAateuLW0wTnzzzTeoVasWRo8ejddffx2XL19G3bp1pQ6LygCeciIqhmbNmgEArl+/bt2XmJiIAQMGoGXLlnjsscfw5ptv2pyWys7Oxty5c/H444+jWbNm6NWrFz799FMAwNWrV9GtWzcAwPTp09G1a1fr444cOYLY2FhERkaiTZs2mDp1Km7fvm29/5tvvkGTJk3w9ddf47HHHkObNm1w4cKFAqecDAYDVq5ciV69eiEiIgJPPPEE1qxZA4vFYj1m2LBheP311zFhwgS0aNECI0eO9Eh72Z8WSU9Px8svv4y2bdsiMjISgwcPtvbIfPPNN5g+fToAoFu3bpg2bRoAwGw2Y8OGDejXrx+aN2+Ozp0747333oPBYLB5ra1bt6JPnz6IiIjAk08+iYMHD6JJkyb45ptvHLaX2WzGmjVrEBMTg+bNm6NFixYYMmSIzWmeDz/8EL169cKePXsQExODiIgIPPXUUzh27BiOHz+OQYMGoXnz5oiJicHBgwcdtomz9zNt2jTre+/evbtLpw+d5SIA7N+/HwMGDEDz5s3Rs2dPbN++HT169MCHH34o+nXyv5eEhAR06dIF3bt3h1arxaZNm1x+HiJ3sIeGqBguXboEANZvzR999BGWL1+OoUOHYtKkSbhy5QqWLVuG48eP46uvvoJGo8HChQvxyy+/YOrUqQgJCcHPP/+Md999FxUrVkS/fv2wYsUKjBs3DmPGjMETTzwBAEhKSsLIkSPx6KOP4oMPPsC9e/ewbNkyDB8+HJs3b4ZGowGQ+wdl3bp1WLBgAe7cuYP69evbxCsIAl5++WUcP34c48aNQ+PGjfH777/jgw8+wJUrVxAXF2c9dufOnXjyySexatUqm2KnMBaLBSaTqdD9jh4zevRoVKtWDe+++y6USiX+85//YMyYMdi5cyc6d+6MMWPGYNWqVVixYoW1EHrzzTexbds2vPTSS4iOjsaZM2ewcuVKpKamYu3atZDJZEhISMC0adMwaNAgTJ8+HSdPnsTYsWNhNpttYiisvd599118+eWXmDx5Mho1aoSbN29i5cqVePXVV7F//34EBgYCyB3f8/bbb2PSpEnQarWIi4vDhAkToFKp8PLLL+Ohhx6y3r9//37r/5E9Z+9n7NixqFGjhrUdQkNDHf5f5BGTi4cOHcLYsWPRpUsXvPrqq7h8+TLmzJlToDgU6+eff0ZGRgb69+8PjUaD3r17Y+vWrZg4cSLUarVbz0kkmkBEDsXGxgrPPfeckJOTY/3JzMwUEhMThTZt2giDBw8WLBaLcPfuXaFZs2bC7NmzbR6flJQkhIWFCfHx8YIgCELPnj2FWbNm2RyzYsUKYd++fYIgCMKVK1eEsLAwYcuWLdb7Bw8eLMTExAgmk8m6Ly0tTQgPD7c+75YtW4SwsDAhISGhQPyxsbGCIAjC/v37hbCwMGH79u02x6xcuVIICwsTzp07Z31MZGSkYDAYHLbNoUOHhLCwMKc/eZYvX269fevWLSEsLEz49ttvrfffv39fWLhwoTWOvPd05coVQRAE4fz580JYWJjw8ccf28SRkJAghIWFCfv37xcEQRA6d+4sjB492uaYjz/+2KZdi2qv1157Tfj8889t9n3//fdCWFiYcOzYMZv38dNPPxV4/q+//tq6b9euXUJYWJhw5syZQttP7Puxb4fC5G9bsbk4dOhQ4cknnxQsFov1mO3btwthYWHC8uXLi3ytoowbN06IiYmx3j5y5EiB/2OiksJTTkQiJCUloWnTptaf9u3b47XXXkOzZs2wZMkSyGQyHD9+HEajETExMTaPjY6ORq1atXD48GEAQNu2bfHVV1/hpZdeQnx8PK5cuYJXXnkFnTt3LvS19Xo9Tpw4gU6dOkEQBJhMJphMJtSuXRv169fHr7/+anN8eHh4ke/j8OHDUCqV6NWrl83+J5980np/nnr16on+Vj1v3jxs3ry5wM+zzz5b5GNCQkLQoEEDzJ49G1OnTsV3330Hi8WC6dOno2HDhkXGDwB9+/a12d+3b18oFAr8/vvvuHz5Mq5fv17gPdo/Jo99ey1ZsgTPP/88bt++jSNHjmDLli349ttvAeRegZZfVFSUzfsBgMjISOu+ihUrAgDu37/v9vtxh5hcNBqNOHbsGJ544gmbAe29evWCUul65/3t27exb98+9OzZE/fv38f9+/fRsGFD1KpVi6edqFTwlBORCE2bNsW8efMAADKZDAEBAXjooYcQHBxsPSZvbELeH7b8QkJC8M8//wAAZs6ciRo1auDbb79FXFwc4uLi0LJlS8ydOxeNGzcu8Nj79+/DYrHgk08+wSeffFLg/oCAAJvbWq22yPdx7949VKpUCQqFwmZ/1apVAcAaIwAEBQUV+Tz2QkNDERERUWD//v37i3yMTCbDunXrsGrVKuzZswcJCQlQqVTo3r075s2bhwoVKhQaf/548yiVSlSqVAn//POPdVxRlSpVbI4p7P8FKNheKSkpmDdvHlJSUhAYGIgGDRqgZs2aAArOh5P//z9P3ikpMcS8H3eIycW7d+/CbDYXaCeFQmEtxFzx7bffIicnBx9++GGB8TfXrl3DxYsXC5wCJfIkFjREIgQFBRX6Bzu/vD/AmZmZqFevns19GRkZ1nE2arUaY8aMwZgxY3D9+nXs27cPH330ESZPnowdO3YU+toymQwjRowotJfBlT+gFSpUwJ07d2A2m22Kmlu3bgEAKlWqJPq5PKF69eqYO3cu5syZg7Nnz2LXrl345JNPUKlSpUIvN89r44yMDNSqVcu6PycnB3fu3EGlSpWsV1H9/fffNo+1v12YBw8e4MUXX0SjRo2wY8cO1KtXD3K5HD/99FOJzKki5v0U53kd5WKVKlWgUqmQmZlpc7/FYrFeVeWKLVu2oGXLlpg0aZLNfp1Oh7Fjx+LLL7/ErFmzXH5eIrF4yonIQyIjI6FWq7F9+3ab/UeOHMH169cRFRWF7Oxs9OzZE+vWrQMA1KxZE8899xz69u1rvVLKvvckODgYTZo0QVpaGiIiIqw/DRs2xIcffujSaYk2bdrAZDJh165dNvvzTqm0atXK5fftrmPHjqF9+/Y4efIkZDIZwsPDMWnSJISFhVnbQi63/Yhq06YNABQo/Hbs2AGz2YxWrVqhRo0aqFOnDvbs2WNzzO7du53GlJaWhrt372L48OFo0KCB9fV//vlnAI4HObtDzPtxh5hcVCgUiIqKwo8//mhzzN69ewsd4O1ISkoKzp07hwEDBqBt27Y2P126dMGjjz6Kbdu2ITs72633QyQGe2iIPKRixYoYNWoUVq5cCZVKhS5duuDq1atYtmwZGjRogKeffhoajQZNmzbFihUroFKp0KhRI1y6dAlbt261TkBWrlw5AMDBgwdRv359REZG4rXXXsOoUaMwefJkPPnkk9arc06cOIGxY8eKjvHxxx9H27ZtMWvWLNy8eRONGzfG4cOH8cknn+Dpp58u1TlrmjRpAo1GgylTpmD8+PEICQnBb7/9htTUVAwfPhwAUL58eQDAnj178Pjjj1vbcfny5dDr9WjdujVSU1OxYsUKtG3bFh07doRMJsOECRPw+uuvY86cOejRowfOnj2LlStXAihYJOUXGhqK4OBgrF69GkqlEkqlEt9//z02b94MIHc8kyeJeT/uEJOLADBhwgQMGzYMEyZMwMCBA3H9+nUsW7YMAFyaKHLLli1QqVTWq/LsPfXUU/jtt9+sl5ETlQQWNEQelPeHOT4+Hps2bULFihXRq1cvTJw40TpWY/78+fjggw+wbt06ZGRkoEqVKhg4cCBeffVVALk9MiNHjsSmTZvw008/4ddff0WHDh3w6aefYsWKFdZLg5s2bYrPPvvMpQn9ZDIZPv74Yyxfvhyff/45bt++jYcffhivvfaax+aaESsgIADr1q3DkiVLsGDBAty/fx+PPPII5s+fb/2j17ZtW7Rv3x5LlizBwYMHsWbNGixYsAB169bFli1b8Mknn6BatWoYPnw4xo4day1W+vXrB51Oh08//RRbtmxBw4YNMXPmTMycOdPhGKNy5crho48+wrvvvotXX30VQUFBCA8PR3x8PF566SUcOXLEZm4gTxDzftwhJhejo6Px4YcfYtmyZRg7dixq1aqF2bNnY9KkSaLHUBkMBuzYsQOPPfZYkWNvnnjiCcybNw8bN25kQUMlRibYj3IjIvJx27dvR5MmTWzGj+zfvx+jR4/Gtm3bCh18XRb9+OOPqFGjBpo2bWrdd/78ecTExOCjjz6yTvJI5AvYQ0NEfufbb7/F+++/j4kTJ+Khhx7C5cuXsXz5crRp04bFTD6//PILEhMT8frrryM0NBQ3b97EqlWrUK9ePXTo0AEWi0XUuCF3LvMm8jT20BCR37lz5w6WLFmCn3/+Gbdv30ZISAh69uyJCRMmuHQ5ur/Lzs7GsmXL8P333+PWrVuoWLEiOnbsiMmTJyMkJATTpk3D1q1bnT7PH3/8UQrREjnGgoaIiAp19epV3Llzx+lxzqY0ICoNLGiIiIjI53EeGiIiIvJ5LGiIiIjI55WZoekWiwUmkwlyudylCaOIiIhIOoIgwGKxQKlUOpybqcwUNCaTCSkpKVKHQURERG6IiIiAWq0u8v4yU9DkVXUREREF1sqhXGazGSkpKWwjkdhehcjKAv63MjWuXwf+d4k020o8tpV4bCvX+Gp75cXtbObsMlPQ5J1mUigUPvUfKQW2kWvYXvkoFLlFTd62XbuwrcRjW4nHtnKNr7aXs+EiZaagIXKH0WzEskO5i/W9+uirUCuK7u4kcod9jinge39oiLwBCxoiB3LMOZjywxQAwNjWY1nQkMfZ55gvfnMm8gYsaIgcUMqVeD7yees2OaFUAs8//+82OcUcI/IM/vYQORCgDMDn/T+XOgzfERAAfP651FH4FPscM5vN0gVDLjGbzcjJyZE6DNHycis7O9uregJVKpVH4mFBQ0RE5AJBEPDXX3/h7t27UofiEkEQoFQqcfnyZa+bj61ixYqoUaNGseJiQUNEniMIgE6Xu63VAl72oUnkCXnFTLVq1aDVar2uOCiKIAjQ6/UIDAz0mpgFQYBOp8OtW7cAAA899JDbz8WChsiBLGMWai2tBQC49to1BKmDJI7Iy+l0QHBw7vaDB9Z5aKho9jmmUWgkjogcMZvN1mKmSpUqUofjkrwZdzUajdcUNAAQGBgIALh16xaqVavm9uknFjRETtwz3JM6BPJzzDHfkTdmRqvVShyJf8lrz5ycHBY0RCUhUBWIc+POWbeJPM0+xwSLIHFEJIY39XD4A0+0JwsaIgfkMjkaVmkodRjkx+xzzAxe5UTkDhY0REREHpCeno7MzMxSea2QkBDUqVNH9PFXr15Ft27dsH37djRo0KAEI8ul0+nQvn17NGnSBP/9739L/PUAFjREDuWYc7AmeQ0AYFSrUVApVBJHRP7GPsfkcLwAH3mn9PR0hIeHQ5d3lV8J02q1SE1NdamoKU179+5F1apVcfToUVy5cgW1a9cu8ddkQUPkgNFsxLid4wAAI1qMYEFDHmefY7zKyTdlZmZCp9MhPj4e4eHhJfpaqampiI2NRWZmptcWNNu3b0f37t3x66+/IiEhAePHjy/x12RBQ+SAQq7AwCYDrdvkhEIBDBz47zY5xRzzL+Hh4YiKipI6DIfu3buHJUuW4Mcff4TBYEDXrl0xa9YsVKhQAQBw6tQpzJ8/H2fPnkWTJk3Qrl07HDlyBF988YXo5//ll18waNAgqNVqJCQkYNy4cSU+kJoFDZEDGqUGXw/6WuowfIdGA3xddHulp6fjzp07NvtcHQvgb+xzjEsfUEkbN24csrOzsXr1agDA3LlzMW3aNKxatQr//PMPXnzxRfTu3Rtvv/02fvvtNyxatMilIm337t1QKBRo3749qlatitWrV+PIkSNo3bp1Sb0lACxoiKiU/PXXX3j88ccLjDHw9rEARP7kwYMHSEpKwq5duxAaGgoAWLx4Mfr06YO0tDQkJSVBq9Vi1qxZUCgUqFevHo4ePYqMjAzRr7Fjxw60b98egYGBiIiIQI0aNbB169YSL2g4+oyISsXdu3etYwySk5ORnJyM+Ph46HS6UrsyhKis++2331C+fHlrMQMA9evXR4UKFZCWloY//vgDTZs2tZncrkWLFqKfPyMjA4cPH0b37t0B5M4v06NHD+zatQt6vd5j76Mw7KEhckCXo0PDD3PnCDk//jy0Ks4O6lBWltOlD3xhjEFpss+xAHmAxBGRP1Or1YXuN5vNMJvNUCgUEATbyR3tbzuyc+dOmM1mzJ49G7Nnz7Y+3mKxYM+ePXjyySfdD94J9tAQOSAIAq7/cx3X/7nu0i81kVjMMSpN7dq1w/3795GWlmbdd+HCBTx48AChoaFo2LAhUlNTYbFYrPefPn1a9PMnJiaiXbt2SEhIsP5s27YNderUQUJCgiffSgHsoSFyQKPU4NjoY9ZtIk8rkGOsaXxaamqqV79GQEAAHn/8cUydOtXagzJv3jy0bt0aYWFhqFWrFpYsWYJFixZh6NChSEpKQmJiIlq2bOn0ua9evYpjx45h2bJlCAsLs7lv8ODBWLJkCW7evInq1au7Hb8jLGiIHFDIFWhRo4XUYZAfs88xXuXkm0JCQqDVahEbG1sqr6fVahESEuLWY9955x289dZbGDFiBBQKBbp164bp06cDAIKCgrB69WrMmzcPX375JSIiItCvXz/cunXL6fMmJiaiUqVK6Nq1a4H7BgwYgGXLlmHbtm0YNWqUW3E7w4KGiIiomOrUqYPU1FSvXfrg4YcfxtmzZ6HT6aDVarF06dJCj7ty5QrMZrPN6aF58+ahatWqTl9j1KhRRRYrlStXRkpKiuh43cGChsiBHHMONqRsAAA8F/EcZwomj7PPMS594Lvq1Knj89MPPHjwACNHjsTixYsRERGB06dPY9u2bUUWQN6EBQ2RA0azESO3jQQADGoyiAUNeZx9jnHpA5JSeHg43nzzTSxduhQ3btxAzZo1MX36dHTu3BkLFizA5s2bi3zs6NGj8fLLL5ditLZY0BA5oJAr0KdhH+s2OaFQAH36/LtNTjHHyNsMGjQIgwYNKrB/zJgxDscI5S2dIBUWNEQOaJQa7Bi6Q+owfIdGA+xge7nCPsc4KJi8VeXKlVG5cmWpwygST9YSERGRz2NBQ0RERD6PBQ2RA3nT0jf8sCF0OTrnDyjrsrJylzsICsrdJqeYY0SewTE0RA4IgoALty9Yt0kEHf8ou4I5RuQZLGiIHNAoNfhl5C/WbSJPK5BjrGmI3MKChsgBhVyBx+o8JnUY5Mfsc4xXORG5hwUNEZWIK1euION/p5/MZjMuXbokcURE5M9Y0BA5YLKYsDV1KwDg6fCnoZTzV0asqKgoZOr1BfbfuHFDgmi8l32OySCTOCIi38SrnIgcMJgMeHbzs3h287MwmAxSh+NTdHo94uPjkZycjMOHD2PMmDEAgLt37xY4NjU1FUePHrX+pKenl3K00mGOUWm4evUqGjdujAMHDqBr165o2bIl3nrrLZw7dw4DBgxAixYtMHr0aDx48AAAsHHjRutxw4YNwx9//GF9rps3b2LChAlo3bo1mjVrhqeffhrJycnW12nUqBF2796N7t27IyIiAqNHjy70997T+HWTyAG5TI5OdTtZt8kJuRzo1An/PHgAS3IywsPDERUVBbPZjO+//77A4Xm9NfbTqWu1WqSmpvr8Qn9iMMf8iKOpChSK3Jm0xRwrlwOBgY6PDQpyPT4An332GVatWoULFy5g8uTJ+PnnnzFnzhxoNBqMHTsWmzdvRp06dbBixQrExcUhNDQUCQkJGD58OHbv3o0KFSrg9ddfR/ny5bFx40YIgoD33nsPc+fOxXfffWd9ndWrV2Pp0qUQBAFjxozBZ599hkmTJrkVs1gsaIgcCFQFYv+I/VKH4TsCA4H9+3H+6FFkt2rl9PC8b21xcXHo8781oFJTUxEbG4vMzMwyUdDY5xgHBfuw4OCi7+vTx3ZZkGrVip7ioFMnYP/+f28/8giQmWl7jJuX+L/00kto1KgRGjdujIULF6Jv37547LHcQent2rVDWloadu/ejdGjR6NLly4AgIkTJ+Lnn3/Gt99+i9jYWHTv3h09e/ZEjRo1AADPPfccRo0aZfM6EyZMQPPmzQEA/fr1Q0pKilvxuoIFDRFJLjQ0FFFRUVKHQeT3atWqZd3WaDQFbhuNRly8eBGLFy/G0qVLrfcZDAb8+eefkMlk+H//7/8hMTERR48exaVLl3Dq1ClYLBab16lbt651Ozg4GDk5OSX4rnKxoCEiIvKE/40/KZT96vO3bhV9rNzu1OOff7odkj2l0vbPvtz+tZDbSzhjxgy0a9fOZn9wcDAsFgv+7//+D/fv30efPn3QtWtX5OTkYNy4cTbHqlQqj8UsFgsaIgf0OXq0+zT3l/rgCwcRqAp08ogyLisLeOQRRJhM0Eodi4+wzzG1XC1xROQ2V8a1lNSxHhAaGoq//vrLppdl+vTp6N69O2rXro2kpCQcPHjQuvL2hg0bAEg/0zULGiIHLIIFJ26esG6TCJmZKP3vZr6LOUbeZuTIkZg5cyYeeeQRREVFYdOmTdi5cydGjx4NjUYDuVyOHTt2oGvXrkhJScGHH34IADAajZLGzYKGyAGNUoPdsbut20SeViDHuPQBSaxPnz7IzMzE8uXLkZmZiQYNGmDVqlV45JFHAABz587FypUrsXTpUoSGhmLWrFmYOnUqzpw5g6pVq0oWNwsaIgcUcgV61O8hdRjkx+xzjFc5UUl4+OGHcfbsWejyXVm1d+9em2Pefvtt6/bw4cMxfPjwQp9r8ODBGDx4sM2+mJgY63b+OWsAYPz48W7H7QpOekBEREQ+T9KCJm+2wTZt2qBjx45YtGgRDIbCZ8o8c+YMBg0ahMjISDzzzDM4depUKUdLZZHJYsKOczuw49wOmCwmqcMhP8QcI/IMyQoaQRAwYcIE6PV6bNiwAe+//z727duHDz74oMCxOp0Oo0aNQnR0NL755hu0bNkSo0ePtuk6IyoJBpMBMV/GIObLGE5LTyWCOUbkGZIVNGlpaTh+/DgWLVqEhg0bIjo6GhMmTMD27dsLHJuYmIiAgABMmTIF9evXx8yZMxEUFIRdu3ZJEDmVJXKZHNE1oxFdM5rT0oshlwPR0chq0gS8Xkcc5hiRZ0g2KLhq1apYu3YtQkJCbPY/KGRiohMnTqBVq1aQyXJXoZXJZIiKisLx48cxYMCAUomXyqZAVSCSXkqSOgzfERgIJCXhD5FLH1DBHOOgYN8g9Zwr/sYT7SlZQVO+fHl07NjRettisSA+Ph6PPvpogWMzMjLQoEEDm31VqlTB+fPnXX5dflgULa9t2EbisL2Klr9t8n7yWCwW6+286dLz77N/bFnDvBJPiraSy+UQBAFZWVnQaHxrKoe8osEbi7GsrCwIggC5XF7g/1Ps/6/XXLa9ePFinDlzBps3by5wn16vh1ptO3umWq12axKf0lggy9exjVzD9iro3Llz1n/tp1a/fPkyjh8/bt223+fosWUJ80o8Kdrq+vXrMBqNCAgIsJ498BVFXXwjBUEQYDAYkJmZiZycnGL9X3pFQbN48WKsX78e77//PsLCwgrcHxAQUKB4MRqNblXHERERUNivqUEAcqvglJQUtlE++hw9ntjwBABg93O7bZY+YHsVQqeDPCICzYxGvAQgLCwMLVq0gNlsxs6dOwHkLlrXokULALlXL9rvy+u1yXusv7PPMbVczbwSSarfQUEQcPPmTetq8b4kJydHknWWnKlSpQqqV69eaHGY9//sjOQFTVxcHL788kssXrwYPXv2LPSY6tWrI9Nu6fTMzExUq1bN5ddTKBT8kHCCbfQvmVmGg1cP5m7LZYW2C9srH7kcuHwZAQBkKLxt5HK5dV9eD0z+ffn/LQvtWlSOlZX37wlStFWtWrVQo0aNUllF2lPMZjPOnj2LBg0aeFVuqVQqj8QjaUGzYsUKbNy4EUuXLkWvXr2KPC4yMhKffPIJBEGATCaDIAg4evQoXn755VKMlsqiAGUAtg7eat0m8rQCOeZ9wxuoCL5WdOaNRdFoND4Vt1iSFTQXL17ERx99hFGjRqFVq1bIyMiw3le1alVkZGSgXLly0Gg06NWrF5YsWYIFCxZgyJAh2LhxI/R6PXr37i1V+FRGKOVK9G/cX+owyI/Z5xgHAxO5R7IRdz/++CPMZjNWrVqFDh062PwAQIcOHZCYmAgACA4Oxscff4zk5GQMGDAAJ06cwJo1a6DVaqUKn4iIiLyIZD00o0aNwqhRo4q8335xq+bNm2Pr1q0lHRaRDbPFjAPpBwAAHet0hELuf920JC37HCMi90g+KJjIm2WbstFlfRcAwIPpDxCkDpI4IvI39jmmUfjW3CZE3oIFDZEDMpkMTao2sW6TEzIZ0KQJ9NnZENLSpI7GJzDHiDyDBQ2RA1qVFqfHnpY6DN+h1QKnTyP16FHoufSBKPY5xkHBRO4pu9NwEhERkd9gQUNEREQ+j6eciBzQ5+jx5MYnAQDfDvnWZukDKoROB7RujfDsbLClxLHPMbVc7eQRRFQYFjREDlgEC35I+8G6TU4IAnDmDAKRu/QBOcccI/IMFjREDgQoAxD/dLx1m8jTCuQYlz4gcgsLGiIHlHIlnmv+nNRhkB+zzzFe5UTkHg4KJiIiIp/HHhoiB8wWM47eOAoAiHooiksfkMfZ5xgRuYcFDZED2aZstFnbBgCXPqCSYZ9jXPqAyD0saIgckMlkqFuhrnWbnJDJgLp1YTAaIdy4IXU0PoE5RuQZLGiIHNCqtPhz4p9Sh+E7tFrgzz9xmksfiGafYxwUTOQeDgomIiIin8eChoiIiHweTzkROZBtysaQzUMAABsHboRGyQGbDun1wOOPo5FOB7aUOPY5ppKpJI6IyDexoCFywGwxY9sf26zb5ITFAhw5giAUv/s3NTXV5nZISAjq1KlTzGf1PvY5plKwoCFyBwsaIgfUCjXWxKyxblPJu/G/q6NiY2Nt9mu1WqSmpvpdUcMcI/IMFjREDqgUKrzU6iWpwyhT7t69CwCIi4tDnz59AOT21sTGxiIzM9PvChr7HONVTkTuYUFDRF4pNDQUUVGcOZeIxGFBQ+SARbAgNSN3LEd41XDIZbwwkDzLPseIyD0saIgc0Ofo0WxVMwBc+oBKhn2OcekDIvewoCFyIkQbInUIviUkBDkmE/C/sTDkHHOMqPhY0BA5EKQOQsYbGVKH4TuCgoCMDKQcPQodlz4QxT7HOCiYyD0cEEBEREQ+jwUNERER+TyeciJyINuUjRe+fQEA8OmTn3LpA2f0eqB3bzR88IBLH4hkn2Nc+oDIPeyhIXLAbDHjvyn/xX9T/sulD8SwWICffkK55GR+uIjEHCPyDPbQEDmgVqjxfs/3rdtEnsYcI/IMFjREDqgUKkx8dKLUYZAfs88xXuVE5B72ChMREZHPYw8NkQMWwYL0e+kAgDoV6nDpA/I4+xwjIvewoCFyQJ+jR+iyUABc+oBKhn2OcekDIvewoCFyQqvSSh2Cb9FqYbZYgOxsqSPxGcwxouJjQUPkQJA6CFkzsqQOw+ulp6cjMzMz98aBA0hNTYUuNlbaoHyEfY5xUDCRe1jQEFGxpKenIzw8HDqdrsB9N27ckCAiIiqLOMKRiIolMzMTOp0O8fHxSE5ORnJyMuLi4gAAd7niNhGVEvbQEDlgMBkwLnEcAGBFnxUIUAZIHJH3Cg8PR1STJsAzz6D6tWt4S+qAfIR9jill/Fgmcgd7aIgcMFlMWHtsLdYeWwuTxSR1ON7PbAYSE1HrxAkopI7FRzDHiDyDXwWIHFApVHiry1vWbSJPY44ReQYLGiIH1Ao1Zj4+U+owyI/Z5xivciJyD085ERERkc9jDw2RA4IgIFOXO79KiDYEMplM4ojI39jnGBG5hwUNkQO6HB2qvVcNAJc+oJJhn2Nc+oDIPTzlRERERD6PPTREDgSpgyDMEaQOw3cEBQGCgA0bNnDpA5Hsc4yDgoncwx4aIiIi8nksaIiIiMjn8ZQTkQMGkwFTf5gKAHin+ztc+sCZ7Gxg2DB0SE8HW0oc+xzj0gdE7uFvDpEDJosJy35fBgBY0HUBAvhn2jGzGdi8GXUBLn0gkn2OKRX8WCZyB39ziBxQKVSY0WGGdZvI05hjRJ7BgobIAbVCjQXdFkgdBvkx+xzjVU5E7uGgYCIiIvJ57KEhckAQBOhydAAArUrLpQ/I4+xzjIjcw4KGyAFdjg7Bi4IBcOkDKhn2OcalD4jcw1NORERE5PPYQ0PkgFalxYPpD6zb5IRWCzx4gI0bN0L34otSR+MT7HPMYrFIHBGRb2JBQ+SATCbjaSZXyGRAUBDMGp42EYs5RuQZPOVEREREPo89NEQOGM1GzNs/DwAwp/McqBVqiSPycgYDMHo0Hk1LA1tKHPscU3COZSK3sKAhciDHnIOFvywEAMzoOIMFjTMmE7B+PeqDHy5i2eeYQsGChsgd/MwhckApV+LVtq9at4k8jTlG5Bn87SFyIEAZgA96fSB1GOTH7HOMSx8QuYeDgomIiMjnsaAhIiIin8eChsiBLGMWZPNkkM2TIcuYJXU45IeYY0Se4RUFjdFoRExMDH7//fcijxkzZgwaNWpk87Nv375SjJKIiIi8leSDgg0GAyZPnozz5887PO7ixYtYvHgx2rVrZ91XoUKFkg6PyjitSotbr9+ybpMTWi1w6xY2b94M3dixUkfjE+xzjEsfELnH5YLm0KFDaNu2LWQyWbFf/MKFC5g8eTIEQXB4nNFoxNWrVxEREYGqVasW+3WJxJLJZKgaxJwTTSYDqlaFoXx5qSPxGcwxIs9w+ZTTq6++io4dO+Ktt97C8ePHi/Xihw8fRtu2bbFp0yaHx6WlpUEmk6F27drFej0iIiLyTy730Pz666/49ddfsWvXLowaNQrBwcHo3bs3+vbtiyZNmrj0XEOHDhV1XFpaGoKDgzFlyhQcPnwYNWrUwPjx49GpUydXw+ccDw7ktQ3b6F9GsxHvHXwPAPB6u9dtZgpme+XK3w5mnQ6y119H9LlzUAOwWCy5+/O1Ud6+vG0x+2xew8/a2z7H8pY+8Lf3WRL4O+gaX20vsfG6XNAolUp06tQJnTp1gslkwm+//Ya9e/di6NChqF69Ovr164cBAwagZs2aLgddlLS0NGRnZ6NDhw4YNWoU9uzZgzFjxmDTpk2IiIhw6blSUlI8Fpe/Yhv9S2/S4839bwIAumi6IFAZWOCYst5e586ds/6rNBjQctUqNELuh8vly5cL9OTm33f58mVR+/K/hlzuFdcyeExROVbW88oVbCvX+Gt7uT0o2Gg04sCBA9i9ezf279+PSpUqoWvXrvjzzz/Rt29fTJ48GbGxsR4JcuzYsRg2bJh1EHDjxo1x+vRpfPXVVy4XNBEREVwrpQhmsxkpKSlso3wMJgNe+OsFAEBUiygEKAOs97G9cuX1qISFhaF5o0Y299WtWxctWrSA2WzGzp07bfYBwJkzZ0Tty/8aefv8hX2OKWVK5pVI/B10ja+2V17czrhc0Pzwww/YtWsX9u/fD5VKhZ49e2LlypWIjo62HrNhwwYsXbrUYwWNXC4vcEVTvXr1cOHCBZefS6FQ+NR/pBTYRv/SKrRY+9Rah8eU9fbKe++FtYNcLne4L6+3xdk+R6/h6+xzLK973R/fa0lhW7nGX9vL5YJm6tSp6N69O5YuXYrHHnus0EZp1qwZRo4c6ZEAAWDatGmQyWRYtGiRdd/Zs2cRFhbmsdcgIiIi3+VyQfP6669jwIABCAgIsNmv0+mwefNmDB8+HJGRkYiMjCxWYBkZGShXrhw0Gg26du2K1157DW3btkXLli3x3XffITk5GfPnzy/WaxAREZF/EDW67vbt27h+/TquX7+O+fPn48KFC9bbeT8HDx7Ee++957HAOnTogMTERADAE088gTlz5mDVqlWIiYnB3r17sXbtWjz88MMeez2iwmQZsxC0MAhBC4M4LT2VCOYYkWeI6qE5fPgwJk6caJ1Mb+DAgTb3502M9+STT7odyB9//OHw9qBBgzBo0CC3n5/IXbocndQh0P+kpqba3A4JCUGdOnUkisZzmGNExSeqoOnVqxf27t0Li8WC7t274+uvv0blypWt98tkMgQGBqJSpUolFiiRFAJVgbj06iXrNjkRGAhcuoSEhAToJ03y2NPeuHEDAApcaKDVapGamurTRY19jgkWxzOnE1HhRI+hyZtX5uzZsyUWDJG3kcvkeKTiI1KH4TvkcuCRR5BVtSo8+Wf57t27AIC4uDj06dMHQG5vTWxsLDIzM326oLHPMTN8a9IzIm8hqqAZPnw4VqxYgfLly2P48OEOj/3Pf/7jkcCIiOyFhoYiKipK6jCIyAuJKmjatGkDlUpl3SYqK3LMOViZtBIA8ErrV6BSqCSOyMsZjcDMmWh55gzYUuLY55jc9SX2iAgiC5px48YVup3n9u3bqFSpkkdW4CbyJkazEZO+zx0L8lLUSyxonMnJAd57D00AFjQi2eeYRqGROCIi3+TyV4GbN29i0qRJSE1NhcFgQGxsLB577DF069aN42vI7yjkCgyNGIqhEUOhkPvfzJokPeYYkWe4PLHe3LlzodPpULFiRXzzzTc4d+4cNm7ciG+//RZxcXHYsGFDScRJJAmNUoMNA5jTVHLsc8zXVkIm8hYuFzSHDh3CN998g4ceegg//PADunXrhsjISFSuXBkxMTElESMRERGRQy6fcgoICIDBYMC9e/fw+++/o3PnzgCAq1evFlhAkoiIiKg0uNxD0717d0ycOBEajQYVKlRA586dkZiYiIULF+Lpp58uiRiJJJNlzMIjyx4BAPz56p8IUgdJGxD5Hfsc46BgIve4NYYmPj4e165dw+DBgxEQEACj0YiXX34Zzz33XEnESCSpTF2m1CF4lfT0dGRm/tsm9ssRkOuYY0TF53JBo1QqMWLECJt9/fv391A4RN4lUBWIU2NOWbfLuvT0dISHh0OnK7j20I0bN4AWLYBTp7B9+3bop00r/QB9kH2OcekDIve4XNDcv38f69atQ0pKCkwmk3VhyjycKZj8iVwmR9NqTaUOw2tkZmZCp9MhPj4e4eHhAIDExETMnj07d3kCuRxo2hT3jh/36NIH/sw+x7j0AZF7XC5opkyZgpSUFPTr1w/BwcElERMRebnw8HDrEgQ85URE3sDlgua3335DfHw8mjdvXhLxEHmVHHMOPj/+OQBgRIsRnCnYGaMRWLgQESdPcqZgkexzjEsfELnH5YKmevXqkMv5C0dlg9FsxKjtowAAQyOGsqBxJicHmDcPzcGlD8SyzzFe5UTkHrdOOc2dOxcTJkxA3bp1rYtW5qlZs6bHgiOSmkKuwFONnrJuE3kac4zIM1wuaMaPHw8AGDUq9xtF3oKUgiBAJpPxfDr5FY1Sg4QhCVKHQX7MPse49AGRe1wuaH788ceSiIOIiIjIbS4PhqlVqxZq1aoFnU6HM2fOoFKlSrBYLKhZsyZq1apVEjESEREROeRyQXPv3j2MGDECTz31FF599VX8/fffWLBgAWJiYnDt2rWSiJFIMrocHR754BE88sEj0OUUnEyOqLiYY0Se4XJB89ZbbyEwMBCHDh1CQEAAAGDhwoWoUaMG3nrrLY8HSCQlQRBw+d5lXL53ucAkkkSewBwj8gyXx9AcOHAAX3zxBcqXL2/dV7lyZUyfPh1DhgzxaHBEUtMoNTj84mHrNjmh0QCHD2Pnzp3InjNH6mh8QoEcY01D5BaXCxoAMBgMBfbdvn0bSqVbT0fktRRyBVrXai11GL5DoQBat8btc+dgkToWH2GfY7zKicg9Lp9yiomJwYIFC3D+/HnIZDLodDocOnQIs2fPRp8+fUoiRiIiIiKH3JpYb+nSpRgwYABycnLw1FNPQalUYuDAgZgyZUpJxEgkGZPFhE2nNgEABjcbDKWcvZAOGY3AsmUIP3qUMwWLZJ9jMsgkjojIN7n86axWqzFt2jRMnDgRV65cgdlsRu3atREUFFQS8RFJymAyIHZrLACgf+P+UKpZ0DiUkwNMmYIocOkDsexzjEsfELnHpU9no9GI5ORkXLx4EVlZWQgODkZYWBgCAwNLKj4iScllcnSv1926TeRpzDEizxBd0CQkJGDx4sX4+++/odVqUa5cOWRlZeHBgweoWrUqpk6dipiYmJKMlajUBaoCsWfYHqnDID9mn2McFEzkHlEFzXfffYdZs2bhpZdewuDBg1GjRg3rfdeuXcPmzZsxY8YMlCtXDp06dSqxYImIiIgKI6qg+eyzzzBx4kS8+OKLBe6rVasWXn31VSiVSqxdu5YFDREREZU6USds09LS0K1bN4fH9O7dG+fPn/dIUETeQpejQ9OPmqLpR005LT2VCOYYkWeI6qHJzs5GuXLlHB5Tvnx53Lt3zyNBEXkLQRBwJuOMdZvI05hjRJ4helCwTMa5Eajs0Sg12Pf8Pus2OaHRAPv2Yc+ePcheuFDqaHxCgRxjTUPkFtEFzaeffgqtVlvk/Todu0rJ/yjkCnR+pLPUYfgOhQLo3Bm3rl3j0gci2ecYr3Iico+ogqZ169ZISUlxelx0dHSxAyIiIiJylaiC5osvvijpOIi8ksliwvZz2wEAMWExXPrAmZwcYM0ahCUlubfybRlkn2Nc+oDIPfzMIXLAYDLg6U1PAwAeTH/ApQ+cMRqBcePQGoBa6lh8hH2OcekDIvfw05nIAblMjva121u3iTyNOUbkGSxoiBwIVAXi1//7VeowyI/Z5xgHBRO5h18HiIiIyOe5XNB06dIF7733Hs6cOVMS8RARERG5zOWCZtq0abh27Rqee+459OrVC8uXL8fFixdLIjYiyelz9Gj9SWu0/qQ19Dl6qcMhP8QcI/IMl8fQ9OzZEz179kR2djb27duH3bt3Y+jQoahevTpiYmLQp08fPPzwwyURK1GpswgWHLl+xLpN5GnMMSLPcHtQsEajQc+ePVGxYkVUrlwZmzdvxueff46PPvoIUVFRmD17NkJDQz0ZK1GpC1AGYPv/227dJicCAoDt27Fv3z4YliyROhqfUCDHuPQBkVtcLmgsFgsOHTqEXbt24YcffoDZbEaPHj2wevVqtG3bFjqdDnPmzMGYMWOwa9eukoiZqNQo5Ur0DesrdRi+Q6kE+vbF9bt3wWt1xLHPMV7lROQelwuadu3awWg0onPnzpg/fz4ef/xxqNX/TqEVHByMHj164MSJEx4NlIiIiKgoLhc0s2bNQrdu3QpdqPL27duoXLkyevXqhV69enkkQCIpmS1m7L20FwDQNbQrFHKFxBF5uZwcYMMG1Dt4kJNciWSfY0TkHpc/c6ZMmYJff/21QEFz7do1xMTE4NixYx4Ljkhq2aZsPBH/BIDcaemD1EESR+TljEZg5Ei0A5c+EMs+x7j0AZF7RBU0CQkJ+OabbwAAgiDglVdegUqlsjnm1q1bqFq1qucjJJKQXCZHZPVI6zaRpzHHiDxDVEHTo0cPXL16FQBw+PBhtGjRAkFBtt9UtVotevTo4fkIiSQUqArE8ZePSx0G+TH7HOOgYCL3iCpogoKCMG7cOABArVq10LdvX5uBwERERERSEn3KqU+fPlCr1ZDJZEhMTCzy2P79+3sqNiIiIiJRRBU0y5cvR6dOnaBWq7F8+fIij5PJZCxoyK/oc/TovaE3AGDnczsRqAqUOCLyN/Y5ppaz95vIHaIKmr179xa6TeTvLIIFP13+ybpN5GnMMSLPEFXQJCUliXoymUyG6OjoYgVE5E0ClAH4auBX1m1yIiAA+OorHDhwAIYPP5Q6Gp9QIMe49AGRW0QVNMOGDRP1ZDKZDKmpqcUKiMibKOVKDGo6SOowfIdSCQwahHSjEWYWNKLY5xivciJyj6iC5uzZsyUdBxEREZHbRBU0169fx0MPPQSZTIbr1687PLZmzZoeCYzIG5gtZhy6eggA8OjDj3LpA2dMJmDrVtT5/XewpcSxzzEico+ogqZr16749ddfUaVKFXTt2hUymQyC8O+J3rzbPOVE/ibblI0On3UAwKUPRDEYgGefRUcApTXiyP4zJyQkBHXq1CmlVy8++xzj0gdE7hFV0Pz444+oXLmydZuorJDJZGhQuYF1m7zHjRs3AACxsbE2+7VaLVJTU32mqGGOEXmGqIKmVq1aBbYvXbqEixcvQqVSoV69eqhdu3bJREgkIa1Ki/Pjz0sdBhXi7t27AIC4uDj06dMHQG5vTWxsLDIzM32moLHPMQ4KJnKPy6tt37hxA1OmTEFSUhIqVKgAQRDwzz//oGvXrliwYAEqVqxYAmESERUuNDQUUVFRUodBRBJzeWnXWbNmQaFQ4Mcff8Tvv/+Ow4cPY+fOnbhz5w7efPPNkoiRiIiIyCGXe2iSkpLwzTff2JyGeuSRR/Dmm29iyJAhHg2OSGrZpmw889UzAIAtz26BRskBm+RZ9jmmkqkkjojIN7lc0NSvXx/nzp1DgwYNbPZfuXLFpsgh8gdmixmJ5xOt20SeZp9jKgULGiJ3iF5tO8+jjz6KmTNn4syZM4iIiIBCocAff/yBzz//HCNHjiypOIkkoVao8dlTn1m3yQm1GvjsMxw8eBDGNWukjsYnMMeIPEP0atv5VapUCYmJiUhMTLTuK1euHLZs2YKxY8d6NkIiCakUKoxoMULqMHyHSgWMGIE0lQomFjSi2OcYr3Iico/Lq22XBKPRiAEDBmD27Nlo27ZtocecOXMGc+bMsZ7umjdvHpo1a1aicREREZFvcHkMDQDcvn0bly5dgsWSu9S9IAgwGo04c+YMRo0a5dJzGQwGTJ48GefPFz3Xh06nw6hRo9CvXz+8/fbb+PLLLzF69Gjs2bMHWq3WnbdAJIrZYkbKrRQAQES1CC594IzJBHz/PWoeO8alD0SyzzEico/LBc1XX32F+fPnw2Qy2SyBIJPJ0Lx5c5cKmgsXLmDy5Mk2yygUJjExEQEBAZgyZQpkMhlmzpyJn3/+Gbt27cKAAQNcfQtEomWbstHy45YAuPSBKAYDEBODLii9pQ98nX2OcekDIve4PA/N6tWr8fLLL+PkyZOoUqUK9u3bh+3btyM8PBw9evRw6bkOHz6Mtm3bYtOmTQ6PO3HiBFq1amWdFlwmkyEqKgrHjx93NXwil8hkMtQsVxM1y9XktPRUIphjRJ7hcg/NrVu30L9/f6jVajRt2hTHjx9H7969MWPGDMycORMvvvii6OcaOnSoqOMyMjIKXCZepUoVh6episIBd0XLaxu20b8C5AFIfzXdejt/25TF9sr/nvO28049WywWmM1mm1NNefvyt1HevsIeW9x9hcXn7YrKMV+JX0psK9f4anuJjdflgqZy5cq4ffs2Hn74YdSrVw+pqano3bs3qlevjps3b7ocqBh6vR5qte3ljGq1Gkaj0eXnSklJ8VRYfott5Jqy1F7nzp2z/iuX53bwXr582frvyZMn0TLf8ZcvXy7Qk5p/X/7HemJfYfH5qrKUV8XFtnKNv7aXywVN7969MXXqVCxYsAAdO3bElClT0LRpU+zbtw9169YtiRgREBBQoHgxGo3QaFw/15w3dw4VZDabkZKSwjYSqSy2V16vSFhYGFq0aAEg9wpEAKhbty6aN29uc3zdunXRokULmM1m7Ny502af/WM9sa+w+HxNWcwrd7GtXOOr7ZUXtzMuFzSvv/46ypUrhzt37qBbt2545plnMGfOHFSsWBGLFi1yK1hnqlevjszMTJt9mZmZqFatmsvPpVAofOo/Ugpso39lm7IxbOswAMAXT39R6NIHZam98t5n/vec1xMil8sLtIOzfYU9tjj7CovP29nnWN5Mwb70HqTGtnKNv7aXy32yKpUK48aNQ7du3QAAkyZNwqFDh7Br1y60bNnSyaPdExkZiWPHjlmvhhIEAUePHkVkZGSJvB5RHrPFjM1nNmPzmc1c+oBKBHOMyDPcmocmKSkJGzduxMWLF6FSqVC/fn08//zzCA8P91hgGRkZKFeuHDQaDXr16oUlS5ZgwYIFGDJkCDZu3Ai9Xo/evXt77PWICqNWqLGi9wrrNjmhVgMrViApKQnG9euljsYnMMeIPMPlHpr4+Hj83//9H9RqNQYOHIh+/frBZDLh2WefxY4dOzwWWIcOHaxLKwQHB+Pjjz9GcnIyBgwYgBMnTmDNmjWcVI9KnEqhwittXsErbV7hooFiqFTAK6/gXI8eMEkdi49gjhF5hss9NJ988gni4uLQv39/m/3R0dFYunQp+vbt61Ygf/zxh8PbzZs3x9atW916biIiIvJvLvfQPHjwABERBafnjo6Oxu3btz0SFJG3sAgWnP/7PM7/fR4WwSJ1ON7PbAb270e1M2dc/3Apo5hjRJ7h8mdObGwsFi9ejPv371v3GQwGrFixAs8++6xHgyOSmj5Hj7AVYQhbEQZ9jl7qcLxfdjbQpQt6LFwITuAvDnOMyDNEnXLq2rWrdUpuQRBw/fp1PP7446hduzbkcjnS09NhMBg8OiiYyFtUCKggdQjk55hjRMUnqqAZP358ScdB5JWC1EG4O+2u1GGQH7PPMV+blp7IW4gqaJ5++ukC+/R6PS5fvgyLxYI6deogODjY48ERERERieHyVU45OTlYvHgx/vvf/8JsNkMQBCiVSvTr1w/z5s0rsOYSERERUUlzeVDwO++8g3379mHVqlVISkrC4cOHsXLlShw5cgTvv/9+ScRIJBmDyYARCSMwImEEDCaD1OGQH2KOEXmGywXN9u3b8dZbb6Fjx44IDg5G+fLl0alTJ8TFxeG7774riRiJJGOymLD+xHqsP7EeJguniiPPY44ReYbLp5wEQUCVKlUK7K9cuTKysrI8EhSRt1ApVHi3+7vW7bImPT3dZmHY1NRUxw9QqYB338XRo0eRs3FjCUfnH8p6jhF5issFzaOPPor33nsP7733nnUg8P3797F06VK0bdvW4wESSUmtUOONx96QOgxJpKenIzw8HDqdrsB9N27cKPxBajXwxhtI3bCBBY1I9jnGq5yI3ONyQTNjxgwMHz4cHTt2RGhoKADg0qVLqF27NlatWuXxAIlIGpmZmdDpdIiPj7fOMZWYmIjZs2fj7t270gZHRGTH5YKmXLly2L59O37++WekpaUhICAAoaGheOyxxyCXc7Jz8i8WwYIb/+T2RjxU7iHIZWUvx8PDwxEVFQVAxCknsxk4ehSVL17k0gci2ecYEbnH5YImJiYGK1asQLdu3dCtW7eSiInIa+hz9Hj4/YcBAA+mP0CQOkjiiLxcdjbQpg16A1z6QCT7HNMo2HJE7nC5oJHL5cjJySmJWIi8klLu8q8JkUuYY0TF5/JvUefOnTFy5Eh06dIFtWrVKjCR3rhx4zwWHJHUgtRByJnNAp5Kjn2OcVAwkXtcLmj++OMPNG3aFLdu3cKtW7ds7stbwJKISEr2Y31CQkJQp04diaIhotLgckHzxRdflEQcRETFlnc5eWxsrM1+rVaL1NRUFjVEfkx0QbNt2zbs2bMHKpUK3bt3R9++fUsyLiKvYDAZ8Nr3rwEAlvZcigBlgMQRkSN5l5PHxcWhT58+AHJ7a2JjY5GZmemVBY19jillHE9D5A5RV1auX78eM2bMQHZ2NvR6PaZOnYqlS5eWdGxEkjNZTPjoyEf46MhHnJbeh4SGhiIqKgpRUVHWOXS8FXOMyDNEfRXYuHEjFixYgP79+wMAdu/ejenTp2PSpEkcN0N+TaVQYU6nOdZtckKlAubMwcmTJ5GzdavU0fgE5hiRZ4gqaK5cuYJ27dpZb3ft2hV6vR63bt1C9erVSyw4IqmpFWrM7TxX6jB8h1oNzJ2LlA0bWNCIZJ9jvMqJyD2iTjmZTCYolf/WPkqlEgEBATAajSUWGBEREZFYHH1G5IAgCLhnuAcAqBBQgadYnbFYgNRUVLh6FWwpcexzjIjcI7qg2blzp3V1bQCwWCzYs2cPKleubHNc3jgbIn+gy9Gh0juVAPj/0gfp6enIzMy03na6blNh9HqgWTPEAAj0XGh+zT7HuPQBkXtEFTQ1a9bEunXrbPZVqVIF8fHxNvtkMhkLGiIflJ6ejvDwcOh0ugL35c3tQkTkzUQVNHv37i3pOIi8klalhXFW7lgxf15vJzMzEzqdDvHx8dbLnBMTEzF79mzr3C5UMuxzzGKxSBwRkW/y309oIg+QyWRl6lLa8PBwREVFAXDzlBO5rKzlGFFJEXWVExEREZE3Y0FD5IDRbMQbu9/AG7vfgNHMaQrI85hjRJ7BgobIgRxzDt47+B7eO/gecsw5UodDfog5RuQZHEND5IBKocLr7V63bpMTKhXw+us4c+YMchITpY7GJzDHiDyDBQ2RA2qFGoufWCx1GL5DrQYWL8axDRtY0Ihkn2Nc+oDIPTzlRERERD6PPTREDgiCAJPFBCB3jhAufeCExQKkpyMoI4NLH4hkn2NE5B7+9hA5oMvRIXhR7pIf/r70gUfo9UBoKPqDSx+IZZ9jXPqAyD085UREREQ+jz00RA5oVVrcmXrHuk3kafY5xqUPiNzDgobIAZlMhoqailKHQX6MOUbkGTzlRERERD6PPTREDhjNRiw8sBAAMKPjDKgVaokjIn9jn2MKKCSOiMg3saAhciDHnIN5P80DALzR/g0WNORx9jmmULCgIXIHCxoiB5RyJcZGj7VukxNKJTB2LM6dOwfTDz9IHY1PYI4ReQZ/e4gcCFAGYGXflVKH4TsCAoCVK5G0YQOMLGhEsc8xLn1A5B4OCiYiIiKfxx4aIvIcQQAyMxFw/77UkRBRGcOChsiBLGMWKr5TEQBwd+pdLn3gjE4HVKuGgQA4DaE49jnGpQ+I3MOChsiJvIUDiUoKc4yo+FjQEDkQqArE1UlXrdtEnmafY4JFkDgiIt/EgobIAblMjlrla0kdBvkx+xwzg1c5EbmDVzkRERGRz2MPDZEDRrMRyw4tAwC8+uirnCmYPM4+x7j0AZF7WNAQOZBjzsGUH6YAAMa2HsuChjzOPse49AGRe1jQEDmglCvxfOTz1m1yQqkEnn8eF9PSYDpwQOpofAJzjMgz+NtD5ECAMgCf9/9c6jB8R0AA8PnnOLRhA4wsaESxzzEufUDkHhY0RGVMeno6MjMzbfalpqZKFA0RkWewoCEqQ9LT0xEeHg6dTlfo/Tdu3CjeCwgCoNNBkZ1dvOchInIRCxoiB7KMWai1NHeOkGuvXfP5pQ8yMzOh0+kQHx+P8PBw6/7ExETMnj0bd+/eLd4L6HRAcDCGAHiheM9UZtjnGJc+IHIPCxoiJ+4Z7kkdgseFh4cjKirKepunnKTljzlGVNpY0BA5EKgKxLlx56zbRJ5mn2Nc+oDIPSxoiByQy+RoWKWh1GGQH7PPMS59QOQeLn1AREREPo89NEQO5JhzsCZ5DQBgVKtRUClUEkfkGvtLtDlWxvvY55ic3zOJ3MKChsgBo9mIcTvHAQBGtBjhUwWNo0u0i315NnmMfY7xKici97CgIXJAIVdgYJOB1m1fUtgl2h67PLsoCgUwcCAup6fDfPhwybyGn/HlHCPyJixoiBzQKDX4etDXUodRLPkv0S7xU04aDfD11/hlwwYYYmNL9rX8hH2OcekDIvfwZC0RERH5PBY0RERE5PMkLWgMBgNmzJiB6OhodOjQAevWrSvy2DFjxqBRo0Y2P/v27SvFaKks0uXoUGtpLdRaWgu6nMLXP6J8srIAmQzPxcZCK3UsPoI5RuQZko6heffdd3Hq1CmsX78e169fx9SpU1GzZk306tWrwLEXL17E4sWL0a5dO+u+ChUqlGa4VAYJgoDr/1y3bhN5GnOMyDMkK2h0Oh2+/vprfPLJJ2jatCmaNm2K8+fPY8OGDQUKGqPRiKtXryIiIgJVq1aVKGIqizRKDY6NPmbdJvK0AjnGmobILZIVNGfPnoXJZELLli2t+1q1aoXVq1fDYrFALv/3bFhaWhpkMhlq164tRahUhinkCrSo0ULqMMiP2ecYr3Iico9kBU1GRgYqVaoEtVpt3RcSEgKDwYC7d++icuXK1v1paWkIDg7GlClTcPjwYdSoUQPjx49Hp06dXH5dflgULa9t2EbieHt75Y8vb9tisVj/zR93Yfvd3Zd/JpW8ffavVdzXcGVf3r+nT5+2iSMkJAR16tRx3pClzNvzypuwrVzjq+0lNl7JChq9Xm9TzACw3jYajTb709LSkJ2djQ4dOmDUqFHYs2cPxowZg02bNiEiIsKl101JSSle4GUA2+hfJosJO6/tBAD0rtUbSnnBXxlvba9z585Z/83r8bx8+bL13+PHj1uPLWy/O/tOnjyJf/tcC76OJ17D1X2//fYbAGD48OE2cWg0GmzevBk1atSAlIrKMW/NK2/EtnKNv7aXZAVNQEBAgcIl77ZGYztWYezYsRg2bJh1EHDjxo1x+vRpfPXVVy4XNBEREVAoOBtnYcxmM1JSUthG+WQZs/Bo4qMAgNd6voYgdZD1Pm9vr7zeirCwMLRo0QIAcObMGQBA3bp1rfuK2u/OvubNm9vEkHec2WzGzp07PfIa7u6bP3++dXze2bNnMXz4cFSrVs2mHaRgn2Mahcar88qbePvvoLfx1fbKi9sZyQqa6tWr486dOzCZTFAqc8PIyMiARqNB+fLlbY6Vy+UFrmiqV68eLly44PLrKhQKn/qPlALb6F9qlRp9GvaxbhfWLt7aXnkx5Y8vr6dGLpfbxFzYfrf2qdVAnz64du0azCdOFHgdj7yGm/vq1auH1q1bF9k2UimQYzLvic1XsK1c46/tJVlBEx4eDqVSiePHjyM6OhoAkJycjIiICJsBwQAwbdo0yGQyLFq0yLrv7NmzCAsLK9WYqezRKDXYMXSH1GH4Do0G2LED+7n0gWj2OeZr4xuIvIVkBU1gYCD69++PuXPnYuHChbh16xbWrVtnLVoyMjJQrlw5aDQadO3aFa+99hratm2Lli1b4rvvvkNycjLmz58vVfhEkkpPT0dmZqbNPm8d5EpEVBoknVhv+vTpmDt3Lp5//nkEBwdj/PjxeOKJJwAAHTp0wKJFizBgwAA88cQTmDNnDlatWoXr16+jYcOGWLt2LR5++GEpwyeSRHp6OsLDw6HT2c4qq9VqkZqayqKGiMokSQuawMBAvPPOO3jnnXcK3PfHH3/Y3B40aBAGDRpUWqERAcidlj5ydSQA4MTLJ6BVST+hf2ZmJnQ6HeLj4xEeHg4gdxXt2NhYZGZmSlvQZGUB1aphsNmMUdJF4VPscyxAHiBxRES+SdKChsjbCYKAC7cvWLe9SXh4OKKioqQOoyCdjh8sLvDmHCPyJfzcIXJAo9Tgl5G/WLeJPK1AjrGmIXILCxoiBxRyBR6r85jUYZAfs88xXuVE5B6580OIiIiIvBt7aIgcMFlM2Jq6FQDwdPjThS59QFQc9jkmg0ziiIh8Ez+diRwwmAx4dvOzAIAH0x9AqeavDHmWfY5pFByrReQOfjoTOSCXydGpbifrNjkhlwOdOuHmzZuwnD0rdTQ+gTlG5BksaIgcCFQFYv+I/VKH4TsCA4H9+/HDhg3I5tIHotjnGAcFE7mHXweIiIjI57GgISIiIp/HU05EDuhz9Gj3aTsAwMEXDiJQFShxRF4uKwt45BE8YzBw6QOR7HNMLVdLHBGRb2JBQ+SARbDgxM0T1m1vl5qaWuh2qcrMBK/TEc/XcozIW7GgIXJAo9Rgd+xu67YU0tPTkZmZab1dWKFy48YNAEBsIQNx8+4j71Qgx7j0AZFbWNAQOaCQK9Cjfg/JXj89PR3h4eHQ6XQF7stfqNy9excAEBcXhz59+gAAEhMTMXv2bOt95J3sc4xXORG5hwUNkRfLzMyETqdDfHw8wsPDATguVEJDQ60rcEt2ysmH2LdRSEgI6tSpI1E0RFQcLGiIHDBZTPj+wvcAgJ4Nekq29EF4eDgLFQ8q6hSdVqtFampqqRY19jnGpQ+I3MOChsgBg8mAmC9jAHDpA39S2Cm61NRUxMbGIjMzs1QLGvsc49IHRO7hpzORA3KZHNE1o63b5IRcDkRH4++//4bl0iWpo3Eq/yk6qTDHiDyDBQ2RA4GqQCS9lCR1GL4jMBBISsIuLn0gmn2OcVAwkXv4dYCIiIh8HgsaIiIi8nk85UTkgD5Hj+5fdAcA/DDsBy594IxOBzRpgqeyssCWEsc+x7j0AZF7WNAQOWARLPjtym/WbXJCEIDLlxEM8OJjkZhjRJ7BgobIgQBlALYO3mrdLmliljkg/1Igx7j0AZFbWNAQOaCUK9G/cf9SeS2xyxyQf7HPMV7lROQeDgom8hL5lzlITk5GcnIy4uLiAIDrMREROcEeGiIHzBYzDqQfAAB0rNMRCrmixF+TyxyULfY5RkTuYUFD5EC2KRtd1ncBkDstfZA6SOKIyN/Y5xiXPiByDwsaIgdkMhmaVG1i3XaX/WBfwE9XdpbJgCZNcPfePQjXrkkdjU/wVI4RlXUsaIgc0Kq0OD32dLGeo6jBvlKs7FzitFrg9Gns2LABei59IIp9jnFQMJF7WNAQlbD8g33Dw8MBSLeyM3lOmel1I/IRLGiozCutP0z5B/uS7ygsP27cuIFBgwZBr9fb7PfLXjciH8GChso0Z6eDqj5UFU9ufBIA8O2Qb7n0gTM6HdC6Nfreu+cXSx84mhsIAD744AN07Jh7ZZK7vW76HL1NjnHpAyL3sKChMs3Z6aAqNargh7QfAHBaelEEAThzBhXhH0sfFJYfAJCYmIjZs2cjJCSk2L1uFsHCHCPyABY0RCj6dFCAMgDxT8dbt6lsss8PT84PVCDHuPQBkVtY0BA5oJQr8Vzz54q8/6+//sLRo0ehUPw74R4HhlJ+zsZo2ecYr3Iicg8LGiI3paenY+DAgcjOzrbZz4Ghvi1/70txe2LK1CX7RBJjQUNUhNTUVJgFM87eOwsA6FCvA0IfCbXen5mZiezsbPznP/9B06ZNrY/h5di+KW8B0NhC5s9xd3FQMZfsmy1mHL1xFAAQ9RCvgiNyFwsacktxLnWWcv4O+9cu7Bu4zR82FYCZufsD+gdgy5db8NBDDwEAzp7NLXQaN25cYPyNJ7/lU+nIWwA0Li4Offr0AfDv4N/iLg7q6JL9bFM22qxtA4BLHxAVBwsasiFmTEhxutFLogu+sALJlbgB22/g+f+wdXmiCwbtH4Ts7Gzcyb6DmJiYAo/966+/CjyPJ7/l+xSZDKhbFw+ysiAU8n/iC0JDQ0t1cVCZTIa6Fepat4nIPSxoyErsmBBXZr4trEekOLPm2j9fUROciY3b0Tfw0NBQPNbmMVxvcx0bNmxAbE6szbf3HTt24M0337R5bEl+y/cJWi3w55/YxqUPRNOqtPhz4p/W2xwUTOQeFjQe4C9ToLs6JsTZzLeOekQqVqzo8vwdjp4v/wRnrsTt6jfw/N/eT58ueo0nsd/yeWqKiMgzWNAUkz9exVDYmBB3uNojUpzn88QEZ6WpzJ+aIiLyMBY0xVSaCw8W1hNkMBgQEGA74Zu7g3PzBrl6WnF6RErj+RzJNmVjyOYhuHrjqkd/W/z21JReDzz+OHr9/Tc4tFWcvBwDgI0DN0IlU0kcEZFvYkHjISW98KCzNWXyK87gXMB2kGtZZ7aYse2Pbbk3SmC8ZmkPQC1xFgtw5AiqAJBLHYuPyJ9jZosZKgULGiJ38DPHR+TvCUpOTkZycjLi4uIA5H7Lz9sXHx8PnU5X6FU/zp5v/vz5AODbPQQeplaosSZmDV6o+gLAsZpUAvJybE3MGqgVXJiSyF3sofExhZ1uyf8tvzjP52iQqxTEzBnjTHEH3aoUKrzU6iVoz2rxqeVTlx9PZY+rOZeXY3l4lRORe1jQkFcSO2dMUTjolkpbcXMur4A3m804d+4cLBYLqlev7pMXFhBJgQWNFyps8K+vjK8oTo+I/WOLc4WUpwbdWgQLUjNScdVwtUTG0JD/cDfnLIIFe0/uRb9+/ZB9NdtmtW2NRoPNmzdbZ6cGinchAJE/Y0HjZZwN/hXbu2BfTJT0B15xvp06emz++WrcKeqKO+hWn6NHs1XNcm/wt4VEcDXn9Dl69EjoAbwArK23Fs0bN8e5c+dw69YtvPbaa4XOTm3Pl6eJIPIUfkSXIjET8BV2GTggvnehqOKguB94znpeitMj4u2XMIdoQ2DINuAf/CN1KL4hJATZBgPwD9tLrIrqirh75y4aN8qdA0oul8NisQAo/Pci/z6xs3QD7Mkh/8aCpgTl/8Nf1BT9RRUa9peBi+1dKKw4yPvAO3DggM1cOWK42vNSnB4Rb7yEOUgdhIw3MqxLH5ATQUFARga2bNgAHZc+cCh/jq+oswKxM2IROCSwwHGF/V44uxCgqJ7ewk5h+cKiskRisKApAY6KgPxT9JfUBHyA7QdecU4HeXvvCZGvcfb7GBkZ6dbzOhuDduDAAUycOLHAKazizFtVnAKJyNNY0JQAR0WAFFP0e6Io8cbeEyJf5OkvCa6OQRNzuspeYafCi1MgEZUEFjQlyNsWKGRR4rpsUzZe+PYF/PnXn/xtEUOvB3r3RvebN7n0gRN5v4/ZpmyM3zceGAAYLUaXn8fVAslT81YVp0DyhPT0dNy8edN6ibtCoWDvUBnHj2gJca4U72e2mPHflP/m3uBl285ZLMBPP6E6OA25WGaLGb89+A1oDlhgcft5pPrCUpwCqTBixur446LAVHwsaCTE8SneT61Q4/2e7+cuK2GOlzoc8kNqhRqxIbGIj4+H8hXv+Ej2xCzdzp4TcL9QyTsF9p///AdyuRxhYWE4d+5csXqHPL34L5U+7/jtKeN4Ksh7qRQqTHx0IjZc3IB4Cwsa8jyVQoVeFXsh/lA8lOOk/0gu7izdQMHPMbFXeRY2VsfRaazGjRtDLpejRYsWUCgUot+jPU8v/kvSkP63h4iIJOWpWbodnUYHCr/Ks7DpJOynrSgsRk8qrJByNOdP/piBwntteJl76WNBQ+SARbAg/V46MnIyOIaGSoRFsOTmV8Xc7dLk6Vm6CzuNDhR+lafYMYSOjvvrr79Qs2ZNUbGJ4WzxX7ETl3KMjzRY0BA5oM/RI3RZaO4N/rZQCdDn6DHp8iRgImAUXL/KqThKahyf/UDh4swu7uw4+4JGzLIv7o4RcjRxaf5TYo5OnYnp3SksRkfHilEWrgrjRzSRE1qVFmaTGQYYpA7FN2i1MJnNgIHtJVaALAAGCdtLynF8Yl/b2XFF9Z7YT/5X1Hie/M/hSsyO5O/xcWVZGk/38BT3+Xzl9BkLGiIHgtRByJqRxaUPxAoKArKysIlLH4gWpA7Cp/U/RWxsLDTxnL3HXYX1nhQ1+R9gO56nNK4uFbssTd7+4vbw5OfKVWH2xYury/ZIiQUNERH5jcJ6cpzN2i7VvD3OBlHnH8fkiYWHnV0V5uhqr9Jatqc4WNAQEZFfK41Tau5cheVsELWzsURiV1oXG4+jq72kWLbHVSxoiBwwmAwYlzgOF25dANyf5qLsyM4GnnkGna9dQ4Dzowm5Obb21lqgH5Aj5EgdDrnIEzO+ixlEXdSx9sc7GiNU2FVhhRVihV3tVRgxA7BLEwsaIgdMFhPWHlube4Nz+TtnNgOJiagF1n9imSwm7L+/H2gFmAWz1OGQi6Sc8d1RMVXUGKG8gqY4hZgnTn+VBH5EEzmgUqjwVpe3MKjyIBRjmR2iIqkUqtz8+hFQyvgd01fl9ZxERUUhNDS0VF4zfzGVnJyM5ORkxMXFAYD1FFFR8Th6rLNCrLDHxsfHQ6fTFbgaqjRJWtAYDAbMmDED0dHR6NChA9atW1fksWfOnMGgQYMQGRmJZ555BqdOnSrFSKmsUivUmPn4TDxV+SmAX56pBKgV6tz8OsCChtxTnGLKU4/Nf+WVVCQtaN59912cOnUK69evx5w5c7BixQrs2rWrwHE6nQ6jRo1CdHQ0vvnmG7Rs2RKjR48Wte4GERER+T/JChqdToevv/4aM2fORNOmTdGjRw+8+OKL2LBhQ4FjExMTERAQgClTpqB+/fqYOXMmgoKCCi1+iDxJEARkZGXgvvm+1KGQnxIEITe/tLnbROQeyQqas2fPwmQyoWXLltZ9rVq1wokTJ2Cx2A5WOHHiBFq1agWZLHcxHZlMhqioKBw/frw0Q6YySJejQ7X3qmHspbGASupoyB/pcnS5+TUFMAicXZnIXZKdsM3IyEClSpWgVqut+0JCQmAwGHD37l1UrlzZ5tgGDRrYPL5KlSo4f/686NfL++ZjNBqLtcy8PbPZjKCgIKSmpsJszh1kkZ6ejqCgIKSnpyMpKanY+0riOf15nyefMzk5GUHKoNwn1cIr3p+3t1eLoKC85rIeZ7FYkJGR4TXv2VvaKykpCXqT3ppjV69cxZEjR5CWluZV79mb2st+n1KphMlk8qr3XBbb69y5cwgKCoLZbIbR6Nk1yfL+tjrrwZQJEvVxJiQkYNmyZdi3b59135UrV9C9e3f89NNPqFGjhnX/888/j1atWmHChAnWfcuWLcOxY8fw+eefi3o9o9GIlJQUj8VPREREpSciIsKmE8SeZD00AQEBBaq4vNsajUbUsfbHOaJUKhEREQG5XG49dUVERETeTRAEWCwWKJWOSxbJCprq1avjzp07MJlM1iAzMjKg0WhQvnz5AsfaX9uemZmJatWqiX49uVzusLIjIiIi3yXZoODw8HAolUqbgb3JycnWXpT8IiMjcezYMev5M0EQcPToUURGRpZmyEREROSlJCtoAgMD0b9/f8ydOxcnT57EDz/8gHXr1mH48OEAcntrsrOzAQC9evXC/fv3sWDBAly4cAELFiyAXq9H7969pQqfiIiIvIhkg4IBQK/XY+7cudi9ezeCg4PxwgsvYMSIEQCARo0aYdGiRRgwYAAA4OTJk5gzZw4uXryIRo0aYd68eWjSpIlUoRMREZEXkbSgISIiIvIELk5JREREPo8FDREREfk8FjRERETk81jQlDEGgwEzZsxAdHQ0OnTogHXr1hV57JkzZzBo0CBERkbimWeewalTp0oxUu/gSnuNGTMGjRo1svnJPxN2WWE0GhETE4Pff/+9yGOYW7nEtFVZz6ubN29iwoQJaNOmDTp27IhFixbBYCh8zSvmlWvt5W+5JdnEeiSNd999F6dOncL69etx/fp1TJ06FTVr1kSvXr1sjtPpdBg1ahT69euHt99+G19++SVGjx6NPXv2QKvVShR96RPbXgBw8eJFLF68GO3atbPuq1ChQmmGKzmDwYDJkyc7XGeNuZVLTFsBZTuvBEHAhAkTUL58eWzYsAH37t3DjBkzIJfLMXXqVJtjmVeutRfgh7klUJmRlZUlRERECIcOHbLuW7lypRAbG1vg2K+//lro2rWrYLFYBEEQBIvFIvTo0UPYsmVLqcUrNVfay2AwCOHh4UJaWlpphuhVzp8/Lzz55JNCv379hLCwMJt2y4+5Jb6tynpeXbhwQQgLCxMyMjKs+7777juhQ4cOBY5lXrnWXv6YWzzlVIacPXsWJpMJLVu2tO5r1aoVTpw4AYvFYnPsiRMn0KpVK+u6VzKZDFFRUTYzO/s7V9orLS0NMpkMtWvXLu0wvcbhw4fRtm1bbNq0yeFxzC3xbVXW86pq1apYu3YtQkJCbPY/ePCgwLHMK9fayx9zi6ecypCMjAxUqlTJZk2rkJAQGAwG3L17F5UrV7Y5tkGDBjaPr1KlitPucX/iSnulpaUhODgYU6ZMweHDh1GjRg2MHz8enTp1kiJ0SQwdOlTUccwt8W1V1vOqfPny6Nixo/W2xWJBfHw8Hn300QLHMq9cay9/zC320JQher2+wAKdebftVzMv6lj74/yZK+2VlpaG7OxsdOjQAWvXrkWnTp0wZswYpKSklFq8voK5JR7zytbixYtx5swZTJo0qcB9zKuCHLWXP+YWe2jKkICAgAK/3Hm3NRqNqGPtj/NnrrTX2LFjMWzYMOuAusaNG+P06dP46quvEBERUToB+wjmlnjMq38tXrwY69evx/vvv4+wsLAC9zOvbDlrL3/MLfbQlCHVq1fHnTt3YDKZrPsyMjKg0WhQvnz5AsdmZmba7MvMzES1atVKJVZv4Ep7yeXyAlcH1KtXDzdv3iyVWH0Jc0s85lWuuLg4fPbZZ1i8eDF69uxZ6DHMq3+JaS9/zC0WNGVIeHg4lEqlzSC55ORkREREQC63TYXIyEgcO3YMwv+W+hIEAUePHkVkZGRphiwpV9pr2rRpmD59us2+s2fPol69eqURqk9hbonHvAJWrFiBjRs3YunSpejbt2+RxzGvcoltL3/MLRY0ZUhgYCD69++PuXPn4uTJk/jhhx+wbt06DB8+HEBu70N2djYAoFevXrh//z4WLFiACxcuYMGCBdDr9ejdu7eUb6FUudJeXbt2xXfffYeEhARcvnwZK1asQHJyMmJjY6V8C16DuSUe8+pfFy9exEcffYSXXnoJrVq1QkZGhvUHYF7Zc6W9/DK3pLxmnEqfTqcTpkyZIrRo0ULo0KGD8Nlnn1nvCwsLs5mz4cSJE0L//v2FiIgIYeDAgcLp06cliFharrTXV199JTzxxBNCs2bNhKefflo4fPiwBBF7B/u5VZhbRXPWVmU5rz7++GMhLCys0B9BYF7Zc7W9/C23ZILwv/45IiIiIh/FU05ERETk81jQEBERkc9jQUNEREQ+jwUNERER+TwWNEREROTzWNAQERGRz2NBQ0RERD6PBQ0RSe7q1ato1KgRrl69Wiqvp9Pp0KJFCwwdOrRUXo+ISh4LGiIqc/bu3YuqVavi6NGjuHLlitThEJEHsKAhojJn+/bt6N69O8LCwpCQkCB1OETkASxoiMir3Lt3D7Nnz0b79u3RqlUrvPHGG7h37571/lOnTuHZZ59F8+bNMWTIECxbtgzDhg1z6fl/+eUXREdHo0uXLkhISABXgCHyfSxoiMirjBs3DqmpqVi9ejU+++wzXLx4EdOmTQMA/PPPP3jxxRfRtGlTJCQkICYmBmvWrHHp+Xfv3g2FQoH27dujW7duuHr1Ko4cOVISb4WISpFS6gCIiPI8ePAAhw8fxq5duxAaGgoAWLx4Mfr06YO0tDQkJSVBq9Vi1qxZUCgUqFevHo4ePYqMjAzRr7Fjxw60b98egYGBiIiIQI0aNbB161a0bt26pN4WEZUC9tAQkdf4+eefUb58eWsxAwD169dHhQoVkJaWhj/++ANNmzaFQqGw3t+iRQvRz5+RkYHDhw+je/fuAACZTIYePXpg165d0Ov1HnsfRFT6WNAQkdcICAgodL/ZbIbZbIZCoSgw3sWV8S87d+6E2WzG7Nmz0aRJEzRp0gQbNmxAVlYW9uzZU6zYiUhaLGiIyGt06NAB9+/fR1pamnXfhQsX8ODBA4SGhqJhw4ZITU2FxWKx3n/69GnRz5+YmIh27dohISHB+rNt2zbUqVOHVzsR+TgWNETkNQICAvD4449j6tSpOHnyJE6ePImpU6eidevWCAsLQ9++ffHgwQMsWrQIly5dwldffYXExERRz3316lUcO3YMQ4YMQVhYmM3P4MGDcfDgQdy8ebOE3yERlRQWNETkVd555x3Url0bI0aMwAsvvICGDRti5cqVAICgoCCsXr0aSUlJ6NevH7Zu3Yp+/fpBrVY7fd7ExERUqlQJXbt2LXDfgAEDoFQqsW3bNo+/HyIqHTKBEzAQkY+4cuUKbt68iejoaOu+efPmQa/X4+2335YwMiKSGntoiMhnPHjwACNHjsSuXbtw7do17N69G9u2bUOvXr2kDo2IJMYeGiLyKV9//TU++eQT3LhxAzVr1sSLL76IQYMGYcGCBdi8eXORjxs9ejRefvnlUoyUiEoTCxoi8gu3b9/GP//8U+T9FSpUQMWKFUsvICIqVSxoiIiIyOdxDA0RERH5PBY0RERE5PNY0BAREZHPY0FDREREPo8FDREREfk8FjRERETk81jQEBERkc9jQUNEREQ+7/8Dsv8dObL0RD4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = gpresult.posterior_plot(\"log_A\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--------\n", + "Termination Conditions:\n", + "Small remaining evidence\n", + "--------\n", + "# likelihood evals: 309792\n", + "# samples: 7500\n", + "# slices: 75000.0\n", + "# slices / acceptance: 15.0\n", + "# likelihood evals / sample: 41.3\n", + "# likelihood evals / slice: 3.9\n", + "--------\n", + "logZ=-252.04 +- 0.12\n", + "H=250.0\n", + "ESS=1590\n", + "--------\n", + "log_A: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_A: 0.99 +- 0.15 | 0.82 / 0.99 / 1.16 | 1.13 | 1.13\n", + "--------\n", + "log_arn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_arn: 0.39 +- 0.32 | 0.06 / 0.33 / 0.75 | 0.14 | 0.14\n", + "--------\n", + "log_crn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_crn: 3.69 +- 0.34 | 3.29 / 3.75 / 4.05 | 3.95 | 3.95\n", + "--------\n", + "log_sig: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_sig: -0.15 +- 0.54 | -0.81 / -0.11 / 0.51 | -0.84 | -0.84\n", + "--------\n", + "t0: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "t0: 0.63 +- 0.27 | 0.22 / 0.65 / 0.97 | 0.63 | 0.63\n", + "--------\n" + ] + } + ], + "source": [ + "gpresult.print_summary()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "### Model 2\n", + "\n", + "For the second model, we will make a QPO_plus_RN kernel \n", + "\n", + "$$\n", + "k_{qpo+rn}(\\tau) = a_{qpo} \\; exp(-c_{qpo} \\tau) \\; cos(2\\pi f\\tau) + a_{rn} \\; exp(-c_{rn} \\tau)\n", + "$$\n", + "\n", + "We will also use a gaussian mean function with two modes as the mean function.\n", + "\n", + "For this model, we will be making the prior and log_likelihood function on our own instead of using the `get_prior` and `get_likelihood` functions. This will give us more flexibility.\n", + "\n", + "The prior function must be a jaxns compatible prior function. It is quite similar to making the prior_dictionary, just that here, we will wrap each parameters (tfp) prior into the `jaxns.prior` function and use yield to make it a generator function. Then we will return all the parameters in a specific order." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['log_arn', 'log_crn', 'log_aqpo', 'log_cqpo', 'log_freq', 'log_A', 't0', 'log_sig']\n" + ] + } + ], + "source": [ + "# Prior Function\n", + "from jaxns import Prior\n", + "from jaxns.special_priors import ForcedIdentifiability\n", + "from jaxns.types import float_type\n", + "\n", + "params_list2 = get_gp_params(kernel_type= \"QPO_plus_RN\", mean_type = \"gaussian\")\n", + "print(params_list2)\n", + "\n", + "total_time = times[-1] - times[0]\n", + "f = 1/(times[1]- times[0])\n", + "span = jnp.max(counts) - jnp.min(counts)\n", + "\n", + "# Here, we have made mutiple mean function with 2 gaussians.\n", + "def prior_model2():\n", + " log_arn = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)), name='log_arn')\n", + " log_crn = yield Prior(tfpd.Uniform(low = jnp.log(1 / total_time), high = jnp.log(f)), name='log_crn')\n", + " log_aqpo = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)), name='log_aqpo')\n", + " log_cqpo = yield Prior(tfpd.Uniform(low = jnp.log(1/10/total_time), high = jnp.log(f)), name='log_cqpo')\n", + " log_freq = yield Prior(tfpd.Uniform(low = jnp.log(2) , high = jnp.log(f/4) ), name='log_freq')\n", + "\n", + " n = 2\n", + " log_A = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span)*jnp.ones(n), high = jnp.log(2 * span)*jnp.ones(n)), \n", + " name='log_A')\n", + " \n", + " # This is special conditional beta function for the peak times of gaussians which prevents degeneracies\n", + " t0 = []\n", + " scale_bij = tfp.bijectors.Scale(scale = times[-1] - times[0])\n", + " shift_bij = tfp.bijectors.Shift(shift= times[0])\n", + " for i in range(n):\n", + " underlying_beta = tfpd.Beta(\n", + " concentration1=jnp.asarray(1., float_type),\n", + " concentration0=jnp.asarray(n - i, float_type)\n", + " )\n", + " t = yield Prior(shift_bij(scale_bij(underlying_beta)), name=f\"t{i}\")\n", + " # Updating the shift and scale here\n", + " scale_bij = tfp.bijectors.Scale(scale= times[-1] - t)\n", + " shift_bij = tfp.bijectors.Shift(shift=t)\n", + " t0.append(t)\n", + " t0 = jnp.stack(t0)\n", + " \n", + " log_sig = yield Prior(tfpd.Uniform(low = jnp.log(0.5 * 1 / f) *jnp.ones(n), high = jnp.log(2 * total_time) *jnp.ones(n)), name='log_sig')\n", + "\n", + " return log_arn, log_crn, log_aqpo, log_cqpo, log_freq, log_A, t0, log_sig\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the log_likelihood function, we have to take the paremeters (same order), and return $log(p(D|M)) $ the log probability of fitting the data to the model. This can be done by making the suitable Gaussian process and returning the ` gp.log_probability(lightcurve_counts)`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def log_likelihood_model2( log_arn, log_crn, log_aqpo, log_cqpo, log_freq, log_A, t0, log_sig ):\n", + " \n", + " kernel_params = { \"arn\": jnp.exp(log_arn), \"crn\": jnp.exp(log_crn), \"aqpo\": jnp.exp(log_aqpo), \n", + " \"cqpo\": jnp.exp(log_cqpo), \"freq\": jnp.exp(log_freq)}\n", + " mean_params = {\"A\": jnp.exp(log_A), \"t0\": t0, \"sig\": jnp.exp(log_sig)}\n", + "\n", + " kernel = get_kernel(kernel_type=\"QPO_plus_RN\", kernel_params=kernel_params)\n", + " mean = get_mean(mean_type=\"gaussian\", mean_params=mean_params)\n", + " gp = GaussianProcess(kernel, times, mean_value=mean(times))\n", + "\n", + " return gp.log_probability(counts)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sampling Model 2\n", + "\n", + "Similar to the previous case, we will make a GPresult object by initialising with the lightcurve. Then we will sample the posterior using the prior and log_likelihood model." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO[2023-10-19 22:13:04,424]: Sanity check...\n", + "INFO[2023-10-19 22:13:04,601]: Sanity check passed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Complete\n" + ] + } + ], + "source": [ + "gpresult2 = GPResult(lc = lc)\n", + "gpresult2.sample(prior_model = prior_model2, likelihood_model = log_likelihood_model2, max_samples = 2e4)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This time we get a lower log evidence than the previous model." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log Evidence: -241.34533744186058\n" + ] + } + ], + "source": [ + "print(\"log Evidence: \", gpresult2.get_evidence())" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Evidence Comparison\n", + "\n", + "On comapring the evidences of the two model we get the Bayes Factor.\n", + "\n", + "For $M_1$ being QPO_plus_RN model and $M_2$ being the plain RN model.\n", + "\n", + "$$\n", + "ln(BF) = ln(Z_1) - ln(Z_2) = -245.70 - (-251.77) = 6.06\n", + "$$\n", + "\n", + "As BF is greater than 5.0, this gives us a strong indication that the time series has a Quasi Oscillatory behaviour.\n", + "\n", + "Also, as we can see in the weighted posterior plot for the frequency, We had used a frequency of 20 Hz for our sample and this has been captured very well by the Nested Sampling Inference." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean of freq: 19.35595259854821\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNoUlEQVR4nO3dd1gUxxsH8O8VjmZFsKEialBUpFjQ2FtiTZTEFLvG3mJX7IpGEyyxl+gvajAxsUQTSxJNNDGJLaiIgiKiAoIIUVSkHHc7vz8ut3Jw6B3s1X0/z+Pj3t7s7js3V152Z2ckjDEGQgghhBARkVo6AEIIIYQQc6MEiBBCCCGiQwkQIYQQQkSHEiBCCCGEiA4lQIQQQggRHUqACCGEECI6lAARQgghRHQoASKEEEKI6FACRIhAxDCmqBjqaAh6HQixfZQAEavw8ccfIzg4uMj66Oho1K9fH0FBQcjPz9d57tq1a6hfvz4OHTpk0DGSk5NRv359HDx40OC4DN3m119/xaxZswze78usX78e9evXf2mZTp06oX79+jr//Pz80LVrV6xatQp5eXmCxKL19OlTzJw5E//8848g++vUqRNmz54tyL4KO3jwIOrXr4/k5GS9z8+ePRudOnUq9vGr3Lp1Cx9++GGp47R1WVlZGDNmDPz9/dG8eXPcvXu3SBljX1uhnTt3Dm+++SYaN26MESNGWCwOYp3klg6AEABo1aoVfvrpJyQkJKBOnTr8+jNnzqBChQrIzMzE5cuX0aJFC/457Y9x69atDTpG5cqV8e2336JWrVrCBg9g586dgu/zVdq3b49x48bxj/Py8nD+/Hls2rQJ9+/fx+rVqwU7VmxsLA4fPox33nlHkP1t2LABZcqUEWRfpTVu3DgMHjzY4PI//fQTLl++bMKIbMOhQ4dw6tQpLFiwAK+99hpq1Khh6ZCK+Oyzz8BxHLZt24ZKlSpZOhxiZSgBIlahVatWAIBLly7pJEB//vknunXrhj/++ANnzpzRSYAuXrwIHx8feHh4GHQMhUKBgIAAQeO2JDc3tyL1CQ4OxoMHD3Dw4EHMnj0blStXtkxwr9CwYUNLh8AzRUIsBpmZmQCA/v37QyKRWDaYYmRmZqJ58+Z4/fXXLR0KsUJ0CYxYBS8vL3h6euLSpUv8umfPniEqKgqvv/46WrVqhT///FNnm8jISJ2zPykpKZg6dSpatGgBf39/DBkyBDExMfzz+i5nXb58GQMGDEBAQAA6dOiAXbt2YejQoUUuz6Snp2PSpEkIDAxEixYtMH/+fDx//hwAMGjQIFy4cAEXLlxA/fr1cf78eQCaL98FCxbg9ddfh5+fH9577z2cPXtWZ795eXlYvnw5WrdujcDAQISGhpb68lXjxo3BGENqaioAQK1WY8+ePejduzeaNGmCDh06YOXKlTrHefToEaZNm4bWrVvDz88Pb7/9Nn9p8fz58/wZksGDB2PQoEH8didPnkRISAj8/PzQunVrLF26FNnZ2fzz69evR9euXbFhwwa0aNECbdq0wZMnT4pcAnv27BmWL1+OLl26wM/PD7169cL+/ft16tWpUyd88sknGDJkCJo0aYK5c+eW6nXSKnyZ5tq1axgyZAiaNm2KwMBADB06FFeuXOHrs2HDBgBA/fr1sX79egCadty4cSO6desGPz8/vPHGG9i2bRs4jtM51o4dO9C5c2c0adIEH3zwAX777Ted90xxr1dubi5WrVqFN954A40bN0ZQUBCGDRuG2NhYnXp89NFH+Pbbb9GlSxf+GHfu3MGpU6fQu3dv+Pv7o1+/fjrb6fOq+gwaNIive4MGDQy+nGnIexEAvv/+e/To0QN+fn546623cPbsWTRs2NDgy9faz/r9+/dx6NAh/jUu7vUFgH379qFnz55o3LgxOnTogPXr10OtVuvs96effuJj79u3Ly5fvmxUXMS60BkgYjVatmypkwCdPXsWjDG0atUKarUaBw8eREZGBtzd3REfH4/Hjx/zCdCjR4/wwQcfwNnZGfPnz4ezszN27dqFAQMGYP/+/ahbt26R492+fRtDhw5F48aNsXr1ajx+/BirV6/G06dP0bNnT52ya9euxaBBg7Bp0yZcunQJ69atQ5kyZTBr1iwsXLgQM2bMAAAsXLgQ9erVQ15eHoYMGYKMjAxMmTIFlStXxoEDBzBixAhs376dP+M1Y8YMnDlzBlOmTIGXlxe+/fZb/Pjjj6V6He/cuQMAqFmzJgBgwYIFOHz4MEaOHIlmzZohJiYGGzduRGxsLLZv3w6JRIIZM2bg33//xeLFi1GmTBkcPnwYs2bNQtWqVdG4cWMsWLAAS5YswYIFC/i+Wj/++COmT5+O3r17Y/Lkybh//z7WrFmD+Ph4fPnll/xZgZSUFPz+++9Ys2YNMjMzUb58eZ14c3Nz0b9/f/z777+YNGkSPD09cfLkScydOxcZGRkYM2YMX3bPnj0YNmwYRo4cCVdX15e+DhzHQaVSFVn/sg7MWVlZGDFiBFq2bIn169dDqVRi8+bN+Oijj3D69Gn069cPDx48wP79+/Htt9+iatWqYIxhzJgxuHLlCiZMmIAGDRrg/Pnz+Pzzz5GUlISwsDAAmst+GzduxEcffYSWLVvizJkzmDx5cpEY9L1ekyZNwj///IOpU6eiVq1auHfvHtauXYtp06bh6NGj/Gt9+fJlPHz4ELNnz0ZeXh4WLVqEUaNGQSKRYNKkSXB2dsbChQsxffp0HD16VO9rYEh9Fi5ciC+//JJ/Hdzc3F7aFlqGvBcPHTqE2bNno1+/fggNDcXVq1cxbty4IsnIy2gvd0+YMAENGzbEuHHjUK9ePVy4cEHv67t161asWbMGAwcORGhoKGJjY7F+/Xqkpqbik08+AaDp5/fxxx+jV69emDFjBq5du4axY8cWSXKJDWGEWIkffviB+fj4sH///Zcxxti8efPY+++/zxhj7PHjx6xBgwbs+++/Z4wx9vXXX7PGjRuznJwcxhhjq1evZn5+fiw5OZnfX15eHuvcuTObOHEiY4yxpKQk5uPjww4cOMAYY2zGjBmsdevWLDs7m9/m0qVLzMfHh82aNUtnm8mTJ+vE+uGHH7I+ffrwjwcOHMgGDhzIP/7222+Zj48Pu3LlCr+O4zg2YMAAFhISwhhjLC4ujvn4+LCvv/6aL6NWq1mPHj2Yj4/PS1+rjh07spkzZ7L8/Hz+34MHD9h3333HGjduzMd769Yt5uPjw7Zu3aqz/aFDh5iPjw87ffo0Y4yxxo0bs82bN+vEsWLFChYZGckYY+zcuXPMx8eHnTt3jq9Lu3bt2EcffaSz37///pv5+PiwU6dOMcYYW7duHfPx8WEXL14sEr/2Nd6zZw/z8fFhly5d0ikzZ84c5ufnxx4/fsxv06VLl5e+LowxduDAAebj4/PSfx07duTLz5o1i398+fJl5uPjw9ebMcbu3bvHPvvsM5aamqpTJ63Tp08zHx8fduTIEZ04Nm7cyHx8fFhcXBx7/vw5a9KkCQsLC9MpM3/+fJ3XVd/rlZeXx4YPH86OHj2qs+3//vc/5uPjwx4+fMjXw8fHh8XHx/NlFixYwHx8fNjff//Nr9uxYwfz8fFhT5480fv6GVIffa+DPgVfW0Pfix06dGCjR4/WKbN161adz66hCr7PCsZc8PV9+vQpa9KkCVuwYIHOtt99951Offv27ct/drU2bdpUoriIdaBLYMRqaM+KaDuY/vnnn2jTpg0AoEKFCmjUqBH+/vtvAJoO0EFBQXBycgKgOVvk6+uLKlWqQKVSQaVSQSqVol27dvw2hZ07dw7t2rWDs7Mzvy4wMBCenp5FyjZr1kzncY0aNfD06dNi63L27Fl4eHigUaNGfDxqtRodO3bEtWvX8OTJE74Td8HLL1KpFG+++ebLX6j/HDp0CI0aNeL/tWvXDosWLULnzp2xcOFCAMCFCxcAoMgZrZ49e0Imk/GXXoKDg7F+/XpMmjQJ+/btQ0ZGBmbNmoWgoCC9x05ISMCDBw/QqVMnvn4qlQrNmzdHmTJl8Ndff+mU9/X1LbYeFy5cgKenJwIDA3XWv/XWW8jLy0NUVJRB+yls8+bN2L9/f5F/HTt2LHab1157DW5ubhgzZgwWLFiAEydOwN3dHTNmzEDVqlWLjV8ul6Nbt25F4tc+f+XKFeTm5hYp06tXL737LFhPhUKBHTt2oEePHkhLS8O5c+ewd+9enDp1CgCgVCr5suXLl9c52+nu7g4A8Pf359dVqFABAIp9/xpSn5Iw5L147949pKSkFDl24W1Kq+Dre/nyZeTm5hZ5L2s/l3/99RdycnJw/fp1dO7cWWc/2teE2Ca6BEashru7O3x8fHDp0iXUrl0bKSkpaNu2Lf9869at+X4pkZGR6N+/P/9cZmYm7t27h0aNGundd05OTpF1jx490ntniPZHo6CCSRKgSVTYSy6lZGZmIj09vdh40tPT+b4HFStW1HnO0E7dHTt2xPjx4wEAEokEzs7O8PT05JNCAPwxCu9TLpejYsWKePbsGQBgzZo12LJlC44fP46ff/4ZUqkUr7/+OpYsWaI3IdR2gF28eDEWL15c5PmHDx/qPH7Z5aonT57orbO2HQr+ULu4uBS7n8J8fHz03pmkTQD0cXV1xZ49e7B582YcP34c3377LZycnPD2229j3rx5UCgUeuOvWLEiZDKZznptnZ49e4ZHjx4BQJFLRcXdmVT49Tpz5gw++eQTJCQkwNXVFQ0aNOBfi4Lvw+LurDPmdTOkPiVhyHtR+zoVfl30fSZLo+Drq30vjxo1Sm/Zhw8f8u/Bwu1XpUoVQeMi5kUJELEqLVu2RFRUFKpVq4YKFSrAz8+Pf65NmzbYsmULzp07h9TUVJ0O0GXLlkWLFi0wc+ZMvfvV98NVtWpVZGRkFFn/77//6tyJVhJly5ZF7dq1sXLlSr3P16hRg098MjIyUL16df457RfyqxR+ffTR9rdJT0/XSWTy8/Px+PFjPoayZctixowZmDFjBhISEvDrr79i06ZNWLx4MbZt21Zkv+XKlQMAzJw5U+fOvMLHNUT58uVx7969IuvT09MBFE0QTa1OnToIDw+HWq3G1atXcfjwYXzzzTeoVauW3rFkypcvj8ePH0OtVuskDdoksGLFivzZo8LvLe0P/sskJiZi/Pjx6NKlC7Zu3YqaNWtCIpFgz549OHPmTGmrW4Qh9SnpfoGXvxcLvk4FFX4sJO17eeXKlahdu3aR593d3VGuXDlIpdIi3xeGflaJdaJLYMSqvP7667h+/TrOnz+PVq1aQSp98RYNCAiAq6srvv76a1SsWFHnVuoWLVrgzp078Pb2hp+fH//v8OHD2L9/f5G/ZgGgefPmOHPmjM4dKDExMcUOoPcyBePUxpOamopKlSrpxPPXX39h+/btkMlkaNmyJQDNnSUFaS9tCEGbnBTu8Hr06FGo1Wo0bdoU9+/fR/v27fk46tSpg5EjR+L1119HSkoKABR5/erUqYNKlSohOTlZp35VqlTBqlWrdO6+e5XmzZvj/v37RcbW+eGHH+Dg4IAmTZoYXe+S+umnn9CyZUukp6dDJpMhMDAQixYtQrly5fjXQl9bq1SqIu34ww8/AACaNm2KBg0aoGzZsjhx4oROmV9++eWVMV27dg15eXkYNWoUatWqxXd41iY/LzsTWRKG1Kek+wVe/l6sWrUqatWqVaLXqaT8/f3h4OCAtLQ0nfeyXC7H6tWrkZycDGdnZwQGBuKXX37Reb2F/KwS86MzQMSqNG/eHEqlEqdOncKiRYt0nnNwcECLFi3w22+/4Y033tAZe2To0KE4fPgwhg4diuHDh6NixYo4duwYvvvuO4SGhuo91pgxY3Ds2DGMGDECw4cPx9OnT7F27VpIpVKjxzUpV64cLl++zN+uGxISgoiICAwbNgxjxoxBtWrV8Pfff+OLL77AwIED4eDgAC8vL7z//vtYs2YNVCoVfH19cfjwYdy8edPo16049erVQ9++fbFu3Trk5OSgefPmiI2NxYYNGxAcHIy2bdtCKpWiatWqWLp0KbKyslCrVi1cu3YNv//+O0aPHg1Ac4YIAE6fPo3y5cujQYMGmDJlChYsWACZTIaOHTvi6dOn2LRpE9LS0oq99KdPSEgIvv76a4wfPx6TJk1CjRo18Ntvv+HAgQOYMGEC/xe6OQQFBYHjOIwfPx6jRo2Cq6srjh8/jmfPnuGNN94A8OKMwZEjR+Dv74927dohODgY8+bNQ1paGho0aIALFy7giy++QN++fVGvXj0AwIgRI7Bu3To4OzujRYsWuHDhAr755hsARZOqgho1agS5XI7w8HAMHz4cSqUSBw8exOnTpwFAZ9gBIRhaH2MZ8l7U3q02ffp0LFy4EF27dsWNGzewceNGAC9/nUqqYsWKGDFiBNauXYusrCwEBwcjLS0Na9euhUQiQYMGDQAAU6dOxdChQzF+/Hi8//77SExMxNq1awWPh5gPJUDEqpQpUwZ+fn64fPky3wG6oLZt2+LUqVNFBjarUqUK9u7di1WrVmHRokXIy8tD7dq1sWzZMrz77rt6j+Xl5YUdO3bgs88+w6RJk1CpUiWMHj0amzdvfuUt1oUNGDAA165dw8iRI7F8+XL07t0be/bswapVqxAeHo5nz57B09MT06ZNw/Dhw/ntFi5cCHd3d0RERODJkydo27YtxowZg88//9yo47/MsmXL4OXlhQMHDuCLL75A5cqVMXjwYIwbN47/QdmwYQNWr16NtWvX4vHjx6hWrRomTJjA94t47bXX0KtXL/6yy5EjR9CvXz+4urpi+/bt+Pbbb+Hi4oKgoCCsXLmSvwXfEM7Ozvjqq6+watUq/keoTp06L207U6lcuTK2b9+OtWvXYu7cucjJycFrr72G9evX82fs3njjDRw+fBizZ8/Gu+++i0WLFmHr1q1Yt24ddu7ciUePHqFGjRqYOnUqhg0bxu979OjRYIzh22+/xY4dO+Dv74/p06dj+fLlL+2j4+XlhVWrVmHDhg0YO3Ysypcvj4CAAHz11VcYNGgQ/vnnn1dOnWIMiURiUH1KwpD3Yu/evZGdnY0dO3bgwIEDeO211zB37lzMnTvXqL5Mxpg8eTI8PDzw9ddfY/v27ShfvjxatWqFqVOn8sl/s2bNsGPHDoSHh2PChAmoVasWZs2ahXnz5pkkJmJ6Eib0+VNCbMTZs2fh4OCgc4fX06dP8frrr2PmzJlGTY9AyMuoVCocOXIEwcHBqFatGr9+z549WLp0Kc6fP2/WM13W7MiRI2jYsKFOX6nTp09j9OjROHz4MH9GxhokJyejc+fOWL58OUJCQiwdDjESnQEionX9+nWsW7cOU6dORaNGjZCZmYkvv/wSZcuWLfb2ZEJKQi6X44svvsCuXbswduxYVKxYEXFxcfj888/Rp08fSn4K+OGHH7BmzRpMnjwZ1apVw71797Bu3Tq0aNECDRo0gFqtfmW/J4lEorffHyEF0RkgIlocx2HLli04fPgwUlNT4eLighYtWmDatGnw8vKydHjEziQlJWH16tU4f/48nj59iurVq+Ott97C6NGj4eDgYOnwrMbjx4+xatUq/PHHH3j06BHc3d3x5ptvYtKkSXB1deWnnnkZT09P/PbbbyaPlc4A2TZKgAghhNiMhIQEfh6+4igUCkH7RRH7RAkQIYQQQkSHxgEihBBCiOhQAkQIIYQQ0aG7wKDpDKudPNPYAfAIIYQQYhmMMXAcB7lcbvRAmZQAQTNGR3R0tKXDIIQQQkgJ+Pn56Z3z8WUoAcKL4dX9/PzscuwItVqN6Ohou62fPlRnqrNFPH8OaCe2TUkBjBxR3BBWV2czoDpTnV+1TUmmSaEECOAve8lkMrt+o9l7/fShOouD1dRZJtMkQdplE8ZkNXU2I6qzOJSkziXpvkIJECFEUEq1EmvPaSaJ/Ljlx1DIjDstTWwPtTmxRZQAEUIEla/Ox8yTMwEA45qPox9DEaA2J7aIEiBCiKDkUjmG+A/hl0VFLgeGDHmxLBKibnNis+idSggRlKPcETv77LR0GJbh6Ajs3GnpKMzOnttcrVYjPz/fIscFgNzcXNH0ASquzgqFokSdnF+FEiBCCCGkEMYYHjx4gMzMTIsdXy6X4969e6IZn664OkulUnh7ext9m/urUAJECCFCYQzIztYsu7gAIvnhskfa5Kdy5cpwcXExexLCGENOTg6cnZ1FlQAVrjPHcUhJSUFqaipq1aol6GtBCRAhRFDPlc/hudoTAHB/6n24KoQfC8dqZWcDZcpolrOyTDIOkDWytzZXq9V88lOpUiWLxKAd4djJyUlUCZC+Ont4eCAlJQUqlQoODg6CHY8SIEKI4J7kPbF0CMTM7KnNtX1+XFxcLBwJAcBf+lKr1ZQAEUKsl7ODM+ImxPHLxP7Za5uL5cyLtTNVO1ACRAgRlFQixWuVXrN0GMSMqM2JLbJoApSWloZly5bh3LlzcHR0RI8ePTB16lQ4OjoiKSkJ8+fPx5UrV1C9enXMmTMHbdq0KXZfR44cweeff4709HS0adMGYWFhcHNzM2NtCCGE2LvExERkZGSY/DiMMbi6uqJ+/foGb5OcnIzOnTvj119/RY0aNUwW26NHjzBp0iRERUWhR48e+PTTT012LFOyWALEGMOkSZNQrlw57NmzB0+ePMGcOXMglUoxc+ZMjB8/Hj4+Pjhw4ABOnjyJCRMm4NixY6iunWiwgKtXr2Lu3LlYvHgxGjRogGXLliE0NBRbt261QM0IEbd8dT62RW4DAIxqOgoOMuGu2RPrJJY2T0xMhK+vL7K1d/qZmIuLC2JiYuDl5WWW4xnqhx9+wN27d3Ho0CFUrFjR0uGUmMUSoISEBFy5cgV//fUX3N3dAQCTJk3Cp59+inbt2iEpKQl79+6Fi4sL6tati7Nnz+LAgQOYOHFikX1FRESge/fu6NOnDwDgs88+Q8eOHZGUlISaNWuas1qEiJ5SrcSE4xMAAEMDhtrtjyF5QSxtnpGRgezsbERERMDX19ekx4qJicGgQYOQkZFhdQlQVlYWateujbp161o6lFKxWALk4eGB7du388mPVlZWFqKiotCwYUOdHvhNmzbFlStX9O4rKioKI0eO5B9Xq1YN1atXR1RUFCVAhJiZTCrDuw3f5ZdFRSYD3n33xbJIiK3NfX19ERQUZNJjMMZKtf2TJ0+wcuVK/Prrr8jLy0OnTp0wb948lC9fHgBw7do1LFmyBDdu3EDDhg3RqlUr/PPPP/jqq69eut/169djw4YNAID69etj9+7d2LBhA3x8fHD69Gmo1WocOXIEz549w+LFi3H27FlUqlQJISEhGDt2LD/C84kTJ7By5UqkpaWhR48eUCqVqFWrFj766KNS1dsYFkuAypUrh7Zt2/KPOY5DREQEWrZsifT0dFSuXFmnfKVKlfDgwQO9+3r48KFR5YujHYbb3mjrZa/104fqbDkOEgfsDdnLPzZlPNZSZ56DA7D3Rd0T79wp0l/E3d0dtWrVKvEhrK7OMH2bm7vOarUajDH+n5Z2ufB6UyjJsQpuM378eOTm5mLLli1gjGHx4sWYPXs2Nm3ahGfPnmHEiBHo3r07li9fjr///hsrVqxAYGDgK481bNgwPH/+HJcvX8b69etRvnx5MMZw8OBBbN++HQqFAi4uLhgyZAgaNGiAgwcPIj09HQsXLoREIsG4ceNw8+ZNfPzxx5g+fTratWuHHTt24KeffsKoUaN06lGwXowxqNXqIu+B0rwnrOYusPDwcMTExGD//v3YuXNnkSGvFQoFlEql3m1zc3ONKl+c6Oho44K2MfZeP32ozuJgjXV+8OAB3n33XeTm5uqsd3Jywv79+1G1atVS7d8a62xq5qyzXC5HTk4OOI7j12nbMjc31+T9gPLy8vj/DT2WNr6MjAxcvHgR33//PX/5bMmSJXjnnXcQExODyMhIODs7Y8qUKZDJZAgJCcHFixf5S3wvI5FI4ODgAJlMBldXV6hUKnAchzZt2qBBgwYAgNOnT+P+/fvYuXMnpFIpqlatio8//hiLFi3C0KFD8d133yEoKAjvv/8+AGDWrFn4448/+PGXcnJyirwW+fn5uHHjhoGvnmGsIgEKDw/Hrl27sGbNGvj4+MDR0bHI/CtKpRJOTk56t3d0dCyS7CiVSjg7GzcehZ+fn11OOqdWqxEdHW239dOH6kx1trRLly4hNzcXu3fv5n8Ybty4gcGDB6Ny5coICAgo0X6tuc6mYu465+bm4t69e3B2dtb53dEuOzk5mXyQREdHR/5/Q4+lje/ixYsoV66cTj+lRo0aoXz58khJScGdO3fQqFEjlC1bln++adOmOHHihEHHcnBwgFQq5ctKpVJ4eXnxj+/fv48nT56gXbt2/DYcxyE3Nxd5eXlISkpCo0aNdI7l5+fHD3JYePoPqVQKBwcH1KtXr0geoH1vlITFE6CwsDB88803CA8Px5tvvgkAqFKlCuLj43XKZWRkFLnMpVWlSpUip5kzMjLg4eFhVCwymcyuv1DsvX76UJ3NLzs/G6+t14wJc2viLbg4mH40XUvXmff8OT8VhsOffwLQ/PBo+4toYxQiXqupM8zX5uaqs0wmg0Qi4f9paZcLrzeFkhxLW06bPBXeTq1Wg+M4yOVyvc8beqzCr41EIoGjoyP/WK1Wo06dOti0aVORbcuVK8efnCh4rIJXcfS97hKJRPD2F35+eSNs2LABe/fuxerVq9GzZ09+vb+/P65fv65z6jgyMhL+/v569+Pv74/IyEj+cWpqKlJTU4stTwgxHcYYUp6lIOVZisn7SRDrQG1uXdq0aYOnT58iISGBXxcfH4+srCx4e3vjtddeQ2xsrM7lvevXrwt2fG9vb6SkpMDNzQ1eXl7w8vJCcnIy1q1bB4lEgrp16+qctWGM4ebNm4Id31AWOwN0+/ZtbNq0CaNGjULTpk2Rnp7OP9eiRQtUq1YNoaGhGDduHE6dOoWrV69i+fLlADSXt548eQI3NzfIZDJ8+OGHGDRoEAICAuDn54dly5ahQ4cOdAcYIRbgJHfC5dGX+WVi/8TW5rGxsVZ9DEdHR7Rr1w6zZs3C/PnzAQCLFy9G8+bN4ePjA09PT6xatQrLly9H//79cfHiRRw7dgyBgYGCxN6mTRt4enpixowZmDJlCp49e4b58+fj9ddf53+zd+7ciU2bNqFbt27Yt28f7t69K8ixjWGxBOjXX3+FWq3G5s2bsXnzZp3nbt68iU2bNmHu3LkICQmBl5cXNm7cyA+CePnyZQwePJgf7TIwMBBLlizBunXr8OTJE7Ru3RphYWGWqBYhoieTyhBQNcDSYRAzEkubu7u7w8XFBQMHDjTL8VxcXIoMFWOoTz/9FEuXLsXQoUMhk8nQuXNnhIaGAgBcXV2xZcsWLF68GN988w38/PzQu3dvPHz4UJC4ZTIZNm/ejLCwMLz33ntwcXFBt27dMGvWLABA5cqVsXnzZixduhRbtmxBz549BUu+jGGxBGjUqFH8LW/6eHl5ISIiQu9zwcHBRU6XhYSEICQkRNAYCSGEEK1atWohNjbWrFNhGDNkQo0aNXR+G1evXq23XFJSEtRqNQ4dOsSvW7x4scH9ZgsPSKxv7KCaNWti27Ztxe6jZcuWOHLkCP940KBBBh1bSBbvBE0IsS/56nzsid4DABjgN8BuRwUmL4ipzWvVqlWqcZwMxRgz2a32WVlZGDZsGMLDw+Hn54fr16/j8OHDxSZM9ooSIEKIoJRqJYYdHgYA6Newn13/GBINanPb4uvriwULFmD16tVITU1F9erVERoaig4dOmDZsmXYv39/sduOHj0aY8aMMWO0pkMJECFEUDKpDD1e68Evi4pMBvTQ1J1JLXqTrVmJus1tVL9+/dCvX78i68eOHfvSPk7aqTSE9tVXX5n0rJc+lAARQgTlJHfC0f5HLR2GZTg5AUc1dWeXLlk4GPMRdZvbGTc3N7i5uVk6DLMQz58ohBBCCCH/oQSIEEIIIaJDCRAhRFDaaRFeW/8asvPNdz3fKjx/Dri6Aq6ukBaa0NGeibrNic2iPkCEEEExxhD/KJ5fFh0zduK0FqJvc2KTKAEihAjKSe6EP4f9yS8T+0dtTmwRJUCEEEHJpDK0rtXa0mEQM6I2J7aI+gARQgghRHToDBAhRFAqToXvY78HAPT17Qu5lL5m7B21ObFFdAaIECKoPFUe3tv/Ht7b/x7yVHmWDoeYAbW5dUhOTkb9+vVx+vRpdOrUCYGBgVi6dCni4uIQEhKCgIAAjB49GllZWQCAvXv38uUGDRqkM5FqWloaJk2ahObNm6Nx48bo27cvIiMjdY7zyy+/oEuXLvDz88Po0aORmZlpiWqXGKXphBBBSSVStPdqzy+LilQKtNfUnUkkFg7GfETV5s+fF/+cTKYZDdyQslIp4OxcfFnGgBK+h7Zt24ZNmzYhPj4e06ZNwx9//IGFCxfCyckJ48aNw/79+1GrVi1s2LABYWFh8Pb2xqFDhzB48GD88ssvKF++PKZPn45y5cph7969YIxh5cqVWLRoEX788Uf+OFu2bMHq1avBGMPYsWPx5ZdfYsqUKSWK2RIoASKECMrZwRmnh562dBiW4ewMnD4NQFxTYYiqzcuUKf65Hj34qVAAAJUrFz8sQvv2/HsFAFC7NpCRwT+UAMB/Z2qMNW7cODRo0AANGjTAJ598gp49e6J1a00n9VatWiEhIQG//PILRo8ejY4dOwIAJk+ejD/++AM//PADBg4ciC5duuDNN99E1apVAQADBgzAqFGjdI4zadIkNGnSBADQu3dvREdHlyheS6EEiBBCCLEjNWvW5JednJzg6emp81ipVOL27dsIDw/H6tWr+efy8vJw9+5dSCQSfPjhhzh27BguXbqEO3fu4Nq1a+A4Tuc4Xl5e/HKZMmWQn59vwloJjxIgQgghxFAvOysjk+k+fviw+LLSQpcK797VeViaASVlheKQFj4WALVajTlz5qBVq1Y668uUKQOO4zB8+HA8ffoUPXr0QKdOnZCfn48JEybolHVwcChxjNaAEiBCiKBy8nPQaofmS/XsR2fh7OD8ii3syPPnmksZAKSHDlk0FHMSVZu7upqnLGMmHVXc29sbDx480DmLExoaii5duqBmzZq4ePEizp49y88Mv2fPnv/Csp+RvikBIoQIimMcotKi+GXRKdCPQyxE3+Y2aNiwYZg7dy5q166NoKAgfPvttzh+/DhGjx4NJycnSKVSHD16FJ06dUJ0dDTWr18PAFAqlRaOXDiUABFCBOUkd8IvA3/hl4n9oza3PT169EBGRgbWrVuHjIwM1KtXD5s3b0bt/85gLlq0CBs3bsTq1avh7e2NefPmYdasWYiJiYGHh4dlgxcIJUCEEEHJpDJ0rdvV0mEQM6I2tw41atTQGcsHAH777TedxytWrOCXBw8ejMGDB+vd1/vvv4/3339fZ12vXr345cLHmThxYolitiQ7H7CBEEIIIaQoOgNECBGUilPh5/ifAQBv1nuTpkUQAWpzYovoXUoIEVSeKg+9vtGcKs8KzYJcYZ9fM4mJicgo0OHZ3d0dtSpVsmBEliOWNif2hd6lhBBBSSVSNKvejF+2R4mJifD19UV2gduUXVxccOPyZdRspqm72KbCsPc2J/aHEiBCiKCcHZxxceRFS4dhUhkZGcjOzkZERAR8fX0RGxuLgQMHIj0rCzUvauoutqkw7LHN7WnMG1tmqnagBIgQQkrI19cXQUFBlg6DCEw7wnF2djacne14UEcboR17qPAI16VFCRAhhBBSgEwmQ4UKFfDwv6ksXFxcIDHzJU3GGPLy8iCVSs1+bEvRV2eO45Ceng4XFxfI5cKmLJQAEUIElZOfgy5fdQEAnBx00r6nRShEkpPDT4Uh+W/qADGwxzbXzoL+8GXzeZkQYwz5+flwcHAQVQKkr85SqRS1atUS/HWgBIgQIiiOcfg76W9+WUwkAHDv3otlkbDHNpdIJKhWrRoqV65skVnO1Wo1bty4gXr16gl+6cdaFVdnhUKhd0LX0qIEiBAiKEe5I75//3t+mdg/e25zmUxmkQRErVYDAJycnESVAAHmqzMlQIQQQcmlcvRp0MfSYRAzojYntsgqEiClUomQkBDMnz8fwcHBmD17Nr7//vsi5YKDg7F79+4i6588eYIWLVrorKtQoQLOnz9vspgJIYQQYrssngDl5eVh2rRpuHXrFr9u7ty5mDZtGv/4/v37GDRoULGTtsXHx6NChQo4cuQIv84U1wsJIa+m5tQ4k3gGANC2VlvIpOI4fS9m1ObEFlk0AYqPj8e0adOKDHJUtmxZlC1bln88e/ZsdOvWDV26dNG7n4SEBHh7e8PDw8Ok8RJCXi1XlYuOuzoC0EyL4KpwtXBExNSozYktsmgCdOHCBQQHB2PKlCkICAjQW+bs2bO4ePEifv7552L3Ex8fj9r/3XpKCLEsiUSChh4N+WUxYQDQsOGLZZEQc5sT22XRBKh///6vLLNt2zb07dsX1apVK7bM7du3oVKp8O677yItLQ3NmjVDaGgoKleubFQ82h7o9kZbL3utnz5UZ8txlDri6uir/GNTxmOpOhc8rvYfAKgUCqivauqu+m8qjILPF96utMe2FqZuc2uss6lRnY3bpiQs3gfoZZKSknDu3DnMnTv3peUSEhLg5uaG0NBQMMawZs0ajBkzBvv27TPqVrro6OjShmzV7L1++lCdxcHcdY6Li+P/l0qlRR7rK1PcupKidhYHqrPpWHUC9PPPP8PX1xf16tV7abmjR49CIpHAyckJALBu3Tq0adMGUVFRRs3T4+fnZ5fjLajVakRHR9tt/fShOlOdTYnjNIP9+fj4ICAgoMhjfWWKW2csameqs70qSZ2125SEVSdAZ86cQefOnV9ZrvBkdZUqVUKFChWQlpZm1PEsNeCVudh7/fShOptfTn4O3tr7FgDghw9+MMu0COaus/ZY2uNqH8uVSsiaNNEsb9tWJLbC25U2Bmt5b5urza2pzuZCdTYdq71XnDGG6OjoV57BycrKQvPmzXHu3Dl+XVpaGh4/fow6deqYOkxCSCEc43Ay4SROJpy0m2kRDCUBgJgYICZGdFNhiLXNie2y2jNA9+/fx/Pnz/Ve/srNzcWzZ8/g4eGBMmXKoGnTpli+fDnCwsIgk8mwbNkytG3bFvXr17dA5ISIm6PcERF9I/hlYv+ozYktstoE6N9//wUAlC9fvshzx44dQ2hoKG7evAkA+PTTT7FixQqMGjUKSqUSnTt3xrx588waLyFEQy6VY0CTAZYOg5gRtTmxRVaTAGmTGS1/f/8i67RCQkIQEhLCPy5fvjyWL19u0vgIIYQQYj+sJgEihNgHNafGpVTNGDhB1YJoWgQRoDYntogSIEKIoHJVuWixXTM5MU2LIA7U5sQWUQJECBGURCKBV3kvfllMGAB4eb1YLkZsbCy/7O7ujlq1apk0LlMTc5sT20UJECFEUC4OLrg7+a6lw7AI5uwM3L2rWf5vKoyCUlNTAQADBw7k17m4uCA2NtamkyAxtzmxXVY7DhAhhNibzMxMAEBYWBgiIyMRERGB7OxsZGRkWDYwQkSIzgARQoiZeXt7GzVNDyFEeHQGiBAiqFxVLvrs7YM+e/sgV5Vr6XDMSpKbCzRvDjRvrlkWCTG3ObFddAaIECIoNafG4ZuH+WUxkTAG/PPPi2WREHObE9tFCRAhRFAKmQLbem3jl4n9ozYntogSIEKIoBxkDhjZdKSlwyBmRG1ObBH1ASKEEEKI6NAZIEKIoDjGITZdM9Cfr4cvpBL6O8veUZsTW0QJECFEUDn5OWi8uTEAmhZBLKjNiS2iBIgQIjh3F3dLh2A57uKsu6jbnNgkSoAIIYJyVbgifUa6pcOwCM7ZGUjX1J3TMxWGuSUmJuqMMm2qecfE3ObEdlECRAghdigxMRG+vr7Izs7m19nDvGOECIV6qhFCiB3KyMhAdnY2IiIiaN4xQvSgBIgQIqhcVS4GHByAAQcHiG5aBEluLtChA9Chg9VMheHr64ugoCD4+vqa7BhibnNiu+gSGCFEUGpOja+jvwYAfnRgsZAwBvz++4tlkRBzmxPbRQkQIURQCpkCa95cwy8T+0dtTmwRJUCEEEE5yBwwueVkS4dBzIjanNgi6gNECCGEENGhM0CEEEFxjEPik0QAQK3ytax+WoTCY+UAphsvx17ZWpsTAlACRAgRWE5+DrzXegOw/mkR9I2VA9B4OcaypTYnRIsSIEKI4FwcXCwdgkEKjpWjvU08NjYWAwcOREZGRskSIBfbqLvQbKXNCdGiBIgQIihXhSuez3lu6TCMoh0rp7Q4Z2fguabu1jAVhrnYYpsTQgkQIYS8QuF+QrGxsRY7vlqtRlxcHNzc3ODt7W3WOAixJ5QAEULISxTXTwgAUlNTLXZ86qdESOlQV31CiKDyVHkY+cNIjPxhJPJUeZYOp9QKz6kVGRmJsLAwAEBmZqZOWUleHtCzJ9Czp2bZBMe/cOECwsLCrGpeL3trcyIOdAaIECIoFafC9svbAQCfd/scjnC0cETCKNhPqLhLYBKOA44d0yzPmWOS42svgVkTe21zYt8oASKECMpB5oClHZfyy8R4Bfv8mLu/UUlQmxNbRAkQIURQCpkCc9vNtXQYNqu4Pj/m6G9UUtTmxBZZRR8gpVKJXr164fz58/y6pUuXon79+jr/IiIiit3Hzp070bZtWwQGBmLOnDnIyckxR+iEECKown1+iutvRAgpHYufAcrLy8O0adNw69YtnfW3b9/GtGnT0LdvX35dmTJl9O7j559/xoYNGxAeHo5KlSohNDQU4eHhWLBggUljJ4QUxRhDRrbm8o27izskEomFI7JN2j4/tnAJjNqc2CKLngGKj4/He++9h8TExCLP3b59Gw0bNoSHhwf/z9nZWe9+du/ejSFDhqBjx45o0qQJFi9ejAMHDtBZIEIsIDs/G5VXVkbllZWRnV/01nFif6jNiS2yaAJ04cIFBAcH49tvv9VZn5WVhbS0NNSuXfuV+1Cr1YiOjkazZs34dQEBAcjPz8eNGzeEDpkQQgghdsCil8D69++vd/3t27chkUiwZcsW/PHHH6hQoQKGDRumczlM6+nTp8jLy0PlypX5dXK5HBUqVMCDBw+MiketVhtXARuhrZe91k8fqrPlOMmcoJqn4h+bMp7S1rng9oX3pV2nrwzHcfz/BdfnKxRQqzR1z/9vKgxDtnvZ8YvbpvB2r6qbvmMJxdRtbi3vbXOiOhu3TUlYvA+QPgkJCZBIJKhTpw4GDhyIixcvYv78+ShTpgy6du2qUzY3NxcAoFAodNYrFAoolUqjjhsdHV26wK2cvddPH6qzOJS0ztrxdOLi4iCVSvWu01fm3r17/P9XrlwxaD8l3a7wNoXj1273qrrpO5atofe2OJirzlaZAPXp0wcdO3ZEhQoVAAANGjTA3bt38c033xRJgBwdNQNuFU52lEplsX2GiuPn5weZTFbywK2U9jKhvdZPH6oz1dkQ2rMrPj4+CAgI0LtOX5mYmBgAgJeXV7FlhNqu8DZqtZq/vF9wu1fVTd+xbAW9t6nOr9qmJKwyAZJIJHzyo1WnTh2cO3euSNkKFSrA0dERGRkZqFu3LgBApVIhMzMTHh4eRh1XJpPZ9RvN3uunD9XZ/PJUeZh1chYA4NMun8JRbvpRgUtaZ+02BbcvvE5fGe0ZFKlUqrNerlJB9sEHmuWpUw3e7mXHL7yNofU2pB5CMVebW/q9bQlUZ9OxyvOga9euxdChQ3XW3bhxA3Xq1ClSViqVws/PD5GRkfy6K1euQC6Xo0GDBqYOlRBSiIpTYe35tVh7fi1UnOrVG9gRCccB+/cD+/drlkVCzG1ObJdVngHq2LEjtm3bhh07dqBr1674888/cejQIezevRuApt/Ps2fP+DM8/fv3x4IFC+Dj44PKlStj0aJFeO+994y+BEYIKT0HmQPmtJnDLxP7R21ObJFVJkBNmjTB2rVrsW7dOqxduxaenp5YtWoVAgMDAQDHjh1DaGgobt68CQDo2bMn7t+/jwULFkCpVOKNN97AjBkzLFkFQkRLIVNgWedllg6DmBG1ObFFVpMAaZMZrS5duqBLly56y4aEhCAkJERn3ahRozBq1CiTxUcIIYQQ+2E1CRAhxD4wxvjRgF0cXGhaBBGgNie2iBIgQoigsvOzUWa5Zt6+rNAsuCpcLRwRKajw3GLu7u6oVatWqfZJbU5sESVAhBAiAqmpqQCAgQMH6qx3cXFBbGxsqZMgQmwNJUCEEEG5OLggKzSLXxYTzskJyNLUnbOyuQgzMzMBAGFhYejRowcAzdmggQMHIiMjo1QJkJjbnNguSoAIIYKSSCTivQQikQCuri+WrZC3tzeCgoIE3aeo25zYLKscCJEQQgghxJQoASKECEqpVmLur3Mx99e5UKqNm5DY1kmUSmDoUGDoUM2ySIi5zYntogSIECKofHU+PvnzE3zy5yfIV+dbOhyzkqjVwK5dwK5dmmWREHObE9tFfYAIIYKSS+X4OPhjfpnYP2pzYovonUoIEZSj3BGfd/u8VPtITExERkYG/1iIsWqI4Yx9/YVoc0LMjRIgQohVSUxMhK+vL7Kzs/l1NFaN+dDrT8SC+gARQqxKRkYGsrOzERERgcjISERERCA7O1vnjAQxHXr9iVjQGSBCiKCeK58LMi2Cr6+v4OPVEMMZ8/oL1eaEmBOdASKEEEKI6NAZIEKIoFwcXPBw+kN+WUw4JyfgoabuXGKihaMxHzG3ObFdRp8BOnfuHBhjpoiFEGIHJBIJPFw94OHqAYmVTgdhMhIJ4OGh+Seiuou6zYnNMvoM0McffwwHBwd069YNvXr1QkBAgAnCIoQQQggxHaMToL/++gt//fUXfvrpJ4waNQplypRB9+7d0bNnTzRs2NAUMRJCbIhSrUT4X+EAgBmtZ0AhU5jt2JYeP0iiVALjx2uWBw0y+fFiY2P5ZUuOlWTJNiekpIxOgORyOdq3b4/27dtDpVLh77//xm+//Yb+/fujSpUq6N27N0JCQlC9enVTxEsIsXL56nzMOzUPADC55WSz/Rhaw/g1ErUa2LRJs9y/v8mOo03yBg4cyK+z5Fg9lmpzQkqjxHeBKZVK/P777zh69CiOHz+OihUrolOnTrh79y569uyJiIgIIeMkhNgIuVSOEYEjMCJwhFmnRRDT+DXPnj0DAISFhVlFXS3V5oSUhtHv1JMnT+Knn37C6dOn4eDggDfffBMbN25Es2bN+DJ79uzB6tWrdf46IYSIg6PcEV+89YXFji+m8YO8vb2toq6WbnNCSsLoBGjWrFno0qULVq9ejdatW0MmkxUp07hxYwwbNkyQAAkhhFgfS/e3IqS0jE6Apk+fjpCQEDg6Ouqsz87Oxv79+zF48GD4+/vD399fsCAJIYRYD2vob0VIaRmUAD169Ai5ubkAgCVLlqBJkyaoWLGiTpnY2FisXLkSgwcPFj5KQojNeK58jsorKwMAHk5/SNMi2KGC/a18fX1x+fpljLgxAvV310fGzAxqc2ITDEqALly4gMmTJ/MDXL377rs6z2sHRnzrrbcEDo8QYouy87NfXYjYPG1/qxxVDpAA5KpzLR0SIQYzKAHq1q0bfvvtN3Achy5dumDfvn1wc3Pjn5dIJHB2di5yVogQIj7ODs648/EdfllMOEdH4I6m7pwd3n1WHEeZI/A58OOPP4quzYntMrgPkHZcnxs3bpgsGEKI7ZNKpKhdobalw7AMqRSoXVuz/OiRRUMxJ6lECmQC1V2qa5YJsQEGJUCDBw/Ghg0bUK5cuVf28dm9e7cggRFCCCGEmIpBCVCLFi3g4ODALxNCSHHy1fnYeHEjAGB88/FwkDlYOCLzkeTnAzNmaJYL9ZW0Z/lcPtAS+Drha/j5+4mqzYntMigBmjBhgt5lrUePHqFixYo0CzAhBEq1ElN+ngIAGBk00mQ/homJiUhLS0NcXBw4jkNcXJxJjmMMiUoFrFypWe7Tx7LBmJGKUwHdgFXXV2HxW4spASI2wehxgNLS0rBixQqMGjUKderUwUcffYTIyEhUq1YNmzZtQoMGDUwRJyHERsikMvT3688vm4K+cWi0UlNTTXJMUjypRApcBbp172ayNidEaEYnQIsWLUJ2djYqVKiAgwcPIi4uDnv37sUPP/yAsLAw7NmzxxRxEkJshJPcCXtCTPs9oB2HZvfu3ZBKpfDx8cHPP/+M+fPnIzMz06THJkU5yhyBg8CyucvgJHeydDiEGMToBOjcuXM4ePAgqlWrhpMnT6Jz587w9/eHm5sbevXqVaIglEolQkJCMH/+fAQHBwMArly5ghUrVuDmzZuoXLkyRowYgX79+hW7j2bNmvETBGpdunQJrq40IBch9qpBgwaQSqUICAiwiktghBDbYXQC5OjoiLy8PDx58gTnz5/HqlWrAADJyckoX7680QHk5eVh2rRpuHXrFr8uPT0dI0eOxIcffogVK1bg+vXrCA0NhYeHBzp06FBkH2lpaXj27BlOnjwJJ6cXf324uLgYHQ8hhACa0e0L/m8LCsZqS3ETYglGJ0BdunTB5MmT4eTkhPLly6NDhw44duwYPvnkE/Tt29eofcXHx2PatGn8SNJaJ0+ehLu7O6ZOnQoAqF27Ns6fP48ff/xRbwJ0+/ZteHh4oGbNmsZWhxAisOfK56i9tjYA4O7Hd21uWgRtH6KBAwfqXW+Niou54HOmlKPKAWYAnX/ujOTGyTbX5kScjB6xatGiRfjggw/QvHlz7Nq1C46OjlAqlRgzZgyfsBjqwoULCA4Oxrfffquzvm3btli+fHmR8llZWXr3Ex8fD29vb6OOTQgxnYzsDGRk2+ZIyNo+RGFhYYiMjERYWJjOemtUOGaLxO0KZCrNdCxCBGD0GSC5XI6hQ4fqrOtTwts9+/fvr3d9jRo1UKNGDf7xv//+i6NHj2LixIl6y9++fRs5OTkYNGgQ7ty5A19fX8yZM8fopEitVhtV3lZo62Wv9dOH6mw5CqkCUaOj+GVj4ylYD+2/go8LluE4DlKpFGq1GhzH8euK2+5Vx9JuDwBeXl7w9/fH9evXdfZbsEzhY+XL5VBHaeqen5NT7L5fFmPhdcVtU3Bd4ZgBFIm78H6Kq78xr792nRxyYCPwzd5vStTmr2It721zojobt01JGJ0APX36FP/73/8QHR0NlUpV5PKV0CNB5+bmYuLEiXB3d8f777+vt0xCQgKePHmCqVOnokyZMvjiiy8wdOhQHD16FGXKlDH4WNHR0UKFbZXsvX76UJ0t6+r9q0Zvo+3MHBcXB6lUWuRxwTLx8fFo0KABoqOjce/ePQDAvXv3cOXKFb3bvepY2u0L7qfwY31l+P3Ex0P631AgcfHxr9z3y+qmXafv+FrGxKivjCHHN6RM/K14IB1Qp6pxNepFmz948EDnDFSFChVQtWpVvW1hCGt6b5sL1dl0jE6AZs6ciejoaPTu3duo5KIknj9/jnHjxuHu3bv4+uuv4eysf5K9HTt2ID8/n7/ja+XKlWjfvj1OnTqF3r17G3w8Pz8/yGT2N4aFWq1GdHS03dZPH6qz7dZZe6bCx8cHAQEBRR4XLFOvXj0Ams9uTEwMAM1ZkOK2e9WxABTZT+HH+sq8LMaX7duQ7Qpvo1arcfz4caNj1FfGkOOXtExiYiLatWunM1aTi4sLrl27hlq1aultj+LYy3vbGFRnw+qs3aYkjE6A/v77b0RERKBJkyYlOqChsrKyMGLECCQmJmLXrl2orZ1gUA+FQgGFQsE/dnR0RI0aNZCWlmbUMWUymV2/0ey9fvpQnc0vX52PnVd2AgCGBgw1elRgbezaehR+XLCM9oyETCbjl6VSabHbvepYBfep3U/hx/rKaNfLOQ6y//reyLt3f+W+X1Y37Tp9x9cyJkZ9ZQw5viFlOAkHBAGHkw8jICgADjIHPH78GNnZ2YiIiICvry9iY2MxcOBAPH78uMR9Ni393rYEqrPpGJ0AValSpdjTyULhOA4TJkxAcnIyvvrqK9StW7fYsowxdO3aFePGjUNISAgAIDs7G/fu3UOdOnVMGichpCilWolRR0YBAPr79RfVtAg3r11D4OLFmmUR3ZWq4lTAW8Cyq8sQ2jNUp819fX0RFBTEPy58e767u7vRZ4QIEUKJLoEtWrQIkyZNgpeXFz9Jqlb16tVLHdT+/ftx/vx5bN68GeXKlUN6ejoAwMHBARUqVIBSqcSTJ0/g5uYGmUyGDh06YP369fD09ISbmxvWrl2LqlWron379qWOhRBiHJlUhrfrv80vi4H2VvOPRozAB/+t+2jECJ3n7JlUIgVuAO3bty+2zYu7Vd/FxQWxsbGUBBGzMzoB0t6JNWqU5i887QSojDFIJBJBBt/6+eefwXEcRo8erbO+RYsW+Oqrr3D58mUMHjwYv/76K2rUqIEZM2ZALpdj2rRpyMrKQsuWLbFt2zbRnTYkxBo4yZ1w6INDlg7DrLQdfRfMnw/8dwlswfz5mB0WZtW3zwvFUeYI7AVWz1hd7FQYBW/V79GjBwDwl8UyMjIoASJmZ3QC9Ouvv5oiDty8eZNf3rFjx0vLBgcH65R3dHTE7NmzMXv2bJPERgghhvDy8tK7TF7w9vbWuSRGiKUY3ZnH09MTnp6eyM7ORkxMDCpWrAiO41C9enV4enqaIkZCCCGEEEEZnQA9efIEQ4cOxdtvv42PP/4Y//77L5YtW4ZevXrh/v37poiREGJDsvOzUfvz2qj9eW1k52e/egNi83JUOcBkoNfJXtTmxGYYnQAtXboUzs7OOHfuHBwdHQEAn3zyCapWrYqlS5cKHiAhxLYwxnDvyT3ce3KvyECpxI5VAFJzUqnNic0wug/QmTNn8NVXX6FcuXL8Ojc3N4SGhuKDDz54yZaEEDFwkjvhwogL/LKYcAoFcEFTd+7GDQtHYz4KmQLYBuz+arfo2pzYLqMTIADIy8srsu7Ro0eQy0u0O0KIHZFJZWju2dzSYVgEk0qB5pq6s/+mizBEwbtnhbiT1lilPb5MIgNSgEYVGolm6ANi+4zOWHr16oVly5ZhyZIlkEgkyM7Oxrlz57Bw4UL+1kZCCCGvVtzYOAWfs+fjE2JJRvcBmjlzJvz9/RESEoLs7Gy8/fbbGDFiBFq1aoWZM2eaIkZCiA1RcSrsuboHe67u0YwQLCJSlQoIDwfCwzXLr1BwbJzIyEhERkYi7L9xhMwxfpBQx1dxKsAPOJZ8THRtTmyX0WeAFAoFZs+ejcmTJyMpKQlqtRo1a9bkJyIlhIhbnioPA7/XnFHo06AP5ArxXBqXqFTAf38ISrZvN3i7gmPjWOISWGmPn8/lA+8A8y/Px5RuU0TV5sR2GfUuVSqViIyMxO3bt/H8+XOUKVMGPj4+xc7STggRH6lEii51uvDLxP5JJBLgtmaQWmpzYisMToAOHTqE8PBw/Pvvv3BxcUHZsmXx/PlzZGVlwcPDA7NmzUKvXr1MGSshxAY4OzjjxKATlg6DmJGTzAn4Ctg0eROcHegPYmIbDEqAfvzxR8ybNw8jR47E+++/j6pVq/LP3b9/H/v378ecOXNQtmxZmoCUEEIIIVbPoAToyy+/xOTJkzHiv9mNC/L09MTHH38MuVyO7du3UwJECCGEEKtn0MXahIQEdO7c+aVlunfvjlu3bgkSFCHEdmXnZ6PRpkZotKkRTYsgEjmqHGAc0O9UP2pzYjMMOgOUm5uLsmXLvrRMuXLl8OTJE0GCIoTYLsYYYtJj+GUiEpWBhKwEanNiMwzuBC2RSEwZByHETjjJnXBqyCl+WUw4hQI4pak7l5Rk4WjMRyFTADuBrVu3iq7Nie0yOAHasWMHXFxcin0+O5tOexJCNFNhdKjdwdJhWASTSoEOHTTLe/ZYNhgzkklkwF2gmXszmgqD2AyDEqDmzZsjOjr6leWaNWtW6oAIIURIhQf2y8vLg6Ojo97nCCHiYVAC9NVXX5k6DkKInVBxKhyJOwIA6OXTC3KpZUYFftk8V8WVLS2JSgVs3KhZLlNGkH3aAhWnAhoAp1JPoQnXxGJtTogxaMhOQoig8lR56PttX/T9ti/yVHkWi+Nl81xp1wk975ZUpQImTAAmTDBoLjB7kc/lAx8A0/+ZbtE2J8QYlKYTQgQllUjxes3X+WVL0zfPlXYdXQIThkQiARIBf39/q2hzQgxBCRAhRFDODs74a/hflg6DmJGTzAn4HzAjYgZiozVJJSWXxNpRAkQIIaRUXtbfSqj+VYQIzehzlR07dsTKlSsRExNjingIIYTYmJf1txKqfxUhQjM6AZo9ezbu37+PAQMGoFu3bli3bh1u375titgIITYoJz8Hzb9ojuZfNEdOfo6lwyFmoOSUwEjgf/L/wdfPF0FBQfD29rZ0WIS8lNGXwN588028+eabyM3NxalTp/DLL7+gf//+qFKlCnr16oUePXqgRo0apoiVEGIDOMbhn5R/+GVi/zhwgCdwJ+8OtTmxGSXuA+Tk5IQ333wTFSpUgJubG/bv34+dO3di06ZNCAoKwvz58+kvAEJEyFHuiCMfHuGXxYRzcACOaOrO/fuvhaMxHweJA7AHmDZ9mujanNguoxMgjuNw7tw5/PTTTzh58iTUajW6du2KLVu2IDg4GNnZ2Vi4cCHGjh2Ln376yRQxE0KsmFwqR0+fnpYOwyKYTAb01NRddFNh3AICXQNpEERiM4x+p7Zq1QpKpRIdOnTAkiVL0K5dOygUCv75MmXKoGvXroiKihI0UEIIIYQQoRidAM2bNw+dO3fWOzHqo0eP4Obmhm7duqFbt26CBEgIsS1qTo3f7vwGAOjk3UmwyTELjitjrWPMSFQqYOdOzbJEYtlgBPay159jHFAHiM6OhppT04SoxCYYnQDNnDkTf/31V5EE6P79++jVqxcuX74sWHCEENuTq8rFGxFvAACyQrPgqnAt1f5eNsbMgwcPUL169VLtX0hSlQoYMUKzvH27haMRhiFj/CiZEhgMfJryKear5pe6zQkxB4MSoEOHDuHgwYMAAMYYxo8fDwcHB50yDx8+hIeHh/AREkJsilQihX8Vf365tAqOMdOjRw8AwLFjxzB//nxkZmZaVQJkj171+gOAFFLgAVCrVi2aCoPYDIMSoK5duyI5ORkAcOHCBQQEBMDVVTfDd3FxQdeuXYWPkBBiU5wdnHFlzBXB96tvTi9iPi97/RVSBbAF+CTiEzg7OFsiPEKMZlAC5OrqigkTJgAAPD090bNnT52Oz6WlVCoREhKC+fPnIzg4GACQlJSE+fPn48qVK6hevTrmzJmDNm3aFLuPI0eO4PPPP0d6ejratGmDsLAwuLm5CRYjIYQQQuyHwZfAevToAYVCAYlEgmPHjhVbtk+fPkYFkJeXh2nTpuHWrVv8Ou1lNh8fHxw4cAAnT57EhAkTcOzYMb2nu69evYq5c+di8eLFaNCgAZYtW4bQ0FBs3brVqFgIIYQQIg4GJUDr1q1D+/btoVAosG7dumLLSSQSoxKg+Ph4TJs2DYwxnfXnzp1DUlIS9u7dCxcXF9StWxdnz57FgQMHMHHixCL7iYiIQPfu3fljf/bZZ+jYsSOSkpJQs2ZNg+MhhJReTn4Ouu/pDgA4PuA4XRIRASWnBIYCS5OXIiQ/hNqc2ASDEqDffvtN73JpXbhwAcHBwZgyZQoCAgL49VFRUWjYsKHOnWZNmzbFlStX9O4nKioKI0eO5B9Xq1YN1atXR1RUFCVAhJgZxzj8fu93fpnYPw4cUBu4kXuD2pzYDIMSoIsXLxq0M4lEgmbNmhl88P79++tdn56ejsqVK+usq1SpEh48eKC3/MOHD40qXxy1Wm1UeVuhrZe91k8fqrPlyCVy7A3Zyy8bG0/BeqjVanCc5geV4zj+uYLrtGULl3vVdqYoo5LJoN6rqbsqJ8ckxy/4egpdj5JuJ2My4DtgwoQJfJsbsp/CbV0ca3lvmxPV2bhtSsKgBGjQoEEG7UwikQhyd0ZOTk6RTtYKhQJKpVJv+dzcXKPKFyc6Otq4QG2MvddPH6qzZdRDPQDAtavXjN42Li6O/18qleLevXsAgHv37vFngbXrkpKS0LhxY0RHRxcp97LtTFXmbnIyrnTXXP67e/y4yY6vJXQ9SrpdcmIyEANU+bcK3+aG7KdwW7+KNby3zY3qbDoGJUA3btwwdRw6HB0d+fEltJRKJZycnIotXzjZUSqVcHY27jq0n58fZDL7G8FUrVYjOjrabuunD9XZduusPVPg4+ODgIAAxMTEAAC8vLz4S+XaddpL3H5+fkXKvWw7S5QRat9qtRrH/0uurDVGQ8sUbuvi2Mt72xhUZ8PqrN2mJAxKgFJSUlCtWjVIJBKkpKS8tKwQg5JVqVIF8fHxOusyMjKKXOYqWD4jI6NIeWMHZpTJZHb9RrP3+ulDdTY/NafGueRzAICWNVoaPS2CNnZtPbRnBqRSKf9cwXXasoXLvWo7U5SRMQbZf4PGyv67ucMUx9cSuh4l3k4CoCYQnxcPSACZ1LD2KNzWr2Lp97YlUJ1Nx6AEqFOnTvjrr79QqVIldOrUCRKJROfOLe1joS6B+fv7Y9u2bcjNzeXP+kRGRqJp06bFlo+MjERISAgAzfDsqamp8Pf3L3UshBDj5Kpy0eZLzZhdQkyFYUuk+fnAkCGaZTuZCsMQSqYEPgKW3F+CmaqZompzYrsMSoB+/fVXflDBX3/91aQBAUCLFi1QrVo1hIaGYty4cTh16hSuXr2K5cuXA9Bc3nry5Anc3Nwgk8nw4YcfYtCgQQgICICfnx+WLVuGDh060B1ghFiARCJBPbd6/DKxfxJIgH+BKlWrUJsTm2HQpC2enp78m9rT0xOenp5QKpWIjY1FfHw8OI7j1wtBJpNh06ZNSE9PR0hICH744Qds3LiRv7x2+fJltGnThp+ILzAwEEuWLMHGjRvx4Ycfonz58nyyRAgxLxcHF9yaeAu3Jt6Ci4PLqzcgNs9R6gisB1Z5raI2JzbD6NngU1NTMXPmTFy8eBHly5cHYwzPnj1Dp06dsGzZMlSoUKFEgdy8eVPnsZeXFyIiIvSWDQ4OLlI+JCSEvwRGCCGEEPIyRk/bO2/ePMhkMvz66684f/48Lly4gOPHj+Px48dYsGCBKWIkhBBCCBGU0QnQxYsXMW/ePJ3LXbVr18aCBQvwxx9/CBocIcT25Kpy0fPrnuj5dU/kqnItHQ4xAyWnBPoD4Snh1ObEZhh9Caxu3bqIi4tDvXr1dNYnJSUJ1geIEGK71Jwax24d45eJ/ePAAT5AVHYUtTmxGQbPBq/VsmVLzJ07FzExMfxgRTdv3sTOnTsxbNgwU8VJCLERCpkCX779Jb8sJpxcDnypqTsnoruh5BI5cAgYNWqU6Nqc2C6DZ4MvqGLFijh27BiOHTvGrytbtiwOHDiAcePGCRshIcSmOMgcMDRgqKXDsAgmlwMDBmiW9+yxcDTmI5fIgStAu3Lt4CBzsHQ4hBjE6NngCSGEEEJsndF9gADg0aNHuHPnDj+PC2MMSqUSMTExGDVqlKABEkJsi5pTI/qhZm4ev8p+Rk+FYcskajVw9OiLZZHgGAdUBe7l3YOaU4uqzYntMjoB+u6777BkyRKoVCqdKTEkEgmaNGlCCRAhVi4xMVFn7jx3d3fUqlVLsP3nqnIRuDUQgGFTYRSOR4jpdCxFmp8P9OqlWRbbVBhjgLlJc/Gx6uNSTYVR+P0AaLpdECI0oxOgLVu2YMyYMRg1ahQ6deqEffv24fnz55g5cya6du1qihgJIQJJTEyEr68vsrOz+XUuLi6IjY0VLAmSSCSoXrY6v2xsPFrakd6J9ZNAAjzVJCqlmQqjuPeDi4sLvvvuu9KGSYgOo8cBevjwIfr06QOFQoFGjRrhypUrqFevHubMmYN9+/aZIkZCiEAyMjKQnZ2NiIgIREZGIiIiAtnZ2UX+4i4NFwcX3J96H/en3n/ltAiF44mMjERYWBgAIDMzU7CYiGk5Sh2B1cB67/WlmgpD3/tB+x6l9wMRmtFngNzc3PDo0SPUqFEDderUQWxsLLp3744qVaogLS3NFDESQgTm6+uLoKAgS4fBKxiPLV8CI8KwtvcnsU9GJ0Ddu3fHrFmzsGzZMrRt2xYzZ85Eo0aNcOrUKXh5eZkiRkKIHSnYx4OSHUKIpRidAE2fPh1ly5bF48eP0blzZ7zzzjtYuHAhKlSoQDOwE0KQq8rFoO8HAQC+6vsVnORO/HPF9fGg/j62TckpgX7AutR1eEf1jk6bE2KtjE6AHBwcMGHCBP7xlClTMGXKFEGDIoTYLjWnxv6Y/QCAnW/v1HmuYB8PX19fHDt2DPPnz6f+HTaOAwc0Ai48v0BTYRCbUaJxgC5evIi9e/fi9u3bcHBwQN26dTFkyBD4+voKHR8hxMYoZAps6L6BX9ZH28fD3i6BcXI5sGHDi2WRkEvkwFFgyJAhNBUGsRlG3wUWERGB4cOHQ6FQ4N1330Xv3r2hUqnw3nvv4eh/A4ARQsQpMTER0VHRaCVvhVbyVki9L65LW0wuB8aPB8aP1yyLhFwiBy4CXSt0pakwiM0w+hP6xRdfICwsDH369NFZ36xZM6xevRo9e/YUKjZCiA0xxxhDhBAiFKPPAGVlZcHPz6/I+mbNmuHRo0eCBEUIsT3a/j27v9qN73//Hiv/txLZOcKOMWTtJBwHnD4NnD6tWRYJjnGAG/BA+UCzTIgNMDoBGjhwIMLDw/H06VN+XV5eHjZs2ID33ntP0OAIIbanjk8d9D3VF9MTp5ewl6HtkiqVQMeOQMeOmmWRUDIlMAmYnjgdOfk5lg6HEIMY9PXUqVMnfnhzxhhSUlLQrl071KxZE1KpFImJicjLy6NO0IQQAEB5x/JQq9XIQpZOR2d76/RMCsjVXPIkxFYYlABNnDjR1HEQQuyEs9wZmbMzcfToUfTK74WBAwcWKUPj/tgXJ6kTsALYFrGtVBOhEmJOBiVAffv2LbIuJycH9+7dA8dxqFWrFsqUKSN4cIQQ26Ud2ycsLAw9evQAABr3hxBiNYy+Qp+fn4/w8HB8/fXXUKvVYIxBLpejd+/eWLx4MRQKGgOCEPKCt7c3zfNFCLE6RidAn376KX7//Xds3rwZgYGB4DgOly9fxtKlS7FmzRrMmjXLFHESQqxMwTm9gBfJjVKtxNBDQ5GQlgDILBUdMad8lg/0AbambcW7qnfhKHe0dEiEvJLRCdCRI0ewdu1aBAcH8+vat28PR0dHTJ8+nRIgQkSguDm9AOB+6n3sitqleWD0fabEFqmZGggAzjw7AxWngiMoASLWz+ivJ8YYKlWqVGS9m5sbnj9/LkhQhBDrVnBOr8jISERGRiIsLAwAkPU0C591+QwfVPoAENmQMEwuBz77DPjsM/GNBP0L8EGlD2gkaGIzjE6AWrZsiZUrVyIrK4tf9/TpU6xevVrnrBAhxP5p5/QKCgqCt7c3AM2P4YzWM9CrYi9AZPNicnI5MGMGMGOG+OYC+xvoVbEXzQVGbIbRn9A5c+Zg8ODBaNu2Lf+Fd+fOHdSsWRObN28WPEBCCCH2Tdt/jDrJE3MyOgEqW7Ysjhw5gj/++AMJCQlwdHSEt7c3WrduDamULvgTInYc43D/6X08Uj0CJJaOxrwkHAdcvPhiWSQ4xgFlgUeqR+AYB6nEsN8C7XhQhceKonGiiDkYnQD16tULGzZsQOfOndG5c2dTxEQIsWFKpkSNNTU0D8RzFQjAf1NhtGihWd6+3cLRmI+SKYFpwKS7kzA8f7jBgyEWHiuKxoki5mT0KRupVIr8/HxTxEIIsRNyqRwyugdeXNQocZtrx4rSdqsgxByM/vusQ4cOGDZsGDp27AhPT88iAx9OmDBBsOAIIbbHSeqE/Pn52LNnDwbmF50Gg9gfJ6kTEAbsithFU2EQm2F0AnTz5k00atQIDx8+xMOHD3We006YKoSDBw8iNDS0yHqJRIIbN24UWf/WW2/h5s2bOut+/PFH+Pj4CBYTIYQQQuyD0QnQV199ZYo4iujRowfatm3LP1apVBgyZAg6dOhQpKxarcbdu3cRERGB2rVr8+srVqxohkgJIYQQYmsMToAOHz6MEydOwMHBAV26dEHPnj1NGRecnJzg5OTEP966dSsYY5g+fXqRssnJycjPz0eTJk3g6EgjkBJiSfksH+OPjkdcehxNhSES+Swf6AHsTN9JU2EQm2FQJ+hdu3Zhzpw5yM3NRU5ODmbNmoXVq1ebOjZeZmYmvvjiC0ybNk3vZKvx8fGoVq0aJT+EWAE1U2PTP5tw8slJmgpDJNRMDbQATj45CRWnsnQ4hBjEoDNAe/fuxbJly9CnTx8AwC+//ILQ0FBMmTJF0H4/xfnmm29QuXJldOvWTe/zt2/fhoODA0aPHo1r167B29sbM2fORJMmTYw6jlptn8PWautlr/XTh+r86jLafwUfl+RY2mXuv3FvpEyK+W3nIzo6Goe4Q+A4rkgZ7brCj0tSRhuHKfZtbBm1VApu/nx+2RTHL9hOQtejpNtJmRQ4DfTp0wdSSAVtj4L1pc+zfStJnUvz+hiUACUlJaFVq1b8406dOiEnJwcPHz5ElSpVSnxwQzDGsG/fPowYMaLYMnfu3MGTJ0/Qr18/TJo0Cd999x2GDBmCY8eOoVq1agYfKzo6WoiQrZa9108fqrOuuLg4/n+pVFrksaH0bXfv3j0AwP3E+3i70dtQPFPgkPoQ7t27hytXruiU0a4r/NjYMklJSWjcuDGio6MF33dJyty5fx+X335bs3z8uMmOryV0PUq63f3E+8BpoGnnpoiJjhG0rtr3GkCfZ7EwV50NSoBUKhXkBea1kcvlcHR0hFKpNFlgWtHR0UhLS3tpn6OwsDDk5uaiTJkyAIBFixbh0qVLOHz4MMaMGWPwsfz8/CCT2V+nBbVajejoaLutnz5UZ/111v6F7ePjg4CAgCKPDaVvu5gYzQ+fl5cXAgICijw2RZmaNWsC0Hx2LXF8Y8oItW+1Wo3j/yVX1hqjkGW07zXAfr+j9aHvMMPqrN2mJKx+nNYzZ86gWbNmKF++fLFl5HI5n/wAmlvl69Spg7S0NKOOJZPJ7PqNZu/104fqXPS5gmUKPzbmGIW3054JkkgkeJb/DDksh19fuIx2XeHHJSmjjcMU+za6DADZf8N0aM+nmeL4KLRvoepR0u0kEgngBOSwHEilUkgkEsHqqv3/zp07iIqK4h+7u7ujVq1asHf0HWY6BidAx48f10kyOI7DiRMn4ObmplNO209IKFevXkVQUNBLywwaNAjBwcH8IIwcx+HmzZsYMGCAoLEQQl4tj+Wh4qf/DUHhYNlYzE2mVAKNG2uWRTQVRh7LA2YDo++MxoD8AYIOhqidF2z+/PmY/1//KgBwcXFBbGysKJIgYhoGJUDVq1fH//73P511lSpVQkREhM46iUQieAJ069YtvPXWWzrr1Go1Hj16hPLly0OhUKBTp07YuHEjfH194e3tjd27d+PZs2fo27evoLEQQggxL+28YGPHjsWwYcMgk8kQGxuLgQMHIiMjgxIgUmIGJUC//fabqeMoVkZGBsqVK6ezLjU1FZ07d8bu3bsRHByMoUOHIi8vD0uXLkVGRgb8/f3x5Zdf6pyxIoQYLjExERkZGTrr8vLy+KEmYmNji93WUeII5Twlvv7mawzNH2rKMImVcJQ4AkuAnbt2wsXBxSTHqF69OoKCgkR3OYiYjtX3Abp69WqRdTVq1NCZ9kIikWDMmDFGdXgmhOiXmJgIX19fZGdnv7Ks9vJEQRKJBA4yB8glVv/1QgQikUgADpBL5GYZGoUQIdAwZYQQHRkZGcjOzkZERAQiIyMRGRmJsLAwAJo7Lgs+1l6eIIQQW0N/ohFC9PL19eVvQNBe8vL29kZQUNBLL4GpmAozfpmBmIwYmgpDJFRMBXQFvs74Gv3U/aCQFR2xnxBrQwkQIURQKqbCyrMrNQ/oHLMoqJgKaA0cyzyGfHU+JUDEJlACRAgRlFwix/RW0xETG4Nj3DFLh2NWTC4H/puwmcnF8/Uql8iBv4AePXvAQSaysQ+IzaK/zwghgpJL5Ah/Ixz93fsD4pnGCADAyeVAeDgQHq5ZFgm5RA6cAPq796ezP8RmUAJECCGEENERz58ohBCzYIwhX52v6RciNhwH3L37YlkkGGOAVNMXiDFGt8ITm0BngAghgspjeVAsVWDo7aHinArD2xvw9tYsi0QeywMWAENvD0V2/qvHjyLEGlACRAghhBDRoQSIECIoR4kjHs96jK3eW4F8S0dDzMFR4gisALZ6bzXZVBiECI0SIEKIoCQSCSo4VYCrTLgZwYl1k0gkQC7gKnOl/j/EZlACRAghhBDRoQSIECIoFVNh0elFOPDvAZoKQyRUTAV0AA78ewBKtXg6fxPbRrfBE0IEpWIqLP59seYB/YklCtoE6PvH39NUGMRmUAJECBGUTCLDuGbjEHcrDie5k5YOx6yYTAaMG/diWSRkEhlwAejStQvkUvpZIbaB/j4jhAjKQeKAjT03YqjHUPFNheHgAGzcCGzcqFkWCQeJA3AMGOoxFI5yR0uHQ4hBKAEihBBCiOjQuUpCCBEKY0B6+otlQojVojNAhBBB5XK5cAhzwJD4IeKbCiMvD6hcGahcWbMsErlcLjAfGBI/BM+Vzy0dDiEGoTNAhBDBqTgRToQqdjJALbZOX8Sm0RkgQoigFBIFkqckY13tdQDlQaKgkCiAVcC62uvg7OBs6XAIMQglQIQQQUklUniW84Sb3A2gbjCiIJVIgWeAm9xNs0yIDaBLYIQQQmxeYmIiMjIydNa5u7ujVq1aFoqIWDtKgAghglIxFcL/Cselx5doKgyRUDEV8Dpw5PER9FP3M/tI0ImJifD19UV2drbOehcXF8TGxlISRPSic5WEEEGpmAozT87E3n/30jeMSKiYCngD2PvvXuSr881+/IyMDGRnZyMiIgKRkZGIjIxEREQEsrOzi5wVIkSLzgARQgQlk8gwxH8IEhIScIY7Y+lwzIrJZMCQIS+WRUImkQFXgLZt21p0KgxfX18EBQVZ7PjEttDfZ4QQQTlIHLCzz06MrjJanFNh7NwJ7NwpvqkwDgGjq4w261QYsbGxuHTpEmJjY812TGI/6AwQIYQQm5KamgoAGDhwoN71hBiCzgARQohQGAOeP9f8o6kwTCYzMxMAEBYWhsjISISFhemsJ8QQlAARQgSVy+WiwooKGJUwSpxTYZQpA5QpI76pMGYDoxJGmXUqDG9vbwQFBcHb29tsxyT2gy6BEUJ0+lAI0Z/iSd6TUu+D2BgnIJvLfnU5QqwEJUCEiFhxfSkKPmcshUSBuAlx+OGHHzBdNb1U8RHboJAogHXAypUraSoMYjOs+hLYiRMnUL9+fZ1/kyZN0lv277//Rq9eveDv74/BgwcjKSnJzNESYnsK96UQoj+FVCLFa5VeQ1VFVZoKQySkEinwCKiqqEpTYRCbYdVngOLj49GxY0f+CxkAHB2L3mKZkpKC8ePHY+LEiWjbti02btyIcePG4YcffoBEIjFnyITYJG1fCkCYS2CEEGLtrDpVv337Nnx8fODh4cH/K1euXJFy+/btQ+PGjTF8+HC89tprWL58Oe7fv48LFy5YIGpCxE3FVNh4YSNOZJ6w8m8YIhQVUwHNgROZJywyEjQhJWHVX0+3b99G7dq1X1kuKioKzZo14x87OzujUaNGuHLliumCI4TopWIqTDg+AbsydtFcYCKhYiqgJ7ArYxeUaqWlwyHEIFZ7CYwxhjt37uDPP//E1q1boVar0a1bN0yaNAkKhe5Ee+np6ahcubLOukqVKuHBgwdGHVOtts9ha7X1stf66UN1fnUZtVoNjuMAABzH8c8Zsu5lZcAB7/i+g8TERFxkF0u8H0PLaOtjin0bW0YNgL3zDr9siuMXbF+h61Hi7TgA14HmLZoDzDTtoW1nQ7cr/F63NfQdZtw2JWG1CVBKSgpycnKgUCjw+eefIzk5GUuXLkVubi7mzZunU1ZbriCFQgGl0ri/RKKjo0sdtzWz9/rpQ3XWFRcXx/8vlUpx7949AMC9e/f4M6aGrHtZmdSkVIR2D8XxuOO4qLpY4v0YUiYpKQmNGzdGdHS04PsuSZk7qam4FBqqWT5+3GTH1xK6HiXdLjUpFdgHvNXkLdy4dsMkrzXw4r1tyHaF3+u2ir7DTMdqEyBPT0+cP38e5cuXh0Qiga+vLziOw4wZMxAaGgpZgYkGHR0diyQ7SqVSb3+hl/Hz89PZr71Qq9WIjo622/rpQ3XWX2ftX8o+Pj4ICAhATEwMAMDLywsBAQEAYNA6aylTs2ZNAJrPrrXGKPS+1Wo1jv+XXFlrjKYoA7z4jjZku8LvdVtD32GG1Vm7TUlYbQIEABUqVNB5XLduXeTl5eHJkydwc3Pj11epUgUZGRk6ZTMyMuDr62vU8WQymV2/0ey9fvpQnYs+V7CM9i9jqVTKP2fIOmsqo62PNcco9L61rDlGocsAxb9v9W1X+L1uq2w9/pIwV52t9rzgmTNnEBwcjJycHH5dbGwsKlSooJP8AIC/vz8iIyP5xzk5OYiJiYG/v7/Z4iWEaORxefBc7YmJdyaKbyqM3FxAIgEkEs2ySORxecBUYOKdicjOp9GgiW2w2gQoMDAQjo6OmDdvHhISEvD777/js88+w4gRI6BWq5Gens5f9nrnnXdw6dIlbNu2Dbdu3UJoaChq1KiB4OBgC9eCEPFhYEh5loLH6seWDoWYCQMDygGP1Y/BaBJYYiOsNgEqU6YMduzYgUePHuGdd97B3Llz8f7772PEiBFITU1FmzZtcPnyZQBAjRo1sH79ehw4cADvvvsuMjMzsXHjRhoEkRALUEgUuDz6MpbVXAaoLB0NMQeFRAFsAZbVXAYnuZOlwyHEIFbdB+i1117Dl19+WWR9jRo1cPPmTZ117du3R/v27c0VGiGkGFKJFAFVA3Dd8TpNhSESUokUeAB4OXpBJhVXfxViu6z2DBAhhBBCiKlY9RkgQohxHjx4gEuXLvF3ULi7u6NWrVpmjUHFVNh5ZSfOPj1Lf2KJhIqpgADgj6d/4D31e3CQiaz3O7FJlAARYicSExPx7rvvIrfA3UcuLi6IjY01axKkYiqMODxC84CuhoiCiqmAPsC2h9uwWr2aEiBiE+jvM0LsREZGBnJzc7F7925ERkYiIiIC2dnZRcbIMjUppOjxWg/4u/iLrg8Qk0qBHj2AHj00yyIhhRSIA/xd/KkPELEZ4vmEEiISDRo0QFBQkNEDgQpFIVXgaP+jmFF9hujuAuMUCuDoUeDoUc2ySCikCuBrYEb1GXQXGLEZlAARQgghRHQoASKEEEKI6FACRAgRVB6Xh9fWv4Zp96aJcyoMV1fA1VV8U2FMBKbdm0ZTYRCbQXeBEUIExcAQ/yje0mFYTrb4EgAGBlQC0vLTaCoMYjMoASLEzsXGxupdNhWFRIE/h/2JX375BUtUS0x+PGJ5CokC2AEsWLCAOkETm0EJECF2KjU1FQAwcODAYp8zBalEita1WuOu813R3QYvVlKJFEgCfJx96DZ4YjOoDxAhdiozMxMAEBYWhsjISERGRiIsLEznOUIIEStKgAixc97e3ggKCkJQUBC8vb1Nfjw1U2Pf9X04n3WevmFEQs3UQEPgfNZ5qDiRDf5EbBZ9PRFCBJXP8vHe/vew/sF6mgpDJPJZPvAesP7BeuSp8iwdDiEGoT5AhBBBSSFFe6/2SEtLww12w9LhmJdUCrRv/2JZJKSQAnc1o5BLJeKpN7Ft9E4lhAhKIVXg9NDTmFdjnuimwlArFMDp08Dp05plkVBIFcBOYF6NeXB2cLZ0OIQYhBIgQgghhIgOXQIjxEYkJibqzOzu7u6OWrVqWTAiQgixXZQAEWIDEhMT4evri+wCowy7uLggNjbW6pIgJadEwJYAPH78WHTfMLLcXMDDQ7O8YoWFozEfJacExgBzEucgJD+ELoMRm0CXwAixARkZGcjOzkZERAQiIyMRERGB7OxsnTNC1oIDh6i0KCQqEwGJpaOxgIwMzT8R4cABVYFEZSI4xlk6HEIMQgkQITbE19cXQUFB8PX1tXQoxVJIFPhl4C+YVX2W6DpBi5VCogB2A7Oqz6KpMIjNoASIECIoqUSKrnW7ws/Fj6bCEAmpRAokAH4ufjQVBrEZlAARQgghRHQoASKECErN1DgadxSXn1+mbxiRUDM18Bpw+fllmgqD2AyR3aNBCDG1fJaPXt/00jygqyGikM/ygQHAqtRVWKxaDLmCflqI9aN3KSFmVng8H8C+xvSRQopm1Zvh33//xR12x9LhmJdUCjRr9mJZJKSQAvcB7zreNBUGsRmUABFiRvrG8wGsd0yfklBIFbg48iL27NmDgaqBlg7HrNQKBXDxomZ5zx4LR2M+CqkC+AIIiwijMYCIzaBUnRAzKjyej7WP6UMIIfaKzgARYgHa8XwIIYRYBiVAhNiw2NhYfvnGjRsWjOQFJadE6/+1Rnp6uui+YWR5eUDt2prlBQssG4wZKTklMBxYnLzY5qbCoDn2xEtkX0+E2IfU1FQAwMCBRfvYPHjwwNzh6ODA4e+kvzUPxDYVBmPAvXsvlkWCAwfUAm7l3rKpqTBsaY49IjzqA0SIDcrMzAQAhIWF8X2JlixZovOcpThIHPD9+99jctXJgNqioRAzcZA4AHuByVUnw1HuaOlwDGZLc+wR4Vn1GaC0tDQsW7YM586dg6OjI3r06IGpU6fC0bHoB2zs2LH47bffdNZt2bIFHTt2NFe4hJidt7c335fo+vXrFo5GQyaRoU+DPnge+RywnZMBpBRkEhlwA2hWphnkUqv+WdGL+uSJk9W+UxljmDRpEsqVK4c9e/bgyZMnmDNnDqRSKWbNmlWk/O3btxEeHo5WrVrx68qXL2/OkAkRTOF+CQX7+hBCSsbQz1Xh9dQvyD5ZbQKUkJCAK1eu4K+//oK7uzsAYNKkSfj000+LJEBKpRLJycnw8/ODh4eHJcIlRDDFjRUEvOj7Y804xuH03dOIyY4RXx8gkeIYB9QGYrJjoObUVjkhqiGfq+L61lG/IPtktX2APDw8sH37dj750crKyipSNiEhARKJBDVr1jRXeISYjL6xgsLCwgBYvn+PIZRMiY67OuKTlE+s+E8sIiQlUwJDgU9SPkGuKtfS4ehlyOdKX9866hdkv6z266lcuXJo27Yt/5jjOERERKBly5ZFyiYkJKBMmTKYOXMmLly4gKpVq2LixIlo3769UcdUq+2zx6a2XvZaP32stc4F4yoco3ad9rGPjw/8/f0BvOjfw3Ec1Go1OI7TeaxdNkUZY7djHEND94Z48uQJ7uO+yWPUvnamqr9RZRgDa9iQXzbF8Qu+py3d1tp1jGPAQ8DT07PY7Up7LG07G7pdaT5XXl5efBl9n1lzsNbvMFMqSZ1L8/pYbQJUWHh4OGJiYrB///4izyUkJCA3Nxdt2rTBqFGjcOLECYwdOxbffvst/Pz8DD5GdHS0kCFbHXuvnz7WVue4uDj+f+l/c0Vp1/3888+Ii4vDnTt3ipS599+t1ffu3cOVK1eKPAaApKQk/v/iyhiyn9Ju9yDpAXZ3343jx49jfv78Uh//ZWWSkpLQuHFjREdHC77vkpRJePAAl3bv1iwfP26y42sJXY+Sbvcg6QGwCRgTNgZx1+NM8loDLz7PhmxX+LOm77NXkv2Ym7V9h5mDuepsEwlQeHg4du3ahTVr1sDHx6fI8+PGjcOgQYP4Ts8NGjTA9evX8d133xmVAPn5+UEms75r16WlVqsRHR1tt/XTx1rrrP0L08fHBwEBAQCAlJQUAMD8+fN1ypYrV44vExMTA0Dzl2lAQECRxwBw7do1AEDNmjWLLWPIfoTazhxltJe9/fz8rDZGofetVqtx/L/kylpjNEUZ4MV3tCHbFf6s6fvslWQ/5mKt32GmVJI6a7cpCatPgMLCwvDNN98gPDwcb775pt4yUqm0yB1fderUQXx8vFHHkslkdv1Gs/f66WNtddbGUjCup0+fAtC813v06IFjx45h/vz5ePr0KV9G+5enVCqFTCYr8tiUZSx9/FeV0b6e1hyj0PvWsuYYhS4DvPjcGLJd4c+avs9eSfZjbtb2HWYO5qqzVSdAGzZswN69e7F69Wp069at2HKzZ8+GRCLB8uXL+XU3btzQe7aIEGulHdPH1m95V3JKdP2qKx6kPrDybxjhyfLygEaNNMvTplk4GvNRckpgELDi/gqbmwrDUAU/lyW9Lb7wbfil2RcpPav9erp9+zY2bdqEUaNGoWnTppp5hf7j4eGB9PR0lC1bFk5OTujUqROmTp2K4OBgBAYG4scff9QZGZcQYj4cOJxMOKl5ILbb4BkDtJdsxDYVRl3gWs41m5oKwxD6bo0vyW3xxd2GT7fYW47V3gb/66+/Qq1WY/PmzWjTpo3OPwBo06YNjh07BgB44403sHDhQmzevBm9evXCb7/9hu3bt6NGjRqWrAIhouQgcUBE3wiMrTKWpsIQCQeJA3AAGFtlrE1NhWGIwrfGl/S2eH234dMt9pZltWeARo0ahVGjRhX7/M2bN3Ue9+vXD/369TN1WISQV5BJZBjQZAAQDWzmNls6HGIGMokMiAZal21tk1NhGKLgtDOlQdNuWA/7fKcSYiVoSgtCLEv7maPPHimMEiBCTMTWp7QoKY5xuHj/Im7n3hZfHyCR4hgHVAdu5962mqkwipvWwp4/e8Q4VtsHiBBbZ+tTWpSUkinRYnsLLExeSH9iiYSSKYFRwMLkhVYzFUbhvjti+OwR49DXEyEmVvCavxhOw0sggVd5Lzx//hwZEFnnTokE8PJ6sSwSEkiATM0t3RIrq7e9DC9BhEcJELF7hfvhCDXuhr4xPfLy8uDoqLkLRqxfuI5SR9ydfBd79uzBwPyBr97AjqgdHYG7dzXLe/ZYNhgzcpQ6Ap8Dn0d8DhcHF0uHQ4hBKAEidi0xMRGNGzfW6YcjxLgbL+vfUxj1OSCEEOtDfYCIXSvcD0eocTde1r+H+hwQQoj1ozNARBRMNfaGvv49Yu9zoOSU6LO3D5JTk0X3DSNTKoHmzTXL48ZZOBrzUXJK4ANgTeoavKN6B05yJ0uHRMgriezriRBiahw4HL55WPPAuvrDmh7HAf/882JZJDhwQAMg8nkk1BwN/01sA10CI4QISi6RY1uvbfjI4yOaCkMk5BI58APwkcdHUMgUlg6HEINQAkQIEZRcIsfIpiPRsXxHQDwnQURNLpEDl4CO5TvCQeZg6XAIMQglQIQQQggRHUqACCGC4hiH6w+vIzkvWXx9gESKYxzgASTnJWuWCbEB1AmaECIoJVOi8ebGmgf0DSMKSqYExgOzk2ZjQv4EuCpcLR0SIa9EX0+EEMG5u7gjLzcPz/DM0qGYn7u7pSOwjOdA2bJlLR0FIQajS2CEEEE5SZ2QPiMdm+tsBvItHY15qZ2cgPR0ID1dsywSTlInIBzYXGcznf0hNoPOABGbpW8uLqHm+SKEEGLfKAEiNqm4ubi083x5enpaKDJCCCG2gC6BEZukby4uoeb5IqWj5JQYcHAANj3YJLo/sWRKJdChA9Chg2ZZJJScEggBNj3YhFxVrqXDIcQgIvt6IvbGVHN8kZLjwOHr6K81D8R2GzzHAb//rlkeNMiysZgRBw5oAvyd9TdNhUFsBiVARFBC9cspzX5iY2OhVqsRFxcHrpj5mApPVJqXlwdHR8diHxtzfLGTS+RY8+YazVk5dYSlwyFmIJfIgZ+AgQMHimYqjMLfIfT9YHsoASKCeVW/HEO/HEq6n9TUVACaL+HinntZmVcxth5iJZfIMbnlZOy5vQcRHCVAYiCXyIFzQLcJ3ex+KozivkPo+8H2UB8gIhih+uWUdD+ZmZkAgLCwMFy4cAERERFYsmSJznMFy2j3HRYWprOu8GPqX0QI0dL3HULfD7aJzgARwQnVL6ek+/H29kZQUBCkUmmxl8C0ZYAXp7K16wo/JsbhGIe7mXeRnp8uvj5AIsUxDqgApOeng2McpBL7/9uavh9sHyVABEDRPjd0PZuUlJIp4b3WW/OAvmFEQcmUwGRgyr0pGJk/UrSDIZa0X1DB7bT9Dwv2Y6xSpQp9H5sAfT0RvX1u6Ho2KQ0XBxeoVWrkIc/SoZifi4ulI7AMJYrcOCAWJe0XZGifRPo+Ng37P09JXqlwnxu6nk1Kw0nqhOdznmNH3R3inArj+XPg+XPxTYXxCbCj7g5Rnv0pab+gwtsV7H+o7ce4e/du+j42EToDRHg0pg4hhJRcSfsFFdf/8GX9GEnpUQJkJWheK8NovyAKX2snhBBrJNR3VsHt6bdBGJQAWQGhxs+xZ8VdK9euJ9Yjn+Vj5A8jEf8wHpBZOhrzkiqVQM+emuV337VwNOaTz/KB3sD2h9vxrupdOMrF2ReoIKG+sx48eFBkP/TbIAzqA2QFaF6rVyvuWrl2PbEeaqbG9svbcfrpadF9w0g4Djh2DDh2TLMsEmqmBpoCp5+ehopTWTocqyDUd1bh/dBvg3DoDJAVoT44r1b4WjmxPnKJHEs7LkVUVBT2cfssHQ4xA7lEDvwK9OvXz+5HgjaWUN9ZNO6Q8Kw6AcrLy8PixYvxyy+/wMnJCcOHD8fw4cP1lo2JicHChQsRFxeHevXqYfHixWjcuLGZI9bPnP179B2rYsWKJdrXq+bLAsR3LZr6IL2aXCLH3HZzsSdpD/apKQESA7lEDpwB3h79tmjmArM0a5/P0Bb6tVp1AvTZZ5/h2rVr2LVrF1JSUjBr1ixUr14d3bp10ymXnZ2NUaNGoXfv3lixYgW++eYbjB49GidOnICLhcfkMGf/npcd67vvvjN4P8bMlyWWa9HUB4kQYg1sYT5DW+nXarVX6LOzs7Fv3z7MnTsXjRo1QteuXTFixAjs2bOnSNljx47B0dERM2fORN26dTF37ly4urrip59+skDkuszZv+dlxzLmurMh82WJ7Vo09UEyHGMM6c/T8VT91NKhEDNhjAEuwFP1U80yMRlbmM/QVvq1Wu0ZoBs3bkClUiEwMJBf17RpU2zZsgUcx0EqfZG7RUVFoWnTppBINBMPSSQSBAUF4cqVKwgJCTF77PqYs3+PUMd62XxZYkV9kF4tj+Wh8srKmgfUHUQU8lgeMBMYd2ccBucPFuVgiOZmC/MZWnu/VqtNgNLT01GxYkUoFC+uJ7u7uyMvLw+ZmZlwc3PTKVuvXj2d7StVqoRbt24ZdCztXyxKpRIymbD37arVari6uiI2NhZqtRoAEBcXp7Ou8GN9ZQDoHRSr4LqX7ScpKQn//PMPpFJpkf0U3i4xMRGurq5ITEzExYsXAUDvOnPWo/DxXxXjP//8g4SEBKO3M3cZSx/fFDEmJyXDVf7fD6ALTB6jXC6HSqWyitcxKTkZaldN3ZOSk01yfI7jkJ6ebhVtrV1XsM0jIyPhLHcW/LVOT0/nv8Osoa1N/bkW+jtM3/dq4e9efY9LUuZlvwVqtRpKpRL6aMsa81us3aYkZx4lzErPVx46dAhr167FqVOn+HVJSUno0qULfv/9d1StWpVfP2TIEDRt2hSTJk3i161duxaXL1/Gzp07X3kspVKJ6OhoQeMnhBBCiHn4+fnpnDAxhNWeAXJ0dCySJWofOxWaY6e4soXLFUcul8PPzw9SqZS/jEYIIYQQ68YYA8dxkMuNT2esNgGqUqUKHj9+DJVKxVcsPT0dTk5OKFeuXJGyhTtWZWRkoHLlygYdSyqVGp05EkIIIcR2We1dYL6+vpDL5bhy5Qq/LjIykj9TU5C/vz8uX77MXwNkjOHSpUvw9/c3Z8iEEEIIsRFWmwA5OzujT58+WLRoEa5evYqTJ0/if//7HwYPHgxAczYoNzcXANCtWzc8ffoUy5YtQ3x8PJYtW4acnBx0797dklUghBBCiJWy2k7QAJCTk4NFixbhl19+QZkyZfDRRx9h6NChAID69etj+fLl/G3uV69excKFC3H79m3Ur18fixcvRsOGDS0YPSGEEEKslVUnQIQQQgghpmC1l8AIIYQQQkyFEiBCCCGEiA4lQIQQQggRHUqAbERaWhomTZqEFi1aoG3btli+fDny8vL0lj1x4gS6d++OwMBAfPjhh7h+/ToAIDk5GfXr19f7Tztc+s6dO4s89+mnn5qtngUZU+c///wTb731FgIDAzF06FAkJCToPH/kyBF06dIF/v7+GD9+PB49esQ/xxjDypUr0bJlS7Ro0QKfffZZkWHezUWoOjPGsG3bNnTq1AlBQUEYMmQI4uPj+edjYmKKtLOl5s0Tsp2bNWtWpF7Pnz8HAOTl5WHOnDlo1qwZ2rRpg//9738mr1txhKpzcZ/nQ4cOAdB8FxR+ruCI+eZ07949fPTRRwgMDESHDh2wffv2YsvGxMSgX79+8Pf3xzvvvINr167pPG8rn2eh6mxLn2ch29nkn2dGrB7Hcey9995jI0aMYHFxcezixYusa9eubMWKFUXKxsXFMT8/P/b999+ze/fuscWLF7PWrVuz7OxsplKp2MOHD3X+TZ06lb3zzjtMqVQyxhibO3cuW7RokU6ZZ8+embvKRte5YcOG7PPPP2e3b99mn376KWvTpg3LyspijDEWFRXFmjRpwr7//nsWGxvLBg4cyEaNGsVvv2PHDta+fXt28eJFdvbsWdamTRu2fft2s9VVS8g6f/311yw4OJj99ttvLCEhgc2ZM4d16NCBZWdnM8YYO3z4MHv77bd12vnRo0dmrS9jwtb5wYMHzMfHhyUmJurUi+M4xhhjS5YsYb1792bXrl1jv/zyCwsMDGTHjx83a30ZE7bOhT/Pn332GevYsSN7+vQpY4yxTZs2sdGjR+uUefLkiVnryxhjarWavfHGG2zatGnszp077PTp0ywoKIj98MMPRco+f/6ctW7dmq1YsYLFx8ezsLAw9vrrr7Pnz58zxmzn8yxknW3l8yxknc3xeaYEyAbEx8czHx8flp6ezq/78ccfWZs2bYqU/fLLL1nfvn35x8+ePWM+Pj7s6tWrRcpGRkayRo0asfj4eH7dBx98wPbu3StwDYxnTJ0XL17MBgwYwD/mOI51796dffPNN4wxxmbMmMFmzZrFP5+SksLq16/PEhMTGWOMtW/fnh04cIB//tChQ6xjx46C1+lVhKxzv3792NatW/nnlUolCwgIYH/++SdjjLHVq1ezqVOnmqoqBhOyzn/99Rdr3bq13uM8f/6c+fn5sXPnzvHrNm7cyAYOHChUVQwmZJ0LSkxMZH5+fuyvv/7i102bNo2tWrVK4BoYLy0tjX388cc6f0yNHz+eLVy4sEjZffv2sU6dOvE/dBzHsa5du/KfUVv5PAtZZ1v5PAtZZ3N8nukSmA3w8PDA9u3b4e7urrM+KyurSNkKFSogPj4ekZGR4DgOBw8eRJkyZVCrVq0iZVetWoX33nsPdevW5dclJCSgdu3agtfBWMbUOSkpCU2aNOEfSyQS+Pj48KOIR0VFoVmzZvzz1apVQ/Xq1REVFYW0tDSkpqaiefPm/PNNmzbF/fv38fDhQ4Fr9XJC1nnmzJl46623dJ5njOHZs2cAgNu3b9tdO8fHx8Pb21vvcW7cuAGVSoXAwEB+XdOmTREVFWX2yyNC1rmgdevWoVWrVnj99df5ddbSzpUrV8bnn3+OMmXKgDGGyMhIXLx4ES1atChSNioqCk2bNuXnZZRIJAgKCrK5z7OQdbaVz7OQdTbH59lq5wIjL5QrVw5t27blH3Mch4iICLRs2bJI2R49euC3335D//79IZPJIJVKsXXrVpQvX16nXGRkJK5cuYLVq1fz6zIyMpCZmYnvv/8eoaGhcHR0xLvvvovhw4ebfZJYY+rs7u6OtLQ0nXUPHjzg6/zw4cMi88JVqlQJDx48QHp6OgDoPK/9YXrw4IHB88kJQcg6F/yBAIB9+/ZBpVKhadOmADRfmBzHoXfv3nj27BnatWuHmTNnokyZMkJX66WErPPt27eRk5ODQYMG4c6dO/D19cWcOXPg7e2N9PR0VKxYUWfOP3d3d+Tl5SEzMxNubm4mqmFRQtZZKyUlBUeOHMHevXv5dYwx3LlzB3/++Se2bt0KtVqNbt26YdKkSRad+7BTp05ISUlBx44d8eabbxZ5Pj09HfXq1dNZV6lSJdy6dQuA7XyeCyptnW3l81xQaetsjs8znQGyQeHh4YiJicGUKVOKPPf48WOkp6djwYIF+O677/D2228jNDQU//77r0657777Dl27dkWVKlX4ddrOlZUqVcLmzZsxevRobN68Gbt27TJthQzwsjp3794dP//8M06dOgWVSoXvv/8e0dHRyM/PBwDk5uYW+cJXKBRQKpX8dCoFn9cuK5VKU1XHIKWpc0FRUVH49NNP8dFHH8HDwwP5+flISkpCfn4+PvnkEyxbtgyXLl3CjBkzzFGtlypNnRMSEvDkyROMHTsWmzZtgpOTE4YOHYqsrCzk5OTofQ8A9tHO+/fvR+PGjXXmP0xJSeHr/fnnn2PWrFn48ccf8dlnn5m8Ti+zbt06bNmyBbGxsVi+fHmR54trK2072eLnubR1LshWPs+lrbM5Ps90BsjGhIeHY9euXVizZg18fHyKPL9y5Ur4+PhgwIABAICwsDB0794dBw4cwKhRowAAKpUKv/76a5EvwhYtWuDcuXOoWLEiAM0dJo8ePcI333zDT0FiCa+qc7t27TB+/HhMnDgRarUawcHBePvtt/lLCo6OjkU+FEqlEs7OzjofGkdHR34Z0MxHZymlrbPW5cuXMXLkSLRr1w4ff/wxAMDBwQHnzp2Do6MjHBwcAAArVqzAO++8g7S0NJ2k2JxKW+cdO3YgPz8frq6uADSfhfbt2+PUqVPFvgcAwMnJycQ1K55Q7fzzzz/jgw8+0Fnn6emJ8+fPo3z58pBIJPD19QXHcZgxYwZCQ0Mhk8lMWrfi+Pn5AdDcxTN9+nTMnDlT58esuLbStpMtfp5LW2ctW/o8l7bO5vg80xkgGxIWFoYvv/wS4eHhek8pAsD169fRoEED/rFUKkWDBg2QkpLCr7ty5QpUKhVat25dZHtt8qNVt27dIqfgzcmQOgPA2LFjcenSJfz555/YuXMnnj9/Dk9PTwBAlSpVkJGRoVM+IyMDHh4e/JeD9tR5wWUPDw+hq2MQIeoMAOfPn8fw4cPRsmVLrFq1ClLpi497mTJl+C9LAHw/MEu1tRB1VigU/JcloPmCrVGjBv8j8PjxY6hUKv759PR0ODk5oVy5cqar2EsI1c6pqamIj49H586di2xboUIFncvXdevWRV5eHp48eSJsZV4hIyMDJ0+e1FlXr1495OfnF0nmivu8ai9f2crnWcg6A7bxeRayzub4PFMCZCM2bNiAvXv3YvXq1ejZs2ex5SpXrozbt2/rrLtz5w5q1KjBP46KikKjRo34v5C09u3bhzfffBOswPRwsbGxqFOnjkC1MI6hdT5y5AiWLVsGhUKBSpUqITc3F+fPn0dwcDAAwN/fH5GRkXz51NRUpKamwt/fH1WqVEH16tV1no+MjET16tUt0l9AqDrHxcVh7NixaNu2LT7//HOdL8f4+HgEBgYiKSmJXxcbGwu5XA4vLy/TVa4YQtSZMYYuXbrg4MGDfPns7Gzcu3cPderUga+vL+RyuU7n4cjISPj5+en8kJiLUO0MaD7P2o7ABZ05cwbBwcHIycnh18XGxqJChQpm7fMEaMYgmzBhgs4P8rVr1+Dm5lYkFn9/f1y+fJn/HmKM4dKlS/zlPVv5PAtZZ1v5PAtVZ7N9no26Z4xYRHx8PPP19WVr1qwpMu4HY5qxQHJychhjjB09epQfB+ju3bssPDycNW3alGVkZPD7mzVrFps/f36R4yQnJ7PAwEC2fPlydvfuXXbkyBEWFBTEjh49ap6KFmBMnaOjo1njxo3Zzz//zO7cucPGjRvH+vTpw9RqNWOMsUuXLrFGjRqx7777jh83ZPTo0fyxtm7dytq0acPOnTvHzp07x9q0acP+97//2XSd33//fdajRw+WkpKis5+cnBymVqvZ22+/zYYMGcJu3rzJLl68yHr06KH3VlVbqnNYWBjr0KEDO3fuHIuLi2Pjx49nvXr1YiqVijHG2Pz581nPnj1ZVFQUO3HiBAsKCmI///yzTdeZMcbWrVvHhg8fXuQ4z549Y23btmVTp05lt2/fZqdPn2Zt2rRh27ZtM09FC1CpVCwkJIQNHz6c3bp1i50+fZq9/vrrbOfOnYwx3To/e/aMtWzZkoWFhbFbt26xsLAw1rp1a358GFv5PAtZZ1v5PAtZZ3N8nikBsgFbt25lPj4+ev8xxpiPj4/OuBffffcd69atGwsICGAffvghu3btms7+PvroI7Zy5Uq9x7p48SJ77733WJMmTVjHjh3Z119/bbqKvYSxdd6/fz/r2LEjCwwMZOPGjWNpaWk6+ztw4ABr3749CwgIYOPHj9cZJEylUrFPPvmENWvWjAUHB7Pw8HB+bApzEqrODx8+LHY/2u1TUlLY+PHjWbNmzViLFi1YWFgYy8vLs9k6M8ZYbm4uW758OWvdujXz9/dno0ePZikpKfzz2dnZbObMmSwgIIC1adOGffnll2arZ0FCv7cXLFjApkyZovdYcXFxbOjQoSwgIIC1bt2arV+/3iLvbcY0A9uNHz+eBQUFsdatW7PNmzfzsRSuc1RUFOvTpw/z8/Nj7777Lrt+/brOvmzh88yYMHW2pc8zY8K1szk+zxLGClzvIIQQQggRAeoDRAghhBDRoQSIEEIIIaJDCRAhhBBCRIcSIEIIIYSIDiVAhBBCCBEdSoAIIYQQIjqUABFCCCFEdCgBIoRYXHJyMurXr4/k5GSTHufRo0cYOHAg/Pz8MGvWLJMeixBi3Wg2eEKIaPzwww+4e/cuDh06VGTiX0KIuFACRAgRjaysLNSuXZufLZsQIl6UABFCrMqTJ0+wcuVK/Prrr8jLy0OnTp0wb948lC9fHoBmduklS5bgxo0baNiwIVq1aoV//vkHX3311Uv3u379emzYsAEAUL9+fezevRsbNmyAj48PTp8+DbVajSNHjuDZs2dYvHgxzp49i0qVKiEkJARjx46FTCYDAJw4cQIrV65EWloaevToAaVSCS8vL0ycONG0LwwhRFDUB4gQYlUmTJiA2NhYbNmyBV9++SVu376N2bNnAwCePXuGESNGoFGjRjh06BB69eqFbdu2GbTf4cOHY/jw4QgMDMSff/6JwMBAAMDBgwcRHh6ODRs2wNXVFRMmTEClSpXw/fffY/ny5fjxxx+xZcsWAMDNmzfx8ccf44MPPsCBAwfAGMNPP/1kmheCEGJSdAaIEGI1srKycOHCBfz000/w9vYGAISHh6NHjx5ISEjAxYsX4eLignnz5kEmk6FOnTq4dOkS0tPTX7lvV1dXuLi4wMHBAR4eHvz6Dh06ICgoCABw9uxZpKSkYN++fZBKpahTpw5mzZqF0NBQjB8/HgcPHkTz5s0xbNgwAMDixYtx5swZE7wShBBTowSIEGI1/vjjD5QrV45PfgCgbt26KF++PBISEnDz5k00atSIvxwFAAEBAThx4kSJj+np6ckv3759G5mZmWjatCm/juM45Obm4vHjx0hISICvry//nEKhQOPGjUt8bEKI5VACRAixGo6OjnrXq9VqqNVqyGQyMMZ0niv8uDTHVKlUqFOnDjZt2lSkXNmyZeHs7FzkeAqFolTHJ4RYBvUBIoRYjTZt2uDp06dISEjg18XHxyMrKwve3t547bXXEBsbC47j+OevX78u2PG9vb2RkpICNzc3eHl5wcvLC8nJyVi3bh0kEgnq1q2L6OhovjxjDDdv3hTs+IQQ86EEiBBiNRwdHdGuXTvMmjULV69exdWrVzFr1iw0b94cPj4+6NmzJ7KysrB8+XLcuXMH3333HY4dOybY8du0aQNPT0/MmDEDN2/exD///IP58+fD2dkZMpkMH374IWJjY7Fp0yYkJCTgs88+w927dwU7PiHEfCgBIoRYlU8//RQ1a9bE0KFD8dFHH+G1117Dxo0bAWg6Mm/ZsgUXL15E79698f3336N3796CXYaSyWTYvHkzOI7De++9h4kTJ6J9+/aYN28eAKBy5crYvHkzjh07hj59+iAzM5O/m4wQYlskrLQX0AkhxEySkpKQlpaGZs2a8esWL16MnJwcrFixwiIxDRo0CC1atKBxgAixMXQGiBBiM7KysjBs2DD89NNPuH//Pn755RccPnwY3bp1s3RohBAbQ3eBEUJshq+vLxYsWIDVq1cjNTUV1atXR2hoKDp06IBly5Zh//79xW47evRojBkzxozREkKsGV0CI4TYhUePHuHZs2fFPl++fHlUqFDBfAERQqwaJUCEEEIIER3qA0QIIYQQ0aEEiBBCCCGiQwkQIYQQQkSHEiBCCCGEiA4lQIQQQggRHUqACCGEECI6lAARQgghRHQoASKEEEKI6PwfqHrJYVschOcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = gpresult2.weighted_posterior_plot(\"log_freq\")\n", + "print(\"Mean of freq:\", jnp.exp(2.963)) " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more information on the posterior, we can see a comparison plot between two parameters. (Here the peak times of the gaussian means, which we had conditioned as $t_1>t_0$)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAHFCAYAAABFMgvMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVVElEQVR4nO3deVxU5f4H8M8MODMgsgiCuYSlqYiACGkm5pqpuZKWWi7XfQHv75qpSCnmJUOtDMlcKbt5Mw1sNbc0y65LoYCoGIoaXkSHBA0Zhu38/uAyOQFnBucwZ4TPu9e5rzvnOeeZ75xB/fKsCkEQBBARERFZSCl3AERERFQ/MKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgIiIiSTCpIKL7Zs218+rTOn316bMQ3YtJBVnFmTNn8Morr6BPnz7w9/fHgAED8NprryErK0vu0CSzbt06dOjQQe4wAAAnTpxAhw4djI6OHTuia9euGDt2LA4dOmS4NjExER06dMC1a9fMrv/OnTtYuHAhfvnlF4tjzcnJwYsvvgg/Pz/06NEDOp2uyjUZGRkYN25clfNff/01nn32Wfj7+2Pw4MHYvXu3xfFY4tq1a+jQoQMSExNrvKamz1Lp3Llz8PX1rdX3QWQr7OUOgOq/7du344033kD37t3x8ssvw9PTE1evXsXWrVuxf/9+bNu2DR07dpQ7TIuNGTMGvXr1kjsMI0uXLoWvry+Ait+Ob9++jfj4eMyZMwcbN25E796976ve8+fP44svvsBzzz1ncYzbtm1DcnIyVq9eDS8vLzg4OFS5Zu/evTh9+rTRuX379mHBggWYOHEievXqhYMHD2Lx4sVQqVR49tlnLY6rrlT3WSr9+uuvmDFjBkpLS60cFZE0mFRQnUpKSkJ0dDRefPFFREZGGs53794dAwYMwMiRI7FkyRLR3+weFM2bN0fz5s3lDsNIu3bt0KVLF6NzwcHB6NOnDz766KP7TiqklJ+fD09PTwwZMqRW97399tsYNGgQlixZAgDo1asXbt++jXfffdemk4rqFBcX4+OPP0ZsbCzUarXc4RDdN3Z/UJ3aunUrmjRpgvnz51cpa9q0KRYvXoz+/fujsLAQAFBWVobt27dj2LBh8Pf3R58+fbBmzRro9XrDfYsXL8bUqVPx6aefYsCAAfD398fYsWNx+fJlHD58GMOGDUNAQADGjBmD8+fPG903YcIEfPbZZ+jbty8CAwMxadIkpKenG8X1888/Y+rUqXj88cfRuXNn9OvXD+vWrUN5eTmAP5u4P/jgAwwaNAgBAQFISEio0v3x22+/YdasWejevTsCAgLwwgsv4MiRI0bvdebMGUydOhXdu3dH165dMWvWLGRkZBjKK7sxjh07hilTpiAgIAA9e/bE6tWrUVZWdl/fiZOTEx555BFkZ2fXeM1PP/2E8ePHIygoyNDCdP36dUNMEydOBABMnDgREyZMqLGeP/74AytXrsSAAQPg5+eHoUOH4rPPPjOU9+vXD4mJicjOzkaHDh2wbt26KnWsW7cOcXFxAGC45tq1a7hy5Qqefvppo2ufeeYZXL16FVeuXKkxpmvXrmHhwoUICQmBr68vevTogYULFyIvL88ortjYWMTExODJJ5+Ev78/pk6dWqXe/fv3Y/jw4fD398eoUaOq/CyZ81kA4IcffkBcXBxmzpyJBQsWiNZBZMvYUkF1RhAEHD16FP369au2SRtAld9Oly5dii+++ALTp09HcHAwzp07h/feew/nz5/Hli1boFAoAACnT5/GzZs3sXjxYuj1ekRFRWHGjBlQKBSYN28eHBwcsGzZMixYsADffPONof7z588jMzMT8+fPh4uLC2JjY/HSSy9hz5498PT0RHp6OiZPnoxBgwbhnXfegSAI+OqrrxAXF4dHH33U6DfgdevWITIyEk5OTggICMCuXbsMZeXl5Zg5cyY8PT2xatUq2Nvb46OPPsLs2bPx7bffwtvbG8ePH8e0adPQvXt3vPHGG9Dr9di4cSPGjh2LnTt3om3btob6FixYgPHjx2P69On4/vvvsWXLFrRu3Rpjx46t9fdSXFyMa9euwd/fv9ryzz//HIsWLcLQoUMxc+ZM5OXlITY2Fi+88AJ2794NX19fLF26FK+//jqWLl2K7t27V1tPUVERxo8fj99//x3z5s1Dy5YtcfDgQURGRiI3NxezZs1CXFwc1q5di3PnziEuLq7alp4xY8YgJycHn332GT799FM0b94cFy5cAAC0adPG6Fpvb28AwOXLl6uUAYBOp8PEiRPh5uaGZcuWoUmTJjh9+jTi4uKg0Wjw+uuvG6796KOPEBQUhJUrV+L27duIjo7GokWL8OmnnwIADh06hHnz5mHYsGF45ZVXcP78ebzyyiuiz766zwIAfn5+OHToEFxdXetFqx01XEwqqM7k5eVBr9ejVatWZl1/8eJFfPbZZ3j55ZcxY8YMAEDPnj3h6emJhQsX4ocffjA019+9exdr1641/MN78uRJ7NixAx9++CF69OgBALh69SpiYmJw584dODs7A6j4zXnDhg0IDg4GAMOg0Y8++ggLFixAeno6nnzySaxevRpKpdIQw6FDh3DixAmjpGLw4ME1jin4/fffkZmZiTlz5hhi9vf3R1xcHIqLiwEAb731Fry9vbFp0ybY2dkBAEJCQvD0008jNjYW7777rqG+MWPGYO7cuQCAHj164ODBg/j+++9NJhXl5eWG/vnS0lL897//xfr163Hr1i28+OKL1V6/Zs0ahISE4K233jKc79q1K4YMGYKtW7di4cKFaNeuHYCK7pXK//9XiYmJ+PXXX7Fjxw4EBgYCqOiiKC0txfr16zF27Fh06tQJTZs2hUqlqtJNU+nebqXKa5KSkgBUtLrcq3HjxgCAgoKCauu6cuUKmjdvjpiYGLRu3RoA8MQTTyAlJQUnT540utbZ2Rnr1683fDe//fYb1q1bh7y8PLi5ueG9996Dv78/Vq9ebfhsAIyemzmfBQC8vLxqvIfoQcLuD6ozlX8Zm9tMX/mX+l/7w5999lnY2dnhxIkThnMuLi5Gv8l7eHgAAAICAgznXF1dAVTMVKjUqlUrQ0IBAJ6enggMDMTPP/8MABg5ciQ2b96MkpISpKenY9++fYiNjUVZWRlKSkqM4vLx8anxs3h4eKBdu3Z47bXXsGjRInz11VcoLy9HREQEHnvsMRQWFuLMmTMYPHiw4TkBFf+Q9e3bt8o/cJX/KFdq3ry5octIzOTJk+Hr6wtfX18EBARgyJAhOHbsGF599VU89dRTVa6/fPkytFothg4danT+4YcfRmBgYJW4xJw8eRItW7asEvvw4cOh1+uRkpJidl1/VdkVVZPKhPCvfHx88O9//xstW7bElStXcOTIEWzduhWZmZmGZK+Sn5+f0XdTmQzodDoUFRXh7Nmz6Nu3r9E9gwcPvp+PQ1RvsKWC6oyLiwsaN24s2ndfWFiIkpISuLi44Pbt2wCAZs2aGV1jb28PNzc3/PHHH4Zzf/0NtZKjo6NoTNX9Ruju7o6zZ88CqGiyX7FiBb744guUlpaiVatWCAwMhL29fZW1BcTeS6FQID4+Hu+//z4OHDiAzz//HI0aNcKAAQOwfPlyFBUVQRAEQzJ0Lw8PD6PPCgAajcbotVKpNGutg+XLlxtmf9jZ2cHFxQUtWrQwdCP9VX5+viGG6uI6d+6cyfesdPv27Srf5b1135vs1VaTJk0AVLRY3auyhaKmnw8A+OCDD7Bhwwbk5+fDw8MDnTt3hoODQ5Vn/tcuu8pEpby8HLdv34YgCHBzczO6xtPT8/4+EFE9wZYKqlMhISE4ceKE0UDLe+3cuRNPPPEEzp49CxcXFwCAVqs1uqakpMTQ5GypewfjVcrNzYW7uzsAIDo6Gvv27cPatWtx6tQpHDx4EKtXr4a9fe3zby8vL0RFReHo0aP4/PPPMXXqVOzfvx9r165FkyZNoFAokJubW+U+rVZraGWx1COPPAI/Pz/4+fmhU6dOaNmyZY0JBfBn605NcdXmO3BxcanyXVbWA8Ci7/ORRx4BUNHFda/K1/e2Yt3rq6++wptvvonp06fj2LFj+Omnn7Bx48Zqx1+IcXV1hVKprPKcKpMyooaKSQXVqSlTpiA/Px9r166tUqbVahEfH4927drB19cX3bp1AwCjgZWVr8vKyhAUFGRxPFeuXMGlS5cMr2/cuIHTp08bxmEkJSUZprtWtkSkpaXh1q1bJpvc73X69Gk8+eSTSE1NhUKhgI+PD/7xj3+gffv2yM7OhqOjIzp37oxvv/3WqHvojz/+wPfffy/JZ70fjzzyCJo1a4avv/7a6HxWVhaSk5PRtWtXADDqFqjJ448/jv/+979V1mT48ssv0ahRoxoHilbnr90Z3t7eaNWqFfbt22d0fv/+/WjTpk2N43iSkpLg7OyMadOmoWnTpgAqWjuSkpJq9f2q1WoEBgZi//79Ri1G9y4qZu5nIapP2P1BdapLly74+9//jrVr1+LSpUsYOXIk3NzckJGRga1bt0Kv1xsSjnbt2mHUqFGIjY2FTqfD448/jvPnzyMuLg7du3eXZGEpQRAwa9Ys/OMf/4CdnR3i4uLg4uJimBbp7++Pb7/9Fp988gnatm2L9PR0vP/++1AoFNWu9FiTTp06QaPRYOHChQgPD4eHhwf+85//4Pz584bpmC+//DKmTp2KGTNmYPz48SgpKcGmTZtQXFxsGJRpbUqlEvPnz0dERARefvllDB8+HHl5eYbn9Le//Q3An90P33//PVxcXKpdvCw0NBT//ve/MXfuXMybNw+tWrXCoUOHkJCQgLCwMMPgWXNUXvv1118jICAArVu3xty5cxEREQFXV1f069cP3333Hb799lu88847Ndbj7++PTz75BG+++Sb69u2LmzdvYuvWrcjNzTW0lJlr/vz5mDRpEsLCwvDCCy/g8uXL2LBhw319FqL6gkkF1bnZs2ejU6dOhpU1b9++jYceegh9+vTBrFmz8NBDDxmujY6Ohre3NxISErB582Z4enpi4sSJmDNnjiS/4bVo0QJTpkzBG2+8AZ1OhyeffBLvv/++odl/8eLFKCkpwdq1a1FcXIxWrVph9uzZuHjxIg4dOmT2oFO1Wo34+Hi89dZbiI6Oxp07d9CmTRu8/vrrCA0NBVAxi+ODDz5AbGws5s+fD5VKheDgYMTExOCxxx6z+LPer9DQUDRu3BgbN27E3Llz4eTkhF69emH+/PmGMRKPPfYYhg4diu3bt+PHH3+s0rIBVIxJ+Ne//oW33noL7777LgoKCvDoo48iOjoao0ePrlVMAwcOxBdffIHFixdj9OjRiIqKQmhoKIqLixEfH4+EhAS0bt0aMTExootojRo1CteuXUNCQgL+/e9/w8vLC71798b48ePx2muv4dKlSzV2nfxVcHAwNm/ejLfffhthYWFo1aoV3njjDcyaNavWn4WovlAI3NmGGojFixfj5MmTZjVRExFR7bFzj4iIiCTBpIKIiIgkwe4PIiIikgRbKoiIiEgSTCqIiIhIEkwqiIiISBINZp2Kyt0alUql6DLFRETUsAmCgPLyctjb29fpCqjl5eVm7eFjDoVCYROrtTaYpKK0tBRnzpyROwwiInpA+Pn5QaVS1Und5eXlOHDkGDycNaYvNoO9vT38/PxkTywaTFJR+aAf69QGdnbyZ3NERGSZ4vIS0XKVstF91VtWVo6Mc1fq9B9oQRDg4azBqBXf4W5RqUV1NdbYY/dr/SVr9bBEg0kqKrs87OyUTCqIiOoBO4X43+V2FiYF1ugqv6svQ2Gxecv/18iGuvQbTFJBRERkc5QKwNIWEaXtJBWy/squ1+uxZMkSBAcHIyQkBPHx8TVee+DAAQwePBiBgYEYN24czp49a8VIiYiI6oBCIc1hI2RNKlatWoW0tDRs27YNy5YtQ1xcHPbu3VvluoyMDLz88suYOXMmvvjiC/j4+GDmzJm12oqaiIiI6pZsSUVhYSF27dqFyMhI+Pr64umnn8a0adOwffv2Ktf+9NNPaNeuHUaOHImHH34Y8+fPh1arxcWLF2WInIiISCJsqZBGeno6SktLERgYaDgXFBSElJQUlJeXG13r6uqKixcvIikpCeXl5UhMTISTkxMefvhha4dNREQkHYVSmsNGyDZQU6vVws3NzWgOsIeHB/R6PfLz89G0aVPD+SFDhuDQoUMYP3487OzsoFQqsXHjRri4uMgROhER2YD7nTJKdUe29Ean01VZVKTydXFxsdH5vLw8aLVaLF26FDt37sSIESMQERGB33//3WrxEhERSU6pkOawEbIlFWq1ukryUPlaozFeYWzNmjVo3749XnzxRXTu3BkrVqyAg4MDEhISrBYvERGR5DimQhpeXl7Iy8tDaemfK4lptVpoNBo4OzsbXXv27Fl07NjR8FqpVKJjx47Izs62WrxEREQkTrakwsfHB/b29khOTjacS0pKqnbtck9PT1y6dMno3OXLl9GqVStrhEpERFQ36tlATdkicXBwwMiRIxEVFYXU1FQcPHgQ8fHxmDhxIoCKVouioiIAwPPPP4+dO3fi888/x9WrV7FmzRpkZ2dj1KhRcoVPRERkuXrW/SHrMt0RERGIiorCpEmT4OTkhPDwcAwcOBAAEBISgpUrVyI0NBRDhgzB3bt3sXHjRuTk5MDHxwfbtm2Du7u7nOETERHRPWRNKhwcHBATE4OYmJgqZRcuXDB6PWbMGIwZM8ZaoREREdU9hQSzN9hSQURERBVjIizcstyGxlQwqSAiIpKLFGMibKilwnbSGyIiInqgsaWCiIhILuz+ICIiIklIscw2l+kmIiKi+oYtFURERHKpZwM1mVQQERHJRaGwfEyEDSUV7P4gIiIiSbClgoiISC7s/iAiIiJJcPYHERERUVVsqSAiIpKLQglY2tDAxa+IiIiovo2psJ30hoiIqKGpTCosPWrh+vXrmDlzJrp27Yp+/frhww8/NJSdO3cOY8aMQUBAAJ577jmkpaXVqm4mFURERA3I//3f/8HR0RGJiYlYsmQJ1q5diwMHDqCwsBAzZsxAcHAwEhMTERgYiJkzZ6KwsNDsuplUEBERyUWplOYw0+3bt5GcnIzZs2ejTZs2GDBgAHr16oVjx45hz549UKvVWLhwIdq2bYvIyEg0btwYe/fuNf/j3M8zICIiIglYuftDo9HAwcEBiYmJKCkpQWZmJk6dOgUfHx+kpKQgKCgIiv/Vp1Ao0LVrVyQnJ5tdP5MKIiKieqCgoMDoKC4urnKNWq3G0qVL8emnnyIgIACDBw/GU089hTFjxkCr1cLT09Poend3d+Tk5JgdA2d/EBERyUXC2R+9e/eGTqcznA4LC0N4eHiVyy9duoS+ffvib3/7GzIyMrBixQr06NEDOp0OKpXK6FqVSlVtclITJhVERESykWCdiv91Ohw5cgR2dnaGs39NEADg2LFj+Oyzz3DkyBFoNBr4+fnhxo0beP/999G6desqCURxcTE0Go3ZkTCpILJQQcld0XKnRo1Fy4vLS0TLVcpGdXq/per6/U3Vb0pdf34xcn831LA4OTkZJRXVSUtLg7e3t1Gi0KlTJ2zYsAHBwcHIzc01uj43N7dKl4gYjqkgIiKSS+XeH5YeZvL09MTVq1eNWiQyMzPRqlUrBAQE4PTp0xAEAQAgCAJOnTqFgIAA8z+O+Z+ciIiIJGXl2R/9+vVDo0aN8Oqrr+Ly5cs4dOgQNmzYgAkTJmDQoEG4c+cOoqOjcfHiRURHR0On02Hw4MFm18+kgoiIqIFo0qQJPvzwQ2i1WowePRorV67E7Nmz8cILL8DJyQkbN25EUlISQkNDkZKSgk2bNsHR0dHs+jmmgoiISC4ybCjWrl07fPDBB9WW+fv7Y/fu3fcdCpMKIiIiuSggwZRSSSKRBJMKIiIiuSgVlg9EqMVAzbrGpIIIpqeF/pJ7vsayPg8Fi96bp88Xf+9S8fd2U7mKlluquMz8hW3keH9Tz6e5g/h0N1PTOm/obtZYZurZ/7fwv6LlLR1bipbfNfFzpy8XfzZN1W6i5bf0eaLlV//IFi33btLCovcXe7YA4GXiuzMVvyn3+3zKywSL3rchY1JBREQkF4USUFiYxFjafSIhJhVERERyUSgkGKhpO0kFp5QSERGRJNhSQUREJBOFQiHBfmJsqQAA6PV6LFmyBMHBwQgJCUF8fHy1102YMAEdOnSockRERFg5YiIiIulYeUHNOidrS8WqVauQlpaGbdu2ITs7G4sWLUKLFi0waNAgo+vWrVuHkpI/R3CnpKTg//7v/zB+/Hhrh0xEREQ1kC2pKCwsxK5du7B582b4+vrC19cXGRkZ2L59e5WkwtXV1fD/y8rK8M4772DatGnw8/OzctRERETSUSgVtV0Qs9o6bIVsSUV6ejpKS0sRGBhoOBcUFIQNGzagvLwcSmX1TzkxMRG3b9/G9OnTrRUqPQCy7oqvF/BOivh6AO3cCkTLO7ne/3tn39WKlrdo3Ey0/Gxehmj5m/9xES1/MSBHtDykeVvRcrVSJVpuSl5xvkX3l5hYq+HbrOMW1f+oc9May07c/E303sw/xLe193M7I1rewdVLtPyzy3+Ilh/LFP+5frqD+DoPBSXi/wSsnPedaHnS5idEy+d8Jb5GyOK+KaLlDnbi8SX9Xi5a3tj+imh5R5cafrbLASc4id4rlVpuMlpjHbZCtjEVWq0Wbm5uUKn+/FI9PDyg1+uRn59f7T2CIGDLli2YOHEiGjcW/8NMRERE1iVbS4VOpzNKKAAYXt+7z/u9Tpw4gZycHDz//PN1Hh8REVFdq2+zP2RLKtRqdZXkofK1RqOp9p59+/bhqaeeMhpjQURE9KCSYvaGDeUU8nV/eHl5IS8vD6WlpYZzWq0WGo0Gzs7O1d7z448/on///tYKkYiIqE5VtFRYftgK2ZIKHx8f2NvbIzk52XAuKSkJfn5+1Q7SvHXrFrKyshAUFGTFKImIiMhcsiUVDg4OGDlyJKKiopCamoqDBw8iPj4eEydOBFDRalFUVGS4PiMjA2q1Gq1atZIrZCIiIkkpIEFLhcWbh0hH1sWvIiIiEBUVhUmTJsHJyQnh4eEYOHAgACAkJAQrV65EaGgoAOD333+Hs7OzTTXzkHRMbQ/+6+0rouXx56rvMqu0KyFLtFy4Kz6lNOld/xrLGikbid6bdVcnWu6qFp8WaGrK6Vv9xadcOtpbNmW0cSPxmVamtqcuNLF1+fXCO6LlDzu5i5aLTQkFgA4u7UXLL9z+tcayxvbif990ayb+7B9yFI/NTSW+NfcIb/EpmRMfE/9u0vN/Fy1/2KmJaHnOPPGW4d8KxOv/e69S0fK2zq1Fyy/duS5a3r+F+J97T4341uo1bS1fXiYgD+LTeaVS38ZUyJpUODg4ICYmBjExMVXKLly4YPR6yJAhGDJkiLVCIyIiolrihmJEREQy4ZRSIiIikoRCCQmW6ZYmFinYUChERET0IGNLBRERkUzY/UFERETSkGD2hw3NKGX3BxEREUmDLRVkFaa2Bze1loGptR4aqxxFy/26NBctXz5EvH6x+e4l5eJrCQxqVfMaF+ZQ2YmvI3FDd1O0vLmD+Fz9YhPxm+JkL75Wgqn3d1GJx99ULb6Wgyk5Jp6P2DoWLR3Ffy5Nffc1rYNgLlNrbJj67gKaiv/smFpj5fXHRYvh1Miy+O6WiD/fPg8Fi5abWt/G1BorbkrXas+XlZVbbZ0KpUIhwdbnttNUwaSCiIhIJhxTQURERJKobytqckwFERERSYItFURERDKpb90fbKkgIiKSSWX3h6WHuRITE9GhQ4cqR8eOHQEA586dw5gxYxAQEIDnnnsOaWlptfo8TCqIiIgaiCFDhuDo0aOG4/vvv4e3tzcmTpyIwsJCzJgxA8HBwUhMTERgYCBmzpyJwsJCs+tn9wfZBH2Z+NS71N9dRMsv3xSfGvfs40Wi5W2dHxItv1lU87TEVo1bid5rKZWJaX+tG7cULbd0yqgppqa8mmJqyqipz2+KJVNqnUxMSbRUgYkplaamw5p6dqamVJpi6bM3db9K7Spabupn183E/Q8ChVIhwd4f5jdVaDQaaDQaw+uNGzdCEAQsWLAAX375JdRqNRYuXAiFQoHIyEj88MMP2Lt3L0JDQ82qny0VREREMrF298e98vPzsXnzZrz88stQqVRISUlBUFCQYYyGQqFA165dkZycbHadTCqIiIjqgYKCAqOjuFi8BfiTTz6Bp6cnBg0aBADQarXw9DRu2XN3d0dOTo7ZMbD7g4iISCZSzv7o3bs3dLo/VwcOCwtDeHh4tfcIgoBdu3Zh2rRphnM6nQ4qlXF3pkqlMpmc3ItJBRERkUykXPzqyJEjsLOzM5z/a4JwrzNnzuDGjRt49tlnDefUanWVBKK4uNhoDIYpTCqIiIjqAScnJ6OkQsyPP/6I4OBguLj8OQjey8sLubm5Rtfl5uZW6RIRwzEVREREMqno/rD8qK3U1FR07drV6FxAQABOnz4NQRAAVHSRnDp1CgEBAWbXy5aKBsLU1CxLp46ZYmonyxITuzk6qcR3DGzsKJ4fH0oTb76b3sHU1Luay009O0ufvaX313X9pqZFWhpfXZPz/U1NWa3rKa22Tu6fDWuo6P6wrP/jfm7PyMjA8OHDjc4NGjQIb731FqKjozF27Fjs2LEDOp0OgwcPNrtetlQQERHJRAlAqbDwuI/3zc3NhbOzs9E5JycnbNy4EUlJSQgNDUVKSgo2bdoER0dHs+tlSwUREVEDk5qaWu15f39/7N69+77rZVJBREQkE4VSAYVgaR3SxCIFJhVEREQykXJKqS2wofyGiIiIHmRsqSAiIpKJNCtqShOLFJhUEBERyaS+dX8wqWgg5J7vbWoLZrGtxQGgWzMTW6Ob2O+mW/tS0fLjN9NFy3s196uxrK7XAJH7uzPF1FoKdb0ORkNfy4HuX00/m2Xl5VaOpP5gUkFERCQXCbo/wJYKIiIiqm9jKjj7g4iIiCTBlgoiIiKZcKAmERERSaK+ragpayh6vR5LlixBcHAwQkJCEB8fX+O1Fy5cwLhx4+Dv749hw4bh+PHjVoyUiIhIepUtFZYetkLWlopVq1YhLS0N27ZtQ3Z2NhYtWoQWLVpg0KBBRtf98ccfmDJlCvr164c333wTX3zxBcLCwrBv3z64u7vLFD3Vxi19nkX3Xy0Qn+KVm6sXLf9m1QHR8pNTxLf2DRxV87TG5g/4lMa6nrJqaf2cMkp1paafzTKBU0rvl2wtFYWFhdi1axciIyPh6+uLp59+GtOmTcP27durXLt79244OjoiKioK3t7emDdvHry9vZGWliZD5ERERNJQKhSSHLZCtpaK9PR0lJaWIjAw0HAuKCgIGzZsQHl5OZTKP/OdkydPon///rCzszOcS0hIsGq8REREUuOUUolotVq4ublBpVIZznl4eECv1yM/P9/o2qysLDRt2hSvvfYaevbsieeffx5JSUlWjpiIiIjEyJZU6HQ6o4QCgOF1cbHxksyFhYXYtGkTmjVrhs2bN+Pxxx/H1KlTcf36davFS0REJDUO1JSIWq2ukjxUvtZoNEbn7ezs4OPjg3nz5gEAOnXqhJ9++glffPEFZs2aZZ2AiYiIJMYppRLx8vJCXl4eSkv/3OhJq9VCo9HA2dnZ6NpmzZrh0UcfNTrXpk0btlQQERHZENmSCh8fH9jb2yM5OdlwLikpCX5+fkaDNAGgS5cuuHDhgtG5zMxMtGzZ0hqhEhER1YmKgZqWH7ZCtu4PBwcHjBw5ElFRUXjjjTdw8+ZNxMfHY+XKlQAqWi2aNGkCjUaDsWPH4uOPP8a6deswfPhwfP7558jKysKIESPkCl9ydb19dl3L0+dbdH9LR/EE8YauSLT84oVc0fLHRjwlWj6tx++i5U3Vj9RYZmprbpWdSrzcxr9bovv1oP+9Zg0KSLBMtySRSEPWnpiIiAj4+vpi0qRJWL58OcLDwzFw4EAAQEhICPbs2QMAaNmyJbZs2YLDhw9j6NChOHz4MDZt2gQvLy85wyciIqJ7yLqipoODA2JiYhATE1Ol7K/dHUFBQUhMTLRWaERERHWuvq1TwQ3FiIiIZKJQKizuvrCl2R9MKoiIiGRS37Y+t6H8hoiIiB5kbKkgIiKSCcdU0H2p71OrGpvYntpN6Spa/v31X0TLj2WKb3Hf8mE70fKObR1Ey0Oai09pvSsybdTUZ3/Qv1tbV9//bD3I+OxNq9hl1NI6pIlFCuz+ICIiIkmwpYKIiEguUmwIxpYKIiIiUigVkhy1UVxcjOXLl+Pxxx/Hk08+ibfffhuCULGr2blz5zBmzBgEBATgueeeQ1paWq3qZlJBRETUgPzzn//Ef/7zH2zduhVvvfUWdu7ciU8//RSFhYWYMWMGgoODkZiYiMDAQMycOROFhYVm183uDyIiIplYe/ZHfn4+EhIS8MEHH8Df3x8AMGXKFKSkpMDe3h5qtRoLFy6EQqFAZGQkfvjhB+zduxehoaFm1c+WCiIiIplULn5l6WGupKQkODk5oVu3boZzM2bMwMqVK5GSkoKgoCDDrqcKhQJdu3Y12k3clAbXUlFcXgK7GtY0lXP6k6lpcabUdeyWTtszdf/DTuJTRv/eXXwX0fBt5aLlTz4lvpPo0ZwbouX9W/iIltuy+j7l8kGPn0gqBQUFsLP7c3q9SqWCSmW8S3JWVhZatmyJzz//HBs2bEBJSQlCQ0Mxe/ZsaLVatGvXzuh6d3d3ZGRkmB1Dg0sqiIiIbIWU3R+9e/eGTqcznA8LC0N4eLjRtYWFhbh69Sp27NiBlStXQqvVYunSpXBwcIBOp6uShKhUKhQXF5sdC5MKIiIimUi5odiRI0eqtFT8lb29PQoKCvDWW2+hZcuKRf+ys7PxySefwNvbu0oCUVxcDI1GY3YsTCqIiIhkIuWGYk5OTkZJRXWaNWsGtVptSCgA4JFHHsH169fRrVs35ObmGl2fm5sLT09Ps2PhQE0iIqIGIiAgAHq9HpcvXzacy8zMRMuWLREQEIDTp08b1qwQBAGnTp1CQECA2fUzqSAiIpJJxZgKyw9zPfroo+jTpw8iIiKQnp6OH3/8EZs2bcK4ceMwaNAg3LlzB9HR0bh48SKio6Oh0+kwePBgs+tnUkFERCSTiu4PS5OK2r3nmjVr8PDDD2PcuHFYtGgRXnzxRUyYMAFOTk7YuHEjkpKSEBoaipSUFGzatAmOjo5m180xFURERA1IkyZNsGrVqmrL/P39sXv37vuuu8ElFSplI9gprd9AY+lcelNrDdT1WgQWx18mPiXJTeUmWv4bxNepWDdJ/DsdFflf0fK/TRNfh6KrR16NZW5qV9F7TTH53Zp4dk7cep3ogaWE5VuX21KXQ4NLKoiIiGyFQqmAQrAsq6jo/hAkicdStpTgEBER0QOMLRVEREQyUSgUsHT5K1tqqWBSQUREJBOFApavqGlpBRJi9wcRERFJgi0VREREMpGu+8M2MKl4QNj6tEBLt243JbdIvP5VX4tveOPfs51o+dOtb5mIwKvGkjx9vuidpqacmvpu5f7u6/vW6URykm72h21gUkFERCQTjqkgIiIiqgZbKoiIiGTCMRVEREQkDQmSCov7TyTE7g8iIiKSBFsqiIiIZKJUWP7bvaUbkklJ1pYKvV6PJUuWIDg4GCEhIYiPj6/x2tmzZ6NDhw5Gx+HDh60YLRERkbQUCkGSw1bI2lKxatUqpKWlYdu2bcjOzsaiRYvQokULDBo0qMq1ly5dwurVq9GjRw/DORcXF2uGKzpf39bn6su9Nbqp8oKSu6LlHhrx+x0cVaLlpjzq3FS0XGxr9kY2/t2bwnUoiEgqsiUVhYWF2LVrFzZv3gxfX1/4+voiIyMD27dvr5JUFBcX49q1a/Dz80OzZs1kipiIiEhaXKdCIunp6SgtLUVgYKDhXFBQEFJSUlBeXm50bWZmJhQKBVq3bm3tMImIiOqMUiFIctgK2ZIKrVYLNzc3qFR/Nlt7eHhAr9cjPz/f6NrMzEw4OTlh4cKFCAkJwejRo3HkyBErR0xERCQthUSHrZAtqdDpdEYJBQDD6+LiYqPzmZmZKCoqQkhICLZs2YLevXtj9uzZOHPmjNXiJSIiInGyjalQq9VVkofK1xqN8eZQc+bMwYQJEwwDMzt27IizZ89i586d8PPzs07AREREElMqBAmmlLL7A15eXsjLy0NpaanhnFarhUajgbOzs9G1SqWyykyPRx99FDdu3LBKrERERHVBoZDmsBWytVT4+PjA3t4eycnJCA4OBgAkJSXBz88PSqVxrrN48WIoFAqsXLnScC49PR3t27e3asxyTq2zdNpfXcduakqoU6PGouV5xfmi5R1dHxYtb+ou/v63fi8ULTfF1PblDzJOGSUiqcjWUuHg4ICRI0ciKioKqampOHjwIOLj4zFx4kQAFa0WRUVFAIB+/frhq6++wueff46rV68iLi4OSUlJeOmll+QKn4iIyGJsqZBQREQEoqKiMGnSJDg5OSE8PBwDBw4EAISEhGDlypUIDQ3FwIEDsWzZMrz//vvIzs7GY489hi1btqBVq1Zyhk9ERGQRJQSLl9lWwnbGVMiaVDg4OCAmJgYxMTFVyi5cuGD0esyYMRgzZoy1QiMiIqJa4oZiREREMpFinQkb6v1gUkFERCQXSaaU2lD3h6y7lBIREVH9wZaKB0RdT/vL0+dbdL+pKZem6i8pLxYtz76rFS0f6St+f4rWVbTcRSVennX3vzWWeTl4it5b198ddxklenBJsqFYLa8/cOAAwsLCjM4988wziI2Nxblz57Bs2TL8+uuvaNeuHZYvX47OnTubXTeTCiIiIrkoBAnGRNSu++PixYvo27cvVqxYYTinVqtRWFiIGTNmYNiwYXjzzTfxySefYObMmThw4AAcHR3NqpvdH0RERDJRSnTUxqVLl9C+fXs0a9bMcDg7O2PPnj1Qq9VYuHAh2rZti8jISDRu3Bh79+6t1echIiKiBuLSpUto06ZNlfMpKSkICgqC4n+raSkUCnTt2hXJyclm182kgoiISCYVK2IKFh7mv58gCLh8+TKOHj2KZ555BgMGDMCaNWtQXFwMrVYLT0/jMWLu7u7Iyckxu36OqSAiIpKJUmH5b/eV9xcUFMDOzs5wXqVSQaVSGV2bnZ0NnU4HlUqFtWvX4tq1a/jnP/+JoqIiw/l7qVSqKjuKi2FSQUREVA/07t0bOp3O8DosLAzh4eFG17Rs2RInTpyAi4sLFAoFfHx8UF5ejldeeQXdunWrkkAUFxdDo9GYHQOTCiIiIpkoJJj98b8REDhy5EiVlorquLq6Gr1u27Yt9Ho9mjVrhtzcXKOy3NzcKl0iYphUEACgsYmtyS1VUCq+NXmJibUWXNXi05k++Vm8vFMb0WI0VbuJXyBC7nUg5H5/qjtcg6T+k7L7w8nJySipqM6PP/6IBQsW4Pvvv4eDgwMA4Pz583B1dUVQUBA2b94MQRCgUCggCAJOnTqFWbNm1ToWIiIiqucCAwOhVqvx6quvIjMzE0eOHMGqVaswbdo0DBo0CHfu3EF0dDQuXryI6Oho6HQ6DB482Oz6mVQQERHJRAFBksNcTk5O2Lp1K27duoXnnnsOkZGReOGFFzBt2jQ4OTlh48aNSEpKQmhoKFJSUrBp0yazF74C2P1BREQkGzmW6X7sscfwwQcfVFvm7++P3bt333csbKkgIiIiSbClgoiISCbSbH1uO5hUEBERyUSO7o+6xKSCAJiemmZqapup8taNW1p0/yeXTouWd2vvJFpuyrW710TL3VQ1TzlVmdj2XW6clmi7bP27sfX46oP61lJhS7EQERHRA4wtFURERDJRgN0fREREJIH6NqaC3R9EREQkCbZUEBERyUQhwUBNW2qpYFJBREQkE3Z/EBEREVWDLRUEoO7noxeUiG99rrJTiZZ7aspFyzu6FIuW68pKTdTvLVpuamt2OXEtgQeXrX83th5ffaBE/VqngkkFERGRTNj9QURERFQNtlQQERHJRKEQ6lVLhdlJxZkzZ/Dvf/8bycnJyMnJQUlJCTQaDZo1a4YuXbrgxRdfROfOnesyViIionpFqbC8y8CWuhzMSiq+/PJLvPrqqxg+fDhmzJgBd3d3qFQqFBcXIzc3F0lJSXjppZfwxhtvYMiQIXUdMxERUb3QIFsqYmNjsXTpUowePbra8tDQUHTp0gXvvPMOkwoiIqIGyqyk4tatWwgMDBS9xt/fH1qttlZvrtfrsXz5cuzfvx8ajQZTpkzBlClTRO+5du0ahg0bhg0bNqB79+61ej9bJve0QIu3Pi8Tn9Lp1KhxrWO6V6DHo6LlpqZ8FpaKT2k1xU1ke3NLvztL7+e0P6IHlxL1q/vDrFh69uyJ6OhoXL9+vdryGzduIDo6Gj169KjVm69atQppaWnYtm0bli1bhri4OOzdu1f0nqioKBQWFtbqfYiIiGyRAkJFF4glBwS5P4aBWS0VK1aswOLFi9G3b1+0aNECnp6eaNSoEUpKSqDVapGdnY2QkBBER0eb/caFhYXYtWsXNm/eDF9fX/j6+iIjIwPbt2/HoEGDqr3nyy+/xN27lv3GSURERHXDrKTC1dUVGzZswG+//YYhQ4YgNDQUSqUSarUaXl5eCAgIgLOzM1577TXExsaa9cbp6ekoLS016lYJCgrChg0bUF5eDqXSuBElLy8Pq1evRnx8PIYOHVqLj0hERGSb6lv3h1lJxenTp3H16lUAQFlZGVxcXNCkSRMAQGlpKZKSkpCZmYmjR4+a/cZarRZubm5Qqf5cntnDwwN6vR75+flo2rSp0fVvvvkmRo0ahccee8zs9yAiIrJlFV0YFtYBwFZ6QMxKKhwcHLBu3ToIggBBELB161ajlgSFQgFHR0csWLDA7DfW6XRGCQUAw+viYuNBf//5z3+QlJSEr7/+2uz6iYiIyLrMSio6duyI7777DgAwYcIExMXFwcXFxaI3VqvVVZKHytcajcZwrqioCEuXLsWyZcuMzhMRET3oFKhfe3/Uepnuf/3rX5K8sZeXF/Ly8lBaWgp7+4owtFotNBoNnJ2dDdelpqYiKysL8+bNM7p/+vTpGDlyJF5//XVJ4pGbrU8LtDQ+U9Mmb+huipa7qVxFy/9b+N/ahmTEkl1ILX02tv7dU/1lavdgS6eCk2lKhQClhVmBEniwuj/qgo+PD+zt7ZGcnIzg4GAAQFJSEvz8/Iy6Vvz9/bF//36jewcOHIh//vOf6Nmzp1VjJiIioprJllQ4ODhg5MiRiIqKwhtvvIGbN28iPj4eK1euBFDRatGkSRNoNBp4e3tXud/Lywvu7u7WDpuIiEhSttR9YSlZZ6JERETA19cXkyZNwvLlyxEeHo6BAwcCAEJCQrBnzx45wyMiIqpTFd0flh+2Qtatzx0cHBATE4OYmJgqZRcuXKjxPrEyIiKiB4VCAWmmlNoIW1ozg4iIiKxoxowZWLx4seH1uXPnMGbMGAQEBOC5555DWlparepjUkFERCQThUTH/fjmm29w5MgRw+vCwkLMmDEDwcHBSExMRGBgIGbOnFmr/baYVBAREclErjEV+fn5WLVqFfz8/Azn9uzZA7VajYULF6Jt27aIjIxE48aNTW70eS9Zx1RQ/WHpWgsl5eJbp98sEl/HwlJiW5tbSu5t7YlqwnUoGq6YmBiMGDECN2/++XdrSkoKgoKCoPjfIA+FQoGuXbsiOTkZoaGhZtXLlgoiIiKZSNn9UVBQYHT8ddXqSseOHcMvv/yCOXPmGJ3XarXw9PQ0Oufu7o6cnByzPw9bKoiIiGSiVAgQpFhRE0Dv3r2h0+kM58PCwhAeHm50rV6vx7Jly7B06dIqW1/UtCdXTclJdZhUEBER1QNHjhyBnZ2d4fVfEwQAiIuLQ+fOndGrV68qZTXtyVWbfbeYVBAREclEyg3FnJycjJKK6nzzzTfIzc1FYGAggD838ty3bx+GDh2K3Nxco+tzc3OrdImIYVJBREQkE4VCsOriV//6179QWlpqeL1mzRoAwIIFC/Dzzz9j8+bNEAQBCoUCgiDg1KlTmDVrltn1M6kgIiJqIFq2bGn0unHjihlA3t7ecHd3x1tvvYXo6GiMHTsWO3bsgE6nw+DBg82un0kF2QRPjfnNa9WxZOtyoG6nfXLKKNH9aQjTsZWwfNdyqaZxOjk5YePGjVi2bBl27tyJDh06YNOmTXB0dDS7DiYVREREMrF298dfvfnmm0av/f39sXv37vuuj0kFERGRTGyppUIKthQLERERPcDYUkFERCQTubs/pMakgoiISCYKWN5lYEtJBbs/iIiISBJsqbhHQ5i+ZKtUdlWXk73X3ZK7ouV5xXmi5aamrN7Si9/f3MGyKa9ku8T+3PPPvLwawvNn9wcRERFJQsplum0Buz+IiIhIEmypICIikolSAUBh2UoVShtqq2BSQUREJBOFAvVqTAW7P4iIiEgSbKkgIiKSiRICLF2o25ZaB5hUEBERyaS+dX8wqbhHQ5gTbatMPftb5cWi5abWoSgoFV/noi7XocjT54uWN27UWLScP5d1S87ny7VxiFNKiYiIiKrBlgoiIiKZKBWCBFNKbQeTCiIiIpmw+4OIiIioGmypICIikgm7P4iIiEgS9a37g0kFScLU1DhTTG1t3lTtVqf3F5i430lk2qepz97IxLTA+j5tkNMma9aQPzvVT0wqiIiIZKJQCFBY2P1hSy0VsnbF6PV6LFmyBMHBwQgJCUF8fHyN13755Zd45pln4O/vj7FjxyI1NdWKkRIREUlPgYp/iC05mFT8z6pVq5CWloZt27Zh2bJliIuLw969e6tc98svvyAyMhJz5szBN998g8DAQEyfPh1374o3WRMREZH1yJZUFBYWYteuXYiMjISvry+efvppTJs2Ddu3b69yrVarxZw5czBixAi0bt0ac+fORX5+Pi5duiRD5ERERNJQKBSSHLZCtjEV6enpKC0tRWBgoOFcUFAQNmzYgPLyciiVf+Y7gwcPNvz/oqIifPjhh3B3d0fbtm2tGjMREZGUpEgHbCelkDGp0Gq1cHNzg0qlMpzz8PCAXq9Hfn4+mjZtWuWeY8eOYcqUKRAEAWvWrEHjxuIbMREREdkyBRQWZwUKwXbSCtmSCp1OZ5RQADC8Li6ufkfKxx57DImJiTh8+DAWL16MVq1aoUuXLnUdKhEREZlBtqRCrVZXSR4qX2s0mmrv8fDwgIeHB3x8fJCSkoIdO3YwqZCIpetMWDzf3sT235YytY5FXRJb46Ih4FoMRDWrb90fsg3U9PLyQl5eHkpLSw3ntFotNBoNnJ2dja5NTU3F2bNnjc61bdsWeXl5VomViIioLigk+s9WyJZU+Pj4wN7eHsnJyYZzSUlJ8PPzMxqkCQCfffYZ3n77baNzZ8+exaOPPmqNUImIiOqNq1evYurUqQgMDESfPn2wZcsWQ1lWVhYmT56MLl26YMiQITh69Git6pYtqXBwcMDIkSMRFRWF1NRUHDx4EPHx8Zg4cSKAilaLoqIiAMALL7yA48ePY9u2bbhy5QpiY2ORmpqKyZMnyxU+ERGRxRQKaQ5zlZeXY8aMGXBzc8Pu3buxfPlyvP/++/jqq68gCALmzp0LDw8PJCQkYMSIEQgLC0N2drbZ9cu6+FVERAR8fX0xadIkLF++HOHh4Rg4cCAAICQkBHv27AEA+Pr6Ii4uDp999hmGDx+OI0eOYOvWrfDy8pIzfCIiIosooZDkMFdubi58fHwQFRWFNm3aoHfv3ujRoweSkpJw/PhxZGVl4fXXX0fbtm0xc+ZMdOnSBQkJCWbXL+veHw4ODoiJiUFMTEyVsgsXLhi97tu3L/r27Wut0IiIiOodT09PrF27FgAgCAJOnTqFn3/+GcuWLUNKSgo6deoER0dHw/VBQUFGwxRMsaVt2ImIiBoUKbs/CgoKjI6almeo1K9fP4wfPx6BgYF45plnoNVq4enpaXSNu7s7cnJyzP483KX0AVHX20ebut/SKaeWKi4T/8PR2MS0TVP3m3x/kc8v95RJbi1O9OBS3PO/ltUB9O7dGzqdznA+LCwM4eHhNd4XGxuL3NxcREVFYeXKlTWuH2UqObkXkwoiIqJ64MiRI7CzszO8/muC8Fd+fn4AKnYMX7BgAZ577jmjpASoWD+qprWjqsPuDyIiIplI2f3h5ORkdFSXVOTm5uLgwYNG59q1a4eSkhI0a9YMubm5Va7/a5eIGCYVREREMrH24lfXrl1DWFgYbty4YTiXlpaGpk2bIigoCGfPnjUs5wBUrB8VEBBgdv1MKoiIiGRi7XUq/Pz84OvriyVLluDixYs4cuQIVq9ejVmzZqFbt2546KGHEBERgYyMDGzatAmpqakYPXq02fUzqSAiImog7OzssH79ejg4OOCFF15AZGQkJkyYgIkTJxrKtFotQkND8eWXX+K9995DixYtzK6fAzWJiIhkIsW+HbWtwcvLC3FxcdWWeXt74+OPP77vWJhUPCDqelpggYldPOt6p01TUz5VduKjmOv7lFoxnDJK9OBSAhAsrMN2thNj9wcRERFJhC0VREREclEoajXQsvo6JIlEEkwqiIiIZGJD+YAk2P1BREREkmBLBRERkUwUCoXlzRU21NzBpIKIiEgmNpQPSILdH0RERCQJtlQQANPrUFi6vbal6zxYuhbDDd1N0fLWjVuKlouto1HX60Rwa3OyVfzZtBy7P4iIiEgSNpQPSIJJBRERkUykWKbblnBMBREREUmCLRVEREQyUSrAMRVERERkOXZ/EBEREVWDLRVW8qBPvbJ0yqilny9Pny9a7qZ2NXF/nmi5qSmlYluv1/V0WVv/2aCGiz+bllOw+4OIiIikwO4PIiIiomqwpYKIiEgm7P4gIiIiSbD7g4iIiKgabKkgIiKSCbs/iIiISBL1rfuDSYWVPOjzuet663OxrcUBoLGJrdmz7v5XtNwUSz7fg74GCRHJp76NQahvn4eIiIhkImtSodfrsWTJEgQHByMkJATx8fE1Xvv9999jxIgRCAwMxLBhw/Ddd99ZMVIiIiLpKRQKSQ5bIWtSsWrVKqSlpWHbtm1YtmwZ4uLisHfv3irXpaenIywsDM899xw+//xzjB07Fn//+9+Rnp4uQ9RERERSUUh02AbZxlQUFhZi165d2Lx5M3x9feHr64uMjAxs374dgwYNMrr266+/xhNPPIGJEycCALy9vXHo0CF8++236NixoxzhExER0V/IllSkp6ejtLQUgYGBhnNBQUHYsGEDysvLoVT+2YgyatQolJRUHQz3xx9/WCVWIiKiumJpO4MgSRTSkC2p0Gq1cHNzg0r15+6PHh4e0Ov1yM/PR9OmTQ3n27Zta3RvRkYGjh07hrFjx1otXiIiIqlVjImwtBLbSSxkSyp0Op1RQgHA8Lq4uObphbdu3UJ4eDi6du2K/v3712mMDUldTxm1dHvvgpK7ouWNTNzfunEr0XJTU1rFcMooET1Ibty4gejoaBw/fhxqtRpDhgzB/PnzoVarkZWVhddeew3Jyclo0aIFlixZgpCQELPrlm2gplqtrpI8VL7WaDTV3pObm4tJkyZBEATExsYadZEQERE9eKw7UFMQBMybNw86nQ7bt2/HO++8g8OHD2Pt2rUQBAFz586Fh4cHEhISMGLECISFhSE7O9vs+mVrqfDy8kJeXh5KS0thb18RhlarhUajgbOzc5Xrb9y4YRio+dFHHxl1jxARET2IpJq7YW73R2ZmJpKTk/HTTz/Bw8MDADBv3jzExMTgqaeeQlZWFnbs2AFHR0e0bdsWx44dQ0JCAsLDw82qX7Zf9X18fGBvb4/k5GTDuaSkJPj5+VVpgSgsLMS0adOgVCrx8ccfw8vLy8rREhERPfiaNWuGLVu2GBKKSgUFBUhJSUGnTp3g6OhoOB8UFGT077QpsrVUODg4YOTIkYiKisIbb7yBmzdvIj4+HitXrgRQ0WrRpEkTaDQabNy4Eb/99hv+9a9/GcqAim6SJk2ayPURiIiILKKQcPePgoIC2NnZGV6rVKoqYxednZ3Rq1cvw+vy8nJ8/PHHeOKJJ6DVauHp6Wl0vbu7O3JycsyOQdZBCREREfD19cWkSZOwfPlyhIeHY+DAgQCAkJAQ7NmzBwCwb98+FBUVYcyYMQgJCTEc0dHRcoZPRERkGYVCmgNA7969ERQUZDg2btxo8u1Xr16Nc+fO4R//+EeNEyjEJk/8lawbijk4OCAmJgYxMTFVyi5cuGD4/9WtsklERPSgk3I9zCNHjlRpqRCzevVqbNu2De+88w7at28PtVqN/Px8o2uKi4trnDxRHe5SSgAsnxZ518SUT5Xa1aL6nUzsUlpiYkqrKabuN/X+RERyc3JyMkoqxKxYsQKffPIJVq9ejWeeeQZAxQSKixcvGl2Xm5tbpUtEDOdkEhERycb6e3/ExcVhx44dePvtt/Hss88azgcEBODs2bMoKioynEtKSkJAQIDZdTOpICIikolCov/MdenSJaxfvx7Tp09HUFAQtFqt4ejWrRseeughREREICMjA5s2bUJqaipGjx5tdv3s/iAiImogvvvuO5SVleH999/H+++/b1R24cIFrF+/HpGRkQgNDYW3tzfee+89tGjRwuz6mVQQERHJ5J7JGxZUYv6lM2bMwIwZM2os9/b2xscff3zfoTCpICIiklX92aeUYyqIiIhIEmypICIikkltB1rWzDZaK5hUkCTcLFyHwtTW5gWl4uVqpfgiL6biM7V1OxFRXZBy8StbwO4PIiIikgRbKoiIiOQixfQPBcDuDyIiogZOujEVtoFJBRERkUzqW1LBMRVEREQkCSYVREREJAl2f1iJqSmLlm49buvvb4rKTnxKqJOF9ZuasmoJuZ8dET24FAoFFJIM1LQNbKkgIiIiSbClgoiISDb1a/krJhVEREQyqV8pBbs/iIiISCJsqSAiIpJJfVungkkFERGRbCRYptuGsPuDiIiIJMGWCiuRey0Dud/f1DoZxWXFouVOjRqLlufoboqWN3fwtOx+kfc3tQaGqTU45P5uHnS2vgYLkZj6NlCTSQUREZFMOKaCiIiIJFK/2io4poKIiIgkwZYKIiIimSikmPxhQw0dTCqIiIhkw+4PIiIioirYUkFmMTVtz1Kmpoyaev+rf2SLljdVu4m/v734+4veayJ2qlucMkoPMs7+ICIiIolYnlQIEkUiBXZ/EBERkSRkTSr0ej2WLFmC4OBghISEID4+3uQ9v/zyC/r372+F6IiIiOqYQqLDRsja/bFq1SqkpaVh27ZtyM7OxqJFi9CiRQsMGjSo2usvXLiAv//971Cr1VaOlIiISHpSjKmwoZxCvpaKwsJC7Nq1C5GRkfD19cXTTz+NadOmYfv27dVev2PHDowdOxbu7u5WjpSIiKj+KS4uxtChQ3HixAnDuaysLEyePBldunTBkCFDcPTo0VrVKVtSkZ6ejtLSUgQGBhrOBQUFISUlBeXl5VWu/+GHHxATE4PJkydbMUoiIqK6o5Dov9rS6/WYP38+MjIyDOcEQcDcuXPh4eGBhIQEjBgxAmFhYcjOFp9ddy/Zuj+0Wi3c3NygUv25g6OHhwf0ej3y8/PRtGlTo+vXr18PAEhMTLRqnFTB1LS9ut4p8pY+T7Q8665OtLy9i/hOom5q19qGZMBdMonovkkxJqKW91+8eBEvv/wyBMF43sjx48eRlZWFHTt2wNHREW3btsWxY8eQkJCA8PBws+qWraVCp9MZJRQADK+Li8W3wSYiIqoP5GipOHnyJLp3745PP/3U6HxKSgo6deoER0dHw7mgoCAkJyebXbdsLRVqtbpK8lD5WqPRyBESERHRA6ugoAB2dnaG1yqVqsov7wAwfvz4au/XarXw9PQ0Oufu7o6cnByzY5AtqfDy8kJeXh5KS0thb18RhlarhUajgbOzs1xhERERWY2Usz969+4Nne7PruCwsDCzuy2AmnsQatN7IFtS4ePjA3t7eyQnJyM4OBgAkJSUBD8/PyiVXJOLiIjqPymHVBw5cqRKS0VtqNVq5OfnG50rLi6uVe+BbP96Ozg4YOTIkYiKikJqaioOHjyI+Ph4TJw4EUBFq0VRUZFc4RERET1QnJycjI7aJhVeXl7Izc01Opebm1ulS0SMrE0CERER8PX1xaRJk7B8+XKEh4dj4MCBAICQkBDs2bNHzvCIiIjqlgKAQmHhIU0oAQEBOHv2rNEv9ElJSQgICDC7DllX1HRwcEBMTAxiYmKqlF24cKHae0JDQxEaGlrXoREREdU5acZUSJNVdOvWDQ899BAiIiIwZ84cHD58GKmpqVi5cqXZdXCXUpKEpWsxWLq1ev8WPqLljUzEl6O7KVpuaut0IqIHnZ2dHdavX4/IyEiEhobC29sb7733Hlq0aGF2HUwqiIiIZCLD2ldG/tor4O3tjY8//vi+62NSQUREJJfKcRGW1mEjOHeTiIiIJMGWCiIiIpnY0kBNKTCpICIikoncYyqkxqSCiIhIJmypoAeSrW/Pber9newbW1S/UyPx+1V2tVt5zuheC7eFt7R+IiJbwaSCiIhILvWs/4NJBRERkUzqW/cHp5QSERGRJNhSQUREJBO2VBARERFVg0kFERERSYLdH0RERDJRKBRQWLh3h6X3S4lJRQMh91oHlq6TUWLi/sYm1qHI0+eLluvLi0XLmzt41lhm62uAEJHt4pgKIiIiomqwpYKIiEgm9WztKyYVREREslEoKg5L67ARTCqIiIhkwjEVRERERNVgSwUREZFMOKaC6iVLp0UWlNwVLTe19bip+xuZeH9T8anUrha9vyXvTURUM8u7P2wprWD3BxEREUmCLRVERERy4ewPIiIikkJ9G1PB7g8iIiKSBFsqiIiIZFLf1qlgUkFERCQXjqmg+sjSaZGmpoyanLJqpxIvNxFfju6maHlTtZtF709E9U9Nfy+VlZdbOZL6g0kFERGRTOrbQE0mFURERDKpb2MqOPuDiIhIJgqJ/qsNvV6PJUuWIDg4GCEhIYiPj5fs87ClgoiIqAFZtWoV0tLSsG3bNmRnZ2PRokVo0aIFBg0aZHHdTCqIiIjkYuVBFYWFhdi1axc2b94MX19f+Pr6IiMjA9u3b5ckqWD3BxERkUys3f2Rnp6O0tJSBAYGGs4FBQUhJSUF5RLMemkwLRWCIAAAyso4VUgOlk7RKhPE7y8vE8Tvt/B7N/X+RPTgqenvpfL//X1R+e9GXSqX4N+kyjoKCgpgZ2dnOK9SqaBSGU+X12q1cHNzMzrv4eEBvV6P/Px8NG3a1KJYGkxSUZmBZZy7Im8gJIs8/CF3CET0gJHiN/eaKBQK2Nvb41eJ/k0qLi5Gz549UVLy59obYWFhCA8PN7pOp9NVSTQqXxcXF1scR4NJKuzt7eHn5welUgmFDa0+RkREtkUQBJSXl8Pevu7+iVQqlfDz85OsNaSkpATHjx83OvfX5AEA1Gp1leSh8rVGo7E4jgaTVCiVymofMBERkRyUSumGNd7b7SHGy8sLeXl5KC0tNSRNWq0WGo0Gzs7OFsfBgZpEREQNhI+PD+zt7ZGcnGw4l5SUZGjJtxSTCiIiogbCwcEBI0eORFRUFFJTU3Hw4EHEx8dj4sSJktSvEKwxvJWIiIhsgk6nQ1RUFPbv3w8nJydMnToVkydPlqRuJhVEREQkCXZ/EBERkSSYVBAREZEkmFQQERGRJJhU1LHabDF74cIFjBs3Dv7+/hg2bFiVhUw+/PBD9OrVC4GBgViyZAl0Op1Nx3z79m106NDB6Ojevbts8U6YMKFKPB06dEBERIThGlt7xqZitrVnDAAHDhzA4MGDERgYiHHjxuHs2bNG5dZ4xlLFa63nW9uYjx49iuHDhyMwMBCTJ09GZmamUfnXX3+NAQMGICAgAHPnzsWtW7dsOt7g4OAqz/nu3buSx0xWIFCdev3114Vhw4YJaWlpwv79+4XAwEDh22+/rXLdnTt3hCeffFJ49dVXhStXrgjvvvuuEBQUJOTm5gqCIAh79+4VgoKChEOHDgkpKSnCkCFDhOXLl9t0zL/88ovQrVs34ebNm4ajskyOePPy8oxiOXDggODr6yukpqYKgmCbz9hUzLb2jH/99VfBz89P2L17t3D16lVh+fLlQs+ePYXCwkJBEKz3jKWK11rPt7Yxd+rUSVi7dq1w6dIlISYmRggJCREKCgoEQRCElJQUwd/fX9i9e7dw/vx54aWXXhJmzJhhs/Hm5OQI7du3F3777Tej51xeXi55zFT3mFTUobt37wp+fn7C8ePHDefee+894aWXXqpy7bZt24QBAwYIpaWlhnOhoaHC999/LwiCIIwfP16IjY01lP3888+Cv7+/4S8/W4x5586dwgsvvCBpfJbEe6/S0lJhyJAhwjvvvGM4Z4vP2FTMtvaMP/jgA2HUqFGG13/88YfQvn17QxJkjWcsZbzWeL61jXn58uXCiy++aHhdXl4uDB48WPjkk08EQRCEV155RVi0aJGhPDs7W+jQoYPw22+/2WS8P/30k9CzZ0/JYiN5sfujDtVmi9mTJ0+if//+RkutJiQkoHfv3igrK8OZM2cQHBxsKOvSpQtKSkqQnp5ukzEDwMWLF9GmTRtJ47Mk3nslJibi9u3bmD59OgDY7DMWixmwvWfs6uqKixcvIikpCeXl5UhMTISTkxMefvhhqz1jqeIFrPN8axtzVlYW/P39Da8VCgXat29vWCExJSXF6Bk/9NBDaNGiBVJSUmwy3osXL+KRRx6RLDaSF5OKOmRqi9l7ZWVloWnTpnjttdfQs2dPPP/880hKSgIA3LlzB3q9Hp6enobr7e3t4erqipycHJuMGQAuXbqEnJwcjB49Gr169cI//vEP3Lx5U7Z4KwmCgC1btmDixIlo3LgxANt9xmIxA7b3jIcMGYI+ffpg/Pjx6Ny5M1atWoXY2Fi4uLhY7RlLFS9gnedb25g9PDxw48YNo3M5OTnIy8sDANy8edPoGQOAu7u7bM/YVLyXLl2CTqfDhAkTEBISgunTp+Py5cuSxUrWxaSiDtVmi9nCwkJs2rQJzZo1w+bNm/H4449j6tSpuH79OoqKiozuvbcuKbaqrYuYASAzMxMFBQWIiIjAO++8g5s3b2LWrFkoKyuTJd5KJ06cQE5ODp5//nnDOVt9xpWqixmwvWecl5cHrVaLpUuXYufOnRgxYgQiIiLw+++/W+0ZSxUvYJ3nW9uYBw8ejH379uHw4cMoLS3F7t27cebMGcOW10VFRTb1jE3Fm5mZidu3b2P27NlYv349NBoNJk+ejIKCAsniJetpMLuUyqE2W8za2dnBx8cH8+bNAwB06tQJP/30E7744gvDPyTV1eXg4GCTMc+aNQvffPMNFAqF4b7Y2FiEhIQgJSUFXbt2tXq8lfbt24ennnoKrq6uRvXce++9dcn5jCtVFzMAm3vGa9asQfv27fHiiy8CAFasWIHBgwcjISEBo0ePNrr33rqkfMZSxTtjxgyrPN/axvzUU09h7ty5CA8PR1lZGbp3744RI0YY/hGuqS65nrGpeLdu3YqSkhJDC9yaNWvQu3dvHD58GMOGDZMsZrIOtlTUoXu3mK1U0xazzZo1w6OPPmp0rk2bNrh+/TpcXV2hVquRm5trKCstLUV+fj6aNWtmkzEDFRvX3PsXjLu7O1xdXas0hVor3ko//vgj+vfvb3TOVp+xWMyA7T3js2fPomPHjobXSqUSHTt2RHZ2ttWesVTxAtZ5vrWNGQBmz56NU6dO4ejRo/jwww9x9+5dtGzZ0lDXvc8YAHJzc2V7xqbiValURl16arUarVq1kvwZk3UwqahDtdlitkuXLrhw4YLRuczMTLRs2RJKpRJ+fn5G4xWSk5Nhb29v9BeiLcVcUFCAxx9/3Gjdihs3biAvL69KImKteAHg1q1byMrKQlBQkNF5W33GYjHb4jP29PTEpUuXjM5dvnwZrVq1stozlipeaz3f2sb89ddfIzo6GiqVCu7u7igqKsKJEycM62cEBAQYPePr16/j+vXrCAgIsLl4BUHAgAEDkJiYaLi+sLAQV69elfwZk5XIPPuk3nvttdeEZ599VkhJSREOHDggdO3aVdi3b58gCIJw8+ZNQafTCYIgCNeuXRO6dOkixMbGCleuXBHWrl0rdOnSRcjJyREEQRC+/vproWvXrsKBAweElJQU4dlnnxVWrFhh0zHPnDlTGD58uJCSkiKkpaUJ48aNE6ZNmyZbvIIgCMePHxf8/PyqnQNvi8/YVMy29oy/+eYbw7oPV65cEVavXm20dom1nrFU8Vrr+dYm5jNnzgidO3cW9u3bJ1y+fFmYM2eOMHLkSKGsrEwQBEE4deqU4OvrK+zcudOwTsXMmTNtNt4VK1YIffr0EY4fPy78+uuvwty5c4WhQ4caTVWnBweTijpWWFgoLFy4UOjSpYsQEhIifPDBB4ay9u3bCwkJCYbXv/zyizBq1Cihc+fOwogRI4STJ08a1bVx40ahR48eQlBQkBARESEUFRXZdMz5+fnC4sWLhe7duwuBgYHCggULhPz8fFnj/eabb0TnxNviMxaL2Raf8c6dO4VBgwYJXbp0EcaNGyekpaUZ1WWNZyxVvNZ6vrWN+bPPPhP69u0rBAYGCnPmzBFu3LhhVFdCQoLQu3dvoUuXLsLcuXOFW7du2Wy8RUVFwsqVK4WePXsKAQEBwsyZM4Xs7GzJ4yXr4NbnREREJAmOqSAiIiJJMKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgakDOnz+PU6dOGZ3Lz8/Hk08+iWvXrskUFRHVF0wqiBqQuXPn4sqVK4bXt2/fxqxZswxbfRMRWYJJBVED9csvvyA0NBSFhYVyh0JE9QSX6SZqICZMmICTJ08CAEaNGoXmzZtDpVLh2WefxcCBA/Hdd9+hVatWMkdJRA8ye7kDICLrWLduHUaMGIEpU6YgNDQUTZo0AQCOpSAiybD7g6iBcHV1hZ2dHZo0aWJIKIiIpMSkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgqgBcXR0RGZmJvLz8+UOhYjqISYVRA3IuHHjsH37drz66qtyh0JE9RDXqSAiIiJJsKWCiIiIJMGkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgoiIiCTBpIKIiIgk8f+Xj50Gj8uR6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Corner Plot between the two peak times\n", + "plot = gpresult2.comparison_plot(\"t0\", \"t1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--------\n", + "Termination Conditions:\n", + "Small remaining evidence\n", + "--------\n", + "# likelihood evals: 1317371\n", + "# samples: 14500\n", + "# slices: 396000.0\n", + "# slices / acceptance: 33.0\n", + "# likelihood evals / sample: 90.9\n", + "# likelihood evals / slice: 3.3\n", + "--------\n", + "logZ=-241.35 +- 0.19\n", + "H=240.0\n", + "ESS=2411\n", + "--------\n", + "log_A[#]: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_A[0]: 0.81 +- 0.25 | 0.57 / 0.81 / 1.12 | 0.87 | 0.87\n", + "log_A[1]: 0.89 +- 0.25 | 0.62 / 0.89 / 1.19 | 0.99 | 0.99\n", + "--------\n", + "log_aqpo: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_aqpo: 0.23 +- 0.47 | -0.26 / 0.11 / 0.86 | 0.19 | 0.19\n", + "--------\n", + "log_arn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_arn: -0.23 +- 0.11 | -0.33 / -0.27 / -0.1 | -0.33 | -0.33\n", + "--------\n", + "log_cqpo: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_cqpo: -0.69 +- 0.76 | -1.75 / -0.71 / 0.32 | -0.48 | -0.48\n", + "--------\n", + "log_crn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_crn: 4.21 +- 0.17 | 4.0 / 4.23 / 4.41 | 4.34 | 4.34\n", + "--------\n", + "log_freq: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_freq: 2.967 +- 0.024 | 2.935 / 2.968 / 2.998 | 2.954 | 2.954\n", + "--------\n", + "log_sig[#]: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_sig[0]: -1.1 +- 1.5 | -3.2 / -0.4 / 0.5 | -0.4 | -0.4\n", + "log_sig[1]: -1.8 +- 1.6 | -3.3 / -2.7 / 0.4 | -3.3 | -3.3\n", + "--------\n", + "t0: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "t0: 0.56 +- 0.16 | 0.33 / 0.6 / 0.7 | 0.58 | 0.58\n", + "--------\n", + "t1: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "t1: 0.751 +- 0.097 | 0.678 / 0.702 / 0.928 | 0.691 | 0.691\n", + "--------\n" + ] + } + ], + "source": [ + "gpresult2.print_summary()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Credits:\n", + "\n", + "1. [Gaussian Process regression for astronomical time-series](https://arxiv.org/pdf/2209.08940), Suzanne Aigrain, Daniel Foreman-Mackey\n", + "\n", + "2. [Bayesian Model Comparison](https://ned.ipac.caltech.edu/level5/Sept13/Trotta/Trotta4.html), Roberto Trotta\n", + "\n", + "3. [Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes](https://arxiv.org/abs/2205.12716), Moritz Hubner et al." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Modeling/ModelingExamples.ipynb.txt b/_sources/notebooks/Modeling/ModelingExamples.ipynb.txt new file mode 100644 index 000000000..8335a71fa --- /dev/null +++ b/_sources/notebooks/Modeling/ModelingExamples.ipynb.txt @@ -0,0 +1,2385 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# The Stingray Modeling API Explained\n", + "\n", + "Some more in-depth explanations of how the Stingray modeling API works.\n", + "\n", + "Who should be using this API?\n", + "Basically, anyone who wants to model power spectral products with parametric functions. The purpose of this API is two-fold:\n", + "(1) provide convenient methods and classes in order to model a large range of typical data representations implemented in Stingray\n", + "(2) provide a more general framework for users to build their own models\n", + "\n", + "A note on terminology: in this tutorial, we largely use _model_ to denote both the parametric model describing the underlying process that generated the data, and the statistical model used to account for uncertainties in the measurement process. \n", + "\n", + "The `modeling` subpackage defines a wider range of classes for typical statistical models than most standard modelling packages in X-ray astronomy, including likelihoods for Gaussian-distributed uncertainties (what astronomers call the $\\chi^2$ likelihood), Poisson-distributed data (e.g. light curves) and $\\chi^2$-distributed data (confusingly, *not* what astronomers call the $\\chi^2$ likelihood, but the likelihood of data with $\\chi^2$-distributed uncertainties appropriate for power spectra). It also defines a superclass `LogLikelihood` that make extending the framework to other types of data uncertainties straightforward. It supports Bayesian modelling via the `Posterior` class and its subclasses (for different types of data, equivalent to the likelihood classes) and provides support for defining priors. \n", + "\n", + "The class `ParameterEstimation` and its data type-specific subclasses implement a range of operations usually done with power spectra and other products, including optimization (fitting), sampling (via Markov-Chain Monte Carlo), calibrating models comparison metrics (particularly likelihood ratio tests) and outlier statistics (for finding periodic signal candidates).\n", + "\n", + "Overall, it is designed to be as modular as possible and extensible to new data types and problems in many places, though we do explicitly *not* aim to provide a fully general modelling framework (for example, at the moment, we have given no thought to modeling multi-variate data, though this may change in the future).\n", + "\n", + "\n", + "## Some background\n", + "\n", + "Modeling power spectra and light curves with parametric models is a fairly standard task. Stingray aims to make solving these problems as easy as possible. \n", + "\n", + "We aim to integrate our existing code with `astropy.modeling` for for maximum compatibility. Please note, however, that we are only using the models, not the fitting interface, which is too constrained for our purposes. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "# ignore warnings to make notebook easier to see online\n", + "# COMMENT OUT THESE LINES FOR ACTUAL ANALYSIS\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Install seaborn. It help you make prettier figures!\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "try:\n", + " import seaborn as sns\n", + " sns.set_palette(\"colorblind\")\n", + "except ImportError:\n", + " print(\"Install seaborn. It help you make prettier figures!\")\n", + "\n", + "import numpy as np\n", + "\n", + "from astropy.modeling import models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The models and API of `astropy.modeling.models` is explained in the [astropy documentation](http://docs.astropy.org/en/stable/modeling/) in more detail.\n", + "\n", + "Here's how you instantiate a simple 1-D Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "g = models.Gaussian1D()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAGsCAYAAABuEEcmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL80lEQVR4nO3de3AcV5X48TOWCxssS8EOfmkEzrqyLAmPgMmDqORKfnhlcGDFykqoIgbMsqGgHGIRFgtvWGezm1Qs87IJIcAGNhS2KsHSBBVBkALWiVQqDMHZVAW8YWHXAT1sxy/kSEUcLPfvj9CzPaN+3Hunu6d7+vupUtXMqKfnzqvn9H2ck7MsyxIAAABA05xqNwAAAADpRCAJAAAAIwSSAAAAMEIgCQAAACMEkgAAADBCIAkAAAAjBJIAAAAwMjfuBzx//rxMTEzIwoULJZfLxf3wAAAACGBZljz//POyYsUKmTPHu98x9kByYmJCmpub435YAAAAaBodHZV8Pu/5/9gDyYULF4rISw1raGiI++EBAAAQ4MyZM9Lc3FyM27zEHkjaw9kNDQ0EkgAAAAkWNA2RxTYAAAAwQiAJAAAAIwSSAAAAMEIgCQAAACMEkgAAADBCIAkAAAAjBJIAAAAwQiAJAAAAIwSSAAAAMEIgCQAAACMEkgAAADBCIAkAAAAjBJIAAAAwQiAJAAAAIwSSAAAAMEIgCQCI1fT0tORyOcnlcjI9PV3t5gCoAIEkAAAAjBBIAgAAwAiBJAAAAIwQSAIAAMAIgSQAAACMEEgCAADACIEkAAAAjBBIAgAAwAiBJAAAAIwQSAIAKka1GiCbCCQBALGamZkpXh4aGiq5DiBdCCQBALEpFApyySWXFK+vX79eVq5cKYVCoYqtAmCKQBIAEItCoSCdnZ0yPj5ecvv4+Lh0dnYSTAIpRCAJAIjczMyMbNmyRSzLmvU/+7auri6GuYGUIZAEAERueHhYxsbGPP9vWZaMjo7K8PBwjK0CUCkCSQBA5I4cORLqdgCSgUASABC55cuXh7odgGQgkAQARK61tVXy+bzkcjnX/+dyOWlubpbW1taYWwagEgSSAIDI1dXVye7du0VEZgWT9vVdu3ZJXV1d7G0DYI5AEgAQi46ODunr65MVK1aU3J7P56Wvr086Ojqq1DIApggkAQAVU61W09HRIYcOHSpeLxQKMjo6Khs2bKC0IpBCBJIAgIroVqtxDl+3tLRE3j4A0SGQBAAYo1oNkG0EkgAAI1SrAUAgCQAwQrUaAASSAAAjVKsBQCAJADBCtRoABJIAACNhV6uZnp6WXC4nuVyOVEBAShBIAgCMvPDCCzI2NiaWZVGtBsgoAkkAQMWWLVtWcp1qNUA2EEgCACp28ODB4uXBwUE5fPiwdHR0MFwN1DgCSQBAxZzD12vWrGE4G8gIAkkAgKuoehMXLFgglmWJZVkyf/784u0jIyOhPQaAeBBIAgCqorxGN/MpgfQhkAQAxM6rRrdtYGCgeJl5lkByEUgCAAKFEcw593HLLbe41ui2dXd3U6MbSAECSQBA7Lx6Im1jY2PU6AZSgEASAJBI1OgGko9AEgCQSNToBpKPQBIAELumpibPGt0iIhdeeKFcffXVMbYIgAmtQPK+++6TN77xjdLQ0CANDQ3ytre9TX7wgx9E1TYAQII5F8M4c0CqLMzZuXOniIhnMHnixAlZtWqVFAqFEFsMIGxagWQ+n5cdO3bIwYMH5Re/+IX8v//3/6S9vV1+9atfRdU+AEACVZoDsr29Xfr6+mTFihWe24yPj0tnZ2dJKiAAyaIVSL773e+W9evXy8UXXyx/+Zd/KXfddZfU19fLgQMHomofACBhBgYGXHNA2r2QP/7xj4u3efVairwUfD799NOej2OnB+ru7g6j2QAiMNf0jjMzM7Jv3z6Znp6Wt73tbZ7bnT17Vs6ePVu8fubMGdOHBABEbHp6Wurr60VEZGJioni7MwjcunWraw5Iy7Ikl8uVBH6rV68uXnbrtQzqiLAsS8bGxtSfAIBYaS+2efrpp6W+vl7mzZsnH/3oR+Xhhx8uGd4od/fdd0tjY2Pxr7m5uaIGAwDi4RUE+uWALA/8vFL42MPVR48erbSZAKpIO5B87WtfK0899ZT87Gc/k4997GPywQ9+UA4dOuS5/bZt22RycrL4Nzo6WlGDAQDxiDKPo125ZtmyZVr3GxoaouINkCA5y69GlYK1a9fKqlWr5Gtf+5rS9mfOnJHGxkaZnJyUhoaGSh4aABAy+xgdh/3798tb3vKWwMerq6srCR7z+bzs3r1be4EPAHWq8VrFeSTPnz9fMgcSAJBe5QtidOVyOVm0aJHStuPj41JXV1dyXzflPZD2am5SAwHVpxVIbtu2TYaGhuTZZ5+Vp59+WrZt2yaPPfaY3HjjjVG1DwAQo0rmLNqB4Mc+9jGl7T/xiU+UpPYpH+Z2BplO9kBaV1cXw9xAlWkFks8995x84AMfkNe+9rXy9re/XZ544gl59NFH5a//+q+jah8AIEa6cxad8vm89PX1ydatW5W2P3HihGzcuLF4/eDBg8XLO3bs8A0SLcuS0dFRGR4eNm4vgMpppf/5xje+EVU7AAAJ0NLSYnS/wcFBaWtrk7q6Os9qNuXsdEE2Zw/kkiVLlPYR5YIgAMGotQ0AGeRVxtBrODnImjVrXO8bNF/Sa73nBRdcoPS4y5cvV9oOQDQIJAEArlSDuXLOIen3v//9Rvu46qqrfP+fy+WkublZWltbjfYPIBwEkgAAV/fff7/2fcprcO/evVvpfvv375cFCxYUr/ut5rav79q1y7gHFUA4CCQBAEXO3sSgNMPlAV6hUHCtwR20j6CexfIFQPl8Xvbs2SMbNmyYNTQPIF4EkgAAEZndm3j99dcXL3vleLTNzMzIli1bAoNPJ9WeRedq7sHBQTl8+LC0t7crPw6A6BBIAgACexPd5ks6M3mMjIyU1NhWYacLCqpQ4wwyvRb1AKgOrfQ/AIDao9KbOH/+/Fm3XXfddcXLuonMnemCAKQXPZIAkHEqvYlB+Rp1E5lH1bPoldYIQDQIJAEg4yopi2hraWmRfD7vO5dyxYoVFT+OHSjW19dXvC8AlSOQBICMq6Qsoq2urq6Y6scrmLzzzjt997FgwQKxLEssyypJBQQguQgkAaAG6QzxmvYmlgd+HR0d0tfX59nz6JxTCaA2EEgCQEZ4BZcvvPCCjI2Nzap97RTUm2jr6OiQQ4cOFa8XCgWjtjrzWY6MjBjtA0D0CCQBIIO8AjWvYW6d3kTnIpq2tjbt4eryfJZB6YEAVA+BJABk0OrVq4uXnYFaefLvc+fOxTpnMSif5fe///1Y2gFADYEkAGSQVzqfH/7wh8XLcSf/Vsln+ZnPfGbWbUNDQyU9rADiQyAJABmhEmy5BWpewg7ghoeHA/NZTkxMzLpt/fr1snLlSuP5mADMEUgCQEaoLFpxC9S8hB3ABSU99zM+Pi6dnZ0yMDAQSlsAqCGQBICMqCTx+KOPPuq6otsO4FSCyaA8kcuXLzdunz0c3t3dXbyNKjdA9AgkASAjTBOP+81dtG/r6uqqeJi7tbU1MJ+lH8uySobGSRsERI9AEgAyoqWlJXAbt2TiQXMXLcuS0dFRGR4erqh9ftVxTIJL0gYB0SOQBICMcK7A1kk8rjp3sZI5jjav6jj5fF7uuOMO4/0ydxKIBoEkANQg5zCz2+pqncTjqnMXK5nj6FReHWdwcFAOHz4sr3vd62TOHLOfre7ublIEAREgkASAGlNeGcZeXf3www8Xb/vSl75Usr2foLmLuVxOmpubpbW1VUSCF9WocPaerlmzRgYGBuS9732vnD9/3mh/Y2NjFQ+9A5iNQBIAaohXZZixsTF5//vfX7x+/fXXFy9fddVVxctuC1RU5i7u2rUrsuTlKonKVYQx9A6gFIEkANQI04Dr0ksvLV72WqDiN3exr68v0oUtIyMjgYnKVYQ19A7g/xBIAkCNUKkM4+b06dMl1+3ci48++mjJ7V5zF6NeHV1J/ktbPp8vDr0DCA+BJADUiLCGbv1yQ5bPXYyjFrdO/kuveZw9PT2x1g0HsoJAEgBqRJhDt2HlhgxDS0tL4GIfm1fQ2d7eHknbgKwjkASAGlFpZRg3SVig4rfYp9zBgweLl/ft21e87JYCCUDlCCQBoEboBFyqkrJAxWuxj4jIN77xjeJl5/D1LbfcUrxsp0BSqQkOQB2BJADUEL+AS0d5bsgkKF/sY3NLoi4yuzd1fHxcOjs7CSaBEBFIAkCNcVtdvW/fPmlqanLdvhq5IU0Ftcdv+NpvEREAMwSSAFCDyldXd3Z2lgSXzl658gUqceSGDJMzKLz//vt9t03SIiKgFsytdgMAAPFwBpdtbW3FHrozZ85IY2OjiLzUe9nW1lb1nki7zKKK1atXFy9v375d6T5JWEQE1AJ6JAEg46qRGzJMJkFhUhYRAWlHjyQAIDNyuRxVboAQ0SMJAMiEJC8iAtKKQBIAatz09LTkcjmpr6+veF/23EXLsmTBggUhtC4+9iKidevWFeuJT09PV7tZQKoRSAJAytiBIYGQukKhIKOjo7JhwwZeMyBEBJIAgFRqamryreDjTMre0tISR5OAzCGQBACk0s6dO0XEPaF6LpeTz372s9VoFpAprNoGAKRGeX7J+fPnyy233CLj4+PF2/L5vOzatUvWrVtXjSYCmUKPJADUoDQvitHhVg7y8OHDqanKA6QdgSQAINXSnlAdSDMCSQBIMd0V3FNTU7N6KbPSewkgfASSAAAAMEIgCQAAACMEkgAAADBCIAkANW5mZqZ4eWhoqOR6FvF6AOEhkASAlHEGPiMjI77bFgoFueSSS4rX169fLytXrpRCoRBZ+5LCuYho/vz5xdvf8IY3FC9n6fUAokAgCQApUh4Y+uVLLBQK0tnZWZKsW0RkfHxcOjs7MxM8lb9mJ0+eLPl/1l4PIEwEkgCQEl6BoW1gYKB4eWZmRrZs2VJSBcZm39bV1VXzw7pBr5lItl4PIGwEkgCQAn6Boa27u7sYCA0PD8vY2JjntpZlyejoqAwPD4fe1qRQec1sWXg9gCgQSAJACgQFhiIiY2NjxUDoyJEjSvtV3S6NVF6zcrX8egBRmFvtBgAAgukGhsuXL1faXnW7JLMX1ZQzCQpr4fUA4kSPJACkgG5g2NraKvl8XnK5nOt2uVxOmpubpbW1NbQ2Jo1OUJiF1wOIAoEkACSYXUv72muvDQyMLrzwQrn66qtFRKSurk52794tIjIrmLSv79q1S+rq6iJodTIEBdO2rLweQBQIJAEgJe666y7f/584cUJWrVpVTGPT0dEhfX19smLFipLt8vm89PX1+aYOqgV+wbRTVl4PIAo5S2U5W4jOnDkjjY2NMjk5KQ0NDXE+NACkzvT0tNTX14uIyLFjx2Tp0qW+29sBkzMwso+7IiKDg4PS1taWqZ63QqEgt9xyi2sKoCy+HoAK1XiNHkkAqCFuORGdQdKaNWsyFzR1dHTIoUOHitedicez+HoAYSKQBIAaQ07E2ZzBYktLS8X7s+eu5nI5mZ6ernh/QFoRSAJAjSInIoCoEUgCQI0iJyKAqJGQHABqTC6Xk3w+T05EAJGjRxIAUswtrY1lWbJjxw4WkRhi/iOgjkASAFLCXoXttGzZMtdt29vbo24OABBIAkBarF69etZt//qv/1q87ExrAwBxIJAEgARz9kK6rcK+6aabipfDSGsDADoIJAEgoQqFgrzuda+rdjMAwBOrtgEggQqFgnR2dkpQFVuVKrcLFixQ2g4AdNEjCQAJMzMzI1u2bCH4i4gdWE9NTUl9fT2rs4EKEEgCQMIMDw/L2NhYtZtRU+zg0bIsWbBgQcX7c85dHRoacl1RD2SBViB59913y+WXXy4LFy6UJUuWyHve8x759a9/HVXbACCTdEobuuWRRLQKhYJccsklxevr16+XlStXsmoemaQVSD7++OOyefNmOXDggPzoRz+SP/3pT9LW1saQAACEiNKGyWXPXR0fHy+5fXx8XDo7OwkmkTk5q4JJOMePH5clS5bI448/LmvWrHHd5uzZs3L27Nni9TNnzkhzc7NMTk5KQ0OD6UMDQM2amZmRlStXyvj4uO88yXw+Lz09PXLjjTeKiMixY8dk6dKlIiIyNTUVyhBuLZuenpb6+noRKX29vG633xevaQd2acrDhw9TVQipd+bMGWlsbAyM1yqaIzk5OSkiIosWLfLc5u6775bGxsbiX3NzcyUPCQA1r66uTnbv3i0i3kPXt912mzz77LNUsImA1/zHoLmrlmXJ6OioDA8PR95GICmMA8nz589LV1eXtLS0yOtf/3rP7bZt2yaTk5PFv9HRUdOHBIDM6OjokL6+PlmxYoXr/7dt2zar14sFIJXzm/+oOndVZ44rkHbGgeTmzZvll7/8pTz44IO+282bN08aGhpK/gAAwTo6OuTQoUPF627z7+zVyP39/XL55ZcXb2cBiL6g+Y+/+c1vlPbDHFdkidEcyZtvvlkGBgZkaGhILrroIq37qo65AwBK5+t5zYH0Sl5uD4v39fVJR0dHjK1OB+drOzk5KZdeeqnv0HVTU5PkcjnPuavMkUQtiWSOpGVZcvPNN8vDDz8s//Ef/6EdRAIAwuWXvNy+rauri2HuACMjI4G5O8fHx2VsbEwsy5o1d9W+vmvXLoJIZIpWILl582bZs2eP9Pb2ysKFC+Xo0aNy9OhR+eMf/xhV+wAAPlgAEo6jR49qbb9s2bKS6/l8np5fZJJWIHnffffJ5OSkXHPNNbJ8+fLi30MPPRRV+wAAPlgAEo7ywDDIwYMHi5cHBwfl8OHDBJHIpLk6G1P3FQCSRXVhBwtAZnMO98/MzEg+n/fN3blixQqZmJgQESkZvl6zZg3D2cgsam0DQJVMT09LLpeTXC5nXCGstbVV8vm8Z77JXC4nzc3N0traWklTa055mp93v/vd8sc//tF1/qPtzjvvjKt5QGoQSAJAivklL2cBiDuvND+nTp0SEZFXvvKVrve77rrrIm8bkDYEkgCQcl7Jy1kAMlvQKvdcLicvf/nLi7eRhxPwpzVHEgBQPXbycTcdHR2ydu1aaWxsFJGXFoC0tbXRE1lGZZW7s6eypaUljmYBqUWPJADUCBaABGP1OhAuAkkAQGaweh0IF4EkACSYPZxtWVaxJCLMBa1yF5GSuabOFEEjIyORtg1IIwJJAEBm+K1ytznT/Kxevbp4mUVLwGwEkgCATPFa5W5zpvnxmlP5+c9/PpK2AWlDIAkAyJyOjg45dOhQ8bozzY9zONvLzp07i5fr6+srSioPpBmBJAAgk5yr2p1pfg4cOKC8D7+5lkAWEEgCQJU4e76GhoaUesIQvWPHjlW7CUBqEEgCQBWU13pev369rFy5kkoqCbB06VLlbb0SxANZQSAJADHzqvU8Pj4unZ2dBJNVdtVVV1W7CUBqEEgCQIyCaj2LiHR1dRkNc5NzMhwNDQ3S39/P/EdAAYEkAMRIpdbz6OioDA8Px9gqlM9XbW9v900RZCPYRNYRSAJAjFRrPVMTOl7OxOP2fFURkf/6r//yvA9BJEAgCQCxUq31TE3oeJUH7vZ81UceeaR4W/l7ks/nZc+ePbG0D0gqAkkAiFFQredcLifNzc3S2toac8uyx28eqj1ftbu7u3jbwYMHi5cHBwfl8OHD0t7eHl0DgRQgkASAGPnVerav79q1qyRZNqIxMjLi+3/LskrmszrfkzVr1vAeAUIgCQCx86r1nM/npa+vTzo6OqrUsmz5wx/+UO0mAKlHIAkAVVBe69keKiWIjE8Y81CpToSsI5AEgCphqLS6VOar5vN5z/tTnQggkAQAZJTKfNWenh7X+w4MDFCdCBACSQBAhgXNV/Valb1161bf6kRbtmyRXC4nuVxOpqenw284kBAEkgCATDOZr1reE+lUvtobqGUEkgCQMNPT0/RmxYz5qoCZudVuAAAASbVgwYLicDVBPTAbPZIAAGhqamoyXu0N1BICSQBIAIazk8/unbQsS770pS+JiP5qb6DWEEgCAKDJdLU3UGsIJAEAMEB1IoBAEgBi4TZ07RwqXbBgQZVbCBOs9kbWEUgCAADACIEkAAAAjBBIAgAQspmZmeLloaGhkutALSGQBABkXpjzVQuFglxyySXF6+vXr5eVK1dKoVCotJlA4hBIAkDC0JuVXoVCQTo7O2fV4h4fH5fOzk6CSdQcAkkASJjVq1cXL9OblR4zMzOyZcuWYklFJ/u2rq4uTgxQUwgkASBhjhw5UnKd3qx0GBkZkbGxMc//W5Ylo6OjMjw8HGOrgGgRSAJAhcIob+jXS0VvVjocPXpUabvyEwUgzQgkASABgnqp6M1KvmXLliltt3z58ohbAsRnbrUbAABZVygU5O///u+VtqU3K1ns1d4iL/Uq5/N5GR8fd50nmcvlJJ/PS2tra9zNBCJDjyQAVJG9yvf06dNK29OblVx1dXWye/duEXkpaHSyr+/atYsyiqgpBJIAEAO3lD5+q3zL5XI5aW5upjcr4To6OqSvr09WrFhRcns+n5e+vj7p6OioUsuAaBBIAkDEvBJU33XXXb6rfMvRm5UOHR0dcujQoeL1wcFBOXz4sGcQGcZiLaBamCMJABGyh67Lex3Hx8fl9ttvV9rH4sWL5etf/zq9WSniDPjXrFnDCQBqFoEkAEREJUG1ioceekje/va3h9k0AAgFQ9sAEJHh4WGtoWs3+XxerrnmmnAaBAAhI5AEgIjopOopX+Vr6+npYVg0JZjriCwikASAiKim6rnjjjtmrfK1tbe3h9kkAAgVgSQAVMgttY+ISGtrq+Tzec/eRjulz2233Vayypea2gDSgkASACrgldqnUChoJah2Dl+3tLTE0HIAqByBJAAYslP7jI+Pl9w+Pj4unZ2dUigUSFANoKYRSAKAAZXUPl1dXTIzM6OdoBoA0oJAEgAMBKX2sSxLRkdHZXh4WERIUA2gNhFIAoAB1dQ+OimAkE1ei7WANCCQBAADqql9VLdDbVmwYIFYliWWZcmCBQs8t/NbrAWkAYEkABhQTe3T2toac8uQFiqLtYCkI5AEAAM6qX3K1dfX+1Y/Ue3NQnrpLNYCkoxAEgACeJW+I7UPnHTmOuou1gKSikASACpAah+I6M91ZLEWagWBJABUKIzUPgxnp5fJXEcWa6FWEEgCAGDIdK4ji7VQKwgkAQAwZDrXsZLFWkCSEEgCQAzsoeupqalqNwUhqmSuI4u1UAsIJAEAMKQ717E8AwCLtZB2BJIAABiqZK6jHVQ2NjYWb6MOO9KGQBIAAEPMdUTWEUgCAFAB5joiy+ZWuwEAAKRdR0eHrF27tjhMPTg4KG1tbfREouZp90gODQ3Ju9/9blmxYoXkcjn57ne/G0GzACDZvMomBtEpo4d0CSMxPZA22oHk9PS0vOlNb5J77703ivYAQOKEFfzpltFDbTA96QDSQHto+53vfKe8853vVN7+7Nmzcvbs2eL1M2fO6D4kAFRNoVCQW265pXh9/fr1ks/npaenp3ibnSMyaD+dnZ2ztrPL6DGXDkAaRb7Y5u6775bGxsbiX3Nzc9QPCQCh8KuhvHHjRuX9mJbRA4CkizyQ3LZtm0xOThb/RkdHo35IAKiYSvCnyrSMHgAkXeSrtufNmyfz5s2L+mEAIFQqwZ+qSsroAUCSkf4HAFyEEdRNT09LfX298vaq5faQXs7pCyMjI8XLU1NTsmDBgmo0CagICckBwEXYQV1TU5NRGT3UltWrVxcvOxdXkQoKaaUdSE5NTclTTz0lTz31lIiIHD58WJ566in5/e9/H3bbAKBqVGoo69i5c6fr/Sijly1ePd2kgkJaaQeSv/jFL+TNb36zvPnNbxYRkVtvvVXe/OY3y/bt20NvHABUi0oNZR3t7e2U0cso1Z5GOxUUwSTSRDuQvOaaa8SyrFl/DzzwQATNA4Dq8auhvGfPHqP9HTp0qHh9cHBQDh8+TBBZ45xzIf2QCgppxBxJAPBRHvyJiIyOjsq1115bvK4zv40yerXLTkxvWVbJwpmjR48q74NUUEgbAkkACOAW7DkXTTC/DX6WLFmifR/VrAGUX0S1EUgCgIHyH3rmt8FNoVCQj3zkI9r3IxUU0oJAEgBCwPw2lLNLbE5MTCjfh1RQSBsCSQAIiT2/be7cuQw1ZpxfiU0vpIJCGhFIAgAQsqASm25IBYU0IpAEgIg4h7ipXJItuiU2404FxSIdhIVAEgD+rNIf11wuJ/l8vnjdbWX3wMBAKG1FsukuliEVFNKKQBIADHhVu+np6Sne5raye+PGjdE3DlUXVGJTRGYlugfSiEASAAwsW7as5Lo9v+1d73qX5310Fl4g3fxKbNruvPPOWbcx5Iy0IZAEAAMHDx4sXnbObwsqh2cHk/v37y+pfoLa41Vi03bdddfF3CIgfASSADJHt9fHLn03OTlZvO3AgQPFy875barl8HQXYyCdyktsmiasp6cSSUUgCQAKCoWCXHLJJcXrXqtry4e8vVC5JDuci2haWlpC3TeZAVBtBJIA4MLZA9Tb2yudnZ0yPj7uuq1zJXZQoEDlEoSl/OSGmu+oBgJJADUtjCHBrVu3+i6U6e7uLvYEOXufvFZ2U7kElbLLL5af3FDzHXEjkASAAF49kbaxsTEZHh4WkdKhxkWLFpVsR+UShMGv/CI13xE3AkkACMGRI0dmDTWePHmyeDnuyiWoXSMjI77lF+2a7/bJDRAlAkkAiRXHStWwHuM3v/mN7zzK06dPM5yNYgYAy7IC0z95fTbJDIAkIZAEgD9zDgU680E2NTX5VihpamqSf/u3f1OeRwmI6AWVTmFkBmC1N8JCIAkAf+asje0cgt65c6eIeFco2bRpk+9Qo0jpPEqgEi0tLb7lF4MyA7DaG2EikASAP/MbCvSrULJq1aqK9w+o8iu/GJQZgNXeCFumA8msVQrI2vMFVKgM6XV3d0t7e7tnhRKSkCMsXtMrynmVX/TLDMBqb0Qh04EkgGxy/lDef//9gdvbw9LOHp62trbi/La2tjbfoUaRl37gSUIOP37Vk9zmNJaXXwzKDDA8PMxqb4SOQBJATVDtcS//sd6+fbvS/v2Gpf2GGm09PT2s2s4olUU1XkPOtksvvbR42Tmn0fmZctZ8d6M6tYIpGMmQllFEAkkAmTEwMOD7Y+1nyZIlvv/3Gmq0tbe3az8mssFvyNl2+vTpkuv2nEZnec4gqlMrmIIBHQSSABIl7LNw55Bg0I+1n02bNgX+aJcPNbJwASqChpzd2D2cn/rUp5Tv09rayhQMhI5AEqmXlu5/xK98GPvEiRPG+xofH5eNGzcGbuccWmxpaTF+PGRHJUPJExMTytsyBQNRIJD8M4IRINnq6+u1vp9Bc850mfZkAkHiHEpmCgbCRiAJILFM05CozDkzobs/08olyBaVIecwMQUDYarpQJJeRiDdnJVmbCqLC0ZGRrTnnAHVojLk7MWrZ1HlMW1MwUAlajqQBJBubnPHNm7cGNiDcvTo0aiaBEQiaMjZy5133hlRiwA1BJIAEkVlODuo+oZqpRldcQ09Ips6Ojrk6aef1rrPddddF1FrADUEkhniVhkBSBq/snAiatU3WlpaQp9zRhCJOBw4cKDaTTDCVLLsynQgqVrTtBaUp0FxVkZww0EB1aI6LF1ppRlddg1jFs8gSkmclsHvQSlej1KZDST9apqGwfSDFsUH1CsNil0ZIWi+GV8axEl1WLo8ZUp5j3t7e7vnnLOtW7dqtSmohjEQFt1pGWQGqF1pGUXMZCAZlF9Op+RU0vmlQbFvC5pvBsQpaAVpLpeT5ubmkuobXj3uIlKS5sTW1dUV2A5nABpUwxgIi8oKatOV2kgP3VHEaspcIKmSX667u7tmAqug0lsq882AODkDNq9h6V27dhW3C+pxf+SRR4weg9WwqIZqfDbT0vOVFV7HtLGxMaVRxLhlLpBUqWk6NjZWM4GVaumtSkp0VRsHwdrifP8WLVo06/979uwpDjGr9Lh3d3f7Pp7XUKLpaliGGhEWr8/mO97xjuLlMI55znytSe75ygKVzq6kjSJmLpDMQmDlpFp6K84SXc45l88991xF8y/T1P2fdHHMhQ16jPL38+TJk7O2cZZwU+lxDzpxPHjwYMnjA0nh9dkMO/Ar/71TnT8fhPn1+tI4ipi5QFI1YFqyZEnELYlHUOktt/lmaVHpIiIki2ptbGcPjOkJnzNLg3Mosa2tjd5EJIZX9RmdwM8rmJs/f77k83nXx2X+fPWksbMrc4Gkak3TTZs21UQg4pcGxb7unG+WFiwiqi06tbGdPTCmPemsvkba+B3LTI55aez5yoIkjiIGqelA0m3unGp+uVrq1fIqvWXnxUvjjyoHwdqiMnfZyf5+Hj9+PLDHffHixb77+v73v6/VVqAaghKV6x7zqtnzxZC3tzSOItZsIOk1d663t1c2bNgglmXJ0qVLPe9vn+Ft2bKlJj7wHR0dJWlQ0p4XL43d//Cm+z7Z389PfvKT8sUvflFE3Hvc7WFqP5/5zGe0HhuIktdirWPHjind/9prr1X6rUpjz1cWqHR2JW0UsSYDSb+5cxs3bixe//KXv+y7H5WJ+mni/OClPS8eB8HaYvI+2T0wF154oWeP+x133CGnTp3y3c/ExIT2YwNx8+v4UOXsCXzLW94Sas8X2TPC4zWKKFKatSIpai6QVJk7Zzt+/HhczYpVGMMGSS8fmcbuf5TS+VHzc+TIkVk97oVCQUZHR+X2228Ps8lA1bz97W8PPObp0On5CgoSvUYAa6m4h1McQXP5Mc3mzFqRFDUXSKrMnbOFcYYXtiSc1fmVj0zKmabpIiLm5iTzNaikNrbdm+m1whWoBSrHPF0qPV9BKdZURwB1JPEYZYsi5ZxXSrwXXnghjCZHz4rZ5OSkJSLW5ORkJPvv7e21RETpb2Jiwvf/uVzOyufzxetTU1Paz1NErEKhoLSP/v5+q6mpqaQN+Xze6u/v13oNpqamXB/P6/byNuRyOd/XxaRNXu07duyY0evrbG/5a9bc3OzZPpXXoNZV8vkI87Hd3nu399Pv+9nc3GydO3fOd9/Lly+P5DsORM3tO+l1zNu7d2/g99rreOv8vXL+3+v3IJfLWblczvrOd75T8v1x287kWJPU43TQ62H6u+j1HjkvV+P1UI3Xai6Q3L9/v3Ig6XyTyj8c9gfD68vpx+/HUDeAU/2Aqhwsgr6c586d8z0oRP2lMf2COA+Cg4ODxcAi6LGTdICKU5IDScsqfT+3bt2q/Bn02vfevXuL24f1HQfi4PWddDvmqQQjKr8N9t/k5GRgkPiqV71K+fc27YFk0O9j+YmtjrQHkjU3tK0yd85NeSkqOzWO7nyEoKTKbnNGkpITUTUFS5xtUlFLi4hQ+n5+8pOfdN3G+vOq1nXr1gXur7293Tf9VRLnHAF+4jjmjYyMBE4TS/s6A50h9KSknEvK9DKnmgskTeeROEtRmabGUUmq3N3dPetDkJQPqE4KlkralPSFPEg2k7lItZb+Coja0aNHQ91fkuc9qggj5VwYr0ESywDXXCAp4p+Ae8+ePa73CeMMT6VHb2xsbFbwlZSciCYpWHTblIaFPGlnerByW+gV9sFf9yTCzqk3NTVVvM10IY3Xd9wrbx9QbWF8Nk1P3MtH6by86lWvUlrsk/ZOg2qknPMqlpC0gik1GUiKzO6BsNOB3HjjjaE+jvOH9vDhw0r3OXLkSMn9LrjgAqX7RZ0TUbV8pJNOm4KG/ZN4pqUjzWfccaTv8DuJABCN1atXFy/rfOdaWlqUUqx95StfKV73k/bvezVSzt12222utydtelnNBpIi8acDUT2DKw++VL+wUedEdE4LCJLL5SSfz8u1116rFDip1lJO0plWmgNDHVGk71B9DFut5psDqs1r1CjoO6eaYq2zs9MzhZCX733ve8XLaRmJMk05Vwm/Eb+4prypqOlAMkjYXe1BAaHIS8Pr5QHhCy+8IGNjY2JZlucHdMeOHTJ37tzIgxp7WkBTU5PnNnabenp6lPeb1oU8lUp6MKqTwD+Kx7C5zR0GoK58akqQoO/c0NBQ4EI1u5fRK3m2l4985CPFy2kaifKbNud8PeKUhDLAmQ4kOzo6JJ/PS39/v+f8E50E4SpJlXt6enzPWMJaPe5Gdb5N+UFh8eLFFbcproU80KOyMtOUHUTPnTvXaO4wADXl00auv/76wPsEfefsAE9ElBaq6fTEnT9/vuR6kkaigvgt3KtGx0ESygBnJpAMmrTq1s1vksHer1KASHB5o7BWj9tMhw2cB4Wnn3664japzgN1SsKZVtKEfaD63e9+F0KrwlHp++08UZo/f37x9rQMnQEmBgYGfKeN+LHv4zXMbf8+PvLII8Xbokg3lLaRqLhSzjU1NVV9ypuKzASSQZNWu7u7S273mzfmdeZk/8hv2LBBnnjiiZJ9lW9TX1/v2p4wPqDOydVhDBs427B69WqjIXaTOapJONOqdUkqE7pkyZJQ9pO1ur/Itq1btxqPHHziE5+Qffv2ydatW13/7/X7GAXnSFQSSgVXi/O5btq0SUTim5NpKjOBZNCkVefQWxgJwp1v7lVXXVW8HEcKhPLnqhL8Rt0Vr/Nhj/JMK64DVH19faLmRTrf5zNnzhRvD3r+pjV8y/mdWds2bdpU8dBWHAuHgCQx6Ym0nThxQm644QbffZT/PkZtYGBAeyQwqt+xuH4fncfhN7zhDcXLd911lyxatEhe+cpXlmxfzTmZbjITSOpQmTemM4fPNP2CDr+AIGnDBn49jVGeaZlMVQiS9MU0bpyfR+dcKp0E/rp27twZuE/7hOfRRx81yp0Xx8IhIAnsaRy9vb0V7SeJ34tdu3ZpjQSmXfnv0smTJ0v+f+rUKTl16lTxehKLKRBIulDN6J+UROIiEhjUJmkBi3MeqNdCHp0vicoiIpOpCrXK6/NYPo/VL4G/Lnv1p99JhOoJj1evskqFKKCW1Nr0H6/Og6g6Q6IcoVLpZAhKiyYis7K5JLEMcGYCyaBesObmZjl37pxYliUXXXSR0j7f9773eX5A4uz5KxQK8v73v19p2yQsYAl7IU+QpNQyryaV5+ZcoGK/F7rZAvwOnh0dHfL1r3/d9/5eJzz2yUJ/f79cfvnlxdvXr19fnLOrWhCgt7eXCjaoCSZFJHTZOYODBM1B/od/+AffxxAJHlkLszMkihEqHaq5lUWSfxKcmUDyrrvucr3dbSg1jC/ngQMHjO9r0zmjOX36tNI+/QLqagzTxrH6LSm1zKtJZW6u8yQjqvfiueeeU9rO7YQn6Oz9f/7nf5T2XWu9OMgunSISKrymtwTlDJ6ZmfFcsGP7whe+4Pm/fD4vXV1dSm0MozOkWiNUzkB59+7dsc49jVJNB5LOIc8bbrjBdRu3oVSVfJBBjh07pryt6QIcnTOaJKUKiJvqgUe1So+XpPRoug3XqE7XUNlXJUyrP6l81h944IFEVIgC4mSnnLvwwguN7m9/L/bt2+eZaDtoZGJ4eDhw0U957kjbbbfdpjX6UemJYLVGqMp7QLdv3x7q/quppgNJJ7cPhd9QalA+SLf9OgNCnbQqpkO5qtVibGEvYIlqfknYPaOmBx7d5+dcxGLzyl8aFa/hGtXeOpV9VXK2HpQGyivYU/msj4+Py0033VTcT/l+RZKTLgMIU0dHh1alMVt5qUOVxONuKukl/Na3viUi4dWyDvr9qMYIVSW5PkXCXfgYhUwEkuU/iLbTp0/7/qiUZ7B3+wH1WpHtTPmj4/Of/7zr7W5BjeqXd/HixZGkCgjKV6kbEEaVMkflAFU+B8gkiHJ7P/7u7/6ueNkZjHq9NjqvWfm2fsM1XlM7nJwnTV4HvkqHfpzfN51gT/WzfvHFFyeuhBkQB5MT5vLvhelUo0p6Ce0KO7q1rE07HKqxSLaSXJ9JDyJFRMSK2eTkpCUi1uTkZCyP19/fb+VyOUtEZv3lcjmrv7/f9/5TU1PF7Y8dO+a6H7e/b37zmyWPo3o/55/z8ZYvX17yv3w+b91xxx1K+/nxj3+s/fxULru9ns7XVHffbrdNTU0Zve/Ox56amip+DsrfC/u2vXv3Fm/bu3ev63tW/vws6/8+z6p/+Xze6u/vn9U+r3arvl+Tk5NWPp/3fW+CPo/Oz2xTU5Pvvpqbm61z5875tmliYqJ4eXBw0Dp37lzJtuWf6ebmZs/v4/79+5Ve3/379896X+zHBmqZyrHI+Z1z+17oHrPtY9S5c+esfD5v/FvX29tbbEN/f/+s44/bsUGlrW7HUJ1jSdDx2O89KBQKRq9F+V9zc3PJ75Ppb6IJ1XitpgNJ+8Ot+oPoxjSQXLFihecPpspfeXDj9n8RsRYvXuz75c3n80bPzyu4cQYHQa9p3IFk0HPxO0A57+sXRJW/poODg9rva/l7qxNIeh2odNrh9XnU+XyL/F/Q5vW6u538OJ+3W6DpReWHyvm+6P4AAGnn/MyrnCzqnKiqHKO8TtZ1/uz9qZwImgaSQccSr9+woOOI2+9LpX9uJ+BJDCRremi7mqt1JyYm5Mc//rFYliXPPPOM0T78VsFZZbmlvLq/e3p6Kp4T5ly09OSTT/pu6/Waes0ljVP5VAWvOUBB81jsoRgR9ZyjNquCkmPlw+3Oduu0w5nHc9++fcXLuu9L0NCPW4UlZ3UZnWE0lQVwYXzWgVrgtajtuuuui+wxVdcVlHPbPspsHrpD6CpU8kHq7MuWxJyRbmo6kKx2wvAbbrhBCoWC0QfBsqzAD6VlWXLy5En553/+Z88vr24eQD+V5KuMo7qPirAOUPbzU12F7GQZlBwLK/WNSGlqqltuuaV4Wfd9cZsXpVJhyVTQD1WYn3UgzZwni3EWW/BbV+B1AnjnnXcq799rXmRQR0X5/byOJeVzRlUWXKpklKirq/Od6+hsR9CCxCSq6UBSdQJwVHnlTp06JZ2dnYGJWit18cUXBy4K8qLaU1hpvkqvYD3uVc1hsZ9fGF/6oEnjYaS+cXIGjF7vy6JFi3z3lc/nXVdPBuVPDSOYNP2sA1nhPEGOOzDxeuwoe0lNOiqCRqhUF1yqZJSYmZmZNYroFBRMq1Rvq6aaDiTDSidQqaBErZVavny555fXL0jxGyp1Ms1XqZIO6DOf+UzgNnFramoyCqKiUmnqGxP2Prz29S//8i/FijLOz5VO/lRT1fyRBGDGtJdUZXW21wlxUCeO1wiV1wjQ2NiYbNiwoaTGueqI5pYtWzxHU6KcchAHo0Dy3nvvlZUrV8r8+fPlyiuvlJ///OdhtysUKvOqos4rpzJE7SaXy0lTU1PgNqaBcNBQqfMLaJqvUmXO3cTEhOzfv1+mpqaU9x+1nTt3ikjwXDyvtFIqVOYR2emQVEv/eaW+MRE0ZcLrwKeaP3X//v2hnFlHWSsXQGWcPWkNDQ3F28M4AVT5rnd3d2sfE1Q6Tpz7VR3R7O3tlR07dhSv19JoinYg+dBDD8mtt94qt99+uzz55JPypje9SdatW6dc+ixufvOq9uzZozUvLK4fKTuAsQMa521OlmXJjh07tANh3S+Kab5K1QUgSaj/7dTe3h44F6/SydU684J0qsGUD9dUwmTKhLMOtpuwRwGCcpkCWZf0YVFTKmWInQsjVal0nDj3q1pS+cSJE/KBD3ygeN2Za7paC1DDoh1IfuELX5CbbrpJPvShD8kll1wiX/3qV+UVr3iFfPOb33Td/uzZs3LmzJmSv7h5/bjqTs437X3SZU/4fde73lW8bdGiRa7bmiwwUP2iPPbYYyKifsZ18uRJWbduXfG6aTm8anCeJNTX18uGDRvkiSeeKN7mDE50hvq96AxltLS0BB6onMPtYfWw+02Z8HLFFVcEbhPmKIDbyvA45iUDMOcV3NrD2PX19YH7UJ1Go9tRobtIV7XeefnvRVIWoIZBK5B88cUX5eDBg7J27dr/28GcObJ27Vr56U9/6nqfu+++WxobG4t/zc3NlbXYkM4Pl9ecjD/84Q/aj6syRO1kT/gVKQ1cT548WbxcaY+L6hfFXnWuesZVzrQcXtzDlV5D1D/84Q+Ll53PZWRkRHvVdSXiTn1TSa9h0GdLdxTAjcrKcJP0SkCahdHzmKbeS9VpNLodFSaLdFXrnTuDyVpagKoVSJ44cUJmZmZmvYFLly71HMbctm2bTE5OFv9GR0fNWxuSqakp5S/K/PnzZ5XPU6U6RO28bc2aNYF1OU0CWifVL4pz1XlQIKPLL19X+XCl26KOsPgNUX/4wx92vY9u7kibc6jca7W8V5AUV+obkzxqOoF+GO0MGgYySa8EQJ9pmcIwqJQhvvDCC+Xqq6/W2q9Kx4nbgkvTeuflkrgANUjkq7bnzZsnDQ0NJX9pUknvkz1E7fzxdBvu/cY3vlG8rDJsWukHTbeHsaurK3DeYLmghSh++bpMV+DpMh2iNskdKVI6L9JrWMN5u81+3uVTNJzJxIN6br3e61e+8pUl101qUqvMVQqi84NkGsgDWRdGj2MSikuoOnHihKxatUrrt6Ourk56enp8fxe8RoDCmKY1MTFR8T5ip1Mu5+zZs1ZdXZ318MMPl9z+gQ98wPqbv/kbpX3EXWvbplNiyLmts6SUzp+zrFNQiUFnSSfdknv2c9Gt3exXg9ztz62GsVstUWdda6993XbbbSUlr/r7+0tKSnr96ZR79Cq/59xG57X2qiGt86dbgtD+86pf7laCsLzco9e2Oq+TW/udl++9917tz2sl30/V983+zAJZE0ZJPbcyhX5lAE1/i4J+U7yOO6qlh8vLNqq0ye34p3IcU6l3rvLnrD1eTZGUSHzZy14mq1evlp/85CfF286fPy8/+clP5G1ve5vOrlJDp/fJ2VvnzEnllQLBTVy9LfZQaXmPlBfnxGKb2xxIlV6+b33rW8XL9tCyyllY0Ao855nyG97whuJl52pe53uhM0XAuW9nD1xQr275Ih1TXV1ds+6vs9DEmcNtcHBQzp07N+vzaFrp55/+6Z+071MJ07m3ANS4JeNeunSpbNiwQSllnOnjOEdCgqagqc719/st0qGyNsF5/KxkGlgSFqBq0Y1QH3zwQWvevHnWAw88YB06dMj6yEc+Yl1wwQXW0aNHQ41ww2baIzk5Oelb4N355+y9VOl5sf+q0SNpe+SRR7R6d5z7c+th0+ktOnfunJXP50M5U/M7U3b+7d27t3if/fv3Kz+u19lv0Fmx8zVyO9vW+du/f3/gGW8ul3N9TZ3tMD0jd/Zemj6XMHoknduWfy/t3ge7BxfIokp6JHVHq+w/e8RI9bco6HHsY7XzfqOjoxUdQys5/qkcQ4N6TO+///7A43dzc7PvyFucVOM17UDSsizrnnvusV796ldbL3vZy6wrrrjCOnDgQOgNC5vpD5XzAx/05fL6oHnt2+1+KoGrcxhY97mUUwlMnB/soEBSdSpAb2+vViBn/7kNV+oc+JzD43Yg63VflX06DwxBwzI6Q8Ber5nuiUbQZ1PnQKo6lOT3F0Yg6Xzfy08empubCSIBQyYn90HHZ5tbB43Ksdp5v0WLFlV8DHJO4VFpq84xNGgKlPP/aTgJjmRo23bzzTfL7373Ozl79qz87Gc/kyuvvNJkN6nht2I27PKHKqledJJZqzyerfzxTFbw6uSO1M3vtWLFCrn22mtLFmToLphxDo8HvdYq+9y+fXvxctCQa6VDwMuXL6/qQpOkJY4PqpULQI9uFbNyqscIlUWs9rHaOaXn1KlTxm2zmRYu0E1LF/SbWf5babLQMSlqutZ2mLySmn/yk5+M5LH8VkjrJLP2+vC7JX4N44Otkzxbdx6IWwBtcuBzHuwqPUnQWWFnehB0zvkzXTFeq7xq5QLQV+nJot8x3WR++sDAgLzuda+rqE1u7PnkOsFkGFW0nK/BM888U7w97SfBBJIa4vyRKg9cvRZt+J0ZuU2Y9vvwly/IMPlg6yTP1k1D5BZAmxz4yg92XicJF110kfa+y4WRTN2yLPn85z8vdXV1ygtNzp07l6j65QCSr5JFHm65FSt9nF27dkWSDscebXJbxOgl7CpatXQSnJlAMqqM/ZXsN2hVmtcKaZUzI69E234f/jA+2ENDQ0q1qu3HCwo6g3oFdQ98Xgc7t+d6/PhxrX3bnwVnABdGjkURkVtvvVUKhYLWVIRq53tze//jqFQEwIxpFTMRvepaKo8zZ45ZeKKaicSyLBkdHS1OddJNrm4Ho1TRylAgmWS6wajXmZEdTPrNGwzzw79gwQLp7+8vKQFpB7Yi4tmj6hQ0jB80dUD3wOc82AUdOLZv3x54YAxK0K5aDzaI2wlA+TC3/Rlat26db1qNuLhNRTAdEgIQPb+Te/v6okWLXO+rU7VKpRPh/Pnzyvtz+tWvfqW1fSXD+RZVtESEQNJV3LWeVfiVaizvpg+aNxjWh9+rlKMd9DzyyCPF2/yGZP2G8b3YQeDcuXOLZalUgkmvg51XfdOg9z5o4dNrXvOawDapsIPET33qU8XbnFMRnK9ZUIlN3aGYpqYmox6KefPmud7PZH4SgHh4ndzn83np7++Xw4cPF2+r5Dsc1ImgY/HixcXLuiNpYeZsTFOt8lCFt1BcTbXS/6hySyniVzFEJ2ej6jZu2+rkZ+zt7TVKi6Cbvsgvb2N5PsOgfaukUHCm1ynfn18eSef9vN6voNQ2dXV1yq+ZaR7SSt4v5+WgfJrOFEgq6X/27t1r1P6gz4dXWimdvHdhVPAAMJtbZRvLUqsgpuPUqVMVHwudaedUK4j5HYNMq5cFpVDTjReqLdL0P7XKZF5hXFTTvhw5ciTSrPj2Gdf+/fs9e7xEZFavp+mZmldN6nJ+vZpBC1REgoc3nD2TOmfhKkM4unp7e31fR7/3RaQ0BZLK+2LPeb3wwgu12hn0+XDOT0riKACQZSpz5sNYyRzGPPKgTCa6qe2czytov14jhVlCIPlnYcwrVPlRNg2odPIzBs0bDOPDH1dOQa/HcRuKDirfGJarrrqqeFllEUvQEI5u4B/GiYJO4GwvoPrv//7vwP3qDlMdOXJEO7sAgGQImq+vwjQ3rk4OZ93Udiq/b/bvqz21SkXNniRH1ifqIalD2yZVViTiLmmdIdLybnqvajz2bXv37p31HHS62nVfL51hfJVhBbfqPirD415DNDp/XsPgQc/ROVTkHG53tm/x4sW+j+01LK06nGP/+VWg8Jre4fzMeH0OVSsb2X933HGH675UqzykYXgISCOv75ZuNbQgUVbrCvoNcAp6XuV/dhUtnepg9rHU735JEmmJxEokNZA0nVcYVyDpV6rR60fXr4Sc24dY54MdVF5QxLyUo24d56BAsjzwc/si+82R9KpfXUnQ4zW/MSgQc9YK99pfU1OT8glHOa9yk+WfO6/XS6cd+Xw+8HUN+kFKw8EYSCOv75bOfH0VOgGc3zx5t3a73c/rOKET0DqDUa+5pEHHUrfOnKQhkNSU9B5J+3F06wurTJg2CSTttvjVIHcGRTqB5H333Wf0Hqj20Ll9kb0COHvbb3/7275t0A16vALJoJ5FlRqv9uIY3VquQXV2nftTWQQV1I477rhD6f1Vrd+b1IMxkEZe3y3VUYfe3l7tx/E6VgQdK1V6AoOOEzqjKX6/x/l83vrOd74TeCx1/j+pxy4W22hSmVdoVwyx/jzH0arCEn/d+sJeE6bDWNwQZilHp6VLlxrdz8nv+Vguc1692mrPpXGml/Dap3PxSJh05wp6JYQPmhekkjbK5jUf1TkH+H3ve59vOy6++GKl5+M3Xymz6TaAKtGZr1/pvvP5vOzZs0drH0GLYr3+r1t+1m9x7g033BBLCr7EiDKadZPUHknLCp5XGDR0GRfTFEJBZ1Gmz89r7p9KOiG3duqmXnDrkTQdHvfqwQ3jLNy0R1LlzNttG6/n4kVneodKz4Db58PZDtVRANUhMgDhiWuOZFA6IZXjpt2+c+fOBaY/85pypfK87Mv2mgWd3xjd34skoEfSgF8iVr+enDQJSnFkslI27NXSfmUA3bidYZpWlPHqwY3yLDwquiUvo2q7VztURwFU6/cCiJ5OmdZK9m1Spnd4eDgw/ZlX7W6V52UbGRkJpUcxSb8XlSCQLKM7dJwmKimOdIrYR8Ueruzv71f6onV3d89qs+7weNDwflCAXO2gJ4ypCiqBXZhUyrGZ/iABiJ5uWp2oVZKWznnMLC8DWT7EbpqyyFbt34uwEUi6qPSsKKmCzqKskOf56cxfc9u2o6NDvv71rwc+ztjYmDz22GMltzlzPXpxvq927kKv+TNhn4V7vTb27VNTU8r76O/vl8svv1z5uXhRCezCloVRAKBWOcu0xt3p4nYMNe3hK89le/LkyeJl+3k5y+vqzKfMwkkygWSG6FTHSYrnnntOabsbbrihJHBqaGiQ/v5+yeVynkFQea/d+Pi4bNy4MfCx4j4L9+tt9JuqoPJcyvkFdl6T3itd8FLLowBAWgWd7FqWJQ0NDcXbk9DpEjSqIjK7aILXMdR2+vTpWc+rpaVFaVrOvn37snGSHMH8TF9JXmxjS3pKkTjqdZu2R2eBjQqd3F6quTS96mbb+whqv+4iFrfXKajmql+OS3thlE66Ht33wu05mr7PKp/XpH/nAMwW9vc26FioctzRSUunsmjGLgJhmtfZ9PciCVhskxH19fWSy+Vkeno6cFvVs6gkzdvQXbxTPsezvLdrx44dSqmB/MQ99cGrDNldd92lnK5Hl9tzJNUOgKTTSUunsmhmbGzMdbqX6rScWp0q50QgmSFpXNyg0xbLY46ncx9LliwJrW26dAIxlWDXfi8BIAtUj6Fu02XsHNDO+1U63YtpOS8hkMyYqBc3hLF62MsFF1ygtJ3fHE/dpLNxcDs4joyM+N7Hsiw5depUHM0DgKoxHQlR6QkMI61bFnocgxBI1jiv1dBRnUWtXr26eNlePWySm9LN/fffr7Sd35deZXg/CVTPlBctWlSV58IwN4C0C/o9EHmpk6W1tZVjng8CyYyK6izKaz5fGMHk1Vdf7ft/lTme1UhxY+Kiiy5S2m7Lli0ikuznAgBJ5Pd7YOvp6clkL6MOAskU0sk1GIf58+dLPp93/Z89ny+MROdh5XI0SXETN9WqL7fddpvvVAXOoAHAW9DiHGf+SLgjkETFhoeHY010LlJ5Lkev4f33ve99iQi+dBZGJX3CN0NCAFTEcaxwm8dffgwNazpWVhBIuuCHT49qAvMwE52HUVEh6ZOkdRZGJf25AEC1lVewcc7jdx4zddPOZd3cajcA6adalsqkfJUd1ItISa7MrAROHR0dsnbtWmlsbBSRl4Lmtra2mn2+ANLDeXxOOruCTXl77Xn8SZnWlEb0SKJiqvP5kpToPE2yEDQzCgAgKjMzM7JlyxbXoNe+rbu7u3gbxyM9BJKoWBoTnVciCweZLDxHANkQVMHGsqzACjemsnAsJZBMsSiTf+uKOtF5JbLwRQYAuFPNywszBJIp5TdpuFqSvnoYAJA9UVY0o6OCQDKV7EnD4+PjJbeHmfzbVBbm8wEAks0Z4LW1tQXO4/fKhYxgBJIpozJpOIzk30nEmR8AQJfKPP6enp7Y21UrCCRTJqzk3wRlAICsCJrHTwUbcwSSKVON5N8AAKQd8/ijQULylIky+XfWpCmZbpBaei4AEBWvefwcQ83RI5kyJP8GAABJQSCZMllL/u0lS3M8s/RcAQDpQiCZQklO/g0AALKDOZIp1dHRIWvXrpXGxkYReWnScFtbW833RAIAgOSgRzLFSP4NAACqiR5JhIqVbwAAZAc9kgAAADBCIAkAAAAjBJIAAAAwwhxJAACQCczjDx89kgAAADBCIAkAAAAjBJIAAAAwQiAJAAAAIwSSAAAAMMKq7RRj9RkAAKgmeiQBAABghEASAAAARggkAQAAYIRAEgAAAEYIJAEAAGCEQBIAAABGCCQBAABghEASAAAARggkAQAAYIRAEgAAAEYIJAEAAGCEQBIAAABGCCQBAABghEASAAAARggkAQAAYGRu3A9oWZaIiJw5cybuhwYAAIACO06z4zYvsQeSzz//vIiINDc3x/3QAAAA0PD8889LY2Oj5/9zVlCoGbLz58/LxMSELFy4UHK5XJwPXZPOnDkjzc3NMjo6Kg0NDdVuDgzwHqYf72G68f6lH+9h+CzLkueff15WrFghc+Z4z4SMvUdyzpw5ks/n437YmtfQ0MCXJ+V4D9OP9zDdeP/Sj/cwXH49kTYW2wAAAMAIgSQAAACMEEim3Lx58+T222+XefPmVbspMMR7mH68h+nG+5d+vIfVE/tiGwAAANQGeiQBAABghEASAAAARggkAQAAYIRAEgAAAEYIJAEAAGCEQLIGnT17Vi677DLJ5XLy1FNPVbs5UPTss8/Khz/8Ybnooovk5S9/uaxatUpuv/12efHFF6vdNPi49957ZeXKlTJ//ny58sor5ec//3m1mwRFd999t1x++eWycOFCWbJkibznPe+RX//619VuFgzt2LFDcrmcdHV1VbspmUIgWYO2bt0qK1asqHYzoOmZZ56R8+fPy9e+9jX51a9+JV/84hflq1/9qvzjP/5jtZsGDw899JDceuutcvvtt8uTTz4pb3rTm2TdunXy3HPPVbtpUPD444/L5s2b5cCBA/KjH/1I/vSnP0lbW5tMT09Xu2nQ9MQTT8jXvvY1eeMb31jtpmQOeSRrzA9+8AO59dZbpb+/Xy699FL5z//8T7nsssuq3SwY+uxnPyv33Xef/O///m+1mwIXV155pVx++eXy5S9/WUREzp8/L83NzfLxj39cPv3pT1e5ddB1/PhxWbJkiTz++OOyZs2aajcHiqampuQtb3mLfOUrX5E777xTLrvsMtm1a1e1m5UZ9EjWkGPHjslNN90k3/72t+UVr3hFtZuDEExOTsqiRYuq3Qy4ePHFF+XgwYOydu3a4m1z5syRtWvXyk9/+tMqtgymJicnRUT4zqXM5s2b5brrriv5LiI+c6vdAITDsizZtGmTfPSjH5W3vvWt8uyzz1a7SajQb3/7W7nnnnvkc5/7XLWbAhcnTpyQmZkZWbp0acntS5culWeeeaZKrYKp8+fPS1dXl7S0tMjrX//6ajcHih588EF58skn5Yknnqh2UzKLHsmE+/SnPy25XM7375lnnpF77rlHnn/+edm2bVu1m4wyqu+h0/j4uLzjHe+Q66+/Xm666aYqtRzIjs2bN8svf/lLefDBB6vdFCgaHR2VLVu2yN69e2X+/PnVbk5mMUcy4Y4fPy4nT5703eYv/uIv5IYbbpDvfe97ksvlirfPzMxIXV2d3HjjjfKtb30r6qbCg+p7+LKXvUxERCYmJuSaa66Rq666Sh544AGZM4fzvSR68cUX5RWveIX09fXJe97znuLtH/zgB+UPf/iDDAwMVK9x0HLzzTfLwMCADA0NyUUXXVTt5kDRd7/7Xfnbv/1bqaurK942MzMjuVxO5syZI2fPni35H6JBIFkjfv/738uZM2eK1ycmJmTdunXS19cnV155peTz+Sq2DqrGx8fl2muvldWrV8uePXs4CCbclVdeKVdccYXcc889IvLS8OirX/1qufnmm1lskwKWZcnHP/5xefjhh+Wxxx6Tiy++uNpNgobnn39efve735Xc9qEPfUj+6q/+Srq7u5miEBPmSNaIV7/61SXX6+vrRURk1apVBJEpMT4+Ltdcc4285jWvkc997nNy/Pjx4v+WLVtWxZbBy6233iof/OAH5a1vfatcccUVsmvXLpmenpYPfehD1W4aFGzevFl6e3tlYGBAFi5cKEePHhURkcbGRnn5y19e5dYhyMKFC2cFiwsWLJDFixcTRMaIQBJIiB/96Efy29/+Vn7729/OCv4ZOEim9773vXL8+HHZvn27HD16VC677DL54Q9/OGsBDpLpvvvuExGRa665puT2f//3f5dNmzbF3yAghRjaBgAAgBFm8QMAAMAIgSQAAACMEEgCAADACIEkAAAAjBBIAgAAwAiBJAAAAIwQSAIAAMAIgSQAAACMEEgCAADACIEkAAAAjBBIAgAAwMj/B0hfjXv6PDGzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generate fake data\n", + "np.random.seed(0)\n", + "x = np.linspace(-5., 5., 200)\n", + "y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)\n", + "y += np.random.normal(0., 0.2, x.shape)\n", + "yerr = 0.2\n", + "\n", + "plt.figure(figsize=(8,5))\n", + "plt.errorbar(x, y, yerr=yerr, fmt='ko')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Likelihoods and Posteriors\n", + "\n", + "In general, model fitting will happen either in a frequentist (Maximum Likelihood) or Bayesian framework. Stingray's strategy is to let the user define a posterior in both cases, but ignore the prior in the former case. \n", + "\n", + "Let's first make some fake data:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# define power law component\n", + "pl = models.PowerLaw1D()\n", + "\n", + "# fix x_0 of power law component\n", + "pl.x_0.fixed = True\n", + "\n", + "# define constant\n", + "c = models.Const1D()\n", + "\n", + "# make compound model\n", + "plc = pl + c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're going to pick some fairly standard parameters for our data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters for fake data.\n", + "alpha = 2.0\n", + "amplitude = 5.0\n", + "white_noise = 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now a frequency array:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "freq = np.linspace(0.01, 10.0, int(10.0/0.01))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set the parameters in the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.modeling.fitting import fitter_to_model_params\n", + "\n", + "fitter_to_model_params(plc, [amplitude, alpha, white_noise])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "psd_shape = plc(freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a last step, we need to add noise by picking from a chi-square distribution with 2 degrees of freedom:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "powers = psd_shape*np.random.chisquare(2, size=psd_shape.shape[0])/2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the result:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAJLCAYAAABni/zkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACa1ElEQVR4nOzdd3xT9f7H8ddJ0l3aUiiFlrL33lOGiCIqbhEHCCrqVa8iP/W613V7RXBPcCsoigjI3rPQslugQKGMQilddDfj90egUlltSZuO9/PxOI8mJyfnvBMo5JPvMhwOhwMRERERERERKVMmdwcQERERERERqQ5UgIuIiIiIiIiUAxXgIiIiIiIiIuVABbiIiIiIiIhIOVABLiIiIiIiIlIOVICLiIiIiIiIlAMV4CIiIiIiIiLlQAW4iIiIiIiISDmwuDuAq9ntdg4fPkyNGjUwDMPdcURERERERKSKczgcnDhxgrCwMEymc7dzV7kC/PDhw0RERLg7hoiIiIiIiFQzBw4coH79+ud8vMoV4DVq1ACcLzwgIMDNaURERERERKSqy8jIICIiorAePZcqV4Cf6nYeEBCgAlxERERERETKzYWGQWsSNhEREREREZFyoAJcREREREREpByoABcREREREREpB1VuDLiIiIiISHXmcDiwWq3YbDZ3RxGpMsxmMxaL5aKXulYBLiIiIiJSReTn55OYmEh2dra7o4hUOb6+vtSrVw9PT89Sn0MFuIiIiIhIFWC324mPj8dsNhMWFoanp+dFt9aJiLNXSX5+PseOHSM+Pp7mzZtjMpVuNLcKcBERERGRKiA/Px+73U5ERAS+vr7ujiNSpfj4+ODh4cH+/fvJz8/H29u7VOfRJGwiIiIiIlVIaVvmROT8XPG7pd9OERERERERkXKgAlxERERERKqk0aNHc/3111/UOZYuXYphGKSlpbkkU1W3b98+DMNg06ZNQPm9f40aNWLixIlleg1X0BhwERERERGpkiZNmoTD4XB3jGqtT58+JCYmEhgY6JLzff3114wbN+6Mgn79+vX4+fm55BplSQW4iIiIiIhUKTabDcMwXFb0lYeCggI8PDzcdv38/PyLWl7rXDw9Palbt67Lz/tPISEhZX4NV1AXdBERERERcZuBAwfy8MMP8/DDDxMYGEjt2rV5/vnni7Rc5+Xl8fjjjxMeHo6fnx89e/Zk6dKlhY9//fXXBAUFMXPmTNq0aYOXlxcJCQlndEHPy8vjkUceoU6dOnh7e3PJJZewfv36InnmzJlDixYt8PHx4dJLL2Xfvn1nZJ4+fTpt27bFy8uLRo0a8e677xZ5PDExkauvvhofHx8aN27Mjz/+eEYXacMw+OSTT7j22mvx8/Pjtddew2azcc8999C4cWN8fHxo2bIlkyZNKnLuU6/p9ddfJzQ0lKCgIF555RWsVitPPPEEwcHB1K9fnylTphTrfR83bhy1a9dmyJAhAGzbto2hQ4fi7+9PaGgoI0eOJDk5ufB5c+fO5ZJLLiEoKIhatWpxzTXXsGfPnnNe559d0AcOHIhhGGdsp97nCRMm0L59e/z8/IiIiODBBx8kMzOz8FxjxowhPT298HkvvfQScGYX9ISEBK677jr8/f0JCAhg+PDhHD16tPDxl156iU6dOvHdd9/RqFEjAgMDGTFiBCdOnDjv+3axVICLiIiIiFRBDoeD7HyrW7aSdvv+5ptvsFgsREZGMmnSJCZMmMCXX35Z+PjDDz/MmjVr+Pnnn9myZQu33HILV155JXFxcYXHZGdn89Zbb/Hll1+yfft26tSpc8Z1nnzySaZPn84333xDdHQ0zZo1Y8iQIaSkpABw4MABbrzxRoYNG8amTZu49957eeqpp4qcIyoqiuHDhzNixAi2bt3KSy+9xPPPP8/XX39deMyoUaM4fPgwS5cuZfr06Xz++eckJSWdkeell17ihhtuYOvWrdx9993Y7Xbq16/PL7/8QkxMDC+88ALPPPMM06ZNK/K8xYsXc/jwYZYvX86ECRN48cUXueaaa6hZsybr1q3jgQce4P777+fgwYMXfN89PT1ZtWoVn376KWlpaQwaNIjOnTuzYcMG5s6dy9GjRxk+fHjhc7Kyshg/fjwbNmxg0aJFmEwmbrjhBux2+3mvdcpvv/1GYmJi4XbjjTfSsmVLQkNDAedM4++//z7bt2/nm2++YfHixTz55JOAszv7xIkTCQgIKHz+448/fsY17HY71113HSkpKSxbtowFCxawd+9ebr311iLH7dmzhxkzZjBr1ixmzZrFsmXLePPNN4v1OkpLXdBFRERERKqgnAIbbV6Y55Zrx7wyBF/P4pcaERERvPfeexiGQcuWLdm6dSvvvfceY8eOJSEhgSlTppCQkEBYWBgAjz/+OHPnzmXKlCm8/vrrgLML98cff0zHjh3Peo2srCw++eQTvv76a4YOHQrAF198wYIFC/jqq6944okn+OSTT2jatGlhi/apLG+99VbheSZMmMBll13G888/D0CLFi2IiYnhnXfeYfTo0ezYsYOFCxeyfv16unXrBsCXX35J8+bNz8h0++23M2bMmCL7Xn755cLbjRs3Zs2aNUybNq1IERwcHMz777+PyWSiZcuWvP3222RnZ/PMM88A8PTTT/Pmm2+ycuVKRowYcc73vXnz5rz99tuF91999VU6d+5c+J4CTJ48mYiICHbt2kWLFi246aabipxj8uTJhISEEBMTQ7t27c55rdOzn/Lee++xePFi1q1bh4+PDwDjxo0rfLxRo0a8+uqrPPDAA3z88cd4enoSGBiIYRjn7da+aNEitm7dSnx8PBEREQB8++23tG3blvXr19O9e3fAWah//fXX1KhRA4CRI0eyaNEiXnvttQu+jtJSC7iIiIiIiLhVr169MAyj8H7v3r2Ji4vDZrOxdetWbDYbLVq0wN/fv3BbtmxZka7Pnp6edOjQ4ZzX2LNnDwUFBfTt27dwn4eHBz169CA2NhaA2NhYevbsWeR5vXv3LnI/Nja2yDkA+vbtW5h3586dWCwWunTpUvh4s2bNqFmz5hmZThXop/voo4/o2rUrISEh+Pv78/nnn5OQkFDkmLZt2xZZkzo0NJT27dsX3jebzdSqVeusre6n69q1a5H7mzdvZsmSJUXe51atWgEUvtdxcXHcdtttNGnShICAABo1agRwRsYL+euvv3jqqaeYOnUqLVq0KNy/cOFCLrvsMsLDw6lRowYjR47k+PHjZGdnF/vcsbGxREREFBbfAG3atCEoKKjwzxqcBf6p4hugXr16F3zPLpZawEVEREREqiAfDzMxrwxx27VdJTMzE7PZTFRUFGZz0fP6+/v/fU0fnyJFfGXwz1m7f/75Zx5//HHeffddevfuTY0aNXjnnXdYt25dkeP+OVmbYRhn3XehbuH/vH5mZibDhg0r0uJ/Sr169QAYNmwYDRs25IsvviAsLAy73U67du3Iz88//4s9TUxMDCNGjODNN9/kiiuuKNy/b98+rrnmGv71r3/x2muvERwczMqVK7nnnnvIz8/H19e32NcojtK8ZxdLBbiIiIiISBVkGEaJuoG70z8LzLVr19K8eXPMZjOdO3fGZrORlJREv379Sn2Npk2bFo53btiwIeDstr5+/frCbs+tW7dm5syZZ2Q5XevWrVm1alWRfatWraJFixaYzWZatmyJ1Wpl48aNhS3Mu3fvJjU19YIZV61aRZ8+fXjwwQcL951vgjNX69KlC9OnT6dRo0ZYLGf+3Tl+/Dg7d+7kiy++KPyzWLlyZYmukZyczLBhw7jpppt47LHHijwWFRWF3W7n3XffLWzh/+f4d09PT2w223mv0bp1aw4cOMCBAwcKW8FjYmJIS0ujTZs2JcrrauqCLiIiIiIibpWQkMD48ePZuXMnP/30Ex988AGPPvoo4BxjfccddzBq1Ch+++034uPjiYyM5I033mD27NnFvoafnx//+te/eOKJJ5g7dy4xMTGMHTuW7Oxs7rnnHgAeeOAB4uLieOKJJ9i5cyc//vhjkcnVAP7v//6PRYsW8d///pddu3bxzTff8OGHHxZOBtaqVSsGDx7MfffdR2RkJBs3buS+++4rVgt98+bN2bBhA/PmzWPXrl08//zzZ8zSXpYeeughUlJSuO2221i/fj179uxh3rx5jBkzBpvNRs2aNalVqxaff/45u3fvZvHixYwfP75E17jpppvw9fXlpZde4siRI4WbzWajWbNmFBQU8MEHH7B3716+++47Pv300yLPb9SoEZmZmSxatIjk5OSzdk0fPHgw7du354477iA6OprIyEhGjRrFgAEDztrtvzypABcREREREbcaNWoUOTk59OjRg4ceeohHH32U++67r/DxKVOmMGrUKP7v//6Pli1bcv3117N+/XoaNGhQouu8+eab3HTTTYwcOZIuXbqwe/du5s2bVzg+u0GDBkyfPp0ZM2bQsWNHPv300yITkoGzlXjatGn8/PPPtGvXjhdeeIFXXnmF0aNHFx7z7bffEhoaSv/+/bnhhhsYO3YsNWrUwNvb+7z57r//fm688UZuvfVWevbsyfHjx4u0hpe1sLAwVq1ahc1m44orrqB9+/aMGzeOoKAgTCYTJpOJn3/+maioKNq1a8djjz3GO++8U6JrLF++nG3bttGwYUPq1atXuB04cICOHTsyYcIE3nrrLdq1a8cPP/zAG2+8UeT5ffr04YEHHuDWW28lJCSkyCRypxiGwR9//EHNmjXp378/gwcPpkmTJkydOvWi3h9XMBwlXSOggsvIyCAwMJD09HQCAgLcHeecbvx4FcmZxR8nUVGZDBjbvwl39Gzo7igiIiIi1Vpubi7x8fE0btz4goVeRTJw4EA6depUZA3nqubgwYNEREQUTjAmldP5fseKW4dWjkEhVdChtByOZuS5O4ZLfL82QQW4iIiIiMhJixcvJjMzk/bt25OYmMiTTz5Jo0aN6N+/v7ujiZupAHeTL0d1p6CMZ9gra5sPpPHynzFUsU4UIiIiIiIXpaCggGeeeYa9e/dSo0YN+vTpww8//HDGrNtS/agAd5P29QPdHeGiZeVZ3R1BRERERCq5pUuXujuCyw0ZMoQhQ9yzBJxUbJqETURERERERKQcqAAXERERERERKQcqwEVERERERETKgQpwERERERERkXKgAlxERERERESkHKgAFxERERERESkHKsBFREREREREyoEKcBERERERkUpo6dKlGIZBWlqau6NIMakAFxEREREROY/8/Hx3R7golT1/VaICXERERERE3GbgwIE8/PDDPPzwwwQGBlK7dm2ef/55HA5H4TGpqamMGjWKmjVr4uvry9ChQ4mLiwPA4XAQEhLCr7/+Wnh8p06dqFevXuH9lStX4uXlRXZ2NgBpaWnce++9hISEEBAQwKBBg9i8eXPh8S+99BKdOnXiyy+/pHHjxnh7e581+/79+xk2bBg1a9bEz8+Ptm3bMmfOHODv1unZs2fToUMHvL296dWrF9u2bStyjpUrV9KvXz98fHyIiIjgkUceISsrq/DxvLw8/vOf/xAREYGXlxfNmjXjq6++Yt++fVx66aUA1KxZE8MwGD16dJH3dNy4cdSuXZshQ4awb98+DMNg06ZNhedOS0vDMAyWLl1aJPO8efPo3LkzPj4+DBo0iKSkJP766y9at25NQEAAt99+e+F7KSWjAlxEREREpCpyOCA/yz3bacVzcXzzzTdYLBYiIyOZNGkSEyZM4Msvvyx8fPTo0WzYsIGZM2eyZs0aHA4HV111FQUFBRiGQf/+/QuLyNTUVGJjY8nJyWHHjh0ALFu2jO7du+Pr6wvALbfcUlhURkVF0aVLFy677DJSUlIKr7l7926mT5/Ob7/9VqRoPd1DDz1EXl4ey5cvZ+vWrbz11lv4+/sXOeaJJ57g3XffZf369YSEhDBs2DAKCgoA2LNnD1deeSU33XQTW7ZsYerUqaxcuZKHH3648PmjRo3ip59+4v333yc2NpbPPvsMf39/IiIimD59OgA7d+4kMTGRSZMmFXlPPT09WbVqFZ9++mmJ/jxeeuklPvzwQ1avXs2BAwcYPnw4EydO5Mcff2T27NnMnz+fDz74oETnFCeLuwOIiIiIiEgZKMiG18Pcc+1nDoOnX7EPj4iI4L333sMwDFq2bMnWrVt57733GDt2LHFxccycOZNVq1bRp08fAH744QciIiKYMWMGt9xyCwMHDuSzzz4DYPny5XTu3Jm6deuydOlSWrVqxdKlSxkwYADgbHGOjIwkKSkJLy8vAP73v/8xY8YMfv31V+677z7A2W3722+/JSQk5Jy5ExISuOmmm2jfvj0ATZo0OeOYF198kcsvvxxwFsX169fn999/Z/jw4bzxxhvccccdjBs3DoDmzZvz/vvvM2DAAD755BMSEhKYNm0aCxYsYPDgwWdcIzg4GIA6deoQFBRU5LrNmzfn7bffLry/b9++C/9BnPTqq6/St29fAO655x6efvpp9uzZU3jtm2++mSVLlvCf//yn2OcUJ7WAi4iIiIiIW/Xq1QvDMArv9+7dm7i4OGw2G7GxsVgsFnr27Fn4eK1atWjZsiWxsbEADBgwgJiYGI4dO8ayZcsYOHAgAwcOZOnSpRQUFLB69WoGDhwIwObNm8nMzKRWrVr4+/sXbvHx8ezZs6fwGg0bNjxv8Q3wyCOPFBarL774Ilu2bDnjmN69exfeDg4OLpJ78+bNfP3110VyDBkyBLvdTnx8PJs2bcJsNhd+eVASXbt2LfFzTunQoUPh7dDQUHx9fYsU/qGhoSQlJZX6/NWZWsBFRERERKoiD19nS7S7rl2O2rdvT3BwMMuWLWPZsmW89tpr1K1bl7feeov169dTUFBQ2HqemZlJvXr1Crusn+70VmQ/vwu34N97770MGTKksFv2G2+8wbvvvsu///3vYuXOzMzk/vvv55FHHjnjsQYNGrB79+5ineds/pnfZHK2vZ4+tv5UV/h/8vDwKLxtGEaR+6f22e32UmerzlSAi4iIiIhURYZRom7g7rRu3boi99euXUvz5s0xm820bt0aq9XKunXrCovo48ePs3PnTtq0aQM4C8J+/frxxx9/sH37di655BJ8fX3Jy8vjs88+o1u3boUFaZcuXThy5AgWi4VGjRpddPaIiAgeeOABHnjgAZ5++mm++OKLIgX42rVradCgAeAcn75r1y5at25dmCUmJoZmzZqd9dzt27fHbrezbNmywi7op/P09ATAZrNdMOep1vzExEQ6d+4McM6x7VJ21AVdRERERETcKiEhgfHjx7Nz505++uknPvjgAx599FHAOZb5uuuuY+zYsaxcuZLNmzdz5513Eh4eznXXXVd4joEDB/LTTz/RqVMn/P39MZlM9O/fnx9++KFIF+7BgwfTu3dvrr/+eubPn8++fftYvXo1zz77LBs2bChR7nHjxjFv3jzi4+OJjo5myZIlhcX1Ka+88gqLFi1i27ZtjB49mtq1a3P99dcD8J///IfVq1fz8MMPs2nTJuLi4vjjjz8KJ2Fr1KgRd911F3fffTczZswgPj6epUuXMm3aNMDZTd4wDGbNmsWxY8fIzMw8Z1YfHx969erFm2++SWxsLMuWLeO5554r0euVi6cCXERERERE3GrUqFHk5OTQo0cPHnroIR599NHCydAApkyZQteuXbnmmmvo3bs3DoeDOXPmFOkaPWDAAGw2W+FYb3AW5f/cZxgGc+bMoX///owZM4YWLVowYsQI9u/fT2hoaIly22w2HnroIVq3bs2VV15JixYt+Pjjj4sc8+abb/Loo4/StWtXjhw5wp9//lnYct2hQweWLVvGrl276NevH507d+aFF14gLOzvyfM++eQTbr75Zh588EFatWrF2LFjC5cpCw8P5+WXX+app54iNDS0yOzpZzN58mSsVitdu3Zl3LhxvPrqqyV6vXLxDIejhGsEVHAZGRkEBgaSnp5OQECAu+NUaSvijjHyq0ha1a3B3HH93R1HREREpFrLzc0lPj7+vOtWV0QDBw6kU6dOTJw40d1RXGrp0qVceumlpKamnjFDuVRO5/sdK24dqhZwERERERERkXKgAlxERERERESkHGgWdBERERERcZuzLQdWFQwcOJAqNtpXXEAt4CIiIiIiIiLlQAW4iIiIiIiISDlQAS4iIiIiUoWo27NI2XDF75YKcBERERGRKuDUmtjZ2dluTiJSNZ363Tp9/fmS0iRsIiIiIiJVgNlsJigoiKSkJAB8fX0xDMPNqUQqP4fDQXZ2NklJSQQFBWE2m0t9LhXg7pKdAt5BYFInBBERERFxjbp16wIUFuEi4jpBQUGFv2OlpQLcXabfC2n7ocd90PE28A5wdyIRERERqeQMw6BevXrUqVOHgoICd8cRqTI8PDwuquX7FBXg7pCTCoc2QG46/PUkLPovdLrdWYzXbubudCIiIiJSyZnNZpcUCyLiWur/7A4+NeGxGLjqf1C7JeSfgMjP4MOu8N2NsGse2O3uTikiIiIiIiIupALcXbz8ocdYeGgdjJwBLa8CDNizCH4c7izG13zsbCUXERERERGRSk8FuLsZBjS9FG77CR7ZCL0fBu9ASNkL856Gd1vDrPGQtMPdSUVEREREROQiqACvSIIbw5DXYHwsXDMRQlpDQRZs+Ao+7gnfXgc75oDd5u6kIiIiIiIiUkKahK0i8vSDbmOg62jYtwLWfQY758Depc4tqCF0vxe6jHSOJxcREREREZEKTy3gFZlhQOP+MOIHeHQz9B3nLLjT9sOC52FCG/jzUTga4+6kIiIiIiIicgEqwCuLoAZw+cvO7unXfgCh7aEgG6K+hk96w9fXQMxMsFndnVRERERERETOQl3QKxsPH+gyCjqPhIQ1sO5TiJ3l7Kq+bwUERkD3e6DLXeAb7O60IiIiIiIicpJawCsrw4CGfWD4tzBuC/T7P/CtBekHYOFLMKE1/PEQJG5xd1IRERERERFBBXjVEFgfLnsBHouB6z+Beh3Bmgsbv4fP+sHkobD9d7AVuDupiIiIiIhItaUu6FWJhzd0uh063gYHIiHyM4j5AxJWO7caYc7u6V1Hg19td6cVERERERGpVlSAV0WGAQ16OreMRNgwGaKmwInDsPi/sOxtaHcT9LwPwjq7O62IiIiIiEi1oC7oVV1APRj0LDy2HW74HMK7gi0PNv8Inw+ELy+Hrb+qe7qIiIiIiEgZUwFeXVi8oOOtMHYx3LsI2g8HkwccjITp98B77WDpW5CZ5O6kIiIiIiIiVZIK8Oqofje46Qtnq/jAZ8C/LmQegaWvw4Q28Nt9cDDK3SlFRERERESqFBXg1VmNUBj4Hxi3FW76Cur3AHsBbJkKXw6CLwbB5qlgzXN3UhERERERkUpPBbiAxRPa3wz3LoD7lkLH28HsCYei4Pf7nN3Tl7zunNBNRERERERESkUFuBQV1hlu+MS5pvig55xLl2UlwbK3YGI7+PVuSFgHDoe7k4qIiIiIiFQqWoZMzs4/BPo/AX3HwY5ZsO5z51ri26Y7t3qdqNPodryo4+6kIiIiIiIilYIKcDk/swe0vcG5JW6ByM+cy5YlbqJl4iZWe9Vgfs6VkN4UAsPdnVZERERERKTCMhyOqtWXOCMjg8DAQNLT0wkICHB3nKopOwWivyF39Wd4Z58cF26YofUw6Hk/NOgNhuHejCIiIiIiIuWkuHWoxoBLyfkGwyWPsf66JdyfP47NlvbgsEHMDJgyFD7tB9HfQkGOu5OKiIiIiIhUGCrApfRMFubZe/Af/9fhX6uh62iw+MDRrTDz3zChNSx4AdIS3J1URERERETE7VSAi2uEtoVhk2B8DFz+XwhqADmpsGoSTOoIP98B8cs1e7qIiIiIiFRbKsDFtXyDoe8j8MgmGPETNB4ADrtzJvVvhsEnfWDDFMjPcndSERERERGRcqUCXMqGyQytroK7ZsKD66DbPeDhB0kxMGucs3v6vGchdZ+7k4qIiIiIiJQLFeBS9uq0gmsmOLunD3kdajaG3HRY8yFM6gQ/joA9S9Q9XUREREREqjQV4FJ+fIKg90Pw72i4fRo0vQxwwK6/4Lvr4aOeEPkF5GW6OaiIiIiIiIjrqQCX8mcyQYshMPI3eHgD9LgPPP0heSfMedzZPX3u03B8j7uTioiIiIiIuIwKcHGv2s3hqndgfCwMfRtqNYO8DFj7MXzQFX64BeIWgt3u7qQiIiIiIiIXRQW4VAzeAdDzfnhoPdwxHZpfATggbj78cBN81B3WfQa5Ge5OKiIiIiIiUioqwKViMZmg+WC44xfnWPFeD4JXABzfDX896eyePucJSI5zd1IREREREZESUQEuFVetpnDlG87u6Vf9D2q3hPxMiPwcPuwG390Iu+ape7qIiIiIiFQKKsCl4vPyhx5j4aF1MHIGtLwKMGDPIvhxOHzQBdZ8BDlpbg4qIiIiIiJybirApfIwDGh6Kdz2EzyyEXo/DN6BkBoP856BCW1g1nhI2uHupCIiIiIiImeosAV4dnY2DRs25PHHH3d3FKmIghvDkNec3dOvmQghraEgCzZ8BR/3hG+uhR2zwW5zd1IREREREREALO4OcC6vvfYavXr1cncMqeg8/aDbGOg6GvatcM6UvnMOxC9zbkENoPtY6DISfGq6O62IiIiIiFRjFbIFPC4ujh07djB06FB3R5HKwjCgcX8Y8QM8uhn6jnMW3GkJsOB5eLc1zHwEjm53d1IREREREammXF6AL1++nGHDhhEWFoZhGMyYMeOMYz766CMaNWqEt7c3PXv2JDIyssjjjz/+OG+88Yaro0l1EdQALn/Z2T392g8gtD1YcyD6G/ikD3x9DcTMBJvV3UlFRERERKQacXkBnpWVRceOHfnoo4/O+vjUqVMZP348L774ItHR0XTs2JEhQ4aQlJQEwB9//EGLFi1o0aKFq6NJdePhA11GwQMrYMxf0OY6MMzOrurTRsL7nWDle5Cd4u6kIiIiIiJSDbh8DPjQoUPP23V8woQJjB07ljFjxgDw6aefMnv2bCZPnsxTTz3F2rVr+fnnn/nll1/IzMykoKCAgIAAXnjhhbOeLy8vj7y8vML7GRkZrn1BUvkZBjTs49zSD8KGyRD1NaQfgIUvwdI3of3N0ON+qNfB3WlFRERERKSKKtcx4Pn5+URFRTF48OC/A5hMDB48mDVr1gDwxhtvcODAAfbt28f//vc/xo4de87i+9TxgYGBhVtERESZvw6pxALrw2UvwGMxcP0nUK8jWHNh4/fwWT+YfCVs/x1sBe5OKiIiIiIiVUy5FuDJycnYbDZCQ0OL7A8NDeXIkSOlOufTTz9Nenp64XbgwAFXRJWqzsMbOt0O9y2Du+dDu5vAZIGENfDLaJjYAZa/A1nJ7k4qIiIiIiJVRIVdhgxg9OjRFzzGy8sLLy+vsg8jVZNhQIOezi0j8WT39Clw4jAsfhWWvQ3tboae90FYZ3enFRERERGRSqxcW8Br166N2Wzm6NGjRfYfPXqUunXrlmcUkTMF1INBz8Jj2+GGzyG8K9jyYfOP8PlA+PJy2PorWPPdnVRERERERCqhci3APT096dq1K4sWLSrcZ7fbWbRoEb179y7PKCLnZvGCjrfC2MVw7yJoPxxMHnAwEqbfAxPbw9K34MTRC59LRERERETkJJd3Qc/MzGT37t2F9+Pj49m0aRPBwcE0aNCA8ePHc9ddd9GtWzd69OjBxIkTycrKKpwVXaRCqd/NuV3xqnPm9A2TIfMILH3dOUa87Q3Q837nMSIiIiIiIufh8gJ8w4YNXHrppYX3x48fD8Bdd93F119/za233sqxY8d44YUXOHLkCJ06dWLu3LlnTMwmUqHUCIWB/4FLHoPYmbDuM2eL+NZpzi28q3MZs7bXO1vQRURERERE/sFwOBwOd4dwpYyMDAIDA0lPTycgIMDdcaq0FXHHGPlVJK3q1mDuuP7ujlP+Dm+EdZ/Dtl+dY8UB/EKg6xjodrdzTLmIiIiIiFR5xa1Dy3UMuEiVEtYZbvjEuab4oOegRhhkHYPlb8PEdvDr3ZCwDqrWd1wiIiIiIlJKKsBFLpZ/CPR/AsZtgVu+hgZ9wG6FbdNh8hXw+QDY+AMU5Lo7qYiIiIiIuJEKcBFXMXs4J2W7+y+4fwV0vhMs3pC4Gf54EN5rA4tegfRD7k4qIiIiIiJuoAJcpCzU6wDXfQTjY2HwSxBQH7KPw4p3ncuYTRsF+1ere7qIiIiISDWiAlykLPkGO2dOf3QzDP8OGvUDhw1i/oApQ+HTfhD9LRTkuDupiIiIiIiUMRXgIuXBbIE218LoWfCv1dB1NFh84OhWmPlvmNAaFrwAaQnuTioiIiIiImVEBbhIeQttC8MmwfgYuPy/ENQAclJh1SSY1BF+vgPil6t7uoiIiIhIFaMCXMRdfIOh7yPwyCYY8RM0HgAOO+yYBd8Mg0/6wIYpkJ/l7qQiIiIiIuICKsBF3M1khlZXwV0z4cF10O0e8PCDpBiYNc7ZPX3es5C6z91JRURERETkIqgAF6lI6rSCayY4u6cPeR1qNobcdFjzIUzqBD+OgD1L1D1dRERERKQSUgEuUhH5BEHvh+Df0XD7NGh6GeCAXX/Bd9fDRz0h8gvIy3RzUBERERERKS4V4CIVmckELYbAyN/g4Q3Q4z7w9IfknTDncWf39LlPw/E97k4qIiIiIiIXoAJcpLKo3RyuegfGx8LQt6FWM8jLgLUfwwdd4YdbIG4h2O3uTioiIiIiImdhOBxVazBpRkYGgYGBpKenExAQ4O44VdqKuGOM/CoSs8mgpq+nu+OUu9AAL6aM6U6dGt7uCWC3w57FEPkZxM3/e3+tZs6W8o63gbd+B0REREREylpx61BLOWaSKqZRLT88zAYFNgfJmXnujlPukjPzWB+fytUd6rkngMkEzQc7t+N7YP2XsPF7OL4b/noSFr0CnW53FuO1m7sno4iIiIiIFFILuFyUlKx8kk7kujtGuXvy1y1sOZjOh7d35poOYe6O87e8TNj8k3OCtuSdf+9vehn0vB+aXe4s3EVERERExGXUAi7lItjPk2C/6tf93NfT7O4IZ+flDz3GQvd7Ye9SiPwcdv4FexY5t5qNnY93usM507qIiIiIiJQbFeAiVZFhQNNLnVtK/Mnu6d9BajzMewYWvwYdRzi7p9dp5e60JZZntfH4L1tISMl26XnDg7x595ZO+FTUL1hEREREpFJTAS5S1QU3hiGvwaXPwJZpsO4zOBYLG75ybo0HOLunt7gSTJWj8NxyMJ0/Nx92+Xk3H4DbeqTQr3mIy88tIiIiIqICXKS68PSDbmOg62jYt8JZiO+cA/HLnFtQA+g+FrqMBJ+a7k57Xja7c+qKeoHe/Pe6di455yuzYkhIyS48t4iIiIiIq6kAF6luDAMa93duaQnO7unR3zpvL3gelrwOHYY7W8VD27o77Xn5eVkY3CbUJeeauGiXS84jIiIiInIumg5ZpDoLagCXvwKPxcC1H0BoO7DmQPQ38Ekf+PoaiJkJNqu7k4qIiIiIVHpqARcR8PSFLqOg80jYvxoiP4PYWc6u6vtWQGAEdL8HutwFvsHuTisiIiIiUimpBVxE/mYY0KgvDP8Wxm2Bfv8HvrUg/QAsfAkmtIY/HoLELe5OKiIiIiJS6agAF5GzC6wPl73g7J5+3cdQryNYc2Hj9/BZP5h8JWz/HWwF7k4qIiIiIlIpqAu6iJyfhzd0vgM63Q4HImHdpxA7ExLWOLcaYdD9bug6BvxquzutiIiIiEiFpQJcRIrHMKBBT+eWkQgbJkPUFDhxGBa/CsvehnY3Q8/7IKyzu9OKiIiIiFQ46oIuIiUXUA8GPQuPbYcbPoewLmDLh80/wucD4cvLYeuvYM13d1IRERERkQpDLeAiUnoWL+h4q3M7uAHWfeYcF34w0rn514Vud0PX0VDDNet1i4iIiIhUVmoBFxHXqN8NbvrC2So+8GnwD4XMI7D0dXivLUwf6yzSRURERESqKRXgIuJaNUJh4FMwbhvc9BXU7wH2Atg6Db68DL4YBJungjXP3UlFRERERMqVCnARKRsWT2h/M9y7AMYugY63gdkTDkXB7/c5W8UXv+ac0E1EREREpBpQAS4iZS+8C9zwqXNN8UHPOZcuyzoGy9+Gie3g17shYR04HO5OKiIiIiJSZlSAi0j58Q+B/k/AuC1w8xRo0BvsVtg2HSZfAZ8PgI0/QEGuu5OKiIiIiLicCnARKX9mD2h3I9w9F+5fDp3vBLMXJG6GPx6E99rAolcg/ZC7k4qIiIiIuIwKcBFxr3od4bqPYHwsXPYiBNSH7OOw4l2Y2B6mjYJ9q9Q9XUREREQqPRXgIlIx+NWCfuPh0c0w/Dto1A8cNoj5A76+Cj7tB9HfQkGOu5OKiIiIiJSKCnARqVjMFmhzLYyeBQ+sgi53gcUHjm6Fmf+GCa1pEPUm4Rxzd1IRERERkRKxuDuAiMg51W0H174Pg1+Cjd/D+i8gLYGw7Z+z3MtgTXZPiDecreWG4e60IiIiIiLnpRZwEan4fIOh7yPwyCYY8SPpdftgNhxcYl0L3wyDT/rAhsmQn+XupCIiIiIi56QWcJGL8OZfO/h02R53xzgnfy8Lr1zXjhahNdwdxTVMZmh1NbGevXj+i195xH8xw1gOSTEw6zFY+BJ0Hgnd74Xgxu5OKyIiIiJShApwkVIIC/IB4GBqDgdTK/akYLO2JDL+8ipSgJ8mzlGfST4PMuxfn8GmHyDyc0jdB2s+hDUfQYsroed90ORSdU8XERERkQpBBbhIKbx+Q3tu7Fwfq93u7ijn9P3aBBbGHsVur+LLd/kEQe+HoOe/YPcCWPcp7FkMu/5ybrVbQo+x0PE28PJ3d1oRERERqcZUgIuUgreHmUua13Z3jPNaurOazRJuMkGLIc4tOc7ZIr7pR0jeCXMeh0WvQKc7nMV4rabuTisiIiIi1ZAmYRORqqd2c7jqHRgfC1e+BcFNIS8D1n0CH3SBH26BuIVQgXswiIiIiEjVowJcRKou7wDo9QA8vAHumA7Nr3Duj5sPP9wEH3aDtZ9CboZ7c4qIiIhItaAu6CJS9ZlM0Hywczu+ByK/cE7clrIH5v4HFv+X+00Dec8YeFGXsdsd/BCZwOG00k/M1z48kKva17uoHCIiIiJSMakAF5HqpVZTGPomDHoWNv/sHCuevIthzGKY1yxSlswA/u1sLTeVrJNQVEIqz8/YdlHxDAOin7ucmn6eF3UeEREREal4VICLSPXkVcM5IVv3e2HvEtb9/Abd89cTfGQl/LSSBEL5mSH8waWcwK9Yp7SenHG+tr8n13UKL3GkKavisTsgu8BGzRI/272mRx3ko6W7sV1g1n2zyWDc4BZc2zGsnJKJiIiIVBwqwEWkejMMaDqI6S1r8XhUFCPNC7nVvIQGxlGe5Fseckzld9slfG0bwm5H/WKd8rJWoTx/TZsSR/lu7X7yrZVzYrif1yew91hWsY6duj5BBbiIiIhUSyrARUSAt27qQMKlzbDZh5NSkE3+zukEbp2CX8pO7rQs4k7LIrLrX0JG+7vJbjQYTOaznsdsMmgQ7FvO6d3PcbLh+8krW9Kzca2zHrMi7hgTF8YVHisiIiJS3agAFxEBDMOgYa1TXc39IexfMPAB2LcC1n0GO+fge3AlvgdXQlADZ9f1ziPBN9ituSuaJrX96drw7B3oD6Zml3MaERERkYpFy5CJiJyLYUDj/jDiB3h0M/R9FHxqQloCLHgBJrSBmY/A0e3uTioiIiIilYAKcBGR4ghqAJe/Ao/FwLUfQGg7sOZA9DfwSR+YcjXEzASb1d1JRURERKSCUhd0EZGS8PSFLqOc3c/3r4bIzyB2Fuxf6dwC6kP3e6DLXeB39rHQIiIiIlI9qQVcRKQ0DAMa9YXh38K4LdDv/8C3FmQchEUvw3tt4I+HIHGLu5OKiIiISAWhAlxE5GIF1ofLXnB2T7/uY6jXEay5sPF7+KwfTL4Stv0GtgJ3JxURERERN1IXdBERV/Hwhs53QKfb4UAkrPsUYmdCwhrnViMMut8NXUaDf4i704qIiIhIOVMBLiLiaoYBDXo6t4xE2DAZoqbAicOw+FVY9ja0uwl63AfhXdydVkRERETKibqgi4iUpYB6MOhZeGw73PA5hHUBWz5s/gm+uBS+vBy2/grWfHcnFREREZEyphZwEZHyYPGCjrc6t4MbYN1nsP13OBjp3PxDedjox3cMcndSERERESkjagEXESlv9bvBTV84W8UHPg3+oZB5lEfMv7LK69/UnPuQs0gXERERkSpFLeAiIu5SIxQGPgWXjIfYmUT/+iZdjDg8d0yHHdOd3dV73g9tb3C2oAsAadn5nMi1nvPxmn6e+HvpvzcRERGpePQJRUTE3Sye0P5mRkz1o6VtN1M7bcZ31x9wOBp+vx/mPwddx0C3u51jyquxNXuOc+dX67DZHec8xtvDxPxxA2hQy7cck4mIiIhcmLqgi4hUIFsdTUgd8oFzTfFBzzmXLss6Bsvfhont4JcxkLAOHOcuQKuymMQMbHYHJsNZaP9zMwzILbATl3TC3VFFREREzqAWcBGRisg/BPo/AX3HQeyfEPm5cy3x7b85t3odocf9zuXMPLzdnbbcDesYxqQRnc/Yf91Hq9h8IK38A4mIiIgUg1rARUQqMrMHtLsR7p4L9y+HzneC2QsSN8MfD8J7bWDhy5B+0N1JRUREROQC1AIuIlJZ1OsI130Eg1+B6G9g/VeQcRBWToBVk6D1Nc5W8YZ9wDDcnfacDqXl8MXyved8PMDHwrUdw/HxNJdjKhEREZGypwJcRKSy8asF/cZDn0dg5xxn9/R9KyDmD+cW2h563gftbwEPH3enLeRlcRbU+49n89qc2PMem2+1M7J3o3JIJSIiIlJ+VICLiFRWZgu0uda5HdnmLMS3TIOjW2Hmv2HBC9BlFHS/F4IauDstA1qEcP+AJhzLyDvnMdEJqew7nk1adkE5JhMREREpHyrARUSqgrrt4Nr3YfBLsPF7WP8FpCU4u6av/gBaXuVcU7xRP7d1T/fxNPP00NbnPebp37aw73h2OSUSERERKV8qwEVEqhLfYOj7CPR+CHbNhXWfQfwy2DHLudVpAz3GQodbwdPP3WnL1a6jJ3h3/k5yCuxnfTws0JuXrm2Lt4fGnouIiEjZUAEuIlKJ2e0OFu9IIunE2bp1t4dWHxIYvpsW+3+i8eE/sSTFwKzHsC14CXOXkc7u6cGNyz23O/wUmcC87UfPe8yV7eoysGWdckokIiIi1Y0KcBGRSmzl7mTu/XZDMY68ngAu5xbzMkaZ59MwLwnWfAhrPoIWVzonbWtyaYWePf1iWW0OAK5oE8qQtnWLPDZpURwJKdmFx4iIiIiUBRXgIiKVWEpWPgDBfp50bVjzgsfvKmjIwLgrGWzZzBcto2DPYtj1l3Or3QJ63AcdR4BXjbKO7jat6wVwU9f6RfZ9t3Y/CSkaey4iIiJlSwW4iEgV0KZeAF+M6nbB446k59LrjUUsdXSBkc9Bcpxz9vRNP0LyLpjzOCx8GTrd7hwrXrt5OaSvOCavimfu9iNF9llMBnf0bEj7+oFuSiUiIiJVhQpwEZHqrHZzuOodGPQ8bP7JWYwf3w2Rnzm3poOcreLNrwBT1Z2cLNDHA4DVe46f9fGjGblMGdOjPCOJiIhIFaQCXEREwDvAuUxZ97GwdwlEfuGcRX3PYucW1NA5YVvnO50zrVcxr17fjrnbjmBzFB0DHpuYwR+bDpN7jpnTRUREREpCBbiIiPzNZIJmlzm3lHjY8BVEfwdp+2HB87Dkdehwi7NVvG57d6d1mYhgX8b2b3LG/j83H+aPTYfdkEhERESqIpO7A4iISAUV3BiueBXGx8Kw9yG0PVhzIPpb+PQSmDwUtv0GtgJ3JxURERGpFNQCLlLFzdh0iM0H08r9uuFBPrx8XVu8LFV33HC14ekLXe+CLqMgYa1zbHjMTEhY7dxq1ONm+2D209vdSUVEREQqNBXgIlVUSA0vAA6m5nAwNcctGa7tGEafZrXdcm0pA4YBDXs7t4zDsGEKRE2BE4mM4Dtu9PqR5MirIPBRqN+tSq8pLiIiIlIaKsBFqqh7LmlM8zr+ZOfbyv3a78zbyaG0HArsjgsfLJVTQBgMehb6Pw4xM9n55/9oWbCDsIQ/4as/Iayzc5x42xvBw9vdaUVEREQqBBXgIlWUt4eZK9rWdcu1P1++l0Np7ml1l3Jm8YIOt/DsqnDyEqL4tEUU4QfnwOGNMONfMP856HIXdLsbgiLcnVZERETErTQJm4iIuMRWRxO2dn8TxsfAZS9CQH3IPg4rJ8CkDvDzHRC/HBzqGSEiIiLVkwpwERFxLb/a0G88PLoZbv0eGvcHhx12zIJvhsHHvWH9V5CX6e6kIiIiIuVKBbiIiJQNswVaD4O7/oQH10K3e8DDD47FwuzxMKE1/PUUHN/j7qQiIiIi5UIFuIiIlL06reGaCc7u6Ve+CcFNIS8D1n0CH3SB72+CXfMxHHZ3J61ScvJtZOdbC7cCm95fERERd9IkbCIiUn58gqDXv6DH/bBnMUR+DnHzYfdC2L2Q//MMx8c8EK8C90wgWJU8/stmfo06WGSfv5eFn+/rRbvwQDelEhERqd5UgIuIyDlt2JfCyt3JFzzucElnvTeZoPlg55ay1zkmfON31Mo9xPMeP1AQOR0KRjiXMgttW8r01duKuGNn7MvMs7LxQJoKcBERETdRAS4iIuf0wPdRJGfmF/t4X09zyS8S3ASGvAaXPsNv37xH6wM/05oDEPW1c2t4CfQYC62uKfm5hen/6k3regE8+vMmFsQcdXccERGRak0FuIiInFNGrhWAGzqH4+d1/uK6boA3vZvWKv3FPP1YX+taxu/pxLs9srjJOhtiZ8H+lc4tIJyOIddTi3ZAWOmvU4YOpGRz33dRHM/MO+OxiGBfvrm7B/5e5ftfr5fFjK+nBYvJKNfrioiIyJlUgIuIVDBbDqQVu0v33mPls5TXE0NaEhbkUy7XAoPDgV3gslsh/RBETXG2hGccolvGR6z2srD58CA4+BTU71ouifJtdo6k5xZNaUCdGl4Yxt+F7eo9ycQmZpz1HEkn8thyMI0+TWuXaVYRERGpuFSAi4hUEKfKuH/9EF3y51bVxs3AcBj0HPR/ArbPIGnR+9TJ2EaPjPnw5XwI7+ocJ972BrB4lVmMqP2p9Hpj0Rn7r+8UxsQRnQvvOxzOnz0aB/PisDaF+x/8IZr9x7PBUWYRRUREpBJQAS4iUkGM7deEOVsTS/w8i9lgRPcGZZCoArF4Qcdb+fNED2bOnsmzIavokbUEDkXB7/fDvGeh62hq2Trgyv/aOjcIIjzIh6MZRVu/7Q4HdgdEJ6Sd9XkB3hbahv090Zm3pRRj40VERKTKUQEuIlJBPD6kJY8PaenuGBXeZkczfgjrT49rPoLob2DDZMg4BCv+xxeYmOvRjaCkR5yTtl1k14D6NX1Z9dSgM/ZHJ6Ry48erL+rcIiIiUv2Y3B1ARESkVPxDoP/j8OgWGP4tNOqHGTtXmyPpuuRO+KQvbJgC+VnuTioiIiICqAAXEZHKzmyBNtfB6Fk8UvMjfrBehs3sA0nbYdY4mNAa5j1LzbyD7k56BpvdQYHNXmSz2uzujiUiIiJlRF3QRUSkythvacxM6z3Uv+UtBmTPh8gvIDUe1nzIOD6io0cn0lNHg70ZmNz7HfTq3cnc++0GsvNtRfZbTAYvX9eWO3o2dFMyERERKStqARcRkSrH6hkAvR+Cf0fD7b9As8sx4eAy80ZujHkUPuwGaz+B3HS3ZVwbn3JG8Q1gtTtYvuuYGxKJiIhIWVMBLiIiVZfJBC2ugDt/5b3WP/OVdSi5Zn9I2QNzn4J3W8Os8ZAU67aIt3aLYPOLV7D5xSt47urWbsshIiIiZU8FuIiIVAspXhH81zqSL7vPhmveg5DWUJAFG76Cj3vB19dA7J9gs5ZrLk+LiUAfDwJ9PPDx1HJlIiIiVZnGgIuISLVSYPaFbndD1zGwbyVEfg47ZsO+Fc4toD50vxu63AV+td0dV0RERKoQtYCLiEj1ZBjQuB/c+h2M2wL9/g98a0HGQVj0inP29N/uh4MbwOFwd1oRERGpAlSAi4iIBNaHy16Ax2Lg+k8hrAvY8mHLz/DlZfD5QNj4PRTkuDupiIiIVGIqwEVERE7x8IZOt8F9S2DsYuh4O5i9IHET/PGQs1V8/nN4ZiS4O6mIiIhUQirARUREzia8K9zwCYyPhcEvQWADyEmF1R/Q9tcBfOXxDj1tUWC3uzupiIiIVBIVrgA/cOAAAwcOpE2bNnTo0IFffvnF3ZFERKQ686sFlzwGj26C236GppdhnFxT/J28/2Kd1JkTi98j6WgiGbkF7k5baeUW2Ao3u11j7kVEpGqqcLOgWywWJk6cSKdOnThy5Ahdu3blqquuws/Pz93RRESkOjOZoeVQaDmU7VujWTP1bW4xLyMwfR81lr+Ex7LXCLT1pa1xOVDH3Wkrlaemb+Hn9QcK7zcI9mXuuH74ela4jykiIiIXpcK1gNerV49OnToBULduXWrXrk1KSop7Q4mIiJymUYsO/Bz8Ly4p+IhnrGOJsTfE2yjgVstSZns9y5up42HzVLDmuTtqpbB817Ei9xNSstmXnO2mNCIiImXH5QX48uXLGTZsGGFhYRiGwYwZM8445qOPPqJRo0Z4e3vTs2dPIiMjz3quqKgobDYbERERro4pIiJSan5eFhaOH8DW12/k9Vf/R5uXN8Pd86DdzWDyoHbaFvj9PpjQBha+TIg9yd2RK4Vp9/emtr+Xu2OIiIiUGZcX4FlZWXTs2JGPPvrorI9PnTqV8ePH8+KLLxIdHU3Hjh0ZMmQISUlFP5ykpKQwatQoPv/8c1dHFBERcS3DgAa94OavYHwMXPocBIRDdjKsnMA3J8bymccEAhNXaU3x8/DxMGMynLdzrTZy8jUeXEREqhaXD64aOnQoQ4cOPefjEyZMYOzYsYwZMwaATz/9lNmzZzN58mSeeuopAPLy8rj++ut56qmn6NOnz3mvl5eXR17e3138MjIyXPAqRERESsm/Dgx4wjlx2845sP4LzPHLGWLeAItGwabm0P1ePK093J20Qrvx49UAtKkXwJ//vgTzqcpcRESkEivX2U3y8/OJiori6aefLtxnMpkYPHgwa9asAcDhcDB69GgGDRrEyJEjL3jON954g5dffrnMMouISPmL3JfCZ8v2nLF//b5KNCeI2QJtroU213Lv/37gkrQZ3OmzGsvxOJj7H+4z+VDT0ofUnLuAdu5OW2H0ax7C9OiDhfdjEjM4nplHnQBvN6YSERFxjXItwJOTk7HZbISGhhbZHxoayo4dOwBYtWoVU6dOpUOHDoXjx7/77jvat29/1nM+/fTTjB8/vvB+RkaGxoyLiFRSXhYzACviklkRl3zO47xPHldZHDBH8JJ1NK1ufIdemQsh8ks8j8Vyh2UR7FwEk/tAj3sx2Tu6O6rbvTu8I/+9vi0A7V6ch3qgi4hIVVLh1ve45JJLsNvtxT7ey8sLLy9N2CIiUhWM6dsIq91OTv65/x/w8jBxd9/G5ZjKdewe/tD9Xuh2D9Om/4zf5slcaY7CnLAaElZzvVdtkiz9OWwd7u6obnVq+THDMDRmXkREqpRyLcBr166N2Wzm6NGjRfYfPXqUunXrlmcUERGpgBrW8uPV68/e46lKMQwOBnbl/YIAHmzvy5MhayDqa3wyj/Ko5Tds+2fAtGHQfSw0usQ5yZuIiIhUeuW6Drinpyddu3Zl0aJFhfvsdjuLFi2id+/e5RlFRESkQjjhGQKXPgPjtrGy09uss7fCjB1i/oBvriFzYnfi50zElqNJRkVERCo7l7eAZ2Zmsnv37sL78fHxbNq0ieDgYBo0aMD48eO566676NatGz169GDixIlkZWUVzoouIiJSLVk8ORg2lKfW1qeVkcAo83yuN6/CPz0O/8gXyY96G3PXO5xd2ENaujutiIiIlILLC/ANGzZw6aWXFt4/NUHaXXfdxddff82tt97KsWPHeOGFFzhy5AidOnVi7ty5Z0zMJiIiUt1c2qoOA1qEkJIVyE+0Z6b9frqnz+V661yakgiRnzu3xv2d3dNbXuWcbb2cJWfm8cWKvWTmWgv3dWtUkxs61y/3LCIiIpWJy//XHjhwII4LTJjy8MMP8/DDD7v60iIiIpVaaIA339xddH3wCfMbM3jxZbzU9hh3WRbCrr8gfrlzCwiHrmOgyyioUX5fZE/bcIDPlu0tsu/n9Qe4ok1d/Lwq3PyuIiIiFUa5jgEXERGRknNgYk9AD7jtR3h0M1wyHnxrQcYhWPIqvNcGfhkD+1aWy6zhufk2ADrWD+SRy5oDYLM7KLAVfxWTknj4p42M/GodP0cmlMn5RUREyou+phYREalMghrA4Bdh4FOwfQas/wIOroftvzm3kFbQ7R78HKGU9X/znSKCePSy5ry/KK7Ez126M4lFsUkApOUUnPWYEH8vjmTkEhmfAsDWQ+mM6NGg9IFFRETcTAW4iIhIZWTxgo63OrfELbDhK9gyDY7tgL+eYBbezLD0xjs5CML7ujvtGR7/ZQvJmXlF9tXwLvqxZNr9vYlKSCH5RD6vzYnFatOa4CIiUrmpABcREans6nWAYZPg8ldg81TY8BW+x3Zwu2UJ/L4E1nenZ/5lLKaVu5MWyi1wdmMf3acRgT4eNK3jT6PafkWOaVDLlwa1fNl/PIvX5sS6I6aIiIhLqQAXERGpKrwDoed90GMs97/2PtfkzeFqjyhMB9czmvVc5+XP4R03QfNHoVZTd6cFnAX4PwtvERGRqkqTsImIiFQ1hsEmU1v+XfAIO29bC4Oe57ilDjWNTNru+wY+6ALf3QA7ZoPNeuHziYiIiEuoBVxERKQKs/mGQP/HeX5/f/Ji5/JK2DrCk1fBnsXOLSAcuo4+uZRZXXfHFRERqdJUgIuIiFQDDsPMIntXBna7i5Et7BA1BTZ+f3Ips9dwLHuLY+GXs6/xraSE9ATDIDzIl/b1A90dXUREpMpQAS4iIlLdBDd2Tth26bMQ8wes/xLjwDrqHPiLOgf+Yrc9jO9tg/nN1o/fxg+lWZ0a7k4sIiJSJWgMuIiISHVl8YIOw+Ge+bzV6Cu+t15GNt40Mx3mJY9vWev1MP7zxsPhje5OKiIiUiWoBVxERKqcmMMZeHuYi+xLTM9xU5rK4bB3Uz6x3oPtspe4y28d8XM/oLF9P757psGeaRDeFbrdA+1udHdUERGRSksFuIiIVBkmw/nz3QW7znOMUU5pKqcCiz/0GMu/VrXAP2kDH7fYSJ0Dc+FQlHOb9wz9a17FTKMr0NDdcUVERCoVFeAiIlJljO7TiLyCvdgdjrM+XsPbwlXtNdN3sRgGGxyt2HXJXdSp54CN3zknbktLoFvijyz1+pE9u7tB7CNYAKs+UoiIiFyQ/rcUEZEq47pO4VzXKdzdMaoe/xDoNx76Pgq7F7L3r0k0SllN0xMb4JdRrPIKYqptIEZ6K/BtWmYx8q12pqyKx2I2MaRtKHVqeJfZtURERMqCJmETERGR4jGZocUQZrR+j/7577Ei9E4cfiGEGmk8YplBwGdd4YdbYOdfYLO67LKeFufHlXybnZf/jOH5Gdt4dVasy84vIiJSXlSAi4iISIkddNRhYdi/sI/bzkP5j7DK1hYDB8TNh59GwKQOsPRNSD900deqF+jDU0NbcU2HenSKCAIgNTv/os8rIiJS3tQFXUREpBr5cHEcP6zdD0ByZh4Ngn1pGuJPdEJq6U5o9mS2vRez7b3Ycn8TAmJ+gI0/QMYhWPoGLHsLWlwJXcdAs8ucreil8MAAZ9f2GRsPMW7qptJlFRERcTMV4CIiItVA/Zo+ABzNyONoRl7h/uTMfKIT0grvB/p4lPoa9uCmcMWrMOh5iP0TNkyB/Sth5xznFtgAuoyCLiNLfQ0REZHKTAW4iIhINfCfK1txeZu65FvtAKTl5LPryAl8PP/+KFDT14NhHcMu/mIWL2h/s3M7thOivoZNP0J6Aix5FZa+wUS68q3pUnD0v/jriYiIVBIqwEWkzHy2bA8zNl78+M9/Ss7Mu/BBIhXQIz9vxMvi7IKdkVNQrte2mE30aBxcdGeHcrhwSEu48g247AWI+cPZKn5gLYONSAZ7RlLw3c/QfTR0vhP865RDIBEREfdRAS4iLhfk6+zCunrP8TK9Tk3f0neVFSlPTUL82Hn0BMmZZ04c1iTEzw2J3MDDBzqOcG5HY/jh45cZxnICMvbDopdhyevQ6mroNgYa9QeT5okVEZGqRwW4iLjcWzd1YH7MURwOR5ldwzAMBrdWa5lUDu/f1pkdiSew/+N3wtfTTLM6/iU+n8Ph4NiJPGynnc9kGNSp4YVhGBedt8yFtuEN7ua/ebey8uo0au/8EQ6uh5gZzi24CXQdDZ3uAL/abg5bPClZ+SzblYTV5qBuoDeXNKtdOf4sRESkXKkAFxGXiwj25Z5LGrs7hkiF4WE20b5+oMvO98If2/nu5EzmpxvRPYI3byqPfuWukYsXma1vpXa/u+HIVmf39C3TIGUvLHgBFr8Kra91FuONLoEyKmgT03PYk5QFQFiQN01CSv6lyLO/b+WvbUcK7//yQG+6Nwo+zzNERKQ6UgEuIiJSyWw6kAaAxWRgMgzsDgdWu6Nwf6VUtz1cMwEufwW2TYeoKXB4I2z71bnVagZdRuFlGujSy2blWbns3WVk59sK9y36vwE0LWER/s+5KY6d0FwVIiJyJhXgIiLVUIHNwdhvNxTjOHs5pJHS+uKublzasg4r45K586t17o4DQGR8Cq/NiSWvwFnQmgyD+wc04bpO4cU7gZc/dL3LuR3e5CzEt/4Kx3fDghcYYlj42KML23KuA3u3Eq8rPndbItOjD+FwgLeHiZu61C8svj0tJvKtdg6n5ZS4ABcRESkOFeAiItWIn5e5sMhYEHO0WM/xNJvw99Z/F1I8v0UfZPM/WuK/Wb2v+AX46cI6Qdgk59ri23+HqG8wHdrAVeZIrkqOhEmfOmdP73wnBNYv1infmruT+OSswvunim9vDxONa/sTm5hR8pwiIiLFpE9UIiLVSA1vD365vzcxJSgyWtcLIMBbM85L8ZyaaG54t/rUr+nLhAW7sF/sfIxeNaDLKOgyisXLlrB/wSfc4rka//QDsPQNWPomNBvsbDVvcSWYz/339dQ66G3qBRCTmKFeHmfx/dr9bDuUTliQDw8ObIrFrBnpRURcRQW4iEg10zEiiI4RQe6OIVVcw1p+tAit4fLzZgS04GXrXaxo9G8m9zgC0d/AvhWwe4Fz8wuBTrdDl7ugVtNznqd+TZ8SfRFVXSSdyOW5GdsK7/doHEyvJrXcmEhEpGpRAS4iIiKVToHhCR1ucW7H90D0t7DpR8hKglWTnFvDS5yt4q2HOdchlwvKKyjaIyCnwHaOI0VEpDRUgIuIiEjlVqspXP4yDHoOds11FuO7F8L+lc7NOwg63Orsxi4iIuJGKsBFRETknO79dj0Wk3MM8NXt6/HWzRV4nXGzh7O1u/UwSD8IG3+Ajd9B+gGI/AwiP+NzoznfmQeQZb/O3WmrlKw8KzkFNmr5eWKU0XrtIiJVgWbVEBERkTO0Cw8EILfATmaelcw8K79vPOTmVCUQWB8G/gce3Qx3TofW14LJQltHHG96fMk7+2/hbctntMjbClzsLHHV2/p9KXR+ZQHdXl3Ik79ucXccEZEKTS3gIiIicoZ3bu7Ao5c1x+5wkHQij1s+XePuSKVjMjtnSG82GDKP8dHEV7gyfwFNTYkMtyyDpGXc6RnKDAYSbR8KeLo7caWz5WA6+Sdnk4/an+rmNCIiFZsKcBERETmDYRhEBPsC4GmpIh3m/EP40XID72QO4cEmx2iYMIPrPNbS2HSUx5iKLf0XVni0p/b+u6HxbWDxKnzqd2v3s/1QOgCdGwRxa/cG573UpIVxLIpN4tXr2+HjaS7TlyUiIpWHCnARERGpZgx2e7fnY2sdFjR8jKB9c7jVspzuRiwDzZth5aOw4UXoMBw638lRv5Y8f9rSXFM3HODKtvUI9D1zvXGLycBqd7Dz6Al2Hj3BsI71GNiyTnm+OBERqcBUgIuIiEi1lWfy4VfbAGaZLqVPzQw6p8zhvhpr8Mo5CpGfQ+Tn1KzdhjHmrszmEpJsNXA4IM9mA84swF+/oT3+3hbemruD/cezsdo0vrwqmbvtCNsOpXNDl3Cahvi7O47IRbHbHXy2fC8Ngn25ukM9d8epNlSAi4iIiACJ5jAWW4fT6fq36Gfe5pxFfccsPJNjeNEjhmccP7LQ1JVptgFgH3DWcwT4WLiyXT0+X76X/cezXZZt/vYjzI85itkwGN69Pl0bBrvs3BVNbGIGD3wfRU6+jVeua8uV7SpGYXAit4AHvo8CYMeRE3x5Vzd2HMkAoFXdAHdGq1bW7j3O1oPp3N6zAX5eKmUuxvp9Kbw1dwcAQ9tdhcmkFQzKg/7WioiIiJzu9InbslM4vu5HDi35kg6meIaaIxlqjsT2+bfQ6TbofCfUbl7mkZ75fRvJmXkA7E3O5JcH+pT5Nd1lRdyxwi8v5mw9UmEK8DyrvfB2Zl4By3cdY9TkSACmjOnOpRpqUC5GfL4WAMOAe/s1cXOayi0tp6DwtvrqlB8V4CIiIiLn4htMZocxXDuvMZ09DzLMvoTrzCuplXUUVk10bhE9GZTdix20L7MYeQW2wtu5BfaTP20cSsvBy2Kifk3fMrt2RRGfnEVOvo3W9WpUiLXGD6bmnPV2SRxJz+WNv2IJ9PHghWvaYDGXfMLD3AIbHmYT5mrWenk4LdfdEURKRQW4iIiISDHsoiGv2kbyhvU2Ngy3ErhjGsTNhwPr+BfrGOPlQeray8FzDCaHd5lmsdsdDJ20gvjkLAD8PM28fmN7rusUXqbXvZC9yVlc9+FKGtf243+3dCxVQXk2i3cc5e6vNwDw+BUteHhQ2fc6KA+zthzmj02HAbiuU1iJhxas3p3MmK/XExrgzfzH+uPtUfln3K+uXyhI9VFF1hURERERKR8FWMhrfjXcPhXGx8LglzlojsDbKKDewTnw4y18dXwUz1m+o0ZqDDiK37kzt8BGdr4VxwWek2u1FRbfAFn5Nh79eRP7TtvnLpsPpjNj02FiE0+47JzxydlnvX0udruDaesP8NGS3RxOK13rdHkoOG2SvoJSTNgXnZBKntVOQkp2qVvhK5Lth9Pp/MoCrn5/BXa7OkVL1aQWcBEREZHSqlEXLhnHY1u7k5MQzYdtd9Lo8F/UzE7mXstfsOAv2NwGOo6A9sMh4MzxzNsPp/PqrFjW7D1euK9rw5r8+kDvYnW1HtuvMT+sSyA738aJXKtLX97FsJ3lS4TI+BSi9qfSql6NMh0zvfFAGk9O3wLAnmOZTBje6aLPuTsp86LPccqUVfGs2XMc1ZhFbTqQRk6BjR1HTnAiz0qgz5krDYhUdirARURERC6WYbDN0YQdnW6m0W3v8eqkD+iUOpehHhsxJ8XAghdg4UvQZCB0GAGtrwFPPwB+jz5UpPgGiNqfSk6BDV/PC39UG395S2ZtSSQ733bBY0+ZsGAXi3ccJcDbg9duaE/j2n4lebXFkm+1M2/7Eaw2BwNahuBlMXHX5EhyTo5nj3z2MurUKJuu+idyC0677ZovJV6aud0l5ymw2Xn5zxiXnEtEKh8V4CIiIiIXITPPivX0pkyzBxu8evJlQUu+vqkFA22rYPPPkLAG9ix2brP9ofW10HEENrtz3O/V7etxR68G3P7FujLNa7c7+GBxXGHP+L+2JfLgwGYuv87Xq+OZs/UIACN7NeSZq1oXFt8AmblW6tRw+WXLjNVFzdUlGJEgIlWQCnARERGp9J79fSuztyYCYDGZeHpoK27qWr/Mr/vqrBi+XBl/zsetngHQZjR0HQ0pe2HLNGcxnhoPm3+EzT8yziOUEEtPvHxvp1NEhwteMz45i9fnxF5U7tOLwLIaa3vsRN5Zb7ubze5gUexRsvNtXNE2tFi9DESk5H6KTGDWlsNMGN6J0ICynZiyMtEkbCIiIlLpTdtwgLTsAtKyC0jOzOPPLYfL5bqndx2v7e9Ju/DAcx8c3AQGPgWPbIS750PXMeAdSGDBUR60zOSezSPw/upSxppnUZfj5zxNZp6V79cmAODjYcZirl6zRTscDjbsS2HDvpRSfXmwcncy930Xxbipm5h8ni9PROTiPP3bVlbtPs5X+j0rQgW4iIiIVBlj+jZyy3W/HNWNyGcGF289bsOABj1h2ET4v11Ma/IqC2xdsRlmTEe38KzHj6z2egSv76+FDVMgO+Wsp7m0ZQiTR3fHw0VLfVUWv208xM2fruHmT9fw8/oDJXruziMn+GL53sL7x7PyXR1PRP4huQL1gKkIqte/2CIiIlKl1fb3cst1LWYDU2nWLfbwJrbmIMYW/B8fd/2L/CvfZZ29FSbDgTlhFcwaB/9rwQe8ybWm1fiQW/jU/i1C6N20luteRCVUkiXG8q12rpy0nJW7k8swkUjVkp5TwMM/RjOthF92yblp0IuIiIhUOkkZefyx6RCBPh70ax7i7jgukesRiLXLaG6dUY8wkll6VQqeMdPhyFYGGtEM9Iwm2+HFfHtX/rD1xbA3d3fkSiXPatMEaCIlNHV9ArO2JDJrSyLDu0e4O06VoAJcRESkijiYmsO932wAIDW74AJHV07mk63MO4+e4NGfNwEwaUQn9wUqI4epjbXXHXj2fwySdvDZR29xpWMlDU1JXG9ezfXm1eQu/wLSb4T2t2A47O6OXGYOpeW4dA3uqmTroXR3R5CzsNkdvPLndgJ9PBh/RUt3x7koxzM1TMPVVICLiIhUcrX8PQHn5FwLY48WeSzYz9MdkcpM/xYhXN8pjGOZeew8kklyZl6FmmG7TNRpxYeM4I38m+hk7OE68yquMa8lpCANNkyGDZP5jdr8aemBT5IfhA9wjjOvAlbvSabvm4vdHaNcZOVZsdrsWIo5pt9qszNv+9GzPrYg5igxhzO4o1cDtw3LAEjKyGXPsSx6NA4u/PKsOohNzOCbNfsBGNm7ESE13PdnUNlEJ6QStS+VUX0a4mUxuztOmVABLiIiUsm1rhfA9/f05GBqdpH9TUL8CQvycVOqshHo48HEEZ0BeGzqJn7feMjNicqTwSZHMzZZm/Gq9U4+7pPJEPtKiP2TunnJjLXMgZlzYFkDaHMttL0RwrtU6mI8uRq1vt3zzQYa1vJlwWMD8LRcuAg/17rkuQU2xn7r7AmTa7XxnytbuTRnSVzzwUqSTuTx8rVtuatPo3K55qG0HGr5eeLtUTbF26kvN+4f0OSc1zj9z8Zqr7q9U8rCqK8iycyzEuBj4dbuDdwdp0yoABcREakCLmle290RzunYiTy+W7MPgG6NgmldL8C9gaoAG2YO1+oNfW+Hqyfw1Fvv0jtvJdd4bcKcngBrPnRugQ2g7fXOLaxyF+PVwf7j2SSdyC3ebPrncHrxl57j3qEoSSd7p5Smq/wdX65l4q2daVbHv9jPWbbrGHdNjqRlaA3mPda/xNcsjlNfboQFeXNLN42JdrXMPCsAsYkn3Jyk7KgAFxERkTJxqhXvUFoOz/+xHYCavh5sfOEKd8ZyiWMn8li3N4W0ijDW3sObZeZe/FzQiab3dKNd9jqImQE750J6Aqx+37kFNYC2N0DrGwAHUDWL8ZSsfDbsS3V3jCIcDgd/bTtCdr6NIW1DL+pcuQW2atGde9uhDKasiue1G9qf9fG07Hyy8qz4ef1dzqzdexxwzhFxuq9WxpOWnc+4wS1c9t4dy6ziQ19cKCYxw90RKhQV4CIiIuISO46cKDL5W8/GwdzdtzFHMnLIt9pZGJtUZSaHu+/bKA6dtgSWxVQxVnZ1WLxxtB5GYtjlGAOzqXt0BUbMDNg1D9ISYNUkTKsmscyzDnPsPZll6wWOijObenRCKq/P2VHq5+db7Qx8ZwkZudZiHT9l1T7G9GlMg1qlb3EujuiEVB78IRqAfOvZC8rinuf2L9aSW2DnoUubuipeqTkcDqIT0qgb6E34eYa7OBzw9ap4sgts3N+/abGL4BPn+XP8beMhlu46xuqnBp23u3lSRi7/nRUDwMCWIXRtGFysa0vpLN5xlEWxSTw55O+hD2f787Gf7KlRquUbKzkV4CIiIuISIz5fW3jbMJwful4Y1gaA45l5dH11obuiudypid/ahwfSIrQG3RrVdHOivz3z+zZ+ikwAYGSvZvz3lq8hPxvi5sP233HsmkdDaxL/Mv3Jvyx/kr7+Y7DdCK2GgV/bC55/d1Imx07k0SYsgEAfj4vOW2CzYwAWs4lVcSVbo/vDJbsZ2r4ubcMCAedEZsUtvk9ZtSeZBrXKdqzp6T0lUrNLP65984E0cgucY4o/WrLnonNdrHnbj/DA99F4mk1sffmKc06aFZ+cyfTogwB0axhMj8YlK4IT03O4/7uoM7qjp2Tlc+xEHhHB5/4CJc/69xjsvIKqPx7barPz3dr9tKobQO+mtcr9+nd/7eyif/rEc/+ssQtsdq5+fwUGBrMfuaTYEw9WFSrARUREpNTMJoPbezZg0Wmzrwf6eHBpyzpuTFV+Xr2+HR0jgtwdo4gtB9POvO3pWzgW3JGbyUOvvMXV5rUMMm0iMPcQrP4AVn9AmG8dXrO0Z669O2vtbXj4h2h+f6gvLUJrABC1P4WbPlkDQJPafix+fGCxMs3dfoRWy88sGL9ds4+X/4zB22Li23t6lOr1Lt+VXFiAS/k6lJYLQL7NTlae7ZwFeM5phW92fsm+IAFYsSuZLQfT2XKw8i+7FhmfwgeL43jo0mb0auL6Anl+zFFe/tPZ4r/vzatdfv7i2n88+5yPHTuRx66jzqUFkzPzqRvoXbj/FLvj7JMMVgUqwEVEROSivH5DezjHOE05t2Mn8nhs6ia2HS7nosLTjzn2Xsyx98KXXN7tfIyhlg2wax7m7CTusCziDhaR4fBlkb0z0XN30+K2MeDpx4GUv7vdH0g99wfss5m4MO6MfSvikrHZHWTl21hfgnHbt/VowIGUbFbuLlmLubjGur3HeXHmdg6fNgyjuHIL7OQW2Eo0S3lFLcYOp+Xw8I/R9Glam8eHFG+978d/2UxCSjbxyVms/M8gl2f652oY/7QxIZWavp40qu3nkuulZecTm3iCno2DL7o7eb7t7y9qOjcIushkFZcKcBERERE3WLU7uUgBeTEzX5dWNt7sCbkMBj0A1nyObV3Agulfcrk5ihAjnRvMqyB+Fbz9X2h6GRG+fQmkNukUf2bqslLvZKuZlL8vVuxlx5HSzVL9wPdRBPp4sOTxgQT7ebokT2R8Cp8s3V3uE6P9vvEQ0QlpRCeksfPoCcb0bUSfpkVXpDiemU+9wL/HxyekOAvkg6kl//LiYu1OyuSGj1fjZTER88qVLjnnA99HsXZvCv+7pSM3d63vknMCmE6u2JCeU+CSoS4VSfXqcC8iIiJSQZxq1etQP5A/HurLiO5uXtLI4kluw0t5xnovlzo+5dcOX/KF9SpSPOuBNRd2zqbrxmeI8nqAHzxe4y7TX5ASX+rL/bAugYWnDV2Q8nM0I5crJy7nho9XlapLeHa+7aKun55TQHxy5kWd43RP/baFJTuPse1Q6WbbXrbrGP3fXlK4XGJx5Rb8/T4siDnKv3/ceMYxr82OLVWmc0nKyMV2jjXgLyQhJQtwjosv7Tme/m0rY7/dgPVka/XavSkA/HdWTJH3wxW+XbOPji/P5/u1+116XndTAS4iIiLiRkG+nnSMCMJw8xrdiek5jJu6CQA7JhIDO/Ga9U7eaTkNHlgJA54iPaAFFsNOX/N2njN/C+934sY1N/KU5Se6GzswU/wP4F+tjKeC9ix2q7TsAiYtjGPahgNldo3I+BR2HDnBxoQ0th8+f9G66+gJflyXQHoFXsFg77Gsi3r+G3NiSUjJLlwusbSOZ505wd6ak0ujucKSnUn0eH0RD/4Q5bJzlsS09Qf4KTKBBTFHWbk7mcETlhU+lp5TQLsX57nsWgU2By+c/PN4bsY2l523IlAXdBERESmWArudsd9uYE+S61qupOKYuekwUfud47Br+/89gzGGAXXbQ932LAkaxXvT5jLYFMXl5o30Mu+kZtZeHrDs5QHLn6Q6/Fli78RiW2dO2Ae46ZVUblPXH+C7ky1+vRrXKvESaQmnTX6168gJfli3n6Ht6pW6u/etn60hNbuAbYfTnfM9VEFnK5zLw1cr41m39zhv3dSBmsX485ka6fxSZt529/QceXL6lsLbf2w6zO5//F9gPa1V/VAp5gc43W8nZ82vitQCLiIiIufl72XB02zC4XB2s9yb7GxtqnV6kVbBFNjspGblk2+t+ssOucqpD88mA747z4zk+x11+cp2NSNtz8OTe1nS7k1m2PqQ5vCjppHJjeaVfOj5AV8l3cqPHq9yj3kODY0jRc6x5ulBVXqSpYuRdVqX8KxSdA8/veV8w/5Unv19G6/Ojil1ntSTLd8xF2gpP5/YxNI/tzIqbrf+/86KYX7M0cIl2i7EQfl0GUnJyufJXzczf/uRcx5zoX9bI+NTCm9HJ6RxJD2XqP2pPPLTRuKTL9xjIeYff2ccVai7jFrARURE5LxqeHvwywO9i3wg8vU0c3mbUDemOr9Vu4/T+b8LCPL1YP5j/alTQxN2nUtcUiYLY46y8+SkWrd0jaBhrWLOkOwTxN66V/LfDQ0wY6OrsYtB5o0MNkXTzHSYPuYY+phjeJ7v2WOvx1J7J5bbOxBg7o+Hqfq0A611YTfkCznb2N64o+q1Up6iSjCjP8CJEq5dX9Ymr4xn2oaDTNvgulbo1+bEEr0/lUNpOaX6QmbzwXQ6VbAlH0tLBbiIiIhcUMeIoAq33vXZdI4IopafZ2GX0rTsAuKOZqoAP48/Nh3mj02HL/o8NsxEOloTaW3Nm9zOsPo5hCQu5TJTND1MO2hqSqSpKZF7+AvHxEk8Y2rLTHMbltk7sMcR5oJXUnF9saL0k9VVVRMXxjGkbV3u7NUQm93BxoRUMitYIXo6m93BpgMXLqyTMnLx8ij9l0s5+TZ8PM9coi09p8DlXc9zzjKZXmJ6DntdOEHeKX9u/vvfmLjTuq5HJ6QyuHUo6/elEBpw7n+nT18jvLJTAS4iIiJVRpMQfzY8NxiHA4ZOWsHOo6VbKknOZLc72HKw+GuWH7GE8adtKJNtQ6lBNpeYttLftIUB5s2EWVPoRBSdPJyTSR101GbZgo4cC+2LPw3IpPyXZLsYHy/ZTc/GwbQIrXHWx709TOQWnJo1unSt4Z8s3cNbc3eUOmNxLdmZxHO/b+PKdnV5/po2ZXadFXHJrIhL5vI2oUxbf4B3F+wqs2u5wmfL9/D23J0XPO6JX7fQt1mtIvvyrDa8LBde9/y12TFMXrWPj+/owpC2dYs89uWKvSULXAzvzCv6eiLjUxj+2RqXX+d8xk3dxAMDmvL+ojgGtAgp3J9WgSf9u1gqwEVERKRKMQwDw3DOHVaZ9XlzMRkn18A9kXfxLYNLdiTx+8ZDWMyle2M+XrqbyatK15J7Al/+svfkL3tPsDqIebgRv0z9msZpa+lpiqW+kcwdlkVwfBEPeZmJdjRnma0Dq+3t2OpojI0LFy/ulJiey8M/RjP/sQtPPLciLvmCx/zTgZTsMiu+f1yXQPdGwYX3p6zax6G0HL5aGV/qAjzPauO2z9cW69jcAhsLdySV6jrl6deo4nXHXrbr2BkF+FWTVrBw/AAMw8DP00zWOZZxO9VT4sPFu4sU4A6Hg8Vl8B79c6K0mZsPufwaF5JvtfP+ojjA+d5VByrARURERCqgUy1AqS5qCXp1dgx7Srlc06wth/nffFe1UBo4Qlox2+8mIo9dig+59DTFMsC0hf6mLTQ1JdLT2EFP0w5gGhkOH9bZW7Pa3pZV9nbsctR3UQ7X2pecfeGDTnND53B+31i8gifP6tr1lU/3z669+S641u6kTKIT0i76PMVhrwSTc+05loXV7sDDbBAa4F04keW5JKbn8PRvWxjYsg5D2tblvQW7zlgubs+xTKL3p3Jtp7DC1vUN+1J4fU7pvqhp+swcPM3VZ14Gd1IBLiIiIlIN5F3EjPBv/vX3h/rxl7dgQjG6C68v5kRUOXizxtSVpdbOANQ3khho2kxf0zZ6m2IIMrK43BzN5eZoAI45AjmU0J1dvl1YY4QDrUr+giqA8CAfd0cAKn9PkYWxFb/1vKSSM/P5KfIAP0UeYN+bV/P+4t1nHDN6SiQHUnLIzLMypm9jAB7/ZfNFXTffplUjyoMKcBEREZFyknA8m22H0zGA5MzKM6lQwckP5v8e1IwbOocXqwAvrYOOOnxvu5zvbZdjwk4bYx99Tdvpa9pGd9NOQox0QtIW0iltIcO94MCSUHbv7kvjbldi1O1ZZrmkYrKWU9FoP8vs8q4yPfogj13eokTPOZDi7D6+YV9qYQG+73jRXhgfLIpj9tZEGtXyY+KITi7JKhdPBbiIiIhICRW3pcjmcOBwODAMA6vNzrUfrazUkwsNaVu3WGPIPS0ml6zBbsfENkcTttma8JltGJ4U0NnYzX0RB2h6YgP1s2OIMI7Cwd/g4G8EAcs9Q4h0tGadvRWR9lbgqHPROaTyyS2w4e3hurkDrCUowDNySjZnw8HUnHM+lnQit0TnOt2pie12HDnB0p3H8LT8/btbmb4ArGpUgIuIiIgUU0SwL/tPtjJZTAb1As+/vNn930URHuTDnEf64WExyrz4HvbhyjI9f3F1bVCTNWWw9nU+HqxztKZJ3SHMDbmbOVFx9DDtoI9pO7fUTiAwPYYGpmM04Bg3m5cDkJZQC34ZgEd4L1oYDuIc4TjQWNeqrv1L82ga4o/HaeOak4qxlFVyZh61/b0u6tofLjmzy/iFHM04e6Hd47VFF5XllDyrDU/L36VfnzcXu+S8UnIqwEVERESKaeZDlxCT6JwMqUEtX+qcY93ank2C2XQgDXDONLzjSAbt6weWV8xCNoeDHUcyMBkGlWCuqhLLwocl9s4ssXem7qWduSTCi0f/9xk9TDvoYdpBR2MPQbbjsP03vLf/xnwvSHX4s8Hekmh7c6LtzTFbm5ZZvlMTZZ1agqykXv5zOwAjujdwZawyMWHBTp67uo1LW50vRoHNwY4jRZchHDd1E9d3Dj/j2NN7ayyOTWJ49wgAYg5nMHvrYe7s1bBsw8JFLf+VZ7VRYKuCv+BVlApwERERkWIK9PWgd9NaFzzu6aGteXBgM677cOUZ4zLLWucGQdzdtzH//mkj2w5lcOXEFRd1vp8iE1yUzHXahAWw5eQXHEV41WC5vSPL7R2dd8nn3sYpPNHqONb4VeTFr6Gmkcnl5iguNzvXILcveB22toP6PaB+d4joDjUbu2R2sms/WHnOJafO5bfov2dGX7s3BaBIK25F9f3aBPo3D+GKf6xfXdlk5Bbww7r99GwczAPfR5GQkl3iGe5LY38p/52YvTWR2VsTXZxGypIKcBEREZEyEOjjgdlU/lNMe1lM+Hq6vhXS19NMeJAPuWW4JNaF9G1Wi//d0pF6gT48cbYC/B/y8GSXT0cY0I2cngV0fmkObY19dDPtpIspji6m3dQjBRI3O7f1Xzif6BfiLMZPbWGdLngtBw4OpGQT4O2B2Wzg72UpcfF9LpVhqS2A/0zfQsu6Ndwdo1jyrXY8LWd+sfHpsr0kZ+YRHuRTuE72uvjjF92y3/zZv/junh4XdQ6pGlSAi4iIiLhRMeY0qxBWPzWIIF9PEtPPPWFUWavt70W9wNIv32XFwmZHMzbbmvHVydr4P7392bZuIV1McQwJTKB+zi7IOgY75zg3AAy+MtUnyqMhW+2NOZTUip9XFV2XucDmoN/bSwDnJHR/PNS31DnL0vHMPP7908YyOXdqdgFvz9vJgwPLrlu/K/wcmcBzM7bx2OUteOjSZkUeOzU52ani25VGfhVJk9p+Lj+vOwT7ebo7QqWlAlxERESknF3bMYxDaTlYTEbhEkIAvp4WbuwSzoq4ZCwmg8T00s+A7EohNbwI8i3+B+524QFlMglbWdiTH8Rsey9m23sRFVaXj4e3hSNb4EAkHIyEgxsg4xAN7QdoaD7AjeaVYAVbusFuz3C2Opqwxd6YbfbGxDgakosX+VY7sYkZF764G5zq1n66yPgUVu1O5taTY58vxoGU8h1yURqvz4nFanfwzrydZxTgUjxBvh7ujlBpqQAXERGRcvXGX7HkubEbc0Xw1k0d8DlHN/EJwzsV3n7il838EnWwnFK5zv9d0ZLRfRuTnWdlyup9RO9PPWNCrArLwxsieji3k97+dTkx0cvpYMTT3rSX9qZ46hqptDQO0pKDhTOuWx0m4hzhxDoa0nx3Ly4xebDD3oBkyn8CvnNxcGZ39lMTgMUnZ5V3HLfIzCvZMmGulJbjnmUIx03dxCd3dHHZ+f7cfNhl56puVICLiIhImfPyMGM2GdjsDj5btrdwf1mMVZbyk5adz8/nmKQtPMjZVfz1G9qz51gml727rDyjuVS6uSZL7Z1ZSmc4+d1RHVJpb9pLB1M87Yx4Opj2EGJk0No4QGsOQMxKvj/ZaeCYI5BYewNiHQ2ItTck1tEAk73RRec69TvlKivijhER7Ouy85WHbBeNs78QV73PJ3LdU4A7HPDA99EuO195Ty5ZlagAFxERkTLn72Xhg9s6E70/tXBf2/CAcy7jJZXDxIVxxCVlujtGuWlex7/w9SZRk0X2riyydz35qIO6pNDOtI9WRgIjGqSTf2gLjYyjhBjphJi30p+theeyRVq40jOcnY767LaHs9sRTpwjnP2OUGwU74upbS8NoefrC8nIdU2Lbmp2AanZ6YX3R361ziXnLUvfr91f5tdIzswv82tI9aECXERERMrFVe3rcVX7euV+3Ud+2oifl4VHLmte7teu6lKyVJj8zeAItThir8VCutKke0fGx2/Gh1xaGgdpbdpPayOBVqYEWhkJBJBDG9N+2rCf0+vtfIeZeEc94hzOony3PRz/grZ44kM+Rcfd+niaMZXhTPsr4pLL7Nyns1zEa6hf04fjbvh7aHdhzwOpXlSAi4iISJXUJMSPHUdOcDwrn+NZ+UzbcKBYz9t7LIt6gT40q+NfxgmrjqHt6vLXtiMuO99V7esSUdOXrHwrgT4efLRkDwAB3pVv4qccvNnkaMYm2+mTfTl4trcvketW0Nw4RFPTIZobh2hmHMbXyCscW17oKLzmZZDgqMM+R132OeoS76gLu70IdxzlRDmOMd98II3Ve849wV5qdj6pWSXrZt2qbg2iTusdU56y862kl2Jc9qwtiVzeJrQMEsnZvDY7psq83yrARUREpEp6f0RnHhx4ghVxybw1dwdnmXuqiFNtcC/O3A7A2zd1YLgLZoUWqFPDCz9PM1n5NsKDfC64pnKgjwdPX9UagNwCG/UCfcjOt3J95/DyiFsODNK9w1lg78YCuhWOKzewE8ZxmpsO0cxwbs1Nh2hlPowfWTQ2jtKYo8Bm5xO+/4bZQL6XGX5sBCHNGJoWiMPsd7JQDyXRUculyZfvOnbexw+k5HBnCbqur917nCNunO1/cCnnJqjt7+XiJHI+VWnMuQpwERERqZIsZhPtwgOLvSzSbT0b8PnyPaRmFZCZZ2VPcuUZ29ysjn/hkmXN69SgUW2/Uk/QVS/I9ePya3h7sOqpQRxIyaFxiDNbcXl7mLmzV0OXZypr46dtLvFzHJg4RAiH7CEspVPh/r5Ng9m1Zw/NTIdpZByhkXGEu1ra8M7YR96xPXgZBZC2B9L20Afoc1pHAavDxPHU2jClBdRsSPO8mtxksnLQEcJBR21MjpoE+ngUuxXYcHGP9/9M33rhg85j19GS/Z4+/stmTv+1OFxBlvqT6kMFuIiIiAgwsldDRvZqyGuzY/hiRby745TI5NHdiTuaidlk0LyOPyaTwZqnBpF0Io+o/amFrfrnEuTrwXu3dsLLbKJH4+AyyRjk61mitcTlNIbBMWpyzF6TNbTlmg718L7duaRUr5fn4ptzhGnDQ/HPTGDa/KU0Mo7Q2DhChJGEl2El1J4E+5Ng/0paAu+e9sdgO2jiCLVI8HAW5IepzRFHTRIdwRxx1OKIoyZp/D0cw2I2ldvLnrn5MP93RYvzHpNTULJZ0H+thMv6CdQLrDoTdqoAFxEREankPMwm2oQFFNlXJ8CbOgHeJBSjB4C/l4VLW9Ypq3jlYvvhDKITSj6O2O6o3JNpOQxnq3lO/X68tSiOmdb6hY8Z2AkhnQF1snlncE1I20fC3h3s37OD+sYxwo1kPA0b4Rwj3HzuruW5Dg9SUkJgShMG5dbAYbFwxBHMEUcwiY5gkhxBHCeQgjIoLf43fxd9m7q2G72IO6kAFxEREZFK79Nle0r1vN+iD7k4ifscTC36ZYsDE0nUZKdnI+hwCQBbgg7z8I6NgLNAH9bYRHriHoLyE4kwjlHPSCHUSKGekUJdI4Vaxgm8jQLCbIdh/2FaAC3OUUGkOfxIdgRyzBFEMgGFt48RePK282dJivWElOwKWYDHJGaw/XD6hQ8U+QcV4CIiIiIiVVj9mj5n3e/ARKqlNlsMD9LtTc96jBf51DFSqUvqGcX5qS2EdDwMG0FGFkFGFs04fMFMaQ4/Uhw1SKUGqQ5/Uk/eTnP4k3LavjrWMLzzfLBgxVqBShctwSelVXH+FouIiIiIlJN+zWsTm3iC5Mw8d0cpc0kZpX+NeXhywBHKAULPuZKAgZ1AsqhtpBNipBNC+snbadQuvO38WZt0LIa9sFiHCyxflwosguu9IcPhQ6qjBmn4k+HwJQNfMhx+nMD3H/d9yHD4FbmfiQ9/r3Ug4j4qwEVERESkxApsDmZuvnBLZ0Ux9yzrlPt6Fl0Obc7WI/R6fRE9GgczaUQnjAtM+V2nhhdJJyp+Ab9hfyrvLdjFY5eff0Kz0nJgIo0apDlqsNtR/7zHGtgJIpPaRgY1OUFN4wQ1jUxqkum8zQmCjEyCjRMEcfKnkYWBgwAjhwAjh4YklTijzWFwAl9OOHw5gS9ZeJHl8DntpzfZp93OwpsshzfZeJN56ifeZDu8ycSHPDxQQS+loQJcREREKrXthzNKtdxWZRDg43Hhg8pZbX8vGtXyveh1ea/pWI+dR08Q5OtBo1p+LLvA+tIX6+15O4t13JGMXGZuPsx/r2tHoG/Fe/9La3r0wTIrwEvCgYlUAkh1BJzacUEje4bz57odhUV5TeMENcihpjkHX3sWAUYWAWQTYGRRg5zT7mcTQBaehg2z4SCIU63uF8/mMMjFkxy8yMWTXIfnyft/3z61/9QxOXhSYHiSdcZjHuThSZ7Dg3wsFGAhHw/yHc6feafu44Gd8puFXsqGCnARERGplE6tJf37xkNn7KsqHhzYlHqB3uQW2Diakcd3a/e7OxIeZhMLxw+g/UvzS7wE1OlG9W7EqN6NAHhp5vYyL8AdJZzt3FGcytBNLibZ2r3HXZajvBzPthW2sAOFb4CXyUSezX6BZzvwooAAsk4W5NnUMLLxJQ8/cvEzcvAj7+TPXOf+k7f9jNyT+3LxN5w//Qxnjwez4XA+j5M9IEryT4/5woeci9VhOlmgnyrO/y7UC4v3k4X8qeK9AAs2zBQ4zFgpuhVgxuZw/rRidh6HGSsWrJiwOpy3CzBjw3ntwuc7znKuk8fZMWFzmLDx92b/x20rZuwYJXzzKj8V4CIiIlIpjezVkOOZeeRZnR/AOzcIIqSGl5tTnd3mg2nU9Cv5Gti1/L24t18TAJbsTKoQBTg414Ku5e/JwdQcd0e5oMNpOSzbdaxK9ZIY1qFeiZ/jcMDiHUf5fm1CGSSqyAzy8OQYnhxz1HTuuoi/Cibs+Jws3r2NfLzJx4c8vCk4eT/Pua/wsXy8jXy8Th7nayrAy+E8xvvkYz7k4UUBnljxNE7+pAAvrHgZBUWubzHsWE6e97SXWKnZHMY/ivIzi/aVBT2By9wd1SVUgIuIiEil1DEiiCljerg7xnmZTo4hfn3ODl6fs8PNaaqn7YczuGtypEvO5e1xEU2XLtS9UXCJn3MoLYe7v95QBmmqFzsmsvAhC58zC/ky+Y7HgQc2PE4W5aeK9MKC/YzC/cx9HlixYHNuhu3v2yc3j5Pt1h4nHzOf3FfkOOPM4y0nc5kN+8njrViwY8J+sox2/rQY5++lYDYcmLEBNqDgrMf4c3FDXioSFeAiIiIiZWRsvyZ8u3YfMYczcFcDbLeGNWlVtwZHM3JJzT77h9uqrG6AN0cycl1yrn7Na7P1UPmv/bxqd+XrNi6uYlBwsht5Nt7OXWf7t6RCd/BwYMJRpCh3brYz9pkMe5Ei/tTjHn5BDHX3y3ARFeAiIiIiZWR49wiGd4+g0yvzSXNT8VsnwJu54/oDMGVVPC//GeOWHO7QLjyAZiH+zNjkmtnavSxmbuvRgJ8iz9+N+9KWIRxOy2Xn0RMuuW5xbDmYVm7XKo0Wof7sOprp7hjiFgZ2jOJNIHeuLxKq0F8dTaMnIiIiIuJCPp5mmoX6l8u1Tn2x81v0oQsc6V51A31K/dw5Wy+wVrhIJaICXEREROQssvKsPPrzRh75eZO7o4ic0wMDmgJgMZduJq7kzHwy86yujHRWrevVKPNriFQG6oIuIiIichZr9hxnz7G/1wwODfR2YxopCwE+lf+jcNMQPwDijmZyKK3ks9LHJma4OtIZlj0xkOVxyWV+HZHKQC3gIiIiImeRnuNsFWwS4sdHt3fhx3t7uTmRuNr7Izq7O4LLlKb4Li+eFpUcIqdU/q/9RERERFzIbHIWC8mZeQDUqeHF1aVYd1mKL8DHwy3XrateDSJSzvR1lIiIiMhpbuoSzqBWdejROJg+TWtxX/8m7o5U5d3dtxE+FWSN7bLw9s0d6NIgyN0xRKQCUAu4iIiIyGmah9Zg8uju7o5RrQT5enL3JY34aMked0cpE/2bh7B2z3GiE9IK93VtVNN9gUTEbdQCLiIiIiIXpU4Nr8LbNX09sJhKNyN3ddG1YU3a1AtwdwwRcQMV4CIiIiJyURrU8uOPh/rywW2dmfFQXyxm933EnDC8o9uuXVxl/f3Ei8PalO0FRKTU1AVdREREqgWr3Y7D4XB3jCqrY0QQHSOC3B1DRKRCq5At4LNmzaJly5Y0b96cL7/80t1xREREpAqITkjjcHquu2NIJfHHpsNEJ6SSkpXv7igiUoVUuBZwq9XK+PHjWbJkCYGBgXTt2pUbbriBWrVquTuaiIiIVELt6wdS29+T5ExnIRUR7EOzOv7Mjznq5mRSkb04czsAnmYTg9vUKfHzG9fyA8Dfy0KQ75nLrJk1Tl6kWqpwBXhkZCRt27YlPDwcgKFDhzJ//nxuu+02NycTERGRyqh+TV8inxmM1e7sfm4xGXyyrGrOti2ul2+zcyit5D0nxl/egivb1SU8yAfvsyyxVtvfi0cGNeP9xbtdEVNEKgmXd0Ffvnw5w4YNIywsDMMwmDFjxhnHfPTRRzRq1Ahvb2969uxJZGRk4WOHDx8uLL4BwsPDOXTokKtjioiISDViMhl4Wkx4WkyY1PIoJ/l4mOnROLhMzm0yGbQLD6Smn+c5jxl/RUua1fEvk+tfyD/XJQ8L9HZLDpHqxuUFeFZWFh07duSjjz466+NTp05l/PjxvPjii0RHR9OxY0eGDBlCUlKSq6OIiIhUGTGHM/hyxV6+XLGX5Mw8d8cRqRIMw2Dqfb147urW7o5Srro1rMmo3o3cHUOk2E5f6rCyc3kX9KFDhzJ06NBzPj5hwgTGjh3LmDFjAPj000+ZPXs2kydP5qmnniIsLKxIi/ehQ4fo0aPHOc+Xl5dHXt7fH0QyMjJc8CpEREQqBq+TXVc37E9lw/7Uoo9ZKuRcqiKVimEYLv9dCgv0cen5XO29WzsR9Y9/Tyqb23s2YHrUQXfHqDA8zSbybXZ3xygzwefpSVLZlOsY8Pz8fKKionj66acL95lMJgYPHsyaNWsA6NGjB9u2bePQoUMEBgby119/8fzzz5/znG+88QYvv/xymWcXERFxh5u71icxPYcTudYi+8OCfOjeqGy6zooUh3FaT35XdOr38/r7Y6mfZ4WbpuiCrmpfl5q+nlzZri49G1/85MHv3NyB6IQ0fopMcEG6v3laTEQE+1bqAnz9s4Op7e/JLxsOuDuKlJP/b+/eo+ys63sBf/fec8vcMzPJ3DKTkISEXGfChIFAgCQEQrjEoAIFhMDqRS2p1tAieBR6jlrWag9KqznLo9ZSuzw9FFs550iLrSkeWsSDgLRqa5UWaxYhAUwll8otM+cPZEjMbWay9/vuy/OsNWvtvefd7/vZmZk3+7Pf3/t7q3Pl84Fzonu3F154IQ4cOBCdnZ2HPN7Z2Rnf+973Xg9UVRV33nlnrF69OkZGRuLmm28+5gzot956a2zZsmXs/p49e6Kvr68wLwAAEtbZXBcf2bgk7RhwmHecPjP++Bv/Fq311bFq/rQTXt/Vw/0xOhrx2oHRuGo4/fdyLVOqo74mF8+O89J1t65fEH1t9RPezoGRI1+b/vLlfbF9939MeH3lbkF3c0z72XDkVw8c+d+u0C4d6In/8/c7Utk2pa8oP17csGFDbNiwYVzL1tbWRm1t+ZwTAABQCt557px457lz8ra+1vqauHH13Lytr5hlDxo+8NuXLYmrPvONvG/jk1cvi//3r7tj7vTGsUuqlZu3LuuNP//WxCZrvvnC+fE7D/xzgRKlp5yHn5ebRI/ld3R0RC6Xi127Dr3u5q5du6KrqyvJKAAAlLDMJMa9XzXcn/8gk/Ab6+aP3a6vOfwSZflwydKe+PDGxXHdipnxxXetmNBzq1wpoOQs7G5OOwLjlGgBr6mpiaGhodi2bdvYYyMjI7Ft27ZYsWJiOwYAACrXhoHemDu9MQZmtERT7fgGdbYXyUROfVPHN1T9vAWdR3y8YZyvN+L1SeaWT3C+iHmdTRNaPl/es2ZuPPbBtbGop/TL5AcuOiXR7dWYlLNk5H0I+r59++Kpp54au//000/Hk08+GW1tbdHf3x9btmyJTZs2xfLly2N4eDjuuuuu2L9//9is6AAAcDwrT+6Ir245NyIiLrzrofjezr0pJ8q/gb7WsdtTqnPx8SsH4qSOxqirnvhR8zPntMfX/+XHcenSnjwmzL+OxvI4tdQkmRxN3gv4Y489FqtXrx67/8YEaZs2bYq77747rrzyynj++efjtttui507d8bg4GA88MADh03MBgBQLk6e3hjf/OHrs073tU1xCTkmrK46Gxcu7p708z93/Wnx3R17YumMljym4mjKadZu8ivvBXzVqlUxOnrsGQk3b94cmzdvzvemAQCK0hd+6Yx46rl9ERExq6M+ss6xJWF11bkYmjk17RhQ8Xw0AwBQYDVV2VjY0xwLe5qjvgSvcQ3lojpbXPXnPWsqY+Z/3lRcv4EAAAAFcm4erlmfTxcsmvyVoP76fefkMQlJUcABACqcSxiN37KfTYzWWl8dJ3U0pBuGVAweNDlemnpap6QdgUkwBgoAoAT8/LWZq/IwydP971kZ9TVVMbNtfJfFIuKK0/pi3aKuqK3Oxq//zyfTjlMRpjXVxvN7X047xpi3LuuNiIgPf/kfD3n8wxsXx4fu+04akSghjoADAJSA02a1xeVDM+Ksue1x8dLuWLfwxK8g09MyJU7qaDAp3AS11FdP6lJgxSyXy8TwrLaoyWXjvAXT045ziIffvybtCIfI5TKx5pTD/41+9OP9Y7cdneZoHAEHACgBddW5+N3LB9KOQcJqctl45cBIzJ7WWNDtZCIT97zzjHj5tZH43s698Ym/eaqg2ytHB18Iqq2hJr0gFDUFHAAAjuHvt/8ktW3/ya+cHv/3n5+Pt/xs2HMhZTKZsjuyD8VGAQcAgCOYWl8Tz774UqoZhma2xdDMtlQzAPnjHHAAADiCT71jKO0IQJlRwAEA4AhyOZPTMXntzgPnCBRwAACgsA6eoaxCtNZXJ7atudMLO0kf+aOAAwDAOAyf5FzsyXptZPwFvKHGNFUTVVOl1pUKPykAACpCZ3Pt2O2eloldp/mM2W2xYk57viNxBL+6ek7aESpOLut0i6T4eAkAgIowvbkutt10buz4yU/jtFkTO5pdlXXcKimr5k+PCxd1xQPf3Zl2lKJWlac5CtobaiKTiXhh3yt5WR/HZk8CAEDFmDOtMc4+eVpZX++6qsiPZl60pCv62iY2AoFDfeyKgaitys/vcHujyeKSpIADAEAZOKmjIdYt6owLFnWlHeWY7njr0vjbm9ekHaPg8lWQj2RdHn/GFy3pztu6OD4FHACgQpx9ckfM7miIqfXVceGirkRnaabwPrpxcfz3a5dHZ3Nd2lGIiF9bM7ckzq1+5znOuU+Sc8ABACrE3OlN8Te/sSrtGJAXL/701cMea5lSfcTH07B+SXd8e/60WHjbV9KOckxTasr3dIxi5Ag4AACkZF5nU8zvbIq2hvI9D7eprjAjLS5cfPgw7BvOmhW9rfk9vzyXzcS586ZN6rn1LqnGz1HAAQAgJVNqcvGV950TT3zo/Jjd0ZB2nLxpqq2KP7zhtPjyr62Mxtr8ldB/enbP2O3W+sM/tOhpnRKfvHpZ3rYXEbH16mVx1XB/XteZljNmt8UHL16QdoyK5iMZAAAgrzKZiNXzp+dlXTVVjhke7NT+1qg3bLxk+W0GAAAokLPmtudtXR+8eEH82bvPjEzm9cnd3ric2/KZU8f1/Gym+CeFK3cKOAAAJW36QbN+tzfWppikdE0d5znoX/61lfGZ65YXOE15ufuG4bys5x1n9Mc7zpg5Vr4jIv7HL50Rf7BpeVy8dHyXEmsu0Pn4jJ8h6AAAlLSPXzEQD//Lj+Ok9oaornKEb6Kqc5l4/7r541p2cW9LUc+aPTo6mnaEw1Tn8nPM88rl/VFXfei/fV9bffS11cdrB0byso2kndrfGk/86Cdpx0iUI+AAAJS09sba2DDQE0tmtORtndOaKudI+p++c0WcObcj7Rh5se/lA8f8fkMeJ4TjxPzeLwzGJ68+Ne0YifMbCADAYWqr3zxOU1ddWcdsBma0xEcvW5J2DPLo4iXdsXbh9LxdoqyhiEcBlIq3DPamHSEVCjgAAIe5bNmM2PGTl2LPS6/GJeM8v7Rc3HTB/Fjc2xLP/OSnaUdhgprrjlxv7rxi4LDh2yfi4HkHKLxstnxOLVHAAQA4zLSm2vitDYvSjkGJOPvk14ew/+0PXkhl+7esPyVe/OmrcdGS7vj+rr2pZJiMI01+N6U6Fz999dhD6SvNO8+ZnXaEvKms8UQAAAd5fu/LaUeghK05ZXrUVGVj6YyW6G6p7COis9ob4o9/8fSx+115/veYfpxz8jcO9sb7LzxlQud4t0xJZ0bw9oNK9/Sm2rj3XSsO+f7v/cJgQbe/sKe5oOvPp5VzO+Jvb14dFy0pn1E4CjgAUHFyPxvO+L2drx8pq8p6S8TEXXFaX3z/I+vjf29eGVV5mum6GE1kDoA7Lx+IoZlT47ZL8jt64sMbF8fJ0xvj41cOHHfZ5pSK9Xi969w5h9w/bVbbUZed2V6f9+2vmN0eb11WGudfZ7OZ6GvL/79BmgxBBwAqzsVLuuOxH/577Hnp1YiIuGhxV8qJoHjV5LLx0qvju8zV24ZmxNuGZuQ9w7pFXbFu0fj+TudMa4xPXLUs/vSx7akNif95a06ZHn/zveciIqJuAhO4fea65XHBxx/Ka5ZMJhMr5rTHn3/rmbyul/FRwAGAitPXVh+f3bQ87RhwwtoOGs58pPOJK9WlAz2x56VXi6aAX7ti5lgBp7Ip4AAAUKLOnTctPnn1sphSnYsF3aVzbi+FV1+Ti/94pTgmcztzTnt8/V9+PK5lZ3c0xL++sL/AidKjgAMAQImqymXjkqU9acegCBVTAU9rwrtiVL6zRQAAQAnpaDz2TN/lZva0hrQjQOIUcAAAKAIfumRhXLF8Rvy3a05NO0oiPnudeRg4tuf2vJR2hLwzBB0AAIrAkhkt8TtvP/5ltsrF7GmNcf7Czvjrf9yVdpQTds3p/WlHKEsvvza+2fdLiSPgAAAAB5nodbKvWN5XoCSVLZNJO0H+KeAAAEDFqZ/A9bhP1MnTG6M6l4ne1ilRX53cdik+CjgAABRYU92bZ35OSbD4cbj3nndyDMxoiauHkxs2PmNqfTz6gbXx1S3nRi5bhod1GTfngAMAUDa6m6dEXXU2Xnp1JOZOa0w7zpjNa06OntYpMa+zySWZDvLv+18Zu/3ayOjY7TULpscD390ZA32ted/m+86fF+87f158+R92HHWZ0YNuHxiJyOXhsOXUhpoTXwklTwEHAKBstNRXxzduPS+effGlmNfZFDf96ZNpR4qIiGlNtfHOc+ekHaPoPPZv/z52+y2Db553fcXyvhiaOTV6W6cc9bmndDVFQ00uOppqo70xv+V2aObU+NK3nomaqmzM72qKp57bl9f1p2Vo5tSIiOhvq085SeVSwAEAKCut9TXRWu9oY6mZ39V0yP05xxnB0NdWH4998PyoymWiOh+HqA/S3lATP/jo+vjpqweiua665At4T0tdvHv13Lh8aEZERAyf1BafuGrZuIr4xsGe+Mp3d8VPXz1Q6JgVQQEHAKCiTW+uSztC4g4+YtzeUJtikhNzrPPpe1rePHpeNYnzrqtz2bwX+/FoK8BQ9ZM7m+LaM2aO3c9kMnHpQM+4nvvxKwfj5ddG4pQPPZD3XJVIAQcAoKKdv6Az+tvq40e7/yPtKIk5a05H/MGm5dFQWxX97eU5HPmcedPi09cORe/UKVGVQpGerGyRTdKWyWSibgIzt//+VcviPX/yrbxse0lvS17WU0wUcAAAKlo2m4kVs9srqoBns5k4b0Fn2jEKKpfNxAWLutKOkYhsJhMNNbnY/0r6w8Rr8vhhx80XnpK3dRWL0vkoCAAAgMNks5n4yvvOieFZbRERMb+z6TjPKA3HmoSvVCngAAAAJW7G1Pr4zHXL4wMXnRJbrzk17TgchSHoAAAAZaClvjp+5RyXuytmjoADAABAAhRwAACACZpZoNnjF3Q1x6Ke5lg1f1q01lcXZBvFbF6ZnL9+NAo4AADABP32ZUsKst4pNbm4/z1nx903DEcmiuuSZEmY3ly616UfDwUcAABIxTWn90dExEVLSu9yYf1t5Xn9dArLJGwAAEAqfmvDorhsWW8s7m1JO0pZy1begfSipYADAAAF9cb1nGty2ZhSnRt7vDqXjeU/u3Y1hbPpzFlpR+BnFHAAAKCgzl/YGfe+a0V0NddFTVVlnwU7Z1pjREQ01lZFLpPMoelV86cXbN1rF3TGzPb6+IO/e7pg2ygnlf3bDwAAFFwmk4nTZrVFn/OmY8mMlvhfN54VX3nfOZEt4NjwqfU1BVv3wdobauJDlyzMy7p+c938vKynmCngAADAmFO6yvsyUMVgoK91bFh+oXzg4gXRXFcVv3VpfspxoX30ssVx4+q5accoOAUcAAAYU1ediz+8/rS0Y3CCVs+fHn9/+wVx/VknpR2FgyjgAACUrcxB59iaCJpKk0noHHPGTwEHAKBsXbK0O/rb6mOgr9Vs25CQi5d0px2haJkFHQCAsnXegs44b0Fn2jEoQtU5xyILZes1p8bNP94f5/7u19KOUnQUcAAAoOKsnNsRGwd7YlZHQ9z/D8/GD57bl3akspJx0scR+dgHAICK19H05iWbOhprU0xSfNYv7o5MJuL0k8prCH9DbVXc9QvL4tfXzout15wa158566jLzu9qimwmorulLuqrc8mFpOw4Ag4AQMW7cfXcmN/VHB0NNbGwpzntOEXlLct64taLTonmuuq0oxTMvM6meN/58+Lur//wiN8/qaMhHv1Pa6O+JhdVhq5zAhRwAAAqXn1NVWwY6Ek7RtFqra85/kJlzsgI8sHHNwAAAJAABRwAAAASoIADAABAAhRwAAAACmZeZ1PaEYqGAg4AAMAx/eENp036uZcvnxE3Xzg/Vs7tyGOi0qSAAwDAETTVvXnBoPZGs4BT2VbPnz7p59ZW5eJXV82NU2dOzWOi0uQyZAAAcATNddVx341nxQ927Y3zFnSmHQcoAwo4AAAcxWBfawz2taYdo+j1tU1JO8IJy2YOun3wnQp2/kIfPOWbAg4AAEzKL648KRZ0N8clS7vTjnLCmuqq47oVM+PpF/bHijntacdJVXUuE7ddsjDWLe5KO0rZUcABAIBJWdTTHG89dUbaMfLmv7xlcdoRisLU+pq4dsWsRLfZUFMZ1bQyXiUAAABF5zfXzY9v/egnsW5RZRxtV8ABAAAouK7musMeu3H13BSSpEcBBwAAoOAuW9Yb/7xzT5w+u3LPsVfAAQAAOCGDfa3xr8/vi9NmHf1a31NqcvGfK/w8ewUcAACAE/Jn7z4zXj0wEnXVubSjFDUFHAAAgBOSy2Yil1W+jyebdgAAAACoBAo4AAAAJEABBwAAgAQo4AAAABzX9WfOSjtCyVPAAQAAOK7bL10YD/7GqrRjlDQFHAAAoIItndE6ruUymUy01dcUNkyZU8ABAAAq2AcvXhAbBnrSjlERFHAAAIAKNntaY/z+VcvSjlERFHAAAABIgAIOAAAACVDAAQCAQzRPqR673TrFpFuVoqm2KiIiFvY0p5ykfFWlHQAAACgup/a3xu9ftSxymUws6G5KOw4J+dS1Q/H5R34Yv7nulLSjlC0FHAAAOEQmkzErdgU6a25HnDW3I+0YZc0QdAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAgAQo4AAAAJAABRwAAAASoIADAABAAhRwAAAASIACDgAAAAlQwAEAACABRVfAt2/fHqtWrYqFCxfG0qVL49577007EgAAAJywqrQD/Lyqqqq46667YnBwMHbu3BlDQ0Nx0UUXRUNDQ9rRAAAAYNKKroB3d3dHd3d3RER0dXVFR0dH7N69WwEHAACgpE14CPpDDz0Ul156afT09EQmk4n77rvvsGW2bt0as2bNirq6ujj99NPj0UcfnVS4xx9/PA4cOBB9fX2Tej4AAECpqs5l3rxdlTnGksnJ5YojR6macAHfv39/DAwMxNatW4/4/XvuuSe2bNkSt99+ezzxxBMxMDAQ69ati+eee25smcHBwVi8ePFhXzt27BhbZvfu3XHdddfFpz/96Um8LAAAgNLWWl8TH7jolHj3qjkxv7Mp7TgREdFYWxUfvHhB2jFK1oSHoK9fvz7Wr19/1O9/7GMfi1/+5V+OG264ISIiPvWpT8X9998fn/vc5+KWW26JiIgnn3zymNt4+eWXY+PGjXHLLbfEmWeeedxlX3755bH7e/bsGecrAQAAKG6/cs6ctCMc5pfOnh0fuf+f0o5RkvI6C/orr7wSjz/+eKxdu/bNDWSzsXbt2njkkUfGtY7R0dG4/vrrY82aNXHttdced/k77rgjWlpaxr4MVwcAAKAY5bWAv/DCC3HgwIHo7Ow85PHOzs7YuXPnuNbx8MMPxz333BP33XdfDA4OxuDgYHz7298+6vK33nprvPjii2Nf27dvP6HXAAAAQDqGZk6NiIje1ikpJymMopsFfeXKlTEyMjLu5Wtra6O2traAiQAAAEjCxUtevyLW4t6WlJMURl4LeEdHR+Ryudi1a9chj+/atSu6urryuSkAAADKTFUuG28Z7E07RsHkdQh6TU1NDA0NxbZt28YeGxkZiW3btsWKFSvyuSkAAIDUNNdVj91ua6hJMQmlZMJHwPft2xdPPfXU2P2nn346nnzyyWhra4v+/v7YsmVLbNq0KZYvXx7Dw8Nx1113xf79+8dmRQcAACh1LfXV8aVfPTNeeW0k+trq045DiZhwAX/sscdi9erVY/e3bNkSERGbNm2Ku+++O6688sp4/vnn47bbboudO3fG4OBgPPDAA4dNzAYAAFDKlvVPTTsCJWbCBXzVqlUxOjp6zGU2b94cmzdvnnQoAAAAKDd5PQccAAAAODIFHAAAGLeOxtrIZl6/PWOqc59hIoruOuAAAEDxaplSHX/3/jWx7+XXYl5nU9pxoKQo4AAAwIT0tE5JOwKUJEPQAQAAIAEKOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAAwAAQAIUcAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAIK/qat6smrXVaucbqtIOAAAAQHmZ3lQX//XygajOZaK5rjrtOEVDAQcAACDv3j40I+0IRcdYAAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAgAQo4AAAAJAABRwAAOAELe5tiYiIjsbalJNQzFwHHAAA4ARdsrQ76mtyMa+zKe0oFDEFHAAA4ARV5bJxwaKutGNQ5AxBBwAAgAQo4AAAAJAABRwAAAASoIADAABAAhRwAAAASIACDgAAAAlQwAEAACABCjgAAAAkQAEHAACABCjgAAAAkAAFHAAAABKggAMAAEACFHAAAABIgAIOAAAACVDAAQAAIAEKOAAAACRAAQcAAIAEKOAAAABMSjabSTtCSVHAAQAAmJC3LuuN2qpsXHN6f9pRSkpV2gEAAAAoLXdeMRAfuWxx1NeolBPhCDgAAAATkslklO9JUMABAAAgAQo4AABAijavnhsREe9eNSflJBSaMQMAAAApuumCebFxWW/M7mhIOwoFpoADAACkKJPJxNzpjWnHIAGGoAMAAEACFHAAAABIgAIOAAAACVDAAQAAIAEKOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAAwAAQAIUcAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAgAQo4AAAAJAABRwAAAASoIADAABAAhRwAAAASIACDgAAAAlQwAEAACABCjgAAAAkoCrtAPk2OjoaERF79uxJOQkAAACV4I3++UYfPZqyK+B79+6NiIi+vr6UkwAAAFBJ9u7dGy0tLUf9fmb0eBW9xIyMjMSOHTuiqakpMpnMhJ9/2mmnxTe/+c2CP2/Pnj3R19cX27dvj+bm5glvjyOb7M+v2BTT60gyS6G2lc/15mNd9jOlrZj+Pier2F6D/Ux+13Uiz7efKQ7F9jc6GcX0GpLOYj+T3+eWyn5mdHQ09u7dGz09PZHNHv1M77I7Ap7NZmPGjBmTfn4ul5vUD3ayz2tubi7qX6RSM9mfQ7EppteRZJZCbSuf683HuuxnSlsx/X1OVrG9BvuZ/K7rRJ5vP1Mciu1vdDKK6TUkncV+pjDPLYX9zLGOfL/BJGw/58Ybb0z0eeRXufwciul1JJmlUNvK53rzsS77mdJWDj+HYnsN9jP5XdeJPL/YfjcqVTn8HIrpNSSdxX6msNsudWU3BL1U7NmzJ1paWuLFF18s+k9ygNJkPwMUmv0MUGjltp9xBDwltbW1cfvtt0dtbW3aUYAyZT8DFJr9DFBo5bafcQQcAAAAEuAIOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAl4Dt27fHqlWrYuHChbF06dK49957044ElJnLLrsspk6dGm9/+9vTjgKUiS9/+csxf/78OPnkk+Ozn/1s2nGAMlSK71/Mgl4Cnn322di1a1cMDg7Gzp07Y2hoKL7//e9HQ0ND2tGAMvG1r30t9u7dG3/0R38UX/ziF9OOA5S41157LRYuXBgPPvhgtLS0xNDQUHz961+P9vb2tKMBZaQU3784Al4Curu7Y3BwMCIiurq6oqOjI3bv3p1uKKCsrFq1KpqamtKOAZSJRx99NBYtWhS9vb3R2NgY69evj7/6q79KOxZQZkrx/YsCngcPPfRQXHrppdHT0xOZTCbuu+++w5bZunVrzJo1K+rq6uL000+PRx99dFLbevzxx+PAgQPR19d3gqmBUpHkPgYg4sT3Ozt27Ije3t6x+729vfHMM88kER0oEZX6/kYBz4P9+/fHwMBAbN269Yjfv+eee2LLli1x++23xxNPPBEDAwOxbt26eO6558aWGRwcjMWLFx/2tWPHjrFldu/eHdddd118+tOfLvhrAopHUvsYgDfkY78DcCwVu58ZJa8iYvRLX/rSIY8NDw+P3njjjWP3Dxw4MNrT0zN6xx13jHu9L7300ujZZ589+vnPfz5fUYESVKh9zOjo6OiDDz44+ra3vS0fMYEyMpn9zsMPPzy6cePGse+/973vHf3CF76QSF6g9JzI+5tSe//iCHiBvfLKK/H444/H2rVrxx7LZrOxdu3aeOSRR8a1jtHR0bj++utjzZo1ce211xYqKlCC8rGPAZiI8ex3hoeH4zvf+U4888wzsW/fvvjLv/zLWLduXVqRgRJTzu9vFPACe+GFF+LAgQPR2dl5yOOdnZ2xc+fOca3j4YcfjnvuuSfuu+++GBwcjMHBwfj2t79diLhAicnHPiYiYu3atXH55ZfHX/zFX8SMGTNK/j83oHDGs9+pqqqKO++8M1avXh2Dg4Nx0003mQEdGLfxvr8pxfcvVWkH4PhWrlwZIyMjaccAythXv/rVtCMAZWbDhg2xYcOGtGMAZawU3784Al5gHR0dkcvlYteuXYc8vmvXrujq6kopFVAu7GOApNnvAIVWzvsZBbzAampqYmhoKLZt2zb22MjISGzbti1WrFiRYjKgHNjHAEmz3wEKrZz3M4ag58G+ffviqaeeGrv/9NNPx5NPPhltbW3R398fW7ZsiU2bNsXy5ctjeHg47rrrrti/f3/ccMMNKaYGSoV9DJA0+x2g0Cp2P5P2NOzl4MEHHxyNiMO+Nm3aNLbMJz7xidH+/v7Rmpqa0eHh4dFvfOMb6QUGSop9DJA0+x2g0Cp1P5MZHR0dTbbyAwAAQOVxDjgAAAAkQAEHAACABCjgAAAAkAAFHAAAABKggAMAAEACFHAAAABIgAIOAAAACVDAAQAAIAEKOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAAwAAQAL+Py+tIMSo6pzRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,7))\n", + "plt.loglog(freq, powers, ds=\"steps-mid\", label=\"periodogram realization\")\n", + "plt.loglog(freq, psd_shape, label=\"power spectrum\")\n", + "\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Maximum Likelihood Fitting\n", + "\n", + "Let's assume we've observed this periodogram from our source. We would now like to estimate the parameters. \n", + "This requires the definition of *likelihood*, which describes the probability of observing the data plotted above given some underlying model with a specific set of parameters. To say it differently, the likelihood encodes what we know about the underlying model (here a power law and a constant) and the statistical properties of the data (power spectra generally follow a chi-square distribution) and then allows us to compare data and model for various parameters under the assumption of the statistical uncertainties.\n", + "\n", + "In order to find the best parameter set, one generally maximizes the likelihood function using an optimization algorithm. Because optimization algorithms generally *minimize* functions, they effectively minimize the log-likelihood, which comes out to be the same as maximizing the likelihood itself.\n", + "\n", + "Below is an implementation of the $\\chi^2$ likelihood as appropriate for power spectral analysis, with comments for easier understanding. The same is also implemented in `posterior.py` in Stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "logmin = -1e16\n", + "class PSDLogLikelihood(object):\n", + "\n", + " def __init__(self, freq, power, model, m=1):\n", + " \"\"\"\n", + " A Chi-square likelihood as appropriate for power spectral analysis.\n", + "\n", + " Parameters\n", + " ----------\n", + " freq : iterable\n", + " x-coordinate of the data\n", + "\n", + " power : iterable\n", + " y-coordinte of the data\n", + "\n", + " model: an Astropy Model instance\n", + " The model to use in the likelihood.\n", + "\n", + " m : int\n", + " 1/2 of the degrees of freedom, i.e. the number of powers\n", + " that were averaged to obtain the power spectrum input into\n", + " this routine.\n", + "\n", + " \"\"\"\n", + "\n", + " self.x = ps.freq # the x-coordinate of the data (frequency array)\n", + " self.y = ps.power # the y-coordinate of the data (powers)\n", + " self.model = model # an astropy.models instance\n", + " self.m = m\n", + "\n", + " self.params = [k for k,l in self.model.fixed.items() if not l]\n", + " self.npar = len(self.params) # number of free parameters\n", + "\n", + " def evaluate(self, pars, neg=False):\n", + " \"\"\"\n", + " Evaluate the log-likelihood.\n", + "\n", + " Parameters\n", + " ----------\n", + " pars : iterable\n", + " The list of parameters for which to evaluate the model.\n", + "\n", + " neg : bool, default False\n", + " If True, compute the *negative* log-likelihood, otherwise\n", + " compute the *positive* log-likelihood.\n", + "\n", + " Returns\n", + " -------\n", + " loglike : float\n", + " The log-likelihood of the model\n", + "\n", + " \"\"\"\n", + " # raise an error if the length of the parameter array input into\n", + " # this method doesn't match the number of free parameters in the model\n", + " if np.size(pars) != self.npar:\n", + " raise Exception(\"Input parameters must\" +\n", + " \" match model parameters!\")\n", + "\n", + " # set parameters in self.model to the parameter set to be used for\n", + " # evaluation\n", + " fitter_to_model_params(self.model, pars)\n", + "\n", + " # compute the values of the model at the positions self.x\n", + " mean_model = self.model(self.x)\n", + "\n", + " # if the power spectrum isn't averaged, compute simple exponential\n", + " # likelihood (chi-square likelihood for 2 degrees of freedom)\n", + " if self.m == 1:\n", + " loglike = -np.sum(np.log(mean_model)) - \\\n", + " np.sum(self.y/mean_model)\n", + " # otherwise use chi-square distribution to compute likelihood\n", + " else:\n", + " loglike = -2.0*self.m*(np.sum(np.log(mean_model)) +\n", + " np.sum(self.y/mean_model) +\n", + " np.sum((2.0 / (2. * self.m) - 1.0) *\n", + " np.log(self.y)))\n", + "\n", + " if not np.isfinite(loglike):\n", + " loglike = logmin\n", + "\n", + " if neg:\n", + " return -loglike\n", + " else:\n", + " return loglike\n", + "\n", + " def __call__(self, parameters, neg=False):\n", + " return self.evaluate(parameters, neg)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make an object and see what it calculates if we put in different parameter sets. First, we have to make our sample PSD into an actual `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = powers\n", + "ps.df = ps.freq[1] - ps.freq[0]\n", + "ps.m = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-4835.88214847462" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [1, 5, 100]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2869.5582486265116" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [4.0, 10, 2.5]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [2.0, 5.0, 2.0]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Something close to the parameters we put in should yield the largest log-likelihood. Feel free to play around with the test parameters to verify that this is true.\n", + "\n", + "You can similarly import the `PSDLogLikelihood` class from `stingray.modeling` and do the same:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from stingray.modeling import PSDLogLikelihood\n", + "\n", + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To estimate the parameters, we can use an optimization routine, such as those implemented in `scipy.optimize.minimize`.\n", + "We have wrapped some code around that, to make your lives easier. We will not reproduce the full code here, just demonstrate its functionality.\n", + "\n", + "Now we can instantiate the `PSDParEst` (for PSD Parameter Estimation) object. This can do more than simply optimize a single model, but we'll get to that later.\n", + "\n", + "The `PSDParEst` object allows one to specify the fit method to use (however, this must be one of the optimizers in `scipy.optimize`). The parameter `max_post` allows for doing maximum-a-posteriori fits on the Bayesian posterior rather than maximum likelihood fits (see below for more details). We'll set it to `False` for now, since we haven't defined any priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst\n", + "\n", + "parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit a model, make an instance of the appropriate `LogLikelihood` or `Posterior` subclass, andsimply call the `fit` method with that instance and starting parameters you would like to fit." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 1., 5., 2.])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.model.parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.npar" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "starting_pars = [3.0, 1.0, 2.4]\n", + "res = parest.fit(loglike, starting_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is an `OptimizationResults` object, which computes various summaries and useful quantities.\n", + "\n", + "For example, here's the value of the likelihood function at the maximum the optimizer found:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2183.7896770356615" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: Optimizers routinely get stuck in *local* minima (corresponding to local maxima of the likelihood function). It is usually useful to run an optimizer several times with different starting parameters in order to get close to the global maximum.\n", + "\n", + "Most useful are the estimates of the parameters at the maximum likelihood and their uncertainties:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4.72915772 2.09193133 2.10372299]\n", + "[3.8037075 0.73336812 0.55239425]\n" + ] + } + ], + "source": [ + "print(res.p_opt)\n", + "print(res.err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: uncertainties are estimated here via the covariance matrix between parameters, i.e. the inverse of the Hessian at the maximum. This only represents the true uncertainties for specific assumptions about the likelihood function (Gaussianity), so use with care!\n", + "\n", + "It also computes Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AIC: 2189.7896770356615\n", + "BIC: 2204.5129428726077\n" + ] + } + ], + "source": [ + "print(\"AIC: \" + str(res.aic))\n", + "print(\"BIC: \" + str(res.bic))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, it also produces the values of the mean function for the parameters at the maximum. Let's plot that and compare with the power spectrum we put in:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAKYCAYAAADzIZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVf7H8fdMeg8JCTXU0DtIR4FYKIKCCFiQooAioNhxd23ruuv+7AooNhB0FRUBRVQQCE1FAek1ECB0SEhIbzO/P24mxcyEJCSZJHxez5NnbmbOvXNuAuhnzjnfY7JarVZEREREREREpFyZnd0BERERERERkauBAriIiIiIiIhIBVAAFxEREREREakACuAiIiIiIiIiFUABXERERERERKQCKICLiIiIiIiIVAAFcBEREREREZEKoAAuIiIiIiIiUgFcnd2BsmaxWDh16hR+fn6YTCZnd0dERERERESqOavVSmJiInXr1sVsdjzOXe0C+KlTpwgLC3N2N0REREREROQqExMTQ/369R2+Xu0CuJ+fH2DcuL+/v5N7IyIiIiIiItXdpUuXCAsLy82jjlS7AG6bdu7v768ALiIiIiIiIhXmcsugVYRNREREREREpAIogIuIiIiIiIhUAAVwERERERERkQpQ7daAi4iIiIhI2bJarWRlZZGdne3srog4hYuLC66urle81bUCuIiIiIiIOJSRkcHp06dJSUlxdldEnMrb25s6derg7u5e6msogIuIiIiIiF0Wi4Xo6GhcXFyoW7cu7u7uVzwCKFLVWK1WMjIyOH/+PNHR0TRr1gyzuXSruRXARURERETEroyMDCwWC2FhYXh7ezu7OyJO4+XlhZubG8eOHSMjIwNPT89SXUdF2EREREREpEilHe0TqU7K4u+B/iaJiIiIiIiIVAAFcBEREREREZEKoAAuIiIiIiIiUgEUwEVEREREpFrp168fM2bMcHY3pJTmz59PYGCgs7tRLlQFXUREREREisVisXIxJcNp71/D2x2zuWy2QbNarWRnZ+PqevVGooyMjCva09rZqmL/NQIuIiIiIiLFcjElgy7/+tlpX8UJ/+PHj2fdunW89dZbmEwmTCYTR48eJTIyEpPJxA8//ECXLl3w8PBg48aNjB8/nmHDhhW4xowZM+jXr1/u9xaLhf/85z80btwYLy8vOnTowNdff11kPxo1asSLL77InXfeiY+PD/Xq1WP27NkF2hw/fpxbb70VX19f/P39GTVqFGfPngUgISEBFxcXtmzZktuHoKAgevTokXv+p59+SlhYWO73MTExjBo1isDAQIKCgrj11ls5evRogZ/NsGHDeOmll6hbty4tWrSw2/cdO3bQv39//Pz88Pf3p0uXLrn9sI1OL126lGbNmuHp6cmAAQOIiYkpcI1ly5bRuXNnPD09adKkCS+88AJZWVm5r8fHx3P//fdTq1YtPD09adu2LcuXLycyMpIJEyaQkJCQ+/t7/vnnC/xMx44di7+/P5MnT879vcbHx+dee/v27bm/9/x9Xr58OS1atMDb25vbb7+dlJQUPvnkExo1akSNGjV46KGHyM7OLvL3eqUUwEVEREREpNp466236NmzJ5MmTeL06dOcPn26QEidOXMmL7/8Mvv27aN9+/bFuuZ//vMfFixYwHvvvceePXt45JFHGDNmDOvWrSvyvFdeeYUOHTrw559/MnPmTB5++GFWrVoFGIH61ltvJS4ujnXr1rFq1SqOHDnC6NGjAQgICKBjx45ERkYCsGvXLkwmE3/++SdJSUkArFu3jr59+wKQmZnJgAED8PPzY8OGDWzatAlfX18GDhxIRkbeBxerV6/mwIEDrFq1iuXLl9vt99133039+vX5448/2Lp1KzNnzsTNzS339ZSUFF566SUWLFjApk2biI+P54477sh9fcOGDYwdO5aHH36YvXv3MnfuXObPn89LL72Ue++DBg1i06ZNfPrpp+zdu5eXX34ZFxcXevXqxZtvvom/v3/u7+/xxx/Pvfarr76a+zN95plnivX7s/X57bff5osvvuDHH38kMjKS4cOHs2LFClasWMHChQuZO3fuZT9YuVJX73wLERERERGpdgICAnB3d8fb25vatWsXev2f//wnN954Y7Gvl56ezr///W9+/vlnevbsCUCTJk3YuHEjc+fOzQ3A9vTu3ZuZM2cC0Lx5czZt2sQbb7zBjTfeyOrVq9m1axfR0dG5HxAsWLCANm3a8Mcff9C1a1f69etHZGQkjz/+OJGRkdx4443s37+fjRs3MnDgQCIjI3nyyScBWLRoERaLhQ8//BCTyZimP2/ePAIDA4mMjOSmm24CwMfHhw8//LDIqdvHjx/niSeeoGXLlgA0a9aswOuZmZnMmjWL7t27A/DJJ5/QqlUrfv/9d7p168YLL7zAzJkzGTduXO7P68UXX+TJJ5/kueee4+eff+b3339n3759NG/ePLeNTUBAACaTye7vLyIigsceeyz3+7+OvDuSmZnJu+++S9OmTQG4/fbbWbhwIWfPnsXX15fWrVvTv39/1q5dm/shSHnQCLiIiIiIiFw1rrnmmhK1j4qKIiUlhRtvvBFfX9/crwULFnD48OEiz7UF9vzf79u3D4B9+/YRFhZWYHS+devWBAYG5rbp27cvGzduJDs7m3Xr1tGvX7/cUH7q1CmioqJyp8rv2LGDqKgo/Pz8cvsYFBREWlpagX62a9fusuumH330USZOnMgNN9zAyy+/XOg+XV1d6dq1a+73LVu2LNDvHTt28M9//rPAz8s2IyElJYXt27dTv3793PBdEiX9/dl4e3vnhm+AWrVq0ahRI3x9fQs8d+7cuVJdv7g0Ai4iIiIiIsVSw9udrf+4wanvf6V8fHwKfG82m7FarQWey8zMzD22Tff+/vvvqVevXoF2Hh4eV9yfolx33XUkJiaybds21q9fz7///W9q167Nyy+/TIcOHahbt27u6HRSUhJdunThs88+K3SdkJCQ3OO/3r89zz//PHfddRfff/89P/zwA8899xxffPEFw4cPL1a/k5KSeOGFF7jtttsKvebp6YmXl1exrmOPvd8fUOB3mP/3Z5N/Cj2AyWSy+5zFYil134pDAVxERERERIrFbDYR7Fu+obMsuLu7F7uYVkhICLt37y7w3Pbt23PDWevWrfHw8OD48eNFTje357fffiv0fatWrQBo1aoVMTExxMTE5I6C7927l/j4eFq3bg1AYGAg7du3Z9asWbi5udGyZUtCQ0MZPXo0y5cvL9Cfzp07s2jRIkJDQ/H39y9RP+1p3rw5zZs355FHHuHOO+9k3rx5uQE8KyuLLVu20K1bNwAOHDhAfHx87r117tyZAwcOEB4ebvfa7du358SJExw8eNDuKHhJf38Ap0+fpkaNGoDx+6usNAVdRERERESqlUaNGrF582aOHj3KhQsXihzVjIiIYMuWLSxYsIBDhw7x3HPPFQjkfn5+PP744zzyyCN88sknHD58mG3btvHOO+/wySefFNmPTZs28X//938cPHiQ2bNn89VXX/Hwww8DcMMNN9CuXTvuvvtutm3bxu+//87YsWPp27dvgWnW/fr147PPPssN20FBQbRq1YpFixYVCOB33303NWvW5NZbb2XDhg1ER0cTGRnJQw89xIkTJ4r9s0tNTWXatGlERkZy7NgxNm3axB9//JEbrsEYTZ4+fTqbN29m69atjB8/nh49euQG8meffZYFCxbwwgsvsGfPHvbt28cXX3zBP/7xD8CYWn/dddcxYsQIVq1aRXR0ND/88AM//vgjYPz+kpKSWL16NRcuXCAlJcVhf8PDwwkLC+P555/n0KFDfP/997z22mvFvt+KpgAuIiIiIiLVyuOPP46LiwutW7cmJCSE48ePO2w7YMAAnnnmGZ588km6du1KYmIiY8eOLdDmxRdf5JlnnuE///kPrVq1YuDAgXz//fc0bty4yH489thjbNmyhU6dOvGvf/2L119/nQEDBgDGdOdly5ZRo0YNrrvuOm644QaaNGnCokWLClyjb9++ZGdnF9gWrV+/foWe8/b2Zv369TRo0IDbbruNVq1acd9995GWllaiEXEXFxdiY2MZO3YszZs3Z9SoUQwaNIgXXnihwHs99dRT3HXXXfTu3RtfX98C/R4wYADLly9n5cqVdO3alR49evDGG2/QsGHD3DaLFy+ma9eu3HnnnbRu3Zonn3wyd9S7V69ePPDAA4wePZqQkBD+7//+z2F/3dzc+Pzzz9m/fz/t27fnv//9L//617+Kfb8VzWT964KHKu7SpUsEBASQkJBQJlMvRERERESuVmlpaURHR9O4cWM8PT2d3Z0qpVGjRsyYMYMZM2Y4uytlav78+cyYMaPAvttXi6L+PhQ3h2oEXERERERERKQCKIA7y5ldsOktZ/dCREREREREKoiqoDvDpVPw0U2QmQIBYdC2cHl+ERERERGpuo4ePersLpSL8ePHM378eGd3o8rSCLgz+NeFbpOM42XT4Nx+5/ZHREREREREyp0CuLNEPAuNroXMZFg0BtIuObtHIiIiIiIiUo4UwJ3FxRVunwd+dSH2ECx7EKpXQXoRERERERHJRwHcmXxDYNQCMLvBvu/gl7ed3SMREREREREpJwrgzhbWFQa9bBz//DwcWefU7oiIiIiIiEj5UACvDK65DzrcCVYLfH0vJJx0do9ERERERKql8ePHM2zYsHJ/n+eff56OHTuW+/s4YjKZWLp0aYnO6devHzNmzCiX/ohBAbwyMJng5tehVjtIuQBfjoWsdGf3SkRERESk2nnrrbeYP3++s7thV2lCszNFRkZiMpmIj493dleqDAXwysLdG0YvAM8AOLkFfnza2T0SEREREal2AgICCAwMdHY35CqlAF6ZBDWB2z40jrd8BNv/59z+iIiIiIhUQV9//TXt2rXDy8uL4OBgbrjhBpKTk4HCU9D79evH9OnTmTFjBjVq1KBWrVp88MEHJCcnM2HCBPz8/AgPD+eHH37IPWf+/PmFQvzSpUsxmUwO+/THH39w4403UrNmTQICAujbty/btm3Lfb1Ro0YADB8+HJPJlPs9wLJly+jcuTOenp40adKEF154gaysrNzXDx06xHXXXYenpyetW7dm1apVl/0ZJScnM3bsWHx9falTpw6vvfZaoTYLFy7kmmuuwc/Pj9q1a3PXXXdx7tw5AI4ePUr//v0BqFGjBiaTifHjxwPw448/0qdPHwIDAwkODmbIkCEcPnz4sn26GiiAVzbNb4K+M43j5Y/A6Z3O7Y+IiIiISH5WK2QkV/xXMbfsPX36NHfeeSf33nsv+/btIzIykttuuw1rEed/8skn1KxZk99//53p06czZcoURo4cSa9evdi2bRs33XQT99xzDykpKaX+sSUmJjJu3Dg2btzIb7/9RrNmzRg8eDCJiYmAEdAB5s2bx+nTp3O/37BhA2PHjuXhhx9m7969zJ07l/nz5/PSSy8BYLFYuO2223B3d2fz5s289957PPXUU5ftzxNPPMG6detYtmwZK1euJDIyssAHAgCZmZm8+OKL7Nixg6VLl3L06NHckB0WFsbixYsBOHDgAKdPn+att94CjHD/6KOPsmXLFlavXo3ZbGb48OFYLJZS//yqC1dnd0Ds6PsUnNwKUatg0Ri4fx141XB2r0REREREIDMF/l234t/3b6fA3eeyzU6fPk1WVha33XYbDRs2BKBdu3ZFntOhQwf+8Y9/APD000/z8ssvU7NmTSZNmgTAs88+y7vvvsvOnTvp0aNHqbofERFR4Pv333+fwMBA1q1bx5AhQwgJCQEgMDCQ2rVr57Z74YUXmDlzJuPGjQOgSZMmvPjiizz55JM899xz/Pzzz+zfv5+ffvqJunWN38u///1vBg0a5LAvSUlJfPTRR3z66adcf/31gPEhRP369Qu0u/fee3OPmzRpwttvv03Xrl1JSkrC19eXoKAgAEJDQwvMCBgxYkSB63z88ceEhISwd+9e2rZtW6yfV3WlEfDKyGyG296HwAYQfwy+mQz6tEhERERE5LI6dOjA9ddfT7t27Rg5ciQffPABFy9eLPKc9u3b5x67uLgQHBxcILTXqlULIHf6dWmcPXuWSZMm0axZMwICAvD39ycpKYnjx48Xed6OHTv45z//ia+vb+7XpEmTOH36NCkpKezbt4+wsLDc8A3Qs2fPIq95+PBhMjIy6N69e+5zQUFBtGjRokC7rVu3MnToUBo0aICfnx99+/YFuGyfDx06xJ133kmTJk3w9/fPnU5/ufOuBhoBr6y8g2D0p/DRTXBoJax/BfpdfiqJiIiIiEi5cvM2RqOd8b7F4OLiwqpVq/jll19YuXIl77zzDn//+9/ZvHkzjRs3tn9pN7cC35tMpgLP2dZ226ZQm83mQlPaMzMzi+zXuHHjiI2N5a233qJhw4Z4eHjQs2dPMjIyijwvKSmJF154gdtuu63Qa56enkWeeyWSk5MZMGAAAwYM4LPPPiMkJITjx48zYMCAy/Z56NChNGzYkA8++IC6detisVho27btZc+7GiiAV2Z1Ohjbky17ECL/A/U6Q7Mbnd0rEREREbmamUzFmgruTCaTid69e9O7d2+effZZGjZsyJIlS3j00UfL5PohISEkJiaSnJyMj4/xs9i+fXuR52zatIk5c+YwePBgAGJiYrhw4UKBNm5ubmRnZxd4rnPnzhw4cIDw8HC7123VqhUxMTGcPn2aOnXqAPDbb78V2ZemTZvi5ubG5s2badCgAQAXL17k4MGDuaPc+/fvJzY2lpdffpmwsDAAtmzZUuA67u7uAAX6HBsby4EDB/jggw+49tprAdi4cWOR/bmaaAp6ZdfpbugyAbDC4okQF+3sHomIiIiIVFqbN2/m3//+N1u2bOH48eN88803nD9/nlatWpXZe3Tv3h1vb2/+9re/cfjwYf73v/9ddm/xZs2asXDhQvbt28fmzZu5++678fLyKtCmUaNGrF69mjNnzuROm3/22WdZsGABL7zwAnv27GHfvn188cUXuWvWb7jhBpo3b864cePYsWMHGzZs4O9//3uRffH19eW+++7jiSeeYM2aNezevZvx48djNufFwwYNGuDu7s4777zDkSNH+Pbbb3nxxRcLXKdhw4aYTCaWL1/O+fPnSUpKokaNGgQHB/P+++8TFRXFmjVryuyDj+pAAbwqGPRfqNcF0uLhy3sgM9XZPRIRERERqZT8/f1Zv349gwcPpnnz5vzjH//gtddeK7IoWUkFBQXx6aefsmLFCtq1a8fnn3/O888/X+Q5H330ERcvXqRz587cc889PPTQQ4SGhhZo89prr7Fq1SrCwsLo1KkTAAMGDGD58uWsXLmSrl270qNHD954443cAnNms5klS5aQmppKt27dmDhxYm6F9KK88sorXHvttQwdOpQbbriBPn360KVLl9zXQ0JCmD9/Pl999RWtW7fm5Zdf5tVXXy1wjXr16uUWiatVqxbTpk3DbDbzxRdfsHXrVtq2bcsjjzzCK6+8Upwf61XBZC2qHn8VdOnSJQICAkhISMDf39/Z3Sk7CSdg7nWQEgsd7oJhc4zpPyIiIiIi5SQtLY3o6GgaN25cruuNRaqCov4+FDeHagS8qgioD7d/DCYz7PgfbJ3n7B6JiIiIiIhICSiAVyVN+sH1zxrHK56EE1uKbC4iIiIiIiKVhwJ4VdN7BrQcApZM+HIsJF+47CkiIiIiIiLifArgVY3JZKz/Dg6HSyfh6wmQneXsXomIiIiIiMhlKIA7QaYlkze2vsHppNOlu4BnAIz+FNy8IXo9rP1X2XZQREREREREypwCuBMsi1rGx7s/5uYlN/PSby9xNvlsyS8S2gpunWUcb3wD9n1Xtp0UERERERGRMqUAXsEysjN4f+f7gDES/sWBLxj8zWD++/t/uZBawvXcbUdAj6nG8ZIpcOFQGfdWREREREREyooCeAX75tA3nE4uOPU8w5LBp/s+ZdDiQby+5XUupl0s/gVvfAEa9IKMRFg0BtKTyrjHIiIiIiIiUhYUwCtYRIMI7mp5F25mt0KvpWWnMW/PPAYuHsjb294mIT3h8hd0cYOR88G3NpzfD99OB6u17DsuIiIiIiIiV0QBvIKFeofydPenWXHbCkY1H4Wr2bVQm5SsFD7Y9QEDFw9kzvY5JGYkFn1Rv1pGCDe7wp5v4Ld3y6fzIiIiIiJVQL9+/ZgxY4azuwHA0qVLCQ8Px8XFhRkzZjB//nwCAwOd3S1xEgVwJ6ntU5tnej7D8uHLua3ZbbiYXAq1ScpM4t0d7zJw8UA+2PkByZnJji/YsCfc9JJxvPIfcOyXcuq5iIiIiMjVLTIyEpPJRHx8/GXb3n///dx+++3ExMTw4osvMnr0aA4ePJj7+vPPP0/Hjh3Lr7NSqSiAO1k933q80OsFvh32Lbc0vQWzqfCv5FLGJd7+820GLR7EvN3zSM1KtX+x7vdD29vBmg1fjYfEM+XbeRERERERcSgpKYlz584xYMAA6tati5+fH15eXoSGhjq7a+IkCuCVRAP/BrzU5yWW3LqEQY0GYcJUqM3F9Iu8vvV1Bi0exMK9C0nLSivYwGSCW96G0NaQdBa+HAfZmRV0ByIiIiJS3VmsFuLS4pz2ZbFait3XrKwspk2bRkBAADVr1uSZZ57Bmq9WUnp6Oo8//jj16tXDx8eH7t27ExkZmfv6sWPHGDp0KDVq1MDHx4c2bdqwYsUKjh49Sv/+/QGoUaMGJpOJ8ePHF3r/yMhI/Pz8AIiIiMBkMhEZGVlgCvr8+fN54YUX2LFjByaTCZPJxPz580v8e5Gqo/ACZHGqJgFN+L++/8ek9pN4d8e7rDq2qlCb2LRY/u+P/2P+7vlMbD+REc1G4O7ibrzo7gOjP4X3+0HMb7DyGRj0csXehIiIiIhUS/Hp8fRd1Ndp779u9DqCPIOK1faTTz7hvvvu4/fff2fLli1MnjyZBg0aMGnSJACmTZvG3r17+eKLL6hbty5Llixh4MCB7Nq1i2bNmjF16lQyMjJYv349Pj4+7N27F19fX8LCwli8eDEjRozgwIED+Pv74+XlVej9e/XqxYEDB2jRogWLFy+mV69eBAUFcfTo0dw2o0ePZvfu3fz444/8/PPPAAQEBFz5D0oqLQXwSqpZjWa83u919sftZ/b22UTGRBZqcy71HP/e/G8+3v0xk9tPZlj4MKO6enBTGP4efHEXbH4X6l8D7W6v8HsQEREREXGWsLAw3njjDUwmEy1atGDXrl288cYbTJo0iePHjzNv3jyOHz9O3bp1AXj88cf58ccfmTdvHv/+9785fvw4I0aMoF27dgA0adIk99pBQcaHAKGhoQ4Lqrm7u+dONQ8KCqJ27dqF2nh5eeHr64urq6vd16X60RR0J0jLzOY/P+zjZLyDtdz5tAxqyTsR7/D5zZ/Tp14fu23OJJ/hn7/+k6FLhrLk0BKyLFnQ8ma49jGjwbfT4eyesrwFEREREZFKrUePHphMecs6e/bsyaFDh8jOzmbXrl1kZ2fTvHlzfH19c7/WrVvH4cOHAXjooYf417/+Re/evXnuuefYuXOns25FqhEFcCf4aksMc9cdod8ra5m5eCfHY1Mue07bmm1594Z3WThoIT3q9LDb5mTSSZ795VluXXor3x3+juy+M6FJP8hMgUVjIK0Y+4qLiIiIiFRzSUlJuLi4sHXrVrZv3577tW/fPt566y0AJk6cyJEjR7jnnnvYtWsX11xzDe+8846Tey5VnaagV7CMLAvvRhqfqmVmW/nijxi+2nqCWzvWZWr/cJqG+BZ5fsfQjnxw0wf8ceYPZm+fzdazWwu1OZ54nL9t/Bsf7vqQKd3u4abYw5jjjsCSKcb6cLM+dxERERGRkgv0CGTd6HVOff/i2rx5c4Hvf/vtN5o1a4aLiwudOnUiOzubc+fOce211zq8RlhYGA888AAPPPAATz/9NB988AHTp0/H3d2ov5SdnV2q+8jP3d29TK4jVYMCeAX7ZtsJTiUUrF6ebbHyzbaTLPnzJDe3q8P0iGa0qO1X5HW61u7KvAHz2HxmM7P+nMWO8zsKtTmScIQnNr/A+w3CmBodT8SB7zFteiNvarqIiIiISAmYTeZiF0FztuPHj/Poo49y//33s23bNt555x1ee+01AJo3b87dd9/N2LFjee211+jUqRPnz59n9erVtG/fnptvvpkZM2YwaNAgmjdvzsWLF1m7di2tWrUCoGHDhphMJpYvX87gwYNz13KXRqNGjYiOjmb79u3Ur18fPz8/PDw8yuznIJWLhkIrWN8WIYzv1QgP18I/eqsVlu88zYA313P/wi3sPln0lHGTyUSPOj1YOGgh797wLm2C29htdyjpBDNCajC6bm3W/foq1qjVZXIvIiIiIiKV1dixY0lNTaVbt25MnTqVhx9+mMmTJ+e+Pm/ePMaOHctjjz1GixYtGDZsGH/88QcNGjQAjNHtqVOn0qpVKwYOHEjz5s2ZM2cOAPXq1eOFF15g5syZ1KpVi2nTppW6nyNGjGDgwIH079+fkJAQPv/88yu7canUTNb8m+FVA5cuXSIgIICEhAT8/f2d3R2HziWm8eGGaD797RgpGY6nnES0DGVaRDidG9S47DWtVivrTqxj9vbZ7I/b77Bdu4xspvb9N72a3VqgMIWIiIiISH5paWlER0fTuHFjPD09nd0dEacq6u9DcXOoAriTxSVn8NHGI3zyyzGS0rMctusTXpPpEeF0bxJ82WtarBZWH1/NnO1ziIqPctiuU0gHpnaaTvc63UvVdxERERGp3hTARfIogNtR1QK4TUJKJvN/OcrHm6JJSM102K5b4yAeimhG7/Dgy45eW6wWfjr6E3O2z+HopaMO23Wt3ZVpHafRuVbn0nZfRERERKohBXCRPArgdlTVAG6TmJbJwt+O8eGGaOKSMxy269QgkIcimtGvRchlg3iWJYsfon/g3R3vEpMY47Bdzzo9mdppKh1COpS6/yIiIiJSfSiAi+RRALejqgdwm5SMLP63+Thz1x/hfGK6w3bt6gUwLSKcG1vVwmwuOohnWjJZfng57+14j1PJpxy2u7betUztNNVhUTcRERERuToogIvkUQC3o7oEcJu0zGy+3BLDe5GHC21fll/L2n5M7R/O4HZ1cLlcEM/OZMmhb3h/88ucxfG68/5h/ZnacSotglqUuv8iIiIiUnUpgIvkUQC3o7oFcJuMLAuLt51gTmQUMXGpDts1DfFhav9wbulQF1eXoneZS086y+KFN/KheybnXR1vCX9Tw5t4sOODNA1sWur+i4iIiEjVYwscjRo1wsvLy9ndEXGq1NRUjh49qgCeX3UN4DaZ2RaWbT/FnLVRHLmQ7LBdw2BvHuzXlOGd6uNuZ8/xXGd2kfbRjXzp5cpHIbWJs9if7m7CxKDGg5jSYQqNAhpd4V2IiIiISFWQnZ3NwYMHCQ0NJTj48rvxiFRnsbGxnDt3jubNm+Pi4lLgNQXwahrAbbItVr7fdZpZaw5x8GySw3b1Ar14oG8TRl4Thqebi/1GOxbBksmkmEx8fu39zDu3iYT0BLtNzSYzQ5oM4YEODxDmF1YWtyIiIiIildjp06eJj48nNDQUb2/vyxYAFqlurFYrKSkpnDt3jsDAQOrUqVOojQJ4NQ/gNhaLlZV7z/DOmij2nLrksF0tfw8mX9eUu7o1wMvdThBf8QT8/j54BJA04Xs+O/sLn+z9hMSMRLvXczW5cmv4rUxuP5m6vnXL6nZEREREpJKxWq2cOXOG+Ph4Z3dFxKkCAwOpXbu23Q+hFMCvkgBuY7VaWXvgHG+vjmJ7TLzDdjV93Zl4bRPG9GiIr0e+dd9ZGTD/ZjjxO9RqC/et4hJZLNy7kIV7F5KcaX+6u6vZlRHNRjCp3SRq+dQq47sSERERkcoiOzubzMxMZ3dDxCnc3NwKTTvPTwH8KgvgNlarlY1RF3hndRS/H41z2C7Q2417ezdmXK9GBHi5GU9eOgVzr4Pk89B+NAyfCyYT8WnxfLL3Ez7b9xmpWfYLwLmb3RnZYiQT202kplfN8rg1ERERERGRSkkB/CoN4Pn9diSWd9YcYlNUrMM2fh6ujO/diHt7N6aGjztEb4AFt4I1Gwa/Ct0m5baNTY1l3u55fHHgC9Kz7Rdr83Tx5I6WdzCh7QSCPIPK/J5EREREREQqGwVwBfBcW49d5J01h4g8cN5hGx93F8b0bMjEPk0I2fU+rPwHmF1h/Apo0L1A2/Mp5/lo90d8deArMiwZdq/n5erF3a3uZnyb8QR4BJTp/YiIiIiIiFQmCuAK4IXsPBHPrDVRrNx71mEbTzczd3YN46nEl/E89B341YH714NvaKG2Z5LP8OGuD1l8aDFZliy71/Nx8+Ge1vdwT+t78HfX70NERERERKofBXAFcIf2nb7ErLVRrNh1Gke//Rou6fzk+zyh6cegYR8YuwxcXO22PZV0ivd3vs/SqKVkW7PttvFz92Nc63GMaT0GHzefsroVERERERERp1MAVwC/rKhzicxee5hl209isfOnoKnpJMvcn8HXlEZCpwcIuPW/RV4v5lIM7+18j+VHlmOxWuy2CfQIZHyb8dzZ8k683bzL4jZEREREREScSgFcAbzYjl5I5t3IwyzedoKsvyTxgebfec/9TQDm13uBPrdOJDzUt8jrRSdE896O9/gh+ges2P/jFeQZxH1t72NUi1F4unqWyX2IiIiIiIg4gwK4AniJnbiYwnvrDvPlHyfIyM4bwZ7p+j8ecF1OktWTYZkv0qLtNUyPCKdl7aJ/vlEXo5izYw6rjq1y2CbEK4SJ7SZye/PbcXdxL7N7ERERERERqSgK4ArgpXYmIY256w/zv83HSc+y4EI2n7r9h54ue4my1OXWjBdJxoubWtdiekQz2tUvusr5gbgDzN4+m7Uxax22qeVdi8ntJzM8fDhuLm5lfUsiIiIiIiLlRgFcAfyKnU9M58ONR1j46zG8M+L4zuPv1DHFsSK7Gw9mPgyYAOjfIoRpEc3o0rBGkdfbE7uH2X/OZsPJDQ7b1POtx/3t72do06G4mu0XfRMREREREalMFMAVwMvMxeQMPt4UzZ+bVvIxz+FuyualzLv4IHtIgXa9w4OZHtGMHk2Ci7zejvM7mP3nbH49/avDNg38GvBAhwcY3HgwLmaXMrkPERERERGR8qAArgBe5hJSM9n29Sv0P/xfsq0mxmT+jV8tbQq169YoiOnXh9MnvCYmk8nh9bae3crs7bP548wfDts0DmjMgx0e5KZGN2E2mcvkPkRERERERMqSArgCePmwWslcPBm33V8Shz+D017iDPZHvDuGBTI9IpyIlqFFBvHNpzcz689ZbD+/3WGb8MBwpnacSkSDCAVxERERERGpVBTAFcDLT0YKfHQTnN3FuYD2DEv+G6eS7O/7DdCmrj/TI8K5qXVtzGb7QdxqtfLLqV+YvX02uy7scnitlkEtmdpxKn3r9y0y1IuIiIiIiFQUBXAF8PIVdwTe7wdpCWR1mcjnNafzbuRhTiWkOTylRS0/pkaEc3O7OrgUEcTXn1jP7O2z2Re3z+G12ga3ZWqnqfSu21tBXEREREREnEoBXAG8/B38Cf43yjgePpeMNqP4ZtsJ5kQe5nhcisPTmtT04cH+4QzrWBdXF/vTya1WK2uOr2HW9llExUc5vFbHkI5M7TSV7rW7K4iLiIiIiIhTKIArgFeMtf+Gdf8FVy+YuApqtyMr28Ky7aeYHRnFkfPJDk8NC/LiwX7hjOhcH3dX+0HcYrWw8thK5myfQ3RCtMNrdanVhWkdp3FN7Wuu+JZERERERERKQgFcAbxiWLKNUfCon6FGI5gcCV7GfuDZFisrdp1m1pooDpxNdHiJugGePNCvKaOuCcPTzf6WY9mWbFZEr+C9He9xPPG4w2v1qNODqR2n0jG04xXclIiIiIiISPEpgCuAV5yUOHi/L8Qfh2YD4M4vwJw3om2xWFm59yzvrDnEnlOXHF4mxM+D+69rwl3dG+Dt7mq3TZYli+8Of8fcnXM5mXTS4bX61OvDtI7TaFOz8DZpIiIiIiIiZUkBXAG8Yp3ablRGz06H/n+Hvk8WamK1Wll74Bxvr45ie0y8w0sF+7hz37WNGduzEb4e9oN4ZnYmSw8v5f2d73Mm+YzDa/UL68fUjlNpGdSypHckIiIiIiJSLArgCuAV789PYdlUwAR3fw3NbrDbzGq1sikqlrfXHOL36DiHlwvwcuPe3o0Z37sRAV5udttkZGew+NBiPtj5AedTzzu81o0Nb+TBDg8SXiO8RLckIiIiIiJyOQrgCuDO8d0M2DoPPAPh/nXGuvAibD4SyztrotgYdcFhGz8PV8b2ash9fZoQ5ONut01aVhpfHfyKD3d9SFya/VBvwsTARgOZ0nEKjQMaF/OGREREREREiqYArgDuHFnp8PFAOLUN6nSAe38CN6/Lnrbt+EVmrYlizf5zDtt4u7swpkdDJl7bmFA/T7ttUjJT+OLAF8zbPY/49Hi7bcwmM0OaDOH+9vfTwL9BsW5LRERERETEEQVwBXDniY8xirKlxELHMXDrLCjmHt27TybwzppD/LTnrMM2Hq5m7uzWgAf6NqV2gP0gnpyZzGf7PmP+nvkkZtivwO5icuHW8FuZ3H4y9XzrFat/IiIiIiIif6UArgDuXEciYeFwsFpgyJtwzYQSnb7/zCVmrYni+12ncfQn1N3FzMhr6jOlX1Pq1/C22yYxI5GFexeycO9CkjKT7LZxNbtyW/htTGo/ido+tUvUTxEREREREQVwBXDn2/A6rH4BXNxhwo9Qv0uJL3H4fBKz10axbPspsi32/6i6mk3c1rkeD/YLp1FNH7ttEtIT+GTPJ3y671NSs1LttnEzuzGy+UgmtptIiHdIifsqIiIiIiJXJwVwBXDns1ph0RjYvxz86xtF2XxqlupSx2KTeTfyMIu3nSAz2/4fWbMJbulQl2kR4YSH+tltE5cWx/zd8/l8/+ekZafZbePh4sHoFqO5t+29BHsFl6q/IiIiIiJy9VAAVwCvHNIS4P3+EHcYGveFe5aA2aXUlzsZn8p7kYdZtCWGjCyL3TYmEwxuW4dpEeG0qmP/z8CF1At8tOsjvjzwJRmWDLttvFy9uKvlXYxvM55Az8BS91lERERERKo3BXAF8Mrj7F748HrITIE+j8INz135JS+l8f76I3y2+RhpmfaDOMCNrWsxPSKc9vUD7V8n+Swf7vqQrw99TZYly24bHzcfxrQaw9g2Y/F3158pEREREREpqMoH8JSUFFq1asXIkSN59dVXi32eAngltetrWHyfcTz6M2g1pEwueyEpnQ83RLPw16MkZ2Q7bNe3eQgPXR9Ol4ZBdl8/nXSauTvnsixqGVlW+0Hcz82PsW3GMqbVGHzdfcuk/yIiIiIiUvVV+QD+97//naioKMLCwhTAq4sfn4bf5oCHP0xaCzXDy+zSF5MzmLcpmnm/HCUxzX6ABujVNJjpEc3o0SQIk52t0WISY5i7Yy7fHfkOi9X+yHqARwDj24znrpZ34e1mv/q6iIiIiIhcPap0AD906BAzZ85k6NCh7N69WwG8usjOhE+GwvFfIaQVTFoN7varlpdWQmomC345ykeboolPyXTYrmujGkyLaMZ1zWraDeJHE47y3s73WHFkBVbs/xUJ8gzi3rb3MqrFKLxcvcrsHkREREREpGopbg41l/Ubr1+/nqFDh1K3bl1MJhNLly4t1Gb27Nk0atQIT09Punfvzu+//17g9ccff5z//Oc/Zd01cTYXNxg5H3xrwfl98O10HG7yXUoBXm5Mv74ZG5+K4OlBLanp62633R9HLzLu498ZNucXft57lr9+DtUooBEvX/syS25dwoBGA+xeIy4tjle3vMrgbwbz2b7PSM9OL9N7ERERERGR6qXMA3hycjIdOnRg9uzZdl9ftGgRjz76KM899xzbtm2jQ4cODBgwgHPnzgGwbNkymjdvTvPmzcu6a1IZ+NWGkZ+A2RV2L4bN75XL2/h6uHJ/36ZseDKCZ4e0ppa/h912O2LimbhgCze/vZEfdp3G8pe9xpsGNuXVvq/y9dCvub7B9XavcSH1Ai///jI3f3MzXx74ksxsxyPvIiIiIiJy9SrXKegmk4klS5YwbNiw3Oe6d+9O165dmTVrFgAWi4WwsDCmT5/OzJkzefrpp/n0009xcXEhKSmJzMxMHnvsMZ599lm775Genk56et7I46VLlwgLC9MU9Mrut3fhx5lGEB/3HTTsVa5vl5aZzVdbT/Be5GFOxqc6bNcs1JdpEeEMaV8XF3Phqel7Y/cyZ/sc1p1Y5/AadX3qcn+H+xnadChuZrcy6b+IiIiIiFRelWIN+F8DeEZGBt7e3nz99dcFQvm4ceOIj49n2bJlBc6fP3/+ZdeAP//887zwwguFnlcAr+SsVqMq+u7FxpT0+9cbo+PlLCPLwtI/TzI7MopjsSkO2zWu6cOD/ZoyrFM93FwKTxTZeX4nc7bPYdOpTQ6vEeYXxgMdHmBw48G4ml3LpP8iIiIiIlL5OG0NeFEuXLhAdnY2tWrVKvB8rVq1OHPmTKmu+fTTT5OQkJD7FRMTUxZdlfJmMsEt70Boa0g6C1+NN4q0lTN3VzOjuoax+tG+vDG6A01D7BeBi76QzBNf76T/q5H8b/Nx0rMKbnHWPqQ97934Hp8M/ITutbvbvUZMYgx/3/h3hi8bzoojK8i2ON4mTUREREREqr8KDeAlNX78+MtWQPfw8MDf37/Al1QR7j4waqGxLdnxX2GV/WUG5cHVxczwTvVZ+UhfZt3ViZa1/ey2O3Exlb8t2UW/VyKZvymatMyCIbpzrc58OOBDPh7wMZ1DO9u9xtFLR3lqw1Pc/t3trDy60uH2ZiIiIiIiUr1VaACvWbMmLi4unD17tsDzZ8+epXbt8p9+LJVQzXAYnlOI7bc5sOvrCn17F7OJIe3rsuKha3n/ni60qxdgt93phDSe/24v1/7fWj5Yf4SUjIJ7jXet3ZX5A+cz94a5tK/Z3u41ouKjeGzdY4z6bhRrjq8pVHldRERERESqtwoN4O7u7nTp0oXVq1fnPmexWFi9ejU9e/asyK5IZdLyZujzqHH87XQ4t6/Cu2A2m7ipTW2+ndabeRO60rlBoN125xPTeWnFPvr8dy2z10aRmJY3bd5kMtGrXi8+Hfwps6+fTaugVnavceDiAR5e+zB3fH8H60+sVxAXEREREblKlHkRtqSkJKKiogDo1KkTr7/+Ov379ycoKIgGDRqwaNEixo0bx9y5c+nWrRtvvvkmX375Jfv37y+0Nrw0irv4XSoZSzZ8ehsciYTgcJi0Bjztj0ZXBKvVyi+HY3l79SE2R8c5bOfv6cqE3o25t3djArwLVjy3Wq2siVnDnO1zOHjxoMNrtA9pz7SO0+hRpwcmU+HK6yIiIiIiUrk5rQp6ZGQk/fv3L/T8uHHjmD9/PgCzZs3ilVde4cyZM3Ts2JG3336b7t3tF7IqKQXwKiz5AsztC5dOQMshxvpws/PLFPweHcc7aw6x4dAFh218PVwZ27MhE69tQpCPe4HXLFYLq46tYs72ORxJOOLwGl1qdWFqx6l0rd21zPouIiIiIiLlr1JsQ+YMCuBV3ImtMG8gZGfA9c/BtY86u0e5/jx+kVlroli9/5zDNl5uLozp0YBJ1zUh1M+zwGvZlmx+PPoj7+54l2OXjjm8Rvc63ZnWcRodQzuWVddFRERERKQcKYArgFddW+bB8hlgMsOYb6Bp4RkVzrT7ZAKz1kTx4x7HW+d5uJq5s1sD7u/bhDoBXgVey7Jk8f2R73lvx3ucSDrh8Bq96/VmaoeptAtpV2Z9FxERERGRsqcArgBedVmt8O00+PNT8A6GyesgMMzZvSrkwJlEZq2NYvnOUzj6W+TmYuL2LmE82K8pYUHeBV7LtGTybdS3zN05l9PJpx2+T7/6/Xiw44O0CrZf1E1ERERERJxLAVwBvGrLTIWPB8DpHVC3M9z7I7h6OLtXdh0+n8SctYdZuv0k2Rb7f51czCaGd6rH1P7hNK7pU+C1jOwMvjn0DR/s/IBzqY6nt9/Q4AamdJxC8xrNy7T/IiIiIiJyZRTAFcCrvovH4P2+kHoRukyAoW86u0dFOh6bwrvrovh66wkys+3/tTKbYGiHukzrH06zWn4FXkvPTuerA1/x4a4PiU2LtXu+CRMDGg1gSscpNAloUub3ICIiIiIiJacArgBePRz6GT67HbDCrbOh0xhn9+iyTsanMnfdYb74I4aMLIvdNiYTDGxTm2kR4bSpW3C7tdSsVBbtX8THuz/mYvpFu+ebTWYGNx7MlA5TaODfoMzvQUREREREik8BXAG8+lj3f7D2JXDxgPtWQt2Ozu5RsZy7lMb764/w2ebjpGZmO2x3Q6tQpkc0o0NYYIHnkzOT+Xz/58zbPY9LGZfsnuticmFo06Hc3/5+6vvVL8vui4iIiIhIMSmAK4BXHxYLfH4HHPoJAhsYRdm8g5zdq2KLTUrnw43RLPjlKMkZjoP4dc1DeCginGsaFby3xIxEPt33KQv2LCApM8nuua4mV4Y3G87k9pOp7VO7TPsvIiIiIiJFUwBXAK9eUi/C+/3g4lFoej3c/RWYXZzdqxKJT8ng401HmbcpmsS0LIftejQJ4qGIZvRsGozJZMp9PiE9gQV7F/Dp3k9JyUqxe66b2Y3bm9/OxHYTCfUOLfN7EBERERGRwhTAFcCrnzO74MMbISsV+j4F/f/m7B6VyqW0TBb+eowPNxzhYkqmw3ZdGtZgekQ4fZuHFAjiF9MuMn/PfD7f/zmpWal2z/Vw8WBUi1Hc2/ZeanrVLPN7EBERERGRPArgCuDV045FsGSycXznImgx0Ln9uQLJ6Vl8tvkY76+P5kJSusN27esHMD2iGTe0Ci0QxC+kXuDj3R/z5YEvSc+2f76Xqxd3tLyDCW0mUMOzRpnfg4iIiIiIKIArgFdn3z8Of3wAngEwORKCqvZ2XGmZ2Xz++3HmrjvCmUtpDtu1rO3H9IhmDGpbG7M5L4ifSznHh7s+5OuDX5NpsT+i7u3qzd2t7mZcm3EEeATYbSMiIiIiIqWjAK4AXn1lZcD8wXDiD6jVzqiM7u7t7F5dsfSsbL7eeoI5aw9zMt7+1HKA8FBfpvUPZ0j7Ori6mHOfP510mg92fcCSQ0vIstpfY+7r5svY1mMZ03oMfu5+dtuIiIiIiEjJKIArgFdvCSfh/b6QfB7a3wHD3zM2164GMrMtLPnzJHPWRnE01n6xNYBGwd482D+c4Z3q4ZYviJ9IPMH7O9/n28Pfkm21X3Xd392fCW0ncFfLu/B2q/ofXoiIiIiIOJMCuAJ49Re9ARbcCtZsuPk16DrR2T0qU1nZFpbvPM2stVFEnbO//RhAvUAvpvRryshr6uPhmlcZ/tilY8zdMZfvo7/HYrXYPbeGRw3ubXsvo1uOxsvVq8zvQURERETkaqAArgB+ddj0Nqx6BsxuMGEFhHVzdo/KnMVi5cc9Z3hnTRT7Tl9y2K62vyf3923Cnd0a4OmWF8SPxB/h3R3v8tPRn7Bi/697sGcwE9tNZGSLkXi4eJT5PYiIiIiIVGcK4ArgVwerFb4aB3uXgV8duH89+FbP/a+tVis/7zvHO2sOsfNEgsN2NX09mHxdY+7u3hAfD9fc5w9ePMi729/l5+M/Ozw31CuUSe0ncVuz23B3cS/T/ouIiIiIVFcK4ArgV4/0RPggAi4chPpdYcRHUKOhs3tVbqxWK+sOnuedNVFsPXbRYbsa3m5MvLYJ9/RsiL+nW+7z+2L3MWf7HCJPRDo8t45PHSa3n8yt4bfiZnZz2E5ERERERBTAFcCvNucPwAfXQ0YiuHpB/6ehx4PgUn3Do9Vq5dfDsby95hC/HYlz2M7f05XxvRtzb+9GBHrnjWrvOr+L2Ttms+nkJofn1vOtxwMdHmBIkyG4ml0dthMRERERuZopgCuAX33OH4TlM+BYTqCs1RaGvAlhXZ3Zqwrxx9E43lkTxfqD5x228fVw5Z6eDZnYpzHBvnnrvP889yezt89m8+nNDs9t6N+QBzo8wKBGg3AxuzhsJyIiIiJyNVIAVwC/OlmtsP0zWPkPSL0ImOCae+H6Z8Er0Nm9K3fbY+KZteYQP+8757CNl5sLd3dvwOTrmhDq75n7/B9n/mDWn7PYdm6bw3ObBjRlSscp3NjwRswms8N2IiIiIiJXEwVwBfCrW/IFWPkM7Pif8b1vLRj4MrQZXm32Cy/KnlMJzFoTxQ+7zzhs4+5q5o6uYTzQtyl1A40tyKxWK7+d/o1Z22ex8/xOh+c2r9GcBzs+SERYBKaq8PPMTAU3bbMmIiIiIuVDAVwBXACi18PyRyA2yvg+/Ea4+VWo0cip3aooB88mMnttFN/tOIXFwd90NxcTt3epz5S+4TQI9gaMIL7x5EZmb5/Nntg9Dq/fKqgV0zpN49p611beIP7HR7DicRj+PrQf6ezeiIiIiEg1pACuAC42mWmw8Q3Y+DpkZxhF2vo9BT2nVesibfkdOZ/EnMjDLPnzJNkOkriL2cSwjvV4sH9Tmob4AkYQj4yJZPb22Ry4eMDh9dvXbM/UjlPpWbdn5Qvin42EQyuNWRAP/QnuPs7ukYiIiIhUMwrgCuDyVxcOGaPhRzcY34e2gaFvQlg3p3arIsXEpTAn8jBfb40hM9v+X32zCW5uX5dp/cNpUdsPAIvVwurjq5mzfQ5R8VEOr985tDNTO06lW51K9DN9sz3EHzOOI56B6x53bn9EREREpNpRAFcAF3usVtjxOfz0d0iNwyjSNgGuf+6qKNJmczohlbnrjvD578dJz7I4bDewTW2mRYTTtl4AANmWbH46+hPv7niXo5eOOjyvW+1uTOs0jU6hncq66yWTmQov1QFy/pnz8IeHd4B3kFO7JSIiIiLViwK4ArgUJTkWVj1jVEwH8AmFQS9Dm9uuiiJtNucS0/hg/RE+/e04qZnZDttd3zKUaRHhdGpQA4AsSxYrolfw7vZ3OZF0wuF5ver2YmrHqbQPaV/mfS+WM7vgvT7gGQgBYXB2l7H0YMBLzumPiIiIiFRLCuAK4FIc0RtyirQdMr5vej3c/BoENXZuvypYbFI6H22MZsGvx0hKz3LY7tpmNZke0YxujY0R5ExLJt8d/o65O+ZyKvmUw/Ouq38dUztOpXVw6zLve5F2fQ2L74Ow7nDdE/DZ7eDiAdO3QmBYxfZFRERERKotBXAFcCmurHTY+CZseDWnSJsn9H0Kek2/aoq02SSkZDLvl2g+3hjNpTTHQbx74yAeur4ZvZoGYzKZyMzOZEnUEubunMu5FMd7kEeERfBgxwdpEdSiPLpf2Nr/wLqXodMYuGUWzB8CxzZCxzEwbHbF9EFEREREqj0FcAVwKakLUfD9I8bWZQAhrYwibQ16OLVbzpCYlsmCX4/x0cZo4pIzHLbr3CCQ6RHN6NciBJPJRHp2Ol8f/JoPd33IhdQLDs+7qeFNPNjxQZoGNi2P7uf5ajzsWQI3vgi9H4KYP+CjG8Bkhim/QmjL8n1/EREREbkqKIArgEtpWK2wcxH89DdIiTWe6zIebngevGo4s2dOkZKRxWe/HWfu+iNcSEp32K5dvQCmRYRzY6tamM0mUrNS+fLAl3y8+2Pi0uLsnmPCxOAmg5nSYQoN/RuWzw282xvO7oY7F0GLgcZzX9wN+5dDi5vhzv+Vz/uKiIiIyFVFAVwBXK5ESpxRpO3PT43vfUJg4MvQdsRVVaTNJi0zmy9+P857645w5lKaw3Yta/sxLSKcQW3r4GI2kZKZwv/2/4/5e+aTkJ5g9xwXkwtDmgzh/g73E+ZXhuuyLdlGBfTsdGP/76AmxvPnD8CcHmC1wL0roUH3sntPEREREbkqKYArgEtZOLoJls+ACweN75tG5BRpa+LUbjlLelY2i7eeZE5kFCcupjps1zTEh2kR4QxtXxdXFzNJGUl8uu9TFuxZQGJmot1zXE2u3Bp+K/e3v586vnWuvLNxR+DtTkbRtb+fBrNL3mvLpsGfC6FBL5iw4qr8UEVEREREyo4CuAK4lJWsdNj0Nqx/xRhNdfU0Kmr3eghc3Z3dO6fIzLaw9M+TzIk8TPSFZIftGgZ7M7VfOMM61cPd1cyljEss2LOAT/d9SnKm/fNcza6MaDaCSe0mUcunVuk7efAn+N8oCG0DD/5S8LWEk/BOZ8hKg7u+hOYDSv8+IiIiInLVUwBXAJeyFnvY2LIsep3xfUhLGPImNOzp1G45U7bFyvKdp5i1JopD55IctqsX6MUD/Zoy6pr6eLi6EJ8Wz/w98/nf/v+RmmV/JN3d7M6oFqO4r9191PSqWfLObXrbWEbQZjiMnF/49ZXPwC9vGwH9gQ0FR8hFREREREpAAVwBXMqD1Qq7voIfn4aUnCrfnccZRdq8g5zaNWeyWKz8tOcMb6+JYt/pSw7b1fL34P7rmnJntwZ4ubsQmxrLx7s/ZtGBRaRn2y/y5uniyZ0t72R82/EEeZbgZ2ybZt73Kej/t8Kvp8TB2x0hLQGGz4UOdxT/2iIiIiIi+SiAK4BLeUqJg5+fg20LjO99QmDAf6Dd7Vf1emKr1crqfed4Z80hdpywX3QNoKavO5OubcKYHg3x8XDlfMp5Ptz1IV8d/IpMS6bdc7xcvRjTagzj2owjwCPg8p356CaI2QwjPjJ+L/ZseB1WvwABDWD6FnD1KM5tioiIiIgUoACuAC4V4dgv8N0MuHDA+L5JP7j5dQgu5/2tKzmr1cr6Qxd4Z/Uhthy76LBdoLcb9/VuzLjejfD3dONM8hk+2PkB30R9Q5Yly+45vm6+3NP6Hu5pfQ9+7n6OOgD/bQRp8XD/BqjT3n67jBRjLXjiaaPKfY8pJbtREREREREUwBXApeJkZRhride/YhT1cvGAvk9Ar4ev2iJtNlarld+OxPHOmkP8cjjWYTs/T1cm9GrEvX0aE+jtzsmkk7y/832WRS0j25pt/xx3P8a3Gc/dre7Gx82n4ItJ5+HVcMBkVEB383LcyS3zjEr33sHw0Hbw1L8bIiIiIlIyCuAK4FLRYg/D94/BkbXG9zVbwNA3oWEvp3arsth6LI63V0ex7uB5h2183F24p2cjJl7bmJq+HsRciuG9ne+x/MhyLFaL3XMCPQKZ0HYCd7S4A283b+PJoxth/s0Q2BBm7Cy6Y9lZMKc7xEY5Xi8uIiIiIlIEBXAFcHEGqxV2L4YfZ0JyTtDsPBZueOGqLtKW346YeGatjWLV3rMO23i6mbmrW0Pu79uEWv6eRCdE8+6Od/kx+kes2P8nK8gziIntJjKy+Ug8t//PqFgffiOM+fryndqzFL4aB24+8PB28A0t3c2JiIiIyFVJAVwBXJwp9SL8/DxsnW98710TBvwb2o+6qou05bf31CVmr41ixe7TOPpXyN3VzOhrwnigX1PqBXpx6OIh3t3xLquOrXJ43VCvUCa6hDBi1w+495wGA166fGesVvggAk5tg26TYfArpbwrEREREbkaKYArgEtlcPw3o0jb+X3G9437wpA3rvoibfkdOpvI7LVRfLvjFBYH/xq5uZgY0bk+U/o1pWGwD/vj9jN7+2wiYyIdXrd2VhaTGwxiWMR/cXNxu3xHjqyDBbeA2Q2m/QFBjUt1PyIiIiJy9VEAVwCXyiIrA359B9b9X16RtuuegN4PadurfKIvJPNuZBTfbDtJloMk7mI2cWuHujzYP5zwUF/2XNjDrO2z2Hhyo8Pr1vOtx/3t72do06G4ml2L7sTC4XB4DbQbCSM+vJLbEREREZGriAK4ArhUNnHRRpG2w6uN72s2hyFvQqPeTu1WZRMTl8J76w7z1ZYTZGTbL7xmMsHN7eowLSKclrX92X5uO7O3z+a30785vG4DvwY80OEBBjcejIvZxX6j0ztg7nXGcVHbl4mIiIiI5KMArgAulVFukbanIfmc8VynMXDjiyrS9henE1KZu+4In/9+nPQs+0Ec4KbWtXjo+ma0rRfAljNbmP37f9lycb/D9k0CmjCl4xRuangTZpO5cIOv7zV+R+E3wJjFZXErIiIiIlLNKYArgEtllhoPq1+ALR8b33sHw00vQYc7VKTtL84lpvHhhmg+/e0YKRn29wQH6N8ihOnXN6PTxZVs/mE6s2qHscOU4bB9sxrNmNphKhENIjDl/5nHHobZ3cCSBeOWQ+Nry/J2RERERKQaUgBXAJeq4PhmWD4Dzu01vm98Hdz8BtQMd2q3KqO45Aw+2niET345RlJ6lsN2b4YsZ1ji/7B2Gsuma0Yz+8/Z7I7d7bB9q6BWTO04levqX5cXxL9/DP74EOp1gYmr9aGIiIiIiBSpuDnUzvxLEakwDbrD/evhhufB1Qui18O7PWHHImf3rNIJ8nHniQEt2fRUBI/c0JwAL/uVzd3jowBYEOUJKS35bPBnvBPxDi2DWtptvy9uH9PWTOPuFXez6eQmrFYrXPckuHnDya2w77tyuycRERERubpoBFyksrh41Bh5jfoZXNzhvpVQt5Oze1VpJaZlsvC3Y3y4IZq45Lyp5ivdn6C5+STjM54k0tKRTg0CmR4RTt/mNVkbs5bZ22cTlRPS7ekU2ompHafSfd8qWP8KBDeDB38Dl8tUUBcRERGRq5amoCuAS1VktcIXd8OB7yGwAUxep+Jsl5GSkcX/Nh9n7vojxCWmsM9jPO6mbPqkv8UJa0huu7b1/JnWvxk3tArh5+OrmLNjDtEJ0Q6v2zW0E1P3baLLpQsw9G3oMq4ibkdEREREqiAFcAVwqapS4+H9fnAxGpoNgDu/ALNWi1xOWmY2P6zbwPCNt5Jqdad1+sdY7ayyaVHLj2kR4QxoE8pPx37g3R3vEpMY4/C6PVNTmZruRocHt4GbV3negoiIiIhUUVoDLlJVeQXCqAXg6gmHfoKNrzu7R1WCp5sLw+unAJAW0IT6QT522x04m8j0z/9k4FsbyYjvxDdDl/LPXv+knm89u+1/9fJiTKArDy69jT2xe8qt/yIiIiJS/SmAi1RGddrD4FeN47UvwZF1zu1PVXHhAAA1GrRlzWP9eHVkB5rUtB/Ej5xP5rGvdnDTG5tIv9iFxUOW8UyPZ6jlXctu+w0pJ7hj+R08tOYhDsQdKLdbEBEREZHqSwFcpLLqfA90HANWCyy+Dy6dcnaPKr8Lh4zHms1xczFze5f6rHq0L2/f2YnmtXztnnI8LoWZ3+wygnhcN74Z+h1Pd3uaEK8Qu+3Xxqzl9u9u59HIR4m66LiYm4iIiIjIX2kNuEhllpkKH94IZ3dBWA8Yvxxc7G+/JcAH18PJLTByPrQZXuAli8XKyr1neGdNFHtOXXJ4iVA/DyZf14QRXWrxXfRiPtr9EXFpcXbbmjAxqPEgHujwAI0DGhd8MSsdEk9Dwknjw5NLJ4zHlDjoNtnYgk5EREREqgUVYVMAl+oi9rBRlC39EvScBgNecnaPKierFV5uYPycpvwKtVo7aGZl7YFzvL06iu0x8Q4vF+zjzsRrm3B711C+O/Il87a+TbzJYretGRNDPOrwgNWPsEvnjaCdfM5xX+t3hYk/l+TuRERERKQSUwBXAJfqZN9yWHS3cTxqAbS+1bn9qYwSz8BrLcBkhr+fAVePIptbrVY2Rl3gndVR/H7U/gg3QKC3G/f2bszoesdY+uMEPvH3J9HF/uodF6uVYUnJTI5PoG5WNrh4QEA98M/58qkJv84y+vhktFFwrzrb9DZcOgkD/g1mF2f3RkRERKTcKIArgEt1s/IZ+OVtcPeDyZFQM9zZPapcjqyDBbdAUBN46M8SnfrbkVjeWXOITVGxDtv4ebjydfB71Ilfy0J/fxYG+JHsYHs4V5MLIxoPYWKnqdT2rVPwxVld4cJBGLUQWt9Son5WKemJ8J8wwGpspddikLN7JCIiIlJutA2ZSHVz/XPQoBdkJMKXYyEjxdk9qlwuHDQeazYv8ak9mgTz2cQeLJ7Si34t7BdfS0zPYsip8YzJeoXMxl/w2dA1TGw3ES/XwnuDZ1mzWXRkGTcvGcLLv7/M+ZTzeS826W88Hl5T4n5WKae2Azmf7/7xkTN7IiIiIlJpKICLVBUurjByHviEwrk98P1jxrpnMVxBALfp0rAG8yd049tpvbmpdeHtyDJxZWdGXd789SI3v7WN+JM3sODGZYxvMx5PF89C7TMsGXy27zMGfzOYV/941Sjm1jTCePHI2lL3s0o4tS3vOOpnuHjUaV0RERERqSwUwEWqEr/acPvHxhriHf+DbZ84u0eVx/mcvblDWlzxpdrXD+T9sdfww8PXcnP7OphMhdukZVqYt+kot7y1nbiYm/jo+m8Y02oM7mb3wm2z0/hk7ycMXDyQtxJ2Ee/qbgTSuCNX3NdK62ROADeZAStsne/M3oiIiIhUCgrgIlVN42vh+meN4xVP5kz1lfx7gJeVVnX8mX1XZ1Y9ch3DO9XDbCeIZ2Rb+GzzcW57Zxexxwcyt9/XjG4xGleza6G2qVmpfLhvAQPr12F2YACXDv5QZn2tdGwj4F0nGY/bFhpbs4mIiIhcxRTARaqiXg9D80GQnQ5f3gOpF53dI+dKuwSJp4zjms3K/PLhoX68Mbojax7rx+hrwnC1k8SzLFa+3HKCUXP2EntsCLOv+5IRzUbgaiocxJNNVt6rEcDAAx8wd8dckjKSyrzPTpV8AeKPG8f9ZoJfHUi5APu+c26/RERERJxMAVykKjKbYfi7ENjQCDpLHgCL/T2qrwqxOaPfPqHgVaPc3qZRTR/+e3t7Ip/ox5geDXC3sx2ZxQpL/jzJ3e8d5PzRW3izz/+4pektmE2F2yaSzaztsxj4zUA+2vURKZnVpLDeqZwq9MHNwDsIOo8zvt/ysfP6JCIiIlIJKICLVFVeNWD0QmOv6YM/wqY3nd0j5zmfU4CtDNZ/F0f9Gt78a1g71j/Znwm9G+HhWvifUqsVvt95mnHvH+H8keG80uNTBjcejInCo+cJ6Qm8ue1NBn0ziE/2fEJaVlpF3Eb5sa3/rtfZeOwyDkwucGwTnNvnvH6JiIiIOJkCuEhVVqcDDH7FOF7zIkSvd25/nCW3AnrZTz8vSu0AT54b2oaNT0Vwf98meLu72G23cu9ZJn98nLOHR/CvrvO5qeFNdtvFpcXx6pZXGfTNID7b9xnp2VV0zfTJrcZj3ZwA7l83bx/wLfOc0ycRERGRSkABXKSq6zwWOt4NVgt8fS9cOu3sHlW83ABeMSPgfxXi58HTg1qx6akIpkeE4+dReN03QOSB8zy04DRnokbyRvBIIpLtTzm/kHqBl39/mZu/uZkvD3xJZnZmeXa/bFmteQXYbCPgANfcazzu+Bwykiu+XyIiIiKVgAK4SFVnMsHgV6FWW0g+D19PgKoU2MpC7hZkZVcBvTRq+Ljz2E0t2DgzgkdvbE6gt5vddpuiYnluYwPeOneBL06d47o6Pe22O5tylhd/e5GhS4ey5NASMi1V4PeacML4c2h2hdrt8p5v0h9qNIb0S7Dra+f1T0RERMSJFMBFqgN3bxi1ADz84fivsPoFZ/eo4mRnwsVo47gMtyC7EgFebjx0fTM2PhXBzEEtCfYpvDf4SUI4bKlDm/Q06u9uxozWb9OrTi+71zuZdJJnf3mWW5feyneHvyPbkl3et1B6ttHv0Fbg5pX3vNmcNwquYmwiIiJylVIAF6kugpvCrbON41/euXq2fIo7ApYscPMB/3rO7k0Bvh6uPNC3KRufiuCZIa0J9fMo8Pp6S3sAwuJ+5cXFKZzYP4YpzV/jmlpd7V4vJjGGv238G8OWDeOH6B+wWCth5XtbAba6nQu/1vFuo2jg6e1568RFREREriIK4CLVSetboOc043jpgxB72Ln9qQj5C7CZClcYrwy83F24r09j1j/ZnxdvbUPdAE8ANlraAnCteRcAe05d4v+WZXJy3zjubfpfOoZ0snu9o5eO8uT6Jxnx7QhWHVtVuYK4vfXfNj7B0GaYcfyHRsFFRETk6qMALlLd3PA8NOhprLX9cixkVJO9pR3JXf/tnAJsJeHp5sI9PRsR+UR//juiHScCriHT6kJD8zkamM7mtjt4Nom3lls5sXcCYxr+i7bBbe1eLyo+ikcjH2X08tGsPb4Wq9VaUbdin8UCp7Ybx/ZGwAGuuc943L0YUi9WSLdEREREKgsFcJHqxsUNbp8HPiFwdjeseNyoTF1d5Y6AV47138Xh7mpmdNcGfP/4QOJrGqPctlHw/KIvpPDuj67E7J3IyPrP0aJGS7vX2x+3n4fWPsSd39/JhhMbnBfE4w4bH/y4ehprwO0J6wahbSArFXZ8UbH9ExEREXEyBXCR6si/Dtz+MZjMsP0z+HOhs3tUfqpgALdxdTET0mEgANMaHKdFLT+77U7EpfHxKi9O7LmfW+v8jfBA+/ud74ndw4OrH+SeH+7h11O/VnwQt63/rt3e+CDIHpMJuuYrxnalfTy8Bt7uBNHrr+w6IiIiIhVAAVykump8HUT8wzj+/nE4vcO5/SkPVitcOGQcV4Ep6HY1iQCgTtzv/DC9J++N6UKbuv52m55JSOfTNf7E7H6AQaFP0Mi/sd12O87vYPKqyUz4aQJbzmwpt64XUtT67/zajwZ3X+PDk6Mbr+w9d31tFOK7WooOioiISJWmAC5SnfV+BJoPhOx0Yz14aryze1S2Lp2CjCQwuRh7TFdFdTuCZyCkX8J8+k8Gtq3N8ul9+Hj8NXQMC7R7yoXETL5cF8yJ3VO5PngGYb4N7LbbenYrE36awKSVk9h+bnt53UGeoiqg5+fhB+1HGcdbPrqy94zL2YIu6WzR7UREREQqAQVwkerMbIbh70FgA7h4FJZOMQplVRcXcgqwBTUB18J7bVcJZhdo0s84PrwGAJPJRETLWix5sBef3tedbo2D7J56MTmLpRtrc2L3NK4NnEodH/vbsP12+jfu+eEepvw8hd0XdpfHXRj7sZ/ZaRzX63L59rY9wfd9B4lXEJ5te8AnnSv9NUREREQqiAK4SHXnVQNGLQAXdziwAn55y9k9Kjvnc9Z/V9Xp5zZNjWnotgBuYzKZ6NOsJl/e35NFk3vQJ7ym3dMvpVpY8WsYp3c9RA//+wn1qmW33caTG7nz+zuZvmY6++P2l+ktcG4fZKWBR4Dxgcjl1G4H9bsZe7iXtkZBZioknjaONQIuIiIiVYACuMjVoG4nGPR/xvHqf0L0Buf2p6zk3wO8Kmva33g8scXhMoHuTYL5dGJ3vnmwFxEtQ+22SUy3smpzY07vnsE1vvcR7Blit11kTCQjvxvJo5GPcujioTK4AfLWf9ftaMy8KI6uOVuSbZ0PluySv+fFo3nHGgEXERGRKkABXORq0WU8dLgTrBb4+l5IPOPsHl253ABexUfAAxtAcDhYs+Fo0R+OdG5Qg4/Hd2X59D4MaGN/pDslw8TaP5pxevcM2nuNJdDD/hT2VcdWMeLbETy57kmOJBy5sns4WcwCbPm1HgaeAZAQk7d/eEnY1n+DUQsgPank1xARERGpQArgIlcLkwluft3Ygzn5nBHCs7Oc3asrU4W3ICskdxr62mI1b1svgLn3XMOPM65lSPs6mEyF26RnurBpW2vO7H6EVh534u8WUKiNFSs/HP2B4cuG87cNf+P4peOl6/+pYhZgy8/N09iyDOB8KabEX4wu+H2yRsFFRESkclMAF7mauHsb68Hd/eDYJlj9grN7VHqp8Xnrfqv6FHRwuA78clrW9mfWXZ35+dG+3Na5Hi7mwkk8M8uN37d34Myexwh3HYmvW+H9xi1WC98d+Y5blt7CM5ueISYxpvidyEyFs3uN45KMgEPe+n1bQb2SyD8FHa6smJuIiIhIBVAAF7na1AyHW2cZx7+8DfuWO7c/pWXb/9uvDnja3ze7SmnUB8yuxqhuXMmngzcN8eX1UR1Z81hf7ugahptL4SCene3On7u6cGbPYzQ0D8PL1adwG2s2S6OWcsuSW3j+l+c5lXTq8m9+Zpcxfd4nFPztV2J3yLZ8wFZQryTi/jICXtJCbGd2Fw7xIiIiIuVIAVzkatRmGPSYahwvnQKxh53anVKxjZhWh+nnYOyNXb+bcVzMaej2NAz24eUR7Yl8oj/39GiIu2vhf+at2Z7s3tODc3seoy5D8HTxKtQmy5rF4kOLuXnJzbz464ucSS6iZkD+9d/25sIX5YpGwHMCuFcN47EkhdiSL8D7/WBWV/jlneq1PZ+IiIhUWgrgIlerG1+AsB6Qfgm+HGdMI65KzucEtqq+BVl+tmnoR0ofwG3q+bvzossH/NnrVyZd2xgvN5fCjSzeHNjXhwv7HifUMgB3s2ehJlmWLL48+CWDvxnMS7+9xNlkO6PMpVn/bWP7/V08CplpxT/Pkg0XjxnHYd2Nx5KMgMcdAUsmZGfAyn/AwmFwqRij/SIiIiJXQAFc5Grl4gYj54FPCJzdBSsed3aPSsY2Bb26jIBDvgC+/soL5P25ELbOx+f3t/j79fXYNDOCaf3D8fNwLdTUmu3D4QP9idv/GEFZN+Jmdi/UJtOSyRcHvmDwN4P57+//5XzK+bwXS1MB3ca3lrF3uNUCcSWYiXHppBGgzW7GNntQsgBu2z/cuya4eUP0OpjTE/YsLf41REREREpIAVzkauZfF0Z8CCYz/PkpbFvo7B4VX3Wbgg7GHtqegZCekDeqXBrpibDmpbzv46IJ8nHn8QEt2DgzgsdubE6gt1uh06zZfhw7dD0XDzyOf0YErqbCbTIsGXy671MGfTOIV/54hQvx0RCb82FIaUbATSYIyfkdni/BNHTb+u8aDY06AFCyKei2bfga9Yb7N0CdjpAWD1+Ng6UPGj9DERERkTKmAC5ytWvSD/r/zThe8Tic3unU7hRLVnpe8azqFMDNLtCkr3FcwmroBWx8s+CWXPmKugV4uTH9+mZseiqCvw1uSU1fj0KnW7P8OXn4JuIPPo5Pel9c7ATx9Ox0FuxdwODvbuf1GoHE1WgAPsGl66+tENuFEhRis63/rtHYGEWH0o2A+9UxChPetwr6PAqYYPtn8F6fqlkbQURERCo1BXARgT6PQbMBkJUGX95jbPFVmcUeNqYse/iDX21n96ZslXA/8EISTsCvOVXu/esbj3aqqvt4uDL5uqZsfKo/L9zShjoBhdd/W7MCOHNkEAkHH8MrtQ8upsLT11MtGcwL9GdgoJm3tr1FfFp8yfucOwJegr3AbSPgQY3BrzQBPGcE3Pbnx9UdbngOxn8PAWHGBzxr/13864mIiIgUgwK4iIDZDMPfg8AGRvBY+iBYrc7ulWP5p5+XtOp2Zdekv/F44g9ISyj5+atfND5IadALOo81nvvrdl35eLq5MK5XI9Y90Z+Xb2tHgyDvQm2sWYGcOzqEhIOP4Z7SCzOFC7qlYuHDXR8y8JuBvPPnOySkl6DvpdmKLHcEvFG+EfBzxa9mnn8EPL9GveH2j43jQyshK6P4fRIRERG5DAVwETF4B8HIT8DFHQ58b+wRXllVxwJsNjUaQnC4sa929IaSnXtyG+z8wjge8BIENzWOi7GvuLurmTu6NWDNY315Y3QHmoYU3iPcmlWD2GO3cCnqMVyTu2Oy85+Q5Mxk3t/5PgMXD2TO9jlcyrh0+X7bRsBjo4zq5sURl28Kuk9ITgezITWueOf/dQQ8v3rXGKE+/RIcXV+864mIiIgUgwK4iOSp1xkGvmwc//wCHN3k3P44krsFWTUM4JA3Cl6SdeBWq7GdFkD70cbvMqix8X0xAriNq4uZ4Z3qs/KRvsy5uzOt6vgXfqvMIC4eH45r1CRuSUzCbGe2RFJmEu/ueJeBiwfy3o73SMpIcvymgQ3B1ROy863tL4rVmtcuqLFR0d87Z/15caeh5wbwOoVfM5uhxWDjeP/3xbueiIiISDEogItIQdfcawQ4azZ8PSEvqFQmtmJd1XEEHEq3H/j+7+HYJiPIXv+s8VxQE+Mx6QxkJJeoCy5mE4Pb1WHFQ334aNw1dAgLLNSmQ3Y8L12I4+0YC6akzkDh5QCJGYnM3j6bgd8M5MNdH5KcaacfZhcIbmYcF6cQW+pFY3QajCnoULJCbJmpRsVzcFxDoOUQ43H/iuJPaxcRERG5DAVwESnIZIIhb0BIKyPMfDvd2T0qyGLJNwW9hXP7Ul4a9QGzqzFyXcT67VxZGbAqJ3T3nAoBOcXXvGoYX1C869hhMpm4vlUtlj7Yi0/v6073xkG5r3UwG1XCL2Q04VLMKJIPPwJJHbEXxBPSE3hr21sMXDyQj3d/TEpmSsEGJdmKzHYvfnXAzcs49g01HouzFZntQyU3b6OQnz2NrwV3P+PDiyvZEk5EREQkHwVwESnM3QdGLTD2Bz+0Ei5EObtHeRJiICsVzG55o5/Vjac/1O9mHBdnFHzLxxB32FgL3eeRgq/ZRsFLMA3dHpPJRJ9mNVl0f0++vL8n1zUPoYPJCOA7LMZ7WDJCSYy5g+TDM7Aktrd7nfj0eN7Y+gaDvhnEJ3s+ITUr1XihJFuR5d+CzKYkI+D51387KuLn6gHNbzKO9313+WuKiIiIFIMCuIjYF9IcmuUEkG3zndqVAmyj38FNwaXwtljVRu52ZJdZB556EdblrNvv/3fw8Cv4ui2AXyzdCLg93RoHsWBCV671iQFgp6VpgdctGbVIPnEXyUceJjuprd1rxKXF8eqWVxm0eBAL9y4kLTgnTJdkBDzIXgAvzgi4gwrof9XyZuNR68BFRESkjCiAi4hjnccZj9v/B1npzu2LTf4tyKqzpjmF2KLXQ3aW43brXzVCeEgr6HRP4dfLaAS8kPjjuKbFgdmVlx+8kyHt6xQaTLak1yElZgzJR6aTndja7mVi02L5vz/+j8F7ZvGZvy/p5w9cfgu8okbAi1OzwNbGdo4j4TcaMy1iD5VsizQRERERBxTARcSxZjcZo4QpsZVnFLC6F2CzqdsJPAOMvcBP/Wm/TdwR2DzXOL7pX/ZnBJRXALeti67VhpZhocy6qzOrHunLiM71cTEXTOKW9HqknBhLcvQ0spJa2r3c+fSLvBwcxOBafiza8T4Z2UXsv13kCHhxpqAXcwTc0x+a9DWO92sauoiIiFw5BXARcczFNW9Udet8p3Yll20kMqSaFmCzMbtAk37GsaNp6D8/D5ZMY7p6sxvst8kN4GU3BR0w9hwHqNs596nwUF9eG9WByMf7cVf3Bri5/CWIp9UnNWY8ydEPkpVk/wOUc66u/GvHLIYsGcJXB78iMzuzcCO7I+ClKMLmqAJ6frnV0CvJB1AiIiJSpSmAi0jROt8DmCB6HcQednZv8o2AN3NuPypCUevAj/0Ke5cZhfJu+pfja9gCeMIJyEwru77ZRuXrdS70UliQN/8e3o71T/ZnQu9GeLgW/E+NJa0BqTH3knx0CllJ9n+Pp5NP889f/8nQpUNZcmgJmZacIJ6ZmjeCXd4j4JCzH7gJTm6FS6cu315ERESkCArgIlK0wAYQnjO6um2Bc/uSEgcpF4zj6j4FHaBJzjrwE39A2qW85y0WWPl347jTPVCrjeNreAfnbLVlhfhjZdMviwVObTeO6xYO4DZ1Arx4bmgbNj4VwQN9m+Lj7lLwMqkNSY25j5Sj95OV3MTuNU4mneTZX57lliW3sCxqGVm2D4E8/PO2WIO8EfC0+MvXKyjJCLhfLajf1Tg+sOLy7UVERESKoAAuIpfXxVaM7TNjz2lnsVXIDggztkqr7mo0hKCmYM2Goxvynt/zjTEi6+5rVD4vismUN1JcVuvAYw9BRqKxj3aI/TXd+YX4eTBzUEs2zYzgoeub4e9ZcK16dmpjUo9Ppsvx7nRJtT9KfyLpBP/Y9A+GrZvOdz7eZNdoWHALMa8aRsE0uPw09NwAXowRcIBWOdPQ9y0vXvvKJiMFzu13di9EREQEBXARKY7mA40pvsnn4eAPzuvH1TT93Oav09AzU4213wC9ZxgjtJdTo4wDuG39d50OJdoKLtDbnUdvbM7GmRE8MaAFQT7uBV6PS2nPvDPnePVUEtkpDe1e41jaBf4WWpPh3mmsOLKCbEu28YLJVLytyNITjQ8PoHg/O8hbB350A6TGF++cyuTbaTCnu/GhjYiIiDiVAriIXJ6LG3QaYxw7sxhbbgCv5gXY8vtrAP/tXUiIAb+60HNq8a5R1pXQTxUuwFYS/p5uTO0fzsan+vOPm1sR6ucBwGFrXUzAgPQ4XI+NIeX4vWSnhtm9RrQ1nac2PMWIb0fw09GfsFgteYG6qHXgiTmvufsV3jPdkeCmxki/JQsOrSrmXVYisVHGo0bBRUREnE4BXESKp/NY4/HwGrh41Dl9uBpHwBv1AZOLEZ5PbIUNrxvP3/AcuHsX7xplHcBP7zAe63a6ost4u7sy8domrH+yPy8Oa0tgYBCnrEEANDOdIju5OSlHHyTl+ASyU+vbvcbhhMM8vu5xbv/udn729sQCkFTEXuC5BdiKsf47v9xq6FVwGnpGsvGYGufcfoiIiIgCuIgUU41GeaOxzirGZlsDXt23IMvP0x/CuhnHi8YY06frdIR2o4p/jbIM4FYrnNtnHBdV/K0EPN1cuKdHQyKf6Ic553cbbrZVHDeRndyClKNTSYkZS5N0q91rHLp4iEeyYhhdtzZrzm3FarXfrkQF2PJrebPxGPVz8avJXzwG3z+e957OkpFiPKYogIuIiDibAriIFF+X8cbjn5+Cvf2Zy1NmKsQfN46vpinokPfBR2JOKB3wEphL8M+3LYDHH7/yInqXTkH6JWNUPrjplV3rL9xczNRu2hGASS0zaF7LN9+rJqxJLfny5CnePHsec1qI3Wvs93Dn4fPrueP7O1gXs65wEC/JFmT51e0E/vUgI8nYkq84Vj0Lf3wAf3xYsvcqaxoBFxERqTQUwEWk+JoPAp8QY43twR8r9r1jowAreAaCT82KfW9nswVwgBY3G9PSS8KvNrh6gdVirB+/Eudz1hEHNwVXjyu7lj0hxvZy4aZT/Pjwdbw3pgtt6/kDUIdYPEzZXJucQWL0w6SeuJvsNPuF1PbG7mXammnc9f1dbDy5MS+I29aHl3QE3GTKGwUvzjT0rIy8dfsJJ0v2XmXJajU+NACNgIuIiFQCCuAiUnyu7tDxbuN46ycV+975p5/n337qalC3EwQ0MEL0jf8s+fkmU9lNQ7cF8GJsP1YqttkNFw5gNpsY2LY2303rw7wJXbmhjjGVOsYaigVXshLbkRL9MKkn7iI7PdTu5XbH7mbKz1MY88MYfjn1C9ZLObMISjoCDnkBfN/yy88AOf6rMVMAil6TXt6yM4xt7ABSLzqvHyIiIgIogItISdmKsUX9nDclvCJcOGQ8Xk0F2GzMLjDxZ5i6GWqGl+4aZbUXuG39d2irK7uOI7b1/fExuWuXTSYT/VuE8nxvo+hcolf+gmxmshLbk3JkBrVP9qVRhv1gvPP8Tu5fdT/jk3fyu6dH8bcgy69hH2MGSGocHIksuu3Bn/KOE4uoyl7ebNPPQSPgIiIilYACuIiUTHBTaNwXsMK2hRX3vhdyRsCvtvXfNn61oIb9vbGLpcxHwMvp9+BTE7yCACvEHirwkuliNAAdO3Ri8ZSe9G+Rfx24mdTELiw5eZoXzsVjyQi2e/ltpgzuq1OLCVH/448zf5Ssby6u0Ga4cbzr66Lb5l+iUdS2aOXNNv0ctAZcRESkElAAF5GSyy3GthCysyrmPc/nbEF2NVVAL0u5ATy69NewWvMtBSinEXDI+x3bfuc2OQGcGo3o0jCIeRO6sXx6Hwa2MdZzn7cG4grclnwJ8+EppJ66HUtGkN232JJwkHt/upeJP01k29ltxe9b29uNx/3LjcKA9lyIgrjDQM5SiZQLFV+00MZWAR00BV1ERKQSUAAXkZJreTN4BxsVpQ+tLP/3s2TnFGHj6pyCXhbKYgTcVgHd7ArBpZwKXxw1jUJsuaPtNrYPD2o0zn2qbb0A3runCysfuY6BHRtxyWpMUw81JZCVcA3Jhx8j7dQILBmBdt9q85nNjPtxHJNXTmb7ue2X71tYN2M9fkZSwWnm+dlGvxtfZ/ysAJLOXf7a5SH/FPSstIKBXERERCqcAriIlJyrB3S8yzjeVgHF2OKPQXY6uHhA4BVMw76a2QL4xaPGBxqlcT5n/XdQU6MgX3kJySvElstqNfoOeevZ82ley4+37uiEZw2juFptc04BNFzITOhK8uHH8Tvdn9pZ9mds/Hr6V+754R6m/DyF3Rd2O+6byQRtbzOOdzuYhm4L4C0Gg09OcbjLFWJb/wp8fW/ZzyjJPwUdNA1dRETEyRTARaR0Oo83Hg+thIQT5ftetgJsweFGQTIpOf96xgcYlszS/77OlfP6bxt7U9BT4vKqitdo5PBU9wAjgL89tC739GiIu6vtP3OuNLpUj+9jTjHpvAVLpr/d8zee3Mid39/JtNXT2BO7x/6btMuZhn5wJaQlFHwtNd6ogA7Q/Ka8Ym9FFWKzWmH9a7B7McT85rhdaWT+ZcRbhdhEREScSgFcREqnZjg0utbYW/rPT8v3vXLXHTcv3/epzszmvOBa2mnotinh5VUB3cZWaC/ucN7aadvot18dcPNyfK6vMeIcbI3nxWFt2fBkfyb2aYyXmwu1uIg70CkhkOTDT5B2ZiiWLD+7l1l3Yh13LL+D6Wumszd2b8EXa7U1tmHLTje2JMvv8BqwZBn3ENQEfHP2Gy9qBDz1ImTlrCeP+d1xu9LIPwUdNAIuIiLiZArgIlJ6tmJs2xaUflpzcVzIGQmtqQB+Ra50HXh57wFuE1Af3HyMIGtb932x8Ppvu3xzRpxzKo/X8vfkH0Nas/Gp/gwLN/6Td44aYHUj82JvkqOeJO3MECxZvnYvFxkTyejlowsGcZMprxjbX6eh29aFNx9gPBZnBNy2NznAiS1F319J/XUKukbARUREnEoBXERKr+UQ8KoBl04a+4KXFwXwsnElATx/BfTyHgE3mfKK7dnWgduCuJ313wX42tZcFyx6FuzrQd86xodEDRs2JdDbzXjB6kbmxT5GED87GEuWj93LFgritnXgR9ZB0nnj2JKdV5Sw+cCc/thGwIsbwH83ftZl5a9F1zQCLiIi4lQK4CJSem6e0CGnGNvW+eXzHgW2vtIWZFfEFl5LsxXZpZN5FdCDmpZtv+zJXQee87sv7gi4XxGBN/E0ANe0a83GpyL42+CWhPh5GK9Z3cmMu47kqCdJPzcQS5a33cvbgvhDO95iX732YM2GvUuNF09sMQKuZwCEdTeey/1AoKgAfjLvOPl83nT7svDXKegp2opMRETEmRTAReTKdBlnPB78qeBIXllJvgBp8YCpfLe+uhrkBvBSjIDbpp+XdwV0G9tsB9vshxKPgNsL4DnrsP1q4+vhyuTrmrLhyf68OKwt9QJz1pVbPciI7Udy1FNFBvG1MWsZ5R7PQ6E12bfrc+NJW/Xz8BvBxTX3vQq8tz05HwzkKstp6IWqoCuAi4iIOJMCuIhcmZAW0KCXMRL452dlf33bFOTABkUX35LLy92KLBoslpKda6uAHlrO679tckfAc963lGvAC7AFXb86uU95urlwT4+GRD7Rj1dHdqBJSM4U9OIGcR9vRrme56GfJrEvaoXxpG36ORRzCnrOCLhtz/ATZViIzTYC7pIz0q8p6CIiIk6lAC4iV648i7Fp/XfZCWhghLystMKjrpdj2wM8pJzXf9vYKqFfOGSESFt/LzsCnhPAky8U3FPbai0wAv5Xbi5mbu9Sn1WP9GXO3Z1pUzdnmzJbED98mSB+5jdGeaXwUK0Q9gWH5b3gl+8DAUcfethmjjTpZzyWZSV02zZkAfWNRxVhExERcSoFcBG5cq1vMda9JhyHw2vL9tq2vaC1/vvKubgaMwmg5NPQK2oPcJugxmB2MwLksV+M5zz8jaJ/RfEOBpMZsELKhbznUy9CdoZxbAvpdriYTQxuV4fl0/swb0JXrmmY836WYgZxby9G/TyJh9Y8xL7YfeCTMyXekuV49PlSzocLrW81Hs/uLlw8rbRsU9ADcz4U0Ai4iIiIUymAi8iVc/OCDncax1vnle21bVPQNQJeNkpTCb0iK6DbuLhBcE6xN9va6hqNjArpRTG7gE+IcZx/2rdt9NsrCFw9Lvv2JpOJ/i1C+eqBniya3INrm9U0XvhLECfL/rKItTFrGbV8FA+tf5x9/nb6k59tBDysuzFl3ZIFp7dfto/FYpuCrhFwERGRSqHSBfCYmBj69etH69atad++PV999ZWzuyQixdHZVoztx6ILTpXUhUPGowJ42ShNAL90EjISK64Cuo3td27bW/ty089t7G1FZmf9d3GYTCa6Nwlm4X3dWTa1NwPa5Iye5wTxxMMzufmCN4HZ9pderI1Zy6hgL6NY22k7xdXSkyA9wTj2rwthXY3jspqGbhtJD6gCI+AWC+z7Th8SiIhItVbpArirqytvvvkme/fuZeXKlcyYMYPk5OTLnygizlWrtTGCZ8mC7WVUjC09CRJijGNNQS8bpQngtunnweEVUwHdxvY7t/0ZuFwBNht7hdiKWP9dXB3CApl7zzWsfOQ6hneqh4vZBBYPUmJv4MeYU4yLzcTqaETcx5tRO17l4TUPG1PTc/uV88GAhz94+EH9nAB+4o9S97MA2xT03AAeX/Z1GsrK3iWwaAwsuLXg+n0REZFqpNIF8Dp16tCxY0cAateuTc2aNYmL06fhIlWCrRjb1k9KXmXbntgo49E7GLyDrvx6ki+Al2Av8NwCbBX8IUjNv7xfsUfA7VQeL+UIuD3Na/nxxuiOrH2sH3d2a8BPpl68mjGGDeenkHR4JunnBmB1sEZ8TcwaRi0flRfEbRXQ/esaj/W7GY8n/jCm/l+pv05BxwppCVd+3fJgG/U/sxN+fce5fRERESknZR7A169fz9ChQ6lbty4mk4mlS5cWajN79mwaNWqEp6cn3bt35/ff7U+127p1K9nZ2YSFhdl9XUQqmdbDwCMA4o9BdOSVXy+3ArpGv8tM/q3IihvwbFuBVVQFdJuQvyw7KPYIeM4U9MSyHQH/qwbB3vzntnase/J6zD0f5KBri5yp6f1JOvxU8YL4jnfY7+6WF8DrdjSm+iedhfjjV95JWxV0r0Bw9zOOK+sU7zO7844jX4YLUc7ri4iISDkp8wCenJxMhw4dmD17tt3XFy1axKOPPspzzz3Htm3b6NChAwMGDODcuXMF2sXFxTF27Fjef//9su6iiJQXd29oP8o43jr/yq9nK/z11yAmpRfYwKgSnpEEyeeLd05F7wFuE9wMyFd0rdgj4PamoNtGwMsugNvUDvDkmSGt2TQzgukR4fh5uhYI4m3PNybAwRrxNZcOMrJeHR42X2R/3H6joGHt9saLZTEN3TYC7u4L3jkV3VMvXvl1y5rValR/B6POQFYafPdQ2cykERERqUTKPIAPGjSIf/3rXwwfPtzu66+//jqTJk1iwoQJtG7dmvfeew9vb28+/vjj3Dbp6ekMGzaMmTNn0qtXryLfLz09nUuXLhX4EhEn6pJTjG3/9wWLYJWG9gAve64eedORi7MOPH8F9IoeAXf3zts+y+wG/vWKd57dImy2EfArn4LuSJCPO4/d1IJNMyN4cmALgn3cweJBUFwHfoo5xW2xro5HxLNiGfndSB5e8zD7a+fM+LjSAG615q0Bd/cxKsBD5SzEdukkpMUbo/93LQI3bzi2Cf5c6OyeiYiIlKkKXQOekZHB1q1bueGGG/I6YDZzww038OuvvwJgtVoZP348ERER3HPPPZe95n/+8x8CAgJyvzRdXcTJareDetfkFGP735VdS1PQy0dJCrElnMhXAb1J+fbLnpCcUfcaDY0txoqjyCJs5RfAbfw93XiwXzgbn4rguaGtyfYJxcdqZXx8crGmpo+8uImHQ2uy/8QvV9aRrHSw5owgu3nn1VGojFPQbdPPazaHms2g75PG92VV0FFERKSSqNAAfuHCBbKzs6lVq1aB52vVqsWZM8b/HG3atIlFixaxdOlSOnbsSMeOHdm1a5fDaz799NMkJCTkfsXExJTrPYhIMdiKsW27gmJs2VkQe9g4rtmsTLolOUoSwG2j3xVdAd3GNvuhuOu/IV8AzxkBt1ggqezXgF+Ol7sLE3o35u1JgwCobU7INzX9SdLPDcDXQUHyNT7ejHSPZ8bq6cbU9NLIyLeDiLsPeNmmoFfCAH4257/ztdoYj21HGI8ntlTeonEiIiKlUOmqoPfp0weLxcL27dtzv9q1a+ewvYeHB/7+/gW+RMTJ2t5mFHyKOwJHN5TuGhePgiUTXL3ytlCSslGiAG6rgF7B679tWt5sbNHVakjxz7FNQc9INEJoSqwxIwNT3msVyD3ACP1epDH79ua0rO0HFk8yYvvz+fF4HoqLx5ztYffc1SciGfndSGasnVHyIG6bfu7qZcwe8KoCI+C12hqPgQ2MteDWbIgu5b8hIiIilVCFBvCaNWvi4uLC2bNnCzx/9uxZateuuFEJESln7j7QfqRxXNpibLnTz8PBXOk+K6zabKPJxQnguQXYKnj9t03DXvDUsbxZFcXh4WeETjBGwW0F2HxCwMWtzLt4+f74GkXQgJsbmVjx0LV8OPYarqnvQyMuMSnhEkRNL3Jq+urjq0sexG0V0N1zruldideAn91jPNZum/dc0wjj8cjaiu+PiIhIOanQ/6t1d3enS5curF69Ovc5i8XC6tWr6dmzZ0V2RUTKmy0w7fsOki+U/PwLOVOftf677NlGwGOPXH4rMmftAZ5fST+AMZnAL9809HLYgqzEcqfFn8FsNnFD61p8dVdDADJwI8ESXGBqunu2q93LlCiI51ZA9zEeK+sIeEYKxOUsN6mVb8Zb0/7G42EFcBERqT7KPIAnJSXlTh0HiI6OZvv27Rw/buxn+uijj/LBBx/wySefsG/fPqZMmUJycjITJkwo666IiDPV6QB1OxnTyHd8XvLzz+eMgDsz+FVXNRoZj+kJRW9J5cwK6FcqX+Atzy3Iis323rYPAwBTTr/ca9Tnmwd7c0Or0Nyp6Q0Pj+KhuHj8su1/QFKsIJ5bAd0Yfa+0I+Dn9hnF4nxC8j44AWjUB0wuRji/eMx5/RMRESlDZR7At2zZQqdOnejUqRNgBO5OnTrx7LPPAjB69GheffVVnn32WTp27Mj27dv58ccfCxVmE5FqwDYKvnX+5Uda/yp3CroKsJU5d2/wq2scFzUNPeGEEeLMbhDctGL6Vlbyb0VWqUbA822NdumU8ehfj84NavDhuK788PC1DGlfh32WFoyPT2ZlzAnczvXBmu1l97K2IP7wmofZF7uv4Iu2EXC3nCnouduQVbJ9wHMLsLUt+LxnANTvahxrGrqIiFQTZR7A+/Xrh9VqLfQ1f/783DbTpk3j2LFjpKens3nzZrp3717W3RCRyqDtCGP0LTbK2NO3uKxWbUFW3opTiO18zshqcLhz1k5fifxbkSVV3BZkDtnCf1LeCHheAM/rV6s6/sy6qzPfP3oTaW4B+FqthMa1JynqKdLP3eQwiK+JWcOo5aOYvno6uy/kFDTLsK0Bz5mC7p1TBT2lDAN4WgLE/F7yD9jyyy3A1qbwa5qGLiIi1YwqG4lI+fHwy9tOqCTF2JLOQvolMJmr3shrVRFUjEJs5yrB+u/Syh/AK9MIeGK+IqS5AbxuoeZNQnzx8zWmjo9oH4yH2ZuM2IjLBvHIE5Hc+f2dTPl5Cjvicz7Esk1B9yqHKejLH4GPboTjv5b+GrkF2OzseNIkJ4BHrwOLgz3bREREqhAFcBEpX7Zp6HuXFb/4k23dcY1G4Gp/eya5QsUaAc/5PTirAvqVKDAF3bYGvJKNgCfmTUG3K2fq+KQetdn4VART+jXF1823WEF848mNjIn+gsm1Q9jmkhNcbfuAZ6ZAZtqV3pEhLrrgY0lZrXkB/K9T0AHqdTG2oUu9CKd3lO49REREKhEFcBEpX3U7Qe32kJ1R/GJsmn5e/ooVwJ28B/iVqHQj4DkfCNgbAXf0wYCrp/GYmUaInwdPDWzJppkRPDGgBcFe/vmCuOPty3718mJc6l7u++k+/og/aBQ1g7IbBbcVektPLN358ceNYoBmN6jZvPDrLq7Q+Drj+Ehk6d5DRESkElEAF5HyZTLlK8b2SfHWiqoAW/m7XADPXwG9Ko+AXzpthHBw7gi4b1FrwIseAc/dzxsI8HJjav9wNs2M4J+3tqGef42c7cueIv3sICxZPnYv9fuZ37l35X2Mr1ub3zw9sCbHXukdGdKvMICfzVn/HdISXN3tt2nQw3g8vb107yEiIlKJKICLSPlrN9IIExcOwPHfLt8+d+srjYCXG9sa8JRYo5DWXyXE5FVAt4X1qiR/4LVajHoCPiHO649t9D31ImSlG+uZbSPzdtaAA+CWMwKeVXi6uKebC2N7NiLyiX68MboDzUOCyYjrS3LUU6SdvRlLlq/dS251d2FSnVqM/e0fbDq5CeuVFE+DvErrGaUM4LYPIWx/Hu2xTU0/s6t07yEiIlKJKICLSPnz9C9ZMbYLh4xHe1NSpWx4+IFPziixvfW7tg9BqmIFdCgctn1rgdnFOX0BY/21S84Ib9I548uabUwJt43W/5WdEfBCTVzMDO9Unx8fvo4Pxl5Dp7BQMuOuJTnqKQaeDyI0K8vuedsvHeGBnx/g7hV3s/7E+tIFcas1L3iXdgTcdm9u9qfQA3nF2eKiS/8+IiIilYQCuIhUDNs09D1Lii7GlnYprziVAnj5Kmoauq0CemgVXP8NxnRmW9VvcO76bzCWYuRfl567/ru24w8G8q0Bvxyz2cSNrWvxzZRefDG5B9c1q0v/BHdWnDhF+7MtsGQG2D1v14VdTF09ldHLR7Pm+JqSBfHMVGN2AVxBAM+5Nzf7xeQA8KmZs3zACmf3lu59REREKgkFcBGpGPW6GFNJs9Nh55eO28XmjH771gKvwArp2lWrqABu2wM8pAqu/7axBV5w7vpvm9ytyM7ApZPGsaPp55A3Bb2IEfC/MplM9GgSzIJ7u3FtQy88rFA7oSnJh58g7fRwAjJd7Z63L24fD699mJHfjWTVsVVYbMG6KLbp55C3FrykslKNx6ICOORNQz+raegiIlK1KYCLSMXIX4xtWxHF2M7bCrBp9Lvc5QZwO1PQq/Ie4Db5p3Y7ewQ8fx+SzuRtjVZkAM+Zlm1nDXix3s6cAcCTQ7twZ9fGmBJ7cvfRlvzzfCz+GfYLnh24eIBHIx9lxLcj+DH6R7KL2ns7/7rvKx0Bt432O2Kbhn5md+neR0REpJJQABeRitNuJLh6wbm9cOIP+20u5Kw9VgAvf7bCV38dAa/qFdBtKu0I+Nm8EXC/IgJ47hT01NK9X84WYbVqBvGf29qz/sn+tGzYgOFJyTx0rA6pp0ZiSa9p99So+CieWP8Ew78dzvIjy8my2FlLnn/UO/1S6fpY3BHw2irEJiIi1YMCuIhUHK9AaHubceyoGJsKsFUcRwE8IQYyk6tuBXSb/CPg+cO4s+SuAT+TbwuyYoyAlzqA50wRdzcqotcO8KR/J2NNf9dQ8MvsQfKRR0k9eQfZ6fYrxEcnRPP0hqcZtmwYy6KWFQziBaagl/MIeK2cEfBze40K8iIiIlWUAriIVKzO44zH3d9Aanzh13O3IFMAL3e2cJ10pmCYOpez/rtms6pZAd0m/7TzyjAC7mcL4OeKGcAdb0NWLBl2Kox7G4XpmvhksGlmBM8NbUuoqQcpRx4h9cSdZKfZr8h+7NIx/rHpHwxdMpQlh5aQacnMHWE33quUa8Bzq6BfZgQ8uKkxeyYzxfHe9SIiIlWAAriIVKywbkZhr6xU2PVVwdeyM+FiznpkjYCXP68axhcUXAd+vhqs/4a/TEGvBGvAbXuTJ5Z0BLz4RdgKyB0B98l7zlYZPiUOb3dXJvRuTOQT/Xnl9o409OxFh2M38vrZ8zRPz7B7yRNJJ3j2l2cZ8s0QFp1YTbop54XSjoBnFXME3OwCtVobx5qGLiIiVZgCuIhUrPzF2LbOL1iMLe4IWLKMKbP+9ZzRu6uPvUro56pBBXT4SxG2SjQCXtwAXoJtyAqxWvNGpXOmoAO5I+Ck5m0F6O5qZuQ1Yax6pC+vN93JjSmpfHXqDPee9iM71f7fw1PJp/jX8e8ZVL8uC/z9SMlONz5AK6nMYq4Bh7xK6ArgIiJShSmAi0jFaz/KCBdnd8PJbXnP26af12xmBHUpf/YCuG0Lsqq6B7iNbQTc7Arewc7tC+SNgCedMbbjg6I/GLiSEfDMVCDnwy33fFPQbSPgqRfBUnCrMXPaReqcWmUcA3dkJZBydBopMePJTg2z+zbnXV15JbgGA8Pq8sH2OSRmlHAk3DYCXpwAbquEflaV0EVEpOpSABeRiucdBK2HGcdb5+U9f0FbkFW4vwZwiyXfOvwqPgJeswW0GwXXPQHmSvCfO58QIN8HS941wdXDcfsrWQOeP7TnXwNuW3JgtRSuXL5zEWRngH99AOpYzrBsSg9uatSP1GMPknL8XrJTGth9u4suLry9+0MGfD2Ad/58h4tpF4vZz2JOQYd8W5FpBFxERKquSvB/JCJyVepiK8a2GNJygoACeMX7awAvUAG9sfP6VRbMZhjxAfSb6eyeGFxcc0J4jqKmn4NRdAxKNwJum37u5m2sn7Zx88wL5PmmoWO1wrYFxnGfGcZ7W7Lo4JvAu2O6sOqRftzWMoKMmAdJOTaJrOSmdt82MTOR93e+z4DFA3hty2tcSL1QdD+Luw0ZQK02OW9yGpJjL99eRESkElIAFxHnaNDTCNqZKXnF2BTAK15uAM8pwna+mlRAr6zyF4a7XJ0DWygtzRpwWwG2/KPfNrmF2PKNUp/camzx5eoF7UYaVccBYg8DEB7qyysjO7D+yQgmdL4B85kHuCumAdel2N8iLTUrlfl75jPg6wG89NtLnE46bb+fJRkB9/CDGjkfCp3VKLiIiFRNCuAi4hwFirHNM0bgbHuAV/Xq21WJLYBfOmGsG7YF8JAqvv67svLLH8AvUxjONgW9NPuA27Ygy18B3cY7Zxp6/hHwbZ8Yj22GgVdgvgAeVeDUuoFe/GNIa36ZeT3DgwOYffY8X548zY3JKblLzgt0w5LBFwe+YNA3g3h207Mcu3SsYIOSjIBDXr8SThavvYiISCWjAC4iztPhTnBxN9Z07v/emDZrds0LhVL+vIPBw984vngsrwJ6aBVf/11Z+ebbDu1yU9Bto9dZpQngdiqg2+TbigwwthDbtdg47jzWeAyyH8BtArzdaFnDWM/eKiOT189d4Jqj/clM6ITVWriAYrY1myVRS7hlyS08tf4poi7mXNf24UJxRsAhbw17ajHXmIuIiFQyCuAi4jzeQdD6VuN41bPGY43GmvpckUymvLXecUeqzx7glZVfCaagu17JCLhtD3A7U9BtW5Etmwr/1xRmdTPW/QeHG0tDwDgGiDtcxHskFfj2sc5NaeFyP8mHHyfjYjesVpdCp1iwsCJ6BcO/Hc6MtTPYY8oyXijuCLhnoPGYFl+89iIiIpWMAriIOFfnnGJstv/RV/CreLnrwA9XnwrolVVpRsAzU40lGiWRWcQU9KYRYDKDJRNSLkBizp7kXSflbf9nC+CxRQVwW8g3Rtnb1nRh6YO9+GLCzfQOfIDkqCfIiOuF1eJq9/TVx1dzR73aPFArhD/jDxXvvjQCLiIiVZz9/yqKiFSURn2M6a62AF6zmXP7czWyBfDo9UZwc3HXMoDykn8E3O9yAdw2LdtqbA9W1JZlf1XUFPTOY6HNcCPEpicauxCYTFC/W14bWwBPiDE+ALA3Qp2e8x5+tY2p6umJmEwmujcJpnuTYA6cacn769uybFcE5sANuNf4FZNLRqHLbPL2YtOaB7mm1jVMbj+ZHnV6YDIVnsYOGOvTQQFcRESqLI2Ai4hz5S/GBsbezVKxbGH7yDrjMbiZsWWWlL0CI+CXK8KWb/p4SbciK6oKOhgVxQMbGFt7NewJDXoU3CvdOwg8A4xjW4X8Qu9hC+A595GeWODlFrX9eG1UB9Y/dgvjWj6I9fjfST9/PdZs++u9t5zdwuRVk7nz+7tYfXw1FqulcKPcEfB4+30SERGp5BTARcT5Ot5l7DsNEKrq2xXOFsCz041HLQMoP0GNweRijH57+BXd1sXNaAsl34qsqCroxWEy5ZuGbr8QW6EAnpFot1ndQC/+fnNrfnlqKA93mYbH6edIPzcQU5b9dd97YnczY+0Mbl0ynG8Pf0umJTPvRU1BFxGRKk4BXEScz6cmDH8P+v8D6nR0dm+uPra9lW1UAb38+IbCuG9hzOLitc/dC7ykI+C2KeilDOBw+QCefwo6FBoB/6sALzem9g9n05OD/r+9+46Xoyr/B/6ZrbfmpveEQAgllFwJBOkhhF6kKSCdn4gFRYOo2OBrQ0QQRJSmUgRBFFCqQAiEaiAhQDD0QMJNT0huL7s7vz9mz86Z2ek7W+/n/Xrx2r17p5wtuewzz3Oeg/876Bto3XgBvrfpU4xMWWS6AXzU8SF++PwPcfg/jsJdy+9CT6qHTdiIiKjqMQAnosqw28nAQZfoTaCodJrHAjEpG8k1wItryv7AmOnethUBeMomA967FXjlT0DXJuPjuQZpBQTgYikyq07oqX6tiRugN5NzCcCFungUp82ajL98sRVntHfgr2196F1zAjL9wy2339CzFr9a9Csc8vfDcFPb09gaUSo3A/7Wg8DfTqvc8RERUdkxACciGuwUxdh0jRnwyiEujNgtRfbqX4BH5gHPX2N83KkLulcjxFrgFgG4vARZLgPemb+dg2hau6gwflgL7jrlW9g7fiV62k5BuneM5fYdA1vw+/fuweGTJuDqemBD5zpf53P14bPAsvsLO8aL1wPvPAq8/Ug4YyIioprDAJyIiPS1wKOJ/JJ0Kp+4SwDeuV67Xb/c+HixS9BFtjtWp5eFe8yA56S056TE6jFr2+H48zmfxSPnXYQjhl6Fvk/OQbp7G8vduiIR3NbSjEP/eQR+/PzlWNm+0t957fzjXOAf5wGdG4Ifo3ujdmtXtk9ERIMeA3AiItIz4OyAXlnEUmR2AbgItDd/aHrcuEZ3ICID3rVBK3W3O35yiHbfHIA/8SPg7lOBTNr6+KKxnLTE2Y5jm3HNKZ/Bsxd+DWdM/jWw+qtIdVo3BUwjhQc/+CeOeeAYfOOpeXh789ven9vK/wL3X6BfwACyz1EtrHy8e7N2ywCciIhsMAAnIiJgfKt2O2mvsg6DTMQyYim7ADwbCG9ZCaQH8h+3W4bMi2Qz0JQtBzeXocsZdtHNva9d/30mA7z8R+Ddx/Kz84KY1x7PX5ZsXEs9fnD0dLw078v4zoyr0LjhEgxs3R2qmt8jQoWKZ9qexOcf+jzOeuR8vLr2Vaiq6vzc/vtH4I17gLcfzh5EBTIp47j8SvXpr4FV2T4REREYgBMREQBMPx44+2HgsJ+XeyQki4kMuE1QKOZ6q2ktCBcKXYZMyJWhmwJKke1ONgPJbJa9v1MLZAGgZ7Me0HautRl79qJCzHo5MgBoSsbw//bfFs9/+wxcddBVmNx1OeZuVRG3CbBf2/gyzv3PuTj+gdPwzKpn7ANx8fqkskvvyWuOBw3ARfYb0F4vu8x/NUingBUL9Qs5REQUGgbgREQERKLAtge4r01NpSUy2HbLkMnN0OQy9FyGuoASdEBqxGYqqTaUoGc/M5mUHrx2SEF3h00A7pABN4tFIzh2xng88rUT8H/xcfjPqjZM3Lw91HTCcvsPO97CN57+Bg6591g8+N6/kRIXAwSx5r14XP69Xbm/m26pE326D9j6SbDjVII3/w7cfiyw8Kpyj4SIqOYwACciIqpUIji1y8rKGUo5S50LkAsoQQfslyKTS9DjjQCypeEiMy53KLcLwMVFBYcMuJmiKBgybDRGpTO4o/VQHDH090htPByZlHWmf0Pfx/jxiz/EgXcfjj+/8VdtLXFAL9e3CsBFVtwv0YBNqOZ54FtWGW+JiCg0DMCJiIgqVW4ZMrsMuPS4nAEPYxkywL4TulhyLNkERCJ6pt1XAO49A26Q7bo+KtqN35y4D56/4Bc4b9KtiG4+AZmBoZa7dKTX47evXYn9756DX754LTbnAvFs4C3Pn7ebb++m27QWezUH4OI1CFoNQEREthiAExERVarcMmQeMuAiS53JhNMFHTDOAZfnU+cy4Nny81wjNqsAfI31sVPuc8At1Q/Vbnu3aENsSuLiw3bFyxdehkt3ux3NHWcg3Tfactd+tRN/e+9PODS+ET8bMQwf92Xnbcvzte1eazfyHHCgugNw8RrYXfghIqLAGIATERFVqtwyZD7mgKd6AGSD5UK6oAPZ9eEVrbt3l7Q+tnmdcXMA3uEnAx4wADctF1YXj+KMvbfD81/7Ln53wF8xaeBrSPdMsjxEvwL8fUgzjln9ML7wwFfw6rql+i8DN2HLZsDFBYVqDsCDZMDTKaBro/t2RESDHANwIiKiSpVbhsylCzqgL0Uml6UXGoDHkkDzOO1+e5v+uMiwiw7oIgAXgbmcAZfvy0SQ5zsAH6bd9myx/HUkomDuzuPw6Je+inuPuRufiV+KtM1a4lCA5e0v4NznvoWzx43GgoZ6ZIKWXYvgc8JM7baaA/AgGfA/zQWumgpsrOLnTURUAgzAiYiIKlVuGTKLoDAtdR2HojUS27JSD4Ljjdr87EI1j9Vu26VS8j5Tl/WkyxzwjLTMlyCCvFiwOeB2Abhst4lDcccXv4gnT78TRwy9CujYE6oatdx2SV0dvjlmFOYuvw2/W/RX9KV9NmMTGfDJe2u3W1ZV7xzqIBnw1a9pt8v+Gf54iIhqCANwIiKiSpVbhswiEBqQ5n8P30673bwivA7ogsiAy3O5+7OBdsKUAe9rz24rlZ1nBrR1wc0KzYBn54B7MWFoPa763BF46fxbcMG2t+LULX1osrooAGBDpAu3LL8Se985B5c8eTU2y4H+hnfsM7wiAB+5I1DXAkDV3o9qJC6OBCnHV/jVkojICf9KEhERVaq4QwZclJorUWD0ztr9zR+G1wFdEBlwOajOK0Efot3mMuDrjcewmgcunpPfDHiuBP1T5+0sNCVj+MZBe+IH3T14cmUbjukYh8zAEMtt00o7Hl99Gw665xCc+cCleGfde8Ctc4E/Hap3T5eJALxxhH5B5NMqDcBTBTRhU5Rwx0JEVGMYgBMREVWq3BxwqwBc6nSey4B/IDVIK7ADumCVAe8zNWHLLUPWqY1LZMiHbpPd1yEAD6kJmx9Kuh9NqoorJu+Ee478Nw5QTsS0/n7rjSP9WNr+ME5+7CR8d0gc/0t36M9PJgLwhhF6mXxfZ/521SAXgAcooWcGnKi6ZNLGVS6o6PhXkoiIqFLl5oBblALLnchzAfiHemBeaAM2wTIDbp4DLnVBF/O/4w3AyGnZfS2WIksFnAMuMuAD3UDK5zxtIZ0NtjNp7DZhBP5w6In4Z9ta3Lh2PbbrsXndFBWPNTXilAnjcNC9Z+MP/30QKZEJV1VjAC4uTPRXaQAuAu+Bbv9fzMMKwDs3GNe2rxSLbgGu3Y3N5qg29Hdrn+d7Ti/3SAYVBuBERESVKrcOuEUpcK7UvAEYMVW7v+kDvTQ9rBL0IVZzwLOBZdJiHXCxBFnTaOvgPTd+sQyZzwA82QIgW+bsoRFbnnQKULPzvzOp3K0CYL+eXtw/qhVf2f56NAzsCVW1/pq0WVmBP779Y+x5+6H49mO/x8YtbXpQ3zBSvzAhr9NeqEwGuON44N/fCO+YduS5337ngYdVgv6b7YHffSZ/OkO5Pfodrdnhs7/Sfn73CeCdx8s7psFm6d3A3adWb4VJJflgvrbCxTuPlHskgwoDcCIiokolAnCrIChXgi5lwLd8DPRu1R8Pg5cSdDEXvF/KgDeN1ffttAjAc03YfGbqI5FskzP4asSWI3c3zwXg6dxD0XQvvr7fbLz8//6Mqz57N8Yrh0LNJKwPFd2Ip9bfhDkPHI+rhw1FW7JBuyAiGuAFmUNtZ+sq4MMFWvBRbHLFhd8y9DAy4HLWfcPbhR+vGOL12sWuuz8P/O0UBoOl9OBXgXcfA166odwjqX4sPS8LBuBERESVKiYy4FZzwKUy8ObxWil3JqUHLGHPAe/epJd855WgS03YOn1mwP2WoAOFzQNPS3O9MwPZW6mpWvZih6IoOHKnXfCfs67B3498GPvF5mBEKg0rarQPtw0dgqPGjcCBt52L/7RnL4KEWYKeK5tPGb80p1PWy7wVQu454OUignQBA4r1Mm/+zi9dAJA/HwM9Bc39L5j8OjeNMb42QZecU1Xg0Uu00vagBmsQFeQCHFEFYABORERUqeJOAXj2y3+8QcsKD9tW+3ntm9ptWMuQ1Q8DotkMcOc64/rjViXoIgBvHmudPReCLkMmxgQEK0FPyQF4NnC0CMBl08eOw437n4onVrXhFxs2oWVgmOWhM4qCT5VX8Z2BV3D6uDH406pl2NQV0lrg8nx3UUK/ZRXw6+20OZz/vckYCBfCbwY8PaDf71yrlcmveSP4+eVsciSm3//tLsCVU8oXhHdt0O83jtLfByB45v+j54FFN2ul7UH0dQDX7wE8cnGw/Ymo5BiAExERVSrHZcikEnRAL0Nf95bx8UIpijGTLWd1cyXoIgDvNM4BbypWBjz4UmSWJehyAGnV8A4AUr1IADiuswvP7vFlfHP6NRiqtkJVrec8v1GXxLWxD3DQ3w7DF+75JZasWu1/rG7jfvsRoG8r0P4J8Nh3gWX3F3YOQb4I4SkDLr1+L1wHLLkDuOmA4OeXu8zLFxVEo7u2Jd6OM9ALbG0LPg6zDvk9VEwBeMC5733tBQ0Jr9+jNat75dbCjlMpUn3A7ccCz/7aw8Zc8o6qEwNwIiKiSiUvQ2YuMzWXgY/IBuADXcbHw9A8XrttX62fNxIHYknjufrMc8CzAXjnOmP5rqrqgV2QDLhY5itQAC4FixZzwC2XfAMMpevRgW6cv9eheO6cO3Hzwfdi/8y2qLcpA1fiW7C8728466ljcdCfv4k7X3kVqbTFtl2bgBevBx74KjD/p/nvtyFznx33R8+ZjhFCw7JM2hhQ+82AezqHS8m83LwuY3VsjyXXf9wX+O10YN3/PA/NUbsUgKsFLt3U3wWsWlR4+XiYjf4qwbL7gRULgQW/KPdIiIqGATgREVGlEtlhNWOcuwwYu6ADegZcCGsZMsCUAc9+4U9KAb6hBD2b7W4ao2XBoWgBo8heAtnnkg08CsmAB5kDKpdyp63mgNssbSZnhaUM7b7b7Iw/TvwMnlzVhjPVbRHNWJenK5F+bI4uwJVvnYc9bz0N33v071jXLgW3T/4YeOJHwOt3A89dDWx813iAtGncmQzw8Qvaz6N2yh+jF+uX5wdw5oDbSwbc/Nl08uEzwK8maZlbO3IJuniP5EDVa9C6+QPtdvm/vY/PiRyAZ9LGDLhf93wR+NOhwGt/LWxMQeeeVyq7C2BUJIO0f0CZMQAnIiKqVHIQbf6ibVeCLoRVgg4Y53L3mTLvgN6Erb9DLzdvHgNE49pcWbGvID+XQHPAh2q3BZegW8wBtwto5Ay0ueN19ya0ZFR8d9sD8MpZ83HxyOOxe691IK8oKtJ1/8OjG36GOfcehePv/BXmv/Mx1E0fGDcU3eytzp9JA+vf0p5/ogmYtHd2Gx/roq95A/jDZ7WO0obzmIL4QjPgz10DPPY9PWi+5wytiuKBC+z3kac5iAy4fA6/WeNCAmWZ/J6opgDc7zk+fEa7ffexwsYUZqd9IioJBuBERESVKhrXmzuZA6N+01Jgw6cafx9qCbrFHHBDAC7dF42qmsZk983eitJ0QH8uSkRv8OaHUxO2Xpc5tZYl6M5N2PIeN3c3796s3TYMRzwaxzk7HYy71qzDbV31mFK3L2CznngksREfZO7CRS+ciB92r8IHcanhmDkzbZ4DviJbfj75s3oFgp8M+JaVxlshLwPuJQC3yYCrKrDgl8B/b9QvzEQ8fPXsk+aAi/fLcI4yBeDyVIVMWgvCc+coUybRb9UDUakN1i79DhiAExERVSpFkZYiM2W6cl3QswH4kAlANKn/Pqwu6IAxAy6CTznojtUZu1UrET3zbdUJXQR1sfpgzavs5oA/exXwq8naHFI7cpY4twyZPAfcQwBuzoCLudeNI7Xb7Hsyc6AfD51yEx4+4RHsN/IkRFTrbL8S7cdDQ6I4fuJ4nD1mPOY31OP9trVQ5S+u5nGL+d9TDtDL+O0ayFmxuvgAhJsBz6T011h8fuXPqJ1+ixL0TMgZ8A+fdS6Dt2IYQ9r4uQkryPer1krQqbY88yvgN9PyL/QNcgzAiYiIKlluKTJzBtxUgh6JAMO31X8fZgn6EKsSdOn4iqJnYQEt+I5k14O2WgtcBHnxAPO/Afsu6G2vAlCBj1+039eqm7ihBN0miJUzsHKXblUFNryj3RdVCOK1yb5H27RMxI1HX46XTn8G5+34HTQpE22Ht6Qhhm+NGYXT3v0tDrzpJ7j1xWXo6kuZ1i9P6eecsIcegPvJhorsrbkhWpAMuGWjNNN4xAUELxUPVk3Y0tJ7pKaB9jXW3fWtWAXHdxynlcH7WS7NUD2RMR23TFm+QR2AM7Na8Z65QquKevrn5R5JRWEATkREVMns1gI3l6ADxnngoZagiwDcpgQdABJSAN402mJfmwx4EHZN2MTFgS2r7Pc1BFEiCJUeS/dZd+m2y4Bv+VhbSiqaAEbuoD1mCsCFhngDvv3Zs/HimY/idwfdjO0b7cvTe+M92FL/IK5950zsffMF+OOr0tJbmbT+POINejd6P3PArea/Wx2jkCZs8rHE6xfzkAE3NGETS8WZ5uBfsxNw9Y7GufF25EA5kwE+/Uj/ecPb7vvn9jVdBDD8zACcqlCpPrdytQgxACciIqpoIgA3dwfOdUG3CcCL0QW9rx3ozJZbmwNwOQMu1v8G9LngHdIccBE0BM6AD9VuzRlwkZne6hCAp1wy4IAxS57bT86ASwHi2mXa7agdgVg2uyvek4Fuy2BeURQcPGUfPHDyTXji5Mdx/LCDMCxt/QVViaSgDFmEP8T/gzPGjcG/mxrxyBsfQhUXDSKxYBlw2wA8yBxwuwx4X/59LwG4XGEgAm/5IsmWj/X7oueAEzkAf+ibwHUz9J/9NPIzNILLFFaCXteS/1iQYKjmmrBxbe+Kk8kAi2/T/9YFoTIAl8XcNyEiIqKyyc3vdemCDpgy4CGWoCebtYC7vxPY9F72MacAfIx+3yoDngopA96zRQtaxDxy8Zo4BeByJjVtMQcc0F5rc3d2uwz4uuyX0jG76Y/lXntVe64O78W4pnH42ZQD0ffanXh4UivuUHrxYcQ6qHq9LonX65JQVlyKxfEMzozHoG7uw3aBMuA2Fx/MJfieMuAeStDTPkrQ+6y6oEvjlOeTdq0HWiY4H0++CPLancbfWTXysz2OqXrCEFT4DJ4TTfmd7uXPsldswkbF9tb9wEMXafcv3+q8rR1mwA2YASciIqpkIpPtOwAPsQQd0LPgm963Pr4cgDfLAbjFHPCBAueAiyZsatrYMVsEbls/sS4jB/LnUsu3glVQk7bLgL+p3Y6VAnD5wkK/hwC2Yy2SKnBSyzQ8OO4Q/HX1WsyOjIOCqOXmarQP97UkcdzE8Th54eX4xosvYABAysu5cgcRGXDTF+NAGXAvJegWGXC7jG+/RQm6IQMuB+Ab3cfnlJ0OnAEvQhO2IMcY1CXoFZ4t79mSv5pBNVqztPBjlKtJYYViAE5ERFTJ4i4Z8LhdAB5iCTqgZ7I32gXg0s9WGfDOdXrAkpsPHDAAj9frmVR5HrgI3NL99qXJhhJ0uzJsiwDckAGXgv5cAL6r/lgkor8v5iXLrIgl2prGQEk2YUZfP64fvhue/sJTOGunC9AQGW6760DjJ3hmyEuYO3kCfrRlFb5+75NY/PFmYwd1K54z4AWUoMvPXbx+cgbcLrtubsL2/lPAy3/UH5MDcDElwpHDa+EnADcvQ2YIwH1mwK0uWjAArx39XcCV2wBXTCr3SAoXxjxxBuAGDMCJiIgqmciAmzOTVhnwoZOB6ccDu58Sbgk6oAfSA9nzei1BbxwFQNEyht2bsscQc8ADXiSQu66LrHcmYwzc7MrQvWTArTqhy4F7f6f2pbR3qz4fecyuxu1tGrFZEtUBzeP016S/GyPrR+KSvS/E86c/hWuG7oV9u+2Drc3RKB4ZlsKzPRfjjIe/jAN+/3vc9Ox72NRpU5YuKgRc54B7yKrbdUGXy7tzXdDj+mPm5dxyj5vWAf/rScCS2/XHzCXoruNzKH81N/JzPI5pDrhaQAbcKgBfs9TfBQHAul8BALz2V+DOE/LL3Ett9VLg+WvtL9LkqZHO5hvf1W4rfu5zBTZhW3wbcPtxQG970YZTbgzAiYiIKpnVHPB0Sv/ibV4O7Au3AyfeHP44mscaf87LgA/R78sBeDSmd0UX88ALXYZMPl9f9kvaQDcMXyY9BeAW84uB/CAUyG/eluoD1r2l/TxkItBgylKLCgQvAazIgDePlQJ3PTiNR+I4NDEKN63bgEdWrcYpo+fYN21TVMSa3sHWITfjd++dg/1v/i7O++vjeOad9UhnpNdHtcn+B8qA25Sgy8GkeP3kQEwOtGVW64DL5KCm02cTtrwxbnHf32os5gy430DG6nn96VDgulZ/x7F7bv/6OvDB08CLv/d3vLDdfBDw1GXAoltKd851bxX3wsMbf9deX6eLCnZTYKqR374EVvxciHjoImDFs8aqlxrDAJyIiKiSWS1DNiBlVcPOdNsRGXC788oBuTwHHMifB17oMmSAlAHPBnHmUm+7pchSXuaAW3VBN6/D3ql3BR67a/724vXwUoIuLkw0jTF2ULcY0+RUCj/a4Xg8tbINV67fiO0bd7Y9bCTejtiIp/FK+hJ8df6X8dnfXYVf/+dNfLypS3ru5jngvWJn63FYsQtE5OyyOK7deuoyOTNudTFE5iUDHtYccPMyZGrIJeiAv4y8+bxWQV+ldElf87rHDaVg7/Zjge7N/s6z8mXgj/sC18/0t58f95+vVRi8/jf7bcx/U6pZGCXoQZqwDdTA/HkbDMCJiIgqWW4ZMikAFGXNkZi3rtJhMGfA5ZJz889N5gDc1Am90GXIgPwMuLnU21MG3C4LbBH0mQOmvg5gXXb+t7n8HPBZgi5lwHMl6Kb95POn+pAAcFRXNx446kY8uM+vcPrWDjRl7L8oxxo/QO+wO3FH23k47I5v4zeLlgIAVLv57yKjX8gccKsSdPN63lbkixZuZah2c8DlqoZiNGHLBFgHvGMtsOkDLVAOK0BzawTnZdm3UgjyfFcsBBb80t8+//u3dmvuAfHhM8BbD/ofgxOnBoCFXJypRUFK8Uv1/7YyYABORERUyXIl6FImS57/HUZ5oBd5GXCbOeCJ5vzsuNi3fbV2W+gyZABQlw3ARYBmLmfe+on1fvKc2dwyZD6bsAHuGXBpLrej/i49E9w0RsqcmwJwQ0dxaSzROKYOnYrvb/4UT6/vwk/3/Sm2a7bPiivRXiSGv4Tbhy3CF8aPxV31cXz17ufx7LsbtBJ1EXDXZwNwtww04C2bK153uQLBSwm6W0bYKgh65VbgF9JFIKcAPPAc8LQx4+xlDvjVOwLX76FPOQgikwHuOR146v+0iwdu89CDNjoMWyalzd3f+J6//ZxKyV++Abj/AuNjdp/FOz4H3He2fWVM2App0Ffttn4C/O9fpn8fAV6DSNx9myrFdcCJiIgqWW4ZMosMeLxE5ecAMMSlBF0E4Obyc0Bfp3lrm3Zb6DJk8vmKUoLu0oQN0LK3ogHbiGn521vM5bYkyvLjDdn11u0y4DYBeCSey3LWp/pwwrQTcMK0E/DOI9/AfV0r8a++9ejNWI9heTKB5ckE1L5vYMHju6Kpf1/c0NiGvYHSZMDtXhv5ooXbHG2rEvRHLjb+7PTl3y5gs9xWzoCbmrC5zQGXM/KbP/R+TrOPnwfefli7//w1xt+VIwPe2w7ccjAw7XDgCIdsdSYFXJtdqu97HwP1Q/2fa+nfgJE7GB974x7gxJv0n93ez671wNASdCYvZI34MPR3a9VTbhdoi3Fx4Le7aLef+4Pzdi9cBygRYN9vWP8+Yr0MYy1gBpyIiKiSWS1DZtUBvdiazCXopgz46OkAFGD8Hvn7Dpmo3bZnA/AwMuB5Abi4KJENYL2UoKtp7QuoeX6iWxd0AOjeqHd1HzI+f3u7udxm0hJkUBSHOeDSuOXfRWJ6llME5t2bseMrd+BH/3sGz5/0MK484ErsOtx+TqwSSSHeshR9o/6A78QX4w9DW/Dv9dr5MlYZ/OUPA3efqmef7bqgu80BF+/da3dp5caCfEHErZmWeA+cuJW/em2YZZ4DnvFY5g7oUyWAwkprUw4BpniecrAfLXIA/tpfgU3va9loJ/JFI7mLvRsRQH78IvDgV4Bb5zhvXylzr50y4JkMsH558Rq1ta8GfjlO64IfhqBVViuetf9d92bgyZ8AT/zIOM1Evsil1G6YWrvPjIiIqBZYLUNWjgA8XgfUD9N/Npegj94JuPgd4HiLzrUiQG03Z8ALCcDFHPAO4+2oHbXb3i3WJc7mZZvMc3kB9y7ogL7MUKze+LoIXueA55Ygy17giNvsZ8iAS/cjUT3Lqaa14Eua/5pMD+Co7Y7C3469DY+d+Bi+tOuX0RIfZTucLfEU/jisBT8cuw5njhuDO9VenHP7s3jo9dXo6c8GFfeeDrz7GPDc1dmx2XVB36LfX3IncPNsvWoA0N6f9cuBf31Na7gFZIMSKWBxC8DVjHsg4xYc211AyNtO+pz4XQdcfh6FLE3lFAyJ5yk3r4oVcR7t1jb7ZdDM5Itanpckk2x4x/538vvgp6KhYNn3vGNt/oURw2fO9Nl4+qfAHz4LPPnj4gzrzfu02w8XhHO8oFlyr5Un8r8r+eJiy8Rg560CDMCJiIgqmdUyZKJ0t5QBOGCcB24OwAGt/DxqMbtNfJHa2qZ9KRMBbkEBuMiAiyZs2dekaSxQNzR7Pot54OYvypmB/ADMqgu6CDTqWrRbERC0TLAOiryWoMsZcMN+XcYvsIYMePb1i8S1c8uvY6rXOC9aCuQnNk/ERTO/gWdPfRJ/HL4vDu3qRszhS/LSuiR+M6oJr2YuwiULv4M9r7kW37rnVX0D8dqbl3ET5Ax4z2Zg9WvG3/d3Grtc93flXwzxMkfbLaB1C8C9BoRp0xxwP+uAyxlwqykOXnkJwPtNFRLF8M7jwG+nA09d7m17+aLWhuVaMzorec/PQ/ZVDuasAnDDZzzknhnr/qfN7b/pQOPjTg36nv+tdvtSmZaIe/H3WhVLWNa8rjXLc+t3YUd+feT74uJzDWIATkREVMlyc8DlZciyX3RKHoBns7RKxF/wLAL3gS4tEyiyYYU0iMoLwLOBZrIJaMnO8bSaB27+gp5JeeuCLoLyhpHarQjArcrPASmT7bEEXby2Yg64mjZeCLCaAy6CK7nMONWrlccLFhcAopEo9k+OwjXrN2L+yjZc0voNTGzc1naISiSN+JA3ERl3G57q+jquGD4MyxIJPNeWweKPP4XqJQNupa/TOEe5Y61FAG6TAU+26Pfdyo5dA3CPWVOnDLjbPF+5zNbqAo9nXjLg0mcuyPJPXrz4O3/byxnwf31da0bnVE7vR7of+Pgl4Hd7AO/+J//3xWyCtuwf2u2G5cD1ewLvPaX9LL/uhTTdC1vbEuCJH2pVLGG56UDg2SuBhVeZfmETWAOw/xxL2ymKtt+mD2qukR0DcCIiokpWKXPAAaA5G2wmmvzNC0w06F2129v0AKGQDLjIROdK0EVVQJPeZGmrxVxTywDcZi1sq8caRmi3ogR9iE2ZpNcS9M5suXhjtixcbqwnB1JWGfBotktwJKLPKzZnwO2W+sqWbQ/PZHDWtJPx6En/wt1H3Y1T1WYMTdsHbUqsG3e3NOO0CWPx/dhinPb3n+MPi96y3tgte730LmNDMqsA3C5bXCcH4OXIgGf8laD3hRSAO2bAs2OQP3N21QGZDHDrocC9ZwQbh9+51la9ELx02M9xKmceAG47Gtj8gfXnxUuH+rbFwNU7AW/c52NIqvF93/QecNdJ2d9Jr/s/v+T9mF70dQQPSMO4GPDQRcBdX8gfw9K77athHNk9FwWY/1PtYo3f5egqHANwIiKiSiYalaUsStBL2QUdkLK0FuXnbkQn9PbV+pfkMDLgIrMolvJKNOoZcMsSdFPwk5Yy4Eq2665lAJ4NgBuzGXARUNhlwL2WoIsu3k2jtdtoTM9oy/s6ZcABqRFbn7Exmd0FAFM2V1EU7DZqN/ww1YinV7bhd5OOxaFd3Yg7fNFvT/YgOfoJ3Dj+LZw2fgxuH9KMtVGpc7FbA7q+duABaRmpjjXeA7u6cmTATQG4nxJ0Q6MpD+d77ylg4/sWv3AIwMUFAUMG3GZcm94DPlkELH/IPRM90AusXmoMuPxm1r2W3Zs/b14u9KX7XaYheAhW7z1T+/zdH1KwLH8m2161386vtsXAFROBB78W3jH9+PhFYPFtwHv/AT55BbjtGP13nWuBX0jNOp0uEti9r4Z9VL3T/8JfBx1xRWIATkREVMlEltiwDFmZS9DNHdC9GCKWIvukSMuQdemPiznnfkvQxfOy7IJuyoALbgG4axf0bADeODp/X7l83WodcEMAntR/Z5gDbrPWthywGJog9SAO4OARu+Oa9RuxYOUn+PFnf4xdhu/u+DSWJZP4zYhhOHTyBJw9bjTubW7C5oiHr5ly4Nqx1ntgJ9aBNx/D7RxWvAbg6QJK0P3MAf/kVS2T+nuLzvWe5oCbMuBWUwHki1/y2KzceTxw80FaxYJ8XD8s/x2ENB/b7f3zkgEvaFqABfnCh/kzLf+7bVuirVvvNaO9MNv48PW7g40r7zw+M+l/OVK/v/h24KPnjL+XL1IFvegihDlPvcIwACciIqpkuQC8AkrQh07Wbq26frsRAXh7W0jLkJm7oFuVoFtkwB0D8OwxzaWxmYz+xdIcgNt16vVcgi4y4FJncqt95XGLCwSiBB2QKiV6DV3QvWXApfsiYM82smvJqPjC9ifinmPvwiMnPIKvjtgLEwacM85L6urw85HDMWfyBFwwZhQeaGpEe8QUbH3+9vwd/WTAxQUY8/ituAU3XkvQDRlwn03Y/MwBX/Vf+985PZfcHHDp8/v494ErtwHen2/cVl7iya3T/MqXtNvF0nvmNwPudg5b2c+NY0dtl/fPU3AbpKTb6b1wuDgTkf7d3nKwtm798n8HOH8Rqap2caDX4eKMW4D9thRAf/y89nd0oAf46Hlvnx95acIawwCciIioksUdStATJe4SO3UOcOAlwNz/879vbimy1SFnwE1d0BONQEv2QoHVWuDm4CeT0jOborQ+r0xd+lmUoAuuJegOGXBV1YNlqwy4vJyUPCaRTbTKgA+Ym7DZBeA2GXBxQaN+qDRObdvJQybja8mJeOyT1bh99TqckpyIIXFpO5O0ouDFhnr8ZNQIzJ48Ed8cPRIPNTagQ1Fw//sWQbOfADzRpE8ZKHQOeOBlyORO1y779kkBqFsA7hTYOGWexfO0ej5P/9z+OF6DYzloD6W5m8WLZpvh97ikleWu0vvvqfTZD5v9nF4fq3Xg179d2PnC9vYj2sWBmw4Aej613sbvOt1L/wrcd642X/8ZmzndTu+DW1PHKlKktQmIiIgoFFbLkOW6oAcoBS9ENA7M+VGwfXNLkX0iLUNWwAUEka0e6NYCaBE4Jpv1DHjHGm1+q7wWsjlbJmfAc4GvKQMuB0x5JegTrMcX9zAHvOdTPVhqkgJw8brYZcDFeCzngPcCXdIccNsmbFKAsPE94NlfA/t/S99eLOUGZF+fbIDfvhoKgD36+rBH3bb4/nG/w6K/n4rHNi7G/IYGdEStv5QPKAoWNDZgQWMDYqqK2Cd/gdrUiIO7ezA8W66rdqyB4jkAb9Sef9piHXez0ErQTRlwuczY1xxwtwDc4fdOgV0uALfYxhx4yuP1GoBHpPn9haxlbjUGO4qXDLjb++chaPUyFj+cPpNy5YrgtallqbqBv3W/dvvpR9p/VvwG4A9dpL/OS+6w2cjh+a18CdjxSPvfVxFmwImIiCqZvAyZuctxqUvQC5ErQZcy4GE0YQO0sunca9KkdRSP1Wtf9tpNZejm4MdqDrg5A5kLiBS9mzugncOuHN9LCbrIfte1GJfjstrXag64oQQ9qW/nsgwZAGMAdc9p2pzSW+bor4/8vOSArn21YRyxSAz7KvX42cbNeGblJ7hu3QYc2dmFervmXwBSioLeppW4fNQIHDx5As4bOxp3NzdhadsK3PD0O7b7GSSa9AsQbsGgW7bWcwm6KQPuVGZsJl/UcWt65pQBdwzAs7+zCibNwZIcyFkF4JadtqUg0W8XdCt3ngg8fql2v78beOkGY1d8r1xL0L0E1x4C275O4AV5+TWboHntm84XBawCcHGs/i5tSTWrfz/ta4B3H3Mfpx/maTqqCrz1APDpx+77+g3A7d6HxX/RpuLM/6nxvH5W2qgyzIATERFVMlGmraa1L5qxhB6YFZJBLrVcCXqbHmAUsgxZLKEF8KleLbsol6ArijZffeM72he64dvp+5mDH0MG3KYEPde1PWlsQNcywf5Lopge4NSEzaoBm3gOgPY+p1PaF125rNiyBF1kwHsCdEHP3peDdbnLuBxotrdJ4+g17J8AMKe7B3O6e9CtKFjYUI/HGhvwXEM9Bmxep4yi4JX6OrxSr40/vvE3aGhpxtyuHkxKOQR5iUY9I1vwMmRBMuAZ42v4nx8Cp/wVaB5jva+8rdvcWbsM+H9v1uZ023HKgJuDxYxDCfrHLwF/OQKY9WXgKGltZ/k9DKMEffUS7b8jrgCe/RXwwnXBjuNagu4lA+7hPE/8UOsA7rbTLXOAQ39qfKy3XW8cGLHKgGdv7zwRWPUycMSvgM9+1bhNMTqBP/kT48/L/gn88/9529dLk0UvFvxCa+a2YqHxM2CeQlRDa4EzA05ERFTJ5CBblG7L2d5qITLgA916oFBIBhwwNmITpdMiQB62jXa7xZTJcVoHXLye5hJ0sU8saXzN7eZ/y8fq77JfCkqsydtkE4C/8yjwy/HAopuNv7cqQRcXajrXm5qqSUG1qmrr6b5+r3MAFW80zlMV225835gxE4GkRQDUoKo4oqsb163fiGdWfoKfbdiEg7p7HJc1A4CB+nW4ZvgwHDVpPI6fMBa/HdaC15IJ5I3WEIB7LEG3e85BliEzd0H/ZBHwj/Mc9pXG6HY+uwD9sUtc5oBnX1urbfIy4A4l6POzwaP5cycfw0sJ+t2num8jrHzZ+7ZmYXRB97LNh896H495TFdN1e9bXovKPrgq+zpYlWjbTScJ00fPe99Wibpv45VouBZGZUUVYAaciIiokkUT0L6cqVpgWNdSnSXo8TqgYaSxPLqQDDiglaF3rdcC8Nxrki1NFx3bzaWU5hL0tJcSdKlkXi59t5v/DUjvjapdOLF6r3IN2EYZHxcXXd59XLt9/0nj78UFAkMJejYAN5eUygH4ypeBZ6/U7u98rP3Yk03Z7Fb2c5fJVl/88zzrTK5LADQko+L4zi4c39mFTkXBc8PH4Ynpc/HCyqfR45BF+yCRwAeJBP48tAXD0mkc0N2DA7t7sF9PL15Z0YMD1Ij2RdZrBtzuy72XEvRMxhikmbugA3rwZLm/tK3b+ayWwfNCjM9TCbq0jTnjbheMGpqwuS39pvorl7bKCmsndd/X9f0LqQu6n3nv5n8TbhcJzBUi6X7g+d9qjS/HzQBevhF48+/GbXrbtf4NE/bQ99/0QX5W26vLW4AhNqs6eBkzecYMOBERUSVTlPylyKoxAAdMGWPFuhuwH3IndLF8lnhNhtpkwEUJuiJlT/NK0M0BeHafqDkD7hCAy0us2XVCzy1BZipbNlc2iO1y43FYBzwvAJdK0Duk+dtOQat4XUWGWU1r2b81r2vN2Y6+xjiOtPesVZOq4shUDL+dfQ0WrmzDtes24NiOLjSnnQO6T6NR/Lu5Cd8ZMwoHbDMRl3c8gVvjUayKRfHbJ/6Hx5etQUevTSAmAkq7QM1LBtzcWTyTzg9CnbKohpL/7LHs5tB6XT857xxp463MqQmbOfi0ex5yEza3TKXfEvVIAdlUXyXoBXRBz3u/HfZzvChgNQbTY5veB566HLjpQO3nx7+Xv8tNBwK3zgGWP6Q/dvtxDuf1wNwzw0mYGfBBhhlwIiKiShev10q3RQA+UKUBeMtEYO0b2v14feEZFDGnsnOdHjSYS9DzMuDZL+uJRi1wz6T0gEjsa85A2s0BdypBj0S0Uu6BrmwWelT+Nl0Wa4AD+cvLyet6A/rnwGoOuDxHGzCWrcrz370E4EoUQPYCxZrXtMemHQYM3zZ7vGzm1GsJd26sCSAaRx0iOKS7B4d092AAwKL6Ojy529FYsPZlbI7af7lPKQo2N27EDY11uAETkOi5Dp1PPAX8a0d8ZvRM3GPeQQRJBWXATfuqFt3XvQbguSkNddY9AtyWKbOTy4B7KUGX1zD3GID7KUH3urSbYNmYDHpcWkgXdE9zwD2UoPspj3Yak9XfPTEdxY9PV2i3y/4JTM8G3uYAumuj1jixe6OWTQ+T3yZslMMAnIiIqNKJbGreHPAqC8DlgLXQ+d+APge8Y63+WNycAV+p/y6T0QODeEM2AB+Q5oBnA8+UeRkyKQCPN2hfPNWMvrSanUQ2AJeDLFUF7v+yVnbeabEGuNhPZg7Anbqgb80G4LF67XkYOqlLFxacgolcBjymlexn0lr2GwDG7a5/HsWFAL8BuKh8iNXlLibFAezX04v9Jh6BHy/6J95MJvBsQz2eaajH+wnnSon+5BYkki8AeAHLMnfggjGjsG9PL/bt6cX2AwPY3NmDSFc/hqGAADxv+bqMv5JkOSAVx4omrANwt2XK7ORK7f3OefYYgMNHEzavneUF2xJ0D3x1QbcJxj3NE/dTgu7z+f/3RuDIK/3tIziNXZ57/tUXgx3fTiFVC4McA3AiIqJKlytB79W+2MlZ3Goil2yH0cFdBIpiaax4o96ZV2TAu9ZrJeCJBmOgKLLMGSmTmZsDbp4nLjVhUxQt8O/d4lyCLs7RBWMQ/OlH+lxOMffb3IQtbnpfzcGyZQY8+xkRZeaiC7w8B1x+Xk4ZSnFhI1eCngHWZCsXxs0wLnlmNT434sJBLKlXcwj9XYgCaB3IoPXTrbjo061oi0XxbH09nm2ox6L6OqQcKieUSAovNtTjxQbt9RidSmGH7s146rrfYK+m7XC31U6eStCtMuB+AnCLOeDy0nOygueA+2zCVpQMuN/PhF1IkkuB2+9r9/4t+yewzX7Gx2yz4V5K0H28347TCHxW/vz3Zuffe13DfP1y49/dF6/3Nw4zZsADYwBORERU6USH6wFTRtMcqFU6OWMcDzEDLgJwuTy8fhiQbAH6tmpZ8NE7Gb+oiy+ihjng2dfT3AVdbsIGAIf8GNjwLjBmF+fxibncfR3SsaQguMtjBjxPNliIWGTAhWFT8gNwObNquMigwBCAiHGLL9jdm/S59GN309YjBpybsLVMyl9GyHA+WFdBiIxwrD43r39CKo0vdnTiix2d6FIUvFhfh2d2PxYL17yMLS4xwPpYDOuHpFE35G94UwVOrRuDWT192Ku3F3v09qFRVbH203aMUVUoTlMizBlN1W8G3KIEPWoTgMsVGKrqfaqGU7d3c7CUCZAB99OEzXcGvICQxC4At+pKv3qJ1rTMTA7MP/1Yv4Bn2Mb8ujoE7a/cav87Ox+/ZP34Y5f4P5YXT/yosP0ZgAfGAJyIiKjSiWBRLimOxLW5tNXEUIJeYAd0QM+Ad2QDQnPzsqGTgXVvasGjpwA8ezyx5rrI1OaasGVf772+5G189cO0255P9cfM5e2AxTJkHqsDohZzwIVROwDv/Uf7vHz6sZbNloNuw0UGUyAhl6ADwOrs/O+h22jPSTwfpwB8xPb2AbgIEK0uwoiGdfE6vbGepFFVcWh3Dw7d9QKkP3gdy9pX4MX6OrxQX4836uqhwiEwVIC3kkm8lUziLxiCqKpi175+9L3xON5fEsFe4z6Dfbcbh89OHYEdRjcjEpFLrq2asHkIwLd+Aix/2LjUl/i82f37ld+bBb8A3rwP+NJ893OJANEyA+7QhM1rBlzuWG+V4X54HnD01dq5/M4BL2YJuuyRi63//crP+cMFwMxztPtti7UO5HMv81ba74XdBZW/HBHseGpG+zcZtHIiKHZBD4wBOBERUaWLWWTAq638HDCVoIeRATcH4KbXZNg2WgAuGrHl1s+O68F0WpoDLmfQU71SAG7KgHvVMFy77d6sP2b1Jdm8DJnX9d2tuqALo3bWblO9wB/31aYxtJ6u/96p0Ze5C3rbEu123O7Zc9Xpxwasu6BbZRCFXABqlQHPfr7tlqirHw5M3BMYvweikThm9PVjRl8/vrqlHVu/8w7+u/ENvPjQBXixoQ5rYs5fc9OKgtfrkkDdSgA34sV0FM+9MQnpl6aiPjMNe41txb7bjcfe2w3HzokB49JBXkvQbz3U2H0ecM+Ay/PCF16l3b74O/dz5ZrN+S1B99jN3a0E/dU/Aa1f1N6fsDLgIsgrpAmbJ9Lx0wPA0r8BU/YHbsk2Lmtvs6l48LLEWZG98yhw5ZTSn5dd0ANjAE5ERFTpRLZ2oKd6O6AD4TdhE13QRSm3vEY3kL8UWVrKZIvgUqxxDRjnRw706scTwarfioOGEdptjxSAmzPgyZb8ixFe58cbStBNxxi9s36/v1P7r0tag92p0ZehCzr0zuri9RTnyqS04NscAEViWgm6nVwAbhGAiuyvXCERq9OD/eN+p69hbgoqWxDFYdscisM2bYa6CVgRj+HF+nq8MHQU/huPYiDj3NxMUdKINXyEWMNHyGA+Xs5E8OKycUi/MgWTBobi7mgUo9NaEKZm0lC8lKCbg29AasJmk/W1Cl49NQlzmANunnds2MacAbcJKg0l6DbP/b83AmN+H+Ic8Nyg7H8VRgAuP+eXbtA6jMufwU3v5z9nL93VZbccApx4M3zPAa9UbMIWGANwIiKiSmc1B7waA/BYUsv2dm2wz3D6IeaAC+bMcW4pso+021wztYSecZNL0KMJPdiTA2URrPq9aFAvMuCb9MfMmWfzEmSA/t4qUa08XWT4zeSgxRzEj5iqBehyKbAcDHrKgGePnzaV4MuvQ6o3P2CMxJw7xIvgz+r1FJ9v+fk0j9XfQ/migzlrOtAFZLSyfwXAdgMpbDfQgTPqJqPv7AVY+vYDWPTkd/FKfRJvJpOOzdwAQFEyiNa3IVrfhnUADsEETBhI4TN9fdi2pw9D//cmTgaMmfHffQbYvAKYcSpwwo3WB3a6AAHYBNsegjanLujmDPh/b5L2MwfgdhcWFPdt3rxPu/iy2+cdh2o8n+owB9zD8/abbQeAtcuARy8B5vwImLIfDAG+WN7LPBffz5x/K22vAtfvoU3PqAWcAx4YA3AiIqJKJy9DVs0BOKCVoXdtCGkZMlPG2/yamDPgIuiMJvXsYyalZ7YiMSkAlxuWScuQ+SEy4HIALjK8o6dr86l3Pi5/v5HTgObxwMSZWvm8XQButQ44oGXV61q016N3i/64WKIMcO7SnAvAs1+wc6X7sfxzpfry5/tGYlr5rh3HEnSpCZvQPE4PwOWssTkD199lnXlV00hGk9h76A7Ye8tWYAvQrShYWpfEorokXhoxBe+kNiPtYU5rWzyGtngMaAKANlw7fCJ27e/Drn392LWvH7tt/QijoAKv/w2ZI38DyxDFfEHDzHJNaB9rWbt1Qd+yClj+7/xj93dpnxkvJehOPnwG2OV4b9sC2QDcZQ542CXofztV61Fw21HA5Vvdtwf8dUGvRJyzXTEYgBMREVW63DJkUgBebR3QhSETgDVLQ1qGzJQBT9plwLNrgcvrL+cy4AN60BaJGufbCymXObt2rAJwEfgOGQ+c8U/r/ZLNwLeXaeO57Rj749t1QR+aLf9ONBkD8HYpAHdq2GQuQTcH4JGI9hqm+7WLQpYl6BO1dYeTzcBrdwFvPwysW6b9PuOUAZeasAlNY/T7chBozpraBeDiMSmAalDV3Frh39rpAHS+fAOW1CWxaNoBeDEawftb3nFu6JbVEY3gpfp6vFSvXzAYnUpht75+vPTHH+C6uiR26etHs2qaYwz4u6DjpdxZPD/LOeBS8CVPiRDHXnAF8OyvgLMfdmjC5rHkWFGs+wLYUu3L8b0EjUEy4GLaii8VMN+7EH0d4Vz4FPyW4FMOA3AiIqJKZxWAV2sGvCXbiC3MJmxCwvTz0Mnabd9WoGeLVEpumgOeC8Bj+rjkDHExMuBuX4TF+OqH2m8TtZkDLuZfmy9IGNYE95IBFyXoIgCXArBYnRZ4D/TmB71iP7FM28GXav9d3qL9bFWCLcrlRY8D+WJH81j9vhwc5gXgndbdt3MBuE2glu5Hk6riwJ5eHDh8L2D299A90I1lG5fhtfWv4eXVr2LZhtfQqzrPIRfWx2KYH4sBjQtwPrSLB1P6B7BLfz926uvHiM6t2D8SwUC3itEux/LFawY87yKFqgXfAPDIvMIz4ErEXxd0NVOcZcic+D6fVbAZMAD1um532B66CNjlhPCO99xvwjuWJ7UT8DMAJyIiqnQiAE/1Vn8Avt3BwKt/ASbtXfix3ErQE41Aw0ige6NWhi6XoFvNAY/EpHJ/KUDNzR33G4BbdEH321G9rkX6wbRetyEgtsqAO31GHL7MmrugiwoAc9f1PlguFeYa3FiVoCebtcysyIDLxzAE4NK4zQFhf5d19jeXGbbJysoBXLbsviHegFnjZmHWuFm4YMYFSK94Du/ffQKW1iWxpC6JpckkVse9f43+KBHHR4k4HmlqhPbaT8SQ1AdoHTMKO2YD8536BzAxlbIuW7fLNh55FfD497LrkjusAy4zzxGXj73xXfv9PM/5Vfw1YfM0BzzkEvSwGohVWxb4rQfKPQICA3AiIqLKlyuL7pa6oIdQwl0OOx0F/GB1OGuY17mUoANaGXr3Rm0utXgdo3G9fDs9oGcMIzE9kB2wyoD7XYZMZMDlZciyGXCvFQB1Q/X7iUZjFttQgi7NmRYZ8KBZRVHanytB780/njhfb3v+/l4D8LhFAC7mgMsBkmGZNvkChDkD3u1cgm5XqiyXS9uMPQoVOw4MYMdUGqd0aO/B2mgUbyYTWJZMYFkyibeSCXRFvDemao9lsDBWj4UN+nvXkMlgh/4BTOvvx9SBAUztH8DUgQGo7d3W2fK9vwwsuUNbbi+XAXdpwmbOkDtlZK/fUzqGxznEiuKzLNwpAPfAqaGgHb/nC1SyTmSNATgREVGlyy1DJmfAPa4VXYnCCL6B/JJzq9dk6DZA22ItAz5sSvb8UgZcznRHY1K1gTwHvE/fzw8RgKd6tOAw0SAdy2MXeDkDHm8wBeA264CLDLhc+u5HXgbcNAdcPp88xzw3LpfsotUccBH0D1hkwMfvkb+v1Xn6O20CcIe50YAxg2q3trHYN5rIfWbGptMY292DQ7u1z0oGwEfxGJYlk3gzmcCiEdOwqn8NBnw0v+qORLC0LomldcbPWrJzAaaPG50NyFPYrn8A2w8MYPOaduygRLSsuVMG3LEE3cGm96yP4USJ+M+A2y1D5mUd8D6LKgw3bk3fvKi27DdVDAbgREREla5WliELWzSmNaMbcLgoIZbDal+jddMGjOuAywG46IIOmDLgUum6H4lGvVlZ96ZsAO43Ay4F4IkGoEv6ne0c8Ozc986AWTvxOppfI/MccECbWw9or11uOTeX4MZqDrgI+uUS9K88D3SsA8ZM17cbMVW/77sJm/0ccNtjCiK4lQJwswjE0mcpHNfZBex/Dvr/9TW8m0jgrWQCbyfieCeRwLuJBPoi/jpS90UzeC1ah9fqjJ8b9bFDsL3Si51HjcDaZ+9Gw/9W4rgtn2BfRTE2fpMvAgRdz1oE4FZVD+bt/GTA1Yx9R3gvej12MZcVknGn8njmCmCno8s9ilDw00dERFTpRAZcXoYsjC7itSDZrAfgViXojSO12+6Nxi7oIkiUy1flADyMDLiiaFnwjjVaAD50kh7Ye86AD9Xvmy8wyEGEnJ0UGfC+AIGJEtWrAEQ2WASu8vnEBQQR/MQbsplIh3LimecCi/8CzL5U+9k8BxwwZsDH7qb9BwBfeQHoXKst0ZYbq8UccKvu265zwKVg0S57nwvAfWRO+zqQALBrfz927deD/FSyBSszXVg+/Ri8s/IZvJOI4+1kApuj/uclK9FefBAFPkAjgFeBLa9iIQBMmYTh6TQmD6QweWAAdZtWoPs/d2LnUdti3/R6TIW8wraq90pwPFn29X73ceftPn5B+88rNeNwEcDDhYo+lwsCVuT3+aFv+d8/h1nwktm8otwjCA0DcCIiokoXs8qAV3EJepiSzVpgBli/JmL+cNcGqQu6VIIuLzcWieldx+V52+mAAThgDMABPbD3eixzCbpMDnTFhQZAf84zzwEW3+ZntFrDM5EtNQfSVhl3EYDH6rTgOZOyD8CPvhrY+wJg1E75xxPz+cXn21ySPHZXALsaHzOfZ8AlA26XlTVUQXgoQfdq1cuWD8cyA1qmvHk7HP3pg7nHN0YjeDuRwDuJOD6Mx/F+Io4V8Th6fMwrl22ORrE5Gs2Ws28G1v4aD2f/qTRtMxHjB1IYn0oh+smrmN7YhKnowoSU9tiQjEVgKQLwuMeLR15dM93DxSKHQNctI2+29k39cwZoF4UCCdoFnUH7YMcAnIiIqNLl5oCzBD2P3IjNKgBvyAamXRul9bzj0hxwKQOuRLV1ygGgfbX+eNAMOJDfCV1kwL0GMeYSdJkcwDaOBL40X3sNRAB9+C+BaYdpn5n7z3c/1xFXAuM/o/9sDkYNc8BFAL5F/1mUodsFsZEoMHpn6QEpu5l779T8c9nJmwPufR1wA5F1B+zngIvGZX4y4HYdp23WAR+ZzmD/nl7s36NfEMgAWB2L4r2djsKKVc/gg3gcHyTieDfRgAHFpdu5g85IBO8mE3g3mQCwFvPjAJr0ZnfN6QzGp1IYm05jTCqF0ek06j79GEPfWYCdtn6MCYqCprACSafgW75AZru/zwD8xv39bW+nXMuJDVr+pm1UMgbgRERElU6eAy6ChWrtgh42eSkypxL0ro36XN9oMn9+sxLRlqAaMl772RCAB+yCDuSvBV7IMmRx00UXc5A6cU/jz4lGbc7kiue8nWv3L+gXDID8Em+rJmxiDrhcVeB1fq08L9m8pJynANzjHHARPNvNAZezoXbnFcF7GM27MtJUCBcRABNTaUxMjsTBW/VmY5k5P8baPb6IZRvexaqnfoC1vavxypCdsVrtQh82I+Oj8ZuVjmgE70QTeEd+MP0O8PI3tftTJqEhk8HoVBpjskH6mHQaI1NpjEinMSKT0W7TaTRn1OCh0+t3A585w3kbL0F6MTAAL60CP9OVhAE4ERFRpYtJnblFF2yWoGvkwM2yBF2eAy4y2Qk9kDIvsZXLgLfpxwjahA3QA/CezcbzBcqAuwTgXo7hxJzdzcuAWzRhk0vQxe89B6lWGXBxLg/PzZytXr8cuPsL+dtlUlrZr90ccDkDbjsHPEAJuhs/FRWmYC8SjWN803iMbxoPxIYBm94CDj4fWHIH+j98HZ/EY1gZi+PjeAwr4zEsrxuB5bEmpJRPASWczHV3JIKPEhF8BOf3O5FRMTyTxsh0GiPSemA+IvvzsHQaQzMZtKQzGJrJoM6cWX/qcmDnY+1P4LbuebEwAKeAGIATERFVOhGssQQ9X9IhQAX0EvR0P9CVzUJHE/lzwEXQaJkBL6AEvV6UoGfPPeAzAy7mpAPOJehej+HEHDibg2DLJmxbtNtYUg+Ig2TAzUvTuS1lZrXN2jfst1Uz9gG4nAG3kwlQgu7GTzBvDjLliw+5pboyQLofCejd2CGSw9u1Amc9iIH0AD5aeA02//dqrI7F0BaL4bWGKehSP8XGWArro1GoIWca+yMK1kZiWBvz9rmoy2TQkslgaDYgb1I+xZA1CzFyWEvusaHpNFoyGTRnMmiCiqaMgnq1gEx7EB+9AHyyqJRnHOSYASciIqJSyQXgvUA0m61jF3SNWwY80aAvVSay2lF5HXDTGtciA961XpszHktImfMwStBFEzaPx4o36HOr80rQPQaDQTPg5gyz5Rxw0QW9XipB99rNW/pCba4uCDIH3Ekmld8hPZrU3lu54Z7dvGZ5GbKw+DmWvFQaYN0BX3XoQJ/N4MejcUyrawJ6+wBkP9fb7wl89Byw5l0MAFgbi6EtFsXqWAzrYlGsi8awPhbFumgU62NRbAnQrd2P3kgEvZEI1uWeSh/Q9Q4w1PlzHFNVNGUyaMpk0JxRteBc+rkpG7CLxxtVFQ2ZDBpUFQ0ZFfVqBg0ZFXWqCk9t7xh8l1btxN8MwImIiCpeXC5Bz375ZQm6RgTgsfr8ztlC4whgS5ee1Y4l9G3Na1w3DNcDs47VwLApUgY8QPBlDsBzTdg8BuCKogXQYh1xmdcANNGsBWlOJbNKxLnkHLAOwAuZAy7Ly4AHmAPuJJPKz4A3jNDe47TUiM/uNQrSBd2Nnws68hgB43sj7qsZhzns0vNKmY4FvTw/DmBSKoVJqRRyAbpJr6JgQzSaDc6j2eBcC9Y3RqPYFI1gUzSK7oDd24NKKQq2RMO5QFCf0YLxBjWD+oyaDdIzudt6KWhPqqr+XzaAlx8TP9dlso9BRRIMwvyrnQic7z0REVGlE1/UMym94y9L0DWiC7rT69E4CtiyUg/A5RJ08xxwRdHK0D9doW1vCMCDZMBNXdBzGXAfSznlAnDTc/RaDh2JAMkherm45TYWx/I0B3yL/rN4Db2OS27yFiQDbtex3Eomnd+ErWG4FoDLujYAD88D9jjT2BE+SBd0N34u6JiXUJPfi1wGPG0/vo+fB9Yu05ZzMx9LVX3No65TVSlIt9ejKLlgfJMUmMs/b45EsTkaQUckEnrpeyF6IhH0RIBNKEa2PwMMnYyYHKRnVCTU7H9QEVdVxFVkb1XEod1PqPrvEqqKuOW2KhLSz4ns/jFVRVQFolARy95GVSBm8bO8XUxVEYXWELCs71AFfT4KxQCciIio0snl5iJDxy7oGpEBt+qALoh54B1rtFtDCbopAAe0MnQRgANSE7YQMuDiWF4z4EB2HvmHWhAt89ORu67FOQC3em5OJehi/KI0OpbUAn3zdk52PwWY/3/A9ofmn9/THHCfGXBzCXr9sPzt5v+fdvvqn4DLpeWxipEB99PUz1yCrlgF4A4ZcAB48CvAV57Pz6ZDLUpDsXpV1Tq4p9yD+zSA9kgEW6IRbI1o/22JRrElEsHWaAQLsT0mxz/WHs8+1h6JBF4jvRKkFAUpRUEXgKLE+UWgBfFaQB5TVcSA3M/m4D2qApHsrQLtsYiKbDCv3Y8g+3O27D+SPV4kezwF2eBfBaKxJHZ4+16cstMpZXr24WEATkREVOliSWhfYaT5qeb5wIOVCMATzfbbNGbXNxZZzJicATfNAQeAFlMn9LCWIVNVvembnwz4Qd8Dlv8bmDrH+LifALR+KLDlY/vfW5XvO5Wgm6dAyBlwr6XxzWOASz/R9v3fg/bnsuNrDng6P/CMN2gBtTm4tVKMDHjoc8BdAnDxWTeXoDt1iC+RKIBhmQyGZawvBHx5+7Goe39x3uMDALoiEXREFHREIuiMRAy3HREFnVY/KxF0RxR0RyLoVpSCl20bLMRFg3KZ+cECBuBERERUAoqizQMXyyVFE8HmI9eisbtrQce4GfbbNI4w/mzVBV0OQOVO6OmUFLgHWYYsW4Ke7te6bad8zgEHgB0O0/6Tm4WZx+zGrRGbZQm6Qxd0czm8IQD3MS7R36AUTdjEay/vXzdUa7jnur9YBzyKvIthQfkZf14JuhyAS3PAnS4QiIDfHMyrmfIt5eVRnWK9hnsc0LqiZwAtj+6fCqBfAbpFUK5E0BNR0K3oAXp3JIIeRUF3REGPtF1vREGvoqBP0W/7FAV9EeNjaQb4ofhwQ7f7RlWAATgREVE1iNXpATg7oOtGTgO+854WSNkRGXDBaQ44YFwLXM6aBgnA4w3ae5fq1dYiH/DZBV2Wl5H2U4I+1Pn3nkrQpZ/DCsBz+xe5CdvSu/Izv0pEqwzwEoCLEm0lqr0OYWSM/YzfHDTLF19EcJdJOx8zEgNeuA5YdIvpF6p+kalS5TWOC48CIKkCSTWDYQUE8k4GAPRnA/KPlBEYFvk0F6z3KkrudwPZ+wOKggEFGIC4r/3cryjZx5DbLqUoueMP5I4B7T70fVOKgjSMt+XMZgehKNU75UDGAJyIiKgaxOv1NX3ZAd1IZJltfz/S+LO8ZrVlAC5lwOUv/n7m7AqKopWht7cBHWuRy5wGCsBd1ul20jjS+feWJeimL7uOJehJvRTaz4WB3PmL3ITt6Z8BnznDtL/ifmFCkDPgYlk4wHjfr0ICcPk19lqC3rEGePIn+Y+rqPgMeDED8FIQTdQaVRUjsKEYMX5gGWjDGcgG5mlFQUrcKkAa+m06ezsg/ZySHk9JgX4m+1gmez8D/fFM9vG0eFzRxmG+rx1Du9+FBJYN3a1Mr1K4GIATERFVg7g0Z5gd0P2xyoCLoCUXSEnBnFUArkT9lXzL6oZmA/A1+mNxH3PABXNw5Wc+8me/pj3vrZ8Abz+c/3urDLhjCXoIc8AN+5sD8JCbsAF69YGgRL2vkS4yxEpUe61yF27ipQnA175p/DlqFYA7rAMO5Jfg5/jrgl4WtmOnQonmZ3E1e3FQDWF6RRFsRguumnhYuYcRitrI4xMREdU6uWkXO6D7YzkH3KHBmChB71irzdsGgmWsBdFtu2Nt9gElWDftvIDYR6A7chpw5JVAy0SbY1sE805d0M0XgeIFlqCbLyZ4KkH38DW2aYx+Py8Az5age2HOgAt2F0F2PxXYZn/nYwa5UGF1XjkD7nRRxu4zrJaoBH37Q4Pva5sBr64SagpueGMSV5xYGxlwBuBERETVwJABZwm6L+YMeCzpnN1tGJkNSFVgy0f6PkGJIE9kwOP1wda0jZhW4g1S6m0X2IbaBT1IAB6kCZvPbcTFFEGJeC9BN2fAvYzB7T0O8jrl9pXe+4jUhM3pmJ3rbH5Rogx4IfONNyy3fryQixhUXapsvroTBuBERETVQO6azRJ0f8xzwKNx5wA8EtHL0Dev0G7DCMDb1xR+LDnDGWRJLLt9fJegm5uwJfVgKFATtiLNAZcDtAFTB2VfGfBsE7ZIxPhaOb0Hbg2jCgnALTPgLk3Y7JRqGbIR08I/pp8+AEQVggE4ERFRNZA7n7MLuj/xOuM64dGke0MzUYa+/KHsMQp4zUWWVWTA/awBbma4UBAg2LLbx7IE3akJm1UX9GwwFGSuvPkCQFhzwOVtrErQA80Bl7PPNgG4ohQ3ALdrwhakS/Qb9xS/BP3Lz3q/2OEHM+CDSO1kwNmEjYiIqBrEmAEvSOMIoL9Dux9L5mf88gLwbAZ8xbPa7R5nBj93bg64KEEvYD55wQG4XQbcah1wH3PA5bL+UmXA/Qbp5gy4WAfcC3kOuCED7lSC7hIMB23qB1hnwD9+CXj3seDHLKYh41GUAKpGlqWiwYWfWiIiomogZ2A5B9w/eR64Wwk6oAfgALDTMcC+FwU/d24OeLYJW0EZcCnoDFSCbjcH3CoAdyrTjxqfR6y+DE3YfAbg/eYSdMV7VtYuA+7UTK/UJeiVGnwDAJTiJDBZgj54cA44ERERlZRhDjhL0H2T54FHk+4B38jsfNWROwDH/9Fbx207IgPe36ndFpQBl8ufi12Cbs6Am36Ws+Dy2upBxhU3ZdSLMgfcqgR9qPsxAFMG3EMJuvncI3ew+H3IJeiVTFFQlAi8kH+XVGVqJwBnCToREVE1iHEd8ILIS5FFE+5Leu1+irbN9nOBuiGFndsc5JV1DnhIJeiA9jns3qjdl+eAB1oHPKHN0xfTBMKaA664NGHzPQfc1ITNaZxyYHzhK8C9ZwLL/209Nr/kSoZqCMCLFTwxAz541FAGnAE4ERFRNeAyZIWRS9BjLuuAA1pGt/WL4ZzbXOZcSBd0L2tQO7Htgh4kAJc+h4Y54AHGBQANw6QAPKwS9Ci04E8FMgOmX/ooQc91QTeXoNs8V1XND4zNAUQhlRDyRYBqCMAVpTgBFJuwDSK1E4BXwb9YIiIiMnxZZxd0/8wl6OYAL0gw65UoQRfiIc0BD5QBtwlYrOYy55WgW2TAhXi9fpHDvO66Vw1SlUJY64DDoRu5ooSwDrjTMmSmgME8DnPZvR/VVoIOoDhN2BiADxo1lAGvln+xREREg5uhCRtL0H3La8IWoOlXUHkl6IVkPj3OP7Zjt4/V88/LgJt+Tpoy4LO/D3zhTmDXE/2PCwDqhzuPx218wme/pt9XIs5Z0mSztwDWtgu6n2XIpAAiVhdeF3Sr5zf7B8GPXQxKhBlwoiwG4ERERNXAsAwZS9B9k+eAxywy4MX8Il/XAkPwFdoyZAHG7KsEXZ5nHM0PoAxN2OqAhuHA9OOCl9gbMuAeLi7YZT8jpvnRTgG2onibB27bBd0pA24uQZd+LvQimvk5up273IrVhK3SnicVETPgREREVEqGDDhL0H0zZMCT7vObwxSJGhu5hbEMWSQWLKNo9zzdStCt9pMvChWS1Rca5Ax4AU3YDPOjHUrQBS9l6HIGPOKxCsF8gUB+vwopPweslyGTVVx38CIFT8yADx61E39XZgD+8MMPY8cdd8S0adNw6623lns4RERE5WdYhowl6L41j9NuRbfuIOtOF0KeB15QE7a48db3/qasttXjucciLr+XxlDIcxLCKkE3Nyizy5Srava8Q61//+RlwJv/ADZ9YN8F3SkDLl9Q0HbW7xb6b9h8kcFMcXnvLBUxwilWEzbOAacqVHFd0FOpFObNm4cFCxagpaUFM2fOxAknnIARI0a470xERFSrDBlwlqD71jQaOOo3WrZTUSxK0Iv8lUjOshbUhC07zqBN4+T9YnXAQFf2cYsMuNuSZ3IAHHoGvJAA3EcJOmCfAX/hWu023gBMP14/Z9TldRFmXwqsXw60nq6PRSi4BF167lZBqOHiShzIpAo7X8FYgk6Fqp0UeMV9ahctWoRddtkFEyZMQFNTE4488kg88cQT5R4WERFRecXYBb1gs84Hdv+8dr/UAbghAx7CHPCgpbeGrLVLJlcO4qwahhk6soeQifQbgNsFX+aLCXLmVS7/F4+7zQEf6DbOAfeyFJyqas/nnIeB1tPyxyGmkXzrTWDIROfzu3GbA+71s13MLtNchowoJ/QAfOHChTj22GMxfvx4KIqCBx98MG+bG264AVOmTEFdXR323ntvLFq0KPe71atXY8KECbmfJ0yYgLa2trCHSUREVF0M64CzBL1gpZwDDhjLnMNYhixwCbpN1trqeG5LnoX9mhmasPkMrAwXC8wl6NLXXavXfreT3Y8vzwE3BLc+3gdDBjxbxTJ0MjD9c96P4Xbc3Ljk987m6/4+F5oPVNg4HBUrA84AfNAQU0ZqQOgBeFdXF2bMmIEbbrjB8vf33nsv5s2bh8suuwxLlizBjBkzcPjhh2P9+vVhD4WIiKh2MAAPVymXIQPCy4CLjGvQ8Ro6eLtkwF1L0EN+zfzOAZe/kBsuJphK0OVgVK4eEfvvfCxw0PdcziVlwOWA124pMctsr80c8EIzw65d0C2Ov91sYNSOpn2KnAEvhoprNkfFwwDc1pFHHomf//znOOGEEyx/f8011+D888/Hueeei+nTp+PGG29EQ0MD/vznPwMAxo8fb8h4t7W1Yfz48bbn6+vrQ3t7u+E/IiKimiMCh2gi+Pxf0lX9HPCA47VrnGZZgi5nei0yjeXOgMsBuNyk0KkLut1r7zaX2C4DbjV3HgAm7mVxDrsAvMCv424BuFXm8KQ/obRzaotQgr7DEcyAy0bu6L5NNQujz0SFKOllo/7+fixevBhz587VBxCJYO7cuXjppZcAALNmzcKyZcvQ1taGzs5OPPbYYzj88MNtj3nFFVegpaUl99+kSZOK/jyIiIhKbtgUYOohwJ7nlXsktaHkc8CH6vcL6oIu5oCH0AXdEIBbNWFzK0EPOfiR54CnBzzsIGfApcDaqQTd7ku8UyCnRAA1Y308+XWZtDew+6nAsb8DZp5jcRybZcjsAvD9vw2c6GE1IKv3wRCAp42/axwFNI60OG+xM+AhHv/cx4HP38Y54LJab0hXQxeeS9oFfePGjUin0xgzZozh8TFjxuDtt9/WBhSL4eqrr8bBBx+MTCaD7373u44d0C+99FLMmzcv93N7ezuDcCIiqj2RKHDm/eUeRe3ImwNe5C/yhhL0kNYBD0LOnEelANzqeG7LlO14NPDCdcbMdSHi9cCM04CeT7W50W7kzK6htN6hC7rdxQ+n7KyaAVJ92n1zBlx+jU67x2LpMcNJ9LteMuBzLwdWLHQ4ntjfZRmyjCkAz11MMO1XzBL0sDPg2+yTPWyZAvCJs4BPFrlvV0pFff8qQe08v4pbhgwAjjvuOBx33HGetk0mk0gmQ1h7koiIiAYPsRSZWJ6ppCXohXRBzwaaQbNBEdMyZEKQOeCT9wYuWAi0hJj4OOFGHxtLAbhhrPJzUYxBmm0A7pI9HOjObhcNnmm0W4bM6b30EmDaNWHb7fPAm/cBB8wDFvxC/50IwPMCmirKgAtBLpzt/23g+d+W/rxFVzsBaq0raQA+cuRIRKNRrFu3zvD4unXrMHbs2FIOhYiIiAY7OQAvdnljaBnwmPE26P6AaRkytxJ0m4Bj3Ixg4wiDahOA55WgK9bbydyC6v7O7P4OAbjbMQzLobl0oM/9LmAArkSAE28Bjvw1kBwCvPcE8Mkr2u8yZcqAF+WwAS6GNIwsz3mLreYz4LWjpJ+eRCKBmTNnYv78+bnHMpkM5s+fj3322aeUQyEiIqLBzi3DGybDMmRhrAMeRhf0AkvQy61uiH7fEIA7lKDbBbSuAXhXdrto8GPYjcPp4o+n9dCt5oBHtYCsYbj2enzpKf13uTnhJc6AewkQtz0QGNcKjP+Mt+MGyUSHcbHNSwDeenrh5/GDAXjVCD0A7+zsxNKlS7F06VIAwIoVK7B06VKsXLkSADBv3jzccsstuP3227F8+XJ89atfRVdXF84999ywh0JERERkzxCAl3IOeCEBeHacgUvQg2bAKzAAn7wP8NmvAUdfYwpoHbqg25V0u2W1RQCelwFX87e1JWfibcZrJndtbx5vvHU6r9NYxJzwkgZsHkvQt9kfuOBZLQj3dNgAoUwYn2Uvfy8KXd/dNwbg1SL0v6avvvoqDj744NzPokHa2Wefjdtuuw2nnHIKNmzYgJ/85CdYu3YtWltb8fjjj+c1ZiMiIiIqqlJmwOU54OVcB9w8V1p0+LacA17hAbiiAEdcod1ferf+uDkA91JKbxfIJZuB3q1SBjziHqw7jTd332MGPNms3586B9j7Am1FBLfzWj3PXU8Glv0D2O8isaP9+MLmNQMutjF3brfdvlwZcA/ndbqwUgzMgFeN0P+azp49G6rVeoOSCy+8EBdeeGHYpyYiIiLyrpQBeKIRaBytBXOFdA0PswQ9EtP+S/dXZwm6zBBkS8/RHDD7zYAnh2QDcJs54KqPDHiQEnQ5AIcKjNvd+bi5xyyCseP/COz9FWDCHjbbFLsJm6cNtRsxT91NoBL0EAJjL5n3QpYbDKTGA/AausBQ4X9NiYiIiIrEHIwWk6IA5zysBXLy3GW/xDjDKEGPRPUA3LIEvYQl+oUyzAE3d0GXA1+f2etEk3abW7qrgCZshhJ0m6ZxeeeXAvCBHu/ntbrQEEsAk/aStillEzafipkBD+PfupcAPFriALwSG8ORJQbgRERENDh5KU0O06gdCz9Gbh3wEAJwJeIc0Fd6CbrMdk616jEDbhN8xk0d6wuZA243Dqf3Um4oZxeAW11U8BSMlTjg9lSCnr0VqxM4bgT7CypOwihB9/L3IuYx0z5mV2DdssLGAzAAryJ8p4iIiGhwsl07uoKJcQa9YJBXgu7Q1M2QOa7w10ceq/m52HZB9xA8mwPwQjLgik3g6DUgTPnJgHv4ip+XAS92WOAl4Bcl6A4ZcLu59J6HEcLFtjAz4EdfHXwcsy7Q71dSBQM5YgBOREREg1Mp54CHpeASdDkAj0pzyq0y4FVUgi4Hd04BuN854OaGeZGIcQqBYQ64jwBIscvYOxjotTmWxyZs+Tu6/Byy0Jqw2XST9yqMz7KnDLjHADzRGHwcogkhgJqfA15DGIATERHR4BQp4RzwsDgFzJ72N5WVf+YMYJv9gFE7uW9bLeSAVlUdMuASPxnw1jOAqYcAh//S9DuXAMgwDrs56w4Gut2P6/RY3jaVGLBVSQZ8r/OtH5f/HXluwlbI+yC/FgzrqgXfKSIiIhqcSj0HPAziS33QDsuKogd/ShSYezlw7qPW81WrqQu6zHxxQn5vDUGKh+AlLwMeBeJ1wJn3A/t8HYYydjeKTebWcwm6XQbc4rPrKcg0l6D73d8vPxlwUxf0HY60Pk6gDHgI4c/Y3YAvzc9/fKdj9PteKxsKuRBiuBhRiRdUwlQ7z48BOBEREQ1O1ViCvutJwO6nAnueF/wYuXnkLl8Dq/H1AYyNywBTCbrNc7YL5OKmALyQwNSuFL4YJeh+yr31B/TP1f7f9jYmPzwFiCIDbmrC9sV7rI9TtjngCtAwPP/xzIB+3/M0kZAC8BoKUGsdA3AiIiIanEq5DFlYhk4CTrwJGN8a/Bhe1xKP2JRMVzpzQFtIE7aYRRd0meojA27XvdvrdIKWCTaHtRq7h3GZ91MU4JjfAj9aD4yc5m1Mvvi4KOBUgo4Cs76hlWq7ndvj2MLKXNd8Brx2MAAnIiKiwSnIPNxaEJVK0J0oVViiD+RfLCikCVuxMuB+PnvnPaGVNp9wo/txBU/XBWwCtljS/neF8BMgOjVhsyvl9yqUz7ISXiBfacepVDV0faGKLmcSERERhaga54CHIVeC7pYBr6ISdENZsjmzW0ATtrwMuHm7gHPA/ZSgT94bmHyXt+P6GZdVCXrubrmCOS9N2DxcUHE8RUj/1l2b7nmNGGsosiwmP8UmFa7GL5UQERER2aimADNMuRJ0l0Ckmrqgq3bl5KpDwOahlNn8GhUUvBXYhM2O1fvoqTTe3ISt2A29CmjCZneccmXAFQWhBc4sQR90GIATERHR4FSNy5CFIVeC7vI1sFq7oJsDkULmgJsD7kLmgBe6DJmX4+YUmgEvVwl6lSxDZh5HYQcK6TA1HtbV0PWFGn+niIiIiGxUU4Y3TJ5L0KuoRN8pGPLSBd22O7q5nN38OpSgBN31uFZzwAvNgBcjRPDThC3ltJF+N8jnMpTA2csc8BI3YaulCLXGMQAnIiKiwYkl6C7b1cAFClX1diHBa2BeyIUIQwY8QBd0L8fNKTADXrYmbKIE3esccKsl2Hx8rgtSYaXjLEGvGgzAiYiIaHAyLENW4RneMEU9ZsCrtQTdrJAu6ObtzT8HXYZMCXEOuNVz8jIur1UDpeRlGTJ52Fb/bt3+LYe1DriXJmyeqhtYgu5N7VxgqPV3ioiIiMiaIQM+iJYhi3hchqyqKgQ8BpNycDZhT+ttZHlN2AoIAgyBozwHvAgl6J5K4yuwBF1sc8QV3o5j9Rl2G3spM+Be/q6UbF1yF7E6923KqnbaoDMAJyIiosGpFkqsgwhSgh6t9NfH4cu5OQP+9VeAY38HtJ5uvY3dvoDFaxa0CVuYGfCAc8ArsQmb2GbK/sC0w9yPY/UZ9tNcMDCP64B7eW8rpQS9cVQ44yBXlf7XlIiIiKg4qirDG6JcCbqPUt1qfn3Mc69H7aD9Z7eN4fEiLUMW5msbdB3wisyAS+L1Nr9wGafbexTWc3MNeBUglvRyoGDnbz3DdJgCntfo6UBve/D9S4Il6ERERETVLTJI54B7LkGPIPelt+IDcK9d0O3mgFvtr+R3QQ9tGTJ5TAUGFlaB19jdPexXxjng5zwC/HCt1Ynd93Vbhsy1BD2E52a3Drj58+BlekHQ9/+4680HCnYcKjkG4ERERDQ4DdYMeKJJu7XNMEpEwFnNr4/tOuA22+QesygzLiQDbiidDvH1lJ/TF/8OfPUlYNg2Xgbk8HORS9BjddafPz+d0gHrYNq1OVoJ1wEfMt7LgYKdP2+JvALCuqN+E3xf8o0BOBEREQ1Og3UO+IHfAfa5ENjhcPdtRbBSzRUC8tj9dEFXIvnbFzIH3K15WFDy2IeMB8ZM97hfGUvQvQSvdtUFbhlwP70NArPpgq6YnuMJNwHb7O9yqFKVxDuYsl84YyimGlpmjQE4ERERDU6GZcgGUQA+cU/g8F8AyWb3bQdNBtymlDmvC3oBX529jKPQ4/oJ7POeSwmbsNnOufdSgu7yOg6d7LJ/Ebugmy8aDN8WOPcRl8PUTmBJ3jAAJyIiosHJUIJexRneYsp1TK+RANxrt3PxmFsXdF9zwB0ytzPPAUZMA5q9lCybjxs0sHfKgBc5KLS9kOGzBN0qmD7wEmDqIfa7B/m33jIZmHGadF4P64B7Li0vxzrgDPrLiQE4ERERDU5ycMkslDXxpb5aA3BVDR6AQwm3C7qa0e+bg8BjrwMufAWIB1iLWfFQYm+5n9MyZCGFCKfdC3zlBYtze8iA2/2bdFuGLNEIfO4G+zEFeW7H/wHY6Wjzgfwfx0qplyFrPR047OfhnJMCqdK/pkREREQFqoXy6mKrhdeokCZs5u0LmQMuZ8st168OGIjZdVd339HbMQux4xHSMb3MgfcyN1y6kGF34cRJkOdmdbEitHnyYV38KzTj7qefARWCGXAiIiIanMQyZNUcXBZbrkqgwkv0vS6p5bsJW4hd0A2BYwEBaN4uAZu75TVhK3Ac7ieU7hYQgqT79fuWFzIicAwmw/osu3ZbL1JVzcgdgG8uzX880Vic81HoGIATERHR4FQtwWU5KVWSAbcdn6kE3U8G3CrLmTcH3OsAYSpBD/H1DGsOuNcAeeY5wK4n+TiPOGZITdhSUgBu2TyvGMuQWc2X9xFgn/2Qw6F9Bupn/FNr7iYccSUwYSZwwMXej2G37n1Fq/TxeccAnIiIiAanWmgwVmzVUoJ++C+BprHAYb/I/52nDLjNklJhdkF3mgNeiMBd0E3Pedqh1sc0O/Y64IDveDmB/c9emrDZNbiTM+CBStALrDLwfBzp99seaL+Z/Llwc94T+V3eP/sV4PyngfphHg+i2ry2LEEvlQr/a0pERERUJFERgMedtxvMqiUAHzEVuPht66DIsN67zznghgZnEYvjB5wDHuY64F6enyXpucw8Fzj0p9KvQsg2OgXxXhqs2ckM6PftStCdutOHMnfbZwbciZ8A3HGqhcfx+OncXwpT5wAfPF3uUZQUM+BEREQ0ODED7i5Xgl4FZfq2QV3ALug7H+eeXfYVzMhN2Ir0FTzoOuCzvmycQ+wWpHoJ9vKqB3xmwL0IUoIe6IJbkAy4R74+Q07nrMIS7W8sAb54X7lHUXIMwImIiGhw4hxwd7GkdhtNlncchQgyB3zP/wcceWUB2WULfjKdvo4bMLCX47UwS+1tjxHSHHC37Xs+hWVlwuFXAGf9W698KeQ8iocu6J4z0mn/47E8n9f3TEXFlJuPmBrs/ahyg+8ZExEREQHMgHtxwMXA+/OBiXuVeyTBBemCPvNsLSPsuq+fEvQiBeAyX6XtTgGxj/nNtpuYO8gXIQNutX1/l/Wm+3zN57FdREOauhLW56JYXdcrRQ09P2bAiYiIaHBiAO5ut5OBE/4IxBLlHkkwasAu6OLnwB3GrcZSrADcZX1xO04BcZBgZ+ohxkqJUmfA9/uW1uxsp2OKMM/ZoaGc531sRH382/K63J6TSpsD7tWkz5Z7BKFhAE5ERESDEwPwwSFIBlz8HInabwMAU/b3Po5SlKCHlQEPUl49ZDzwgzZvxwilEZrJgd/RlvuK18FzZYLXqRVWJehhaR4L7P9t42PnPBrgQF7HpALx+gDHL5N4g9Yg8JAfl3skoWEATkRERIMT54APDgVlwF3mgM/4InDyn4GL3nAfR61nwAGtLHvbg7T7M8/xfj79F/bH3uVE7VZe0svTMcMQcvnz/vOMP8+93HS6AM/FTwa89XTrxyvR8KnAfhcZmwRWOQbgRERENDg1jtRuG0aUdxxURKYSdK+lz1Yl6FbZ5UgE2PUkYNg2HobiIQAPEviGkQF3a8IWM2dMHcZ56t3A6f8E5pgzln5L0E0B4XHXA8ffCHzhDvdjNo9zHqPl+Xzwsp/TNiO2977vkVfJvyhsTEK8Hjju9963p1AxACciIqLBadLewEl/Ao65ptwjoWLy0sncLgANtQu6hwxjoCxk0C7oDhcmAmVgswFgsgmYNte5b0CQDHiyCWg9Dagfln9O877ROPCD1cBRv3Ees9fXO4yS80N/Fux42x7gbTtfXdCpnDjpiYiIiAYnRdGajFFtK2QOuLy9r+yyhWKVoLdMCrafY/m2TUWA1b6eyZl6uzXbC+iCbh5jogGI1fk8nofzBDVyWsDzeT2312XPqiAAr2sBerdmf6iC8frEDDgRERER1abAXdAV4y3gL7tsOZYilaA3jgS+/Cxw4WKfO8rBq0sJehgZYPn5e8qA+yzztjymS/BWzKWtCjm23fNyOqTV808OsdiwTAHtpL29bztsW/1+NVww8IkZcCIiIiKqXaF1QS9BCXpQ41sD7CRnpP2WoFtFgi4Bp+pwvtzjIWbAwxRKnB50vrnH52X12lXSCg9+llszXCSovQCcGXAiIiIiqk2K4rEJW8Au6H4UrQt6QKpDSXheMOcleHQLlDwE4H4ZMsVFzGaH3QXdz/m8Pi+r7aweq8GMcrVhAE5EREREtSmvBN1jAC4CIC/Zc89j8RCAn3izNv/16BI0BpTH49YFPYx1sK0y4Gc+4P84xoFId0sdJBdRLT0XylNBdQlERERERCELqwS9FBnwCTOB735U+HxzT5xK0INkwN1K0C3mgE+do62l/vrdFuf1kKl1C1TDyvaGERD7OoZdaX0YgXmVZcBrMGPPDDgRERER1S4vQXQldUEvSfANlznZ5ox3KCe0Pl9BAabb9gUEb4f8xMd5AJzy1+DnMjP0ogs5Gy7e97zj1l6gW6kYgBMRERFR7fKUAbdZdivMLugVF+DIAbFLCXpeQB5SCbr50H6PW3Bw6rC/3wsu8YbChmI8uc39MFTa59BCDWa9ZSxBJyIiIqIaFXQZsmJ0Qa/kJmwuXdDDzsKWLAPuItkEpHpsDu1zfrnbNlP21+b3j57u71iG18rn862kQDbwZ6iCnkNImAEnIiIiotpVyBzwMLugewm8SkkOzvKasLnNAffYcdvufIpNhjfsDLhdAHrMtcDkfYEDLnY4tt8LAwocg8VEI3DJB8C5j3k4lt04Bokab0I3CN9RIiIiIqppTWO0252ODtYFXQQAYXZB3+tLwJwfA+c/XdhxQhNyBtwt22powuahydi0w7TbRJP7uf3a81zgvMe0jLStInRYj8ZLW2ZfrcuQVcMYC8ASdCIiIiKqLV99EVi9VOuyveR2/fFydkGPxoEDv1PYMcLkuA54EeaA22WHO9fr98fsot9vPQNoGAlM2MP+kCOnBRiHR0PG6/cdA/UsRYH3kngfr1/YXdCTzdptqHPWvQg49hoMxhmAExEREVFtaRwJTJur3S9kDrihC3qNFY46zkkPEHAHLQfva9fvj5iq349EgJ2Ocj7m8O2Asx/SAvVAHMZcPxS4YCGw9RNg6GRgzesejuc1WPQTVIZYjj1xFnDIZdr9nY8DdjoGmLhXeMcnTxiAExEREVHtKmgOeAENsCqeQxDoerEhxAx4uj/AsSTbHuj/nF6oKjBuhvafJyF+PpyqE4KaOgc48wH952gMOPUub/tesBD46AXgP5eGM5ZBrsYu5RERERERSbxkwCOmnFSuBL2GvypPmAmMmKYFZmauTdgCsMuApwcKP7adXU7Uysenf6545wjEx/rllVB5MW4GsM/XvG8/ZGL+Y34uJBi2ZQk6EREREVF18r0OuLx9jWXAo3Hg64usAyO3JmyWwZRbCbpNyXsxA/D6ocAlHzpMPQjxPS1ahUQVfu6Ougq457Tg+8sXaybvU/h4KkwFXFIhIiIiIioBp4y2nAW36oJeiyIRmwC8GEFfkUrQ3URj4TaNK4VynLqimp1JYzn8F+UbRpHU+F8VIiIiIhrc5HJeh07m0aS0nUUX9EElwDrgbmxL0IscgJdMmBctAgbD3/sY2GY/m19WUyZdGqvo2l5DGIATERER0eDgFFDHEvp9yy7o1RTAFCjIOuCuyjAH3FWFvqdBm7DVD9Uaq+33LW0pvnIJMkXBoJKy8eHjHHAiIiIiql1qARnwWi9Bt1OMdcCrLQPuNwaslAs09cOAQ/+vvGOoqHL2yjNI/6oQERER0aDjOQOuuG9fyzw1XfPJtglbhQbgvlVACbqTSrlAQAzAiYiIiKiWeVzSSc6A57aXg5ZBFMC4ZcBDXQe8jCXo5QpK3c7bNLo046hUVv8WawgDcCIiIiKqXarHADxW21/6fXErvQ/SOd2uLDlTzjngTjxkofc4S7/vJ5h3K9EeNgU46U/AGfd7P2al8/P6bFN7S4/JGIATERERUQ3z2NAqmrD/3aBjsy56MVRzCfrsS4t37N1OBrY/xPhYQRl7t30rad52bVebMAAnIiIiInLLgA+mObR5XdDzNvB/TLus71G/0W4PuNj/MQtW4HtqeJ18HCvoZ8lvczM2Q6tI7IJORERERLXLaxDCDLiuGBlvuyZss84HdjoGaB4b/jkLUczg1c+xw7rw43qcYl9g4jJkAgNwIiIiIqphHr/Mcw64Li9YC6Er+shp9r8bMs7/8SqC9DqUokLC7znk7acf77JxbQe9lYQBOBERERHVrtAy4IOpBL0Iy5BNnQMcex0wZtfCjxWWck0rCNrlvJCs/IzTgu/rZtrhQOc6YM1S+20G0xQOFwzAiYiIiIhideUeQQXzsgyZS4ClKMDMc0IaTyn4DXZ9BJhT52hz3j1djAgpcI0UsfXXsCnA6X8HLm8p/FjxxsKPUeHYhI2IiIiIahhL0AvG7KU1xVSC7jVDrSjAIT8Bdj0x+Pm8mJxdzqtagtodjwa+uaTcoyg6BuBEREREVLvYhC2Yw38p/VCEknTyz28J+nHXAwdeAnzlueKMJ2w7HFZ5zfiKgCXoRERERERchsxo24P0+4PtuQMB5lsrxXmdCjlmw3Bgzo/CG0tBBuFnyAYz4ERERERUu7yWljMDbmQI/LzMAR+MTK9DsdfdrvkLIdnnV+PrlzMAJyIiIqLatdsXtLmwsy913o4BuEmtB3sIN6AtRXBcKWuTux9M+3dHlhiAExEREVHtitcB5z0OzP6+83aumfJBEJDaUUwhQ81nYoHKWRe7Gl5ri9fqpFuAb76m/zwoPjPeMAAnIiIiImIG3Mjc4dvP9tVix6OAYdsGz9Y6lukXQdW8xtlxmi/cuKqUix7FxQCciIiIiKh+aLlHUGGkYG/8Z+x/V83i9cA3lmjZ2lPuAoZuY79t4yj34xU7QK7xudGDBbugExERERHtfirw5j+M3b9lVZN9DIn8fPf9JjByB2DaoeUbT7FEsvnInY/R/ru8RfvZHOxO2hs4+IfAiO3tj1WMALkqPnfmMVq9Dl6eRzU818IxACciIiIiitcB5zxc7lFUplgSOGCe/nNVBIUhUxTgoO+aH7S8W9QxVBW/4x0cGX6WoBMRERERkYnPOeBUfBVbgm4eFz8vThiAExERERGRUakbjFWcSgl2S/Xah7wMmRkv4uQwACciIiIiIhOHDLhlMMUAq+gYxNYEBuBERERERGTEYM9dqasEilqCzve7VBiAExERERG5GswBivm5D4LXolLmW5fsQkiYz1esAy6NPRoP8fjVjQE4ERERERHZ8xIEMmNefOV+jWdd4HFDi2D+gIuB4VMxKC7euGAATkRERERERk7l1VaBYKVkjGtZuV/jo34dfN/GUcA3l2iBuJtyP88iYwBORERERGRn9g+ARBNw2M/KPZISG+zLkPkMAov2GtXKa18rz6NwsXIPgIiIiIioYs3+HnDgd4BItNwjKaNBOAe8EhXzQkghWecaz1iHjRlwIiIiIiIngzH4VnxmwLc/pHhjKYdYvfs2g6EyYLvZBew8CF6fAJgBJyIiIiIiE49zwI/5rdZca9sDSzKqopvzI2Dtm8DUg8s9ktIyX0xIDtHe22mHFuf4gxgDcCIiIiIiMvKaAW8cDWx3UPHHUyoHXlLuERiVKnA1l5EnGoHdTva2b+hjrO2SdpagExERERGRiUMGnKXFWU6vUZUr5bxuUT2x07GlO2cZMQNORERERET2nDKcLC0unUptduZpXNnPidXn5ax/A6k+IF5n3LZGMQNORERERERGftcBpyIp02sdxntsdYzpn9NuWyYbt8sF30Ctl6AzA05ERERERCaDfR1wD0r9upTyfIVk26NJ+9+N3Q341ptA46jgx69yDMCJiIiIiMhEDsAc5oBXall0qZUiOK701/qg7wFr3rDuIC+/PkMn5/9+EGEATkRERERE9szBJTPipVOu1zrIeQ/+QfjjqEGcA05ERERERMEM6mC8lkrQTdn1Ss+2VzEG4EREREREZC8v8BvMQbcdlqDnC7hMW9U9T38YgBMRERERkQMG3OVTRSXo5AkDcCIiIiIiMpKzkJwDbo1d0MXGRRtGLWIATkREREREDhhwV4RqLs3mRZscBuBERERERGSPc8DLp9K6oJ/9ELDDkaUdS41hAE5ERERERA4YcFur4RJ0O9seCJxyp+nBsMdVxZl+DxiAExERERGRd5UQCFaaUrwmxSxBH7Vz+MdUAnZBr3EMwImIiIiIyMRrsMfAqrhK9PqedAvQekbAncO+MFDbnykG4EREREREZI9zwCtDMbPsQ8YDx9/gdSDFGwcAlqATEREREdHgVc3dt4up1CXW1fw+cNpCDgNwIiIiIiIycQiYGEyVDl/rmsMAnIiIiIiITKo421qrKiUYr5RxVCkG4EREREREZNQ8Hkg0Aw0jgXiD6ZcMwDQlfh1KUYI+cgftdudjQz4wPzNCrNwDICIiIiKiChONAd/9AFAiQMSUs2MGtIRK/Fqf8yjw/lPALseX9ryyap7r7gEDcCIiIiIiyhdLlnsEJCvFhY+mUUDraeEcq8YD6aBYgk5ERERERN4xA66RX4dB9ZqYnquXQHtQvT7OGIATEREREREVhAFmHgbdlhiAExERERERVaJqDmJZgm6JATgREREREZFvVRwcF8J8USD0iwS1HbgzACciIiIiIiIqAQbgREREREQUTDWXSFeDanh9WWruCwNwIiIiIiIiv6ohOK4UfK1yGIATEREREREVYjAFmIPpuRYBkJG6vQAADrJJREFUA3AiIiIiIiIKGUvTrTAAJyIiIiIi8s2UCeZcaAfMmgsMwImIiIiIiKgy1PiFDAbgREREREREBVE4N5o8YQBORERERETklzngrvHMbUF4cSKHATgREREREQXEwIp44cGPigvAV61ahdmzZ2P69OnYfffdcd9995V7SEREREREZInBF9lgRYClWLkHYBaLxXDttdeitbUVa9euxcyZM3HUUUehsbGx3EMjIiIiIiIiAy9VEH4qJWo7cK+4AHzcuHEYN24cAGDs2LEYOXIkNm/ezACciIiIiIgqiBRUlmKOczRZ/HOEifO+LfkuQV+4cCGOPfZYjB8/Hoqi4MEHH8zb5oYbbsCUKVNQV1eHvffeG4sWLQo0uMWLFyOdTmPSpEmB9iciIiIiIqpqB30PmHkuMGrHco9Ed+Al7tsELkGv7cDddwDe1dWFGTNm4IYbbrD8/b333ot58+bhsssuw5IlSzBjxgwcfvjhWL9+fW6b1tZW7Lrrrnn/rV69OrfN5s2bcdZZZ+Hmm28O8LSIiIiIiKj4ajtYqggH/wA49trKyijP+ZH0g4dA29fYWYJucOSRR+LII4+0/f0111yD888/H+eeey4A4MYbb8QjjzyCP//5z/j+978PAFi6dKnjOfr6+nD88cfj+9//Pvbdd1/Xbfv6+nI/t7e3e3wmREREREREAVVSQExVI9Qu6P39/Vi8eDHmzp2rnyASwdy5c/HSSy95OoaqqjjnnHMwZ84cnHnmma7bX3HFFWhpacn9x3J1IiIiIiIqLQbj5E2oAfjGjRuRTqcxZswYw+NjxozB2rVrPR3jhRdewL333osHH3wQra2taG1txZtvvmm7/aWXXoqtW7fm/lu1alVBz4GIiIiIiIjC5OMCxawLtNvpnyvOUMqs4rqg77///shkMp63TyaTSCarrCMgERERERER5Ru1A/CD1UC8odwjKYpQA/CRI0ciGo1i3bp1hsfXrVuHsWPHhnkqIiIiIiKiysD54BYKaKaWqN0lqEMtQU8kEpg5cybmz5+feyyTyWD+/PnYZ599wjwVERERERFRGUlBd/3w8g2jGvACRY7vDHhnZyfef//93M8rVqzA0qVLMXz4cEyePBnz5s3D2WefjT333BOzZs3Ctddei66urlxXdCIiIiIioqoXiQDnPgYM9ACNI8o9msoWeE3w2uM7AH/11Vdx8MEH536eN28eAODss8/GbbfdhlNOOQUbNmzAT37yE6xduxatra14/PHH8xqzERERERFRlRvsmc1tnJdMHhQYXPviOwCfPXs2VJcX+cILL8SFF14YeFBERERERERUIwb7hRpJqHPAiYiIiIiIaBBhcO0LA3AiIiIiIiKiEmAATkRERERE/ux0DDBsW2Dbg8o9EqKqEuo64ERERERENAic8let+VaE+bxBj03YfGEATkRERERE/igK5/4SBcBLVkRERERERBQuZsYtMQAnIiIiIiKiImK1hMAAnIiIiIiIiIqI2XCBATgRERERERFRCTAAJyIiIiIiKhizvPZYgi4wACciIiIiIiIqAQbgREREREREBRusWV67zD8rAqwwACciIiIiIioYA05yxwCciIiIiIiIArLL/A/WigBnDMCJiIiIiIgoZKwIsMIAnIiIiIiIiIpHYTZcYABOREREREREATHT7QcDcCIiIiIiIgpX0xj9fjRRvnFUmFi5B0BEREREREQ1Jl4PfOc9QIkCkWi5R1MxGIATERERERFRQA7zu5tGl24YVYIl6ERERERERBQQ54D7wQCciIiIiIiIqAQYgBMRERERERGVAANwIiIiIiIiohJgAE5ERERERETBqJwD7gcDcCIiIiIiIqISYABOREREREREwSgOy5BRHgbgREREREREhZp2mHYbbyjvOKiixco9ACIiIiIioqo39WDg/z0FDN+u3COhCsYAnIiIiIiIKAyT9ir3CEqPTdh8YQk6ERERERERUQkwACciIiIiIiIqAQbgREREREREFAy7oPvCAJyIiIiIiIiC4RxwXxiAExEREREREZUAA3AiIiIiIiKiEmAATkRERERERFQCDMCJiIiIiIgoIM4B94MBOBEREREREVEJMAAnIiIiIiKigLgMmR8MwImIiIiIiIhKgAE4ERERERERUQkwACciIiIiIqKA2ITNDwbgRERERERERCXAAJyIiIiIiIioBBiAExERERERUUDsgu4HA3AiIiIiIiIKiHPA/WAATkRERERERFQCDMCJiIiIiIiISoABOBEREREREVEJMAAnIiIiIiKigNiEzQ8G4EREREREROTPwT8EhkwAZn+/3COpKrFyD4CIiIiIiIiqzEHfBQ68BFCYAfeDGXAiIiIiIiLyj8G3bwzAiYiIiIiIiEqAATgREREREVE5tUzSbpvGlHccVHQMwImIiIiIiMrprH8BrWcA5zxa7pFQkbEJGxERERERUTmNmAocf0O5R0ElwAw4ERERERERUQkwACciIiIiIiIqAQbgRERERERERCXAAJyIiIiIiIioBBiAExEREREREZUAA3AiIiIiIiKiEmAATkRERERERFQCDMCJiIiIiIiISoABOBEREREREVEJMAAnIiIiIiIiKgEG4EREREREREQlwACciIiIiIiIqAQYgBMRERERERGVAANwIiIiIiIiohJgAE5ERERERERUAgzAiYiIiIiIiEqAATgRERERERFRCTAAJyIiIiIiIioBBuBEREREREREJcAAnIiIiIiIiKgEGIATERERERERlQADcCIiIiIiIqISYABOREREREREVAIMwImIiIiIiIhKgAE4ERERERERUQnEyj2AsKmqCgBob28v80iIiIiIiIhoMBDxp4hH7dRcAN7R0QEAmDRpUplHQkRERERERINJR0cHWlpabH+vqG4hepXJZDJYvXo1mpuboSiK7/332msvvPLKK0Xfr729HZMmTcKqVaswZMgQ3+cja0Hfv0pTSc+jlGMp1rnCPG4Yx+LfmepWSf8+g6q058C/M+Eeq5D9+XemMlTav9EgKuk5lHos/DsT7r7V8ndGVVV0dHRg/PjxiETsZ3rXXAY8Eolg4sSJgfePRqOB3tig+w0ZMqSiP0jVJuj7UGkq6XmUcizFOleYxw3jWPw7U90q6d9nUJX2HPh3JtxjFbI//85Uhkr7NxpEJT2HUo+Ff2eKs281/J1xynwLbMJm8vWvf72k+1G4auV9qKTnUcqxFOtcYR43jGPx70x1q4X3odKeA//OhHusQvavtM/GYFUL70MlPYdSj4V/Z4p77mpXcyXo1aK9vR0tLS3YunVrxV/JIaLqxL8zRFRs/DtDRMVWa39nmAEvk2QyicsuuwzJZLLcQyGiGsW/M0RUbPw7Q0TFVmt/Z5gBJyIiIiIiIioBZsCJiIiIiIiISoABOBEREREREVEJMAAnIiIiIiIiKgEG4EREREREREQlwAC8CqxatQqzZ8/G9OnTsfvuu+O+++4r95CIqMaccMIJGDZsGE4++eRyD4WIasTDDz+MHXfcEdOmTcOtt95a7uEQUQ2qxu8v7IJeBdasWYN169ahtbUVa9euxcyZM/Huu++isbGx3EMjohrxzDPPoKOjA7fffjv+8Y9/lHs4RFTlUqkUpk+fjgULFqClpQUzZ87Eiy++iBEjRpR7aERUQ6rx+wsz4FVg3LhxaG1tBQCMHTsWI0eOxObNm8s7KCKqKbNnz0Zzc3O5h0FENWLRokXYZZddMGHCBDQ1NeHII4/EE088Ue5hEVGNqcbvLwzAQ7Bw4UIce+yxGD9+PBRFwYMPPpi3zQ033IApU6agrq4Oe++9NxYtWhToXIsXL0Y6ncakSZMKHDURVYtS/o0hIgIK/7uzevVqTJgwIffzhAkT0NbWVoqhE1GVGKzfbxiAh6CrqwszZszADTfcYPn7e++9F/PmzcNll12GJUuWYMaMGTj88MOxfv363Datra3Ydddd8/5bvXp1bpvNmzfjrLPOws0331z050RElaNUf2OIiIQw/u4QETkZtH9nVAoVAPWBBx4wPDZr1iz161//eu7ndDqtjh8/Xr3iiis8H7e3t1c94IAD1DvuuCOsoRJRFSrW3xhVVdUFCxaoJ510UhjDJKIaEuTvzgsvvKAef/zxud9fdNFF6l133VWS8RJR9Snk+021fX9hBrzI+vv7sXjxYsydOzf3WCQSwdy5c/HSSy95OoaqqjjnnHMwZ84cnHnmmcUaKhFVoTD+xhAR+eHl786sWbOwbNkytLW1obOzE4899hgOP/zwcg2ZiKpMLX+/YQBeZBs3bkQ6ncaYMWMMj48ZMwZr1671dIwXXngB9957Lx588EG0traitbUVb775ZjGGS0RVJoy/MQAwd+5cfP7zn8ejjz6KiRMnVv3/3IioeLz83YnFYrj66qtx8MEHo7W1FRdffDE7oBORZ16/31Tj95dYuQdA7vbff39kMplyD4OIathTTz1V7iEQUY057rjjcNxxx5V7GERUw6rx+wsz4EU2cuRIRKNRrFu3zvD4unXrMHbs2DKNiohqBf/GEFGp8e8OERVbLf+dYQBeZIlEAjNnzsT8+fNzj2UyGcyfPx/77LNPGUdGRLWAf2OIqNT4d4eIiq2W/86wBD0EnZ2deP/993M/r1ixAkuXLsXw4cMxefJkzJs3D2effTb23HNPzJo1C9deey26urpw7rnnlnHURFQt+DeGiEqNf3eIqNgG7d+ZcrdhrwULFixQAeT9d/bZZ+e2uf7669XJkyeriURCnTVrlvryyy+Xb8BEVFX4N4aISo1/d4io2Abr3xlFVVW1tCE/ERERERER0eDDOeBEREREREREJcAAnIiIiIiIiKgEGIATERERERERlQADcCIiIiIiIqISYABOREREREREVAIMwImIiIiIiIhKgAE4ERERERERUQkwACciIiIiIiIqAQbgRERERERERCXAAJyIiIiIiIioBBiAExEREREREZUAA3AiIiIiIiKiEmAATkRERERERFQC/x8k7zMhNuCEqwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,8))\n", + "plt.loglog(ps.freq, psd_shape, label=\"true power spectrum\",lw=3)\n", + "plt.loglog(ps.freq, ps.power, label=\"simulated data\")\n", + "plt.loglog(ps.freq, res.mfit, label=\"best fit\", lw=3)\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That looks pretty good!\n", + "\n", + "You can print a summary of the fitting results by calling `print_summary`:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.72916 +/- 3.80371 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.09193 +/- 0.73337 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.10372 +/- 0.55239 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.579354.3\n", + " -- The Akaike Information Criterion of the model is: 2189.7896770356615.\n", + " -- The Bayesian Information Criterion of the model is: 2204.5129428726077.\n", + " -- The figure-of-merit function for this model is: 1079.683266.5f and the fit for 997 dof is 1.082932.3f\n", + " -- Summed Residuals S = 69266.959968.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(loglike)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Likelihood Ratios\n", + "\n", + "The parameter estimation code has more functionality than act as a simple wrapper around `scipy.optimize`. For example, it allows for easy computation of likelihood ratios. Likelihood ratios are a standard way to perform comparisons between two models (though they are not always statistically meaningful, and should be used with caution!).\n", + "\n", + "To demonstrate that, let's make a broken power law model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# broken power law model\n", + "bpl = models.BrokenPowerLaw1D()\n", + "\n", + "# add constant\n", + "bplc = bpl + c" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude_0', 'x_break_0', 'alpha_1_0', 'alpha_2_0', 'amplitude_1')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bplc.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# define starting parameters\n", + "bplc_start_pars = [2.0, 1.0, 3.0, 1.0, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "loglike_bplc = PSDLogLikelihood(ps.freq, ps.power, bplc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "pval, plc_opt, bplc_opt = parest.compute_lrt(loglike, starting_pars, loglike_bplc, bplc_start_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Likelihood Ratio: 0.36080561093513097\n" + ] + } + ], + "source": [ + "print(\"Likelihood Ratio: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Bayesian Parameter Estimation\n", + "\n", + "For Bayesian parameter estimation, we require a prior along with the likelihood defined above. Together, they form the *posterior*, the probability of the parameters given the data, which is what we generally want to compute in science.\n", + "\n", + "Since there are no universally accepted priors for a model (they depend on the problem at hand and your physical knowledge about the system), they cannot be easily hard-coded in stingray. Consequently, setting priors is slightly more complex. \n", + "\n", + "Analogously to the `LogLikelihood` above, we can also define a `Posterior` object. Each posterior object has three methods: `logprior`, `loglikelihood` and `logposterior`. \n", + "\n", + "We have pre-defined some `Posterior` objects in `posterior.py` for common problems, including power spectral analysis. We start by making a `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDPosterior" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The priors are set as a dictionary of functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law index\n", + "p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_0\"] = p_alpha\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There's a function `set_logprior` in `stingray.modeling` that sets the prior correctly:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import set_logprior" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "lpost.logprior = set_logprior(lpost, priors)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also set the priors when you instantiate the posterior object:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Much like before with the log-likelihood, we can now also compute the log-posterior for various test parameter sets:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -198.61635344021062\n", + "log-likelihood: -2412.2493594640564\n", + "log-posterior: -2610.865712904267\n" + ] + } + ], + "source": [ + "test_pars = [1.0, 2.0, 4.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the prior is zero (so the log-prior is -infinity), it automatically gets set to a very small value in order to avoid problems when doing the optimization:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -1e+16\n", + "log-likelihood: -2534.0567826161864\n", + "log-posterior: -1e+16\n" + ] + } + ], + "source": [ + "test_pars = [6, 6, 3.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: 1.383646559789373\n", + "log-likelihood: -2184.6739536386162\n", + "log-posterior: -2183.290307078827\n" + ] + } + ], + "source": [ + "test_pars = [5.0, 2.0, 2.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can do the same parameter estimation as above, except now it's called maximum-a-posteriori instead of maximum likelihood and includes the prior (notice we set `max_post=True`):" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod='BFGS', max_post=True)\n", + "res = parest.fit(lpost, starting_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "best-fit parameters:\n", + "4.8949 +/- 0.4941\n", + "2.0690 +/- 0.0811\n", + "2.0547 +/- 0.0680\n" + ] + } + ], + "source": [ + "print(\"best-fit parameters:\")\n", + "for p,e in zip(res.p_opt, res.err):\n", + " print(\"%.4f +/- %.4f\"%(p,e))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same outputs exist as for the Maximum Likelihood case:" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.89492 +/- 0.49409 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.06898 +/- 0.08112 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.05471 +/- 0.06803 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.845868.3\n", + " -- The Akaike Information Criterion of the model is: 2188.6889410986737.\n", + " -- The Bayesian Information Criterion of the model is: 2203.41220693562.\n", + " -- The figure-of-merit function for this model is: 1104.686609.5f and the fit for 997 dof is 1.108011.3f\n", + " -- Summed Residuals S = 75870.967955.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(lpost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike in the maximum likelihood case, we can also *sample* from the posterior probability distribution. The method `sample` uses the [emcee](http://emcee.readthedocs.io/) package to do MCMC. \n", + "\n", + "**Important**: Do *not* sample from the likelihood function. This is formally incorrect and can lead to incorrect inferences about the problem, because there is no guarantee that a posterior with improper (flat, infinite) priors will be bounded!\n", + "\n", + "**Important**: emcee has had a major upgrade to version 3, which came with a number of API changes. To ensure compatibility with stingray, please update emcee to the latest version, if you haven't already.\n", + "\n", + "Much like the optimizer, the sampling method requires a model and a set of starting parameters `t0`. Optionally, it can be useful to also input a covariance matrix, for example from the output of the optimizer.\n", + "\n", + "Finally, the user should specify the number of walkers as well as the number of steps to use for both burn-in and sampling:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Chains too short to compute autocorrelation lengths.\n", + "-- The acceptance fraction is: 0.642375.5\n", + "R_hat for the parameters is: [0.32313683 0.00732082 0.00479484]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.942652228740678\t0.5691486161504021\t4.035143030111889\t5.915733521435971\n", + "\n", + "theta[1] \t 2.0754546626425574\t0.0856675712513585\t1.9374392067380983\t2.21960029522001\n", + "\n", + "theta[2] \t 2.052820542793331\t0.06933048478134216\t1.9394014208215005\t2.167009901378628\n", + "\n" + ] + } + ], + "source": [ + "sample = parest.sample(lpost, res.p_opt, cov=res.cov, nwalkers=400,\n", + " niter=100, burnin=300, namestr=\"psd_modeling_test\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The sampling method returns an object with various attributes that are useful for further analysis, for example the acceptance fraction:" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6423749999999999" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.acceptance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or the mean and confidence intervals of the parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.94265223, 2.07545466, 2.05282054])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.mean" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[4.03514303, 1.93743921, 1.93940142],\n", + " [5.91573352, 2.2196003 , 2.1670099 ]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.ci" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method `print_results` prints the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "-- The acceptance fraction is: 0.642375.5\n", + "R_hat for the parameters is: [0.32313683 0.00732082 0.00479484]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.942652228740678\t0.5691486161504021\t4.035143030111889\t5.915733521435971\n", + "\n", + "theta[1] \t 2.0754546626425574\t0.0856675712513585\t1.9374392067380983\t2.21960029522001\n", + "\n", + "theta[2] \t 2.052820542793331\t0.06933048478134216\t1.9394014208215005\t2.167009901378628\n", + "\n" + ] + } + ], + "source": [ + "sample.print_results()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, the method `plot_results` produces a bunch of plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqkAAALDCAYAAAA2SZn7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9fX48Vdyb3Jn9r0hIYNAwkjYAVmyVFQQdxG1omLbr1apA2tr1VaqdVVtbatV66hWoa1WCwriQkUDyCaM5IaEQHZI7s3OHRk39/cHv/tpAplAkptwno9HHl5uPvee980w577HOX4ej8eDEEIIIYQQPsS/vwcghBBCCCHEySRJFUIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklQhhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhcyRJFUIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklThE6xWK4sXL8ZgMDB69Gi++uqrTq+fP38+Wq0Wo9GI0Whk0aJFyufS09M5//zzCQ4OZsSIEbzxxhu9PXwhhBBCnGWSpIo+tXz5ct5+++1T7l+xYgVRUVFYrVaee+45li5dSmVlZafP9cYbb1BfX099fT2ffvqpcv/NN9/MpZdeSnV1NR988AErV67EYrGc7ZcihBBCiF4kSarod/X19axbt47HHnsMvV7PlVdeyfjx4/noo49O6/ny8vK48cYb8ff3JzU1leTkZLKyss7yqIUQQgjRmyRJHeSefPJJ/Pz8GDduXLeu37NnDwsXLiQ4OJigoCAuueQS0tPTT7kuIyOD6667jhEjRqDX6zGZTMydO5f169f3eIw5OTkYjUZiY2OV+8aPH09GRkanj1u5ciVms5mLL76YAwcOKPfffffdrF69mubmZnbu3ElBQQEzZszo8biEEEII0X8kSR3EioqKeOqppzAYDN26fu/evcyePZujR4+yatUqHn30UXJycpg3bx6HDx9uc21+fj51dXXceuut/PnPf+Y3v/kNAFdeeSWvvfZaj8ZZX19PcHBwm/uCg4Opr6/v8DHPPvssx44do6CggIsvvphFixZRV1cHwKJFi3jnnXfQarXMmjWL3//+90RHR/doTEIIIYToX34ej8fT34MQveOGG27AarXidrux2WwcOnSo0+sXL17M999/T05ODhEREQCUlpYyatQoLrnkEj788MNOH+92u5kyZQoul6vN8vrll1/Oli1bAHA4HKjVagIDAwH41a9+xaWXXspFF13UZg/q3XffjUaj4fnnn+/Wax0zZgwvvvgiU6ZMISEhgb///e9cc801ZGRksHDhQjZs2EBqamq3nksIIYQQ/U9mUgep7777jg8++IA//elP3X5MWloaCxYsUBJUgOjoaObNm8eGDRs6ndkEUKlUxMXFUV1d3eb+DRs2UF1dTXV1NT/84Q95+eWXlX//6le/YuTIkdTX11NcXKw85tChQ4wdO7bbY/f398fj8ZCbm4vBYGDJkiWoVComTJjArFmz+Pbbb7v9XEIIIYTof5KkDkJut5u7776bn/zkJ4wfP77bj2toaECn051yv16vp7Gxsd2ZWLvdjs1mIzc3lxdeeIFPP/2Uiy66qEfjNRqNXHXVVaxatQqn08mGDRs4cOAAV111VbvXV1dX8+WXX9LQ0EBjYyMvvPAClZWVTJ8+nVGjRuFwOPjoo4/weDxkZmaSlpbWo6+DEEIIIfqfur8HIM6+V199lfz8fDZt2tSjx40ePZrt27fjdrtRqVQANDY2smPHDoA2M51eP//5z/nb3/4GnJjNvPbaa3nppZd6POaXX36ZW2+9lYiICGJjY3nvvfcIDw9XPr9o0SLmzJnDww8/TFNTEw899BCHDx8mICCASZMmsXHjRkJCQgB4//33efDBB1m2bBnh4eHcf//9LFiwoMdjEkIIIUT/kT2pg0xFRQWjRo3i4Ycf5uc//zlwovB9d/akvvrqq9x5553ceuut/PKXv6SlpYUnnniC//73vzQ1NfHuu++ybNmyNo/JysqiqKiIkpIS3n//fQIDA3nllVcYMmRIr71GIYQQQgx+kqQOMnfeeSebNm0iIyNDOZzU3SQV4JFHHuG5556jqakJgKlTp3LppZfy5JNPsnbtWq6++upOH3/JJZdQXV3Njh078PPzO+PXI4QQQohzk+xJHURycnJ47bXXuOeeeygpKSEvL4+8vDxcLhdNTU3k5eV12cXpySefpKysjLS0NA4cOMCuXbtoaWkBYNSoUV2OYcmSJezatYvs7Oyz8pqEEEIIcW6SJHUQKS4upqWlhXvuuYfhw4crHzt27CA7O5vhw4fz+OOPd/k8YWFhzJ49WzlstGnTJmJjYxkzZkyXj3U6nQDU1NT0aOxWq5XFixdjMBgYPXo0X331VafXz58/H61Wi9FoxGg0smjRIgDl394Pf39//vCHP/RoLEIIIYTof3JwahAZN24ca9euPeX+X//619TV1fHnP/+ZxMRE4ES90oKCAkwmEyaTqcPnfO+999i1axfPP/88/v7/e09TXl5OZGRkm2ubmpp455130Ol0pKSk9GjsK1asICoqCqvVyqZNm1i6dCk5OTltDk+d7I033jhlj2zrMlklJSXEx8dz7bXX9mgsQgghhOh/kqQOIiaTqd09o95aqa0/t3PnTi644AJWrVrFb3/7W+BEbdXHH3+cSy65hIiICLZv385bb73FwoULuffee9s85x133EFtbS1z584lJiaG48ePs2bNGrKysvjDH/6A0Wjs9rjr6+tZt24dR48eRa/Xc+WVVzJ+/Hg++ugjbrvttp5+GRT//Oc/mTlzJsOHDz/t5xBCCCFE/5DlfqGIiYlBpVLx3HPPsWLFCrZs2cITTzzBRx99hFrd9v3M9ddfj7+/P6+88gp33nknf/zjH4mNjeWjjz7i/vvv71HcnJwcjEYjsbGxyn3jx48nIyOj08etXLkSs9nMxRdfzIEDB075/Lvvvsstt9zSo7EIIYQQwjfI6X7R79LS0rj55pvJy8tT7nvkkUeoqKjg1VdfbfcxO3fuJCUlBZVKxYsvvsif//xnsrKyCAoKAuDAgQNMnz6d0tJSQkND++BVCCGEEOJskplU0etmz56Nn59fux+//vWvMRqN1NbWtnlMbW1tp1sGpk2bhtFoRKfT8ctf/pKgoCC2b9+ufP7dd9/liiuukARVCCGEGKBkT6rodVu2bOn08/X19dTX11NcXExMTAwAhw4d6tFSvb+/P95FgZaWFv75z392OAsrhBBCCN8nM6mi3xmNRq666ipWrVqF0+lkw4YNHDhwgKuuuqrd66urq/nyyy9paGigsbGRF154gcrKSqZPnw7AV199RVNTk1KWSgghhBADjySpwie8/PLLlJSUEBERwf333897773XpvzUokWLeOqpp4ATpa4eeughTCYTUVFRrF+/no0bNxISEgKcWOq/4YYbTjnsJYQQQoiBQw5OCSGEEEIInyMzqUIIIYQQwudIkiqEEEIIIXzOoNm019LSQklJCUFBQfj5+fX3cITwKR6Ph7q6OoYOHdqmva0QQgjhqwZNklpSUkJcXFx/D0MIn1ZYWNims5cQQgjhqwZNkurtNFRYWEhwcHA/j6ZvuN1utm3bBsCsWbNQqVSDIlZ/xBvsamtriYuLU35PhBBCCF83aE7319bWEhISQk1NzTmTpArRXfL7IYQQYqCRzWlCCCGEEMLnDJrl/nNRU1MTr732GgC33347AQEBgyJWf8QTQgghhG+R5f4BzG63YzQaAaivr8dgMAyKWP0Rb7A7F38/hBBCDGyy3C+EEEIIIXyOJKlCCCGEEMLnSJIqhBBCCCF8jiSpQgghhBDC50iSKoQQQgghfI4kqUIIIYQQwudIndQBTKPRsGHDBuX2YInVH/GEEEII4VukTqoQ5wD5/RBCCDHQyHK/EEIIIYTwObLcP4A1NTWxZs0aAG666aZeb4vaV7H6I54QQgghfIss9w9g0hZVdNe5+PshhBBiYJOZVNFjhYWFOByOLq8zmUzEx8f3wYiEEEIIMdhIkip6LDU1FafT2eV1er0ei8UiiaoQQgghekySVNFjTqeT1atXk5yc3OE1FouFZcuWYbPZJEkVQgghRI9JkipOS3JyMqmpqf09DCGEEEIMUlKCSgghhBBC+ByZSRWKgoICbDZbu5/rzh5UIYQQQoizRZLUAUyj0fD+++8rt89EQUEBycnJ3Tq1r9PpMJlMZxSvK2fztQkhhBBi4JEkdQBTq9Vcd911Z+W5bDYbDoejywNR0Delpc7maxNCCCHEwCNJqmhDDkQJIYQQwhdIkjqANTc3s3btWgCuueYa1Ore+3b2Zaz+iCeEEEII3yJ/+QewhoYGli5dCpxoHdqbiVxfxuqPeEIIIYTwLVKCSgghhBBC+BxJUoUQQgghhM+RJFUIIYQQQvgcSVKFEEIIIYTPkSRVCCGEEEL4HElShRBCCCGEz5G6PgNYYGAgb731lnJ7sMTqj3hCCCGE8C2SpA5gAQEBLF++vMvrCgoKsNlsnV5jsVjOSqyzpa/jCSGEEMK3SJI6yBUUFJCcnIzD4ejyWr1ej8lk6oNRCSGEEEJ0TpLUAay5uZnPP/8cgEsvvbTdrkw2mw2Hw8Hq1atJTk7u9PlMJhPx8fGnHets6ut4QgghhPAt8pd/AGtoaODyyy8Hum4dmpycTGpqap/EOhv6Op4QQgghfIuc7hdCCCGEED5HklQhhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhcyRJFUIIIYQQPkeSVCGEEEII4XOkrs8AFhgYyEsvvaTcHiyx+iOeEEIIIXyLJKkDWEBAACtWrBh0sfojnhBCCCF8iyz3CyGEEEIInyMzqQOY2+0mLS0NgDlz5qBSqXwulsVi6fKa9tqx9uVrE0IIIYTvkSR1AHO5XFxwwQXAidahBoPBZ2KZTCb0ej3Lli3r8rn1ej0Wi6VNotqXr00IIYQQvkeSVNEr4uPjsVgs2Gy2Tq+zWCwsW7YMm812ymyqEEIIIc5dkqSKXhMfHy+JpxBCCCFOixycEkIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklQhhBBCCOFz5ODUABYQEMCzzz6r3B4ssfojnhBCCCF8iySpA1hgYCC/+MUvBl2s/ognhBBCCN8iy/1CCCGEEMLnyEzqAOZ2u9m7dy8Aqampvd4Wta9i9Uc8IYQQQvgWSVIHsJycHKZNmwbAli1b0Ol0p1xjsVjOSiyXy6XE6os2pX0dTwghhBC+RZLUAaqgoIDU1FTl37Nnz+7wWr1ej8lk6othCSGEEEKcFZKkDlA2mw2n06n8u6OZVACTySTtSYUQQggxoEiSOkhMmjRJlsSFEEIIMWjI6X4hhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhc2RP6gB3++23Ex0d3SdtUVetWqXc7m19HU8IIYQQvkWS1AHujjvuaFOKqrcEBgby29/+ttfj9Fc8IYQQQvgWWe4XQgghhBA+R2ZSB7jc3Fw0Gg3Jycn4+/fee46Wlhale1Vvx+qPeEIIIYTwLZKkDnBLly4Fer91qNPpZNy4cX0Sqz/iCSGEEMK3yPSUEEIIIYTwOZKkCiGEEEIInyNJqhBCCCGE8DmSpAohhBBCCJ8jSaoQQgghhPA5kqQKIYQQQgifIyWoBribb76ZIUOG9Elb1AceeEC53dv6Op4QQgghfIskqQPcfffd12dtUZ977rlej9Nf8YQQQgjhW2S5XwghhBBC+BxJUge4kpIS8vLyaGlp6dU4LS0t5OXl9Ums/ognhBBCCN8iy/0D3BVXXAH0TVvU4cOH90ms/ognhBBCCN8iM6lCCCGEEMLnSJIqhBBCCCF8jiSpQgghhBDC58ieVOETLBZLm387nU7ldnp6OjqdDpPJRHx8fF8PTQghhBD9QJJU0a9MJhN6vZ5ly5Z1eM3s2bMB0Ov1WCwWSVSFEEKIc4AkqaJfxcfHY7FYsNlsbe53Op1Kcrplyxby8vJYtmwZNptNklQhhBDiHCBJ6gB33XXXYTabUat791upVqu56667lNtnU3x8/CmJZ0NDgxJv6tSp6HS6sxpTCCGEEL5NktQB7le/+lWftEXVaDT89a9/7fU4/RVPCCGEEL5FTvcLIYQQQgifI0nqAFdVVYXVasXj8fRqHI/Hg9Vq7ZNY/RFPCCGEEL5FlvsHuAULFgC93zrU4XAQGRnZJ7HaiyeEEEKIc4vMpAohhBBCCJ8jSaoQQgghhPA5kqQKIYQQQgifI0mqEEIIIYTwOZKkCiGEEEIInyNJqhBCCCGE8DlSgmqAu/zyy4mIiOiTtqi33nqrcru39XU8IYQQQvgW+es/wD322GN91hb17bff7vU4/RVPCCGEEL5FlvuFEEIIIYTPkSR1gHM6ndjt9j5pi2q32/skVn/EE0IIIYRvkeX+AW727NlA37RFNRqNfRKrvXhCCCGEOLfITKoQQgghhPA5kqQKIYQQQgifI0mqEEIIIYTwObIn1QcVFBRgs9k6vcZisfTRaIQQQggh+p4kqT6moKCA5ORkHA5Hl9fqdDqcTmcfjEoIIYQQom9JkupjbDYbDoeD1atXk5yc3Om1er2+y2uEEEIIIQYiSVJ9VHJycpedpFwuF0uWLAFApVL16nhUKlWfxeqPeEIIIYTwLZKkDmBarZb//Oc/gy5Wf8QTQgghhG+R0/1CCCGEEMLnSJIqhBBCCCF8jiSpA5jdbsfPzw8/Pz/sdvugidUf8YQQQgjhWyRJFUIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklQhhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhc6Tj1ACmUqm47LLLlNuDJVZn8SwWS5ePNZlMxMfH99rYhBBCCNH7JEkdwLRaLZ988smgi9VePJPJhF6vZ9myZV0+Vq/XY7FYJFEVQgghBjBJUsWAEB8fj8ViwWazdXqdxWJh2bJl2Gw2SVKFEEKIAUySVDFgxMfHS+IphBBCnCPk4NQAZrfbMRgMGAyGPmmL2lex+iOeEEIIIXyLzKQOcA6HY1DG6o94QgghhPAdMpMqhBBCCCF8jiSpQgghhBDC50iSKoQQQgghfI4kqUIIIYQQwudIkiqEEEIIIXyOnO4fwPz9/Zk3b55ye7DE6o94QgghhPAtkqQOYDqdjs2bNw+6WP0RTwghhBC+RaaohBBCCCGEz5EkVQghhBBC+BxJUgcwu92O2WzGbDb3SVvUvorVH/GEEEII4VtkT+oAZ7PZBmWs/ognhBBCCN8hM6lCCCGEEMLnSJIqhBBCCCF8jiSpQgghhBDC50iSKoQQQgghfI4kqUIIIYQQwufI6f4BzN/fn6lTpyq3B0us/ognhBBCCN8iSWofKigo6LKsksVi6fbz6XQ6du3adabD8rlY/RFPCCGEEL5FktQ+UlBQQHJyMg6Ho8tr9Xo9JpOpD0YlhBBCCOGbJEntIzabDYfDwerVq0lOTu70WpPJRHx8fB+NTAghhBDC90iS2seSk5NJTU09K8/lcDhISUkBIDMzE71ef1aet79j9Uc8IYQQQvgWSVIHMI/HQ35+vnJ7sMTqj3hCCCGE8C1ybFoIIYQQQvgcSVKFEEIIIYTPkSRVCCGEEEL4HNmTKgal7tSblSoKQgghhO+SJFUMKiaTCb1ez7Jly7q8Vq/XY7FYJFEVQgghfJAkqQOYn5+fUqbJz89v0MQ6k3jx8fFYLJZudfZatmwZNptNklQhhBDCB0mSOoDp9XoyMjIGXawzjRcfHy+JpxBCCDHAycEpIYQQQgjhcyRJFUIIIYQQPkeS1AHM4XAwduxYxo4di8PhGDSx+iOeEEIIIXyL7EkdwDweD5mZmcrtwRKrP+IJIYQQwrfITKoQQgghhPA5kqQKIYQQQgifI0mqEEIIIYTwOZKkCiGEEEIInyNJqhBCCCGE8Dlyun8A8/PzY9iwYcrtwRKrP+IJIYQQwrdIkjqA6fV68vLyBl2s/ognhBBCCN8iy/1CCCGEEMLnSJIqhBBCCCF8jiSpA5jT6eS8887jvPPOw+l0DppY/RFPCCGEEL5F9qQOYC0tLezevVu5PVhi9Uc8IYQQQvgWmUkVQgghhBA+R5JUIYQQQgjhc2S5X5zTLBZLl9eYTCbi4+P7YDRCCCGE8JIk9SwoKCjAZrN1ek13kiHRd0wmE3q9nmXLlnV5rV6vx2KxSKIqhBBC9CFJUs9QQUEBycnJOByOLq/V6/WYTKY+GJXoSnx8PBaLpVtvLpYtW4bNZpMkVQghhOhDkqSeIZvNhsPhYPXq1SQnJ3d6bW8sG/dl0tvXCXZvx4uPj5fEUwghhPBRkqSeJcnJyaSmpvZpTIPBgNVqHXSx+iOeEEIIIXyLnO4XQgghhBA+R5JUIYQQQgjhcyRJHcCcTifz589n/vz5fdIWta9i9Uc8IYQQQvgW2ZM6gLW0tPDtt98qtwdLrP6IJ4QQQgjfIjOpQgghhBDC50iSKoQQQgghfI4kqUIIMUhYrVYWL16MwWBg9OjRfPXVV6d9fUZGBnPnziU4OJiUlBQ2b97cy6MXQoi2ZE+qEN3Qnba2vdGsQYj2LF++nPnz57N8+fI2969YsYKoqCisViubNm1i6dKl5OTkEB4e3u7zdHR9UFAQV111Fffccw/ffPMN33zzDUuWLOHw4cNERET0wSsUQghJUoXolMlkQq/Xs2zZsi6v1ev1WCwWSVRFv6ivr2fdunUcPXoUvV7PlVdeyfjx4/noo4+47bbbenT9eeedR1VVFffccw8ACxYsYPLkyaxdu5af/OQnff3ShBDnKFnuH+D0ej16vX7QxeqPeO2Jj4/HYrGwZ8+eTj9Wr16Nw+HAZrP163jF2bFr1y5+9rOfMXbsWAwGA/Hx8SxdupTs7OxuPb6hoYEHH3yQoUOHotPpmD59Ol9++eUp1y1fvhw/P78OP4qLi7s95pycHIxGI7Gxscp948ePJyMj47Su93g8ba73eDwdPpcQQvQGmUkdwAwGA3a7fdDF6o94nYmPj5fZ0XPM73//e7Zu3cp1113HhAkTOH78OC+99BKpqals376dcePGdfr45cuX88EHH3DfffcxcuRI3n77bS677DK++eYbZs+erVx3xx13sGDBgjaP9Xg8/PSnPyUhIYGYmJhuj7m+vp7g4OA29wUHB1NRUdHj60ePHk1oaCh//OMfufvuu/nqq6/49ttvGTFiRLfHI4QQZ0qSVCGEOMn999/PP//5TwIDA5X7rr/+esaPH88zzzzD6tWrO3zszp07+fe//81zzz3HAw88AMAtt9zCuHHj+OUvf8m2bduUa2fOnMnMmTPbPH7Lli04HA5uuummNvdffvnlbNmyBQCHw8H777/PfffdB8CvfvUrLr30Umpra9s8pra2FqPR2O44jUZjh9cHBASwbt067r77bp588kmmTp3K9ddf32bWVQghepskqZ0oKCjocvm2OwdqhBADy6xZs065b+TIkYwdO7bL3/kPPvgAlUrF7bffrtyn1Wr58Y9/zMMPP0xhYSFxcXEdPv6f//wnfn5+/PCHP2xz/4YNG5Tb7R2cqq+vp76+nuLiYmUG9tChQ9xyyy3txhk5cmSn10+YMEFpqAEnvibd2ZsthBBniySpHSgoKCA5ORmHw9HltXq9HpPJ1AejasvlcvGDH/wAgA8//BCtVjsoYvVHPCG64vF4KCsrY+zYsZ1et2/fPkaNGnXKUvq0adMASE9P7zBJbWpq4v3332fWrFkkJCT0aHxGo5GrrrqKVatW8eKLL/LVV19x4MABrrrqqtO6/sCBA4waNYqWlhb++te/0tLSwsKFC3s0JiGEOBOSpHbAZrPhcDhYvXo1ycnJnV7bX6WH3G43GzduVG4Pllj9EU+IrqxZs4bi4mIef/zxTq8rLS0lOjr6lPu995WUlHT42M8//5yKiopTlvq76+WXX+bWW28lIiKC2NhY3nvvvTblpxYtWsScOXN4+OGHu7z+rbfe4q233qKlpYWLL76YdevWndaYhBDidEmS2oXk5GRSU1P7exhigJB6qoNTVlYWK1asYObMmdx6662dXut0OtFoNKfc710NcDqdHT72n//8JwEBASxdurTTGG+//Xa795vNZuXNXXs+/fTTbl//wgsv8MILL3Q6DiGE6E2SpApxFkg91cHr+PHjLF68mJCQEGW/aWd0Oh0NDQ2n3O9yuZTPt6e+vp6PPvqISy+9VArmCyEE52iSKgeixNnmrafanZ+rZcuWYbPZJEkdAGpqali0aBHV1dWkpaUxdOjQLh8THR3dbn3T0tJSgA6fY926de2e6hdCiHPVOZekDoQDUWJg6kk9VdkW4PtcLhdXXHEF2dnZbNq0iZSUlG49btKkSXzzzTfU1ta2OTy1Y8cO5fPtWbNmDUajkSuvvPK0x2y1Wlm+fDmbN28mNjaWl19+mYsuuui0rk9PT2fFihUcPHgQk8nEww8/LN2mhBB9atAlqenp6R3WBYQTyYGvH4gSg1dPtwX897//xWw2n3Hc+vr6M36Oc4nb7eb666/n+++/56OPPjqllqmXw+GgoKAAk8mkvKFdsmQJzz//PK+99ppSJ7WhoYG33nqL6dOnt3uy32q1smnTJm688cYz6rK2YsUKoqKilOdbunQpOTk5bQ5Pdff6m2++meuuu460tDTS09OZN28e559/fpf/3xRCiLNl0CSp3hZ+8+bN6/JanU7HpEmTOq1V6HVysWtf0rojU21tba+egu/LWP0Rr6+Ehoayc+fODrsAedlsNpYtW3bWS/6c3OpStO/nP/85H3/8MVdccQWVlZWnFO/3vsnYuXMnF1xwAatWreK3v/0tANOnT+e6667joYceory8nKSkJP7xj3+Ql5fHm2++2W689957j+bm5jNa6q+vr2fdunUcPXoUvV7PlVdeyfjx4/noo4+47bbbenx9Xl4eN954I/7+/qSmppKcnExWVpYkqUKIPjNoktS6urpuX+t0OrtsazjQdGev3ECM1R/xBrO6ujpCQkL6exg+Lz09HYD169ezfv36Uz7f1Uz4O++8w29+8xveffddqqqqmDBhAhs2bGDu3LntXr9mzRoiIyNPaZHaEzk5ORiNxjZdocaPH09GRsZpXX/33XezevVqfvOb37B3714KCgqYMWPGaY9PCCF6atAkqUOHDqWwsJCgoCD8/Pz6ezjdUltbS1xcHIWFhacU/vZ1A3nsMLDHfzpj93g81NXVScLfTZs3b+7WdfPnz293dlqr1fLcc8/x3HPPdet5vv/++54Mr1319fWn/DwEBwd3OGvf1fWLFi3illtu4cknnwTgzTffbLf+qxBC9JZBk6T6+/sP2L7SwcHBAy5R8hrIY4eBPf6ejl1mUAe22bNns3Xr1nY/98gjj/CDH/zglO1JtbW1He7RNxqNHV5fWVnJ4sWL+fvf/84111xDRkYGCxcuZPz48VI3WgjRZ/z7ewBCCCG6tmXLFjweT7sfTzzxBCNHjqS+vr5N+atDhw512Ma1s+tzc3MxGAwsWbIElUrFhAkTmDVrFt9++22vv04hhPCSJFUIIQYBo9HIVVddxapVq3A6nWzYsIEDBw5w1VVX9fj6UaNG4XA4+Oijj/B4PGRmZpKWlsb48eP7+FUJIc5lkqT2I41Gw6pVq9ptoejrBvLYYWCPfyCPXfSul19+mZKSEiIiIrj//vt577332pSfWrRoEU899VSX14eEhPD++++zatUqgoODWbRoEffff/8ZHewSQoie8vNITRohhBBCCOFjZCZVCCGEEEL4HElShRBCCCGEzxk0JahaWlooKSkZUHVShegrreuk+vt3/N5Ufo+E6Fh3f4+EEGfHoElSS0pKutXmVIhzWWFhYaf1hOX3SIiudfV7JIQ4OwZNkhoUFATQYRceu92Ow+FAr9ej1+u7/by9NZtktVppbm5GrVZjNpt7JYYQXt4uVd7fk4509Xs0mLjdbrZt2wbArFmzUKlUAzpOX8c6F3X390gIcXYMmtP9tbW1hISEUFNT0+Uf15685N5KUu12O3a7HYPBgMFg6JUYQnh19/ejJ79HQpxr5PdDiL41aGZSBxpJToUQQgghOiZJqhDinNTU1MRrr70GwO23305AQMCAjtPXsYQQoreds8v9u3fvJjMzk5SUFKZOndrhtX1xwlmW/kVvk+X+U9ntdoxGIwD19fW99rvXV3H6Ota56Fz6/RDCF5yzNTQyMzMpKSnhyy+/xGq19utY7HY7zc3N2O32fh2HEEIIIYSvOGeT1JSUFDweD3Fxcf2epBoMBtRqtcx6CCGEEEL8f+fsntSpU6cybNgwrFZrt0pAHTt2jMLCQuLi4hg+fPhZHYss8wshhBBCtHXOJqkAZrO5ywTVu2W3sLAQp9NJYWEhCQkJp1wn3XmEEEIIIc6ec3a5/2R5eXmkpaWRl5fX7ufj4uLQ6XTSjUcIIYQQog/0y0zqkSNHWL9+PaWlpVxwwQWkpqYyZMiQHj1HQ0MDDQ0Nyr9ra2vPaEzZ2dlUVVXhdDrbnSlNSEho934hhBBCCHH29XmSeujQIebOncvYsWNpamriL3/5C9deey0333wzixYt6vbzPP300zz22GNnbVzh4eHY7XbCw8Pb3J+Xl6fsRZUkVYjBQ6PRsGHDBuX2QI/T17GEEKK39WmdVKfTydKlSxk+fDgvvPACKpWKzz77jBdeeIHGxkbuuecerrnmmm49V3szqXFxcafdFtXhcCi1SgHl9p49e3A6neh0OubMmdPhc/blnlSpqyp6SuqkCnHm5PdDiL7Vp3tSAwMDKS4uZsiQIahUKgAWLlzIY489RnBwMK+99ho7duzo1nNpNBqCg4PbfJwJvV6P2WxGr9e3qVvaV3tR7XY75eXl3aqVKnVVhRBCCDHY9VmS6na7aWhoIDo6GpvNptwHMGPGDB544AEKCgpYt24d0P5sZ19pXbc0ISGBOXPmYDAYyMzM7LWaqj1JPKWuqhBnrqmpibfffpu3336bpqamAR+nr2MJIURv6/Xl/oaGhjZ7o1599VXuvfde1q9fzyWXXEJLSwv+/idy5VdeeYUHH3yQ3NzcbtUuba2nbVF7KjMzU3ktKSkpp3z+TJf7ZQlf9CZZ7j+VtEUVPXUu/X4I4Qt69eBUZmYmv/zlL1m5ciUXXXQRAD/96U/Zs2cPS5Ys4dNPP+X8889Xrk9KSiIhIUHZCuBLzGZztwv/n44zTU57s9mAEKL7CgoKlNUiOLEX3ys9PR2dTgeAyWQiPj6+z8cnhBADRa8lqR6Ph2effZYtW7Yos4zeRPWpp57C6XRy8cUX8+qrrzJ37lzi4uL4/PPP8ff3V2ZWfYnZbMZut5OVlYXdbu/Xk/7tzbq2bjYgSaoQ/aOgoIDk5GQcDke7n589e7ZyW6/XY7FYJFEVQogO9FqS6ufnh8FgYMyYMQQEBPDMM8/gdru55JJLMJvNvPnmm8TGxrJy5UqMRiORkZEcO3aML7/8ktDQ0N4a1hnpqOvU2d4x4fF4Otw+4HA4yMvLU7ZQ6PV64ESzAe9Mal/s55UOW0Kcymaz4XA4WL16NcnJycCJmVRvcrplyxZ0Oh0Wi4Vly5Zhs9kkSRVCiA706nL/7NmziY+P54ILLuDRRx/lD3/4AyaTiU2bNnHjjTfyzDPPcPXVV1NUVERjYyOzZs3qkxnK7iZYJyd7rRPB/mK329FoNEr5LavVqhzwkjquQviG5ORkUlNTAdochpw0aZLsExVCiG7q1SQ1KCiIjz/+mAcffJBf/OIX/PWvf+XKK6+kpKSEZcuWASdO9g8UrRPB1nVVvXvM+oL3D5zBYGhTEcA7o9qR1uPt6tqTSUMDIYQQQvS1Xt38OWrUKKXM1EUXXURdXR1VVVVMnz6do0eP9mboXmW1WtmzZw/Hjx8/41qlVqu1W6Wt8vLySEtLo7y8XKnn2p1SVA6HA6vVSnl5+WnXVm29zUEIIYQQoi/06kxqUlISGo2GwsJCHnnkETIzM3n++ef54osvuP/++3n++eeZO3dubw7htJSXlysn+ds7zW+1WlGpVFRXV5OYmHhGsaxWKw0NDWRlZSkxvbOkrWc9vYlidnY2hYWFlJaWMm7cOKUcVnszpZmZmezevZv4+HgSEhKUhLans6q+sM1BiLNNo9Hw/vvvK7cHepy+jiWEEL2tV0/3Nzc34/F4mDlzJv7+/nzyySdMmjSJYcOG8c477/js0rE3cfQmjScndd7EtaKigg0bNhAdHc2UKVN6vIwO/yttVV9fr8QETlnG9yaKOp2OQ4cO4XK5OHLkiJKktrf0f+TIEVpaWigoKGDatGnK/VartdvbBIBT9ru2/nrI/joxUKnVaq677rpBE6evYwkhRG87K8v97Z0m9/PzIzAwkDvuuIPY2FjWrl3LpEmTALjssst48803ffZUq9lspr6+noqKCqxW6yndoMxmMykpKVRVVVFZWUlubm6bZXTv0nxeXt4pz+1dfveWqPE+15gxY5SZj/z8fKqqqtokgN7OVykpKSQmJhIeHk5SUpLy+faW/pOSkggPD2fq1KltklGr1cquXbtOu3uWtGUVQgghRG877ZlUu91OS0sLHo+n084bS5cuZfHixUpZKW95JV+egYuMjGwzm5qQkKDMHLaWlJSEy+UiOjq6zecKCwspKSnh2LFjGAyGNlsGOjrs5N1akJmZqTQzaG+WU6/XM2fOHKDtmwO9Xn/K9QkJCcr2gdYqKirQarVUVFR0+2uSmZnJkSNHlIYL7X09hBhImpubWbt2LQDXXHMNanXvLCz1VZy+jiWEEL3ttP4PlpmZycqVK7FarZSVlfHss89y0003tanv6Xa7UalUBAQEEBoaqrQ/HSj1NVt3mGovAQRISUkhJSXllLqmERER7N+/n6ioqFO6VLXeb9pV3DPVUUJ8OntMjxw5gt1uV7YYSIIqBrqGhgaWLl0KnGgh2lsJXV/F6etYQgjR23r8f7DMzEzmzp3LLbfcwtSpU9mzZw+33XYbY8eOVZbzAWU28OOPP2bmzJm91k60t0RGRp72mM1mM/PmzaO6uhqz2XxKCafO9oGazWZMJpOS9HZ2yMnpdHZ6AKqjhDghIQGDwYDVau12QpyUlKTMpAohhBBC9LYeJamVlZWsXLmSm266iT/+8Y8A/PCHP2Tv3r38/e9/5y9/+UubWcUNGzawYsUKbr31Vh5//HGfbHfame50brLZbEqiZzKZgBPJYVRUFImJieh0OjZv3kxRURHl5eXdPizmjd16NvTkeqydfQ5Ap9Oh0+lwOp1K0X9vMpuVlUVZWRlDhgzpVpLqnTUW4lxVUFCAzWbr9BqLxdJHoxFCiMGvR0lqU1MT1dXVLFmyBEBZwh8+fDiVlZVA225Ol19+OTt37mT58uUDLkGF7nWmar13tfXM5ZnOHHtjt37Ok8fT2edaj+/w4cOEhIQQFRV1WhUIhDjXFRQUkJycrBx47Ixer1fesAohhDh9PUpShwwZwurVqxk5ciRwYt+pv78/MTEx5Ofnt7m2urqa0NBQHn/88bM3Wh/Ueg9pR3tAzzvvPKKjo4mNjQVos8zeXomr1jraDwsos6feU/bl5eUUFRURGxurzNh2VNN1zJgxREREDLhtGEL0B5vNhsPhYPXq1SQnJ3d6rclk8tnKJUIIMZD0eE+qN0FtaWkhICAAOLE0XV5erlzz9NNPo9FouOeee3xq4/6xY8eUvaHDhw8/K8/Zeg+pw+Fg7969lJaWMnbsWGV53Ftn1LuEb7VaaWxs7DK57ciWLVs4cOAAEydOZNSoUcpji4qKcDqdFBUVKUmqNwn1HgBrPe7uJqjSFlWIE5KTk0lNTe3vYQghxDnhtDNIf3//NvtPvcv5jz76KE888QT79u3zqQQV2rb37G6S2pMETa/XU1VVhdvtZs+ePTgcDvR6vXJYynvQyXsbThyM6urEf2uZmZmsXr0anU6Hn58fkydPVh4bGxurzKTCqTO2p6v11837NWjdlSsyMvK0n1sIIYQQoj1nlEV6k1S1Wk1cXBzPP/88zz77LLt372bixIlna4xnzemUXmovQetMYmIiubm5ANTW1mK325VZTO+MqbdTk3cG9ORZzs7k5uYSFRXF8ePHMZvN7N27l9jY2A7bt3r3y9rt9tOeDW3v69b6uSVJFQNRYGAgb731lnJ7oMfp61hCCNHbzihJ9c6eBgQE8PrrrxMcHMyWLVt8djls+PDh3Z5BzcjI4MiRI2i1WnQ6XZeJbetZy5SUFKxWK5s3b1b2hHq17gplt9ux2+1YrVYqKyupqqoiMTFR2fPWeq9qZmYmFosFrVbLlClTSExMpKqqCofDoSzvn7zc33q/bFZWVo+S7dZObosKZ7eeqxD9ISAggOXLlw+aOH0dSwghettZOXJ/6aWXArBt2zamTp16Np6y33mL17tcLubMmUNCQsIpLU1baz2zCCeSOK1WS3h4OMeOHaO5uVm533sYyntoqrGxkW3btpGdnc3evXuBEwlqXl6eMhtrsVior6/H5XJxxRVXkJKSQkxMDDqdTlnej42NbfNvb8JsMpmIi4vrVrLdEavVSmZmpvL6IiMjGTt2rMyiCiGEEKJXnJVNo1OnTqWurm5QdSFqr3h9Zwec2ptZ9C79R0dHo1arlVlTL+/e1MrKSiIiIqivr0er1WKz2bDb7Wg0GhoaGjAYDCQnJ2OxWEhOTiYzM5Pc3FwSExOZPXu28nwJCQlERkayd+9edu3axdixY5UWpjabjaqqKiIiIjp93R1VGmidhMvsqRgMmpub+fzzz4ETb7R7sy1qX8Tp61hCCNHbztr/wQZTggq0OZ3v1dkBJ+/hJO+Mo8PhwOVyMX78+DbloI4dO8bXX39NUFAQSUlJTJo0iejoaGJiYpTn8s66BgcHK8ni1KlTlVnq9evXY7fbOXr0qLK1oHXymJubi8vlIjc3F71eT11dHfv27cNoNCptTTvSUSIuy/tisGloaODyyy8Her8takdxulP8vyclrfrqNQkhRF84J/8P1lUnqY5mEzuqWdr6+bzlpQ4fPsyQIUMoLi5m2LBhADQ2NrJv3z7sdjt+fn5UV1ezd+9eamtrOf/885k0aRIOh4OcnBwqKipITEzEZDKdMt6kpCSOHj1KdHQ0VquVgoICVCoVNpuNYcOGkZSURHZ2Nv7+/hQXF1NVVUVzczNut5uRI0d2+vpbJ+InVwdonaB2pxsXdK8hghDnGpPJhF6vZ9myZV1eq9frsVgsUntVCHHOOSeT1K50Vbf05LJUfn5+SjLmnXEcNmwYVVVVhIWFYbPZMBgMOBwORowYgcvlIjIykqFDh5KdnU1tbS379+8nPDxc2YuqVqspLi7GYDBgs9kwmUxKkpicnExycjJWq5Xm5mZljN4/fJMnT8bj8aBSqaioqKCmpoYhQ4Yoj9uzZ4+ydWDKlCntvi6z2UxeXp4s8QvRC+Lj47FYLN1qs7ps2TJsNpskqUKIc44kqe3oqm5pYWEhLperzUn5k0/35+XlERgYSGVlJaGhoQCUlZWxf/9+YmJimDRpEiqViqKiIux2O/n5+bz//vuEh4czbNgwXC4XMTEx2Gw2GhoasNlspySK3nEOGzYMvV6vJLgVFRUEBgZSXl6Oy+UiODgYrVaLw+Fgy5Yt7N69G51OR3p6OvHx8cqMsbc6gPd19XSJ/2zVZRXiXBAfHy+JpxBCdOKsnO4fbLwn771tR08WFxeHVqtVTso7nU4OHz5MTU1Nm4NRTqcTt9vN3r172b59O9nZ2ZjNZsrLyykpKeHQoUPExsYyZ84cAgMDcbvdVFdXo1KpaGhowOl0YjKZsNls5ObmkpeX1+m47XY79fX1uN1ugoKCiI6Oxt/fn9LSUsLDwyktLaW6upqgoCAMBgPx8fHKjDH8rzqA93V5E+6TE86OqhycXOFACCGEEOJ0yUxqJ/Lz89stgH9y3VC73U5ISAg1NTXo9XqsVisGg4Fhw4ZRUVFBdXU11dXVBAYGolKpmDlzJjU1NWg0GtxuNyqVivDwcBoaGpg9ezZlZWW43W5yc3NJTk5Gp9Nx/PhxPv30UxYtWqSUw9q8eTNZWVkMGTKESy65BIPBgNFoxGg0EhkZid1uJysri4iICEpLS4mMjKS8vJxZs2ZhMpmA//UkBxg2bFibUlsn78lt/XqPHz9OdXU1Y8aMadN6tbOZ195oSyuEEEKIwUlmUjvRelm/MwaDgaCgIKU+qfd0fkJCAsnJycTGxmKz2fD398dkMjFu3DjGjBkDgEqlorCwELPZzJQpU4iLi6OhoYHS0lJliT4mJoa6ujqCg4MpLi4GTiTQ+/fv59ixY+Tn53P48GElprcNq9ls5vzzzycqKorExESGDx/OhRdeiMlkUsboHYN3b1xeXh6bNm3i6NGjygzryTVSDQaDMuPbeta0o5nX1l9P73YCIYQQQojOyExqJyIiIsjNzW1THqo9Op1OaXPa0NDQpqsUQHh4OMOHD+fQoUPY7Xa0Wi0JCQlMnjyZffv2UVlZSW1tLVOmTCE7O5v6+nrCwsKIiorCbreTkJDAokWLKC4uJiYmhq1bt7Jx40bUajVRUVGEhYVRUVFBfn6+0q3Ky2AwEBERQURERJvk0WKxUFlZSXh4OHq9XplZ9SaQ2dnZSqesk2uk6vV6xowZ0+MDVafTllaI3hIYGMhLL72k3B7ocfo6lhBC9LZzPknt7LCP2WwmLCysw1qDrYvqe4vmh4SEtFkiLy8vZ9euXRw4cACNRkNgYCB2u53S0lKsVquyXzQ2NpZhw4ZRVFSERqPB398fo9GoJLuttxj85z//oaqqipCQEH72s59RUFBAbW1tu52wbDYbjY2NSoUB74Ewp9MJnNg36z3h7/F4lARSq9UqM6XtLeOf/PXqqGxXaz1pSytEbwsICGDFihWDJk5fxxJCiN4mSWo7nZS8iat3P2liYmKbhMxbqunw4cMYjUalqH7r5CwvL085LZ+Tk0NzczMBAQFERkYSEhJCUVERFRUVBAQEEBsby7hx4wAYNWoUjY2NlJSUcOTIESVJzc/Pp7i4GJ1Oh9FoJCwsTHnM/v37yc/PZ86cOW2SRTiRPHpfQ+vSWjqdjry8vFNmXr3JcGc1Uttzctmu1uMYbI0ehBBCCNH7zvkktb1ZQm/impeXR1RUFBUVFW0e492rCtDU1ER0dPQpz+tNUKurqxk3bhyZmZkMHTqUoUOHYjAYqK+vp6mpiaFDhzJ//nwA9u7dS1VVFXV1dbhcLoqKipQyVLt376a8vJzAwEAMBgOXXXYZo0aN4vDhw+zfv5+AgADKysooLy+nvr5eqQ7gdruJiorCYDCQnp5OWlqasgxoNpuprKzE4XC02+a1J0v5J5ftstvt1NbWYrVaSUhIkERV+By3201aWhoAc+bMUba3DNQ4fR1LCCF6mySpHSzz5+fnM3ToUGUJvHWHpbi4OIqKipg0aRIxMTGo1epTOjDFxsYqbUm1Wi1XX301KpUKjUaDy+Vi9OjR2Gw2ZsyYgVarpaKigrKyMurr65VC/EajEZ1OpzQFcDgceDwepfNVUFAQzc3NGI1GbDYbgYGBuFwuysrKOHLkCBEREQQGBhIdHY1eryc/P5/m5mby8vJISEigvLyclJQUZWbV+xqysrLIzc0lOjpaqaPauhyXx+PB37/tmTvvmKxWK3l5eej1ehoaGtBoNB02RTh51rer7QIgHazE2eNyubjggguAEy1Ee+uNVF/F6etYQgjR2875JPVk3n2dJpNJSUC9XZ+8CZR3STwzM5Pdu3eTlJSE2Wxuk3R5Zw8tFgtutxun08mIESOUmQ1vnK+++or09HQmTpzIkCFDKCoqws/Pj7CwMEJCQrBYLAwZMoTm5mbq6upwOBwcPXqUjIwMLr/8coYMGUJ8fDxDhw5Fp9Oh1WqVslJOp5OxY8dy8OBBCgsLCQ8Pp7i4mMTERMLCwkhMTCQ+Ph69Xq8kf/n5+axduxY/Pz/Ky8sZOnSocso/Pz8fh8NBfHx8u9sfdDodR48exd/fn4SEBCUB7ugPZestAkCnXb6EEEIIcW6RJPUk3sQJUBJU7wGpxsZGoqKiiImJwWw2U1xcjFarpbKyss1jvYmWwWBQrnM6ndTU1BAeHs7WrVuV5/S2PK2rq2Ps2LEAVFZWUl1dTVxcHAUFBXz11VcEBQUREBBAXV0dtbW1qNVqvv76a66++mrOO+88ysrKGDJkiHJKv7KykujoaPLz8ykpKcFoNCqlqMLCwkhNTaWxsRFAKT+l1+s5cuQIdrsdq9XKqFGjlK+B9z63231K9ytvaam8vDx0Op3y+r0fHWlvi4DM/AghhBACJEltY/fu3aSnpzNs2DDOP/98dDod+fn5pKWl0dDQoCxfu1wuwsLCCAsLU9qXemdRAaqrq8nOziYmJobk5GQcDge1tbVUV1fj8XhIT0+nurqanJwctFotRUVFSgH9qqoqXC6XUjJq06ZNaLVa1Go1sbGxxMXFUVlZyaFDhwgKCqKqqooZM2YAJ2ZnvW1UIyIiCA0Npbm5maCgIFQqFY2NjTQ3N2O1WqmurgZO7GGD/y3Xh4WFYTKZlML+rWeIvc/Reunf4XCg0+lwOp3KISzvbHNXJ/5PTmJlBlUIIYQQXpKktmKxWGhqaiI/P59JkyYBJw5ARUREUFFRwdixY9Fqtco2AO+Jfo/HQ1ZWlnIAq7i4mOrqapxOp1JY35vAajQaEhMTSU9PJzk5GafTSWJiImq1WunIFBgYSFNTk7LsX15eTnJyMhdddBF6vZ7PP/+c+Ph4ZYl++/btAISFhVFUVERWVhY1NTVER0czefJkCgsLlW0G3hnX0NBQqqurOXDgAKWlpcyYMQOTyURERAQjR45Eq9Wi1+uxWCwAhIaGUlVVpSTRDodDmU2NiYlh2LBhp+zttVqtnS7hd6dsVXukc5UQQggx+EmS+v9ZrVa0Wi379u2jqakJk8nE+eefr3SRmjt3bptWqK0fV1BQwNdff43VamX48OFERkbicDiIjo7GarViMpkwmUzY7XacTidz587FbDZTUFBASEgIISEhuN1uDh06hE6no66ujrCwMDIyMpTHRkREKPtT7XY71dXVGAwGysvLaWxspLGxEaPRSHp6Ojk5OTQ1NbF+/Xo0Gg1hYWFUVVUREBDAjBkzqK6uVpb6i4uLaW5uJj8/n1mzZuF0Oqmrq8NisVBTU6OUroITNV9bWlo4evQoMTExysn9jpbpT17OP9nJ2yNa8+5zPbklLbTtXCVJqhBCCDE4SZLKiRm9rKwsYmJiMBgMqNVqsrKyuOSSSzCbzUqS1F7hf6vVSl1dHYcPH8bpdNLY2MikSZOwWCxs27aN4uJipk2bRkJCAh6PB41GQ3V1NWq1GrVaTWNjIyEhIQQGBlJfX09lZSWBgYGUlpYyYsQIjh07hp+fH/v27WPEiBFs27YNq9WKy+ViyJAhyn5Tg8FAQ0ODUk3AarXi5+fHzp07mTlzJjU1NQQFBXHs2DEqKyvJy8sjJCSE8PBwqqurlTatJpOJY8eO0dzcTFFRkfLaNRoNo0ePVioNaDQapfuUN8E8eWa0p3tSWyssLKSkpIRjx44pe3u9pHOVEEIIMfj1e5La0tJySjmjvma325Xl72nTplFQUMCECRPa7L2E9gv/6/V63G43MTEx1NTUYDabqaiowGKx0NzczPHjx5VDVHq9nsLCQqqqqjAYDAQEBBAUFERNTQ0Ax48fp6qqiujoaFwuF3a7HY1Gg1arJTg4GLvdzpEjR6iqqiI0NJSamhrUajVDhgzh8OHDyvPExcVht9txOBw0NDQAJ7YCeEtSZWdn43A4KC8vJyEhgTFjxuB0Ovnss88ICAjAYDBw/PhxYmNjlX2qDQ0NTJ48Wdne0F4pqM5mRtvTWRIbFxfHsWPHCA8PP6WOrXSuEmdDQEAAzz77rHJ7oMfp61hCCNHb+i1Jzc/PR61WExMT019DUBgMBuXke+uk6eTap+0V/jcYDKSkpBAaGkppaSnBwcHKloG6ujrGjRuHv78/NpsNnU7Hrl270Gq1JCUlMXfuXEpKSqipqSEtLY3c3Fz8/f2V2qdGoxG3283mzZs5cOAAiYmJ+Pv743K5KCkpISoqiujoaAoLCzl27Bhut1sp+N/Q0MDo0aOJiIggKiqKjIwMSktLiY2NZcKECXz33XcEBQVRVlZGQkICmzZtUmZyL7zwQjQaDVFRUWRmZpKSksKwYcO6TDw7mxntrP1se7wlvE7+egtxtgQGBvKLX/xi0MTp61hCCNHb+iVJTU9PZ8GCBbz00kvccMMNp/Uc3tP2XrW1tac9nq6Wpb066lcPkJycTHx8PNnZ2bS0tGAymZgwYQKjR48GQKfTkZWVRW1tLdu2beOzzz5jwoQJzJ07lyNHjuB0OnE6nURGRjJ16lQ0Gg2ff/45a9eupbi4GDjRkQr+Vxpr9+7dqFQqDh8+jNvtxmg00tLSolQfGD58OOHh4aSnp3Pw4EEAjh49yvLly5k7dy6HDh0CTvxhq6mpITs7m6CgIBoaGkhKSqKgoAB/f38qKytJTk7GYrGQm5tLYmIiycnJpySe3q+jt1JB6wNRVquV0tJSjhw5wsyZM7uVePa065UQQgghBo8+T1L379/PrFmzuOuuu05JUDtaRm7P008/zWOPPXZaYzh5hrQjrbci2Gw2paap3W4nNzcXOLH0bLPZOHz4MMHBwcqJem/S7HK5aG5uprS0FKPRSFhYGEajkfr6eoqLi8nPz1f2vYaFhSlje//991mzZg0tLS1ER0fzxBNPcOzYMdauXUtGRgY1NTVs27aNnTt3Ko0Hxo8fT3BwMDabjfj4eFJTU8nOzsbf3x+NRoPD4SAsLIzCwkKSk5Npbm7Gz8+PoKAgRowYQXBwMLW1tUyePJmoqCglCS8pKWH79u1kZmaiUqnw8/NTOmZt3ryZ7OxsLrnkEhYuXEh6ejp79uwhKiqKpKQkZQbWbDaTm5uL0Wg8ZXa0ve97eyf/u/t9A+lMJbrmdruVN36pqam92ha1L+L0dSwhhOhtfZqkHj58mOnTp/PQQw+xatUq3G4327dvp7y8nKSkJFJSUrr9P9WHHnqI+++/X/l3bW1ttw/SdDeB8ff3V6711h8tKCigtLSU6upqtm7dqox90qRJlJWVER0dzdSpUyksLKS8vJx9+/aRkJCA0+kkPj6e4cOH4/F4OHDgAEOGDKGpqYmysjKSkpL49ttv2b9/P6+++iplZWUALF26lD/+8Y+EhYUprzs7O5u1a9fywQcfkJmZyfHjxzl+/Dj79+9n6NChqFQq3G43LS0teDweXC4XDQ0N+Pv7K4leYGAg1113Hddffz2BgYGkpKSQlZVFdHQ0TqeTY8eOKRUEmpqacDgcuN1uqqqqsNvtfPbZZ9TU1LBjxw5lVnfRokUcPnyYxsZGsrOzGTt2rLI/1Ww2M2PGjE6X71snpj3d3ypET7lcLqZNmwb0flvUvojT17GEEKK39VmS2tDQwOOPP47BYGDx4sUAXHPNNRw9epSysjKqqqq4//77ufPOO7t1KEaj0aDRaHo0hvLy8h7ti/TytjB1u93o9XoiIyNpaGggNzcXp9NJYGAgqampDB8+vM3Wgfz8fHQ6HbW1tZjNZvbv309zczNxcXFcffXVaLVa8vLyaGxsJD8/nz179rB161YaGxsJDw/nz3/+M9dee+0p4xk1ahQPPvgg999/PwUFBXz44Yd8+OGHHDp0iIKCgm6/rldffZU9e/bwu9/9TqnVWltbS2BgIJmZmRQWFhIQEMD48eMpLy8nNjaWw4cPo1Kp+O6774iIiFCS3pEjR+JwOIiMjKSkpITk5GSCgoIwGAxtkk/vvt7MzMxTvg+tE9OuylcJIYQQYnDrsyRVo9Fw++2309TUxAMPPEBxcTGjR4/mrbfeIikpiQ0bNnDPPfdgNBp59NFHe7T0313tnc5vz8lLzd7T/yaTSalNGhkZycSJEzl06BDjxo1j8eLFFBYWUlRUpDxPVFQU2dnZymypn58fLpeL2tpaQkNDsdvtyp7Rzz//nNLSUgAuvfRS/vrXvxIdHd3laxo1ahQPPfSQMsOalpaGSqVSkniNRoO/vz8Gg4HAwEClWsDmzZt56KGH2LVrF1dddRULFy7kRz/6EQaDgcbGRurq6qipqSE0NJSioiJ0Op1SB7a4uJjo6Gj27t3L8OHDGTNmjDITXFRURHNzMy6XCzhR7xROVBewWCzK3luj0UhlZSUGg0GpotA6MfV+3fPy8pRk1ul0tlv8PzMzkyNHjgAn3ohoNBrmzJkjFQCEEEKIAaxPl/vnzZuHn58fTz/9NElJSfzlL39hxIgRANx8882UlJTwzDPP8LOf/Yzw8PCzHr+90/ntKS8vp66ujqCgIADlgFFiYiIGgwGDwUBdXR3z5s1j0qRJxMTEsGnTJvbv309cXBwul4uhQ4diMpkoKChQElSPx4Pdbic4OJj6+no8Hg8bN25kw4YN1NfXYzQaef7557nhhhtOq3zMqFGjGDVq1Cn3u1wuAgMD29w3evRo5syZw/Llyzl06BAfffQRJSUl3H333UyePJmwsDByc3Nxu93Y7XYlwR01ahSTJk0iIyMDnU5HUVERDQ0NZGRkEBkZydGjRzEajRQXF5OTk4Ofn5/SerWkpAStVovL5UKn0yn750aPHo3ZbMZut2O1WoETh9m8byry8/MBlJJcJ28BOHLkCA6Hg0OHDqFSqVCpVCQkJEiSKoQQQgxgvZqklpWVUVRURGVlJTNnzsRoNDJ37lz0ej3Hjx8nPj4e+N8BpZCQEOLj45Xk8GyLjIwkMjKyRwdwiouLaWhoUPZkemfybDYbQ4YMwe12U1ZWRnp6Oi0tLWRkZDBhwgR27NihnKgPDw/HZDIpJZ6KiooYPnw4L774IllZWQDMnj2bN954gxEjRuB0Onvl9Z8sJSWF7777jkceeYRXXnmFXbt28fvf/57XXnsNu91OUFAQOp0Og8FAVVWVUq3AbrcTFRUFnNjbGhkZicvlIiQkhLlz5yr1WvPz8wkICCAlJYX6+nrKy8sJCQlh6tSpREZGsnfvXlQqlfLGwWq1Ul1dTUVFRZutAQDNzc3A/yobtJaUlMSRI0eYNm2aMpPa3v5ku92ufP9kG4EQQgjh23otST148KByKOfAgQMsWrSIp59+mgkTJjB16tQ2J+e9/7VYLCQlJdHc3Ixare6zE9onL+9HRka2SWScTidRUVHk5eWxc+dOJk6cSHJyMuXl5RQUFOB0OtFoNDidThISEqitrWXnzp3k5eXR3NzMNddcg9lsVvZbRkdH8/nnn5OVlaXMLN977739chJXq9Xyhz/8gXnz5rF8+XIyMjJYsWIF119/PcePH8fpdBISEkJcXJxS8qu4uBi73Y7L5VJqs06fPh2TyaTsyf3666+pra3FaDSSkJDAV199RWRkJGFhYUoXq9GjR7eZ2XY4HEpnrfLycgwGg3Kt3W4nJCSk3UNUKSkppKSktLmvq2YDkqQKIYQQvq1XktScnBwuvfRSfvzjH/OjH/2IxsZGFixYwFtvvcULL7wA0KbLVGFhIa+99hr/+Mc/2Lp16ymdnnpb6+X9hIQEJdHyeDwkJCQoidKaNWtoamoiKyuLKVOmkJCQQEVFBUeOHGHChAkEBgZSUlJCQUGB8hqCg4MpKSmhoaGBgIAApQrAZ599BsDvfve7NlUK+suVV17Jf//7X5YuXUp6ejqFhYVMmDABrVaLXq9Ho9Eoy+fe5NRms+HxeHA4HDidTurq6pQyXWFhYfj5+TFixAjsdruyzB8bG3vKQSrvzLbT6SQuLo6mpiYAJaH01mD1xmpvX2p3yGEsIYQQYuA460mq0+nkD3/4A5dddhm/+c1vlD2Cv/71r3nxxRdpaGggMDBQmenav38/9913H/n5+WzevJmxY8ee7SH1SOsC9SaTqc3nxowZQ1ZWFmPGjMFqtZKdnc3x48cBqKysVJb0CwoKiI6O5qqrrsLlcqFWqykpKSE4OBiz2cxjjz1GY2MjV111lU91h5k7dy5ffPEFixcvpqKigp07dzJ58mSOHz9OcHAwH3/8Md999x2hoaFoNBoCAwPZuXMnQ4YMIS8vD61Wi9vtprKykhEjRhAXF4fZbFZO8gcGBpKQkIDVaqW2tpbt27fT0NCgzIR6l+jj4uKIjIxsN6E8k9JUsswvWgsICGDVqlXK7YEep69jCSFEbzvrSarb7aaxsZG5c+e2OawTFRVFZWUljY2Nbe6fOHEiv/zlLxk9erRyiKqvtV7ez8vL4+jRo+zevZu5c+cqs6gAU6ZMYcqUKcqydEFBAX5+fjidToKCgsjJyeHYsWM0NjZSVFREREQEISEhlJaWkpaWhlqtZu/evZSVlTF69GjefPNNnys6P23aNL755hsWLlzI8ePHOXDgAHBiid/Pzw+9Xk9oaCjDhw9HrVYzdOhQamtr0Wq1qNVqbDYb9fX1wIkld6vVqiSTer2eLVu2sG3bNurr61Gr1QwZMoTc3FxSUlLazFp7r/ee3E9KSiI5ObnL2dDWM62SkIrOBAYG8tvf/nbQxOnrWEII0dvOepJqNBp58sknlfJJbrcblUpFVFQUERERGI1GJTGzWCwkJyezaNGisz2MTnV2cMpsNrNnzx40Gg3FxcUMGzaMw4cPc/ToUUaMGEF8fDwFBQUEBgYSEhJCSEgIQUFB5ObmUlNTQ0lJCbW1tURGRpKTk4PZbCYuLg6Px0NpaSllZWUYjUbefvtt/Pz8qKurO2UMFRUV3dryYLPZMBqNXV5nt9uJiIjo8rrm5mZMJhOJiYl89tlnXHnllRQUFLBlyxblmqCgIOLi4sjNzVUOoY0ePZqwsDC0Wi1VVVVEREQoB68qKysxm83Ex8dTUVFBeno6GRkZhISEMGLECKUzVUffE28t2tzcXMaMGYNOp1O+Nq0fY7PZyM/Px+l0MnToUABJUoUQQogBrFf2pHoT1JaWFuUwUEtLC7W1tTgcDgwGA4888gi7d+/m/fffJyQkpDeG0aGTZy9bLyF7yxwdOHCAtLQ0du3aBaB0W4qIiCAgIACj0ahsTaivrycgIIDNmzcrZZvKy8txOp1UVFQAJ8ovZWZmAvDKK6+QnJzc4fjUavUpJaM60npvb2e6u/Tnfb6RI0fy9ddf8+abb5Kens6BAwcoLi6mrq6OzMxM5bV4n3vt2rU8/fTTpKSkYLVayc3NpaysjPDwcPR6PQ6HQ5nltNvtlJeXM27cOBYsWIDD4cBisbTbZCExMZHc3FwSExPx8/PrcObZarVSU1NDY2MjDQ0NkqCKLrW0tGCxWABITk7u9u9Sf8TxPr4zJpOJ2NjYPnlNQgjRF3q1BFXr/0F6C8Sr1WpWrVrFs88+y/fff9/nCWp7Wi8hf//999TU1FBQUEBTUxPl5eUkJycrS/fe5Md7cMdqtVJXV0dVVRXTp09nz549VFVVoVar8Xg8BAYGUltbqxS1X7lyJVdccUU/vtrui46O5te//rXy74qKCg4ePMi+ffvIysriwIEDWCwWmpqaOHDgAEuXLuV3v/sdISEhHDx4kNDQUPLz8znvvPPYu3cvarWa2NhYjh49SkhICNnZ2Xz77beUlJQobV9PTlJbn9zvbAZcr9fjdruVx+/Zs4e4uDiplSo65HQ6GTduHABbtmzpdPWiO0lid+L0tFWpt2LGsmXLurxWr9ezZ8+e044lhBC+5qwkqd3pDqXRaEhKSlIOUG3fvp0pU6acjfBnrHUrU61Wi0qlIiUlhWPHjhEUFMT48eMZO3ZsmxJLXgaDgYqKCoKDgxkzZgwXXHCBUlxeq9Vy4MAB9u/fj8PhYN68eW2SvrMpNzeXTz75hAMHDjBx4kQuvvhiRo8efVb3vEZERDB//nxmzpyp/EFvbGwkKyuLhx56iK+//poHH3yQH/7whxiNRtRqtbLM73A4qKioYOjQocyaNYsDBw4QGBjIN998Q3R0tLKPuae8B90Axo8fj1qtJisrC6fTSWFhoSSpoltmz57d5TV6vf6Uw5S9LT4+HovFgs1m6/Q6i8XCsmXLlJUbIYQYDE47SbXb7bS0tODxeAgODu7y+paWFnbv3k1ubi7btm0jNTX1dEP3qsmTJxMbG6vMyNlsNiXB8iZm3jJL3tJIMTExyh+HKVOmEBoailarZfv27WRnZ2O32xk2bBivv/76Wa2F6nA4+Pe//83HH3/cZqbnm2++4U9/+hOxsbEsWLCAiy66iCFDhvTKIa3AwEAmTJjAf//7X370ox/x3//+l3feeYdFixYxffp0UlJSCA0NZf/+/dTU1JCbm8ucOXOYNm0aO3fupK6ujubmZqZPn65sBYiMjAToVqkpb1cq7yyq3W7H6XTicrna7b7VkfLycqWqgze+OHe88cYbTJ48udNrTCaT0oCkL8XHx/dLXCGE6G+nlaRmZmaycuVKrFYrZWVlPPvss9x0001tZlRbF+sHGDp0KFOnTuXtt98+pfC6L2m9L9Lj8WA2m9myZQsul0s5sX/8+HFln+T333+PzWYjOjqa6OhoNBoNM2fORKvVcuTIEWw2G1qtlvfff79bh5e6w+128+9//5unnnpKmWFRq9XMnj2b6dOns3v3brZs2UJRURFvv/02b7/9NklJSVx33XUsWbKEmJiYszKO1jQaDe+88w4mk4nXXnuNjRs3Ul5ezjPPPINOpyM4OJhjx45hMpnIz88nLCyM8ePH43K5iImJwePxkJ+fr3S4AqitrcVqtSq1a9vTutVt69ut67p2hzfZtVqtbZJkqRRwbhgzZozPvnEWQohzVY+T1MzMTObOncstt9zC1KlT2bNnD7fddhtjx45l0qRJynXeBPXjjz9m2rRpJCQkkJaWhkajOWuD721Op1M5GV9RUUFsbCwGg4Hc3Fzlv/v370elUlFcXMzs2bMJCwsjKSkJh8OhnNy/+uqrSU1Npba29ozH9O233/Lb3/5WObgUHx/PHXfcwcKFCwkNDQXg9ttvx+FwsGXLFj799FO++OILjhw5wtNPP80zzzzD+eefz9KlS7niiivOauMElUrFn/70JxISEnj00UfZvXs3N910E0899RSpqalERERw9OhRPB4Per0es9nMxIkT0el0SgOExsZGJTFsaGhAo9F0WhPVm5w6HA7y8vJwOBzK/T3ROsH1kg5VQgghRP/p0dHPyspKVq5cyU033cQf//hHfvjDH/KHP/yB888/n7///e9A28MtGzZsYMWKFbz44ou43e5un1j3Fd4kxWQyMXv2bBISEjAYDISGhlJSUgKcmIEJDg5m8uTJREREKLOUR48eZefOnQCcf/75ZzyWnJwcli1bxtKlS8nMzCQkJIT777+fzz77jBtuuEFJUL30ej2XXHIJL7zwAps2beKFF15g5syZeDwetmzZwj333MPUqVN57rnnlD2dZ4Ofnx8rV67k22+/ZdSoUZSVlfHjH/+YX/ziFxQVFVFdXU1FRQXbt2/Hbrdjs9k4fPgwRUVFGI1GYmNjlTcyCQkJlJaWsnnz5jbVBLwcDgdWq1WpGlBXV4dGo2HYsGE9XrKPjIxk7NixbR7nTZS9M6pCCCGE6Ds9SlKbmpqorq5myZIlwIklfYDhw4dTWVkJtC3vdPnll3Pbbbfx4x//GJVK5XOF67tiMBhQq9VtZtHsdjtutxudTkdAQADz58/nhhtuYMiQIQDodDoqKiqor6/nyJEjwJknqe+//z7z5s3jyy+/RK1W85Of/ITt27dz8803d2tm2mg0cuONN7J27Vp27tzJgw8+qOyj/cMf/sDUqVP5+c9/TnZ29hmNs7XU1FS2bt3KHXfcAcCmTZv405/+RHl5OQ0NDTgcDj755BMyMjKoqKigsbGRyspKioqKyM3NBU4k2lVVVbjdbqVeal5enjJj6n0TUV5ejt1uR6VSERQUdNZmPb3L/N7ZXCGEEEL0nR4lqUOGDGH16tXMmTMHOLE3EiAmJuaUenzV1dUAPP744/3WSepM6XQ65XCUl8FgIDIyksDAQGw2m1J+ym63U1paytGjRwkMDOTrr7/G5XIREhJyRq1e8/PzefDBB3G73SxYsIBvv/2WJ598kvDw8NN6vvj4eFauXMmOHTv429/+xuTJk2loaGDNmjVcdNFFXHPNNXz99dedlnvqLoPBwMsvv8y6deswmUxUVFTw0Ucf0dDQoGyFsFqtqFQqKioqqKqqora2FpvNppzaHzp0KAaDgaFDh7J37162b99OXl6esgSvVp/YsaLRaDCbzZ3uXz3d1yCzqYNTQEAAN998M4Dyc9RbcR544AEeeOCBXm9Vqlar+yyWEEL0th7/n3nkyJHAiVlU7/8EPR4P5eXlyjVPP/00Go2Ge+65p1f/53+6upuAnXz4C04krmPGjMHPz4/q6mrq6uowm814PB48Ho8y8+qdRZ0xYwZutxu3201dXV23tjwUFxej0WhoaWlhxYoVOBwOJk2axBNPPIG/vz/5+fnAif3B3ZlJbW5upqam5pT7x4wZwwsvvMChQ4d4//33SUtL44svvuCLL75g1KhR3HzzzVx22WWn/LFzOBzKzHFXcSMjI7ngggvYtm0bd911F5s2bWLNmjVcfvnljBw5ksbGRsrLyxkyZAgBAQG4XC6Cg4MpKyujsrISg8GA0Whk586daDQadDodTU1NGAwGpftU6zq33u9Dd4qYd1Q6rXVZK6+wsDDZmzrIBAYGct999/Huu+/2akIXGBjIc88912vP31pAQECfxRJCiN522hmkv79/mz/y3qTg0Ucf5YknnmDfvn0+maBC2y0Ju3fvJjMzk5SUFKZOndrmOn9//w63KERERODxeAgJCcFutyu1Uquqqjh69CilpaXAifqL3rJTRqOxW38MtVotWq2Wf//73+zZswetVsuTTz55SoLkdDq7NWvYVXI8ZcoUpkyZwsGDB9m8eTNr164lOzub3/zmN/z5z3/msssu4+KLL2bixIn4+/u36STWGbfbrXz9oqKi+OCDD3jooYd45ZVX2LBhA/X19Vx00UX4+/sTGBjIlClT0Ov1ZGdns2fPHkJCQjCZTOzbt4+ysjLCwsK45JJLiI+Pb/O6T65d652Jba+DVXu8San3+qysLMrKypQi7N7yVpKgCiGEEH3njLJIb5KqVquJi4vj+eef59lnn2X37t1MnDjxbI2xV2VmZlJfX09mZuYpSSpAXl4eOTk5hIeHk5ycrCRDdrudjIwMXC6XkrAfPnyY2NhYKisrOXbsGACzZs06rXEVFRXxxz/+EYD77ruvT+okRkdH8/DDD7NixQo++OAD1qxZQ3l5Oe+88w7vvPMOQ4YMYcGCBZx//vlER0f3uOarv78/zzzzDNHR0Tz66KNs3ryZ8vJyfvazn6HRaJSi/9XV1QQFBVFTU0NsbCwulwu3282IESM6bQCRl5dHUVERLpeLiIiIU07rt+bd02owGNqUnzKbzTidTmprazEajco2AqmdOvi0tLQoByC9++t7K05BQQFwYrtNb7YqbWlpUbrb9XYsIYTobWeUpHr/BxgQEMDrr79OcHAwW7ZsGVD1BlNSUpSZ1PYUFRVRU1NDZWUler0enU6H0+kkNzeXoqIiAEaMGIHL5SI6OpqysjLy8/Oprq4mMDCw3cS3Ky0tLaxatQqn00lqaio33njjGb3GngoJCeHHP/4xt9xyi7IFYPPmzZSVlbFmzRrWrFmD2Wxm0aJFXHbZZUybNq3bs+Z+fn7cd999REZGsmLFCjIzM3nllVe49957lfJR3uR3zJgxAIwbN47jx48TEhKC1Wpts7zfega1qKgIp9OplK7qbBa1dXkpvV7PoUOHgBOzsrGxsQQGBhIZGenTNX3FmXE6nUqL4oaGhl6N463Z29utShsaGvoslhBC9Lazsh5/6aWX8pvf/IZt27YNuD/qU6dO7TSRjI2Nxel0UlZWxoEDB2hqaiIiIoLCwkKlooFer6e4uBin00lERIRSLmnKlClotdoej+nDDz9k586daLVafve73/XbbEhAQAAXXnghF154IY2NjWzbto0vv/ySr7/+GqvVqsywRkREsHDhQu655x6io6O79dw//OEPMZlM3HLLLRw8eJCHH36YCy64QNnze+GFF1JbW0tTU5OyN9jPz0/ZK9o6wfQKDw9Xmix4fw5bz5h6r7VareTn56PX60lISFBea1NTE4WFhUyZMkWW94UQQoh+dlaS1KlTp1JXVzco/6gnJCSQkJDAl19+SU1NDfX19TQ2NqJWqzGZTGg0Go4ePUplZSXNzc1UVlbidDoBSEpKOq2Yb731FgD33nuvz7RDDAwMZP78+cyfP5+Kigry8/PZuHEjn332GRUVFaxZs4bPP/+cv/71r8ycObNbz3nJJZewYcMGrrvuOsrLy/n8889ZuHAhpaWlOJ1OLBYLDocDtVrNiBEjOHr0KFarleTkZCIiImhoaGiTfJrNZsLCwtrM6rYuU+UtKeWtKAAoj42Li6OyspK4uLhT9rh2x8ndqaTNqhBCCHFmztoU3WBMUFsbOXIkUVFRzJo1i4kTJ5KQkEBUVBQRERHExcURFBSkLBl6259u3Lixx8uI3uTGz8+Pa6+99qy/jrPBWx/22WefZc+ePaxevZqUlBRsNhs//OEPef3117tdQWHq1Kls3LiRoKAgqqurycrKIiQkhMzMTLZv387nn3/Opk2bqK+vJzAwELVaTUlJSbv1S9ura9u6TFVzczN79uxhz549FBUVKdsBvDOykydPVmZWe6r19gFo22ZVCCGEED13zu2qt9vtSpei7rBarVgsFgwGA6mpqZhMJmWmNDExkcsuu4wlS5bwgx/8gFmzZhEYGMioUaMwGo1UVFSwfv36Ho3Puzfy5BPsviogIIC5c+eydu1arr32WtxuN7/73e/42c9+1u26omPGjFFmj9PT09m7dy82m61NJ6nq6mpSU1MxGAyEhYVRUFBAVVVVm4TU22rVbreTmZmJ1WpV7ouMjEStVnP8+HGlwoLJZALOTkJ5coJsNpu73BcrhBBCiI6dk0lq6xmvrthsNhoaGrDZbMpjvR2RWpeA0mq1xMbGEh8fj8PhIDExEUBpF9td3iR11KhRPXpcf9PpdLzwwgv87ne/Q61Ws379epYsWUJOTk63Hn/11Vfz4IMPAvD111/T0NDA7NmziY6OxmQyERgYyMiRIwkLC2PXrl3KCWa9Xt+mPSq0n3Tq9XoMBgNRUVGoVCrl+wOnl1CWl5eTkZGh1Af2NnnwJqnttVkVQgghRPedc0lqe0vCnfHuO3U4HKSnp1NSUkJiYiI6nY7Y2FgcDgdHjx6lqamJhoYGYmJiCA4OJiYmBoCvvvpKKUfVHRkZGcDAS1LhxMn9W2+9lffee4/IyEhycnK44IIL+OSTT7r1+Mcff5wFCxbgcDh46623SExMJDk5mZEjRxIUFEROTg5paWnU1tZSVlYGnCghtnXrVrZu3YrFYiEvL4+jR49is9naJJ0Oh4O8vDyGDh3K/PnzSUhIUOqpwom9xz1JUmU5XwghhOhdvlltvxedXLaoKyaTCZPJxNatW/Hz88PpdJKcnIzJZFJKIYWEhFBXV8eoUaMoLi4mKioKo9FIZmYmeXl5/OMf/1BKSjU2NnYa78CBAwAEBQWRnZ3d6bV5eXkUFxefcn9zczMNDQ3KR11dHV999RUul0u5z+12ExkZydChQwkNDcXPzw9/f3+lU1ZnAgMDqa2t7fDzBoOBP/3pTzz55JNkZGRw4403cscdd3D33Xe3W1vV4/EQFxcHwBtvvMHcuXMpKCjgF7/4Bddeey1qtZqmpiaKi4uJi4ujpqaGCy64AIDGxkZKS0sxGo3U1NTQ2NioNE3Izs7mX//6F4mJiYwdOxatVqsctvLOildVVSndpHQ6Xbuvp70OVmazWTkYdTotZDtqEiH6jlqt5rrrruM///lPj2v+9jTOXXfdpdzuTSqVqs9iCSFEb/PznI0m7T6gtraWkJAQampqCA4OPivP2fpLk5eXR2FhoVInNTQ0lKioKCXh8bLb7RQWFvLpp5+SnZ3Nf//7X2JiYjh27BgOh6PT5KSxsZGhQ4fS1NTEP//5T6Kiojod3zfffNOmPenu3bv517/+1ePDWjqdjujoaIxGI1OmTFEOgnWkqampW00KqqurWbduHW+//TYAc+bM4Y9//CNhYWFtrnO73cTGxir/Tk9PZ8GCBTidTiZOnMiFF17IqFGjCAsLIzY2lpiYGOLj47HZbNhsNkpKSigvLycyMpLy8nJycnKIjIyksrKSxsZGtFotN9xwg/L83iX4kw9debcOnFyyqqP2qWeir5PU7v5+9MbvkS/bu3cvU6ZMYc+ePQOqvvPJBsvr8HXn2u+HEP1N3mp3k7cU1e7du6mtrcXlcpGYmIher6e8vJzMzEyCgoIwGAzExcWxZMkSMjIy2LhxI8XFxXz++efMmTOn0xjZ2dk0NTWh1+vbJJ/d0dTUxLp169okqN5e9y0tLUr3JO8HQFlZGeXl5TidTo4ePQr8byY3NDSU2NhYhg0bxrRp007rEJdarebXv/41EyZM4OGHHyYtLY1rrrmGN998s82e0JNNmjSJv/3tb9xyyy3s37+f1NRUPB4PjY2N1NfXK3tPvQefjh07RlhYGLm5uRQXF1NRUYHb7SY8PByDwUBiYiKRkZFYLBaKi4uJiYlhypQp6HS6U5LFk4v8CyGEEKJ/SJLagdZ1Lr11L728h2T0ej27d+9m3bp12O12mpqaGD16tLK0rNfrmThxIjt27ODNN9/sMkn17kcdPnx4j2fatm/fTnV1NaGhoTz44IMYDAZlifr777/vsN6qt4ZoaWkpubm51NfXU15eTnV1NdXV1Rw6dIi0tDR+8IMfnHajhiuvvJJRo0Zx1113UVBQwE9+8hM++OADpVRXe37wgx+QmZnJM888w5o1a0hKSkKv11NVVYXJZMLhcOBwOCgsLMTf35/MzExcLpdywC08PJzZs2crbVQdDgf79+/HZrPR1NTUYXvV1t2sxODm8XioqqpSbvdmHJvNBpx4Y9Wbs+gej0fZJ93bsYQQordJktqBkw/G1NXVASf+xz9s2DAlibFYLBQWFpKVlUV0dDTBwcEEBARgs9nQ6/VceOGF7Nixgw0bNlBWVtbpEv7BgweBE21We6K5uZkvvvgCgAULFnS6VH8ytVrN0KFDGTp0KNHR0YwbNw6Xy0VxcTGFhYXs3LkTq9XKW2+9RWpqKldfffVp7XUbM2YMH3zwAUuWLKGgoIA777yTd999V5nVbc8jjzxCZmYmH3/8Mc8++yz33nsvVVVVtLS0EBERQV1dHXl5eTQ0NBAZGYnH48HlcpGQkEBQUJBSacFbaN9oNGK329FoNEp7Vb1eT15eHjk5OYSFhZGSkqLsN927dy8Ao0ePllJSg5DD4WDBggUAuFyuXo3j3WLS261KXS5Xn8USQojeNuhP99vtdsrLy7tdcsrLbDZjs9nIzc3FarUSFBREUFAQkZGRSsJitVpJSEhArVYTGxurlDFSqVSEhYXh8XhYvHgx48ePp7m5mc8++6zTmPn5+cD/lrG7Kzc3l6qqKoxGY7f2inZFq9WSmJjI/PnzWblyJfPmzcPPz4+9e/fy4osvKifreyo8PJzXX3+doKAg9u7dy6OPPtrpDJa/vz+vv/4648aNo6amhldeeQWLxcKhQ4dwOBzU1tZiMBiIiIggOjqaoUOHMmPGDOLi4pT+5fn5+VgsFioqKoiJiSE8PBw48abD+zNRVFREXl4eX375JV999ZXSNjU7O5v8/Pxun+C3Wq1KfVbglNJYQgghhOi+QT+T2nqPYU9mFSIjI9FqtQBUVFScstTtfd4xY8awZMkSduzYgdlsZtq0adTV1VFTU0NDQwM5OTnExcVx8ODBLktRTZ48mY8//lipldqT1wgQFRVFYGBgjx7blYCAAC6//HLGjRvHmjVrsFqtvPLKK4SFhTF//vweP19iYiIvvvgiP/rRj/jwww9JTk7m5ptv7vB6o9HIhx9+yJIlSzh48CDffPONstfWZDKxa9cu5WtdW1uL2Wxm8uTJyveuuLiYxsZGDAYD4eHhNDY2KhUBvEu9VVVV7NixA51OR3x8vNIEIDw8HJVK1eUsamZmJkeOHMHlchEREYHD4VCaCsj+ViGEEOL0DPqZ1J7WRW0tLi4OrVarlEfy8i4he8sZJSQkcM0115CcnIxeryc0NJQZM2ZQV1dHbm4uTU1NABQUFHQab9GiRcCJ0+3erlbd4S1rdbYT1NYSEhK49957SUxMpLGxkd/+9rf87W9/o7m5ucfPNXv2bH71q18B8PTTT7Nt27ZOr4+NjeXrr7/mxhtvxO1288knn7BixQry8/OVBPXQoUPU1tZitVrR6XQYDAYKCgpwOBy0tLQQHx+PyWQiODiY+Ph4tFotKpUKq9VKdXU1I0eOJDQ0lGHDhmE2m0lISOD888/noosuUma2vVsPMjMz24zvyJEjyqypSqVSEtIz+dkTQgghznXnRJLauhNQTyQkJDBnzpxT+rl79zV69zR6OyJFR0fj7+9PeHg4paWlFBcXU1RUpOx36ypJHTNmDAkJCTQ1NbF79+5uj9N7or+z/Z1ng9Fo5P/+7/+UA2D/+te/+OUvf0l1dXWPn+u2227jmmuuwe12c9999ynVBTqi1+t57bXXeOmllwgICODTTz/lmmuuISMjA39/f0aNGkVsbCxjx44FTpz437JlizLLvH//fgoKCtDr9VRWVgInSl/BiRnooKAgLr30UmbPno3ZbFbaqbaeAfUmoyfXkvUe6po+fTqRkZFKwtrecwghhBCiewZ9kno2eZMPoM0MWUREBGPGjMFkMhEaGorBYMDlcqHX6/H392fo0KHA//acdsTPz0+ZTf3++++7Pa6+mEn1UqlULFq0iFWrVqHVatm7dy933HEHWVlZPXoePz8/nnjiCSZOnEhNTQ1Lly5VDqd19pg777yTb775hqFDh1JcXMxf/vIXsrKymDp1KtOnTycpKQmn08nevXvRaDS0tLRQU1NDRkYG+/btY+/evRw7doz9+/crTQ0ApkyZ0qZWa+v9pDabjczMTMLCwqioqKCwsLDNbGpKSgpXXnklU6dOVb5G0olKCCGEODODfk/qmTj5UI93j6FarVaWgD0eD263G39/f6XQv06nIyYmhsjISIxGo5KwWK1WKioqOp1Zu+iii3jllVfYtm0b5eXlnXbCKSsro6KiQuk6ZbfbT1mKBrDZbG1KaHUkMDCQzZs3d3ldTEwMQ4YM4dZbb+U///kPZWVlrFixggsvvJBp06Yppa/0en2Xieftt9/Or3/9aywWC7fccgsvv/zyKd2dvJqamoiKimL8+PF8++23/OhHPyItLY1nn30Wu91OZGQkNTU1JCYmKt2lUlJSKCsro6mpCbVaTUJCAocPHyYkJITGxkbq6urQarXU1NS0eePh3Srg/T57Z4vNZjMtLS0cOXKE5OTkU8bYuhNVa+01CRBCCCFExyRJ7cTJNQZb19Bs/TmVSoWfnx8Gg0FJcgwGA4sXL1Zm4TQaDQ0NDVRUVHR6EOfCCy8kKCiI2tpaPB4P48eP7/Da/fv3YzQalQL84eHh7dZD3bFjh3KqvTOHDx/usssVnChzYzKZiIiIYPny5axfv56cnBy+/PJLMjIyWLx4sZKsJSUldfpckZGR/PznP+fxxx/niy++4KWXXuL+++9v91q326183YcMGcK6deu49957Wb16NS+++CLjxo1j7NixNDc3M2/ePAICAsjNzWXv3r2MHj2a2bNnK9+7nJwcIiIiGDlyJHa7nYqKCsLCwrDZbISGhlJVVYVKpcLhcKDX6zly5Ajx8fFER0dTVVWlzNienHhGRkYqJYBaO90DfKL3qNVqLr/8cjZs2NDrbVFvvfVW5XZvUqlUfRZLCCF6myz390BP9hg6HA5ycnKwWCzU1dVhNBqBrvelBgQEcP755wPw9ddfd2tc3oNZfbHcfzKtVsuSJUtYtGgRGo2GkpIS3nzzTdLS0pSl9K6MGjWKp59+GoA//elPbNy4sVuPCwgI4K9//SsPPvggAIcOHeK7776joqKC9evXs3nzZv79739jtVopLCzEbDYrM6PeQ3Fms1l50/DFF1/wySefkJGRQVJSElFRUUrSn5SUhEqlYsqUKVx55ZWkpKS0STzb07r8mRyi8j0ajYbHHnsM6N3fHY1Gw9tvv83bb7/d6/vGAwMD+yyWEEL0Nnmr3U15eXkUFhYSERGhdKHyJqvp6ekcOHCAuLg4ZsyYgV6vp6CggC+//JKGhgaOHz+uzAB2tS8VYN68eXz22Wds3ryZn//8511e35d7Utvj5+fH5MmTSUxM5LPPPuPIkSOkpaWRmZlJVFRUl7OpANdddx2ZmZm8+eab3H///QwfPrzd5fT2Yj/yyCPExMSwcuVKSktL+fzzz4mLi2Po0KFotVqqqqoYM2YM+/fvR6vVKgfZvLPGBQUFZGZm8s033+Byuaivr1eKvHsT0MDAQEwmk/JvvV7fZXeq1kns6R7eE0IIIc5VkqR2086dOykqKiI4OJjFixe3qX2ZnZ1NZWUltbW1FBYWUlhYSEBAAA0NDTQ1NeFwODAajdhstm4lqbNnz0alUpGTk0NBQUGHLU29eitJbWpqwmazERER0a3nDg4OVpLNL774goqKCh5++GEuv/xybrrppi6XVB955BEOHz7Mli1b+MlPfsL69eu7tU0BYPny5URFRbF8+XLKy8txOp2MGjWKYcOGER8fT0tLC1988QWJiYnodDpUKhUHDhxg69atNDY2otVqcbvdBAQEKDPTcGJGPDQ0VJmBbV331PvREWmx6ts8Ho9S6q2326J6Gzro9fpeb4va+o2UtEUVQgxk/bLcn52dzaOPPsry5ct55513lHagvs7j8aDRaE5Zth01ahTh4eHExsaSk5NDWVkZ+fn5xMXFMXPmTK666ipln6LFYukyTnBwsHJS/Msvv+zyem9SFRAQcDovq10ej4fMzExlT2dZWVm3/pD7+fkxduxY7rjjDsaMGYPH42H9+vW8//77XT5WrVbz8ssvEx8fT2FhIXfddVebhLErCxcu5JNPPsFkMlFXV8fBgwdZunQpQ4YMIS8vj+bmZkpLS5Uat7t27eLbb7/lu+++o6WlhRtvvJEZM2ZwwQUXKM+p1+uV77d3yT4/P5/333+ftLS0TrtJnUn5M9H7HA4Hs2fPBnq/LarRaMRoNPZ69zGXy9VnsYQQorf1eZKamZnJ9OnT2bVrF2VlZfzyl7/kvvvu4+233+7R83g7DLX+6E3Tpk1j2rRpzJkzR5kh8/4RmDRpErfeeiuXXnopI0eORKVSERISQlNTE1qtlgULFvCTn/wEgG+//Zb6+vou4y1cuBCATz75pPdeVCcKCgqUk/nNzc3k5OSQmZnZ7T/mer2eyy67jLvuuguAtWvXtlt54GShoaG8+eabGAwGtm3bxu9+97sejXvKlCl8/vnnhIaGcujQIX7/+98DJ8qEtbS0MHPmTEaOHIlGoyEyMlL5HuXn51NbW8u0adOYOHEicKIag3cPsXfW1Gw2U1JSQmVlJbm5uT1utytEb2pdCi49PZ29e/ee8tHVvnghhPAVfbrc39TUxDPPPMOSJUt47bXX8PPzY9euXbz22ms899xzuFwufvrTn3bruZ5++mnl0ENfSEhIUIr6W61WpbsRnChPFBMTQ3x8PNOnT2fy5Ml899136PV6ioqKiI+PZ/LkyURHR1NaWspXX33FVVdd1Wm8hQsX8uSTTyqzmYmJiR1e613SO1tLlt5tCwAjR46ksbGRgoICqqqq2LdvH0lJSUybNq1bS4kXXHABmZmZbN68mRdffJHnn3++y5nF0aNH8+c//5mf/OQnvP3226SkpHDDDTd0e/xJSUm8++67XHnllbz33ntoNBrGjh1LTEwMxcXFREZGMmPGDGpqajAajcrhtuDgYAoLC5kyZQpwonRXQ0MDNputTUWGpKQkXC4X0dHRymtpXWJKZk59Q0FBATabrcPP96Srm68zmUzo9XrlzTCgzBKfTK/XY7FYutxGJIQQ/a1PZ1LVajV5eXloNBolwTnvvPN44IEHmD9/Pm+88QYff/xxt57roYceoqamRvnwJlV9wWAw0NDQgEaj4ciRI1RXV5ORkaGUK7Lb7aSkpCj7Fb/++mu+/fZb5Y/Ghg0buowRFhamXL9+/fpOrz2bSWpzczPZ2dnAiZqfQ4YMIS4ujsmTJxMUFITb7ebw4cOsXr1a6dzUlR/96EcMGTIEm83Ga6+91q1xXnLJJcqhsUceeaRHHbgALrvsMlatWgXAe++9R1VVFVVVVTgcDsrLy9m3bx/ffvstFouFkJAQIiIiiI6OJjU1FYfDoWzL0Gg0yn5Ur5SUFJYuXcqcOXOU73FXJ/1F3yooKCA5OZkpU6Z0+NE6iYuIiOjH0Z65+Ph4LBYLW7ZsUe7bsmULe/bsafOxevVqpUGFEEL4uj5LUr2JyYQJE7BarVRVVSmfGz16ND/96U+JiIjgv//9b5vrO6LRaAgODm7z0Vf0ej0JCQmoVCpcLhc7duxQ+rpnZGQQHBzMhAkTmDRpEvHx8RQXF1NeXq6UhPnss8+6tdfyiiuuAE4ktZ19Pc5mknr06FFcLhcajabN7K1er2fChAmMGDECf39/CgsLeeONN9i+fTstLS2dPqdOp+Pee+9FpVKxbds2tm7d2q2x3H333SxatIimpibuuOMOSktLe/RaHnnkERYvXkxDQwOvvfYaTqeTI0eOUFFRwfbt29mzZw+ZmZnYbDYmTZrED37wA5KTk5UZVIDk5ORTklQvq9VKZmYmVqtVSkz5GJvNhsPhYPXq1ackat6P1gldXFxcP4727IiPj2fSpEnKvydNmkRqamqbj+5UzBBCCF/RJ8v9Ho9HSaTmzZvHrbfequzT9N4/fvx4/u///o8bb7yRVatWMXz48F4dT3e0tLR0uKSt0+kwGAwEBARgMpmorq7GZrMREBCA1WqlqalJmWH1dnsaP348BoOB6upqvv32W+bNm9fuc1dXV6PRaJgyZYqyZSAtLY0JEya0ua6kpISWlhZlj2tpaWm77UmdTiclJSVdvl7vawAICgrqcHZ68uTJHDlyhJqaGr7++mt27Nih9K9vbcSIEezdu1f596xZs0hLS+PNN99ErVYrFQM6e5Nx++23k5WVxbFjx/jxj3/M+vXr0Wq1nb6O5uZmpWvVq6++yvz588nNzVWK/4eGhmKz2YiLi8Pf35+YmBhiY2PJz8+npKQErVaLTqcjIiICj8ej/Lzk5+dTVFREbGwsw4YNw2q10tDQgNVqxWQyKR3HysvLu+wsJaeu+0ZycjKpqantfk5mvYUQwrf1apJaX1+PVqtFrVbT0tKCv78/1113HQcPHuTuu+9Gr9ezZMkSZYZx5MiRjB49ujeH1CN+fn6dJhMGg4G4uDhaWlqUmpyhoaGEh4ezfv16LBYLNpuNhIQEGhsbCQsLY+LEiWzbto0vvviCRYsWtfu88fHxykn9RYsW8eGHH7J161Yuu+yyNtdFRUWh0+nYsWMHcGJfWnt7V3NzcxkyZEinr9XpdJKRkaH8u7PlwKqqKgwGA0FBQdTX12O329m/fz/BwcFtEsiAgIA2ifWll15KRkYGlZWV7Nu3j0svvRQ4sVe5o8LjGo2GJ598kp/+9Kfk5OTwyCOP8NJLL3X6fWlsbFSS1PDwcP71r38xf/58LBYL33zzDXFxcRQVFREdHU10dDT5+fk89thjjBgxgrFjx6LVapkzZ06br4PBYKCoqAin00lRUREJCQltWqD6+fkp5X9al6kSQgghxOnpteV+i8XCkiVL+M9//kNTUxP+/v40NzcD8Pjjj3PPPfdwyy238Nxzz7Fr1y5qa2tZs2YNjY2NBAUFnXZc7+xI624/3eFdru/OCXQvvV5PSkoKc+fOZeHChSxevJjzzz+f+Ph4CgoKqKiooKqqCqfTyXnnnUd8fDzz588H4OOPP+7WjO4111wDnNiX2tEWgTNd7vd4POzatatHj/Hz80On0xEeHq7MiNbW1na6jSEgIIDLL78cgO+++67be1qjo6P57W9/i7+/Px9++CGvvPJKj8Y6duxY/vrXvwIn9qfu2LEDh8NBQ0MDISEhpKenc/ToUbZv387hw4eVPXvNzc3Kf+12O7Gxseh0OmJjY4ETe3ZTUlLaHKqSZf+BQ6VSsWTJEpYsWdKrbVH7Kk5fxxJCiN7WKzOpeXl5XHvtteTm5lJXV4dGo+GKK64gICBAmVF99tlnGTp0KK+//jovvPACcXFxlJWVsXHjxg73AHaHtyxUV73SrVarMgtmNps5cuQIdrudI0eOkJKS0uXr8y6FV1VVodFoMBqNSuF5k8nEokWL+Ne//sXIkSMZN24cwcHB7Nu3D61Wi8FgoLi4mH379nW4FOk1e/ZsTCYTNpuN7777josuuuiUa8506TgnJ0fZktBT3nJbNTU1NDY2Ul1dTXh4eId/IFNSUkhMTCQ3N5eNGzeybNmybsWZPHkyd911Fy+99BJPPPEEY8aM4cILL+z2OJcuXcrOnTt55ZVXOHDgAPPmzSMpKYnIyEji4uI4fvw44eHhDB06FH9/f+Vn0Ptfg8GA2WxWKjy0dvLPksygDgxarZb//Oc/gyZOX8cSQojedtZnUpubm/nggw8YNWoUO3bswGAw8NRTTykzgf7+/kpP9/vuu49169bx4Ycf8uyzz7J7924mT558RvG9CUJXM1qt9xPCibJCBoOhWy08CwsLcTqd7N+/HzhRm7C2tpbMzEylZNHixYt55JFHSE1NZejQoRw7doyWlhasVqtyeKE7lQzUarWyzJ+WltbuNWcyk1pdXc2hQ4d6/LiT4wcHB6NWq/F4PFRXV3d4mMrPz48rrrgCPz8/Dh48SG5ubrfjXHnlldx00020tLTw05/+tEePBXjqqaeU0lO7du3C4/FQU1PDjBkzuP7667nmmmswGAzKlgXvz1JXnaVO/lnycjgcWK1WKaouhBBCnIaznqSqVCouvPBCli1bxuTJk/nkk08IDw9XEtXGxkZUKpWSqI4cOZL58+dzySWXEBMTc8bxvUlpV91+zGYzGo1GWapNSUnhyiuv7HIWFU6cBNbpdEycOJGwsDDGjh2LwWAgJCRE2V5gtVqJj4/n6quvxmQyERYWRkREBBdeeKGyF3XNmjXKKfLOePd1pqWltZv8efevHj16tMeJal5eHi0tLWfcrcrf35+QkBDlTUhnNSijo6OZMWMGcKLIf3e7Svn5+fH0008zbdo0amtreeKJJ3o0xsDAQFavXo3ZbKa0tJSNGzfy/fff43a7SU5OZvLkyQwfPpywsDAOHDjA4cOHqaur6zLJPPlnCU58XTdt2sTRo0flgI4QQghxGs56kurn58fEiRO57rrrgBMJ1EcffaQkqp988gnNzc2oVKpu10TtDe3tJ+yKd2YsMjKSOXPmKB8zZ84kOTmZpKQkRowYAZyYUXY4HBgMBiIiIpgwYQJTp05l/vz5rFy5Uikc/9Zbb3UZ99JLL8VoNHL48GE+//zzUz4/bdo0/P39sVgs7Ny5s/tfBGD48OEEBgb2qP1oR1QqlfKmwOVydZowX3LJJQQFBWG1WrvV+tUrMDCQ5557DjjRMvbk2cuuREdHc/HFFwNQU1NDcHAwKpUKPz8/nE4n4eHhOBwO3G43brdbeRNhtVrJy8tTSk615v1Zar1NxbsdpKysTPan+ii73a4cjuzNNxJ9FaevYwkhRG/rlYNTrfcjut1udDod69atUxLVtWvXcuedd3LnnXf2uPZlf+qoYLu3XabZbEatVmMymVCr1Uphf6fTqZw2X79+PatXr2bkyJEAPPPMM13O1IWFhfGjH/0IgD/96U+nJH+xsbHKSflPP/2UY8eOdfs1hYSEMH/+fHQ6Xbcf0xnvKX232620VW2Pt7IDwPfff096enq3Y4wePZrJkyfT3Nys1NXtCW/hdoPBwKhRo5gyZQoGg4HQ0FDgf7VRVSoVJSUl7Nq1i+PHj1NUVMSXX37Jb37zmy4bLMTFxREWFsaECRNkj6oQQghxGnq9mL9KpaK5uRm9Xs/HH39MREQEy5Yt491332X9+vVER0f39hDOmvb2uXpPgnsPaHmTVbPZjMFgwOFwUFBQQGZmJtnZ2eTl5VFcXMzUqVPR6XQcP36cN998s8vY//d//4fBYCAjI4MvvvjilM97Z3Pdbjf/+Mc/2LNnT7dfV3BwsFJ14Ez5+/sriWpXh7HGjBnDeeedh8fj4fe//32P9m5ef/31APz73//u8RYHb5KqUqmYMmWK8jOoUqkwmUzK7KnT6aS2tpa6ujpqamoIDw9n3759uFwutmzZ0ul+04SEBObMmXPKQSvvbHx5eXmPqk8IIYQQ55qzkqR2lSSo1WrcbjdarZbhw4djNBrZsWNHlyfbfY13xrT1zJh3drWgoACLxdJmKTgvL4+dO3dy8OBBmpqaCAgIUOprXnDBBUydOhU4UXC+q65NYWFh3HbbbQC88MILp3zN/fz8WLJkCePGjcPtdrNu3To2btyo7P3tytlckvYePLJarV3Gv/zyywkNDeX48eM9Ki119dVXo9FosFgsHDx4sEfj8yap9fX1hIeH09DQQGBgoNLW1ul0sm3bNj788EPKy8sxm81otVocDgczZ85Eq9USHh5OZmYme/fuPeV7npaWRl5eXruxvT8vVqtV2qgKIYQQnTjtElR2u52WlhY8Hk+3WpKqVCpeeukl/va3v7Fnzx7Gjh17uqF9isFgwG6343A4UKlU2Gw2TCYTDoeDzMxMqqurCQsLIyoqijFjxhAWFsbx48dpaWlh+PDh7N+/n9zcXL744gtlr6TD4UCtPvVbc9NNN/H3v/+dQ4cOsWHDBux2+yl7SRcuXEhISAhbt27l+++/p7S0lPDw8LPeq9vb5ao93gS6qampW7Pl8+bN46OPPmLDhg1ER0d32LrRYDC02fc5b948vvjiC15//XUefvhh5X63291p0m00GoETP8NpaWnU1NQQEhJCZGQk+/bto76+HovFglarpba2lvDwcHJycrDZbEqHqqCgII4dO6a0UTWZTHg8HgoLC3G5XBQWFjJs2DBsNptSnspkMik/L9690AaDQfl6ORwOZUbe+0ZIOlMJIYQ4V51WkpqZmcnKlSuxWq2UlZXx7LPPctNNN7Vpf+qth9ra9ddfz6JFi9rtitSXuvuHvzvXtU4ovO0xbTYbhw8fxt/fn5aWFqWndnh4OBUVFWg0Gnbt2kVZWZlSCP/NN99UCt1HRUWd8rUDiIyM5P/+7//485//zN/+9jdeffXVdpOxW2+9lS+//JJHHnmEvLw86uvrufPOO4mMjOz0tajVasxmM01NTaSlpVFWVoa/vz/nn3++UsAe4MMPP2w3iW79dVOr1TQ3NyttRDuj1+tZsGABmzZt4j//+Q+PP/54u6/Lz89PSTDhRNL+xRdfsHHjRh555BHlMd590B0ZOnQocOLg1NGjR6mrq6O2tpbk5GQqKioICwtjyJAh1NfXExUVRXV1NTU1NQAUFBTgcDg4duwYixcvJjg4GJPJpPysxMXFUVhYSFxcHDabje3bt7d5La3rqWZmZvLNN98QHR3NlClTetStqry8XHmurr6vQgghxEDU4+X+zMxM5s6dy9ixY3nggQe44YYbuO2220hPT2+T1HmTrI8//lhZDjWbzf2eoPaW1tUCrFYrKpUKo9HInDlzGDduHOnp6fzjH//gm2++UfY8qlQqpS7rJ598Qn5+fpdxfvazn6HX60lPT2fr1q0dXnfxxRfzzjvvEBUVhc32/9h77/i4qjP//z0zkqaqjnrv1ZaL3BvFxBRjIAkd05IN300gbEIIgSQLCT+yZAOBFJZkYSGFkpAQQnGoJjbu2JZtuaj3rplR1zRppPn9odc9GcmqtiS383699LI8ujPn3Jm5937uc57n89h4+umnKS0tndK++Pv7c9FFFxEXF8fQ0BC7du2isrJySs9VUERsU1PTlJwDvvSlLxEVFUVXVxevv/76lMZYsWIFycnJ2O12tmzZMuW5KU0Xent7Wb58ucgrVaKnAQEBXHbZZXzjG98gLy+P4OBgQkNDGRgYICEhAYC0tDR0Oh2HDx/mF7/4Bf/4xz+AkbmoVqt1RORU8VPdt28f7777Lv/85z/p6OigqqpKRFCn2q1qPG9WiUQikUjOF6YlUjs6Ovj2t7/NbbfdxjPPPMOtt97Kz3/+c1avXs3LL78MjMxP3bJlC/feey+//OUvJ825PJ+IiIggODiYrKwsIiMj8fPzo6Kigrq6Oqqrq4WjgdlsxmQyERERwdDQEC+88MKkrx0eHs5Xv/pVYDj6OlE+cHZ2Nn/6059ISEjA6XTym9/8hs8++2xKhUYajYY1a9aQmpoq2qYeO3ZsykVKKpWKgIAAhoaGaGxsnHR7rVbLV7/6VVQqFfv27ePgwYOTPketVnPzzTcDwwVUU0XJSe3p6SEjI4PLL7+coaEhkcKwcuVKYmNjSUxMJD4+nujoaNxuNyaTiaCgIG699VYWLlxITEwMhw4dor29nYMHD55k3h8REUF0dDQrVqwQ0VOtVktXV5fIRQ0LCyMtLU1E5KfasWosb1bJ9NBoNFx11VVcddVVs94WdS7GmeuxJBKJZLaZ1nL/wMAAXV1dwjpIWdJPSUkRfdh9o6lXX301+/fv56677hpz+fp8RREkAAcPHmTnzp00NDQQGBhIXFwcbreboKAg5s2bR0JCAt3d3VitVl5++WUeffTRSV//m9/8Ji+99BLFxcXs3LmTdevWjbtteHg4X/nKV/jggw/Yv38/b775Ji0tLdxwww2TXsTUajXLli1Dr9dz4sQJjh8/jtPpnJJQVbpQ2Ww26uvrSUlJmfQ5aWlpXHnllbz//vu88sorZGRkEBwcPOFzvvjFL/Lzn/+c48ePc+zYMebPnz/pOEok1ev1snfvXiEcPR4PFouFhoYGbDYb1dXVuN1u9Ho9brcbh8NBcHAwycnJoulDXl4eR48eZd68eTgcDnp6ekR0s729nYSEBPFd8P1eVFZWsmDBgjGbR/jmpo4XVY2MjJTL/KeJTqcTEfDzYZy5HksikUhmm2kpx6ioKF599VXWrl0LICq34+LiThKhXV1dADz++OPC4P5CpKSkRCx55+bmsm7dOqKionC73eTk5AjBo9frsVqt3HbbbfT390/4mhEREcI39Qc/+AEnTpyYcHs/Pz82b97Mddddh0qlYvfu3fz2t7+dkuWTSqUSjQgAqqqqGBgYmLRqf2hoaET3ralyzTXXYDAY6Ovrm1I0NSwsjA0bNgDw6aefTmmMgIAAQkNDASgrK6OxsZGgoCAhIPv6+qitraW7u5v6+no0Gg2RkZHk5+eL9AmlUcPVV1/NQw89xLp16zAYDLjdbrRaLSdOnKClpYWKioqTxs/JyZmwu9l4frwSiUQikVxITDu8qZjQ+7bS9Hq9Izwxn3zySV5++WU8Hs8MTfPcJScnh7i4OFJTUzGbzZSUlKDValm4cCHLli3j5ptv5tprr2XTpk0EBATw9ttvc8cdd0zYVhTgwQcfJC8vj66uLr7yla9M2mlKpVKxfv167rnnHgICAigtLeWJJ54QPewnIyMjg3Xr1gl7KbfbTX9//0nP9Xq99Pf343K5cDqdaDQaFi1aNOnrKxw6dAiHw4G/v79oBzsZvpHRqXLdddcBw80V+vr6SEhIYOXKlSxZsgSv10tycjLBwcFkZGRgMpmYN28eSUlJOJ1Ouru7sdls1NXVUVRUJNI3HA6HcHWAkWJ4OkwnN1UikUgkkvOVU16DV6vVI0SBEkl99NFH+cEPfsD69esnrAA/3xidj6iwZMkSvv3tb7N582bsdju9vb3U19ePeJ5Wq+Wmm27ixhtvRK/X88knn3DzzTdPGEkLDg7m17/+tSj8+frXv84///nPSec5b948vvWtbxEdHU1vby9//OMfee655yY13ofhiPnGjRvFZ+3xeHA6nXg8HrxeLx6PB5fLJW5OTCYTV1xxxZSL5ZxOJ2+88QYAGzdunHK+pVKIpjQRmArf/va3UalUVFRU0NHRwRe+8AU2btxIRkYG4eHhJCUlcfHFFxMTE4PVaqW9vZ2KigrKy8spKSnBYDDQ2NiI2+2mpaUFh8OBx+OhpaUFnU5HSEgIq1evJjc3d9zvxnhMJzdVcur4plTMdlvUuRhnrseSSCSS2ea0EkUVkern50dCQgJPP/00P/vZzzh48CALFiyYkQmeK0y0RGu1WikrKxOtUoODg9FqtbS3t2O1WmlqaqKoqIh169bx/e9/H6PRyI4dO/jyl79MT0/PuGMajUaef/551q9fT39/Pw888ADvvPPOpHNNSEjge9/7Hps2bcLf35/y8nKefPJJqqqqJl3GDwgIwM/PD61WK/KPlcipEllVqVRotVri4+OnJbTeffdduru7iYyM5Iorrpjy8xSRqkR5p0J6ejrXXnstANu3bxfFVEruqZKuUlpaSltbm4iYWq1WEeVWrLWU3FA/Pz9R9Z+RkSGEply+P3tRot/nyzhzPZZEIpHMJqclUpWImr+/Py+++CJPPPEEu3btOuc6Sc0EEy3RKpZUBoOBefPmkZ6ejkajwWw209bWRl1dHZWVlTQ2NrJy5UpeeeUVgoOD+fzzz/niF79IZ2fnuOMGBATw9NNPc9111zE4OMgPf/hDXnzxxSl1AduwYQPf//73ycnJwePxUFNTwwcffEBra+uk+6vRaNDpdCJarozn7++PTqebdmVxY2MjW7duBeDWW28VqSRT4VQiqQAPPPAAMJxne+DAASoqKuju7iYoKEgI3qioKOFl29DQwODgoIjwGgwGYmJiMJlMYv4Oh4O1a9diNBopLi4WNlRjtdOdTnT1dJFWVRKJRCI515iR9fjLL7+c//zP/2TPnj3jFoOcz3i9XvR6vTCQHy0QFVGTlpYmInYKShtOk8nE4OAgfX19xMTE8N///d98//vf59ChQ1xzzTX87W9/G9FtCYbFmRLNfOSRRzAajbz22mv86le/orS0lB/+8Ieined47goBAQHcdtttHD9+nLfeeove3l62bdtGbGwsOTk54wo/JeKq0WhQqVQMDQ2N+F15H6YijsLCwnj55ZcZGhoiOzub4ODgESkRCkajcczOWUq0ub+/H5vNxuDg4JRyQdPT07nkkkvYtm0bf/3rX7n77rtxu920trZSU1ODRqMhLy+PtLQ0PvroI7RaLQaDgbS0NAwGA+3t7WKflaX/0tJSCgoKRviYhoeHn/TdGMu4f6yOUzPFTHcck0gkEolktpkRkbpkyRJ6e3vP+0IPu90+pjXQ6M5UtbW1outQcnKyEKk2mw2VSjUi19Lf35/58+fT1dWFVqtl//79JCUlsWTJEt566y1uuOEGjh8/znXXXcdHH30kuiUBzJ8/f4T4fP7551m6dCkPPvggH3/8MRaLhddff52bbrppwg5MADfccAMXX3wxW7Zs4R//+AfNzc10d3dzxx13cPnll48YJzExcUr2R01NTcybN2/S7T777DPq6uoICAjggQceGPe1PR4P0dHRJz2uvP+RkZFER0fjcrlE9HMiBgcHeeihh9i2bRt79+5l3rx5hIeHU1VVhdFoRKvVUlBQQHV1NceOHUOtVpOfn09MTAxFRUVUVlYSGBhIcnIyHo8Ht9vNvHnzxGesdIQaq3OZkjNoNBrF332F60wfS6NvcCQSiUQiOduZMfPS812gwuR5p8rybkNDA06nk4aGhhF/d7vdJ0W0DAYD4eHhbNiwgcDAQKxWK7t27aKwsBCVSsVPfvIToqKiKCkpYd26dZSXl084x7vvvpt33nmHsLAwjhw5wiWXXMLRo0entH96vZ577rmHp59+mrS0NOx2O7/5zW/43ve+R3V19ZReY7o4nU4++eQTAG688cZT8v50uVzA9HJSFS699FIWL16M0+nkxIkT1NTUEBAQgL+/P8nJyQBUV1cTFRVFeHg4q1evpquri48++ogTJ05QXFxMdXW1SOUARHW/IlR37tzJwYMHKS4upra2VkSXIyMjRxw3s1nVL03/JRKJRHKuceE47M8A44kIh8NBaWkpXV1dWK1WEhIS0Ov1mM1mkXeodAgC2Lp1K6+99hpbt26lo6ODuLg4YLhD1ODgIOHh4VRXV7Njxw68Xi9f+9rXMJvN1NbWctFFF1FYWDjhPNesWcO2bdvIy8ujra2Nf/u3f+Ptt9+e8n5mZGTw9NNP87WvfQ29Xk9ZWRkPPPAAL7300oznUH7wwQfY7XZiY2NFIdN0OdWcVBiOwj744IMA7Nmzh4iICHJyctiwYYOIbJtMJvz9/cnJySEyMpKOjg5cLhft7e309/fT1dVFSUkJbW1ttLW1UV5eTl1dHR6PR/ilHjlyBLfbTUNDw7g3Okaj8SThKpFIJBLJhcqF4xE1A4zXAchutxMSEkJXV5foKqT0blcEiRLJ2rFjB+Xl5TQ2NhIQEIDBYGBgYIDly5dTUFDARRddRH19vRCDFRUV2O12rr32Wt577z2sVivr16/nb3/7G8uWLRt3rsnJyXz00Uf8+7//O1u2bOF73/seZWVlPPjgg1MqatJoNGzatIlVq1bx0ksvsWvXLt555x127drFkiVLZqTbUVNTE7t27QLgnnvumVaxlC9KJPVURCoMd61KT0+nsrKSQ4cOsWTJEtRqNR6Ph9DQUHJycli/fj2AEJfz58+nu7ub/Px8SktLiYqKAoZzfJWcUj8/P0JCQmhubiYqKgqtVktoaKj0QD1LUKvVXHTRReL3c32cuR5LIpFIZhspUmcAo9FIdHS0KKiB4eX9uro6DAaDWDa22Wyo1Wp0Oh0qlQqTyURNTQ0pKSnU1NRQUFDAokWLmDdvHvv37xe2VTExMVRXV3PzzTfz7rvvUldXx6ZNm3j55ZfZtGnTuPMKDAzklVde4aGHHuLFF1/k5ZdfpqGhgaeeemrSHFUFs9nMQw89xGWXXcZvf/tbWltb+eijj+js7OQLX/jCKfcHt9lsvPTSS3i9XnJzc1m4cOEpvQ4gBP2pLPfDsCD/f//v//Hd736XkpISFixYwN69e9FoNGg0GmJjY/H396ezsxOTyURmZiZhYWHo9XqMRiMmk4n29nbi4uLIyckZkVMaGhpKUFAQUVFR4nsAJ+cxS+YevV7P9u3bz5tx5nosiUQimW3krfYMMJb5umI7pfwdhotXEhMTueKKK7jlllvIzs4mKSmJmpoaTCYTERERREVFERcXR3BwMNHR0QQGBmIymVi7di1DQ0OsWrWK7Oxs+vv7ufPOO4X5/Xio1WruvfdennnmGfz9/fnkk0+48847aW9vn9Y+Ll68mF//+td88YtfBGD//v387ne/E36i08Fms/H888/T2dk5bU/U0fT39wvLLN+isumidI3y9/eno6ODkJAQ2tvbqa+v59NPP8XlcmEymWhqasJoNIqWthERESxatIiVK1eSk5Mz4rtgt9sJDQ0lMDBwRiLPEolEIpFcSEiROksoOai+BSvh4eEUFBSQk5NDZmYmmZmZDAwMkJeXR2BgIEajkYiICMxms2iG4HQ60ev1REREoNPp0Gq1XHvttVx55ZUMDg5yzz338OKLL046n40bN/L73/+e4OBgioqKuOmmm6isrJzWPmm1Wu6++26uvPJKdDodzc3NvPDCC5MWc/kyWqB+4xvfwGQyTWsevjQ3NzM0NIRWqz0tIfjZZ58BEBQUhMfjIScnB4CBgQEaGxtpbW2lr6+P4ODgk/JJFWHqG51W7KQ0Gg3JycnTtpSy2+1YLBbZAEAikUgkFyxyuX+WUHJTx6K2tpYTJ05QUlKCXq+nr6+P7Oxs7HY7DodDeGkGBwejVqtRq9WkpaXR19dHRUUF/v7+rFixgsHBQT7++GMefPBBent7hTn9eCxZsoQ///nPfO1rX6OhoYEbbriB/+//+/+4+uqrp7VvSUlJ3HPPPbz55ps0Nzfz5z//mRUrVhAfH8/g4CBDQ0MMDg7S3t4ufEsHBwfxeDwcOHCArq4uIVCDg4MnbFYwGXV1dcCwLdapLqF3d3dz+PBhYNi8f3BwkMTERObPn4/VaiUgIIDOzk6Cg4Pp7u4WLg3h4eEjrKR8Rardbker1YouY8XFxVRVVZGWljYlL+HZtKOSDGO320UKRm1t7ay9z3M1zlyPJZFIJLONFKlngKamJrq6unC5XCQmJrJw4UJhAK8Iubq6OtRqNcHBwQQGBqLX67n00kuJjIxk9+7d2O12vvzlLxMaGsobb7zBj3/8Y3p6enjssccmFGupqan89a9/5dvf/jb79u3jO9/5DocOHeLhhx+e1j6EhIRw991388knn7B//3727ds35ef6CtTTRbH5SkxMPOXX2LlzJ0NDQ0RERLBy5UoCAwPxer0sWbIEGL7w63Q6uru7MZlM7Nq1C71eT2pqKgsWLBBi0lek+opXGO5qZbfbqaqqmpJIVZ5vt9s5ceIEERERMmVgFpirJgdz2UxBNm6QSCTnC1KkziFKhDQuLo7W1lby8/OJi4sTUVRlabezsxO3201AQAA6nY6Ojg527txJXl4eQUFBBAcHYzAYSE1NZd26dZhMJl566SWeffZZenp6+NnPfjaisre/v3+EcDUYDDz//PP85je/4cUXX+S1116jqKiIm2++eUqFUHa7nY6ODgCWLVtGWFgYx44dE12n1Go1Go0Gj8eDyWQS/1daqS5cuJC+vj76+vqA4SX1pqamScdVq9UnXYBLS0uB4ci18jelKn8yPB4PRqORbdu2AcPWXVdeeSWRkZFYLBZhH6bYTjkcDjweD3q9noGBAQYGBjAYDDgcDgwGA0NDQ2KOipG/Xq/H6/WSlpZGdXU1qampk7as9e085du5SopUiUQikVxISJE6A0x1mVkRjsnJyURGRo5ogWm1WsXycF5eHvv37ycsLIzu7m7q6+tFXqpSXW61WomNjSUzM5Nf/OIXhIWF8fTTT/PSSy/R2dnJH/7wB5EHmZ2dPeYcn3nmGTZs2MA999zD8ePHefrpp/nlL38pLGzGw2QyTSkKevz4cRISEibdzmKxiBzQiVAEoy+KMM3OzhZ/83g8BAYGTvp6g4OD+Pn5sXPnTgBWrVpFSkoKDoeDlpYWGhoacLvd5OTk4HA4CAsLE61S29raGBoaYvv27aSmppKYmEhHR8dJwlJJ+cjNzZ1yy2DfpX7fzlUSiUQikVxISJF6hjAYDCIKp3QgUvwzCwoKyM3NxWKx0NjYyODgIDqdDo1GQ3x8PMeOHSMsLIyuri4cDgcOh4NFixZx6aWXsnPnTt566y3q6+t5++23iYmJmXAeV1xxBTt37uT222/n8OHD3HXXXXzzm9/kP/7jP07ZXmouqa+vB059ub+jo4OioiIAwsLCKCwsJDAwEH9/fwIDA+nr6+PYsWMi+rl06VLMZjPBwcEcPHgQPz8/Dh8+jMFgICAgYEaEpW+qgGLwL5HMJCUlJZNuo7iRSCQSyZlCitQzjBI18/PzE6JGEURGo5H4+HiCg4NpbW0Vnansdjv79+8nJydHFB0NDAwQFRXFZZddxueff87BgwdZsWIF77zzDhkZGRPOISkpiY8//phvfvOb/PnPf+ZXv/oVhw8f5pe//CVhYWGzuPenh9frFSI1KSnplF5j586deL1egoKC+OMf/0hKSgqXXHIJeXl56PV6SkpK6O7uRqVSiU5iChERETQ2NhIWFsa2bdvo7+9n8eLFImJ6qkUryg2MRDLThIeHYzAY2Lx586TbGgwGSkpKpFCVSCRnDClSzzCjC2wUFPEKCL9UrVaL2+2mpaUFj8fDnj17uPjii9FqtajVahITE0lMTGTt2rU899xzNDY2sm7dOl566SU2btw44Tx0Oh0/+tGPWLZsGd///vfZuXMnGzdu5LnnnqOgoGDW9v90aG9vx263o1KpiI+PP6XXUIzP9Xo9zc3N2Gw2YmJiWLJkCV1dXcKpoK+vj8HBQZGL29/fT0xMDFFRUdTX19PZ2cng4CAlJSWEh4czODiI1WoVldZKzrHSIlcu30vOBImJiZSUlExaXFVSUsLmzZux2WxSpEokkjOGFKlnmNFRs9raWhGdi4iIEEVSipgNDg5m3rx51NXVkZycTH9/P8uWLaOmpoY1a9ag0+mYP38+mzdv5u6772br1q3ceuutPPfcc9x+++2TzudLX/oSeXl5fP3rX6e6upobbriBG264gfvvv19Ecs8GhoaG+O1vfwsMF6KdarcpJR81LS2Nnp4e/P39qa6upqWlhaGhIcLCwggLCxNdp+rq6qipqUGr1WK324mNjSU5ORmtVktTU5Mo4HK5XPj7+2OxWDAajXg8HhobG0XOqpISoPwuRevco1arhYPDbLdFnYtxpjqWcjMrkUgkZztSpJ5lNDQ04HK56OjoGFFo4ytmV69eTWhoKL29vaSkpJCUlCQigbGxsYSHhwOwZcsWrrjiCrZv3843vvENuru7ue+++yadQ1ZWFu+88w6PPfYYb731Fm+88QZ///vf2bx5M9/4xjdmZ8enQVdXF//xH/8hoqBf+9rXTul1HA4Hx48fB+Cuu+7iyJEjNDQ0EB4eTk1NDQEBAaSmptLY2CgirGq1mo6ODnp7e0lKSmJgYECkAahUKqxWK6GhoaLxgs1mw2az0dnZSVdXFyEhIaIFrFJgVVpaKsXqGUCv13PgwIHzZpy5HksikUhmG9lx6gxSW1vLzp07qa2tBYZFi9PpxOVyTbh8bTAYWLJkCfPmzcPpdGKz2ejo6KC+vl4sR9fV1bF161ZycnJYtGgRAI888giPP/74pBZIAIGBgTzzzDP87W9/Y8WKFfT39/Pyyy+zbt06XnvtNWEfNdccO3aMjRs3sn37drRaLT//+c+56667Tum1ioqKGBwcxGQy4efnx9KlS7nuuusICQkB/tVy1el04uc3fD8XERGBv78/wcHB2Gw2uru72blzJ3v37qW2tpaBgQEsFgvh4eFER0cDoNFoaG1tFa8LUFxcTGVlpSiaU9wAJBKJRCKRDCMjqWeQhoYGnE4nDQ0NJCcni2iaVqsVuYwTUVlZicViobS0lBMnTqDVagFYtGgRzc3NWCwWWlpaWLJkCTqdjr179/LUU0/R2dnJz3/+8yktPRYUFPCnP/2J3bt389RTT1FUVMRf//pXPvzwQ2655Rauu+66EcVEs8mHH37I888/j9vtJjExkf/93/+dsq3TWBw8eBAAs9lMeXk5Xq8Xm81GYGAgLpeLoKAgUlJSsFgsGAwGIfZra2vR6XR4vV60Wi0NDQ3CJzUwMHDEZxceHo7D4SAnJweXy4VOp8Pj8VBZWYlOp0Ov15OdnS1tpqZBfX39lHIqJRKJRHJuI0XqGSQhIYGGhgbhJTod6yKHw0FXV5eIwBmNRrq7u4mMjKS0tBSdTkdkZCRJSUkMDg6SkZGB2+3m8OHD/N///R/d3d08//zzU8rlVKlUrFmzhtWrV/Pxxx/zxBNP0NDQwAsvvMCbb77J5s2bufrqq/H39z/t92Qs3G43zz77LP/4xz8AuOyyy3jmmWdOu2NVYWEhAPHx8eh0OoqLi1GpVHR2drJgwQIAWltbSU5OZvXq1RiNRg4dOkR4eLhwVWhqakKn0+F0OklJSSEmJkZ4tCrNAnxFq2LUn56eTnt7OwkJCXKZfxrU19cL39rJMBgMIvVlLBwOh7jJKS4unjVHhbkaZ67HkkgkktlGitQzSHJy8ggBo4iVqXQkqq2tJSIigpCQECIiIujs7MTj8dDU1ITH4xHdj1JSUlCr1Rw4cICFCxcSERHBp59+yl//+lf27t3LQw89xG233Ya/vz8ej0c4CozH+vXrCQ4OprCwkFdeeYXW1lZ+9atf8ac//Yn8/HxRlJGQkCBSFybD5XKNmz7Q2trKT37yEyorK1Gr1dx///187WtfQ61WjytUBgYG6O/vn3RcJXdv8eLFGAwG5s2bR21tLenp6fj5+aHX60Wk2ul0sn79ehISEjAYDHR2dmKz2TCbzTidTvr6+jhy5AgBAQEkJSWNcG3w/Tz1ej06nU6K0lPEZrPhcDh49dVXJ20AMZnPp9frpa6uTvw+W8zVOHM9lkQikcw2Z1yker3eKXdsOteZ6n5Otp3dbker1aJSqYQ/aF1dHUePHsXtdlNVVUV7ezu9vb0cOXKE1NRUOjs7UalULF26lMDAQLZs2UJjYyP3338/v/zlL3n00Uf58pe/PKVoqNlsZuPGjTz88MP88Y9/5L//+79pbW3l008/HbGdv78/qampZGZmkpmZSVZWFhkZGcTGxmI2m0W6QXt7OyaT6aRxPv30U7797W/T1dVFWFgYv/jFL7jmmmsmnd/AwMCkKQhtbW00NDSgUqnIyspCr9fj5+fHvHnzKCws5NNPPyUtLY3Ozk5MJhO1tbVUVlayYsUKVq1aRWlpKTU1NQQHB5Oens62bdsIDg4W1fyn4nXq2w5VRsAmJicnh8WLF5/paUgkEolkFjkjIrWwsJAXXniB//3f/z1lgep2u3G73eL/PT09MzW9sx7FU9VXzCQlJeFwOEThlFqt5vjx45hMJpxOJ7m5uWRnZ6PVajEajQQFBdHQ0MDu3bupqqrizjvv5L//+7957LHHuPbaa6f0uQQEBPBv//Zv3HrrrXz66aeUlpZSVlZGWVkZ5eXlOBwO8f/R+Pn5ERkZSXR0NGFhYcTFxREZGUlUVBTR0dEcPHiQX/7yl3i9XhYtWsSLL744o40FlHzU0NBQuru7iY2NJSgoCKfTSX19PWq1mtraWpYuXUpHRwdVVVUAHDp0iFWrVgGQl5dHQEAA2dnZ6PV6ampqSE5OnlBgTiREfduhSpEqkUgkkgudORepRUVFrFu3jq9+9asjHp9uRPXJJ5/kxz/+8UxP75xAaZfpu5xnMBiE6b5SJa7X66mvrychIYGgoCCCgoKAYQEbHBzMxo0buf3223nttdf4/PPPKS4u5qabbmLRokU89thjXHHFFVP6TAwGA5s2bWLTpk3isaGhIUpLS6mrq6O8vFz8VFVVYbVa8Xg8NDc309zcPOFr33XXXfzoRz9Cq9XidDqn/V6Nh7LUbzKZKCoqYmBggIKCAnp6eoiPj6e+vl7408bGxmK32zl69CghISH86U9/orCwEKfTSVBQEMuWLePyyy8nKytr0mK0iYToeI0dJBKJRCK5EJlTkVpUVMTq1av5xje+wVNPPTXib4oYmqpYfeSRR3jggQfE/3t6ekQB0oVOREQEq1evxm63i8eU5Webzcb777+PXq+np6cHt9tNamoqcXFxFBUVUVZWxuHDh7nuuutYuXIl//Vf/yUih9NBrVYTHx9PRkYGl1122Yi/KTZNra2ttLW1UVlZSXd3N21tbeLH4/Fw7733cv3115/2+zEWikj1er10dXWJeQDExsaiVqvRarXU19dzySWXMDAwgEajobe3l+3bt2O322lsbCQvL4+jR4+ydu1a9Hr9pEv2RqOR2tpakU/rm5sq26FKJBKJRPIv5kyktrS0sGrVKm688Uaeeuop3G43P/rRj6iqqqKzs5Mbb7yRTZs2ER0dPSWhqtVqheXShcp4gsj3ccWGSom66nQ64uPjRbqE1Wqlo6ODgIAAVq5cSWxsLCUlJTQ2NrJ3714uueQSfvjDH/KDH/xgxrrl+Pv7ExcXJzpYjZeTOltUV1eze/duYNhhQaPR4HA4cLvdBAYGUldXh16vp7GxkdDQUA4fPozD4UCv1wtRX11dTVZWFkFBQWRmZor3f7xIqdJJTPG/7e7uZu/evaxcufKkIqra2lrh+pCSkjJH74pEIpFIJGcXcyZSm5ubWbp0KQcPHqSyspL/+I//oLu7m/z8fJxOJ88//zz79+/npz/9KWazea6mdU5gt9tF9C0pKYnIyEjx+FiCyGKx0NfXh8lkorGxkf7+fiorK0lLS6OiooKkpCSio6Mxm8289957aDQazGYzy5cvZ+HChcybN4/+/n62bdvGoUOHeOKJJygtLeXFF1885yN9Xq+Xb3zjG7hcLmJjYzEYDOh0OgIDA4Wxf2pqqsjdtVqtHDlyBI/HIzpQZWRksGHDBvR6PSEhIfj5+WEwGMSNQGdnpxCeu3bt4ujRowBkZGTQ2NhIVlYWlZWVI1qk+uLrnytF6uyhUqmEXdNsFm/O1ThzPZZEIpHMNnMmUgsKCvj5z3/O97//fTIzM7niiit4++23hY/hM888w3PPPUdZWdkpLS+fz9jtdiwWC4ODg1itViFSp5LDGB8fT2lpKYGBgbjdbuLj42lubqa8vJy1a9diNpspKCjA6/Vy0UUX4XQ6SUxMpLKykvDwcOLi4vjwww958803qamp4c033xzROelc4w9/+APbt29Hp9OxcOFCVCqVyNVVvotOpxONRkNeXh7l5eWoVCoGBgYwm82EhYXh7+8vUktsNtsIL0673c7g4KAoGNu2bRv+/v4MDAyQn59PfHw84eHhrFy5clxP3NH+uZLZwWAwcOLEifNmnLkeSyKRSGabWRWpg4ODaDQa8f+CggIee+wx8vPzufzyywkPDxfbPPDAAzz++OPs3LlTitRRGI1GIiMjcTgcE+YwKkvKZrOZqKgoIV5bWlqA4WKm9PR0LBYLJpOJmpoasrKyAMjKyiI0NBSn04nb7aahoYGqqiri4+P58pe/zCeffEJhYSGrV6/mtddeY8mSJXP4DswMLS0tPPzwwwAsXLiQuLg42tvbMZvNBAUFYbfb6enpwWq14u/vT0BAANHR0XR2dmIwGFiwYAEhISHo9XoaGhro7OwkKioKm80m7L+CgoIIDg6mpaWFkJAQsSqQkJBAWFiY+EwmMvAf7Z8rkUgkEsmFyKyJ1JKSEp577jmqqqpYvHgxy5Yt47rrrmPVqlXExsYSGxsLDPc1VyKE2dnZ5OXlzdaUzlmMRuOU3pfGxkacTift7e0kJSVht9upr6+no6ODpqYmESHV6XQ0NTWRnJws/ERbW1vR6/U4nU70ej1dXV2iwCk4OJj169fz0Ucf0dzczFVXXcULL7zAddddN8t7PrM88MADdHV1ERERwde//nXq6uqIjIzE4/HgcDjwer2EhISIxgbV1dU0NzcLsRoTEyMcBux2O/39/XR3d6PX62lqaqKnpwedTseqVavIy8ujo6ODq666iuTkZIqLi3G73cJofTIvVKvVKiKtSuRcIpFIJJILiZmphBlFcXExq1evxuv1kpWVRX19PbfccgvPPvssMBwpCggIENtrNBp++9vf0tXVJdpRXsh4vd5xfywWCydOnMBisZz0N71eT2VlJa2trZSUlNDW1kZLSwuBgYFERUXR3d2Ny+UiICCA+fPnExYWRl1dHS0tLZSUlFBXV4dGo8FgMJCbm0t6ejq5ubnExMQQExPDt771LebNm4fT6eT222/npz/9KR6Ph8HBwTF/BgYGxv2b74/S6WqyH5fLNaUfp9N50nPfeust/v73v6PRaPjqV7+KXq8nMzMTnU6H1+slNDSUmJgY5s+fz5VXXkl2djZ+fn709/djNBrRaDR8/vnnlJaWcvjwYex2OyEhIfT29rJr1y6RFxwTEwMMm82vXr2apKQkvF4vERERaLVaDAaDyCOe6HO2Wq2isG00SvqHr3uDZPo4HA7y8vLIy8ubUpvVs32cuR5LIpFIZpsZj6S6XC4ef/xx7rzzTiFK6+rqKCws5Dvf+Q69vb08+uijYvsPP/yQf/zjH7zyyits375d5uFNgq94Gb1crNfrxWPt7e3ExMQQHR2Ny+Wit7dX5FMqpvhmsxmv10tNTQ1Go5GhoSEaGhqIiYkhKyuLyMhI1Go1fn5+om3pI488wtNPP83hw4dFu9IXXnhhzA5PAQEB+PlN/hUzGo1T2i4wMHBK2ylFTgpdXV185zvfAWDJkiU4HA4sFgsqlYq+vj7MZrNwGujq6iI5ORmXy8Vnn33GwMAAKSkpZGRkYLFYOHLkCPPnz8dgMJCens7f/vY33G43AQEBbNq0SXwuo4tWIiIihNuC2+0mODh4wsKWiIiIcXNWfQvmpKfqqeP1eikuLha/n+vjzPVYEolEMtvMeCRVpVJRUVEhxKbH4yEpKYn169fz5S9/mccff5w//OEPYvvjx49TX1/Prl27WLhw4UxP55yktraWnTt3UltbO+JxJTIyODh4knixWq20t7cTEBBAVFQUmZmZREdHk5ubi9lsJjY2lqGhIRYuXEhBQQEFBQVERESQlJTExRdfjMFgoLS0lP7+fpF/GRoaCgwXXyUnJxMWFkZERAQ/+tGP+MIXvoCfnx9vvPEGX/jCF2htbZ2T9+ZU+K//+i9aWlowm81kZmaiUqmw2+2Ehoai0+loaGgQEUy1Wo3T6aStrQ0Y9nsNCQkhJSUFnU7H6tWrMZlM9Pf3s3//fjo6Oqivr6evr4+GhgYhRsdCaWerLPVbrVaKi4vHjJZGRESQm5s75lK/IuqlQJVIJBLJ+cyMR1I9Hg/x8fHU1dWJSFBNTQ1/+ctf+PWvfy069txwww0YDAYefPBB7rnnHlFhLRlpQeRbQKMIq7GKbqxWKyaTCbPZLCxoFHyrz20220m/WywWioqK0Ov1tLW1sXbtWjEeDEfHw8LC6OvrQ6/XM3/+fH7xi1/wt7/9jWeffZb9+/ezYsUKFi9ejFqtHvGj0WhO+r9erxc/BoMBrVaLyWQa8VhISAiLFy+eUuR0Iux2O7/73e8AmDdvHmq1Wiz1h4SEcOLECeLj4+no6CArK4u+vj6GhoYwGo2EhISIVImYmJgR0eLBwUF27NghRK1er6e0tJSYmBixHK9U6EdGRor30ldcThQVnwil45hEIpFIJOczMy5SjUYjGzZs4Fe/+hWlpaVkZ2fzf//3f9x5553cdNNN+Pn58fWvf12Yo/taAEmGGc+CaCLLqYmWh8PDw4mIiKCkpAS32y3EqdvtZnBwkP7+fuLj4xkYGGDZsmXiefHx8XR2dhIWFoZer8dkMhEQEEBzczORkZHcdtttrF+/nrvuuouKiopJW5xOl7i4OO6++27uu+8+kaIwXV566SW6u7sJDg7GaDTS2NjIkiVLxPuUnZ1NX18f6enpopivubmZvLw8EhMTiY6Oxm63s23bNrKzs1m8eDF2ux2bzUZmZib79+8nNTWV0tJSgoODMZlMrFy5UnijKvT29hIYGEhycrJYhp3oMztV7Ha7+I5IISuRSCSSc5kZFalKp6h7772XoKAgduzYQXNzMz/96U/55je/CQwXScXFxQmBKjmZ8SyIJmqbOZGlkUJ4ePgIX0/l98TEROHfCcPRcD8/PwoKCoDhiN8HH3zArl27yM/P57LLLsPPz4/AwEASEhLYt28fv/nNb9ixYwc2m43IyEhCQ0Pp7+9naGgIj8eD2+0WxvdqtVoUXBUWFopuTzD8HfJ4PPT399PU1MQTTzzBr3/9a7773e/yla98Zco3NDt37uQnP/kJ//znPwFYu3YtKpWKmJgYysrKxDzT0tKIjo4mKioKp9NJSEgIOp0OnU5HZGQker1eVOQrVl5GoxGHw0FYWJgQ9fv378ff35/6+npWrlxJVFSU6Fw1XgHLZJ/ZqVT4y3xViUQikZwvzKhIValUDA0NoVaruf3227n99ttP8kr95JNPRiw/S+aGkpISqqqqSEtLIyIiQggnXyGj/F5XV0dVVRUwvEQeGRnJsWPHUKlU1NXViU5NMPx5FhUVERoaysUXX0xAQIAYw+PxUFFRweHDh+no6GDBggXExsbS398PDBdW9ff3o1KpcLvdJCQk4HK5SEtL48477+Svf/0rv/3tb6mqquKHP/wh//M//8MjjzzCHXfcMWYagNfrZceOHfzXf/2XaHvq5+fHxRdfLFwjIiIiaGpqoqqqiuLiYvr6+li8eDFOp1PMKyYmhsDAQCHqU1JSqKurIyYmBqvVisFgoKGhgbq6OoxGI1lZWVgsFoqLi8nKysJoNJKamkpUVBRarRa3231KkU3fdICpitSpNHiQSKZKSUnJpNsoN7oSiUQy05yySB0tPhVG93dXtjl06BAvvvgif/rTn9ixY4e8iM4xVVVV2O12qqqqyMnJGRFxA8TvSmTPZrMxNDREU1MTTqcTg8GAw+Hgoosuor29nePHjxMTE0NRURF1dXW0trayevVqIiMjyczMpLa2Fq1WS1dXF21tbTgcDjH2kSNH6Orqwu12k5SUhMPhICQkhPj4eIKDg0lISGBoaIi0tDTuueceGhsb+ctf/kJLSwv3338/v/71r3n00Ue57rrrUKlUeL1etm3bxpNPPsnevXsB8Pf3Z/78+Xzzm9/k6NGj7N69G5VKxerVqwkNDeXQoUNERkZSVlZGbm4uOp2OmJgYYcFlMBiw2Wx88skn2Gw2CgoKSEhIEJ6qer0eo9GIWq2msbERPz8/1qxZQ2Jioni+IhiDg4On1E62uLiYyspKYf11KukAcpl/6qhUKpKSksTv5/o4MzlWeHg4BoOBzZs3T7qtwWCgpKREClWJRDLjnJJILS8v57333uPWW28VvpATYbfbaWtro6Kigs8++4z8/PxTGVZyGqSlpVFYWAgMR+iMRiMlJSUiUpKTk0NOTo6IsPpGu7ds2UJERARhYWF0d3fz2WefERISgsvlYsGCBVRUVKDVaikuLiYjIwMYvnB1dnayYMECamtr6enpwev1sn//frq6uujr68Nut7N48WIWLFiASqUiPDycgYEB/P39+dvf/kZ1dTUGg0F4l7755pv86U9/oqKigttvv52CggLuuOMOXnvtNfbv3w+AVqvlkksu4eqrr2bhwoVYrVbRHcrr9VJaWsq8efNIT08HID09HbPZTHt7O11dXaSmpoqL7ZEjRygsLMRkMlFeXk58fDwA/f39OJ1OEhISqK6uZt++fZhMJuF+oDBResZYVFZWYrfbqaysFNFapfBKQeaczhwGg+EkB41zeZyZHCsxMZGSkpIRhZZjUVJSwubNm7HZbFKkSiSSGWfaIrWyspKVK1fS2dlJe3s7DzzwwEnL90puqoLRaOTSSy9l7dq1mEym05+1ZNokJSXR3t6ORqPBZrMRERGB0+mktrZWRDIXL16MzWYjJCSE5cuXExERwe7duwkLC6OjowOAjo4OrFYr0dHRlJaW4nA4yM3NxWaz4fV6aW5uJjMzk8jISIKDg3E4HCxcuBC3201xcTEGgwG73Y7L5UKr1eJ0OoVNVnt7O9XV1RQVFdHU1CSM+d1uNzU1NWzYsIGMjAw+/vhj9u/fT2FhoRDeOp2OjIwM7rzzTkJCQsR3sru7m5SUFGw22wgz/aSkJGJjY8W4VqtVFIVlZ2cD0NbWxsDAAP39/SQkJIj0hMbGRuFSYLFYGBoawuFwiJSC4uLiKeUIjyY9PV1EUn0dHlJSUsQ2MudUMlckJiZK4SmRSM4o0xKpdrudJ598kmuuuYalS5dy33334fF4eOihh0YIVUWgPvXUUzidTh599FG0Wi1arXZmZy/B4XAIwTJW1K62tpbGxkb0ej0hISF0dXWJzyo+Ph6TySQ+G6/XOyKn0ev1CpN7pc/9rl27RKFRcXGxeN4111zD0aNHCQ8Pp66ujqioKDweDyaTidTUVHQ6nbB6CgoKIioqSkRgt27dip+fHwEBATidTvz8/IiJiUGn0+Hn50dtbS0BAQE4HA4SEhJ4/PHHMRqNPPzww+zatYvk5GSys7NZsGABvb29JCQk0NHRQUJCAnq9nvz8fFavXo3b7cZut4sWqL7Fe3FxcRw9elS4GcTHx6NSqSgoKMBkMtHb28uWLVtIS0sT3bvCw8NZsGABHo9HCMl33nmHY8eOMX/+fL761a+O+7kpFf67du2iqKiIBQsWsGbNGnJycoDhvODpOjyc69TX108pcieRSCSSC4NpiVS1Wk1BQQFms5mbbrqJ8PBwbr75ZoCThGpHRweFhYXU1taeloXQhchUc8m8Xu+IyNpYIlWJyDkcDhYtWkRqaqoQOCkpKdx2220i71GtVp+0RO3rNJCcnIzZbKauro7+/n4WLVpEcXEx+fn5rFy5kvT0dLZv387hw4dJSkoiKSkJk8nEvHnzRFTR4XBw6NAhamtrSU9Pp7GxkaamJjo7O4mLiyMgIICYmBgWL15MaWkpFouF9vZ2uru7cbvdpKSkEBYWhsFg4Nlnn2Xnzp00NjZis9moqakhJiaGoaEhli9fDkBGRgZarVaIvy1bttDW1oZWqyU5OZna2lpiYmIICwujoqKCwcFBDh06RHR0NImJiTQ3N1NWVsaxY8dwu90cP36cZcuWodVqCQ0NZfHixWRnZwvhWFdXh8PhoK6ubtzP0XeloaioiJ6eHoqKioQ/re/7Pvo1ztdl/vr6+hHpJhNhMBhmpPjS6XSybt06AHbs2DFm17SZYK7GmeuxJBKJZLaZlkjV6/Xceeed4iJ544034vV6ueWWW/B6vTz88MOYzWYGBwdRq9U8//zzuN1uKVBnkckia76eq2NViEdGRorHp9JGMTIyUgiliooKmpqaRMckq9VKaWkpXq8Xp9NJZmbmSUveFouFkJAQ1qxZI0Tixx9/TF9fHyaTiYsvvpjw8HARGa6qqiIjI4O9e/cyNDQEQE1NDdu3b8dmswkBHRMTQ11dHS0tLSxduhS9Xs+uXbtobm5m0aJF4jXnzZtHSEgIZrNZ+McODg7idruJiIigsrKS6OhoYYnlcrlwOBw4HA66urpITEykvLyc3NxcUQimCHuv18u6desoLCwU9l3joUTAMzMzKS8vF6kCFyo2mw2Hw8Grr74qbijGY6aqyYeGhjh48KD4fbaYq3HmeiyJRCKZbaadk6qIIUWI3nTTTXi9Xm699VZUKhXf+ta3eOqpp6itreXPf/6zFKizzGTFOaMjcjU1NUK0+uY6wkhfzvHyKQ0Gg1gm37FjB93d3ezYsYO77rqLQ4cOodfrGRwcZP369WNGu44fP87x48eZN2+emFteXh6pqano9foxBUpoaKjoBqXT6aiqqqK1tZXOzk76+vrIy8sjJCSElpYWURwVHh5OR0cHGo2GtrY2enp6KCsrQ6/XC5soRdxbrVa0Wq3IxR0cHBTRWaUtakFBAT09PRiNRvz9/bHb7WMWAH7hC1/gC1/4woSfGfwrt3TRokVs2LBh0u0vFHJycli8ePGZnoZEIpFIzgJO2YJKo9Hg9XoZGhri5ptvRqVScfvtt/Puu+9SVVXF/v37ZQ7qWch4BTkw/Tad69at45///CeLFi3CYrGI/MnFixeP6KzkS1tbG2q1mra2NvFYXFwcTU1NIv9VoaqqShj95+XlsX//fo4ePUpYWBjp6el0d3cTHx9PaGgol1xyCWlpaezevRudToderyc1NZWuri5ycnLo7+/H4XDQ399PWVkZMOwEYDQaxb5mZGTgcDiEuNVoNCQkJFBQUCCKpaqrqwkODsZisdDU1IRerxfRXKfTOW5+sO8NgBLVVbadLK9YIpFIJJILkdMy81eic16vl5tuuokXXniBI0eOcOjQIebPnz8jE5TMLOO1XIXpt+n8xje+wQ033IDH4+H48eO0tbWRk5NDbm6u2EYRYHa7nfb2dvr7++nq6sJsNrNr1y7i4+NJSkoSS/+7d+8mLi6O5ORkYmJiKC0tJS4ujsTERPbv34/b7aaxsZFbbrlFeLeGh4eLH5fLRWdnJy0tLSxfvlwIP4fDQXt7O2VlZSJfNDY2lssuu0zsu7LfxcXFovFBbm6uKCiz2WxkZ2fT0tLC4OAgnZ2dVFZWivSH0fnBvuLT9wZA8aBUBKnVap0wr9gXaUElkUgkkguF0+44pVKpGBwc5Lvf/S7btm3jyJEjUqCexaSkpJwUQVU4FdskRZx1dXXh5+dHc3PziHxMRbg1NjaKNqk5OTm0tLTQ1dUFIMzHCwsLaWxspLa2FqPRiMvlwmQy0drayuDgICaTibq6OiIjI4VgTExMxGaziSX+w4cPU1xcTHx8PAUFBUL4GQwGzGYzarWampoa8X+NRjOm2FPSBRTjft/3xuFwUFJSQmdnJ6GhoSMsoXzzgy0WC729vQQGBk54AzCdin1pQSWRSCSSC4UZa4ual5fHoUOHpFH/GaC2tlZER5Wl57lCEYB5eXki+uiLIsDi4+Npb28nMzOT7u5usrKygGEbLGWZ3OVyAeB2u/F4PLS2tuL1erFarcIWatGiRbS1tREeHo7D4aC0tJSOjg5MJhM2m4329nb8/f3p7u7Gz89PCDmr1SqcBKKioggICGDhwoUAouuWEsVUCrb8/f05dOgQWVlZJ5n0K0LcN1qq1+vHjYT6itzRaRDTMf03Go1YLBZhpyWFqkQikUjOV2ZEpGo0Gr7yla/Mess/ydj45pnOtUhVyM3NHbHMr+ArwNrb24mPjxfiUFmKV5a7s7OzcblchIWF4efnR3JyMi0tLWRkZBAQEIDZbMZsNpOSkoLBYKC0tJT+/n4A+vr6AFi2bBmVlZUsXLhQCGQYrh5Xckznz59PfHw8iYmJY1p4GY1GcnNzOXToEIODgzQ0NBAREUFhYSGlpaVkZ2cLkeq7f6PFp68TwkyhvJ6Mps4MM2FldTaNM9djSSQSyWwyY5FUKVDPHBPlmc4kE1X/T1b8Y7PZ6O7uFjmcbW1t1NXVsWzZMi699FLsdruwc/IlNjaWrq4uQkJC8PPzo7y8nBMnTpCXl0dmZiY2m03829/fT0ZGBitWrMBsNo8QoOHh4bS3txMbGyvyYPV6/ZgFTABBQUGkpqbS19dHZ2cnu3bt4uDBg+j1ekpLS8e0mHr//ffZt28fy5YtY9OmTZNGSE+1YOp8NvSfS5Rc4fNlnLkeSyKRSGabGROpkjOHr+H+bDK6+McXRRDu3r0bi8VCdnY2CxcuRK1WU1dXR3V1NQAejweVSsXevXvR6XTs2LGDSy+9VLyebzRSEWPK3wwGAyUlJdjtdvbs2YNKpSIuLg6z2YzD4aCzs1OkCthsNpKSkrBYLFRXV+N0OgkLCyMtLQ0/Pz/0ej1DQ0Po9XpheG6z2fB4PPj5+Y2owD927Bgul4ugoCC0Wi3Z2dljOhccPHiQ+vp6Ghoa0Ol0uFwu4cmqVPWP9Z5NpWDKF1k0JZFIJJILASlSz2FmOno92ev5Fv/4busbgayrq6O5uZmSkhLMZjPJyclUVFTgcDgICQkhKSmJo0ePkpGRQVtbG+np6dTW1gqRbbFYgOGl8tGRSK/XS1JSEocPHwagubkZu91OUlISBoOBlJQUUYylVNArkaWBgQG8Xi8JCQnU19fz7rvvotPpWL16tRjbN0KpUqnE+KmpqTQ0NHDppZeSnJyM1WqlpKTkpIjyokWLqKqqIiUlhYMHD5KcnExdXR2rV68+qWhKpVKdNJ5EIpFIJJJ/IUWqZMoo3alGRxHtdjtarRY/Pz8WLlwoWo02NjaSnJxMaGgodrud0NBQXC4XGRkZ6PV6Fi9eTG1tLVqtVojc3t5e4F9NI0Yvhy9cuJB58+Zx/PhxHA4HYWFhI0SysoyviD6j0UhCQgIdHR1kZGQQERHBvn37KC0txW63MzQ0NEIQKzmytbW1QoSOjlSP5ye7adMm8vPzRY6wy+UiPj6evr4++vr6pmXvJZl9nE4nV155JQAffPDBrLZFnYtx5nosiUQimW2kSJWcNr4RwSVLlhAeHk5DQwPx8fHA8DK9RqMBQKfT4XQ6iY+Px2AwkJycPMK+ye12iwio73I4/KsKXxHDymNKgZMyhrIcrojO0fmjaWlpfPLJJ9hsNtra2rDb7VgsFpHX63A4OHz4MA0NDVx22WXk5uaOEMsT2UmNlXpRXFw8pqiVdlJnlqGhIT777DPx+7k+zlyP5UtJScmk28xUO1uJRHLhIEWq5LRRxODOnTs5evQo+fn5rF27VkRcOzo60Ol0tLS0sGTJEpKSkoRY813St9vtxMXF4efnN+IxX8Hq5+c3QuiVlZVRX19Pd3c3CxcupLGxkbS0tDHzPK1WK/v27aO7u5u4uDhiYmJE8dT27dtpaGigtbWViy++mIaGBmD44puUlDQid3S6frLjiVpZACU511HSajZv3jzptkpOuRSqEolkqkiRKpkxjh49Sk9PD0ePHmXt2rXi8fj4eBobG4UAHU+UjRZto3NSxxJ0XV1dNDU1YTKZhE2V7xijuz5VV1czMDBAYGAgiYmJpKamniRmIyIiuOyyyygpKSEnJ2dKYnIi54PxRK0sgJKc6yQmJlJSUoLNZptwu5KSEjZv3ozNZpMiVSKRTBkpUiUzRn5+voik+jKR+8Ann3zCoUOHWLRoERs2bBi3yr2wsJDjx4+L/8+fP581a9YQEhJCeHg4YWFhmM1mnE4nHR0dJCQkYDAYRiypR0REEBsbi9VqZfny5SxevFjkri5dupTo6Ghh47VkyRKWLFkixhs9r9H2UePlqUok5zuJiYlSeErOK6xWK3fddRfbt28nPj6e559/nvXr15/S9iaTacS2DoeDp556iu985zuzug/nC1KkSmaMtWvXjoigToVDhw7R3d1NYWEhGzZsGHe7oqIi7HY7RUVFLFiwgGPHjrFmzRqysrJGdHqyWCwMDQ2NKO5SIqsGg4GLL75YpA34MlpIT9bFa7R91ER5qhKJRCI5+7jrrru4+OKLueuuu0Y8fu+99xIdHY3VamXr1q3ceOONVFRUEBYWNubrTLS90mgGhh1pEhMT+dKXvjSbu3VeoT7TE5CcHzgcDqxWKw6HY1rPW7x4McHBwWOa4/uyYMECgoKCWLt2rYh+7tq1C4CCggJycnKE+0BwcDB6vR6PxwMghKNicj5RyoFCQ0MDLpdL5KaO3lelyEt5nYiICHJycqRIlUgkknOYvr4+3n77bX784x9jMBi45pprmD9/Pu+8885pb//666+zcuVKUlJSZns3zhukSJXMCKMr8cfDarVSXFwsBOMXvvAFvve9700YRYXhKO2///u/8/Wvf51NmzYRFRWFxWIZkQtnMBjIyclh0aJFJCcnjxCjyvxgWFBOZp6fkJCATqcbs4uXYrk13U5RkrOPybqCnWvjzPVYEslEHDhwgPvuu4+8vDyMRiOJiYnceOONlJeXT+n5breb733ve8TGxqLX61m+fDmffPLJSdtt374dlUo15s++ffumNeeKigpMJpNwp4Hh9LITJ06c9vavvPIKd9xxx7Tmc6Ejl/slM8JUK9XHyt30er2oVKoRS+xKodPooiOv10t4eDiRkZHAcHXxaN9Wr9d70oV6upX0yvK/EiH2FaSyKn961NfXT6mwZq5RPsfzZZy5HksimYz//u//Zvfu3dxwww3k5+fT2trKc889x+LFi9m3bx/z5s2b8Pl33XUXb775Jt/61rfIyMjg97//PVdddRXbtm1jzZo1J21///33s3Tp0hGPpaenT2vOfX19BAUFjXgsKCiI9vb209r+6NGjlJeXc8MNN0xrPhc6UqRKps1Y3ZHGqlQfa7vxulYBwgS/oaEBs9l8kphVtp/MAkq5g55ofna7XQjNicTmWF6m4z1Hdo06mfr6enJycqaUBmIwGE5qHSuRSM5dHnjgAV5//XUCAgLEYzfddBPz58/npz/9Ka+++uq4z92/fz9//vOfeeqpp3jwwQcBuOOOO5g3bx4PPfQQe/bsOek5a9eu5frrr59wTldffbVIFXM4HPzlL3/hW9/6FgAPP/wwl19+OT09PSOe09PTc1IBlILJZJrS9q+88gqbNm0iJCRkwvlJRiJFqmROUfJGxyIhIWHMSOp08I3GTpT3M1UjfRk1PT1sNhsOh4NXX32VnJycCbeVZu/nP9L0/8Ji1apVJz2WkZFBXl7epN+FN998E41Gwz333CMe0+l0fPWrX+X73/++OM+Ppre3F71ef1JxrMKWLVvE72MVTikdApuamoiLiwPg+PHj4y7TZ2RkTLr90NAQr7/+Or/97W8n3GfJyUiRKjlrGF1hfypFSL7R2IlEqtFoxGKx4Ha7JxShU/EynWpU9kImJyeHxYsXn+lpjMDlcvHlL38ZgL/97W/odLpzepy5Hms6SNN/iYLX66WtrY28vLwJtzt8+DCZmZknLaUvW7YMgCNHjpwkUu+++276+vrQaDSsXbuWp556aoSV4FQwmUxce+21PPbYY/z617/m008/5ejRo1x77bWnvP2nn37KwMCAaFksmTpSpErOK3yjsROhCMqZaEsq25uemwwODvL++++L38/1ceZ6rOkgTf8lCq+99hpNTU08/vjjE27X0tJCTEzMSY8rjzU3N4vHAgIC+PKXv8xVV11FeHg4xcXFPP3006xdu5Y9e/awaNGiac3x+eef584778RsNhMfH88bb7wxwn7qyiuvZO3atXz/+9+f0vavvPIKN99887jRXcn4yHdMcl6hRGOnkh86E0v5ShQVIDg4+JRf51zkbC2IkpydSNN/SWlpKffeey8rV67kzjvvnHBbp9OJVqs96XFldcDpdIrHVq1aNSK14JprruH6668nPz+fRx55hA8//HDMMX7/+9+P+XhERIS42RuLDz74YFrb//GPfxz3b5KJkSJVcsHia0/l+//poNhRTcV79UxgsViwWq0zvuwrC6Iks4nMXT3/aG1tZePGjQQHB4t804nQ6/W43e6THne5XOLvE5Gens61117LW2+9xeDg4KTjSc5OpEiVnFcUFxdTWVlJenr6pDlPcPpL9Wd7YZVi+eXb9WQmkAVRktlA5q6en3R3d3PllVfS1dXFzp07iY2NnfQ5MTExNDU1nfR4S0sLwJReIyEhgf7+fux2+0m5rZJzAylSJecVlZWV2O12KisrpyRSfX0lLRbLtIufzvZiKcXya7ZSEc7GgijJuct0c1d37twpb5LOclwuF5s2baK8vJytW7eSm5s7pectXLiQbdu20dPTM0Jgfv755+Lvk1FdXY1OpxvXPmo8rFYrd911F9u3byc+Pp7nn3+e9evXn9L2o8d2OBw89dRTfOc735nWnC5UzohI7evrw+FwEBwcjL+/P2q1mqGhIdTqqTfAcrvdI5YCRvuUSS5M0tPTRSR1Kigi02KxnJfFT4rl13SPjyNHjkx4Ype5ppLZYiq5q9ONuL711lsz0rJ4plckzncGBwe56aab2Lt3L++88w4rV64cczuHw0F9fT3h4eEiNej666/n6aef5oUXXhA+qW63m9/97ncsX758RHHsWHaFRUVFvPvuu1x55ZXT0hYA9957L9HR0VitVrZu3cqNN95IRUXFiGKoqW7v+51pbm4mMTGRL33pS9Oaz4XMnIvUY8eO8W//9m/09vYCsHHjRv793/+dtLS0aeWNPPnkk/z4xz8+6XEpVs89RneMOh3i4+OJj49HpVJN67swODiI0+nEYDCcFd8hu92Ow+HAYDDMiGhW9mmy91r5+0UXXTTpa+r1erRa7Vnxfp0Kvp2Zenp6Zq0afq7GmeuxziQhISHs379/3C5ACjabjc2bN3PFFVfM6Pgzec46n/nOd77Du+++y6ZNm+jo6DjJvF+5ydi/fz+XXHIJjz32GD/60Y8AWL58OTfccAOPPPIIFouF9PR0/vCHP1BbW8tLL7004nVuuukm9Ho9q1atIjIykuLiYl544QUMBgM//elPpzXnvr4+3n77baqrqzEYDFxzzTXMnz+fd955h7vvvvu0tn/99ddZuXLlhPaIklF455Da2lpveHi497777vO+//773oceesi7bt06b15envfYsWNer9frHRwcnNJruVwub3d3t/gpLi72AvJH/sifCX4aGhomPK4aGhrO+Bzlj/w5238mO44kw1x00UUTvo8K27Zt8wLexx57bMTznU6n98EHH/RGR0d7tVqtd+nSpd4PP/zwpHF++ctfepctW+YNCwvz+vn5eWNiYrybN2/2VlRUTHvOhw4d8oaGho547L777vN+5zvfOe3t8/PzvS+88MK053QhM6eR1P3795Odnc3TTz+NVqvlyiuvZMeOHTz11FNcffXVfPDBB+Tk5Ihe7hOh1WpH2FOYTCYaGhoIDAw8Z9pT9vT0CF/Pcy2p+1yeO5zb8z+VuXu9Xnp7eyctNoiNjaW4uJjc3NwL5r05GzhX5w0X1tynehxJhtm+ffuUtrv44ovHjE7rdDqeeuopnnrqqQmff//993P//fefyhRPoq+v76TvQlBQ0LhR+6luf/ToUcrLy7nhhhtmZJ4XCnMqUru6uigqKqKvr08IzHXr1qHX6/nxj3/M/fffz2uvvTZu28yJUKvVxMfHz/SU54SgoKBz7uSucC7PHc7t+U937lMpnlKr1aK134X03pwtnKvzhgtn7heaH/L5xpo1a9i9e/eYf/vBD37Al7/85ZNSmHp6esbN0TeZTFPa/pVXXmHTpk2EhISc+uQvQKaXTXyKKHdIBQUFpKen89Zbb40oelq6dCl33nknzc3NlJWVzcWUJBKJRCKRXGDs2rULr9c75s8TTzxBRkYGfX19I+yvjh8/Pq5bzFS2Hxoa4vXXX+f222+fvR07T5lVkdrd3U1HRwf19fUALF68mIyMDH7xi1+wd+/eEUn9N9xwAw6HY9zOEBKJRCKRSCSziclk4tprr+Wxxx7D6XSyZcsWjh49yrXXXnvK23/66acMDAxw5ZVXztVunDfMmkg9ceIE11xzDRdffDGXXXaZqMZ74403MJlM/L//9//46KOPGBgYAIbvNDIzM8/ZJftTQavV8thjj43Z+u1s51yeO5zb85/tucv3Zu45V+cNcu6S84/nn3+e5uZmzGYzDzzwAG+88cYI+6krr7yS//qv/5ry9q+88go333wzfn7Smn66qLxjZSufJiUlJaxZs4avfe1rzJ8/n8LCQnbt2sX7778vPNAuvvhibDYbK1euZMWKFRw5coRXX32Vzz//nMzMzJmekkQikUgkEonkHGLGZf3AwABPP/001113nfAni4yMpKKigqGhIU6cOEFeXh7bt2/niSeeYN++fTz77LPExsaybds2KVAlEolEIpFIJLNT3V9eXs6SJUvE//fu3cu+ffu46KKL6Ojo4Oabb+aXv/wlP/zhDxkaGqK3t5eAgAD0ev1sTEcikUgkEolEco4x4yLV39+fdevW8dprr2E2m7FYLLz00kv84Q9/ICEhgdbWVq6//nrmz5/Pv/3bv6FWq2fE0mNoaIjm5uZzyidVIpkrfP0dJ2oRKI8jiWR85HEkkZw+Uz2OYJYiqTfffDMwHFGtrKzkJz/5Cddff734+9q1azl8+PCMjtnc3Dyil69EIjmZhoaGCYsT5XEkkUyOPI4kktNnsuMIZkmkzp8/n/nz5+N2u1m9ejUBAQHib16vF39/f2JiYmZ0zMDAQIBzsuvJqTKdmrdz7W7earVis9kIDw8nIiLiTE/nnEfprKMcJ+Mhj6OJOZXjSH6Xzx/kcTSzDA4OsmfPHgBWrVqFRqM5Z8eZq305H5jqcQSz3HFKq9WybNky9u7dy8qVK0lOTuaZZ57h+PHj/M///M+MjqVcPM7lrifT5XwWqUFBQaSlpZ3paZx3TPY9kMfRxJzKcSS/y+cf8jiaOTZu3HjejDNX+3K+MJXz6SmL1MHBwSndKaxatYrf/va3XHzxxWRlZWG1WtmyZQvp6emnOrREIpFIJBKJ5DznlERqeXk57733Hrfeeuu4y/ZDQ0Oo1Wo2b95MVlYWFRUV+Pv7s2LFCpmrI5FIJBLJBc7AwAAvvPACAPfccw/+/v7n7DhztS8XGtM286+srGT58uV0dnby8MMP88ADDwiDfgWv1zvny8s9PT0EBwfT3d19wSyvnM/L/ZKZZarHhzyOJkYeRxc28jiaWex2OyaTCYC+vj6MRuM5O85c7cv5wHSOj2lFUu12O08++STXXHMNS5cu5b777sPj8fDQQw+NEKrKifypp57C6XTy6KOPnsJunN9YLBasVisRERFERkae6elIJBKJQJ6fJBLJ2cC0RKparaagoACz2cxNN91EeHi4sJsaLVQ7OjooLCyktraW++67b0QfW8lwxa/b7cZqtcqLgEQiOauQ5yeJRHI2MC2RqtfrufPOO0UY+8Ybb8Tr9XLLLbfg9Xp5+OGHMZvNDA4Oolaref7553G73VKgjkFERISIVMw0zzzzDJ999hkXXXQRDzzwwIy/vkRyoXChHkuzeX6SSCSSqTLtwilFoCpC9KabbsLr9XLrrbeiUqn41re+xVNPPUVtbS1//vOfz2mBOpu5apGRkbMWofjss8/o7u7ms88+44EHHhh3PxwOB3a7HaPRiMFgAGY2507m+knOdUYfSzPJmTo+7Ha7OO7Hy5ubzfOTRCKRTJVTtqDSaDR4vV6Ghoa4+eabUalU3H777bz77rtUVVWxf/9+tFrtTM71vGImcr7Gu3CtW7eO7du3s27dugkvbna7HY/Hg91uFyJ1qsicNcn5wkTHyFSPpZk+HqxWq3i9mY5m+h73srhDIpGczUzcNHUSVCoVKpUKr9fLTTfdxNq1a7FarRw6dIhFixbN1BzPS3xzvmaaBx98kC1btvDggw9OuJ3RaMTPz++ULlSzOX+J5GxhqsfSTB8Ps3l8nc5xL5FIJHPJaXecUqlUDA4O8t3vfpdt27Zx5MgR5s+fPxNzO685G3K+DAbDtCOoCqcy/+LiYiorK0lPTyc3N/eUxpVIzkZm6nhWjpHQ0FDMZvOsnB8mWuaXSOYSrVbLli1bxO/n8jhztS8XGjPWFjUvL49Dhw6Rn58/Uy95xqmtraWhoYGEhASSk5Nn9LXP9ZyvU5l/ZWUldrudyspKDAbDrL23EslcM93joaamZszvv3KMAKxdu3amp3nG8d3vlJSUMz0dyRnGz89vTlqJzsU4c7UvFxqntdyvoNFo+MpXvsLChQtn4uXOGhoaGnA6nTQ0NJzpqZwXpKenYzQaSU9Pl++t5IJmvO+/7zFyPiKPe4lEMh1mLJJ6PlZnJyQkiLt+yemTm5srlvl9o9QSyYXGeOcW32PkfESeUyW+DAwM8NprrwFw2223zWpb1NkeZ6725UJj2m1Rz1Zmow3dXFrETMUW5lTx3Y/JUhikBdX5iWznePYx+vgYyxJOYTaPD7kEP3XkcTSzyLaoFyaz1hb1QmaiC8hMMFe2ML7LbTIXVCI5ezgdS7jTwfecMNMidTZvviWSU+HIkSPo9fpx/x4eHk5iYuIczkgyEVKkThHlAlJbWwsw4/6FRqNxUoE6Eyd8udwmkZydTOUccCpM5uE62TnhdM470pNVcjbgmwO9Zs2aCbc1GAyUlJRIoXqWcEGK1FPJcFAuIA6HA41Gc5LdzFRe0+v1jrtsZzAYsNvt1NbWjiuAR0daxnu90VZPvtslJyePG0GVy/OSC5HJvvezZZ02+vgd7xxwuhlZvp6rymv6jpuSkjJmBFUZd7II70TnNV/hPRuZZfI8JJkK7e3t4vddu3aNG0ktKSlh8+bN2Gw2KVLPEi5IkXoq+HqKzpa/6VgXE1+mGmmprKzE4XBQWVl5Rosw5AVEcj7ga50228fTZOeAU+F0PVxPJ8J7Ol7MEslssHDhQhnVP4eQInWanM4yv81mm7DV4WQXE+WEv3PnToqKiliwYMGYXoqhoaE0NDQQFxd3SvOUSCT/Ij09nYMHDwKzd4OqcDY0+RjN2SI0JzvvSS5M6uvrsdlsE25TWlo6R7ORzDRSpM4AUzX9nyhK4nA4gOHl+ImSugGKioro6enh448/prOz86RlSL1eT3Z2tngdp9M5q0VfEsn5jHJstbS0sHfvXlauXDlrInKmc91hdqKzCsq5T+mONd1zzHRSKZTzXlFRkRSpEmBYoObk5Ijrp+T8Q4rUCZiq+CwvL6ezsxOn0znhdhNFSXzzviYTqQsWLKCoqAi1Wj3msr7BYKCvr09cLCbKKbNarWJO4eHhwMlOBrPtbCCRnO1ERERQWVmJ0WicUbHne/z5vqbvMTfZ+WAsfJ8/m9FZ5dzX0tLC2rVrp+1MsHv3bhoaGmhra5tUpCrnvQULFpzutCVnCVqtlr/85S/i9+lis9lwOBy8+uqr5OTkjLudx+OhsLCQ8PDwWW2Lejr7IhmbMy5Sh4aGUKtnpPHVjFNeXk5XV9ek4jMsLAy73U5YWNiErxceHj7uhWI6eV9r165l7dq1I6IQviQnJ4uoxmSvXVdXR3d3Nw6HQ4jU0aL2TFnjSCRnCxEREaxcuXLGxZ7VaqWrq4v29vYRN4HTuWkdC9/nTxSdPV3HEOXcFx4ejp+f37RfQ6vVotFopnRRV857kvMHPz8/brjhhtN+nZycHBYvXjzhNsuWLTvtcSZipvZFMpIzJlLr6urw8/M7a/Imx4poTFV85ubmkpSUNO0T9OhIrXKBmmoVbE5OzpjRh9E5ZHq9flxxaTAYsFqtOJ1OnE4nBoNhhKi1Wq3U1dVhMBgm9VWVpuCS85nTXYqvra3l6NGj6HQ6Fi1aJG5aGxsbCQgIwGKxiGNsvBvLqa7uTPWm93QtonzPfb6FpRPl3vuybt06UlJSpCWeRCIZkzMiUo8cOcJll13Gc889x80333xKr+F2u3G73eL/PT09pzwfh8NBaWkpGo1G5LYYjcYpi89TLSwY3ce6vLycsLAwcnNzZz1iqVxIDAYDSUlJaLVaESn13Z/a2lo0Gg3ApHOaTVNwyewwk8eRZGKUZW21Wk18fLwQqZmZmfT29o7Y1vcY9L1pbWhooKamhqKiIlasWIHBYBhTDE71nDRVMTteyo/BYECv1wsnD4fDweHDh+nv78fhcEwqUieyxJOc/3g8Hv7+978D8MUvfhE/v9mRJHMxzlzty4XGnL+LRUVFrFq1im984xsnCdSJ/PZG8+STT/LjH/94RuZkt9sJCQmhq6uL6upq9uzZQ3Z2Nhs2bJhVsehrol1eXk5dXR0tLS0iajlbYysXEqvVir+/P8uWLRt3uc9gMNDe3k5oaOikrysbBZx7zORxdL4wUQ726eRnJyQk0NLSAoy84YuMjJzycntCQgL79+8nICCAzz77jKSkJKKiok7LXgqGz4G+/x/NVFN+7HY71dXVlJSUsHr1apYsWXJK85JcGLjdbm688UZguJXobAm7uRhnrvblQmNO38WysjKWL1/OI488wmOPPcbg4CD79u3DYrGI6k4lajcZjzzyCA888ID4f09PzymLI6PRSHR0NGlpafzmN7+hqamJgYEBNmzYMOHzTregyDeKYLPZ6OjoQK1Wj4hqKoy3zDfWHCa7yNbW1jI4OCiW8RsaGli7dq2I2PiOZTQaSU9PFwec71Le6O4145mCS85eZvI4Ol+YSJDZ7XZ6enqoq6sjPDycyMjIKR/7ycnJGI1GPB4Pfn5+I1w3xhOZo5fOk5OTueiii2hoaBjXdmeqKQFKPqrdbhfnnNEi1XfFRRHSEy3nK5HZsLAwuru7p/S+zDQy7UgiOX+YM5Hqdrt5/PHHMRqNbNy4ERgOiVdXV9PW1kZnZycPPPAAX//616d0YtFqtTNWQee7NJaQkIDdbichIWHSyO50C4oUEehwOHA4HGJcm82GSqViwYIFonhJac1WXV1NamoqHR0d9Pf3U1VVJcSnXq8fs8Bi9GO+y4XKBSkyMpLMzEwGBgZQqVR4vV6xXWNjIy6Xi8bGRhYvXozFYsHtdosLVH9//7g2WrW1tTgcDpKSkqYV3ZHG/2eGmTyOzhcmWgJXjoGhoSF6e3vHvBGcrAOTcoyoVCq0Wi0mk4mkpKQxt7fZbAwMDGCz2QgPDxfnCsVizul0Eh4eLo5dp9PJsWPHgOFjaiyR6ttJqqenh8OHD9Pd3c3ChQtP6qJns9no7+9HpVKJOZaUlNDT0yPG9n1NvV7PxRdfTElJCTk5OSfl18/FcS7TjiSS84c5E6larZZ77rmHgYEBHnzwQZqamsjKyuJ3v/sd6enpbNmyhfvvvx+TycSjjz46raX/6TLR615yySXMmzePiIiIScdXLmZ2u/2kaINvVLO2than00liYiIRERE4HA48Hg9WqxUY7mhjMpmA4eIMZd+rq6v5/PPPefvtt7nkkktISkpCr9fj8XiEyPW9oKpUKmpra6moqCAsLIycnByxD8q/yoU3JiaGxMREcfHz3S4+Pp6KigohepXoj1IpPJGNlsViYWho6KwzJJdIxmP0cT7e0rvX6xWpOBaLRWw7HZTzgkajoaqqCn9/f+Lj48eNeIaHh9Pe3o7ZbEalUlFfXy/yhpOSkkYc+16vF7vdTlBQEA0NDaSlpU04F6PRSH19PfX19fj5+VFTU0NiYuKI85cijH3PEYrjh8FgEOMq557Gxkbi4+PZvHkzAH/961/Zt28fK1as4IYbbpjSOf1026fKtCOJ5PxhTpf7L7roIlQqFU8++STp6en86le/IjU1FYDbb7+d5uZmfvrTn3LfffdNWlE/W0RGRoplbN/I53hFA0p1fH9/P01NTURHRxMYGEhycrIQqA0NDfj7+2Oz2YiIiBDeo11dXdTX14tlseDgYEpKSkR0AoaXrgIDA2lububWW2/FbrcLgeo7B4XGxkYAUak/Gt/tlaKL0SgXzN7eXkpKSoDhCImSJ+t7wfLFaDQSGRk5pYIJieRcZbTTxXTTfpQbveDg4AnTm5QizsTExBHHbGNjoxCJg4ODdHd3k5mZKc4bGo3mpKjoePthNptJS0vDZrMRHR190sqQ75K+w+EQ4jwxMVEc68q+NzY24nQ6aWxsFO/Pvn37sNlsfPTRRyxdulTk384mMu1IIjl/mFWR2tbWRmNjIx0dHaxcuRKTycS6deswGAy0traSmJgI/MsrNTg4mMTERAIDA2dlPhaLZdx8yomw2+20trbS1dVFdna2iIb65pPV19cDw+JQo9GIqILvvun1ehFxjYiIEMUKPT092O12jhw5QldXF/Pnzyc/P5+4uDguvfRS2tvbWbRoETAyyjNWxME3CuorZq1Wq4iIjJ6/IpqVC5Dy3rhcLmpra4mPj5/QxkrBYDDMem9zieRsY7ppP4rwi4iIwGazodfrqa2tBRA5rlarlSNHjqDVaklMTBSiLykpSeSuOxwOXC4X3d3dfP755yxfvhy73U5AQIBIzxnN6OM+MjKSVatWiRUZ5fwEnLQiVFdXR29vryim/PDDDyktLSUrK4v4+HgsFgtarZY1a9aI8VasWME///lP0tLSRHqE7JsukUimyqyJ1GPHjnHTTTcREBDA0aNHufLKK3nyySfJz89nyZIlI0z8lX9LSkpIT08XhQUzvdzv2x5wOiLVaDTS1dWFRqMRItf3wqREMEJCQnC73RgMBnp7e7HZbLhcLuLj48nJycFut4vHlaV/gObmZvz8/CgpKSE0NJTW1lYuvfRSbDYbV1999ZgRkdGiExDCOCwsjNjYWHHRtNlsvPbaa1itVhYtWsT1119PXV0dFouFyMhIMbe+vj68Xu+IiGhSUhL9/f1jzmG6RVsSyfnIdBpxjO7wpkRV29raxGspx6yS1qPczNfW1tLU1IROpxMrGjabje3bt6NSqdDr9QwNDVFWVkZWVtaIG9T6+npxozme3Zzdbic0NJTOzk60Wi0Wi0WISiWX3eFwYDKZaG1tpbS0lObmZjQaDS6Xi5iYGDQaDUajUdwg33DDDWzcuPGU0yMkEsmFzayI1IqKCi6//HK++tWv8pWvfIX+/n4uu+wyfve73/Hss88CjOgy1dDQwAsvvMAf/vAHdu/efUodVqbC6bQHNJvNI5axfSMPZWVlIj1BWWbv7u4W4lPJ1YyIiKCoqIiOjg4cDgcFBQUYjUZWrFhBdXU1l156Kb29vSxYsEBchJQLyKeffsquXbtITEzk6quvpry8nOrqalQqFZdffrkwBVdM+c1ms4im2Gw2LBYL3d3dIg/W4XAwODg4whdWmXN3dzdhYWEi4jue4BwdQVLSG5RCHClcJecjo7/PE3mSjt7W90ZZubm12WyUlpYSHR0t0p/Cw8OF0FNuqJuamkYc30rqj0qloqqqCo/Hg1qtpqenB7VazRe+8AVgWKR2d3fT19dHUlLSuJ2h7Ha7uMltbm6mvr6euLg4UlJSMBqNlJeX09raisvlwuVyERISgr+/P4sXLyYhIYHOzk5CQ0Pp6enBarWSnJwszpFK5Hi6gYeDBw9SXFxMbm6utLM6DwkICOB3v/ud+P1cHmeu9uVCY8ZFqtPp5Oc//zlXXXUV//mf/4lGo0Gj0fDDH/6QX//617jdbgICAsTJqqioiG9961vU1dWxfft28vLyZnpKAt980+mgRBh887OUk29lZSV6vZ6Ojg7CwsJGNARISEjAYrEQGhoqKvqVi0VrayuAEI3Lli0Tr61U1SqRFIBdu3ZRX19Pa2srwcHBVFdX09nZSWRkJPX19eK5FRUV5Ofn097eLooYlLyz9vZ20tPTxcWvpaWFmJgYCgsLKSkpYWBggPDwcI4ePSrSCyazsFEKFJTossVioaGhgYKCghHv1XSWQ0+3VaNEMptM5/s8etvRN8oOh4M9e/ZQVFQkoqHKsaPcCCvExcXR1NQEwP79++nu7iYmJkYIYJPJJOzzFJTzR0BAAGFhYRMeTw6HQziIKM+pqKhAo9FgNps5ePAgtbW1DAwMsGTJElauXMnixYtPiiQrN6rKOXI8N5CJUFo+nzhxguDgYIqLi6VIPQ/x9/fnrrvuOi/Gmat9udCYcZE6ODhIf38/69atG3E3ER0dLWyUfB9fsGABDz30EFlZWSKKcLYx1nKeEhHR6XTo9Xri4+OFPY1SHAWQlpY2Ij3AarVSUVEhoo02mw232y2Kqmpra2lpaWFoaAiXy0VoaChOpxO3201nZyeLFy/GarUSEhKCy+UiOTlZ5LrW1tYSERGB0+mktbUVp9NJR0cHiYmJXHXVVXR1dRESEiIufPHx8cBwmoXdbsftdhMeHk5qaiqDg4OTXlSUpT/faGxvby8hISG0t7eP2Lazs/Ok1xvPc/V0WzVKJONxqnnpvowlyibyJfX97vve6CrV+F6vl5aWFkJDQykpKaGgoAAYPg7a2tpEYVRycjKRkZGUlJRw+PBh2trayMnJYfny5cC/bsIHBgbEsT36BttqtY4rsA0GA83NzYSGhhIQEIDRaESr1TIwMMDx48cZGhqip6cHPz8/Ojs78ff3F13ylPOK4uXq+/6cyupVZWWlyK81mUwy110iuUCZcZFqMpn4yU9+QkxMDDAsWjUaDdHR0ZjNZkwmk4iiKl56V1555UxPY0YxGAxYLBZKS0vFhUg54Ss9uFUqlYiKwsnt/nyjIl1dXbz55puEhISwbNkyUXRltVo5ceIEGo2G8vJy1Go1arWa7u5uAgICWL9+PTExMcINYOPGjUIc19bWYjAYqKurQ6fTERERQU9PDxkZGWJsZXlRuXiUlZXR19cHDC8lpqSkCNEdFhYm7GkSExPFUmB8fLzwS4yIiKC0tJS+vj6sVitGo5GYmBg6OztPsn/x7VilLIHW1dWJPF9fwTCdHD+JZDpMlpc+FSP40ecDX1/OsUSq8t1XvvfKPJSoaFJSEpdeeilut5ucnBzxPLvdztatW7FYLGzfvp0vfelLhIeHExoaKvL2+/v76e/vJyMjg+joaNrb2zl8+LAQqVarlaqqKnGzPJkHrBLZLSgoYNWqVYSGhlJcXExXVxeRkZGsXr1apAsMDg7S09ODXq9Hr9eL9KKpOIhMRnp6OpWVlVx55ZVSoJ7HeDwePvroIwAuv/zyWW2LOtvjzNW+XGjMyruoCNShoSFhsaLchTscDoxGIz/4wQ84ePAgf/nLXwgODp6NaUyZqSwvj74QjY6IABMubSnm+0uXLmXr1q0YjUYOHDggGht4PB5sNhuBgYG0tLSg1Wrp6ekRIrG/v19cABMTE9HpdCxcuFAI/oiICDo6OjCbzej1ehF9KCsr49ChQ+Tk5OBwOMSNQUFBgbC/crvdrF27lqKiIoaGhtBqtQQHB9PQ0EBQUBBWq5WOjg6cTicVFRXifVLeq56eHvbt20daWhpxcXEnGfmPvjAqkVJfmxtf5DK/ZLaYLC99MiN4JfpfWVmJTqcTgnY8X06j0SiaYSjFR52dnVgsFqqrqwkICCA/P5+vf/3rwmGjtraWyMhInE4narWatrY2IiMjqaqqEjeIF110EXV1dWRlZREXF4fVasXlcnH48GFg2FnF4XCIpfuOjg7gX+ch39xQRTyXlZWxbds29Hq9WF4PCAjAarVSWlpKdnY2d9xxB3a7HZvNJs53YWFhOBwO+vr6aGxsJCsr67Qt6HJzc6U4vQBwu91cffXVwOy3RZ3tceZqXy40ZvVd9C2O6u/vp7e3Fz8/Px577DF+9rOfsXfv3jMiUEdbN42XY+Zb9OB7IfJ9XHm+EjFQWhUqfqdKAYTD4aCjo4OBgQHWr19PdXU1ubm5DA0NCfHodrvRarXk5+fT1tbGjh07RLGFknuWkpJCWVkZHR0d7Nmzh7CwMOLi4tBqtRiNRtra2ggKCiI+Pp49e/bwwQcfkJKSIiKhWq2WgIAAFi1aRH9/PxaLhfDwcEwmE2lpaWK/PB4PkZGR6PV6EYFpamoSzQSUiFBoaCgNDQ3ExMTgdDrFtqPdB3zfV9+obHJy8ohuV5N9blM1A59qgYbsdHX+MtZ3aqybS9/vi+9x7vV6OXjw4IgbO0WYKdFDZWVBEY/Kd9nr9Yrj3ul0MjQ0xLFjx2hpaSE7O5vk5GT6+vro6ekRKQiAOK6UlY958+YBUF9fj9Vqpa+vT/ibDg0NER8fLyziqqur0Wq1dHV1iWM5NDSUpqYm0tPTKSkpoba2lpSUFDIzM8V7opz/ampqiI+Pp62tjZiYGE6cOEFsbCxdXV14vV66urqwWCx0dnbidruJjIxEp9NhsVhwuVw0NDQQGxs7oihs9Ofhe01QGF1c5vu5+baOHaugdiaP36megyQSydwxIyJ1KqJAq9WSnp4uCqj27dsncq/OBL5Vo7m5uWMugfmKV9/leyWvq7CwkNraWpKSksjJyREXQEVwKnmmysXlyJEjDAwM4PF42LhxI0FBQahUKuF3qHgmKu0OlQtcT08PWq2WAwcOkJycjMlkEpX4Xq9XRDKam5vx9/enoqKCnTt3cuLECbxeL62trSLdwmKxkJ6ejkqlorOzU+SaXX/99axZs4ajR49isVjweDxkZGSMuNgkJiaKC68SIeru7iYrKwtAdMAyGAzs2bOH5uZmYmJiRJUxDOfv7dq1i9DQ0HEbNoznBuB7wZIuAZLZYHSaTklJCX19fezYsQOXyyWOz4nM8n2bgAwODuJ0OtFqtdTX1+Pv709jYyOXX3458fHx7N+/n/7+fhoaGtDr9ZSVlREcHIzJZMJgMAhzfJVKhdvtFgWR7733Hi6XC6fTKQSn0r4UYOvWrTgcDmJjY4mNjSUwMJADBw7gcDior6/HbDbT0NCAy+UChm824+LicDgcLFq0iJ6eHpqbm+nt7cVkMhEaGiocBaqqqnA6nZhMJqKiotBoNHR3d5Oens7AwMCkVfxKUVR6ero49yrn2dFuANMtupwppKuARHJ2cMoi1W63MzQ0hNfrJSgoaNLth4aGOHjwIFVVVezZs4fFixef6tCTzmsq8ykuLqavr08sa411Ahzd9lQ5cSqPt7a2Mjg4SGNj44hiBxjOxfUVeO+//76IfK5YsYL+/n46OzspLS3F6XQSGBjI0NAQ/v7+BAYG4nA4CA8Pp6amhqysLOx2O4GBgWzdupXk5GSRPtHT04PZbBbjWCwWCgsL6ejoEH6s69atIyUlhZqaGtauXUt2djZ79+7lvffeE+kESg7sJ598gr+/P4BYbquvr6ewsBBAdJ2CYdGoFFcoc/3nP//JvHnzaGtro6mp6aTISWNjIwEBAZSXlzM0NITBYDipb/l4F6bTuWBJGyzJqZCTk0NJSQn+/v5C0JnNZsrKyrDb7URGRmKxWEShYGJiojgeFVu2+Ph42tvbsdvtHDx4kMTERNLS0oiNjUWn0wkhW1tbS1dXFy6Xi6CgICoqKjh+/DhqtZre3l6SkpJwOp3s27dPVPEr4zqdTgICAggODqampga1Wk1RUZHIh42KihLnAIA33nhD3ASnpqaSl5fH8uXLSU1Npbm5mZ07d3L06FFqamqIiIjgqquuoqCggO7ublpbW+nt7SU+Ph6tVktoaKjIeYV/pU8pjQlGU1lZicPhoLKyktzc3BHpQLW1tSJneLIc2tlk9PVBIpGcGU5JpBYXF/Ptb39bmFD/7Gc/47bbbhsRUfU16weIjY1lyZIl/P73v5/VXCOl0nyyPNPc3Fxxpzweivm1b7GF79J1dHQ0ra2tzJs3T4yh5GZZLBbMZrMQtuXl5cKWZcmSJcIMu6WlhYULF6LX6+nu7hZLeWFhYfT09IgoRn5+PkePHgWgvLxc5LeFhYXR2dmJTqejoqKCkpISWltbaWhowGw2k5qaKi4EISEhIk/mxIkTqNVq4cOYmJjIkSNHcLlc9Pb2jrjANDY20tTUREdHB/v37yczM5OsrCwyMzPFkr4SWYXhIqyoqCgGBweJiooa8Z4qBR3K9+TYsWMnXczGuzCdzgXrTEVkJGcf07lhWbJkCUuWLBnRl963/afiaKHkb9fX1+P1ek/yT21vb0elUjE0NERtbS2ffvopN910E3q9HpfLRXNzMx0dHeh0OpEP7na7CQwMxGw2k56eTmpqKq+//jplZWW43W4WLlwo8maVCG9QUBA5OTn09fVhNpvZt28fra2tXHHFFaxcuZLs7Gw++eQTGhoaKC0tJTU1lYGBAdGhzul0AsPn6927dwuHEIfDQVZWFkVFRaSmptLU1DRCALtcLo4cOUJraysRERHCds/3plYhPT2dPXv2MDAwQG1t7YhtRucMT+RBO5tM5fogkUhmn2mL1OLiYtatW8cdd9zBkiVLKCws5O677yYvL4+FCxeK7RSB+u6777Js2TKSk5PZuXOnsF6aLXy7p0xkY5SUlDTlytOxii3sdjuxsbGiUEnJQVUqf2FYrCUnJ2M0Grnkkks4cOAAiYmJuFwuqqqq6Ojo4ODBgxw/fpyQkBDS09Nxu93ExcXR2NhIb2+vSMDW6/UsX76ckpISjh07Rl9fn+ju4nK5aGxspK6ujs7OTpqamggMDMRoNGIymejq6qKjo4Py8nLcbjfLli0jLy+Pvr4+1q5dy4oVK3A6nYSEhOD1egkMDESn04l9VfLUlChxTU2NmKdvNfK8efNoamoiLi4Oo9FIXFyciCb7tl1dvHgxFouFY8eOERUVdZJwHO/CNJXWrONxKgJX8X0F5qTnuGRuGOuGxbfyXjHJV27gDAYDycnJOBwOjh07Jo4NJUcyMDBQFE3p9XrRJEOJpJaXl1NXV4fBYEClUmE0GhkYGKCwsJDExES6u7tpb2+nv7+fefPmkZmZSUNDA42NjSxYsIAFCxZQVFTE9u3bKS4uRq1Wk5yczLXXXovZbMZms9HR0UFfXx+hoaFERUWxYMEC6uvr+f3vf09vby9/+ctfOH78ODAsQIeGhkhLSyMsLIyVK1eSmJhIfX09/f39uFwuhoaGmD9/Pg6Hg8jISGJiYvj44485ceIEISEhrFq1Cr1ej81mo6ysDD8/P4qLi4WlXnh4+IjOVjAc7S0uLqajo4OgoCBCQkJOckTwzRk+kyg3JxKJ5MwyLZHa0dHBt7/9bW677TaeeeYZAG699VYOHTrEyy+/zK9+9asR0dQtW7Zw7733cscdd/D444/PSRcGRUhMJkpGR0cnwnfZSbn4KMVBWq2WpqYmNBoNHR0dLFy4kLy8PCHWlAKiDRs2sGHDBg4cOIDFYhFeg8pPbGwsmZmZpKSkUFlZyXvvvSeKzRISEmhubiY/Px8YNtnu7Oxk0aJFaLVaqqurOX78OIcOHaK+vp6oqChMJhP5+fnCkFu5CCsFEhdddBEZGRkYDAbq6+tpbGxEo9GIi63SphGGu9+sXbuWnJwcjhw5QkVFBQEBAVRWVo5om+h0OgkLCxNpANnZ2eK7YLcPt4RVPpvIyEjmz58/4jObCuNFwXy9KkenD8CpRWRGz1mK1PODsc4NyrHR2dnJ4OAg7e3tmM1m8T1zOBzs27cPh8NBVFQUF198MR6PBxiZx+pwOCgrK6Ozs5PU1FSqq6v55JNPCAgIwOPxsHjxYrxeL+Hh4Wg0Gg4fPkx+fj5Wq5WMjAzCwsLEao3T6eTAgQNUV1czODjIwMAAsbGxqNVqLrroIpELXlZWRm9vLy0tLbhcLnJycqivr8fpdJKWlsaePXtQqVQcOnSIhIQEwsLCuOWWWygvLyczM5Ps7GzxPjQ1NRESEkJqaiomk4nVq1djNps5evSoyJ/VaDR0dXWJQqrQ0FAhbLVaLVFRUWPm+SvNP5TcWb1eP6YjgkQikShMS6QODAzQ1dXF9ddfD/xrST8lJUVYnPgmzF999dXs37+fu+66S1hRzRWTiYqJrGh8hZCSjwrDxQW+OaqKWNVoNFRWVjI4OCisWpR2pE1NTeJ3l8tFTU0NxcXFBAYGkpmZSWtrK263m5CQEAoKCkhMTGTr1q2ic1V+fr4orOju7hYVujabjb///e9UVFSI7lUK9fX16HQ6tFotDQ0NhISEYDabWbx4MT09PYSEhFBUVERwcDBGo5Gamhrsdjs6nQ5/f3+OHTuGx+MR+apKu1PFWzIsLAybzUZoaCi9vb3YbDYcDgcajUYsiSppAL6fR2BgoPhdSVdQosRTXYK12+1UV1fT1tZGfn6+EAe+1kFJSUns3LmT/fv3k5GRwWWXXXZKEdjRc5ace1itVvbu3UtXVxdLliwhNzd3zBsW33QVjUaDyWTC7XaLv9vtdlE4pDht+Hqe+n5vd+zYQW1trVgqHhwcFF3hWltbKSgoEMe+4nN8xRVXiDx0GD4HHT9+nM8//xy3201wcDArVqzgkksuITAwUAhnhc7OTrRaLVqtVhyT/f399PX1sWzZMux2uzgH63Q6EhIS0Ov11NTUsG3bNlwuF4cOHWJgYICQkBBgeLXJ7XZz4MABEaltb28nLi6OiooKuru7CQ8PJzg4mOTkZEJDQ0UTEIvFMsLBQ3mPExIS6OjoEM0JzhSyq93ZQUBAAM8995z4/VweZ6725UJjWiI1KiqKV199lYyMDGD45KtWq4mLi6Ourm7Etkp3o8cff3zmZjuDjF5WGi1MleVAJeLq24GptLRUnPCTk5PFhaW+vl5YShUVFXHgwAE6OztZsGAB2dnZwltQp9Ph5+fH0NAQV1xxBY2NjaSmptLe3o7BYCAoKAidTkdcXByhoaFiqa+5uVkIytFkZmayatUqYmJieOONN6iurubtt98Ghn1rs7KyCA0NJTY2lra2NvR6PV1dXcBwIUNVVRUGg4H+/n78/f2x2+2cOHECGM5JPXToEIGBgWi1WrKzs0XhW3l5ubARUy7gSiGVgm8+n++FaSzvVGV5cHQFsIJiswWMWCoc7VVZVFREe3s7LpeLlStXnrJIHc/QXXJuoJjZezweUajji+9xrxQBKnnbSqQUPvn7RAABAABJREFUhr8LytK7kgJgMBiora2lt7eXwMBA0WmpurqaiooKPB4PV111FS0tLQwMDAgx63a7SU5OJiUlRdi6KXndCvv376e6uprGxkaCgoLo6uqir6+PkJAQ3n//fTo6Oli2bBlBQUH09fWh1+uFTVNPTw8tLS20traSlpZGa2sroaGhLFmyRKQD7dq1C7fbjcVioaamBrPZTElJCUFBQdTV1REfH09nZ6d4X/z9/UX6g06nE7ZUBoNBeDArgrusrIw//elPREdHA/9qrazX68USusPhOEnczyXK+cZisYh9lLnqc4+/vz/33nvveTHOXO3Lhca0c1IVgapUosOw5YoShQB48skn0Wq13H///eeMoe3oHNax2vop0deQkBC6urpG9N8GRlS3dnd3C4umw4cP09LSIpYFlahzWloagYGBpKenY7Vaqa6uprOzk5ycHDo6OtBqtRQXF/Pss8+O6GYVEBDAkiVLWLFiBatXr2blypUjROFjjz3Gtm3bePHFF3n33XdpaWmhpaWFPXv2kJqays0338ySJUvQ6XTYbDa6urro7+8HhiPhJpMJvV5PVVUVxcXF4gJVX19PamoqbW1tIi+vqamJPXv2CB9JRfjW19eL9q8lJSXizlK5YPlGs7xe70nvudIWcbSwMBgMhIaGcvTo0RFdrJTc37q6OhwOB5mZmbjdbtFxS3JhEhERQVpaGl1dXaSnp5/097GOe6UbVGhoqPjuKS4UE1krFRYWcuTIEVQqlWhRGhwcTF9fHx0dHXi9XqKjo4mOjqavr4+WlhZxA6ykFsDw+aa4uBir1YpKpaK+vp6mpibee++9ETeoL7zwAgEBASJndNOmTSxYsICtW7eKlslKoaLRaBQrLqWlpeJYHhoaAqC3t5esrCwGBwcZHBwEhi2tFG/n1NRU4uPjCQgIEJ3wNBoNK1asABDPiYiI4MMPPyQgIIDW1lbRrGSi9135v69QnG03DuWzdrvdsqBSIjmLOWUFqVarR+SfKoVSjz76KE888QSHDx8+ZwQqjMxTUwSUEikY3T0pOjqatLS0ESfUvr4+uru7CQsLQ6vVkpycjMvloqioSEQmPR6P6LPd3d0tDLsNBgMlJSUiEmg2m2lqaqK6upoXX3yR9vZ2EhISuPfee1m5ciUFBQVotVo8Hs+YaRRqtZr169ezfv16Wltb+cMf/sDLL79MTU0NpaWl/OhHP2Lx4sUsWLCAgIAA4uLiSElJoa+vT5iD+/n5cejQIVQqFR6Ph4SEBOLj40Xawfbt2ykoKBAR9KqqKubNmyeW/UtLS4mOjqakpAS9Xk9vby9hYWHCHisjI0MUoyhLb4rYNxgMoi3iWMIC/nWz5IvVaqW7u5u+vj4WLVrEhg0bTu9LITnnMRqNrFy5clyxM9ZxX1paisvloqWlRYjUsUST8n1VihTff/99BgYGSElJITExUVS9K/ZVZrOZoKAgYmJiqKqqor29na6uLlGg9OGHH/L6669z7NgxqqqqRMtiX9RqNTk5OSQkJHDgwAHhm9rY2MiBAwfQarWEhIQI39P58+cTGxsr2i3b7XZKS0tpb2+nubkZo9EohO51112H0+mktbWVgYEB6uvr6ejoICAgQHS5i4qKYufOnXi93hHtoZ1OpzD4V4opc3Jyxl3S933fxypkKywsFO1c165dO2XRqjRGiIiIGLPtre/4vhaD8kb2zDA4OMjOnTsBWLt27YjrWX19vWiOMx4lJSWnPc5MMRdjXIiclopURKqfnx8JCQk8/fTT/OxnP+PgwYMsWLBgpuY444zVNUSxcPH9+1S30+l09PX1ERAQgMvlQq1Wk5mZSX5+PqtXrxaFDUrlf3BwME1NTQQEBKBSqYiLi0Oj0aBSqdBoNAwMDHD06FH++Mc/0tPTQ25uLm+++SaxsbHA8DKkx+Ohp6dnRBX+WOh0Ou6++27uv/9+tm3bxu9+9zv+8Y9/cOjQIQ4dOgQMpwNccsklrFmzRthfmUwmBgYG6OzsJD09naioKNra2vDz86OtrY2QkBCRM3vw4EHUajUtLS2kpaXR0dFBeHg45eXldHR0kJ2dzaJFiwgPD+fzzz+nvb2d9vZ2cWGor6/nn//8J8HBweTl5WE0GkcUjygdbJT3e7zuXxEREaKwTWnlOF4hlYLsOHXuMdWuP16vd4QAGqtjkV6vR6fT4XK5Riw/nzhxgtTUVPE8u93OwMCAOM5huPVhVVUVdXV1pKSk0N/fz5EjR1i3bh2xsbEEBwfjcrnIzs4mISFBdIvq7e3FbDbT29srTPN///vf895774mIJICfnx85OTnMnz+fgoICFixYwPz584VIGxoa4sSJE3z22Wfs2LGDXbt20dvbS1tbG21tbTzxxBM8++yzDA0NCWupifjLX/7CvffeS25uLh6Ph6ioKPz8/AgNDSU8PJyAgACqqqoICgqit7cXo9EoukwpDQvq6upEjq3vMQtw+PBhiouLyc7OpqCgYMTnoRzDSrcuJVdfif5O1ULOtyB2IpGq4JuTKrtJzT0ul4tLLrkEGD6efK8JShrJZBgMhjE7nE1lnJlkLsa4EDktkapET/39/XnxxRcJCgpi165ds2bUP1NMR5hMZVu9Xk90dDTV1dVYrVaOHz9OXl4e+fn5omXh9u3bqaqqwuv1EhoaSl1dHXa7ncHBQTIyMoiNjaW5uZljx46xc+dO/vznP9Pf38/q1av505/+JIoZRs9tKndrytLcZZddxmWXXUZrayt/+9vf2LJlC3v27KGlpYXXX3+d119/ncDAQBYtWsT1119Peno6fn5+HDx4EEC0bU1PT8disdDV1SX8VzUaDRUVFcyfP5/w8HA+/fRTCgsL0ev15OTkYDAYqKioEDm1CxcuFM0GrFYrXq9XGJMrFySl6Ky8vHxEi9Wxun/Z7fYRecY7d+4UhVRnskBDcmbxjdgp3d3GisiNFkGZmZniAqlSqbDb7dTU1BAcHIzBYBB2aDU1NXR1ddHe3k5paSmdnZ3s3r0br9eLyWRi7dq1wme1srISi8VCUFAQer2eyspKduzYwf/8z/+IsTZs2MDGjRtZuHAhubm56HQ63G73mAJbrVaLPNn7779fREm3b9/OZ599xp49e07KX9dqtQQGBhIUFCR+AgMDqayspKysjCeeeEK0el20aBErV64kKioKt9tNb28vHo9HnAeU1q8Gg4HExEQ++ugjdu3aRU5ODmvWrDmpKFW5WS8pKWHJkiVYrVbhzTx//vwR2+fl5YlI6ujPcSImKoidjKmc6+VN7dygFOO++uqrI2wOxyI8PJzExMQ5mplkrpmR9fjLL7+c//zP/2TPnj3nvPmx70VsrAvDWNtZLBZKSkro7u5m7969ogApLi4OGF4K7+zsxGq10tPTQ3BwMN3d3QQEBNDS0kJ5eTlRUVGEh4ezdetWdu3ahdfr5brrruOFF16YNFo6XaKjo7n33nu59957aW9v5+OPP2bLli1s3bqV3t5eduzYwY4dO9Dr9cTFxZGfn4/H4yErKwutVis8Qzs7O+nr60Or1dLX10dERMSI9o5er5e+vj6Cg4Pp7e2lsLAQPz8/wsLCCAoKEsurOTk5Io/Xt/UpDDcd0Ol0GI1G6uvrAUYIjPEuXqMLqSTnLjU1NeKznG4hm2/us+JSUVFRQVNTE8uXLxed4kZ/j9rb2zGZTJSVlQk7J41GQ3NzMy6Xi9jYWAwGA7m5uRw4cEDYNA0MDIg+92azGY1Gg16vx9/fH6vVKlqIfvzxx7z55ptCRC5dupTHH3+cNWvWnPL75Ofnx9KlS1m6dCnf/e53cbvdVFZWotfrhTDVarW43e6Tqo/7+/v55S9/yZNPPkljYyMWiwW73c5XvvIVWlpaKCsro62tjfT0dLGS093dLXJSHQ4HH3zwAU1NTTQ3N1NQUDBiOd/hcJCUlITH4xGiw2q10tDQwNDQEKGhoSNuJpV21WN9jhOh5AJLzg9ycnLOSNBrKmkEUhzPDTMiUpcsWSKWf851JkroLy4uFnf3ERERojq0qKiI5uZm4WfY1tZGUFAQL730EjU1NYSFhRESEoJer6e1tRWj0UhUVJRYPty1axdZWVns3r1b5LR87Wtf42c/+9ms57WYzWZuueUWbrnlFnp6eti/fz/vvfce//jHP2htbaWyslIUWRiNRtRqNWFhYSQmJqLX6zGbzbS3t6NWq4X9U2dnJwsXLqSpqYmEhASGhoaor68nNjYWq9VKfHw80dHRNDU10dTURFhYGAUFBdTX14sWkcnJyUK8u1wu0QSip6cHq9UqutSMFiHK5zW6B7vk3MXXXux03BYU27OysjJUKhWff/65uMgo6SIwLIiUFqb19fWiMUVcXBwdHR0iGpiQkEBsbCzXXnstr7/+uuhzn5iYiEajoaWlhRdeeAGv10tvby9NTU20tbVRVFQkiiczMzN57LHH2LRp04xH6bRaLXl5eVPaNiAggO9+97tcf/31fOtb3+KTTz7hyJEjfOlLX+Kee+6ht7cXu93Ovn37ROc6xdWjo6ODAwcOiPSvqKgoAgICRHS4rKyMwcFB4uLiWLVqFTDcFKawsJChoSHxOrW1tURGRk4YHDgVTucmR3JhodSIbN68edJtlVoSKVRnlxmrbDrXBapieRQbG0tSUtKYCf1VVVXY7XaqqqqIiIigs7MTQHgqJiYm0tzcTG5uLjabjcrKStra2nC5XKIAyO12U1dXh16vJzQ0FI/Hg9Vq5dVXXxUC9T//8z958MEH53xpSafTccUVV3DFFVfw61//moMHD/Lkk0/ywQcfUFpaSltbGytXrqS8vBw/Pz/S0tJYsGABx48f59ixY6KjzLx581i5ciVms5nGxkZ6enpEWoBKpSI6Ohq3201fXx8VFRUMDAwwb9484uLiRnhFxsXF0dTURHp6OsnJySLPNCQk5KTcNOWil5CQQF5enqzUPY8YHRWfbuW3bzepoKAgVq1axdGjR4mLi6OsrIyYmBiAEa/ldDrFiojy3c3Pz6euro4DBw4QHR0t5mMwGKirq6Onp0fYrwUFBbF9+3bq6+vx9/cXwlY5Z8TGxvLwww9z++23n1UFpikpKbz99tu89dZbPPjgg9TW1vL973+f5cuXixtDpfUpDLtw7Nmzh4MHDxIREcH1119PYmLiCC9X5cbTl6qqKvz9/QkJCWHFihW0traKQMdMiFTfgqiZusmRnP8kJiZSUlIypYKtzZs3i5Q1yexx9pwdzzCK5VFzc/OIdni+S4BpaWkikqrkk7rdbkJDQ1m27P9n77zD2yrP9/+RJVvLU7a8d7zt7Nk4g0JCgECYpaVllvJllLbMpoWSUkqB0kKZBcJuyigkkAAJJCRkLzLtJN5D3kOyLQ9ty/r94d95azseckhC0vi+rlxJ7KOzdM77Pu/z3M99z6C9vR2VSkVDQwO+vr7o9XrkcjmRkZHo9XqcTifHjh0TmVbJveWbb76hvLwcuVzOa6+9xtVXX/29c598fHyYMWMGn3zyCStWrODBBx+kra2NdevWoVQqSUpKYvLkycLuMSIigvb2dtEsYjabWb16NUePHiU5OZmf/vSntLW1id+np6djs9nYu3evKOWHhIQIgwTolZUKDw/nyy+/5P333ycjI4OJEyfS1tZ2XJBSXl6O2+2mpqaGGTNmDHpNgwU3Y6LeZz6SkpL6BRfeNtFI1JHi4mLhIJWens6UKVOYMmUKBoOBrq4uKisrhZUv9HaIW61WAgMDmTNnDmq1WkxEe/bsoaSkhLi4OHJzc2lpaWH//v00NTVRW1tLT08P77//vuCwDuzQDwoK4re//a3QUzwTO4BlMhlXX301P/zhD/nLX/7Cq6++yt69ewkLCyMzMxOXy0VUVJRoFC0vL8dsNqNSqZg1a5a4V1ImNTw8XDRLSmopUVFRFBYWCmOE0Zhm9F10SJ8Z+Lm+z8gY9WcMo0F8fPxY4HkGYSxI/f8YTPJooFd8X56UwWAAep1e1Go1e/fuFeL3crlcaCyazWZ6enpoaWkRHbKRkZG0tbUhl8vZvn07tbW1qNVq/vOf/3DxxRcPKj3zfUEmk3HjjTdy/vnn89RTT7FmzRqR0SwqKmLVqlVkZWVxww03sHDhQuH9XV9fT0FBAZWVldTW1pKVlcWkSZMwm82CzxcXF8d5551HSUkJLS0t7Nq1i4SEBFFyAUTZ1Ww243K5hLSHUqnsJ8QtNVj0lQYbiMGCm4E6mWM48+FtE4303TY2NlJTU8OePXtwu92iUgIIzV+3201hYSENDQ34+fmhVCqRy+Wkp6eLrGFzczONjY10d3dTW1vLsmXL+OKLL/o5UwFUVFT0+79KpWLcuHEsWbKE3/zmN+h0OgCvOpe/TwQFBfHCCy+QkpLC/fffT1VVFddeey0FBQU0Nzczbtw4HA4HSUlJQt/ZaDRSX1/Pt99+i1wuZ+rUqcyaNQur1drPhjohIYGYmBgUCoUwCRjMpKQvCgoKBEc9KytLJAj6cl/7Ljilf4eHh49lUMcwhrMU51SQ2pebNJCvOJCoPxKk5iGz2UxBQQGff/45arUah8NBXFwc5eXl1NTU4HK5hK2h5NutUCiIjIzkiy++EF7Zq1evJjc39yRf8clDbGwsL730Es899xw7duzgs88+45NPPqGxsZHDhw9z+PBh0tLSWLZsGZMmTcLf35/k5GTKysqEi82CBQsIDg7G6XRy6NAhGhsbUSqV+Pn50d7eLnRmoX+2JDU1lZKSEtEBPJgQt6TZODBwGegoNDC48TbgGcOZg8GaaAbLkkvfbVZWFhUVFYSFhQnedHd3t5BKs1gs+Pv7s3fvXgwGA6GhoWRnZyOXyykuLhb7bG1tZdasWRQWFrJ//352794N9FYdYmNjSUpKIjExkYSEBJKTk0UGOCIi4nuvjHwXLF68mPvvv5/i4mL27NkjlEji4uIwGAwkJSWh1+uJj49Hr9ezbds2qqur6e7uJikpSVB4+lolD3zvRpIKMxqNrFy5UljJSn0B0r4G7kMan8dwZsPX15enn35a/PtsPs7pupZzDedUkNqXmzRcU83ACW+wCbDvRLlr1y5iYmIwGo1MnjwZq9VKS0sLFosFp9OJQqHAaDSKzElYWBjvvPMOjY2NhIaGsmHDBiZMmHDKr/9kQKFQMG/ePBYsWMBzzz3H7t27WbVqFStWrKCkpITrr7+e2bNn84tf/IKbb76ZpKQkjhw5gsvlorS0FJVKRVtbG1VVVULCTFIB0Gq1oiQnTTgKhYKf/OQnImCVtCylCUrKzPSdoCTXIGmbvhJVg3m2j01mZz8MBgPNzc2Eh4eLxaZUCZGeA4mqI2XtYmNjRRVDq9XidDpxuVwolUomTZrE1q1bsVqtqNVqpk6dSltbGwqFAqvVKgLU3/72t/zxj3/s1y0/lMnG2Yrk5GQSExMxGAyi0TEpKUm8y62trSgUCiZOnEhmZib19fWUlZVht9vF+NmXa15QUHCcLXXfoLWqqorS0lJRjZJ0j2UyGW63m6CgIMGP7Rv8jy04zz5IDXv/C8c5XddyruGcClK94SYZDAby8/OJiIgQPCmr1Sr0BbVarQiApMEwIyODnp4eIa1SVVWF3W5HJpMJDmZPTw8ymYyoqCj+9re/0dTUREhICF999dVZE6AOhI+PD7m5ueTm5vLII4/w5JNP8tJLL7Fr1y52797NJZdcwtVXX01oaCgqlYqWlhbkcrnoFI6KikKj0dDQ0IDH40GpVIomK0BYnEoZmr6aqJImpNTIJmVWtFotBoNBlBYlP/Wxiet/G1KDjrQQNBqNFBcXA5Ceni4qJUajEYPBIPR2rVYrLpcLk8lESkoKbreblJQU9Hq9eHcrKyuJj4+nvLycVatWsX79egCWLl3Kn//857M6S+oNZDIZ559/Pm+99RZms5k5c+bQ09NDR0cHjY2N+Pj4oFAoBFd81qxZ2O128fmjR48KYw7JkQ7oF6T2pd+UlZVhNpuxWCwkJCSIhYbUYBUZGTlmYzqGMZwjOKeCVKn81tPTM6S7SE1NDQD5+fkoFApaW1sxGAxkZGQwa9Ys6urq8PHxERNTd3c30dHRJCcnC/tDu91OTk4Ovr6+REZGolAoaGlpITExkQcffJCmpiYCAgL4+OOPGTduHJ2dnf3OQeLJjYSamhqvu5sjIyNH3M5oNA5qGjAQkk7kQDz44IP85Cc/4cknn+TTTz9l7dq1bNy4kfPPP59LLrkEq9VKY2MjgYGBTJgwgfDwcGpra/H19aWnp4fu7m78/f3x8/OjrKxMNGtotVpCQkKEDJVGo6G6uho/Pz+Ki4uJiYkRHccej0cEtJKU0HBd4N66zJyOQORcb+Ia7rsYqF/c9/soLCykpKSEoKAgseAzmUxCd1culwsBfpPJRHd3NyaTSWTiZDIZarVacKE1Gg1dXV2kpqbS09ODv78/u3fvZv369SJAveeee3jwwQePe3fB+/e3tbXVq/dNcqgaCWazmcDAwBG3s1gshISEjLid2+0W2c/zzjuPt956i9LSUqqrq5kyZQqtra0kJCTQ0dGBXC7H6XRitVoJDQ0lNDSUwsJCAgICCA8Pp6amhra2NjQaDf7+/uJdHXhe3d3d4p5IKh5Go5GWlhbBQQ0LCxMudIN9frAA9n99IXG2wu12C+fDKVOmnLIKxOk4zum6lnMN51SQKmG4AUvKstrtduRyOTt27MDf35+KigrRpW+z2cRAqlAo0Ov1ouQVHR2N1WrFZrNht9uxWq3o9XpiY2NZtmwZ+fn5aLVaVq1axfTp0wc9B19fXxGQDQepgUiC0Whk69atzJw5s1+22Gq1esWR6WvJONJ2Q93D+Ph4XnnlFW6//Xb+9Kc/sXv3br788ku2b9/OpZdeyoQJE3A4HCQkJFBSUkJFRQXt7e2i5G+z2WhtbRVakiaTiZycHBFISNltaYJKTk4WZd7u7m5RVhyYeT0bsi7nchPXcHxxGJ6zWFFRIZ5vqTSs0WgIDQ2ltbWVwMBA4YwkcSPVajV5eXmi+1uj0VBWVsaxY8fIzs6msbGRuro6QeN57bXXRIB677338sgjjwz5DvT09Hh1zVKQJpXDrVYrPT09JCcn95vg5HK5V++vlNEcCd7uTy6Xi/O44IILAGhoaKCyspJx48YRFRWF3W4XwWlzc7MI/Ht6eoiIiBDvoEajQalU4nQ6mTJlSr/3sS//XKFQiBK/1Wpl06ZNdHZ2Ul1dTWJiIi6Xi+TkZPR6/XH335tyf3Nzs6iEjYn+f/+w2+1CjeVUWomejuOcrms513BOBqnDQRKBl/hX06ZNo7i4GJ1Oh06nQy6Xk5KSIoJDvV4vpJOam5vZtWsXnZ2d9PT04HQ6RYPPK6+8Qn5+Pmq1mo8//piZM2ee1PP+6quvePzxx2lvbwdg5syZXHnllSxYsOA77dflcp0QCXzSpEl89NFH7Nu3j4ceeoiioiI+/PBDNmzYwHnnnYdcLufYsWN0dnYKnmB0dDQOh4Pq6moaGxuFfqo0odlsNhwOhwg2wsLCsNlsuFwu7HY7DoejXyZpqElrtDqbpwvnMqduJL74cPcmOTmZiooKkpOT2bJliwg058+fL/QOpe9Zem5MJhP79++ntLSUiRMnEhYWxueffy540tCr3FFWVkZJSYnXAepAOBwOVq5cybp16+js7OwXkFqtVrq7u4/7TFBQEPPmzeO8885j/vz5x7lDfR/Q6/VMnDiRvLw8DAYDZrMZtVrN7NmzOXLkCGVlZQDCFU6iSfT09AhFhaEyvX35530zrJLMn91uFxJh48aN69fgOvBdHul9NhqNggo0FqSOYQxnPsaC1CEgdelCb3e5ZGMqWZ1WVFQQExMjsqi1tbU0NTXR1tYmOKilpaV0d3ezefNmSktLUSqVfPDBBye1i7+9vZ0nnniCdevWAb2qA0ajkb1797J3714CAgJYsGABt95664juM1arlbKyMvLz8zl69Cj5+fk0Nzczb948brrpJmbOnDmqsplMJuOSSy7hwgsv5O233+bxxx+nqamJTz75hC1btpCdnS2aL9RqNc3NzQQEBFBbW4vL5aKsrAy5XE5ycrLIiknWkunp6Wg0Gux2OwaDQXwvEidRCmqMRiPw3yClryFAZGTkGReknosBKows2N83ABlYJs7MzCQ+Ph6r1cq6deuw2WyCpyyVhQd+zxqNho6ODhQKhbA+bW1txeFwEBERQWJiIsXFxRw5coSdO3cCvSV+bwNUq9XKhx9+yOuvv05TU9OI20tSTJLd6Oeff87nn38urm/hwoWcf/75TJ06ddhsaWdnJw0NDdTX11NfX09nZyczZ85k4sSJ37nkvWDBAvLy8igtLaW2thatVktBQYGgUzQ1NbFr1y4UCoVQ+PDz86OlpYXU1FR0Oh1KpfK4ysZQCxCtVktaWpqwVO3LYZUwWInfaDSKbOnAz0gVlsH2NYYxjOHMw1iQOgQKCgqoqKhApVIJd6jo6GgUCgUmkwmtVsvRo0c5cOAANTU1goeWkZFBSEgIZWVlKBQKVq9eTX19Pb6+vvzrX//ihz/84Uk7xwMHDvD444/T3NyMj48Pv/jFL7jjjjswGo2sXr2a1atX09DQwKeffsqnn35KdnY2V1xxBdOmTSM1NZXy8nKOHDlCXl6emHwG4wVu27aNbdu2kZGRwe233z7qIFuhUHDbbbdx3XXX8dJLL/GPf/yD1tZWtm/fjlarxeVy0dPTw6RJk+jp6UGpVJKfn09HRwcajYa2tjasVitVVVXk5eWJkr8U0CQkJODn50dFRYVorBg/fjxVVVXI5fJ+k5IU5JrNZqGtOobvH5J8kwRvBfslmEwmOjs7SUpKwmg0kpOTg91uF25HVquV4uJiqqqqUCqVqFQqgoODaWlpwc/PD4/HIyof9fX1xMfHc+jQIfbu3Qv0Nkl54wLX3t7O66+/zr///W9aWloAiIqK4pZbbhEavtIfu91OQkICarVaZEu7u7s5dOgQW7duZcuWLRw5coTCwkIKCwt54YUXCAwMZN68eUydOlWcqxSU1tXVDamxHBMTI6SkThQ/+tGPeOaZZygoKKCgoEDweX19famqqiI+Ph6Px0NkZCRut1u8n8HBwRiNRmpra4mLiztO6k+6H1arVah3SD8bSRawb4AruQZC79gwWDAaHh4+lkEdwxjOIowFqUNAklCB3gyCxLlyOBxYrVYaGhqoqalBoVBgMBjo6OggMDBQaKNqNBo8Hg/19fUoFAo+/PDDkxagejweXnvtNR5//HF6enpISEjgL3/5CxMnTgR6LRfvuusubr/9dvbu3cuHH37Ijh07OHbsmDAcGApRUVFMmDCB8ePHM2HCBAIDA/nPf/7D6tWrKSoq4t577+XSSy/l+eefH3XWz9/fn9/97nfcfvvtPPfcc7z00ktYLBa2bNnCgQMHKCoqIjs7mwkTJuByuURzVEhICDabjZ6eHjo7O6msrKSyspKFCxcSFhZGSEgIlZWVrFu3juDgYFwuF5mZmcfZpvbNrAyUozpTKQDnKkaiavR1JpNQWFhIdXU1kyZNYtKkSUKVIywsDKvVSn19PbW1tYJrKTX/hYaG0tbWhl6vR6lU0tnZyfLly0UThNTF39HRMeT51tfX88orr/Duu++KZqr4+HjuuOMOrrzyykE55i0tLcK3XoJCoWD69OlMnz6dBx54AKPRyPr169m/fz9btmyhra2NL774gi+++GLIcwkKCiIqKkosqnfs2EFdXR3Lly+no6ODRx99dOgbPwwmT55MUFAQ7e3t7Nu3j3HjxhEaGkpzczNmsxnoXTAGBgai0+mIiooSRgeHDh1CqVQKe9S+waiEgQsTb97Jvhl2yTXQ5XIJhYYxjGEMZzfGgtQhkJKSQkVFBePGjRP8VJVKRXR0NG1tbcLJROp0b29vx8fHh7y8PHx9fTGbzWJAnjp1KkuWLBm0E3i0sNls/Pa3v2XVqlUAXH755Tz00EODDuJyuZzZs2eTmZmJVqtlzZo17Nixg4MHD2I2mwkJCWH8+PHk5OQwadIk9Ho9aWlpx+3nD3/4A3fffTfvvvsub7zxBl988QUlJSUsX76cjIyMUV9DSEgIf/rTn7j77rt5/vnneeeddzCZTOzcuZNdu3aRnJxMWFgYERERuN1uNm/eTEBAAH5+fmg0Gnx9ffHx8aGurk40YezYsYOAgAAsFgvjx49HoVAILcWCggLBQ8vKyvK6bDiG04e+ygYDy/t9y7fQG4zW1tYyefJkwS+VxPadTiclJSWkpKQI7rLFYqGgoIDS0lJ8fX1JTEzE4XDQ0dEhqCQWiwWZTMbevXvZsWOHcI1atmwZf/jDH4bMoBYVFfHiiy/y8ccf43K5gN6x48477+Syyy7zqpFpOOj1ei677DJ+/vOf43a7ycvLY/PmzZSVleHv709kZCTR0dHCxS09Pf244N1ms/HJJ5+wdOlS1qxZwwMPPOCVWsBAbNu2jfb2dqGw0NLSIlRNbDYbISEhREREYDabaW1tJS4ujsrKSoqLizGbzSQmJpKVlYXFYqGxsRGz2UxGRoYowUsWy1JGfbTvZF/XwOEysOe6isYYxnA2YSxIZfAsWlZWFpmZmchkMlatWkVtbS1hYWGEhobS3t5Oa2srWVlZpKWlsW/fPmQyGT4+PjgcDsxmM52dnSITOzBbcqKoq6vj1ltvJT8/H7lczq9+9St+/vOfe8U10+l03HLLLdxyyy14PB7a2toICQnp91lJfmswBAcH85vf/IbZs2fz4IMPUlJSwsUXX8xf/vIXrrvuuhPiu+n1eh5//HEefvhhvvrqK9588002btxIeXk55eXlpKSkMGnSJA4ePIjH42Hx4sWkp6fj7+9PSUlJv31lZ2eLe79mzRqxMIDebEtLS8ugsjsDO4th8CzPGE4thgtI+ja7JCYmsnLlSkpKSsjLy+Pmm2/G6XRis9nQ6/UcO3YMi8XC5s2bUavVlJaWYjQaRRAll8vJyspCpVIREhIi5NBqa2vp6Ohgz549VFRUIJfLefnll7n11lsHPV+Px8MTTzzB3//+d/Gz2bNn8+tf/5rs7OxTEvzI5XKmTJnClClTBv19S0vLoMdVq9X89Kc/5Y033qC0tJQvvviCX/7yl6M+vrQwzs7OFoGkQqFgzpw5tLe3ExMTg8PhEM1nJpOJ1atXYzAYGDduHDNnziQxMRGj0UhlZSU+Pj5C6/jbb7/Fx8eHxMRE1Gp1v/cyKCjIq6yqt66B57KKxhjGcLZhLEjF+xW7SqVCq9Xi7+8vgjKLxYJcLkcmkxEQECDkkurq6vjmm2+AkxOk7t27l9tuuw2TyURISAivvfYaMTExJxQcymQyYT86WkyfPp1///vfPPXUU2zevJn77ruPnTt38te//hV/f/8T2qefnx/XXHMN11xzDRUVFbz++uv8/e9/F9mipKQkgoODOXToEEajkZKSEnp6eujp6REUh9TUVKKjo3n66aex2+3YbDYRpGq1WlJSUgbNahkMBoqLi5HL5fzgBz8AGMuofg8Yrnu/b7OLRqPBbDbT3d0tuJiHDx8mNDQUhUJBUFAQoaGh7N27F51OR35+PjExMZjNZpRKJW1tbaxcuRK9Xk9oaCgtLS3s3LkTX19f/vznP9PQ0EBAQAAffvghF1544aDn6na7efDBB3n77beBXtvQ3/zmN0JSrq6u7tTdqBOETCbjpz/9KX/605/46KOPTihIlcwRrrjiCmJjY6mvrycgIIC0tDSCg4Ox2WxUVlaiUqkwm82sXLmSI0eOCCqURK8wGo243W7a29tJSEigpqYGHx+ffu+c1Nkv0QVOZqXjXFbRONPg6+vLH//4R/Hvs/k4p+tazjWMBamMPGhNnTqVyMhIIYMidRI3NDRQUVGBWq1m/Pjx1NbWkpycjMvlYs6cOWJQ/65B6nvvvcdDDz2Ey+UiKyuLt956i/j4eCorK7/Tfk8UISEhvPfee7z88ss89dRTrFq1isOHD/Pkk08yd+7c79RFnJyczJNPPklQUBCPPPIIR48eJTExkczMTFpaWqioqKCpqQm1Wi30VKurq4mPjyc8PByNRoPT6SQnJ0fsc+D32zcrY7VaaW1tRalUjjlUfY8YLkPWl0ssZeXkcjkLFy4U2f/CwkKhd6pWq8UkkZKSglqtJikpCa1Wy7fffktBQQEKhYLs7GxaW1vJz89n586dmEwmYmNjWbNmzZAucE6nkzvuuINPP/0UmUzGs88+y80333zyb8gpwDXXXMOTTz5JQUEBeXl5YoHnLcrLy4HeqsykSZOAXn3b7du3k5GRgcFgoLS0VCwGGxoa6OjoEO59fd+/wMBAwsLCiIyMRC6XY7PZhPyfhPr6+kEd5b4rxsr8Zw78/PxOmCN9ph3ndF3LuYaxIJX+5Pu+kDrdExIShByV9H+LxcL+/fsxmUzExcURHBxMYmIiHo8HnU4nPL4BAgMDcbvdGI3GfjqMQ6GyshKNRoPL5eL5559n9erVQK/ry8MPP0x3dzcVFRUUFhZ6lVVoaWnBYDCMuJ3EUx0JHo8Hl8vFJZdcQmxsLH/84x8pLy/n2muvZfLkydx+++2MHz9emBmMhO7u7uMcse666y7y8vJYuXIlW7duJS4uTkxsQUFB+Pn5kZubS1dXF3K5nLq6OpFZTUxMZMqUKVgsln4i7larlcLCQurq6oiMjCQiIoKEhARBy5AydcM9CycLYw44J4aamhrOO+88/Pz8mDlzJtu2baO7uxuXy4XT6SQrK4uEhAQCAgJoa2tDpVKh0+lwuVx0dHSQmZmJ2+3G7XaLRrz169fjcDgYP34877//PpGRkaIRqC/27t3Ln//8Z/bu3YtCoeChhx5i8uTJ5OXl9duurKzsOMOBwdDR0eFVRcNqtRIRETHidl1dXSM6y82bN4+NGzfy1ltv8cQTTwy7rdvtFrqmdrtdLAjsdjt5eXkUFxfjdDoJCAjAbrfj6+uL0WjE5XIhk8mIiIjg/PPPJzAwkLi4OFpbWwkLCyMhIUHo15pMJmQyGSkpKTgcDjwejzBDiI6OZteuXUKFQbKdlt5Fj8fj1Xg6hjGM4ezFORmkehsgDDUASqUnrVaL3W4nPDycCRMm0NLSIiZGq9UqSlXBwcEoFAqUSqVXg6pCocBut/Pggw9y6NAhZDIZd91113H8U4/H41VGoKyszKtsbkdHx6B2p4NtJ9k+zpgxgw8++IA33niDlStXcujQIe644w5yc3O5/vrr+wX3Q2GoyebFF1+ksrKSAwcOsGLFCq644gqCgoKEd7hcLqepqYmmpiYh6C/5sB87dozAwEBiY2PR6/WiwaampkaUGqVGq/T09LFO4DMYBoNBaKjGxcVRV1dHdHQ0MpmM6dOnExERwcaNG4WElMViwc/PT1BCysrKqK+vR61WExgYSFpaGgcOHGDnzp0cPnwYgIsuuojXXnttSMpKe3s7v/3tbykoKECpVPLnP/95SEOO9vZ2rxeP3jQwefteSmPScPjRj37Exo0b+eyzz0ak6PT09IisaHV1NR6PB6VSSVdXF0ajEbvdLmgYMTExxMTEiKZMvV5Pamoq8+bNQ6PRUFtbi0qlQiaTicz4zp07KSsro6enh7S0NKKiosSiUrqOqVOn0tLSQlxc3NjC7n8QPT09FBYWAr16wKdq0XE6jnO6ruVcwzl3Fy0WC83NzYKUfyLQarWiYSAmJob6+nrKysoIDQ1FpVJRX19PU1MTra2twOjL/SUlJVx//fUcOnQIf39/nnvuOW699dYzdpAODg7mgQceYPXq1Vx11VXI5XJ27tzJnXfeyS9/+cvjmpy8hVqt5r333iM6Ohqz2czWrVsJDg4WE1lTUxOhoaEEBASg1+tF4NrR0UFeXh4dHR3U1taiVCoxmUy43W5cLpcIVKxWK06nUwj+j+HMRE1NjcjkJSYmMmnSJCFRZDKZOHToEEFBQZjNZiorK6mqqiIwMBCVSkVlZSXNzc34+/tjNpuF61F1dbUIUG+99Vb+9a9/DRmwNTc3s2TJEgoKCvD39+eZZ5456Y5xpwtTp04lLi6Orq4uPv30U68/J+mPRkREEBQUhEKhwGazERMTQ2ZmJmq1mri4OG644QYuuugiLrnkEq666ioyMjLQaDQkJycDvXzUvmNvR0cHPj4+wtQjLy9PdPnr9XqysrKYO3eu0EEde1f/t2Cz2cjJySEnJ0eo4Zytxzld13Ku4ZwMUiUC/olCGkATExOx2+2YzWbWrVtHdXU1R48e5dixYxQXFwth7eDgYK/3vWbNGn7961/T2NhIQkIC7777LnPnzj3hcz2diIyM5OGHH2bVqlVccsklyGQy1q9fz+LFi7nvvvu8ohwMts/3338ftVpNZWUlhw4dIiwsDB8fH+RyOZ2dnSQkJBAbG0tubi7Tpk0jMjKSiRMnEhcXx+TJkwkICCAsLAy5XE5mZiZpaWkiu+rn53fKsqiSOLk3lIdzBcMtEo1G46CBSFxcHCqVqp8bVXd3N1arVXTlGwwGfH190Wg0dHZ2Cs/5vtn0qKgoLBYLzz33HPn5+YJT+sQTT4jtB6K6uprFixdz9OhRQkJCeOGFFxg/fvxJviunDzKZjMsvvxyAf/3rX15/TuKjJiYmotPp8PX1JTAwkK6uLjo6OoSrV2JiIpdffjmzZs3CarUKm1QpI3vw4EHeeOMNNm7cKKgYYWFhxMfH09jYyPbt23nllVfYv39/v+P3VXgYwxjGcO7gnCv3n2hn54EDBzh8+DDx8fHk5uai0WgwGAw4HA7RcFFeXk5lZaWwW5R0Ewfzqx4Ij8fDX//6V/75z38CMGfOHP7yl78Id6WzCXFxcfz5z3/m6quv5qOPPmL9+vV89tlnrF27lquvvpoHH3zQK+6rhEmTJvHKK69w8803s2HDBlJTU0lLS8PtdhMeHs6MGTNwOByiccbj8QwadEjZN4mbKk2sxcXFWCyWQT3jvwvGtFePx3DyP30DEamjX/q3tFAzGAxs2LCB1tZW5s6dS2xsLEePHiU+Pp7Ozk4CAgKYMGECbW1tyOVyfH190el0BAQEkJeXxwcffEBraysajYYVK1Zw2WWX0dbWNui5lpSUcNVVV9HQ0EB8fDyPPvro/4RL2eLFi3nttdfYv38/R48e7ddkOBRKS0uB3ka0zs5OZDIZTqeTzMxMoqOjMZlM2Gw2QV+wWq1CF/qDDz5gz549ZGZmolQqkclkFBcXM2nSJLKzszGZTJSUlGA2m2lsbBRZ02nTponj6/V6Dh06hN1u76elOhz6NkgOfNbGtFLHMIazA+dkkHoig1JhYSEtLS3YbDZ0Oh02m43Gxkbi4+NFVk4qKzY3N5OTk4PT6QS8y6SWl5eLAPW6667jvvvuGzK7c6JoaGjg0KFDHD58mIqKCrRaLUFBQQQHBxMcHIxMJqOqqoqQkBCCg4PF3ycqp5GQkMDLL7/M0aNHee6559iyZQsfffQRe/fu5c033xxVUHjFFVewdOlS/vrXv/L6669z9913k5OTQ3h4OI2NjQQFBfH1119z+PBhoqOjueiii0SzVF5eHmVlZYwfP57c3FwKCwtxOBxs376dw4cPo1AoCAsL45JLLjmpgaq0IIIx7VUJ3kpNwX+D1qKiIvHzmpoaampq6O7upqqqitmzZ5OTk8OePXtIS0tj1qxZhIWF8c033+Dr64uvry8dHR18+eWXbNy4kdbWViIjI1m9evWQeqPQW4b+6U9/SkNDAxkZGXz88ccnLC1VXV1NXl4eKpWKoKAgAgMDCQoKwm634/F4TjuNR6fTcckll7BmzRpWr17tVZAqXXt+fj4qlYof/OAHTJo0CaVSKehOEkc/OjoarVaLTqdDo9Gwb98+WltbOXToEIsWLcLtdpOenk5MTAw2m62ftvSsWbNwOBxC77RvoCk1o0m0j6EgLW6gV4lksOdtTCt1DGM4O3DOBamjhcFgoLa2lqCgIBwOB/Hx8YJrCr28ydTUVOLj49myZQsej4e4uDgiIyNFB6s3TQ+xsbGoVCrsdjsXXHDBSQlQ3W43hYWFrF+/nvLycpqamvr9XuLoVVVViZ9t2bKl3zYKhYIFCxbw4x//+ISzujk5ObzxxhscOHCA+++/n6qqKq655hpeffXVftmSkfDb3/6WoqIi1qxZw9tvv83HH39McnIyPT09OBwOSktLqayspKamhoCAAHJzc/Hz8+Pbb7/F4XDgdDrJzc0VTVTS95Ofn09KSgorVqzg6quv9koQ3BtISgFGo5Fjx45RXV3NtGnTTtr+z0YMt0jsKzUl/d9oNNLV1SUyrHFxcaSkpNDR0dHP7SwjI4P29nZqamqwWq2oVCo6Ojo4duwYR44c4dtvv6Wnp4fJkyfz8ccfEx8fP+Q5ejwe7rnnHiorK4mLi+Ozzz4jNDR0VEFqT08PeXl5rFu3blgrYl9fX4KDg0XgGh4ezpIlSwgLC/P6WCeCOXPmsGbNGvLz873aPioqCugNAJubm2loaMBkMqHT6ZDL5bS2ttLd3U1QUBDl5eWEhYWh0+mIj4/nvPPOY9OmTSQmJjJu3DgxXlqtVsrKysjLy8PpdAqx/4yMDGw2m+CvKpVKLBYLcXFxooFuKBQUFPDNN98QGRkpHOccDsdxwaiUrW1tbSUtLY2kpKTvdkPHMIYxnBL8zwep37WsU1tbK9xqLrvsMuC/gWtqairh4eF0dXVRXV2Nw+FApVLhdrtpaGgQmdSYmJgRj6NSqZg9ezbffPMN33777bBZnuFgsVg4dOgQ+/bt48CBA4IXC72ONRkZGUyePJmsrCycTift7e0iWK2rqxNuVNLPuru7+eqrr9i+fTvXXnstixYtOqHzgt6mjZUrV3L77beTl5fHDTfcwNNPPz2kaPpA+Pj48NZbbzFr1ixKS0t55JFHWLduHQ6HA39/f1JTUyksLESlUpGfn09paSmpqalERUVhMBgICAgQZf7MzEzsdjvd3d2Eh4dTXl5OYGAg5eXlgwaR27dvF9qSU6dOHdL9ZjBnHK1WS3V1NW63m7KysnM6SB0Jfe+fFLT2LftXVVXh5+fHlClTiIuLw2q1otPpxALM6XRSW1tLVFQU33zzjbAQBbjhhht46aWXRpSHevfdd1mzZg0KhYI33nhjVBaiNpuNXbt2sWvXLhoaGoBeHuikSZPw8fGho6OD9vZ22tvbcTgcuFyufpk/gG+//ZZHHnnEq3HjRCFlT4cLoPtCsku22WzEx8dTXV2N3W4X15aRkYHL5aKuro6mpiYUCgX19fWEhYXxk5/8hJ///OeYTCY6OzuFo1RnZyc7duwQ2WRfX18OHjzIwYMHiY+PJyUlBehdKEvPw1AZVEkBoqioCLlcTmNjI/PnzwcYNGOq1WpFc0tNTc1YkDqGMZyhOCeC1O9S1omNjaW2tpbY2Fjxs76i05J7Sn19vdA8NBqNHDx4EOjNBklyTSPhvPPOE0HqHXfcMepz3b59O88//zzd3d3iZwEBASQnJzN37lxycnKGnaBramr6Zad6eno4evQo7777LlVVVbz99tusX7+ea6+9dtRC4BLCwsL497//zQMPPMD69eu59957+dWvfsVjjz3mVdkzKCiIjz/+mNmzZ7N7924effRRnnnmGUwmE7NmzRLyX19//TUOh4OKigouueQSpk+fTmNjo+AQ5+XlkZ+fT2pqKuPHj6e0tBSz2Twk51BSC8jLyyMjI2NIrulgPFSNRsO0adOEr/gYhsZg969vhnXFihW0tLSQl5dHamoqdXV1ovlNqVTS0tJCTk4OTU1NvPHGG9TU1KBQKHjmmWe44447RnzGysvLeeSRRwBYtmyZ15l+o9HIp59+ymeffSa4mGq1mvPPP58LL7xw0Oa8oqIiwsPDMZvNInBdt24dtbW1LFu2jIcfflh0xZ9sZGdnA72C+a2trSPqtUpBqlarJTMzE4PBQH19PampqcLRTXKO6ujoYOPGjVx44YVER0cLRQ6JAy59ryaTiXHjxnHkyBFxn6urq/Hx8cHX15eMjAyCgoIGpcgYjUahApCYmEhNTQ02mw2lUklERAQpKSno9fp+i56B8CYzO4YxjOH7xf98kHoijVLNzc0ic5OYmEh4eDgWiwWDwUBLSwtqtVqUkrRaLcXFxTQ3N6NUKklMTCQoKIj//Oc/AKMaAM877zwAjhw5QldX16hsRjs6Onjttdfo7u4mJiaGGTNmMH36dNLT04Vr02jh4+PDhAkTePrpp9m0aRMffvgh9fX1PPfcc3z77bfcd999J5SBUKvVvPjiizz99NO88cYbvPjii7S0tPDcc8/h5+c34udzcnJYvnw5119/Pc8//zwJCQmkp6dTVFREaGgoNpsNl8tFT08Pvr6+fPXVV0ycOJGcnBwxWa5du5auri4KCgoYN24cdrud7OzsIbOcEydOFJnU4Z6poX7nra/4uY6+92+wrHRgYCD19fV0dHRQUFDA0aNHCQgIIDo6mosvvpiIiAj279/PL37xC9rb24mMjOTDDz9k9uzZIx67u7ubu+66C6vVyty5c7nzzjtH/ExhYSEff/wxW7Zswe12AxAaGsrixYuZP3/+sItCPz8/wsPDCQ8PFz+bMWMGTzzxBBUVFfzpT3/i97///UmxVR6IgIAAEhMTMRgMHD16lHnz5g27fWpqKtDLTW1ra0OtVnPxxRfjdrtJSEgQNKjOzk4OHjyITCZjy5YtqNVqWlpayMrKEi5ekoScRLmYPHkycrkcq9WKXq/HbDaTnJw8rOqG0Wikvb2drq4u9Hq9CDjnzZvXb6yTguLBFidJSUljGdTvGb6+vjzwwAPi32fzcU7XtZxrOCeC1IEBQ1/3oP3791NQUEBWVpZYzUsNGyaTibCwMJHdqa+vx+l0isFUrVajVqspKSnh6NGjqFQqgoOD6e7uFjzU6Oho0eUvuSMNBb1eT0JCAlVVVXz11VfCS34olJaWCg3SjRs3igH7xz/+MT4+PrS2trJ7925aW1tF6XE4WK1Wjhw5MuTvL7jgAgoKCigtLWXXrl3s2bOHH/zgByxcuHDQbIePjw/Nzc1D7u/888/H7Xbzzjvv8P7771NaWso//vGPYdUQpAloyZIl3HXXXfzzn//kd7/7Heeddx5Tp04V5V+FQiHKqT4+PjQ1NTFjxgxR4ps6dSrFxcWkpqZiMBiw2+0YDAbhaiPdD2lCnTt3LnPnzuXzzz/nySefZMaMGYL+IW3bt0w9GPqWrb2VvTpTtXFhdC5cI11Hc3Oz6BC32WzExsbS0tJCfX090dHRqNVq8vLy8PX1Zdq0abjdbo4dOyakxSIjI2lra+Pjjz/m3XffxePxMGPGDFasWEFUVJRwFRsMFRUVyOVy3n77bfbv349Wq+XBBx88znZ47969/aoUW7duZdu2beL/CQkJzJgxQ7jFbdq0adhrVqlUwsWpL+bPn4/NZqOhoYHHHnuMyy67TLgwDQen0+nVIs/Hx4fw8HDS09MxGAzs379/UBtYj8cj3uu4uDjkcjlOpxObzYZer0culws3vf3799PR0YFcLicsLAyHw4FOp6OiokIEk+PGjaOtrQ0/Pz/kcjmhoaGEhYVRW1sraAfJyckkJSXh7++Px+PBZDKJd6YvT1ev12Oz2VCr1Wi12n5OVgUFBcdtfya/R+cy/Pz8+Nvf/vY/cZzTdS3nGv7ng9SRUFBQIDJqUpAq8eCsViu7du0SWn7R0dG0tLT0W51bLBYqKytpaGjAz8+PhoYGgoODRVNOfHy8CEwjIiJGbIhatGgRy5cvp7CwkGuuuWbYbW02G4GBgRiNRmHNuHDhwuPoBSaTyauy4ebNm0cs++l0OubMmYPRaKSwsJCdO3dy6NAhFixYwIwZM4QeIiCcYobDRRddRGhoKP/85z/Zt28fN954I8uXL+9Hr5Dgdrv7TTZPPPEEdXV1rFmzhl27duF2u5k1axatra0cO3aMkJAQHA4HCoWC9PR00cSSnZ3NjTfeyPz582lpaeHbb7/F6XSSk5PTb/9btmzh6NGjjB8/nksuuQTo5QuazWa+/fZbEaQajUaKiooIDg4mMjJyyA7+gRJLY/gvJDvN4uJiwsPDOXDgAHV1dSiVStRqNY2NjeJn06dPJyYmhvT0dHp6eoRm6l//+lexyLr99tt5/PHHvaqgyOVyysvLef311wFYunTpoM+tyWQSzYOFhYUiQM3OzmbmzJnCkvTLL7/0qvHJYrH0o9dIkMlkLFy4kG+++Yba2lrWrFkjAuDh0NbW5pV9quRMNX78eNavX09paemg90kyx4De6kdSUhJlZWW0trbidDppaGggJCQEtVqNn58ffn5+yGQywsLCCAkJYerUqRw8eJC8vDz8/f3R6XSMGzeOyMhIrFYrQUFBOJ1OCgsL2bdvHxqNhtmzZ+Pv749Wq0Umk4mMaWtrqzhHaTE4ZcoU8b5KnFS73U5YWNjYOzaGMfyP4HsR8y8pKWHZsmXcfPPN/Otf/xo2ezcUHA4HHR0d/f6cCLKysvD39+9XipWcTux2OzabjYKCAjZs2MDmzZtpbGykoqKC6upqDAYDK1asENm72bNni05dKXM5WLA1HBYsWADArl27vMpUeTweNm7ciMfjIT09/aRrfQ4GrVbLTTfdxK233kpERARWq5XPPvuMJ598kvXr1w/qez4cJk6cyPvvv09ERAQVFRVce+21x/mhDwa5XM6bb77J/Pnz6erq4vDhw/T09KBWq8nMzMTPzw+dTseUKVOEy5DFYqGoqEgI7JtMJmJiYpgyZQqZmZlYLBbRVVxWVobNZhONN9Bbjg0ODu4XMBiNRuRyOWazedigSOJNjjR5GgwGtm/ffkLmB6PFyXqPviv0ej1+fn6kp6cDvfQVf39/HA4HISEhREZGikxhZ2cnOp2OiIgIurq62Lp1K88++yxHjhxBqVTy+uuv88ILL3iVVYTee/DII4/Q3d3N+eefz6WXXjrs9s3NzXzxxRdA7/Nw+eWXiwD1ZEGhUHDBBReQlJRET08Pzz//PFu3bj2px5B4qaNtnqqsrMRisdDU1NTvGdVqtURERJCbm8vUqVOF1al0b1wuFw6Hg+LiYr755ht27dqF1WoVltFqtZqoqCgR4BuNRjQaDW63m6CgINEE293djcFgoLCwUDScSQGq3W4XtIsxE40zHz09PRgMBgwGg1fVgjP5OKfrWs41nPZMakFBAbm5ucyaNQvolRXKzs7mhhtu4Oabb/Z6P08++SR/+tOfvvP5TJs2bcjmiJiYGOrq6mhvbxcPXlVVFePGjROB2P79+9Hr9eTm5rJ48WJqampEiUrax2ggySY1NTVRXl4+YqONJLskl8s5//zzR3Ws74rU1FR+/etfs2/fPr755hs6OjrYvHkzW7duJSsri/HjxzN58mSvSm0ZGRl89NFH3HnnnRQUFHDjjTfyz3/+k9zc3GE/p1Qq+eCDD1i8eDGHDh3ilVde4c477xTdwZJNanp6OrNnz2bbtm0kJiZSXFwsMp7SBNlX8qa6uprAwEDa2trEZA5w2WWX9SvzAyLo1Ov1w+qgelvml5pATkfX8cl6j74rwsPDRXBiMplEhSA+Ph6TyYRWq+Xaa68VJfTW1laUSiWlpaVUVVVht9uJj4/nP//5z6iVMV577TXKysrQ6XQ8/PDDwz6vNpuNlStX4nK5SExMPKXvnFwuZ/78+SiVSoqKinjttdew2WxcdNFFJ2X/0nNdXFyMy+UakUc3adIk1q1bx549e/Dz8xMLQp1OJyowLpcLu91OVFQU9fX1hIaGkp6ejsvlQqvVolQqOXbsGA0NDaKRMSgoiAULFtDe3s4333zDhg0bUCqVZGZmEh8fT3p6ej+VFsmSVS6Xi4ypxEmVGrnGTDTODthsNjHGdXV1nTLN2tNxnNN1LecaTmsm1eVy8dRTT3HNNdewbt06vvzySz7//HOSk5P529/+xquvvur1vn7/+9+LjlhJH/FkIyEhgdzcXLKysggNDUWv1zN9+nR8fHyIi4vD6XQKL+u4uDhBBXC5XMLFZrSdo2q1WkyyO3fuHHZbt9stJu0ZM2aMysXpZEEulzNr1iyWLl3Kz372M6FbevToUT744AMeeOABNm7c2I/LNxQiIiJYsWIF8+fPx+FwCK3KkRAQEMCqVatISUnBbDbz9ttvExsbS1paGqmpqaSkpJCens7555/Pz3/+c2bMmEFbWxvV1dUcPHgQq9UqpHOgN4tltVpFEDIYX68vpMz7ySovxsXFCS/0U43T8R6NFlLH9vz58wkJCcFqtYoO9JycHKKjo2loaGDHjh3s3bsXk8nE1KlT2bVr16gD1O3bt/Pee+8B8MgjjwxLd+np6WHNmjWYzWaCgoK44oor8PE5tUOoj48Pc+fOFXSTf/3rX3z66acnZd/x8fH4+/vjdDr7VQuGwq233opCoaC5uRmz2SyC05iYGDE5NzY2Ul9fj9lsprW1VUhLyeVyamtr2bBhg5DmUygUtLa2EhAQwMSJE0UfwJEjR6ivrycvL09kRaUAF3rfN2nxUl5ejsFgIDExkblz55KYmCgC2bEgYQxjOPtxWoNUhUKBwWAQ1ngA06dP54EHHuC8887jjTfe4LPPPvNqX0qlksDAwH5/ThYGeq6HhYVx+eWXc/XVV7N48WKuuOIK0WDT3t5OSkoKMTExIhBTqVQ4HA6AExoopczuSELblZWVtLW1odVqvepePpWQy+WMHz+e//u//+Oee+5h5syZ+Pr6Ultby+uvv859993H9u3bRyyDaLVaXnzxRSZNmkRnZyf333+/aDwbDnq9njVr1hAdHU1jYyPLli0TDR4TJkwQGZWwsDDCw8OJjo6mqKgIg8HA5s2bhWaslO2Mj48nMDBwyOzowGfkZKLvhDtaWCwWmpubhdPVSDiV79GJoG+zmkajITQ0lICAAORyOSaTCYfDQWdnJ263m+XLl9PR0cGcOXP46quvRr1I2L59Oz/60Y/weDxcfvnlQl1jMHg8HrZt20ZFRQUKhYJrrrnmtGXpZDIZP/vZzwRH/eOPPx5xAesNfHx8BL3CmyA1Li6Oq6++GkBQWzo7O2lubkYul6PX62lra6Ozs5P29nb8/PxwOp00NzfT2dlJaWkpHo8HlUrFDTfcwOzZs4mKihLfm5RNHz9+PNHR0UycOBG5XC6aX/sGnhaLRcjGDVxYaTQaLBYLBw4cOC2UmTGMYQynDqctSJX4lRMmTMBoNPbzy05PT+eOO+4gNDSUTz75pN/2pxpGo5GCgoJ+YtoS70kKQDQaDQqFop84u0ajoaysDB8fH+rr67FarVRVVdHa2oparWb8+PFAbxPFaCFlGkaSoJJ4rxkZGSLLcCYgMjKSK6+8kl/+8pfceOONBAcH09TUxEsvvcRvf/tbamtrh/28n58fzz//PEFBQRQUFPDKK694ddz4+HhWr15NUFAQdXV1PP300/04btD7XYaFhREWFib4tDabjeLiYqBXp/HAgQNArwJAZmbmoMFIXz3PMwlnwnn1DeClf3t7Plartd+7Z7Va8fPzE893aGgoM2fO5IsvvqCzs5PMzEw+//zzUQfXq1evZsmSJXR0dDBp0iQefPDBYbd/6623BHd+yZIlXjUonUzIZDKuuuoqrrjiCgDeeOONE7Zp7QupyVLKWI6EhQsXAr10i7a2NlQqlejYt9vtaDQafHx8qK6uxmg04uvrS25uLqmpqeTm5hIXFycW+KmpqVx00UXi/9nZ2dx0000sXbqU22+/nalTpwqpP41G02/BWFtbS0BAAB0dHTQ2NvLyyy+zfft2cZ4SR/VMqAyMoT+kCtbBgwc5fPiw+Pnhw4fFzwsLC7+/ExzDGYXTEqRKjiIymYz58+fz+eefs3Llyn6B6Pjx47ntttt47733qKysPG2SIX07riVYLBaOHDkiGm0kWSFpFW8wGPjqq6+w2+2YzWaRQaisrGTdunVUVFSIsuOqVatGfU6SMsBImaHGxkZg9M1ZpwtKpZLFixfz/PPPc91116HVaqmpqeHpp58eMWiJiIhg2bJlQC9n0NvmuszMTP7973/j6+tLfn6+CD5MJhNFRUXi3mo0GhISEsjIyKCzs5Ouri52797N559/ztq1a3n33XdFsDoYRiopDpdpHWxhdLJwJpQ6+wbKgwXNQ2V7TSYTJSUlVFRUiP8XFhaK72Pnzp20tLSwfft2tmzZgo+PD6+//vqoM5pvvvkm119/PQ6Hg8suu4wXXnhh2Pv12Wef8dJLLwFw4YUXDtqRf7pwzTXXkJ2djcPh4NVXX/3ODRrS5721YZYW33V1dchkMkwmE4mJidhsNqFLLGnDejwe/Pz8uPzyy7nuuuu48sormTp1KoWFhezatYtDhw71ex/7JgIGBqUD35nY2FgSExNZvHgxzc3NdHR09Ks8xcXFoVKpxoT6zzBUV1eTmZnJ1KlTmTp1KnPmzBG/mzNnjvj59ddfLxIKYzi3cUqD1K6uLrq7u5HJZGIw/NGPfsQDDzzAr371K95//31RFofelbVUfjpdGKzj2mq1IpfLsVgsxwUZUhmppqYGjUbDBRdcIHyty8rKqK+vZ+vWrSQkJKBQKDhy5IjQMvUW0sDdV+R7IOx2+wk3Z3kDt9tNY2MjJSUl1NfXD6szORJUKhVXXHEF//jHP9Dr9SKrOtIEu3jxYiEYvnTpUq/PYf78+SxfvhyATz75hEcffZS33nqLVatWsW7dOg4dOoTVamX8+PFERUWh0+mwWCx0dXWhUCgoLy9HJpNRVFQ05DEGTqISpOC0ubl5yIzmYAujkwWtVkt4ePj3GqT2DZSNRiP79u0btFIxWJDa0dFBa2srVqtVOBiVlZUhl8s5dOgQZWVl/OUvfwHgvvvuY/r06V6fl8fj4cknn+RXv/oVPT093HLLLbz33nvDOsLt2LGDxx57DIApU6Z47UB1quDj48Odd96JWq2mvLz8hCo1fSG9g94mBTIyMvDx8RFWxMnJyeTk5BAWFkZjYyPV1dXIZDKsVqvIiB0+fJj8/HzBN5XJZBQXF6NUKjl69CiFhYVCe3qo59ZoNOJ0OsVzlJiYSG5uLomJiUyYMIHAwMB+3PHvQpkZw6mDyWTCarXy73//mwMHDrBjxw7xux07dnDgwAHxp7CwUBg+jOHcxSnr7i8sLOTee+/lpptu4pprrsHX15fu7m4UCgWPPfYYdrudG2+8kcrKShYtWkR6ejrvvfceTqdTaBGeDgzWcS3Z6Q3lze7v74+/vz9BQUHYbDbsdjuBgYEolUqRHY6OjiY9PZ1jx46xatUqfv/733t9TtJAPFyQWlhYSE9PD1qt9qQ60jgcDhobG2lqahIlwJaWFmFBqNPpkMvlIjs+GgQFBXHfffexbNkyDh48yKeffio4bkNh2bJl7N+/n4qKCp5//nlefvllr4514403UlVVxaOPPspf/vIXFixYQEBAAFVVVdTW1qLX61m0aBExMTHCRxx6qRYSNzEjIwOj0ShMHaTnxGg0cvjwYdHFLAWser1eBGDAkBlNSYf3f1XHsa/1ZW1tLXa7ndraWtFNPpQrV1hYGPX19fj7+9PS0oLBYKCtrY3MzExaWlqIiIjgvffeo6uri4yMDGFf6g26u7u5//77+2mhLlu2bNhn+NixY/z2t7/F7XazePHiM8adSKfTcf311/P666/z0UcfMWXKFLFQHi2kINXbBjC1Wk1qairFxcU0NTURERFBZWUlkydPpqenh5CQEGw2Gx6PB7vdTkdHByUlJSQlJVFbWytoGRdddBHBwcHYbDbRMCW9D9XV1WJhr9PpiI+PH/adkYw2xnD2IDMzkylTpvRbqE6aNGms2W0Mx+GUBKkGg4GrrrqK8vJyOjs7USqVXHbZZfj6+tLT04OPjw9PP/000dHRvP766/zjH/8gLi6OpqYm1q1bd8pT/CPxXSXOohSI9d1eo9GQnp5Oeno6LS0tGI1Genp66OrqIiUlhYiICHx9fTGZTCQkJIggdenSpVgsFq/KalKXucPhoLy8fNBtNm/eDPR2th89enTY/ZnNZnbv3j3sNl1dXdTW1vYbNORyORqNBqfTicPhEBzD2tpa9u3bh06nIyQkBH9//0En+5SUlEF1N+fMmcPmzZv56KOP6OrqYtq0acPaR/7iF7/gySefZMWKFVx88cXMnDlz2Gvp6ekhMjKS+++/n7KyMv7973+zc+dOrrzySnQ6HVarVTgW6XQ6/Pz8CA0NJTo6GqvVKrLgoaGhlJSU4HK5MBqN/fQb6+rq6OnpoaOjg+zsbIxGI6GhoUCvqLoUtEoi43FxcSKrMxrHqbMd0v3WaDQ0NzeLhZ9Go8FoNHLw4EEA8T7ZbDa0Wi0+Pj7IZDIcDgdxcXH4+Phw4MABSkpK8PHx4YUXXsDtdg9LGykuLhZyRQ899BA7duxAJpNx//33c80111BQUAD0mjYMREtLCy+//DI2m03wKbdv3+5Vo5zNZqOqqmrE7fz9/b3SKI2Lizvu/VUqlcTGxlJbW8szzzzDVVddRUBAgFdWyr6+vqIMLvHfpYCyL3p6egZNGGRnZ1NcXExnZydqtZqysjLKy8sJDAwkJCQEl8tFQ0MDTqcTX19fdDodtbW1aLVasrOzcbvdxMXFodFoRMYcEJJRkjpAc3OzoBJMmTJFvH/SeCzNJd5gzHHqzIRCoeCuu+4S/z6bj3O6ruVcw0m/k93d3axcuZK0tDTef/99li5dyhNPPAEgAlW3241cLueee+5h8eLF1NXV4XQ6yc7OPiWl64EYzYAlZd4kDpTUaWo0GqmtrUUul6NUKvHx8RGSLM3NzVRVVaFUKpHL5eTn52MwGIiIiBjx2G63W2iwpqWlDRmwS12r0dHRBAcHD7vPXbt2Dcrb83g82Gw2Ojs7xWQFvROgv78/KpVKnK/b7RbmBna7HYfDQUNDw7B2qxaLZVCd07S0NBobGyksLGTTpk2Eh4cPawE7b948Dh48yPr16/ntb3/L119/PexkLFFMZDIZL730EvX19XzzzTd89tlnXH311YSGhlJaWorJZMLlcgnNXl9fX4KCgjCbzYSFhYmMkNvtJioqStwLvV5PTEwMdrud6Oho/Pz80Ov1woFMCp70en2/Bo6+pcf/hUnTm2vIysoiISEBi8VCR0cHRqNRNMMYjUaxILPZbBQVFeHj40NbWxthYWEUFRUREhJCS0sLhYWFfPPNNwDcfffd4jsbDt3d3bS1tXHfffdRVFSEUqnkscce44c//GG/hafRaOz3DlksFt544w26urqIioriuuuuw+PxUFRU5FWmR1KJkCA9QwMnrtbWVmGfPBwk3udAXHTRRbzzzjvU19dTVFTEtGnTvBo/e3p6RPVFCvICAgKOq8gMds7Q2/z6ySefUF9fT2FhIR6PB6VSyYIFC3A4HFRVVXHs2DFSU1OJjIzE399fWKp2dnbS2NhIZ2cnCQkJ4ro6OjqoqqoiMTERPz8/cQ+ld3IwzVNpITOGsxdKpdLr6tiZeJyBDV633nor0N8gIywsbIy28B1w0oNUSVQ+ISGByZMns3btWhYvXiwC1UsvvRQ/Pz8RqKamppKamnqyT+Okoba2FpvNRm1trWjkkDq+tVotOp0OjUYjsgEqlYrIyEhCQ0OxWq3ExMRQXV3NqlWrxCprODQ3N4sMwVC6px6PR2SBTiQjJ2V+u7q6+nX1+vr6EhISMqhTT18pmJG6871Bbm4uLS0tNDc3s3btWi6//PJhuYG33XYbhw4doqamhj/96U9eeyT7+vry/vvvc/XVV7Nz505WrVrFkiVL8Pf3p7u7WwQrwcHB1NfXA4iyrtVqJTg4uB+/Umqik7qc+2KwDL0kMv6/1sBRWVkprmu4MriUOdVqtUJ+Tgo49Ho9dXV1ogFR4gNPmTKF2tpaFAoFXV1dolnKbreTkZHhNXWmqqqKBx98kIaGBoKCgnjmmWdG1Lw1m8288847tLS0EBISwk033eS1cobH46G7uxuHw0Fzc7NwQHI4HHg8HgICAoiKihr2OR8NgoODmTdvHt988w1bt249oXF0tJxU+K8JQEdHBxqNBofDgc1mo6mpSUhOhYWF0dHRgU6nEyX97Oxs0TR35MgRsdCXEBUVhcViQa1WC0WQ5ORkIiMjx8rAYzijEBYWhkaj4frrrx9xW41GM8av/Q446Y1TMpmMiRMn8qMf/QjoDRLWrFmDTqfjiSeeYO3atXR3dyOXy73WRP0+ERsbi1qtJjY2lsOHD9PY2Mjhw4f7NVzp9XoRxEFvZ/rVV1/NTTfdJBxpVq5c6dXxpI59ifs51DaSULZUYvYWTqeTpqYm2tvbcbvd+Pj4EBgYSHR0tPDgPh2Qy+UsXLgQlUqF0WjkpZdeGpaGodVqueeeewD44IMPhImBNwgICOCTTz5hzpw5dHR0sGbNGurq6jAajchkMpRKJVVVVZSXl1NWVobZbMZkMpGfn09DQ4PQXezb7DOYzFJVVRUmkwm5XC74xP+rDRx9XbG8hUaj6fee6PV61Go1ra2tQO8CLyUlBZvNhslkorm5mbKyMvbu3UtTU5Po5vcmyNu5cyd33nknDQ0NxMXF8eabb44YoDY2NvLqq69iNBoJCgri5ptvHpYf39PTQ1tbG/X19VRWVlJUVERxcTGtra00NjZiNpux2+3iue7s7KSkpIS6ujqvzC28weTJk4mJicHlcvHVV1+NWrpvtJxUgJycHKCXEmGxWAgODub888+no6MDX19fkXiQFE7CwsJISkoiLi5OUCGcTidOp5OKigqcTieNjY3s3r1b3L99+/ZhsVior6/v16A4lGXwqdQtHsOpg8fjwWg0YjQaT6ns5Mk+Tnx8PIWFhf0avfbv38/GjRvZuHEj+/fv58CBA/z73//GarWKZugxjB6nhDjRN7hyu92o1WpWr17NFVdcwRNPPEF3d7cov06fPv2ESf+nA4mJiSLASEhIwGazCY1EqWxpsVhEw0BycrIoVbrdbubPn8+KFSs4dOgQlZWVJCcnD3s8KZs3HC9X4qAGBwd7LR0DvWXMtrY2PB4PcrmcoKAgNBrNKSuZ9VVuGAz+/v4sWLCAtWvXsmnTJjIyMob1TR8/fjy/+MUveOONN3jwwQfZtGmT1y5b/v7+fPLJJ1xzzTVs27aNzZs3s3jxYgwGA76+viLjJ+k9HjlyRAxmarWaoqIikUWXJMoiIiJEFrG7u1vw7oD/eTtGbzLEfa0sJbvZvjJD0Kv1a7PZ0Gg0olGtrq6O2NhYmpqaCA4OFrzVe++9l1mzZtHV1TXsua1Zs4Zbb70Vp9NJTk4OzzzzzIjPSXV1Ne+++y52u53w8HBuvvnmYRsSPR4PVVVVg3Ji5XK5oMtIfzweDw0NDXR2dtLS0oLZbB6RpuMNZDIZixYt4t1336WyspKvv/6aCy+80OvPn0iQmpiYiL+/P11dXXg8HvR6PWFhYTgcDnx8fAgNDUWpVApuuJ+fH2FhYYK2ERYWhkwmIz4+HpvNhtvtpr29HX9/fwwGA3FxcaSnp2Oz2UhJSenH6+67OEpISBDn1HcR+b/+7v0vwWq1igX9qbQSPRXHiY+P75cdtVgsgoY2Zot68nDK2b1yuZzu7m40Gg2fffYZV1xxBddffz2+vr5s27btjApQ9+/fz969e9Hr9SJb0LfJJTc3l0mTJh3Hr5PKwlLzj9Vqpa2tDYPBgNPpJD09nYKCAr7++mtuv/32Yc9B4qMOF3xKIt6jyXp6PB4RoCqVSkJDQ0cV4J4IpKzwcIiJiSE3N5cdO3bw1ltvsWjRomE9xJcuXcqWLVsoKytj+fLlLF261Ovz0Wq1rFq1imuuuYatW7eydu1aMjIyWL9+PRMnTmTBggX4+vpiNpvx8fGhpqaG8PBwMbm63W7q6+ux2WxAb4Ob9JxYLBZiY2OFlI40sYaGhgo6iN1uJyYmRkjtnM2DWFJS0ojd7n0Dh4Ed/VarFYvFQlJSEiqVinHjxiGTyTCbzfj7+2O32xk/fjzbt2/HZrORlpbGH//4xxHPy+Px8Otf/xqn08m8efN4/PHHvcq8fvnll9jtdhISErjhhhuGbeSTrs1isQhajhSMKpVK0Tg3EElJSXR2dtLQ0IDdbqelpYXOzs7vrGai0+mYOHEiBw8e5LPPPvM6SJXGBBjdWOLj40NiYiJHjx7F6XSSlpZGWloaiYmJ4rok/mlNTQ0hISGEhYWxZ88eurq66Onp4ZJLLiExMRGj0Uh3dzdqtZq2tjZR0dFqtSQkJKDX68Uz0DdQHbg4GkoxYgxjGMPZjZMSpI4kR6RQKHC73ahUKpKSkti3bx/btm0T3KYzBYWFhTQ1NdHa2iqEoPvKnkhdyX35dc3NzeLzhw4doqKigszMTIKDg6msrKSrq0sEXd5YD0qNRseOHaOhoWHQIH727Nm8/fbbNDU10dLS4lXJXyaToVKpsNlsyGSyUx6gAv2asYbDlClTyM/PF3I1wz0XarWaBx54gDvuuIOPPvqI+++/f1SdlBqNho8//pisrCxMJhOdnZ1ERUUJyS1/f398fHz6ednLZDL8/f2prKxELpcTEhJCSEgIsbGx/cTHpQwR9LqnmM1mkRkqKSkhJCQEu91OSEjIOTOhSgFbX1kq+G8Am5CQILRHCwsL0Wg01NbW4nK50Ov1Qhv3mmuuGTFwhN4mIynwWrZsmdf8T+kzixcv9uo4Enx9fUe10JY68Kurq2lvb6epqek7B6lut1uogHjTUCbh0KFD1NfXo9FomDRpktefczqdlJaWAnDxxRczYcIEdu/eTUFBgWj2tFgs7Nu3j/j4ePbv3w8gPpOamiqqU1JwKVED+r4Xkk5138C0b2VroOqK9Jm+/x/DGMZwduOEOakWi4XOzk46Ojq8KhfL5XJeeuklXnvtNTZu3HjGBajQq90WERGBTqejpqaGrVu3Ul5efpzoujThNjQ0YDKZUCqVaLVaYY9aWVmJ2Wymq6uLpqYmdDodwJByUn2RmJjI5MmTgaEtVdPS0kTjzsGDB73m2EjlS6mZ41TDW96dxGMGyMvLG3H7Cy+8EJ1OR1NTE1u3bh31eWm1Wn75y18Cvbw66Z63trZSXFwsSqAej4ft27fT2tpKWFgYOTk5RERE0NbWhs1mY8eOHXz99deDivKHhITg6+srMuxRUVEEBwczbty4790R6nRiqDL7QGcsq9VKY2Mju3btor6+npqaGoxGo1jYpaSkeHU8iSMbGRk5qoYnKbjxRsIJ/lvp8NZOtC/6cslNJtMJ7aMv8vLyaG9vR6vVjqg73Beffvop0KsSMJrn8fDhwzgcDoKCgvjBD36AWq2mpKSE9vZ2SktLUalU1NfX4/F4hN2wxFeNiorqp0DQ1xRjKKcyb3jdRqORAwcO0NjYOCgFo7Kykm3btlFZWen1dY5hDGP4/nFCQWpBQQFXXXUV8+fPJzMzk/feew/ov7IdzE3oxz/+MaWlpSIIO1Mgke6zsrL45S9/yYQJE/Dz88NisfRzORn4GWlgl3h2kydPJjIykszMTCorK7FarQQEBIhMkTeZVOidNKA3SB1qArv11lvx8fGhsbFR8FhHgsS9hF5awakkqkPvBO7tBDyaINXPz4+rrroKgA8//PCEzu3//u//CAgIwGQykZmZKbiOUkl/ypQpyOVy0tLSsNlspKenk5qaKrJsBQUFFBcXU1tbO+jzkZWVRW5uLrNmzSI5OZkLLriAhQsXkpWVNayzzv8ShrNoHejYJfGlFQoFMplMmCdIz/a4ceO8OqYUpI5GTcFut4vxytvvpW+QeiLvkXRvenp6aGlpGfXnJTidTvbs2QP0VmG8zQK73W5Wr14NwJVXXjmqY0rHS0lJQalU0tjYSEJCAjKZTGSVo6OjCQgIYObMmcTGxhIYGEhGRgahoaHU1dVhMBgGtQeWMtqjtfc1Go3I5XL27NnD6tWrRfZWwok0+o1hDGP4/jHqILWgoIB58+aRnZ3NAw88wE9+8hNuueUWDh8+3C+jKhHxP/vsMzEI6fV6ryeb04mBndtxcXFERESQlpZGRETEoPwyqbtfanCqrq4GeoXqo6KiRJkyPT2dm266CUDwEkdCbm4uAQEBNDc3D+kfHxUVJZqwDh486LWHd1BQEDKZDKfTidls/s7e3yNB4m+OBClILSgo8CrL+5Of/ASAr7/++oQ6J4ODg/nFL34BwDvvvIPFYqGuro59+/bR2dlJamoqP/rRj4iMjKStrY3169cDvd/vuHHjRMbd399/0NJiXxeqwexTzwVIFq3DXXtBQQGff/45VVVVhISEEBMTw/Tp01mwYAE/+MEPhI6qt/JKJxKkSh3hKpXKa+qItJ3H4zmhd0iikMB/zTtOBPv37xeceOkd8gZ79uyhsbGRoKAgfvjDH47qmFKQGh4eTnV1Nb6+vkLRZOLEiej1enp6ehg3bhx6vZ7s7GwmT57c7/ykxd3AJICUeR/Kdngo6PV6goODcTgcuFwuIdEnIS4uDrVa/T8nBTeGMfyvY1Sc1NbWVu69915+9rOf8eyzzwLw05/+lIMHD/LWW2/xwgsv9OOnfvHFF/zyl7/kpptu4rHHHhtVB+mpxMDMR1/SvcfjISEhgYSEhH7XMvAzkiuVyWSiu7ub6upqlEolZWVlREdHI5fLRZerRqNBrVYLwfL09PRhz6+rq4s5c+bw5Zdf8umnnw4Z2MfGxmIwGDCbzeTn5xMbGzvodj09Pf1KYBI3taurC4vFIpo+AGEPerJQUFAgrBCHQkJCAu3t7QQFBdHe3s6XX35JWlracdupVCqxKNBqtWRlZVFQUMBrr73GjTfeKLbr6enxiot400038c9//pPCwkLy8vLEd9bW1kZnZycxMTGiaaqkpISoqCghQC5ZoCqVSsxms+hatlgs1NTUoFarxUQ7nFKD1EA0mAUvfH+i/x6PZ8QMoTfWuAaDgbq6OmJiYvp1Y0uorKwUskQpKSm0t7cDEBoaKoTiAwMDCQ4OFvSRzs7OIYPJiooKoFcGrqqqyivutaTV6efnJ+w4B4PT6RSLzL73xmQy9Tufnp6eYU0uJGg0GsxmM52dnVRXVw/ZvBQVFTXo/ux2O99++y3Qq11qtVq9Cnh9fX2F/N9FF10kLEwHwuVyDUp/kILUkJAQiouLCQoKorGxEbvdTk5ODjExMcTFxeF2u8U1SeNMbGyseB4k7WG9Xo/H4zluHPYG0nbSeGy1WikoKCArK6vfPrxp9PPmmKe6+jSGMYyhP0YVpLpcLsxmM9dccw3wX1u6pKQkoXXYd9K69NJL+fbbb7n55pvPmAAVjp/4BzZ1DLXdYJAG1vj4eFpbW9FoNLS0tAiXIo/Hw6ZNm/D398dms1FXV8fUqVOH3WdmZia33347X375Jfv27SM6OnpQbt+ll15KWFgYK1eupLa2lttvv33Qia65ublfoOjxeGhtbaW8vByLxSKclSQ92JGu+9ixYyNO/i6XC4/Hg5+fn1cyUVFRUYwfP54dO3bQ2NjIvHnzjtvG6XT2u47rr7+ehx56iP/85z/8/Oc/F9+h0+n0io8YGxvLTTfdxPLly4XIf0lJCU6nkyNHjqDX60VzGiD0U6UAVfp5W1ub0HyUAmSDwUBOTs6QfuMSBpPOsVqtoiEvPDz8e6cGjBRID4eamhocDge1tbWDcgqDgoKorq4WpX3J9lSpVHLo0CGgt6zcNwiU9FYHg6QokZSURGhoqFeLFamxMTg4eNiM7e7du/s1ObW0tOByuQgNDe33HQ1V/RiImJgYQkJCRIl7KPepiIgILrjgguN+/v7774vms1tuuYXu7m6vuP5Op5N169YBve/QUO9nd3f3ceNJbW0tdXV1+Pj40NHRwe7du6mvr6e6uprY2Fj8/Py44IILaGlpoaSkBLfbTW1tLUlJSaSlpaHVasXf0iJOgjQOe7P4AYTuZV8FlmnTpgl61RjOfCgUClFpPNW2qKf6OKfrWs41jCpyjIiI4N///jdz584F/ts0EBMTc1wQKkkpPfbYYyNqg57NkLq6MzIymD17NiqVik8++YTNmzcLO1WDwSAGUW95qZmZmWRnZ+NyuYY1PfjhD3+ITqejra1N2EaOBKlxY/r06aSnpwtt0La2NsrKykbUoRwNRtOglZWVBeCVnzn0dmLHxcXR2trKf/7znxM6v3vvvRcfHx/y8/NpbGwkPDwcmUzG9u3befvtt4VTSGhoKDqdTlALTCYTHR0dFBUV4efnR1tbGxqNRmSlMzMzhdnDcBiMeyc1JXZ2dmIwGDh27Fg/FYnTAYmnbTQaMRgMdHR0DNqQMthn+gqqx8XFiUBxx44dHDhwgMLCQlHiVavVpKenC+/4rq4ubDYbTqcTl8sFeN80Bf8t9w9VVRjqvMH7pikJ0kT0XRqfJM3lpqamUWXpTCYTW7ZsAXqVD0aTBNi7dy+tra3o9XoxlnsLKYvq7+9PcnKyMAVxOBwiGys58QUHB5OXl0dVVRUlJSUUFRWxZcuWIZubrFYrBoOBqqoqr0T5jUYjDodjyJ6BMXH/Mx9KpZJ33nmHd955x+tGxzP1OKfrWs41jDq9KWUaenp6RAbC4/H0m0SffPJJ3nrrrZPmqnI2QHKVMJvNNDQ00NPTg81mIycnh3HjxolSpzcd/hKkTt2VK1cOOYH5+vpyxRVXALBu3bpRletlMhnR0dHMmjWLpKQkZDIZNpuNiooKUYY9UUiZEG84uBKkILWiosKryUWhUAjd2bfeeuuEJqRx48YJd7Rt27bR2toq3Em6u7tpbW0lICCApKQkIUouobi4GB8fH+RyObm5uURGRpKamkpGRgZZWVmiSWo4DMa902q1BAQEEBAQgNVqHXIiPpWwWq10d3djNBpRKpU4HI5BM7p9m18sFguNjY0cOHBAnG9iYqKQVbPZbBQWFtLQ0MDevXsxGo0iK6pSqYiKiiIqKorw8HD8/PzE9zkaHrtUuh8N91B6zkebsZayud9lnNPpdPj6+uJyuUQ1yht8+umndHd3k5WVNWqlFIlffeWVV4464yMFqRkZGUycOJELLriA9PR0MjIymDt3rnDYCwsLw2azER8fj5+fn8iYS+5SkrxUX/RdnA0MYgdzmurr+jcQA/sMxjCGMZydOOEavI+PT7/ASVrJL1u2jIcffpgLLrjgrEp5D2W3J6GgoIDPPvuMgoKC41bpJpOJPXv2UFRURHBwMD/4wQ/E5KzRaJg2bRozZswAvM+kQm85X+LJHTlyZMjtZsyYQVxcHHa7XZTxRgO5XE5iYiIRERFCGqezs5PS0lJqampERutEMJogVa/XExERQU9Pj5CuGQmXXnqpyKZ+9NFHJ3SODz74IND73bjdbgICApgwYQLp6eksWbKE6dOnExMTc1zpOD09nYCAAMGvS0hIwGQysXPnzkGfk5EgbQ//dTpLSEjwKiN7sqHRaFAoFOj1egIDA4W72kD0zWZptVrMZjNyufy4oFqyF87MzMRqtaLRaDCZTIL/nZSUhK+vL35+fkLKSHKa8jZI7UvBOJHGqdEGqdL49l3eDx8fH/HdettAVVNTI4JFiXrlLex2O5s3bwYQi7PRYPfu3UBvkOrxeMjJyeHmm2/mlVde4YEHHhB6p3q9ntzcXLKyspgyZQqJiYnEx8cTHh5OTEwMSqXyOIthQCzOAPHuGI1Gtm3bRkNDQ7/ufL1ef9xCsO++vFUHkOSptm/fPuwcMIaTD0n+zWKxnHJb1FN9nNN1LecavhNRVPoiFAoFcXFx/P3vf+fpp59m//79o+o0PRMwkkRJWVkZFotF/N13lW4ymXA6nRw9epTS0lIuv/xyli5dSkREBCaTiaamJsGlPHjwIEVFRV6dU1BQEIsWLQLgqaeeGnIy9PHxEVlXiWZwIpDL5cTExJCeni40Vdva2iguLqa5udnrLua+TTej7XyWbOYktYSR4Ovry2233QbAJ598MqpjSZgwYQIXX3wxPT09HD16FJfLxQ9+8APmzZsnrGOljF9JSQmFhYVArxbnzJkz0Wq14nmQ+KkNDQ1el8klDJb9CQ8PJzs7W1j6Sds1Nzef0iyRt+oEfbNZkrVpcHCwcN164403eOGFF2hpaWHOnDlMnTqV4OBgiouLaWlpEeYYEu86MjJSmH9ImpbelvulIE+r1Q5raToQEiVlNCL+8F8ua21tLQaDYVQLMgmSaYT075Hg8Xj46KOP8Hg8zJgxY1jt0MHw6aefCne0mTNnjuqzn3zyCfv27QP++53I5XJsNhsOh+O4ZyQhIYGoqCjBe8/IyCAmJoa6ujrq6ur6ifZL2WitVovJZKKoqEi8O0ajEZ1Oh91uH3Hx0Xdf3qoDSGN/Xl7emEzVaYbVasXf3x9/f/9TSs04Hcc5XddyruE7pTql7Kmvry+vv/46gYGB7NixQ6ymzyb0dTUZjJCfkpJCWVkZKSkpx1nwSaWt6upqrFYr69atw+Vy4XA40Ol0xMTEIJPJSEtLo6SkhJtvvpnNmzd7NSn+6le/YvPmzRw4cIBXX32VX/3qV4Nul5WVxeTJkzl06BArVqxg6dKlJ9ysplQqSUhIwGKx0NDQIITWW1tb+wlxDwaPxyO0I2Uy2YgdtX3hdrtFADiaEq/UKCEJiJ8I5s+fz5dffimasz7++GN8fX2Ji4ujpaUFnU4nMqkOhwOlUklmZibw30Ynh8MhXKWCg4OHLZMPBm+tHQfajX6f6PuODPx/UVGRcBkqLCwUDYNmsxmdTid469J1h4SEkJycjMViIS8vT5S/pfs8EqQF0WgrOBJ/bLRBZkREBHa7nc7OTlpaWsRz4i1aWlqExbFcLveKu5+Xl8exY8dQKBRCK9hbmEwmXn75ZQDuv//+UY0PGzZs4IYbbgAQwvp+fn74+vrS2tpKRUUFNptN6J9Onz6dKVOm0NbWJhpuTSYTu3btIjAwUKhfQP/nXlrYORyO496dmTNnjlhRkNQ14uLivK4+SGO/lFgZk6kawxjOHJyUlnsp27dr166ztrOyr6vJYIT8rKwslixZQlZWlhhcpQE5LCyMyZMnM2/ePMGva29vp6Ojg87OTuRyOS0tLdx88834+/tz7NgxHnroIa/OKyEhgT//+c8ALF++fNgM409+8hNUKhWVlZWiqeK7QKvVMm7cOGJjY1EoFDidTiorK4cVMO/p6RHBQmRkpFed/RIKCgro6uoiICDA68AEEFlGSVbrRNA3mJYWGPX19VRUVGCxWHC73cTHx5OWltZPH1fqfAeE3Ni0adOIi4tDLpePqhveW23I0Qqdn0wMpMUMR2kIDQ0lIiKCsLCwft/nuHHjxLNVWFjIunXrKC4uRq1Wk5qaSkBAgBDxj42N9foZkoKu0WbvpcXiaDPTSqWStLQ00tPTRaVkNLxSKSiOjIxk2rRpoolqKHR3d4sGwYULF/bLrnuDZ599lq6uLrKysvj5z3/u9ed27drFj370I1wuF3PnzuXKK6+ktLQUpVKJSqWiurqa2tpaioqKKCkpoampSVSLUlJSiIyMJCoqirKyMtra2jCZTP0a2/o+9xK9RJJ6k342VFl/4HMnZbNGk8lKSkpi3rx5zJ07V8wBg+1f6jsYwxjGcPpwUoLUadOm0dnZKRpfznYMR8iXMFggGx8fz/Tp04WcUm5uLjNnzsTf35/o6GgCAwNFafqNN95gzZo1Xp3PxRdfTG5uLk6nkz//+c9DBoghISEiu/Lpp5+OasIcCjKZDJ1OR3p6er+mIZfLRXd3d79z6eswJZfLR90tLfHspk+f7pW+pQS1Wi2ChBMVRpeC1Pb2dkJDQwkODiYsLIygoCCampooKChg7969AKIJrrCwkG+++UaUpaWyscPhENJRfbl3JwuSSP73EaQOpMUM16Ci1+u57rrruPnmm/vJrmVmZnL++eejVqvZtWsX+/btY8WKFUK6SalU0tHRAUBOTo7X5zaUpvFIkBYFJ7rA8ff3Fw1zo6EZ+Pn5MXnyZFJSUgR1YDhs2rRJUIcuvfTSUZ3jvn37WLduHTKZjIceesjr9+vw4cNcfvnloglq4cKFlJSUcOzYMVauXMmGDRvo7u6muLhYGHFoNBrxjiQkJDBp0iRCQ0Pp7u4mOjqaCRMmDElT0Ov1TJ06VSQDBnOlgqGfO2/Gbm8w2P77UgnGMIYxnB6ctM6m77vseDIxsIQ51DYDNTCtVit+fn7Cqapvtk2lUmG321Gr1cycOZO9e/dy9913M3nyZMHDHAoymYxHHnmEyy67jG3btrFx40YWLlw46Lbz5s1j7969lJeX88EHH3DXXXeN8uoHh1wuJzo6Gp1OJwTPpazpQCkeqeN9NOju7hZWhrNmzRr1+en1ejo6Omhubh7xfg4GqdTa0dGBx+MhKSlJaHxWVFRgt9upqKigvb0dh8NBWFiYUFJwOBzk5OSIjGvfRhypjDkYheRsRF9aDAxPURj4O6PRiMlkEu9FV1cXYWFh7NmzB41GQ15engjypEzqaBa+Uib1dAepErRaLSkpKV7rpIaFhXk9bnZ0dAgpuquuumpU/FmXy8WTTz4J9DZaeasGUFZWxuLFi2lvbycyMpJ58+ZRVlaGn58fXV1dwt1J4iBLlrZXXXWVMLiQ7m1nZ6cIHmNjY0VjYUJCAnq9nv3791NYWEhmZma/BU3fZEDf92ao5+5kvV+D7V+r1Z50s5MxjGEMw+Psab//HjCUqLTBYBATdVVVFV999RUxMTGMHz9edKb2LdlqNBpiY2NpbGzE7XZz3nnnUV5ejslk4pZbbmHdunX9Mik2m+047cXw8HBuvPFG3nzzTR5//HEmT54sAqaBWLx4MS+//DJ5eXls3boVu93uVQagp6fHq4l6YFm1775lMhkymYyenh48Ho9XmU2FQsGWLVvo6uoSxPPBmhd8fHwEh28gpOCmuLiYuLg4r7iB3d3dYrJXq9XCQczj8YjPS92akvXs0aNHRaYvIyMDt9tNdHQ0KpVKSFdJ2dOwsDCxf4PBICwgQ0NDzyhzi9FAUh0AhAGEdI0Dg0Ppd1VVVdTX12Oz2QgLCyM/P1/8Xq/XM2PGDFpbWwkJCeHYsWP09PQIUf7MzMzjGgaHcpySpKTcbjddXV3U1dV5tVhyOp1AL1d2OIk4p9MphPdPBmQymeDlDoeQkBDef/99bDYb0dHRpKSkiPvTFwqFYtD397333qOiooLg4GBuueUWurq6RhwPampquPzyy0XT0q233orFYiEqKgqdTkdCQoJQBfnBD35AXV0dx44dY9y4cTgcDnp6eqitrUWlUiGXy6murkan06HT6dBqtVRXV+N2uwVdqqioiPLycvLy8tBoNIIe0jcZ0Pf5kp6tU+XINpjBi6SJPYYxjOH0YSxIPQH0LXkaDAaam5tpb29n/PjxJCQkHOcYJH3Gz89PaAYuWbKEVatW8e233/K3v/2Nv/zlL2L/KSkpgwYxf/rTn9iwYQM1NTWsXLmSSy+9dMiMSkdHB++88w4bNmzgiiuuIDIycsTrqqioGNGyFXrtbkNDQ3G73UJTtaenh5CQEKZNmyYCA7fb7XUTnSQ3dN555zF58uRBt5EyOoMhLi6OgwcP4nA4jnMAGgput7tfsJOUlITJZKKuro60tDSys7Ox2+0UFBSQlJSESqUS/uAREREi46PRaLDZbEJaqa8Qft8OeUlWq6Wl5YzPpkqLjZOBuro60QHu5+eH2WwWChBqtVpYVtbX11NfX09gYKBY3EycOPG4gNTf33/QIFX6zj0eD/7+/oPKhg0GqTTtdDqHzTLW19d79R4lJCT0UyQwm83U1dWRlJTUL/BpbW1lwoQJI+6vsbGRtWvXArB06dIhlVPcbvdxdsK1tbW8++67QK+xyrRp03C73cNmYpuamrjqqquoq6sjMDCQSy65hPDwcJYsWUJZWRl2u53Zs2cDvQsDjUbD7Nmzxc+sViuFhYU0NTURFhZGRUUFNTU1REZGMnnyZLRarbAw1ev1yGQyMjIyOHjwIHq9nvLycpFBl9zdioqKiIuLO44mcDKDVG/29X3ZFI9hDOcqzpkgVcqIeWvtWFBQILr5B5Yc+5Y81Wo1LpeLwMBA0dRkMpnIz89HpVKJCcXtdmOxWMjJySEpKYnU1FSCg4N59tlnefrpp5k/fz4XXnjhsOek0Wh48sknuf7663nppZeEludguOmmm9i0aZPQVJQE/08m5HI5qampwuM+Kipq1GV+6L03kv7iaB1wJEiLge/izJSUlMS+ffuorq7G4XCQnJyMzWYTVAcpW9ve3o5KpaKmpkZ0KVutVpRKJfX19bjdbjo6OoiLi6O4uFgEqzqdTmRTz/Qg9WRACtSlQFGtVtPa2ordbqe9vZ3g4GB0Oh0VFRUi+9zXBEIul5ORkeH18U603C8Ft3a7HZfL5RU/dDQIDg4mODj4hD7r8Xj46quv6OnpYf78+aOW9nvkkUewWq3MmjWLH//4xyNubzabufTSSyktLSUwMJAbb7yR6Oho0UwEoFKpqK+vF8oGdrv9OHtTtVrNuHHjhBuVtEAH+jnwSVzTadOmodFoKC8v76fsUVBQwJo1a4R+s9TYKr1D4eHhWCwWDAaDoA8MbCjrO/Z/V1ramDnAyYVcLhdavycyd5xJxzld13Ku4ZwKUgd6pA+HsrIyrFYrZWVlxwWpfUueiYmJTJ06lY0bN5Kfn09rays6nY6enp5+kjahoaH4+/uj0WiEl/XUqVOpq6vjP//5DzfddBMHDx4kKipq2PO6+OKLufDCC9mwYQMvvvgiL7744qCre6VSydKlS7n77rs5evQoU6dOPWXSKoOVxkYDg8FAV1cXISEho3bPkXAyglSpxFhZWYnT6WTXrl0cO3aM8ePHk5mZSVhYGN3d3ezevRubzUZ+fj6TJ0+mra2NyMhIHA4HNpuNzs5OIUwP9AtMz5UAFf7LJ9RoNEydOpWdO3cKy9PMzEwCAwNpbW2ltbUVi8VCbW0tpaWlIkhMTU0dlb3giXb3K5VK5HK5WEieaEB5KlBUVERlZSW+vr7ccccdo/rspk2bWLt2LXK5nKeeemrELKDFYuGKK64gPz+fiIgIfvjDH7Jo0SKSk5OpqKgQ7+i+ffuora0lICDguMyywWCgtrYWtVpNUFAQer0etVot+KYDG04dDke/hVxWVla/RUZZWRkajYaWlhYxfvXdhxSkNjc3C/rAYEHqyZJsG9O/PLlQqVR8/PHH/xPHOV3Xcq7h7CTGnQAGk+0ZqnMUekvuGo3GayFxh8MhsgbQO5jpdDpsNhv79+/vJ+AfHBwsym2//vWviY+Px2g0csMNN4zoAy6TyXjqqadQKpUcPHiQTZs2DbntlClTRBfw2rVrv5MzzqmEdG/mzp17wivQkxGkTpo0Cegtr0omBjKZTJQtNRoNZrNZ+JTHxcXh5+dHTEwMAQEBxMfHExMTQ2hoKOPGjSMrK4v09HT8/PxEyT8rKwuj0Sjcy/6XIXVaQ68SgkqlQq1WEx4eLhqjGhsbxTtjNptRKBSCFjGazn448SBVJpMJJYrv2jx1MuF0OtmwYQMA11577YgL2L7o7OzkgQceAOC2224bsQHN6XRy7bXXsnv3boKDg5kxYwY5OTlYrVa2bdtGfX09zc3NonIjcU5jYmKIiYkRck21tbXYbDZsNpuQjQoNDSUxMZHQ0FCsVitHjx4VpX7p+aisrGTNmjV8/fXX/Wx1U1JSSEpK4vLLLxeJgYEd/JLahRQUD8RoJduam5s5duzYoGPJd1mMj2EMYxg9zqkgdaBsz2AyUhKysrK47LLLvO4uzsnJISMjg5ycHCHXolarOXbsGAcPHqSyshK73Y5Go6G4uJjt27ezevVqCgsLufjii9FqtWzZsoUXXnhhxGMlJiZyzz33AL3ah8MFZnfffTdqtRqTycQ777xzUmSpTia6urpEUHKipX74r9alN649Q2H8+PFA7yS1detWysvL6ezs7KddKomTNzU1ERISQkZGBlarlbVr1/LFF18Avc/OcE5A5eXlwr1sMIzWTvVMwvbt23n55Zf5/PPPxXtVWVlJY2MjGo2G3NxcgoODhRB+VlYWUVFRTJ8+nblz56JSqcRCbSTd0IHoG6SONlCVJMy87cw/1aipqeHVV1+ltbUVf39/fvazn3n9WYfDwc9//nPq6upISEhg6dKlI37m2WefZePGjWg0Gi6++GKWLFlCQEAA27dvZ+fOnVRUVIhtc3JysNvtgv6i0WhEplKtVtPU1NSP8yoFrnV1ddjtdiIjI7Hb7VgsFlpbW1GpVGJckpympGenrz61hIG6qVqtluzsbKZPnz6oduxoJduGmxf+l1RsxjCGswHnTJA6GE6Wph70Bo5z5swhPDwctVqNw+FArVYL2SlfX190Oh0ajYaOjg5aW1upr6+npqaGqKgoUWpetmxZvwlhKNxzzz2kpqZiNpv5wx/+MGS3bmBgIBdddBEajYampibefPNN4ep0JmDbtm24XC4yMjJOuNQPCA3T0Wbf+kLKNPv4+OByubDb7cTGxmK321m/fj3PPvssa9asEXzj4uJirFYrlZWV1NfXU1VVRWtra7+g1mg0inI/9AagISEhyOXyIbP0w2mPnqmQAut9+/ZhMpnYvHmz6JaXOLtSZ7RKpaKpqQmVSkVmZibJycls3ryZpqYm0tPTRSPT2rVrR8Uv7avLO9p7d/755wO9QbZk/fl9oLu7m40bN/Lmm2/S0tJCYGAg1157rdcZPLfbzd13383WrVvRaDQsX758xMCqpqaGv/71r0Bv42JERARmsxmNRoPL5aK1tZXq6mqqq6vZs2cPOp2O8ePHEx4eTnt7OxqNBofDIe55Tk5OvyBVEu5XqVTodDrUajWxsbEieLXb7cydO5eEhAQyMjIIDAz8XikxJ3NeGMPwkHjoMpnslI53p+M4p+tazjWcM5zUwXAqNCstFgvR0dFoNBrBbZNKXdA7mcfFxWGz2ejp6cFmsxEaGspvfvMbli5dSn19Pffccw+fffbZsDJFSqWSZcuWceedd3L06FFefvllfvOb3wy6bXR0NL/4xS/49NNPqampYdWqVUyfPl2IbI/WRvJkobGxkSNHjgDwf//3f9+pc1Zy2DrvvPNOeB+SHJAkjaRQKIQklcFgoKqqioCAADIyMggJCSE2NhaTydRP+F+akD///HP27dtHWlqayKpKgeq4ceNIT08f8tnTarXCZvX7sj61WCwiu+jt9t3d3aSmpnLs2DESExOFnFN9fT05OTniejUaDdnZ2aLUW1FRQVNTEx6PB41Gg1arxd/fH4PBwO7du0XX+EhQqVQoFAq6u7tHrWc5fvx4Fi5cyNdff83KlSvR6/XDZsNPBZqbm1m5cmU/ZYOLL77Ya01Uj8fD73//e9asWYOvry/vvPPOkEoZffGHP/wBq9VKbGws8+fPx+VyIZPJhFOUTCbD19cXi8VCQUEBWq2WwMBAQkNDiYmJEefX1dUlZMB0Oh1GoxGtVktiYiJarZbu7m4UCkW/rGhtbS2xsbHHSZt9n1304eHho3bzGsMYxnBqcE4HqScDUqOANNBKItBS1kgSlu8r9D5hwgRSUlLYvHkzNptNcPHuueceHn30UXbt2sW7777LLbfcMuyxo6Oj+cMf/sDvfvc7/vOf/zBx4sQhg7TAwECuv/56tmzZwu7du9m3bx/79u1DJpOJIMvX11doWfbli50KeDwevvnmG6C3pDcaG9SBqKmpoby8HLlczpw5c054P1KQ6u/vz8yZM2lvb6e1tZWWlhah69jT00NkZCTp6ekUFxdz+PBhJk2axKJFi0SABb0OP2azmZKSEqZMmdKveaqtrU00UQ0m8C/t52Q1e5wIRks1kJ77Cy64gAsuuIADBw4gl8s5dOgQ4eHh/fRAJT1atVqNwWBAqVTS2tpKZ2cngYGBBAcHEx4eTldXF++//77XQapMJiMgIIC2trYTEl1fuHAhDQ0NHD16lHfffZdf//rXo7L1/S44evQoq1evxuVyodVqufTSS0ft4Pfuu++yYsUKZDIZ//znP71asB04cIAPP/wQgAULFuDj44NSqSQgIICYmBiSk5M5dOiQ0JKVvuepU6ei0WgoKSnho48+QqvVkpSUhFqtFnz5gIAAUlNTycrKGlQcv29gOoYxjGEMg2EsSP2OyM/Px2QyYTabhdd039Kc0Wiku7ublpYWOjo6CAoKElqGgYGBdHZ2UlJSQl5eHgEBAVx44YWsXr2aP/7xjyxcuLCfx/VgmDdvHj/96U95//33+ctf/kJKSsqQn5HL5VxwwQXEx8eza9cujEYjdrudtrY2IVLet5knMDCQyMhIfvjDHxIdHf1db1U/lJSUUFNTg0KhYP78+d9pX1IWdcqUKQQGBg5qcOANpEBKo9EQHh4u+HPV1dWEhobS1dUlSpmNjY00NjaKkrbT6RSl7UWLFpGWlsauXbtE6drtdotANCQkBIvFQk1NDXK5nJaWluOC1eGcnE4HRtsgMvC5z8jIwGg0MmHCBGHMYDQaxTbx8fFYrVaampqIjIwU1rYVFRVMnTqV8ePHU1FRwcqVK3n22WeFUsJIkIJUyVZ1NPDx8eG6667jpZdeoqGhgZdffpnbbrtt1NzY0cDtdvP1118LCbbk5GSuvvrqUVsKf/LJJ6xYsQKAp556issvv3zEz3g8Hn73u9+J486YMYOpU6fS2dmJzWajvb2drq4uYeksnW94eLhYfH/99dfYbDYhvxcdHY3ZbBY0ASmzKmG0UoBjGMMYzm2MBakjYCROnEqlwmKx0NTUJNxTJJhMJqqrq8VgrFAosFqtWK1WDh06RE1NDb6+vqhUKsxmM/7+/lx00UUcPnwYg8HAvffey/vvvz9k6Usqsf7sZz8jLy+PY8eO8bvf/Y5//OMf/UTM7XZ7v67lqKgorr76ajweD1arVcgAVVVV4XQ6aW1txWq10tHRQUdHBxUVFSxatEj42zscDq8asNRqteji7gu3283GjRuBXtknqZw+Elwu16Al8q+//hqA6dOni0WBN4FFd3d3vyDQZDIBvXJhkZGRIlAICAhg3bp1+Pv7I5fL8fHxITo6WpTE09PTMRqNdHV1iaaPKVOmkJOTI2R79Ho9YWFh2Gw2LBYLDoeD4OBgERhLjRrS8yM56nxfzlTeBMfDvRthYWHiWkpKSnA4HLS0tABQVVWFyWQiMTFROLRNnjyZ0tJSkpOTCQsLY9asWWzatIm2tjbWrl3LZZddJvYtSXwNBuk7kySJvNE8NZvN/VQ1LrvsMlauXElraysvvvgiV111FdHR0SKoHgkOh8Or7axWK2+99Ra1tbUAzJw5U1QC+r6vQzlJSdi6dSsvvvgiAPfffz8/+9nPROZzMEgVgS+++IJt27ahVCr561//yrhx44iMjKSkpAQfHx/a2tqQy+U0NTWJbHdjYyP+/v7s2bOHtLQ0MjMzRQOgSqXCZrP1026Oj4/H4/HQ3NxMV1cXdrudmJgY0WQ1hjGMYQzD4ZwMUr8r30myRYXeAFClUgmR6b5BVFVVFe3t7VitVtRqtfC8Dw0NpaKigtLSUvz9/cnOzkan05GRkUFSUhKPPPIId955J5s2beKLL77g+uuvH/Q8Jk+eLPikK1asYOHChVRUVHDnnXfy4IMP8qMf/Qi5XE5wcLBX/MLDhw8L7mxnZyfV1dWsWLGCgwcP8uWXX3LXXXexZMkSlEqlV5ytxsZG0THfF1999RVdXV0EBQVx5513YrVavZL6slgsIoMjob29XfBar7rqKuLj43E6naLzeDh0d3f3C2Kk7JtOpxOBkF6vp6CgAB8fH5xOJ1FRUahUKvbu3UtOTg4zZswAejnCkq1rX6Hy2NhYFAoFRqOxn2uOJCw+btw4LBaLeHbOFkeb5uZmTCaToIYMB4/HQ01NDcnJyaKBD3qdt3Jzczl48CBmsxk/Pz98fX2FQ1NcXByFhYWsXbuWq6++WuwvMDBwSKky6Xvv7u4mJSXFq0DI6XQet6g5//zz+eMf/0hxcTGrVq3i97//Pbm5uV7JQFVUVIxoQlBeXs7rr79Oe3s7Wq2Wp556igULFgy6bVdX15DVkc2bN/OPf/wDj8fDzTffzJ///OcRnyFJ+eAPf/gDAEuWLMFisVBZWYlSqcTf3x+Hw0FXV5eoEslkMgoKCggLC6O4uJiUlBQKCgr42c9+xqRJk6iqqqKmpobY2Nghuf4S57itrQ2r1SoaDXU6HVlZWf0yq2fLezCGMYzh1OKc7u4/UUi2qHl5eahUKiIiIoiKijpuYNZoNGIyVSqV+Pr6EhQUJISpQ0NDSUlJYcmSJVx99dUYjUa2b9+OUqkU7lMPPPDAoD7dAxEVFcVbb71FdHQ09fX13HvvvZx//vl89dVXo3bggd7sYXZ2No8//jgXXXQRPT09vPTSSyxfvvyE9ieho6ODzz//HOgNKr2xrRwO27Ztw+12k5KSIkrrJwpJvsrf3x+LxYLNZkOtVhMTE0NQUBChoaEkJCTw7bffsnfvXrZv345Go8HPz4+4uDiuu+46lixZ0k8TNTExEb1eT0tLi7DShd5nQ1IBGCipczZAkumRss9DwWAwcPjwYZERNplMOBwOHA6HCLyKioqQyWQiy+ZyuXC5XCJw3LBhg9eSUlJm9kTK/X0RFBTEU089xfTp03E4HDz22GPk5+d/p31Cb6C2ZcsW/vGPf9De3s64ceP4+OOPhwxQh8OBAwe49dZb6e7u5oorruBPf/qT18Hdm2++SXFxMb6+vixatAiXy4XFYsFkMqHT6YiNjRUZ02PHjrFhwwbRZDlx4kR6enr68UkTExOZO3fukBzT8PBwIiMjxe/lcjkFBQWYzWZqamrGuqHHMIYxDIpzMpP6XSHZokoWhX07uPuibzczIGw2Y2NjSU9PJyoqSjTJ7N27l6qqKjweDyEhIVx//fXs37+fxsZG7rnnHtHcMBxmzJjBzp07eeedd3jhhRcoKSnhlltuYcKECTz44INMmzZt1NeqUCi49957iYqK4u2332blypWkpqZy0003nZB95Jo1a4SObG5u7qg/PxCSmcEFF1zwnfcl8XI1Gg3R0dHC8jQ3N5eOjg5RxvX19cXX1xen0ykajPpmqq1W63G8O7VaTWVl5aibYc5U6PV6kUkdCpJwu8fjoampicTERMrKyggKCkKlUmG1WnnhhReETeaCBQtEib6zs5MpU6awe/dumpqaOHz4MFOmTBnxvKQg9UQapwZCpVKxbNkynnvuOTZt2sS6devw8fFhwYIFJ5TpczqdvPfee3z77bcATJ06lddee+2EeMfFxcXccMMN2Gw25s+fz/PPP+81NaSzs5PHHnsM6B0zJLtanU6HVqsV3+nBgweRy+XU1dUxfvx4dDqdWDx3dnYK9QlvuKV9OctS02BWVla/447h3INcLueSSy4R/z6bj3O6ruVcw1iQOgpIZf64uLh+wvPDZRZDQkJQKBQiYK2trRVZtfj4ePHzcePGiSybVCK/7rrrePHFF/n000/55JNPuOqqq0Y8R5VKxR133MF1113HP//5T5YvX05+fj433HAD5513Hvfcc08/zpg3kMlkXHfddURGRvL3v/+d0tJSli9fzvXXX+9VWR16S/XHjh0TTU7XXXfdd+ZbOhwOtm7dCpycILVv9s3lclFcXExTUxPh4eH4+flRX19PR0cHKSkppKSk4HQ62bRpExEREf06qQez4NVoNIwfP15YNxqNRpFRPxs7nMPDw4fM/BoMBo4ePUpNTY3gPNtsNkFvaGtrE1aZlZWVOBwOdDod6enpHD16FJlMRlxcHGazmbS0NI4cOcKGDRu8ClKlxcLJCFKhd5F2//33ExISwsqVK/niiy9ob2/n0ksvHVUVoLm5mddff53a2lp8fHy46qqruOCCC04oOCstLeW6666jra2NKVOm8Oabb+Ln5zekVvJAPPPMMzQ3NxMaGsrVV18tmqP8/f1pamoSC4px48ZRWVlJSEiIoLmUlJQQExODw+FAqVRitVrRaDRibAwNDUWv14sFWt8xs69j1NlUNRjDqYNKpWLt2rX/E8c5XddyrmEsSB0FpDJ/TU2NV4HFwA5tSbx6//79QlNz4cKFQG+jyXnnnYfVasXhcNDc3Ex0dDQzZsxg165d/PKXvyQrK2tErpuEoKAgfv/733PLLbfw2GOP8dlnn7Flyxa2bNnCokWLuOuuu4TKgLf44Q9/SFhYGA8//DDV1dX8/e9/Z+HCheTm5h63cpRUC/Lz8ykuLqaurk4E81OnTh11oDwQlZWVPPzww3R1dREaGsqECRO+0/6OHTsmmrl8fHyoqKhg586dFBQUEB0dzcSJE+nq6qKmpgaVSsXdd9/NBx98IIIsk8kksuKDdeZL2SPo5UtKGUabzXZWBqkD8fXXX3Po0CEmT56MWq2mpqaGo0ePEh8fT0dHB3K5XNAjioqKCAkJwcfHB5lMhkqlEk15Eve3ublZSFJBL/dS6kQfDjqdDug1d1i8ePFJuTaZTMatt95Ka2sr33zzDdu3b2f//v3MmTOHefPmoVAo6OzsFH8qKyspKSmhs7NTNB/W1dXhcrkICAjgF7/4BWlpaaPOxjY1NfHMM8/w/vvv43a7SU1NZcWKFV4Hut3d3Tz66KM888wzQK/ovtFoJDIyEpvNRllZGQ0NDcjlciwWC5dffjmZmZlUV1cTGBiIj4+P6OKPiYnBZrOJzLU0NpaVlQn1Co1GM+oxcwxjGMMY+mIsSB0FpDJ/XFycV9sPlOWRXFYCAgJwu939pJIkrl5hYaHIVMhkMiZNmkR5eTlNTU3MmDGDP/zhD9x7771el9ojIyP53e9+x2233caLL77IV199xfr169mwYQNLlizhN7/5zag8wcePH891113Hpk2bqK6uZu3atRw4cICLLrpIuC9VVlYOylWMiIggKyuLK6+80uvjDYTD4WD58uW88soruFwuVCoVjz766HcqrxQWFrJo0SJaWlqIjIxk0qRJqFQqGhsb6ezspKmpia6uLuRyueCrAiQkJGCz2YiMjAQQ2dO+jlMSpOyRRAUIDg6mvr7+pEt7nW4YjUZMJhPbt2+np6eHQ4cOce2112IwGMjMzCQ4OJiEhAQOHTpESkoKRUVFtLe3YzabiY2NJSwsjMbGRlwulwgw9+zZQ2trK11dXSI7KFnnjoQf//jHvPjii2zevJktW7aI8tvJwIwZM0hKSuLzzz+nubmZr7/+WihLeIP09HRuvvlmYfLhLTo7O3niiSd4/fXXsdvtQK+m6dNPPy3u2Uhobm7mpptuEpWMSZMmERISQkdHB/Hx8cJVKiIigv379xMSEsLu3btJSEgQignh4eEYDAah0pCcnCzehdDQUFpaWkSjoBQ4j3bMHMMYxjCGvhgLUkeB7yo+nZCQQGJioghWY2NjRdAidSFnZmbidDpJSUlBp9PR0tLCVVddxerVq2loaOCRRx7h448/5tVXXx3VwJ+UlMSzzz7LHXfcwT//+U/Wr1/PmjVr+Oqrr7j55pu57bbbvN6XTqfjzjvvZP/+/Xz55Zc0Njbyzjvv9NtGJpMRFhbGhAkTSE9PJzU11WtqwFA4evQo9913n7CNnTt3Lo8++uhxHf+jQVFREYsWLRKd+A899BAul4uOjg50Oh1NTU2EhIQQFxdHbGwsBw4cEHSMtLQ0dDodYWFhaDQaqqurxaQ9VDlTWrikpaURFRUlMlFnK6TFVUJCAi0tLfj5+fHll1+SkpLCokWL0Gq1eDweJk6ciM1mo62tjbKyMvR6PUFBQRw5cgRfX19qa2uFZJnD4cDpdPa7N3V1dUI9YTikpqbym9/8hr/97W88//zzzJs3b9Sao8NhwoQJ5OTkcOTIETZt2kRVVRXQW+oLCAggICBASJQFBgYSGBhIQEAAOp2OuLi4UWVPHQ4H77//Pq+99ppo6ps2bRoPP/wws2bN8no/e/fu5ac//Sn19fVotVouv/xywsPDMZlMBAYGcuzYMaA3iA4KCiIhIYGdO3eKc42OjiY5OZnMzExUKpWgxSgUChwOB93d3aL5byDGBPvHMBwsFotQimlubj5l3OTTcZzTdS3nGsaC1O8BfQduSddTsg+E3gaLsrIy0dXf1NREamoqwcHBNDU1kZ+fz5w5c7j11lv53e9+NypR7LS0NJ577jmOHDnCX//6Vw4cOMBrr73GypUrueKKK7jmmmu8ykr6+PgwY8YMsrOz+eqrrzh69ChhYWEkJSWRlJREYmIi7e3tg0pQjRYdHR0sX76c9evXA73UiD/84Q9ccskl30mqprS0lCuuuIKmpiaSk5P529/+RkdHB62trTidThQKBRkZGQQHBxMbG0tFRQWJiYlERUVhMpkoKSmhvr6exsZGsrKyCAkJQS6Xi7L+YG5SEsLDwwU14GyG5B4lqRq88sorlJWVceTIESFHZDQahavZlClTBH/YYrFgt9vJz89HqVRSVlYmjCXUajXp6ekolUr27duHxWKhtLTUK5vPe++9l5UrV1JZWcmrr77KAw88cFKv2cfHh4kTJzJhwgQsFgt+fn79zAa8kaAaDm63mzVr1ghTAegNvh966CEWLVrk9TPv8Xh4/fXXeeCBB3C5XISHh3PNNdcwY8YMDh8+LKTRampqSEpKIjs7m5SUFJEpdbvdqFQqZsyY0c+EQZLSkxZkDodD7GtMpH8Mo8Vo3e3O5OMMdYzCwsIRPxv2/9p77/i2yvP9/5JsWcuWhyRvy3vHTrwSZ2+HkDACIQkjQNkzH1aAsikt8CUptGUWQmkhkAGENLQBAoHs4XjEiW15W95D8pBtLdvS8/vDv/NU8pQTLznn/Xr5RZBlneeMR+c693Pf1y2TXVbAZbrCitRxxrr15WCV0IPlL7a2ttKcxbq6OjQ3N6OnpwfBwcGYO3cuSkpKcOLECXzyySf48ccf8dZbb426Z31CQgK++OILHD58GNu3b0dVVRU+/fRT/PLLL7j33nuRlpZm181QLBbjxhtvtPGxZGCiP5cKIQS//PKLTSRp06ZN2Lp166j6yg9GeXk5rrvuOjQ1NcHLywsPPPAANBoNVCoVDAYDXF1dIRaL4eXlhYiICJhMJpjNZjQ1NSE8PBzHjx9Hd3c38vPz4erqipKSEixZsgSEECrMGIP+wURq/1QQR8VahOv1egQFBSEnJweBgYEoLy9HbGwsRCIR/fJmuk5pNBrU1tYiLCwMHh4e6OzsREtLCy2ccnd3x7333gutVouDBw8iOzvbbpEqFAqxbds2rF+/Hnv27MGaNWsuq+3uUHA4nDGN0hJCqO8pY5Dv6+uLe++9F/fddx/1RLYHxobuwIEDAPpSjW644QZ4enrCzc0N3t7e1HHC29ub5gZnZ2dDJBLB3d0djY2NaGhogFwuR2xsLMRiMXV1MJlMqKurQ1hYGB1X/2JBFpYrHWaVbSivc2tEIhGUSiUrVPvBitRxxlqsMEb5AGAwGNDc3AwA9IbBFBa1t7fDy8sL9fX1MBqN4PF4cHFxwZIlSxAeHo6HH34YP//8M7Zv346amhrcfPPNuOmmm/Dyyy8PmqPW3d09ZKvQhQsXIj09Hd988w3ef/99VFVV4YUXXkBiYiLuvPNOWtBijcFgsMuHcjTv6/8EWl9fjw8//JB6UyoUCtx9993U4YDJzRuM7u5u9PT0DPn7iooKKlBlMhl+97vfoa2tDRUVFRAIBODz+fDy8kJAQAD4fD58fHyg0Wggl8sRFhYGoVAIo9GIEydOoLW1FcHBwUhPT0dQUJDNwwYjUAdzfxjsAaCwsBBlZWWIiIhwCKsqZr+YLlpMT3dPT09otVqEhYWBEAKBQECFaW9vL0pKSnDw4EFotVr4+/tjwYIF6O7upoKXsfuqq6uDt7c3/P39kZ2djeLiYlgsFhiNxhGj/fPnz8eiRYtw7NgxvPbaa3jvvfeG/Juuri67hJXBYLDLNaC7u3vY65OBy+XCaDRCo9HgP//5D/7973/TzmsSiQR33303NmzYQPNyR6re7+3tRW9vL/71r3/h+eefh1arhbOzM8LDwxEcHIyamhoQQsDhcBAXF4e6ujrExcVBKpUiJCQEKpUKubm54HK5tIjTYDCgtrYWKSkp0Ol0KCoqQlVVFdzd3REeHg5nZ2eIRCJwOJwR2/gOZs3GwjKdUSgUUCqVI/pJK5VK3HbbbdBoNKxI7QcrUofB3mW14d7HRNXkcrmN5ZJOp6OtDpkvbb1ej+bmZhgMBiqSysvLUVtbi/DwcMTHx9OK5cDAQCxfvhxvvPEGvvvuO3z99dfUJHzTpk02YxKLxSPaPb3wwgu45ZZb8Pe//x07duzAhQsX8OSTT2LDhg3YunUrAgICbPbJnvxSJs9zJHQ6HS0gys/Px+eff47du3fDZDJBIBDgiSeewIMPPgiLxQJPT88RP69/u1NrKioqcMMNN6ChoQF+fn7YsmULOjs7odVq0dDQgKamJsTHx9P99fLyQmtrK4KCguDu7g6ZTIaSkhJ0d3fTZf3Ozk7o9XqcPXsWiYmJ1IIH6Dv2jIhjzvNQlmVlZWXQ6XQ0Z5O5buzp7jWR9O+/rtPp8OuvvyIvLw9xcXFYsGABkpKSqBBhqviZVYO6ujrU1dWhtrYWnZ2dmDFjBjw9PVFZWYno6Gia5rJnzx4sWrSIHsuysjI4OTnRSvOReOutt7By5UoUFxcjMzMTd95556Dvk8vldl1XCoXCrvfp9foRr/uenh4cPHgQzz//PH766SfallUsFuP+++/HY489RgushruerSkpKcGdd95JbdkkEgm1PWtoaKAtj8PDw3HzzTfT7THn6fvvv0dubi4CAgLA4/Hg5+cHi8WC+Ph4iMVimhpgNpvB5/Ntck2tHzJHauPMRltZriQUCgUrPC8DVqSOM97e3lRkWIsTsVgMk8mE1tZWesNlhKuLiwu4XC4MBgMyMjIQHR1Nn8SYQg29Xg+FQoGlS5fCzc0N33//PdRqNW677TZ89tln+Otf/zrqJU6JRIIXX3wRd955J15//XXs378fe/bswXfffYfNmzfj//7v/8bF39BgMGDXrl34/PPPkZOTQ19fvHgx3nrrLXoztCc6NRwqlQqrVq1CbW0tJBIJ1q1bB6VSCXd3d4hEImoRpNVqIZVKIRQKqb+nTqejuag9PT3g8/lISUlBQ0MDJBIJLly4gN7eXtTX1yM2NhYGgwEeHh4DKv+HuzlHRETQSKp1BH4qilTr/RGLxfjxxx9RW1uLhoYGLF++fNh99fDwQFxcHDgcDoKDg1FaWorW1lb4+PjAzc0Nt99+O3bu3Akul4vy8nL6QMTkQtqLt7c3nn32WTz//PN48803cfXVV0/6sSwtLcVXX32FPXv20IccoM854Pbbb8e6detGXUzX09ODv/zlL3jttddgMpkgEomQmJiImTNngsvlUmssi8VCV22AvvOYl5dHu6p1d3fTznjMTdXDw8PGlUImk9GGJNZYXxNDCerBUptYWFhYhoMVqRMMk6NaV1eH3NxcyOVyGI1G8Pl8anHE4XDQ0tICJycneHl5ISoqCrm5uSgvLwePx4NGo0FWVhbMZjO6u7shEAjwzDPPoLGxER988AEOHz6MWbNm4f/+7//w4osvjrq4KCgoCB9++CHuvfde/OlPf8KpU6fw6aef4quvvsLdd9+Nq6+++rIr9YG+G/bu3bvx3Xff0agyj8fD6tWrcfvtt2PBggVj1sO7qqoKGRkZqK6uhpeXFzZv3gwOh4PGxkZUV1cjIiICMTExKC8vR2hoKIRCIUwmExobG2GxWBAYGIiCggI0Nzejuroa0dHRuO6666BQKHDgwAGUl5dDp9OBz+fj/Pnz8PX1RUNDA0wmE2Qy2aBFUv2X95kfwDaXearRX2yIRCJIJBLweDwIhUIbCyJrGCEjlUqxfPlyiEQiZGdnw9XVFX5+fjAYDEhOToaXlxeSk5ORn58PvV5PH+KKi4tH3ZJ38+bN2Lt3L/Ly8vDKK6/ggw8+uPwDMEra2tpw8OBBfPnllzh37hx9XSaT4dZbb8Vtt912yb7BOTk5eOCBB5CXlwegz8Xj6quvpqLS398fvr6+SElJgVarRVVVFU1LKSkpgVarRWVlJcrLy6FWq2neu1wuh1KppA9KQF9r5+jo6EGvSXsE6HTJw2YZnOrqaruWtVlYRgMrUicYtVqN7u5u5ObmAugzpY+Pj4fJZEJISAhdDmZy+JjE666uLggEAnR1daGqqgq5ubnw8PCAn58fwsPD4evrSzshffbZZ8jKyqLG32+88caghU0jkZycjG+++QYnTpzAm2++iZycHLz33nv47LPPcOedd+L2228f9U3HbDbjp59+ws6dO5GVlUVfVygU2Lx5MzZt2jTm0a7q6mpkZGSgqqoK/v7+ePvttyGTydDQ0ICKigqIRCJ4enpi4cKFCAsLA9DnKCAQCNDa2gpnZ2f88MMP8PHxAY/Hg1wuh8VigUwmo0u7TP4esy8uLi7Q6/W04Ku/DY9er6cPGgAG5KAy+ZljJdLHEkZwWwvGm266CRcvXkRCQsKQwlosFqO5uRl6vR58Ph9VVVVwc3NDU1MTpFIpZs+eDaDPMol5OGhqaoJerweHw6GetaMpmnNycsKbb76JNWvW4N///jc2bNgw6iLDS6G9vR1ffvklfvjhB5w7dw4Wi4WOZ8WKFbj11lsxf/78S34I6enpoS1bLRYLvLy8cM011+DWW2+FUqlEcXEx/P39UVdXB09PT1y4cAGLFi1CaGgoPDw8IBKJqCE/n89HaWkpfH194e7uTk3+mTx5Jn2FEaEqlYpa6DHX9XRwqmC5dKqrqxEbG2tXBb1IJKJFxFwuF4sXL6b/Hi8mYjsTtS9XGqxInWCYXMOkpCTafjA0NHRAMUFJSQl++eUXuLq6Ij09He7u7uDz+fQGolAo0Nvbi5CQECQlJUGr1dJIx969e7Fr1y789a9/RUNDA+68806Ul5dj69atoxY9HA4HCxcuxIIFC/Dzzz/j//2//4fCwkK8//772LNnDx566CGsW7du0Mpji8WCuro6avBfWVmJkydPorKyEkDfDXvZsmW4/vrrccMNN4zLxC4oKMA111yDuro6yGQyPProowgMDERaWhpycnKwbNkytLW1ITQ0lEb5+Hw+7aaTlJSE8vJyiEQiNDc3Izg4GDKZDLNmzaL2S8y5Y3xPU1JS0NzcTAu4BhPyOp0OCoWCRnFHg3VO6FQRBgsWLMCCBQsAwEbEAH0epwEBARCLxaitrYWLiwva29sRFxeHwsJCxMTEIDQ0FCaTCRcuXEBpaSkVoxqNBt3d3RCLxejq6sK2bdvw2muvjWpsiYmJ+N3vfodPP/0Ud911F5YvXw4/Pz+a7ysQCBAWFga5XA6pVDqqKvr+tLa2YseOHdi7d69NkVVsbCzWr1+PDRs20BQQ5qFmtBBCsGXLFvzjH/8AAMTExODaa6/Fddddh4iICJpPzePxIBaL0d7eDgBoaWlBT08PPDw8aIHWvHnzAPS1b2as1MRi8QBbPAD0OmY659XW1rIeqCwA+vyS9Xo9du7cOWKambXVklAopA0mxpOJ2M5E7cuVxqSLVKbadLpTWVlJb9zMsi5zM2e6FFkv8ebn56OsrAy9vb3o7u5GUlISBAIBZDIZFi1ahMDAQGi1WhqJS0pKsulgdO2112L16tV455138MUXX+C1115DQ0MDtm/ffkndmTgcDjIyMrBixQrs2LEDO3bsQE1NDf7whz/giy++wP333w+LxQKVSkV/qqqqBnUVcHd3x2233YaNGzfC19cXOp1uXATq8ePHsX79erS3t8Pb2xsPPvgguFwuamtrUVtbC6AvwhkZGQm9Xo+Ojg7w+XxIJBKoVCqcPn0aUVFRCAkJgU6ng1QqRWhoKJKSkqiQ0ev1tJDEaDTSaDjTp56JkPdHLBYjPj7exoPSXnQ6HRobG9He3o6YmJgJy7O0VxwfPnwY5eXlCAoKQlBQELhcLgghkEqlcHJyQnd3N6KjoxEdHY1ly5ahuLgYjY2N8Pb2RlNTE8RiMfz9/elxy8zMxKxZs3DixAn89a9/hY+PD7Zs2TKqsT/zzDPIy8tDVlYWDh48OOT7OBwOpFIpfHx8EB0djfj4ePozHBqNBv/4xz+wa9cuGk2KjY3FnXfeiYyMDLsKCO3h/Pnz+NOf/oQDBw6Ay+UiOTkZMpkM+fn5NEra1taGhIQEuLi4QCAQoLi4mHaoYxqAFBcXo7m5GXFxcUhJScH8+fPpNlQqFcrKymAymeDi4oLIyEhaOCWXy22akbCwWBMbG4vk5OTJHgbLNGJSRGp2djY+/vhj/P3vf79kgWoymWwEkD1WR5NJTU0NjEajTfTBOiIB9N3chUIhYmNjMWPGDJw5c4YuE3Z3d1MHAIVCgfr6epw+fRp8Ph9SqRTBwcEQi8XQaDRoaGiguXy33XYbXF1d8dFHH2HHjh1obm7Gp59+CoFAcEn7weVysXz5clxzzTXYu3cvPvroI1RWVg7ZV53H4yEoKAihoaEICwtDeHg4MjIyxtRfcjC+++473HHHHTCZTJDL5UhISIBGo8HMmTORl5cHHo+HgIAAJCQkQCgUoqKighaY8Pl8FBYWAgByc3MxZ84c+Pr6wsvLCyKRiApUJnpgNBrh6uoKf39/unxrXd0/mAi9nPw8JjrGNA64HJE6mnlkT3EM0Od20NPTg5aWFqSkpECj0VBBw7TOlMvl9CFNKBQiJiYGdXV1kEgkCA8Ph0qlQkFBAfz9/REUFAR/f38IBAL88ssveO655+Dn54ebbrrJ7v0Ui8XYs2cPfv31V9TX10OtVqO5uRlqtRoNDQ1obW2FRqOBxWKBRqOBRqNBQUEB9u3bRz+DaesbFxeH2NhYxMTEwMXFBZ9++in27NlDC/tiYmLw7LPPYvXq1WP28JWZmYk33niDCmwOh4O1a9fSCL+LiwsaGhpw/vx5GpmPjIyERqNBaGgoKisr0dPTg56eHkilUhQUFIDD4aCtrW3AtgwGA5ycnFBVVQW5XI7a2lp4eXnR/NS4uDg2gsrCwjIhTLhIzcvLw6JFi3D33XfbvD7aiOobb7yBV199dayHN24EBQUNiD5YRyRqa2tBCEFraysEAgGioqKwcuVKdHZ2Qi6XY+bMmQBAc1VzcnLQ2dmJuro6GgU5d+4cVCoVCCGIiIhAW1sbAgICcNddd0EsFuNvf/sbDhw4gOuvvx67d+8edQ9xa3g8Hm699VZce+21+PTTT3H48GHIZDLaTSskJAQSiQSpqamXtXx6KezYsQPPPPMMCCGIjo5GWFgYXF1daZGZUChEeXk5OBwODAYDoqOj0draijNnzlBzf6lUCp1Oh7CwMOj1eoSEhNjYiDCen0BfnnFmZiZcXFywcuVKyOXyIUXoWHhFisVixMTEjElh1Wjm0UjFMWq1GsXFxeDz+ZDL5UhKSkJoaChmzJgBkUgEtVpNvTWBvoc0o9EIo9EIgUCAzs5OuLi4ICgoCKdOnYLRaER+fj4UCgX0ej1uuOEGtLW1ITs7G/fddx/kcvmo8ksFAgGuvvrqAa+3trbC09MTZrMZra2tUKvVqK2thVKpREFBAQoKClBVVYWmpiY0NTXht99+G/TzZ86ciYceeghpaWlj1qv+1KlTePPNN+kyIpfLRXR0NJYvX47g4GCaOtHZ2QknJyf6wKRQKOh3RX19PTo7O+l3DxPp7e7uBgDaKYo5t+Xl5Th16hT8/PxotzXrSCoLy1ih0+noA49KpRrXtqjjvZ2J2pcrjQlVD3l5eZg/fz4eeughbNu2zeZ3jEC1V6z+/ve/xxNPPEH/v6OjY8xuDOMB0yrUGuv2qIxnZEREBL0pR0ZGorm5GWFhYTaiJz8/Hzqdjoonpjino6MDer0eTk5O4PF4kEqlqKiogFQqxdKlS2E2m/Hpp5/i5MmTWLVqFfbu3Yvg4ODL2i83Nzc89thjeOyxxwb8Tq1WT6hAJYTgtddew/bt2wH05Uk+8sgjqKioQENDAxQKBXx9fdHU1ITe3l50dnbi8OHDCAwMRHV1NQwGAwwGA8xmM2JjYxEYGIimpiZkZ2cjKysLS5cupXZger2enhODwQCtVguBQACVSoWFCxcOOcax8oq0tja7HEYzj0Za5tdoNGhuboZAIEBcXNyAa6u/yO2/bFxVVYXm5mbweDzExcWhsrISAoEAvb294PF4aG1txbp162CxWJCbm4tbbrkFP/3005i03gX6cqSZgrW4uDhkZGTQ33V0dODYsWNUvCqVSpSWlqKnpwcpKSl4+OGHMW/ePHA4nMtuv0gIwZEjR/DWW2/h5MmTAABnZ2fExcXRan2z2YyOjg4YDAYsW7YMEomERlQZgcrANA3QarWIj49HfX093N3dYTQaIZPJUF1dDZFIBD6fD6Bv1Ydpwezh4QFPT0+a8lJcXGxzMx4L1Go1ioqKAPRFoVkhfGUxkiOAI21novblSmLCFERDQwPmzZuHDRs2YNu2bTCZTHjllVdQXl6OtrY2bNiwAddccw18fX3tEqp8Pp9+qU429triWCyWAftVVVWF2tpaNDY2YsaMGRAKhXQpPiQkBHFxcdDr9ejt7aU3P4PBAF9fX5rj19vbC41GA19fX6hUKoSFhSEsLAwNDQ0ghNDuS6mpqejq6sJXX32FwsJCzJs3D3/+85+xYcMGAH2RFXvyVU0mk12epf2XkofCYDDY9XlMMdNg9PT04LHHHsOuXbsAACtXrsTNN98MDoeDqKgoainV0dFBO+wYDAY4OzsjNzeXLjsvXrwYMpmMFpK0tLSgpqYGAoEApaWlkEqlKC0tBdC3nHrmzBn89ttvcHJyQlBQEHx9faHX66kX5cmTJ2nV+/z58yfNK9Lak9Oay5lH/a97mUwGb29v2nYT+J8/rFAopMfEutNacHAwNBoNSkpKIBaLIZFIYDabsXDhQsyZMwe1tbWorq5GT08PBAIBzGYz/vjHP+KZZ55Bfn4+1q1bh59//nlQs2x7fXX1ev2I6S88Hg+xsbE2DyDd3d3QarWQyWTgcDg0P3y4Dm/W9PT00HQeoO94Hjp0CNu3b6dWVS4uLkhMTERaWhr4fD5tkczn8+lD4MWLF6FQKMDhcCCRSGyuP5lMhqKiIgQHB9McYaDvoTgmJgZ8Ph91dXWoqKiAp6cn5s2bh8TERFy8eBFGoxFdXV1QKpVITU0dt4IptVqNpqYmAIBUKmVFKgsLC2XCRGp9fT3S0tKQlZWFsrIy/N///R+0Wi0SExNhMBjwwQcfIDMzE2+++aZN+1BHYqSlXA6HM0Ck1tTUwGAwwGKxQCAQIDAwEFwul0atmM8EQL1JQ0JCYLFYwOfzUV9fj56eHpw9exZarRZcLhdlZWVITk5GREQEKioqUF5eDj6fD5PJBCcnJ2zatAm//PILqqqqcO+99+Lw4cN4//336bZHQiwWw8XFZcT3GY1GerMc6bjZ8z6z2Txkpfwdd9yBH3/8EU5OTli1ahX1PPXz80NDQwPNyePxeJg5cyY0Gg2kUikkEgnq6uoA9PVJX7duHXQ6HTQaDdzc3KDRaCAUCsHhcBAREQFCCBUjhBAcPnwYzc3N8PX1xQ033IDOzk40NzcjJCQEer0eJ0+epFXrCxYsoNHXiS4WHOsn/P5dpxiYtryMgGU8U5n9HazTmlqttulK5efnB5lMhtLSUvB4PPB4PFgsFnC5XMTFxSEoKAgvvvgiHnroITQ2NmLDhg04cuTIgJbAAQEBdj10ubq62pWj7eXlZdfDhdFotGt+MC1jgb7vx3vuuQc//fQTgL7UhPj4eFptDwCNjY00ZaWlpYU2QPD09ERFRQWam5uRkJAAiURCDfiBvqJKvV5Pu94pFAoQQlBTUwOpVAqLxQJCCCwWC0QiEebPn4/58+cjKysLhYWFiI2NBYfDQWBgIGpqahAYGDiq67eyshI1NTU0N70/crkcPj4+9N9XQiEtCwuLfUyYSE1JScGf//xnPPfcc4iKisJVV12F/fv3U7+0t99+G++99x6Ki4upLYqjcSlLuUFBQSgpKUFYWBji4uIgEonozYFZMuXz+bRHNtAXEY2Li0NOTg54PB6qqqrg5+eH5uZmaqPU0tICoC9SFhQUhKamJnh7e0MikcDFxQU33HAD9u3bh3/+85/YvXs3Tp06hY8//pj6vDkKarUa1113HbKysiAUCrFx40a4u7ujp6cHnZ2d9N/Mzdjf3x9paWkICwuDSqWCm5sb2tra0NDQQD1SGcrLywEAc+fORUREhI0PYEtLC1paWuDu7o6mpibweDwcOXIEHh4emDVrFoC+6yE6OhrFxcWIjIykuX+TYWjOzLOxwvpab25upg9bcrmcChKg74GKEGLzsMUUzTHii4mcRURE0HFqNBpUV1ejvb0d+fn5MBqN8Pb2Rnx8PJqammCxWLBq1Sp8++23UCqVuP766/HTTz/Z9bAz1di7dy8efvhhmo8uEAiwfv16rF69GkajEXl5eaiqqoJUKkVAQABOnjyJmpoaBAQEIDU1FTNnzsSJEyfg4uKCxsZG6hQCgOZNA//rVieTyej5qqmpQVRUlM05Y0hNTUVaWhr9/9DQUCoyR2ODZr2twUTqWKWusLCwTD/GVaSazWabSEZKSgpefvllJCYmYtWqVZDJZPQ9TzzxBP7whz/g+PHjDilSVSoVSkpK4OXlNcCYfTiYZTPrCFxhYSG6urpQWFiI4OBgtLW1DVgCY274EomEFo/4+vqivLwcWq0WBoMBXV1dcHNzQ3NzMzgcDrRaLWbNmgWFQoGWlhYsW7YMoaGh+PDDD1FdXY3Vq1fjySefxIsvvmhXJGiyqaiowNq1a1FWVgapVIqbb74ZEokEXl5eMBgMNDqUnp4OPp8PjUYDPp+PgwcPgs/nw8PDgx7HsLAwBAQEUPFVXl5Ol1alUilkMhkVmd7e3qirqwOXy0V6ejqioqJoNyq9Xk8L2cRiMebPn4+MjAzodDp0dHRArVYjJCTkkpf7L9UjdayXUJm0BQC4cOECfZ3P59PqcuttMsfV2dmZRpmZv2fyQNVqNXJzc2k7WiayynT+Ki8vR2BgINzc3ODm5oZ58+bBYrHgxx9/xOnTp7Fu3Trs27fPYboatbW1YevWrTRFJTAwEMnJyQgICEB6ejqA/6XgBAcHIzY2FnK5HKdOnQKfz0dXVxe8vLwQFhYGgUCAtrY2tLa2QiqV0iInpnr/woULaGxsRFtbG1asWEEfjhlRL5VKR3U92ev0APQ9iA8mgllYWFhGYtxEqlKpxHvvvYfy8nIkJydj9uzZuP766zFv3jz4+/tTP08nJyeYzWao1WrExMSM6Ec4VampqQHQlzd5uTdJxuScEbuenp4D3lNVVUWXr5m2m8x2TSYTzGYzXF1dER0dDW9vb+zfvx95eXmoq6vDgw8+SFuxurm54dVXX8U333yDH3/8Edu3b8fhw4fxz3/+E1FRUZe1H+PJuXPncOONN6KxsRF+fn7YunUrOjs7oVarkZqais7OTuTm5qKzsxOurq7UT7SgoABtbW3g8Xjw8fFBVFQUzSs0GAzw9vaGTqdDeHg4gL5l18jISAD/y68E+lIvGhsb6UNGVFQUbbJw5swZJCQkUM9UoC8Ps7CwED4+PvQzLkVsjkYcjCeMSC0qKgKPx0NPTw8SExOHzFXsn4urUqmgVqtpJTpjn1ZaWor29nZERkZCLpfTBgo1NTWQyWSoqqrCokWLAPQV2Xh4eMBkMuHQoUM4fPgw1q5di/3794+qK9VkcOTIEdxzzz2or68Hl8vF3XffjRtuuAHd3d3Q6/U091oikcDV1RVmsxlBQUEICwtDTEwMeDwewsPDERMTA4PBYGM3BfzvAcHT0xMmkwk9PT1wdnamebrMg1Jvby8uXrwIJycnmhJgD6PJrbaOwLKwsLCMhnERqYWFhViwYAE2bdqE6OhoVFdX45133sHrr7+Oxx9/fMCNzMnJCR999BHa29up1ZKjcTnRAib3lPnCT0lJQWpqKgDbPFdrRCIRFTvWKQZMFySgTzAzAraxsRG9vb0oKirCrl27aNcbsVgMi8WC++67D2KxGL/99htyc3Mxb948/OUvf8Gtt946pXLENBoNXnrpJXz66acghCAwMBBbt25FfHw8fvnlF2g0Ghw4cABubm5ob29HXV0dWltb0d7eDhcXF7S1taGuro4anbu4uNDiNAYmssd0TiGEQKPRoL29nR5flUoFgUAAPp9Pu4Glp6fT/FamuAroW87U6/WQyWS0e9JgYtOeKOlkFV4NhlqthpOTE1xdXREUFAS9Xj+kTRGTi/vNN9/g9OnT8PHxQWpqKlpbW+Hv7w+dTgeZTAaVSoXS0lKUlZUhJSUFdXV14HA4iI2NRXt7O+2oZLFYaDGcn58foqKiUF5ejuPHj2PhwoXYt28f/Pz8JuGoDA8hBG+//TZefvll2lr3xRdfxIoVK6h/q1gsRlpaGvR6Perq6sDj8VBaWop9+/Zh+fLlWLduHVpbWyESiSCRSOg1yeRZMw+3zHeHu7s7Fi5cOOD7ibmWvLy80NXVNaqH66nU7YzFceFyufReN95tUcd7OxO1L1caYy5SjUYj/vCHP+COO+7AO++8A6Av6pednY0nn3wSnZ2deOmll+j7f/zxR/z3v//FF198gSNHjjjskpC1ndSlMFi0FBja9D0kJISKAcYSCfifwFIqlTCZTNBoNFAoFFiyZAlOnDgBvV5PbYJ8fHyg1WrR09MDFxcXXHfddRAIBPj111/R0NBAi6r+9re/DVlVP1H09vZix44deP311+kSJtNqMjg4GH5+fli7di1ef/11cDgctLe3w8PDA1qtFmKxGBcvXqSV7AqFAt3d3fD09ISXlxdiY2OhVqsH5BP3f0BgfGVbW1sB9PWrlkgk8PT0hL+/P5ydneHl5UWdApi2mGKxmJ4rxkMV6Iuumkwmug17oqRTSRxY75NaraZm70zRDrMf1nmip0+fpukoy5cvB/A/FwjmvDY1NUGlUqGhoQFJSUno7u5GQEAAZs2aBblcDhcXF1gsFlpwyFglhYeHQ6lUorCwEHPnzsW//vUvLFu2bOIPzBB0dnbi/vvvx/79+wEA8fHxeOKJJ5Cenk4jok5OTjTVhmkfWV1djcOHD8NisSAnJwcRERHo7e1FaGgoYmJiUFVVhczMTBsHBcD2u8P6+4kpamMaAbS2tsLLy4s16GeZcIRCIXWycPTtTNS+XGmMuUjlcDgoLS3F7NmzAfSJi+DgYCxfvhwzZszAH/7wBwQHB+OOO+4A0Of5WV1djRMnTmDGjBljPRyH4FKiYyKRiObuFRcXo6enB8XFxXTZXyaT4ejRozSNYsmSJZg1axbOnz+PkpISWCwW2mmHMV8Xi8VITk7GggULcPz4cezZswe7d+/GuXPn8MUXXyApKWkcj8LQnDhxAlu3bkV+fj4AwM/PD7NmzUJ8fDyCgoLg6upKbaySk5PR1tYGDw8PcLlc8Hg8GAwGCIVC9Pb2QiAQIDk5GSaTCT4+PrRQRywWU9HIHMP+opH5b0BAANra2hAREQE3Nzebz5DL5TTnkrFaYj7POsLIiE3rz59KUVJ7YB6IGKyjqNbHzlo4zZ07F6dPn8bcuXOhUCioty+TQx0UFAShUAhCCFxcXBAQEIClS5fCaDSiuroaAoEAXC6X+tO6u7vDx8eH2i+FhITg6NGj1FP1rbfewn333TfpqwElJSXYtGkTTY+IiYlBVFQUsrKy0NPTg5iYGAQFBVHz/TNnziAgIABJSUkIDAzENddcg3PnzsHLy4u6S1g7A0gkEtqVrrCwcMC5GYqxTFNiYWFhGWvGXKT29vYiMDAQVVVV9KZVWVmJvXv34t1334WHhwd27dqFm266CSKRCE899RTuu+++KZ9DNh6oVCq6BHepUQydTgez2YyioiLExcXRSKBcLofJZKK96pkHgIiICPD5fPj7++PcuXPU+qesrAyenp7w8fFBa2srIiMjsWHDBhw8eBDl5eVYvHgxXn/9dTz88MOXvL+dnZ04ffo0JBIJNSUfrkCrvr4eL7zwAr7++msAfZHMtLQ0+Pn5Qa/Xo76+nrbLbG9vx8WLF9HZ2YlFixYhNDQUeXl54PP5kMlkaGhoQG9vL5YuXUodDAghtNnAqVOn8Ntvv0EqlSIxMREzZ86kopGxpLKukA8PD4dQKIS3tze9uVv7hopEohHPaX9ROpWipKOlvygaSnCvX78e69evBwCaHsD4tHK5XHh7e0MoFKKoqIge7+zsbMhkMri6utIe9MyDR2BgIG655RZotVrk5ubCYrEgMTER33//PXJycvDkk0+ioKAA27dvH9NiwLq6Ovzyyy/IysqC0WhET08PzGYzent7YTQaYbFYYDab0dPTg97eXly4cIG6TWRkZIDH44HP59OuT0w+LtDXOIAQYtOydOnSpVi6dCmqqqpw6tQpKi6ZFZSOjg709PTgwIEDNIfaHpHKFjWxsLBMZcZcpIrFYmRkZOBvf/sbioqKEBMTgx07duCOO+7Axo0b4ezsjAcffJB6YzIRkCsRa2uWSxWpYrEYPT098PHxQU9Pj40o8PHxQV1dHaKiomjeWnt7O83FTElJobY0ERERMJvNkEgkIITg7Nmz4HK5uOOOO5CZmYkzZ85g69at+O233/CXv/xlVPl+RqMRO3bswLZt26g1FoNcLoevry8CAgJoQZ2fnx8aGxvx9ttvQ6fTgcPhYM6cOTRHsbKyEmazGYGBgXBxcYGLiwvUajVOnjwJsViMhoYGzJgxA0uWLIGTkxOUSiVqamqgUqlw4sQJdHR00GX6uro61NTUID8/HyaTCUqlEn5+ftBoNHRpvqWlBSaTiXbm6ezshEgksilWU6vVVMiOpvjEUUXpSFgvNQ/V7EKn08FgMADoW44WCATgcDhQKBRISkpCRUUFvv/+e2i1WvrwoFKpaDEg0FchX1VVBQ8PDyxatAjFxcUAgMcffxw//PADdu3ahX/84x8oLi7Gzp07L9nlwGg04tixYzhx4gR+/vlnFBQUjPozPD09sXjxYkgkEojFYoSGhsLDwwOzZ8+m3bqAvmKpjo4OdHR0oLq62qaVMiP+vb290d7eDr1eD3d3d4jFYtqJDujLa7eHy01TYmG5HPR6Pc2hLiwsHLdo/kRsZ6L25UpjTEUq0ynq4YcfhkQiwbFjx1BfX48333wTjz76KIC+IqmAgAAqUK80rG/YQUFB+Pbbb9Hc3AyDwYCVK1cO+r7hPksoFCIgIAA8Ho9GoQghMBgMEAgEWLhwIby8vEAIoSkCXl5eNHJisVhQUVGBzs5OerOqqamBRCJBS0sL4uPjsXnzZvzjH//AP/7xDxw8eBC5ubn45JNPsGDBgmHHZzKZsHv3brz55pu0oMjd3R1cLhcdHR3U1UGtVuPixYuDfoZMJsOKFSuwcuVKNDU10YcbsVgMDw8PSCQSFBUVobu7m5r0x8fHIzAwkLY5VavVyM/Ph7OzMyoqKsDlctHT04PU1FTk5uZCLBZTf0rGl1Ymk9HjaDQaaVpEa2srWlpaEBUVBbFYTM9TS0sLuru7ceDAAWg0GiQnJ2PFihVDHpvpcO2PptNa/0ICjUaDzMxMKmZPnTqFyspKREVFYcGCBWhvb4dGowGXy4W7uzskEgk6OzvB5/Oh1+tRU1ND81gFAgHq6uoQHByMyspKVFRUwN/fH/fccw+io6Oxfft2nDx5EkuWLMGuXbsGpBWZzeYB+0IIQUlJCQ4fPozDhw/j5MmTVFADfedPKpUiMDAQXl5eSElJASEEx48fh0gkgslkQkBAAJydncHj8VBXV0evFz8/P/D5fCxcuJDOw8OHD6O8vBzh4eFISkpCYWEhANDVAuZ6qa2tBdAnmpl2yWKxGFKpFGFhYaivr0d6errNtTnYeZsO1x+L40MIoYESe79Ppup2JmpfrjTGVKRyOBx6Q9q8eTM2b948wCv1559/HnNjcUfC+uYQEhKC7u5ucLlcZGdn2/QKH83nBQcH0yr+/p19CgsLkZiYSJf1srKyEBERQQsyjhw5QoWjm5sbqqqqaNef2NhY+Pn5QSqV4sEHH0RqaipeffVVVFdX49prr8Xzzz+P5557bkBXH4vFgm+++QavvPIKysrKAPQZuD/00ENYvHgx9TBtbm6movrs2bPUa5TpxBMWFgZPT09qNaTRaBAUFAQPDw90d3dDoVCgvr4e7e3tcHV1RXh4OJKTk5GQkAAulwuDwYCysjJUV1fD3d0darUanp6eyMrKQmtrK8rKyqin6bp166gTBSOCNRoNiouLYbFY4O3tTQvR3N3dIRQKbQqsCCHo7e2lUd5Tp05h1qxZNpX7k2XkP16MJHSOHz+OvLw8zJo1a8ADDdPJi6nq//7779HT00Or2QsKCtDd3Y2wsDC0tbWhuroaZWVl4HK5tHOXs7Mz7ZLU1tYGjUaD06dPw2w2o729HYsXL0ZcXByeeuopvP/++6iqqsKyZcsQEBBAx8/sA5P2wvy/VqtFfX29zZj5fD78/PwQGhqKjRs30laeM2bMoHP3wIEDUCqV8Pf3B5/PR2lpKQwGA/h8PnQ6HeRyOVxdXREQEEA7WBUWFuL8+fMwGAxQKBRU5BYXF2P+/Plwdnam42ppaaEP+BqNBrW1tYiIiMCcOXNsxLf1d8Fg540VqSwsLI7AJYvU/uKToX/EhHlPTk4OPvnkE+zatQvHjh2btsuc9sJEEMPDw1FeXm738lz/v2dyAfuLHyYNQCKRoKGhAc3NzVCpVBAKhWhvbwcAdHV1ISAgAEajEbGxsWhqaqJPgKtXr0ZDQwM8PDxQWlqKpqYmBAYG4siRI3jllVfw+eef47XXXsPRo0fxz3/+E4GBgSCE4Mcff8RLL72EvLw8AH039oSEBFxzzTVYtmwZoqKioNfr0dLSgri4ONqiMT09He+99x5MJhNcXFywdu1aeHh4oKWlhebnJSUlobOzEwKBAO7u7nB3d0d5eTldIl62bBnMZjMMBgNaWlrQ1dUFs9kMd3d3enw7Ojro8WA6RX3wwQdURCoUClrww1gsmUwmuLq6wsfHByKRCHV1dWhpaaHHv6qqCs3NzfD29saiRYuQnZ2N8PBwG1/V0XYimw7k5eWho6MDR44cAdBnVs9E65kHVaaoKi4uDhUVFXByckJ7ezsyMzPR1taG2bNnw8XFhfaMDw0NRWdnJ5KSktDY2AixWAytVguRSASLxYL58+ejrKwMERERkEqlKCwshJubG5566il8/PHHKCsro53ERoLP5yM0NBTz5s2DUCiEWq1GV1cXgoODMWPGDKxatYo+7OXl5UEgENB8ZiZNpLS0FFwuF0lJSbjxxhvR2dkJpVIJo9FIi5VEIhEEAoGNf25PTw/i4uJgMBho9y3meEokEgQEBECpVNLv25CQkCt2dYqFhWX6ckkitaSkBN9//z1uueUWu3ITdTodmpqaUFpaiqNHjyIxMfFSNuuQWItJ6wgyY9kzY8YMbNiw4ZI+19ryx5rCwkKUl5fbiDmgz7JJqVTCx8cHxcXF6OzsRGRkJKKjoyGXy6FSqZCfnw83NzeIRCIsW7YMVVVVyM3NRWFhIaqqqmAymfC3v/0NS5cuxaOPPopjx44hLS0NL7zwAr755hucPHkSAODm5gZfX1/ar7u2thbt7e0QiUTIzMxEZ2cnPSZCoRAxMTFYs2YNzp49i4CAAMTExMDJyQmenp6or69Hd3c36urq0NbWBolEAq1Wi5kzZ2LRokXo6uqCu7s78vPz4eHhAZFIhIKCAlRXVyMkJARLly6Fk5MTjh8/jp6eHoSFhaG4uBgcDgeFhYVQKpWora1FYGAgYmNjBxT8RERE2NgtAaBR1erqavz444+0sCcjIwMZGRkD7KscqWp/rJg5cyby8vLg5ORERSYjUq2PS29vL+bMmYOrr74a1dXVKCwspBFSjUaDyMhIuLu7g8PhwNnZmVqArV69Gt999x20Wi24XC5CQkLg6+uLu+++G6dOncIPP/wAi8UCX19f8Hg8PPfcc6iqqkJNTQ3a29tRWVkJV1dXBAcHQyAQQK/X03QCg8GAxYsXY9myZXBxcYFQKMTPP/+M4uJiREVF0cp6jUaDgoICGI1GcDgcxMTEoLS0FIcOHYKTkxP4fD6EQiGNpJpMJpSVlaGjo8Mmh3nFihXo6uqCq6srFcdGoxECgYD6G9fV1aGnpweBgYFQKBTo6emhhVNKpXJU+dAsLCwsjsCoRWpZWRnmzp2LtrY2tLS04IknnhiwfN8/50ksFmPZsmVYuHAh7dt9pWAtJq2PE+Mteak3leH+vry8HDqdDkajkfbebmlpwfnz52kldXd3N9zc3KhABYDg4GCIxWIUFxfDbDbTpViJREIr6BsaGtDS0oJbb70VJ06cwK5du9DS0oLHH38cQJ8tzpw5c+Di4gIejwedTgcfHx8qLKurq6HX69Hd3Q2j0Ygvv/wSxcXFSE9Px+233460tDSUlpZi//79UKvVSExMRHR0NJqbm+Hn54czZ86grq4Oc+bMwcyZM9HV1YWQkBCoVCoUFRWBw+EgPT2dLicDoGIhMDCQFqwAfdF9d3d3nD17Fi4uLujp6aGtJwFQl4T++UVMEZpMJsOhQ4fg4uICrVYLhUJB39Pf3/ZKiqAyD2YxMTFYuHAhVCoVfQhgYMTpzp07kZOTg/T0dPzud7+judQzZsxAQ0MD4uPjkZqaioCAAJw6dYpGZYuLi5GUlAQfHx+0tbXBz8+PdlOqra1FVVUVuru7YTKZEBoaCqVSSY3tmdUDhUIBPp8PsVgMLy8vcLlceHh4oLCwEC4uLvDy8sJPP/2EyspKJCcnY+HChejs7ERmZibq6+tx0003IScnB0VFReByuVi2bBlkMhl+/vlnVFRUgMfjYdmyZUhNTYW7uzsKCgrQ2tqKtrY26HQ6tLe3Izs7GwqFgh4bRrzHxcVBJBLRh52YmBhkZmaivLwcHh4eWLx4MYKDg6HT6VBdXU0fmob7PiksLKRR5uE6+11q610WFhaWsWZUIlWn0+GNN97Atddei7S0NDzyyCPo7e3F008/bSPAGIG6bds2GAwGvPTSS9RI/UqBuVEDoD6k1gzmY9h/CX84mCik9cMAc0Pz8/OjS/UqlQp1dXXo6OhAc3MznJyc4OHhAT8/P1p00R8/Pz/aGUmpVKKsrIxGdQDQiKharUZKSgoqKirQ0tICX19fpKSkQCKRoL29HWazGQkJCVi9ejVKS0vR3d2N/Px89PT0IDw8HIGBgdizZw+APpP322+/HTU1NVCr1SgoKACPx8PRo0fp0qmbmxtMJhMkEgkaGxvx66+/4tSpUxCJRJg9ezYtbqqrq4NAIEBnZyd8fX2pQGQEOwDccccdtO2rs7MzBAIBeDweDh8+TFuaMuekf9W+XC6HTqdDcXExjVLHxMRc0bnW1pHj/lH+4ODgARXkTATy8OHDIITgxIkT2Lx5M06cOIG2tjZ4enri8ccfp7613t7e+Prrr8Hj8VBVVQV3d3fo9XoEBgZCq9WiqqoKer0eoaGh1N6so6MDkZGR6O3thYuLCzQaDcLCwuhDj1gshtlshqenJ/h8Pnp6eqDRaODr6wtCCOLi4nDmzBk0NTXhq6++gkAgQGFhIXp7e6FWq1FSUoL9+/fD09MTcXFxCAkJQWlpKWprayEQCODp6YnAwEAEBARALBYjLy8PRqORdnvr6elBU1MTZDIZPD094ezsPGDeM8WOcrkcu3btgpubG8rLy228fJmCLj6fb+ORai1K4+LiUFZWBp1Oh7KyshFF6mha7xYUFNglfllYWFhGy6hEKpfLRUpKCqRSKTZu3AiZTIZNmzYBwACh2traiuzsbKhUKjzyyCPw8vIa25FPcZgbNZ/Pp7YUI1X8DbeEbw/MzSU4OBipqanQ6/X49ttvAfR5lDo5OUEqlWLGjBlUNDBeldYwFjnM0nxZWRkMBgNmz54NT09PSCQSnDlzBiKRCF1dXbj55pvh5uaGhoYGAH0iLiYmBh0dHZg9ezaEQiFSU1OhVCphMBhoG0u9Xg+FQoHKykp4e3ujqKgIRqMRjY2NtPI/NjYWRUVF8PHxgYuLC+bOnYsLFy4gMTERFy5coN2d/P39weVyodVqUVtbi+DgYISHh1Oxam26X11dDRcXFyQnJ6OrqwteXl6QSqU4ceIE+Hw+raCura2FwWCAt7c3zp49C6DPHzU2Nha1tbUwGo3w8PDA2rVrAQC//PILzp07h5SUlAFL/oNFUqdTxMpa2DBRfuZB5uzZsygsLERSUhJWrlwJvV6P8vJyGAwGamA/e/Zs6lnLmNU7OzvT1zQaDTw8PNDT04OUlBQqUl1cXGA0GqFWq2nBHQD4+/sjPDycdnAyGo3w8fGBVCpFdXU12traYDabER4eDg6Hg6amJvD5fEilUnR3dyMqKgpGoxEzZsxAUVERzGYz8vLyEBcXh+rqasyZMwcnT56ESqVCVVUVFi9eDL1ejx9//BEGgwGxsbG4+uqrIRaLYTAYEBISguTkZFRUVMDX1xdtbW0oLy+Hv78/goODAWDEayA8PBz19fUQCoVobm5GSEgIiouL0dzcDBcXF7S3t9PVA7lcbiNK4+LiEBERQcXkcIy2qYS94peFpT8cDofeH8czn3oitjNR+3KlMSqRKhQKcccdd9Avrw0bNoAQgptvvhmEEDz77LOQSqUwm83gcrn44IMPYDKZrjiBClzacr69fzNUxLX/zUUkEiElJQWVlZU0qsPn822ihMXFxfDw8KARVutoDiMCGNuqgIAAhIeHo6OjAzk5OYiMjERiYiICAwPB4XAgl8vh5+cHNzc3dHd3QygUQiqVwsnJCSKRCOHh4TAYDPDy8oJIJEJJSQmWLl1Kl8k///xzBAcHQ6vVYsaMGWhra0NMTAycnZ1prt7atWtx3XXXoba2Fnq9HtXV1XBzc4PBYIBEIoHZbKY3bMZLkyE3N5dGPxUKBTw8PBAREUGPW1RUFC0QYwSq0WiEi4sL8vLy6JL1448/Tt9jvYSdk5ODjo4O6tRgLdyGEqmjiVhNZayvPSZNgmk1e+7cOZjNZuTm5mLlypXU59NoNOK+++6DVCql4io8PBxdXV008sm0Pq2pqUFERASEQiFcXV3p0n5DQwM6OjoAAN7e3uDz+aipqcHFixcRFRWFhIQE+oClUqlQUVEBrVaLpqYmWuXf1dVFV3p8fHzg7+9PW5TGxsYiPj4ezc3NEIlESE9Px/Lly6HT6fCf//yHRmL1ej09/x0dHYiIiICXlxcVpWq1GgqFgrbg1el01O/V3u+I9evXQyKRwMXFxSa/F+hzI/D396e53gAGiNK4uDh6Ex3pXI7merRX/LKw9IepH5gO25mofbnSGHVOKvPlxQjRjRs3ghCCW265BRwOB4899hi2bdsGlUqF3bt3X5ECFRh8OX+s/mY0Ede4uDjExsbSIh+9Xg+VSkVzT7u7u9He3o7o6GgAttEcnU6HOXPmIDo6GlKplIrYsrIyKBQKlJeXU+9QLy8vJCYmQiwWw8XFBZGRkbSSOiwsDDKZjArTs2fPoqKiAh4eHgAAHo+H06dPo7e3l6YguLi4ICoqCv7+/nQ8Pj4+VPAajUbI5XJkZGRAIBCgoKAAVVVVcHZ2hpubG7UKYlpFMl6cTPFKWloa9Hq9jUgMDQ2l+apeXl6oq6ujkS4ej0fzaJn3S6VSm+OVnJxMI6nMsRxOgDpaG9Th6J+DC/xv/9LS0mgkVa1W0weLq6++GiKRCCqVCl1dXWhra4OPjw98fHwgEAhohJ2xcAL6uo4pFAro9Xpa4CSRSBAbG0u7gJ09exYikQjV1dU0KqtQKFBRUYH8/HyUlZUhKCiIilNnZ2e0tLTAx8cHM2fOpN3MmpqaoFKpEBQUBIlEgiVLlsDT0xNA39xITU2FQCCAm5sbLBYLOjo6EBgYCD8/PwQGBqK1tRUikQiNjY3g8/lwdXW1EfF6vX7UD7Hz58+3eThi5ibDjBkz6GcOJkqHKui7nGswPj6ejaCysLCMC5dsQeXk5ARCCCwWCzZt2gQOh4PNmzfjwIEDKC8vR2Zm5hWVgzqRDBVxHS5yx7y3qakJXV1dMBgM8PDwoAKVKRDqX/DGiAZG3Lm7u9Mb86JFi6ixOgDaycpgMCAzMxPV1dU0X04mk6G3txf5+fkoKSlBY2Mjrr/+eixZsgQ6nQ4hISE0T5Ax6WfsyywWC22HySzZCwQC2hTi4sWLyM3NhUgkQmJiIsLCwmAwGJCbm4vQ0FAaqY2OjkZxcTGio6Np8RNzHJnjpVKpaA6xXC6nx3P58uWQyWQwmUz48ssvAfRVr1sf2+XLl9sY+A8m3KyZDsv8w8Hs/5o1a2hKhFKppOe1/7ERCoWor69HRUUFXFxcsGDBAojFYnC5XDg5OWHBggVQKpVobGyEXC5HS0sLjEYjTatpbGyEQqFAUFAQjhw5AkIIbfkpkUjg6uqKlpYWmM1maDQamM1muLq6wsXFBUFBQTSFQKPRQCwW03xYtVqN6OhoOm6FQgGZTEaLBHk8Hmpra+lnabVaWiDK/E1rayv9t1gsRmxs7LCm+tbFZkw6ADCwQ5T1g609Jv3W3xEApk0kn4WFZXrCHfktQ8OYQhNCsHHjRixcuBBqtRo5OTlISkoaqzFecYyUuyqXyxEXFzegUEcsFsPZ2XnYyJ2rqytcXV0hk8ng4+OD5ORkm5uc9Y9QKKTb6OrqQm1tLXQ6He3MBAC+vr7w8/ODTCaD0WhEREQEjEYj9YHk8XjU+N7Z2RkJCQno7u6mLVtLS0thMpkglUpxzTXXgMfjoaKiAhcvXkRPTw/NJ/Xw8IBQKIRGo4FOp0NgYCAdf3d3N/h8Ptrb20EIgVQqBYfDoY4EzP7MmjUL1157LYKCgqh1DxMZI4TYNEBgbtzM8UxOTsbvfvc7SCQSaDQaVFVVoaWlhXamYs5Z/2N4uT/TAev9kclkNh29CCHw9vam0VOVSgUOhwMnJyf6/eLh4QEvLy/w+XxwuVwoFApqcM8UZnl7e8PJyQkdHR0ICAiAj48P3NzcwOfz4ebmRptehIWFITY2Fl5eXlAoFNTJ4uLFi6ipqaGOFnw+H9HR0fDw8IC/vz8aGxtRXV2NlpYW2h531qxZiIyMpDZWTGcomUwGvV6PqKgoxMbGIiwsDFKpFG1tbTh16hRUKhVUKhXOnDkDlUo16Hln0k1qa2vH9DqwvqZH+r5gYRlv9Ho9jcQz38mOup2J2pcrjcvuOMXhcGA2m2lf9/PnzyMhIWEsxuYw2JskfTnJ1IcOHUJ2djYtymE+r3/kc7AbDvMea/ulwejfiMH6c9va2uDk5EQjjzU1NTS/lIlc+vv7g8fjwcPDA2VlZYiMjKT5hsykjYyMxKpVq1BYWIjAwEDk5uaiubkZHR0dyM/Ph1arpTmyvb298PLyQnh4OORyOYqKilBSUkIFApNzOnfuXOTm5sLLywuurq7w8vKC2WxGeXk5fH19weVy6TKnTqejXpjWy+3MMWIM4vV6PY0EMhEqtVpNI7rR0dGIi4ujAn80zgzTRXwOdz1bF4VZR0wHOz7McWaKo1QqFQIDA2E2m8Hj8WAymRAcHEzPhVKpREBAACwWCwoKCiAQCODr6wuZTAaFQkGLt5ydnREfHw8/Pz/aBYzP51PrqZKSEpp/yufz6SqAwWBAQUEBfH19MXv2bBw+fBhKpZL6BC9duhQHDx5ERUUFwsLCsGDBAtqlLDAwEPX19XB3d6dzsbq6Gq2trdBqtXB3d6eFeQaDATU1NQOcD4C+dJOysjIEBATQbliXcz4Y+n9HsAKVZTIhhNAWwOPdFnW8tzMW21AqlSO+h/meu1IYs7ao8fHxyMnJuaKM+ieS7OxsaLXaS26ferlIpVK0tLQA6LuxRUVFobm5GVwul3o6MsjlchtLHaaApr29HR4eHuDz+UhNTYXZbMaFCxeg0+lw4cIFuLq6gsvlIjw8HH5+fvD29rbJdTMYDOjq6kJTUxPa29sxY8YMBAcHY82aNfDw8EB2djbc3Nxw4cIFuLu7IzU1lVaHM8ucAGj0yLq1KUNoaCja29sHFZpqtRqRkZEICwujnrLWv7scZ4bpxkhFY4Mhk8kQGxuL5OTkAeKJWZ6OjY2lqSPl5eX0s6VSKWJjY6FSqVBaWoqAgADaBMDJyQm1tbXo6emBxWIB0Od2wZjyBwcHo729He7u7pDJZDh79iwaGxvR1NQEqVSK6OhoGuHt7u6Gk5MTioqKYDAYUFRUhCVLlsDd3R0qlQoNDQ0QiUTw8/ODSqWiDhhOTk7UrkwoFEIoFKK1tdWm8M4aZg4x19R0Tw1hYbmSYWo2brvtthHfKxKJoFQqrxihOiYi1cnJCXfddRdruzCOpKSk0EjqRKPT6eiyuKenJ63O7g8TrQT6hKBOp6Om+mKxmKYOeHl5oaurC62trXTZVigUoqenB0lJSdiwYQPUajVcXV3h7OwMkUiEkydPIisrCz09PdDpdFAoFNRqqqqqCo2NjRCJRLTlJZPLx9zYmaipu7s7FTb9n3bFYjF8fX0RHh4+qLCyzgUezPd2tAJ1NNFXR+NSisIG65ikVqtx/vx5GtmeNWsW/WxrgcdcW0yUEujzrlUqlbSwLzY2Fu3t7TCZTCCEoL6+HvPmzYOTkxNd/mfo7e2Fn58fjhw5Aq1WC6lUColEgvDwcIjFYqSnpyMnJ8cmXaa8vBxms5l2VwsKCkJwcDA6OjpQVlaGtLQ0REdHo7e3F87OzrSg0drbtP/xM5lMbN4oy6RSXV0NjUYz7HvsiQCyDI1CoYBSqbTrON92223QaDSsSB0trEAdX5h2m+PBUEuzDMwNk7mJMu8Ti8U20TImesZEUDUaDUwmEwDY2F4BfXZBnZ2dkEgk6O3txYIFC8DlcjF//nwoFArainXu3LlYs2YNLl68CEIImpubMXPmTHR2dlKRUltbi+bmZpw7dw5yuRxtbW1YunQpHa91EUp/EdTfy3S4qN9wYpJ5vaioCEVFRYiJibHLSmy6Rl+tI3/2LH0xdmgAbLqgaTQa9Pb2ora2FqGhobSxQk5ODi5evIiEhAQsWLAAQN+5FAqFaG9vp64iTOGewWDAnDlz0Nvbi+zsbLS2tsLb2xseHh5obGykhXQAaIW+SCTCv//9b1qFv2nTJnqtrFy5EitXrrTZh/DwcCpUJRIJysrK0N3djebmZvj7+6OtrW2AeB/qGmCuRbVajQsXLiAiIoI+GDY3N9P3D/awyMIyVlRXVyM2NtauHEuRSHRFNzS5XBQKxRUjPEfDmIlUFsdlpKXZ/uKNER39b7iDRc9qa2sRHh5O/7+6uhparRZAn11OTU0NBAIBtf9h7HRKS0uh0+lw+vRpzJ49GxEREVCpVJgzZw46OjrQ3d2NlpYWBAcHIzAwECUlJZgxYwacnZ2xcuVKmzy/0tJSNDQ0oKGhAd7e3jb7cinL0sBAcQv0CY6mpiYAfcvP9nQNc3SBOlYNCZioMlP4xhwTpgjJzc2NLpNrNBpkZWXBZDLh4sWLVKQqlUrU1tZCJBLB39+fRlutLZva29vh5+eHkJAQtLe3AwAtymJusIwQBvo8QNVqNWbNmkXTQ7KysqBUKhEbG4vU1FS6D4zlE/NQxDygMd2smONlXahofQ0MZg/FdK9iUm2YY8UIW1aksownGo0Ger0eO3fuRGxs7LDvvdJyJVkmBlaksti1NHv8+HHa6YkRBYP1p+8v9Prn3DE5esx2g4KC4OvrC4vFAoPBgM7OTohEIqSmpiIrKws+Pj60UGb58uXgcDj46KOPoNVqkZmZieTkZIhEItriFAAqKyuh0+nocr/RaERxcTEiIyMHiNHBIlsjLcGr1WoUFRWhq6sLPT09SExMREhICORyOXx8fADALuHJFIP9+uuvmDlzJhYuXDji30wk9rS7HG1Dgv7HV6VSoaamBsXFxSgpKYFMJoO3tzeNrDLRUkZstrS0gM/nIyIighr8Mzmbra2t6OnpgclkonnHcrncJorPuEQw9mrA/64BRpwyN+Ps7GzweDzMnj0bKSkpIIRAr9cjMzMTPT09UCqVNiKVgWkDy4jVBQsWoLa2FtXV1Thz5gyWL19Or0Hr64zJ3ba2h/Ly8qKduRimw8MNi2PB5IqzsEw0rEidAlRWVlI/x+Gq78cLJgo21LJsYWEhdu7cSbsCMSIVGDyiyGC9hKpUKiGTyWyWg5i8P5PJBL1eDycnJ2i1WoSGhmLNmjVYs2YNcnJyoNVq0draCo1GQ43Q29raIJfLoVQqcfToUfj4+CAmJgYVFRXQ6/VU2DKWWTExMRAIBLRyf6glfnuW4NVqNZycnFBeXg6FQkErtC8ltzQvLw8dHR3Iy8uzEamMeJusawKwr93lcA84g6WR9D++NTU1MBqNKCwshK+vL+rq6nD06FEcOXIE3d3dEIvFuHjxIgDQynuFQoFly5YBAKqqqmjHqcjISJu0Dqblr3Wfe6aNrsFgoDmwhBBaua/RaOg5ZERva2urzT6FhYWhoqJi2MiSdYpJSEgIjaz29PQgJyeHevUOdyx1Oh0tSrROp/L29rY7gjqdWu+yTD8Yazjm3468nYnalysNVqROARg7p5qamkkTJMDQgrOsrAy+vr5obGy0cW9gulcxTRsGE6mMkGQEgEwmg4eHB412xcbG0iVc5vfWN9OgoCAqjpubm9He3k6XVWUyGTIzM+Hs7IyamhrExMTAz88PjY2NCA0NpdG0yMhIGI1GCAQC6HQ6nDlzBvn5+ZgxYwauueYamzHbE6Vifpeenj4gyjVaZs6ciby8PNoYgGEqXBP2tLscTvz0T6VQq9VoaWmBSqWi7wkKCkJNTQ3mzp1Ll7Tr6upoK143NzebSGpgYCB9+Dl//jwsFgtkMhn8/PxsoqbW22eaRLS0tMDV1RX5+fkQiUQ2LUmZz7QWjtai13p/U1JSsGjRomHTQ6x9TkNCQhAdHU2bFTBWbv1F6mArE9ZC+1JE5nRqvcsy/WA6zk2H7UzUvlxpsCJ1CsDcqC9H7IwFQ+VnMiIlIiICcXFxNOLKeI5ad+YZbKncWgAMVWWv0WhQUVEBwHapnPl3TU0NmpubaStVJooVFhYGoK9dJvO70NBQm0rxkJAQ6PV6GsErKytDV1cXysrKBghzuVxOx8hUlPdnLKvxFy5cOOgyf1BQEC5cuACgT5xPRu7h5ba7HCyVwtXVFR0dHZBKpSgvL8c111xDhSUT0Txx4gRMJhNt+cmcy5CQEKjVapw6dQqVlZW0RW5rayt+/fVXhIeHD3qtMRXyzLn08PBAd3e3zVj7n1O1Wg2DwWBTxAWM3EWMoX8uLPP5CoViVEv1lysyp1PrXRYWlisPVqROAax7xk8mQ93QBusBTgixKZgSCoVQqVRUCDIdhQAMWOZnIqPM7y0WCyorK6HX61FZWYmYmBibbZ07dw4lJSXw9PSEt7e3zWfHxMQgJiaG9nJva2ujNlXW22QipCKRiIrutLQ0GxHAjKv/a9btU0eqXu2/zDNcOsRw9BfWjlQgY73E7O3tDYvFYlMklJiYiPb2doSHh9ukmBQVFaGiogIpKSmIiYlBUVGRTQQe6CvkYFqbCoVCREVFobCwEGazGRUVFWhtbaWiPj09neafVlVVQa/X05amzGcOdX4YZwrr5f/R0L99KUP/NqYjcbkik13mZ2FhcWRYkToFmax8lsu5oTEtKhkx178b1nBwuVyEhISgvLwcISEhA/6utbWVVmLr9XqcPXsWQJ87ACMEmLFrNBo0NzcPyONjIqQqlQpxcXFIT0+HWCxGc3MzAMDd3Z2+X6fT0cg2s0/t7e1oaWlBSkrKsGKz/9gHi4TZe1ymWoGMvfmN/ffZYDDQfw+3L9Y5sIxpv1qthk6nw3/+8x8IBAJ4enqCy+XC398fAQEBIITAx8cHbW1tCA0NRWtrKxXFTKcmplMVl8tFVVUVgoODaQcrlUpFW+9aPygy25bJZPR8jXVnuUvpEMXCMp0wGAxYtGgRAODYsWM0UOCI25mofbnSYEUqyyXTPz3gcpbBB4vWMiQnJ6OjowN6vR4VFRVob2+HWCyGh4fHgGhVcHDwgLxW6/Fapycw/880DGDQ6/VwdXWl3oByuRwtLS3w8PAYtVXV5UTCRlMgMxHYu/Q8WAGQPTZfjM8oY1nGXE/Hjx9HU1MTuFwuBAIBUlJS4OzsDLVaje7ubnh5eWHBggVQqVQoLy+HRCJBdHS0zWczgh+AXWOZaseehWU6YrFYkJWVRf/tyNuZqH250mBF6iTi6Kbc9giwofJUravXmYrIoZZe4+Li0Nraivz8fFy4cAHh4eHw8fGxKWhRKpVU4DDm00zBCfC/tpoSicSm2ptxCbCmfwRTJpMhJSXlksTmZEfCmGtMIBBc1t9b5+qOtD/Wx5z5AUDbgg5FbGzsoA8qQUFBaG9vh0AgQFBQEC2IA4AzZ85Q393W1lYIBAIIhcJBfUeBvpxS67/39vam52g0lfDDvfdS5/V4uXxMtnsICwsLy6XCnewBXMlY2/E4Ikz0dLiI1FD7aF29zqDT6VBYWIh9+/ahsLDQ5v1CoRCVlZWwWCyorq6Gh4eHjQAoLy+HTqejbVGto3fMvwEMGC/T7tUauVyOuLi4AQUzubm5+Otf/4pDhw7Zc3imBMzxH6nd3kh/zwh+RtSNBHPM1Wo1+Hw+SkpK8M0339BIQ/9tFBYWDjpGvV4PsViM5cuX2zRpOHz4MH766SfU1NTA2dkZ5eXlCAwMhFAopA8v1teAWq2GUqnEwYMHaW4ygAHFctY+pfbs32DvvdR5PdicGAvG63NZWFhYxhtWpE4icrkcfD5/yuQcjgdD7SNjLWXtaCAWi1FTUwOLxYLy8nKoVCqcOHECKpUKQqEQ6enp1EqqoqICVVVVUCqVUKvVtKc6s1QsFotpxMz639YM9fpQZGdno6OjA9nZ2Zd5VCYO5vhfarvCS71GmWMrl8vh7OyMqqoq1NXV4eeffx4g3oYTdYOJQbVajYqKCtrdiznvISEhWLBggU2eMpMWUF5ejsLCQnC5XPogM9SY7bkehnvvpR6zwebEWDBen8vCwsIy3rDL/ZNA/+rn6UhhYSH12BxsCde6+pmpchaJREhOTsaRI0fQ1dUFrVYLd3d3tLW1ISEhATExMZDL5WhsbISvry9tAKDRaBAbGztgmb9/JLQ/QqEQOp0OKpXKrnzalJQUZGdnIyUl5TKOzMTC5FYyhveX+vejof9SOCEESUlJ+PnnnxEUFDSgGGy4AjGxWIzs7Gw0NjYiPj6eRrjDwsKg1WqRnJw8ZC6zUChEc3Mzjhw5AgBwcXGxeZAZbFvW18Nw+z1cSgBzzHQ6HfVotUf4jpfLx1RxD2FhYWEZLaxInQSuBINt60rtoUTEYMTFxdGleyZ65uPjA7FYjODgYJuKaLVaPcCA3d4iHevPsO6ANJxlVEZGBjIyMuzelyuVwa7v1NRUBAcHDypGmQeEwSyZRCIR2tvbYTabUV5eTps49G/CMBS1tbVwdXVFaWkp0tPTERoaSv1WBzvH1tfD5T5AXgnznIWFhWU8YUXqJHAlGGzb061oKJgq78TERISEhNBjVVRUZFMcJZfLodPpUFxcDJ1Oh5CQkFEf2/5RvNGK3InGEdpcDnUOGDHav13pUBQWFtKl+eEioAz9W5ECoPmpTHtR5poZ6hyPpe3XlTDPWVgul0tNRZqK25mofbmSYEXqJDCVBcZYMZyl1Gj/lhESFRUVtDiK6ThVWlqKxsZGNDY2wtvb2+6OQAz9l/nFYjF++eUXlJWVIS0tbdBuUJdq0D8Uo60qn+rROXt8VDs6OqBWqxESEjLkMSwvL0drayu4XC5uvPHGYY+1Xq/HxYsXAYB26po5cybmz58/wKaMOX8ABrQcHUvrqSthnrOwXA5Mp8LpsJ2J2pcrDbZwisVhCAsLGxBR8/LyAiEEbm5udlVl94cQYvMjFApRWFiImpoanDx5ctAl6NFUgdvDaD5vtMVeUxGxWAyTyQQ+n2+zz/3PRXh4OJycnODm5obs7Gyo1Wr6u/7odDr4+PgAAFpaWtDR0UHFan+YiCqAMT2PLCwsLCxjCxtJZRk1Y90Ry97PGyw6GxsbC6lUCqBP/IzF2Pz9/dHW1gZ/f/9Buw1ZL+OOxfZGsyzsiNG5/sdILBbbpHEwv+dybZ+Z4+LiEBISguzsbDg5OQ3bzUwsFiM0NBQzZsyAh4cH8vLyMGPGjGHPD7scz8LC4ogolcoR3yOTyaBQKCZgNOMLK1JZHBrGIWEso2GrV69GamrqkHmJYy0UHVF4Xi7D7XP/dIqYmJgR80StP2/RokW0PeGljoGFZbpTXV09on+yPWLocjAYDFi9ejUA4IcffhjXtqjjvZ2J2IZMJoNIJMJtt9024ntFIhGUSqXDC1VWpLI4PGOdp2mdp2otmFhBMzEw59Pavmk6ewmzsEw01dXV1LJvJEQi0bgVBFksFhw9epT+e7yYiO1MxDYUCgWUSqVdDxe33XYbNBoNK1JZWCYbnU5H2z6Ox2dP9UKl6QZzPoVCIc1bnYpOCywsjopGo4Fer8fOnTtpEepQTJdl4+mCQqG4os4HK1JZHB69Xg9XV1e7ogKjpaioCHl5eZg5c+a0bbww1cjMzERxcTFCQkIQHBzMPhywsIwTsbGxSE5OnuxhsLAMCVvdz+LwjGd72crKSnC5XFRWVo75Z7MMjlqtRnd3Nzo6OiCXy9koKgsLC8sVChtJZZnyVFZW0uX8wdo7jqW3ZX/i4uJQWFh4yZ6vLKNnzpw5UCqVgy5DqlSqYa8FFhYWFpbpAytSWaY8NTU1MBgMqKmpGRNhYi16+xu9W6NWqyESibB69Wp2qX8CUKvVUKvVCA4ORmpq6qDvGetrYaox0gMZCwsLy5UEu9zPMuUJCgqCUCgcs8Ioa6EzHNZ93FnGH3uO91hfC1MNe69NFpbpwmi7BE7l7UzUvlxJsJFUlnFjsM5AQzGc6XpoaOiYRpWCgoLscgMYyz7uVzL2Xgf2HO+QkBCEhITY1URhrK6/icTea5OFZTrANNSYDtuZqH250mBFKssVh72idzxzXVkGIpfLr/jjPdYPZCwsLCyOzKSI1K6uLuj1eri7u4PH44HL5cJisQxoizgcJpMJJpOJ/n9HR8d4DJWFZVrDziMWFhaW6cl0aJ864SL14sWLuOeee9DZ2QkAWLNmDR544AGEh4fDbDbDycnJrs9544038Oqrr47nUFnGEesq7eGKl1jGl8mYR+y5Z2EZP6ZCu1N7MRqNuPHGGwEA3377LQQCgcNuZ6L2xR6mU/tUDhlN4tZlUlVVhdTUVGzatAlXX301jhw5gjNnzqClpQW7d+/GjBkz7I6oDhYBCgoKglarhUQiGc/dYLGT4S6t48eP49y5c6itrcW6devs6rXeH7YS2n46Ojrg7u4+YH5MxDzqfx0cP34cBoMBQqEQCxcutPndWFpMMds9fvw4bcjQf3sMUyUnlWVqM9Q8utT3jTWjbXc62eJEp9PB1dUVQN8K63g17piI7UzUvtiLvQ8rt912G7Kzsye0qcNo5seERlIzMzMRExOD7du3g8/nY/Xq1Th27Bi2bduGtWvX4ocffkBsbCwIISPeNPh8Pvh8/gSNnGWsCQoKwnfffQdnZ2dcuHDhkkTqdLcjmggmYx4NVxw0Huc0Ly8PHR0dyMvLG1KksrBMB9h2pywM06V96oSK1Pb2duTl5aGrq4veGBctWgShUIhXX30VW7ZswZdffnnFF09cCYSEhGDdunW4cOECEhMTL+kz2Epox4Sp0B+M8TinM2fOpJFUFpYrAbbdKct0YUJEKhMZTUlJQUREBPbt24fbb7+dCtW0tDTccccdeOWVV1BcXMyK1CuEhQsXXlZki62Enn6Mxzm93OuMhWUq4Ei5piyOxVQusBpXkarVamE2m9HZ2Yng4GAkJycjMjISf/nLXxAZGYmFCxfSQqmbbroJTz/9NH788Uf2hsLCwsLCwvL/M9pcU5lMNgGjYnF0HKHAatxEakFBAR566CG0tbXBYDDg2Wefxd133409e/Zgzpw5uP/++/HOO+9g5cqV4PF4sFgsiIqKQmBg4HgNiYWFhYWFZcI4f/48Laa5HJRKJZtryjLmKBQKKJVKuwusjh8/PuL1Zw9dXV12v3dcRKpSqcSiRYtw7733IiEhAdnZ2fj73/+O6667DjKZDGfPnsWSJUvw9NNPY+7cuUhPT8f58+eRmZmJd99995K2yVTysj6PU4fhqvt/+OEHZGdnIyUlBatXr2arq8cZZl6MZOYxHvPov//9Lz3XV1999bDvHcvrwBE7TrFMbUY7jxYvXjxm2xYKhZg1a5Zd+dqOch+07tDU0dEBs9nssNuZqH0Zazw8PODh4THse/h8PoRCoV0R19Fg13c0GWO6u7vJXXfdRe666y762qFDh8jatWtJU1MTyc/Pp6+/9tprZM2aNSQ+Pp6sXLmS5ObmXvJ2a2pqCAD2h/1hf4b5qampYecR+8P+XOYPO4/YH/bn8n9GmkeEEDIukdSSkhKkpqbS/z99+jTOnDmDxYsXo7W1FZs2bcJf//pXvPDCC7BYLOjs7ISLiwuEQuElb9Pf3x81NTVwc3NzmKgI40lZU1PjcN6ujjx2wLHHfyljJ4Sgs7MT/v7+w77P398fhYWFiIuLu2KOzVTAUccNXFljH808Gu5+5MjHbCTYfXNMJnLf7J1HwDgs9/N4PCxatAhffvklpFIpmpub8emnn+Jf//oXgoKC0NjYiPXr1yMhIQH33HMPuFwu3N3dL3u7XC7XYfNZJRKJw17wjjx2wLHHP9qx2zPPuFwuAgICLunzpxKOOnZHHTdw5Yzd3nlkz/3IkY/ZSLD75phM1L7Zq/vGJZK6adMmAH0R1bKyMvzpT3/C+vXr6e8XLlyI3Nzc8dg0CwsLCwsLCwvLNGBcRGpCQgISEhJgMpkwf/58uLi40N8RQsDj8eDn5zcem2ZhYWFhYWFhYZkGcMfzw/l8PmbPno3Tp08jNzcXbW1teOmll5Cfn0+jrVcyfD4fL7/8skO2d3XksQOOPf7xHjt7bCYeRx03wI7dkbY7EbD75phM1X3jEDIKnxYrzGYzNeIfjp07d+Kjjz7CxYsXER0dDbVajX379iEpKelSNsvCwsLCwsLCwnIFcEkitaSkBN9//z1uueWWIZftLRYLuNy+QO25c+dQWloKHo+H9PR0ttc6CwsLCwsLCwvLsIxapJaVlWHOnDloa2vDs88+iyeeeGJACzZCiMPYQLGwsLCwsLCwsEw9RlU4pdPp8MYbb+Daa69FWloaHnnkEfT29uLpp5+2EaqMQN22bRsMBgNeeumlsR01CwsLCwsLCwvLtGZUIpXL5SIlJQVSqRQbN26ETCajBVD9hWprayuys7OhUqnwyCOPwMvLa2xHzsLCwsLCwsLCMm0Z9XK/TqeDWCym/79nzx7cfPPNePLJJ/Hss89CKpXCbDajs7MTFosFJpOJtZtiYWFhYWFhYWEZFaP2SWUEqtlsBpfLxcaNG0EIwS233AIOh4PHHnsM27Ztg0qlwu7du9kI6iA0NDSgra0NcXFxkz2UUcO4Ojhi3rFer4ezs7ONb68jUVtbC7VazTpjsDgM1gW0LCwsjslkzuNL3ipjP2WxWLBp0ybs2rULf/nLX7Bs2TK89957eOmll6ac39ZUoK6uDgkJCXjhhReQlZU12cMZFefPn8f1118PvV7vcAI1Pz8fGzZswJkzZ2AymSZ7OKOmoKAA8+bNw86dOwH0zTuW0XGJbnssl0BVVRXq6upYgcpiAzsHHYupMI8va8scDgccDgeEEGzcuBELFy6EWq1GTk4OG+0ZgtLSUmi1Wmi1Wrz77rvIycmhv5vKEzgvLw/z5s1DfHw8RCIRfX0qj5mhoKAACxcuRGBgIEJDQx3u4SkvLw+zZ8+Gs7MzvvrqKzQ3N0/4l0ZXVxeam5thMpmoQHYEoZydnY37778fABzqwaqkpAQvvfQS7rzzTnz++ee4ePHiZA/Jbs6fP4+UlBQcP358socyasrKyvDOO+/g6aefxg8//ICmpqYJ2a6jzi97cNQ5aA+OPE9HYsrMYzIG9Pb2kscff5xwOBySl5c3Fh85bWlpaSHXXnst+fvf/06Sk5PJrbfeSvLz8wkhhJjN5kke3eDk5eURsVhMtm7davO6yWSapBHZT1dXF8nIyCAPPvggfU2pVJLc3FxSVVU1iSOzj/PnzxOhUEiee+45olarSXx8PPnjH/9ILBYLsVgsEzKGCxcukNmzZ5PY2FgSGxtLnnrqKVJWVkYI6Zv7U5Xz588TkUhEHn30UZvXJ+q4XSoFBQXEw8ODXHXVVeSqq64iPj4+ZNmyZeSzzz6b7KGNCHO9PvnkkwN+N9WP+8WLF4mnpydZsGABmTNnDuHz+eTmm28mBw8eHNftOur8sgdHnYP24MjzdCSm0jweM5G6Y8cOkpubOxYfN23p7e0lzc3NJCoqitTW1pJ9+/aRtLQ0cu+995J58+aRG2+8cbKHOICGhgbi6+tLVq1aRQjp24fHHnuMrFmzhsTExJB33nmHKJXKSR7l0BiNRrJgwQKSk5NDent7yapVq0haWhpxc3Mj6enpZMeOHZM9xCHJy8sjfD6fPPfcc4SQvoeY9evXk7S0NPqe8f7CUKlURCaTkUceeYQcPHiQPP3002TRokUkPj6eXLx4kY5rqnH+/HkiFovJU089NeR7puKNsru7m2zevJncc889dHyZmZnknnvuIXFxceTDDz+c5BEOTVFREeHz+eSVV14hhPR9V5w4cYLs27ePXLhwYUoLLr1eT9auXUseffRROs4ffviBZGRkkCVLlpB9+/aNy3YddX7Zg6POQXtw5Hk6ElNtHo+JSCXEcS+2iYQ5Rrfeeiv58ccfCSGE/Pe//yUymYy4ublNySewhoYGsm7dOpKamkr2799PrrrqKrJ8+XLy5JNPkocffpiEhoaSu+++e8pGJRsbG4lcLieHDh0ijz/+OFm1ahXJy8sjP/zwA9m6dSvx9fUlX3/99WQPc1AyMzPJiy++SAj5342qqKiIuLu7kw8++GBCxrB3716yYMECYjQa6WtHjx4la9euJcHBwaSwsJAQMrXmf319PRGJROTOO+8khPQ9qDz77LPkpptuIitWrCAff/wxaWhoIIRMrXET0jeehQsXkocfftjm9aKiIvLQQw+RlJQU8u9//3uSRjc0RqOR3HLLLcTLy4ucO3eOEELINddcQ+Lj44lMJiNOTk5k69atpKKiYpJHOji9vb0kKSmJ/PGPf7R5/fTp0+Taa68lV111FTlz5syYb9cR55c9OPIctAdHnacjMRXn8Zgltk23XJPxgDlGTk5OOHLkCABg3759MJvNCAoKwvHjx5GZmTmJIxyIr68v3n//fcTFxeHmm2+G2WzGnj17sH37drz33nv44x//iG+//RYFBQWTPdRB8fb2xvLly3HgwAGUlpbi8ccfR2JiIq666ips2bIFK1aswOHDh2E2m6dcfm1aWhr+8Ic/AOjzKISHYKsAAA+PSURBVCaEwNfXF0uXLsWRI0cmZMzt7e3Iy8tDV1cXfW3RokV46aWXMGPGDGzZsgXNzc1Tav7X19cjLS0NWVlZKCsrww033IDjx49DJpNBIBDggw8+wIsvvoiWlpYpNW7mXCYmJkKtVqOtrY3+Ljo6Gg888ACkUin27dtn8/6pAJ/Px3333Yfly5fjqaeeQmRkJCwWCz777DOUlJTgs88+wyeffIIvvvgCwNQau9lsplaJGo2GvgYA6enpeOqpp1BdXY39+/cDGNuxO+L8sgdHnYP24MjzdCSm5DyeMDnMQp8Y//nPf5KXX36ZPPjgg8TPz49UVFSQffv2kfDwcPLAAw8Qg8EwySMdSF1dHfn9739PDh8+TAixffqNiIgYkK86lTh37hwRi8WEw+GQAwcO2PzuySefJIsWLXKop/lvv/2WcDgccuLEiXHbBnM8srOzSVJSEvn4449toj2E9EWB4uLiyLFjx8ZtHJdKVlYWycjIIBwOh6xevZqo1Wr6uz//+c8kNDSUnDx5chJHaIv19bd3714iFArJxx9/POC6/Prrr4mzs/OUjUgePXqU5uiVl5fb/O7NN98kHh4epKWlZZJGZ0v/6/nDDz8kLi4u5KeffiKE2C6zf/DBB8TNzY00NzePybYdfX7Zg6PNQXuYLvN0JKbSPGZF6iRw9OhRwuFwiK+vL8nKyqKvf/fdd1P6otZqtTbFUhaLhWg0GjJ37lzy5ZdfTuLIRubYsWOEw+GQtWvX0kI1QgjZsmULueeee0h3d/ckjm50mEwmkpGRQW699Vai1+vH9LPb29tJS0sLUalU9LUNGzaQuLg48ttvvw3IRwoJCaE5s5PJYHlSJ0+eJE899RT5+eefB7zH3d2dvPnmmxM2vqHo7OwkPT09hBBbUfTiiy8SPp9Pdu7caSNezp8/T+Lj46fE90RjYyPJysoihw4dIp2dnfT1c+fOke+//37Afn344YckMTFxSsy1goICsmbNGvLLL7/YvH7PPfcQNze3AQ+Ahw4dIgkJCZd9Y3bU+WUPjjoH7cGR5+lITPV5zIrUSaC7u5t8+umn1AnBkaJ4/XnppZdIZGSkzZfuVOXo0aPE39+fzJ49m9x9991k8+bNxN3dnRYoOBJvvPEGkUgkNK9rLMjPzyeLFi0iCQkJJCIiwqaobPbs2SQqKor897//pV9OZrOZZGRkTFh+7FAUFhaShx56iKxatYr8/ve/J9999x39XWVlpc2DVW9vL2loaCBz5swh33///SSM9n8UFhaSVatWka+++ooeU+aGQAghW7duJVwul7z22mskMzOTaLVasnXrVhIZGWkTlZoMLly4QGJjY8nMmTMJh8MhV199tY2zy2DFPlu2bCE33HAD0ev1k/qdZ7FYyB133EHc3d3J2rVrbYRqc3MzufXWW4lQKCT/+te/SGVlJent7SVPPvkkmTlzJmlra7vk7Trq/LIHR52D9uDI83QkHGEesyJ1knDUik2GXbt2kfvuu494enqSnJycyR6O3RQVFZEXXniBrFixgjz44IMOJ1CZL4XW1laSkpJCKisrx+RzCwsLiZeXF3nmmWfIzp07yeOPP07S0tJsvmQXL15M4uPjyT333EN27NhBHnnkEeLh4UGKi4vHZAyXQkFBAfH09CQPPvgg2bJlC7n11luJQCAgb7/99pB/8/LLL5Po6GhSXV09gSO1pbKyksTExBAej0fmzZtHvv32WxtxwvDOO++QuLg44uXlRWbOnEl8fX0nfb6VlJQQPz8/8sILL5CKigpSVFREAgMDyWOPPTbo+6urq8kLL7xA3N3dbVYxJpOHHnqIzJkzh6xbt46sWLGCLvET0pcG8MwzzxAvLy+iUChIamoqkUqll3XcHXV+2YOjzkF7cOR5OhKOMo9ZkcpySeTl5ZE1a9ZMmZvOaDGbzQ79oGCxWEhXV9eYfFZ3dze56667yF133UVfO3ToEFm7di1pamqyOcevvfYaWbNmDYmPjycrV66cVNs5g8FANm7caPOlqlKpSExMDOFwOOTVV1+1ef8PP/xAHnnkEeLu7j6p4+7p6SHbtm0j1157LcnJySErV64kKSkpNjdA62XRkpIS8ttvv5GffvqJ1NbWTtawCSF9Vk33338/ufvuu4nJZKLj/Oijj0h8fDwxGo020ZXz58+TJUuWkNDQ0CllUfjVV1+RN998k5w9e5asWrWKZGRkkOzsbPL//t//o8Lp9OnT5OuvvyZffvnlZT0MOur8sgdHnYP24MjzdCQcaR6zIpXlknEEM3+Wkenu7iYLFiywudG8+uqrRCaTkZiYGOLt7U22bNlCf2c2m0l7e/uY58OOFqPRSJKTk8mf//xnQsj/luAefvhhsn79euLk5ET++c9/0vczN5zJjp5bLBaSnZ1N9u7dSwjpO/7WN0BmXk1FX9HOzk7yu9/9boBd3v79+4mfnx/p6OgYsAR48ODBAcUXk833339P5s2bRwgh5JdffiHr1q0jAQEBhMPhkLq6ujHdlqPOL3tw1DloD448T0fCkeYxK1JZWFjIc889R4KDg8lrr71GHn30USISicjXX39Nzpw5Q/bv30+cnZ3JJ598MtnDtKGrq4tce+21ZMuWLbTquqKigsjlcrJ7925yzz33kFWrVhGdTkf/RqvVTtZwbeh/Y9Pr9fQGuG/fPnqzn4pei/X19fTfzH6cOXOGzJgxw+bGxnh8TkWKi4vJnDlz6P+vWLGCiEQikp6eTo4fPz7m23PE+WUPjjwH7cGR5+lIOMo8dh5/kysWFpapzqZNmwD09aIuKyvDn/70J6xfv57+fuHChcjNzZ2s4Q2KWCxGRkYG/va3v6GoqAgxMTHYsWMH7rjjDmzcuBHOzs548MEHodfrIRQKweFwIJFIJnvYAPq8khnMZjOEQiH279+P66+/Hq+//jp6e3vx66+/4sCBA0hLS4Ofn98kjtYWZiwWi4Xuh8ViQUdHB/R6PcRiMZ5//nlkZWVh7969cHd3n8zhDkpERAT4fD5qamrw/PPPo7CwENu3b8ehQ4fwxBNPYPv27Vi0aNGYbc8R55c9OPIctAdHnqcj4SjzmBWpLCwsSEhIQEJCAkwmE+bPnw8XFxf6O0IIeDzelPoCJoSAw+Hg4YcfhkQiwbFjx1BfX48333wTjz76KIC+G0xAQAC9OU5VnJyc0NvbC5FIhAMHDuD666/HbbfdBh6Ph2PHjk2p424Nl/u/XjDd3d3o7OyEs7MzXn75Zbz11ls4ffr0lBSohBD09vaCEIK5c+eCy+Xiv//9L2bNmoXg4GB8/vnnCAkJGdNtOtr8sofpNAftwVHn6UhM9XnMilQWFhYKn8/H7Nmzcfr0acydOxchISF4++23kZ+fj/fff3+yh0fhcDiwWCzgcrnYvHkzNm/eDLPZbBP5+PnnnyGTySZxlP+DuaEPhbOzM8xmMwQCAUJDQ3Hu3DkcO3YM8fHxEzjKwRlp7EDfdRMREYEXXngB7777Ls6cOYOUlJQJGuHQDDZ2DocDFxcX3H///Xj33Xfx/vvvY9asWQCAq6++GosXL4ZYLB6X8TjK/LIHR5uD9uDI83QkHHYeT1KaAQsLywRjb4L/F198QebPn08kEglJS0sjISEhk2qnMtrChOzsbPLAAw8Qd3d3G8+/iaarq4t0dHSMKgfv3XffJRwOZ9Lta0Y79pMnTxIOh0O8vLxIdnb2OI9ueOwde3d3t43v6eV6Pjrq/LIHR52D9uDI83QkHHkeM7AilYXlCqC4uJhs377dJlm+P9aWXJmZmeTLL78ke/funVQvQ3vGbU1XVxc5ePAgWb58OTl//vw4j25oCgoKSEZGBklKSiL+/v5k586dhBBbITSYBVpzczMpKyubsHEOxqWMvbKykqSlpZGCgoIJHWt/7Bl7f8E1FlZ0jjq/7MFR56A9OPI8HQlHnsfWsCKVhWWaU1paSry8vAiHwyG///3vB+2CMhW7nl3quI1Go017v4mmoKCASKVS8vjjj5Mvv/ySPPHEE4TH4w3pL/jvf/97zHrCXy6XMnam61n/3vMTzWQdd0edX/bgqHPQHhx5no6EI8/j/rAilYVlGtPV1UXuuusucuedd5L333+fcDgcsnXr1iHb9b311lsDDLgnA0cdd0tLC8nIyLDxvSSEkCVLlpBHH32UEGJ7U//+++9JYGAgef755ye9ucSljv25554jvb29kyrEJuu4O+p1ag/Ted8ceZ6OhCPP48FgC6dYWKYxXC4XKSkpkEql2LhxI2QyGbXDefrpp22KGlpbW5GdnQ2VSoVHHnkEXl5ekzVshx13T08P2tvbqb0QU1gSGhqK1tZWALApXli7di0yMzNx55132lTZTgaXM3brYpnJYLKOu6Nep/YwnffNkefpSDjyPB6UyVbJLCws40v/9qm7d+8mHA6HPPXUU0Sj0RBC+vL02traSEtLi925Z+ONo467pKSE/ptpn/jCCy+QzZs327zPumhnqsCOffQ46nVqD9N53xz5Wh+J6bRvbCSVhWWaw9jpmM1mcLlcbNy4EYQQ3HLLLeBwOHjsscewbds2qFQq7N69e8pEQRx13JGRkQD6Ihg8Hg9An/1Lc3Mzfc8bb7wBPp+PLVu2wNl56nwNs2MfPY56ndrDdN43R77WR2I67dvUHRkLC8uY4uTkBEIILBYLNm3aBA6Hg82bN+PAgQMoLy9HZmYm+Hz+ZA9zAI46bi6Xa+NNyCwTvvTSS/jjH/+I3NzcKXtzYMc+ehz1OrWH6bxvjnytj8R02LepnVzBwsIypnA4HHA4HBBCsHHjRixcuBBqtRo5OTlISkqa7OENiaOOmxACoM8EPCgoCNu3b8dbb72FrKwszJw5c5JHNzzs2EePo16n9jCd982Rr/WRcPR9m9oSmoWFZczhcDgwm83YunUrfvvtN5w/fx4JCQmTPawRccRxM5ELHo+HTz75BBKJBCdOnEBycvIkj2xk2LFfGo54ndrLdN03R77WR8LR942NpLKwXKHEx8cjJycHiYmJkz2UUeGI4161ahUA4NSpU0hNTZ3k0YwOduyXhiNep/YyXffNka/1kXDUfeMQJhbMwsJyRUHs6OU8FXHUcet0unHrCT/esGMfPY56ndrDdN43R77WR8IR940VqSwsLCwsLCwsLFMOdrmfhYWFhYWFhYVlysGKVBYWFhYWFhYWlikHK1JZWFhYWFhYWFimHKxIZWFhYWFhYWFhmXKwIpWFhYWFhYWFhWXKwYpUFhYWFhYWFhaWKQcrUllYWFhYWFhYWKYcrEhlYWFhYWFhYWGZcrAilYWFhYWFhYWFZcrx/wFsKdrd1ecqagAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = sample.plot_results(nsamples=1000, fig=None, save_plot=True,\n", + " filename=\"modeling_tutorial_mcmc_corner.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating Likelihood Ratio Tests\n", + "\n", + "In order to use likelihood ratio tests for model comparison, one must compute the p-value of obtaining a likelihood ratio at least as high as that observed given that the null hypothesis (the simpler model) is true. The distribution of likelihood ratios under that assumption will only follow an analytical distribution if\n", + "* the models are nested, i.e. the simpler model is a special case of the more complex model *and*\n", + "* the parameter values that transform the complex model into the simple one do not lie on the boundary of parameter space. \n", + "\n", + "Imagine e.g. a simple model without a QPO, and a complex model with a QPO, where in order to make the simpler model out of the more complex one you would set the QPO amplitude to zero. However, the amplitude cannot go below zero, thus the critical parameter value transforming the complex into the simple model lie on the boundary of parameter space.\n", + "\n", + "If these two conditions are not given, the observed likelihood ratio must be calibrated via simulations of the simpler model. In general, one should *not* simulate from the best-fit model alone: this ignores the uncertainty in the model parameters, and thus may artificially inflate the significance of the result.\n", + "\n", + "In the purely frequentist (maximum likelihood case), one does not know the shape of the probability distribution for the parameters. A rough approximation can be obtained by assuming the likelihood surface to be a multi-variate Gaussian, with covariances given by the inverse Fisher information. One may sample from that distribution and then simulate fake data sets using the sampled parameters. Each simulated data set will be fit with both models to compute a likelihood ratio, which is then used to build a distribution of likelihood ratios from the simpler model to compare the observed likelihood ratio to.\n", + "\n", + "In the Bayesian case, one may sample from the posterior for the parameters directly and then use these samples as above to create fake data sets in order to derive a posterior probability distribution for the likelihood ratios and thus a posterior predictive p-value.\n", + "\n", + "For the statistical background of much of this, see [Protassov et al, 2002](http://adsabs.harvard.edu/abs/2002ApJ...571..545P).\n", + "\n", + "Below, we set up code that will do exactly that, for both the frequentist and Bayesian case.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "\n", + "def _generate_model(lpost, pars):\n", + " \"\"\"\n", + " Helper function that generates a fake PSD similar to the\n", + " one in the data, but with different parameters.\n", + "\n", + " Parameters\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + "\n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder\n", + " to generate a model data set.\n", + "\n", + " Returns:\n", + " --------\n", + " model_data : numpy.ndarray\n", + " An array of model values for each bin in lpost.x\n", + "\n", + " \"\"\"\n", + " # get the model\n", + " m = lpost.model\n", + "\n", + " # reset the parameters\n", + " fitter_to_model_params(m, pars)\n", + "\n", + " # make a model spectrum\n", + " model_data = lpost.model(lpost.x)\n", + "\n", + " return model_data\n", + "\n", + "def _generate_psd(ps, lpost, pars):\n", + " \"\"\"\n", + " Generate a fake power spectrum from a model.\n", + "\n", + " Parameters:\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + "\n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder\n", + " to generate a model data set.\n", + "\n", + " Returns:\n", + " --------\n", + " sim_ps : stingray.Powerspectrum object\n", + " The simulated Powerspectrum object\n", + "\n", + " \"\"\"\n", + "\n", + " model_spectrum = _generate_model(lpost, pars)\n", + "\n", + " # use chi-square distribution to get fake data\n", + " model_powers = model_spectrum*np.random.chisquare(2*ps.m,\n", + " size=model_spectrum.shape[0])/(2.*ps.m)\n", + "\n", + " sim_ps = copy.copy(ps)\n", + "\n", + " sim_ps.powers = model_powers\n", + "\n", + "\n", + " return sim_ps\n", + "\n", + "def _compute_pvalue(obs_val, sim):\n", + " \"\"\"\n", + " Compute the p-value given an observed value of a test statistic\n", + " and some simulations of that same test statistic.\n", + "\n", + " Parameters\n", + " ----------\n", + " obs_value : float\n", + " The observed value of the test statistic in question\n", + "\n", + " sim: iterable\n", + " A list or array of simulated values for the test statistic\n", + "\n", + " Returns\n", + " -------\n", + " pval : float [0, 1]\n", + " The p-value for the test statistic given the simulations.\n", + "\n", + " \"\"\"\n", + "\n", + " # cast the simulations as a numpy array\n", + " sim = np.array(sim)\n", + "\n", + " # find all simulations that are larger than\n", + " # the observed value\n", + " ntail = sim[sim > obs_val].shape[0]\n", + "\n", + " # divide by the total number of simulations\n", + " pval = ntail/sim.shape[0]\n", + "\n", + " return pval\n", + "\n", + "def calibrate_lrt(ps, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False,\n", + " nsim=1000, niter=200, nwalker=500, burnin=200, namestr=\"test\"):\n", + "\n", + "\n", + " # set up the ParameterEstimation object\n", + " parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "\n", + " # compute the observed likelihood ratio\n", + " lrt_obs, res1, res2 = parest.compute_lrt(lpost1, t1,\n", + " lpost2, t2,\n", + " neg=neg,\n", + " max_post=max_post)\n", + "\n", + " # simulate parameter sets from the simpler model\n", + " if not max_post:\n", + " # using Maximum Likelihood, so I'm going to simulate parameters\n", + " # from a multivariate Gaussian\n", + "\n", + " # set up the distribution\n", + " mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov)\n", + "\n", + " # sample parameters\n", + " s_all = mvn.rvs(size=nsim)\n", + "\n", + " else:\n", + " if sample is None:\n", + " # sample the posterior using MCMC\n", + " sample = parest.sample(lpost, res1.p_opt, cov=res1.cov,\n", + " nwalkers=nwalker, niter=niter,\n", + " burnin=burnin, namestr=namestr)\n", + "\n", + "\n", + " # pick nsim samples out of the posterior sample\n", + " s_all = sample[np.random.choice(sample.shape[0], nsim, replace=False)]\n", + "\n", + " lrt_sim = np.zeros(nsim)\n", + "\n", + " # now I can loop over all simulated parameter sets to generate a PSD\n", + " for i,s in enumerate(s_all):\n", + "\n", + " # generate fake PSD\n", + " sim_ps = _generate_psd(ps, lpost1, s)\n", + "\n", + " # make LogLikelihood objects for both:\n", + " if not max_post:\n", + " sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,\n", + " model=lpost1.model, m=sim_ps.m)\n", + " sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,\n", + " model=lpost2.model, m=sim_ps.m)\n", + " else:\n", + " # make a Posterior object\n", + " sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power,\n", + " lpost1.model, m=sim_ps.m)\n", + " sim_lpost1.logprior = lpost1.logprior\n", + "\n", + " sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power,\n", + " lpost2.model, m=sim_ps.m)\n", + " sim_lpost2.logprior = lpost2.logprior\n", + "\n", + "\n", + " parest_sim = PSDParEst(sim_ps, max_post=max_post)\n", + "\n", + " lrt_sim[i], _, _ = parest_sim.compute_lrt(sim_lpost1, t1,\n", + " sim_lpost2, t2,\n", + " neg=neg,\n", + " max_post=max_post)\n", + "\n", + " # now I can compute the p-value:\n", + " pval = _compute_pvalue(lrt_obs, lrt_sim)\n", + " return pval" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, loglike, starting_pars,\n", + " loglike_bplc, bplc_start_pars,\n", + " max_post=False, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The p-value for rejecting the simpler model is: 0.9\n" + ] + } + ], + "source": [ + "print(\"The p-value for rejecting the simpler model is: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the p-value for rejecting the powerlaw model is fairly large: since we simulated from that model, we would be surprised if it generated a small p-value, causing us to reject this model (note, however, that if the null hypothesis is true, the p-value will be uniformely distributed between 0 and 1. By definition, then, you will get a p-value smaller or equal to 0.01 in approximately one out of a hundred cases)\n", + "\n", + "We can do the same with the Bayesian model, in which case the result is called a *posterior predictive p-value*, which, in turn, is often used in posterior model checking (not yet implemented!).\n", + "\n", + "We have not yet defined a `PSDPosterior` object for the bent power law model, so let's do that. First, let's define some priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law indices\n", + "p_alpha1 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "p_alpha2 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the break frequency\n", + "p_x_break = lambda xbreak: ((0.01 <= xbreak) & (10.0 >= xbreak))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_1_0\"] = p_alpha\n", + "priors[\"alpha_2_0\"] = p_alpha\n", + "\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n", + "priors[\"x_break_0\"] = p_x_break\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set up the `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "lpost_bplc = PSDPosterior(ps.freq, ps.power, bplc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2230.14039643262" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lpost_bplc(bplc_start_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And do the posterior predictive p-value. Since we've already sampled from the simple model, we can pass that sample to the `calibrate_lrt` function, in order to cut down on computation time (if the keyword `sample` is not given, it will automatically run MCMC:" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, lpost, starting_pars,\n", + " lpost_bplc, bplc_start_pars,\n", + " sample=sample.samples,\n", + " max_post=True, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The posterior predictive p-value is: p = 0.99\n" + ] + } + ], + "source": [ + "print(\"The posterior predictive p-value is: p = \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we find that the p-value does not suggest rejecting the powerlaw model.\n", + "\n", + "Of course, a slightly modified version is implemented in `stingray` as a subclass of the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod=\"BFGS\")" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_lrt(lpost, starting_pars, lpost_bplc, bplc_start_pars,\n", + " sample=sample.samples, nsim=100, max_post=True, seed=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.22\n" + ] + } + ], + "source": [ + "print(pval)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bayesian-ish QPO Searches\n", + "\n", + "When searching for quasi-periodic oscillations (QPOs) in light curves that are not constant (for example because they are bursts or have other types of variability), one must take care that the variable background is accurately modelled (most standard tools assume that the light curve is constant). \n", + "\n", + "In [Vaughan et al, 2010](http://adsabs.harvard.edu/abs/2010MNRAS.402..307V), a method was introduced to search for QPOs in the presence of red noise (stochastic variability), and in [Huppenkothen et al, 2013](http://adsabs.harvard.edu/abs/2013ApJ...768...87H) it was extended to magnetar bursts, and in [Inglis et al, 2015](http://adsabs.harvard.edu/abs/2015ApJ...798..108I) and [Inglis et al, 2016](http://adsabs.harvard.edu/abs/2016ApJ...833..284I) a similar approach was used to find QPOs in solar flares.\n", + "\n", + "Based on a model for the broadband spectral noise, the algorithm finds the highest outlier in a test statistic based on the data-model residuals (under the assumption that if the broadband model is correct, the test statistic $T_R = \\max_j(2 D_j/m_j)$ for $j$ power spectral bins with powers $D_j$ and model powers $m_j$ will be distributed following a $\\chi^2$ distribution with two degrees of freedom). The observed test statistic $T_R$ is then compared to a theoretical distribution based on simulated power spectra without an outlier in order to compute a posterior predictive p-value as above for the likelihood ratio.\n", + "\n", + "Since the concept is very similar to that above, we do not show the full code here. Instead, the p-value can be calculated using the method `calibrate_highest_outlier`, which belongs to the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# compute highest outlier in the data, and the frequency and index\n", + "# where that power occurs\n", + "max_power, max_freq, max_ind = parest._compute_highest_outlier(lpost, res)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.79715764])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_power" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_highest_outlier(lpost, starting_pars, sample=sample,\n", + " max_post=True,\n", + " nsim=100, niter=200, nwalkers=500,\n", + " burnin=200, namestr=\"test\")" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.24" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pval" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convenience Functions\n", + "\n", + "For convenience, we have implemented some simple functions to reduce overhead with having to instantiate objects of the various classes.\n", + "\n", + "Note that these convenience function use similar approaches and guesses in all cases; this might work for some simple quicklook analysis, but when preparing publication-ready results, one should approach the analysis with more care and make sure the options chosen are appropriate for the problem at hand.\n", + "\n", + "### Fitting a power spectrum with some model\n", + "\n", + "The code above allows for a lot of freedom in building an appropriate model for your application. However, in everyday life, one might occasionally want to do a quick fit for various applications, without having to go too much into details. Below is a convenience function written for exactly that purpose.\n", + "\n", + "Please note that while this aims to use reasonable defaults, this is unlikely to produce publication-ready results!\n", + "\n", + "So let's fit a power law and a constant to some data, which we'll create below:" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "m = 1\n", + "nfreq = 100000\n", + "freq = np.linspace(1, 1000, nfreq)\n", + "\n", + "np.random.seed(100) # set the seed for the random number generator\n", + "noise = np.random.exponential(size=nfreq)\n", + "\n", + "model = models.PowerLaw1D() + models.Const1D()\n", + "model.x_0_0.fixed = True\n", + "\n", + "alpha_0 = 2.0\n", + "amplitude_0 = 100.0\n", + "amplitude_1 = 2.0\n", + "\n", + "model.alpha_0 = alpha_0\n", + "model.amplitude_0 = amplitude_0\n", + "model.amplitude_1 = amplitude_1\n", + "\n", + "p = model(freq)\n", + "power = noise * p\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = power\n", + "ps.m = m\n", + "ps.df = freq[1] - freq[0]\n", + "ps.norm = \"leahy\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does this data set look like?" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRvklEQVR4nO3de1hU1f4/8PcAAt4AEUURDE3ySCYoClp6QsWQk5qKZjdFNEwbLKMs7aSeLMN7Vk6RqEfza2lamXnBC2l4TcUwzVsaKmmiaIKggjL794c/5jDADHPZe/bMnvfrefbzzOzLWp8ZNjOfWXutvVSCIAggIiIichAucgdAREREZA4mL0RERORQmLwQERGRQ2HyQkRERA6FyQsRERE5FCYvRERE5FCYvBAREZFDcZM7ALFptVpcunQJDRs2hEqlkjscIiIiMoEgCLh58yYCAgLg4mK8bUVxyculS5cQFBQkdxhERERkgby8PAQGBhrdR3HJS8OGDQHcf/FeXl4yR0NERESmKCoqQlBQkO573BjFJC8ajQYajQbl5eUAAC8vLyYvREREDsaULh8qpc1tVFRUBG9vbxQWFjJ5ISIichDmfH9ztBERERE5FCYvRERE5FAUk7xoNBqEhoaiS5cucodCREREEmKfFyIiIpId+7wQERGRYjF5ISIiIofC5IWIiIgcimKSF3bYJSIicg7ssEtERESyY4ddIiIiUiwmL0RERORQFDMxoz0oKCjAihUr4Ovri2effRbu7u5yh0RERKQ4TF5E9Oqrr+LLL78EAJSVlSEpKUnmiIiIiJRHMZeN7GG0UUXiAgAnT56ULQ4iIiIlU0zyolarcfz4cRw8eFDuUIiIiEhCikleiIiIyDkweSEiIiKHwuRFJlqtFj/99BPOnj0rdyhEREQOhcmLTCZMmIDo6Gi0adOG/XSIiIjMwORFJp988onu8a5du2SMhIiIyLEweZHI1atXERsbi3bt2uH777+XOxwiIiLFUMxN6jQaDTQaDcrLy21a79GjR/Hmm2/C1dVVb/3XX3+N0tJSAEBSUhKeeuopm8ZFRESkVIppebHVfV7++9//olOnTkhISMDt27cxbdo0ZGRkYOPGjXr7VSQuwP1WGCIiIhKHYpIXW9BqtRg1ahR++eUXfPHFF9iwYQPOnDkjah3FxcUYOHAgHnnkEWzevFnUsomIiJRAMZeNbEGr1eo9v3Hjhuh1rF+/XtdHZsyYMcjLyxO9DiIiIkfGlhcrjBkzBkePHhW1zOLiYt3jP//806Rj7t27h3feeQcvvPAC51QiIiLFY8uLAmzcuBEzZswAAFy7do2Xm4iISNHY8qIAlVtoMjIyZIyEiIhIekxeiIiIyKEweaFqDh06hEmTJiEnJ0fuUIiIiKph8iKDqh1x165dC0EQzCrj5MmTmD17Nn777TcxQ0N5eTni4uIwa9Ys9OvXz+y4iIiIpGZ3yUteXh6io6MRGhqKDh06YM2aNXKHJIrr16/rHh85ckRv2759+0ya36isrAy//PIL7t69i969e+Ott95Cz549UVZWJlqcpaWlKCgoAABcvHhRtHKJiIjEYnfJi5ubGxYsWIDjx49j69atmDBhAkpKSuQOy2qbNm0yuv3UqVNGt5eXl+ORRx5Bp06d8Pjjj+PSpUsA7t+9t+IxERGRM7C7odLNmzdH8+bNAQDNmjWDn58frl+/jvr168scmXUqTxdgiYyMDJw+fRrA/ZaayjZs2FDr8eXl5SgpKYGXl5dVcRAREclN9JaXrKws9O/fHwEBAVCpVFi3bl21fTQaDYKDg+Hp6YmoqCgcOHCgxrKys7NRXl6OoKAgscO0uXPnzuH111/HrFmzcPv2bbOPN3bvlso3tqtJUVER2rZtCz8/PyxdutTovuzjQkRE9k70lpeSkhKEhYVh1KhRGDx4cLXtq1evRkpKCtLS0hAVFYUFCxYgNjYWp06dQtOmTXX7Xb9+HSNGjEB6errR+kpLS/VaNYqKisR7MSJ6//33dY8HDhxo8nFXrlxB06ZNUadOHYvr3r59O86ePQsAGD16NEaNGlXjfo0aNZJkygMiIiIxid7yEhcXh/fffx+DBg2qcfv8+fORlJSExMREhIaGIi0tDfXq1dNrESgtLcXAgQMxadIkPProo0brS01Nhbe3t25xhFaaCxcuGNx269YtvecnTpywur579+7pPa86RxMA/PDDD0xciIjIIdi0w25ZWRmys7MRExPzvwBcXBATE6PrxyEIAkaOHIlevXph+PDhtZY5efJkFBYW6hZHn8hwypQpopfp4qL/Z7527Vq1fbKzs0Wvl4iISAo2TV4KCgpQXl4Of39/vfX+/v64fPkyAGDPnj1YvXo11q1bh/DwcISHhxud/NDDwwNeXl5YsWIFunbtit69e0v6GqQmRcuRSqWqdR93d3fR6yUiIpKC3Y026t69e42XNWqjVquhVqtRVFQEb29v0eN65ZVXsHLlStHLJSIiIvPYtOXFz88Prq6uyM/P11ufn5+PZs2aWVW2RqNBaGgounTpYlU5hvz22296N5pzZBWdd4mIiByRTZMXd3d3REREIDMzU7dOq9UiMzMT3bp1s6pstVqN48eP4+DBg9aGWSOp7zY7c+ZMrFu3TpQOurXp1q0bVq1aJXk9REREUhA9eSkuLkZOTo5uUr/c3Fzk5OToRtikpKQgPT0dy5cvx4kTJzBu3DiUlJQgMTFR7FBENWfOHEnL/+OPPwyO0JLC1KlTbVYXERGRmETv83Lo0CH07NlT9zwlJQUAkJCQgGXLlmHYsGG4evUqpk6disuXLyM8PBwZGRnVOvGaS6PRQKPRoLy83KpynMVff/0ldwhEREQWET15iY6OrvUurcnJyUhOTha1Xqk77BIREZF9sLuJGck23Nz+l7f+/vvv+Pe//y1jNERERKZTTPIi9WgjMR0+fFjuEBAdHa17bG5/o9WrV6NJkyYYOnQo50IiIiKbU0zyIvVoI6WpPEv3nj17zDp21KhRKCgowNq1a/Hbb7+JHRoREZFRikle6H+qdlouKSkRtfzK8y/duXOn1v2PHj2KAwcOsJWGiIhEweRFgSZMmKD3PCEhQbSyX3vtNYPbrl27hvHjx2Py5Mm6pGbfvn3o0KEDoqKi8P3334sWBxEROS/FJC+O1OdFagsXLpSs7AULFhjcNn/+fCxcuBAzZ87UTaXwySef6LZPnz5dsriIiMh5KCZ5ceY+L3/++adsdR86dAhDhw7FokWLsHTpUt36bdu2AQBu376tW/f3338bLOfOnTsWzWlFRETOx+4mZiTHMm7cOADA2rVrLS5j586dGDhwIPz9/XHw4EF4eXmJFR4RESmQYlpelGru3LkAzJ9MMS8vD5cvX8aIESOkCEtUEyZMQGFhIU6fPo0VK1bIHQ4REdk5trzYuQ0bNuDQoUP44YcfzDqupKQEixcvFi0Z+PPPP+Hj42Py/hUjnnJzc2vd98iRI7rHBQUFZsdGRETORTEtL0rusGvpKJ2ioiJR6l+5ciVatmyJwMBAk49Zu3YttFqtXmJCREQkBsUkL0rusDtv3jyLjvPw8BCl/gkTJkAQBBQWFpp13Oeffy5K/URERJUpJnlRsmbNmslav6WXcl5++WWRIyEiImLyQjI7ffq03CHU6sqVK3KHQERElTB5MVFQUJDcIZhlxowZkt6sTgynT59G27Zt5Q7DqOTkZPj7++uGhBMRkfyYvJgoPDwc6enpstRtyoidqv7v//7P6HZBEHDhwgVZ5xtatmyZTeoRBAHz5s3DW2+9hRs3bph1rEajAQCkpaVJEBkREVlCMUOlNRoNNBpNtUkJxfTiiy/CxcUFo0ePlqwOW/nyyy/x5ZdfIj4+XrYY7t69a5N6tm7dijfeeAPA/dm033nnHQCAiwtzdyIiR6SYT28ljzaS0jfffCN3CBZbvnw5/vnPf9Y6lHz27Nm6x9OmTUObNm3w4IMP4sKFC1KHSEREElBM8kKOobi4GAkJCRg6dCjy8/OrbX/vvfeMHn/nzh1kZWWhrKwMI0eOxK5du/DCCy8YPebHH3/Ue56bm4tz585hxowZ5r8AIiKSnWIuG5FjSE9PxxdffGFwe3l5Of744w+0bt26xu19+vTB7t27MWjQIN264uJii2LJycmx6DgiIpIXW17IqJs3b4pa3q5du2rd5+TJkzWuFwQBu3fvBgB89913osZFRESOg8kLGeXr62vzOqdNm2bzOokc3blz57B27VrcuXNH7lDIDv31119m3yW9KkEQ8P3332PDhg2yjlQFmLxQLcQevWVKeYcOHRK1TiKlKysrQ/v27TF06FDdaDpybidOnIBGo8H169dx8OBBBAUFISgoCNeuXbO4zIyMDAwcOBD9+/ev1pfQ1pi8SCgqKkruEOzKuXPnsH79ernDEM3cuXPRrVs37NixQ+5QyMmdPHkSJSUlACyfC43s0+3bt9GjRw+EhYXh0qVLJh2j1WoRGhqK5ORkDB8+HEOGDEF5eTlu3rxZ66AIYyonxtOnT7e4HDEweSGyQHFxMSZOnIj9+/dj7Nix+Prrr/H666/XOIIKAPLy8rBixQrRZvomx7V9+3Y8/fTTuv5bZHvFxcVYunQpTpw4YXEZRUVForRM13a/q1mzZmH37t349ddf8dJLL5lU5q1bt3SPN23ahOvXr+ueVyS5jk4xyYtGo0FoaCi6dOkidygkgTt37iAuLs7g9m3btqG4uBhTp05F3bp1kZKSIulN8G7fvq17fPr0aQwbNgzz589HYmJitX0FQUBERARGjBgBb29vzJ49G1qtVrLYyPYqnw+16dOnD9asWYMePXpIGJE8tFotTp06JXt/iNpMmDABo0ePRmhoKEpLS80+Xq1Ww9vbG0FBQSgrK9PbdvLkSSxbtkw3CrKsrAy//fZbje9JZmYm/Pz88OSTT+pt37lzJxYsWICbN2/qJVh79+61+rNj8eLFNrtBqKQEhSksLBQACIWFhZKUv2TJEgGASUtUVJTJ+3LRXyx53zt27Kj3fPny5brzoaYlMjKy1r+3oZjy8/NNjr28vLzaPsOHD7f8JCS78u677wqurq7ClClTat333LlzRs8VSx05ckSScs31wgsvCACE5ORk2WIwReX3auXKlQb3u3fvnt7zsrIy4d///rfe8enp6brtd+7c0a1PSkoSBEEQHnvsMQGA8MEHHxiNY8eOHcLp06eFw4cP69a99NJLwtNPP62330MPPSQUFxdXK2v//v3Cjz/+KGi1WuHmzZt6x9SvX79aGVVfW02uX78u5OXlCYIg6MUFQPjnP/9Z6/HmMuf7m8mLmZi82GbZsGGD3vv+9ttvm11G27Ztq/3TVl7kTF5q2o8ckzl/05YtW4p6Dhw+fFiYPXu2sH37dsnPrWPHjgnXrl3TW/f7778Ln3/+uXD9+nVBEMx7L+RUOU5PT89q27VarTBgwAChcePGws6dO3XrFyxYUO3/eM6cObrtx44d09t2/fp1ved5eXnCxYsXa4zD0FI1eQEgTJs2TS/eysnrli1bqiUvNS2V465JQUGB0LBhQ8HFxUXYt29fteOZvIhMSclLaGioKImAIy5+fn669/z8+fOCr6+v6HWYm7ykpqYK27ZtE3bs2CHMnj3bYLlVmZO8FBYWCnPmzKmWvJFl7t69K3kdtf1NKyxatMikc8BUd+/e1ZXTtGnTWsu9deuW8Omnnwpbt26ttm327NlCdHS08Msvv9R47LfffisAEBo1aqT71a/VagVPT08BgDBgwABBEEx/LxYuXChMmTJFKCkp0Vt/+PBhYfTo0XoJQ2UFBQXCokWLhPPnzxstvza1/R12796tt3316tXC7du3a/w/Npa8FBQU1HjMG2+8UWMcNS01JS8vvfSSXrz9+/fXbXvggQdMSl4qXrdWqxUEQRD27NkjLFq0SLh165YgCIIwYcIEo8cyeREZkxflLBWkeh8qJy937twR1qxZI5w6dUrv721N3BXMSV7+85//CAAEFxcX4Y8//qhxn4oPGznt3btXGDVqlLB//365Q6mRVqsV+vfvL3h7ewvbtm2TtK7a/qaCIBj8MqnJ4cOHhaSkJCErK8tovVevXjX5HBQEQXjnnXd028+cOaNbf/HiRd36Bg0a1PoaU1NTBUEQhNLSUr31VVsjDdm6datun1dffdVgPZVdvnxZGDFihG5bs2bNjL43tan6flW0HFVYv359tX0mTpxY43sdExOjO67q90NmZqbBv9GhQ4dM+jypKXlJSEjQi7dy8mLO8tJLLwkBAQHC4sWLdesmTZokCIIgDB8+3OixTF5EppTkJT4+3umTl2PHjgn9+vWTtI6ioiJBEARhypQpAnD/w7vyuWNJmVUZSl7Wrl0rxMfHC9nZ2TXWt2jRompl7d27VwgICBD69u0rlJeXS3CGm8bQ683KyhIeffRRYeHChZLWX9v1+gMHDhj9m4iptnpycnKEn3/+2aRzRRAEXd+tFi1aGK3X3OSl8vZ58+YJubm5wuuvvy7MmzfPrGMBCBcvXqyWvFS9RGtIRb+YmvYztL6mL2dj1q1bJ4wePVo4ffq0Sa9ny5Ytuh8FOTk5Zrf0LliwQOjbt2+19d7e3lZ/RtWUvAD3W6crfuBYmrwYWv74449a92HyIjJ7Sl569+5t8ckzYcIEp09e+vTpI3kdb775piAI+h9mW7Zs0f29LSmzKkPJS03HVF5XU/LSuXNn3faMjAwJznDTGHq9ldeXlpaKVt+ePXuE5cuXC3fu3BGeeuopwdfXV9ixY4fB/Sv/ugcgaLVa4eLFi8KMGTMMXhqxlLG/fdW+KLWdK7WVV9mVK1csPgfnzZsntGvXzuCxN27cEMaNGydMnz5d0Gq11fZ59tlnqyUvxmK4cuWK8O233wolJSVC27ZtTTp/DK2v7b05deqUbp+goCBBo9EIDz74oK5jrqH3rX379kJubq7knznmLiqVyuC2Nm3aCIIgfvJiytKqVSuj56clmLyY+OItYWry4uHhIXz33XcWnxhr1651+uTFVsvx48f1nm/ZskW4c+eOIAjiJC81ffjXdEzV/SqPYqhQefuyZcskOcdNYej1Vl5f04gIQbj/Rbpo0SIhPT1d92v322+/FSZNmiRcvXq12v7nz5/XlTlgwACj73WFqsnLP/7xD73nYl56MxZP3bp1zTpXaiuvMlOTlw0bNlTbXrW1pfJSWloq1KlTR/e8U6dO1faJjo7Wu9xUWwwVn2WJiYkGk5c///xTb33l1rWayv/2229rfF+aN29uMKa8vDxJPkPkXFJSUmSrW2xMXkx88ZYwJXlJTU0Vbty4IQiCZV9+s2fPFsrLy5m82Gjp1q2b3vMnn3xScHd3F8aMGSPKP7SpycvMmTP11i1evLhaWZW32zp5+emnn4SoqCjho48+Mvh6K683lLysXLlSt8/q1auFCxcu6J4PGjRIt9+tW7cErVYrzJ8/3+D71rdvX716zp49K8yYMUPQaDRG329Thomaqup7cfXqVSEtLU04d+6c4ObmZta5UlN5hpiavNS03VjyYk2LcdUYavq8rJq8vP3223p9LiqW6Oho4erVq3p9dWp7/+7duydK7FxM/xuLyeGTl4EDBwo+Pj5CfHy82cfKkbxUzfQ//fRT3f6ffvqp2SfE8ePHBUGQrqMqF/2l6q9ya5eqTE1eqq6rLXlJSkoSCgoKJDnPa2LK66283lDyUvnSV/fu3YV169bpHffNN98I8fHxgru7uxAZGSnMmTPH6Hv31ltvCVqtVrh9+7bg7+9v0t/IWPKSm5srDB48WNiyZYuwf/9+Yc+ePUZbaqq+F48//rgAQGjSpInVycvatWt199moytTh+jVtf+WVVyT/v7p06ZLkdaxatUpYsWKFkJ6eLty6dctoostF/EVsDp+87NixQ1i/fr1DJC8vv/yyUFZWpreucvIiCOa3vlR8WMl9YjrLInaSWJUpyUvVcwioPXkB7g9dLS0tFa5fvy5MmjTJ6A23LKHVanWdAg3FXlxcLHz22WfCnj17qq2vSW3JS9WltpaAxx57TOjQoYPg4+Nj8t+oavJy7do1YdeuXQb7J+3Zs8fg+1P1b1/5ubXJS8WSnZ0tfP7558Krr76qS1gvX75stFytVisMGTJElv8pANUu3XFR3iI2h09eBOF+AuMIycuVK1cEQdD/wLE2ebH0OC72sZw6dUrvl7opyUt8fHy1daYkLwCE3bt3C88//7zueePGjYWYmBjh1q1bwgcffCCMHz/e4v+HYcOGCQCEyZMnm/0+mJK8PPbYY7UmL+Hh4aL/jSqP1Kp82cpQK09ERIRu/7t37wrLli0Tbt++LWzatElvv1GjRuk9d3V1NRpHxX1ojh8/Lly4cEH4+++/a439mWeeEfLy8oS//vrL4D6CIAjbtm2T9f/AFq07XORdxCZr8vLTTz8J/fr1011K+e6776rts3DhQuGBBx4QPDw8hMjISOHnn3+uto+jJC8VIyoqr7Mmealbt65Fx3Gxr+Wll14SioqKhGPHjhm8uVVty9ixY6udfzXtt2vXrhrXV+5oacrt2vPz84W///7b4nO36lL1BmQVunTpotvHlOQlLCxM9L/PxYsXhTfeeMPkzo6Vk5fK6639gn7mmWeEjRs3WnTsuHHjDG77888/hQ8//FD0940Ll8qL2GRNXjZt2iT8+9//1t2RsWrysmrVKsHd3V1YunSp8NtvvwlJSUmCj4+PkJ+fr7efqcnLnTt3hMLCQt1S0ZvcWZOXoUOHyn5Cc7m/VCTwISEhFpdR+Vbihs6JqncDrWlxc3PTK2fjxo1CQkKCcPToUUEQBOGXX34R6tSpI9SvX1/4888/rToHKxZ7Tl7M7ZRqKHnhwsWZF7GZk7yIPqt0XFwc3n//fQwaNKjG7fPnz0dSUhISExMRGhqKtLQ01KtXD0uXLrWovtTUVHh7e+uWoKAga8J3eAMHDpQ7BPr//vrrLwDA77//bnEZLVq0wOXLlzF37lyoVKoa9zG03pgnn3wSy5cvxyOPPAK1Wo3XXnsNd+/eRUlJCWbPnm1xvJUJgoAdO3YgKCgISUlJBveRQ2Zmpln75+bmShQJEVlC9OTFmLKyMmRnZyMmJuZ/Abi4ICYmBvv27bOozMmTJ6OwsFC35OXliRWuxVxdXWWr29fXV7a6SRrNmzfHxIkTrSrDWILz6aefYufOnbrn//3vf62qq8KtW7fQq1cv/Pnnn1i8eDFOnz5d437Xrl0zWo5cCU5l169flzsEIqrEpslLQUEBysvL4e/vr7fe398fly9f1j2PiYnB0KFDsWnTJgQGBhpNbDw8PODl5YUVK1aga9eu6N27t2TxG/PKK68AAJo0aYK4uDhZYjCmX79+codAEtm2bZvJ+5qSCNy8edOacHQ+++wzveeXLl3C2LFjcfDgQd06lUqF8ePHi1Kf1BYuXIhPP/1U7jCICJDgolUlgH6fl4o7Mu7du1dvv4kTJ5o0w68p5OqwKwj3X1/FnVkrgxnXECv3eTFn6GfFsnnz5hrXy3H7aC72s9SpU0d47bXXBF9fX2HNmjW17m/JuVvbEhcXV21dRERErcd16NBB9vePCxcu1RcxpwARBJn7vBjj5+cHV1dX5Ofn663Pz89Hs2bNbBmKJAICAuDh4SFaeYsXLxatLHJud+/exYcffojr169j6NChssSwefPmauuys7NrPe7XX3+VIhwistLVq1dlq9umyYu7uzsiIiL0OstptVpkZmaiW7duVpWt0WgQGhqKLl26WBum3YiPj69x/RNPPGHjSIiIiPQJMvZHcxO7wOLiYpw5c0b3PDc3Fzk5OfD19UXLli2RkpKChIQEdO7cGZGRkViwYAFKSkqQmJhoVb1qtRpqtRpFRUXw9va29mUQERGREZaMdBSL6MnLoUOH0LNnT93zlJQUAEBCQgKWLVuGYcOG4erVq5g6dSouX76M8PBwZGRkVOvES0TyqjwCiYioKkUlL9HR0bU2JSUnJyM5OVnUejUaDTQaDcrLy0Ut1x717t0bW7dulTsMUrB27drh5MmTcodBRFQjm/Z5kZJarcbx48f1hmEqVY8ePbB371688847codCCsXEhYjsmWKSF2fi5+eHbt26mXw33a5du0obEBERkQ0pJnlR4mijqho3boxZs2YhJCTE5GMmTJgg2h1TiYiI7IHofV7k4gyjjbZu3YpOnTqZdcyHH34oUTRERETyUEzLC5ln8ODBcodARERkESYvTqp+/fpyh0BERGQRxSQvztDnhYiIiBSUvDjTUGlLFBYWyh0CEREpiJw3qVNM8kLGBQYGyh0CEREpCJMXklx4eLjec1dXV3kCISIispJikhf2eSEiInIOikle2OdFOiEhIWjRooXcYRAREQFQUPJC0njppZdw6tQpXLhwQe5QiIiIACjoDrt0X8OGDXWPvby8rCrr/PnzaNmyJQB5O2YRERFVxpYXO+Dp6WnRcR4eHtXWdezYEWPGjMHDDz+MZcuWWRzT5MmTdYkLERGRPWHLi8zee+895OXlYdGiRWYf+/DDD6Nz5844dOiQbp1KpcLnn38uZohERER2RTEtL8442kilUmHXrl1o0KABACAgIKDG1hgiIiIlUUzy4qyjjTw9PbFjxw5MnToVGRkZcHFRzJ+UiIioRrxspACdO3dG586d5Q6DiIicCO+wS0RERGQiJi9ERETkUJi8EBERkUNh8kI16tGjh9whEBGRHWOfFycWEBAgdwjVLFmyBLGxsZKV7+3tLVnZRESkfExeZJKYmIh33nkHzzzzjNyh6PHy8sKoUaNqHXI9c+ZMLFiwwKI6srOzUbduXYuOJSIiUsxQaY1GA41Gg/LycrlDMUl6ejpcXV3NOsbauYrENGbMGGzbts2iY4ODg/HTTz8hMjJS5KiIiMgZKKblRak3qVu0aBFCQ0MxceJEtGnTRtZY4uPjAQCRkZHw8fGxuBxXV1enuhMyERGJSzEtL0qVlJSEpKQkucMAAHz99dc4fPgwwsLCOMs0ERHJhskLmczFxYV38iUiItkp5rIRERER2Q6HShMRERGZiMkLERERORQmLySbf/3rX3KHQEREDojJC8lm7ty5codAREQOyC6Tlw0bNqBt27YICQnB4sWL5Q6HJNKuXTve74WIiMxmd0Ol7927h5SUFOzYsQPe3t6IiIjAoEGD0LhxY7lDIyIiov+Po40qOXDgAB5++GG0aNECDRo0QFxcHLZu3Sp3WFSDynf8HTp0qIyREBGRMxE9ecnKykL//v0REBAAlUqFdevWVdtHo9EgODgYnp6eiIqKwoEDB3TbLl26hBYtWuiet2jRAhcvXhQ7TBJBp06dsHDhQowdOxazZ8+WOxwiInISol82KikpQVhYGEaNGoXBgwdX27569WqkpKQgLS0NUVFRWLBgAWJjY3Hq1Ck0bdrU7PpKS0tRWlqqe15UVGRV/HIICwvTPX7++edljMR8arVa7hCIiMjJiJ68xMXFIS4uzuD2+fPnIykpCYmJiQCAtLQ0bNy4EUuXLsWkSZMQEBCg19Jy8eJFo7MPp6am4t133xXvBchg5MiRKCkpQWFhIcaPHy93OERERHbNpn1eysrKkJ2djZiYmP8F4OKCmJgY7Nu3D8D9GYuPHTuGixcvori4GJs3b0ZsbKzBMidPnozCwkLdkpeXJ/nrsFbjxo3h4vK/t75evXqYOHEi3n//ffj7+8sYmbhmzpzJuZCIiEh0Nh1tVFBQgPLy8mpf0P7+/jh58uT9gNzcMG/ePPTs2RNarRZvvvmm0ZFGHh4e8PDwgEajgUajQXl5uaSvQQzr1693ilmZ33rrLTzyyCN48skn5Q6FiIhExtFGVQwYMACnT5/GmTNnMGbMGJOOUavVOH78OA4ePChxdNZ577338Oijj8odhiTef/99uUMgIiInYNPkxc/PD66ursjPz9dbn5+fj2bNmtkyFDLAmg7PztCaRERE8rNp8uLu7o6IiAhkZmbq1mm1WmRmZqJbt25Wla3RaBAaGso7tlpJqa1CRESkHKInL8XFxcjJyUFOTg4AIDc3Fzk5Obhw4QIAICUlBenp6Vi+fDlOnDiBcePGoaSkRDf6yFKOctnI3gUGBsodgkN59tln5Q6BiMjpiN5h99ChQ+jZs6fueUpKCgAgISEBy5Ytw7Bhw3D16lVMnToVly9fRnh4ODIyMhQ1yoacw5QpUzB27Fh89dVXcodCRORURE9eoqOjIQiC0X2Sk5ORnJwsar2ONNrImbVs2VLuEETRoUMHTJ8+Xe4wiIickl2ONrIELxs5hgULFsgdAhEROTjFJC/kGDp16qT33MvLS6ZIiIjIGrVdZZGSYpIXjjYyrl69errHAQEBMkaib9KkSbLWb0/vBRERmUYxyQsvGxk3ZMgQBAYGwtPTEx999JHB/Xx8fGwXFICYmBj88MMPJu/fu3dvUeu/ffu21WUYm76CiIjEp5jkhYzz9/dHbm4urly5giFDhlTb7ubmhrp168oyS3TVS0mGDBgwABMnThS1bjFujujmZtNZNoiI7AKnByCbcHNzQ8OGDaut9/HxwcWLF3Hp0iV06NBBhshMY6zFyFINGjSwugw5r/sSETkjxSQv7PNinaZNm9r8kpG5goODRS/z+eefF71MIiKSlmKSF/Z5kV/lVp1WrVqJWvbs2bNFLa9C+/btJSmXiIiko5jkxVZCQkJ0j4OCgtjfoZLnnnsOzZs3h4eHh6iXeL7++mvR+7pUCAoKkqRcIiKSDr95zdS9e3esWrUKv/76K5599lm4uDD/q9C4cWOcP38eJSUlZl2Cql+/vtHtYvRLMcTV1dWi4ziDNhGRfBTzzWurPi8qlQrDhg3DjBkzeMmhBnXq1DG774y3tzcWLlxoUX3/+Mc/LDrOWpU76bLDLhGRbSkmeWGfF8dmbIh227ZtbRgJERHZO8UkL/Zs+PDhusdhYWEyRuKYKl+iEXviTU9PT4uOqxwTLyEREdkW+7zYgEajQXR0NAICAvDEE0/IHY5Dq9xhWgwtWrSw6DheNiIikg+TFxto2LAhRo0aJXcYimBpB1siIlIOXjYiSbVu3VruEHRWrlyJsWPHilJW5UtFtQ23/vjjj0Wpk4jInnB6AFIsuUYDVdWsWTM899xzog27rnypaPLkyUb39fPzE6VOIiK6TzHJC6cHIEvVrVvXquODg4Px8MMPixQNERHVRjHJC4dK26/BgwcDuN8CIcYszmKzpOmz6jFeXl5ihUNERLVgh12S3JIlS9CvXz/06NEDHh4ecocjiubNm+s953BpIiLbUUzLC9kvHx8fJCYmok2bNnKHUqPOnTubvK+LiwtUKhWmT58uYURERGQMkxdyenPmzDF53z/++ANnz55l3yoiIhkxeSGnFxkZiaioKJP2feCBB9CqVStR67en4eRERKbiUGkimZnS4Vaq2a2zsrIkKZeISKmYvBDB+C3+vby80KdPH+zevdvgPpV/gVS9pPT3338bPE6tVls8RQERkbNSTPLC+7w4B39/f10LyHPPPYf4+HjJ63z11VexdetWiyfVNDaZZMuWLS0Ni4jIaSlmqLRarYZarUZRURG8vb3lDockUr9+fezcuRO7du3CCy+8AJVKhTNnzqCoqAibN2+WOzyzVZ5xnIiITKOY5IWcR0REBCIiInTPV61ahYKCAjRp0sTiMo1dNrK2U5qx4z09Pa0qm4jIGSnmshGRMS+++KLFx5qbvBhLhIiIlIKjjYhEVvXeLRMmTLC4LFP+Qavu88EHH+geDxo0yOK6iYioOl42Irvh5eWFoqIiUcqqOpNz48aNLS7Lkl8Xr7/+OgIDAxESEsLRREREImPLC9mNlStXyla32Jd63N3dMXz4cHTt2tWk/a2d2ZqIyJkweSG70a9fPyxfvlzuMKrhpItERPaFyQtRLaTssMvEiIjIfHaZvAwaNAiNGjXCkCFD5A6FnIS1l41qS0LGjx8PAHjyySetqoeIiOw0eXn11VfxxRdfyB0GEQBxWkc+/vhjFBQUYMmSJTVul2J4taG6iIjEwKHSVURHR6Nhw4Zyh0EEQLx/0MaNG8Pf31+UsmoTFBSEUaNG2aQuIiJbMzt5ycrKQv/+/REQEACVSoV169ZV20ej0SA4OBienp6IiorCgQMHxIiVyG4FBgbqHgcFBckYCRGR8pmdvJSUlCAsLAwajabG7atXr0ZKSgqmTZuGw4cPIywsDLGxsbhy5Ypun/DwcLRv377acunSJctfCZGZXF1ddY+tnR5gypQpcHd3R506dfDuu++KEp+5evToIUu9RES2ZvZN6uLi4hAXF2dw+/z585GUlITExEQAQFpaGjZu3IilS5di0qRJAICcnBzLoq1BaWkpSktLdc/FuskZ2Yc6depYNWdRVYMHD8bcuXMBADNnzjTpGFOSl3bt2iEvLw+CIJh1aUjMa8amzpP0+uuvY968eaLVS0Rka6L2eSkrK0N2djZiYmL+V4GLC2JiYrBv3z4xq9JJTU2Ft7e3bmGTvbJkZGSgQYMGopXXrVs3rFixAnPmzMG4ceNMOsbUBKNp06YW92kxp8NuvXr1alxvapypqanIyMgwuT4iInsj6vQABQUFKC8vr/YB7u/vj5MnT5pcTkxMDI4cOYKSkhIEBgZizZo16NatW437Tp48GSkpKbrnRUVFTGAUpFevXqKX+cILL1RbJ+Ws0mJJTExEUVERFi9ejLZt2+pdijVHnTp1EBsbK3J0RES2Y5dzG23fvt3kfT08PODh4QGNRgONRoPy8nIJIyNnVLlvjJyWLl2qe9yxY0ds2bJFb7u9JFlE5BwUM1Taz88Prq6uyM/P11ufn5+PZs2aiVlVNWq1GsePH8fBgwclrYek1bRpU93jzp07yxJDmzZt9J47SlLgKHESkTLI2VggavLi7u6OiIgIZGZm6tZptVpkZmYavOwjFo1Gg9DQUHTp0kXSekhaffr0QXx8PNq2bYuPP/7Y4nIaNWqkexwSEmLWsfXr17e4Xrn06dPHIeMmIsdVXFwsW91mJy/FxcXIycnRjRjKzc1FTk4OLly4AABISUlBeno6li9fjhMnTmDcuHEoKSnRjT6SCltelMHV1RVr167FyZMnrUp4//WvfyEqKgo+Pj749NNPa91f7j4vjRs3tur4zZs3ixQJEZH9M7vPy6FDh9CzZ0/d84rOsgkJCVi2bBmGDRuGq1evYurUqbh8+TLCw8ORkZFhszuLEgH3O6Xu27cPd+/ehbu7u1nH2vLyS0Vd3377Lbp374579+6ZdRwA/OMf/6jWL0eK6QaIiOyF2clLdHR0rR+MycnJSE5OtjgoS7DDLlWlUqnMTlzkEhUVhby8PIwcObJaR1xTsc8LETkLu5zbyBK8bERSsVVS0KxZM87pRUQOQzGjjYgcVeXWRDn/IS2p29JLRFOnTrXoOCIiuSkmeeFoI5KKPV6OESMmQ3Mw9e/fHytWrLC6fCIiqSgmeeFlI1ICe+hou379egwZMkTuMIiIDFJM8kJkDbmSBnts1QFMn+SRiEgOTF6IqqiaUNhrglFBqsQrIiJCknKJiKylmOSFfV7Imdh7QkVEJCXFJC/s80JSceREYcOGDRYfaw/9b4jIfsn5GaGY5IXIGkr9on7yySflDoGISHRMXoiqcJb7vACQfLZ3IiIpMHkhqoUtkxlTE5HaYjK1HF9fX4vrMKZHjx4WH0tEVBvFJC/ssEvWaNSoUY2PAVSb9FBMYiZGYidZ1rToDBo0SMRIiIj0KSZ5YYddssYnn3yCevXqoW7duvj888+xevVqAICPjw9GjBghc3TyUGo/ICJyfGbPKk2kRMHBwbh48SIEQUCjRo3QunVrhISEIDAwEPXr15c7PNGEh4frPWeCQkSOSDEtL0TW8vHx0btk1LFjRzRp0kTGiExTWwISGRmpe1yvXj3RypXqWCKi2jB5cVKV+0fwVvCOR6pOxHFxcQa3Sdn3h4jIHExenNTQoUN1j9966y0ZIyGp+fv76x43bdrU6L4VfX2A6gnSnj17sGbNGkRFRYkboJlWrVola/1EJD/FJC8cbWSevn37IiMjA19//TXUarXc4TgtWwzDXrhwIby9veHj44NPPvnE4H6xsbFo2LChwdiioqIwZMgQuLlZ11XuwQcfrLauY8eOJh8/YMAAq+onIsenmA67arUaarUaRUVF8Pb2ljscu6dSqRAbGyt3GCSC2vqXtGzZEhcvXoRKpbKLPi9Hjx7FxYsX0a9fP5w6dQoAFNUpmoikp5jkhciZmNtiYyg5MJZkSNXptm7dumjTpo3eOkeeP4qIbE8xl42IyDq2TiAsTY7stePw6NGj5Q6ByGkweSGiGkk93Lly+eYkTu7u7lKEYzUPDw98/vnncodB5BSYvBA5uJqSDEe7z4oSLhsJggAXF9M+Urt16yZxNETKxuSFyAHV9GVvTwmAKcnTxIkTdY/HjBlT4z5TpkzBDz/8IFpc9qJXr15yh0Dk0Nhhl0hGVRMORxt106VLF4vnE0tMTMTdu3fh6emJ/v3717jP9OnTrQlPEsHBwTh37pxVZdhToknkiBTT8sL7vJASvPnmm3KHoCP1pSc3Nze8/PLLGDVqlMlf5l5eXpLGVBsXFxekpaXJGgMRKSh54azSpAShoaE4cuQI9u7da9aN2yzlKH1jdu/ejfHjx2P//v1WlRMdHW3V8efPnzd4f6Q6deqY/H6y5YXIOrxsRGRnOnToAMD0LzixEhAx6xM7KXrsscfw2GOPiVqmJQIDAw1uGz9+PHbs2GHDaIicl2JaXoiciS1+uZuSgMjVghAREWHxsV999ZXow63XrVtX7cZ7RCQdJi9EdqpJkyay1m/LxMTclhprRiA988wzuH79usXH16R79+6ilkdExjF5IZKRsQShZcuWNozEMnL1mWnevLlVx9vbqK7Vq1fDy8sLoaGhcodC5BCYvBA5AGNftrZOINjZVHxPP/00rl+/joULF8odCpFDYPJC5IDESiCkmphR7lFMQ4cOtWl95v49atrfXudsIrJHTF6ICICyWlSefPLJGtdLdblISe8dkSOwu+QlLy8P0dHRCA0NRYcOHbBmzRq5QyKShSO3fNgjd3d3fPLJJ3KHoZOVlYXRo0cjOztb7lBMMnbsWLlDINKxu+TFzc0NCxYswPHjx7F161ZMmDABJSUlcodFJKuqv+y7du2qe1zRyiD2r38lJUBjx45FXl4eWrVqJWk95rxnPXr0wOLFi9GpUycJIzJP69atDW777LPP8MQTT9gwGiLD7C55ad68OcLDwwEAzZo1g5+fn+jDGokcnVqtxuOPP44uXbrg7bfflqSOBx54oMb1pnxBmzq7spSSkpJ0j59//nk0bdpUtLKddVTQV199JXcIRAAsSF6ysrLQv39/BAQEQKVSYd26ddX20Wg0CA4OhqenJ6KionDgwAGLgsvOzkZ5eTmCgoIsOp7I3lnaWtKgQQPs3LkTBw4cQEBAgMhR3ffQQw/Vuo+h+JOSktCgQQMAQJ8+fUSNy1Rz5sxBSkoKFi5cKPp9WDIyMkQtzxKGJrO0RkxMjNHtvr6+otdJZAmzk5eSkhKEhYVBo9HUuH316tVISUnBtGnTcPjwYYSFhSE2NhZXrlzR7RMeHo727dtXWy5duqTb5/r16xgxYgQWLVpkwcsiIlNIdWnI29sbp06dwsGDBzFkyBBJ6jBGpVLB29sb8+bNg1qtFr38qj+oxBhtZG4569evN6tOU8yaNUv0MomkYPbcRnFxcYiLizO4ff78+UhKSkJiYiIAIC0tDRs3bsTSpUsxadIkAEBOTo7ROkpLSzFw4EBMmjQJjz76aK37lpaW6p4XFRWZ+EqI7Jvc92+xtv6AgAAEBATgl19+saocsh0fHx+5QyAyiagXpsvKypCdna3X9Oji4oKYmBjs27fPpDIEQcDIkSPRq1cvDB8+vNb9U1NT4e3trVt4iYmUiENxiYj+R9TkpaCgAOXl5fD399db7+/vj8uXL5tUxp49e7B69WqsW7cO4eHhCA8Px9GjRw3uP3nyZBQWFuqWvLw8q14DEZEzMzbiiMhemH3ZSGrdu3eHVqs1eX8PDw94eHhAo9FAo9GgvLxcwuiInEdFh1sA8PPzk7Sumi5R1dZh+PXXX8e8efPg5eXFy8VETkbUlhc/Pz+4uroiPz9fb31+fj6aNWsmZlXVqNVqHD9+HAcPHpS0HiIx2fPloDfeeAO+vr5wc3Mz2DlUqn45kyZNwpYtW4zuM2XKFHz00UfYunWrJDGYg7f2J7ItUZMXd3d3REREIDMzU7dOq9UiMzMT3bp1E7OqajQaDUJDQ9GlSxdJ6yGylbCwMN3j3r1727x+b29vnD9/Hnl5eXr/v+YmXJWHKT/33HMmHZOamorg4OBa43vllVcQFRVlVjxiSUtLg4uLCwYPHoyGDRsCMD2Zs+ektbZBEkT2wOzLRsXFxThz5ozueW5uLnJycuDr64uWLVsiJSUFCQkJ6Ny5MyIjI7FgwQKUlJToRh9JRa1WQ61Wo6ioCN7e3pLWRWQL48aNw86dO1FQUIDPPvtMkjpq+7Jt0KCB3uUjS7Rr1w4rVqzAr7/+qhtxKDVbJAcvvfQSnn76aZuN0Gnfvj2OHTsmeT0ffvgh/u///k9vXb169UStw93dHWVlZaKWSc7F7JaXQ4cOoWPHjujYsSMAICUlBR07dsTUqVMBAMOGDcPcuXMxdepUhIeHIycnBxkZGdU68RKRcW5ubvjmm2/w008/mXTZtfKt20eNGmV2faZ+4VdNeEy52+wLL7yA2bNnK+4mZ40aNRI1UTJUlpubG9LS0qqt37dvn67Vp0WLFmjUqFGtddSWbEndv6l9+/b45z//KWkdUho8eLDcIRAsaHmJjo6u9ddacnIykpOTLQ7KEuywS85u+PDh2LNnD4qKipCSkmKTOlUqFTZv3mxwKgFH1KtXL/z4449yh6GnYsqUqrp27YqioiIUFxfDw8MDISEh+Pvvv20bnJP55ptv7Pqyn7OQfwISkbDDLjm7OnXqYMmSJVizZo1NWzhatmxps7psIT4+Xu4QdLp06YKWLVviyy+/NLpfgwYNUKdOHRtFZR0lTfhJ8lFM8kJEpDQ///wzcnNzERISItqXvj0kD40bNzZ5382bN0sYCTkqxSQvHG1Ejkgpzc9KumxkC6b+3VUqlVkzdDvK+TR//nyT93Xk/jEkHcUkL7xsRGQ+sX6FL168WJRylEYpAxVM6ZRtDlNnQq9bt67oI51IGRSTvBCRdaz51W5v/V7kaoGoOtrH1i3BUrzugIAArFy5UvRyTSHHjOTkGOxuegAiIjlZ0xpVtbOvuclE5XmF2rdvb3EcYjp//jzc3PhVQfZFMS0v7PNC5LjsoROpGFxdXU2a2NDQ6w0KCsKiRYvw3HPP4fvvvxc7PKOGDx9e43pHSFwWLlwodwhkY4pJXtjnhcg26tevr3tc0R9BKcmHPUhKSsLKlSurJUFSv8eVp6No3rw5AKBJkyai1yPF61Cr1Ta7txHZB8UkL0SOyFFGh1Sm0Wjg5uYGV1fXGu/6Sv9j6O9r73/3PXv2YNasWdi/f7+scZjzPs2bN4+zizsR+28PJCK7EhISgvPnz0MQBLRo0ULucKgSsZKiVq1a4c033xSlLFuqmCqBlI8tL0RObNasWbrH5nxZBQQE6CUuvGzkOF5++WW5QyCymmKSF3bYJTLfoEGDsHbtWmzatAndu3eXOxzR2PtlGTn169dP7hCIrKaY5IUddonM5+Ligvj4eMTFxckdiqwiIiLQunVrZGZmyh2K5FQqFR577DG5wyCyimKSFyIiS82dOxdnz55Fr1695A7FILEuzdnLHWs9PT3lDoEcGJMXInJ6tr7MJNdlrT59+qBDhw6y1F2VWBMudu7cWZRyyHxSDKU3FZMXIhmxb4b9UXLn4y1btsh+zlWMCIqOjq5xe+WWIUOxVtyHBqg+JQPZjpytZ0xeiIhEZM/Jj9iJi4+PD7y8vEze383NDUuXLtU979u3r0X1+vr66h7b8/tN0lFM8sLRRs6t8l1fw8PD5QuEqBIlXo6qPFN2fn4+Hn/8cZOPvXDhgt4M1V988QXee+89jBgxAnXq1MHo0aNRp06dWsuRu/WI5KeY5IWjjZxb3bp18dVXX2HYsGFIT0+XOxwyk9i/nvnlJp1du3Zh4sSJ+Pnnn+Hu7o6BAweafGzlyz3A/T4T77zzDpYvX47CwkIsXrxY5GhJqXiHXVKMZ555Bs8884zcYRBJIjAwUPfYz89PtjhCQkIwe/Zs3fORI0fi3LlzuH37NjZs2ICTJ09aVG7dunXFCpGcgGJaXoiIHIUlLUOtW7fGjBkz0KtXL+zYsUOCqCzj4uKC6dOnY86cOdi0aRMGDhyImTNnWlxe5XvQVL7ERFQZkxciG1Or1QCA7t27w81NGY2fcneaDAoKkrV+W3n77beRmZmJ9u3byx1KjVq1aoXvvvsOb731lsVlpKenIyIiAk888QQmTJggXnCkKExeiGzs448/xoEDB7B9+3a5Q1GMlStXyh0CiSQgIACHDh3Cli1b4O7uDgBYsmSJKGW3a9fO6PbvvvtOlHqcgZyXLgEmL0Q25+Ligi5dusDDw0PuUBSjR48ecodAEmrWrJko5TRt2tTodnM6H5O8mLwQkSIMHTpU9zgqKkrGSPQ9/fTTNqvLmlFW8fHxIkZiO+ZcspT78qYcunfvjq1bt8odhugUk7zwPi9Ezu2zzz7DW2+9hVWrVuHBBx+UOxydJUuWYM2aNTapy1jyMmXKFIPbsrKyEBwcLEFE0jD2Oiv6lNF9u3btQp8+fUQvt1WrVqKXaQ7FJC+8zwuRc2vcuDFmzpyJYcOGWVWO2L/OGzRogCFDhuits/V9aHbv3o3//Oc/NdbfuXNnRV12++ijj7B//365w7DInDlz5A7BZD179pS1fsUkL0RE5qg8Yqd169aildumTRvd45YtW4pWrjUee+wxuLg4x8e9q6urXV02NEdKSgomTpwodxgOwTnOZiKiKr7//ns899xzWLRokahDrdPT0xEQEIDWrVtj+vTpopXrzCpP+TFgwAD5ApGYi4tLra1gvXr1sqhssbtUREZGilqeuZi8EJFTat26NVauXImkpCRRy33ggQdw/vx5/P777/Dx8RG1bGcVEBCA77//HpMnT5ZlCoGK2ZMXLlwIAMjIyMDw4cNtHgdgeZ+eTZs2iRbDa6+9hsGDB4tWniWUcYcsIiI7opSbD9qTAQMGWNXq0rBhQ4uPPX78OE6fPo2YmBgAQGxsLGJjY7FixQqLy7RUxb1vzOXn5wdBEPDbb79ZdZPDe/fuwdXV1eLjxcKWFyKSnbe3Nzp06AAAmDRpkqyxcFJHZVq5cmWNyc8TTzwBAHjqqacMHtuqVSvExsba5Eu7tvOvT58+upm9P/30U8njqcoeEheAyQsR2QGVSoWsrCz8+OOPeP/99+UOR3JSJUjOkng9++yzusem3liuQYMGeOWVV/Cvf/1Lb/28efPw66+/4ptvvqmxngMHDlgVq9g8PDxw9OhR7N69G2PHjpU7HNmwbZOIrCbG8GJvb2/Zh1+SY0hJScHVq1fh5uZm1hd4nTp18PHHH+v1/1CpVAYvo3z55ZdGyxs1ahSWLl1qcv1iadKkCZo0aWLRsUpJcJm8EBGRQ/Hw8MD8+fPlDsPiBIKsZ3eXjW7cuIHOnTsjPDwc7du3R3p6utwhERERkR2xu5aXhg0bIisrC/Xq1UNJSQnat2+PwYMHo3HjxnKHRkROwBnnv3Em/Psqg921vLi6uqJevXoAgNLSUgiCwJONiMjB1Tajs9Qcpa+Ho8QpN7OTl6ysLPTv3x8BAQFQqVRYt25dtX00Gg2Cg4Ph6emJqKgos3tr37hxA2FhYQgMDMTEiRPh5+dnbphERHbLGb6gmjVrpnvcu3dvZGZmyhiN4fe84sey1JYsWQIPDw+994UsZ3byUlJSgrCwMGg0mhq3r169GikpKZg2bRoOHz6MsLAwxMbG4sqVK7p9KvqzVF0uXboEAPDx8cGRI0eQm5uLL7/8Evn5+QbjKS0tRVFRkd5CRCQWX19fhIeHY+fOnXKHUit7SoqysrLw2muvYc+ePdi+fbtVN0aTkq1mR46KisKlS5eQm5trk/qUzuw+L3FxcYiLizO4ff78+UhKSkJiYiIAIC0tDRs3bsTSpUt1N5/KyckxqS5/f3+EhYVh165d1WZlrZCamop3333XvBdBRGSi06dPs8+dBUJCQuxiRJA98fX1lTuEalq0aIGLFy/KHYbZRO3zUlZWhuzsbN0tlIH7E03FxMRg3759JpWRn5+PmzdvAgAKCwuRlZWFtm3bGtx/8uTJKCws1C15eXnWvQgiokqYuJCS1a1bV+4QLCLqaKOCggKUl5frbl1cwd/fHydPnjSpjPPnz2PMmDG6jrrjx4/HI488YnB/Dw8PeHh4QKPRQKPRoLy83KrXQETmY6d6chTOfq7a06VFa9jdUOnIyEiTLytVplaroVarUVRUBG9vb/EDIyKygoeHB0pLSwFYN0kgOS8xZ4au4KjJjKiXjfz8/ODq6lqtg21+fj57WBMpmLP/mjXFtm3b4O7ujpYtW+LFF1+UOxwy4JtvvkHXrl2xZs0aWeo3lkwY62/qbERNXtzd3REREaE3JE6r1SIzMxPdunUTs6pqNBoNQkND0aVLF0nrISKyRI8ePXDp0iX8/vvv8PT0lDscMmDw4MHYt2+fwUEilUVHR+sejxo1yui+TPDFZXbyUlxcjJycHN2lndzcXOTk5ODChQsA7k+YlZ6ejuXLl+PEiRMYN24cSkpKdKOPpKJWq3H8+HEcPHhQ0nqIiCzVuHFjuLu7S1b+hx9+KFnZjqbqD2YpLo/Exsbigw8+wNixYzF37lzRyyfDzO7zcujQIb2ZX1NSUgAACQkJWLZsGYYNG4arV69i6tSpuHz5MsLDw5GRkVGtE6/Y2GGXiMTgyL+Q+/bti82bN+Ps2bNITk42uF9qaip69OgBAJg9e7atwrOpzZs3w8fHR9I6VCoVJk+ebNK+jnxe2SOzk5fo6Oha/wjJyclG/3GkwA67ROTsVCoV+vbtixMnThjdr3v37sjMzIRWq9W79KEkcnwPhIaG4vjx4zav1xnZ3dxGRERknbZt26JNmzYAgPfee6/GfXr16oWYmBiHHW1iKXtvATH3viuLFy+WKBL7xuSFiEhhXFxc8PPPP2PHjh14++235Q6HzPD4448jLCwMLi4uJo1KGz16tFnlS30pzVYUk7xwtBER0f/4+voiOjoaLi6K+ZhXtODgYAD3E8/s7Gz89ddfiI+PF72e5s2b4+2338bDDz+MrKws0cu3FcWc1RxtREREjqh///7IyMjQPXd1dUXTpk0REhKiW2fsTvPmmjFjBo4dO6brtO2IFJO8EBERGSL3XY2N9bVZv359jXP4Pfjgg/jkk0/w9NNPY926dQaPHzhwoAgROhYmL0REpEibN29Gw4YNMWDAAHTs2FHy+qToDJycnIzVq1ejdevWBvdZuXKl6PXaO7ub28hSvM8LkXzsfQQHOae+ffvi2rVrqFOnjm6dvZ2rYtxYsF69eiJE4lgU0/LCPi9ERFRV5cRFapYkRmq1WoJIlE8xyQsRkRjs7Zc5EVXH5IWIiIj0tGjRAitWrJA7DIMUk7zwPi9ERGSvHK1Fz8fHBy+88ILcYRikmOSFfV6IiIik88orr8gdgo5ikhciIiKSTsVdgO0BkxciInIacl2+MVSv3JeTPDw8alwvd1y1YfJCRETkpJYvXw7g/pxKDz74oMzRmI7JCxERkZPq1KkTTp06hbNnzzpU8sI77BIREYnA3i+1GPLQQw/JHYLZFNPywtFGRPJx1A9tIqqZvf9PKyZ5ISIiIufA5IWIqBJ7/8VJ1uHf1zCVSiV3CCZj8kJEREQOhckLERGRxNzcFDM+xi4weSEiIpLYww8/LHcIisLkhYiISEIvvviiwf4k9toHpyKuV199VbcuNjZWrnCqYTsWERGRhBzlklFNCdb7778Pf39/PPTQQwgNDZUhqpoppuVFo9EgNDQUXbp0kTsUIiKyU66urpKVPWHCBMnKlkuDBg0wefJkxMfHyx2KHsdIB02gVquhVqtRVFQEb29vucMhIiI7FBISgvDwcOTk5OCjjz4StewXX3wRpaWl8PDwwIQJE1BaWipq+bZkr5ezKigmeSEiIqqNSqXC/v378ccff6Bdu3ailu3m5qbrI/Laa6+JWrYt8D4vRORU7P1XGlFlHh4eoicuVT399NO6x48++qikdTkjtrwQkdWUlLwo6bWQfD788EOUlZWhSZMmeP755+UOR3GYvBAREYnM19cXX331ldxhKBYvGxEREZFDYfJCREQkE16mtAyTFyIiItJj70mV3SYvt27dwgMPPIA33nhD7lCIiIgUr/JQaSYvFpoxYwa6du0qdxhERERkZ+wyefn9999x8uRJxMXFyR0KERGRU1D0TeqysrLQv39/BAQEQKVSYd26ddX20Wg0CA4OhqenJ6KionDgwAGz6njjjTeQmppqbmhERETkBMy+z0tJSQnCwsIwatQoDB48uNr21atXIyUlBWlpaYiKisKCBQsQGxuLU6dOoWnTpgCA8PBw3Lt3r9qxW7duxcGDB/HQQw/hoYcewt69e2uNp7S0VG/+iKKiInNfEhERETkQs5OXuLg4o5dz5s+fj6SkJCQmJgIA0tLSsHHjRixduhSTJk0CAOTk5Bg8fv/+/Vi1ahXWrFmD4uJi3L17F15eXpg6dWqN+6empuLdd98192UQERGRgxK1z0tZWRmys7MRExPzvwpcXBATE4N9+/aZVEZqairy8vJw7tw5zJ07F0lJSQYTFwCYPHkyCgsLdUteXp7Vr4OIzGPvIxPMoaTXQqRUoiYvBQUFKC8vh7+/v956f39/XL58WcyqdDw8PODl5YUVK1aga9eu6N27tyT1EBERiU2sZHndunUIDg7Ge++9J0p59s4uRxtVGDlyJObOnWvSvmq1GsePH8fBgwcljoqIiMhyFV0d/vnPf6Ju3bqilPnUU08hNzcX77zzjijl2TtRkxc/Pz+4uroiPz9fb31+fj6aNWsmZlVEREQOacqUKTh69Ci2b98udyh6BgwYoHv8zDPPyBhJ7USdVdrd3R0RERHIzMzEwIEDAQBarRaZmZlITk4Ws6pqNBoNNBoNysvLJa2HiIjIGiqVCu3bt5c7jGpGjx6Ns2fP4vbt25g8ebLc4RhldvJSXFyMM2fO6J7n5uYiJycHvr6+aNmyJVJSUpCQkIDOnTsjMjISCxYsQElJiW70kVTUajXUajWKiorg7e0taV1ERERK4+rqilmzZskdhknMTl4OHTqEnj176p6npKQAABISErBs2TIMGzYMV69exdSpU3H58mWEh4cjIyOjWideIiIiIkuYnbxER0fX2js6OTlZ8stEVfGyERERkXOw69FG5uBoIyIiIqBHjx4AgGeffVbmSKQjaoddIiIiktcPP/yArKwsRd/3TDEtLxqNBqGhoejSpYvcoRCRA+MddsnReXt7o3///qhXr57coUhGMckLLxsRyYdf+ERkS4pJXoiIiMg5MHkhIiIih6KY5IV9XoiIiJyDYpIX9nkhIiJyDopJXoiIiMg5MHkhIiIih6KY5IV9XoiIiJyDYpIX9nkhIiJyDopJXoiIiMg5MHkhIqokPj5e93jGjBkyRkJEhnBiRiKymqurq9whiCY4OBhZWVk4c+YMnnvuObnDIaIasOWFiKzWoUMHPPLIIwCAtLQ0maOxXo8ePZCYmAgPDw+5QyGiGiim5UWj0UCj0aC8vFzuUIicjkqlwsGDB3HhwgWEhITIHQ4RKZxKUNh0sEVFRfD29kZhYSG8vLzkDoeIiIhMYM73Ny8bERERkUNh8kJEREQOhckLERERORQmL0RERORQmLwQERGRQ2HyQkRERA6FyQsRERE5FMUkLxqNBqGhoejSpYvcoRAREZGEeJM6IiIikh1vUkdERESKxeSFiIiIHAqTFyIiInIoTF6IiIjIobjJHYDYKvofFxUVyRwJERERmarie9uUcUSKS15u3rwJAAgKCpI5EiIiIjLXzZs34e3tbXQfxQ2V1mq1uHTpEho2bAiVSlXjPl26dMHBgwcNlmFoe1FREYKCgpCXl+dQw7Bre732WI81ZZl7rKn7m7KfsX14XtlHXZaWxfPKdpzpM8tezytj26U6twRBwM2bNxEQEAAXF+O9WhTX8uLi4oLAwECj+7i6uhp9w2vb7uXl5VAfBrW9Hnusx5qyzD3W1P1N2c/YPjyv7KMuS8vieWU7zvSZZa/nlSnbpTi3amtxqeCUHXbVarVV2x2NrV6PmPVYU5a5x5q6vyn7GduH55V91GVpWTyvbMeZPrPs9bwypy45KO6ykZR4916SAs8rkgLPK5KKPZxbTtnyYikPDw9MmzYNHh4ecodCCsLziqTA84qkYg/nFlteiIiIyKGw5YWIiIgcCpMXIiIicihMXoiIiMihMHkhIiIih8LkhYiIiBwKkxeRbNiwAW3btkVISAgWL14sdzikIIMGDUKjRo0wZMgQuUMhhcjLy0N0dDRCQ0PRoUMHrFmzRu6QSAFu3LiBzp07Izw8HO3bt0d6erpkdXGotAju3buH0NBQ7NixA97e3oiIiMDevXvRuHFjuUMjBdi5cydu3ryJ5cuXY+3atXKHQwrw119/IT8/H+Hh4bh8+TIiIiJw+vRp1K9fX+7QyIGVl5ejtLQU9erVQ0lJCdq3b49Dhw5J8l3IlhcRHDhwAA8//DBatGiBBg0aIC4uDlu3bpU7LFKI6OhoNGzYUO4wSEGaN2+O8PBwAECzZs3g5+eH69evyxsUOTxXV1fUq1cPAFBaWgpBECBV+wiTFwBZWVno378/AgICoFKpsG7dumr7aDQaBAcHw9PTE1FRUThw4IBu26VLl9CiRQvd8xYtWuDixYu2CJ3snLXnFlFNxDyvsrOzUV5ejqCgIImjJnsnxnl148YNhIWFITAwEBMnToSfn58ksTJ5AVBSUoKwsDBoNJoat69evRopKSmYNm0aDh8+jLCwMMTGxuLKlSs2jpQcDc8tkoJY59X169cxYsQILFq0yBZhk50T47zy8fHBkSNHkJubiy+//BL5+fnSBCuQHgDCd999p7cuMjJSUKvVuufl5eVCQECAkJqaKgiCIOzZs0cYOHCgbvurr74qrFy50ibxkuOw5NyqsGPHDiE+Pt4WYZKDsfS8unPnjtCjRw/hiy++sFWo5ECs+byqMG7cOGHNmjWSxMeWl1qUlZUhOzsbMTExunUuLi6IiYnBvn37AACRkZE4duwYLl68iOLiYmzevBmxsbFyhUwOwpRzi8hcppxXgiBg5MiR6NWrF4YPHy5XqORATDmv8vPzcfPmTQBAYWEhsrKy0LZtW0nicZOkVAUpKChAeXk5/P399db7+/vj5MmTAAA3NzfMmzcPPXv2hFarxZtvvsmRRlQrU84tAIiJicGRI0dQUlKCwMBArFmzBt26dbN1uOQgTDmv9uzZg9WrV6NDhw66fg0rVqzAI488YutwyUGYcl6dP38eY8aM0XXUHT9+vGTnFJMXkQwYMAADBgyQOwxSoO3bt8sdAilM9+7dodVq5Q6DFCYyMhI5OTk2qYuXjWrh5+cHV1fXap2O8vPz0axZM5miIiXguUVS4HlFUrC384rJSy3c3d0RERGBzMxM3TqtVovMzEw23ZNVeG6RFHhekRTs7bziZSMAxcXFOHPmjO55bm4ucnJy4Ovri5YtWyIlJQUJCQno3LkzIiMjsWDBApSUlCAxMVHGqMkR8NwiKfC8Iik41HklyRgmB7Njxw4BQLUlISFBt88nn3witGzZUnB3dxciIyOF/fv3yxcwOQyeWyQFnlckBUc6rzi3ERERETkU9nkhIiIih8LkhYiIiBwKkxciIiJyKExeiIiIyKEweSEiIiKHwuSFiIiIHAqTFyIiInIoTF6IiIjIoTB5ISIiIofC5IWIiIgcCpMXIiIicihMXoiIiMih/D+qWy4SQUeHzgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit this, we'll write a convenience function that can take the power spectrum, a model, some starting parameters and just run with it:" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDLogLikelihood, PSDPosterior, PSDParEst\n", + "\n", + "def fit_powerspectrum(ps, model, starting_pars, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + "\n", + " if priors:\n", + " lpost = PSDPosterior(ps, model, priors=priors)\n", + " else:\n", + " lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m)\n", + "\n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + "\n", + " return parest, res\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see if it works. We've already defined our model above, but to be explicit, let's define it again:" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "model_to_test = models.PowerLaw1D() + models.Const1D()\n", + "model_to_test.x_0_0.fixed = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we just need some starting parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [80, 1.5, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([108.97152923, 2.07017797, 2.00200459])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like it worked! Let's plot the result, too:" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaiklEQVR4nO3de1gUZf8/8DcHAU+AiKIoRqaZZIKhoKVPaBjylOYxO5mpYdpiGmVpT+o3y0fzlJVb5unR/FmZVlYe0CINj6kYpXkqQyVNFE0QVFD2/v2xsu3C7rKHmZ3d2ffruuZyd+ae+/6wjPBh5j74CCEEiIiIiDyEr9IBEBEREdmDyQsRERF5FCYvRERE5FGYvBAREZFHYfJCREREHoXJCxEREXkUJi9ERETkUfyVDkBqOp0OZ86cQf369eHj46N0OERERGQDIQQuX76MyMhI+Ppav7eiuuTlzJkziIqKUjoMIiIickB+fj6aN29utYzqkpf69esD0H/xwcHBCkdDREREtiguLkZUVJTh97g1qkletFottFotKioqAADBwcFMXoiIiDyMLV0+fNS2tlFxcTFCQkJQVFTE5IWIiMhD2PP7m6ONiIiIyKMweSEiIiKPoprkRavVIiYmBp06dVI6FCIiIpIR+7wQERGR4tjnhYiIiFSLyQsRERF5FCYvRERE5FFUk7ywwy4REZF3YIddIiIiUhw77BIREZFqMXkhIiIij6KahRndQWFhIVasWIGwsDA89thjCAgIUDokIiIi1WHyIqGxY8fi448/BgCUl5cjLS1N4YiIiIjURzWPjdxhtFFl4gIAR44cUSwOIiIiNVNN8qLRaHDo0CHs3btX6VCIiIhIRqpJXoiIiMg7MHkhIiIij8LkRSE6nQ4//PADjh8/rnQoREREHoXJi0LGjRuHpKQktGrViv10iIiI7MDkRSHvvfee4fW2bdsUjISIiMizMHmRyfnz55GSkoK2bdviq6++UjocIiIi1VDNJHVarRZarRYVFRUubffAgQN4+eWX4efnZ7L/s88+Q1lZGQAgLS0NDz/8sEvjIiIiUivV3Hlx1Twv//vf/3D33Xdj6NChuHr1KqZMmYLMzEysX7/epFxl4gLo78IQERGRNFSTvLiCTqfD8OHD8dNPP+Gjjz7CunXr8Pvvv0vaRklJCfr27Yu77roLGzdulLRuIiIiNVDNYyNX0Ol0Ju8vXbokeRtff/21oY/MyJEjkZ+fL3kbREREnox3XpwwcuRIHDhwQNI6S0pKDK///PNPm865ceMGXnvtNTz55JNcU4mIiFSPd15UYP369Zg2bRoA4MKFC3zcREREqsY7LypgfIcmMzNTwUiIiIjkx+SFiIiIPAqTF6pm3759mDBhAnJzc5UOhYiIqBomL7YSApBovpaqHXHXrFkDIYRddRw5cgQzZ87Er7/+KklMlSoqKpCamoq33noLDz30kN1xERERyc3tkpf8/HwkJSUhJiYG7du3x+rVq5UOSe/jj+HXti2ecfD0ixcvGl7//PPPJsd27dpl0/pG5eXl+Omnn3D9+nXcf//9eOWVV9C9e3eUl5c7GFV1ZWVlKCwsBACcPn1asnqJiIik4nbJi7+/P+bNm4dDhw5h8+bNGDduHEpLS5UN6vx5YOxY+BQVYRGALAC32VnFhg0brB4/evSo1eMVFRW46667cPfdd+O+++7DmTNnboZ23vCaiIjIG7hd8tK0aVPExcUBAJo0aYLw8HCTuxaKGDsWuHDB8LYHgAMAXgTgZ+mcKoyXC3BEZmYmjh07BkB/p8bYunXrajy/oqICxcXFTsVARETkDiRPXrKzs9G7d29ERkbCx8cHa9eurVZGq9UiOjoaQUFBSExMxJ49e8zWlZOTg4qKCkRFRUkdpu1u3ABq1aq2uzaA2QB2A2hvQzUnTpzAiy++iLfeegtXr161Owxrc7cYT2xnTnFxMdq0aYPw8HAsXbrUaln2cSEiIncnefJSWlqK2NhYaLVas8dXrVqFjIwMTJkyBfv370dsbCxSUlJw7tw5k3IXL17EU089hYULF1ptr6ysDMXFxSabpPz9geXLgY0bIVq0qHa4I4B9AKYCCLBSzZtvvom5c+diwoQJWLlypc3NV34utcwkULb67rvvcPz4cVy/fh0jRoywWK5BgwaoV6+ew+0QERG5guTJS2pqKt58803069fP7PG5c+ciLS0Nw4YNQ0xMDBYsWIA6deqY3BEoKytD3759MWHCBNxzzz1W25s+fTpCQkIMm2x3aXr1QkVuLt4FoKtyqBaASQByAViPVu/UqVMWj125csXk/eHDh+0K05wbN26YvK+6RhMAfPPNN7Ks1URERCQ1l/Z5KS8vR05ODpKTk/8JwNcXycnJhn4cQgg8/fTT6NGjB4YMGVJjnRMnTkRRUZFhk3Uhw/r1MRZAVwDmUoq2ALYBeBeAo/cvJk2a5OCZlvn6mn6bLxj136mUk5MjebtERERycGnyUlhYiIqKCkRERJjsj4iIwNmzZwEAO3bswKpVq7B27VrExcUhLi7O6uKHgYGBCA4OxooVK9C5c2fcf//9sn4NALALQAcAbwC4XuWYL4AxAA4CSHGgbjnuHPn4+NRYJiDA2kMvIiIi9+F2o426du0KnU6H3Nxcw3bXXXfVeJ5Go8GhQ4ewd+9eWeJ6/vnnTZKuMgCTAcQDMNfiLQAyASwHECZLRERERN7JpclLeHg4/Pz8UFBQYLK/oKAATZo0capurVaLmJgYdOrUyal6LPn111/NDtk+AKAL9MOmr1Q7CjwF/SOmR2SJyjHHjx9XOgQiIiKHuTR5CQgIQHx8PLKysgz7dDodsrKy0KVLF6fqlvvOi7XZZisAzIV+yPQWM8cbA1gFYC2ASAt1zJgxA2vXrpWkg25NunTpgk8//VT2doiIiOQgefJSUlJieNwDAHl5ecjNzTWMsMnIyMCiRYuwfPlyHD58GKNHj0ZpaSmGDRsmdSiSmjVrVo1ljkM/gV0agCIzxx8GcAhAv8JCVO2F8scff1gcoSWHyZMnu6wtIiIiKflLXeG+ffvQvXt3w/uMjAwAwNChQ7Fs2TIMHjwY58+fx+TJk3H27FnExcUhMzOzWidee2m1Wmi1WlRUVDhVjxQWA9gAQAugb5VjIQBeO3UKXaFPcn53bWgGf/31l0ItExEROUfy5CUpKanGWVrT09ORnp4uabsajQYajQbFxcUICQmRtG5HnAHQD8BAAPMBVE3NkgD8AmAK9I+clE+5iIiIPIPbjTZSmzUAYgAsM3OsNoCZAH6EbUsMSMnf/5+89bfffsN//vMfF0dARETkGNUkL3KPNnLGRQDDoJ/35YSZ4/HQLzHwJoBAF8WUlJRkeG1vf6NVq1ahUaNGGDRoENdCIiIil1NN8iL3aCMpbAbQDsA7ML/EwH8A/AzgXy6IpW7duobXO3bssOvc4cOHo7CwEGvWrMGvv/4qdWhERERWqSZ58RSlAMYBuBf6kUdVtQHwA4BFABo42EbVTsulpaUO1mSe8fpL165dq7H8gQMHsGfPHt6lISIiSTB5Uchu6JcYmIrqSwwAwDPQT27XKCsLsPOX/rhx40zeDx061KEYzXnhhRcsHrtw4QLGjBmDiRMnGpKaXbt2oX379khMTMRXX30lWRxEROS9VJO8uHOfF0vKoR9tFA99p92qIgDEvPEG8O9/o0GRuZljzJs/f740AZoxb948i8fmzp2L+fPnY8aMGVi5ciUA4L333jMcnzp1qmxxERGR91BN8uIJfV4sOQDgHugXdLxsrkBmJl5ZsQIZAPzMHP7zzz9ljM66ffv2YdCgQVi4cCGWLl1q2P/tt98CAK5evWrY9/fff1us59q1a9DpqvYEIiIiqk41yYun00E/H0wMAHMPVwJv3MAcAHsA3O3KwGowevRorFmzBs8++6xhZXB7bd26FU2aNEHbtm1RXFwscYRERKQ2TF7czJ/Qz8rbH/qJ7qq6G/oEZjaAumaOV8rPz8fZs2fx1FNPSR6j1MaNG4eioiIcO3YMK1asUDocIiJyc0xe3NSXANoCeN/MMT/oV7E+CCDVwvmlpaWYPXu2ZMnAn3/+iZKSEpvLV454ysvLq7Hszz//bHhdWFhof3BERORVVJO8eGKH3ZoUA9AAWDR0KMzNphIN/RpKH0O/cnW18yV6BLNy5Uq0aNECzZs3t/mcNWvWQKfTmSQmREREUlBN8uLJHXZrMvazz9AB+knszM2q8hiAIwBGACarVQcGSjNf77hx4yCEQJEdI54A4MMPP5SkfSIiImOqSV7UrEmTJrgO4L/Qr4G0xUyZBtCvZr0F+onupOToo5znnntO4kiIiIiYvHic3wD0gH6tpItmjt8H/WrV4fPmodaNG64MzSHHjh1TOoQanTt3TukQiIjICJMXG0VFRSkdgollAO4AsNLMsQAA4R9+iPQFCyx26HUHx44dQ5s2Ut8nklZ6ejoiIiIwevRopUMhIqKbmLzYKC4uDosWLVKkbUsjds4DeBL61arNlWgJfYfeNQCaVTkmhMCpU6cUXW9o2bJlLmlHCIE5c+bglVdewaVLl+w6V6vVAgAWLFggQ2REROQI1SQvrhht9Mwzz2DJkiWy1e+oytWq34L5dZIGQN+hNwOA/819H3/8MW655RYMGjTINUGacf26uWilt3nzZrz00kuYOXMm3n33Xeh0Os7mS0TkwVSTvKh5tJEtrgCYAP1ij9lmjtcDMAdADoAuRvs///xz+YOTyfLly/Gvf/2rxgUfZ86caXg9ZcoUtGrVCrfddhtOnTold4hERCQD1SQvpPcr9J12n4b+sVJV7QHsBLAIQJjrwjIoKSnB0KFDMWjQIBQUFFQ7/sYbb1g9/9q1a8jOzkZ5eTmefvppbNu2DU8++aTVc77//nuT93l5eThx4gSmTZtm/xdARESK86+5CHmi5QC+ATADQJqZ489AvwzB+JtlXdXzZdGiRfjoo48sHq+oqMAff/yBli1bmj3es2dPbN++Hf369TPss2fmX2O5ubkOnUdERMrinRcVuwhgJPQrVpub5zYcwP8A/ADgTgt1XL5sdp1rh23btq3GMkeOHDG7XwiB7du3AwC+/PJLSeMiIiLPweTFC+wCEA/gBQDmUpFuAH6Cvk9McJVjYWGuf7g0ZcoUl7dJ5OlOnDiBNWvW4No1c/Nwk7f766+/7J4lvSohBL766iusW7dO0ZGqAJMXr1EBYB70iz2uMXO8FvSjkY4CGIJ/lhmoXGBRsjhsqG/fvn2StkmkduXl5WjXrh0GDRqE1157TelwyA0cPnwYWq0WFy9exN69exEVFYWoqChcuHDB4TozMzPRt29f9O7du1pfQldj8iKjxMREpUOo5jSAQdCvRv2HmeNNAHwEYDv0I5ekdOLECXz99dcS16qc2bNno0uXLtiyxdyCDUSuc+TIEZSWlgIA5syZo3A0JKWrV6+iW7duiI2NxZkzZ2w6R6fTISYmBunp6RgyZAgGDhyIiooKXL58ucZBEdYYJ8ZTp051uB4pMHnxUpnQ93N5A0CZmeP3ANgH4AMoMyrJ3ZWUlGD8+PHYvXs3Ro0ahc8++wwvvvii2RFUAJCfn48VK1ZIttI3ea7vvvsOjzzyiKH/FrleSUkJli5disOHDztcR3FxsSR3pmua7+qtt97C9u3b8csvv+DZZ5+1qc4rV64YXm/YsAEXL/6zmExlkuvpVJO8uGKSOrW5BmAy9EnMOjPHfQGMAnDs5r9KXizXrl1DaqrlxQ6+/fZblJSUYPLkyahduzYyMjJknQTv6tWrhtfHjh3D4MGDMXfuXAwbNqxaWSEE4uPj8dRTTyEkJAQzZ87kJHkqY3w91KRnz55YvXo1unXrJmNEytDpdDh69Kji/SFqMm7cOIwYMQIxMTEoKzP355t1Go0GISEhiIqKQnl5ucmxI0eOYNmyZYZRkOXl5fj111/NfiZZWVkIDw/Hgw8+aHJ869atmDdvHi5fvmySYO3cudPpnx2LFy922QShshIqU1RUJACIoqIiWepfsmSJgH5kcY1bYmKizWXdYfs3IH4DhLCw7QfEPS6KxZHPvUOHDibvly9fbrgezG0JCQk1fr8txVRQUGBz7BUVFdXKDBkyxPGLkNzK66+/Lvz8/MSkSZNqLHvixAmr14qjfv75Z1nqtdeTTz4pAIj09HTFYrCF8We1cuVKi+Vu3Lhh8r68vFz85z//MTl/0aJFhuPXrl0z7E9LSxNCCHHvvfcKAOK///2v1Ti2bNkijh07Jvbv32/Y9+yzz4pHHnnEpNztt98uSkpKqtW1e/du8f333wudTicuX75sck7dunWr1VH1azPn4sWLIj8/XwghTOICIP71r3/VeL697Pn9zeTFTmpOXgCIQEBMBEQJLCcxywHRROY41q1bZ/K5v/rqq3bX0aZNm2r/aY03JZMXc+XIM9nzPW3RooWk18D+/fvFzJkzxXfffSf7tXXw4EFx4cIFk32//fab+PDDD8XFixeFEPZ9FkoyjjMoKKjacZ1OJ/r06SMaNmwotm7datg/b968av+PZ82aZTh+8OBBk2MXL140eZ+fny9Onz5tNg5LW9XkBYCYMmWKSbzGyeumTZuqJS/mNuO4zSksLBT169cXvr6+YteuXdXOZ/IiMTUlLzExMZIkAo5szQHxKSwnMJcB8SoggmRqPzw83PCZnzx5UoSFhUnehr3Jy/Tp08W3334rtmzZImbOnGmx3qrsSV6KiorErFmzqiVv5Jjr16/L3kZN39NKCxcutOkasNX169cN9TRu3LjGeq9cuSLef/99sXnz5mrHZs6cKZKSksRPP/1k9twvvvhCABANGjQw/NWv0+lEUFCQACD69OkjhLD9s5g/f76YNGmSKC0tNdm/f/9+MWLECJOEwVhhYaFYuHChOHnypNX6a1LT92H79u0mx1etWiWuXr1q9v+xteSlsLDQ7DkvvfSS2TjMbeaSl2effdYk3t69exuO3XLLLTYlL5Vft06nE0IIsWPHDrFw4UJx5coVIYQQ48aNs3oukxeJMXmRdksCxAFYTmJOAOJRmdquJNfnYJy8XLt2TaxevVocPXrU5PvtTNyV7Ele/u///k8AEL6+vuKPP/4wW6byh42Sdu7cKYYPHy52796tdChm6XQ60bt3bxESEiK+/fZbWduq6XsqhLD4y8Sc/fv3i7S0NJGdnW213fPnz9t8DQohxGuvvWY4/vvvvxv2nz592rC/Xr16NX6N06dPF0IIUVZWZrK/6t1ISzZv3mwoM3bsWIvtGDt79qx46qmnDMeaNGli9bOpSdXPq/LOUaWvv/66Wpnx48eb/ayTk5MN51X9/ZCVlWXxe7Rv3z6bfp6YS16GDh1qEq9x8mLP9uyzz4rIyEixePFiw74JEyYIIYQYMmSI1XOZvEhMLcnLgAED3CJ5ASD8ATEWEJdgOYnZCYhEids9ePCgeOihh2T92oqLi4UQQkyaNEkA+h/exteOI3VWZSl5WbNmjRgwYIDIyckx297ChQur1bVz504RGRkpevXqJSoqKmS4wm1j6evNzs4W99xzj5g/f76s7df0vH7Pnj1WvydSqqmd3Nxc8eOPP9p0rQghDH23mjVrZrVde5MX4+Nz5swReXl54sUXXxRz5syx61wA4vTp09WSl6qPaC2p7Bdjrpyl/eZ+OVuzdu1aMWLECHHs2DGbvp5NmzYZ/ijIzc21+07vvHnzRK9evartDwkJcfpnlLnkBdDfna78A8fR5MXS9scff9RYhsmLxNwpebn//vsdvnjGjRvnNslL5dYYEIsBUQHLScxKQERJ1F7Pnj1l/5pefvllIYTpD7NNmzYZvt+O1FmVpeTF3DnG+8wlLx07djQcz8zMlOEKt42lr9d4f1lZmWTt7dixQyxfvlxcu3ZNPPzwwyIsLExs2bLFYnnjv+4BCJ1OJ06fPi2mTZtm8dGIo6x976v2RanpWqmpPmPnzp1z+BqcM2eOaNu2rcVzL126JEaPHi2mTp0qdDpdtTKPPfZYteTFWgznzp0TX3zxhSgtLRVt2rSx6fqxtL+mz+bo0aOGMlFRUUKr1YrbbrvN0DHX0ufWrl07kZeXJ/vPHHs3Hx8fi8datWolhJA+ebFlu/XWW61en45g8mLjF+8IW5OXwMBA8eWXXzp8YaxZs8btkpfKLQ4Q38NyAnMFEFMBUdcNYrVlO3TokMn7TZs2iWvXrgkhpElezP3wN3dO1XLGoxgqGR9ftmyZLNe4LSx9vcb7zY2IEEL/i3ThwoVi0aJFhr92v/jiCzFhwgRx/vz5auVPnjxpqLNPnz5WP+tKVZOXO+64w+S9lI/erMVTu3Ztu66VmuozZmvysm7dumrHq95tMd7KyspErVq1DO/vvvvuamWSkpJMHjfVFEPlz7Jhw4ZZTF7+/PNPk/3Gd9fM1f/FF1+Y/VyaNm1qMab8/HxZfoYouWVkZCjWttSYvNj4xTvCluRl+vTp4tKlS0IIx375zZw5U1RUVLht8lK5PQzrQ6vPAGI4IPzcIFZrW5cuXUzeP/jggyIgIECMHDlSkv/QtiYvM2bMMNm3ePHianUZH3d18vLDDz+IxMRE8c4771j8eo33W0peVq5caSizatUqcerUKcP7fv36GcpduXJF6HQ6MXfuXIufW69evUzaOX78uJg2bZrQarVWP29bhonaqupncf78ebFgwQJx4sQJ4e/vb9e1Yq4+S2xNXswdt5a8OHPHuGoM5n5eVk1eXn31VZM+F5VbUlKSOH/+vElfnZo+vxs3bkgSOzfbv8dS8vjkpW/fviI0NFQMGDDA7nOVSF6qZvrvv/++ofz7779v9wVx6NAhIYR8HVWl3GoB4gVA/A3LScyvgOjjBrFa2qr+VS71f2hbk5eq+2pKXtLS0kRhYaEs17k5tny9xvstJS/Gj766du0q1q5da3Le559/LgYMGCACAgJEQkKCmDVrltXP7pVXXhE6nU5cvXpVRERE2PQ9spa85OXlif79+4tNmzaJ3bt3ix07dli9U1P1s7jvvvsEANGoUSOnk5c1a9YY5tmoytbh+uaOP//887L/vzpz5ozsbXz66adixYoVYtGiReLKlStWE11u0m9S8/jkZcuWLeLrr7/2iOTlueeeE+Xl5Sb7jJMXIey/+1L5w0rpC9OerSEg5gPiOiwnMdvhuknu7NmkThKrsiV5qXoNATUnL4B+6GpZWZm4ePGimDBhgtUJtxyh0+kMnQItxV5SUiI++OADsWPHjmr7zakpeam61XQn4N577xXt27cXoaGhNn+PqiYvFy5cENu2bbPYP2nHjh0WP5+q33vj984mL5VbTk6O+PDDD8XYsWMNCevZs2et1qvT6cTAgQMV+T8FoNqjO27q26Tm8cmLEPoExhOSl3PnzgkhTH/gOJu8OHqeO2xtAbEBlhMYAYi1N8spHatc29GjR03+UrcleRkwYEC1fbYkLwDE9u3bxRNPPGF437BhQ5GcnCyuXLki/vvf/4oxY8Y4/P9h8ODBAoCYOHGi3Z+DLcnLvffeW2PyEhcXJ/n3yHiklvFjK0t3eeLj4w3lr1+/LpYtWyauXr0qNmzYYFJu+PDhJu/9/PysxlE5D82hQ4fEqVOnxN9//11j7I8++qjIz88Xf/31l8UyQgjx7bffKvr/wBV3d7gpu0lN0eTlhx9+EA899JDhUcqXX35Zrcz8+fPFLbfcIgIDA0VCQoL48ccfq5XxlOSlckSF8T5nkpfatWs7dJ67bT0BkQPLCcwN6EcuNXODWOXYnn32WVFcXCwOHjxocXKrmrZRo0ZVu/7Mldu2bZvZ/cYdLW2Zrr2goED8/fffDl+7VbeqE5BV6tSpk6GMLclLbGys5N+f06dPi5deesnmzo7GyYvxfmd/QT/66KNi/fr1Dp07evRoi8f+/PNP8fbbb0v+uXHjZrxJTdHkZcOGDeI///mPYUbGqsnLp59+KgICAsTSpUvFr7/+KtLS0kRoaKgoKCgwKWdr8nLt2jVRVFRk2Cp7k3tr8jJo0CDFL+jKzQcQjwHiOKyPTJoFiHA3iFfqrTKBb926tcN1GE8lbumaqDobqLnN39/fpJ7169eLoUOHigMHDgghhPjpp59ErVq1RN26dcWff/7p1DVYublz8mJvp1RLyQs3bt68Sc1tHhsB1ZOXhIQEodFoDO8rKipEZGSkYdbGSrYmL1OmTDH7oXpr8mI8ksNdtlqASAfEOVhOYi4DYhogwtwgXnfb/vrrL6udVqv2NTG3VU1ejI8999xzIikpyfD++eefd+oarNxKSkrE999/L5o3by6eeeYZQ53Gycs999yjSPJi7xYWFibJZ8KNm5o2qdmTvPjChcrLy5GTk4Pk5GTDPl9fXyQnJ2PXrl0O1Tlx4kQUFRUZtvz8fKnCdZifn59ibYeFhSnWtiXXAcwHcBuA1wGUmClTD8CrAPJulglxWXTur2nTphg/frxTdfj4+Fg89v7772Pr1q2G9//73/+caqvSlStX0KNHD/z5559YvHgxjh07ZrbchQsXrNajzxeUdfHiRaVDICIjLk1eCgsLUVFRgYiICJP9EREROHv2rOF9cnIyBg0ahA0bNqB58+ZWE5vAwEAEBwdjxYoV6Ny5M+6//37Z4rfm+eefBwA0atQIqampisRgzUMPPaR0CLgM4P8AtAKghT6pqSoYwGQAJwC8BqC+i2LzZN9++63NZW1JBC5fvuxMOAYffPCByfszZ85g1KhR2Lt3r2Gfj48PxowZI0l7cps/fz7ef/99pcMgIkCG+z5GANPHRpUzMu7cudOk3Pjx421a4dcWSnXYFUL/9VXOzGoMdtyGM35sZM/Qz8pt48aNZvcrMX10TVtLQPwP+s67wsJWCP3q1SFuEK8nb7Vq1RIvvPCCCAsLE6tXr66xvCPXbk1bampqtX3x8fE1nte+fXvFPz9u3LhV36RcAkQIN35sFB4eDj8/PxQUFJjsLygoQJMmTVwZiiwiIyMRGBgoWX2LFy+WrC539AeAYQDaAlgJQGemTEMA0wCcBPAmgEYui05drl+/jrfffhsXL17EoEGDFIlh48aN1fbl5OTUeN4vv/wiRzhE5KTz588r1rZLk5eAgADEx8cjKyvLsE+n0yErKwtdunRxqm6tVouYmBh06tTJ2TDdxoABA8zuf+CBB1wcibx+A/AkgHYAVlkoEwLgP9A/TpoHoLkrAiMiIouEgv3RJE9eSkpKkJubi9zcXABAXl4ecnNzcerUKQBARkYGFi1ahOXLl+Pw4cMYPXo0SktLMWzYMKfa1Wg0OHTokMnzdPIshwE8CqA9gC8slKkDYCyA4wAWA2jtmtCIiKgKawMB5OYvdYX79u1D9+7dDe8zMjIAAEOHDsWyZcswePBgnD9/HpMnT8bZs2cRFxeHzMzMap14yXsdADAAQByAiQAGonqWHQBgBPSPnb4EMBfATteF6BWMRyAREVWlZPIi+Z2XpKQkCP38MSbbsmXLDGXS09Nx8uRJlJWV4ccff0RiYqLT7arxsZElSo2ocrVcAIOh7xOzFOZHJ/lCn+jsAPDjzfKSZ+ReqG3btiZ/hBARuROX9nmRkzc9NurWrRt27tyJ1157TelQXOIY9HdZbgPwHoCrFsolAPgU+o7AL4FzxTjjyJEjSodARGSRapIXbxIeHo4uXbqgb9++NpXv3LmzvAG5SD6A5wFEA5gOoNhCuSgAswD8Cf3keHe6IjgiInIZ1SQv3vDYqGHDhnjrrbfQurXt3VTHjRsn2Yyp7uIc9LPxNgfwAvQjkMypB0AD4CCAbACPQd9XhoiIPJtqkhdveGy0efNmvPzyy3ad8/bbb+OOO+6QKSJlXYZ+2HQr6Dv1Wuuw2w3Ax9DfjZkB4Fa5gyMiItmoJnkh+/Tv31/pECRTAeBzAPcC6Az9XDE3LJRtBOAV6PvFbIb+bkxtF8RIRETSYfLiperWrat0CLL4Efq5YlpCPyPvWStle0J/N+YsgIUA7pE9OiIikoJqkhdv6PNCtssHMAlACwCPAPjeStlgAGnQD7c+Bv1MvnysRETkvlSTvHhDnxdnFBUVKR2CIq4DWA3gfgB3QN9H5m8r5VtDf8fmD+jv4rwI/eglIiIypapJ6sg9NW/O1YCOQj86qRmAxwFsgvnFICslAJgN4BT0nYHHAoiUOUYiIk/B5IVkFxcXZ/Lez89PmUDcwFUAnwDoBf1jpYkAapqSrQv0d21OQ39H5jXo12AiIiLXU03ywj4v5IjT0A+dbgv9SKUPANS0yHsCgDcA/AzgJPSz/j4AziFDROQqqkle2OdFPq1bt0azZs2UDkN2PwJ4DkBT6EciLQZwsYZzWgBIh/4R1EUAG6B/NNVOvjCJiLyeapIXksezzz6Lo0eP4tSpU0qH4jIVAL6DfgRSBIBUAP8DcKmG8+reLDsX+pWxzwD4CMBTYKdfIiIpcQFelalfv77hdXBwsFN1nTx5Ei1atACgbMcsJd0AkHlzGwn9TL19bm4tazi3KYAhNzdA3/F3u9H2K6x3GCYiIvN458UNBAUFOXReYGBgtX0dOnTAyJEjceedd2LZsmUOxzRx4kRD4kJ6NwBsgf6x0G3QL/g4EcAu2JaEtIB+lNP7AH4BcAH6x0z/B+AhAE0kj5iISJ1450Vhb7zxBvLz87Fw4UK7z73zzjvRsWNH7Nu3z7DPx8cHH374oZQhkgWHbm4zADQE0ANAMvT9ZWyZ5C4U+sdMqUb7TgPIAbDv5vbLzX1ERPQP1SQvWq0WWq0WFRUVSofiMj4+Pti2bRsaNWqEkpISREZGmr0bQ/K7AP1keKtvvr8N/yQySdAnN7ZodnPrY7TvEvQrY1fdLjgZMxGRp1JN8qLRaKDRaFBcXIyQkBClw3GZoKAgbNmyBd988w0GDhwIX18+CXQHx29uHwLwAdAGQFej7TY76go1Os/YeQC/Afj95vab0b/eOZ8yEXkL1SQv3qxjx47o2LGj0mGQBQL6SfCOQD/8GtB35u0K/ZwxHQHEA6hv9mzLGt3czC0oWQggD/pOwvlV/j0FoOBmXEREjlJyIAeTFyIF/AXTx0w+0K+r1NFoi4P9CU2l8JubpSkby6HvS3MW+kSmwOi18b4CACUOxkBEJBcmL0RuQEC/ovUxAB8b7W8B/YR3xltbAI6NT/tHAPSdim3pWFwG/WKWF422v828LgJw2cx21clYiYiqYvJC5MYqH/NsMNrnB/0cM60BtKryb/TN41IKhH4Yt6NDuSugT2JKYJrUlEKf2FwFcM2G15Xvr0F/5+j6zc3aa86jQ6ROTF7IrG7duikdAllQAX2n3N/MHKsFfQLTCvpZfVvc3KKM/q3lkij/4Qd9p+NQF7cL6JMXSwnODeg/S+NNZ2ZfTces7RcWNkvHHDnH3mNVVd0nVxkl25ayjNLcKaaA7Gxg0CBF2mbyorDIyEjk5+crHYaJJUuWICUlRbb6Q0JCUFTE8TByuA7LiQ2gn5UyAvpEJvLm6wjo76pUfV1X7mBdwBf6O0ecQIBIeuVvv83kxdsMGzYMzZo1w6OPPooff/xR6XAMgoODMXz48BrLzZgxA0FBQRg3bpzdbeTk5OCuu+7C1avsDeFqOug7C/9lQ9m6ABoDCLu5NTB6be59MPQdjOuDP1iISF6q+RnjaZPULVq0CH5+9vVOcHatIimNHDkS3377rUPnRkdH44cffkBCQoLEUZGUSqEfbp3nwLlB0Ccx9fBPQlO/yr46AGobbUFW3ld9XQv6Tsec1YjIO6kmeVHrJHULFy7EvHnz8OCDD6JVq1aKxjJgwAB8/vnnSEhIQGhoqMP1+Pn5oVMnS4N4SQ0qO9ael7kdX+gTmcpkxvhfS68r//WHvj+O8eZrZp+1/TWd41PDVlMZqeswZm6GjprKuKIOd42Lqmtzyy2Kta2a5EWt0tLSkJaWpnQYAIDPPvsM+/fvR2xsrNeuMk3uRQf9UO4ypQMh8kIF77yD2gq1zeSFbObr68uZfImISHF8ZExERER2U/IOPJMXIiIi8ihMXoiIiMijMHkhxfz73/9WOgQiIvJATF5IMbNnz1Y6BCIi8kBumbysW7cObdq0QevWrbF48WKlwyGZtG3blvO9EBGR3dxuqPSNGzeQkZGBLVu2ICQkBPHx8ejXrx8aNmyodGhERER0E0cbGdmzZw/uvPNONGvWDPXq1UNqaio2b96sdFhkhvGMv4MUWpyLiIi8j+TJS3Z2Nnr37o3IyEj4+Phg7dq11cpotVpER0cjKCgIiYmJ2LNnj+HYmTNn0KxZM8P7Zs2a4fTp01KHSRK4++67MX/+fIwaNQozZ85UOhwiIvISkj82Ki0tRWxsLIYPH47+/ftXO75q1SpkZGRgwYIFSExMxLx585CSkoKjR4+icePGdrdXVlaGsrJ/JgcvLi52Kn4lxMbGGl4/8cQTCkZiP41Go3QIRETkZSRPXlJTU5Gammrx+Ny5c5GWloZhw4YBABYsWID169dj6dKlmDBhAiIjI03utJw+fdrq6sPTp0/H66+/Lt0XoICnn34apaWlKCoqwpgxY5QOh4iIyK25tM9LeXk5cnJykJyc/E8Avr5ITk7Grl27AAAJCQk4ePAgTp8+jZKSEmzcuBEpKSkW65w4cSKKiooMW35+vuxfh7MaNmwIX99/Pvo6depg/PjxePPNNxEREaFgZNKaMWMG10IiIiLJuXS0UWFhISoqKqr9go6IiMCRI0f0Afn7Y86cOejevTt0Oh1efvllqyONAgMDERgYCK1WC61Wi4qKClm/Bil8/fXXXrEq8yuvvIK77roLDz74oNKhEBGRxDjaqIo+ffrg2LFj+P333zFy5EibztFoNDh06BD27t0rc3TOeeONN3DPPfcoHYYs3nzzTaVDICIiL+DS5CU8PBx+fn4oKCgw2V9QUIAmTZq4MhSywJkOz95wN4mIiJTn0uQlICAA8fHxyMrKMuzT6XTIyspCly5dnKpbq9UiJiaGM7Y6Sa13hYiISD0kT15KSkqQm5uL3NxcAEBeXh5yc3Nx6tQpAEBGRgYWLVqE5cuX4/Dhwxg9ejRKS0sNo48c5SmPjdxd8+bNlQ7Bozz22GNKh0BE5HUk77C7b98+dO/e3fA+IyMDADB06FAsW7YMgwcPxvnz5zF58mScPXsWcXFxyMzMVNUoG/IOkyZNwqhRo/DJJ58oHQoRkVeRPHlJSkqCEMJqmfT0dKSnp0varieNNvJmLVq0UDoESbRv3x5Tp05VOgwiIq/klqONHMHHRp5h3rx5SodAREQeTjXJC3mGu+++2+R9cHCwQpEQEZEzanrKIifVJC8cbWRdnTp1DK8jIyMVjMTUhAkTFG3fnT4LIiKyjWqSFz42sm7gwIFo3rw5goKC8M4771gsFxoa6rqgACQnJ+Obb76xufz9998vaftXr151ug5ry1cQEZH0VJO8kHURERHIy8vDuXPnMHDgwGrH/f39Ubt2bUVWia76KMmSPn36YPz48ZK2LcXkiP7+Ll1lg4jILXB5AHIJf39/1K9fv9r+0NBQnD59GmfOnEH79u0ViMw21u4YOapevXpO16Hkc18iIm+kmuSFfV6c07hxY5c/MrJXdHS05HU+8cQTktdJRETyUk3ywj4vyjO+q3PrrbdKWvfMmTMlra9Su3btZKmXiIjko5rkxVVat25teB0VFcX+DkYef/xxNG3aFIGBgZI+4vnss88k7+tSKSoqSpZ6iYhIPvzNa6euXbvi008/xS+//ILHHnsMvr7M/yo1bNgQJ0+eRGlpqV2PoOrWrWv1uBT9Uizx8/Nz6DyuoE1EpBzV/OZ1VZ8XHx8fDB48GNOmTeMjBzNq1apld9+ZkJAQzJ8/36H27rjjDofOc5ZxJ1122CUici3VJC/s8+LZrA3RbtOmjQsjISIid6ea5MWdDRkyxPA6NjZWwUg8k/EjGqkX3gwKCnLoPOOY+AiJiMi12OfFBbRaLZKSkhAZGYkHHnhA6XA8mnGHaSk0a9bMofP42IiISDlMXlygfv36GD58uNJhqIKjHWyJiEg9+NiIZNWyZUulQzBYuXIlRo0aJUldxo+Kahpu/e6770rSJhGRO+HyAKRaSo0GqqpJkyZ4/PHHJRt2bfyoaOLEiVbLhoeHS9ImERHpqSZ54fIA5KjatWs7dX50dDTuvPNOiaIhIqKaqCZ54VBp99W/f38A+jsQUqziLDVHbn1WPSc4OFiqcIiIqAbssEuyW7JkCR566CF069YNgYGBSocjiaZNm5q853BpIiLXUc2dF3JfoaGhGDZsGFq1aqV0KGZ17NjR5rK+vr7w8fHB1KlTZYyIiIisYfJCXm/WrFk2l/3jjz9w/Phx9q0iIlIQkxfyegkJCUhMTLSp7C233IJbb71V0vbdaTg5EZGtOFSaSGG2dLiVa3Xr7OxsWeolIlIrJi9EsD7Ff3BwMHr27Int27dbLGP8F0jVR0p///23xfM0Go3DSxQQEXkr1SQvnOfFO0RERBjugDz++OMYMGCA7G2OHTsWmzdvdnhRTWuLSbZo0cLRsIiIvJZqhkprNBpoNBoUFxcjJCRE6XBIJnXr1sXWrVuxbds2PPnkk/Dx8cHvv/+O4uJibNy4Uenw7Ga84jgREdlGNckLeY/4+HjEx8cb3n/66acoLCxEo0aNHK7T2mMjZzulWTs/KCjIqbqJiLyRah4bEVnzzDPPOHyuvcmLtUSIiEgtONqISGJV524ZN26cw3XZ8h+0apn//ve/htf9+vVzuG0iIqqOj43IbQQHB6O4uFiSuqqu5NywYUOH63Lkr4sXX3wRzZs3R+vWrTmaiIhIYrzzQm5j5cqVirUt9aOegIAADBkyBJ07d7apvLMrWxMReRMmL+Q2HnroISxfvlzpMKrhootERO6FyQtRDeTssMvEiIjIfm6ZvPTr1w8NGjTAwIEDlQ6FvISzj41qSkLGjBkDAHjwwQedaoeIiNw0eRk7diw++ugjpcMgAiDN3ZF3330XhYWFWLJkidnjcgyvttQWEZEUOFS6iqSkJNSvX1/pMIgASPcftGHDhoiIiJCkrppERUVh+PDhLmmLiMjV7E5esrOz0bt3b0RGRsLHxwdr166tVkar1SI6OhpBQUFITEzEnj17pIiVyG01b97c8DoqKkrBSIiI1M/u5KW0tBSxsbHQarVmj69atQoZGRmYMmUK9u/fj9jYWKSkpODcuXOGMnFxcWjXrl217cyZM45/JUR28vPzM7x2dnmASZMmISAgALVq1cLrr78uSXz26tatmyLtEhG5mt2T1KWmpiI1NdXi8blz5yItLQ3Dhg0DACxYsADr16/H0qVLMWHCBABAbm6uY9GaUVZWhrKyMsN7qSY5I/dQq1Ytp9Ysqqp///6YPXs2AGDGjBk2nWNL8tK2bVvk5+dDCGHXoyEpnxnbuk7Siy++iDlz5kjWLhGRq0na56W8vBw5OTlITk7+pwFfXyQnJ2PXrl1SNmUwffp0hISEGDbesleXzMxM1KtXT7L6unTpghUrVmDWrFkYPXq0TefYmmA0btzY4T4t9nTYrVOnjtn9tsY5ffp0ZGZm2tweEZG7kXR5gMLCQlRUVFT7AR4REYEjR47YXE9ycjJ+/vlnlJaWonnz5li9ejW6dOlituzEiRORkZFheF9cXMwERkV69OgheZ1PPvlktX1yriotlWHDhqG4uBiLFy9GmzZtTB7F2qNWrVpISUmRODoiItdxy7WNvvvuO5vLBgYGIjAwEFqtFlqtFhUVFTJGRt7IuG+MkpYuXWp43aFDB2zatMnkuLskWUTkHVQzVDo8PBx+fn4oKCgw2V9QUIAmTZpI2VQ1Go0Ghw4dwt69e2Vth+TVuHFjw+uOHTsqEkOrVq1M3ntKUuApcRKROih5s0DS5CUgIADx8fHIysoy7NPpdMjKyrL42EcqWq0WMTEx6NSpk6ztkLx69uyJAQMGoE2bNnj33XcdrqdBgwaG161bt7br3Lp16zrcrlJ69uzpkXETkecqKSlRrG27k5eSkhLk5uYaRgzl5eUhNzcXp06dAgBkZGRg0aJFWL58OQ4fPozRo0ejtLTUMPpILrzzog5+fn5Ys2YNjhw54lTC++9//xuJiYkIDQ3F+++/X2N5pfu8NGzY0KnzN27cKFEkRETuz+4+L/v27UP37t0N7ys7yw4dOhTLli3D4MGDcf78eUyePBlnz55FXFwcMjMzXTazKBGg75S6a9cuXL9+HQEBAXad68rHL5VtffHFF+jatStu3Lhh13kAcMcdd1TrlyPHcgNERO7C7uQlKSmpxh+M6enpSE9PdzgoR7DDLlXl4+Njd+KilMTEROTn5+Ppp5+u1hHXVuzzQkTewi3XNnIEHxuRXFyVFDRp0oRrehGRx1DNaCMiT2V8N1HJ/5COtO3oI6LJkyc7dB4RkdJUk7xwtBHJxR0fx0gRk6U1mHr37o0VK1Y4XT8RkVxUk7zwsRGpgTt0tP36668xcOBApcMgIrJINckLkTOUShrc8a4OYPsij0RESmDyQlRF1YTCXROMSnIlXvHx8bLUS0TkLNUkL+zzQt7E3RMqIiI5qSZ5YZ8XkosnJwrr1q1z+Fx36H9DRO5LyZ8RqkleiJyh1l/UDz74oNIhEBFJjskLURXeMs8LANlXeycikgOTF6IauDKZsTURqSkmW+sJCwtzuA1runXr5vC5REQ1UU3ywg675IwGDRqYfQ2g2qKHUpIyMZI6yXLmjk6/fv0kjISIyJRqkhd22CVnvPfee6hTpw5q166NDz/8EKtWrQIAhIaG4qmnnlI4OmWotR8QEXk+u1eVJlKj6OhonD59GkIINGjQAC1btkTr1q3RvHlz1K1bV+nwJBMXF2fyngkKEXki1dx5IXJWaGioySOjDh06oFGjRgpGZJuaEpCEhATD6zp16khWr1znEhHVhMmLlzLuH8Gp4D2PXJ2IU1NTLR6Ts+8PEZE9mLx4qUGDBhlev/LKKwpGQnKLiIgwvG7cuLHVspV9fYDqCdKOHTuwevVqJCYmShugnT799FNF2yci5akmeeFoI/v06tULmZmZ+Oyzz6DRaJQOx2u5Yhj2/PnzERISgtDQULz33nsWy6WkpKB+/foWY0tMTMTAgQPh7+9cV7nbbrut2r4OHTrYfH6fPn2cap+IPJ9qOuxqNBpoNBoUFxcjJCRE6XDcno+PD1JSUpQOgyRQU/+SFi1a4PTp0/Dx8XGLPi8HDhzA6dOn8dBDD+Ho0aMAoKpO0UQkP9UkL0TexN47NpaSA2tJhlydbmvXro1WrVqZ7PPk9aOIyPVU89iIiJzj6gTC0eTIXTsOjxgxQukQiLwGkxciMkvu4c7G9duTOAUEBMgRjtMCAwPx4YcfKh0GkVdg8kLk4cwlGZ42z4oaHhsJIeDra9uP1C5dusgcDZG6MXkh8kDmftm7UwJgS/I0fvx4w+uRI0eaLTNp0iR88803ksXlLnr06KF0CEQejR12iRRUNeHwtFE3nTp1cng9sWHDhuH69esICgpC7969zZaZOnWqM+HJIjo6GidOnHCqDndKNIk8kWruvHCeF1KDl19+WekQDOR+9OTv74/nnnsOw4cPt/mXeXBwsKwx1cTX1xcLFixQNAYiUlHywlWlSQ1iYmLw888/Y+fOnXZN3OYoT+kbs337dowZMwa7d+92qp6kpCSnzj958qTF+ZFq1apl8+fJOy9EzuFjIyI30759ewC2/4KTKgGRsj2pk6J7770X9957r6R1OqJ58+YWj40ZMwZbtmxxYTRE3ks1d16IvIkr/nK3JQFR6g5CfHy8w+d+8sknkg+3Xrt2bbWJ94hIPkxeiNxUo0aNFG3flYmJvXdqnBmB9Oijj+LixYsOn29O165dJa2PiKxj8kKkIGsJQosWLVwYiWOU6jPTtGlTp853t1Fdq1atQnBwMGJiYpQOhcgjMHkh8gDWftm6OoFgZ1PpPfLII7h48SLmz5+vdChEHoHJC5EHkiqBkGthRqVHMQ0aNMil7dn7/TBX3l3XbCJyR0xeiAiAuu6oPPjgg2b3y/W4SE2fHZEncLvkJT8/H0lJSYiJiUH79u2xevVqpUMiUoQn3/lwRwEBAXjvvfeUDsMgOzsbI0aMQE5OjtKh2GTUqFFKh0Bk4HbJi7+/P+bNm4dDhw5h8+bNGDduHEpLS5UOi0hRVf+y79y5s+F15V0Gqf/6V1MCNGrUKOTn5+PWW2+VtR17PrNu3bph8eLFuPvuu2WMyD4tW7a0eOyDDz7AAw884MJoiCxzu+SladOmiIuLAwA0adIE4eHhkg9rJPJ0Go0G9913Hzp16oRXX31VljZuueUWs/tt+QVt6+rKckpLSzO8fuKJJ9C4cWPJ6vbWUUGffPKJ0iEQAXAgecnOzkbv3r0RGRkJHx8frF27tloZrVaL6OhoBAUFITExEXv27HEouJycHFRUVCAqKsqh84ncnaN3S+rVq4etW7diz549iIyMlDgqvdtvv73GMpbiT0tLQ7169QAAPXv2lDQuW82aNQsZGRmYP3++5POwZGZmSlqfIywtZumM5ORkq8fDwsIkb5PIEXYnL6WlpYiNjYVWqzV7fNWqVcjIyMCUKVOwf/9+xMbGIiUlBefOnTOUiYuLQ7t27aptZ86cMZS5ePEinnrqKSxcuNCBL4uIbCHXo6GQkBAcPXoUe/fuxcCBA2VpwxofHx+EhIRgzpw50Gg0ktdf9Q8qKUYb2VvP119/bVebtnjrrbckr5NIDnavbZSamorU1FSLx+fOnYu0tDQMGzYMALBgwQKsX78eS5cuxYQJEwAAubm5VtsoKytD3759MWHCBNxzzz01li0rKzO8Ly4utvErIXJvSs/f4mz7kZGRiIyMxE8//eRUPeQ6oaGhSodAZBNJH0yXl5cjJyfH5Najr68vkpOTsWvXLpvqEELg6aefRo8ePTBkyJAay0+fPh0hISGGjY+YSI04FJeI6B+SJi+FhYWoqKhARESEyf6IiAicPXvWpjp27NiBVatWYe3atYiLi0NcXBwOHDhgsfzEiRNRVFRk2PLz8536GoiIvJm1EUdE7sLux0Zy69q1K3Q6nc3lAwMDERgYCK1WC61Wi4qKChmjI/IelR1uASA8PFzWtsw9oqqpw/CLL76IOXPmIDg4mI+LibyMpHdewsPD4efnh4KCApP9BQUFaNKkiZRNVaPRaHDo0CHs3btX1naIpOTOj4NeeuklhIWFwd/f32LnULn65UyYMAGbNm2yWmbSpEl45513sHnzZllisAen9idyLUmTl4CAAMTHxyMrK8uwT6fTISsrC126dJGyqWq0Wi1iYmLQqVMnWdshcpXY2FjD6/vvv9/l7YeEhODkyZPIz883+f9rb8JlPEz58ccft+mc6dOnIzo6usb4nn/+eSQmJtoVj1QWLFgAX19f9O/fH/Xr1wdgezLnzklrTYMkiNyB3Y+NSkpK8Pvvvxve5+XlITc3F2FhYWjRogUyMjIwdOhQdOzYEQkJCZg3bx5KS0sNo4/kotFooNFoUFxcjJCQEFnbInKF0aNHY+vWrSgsLMQHH3wgSxs1/bKtV6+eyeMjR7Rt2xYrVqzAL7/8YhhxKDdXJAfPPvssHnnkEZeN0GnXrh0OHjwoeztvv/02/t//+38m++rUqSNpGwEBASgvL5e0TvIudt952bdvHzp06IAOHToAADIyMtChQwdMnjwZADB48GDMnj0bkydPRlxcHHJzc5GZmVmtEy8RWefv74/PP/8cP/zwg02PXY2nbh8+fLjd7dn6C79qwmPLbLNPPvkkZs6cqbpJzho0aCBpomSpLn9/fyxYsKDa/l27dhnu+jRr1gwNGjSosY2aki25+ze1a9cO//rXv2RtQ079+/dXOgSCA3dekpKSavxrLT09Henp6Q4H5Qh22CVvN2TIEOzYsQPFxcXIyMhwSZs+Pj7YuHGjxaUEPFGPHj3w/fffKx2GicolU6rq3LkziouLUVJSgsDAQLRu3Rp///23a4PzMp9//rlbP/bzFsovQCIRdtglb1erVi0sWbIEq1evdukdjhYtWrisLVcYMGCA0iEYdOrUCS1atMDHH39stVy9evVQq1YtF0XlHDUt+EnKUU3yQkSkNj/++CPy8vLQunVryX7pu0Py0LBhQ5vLbty4UcZIyFOpJnnhaCPyRGq5/aymx0auYOv33cfHx64Vuj3lepo7d67NZT25fwzJRzXJCx8bEdlPqr/CFy9eLEk9aqOWgQq2dMq2h60rodeuXVvykU6kDqpJXojIOc781e5u/V6UugNRdbSPq+8Ey/F1R0ZGYuXKlZLXawslViQnz+B2ywMQESnJmbtRVTv72ptMGK8r1K5dO4fjkNLJkyfh789fFeReVHPnhX1eiDyXO3QilYKfn59NCxta+nqjoqKwcOFCPP744/jqq6+kDs+qIUOGmN3vCYnL/PnzlQ6BXEw1yQv7vBC5Rt26dQ2vK/sjqCX5cAdpaWlYuXJltSRI7s/YeDmKpk2bAgAaNWokeTtyfB0ajcZlcxuRe1BN8kLkiTxldIgxrVYLf39/+Pn5mZ31lf5h6fvr7t/3HTt24K233sLu3bsVjcOez2nOnDlcXdyLuP/9QCJyK61bt8bJkychhECzZs2UDoeMSJUU3XrrrXj55ZclqcuVKpdKIPXjnRciL/bWW28ZXtvzyyoyMtIkceFjI8/x3HPPKR0CkdNUk7ywwy6R/fr164c1a9Zgw4YN6Nq1q9LhSMbdH8so6aGHHlI6BCKnqSZ5YYddIvv5+vpiwIABSE1NVToURcXHx6Nly5bIyspSOhTZ+fj44N5771U6DCKnqCZ5ISJy1OzZs3H8+HH06NFD6VAskurRnLvMWBsUFKR0COTBmLwQkddz9WMmpR5r9ezZE+3bt1ek7aqkWnCxY8eOktRD9pNjKL2tmLwQKYh9M9yPmjsfb9q0SfFrrnJEUFJSktnjxneGLMVaOQ8NUH1JBnIdJe+eMXkhIpKQOyc/UicuoaGhCA4Otrm8v78/li5danjfq1cvh9oNCwszvHbnz5vko5rkhaONvJvxrK9xcXHKBUJkRI2Po4xXyi4oKMB9991n87mnTp0yWaH6o48+whtvvIGnnnoKtWrVwogRI1CrVq0a61H67hEpTzXJC0cbebfatWvjk08+weDBg7Fo0SKlwyE7Sf3XM3+5yWfbtm0YP348fvzxRwQEBKBv3742n2v8uAfQ95l47bXXsHz5chQVFWHx4sUSR0tqxRl2STUeffRRPProo0qHQSSL5s2bG16Hh4crFkfr1q0xc+ZMw/unn34aJ06cwNWrV7Fu3TocOXLEoXpr164tVYjkBVRz54WIyFM4cmeoZcuWmDZtGnr06IEtW7bIEJVjfH19MXXqVMyaNQsbNmxA3759MWPGDIfrM56DxvgRE5ExJi9ELqbRaAAAXbt2hb+/Om5+Kt1pMioqStH2XeXVV19FVlYW2rVrp3QoZt1666348ssv8corrzhcx6JFixAfH48HHngA48aNky44UhUmL0Qu9u6772LPnj347rvvlA5FNVauXKl0CCSRyMhI7Nu3D5s2bUJAQAAAYMmSJZLU3bZtW6vHv/zyS0na8QZKProEmLwQuZyvry86deqEwMBApUNRjW7duikdAsmoSZMmktTTuHFjq8ft6XxMymLyQkSqMGjQIMPrxMREBSMx9cgjj7isLWdGWQ0YMEDCSFzHnkeWSj/eVELXrl2xefNmpcOQnGqSF87zQuTdPvjgA7zyyiv49NNPcdtttykdjsGSJUuwevVql7RlLXmZNGmSxWPZ2dmIjo6WISJ5WPs6K/uUkd62bdvQs2dPyeu99dZbJa/THqpJXjjPC5F3a9iwIWbMmIHBgwc7VY/Uf53Xq1cPAwcONNnn6nlotm/fjv/7v/8z237Hjh1V9djtnXfewe7du5UOwyGzZs1SOgSbde/eXdH2VZO8EBHZw3jETsuWLSWrt1WrVobXLVq0kKxeZ9x7773w9fWOH/d+fn5u9djQHhkZGRg/frzSYXgE77iaiYiq+Oqrr/D4449j4cKFkg61XrRoESIjI9GyZUtMnTpVsnq9mfGSH3369FEuEJn5+vrWeBesR48eDtUtdZeKhIQESeuzF5MXIvJKLVu2xMqVK5GWliZpvbfccgtOnjyJ3377DaGhoZLW7a0iIyPx1VdfYeLEiYosIVC5evL8+fMBAJmZmRgyZIjL4wAc79OzYcMGyWJ44YUX0L9/f8nqc4Q6ZsgiInIjapl80J306dPHqbsu9evXd/jcQ4cO4dixY0hOTgYApKSkICUlBStWrHC4TkdVzn1jr/DwcAgh8Ouvvzo1yeGNGzfg5+fn8PlS4Z0XIlJcSEgI2rdvDwCYMGGCorFwUUd1Wrlypdnk54EHHgAAPPzwwxbPvfXWW5GSkuKSX9o1XX89e/Y0rOz9/vvvyx5PVe6QuABMXojIDfj4+CA7Oxvff/893nzzTaXDkZ1cCZK3JF6PPfaY4bWtE8vVq1cPzz//PP7973+b7J8zZw5++eUXfP7552bb2bNnj1OxSi0wMBAHDhzA9u3bMWrUKKXDUQzvbRKR06QYXhwSEqL48EvyDBkZGTh//jz8/f3t+gVeq1YtvPvuuyb9P3x8fCw+Rvn444+t1jd8+HAsXbrU5val0qhRIzRq1Mihc9WS4DJ5ISIijxIYGIi5c+cqHYbDCQQ5z+0eG126dAkdO3ZEXFwc2rVrh0WLFikdEhEREbkRt7vzUr9+fWRnZ6NOnTooLS1Fu3bt0L9/fzRs2FDp0IjIC3jj+jfehN9fdXC7Oy9+fn6oU6cOAKCsrAxCCF5sREQerqYVneXmKX09PCVOpdmdvGRnZ6N3796IjIyEj48P1q5dW62MVqtFdHQ0goKCkJiYaHdv7UuXLiE2NhbNmzfH+PHjER4ebm+YRERuyxt+QTVp0sTw+v7770dWVpaC0Vj+zCv/WJbbkiVLEBgYaPK5kOPsTl5KS0sRGxsLrVZr9viqVauQkZGBKVOmYP/+/YiNjUVKSgrOnTtnKFPZn6XqdubMGQBAaGgofv75Z+Tl5eHjjz9GQUGBxXjKyspQXFxsshERSSUsLAxxcXHYunWr0qHUyJ2SouzsbLzwwgvYsWMHvvvuO6cmRpOTq1ZHTkxMxJkzZ5CXl+eS9tTO7j4vqampSE1NtXh87ty5SEtLw7BhwwAACxYswPr167F06VLD5FO5ubk2tRUREYHY2Fhs27at2qqslaZPn47XX3/dvi+CiMhGx44dY587B7Ru3dotRgS5k7CwMKVDqKZZs2Y4ffq00mHYTdI+L+Xl5cjJyTFMoQzoF5pKTk7Grl27bKqjoKAAly9fBgAUFRUhOzsbbdq0sVh+4sSJKCoqMmz5+fnOfRFEREaYuJCa1a5dW+kQHCLpaKPCwkJUVFQYpi6uFBERgSNHjthUx8mTJzFy5EhDR90xY8bgrrvuslg+MDAQgYGB0Gq10Gq1qKiocOprICL7sVM9eQpvv1bd6dGiM9xuqHRCQoLNj5WMaTQaaDQaFBcXIyQkRPrAiIicEBgYiLKyMgDOLRJI3kvKlaEreWoyI+ljo/DwcPj5+VXrYFtQUMAe1kQq5u1/zdri22+/RUBAAFq0aIFnnnlG6XDIgs8//xydO3fG6tWrFWnfWjJhrb+pt5E0eQkICEB8fLzJkDidToesrCx06dJFyqaq0Wq1iImJQadOnWRth4jIEd26dcOZM2fw22+/ISgoSOlwyIL+/ftj165dFgeJGEtKSjK8Hj58uNWyTPClZXfyUlJSgtzcXMOjnby8POTm5uLUqVMA9AtmLVq0CMuXL8fhw4cxevRolJaWGkYfyUWj0eDQoUPYu3evrO0QETmqYcOGCAgIkK3+t99+W7a6PU3VP5jleDySkpKC//73vxg1ahRmz54tef1kmd19Xvbt22ey8mtGRgYAYOjQoVi2bBkGDx6M8+fPY/LkyTh79izi4uKQmZlZrROv1Nhhl4ik4Ml/Iffq1QsbN27E8ePHkZ6ebrHc9OnT0a1bNwDAzJkzXRWeS23cuBGhoaGytuHj44OJEyfaVNaTryt3ZHfykpSUVOM3IT093ep/HDmwwy4ReTsfHx/06tULhw8ftlqua9euyMrKgk6nM3n0oSZK/B6IiYnBoUOHXN6uN3K7tY2IiMg5bdq0QatWrQAAb7zxhtkyPXr0QHJysseONnGUu98BsXfelcWLF8sUiXtj8kJEpDK+vr748ccfsWXLFrz66qtKh0N2uO+++xAbGwtfX1+bRqWNGDHCrvrlfpTmKqpJXjjaiIjoH2FhYUhKSoKvr2p+zKtadHQ0AH3imZOTg7/++gsDBgyQvJ2mTZvi1VdfxZ133ons7GzJ63cV1VzVHG1ERESeqHfv3sjMzDS89/PzQ+PGjdG6dWvDPmszzdtr2rRpOHjwoKHTtidSTfJCRERkidKzGlvra/P111+bXcPvtttuw3vvvYdHHnkEa9eutXh+3759JYjQszB5ISIiVdq4cSPq16+PPn36oEOHDrK3J0dn4PT0dKxatQotW7a0WGblypWSt+vu3G5tI0dxnhci5bj7CA7yTr169cKFCxdQq1Ytwz53u1almFiwTp06EkTiWVRz54V9XoiIqCrjxEVujiRGGo1GhkjUTzXJCxGRFNztL3Miqo7JCxEREZlo1qwZVqxYoXQYFqkmeeE8L0RE5K487Y5eaGgonnzySaXDsEg1yQv7vBAREcnn+eefVzoEA9UkL0RERCSfylmA3QGTFyIi8hpKPb6x1K7Sj5MCAwPN7lc6rpoweSEiIvJSy5cvB6BfU+m2225TOBrbMXkhIiLyUnfffTeOHj2K48ePe1Tywhl2iYiIJODuj1osuf3225UOwW6qufPC0UZEyvHUH9pEZJ67/59WTfJCRERE3oHJCxGREXf/i5Ocw++vZT4+PkqHYDMmL0RERORRmLwQERHJzN9fNeNj3AKTFyIiIpndeeedSoegKkxeiIiIZPTMM89Y7E/irn1wKuMaO3asYV9KSopS4VTD+1hEREQy8pRHRuYSrDfffBMRERG4/fbbERMTo0BU5qnmzotWq0VMTAw6deqkdChEROSm/Pz8ZKt73LhxstWtlHr16mHixIkYMGCA0qGY8Ix00AYajQYajQbFxcUICQlROhwiInJDrVu3RlxcHHJzc/HOO+9IWvczzzyDsrIyBAYGYty4cSgrK5O0fldy18dZlVSTvBAREdXEx8cHu3fvxh9//IG2bdtKWre/v7+hj8gLL7wgad2uwHleiMiruPtfaUTGAgMDJU9cqnrkkUcMr++55x5Z2/JGvPNCRE5TU/Kipq+FlPP222+jvLwcjRo1whNPPKF0OKrD5IWIiEhiYWFh+OSTT5QOQ7X42IiIiIg8CpMXIiIihfAxpWOYvBAREZEJd0+q3DZ5uXLlCm655Ra89NJLSodCRESkesZDpZm8OGjatGno3Lmz0mEQERGRm3HL5OW3337DkSNHkJqaqnQoREREXkHVk9RlZ2ejd+/eiIyMhI+PD9auXVutjFarRXR0NIKCgpCYmIg9e/bY1cZLL72E6dOn2xsaEREReQG753kpLS1FbGwshg8fjv79+1c7vmrVKmRkZGDBggVITEzEvHnzkJKSgqNHj6Jx48YAgLi4ONy4caPauZs3b8bevXtx++234/bbb8fOnTtrjKesrMxk/Yji4mJ7vyQiIiLyIHYnL6mpqVYf58ydOxdpaWkYNmwYAGDBggVYv349li5digkTJgAAcnNzLZ6/e/dufPrpp1i9ejVKSkpw/fp1BAcHY/LkyWbLT58+Ha+//rq9XwYRERF5KEn7vJSXlyMnJwfJycn/NODri+TkZOzatcumOqZPn478/HycOHECs2fPRlpamsXEBQAmTpyIoqIiw5afn+/010FE9nH3kQn2UNPXQqRWkiYvhYWFqKioQEREhMn+iIgInD17VsqmDAIDAxEcHIwVK1agc+fOuP/++2Vph4iISGpSJctr165FdHQ03njjDUnqc3duOdqo0tNPP43Zs2fbVFaj0eDQoUPYu3evzFERERE5rrKrw7/+9S/Url1bkjoffvhh5OXl4bXXXpOkPncnafISHh4OPz8/FBQUmOwvKChAkyZNpGyKiIjII02aNAkHDhzAd999p3QoJvr06WN4/eijjyoYSc0kXVU6ICAA8fHxyMrKQt++fQEAOp0OWVlZSE9Pl7KparRaLbRaLSoqKmRth4iIyBk+Pj5o166d0mFUM2LECBw/fhxXr17FxIkTlQ7HKruTl5KSEvz++++G93l5ecjNzUVYWBhatGiBjIwMDB06FB07dkRCQgLmzZuH0tJSw+gjuWg0Gmg0GhQXFyMkJETWtoiIiNTGz88Pb731ltJh2MTu5GXfvn3o3r274X1GRgYAYOjQoVi2bBkGDx6M8+fPY/LkyTh79izi4uKQmZlZrRMvERERkSPsTl6SkpJq7B2dnp4u+2OiqvjYiIiIyDu49Wgje3C0EREREdCtWzcAwGOPPaZwJPKRtMMuERERKeubb75Bdna2quc9U82dF61Wi5iYGHTq1EnpUIjIg3GGXfJ0ISEh6N27N+rUqaN0KLJRTfLCx0ZEyuEvfCJyJdUkL0REROQdmLwQERGRR1FN8sI+L0RERN5BNckL+7wQERF5B9UkL0REROQdmLwQERGRR1FN8sI+L0RERN5BNckL+7wQERF5B9UkL0REROQdmLwQERkZMGCA4fW0adMUjISILOHCjETkND8/P6VDkEx0dDSys7Px+++/4/HHH1c6HCIyg3deiMhp7du3x1133QUAWLBggcLROK9bt24YNmwYAgMDlQ6FiMxQzZ0XrVYLrVaLiooKpUMh8jo+Pj7Yu3cvTp06hdatWysdDhGpnI9Q2XKwxcXFCAkJQVFREYKDg5UOh4iIiGxgz+9vPjYiIiIij8LkhYiIiDwKkxciIiLyKExeiIiIyKMweSEiIiKPwuSFiIiIPAqTFyIiIvIoqkletFotYmJi0KlTJ6VDISIiIhlxkjoiIiJSHCepIyIiItVi8kJEREQehckLEREReRQmL0RERORR/JUOQGqV/Y+Li4sVjoSIiIhsVfl725ZxRKpLXi5fvgwAiIqKUjgSIiIistfly5cREhJitYzqhkrrdDqcOXMG9evXh4+Pj9kynTp1wt69ey3WYel4cXExoqKikJ+f71HDsGv6et2xHWfqsvdcW8vbUs5aGV5X7tGWo3XxunIdb/qZ5a7XlbXjcl1bQghcvnwZkZGR8PW13qtFdXdefH190bx5c6tl/Pz8rH7gNR0PDg72qB8GNX097tiOM3XZe66t5W0pZ60Mryv3aMvRunhduY43/cxy1+vKluNyXFs13XGp5JUddjUajVPHPY2rvh4p23GmLnvPtbW8LeWsleF15R5tOVoXryvX8aafWe56XdnTlhJU99hITpy9l+TA64rkwOuK5OIO15ZX3nlxVGBgIKZMmYLAwEClQyEV4XVFcuB1RXJxh2uLd16IiIjIo/DOCxEREXkUJi9ERETkUZi8EBERkUdh8kJEREQehckLEREReRQmLxJZt24d2rRpg9atW2Px4sVKh0Mq0q9fPzRo0AADBw5UOhRSifz8fCQlJSEmJgbt27fH6tWrlQ6JVODSpUvo2LEj4uLi0K5dOyxatEi2tjhUWgI3btxATEwMtmzZgpCQEMTHx2Pnzp1o2LCh0qGRCmzduhWXL1/G8uXLsWbNGqXDIRX466+/UFBQgLi4OJw9exbx8fE4duwY6tatq3Ro5MEqKipQVlaGOnXqoLS0FO3atcO+fftk+V3IOy8S2LNnD+688040a9YM9erVQ2pqKjZv3qx0WKQSSUlJqF+/vtJhkIo0bdoUcXFxAIAmTZogPDwcFy9eVDYo8nh+fn6oU6cOAKCsrAxCCMh1f4TJC4Ds7Gz07t0bkZGR8PHxwdq1a6uV0Wq1iI6ORlBQEBITE7Fnzx7DsTNnzqBZs2aG982aNcPp06ddETq5OWevLSJzpLyucnJyUFFRgaioKJmjJncnxXV16dIlxMbGonnz5hg/fjzCw8NliZXJC4DS0lLExsZCq9WaPb5q1SpkZGRgypQp2L9/P2JjY5GSkoJz5865OFLyNLy2SA5SXVcXL17EU089hYULF7oibHJzUlxXoaGh+Pnnn5GXl4ePP/4YBQUF8gQryAQA8eWXX5rsS0hIEBqNxvC+oqJCREZGiunTpwshhNixY4fo27ev4fjYsWPFypUrXRIveQ5Hrq1KW7ZsEQMGDHBFmORhHL2url27Jrp16yY++ugjV4VKHsSZn1eVRo8eLVavXi1LfLzzUoPy8nLk5OQgOTnZsM/X1xfJycnYtWsXACAhIQEHDx7E6dOnUVJSgo0bNyIlJUWpkMlD2HJtEdnLlutKCIGnn34aPXr0wJAhQ5QKlTyILddVQUEBLl++DAAoKipCdnY22rRpI0s8/rLUqiKFhYWoqKhARESEyf6IiAgcOXIEAODv7485c+age/fu0Ol0ePnllznSiGpky7UFAMnJyfj5559RWlqK5s2bY/Xq1ejSpYurwyUPYct1tWPHDqxatQrt27c39GtYsWIF7rrrLleHSx7Cluvq5MmTGDlypKGj7pgxY2S7ppi8SKRPnz7o06eP0mGQCn333XdKh0Aq07VrV+h0OqXDIJVJSEhAbm6uS9riY6MahIeHw8/Pr1qno4KCAjRp0kShqEgNeG2RHHhdkRzc7bpi8lKDgIAAxMfHIysry7BPp9MhKyuLt+7JKby2SA68rkgO7nZd8bERgJKSEvz++++G93l5ecjNzUVYWBhatGiBjIwMDB06FB07dkRCQgLmzZuH0tJSDBs2TMGoyRPw2iI58LoiOXjUdSXLGCYPs2XLFgGg2jZ06FBDmffee0+0aNFCBAQEiISEBLF7927lAiaPwWuL5MDriuTgSdcV1zYiIiIij8I+L0RERORRmLwQERGRR2HyQkRERB6FyQsRERF5FCYvRERE5FGYvBAREZFHYfJCREREHoXJCxEREXkUJi9ERETkUZi8EBERkUdh8kJEREQehckLEREReZT/D5pgWacZTFuAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")\n", + "plt.plot(ps.freq, res.mfit, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can find the function in the `scripts` sub-module:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling.scripts import fit_powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([109.03139888, 2.07028842, 2.00200906])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)\n", + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fitting Lorentzians\n", + "\n", + "Fitting Lorentzians to power spectra is a routine task for most astronomers working with power spectra, hence there is a function that can produce either Maximum Likelihood or Maximum-A-Posteriori fits of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "l = models.Lorentz1D" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude', 'x_0', 'fwhm')" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "l.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "def fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + "\n", + " model = models.Lorentz1D()\n", + "\n", + " if nlor > 1:\n", + " for i in range(nlor-1):\n", + " model += models.Lorentz1D()\n", + "\n", + " if fit_whitenoise:\n", + " model += models.Const1D()\n", + "\n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + "\n", + " return parest, res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make a dataset so we can test it!" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABigklEQVR4nO3deVhU9f4H8PeAgiu4oCAokrkkLqAIaFqBUoQ3UsytslDLbgZeC9O0a2qp17IiK+dmWi6ZJWlXWyw1sX6aWQqGZW6ZqKiBoClCCgrz+2OccfaZM3NmzjnD+/U888ic7fsZGOd85ruqNBqNBkREREQK4SN1AERERERCMHkhIiIiRWHyQkRERIrC5IWIiIgUhckLERERKQqTFyIiIlIUJi9ERESkKPWkDkBstbW1OHv2LJo2bQqVSiV1OEREROQAjUaDy5cvIzQ0FD4+tutWvC55OXv2LNq1ayd1GEREROSEoqIitG3b1uYxXpe8NG3aFID2xQcEBEgcDRERETmivLwc7dq109/HbfG65EXXVBQQEMDkhYiISGEc6fLBDrtERESkKF6TvKjVakRGRiI2NlbqUIiIiMiNVN62qnR5eTkCAwNx6dIlNhsREREphJD7t9fUvBAREVHdwOSFiIiIFIXJCxERESkKkxciIiJSFCYvREREpChMXoiIiEhRvCZ54TwvREREdQPneSEiIiLJcZ4XIiIi8lpMXoiIiEhRmLwoTGFhIeLj47Flyxa7x9bW1mLDhg0oKyvzQGRERESeweRFYQ4fPow9e/Zgw4YNdo/95ZdfMGzYMMycOdMDkREREXkGkxcvdu3aNQBAcXGxxJEQERGJh8kLERERKQqTFyIiIlIU2SUvRUVFSEhIQGRkJHr27Il169ZJHZJbrF+/HoMGDcLp06elDkXv559/xqRJk1BdXS11KERERFbJLnmpV68eFi1ahIMHD2Lr1q14+umnUVlZKXVYonvvvfewfft2HDx4UOpQ8MMPP+DMmTOYPXs2Fi9ejOPHj0sdEhERkVX1pA7AVJs2bdCmTRsAQEhICIKCgnDhwgU0btxY4sjk58KFC2jRooVL17h27Rr69++P2NhYzkhMRESKIHrNy44dO5CamorQ0FCoVCps3LjR7Bi1Wo2IiAg0aNAA8fHx2LNnj8Vr5efno6amBu3atRM7TMX76quv0LJlS6xfv96l69TW1gIA9u7dix07dogRGhERkVuJnrxUVlYiKioKarXa4v6cnBxkZWVh9uzZ2LdvH6KiopCcnIxz584ZHXfhwgU8+uijWLp0qdghegXdxHMlJSUAtHO6lJaWunRN3dBqIiIiORM9eUlJScG8efOQlpZmcX92djYmTJiAcePGITIyEkuWLEGjRo2wfPly/TFVVVUYOnQopk+fjttvv91meVVVVSgvLzd61DVXrlxBVFQUUlJSpA6FiIjI7TzaYbe6uhr5+flISkq6GYCPD5KSkrB7924AgEajwdixYzFw4EA88sgjdq+5YMECBAYG6h/e1sR09OhRfP311zaPuX79OgBtMxsREZG382jyUlZWhpqaGgQHBxttDw4O1s8Cu2vXLuTk5GDjxo2Ijo5GdHQ0fv31V6vXnDFjBi5duqR/FBUVufU1eNrgwYMxePBgXLhwQepQiIiIZEF2o40GDBig70TqCH9/f/j7+0OtVkOtVqOmpsaN0XneH3/8AeBm7YrOlStXpAiHiIhIch6teQkKCoKvr6++k6lOSUkJQkJCXLp2RkYGDh48iL1797p0HSIiIpI3jyYvfn5+iImJQW5urn5bbW0tcnNz0a9fP5eurVarERkZidjYWFfD9EpXr17Fp59+ioqKCqlDISIiconoyUtFRQUKCgpQUFAAACgsLERBQQFOnToFAMjKysKyZcuwatUqHDp0CBMnTkRlZSXGjRvnUrlKrnk5ePAgvvrqK7eW8d5772H48OH44IMPAGiHrO/cudOtZRIREbmD6H1e8vLykJiYqH+elZUFAEhPT8fKlSsxatQolJaWYtasWSguLkZ0dDQ2b95s1om3LklOTsbp06eRk5ODhQsXYvny5ejZs6do1//ss8/w2WefAQCOHTuG6upqjB49GiqVin1niIhIcURPXhISEqDRaGwek5mZiczMTFHLVXKHXd3ijLm5ucjPz8f+/ftFSV4+//xzs21vvPGGfkSWvb8TERGRHMluYUZnyb3ZqLCwEBcvXhT9uitXrsRvv/1mcV9VVZXF7Vu2bBE9DiIiIk/xmuRFzsrKytChQwe7swXbcvbsWSQnJ+Obb74x2p6Xl+dyZ2dr/ve//+H99993y7WJiIic5TXJi9xGGy1duhTTp0+HRqPB33//DQA4dOgQrl27hmPHjglusjl48CC2bt2KFStWuCNcix544AE8/vjjHitPCTZv3ozFixdLHQYRUZ3mNcmL3JqN/vnPf+KVV14xmxl3xowZ6NSpE7Zv3+6+wo8fB159FWM++wx7APwAYB2AfwEQo1u0RqPBW2+9pZ9Ary5JSUnBpEmTAGiXY0hJSUF1dbXEURER1S2ym2HX2+mWQTCdMdfU3r17BS8y2QsAUlOBL78EAJh2+R0OYCGAFZcv43kAfwm6+k1nzpzB5MmTsX37dmzcuNHJqyjfyy+/jM2bN+Ovv/6q06PliIg8jcmLTMXFxTl8bGMA8wFMAvSJizX+AJ4EkAZgtJOx6Zq8dIlYXXXt2jWpQyAiqpO8ptlIbn1ePKUHgJ8BTIawP2YwgK0AVMuWme2bPHmyKLERERG5g9ckL3Lr8+IJDwH4EUAnC/uuBQTgp5498U8AEwF8AOCqyTH1AfhNmoQnTbZv3bpV9Fi9GefLISLyLDYbKYyuqeJ5aJuKTF0BMA/An/fei6D27bH0l18AAEtunPMugH+YnPPOjfNWuSdkr5SdnY3CwkKpwyAiqpO8pualrrhSWYm3YTlx2QNtM9J/AFz19TXbfwZA6o39ppYBuEO8ML3elClT8MuNxJCIiDyLyYuIXnzxRbRq1QqHDh1yy/X9AawFYGlhhXegTT7sDV7WAPg3gFkm2+sD+BRAuJXz9u3bx5l5iYhIFrym2UgOaxtt2bIFZWVlojQndOjQAcePH9c/r//339gMIMHkuFpoO+uaTpv2ww8/4OTJk1avPxdAIIApBttaAdgAwNJ8vQMGDMCVK1fYv8MC/k6IiDzLa2pelNphd/Xq1Ra3+/v7639uAyBp7lyzxKUK2uHOluZ7tZW46EwDcO3uu4229QbwsoVjba0+fejQITz33HN2564hIiISg9ckL0qxZs0ao+cffvihzeM7QztDbvNTp4y2lwNIgXbmXGfVAqhYtgymjVzPAPh5vqVeNZbNnj0bCxcuxIkTJ1yIhoiIyDFMXmQsDsAuABEm2/8EcCeAb8UoJCAAI2E+jLrtzJkIcfASly9fdqpojUaDn3/+WfGTvbHZiIjIs5i8yMiuXbv0P99RUYHtAIJMjvkdwO0A9otY7gEAWSbbWkE7AsmWn376CUlJSTaP+b//+z9MnDjR4g3+t99+Q+/evbFkyRIh4UqmVatWUodARERg8uIW//iH6Uwqjvntt98AAB127oS6qAiNTfbvBdAfwAlXgrPiHQD/M9l2H4Cxds7Lzc21uT8zMxNLlixBRUWF2b7KykoAUMwCj2VlZRa3//jjjx6OhIiobvOa5EWK5QGuXbuGN998Ezt27LB53Lp1jvdMmQmg/7JlZsPANgNIBFAqNEgBJkDbJGVoEQCY9LcRQujikkr0wAMPSB0CEVGd4jXJi6dGG61YsQKLFi0CABQUFODpp5/Ggw8+aPOcn3/+GQDQvHlzq8c0BPAxtEOYTa0GcD+ASmcCtsNwccULAJ4w2R8IAI895oaSiYiInOM1yYunjB8/Hs888wwuXryI2tpaAMClS5ccOrdFixYWt4cC2AHLqzy/CiAdgLu6tEZGRho9/xLAStODtm0zW/+IiIhIKkxenCTWCJO7AOQB6GOyvQbayeemQTsr7sSJE9GhQwdRyrTnaQBFJtteA+CZ0omIiGxj8iIRFbTT9OdCOwmdocs+PpjYrh3e8nxYAIBLAEwbihrjRo2MhRmMLXXGJSIichcmL272wgsv4LvvvjPa1gbA19Cu/my6fOIxAOmdO+P7Jk08Ep8130C7ErWhOwDgjTfMjv3+++89EJG8TZkyBePHj5c6DCKiOoHJi5OOHDni0M3qnXfewZkzZ7RPNBqMAfAbgGQLx24GEA+gsEED8QJ1wVQAx003/vvfqH/kiATRyFt2djZWrFghdRhEbrFo0SK8YeGLC5FUmLw46euvv8bBgwcdPj4EwJLiYqwGYDrmqAbA8wAGQzviR0yBgYFOn1sB7TwvtYYbq6vRaOJE1HctLFRXV3NmWiKFeOaZZ5CVZTqVpTTefPNNu8uqkPfzmuRFinleHFEP2rWCjgBI+vtvs/1noZ2/ZQG0HXPlZieAbJNtAceO4QUXrjlu3Dj4+/tj2rRpALQfRkREhr7//nuLi70+/fTTeOSRRySIiN5//33ccccdUocBwIuSFzmuKp0M7TT+2QACLOxfA6AHtAmCzv3332/1eroZaT1tJrRNXYZmQLv2klCXLl3CypUrAQA7d+60fbALvvzySyxbZm+BA+cEAHgDwBYAD7mlBCLl0Gg0WLx4sc2V5y25ePGi2UK1OkVFRbjjjjswe/Zs/OMf/8CROt5UXVlZifPnzws6Z8uWLfjpp59EjePxxx+XTR9Hr0le5OQuaBOSzQAiLew/B2AYgDEwbyYKCbG+HKK16endrQrAIzCea6YegA+gnVxPCGeXThAqNTUVTzxhOuWeON6Ddjj5PdAmoCluKYVIGfLy8jBp0iTMF7ASPQDMnTsXY8aMsfi5pvui9v333+Orr77CyJEjHWpmrq6udnjeLbm6du2a2Zfw+Ph4BAWZrnRnWUFBAfr06YN7770Xffv2tXlsbW2t2e9VpVLh7bffFha0BJi8iKW2Fv0vXEAugO8ADLBy2EoA3QBscKKI1NRUAEDDhkJTBtf9DOAlk21dALxssu2vv/7C//73P6sfNIaLT+pYm7xPjjoAGGGy7WkJ4gCAjRs3KmZdKNLeWB9++GGjWa29ga5pR+iUCbr3bo2F6RdM/fLLL1i7dq3d49LS0tCsWTNcv34dV69etXu8o8eZ2rNnDyorK1FZWYnx48fj8uXLgq+hs3//fkyePBkA0LlzZ/j5+SEuLg4XLtz8aqtb984R8+fPR35+vtn2v/76C/v3Gy/p6+vri+nTp5sda1gjdv78eaxbt052fRSZvLioOYCJ164BXbrg1SNHMNDKcfkARoSFYRwAZ+tPOnfu7OSZjhs7dqzVfQsAmFZC/gvajsaA9sM5Pj4eDzzwgMUkxdqbv6amBhs3bkRVVZV+2/z589GzZ09BsVtSWFiIhx56yKUPF0P3Wtg2ADeHvDvzQeistLQ09O7d22PleZPq6mrcfffdOHbsmH6bRqNx6wf0nj178NFHH+G1115z6Trbt28XdDNzNx8f7W3EHb87w2sa/q2s+eqrrwAAiYmJRl/yrl27WW988eJF/XpzycnJTn0ZjI+Px/jx47Fu3TqsWLHCavOXIx588EG89ZZ2Vq/ff/9dv133eWi47cCBA/pmd6HuvvtuREdHY8yYMQgLC9Nv/+CDD2ye9+ijj2LkyJHYtGmTflt4eLhon6nOYvIigK7dtQmAyIMH8T8AxQBera4GrPzHKmnYEOOg7R/ys0yGQNuSmZlpdV8NtEsVmLZsr4J2iYNNmzbp/6NZ6tR18eJFi9e9dOkS0tLSsH79ev22mTNn4tdffxUUuyXLli3Dxx9/jH379gk6b/PmzfDz8zPrMNjdwrGNcLN5UPcNylPqwsKX7nD06FFs27YNL7/8sv55/fr10atXL0HXycvL069dZo9YN/dBgwahe3dL70TnXL16FXPmzLHYOdYRKpUKgPDXJ3R5FSEM+2VcuHABfn5++PjjjwEAAwcOxMiRI3H16lVs377d4Wua1pgZ9sOZOHGi2fHLly93OtEAgNOnT6O8vNxolFevXr0wbtw4ANo18xyptdLR1bqsWbMGZ8+e1X9RtVUTeOjQIX0TlmGyUlRUhF9++cXhst2ByYsjNBpg/34sv+02bIe2n8qo9euRBsDPyilnAGy85x5MHDgQK2Ey3FjBjgB41mRbELR9PypNbqQajQanDFaktvdt0Vpy4woh/7kNZWdn49q1a/jbZISYtbqvLjf+Xbp0qVnHuoKCAhw/bjZjDslIly5dUFNTY1at/uWXX+pvspbExsaiX79+DpWhu7nrbvau6tPHdFER4Z544gk0bNgQL774IjZscKYx++brsfV7skTXtDFnzhxcvXoVKpUK69evd7jPRV5eHp555hm7x3Xt2hUAsHXrVly9elWfbJomWxqNBjk5ORY/M3bv3o02bdrg//7v/8zOsaS6uhqPPfYYxo0bh3nz5mH79u1444039E1rrVq1wuuvvw7A+vshLi4OgYGB+Ouvv/TbdAnm4cOH0bt3b9SrV8/u6z906JDF7atWrdL/rItBl+DpREZGorS01GacUmHy4ogHHwSio/EKtMOabc1xUgDt3Ci3Avipd29c9/G+X/F/AfzPZFsCgP4m32IMExdHZGZmYvfu3UbbiouLHaouFurdd991aq6ILg5sN/ywAbTflm699Vb98+vXr2Pnzp0Of1PdsmWLUbW3p+zZs8fpb+Oe8ueff2LSpEkuxWnt3F27diE1NRXvvvuuzfMNmztteeWVV2yWJ5Slfg1CnDx50mhEnrOJvrPNRrrja2pq9F9c3n//fQDQN+vYEhsbi0WLFiEgIAAqlcrqF4Rz587py9M1KwEw+z+1bds2jB49GsuXLze7hq6WxbC2Zf/+/Uav2bCm2LC/ygsvvIBBgwYhKysLL72k7TlYVlaGGTNmAIB+vjBr/8ctNcEXFhbqfzZMKsrKysz+jr169cKWLVsc+vvqJiL86aefsGXLFqN9TF6UKD7e5u6rADBiBJ6KjEQvaJtRHPs4U67HAJww2Tbohx+QYPC8U6dOgq87ZcoUo+eJiYn66yxevNgsuTH0008/YcCAAQ51HHzyyScFzxXRGEBbK/sMkxd7H+Jr167FnXfeiR9//FG/7ZdffrF4Ezx+/DjuvfdezJ07V1CsriouLkZ8fDzmzZvn9DUqKystfvCK4dSpU1i3bh2ys7OxePFil6qwLXVYBG42Zzgzyu/dd981S96//vprAMJrKHReeukll/vLGIqIiDDbptFoMGvWLKObryHD6RoWLFgAlUplseblyy+/xCeffIIffvgBJSUlALSzjYeHh+uP0Z33ySefWI3RkekUdM0Zhl8QdAxfh+n/S9MJPO+55x4AwpqxHnvs5ipwjvTR++STTyz+3gFtnxRHnT592uj5M888g//+979o1aqVWQ1aVVUV7r33XrufSyqVymiU0733GvfwGz16tNFzqb/YMHlxRIr5YNjrPj74BsB4AB0aNQI++QQFLsxm6wpH3vQPP/ywqGVeBPAgAMO3rw+AHNy8wRt+k/j8888duq5pM83hw4f1P0+aNAlpaWlWz1Wr1di1a5coozl0iYRGo8GBAwfw7rvvWm0yAoyTl0uXLmHHjh1Wjz1x4gSAmx+stbW1iIqKsthfRvf7OHv2rKD4Lbl+/TpGjBjhUBOW7iblymimJ554AgMGWBt3Z9/GjRuRnZ2Nvn37GnVaBLT9PkaOHOnU3EeNGzfGP//5TwDav+8PP/xg8biCggIAzn3jfPLJJzFkyBCjbYbNRidOnMA333wj6JqzZ8/G1KlTre4/ceIEcnJy8OCDD+L69esoLS2FSqVyeD4ljUaD3377DXPnztUndFevXsULL9ycklKtVgMASktL9Qm1rubFsIY0NTUVo0aNQv/+/XH77bdDo9HgqaeeQlFRkcVaFd0Nd/PmzVbjc+bv0LJlS/3Pn3zyidVrGCYDU6dOhUqlQpcuXVBUVAQAgvqulJSUWO24f/LkSZw8eRKA9vPR8PWaNknZYjoNxKJFi5CRkeHw+WKYOXOmR8szJcvkJS0tDc2bN8fw4cOlDkWrSxegfXuUNm0KNYBUAK9Mm4Z7AKwAUC5xdZruA8XTfoR2ZWxDraEdBm7aNfm9994TpUzdtzhLdDcHMSZRMkw+hg4diieffNJqkxEAdDT4+aGHHsJdd91ldoxpnx9dvLp/3T2CpLCwEOvXr8fs2bPdWo6Oq819aWlpmDJlCn766ScsWrTIaJ+1mgFH/P3330YJi7Ub2r///W+r+8vLy/Hoo4/aLMfapG0qlQq9evXSf9M31bRpU4f6Mpjq0qULRo8ejbVr1+Lo0aM4evQoAG0S6AjDb+b79u3DQw89hBUrVhjVvmk0Gpw7dw6tW7fWvz5djcu2bdssXvf48eP6WicAGDlyJE6dOmX0ezVNIC397q5du+bSCva6fjWWtGvXzmzb0aNH8f3332P79u36xGLz5s1GTU+m1Go1QkJCEB0d7VBMKRa+GCuFLrmXiiyTl8mTJ9sdvuVRKhWQl4fnR45EJoAvAVT73eyqW1lZKaizaaNGjWyO6lGSV6H9fRjqA2CpybZTp07Z/NZoj5Bh4rre+I7Kysqy2cauq32wlby0wM01q0xrCXRsDUN3hbXyAG0nRVcm63OmH4Oj5xQXF+PAgQPOhKW/YbprRm3D5FWj0ejfAyUlJZgzZw5WrlyJ1atX27yGtd+DSqUy+7zIy8vTd6ysqKhwuP/Jr7/+qr9WdXW13eNra2sdmgk3Pz8fH3/8scUaBNPEMSYmRv/zlClTLM4Eazo5paX+JoYsJSkvvfQSmjZtajd2WyZNmiT4nEGDBul/3rBhg82JNnWf60qfKE8JZJm8JCQkuPwmFV1QkDaJseKLL74w23bLLbdYPPbDDz80upE/+OCDrscnEQ20MwWbTt79CIwnbzt+/LhRHw9bLH1w2bpBC2X4gazRaPDGG29g5MiRFo81vAHZSl4A49oXSww72QlleiM0vPlZG00AAIMHD8ayZcvsJhRXrlzBd999p3/ubOe8wMBAxMTE4K+//sKePXtsHtutWzf06NHDqXJ0zWl5eXkOHf/nn39a7Vth6bUa1py98MIL6NixI/766y9MnjwZL774or45wRmW3gexsbGIjIzEn3/+KehaPXv2NLq56ly5csVih/nnnnsOjRo1sngtR5LOiooKm0PDs7OzHZ4J1pCnJu4z7StCznOlFkwMoicvO3bsQGpqKkJDQ6FSqSxWWarVakRERKBBgwaIj4+3+yGnBKbfqmtqahz+xvvRRx+5ISLPuQRgKADTGUdeg7aJTSiha6ToODIip6KiwmhSKl3fB2sMv83aS14c7Z4sJDHQHfvzzz8bzelieCO2NcmW7hu8bsSFNQsXLkRiYqLRyAyd69ev47nnntMPmbTl8uXL+Pnnn7FixQq7x7rS9GP6Oxw3bpzNm29aWhpGjRplsWOvo3+Pv//+W1/j48iNXqPR6PtO6YbFAtD3ebDE3t/JEktzGN1zzz146CHzlbc+/fRTwdc3tHTpUtHWtjlz5owo13EnS79DkgfRk5fKykpERUVZ7YeRk5ODrKwszJ49G/v27UNUVBSSk5Od+k8LaDtWlpeXGz08LSQkxGwEgY/AIdJLlizB888/71RbtzPEbrY6DG1tiyFfAGsBiL3O9+TJky0uupiTk2O2zfT9YNrB097ijYY3WNOGK9OxQfZqXkyr04U0yfz88882OyvbY68sXfON7mZrmAjm5+dj4cKFHlvvpLa21qGhsoZ++eUXm0mv7u8YFRVltF2j0TiVTFpz7do1PP/88wC0tYUNGjTAsWPH8OyzprMjWSZWvyfD961hJ3hdArp161azc9asWWOzozngXHJF5A6iJy8pKSmYN2+e1Q/a7OxsTJgwAePGjUNkZCSWLFmCRo0aWRxb74gFCxYgMDBQ/7DU8crdhgwZAn9/f4v7DKdhtuWf//yn4IXNXOGOsj4HMMtkWyNo+8R0ELGct956y6hWq7CwEHFxlte4XrJkiUtl6W5WbaGdWdnQJpPn9pIXwHKHY2uJxbVr1/D000/rnxvOI2F4E33yyScdKNmysrIyi8PPDZtNdLU3rlYTHzhwwKFate3bt5s14zmaYBw4cMBsoi17xJi/ora2Fi+88AI+/PBDLFiwwGifafON4Rcb02nlDZO2P/74A9euXcP8+fNdGkmyZMkS/cgj3d/QcKp3na+//tqsHEvDurmeFsmBR/u8VFdXIz8/H0lJSTcD8PFBUlKSzfk7bJkxYwYuXbqkf7jSFu0OznQQU7K50C4+aag1gK8BtHJTmTt37rTbcdOwP4czbjN5fhmA6XdU0+Rlz549ZtPN33fffXbL+u233zB8+HBs3rzZqCOjYZJjeMN1Zfbexx57DLfffrvZdkvNR65Mb79nzx706NFD39/CVv8nSyPTLK18a0mPHj3cVtVfVVVldSr8bdu2Yd68efpaF0OGM5kCxpPLjRkzxugzy7Dm45dffkFycjJmzpyJ//73vy7Fftttpu9gxzjSCdgZcpvwjJTHo8mLbva/4OBgo+3BwcFGHbaSkpIwYsQIfPXVV2jbtq3NxMbf3x8BAQFYvXo1+vbta7HzGnnWBACmldKdAWyDdlSOFObMmePwsYZV97pvzab9XQ4DOGqyzbTPy9KlS82GE547d87qB7du+/z58/Hpp5+adWI0bAJz5cP/008/RevWrXH69GmLzQfW4rIkJycHt9xyCz7//HP9OkGWzjEdmWNrSn1LzX/79u1DZmam4P5xR48exZNPPmk18VqxYoXVeV5MzZkzR/+6srOzjfY999xzACx3PLU3ctLw9Ro295SWluLbb791KLbFixfb3O9K/yJTpjOvEknBMx0sBLI2X4AtGRkZyMjIQHl5udnMieRZ1wEMh7ZmItpge09ok5pB0HbytUSj0TjcP8BdDBe9083FYfq99TAA01lMggA0g3YCP2tOnTqlnz/EGmsdj8X6FnzlyhVcuXIFX35pOshdO9HZqFGj9M8NkxBL8zrMmDEDJ06cMJuQzZThzdWZOX9+/PFH/Pjjj9i0aZNDo7ZOnz6Ntm3bYuLEidi+fbvN5ltHZwo9f/48AgICLO5zZc4La1MI2OtMbkhoDa+jtWhijvIjEpNHa16CgoLg6+tr1u5fUlKCkJAQT4ZCbnYZwGAApq3jMQC2ALB8C9DOjyDlHD/WPtQtJS8noF1p25DhBOX2ko1nnnkG//nPf/TPi4uLzfpAmMrNzcXvv/9usTbkhx9+gEqlMltc0BrDOVl0fRvUarVRTafh78O06a20tNShDpymv9MJEybY3O8IS6/f8Dq6BNSZFY8TEhIElatEjk5b4MioMWdYmsqfSAiPJi9+fn6IiYlBbm6uflttbS1yc3MdXpnVGrVajcjISMTGij22RTxy6ejmrvVmTP0JYCAA04Gh8QC+heU+MLaGkXqCtWHHlpKXazBf38mw34u9Scz++OMPo1qY33//HWPGjLG5+nBSUhJSU1PN9qlUKvTv3x8AMGzYMJvlWvK///3PapnWtG7d2qnp+U29+uqrmD9/Pg4dOuTwaEFLcRp+Kbp06RJmzZqlP07I8grWpmm/du2a4M7AcuWuyf2IPEX0ZqOKigqjacELCwtRUFCAFi1aIDw8HFlZWUhPT0efPn0QFxeHRYsWobKyUvCsqKakajZKSkpC+/btUVVVZbTiqCfMmTMHV65csToZnjXx8fGCh3I76xS0zUT/B8Cw4r43gJ0A7gYgpy7WlhZHbAnzBRl1Ky4dg3Fti/ClKM2r5nVzcZjWUOgcOXLEZpJx/PhxrF271u7CmJZqIyxtM+zH8ffff1ud5MyQYXz2OuPr+ou4ulaK6bf5uXPnClrszh6haxERkfuInrzk5eUhMTFR/zwrKwsAkJ6ejpUrV2LUqFEoLS3FrFmzUFxcjOjoaGzevNmsE69QarUaarXa6WXdndGkSRN88803+m9qYnaKc8SAAQOc7qBs7ebXqpX4Y4L+gDaB+RZAG4PtXQB8D+BeANbniLUuOjoaP/30k+sB3mCtCaS3yfO/cXNG4WMAkg32OTJc2pS1Rdxc4ciszZaG35omL5cvXzaqyWncuLFDTTCG7y9djZCYHK0hcmWEFBHJl+hfvxMSEvRt6YYPw1U5MzMzcfLkSVRVVeGnn35CfHy8y+VmZGTg4MGDklSH3nXXXYiMjBTteufOnbM55bvYvvjiC/j6+gIAmjVr5pYyjgC4A4BpV8twALthnAA4av/+/fjrr78cPn79+vU291tLoE2Tl/242dfFtDujM8mLM1OjC+174ejKwqacrU10dWi6PY42VznT+Z+I5E+WaxvVdULa53WsTZLniPvuu89oPZLGjRs7fS1b/gAwAIDpHKKB0E745u4ZcUaMGOHUeTEmzw0nYzcdcdTNiesPHjxY8DlCZ5K2NC2+JabvPWdrLhxdyVioEydOsDaFiJi8yFnbtqY9Layz1znUnnfffRdjx45Fkyam88iK6yyAOwGYjnXwBfAWgBXQzsorJ6aNHobJi+m4nmYQdzZha/71r38JOt7RG77pujVyTBQsLThIRHWL1yQvShhtJMSQIUPMZme1ZcSIES71GxoyZAhWrFghSkfe8PBwm/svAEiEdt0jU2MB7AHgaCPcgw8+iPT0dCHhCdIJQKjJNsPb+2kApj1lTJuZ5ECOSYizIiIipA6BiCTmNcmLlH1eXKHra6I0jz32mNV9jnwzvgrgQQCzLezrBmAvAEem6HJ334pEk+dnYT6zbr7Jc9NmJjkQM3lxpo8OEZGYvCZ5UZrQ0FA88cQTbpsESkxidkY29RK0s/Ga9uBoBGAJgG8AtBexPEcn59JJMXluabL2fSbP5Vj3t2DBAqc67VpKes6ePYvDhw9bOJqIyDO8JnnxdLORq1O116tXD++++y4eeeQRkSIypqQ5KT6FtqnFNAkAgCQABwD8C+KM6x86dKjDxzaBdhi3IUsrAZmutnM7AD9BUXmGrdoyayxNrBgTE4OuXbuKERIRkVO8JnnxdLOR4SJ0cmE4rbm7hjy7yx/Q3vQtLS/XBMCbAAqgTWY85X4ADQyeVwP43MJxOwDUGjxvCMC1+aKJiMgWr0levFFoqGlXUdtcHXEktSpoh0snQzszr6lu0DYjfQYgygPxZJo8z4XlRRcvwrzWiGubExG5D5MXGXv11Vcxffp0h4+vX7++G6NxXM+ePV06fyuA7gDetbL/fmhrYT6F+5KYu2Bee7LcxvHbTZ6niRsOEREZYPIiY02bNsXtt98udRiCffnlly5f4zKAJ6Gd1M5SXxgAGAZtEvMNtAmNWG/megDeMNl2CsAGG+d8YfK8Oxwf7k1ERMJ4TfLibfO8KFm7du1Eu9YuaEfvPA7z+VR0kqBtSjoGYBacWxzR0OsATGfYeQU3lwSwZBe0c74YGuNiHEREZJnXJC9yneelZcuWol9TN32/p1aGllotgPehXTfo39BOcmfJLQBehHYelr0AngfQB46/yRtB21RlOnftb7DehKWjAbDOZNsT0HbeJSIicYm+qjQZCw4OxrVr1/DAAw/g888tjVURbsaMGfDx8UHfvn1FuZ5SXAbwHwBvQ9ux92kA1tbA7nPjMR/AeWiXI/gZwC8AzgAogbYmpSGAW6FdsiAdQGuT61QBeBS2a110lgF4xuB5S2gn2lvkwLlEROQ4Ji8C3HfffTh58iSOHDkiaH2VevXqCV4F2JaIiAgMGzZMtOs5o3379hg4cCB8fX2N5pRJSnL/YGZdEvM6gNHQJjK2ZrVtCeAfNx5C1AJ4DNb73Jg6BOArAIbLLM4GsAZAqcCyiYjIurrR7iCSIUOGYOvWrYLWHHKVbr2i2267zWNlOqJZs2bIzc1F//7GyxbOmjXLYzFUAVgFbQ1LPLQLO5aIdO1KAA9Bm3gIMc/keTNoYxQvdSUiIiYvMhcXF4fKykrBqwjXNXsATAYQBuBuaCe1c3YC+6+g7bCb48S5uwF8aLItBcB/wQSGiEgsXtNspFaroVarUVPjSO8E8bmz3EaNGrnt2mKLivLE9HHW1QDYduMBAOHQztzb68bjFgBtADQ2OOcctJ18twNYD+BXF2OYAu0kdW0Mtj0JIBjAOACXXLw+EVFd5zXJS0ZGBjIyMlBeXo7AwECPlx8WFoYjR47YPc7Pzw99+vTxQETSaNhQXuNrTt14rDXZrovyOoBrIpd5Dtq+ONsAGE4bmAagP7TDuVdBu7I2EREJx2YjkbzwwgsOHbd+/XpR50FxxaBBgwQtQTB37lyzPi5KdeXGQ+zERWcHgFEWrt8a2tWyi6CdCG8A+J+QiEgofm6KxN/fX+oQ7AoKCjJ6vmXLFhQWFpodl5ycbPH8YcOGYeLEiQ6V5ecnx3WVPWsDtCOcyizsC4J2qPdOaOet+RrATAD3AegA/sckIrLFa5qNpBYXF4fly5dj/PjxUodi1aZNm3Do0CH4+voCAHx9ffU/G/rwww8RFBSEv//+2+myAgICUFZm6bZdt3wDbV+bxQCGWDkmEMC9Nx46VwD8Dm2TV5HB409ok6EyaOevYdMTEdVFTF5ccPXqzVuHr6+v1RoLKRkmJ3FxcYiLi7N7TsOGDREeHo7Dh50dr0OGTgMYCmAggGnQrpptT0MAPW88bKmENpG5AO38NxU3/rX0cyW0yY7po8rK9mpoZw4mIpIbJi9OaN1aOw/r9evXJY7Eus6dO2PUqFHo1auXoJWpyX2233h0gbY/zDC4vip24xuP9i5ex5oaaDs16zo2O/NzrYCHRuDxpufC5F85bBN6jtjccV1eUxnXdfuXj6+/BlJS3F2KRUxenLBw4UIsW7ZM6jBsCggIwNq1a7Fr1y6Xr9WkSRPB59x3331YuXKly2V7oyMAXrrxaAPtCKT+0M4SHAntjMBy4XvjIf8eXUTkcQsWSJa8sF+gE5yZ6r9FixYAgAYNGogdjlvl5eXpZ/kV4t1333Woiaqu+xPauWWegXZ9pSBoRyQlQDsnzCxo10zaAu0Ckefg2DpLRETezGtqXqSepM6eV199FQ899BASEhKkDkWQNm3a2D/IAj8/P4SFhZltnzBhguxrraRWCuD/bjwsUUHbyTfoxqMlgOYAmt54NDH42fDREEADg4f/jX8bQlu7QkSkFF6TvEg9SZ09LVu29MiihXIn5gKVdZUGwMUbj2MiXdMXlhMbX2gn2qtn8LD13NI+FbRVvO586JIvlYV/Hd0mh+PFINa15BiTmNdiTK6LlXDNPa9JXojIeTXQjkaqlDoQIlIMzdKlkpXNPi/kUdeuuWtOWyIiqiuYvJBH/fqrdtlDzsBLRETOYvJCHuXjo33LdenSxanz69evj3nz5okZEhERKQyTF5n566+/AADV1dUSR+K62tpau8fo5pDZv38/6tWz3wUrKChIccPNiYhIXExeZOb8+fMAgPvvv1/iSG4KDw8HoK31CAkJMdpmy969e+0eo0tEQkNDMWLECBeiJCKiuoKjjWSqa9euUoegN3fuXCQnJ6Njx47o1KkTzp49q09ibLG06KMtDRs2tHtMhw4dBF2TiIi8jyxrXr788kt06dIFnTp1wnvvvSd1OHVe8+bNkZqaqp+jpU2bNpLN1+JI0xIREXk32d0Jrl+/jqysLHz77bcIDAxETEwM0tLS0LKlnFZ88X5Ca02IiIg8RXY1L3v27EG3bt0QFhaGJk2aICUlBVu3bpU6rDrnpZdewsCBA2WRNG7duhWrVq2SOgwzQUFBUodARFQniZ687NixA6mpqQgNDYVKpcLGjRvNjlGr1YiIiECDBg0QHx+PPXv26PedPXvWaE2csLAwnDlzRuwwyY5hw4YhNzcX/v7Sryd89913Y/DgwQCAjh07ShzNTd26dcPOnTulDoOIqM4RPXmprKxEVFQU1Gq1xf05OTnIysrC7NmzsW/fPkRFRSE5ORnnzp1zqryqqiqUl5cbPcj7BAUFYd26dXj55ZelDkXPx8cHAwYMkDoMIqI6R/TkJSUlBfPmzUNaWprF/dnZ2ZgwYQLGjRuHyMhILFmyBI0aNcLy5csBaIfMGta0nDlzBqGhoVbLW7BgAQIDA/WPdu3aifuCSDaGDx8uq6Ya3YR7OkVFRRJFQkRUt3i0z0t1dTXy8/ONVlf28fFBUlISdu/eDQCIi4vDgQMHcObMGVRUVODrr79GcnKy1WvOmDEDly5d0j94AyFPMR1x1bZtW4kiISKqWzw62qisrAw1NTUIDg422h4cHIzDhw9rA6pXD6+//joSExNRW1uLadOm2ew06u/vD39/f6jVaqjVatTU1Lj1NZBrTGsrlExOtUBERHWJ7IZKA9rZZYXOMJuRkYGMjAyUl5cjMDDQTZGRMxo3bozKykqjba7ME9O9e3dXQxLF4sWLpQ6BiKhO8ujX4KCgIPj6+qKkpMRoe0lJiUMzttZ1DzzwAIYMGYKYmBipQ3HZ008/jV69ejlVe5GcnKxfA0pKchhGTkRUF3k0efHz80NMTAxyc3P122pra5Gbm4t+/fq5dG21Wo3IyEjExsa6GqZsxcXFYePGjWjfvr3UobgsJSUF+/btQ6NGjZw6v2nTpiJHRERESiF68lJRUYGCggIUFBQAAAoLC1FQUIBTp04BALKysrBs2TKsWrUKhw4dwsSJE1FZWYlx48a5VG5GRgYOHjzo0GKAJB3dgo7e1PeFiIg8S/Q+L3l5eUhMTNQ/z8rKAgCkp6dj5cqVGDVqFEpLSzFr1iwUFxcjOjoamzdvNuvES94pOzsbKSkpaN26tdShEBGRQomevCQkJECj0dg8JjMzE5mZmaKW6y2jjZo1awZAvAUIdUnC7bffLsr1XBUWFoaxY8e67fr16tXD9evX3XZ9IiKSntfU3XtLs9HChQuxcuVKxMXFiXK9Tp06obq6Gk899ZQo13NGly5dPFaWpQ7Azz33nMfKJyIi9/Oa5MVbtG/fHunp6ahfv75o1xTzWkLohkOvWLFCkvLF1qtXL6lDICIieFHyUhdGGynN9OnT0aFDB3Tt2lX0a7syT4yzxGrKIyIi13hN8iKHZqOWLVti0KBBePrppyWLQU4mTpyIP/74w+GaHyEJiY+PD1577TVnQzPzxBNPiHYtIiJyL36VFJG/vz+2bdsmdRiy9Oqrr+Lq1as2j5k4cSJOnjzp8O8wLCzMoeOsdSAPCwvTLwLq5+fn0LWIiEh6TF7II5599lmL2w2HTMfExOCbb75xqUkoPj4en332mdE2w1XKDbVs2dLqPkukaKoiIiJzXtNsxD4vyrRo0SL85z//EW2q/ezsbLNttbW1Fo+dM2eO/md7w/sdPYaIiNzPa5IXOfR5IeG6dOmCGTNmiFKr0bhxY0HLBrijIzEREbkfm41ItpYsWYLdu3c7de4tt9yC06dP49q1a1aPMaxJcaRWhc1GRETy4DU1L+Q9+vbti2effRb//Oc/sXLlSqeuccstt2DmzJniBkZERLLgNTUv3rI8AMHp2hahhNa8EBGRPHhNzQv7vNQ9586dE/2aH374oejXJCIicXlN8kJ1T3l5uUvnN2nSRP+zrualW7duLl2TiIjcj8kL1Vnh4eGiXCciIkLwOY0bNxalbCKiuojJC3mNAQMGOH2urubF1ogizsJLRCQPTF7IK8yfPx+rVq1yaxnWZgl2BjsIExE5j8kLeYW77roLwcHBTp/vSM3LP/7xD4wbN87pMkzLu/XWW0W5lqm0tDS3XJeISC68Jnnh8gDkbvXq1cPy5cvNtjtTi6LRaLBv3z6r+2+77TbB1wSAnj174uOPP3bqXCIipfCa5IVDpeu2yMhIl853pOZFbAEBAUbPfXxu/nccPXq0U9d8//334e/v71JcRERy5zXJC9VdX3zxBZo3by51GIJYqq1JT0+3uZ+IiLSYvBAZ8FTNi1jJSY8ePYyec/0lIqoLmLwQQR41HYYxOJqEmK795GxfGSIiJWHyQmTAmZoLZzvsiq1Vq1ac/I6I6gQmL1Rn9OvXz+o+T9e8uDKhnjVsMiKiuoLJC7nEcH0gb+BIApCamupyOe3atXP5GoD1pMvX11eU6xMRyZHXJC+c50Ua48ePh1qtVvy3fiE1L6tXr8bhw4ddKi8wMNDmfmd+n4bnfPfdd4LPJyJSCq9JXjjPizSaN2+Op556Cg0aNJA6FLscaapxJGkIDAxEly5d9M+FJD4ffPABZs6cienTp9s8ztVmrJYtW7p0PhGRnHlN8kJkT0REBLZs2WJxn6f6vPj4+GDu3LkIDQ0VPQal134RETmqntQBKFHDhg3RoEEDtG7dWupQSKB77rnH5n4mAERE8seaFyf4+fmhoqIChYWFUociG4mJiQCUe/MfMWIEAKBNmzYSR+I8pf7uiYiEYs2Lkziaw9iaNWtw6tQp1KunzLdUSkqKR5qOHC3DmURk3bp1gs8hIlIiZd5pSHaaNWuGZs2aSR2G/qbftm1bj5Uph9l5AaB///5Sh0BE5BFsNiKv0rJlS7zzzjtYsGCB1KFISpfEPfzwwxJHQkQkPta8kFdRqVR48sknpQ7DZY7W5sil1oeIyJNkWfOSlpaG5s2bY/jw4VKHQjKWlpaGvn37onfv3lKH4jBbyYbcExF/f3+pQyAiAiDT5GXy5Mn44IMPpA6DZK5bt27YvXu3xTlTPMkdSYfcRg4lJCTg6tWrUodBRARApslLQkICmjZtKnUYRIonVhLkbWtYEZGyCU5eduzYgdTUVISGhkKlUmHjxo1mx6jVakRERKBBgwaIj4/Hnj17xIiVSBTJycl44YUXJCnb001DYpUnt5ogIqrbBHfYraysRFRUFMaPH49hw4aZ7c/JyUFWVhaWLFmC+Ph4LFq0CMnJyThy5Ih+Rtro6Ghcv37d7NytW7dK3gRA3m/z5s1Sh+B2YicbTF6ISE4EJy8pKSlISUmxuj87OxsTJkzAuHHjAABLlizBpk2bsHz5cv1idAUFBc5Fa0FVVRWqqqr0z8vLy0W7NhFpMXkhIjkRtc9LdXU18vPzkZSUdLMAHx8kJSVh9+7dYhalt2DBAgQGBuof7dq1c0s5RNa8/PLLCA8Pd+hYT4020q3yzfW3iMgbiZq8lJWVoaamBsHBwUbbg4ODUVxc7PB1kpKSMGLECHz11Vdo27atzcRnxowZuHTpkv5RVFTkdPxEzhgzZgxOnjzp1Lnx8fEOHfftt99a3G4t4Wnfvj02btyIl156yeo1hSQ2Y8eOdfhYIiJ3k+Voo23btqG0tBR///03Tp8+jX79+lk91t/fHwEBAVi9ejX69u2LQYMGeTBSImEiIyONno8ePdqh8xISEgSXNWTIEJtzs5w+fRq33nqrQ9caOnSo4PItGTx4sCjXIaK6TdQZdoOCguDr64uSkhKj7SUlJQgJCRGzKDMZGRnIyMhAeXk5AgMD3VoWkTMqKirQuHFjq/vr16/vwWi05fn5+Xm0TFuvn4jIUaLWvPj5+SEmJga5ubn6bbW1tcjNzbVZeyIGtVqNyMhIxMbGurUcImfZu3FnZGTofxarg6yl60yePBlqtVqU6xMRSUFwzUtFRQWOHTumf15YWIiCggK0aNEC4eHhyMrKQnp6Ovr06YO4uDgsWrQIlZWV+tFH7sKaF1K6Dh06eKScKVOm1ImO7f3798euXbukDoOI3EBw8pKXl4fExET986ysLABAeno6Vq5ciVGjRqG0tBSzZs1CcXExoqOjsXnzZrNOvERU93hyyHVWVhaTFyIvJTh5SUhIsDukMzMzE5mZmU4H5Qy1Wg21Wo2amhqPlkvkDlIu0rhgwQLMmDFDsvKJiOyR5WgjZ2RkZODgwYPYu3ev1KGQzOiaY7p06eLQ8a+99poo5f7nP/8R5Tpis7dOkW4ySSIiufKa5IXImv79+6OsrMzhYfRTpkwRpVxXai/c1bzy559/onnz5m65tituu+02qUMgIgXxmuSFo43IlpYtW0odglsIbV4ynbLA081T1pIyZ/4+27ZtczUcIlIor0le2GxESmSYPOim9K+LJk6cKPgcTkhJVHd5TfJC5A6emlRt1apVik5eXB3m7Y7V5CMiIkS/pic8+OCDUodAJHtMXohsOH/+vEfKadiwoVuu66mhyY0aNfJIOUL07t1b6hCc4ulZj4mUyGuSF/Z5IVNxcXEAlPsNnOomJi9E9nlN8sI+L2Tq3nvvxdWrV9G1a1epQ5HtrM9z5851S5ONNdZqgjw5eZ3cybEWi0huvCZ5IbLE1qrKANCmTRu3x9CxY0dcvHhR1Gvu3r0b33//vcvXGT58OM6cOSNCROLo1auX1CFIjokckX1MXqhO++OPP1BRUSF1GHr9+/d3aJK4vn37on///m6LIzw83G3XttQJWtdUkpaWpt/2xx9/uC0GObOXcLvTm2++KVnZREIweaE6rWHDhh4bUeSInTt3YsGCBQ4f7655Wn766ScMGTLELde2pF+/flCr1Zg6dap+m6cWqpSLPn36YMWKFYiOjpYsBrk2bxKZ8prkhR12SYlMkw9dk4HUTQchISF44YUXzLY/+uijLl3XVp+Xp556StHDxV3l7++PsWPHSvq3HzFihGRlEwnhNckLO+ySXDlyMzI9RsqFGXViYmKkDqFO0b0HpPy9+/h4zS2BvBzfqUReTOoaHG/hyHpQYq0Z1bFjR1GuQ+TNmLwQkUcpMaFyZO2ll156yQORuJcS/zZUNzF5IbIgMjJStGs1bdpU8DlyvYnINS57Xn75ZafPve+++xw6rn79+k6XARj/blu3bu3StYi8XT2pAyBxzZw5kx98IhDrJr1y5co6sYDgunXrHJoMUKVSKTYBssdbXxeRHHlN8qJWq6FWq1FTUyN1KJKaO3eu1CGQgfT0dKlDEJW1jsS33XabhyORH3Z2JfIcr/nfxtFGRMogVsdWT3F05JfQEWKmi3Gy5obIcV6TvBApkbUbnqMjTsQaUl1cXCzKdRzx3nvveawsHVd/T3IYuk5ENzF5IbIgJCTEpfO3bdsm6HjTb90jRozwaC1icHCw2775Dx8+3Oh5ixYt3FKO0smh5sXVTsdEnsLkhciCt99+Gy+++KLT68y42knX19cXffr0cekanmLa/GGJri+WHG7Q7uINr439dkgp+E4lsqBr166YNWuW1GG4TMob6jPPPKP/efTo0fqfXW2COXv2LEpKSly6BhEpG5MXInLYhAkTHD528ODBbomhTZs2Lk8HcPz4cfz+++8OHeuu/i662rnQ0FCzfQ8++KBbynREYmKiZGUTOYrJCxEBAIYNG2b3mAEDBphtc6R2R7fgYmhoqCyaV2655RbJp+HXdVxu1aqV2b7s7GxPh6PnydXEiZzlNckLV5Umcs3HH3+MixcvuuXabdu2xVdffYW5c+fC19dX8Pm5ubkuld+tWzeb+++8806Xru8MXe2RrmbHMKkTu+9J27ZtRb0ekdS8JnnhPC9Erqlfvz4CAwNFu55pDUtKSgr8/f2dqnkZOHCgxe2HDh3CV199Zff8Tp062dxvugSAaW2IJ4ZKu7NGSkhzH5ESeE3yQlQX1avn3kmyv/jiC+Tn5xtty8rKQpcuXdxarqNuu+02pKSk6J/PmDEDp06dwunTp126brNmzVw635ERWDqcQ4ZIOK9ZHoBIiVy9ccXExDh87OHDhwVf39KihK+//joGDx6MpKQkm+c2adIEADzalNuiRQu0a9fO5jGmzVZt2rQxO8bw7yJ2cjFlyhRUV1fLou+PJUymSAmYvBDJgLM3MkfP69u3r8drSwIDA1FUVGQ2msbTN+3g4GCPlmfPa6+9JnUIRIrHZiMihXj66aedPvepp54SLxA4noC0bdvWbudT02HPubm52LVrl9lxDz/8sEMjokw5MqOvo7UNtsqXa00KkTdi8kKkEG+88Ybgc1QqFTQaDR555BE3RCSO7du3Gz0fOHAgbr/9drPjPvzwQ3z66acul+dKkuHojMuGc9zYmylZd01XklMiT+vdu7ek5TN5ISK3cDRJsDeM2VWPP/643WNsxerMqtIfffSRvu/NtGnTbJ7n6+sLjUaD+++/36FynCV0yYr58+e7KRIi1zF5ISKPatmypcfK0mg0yMrKEjy3jGnCIrQTq5+fH4KCgpw6113Wrl2L6dOnG23TTR4oxL333itWSEROY/JCRB4VFhaGwsJCj5bZsWNHvPXWWwCAxo0be7RsuQgKCkLXrl2Ntlma3deexx57zOh5XFycS3FZ07x5c7dcl7yD7JKXoqIiJCQkIDIyEj179sS6deukDomIRBYREeGW61qr5VCpVJg0aRI+/PBD7Nmzxy1lextbv0tDltZmEsOGDRvccl3yDrIbKl2vXj0sWrQI0dHRKC4uRkxMDAYPHlxnvy2Rd5NLk0Jd8fDDD7t0fl2oDRD6njRNZo4ePYrOnTu7HIcnmxdJeWRX89KmTRtER0cDAEJCQhAUFIQLFy5IGxSRm3GYrWUjR46UdIVlwPhmvnDhQgkjcZ4zSbKz70l7SzEQiUFw8rJjxw6kpqbqV4fduHGj2TFqtRoRERFo0KAB4uPjna6mzc/PR01Njd0ZM4nIO61duxZr1qxx+HixarKsraVkqQa4sLAQL7/8st1rjhgxQrS114SOTHLm9yJlreC///1vycomx0j9hUtw8lJZWYmoqCio1WqL+3NycpCVlYXZs2dj3759iIqKQnJyMs6dO6c/Jjo6Gt27dzd7nD17Vn/MhQsX8Oijj2Lp0qU246mqqkJ5ebnRg4ikJ8aHm0qlkuRD0trnmyURERF47rnn7N7s+/XrZ3fOF0d99tlnTp3njt+lO5KcO++8k02qMif1PC+C+7ykpKQYLYRmKjs7GxMmTMC4ceMAAEuWLMGmTZuwfPly/TC9goICm2VUVVVh6NChmD59usXJqgwtWLAAL774orAXQUQukfpbl5gsvZb69evj/Pnz+n4XISEhTo+Qio2NRatWreyuBUXKNnXqVLz66qtSh+Exzz77rKTli9rnpbq6Gvn5+Ub/SX18fJCUlITdu3c7dA2NRoOxY8di4MCBDs0KOmPGDFy6dEn/KCoqcjp+InLdHXfcIVnZYn5bN1yxe+PGjfjiiy+cus4tt9yCc+fOoUePHoLO++STT5wqzxKlJZtKixcQPgmg0tlb9sPt5Yt5sbKyMtTU1JgthBYcHIzi4mKHrrFr1y7k5ORg48aNiI6ORnR0NH799Verx/v7+yMgIACrV69G375969wbiEhu3DUMWioajQatW7e2uMK2IdMbrhKaPTzZkVduZZCyyW6o9IABA1BbWyv4vIyMDGRkZKC8vByBgYFuiIyILPGGG01YWJjZNqlfl6fKHz16NNauXevw8bbiMuzbSOROota8BAUFwdfXFyUlJUbbS0pKEBISImZRRF5BCd/O64KRI0c63QlWToYOHaqfSdiQ7n1mKfH4+OOPjZ6npqYCcKz576WXXjJ67syMvd7CmaUWyHmiJi9+fn6IiYlBbm6uflttbS1yc3PRr18/MYsyo1arERkZidjYWLeWQ3WT0P4KQkn9LV9Mtm6UclWvXj23L4zoCWlpaWjSpIlL1+jYsSM0Gg3atGnj0PHuSsCFrkcltTvvvFPqEOoUwclLRUUFCgoK9COGCgsLUVBQgFOnTgEAsrKysGzZMqxatQqHDh3CxIkTUVlZqR995C4ZGRk4ePCgaPMoEOkcP34cO3fulDoMr/Ppp596RW2HDmvRhNMtXgnAbKBH165d8dprr0kRFgCgffv2go5XUrLuDQQnL3l5eejVqxd69eoFQJus9OrVC7NmzQIAjBo1Cq+99hpmzZqF6OhoFBQUYPPmzWadeMXGmhdyl1tuuYX9qNxg2LBhotd2uKMDqlyTkmXLlkkdgsvGjBmj//nNN9/U/3zXXXdBpVJhypQpUoQFAAgPD5esbLJPcIfdhIQEu/+ZMzMzkZmZ6XRQzmCHXSISk9y/SUvRvyQgIEDwOR06dMDx48ct7jMcbuvv7w9A+2VBDk1Gck1aSUt2o42IlOytt95Cw4YNpQ6DFETMm6TQhOvRRx91exlCubt/JHkH2S3MSKRkkyZNwuOPPy51GG4n91oJOdCN2nGWs79jXTL07rvvmm0zvKZGo8H8+fNdiNB1ulnXiYTymuSFfV6I5EFpo43c1TwwZ84cXL582S3XNvTiiy96rGNr06ZNzbY58/sLCgrC888/X6eHVpNrvCZ54WgjUiK2q8tX48aNMXLkSGRnZzt0vOnf0sfHx+Vhy47w9/f3WFPljh07jJ478v7t37+/2bbS0lLJa33cqXPnzlKH4PW8JnkhUjKl1FLIXZcuXUS7lkqlQk5ODrp37y7aNd3NHe+jgQMHAgDWrFmDDh06mDU92XLy5ElJR0VJ9eXAmb5EJIzXJC9sNiKqu3SjVtLS0gSfK/fEUcx+Ic2aNXP4WN2Nv23bttBoNHjooYcElxceHq4fRVSX1IUaVan/33hN8sJmI6qrGjZsiIkTJ0odBrmJ4URuhpy5QQ4ePNjVcMgDPv30U6lDkD0OlSZSuLNnz1rsSEnK5urkeZaad8T4tiz1N25rfv31V7cv4+EpHTp0kDoE2fOamheiuqpZs2aymNSLxJWamopp06Zh4sSJdpNTdzZT2EtWdLOtS01JfZPsEdK8V1ex5oWIRCXFUGmxylqxYoVsJhmsX78+XnnlFQDA4cOHcfToUSQmJlo81vB3bpjIdOzYEceOHRO1I7OpF154AUePHuXChCKKiIhw6rx9+/ahd+/e4gYjU16TvKjVaqjVatTU1EgdChEp1NixY50+1521H6GhoQgNDRV8XmJiIo4dO4aoqCg3RKXl6+uLjz76yG3XN/T66697bL0jVzoa14UOu1LzmmYjdtgl8hy59nuoi+rS36Jly5aoX7++oHM2b97sVFkNGjTA2bNnnTqXyYv7eU3yQqRE3vAhp/Sbp9LjB7zjfSS2d955BwCQnJyM8ePH48MPP9TvCwoKwvbt242Ob9SokdFzlUqFNm3auD9QcgqTFyIZ8IYbKEnP9H303HPPISEhAZ06dRKtDE/MGiwGw9f8/vvv4+GHHwag7QxbWlpqdvw999wDAMjKyjLaHhkZ6cYoyVlMXoiIFMxW4nvrrbfi22+/Neq/sWbNGpcmvktMTMQjjzwCQNwanxYtWgAA7r77bpevFRwcjJiYGIv7dL8La7H7+fkZPf/tt99cjkcIfpFxDJMXIhKVFKONOC+GluHv3Nrv/6GHHsKCBQvsXsvazV2lUjk12649zZs3x5UrV+x2mv73v/9tti0vLw8AcObMGRQXF6O4uNjicONly5aZrc9kSoyEzNI1mjZtyuY9EXlN8sLlAYjqrh07duC7777zaJljxozR96uQmuFNUck3yAYNGtg95oknnjDbpqtlCQ0NRXBwsNVzH3/8cauLJsqlxiMsLMzjZSpxeLXXDJXOyMhARkYGysvLERgYKHU4RORBISEhCAkJ8WiZq1evNnrerl07j5ZviTtuwHK5qet4qhOtK0mgK+fu3r3b6XOd9fXXX9tM+uTIa2peiIikxHWDSAxt27b1eJl+fn76PkdKweSFiOqs5557Dp999pnUYVAdIPfmvKKiIpSXl0sdhsO8ptmISInk/oHmiMWLF0sdgtNefvllqUMQhTe8jzzN3mR3rjSXya2pzRGm89zIHWteiGRAaR92uninTZuG9PR0o31paWkAtBOBkWc5MtqItAYMGGBxuxi/N2udgr2J1O8v1rwQkahGjBjBmgABwsPD3XJdqW8ucmf6+xHz96W0370S/78yeSEikkhubq7o0zso8UbkbZT2N2jevLnUIQjGZiMiIokMHDgQTZs2lToMwfr06QMfHx+MHDnS4v7du3fj/fff93BU4rCXeAhdGFJsmzZtsrrPHTU+d955p+jXFIPX1Lyo1Wqo1WrU1NRIHQoRkdu5e2I6W9cMCgqy+Vnbt29f9O3bV/SYyHPz3Oj4+vp6tDxHeU3NS0ZGBg4ePIi9e/dKHQoRkSRUKpXoiYzS+m84y5HXOW7cOGzYsMED0ZA9XlPzQkRE5E7Lly+XOgTR/f7771KH4BSvqXkhUiKldewj+akrNSOeZuv3KtXEhq1atRL9mh07drS5X67LBjB5IZIBpd6A6mry5efnJ3UIRurq30FMd955J5o3b44HHnjA7rHW1tHSrW5u6+/h7P/1yspKnDp1yu5xR44ccer61ugWvZQbJi9ERAKUl5fj/PnzUodhkRImqVu4cKHUIeidPn1av0p169atceHCBdxyyy1OX69Zs2Z2j6moqHDq2o0aNXJo1e26MEEewD4vROQEud4YPUHuQ5vlXAsTHR2NqVOnSh2GXlhYGLp27Wpxn7t+j0qbhl+uWPNCRER0gyNJS11K3uX6Wpm8EJEofHx80KRJE6nDkFxkZKTHy5RzbYshpcTpDnJ47f379xd8jhzitkR2ycvFixfRp08fREdHo3v37li2bJnUIRGRA8rLy1FSUiJ1GJI6cOAAdu7cKVn5Yn5L1vWvsNY51VvoOl/rZs6Va02DjivJRI8ePUSMRFqy6/PStGlT7NixA40aNUJlZSW6d++OYcOGoWXLllKHRkQ2NG7cWOoQJNetWzepQxBNREQEvvzyS9x9991Sh+JWjz/+OCoqKjB06FDRrunO/wtyrQnxNNklL76+vvoOTVVVVdBoNPxjERFJ4B//+IfUIVgk5kzCfn5+mDZtmsUynHX//fe7EhI5QHCz0Y4dO5CamorQ0FCoVCps3LjR7Bi1Wo2IiAg0aNAA8fHx2LNnj6AyLl68iKioKLRt2xZTp05FUFCQ0DCJFMHeB3BWVhZWr17toWiIlOH8+fMoKyuTOgwzuv/Pcm96EoPUr1Fw8lJZWYmoqCio1WqL+3NycpCVlYXZs2dj3759iIqKQnJyMs6dO6c/RtefxfRx9uxZANqx8vv370dhYSE++ugjm+3oVVVVKC8vN3oQKY21D4LXX38dY8aM8XA0pDSWFmkUcnMJDw8XPSZ3at68uSy7Elj6MjJhwgQJIvF+gpuNUlJSkJKSYnV/dnY2JkyYgHHjxgEAlixZgk2bNmH58uWYPn06AKCgoMChsoKDgxEVFYWdO3di+PDhFo9ZsGABXnzxRWEvgojICzn7bfjnn3/GxYsXxQ3GgtatW7u9DLlZunSpbAaeBAYGSh2CaEQdbVRdXY38/HwkJSXdLMDHB0lJSdi9e7dD1ygpKcHly5cBAJcuXcKOHTvQpUsXq8fPmDEDly5d0j+KiopcexFEZJduSHS7du0kjoTE0KJFC/3U9u708ccfu70Msm727Nn6n0eMGIFXX31VwmhcI2qH3bKyMtTU1Jgt5BQcHIzDhw87dI2TJ0/iiSee0HfUnTRpks3hXf7+/vD394darYZarUZNTY1Lr4GI7IuOjsann36KwYMHSx0KKUTv3r1l2dRjSmkDRLp27Yo77rgDS5cutXmcSqVCw4YN9c8/+eQTd4fmVrIbbRQXF+dws5KhjIwMZGRkoLy83KuqxojkSKVSYdiwYVKHQTco7YbrbVatWiVZ2T169JC886wURE1egoKC4Ovra9bBtqSkxOsnOiIikppcb2IzZ87EI488InUYbhETE4NHH31U6jAclpeXhx9//FHqMFwmap8XPz8/xMTEIDc3V7+ttrYWubm56Nevn5hFmVGr1YiMjERsbKxbyyEikoNWrVoB0C4uKHdz585V3GrHck0EXRUTE4OMjAypw3CZ4OSloqICBQUF+qadwsJCFBQU4NSpUwC081IsW7YMq1atwqFDhzBx4kRUVlbqRx+5S0ZGBg4ePIi9e/e6tRwiMbG6n5x1xx13YNeuXRg9erTR9ro014g7mf7fZDOpvAhuNsrLy0NiYqL+eVZWFgAgPT0dK1euxKhRo1BaWopZs2ahuLgY0dHR2Lx5s1knXiK6iTcacsbtt98OAPqRQmFhYV69vlS9etJ006yuroavr6/+uSP/X+vXr4/MzEz9c35REZfgd0JCQoLdP0JmZqbRH80TONqIiOqqYcOG4cCBA+jWrRv27dsndTiiCwoKwpQpUzBq1CizfWKvZG4pMdEt2mjveMN7Y3V1tahxSUWuX6xkt6q0s9hsRER1mTctCmnKz88P06dPl6zmRanef/999O3bF4D31fx4TfJCRETeSa7f/uVu/PjxaNCggdRhuIXXJC8cbURERK7ythoKb+U1yQubjYiIyFu8+eabDh1nqVbq/PnzRosheyM2IBIREZmQuqnKlfJbtGghYiSWSf378ZqaFyIlCg8PB3BzwjEiV3GeF+mwyclzvCZ5YZ8XUqJHHnkEP/74I9+3RCR7U6dOtThcXQpek7ywzwspkUqlQnx8vNRhEJHMyLHm7O6774aPjzzSBnlEQURERKKTYxIkBiYvRESkWE2bNpU6BMnpli7w1kTFEq8ZbcTlAYiIvFPLli0tbl+zZo3kza7WlgfwpHnz5qFVq1bo2bOnJOVLwWuSl4yMDGRkZKC8vByBgYFSh0NERCJYt24d+vXrZ3HfQw89JHp5zZo1Q5MmTfD0009bPaZz585QqVSyGV3UvHlzzJkzR+owPIrNRkREXqR79+4AgNtuu03iSMQxfPhwhIWFeay8+vXr4/Lly0hMTLR6TEBAAGprawVdt3///lb39e7dW9C13Ck1NdXqPjm9p5i8EBF5kTvvvBPnz59HXFyc1KHQDX/88Qc2bNhgdX9+fr4Ho7Ht888/x7x58wAAPj4+GDt2LDp16gQAaNeunZShGfGaZiMiIm/3yiuvOHQD8cQMq+S4Dh06SB2CUzZu3Gi1v5HUmLwQESnEtGnTpA6BFOadd97BbbfdBj8/P6evIcdRTF6TvHC0EdUF8+fPx+nTp6UOg4jcTKyEoUuXLqJeTy68JnnhaCOqC55//nmpQyAiBRKSvMhlFJUt7LBLRESkEJ5MLORcW8PkhYiIiBwil1oZJi9EREQisDaZniMGDRqE+vXrixiNe0ldK8PkhYiIyEmGN/G3334bJ06ccOo627ZtQ3V1tUhReT8mL0RERCLw8/ND+/btpQ6jTmDyQkREJDOtW7eWOgRZY/JCREQkM47ObNutWzc3RyJPXpO8qNVqREZGIjY2VupQiIiIXHLHHXdgwoQJCAgIsHrMr7/+6pG5nxYuXCirRRkBL0peMjIycPDgQezdu1fqUIiIiFxSv359LF261GYNTPfu3eHr6+v2WIYMGYJDhw65vRwhvCZ5ISIiorqByQsREREpCpMXIiIiUhQmL0RERDI1d+5cBAUFebTMMWPGoGPHjujfv79HyxWCyQsREZGT3D1N/sMPP4zS0lK3lmEqIiICv//+O5o3b+7RcoVg8kJERESKwuSFiIiIFEW2ycvff/+N9u3b49lnn5U6FCIiIpIR2SYv8+fPR9++faUOg4iISHYmTZokSbkajUaSck3JMnn5/fffcfjwYaSkpEgdChERuZmcO4aSZe7uqGyP4ORlx44dSE1NRWhoKFQqFTZu3Gh2jFqtRkREBBo0aID4+Hjs2bNHUBnPPvssFixYIDQ0IiJSmNLSUpw4cULqMEhhBCcvlZWViIqKglqttrg/JycHWVlZmD17Nvbt24eoqCgkJyfj3Llz+mOio6PRvXt3s8fZs2fx2WefoXPnzujcubPzr4qIiBQhKCjI5uKDRJbUE3pCSkqKzeac7OxsTJgwAePGjQMALFmyBJs2bcLy5csxffp0AEBBQYHV83/88UesXbsW69atQ0VFBa5du4aAgADMmjXL4vFVVVWoqqrSPy8vLxf6koiIiEhBRO3zUl1djfz8fCQlJd0swMcHSUlJ2L17t0PXWLBgAYqKinDixAm89tprmDBhgtXERXd8YGCg/tGuXTuXXwcRERHJl6jJS1lZGWpqahAcHGy0PTg4GMXFxWIWpTdjxgxcunRJ/ygqKnJLOURERKb8/f2lDqFOEtxs5Eljx461e4y/vz/8/f2hVquhVqtRU1Pj/sCIiKjOe/PNN/HAAw9IHUadJGrNS1BQEHx9fVFSUmK0vaSkBCEhIWIWZSYjIwMHDx7E3r173VoOERERAPzrX/9CWFiY1GHUSaImL35+foiJiUFubq5+W21tLXJzc9GvXz8xizKjVqsRGRmJ2NhYt5ZDRERE0hLcbFRRUYFjx47pnxcWFqKgoAAtWrRAeHg4srKykJ6ejj59+iAuLg6LFi1CZWWlfvSRu2RkZCAjIwPl5eUIDAx0a1lEREQkHcHJS15eHhITE/XPs7KyAADp6elYuXIlRo0ahdLSUsyaNQvFxcWIjo7G5s2bzTrxEhERETlDcPKSkJBgd22DzMxMZGZmOh2UM9hhl4iIqG6Q5dpGzmCHXSIiorrBa5IXIiIib6ebiPXee++VOBJpyXqeFyHYbERERN4uODjYbteNusBral7YbERERORegwYNAgDJR/V6TfJCREREljVu3FiU6zz++OOoqKiQPHnxmmYjIiIiMrd69WrEx8eLci2VSiVaIuQKr0le2OeFiIjI3JgxY6QOQXQqjZf1/NHNsHvp0iUEBARIHQ4REZERlUpl9NzLbsNOE3L/Zp8XIiIiUhQmL0RERKQoXtPnhYiISElOnToFf39/qcNQJK9JXthhl4iIlEQ3Wy4Jxw67REREHqTrsOtlt1+XscMuEREReS0mL0RERKQoTF6IiIhIUZi8EBERkaJ4TfKiVqsRGRmJ2NhYqUMhIiIiN+JoIyIiIg/iaCPLONqIiIiIvBaTFyIiIlIUJi9ERESkKExeiIiISFGYvBAREZGiMHkhIiIiRfGa5IXzvBAREdUNnOeFiIjIgzjPi2Wc54WIiIi8Vj2pAyAiIqpLcnNz0bhxY6nDUDQmL0RERB40cOBAqUNQPDYbERERkaIweSEiIiJFYfJCREREisLkhYiIiBSFyQsREREpiixHG0VERCAgIAA+Pj5o3rw5vv32W6lDIiIiIpmQZfICAD/88AOaNGkidRhEREQkM2w2IiIiIkURnLzs2LEDqampCA0NhUqlwsaNG82OUavViIiIQIMGDRAfH489e/YIKkOlUuGuu+5CbGws1qxZIzREIiIi8mKCm40qKysRFRWF8ePHY9iwYWb7c3JykJWVhSVLliA+Ph6LFi1CcnIyjhw5gtatWwMAoqOjcf36dbNzt27ditDQUHz//fcICwvDn3/+iaSkJPTo0QM9e/a0GE9VVRWqqqr0z8vLy4W+JCIiIlIQl1aVVqlU2LBhA4YOHarfFh8fj9jYWCxevBgAUFtbi3bt2mHSpEmYPn264DKmTp2Kbt26YezYsRb3z5kzBy+++KLZdq4qTUREpBySrSpdXV2N/Px8JCUl3SzAxwdJSUnYvXu3Q9eorKzE5cuXAQAVFRXYvn07unXrZvX4GTNm4NKlS/pHUVGRay+CiIiIZE3U0UZlZWWoqalBcHCw0fbg4GAcPnzYoWuUlJQgLS0NAFBTU4MJEyYgNjbW6vH+/v7w9/eHWq2GWq1GTU2N8y+AiIiIZE92Q6U7dOiA/fv3Cz4vIyMDGRkZ+monIiIi8k6iJi9BQUHw9fVFSUmJ0faSkhKEhISIWZRVui487LhLRESkHLr7tiNdcUVNXvz8/BATE4Pc3Fx9J97a2lrk5uYiMzNTzKLM6JqNqqurAQDt2rVza3lEREQkvsuXL9ttQRGcvFRUVODYsWP654WFhSgoKECLFi0QHh6OrKwspKeno0+fPoiLi8OiRYtQWVmJcePGCX8FAuiajWpra3H27Fk0bdoUKpXK4rGxsbHYu3ev1WtZ219eXo527dqhqKhIUSOZ7L1eOZbjyrWEnuvo8Y4cZ+sYvq/kUZaz1+L7ynPq0meWXN9Xtva7672l0Whw+fJlhIaG2j1WcPKSl5eHxMRE/fOsrCwAQHp6OlauXIlRo0ahtLQUs2bNQnFxMaKjo7F582azTrzu4uPjg7Zt29o8xtfX1+Yv3N7+gIAARX0Y2Hs9cizHlWsJPdfR4x05ztYxfF/Joyxnr8X3lefUpc8sub6vHNnvjveWo31WBScvCQkJdtujMjMz3d5M5IqMjAyX9iuNp16PmOW4ci2h5zp6vCPH2TqG7yt5lOXstfi+8py69Jkl1/eVkLKk4NIkdXWNkAl0iBzF9xW5A99X5C5yeG9xYUYB/P39MXv2bPj7+0sdCnkRvq/IHfi+IneRw3uLNS9ERESkKKx5ISIiIkVh8kJERESKwuSFiIiIFIXJCxERESkKkxciIiJSFCYvIvnyyy/RpUsXdOrUCe+9957U4ZAXSUtLQ/PmzTF8+HCpQyEvUVRUhISEBERGRqJnz55Yt26d1CGRF7h48SL69OmD6OhodO/eHcuWLXNbWRwqLYLr168jMjIS3377LQIDAxETE4MffvgBLVu2lDo08gLfffcdLl++jFWrVmH9+vVSh0Ne4M8//0RJSQmio6NRXFyMmJgYHD16FI0bN5Y6NFKwmpoaVFVVoVGjRqisrET37t2Rl5fnlnsha15EsGfPHnTr1g1hYWFo0qQJUlJSsHXrVqnDIi+RkJCApk2bSh0GeZE2bdogOjoaABASEoKgoCBcuHBB2qBI8Xx9fdGoUSMAQFVVFTQajd3lhJzF5AXAjh07kJqaitDQUKhUKmzcuNHsGLVajYiICDRo0ADx8fHYs2ePft/Zs2cRFhamfx4WFoYzZ854InSSOVffW0SWiPm+ys/PR01NDdq1a+fmqEnuxHhfXbx4EVFRUWjbti2mTp2KoKAgt8TK5AVAZWUloqKioFarLe7PyclBVlYWZs+ejX379iEqKgrJyck4d+6chyMlpeF7i9xBrPfVhQsX8Oijj2Lp0qWeCJtkToz3VbNmzbB//34UFhbio48+QklJiXuC1ZARAJoNGzYYbYuLi9NkZGTon9fU1GhCQ0M1CxYs0Gg0Gs2uXbs0Q4cO1e+fPHmyZs2aNR6Jl5TDmfeWzrfffqt54IEHPBEmKYyz76urV69q7rjjDs0HH3zgqVBJQVz5vNKZOHGiZt26dW6JjzUvdlRXVyM/Px9JSUn6bT4+PkhKSsLu3bsBAHFxcThw4ADOnDmDiooKfP3110hOTpYqZFIIR95bREI58r7SaDQYO3YsBg4ciEceeUSqUElBHHlflZSU4PLlywCAS5cuYceOHejSpYtb4qnnlqt6kbKyMtTU1CA4ONhoe3BwMA4fPgwAqFevHl5//XUkJiaitrYW06ZN40gjssuR9xYAJCUlYf/+/aisrETbtm2xbt069OvXz9PhkkI48r7atWsXcnJy0LNnT32/htWrV6NHjx6eDpcUwpH31cmTJ/HEE0/oO+pOmjTJbe8pJi8iuf/++3H//fdLHQZ5oW3btkkdAnmZAQMGoLa2VuowyMvExcWhoKDAI2Wx2ciOoKAg+Pr6mnU6KikpQUhIiERRkTfge4vcge8rcge5va+YvNjh5+eHmJgY5Obm6rfV1tYiNzeXVffkEr63yB34viJ3kNv7is1GACoqKnDs2DH988LCQhQUFKBFixYIDw9HVlYW0tPT0adPH8TFxWHRokWorKzEuHHjJIyalIDvLXIHvq/IHRT1vnLLGCaF+fbbbzUAzB7p6en6Y95++21NeHi4xs/PTxMXF6f58ccfpQuYFIPvLXIHvq/IHZT0vuLaRkRERKQo7PNCREREisLkhYiIiBSFyQsREREpCpMXIiIiUhQmL0RERKQoTF6IiIhIUZi8EBERkaIweSEiIiJFYfJCREREisLkhYiIiBSFyQsREREpCpMXIiIiUpT/B12IrYrk81tWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(400)\n", + "nlor = 3\n", + "\n", + "x_0_0 = 0.5\n", + "x_0_1 = 2.0\n", + "x_0_2 = 7.5\n", + "\n", + "amplitude_0 = 150.0\n", + "amplitude_1 = 50.0\n", + "amplitude_2 = 15.0\n", + "\n", + "fwhm_0 = 0.1\n", + "fwhm_1 = 1.0\n", + "fwhm_2 = 0.5\n", + "\n", + "whitenoise = 2.0\n", + "\n", + "model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \\\n", + " models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \\\n", + " models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \\\n", + " models.Const1D(whitenoise)\n", + "\n", + "p = model(ps.freq)\n", + "noise = np.random.exponential(size=len(ps.freq))\n", + "\n", + "power = p*noise\n", + "\n", + "plt.figure()\n", + "plt.loglog(ps.freq, power, lw=1, ds=\"steps-mid\", c=\"black\")\n", + "plt.loglog(ps.freq, p, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make this into a `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "import copy" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new = copy.copy(ps)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new.power = power" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So now we can fit this model with our new function, but first, we need to define the starting parameters for our fit. The starting parameters will be `[amplitude, x_0, fwhm]` for each component plus the white noise component at the end:" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]\n", + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.48980332e+02, 1.02031369e+00, -2.04742273e-04, 4.70694020e+01,\n", + " 1.90076129e+00, 1.08562751e+00, 1.35701826e+01, 7.50135744e+00,\n", + " 5.44356694e-01, 1.99448241e+00])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cool, that seems to work! For convenience `PSDParEst` also has a plotting function:" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAKuCAYAAABE/6zrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUVxcG8HcBQQFBFAURRWPvJXZNBGKPGo0t+ew11lhijd0YSyyxEXs0xhp7jF3sJRZsWLAgKhasIFXqfH/gTnZhextY3t/z+Lg79ezu7LBz5t5zZYIgCCAiIiIiIiIiysZspA6AiIiIiIiIiMhYTHAQERERERERUbbHBAcRERERERERZXtMcBARERERERFRtscEBxERERERERFle0xwEBEREREREVG2xwQHEREREREREWV7THAQERERERERUbbHBAcRERERERERZXtMcBARqdCzZ0/IZDL07NnT4vtet24dZDIZihcvbvF9U9Z34sQJyGQyyGQyg7fx999/w9/fH25ubrCxsYFMJsPw4cMBAFOnToVMJoOvr69pAjah1NRULFiwANWrV4eTk5P4PuzevVvq0PTy6NEjMfZHjx5JHQ595OvrC5lMhqlTp0odilXh3zQisiQ7qQMgopxp6tSpmDZtWqbpDg4OcHd3R40aNdC1a1d07NjRqAs5IlK2Y8cOdOjQAQBga2sLd3d32NjYwMXFReu6u3fvxrVr11CtWjW0bdvWzJFmNnz4cCxduhQAYG9vDw8PDwBA7ty5LR5LVhQVFYWFCxcCSH+v8uXLJ2k8liL1cWkNTpw4gRMnTqB48eKSJPazi4ULFyIqKgpt27ZFtWrVpA5HxO8A0X/YgoOIJOfh4SH+k8lkePbsGfbu3YvOnTvjyy+/RGJiosVjKly4MMqWLYvChQtbfN9E5jR37lwAQPv27REdHY1Xr14hIiIC06dPBwC4u7ujbNmyKFasWKZ1d+/ejWnTpknSYiImJgYrVqwAAPzyyy/48OEDIiIiEBERgebNm1s8nqwoKioK06ZNw7Rp0xAVFSV1OBYj5XFpLU6cOIFp06Zh3bp1Jt+2q6srypYti5IlS5p825a2cOFCTJs2DdeuXZM6FCX8DhD9hwkOIpKc/CIlIiICcXFxuHnzJpo0aQIAOHDgACZOnGjxmGbNmoWQkBDMmjXL4vsmMqfg4GAA6d2wHB0dM80fMmQIQkJCsH79ekuHplFISAiSk5MBAAMHDmTLLqJsol27dggJCUFgYKDUoRBRDsAEBxFlKTY2NqhYsSL+/vtvlCpVCgCwYsUKpKSkSBwZkXWIj48HADg7O0sciX7kcQPZL3YiIiKyDCY4iChLyp07Nzp27AggvWl6SEiI0vyYmBjMnj0b9erVQ/78+eHg4ICiRYvim2++wfnz51VuM2Nhv9DQUPTv3x8lSpSAg4ODUgE0XYqMnjhxAh07dkSRIkXE2iFffPEF1q5di9TUVI2v799//0Xbtm3h7u6OPHnyoGzZspgwYQJiY2N1en+uXr2K7t27w8fHB7lz54abmxvq16+PhQsXau3SExwcjM6dO8PT0xO5c+fGJ598gqFDh+LVq1caC1hmLD65Y8cONG3aFIUKFYKNjY1SYb6bN29i6tSp8Pf3R8mSJZEnTx64uLigevXqmDhxIt68eaM2vuLFi0Mmk2HdunWIj4/H1KlTUb58eTg6OsLLywvdunVDWFiYuPybN28wduxYlClTBnny5IGnpyf69u2Lly9f6vReZpScnIy///4b/fv3R82aNVG4cGHY29ujUKFCaNasGTZv3gxBEFSum/H9e/DgAXr37o2iRYvCwcEB3t7e6NevH549e6YxhpCQEHTp0iXTZ2Toa1I89uX8/PzEaYrTVRUZlb+uP/74AwDwxx9/KK0rk8lw4sQJcfmUlBSsXLkSvr6+cHd3R65cuVCgQAGULVsWnTt3xpo1a3SOXV6gUDEexf2qKoa6c+dOtGrVCh4eHmKtjlatWmHXrl1q96P4nRcEAatXr0bDhg1RoEAB8XjUx7Nnz/Ddd98pffa9evXCgwcPNK6XlpaGwMBAfP/996hbty68vb1hb2+PAgUKoFGjRli+fLnYkkWRr68vSpQoIT4vUaKE2vfJ0H3oKjIyEpMnT0aNGjXg4uICe3t7eHp6okqVKhgwYIDGO/lnz55F165dxXObq6srateujTlz5mQ6P+p7XJqCJY6tR48eYfjw4ahYsSKcnZ3h6OiIcuXKYdiwYXjy5InKfWQs5BkUFIROnTqhcOHCcHBwwCeffIKRI0ciMjIy075kMplYE+vkyZOZ3kN5fPJzgy7/FIvnaioymhXOt7qQv/bHjx8DAHr16pXpNauyb98+tG/fXvyd4Obmhs8//xzLli1DUlKS2v1t3boVLVq0gIeHB3LlyoV8+fKhdOnSaNOmDQICAvDhwwel98CS3wGiLE8gIpLAlClTBACCptNQQECAuMzZs2fF6VevXhW8vb3Feba2tkLevHnF5zKZTJg5c2am7YWFhYnLbNy4UXB2dhYACI6OjoKTk5Pg4+MjLtujRw8BgNCjRw+VsY0YMUJpf/ny5RNsbW3Faf7+/kJ0dLTKddesWSPY2NiIy7q6ugr29vYCAKFcuXLCggULBABK8ShasGCBIJPJlNbPlSuX+LxKlSrC8+fPVa67c+dOpWWdnZ2F3LlzCwCEwoULC2vXrlX7ucg/s0aNGgkjR44UX7ubm5tga2srTJkyRVzWx8dH3E7u3LmF/PnzK8VcpEgRISQkRGWM8nUXLlwoVK5cWdxGnjx5xPULFy4shIWFCaGhoUKJEiXEz1H+PgIQSpcuLbx//17lPjQ5fvy4uA0AgouLi9LxBUDo2LGjkJqaqnHdY8eOicdY3rx5BTs7O3Gel5eX8PTpU5X7P3DggODg4KD2M/r999+1fncyevLkieDh4SF4eHiI67q5uYnTPDw8xGUVP2e5s2fPCh4eHmIcuXPnVlrXw8ND/I6mpKQITZo0UXq/XF1dlV6TPrFv2bJF8PDwENzc3MR1Fffbrl07cdnExEShc+fO4nI2NjaCm5ub0vft22+/FZKSkjLtR/6d7969u9C+fftM669du1bnmIOCgpTizZMnj3gsuLi4CFu3bhXnhYWFKa2reJ6Sf/6urq5K0z777DMhPj5eab127doJ7u7u4jLu7u5q3ydD96GL8PBwoVixYpk+A8Xzo+KxJZeamip8//33meJSXK9s2bLCo0ePxHX0OS510ahRIwGA0rlMzlLH1oYNG5S+Kw4ODkrnvrx58wqHDh3KtA/5udvHx0fYuHGjeJ53dXVVirFixYpCTEyMuJ783ODk5CQAEHLlypXpPdyyZYsgCIIwd+7cTPMU/ymeJxWPa8XYMpL6fKsr+WuXv5cuLi6ZXr+i+Ph4oUOHDplem+Lfwbp16wrv3r3LtK9evXpl+h44OjoqTZO/v6b+DhBZAyY4iEgSuiQ4Ro8eLS5z584dQRAE4fnz50KhQoUEAMLXX38tXL58WfxB+fLlS2HSpEniD5tdu3YpbU/xR72zs7NQp04d4dKlS+L8u3fvio81JTiWLFkibqd///7CixcvBEEQhNjYWOHXX38V99+5c+dM6wYFBYnzfX19xdeVlJQkbN68WciXL5+QL18+tT8G9+7dK+77q6++Eh4+fCgIQvqP7/Xr14s/DOvXry+kpKQorRsaGir+SKpRo4Zw+fJlQRAEIS0tTThy5Ijg4+OjdFGWkfwzk/+IHDt2rPDq1StBEAThw4cPShce3bt3F9atWyc8fvxYnJaYmCgcPXpUqF27thiDKvIER758+YTixYsLhw8fFlJTU4WUlBTh8OHDQsGCBQUAQqdOnYTatWsL1apVE86fPy++j1u3bhVf54QJE1TuQ5MLFy4I3333nXDkyBGlBMnbt2+FRYsWCS4uLgIAYdGiRZnWVfzB7ebmJrRp00b8jBMTE4WtW7eKn1G3bt0yrR8eHi5uv0qVKsKFCxcEQUi/+Dtw4IDg7e0tHh/6JAkUydc9fvy4yvmqEhxy2hJ/giAIf/75p/hDe/Xq1eLFVFpamvDy5Uth586dQocOHfSOW/G9VeeHH34QgPTE26RJk4TIyEhBEATh3bt3wo8//iiuP3bsWLWvzdnZWbCzsxPmzZsnfv4xMTFqk4YZRUdHixf4xYoVEw4fPiykpaUJgiAI586dEypWrKj0GWZMcISHhwtdunQR/v77b+Ht27fi9JiYGGHt2rWCl5eXAEAYMWJEpn0rnuMybtdU+9CmT58+AgChePHiwtGjR8XzUEpKivDo0SNh2bJlKt//iRMnCgCEQoUKCQEBAWJcSUlJwvHjx4Xq1auL542MF7u6HJe60JTgsMSxdfjwYcHGxkaws7MTxowZI4SFhQlpaWlCWlqaEBISInTs2FG8UFY8twrCf0kER0dHwcHBQejbt6/w5MkTQRAEIS4uTli6dKmY9Jg0aVKmGDV973URGRkplC9fXvyMPnz4kCk2VX/TpDzfGkL+90lbwrNr164CAOGTTz4RNm7cKL62hIQEYc+ePcInn3wiABDatm2rtN7p06fFBNicOXOUvp9v3rwRDh06JPTo0UN49uyZ0nqm+g4QWQMmOIhIEtoSHO/fvxd/ZOfPn1/8Qdu7d28BgPC///1P7bblLSCqVq2qNF3xx7+Pj4/SXayM1P1YiI+PF/Lnzy/erVNl8eLF4n7kSQS5Fi1aCACEMmXKqLw7evDgQaUYM5L/gPzss88yJTAEQRD+/vtvcf1t27YpzZNfeBQqVEjpR5NcSEiI0p3DjBQ/s5EjR6p87bqIiYkRWxKcPn0603z5D8g8efII9+/fzzR/zZo1YhweHh7CmzdvMi0zadIkAYBQsmRJg+NUZ9u2bWq3rfiD28/PT+VdR/nxkSdPHiE5OVlp3sCBAwUAQoECBYSXL19mWjc4OFipBY4hzJ3gkL+G/v37GxSfOtoSHE+fPhWTh+PHj1e5jLzlUa5cuTIlLOSvDYCwePFig+OcM2eOAECwt7cXbt++nWn+ixcvlBKJmhIRqly6dEkAIDg5OQkJCQlK83RNcBizD23k56hNmzbpvE5YWJhga2sr5MmTR7h27ZrKZaKjo8WWexmT1+ZOcFji2EpNTRVKly4tABBWrFihNsY2bdoIAIRhw4YpTVdsfafufZDHWKpUqUzzjElwJCcnC1988YUApLfOy9haQlOCQxtznm8NoUuC49SpU+LfWnmSKaPw8HCx1czVq1fF6fLzR9OmTfWKiwkOov+wBgcRZSlRUVEIDAyEv78/nj9/DgAYNmwYbGxs8OHDB2zatAkAMHbsWLXb6N69OwDg+vXramsWDBkyxKBChUeOHMG7d+8AQKnmhKJBgwaJw8vK4wXSX9uhQ4cAAKNHj0aePHkyrdusWTPUq1dP5XZv3LiBO3fuAAAmTpwIW1vbTMu0bt0atWvXBgBs3rxZnC4IAnbs2AEgfQSK/PnzZ1q3bNmy6NSpk8p9K7KxsdH4/mvj7OyMRo0aAQDOnDmjdrn27duLhWYVNWvWTHzcv39/FChQQO0yoaGhiIuLMzhWVb788ktx2xEREWqX+/HHH2Fjk/nP7FdffQUASEhIwP3798XpgiBg69atAIABAwagUKFCmdatVKkSOnToYFT85pYvXz4A0PjemMOOHTuQkpKC3LlzY9y4cSqXmThxIhwcHJCcnIzt27erXMbNzQ3fffedwXFs2bIFANCxY0eUL18+03xPT08MGDDA4O3XrFkThQoVQlxcnNmGqjRmH/LP/8WLFzqvs27dOqSmpqJ58+aoWrWqymXy5s2Ltm3bAoB4HrUUSxxbp06dwv379+Hu7o6+ffuqjUX+903Te6Bu5DH5uefBgwdKRXuNNXDgQAQGBsLJyQl79+5FkSJFTLZtc51vzUleY6hLly4oWrSoymW8vb3h5+cHQPmzlH9/Xr9+rbWWFxGpxgQHEUlOsRiWm5sbGjdujKCgIABA165dMWHCBADpRdPkhbWaNm0KT09Plf8qVqwoblteECyjBg0aGBTr5cuXAQBFixZFmTJlVC5ja2sLf39/peUB4MqVK0hLSwMAcb4q6ubJt2VnZycmCFSRD7GruO+HDx8iKioKADSuq6pgY0alSpVSefGd0T///IPOnTvjk08+gZOTk9Ln/NdffwEAnj59qnZ9eaImIw8PD/FxrVq1tC4jf936iImJwdy5c9GoUSMUKlQI9vb2YuyKQ6tqir9OnToqp3t5eYmP5ckyAAgLCxOfG3J8ZBUtW7aETCbD33//jRYtWmDz5s1istKc5Md7rVq14OLionIZNzc31KxZU2n5jGrVqgV7e3uDYkhKShKH4TXmM0xKSsLy5cvRtGlTeHl5wcHBQen78+rVKwCajz9dYjXHPlq1agUAGDduHPr374+DBw8iOjpa4zpnz54FABw+fFjted3T0xNr164FoP68bi6WOLbk78H79+/h5eWl9j3o168fAPXvQf78+VUmhgHlc0/GYqOGmjNnDlavXg0bGxts3LgR1atX13sbUpxvzUn+Wa5Zs0bj8Xz06FEAyp/lF198gdy5c+Pq1av47LPPsGbNGqWi2kSknZ3UARARKV6MykcjqV69Orp06SLe4QCgdJGk62gS6u5S6XKBror8R7+2O1Te3t5Ky2d8rGl9+brq9u3u7g4HBwe99v369WvxseIPvox0ufOm7b1LS0tD165dlVqQ2NnZwc3NTfxx//79e3z48EFj64q8efOqnG5nZ6fXMvqOBnHv3j188cUXSj+mHR0dkS9fPvEOofz4MzZ+xdiMPT6yioYNG2LOnDmYOHEiDh48iIMHDwJIj7tx48bo3r270vfaVIz5bioy9NwApF9AyYe0NvQzfPXqFRo3biwmSoD0UaXc3d3FVluvX79GWlqawa2TzLmP0aNH4/r16/jrr7+watUqrFq1CjKZDBUrVkTz5s3Rt29flC1bVmkd+bk9Li5Op/2ZsvWBLixxbMnfg+TkZJ3+viUkJKicru68Axh3XlRl+/btGD9+PID0RIe8tYQ+pDrfmpP8s4yOjtaa3AOUj+eSJUti9erVGDBgAM6fPy+OClewYEH4+fnhf//7H9q0aaN21BYiYgsOIsoCIiIixH+PHz9GUFAQVq9enekiSLG5ZkJCAoT0OkIa/6lrkaCqe0dOYewPI23v3Zo1a7B582bY2tpi8uTJuH//PhITE/Hu3Tvxc5Z3sxDUDP8npV69euHp06coXrw4tm3bhrdv3yIuLg6vXr1CRESE0pCDWTH+rGD06NEICwvDr7/+irZt26JQoUJ4+vQp1q1bB39/f3Ts2NFiFxv6kvrcMGLECAQHB6NAgQL4/fff8eLFCyQkJOD169fi90eepDT0+DPnPnLlyoWtW7fi2rVrmDx5Mvz9/eHo6IibN29i3rx5qFixIubPn6+0jvzcPnbsWJ3O69l12EtNx5b8PahTp45O74HU556LFy+ie/fuEAQBffv2xahRowzajjWeb+Wf5bJly3T6HDMOE9ylSxc8fvwYy5cvR+fOnVG0aFG8fv0af/31F9q2bYtGjRrplDghyqmY4CCibMPT01N8bOkmynLyO3Damm3L5yvesVN8rPijLSN18+Trv3nzBomJiXrtu2DBguJjTd0FNMWlK3kNgr59+2LatGkoVapUpr7Rlq7PoKvw8HCcO3cOQHoNkw4dOmSqV2Ku2I09PrIaLy8vDB8+HLt27cLLly9x48YNsbbA9u3bsWzZMpPuz5jvpqnkz59fvIg15DNMTk7Gzp07AQBLly5Fr169lM57QPrF05s3bwyO0RL7AICqVati2rRpCAwMRFRUFI4ePYrPP/8cqampYisPOfn+pTqva2OJYyurvweKHj9+jDZt2iAhIQH+/v747bffDNqOlOdbczLFZ5k/f35899132LJlC548eYIHDx5g3LhxkMlkOH36tNoaYETEBAcRZSOK/Zf37t0rSQzyPtZPnz7FvXv3VC6TmpqK48ePA1CuEVGjRg3xQl8+X5Vjx45p3HdKSgpOnjypdn15v17FfX/yySdi8TJNdz9NcWc0PDwcANT2xY6NjcWFCxeM3o85yGMH1Mcvf39NrUSJEuKPe0OOD0uQH7+G3EmtXLkyVq1aJda/OXLkiEljU6x/8P79e5XLREVFKdVTMDV7e3tUqVIFgGGf4evXr8U6Q+qOvzNnzojLZKSYSFT3GRm7D0PY2dnhiy++wL59++Dg4ABBEJS+R/Jj4ujRowbt15jjUheWOLbk70FERITaGh7mpOt7GB0djVatWuHly5coU6YMtm/fjly5chm0TynPt4bS5X2Sf5b//POPyfZbsmRJzJo1C//73/8AZD5/mvs7QJSdMMFBRNmGk5OT+Md9zpw5ePLkicblzVFQrEmTJuKoHeruoKxYsUJsJfHtt9+K0/Ply4emTZsCAObNm6fyh/zRo0fFO1oZValSBRUqVAAAzJgxQ2WF9f3794vJA8V9y2QyfP311wCA5cuXqywwd//+fbH4pzFcXV0BQOkOraKffvoJMTExRu/HHOSxA6rjj4mJwYwZM8yyb5lMJo5is3z5cpV30G/fvq12hAZLkBdY1FS4VVPrIgDi6EGqRjwwRvv27WFnZ4cPHz5gzpw5KpeZOXMmEhMTkStXLrRv396k+5fr3LkzAGDbtm24e/dupvmvXr3C8uXLVa7r4uIidiFTdfylpKSIRZfVrS+n7jMydh/aaPr8HRwcxBYuip9/7969YWdnhzdv3mDKlCkat5+UlITY2Filabocl8awxLHl5+cnFgcdMWIEkpKSNC5v6r9vuryHKSkp6NixI27evIkCBQpg3759cHNzM3ifUp5vDaXL+9S/f38AwM2bN7W2VIuLi1P6rA09f5r7O0CUnTDBQUTZysyZM+Hl5YU3b96gXr16+PPPP5Uull+/fo0dO3agXbt2Shf4ppInTx4xsbF582YMGDBALIAWHx+PxYsXY/jw4QDSL3Q+/fRTpfV/+ukn2NraIiQkBF9++aV4AZSSkoK//voLnTp1EltaqCL/cX369Gl06NBBrK6enJyMjRs3iq+5fv364pCKcuPHj0eePHnw8uVLNG3aFFevXgWQfsfn2LFjaNasmVLFekM1b94cALBq1SqsXLlS/PEWERGBESNG4JdfflE5tGtWUL58eRQrVgxA+kWXfDQfADh//jx8fX1NNvqAKuPHj0fevHnx5s0bNGnSRLyTKwgCDh8+jBYtWpjkMzJUpUqVAKQffyEhISqXadu2LXr37o0DBw4o/dh+9+4dZsyYgcDAQAD/Df9oKkWKFMGwYcMAALNnz8aUKVPE/UdFRWHSpEmYO3cuAGDkyJHiUM6mNnDgQHh7eyMxMRHNmzdHYGCgeFf1woULaNy4sTiaUkbOzs7i3d+RI0fi2LFj4rI3b95Ey5YtcfnyZTg5OalcP1++fGIhzLVr14oFT025D218fHwwfvx4/Pvvv0oXaw8ePECXLl0QHx8PGxsbpeGeS5YsiUmTJgEAfvnlF3Tv3h03b94U56ekpODatWuYPn06SpUqlWnoWl2OS2NY4tiys7PD8uXLYWdnhzNnzuDzzz9HYGCgUq2ahw8fYvny5ahVq5bB3ULUkb+Ht27dUptkHzZsGA4fPgx7e3vs3LlT7WgtupL6fGsI+fu0fft2tbE1atQIvXr1AgAMHjwYI0aMwMOHD8X5iYmJ+PfffzFmzBj4+PgoFaUdMmQIOnXqhB07dihNj42NxfLly7F+/XoAmc+f5v4OEGUrAhGRBKZMmSIAEAw5Dd2+fVsoU6aMuL6NjY2QP39+wcnJSZwGQGjcuLHSemFhYeK8sLAwjfvo0aOHAEDo0aOHyvkjRowQtyWTyQQ3NzfBzs5OnObn5ydER0erXHfFihWCTCYTl3V1dRUcHBwEAEK5cuWEBQsWCAAEHx8flesvWLBAaf18+fIJ9vb24vPKlSsLz549U7nutm3blOLMmzev4OjoKAAQihQpIqxdu1YAIDg4OGRaV/6ZNWrUSON7FxkZKZQrV07p88mXL58Y83fffafx/fXx8REACGvXrlW7D/m2jx8/rnK+Pp91Rnv37lV6jxwdHcX3yMnJSTh69Kja/R8/flyn41pT/P/88494PMg/ozx58ggAhMKFCwu///67wd8dbfsWBM2f87t374SCBQuK23B3dxd8fHwEHx8f4fz584IgCEKjRo2UvocuLi6Ci4uL0rQOHToIqampesWty3ubmJgodOrUSenYc3NzE2xsbMRp3377rZCUlJRpXW3feX1cunRJyJcvn9Ix5OzsLH6eW7duVXt8Xr58Welc5uDgIOTNm1cAINjZ2Qnr16/X+B356aeflNYtWrSo4OPjI3Tu3Nlk+9BE8XOWv/+5c+dWOl/++uuvmdZLS0sTJk2apHRuy5Mnj1CgQAHB1tZWabtnzpxRWleX41IX8mN3ypQpmeZZ6tjatWuX+FkAEHLlyiUUKFBA6ZwAQJgxY4bSevJzt7q/G4Kg+byYnJwslC1bVpzv5uYmvofbtm0TBOG/c3OuXLkEDw8Pjf+ePHmiU2xSn2/1dfLkSfEYtbW1FQoXLiy+T4oSExOFvn37Kn1mzs7OmY4ZAMLTp0/F9eTHiuI6iucSAELDhg2F2NhYpf2Z6jtAZA3YgoOIsp3y5cvjxo0bWLFiBZo2bQp3d3dER0dDEASUKlUKHTt2xMqVK03S3UKdBQsW4NixY2jfvj08PDwQGxuLvHnzws/PD7///juOHDmidti6/v374+zZs2jdujXy58+PxMRE8a7nxYsXtTb5HTFiBC5fvoyuXbuiaNGiiI+PR548eVC3bl38+uuvuHTpktqhYDt06IDLly+jY8eOKFiwIBITE+Hh4YFhw4bh6tWrYpNhTa1ItMmXLx/OnTuH4cOHo3jx4rC1tYWdnR18fX2xefNmtc3zs4pWrVrh1KlT+PLLL5EvXz6kpKTA3d0dvXr1QlBQEL744guz7v/LL7/ElStX8M0336BQoUJISkqCh4cHhgwZgqtXr6JEiRJm3b8mbm5uOHXqFL755hsUKVIE79+/x+PHj/H48WOxy9WSJUswZ84ctGzZEqVLl4YgCEhISICXlxfatGmDHTt2YNu2bSbvogKk18DYunUrtm/fjhYtWqBAgQKIiYlBgQIF0KJFC+zcuRObNm0yuGaArmrWrCkWVS1SpAhSUlLg6uqKHj164MqVK6hdu7badT/99FNcvHgRnTp1gru7O9LS0pA3b1506tQJ586dQ7du3TTu+8cff8SiRYtQs2ZN5MqVC0+fPsXjx4+VijUauw9NDh8+jPHjx+Ozzz5D0aJFxeFMS5UqhV69euHSpUtiKzdFMpkM06dPx40bNzBo0CCUL18etra2eP/+Pdzc3FC/fn2MHj0a586dE1ugyOlyXBrLUsdW27Zt8eDBA0yZMgW1a9eGs7MzoqKi4ODggKpVq6Jv377YtWsXRo8ebZLXJWdnZ4fAwED07dsXJUqUQFxcnPgeZuwSJB/KVtM/VV0oVZH6fKuvzz//HPv27UPjxo2RL18+vHz5UnyfFNnb22PVqlU4d+4cevbsiZIlSyI1NRWxsbEoVKgQfH19MXnyZNy4cUNp+OFJkyZh8eLFaNeuHcqVKwc7OztxnSZNmuD333/HiRMnMrWwssR3gCi7kAkCq9EQEVG6CRMmYObMmfD39xe7EhARERERZQdswUFERADS65esXr0awH91NIiIiIiIsgu24CAiykEWL16M+Ph4dOjQAcWLF4ednR0SExMRGBiIH374ASEhIShYsCDu3LmTZQuBEhERERGpwgQHEVEOMnz4cCxatAgAYGtrC1dXV0RHR4ujLbi6umL37t3w9fWVMEoiIiIiIv3ZSR0AERFZTo8ePWBra4tTp07h2bNnePv2LfLkyYMSJUqgWbNmGDZsmFLBMyIiImtSq1YthIeH67XOpUuXULRoUTNFRESmxBYcRERERESUIxQvXjzTqCfahIWFoXjx4uYJiIhMigkOIiIiIiIiIsr22EUlh0hLS8Pz58+RN29eyGQyqcMhIiIiIiIiKycIAmJiYuDl5QUbG/MP4soERw7x/Plz9h0kIiIiIiIiiwsPD4e3t7fZ98MERw6RN29eAOkHlouLi8TREBERERERkbWLjo5G0aJFxetRc2OCI4eQd0txcXFhgoOIiIiIiIgsxlJlEszfCYaIiIiIiIiIyMyY4CAiIiIiIiKibI8JDiIiIiIiIiLK9liDg4iIiIiIiLKE1NRUJCcnSx0G6cHe3t4iQ8DqggkOIiIiIiIikpQgCIiIiEBUVJTUoZCebGxsUKJECdjb20sdChMcREREREREJC15cqNQoUJwdHS02KgbZJy0tDQ8f/4cL168QLFixST/3JjgICIiIiIiIsmkpqaKyY0CBQpIHQ7pqWDBgnj+/DlSUlKQK1cuSWPJGh1liIiIiIiIKEeS19xwdHSUOBIyhLxrSmpqqsSRMMFBREREREREWYDU3RvIMFnpc2OCg4iIiIiIiIiyPSY4somoqCjUrFkT1apVQ6VKlbBq1SqpQyIiIiIiIiIVfH19MXz4cKnDyHGY4Mgm8ubNi1OnTuHatWu4cOECZs6cibdv30odFhERERERERnhxIkTkMlkHCLXBJjgyCZsbW3FojuJiYkQBAGCIEgcFREREREREVHWwASHhZw6dQqtW7eGl5cXZDIZdu/enWmZgIAAFC9eHLlz50adOnVw8eJFpflRUVGoWrUqvL29MXr0aLi7u1soeiIiIiIiIlIlLi4O3bt3h7OzMwoXLoz58+crzf/zzz9Rs2ZN5M2bF56envjf//6HV69eAQAePXoEPz8/AICbmxtkMhl69uwJADh48CAaNmyIfPnyoUCBAmjVqhVCQ0Mt+tqyGyY4LCQuLg5Vq1ZFQECAyvlbt27FyJEjMWXKFFy5cgVVq1ZFs2bNxAMfAPLly4fr168jLCwMmzZtwsuXLy0VPhERERERkcUIgoC4uDhJ/unbUn706NE4efIk9uzZg8OHD+PEiRO4cuWKOD85ORk//fQTrl+/jt27d+PRo0diEqNo0aLYsWMHAODu3bt48eIFFi1aBCD9GnLkyJG4fPkyAgMDYWNjg3bt2iEtLc00b7IVkgns52BxMpkMu3btQtu2bcVpderUQa1atbB06VIAQFpaGooWLYqhQ4di3LhxmbYxaNAg+Pv7o0OHDir3kZiYiMTERPF5dHQ0ihYtivfv38PFxcW0L4iIiIiIiMhAHz58QFhYGEqUKIHcuXMDSL+4d3Z2liSe2NhYODk56bxsgQIFsGHDBnTs2BEA8O7dO3h7e6N///5YuHBhpnUuX76MWrVqISYmBs7Ozjhx4gT8/PwQGRmJfPnyqd3XmzdvULBgQQQHB6NSpUqGvDSzUPX5yUVHR8PV1dVi16FswZEFJCUlISgoCI0bNxan2djYoHHjxjh//jwA4OXLl4iJiQEAvH//HqdOnULZsmXVbnPWrFlwdXUV/xUtWtS8L4KIiIiIiCiHCQ0NRVJSEurUqSNOy58/v9K1WlBQEFq3bo1ixYohb968aNSoEQDgyZMnGrd9//59fPvtt/jkk0/g4uKC4sWL67ReTmYndQCUnolLTU2Fh4eH0nQPDw+EhIQAAB4/foz+/fuLxUWHDh2KypUrq93m+PHjMXLkSPG5vAUHERERERFRVufo6IjY2FjJ9m0qcXFxaNasGZo1a4aNGzeiYMGCePLkCZo1a4akpCSN67Zu3Ro+Pj5YtWoVvLy8kJaWhkqVKmldLydjgiObqF27Nq5du6bz8g4ODnBwcDBfQERERERERGYik8l07iYipZIlSyJXrly4cOECihUrBgCIjIzEvXv30KhRI4SEhODt27eYPXu2eMP58uXLStuwt7cHAKSmporT3r59i7t372LVqlX47LPPAABnzpyxxEvK1thFJQtwd3eHra1tpqKhL1++hKenp0RRERERERERkSbOzs7o06cPRo8ejWPHjuHmzZvo2bMnbGzSL7WLFSsGe3t7LFmyBA8fPsTff/+Nn376SWkbPj4+kMlk+Oeff/D69WvExsbCzc0NBQoUwMqVK/HgwQMcO3ZMqYU+qcYERxZgb2+PTz/9FIGBgeK0tLQ0BAYGol69ekZtOyAgABUqVECtWrWMDZOIiIiIiIgymDt3Lj777DO0bt0ajRs3RsOGDfHpp58CAAoWLIh169Zh27ZtqFChAmbPno158+YprV+kSBFMmzYN48aNg4eHB4YMGQIbGxts2bIFQUFBqFSpEkaMGIG5c+dK8fKyFY6iYiGxsbF48OABAKB69epYsGAB/Pz8kD9/fhQrVgxbt25Fjx49sGLFCtSuXRsLFy7EX3/9hZCQkEy1OQxh6eq1REREREREutA0CgdlfVlpFBXW4LCQy5cvw8/PT3wub17Uo0cPrFu3Dp07d8br168xefJkREREoFq1ajh48KBJkhtERERERERE1o4JDgvx9fWFtsYyQ4YMwZAhQywUEREREREREZH1YA0OIiIiIiIiIsr2mOCwciwySkRERERERDkBExxWbvDgwbh9+zYuXbokdShEREREREREZsMEBxERERERERFle0xwEBEREREREVG2xwQHEREREREREWV7THBYORYZJSIiIiIiopyACQ4rxyKjRERERERE2Z+vry+GDx+u8/Lr1q1Dvnz5NC4TEhKCunXrInfu3KhWrRoePXoEmUyGa9euGRWrVOykDoCIiIiIiIiILG/KlClwcnLC3bt34ezsjHz58uHFixdwd3cHAJw4cQJ+fn6IjIzUmizJCpjgICIiIiIiIsqBQkND8eWXX8LHx0ec5unpKWFExmEXFSIiIiIiIiID+Pr6YujQoRg+fDjc3Nzg4eGBVatWIS4uDr169ULevHlRqlQpHDhwQGm9kydPonbt2nBwcEDhwoUxbtw4pKSkiPPj4uLQvXt3ODs7o3Dhwpg/f36mfScmJmLUqFEoUqQInJycUKdOHZw4cULn2GUyGYKCgjB9+nTIZDJMnTpVqYvKo0eP4OfnBwBwc3ODTCZDz549DXqfLIUJDiIiIiIiIiID/fHHH3B3d8fFixcxdOhQDBw4EB07dkT9+vVx5coVNG3aFN26dUN8fDwA4NmzZ2jZsiVq1aqF69evY9myZVizZg1mzJghbnP06NE4efIk9uzZg8OHD+PEiRO4cuWK0n6HDBmC8+fPY8uWLbhx4wY6duyI5s2b4/79+zrF/eLFC1SsWBE//PADXrx4gVGjRinNL1q0KHbs2AEAuHv3Ll68eIFFixYZ81aZnVV3UbGxsYGNjQ1CQkJQqlQpqcORREBAAAICApCamip1KERERERERDqrWROIiLD8fj09gcuXdV++atWqmDhxIgBg/PjxmD17Ntzd3dGvXz8AwOTJk7Fs2TLcuHEDdevWxW+//YaiRYti6dKlkMlkKFeuHJ4/f46xY8di8uTJiI+Px5o1a7BhwwZ88cUXANKTKN7e3uI+nzx5grVr1+LJkyfw8vICAIwaNQoHDx7E2rVrMXPmTB1epyfs7Ozg7Owsdkt58+aNON/W1hb58+cHABQqVIg1OKSWJ08e5MqVK8cmN4D0UVQGDx6M6OhouLq6Sh0OERERERGRTiIigGfPpI5CuypVqoiPbW1tUaBAAVSuXFmc5uHhAQB49eoVAODOnTuoV68eZDKZuEyDBg0QGxuLp0+fIjIyEklJSahTp444P3/+/Chbtqz4PDg4GKmpqShTpoxSLImJiShQoIBpX2A2YtUJDm9vbzx9+lTqMIiIiIiIiEhPUtW61He/uXLlUnouk8mUpskTGWlpaUbHJhcbGwtbW1sEBQXB1tZWaZ6zs7PJ9pPdWHWC48svv8SiRYtw8uRJNGrUSOpwiIiIiIiISEf6dBPJTsqXL48dO3ZAEAQx+XH27FnkzZsX3t7eyJ8/P3LlyoULFy6gWLFiAIDIyEjcu3dPvK6tXr06UlNT8erVK3z22Wdmi9Xe3h4Ask3JA6suMjp+/HgULFgQAwcOxIsXL6QOh4iIiIiIiHK4QYMGITw8HEOHDkVISAj27NmDKVOmYOTIkbCxsYGzszP69OmD0aNH49ixY7h58yZ69uwJG5v/Lt/LlCmDLl26oHv37ti5cyfCwsJw8eJFzJo1C/v27TNZrD4+PpDJZPjnn3/w+vVrxMbGmmzb5mDVLTju3LmDn3/+GSNGjECFChXQrVs3NGjQAIUKFcrUjEfR559/bsEoiYiIiIiIKKcoUqQI9u/fj9GjR6Nq1arInz8/+vTpIxYqBYC5c+ciNjYWrVu3Rt68efHDDz/g/fv3SttZu3YtZsyYgR9++AHPnj2Du7s76tati1atWpk01mnTpmHcuHHo1asXunfvjnXr1pls+6YmEwRBkDoIc7GxsVEq3KILmUymNP6wtZAXGX3//j1cXFykDoeIiIiIiAgA8OHDB4SFhaFEiRLInTu31OGQnjR9fpa+DrXqLioAIAiCXv9MWfglKwgICECFChVQq1YtqUMhIiIiIiIiMhurTnCkpaUZ9M+aDB48GLdv38alS5ekDoWIiIiIiIjIbKw6wUFEREREREREOQMTHERERERERESU7Vn1KCqK0tLSEBQUhMePHyM+Ph7du3eXOiQiIiIiIiIiMpEc0YJjyZIlKFy4MOrWrYvOnTujV69eSvMjIyNRqVIllCtXDi9fvpQoSiIiIiIiopzL2uoh5hRZaWBWq2/BMXjwYCxfvhyCIMDFxQWxsbGZPgA3NzfUqFEDGzduxLZt2zBkyBCJoiUiIiIiIspZ7O3tYWNjg+fPn6NgwYKwt7eHTCaTOizSgSAIeP36NWQyGXLlyiV1OJAJWSndYmIHDx5Ey5YtkTdvXqxfvx5fffUVChcujFevXiE1NVXlsm3atMHu3bulCdiMLD3+MBERERERka6SkpLw4sULxMfHSx0K6Ukmk8Hb2xvOzs6Z5ln6OtSqW3AsX74cMpkM06dPx1dffaVx2Xr16gEAgoODLREaERERERERfWRvb49ixYohJSUl081oytpy5coFW1tbqcMAYOUJjgsXLgAAevfurXVZV1dXuLi4ICIiwtxhWVRAQAACAgJ4kiAiIiIioixN3s0hK3R1oOzJqruoODg4wMnJCe/evROnqeuiAgD58+dHQkICEhISLBmmRbCLChEREREREVmSpa9DrXoUFRcXF0RHRyM5OVnrsu/evcP79+/h7u5ugciIiIiIiIiIyJSsOsFRuXJlCIIgdlXRZPPmzRAEATVr1rRAZERERERERERkSlad4OjQoQMEQcDUqVM1jql8/fp1TJw4ETKZDN9++60FIyQiIiIiIiIiU7DqBEe/fv1QoUIFHD9+HE2aNME///wj1t64f/8+jhw5gu+//x7169fH+/fvUbduXXTs2FHiqImIiIiIiIhIX1ZdZBQAHj9+jObNm+Pu3buQyWQqlxEEAZUrV8ahQ4fg6elp4Qgtg0VGiYiIiIiIyJJYZNTEfHx8EBQUhGnTpqFYsWIQBEHpn5eXF6ZOnYpz585ZbXKDiIiIiIiIyNpZfQuOjJ4/f47nz58jNTUVnp6e8PHxkToki2ALDiIiIiIiIrIkS1+H2pl9D1mMl5cXvLy8pA6DiIiIiIiIiEzIqruohIWFSR0CEREREREREVmAVSc4SpUqhU8++QS9e/fGn3/+iadPn0odEhERERERERGZgVXX4LCx+S9/Ix9B5ZNPPoGfnx/8/Pzg7+8PDw8PqcKziICAAAQEBCA1NRX37t1jDQ4iIiIiIiKyCEvX4LDqBEdERASOHTuG48eP49ixY2KXFcXhYsuWLSsmPHx9feHu7i5VuGbFIqNERERERERkSUxwmNGTJ0/EhMfx48fFLiuKCY9KlSrh+vXrUoVoNkxwEBERERERkSUxwWFB9+/fx/Hjx7F27VpcuHABQHqyIzU1VeLITI8JDiIiIiIiIrIkDhNrAa9evcKxY8fEf4qjrSi25iAiIiIiIiKi7CFHJDiioqJw4sQJMaFx584dAIC88Urp0qXh7+8v1uIgIiIiIiIiouzFqhMcY8aMwbFjx3D9+nWkpaWJCQ0fHx8xoeHv7w8vLy+JIyUiIiIiIiIiY1h1gmPevHmQyWRwcXFBq1atxBYaJUqUkDo0IiIiIiIiIjIhq05wAOndUKKjo3HhwgU4OTkhb968yJs3r9UOB0tERERERESUE1n1KCpbtmwRh4UNDQ0F8F8R0YoVK8Lf3x/+/v7w9fW1+pFFOIoKERERERERWRKHiTWT8PBwHD9+XEx4hIeHA0hPeNjY2KB69epiwqNp06YSR2t6THAQERERERGRJTHBYSGhoaFisuPEiROIiIiATCaDTCZDSkqK1OGZHBMcREREREREZEmWvg61+hoc6jg5OcHJyQmOjo5wcHCATCZDDs31EBEREREREWV7OSbBERkZKXZROXbsGO7evSvOkyc2ihYtCj8/P6lCJCIiIiIiIiIDWXWCY//+/WJC48aNG2IiQ/6/p6cnfH194e/vDz8/P5QsWVLKcImIiIiIiIjIQFad4GjVqpVS15MCBQrA19cXfn5+8Pf3R7ly5SSOkIiIiIiIiIhMwaoTHC4uLmjUqJGY0KhSpYrUIVlcQEAAAgICkJqaKnUoRERERERERGZj1aOopKWlwcbGRuowsgSOokJERERERESWZOnrUKu++mdyg4iIiIiIiChnsOouKhndunULly9fxqtXrwAAhQoVQq1atVChQgWJIyMiIiIiIiIiY+SIBMehQ4cwZswY3Lx5U+X8ypUr45dffkHTpk0tHBkRERERERERmYLV9+FYunQpvvzyS9y8eROCIMDGxgaFChVCoUKFYGtrC0EQcOPGDbRo0QIBAQFSh0tEREREREREBrDqBMf169cxfPhwpKWloXbt2ti/fz9iY2Px4sULvHjxAjExMdi/fz/q1asHQRAwfPhw3LhxQ+qwiYiIiIiIiEhPVp3gWLBgAdLS0tC6dWucOXMGzZs3h4ODgzjfwcEBzZs3x6lTp9C6dWukpqbi119/lTBisrSEhAS8f/9e6jCIiIiIiIjISFad4Dh58iRkMhkWLVoEW1tbtcvZ2tpi4cKFAIDjx49bKDqS2qNHj+Dh4YH8+fNjw4YNJt/+zZs3ERoaavLtEhERERERUWZWneB4+fIlXF1dUbx4ca3LlihRAvny5cPLly/NHxhlCcHBwYiJiUFaWhrOnz9v0m3v3LkTlStXRqlSpRAcHGzSbRMREREREVFmVp3gyJMnD+Lj45GSkqJ12ZSUFMTHxyNPnjwWiIys3cOHD8XHYWFhEkZCRERERESUM1h1gqN8+fJITk7G9u3btS67bds2JCUloXz58haIjIiIiIiIiIhMyaoTHB07doQgCBg0aBACAwPVLnf06FEMGjQIMpkMnTp1smCERERERERERGQKdlIHYE4DBw7EmjVrcOvWLTRt2hT16tVD48aNUaRIEQDA06dPERgYiPPnz0MQBFSqVAkDBw6UOGoiIiIiIiIi0pdVJzgcHBxw6NAhfP3117h48SLOnTuXqZikIAgAgDp16mDHjh2wt7eXIlQiIiIiIiIiMoJVd1EBAC8vL5w7dw6bN29Gu3bt4O3tDXt7e9jb28Pb2xvt2rXD1q1bcfbsWXh5eUkdLhEREREREREZwKpbcMjZ2Nigc+fO6Ny5s9ShEBEREREREZEZWGWCIykpCXv27MGlS5cQHR2N/Pnzo27dumjVqhVsbKy+0Uq2dOPGDWzbtg0+Pj7o06cPZDKZ1CFlebdv34YgCKhYsaLUoRAREREREUnO6hIcV65cwddff43w8PBM88qUKYM9e/agTJkyEkRGmgwcOBDnzp0DAFSrVg01a9aUOKKs7erVq6hRowYA4MKFC6hdu7bEEREREREREUnLqpozvH37Fi1btkR4eDgEQcj07+7du/jyyy+RkJAgdaiUQXR0tMrHpNqjR49UPiYiIiIiIsqprCrB8dtvv+HVq1fIlSsXJk6ciLt37yIuLg63bt3CoEGDYGNjg4cPH+LPP/+UOlQind25cweNGzdGv379xFF/iIiIiIiISJlVJTgOHDgAmUyGKVOmYPr06ShdujTy5MmD8uXLY+nSpRg0aBAEQcCBAwekDtUg4eHh8PX1RYUKFVClShVs27ZN6pDIArZu3YrAwECsXr0aDx48kDocIiIiIiKiLMmqEhx3794FAAwaNEjlfPn0e/fuWSwmU7Kzs8PChQtx+/ZtHD58GMOHD0dcXJzUYVmN1NRU/Pnnn1i+fDliYmKkDkeUmpqq8jERERERERH9x6qKjL5//x5ubm5wdXVVOb9kyZIAsm+Nh8KFC6Nw4cIAAE9PT7i7u+Pdu3dwcnKSODLrcPToUXTv3h0AEBcXhx9++EHiiNS7deuW1CEQERERERFlKVbVgiMtLQ329vZq5+fKlQuAdHfBT506hdatW8PLywsymQy7d+/OtExAQACKFy+O3Llzo06dOrh48aLKbQUFBSE1NRVFixY1c9Q5R2RkpMrHWdGcOXOkDoGIiIiIiChLsaoER1YXFxeHqlWrIiAgQOX8rVu3YuTIkZgyZQquXLmCqlWrolmzZnj16pXScu/evUP37t2xcuVKS4RNWZCbm5vUIRAREREREWUpVtVFBQASEhKwfv16o5aRd1MwtRYtWqBFixZq5y9YsAD9+vVDr169AADLly/Hvn378Pvvv2PcuHEAgMTERLRt2xbjxo1D/fr11W4rMTERiYmJ4vPs2i0nqzhz5gy+/vprODs74/Tp0yhSpIjUIREREREREZECq0twREdHiwkCVWQymcZlZDKZ2RIcmiQlJSEoKAjjx48Xp9nY2KBx48Y4f/48AEAQBPTs2RP+/v7o1q2bxu3NmjUL06ZNM2vMOcnRo0fx+vVrvH79GhcuXMDXX38tdUhERERERESkwOq6qAiCYPQ/Kbx58wapqanw8PBQmu7h4YGIiAgAwNmzZ7F161bs3r0b1apVQ7Vq1RAcHKxye+PHj8f79+/Ff+Hh4WZ/DURERERERERSsaoWHGFhYVKHYFYNGzZEWlqaTss6ODjAwcHBzBFlXcnJydi3bx9SU1PRqlWrHP1eEBERERER5QRWleDw8fGROgSDubu7w9bWFi9fvlSa/vLlS3h6ekoUVfb1119/oWvXrgDSR6YZNGiQxBERERERERGROVldF5Xsyt7eHp9++ikCAwPFaWlpaQgMDES9evUkjCx7Uhx5JuMoNERERERERGR9rKoFR1YXGxuLBw8eiM/DwsJw7do15M+fH8WKFcPIkSPRo0cP1KxZE7Vr18bChQsRFxensWiqNgEBAQgICEBqaqopXgIRERERERFRlsQEhwVdvnwZfn5+4vORI0cCAHr06IF169ahc+fOeP36NSZPnoyIiAhUq1YNBw8ezFR4VB+DBw/G4MGDER0dDVdXV6Nfg7WKi4uTOgS9cNhfIiIiIiIiZUxwWJCvr6/WUVqGDBmCIUOGWCgikvvjjz+MSiRZ0vHjx/H+/XupwyAiIiIiIspSWIOD6KNr165JHYJOgoKCpA6BiIiIiIgoy2GCw8oFBASgQoUKqFWrltShEBEREREREZkNExxWbvDgwbh9+zYuXbokdSgE4N69e2jcuDE6deqExMREqcMhIiIiIiKyGkxwEFnQ9u3bERgYiG3btuHy5cuZ5r98+RLx8fESREZERERERJS9McFBWdqoUaPg5eWFTp06aS3QmlWlpqbi+vXrOHz4MCZMmKA0XdGWLVvg6emJYsWKISYmxtJhEhERERERZWtMcFCWtmLFCrx48QLbtm3DmzdvkJCQgBYtWqBixYrYtGmT1OHppE+fPqhWrRqaNWumcbmrV68CAN6+fYvw8HBLhEZERERERGQ1rGaY2CdPnphsW8WKFTPZtsg4iq02BEHApUuXcPDgQQDAypUr8b///U+q0DR6+/at+DgyMlLlMvv378eGDRvQs2dP1K9f31KhERERERERWSWrSXCUKFHCJNuRyWRISUkxybaygoCAAAQEBGTqDpFdKSY80tLSJIxEvdjYWMyePVvrcnPmzAEAnDx5Enfv3jV3WERERERERFbNarqoCIJgkn9Z9aLZUBxFxfJevXql1/KPHz82UyREREREREQ5h9W04AgLC1M5/eLFi/juu+8gk8kwYMAA+Pv7w9vbGwDw7NkzHDt2DMuXL4cgCFixYgVq1aplybApizp27BgSEhLw4cMHuLm5SR0OERERERERaWE1CQ4fH59M00JDQ9G/f38ULVoUR44cgYeHh9L8smXLwt/fH99//z0aN26Mfv364cqVK5YKOUdIS0tDhw4dcPXqVbRq1QpLliyRNJ6kpCSkpaUhd+7cGpc7f/48HB0dIZPJsG7dOssER0RERERERAazmi4qqvz888+Ijo7GqlWrMiU3FBUqVAirVq3C+/fvMWPGDAtGaP3CwsKwa9cuPHr0CEuXLpW0FkhwcDDc3d3h6uqKf/75R6d1BEHAhQsXzByZ6V29ehWtW7fG/PnzpQ6FiIiIiIjIIqw6wXHkyBE4OzujTp06WpetU6cOnJ2dceTIEQtElnMoFgWV2uXLlxETE4OkpCScPXtW6nDMasGCBfjnn38watQoqykwS0REREREpIlVJzhev36t18VdWloaXr9+bcaILC8gIAAVKlQwa22ROXPmwNvbGzVr1sTz5891Xi8hIYEX32YSFxcndQiUTXXo0AHlypVTO7wxEREREVFWZdUJjkKFCiEhIQHHjh3TuuyxY8cQHx+PggULWiAyy7HEKCqrV6/Gs2fPEBQUhJMnT+q0Tt++feHo6IjixYsjKirKbLFZo6lTp0odAlmp1NRU7NixA3fv3s103hQEAcePH8ejR4+kCY6IiIiISAurTnC0aNECgiCgT58+uHfvntrl7t+/j759+0Imk6FFixYWjNA6KHZD0bVLyqFDhwAAT58+xe3bt80SlzVKTk42a+uMlStX4vPPP0dgYKDZ9kHZQ8Yhs48fPw5/f3/UrVtXooiIiIiIiDSzmlFUVJkyZQq2b9+OJ0+eoGrVqujYsSP8/f1RpEgRAOnDxB4/fhzbtm0ThwOdPHmyxFETqaeYQKpUqRJu3rxp0u1/9913AIAxY8YgKCjIpNum7E0+wtTLly8ljoSIiIiISDWrTnB4eXnhyJEjaNeuHcLDw7Fx40Zs3Lgx03KCIMDb2xu7du0Skx+UvQQGBmL16tWoXLkyfvzxR6nD0UtiYiKmTJmi93p2dub7+lpbLRoiIiIiIrJ+Vt1FBQBq1KiBW7duYfbs2ahWrRpsbW0hCAIEQYCNjQ2qVauG2bNn49atW/j000+lDpcMNGHCBGzZsgUTJkxAWFiY1OHobfr06YiJiZE6DCIiIiIiomzLqltwyDk7O2PMmDEYM2YMkpOT8e7dOwBA/vz5kStXLomjI1NITExU+dj07PDggRvWrQMePgQiIoCkJCAtDShQAPDwANzdHQEUBvBCry1zRBkiIiIiIiLD5YgEh6JcuXLBw8ND6jAsJiAgAAEBAbx4NkJsrCvCwmoDOAKgPsaOddSyhieA5wBuA9gNYOPHx7o7f/48KlSooNOyc+bMQcGCBeHn56fXPoiIiIiIiKyJ1XdRUSQIAt68eYMnT55IHYrFWGKYWOskA9AMwF6sXz8DBw60BNAYgLbkhqIKAH4EcAvAMQAtdV5z+fLlOi975coV+Pv7Zxr1goiIiIiIKCfJES04rly5ghkzZuDo0aOIi4uDTCZDSkqKOD8yMhLjxo2DTCbDr7/+ijx58kgYLUnLDkB3AOMAlFYx/zE++0yG9u2LoWRJICHhPnbu3IgKFSrA378TwsOB48ejsHLlLQD18F8O0e/jv3MARgE4rzEKQ7pOpaWlwcYmR+UsiYiIiIiIRFZ/NfTnn3+iXr162L17N2JjY8UCo4rc3NwQGhqKVatWYc+ePRJFStKywYsXfkjvSrIGiskNZ+d3+PzzkwCqACiOMmWmo1ChzfjiiwRs3z4RW7ZMw+TJnVGhQiS++QYYO/YdgIZIr8PxPYAQhf3UR3qSIwBAXr2jrFevnoGvj4iIiIiIyLpZdYLj9u3b6NevH5KTk/H999/j8uXLcHd3V7lsjx49IAgCDhw4YOEoSXr1AFxCcHDGVhuBANqia9cp8PM7DiAYALBmzRr873//w8qVK5GQkCAunbm46SsASwCUB9AO6V1V5AYhPZniq1ek8fHxei1PZIxXr15h06ZNiI2NlToUIiIiIiKtrDrBsWDBAiQlJWHw4MFYuHAhatSoAVtbW5XLfvHFFwCAoKAgS4ZIElq+fBeAtUhvUVFDYU4g0ltaNAawBzY2qmtbvH79Wo+97UZ6C5BhAOQXi94AjiK9ToeMNTQoy+nVqxe6dOmCqVOnSh0KEREREZFWVp3gOH78OGQyGcaOHat1WS8vL+TJkwfh4eEWiIykdv58aezfPw9AT4Wp1wD4Iz2xoblGhmHSACwGUAnpiQ0AsAXwM4C9WL16qxn2SWS4/fv3AwDWrl0rcSRERERERNpZdYLj+fPncHJygre3t07LOzo6KnU5IGXJyck4duwYTp48qVSkNatZvXq1hrleAP7ByZO9AeQHANjYvEd6l5GaAI5nWuO3337D06dPTRjhY6SP0DIJ6UkPAPgSwGkARUy4HyIiIiIiopzDqhMcDg4OSEpKylRUVJXExERERUUhX7585g8sm/rxxx/xxRdfwNfXF7Nnz5Y6HLXmz5+fqR6GIACnT5dGeh2ML8XpMtkm+PkNALAMQKrabZ49e9bEUaYBmAGgCYB3H6dVBXAB6S08zEMQBBw6dAjHj2dO5BAREREREWVnVp3g+OSTT5CcnIx79+5pXfbQoUNITU1FxYoVLRCZ5QQEBKBChQqoVauW0dt68uSJysdZUWrqf8mKuDgntGoFrF3bEEA+AECePJEA2sDOriccHKIliTHdMaQXOQ39+LwIgBOIjS2rdc3379/rvbfTp0+jefPm8Pf3x61bt7SvQATg3bt32hciIiIiIpKYVSc4WrZsCUEQsHDhQo3LxcTEYNy4cZDJZGjTpo1lgrOQwYMH4/bt27h06ZLUoUikKZYtG4iPpQQ+WodWrcYB2KvzVkJCQrQuk5iYiIYNG6JkyZJ6xngPQF2kt94AgAK4fXsxzmspAxIWFqbnfoCXL1+qfEykTUxMjNQhEBERERFpZNUJjuHDh8PV1RUrV67EpEmTEBUVpTQ/ISEBO3fuRO3atRESEgJPT0/0799fmmDJpI4ePQ1gHoBDiItzBgC4uMQjvXtKLzg4mH641du3bxvRleUN0rurnAYApKbmRdOmwJkzpoqOyDhxcXFSh0BEREREpJFVJzjc3d2xbds25M6dGzNnzoSHhwfevHkDIH3UFFdXV3Ts2BF3796Fs7Mztm/fDicnJ4mjpkmTJmHt2rU61U5RrQxOnJgJ4AdxSosWwPTpewDsV7uW9GIANId8hJXYWODLL4EXLwpLGpVceHg4qlatisaNGyM5OVnqcIiIiIiIiJRYdYIDABo3box///0Xvr6+SE5ORmpqKgRBQEREBFJSUiAIAnx9fXH+/HnUq1dP6nBzDE13g8+dO4fevXsbVCOiYsUFAK4AqPFxSiKaNTuAffsAF5cPBsVqWfEAWsPV9V8AQHQ0sHlzDwDlJI0KAE6cOIEbN24gMDAQd+/elTocIiIiIiIiJXZSB2AJlStXRmBgIB4/foyzZ8/i+fPnSE1NhaenJxo0aIBSpUpJHWKO0qVLF0RGRmpdLjpa9+KfKSl5AWzFrVudFKbeAfAN6tZtB5mshd5xZlS6dGncv3/f6O1o9wFly46Hvf1xnDkDxMc7ATgCoCHSh5hVb/fu3Zg/fz7OqOnbcvHiRZNEaHjrGiIiIiIiIvPIEQkOOR8fH/j4+EgdRo53+PBhk27vzBng7t2tABS7cqwAMAJAAoB2Jt2fJdjaJuKffwB/f+DKFQDwRnrXlQYAXqldb/DgwXj+/Lna+Rs2bDBxpERERERERFmD1XdRoexrwIABSEtLUztfEGwxdSrQqBGQnJye3MiT5wOA9gAGID25kd61wpARR6Tm6gocPAgUKPD645RSAP4GkEftOhEREVq26Wqy+CwlODgYq1atQmxsrNSh5ChspUNERERE2Y1VJzhsbW1ha2uLNm3a6DQCQOHChWFnl6MatWRpwcHBSEhIEJ8/efJEYW4x3LixCNOmAf/lQE7ihx/WA9iptJ2TJ0/ik08+0Xrxr6/4+Hjs3av7ULOGKFgQ6NJlHYCnH6fUAbAJ5v7qhoeH44cffkCtWrVw+fJlo7d39epV7N69GykpKXqv27BhQ/Tv3x9z5841Og5SbdOmTWjVqhUeP/6vC1Tnzp0ljIiIiIiISH9WneAQBAGCIGDfvn1o2LAhnj17ptM6lDU1aNAAqampADoBuI7o6CoAAFtbwNMzAIA/3NzU3+U3Vf0JuV27dpl0e+q4uEQDaAlAXpOkLYBfzb7fBQsW4PLly1izZo1R2/nw4QNq1KiBdu3aYceOHXqvL6/FEhwcbFQcpF6XLl2wb98+zJw5U+pQiIiIiIgMZtUJDgBwcnKCh4cHrl+/jtq1ayMoKEjqkKzCqlWr0L9/f+zfb7lhV5OScmH27LIAtgLIBwAoXhw4fRrw9FwNQH13FiC9AKcp6VMEFYCRLRCCkd71Rj486/cAhhuxPdXs7e0zTUtKSjJqm/Hx8eJjU7eiIdMKDw/XaTldWsQREREREVma1Sc48ubNiwsXLqBixYp48eIFGjVqhJ07d2pf0UoEBASgQoUKqFWrlsm3vWrVKvTr18/k21XtUwBXcORIEXFKwYJHcO0akHNG9z0KQPH9ng+gtfjs4sWLGmuW6MLDw8Oo9SlncHV1zVHnUSIiIiLKHqw+wQEARYsWxdmzZ9G0aVPEx8ejU6dOmD17ttRhWcTgwYNx+/ZtXLp0SZwmCOn/VElMTERwcLDOd9oV785nlJaWhlGjRukVb2YyAKMAnANQ5uO0GADdUbbsT8iGNTON9AeAqR8f2wDYCKASAKBVq1bShEQ5wvz588XHqampmDRpkoTREBERERFlliMSHADg4uKCffv24bvvvkNaWhomTJiAXr16GVT0MDuLjASqVgUqVQLevMk8v0GDBqhSpQoKFy6slBQxxLVr17Bnzx4jtlAYwCEAcwGkd51wc3sAoDqAPyGTGRVeNjYNwOaPj/MifWQVd0RGRkoXEuU4mpKbRERERERSyDEJDiB9VJVly5Zh3rx5kMlkWL9+PRo3bpyjLgynTPmA4GDg9m1g+PDETPNv3bolPg4JCTFqX8bVbugM4CaAJh+fpwGYhcjICgBCjYrLOvQBIB/dpASA7QBySRcOERERERGRxHJUgkNu5MiR2LFjBxwdHXH69GnUqVMH9+7dkzosi9i//7+RZA4csEzBRxcXFz2Wzg9gy8d/+T9OewagMYAf8V+RTev24sULDBgwANOnT1czsk8CgK8APP/4vBGApRaLj4iIiIiIKKvJkQkOAPjqq69w8uRJeHp6IjQ0FPXq1cP79++lDsvsUlKSFB5ntWRBS6S32uisMG0LgCoAjhu15TVr1uDXX80/tKqpPHr0CCtWrMCUKVNw584dNUs9R/qQsR8+Pu8PYEimpX788Uejh3olIiIiIiLK6nJsggMAatSogQsXLqBy5cqIjIzEhw8ftK9EJhcXZ4tnz6YC2If0uhsA8A7ANwC+/fg4s9OnT+tcDDV37twYPnw4RowYYXS8lqb5uLyE9O4qcgvxX7eedL/88gv69u2Lly9fmj44IiIiIiKiLMKqExzdu3dHp06dNC7j7e2Ns2fPokWLFhaKKusQhKxQpdMPPXpURWRke4Vp+5E+MshWrWtzJAcA2ARg5sfHtgD+AlA601Lz5s3D3bt3LRgXERERERGR5dhJHYA5rVu3TqflnJycsG/fPvMGk2WoGR/W4vIBmAegD168kE+LATASwGqNa7q6usLOzg5v377NUQViNZsIoCLS63LkQ/rIKnUARItLzJs3T4rAiIiIiIiILMKqW3CQKtImOAQBSExsDeAOFLtWODpeBlAV2pIbAODg4ICffvrJXCFmUwKArgCCPz4vh/ShZPkVJyIiIiKinIFXPzmO4kdu6S4qXmjf3gYxMb8D8Pw4LRqjRoWiRIneAMIsHI+1iUV6C463H5+3xH9dVwz3+++/o0iRIkpDCBPJXb16FdOmTWNrKiIiIiKSnNV0UZk+fToAwN3dHYMGDVKapq/JkyebLK6sJiUlt/g4LS2Xybd/8+ZN1KtXDwkJCWjdujUAQBBsAAwEMAt//62YVNkDYDDatfsLBw9mla4z6iUlJWlfSHJhADoAOIL0r/dYpLfq2GjUVp8/f46TJ08aHR1Zn7Zt2+LJkyeIjY3F3LlzpQ6HiIiIiHIwq0lwTJ06FTKZDGXLlhUTHPJp+rLuBEcehceO4uOYmBh8+PABgmBcomHXrl0ICQkBALx69QpAXcTFLUd695N0MtkrCMJgANuN2pel6fveLFiwAOPHj0diYqKZIlLnBIBhAAI+Pl8N4B7SR1whMq0nT54AAM6cOSNxJEREZE6nTp1CmTJl4OnpqX1hIiKJWE2C4/PPP4dMJkOxYsUyTaP/KLbgkCc4Dh48iNatWyMlJcXo7aelpX18VBCRkQsAfANxEoAePdKwd28DvHv3wOh9ZXWVK1fGnDlzMHz4cJ3X8fHxwePHj02w998AVAHwHYDcAHYBqAXghaaViIiIiDI5evQomjRJH4be2JthRETmZDUJjhMnTug0LadTbLWRmpoHqanAxYsXTZLcAABBsAUwGMAMfPiQT2HOdQCDsWbNSXh6RplkX9bI398fa9euNdHWhgIoD+BzAEWQnuRoBEB1i5L4+HiEh4er3dqHDx9MFBcRERFlJ0eOHJE6hCwvMDAQxYoVQ+nSpaUOhShHY5HRHEYQ7JWex8SYcut+uH9/E4ClSB+qFACikDv3aACfAjir85ZMd5GfkyUjvR6HvEVIHQAr1S6tbajka9eumSgu7V6/fs07RERERJQtXLt2DY0bN0aZMmWkDoUox2OCw8oFBASgQoUKqFWrlsr50dHG7yMpqSSAvQCOAagmTs+dewuAsrC3XwkgVa9tlihRAgULFjQ+OCuwf/9+I9Z+jfSRVeI+Pu8OYKQ498mTJ1i5ciWePXuGhIQEI/ZjvKSkJNSvXx8ymQyFChVC//79lebv2rULUVFR0gRHREREpMbVq1elDoEoS9m/fz++/fZbSX67M8Fh5QYPHozbt2/j0iXVBSaNS3AUQnz8fISH7wPQSmH6FQD14eo6HMArY3agkimy4+bobjFlyhSTb9M0rgPoofD8FwDNAABff/01vvvuO3zzzTdSBKbk/v37OH/+vPh89erVmZbhDwgiIiIyp8TERLRv3x4rV6pv9UpEmn355ZfYsmWLJIN3WE0NDkOHhFXFmkdRyciwBIczgOEAxiApKa/C9KcAfkTx4mfx6NFDAB7GB6jC4cOHsW7dOqO2sX17+gguaYoVUI0UFBRksm2Z3g4A0wBMAWALYAvCw0PEmM+cOYN+/fpJGJ/1+fDhA/bs2YM6deqgePHiUodDREQkmdTUVNy7dw/lypWz2AAACQkJyJ07t977W716NXbu3ImdO3eKrUnnzZsHV1dX/lYiySQlJSEoKAi1atWCnV32uYR/9uyZxfeZfd4dLQwdElYVJjhUS0mxB/ADgHEA3MXpMlksBGEmgIUAEiCTlTBpjBnlyZNH+0I6klcENwUbGxuTJkxMbxqAygC+BpAP48dXAOAK4L2kUQHA8uXLsXfvXqnDMKlFixZh3LhxKFeuHO7cuSN1OERERJLp1q0bNm/ejIULF2LYsGFm39+zZ8/g7e2N5s2b48CBA3qtm7FJfVhYGEaPHg0ATHBQJmvXrkVSUhK+++47s+6nV69e2LRpE8aMGYM5c+aYdV9ywcHB8PDwQKFChSyyP1OxmgQHh4Q1jC4JjsREYPVqYP/+RQDyK8xJgb39ehQuvAKPH18Up9rYZN2eT7ly5VJ6Pn/+fPGPlvUTkF6DoxSAKnjxwgXAZgCt4OEhXb2TyMhIDBw4ULL9m8vx48cBACEhIRJHQkREJK3NmzcDAH7++WeLJDg2btwIADh48KDR24o2RcE6skofPnxA7969AQDt27eHu7u7ljX0s3TpUuzevRt79uzBpk2bAAC//PKLRRIcd+7cQZUqVQBkv6GhrSbBwSFhDaPpnJ2cbIOVK4GffwaePAH+S26kIf3CeCocHd/Azq6AuE79+vVRt25dLFiwQOcYfvjhB9y8edOA6PXXu3dv/PLLLxbZV9YUh/Sio5eQ3gqnBYDZ+OSTXZJFlJioethaudy5c3OIWiIiIpLcV199hYYNG5r05lhycjJ+/PFHNG3a1KQti0l/kZGRCAkJQd26dTFhwgTs2rUL//77L1xdXVUun5KSIj6Oj483eTxDhw4FkD5ohKkkJiZiw4YNaNq0KYoWLap2ubNndR/9MqvJurfaySJUJzgcAQzDqFFt8d138uSG3A4AVQB0BfBAaa1z587h7NmzKFeunF4x/Pvvv3otb4yyZcviiy++0Hn5GjVqmDEa4xjeVecRgA6wsZGPbDMar183NyqW+Ph4vH792qhtqOPo6GiW7RLpKzU1FVu3bkV4eLjUoRDlSJMmTbLI3X8idf7++2+MGTPGpNtcv3495s2bhxYtWph0u1KLjY3NNG3jxo3o3r07kpKSJIjoPx8+fECnTp3wxx9/KE0vX7486tevj7///huzZs1CSEgIli1bJlGU/4mLi9O+ENJbWmhLtMyYMQN9+/ZF+fLlTREa3r17h0OHDiE19b8RM2/cuGGSbRuKCY4cTjnB4QpgAoDHABYiMtJJnNOiBdC48TgAHQDcEqdHRUUhNDTUIrGSsgkTJqjNKGt3Eo0a7RSfhYaORWioYc3qPnz4gJIlS8LDwwNnzpwxMB7TEgQBp06dwq1bt7QvTDpg9z8gvVbMN998g5IlS0odClGOk5aWhhkzZmDx4sUICwuTOpwcx1TdwLNbU3ddGfO65L9V5BeIiYmJGDp0qN61QzQJDg7GwIED8eLFC5NtU5OZM2cib968+Ouvv5Smd+3aFX/++SfWrFljkTjU+e2337Bt2zb07NlTafrLly8BALt37xanKV64Z3U9evSAk5MTbt++DQC4e/cu9u3bp7TM4cOHAeieNNGmZs2aaN68OX777TcAQEREBKpWraq0jKn2pSsmOHK46Gjg/XsXALMBPAEwA4oFRNu2BS5cAPbvB/Ln5w8KKZUqVQoeHv+NTDNkyBBERUVh4sSJBm2vSpWzANKz0oLggMWLfQF46bWN5ORknDp1ChERERAEwaCuRvqOiBMTE4Pg4GCNPyYuXLiARo0aoVKlShY/qWpy4MABVKxYEdu2bZM6FD3MBvABQCCAfEpzFJtmJiQkWDIoSRw5cgRA+nFPlBXMmTMHPj4+OaJVkeI5X+q7v0B6wmXlypUW62JLOcdvv/2GpUuXomXLlnqv++HDB6xbtw7Pnz9Xml6lShUsX74cXbp0MVWYGk2YMAEAxFFoMnrz5o1F4lDn7du3GufrkrDau3cvKlasmGn6sWPHMGDAAJUtWAyl62ihf/75JwCIpQLKlSuHVq1a4fz58yaLJSN5wnnHjh0AgOvXryvNf/HiBby89Lu+MJbV1ODQ5ty5czhz5gyePn2KuLg4tQeuTCaTPKtoSRs2AG/ffg/lXFcqgM2YOdMV48e3Vruug4OD1voJZDotWrRAdHR0puZ0xhkGoAKARoiKcgSwB0AjALr1I2zVqpWYCQaAgQMHwt7eXiy4pIvx48frEzDq1auHW7duYe3atZky73KKdyiio6Ph5OSkcjlL++677xAeHo4uXbqgY8eOFtlnREQErl69iiZNmhgwrFhbAGM/PvYHMAvAfwVhFYf+un79OkaMGIFff/3VuICJSGfjxo0DAPz444/iD9uMDh8+jH379uGXX36Bg4ODJcOzan/++ac4aoK1tkogaTxR7hueyaxZs2BnZ6eyDshvv/2GH374AS1btsx05x4Arl27ZqowjXLr1i28efNG56KcgiBkucEk2rRpo3K6vCt8vnz5MHv2bEuGJMp4Trpy5Qrq1q0ryXtozuSKOlbfguP+/fuoVasWPvvsM4wfPx4BAQFYt24d1q1bhz/++EPpn3x6TvL6NZCWJj8MEgEsB1AaQDd4e0dpXDcr16fIrjQV+zGPZAAd4OAgTwjURHoBWd1ODYrJDbmxY8eqWFI1Q34UyptyykcpyU7kd1kt2QKgdevWaNmyJVatWmXA2kMyPO+C9Bo9qi1cuNCAfWQfWe3HFZGcqibUL168QHx8PJo1a4bFixdj0aJFZo/jwoUL2LVLuqLVlnT58mWpQ9DZmjVr0KlTpxx7U8rYGmFZ6dz/+vVr/PjjjxgzZozKFqqjRo0CAOzfv98i8Ria3Nu6dSsKFtRtBL9z586hUKFC4igiUhAEAZGRkXqtk7ErnTmKkOoqPj4eFSpUwIABA5Sm6/ua5D58+IDdu3dn2RGGrDrB8fbtW/j7+yMoKAiFChVCx44dIQgCcufOja5du+KLL76As7MzBEFAgQIF0KNHD3Tv3l3qsC3OySkWwFQAPki/O8uuKIZQbK5vqBo1aqBYsWImiEYfb1Cu3CjY2clPvG0ALDR4a+/fv9d52eDgYIP3Q7qR/whXdSdHM3cAvhmm5QXQTONaZcuWtVgfX0vLSj9yiTQJDw+Hl5cXvL29xWmPHz82+37r1q2Lr7/+Gnfu3DH7vrKSqKgo7NixI0uN+HXv3j1s2bIFgiCgb9++2LZtG1avXi11WJK0dsl44yUyMhKTJk0Sh3FPSkpCt27dsH79epPv25QXtdHR0Zg1a5b4POPvzmvXrln0/Y2OjkbJkiXx/fffm3U/DRo0wJs3b5S61+jyXYuJicHixYsN6sKX8X385ptvkD9/foMHRnB0dISTk5PFkjQZ4x8zZgxCQkKwYsUKpemlS5fGqVOnVCbL/vnnH7XbHzlyJNq1a4d27dqZJmATs+oEx8KFC/Hs2TPUqVMHoaGh2LJlCwDA1dUV69evx+HDh/H8+XOMHj0ab968QZ48ebB27VqJo7aUEfDwOIe1a4ERIxYBmAbgpWTRmLoidXYmH3Pakhwdw+Dq2gvpLToAYCjSu68YJzU1VWPLAan7YJImnwOw/fj4dobp6t27d0+nP+Bv377F9OnTmeQiMoNjx44B0P3uXEpKCgICAsTCdMZ69OiRSbaTXYwaNQodOnQQ+71nBWXLlsW3336LnTv/Kyhu6N3a7C7jb40hQ4ZgxowZqFChAoD0WmAbNmxAjx49TLrfw4cPw8nJCVOmTDHJ9oYOHaq2G2haWhqqV69u0HYfPnyIiRMn6t3S5ffff0dYWBiWLFli0H51kbGeA5A+mlKePHlw6tQpAMD333+PESNGZFpu+PDhGDZsGOrUqWN0HPJiqfXq1TNoyFZ5nTJT1UDx9/fX+H0WBEGn4+7t27do1KiRUjIcSG9pvGfPHrXryUeWkf+tyWqsOsGxb98+yGQyzJw5U+1Qk05OTpgzZw6GDRuGFStWZLPif4ZIBfALgIWoUWMGevYEcuWSvjpwy5YtVRbqIcvJn/8qgH4KUxYgvQaD4U6fPi32ETeHR48eZak7ZtblM4XHswCkqZiumi4FAKdPn44pU6ZYrBaJKbAFB2mSnJxskpZ8Uli+fDmGDBmSpf8O698KzXLktdsU765nFRcuXJA6hCxHfhdefpdbW8FJQyQmJqJZs/QWj/ICkT///DM6duyIQ4cOGXSuUNUtWM6Ybjj16tXDzz//jK5du+q1ni6tRYwt9K6qiO+MGTMApCc23rx5gyVLlmDhwoWZWhAfPHgQAFS2KtU29KtiYvDvv/9WmjdkSMbuu/oJDw/HkCFDjOrmdvz4cfF9UEddYVJVLVqioqKUnmc8PmNiYsTH6j73rFD8Wc6qExyhoaGQyWT47DPlH+SqPgD5RdjKlSstEpt0quG/ooFEGf2B9NY8QPrpYSOA2gZvTZ/uKvrasWMHSpQogfr162tdNjU1FQcPHsTdu3fNFo+pXb58GbVq1UL9+vUtVqBJuR9/Q4XH/wCQ/8ioBsARSUlJRv1wlmf9tX0m//zzDy5dumTwfjRZvHgxfv/9d7NsOyvbsmULW86YWHJyMjw9PVGmTJksUXDy3r17ei1/8eJFM0ViOl999ZXUIWgl9WcvCAKuXr3KxH8W8NNPP2WaNnHiRGzfvh3NmzdXujg113GTlpaWaZqqfb169QpA+k0pU0tJSdH4+tasWSN2FTJ0+3K6Duf67t07la0fFEc9UXysz/lRl1ZwtWvXRkBAAGrVqqVy/suXL3VKgEVFRUEQBCxcuDBT8kvTe25IQs/FxQVTpkzBhw8fUL58eZXLSFFMVB2rTnAkJyfDzc1NaeQAR0dHpSyUnIeHB1xdXXHjxg1LhigBzZWZc7rAwECzdRHx8PDIMqN5aDYVgLwfqiOAvQBKKC0RHx+PSpUqqd1CdHQ0xowZg+XLl5spxv/uCly9elXrsnv27EGLFi1QpUqVTH/wTVF0be/evVi2bJnKHxOGGjlyJC5fvozz58/D19fXZNvVJDAw8OMjOwDy78EdAFEA5EkGWwCV8Pz5c3Tu3Nms8dy8eROtW7dG7dq1TfreAul3MIYNG4Y+ffroPJSbNbTgOHLkCL799ltJusJZs9DQULx79w5hYWGSX+Teu3cPM2fOlDQGXaWkpBj03ZbiuygIApYtW5ali4uuX78eNWrUgL+/v87rvH37Vu9jVtvfzdu3b6Nly5Yqk9Pa9hUaGqrTMXHixAkMHTpUpxYCly5dMri494oVKzINuapKxte1e/dujcvPnj3b6HpV2t7LEiVKaOx2IwgC5s+fb1QMuihevDhGjhypcl7fvn3VXjAb4smTJ5g4caLGz0xVXZS9e/cib968Ru9fsRWcuvNURESE+FielJEnK65fvw5PT0+dbt4JgoCTJ09ixIgRYmshOU0jLqpraREVFYVvvvkGc+fOVTl/+vTp6NGjh8YbU7/++mumFi9SsOoEh5eXV6aD2MPDAykpKXj48KHS9OTkZERHR5v1jjNlfR4eHkrPFZNj2obY9PLywuTJk9XOd3Z2tkiRN9PoC0A+SkkhAPsBFBDn3r59WxzNRJU9e/Zg7ty5YvNAqT148ABA+kld8YfT3Llz4eTkZNToAvHx8WjTpg0GDRpk0rsfoaGh4mPLN/srA8D+4+PrGf4HgKoWiUJxqDx1P+RevnyJn376SfyMdaX4t0HXH77WkOBQ1Z9ZKvv27cOoUaOyZbeOo0ePwsfHB0eOHJE6lExOnjwpdQg6XTCnpKSgYsWKqFmzpuRJIV3s3bsXgwYNQosWLaQORS15zSvFO6mK723G9/nQoUNwd3dH3759tW5bcXSc4sWLa1y2efPmOHDgAGrX1q8F6F9//YVSpUph4sSJANKTBN26dVOZxPDz88PSpUt1SuZFRESgadOmesUiN2DAALN85omJifDy8tL6910QBAQHBxuUoHny5InGwqkHDhwQR10B/vsbZ+rv45MnTyw2hHyTJk3w888/o23btnqtN3ToUKP3re5901SnonDhwqhevTrc3NzQtm1b8fO6dOmS1s9BEASTXle4ublh69atGDNmDCZMmKByGXktEnVGjhyJ3377zWQxGcqqExw+Pj748OEDnj59Kk6TNwfasGGD0rLr1q1DWloaihQpYtEYKWsbOXIk/Pz8MG7cOBQoUED7CloUKFAA5cqVM0Fk5pYM4Guk370HgHJIT3Job4Hi4uIiFlPKaPjw4RYdIlWbMWPGIDU1FcOHDzd4G4p3sjL2YczKBEHQcJdM8e6+vFWb5RMcuhg7diwmT56Mnj17Sh2KSV27dg179+6VOgyzatWqFebPn6/xTpM5CYKAAwcOiHf61qxZo3PBtCZNmuDJkycGXzQZ6sGDByhZsmSmSvjGkmL4wkePHuHevXu4evWq3i3ppEiIyFtumKo49oMHD7Bnz55MryU6Ohq1a9fGnDlzTLIfTeRFCDV11Xvw4AFSUlKUuj0p3oFWxZBRK4D/RjuR1zJp164dNmzYgHnz5iktp/gbQ/FmgCYnTpzAjh07Mk1fv369yYrralKtWjWV02NjYzUmz1etWoUqVaqYZbSKjDd7gfRuo0WLFkVAQACuX7+O5s2bIygoKNNyqampkidTr1+/jkmTJilNkx+nly5dUtmKw5Lnjq1bt2LRokX44osv1C7z+vVrXLt2DUDmWh/a/r6sW7fObJ+BpRJS5mLVCQ557Y0TJ06I07p16wZBEDBjxgwMHjwYq1atwpAhQzBkyBDIZDK9M35k3Zo3b45jx45lycJh5hcFoAUA+R+I2gB24r87+6ppq1ZtrnoK1sYUrcnU9UdNS0tDnTp1ULp0aTV3dyorPJbXalDsvqdbgmPs2LFo06aNWfuDywuBnT171mz7kLNkC47q1aujTZs2OaDbpOEXQ8batm0bWrZsiSJFiuDy5cvo27evxh+iWcGQIUPw8OFDDBgwwGTbfPHihcoLP3NzdnYWHxtzvlu/fj2KFi2apVonqRMSEoIqVapg+/btKF26NNq2bYtDhw4pLbN06VJcunTJrAW6dfXXX3+hdOnSaN26tdZlnz59isOHD2u9gHz37p3a+k3qEl0ZEypeXl7i47CwMJQvX14s9KqJvLWH4rm8R48emW56moM+x6fia1m4cCEA0xfZPXfuXKZWCzKZDAMHDsSzZ88wZMgQ+Pr64tChQ6hbt26m9WfNmqVxlA1VdG2td+7cORw4cECnZRWHPtZ27L18+RI+Pj4aW1vrSlVSUFUJBGNuoB09elTrMjln9E/9WHWCo2PHjihWrJhCv3Lgyy+/xDfffIOUlBQsX74cAwYMwLJly5CcnIxy5cqZ5KCnnOHdu3dSh2ABjwE0BSAvxtQUwB9IS1N/oaftIjA7NkeXgrGVx4H07L4qb9++xaVLl/Dw4UM1/XNVteCIQvrxACgnQFRLS0vDL7/8gr1792q9K66qSjqlM6b4mirW0M3GVBS7l2SX7oPm6K62ceNGo9Y/evQo9u/fr/d6tra24mNjauz06NEDT58+1Xv4xf3798PDw8Oidyq7du2K4OBgpdGjMl7sS1kg9PDhw/j555/FC0V5901dupsWLVoUzZo10+nCVNUFs65evXql1Fry4sWLCAkJ0ambjSXp2lKgcePG4h18OcUL5Tt37oiPM/5+MqY1QoMGDTJNS01NVToe5e9zxv2Gh4erHIXk9u3bGn8ba6pD9+rVK7x//x5z5sxBgwYN0LJlSzx79sxkowCdPXsWnp6eCA8PV5kU0LcFbp8+fTJNs3SLPlJPc1GBbK5ixYoICwvLNH3jxo3w8/PD1q1bER4eDldXVzRv3hw//PADXF1dJYiUcuXKJXUIpNYtAK0AHEF60dFvsGnTHc2r5GBTpkzBmjVrdC5caU6G3/GRJzjeQ7kw8U0APgBcAXgDeApdaGt+XrlyZezatSvLt6BTTA5ERETA09NTwmiITMOY5EJiYiKaNGkCQDnpL0UXEn26Pz558gRffvklgPSuqCNGjNB7f4a8RlV3eM1NnzjlhQorVqxo8Pn4+PHjmabpO6pPRvLX8OzZM3h7exu1LW0OHDigtpttRnfu3EFISIhR3Ud0KZQul7F7VEpKCl68eIHChQvrvA1Nx4MuybUNGzagW7dumabfvHkTlStXho2NTaZWSXKaErTPnj3DvHnzsGnTJnFaREQElixZojUmuU8//VTtvIYNG6qdN3z4cJO0mjW2aKyx9K1FZs2sOsGhjkwmQ79+/dCvXz+pQ8nSzP2HePr06fj3339RokQJvQtRkaWdA9ARwB4Adjh2rDyAyQBUj7GtTXR0NPbs2SNJa46TJ0/if//7H7p3726W7asbd9xUUlJS8MMPP6BYsWL44YcfzLAHVwDFPj7OOJToTQBffnxcCeoSHNHR0Xrv9c8//8zyCQ5FhQsXRmhoKD755BODt7FgwQKEhoZiyZIlsLFR3aDS1BeKbMFhevfv35c6BIMkJycjMDBQr7/1iYmJ2LhxI5o0aYKiRYsqXbAY8r23hLS0NMhkMqVj31wtdrL690vX84kp35/ExESULVs20/SgoCA8f/5cbfcXVa2CFFtkm0vLli11XrZChQoALBOXKoUKFQIAzJkzR+NoKaY0bdo0ldPl70FaWpqY9NRXxuSYqnOKptHbDD1ujSk0b2q6JtdU4bXUf6y6i4o1ateuHdzc3NChQwez72vw4MEaqy8bq3379ti3bx+WLl2qcoQSUwzXRKa0H0AvhefTABhWdXr06NHo3r07evfurXE5VeOUa5OSkoLFixeLzzM28f/111/x6tWrTEXLsot///0XixcvxqhRo8zUSkSx+0nG+g+KXUkqQp3Zs2ebMqAsI+PFi7GjBP3www/47bff8O+//xq1nazs+fPn2L59u8a764YmcdatWwdvb2/J6/oMGzbMYvsy5sZDxvd58uTJaNGiBWbMmJFp2WvXruHbb7/NlLyZMWMG+vTpI/kww/LvorbvTkpKCqpXrw47OzuNhTT1dfDgQZXn39jYWOzYsQPe3t5m7/ry8uVL/Pbbb1l+9D91x2zNmjXRpk0bNGjQQGULD3kLG1O6cuUKihYtqnNhUl2pKsJpqG+//VbvdcaOHWux0dYs2UpAVW0gbaN4ZHequv7oypDfzNaKCY5sZtiwYWZNOmSkrXBfzZo1AaSPnFG6dGmT7nv9+vUYM2YMVq5cadLtUjrDMtYbACg25V0MoL/eW1HVhFUVdXcKNDlx4oRSYWF/f3+lEQKMyY5nBYpNSM3TAkZTgkNxaOBKZth31rZ161al56b6QWnK1nKCIGSpITe7dOmCjh07KvV5vnPnDr755hujt92rVy88e/bMoO4FpqQ4JKcpRUVF4cSJE0pdSBT74ytS/Mx1bUWgWJxPUXJyMnr06IEtW7Zg8ODBSvPkTc+19Vc/d+6cTjHIGXrM1qtXT+P8Gzdu4MaNG0hLS0OfPn0QHJyxVZphWrRooXb0nw4dOuDZs2cYOXKkQdvW9fNr0qQJBg8enCVaI2s6HrT9HT937hwaNWqkcRlTntMUR1Y0pYwxGhrzli1bDFpP29C95maKBGLGC3R9i5gSyeWYLirnzp3DjRs3EBkZqbWfZlYuNOrr66t08WYuffr0wZo1a3D27FkkJibCwcFB5XLnz5/H06dPUbBgQY3FgwzRoEEDNGjQADExMejfX/+LaDKXhWjdugf27q328fkKAIkATD/UY8bCW7pQdbEoRb9nQ125ckXlBdOVK1dQo0YNpWkvXrxAvnz59N6H5gKmindmM14M3AGQhvTceM5LcGRkquboy5cvF/u+G0MQBDRs2BDx8fG4dOmSypZxlm5CL/97tXXrVvE8PnDgQJMObffs2TOTbSsrqVWrFh48eIBVq1ZZtICii4uLmEhVLMSqj5kzZ+Lnn3/WuIwU3TmeP3+OypW1F0lWxVyJQ/mQ3Z06dULp0qVhb695pDI5ebJG20WgJRKeT548UTtv6dKlWtePiIjA27dvs1RyNrvRVEtHn/o0hjJ2xK/Ro0dnqgFirmQUWT+rT3AcOHAAgwYN0njyzchcCY5Tp05h7ty5CAoKwosXL1QW1QsICMDcuXMRERGBqlWrYsmSJZL0qZJXN7916xa++eYb7Nq1S+VydnZ2kmeNybTs7e213plu2/Yq9u49DGDMxym/A0gCsNmksQQHB+eQ0Wr+4+/vr7LJ8aeffprpc+nZs6feFcZTUlJQrlw5DUsoJjgyjm7yAcADAGUAVAAgA5D9f5AKgoC3b9+iQIECeq1nqgu03bt3q52nzw/+9+/fi3fOw8PDUaJECb3imDNnDsqUKWNUwTxdmDK5ARh+AWeui6mWLVuifv36Rv+WkDcF37p1K7p27YrcuXObIjytpBzFI6OdO3ciNDQUo0ePljoUg8THx8PR0VHjMmlpafj333/F5vim/g16+fJlk25P7scff8SMGTMy1Q8y9IaCu7u7KcICkJ7EHzt2rMm2p8379+/h5uZmsf3pq1OnTuLj6Ohota2PNBk5ciQWLFhgyrCUSFXHhKyTVXdROXbsGNq0aYPHjx9DEASULFkS9evXx+eff67xn7nExcWhatWqCAgIUDl/69atGDlyJKZMmYIrV66gatWqaNasGV69emW2mNRRTLyYuq+ivvLkySP+4VNVqMqaGHI33tR0Ge8+/bpuLAB5NxcbAOsBfG3SWKRIbnz48EGvCx9j71pkpKk/dca7MBcvXtR7+3FxcRpGNZHhv5YZYQBUFQ2UJz0cAeh3AZ1VDRkyBIUKFTL4bnVWpC75om76uXPnMG7cOHz9tWm/wznRoUOHMGXKFJNt7+jRo3BxcVE7MoGUTJkkCgkJweDBg5Xu2rZv3x5jxowx2VCRctpGdjKVjM32VX3/fvrpJ6Xktb6JU23rnjp1Snxsys9r1qxZKrtTrFixwmT7MNSkSZMsuj9VrZWyUmsUxSS6IAjo2bOn3tv49ddfs3wRXSI5q05wTJs2DampqWIzz3v37uH06dM4fvy4xn/mIi/mpe7u2IIFC9CvXz/06tULFSpUwPLly+Ho6GhQv7bExERER0cr/dNHxYoVcfToUb33q+jly5dGrS9nZ2eHkJAQnDp1yqALuuygYsWKWLduHT777DOpQ9HTcADLPz62A7AFL19m3yrOZ86cQf78+fUq4jtkyBAzRmRpPgBcPj5W11fdPHU4du7cabJt6Wvz5s1IS0vDrFmz9FrPmn7sRURESLZvS14IJCUl4fjx41mqlYIukpOT8f3330sdhka6fh+Cg4Px1VdfZUoO165dG7/99hvat2+faR1T/Z6QM3SUB30ZMmykIecVXbtzCoKAP/74A8OGDTNqeGA5Q+tF6Evfc4S5C7zqImOBcyKyHKtOcFy5cgUymQybNm0yaig/S0hKSkJQUBAaN24sTrOxsUHjxo0NKmA2a9YsuLq6iv+KFi1qynA1MnUtDgAoUKAAPvvsM7i4uGhfOBvq168fevTooXaoSKl89913OlzsDwIgLyCYC0FBP+LKlex5Z3/Dhg1ISEjQerEdGRmJixcvQhAE3LyZsRuHalnx7mtmmgqMyuk2koohwsPDTbo9fenbT9kSCVdTXvwnJSWpLchpTckaTUaOHAl/f3/06tUr273md+/eZemYHz16pNNyjRo1wt9//40vvvhCabq8a4MpR6TQ1Zs3b9TOs0T9AkWK3/l9+/Ypzdu6dSvmzJmTaR1dW9oePnwYPXv2xOLFi3H48GGjW8bs3bvXqPWtiWLrS2utC0SUXWStqykTy5UrF/LmzYuSJUtKHYpWb968QWpqKjw8PJSme3h4KN1Za9y4MTp27Ij9+/fD29tbbfJj/PjxeP/+vfjPkhcOX331FerUqWOx/ZHUBAB9kT7CCiAIdli16gsA+g91JjVd72h9/vnnqFOnDjZt2qTztrNHoVxNBUblFBMcpi00OnToUKURb8zh+fPnKFWqlElG3tiwYYNBd2gBw+7sZpScnIwjR47o3Of9zz//NHqfhjp27Jhey6elpZmle6a8i2jGO8/mbkUSGxuLdu3a6XXOMDVzJ0fUDW954cIFVK9eXSw4a66hDAVBwLx58zQO36yuHluvXr2UnkdGRmLDhg3o1q0bHBwczN5Vt3PnzuJjxVFHWrVqJT5OTU3FN998g3HjxuHKlStK6+t6/Cr+ZpSi+7M1GzVqlPjY29tbwkiIyKoTHOXLl0dCQkK2a4qqydGjR/H69WvEx8fj6dOnaodIc3BwgIuLi9I/S3FycsKECRMstj+yvIcPH2aYkgagB+QtOdLSbJCe8OgFayRvtaFPUSx9Ch1LRzHBoa4Fx30A8jua+iU4nj17hnXr1iE2Nlbl/D179hhU/EyT+Ph4pTvLf/zxB0JDQ3HgwAGTbD8sLMyg9bQNb6mLxYsXo2nTpmI3KW0XOZoSIVmpZUB0dDRsbW3h4eGBX375JUv1ZTfU3LlzsXv3bnTp0sWo7ejyOZnzs9S07efPn6uc7ufnh2vXrsHPz0/tuvp+xhMmTMi0zv379zF69Gi0aNFC7Xrqktj//vuv0vM2bdqgW7du2LBhg5g4MedxqC3ZIAgCKlX673ybscWJKbqbPH782OhtmEtWPAcY+10mIvOx6gTHgAEDkJycjA0bNkgdilbu7u6wtbXN1M/05cuX8PT0lCgqItVU97tNA9AHxYrt//jcBumjqwywWFzZialHkjANeReVD0hPZKiSDODux8dloc9gXN26dUOvXr00Dh95/766/RqmcePGKFGihNjs3VLFBbXR9WJC0w/7efPmAQDWr1+faZ6qC1FN28pKCQ7F42Ps2LHi6BIAkJCQgOnTpyt1DzL04sdUF3S67P/t27cm2ZcustLFoCAISEhI0Gud1NRUDBo0SKnVT8bXtH37dp3qhGVcTyaTYfXq1RrXOX36NM6cOZNpurZhb80pJSVFY00HU3zmgwYNMnob5rJ69Wp8++23eP36tdShiKRsjUVEmll1gqNbt27o3r07hg8fbrFCSIayt7fHp59+qnRHOC0tDYGBgUbd6QsICECFChVQq1YtU4RJBAAahisUUKnSb/D3V+zesAzASAtEpV5WLE67atUqvdcxbyuQ3Egf/hUAbgNI1bCsvJuKA4BSOu9BXsR582bTDiesibxJ9p49eyy2T3M4cuRIpjoumi5q9L3gMTTB8eHDB8yZMydTk3ljZEz0Kw5TvnLlSkyZMgVt2rQxej/aRs358OEDgoODLZYwSE5O1prgU/ycFFsPbdmyBf7+/mpbRxkjNVX1uWDNmjWZakRkpOsoUxnf42XLlinV6FAc2U1Ol25eX375pdLz0NBQ9OvXT+M65hhNLzY2FvPnz1fR+lG7WbNmZRpdS3FkFAAGde3LWHx+//79mZZR99lnZIminlu2bFHqBkJEpI5VJzgAYN26dRg1ahS6dOmCEiVKoGPHjujdu7faf3369DFbLLGxsbh27ZpY7TosLAzXrl0TL1pGjhyJVatW4Y8//sCdO3cwcOBAxMXFZeobqo/Bgwfj9u3buHTpkileAllYwYIFpQ5BbzIZ0KnTeQCKI1LMBzBbooig8m6cJam6e2tIk2LFvtna9lelShWlC0NBEHD27FkNQ++WB2D78bG2ixLzjKQiNUO6M5r74nfBggX48OEDmjZtiubNm+tcb0MVc8S6cuVKjBs3Dm3btsWzZ8/Qs2dPDBkyBNWrV8eDBw8MiitjNyXF+fKiiKYeVUMxcbB9+3YAQO/evVGlShWtF/GmMnDgQJQpU0blhSaQuVtCxjvux48fx6JFi6ArY1vt9O3bF//73/80LqPrd8pchdAzHifqhjDVVGQUAJYvX65xvjZjx47FqFGjDCpY+uOPP2b6LZAxHnl9E30MHTpU6zK6FCH97bffsG7dOr33T0RkLrq3Lc6mVq1ahYULFwJIb46qrkmqTCaDIAiQyWRYs2aNWWK5fPmyUh/UkSPT72r36NED69atQ+fOnfH69WtMnjwZERERqFatGg4ePJip8CjlHHXq1ME///wjdRh6S//d/COABADTP04dC8ADKSnmawofHh6OqKgog9c3ZEhmXQwbNswk29G1+8ahQ4cQHKxcJHT//v3Yv38/ypYtq2YtXQqMymUcSWV7piWMaTFx9epVBAQEKPU5t4TLly9bdH+6CAoKUrpIjImJQd68eXVePzQ0FCdOnEDXrl117qIi/1uoi3PnzgFI/+517dpV6UJr6tSpOscppykpYqmWFB07doQgCGJLoyVLligVezQX+W+PX375BS1bttS6vKpimhMnThR/W2SUFbqupKSkWGQ/3333ncrCzhlbQig6c+YMGjZsaJZ4DElAaJIxaW6KGhyGGjx4sGT7JiJSxaoTHHv27MF3330HIL3wZb169eDh4QE7O2letq+vr9YfGEOGDBELxhFlBcYV6f0JwGsAAUhvMNYT48a9wv37T00Sm6KrV6+iRo0aBq+fkJCgc3NcfW3cuNEs21VH0+u4e/eumjm6DBErp30kla+//lrLNlQ7ffq0RZo7Z1f6dkvp1KkTrly5ovV7rJjQ+OOPP9CzZ0+9Y7tz547Sc0OGSlTXxWLdunUYO3YsXF1d9d6msUydGOjcuTM2bdoEW1tblfONvVhdsGCBUeubyueff56pbkWxYsUssu+VK1di5cqVeq3z2WefZYkkkCFMHffw4cPRvHlzk27TEhITE2FjY/WN04lIC6tOcPzyyy8AgObNm2Pr1q163fUiyknUDTcsCAL69u1rZCuS5UhPcmwE4IBLlwoBOAqgFQDTDRdobHHKbt26mSiS7KqqwmNtCY6HSG+dkwem7qKiqRXF+PHjYWdnh59++kntMomJiZDJZLC3tzdpXPo4efIkVq1ahdGjR6Nq1araV9BCXWsKXS5q5LUx9u/fr3EUC8V9TJgwwaAEh7kIgiB21VQ12oQ5atP06NHD5NuU++uvv/Dtt9+qrCuhjbHdSg4fPoynT5+id+/eRm1HF6dPn85Uz8IUwyOb09q1a6UOwSCCICA5OdmkxWzbtWtnsm1ZSqFChSzWSoiIsi6rTnPevHlT7HKSU5MbLDKa9Tk5OaFu3bpShyFS7Av97NkzeHl5mWCrOwA0ByAvalYfwHkAJU2wbdNQHKkhu0pMTDTix92nH/9/AUDzkIXpI+bI79aXQnqxUfXGjh2r9Pzx48d636V+9uwZZs+ejRkzZqgdUjExMRGlS5dGuXLlDOrrLnflyhWULVvWoC5LR48eha+vLzZu3Ihq1aoZHIO+Ml7Y6DuKiiJdRpr5+++/zdLSJquM5qJqZBpNtMWdcX5cXJzeMemyH22aNWuGPn36YMKECTqPSKG4z6zy+ZiLORI/Bw4cwO3bt02+XUVpaWkoV65cplZUxoiIiDDZtiwlOjraoIKrRGRdrDrBkStXLri6uqJw4cJShyKZrFZk9PTp01qLeeUko0aNwrt371CnTh2pQxG1b99efGzaLhsnADQCIP/RVBbABQCfGb3lyEjTtQTJrqKiolC0aFFUqlTJgCRHSQBuHx/req6Qd1OxQ/pnqZ6q1jWPHj3ScT/pFF+TumEnX758ifDwcISFhRl1nhk7dizu3bunU9Hp2NhYVK1aVUziGFuMUBt1SQp3d3eD1wX0v3D96quvMHLkSJ2KEGpjiub1SUlJ2LNnD96+fYs7d+4YVYvHElJTU3H9+nUkJSXptZ6pEgwzZ840yXakZK4uhaYUFRWlUz0VY23ZssWgEVo04d9VIsqurDrBUbVqVcTExBhVdT6nMledEk1NpLMKT09P8bH64VBNw87OLlNTeimb1gPmvkN3DUBd/HdxXADp3VW6G7XVypUrZ9u+06Zy//59vH79Gnfv3jVgWGzFFl76JjgAQ7qpqEtS6KJSpUoGX9zcunVL6zL61I74448/cOPGDbFLpDmK/Vnirrmh+9DU5cCQwoqGxrFixQq0bdsWdevWRYUKFeDp6Yn4+HgsWbJEaThVc9AU8/bt2zFq1KhMx8XgwYNRrVo1ODg4ZDp3nT59WunvUFZw/fp1yGQykyS0TCU7FLfMOBQrERGZn1UnOIYNG4bU1FT89ttvUoeSbTRo0AAjRoxQ6pYQHByssfK4tVmzZg2WLVuGixcvwsFBc9N7c9B1KNDs6zGABgDkIwDYA/gDwM8ADLu4MaSYoSlk1f7ahw8f1nONmgqPdR1JRDFRUFHP/Rl31z42NlbrOWnp0qWYPn260rTLly+LQ4Caiq6tZR4+fIg///zTqK4zgO7vW8bl5COFqWNo1ybF7izGJmLUDWGsy2uWD/8pH4UlMTERP/74I77//nudRuMx5niMiopSm3Dr2LEj5s+fj507dypNVyymqqoArKmHwTWGIAgW7W6lK2OSpJZi7V16iIiyIqtOcLRp0waTJ0/GpEmTMHv27Gzxx1BKAwYMwJkzZ8QK7Ip/mCtXrizpMGSW5O3tjQEDBkhWt0SXpubZXzTSi4wuVZj2I9JrdRhWL2fTpk3Gh6VAPvylPvRvOZFVKB7ruiY4jGvBYW4zZ87ElClTlKYdP37c5PvR9QKmXbt26N69O9atW6f3PhT/dr179w4XL17Ew4cPM+1b20W6uvmCIKBNmzZK054/f4758+dbpJl6cnIyfvrpJxQoUMCkQzUHBgYCgE598jUlBXX5jLUlO7NSwoKIiMiaWfUoKv7+/gDSizhOmDABP/30EypUqKCx4KhMJhN/FFmDgIAABAQEGNScu06dOqhVqxYuXbqE8PBwVK9e3QwRkiaKXYVy5cqlcpnmzZtjxowZlgrJhFIBDAVwF8BCALYA2gEo//H/EL229vfff5s0ugYNGsDDwwNdunTB/PnzdVpHygSH4cXlbADIh9d9BEDX2hVPAMQgPSFl/gRHdkiwamqdceNG+sg0hw4dQr9+/fTaruIww02aNFFbHFIxgaFr4kVeQyQjPz8/3Lt3D6dPn8bu3bv1ildf8u49ALBo0SKTbffmzf+ScHfu3EH58uXVLmtskeHQ0FCj1tcVWwRkL/y8iIgsz6oTHBn7/yYkJCAoKEjjOtb2x2jw4MEYPHgwoqOj4erqqte6Tk5OCAwMhIuLi5miI208PDwwYcIEBAcHo3fv3pg7d26mZRo0aIBly5Zh4MCBEkSo2tWrV/VYeimA+wA2I73QZTkAFwH0BLBT/WoW8PLlSyxYsEDnBIdU1q9fb8SwllUAOH98fFHPdW8hvabKJwAcAZiver256ygoUhyl5cOHDzrX4ilYsCCKFStm8ngUu4/oOvKFKqpacGzcuDFTcUKZTIZ79+4BSB9eNiNLj1KgS/cRbQmGOXPmmLR1SEa7du0y27YV5fRaQ0RERNpYdYJj8uTJVpewoJwnK7bO0DZ83N69e/Xc4iGk14HYCaAq0lsF7AAwG8BEpLf2sD47d+6ETCZDu3btDN7GmzdvjEhuAMqj2JzWc92bSE9wAEAF6N69RX+WvLBT7JahLcHx119/iY/fv3+P4OBgpfnLli0zug6UKf6OqavBYcj7unXrVoNi2LdvH3x9fQ1aVxtVdSwUxcfHmywJYUgdFU01ULp06YKuXbsaGxZlQabuOklERNpZdYJj6tSpUodAZrZz5044OzsjLi5O6lByFG1DcObPn9+Awp8PAdQDsApAl4/TxiH9ArorAGkKiZpLeHi4OCTv06dPUaRIEYO2Y/zd9M8VHp/Sc92MdTjMl+DIKDk5GfXq1cvyo2QNGjTI6G2MGTPG6G38888/KFiwoNHbAdQPz6ktEdOqVSt4eHiYJAZ9xcTEmKwVUMbaLrrQ1MVq165dOidfeNMmezG0eC8RERnOqouM9u7dG3369LFo02ayLEEQmNzIYvbt25fpLrbuEpCezPgegPwuqS+A6wBaGx9cFqI4fKC0QwnKExyRUE5Y6MK4kVT0kbGVyv379/Hvv/+adZ8AkJSUZNL6H+a8QFVsIfDo0aNM87PCqD9SFds8ePAgRo8ebdC6hw8fVvqOzpo1y1Rh6c2Y44etCYiIKCew6gTH+vXrsXHjRhQvXlzqUMgCSpQogRo1amhf0EA1a9bUvpCZlS1bFgDg5uYGR0dHiaP5j62trYm3uASAH9ILWQJAAQB/Y8mS0gAsP3RvVqb/kLCKygIo9PHxGQD6XsgrJkQyF6o0JW3dokwlYzLD29sbZcqUwdmzZy2yf2Moxu7r66vTqDHZoUWAJbonaXsfJk2apPc2s1ph3Jw03DsREeVcVp3gKFSoEBwdHbPFDzhzCQgIQIUKFSQb8tRSfvrpJzx8+NCsQ6wGBATg7t27eo+AYEpjx47FpUuXcO/ePbWjqkghICDADFs9C6AaFAuN7trlDeBfpBciJQBGHo9+Co/17Z4CABH4r+tQHVjDn5Rhw4YpPU9OTkZoaCgaNmwoUUS6+/zzz5Wey0cS01dsbKz4mEUt0y1evBiA8nujjeLoN9kZjwEiIspOsv+vUQ1q166N9+/fG1ALwHoMHjwYt2/fxqVLl6QOJduTyWQoU6YM8uTJI1kMNjY2qFmzplkTOYUKFdK+UAbVq1c3aoSCjBdm/4kE0B7AQADyIoLVAFwBMAKWPIWtWrUK33//vV4XOFlfC4XHxwzcxrmP/7vAEsPFmtvSpUvNun1zJtzlI58YS1vBTkvLKhfY27Zt0zjMfEamqL+SFUjbhY6IiEg/Vp3gkN+JM6QgGFFONGnSJJQuXdri+7Wx0XYqWg6gFnx85PVW8gBYAOAkgFJ67evYMf0v5FNSUtC/f38sWbLEYsNBqvPPP/+YaEv2AL74+DgCgD5D+ypS7LrRwKiIKHvLzq0lExMTtS7TqVMnvbZpjmTo27dvTb5NbQoUKGDxfRIRERnKqhMcfn5++PXXX/HHH3+gU6dOuHLlitQhEVncZ599hgULFui0rJ+fn/aFJHMTy5ZdRnpiQ963vSHSC5AOBWCZ4o1S381ctGiRibb0OQCnj48PADD0Lvk5hcf1jYqILE9bUkKfUSCioqKMjEY1S7RAtK6WWURERDmXVQ8T+8knnwAAcuXKhR07dmDHjh3IkycPChQooLYookwmQ2hoqCXDpI8U7+Jrv6NPuqpZsyZGjBiBkSNHGr2tTz/9FEFBQSaIyjC5c6cB+AHAbgBrAZQE4AhgMYBOAAZAeWSPrMvNzU3iCBRHpTlgxHauAohH+ufAFhw5gbqkiPFDFqv2+PFjs2yXiIiIrI9VJzhUDZMXHx+v8UdYdm5im919//33WLRoEYoXL54ti6JmpVFNzCXrfD9OA6gCYDbSW28A6a05riK9hcd0pF90Z12ffPIJTp48qTQtKSlJ4zqRkZEm2rsNgI4fHycCOGTEtlIAXALQCEAJAN4AnhoVnaGyQ3dEdd+hJUuWIDw8HHPmzMlC3zPVpG7FRERERKSOVSc41q5dK3UIpIe+ffuib9++UodhkPr162P48OG4efOm9oXJROIBfI/0UVZWACgDIBeAsQA6AxgMYL9J9vTjjz+Kj8PDw02yTVXnp6+//lrjOqYb5vEzAIU/Pj4AwNgL1mNIT3AAQBOkt66xvHXr1kmyX1P4/vvvAQDffPONWYe7NlRSUhLs7OywfPlyk7QGIyIiIjIHq05w9OjRQ+oQKAf4+uuvsWPHDgBggkMSJ5DemmMcgPEAHAAUB7APwB4AowA8MGoP8+bNEx/PmTPHqG2pExAQgH379pll25l9q/B4qwm2dxjAtI+Pm0KqBEd2sGvXLo2tCKOjo9GiRQu1800pJiZGpxFKbt26hfr166NEiRK4fv26BSIjIiIiMgwLHVi5gIAAVKhQQWWXjwMHDrDeCFmJRKRfYFcBEKgw/Suk1+SYDyCf5cPSUXJyMoYMGaJ1OdN0g3LCfwmOOAB7TbDNSwCiPj5uAlV/Wry9vU2wn+wvOTkZP/30k9r5r169wsGDBy0Si4uLCwYMGKB1uUqVKiE6OprJDSIiIsrymOCwcoMHD8bt27fVVqGvV68e0tLSVM4j1fLmzWvU+roMR0iqaR/p4B6AxgC6Anj+cZo9gJEA7gMYhKzYcE3XrieNGjXSvpBW3wBw+fh4M9KTHMZKxX+JpQIAqmda4tmzZybYj3EiIiKkDgEAMHv2bLXzdGlRQURERESq5YgEhyAI2LlzJzp27IgSJUrAyckJTk5OKFGiBDp16oTdu3fn2B+Vr1+/ZoJDT0OHDkWvXr2MWp8M06ZNGx2X3Ij0mhzTASR8nOYO4P/s3XV0E1kbBvAnNeqlSIt7cShS3N3dvbgU18XdFpeyuC8OCwss7rC4LFJcCsWtONX5/ijJl7TxTDJp+vzOmdNk5s69b9I0zby5EgwgBHE9GKzn7W/AgAF6ldu5c6cIrfVSur1YhPrkDirdrqexlFh+/vxp8Dn6Lpcs5XtiUv1fRERERCQG6/mEbyavX79G+fLl0axZM+zYsQOhoaH48eMHfvz4gdDQUGzfvh1NmjRBhQoVrObbPUsw1zwCUnN2djZ7G76+vhgzZozR54vzLbzxvL29sW7dOkljsIxvAMYCyIW4hIecH4ANAP4D0NDyYamh79K7unuw6FIDgHwCy0sAxFzyV3moSxMR61Vv7ty5Zm9DCknjb5OIiIjIPKyvr7aIIiMjUaNGDdy4cQOCIKB48eKoVq2aYix4WFgYDh8+jPPnz+PMmTOoVasWLly4AEdHR4kjJ2Nlz54dkyZNwu3bt/Hff/9x0k8NPD09dReyGc8QN2RlAYCpACr92p8fwF+Iu9CfAGAPAFv/9nyk0u2pItf9EsBpxC3Xmx9AbgB3RG7j/yw3Iatl/fOPOCv/EBERESVFNt2D448//sD169fh4eGBv//+G+fOncPEiRPRvXt3dO/eHRMnTsTZs2exZ88eeHh44Pr161i8WMwu22RpMpkMI0eOxPr161GuXDmpw0kycufODXt7e6PPd3JyEjEaTc4DqAygCoCzSvsDAPwN4AaA9ohbatYW1UPc8rBA3DCdv8zQxjal2+bvxWGIq1evSh0CEREREZmZTSc4tmzZAplMhuDgYNStW1djudq1ayM4OBiCIGDTpk0WjJDINnh6eqJWrVpo3LixwecuWrQIDg6W7Ex2FEBpAHUAKF/05gOwBsBDAP0Qt9qIrXBC3EoycmNgnt4q25VutzND/cbbs2eP1CEQERERkZnZdILj9u3bcHR0RIsWLXSWbdGiBZycnHD79m0LREZke1KnTo3t27ejadOmBp2XO3duM0Wkyz8AiiIu0XFKaX9GAHMBPP/1M6elAzODCYibewQATkA1ESGmMADHft3OhbjhKkRERERElmHTCY4fP37A1dVVr2+HHRwc4Orqih8/fugsS0S2QkBcoqM84i7GlSfK9EJcT467iFshpAEA44fhSKcCgCG/bkcA6G3m9pYr3e5q5raIiIiIiP7PphMcvr6++PTpE54+faqz7JMnTxAeHg5fX18LRGY5wcHByJs3L4oVKyZ1KERW7gyA+oibIHMF/r+8LABUA7ATwFMA0wHktXRwRsoGYCv+/1Y/CoC5J97dDuDDr9vNAKQ2c3tERERERHFsOsFRvnx5CIKAAQMGQBA0jzcXBAEDBw6ETCaTfAlPsQUFBSEkJAQXL160aLvKE06aMvkkkeXdAtAFQHoAgxA3J4dcOgBDf5W5iLjeENZ6AZ8BwH78P76DAGZboN0IAKt+3XZBXC8YIiIiIiLzs+kEhzxpsXPnTlSuXBlHjhxBVFSU4nhUVBQOHz6MSpUqYefOnZDJZBgwYICEEduO8uXLo1mzZihdujRGjhyp+wQJOTs7q71NSd1HxCUE/ADUQtyqI1FKxwMQt/TsSwDHAfRBXFLBGuRD3JKt8nk3biGuN0WshdqfAyDy1+0gAB4WapeIiIiIkjJLLl1gcYUKFcLMmTMxaNAgnDx5EtWrV4eDgwNSpUoFAHj37h2io6MVvTtmzpyJQoUKSRix7XB3d8eWLVsAAO/fv8fgwYMljkizUaNGwcvLC7ly5UL27NmlDoesjoC4nhD7AaQE0ApAB8QlOIC4eTkq/NrmA7gAYC/iekxcBBBjwVhlALohLjHj+mvfPcQlaD5bMI7nANYB6AwgOYD+ACZasH0iIiIiSopsugcHAAwYMAB///03cuXKBUEQEBUVhZcvX+Lly5eIioqCIAjImzcvdu/ejf79+0sdLkmgcOHCWLlyJYYNGyZ1KJJImTKl1CEkIu8BLARQDHG9JKYAuBOvTHEA4wGcBfAOcXNS9ARQEOZ9y63xq83F+H9y4wriJlB9ZsZ2NZkOIPrX7WGIG95DRERERGQ+Nt2DQ65u3bqoW7cubty4gUuXLuHNmzcAAB8fHwQEBKBAgQISR2hZ3t7eKFWqlNRhkJVo3Lgxli1bprKvRIkSOH/+POrXr6/z/BkzZpgrNCsXAmDkry0PgMYAmgAorFQm+a/9jX/d/4q4Hh7nAPyHuKEj96A69EVfsl/tNgTQGnEJF2VLEDf/RYQRdYvhPoBFAPoCcAMwDUB7iWIhIiIioqQgSSQ45AoUKJDkkhnxvX37Ft7e3vj82ZLd1SmxOX36NF6/fo306dNrnaB27ty56NePk0gCtwFM/rVlQNyqK9V//VTuIeMOoPKvTS4awAMAoYgb2hEG4C2A77+2SMRN1ukKIAWAzAByIG6IjLeaWG4hbt6LE6I8MtOMB9AWcXG3Q9yKLru1nkFEREREZKwkleAgwMnJKcmsauLh4aH2Nunm4OCA9OnTSx1GIhWGuFVEViFuSEphAOUAlAJQEkCmeOUdAOT+tZniNIBZAP6G5SYT1eUDgCGIW3YXAJYBKIC4BA4RERERkbiY4CCbNWDAALi6usLT0xM1atSQOhxKkmIBXP61zf21Lx3+P4dH3l8/cyGul4YhXiNuzo0TiFvhJdT0cM1iJeKG0dQD4AtgC+J6txgzLIeIiIiISDObSnB06tTJ5DpkMhlWrFihuyBZvTRp0mDs2LFSh0EUzwsAu35tylIASP9rS4G4ISluAJwQN1TlB+JWQgn9tb2xULxi6ArgGoA0ACoibm6OrhLGQ0RERES2yKYSHKtXr4ZMJjP4PEEQIJPJFD+Z4CDST7p0llkZw8HBAdHR0boLJmoffm03pA7EDF4jrhfHcQDOALogLmHTV7qQiIiIiMjm2FSCo3z58kYlOL5//651IsXELDg4GMHBwYiJiTG5rpCQEBEiIlvSpEkTqUOgROM8gEAAGxA3N0kfxA3L6QUOVyEiIiIiMdhUguP48eMGlY+JicGyZcswYcIERQ+OtGnTmic4iQQFBSEoKAifP3+Gl5eXwefb2dkpbj948EDM0ODu7i5qfWRZ9vb2Kq8PIt02I27IzWrEJTm6APAD0ByJa8gNEREREVmjJHt1sm3bNuTLlw9BQUF49eoVPD09MXnyZNy/f1/q0KyKm5sbfvvtN1Hr7NSpE9asWYNMmeKvJkFEtm8dgNYAfv66XwFxw3IaShUQEREREdmIJJfgOHbsGEqUKIEWLVrg3r17cHJywsCBA/Ho0SMMHz4cLi6GrmRg+6ZOnQo/Pz/R6psxYwbat28vWn1kuMyZM6u9TWQZmxGX2Hj5674P4laC2YW4Hh1ERERERIZLMgmOa9euoWbNmqhatSouXrwImUyGwMBA3Lt3DzNnzoS3t7fUIRIBAFKkSIGMGTMCAAoXLmyWNvz9/XHr1i3cvn0befLkEbXub9++iVof2aoLAPwRl9iQqw/gFoDliFs6l4iIiIhIfzaf4Hj8+DFat26NgIAAHDp0CIIgoF69evjvv/+wcuVKxYUkkbVwcnLCvXv38Pz5c3Tv3t1s7eTNmxe5c+cWvd4+ffqIXmd8xswnQ9boLYDGiBuyEvZrnyOAzgBCAPyNuKErjlIER0RERESJjM0mON6+fYs+ffogT5482Lx5M2JjY1G6dGmcOnUKu3btQr58+aQOMVHhBaV4lCfm1DRJp7Ozs0FLsFrTMBM3Nzezt7Flyxazt0GWtBFxPTbGAgj/tc8OQD3E9fB4DiAYQE0AySSIj4iIiIgSA5tLcHz79g3jxo1D9uzZsWjRIkRGRiJv3rzYtWsXTp06hTJlykgdYqK0cuVKTJgwweZWmZFC/vz50ahRIxQvXhxNmzYVpc6aNWviypUrWLt2rSj1WTu+Dm3RdwATAGQCMAjAM6VjqRG3nOw+AO8Ql/ToD6AIAHuLRklERERE1sumlomdP38+Jk+ejHfv3kEQBGTMmBETJkxA+/btIZPJpA4vUStQoAAKFCgAOzs7jBo1SupwEjUHBwfs2LFD1DplMhkKFy6Mnz9/6i5MWh05cgRVqlSROowk7AuA2QDmAqgKoCPihqk4/zru/ut+w1/3PwM4D+Dqr+0agHsAYi0SLRERERFZD5tKcPTv3x9A3MVevXr1EBQUBGdnZ5w6dcqgesqXL2+G6IiIrFeePHlw+/ZtqcNQEgvg4K/NHUA1xA1ZqYu4Hh1ynr+OVVPa9x3AXcQlOpS3BwA+mDtwIiIiIpKITSU4ACh6auzZswd79uwx6vzo6Gixw7JqmzZtkjoEIq00zVVC4nFwMP3fQbJkyRARESFCNPF9RdywlL8AyADkB1AOQPlfP+PPV+MKoPCvLb5viBv+En8LA/Dm1/YWQKTYD4KIiIiIzMzmEhyCIEgdQqLg6OgIOzs7xMbG4v79+1KHYzPKli0LFxcXeHp6omDBgrh165bUISV6v/32G5YsWYLISF5wWrvkyZPj9evXZm5FAHDj17bo1740iEtmFPr10x9ANqj/F+cGIPevTZuP+H/CQ570+PBrf3i8n/Lbn8ChMURERETSsakEx+PHj6UOIdFwd3fHkiVL0LVrV6lDsSnVqlVDeHg47O3tYW/PyQ/FMHXqVCxZskTqMMiqvULcBKT7lPY5AMgKIOevzQ9AdgAZf23uOur0/rXlMjCWT4hLdnxV2r7Eu69p+/Fr+6nmpzl6xhARERHZFptKcFjTUpmJQZcuXbBy5UqcPXtW6lBsipOTk9QhqBBj6IEhOJwk8fPz87OBnl3RAO7/2vaqOZ4c/092ZAKQFoCP0ub766ehS2R7GXGOvrQlQOQ/I39tUUq3Tb0f/WuLifdTn30xZnkmiIiIiNSxqQQHEf2fp6cnihUrhnbt2lm03YCAANSqVQv37t3Dw4cPLdq2LiNHjsTkyZOlDsPqderUCcOHD5c6DDML/7Xd0FEuGf6f9EiOuF4dun56IW4ojIeoEQMuv7bExpikSKwFNkPbEX5tULptzGbt50OpDDTcN/cxKds29pgl2rYWjMtw1hob4zIM4zKMPK4YAHcs1mqSTHA8f/4cMTExyJQpk9ShEJnN77//ju7du1u8XWdnZ/zzzz948OAB/Pz8dJa3VI+XvHnzws3NzSJtkS2JwP8nIjWUDHEJCXelzSPefeXNBXHL4ar7qe2Ytf8rd/i1JZM6ECIiIrK4zzBf79aErP1TkVkEBATg7du3SWK1lODgYAQHByMmRrpuwilSpEDdunVx4sQJVKxYEd7e3pLFQtanRIkSKvdz5cqFu3fvit7OyZMnsWzZMtHrpf9r27YtZs2aJXUYVkRA3JK13xE3Uam5OOD/yQ7HX5uT0qbtvq6yTr/qt4/305z77NRsnNOIiIiIdEuSCQ4g6ay2EhQUhKCgIHz+/BleXpbLnCmTyWTYvXu3JG2TdZs+fXqCOUL+/vtv9O/fH/v27dNwlnHkS0iT+fTu3ZsJDklE4/8Tldo6dckPfTd7E8+V/dqgdNuYzZrPh9JxaLhv7mNStm3sMUu0bS0Yl+GsNTbGZRjGZRjluH5YtOUkm+AgIuvl6uoqdQhkBEdHR6lDIJsnnw+DiIiIKCEud0BEREREREREiR4THERERERERESU6CXJBEdSmX+DiIiIiIiIKKlIknNwDBkyBF+/JoXJ2IiIiIiIiIiShiSZ4Bg0aJDUIRARERERERGRiGx6iEqOHDkwffp0vHnzRupQiEiLu3fvSh0CERERERElcjad4Hj06BFGjBiBjBkzonnz5jh8+LDUIRGRGg8fPlTczpYtm8Xbz549OwCgYcOGFm+biIiIiIjEYdMJjpEjRyJdunSIiorCtm3bUKNGDeTIkQO///47e3UQWSkHB8uPnAsKCsLdu3exdetWi7dNRERERETisOkEx8SJExEaGoq///4bderUgZ2dHR49eoThw4cjY8aMaNGiBXt1EFmAnZ1pbzUfP35U3G7QoAE8PT31Oi9Dhgx6lZPJZMiZM6ckyRUiIiIiIhKHTSc4gLgLq7p162L37t0IDQ3F+PHjkSlTJkRFRWHr1q3s1UFkAOVERUxMjN7nlShRwqR2+/btq7i9YsUKZM6cGVu2bMGMGTNMqpeIiIiIiGyHzSc4lKVLlw6jR4/Go0ePsG/fPjRq1AgODg7s1WEDUqZMKXUISUL9+vWlDkHxu27WrBk6dOhg0LmGJGWIiIiIiChxSVIJDjmZTIYaNWpg+/btePz4McqXLw9BEFTm6siVKxeWLl3KC6JEwMXFBYGBgVKHkWjJZDLFbV1DSXLkyGFUG7GxsUadJzblyUyJiIiIiMi2JMkEBwA8ffoUY8eORYkSJXDq1CkAcRd6hQoVgr29Pe7fv4+ePXuiZMmSePv2rcTRkjYdO3aEi4uL1GFYvTJlygAAGjVqpLK/QoUKqFSpEmrUqIFixYqZpW1958wwN0EQFLcLFy4sYSSJz19//SV1CEREREREWiWpBEdMTAx27tyJ2rVrI3v27Jg0aRKeP3+OFClSYNCgQbh37x4uX76MZ8+eYcyYMXBzc8OVK1cwfPhwqUMnMtnBgwfx77//YsmSJSr7U6RIgaNHj2L//v1wdXU1S9vt27c3S73K/vzzT4PK//HHH2aKxPb06dOHS+gSERERkdVLEksGPHnyBMuWLcPq1avx6tUrxbe4pUuXRs+ePdGsWTM4OTkpyvv6+mLcuHGoW7cuihcvjn379kkVOpFoXF1dUapUKanDsBpFihSROgQiIiIiIhKRTSc4tm3bhqVLl+Lo0aMQBAGCIMDDwwNt27ZFz549kT9/fq3nBwQEIE2aNHj16pWFIiYiIiIiIiIiY9h0gqN58+aK24UKFULPnj3RunVruLm56V2Hcs8OIiIiIiIiIrJONp3gcHZ2RosWLdCzZ08UL17cqDqePHkiblBEREREREREJDqbTnC8ePECyZMnlzoMIouxt7dXe5viVKtWDatXr0bBggWlDsUmpUqVSuoQiIiIiCgJs+lVVGwtubFnzx7kypULfn5+WL58udThkBUqXLgwWrdujdq1a6NOnTpSh2N1WrVqhRs3buDMmTNSh5Io6UoMJUuWzEKREBERERElZNM9OGxJdHQ0Bg4ciGPHjsHLywtFixZFo0aNkDJlSqlDIyvi6Oho8HKpSYlMJlNMLhwVFSVxNInPuXPn8OLFC+TIkUPqUIiIiIiIEkgSCY7jx49j48aNuH79Oj58+KD1wkYmk+Hhw4cWjE4/Fy5cQL58+ZA+fXoAQK1atXDw4EG0atVK4siIEj9HR0epQ0gUXFxckC1bNtSsWRP79++XOhwiIiIiIhU2neAQBAGdOnXC2rVrFfd1kclkZonl5MmTmDFjBi5fvoyXL1/ir7/+QsOGDVXKBAcHY8aMGXj16hX8/f2xYMECxeSoL168UCQ3ACB9+vR4/vy5WWIlSgocHR0xcOBAXLp0CY0aNZI6nERDJpNh3759ZnuvJCIiIiIylk0nOBYsWIA1a9YAAIoWLYr69esjXbp0cHCw/MP+9u0b/P390alTJzRu3DjB8c2bN2PgwIFYvHgxSpQogblz56JGjRq4e/cufHx8LB4vUVIwa9Yss9WdPHlyhIeHm61+a8M5X4iIiIhIajad4Fi1ahVkMhm6dOmCJUuWSBpLrVq1UKtWLY3HZ8+eja5du6Jjx44AgMWLF2Pv3r1YuXIlfvvtN6RLl06lx8bz58+1Ln0bERGBiIgIxf3Pnz+L8CiISF87d+5ExYoVpQ7DImbMmIGWLVtKHQYRERERJXE2vYrKvXv3AADTpk2TOBLtIiMjcfnyZVStWlWxz87ODlWrVsXZs2cBAMWLF8fNmzfx/PlzfP36Ffv27UONGjU01jl16lR4eXkptowZM5r9cRDR/1WoUEHqECxm8ODByJAhg9RhEBEREVESZ9MJDmdnZyRPnhze3t5Sh6LVu3fvEBMTA19fX5X9vr6+ePXqFQDAwcEBs2bNQqVKlVCoUCEMGjRI6woqw4cPx6dPnxTbs2fPzPoYiIiIiIiIiKRk00NUChQogDNnzuDr169wd3eXOhyT1a9fH/Xr19erbLJkyZAsWTIzR0SkvzRp0igSdnL6TPxLRERERESkD5vuwdG7d2/ExMRg5cqVUoeiVapUqWBvb4/Xr1+r7H/9+jXSpEkjUVRE4tq3b1+CfQEBARJEQkREREREtsimExxNmzZFUFAQhg0bhnXr1kkdjkZOTk4oWrQojhw5otgXGxuLI0eOoFSpUibVHRwcjLx586JYsWKmhklkkty5cyfYV7RoUQkiIUO5urpKHQIRERERkU42M0SlU6dOGo+5uroiMDAQo0ePRrFixeDh4aGxrEwmw4oVK0SP7+vXr3jw4IHi/uPHj3Ht2jWkSJECmTJlwsCBA9GhQwcEBASgePHimDt3Lr59+6ZYVcVYQUFBCAoKwufPn+Hl5WXqwyBCnTp1sHfvXqnDMBsplpG2dl27dpU6BCIiIiIinWzmk/zq1ashk8kSjOlX3vf06VM8ffpU7fnycuZKcFy6dAmVKlVS3B84cCAAoEOHDli9ejVatGiBt2/fYsyYMXj16hUKFSqE/fv3J5h4lEwnk8nU3ib9eHp6Sh2CWZUsWRKdO3dGqlSpsGTJEoSHh0sdksHs7e0RExMjSl0VK1ZE9uzZRamLiIiIiMicbCbB0b59e6u+WK1YsaLOCRV79+6N3r17WyiipKt9+/a4f/8+8uTJAz8/P6nDITXq16+P7du3o2TJkhZv28nJCcuXLwcALFmyxOLtExERERGRcWwmwbF69WqpQ6BEol27dmjXrp3UYZAW7du3R/ny5ZEuXTqpQyEiIiIiokTCpicZJU4ySolXlixZ4OTkJHUYRERERESUSDDBYeOCgoIQEhKCixcvSh0KERERERERkdkwwUFEkrPm+XP0tWrVKqlDICIiIiJK0mxmDg5tXr16hZUrV+L06dMICwvDt2/fNE74KZPJ8PDhQwtHSJS0TZgwAaNHj8aQIUOkDsVoRYoUsWh727ZtQ9OmTS3aJhERERGRNbP5BMdff/2FDh066ExqyI/ZwjfJRInNqFGj0Lt3byRPnlzqUIxmyfeOIkWKoFq1ahZrL7HImzcvQkJCpA6DiIiIiCRi00NUQkJC0Lp1a3z9+hW1a9fGokWLAABeXl5Yvnw5Jk2apFi+NVWqVFi4cCFWrlwpcdTi4iSjlFgk5uQGAOTJk0fvsr6+vmaMhIiIiIgoabLpBMecOXMQERGBtm3bYvfu3ejRowcAwMXFBZ06dcKIESNw9OhR7N27F9+/f8eaNWvQunVriaMWl61OMmpvb6/2trUpVqwYnJ2d4enpCX9/f6nDITNycHDA+PHjdZYbMGAA+vfvb/6AiIiIiIiSGJtOcBw/fhwymQzDhw/XWq5WrVqYNWsWLl68iLlz51omODJJnTp1ULt2bVSsWBEdOnSQOhyNSpcujffv3+P169fIli2b1OGQFZg9ezZSpkwpdRhERERERDbHphMcz58/h4ODg0rXcZlMhoiIiARl27VrB3t7e2zatMmSIZKR0qdPj7179+LYsWMoWrSo1OFo5erqCmdnZ6nDkBznt7FOMpkMQ4cOlToMswgMDJQ6BCIiIiKyIJtOcDg5OcHT01Nln7u7Oz59+oTo6GiV/a6urvDw8OAKKkRmkixZMowbN07qMGxeqlSpDCr//v17TJ8+3UzRSKt06dJSh0BEREREFmTTCY506dLh8+fPiI2NVezLkiULBEHAf//9p1L248ePCA8PR2RkpKXDJEoyxo4di1mzZkkdhk1bv369QeW9vb3NFAkRERERkWXZdIIjZ86ciI6Oxp07dxT7ypQpA0EQMHPmTJWyo0aNAgDkypXLojGaG1dRIam4uroqbru5uUkYifGkjvvp06caj2ka8lOjRg3ExMSYKyQiIiIiIqtl0wmOKlWqQBAE7N+/X7GvR48esLOzw5YtW5A/f360adMGBQsWxOLFiyGTydCpUycJIxafra6iQtYvXbp0WLp0KSZMmICaNWtKHY5RJk6cKGn7GTNm1HjMw8MDHTt2tGA0RERERETWzUHqAMypefPmuHLlCn7+/KnYV7BgQcydOxcDBgxASEgIQkJCFMdatWqFPn36SBFqouHn56f2NpE6Xbt2lToEk3Ts2BEFCxZEQECAZDG4ubnh27dvao+tXLkSq1atsnBERERERETWyaYTHL6+vmo//Pfu3RtVq1bFtm3b8OzZM3h5eaFmzZqoXLmyBFEmLs2bN0eBAgXw5csXFClSROpwiMzOxcVF0va3bduGWrVqSRoDEREREVFiYNMJDm1y586tmHeDDKO87C6RocqXLw8PDw/kzZs3wSpHhvL29kbOnDnx7Nkz+Pv7ixShdalZsybGjBmDCRMmSB0KEREREZFVS7IJDiKSRkBAAN6/fw8HBweNE2Xqy8HBATdv3kRERATc3d0THC9QoADCwsJMasMclFd2IiIiIiIicSSZBMe7d+9w7NgxhIaG4vv37xgzZozUIRElWY6OjqLWFb++du3aoW3btnj9+jX27dsnWltiefTokdQhEBERERHZHJteRQUAoqOjMWjQIGTMmBEtW7bEsGHDMH78eJUyHz9+hLe3N5ydnfHkyRNpAjUTLhNLtiBr1qwGlc+SJQuqV68Oe3t7M0X0fz4+PgZPpmpoD45UqVIZVJ6IiIiIKCmy+QRHs2bNMHfuXERGRiJfvnxwcEjYacXb2xutW7dGZGQktmzZIkGU5sNlYskWdOvWDYsXL8b58+elDiWBV69eYenSpWZto3379matn4iIiIjIFth0gmPTpk3YtWsXfHx8cOnSJVy/fh0pUqRQW7ZZs2YAgGPHjlkyRCLSg6urK7p3747ixYtLHYokvLy8pA6BiIiIiMjq2XSCY9WqVZDJZJgxYwYKFy6stWzx4sUhk8kQEhJioeiIiEhf9erVkzoEIiIiIrJyNp3guHr1KgCgSZMmOsu6urrCy8sLb968MXdYRGQhypOPWmI+jvgyZsxo8TZt1bZt26QOgYiIiIisnE2vovLp0yd4eXnBxcVFr/KxsbEmL1tJRNajevXqaN26Nfz8/CQZ5nH58mU8e/YMRYsWtXjbtsbJyUlnGXVzLBERERFR0mHTnwa9vb3x9u1b/Pz5E87OzlrLvnz5Ep8/f0bmzJktFB0RmYv8QtfLywt//vmnZHGkTp0aqVOnlqz9pCZjxoy4fv261GEQERERkURseohKkSJFAOg3cejKlSsBAKVKlTJrTERkPl26dEGuXLnQvHlzqUMhCbAHHhEREVHSZtMJjjZt2kAQBIwePRpfv37VWG7//v2YOHEiZDIZOnToYMEIiUhMy5Ytw507d5A7d26pQyEiIiIiIguz6SEqrVu3xtKlS3Hq1CmULFkSPXr0QGRkJADg0KFDePLkCXbv3o1//vkHsbGxqFevHmrUqCFx1OIKDg5GcHAwYmJipA6FiMwsX758UodARERERCQZm05wyGQy7Ny5E40aNcLJkyfRr18/xbGaNWsqbguCgKpVq0o6Vt9cgoKCEBQUhM+fP0syySIRWUaRIkW40ggRERERJWk2PUQFiJto9OjRo1izZg3KlSsHJycnCIIAQRBgb2+PUqVKYfXq1di/fz/c3d2lDpeIyCjt27dH1qxZpQ6DiIiIiEgyNt2DQ87Ozg7t2rVDu3btEBsbiw8fPiAmJgYpU6bksoJEREaoUqUKjhw5YpG2JkyYYJF2iIiIiChxs/keHPHZ2dkhVapU8PX1VUlufPr0CUWKFEHRokUljI6ISL22bdtKHYIKS81X1KJFC4wYMcIibRERERFR4pbkEhyaREdH49q1a7h27ZrUoRCRlWvYsKHF2/zjjz8s3qZYSpYsafS5AQEBsLe3FzGapIVDL4mIiCgpYYKDiMhArq6uFm8zMV+otmzZUuoQkqxUqVJJHQIRERGRxTDBQUREZKN+//13qUMgIiIishgmOIiIDFSuXDnY29sjb968UocimixZskgdgtXKnj271CEYLU2aNFKHQERERGQxTHAQERkoICAAL168wJUrVyCTyaQORxRTpkyROgSrZSu/YyIiIiJbxwQHEZERfHx8kCxZMqnDEE3+/PkVt1OkSCFhJLaDq3IRERERWRYTHEREBABYsmQJ2rdvj1atWkkdilqenp5aj1vbaiu+vr44f/48unbtikWLFkkdDhEREZHNY4LDxgUHByNv3rwoVqyY1KEQkZXr1q0b1qxZAw8PD6lDUWvHjh1o0KCBxuM9evSAo6Ojyr7OnTub3G7hwoWNOq9EiRIoXrw4li5ditSpU5scBxERERFp5yB1AGKytm/vrEFQUBCCgoLw+fNneHl5SR0OEZHRqlSpgipVqmicE6NYsWJ49+6dynvd0qVLMXHiRKRLl87odg2dgHXo0KFIliwZBgwYYHSbYuH8IURERJSU2FSCQxAEqUMgoiTAlubesCX29vYJhrHY2dkhbdq0Fo2jePHiaNKkiUXbJCIiIiIbS3CMHTtW6hCIyIbVrVsX/v7+KhNykvVInjy51CEQERERkYSY4CAi0tOYMWM4n42VcnFxkToEBUsNC0mXLh1evHhhkbaIiIiIEgNOMkpERJQIcX4NIiIiIlVMcBAREekpb968qFWrltZJrZl4ICIiIpIGExxERGRxrVq1kjoEvSknLKZNm4Z//vkHnz590qu8OXFibSIiIiJVTHAQEZHF2dkl7n8/bm5uGo/lypXLgpFox94kRERElJQk7k+YREREVmTfvn3IkyePXmW7detm5miIiIiIkhYmOIiIJPTbb7+hRIkSUodBetLVI6JmzZpq96sbTrJ48WKzxkJERESU1DDBQUQkoalTp2L06NFmbyd37txmb0Ms69evlzoEizA0QbFz507zBEJERERkI5jgICJKAqZMmSJ1CBp16tRJ5X6pUqUUt62tl4KxE3uK8TgCAgJMroOIiIjIljHBQUSUBDg6OkodgkbJkydXuZ8tWzbFbUskOAYPHqz1uLUkWeLHYS1xEREREVkLJjiIiEgjb29vqUMwu5QpU0odAhERERGJgAkOItIqbdq0itsZMmSQMBKypN9//x1Zs2bFqFGjpA7Fqhjba6JChQqStJ3Ye3m0aNFC6hCIiIgoEWGCw8YFBwcjb968KFasmNShUCKVIUMG3LhxA+fPn0fp0qWlDocsZMiQIXj06BGKFCli0Xbt7Gzz31Lq1KkxZ84cqcNIdIKCgqQOgYiIiBIR2/wkSQpBQUEICQnBxYsXpQ6FErH8+fOjePHiif7bYGvF5/X/zpw5AwBwdnYGAOTNm1fKcETl7u5u0vmmvk7q169v0vlERERE1o4JDiIiiZUqVQpp0qSROgyrULJkSQDA6dOnsW7dOlSvXl3iiFQZu4qKNejdu7fUIRARERGZlYPUARARJXXe3t549OgRXF1dpQ7FahQtWhRFixaVOgwA7GEjJT73REREZAj24CAisgIuLi64du0acuTIIXUoRERERESJEhMcRERWwt/fX5TVNsh8pOxREL9t9m4gIiIiUsUERxJXrVo1AICjoyMqVqwobTBERKRRUlwmloiIiMgQTHAkcePHj8f379/x5csXtGjRQupwiMhIjo6OUodAFmbu5EWdOnXMWj8RERGR2JjgILi4uCBZsmRSh0GJhJ+fHwDAwYFzFFuD7t27I3/+/GjcuLHUoSQJiXkVFUOlTZtW6hCIiIiIDMIrFCIyyJAhQ5A1a1YUKVJE6lAIwOLFi6UOwebp21NC1wSxpva4iH9+Ukq2EBEREemDCQ4iMoi7uzsCAwOlDoMSCWdnZ6lDsAhXV1ecOHFCaxlTExKmJkgMbZ/zdxAREVFiwwQHERGZzbRp06QOQVSaLvo/fPhg0FC/smXLmi0WIiIioqSKc3AQEYkkVapUUodgdby8vKQOQatKlSqJUo+h8xht375dlHaJiIiI6P+Y4CAiEknbtm3Rt29f/Pnnn1KHQnpasmSJJO36+PhYpB328jC/QoUKSR0CERER/cIEBxGRSDw9PTFv3jy0bt1a6lBID5kyZVKsCqQvU+bREHuSUWvTrl07qUMgIiKiJI4JDiIiIi2sPbFgLdauXSt6nXzuiYiIyBBMcBAREenJlAtusVdRMffFf8qUKc1aPxEREZHYmOAgItIic+bMSJcuHVKnTm3wcAYiczJHgqNr164AgFWrVjHBoafGjRtLHQIRERH9wgQHEZEWbm5uePz4MZ49e4bkyZNLHQ4lYmInJAztEaKrfNeuXbFkyRIIgoDAwEATIpOOi4uLxdv87bffLN4mERERqecgdQBERNbOyclJ6hCIzD4kZcaMGYl+zgsHB8t+rClQoAAcHR0t2iYRERFpxh4cREREejJ1Hg1TGJN8SOwJC0NJ+fshIiIi6THBkYg0atQI3t7eaNq0qdShEBElGWIlCUy9+HZ3dxclDjK/li1bSh0CERFRksQERyLSr18/syzDR0TWI1myZFKHQFpI3SOiYcOGitvKsTRo0ECCaJKO69evq93PHiNERETWhQmORKRixYrw8PCQOgwiMqPu3bsjTZo06NOnj9ShkMhMTY7IZDIsX75c7TH+b4hjroRDgQIFzFIvERERiYsJDpGcPHkS9erVQ7p06SCTybBz584EZYKDg5ElSxY4OzujRIkSuHDhguUDJSKrVrBgQbx8+RLz58+XOhSyQly6lYiIiEgzJjhE8u3bN/j7+yM4OFjt8c2bN2PgwIEYO3Ysrly5An9/f9SoUQNv3rxRlClUqBDy58+fYHvx4oWlHgYRERERERFRosRlYkVSq1Yt1KpVS+Px2bNno2vXrujYsSMAYPHixdi7dy9WrlyJ3377DQBw7do10eKJiIhARESE4v7Hjx8BAGFhYfD09BStnaTq5cuXitvfv39HWFiYhNFQYhIWFoYvX76o3DdUZGSkwee9e/dOYzzGCA8P16uODx8+qDxeue/fvytum/p8AEBsbGyCcz9+/Ki1vujoaISFheHTp09a6/78+bPi9tu3b9XWqU/cHz58MKi8ujbs7e0V96OjoxW3v337pvYc5ST627dvtdb//Plzld+F8u9Y3/jEphy/PmJiYkSPAdD82CIiItQe+/Hjh1niICIiSqzM9T86PpnAGbJEJ5PJ8Ndffykmg4uMjISrqyu2bdumMkFchw4dEB4ejl27duld9/Hjx7Fw4UJs27ZNa7lx48Zh/PjxxoRPREREREREJJrTp0+jTJkyZm+HPTgs4N27d4iJiYGvr6/Kfl9fX9y5c0fveqpWrYr//vsP3759Q4YMGbB161aUKlVKbdnhw4dj4MCBivtPnz5FgQIF8OzZM/bgICIiIiK9jRkzBvPmzQMAnb3e1Hn48CE2bdqEnj17IkWKFGKHl4AgCFi2bBkKFy6MYsWKGXSu/DNz6dKlsW/fPgBxXxx6e3ujX79+as9Zv349goKCABj3/FDidfPmTURHR6NQoUKi1y0IAr5//w43Nzc8fvwYq1atQq9evZAmTRrR21Ln4cOHSJEiBby9vQ0+18vLCwDw+++/o1WrVsiYMSMyZMggdohqMcGRiBw+fFjvssmSJVNZbjJ58uQAAE9PTyY4iIiIKNG5efMmIiIiULRoUalDSXKUP1Ma8zmyXLly+PbtG+7fv48dO3aIGZpau3btwpAhQwAYvrqSvGf1v//+C09PTzx48ABz5swBADx+/BglS5ZEt27dVM5xcXFR3Db0+YmIiED//v1Ru3Zt1KtXTxGz2MuSm6NObW29efMmwZe7oaGhuHfvHqpVq2aROLTZv38/8uTJg8yZMyv2Xbx4Efv378ewYcOwatUq7N+/Hxs3boSzs7PaOqKiolC2bFkIgoAvX77A3d1d1Bhr1aqF/fv34/Hjx6hVqxZevnyJy5cv49SpU2rLx8bG4sOHD0iVKpXGOsPDwzFx4kS0bt1a63vpvXv3UKRIEchkMsTGxmosFxERgYcPHyJPnjyK15fy/JHnzp1D9+7dAUBlmK05cZJRC0iVKhXs7e3x+vVrlf2vX7+2WAaOiIhM9+7dO7MtRUpkqAMHDqBz5874+vWrxjJfv37FzZs3LRiVeQiCgAIFCiAgIMDg+WHMITo6GhMmTMCZM2ekDkUvUr9vyecJstTzdfv2bdHqUp7jaNWqVYqLNWWmPL+rVq3C4sWLUb9+fQDAq1evkDZtWsUcffHdvn0b9+7dU3vs06dPGD16NEJCQlT2r127FilTpsTp06eNjtMQw4YNQ5o0abBy5UqV/VmyZEH16tWxadMmlbkCdfn586eo8R04cAC1atVClixZVPYXL14cY8aMwfz589GjRw/s3LlT4/Ls58+fR7169RS/e/k8W8ePH0fv3r21vi/ra//+/QCAvHnzKub/0/Y7rFWrFlKnTo1Lly4BAEaOHImAgAB8//4dEREREAQBQ4YMwezZsxEQEKC17RMnTgDQ/dquUaMG8uXLh40bNwKIm+8rffr0iuORkZFo2bKljkcqLiY4LMDJyQlFixbFkSNHFPtiY2Nx5MgRjUNMiIjIupw6dQqpU6dG06ZNpQ6FCABQs2ZNrFy5EpMnT1bZHxsbi86dO2Px4sVo3rw5ChQooPPC5uXLlyZPAPfbb7+hTp06ZplITvkbxPhfGElhyZIlGDt2LMqWLYuwsDDMmjXLKhIvchcvXsScOXMQGxuLfv36IVOmTCoTHRvKUt/8m0P8ZMDHjx8xcuRIRRIkJiYGQ4cOxZ49e0RtNyIiAhs2bFCZLFndxWL8+KZPn47Xr19j+vTpCeIeOnQo8ubNi1y5ciEyMlLl+IkTJ5A8eXJMmjQJ+fLlUznWoUMHfPz4EQ0aNEjQfnR0NK5fv25wkiY6OhqdOnXCmjVrEhybMWMGAGDAgAFqz23VqhX8/Pz0aqdu3bpwcXHBzJkzAcT9/W/atEnx+O/cuYO7d+8mOO/jx48YP348Hjx4kODYyZMntbapnBT+9OkTtm3bhnr16mH79u149eoVAKBkyZI4cOBAgnMrVaqE4OBgTJo0SbGvX79+kMlkioSFoeJPXH3ixAm1v6+DBw8CAP744w+8evUKU6ZMweXLl+Hn5wc3NzdUrlwZ169fV5Tv3r07Bg0ahCtXriSoa/PmzRrjuXr1KmQyGebMmaNIhCxevBgAFMkVuT179iiGelmMQKL48uWLcPXqVeHq1asCAGH27NnC1atXhdDQUEEQBGHTpk1CsmTJhNWrVwshISFCt27dhOTJkwuvXr2ySHxv3rwRAAifPn2ySHtERLamQYMGAgAhsf/r/P79uxATEyN1GDZn/vz5wsqVKy3apvz12Lp1a5X9ffr0URyTb507d9ZYz5kzZwQAQsWKFUWJ59ChQ3qVj42N1bvurVu3Kuq/c+eOsSGa5NWrV0JkZKQgCILQu3dvRTz16tUTAAj9+vWTJC65iIgIYc2aNcLTp08Vsa1evVpxe+LEiQnOkT8eXYYNG6aoR9fvLTo6Wjh//rxK3fJzU6dOrfXcHz9+6BXPjx8/tL4OpkyZomgz/uu6ZcuWKu/la9euVbk/adIkxf2wsDDh2rVrCf6e4luxYoXKsQcPHijuZ8+eXaXdMmXKCLdu3RIiIiIEQRCEAQMGqJzbv39/te00a9ZMJQblz/Tfvn1LEOOpU6eER48eCYLw/+c/RYoUKnU+e/ZMaN68ucbXhzbxnzdlynGcOHFCePbsWYL9AIR58+YJ//33n8Y2Tp8+neB5T58+vQBAGDt2rPD9+3fFsZ8/fwqxsbHC3bt3hdjYWKFFixYCAMHNzU2lztjY2AR1RkRECNu2bUsQn7rN0dFR7WMJDQ0V7t27p7jfpEkTtc/H+fPnhRw5cghr1qxR/C+WvxZiY2OF7du3Cw8fPlTbhvL2119/CYIgCAsXLlS858qPlS5dWuN5uXPnVrs/NjZWuHPnjvDy5UshMjJS5ViKFCmEUaNGCeHh4cLAgQPVnu/h4SE8efJE2Llzp8a237x5Y9BrzFiJ+1OaFTl27JjaX2SHDh0UZRYsWCBkypRJcHJyEooXLy6cO3fOYvF9+vQpwZshEVFSFhkZKURFReldvlGjRho/zCUWb968Eby8vITq1atLHYqwd+9eYdCgQQb9DsQUGxsrnD17Vnj//r0gCIJw8uRJ4datW3qde+rUKSF//vyKD5VhYWGK14Y5k0dfv34Vxo4dK1y7dk0QBPUJjhs3bqj9PKItwZEvXz5RXtvyOvbu3auzbHR0tFCkSBEhS5YseiU6lB+L8oXtjx8/hPPnz5s9aXf//n3B3t5eqFOnjiAIqgkO+Rb/Qiq+2NhY4eLFi8KPHz+EW7duCRs2bEjw2KOjo4WRI0cKBw8eNDjGRYsWCUDcBb08psGDBytux7+APX/+vABAGDdunNr6oqKihB07dgivX78WihUrpqinQoUKah/b169fBUH4fzJE+TOw8vOk6W9+z549AgBh6tSpgiAIwsyZM4X8+fMnuCi6c+eOoq5//vlHOH/+vPDlyxeVMpMnT07w+3n9+rUgCIKQNWtWxb4VK1YI5cuXV3n9Kyc4AAjFixdPUFd8y5cvVzmmXCcAlaSF8kVjdHR0ggRH586dFffDwsKERo0aCceOHRPSpk2rcr7yZ/pXr15pvKhUfv7lCY6oqChh//79KuWcnZ2Fjx8/CkFBQcK///4rhIWFCb/99pviy1pl379/F4oWLarx+dB0Aa0tRrmfP38qfp/KSZT4jwWAyu/53bt3itf72LFj1dZ/9uxZ4fr16wmOKSfw9Nk+fPiQYF9oaGiCfX///bfQpUsXjfX4+Pgobvfq1UvYsWOH4n78x65umz59usbnxtAtICDApPP12Sx1HZp4P6WRQZjgICJ93Lp1Szh69KjUYZjdjx8/hMyZMwv58uUToqOj9TqnSZMmGj/MiW3KlClCjRo1hG/fvola78qVKy32GHSRx7F8+XJJ2pdfTKVIkUJ49OiRAEBwd3fX61w/Pz+V8rdv31Y8HnNeaA8aNEjth1nlBMeaNWvUfrBUl+CIiYkRzp49q/FCQx35N41yo0ePFvr3768Sjz4JjufPn6tcmOiiHKNygqNKlSoCAGHOnDk665CLjY1V9LoYPny4XueMHj1a5TkyJsExf/58tRdAykz5Gy1XrlyC+pVfM/ETHCVLllRpa+bMmULNmjWFnz9/CoIgCDNmzNB4oRKfvIeb8jfY8nIXLlxQ2VehQgUhOjo6QW+N1KlTK8pERUUpbvft21cQhLjfm3IyQHnz9/dXqSt+kgKA0Lx5c0EQVBMc8bfNmzcLv/32m84LNUEQhJCQEGH79u2CICRMcOTNm1evCz53d3chS5Ysav+udW179uwR9u/fL/z48cPgBIdyj0RNW+HChQUAgp+fn+J5ffnypdChQ4cEZaOiooTOnTsL8+fPFw4fPqz3Y5BvP378EO7evauSnPv27VuCxJDy+0b8rXr16hqP/fXXXxqPGZrc0LSpe14M3TT1jtBne/HihSiPw5wbExwkKiY4iCzv8ePHkn07bYyYmBjBwcFBACBcuXJF6nAEQRCEbdu2CWfOnNF4PDQ0VOjXr5/WLq7qKH8D+OHDB73OUe4erO83/dqcO3dO2LVrl9pj8nZWr15tcjvK4nejNreHDx8KK1euVPk7iImJEa5cuaKIY+zYsUbVffz4caFRo0bC48ePjTq/a9euihj27dtn0POi/IFt9+7dZklwfPnyRTh//rzKN/wVKlRQiVN+u02bNooyykMSlLcuXbqo1H/q1CnB09NTyJYtm0q5u3fvCmfOnBGqVauW4HX+77//CgCE8ePHC4IQl+yQn6f87eWKFSt0Pj750Fn5B3NdlGOUJzjkPRYACDlz5kxwTkxMjFC1alUBgNC1a1fFc3n58mWV+vShnOBo166dxi7g9evXFwAIc+fOTVBHzpw5E5SXv/7fvn0rfP36NUEiRZMLFy4IDRo0EO7du6fYpy7BoXzBFD/BUapUKbWvp6VLlwqCIGjt5h6ffL9yQgWAIpEYf/P391f8PHv2rCAIgpAqVSrF8aZNmypud+/eXRAEQTh48KDWiydlEydOVFtGnpw0dVN+zIcPHzY6wRF/U0466bsFBgbqTEbJb8sTHMY8Xm3n9evXz6Tn8+TJkyo9yYC45KMYvytu1rMxwUGisvYER2xsrPD69Wu9x15S0jFu3DihUKFCwqVLl6QOxSCbNm0SACi6MycG0dHRin9CW7ZsMWtbX758ERYvXqz14vS///5TxKPpolH+IbhAgQIGtW9MgiP+B9abN28a1GZ88nouXryo8diCBQsMqnPEiBGKi091tCU4jh8/bnCiSBd5W8oXe/E/iI8ZM8aouuUXQ82aNTPqfOUExz///KPxeVFHOf60adOqJDi6desmzJo1y6iYlMkvACdPnizMnDlT+Pjxo+Dh4aESp/y2cg8OfRMcyheTmrYsWbKonBO/S/rPnz8V99V9c6/J169fVRIcz58/Fz5+/Chs3LhRpdfS/PnzhR49eiTo2n737l2Vxw+oT3DI50WTb6dOnRIEQVBJaOn7Ox81apTBH+bjD5tQl+CoU6eOoru7g4OD3gkOdfGrS3AobxMnThSio6MVz7FyAkO5Tvnfq7YER61atRS9eZTnm6hdu7ZJF0Dqtm7dugmCkHC4QvxN7vXr16LHoK4t+e0+ffoIy5YtUzmWKVMms8eg76bcKwhAguEz+my5cuUSatWqJflj4Za4N0tdh3IVFbIKPXr0gK+vL9KkSaOYnZgIAMaNG4dr165h7ty5UodikFWrVgEA9u7dq9h348YNBAYG4sKFC1KFpZYgCPj06ZNF25w2bRp69OihdemwsLAwxW1Bw+zu8hnMb9y4YXQs0dHRePz4sc5y8ZfdO3z4sNFtKmvbtq3GY4asXPD69WtMmTIFY8eOxffv3xMcFwQBhw4dUntuaGgoKlasiKJFi+rdniGUn6shQ4bodY7yqhnqvHv3DkDcahH6unr1KsqWLYszZ86ItipE/Nfm0qVLMWjQoATljh8/jufPn+td73///Qcgbpm/wYMHY+LEiRZf6vPZs2cq97W1/+TJE7X7P3/+jFWrVilW8Fi+fDnc3d2xdOlSlXINGjRAq1at0Lt3b8W+vn37YvHixYpZ+uU0rdJy+vRplb/l+K8h+XKftWrVUtn/9OlTlfsRERE4efIkLl26hLlz5yI6Olpte7qsWLFCZ5m9e/cqlgOVr2Yhp/y4P336hAkTJqBv374Jfg/qVpBQZ/To0UiePDnc3Nzw/v17/Pvvv3qdp86+ffuQMmVKAFBZDvOff/4xuk6x+Pr6mr0N5ffYBQsWqKxCsWLFigSvKSl16tRJ5b6uFUTUuXv3ruVXwiAylkXSKCQ5a+/BkT9/fkV278iRI1KHkyhcu3ZNuHr1qtRhmJ38ddGoUSOpQzFIjRo1FLHLlShRQgD+P6O6LvrObm+qwMBAwd7eXmXCMXP34FD+m9+7d6/aeTD27t2rKKNpnoz432jrS7kHh3ws/s6dO7Weg3jfROTJk8egNpXFn5haU1vBwcEa67h//77QtGlT4fLly4IgxM2GLz8vPDw8QfkjR45obPPo0aNGPY+CIGidw0Rde/Gfx9GjR6uco/zNfvHixVX+b0VERAjBwcHCrVu3FGUyZ86sd6zK7Sp3h1Z+rcnFxsYm+AZeXT1p0qRR6cFh7PMbGxsrvH37VuPzlCpVKpXXu/Is9xUqVBD27dsnxMbGauzB0bVrV5X29OnBET9e+Zh8AMLt27eFhw8fKu4rz5+g7vddvnx5tY8LgMrfIxA3X4jycIQxY8YkOOfz5886Y543b57K/hUrVqjMpSPfSpUqpThn165dCY4vWrRIyJgxo17Pl/I2YsQIQRDihsqcPHlSyJAhg8F1HD16NMGKBidPnlS5L58HQlcPDuVt2rRpKveVn2N5D44yZcro9fo4cOCAwY/L0K1Tp05CwYIF9XqtmjsWbty4GbdxiAqJigkO23Lp0iXF8yUfu2qr5I/TFhIcym/yuigvVzZgwACj44iMjFQsE6eJvB3lrsXxExyxsbHCiRMn1M6mbgzlv3kAapfXFCPBER0drXKx//LlSyFPnjyKcfLKm/wCTBN1/6zlXeUNFb8eTcflv/vff/9dGDZsmMp8DMpLvQmCoDLBmHxlkNjYWMUQnPhd7JUpJ1wMERISInh5eQnDhg0Tnjx5IjRp0kTo37+/ULFiReHJkydq24v/2EeNGqU4pm6W/cGDBwuRkZHCjRs3hCVLlgiA6jh6YxMcypvya239+vWCIAhCp06dBADChQsXtNbj6+urM8GhfPF448YNtbENGDBAkMlkwvHjxzXG6uXlpbjdsWPHBMf9/f1Vhjgob8YMUQGgMnS0UKFCen+QPX78uHDz5k2VfYcOHdL7fF2bpslUAQg9evRIMM8GAMHV1VXjOfIlF8WKD/h/gmP27Nmi1ht/mzx5siAIhiU4tG0VK1YUfv78qddrxJjEj7m2r1+/qiwbyo0bN+vamOAgUTHBod69e/cssryc2JSXkdq8ebOodZtjHpQvX74IT58+Nepc+eO05gSHfDy5MlMTHPHHahtL3jthx44dGsvI21CegTx+gkP+DXS6dOlU9sfGxgqfP382OK74CY7GjRsnKCNGgqN27dqCk5OTEBISIgiCkOBbS+UtVapUWmNWd87p06fVltW1+kn8erQdV57nQDmhYm9vr3K+8rhz+etRPlP+xYsXtSY4jh8/rtgvv9DT5vnz58LNmzdVLrKVJywEEl6Aa3rsygkO5Z4Z8q1Vq1Y6x/ULwv97kmhbclTT+fEnQlReErNBgwZa6/Hx8dGZ4IifdLh3757w8+dPlVjlx6pWrapxOUVvb2+jP1h26dJF6Nevn1C1alVh1apVep+n/FqWzwtiDZu2BIexW48ePUStb8SIEXot9WjqVr58eWHcuHGi1qn8P4wbN27cxNg4BweRmd24cQM5c+ZEiRIlMHv2bKnD0SgyMhI7d+7EpUuXFPv69etnlrY6deoENzc3zJ8/X7Q6o6KikDNnTmTKlEm0OQusSXR0NHLlyoU0adLg/v37otV77949jcd27dql99jp3bt3A9BvLLg2ly9fBgC8ePFCZX///v3h7e2tmAtDWXh4eIIx/Jrs2LEDa9asMXqsuyb//PMPIiMjsWnTJgDAjx8/NJaVz+nw7ds3LF++XO8x1GfOnFHMAfLgwQPIZDK4ubmha9euJkYfR/k5UY5feQ6JihUrws7u///S5XMU7Nq1CwAwf/58vedvGDx4sM4y6dOnR/78+VXmPnn06JFKGfk8NLoIcV+24PHjx4iMjFR7XNe4/rNnzyJ58uQYO3YssmbNij59+uDly5do3rw5jh8/rlcMygyZ1+PNmzcaj02ZMgVVqlTBz58/VfZ37doVzs7OsLOzS9D24cOH4ePjo7Y+U+YNkclkmDdvHg4fPoyOHTsadG6fPn0gk8kU84JYgw4dOohe5+LFi0Wt78OHD2jfvr2odapz8uRJjBs3TtQ61b2nExElBkxwUJKlPCGaPhMMGkIQBFy4cAE3b940ua6lS5eiUaNGKFasGN6+fStCdJqtWrUKsbGxok7o+eXLF7x8+RIAcOvWLaPrUZ7AS5fIyEiMHTsWy5cvN7o9fX358gXPnz9HbGwsQkJCMGHCBGTNmtXoiURDQkKwZs2aBPvlCY3r16+jYcOGKFOmDD5//qy1Lk0T8Ylp/vz5iImJwdSpU/HhwwfFa14QBBQoUACZM2fW++8rMDAQW7Zswc+fP3Hy5ElERUWpHL97967WJJIgCOjZsyf69Omj9higOnGpJr///ju6du2Kdu3a6Sz74sULlC1bFgULFlScK6f8+tu9ezfat2+P9+/f66wzPuUEx+nTp9G9e3dMmzZNZf+JEycUkzgCCSdX1JTcEAQB48aNQ8WKFVX2HTt2DMWKFdOZSFNOvBp78T158mTY2dkhW7ZsmDdvntoYdenfvz++fv2KCRMmIDQ0FAsXLkS6dOmwdetWVKpUSZG80uTo0aMaj4WHh+tsv0aNGmr3jxw5EkePHsX69etV9itPHvn+/XtERESoHNcUr3ISy5IWLlwoSbuJna7XHRERic9B6gAo8YuNjcWjR4+QIkUKpEiRQupwrMLWrVvRokULAHGz9hcqVMjoul6/fq24/f79e6ROndrU8HTS9C36+/fvkSxZMri7u5utbUEQcPPmTeTOnRuOjo6K/aGhobh37x5y5syps46jR49iwoQJAIDGjRtrfF0+ePAAGzZsQLt27ZA1a1ZR4h87dqxJ51euXFnldy5XpkwZREZGqnxb3L59e+zcuVNjXeoSJeby6tUrlClTBnfu3MGZM2dQsmRJRTLh2rVryJo1KwRBwLt377S+hocOHYo2bdoAAAICAhT7P3/+jNy5cwOI+/tq2rRpgnNfvHih+AbWwcEB9vb2Ksdv3bqlV0+WrVu3AtBvpvkzZ84obrdu3TrBt/mPHj3C8ePH0blzZwBAhgwZMGXKFJ31Kps2bZritvIKE/EpJxjiJ7fWr1+vNmFz8uRJjB8/XmVfbGws2rZtixcvXqBTp064c+eOynHlVR4M4e/vj9atW2sts3r16gT79Elw6Eoopk6dGtOnT9d4XHm1o/hu376Nnz9/wtnZWWOMunr7yJO8mmJzcnLSer6cKT049OnJoo6+PX8ooW3btkkdAhFRksMeHGSyFi1awM/PDz4+Pmq7ry5cuBCdO3dWdBFPCpQ/7JpjqTB9u/2L6cqVK/D19UXGjBnNsqSoIAjo168f7OzsULBgQbXLh8p7SuhqX7kbf0REBO7evYuMGTMmuChu27Ytxo4da3B3bWXKy+Npo2/XbnXJDbn4PRrkww802bNnj15tqrNlyxY8e/YMf/zxh17fYN+9e1dxIRx/SUe5IUOGwMfHB5s3b9ZYj/Iymsq9Az5+/Ki43axZM7XLoCpf1M+dOxezZs1SOa7v8oXKvTxev36d4HlXptzjYOPGjThy5IjK8WbNmimSG4D2oUeaKCc4tFG+yK9Vq5Zi6Um5devWJThH3bLcb968UQxFUrf8pKZkgq6L7+vXryeISR9iXWAPGzbMqDbevHkDNzc3nD59GmfPntX7/ULfpTsBqB2ao44pCQ5jh9DJh6cRERElBkxwkMmuXr0KIO7iIv4QhOfPn6NPnz5YuXIlAgMDE3Sb1uXr16/4999/jerWbat27Nihs0xISAjatGmDJUuWiNburVu3EBMTg/DwcNGTNrGxsbh586bK3B+aHmfNmjWRMmVKvS9WgbjhAWFhYdi+fTsiIyNx5swZhIeH4/z58wA0X5BrEh0drUhEaLtoUtalSxeV+8Zc6Io5x4cu27ZtQ/v27dGrVy+MGDFC5VipUqUUf/eGkCcchg4davC58ZMMP3/+xIwZM/DlyxeD69Lm7Nmz+Pbtm+J+mjRp4OTkhDp16hhVX/yhVaZcoOrStm1bxe1bt25p7bGgjbrkkTnP08USCV1df1uxsbEoV64cSpcurXed8h5HYtI234e5VKhQweJtEhERGYsJDjKr+N+ky78li4mJwf3793XOIVC2bFmUKVMGOXLkSDBGWZu7d++icOHCKFiwIK5du6bXOTExMdiyZQtWrVqlcoFjbeJP5KfO77//jg0bNqBHjx4GJ5UsLTo6GoUKFVLMYRBf/OElhw4dQkxMDIYNG4asWbOiV69eOttQfg4WLFiAsmXLIm/evAnKRUREYN26dTrnCqlZsybSpk2LAwcOYOPGjTrbf/LkiUpvBABGzXMSfyiBKf7++2+13+grk3dp/+OPP1T2nzt3DoMHD9b4rXf8+Qbie/r0KR48eKB/sEh4kfX48WOjEiW6NG7cWO1+QxJq2mhKcFy8eBGnTp0SpQ1zePHiBT5+/IgHDx5ofN7N0bMLiHu9EREREemDc3CQ3gRBwP3792Fvb4/s2bObVFejRo2we/duuLq6ar1gl18EhYeH49OnT0iRIgUGDRqEp0+fom/fvqhUqZLa8/bt26dIbOzatUuvOTCOHj2qmDcjPDwcAwYMMOxBWRHlxJGx3bs3bdqEc+fOYciQIUifPr1YoSXw+vVrlZUY9CWfzPKPP/7AokWLVI4pJ7WWLFkCV1dXxX35haq6MfHLli1Dnz59kDx5cpUhEfHJhyFoG2qhrGfPngn26TPsIz59e868efMGJUuW1Di55+fPn9GgQQMAcb0x9BF/9ZFHjx5p/GY9JCRE5b66JFv8VSV0iT90R9tqKKZ49eqVWSdy3Lp1q9phSMWLFwcAvH37Fv379zdb+8oqVKig1wSwkyZNwujRoy0QEREREZFp2IOD9DZx4kTkypULOXLkUDvTvSHk3du/f/+Ohw8f6n3exYsXMX/+fOzcuROTJ0/WWE75ol7fC3zlYTDxh8TIV0WJf+GW2AiCgOPHj+tcGeHZs2do1aoV5s2bJ+qKKuooTyQphkuXLikmGAXiej3om0yQT55oTPJBm/3794tanzpfv35FhgwZIJPJsH79eo0XrrGxsSoJP129qOTUfTuv79+WuglBzSFz5swWacdU2nqe7NixA3/++adF4jh58qRewz+Y3CAiIqLEggkO0ptyt31Tlvs0hfJEbPpOyqYPXRd5q1evRokSJZAvX75EPeHamTNnUKlSJZQpUwa3b9/W6xzlpSfF9ujRI7WTHJpC3QWbvsObli1bZlBbq1atUrlv6FweN27cEGUp4YsXL6Jp06aKCToHDRqUoMzTp0/RtWvXBMkPc0yCCwAlS5Y0S72mkK+woou5h3WtXbtW47Hu3bubtW0iIiIiW8YEBxHi5gyIPxmgstDQULW3xXTjxg1UrlwZnTt31nqBNWfOHKPbkK+MAKgfouHt7W103cZ48uSJRdrRtjKJnBgTAhryu3nz5g0KFiyIAgUK4N27d0a3+fjxYxQvXhwHDhzQWu7GjRtYvnw5OnTooLK/UaNGitsHDx7UeL6hiZCLFy8aVN5Qhr52Vq1apdf8NURERESUeDHBkYjMmzcPmTNnhrOzM8qWLav3spOGOHToEAYNGoQZM2YYPEY+sTPH8xnft2/fsHTpUmzbti3BsY0bN+LYsWNYuXKlxhn9o6KiVJIUQNwyva1atdKr/YEDB2o97u7unmDfypUrUbBgQaNW/QBg0ioXYWFhovQg0afLf/wlHf/66y9069YNO3fuNLl9dd6+fav2ti7xEw3ZsmUTLSZttm7dqnL/yZMn6NGjh0XaVmfkyJEGlVde+pWIiIiIbBMnGU0kNmzYgGHDhmHp0qUoWrQoZsyYgRo1auDevXvw9PQUrZ3WrVsrvk3OkSOHyre7ypYtW4Znz54pJuWUmiAIePbsGVKnTg0XFxeN5WJiYiAIAhwcLP/SDw0NRfXq1RWJgsmTJ+PevXvo1KkTypcvj5iYGJU41VGe8yBnzpyKujZt2oR169bpfFzqEhj6uHHjhsaJQAVBQJ8+fbB//340aNAA/fv3R8aMGQHETRLr5+enKGtoskNejz5+/vyJKVOmGLV8qTry1TSWLVtm9ESthtI2salc586dLRCJfiwxt4gm5hpaQ0RERESJF3twJBJz5sxBjx490L59e+TLlw/Lly9HdHQ0NmzYIGo7X79+VXtbnf379xu1TOPVq1dF/za1W7duyJw5MzJnzqxxideQkBD4+PjA09NTZ3d+MS1cuBCpU6dGlixZVHpBjBw5EmvWrDHoglX5m37llUHii46ONi5YA/33338YOHAggoOD8fDhQ8yePRtdunRBVFQU1q1bh+DgYJXyo0ePxqtXr3D58mXUq1cPmzZtEi2WQ4cOYeLEidizZ49odSpbt24dhg0bhu/fv4tSn3xCU7lp06YlWBI3vvi9dxITMZe4JSIiIiJShwkOkaxfvx7du3dHQEAAkiVLBplMhtWrV2s95+LFi6hduzaSJ08ONzc3lCxZElu2bElQLjIyElevXkXVqlUV+xwcHFCxYkWcPXtWlPjfvXuHJ0+eGPxNdVRUlNbj6iYC1dXrY8OGDQY/rkuXLgGISwBoWhXg/Pnz+PDhA378+IHjx49rrW/y5MkIDQ3FrVu3DH5OBEHAkCFDFPcPHTqkdY4FfVYxkFN+Dajr5bFhwwbIZDLs3r1b7zrl5L1gDFGtWrUEq6wcO3YMu3btQvv27dWuwHLv3j0MHToUe/bsMXhST0327NmTYOUbMUVHR6N9+/b4/fff8ddff4le//79+zF8+HCd5dTNm5JYjBs3TuoQiIiIiMjGWeUQlU6dOolSj0wmw4oVK0SpS5dRo0YhNDQUqVKlQtq0aXVORHns2DHUqFEDzs7OaNmyJTw8PLB9+3a0aNECz549U1kF4d27d4iJiYGvr69KHT4+PgYtsarJ7t270aBBA9G74X/8+BH58uVTu1+bFStWYMWKFXjw4IGo8RgqS5YsAGDwkriGTkIaERGRYJ4JTb1QlKlbyWbAgAEGta3syJEjBp+jae4IXfNmGJpI0aVevXqi1hffypUrFbfbtm0rev265kYhIiIiIiLdrDLBsXr1ashkMqMvuOXnWjLBsXz5cvj5+SFz5syYNm2a1m9jo6Oj0bVrV9jZ2eHkyZMoVKgQAGDMmDEoXrw4RowYgaZNmyJz5swWif3q1atmmWMg/qSNhipXrpxRQy3OnTtnUrvx3b17F6lTp9a7vDFLTPr5+amsbtG/f3+cOXPGoHYiIiLw5s2bBOWqVq0KmUyGBw8eJEgsxMbG4uHDh8iePbtBwx8iIyNRq1YttccyZMigdz1SOHr0qMHncOlOIiIiIiLrZ5UJjvbt20Mmk0kdhkGUhw7ocvToUTx8+BAdO3ZUJDcAwMvLCyNGjEBgYCDWrFmDMWPGAABSpUoFe3v7BEtdvnnzBmnSpBElfrFER0dj//79+PHjBzw8PADETWypaz4PdeJ3x79+/TocHR11ntexY0dMnz7d4Pak9OHDB5VeG8YknDT1YtA2HKdZs2bYsWMHOnfujPLly+vd1o0bNzROMJk3b1696yEiIiIiIhKLVSY4dM1dkdjJLzirV6+e4FiNGjUAACdOnFDsc3JyQuHChXHkyBHUrVsXQFwi4fjx45g0aZJBbY8c+RQ5c+ZX2XfuXDEAvROUPXgwF8LD/3///v2aAHxUykREuODTJzcAcXNMjB37Fk+eXAQg/ya/N6KjnQHELTm7cKEMP350AfD/hMfWrWnw/n1rANp7EFSvvhu9evVSxPr8eXYsWBB37O3blgDKKsqOH/9BUe78+eJYsAA4dy6PYt+lS6Vw/76nyuN++jQ3gJwJ2r1+vdyv1Ufiyv7zTzY8f645znfvVOvV19KlUJz38mVWxWO7eLGEXvUdOwYACYcEabJ8uQt27EgHoDdWrAAiInLr1Q4AHDqkuezjx/lw9Gg+jccXLpTh/v0aAGroHavcjh3p9Y6RiIiIiIikFglgqcVakwmWWv8wCZEPUVm1ahUCAwMTHG/WrBm2bduGS5cuoWjRogmOe3h4wNvbW2UZxA0bNqBz585YtmwZihQpgpkzZ+Kff/7RuExsREQEIiIiFPc/f/78a8nNTwDEW1aWiIiIiIiISL3PALzw6dMntdetYrPKHhy27tOnTwDihqSo4+npqSgj17p1a7x9+xYjRozA69evERAQgAMHDmh8kUydOpXLMhIREREREVGSkSgTHNevX8eBAwcQGhqKHz9+qEwkGhUVhbdv30ImkyFt2rQSRim+fv36oV+/fnqVHT58uMrKDP/vwdEZQNw8Fv7+hTB06FDs2LED27dvS1BHjx49Ua5cOcX9+fPn4/x53RN45syZC/fu3YWnpxc+f/4EFxcX/PjxAwCwbt169OzZE1+/flGUHzt2HFasWIGwMMNW1vD09MKiRYsgk8kwYsRwhIaGok2btvjzz/UJymbLlh0VKlTAqlVxq2GUKVMWZ86chr29A/Lnz4///rumta2iRQNw+fIllX0NGzZCaGgorl69AgAIDl6E5MmT482b1yatZgIAOXL4KRJUW7duxc6d4i9NWqNGTRw4sF/R3pcvX/D69Su9zm3Xrj3WrVur9lihQoVRtGgRs0zwO3LkSEyePFn0eomIiIiIyByiLNuckIiEh4cLjRs3Fuzs7AQ7OztBJpMJdnZ2KmW+ffsmpEqVSrC3txdu3rwpSZxTp04VAAirVq1Se7xp06YCAOHSpUtqj7u7uwsZM2YUNaZPnz4JAFS2WrVqCYIgCOPHj09wDICwdu1alTqaN2+utpx8mzp1qnDp0iVhyZIlAgDB19dXACB4enoqykRHRwupUqVSOe/MmTNC/vz5tdataRszZowgCIJQqFAhAYAwa9Ysvc5r27atAEBwdHQUateubVTbI0eOFOrVq6e4/+LFC2HOnDlCgwYNjKpPeStVqpTieR81apTJ9anb+vXrp9Ken5+f3udqK1unTh3Fa0DsLWXKlGaplxs3bty4cePGjRs3bubbPn36JOr1rSZ2SCSioqJQq1Yt7Ny5E66urqhTpw6cnZ0TlHN1dUXHjh0RGxuLbdsS9kqwBn5+fgCA+/fvJzj26tUrfP36VVHGmpUqVUrlfoUKFVC0aFGDV8DZv38/QkJCjIrh1q1bRp1nDvfu3cOAAQOwa9cuk+u6efMmihcvjoYNGxq1VK65JUuWTOvx06dPG1Rf3CSuur1//96geomIiIiIKOlINAmOFStW4Ny5c8iWLRvu3r2Lv//+W+McFk2aNAEAnDx50pIh6q1ChQoAgIMHDyY4duDAAZUyUmrfvj2OHj1q9nYmTpyI2NhYlX1r16of/gAAPj4+WLRokbnDMtj3799Fq+vLly+4ePEidu3ahZs3b4pWryV8//4dW7duNeicgIAAM0VDRERERERJRaJJcGzcuBEymQxz5sxBunTptJYtXLgw7OzscOfOHQtFZ5gqVaogW7Zs2LBhA65du6bY/+nTJ0yZMgVOTk5o3769dAEqqVKlCv755x+Lt5spUyakTp1a7TFjZt/18fHRXUiH+L1q7ty5g927d5tcry7xkz9imTdvntr98gQhAHTv3l3lvj6OHTuGnz9/mhQbERERERGRoRJNguPGjRuQyWSoXr26zrJOTk7w8vKyaHf25cuXIzAwEIGBgYpvr5X3LV++XFHWwcEBy5cvR2xsLMqXL49u3bph0KBB8Pf3x7179zBlyhRkyZLFYrGrU79+fcXtMWPGSBhJQuvWrTP4nDlz5iAyMhJdunQRLY5jx44ZVH7GjBmitQ3ELSdsCVK/FomIiIiIiPRhkQTH2rVrsXbtWty+fdvoOr5//w4PDw84OTnpVT4qKgoODpZbJOb06dNYs2YN1qxZgytX4lbVOHPmjGJf/DkJKlWqhNOnT6NMmTLYvHkz/vjjD/j6+mLTpk0YNGiQxeLWZNasWejZsycAIDIyUmO5QoUKAQDc3NyQPXt2o9szpIdFyZIljWrD0dHRYkkBMWnqQTNp0iSzJx+ioqLQokWLBPvjD5sZNWqUSe3o+3dtCZUqVZI6BCIiIiIiMoJFEhyBgYHo2LEjChYsiMDAQDx58sTgOlKlSoXPnz/j69evOss+fvwYX79+1TmURUyrV6+GIAgat9WrVyc4p3jx4ti3bx8+ffqE79+/4/z582ovJqXg5OSk19CECxcu4N69e3jx4oVJw0C2bNmCfPnyGX1+UtShQwc8fvzY5OQCAJw9e1YxrER58tgXL17odX69evWwcuVKo9pevHixRZORuojxfBIRERERkeVZbIiKIAiIiYnB2rVrkTt3bvTu3dug80uUKAEA2Lt3r86yCxYsAACUK1fO8EDJII6OjvDz81M7L8br16+1nuvq6qq4nSJFCtFj0+bdu3cWbU9fHTt2lKztZ8+eATC+h4yxcubMadH2iIiIiIjINlkkwXHs2DEcO3YM69evR+fOnZEuXTr88ccfBtXRqVMnCIKA0aNHa/1WecmSJZg3bx5kMhm6detmauhJlouLi9HnFixYUK9y69atw++//46tW7eiQIECRrdnjP379wOAQUuwRkVFGdRGmjRpDCqvS58+fdChQwdR6yQiIiIiIrIVFklwVKhQARUqVEDr1q2xbNkyPHr0CI8fPzaojjp16qBJkyZ48OABAgICMHjwYPz48QMAsHTpUowcORL+/v7o1asXBEFAly5dFL0+SH9BQUFYtWqVygomN27cQNOmTfWuo0SJElizZo3Ocrlz58aQIUMMqttUZcqUUbnfpk0bvc/VtZqJ/PUot3r1aqtZDccSMmXKZLa64w9hGThwoFH1SNlDhoiIiIiIzEuyVVSMuRhat24d2rRpg1evXmHOnDn48uULAKBnz56YNm0abty4AUEQ0KlTJwQHB4sdss3r0aMHFi5ciMDAQABxCQi57du3G7T0p7e3t8nxtG7dGm5ubihcuLDJdck1adJEZY6J4cOHi1Z3y5YtVe7b29ujSJEiBtXh7+8vWjzmEBAQoHZ/qlSpULlyZVy+fFljGTHJX6OGuHr1KofDmJmvr6/UIRARERFREpZolokFAGdnZ6xbtw4nT55Eu3btkD17dri4uMDJyQmZMmVC69atcfz4cSxfvtyqJi1MrNKnT6/3JJPmMHfuXHz9+hUnTpwQtV7luT/EJAiCyXVkyZIF1apVEyEa4xkzWWy2bNkgk8lQpEgRq11WVltSVT4hcY0aNSwVjk3KmDGj1CEQERERURJmtizAnj17cOjQIdjZ2aF27dqiXrSVLVsWZcuWFa2+pOrt27c6h124u7uL2qa3t7ei542+3N3d0axZMxw+fNjiq8wUKVJEseyvpSRLlsyi7SkbM2YM/Pz8JGtfndatW2Pfvn34+PGj2doYNGgQypcvj3z58uHs2bNma8fWTZ48mUkiIiIiIpKM0T04duzYgWzZsqFHjx4Jjg0cOBANGjTAwoULMX/+fNSsWRNDhgwxKVAS36VLl1CmTBlReh7oy9DkBgDIZDJs2bIFHz58MHhyWksyZMJSa1WxYkWDz8mQIYP4gSj5888/RatL0zLTdnZ2CAgIMGlyXQKXeiYiIiIiSRmd4Pj7778RGhqaYCnWK1euYO7cuRAEARkzZkT27NkhCAJmz56N48ePmxoviezcuXOIiYmROgyrUbRoUbPV7evra7bhMVLauHGj1CHo7fnz54rbc+bMkTAS62PplYyIiIiIiMRm9BCVixcvAgCqVKmisn/lypUAgEaNGmHr1q2ws7NDnz59EBwcjGXLlun1DfHatWuNDSuBpLSKhSGmT5+OYcOGSR2G1VmzZg1at26N69evA4ibPFPOzc3NpLrd3d0RGhqqskJNYjd37twEw8VMnf/m77//Rv369U2qQy5DhgwICwtTeywoKAgDBgwQpR11tm3bZtEVgqyBnZ200zrlzZsXISEhksZARERERNIx+krk7du3cHBwQJo0aVT2Hzx4EDKZDMOGDVN82B0xYgSCg4P1HtseGBgImUxmbGgKMpmMCQ4yyYIFC3DixAkULFgQffr0UTn24cOHBOU7dOigdYncVKlSIXfu3Lhz547a487OzgbHGL8XlTqVKlXCsWPHDK5bl/LlyyfY17NnT2zatEnvOvLnz69yP1euXGjSpAm2b9+u2Kc8V0z27NmRO3duVKlSBaGhoXjw4IHebRUsWBCAOKv86NKkSROzt2Ft4v8/kNqCBQsS/N0SERERke0y+uu28PDwBBNQvn//Hg8ePEDy5MlRvHhxxf60adPCzc0NL1++1KvuTJkyadxcXFwgCAIEQYC9vT18fHzg4+MDe3t7xX5XV1dkypSJM/prIfU3rYmFr68vunbtihIlSugsmy5dOmTOnNmoduzs7DBs2DCj5sCoXr065s2bp/H4gAEDcPToUZV9Hh4eWuuUD1eoWrWqxjL29vYmL+E7efJkpE6dWud7g/IwqlWrVsHR0RGHDx/Gv//+q9jfq1cvne317NkTa9euxalTp+Dg4IAyZcrA3d09QU80Mo4YiWkxSTlhLxERERFZntFXue7u7vj06ROioqIU+06fPg0AKFWqVILyjo6Oenddf/LkCR4/fpxgGzZsGKKiolC2bFkcOHAAX758wcuXL/Hy5Ut8/foVBw4cQLly5RAVFYVhw4bh8ePHxj48m5UtWzaUKVMG1atXlzoUUjJ79mxMmzYtwQVZ3bp19TrfyclJ77a8vb2xfv16rWXOnz+P27dvY+DAgXrXK6dtOdb45O8JV69eVexLnz59gnKdOnVS3NbUY6VMmTI623N2dka7du2QL18+yGQynDp1Cu/evbO5+Sfs7e2lDoGIiIiIyOKMTnDkzp0bgiDgn3/+UezbvHkzZDJZgguQ79+/49OnTyZ1Xz569Ch69+6NevXq4fjx46hWrZrKxaCTkxOqVauG48ePo169eujduzcnNVXj6tWrOH36tFX2bkmePLna29rcvn0bbdq0wbVr18wSkxSUh2MoX6iaOreFIVxcXJA7d26jvpHPkiULHjx4gH379hnVtqlznRhCJpMlSCply5YNQFwS15DEkSE8PT1NruPSpUsiREJEREREZDuMTnA0btwYgiCgS5cumD59Ovr374/NmzfDzs4OzZo1Uyl78eJFCIKArFmzGh3orFmzIAgC5syZo3V4hUwmw6xZsxAbG4uZM2ca3R5Z3vLlyzFlyhRs2LBBMVeCLiEhIdiwYYOZIzM/5de08nCJNGnSYNCgQahevTo6dOiAxo0bI2XKlKhTp44oF8mA+nk0TJU9e3bkyJFD9HotIUuWLHj+/DmePHli0Ko3jx490qtcs2bNTJ7ctEiRIvDz8zOpDiIiIiIiW2N0gqN3794oWLAg3r9/jxEjRmD+/PkQBAF9+vRRfAMqt2PHDshkMpMupC5duoTkyZPr1fMgU6ZMSJ48uWKlFxKHIc+n8hwPuuZ7kMudOzeGDx+OVq1aGdVzwN/fX2Xul8SifPnyKkNRWrdurXJ85syZOHDgAPz9/VG/fn28e/cOe/bsEW2+g1y5colSjy1Jly4dUqZMadA5WbNmRVBQkM5yW7ZsUTsMRx1t75mahqHUqVNHr7oTm9WrV+ssY0srFBERERGR4YxOcDg7O+P06dOYMGECatasiVatWuHPP//E7NmzVcpFRkbixIkTyJQpk0nzPnz58gVfv35FZGSkzrKRkZH49u0bvnz5YnR7FEf5IkrfSWKBuHkS5s6diyFDhmDZsmXmCE3FxIkTce3aNb2HtmijPBTE3JOx/vbbbzhx4oRJvZvIevj4+Iha34kTJzB58mS1x9zc3NQeW7p0qcqkrMbo3bu3wedMmjTJpDZ16dChg84y+iZTiYiIiMg2mTSo393dHaNGjdJaxsnJSZT5EbJmzYo7d+5g7dq16NKli9aya9euRVRUVKLtIm9p06dP13jM1dUVkyZN0vl7js/e3h79+vUDELe6TmIydOhQzJkzBxUqVLDZC6Z06dKpvW0u2bJl03sIhzUxZtlefRiSLBwxYgRkMhlGjBih9tjIkSNV9onx+9S3h4lcWFiYRV5HZLilS5eiW7duUodBREREZBGJZq3QVq1aQRAE9O3bF2vWrNFYbu3atejbty9kMhlatWplwQgTl2TJkikmUNTVK2bkyJEoVKiQBaKyDi1atMC5c+e0Jn4Su6JFi+LMmTM4e/as3vOdmGLw4MFmb8Mcxo4da5Z6De1d1rVrV7PEIZb06dObdYnYiRMnmq1uS0mRIoUk7TLRT0RERElJoklwDB48GIUKFcLPnz/RqVMnZMmSBYGBgRg5ciRGjhyJwMBAZM2aFR07dsTPnz/h7++faC+qLMHV1RU7d+7Uu3xwcDD69u0LR0dH8wVFFiOTyVC6dGmULFnSIu0l1p4wPXr0UCx/rYmjoyNq165t1jhSpUpl1vqtWevWrdX2XrGkWrVqGXXe9u3bceHCBUydOpWTXhMRERFZgF5DVNauXStag+3btzfqPGdnZxw5cgSdO3fGzp078fTpU6xbt06ljCAIAID69etj5cqVZutebitq1aqFUqVK4ezZszrLli5dGqVLl4aPj4/Bw1U0Mcc3mhkyZICzszN+/vwpet158+ZN8hPXKi+bauo8D9o0adIE27dvN8sKL4by9vbWevz9+/dwd3dXe2z8+PE4ffo0Dh06ZI7QkoTChQsr5sLx8vLCp0+fNJZt27Yt9uzZo7JvypQpmD17Nt69e2d0DPnz5zdo2eN169YhX758KFSoEGQyGYoVK4Zt27YZ3b4p5P8XiYiIiJICvRIcgYGBonQ/lslkRic4gLgLjR07duDixYvYtGkTLl26hDdv3gCIm9wvICAALVq0SJQraSQl06ZNQ9myZZEmTRrR606ePDnCwsIQFhaGRYsWYenSpaLVvXz5cvTq1QsLFy5MkFxLKlq0aIF///1XtPpy5sypdn+rVq1QoUIF0SftNAd3d3eN749jxowBALMO31BmieFGUtqxYwcWLlyIv/76S+3xBg0a4N69eyqvq+HDh+O3334z+4TBytzc3FC4cGGzt2OuZC4RERFRYqVXgiNTpkwW+4Cuj2LFiqFYsWJSh0FG6tq1q1nHo6dMmRIpU6bUuIymsRwcHFC8eHGN3+jrOwwjMV+Q+Pr6Gn3ukiVL0L17d5V9FStWBAC4uLjgx48fKsfEmLTSzc3N5DqsxfDhwzF16lSNx4sXL44tW7YYXK+rqytGjx6NDRs2mBKeRVSuXBmVK1fW+P/I2dkZfn5+Cfab+v9L+fzFixejSZMm+O+//1C1atUEZf38/PQe0jJu3DiMGzdO7zgyZ86M0NBQvcsTERERJTV6faX15MkTPH78WJSNyBZVq1YNv//+u15lhwwZInr7Xl5eotcpNm29t2bPng03Nze9n0M5V1dXxe2UKVMqbjs5OaF27dro2LGj4YFaKU3Lxcq1bt0amTNnNrjez58/47fffjPonIULFxpU3pSee/pycXExextA3ISqqVKlQpUqVdQev3v3rt7DIw2dxHb79u0q92NjY3WewyEqRERElJQkmklG4/vy5QtOnDiBrVu3YuvWrThx4oTBKxMQGSP+hJKNGzfGwYMHUb9+fb3ON8fEno0aNcLChQsRFBSU4FhiWEWhR48e+Pr1q8HJHzc3N5w8eRIbNmxQ+TZ92LBh2Lt3r8rqP4l9Th5z9aITu6eTOkWKFDF7G6bQ9RwY8txrKluqVCmDYlInS5YsKveTQvJi7ty5UodAREREiUiiS3DcuHED9evXR4oUKVC5cmW0bNkSLVu2ROXKlZEiRQo0bNgQN27ckDpMUpIiRQo0a9YMPj4+aN68uc5JG8WSKVMmtbfjUx6br884/Ro1alhdbyRnZ2cEBQWhTZs2in0TJkzApUuX0LNnT53nylnqW3AxlStXDq1atVJ7kVq1alWsW7cOx48fV+ntYSp5T5O0adOKVqe18/DwUDyHefLkkTgacU2aNMnsbaRPn97k5W6NSWgonzN//nyT2pdC0aJFpQ6BiIiIEhG95uCwFjt27EDbtm0RERGh9oNeTEwMdu/ejYMHD+LPP/9Eo0aNJIiS4pPJZEbNDWCqIUOGoHTp0vD09FT5Jj++rl27IiwsDLly5UKuXLksF6CZ+fj46HVxUKVKFYwYMQJOTk5mndvGlB4ItWvXRnBwsM4JhPPly4eQkBBUqFABQNw3823btjW6XU0qVaqEmzdvIk2aNFY1pArDAAAAWwlJREFUP5E5/fPPP0iePDkePnyISpUqmVyffKUcdR4+fIjs2bMD0C/paG5i/Y5NmcMGSJjgMDThERAQYFL7RERERNZOlARHWFgY/v33X4SFheHbt29aP3TJVxUw1OPHj9GmTRtEREQgS5YsGDp0KKpVq4YMGTIoYjh06BBmzJihKHvr1i1kzZrVqPYo8bO3t9drmdH69evrPbzEEpR7Ilhi+ECyZMl0zu8gVjtDhw41eJ4NIK7XzNu3b+Hp6am13OXLl/Hhwwez96yQyWTIly+fWduwJn369EHZsmUBxC2ZKgblnkMDBgzAnDlzFPezZcsGJycnREZGInfu3KK0ZwtMTXAYmqjJnz8/bt68adA5RERERFIyKcHx7t079OjRAzt37tT5QUsQBMhkMqMTHDNmzEBERARKlSqFAwcOwN3dXeV49uzZkT17drRr1w7Vq1fHuXPnMGvWLIMnwyOSWurUqTF48GBcu3YNnTp1ErXet2/fmjwfQr169bB7926jzp0+fTry5s2LwMBAAHFJD33pM7QpWbJkZk1upEuXDv7+/ihQoIDZ2kiKlC+8165dCwA4c+YMQkJCULNmTanCUtA3MTB69Gi962zYsKHBcRiT4DBlno506dIxwUFERESJitEJjm/fvqFixYq4ffs2nJyc4O/vjwsXLsDJyQnFixfHq1ev8ODBAwBxczCYekFw+PBhyGQyLF68OEFyQ5mbmxsWL14Mf39/HDx40KQ2iaQyY8YM0es8ePAg9u3bh1atWplUj7a/P2UZMmRA5syZ8fbtW5UhQs2bN8f379/h5+eX6Ob82Llzp+jDeG7cuIGDBw9i0KBBotabWLVr1w5A3HAKSwypaNCggSj1/Pz5U2fCTjlRsmbNGlHaNSdD563p0KFDonhcYtM23IqIiIgsy+jBzcHBwQgJCUGuXLnw6NEjnDt3DkBcMuPkyZO4d+8eHj9+jObNmyM8PBw1a9bEsWPHjA40LCwMHh4eeiVKChQoAE9PT4SFhRndHpGtKVSoEIYPH55gJQZzcXZ2xv379/H27VuVYQ0uLi7o2bOnyqonSVn+/Pmtfu4XQ3raJDYLFiwQpR5DnyNdw63UsUQPDnmvxxo1ahj8xcTq1asNKq+PxDDHjTHD7oiIiMg8jE5w/PXXX5DJZJg6darGLuGZM2fGpk2b0Lx5c4wYMQJHjhwxOlBHR0dERUXpVVYQBERGRsLR0dHo9ojMJWvWrPDy8gIAFC5cWOJozMvR0VHU1UtsVZEiRaz6/apz585Sh2AWmTJlQsaMGXWWs5aL7Pi9p8Seg+Pq1asICgqCIAjYv3+/wfFZg9SpU5ulXk2T3ZYvXx7ZsmUzS5tERERkOKMTHHfu3AGABOOj1SUhJk+eDEEQTPqmLEeOHPj58ycOHDigs+yBAwfw8+dP5MiRw+j2iMzF29sbz58/x+vXr9G8eXOpwyErkDZtWnz+/Nms3dzLlClj1Hnly5fnRJ8iMWU+DCAuwTFu3Di1x0qWLGlS3QCQPHlyk+uwVW/fvjWofIsWLcwUCREREWljdILj58+f8Pb2VumW6+zsjK9fvyYoK//G+sKFC8Y2hwYNGkAQBHTt2hW3b9/WWC4kJATdunWDTCYzahI3Iktwc3ODj4+P6PWmSJFC7W2yfs7OzmjcuLHRvSV0fYs8bNgwo+q1hmVapWYtPTgAYOzYsWr3a+pJaUpSxdSEjBTMFXOKFCnUriCk6bVhTa8ZIiKipMToSUZ9fX3x/v17lX2pU6dGWFgYwsLCFMu3AkBMTAy+ffuG79+/Gx1o//79sWzZMoSFhaFw4cJo1qwZqlSpgvTp0wOIm6PjyJEj2LZtGyIjI5EhQwb079/f6PYocbGWOQJKliwJR0dHeHh4IH/+/Lh165ZF28+VKxd27tyJ8PBw0SZPJOt27tw53LlzB7Vr19Zajhdc0hN7+IS9vT1iYmIAiHNhr7x0r7WwptftokWLEiw9nhiTQLaoadOm2LZtm9RhEBGRFTD6q7lMmTLh+/fvePPmjWKffKWEv/76S6Xs33//jejoaJO+sfb09MT+/fuRJUsWREZGYsOGDejcuTNq1qyJmjVrokuXLti4cSMiIyORNWtW7Nu3Dx4eHka3R4lL27ZtpQ4BAFCrVi18/PgRL1++RJo0aSSJoUGDBujQoQOcnJwkaT8pc3Nzs3ibJUqUQIcOHWBvb29SPYb21Jg+fbpJ7VkTXSvjiHWRXbduXfTq1QsrVqwwqZ4+ffqgcOHCqF+/vs6yyhfg2h5H9+7dJXvP0uXSpUto2rSpXmXNmXDQZ6lqQyxbtkzU+pIyJpqIiEjO6ARHqVKlAACnTp1S7GvRogUEQcDw4cMxY8YMHDp0CDNnzkTHjh0hk8lQq1Ytk4LNly8frl+/jqlTp6JQoUKws7ODIAgQBAF2dnYoVKgQpk+fjv/++w/58uUzqS1KPHr16qWxe7YU3NzcmFxIotq0aYMaNWpg0qRJUodisIEDBxpUXt+L/qCgIGPCsajKlSvjn3/+QevWrc3ajoODA4KDg9GpUye9zxk9enSCffPnz8eVK1dUEmqmXuCNGTMmwT5ruWgsWrQo5s+fr1dZa4lZF3t7e7MMU0yqEsvvnYiIzM/oBEfjxo0hCALWrVun2NeqVStUrFgR379/x2+//YaaNWti2LBh+Pz5M3x9fTVOjmYId3d3DBs2DJcvX8b379/x8uVLvHz5Et+/f8fly5cxZMiQBDPNExFZQpo0abB//36MHDlS6lAM1r59e8VtMYcqBAQEiFaX3OHDhxPsM2WuEHkCPnv27BqPS2X8+PEYNGiQ2iVYlS/qTL3AS5cunUnnm1tiuoCdM2eOXq+ZunXrGpxYJPEMGTJE6hCIiMgMjP5EWKJECcTGxmLnzp2KfTKZDHv37sXw4cORNWtWODg4IGXKlGjbti3OnTsn+gcoR0dH+Pr6wtfX16qXWCSixEv5Yt8ScxTUqVMHgHkSA7oMGjQIhQsXRqtWrSzaroODYdNBValSJcE+YydRtXYymQwzZ85Ehw4dEhzT56JfOWljTfNZ6MvQmA1NhJhjiddWrVrpjFsmk8HOzg6zZs1KsBodGc6YBNi0adPMEAkREUnN6ElGNXFxccHkyZMxefJksasmK+Di4qL2NpGtypYtG6ZPn47IyEi1qyiIrVGjRrh+/TqyZs1q9rbimzlzpsXbBOKG9qxcuVKR3DHG0KFDRYxIlVTL5GbKlEnrcX16cPj5+WH//v3w8fFBdHS0Qe1bU68JfWPJkycP7t+/r/eyrrlz58ajR4/0KqsuacEeo9ahRIkSCeZ/04UrRBER2SbRExyW8OLFC1y/fh0fP35EVFSU1rLK3a7JdG3btsXTp0/x5csXdO3aVepwiCzCnBfP6hQoUMCi7Ukta9asePXqlUkTpZqrF1+dOnXQrFkztGnTxiz1q5M7d25Uq1bN6MmT+/TpgwULFiju16hRAwBw8eJFUeKTgr4Jjnz58mH//v3w9PTUq/yKFSuMmsOpc+fOuHLlCoKDgxMcS0xLdA8cOBCzZ89We6x79+5YsmQJgLh5asqVK4fx48cb3MaGDRvw999/Y9OmTSbFqk3OnDl1lmnbti3Wr19vthiIiMg6JKoEx9WrV9GvXz+cOXNGr/IymYwJDpH5+Phg7ty5UodBRDbG1FVgzGXYsGEWHwLp6+ur16SaYs7BYQsCAgIwevRog1ZQS5MmDXLkyIEHDx4Y1NayZcs0DkPR5/WifK68l40U6tatqzHBEd+4ceOMSnC0atUKrVq1MmuCQx9Tp061ugRHlixZ8OTJE6nDICKyKUYnOE6ePGnUefHXkNfX1atXUb58eXz//h2CICBZsmRIlSqVwWO3iYiIrJm+804YmuDQVK+m/6PGJE3Wrl1rli8W9EkaHDt2LFEOGZk0aZJKjxtrkRjnbNFGOfHVsWNHCSP5v+XLl6Nq1apSh0FEZFOMzg5UrFjR4H9+MpnM4DHAcqNGjcK3b9+QPXt2LF26FBUqVOD4SSIiQs6cOW3qYkzfx+Lq6qp2v5S9OcT+vyx/Lnx9fUWt19wM+R3oO5xGTiaTscdOPPo8H15eXorbmlZMsiVFihTBlStXpA6DiMjiTPokIgiCQVtsbKzRbZ05cwYymQxbtmxBpUqVmNwgIiLMnDkT165ds1iCw5qG0kyePBmFChXCH3/8YdIFrzUkh8RYoUjT46hevTp69OihuK+tN0i1atUMrt8Y1vCcA9rj6NOnjwUjsayk8BlSW08qdStRERHZCqPf4WNjY7Vu4eHhOHDgACpUqICUKVPixIkTJiU4BEGAm5sbChcubHQdZDuqVq2KPHnyIHPmzGjcuLFB56ZMmVJx29vbW+zQiHTS9M27rapXrx5cXV3N8qE6RYoUFlnRqU2bNvD390eFChXM3pa+F79p06bF1atXVS7etUmTJo1BcegzcWN8xiZa5syZo7OMIZPvyj8r9O/fHwcOHMAff/yhOJYmTRqcPXsWN2/eTHDewYMHUbJkSb3bSexSpUql8VjevHktGIlp9J0np2HDhgCgdtnlpCRPnjwQBAFBQUFSh0JEJDqzpbA9PT1RrVo1HD16FKVLl0b9+vXx+PFjo+vLkSMHoqKiEBMTI2KUicfUqVMREBAADw8P+Pr6onnz5kl6Yio/Pz+EhITgyZMnBl80zZkzBwsXLsTBgweNmj2fyFQdO3ZE0aJFMXLkSLPUb23d+bNly4Y3b97g4MGDFm1XOZlpqvXr1+PatWsWSU4Z8+2+PvNxZMiQAbt378bJkyfRvHlznXW2a9fO4DiM1b17d51ldCVPlJ+3ixcv4saNGxon0CxZsiTy5cun9pgYj9ucPTTiPw9btmwxuq7MmTObGo5VqF69ul7lduzYgZ8/fyJdunQApFsCWk6K5cABYOLEiQCA9OnTS9I+EZE5mb2Pnkwmw++//45Pnz4p3lCNERgYiMjISOzatUvE6BKPEydOoE+fPjh//jz279+PDx8+oFatWkbPaZKUpUuXDkFBQVq7IhOZU5YsWXDp0iVMmjTJLPVv3rzZ6iauc3Nzs1i38OXLl6NXr16oV6+eRdoTm6kJDm3q1q2LcuXKYdmyZTrbs7e3R61atQyOxRiaYjA2UWBvb4/8+fOrPd8ahoeYEkP+/PlV7mfLlg2FChUyuJ579+4ZtOKMNUuWLJle5WQymUrZPXv2mCskvWTLlk2SdpMnTy5Ju0RElmCRT5u5cuWCp6cnDh06ZHQdvXr1QtWqVdG9e3ecPXtWxOgSh/3796NDhw7ImzcvChcujGXLluHOnTsICQmROjSyccoXpUlh3LItqFChArZv3y51GFrlyJEDLi4uSJ8+vei9Ijp37ozg4GCLL+8qFktcgOs7saU1TWZpqVis4TF7eHhg8+bNao8VLVo0wT5j3pv9/Pw0Hnvx4oXB9VkjXcNQs2fPnmS/OCMislUWWWM1KioKP378wM+fP42uw97eHrt378bgwYNRtmxZlCtXDsWKFdP57cOYMWOMbnP9+vU4deoULl++jBs3biAyMhKrVq1CYGCgxnMuXryIsWPH4t9//0VUVBQKFCiAgQMH6tUd2BCfPn0CEDf+nMic/P390axZM3z58gWVK1fGX3/9JXVIiU5iXPXA0dERUVFRGrvxmyplypR49uwZkiVLZlUTd1qD+fPnG3yOoUvGKhMzoVKwYEGdZdq0aYM///xTtDblzJ0YsmTPj/DwcMhkMrRo0UJnWX3iGjJkCGbMmKFX29HR0Vb/N+nt7Y2PHz9qLRMUFIR9+/bpLMcJN4mIbItFEhw7d+5EVFQUMmTIYFI9hw8fxp49eyAIAk6dOoVTp07pPMeUBMeoUaMQGhqKVKlSIW3atAgNDdVa/tixY6hRowacnZ3RsmVLeHh4YPv27WjRogWePXuGQYMGGR2LspiYGAwePBi1a9c2+Tkl88qVK5fitrZvy6yZg4ODyhhva5vfITFYsGAB+vXrp/cFhi4+Pj6i1KPN3r17sW3bNowaNcpsbYg5R4YtkXpeAFMULFgQhw4d0joEUOrfu66EgCUSGbrasLOzEzUpag3Dcsylc+fOave7ubmZ/BwGBgaiVq1aeiWayDgFChTAjRs3zFb/uHHjMG7cOLPVT0TWx2wJjsjISDx79gzbt2/HlClTIJPJTBrLe+rUKTRs2FAxyWj27Nnh6+sLBwfz5WiWL18OPz8/ZM6cGdOmTcPw4cM1lo2OjkbXrl1hZ2eHkydPKsbDjhkzBsWLF8eIESPQtGlTlQm9fvvtN0yfPl1rDPH/OQuCgB49euDp06c4c+aM8Q+OLKJmzZp4+PAhkiVLZjOTeQ0ZMgQODg4oW7as1KEkGkFBQejcubPJS2EuXLgQixYtwoQJE0SKTLNq1appvUi1RJKF9NehQwccOHAA/v7+otZrzAWimPO/KF+YT5gwAU2aNBGtblsiZjJEXV3WliApW7Ysdu/eDQAaJ5IVw6pVqyAIgtUkOObPn4++ffuKVp+bm5todVmrpPAYiUiV0dkBQ7ovCoKA9OnTY+zYscY2hwkTJiA6OhoBAQHYtGmTRSZmMuRD2tGjR/Hw4UN07NhRZbIvLy8vjBgxAoGBgVizZo1Kj5JBgwZpHe4SnyAI6NWrFw4fPoyTJ08iderUep9L0pFqEjFzSZcunWg9EZISU5MbQFyixJRl/UaNGiXaxKbNmzfHhQsXEt2Smq6urvj+/bvUYYiuZcuWyJUrF3LlyoUhQ4YYdK4hF6/16tVTXFgq27hxo0Ft5syZE/fu3VPZFxISonVpUl1Lgpv7Ilz5c48gCJJd9Mf/YscScVjbELvp06crXofWFpu5ODg4oE+fPqImOLp27Yq///4bR44cEa1OQyWV3x8RWY7RMwYKgqDX5uzsjLZt2+LcuXOKZbmMcfnyZchkMvz5559WecF4/PhxAOqXKqtRowaAuJVQlKVOnRq5c+fWusnJ1yvfu3cvjh49iowZM5rvwRCRTRo/frxoXYFdXFwQHBxs0aVETSFfxcuc3/ZKSSaToUiRImb/tnLOnDlq97ds2VLvOmQyGa5fv55gf548eXDhwgWsXbvW6Pj0bd8Yfn5+aNiwITp27KhzUk9DlrQ1tEz69OnRsWNHxX11Q37atGmjs34pGfp5sFu3borbgYGBcHd313mOWMlXa+u9IiYXFxccPnxY6jCIiERldA+OY8eOaa/YwQHe3t7ImTOnKMNIYmNj4eHhYbXzGNy/fx+A+nkW0qRJA3d3d0UZYwQFBWHjxo3YvXs3XFxc8OrVKwBxk4w6OTklKB8REYGIiAjF/c+fP6utt0KFCjh79izs7e1RpkwZo+MjIutnZ2eXYIlJqZiS8DbGyJEj0blzZ6RNmxY9evSwaNuJWd++fXHgwAHFfbEu9pIlS4bFixcn+F0UK1YMxYoVQ/v27Q2uU6zYtC1Zay2TLK9cuRINGzbEx48fkSlTpgTH4+8z9bmR+iJfeb6xmTNnqu2F9fvvv2Po0KGK+w0bNtRr7jNXV1dUq1bNpJX+LMEWh1pUqlQJb9++lToMIrIxRvfgqFChgtatTJkyyJs3r2hzZOTJkwc/fvxQuWi3JvJVTby8vNQe9/T0VJQxxh9//IHw8HCUK1cOadOmVWz//vuv2vJTp06Fl5eXYtPU42Pq1KkIDw9HeHg42rZta3R8RET6+OuvvzBmzBjUr1/fou3KZDKkTZvWom1KpWvXrgCAihUr6lVe28Vr7dq1cevWLTHCSkDbFxblypVD1qxZVYZ8KhNjyJcmTZs21bm8aHwlSpQAANStWxeAaQkBff8X169fHx06dFB7bMiQIShSpIjRMcRn6DCCRYsWaT3eqVMnAMZNqKtpktr4Q7P0/R3IZDKVJJ41iP/+mDNnTquLUQz+/v5mT54Z8+VdnTp1zBAJEVmK0QkOS+vevTuioqKwfv16qUORhKYhQJo+wA4fPhyfPn1SbM+ePdNYt5eXl17dPYko8TDnBMymaNiwIcaPHw9HR0epQ7FZhQsXxps3b3R2PZcnCYoWLaq1nPLk2JZ6XZ04cQL3799X20MRALp06WJ03bouqFKnTo0XL15g3bp1ete5cuVKdOvWTeMSv25ubpg+fbriInzu3Lka69KVHJAnUzRp2LAhvL29cfnyZe1Ba2CJORGaN2+OAwcOYPXq1WZvSx9S91DR5e7duzp/7/HpmrPGUsqXL6/xmCWe91KlShl8zoABA0zqdU1E0rLOT8BqBAYG4sSJE+jXrx/c3NwMGu9rCfKeG5p6aXz+/Nngb4RMkSxZMiRLlsxi7RGRdXF1dcWiRYvQq1cvqUMhPfj6+uL169eoXLmyKPXpMwn15cuXsWjRIowYMUJrOTc3NwwdOhTfvn1TOxzCUPKLGm09amQymdbJzNUdE/NiydnZ2aD68ubNiyVLlqg95uHhgY8fP8Le3h6CIGDgwIFIkyaNxro8PDy0tqVrRbrt27frDthAhj63+iyDW716dTx48MCoeNKmTQtvb284OjrqfL5sVa5cuXD37l2Nxy0xV5s+kza3atUK3bt31zgvjLVOMpojRw6pQyAiI+mV4BBzwi9jxtUCcd0ZZTIZnJyc0KZNGwwfPhwBAQFa/7HJZDKsWLHC2FANIu9qe//+/QTfhr169Qpfv35F8eLFLRILEREQlxhmgsN8smTJgidPnohS1+zZs3Hnzh2DVtYyVd68ebFw4UK9yupa0twYefLkwfLlyy02H0vJkiVx7tw5lQk6tcmSJYso7bq4uCgSMjKZTGtyY9u2bTrr0yd5YAprvOCMH5ODgwNevXoFmUxm8uNNrNq1a4dRo0ZJGsO2bdtQr149xMTEaC2XM2dOC0VERKRngiMwMFCUb0ZkMpnRCY7Vq1dDJpMp/smFhoYiNDRUYzvyJdwsleCoUKECpk6dioMHDyboXSIfN1mhQgWLxEJERIYzdOntdu3aKVZnMVXNmjXRunVrUepKTDp37mxyHXZ2dqhfv77G4SxyBw4cwPnz51GpUiW96i1TpgyCg4ORK1cuk2PUl7XPE1OzZk3s37/f5Hrkn+XUJXuKFy+Ob9++wc/PDzt37tRYh67fNwDMnz8f9erVw8iRI42OVQp58uTB33//rbWMPp/Ld+7ciYYNGxrc/rx589CvXz+d5ZIlS4aSJUvizJkzBrehjrwnGxGRKfRKcGTKlEnjG+nbt28V3dMcHBwUkz+9f/8e0dHRAOK6t6ZKlcqkQNu3b2/VYySrVKmCbNmyYcOGDejbt69iYrRPnz5hypQpcHJyMjq5Q0SUWCWmJa0DAwNx+vRpVKxY0WI9Xz5//owfP34gRYoUFmnP0jw8PDBjxgzRV65RvjA+evSoXl8geHp6olq1aga1I8brQJ8eEb1798aDBw9EW9o0sXB3d8e9e/fg6OiIrFmzAoibQ2T48OEYO3as1gSHPurWrYsvX74kqnnGhgwZgtGjR2vsNdWmTRtcvHgRtWvX1pm40TQhqyaOjo6IjIzEsmXL9Covk8nQr18/rQkOQ4ZLBwQEYO/evXqX18USw5fKly+PkydPmr0dItKfXgkOTV1wFy9ejH79+qFs2bIYPXo0ypcvr3gji4yMxIkTJzBp0iScP38ew4YNM+kDjhQTUS1fvhynT58GANy4cUOx7/jx4wCAsmXLKiY6c3BwwPLly1GjRg2UL18eLVu2hIeHB7Zv347Q0FDMnDlTtO6uRET6cHJygoeHB758+SLJEtuLFy8WbU4JS/Dw8MDmzZsRFRWl14WtGF35PTw8bHoOgdKlS6N79+6iJTiWL1+OHTt2oGfPnhg+fDgA6xxSYagFCxao3d+1a1eEhYXBxcUFO3bsQPPmzdWWs7bnwJAvpMz93pSYkhsZM2bE77//rrXM+vXrIQiC1vk3jGXMXCvNmjXDvXv3NA5DadWqFW7evKmxDhcXF8XtwoULa0xwZM2aFY8fPzYoPvnywpkzZ9bY69tQ+fPn1/p4EjsfHx+8efNG6jCITGL0JKNHjx5F79690bBhQ2zZsiXBGEgnJydUq1YNVatWRfPmzdG7d2/kzp1b72XrrMHp06exZs0alX1nzpxRyVQrz+ReqVIlnD59GmPHjlV8SC5QoACmT5+OFi1aWCxuIiIgbiLGkJAQhIeHW7SbPRC30kP37t0t2iYlDqb0xuzcubMow1rMTayEw9KlSwEAz58/h7+/v0mrx+hLW+w5c+YUZYiKNffINUR4eDjc3d1FW13IkKVtreE5lMegLUmlbUlnmUyGNWvWoGHDhhgzZgwePXqksezevXuRN29eo+LUNmGxNgMHDsTs2bNV9nXs2BGDBg0yqj4isgyjZ2aaNWsWBEHAnDlztE7wJJPJMGvWLMTGxmLmzJnGNieJ1atXa1yeVRAEtb1Kihcvjn379uHTp0/4/v07zp8/z+QGEUkmQ4YMyJ8/v9RhEJmNqRd68p4gmnpHWIP06dNjzJgxRk/IKtbF8IgRI+Dr66vxeEBAAGrWrIk8efIAMG5ZYXWxWusk7V5eXkZfPFszfRN0ul5X2bNn11lHnjx5cPfuXbRp00ZrfT4+PlrrEbO3YO7cuVV+KrPF37fUunXrJnUIZGOMTnBcunQJyZMn12t8daZMmZA8eXJcvHjR2OaIiIisirUNCyDjdOrUCffv38eGDRtEq1P5Qs0aXyfKvauqV6+u93m+vr7YvXu3xuMXLlzAP//8g3LlymHJkiWKIb2mqlGjBrZv326WYRliCA4O1nq8QIECForEusj/DsRKmGiTL18+o8+VS5MmDa5evYr06dPrfY41/n2bytKrrxnbM4dIE6MTHF++fMHXr18RGRmps2xkZCS+ffuGL1++GNscERERJVLWPs9Ijhw5ksw3s2XLlsXixYsV9zdu3Ii+ffuqLStPfrRt21bt8QkTJmDEiBGK+/KhEzKZDN26dUOZMmWMjrNnz55wcXFBx44dIZPJ0LhxY7MuN2pKDx6xLgilHnYib9+QoTK2JEuWLIpFAgD1yQtbTGjEZ8k5A5s0aWK1w1n1WamJrJPRCY6sWbMiOjoaa9eu1Vl27dq1iIqKUsyQTURElNglhQ+6Yrl+/brUIUjG2i4C48eTIkUK9O7dW23ZtWvXYufOnRoTHKNHj9Y5dEAdbX878vjSpEmDz58/Y+XKlQbXb4zNmzejbt26FmlLE0NeK/qUFWtuEGNj0Db/BoBEO3zSkJVhLMnV1dXkOiz9f23btm06XydkGfouoZ4YGJ3gaNWqFQRBQN++fRNMxKls7dq16Nu3L2QyGVq1amVsc0RERJTIyC+AlL8RtLYLflsmv+CpVauW3ucoX+D4+vqiQYMGZr9Q1sTS7Zrr4k5dvW5ubmZpS1nx4sVRu3ZtBAUFaS0nn1elfPnyBtWv62/5zz//VLu/d+/emDt3Ljp06GBQe9ZC1/MpFeVeaA0aNJAwEjKVFEm0OXPmWLxNczE6wTF48GAUKlQIP3/+RKdOnZAlSxYEBgZi5MiRGDlyJAIDA5E1a1Z07NgRP3/+hL+/PwYPHixm7ERERJJhDw7rkFSGlhjj2bNnuHjxos4LV0snnZJ6kuv+/ft4+fJlgv2mPC/qutPb2dlh7969WLhwodZz//33X4waNQrr1683uv345s+fj4IFC6o9VrRoUfTr1y/BIgXKj3/o0KEGt2nIfDLqxO+NZEzvJEvbvn272v1t2rSxcCT/5+/vb/A52ub2ITKU0QkOZ2dnHDlyBA0bNoQgCHj69CnWrVuHadOmYdq0aVi3bh1CQ0MhCALq16+Pw4cPswsSERERiaJdu3YoVaoUSpQoIXUoWkmZCEuRIgUCAgIka98YUiY/TPld6ZpoVFmOHDlEn5embdu2SJ48uVHnZsuWDRMnTjT4gt6QyTgNNX36dJX76r7R1tWlvlixYmr3d+zYEW/fvk2wSkrDhg1V7tevXx8DBgwQdQJiU6jr0dS4cWPFbeXXr1h/R2FhYZgyZYrWMgMHDlS5X7RoUb3qnjVrluJ2/OFhRYoU0TNCEou1z5VlCKMTHADg7e2NHTt24Pz58xgwYADKli2LnDlzImfOnChbtiwGDBiAc+fOYefOnUiRIoVYMRMREVESt3btWvz7779wdHSUOpREJan3njCXXr164evXrybVYcocCoIgiDakR9/XiL6TUZqa5GvTpg3c3d0T7FdenUZdzPJllatUqaLY9+eff2LFihVIlSqVSg+SqVOnJhgyY2dnh9mzZycYYi/VKknXrl0TvU51v0Plx5c+fXo0atRIax0dO3ZUua/vc1KhQgWNx06dOoVMmTKp7CtcuLBe9ZJxsmXLJnUIohHlnbBYsWIas6RimTBhAtzd3RNkCTWZP38+wsPDMWbMGLPGRURESROHqBgnKVxgJ6XXhtiPVT4fhBRMfSzK82rMmDEDc+fOxfPnz1G6dGncvHlT5/kbN27Uuy11f0d///03GjVqhLlz5+pdj7FMWdrT0PeAFi1aqN2v/PtS97uTD82aOHEili1bBiDu9aWu/d9++02vWKT6286UKZMoS+GKzZSVRrS9DtQd46ompC+TenBY0rhx4zBz5ky9y8+ZMwfjx483Y0RERERE0jP1oku5+78lElDq4t28eTN69eqlccWWxGjr1q0IDAzEhAkTdJZ1cHBQ6ZFgjFKlSuHly5do2bKlSfXowxqHEMhXA8qZMyf27duHmjVrAtCcNEtMyVZDe/eY8p5gDQlaQRASLAvt7++PZs2aGV3nkCFDTA3LYhLTa9MaJZoEBxERkTWxhg+BZJ2UP5zqOx5dShkzZsTAgQMxcuRIyZbAbN68OYKDg21q0thSpUph1apVevVKMfX9RH6+2BdGKVKkQL9+/RT3161bh6FDh2L+/PmitgMkjL1y5cpImTIlKleurNf59erVw8OHD3Hr1i3UrFlT53Mh9nPl4uIian0AsGXLFuTMmRObN28WvW51Fi9enGCfrtemuf4Xxl+lUyaTYcuWLUbV1bt3b72HVNkCXcOK4nv//r2ZIpGGXkNU1q5dCwDw8vJSLDsk32eo9u3bG3WeoT58+MBJTYmIiCTEb6GAefPmSR2CCk2/E+UJ/yjhxZW1sdTcdm/fvoWdnR3q1q2L0NBQUXrY6Pu+cPjwYURHRxs0z46U8wi0aNECq1ev1qtstmzZ8OjRI53lmjVrZlKvBUM1btwYM2bM0Lu8ut9N/vz5RYlFPoeKGJo0aYJbt24ZdE6ZMmVw7Ngx0WKwpB07dhj0/9fW5srUK8ERGBgImUyGXLlyKRIc8n2GkMlkFklwbN26FV++fEGuXLnM3hYRESVN8Zc4JFKHn0USstbEl/LFmqW+kDNWypQpsXPnzgQrf4hB+fcjf5+rWrWq6O1oa1d+3xonEdb0+jXki9VTp04hY8aMaNq0qaJXQtGiRXH58mWj4zKmJ4U5/hb1nSvDku8DxszfUbJkSYwbNw5Zs2ZNMOFpYpMtWzakTZsWZ86ckToUi9ArwZEpUybIZDKVTJp8n7nMmzcvwbceb9++1ZqZFQQB4eHh+Pz5M2QyGerUqWO2+IiIKGkbOHAgNm7ciDZt2kgdSqJirRe3SYXYCRdbGqo1Z84c3LhxA4MGDdJYxsfHB2/evLFgVJopf8615qE98YcGpE6dWpR6pbigFwRBpQ5jEzDp0qXDjx8/4OjoaPSwC13c3Nzw7ds3s9Qtl1jez0uWLImrV68adE7t2rVRtmxZM0WkXtasWfH48WNMnz5dZWiYXOHChQ1+HACQIUMGdO/enQkOZU+ePNFrn5jCw8MTtBETE6N3u1WqVOEKKkREZDapUqXCo0ePEs0HPErazpw5g/Xr12PKlClSh2K1NA0bOHv2LJ49e4YcOXJgwYIFWLVqlehtG3OxrrwsbPbs2cUMx2TKj8fHxwfXrl3D7t278eXLF8Xkn2Iy5n1YjPfuP/74A9WrV8fw4cPx33//GXRuYlkVxNPTU+txqZOcFSpUQKtWrdCjRw+NZQztcbl9+3aLJzeAuCRroUKFkDlzZrUJDlNI/XuyJHEWzDaDhg0bKjK+giCgU6dO8PLy0rr0lZ2dHTw9PZE/f36re6MnIiLbw+QGJRalS5dG6dKlpQ4jUSpZsiRKliwpdRhaWft7kb+/P/z9/bWWsfbHoE6uXLkQGhoKAOjZs6fZ22vbti3Wr18PAAgICNBYztXVFbt27UK9evXw48cPrfVNnDhRa5vp06fHokWL4OHhgXbt2qkcs+RFs6bXh6OjI0qUKCFqWxUrVhS1Pn3JZDJkzpxZ4/GklKQwhdUmOOK/EXbq1AkuLi7o0KGDhFERERERkSn4IV03+YXswIED9SpvzUNUyDhhYWEJ9q1btw6jRo3CggULMGzYsATHp0+fjitXrqBmzZqwt7fHly9fVHr6KCtZsiRGjx6tM8EB/D95s2jRIpw9e9bAR6KetoSWuveIxJgAk9Lz58+RPn16o8718vLCs2fPdPbesVZmmyHtxo0bmDNnDubNm4c7d+6YXF9sbCxevHghQmREREmbj48PAOB/7d13VFTXvgfw79B7s4ACVsT2NKhgjUoUxBajUdEYH4qi4NVoLInRGHt9V40+E/EKRjB2wa4JaAR7y732JGp8gBoEC0gRL3XeH6yZ6wAD08/M8P2sxVp4zi6/Mwxbzm/22btVq1Za68POzk5rbZPhqK1/kMq7oSBS1LZt23DhwgWsWbOm2nLz5s1DmzZtEB4erqPIqrZ+/XpMmzZNp32+O76okjRbvHgxAGjsw1Nvb2+FylWcHdCjRw8AQFhYGCIjI1G3bl3cuHFD7s1py5Yt8d1338HT01P6bwAYPHgwvvzyS+zdu1ea8Kou8TV48GCZNUScnJwAVP9anjx5EvHx8dVenyQuXWrbti2aNGmCLl26IC4uTuf9a4omtzZWZxcaS0tL2Nvbq1xfaConOM6cOYM+ffpg/vz5lc6tX78eHTp0wJw5czBr1iy0a9cOmzZtUitQRWRnZyMnJ0fr/RARGbJdu3bB398f0dHRGm974cKFsLOz4xpIJFdtSHrMnDkTZmZmmDhxotChaF2vXr2UrlMb3gPKqnhTaWFhgR49etSYLFu5ciXu3bsn+CetM2fO1Mnf+u9Sd5HRjz/+GM+ePVNqTZWKi4y+KywsrMb6CQkJOHbsmMyxU6dO4erVqwgPD0dERASeP38OHx8fhWNKSkrCd999h61btypcpyqKvJ5OTk74+OOPqy3Tvn17bNu2Ta1YlGVubo4///wTly9fRoMGDaoso8z7RZdJ6nnz5km/1+bYWJtmzqmc4Dhw4ADOnj1baWXkBw8eYO7cuSgrK4OFhQWsra1RWlqKmTNnqrTqq8Rff/2FHTt24Oeff6507t69e/D19UXdunXh4uKCnj174sGDByr3RURkzAICApCUlCT91EiTlixZgtevX6t000NkLHx8fJCZmYmoqCihQ9G6Tp064dq1a3j27Fm15fz8/HQUERkqIRJfbm5uGuvX3t6+ykVq39WvX79KMxytra3RuXNnaRzKxtOgQQNMnTpV6SSXpq67qpkCEyZM0EjbyjA1NdXINa1cuVKnCUNlFn5WNUlRXb3k5ORKxyQzfQ2VygmOS5cuAQAGDBggczw6OhqlpaXo3bs3Xr58iezsbIwYMQJlZWXYvHmzyoFu374doaGhlX4Ib9++xcCBA3Hjxg2IxWKIxWJcvHgRAQEByM3NVbk/IiJSDZ8FJwJcXFx0dsP2+eefAyjf1lAIfn5+cHNzq7bMqVOndBQNkXCaNm0qdAjV6tmzp/R7eeOTsuNW3bp1VYpF2X50NZ6+O6OiNujdu7f0+8TERPTs2RMHDhxQqK6q2yRrm8oJjufPn8PU1BQeHh4yx3/++WeIRCIsXLgQtra2MDc3x6pVqwAA586dUznQ06dPAwBGjRolczw2NhZPnjyBi4sLoqKisHPnTnh4eOCvv/7C999/r3J/REREJJ/kD+WOHTsqVY8JMM0bN24cfvvtNxw+fFjoUOSysbEROgS9pk/Txw3xESJdxmyIr4+26NP7VkIfY1KU0O+twMBAnDt3TuE12s6ePavliFSjcoIjKysLDg4OMj+IvLw83Lt3D7a2tjLZoObNm8PKyqrK1YAVlZqaCqDyongHDx6ESCTCypUrMXHiRIwZMwZRUVEQi8U4evSoyv0RERGRfEOGDMG9e/dw8eJFhcp/8803aNasGWbPnq3lyGofkUiE1q1b6+2naboi2TZTncX1NEXeTVajRo10HAnVdk+ePJF+r+zOJapwdnbWSDuAYT8qsXHjxhrLdOvWTeX2K67lUhNtJH70dcaSygkOKysr5OTkyLxYly5dglgsRpcuXWBiItu0tbW16lECePnyJRwcHGTaKSsrw6VLlyASiTBixAjp8cDAQJiYmOD+/ftq9UlERETytWnTBlZWVgqVXbp0KR49eqTydGaimhw6dAgzZ85Ua8awtg0dOlSQfnX9ybAqNz6dO3dWqrxQn9QL/Sm7sirOttc2yW4s6qhqPRJFX3d9+PkMGjQI06dP12ofgwcPVqq8Nn5f9DUBpXKCw8vLC2VlZTJTUySzKd5//32ZskVFRcjJyYGrq6vKgZaWlqKwsFDm2J07d1BQUIC2bdvKZAtNTEzg7OyMN2/eqNwfERERyafIH5H68Icm6QddvBc8PDywfv16NG/eXOt9UdWSkpKwdu1apW++gPLtU48eParVDyjVfR8a8uMPilLnGpVJbig7m8RQfnYNGjTAoUOHFCqrq5jk9TN69Gi12jUxMUFkZKRabWiDygmOQYMGQSwWY+LEidi3bx82bNiAmJgYAKi0fdCNGzdQVlam1rS8Bg0aoLCwECkpKdJjCQkJAIDu3btXKp+fnw8XFxeV+yMiIiIiIsX5+/tj9uzZKt+Mfvjhh/D29tZwVFQVTSYdr127hr59+yIpKUljbQKGmSS/du2ayo8L1nS9mtrdJSAgAAAwZcoUtdvSx3W1VE5wzJo1C56enkhJScGYMWMwe/ZsFBcXIzg4GO3atZMpe+TIkSpndihD8ozSkiVLUFZWhhcvXiAyMhIikQhBQUEyZVNSUlBYWCh3H2QiIiIiImWpO03eEG7YDCFG0jxVZtpLZgb4+fnh9OnT8PHxkZ774YcfNBWaQjFICP3+1dQjQZaWlpWOffDBByq39+7r9PPPPyM9PR29evVSqG51kxT+67/+S+WYtEXlBIeTkxMuXbqECRMmoFWrVujatStWrFiBH3/8UaZcUVERfvjhB4jFYrV+KDNmzAAA/Pjjj3BycoKnpyfS0tLQtGnTStPgJFuRKbuyOxERERHJ1759ezg6OqJ169ZCh2KQhL75MlZ9+/YVOgS99sknnwCoegvUpKQk+Pv748iRIxrtMzQ0VKnykpn56vL19UXr1q3h6OiokfZqMnnyZBQWFuLUqVNqbahR0e+//47//d//lUl0aGr8MDU1VWoiQHUzUrp164a4uDhNhKUxZupUdnd3R3R0dLVlLCwskJGRoU43AMoXHvrhhx8wffp05OXlASjfUWXv3r0wM5O9jB07dgBQL8tFRERERLIsLS3x/PlzvZyWTPKJRCKjWz9CLBbj6dOnuHv3Lvr166ezfg0xSbVr1y5s2LChykUh/f394e/vr/OYKr6OLVu21Ei75ubmuHv3Lq5cuYIePXpopM2aWFhYSB/70JSmTZvis88+w8KFC6XrUOrre2/48OFChyBDrQSHro0bNw7BwcG4e/cunJyc0Lx580q7tRQVFWHy5MmYNGkSBg0aJFCkRERExk2RP7SqmmJLhs/CwkLpOu++X1Spb2iMLZmgr9zd3eHu7q6z/gz15yoSifR2xwtFKXNzb2JiorfJgOpoIubevXtrIBLDprEEx4sXL5CWloaCggKFn+dRxuPHjwGUb0fj5+cnt5yFhQVCQkI03j/Ru9zc3NCgQQM8e/YMnTp1EjocIiK9snnzZmzcuBHr168XOhTSE6ampvjqq6+QlZUFLy8vocOhahjz40eauIFUtI2///3v+OKLL9TuT1tatGghdAikBdu3b690TCwWG2xyThVqJziOHj2KxYsX49atWwDKf+lLSkqk57Ozs6XPfe3bt0/l56GaNGkCExMTPH78GA0bNlQ3bCK1WFlZ4dGjR8jKytLpJwdERIZgypQpGlmdnYzLqlWrhA6BFNC1a1fs27eP2+2qSV/XBTl37hyuXbtWaddLCX24EZbEsHbtWowdOxaA8smpitfx7vv5v//7vxEREaGzR1h0qeLSDbWRyouMAsDq1asxbNgw3Lx5U5oZqvhmcnZ2hrW1NU6dOqXWAiR2dnZwdHRkcoP0hrW1NZMbREREpDBDmTYfHBzMGaoqio2NxZIlS9ChQwehQ6lSz5491drK913qJEMq9l9VPJ9++qnK7Vc0YMAA6fezZ89G9+7dFa7bpEkTjcVB2qdyguPKlSv4+uuvYWZmhm+//RYvX76Uu73Q2LFjIRaLpbubqKJJkyYoKChAaWmpym0QERG1bdsWABAYGChwJEREupGQkAA7Ozvs3LlT6FA0pk6dOkKHUKWQkBAsXLgQAHS6+GltcfbsWUyfPl3peuokdA4dOqRyXV3jDA41EhwbN24EUL7d0IwZM+Di4iK3rGSxkxs3bqjaHYYOHYqioiKcPHlS5TaIiIj27NmDuXPnYsWKFUKHYtAMfcE6otokICAAOTk5Gv1EXCidO3fGsGHD8OWXXwrSvzI3yra2tlqMRDv0dZaRJK5evXpJ70OVoc5sE23N4Bg3bpzMv2t67Ws6P2PGDLnbv44YMQIeHh5GMQbUROUEx8WLFwEA06ZNq7Fs3bp1YWtri/T0dFW7w9y5c+Hl5YWIiAjcvn1b5XaIiKh2a9euHVavXi131iFVb/fu3ZgyZYp0fS0iMgwVdx40VKGhoTh48CDs7OyUrqvuzbs+rE9hLBo1aiTzb31+bSu+byomJpRVt25dXLx4EZMnT1arnXd1794dGzZsqPKcg4MD7OzskJaWZlSzuORReQ7L8+fPYW9vj7p16ypU3tLSEnl5eap2h/j4eISHh2Px4sXw9fVF//790aNHD9SvX7/avdi5owoREZHmfPLJJ0xuENVAXz8FN2TLli1DYmKi2jeXJKz09HQUFhbCwcFBI+0JkRiJiYlBbGysyvXt7OyUWgNEVfv27cP69esRGRkJwHiSnDVROcFha2uLvLw8lJaWVptgAID8/Hy8fv0a9erVU7U7jB8/XvqfhVgsxokTJ3DixIlq64hEIiY4iIiIiEgnZs2ahaNHj2r0k1kqt2DBAixYsEDoMJSiz7MS1OHj44ObN2/K3YmlOvIeoTB2gwcPxvHjx3XaZ3BwMIKDg3Xapz5QOcHRsmVLXL16Fbdv365xleDDhw+jrKwMPj4+qnaHRo0aMRtORERERHpr3bp1WLt2baW/WZs2bYqUlBSMHDlSoMhIU7p27apSvUWLFmk4EuEkJibiyJEjGDVqlNb7ioiIwPbt2zFr1iyNtamv95T6GpehUTnBMWTIEFy5cgWrVq3C/v375ZZ7+vQpvvrqK4hEIgwfPlzV7pCamqpyXSIiIiIiXajqJuXu3btIT0+Hl5eXABGRJg0aNAhxcXFo3769UvUWL16snYA0TJFZJ/Xq1UNYWJhG+5V3cx8ZGYlNmzZxdxAA4eHhWLduHROlNVD5QZxp06bB3d0d8fHxCAkJwd27d6XniouL8fDhQ6xfvx6dOnVCeno6vL29+cwcEREREdU6NjY2TG4YAbFYLP3QtkWLFkKHU2sIndzQdP/KzNR4d8ey+vXr49WrV4iKitJoPMZG5Z+WnZ0djh07hqCgIOzcuRO7du2SnrOyspJ+LxaL0bBhQxw+fBjm5ubqRUtERERERKQCPgJAqhByu99Dhw5JN9oAUOPal6TGDA6gfIGZW7duITQ0FJaWlhCLxTJf5ubmGD9+PH799Ve0bNlSUzETERERERER6YSTk5PG2pL3GFBVCbg2bdrg/Pnz6Nu3r8b6N3Zqz7dxc3PDtm3bsHnzZvzzn/9Eeno6SktL4ebmBj8/P9jY2Cjd5tKlSwGU7xH8t7/9TeaYshYuXKhSPSIiIiIiIiJS3KhRo2BpaYlJkyZh6dKlOHXqlE7719gDRZaWltXu51tcXIx//OMfmDZtWo1tLV68GCKRCC1btpQmOCTHlMUEBxEREREREQF8VEnb9u7dK/3e0dFR5/1rfcWW0tJSbNu2DStWrMBff/2lUIKjV69eEIlEaNSoUaVjREREHh4eePr0KXx9fYUOhYiIqEpt2rTB4cOHhQ7D4Ciyk4s69PWe0sXFRegQjIJKCY6CggI8fPgQpaWlaNq0KZydnSuVEYvFiI2NxbJly5CamipddVgRycnJCh0jIqLa6fr168jMzES7du2EDoWIiIyck5MTXr9+jQEDBihV7+uvv0ZJSQmGDRumpcg0T9ntbzVFX5MOuhATE4PU1FR+aKMhSi0ympOTg3HjxqFOnTro2LEj/Pz8UK9ePXz88cd49uyZtFxycjLat2+PiRMnIiUlBQDw0Ucf4erVqwr1c/ToUSQmJioTWq0xZcoUiEQifPfdd0KHQkQkGDc3N7z33ntCh0FEpJYRI0YAgPSRbNIuVW+iHz9+jAcPHih9829jY4M1a9aga9euKvUrhP79+yMmJgb/+te/1G7r3r17+Mc//qGBqCqrV68eAODDDz9UuQ17e3tNhaOWcePGYdGiRUKHUcnkyZMBACtWrBA4EuUonOAoKSlBYGAgdu7cicLCQulOKWVlZThy5AgCAwNRVFSEdevWISAgAPfu3YOJiQnGjBmD27dv49ChQwpnpYYOHYrQ0FCZY3369MHIkSOVuzojc/z4cVy+fBkNGzYUOhQiIiKiWkfyCb6lpaVG2vvxxx9x+vRpfPvttxppj7TD3t4eLVq0EDoMnRCJRBg3bhw6dOigdltt2rSR3iRr2p07d3Dw4EGFlj+QJzMzE8+fP1eorLYfm9FHW7ZswbNnzzBq1CiZ4xMmTEBSUlKVdXr16qWL0Kql8CMqsbGx+PXXXwGUJxv69+8PsViMhIQEnDlzBr///jvCw8MRGxsLkUiEkJAQLFy4EM2aNVMpsIpvouTkZLi5uanUljHIzMzElClTcPLkSbUylURERESkmuHDhyMhIUFj0/itrKy4/SORClxdXdV+9Mfa2hrW1tYaikj3oqKiMGnSJK21LxKJqrz/3rZtm9w6ZmZaX+KzRgrP4Dhw4ABEIhEmT56M06dPY86cOfjiiy9w+vRphIWFQSwWY8eOHXB2dsaZM2cQExOjcnLDxsYG2dnZKtXVlJ07dyI8PBy+vr6wtLSESCRCTExMtXWuX7+OgQMHwsnJCba2tujatSv279+vkXhCQ0Mxffp0Pm9OREREJBCRSIR+/frV6g/diAxBbZhxERYWJnQIeknhBMedO3cAAAsWLKh07ptvvpF+v3r1avTu3VutoLy9vVFUVIT169ejoKBArbZUtWDBAmzduhVpaWlo0KBBjeWTkpLQo0cPXLhwAcHBwYiIiEBGRgZGjRqFdevWqRXLd999hzdv3mD27NlqtUNERDUzMzNDQEAAWrRowQW/iIiIjExtXtBU2/QhsaRwguPVq1ewsbGBh4dHpXOenp6wsbEBAAwZMkTtoMaOHQuxWIwvvvgC9vb2MDU1BVD+mIapqanCX+pMkYmOjkZqaipevHiBiIiIasuWlJRg0qRJMDExwblz57B161asW7cOt27dgre3N+bPn4+0tDSZOl999RVEIlG1XwDwxx9/YNmyZYiNjYWJiVJrwhIRkQpEIhESExPxxx9/GPTUVSIiksUbW/0luZcEdP+YQ2BgIACgW7duOu1Xk/je/g+F3z1FRUXV7s1rb2+Pt2/fwtXVVe2gPv/8c6SkpGDr1q0oLi6WHtdlRiggIEDhsmfOnMGjR48QGhoKHx8f6XFHR0fMnz8f48ePR2xsLBYuXCg9N3v2bIwfP77Gtq9cuYIXL17Ay8tLeqy0tBQzZsxAdHQ0bt68qXCcRESkmHcTzURERKRdderUwZYtW2Bubq7zDxf27t2LXbt2YfTo0Trtl7RD+FVAqmBiYoJNmzZh1apV+OOPP/DmzRt88MEHcHFxQXx8vNDhVZKcnAwA6NevX6VzQUFBAICzZ8/KHK9Xr550e6PqDB06tNIU6aCgIIwfP77STjNERERERESGKDw8XJB+XVxc8Nlnn1VbpmXLlrh27ZqOIjIeQnxYpJcJDgk7OzuZm3sLCwu11/fQhocPHwJAldtHubm5wc7OTlpGWU5OTnBycpI5Zm5ujgYNGsjM6qiosLAQhYWF0n/n5uaq1D8REREREVFtFhERoXaCY/DgwTh+/Dg+//xzzQSlh9q0aSN0CMolOCRrYFSnuvMikQglJSXKdCm1fft2vX0WOicnB0D5IylVcXBwkJbRlVWrVmHJkiU67ZOIiIiIiMjYhISEIC8vD++//77KbcTHx+O3337De++9p8HI9MO1a9ewZ88eLF68WOhQlEtwCLkq6rhx4wTrW9+kpqbWWGbevHmYNWuW9N+5ubnw9PTUYlRERERERETGx9TUFNOnT1erDQsLC5n1Go2Jn58f/Pz8hA4DgBIJjkWLFmkzDoMmmbkhb5ZGbm4unJ2ddRkSLC0tYWlpqdM+iYiIiIj0FRePJkCz7wNzc3ONtWUIKi6doI+Y4NAAydobDx8+RKdOnWTOZWRkID8/H507dxYiNCIiIiIiItKgNWvWYNu2bfjmm2+EDkUnTp06hdmzZyM6OlroUGpkInQAxkCy8GliYmKlcwkJCTJliIiIiIiIyHB9+eWXuH//PlxdXYUORScCAgJw69YtvXkMpTpMcGhA37590axZM+zevRs3b96UHs/JycHKlSthYWGBkJAQ4QIkIiIiIiIiQXzwwQdCh1Br6PU2sUKKjo7GhQsXAAB37tyRHktOTgYAvP/++wgLCwMAmJmZITo6GkFBQejVqxdGjx4Ne3t7xMfHIy0tDWvXrkWTJk2EuAwiIiIiIiISSMeOHdVeoJQUxwSHHBcuXEBsbKzMsYsXL+LixYvSf0sSHEB5Vu7ChQtYtGgR9u3bh+LiYrRr1w5r1qzBqFGjdBY3ERERERH9R+vWrZGamooOHToIHQrVQiEhITAz0+5tNxfQ/Q8mOOSIiYlBTEyMUnU6d+6Mn376STsBERERERGR0u7cuYOSkhLuMEgAdJ8MEIvFOu1PnwiReGGCg4iIiIiIjJapqSlMTU2FDoOIdICLjBIREREREZFWSHbeaNq0qcCRUG3ABAcRERERERFpxeHDhzF37lycOXNG6FCoFuAjKkRERERERKQVDRs2xOrVq4UOg2oJzuAgIiIiIiIio1GbF/as7ZjgICIiIiIiIqPFhEftwQQHERERERER1Qq63rq0bdu2Ou2vtuMaHEREREREREQadOPGDdy9exeBgYFChyIYJycnnffJBAcRERERERGRBvn4+MDHx0cnfbm6uuqkH2UtX74cv/32Gy5cuKCzPvmIChEREREREZGBOX78OAYOHIhNmzYJHUqV6tWrhxMnTui0T87gICIiIiIiIjIwgwYNwqBBg4QOQ69wBgcRERERERHVCqampkKHQFrEGRxERERERERktExMTBAWFobs7Gx4eXkJHQ5pERMcREREREREZNSioqKEDoF0gI+oEBEREREREZHBY4KDiIiIiIiIiAweExxEREREREREZPCY4CAiIiIiIiIig8cEBxEREREREREZPCY4iIiIiIiIiMjgMcFBRERERERERAaPCQ4iIiIiIiIiMnhMcBARERERERGRwTMTOgDSDbFYDADIzc0VOBIiIiIiIiLtKS4uln7P+x9hSV5/yf2otjHBUUu8evUKAODp6SlwJERERERERLrh6OgodAiE8vtRXfwsmOCoJVxcXAAAjx8/5i+5jvn5+eH69etCh6Fx+nxdQsWmi3413Yem2lO3HVXq5+bmwtPTE0+ePIGDg4PKfZPy9Pn3Xx36fF0c13TfHse12kWff//Voc/XxXFN9+0JMa7l5OSgUaNG0vtRbWOCo5YwMSlfbsXR0ZH/YeqYqampUb7m+nxdQsWmi3413Yem2lO3HXXqOzg46O170Vjp8++/OvT5ujiu6b49jmu1iz7//qtDn6+L45ru2xNyXJPcj2obFxkl0rKpU6cKHYJW6PN1CRWbLvrVdB+aak/ddvT5/USVGevPS5+vi+Oa7tvjuFa7GOvPS5+vi+Oa7turDeOaSKyr1T5IULm5uXB0dEROTo7eZnGJiJTBcY2IjA3HNSIyNroe1ziDo5awtLTEokWLYGlpKXQoREQawXGNiIwNxzUiMja6Htc4g4OIiIiIiIiIDB5ncBARERERERGRwWOCg4iIiIiIiIgMHhMcRERERERERGTwmOCgKm3cuBGNGzeGlZUV3n//fdy6dUvokIiIVHbw4EEEBgbCxcUFIpEIqampQodERKSWVatWwdfXF/b29nB1dUVwcDDHNiIyaN9++y3atm0LOzs7ODk5oU+fPrh69apSbTDBQZXs3r0bc+fOxbJly/DPf/4TXl5eCAoKQm5urtChERGp5M2bN+jVqxeWLl0qdChERBpx9uxZfPbZZ7h69Sp+/vlnZGVlYcCAASgpKRE6NCIilTRu3Bjr16/HrVu3cOnSJel96KtXrxRug7uoUCV+fn7o0aMHNmzYAAAoKSmBm5sbli9fjoiICGGDIyJSw927d9GuXTukpKSgSZMmQodDRKQxKSkpaNasGW7duoX27dsLHQ4Rkdpyc3Ph6OiI5ORk9O7dW6E6nMFhgHbu3Inw8HD4+vrC0tISIpEIMTEx1da5fv06Bg4cCCcnJ9ja2qJr167Yv39/pXJFRUW4ceMGAgICpMfMzMzg7++Py5cva/pSiIgAaHdcIyISgq7HtZycHACAi4uLuqETEVVJl+NaUVERtm7dCmdnZ7Rr107hGM0ULkl6Y8GCBUhLS0PdunXRoEEDpKWlVVs+KSkJQUFBsLKywujRo2Fvb4/4+HiMGjUKT548wezZs6VlX758idLSUri6usq0Ub9+fTx69Egr10NEpM1xjYhICLoc10pLSzFnzhwMHDgQHh4emr4UIiIAuhnXzp8/jwEDBuDt27dwc3PDqVOnlErccgaHAYqOjkZqaipevHhR4yMjJSUlmDRpEkxMTHDu3Dls3boV69atw61bt+Dt7Y358+fX+MYkItI2jmtEZGx0Na6JxWJERETg8ePHNX6SSkSkDl2Ma76+vrh58yYuXbqEAQMGIDg4GC9fvlQ4RiY4DFBAQAAaN26sUNkzZ87g0aNHGDNmDHx8fKTHHR0dMX/+fBQVFSE2NlZ6vG7dujA1NUVmZqZMO8+fP4ebm5tG4iciqkib4xoRkRB0Ma6JxWL87W9/w+nTp/HLL7+gXr16mgqfiKgSXYxr1tbW8PLyQpcuXRAdHQ0TExNs375d4RiZ4DByycnJAIB+/fpVOhcUFASgfBVuCQsLC3To0AG//PKL9FhJSQmSk5PRrVs37QZLRKQAZcc1IiJ9p8q4JhaLMXXqVJw4cQJnzpyBp6en1uMkIlKUpv5eE4vFKCwsVLhfrsFh5B4+fAgAaNGiRaVzbm5usLOzk5aRmDlzJiZOnIhOnTqhY8eOWLt2LczMzDBmzBidxExEVB1VxrWsrCw8fvxYupbQb7/9htevX6NRo0ZckI+IBKfKuDZ16lTs2bMHx44dg7W1NTIyMgCULzJqYWGh/aCJiKqhyrg2d+5cDBkyBB4eHsjKysLmzZvx9OlTDB8+XOF+meAwcpIVtR0dHas87+DgIC0jMWbMGLx48QLz589HZmYmfH19kZCQAAcHB63HS0RUE1XGtaNHjyI0NFT670GDBgEAtm/fjvHjx2snUCIiBakyrkVGRgIAevbsKXM8KSkJ/v7+mg+SiEgJqoxr6enpGD16NJ4/fw4XFxf4+fnh/PnzaN26tcL9MsFBVZoxYwZmzJghdBhERBoxfvx4JjKIyKiIxWKhQyAi0qgff/xR7Ta4BoeRk2TMKmbHJHJzc+Vm1YiI9BHHNSIyNhzXiMjYCDWuMcFh5CTPPFV8vgkAMjIykJ+fX+VzUURE+orjGhEZG45rRGRshBrXmOAwcr179wYAJCYmVjqXkJAgU4aIyBBwXCMiY8NxjYiMjVDjGhMcRq5v375o1qwZdu/ejZs3b0qP5+TkYOXKlbCwsEBISIhwARIRKYnjGhEZG45rRGRshBrXRGKuUGRwoqOjceHCBQDAnTt38K9//Qs9evSAl5cXAOD9999HWFiYtHxSUhKCgoJgZWWF0aNHw97eHvHx8UhLS8PatWsxe/ZsQa6DiEiC4xoRGRuOa0RkbAxiXBOTwRk3bpwYgNyvcePGVapz9epVcf/+/cUODg5ia2trcefOncV79+7VffBERFXguEZExobjGhEZG0MY1ziDg4iIiIiIiIgMHtfgICIiIiIiIiKDxwQHERERERERERk8JjiIiIiIiIiIyOAxwUFEREREREREBo8JDiIiIiIiIiIyeExwEBEREREREZHBY4KDiIiIiIiIiAweExxEREREREREZPCY4CAiIiIiIiIig8cEBxEREZERWrx4MUQikczX0KFDhQ6rksOHD1eKs0mTJkKHRUREBogJDiIiIgNU1c2rvC+q3czNzeHq6gpXV1c4OztXOh8TEyN9r6SmptbYnqTs4sWLNRKflZWVND4HBweNtElERLWTmdABEBERkXpcXV2FDoH0WPfu3ZGcnCx0GHL1798fGRkZAMqTLaGhoQJHREREhooJDiIiIgMnuTkkIiIiqs34iAoRERERERERGTwmOIiIiGqB1NRUmXUWHj16hMmTJ6Np06awtLSstKhjWVkZdu3ahYEDB8LV1RUWFhaoV68e+vXrhz179kAsFsvtq7S0FJs2bULHjh1ha2sLFxcX+Pv7Iy4uDgDg7+9f5RoOFWOUp0mTJhCJRIiJiZFb5sSJExg+fDjc3d1haWkJZ2dn9OrVC5GRkSgqKqqyzrtxicViREVFoUuXLnBwcIC9vT26deuGnTt3yu1T4vfff8fUqVPRpk0b2Nvbw87ODi1btsTo0aMRHx+PsrIyAMCWLVsgEong4uKCf//733LbKysrk16zpta90AZl1oVRZK0PIiIiZfERFSIiolrm0qVLCA8PR35+PmxsbGBubi5zPisrC8OGDcO5c+ekxxwdHfHy5UucOnUKp06dwt69e3HgwAFYWFjI1C0sLMRHH32EhIQEAICJiQksLCxw7tw5nD17FnPnztXqtb19+xYhISHSZAoAODg4ICcnB+fPn8f58+exY8cOnDx5ssoFN4HyBM2wYcNw5MgRmJmZwcbGBnl5ebhy5QquXLmChw8fYsmSJVXWXbNmDebPny9NYlhZWcHGxgZ//vknHjx4gH379iE7OxtOTk749NNP8cUXXyA7OxtxcXEYO3ZslW0mJiYiLS0NpqammDhxopqvkPbY2dlVux5MQUEB8vLydBgRERHVNpzBQUREVMuEh4ejbdu2uH79Ot68eYP8/HwkJiYCKL+5//jjj3Hu3Dn4+Pjg2LFjePPmDV6/fo38/HzExsaifv36OHr0aJXJinnz5iEhIQEikQjLly9HdnY2srOzkZGRgSlTpmDNmjW4efOm1q5t8uTJiIuLQ7NmzbBr1y7k5OQgJycHBQUFOHLkCJo1a4YrV65gwoQJctv4/vvvkZycjJiYGOTm5iInJwdPnjzBhx9+CABYvnw5Hj58WKleZGQkvvrqK5SVlWHIkCG4ceMG3r59i1evXiEvLw+JiYkYNWoUTEzK//yyt7eXJjWioqLkxiM5N2DAAHh6eqr82mjbnDlzkJGRUeXXH3/8AQ8PDwBAx44d0aBBA4GjJSIiY8QZHERERAbOzc1N7rlffvkFbdu2lTlWp04dnD59GnZ2dtJj3t7eAIDdu3fj7NmzaNWqFZKTk+Ho6CgtY2tri5CQELRt2xZ+fn7YvHkz5s2bh/r16wMA0tPTsWnTJgDAggUL8PXXX0vr1q9fH5s3b8br16+xZ88e9S+6CufPn8fOnTtRv359JCcnyyQDrKysMGTIEHTs2BGtWrXC4cOHcfPmTfj4+FRqJzs7G2fOnMEHH3wgPebh4YEDBw6gWbNmSE9Px/79+2WuLzs7W5rwGT16NHbv3i2zRa+NjQ0CAwMRGBgo01dERAS2bNmCc+fO4f79+2jZsqXM+czMTBw7dgxAefJG2/z8/GBqaqrRNktKSjBixAj8/vvvcHd3x9GjR2FpaanRPoiIiADO4CAiIjJ4mZmZcr+Ki4srlZ82bZpMcuNd27ZtAwBMmTJFJrnxrk6dOqFt27YoKipCUlKS9HhcXBxKSkpgbW2NOXPmVFlXm2tISGL/9NNP5c508PDwkCYuJI/RVNSjRw+Z5IaEpaUlgoKCAAC3b9+WORcXF4e8vDyYm5tj/fr1MsmN6rz33nvo1q0bAGDr1q2Vzm/fvh3FxcXw8PDAwIEDFWpTHS9fvqz2/ZSZmal0m1OmTMEvv/wCW1tbHDt2DO7u7lqInIiIiDM4iIiIDF51C35WpUePHlUeLy0txZUrVwCUJyJWrlwpt42srCwAQFpamvTYr7/+CgDw9fWFg4NDlfW8vb3h7u6Ov/76S6mYFXHx4kUA5YmO3bt3yy2Xk5MDQDb2d3Xp0kVu3YYNGwL4z/VLXLp0CUB58kfZxy8iIiJw+fJl7NixA6tWrZKuayIWixEdHQ0AmDhxosZnVlQlJSWl0oKzFSmavAHK1ySJjo6GiYkJdu3ahQ4dOqgZIRERkXxMcBAREdUykkdKKsrKykJhYSGA8kcuFFFQUCD9/vnz5wBQ4yf0Hh4eWklwpKenAwByc3ORm5tbY/l3Y3+Xvb293DpmZuV/OlWcGZORkQEAaNy4sUKxvis4OBgzZ87Ey5cvcfDgQYwePRoAcObMGTx69AimpqYICwtTul2hxcXFYd68eQDKEx0fffSRwBEREZGx4yMqREREtYy8mQClpaXS73/66SeIxeIav/Rp21JJ/JGRkQrFXt02s8pSZlZDRVZWVhg/fjwA2cdU3l1cVLJAp6G4du0aQkJCIBaLERYWJveRJSIiIk1igoOIiIgAlC8+KpmhIO/xjepIZobUNDtD3nlJ3wDw73//W259ySMmFUkWW1UldnWp23d4eDhEIhGSk5Px559/4uXLlzh06JD0nCFJS0vDkCFD8PbtW/Tp0webN28WOiQiIqolmOAgIiIiAIC5uTk6d+4MANKdO5Th6+sLoHwtjvz8/CrLPHz4EE+fPq3ynLOzs/T7J0+eVFnmwYMHeP36dZXnJGuLHD9+XNGQNaZ79+4Ayq/92bNnStf39vZGnz59IBaLERUVhR07dqCoqAienp4YMGCApsPVmtzcXAwePBiZmZnw9vZGXFwczM3NhQ6LiIhqCSY4iIiISEqyFenJkydx8uTJastWXGhz+PDhMDU1xdu3b7F27doq6yxdulRue7a2tmjevDkAID4+vsoyK1asqDH2u3fvIjIystrY37x5g6KiomrLKGPkyJFwcHBASUkJZs6cqfTCr0D5YqMAEBMTI31UZcKECTpZXFQTSkpKMHLkSNy9exd16tTBiRMnZJJWRERE2sYEBxEREUmNHTsWAQEBEIvFGDZsGJYvXy5dvBMoTwwkJSVh6tSpaNasmUxdd3d3TJ06FQCwbNkyrFq1Cnl5eQCAFy9eYNq0adi5c6fc7WcB4JNPPgEA/PDDD9i8eTPevn0LoHxGR1hYGPbt2wcbG5sq6/bu3RuhoaEAgKlTp2LmzJn4v//7P+n5wsJCXLlyBV9++SUaN24sXRRVExwdHfE///M/AIB9+/Zh2LBhuHnzpvR8QUEBTpw4gY8++kjuAqhDhw6Fm5sbnj9/jvv37xvc4qIzZsxAYmIiLCwscPDgQXh5eQkdEhER1TJMcBAREZGUqakp4uPjMXjwYBQVFeGbb76Bu7s7HB0d4ezsDHt7e+m6Cm/evKlUf82aNQgICEBZWRnmz58PZ2dnuLi4wNXVFd9//z3mzp0LHx8fuf3PnTsXbdq0QXFxMaZOnQo7Ozs4OzujUaNG2LFjB2JiYlCvXj259bds2YKwsDCIxWJs2LABzZs3h729PVxcXGBjY4Nu3brh73//O169eqXWwqBVCQ8Px8qVK2FiYoIjR46gQ4cOsLGxQZ06dWBvb4/Bgwfj6NGjKCsrq7K+mZmZTELD0BYXPXHiBIDy7W2Dg4Ph5uYm90veI0hERETqYIKDiIiIZDg4OODYsWM4efIkRo0ahUaNGqGwsBAFBQVwd3dHv379sGrVKty/f79SXSsrK/z000/YuHEjfHx8YGFhAbFYjJ49e2L//v1YvXp1tX3b2dnhwoULmDVrFpo2bQozMzOYm5tj+PDhuHz5snQLVXksLCwQFRWFS5cuYfz48WjevDlKS0uRn5+P+vXrw9/fHwsXLsTt27dr3M5WFfPmzcOtW7cwadIk6QyGoqIitGjRAp988gkOHjwIBwcHufVHjhwp/d7QFheVKC4uRmZmZrVf7+7YQ0REpCkisSoPiRIRERGpyN/fH2fPnsWiRYv0aptZfbBu3TrMmTMHnp6eSElJUWv9jcWLF2PJkiXo3bs3kpOTNRekFsXExCA0NBSNGzdGamqq0OEQEZGB4QwOIiIiIj1QWloqXRx10qRJBrO4KBERkb5ggoOIiIhIYGVlZVi0aBEePXoEW1tb6Y4qmnD27FmIRCKIRCIMHTpUY+1qyuHDh6XxSRaJJSIiUoWZ0AEQERER1VZxcXGYM2cOsrKypDvOLFmypNqFVBVlZ2cHV1dXmWP6uG2rlZVVpTg1cf1ERFT7MMFBREREJJD8/HykpaXB3NwcrVq1wrRp06Rb7aprzpw5mDNnjkba0qb+/fsjIyND6DCIiMgIcJFRIiIiIiIiIjJ4XIODiIiIiIiIiAweExxEREREREREZPCY4CAiIiIiIiIig8cEBxEREREREREZPCY4iIiIiIiIiMjgMcFBRERERERERAaPCQ4iIiIiIiIiMnhMcBARERERERGRwWOCg4iIiIiIiIgM3v8DwuFaXG+Gg5MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "parest.plotfits(res, save_plot=False, namestr=\"lorentzian_test\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function exists in the library as well for ease of use:" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import fit_lorentzians" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.47775222e+02, -1.95500403e-01, -1.76819873e-03, 4.02910804e+01,\n", + " 1.89163457e+00, 1.20856451e+00, 1.05610820e+01, 7.49861477e+00,\n", + " 6.35659323e-01, 1.99437212e+00])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Multitaper/multitaper_example.ipynb.txt b/_sources/notebooks/Multitaper/multitaper_example.ipynb.txt new file mode 100644 index 000000000..2098efc8f --- /dev/null +++ b/_sources/notebooks/Multitaper/multitaper_example.ipynb.txt @@ -0,0 +1,1364 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "be4b7e30", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dhruv9vats/misc/blob/main/multitaper_example.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "baae2cbe", + "metadata": {}, + "source": [ + "If clicking the link above turns the screen gray, try right clicking on the link and selecting \"Open link in new tab\"." + ] + }, + { + "cell_type": "markdown", + "id": "0ecdeb50", + "metadata": {}, + "source": [ + "## Install Stingray in colab\n", + "Comment out the cell below if running locally." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "505d88ed", + "metadata": {}, + "outputs": [], + "source": [ + "# %%capture --no-display\n", + "# !git clone --recursive https://github.com/StingraySoftware/stingray.git\n", + "# %cd stingray\n", + "# !pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm seaborn\n", + "# !pip install -e \".\"\n", + "# %cd ..\n", + "\n", + "# import os\n", + "# os.kill(os.getpid(), 9)" + ] + }, + { + "cell_type": "markdown", + "id": "04439f30", + "metadata": {}, + "source": [ + "__The kernel will (crash and then) restart after executing the above cell to finish installing Stingray. So the cells below will have to be run again or manually.__" + ] + }, + { + "cell_type": "markdown", + "id": "59513a94-a334-4efb-b004-763e4f738f09", + "metadata": {}, + "source": [ + "## Multitaper Spectral Estimator Example" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76bde484-7cfb-49e8-8fe9-a840a0c0ccf2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/largememory.py:25: UserWarning: Large Datasets may not be processed efficiently due to computational constraints\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set_theme()\n", + "sns.set_palette(\"husl\", 8)\n", + "\n", + "import scipy\n", + "from scipy import signal\n", + "from stingray import Multitaper, Powerspectrum, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "id": "33cc5179-9412-4d10-825d-66f987b99b7d", + "metadata": {}, + "source": [ + "### Creating a light curve \n", + "---\n", + "Lets create a `Lightcurve` sampled from an autoregressive process of order 4 that has been frequently exemplified in literature in similar contexts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "648c871f-4f45-4db4-a09b-89439e08ea93", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD7CAYAAABqvuNzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABgeUlEQVR4nO29eZwdVZn//6mqu/XtJb2kkzRJJBAINLsGZAZFJKyjicAwI0zEnzog34kzOKKMBH2NKMpgHOeF8lVZ/CqMQ4ZhUBIkIJtEQMMmoCxhDUnI0tk6S+/33qo6vz+qTt1TdU+dqrq36nb37fP+53bfW1XnnKpT5znPcp6jEEIIJBKJRDLlUce7AhKJRCKZGEiBIJFIJBIAUiBIJBKJxEYKBIlEIpEAkAJBIpFIJDZSIEgkEokEgBQIEolEIrFJjXcFamXfvmGYZvSlFF1dLejvH0qgRhOTqdTeqdRWYGq1dyq1FUimvaqqoKOjmftbbAJhxYoVePjhh7Ft2zbcf//9WLBgAQBg48aNWL58Ofbv34/29nasWLEC8+bNC/wtLKZJqhII9NypxFRq71RqKzC12juV2grUt72xmYzOOOMMrFy5ErNnz3Z9f+2112Lp0qV4+OGHsXTpUnzjG98I9ZtEIpFI6ktsAuHEE09ET0+P67v+/n6sX78eixcvBgAsXrwY69evx969e4W/SSQSiaT+JOpD6Ovrw8yZM6FpGgBA0zTMmDEDfX19IIT4/tbZ2Rm6jK6ulqrr193dWvW5k5Gp1N6p1FZgarV3KrUVqG97J71Tub9/qCobW3d3K3bvHkygRhOTqdTeqdRWYGq1dyq1FUimvaqq+E6kExUIPT092LlzJwzDgKZpMAwDu3btQk9PDwghvr9JJBKJpP4kug6hq6sLvb29WLNmDQBgzZo16O3tRWdnp/A3iUQikdQfJa79EL7zne/gkUcewZ49e9DR0YH29nY88MAD2LBhA5YvX46BgQG0tbVhxYoVOPTQQwFA+FtYpMkoHFOpvVOprYB/e1u+/1OUPnAMCov+chxqlQzy2daOyGQUm0AYL6RACMdUau9Uaivg397WG24GAAxes6zeVUoM+WxrRyQQZOoKiUQikQCQAkEikUgkNlIgSCQSiQSAFAgSSWMyuV2DknFCCgSJpIFQd+5By3/8PyiDw+NdFckkRAoEiaSByPzxFSjFElLvbBrvqkgmIVIgSCQNBFHsPwxzXOshmZxIgSCRNBS2RDClQJBERwoEiaSRsOWBIgWCpAqkQJBIGgpbIkiTkaQKpECQSBoJ6kOQGoKkCqRAkEgaCUVqCJLqkQJBImkoLIEgfQiSapACQSJpJKSGIKkBKRAkkkbC8SEY41oNyeRECgSJpBGRJiNJFUiBIJE0Egr1IcjkdpLopJIuYOvWrfjHf/xH5//BwUEMDQ3hueeew6JFi5DJZJDNZgEAV111FU499dSkqySRNC6OD0GajCTRSVwgzJkzB/fdd5/z//XXXw+D6aw33XQTFixYkHQ1JJKpgVyHIKmBupqMisUi7r//flx44YX1LFYimTKQKqKMMr97xtl/WTK1SVxDYHn88ccxc+ZMHH300c53V111FQghWLhwIb785S+jra2tnlWSSBqM6D6E7NMvJVUZySSjrgLhV7/6lUs7WLlyJXp6elAsFnH99dfjuuuuw/e///1I1+zqaqm6Pt3drVWfOxmZSu2dSm0Fyu0t5TMwAGTSKkzPb36M2Z/Tu1qgqIrw2InAVH229aBuAmHnzp14/vnn8b3vfc/5rqenBwCQyWSwdOlSLFu2LPJ1+/uHYFYRUdHd3YrduwcjnzdZmUrtnUptBdztzYyVkAVQLOjOyx10L+hws2fXAUDTEqtnHEzlZxsXqqr4TqTr5kNYtWoVTjvtNHR0dAAARkZGMDhoNZQQggcffBC9vb31qo5E0thUs6ey3Id5ylM3DWHVqlX4+te/7vzf39+PK664AoZhwDRNzJ8/H9dee229qiORTEq0LX1QBgahH+0TmUedyqSKKCO5dmHKUzeB8PDDD7v+nzt3LlavXl2v4iWSSGQfXAulUMLYBWePd1Vc5O9cDQAY9BMIlGrGdtOE9u57MN43G0hNbNORJBnkSmWJhEPmz28g/caG8a6GQ+q1t6AMDAUfqFS/habWtxv5ux9A9rd/iHyupDGoa5SRRCKpgpKOpl//FmbntOBjaeqKKvwByugoAEDt3xf5XEljIDUEiWSiY8/2lcHh4GMdH0IN/gDpS5iySIEgkUx06OCuRFgjUMuYLqONpixSIEgkE50oM/ZaoozoJaSGMGWRAkEimeA422GG0RCc5HbVDOrVO6QljYEUCBLJRMcRCAmXQ7UKaTKaskiBIJGIIATKyOj41sGZsYeQCHQsr2ZQN6RAmOpIgSBxoewfCBfvPkVIv/QaWn54B9Q94xiKWSebvkIFgjQZTVmkQJC4aLl5JVp+/F/jXY0JQ2rDewAAde/+cauDYptySKgooxqEB924SjqVpyxSIEgkISB1ygqt7twDjBXcX0bY7KamcFO63kFqCFMWKRAkEhHOAFsfidD883uQ/+9fu7+MEmVE7f/VrFSmGoL0IYw76o7dyN96F8joWPDBcZZb19IkEok/9kCs7dzj/p6acATyQDkwiOxv1zECoYrypVN5wpBZ9yK0vfthvrmpruVKgSABAGhb+6QzkUsdB0e/+x9CQ2i692Fknvsz1N391ZdPNQTJuEPyOetzaKSu5UqBIIG6fSfy/7Uamaeer/laqVfehHKggXa0ovIgStqIavHxFSgkOOxUGbYHjnTa/qYak5GcEEwUSL7J+pQCQVJvVDtpWs2hlaaJpjWPOzn7G4J6mk/8ZuhG8MI0pVB0/19NpBAtvx7CTyKEZDPWH57nmjRSIEiqS57Gwx5QlDrPahLFrJ8ZxXeGbnKej0dQKcWS+9haFqZJJg6KgtYbbkbmd8/Upbi67IewaNEiZDIZZLNZAMBVV12FU089FRs3bsTy5cuxf/9+tLe3Y8WKFZg3b149qiRh4Q041RBiJjvpqGebbIFasd6A51sghP+8HPNSFQKBCr9Gen4NQvbpl1D86F8kXk7dNsi56aabsGCBe9u/a6+9FkuXLsV5552H++67D9/4xjfwi1/8ol5VklBi0hCUBjQ5OKaXeliO6P1TPfePcJzKfhpADfWtKctpSYdSLII056u/xmTCNK3n0UB9HRhHk1F/fz/Wr1+PxYsXAwAWL16M9evXY+/eveNVpakLCQ5rDIURIV5+IsMOtnR2HiKdtLLvQOWisgg4JiPF/VpyB2pC+ELBrCF01Ckn+vNrunsNWm76z+hlTkaKJbSuuBWZP7yQfFl1DgGum0C46qqrsGTJEnzzm9/EwMAA+vr6MHPmTGiatZm3pmmYMWMG+vr66lUlCcURCDV2h0bREFwvofV3mNlzyy3/jfwv7q2+XF8NobLs3K9/i9bv3lLxvVLDwrRIC+A8pLaU31t1z76GXstA/TXpF18d55rET11MRitXrkRPTw+KxSKuv/56XHfddfjsZz8by7W7ulqqPre7u7Wq84y3N0OdNxtKenJtSe3XXr0lCx1AtikNM+BYEaZZRBGAoipV39u4qKV8ohug8/yUpoIAaGvJQgu45hgArX9/1WWbI4P2/VNd1zC25VCCW06k33wXQGU7M2kNpufYoPrQtbDZtAoTgJZSI7eBXqNreADFn/4PUuefgdRHFka6RljGu2+RJg0FACoh6NzXDwyOQFt4VKxl6M3WO8nmlapHu+syovX09AAAMpkMli5dimXLluGaa67Bzp07YRgGNE2DYRjYtWuXc2xY+vuHYFZh++zubsXu3dHj5dX+fWi+7W4Ujz8ShY+dHvn88ULU3tTAKJoAFEZLoFHsVd2b3QNohjWnrub8uKj22TroBuirpxd1aAAGDoxAD7gmPWfw9vtgdrWj+JcfiFSs1j+IPCrvX+qA9XxMw6xQ6XfvHnQNFMWxElKeY4PuBT27MFpEGoBhmPxzxgpovfHnGD3/bOi987nXOPDONjQBGH1nC8Z6F1RcolZqfrYxoIyMogXWxKF0y/8CAPa+b26sZaSHxpADXJpWXO1WVcV3Ip24yWhkZASDg1ZDCCF48MEH0dvbi66uLvT29mLNmjUAgDVr1qC3txednZ1JV6k2bBuxtiuCr4OQCb0KuGxmqLGOTpTMJI9mZs0d9O8Ik470K28i+7tnK75Xt+9C6w03+y/c0+2spn4mozB14Gxyo72zGdmHnqysz9YdrrpQsxjx8SGo+wcAAJmnX/QtXtEbxGzIQe3fZ6UHoW1M8J127l6dTW+Jawj9/f244oorYBgGTNPE/Pnzce211wIAvvnNb2L58uX4yU9+gra2NqxYsSLp6owLTff8BqkNmzF4zbLxrgofjt1Z2T+AzB9fQeGMU0K/3EqjhJ1yBULtL3/6z68DAFLvvofS+4/mlOu3IlngF/DWixNllL/nQQBA4dyPuA5t/q9V/Gv5PT9V5ZfJoutW8V6h1gCkX3wNmT++AtJkhc8num5jnFwwiQuEuXPnYvXq1dzf5s+fj3vuuSfpKow7qQ2bx7sKYjgCoem+x6Bt34nS0Qtg9nSHu46z0nZyDgbKyChafngHxs4+tfydfU+UOGZqQfsd+zmERbugVQgEO4V1Ndqej0BKvbUR2cefxujiRfwyGcoawiTXEnnQ52Y7lWPpE37UEhxQAw341JKmhsGuzmaj1JvvltVbEQZnICjZK1+jzPQmeZSR2r8fgLVLmgN9H4PMNWFeXDpI+h1Lg70qBAIVSpz+46lX2fxXRR19sqqm//w61H0HkNpqRRIJI65sDWGSzgnCUc0grRvRkgdKgTDBIcR6qArzf1QKpVirJELbsh1N9z6M7Nqngw/mCSoqJLQIXSTmzeC197ZD3bojnouFgQ5mdii0i6AZd5j+QIWr38TAV1AIBnmv2YIO1n6rm0X41It4TUUiDaFEBUL1Q0vul79B9pGnIp+nvbMZoOUnSDUL+Fr//Tbkf7Eq0J+Yfv5lZJ5+SQqEiU7miWfR+u+31ZQRUikUoO7cU59N2+0XI0zCOp5TWTGjm38Ux7QhPi71+jvAaPACrvzK+yrt3EkiEghBg0CYQYJqTr4vecgbyF7Sm2vJcSpzDg7QUAN3SqNt5LwDTnH0HtbgQ0i/vQmZF6LF+KvbdyF/z4PhJkC1UuUgre3YbY0jK2711RZyj/0B2d89IwXCRCe9/h0A9mrUKlEKRWtHrDt+FVe1/LHTICulEFoJL4olwobruft/i/zt94TqxMq+ATStfhRNv34suF51RinZUVIpnkCIQUPwEQja5m1oveFmqMP2RMFzKeFiM68gEiW3C5rM+Ak1OraL+oStRYxXlJE6OGQVa2fuTRTevQ05cDuCLsiUW0V0WxxIgRASc5oVaV3TZuv2Q1brsF8AobPckg5tax/MzdsD6+WyXUcIrUu/+ha0HXvcAqFQhDJUfjmVkVGk3troCCjFfoEnFEKTUe0+BBp54/URpJ9/2SqWrvb18SGEcipHER6VNRR/TQR7LlONIAYNoSpomuiUhvzP77HMR0lRhfbloASYDT1lkDr7HaVACIu9KtlJM1xVNsk6Sns6yBdLyP/XahR/eGegM5PtpAp9saPUmREs+f/8FVr+bzlRYdM9D6LpVw9BoXvEqhOv69HkfITjNwmMKAnz4jqDgedatDw/p6OoaD8fAqe+FeYlLwHPWhH5EOjz1MdnLYrjuzBNaDv3ILfm8eQK4/mTwpqS7S6gBDmYQ/hrkmBy5V4YT+i7YghstAEEdoI4oQMC62QzTfHslx0QqIYQJXyRmZ1qdsQOTdPs+DLCRiKNRy4cXtbXsLZczu9q325AVWB2TLMDEnyijOgzce65n4ZQWax3tq5wFqY51Gr2ckxGvIrY2k9pfDQEpWhpCMROsR/oD6kF3rVDl2fflwAB4mx4VGeTkRQIEalpUNeTj4CgcAcGkwAcecBdmEZn+1E6JG9AGysCTdlyfDw9RqAhqH27YXZOC19uXJi0zdEjdHgaRPMdvwQA6PMPRmrDZhT+8v3ca1HznnNvKi4lcDb7LEzjDsfssxTZwb0/OesnKmetuV89BM0VCTYOghwo9z0txOK5GuG9E4phhGo5URTrdgb5EGj967xpkRQIUalJINRRQ+DFlAeFNdY08wEUmvqZmWGrIyMwm7Lljm2b3HxXso6OofmOX6J0+LzQ5cYGTxsQhXyyCAQnXZioUKexn8nImTB4NQT+19a1fHwIPNjBJYqPgXh+Z85Nv7XR+opu+ejUtU6CgRDrnfQ67JPUEHiDdBUmI9EdEprnEkQKhKgYApU8AKWOGkIkkwGVHbxOHUFDKPtX7JkQXbsBRuOgx/hoCNTHoO3YHbrc2BBFdgSajELsl+C3TiNIQyACiVDhQxCsETDN8hV4PgZROQhphnH2Ywg+NA6yDz2BzJ9eR+HUk9zlJ2lqqYPJaLx8CBPPszdhsQc0RkPIPr4O6s494S9Rh0Uzzowp0qAWj4bgOtbPgWrbev1szI7ASI3DXEWoIQQ5lUMMQH7+J69TOYoPwSuIRPUwAzSEIKEmGsQ8JsZY0jqEuEbmT68nV74f1Sz6o9D3ItCpXAdNh4MUCFGhM95iCZln/4z8natDn6rUwWSUe2AtWr93G3h5aXxfkihhjSJCCBSFrtb2iUKhAoGMw14TCi9Chw40o2PI3fuw/4K6MAOCwXfUl30IPmkfRNf2CgDRoM4+C57gCFx8F6IviJzaUamm79XDCVuTQLA/AgWC/XuQmS9mpEDwkH7+ZSh2ml8uTmfgRPEEUQeTUfqVN60/orzwArtrlJmWy+REO75ngHIWyvlFGTnx5G6B4JsyOk54g5n9d+aFV5F+811kXniFf26IgcgZBCqcth4zgq8iF6z1CYMAggaXIH9JKJNRtJmtsn8g2LcV5joRFlLWCs90xn1PdAOZJ54r5wUDQmsItD2Ep60miBQILGMF5B77A/J3/dr3EK+dN9KAWc8oI5424jN7FK+ErVZD8DEZBdwDR0Ng1gKkXnkTLT+5E9rWhLdX5WkIFSuB/fwwIe6TQf0pEQctQR/TNm5B8ae/DHWsq1yBSVHxkwihNASBH8aDumM3Wm5eifSLVjJBbct28b0XQQfYOASCYUAV+bBCmmPTL72G7LoXkHnmT5wyQq4aDzLzxYx0KjNQya+MjPkfZPrYecNQqmOUES9lhacjq/37oG7bWRZuXJNPlJeyUkOoMBkFOeU54a6pDe9Z3x0YBOZE21EvErxQW289fV7kUBMDX6dxuHrx7ln26Zdg8o7lwdRdmDnV5xKsBpi79yH3cV4tM4TQU+00MNrmbTDb25D/3wcwduaHKq8ZBr81HFWQ/d2zyDz3ZwxffjHMro7K+vAW+PHKpRMAqvUC5fUaYRemGR4hzgsbjxGpIbCEmWXUEmVkxKsh5O59GK033AzAmm251hFQ56wg7LT5tv9B0wNrxbO6Wp3K3vtENQS/+8cZUGgyQJLLha9LAKlX3kSKmtcoHNMZHTgJfZGjZipl8BeGYsc1TRoYaqmX6HkFmR+CHOjMtdNvbnRCTt3HhNcQ2D6i9u8DUN6VDbD6sNoXLtqMat+K1yxWxXuq7rTKVAa8eZHsa/EmBbxiaCSdd1CndRPBizKSJqP6oOwfQObJ55wtDPkqof1Zi/Mq5kUmdKN17e2NaL79l64BTuH5NqJuzAJEW4cQJkrJmRkF+TMY4TYWnBk1Kk1rHkeTN70Bz5dC68F7uVnC9Ieq+06E42uIMgrUckI4jBVRvqOKg8sCgfZXkkk7P2eefhHNd/zS0mKDoBoCM/NuunM1Wv79p8HnetFSFdcCwCxcDPme8PwFJGQf4PWVRjAZ7du3D1/96lfx3nvvIZPJ4OCDD8Z1112Hzs5OLFq0CJlMBll7uflVV12FU089NeCK8ZO/636o+wdgzD0IgLgzKxGdZi5icng13bnatQWjtsMKfVX3Mc5wZ00Am4bBbzDzd8hFCt9jO75P2KkSoNqL/RkJmNxMk9kaks4A2ReYCgQFMAR1CHOfzIABNQbnqrCPsc9CZAf3K88WhlxNxZkwla+ReeJZkLYW/nahTDkKIWUTJxNdRjOXan27YM6eyb8GPVYv5zKipKrcS4Nmu63w+YkWvQk0BJd5KKSGwF2YVocIqsQFgqIouOyyy3DyyScDAFasWIHvf//7+Ld/+zcAwE033YQFCxYkXQ0hjpoaxunrbFFYxcMJIRC0Lduh7tmP0vuP8j0mtaUPqS1lB6vjiM2WZ1e8tNeKSfhzTcdUFqdT2S6zwmRUtqPnf7EKyvAIhpd9irmG/0tXy14UvpR0wF5l68xueSp+HBqCYzLyXCPIERuhqwnNSkEmowCBJZ71u5+bMjqG7KtvAYC/QCiVzYdK0dYQ2OiyKCm0aTh4HKHdNLeUR0NQhAKBc8+80WNgfDeBe080qMmovb3dEQYAcMIJJ2D7dkEq5nGEXWmbfvZPyD64FuqufretmfOgMk88C23ztuDrhxjQ8nfeh9xDT/gfwOtIdLFXJsN8F+xDqKhXiC0aHQwDTXfdb0WGON9xfAhepzKjIWjbdrhsxq468lTlJJID8mbNgpfQ34cQ/Gydc/3e6xr8E2FQgmab9CtfH0KIetBzi5ygBm99WG2Rq52EtLcDzKQmhj6S8iQbdKojEgic75wd8liNM2QdOJsRVbVPdkTqGmVkmibuuusuLFq0yPnuqquuAiEECxcuxJe//GW0tbXVs0ouWIGQe9zaeSnz5zcAAPohc60fOLa97LoXgXUvYvCaZeIC4jAZ8WbOTsI4ZhEa74X0K59GQ0RY3azsH0Rq01YnUgTwEXjea/qsxlX2HUD6z6+DNOet/2tJMRwBhXDSObhCHz3RHj73MJTG6HWYl3Soe/a6TSc84poZujQEwaAWVWCx53iTGIooMYsUqdNe5wyeYRz2VNuIoY84JiPaV0u6FdjgRKGFNBk5EUWVE4xAHwtdh9DIYaff/va3kc/ncckllwAAVq5ciZ6eHhSLRVx//fW47rrr8P3vfz/SNbu6WqquT3e3tekNDTJtyajwMxplMimYKKtUvAGLXs8LvX42rTohgkHH+v1OxgrwulizuTRMAC25tFP/bMoqS2WEREd7E1Tmuk69NOtYXvx5S3MGKU5dzNIYigC0tOaclUkp1nUUxdFM2loy0LpbnbJSivXupJnzurtbUbj1v0H2HoB2+gdhANCUcm1SKevY1nyaWxcefvfP2/aujjyUNqsPlXJpGABU5j7Qu0f3Esjm0mjl3Y+B/ShWfOtGtV/opmwabd2tKP7i1zD/9AbUE4+27puzDsBd/1I+gzh0o7aWLDT7uiYpVtSXlq+q7vKLGQ0mys+Oh3Ou/X9Khev58tBzKegAMrk0FLuN+YzqtDWbtsptac66nns3pw+nYJlD6SdLUF/wUmqy6tKSt8ot3vZLmG+8C/X9vTBhRX56y+iY5n63AEDPW+9jRlOc9572J2+bAIAQ4rzbzv1jBEJXRzOU9mhtiUrdBMKKFSuwefNm3HLLLVBte2xPjxVTnslksHTpUixbFjDD5tDfPwSzCmdLd3crdu+2Vr/SWzy8dxBZn+OLRR0pAEQ3oAAghllhr6XX80KvXxgtIh3yWL/fMToGb5cojJWQBjB0YBg0MLM4UkAKgGkS5yXd1z8MM1e+Lr1OcdQ6ltemocExlDh1UXfuRzMAnShOaHRxrGRdBwQgVprfgf0j0HcPOmXpRR0aAL1oOOft3j2I1r2WpjE6NIYMAEM3nHrrunXs0IFRbl28sM/WxVgB2radMOa/z6lP/+5BkILVf7LDBWQAmEzZDnYfKxQMHOBcW9s3jHxAveh1x0aL2L97EM3vvAcVQGFoFGmU7z+B+/lnhgq+/TIK9FkAgNo/hOaKClptNA3TVX6uoCMNwCjq/jZme+AihvV+6IWS6/nyyAyOIQugUNRBRovIABg9MAJq+CwWrP40NFh+7t5nS5+jMVaE6lNH33fJh6xdl6GBEZR2D6L1DSuarzAyZt2HUmUZ+/cNw/CUkz4wihzK7wUAEJNAATA0wOnLplluDy2DGdv69wyChNgRNwhVVXwn0nUJO73xxhvx6quv4sc//jEytp17ZGQEg4PWDSGE4MEHH0Rvb289quMLdcQSnjPL4zuoZvsPkQ9B3b4z1Mbzolz9rmgGnr3dN3pE7FTOPP2SZdpg60EX2zArirnt87PB+9lDOdEilfWsziyQe+Qp5P/3ASjsNqimCW3zNqjbdjDqvGCC4ffgw6Su8Job6f3ymqP81inUSthVwN5nJrKde6GhmWFMN2yABq0PG9hhfxVqTw7eQq5q8TFVUcd36MSR3jQ37HFBId48E2UjmIzefvtt3HLLLZg3bx4uvvhiAMCcOXOwfPlyXHHFFTAMA6ZpYv78+bj22muTro4YUV6iOJbGe22JTBx283/eC2PWdP7vftegOC+TWCAohgFl736Qznb+NXmx6YUSsuteQPqPL2P4is8w33OyljL3hm4EUvEyB8TiOzZk7iYkJrQNm5H/3wcxfOknYc7o4l7DDye1Nt29za5P/r+tVCXF44+0Ky9+8dIvvobSsQuAdDmqK1TqCs+A76yMLwUs1otrIAg7uHh/ihJqXdWxpCwcXO9glGtRgeAzEYoSsUQzG3tDpqlfLmSUUTlYg3McVyBEC3BIgsQFwuGHH44333yT+9vq1auTLj4SIkeYaKAKDfERCPasiK4nsMox+dtdimbObEQC58XIrn0GWt8uDP3jp0HayiojbRs3aZe9Srji3jgrjgPq5h0og1Z6O9fltzP17hYAVg6fqAKBbq8IZqEb2y66Ilg0AGmbtiH96ltQd+5B4a9OA0YLaFr9MMzuEHXxagD0f7rKlrOqW9uxOzYFge5PkXtwrfDeVdQjioZAn1sYpzIbgmlyzosiXOgaCZ5A8HuXfOvFnMdiWxBCp3gRCY4gDYE3cWqEdQiTCpGG4PfSRsHwPHC6cMUvIojXiTkaAp1VuU1Glcdpfbus44ZHQVoZC7JoIR5NG+FJR+3cB56ZiqBsjKzQECpXlLquS9vCDTs1QZpydr0E+ab8oOsMWCEwPMLUTay9AHBMZNSElnpvG1KbtoGESbHgFYZGZX0omSeeRebFV6GMFVFacEjwtcNgEmhb+pB+7W0QOz8UH75ACGcG4pgvPSj9+4Fs2rXIs0JbAoRaefql11xbdwp3GIsqEDzhrnSzp6gaAjeiLuRaBqc97CSP4zCPG5m6gkWwMI2bCkKAMjCEpv9a5RpwfOPAedf2S6LG60i03jyTEbcHEXeHFMzmVLrto3fDGmdGxnRY1wzYZx2CWXme64XRKweBcry66aQ2iPo8rGtWCjGXMA4zE6YCYWTUfWwhKMaIcT940ztw+l123YtQxqxrqgNDgdcOhWmWFyyKZvAVLgzBrNZDGH9Dy213oeX//sLtl+OYfGgfYfu8ufcAUNKRe+hJpO2Fb67yatne0mmD55pUky8J/FuEcFJdcN4R+zO1cSta/v02YLQ8sXGPDxwBZxJrQ64QazyqRQoEBmHsdMTU1ekXXkVq6w6kX1pf/tJnEORpCL5xyqJ1CGxCOJFpxjQDzUsOBbpPsk89XMvymTL9ktsZnPPY+8JzKjMvltNWLXrXVXh1ZgVLmN22aF09ce+Rggw8lw8SbkoxWNiEK5eES85If9MNK9DBo9GEwtOnUm++awVOcMpRGB+C27FaaQotfudW5O+6v7I81kHtQdu2E6033OwOJhDW3XOP6HoCKkw59yH98uto/d5trr1URHs0pDZthaIbSLELWtm6856TrqP55/cgv/K+cO2oAikQWGLUEKiNXhlgQst8NYQoi8j8NQSXmcVndy7AbgtvNsLB6dR04BscQvqFV/kzMtaJRjfI8V6b95Kws0LdPdC6jjVN/r0KC2/GxtMQRDB9RHv3PXdq47BQUwTnmlxCRJ+FwjT9t+lkoesl7nkArT/4eTQfgo3rHg+PoOneh5Fbs7ayPvSTZ2rymvDsemjbODmKBMIq/bK1zWbqnc2u77UNm21BccB9glc40cAJu6/whH/6zY3WoYNMhlSRo9vGtVKfTejIudfqfmssSXK/celDYBBGe0Q1UdgzWJcgYc0gxETmwd9B0Q2Ujj2i8nzfnDkCDcE10xasPi7p7g4n0ow8A39u9aNIbd2B4ges/DRcv4XLZOSJ1BAJEsDZM8I102NsyYpIbQ+ClsO2lxUwYdJP2HVRB4eRv/uB6HUA80wUBSAkcFUv18dUTbmEgIQSCNZHatM217GhMpjysJ34Wv8+9/eMoPFOPKy/PeZDkV9CVL7Pu5R+fQMAILV5G0qd08o/MBMH7Z3N5fBXURkU3ixfpFnpHAHoQ0WalwSQAoGFzrQ5P0V2JjvChbmGR0PI/NmauZR651ee79M5uC8lZ5BUBM5bRdfdJiNR/hdPWmE6OFFnM9tAlw/BZ4Mc51hWKzA5GoLrWGamaFINorLOat9uazbnXZlKTVi0DUwZrsE2TBRHHJscEbdACJxs1BLq7LoOCd6giPNb1YKAns8b5IHQPgRuBFKU8n2eqxOgMOoJULDLyzz/MjLPvxytMI5mK3y/XBUS9z9ldFT4exxMWZMRMQmaVt5n7XlqE2c2Te6sz8dMww33jGAyKptZmDJ1z8vE4jUZ6f7tpgM3rQ+xM4Oqg7az3BUWxww2jmPOp5NztBnrb94+DuW2KBy7MqX5jl+i+ef3wNy0Dc23/jdQKCL9wqto/e4tQLFUfr6MVsBmhQ3cxSrkMYEQ95Sz4ln7LQyrFcZkFDorKhBdO/bCPlPmWnSgVlwCoVJ4lAMRqrz3VMMp6VD2DaDp7jXAaKG8Tas3q2ktApCd3Igc3Z66WecGlFtIzplMmbICAQcGkXpvO7LrXih/V+Oex8rwCNTtu/yvxc7KWVMFL0R041ZkH3qy8uXkzTY4M1+eQ84pW/cIBJGpxPBoGvZiLCd6yuSoyISUr0lMcUge3LN0riBlo01oWwUvmf6b30PdewDatp3IPfIUAEAdHCqfyw5wrIaQRDZVHkEzwSTLDbWWgCDzu2fK9anRZOV6vuy9ZyPKTOYZU7waQrUTNvquFUvIrn0aqXe3IPXOpvLKY2+fqyXen1d/Ub9ig0uC+gXrr4pLa/QwZQUC4XXyGgeE/M/vQfN//sr6xwkFrYxiARA4EGUfX4fMS685u0UpI6PIPPkcPwSRdmjXIit7VsSrqGHyXzyfY12ftNM6EReVJgAFcNqqHhiE9m5lzLurXgH3whVj7gwSgmdlx5wrBWYB2ugYEyHEDFBFZsYaRy79MARlFU0K0wzdxuzTL5X/iVEguHw2TkQZ4a4jcH2n61VP2Jy1LcxESB0ecfqHMzkrlWyhWX0/ULgmI8H75Rdowrs2G22WkLYwdX0IvFDPGk1G6pA9azaMcif0cyqzqjNvi0g71E0dGbUyTb7xLrJ/eAFmx7TKQ+ngH/aF8YadCg511HVPLLrTPp8ZDs0Gm17/DtLr3xFWx9XRRc8gwGTkkLYFwhhz3dGxsvmryJow2AGqXgKBftZZIvBi5Tl4Z6pVrflg8dEQXCmrebvV0ec1VkTrv/8UpSM5vrYwMJMz5x0fLZTLKulQt+1E8y/uxejHT49PQwih2fAEiC+MhqDoOkgsKQ/dTF2BwAtfjGlAUApFrobgSpnNviTc0EV3qJtzHVFMesj6u2y2UaGDRdCsMYJwdZkURIOkWY6jZ+3JuV//1p0HikkJQjTVWr8wWmCck5xBCaijQKi3amBh7ZgX/bmHnmj4ne/SENj7zQRD8BYs0mdtmyfTb2yornxmNzXqQFaKxXIkXkl3QllTb2+qbWLoWt8TwtTlt0CTg2ucSMi8OXVNRhyVKxaHIQCMFqDQ8EmXXZ/pLMzAztcQ6HGe/Cmi2UvYAc2oUiAYRllDCDo2yiwrpElCMco+BNaElX7tLeR+u658IMfJrhRLjK+F78SO7fkHoJR0ZB9fF5+zOCwRTEZmPhd8UFjYvs7+zebQ4kUZUSFR6zoMVkNwBEKprDGWSlDsFfnKWKH6yRIs02RuzeOWEPM4xbmw5qmAcl2CNcYAGJYprCHUqAYLUMYK5U5Y4j9w18MVDYiOfZOaaIIjggIxzeoiKXQj/Ow2yiKmsDZqV7y6/bINc0Lx6EBjmOUY8pJevj+6j9+gTgJB27E70cVFvrBppgNQSjqMGV3QdvXXXKxLA2QnP2y4tGA2XWu4Zdl8a5TNLswEASUd6tCwXddiTSaj9MtvQNu914rGC/EOuBbwBb1bultYJjGdmLoCIcF8IMrYmNuRRfFxKosGRHXfAbTecDPM9jb7vOAEfIF4fAhhUUql0EInyuw3tEAg7igjpX8fVE6SO8Ka2ehLWSqVTRB+Ya71MhmNF2Z4h6lS0p28UbXi8huMsplmywLB0QZ4Idi1zoZZDYGuNSoWodjh1kpJB7EFhVIolcNRq0Cx/YhKoRhuUuQKyggwGQXtdxIDU1YgcKOMYsKtIfDt466XhFcXe3DS7DBWukpRNLMPaw5QqjUZlfRkNKuwuXrYepsGWm77H/5x9qCjjBbKW2CWmMV4Pj6EWm3lEx5iRhtcM5ngY8LAmonYRWCOhhAyHLZKnCR5ul6eqBVL5QG4VIJSsoVfoQAlV72zlmpAyuBwuHsdxans0malySheEhUIxbJ91G8AZQdBjoPbiRyKkrsn7Ay3WKpcnRkCpaQnEpqpiLQe9jiTVPoQOBD6Uo6xg0+Jn2K5Di/ZhMEkkbSg2DQExl/H9jtntk4ISD3uPeuUZcyfSkkHoXUplEBqEITO3tIHBkPdP23rDrTecDMAoHhCwI6R7ESmhtBYEVIgJIBLQ/B5AZWQJiOFTZYVVG5INTLzp/XAn9YHH+ilVH0suAjXwC2C8SEIQyGpQGDMSa4QVF4yPQQ4/8YBY1Z3rL4Gy3kbYSBJRdlDQFBuKcCHAEAxktfOXM5p3Shr7CVGczAMkFoSKNKyRkZBQtw/6rsAgMyfXhdfk/0nIQE67lFGGzduxEUXXYRzzjkHF110ETZt2lSXchM1GY2McuP0XceEdCrXHAMeI6zKHet12U1qRLDZOkVZRu0ZqWs2OuYeDMp/T5z766V40nEguZjMNoCVSC/CQFKLLd0FO/lhfQjsuxFHjqgA2ImHYhiuFf4uoRXH2FAoJrvQsVHDTq+99losXboUDz/8MJYuXYpvfOMb9Sk4YYEQOND45NOZ0JT0RByvytAISJg9b9nUFWE2pPERCC5fzkR2JKsqiBLjK8qs4whFpF3G/HGHWPO1wXqE/FJhSFKa1Y9pmcWSW1uJYdKjAFWZZYOgOxfGmXeNZVwFQn9/P9avX4/FixcDABYvXoz169dj7969yRee4CCsDI8GOihdKRMSFE5xopRKiThe1aERkFw2eEbKxNGHMe9QkxFRFP5aj4mOqpRz8ccBE6UVitgEAtO/49rboQZINgvFKIchK4RAGSuAeHcFrJEk+hyxc4k1pMmor68PM2fOhGZ3PE3TMGPGDPT19SVedqImo+GRwGic0OsQJhBJzHgA+8XJZpw9pn2PY53KYa5rH0vyTeWd3yYTqgrErCFEmYmHsYGHwrUOIZk+FAWSy1oZfnUTRC3vW0Ka4k8FETsZW2jJsFM+XV0tVZ1XTGoQ1jRoI6OBEjxlGs7CkrqvWI1KUxYYLaC5WEBSir3WlAUJEDgqIpo86LXbmkFiWGBVb9ra8yil4hMI2bQKooTPqZdvbYrleauMNq5OAE0t1ZoH2bsPgAI0NwH22gGtJQ8SIYgjNlqboR40A6a965oILZcFwSBamzNIeff9iIFxFQg9PT3YuXMnDMOApmkwDAO7du1CT09P6Gv09w/BjLiyMPXWRjS9Vl1elCDM1uZQOxsZo2Pj78AJiZnJQDEJxrbtRjyBiJXoigJVgTAlhjlWhArbBBRBiJayWaSo/TidmlCOehEHBsaQQ3xqfHGsBKVQQth5/0jBiCd9WqFU3lXVJCApbVx9NyVNQ4oAAIGRyUCDJRBK6XQsAyLJpCOZgY1cFiUtFerd0lUVGoCh/cMo7R4MPJ6Hqiq+E+lxHZO6urrQ29uLNWvWAADWrFmD3t5edHZ2JlpuxWbfMWK2lW80EZlAiiWQmGy0iaMoMNtaoO1OzrdD0qlAB6rjfM9Gi7wh+SZXOZMGRWkMkxEAMNFSJOLzixvCLjxj/qY7qNV8/YjXIdlM6Hvd0D4EAPjmN7+JO++8E+eccw7uvPNOfOtb30q8TNLSnNy1WxmBIOj4SlGPN6QwQYiqwpgzC+q+A8EHV0sqHehApbPKqAumCJuoLZ2UjpMAqhIu+iosUVOWxDhhIVlmEGYWftVrUsT2GeISAvy/ayor6nWymfBrPuiEJqE1M+M+XZo/fz7uueeeupZJWi2BQLKZUOGLUTCnMapYNg342MUVXQdpawZ4ydloPSOYRqKaUSKhKjAOmQu8ZC1mI5oWe5ggSacCncrOsRFmmETTXCtPeZEkE9aMpMQdZUSiBTDEtQ4B7mfmen4prS5JBVkzDiucSC7H/bumsiJeh2QyQMgIJ6ohJBWmO+4awnigHzIX2tmnoPDhE2O/tktDCFgCT9JpoVmJzmTopjjG9A7/i8Wp3ntRVZhM2YloNukUEHY2zMz2hj/3Nxj51Hni67JmIo7JKO5ww9hQlNBCMhSERFrzUuvsnZ2e+AmEWM1SorqwkwJWK/DRFmoqqxqTUUjh65g8G9VkNC5k0kif+2GY3V0VP9X6Erh8CIztmktKE8/C7BfHmDMLg8v/Acb7DvI9lB3UYlfDVRUmY2Zzqf/0uxoHLktDCCcQXC93a7PQhEQyaZffgHvsRPUrKEp4IRnmcroBRTfCp02utR+x9zXjpyEwzyZO4eeFFUJ+QiAuH0LU5HjZdPh7rWmWGVFqCAnAG4xrnLG4Zh8tefGxqZSwIxizukFyWZSOOzJ4tsjWO+5Zl6q4ZuVcp26tL3M6JXSgsoMFyTL24FRKOKCTdMpdd542UKdZqhcz3yQ2f6nxCgRnLUbYAavWd4Ed7FNaeaKS9fEhxGiiqqhLlt9/2cE7rk2BomrQJJ0O//5oKqBpjblSebxxDTL2i1fz7Jo5nzQz0S28Y1MpR2XmmS2MuT0Y+tLnypqB6IVxaQjxPlaiqq6ByWzlOOVrLJOkUiAiDYEdnDJuGzTvmTkDbTrtHphcwsS+9+PgaDbzTRj+58/CbPafNBDEazKiCf7CDlg19yPvJMXe67rCh0DLC2O6q9Kn4tIq/RzMQRp9WNj+FkagG0b4e62q1rsmNYQEYB8C7Zi1zhY1rWz7Z192zgMnac0RINxwSM09EIuElcsWG0GoheqwnkGJtFXGMNc8eKTTwtkw23aX2UfTuMLQseMqCkiGFQicwWg8fAj0nooGOFURC8moRdpJBEObNGqeHKnOpItomiN4/QRCqPLUKuvElsn2JZdAKL+vNfk2Imrrim6ED6jQVKuPSw0hATTO7KRWNVnTMHzZJzH82Qvdpgw68LMPPpUqCwqes9P7gog6DXus3RbeYF88vhejS86wcgeFtVF7BiUqvFxt4bzMRld78LXZa4Y0iXmd9a6Xl7adamfEtEJaKWyEiWYfmx4HkxG9p6L7H7MPAbC0O/3wQ8IdXLMvSin3b01z2uIahFlhzHn3KvpwtRqCnyObXR/BmoxqGAeIpjkWAZHWU7ZKqO6xSDS5Uu1j5X4ICaBWagi1m4xUkNYWkNYWaDv3VJalqU4MMUmlyuXxOmAEgcB2cqdDaWpFdlLSMQ36MQswdMShAICWH/wcCJps2Lb9ocv/DurwCLTN2yrawqtb8UMnwpg3Gy03/adVtig0NsipzN6LrMfEw947+yUz803WilyTBGsIWrTXgOQy7v0VqoG2VSQE4w47hRWgEDZst2btRLEFQgl2eKnd71vy5b7gGgg570BKi2WXPuLjR3KZC1lTkpaCgiqfMSsEMv6h56XjjgRpbkLxL96P9OvvlH/QNH8NQFUBVZU+hCRwSWJHQ6hRRrIdnPVR0LK8QohqDrwQVc9MQajG8mZanMHGeclpOGYEkxHparf8GbRe7Lm8WY2quGdIIoEW5FR2aQgegcDzIVANwTRdYYCuiCNnEqBGinAxp7WFPtYXhXMPK46Jb6Wyy5QWtq0xlE3U8kTLlWzQ7ofEx7zimJo876PSVt2iUsL4vVzvPauZs8+iFg0hk3JSsAiFbzqF4mknA9mMu/+J+oRGfQhSIMQPO2BTM0itzlH2fPZvxpbqHMs6lTmOvooZk0h74dhiuTMub2cLIRC8M0Xnuqx/gzfIeGe4gnsbGHbq8iF47pWrDbYGQgeiphxIE+Ms9Jrs6Hf0+YQZLFMpjHz6fBRO/4vgY30gYTSEONNfU/t9FIFQs4YARgtTUTrqMAC2QKXCJlVpVqXHW79b3xnTO1A86Thkll1cVVVIJoOxMz+E0SVnuDUEnwlgLWtTiF+IrRc/k6vnnXRNLFXVev+kySgBuE7l+DQE9wN3d3Dnb2rz5nUc74AuCq/krUPgzto934V56b3nMP4Q52yeYPGGygp9BGmxg9snUsgPY95smBu3oHDmh1x2Yu5LyGbVY81gPhBVgTGnB8reGlJ5UPux6P7HmcvINtWxs/NAVLWmFfBEUaDQZ5pJo3DqSSiedDxIR1v5fruijDjvjtOXNRTO/BDaOqrM8KmpKJ10nPU3uydDOoWRpZ9w+w+YepV654Nks0ht2hoqaSUAIJMuJ/MTCAS/ySNRFHeSR/a9sKOMpMkoAYjqnq0DqN2RxuvUbFnsgMQ6UnkmI4/aKvRv8FRv3gBcMRgIIntoR/SeQ7/n2O4rjnOZzQRRUgFOZZeZiHOvRj9xBgqnneyo0mZbC4b/YSnMWd2AosDobIc+/32utnDNePVKOEjvlyiySokxyoja72kwQRhqdmgrZUFkR5GRzmmuI/xMRs55jjZaY1V8fFAklYJx8OzKRap2nzC7u1D4q9MiaUsknXYEgVBDUNh3g504CbR4TbW034QEgtQQKHSmXmv+eY96V1EWOyClUk5H53WcCvOFUEMIKdy8IaSq4v+uqXa8s3eWSmfQHDWXnVFWRDFRO7aqVu54FmAycq0f4Kw21o9eAADIPvGsdYxnrcTIZZ8EVBWpV950tw/ul5Foauixh21n6JxTtO1hBts4ncr0fqc0IKSPltCFcdXmyGKqXvHMaPvDOJW9F/PWM8T9JxzzLQD/dyqEwPZFVazcSYWi8y5y6+hXpwqzLlzHEbkOISHYgYCGHkaMOBHCEQiu2Rk7iPNmEpE0hEqnMs8fUjE7FJkkHDu35xwnSoqjIYg6tsjZnSo7lbkzWNfCouAomYpFRjTskWfCYhfehdEQ6LH0BY/igKRlhhIIamwmIyqAiaaGFzK1ls0KE5+B1x12KlhFLnS02v1dVBe/5+pzXWc8qCKrKMlkMPrJj6N07BEg01r9y3GZjATattdXl+BK5amtIbgG7HjWIbjgzQDYh+uyiwdHGTkDPWcDDl4sfhgNIfBFK+kVmopicgZC1rxEJy9eZ7RTL7VylspqCLxwWTYksL0Vpd7DUDzx2Ioqj/zNX6F1e5+/+YkrEHz8Pn54BYIWITQyyoxfQXUzVA6FD5+I9MtvwJhzEFKbt4Y7KWjHogj45ptyrdXhTRQq+/DYWR8GUhpyv3mifJ4O69n5DeARTYHOpCPCwDt2xikwZ3SBdE4DATC2eBHSz7xk/ch5jr5pOzjatus4TQXGpFM5flyDAycMLsbrE97MMF1eh2DO6q44vUIjMMr7AVTsyMQLd/WL/HHVUaCKU6ex9zqOyYgTsifSEJgFbd5SCbtSWVUB+AsEaBrGzj+LW2fj8HlIn3Is4LebFKsVcjSgUOtQ7HqWjl4AbesOGLNnIffwk8HnAczEIOSxMaWuMGbPRPHUk+yywzuVa0JRytN2v2geVxgw5xiO761kTwSoQHD6kyAgwPtcR/72Y+IV2/Q3ej1CryNw6GbSMObN8dRfoBEG+ddUBTA8AkHV+CbXmJjaJiMGZxAV5LWJGpLKXcnr0hA0FM76MEYXL4LBEQjeWU15gxieeYmN91cq60uLjaIhsIvpWByTUeXgKoqndl5+3kCTTokFWQgzURhcTlqODyGUhshEzowtOQNmqziJoat8p6wwJiPE50MIChGmv7HPjD2nSk2lcNoHAQBmu2fthmNu8wk7tX9X7EVd5jRBdBEvOMCL57kahx0Mc84s38OpsKjYd0AUGOEXWAHwHzdvHRQLrz10VbP0ISRMGA0hagQKzzzh8iGkQNpaoB97RKiVyvqh70Op9zAUzj614lC3Pd8TsseW6xPBwLW/+rxopeN7YXS1o/T+Yyqv7zOgAGBMWcxs75gF5e+cZ8BJ4xHXHgysXdwxUWl8Dcf3GoJrBhFl1q2o8e2Y5gpdFE0CfI6LMBkiTF/QjzsSg1f/H27+K8CtIYAT0GHMtKJ/SscdKahzOVjBl6iTObqY0asNCNeNhNDI2TJYrZ7nY+GZmRIOO53aJiMWOiKKBn1BZxg745TKBxjoQ6hcTOaqknfDjnQKY+efBYW3lSVHQ3DbJW0zjJ+GwLO/chbTAQBpa8HI5X8HtW8X/zreetDztEr1f+zjp1s2YTbmnjMwmK0t0Oe/j69JRYG9J5xZaigtsMLsVoVA8HNmsnbjODUEFpEAU1TQXCauPa41DdCNcBFVNDqN/d8Lx5REOAEdZs9MDJ7zkXDvpWjhY1QfAg1K8PiLiKb563YiDYEHb5Ekew43bDxZDSFRgfCtb30LTz/9NDKZDPL5PL7+9a/j2GMt+9/y5cuxbt06dHR0AADOPfdcLFu2LMnqCHFCCIWdyrJV8l6K0gePrzzB5UPgzKD97Kp0mX+EyAj3oh6fwdmoVGtdK2Y9AoHwBItfPXgaiI+/gng1J2qvdUxdfPV59JMf59cjCmzZtnM8eqbY8H4YYfkMTp9iBlMSY5RRrRqCy06vBwxGNLBAeFsqAxO4Cw5VJfiZhNHuIgqE0rFHQO3fh8KHPLsqBiWeq/iO70y23m9mfOBpxTQk3BO6nWS200QFwkc+8hF87WtfQzqdxtq1a3HllVfisccec36//PLLcckllyRZhUCG//5voQwOl5NLMR2n8OETkXnuz2UHLruy1evs4cC1p/tEGbnq9I+XiMPdeB2PfbFo+KbGExI+IW3cQYIxqQTVg/NSVpo7AgSMM2v0cbDFAHtPFDY2n15eNCGgg7a3KhE0BN8JBx1o2SitONcheFe7+sHxsVj1Y7W7IIEQ3k/iekd4O/GFSa2SFkTVUUKajPR5c5DatBVIWSujKwh77yi8+tN9pNkhhGcy8tMQVC0xp3KiAuH00093/j7hhBOwY8cOmKYJNabIiTgwZ04HZk5Hev3b1hfMYFQ89SQUP3wiWr97i/UF6/QMI6FdAyb9dEcZ8SCCTVOs6/I6Gaty2p+cULaKGadQINC8QD6zWq6ay2oInvMC8/fQME6fFyEOWGHDZJ2lN4272Q4VBPag7bVVR9r60c9HRQdar1YXmw+BLUtg11Z80pGEcdzSa1BtQlR3OhiyEwjXSuXK330RrLtxLhdSQxj95MeEIcSBqam9x/O+o2Yn1uwTss9TH8KkNBmxrFy5Eh/96EddwuD222/H3Xffjblz5+IrX/kK5s+fH/m6XV18Z1UYurvLkQvFTAomgJb2ZidEnv5Ok9dqmZSVo4Sm9PW5FoWkCGjWlGwuAxNAyr4GAHTNnAaF2WaTlsO7luu6TRoKnu/aulqdKuWbszAAZPPZcmZre3Ce1tkMjbl+IU3bVPnCpDQVBEDztCZM47Uvqzj1yOTSMAFo6XL7OjqboXa3Ou3KNtn3IJdxjnE9g2yq4ndKu32tsPjdQ9MsOkmNMykVJoC2jmaU7EHSdc9sFNuMo6RSgG4gm9HQylzfHBkKnSg51ZQFAZBKa+jubkUhZeXOV9IpoFiy+pbN9O5W6PaztGyVIQvh0N5Rvn/myGBlfe3rq8ygPH1GGwq2eHD6fogoLHoN2kYetE9M62px+m3btCbnbypL2qY1uforUPlepuzcQams9cmaP9Wj58N8bQOm97Rz+3hYCva7QMvi0dbRXFFXo81qk8IIRzWTAkaA1pYsUszxtD2q3Rc12jcYudoxvQVGaxMMw8D06S2u68ZBTQLhggsuwPbt27m/rVu3Dpr9AB544AHcf//9WLlypfP7lVdeie7ubqiqitWrV+Oyyy7DY4895pwTlv7+IZhm9Delu7sVu5lY9ZxBkAYwdGAENM0V/Z0+Mh0KNAAElekedvPi3kcKzrmFoo40gJJuwPjwiUi/+Br2DBWB0bKkp8dyr8VSKsH7mh0YLoKKlpGRIrIACgWrTADODPHAwBgM5vp53YAGwIRSEXKm6yY0AEOjOkq8OhWKTj2KJQMpADoB6BPcd2AUZm4QzW0tUAeGnPqUSLnjuZ7BWMn+XanomPsOjMEMui823mfLogwWQKcQRZ0gBWBgpIScSaAAKJRMeC3ZRFWgGICZSUMdK6A4UsQB5vrqwCjCJmWmbdN1AwO7B9FU0pFC+f6bKIf+7ekfRqagIwt75k6qNxPs2z/q3D/1wFhFfa0+Tdzl7x1Gi7WRp/NcTaWyn3ih16Bt5NFCrOseGBxz+u3AUAF0fTm1zA0MFaAz12CfrfNelnRoTB2JqkCxb9WBjy2C8qGTMLh3JKDWYpoNw2oT07+9HBgqut4tAEjZbSJ2ewHAVFSoAIb2j7jeq1zvYdAPOxjZJ5+DCssqraJ8LwDrPdDSGeRMgv53toN4w3lDoKqK70S6JoGwatWqwGMeffRR3Hjjjbjjjjswffp05/uZM2c6f59//vm44YYbsGPHDsyePbuWKlWNs/DJu+CLhQlvCyWXWScZ40OgpiivSj38938bLu0uzwHlY+oo/2N/RvEh0O9Em9p4y+I4lYc/fzFgGMg99gfrez+h70R6JWgyYutMV4ezJgJe2TQ0lx7vVddpv4C/1dwxO/nNsHkmGTYXVK0zwSCTEfWLecv3Rt+F2vdYHEnF4vazRQvbLF/E/mAyozqO71QKpKsj+BphEZmMfPYE8eIsiPP8RBdbZp98zjqOdz1NtTY5UhQopVItSiOXRE1Ga9euxQ033IDbb78dc+a4V/Dt3LnTEQpPPfUUVFV1CYl6QwVCxQpglgh2VOt4wToATkc3Z06v+I6Ln6OK4qRU4Ngg/V4w7mIxW6DpPjZVrtOc810mDSBdDt3zNTsIfo/LqcyGOdprG5RC0Uk57LtiFCjfD69AoO1Mp/ztz5oG6Lq/wOctylNQvp+ss9kH4QrWoCgjGm7q17dpLi6BycgVKWVdVFxhAFBVDH/6AihjBc8iMLH/yl0wk0IE1jNWCjXuaFdRhv1By+BEGvIHcM1dRwCFU0+CtrUPpWOP4JdFb5uPD4F0dWDoS58rR+fFSKIC4ZprrkE6ncYXv/hF57s77rgDHR0duPrqq9Hf3w9FUdDS0oKbb74ZqfHY7NyGpo6oWFHJQNgoI4hnhBU4L2S8Nj8K+6I6i1bY+0k31IgSymprOEqYPD3c1dGea3pe3MoCBb/HFW3D3Cf96MOReWk9jLk95d+5QtQON7a34lS8YZc0TDSV8r9XNN+Oz4DK23TIiiiJoCEI93IIiDKiyqDPDJiE0RBsX4uz25nIp5zNWKuQNdV591JvbWQOsD+iaEai7WjjQhhlxNHS6fGMQCDZjLVTWmBZPE3Ovl4CwgBIWCA888wzvr/dcccdSRYdGf2IQzH8mQth9nRjuLuTn+fEO4uLEg8cl+rvYeTvliDzzJ9AWiyrMMlmHHXZNZsrWJoPu52kVR/7k6faOhqC/9TUbMrBOOzgshbh2ejDfUH7M+CF5WsIMZmMmOsYcw/C4DXW2hclhDAifhoTndmmU8CoT7nU7OQdUFVGA2COc/6O0m5Rkr2gNBSitCHM98KV/FSLCSG8zVndUDduAfTy+8MVRoJrDX/+IqCkI/fQk67za9ntLBBWcIvSWXu/Y/2cgWOAT0SgXxkxIlcqM5gHzbA+/Uw3Hg0hlI00l4HZ2Z6YQDDmzcGonVBr7NzToB86F5l1L1g/8nwN3p2hvPZXFmpG8zMZARj+0ucAALnVj1pfqBwzmVOWZ9MTL6m0q06uU+NaoAWgtOAQ6Ece6vpOGbPipcyu9soT6LoOW5ia0902aXN6J8ymHAof/Qs0/fqxitMBlPdZ8K7ebm8D3tsOdWDI+j9KrqmKMtyraCtWPVNEKRYCTEbsgDR6wdkg+SbkV97nOpf6WkTm19FPnInMn16DOYt517hbvvo/d3N6p/2XR5gnMGgSb2grT6MWmIxc5qVakgsmHLIvBUIEnBmI00mDH+zQlZcCALIP/s4+JT6BYDa7c/6X3n+UVQTVEHjrHPyS93E6c+mEowAoKJ7ygeDK+K2OZqFt9zObOCYZjgCKMYXD2IXnVnw3+tfnQNu0ja8ZUnPKtFaMLP1EZfqMbAbDX/oclBE/9QC+jtbiB49D6uU3oB8yF+k3NlS2M0q7vc+QncUGLExztm0MMhkxAl8/0h0mToMtSHsbsHUHlMFh/7rmcyiestBTf7ZfUB9CeKcyBIN1zTiL3wRlCNLNu4VzuPrxdsuLtOalCqRAiILTGeB8jp53pmOuEUJNBjENbINXXebfsTg+hNTi01D44/rKY4m/845kMxj7xBnhKkTbJ/Ih0GP8cuPT+vJMVAm/CPoRh0I/4lCk3ny38kdGuzMO9o+CI6IJAs9HAGuLxqFrliHzhBVZ4m1npAHAOyCxRbkizqxnbjY3QR22hRgvrQh7Hp0MCRdmWceadiI7Y/77wtfde+0oC9MCgxVqxzEXcjQux5fI8z+xOyUaHG1NBG+skCajCYRa+VLrRx0e7lxHiMQ0exGk6aYOZPYFSS06GfuOParyWJEZJ9JmLu6Bw/Wd93o+AoFqNBVO26h1qYVano/g3Ir9MCpWjNufov10AwhrbqImneIpC5F79Pfu+ngHnLSdZoFeWzToOhFRKoa++BnxfgM8uCajMJFKVDtN0JlM+2bJ7psV4bmEL7x4E4Gwz5RnLkt4YpTs1RsEJ/7csaNWhpIF4gwE8dXLD9JkmZIq/AUiuPH34btHeR2Cv8nIiT7xcfoZh8y1PtmoH+da9emqwqiWkL5ALvb9NQ6aieIHjsboEo/mFZRaJExf45mMeH/nshhc/g/ORjMAfNOKEOrX8dFwXLDJ8Jrz0dPFB62l8S3XR5jFiKMhGLY5k3Nv+ZMqjokpqE2cd2n4MxeiePIJ0ocwESBNWTtW3f5fNJP1IyGnMo/CGafAOGgGjHlzgw92TEZVvowUnkCo0BDoLNNHILzvIAx+5TKo/fuRfeJZT13qNHcRtjnki8yDGbQK53zE/1zvJUR5h2jWTG8ZvPr4mO8q/vdeg9nlLpAa+3i1WqqzNoA5f+yMU2B2RF/F60fh7A9bO6LNnI7Upm3lTKQsIpNRNRoC03bzoBko2EEvSSI1hBDQaAZnL2GfpHRC/GaASZBJQz++N6RDTpD2u4rZSBgfgnC2m0mLV00nTQ3yQPiiBw2WfutUBKt+Ry84GwW6LSbvGNeqcf+qsed6+4Ez+XHWN9TQxiCq1VLt82gdSS6D0gePh3H4IdXVgwNpacbY4kXld98VvtxT8Z0D7/mF7MtJO5B5SA0hBKNLzrAiQIpWrh1u9E4QQWF9SRBh2X/ti8EqNY0KDYNez35x9UN9NBhunPxE8CHUoCHY+GpdPhoCNyUI/a0lj+LhJyL71PN+FSofG7buXk3RZy2K2THN/xpxCAQSIcrIrrNywMoLRFqrT3gZCOc9Hr3wXKh7D/DfIcfUVv4q8FlQpECYoOSyKJ1wFNLPv2z9L3Lo+iF4sRMjxIupiFJOR3mxeYvO/ExGhGDwq5f7d3jmvOJJxyHz/MvR7dHVInIMB90OkQ3b2Z1NvFLczzHsSkvt+c23SIUxawQd67NfxugnzkDm6ZdgTu9w9gwZWvYprsOY+Ai1sLj2qnAih4KHKCccvN1Kd6cfcajo8JrgCuhsBmaPz05+TKh62GfhUM+xwkYKhCj4qNWRzp1gAkGsIYRvJy1JZDJy9nnIZsQDPHNe4YxTUPjoX9RvtiSILw/clERUR0OcOoS7ox57zTCbr3gPcdmt/avmOtbrVG5vQ+GvTkP6xddc3wmvUbWGwPFjtYUI6bbPM3pmYPCfPwdECaaolrCmX56mU8vCtISRPoQo+Nl5Q1CePU3MW861V1YjvHh7O9sUP3gcxs49zT+pl43ZygwCipJsbhovvBWoNEw2TE4nDzQ3Fs0v5RsrHzS7FmUCDbqm928eNAIszHapflAXUbUCwW6HfghjSgyhjRO7v5CUlrww8NPkfCD5JhRPOg6jFy8pfxl2QilNRhMcp6MTjJ35IRg9Ebz+9NRxUANLRxwCv9dEtG9ypBeblwvIe76mOauphWQzMJtyFekl6oJAIAgz4fow/Nm/gTIygvzdD1hfBGY79QzuIlu6/VX2ms9j38Y+ZB9/2vN7hOcX5OMKMxeqVUNQFAx//mKYbS3Q+nZB3bs/1GmF006G2dUO47B51ZUbhaimX0Wp3IozSCBQwSoFwgSH6QSlk46Ldi6d4dVZQxj88qVAOlWxoY6DEw5Z5aIgD8IoowjQHEl1h1flDN03IbpAQFMWpCnrrB73zeNEbc3egAWhQLC+UzraYOisAxmVeZPCxr779E9nciBaDhFDSDXNE2UcPFu4KtxFOoXS+4+uuexQBG4DG0zY7TylD2GyUM2uFOOlIdBFdX44Mdw1hp3ynKZ1WHMRO0INIbrJyIGmHxfuqQz/2WOUzWPoytlqFkP5mqzCRPvUqCFMBuJYTxSU7VeU7TRhpECIgiDvTyB1XJgWCVWguVQjvEQmo0kALyTQOGgG0q+/A/2wg0NfZ/gzfw1luLxto+OQ9kvs53evaLQNT1D5jd40bw77c9CjCBrMQ/kQEkwuN1GII1owqoZQx9spBUIUaCx2DVFG9Xy4YXA0A95+vdWYjKpZkTmR4NTZ7GzH4L98Ptz2kfScgzy7/4U0GXm1TyWEyajyexXWzsbhn4VX4JjefTOoQBP0fcdhPg6277pRQ2BJ5TX8frc/pQ9hguO8FFVEvcTRkZLAGYjKM1GlFk1ossNdj4FIwoCLIdYQfAcJUdZPX4FAz4kgnJlcRSOfOq9i4ZnC23TJj3GwfdeNOk7s6hqibpOoQFi+fDnWrVuHjg7LUXTuuedi2TJrh6rR0VFcc801eO2116BpGq6++mqcfvrpSVanZpyXopZ1CBNt1qzSZf8cx0iEutLkX6G225zI1LpAz4fCWR9G9rfrQmxh6nkOohz6ftVicvCHxjEdWjmlKqDrKESCMWJI5mQkcHFiDHC3wK0TiZd4+eWX45JLLqn4/mc/+xmam5vx6KOPYtOmTfjUpz6FRx55BM3NIRaijBcBi4vERMyFXidonLyT0ZU6JCNS3rC+EFvdxgP+YBb+oQ1dfjEUzu0rfeBolD4gioTxK0MkEAI0hCjmO00sROimRaE0hIk26YmV5NtGd+8j+aaAI+Nn3ET5b37zG1x88cUAgHnz5uGYY47Bk08+OV7VCYdRg8mIDhIT7GUpnHEKRj9xJox5dohfFcIAQDmaqVCMp2LjBS+nfhRNqaujYovNqIz+9TkY+eTH7AvSeoUXCITj3A3Kn1MWhD7H6REmQw2sIdTj/XUEQnP9BULiGsLtt9+Ou+++G3PnzsVXvvIVzJ9vbbu3fft2zJ5djjPu6enBjh07Il+/q6v6RFbd3b7R+VxKGRUGgOZpTZgW8Vw9n4EOIJ/PRj43Lnzb29MB870+FAHX3q9R7o8xpxslAM3tLaBGo6j3N06qLZukAa+OM62zGVrCbTG25VACkM2k0Prh48vf93SiBCA9sxPm9l2uc7qmt0CZZtWru7sVhXQKBIBqz/ZT9v8AML27FQpnFe+Y/ZnNZ2ACyOcz3P5Zymh232+u+N343AUAAOXJP4IAaGvPJ3q/xrNfGXvyKMF9b8PWh97roOPpcW2zOlACoChK3dpck0C44IILsH37du5v69atw5VXXonu7m6oqorVq1fjsssuw2OPPQYtxkRl/f1DMHn27wC6u1uxe/dgpHOyg2PIABga1VGKeG5muIAsgJGRIooRz42DoPaqA2PwGusi3Z85c5D6+OnQjzocrQ/9Pvr5MVLNs6UowyPwTjEODIzCSLgtqYExNAEoFHQcYMvq6UHqwnNhtrag+aU3XOf07x0BKZbbmy8Z0ACYhEAFoBsm6Ju2p38IGK5cWEeHmULRQBrAyFiJ2z+zA6NW3y9w+v6sWQCAppKBFICBoQL0hO5XLc82DrT9I8gDKCmqM3iGrU960V9C7d+PwYDjtb/9GNJvvouRwTHkARCTxNpmVVV8J9I1CYRVq1YJf585sxx6d/755+OGG27Ajh07MHv2bBx00EHYtm0bOjutvQb6+vpw8skn11KdxDHmzAJeeq1yk/VIVGmSSZpa1XxFgX7ckfHUZRzh+RDqsjmPYEGYvuAQqDv3RDinhl26fCgdfyTSL7wCfcEh4utgfKJj6oVim0SpzywKpZNPCHWccdjBMA47GOrW6BaTWkm0p+/cudP5+6mnnoKqqo6QOPfcc3H33XcDADZt2oRXXnkFp556apLVqRn9mAUY+qf/D+acWZHPrSUfTj1gB0J9XsiUAY1IjVlfE4O3MM1PUFXjVHZWx/KPM2dOx9A1y0CmhTBdTNAEjnHgCIRsBsasbhSjprCJVFiDhZ1effXV6O/vh6IoaGlpwc0334yUHUp16aWXYvny5TjrrLOgqiquu+46tLQkuLFFTJDWKqOgJrhAYMMtRz/58bIDfaoRV9bXqvHRIHlViLKqOKgNcTZxIgjQpLAjDUm+CSOf+5tkyxoHRStRgXDHHXf4/pbP53HTTTclWfyEgtAEaZNAIEDT6rchzUQjpq1E4yfKOgTO4qnQuYxiGIUa2GRUOqEX6sAQin/5geQLazQNQVJmopuMJsagNwHgzq6Tvzc0yynJ+SQqj7IOgWf+qadAaGTSaRTOOKU+ZY3DM5ECoU4Yh8xB6dgjUPjQieNdFS6EF39fJUOX/115M/IGoB5OUuPQ92HszA+h5OeY51Uh47N5jFPfKLmMAqsYjJQliUC8eaUSpHHe2omOpmFs8aLxroU/1aTj8IF0tcd2rQlBXaKMFOEeG6xnwcznoI6MVQ7y9r9cZ3ONTmVJ/aHWBLOOC9SkQJBYxCgQGo6JYBNnBurhZZWpYNzHWh+RZv0TNBvvlMZ+JmZNYe7RkAJBYiF9CA6jf30OzM52NP8/Kyx6YtwbZqT2MxVRnO04I9SbF6oqGVeMObOQ/uz5GJwRYaveGpECQWIhBwIH/QjPXs4TTEMIfWyUats2qdoylU6A+9RIKAq04xYAdVyZPRGmPpIJRCnEStSpxoRI5xxFKFU12xdkVZVMGaSGIHEYvPLvGyo6KDYmnUAIyFzKQ7QRj2TKIJ++pEwuO3UXpImYCCajavwBkeot2KozJMVTPgCiqTBm1s8JKokXOR2USIKYALl5Iq0TUcI7lYc/+zdQdB2pV95wn1sFxrw5GPrq/6n6fMn4M/49XSKZ6EwIDSHCJj007DREKLHZ0w1jbg+zgVMVdZM0DFIgSCRBTARHa5R1IlWkPHCOnAhtlYwbUiBIJEFMhEEyig+Bl7oiCHunvAm6W4ekTkiBIJH4UDp6wXhXoUwooeTRDCaAHJNMLqRTWSLxYWzx6Rj72GnjXQ2LSFpKFRpCVeVIGg0pECQSP1R1csXlm/amRikZOiypjknU2yUSiRBbIJBqFhcS6T2QJKwhfPazn8W+ffsAAIZh4O2338Z9992HI488EsuXL8e6devQ0dEBwNpjedmyZUlWRyJpbOztHZGir7Uc5CXRqNsWmo899hh+8IMf4MgjyxuAXH755bjkkoBUvhKJJBSK4dEQosgDZx2C9CFMZepmMvrlL3+JCy+8sF7FSSRTD+pDSNvpsSOZgaQ2IamTQNizZw+efvppnHfeea7vb7/9dixZsgRf+MIXsGHDhnpURSJpXLwaQpRBXmoIEtRoMrrggguwfft27m/r1q2DZidKW7VqFU499VR0dnY6v1955ZXo7u6GqqpYvXo1LrvsMjz22GPOOWHp6mqpuv7d3a1VnzsZmUrtbcS2jtmfvLZ1d7dizB7Vm9uboQPIZlIwBeewFLPWsW1tOWgT/N414rMVUc/21iQQVq1aFeq4e++9F1/96ldd382cOdP5+/zzz8cNN9yAHTt2YPbs2ZHq0N8/BNOMru52d7didx03nhhvplJ7G7WtrQBINlPRNtrelpIOBcBQwUAOQKGgg+6tFnQ/coUS0gAGBsagT+B716jP1o8k2quqiu9EOvF1CC+++CIGBwfxkY98xPX9zp07HaHw1FNPQVVVl5CQSCRuhr74GRCRBk3DTjNV+BBkcjsJ6iAQ7r33Xpx//vkVpqCrr74a/f39UBQFLS0tuPnmm5FKyXVyEokfpDkvPsCofmFa4SMfhDI4BP2wedErJmkYEh+Bv/Od73C/Z0NSJRJJ7Zgzp0Pr2+WsQ1AiaAikcxpGP31BUlWTTBLklFwiaRBGLvo41P79UEZt9zMBSC5bXrAmkQQgBYJE0ig05WDOmQXt7U32FwRDX/zMeNZIMsmQAkEiaTToWgICuUe2JBIyuZ1E0mg4kUJy9bEkGlIgSCQNB6MhSCQRkAJBImk0qIYgU1pLIiIFgkTScMjVZZLqkAJBImk0nAR1UkOQREMKBImk0ZAmI0mVSIEgkTQqUh5IIiIFgkTSaMg9DSRVIgWCRNJoOAvTpIogiYYUCBKJRCIBIAWCRNJwmO1tAAB9wSHjXBPJZEPmMpJIGgzS1oLBL18K0I1yJJKQSIEgkTQi2cx410AyCZEmI4lEIpEAiEEg3HfffViyZAmOOuoo3Hnnna7fRkdH8aUvfQlnnXUWzj33XKxduzbUbxKJRCKpPzWbjHp7e3HjjTfitttuq/jtZz/7GZqbm/Hoo49i06ZN+NSnPoVHHnkEzc3Nwt8kEolEUn9q1hAWLFiAww47DKpaeanf/OY3uPjiiwEA8+bNwzHHHIMnn3wy8DeJRCKR1J9EfQjbt2/H7Nmznf97enqwY8eOwN8kEolEUn8CTUYXXHABtm/fzv1t3bp10MZ5i76urpaqz+3ubo2xJhOfqdTeqdRWYGq1dyq1FahvewMFwqpVq6q++EEHHYRt27ahs7MTANDX14eTTz458Lco7Ns3DNOMvkS/q6sF/f1Dkc+brEyl9k6ltgJTq71Tqa1AMu1VVQUdHXxfbaLrEM4991zcfffdOPbYY7Fp0ya88sor+I//+I/A36Lg17Aw1KJdTEamUnunUluBqdXeqdRWoL7tVQipLQPWmjVr8L3vfQ8DAwNIp9NoamrCz3/+cxx22GEYGRnB8uXL8frrr0NVVfzLv/wLzjzzTAAQ/iaRSCSS+lOzQJBIJBJJYyBXKkskEokEgBQIEolEIrGRAkEikUgkAKRAkEgkEomNFAgSiUQiASAFgkQikUhspECQSCQSCYApKBA2btyIiy66COeccw4uuugibNq0abyrVBP79u3D5z//eZxzzjlYsmQJ/umf/gl79+4FIG7rZL8PP/rRj3DEEUfgrbfeAtC4bS0UCrj22mtx9tlnY8mSJfjXf/1XAI3Z3rVr1+L888/HeeedhyVLluCRRx4B0DhtXbFiBRYtWuTqt0D17Uuk7WSK8elPf5qsXr2aEELI6tWryac//elxrlFt7Nu3jzzzzDPO/9/97nfJNddcQwgRt3Uy34dXX32VXHrppeSjH/0oefPNNwkhjdvWb3/72+T6668npmkSQgjZvXs3IaTx2muaJjnxxBOd5/n666+TE044gRiG0TBtff7558n27dvJ6aef7rSTkOqfZRJtn1ICYc+ePWThwoVE13VCCCG6rpOFCxeS/v7+ca5ZfDz00EPkM5/5jLCtk/k+FAoF8slPfpK89957zovVqG0dGhoiCxcuJENDQ67vG7G9pmmSD37wg+SPf/wjIYSQ5557jpx99tkN2VZWIFTbvqTanmhyu4lGX18fZs6c6aTs1jQNM2bMQF9fn5N1dTJjmibuuusuLFq0SNhWQsikvQ8//OEP8YlPfAJz5851vmvUtm7ZsgXt7e340Y9+hGeffRbNzc3453/+Z+RyuYZrr6Io+MEPfoAvfOELyOfzGB4exq233tqwz5ZSbfuSavuU8yE0Mt/+9reRz+dxySWXjHdVEuGll17CK6+8gqVLl453VeqCruvYsmULjjrqKNx777246qqrcMUVV2BkZGS8qxY7uq7j1ltvxU9+8hOsXbsWN998M6688sqGbOtEZkppCD09Pdi5cycMw4CmaTAMA7t27UJPT894V61mVqxYgc2bN+OWW26BqqrCthJCJuV9eP755/Huu+/ijDPOAADs2LEDl156Ka655pqGaytg7RmSSqWwePFiAMDxxx+Pjo4O5HK5hmvv66+/jl27dmHhwoUAgIULF6KpqQnZbLbh2spS7XuaVNunlIbQ1dWF3t5erFmzBoCVuru3t3fSqJd+3HjjjXj11Vfx4x//GJlMBoC4rZP1Plx++eX4/e9/j8cffxyPP/44Zs2ahZ/97Gf42Mc+1nBtBYDOzk6cfPLJ+MMf/gDAiirp7+/HvHnzGq69s2bNwo4dO/Duu+8CADZs2IA9e/bg4IMPbri2slT7nibV9imX/nrDhg1Yvnw5BgYG0NbWhhUrVuDQQw8d72pVzdtvv43Fixdj3rx5yOVyAIA5c+bgxz/+sbCtjXAfFi1ahFtuuQULFixo2LZu2bIFX/va17B//36kUil86UtfwmmnndaQ7f31r3+Nn/70p1AUBQDwxS9+EWeeeWbDtPU73/kOHnnkEezZswcdHR1ob2/HAw88UHX7kmj7lBMIEolEIuEzpUxGEolEIvFHCgSJRCKRAJACQSKRSCQ2UiBIJBKJBIAUCBKJRCKxkQJBIpFIJACkQJBIJBKJjRQIEolEIgEA/P/0VXor3+gHdAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(100)\n", + "coeff = np.array([2.7607, -3.8106, 2.6535, -0.9238]) # The 4 coefficients for the AR(4) process\n", + "ar4 = np.r_[1, -coeff] # For use with scipy.signal\n", + "N = 1024\n", + "\n", + "freq_analytical, h = signal.freqz(b=1.0, a=ar4, worN=N, fs=1) # True PSD of AR(4)\n", + "psd_analytical = (h * h.conj()).real\n", + "\n", + "data = signal.lfilter([1.0], ar4, np.random.normal(0, 1, N)) # N AR(4) data samples.\n", + "\n", + "times = np.arange(N)\n", + "\n", + "err = np.random.normal(0, 1, N)\n", + "\n", + "lc_ar4 = Lightcurve(time=times, counts=data, err_dist='gauss', err=err)\n", + "lc_ar4.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b6853e57", + "metadata": {}, + "source": [ + "### The Multitaper Periodogram \n", + "\n", + "Tapering a time series as a way of obtaining a spectral estimator with acceptable bias properties is an important concept. While tapering does reduce bias due to leakage, there is a price to pay in that the sample size is effectively reduced. The loss of information inherent in tapering can often be avoided either by prewhitening or by using Welch's overlapped segment averaging.\n", + "\n", + "The multitaper periodogram is another approach to recover information lost due to tapering. This apporach was introduced by Thomson (1982) and involves the use of multiple orthogonal tapers." + ] + }, + { + "cell_type": "markdown", + "id": "7da1916c", + "metadata": {}, + "source": [ + "In the multitaper method the data is windowed or tapered, but this method differs from the traditional methods in the tapers used, which are the most band-limited functions amongst those defined on a finite time domain, and also, these tapers are orthogonal, enabling us to average the _eigenspectrum_ (spectrum estimates from individual tapers) from more than one tapers to obtain a superior estimate in terms of noise. The resulting spectrum has low leakage, low variance, and retains information contained in the beginning and end of the time series. For more details on the multitaper periodogram, please have a look at the references." + ] + }, + { + "cell_type": "markdown", + "id": "e9a8e18e", + "metadata": {}, + "source": [ + "##### Let's have a look at the individual tapers." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "608c3d1a", + "metadata": {}, + "outputs": [], + "source": [ + "NW = 4 # normalized half-bandwidth = 4\n", + "Kmax = 8 # Number of tapers\n", + "dpss_tapers, eigvals = \\\n", + "signal.windows.dpss(M=lc_ar4.n, NW=NW, Kmax=Kmax,\n", + " sym=False, return_ratios=True)\n", + "\n", + "data_multitaper = lc_ar4.counts - np.mean(lc_ar4.counts) # De-mean\n", + "data_multitaper = np.tile(data_multitaper, (len(eigvals), 1))\n", + "\n", + " # Data tapered with the dpss windows\n", + "data_multitaper = np.multiply(data_multitaper, dpss_tapers)" + ] + }, + { + "cell_type": "markdown", + "id": "fa535945", + "metadata": {}, + "source": [ + "Plotted below are the first 8 tapers (on the left), and the corresponding tapered time series" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b7b5e756", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAnBCAYAAACY5Ow3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3xUVdoH8N+90zLpjSa9hd4VBCmCiICAYgEVsCzYdbHi6rIrll1d26uiu1YQAbuC0i0UQYpKFaSG3lOA9Gn3vH9MZnJvpmYyyWSS3/fz2SW5bc49Jpl57vOccyQhhAARERERERFRHSVHugFEREREREREkcTAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMRERERVdLx48fRrl07DBkyJCquW1exP8kXfaQbQFQXTZo0Cb/++qtmm9lsRnx8PJo0aYLOnTvjqquuwiWXXOLzGt988w2efPJJzTZJkhAbG4sWLVpg8ODBuO2225CYmOhx7pkzZzBnzhysW7cOx44dg81mQ0pKCurVq4euXbuid+/euPLKK2EwGDTnORwOLFiwAIsXL8aePXuQn5+P+Ph4pKamok2bNrjkkkswdOhQXHTRRUH3xcyZMwEADz74YNDnEBFR5bVr167C5zRu3BgrV66sgtbUXR999BHy8/N9vmcTUfVgYEwUQY0aNUKjRo0AADabDRcuXMD27duxdetWzJ07F506dcLLL7+M1q1b+7yG0WhE586dAQBCCBw/fhy7du3Crl27sGDBAsybN08TqG7atAn33XcfCgoKIMsyGjRogPT0dBQWFmLv3r3YtWsXPv30U6xZswYNGzZ0n1dQUIA777wTW7ZsAQAkJyejTZs2kGUZx44dw8GDB/H999+joKAA9913X9B98NZbbwFgYExEVN169uzpsa2goAD79u3zub9evXpV3q665uOPP8aJEycwduxYr4GxwWBAy5Yt0aBBgwi0rvZhf5IvDIyJIuj666/3CAgLCgrwww8/YObMmdi1axduvPFGfPrppz6f7NerVw+ffvqpZtvPP/+MRx55BCdOnMDTTz+N999/333thx56CAUFBejfvz/++c9/onnz5u7ziouLsW7dOnz55ZeQJElzzZdeeglbtmxBcnIyXnjhBQwePNh9jBACu3fvxqJFi5CUlFTpfiEioqpX/r0DcD48vfXWW33up+rXoEEDLF++PNLNqDXYn+QLxxgT1TDx8fEYO3YsvvnmG2RkZKCwsBBTp06Fw+EI+hoDBw7E/fffDwBYt24dzp8/DwBYs2YNcnNzERcXh5kzZ2qCYsBZzn3llVfivffe0zxJtdvtWLRoEQDgySefxJAhQzSBsyRJ6NixI5544glMmDAh1FsnIiIiIooIZoyJaqjk5GT85z//wdixY3Ho0CGsWLECI0eODPp81/hkRVFw9OhRJCcn49ixYwCAli1bIjY2Nuhr5eTkoKioCADQqVOnCtyFbzNnznSXUQOeY91++uknNGnSBA6HA6tWrcLKlSuxY8cOnDlzBhaLBQ0bNsSAAQNw1113eS2H+tvf/oYFCxbghRdewMUXX4w33ngDGzduRH5+Ppo1a4Ybb7wREydOhE6n89q+s2fP4sMPP8SaNWtw6tQp6HQ6ZGRkYNy4cRg7dqxHRt11Pw888AAmTpyIt99+GytXrsTZs2cxcOBA/Pe//wUAbN26FbNnz8aWLVtw7tw5xMbGIjU1FZ07d8aYMWMwaNCgynYtEVGVOHbsGJYvX461a9fi6NGjyM7ORmxsLDp06IDx48d7fY86fvw4rrjiCvfY5E8++QSff/45Dh8+jJiYGPTp0wdTp071O2Ro+fLl+PLLL7Fr1y4UFBQgPT0dAwYMwN13340mTZp4HO96P9m7dy9++OEHfPzxx9i7dy8uXLiAhQsXokOHDgCAvLw8fPTRR/jxxx9x7NgxCCHQqlUrjBkzBhMmTPCYZ8NlzZo1eO+99/Dnn39Cr9ejU6dOuOeee7y2xZ/yc4VcccUVmv0ff/wx+vTp49GHvu515cqV+OCDD7Bnzx4YDAb06dMHjz/+OJo2bepu9wcffIDdu3dDURT06dMHTzzxBFq0aOG1fSUlJfjkk0+wdOlSHDp0CDabDU2bNsWIESNwxx13IC4urkL3e+DAAbz33nv47bffkJWVBaPRiNTUVLRv3x5XXXUVRo8e7XFOVbwX++tPwDmfyjfffINvv/0We/fuRUlJCRo2bIghQ4bg7rvvRmpqaljujWoeBsZENVjHjh3RrVs3bN++HWvWrKlQYCyE8NgWHx8PADh8+DDOnz+P5OTkoK4VFxcHSZIghMC2bdvQtm3boNvhS6NGjdCzZ0/3mOXyY9lMJhMAICsrC/fffz9kWUZaWhqaNGkCq9WKEydOYN68eVi2bBk++eQTn2/sR44cwYsvvoiioiJkZGTAbDZj//79+Pe//40tW7bg9ddf93hj/f3333HffffhwoULMJlMaNasGYqLi7Ft2zZs3boV69evx8svv+xxHgDk5ubi+uuvx6lTp9CmTRu0bt0aer3zT+3KlSvxwAMPwOFwID4+Hm3atIGiKDh9+jQWL16MgoICBsZEVGO98847+OqrrxAbG4v69eujXbt2yMnJwcaNG7Fx40Zs27YNTz31lM/zn3vuOcybNw8NGzZE69at3Q99165di9mzZ6N79+6a4+12O6ZNm4YlS5YAcA4datu2LY4cOYIvvvgCy5cvx4cffoiuXbt6fb33338fr7zyClJTU9GsWTOcPn3avS8zMxOTJ0/GqVOnYDAY0LhxY0iShD179mDXrl1YtWoV3n//fRiNRs01586di+effx4AkJaWhkaNGmHXrl2444478Nhjj1WoP9PS0tCzZ0/s3LkTVqsVnTt31rxeQkJC0NeaP38+nn32WdSvXx/NmzfHwYMHsWLFCmzfvh0LFizAokWL8MILLyA9PR1NmzbFwYMHsXLlSvzxxx/47rvvPIK9s2fPYvLkydi3bx90Oh0aNWqE2NhYHDp0CDNnzsSKFSvw8ccfIyUlJaj2/fHHH5g0aRKKi4thNpvRsmVL6HQ6nDp1Cj/88AMOHz7sETxW1XuxP655UjZt2gRJktCwYUM0atQIR44cwUcffYQVK1Zg7ty57ocNod4b1VCCiKrdxIkTRUZGhnjzzTcDHvviiy+KjIwMcdVVV2m2f/311yIjI0MMHjzY63kffvihyMjIEO3btxe5ublCCCEOHTok2rdvLzIyMsQ111wjlixZ4t4XyM033ywyMjJE9+7dxdtvvy0OHDggFEUJ6lx/MjIyREZGhs/9eXl54uuvvxY5OTma7YWFheKtt94SGRkZ4vbbb/c474knnhAZGRmiU6dOYuLEiSI7O9u9b926daJ79+4iIyNDfPLJJ5rzzp49K/r06SMyMjLE66+/LoqKitz79uzZI4YPHy4yMjLEp59+qjnvzTffFBkZGaJDhw7ihhtuEMePH3fvKy4uFkIIMWrUKJGRkSFee+01YbFYNOf/8ccfYuHChT77gYioOmzcuNHn3+XVq1eLrVu3evzt//PPP91/G3///XfNvmPHjomMjAzRsWNH0alTJ/Hdd9+59+Xn54sHH3zQ/V7m+lvp8tprr4mMjAxx9dVXi23btrm322w2MXPmTPd55f+eutrfqVMnMW/ePOFwOIQQQjgcDmGxWERRUZEYNmyYyMjIEP/4xz/EuXPn3OceP35cjB8/XmRkZIhXXnlFc909e/aIjh07ioyMDPHuu++6r2uxWMSzzz4rOnXq5Pd92ZfBgweLjIwMcezYMa/7XX3o7bque+3WrZtYsGCBe/u5c+fE9ddfLzIyMsTdd98tunbtqtmfm5srxo4dKzIyMsTLL7+suaaiKOKWW24RGRkZ4r777hOnTp3SnHfvvfeKjIwM8fDDDwd9j3fffbfIyMgQTzzxhCgoKNDsy8zM9HhPrcr3Yn/9+eijj4qMjAxx8803iwMHDri3FxUViX/84x8iIyNDjBs3rlL3RjUXxxgT1XCumaFzc3ODPmft2rXu0t3LLrvM/US3RYsWePjhhwEAu3fvxsMPP4xLL70UQ4cOxSOPPIIvv/wSeXl5Xq85Y8YMpKamoqioCG+88QZGjhyJ3r1747bbbsPMmTPds5iGW0JCAq677jqPp9mxsbG4//770atXL6xfvx5nz571er4kSXjttdeQlpbm3nbZZZfhgQceAAB88MEHmuz6rFmzcO7cOdxyyy2YOnUqzGaze1+7du3w2muvQZIkzJ492+vr6XQ6zJw5E40bN3Zvi4mJAeDM1APAnXfe6ZGF6Ny5M6655ppA3UFEFDGDBg1C9+7dPTJ0HTp0wD//+U8AwLfffuv1XLvdjptuukmTOYuPj8dLL72ElJQUnDhxAkuXLnXvy83NxezZsxEbG4v//e9/6Natm3ufXq/HAw88gCuvvBInTpzAihUrvL7muHHjMGHCBMiy8+OuLMswGo34+uuvcfjwYQwaNAjPPvuspnqqcePGeOONNxAbG4v58+fDYrG4982ePRt2ux2XX3457rrrLvd1jUYjpk+fjpYtWwbTjVXihhtuwLXXXuv+Pjk5GX/9618BAKtWrcKNN96o2Z+SkoKpU6cCcE7YqbZ69Wr8/vvv6NChA/7v//5Ps0JFSkoKXnnlFTRs2BDLli3DqVOngmqf6/3v9ttv9yjBbtWqFW666SbNtqp8L/Zl3759WLRoERo0aID//e9/mvJ+s9mMGTNmoHPnzti2bZu72i2Ue6Oai4ExUQ3nGgtcWFjodX9WVhZuvvlm3HzzzbjpppswYMAATJkyBfn5+WjYsCFmzJihOf6uu+7C/PnzccUVV7jLlY8dO4YlS5Zg+vTpGDx4ML744guP18nIyMDixYsxefJk95jevLw8bNy4EW+99RZGjx6Nhx9+GAUFBWG8+zK///47/vOf/+Cee+7BxIkT3ffsekPas2eP1/OGDRvmdXmR8ePHw2Aw4Pjx4zh06JB7+/fff+/e702HDh3QuHFjHD58GGfOnPHY369fP82HCDXX0lzLli3zfaNERDXY+fPnMX/+fDz++OO44447cMstt+Dmm2/GK6+8AsD332IAXidnjImJwQ033ADAOVmky88//wyLxYJ+/fppylbVhg4dCsA5k7Y3Y8eO9brd9Xd+3LhxXvc3aNAAXbp0QWFhIXbu3OnevnbtWgDAxIkTPc6RJAm33HKL1+tVB1cfqqnnBPG33zX/iIurf8aOHevxEBdwfi7p168fFEXBb7/9FlT7XO9/K1as8DrUq7yqfC8O9JrDhw/3usKGLMsYPHgwAO3PXEXvjWoujjEmquFcAbFrfHB5VqtV8+TSNRHK5Zdfjttvv93rOOKLL74YF198MaxWK3bu3Ik//vgDa9euxYYNG1BQUIB//OMfiI2NxahRozTnpaWlYdq0aZg2bRoOHz6MP/74A5s2bcLKlSuRk5ODpUuXIi8vDx9++GHY7t9ms+Hxxx8PGEy6Zt4ur1WrVl63x8fHo0GDBu7AuFWrVigqKsLx48cBODPk3sYtAcC5c+cAAKdPn/aY+MvX6wHAHXfcgRkzZmD69OmYNWsW+vfvj549e6JPnz5eJ/MgIqpJNmzYgIceesjn31vA999ig8HgsRKCS5s2bQBA85By7969AICdO3fi5ptv9npefn4+AGjGDqv5mtDLVeH03//+1+f7leuhqyvoysvLQ3Z2tqa9vu4jEpo1a+axTf2+4m2/q5LKNbmmi6t/vvzyS5/LGp08eRKA774v7/bbb8eGDRvw3//+F99++y369++PXr164dJLL/V4H63q92JfXPe9atUq/PHHH16PycnJcb9mKPdGNRsDY6IazlWm5Ctw8jWrYjCMRiN69uyJnj174rbbbsOePXswZcoUZGVlYebMmR6BsVqLFi3QokULjB49GkVFRfj73/+OpUuXYt26ddiyZYvHZFqh+uCDD7Bs2TKkp6fjsccew8UXX4z69eu7s93Tpk3Dt99+C7vd7vV8dQl1eenp6Th+/Lj74YPrQxbgnD06kJKSEo9t/mb7vvnmm5GQkIBZs2Zh165dOHjwID7++GPo9XpcccUVeOqppyr8hJuIqDoUFBS4g+LRo0djwoQJaNWqFeLj46HT6XDs2DEMHTrU59/i5ORkd+lxea6/0+rKKHXQGyj4Upc7q/n6e+y69q5du/xeFyj7O68OHn29r/h7v6lq3u5VHVAG2q/m6p/9+/cHfF1ffV/eoEGD8MEHH+B///sftmzZgs8//xyff/45JElC37598dRTT7kn9qzq92JfXK979OhRHD161O+x6vuuyL1RzcbAmKiG27x5MwBoxldVlfbt2+Pee+/Fs88+i8OHD+PChQtey4nKi42NxXPPPYfly5dDURTs2LEjbIGxa7zav//9b68zNl+4cMHv+f7GZrue/rvGBKnfSLdv3x5wPFIoRo0ahVGjRiE3Nxe//fYbNm3ahCVLlmDFihU4fPgwvvrqK6+la0REkbRmzRqcP38e3bt39zoTsL8ssmu/oiheg2NXFk49PtP19/jOO++s8GzPgcTGxiIvLw9Lly71u0xU+XNccnJy3OWzaq77iHaue33//fcxcODAsF23f//+6N+/P/Lz87F582b3+9/69etxxx13YMmSJUhKSqqW92JvXK87Y8YMn1UKvgR7b1SzcYwxUQ22a9cudznP5ZdfXi2vqR7LZbPZgj4vPj7endW2Wq1ha4+rnKpXr14e+xwOh2b8lzeZmZletxcUFLhL5FxLPSUkJLjLnoJ5Ul4ZqampuOqqq/DPf/4TixYtQkJCAvbu3YsdO3ZU6esSEYXC9be4R48eXjONgf522Ww2n1k4199p9bJ7rgxbVfwtdpU8V+TaiYmJSE9PB+Bcs9YbX+830SaU/qmIhIQEXH755XjiiSewbNkyNG3aFFlZWVi1apV7f3W9F6uF474D3RvVbAyMiWqo8+fP429/+xsAoGXLlhg2bFilr5mbmxtwYghX2VJiYqI70LXb7QEzs0eOHHE/La/IzJyuJ8HeSqHU+13ZXbXFixd73a72/fffez3miy++gM1mQ+PGjTVjkVz9/NFHHwXV/nCoX78+mjRpAgA+Z9cmIook9dry5dlsNsyfPz/gNT755BOPbRaLBV999RUAYMCAAe7tl19+OYxGI9atW+czEA3VVVddBQD4+OOPoShK0Of1798fAHzeazB94I3rfS7YsuSq5uqfzz//HMXFxVX6WnFxcWjXrh0A7ftfJN6LXfe9aNGisGT/fd0b1VwMjIlqmIKCAixcuBDXXXcd9u3bh9jYWLzxxhs+x2ZVxHfffYcxY8bgs88+8ygxLi4uxpw5c/D+++8DcM5G6XrNoqIiDBkyBP/5z3+wZ88ej+D6119/xQMPPAAhBBo0aOD+8BAMV4b6119/9br/4osvBgC8+OKLmhmvV65ciRkzZrg/rPkihMCjjz6qud8NGzbgrbfeAgBMnjxZk/246667kJqaisWLF+OZZ55xT+7hUlBQgKVLl+KFF14I+h5d5z300EPYsGEDHA6Hpn1Lly7Fvn37IEkSOnbsWKHrEhFVB9ff4hUrVrhnZwacD3Effvhhd0bZF71ej08++QRLlixxbyssLMQTTzyB3NxcNG7cGCNHjnTvq1evHv7yl7/AbrdjypQpmhmrXfbu3YuXX37ZPeQoWOPHj0eLFi2wefNmPPTQQx5LDlmtVqxevRpPPvmkZvsdd9wBvV6PVatW4cMPP3QH1VarFf/61780k4dVRKD3weo2dOhQ9OrVC0eOHMGdd97pkQm32+3YuHEjHn300aArxB566CH89NNPHsdv3LgR69evB+BcttClqt6L/enYsSNGjx6NvLw83H777R5VEEIIbN++HU8//bRmJu+K3hvVXBxjTBRBX3/9tfuPpisre+zYMfebbefOnfHSSy8FPQYqEEmSsG/fPjz99NN4+umn0bhxY6SmpqKgoACnTp1yZ2379+/vXu/YdV5BQQFmzZqFWbNmITExEY0bN4Ysyzh16pQ76ExOTsabb76pWW8wkBEjRmD//v2455570K5dO/fs26+99hrq1auHv/71r1i/fj1WrVqFAQMGoGXLlsjNzcWpU6dw6aWXon79+vjuu+98Xn/y5Mn49NNPMWjQILRt2xYFBQU4cuQIAOcT6fLjiOrXr493330X9913Hz755BN8/vnnaNWqFWJjY3HhwgUcPXoUiqJUeMy3oihYtmwZli1bhpiYGDRv3hxGoxGnT592Z2DuueceTSkhEVFN0blzZ4wcORJLly7FlClT0LRpUyQmJmL//v0QQmD69Ol4+umnfZ7foEEDDB48GI888ghefvllpKWl4eDBgygqKoLZbMbLL7/sMZZ06tSpyMnJwZdffonJkycjNTUVTZo0gd1ux4kTJ9yVTH369KnQvZjNZrz33nu46667sGLFCnz//fdo3rw5kpOTkZ+fj6NHj8Jms7lLp13at2+Pxx9/HC+88AJeeuklzJo1C40aNcLRo0eRn5+Pxx57DC+99FKF2gI43wdXr16NGTNm4JNPPnGvJvHUU0+hQ4cOFb5eZUmShJkzZ+Lee+/Fb7/9hpEjR6JJkyZIT09HUVERjhw54s5u//vf/w7qmuvWrcOyZctgMBjQokULmM1mZGVluR9KjB49Gv369XMfX1XvxYE899xzyM/Px+rVq3HjjTeiQYMGaNiwISwWC44ePeqehO3WW28N+d6o5mJgTBRBp06dcv/hjImJQUJCArp164bOnTtj2LBh6N27d1hf75ZbbkH79u2xbt06bN68GadPn3YvT5Ceno6OHTti1KhRuOqqqzRZ1ISEBKxYsQLr1q3DL7/8giNHjuDEiRMoKipCfHw8evbsiYEDB+Kmm25CSkpKhdp01113QVEULFmyBAcOHHA/cXW96Xbs2BGffPIJ3njjDWzevBmZmZlo2rQpHn74YUyePBn/+Mc//F6/efPm+Oqrr/DGG29gw4YNyM/PR5s2bXDjjTdi0qRJXjPxXbt2xeLFizFv3jysXLkShw8fhs1mQ/369dGnTx8MGjSowqXtcXFxePnll7F+/Xrs2LEDp0+fRmFhIZKTkzF48GDcdNNN1TaOnIgoFK4HtQsXLsTp06dRVFSEgQMH4p577gnqb/8//vEPtG7dGp9//jkOHDgAk8mEYcOGYerUqV6XOpJlGc8//zxGjhyJzz77DFu3bsXu3bsRFxeHRo0aYdiwYbjyyivRt2/fCt9L8+bNsXDhQnz++edYvnw5MjMzceLECdSrVw/dunVDv379MHz4cI/zbr/9djRv3hzvv/8+du/ejcOHD6Nz586455570KRJk5AC42uvvRZ5eXn46quvcOTIEff7cl5eXoWvFS5paWmYP38+Fi5ciCVLlmD37t04c+YMUlJS0KFDB/Tu3RvDhg0LWLXl8uKLL2Lt2rXYunUrzp49i/z8fMTHx6Nv374YO3YsxowZ43FOVbwXB2I2m/HOO+9gxYoVWLBgAf744w/8+eefSEpKQsuWLdGzZ09cddVVmiFjodwb1UyS4ErURFQL/e1vf8OCBQvwwgsv4Lrrrot0c4iI6qTjx4/jiiuuqNTSgkRE1YFjjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbJt4iIiIiIiKhOY8aYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BMREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1Wn6SDegNlEUAYdDCcu19HoZdnt4rlVbsY+Cw34KjH0UHPZTYNXVRzqdDFmWqvx1qlq43jf5sxkc9lNg7KPgsJ8CYx8Fpya9bzIwDiOHQ8H580WVvo4sS0hLi0deXjEURYShZbUP+yg47KfA2EfBYT8FVp19lJwcC1nWVelrVIdwvG/yZzM47KfA2EfBYT8Fxj4KTk1732QpNREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1WkMjImIiIiIKHyEiHQLiCqMgTEREREREYWF7sgJJLz4DvT7DkW6KUQVwsCYiIiIiIjCwvTjLwCAmMUrI9wSoophYExERERERCGTCosQs/AHyKezysqoJSmyjSKqIH2kG0BERERERNHLuGYTDLsPQL/vEJSUxEg3hygkzBgTEREREVHIpBKL81+HAyhNGAtmjCnKMDAmIiIiIqLQqYNgVym1zMCYogsDYyIiIiIiqoSyIFhyL9XEwJiiCwNjIiIiCsnTTz+Ndu3aYd68eZFuChFFkreMMUupKcpE1eRb8+fPx4cffoisrCx06NAB06dPR9euXX0ev2zZMrzxxhs4ceIEWrRogccffxwDBw7UHHPgwAG8/PLL+O233wAAGRkZ+O9//4vU1NQqvReiOkMISOfyoDt1BrozOZDO50E+nwepuASS1QrYHIBOhtDpAJMRSmI8RGI8lPRUOBqkQWlYDyLWHOm7IKJyVq1ahW3btqF+/fqRbgpRzVZUAt2ps3C0alp7g0XNbQkv24hqvqgJjJcuXYoXXngBzzzzDLp164Y5c+ZgypQpWL58udcgduvWrXj00UfxyCOPYPDgwVi8eDHuu+8+fPvtt2jdujUA4OjRo5gwYQJuuOEGPPzwwzCbzdi3bx8MBkN13x5R7VJigf7QMegPHIHu4FHIRSVeDxNGA4TJCElRINnskIpLIJ/P8zjO0SAdjhZNYMtoCaVxg9r7wYIoSmRnZ2PGjBl47733cO+990a6OUQ1WtycryGfz0PRjSPhaNM80s2pIuqMsWsT36spukRNYDx79myMHz8e119/PQDgmWeewerVq7FgwQJMnjzZ4/g5c+Zg4MCBmDJlCgBg6tSp+OWXXzB//nz885//BAD83//9HwYOHIjHH3/cfV7z5rX1DxZRFRMCusPHYdi+B/p9ByE5FOdmWYbjogZwXFQfjob1oKQmQSQnOrPA5d80bXZI+YWQL+RDzsqB7nQ2dCdOQXcmG7oz2TBu2gYlKQG2jm1g69oBIjUpAjdKRE8++SQmTZqEdu3aVfpaciUn6HGdX9nr1Hbsp8Cqqo9cD3z1Z7MhMlqE9dqR4K2fJNl7KXVd/Xnj71twalo/RUVgbLVasWvXLs1TaVmW0a9fP2zbts3rOdu2bfMImPv374/Vq1cDABRFwerVqzFlyhTccccd2LNnD5o3b477778fAwYMCLmt4fgPW9N+SGoi9lFwqqWfbDbot++BYdN295u/MBlh69QSjrYt4GjZFDAZNadI8FFhZTIApmSI9GQ4WjeFw3X8uQvQHTgK/e4D0B07BdOGrTBu2ApH2xaw9e4KpXnjkJ9M82cpOOynwOpKH82bNw9FRUX4y1/+Uulr6fUy0tLiw9AqICUlLizXqe3YT4GFu49cNVOxsUbow/TzXhOo+8kaY4BS+rXrb6BOrwvb73e04u9bcGpKP0VFYHzu3Dk4HA6kp6drtqelpeHIkSNez8nOzkZaWprH8VlZWQCAnJwcFBUV4YMPPsBDDz2EadOm4aeffsLdd9+Nr776Ch07dqxwO8P5Bg/UnB+Smox9FJyq6CdhtcHx82bYf/4dKCgCAMitm0J3aVfIXTIgGcM4JCEtHmjTGBjeFyL3Ahybd8H+y1bo9x+Gfv9hSM0vgn7EAOgyQq/44M9ScNhPgdXmPsrMzMR///tffPHFF5Dlys/fabcryMsrrtQ1ZFlCSkoczp0rhKKIwCfUUeynwKqqj1x/EYoKrbDlFITtupHirZ+MVgdc7/qKXYEMwKEoyKkF9xsK/r4Fpzr7KTHRDINB5/eYqAiMfRFCQPKTJfK2z7VNUZzPta644grcdtttAIAOHTrg119/xeeff45nnnmmwu0Jxxs8wF+mYLCPglMl/aQo0O/YC8OaXyEXFEJIEhwd28DWtweUhvWcx+RbAFjC83oedEDPrkC3TtDtzoRhw1bojpyE7Z3PUdK8MaxD+5W1Iwj8WQoO+ymwmvYGXxW2b9+O3NxcDBs2zL3N4XDgX//6F+bNm4fly5dX+Jrh6itFEfzZDAL7KbCq6iMhorTvFQXw8iBM3U+au1It1xSV9xtG/H0LTk3pp6gIjFNSUqDT6ZCdna3Znpub65FFdklPT/c4Picnx318SkoK9Ho9WrVqpTmmdevWOHHiRMhtDed/1JryQ1KTsY+CE65+kk+eQcyyNdCdzQEA2Dq0hmVgb4jU5NIXqsb/FpIMpWNb2Dq0gX53Jkxrf4XuyAnEzPoKtp6dYBnYG4gxBX05/iwFh/0UWG3uo6FDh6Jz586abZMnT8Z1112HsWPHRqhVRBROusPHYfxlM0quuRKGzX/AtH4LCu6+xf+8HupcVGlgLDj5FkWZqAiMjUYjOnXqhPXr12PIkCEAnBnfDRs2uLO95XXv3h2//PILJk2a5N62fv16dO/eXXPN8qXYhw8fRrNmzarmRoiilcUK05pfYdj8ByQAjsYNUXJFP+cM0ZEmSbB3bAN7+1YwbPsTpjWbYNy8E/rdmbAM7Qd7x7acGZMoTBITE5GYmKjZZjAYUK9ePbRo0SIyjSKisIr9dBEAwLjuNxi3/gkAMOw+AOtlvXyfxHWMqRaIisAYAO644w5MmzYNnTp1QteuXTFnzhyUlJS4n1BPmzYNDRo0wKOPPgoAuPXWWzFx4kTMmjULgwYNwtKlS7Fz507861//cl/zL3/5Cx577DFccskluOSSS/DTTz9h06ZNmlmqieo63eHjiFm8EnJ+IUSMESVD+sHWtX3Ne8OTZdh6doa9fWuYVm2EYccemL/7Cba9h2AZPpBrIRMREVWEQyn7OtCcAqrPBJI7MK6CNhFVoagJjEeOHInc3Fy8+eabyMrKQocOHfDBBx+41zA+deqUZiKQnj174tVXX8Xrr7+O1157DS1atMDbb7/tXsMYAIYPH468vDy88847eO6559C6dWu88847IU28RVTrOBzOLPGmbZAA2Dq0geXKyyDiYiPdMr9ErBklVw+GrUs7xCxeCcPeg9AdO4WSkZfD0bZFpJtHVOusXLky0k0goqqgTgLrAk22p6mlLt3EyJiiS9QExgAwceJETJw40eu+uXPnemwbMWIERowY4fea48aNw7hx48LSPqLaQso5B/N3P0J3OhvCZETx8EGwd2wT6WZViKPZRSicPA6mn9bDuH03Yr9aBmvvbrBc3gfQVf+kRUREVMcJAf2OPTDs2IPi8aMAQw3/GK4ObCuQMXbPxMXAmKJMDf+NJKLqpt97EDGLV0Ky2mBv0hAlY4ZCJCVEulmhMRlhGXk57G1bwLx4JYy/bofuxBkUX3slRGLdXluRiIiqn3nJKgCAft8h2Du1jXBrAqlIYKz6mmOMKUpVfhFCIqodFAXGNZtg/mYFJKsNlst6oXjCNdEbFKs42rZA4V9uhKNRfehOnEbsrC+hO3Q80s0iIqK6SkTZzPWBSqk5+RbVAgyMiQgotsD85VKY1m+BMBlRdMMIWAf2DvyEOIqIpAQUTbwW1l6dIReXwPz5Yhg274x0s4iIqC6KhphRHeuGUkpNFGVYSk1Ux0nn8mD+Ygl0uefhSE9B8XXDIdKSI92sqqHXwTJsAByN6iNm2WrEfL8WttzzEOOvinTLiIiottNkiSMbGet37oNkt8PW3d+EsxUopfZxGlE0YWBMVIfJJ8/A/OUyyEXFsLdpjuIxQwGTMdLNqnL2Lu1QnJKImK+Xw/D7H7Dl5wOjrgCMtf/eiYiIzIt+AgD/gbE6wK1IxtiNqWOKLrWnTpKIKkS/7xBi538HuagY1p6dUXz98DoRFLs4mjRC0W3XQ6mXCmXvYcTMXQipoDDSzSIiorogGrKqFRkjrD7W9TXjYooyDIyJ6iDD5p2I+Xo5YLej5Ip+sAzrX6vGEwdLJCei+LbrILdtBt3ZHMTOXQAp90Kkm0VERLVeVETGZV8Kxe+RwltgTBRl6t4nYaK6TAgY129GzPdrAZ0OJWOHwda7W91+EzMZYbjzBtg7tIZ8Ph+xc7+BfCor0q0iIiKqev5mx/a2BFMwxwZ7DlENw8CYqK4QAsbVG2Fa8yuE0YDi8VfD3r51pFtVI0h6PSzXXglrz86Qi0oQ+8m30B05EelmERFRbaIOFCP5PFpRvH9dXkVmmtZkjF3nMDCm6MLAmKguUBSYVvwM08ZtEDEmFN08Go7mjSPdqppFlmEZ1h+Wgb0hWW3OmboPHot0q4iIqLaoKbNSq4PhYINXfwE0AO391OEqNIpqDIyJajnhcMD03U8wbv0TSpwZRROugXJRg0g3q2aSJFgv64WSoZdBsjtg/mopdAeORLpVRERUC0jq4DKSsaNDnTH2V0odWiPd442ZMaYow8CYqDZzOGCbtxj6XfuhJCWgaOJYKPXTIt2qGs92SVeUXDUAkkOB+evl0O89GOkmERFRtFMHoRWIGfV7D8Lw6/awNUNyOFTtCK4hUsDjGART9GNgTFRbKQpM3/4IZfteKMmJKJp4LURqUqRbFTVsPTujZOTlgKIgZsH30P95INJNIiKiaKYpYQ5UmlzG/M0KxPy0HrBYw9OOYDPG6mA4UGCsGT/NjDFFJwbGRLWRoiDmu5+g350JKS0ZJZOugUiMj3Sroo6tWweUjBoCAIj57kcGx0REFDp1EOovIPVBk+mtDNV1pGAD9Iq01z35VvCnENUEDIyJahtFQcyin2DYfQBKciKM990EkZgQ6VZFLXuXdigZcwWA0uCYZdVERBSKUCa9UnM4YPhtB6TzeZVrhyOEdlQkY1waGUuMjCnKMDAmqk0UBTGLVsLw5wEoSQkomXgNpJTESLcq6tk7tnVmjoVAzMIfOCEXERFVnDp4DDjLsyfD9j2I+fEXxM36slLNkBRV5tlfJrgCgbykiYtdpdQVbxtRJDEwJqothEDMklUw/LkfSmI8im4ZA5HETHG42DtnwDLyckiKAvM3K6A7xKWciIgoeJoFjULIGMvnLjjP9TXW2OFAzOKV0GUe9X8he5ABbxCBsVRQBCm/wPsazRW9x3CVihOFiIExUW0gBEzfr4Vh5z5nUDzhGohkZorDzdatA0qGDYDkcMD81XLojp6MdJOIiKgm8zWBVQhjjAMtn6TfewiGP/Yi9osl/q+jDkD9Za6DCIzjZ85B/FtzfewP/h4NG7ci4aX3IB8/HfQ5ROHGwJioFjD+/CuMW3ZBiTWj6ObRDIqrkK1XZ5Rc0Q+S3Q7zF0v4Jk5ERMGpZCm1CLSusN0e1HWkIEukJSXArNQh3IMvMas2AgCMm3eG7ZpEFcXAmCjKGTZtg2n9FgiTEcU3jYJITY50k2o9W+9usFzeB5LNjtgvlkA+nRXpJhERUU3kK2McyuRbcoDAOFDg7OIIcoxxoEm6ii3+94ciyFsgqgpRFRjPnz8fQ4YMQZcuXTBu3Djs2LHD7/HLli3D8OHD0aVLF4wePRo///yzz2PvvPNOtGvXDqtWrQp3s4mqjGHbn4hZuQHCoEfRuKuhNEiPdJPqDGvfnrBc1guSxQrz54sh5ZyLdJOIiKim8ZUlDiWQDBT4BhsYq4Jhv2OdVe2VvBwmFRaVfcOJtqgWiJrAeOnSpXjhhRdw//33Y8GCBWjXrh2mTJmC3Nxcr8dv3boVjz76KG644QYsXLgQQ4cOxX333YfMzEyPY+fNmwfBRcgpyuh3H4Bp2RoIWUbxdcOhNGkY6SbVOdYBl8B6cRfIRSWI/WwxpAv5kW4SERHVJOqPl6oMrBRSGXKYAmN1o/ytY6wJ5BXoDh6DfDan7OWKilX71ZNvMe1L0SlqAuPZs2dj/PjxuP7669GmTRs888wzMJlMWLBggdfj58yZg4EDB2LKlClo3bo1pk6dio4dO2L+/Pma4w4cOID33nsP//73v6vjNojCQpd5BDHf/QRIEkquGQpHq6aRblLdJEmwDL0Mts4ZkPMKEPvZIu0TdCIiqttUAaOkLk0OZfKtQAKVWruoX9pPO9TBu1RsQeznixH34Rdl2+yqkmxvCaaQbpFBNUWOPtINCIbVasWuXbtw7733urfJsox+/fph27ZtXs/Ztm0bJk+erNnWv39/rF69WnPdRx99FE8++STq168flrbKwf5RCuIa4bhWbVWX+0g+ehIx33wPSVFguXowlI5tfD7hqsv9FKzK95EE6+ghkKw26PcdgvnzJSiZeA0QYwpfI2sA/iwFxj4iIhfdgSMwrf0NxddcWbaxsqXUgZYzCjZTG+xYZ3V7rbbQr0MUJaIiMD537hwcDgfS07XjJ9PS0nDkyBGv52RnZyMtLc3j+Kysskly/u///g9t27bFiBEjwtJOvV5GWlp8WK4FACkpcWG7Vm1V1/pIOX4a1i+XAnY79NcMQcygi4M6r671Uygq20di8ljYPvgK2H8U8QtWwHjXjZCMhjC1rubgz1Jg7CMiiv1yKQDAtGFL2UZ12XIIpdSaDK3XA4ILjKVgl41St9HbpTWZZy9BP4NlijJRERj7IoSA5OePgLd9rm0bN27E8uXL8e2334atPXa7gry84sAHBiDLElJS4nDuXCGUqii1qQXqYh9JOedg/nghpBIrrP0vRmHn9kBOgd9z6mI/VVRY++iaYYiZ/x10B4+j8P2vYblxBKDThaehEcafpcCqs48SE80wGGrHzxZRbSbUH0WVIANSXxwBlmMKEIhKeQWQrNZy5/gbYxygjaKyY6a9kJzt1B0+DnuXdhyvTNUqKgLjlJQU6HQ6ZGdna7bn5uZ6ZJFd0tPTPY7PyclxH//bb7/h1KlTuPTSSzXH3HfffejXrx8+/PDDkNoazg9DiiL4ATSAutJH0oV8mD9ZBKmoGNaLu8DS/+IKvanWlX6qjLD0kcGAonFXI3b+Qugzj0J8+xNKxlwByFEznUNA/FkKjH1ERG6y6gGWpvS4CjLGAf7uxL89FwBQPGZo2TX9rWOsHhPt8NJeX5nnSmaMYz/+BnJ+IYolyRkcE1WTqPi0ZjQa0alTJ6xfv969TVEUbNiwAd27d/d6Tvfu3fHLL79otq1fv959/C233ILvvvsOCxcudP8PAKZPn45nnnmmKm6DKCRSYRFiP10EOa8Ati7tYBl6GZ+g1mSxMSi+aRSUpAQYdh+A6fu1LCcjIqqr9GWBsaReJinYh2fq949AY4yDzNpqssb+2hEoIyy8H+veHuJbn5xfCADQZeUEOJIovKIiYwwAd9xxB6ZNm4ZOnTqha9eumDNnDkpKSjB27FgAwLRp09CgQQM8+uijAIBbb70VEydOxKxZszBo0CAsXboUO3fuxL/+9S8AzvHG5ccgA8BFF12EJk2aVN+NEflTYoH5s8WQz12ALaMlSkZezqA4CoiEeBTdNBqx8xbAuPVPiBgTrJdfGvhEIiKqVYR6OI0IYfIt9XGqjLEu8yj0+w7BctUASIVFEDExwV/T32zSvrLAXgNjX6XhlcgYqz/jeMtSE1WhqAmMR44cidzcXLz55pvIyspChw4d8MEHHyA1NRUAcOrUKciqcsWePXvi1Vdfxeuvv47XXnsNLVq0wNtvv43WrVtH6haIKsZqQ+wXS6E7mwN7i8YouWZorSrJre1EahKKbxqN2PkLYdqwFYgxwXppj0g3i4iIqpNO9b7trdw4EHWWWRXQxn6xxLn7ovowLf8ZwmyCdVAf7fV9PEiX7KqxyuUzxr5mmvaWWRY+AmdRyZSxt2sSVYOoCYwBYOLEiZg4caLXfXPnzvXYNmLEiArNOL13796Q20YUVnYHzN+sgO7EaTguqo/i60cA+qj6dSUASv0055jjTxfBtGojhMkEW4+OkW4WERFVF/UD7VCWN1Jnmb2UUstncyApCqTCYkh5qgk5FcX35I82VWBcfqyzz8DYf8ZYUxouPPeHhIExVTOmn4hqGkVBzHc/Qn/oGBz1UlE07mqgFi77U1cojRui+PoREDoZpuVroP9zf6SbRERE1cXX2sXBxoy+lkQqJRVbyr5WB7x+JurSHOd3jLE68A2wHFOgMcghkFhKTdWMgTFRTSIEYpatgWHvQSjJiSi+aTRgjol0q6iSHC2boOSaKwFJQsyildAd8L7+OhER1TIOX2sXB1tKrZ4Ay/McqaRE9Vp+xg6r2Wy+j/NVPu3wDIw1M1qrJ+rytj8UzBhTNWNgTFRTCAHTT+th2LEHSkIcim4eDREfG+lWUZjY27VCycjLISkKzAtWQHf0ZKSbRFRh7777Lq6//nr06NEDffv2xQMPPIDDhw9HullENZbXTGv5r/0JkJWVitWBsZeZob21SZUx9ghe1VlizWRhXpZuCrRcU2UxMKZqxsCYqIYw/rIZxt92QDHHoPim0RDJiZFuEoWZvWt7lAy9DJLdAfOXSyGfyop0k4gq5Ndff8WECRPwxRdfYPbs2bBarfjLX/6CEnXWiojKqLK4UgjBoxSoXNmiyv6qX8vfOsmaUuryY4xVXys+Al/FW2DsJTMuBOSTZxH70deQs3N9t0dN8RKAE1UTBsZENYDhtx0wrf0NwmhA8fhRUNJTIt0kqiK2S7rCMuASSFYbzJ8vDv7DAlEN8OGHH+K6665D27Zt0b59e7z44os4ceIE/vzzz0g3jahm8jfG2O4IHCAHCoxVkazkpdzZGynYUmrh49rujLHqmt4m3wJg/mopdKfOImbJap/t0dCUjjMwpurFaW6JIky/Yw9ifvwFQq9D8Y0joTSqF+kmURWzXtYLUokFxt92wPzpYhRNupYVAhSV8vPzAQBJSUkhX0OWK7c2u+v8yl6ntmM/BVYVfeQrWJUtFiS8/B7sbVvAMm6k7/PVX3sbY6wJTssyxrIkQfi4D/WyT5JU7n7Vp/gIymUopYf6yICLsoyx5MpoCyWoftUEw4qI2p9X/r4Fp6b1EwNjogjS7z2ImKWrIWQZxWOvgqPZRZFuElUHSYLlin6AxQrjjj2I/XSRMziOj4t0y4iCJoTACy+8gN69e6N169YhXUOvl5GWFh+W9qSk8PcnGOynwCrbR0IRcM0VbdK7wkhA/dnfkJ0LAUC//zDi/fwOCFlxX8tbebROLkvQGnWS+7VSks2QkrTXdQ140AvFfU5CnAk61euLIr379dTt1ateJzneOSlorNkIu5f97sm3AHdArTca/P6uu9pmVPWX0aT32zfRgL9vwakp/cTAmChCdIeOIebbHwAhUDJmKBxtmke6SVSdJAmWEYMgWa0w7DkI82eLUTThGs5CTlHj2Wefxb59+/Dpp5+GfA27XUFeXnGl2iHLElJS4nDuXCEUf0vP1HHsp8DC1kcOB1wf863FFveHbcXucI9hdIiy8Yw5OQXwRbpQCNc0nMKhoHxezWFX3NexFlvdr3UutwDCrjpaCHeb7FY7XCsc5+eXwKF+/eIS93GK6toOm9399YVzBUhOSURRoQVG135r2X6hCEhwPjxzZYDtikCBn/t095fF7r4Hq82BfD/n1GT8fQtOdfZTYqIZBoOPtb1LMTAmigDdsVMwf70ckkNByYhBsHdsE+kmUSTIMkpGD4VkWQb9oWOI/WIJim4ew3WrqcZ77rnnsHLlSsybNw8NGjSo1LXC9WFIUQQ/gAaB/RRYpfvIUXaucGhLg93bpbKg1d9rSXZfyz25r1T2papEWnEICM1yS6qlnFTXEQ5F8/ra0m/VcapjlNLXEYr3/e47U5VXC1nyuE+pqBj63ZmwdWmnapu2j6L9Z5W/b8GpKf3EybeIqpl84jTMXyyBZLOjZEhf2Lp3jHSTKJL0OhRfdxXsTRpCd/IszF8t084YSlSDCCHw7LPP4vvvv8ecOXPQtGnTSDeJqOZRr+nra21hKcgxlcJ7YF22X/W1v3WMfS0V5W+5JnWw6222aOFjv7e2yZ6ZupjvfkLM92thWr3Re3uC7SOiMGFgTFSN5FNnEfv5EkhWGywDe8PWp3ukm0Q1gdGA4htHwtEgHfojJ2D+ejlgZ3BMNc8zzzyD7777Dq+++iri4uKQlZWFrKwsLtdEpKbJ1KqCZBEo++tJvVyTx5rDgO+Zo8sH0b6CXI/reb+21/N9Hettm+wZcuiOnXT+e+KM93PCtR4yUZAYGBNVE/lMNmI/WwzJYoXlsl6wXtYr0k2imiTGhOKbRsFRLxX6Q8cYHFON9OmnnyI/Px+TJk1C//793f9bunRppJtGVHP4XN/XRxAb7LUC7RfeZ8D22w6P6/sITL0tO1WBQF/ovIQcrmBZc26ABwFEVYhjjImqgZyVA/OniyCVWGC5tAesAy6JdJOoBhKxZhTfMgbm+d9Cf/AYzN98j+LrrgL0/ieLIKoue/fujXQTiGo+n2N2fYz5DfJaXmlKqVXZaQjNrlBKqTWvrXieo14qynuZtzpj7KUs2ltg7Ov1iaoBM8ZEVUzOOQfzJ4sgF5fAeklXWC/vw3Ez5JMrOHakpUCfeQTmBSuC/wBFREQRpymZ1kx65b3E2m+2tSIZYy/Bq7tNio/X85Mw9pURlgqKYV/1K1Bi8brfVxs8dpdmkbUPD4I/nyjcGBgTVSFnUPwd5KJiWHt2dq5dy6CYAhBxsc7gODUZ+gNHELPwBwbHREQ1jHwmGzFLVmkDREAb3PnMhqq2+5twsQKBseSjXNrztSueMVZf2/T1ctgXrYZx/Rbvr+3apv7GW/Y3UMbYy7rNRFWJgTFRFZGzcmCe9y3kgiJYu3eEZVh/BsUUNBHvDI6VlCQY9h1CzLc/MjgmIqpBzAu+h2HHHsT8+It2h6+xtz6CWMnffBIBS6kDjAP2dh1/Y5GDKLn2PgO1/3Z6PccVGNt9zKbNUmqqZgyMiaqAfDoL5vmuTHEnWIYPZFBMFSYS4lA0YQyU5EQY9h5EzILvOSEXEZE3QsC04mfEfL28+kpwSzPFumOntNt9jDGWfI0xtvt56Bkga+q7RFrVhsIibSm034yx6trq7YFm0Q6039t/E9lVSl12/5KvwJyoGjAwJgoz+eRZxH76nXtMsWXYAAbFFDKREI+iCdfAkZoMw/7DMH+5DLDZIt0sIqIaRc45B+OWXTDsOwRYrNXymiI5EQAg5RWU2+Eji6vma1KucgLOzBwgMDZs+xPxb86B8dcdfo8L2JZA2dsQ9rtnqva1/jIDY6pmDIyJwkg+fhqxny2CVGKFpW8PjimmsBCJ8SieeI1zKafDx2H+fEm1ffAjIooK1rIHhn7X6Q0nVymwv7JlH22Rgi0ZrlBg7BlUGjduc/67+Q/v1/S3XJOv16lsO11c/edj/WXJV78wYKYqElWB8fz58zFkyBB06dIF48aNw44dO/wev2zZMgwfPhxdunTB6NGj8fPPP7v32Ww2vPzyyxg9ejS6d++OAQMG4Mknn0RWVlZV3wbVUrrDx51BscUKS/+LYR3E2acpfERcrDNz3Kg+9MdOIfbTRUBxSaSbRURUMwQRjIab8PUWL3wEqz4v5OeYQOerS7W9ZYK99UUIs2AHylwHfBjhbY4M93rIQY6TBmD4/Q/EvfkR5FNnod+xB+ZPvuUQIwqbqAmMly5dihdeeAH3338/FixYgHbt2mHKlCnIzc31evzWrVvx6KOP4oYbbsDChQsxdOhQ3HfffcjMzAQAlJSU4M8//8S9996Lb775BjNnzsSBAwdw//33V+dtUS2h350J8xdLINnssAzq41ynmEExhZs5BkU3j4a9SUPoTp1F7PxvIRUURbpVREQRpwnMHNWUMfZBs75vEDMr+w06AwWk6m+8LcPkNTD2s6xTFSVjJW//TVyvrf68pLkHz3OMG7ZCLipBzNLVMC9ZBf2Rk9DvORjm1lJdFTWB8ezZszF+/Hhcf/31aNOmDZ555hmYTCYsWLDA6/Fz5szBwIEDMWXKFLRu3RpTp05Fx44dMX/+fABAQkICZs+ejZEjR6JVq1bo3r07/vGPf2D79u04c+ZMdd4aRTnDlp2IWfg9oAiUDB8Ea7+ekW4S1WYmI4rHj4K9RRPosnIRO/cbSDnnI90qIqLI8jXWNhKEOosbRKRptUJ3+Lj3ILgiZcPqCbZcbfC2jFIopdSV5e0BgZe+8bvkFAAopZln9YRdzBhTmOgj3YBgWK1W7Nq1C/fee697myzL6NevH7Zt2+b1nG3btmHy5Mmabf3798fq1at9vk5BQQF0Oh0SEhJCbqssVz5L6LpGOK5VW9WIPhIChrW/w7j2NwidDMu1V8LRvnWNetpUI/qphovKPooxwjL+auC7H6HfnYm4eQtQMu5qKI0bVNlLRmU/VTP2EVH1k89kQ87KhYg1u7dJilJV4Z13ruDSZnNmqytY1m3+7ifI5y6gZPgg2Hp0BOAcnmVa8yvsbZoH3w6HZ8bYa6ZWxSNDXFXjd720wx2gq/9k+psx25dIPwihWiMqAuNz587B4XAgPT1dsz0tLQ1Hjhzxek52djbS0tI8jvc1hthiseCVV17BmDFjEBsbG1I79XoZaWnxIZ3rTUpKXNiuVVtFqo+EosC+4Cc4ftkKmIww/mUszG0r8OZVzfizFFg09pGYfB3s366EY+1mmD/5DoZbx0DXsXWVvmY09lN1Yx8RVZ+4WV8CAEqGDSjb6FBgXLMJUlExLCMuD+vrSefyINlsUOqneeyLn/kxJIsVhXfcULYxiOBOPncBAKDfk+kOjGM/XeTcWYFVCDSP5PyNMfZ2nPv7oF+uYrxlf731TaCMsesu1bt8BP+6oydh2PonSkYMAoyGoJtKdVdUBMa+CCEg+RnH6W2ft202mw0PP/wwAGD69Okht8duV5CXVxzy+S6yLCElJQ7nzhVC4eLmXkW0jyxWmBb+AP2BIxBxZpTcNAqFqWlATkHgc6sZf5YCi/o+GtAbBoMRxpUbYP3wG1hHDoK9e8ewv0zU91M1qM4+Skw0w2DQVelrEEUVdQDpcMC0fgsAwDJ8UFjn/Ih/xzkkL/+RsqpEqfQ1pdLVAiSbqrS3AtlMycuEipI1xOX5XH+DAo23VgXQcu6FKsu+ep2cy2tgHL6Mcez8b52766VymBsFJSoC45SUFOh0OmRnZ2u25+bmemSRXdLT0z2Oz8nJ8TjeZrPhoYcewvHjx/Hxxx8jPr5yGd9wfhhSFMEPoAFUdx9JeQUwf7kUurM5cKQlo/jGqyFSEoObdTKC+LMUWDT3kaVPdzjiYhGzZBVMS1YDORdgvbxqZkWP5n6qLuwjIh8UBVJxCURc4Mo83f7DMOzah5JRVwB6Hw+BVIGTumRYvpBfdozdDhjCny3UncnW/I11ZX0BAFbVcnoV+FsgFXlJroRa2lwuYyxQLqPses2CQpjnfwvJbofu5FlYe3QK7fUC8Ts7tnryLdXY4SDvXfI247V6fyEnqaTg1KThkD4ZjUZ06tQJ69evd29TFAUbNmxA9+7dvZ7TvXt3/PLLL5pt69ev1xzvCoqPHDmCjz76CMnJyVXQeqot5FNZiJ3zNXRnc2Bv0RhFt17nDIqJagB75wwUj7saIsYI08atiPl6Odc6JqIaxfzZYsS/OQfS+byAx8Z+tQyG3ZnQ7zvk8xhNhlWVMZZzz6u2+w+aQqV5DUCzQoBkLcsYBxvcOc/zkh2uZGAc6PX1ezKhP3oSupNnAQCGbX+G9nqBeM0Ye27STFYWxIzeAAL/N3Y4oDt4FDFLVnlfNoqoVFQExgBwxx134LPPPsOCBQuQmZmJGTNmoKSkBGPHjgUATJs2Da+++qr7+FtvvRU///wzZs2ahczMTMycORM7d+7EhAkTAAB2ux1//etfsXPnTrzyyitwOBzIyspCVlYWrFZ+mCQt/e5MxM5fCLmgCNZuHVA87mogxhTpZhFpOFo2QeGt10NJSYJh/2HEzl0ASZ05ISKKIP2REwDgDsKC4i84Kin7vKYpX7aUBZhhnbFYHWTaHZ7fu4Tzc2So1SelbROlWW2f9UPlxt5WJJCvkKBLqQOMMZZc/6iqBQL8N5bsDsR+vgSGHXug3384iMZSXRUVpdQAMHLkSOTm5uLNN99EVlYWOnTogA8++ACpqakAgFOnTkGWy+L8nj174tVXX8Xrr7+O1157DS1atMDbb7+N1q2dE9OcPn0aK1euBABcc801mtf6+OOP0adPn2q6M6rRFAWm1Rth3LQdAkDJ4Eth69OdaxRTjSXSklF42/UwL/we+sPHEfvRVygZexUczS6KdNOIiJx03vMy+t0HYNy4FcXjR6mO9T2WXjNu1eYjGLaFMTBWX9du17y+upw35HHBAGK++1Ezw3bQWdPygg1wq2vNZ38BvrqtoYwxDnQP6v9uzBiTH1ETGAPAxIkTMXHiRK/75s6d67FtxIgRGDFihNfjmzRpgr1794a1fVS7SEXFiFn4PfRHTkLEmFB8zVA4WjWLdLOIAjObUDxuJEw/rodxy06YP/kOlsGXwta7Gx/qEFGNZV74A4AKlPOqA1Ob92BYstvDNtGyOuCVHIo2u6kKvkKfMEuBYdd+7WuGOBlW2VJIkv8As5qWOvJ3H9q1iwPNSu2FelxyQRFi534Da8/OZfvV2Xx9VIU+VM3400HkhXzyLMwLVkDOK4CjfhqKrxvO8cQUXXQ6WK4aAEejeohZ8TNiVm6A7vhplFw9mMMAiCiyAgWOqgpAvxlfdaZQHQzbtJld536bM/ssV2IUobXcddWBm7otIZZSS97u1V7JjHGAh6GB1jkOG6+BsWfgqwmS/WXLFe9ZZuOv2yCfz0fMyg1l1wxn1QDVagyMidSEgOHX7TCt3gRJUWDr1Na5/l0VzGhJVB3sXdujqEE6zAu+h2HfIejO5qB47DAoDetFumlEVJeUy6gafv8D+syjKL7+Kr9ZPMnup/RVnSlUL9ekfi27A9KFfMT/dx6sXdvDcvXg0Npf7jUku0MTDKvLtyVL6KXUHkIdIx1kYFxtpcWugNdmg+mn9XBc1CBgRljyt19duq4okPIKIOflQ84+73msOmPOIJn8iJrJt4iqmlRQBPPnS5xPGSUJJcMGoGT0FQyKKeopDdJRePv1sLVrBfl8HmI//gaGTdtCn+2UiKiCNGXIVitiflgH/cGjHqXDALSlrzabM5gpUs1AXWKBnJWrHePrK2Nss0N39CQAwLhjT+VuwqpdK1mT3bT7CNIrKeTBL+7AOMBx1ZUxLn0dw/Y9MG79EzE/rAs80ZfX/aU3pA7oHQri356L2LkLvS55Jfkaf05UDjPGRAB0B44gZskqyEXFcKSnoOSaK6HUT4t0s4jCJ8aEkrHD4Pj9D5hWbUTMyg3QHziCklFDIJISIt06IqqlpPN5nhNoqQJM+WyO8wv1msSqZZgkux2x87+F7tRZFEy9HSLWjLhZX0K+kI+SkZeXXdNb+XTp+TCoPu4qSsjl1Jr1cu0O7RhnzYRfYcwYhyrYNYCra4wxAAgBqcTi/N5qgzAGSDz4uQfNQ5G8stUXJIvF82CFGWMKDgNjqttKLIj5aT0MpU+RrT06wnJFP2aJqXaSJNgu6QpHi8aI+e4n6I+eRNyHX6Bk2ADYO7XlxFxEFF6Kgvj/zQcAFNw7wb1Zk9F1BS3qQKdEFdzY7NCdci7vJF0ogDDHQC5dhk69HrLPjLHdoc0u2uyAyRj8PQgBOec8lPQUbVbYoQ2M1cG+FOq44HByBZU1qTKo/IRlIWWMVdcqpfl58ZYBVz90YcaY/KhQYLx//34cPHgQeXnOP0SJiYlo1aoV2rZtWyWNI6pKuv2HEbP8Z8gFhVDizLAMHwR7RstIN4uoyin10lB02/Uw/fwrDJu2wbzoJ9j2ZMIybABEYnykm0dEtYVFtc5woarE1eFlgiV10KkKdKSCorJjFUVTKiuVL7l2UWeMHQ5tOxwOr7NUyyfPAskJQFo85EPHINJTIeJiYVq2Bsbtu1F082gvGWNVwKUps64BwZerbTUoLoaiaP/bB5p12t9+Tem63et2zeu6MGNMfgQVGH/11Vd4++23cfr0aYhyT28kSUKjRo1w//334/rrr6+SRhKFk1RQBNPK9e5xTbbOGSgZehlgjolwy4iqkV4Hy5C+sLduhpilq2HYfxj6IydgGdQHtp6dKjdzKxHVDkLAsHknHE0ahjRhnzrA1blKpgGvS/Jogk7VeXJhWWAs2WwQJaogVx1Al1uiyc3hgKQKjL0FRtKFfMTN+RpClqH8dQLMnyyCEhuDwql3wLh9t7P9h45DaZiufQ11llsdGPubMKy61MSMsaJo/9uEkjEufZAi+ZhQS/IymZhmjWlmjMmPgIHx3Llz8eKLL2LcuHG4+uqr0apVKyQlJQEALly4gIMHD2Lp0qV4+umnUVJSggkTJgS4IlGEKAoMm3fCtPY3SBYrlPhYlAwfBEfbFpFuGVHEOJo3RuGUcTCu2wzjpm2I+WEdDLv2oWTYACiN6ke6eUQUQbpjpxDzwzoAQP6T91b4fKlYFbiqxw17C1TUGUB1kKmZtMumDXLVJbTqc2zazK7mHC9Bq6ttkqJA5F4AAMjqyb4AQJa05zoU7fjc8jNW1xQ1KDCWFEU7y3ag8c3l1zeWJK9jojWTnXld8qrcz0NRMWB3sEKKPAQMjD/66CM89NBDuPPOOz32paamIjU1FRdffDEaNWqEWbNmMTCmGkl39CRMP6yD7mwOhCTBeklXWPpfzPVciQDAYIB18KWwd2yDmGVroDt5FrEffQ17l3awXN4HIj4u0i0kogiQLuRrvtdlHoXSMB0iLja480tUwaV6UiRvpa0O74GxJugpFxirJ1qSfIwjlRxKufG/do/qYvXxwkfmVyoshpScqNpXPmPsffKvSNGdPAvdmezAMz9XJ0VoHhoEmtXCPWHXhXzE/28+LJd291peLQXIGGtK64stiJv5MSBJKHjgViCW1YJUJmBgnJ2dja5duwa8UNeuXfHWW2+FpVFE4SJn5cK0eiP0B44AAOxNG8EybABnnCbyQmmQjqJbx8KwYw+MazbB8Mde6PdkwtqvJ+x9ukW6eURUHaw2xP13HuwZLTVVI7r9hxH71TI46qWiaMr4oC6lKXVWlUB7W/9XE9DYtFli99c2mybA1lxTTZPZdWjLZ70FreqgVjUWWlKVccuFRVDUQZ1SbiKp8sF4hBm37op0EzyVzxgHQwgYdu4DAJg2boPQ6wKc4EkTjOflu7POcl4+lBADY6mwCIbNO2G9tAcQaHZtihoBA+N27drhiy++wCWXXALZx5gzIQS++OILtGvXLuwNJAqFlFcA09rfoP9jLyQhoCQlwDKwN2feJQpElmHr3hG29q1hWr8Fht92wLTmVxh+3wn7lX2Bdq0BueIfTIgoOuhOZ0EuLoFx+25YVKWm+kPHnfuzcgNewzVBliaoVWeMy88SDfgppVYFUlabZv4Dr0vzoFyQ7XCUW75J9Tq5F6A7k+0sky4lVCXUUn6h9rXLrZ3rLcB33kvkM8Y1kqJAslWszFzKL4T+T9Va16E8dFBnlDUPa7z//LjZHYidvxD2ZhfBOrivZpdp+c8w7DsEOSsXJdcPr3ibqEYKGBg/8cQTmDJlCkaOHIlhw4ahVatWSEhIgCRJyMvLw6FDh/DDDz/g9OnT+OCDD6qjzUQ+SbkXYNy0FYYdeyEpChRzDCz9esLWszMQwlNGojorxgTLkL6wdu/onL169wHYF/4Ec8JGWPv1gq1re/5OEdVC6lmgNUFEXr63wz0Jgfg3PoKQJFiGlAUT6uyu16WVHN5nGZbKZ49VD7cDBjZwBsmaYEwVtMa/+wkAwHqJqjJSlTGWVYGxZLV5BNyax+yBZkam0lmpK/bQwLzge+hyzru/D6U0XFNmr/6ZLvb/8yOfzXaWpJ886wyMbTYYtu+BrUs7yKW/D4Z9h1Di9yoUTQIGxr169cK3336LDz74AIsWLcKpU6c0+xs1aoQBAwZgypQpaNasWZU1lMgf+WwOjBu2Qr/7ACQhIExGWHp1gbVPN44jJqoEkZqEkmuvhK1/L8Rv3Ar8sQ8xK36Gcd3vsPXqDGuPThyjRVSLyKpxxZogwuqjbLkc17hkSQif2TnJy9JKPsuPy435laBqh8XmeXx5DsV7xlgdLOUVuL8WRd5LqWG1abPa5YJfqfwax+RBCiFj7FrDOmxt0Mxq7j+klUsnYgOcPwvuLPH5PIi4OADZYW0bRV5QyzU1a9YMzz77LACguLhYs46x2WyuutYR+SEcDuh2Z8L0+x/QHz0JAFDMMbD27gprz84MiInCSNRPg/GOa3Fu1yHo1/0O/d5DMP38K4wbtsDWpT1svTpDSU+JdDOJqLLUY3jVQbI6uyaEz2FJsqrUWj6nCix8zCBdNiu190yix6Ra6sxyMNlDH2OM1bNkywWqkmn1GGN1kGwrV0pdvr3MGAemiApnjIXJqJ1VvJKkchNxSQWFMK79HfY2zZ2rlNjtzqxw5wztQ6L8Qhj2HQJQ+jOuU1VMWW3QHTsJR4sm2u0UdYIKjNXMZjODYYoo6XweDLv2wbJ9N2IuOJ/yKsmJsF7cBbbuHQADJ0EgqipKw3oouW64c9jCbztg+GMPjFt2wrhlJ+xNG8HWrQPs7VsDhgq/vRBRBEl5BRAGg3ZcsHoNYVWQKJ/JhvnzJbBe3ge2bh2cG+0O5xhSdcCpyrhBPZu0+jVKrDCu3hjcskJ2OyQvsxL7I9kd2jGm+YWInfM17BmtyrZpMsaqMcbqr202TVZbKrcskCbgCrQMUV3lULRLaQWjKvvSYoHhj70wbvsTxm1/Iv/Je2H8ZTNM67dAn3kEjnqp7kM1D4ZkWRPgGzdtg2nd77B1ykDJmCsq1gY/D5mo+vGTC0WHEgsMezKh37kP+mNl5fz21s1g7dUZjlbN+IeFqBqJ1CRYrhoAy4BLYNy+G4Ztf0J/7BT0x05B/LgOtvatYe/QBo5mF2kmyyGi6iOfOgv9wWOwXtod+i27Ydn2J+SrBkJp3FB73NkcxH34BexNG0GoliSSfASJMcvWQC4qRszS1e7A2Pz5YshZubD16V52jo+ybE3GuMQC04atQd2PZHMA9iDKp9UciqbM2bD3kHvcqIt6LLGmlLq47GtY7eXWwy2X+YzyCbdsGS3dGdEqoyja7H0QJJsdIsYEJTEeurM5YW2OZLFqJ/MSAroTpwEA+syjUFSTz2nW4S4qgnqxKd2JMwAAw659AQNj+cQZmNb+hpKrBzsfLG/ajsLbr4eIj3V+jtUzNIsk9j7VWFJhEfT7D0O/7zB0h4+7x+woSQmwd85A/MCeKJQNUCr49JiIwig2Bta+PWC9tDt0R07AsG039PsOwrhtN4zbdkOJNcPevhXs7VvD0aQhy8yIqlHM8jXQnc4GbDaYNmyFAKDfvhv2coGxa0lD/bFTsKnmDJDVwYB6zd7yk14pintIk373gcDnWysY3LrY7RUvqy03KzUCjf8t9JExVhTNOGt/Y4yjkfXS7tAdO6X5bxZukqKEVGYuYkxV8t4hlVgBSfWQpqBIOwbZot6nmoitxAJIqge+PqodhJftsfO/heRwwLj2Nxi37wYA6A8fh3HDViiJ8SieeG2ot0NhwMCYag5FcT7dPnwC+swjkE+ccT+PEzFGWDtnwN4lA44mjSDrZMhp8UBOgd9LElE1kSQ4WjRxjrEqtkC//xAMfx6A7vBxGLfsgnHLLgiTEfYWTeBo3Qz2Vs0gEuIi3WoK0fz58/Hhhx8iKysLHTp0wPTp09G1a9fAJ1LVcDjLmGEwwLhhKwybtqF40rXOoBiAnH3OfahUVALDbzsgn82BZcQgQJYhnS8reZbPB559WjNzdVExoAomdGcCT0gU6uRUkt3he+1iP6+lmeValRH2Sl0SXag9VqrCoDHiZFmzbFWVCCFjDADCaIDQhb/ySLJYNaXaUl6+dlyxeliAamZsWMrNjq4qxXeXRisKrK/NQYzRiOKRgxGzZBXsrZq6f/bl3LLr6fcdhnzB+drSuTzojp2EkpYCpXGD8N0sBYWBMUWO3eGcCv/4aegPn4Du2EnNU2QlMR62ti1gz2gJR9NGzDQRRQuzCfau7WHv2h5SUTH0ew9Cv/+IM6O89yAMew8CAJSUJNibNoKj9H8iOZFDIqLA0qVL8cILL+CZZ55Bt27dMGfOHEyZMgXLly9Hampq4AtQyOTsXEh5hXC0aAzTirXOD98DeyN29lcQMUYU3XEDTKs3AgCMv2wuO0/1wV3OOY+Y/YcBAPaObeFo2QTyubyy/cGsU6wKbuSzOYGzsOFit2vKs4Pi0GYpywe7/mhKqRF4eZ+oJsvaLGhVUERoJeeyDFRJYGzRlPXLOec11RDyBdXvhSqQlSxWzXuVfL7sOOPa32DY9iesV/SDOHEWOgDmb1ZAd+os9IePu49TP0DSHzzq/tr08yYY/jwAJSkBhfdOcI79jzVz3o5qwl6m6mG1Qc45DzkrB7pTzrE98tkcTWmVMOhhb9kUjhaNYW/RBEqDdH5IJopyItYMW49OsPXoBNjs0B07CX3mUegOHYMu5zyM5y4AO/YAAJQ4M5QG9eBokFb6bzpECoPlmmb27NkYP348rr/+egDAM888g9WrV2PBggWYPHlyhFsXWfLpLEAIKI3qQz6bAznnPOxtmzvHDToczgDNZATsduiOnYLSIB1y7nnod2fC2qc7oNdBzj0PR+OG7rGPUmERdMdPwd66OcyfL4GcVwDrJV1h3Panc7/DAbmwCCgsglE1VldfGvwC2g/h6g/4hu27IWflaILhik4cJZ/NqbbfUamgEHJxCYQkBb+erd0e8sRYcmkptev1Ai3vE9Ukqeozxg6H72W5/NHJVZMcsVg15fK6k2c0uyX1A6McVdVFuZ8h9fem0gdSMd/9VHZdL0tO+RpOYPjTORRBvpAPw+adMP34C5TUJBTdfgMM23dDd/QkbF3bw9GmOQy/boeccx7W/hdDJMZDPpMN2OxQLqoP3fHTMP20HtY+3eBo3tg5AZ0ioDt9FvY2LRCz4mcIowGWyy+FceNWKKnJsLdvDf3+Q1DSU6HUT3Nm073NEeL63ZMk7de1QIUDYyEE3n77bYwfPx7p6enur+vVq1cV7dOoaOnWsmXL8MYbb+DEiRNo0aIFHn/8cQwcOFBzL2+++Sa+/PJL5OXloWfPnnjmmWfQvHnzKr+XWsluh3ShoKwc5PwF6LLOQc7JhXQ+H+V/ZZTYGDgaNYDjovpwNG8Mx0X1mRUmqs0MejhaNXNOlgdnSaPu2Cn3/+SzOdAfPKp5ei6MBiipSVBSkp3/pjr/FUkJzqfoteTNOFpYrVbs2rUL9957r3ubLMvo168ftm3bFtI15Up+GNcfOQHLh7/AbLECrljJ9WFNHTy5t5X+X+m/knpb6XEirnQinKJiiMR4Z5ZRliFiY5wfaO0OdwZLKiiC0OshkhLcH6ztrZtBd+g4JEWBUi8VSr1U6DKPAlYbHBktIOde8MjMGn//A8Kgh2SzQ0lLhpRf6Gyz3eERBBp/2+H+2rBrf9n2jWWBcTDjeA27D8CgGhMcCv2ZLIiY6lnLXFdazirSUyAFkdkGKjGeWUXEx0LKL6zVGWNJJ1f5RIlyRSdOc9HpqmaMcbFFUy7tmkTLvV/1eydXoNIgXGJ+WAfA+XMfN+tL9/Jn+v2HYe/REYYtu5zfHz0JpWE69LszAQCOBumQ8/IhFVtg/vZHv69h2L6nbGjD4pUAnA+CRFoy5OxzUOqlQuh1zuETpWXiUrEFwmSASEmCfCYbwmiESE5wlpsrCoTJWPbfSyr9P82/pUofKFgMepjtjnJjtcuOdTRvDOvIyyvcf6GocGCsKArefvttDB48GKmpqe6vqzowrmjp1tatW/Hoo4/ikUceweDBg7F48WLcd999+Pbbb9G6dWsAwPvvv4+5c+fixRdfRJMmTfDGG29gypQpWLJkCYxGY5XeT1QQArDaIFmszv8Vl0AqLIZUVAypsKj032LIBUXOcRmqMUflKckJcKSlwlEvBUrD+nBcVB8iMZ4faonqMBFrhr1dK9jblS6bYrdDzjoH3ZksyGeyoTuTDTkrF7rT2e6xkprzdTJEQhyUhHiI+DiIxDgosWYIcwxgjoGIjYEwl/4vxsTZscPg3LlzcDgcSE9P12xPS0vDkSNHKnw9vV5GWlp84AP9cBx2wHY2F3KgTKDXD2jeP7BJrjG5suRc11aCM25WlUy6GQ3OktvCImc22GqDPrP04U5iPOSs3LJ1T3U66PeWzvyrzra4XtdmB2RZO56xAkLKxoUqOQEoLHZ+GA82exsm+tQkKEEGxnqbDZVtnS45ASK/sFaPMU5OjYNNL1e6r/yJN8gIZe5uQ4wBMJsQ7p9uuVD7uTXcs16Hk3zuAiBJkHt1hPL7LndQjIQ4yOcuOPfHmSHFmIIa5+/ibby/JITzb6DJUPYAz1VRoAjAoHf+LhQWA3rX10XOyhh1EB0kAcDfu7MuMR7xqXGQqiFmCKmUWj3LmrcZ16pCRUu35syZg4EDB2LKlCkAgKlTp+KXX37B/Pnz8c9//hNCCHz88ce47777MHToUADASy+9hH79+mHlypUYPnx4tdyXN/KZbDhOnIQuvxiyQzh/uFz/AzTfS6L0qbcQnv8DnBMdOBRnCZfD4Zw1UfWv82vnfslqA6zWskC4Ak9ZhSxDSU6EkpQAJSkBovRfJT0VSloyYOTawkQUgF4PpVE9KI1UD1qFgFRY5Myw5Z6HnHsB0rkLzqfheYWQz+cHNVkQAGdWz6AHjAYIowEwOP8VBr1z/XO9zjnBi+ws2/P1tbPcsDSQkiSI0jdrWZbgSDBDV2iBLJz7XMe4HgKKGJNzzoRaFqQLIUL60GK3K8jLq1wmRm7VHMn/eQTnzxXAvUiBqy2hfpByBUAmozMjHGd2LvtjsTqzIXqds9RZOD8kwqFAOnfBmTXJyoXhtz9gb90Mjo5toNudCehk97KCun2HAKMBjtbNYFi/BbBYYe/RCcZVG+Fo2hD2i7tAPn4aIiUJQic734/zChDz+RI4WjeHnHMOclauM4tTOnbW0bQRYLW5PxDb2zR3zzQtZDmo8mElLtYjUPDHkZgAe+9uMH2/roKdW3kWkwnBfqpQiks8KtYqyhYTo/nALHRy9T6EqAbnLxQjRvgPUCqrMLcAphDOszoEYFeqbPynkpLkzsYCgJKa7B5yIGJMnrOwV0CFyv5d55RWjgCArXsHKBc1gOHX7bD17gZ79w4wFVuh23sQ1kG9Ye/VGYaN2wGHA7Y+3QAhYFqyGgBgHT4Q+t//gIiPhaNVM+fM2gYDDD//CnvnDMj5hTBs3AbLlZdBKi6B7shJWIdc6kyCFVvgaFN6jqxz/g1U/z212iBdyIdITXL+/csvgEhJcr63lY9ZAI9KHQDOh4CyhOSkWJy/UORcZab8A0MBZ3VObtms4KFKTDTDYPBfeRAVY4xDKd3atm2bR8Dcv39/rF69GgBw/PhxZGVl4bLLLnPvT0hIQLdu3bBt27aQA+PKloShxIKYD7+ETQhUT2GSJyFJgMnoXL/NZIQwGZ0fImNjIGJjIeLMpf+LLfs3PtbnB72q+CPr6udK93ctx34KjH0UnMj1kwQkxkMkxsPRojE8nm3bHZAKCiHlFThLHYuKIRWVOCtcSv+H0nI5yWaHZLVVadbHBgT8211y4wg4MlpWWRuqUkpKCnQ6HbKztRmJ3NxcjyxysMKx5J6kk6FIMhTNhzCEnsk0qT6+x5fOnq6XtWuMukoFBZzvf2kpAAClYX3YR5etZap0aKO5tPp7S79e7q+Lxw4rO6ZJo7ITYmKApEQUPDIZkGXojpxAzLc/wjKkL/SHjsGwcx9sXdpBzj4H3ZlsCKMBtoyW7sDY0awR9IdPOK+VEAeUrtlbdNNowG6HkpoM45adcDRIh3nJqqC7SIkxwdqrC/Q79rgrOsoHGFVFiY8N/uDSWayFyVjxpZ5crxdX7vUMBsBRu8qqFVH2kK/KhNj/ogpKqdUBq6NBuubn1tG4QVlgbI5xJo9KA1UlNsY99rx8G93Lipb+HshdMmA/clI7azWcD2n9zc5tb9nUGaieOANr945QGtWHtXS9cAigeMzQstmvAVgu66U5v/j6shjGMahP2Y6UJOf1x13t3mRRrTuOXl2c/yYnlW2Lj3e/rubvqV7v/psHvQykJDu/Lns6WfqPpPnWgyRBMuidf78lL+OVXdU61ZSIjYrAOJTSrezsbKSlpXkcn5WVBQDuf71d07WvosJREgbEw37tEIic82VZBo//wfmD5CprCHAc9DpIpeUNcP+rg1T6L3SlpQ8xRmcZmNFQLeUK4ZCSwuVegsF+Cox9FJwa2U8NkgIfoyIUxTkTqcUKYbU5l96wWiFcs9c6HM5sYOm/QlVhA7uiehouAEWUVU75quBx7VMEEGNEUre2kGIj9eizcoxGIzp16oT169djyJAhAJxDrDZs2IDbbrstwq2r5UofPjuaN0bhX519be/YBpaBvUvHQTuzvfaMls4qiFL2Vs3cgbHcrgWU350lmI4mDZwBHgDLlf2hO3ayQs0RZufPsGVQH8R+vgSWyy+FLvOIR2Bc2Yyb19eOD/7vkCv4EWZTyIGxKBeIC6Mh7PcUcRKqvJIl1P6HLId9uSbXuHEAUFISNQGvo3EDGP7Y6zzOZCwNjJ3BrUhOAlyTsqketij1UqE77YwfSoYPhKTXIblzKxRu2w/DL5thu7gLzN+scF9ff8T5O+mon+Yu4XZ97WjeGLYeHZ0VKrFm7zcQJZ/To01UBMa+BCrd8rav/Lby34daDgaEpyQMAOTO7ZGSEodz5wrD8iQ9aDYANiuAEP9wVSNZliLTR1GG/RQY+yg4tbOfJEA2AmYjYK58wB90HxXbgeLKrcEeTElYVbnjjjswbdo0dOrUCV27dsWcOXNQUlKCsWPHRqQ9dZosQyQlAHAGi5Yr+jm3C4GSqwbCcVF9zZrDus5tofy+y5kBNWiLkdUTaPkqvxZGg3uYlSswdrRqhoIHb4OIM8N8/JTnOaXjris627U/5QPVoM6JiQFQNuxCSU6AkpoC3ZHjfsuihU7nnKNAvc1QC4eHVcM6xgHXkPZFJwNymDPG8WXVEyLWDCU9FfLRk86fi4SyJJcwGZ0PNkuzvkpKonuSPSUxHrrSMbiOhvXcWWZH44aQTQZnJrRVUxS3aKJZMsye0dIdGNs7tIHubA7sLZuiZPQQ6HdnwtazU+lkfz6CYqoyUREYh1K6lZ6e7nF8Tk6O+3jXZGFZWVmaybtyc3PRuXPnkNsazg+MiiJq0QfQqsE+Cg77KTD2UXDYT4HV9j4aOXIkcnNz8eabb7pXifjggw+4hnFNIknOD9cAYLXB3rIpRHoKTF3aomT81bBd1MDjFFegCwAizuzOpqlLTkVcLCSrMyMsVFUP7kDVy9wkQq93znjsJTC2XNoDuuOnnGWnFZj1V4mLrfDYzfLBbeHdtwCyjPj/m+W3LFq45iRQ87GmrHrcd9SRUOXrGIceGOvCvo6xkhgHXelzHBEXC+vA3sDa32C9pAuEuexnRZiMmjJgJTmxbF9iAlAaGIvEeBROHuf8PfL286HXofCum0rLwmXgh3VwNEyHtVdnKEkJsGe0AAwG2C7uEtb7pIqJitk/1KVbLq7Sre7du3s9p3v37vjll18029avX+8+vkmTJqhXr57mmgUFBdi+fbvPaxIREREwceJErFq1Cjt37sSXX37pd+lEijCjAcU3jYJ1WH9IkgRHm+ZAjOcUSOpgQCnNQju3lwXA6rG9IsHL0DFXAK2+vkEPofcRSCbEoXjS2LKZ6YGgZkUW5pigxpyqy281wY5e5y4b9gh6yzMZNBOICtckfN74uM+oUA3rGLvWDBY+Hiz4ImTZ+d8sjJS0sgd5SnIiHE0bofiWMXC0ban5+RVmk7aaQvVzryTGa49LTnQOSfT5mikQyYkQCfEouOcWFI+7GjAZYe/U1qOCgyIjKgJjwFm69dlnn2HBggXIzMzEjBkzNKVb06ZNw6uvvuo+/tZbb8XPP/+MWbNmITMzEzNnzsTOnTsxYcIEAM4S6ltvvRX//e9/8dNPP2Hv3r2YNm0aGjZs6B43RURERFQnqII9kZpc9rUqM6yklo3nFwmeww8swwfCUS8VReNHlR1ncs747v5ePY7VtV0dKPkILNTnOQPjID7CqoINTbCjDnQDBLPCaNSWTrtmr/d2bAUDvhpFqvrJt1wZ4wqXCFfBGstKWnLZ1ynl5qlQV0/EmrU/v6qfT5GkCowruJa3SElyrpdONUqFf4MlScJFF10Eo9Go+bqqBSrdOnXqFGTVL03Pnj3x6quv4vXXX8drr72GFi1a4O2333avYQwAd955J4qLi/HPf/4TeXl56NWrF95//32uYUxERER1l3pZTnWQkJToLmFWkhM8TlPSU1E0Zbz2UjExgE41pt6gd89OLEqDcXXgKYwGr5M0iRijO+OIGKNzyaRAt2HQuyfJUt8H1J/zvASzmrHUxnIZY/eSbV5Ee8a4igNjuXScrog1AxeCW2YPgHsN8HByNG4AYTQ4qyPM5caQq4NfcwysndpCv/sArJddrBnfrg6oNT9fFLUq/BssyzJWrlzp/l79dVWbOHEiJk6c6HXf3LlzPbaNGDECI0aM8Hk9SZIwdepUTJ06NWxtJCIiIopGJYMvRcyqjbBe3KVsVl7VDNDCbELh/ZOca5Z6K6X2QnI4NGWwmsDXHRiXfRwVsWb3pEgaJpN7NmD4K2dW0WR6jdrg283VBvVY6lizOzBG+THGRoMme6lepkfodRDwvTJNpAQzHltIVT/5FuB8wGFv0Ri6U2eDP6cKSqlFShIK/nq7Mxtd/oGAunoixgSlXhoKHvoLYNBrll5yNKzn/lqpzzkWaoMofrRFREREROFi69Mdtku6agI/Tfl0TAxEQpzXMmqfSiyaUlRNhrZ0u7q0VsSpvjbo3evHivKltAFKqYUsa0tgDT4CY9eoZkkqGyMdHwuczys9VltKLQx6bVmvXudcyg0oDdhl53JvNYCjQTqKbhqNmKWrYNh/2P/BriU+q5itWwcoqlL9oFRBKTUAn5OoAc41xo2btkFxTVRX+jOj/tkXSQkoHnk5EGNiWXQtwcCYiIiIiJyBUblMrK+xuYFY+vaAacNW2Du1hWHn/rJrqIPM0uBWU66tLmM1GNyBsWu5J9c4WBFo+R5Zey/arK+qlNqVSFXFhEK1v3wpNYwG7aReer0qA14awNWQwBiyDMTGBBfwynKVz0oNwLkUUkVnmK6CUupArIN6w9q/l+fryjKKrx5c2l8S7N06VGu7qGoxMCYiIiIiryS7veybCkwuZR3UB/Z2raE0TId+T6Z7uzrwdZcxqyb40mQGjXqgdBlmERsDnLtQVhLspbRWXdYMWXZO/OWiCbhV5wovkbE6cDNoS6lFuVJqj4nFdDLguWpVZLgC4mBKpCVUWQ24MBndDw/UpflBk2WfE55VKR/BuL1r+2puCFWXqJmVmoiIiIiqh+XySyH0etg6t0PhX25EyRX94Gh2UfAXkCQojeqVZqFVY4jVgbF7VmrPMb+ANrts69gWAOBo3NC5odw4X+e5ctlyT7LsmflV7Strj3O7O6AubXvZsZJ2fLKh3BhjdYCukz1LviNIuALiYDLBUtVljDUVAQmxFc4YC53vMeXCy3Zfs4PX3tXlKVyYMSYiIiIiDWvfHrD27QEAEInxUBqkh3wtTfComrnZFdQo6Smwt2kOe7OLIJ+7UHasKsCx9eoMEWeGo2lpcK4OiAyl43zl0lJmRXEGqOXKst1Uwav1kq7QHzkJW4c2MOw+4NF2e/PG2kDZY4yx6qO0rHP+r6ZwtTPSGWNzjHvMthIfB7nEc9Zxv3Q638G0eoy36/X0ZWPTNYwGwFpT0vlUEwV8ZLN+/fqgLmSz2fDII49UukFEREREVIvotFlVj+2yjOIbR8LWp7smsBQm1TI6kgR7hzbu5XI043xLA0BnZlF2v4522R0TlMT40uuWbXe0bYnCO25AyYhBZa8ly85twwfC0aa59l4cDm1ZryYwlis+fraUUhXL/bgC+iDHGFdVtltdKi/iK54xdpZS+8gYe1siS53hV92Tpf/FAADrxV0q9vpUZwT8ybz33nuxZs0av8cUFRXhrrvuwvfffx+2hhERERFRLaAeh6vz/rWbOuCNMXrudx+nOtedGVUH3eUC44R4WC7vA1uH1rD27am5lNKwnja7HB8LpWE92Hp0cgeV9ubOTLVIStSUHKvHK4tKzJ6spKeEdJ5f3vrFnyqalVqzxq9eH1R7hKot5UupNaXS3tah1nvOfA4AjuaNUXD/JFgGXxpky6muCfiTOXToUDzwwAP48ccfve7Pzc3FpEmTsHXrVrz11lthbyARERERRS+hLuXVlFV7m0BL9dHUXwClPs4VRGmyyDrteGajAfZOGSi5dhhEov81mL3ttwzuC8vA3rAM6l0u663NGAvN2Ofgg2SRmICiidegaOI1QZ8TkGsG7wABr5Ak57FVFRgb9LB1aQdLv9IHEsH0i1xuMrRyM4G7v/by8EQklC2dpAmiZdn539ZblpkIQQTGr7zyCkaPHo2HHnoIS5cu1ew7fvw4br75Zhw/fhyzZ8/G5ZdfXlXtJCIiIqIoJCll0x5pAhVvGWN1+bTie7okTbDnnlhaLptlWie7xyO7J+wKwDJqMKSmDWHr0dFjn9KoPqyX9fLIeGpmuC5fSl2RJYZkCY6mF0FJK8scV7q0WQ5yVuqKlFyHQpJQMmoIrIP6AAjyvjQVATptdUH5ydBKFd0yBtZuHWDrqlpCSfPzVnMmRqOaKeAjE0mS8O9//xsmkwmPP/44rFYrrr32WuzZswd33nkndDod5s+fjzZt2lRHe4mIiIgoimgCIc06xl4yxuoMoPC9HrB72SbngaovXYGxDspF9VE4eZxmLWZ/7N06wDTkEhTkFPgPyn1ljHWyJggVOh2kINducq/PrM5mGg1AiSWo871e09XvgWabdjW5CgNjjWAC43Jl8ZqMsXqGcdV2R/PGcDRvDN3+w2XHqrPL1bBOM0W3oGsJnn76aZhMJjz11FPYu3cvvvzyS9SvXx+zZs1Cw4bBPYkjIiIiorpFpCSWfa3O4Ok9AxVNsOyv5NVHXOz+ujSwUuqnBd/QYPnIGAvXrNguFclQugJq9XhsowFSJQLjoNcxdgWMwcxeXZl2uKiDXEkq95CjdLteDwnOe/dYrsnH8l5etxm8B9FE3lSoyP5vf/sbTCYT3nvvPXTr1g3vvvsukpKSqqptRERERBTlbB3awLR6E6xd25crbfUS1KgDQ38zNXsJpiCVbRdVFeQB5YJf32OMK1RK7Q5ifWRGQ+HOGAcKjMu1IdzKXVfI5caZe1taSV++lNp7v3idwE3vY6KuGrTGNNVMAQPjSy+9FFL5H2ghkJmZieHDh3scv2HDhvC1joiIiIiimkhORP4jkwGDHvpd+8t2eAlUhFG9xJLvwFgzsVZpmlhAlX2sqiAP8D3GuFzJb4UCMW/HGv3Myu2DJgMbbMbYtdxVdZVSlx+H7SUw1qx9XX5WaqP/jLHP5bSYMaYAAgbGEyZM8AiMiYiIiIiCZgouyHO0agpb+9awZ7SAo1F9mH7+FdbuHTyO045FLvvS/Ym1Cj+7Cl8TbMmydh1mL7Nu++TtIYF6CSkfJcder+NwlH5dOm45UIBe5Rnjct9rZu7WuXcLWYaklI4r15crUVcHuKryaKVBGrD7ABTVWsmaINqknqiLs1GTfwF/Qh588MHqaAcRERER1XKSLcBkVLKMkrHD3N/mPzJZMwuxizab7MqQql8o9DYGpJlMTDW5U/l1jCs0K7W3wNig3e8KeP1eRwJchwVZSi2qeIyxRyZa82BBnWGXANd8azptyb1QBb7CWLbPntESSlIiHE1U8x2pg+oE1dJbXKaJAmBNARERERFVC/XyOkExGb0GdrbOGQAAa+9uquWaVMdVVym1OtjS68tlkyuwjrHqWMuAS2Dt0anc+OUg70fdtmCXYar2McZ+Mu6uY8qXUvua2VySYe/YRrP2tFD1m5KU4LMdROXx0QkRERERVQt7xzawns6CrWPllvkUaSnIf2wKoNdD/8deL0dU0+Rb6uWA9DqPMuGgqYI2a/+LAQAxS1aV7dfJCGblJyHLZXfuXsc4UCl1kJN0hcrPck3C15js8oGxmjpzHuCBQaUnMKM6hRljIiIiIqoeOh0sV/aH0jgMS30aDICvsbfVNMZYk9nU67XBXUUm3/I2iZQm+xvktdSvGWzAG2xmOVQepdTlZqUupZ5JXLP+cOm4bcvgS+FoWA+Oxg3KzvdWgp4YByUpwVlVwHHFVAH8aSEiIiKi6Kcppa7C11GXg6snFdPrwjsrtSbIDbaUWvL8OlA75OoOjNVLL6n6r/wyTuWOt17aA9ZLe0C3/7DqHC/3ptOh8N4JgCRBv/dgJRpOdU1UZIxPnjyJu+66C926dUPfvn3x0ksvwRFgAoLz58/j0UcfRc+ePXHJJZfg73//O4qKitz7N23ahHvvvRf9+/dH9+7dce2112LJkiVVfStEREREVNWCmMA55EurJ9xSzxyt12vXT67AZFZe111WB9nBXspLxtrXms4eY5Crau3n8oGx6nslNalsuyZj7CNIBrSBta+gn+OJKQQ1PmPscDhw9913Iz09HZ999hnOnj2LJ554AiaTCVOnTvV53mOPPYasrCzMnj0bNpsNTz31FGbMmIGXXnoJALB161a0a9cOd955J9LT07F69Wo89thjiI+Px6BBg6rr9oiIiIioEoQkQQIg2ewQJiMkixXyuQtV94I+AmOUH2OsCs4CLrcUKGMcbKDvLcscZCl1ta1jrCISVZNjaSbl8tHHgLYUOybAMmAMkKkCanzGeN26dcjMzMTLL7+MDh06YNCgQZg6dSrmzZsHm48p/zMzM7F27Vr861//Qrdu3XDxxRdj+vTpWLRoEbKzswEA99xzDx566CH07NkTzZo1w6233ooBAwbgxx9/rM7bIyIiIqJKcDRr5PxCUWDt2al020VV9nrajLGp7Gu9XlsOXJFZsr3MYC0qMKu1+xx1YO6lRNq1X0gS4ArUq3yMsecma5/usFzWy3O5JheDupS6XMa4AuO4A67hTKRS4zPG27ZtQ/v27ZGenu7e1r9/f8yYMQMHDx5Eu3btPM7ZunUrkpOT0blzZ/e2fv36QZIk7NixA0OGDPH6Wvn5+cjIyKhUe+UwlKG4rhGOa9VW7KPgsJ8CYx8Fh/0UGPuIKDJKRlwOyDpYL+kC5aIGUBrVh71Fk6p7QXVgnBBXtr38GGP1nwL1Gr3eeAvgNIFqkCljddmxe33icktIKYp20jKp3PHh5iXgtgzpCwAwbNrm3qYJ6isyo7cfjpZNYG/dHLb2rcJyPardanxgnJ2djbS0NM02V5CcnZ3tNTD2do5er0dSUpI7Y1ze8uXLsWvXLjz//PMht1Wvl5GWFh/4wCClpMQFPqiOYx8Fh/0UGPsoOOynwNhHRNXMHIOSa690f2tvV7VBkNCrJt/SazObwteEWeqsLTyTqF4zm+rgMNhSam9jc9UP67ws++Se8VpSbwtQ+l0R/jLR6n3BZnet1uBfW6dD8biRwR9PdVrEAuOZM2firbfe8nvMmjVrAACSj18oX9t97RNCeN2+adMmPPnkk3j++efRunVrv23yx25XkJdXHPL5LrIsISUlDufOFUJRqnD2iCjGPgoO+ykw9lFw2E+BVWcfJSaaYTCEJ6NCRBXkawkgm933TNLly3+VcunjQGOMg6SetMpdil2ulFoq3zbXl+XbXonAWB1Y+x277KOPJLvvSXZFbGzI7SLyJ2KB8aRJkzBmzBi/x9SrVw/p6enYtWuXZrsr61s+K+ySnp7ukRm22+3Iy8vzOOfXX3/FPffcgyeffDJge4IRzg9DiiL4ATQA9lFw2E+BsY+Cw34KjH1EVLuJcrMkC1mGpCgQCbHlxgr7GGPsraw6QBAcdPZW5zk2V5ONdo2B1pR5e1nvOFDpdyDexjD7Ok79mqVcs1UrsWaPU5RG9VB8zZVwNKxXiQYSeYpYYJycnIzk5OSAx3Xv3h3vvvsucnJy3EHt+vXrkZiYiFatvJfK9OjRA+fPn8euXbvQqZNzEoaNGzdCCIGuXbu6j9u0aRPuuecePPbYYxg3blzlb4qIiIiIajejQfNt4X0TIGefg1IvDdh3uGyHJlMrlcWi3gJFbxNtlc8qB0MqN564/Ou5tqnjbG+Tb1V2Ii51YO3vWrI2m+2iJCehcPI4KAnehyjaO7apXPuIvKjxU7X1798frVu3xrRp07Bnzx6sXbsWr7/+OiZMmABD6QLrO3bswPDhw3HmzBkAQOvWrTFgwABMnz4dO3bswObNm/Hcc89h1KhR7vHJmzZtwt13341JkyZh2LBhyMrKQlZWFs6fPx+pWyUiIiKimk6WUXjnTSi4fxIAQCTEw9GyqedxmkAzwEzK3oJHh+9yYsAzc+28juprV/Y40Dheb4GxeiIsv63wIdgg21e/SIBSPw0wmzzPIaoiNX7yLZ1Oh3feeQczZszA+PHjYTabMXbsWDz44IPuY4qLi3Ho0CHN8k2vvPIKnnvuOdx2222QZRlXXXUVpk+f7t6/YMECFBcX491338W7777r3t67d2/MnTu3em6OiIiIiKKOkp7idbtUYlF9o9ohBwgUvQXBDnXG2Et4qtcD5cbiatZOdgXG5QJOD6VtE77aGMp442ADY9lH0M5lligCanxgDACNGzfG+++/73N/nz59sHfvXs225ORkvPrqqz7PefHFF/Hiiy+GrY1EREREVMdZnUkaEWOqWGmyl8mmJHUptZe4VOh1nnGut7Jpdbmye7/qgpK3SbpUpd+yHDB77UETZPs+TDP+WT0+mqveUQRERWBMRERERFTTWQdcAslmg2Vgbxh/2Vy2I8D65pK3wNPPzMwAtEszuS/kmYHVrAnsbdUW2UsptabEWQIqGBcLSfY/ptpFNbZaUxpe2THORCFgYExEREQB7dmzB++99x42b96M8+fPo3Hjxrj55psxadKkSDeNqMYQ8bEoGTPU+Y2PQFNIkmdC1OFloi3FMxpVr4EsdF4+xnsphxYpSR7btOf4mJXa3zmBBF1K7T1jLJgypghgAT8REREFtHPnTqSmpuLll1/G4sWLcffdd+OVV17Bp59+GummEdVMkrcSZi1b5wwAgL1lE499jsYNnfuaX+R96SNvGWOoX9P5r5KS6HlYRWalVgXJNtds0IHGAAcZWKuz2ZqMcYAMO1FVYMaYiIiIArrhhhs03zdt2hTbtm3DDz/8gJtvvjlCrSKqwXxNvqVSMmoISoYNAExGj332Lu1QlBAPx0X1Ef/Wx2XXcZRGtcHObq3ToXjsMECSYFz3u+d+2XMssnZccllZdMnoK2Ab0hdxS1ZBHDru9Z7Kt8PXQwGPe2ApNUUYA2MiIiIKSX5+PpKSkgIf6IdcycyQ6/zKXqe2Yz8FFu4+klRBn6S6pqQK+mSd7GdJIgmidVNneacrY6zTlZVde2mn+nVkSXKPH1ZcmV7XuOdyQbssS5DUaylL3tsu63WQvGWgPRqiOqf0+l4PM5QFw5K+LCyRZTmqs8b8fQtOTesnBsZERERUYVu3bsXy5cv9rhoRiF4vIy0tPiztSUmJC8t1ajv2U2Dh6iOb2eies0pn0Lurl9WBZrA//yWlgaZk0LtnvtYbDR6TVRtjDHCNVk5INENX7voWg04zThkAjCYD4tPi4UiMhWvhU13pcQA0AbOrvZYAqxvr9GXnxyd4tsNFuRAHa+nXMYlmd38lpcRCDtPfhkji71twako/MTAmIiKqw2bOnIm33nrL7zFr1qxBw4YN3d/v378f9913Hx588EH07ds35Ne22xXk5RWHfD7gzDSkpMTh3LlCKEoF11qtQ9hPgYW7j4wWGwylX9sdAq7cqFDKppbKySkI6lqxwnmOIknuCYLsioLyo4wtVof7NfPzSuAod/2Y0nYIURYcW20O5OcUQFdkRYzr2pDc11ZE2aREOTkFkGUJ8S0aw3HoBJTkRMjn8zza61Cdk19o8WiHi1xghbn062K7gKug/HxeCURMcH1TE/H3LTjV2U+JiWYYDN7G5ZdhYExERFSHTZo0CWPGjPF7TL169dxfHzhwALfddhvGjRuHu+++u9KvH64PQ4oi+AE0COynwMLVR5qZldVjdlEWlAb9Oq7D1JNVSZ5jjAUAy8DeMOzYA1uzi5xRrZqXilVR2g5Z8rGmsKok3NVe/fD+KIqPhz0lGXEff+N5UdXrCOHnPlUl14r63vydE0X4+xacmtJPDIyJiIjqsOTkZCQnJwd17P79+3Hbbbfh2muvxcMPP1y1DSOKdr7WBQ6Jlwm3vI3LlCRYL+sF62W9Arep/Db1msKa8cZexjIb9LB3bQ+Rfa7sHEmCVDoWWpRfB9kX9esYDGVfc/ItigAGxkRERBTQ/v37ceutt+Kyyy7DHXfcgaysLACATqdDampqhFtHVAOps6aVnVyoNC7WLmnkbVbqCjTKval0vWN1MKoLcobo8ks8uSYJC3a5Jtl7MC4CLQdFVAUYGBMREVFAy5cvR25uLhYtWoRFixa5tzdu3BgrV66MYMuIaibha13gkGJk16zUAYLHgNWoXg5wtUfno5TaX3vLr3eseNnuL7BWv47m9RkYU/VjYExEREQBPfjgg3jwwQcj3Qyi6OEzOAwhMnbFs7I6Y+xtwHCAyNg91bR6Y+k3vrK3/trr6x6DzBhrS8PVQbL/SZKIqgIfxxARERERhZsmUPQ/ZjfwtVxfqAJfb+OWA11beImMXV+q26gPJWPsfR1k4e98H1liwYwxRQB/6oiIiIiIws5H0GgIoWDTdb565l5vGeNAY5m97i4dYyz7KKX2e70gysX9TDwmVFnikF6fKIwYGBMRERERhZt68i11NtRk8HJwAO7AWPHcpnnNED7aCy/jlzUZ2+BKqYWvWbj9jjH2MXs1M8YUAfypIyIiIiIKN8l7oCeMxgpfSngJjL3OdB3K7NeKo/RcH+N9/ZZSe39tTduCXa5J9vE1UTXh5FtEREREROGmGX+rCjQNoWSMS6+lKqV2tGwKbN8De7OLoD96svS4igeUkkPxPDfY6/gspQ5+VurC266DMJkgFxUFdw5RFeHjGCIiIiKicPOZMQ69lFpSZYwdFzVAwT23oPimUWXXDhjQutqkGqtsd3ieqxkj7Gcd4mCC4QBtUi5qAJGWzLWLKeKYMSYiIiIiCjf1+NswBcaaMcZCQKQklTsuyMm31Ks6ua6pC3JcsOZ6Qcy8Hey1ZE64RZHFRzNERERERGEmfIyftbdt4fy3TfPgL+YjMPZQgRJkV4ZWsnsZYxzsNYNYx9jrWGhvOOEWRVhU/ASePHkSd911F7p164a+ffvipZdegsPh8HvO+fPn8eijj6Jnz5645JJL8Pe//x1F6rELKlu2bEHHjh1x3XXXVUXziYiIiKiu8bH8kNIwHQX3T0Lx9cODvpS3ybe8LmlUkXJkVyDqbfKtYDO+Pkupva9p7FcoE4cRhVGND4wdDgfuvvtu2Gw2fPbZZ3jxxRfxzTff4K233vJ73mOPPYYDBw5g9uzZ+N///offfvsNM2bM8DiuoKAAf/vb33DppZdW0R0QERERUZ2jLp+WtQGkSIyvWBBber6kCBTdMAKWQX2c1/BxXHDtKw2sSyffCmWMsaZcXHOPobSJgTFFVo0PjNetW4fMzEy8/PLL6NChAwYNGoSpU6di3rx5sNlsXs/JzMzE2rVr8a9//QvdunXDxRdfjOnTp2PRokXIzs7WHPvss89i+PDh6NGjR3XcDhERERHVBb4ysKEEgKqMsaNtC1j79Qz8mgGI0sBYclVh+mpjCBljEcp4ZXgpDSeqRjV+8q1t27ahffv2SE9Pd2/r378/ZsyYgYMHD6Jdu3Ye52zduhXJycno3Lmze1u/fv0gSRJ27NiBIUOGAACWLl2Kffv24fnnn8e7774blvbKYSgDcV0jHNeqrdhHwWE/BcY+Cg77KTD2ERGpaTOwPrKxwfJWSu3tNQMGoaX7hYA9owWMW/+EvWUz5zZ1hlvykf31cTlNGz2+DvKGGRdThNX4wDg7OxtpaWmaba4gOTs722tg7O0cvV6PpKQkd8b41KlT+Pe//41Zs2bBGMJC697o9TLS0ryUtYQoJSUubNeqrdhHwWE/BcY+Cg77KTD2EREB0I4BloPMwPriCjQd/gNjmIL/TGu54jI4WjWDvVVT5wajASUjBkFJjIfOtS4yEOIYYx/jjf0QZlNQxxFVlYgFxjNnzgw4TnjNmjUAAMnHL6Sv7b72CSHc26dNm4bJkycjIyMj2CYHZLcryMsrrvR1ZFlCSkoczp0rhKLw8Zk37KPgsJ8CYx8Fh/0UWHX2UWKiGQYDlzYhqtF8zEotQkgZK4nx0J2A93HFAIrGXw3Djr2wdfZMGKkJ9Usb9LBntNTst3XvCADQHTulOieEwFj1UCBwFrv0uPg4FN04EiI5IajjicItYoHxpEmTMGbMGL/H1KtXD+np6di1a5dmuyvrWz4r7JKenu4xlthutyMvL899zq+//orNmzfj5ZdfBgAoigIhBDp27Ii5c+eiV69eId1XOD8MKYrgB9AA2EfBYT8Fxj4KDvspMPYREQHwPcY4hGWJLFdeBhj0sF7a3et+R6tmcLRqVuHrBiWUMcZ6H9nyABwVWcKKKMwiFhgnJycjOTk54HHdu3fHu+++i5ycHHdQu379eiQmJqJVq1Zez+nRowfOnz+PXbt2oVOnTgCAjRs3QgiBrl27AgAWLVqkOeeTTz7B77//jtdeew1NmzatxJ0RERERUV2nHmNcflbqCl8rLhYlVw8OR7OCVNZGKcC4Zjcfy1OFVDpOFAE1flbq/v37o3Xr1pg2bRr27NmDtWvX4vXXX8eECRNgMBgAADt27MDw4cNx5swZAEDr1q0xYMAATJ8+HTt27MDmzZvx3HPPYdSoUe7xyRkZGZr/paWlwWg0IiMjA2azOWL3S0RERES1gGaMsY+JqWoqdRyfewEAoMTF+j1FHfwLvSr3Fg33S4QoCIx1Oh3eeecdyLKM8ePH4/HHH8e1116LBx980H1McXExDh06pFm+6ZVXXkGrVq1w22234a677kKvXr3wzDPPROIWiIiIiKiu8bVkUTTMXK9qr1LfWbFpb9866HMQYik1USTV+FmpAaBx48Z4//33fe7v06cP9u7dq9mWnJyMV199NejXePDBBzXBNhERERFRWPhc0zhCRIB5EFRtLLl6MPR7D8LWs1PQ52gC45pwv0RBiIrAmIiIiIgoqqjjQV+zN0cBkRAHW+9ugQ9UT76lmZW6xheoEgGIglJqIiIiIqKoUxPLp0vbFLA1oQTy6nvUjDGuIfdOFAADYyIiIiKiMFOvVyyibQIqX9luv+eoZuFmKTVFoSj7LSUiIiIiigKhBJdVTElPBQA4Lqrv/8BQlpRSZ4Z1nHyLog/HGBMRERERhVsNHFdsGXwpRFI8bF3aBTgyhPb6nHyLeTiKDgyMiYiIiIjCTCQlOP81GmrOWr4mI6x9ewY8TISS5dX5KKVmxpiiBANjIiIiIqIwE3GxKLj7ZohYM/SHj0e6ORUTQiAvDIayb9STb9WQbDlRIAyMiYiIiIiqgEhNdn4RbcGhLoQMt7EsMFYv1xR19051Vg2p6yAiIiIiqqWiLTgMJWNsVGeMdb4PJKqhGBgTEREREVUlISLdggoJaXkpdSl1tD0IIAIDYyIiIiIiUguhlFoYOK6YohsDYyIiIiIiKhNSxlgVGHMmaopCnHyLiIiIiIjKhDLGuNxM1AV33QwgukrIqW5jYExEREREVJXqxBjjsrBCSFLZjNxEUYKl1EREREREVCakdYw5xpiiGwNjIiIiqpCjR4+iR48e6NOnT6SbQkRVIZQxwgyMKcoxMCYiIqKg2e12PP744+jVq1ekm0JEVSWEwLb8GGOiaMPAmIiIiIL29ttvo0mTJhg5cmSkm0JEVSWUwDg+tuwbzkpNUYiTbxEREVFQtmzZgoULF2LhwoX46aefwnJNuZIfoF3nV/Y6tR37KbCq7CNJlU2Nhv8Gkmod4/LtLd9PRQ9MglRQBEkVGMuyDBEF91lV+PsWnJrWT1ERGJ88eRIzZszApk2bEBsbi7Fjx+LRRx+FTqfzec758+fx3HPPYdWqVdDpdBg2bBj+/ve/Iza27JdWURR8+OGH+PLLL3Hy5EnUr18ft99+O2699dbquC0iIqKoUVBQgGnTpuH5559HUlJSWK6p18tIS4sPy7VSUuLCcp3ajv0UWFX0kejdEbYDB6Hr2i5sP/NVSbkQC2vp177a6+6n0v1CEbC49qXFQ0rgzxp/34JTU/qpxgfGDocDd999N9LT0/HZZ5/h7NmzeOKJJ2AymTB16lSf5z322GPIysrC7NmzYbPZ8NRTT2HGjBl46aWX3Mf8+9//xi+//IInn3wSbdq0wblz51BcXFwdt0VERFQjzJw5E2+99ZbfY9asWYM33ngDl19+OS677LKwvbbdriAvr3Lvu7IsISUlDufOFUJRomtJnOrEfgqsyvto5BDnvzkF4b92mMn5JTCXfp1Trr3++skV3uSeLwKsdffnjL9vwanOfkpMNMNg8J1UBaIgMF63bh0yMzMxe/ZspKeno0OHDpg6dSpee+013HfffTAYDB7nZGZmYu3atfj666/RuXNnAMD06dNx9913Y9q0aUhPT0dmZiY+/fRTLFq0CK1atQIANG3atFrvjYiIKNImTZqEMWPG+D2mXr162LRpE06fPo1PPvkEACCEgKIo6NixI/7zn/9g9OjRIb1+uD4MKYrgB9AgsJ8CYx8BUN2+r77w10+KkIC63ofgz1Kwako/1fjAeNu2bWjfvj3S09Pd2/r3748ZM2bg4MGDaNeuncc5W7duRXJysjsoBoB+/fpBkiTs2LEDQ4YMwcqVK9GkSROsXLkSU6ZMgSRJGDBgAB577DHEx4de4hKOGvmaVm9fE7GPgsN+Cox9FBz2U2DR2kfJyclITk4OeNyHH34Im83m/v6nn37CrFmzMH/+fDRq1KgKW0hE1a6ys0pH159BIgBREBhnZ2cjLS1Ns80VJGdnZ3sNjL2do9frkZSUhOzsbADAsWPHcOLECfz44494+eWXYbVa8fzzz+Nvf/tbwJIyX8I5VgqoOfX2NRn7KDjsp8DYR8FhPwVWW/uoZcuWmu937twJWZaRkZERoRYRUZWp7AM+mQvfUPSJWGAc7JgmAJB8PLXytd3XPiGEe7sQAjabDf/5z3/QvHlzAMCMGTMwceJEZGdnazLUwQrHWCmA4xKCwT4KDvspMPZRcNhPgdW0sVJERKFS6qfB3rIp7C2bhHYBZowpCkUsMA52TFN6ejp27dql2e7K+pbPCrukp6e7j3Gx2+3Iy8tzn5Oeng69Xu8OigGgdevWAJyzYIcSGAPhGyvluhY/gPrHPgoO+ykw9lFw2E+B1ZU+uu6663DddddFuhlEVBVkGcU3jQr9fIkZY4o+EQuMgx3T1L17d7z77rvIyclxB7Xr169HYmKie9Ks8nr06IHz589j165d6NSpEwBg48aNEEKga9eu7mPsdjuOHTvmnnTr0KFDAICLLrqosrdHRERERFQ3MWNMUajGP87p378/WrdujWnTpmHPnj1Yu3YtXn/9dUyYMME9I/WOHTswfPhwnDlzBoAz8ztgwABMnz4dO3bswObNm/Hcc89h1KhR7kzwZZddhvbt2+Pvf/879uzZgx07duC5557DsGHDQs4WExERERHVeRxjTFGoxv/U6nQ6vPPOO5BlGePHj8fjjz+Oa6+9Fg8++KD7mOLiYhw6dEgzW+Yrr7yCVq1a4bbbbsNdd92FXr164ZlnntFc97333kNCQgJuvvlm3HfffejatSteeOGFar0/IiIiIqLawNGwHkSMMdLNIAqJJISo/QOhqonN5sD580WVvo4sS0hLi0dOTkGdGKcWCvZRcNhPgbGPgsN+Cqw6+yg5ObZWTL4VjvdN/mwGh/0UGPsoOH77SQjn/+p4xpg/S8Gpae+bNX65JiIiIiIiigKSVPk1kIkipG4/ziEiIiIiIqI6j4ExERERERER1WkMjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jRJCCEi3YjaQlEEHA4lLNcyGHSw2RxhuVZtxT4KDvspMPZRcNhPgVVXH+l0MmRZqvLXqWrhet/kz2Zw2E+BsY+Cw34KjH0UnJr0vsnAmIiIiIiIiOo0llITERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BcQ0zf/58DBkyBF26dMG4ceOwY8eOSDep2rz77ru4/vrr0aNHD/Tt2xcPPPAADh8+rDnGYrHgmWeeQZ8+fdCjRw88+OCDyMnJ0Rxz8uRJ3HXXXejWrRv69u2Ll156CQ6HoxrvpPo8/fTTaNeuHebNm+fexj5yOn36NB599FH07t0b3bt3x3XXXYfMzEz3fvYTUFBQgBkzZmDAgAHo1q0bRo0ahYULF7r318U++u2333DPPfegf//+aNeuHVatWqXZH64+2bRpE8aOHYvOnTvjyiuv1PQ7VQzfN/m+WRF83/SN75uB8X3TU6163xRUYyxZskR06tRJfPXVV2L//v1i+vTp4pJLLhE5OTmRblq1+Mtf/iK+/vprsW/fPrF7925x5513isGDB4vi4mL3Mf/85z/FoEGDxPr168Uff/whxo0bJ2655Rb3frvdLkaNGiVuv/128eeff4rVq1eLPn36iNdffz0St1SlVq5cKcaMGSP69+8v5s6d697OPhLi/PnzYvDgweJvf/ub2L59uzh69KhYvXq1OHXqlPsY9pMQTz31lBg2bJj49ddfxdGjR8W8efNE+/btxaZNm4QQdbOPVq9eLV577TWxYsUKkZGRIVauXKnZH44+OXr0qOjWrZt44YUX/p+9+46Torz/AP6Z2XJtr9/RmxzSy4EFRYqFIBIbaDBG1KjETjRRiQUV7F1jiyZGfkRQYxJBjUosiCAgNg6kw9Hr9X5b5/n9sXe7M7uz7W7vdvfu8369EpfZmdlnn9u72e98n+f7iN27d4u33npLDBkyRKxZs6bd3mdHwesmr5uR4HUzMF43w8Prpr+OdN1kYBxHLr30UvHQQw95/u1yucT48ePFG2+8EcNWxU55ebkYOHCg+PHHH4UQQtTU1Ihhw4aJ5cuXe/bZvXu3GDhwoNi0aZMQwv3LOWTIEFFaWurZ5+233xYnn3yysNvt7fsG2lBpaamYOHGi2L59uzjrrLM8F3j2kdvTTz8tLr/88oDPs5/cfvnLX4rXXntNs23KlCnijTfeYB8J4XeBj1afPPXUU+L888/XvNbtt98urr/++rZ8Ox0Sr5tavG4GxutmcLxuhofXzeAS/brJodRxwm63Y8uWLTjjjDM822RZxrhx41BUVBS7hsVQbW0tACAzMxMAsHnzZjgcDk0fFRQUoEePHp4+KioqwuDBg5GXl+fZZ/z48aipqcGePXvar/Ft7J577sGVV16JQYMGabazj9xWrFiB4cOHY86cOTj99NMxY8YMfPDBB57n2U9uo0ePxpdffonjx49DCIHVq1ejpKQE48aNYx/piFafFBUVac7RvE9n/VvfUrxu+uN1MzBeN4PjdTM8vG5GJtGumwyM40RlZSVcLpfmQwEAubm5KC0tjVGrYkcIgccffxynnnoqCgoKAABlZWVITk6GxWLR7Jubm4uysjLPPrm5uZrnm/u0eZ9Et3jxYjQ0NODaa6/1e4595Hbw4EG8/fbbKCgowJtvvolLLrkE9913H7788ksA7Kdm8+bNQ58+fTBx4kQMHz4ct956Kx5//HEMGTKEfaQjWn0SaJ+qqio4HI62an6Hw+umFq+bgfG6GRqvm+HhdTMyiXbdNEbtTNQmhBCQJCnWzWh3Dz30EHbu3Il33nlHs12vL4QQIfcJtj2RFBcX49VXX8V7770HWda/r9XZ+whwv98RI0bg9ttvBwAMGTIEmzdvxjvvvINzzjkHAPsJcH9Z3LZtG/7617+ia9euWLduHe69915069YNAPtIT7T6xHcf33NQy/G6yeumGq+b4eF1Mzy8bkYuka6bzBjHiezsbBgMBr+7RRUVFX53wzu6hx9+GCtWrMCiRYvQtWtXz/a8vDw0Njairq5Os7+6j/Ly8vz6sPnfvneaEtHGjRtRUVGBKVOmYOjQoRg6dCgOHz6MRx99FFOnTmUfNcnLy0P//v012woKCnD06FHP8529n6xWK55//nncfffdmDRpEgYPHoxrrrkGkyZNwqJFi9hHOqLVJ3r7lJeXIysrCyaTqa2a3+HwuunF62ZgvG6Gh9fN0HjdjFyiXTcZGMcJs9mMYcOGYe3atZ5tiqJg3bp1KCwsjF3D2pEQAg899BA+++wzLFq0CL1799Y8P3z4cJhMJk0f7d27F0eOHPH0UWFhIbZv364pA7927VpkZGT4/cFPRJMnT8aHH36IZcuWef7XpUsXXH/99XjttdfYR01Gjx6N/fv3a7bt27cP3bt3B8DPEgA4nU44HA4YDAbNdlmWoSgK+0hHtPqksLAQa9as0Zx77dq1neZvfbTwusnrZjh43QwPr5uh8boZuYS7bka1lBe1SvOyE++//77YvXu3uP/++zvVshMPPvigOOmkk8T69etFSUmJ53++y06ceeaZYt26deLnn38Wl112mW7J92uvvVZs27ZNrFq1Spx22mni+eefj8E7ah/q6ppCsI+EEKKoqEgMGTJEvP7662Lfvn3i/fffF8OHDxdffvmlZx/2kxCzZs0SF154oWfZiXfffVcMHTpUfPDBB0KIztlHdXV1YuvWrWLr1q1i4MCB4h//+IfYunWrKCkpEUJEp08OHDggRo4cKZ588kmxe/dusXjxYjF06FAu19QCvG7yutkSvG7643UzPLxu+utI100GxnHmrbfeEmeeeaYYNmyYuPTSS8XGjRtj3aR2M3DgQN3//ec///HsY7Vaxfz588Upp5wiRo0aJW699VZNeXchhDh06JCYPXu2GDlypBg7dqx44oknhNPpbO+30258L/DsI7fPP/9c/PKXvxTDhw8X06ZNE0uXLtU8z34SoqSkRPzpT38S48ePFyNHjhTnnXeeWLx4sef5zthH3377re7foRdffFEIEb0+WbdunbjooovEsGHDxDnnnCPef//9dnuPHQ2vm7xuRorXTX28bobG66a/jnTdlIRgxQ8iIiIiIiLqvDjHmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBNRzHzyySd4//33Y90MIiKihMDrJlHbYWBMRDGzfPlyLF26NNbNICIiSgi8bhK1HQbGRERERERE1KlJQggR60YQUedz9913+931vvXWWzFnzpwYtYiIiCh+8bpJ1LaMsW4AEXVON998M44cOYLa2lo8+OCDAIBu3brFuFVERETxiddNorbFwJiIYqJPnz7IysqCEAKFhYWxbg4REVFc43WTqG1xjjERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIooZk8kEm80W62YQERElBF43idoOA2MiipkTTjgBO3fuxBdffIGff/4Zx48fj3WTiIiI4havm0Rth+sYE1HMVFRU4P7778f333+P6upqrsdIREQUBK+bRG2HgTERERERERF1ahxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsCYiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqxlg3oCNRFAGXS4nKuYxGGU5ndM7VUbGPwsN+Co19FB72U2jt1UcGgwxZltr8ddpatK6b/GyGh/0UGvsoPOyn0NhH4Ymn6yYD4yhyuRRUVTW0+jyyLCE314KamkYoiohCyzoe9lF42E+hsY/Cw34KrT37KCsrFbJsaNPXaA/RuG7ysxke9lNo7KPwsJ9CYx+FJ96umxxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIqNVsJZvQeHhtrJtB1CLGWDeAiIiIiIgSX+kXvwcA9Lz8K0iSFOPWEEWGGWMiIiIiIooeocS6BUQRY2BMRERERETRw8CYEhADYyIiIiIiiiIGxpR4GBgTEREREVHUCGaMKQExMCYiIiIiougRItYtIIoYA2MiIiIiIooe4Yp1C4gixsCYiIiIiIiip4UZY0fVHrgaK6LcGKLwcB1jIiIiIiKKmpbMMXbZqnH8k2sBAL1+szLKLSIKjRljIiIiapEHH3wQgwYNwuLFi2PdFCKKMU0w3ILAWGGmmGIsoQLjJUuW4Oyzz8aIESMwc+ZMbNq0Kej+n376KaZOnYoRI0bgggsuwKpVq/z22b17N2644QaMGTMGY8aMwa9//WtUVPAXk4iIKJivvvoKRUVF6NKlS6ybQkTxwCcwrtu5DHU7l4Z/vCRFv01EEUiYwPiTTz7B448/jltuuQVLly7FoEGDMHv27IBB7IYNG3DHHXfg0ksvxbJlyzB58mTcfPPNKC4u9uxz4MABXHHFFRgwYADefvttLF26FNdddx1MJlN7vS0iIqKEU1ZWhvnz5+Opp57iNZOI3BRvwS0BBVU/vICqH/4cwQkYGFNsJcwc44ULF+Kyyy7DJZdcAgBYsGABVq5c6QlmfS1atAgTJ07E7NmzAQC33XYb1qxZgyVLluCBBx4AADz//POYOHEi7rrrLs9xffv2bYd3Q0RElLjuueceXHnllRg0aFCrzyXLrfsy3Hx8a8/T0bGfQmMfhSdQPymSN2Osfirc/lTvl+g/A36WwhNv/ZQQgbHdbseWLVtw0003ebbJsoxx48ahqKhI95iioiK/gHn8+PFYuXIlAEBRFKxcuRKzZ8/GNddcg+3bt6Nv37645ZZbMGHChBa3NRo/2Hj7kMQj9lF42E+hsY/Cw34KrbP00eLFi9HQ0IBrr7221ecyGmXk5lqi0CogOzstKufp6NhPobGPwuPbT06rgkNNj7Myk3Gk6XG4v+NWOQ1HIzwm3vGzFJ546aeECIwrKyvhcrmQl5en2Z6bm4v9+/frHlNWVobc3Fy//UtLSwEA5eXlaGhowBtvvIHbb78dc+fOxZdffokbbrgB//73vzF06NCI2xnNCzwQPx+SeMY+Cg/7KTT2UXjYT6F15D4qLi7Gq6++ivfeew+y3PrZWE6ngpqaxladQ5YlZGenobKyHorSsiViOgP2U2jso/AE6ieXtcbzuLKy1vO4vLwurPM6qr37hXtMvOJnKTzt2U8ZGSkwmQxB90mIwDgQIQSkIBP19Z5r3qYo7uEe55xzDq6++moAwJAhQ/Ddd9/hn//8JxYsWBBxe6JxgQf4yxQO9lF42E+hsY/Cw34KLd4u8G1h48aNqKiowJQpUzzbXC4XHn30USxevBjLly+P+JzR6itFEfxshoH9FBr7KDy+/aS4nN7HTqdmv7DO5/LOUe4o/c/PUnjipZ8SIjDOzs6GwWBAWVmZZntFRYVfFrlZXl6e3/7l5eWe/bOzs2E0GtG/f3/NPgUFBTh8+HCL2xrNH2q8fEjiGfsoPOyn0NhH4WE/hdaR+2jy5MkYPny4Ztt1112HGTNmYPr06TFqFRHFAyFUxbdcdtX24IksveOJYiEhqlKbzWYMGzYMa9eu9WxTFAXr1q1DYWGh7jGFhYVYs2aNZtvatWs9+zef03co9r59+9C9e/eotp+IiKgjyMjIwMCBAzX/M5lMyM/PR79+/WLdPCKKAVvpZtTv/UxblVrxBsZhr2ncgrWPiaIpIQJjALjmmmvw7rvvYunSpSguLsb8+fNhtVo9d6jnzp2LZ5991rP/VVddhVWrVuHNN99EcXExXnrpJWzevBlXXHGFZ59rr70WH3/8Mf79739j//79ePPNN7F+/Xpcdtll7f7+iIiIiIgSTennt6Jy3WNwNZZ7N7oc3sfhBrwKA2OKrYQYSg0A06ZNQ0VFBV588UWUlpZiyJAheOONN5CTkwMAOHr0qKYQyJgxY/Dss8/ihRdewHPPPYd+/frhlVdeQUFBgWefqVOnoqamBq+99hoefvhhFBQU4LXXXmtR4S0iIqLOaMWKFbFuAhHFAcVW5XkslMgDY8GMMcVYwgTGADBr1izMmjVL97m33nrLb9t5552H8847L+g5Z86ciZkzZ0alfUREREREnZFwWr2PVRljAQVhLWLHOcYUYwkzlJqIiIiIiOKTJjBuwRxjTfEu0TELGFJ8S6iMMVFn4bJWwlGxC47qvXBZKyHsdYBsgGRMgTGtG4yZfWHOHQLZmBzrphIRERFBcdk8j9VVqVtUfEu4AIlhCrUvfuKI4oSjag8a9q9A46E1cFbvDX2AZEBSl5FI6Xs2UvucBdlsaftGEhEREelQZ4yhmmMslDCHSPsGxgxTqJ3xE0cUQ0IoaDy4CnU73oe9dJNnuzG9N8y5g2HKLoAhJR+y2QIhFAh7HZz1x+Co3AVb6c+wHd8A2/ENqP7pL0gbcD7Sh14OQ3J2DN8RERERdUbC2eh93IKq1EKz3JMLkiFqTSMKCwNjohgQQsB65FvUbHwDjqpiAIDR0hNpA85Hcq8JMGX0CuMcCuylP6N+z//QsO9z1G1/D/XFHyNjxG9hGTgdksxfbyIiImofwqkaSh1BVer64k9hSMnRyRgTtS9+cyZqZ876Y6j6/s+wHlkHADDnDkXGiKuR1P0USFL49fAkSUZSl1FI6jIKmaOuQ+2WJajbtQzVP72Chr2fI+eM+5GU1aet3gYRERGRhwgwx1ggcGAsXDZUrn8SAJA74WHv9nCHXxNFEQNjonYihEDdzvdRU/Q3CJcVBksPZI25Fck9T4ckhbWQQUCGlFxknfx7pA24AJXfPwd76c8o+fR3yD71D8jNvTRK74CIiIhIX6A5xsEyxprh08wYU4wxMCZqBy5rFSq/fQLWI98CshHpw65ExrBZkIxJUX0dU9YJyD/nBdRuWYKazf+HinWPw2g/gqTBvwXCW0WQiIiIKGLCpb+OcfCh1KplmYR2jjFRe2NgTNTGbKU/o/yb+VAay2HM6I2cMx6AOfvENns9STYgY8RVMHcZgfLV96Pkx0VILd2P7NPvg2QwtdnrEhERUeclFKf3sXootRIkMFYHwMwYU4yFP6GRiCJWv+dTlH75ByiN5Ujtfx66TP1rmwbFasldR6PbuX+BObMnGg6sRPnqB7TrChIRERFFiyqw1RbfChzkCqE/lJoZY4oFBsZEbUAoLlT99Coqv30SEAqyTvkDck77E2RjSru2w5TZBwN/9XcYM/rAemQdg2MiIiJqE5pgNtyq1Jpj1NljBsbU/hgYE0WZcDlQsfYR1G1/D5I5HXlnPQPLiRfFrD2mtHx0/cULMGb0hfXIt6j49gltgQsiIiKiVlNlfANkgn2p99MEw/yeQjHAwJgoihRnI8pW3YfGA1/BkNYNXab8BcndxsS6WTCk5CL/nOdgSOuGxv0rUF3011g3iYiIiDoSdTCrGQodJMgNGEAL/32J2hgDY6IoUey1KFtxF2xHv4Mxsx+6/OJlmDJ6xbpZHoaUXOSd+SRkcwbqtr2Lul0fxLpJRERE1EFo5giHmf0VAYpvCcHAmNofA2OiKFDstShdcQfsZZthzh2KLpNfhCE1L9bN8mPK7IvcSY8CshFVP74EW+mWWDeJiIiIOgIRYL5wsKrUmiWanOonotcuojAxMCZqJcVeh9Kv5sJRsRPmLqOQd/YzkJMyYt2sgJLyRyDrpN8DihPl3zwIV2N5rJtEREREcUYozsgyt4o646v/2P81AhXsik5gLIRA9aaFsB0visr5qGNjYEzUCoqjAWUr74ajfBvM+SOQN+lxyKbUWDcrpLQBFyC1/zQojWUo/2aBz11aIiIi6swUZyMOvzsZ5avuC/sYoc7yBiqq5XeQKoB2OdRPhP26wdhLN6F28yKUfnl7VM5HHRsDY6IWUpxWlK282zN8Ou/MJxMiKAYASZKQfcptMOUMdF80trwd6yYRERFRnHDWHAAAWA+vDf+gQEOpg1WY1hTfUt2kj1JVasVeF5XzUOfAwJioBYTiRMU382Ev3QRTzmDknfVUwgTFzSRDEnLG3Q/JkIyazf8HW9nWWDeJiIiI4kGwecEBj1EFueqlm4JkfwMOpSaKgYQKjJcsWYKzzz4bI0aMwMyZM7Fp06ag+3/66aeYOnUqRowYgQsuuACrVq0KuO/vfvc7DBo0CF999VW0m00djBACleufhvXItzBm9EX+WU9BNlti3awWMWX0RuZJtwJCQeXaR6E4GmLdJCIiIoqxYPOCtfupg171UOoAw6r9TqAKpl3ejHG4r08UTQkTGH/yySd4/PHHccstt2Dp0qUYNGgQZs+ejYqKCt39N2zYgDvuuAOXXnopli1bhsmTJ+Pmm29GcXGx376LFy9mWXgKW3XRX9Gw938wpOYj76yn47rQVjjSCn6J5J5nwFl3GNUbXot1c4iIiCjWggWzmv0CFNnSrGkcpPiWpip1+HOMNZnm4HuGuR9RAgXGCxcuxGWXXYZLLrkEAwYMwIIFC5CUlISlS5fq7r9o0SJMnDgRs2fPRkFBAW677TYMHToUS5Ys0ey3e/du/PWvf8Vjjz3WHm+DElzttvdQt+0dyOYM5J31NIxpXWLdpFaTJAnZY++CnJSJ+t0fwlYSfCQGERERdXBhZ2xVgad6KLVm7nCQcykBinQFSVgpthocfvccVH7/fJhtJAqPMdYNCIfdbseWLVtw0003ebbJsoxx48ahqKhI95iioiJcd911mm3jx4/HypUrNee94447cM8996BLl+gEOLIsRe0c0ThXRxWLPqrf+zmqN7wKyZCE/LMeR1L2Ce322i0Vbj/JqdnIPnkOytc8gsrvnkH3X74ByZDUHk2MOf6+hYf9FBr7iIg6irCHMgfKEmuGUkc3Y2wr2QgAqN/1AbJP+UOI9jFjTOFLiMC4srISLpcLeXl5mu25ubnYv3+/7jFlZWXIzc3127+0tNTz7+effx4nnngizjvvvKi002iUkZsbvbmm2dlpUTtXR9VefVR3eAMOfvskIBlwwi+fROYJp7XL60ZLOP2Uk3Mx7IdWoHb/WjiK30P3028KeUxHwt+38LCfQmMfEVHCC3ModcD1ijWPg5xLU3xLXZU6cEArGcxhtY0oUgkRGAcihIAkBb4zr/dc87Zvv/0Wy5cvxwcffBC19jidCmpqGlt9HlmWkJ2dhsrKeigK73Tpac8+ctQewvHld0C4HMg+9Q44M0ajvDwxyv9H2k/po3+PukM/4dj3CyF1mQBTVr+2b2SM8fctPOyn0NqzjzIyUmAyGdr0NYio89KuKRxsxxYEw9oXUh2uPibI39CIAmNeryh8CREYZ2dnw2AwoKysTLO9oqLCL4vcLC8vz2//8vJyz/7ff/89jh49itNO02b+br75ZowbNw5///vfW9TWaH4ZUhTBL6AhtHUfKbYalK64G4qtGpbBM5E24IKE/JmE209yajdkjLwG1Rv+goofXkTeWc8EvfnUkfD3LTzsp9DYR0SU6ETYSyfpV59WF7UNNiw70FDqYMdIsinMtkVSpIsoQYpvmc1mDBs2DGvXehcZVxQF69atQ2Fhoe4xhYWFWLNmjWbb2rVrPfv/5je/wYcffohly5Z5/gcA8+bNw4IFC9ribVCCES4Hylc/AGftQST3PAOZhTfEukntwjJwBowZfWA79iOsh76JdXOIiIiovYUbGIczlDpY1jbIUOra7f+GvWxbeO0IeH5n6H2ImiREYAwA11xzDd59910sXboUxcXFmD9/PqxWK6ZPnw4AmDt3Lp599lnP/ldddRVWrVqFN998E8XFxXjppZewefNmXHHFFQDc840HDhyo+R8A9OjRA7169Wr/N0hxRQiByu+fha2kCKbsE5FzxjxIcucYtigZTMg6aQ4AoOqnVyCcthi3iIiIOgLr0R9Q+f0LzOIlgPCHUgcoshVmhelAGWN7xXZU//QySj7TqXcSRmEw2/EiOOuOQAgGxhS+hBhKDQDTpk1DRUUFXnzxRZSWlmLIkCF44403kJOTAwA4evQoZNkb548ZMwbPPvssXnjhBTz33HPo168fXnnlFRQUFMTqLVACqd36Nhr2LIchJQ95kx6DbEyJdZPaVXL3U5Dc8wxYD69B7fZ/ImP4VbFuEhERJbiyr+4E4L7GpPQ6I8atoWDUQariaIC9bAuSup3sN70qrCxxuMs1qZd7stcGbpvPUlCSpM3zuayVKP3ydgBA1ql3Bn5tIh8JExgDwKxZszBr1izd59566y2/beedd15EFad37NjR4rZRx9FwYCVqNv4NkjEZuZMehyE1P9ZNiomsMTfj2NHvULtlCdL6n9dp+4GIiKJLOK3RP6cQaNjzKYTTCsugGVE/f2ejDoxrt76N2i2LYRk8E1ljbvbd0fsw4NrFQYZSBzpGCjJKT/2aTiskU6r2aUeD9x8cSk0RSJih1ETtwV62DRXrHgMgIWfcAzDnnBjrJsWMMb0n0gdfCuGyoebn/4t1c4iIqKOQov/101lzAJXrn0LVjy9CcbZ+hZBOTzWU2na8CABQt/09nR3VmWH9LHHQ4lsBMsuSHCR3p84su+z+z6uOFQyMKQIMjImaOOtLULbqPsBlR+aYm5HSa1ysmxRz6UN/A8mcjvo9n8JRrb9mOBERUUTaYLUDoQ6GGQy1mjr7KydlBtkx0HJN6sfBMsaBlngK/BkJmY3WnNP7WRDB2kEEBsZEAADF2YjyVfdBsVYgreB8WAZdGusmxQXZnI6MYbMAoaB6499i3RwiIuoApGDDZFtIBFwPl1omvDnCIqyh1EHmGGuWdVI9DnZzI+C85uZN3nYoDt4wofAxMKZOTwgFleseh6NyF5K6FCLr5Ns6zdq94bAMvBiG1K6wHvoGttLNsW4OEcXQ66+/jksuuQSjR4/G6aefjltvvRX79u2LdbMo0bTFNTZEsEQRCnuOcDQzxqogO2hgrK54rfOzVj2v2KpVzeANEwqOgTF1ejWbFqLx4CoYLD2QM2EBJEP4C8d3BpIhCRkjrwUAVBe9xqFIRJ3Yd999hyuuuALvvfceFi5cCLvdjmuvvRZWa/SLKVEHFkbgWl/8CY7/7yYo6kJKwaizxAyAWi9AJlhnR91jtMFwkOWaNMfrr2nsOwJAm6XWG0qtHxgzY0yhMDCmTq1h3xeo3fIWJFMa8iY9DkOweTSdWGq/yTBl9Ye9dDNsR7+LdXOIKEb+/ve/Y8aMGTjxxBMxePBgPPHEEzh8+DC2bt0a66ZRAglnjdzK9U/BUb4NjQe/Du+cYRZ7igXhssFRtTfWzYiIJuAMNjQ94BJN6mHV4WWMA61pLFw27blCDNPWnseueszAmIJLqOWaiKLJVrYVFd8+CUgycs94EKbMvrFuUtySZAMyRlyD8tX3o+bn/0NS91M53JyIUFvrXms0M7PlNxVluXV/S5qPb+15Orp46icJrrDbIcly0H0VRwMUWw0kyRsgyZJo0ftsqz46/sWfYCspQpcpLyG5y8ionrutSJosr6pvZUnTT4G+CqhvTkgI/POQAlWlVgW3kmKDLKehasPrqN+3ApkjrvK2R+fcMvSDellS2u3zH0+/b/Es3vqJgTF1Ss76EpSvug9QHMg66fdI7nFqrJsU95J7nQFTVgHs5dtgPfodUnqMjXWTiCiGhBB4/PHHceqpp6KgoKBF5zAaZeTmWqLSnuzstKicp6OLVT8JIXCg6XFaikH35+5srET9sS3I6HeGZ9/0DAtygnxGfn7jEjjry9D33Ic92zIzkpCc3fLPVbT76EBJEQDAULsVuUMSY8ULW4oRNU2PjQYJzTlb9c8tOzsNVpGMozrHy5I3nE5LMwX8PXemmlDV9NggA805XbPZGyhlZSXDbLHgwJa33RtqdqieS0FSlvbc9Q4zjjU9NhkFmid6ZGelwmSJzt+bcPHvUnjipZ8YGFOn465AfS8UayXSBlyItIHTY92khCBJMjJG/NaTNU5m1pioU3vooYewc+dOvPPOOy0+h9OpoKamdWvOyrKE7Ow0VFbWQ1FYAyGQWPeTer3Z2to6oLzOb58jH14LZ80B5E161LOtvt4BobNvM2d9GQCg6vgBz7aqylqYlMDHBNLWfdTQYEd5kPcSTxobvMOXHQ7vsOby8jpNP1kr9d+PosrU1tdZIQd43w313voELqd3qLO1wft3obK8BkZbquffdqf3u0dFSQkq//cQ0gdOR2qfiQAAW1W9d1+b931UVNTCaEvRbUe0xfr3LVG0Zz9lZKTAZApeEZ+BMXUqQiioWPsYHJW7kdR1DLJO/j2Duwgk9xoPU/YAOJg1JurUHn74YaxYsQKLFy9G165dW3WuaH0ZUhTBL6BhiFU/KQ5vgKI4HbptcNa4g1t7xS7PNgFDeO2VvF9pFZerVe+xrfpIiMT5jCqKau6uevmjpvYLxYWGY0WAZNY9Xl0wSyhKwPetfh3t3GBvkKy4nD7He4Ob2l0fwXbsJ9iO/YRev1np2V+vHUqQdrQV/l0KT7z0E4tvUadSs+lNWA+thtHSE7nj50OSeW8oEpIkIWP41QDc1bxZoZqocxFC4KGHHsJnn32GRYsWoXfv3rFuEiUITWVj4YSz/hisxzfo7yyrVocI8+a1OpCKt+JbCUlTPMu/+FbJT4tR8tnvUfn984FOoHrk/11BcTRAcfpUsw+wXJPvz1NbmMsOX5r91QW3+LmgEBgYU6dRv/cz1G5ZDMmUhtwzH4eclBHrJiUkT9a4YjusR9bHujlE1I4WLFiADz/8EM8++yzS0tJQWlqK0tJSLtdEofkEPcc+vAJlX/4BjpqDfruqb1oHqySsCZ7UARKXa2o9oV8Uq1n1Hne1cEfFDr/n3McEX2v4yL9+iSPvTfWpSh0ooHVpf9aaStM6P2tFP/PMwJhCYWBMnYKtZCMq1z/trkA9fgFMGX1i3aSEpc4a1259O8atIaL29M4776C2thZXXnklxo8f7/nfJ598EuumURsQiguV659G46G1LT+HUPyW2BEuhydwclTs9D9IPZoryFJBir1O/Q91w1G79V1UF73e4nZ3VlU/vYq6XR9AswyS3uiwEJl8EXBNY89G9/+rsr8BM8aKC0K1nrVmuS+9myABhmRzlBuFwnGk1OE5ag6gbNU8dwXqU/6A5O4nx7pJCS+51xkwZvSBvXQTbKU/Iyl/RKybRETtYMeOANkh6pCsR79HffHHqC/+2DN/MxJCCBz/+BoYUrsg57S53idUwYqrocTvuLAzxk79YEkIF6qLXgMAZIy6nrVEwqQ46lG3/T0AgGXgjBB7h+hTTRAaOFOr+fn7DLf3PlaguFSjUpTggbHvsP1w2kEEMGNMHZzLWomylXdD2GthGXI5LCdeFOsmdQiSJCN96OUAgNqtLa9IS0RE8UsdeLaI4oSzZj9sx77XZBDVWUJXY4X/62qGvwYbSq3ODKoCY3u9aicOqw5XoHm9enO2Q95s0ASn2kytOnPrqjvm3a7oZ4whXNrh0aph87rzyTWfi+BDuonUGBhThyWcNpR/fS9cdUeQ0udMZBb+LtZN6lBS+06GITUf1sNr4ajaE+vmEBFRtLVy6KlmmKwmyxd8/qpm2GyQjLF2eLY3WHI2HNfdHmu682HjiXqIsrpgls/NBcVpDV0UTfUz9gteVedTHOqbGPpzjIXi8hke7dDdT/f1GBhTBBgYU4ckhIKKdY/CXr4N5rzhyDntHkgSP+7RJBlMsAy+DACzxkREHZFeNeKIjlcFpS5rteoJVUCrM7xVkxEMGhirs4iqLHRDqXefYMe3N8UBxVYDe9m2WLdEl/CZp+2hCi6ri17HoXfPhbV8b6izBXiMgHOAA80xhnBpM9iajHGIOcaCc4wpfIwUqEOq3vAaGg+uci/LNPERSMakWDepQ0ob8EvI5gw07P8SzrqjsW4OERFFU2szxqoARrF6h0wLncJO6qBFuLxrHgcLbLWZQVWwpAms1VnQ9iOE8BsmLlx2HP/0OpR8dhPslbtj0q5gtEWt9NcXbr4R7tQZAh/4xD5DqRX9OcCB1jEWfkOp9dtpO16Eyu+eDfL5YcaYgmNgTB1O7fZ/o277e5CTMpB75pMwJGfFukkdlmxMgWXQDHcF0KaCHURElLiE4kLZyntQu/1frR56qskY2/QzxqqddY9ryVBq9ZDgWAXGVT+8gKNLZ8BWslHTluZstrN6X0zaFYym38O8ORHeiYNljAMMdfbJJGsywwEqWZd+eTvqd3+Ehj3/Uz2tCrCdVpSvfqBVVdapY2NgTB1K/d7PUP3Ty4DBjNyJj8KU0SvWTerw0gZOh2RMRn3xx3BZq2LdHCIiagVH1W5Yj6xD9U+vaIehKi5Ub/w77HrLKwWiHprrCjBMt3mYrSbIVQdlLihOK5z1x+EnQEEvzWNXbIZS1+/6AADQeHCVqi2qgC6G07uc9SUQQkC4bGg8vM7T3+qh1IrTWwW6tUPqfTO1mmA4jOWaEGSOsd6NE81NGNVr1e34DxoPrkL5qnsjaTx1IgkVGC9ZsgRnn302RowYgZkzZ2LTpk1B9//0008xdepUjBgxAhdccAFWrfL+cXI4HHj66adxwQUXoLCwEBMmTMA999yD0tLSIGekeNZ4+FtUfvukZ61iLiHUPgxJmUjr/0vAZUf97g9j3RwiImoFzbJHTm+A2rDvc9RueQsly6+P4FzqzG+AwLjpsWYYrSowFsKJ459ci2MfXAZXY7n2/AGzzAGKfsWAZErz/kMdYMYoMK7f+xmOfTATNZv+jqqf/oLyr+9B9ca/NzVP1YeqwLi1lb395vYGmmOsKfilHUotAgyl1txE0T3W+ziimzrUKSVMYPzJJ5/g8ccfxy233IKlS5di0KBBmD17Nioq9Oc4bNiwAXfccQcuvfRSLFu2DJMnT8bNN9+M4uJiAIDVasXWrVtx00034f3338dLL72E3bt345ZbbmnPt0VRYiv9GRXfPAgIF7JPuxspPU+PdZM6FcugGQAk1O1cFlcVQImIKELqoaeqoKMldSS0Q3PV6wzrzF9V9ANjKA646o4AAFz17jVvnfUlaDy8zifLrB8MBx2K3Q5kU6r3H6r2xqogaMOeTwEAtVsWo3H/CgCA9ch695OagFOVMW5tNW2fofPaYdH65/YryhVodIDTPzDWjBLQrJnN5BcFlzCB8cKFC3HZZZfhkksuwYABA7BgwQIkJSVh6dKluvsvWrQIEydOxOzZs1FQUIDbbrsNQ4cOxZIlSwAA6enpWLhwIaZNm4b+/fujsLAQ999/PzZu3Ijjx3WG61DcclTtQdnKeyBcNmSOuQVpJ0yJdZM6HWN6TyT3OgOKtQIN+7+KdXOIiKiFtMOQbbqPwz9XgCyuXsVjdeDjVB+nCpwMZgDAsQ8uQ/nX98ChLmClabc6MI71zVrvV+1QawO3C1VArjgb3ZuMyQB8fl7qjHGrl5nyyRgrgTLG+vtAaIdSa3/WOj/fgKMEolOVunb7v1G3c1lUzkXxxRjrBoTDbrdjy5YtuOmmmzzbZFnGuHHjUFRUpHtMUVERrrvuOs228ePHY+XKlQFfp66uDgaDAenp6S1uqyyHWNctgnNE41wdVXPfuOoOoeyruyAcdcgYPguZQ2fGuGXxpT0/SxlDZ8J66BvU7fgXLAXnQgq1xmGc4O9beNhPobGPqCMQTcES4Dus2qq3e/BzufQrRWuzf+6AJ+BQalV7vAGPO8BRbDX6rxVindtoEkIEvd5pbiiog2FXjIZ4Swbv46Z+8gTG6p+3Q/U5EG1YfCvAuYVPgS4RKJjWOT5gsB2l5Zqqf3oZAGAZeHFUzkfxIyEC48rKSrhcLuTl5Wm25+bmYv/+/brHlJWVITc312//QHOIbTYbnnnmGVx44YVITU3V3ScUo1FGbq6lRcfqyc5OC71TJ2arPoSSL/4IV2M5cofPQO+zb0+YYKy9tcdnSeSMQ23REDSWbENS43ak9z6lzV8zmvj7Fh72U2jsI0pkiiogUgcwir0u4nMFrBQtdOaSBqgw7VIv86Q4fIIeSfWcfmDcllWp6/d+hsp1jyF/yqtIyhuqu482MFYHd7HJZEvqwLiJbGgOjAPdXGjL4luBglifatURFN8KPHy+9YGxdhkpgeoNf4EhOQfpQ3/d6nNT7CVEYBxIqLt0es/pbXM4HPjDH/4AAJg3b16L2+N0KqipaQy9YwiyLCE7Ow2VlfVQFC5GrsfVcAwln98GR91xpPWfitRRc1BRUR/rZsWd9v4spZ54CRpLHsHh9f9AfuqQNn+9aODvW3jYT6G1Zx9lZKTAZPL/gkvUWpoMrToYcUQeGCPQkGad4ksB17b1maes2GtV/7bq7qedJ+2A4rSi4psFSCuYhpTeEyJ/HwFUrnsMAFD90yvoMuUV72uq12RWV3d2hRgC3B5k/78bkjEJgE/AqSm41cr1rINkjAMtCeY7Dz1gMK0XtLc2wx2E5udpr0Vd01KVliEzYzZvnKInIQLj7OxsGAwGlJWVabZXVFT4ZZGb5eXl+e1fXl7ut7/D4cDtt9+OQ4cO4R//+AcsltZlfKP5ZUhRBL+A6nDWH0fpF7fBVX8MqSf8Almn3gUhJP8/vOTRXp+l5F6TIKe8hsbD62CrOgBTRu82f81o4e9beNhPobGPKJFphlIr+gFq2OdSH6/J3Kp+PzxzjAMMlfU5R6B5z9qgUzuUuvHgKliPrIP1yDr0+s3KiN9HIAZLD7jqjsBZe1D7RBjDwkWMhlLrZYw9mfcA/d5qwYpvBaIJhF3acwRa1slz/tbP327Y+zmqil5Dl1+8DKOlu7cpzgbvY7t3KL+z9nBCfechfQlxa8NsNmPYsGFYu9a7ILeiKFi3bh0KCwt1jyksLMSaNWs029auXavZvzko3r9/P/7v//4PWVlZbdB6iiZn/TGUfvkHuOqPIWvgucg9/R5IOnc/KTYkgwmWgdMBCNTt+E+sm0NERBHSVvyNfF6x5lxCm7lVvYj/PoGWXvKpNq2uQqwtEKWfnRaKA1JT0a5oa6447RfkqufDajLGqrbHqiiYzncmobdkVlQD48DFtwIfow6EfYpvafbT2R6FbHzFukehNJajoalyt+flVFMNXKo57opVf5UcSiwJERgDwDXXXIN3330XS5cuRXFxMebPnw+r1Yrp06cDAObOnYtnn33Ws/9VV12FVatW4c0330RxcTFeeuklbN68GVdccQUAwOl04ve//z02b96MZ555Bi6XC6WlpSgtLYXdHusKhqTHUXMApZ//Hq66I0jtcyb6nfsQg+I4ZBlwASRDMhr2LNcURiEiovinKXKkGVYdfhaufs9y1O9Z7rMEkypY1alKHWiorPCpNq0+j6IOkgNWpdYGeK3NJjrrjsJeWdx8Mvd/fYbQam8IqNvYugx8NOgO9/UsmRViiHKLtSBjrBpVIIQr4DERBfAt+NkbUrT1itS/E9rib7FdL5uiIyGGUgPAtGnTUFFRgRdffBGlpaUYMmQI3njjDeTk5AAAjh49Cln2/rKPGTMGzz77LF544QU899xz6NevH1555RUUFBQAAI4dO4YVK9x3gS666CLNa/3jH//A2LFj2+mdUTjslbtQtuIuKLYqpJ5wLnJPnwtJTpiPb6ciJ2Ugtf+5qN/1AeqLP0b60Mtj3SQiIgqXuuCWZlh1eF/8hRCo/PYJAEDmmFu9TwRYrskT8ARYpzb4UGpVxliTYdQOCRY+hb2aqzC3xLEP3de0Hr/6RHVebf0adbCmqDPGoZYZag96Q6n1MsZhBa9h8p1ZEmnQLZTAx0Sznbov7Wj6rwuSbND8TqiHUrdlkTdqPwkVWcyaNQuzZs3Sfe6tt97y23beeefhvPPO092/V69e2LFjR1TbR23DVroFZSvnQjjqkTZwOrJOmsNMcZyzDJyB+l0foG7XMlgGz+TPi4goQQTKGIcbyGmzzAHmGGsyxk3FtwIM49UMOQ4yx1jTBpf6eKc2eFIcAFoeGDezV+xAc8Tnl4VVAmSMAxQIa1c6gbGnv8OpFt0CAoq7qrlshGxMjjjoFkrgjHFb0BZPs8FZdwTHPpqFzMIbYFTNI1YXggu8djIlkoQZSk2dU+PhdShbcQeEox7pw2Yh66Tfs+pfAjBl9kVSt5Pgqj8O65FvY90cIiIKV4DhvuFmxBRblfcYp37VaO1yO/4ZY818YZd2nrLmPE79wFibnXYFrAzdGs6ag942+w2l1p9jjIBVn9uT/3Biz88jipWofV4AR/59Po4uvUTndcI5Psgc47bgc2OmbtcHgFBQveEvPp+/6H+uKLYYYVDcqtu5DOWr7oNwWZFZeCMyR83mOsUJxF2EC6jbuTTGLSEiorAFLIIVYI6wD5e10vNYvfZxwHm/wj9bGaiaddCh1Oq3oGgzxi0ZEq57Xk1/2FSBsc93E83cav05xrHKGKtvNHg0va+oFtxSv6ajoem/TctqRnModSs4647AUXNA5+VUnxGXPfBSYAGGyVPiYmBMcUcIBVU/vYqqH14AJANyzniAC6cnoOQep8OQ2hW2Yz/AUb0/1s0hIqIwaDKZLm2A4BEkgFKs1d7HzYGQ+x+6523OGGteVxNAajPN4WSMtXOUXZpKwq0Z8qp+P8Jl994gaMoYl319H0o+vzVgkS3tzYUYZYx13r9+xjiKL6m+QeK0RT6UOkjxrZZyNpTg2Ie/QekXt/m/nu8NEM1oh0CBcWQ3Fezl2+GsPxbRMdT2GBhTXFEcDShf/SDqtr8H2ZyB/LOfRWrfs2PdLGoBSTYgbaC7sF39rg9i3Boios5HcdR7bkxaSzbi0Mqn4Kwv0d3XVrrFvW/AbK02OLAe+0Eb+OrspwmIFP3gwpMxDpCF1mQ4XeHNMda8B+HSZJYDDXl11h2FYvd/P5q2aAJjmyqLKcHVWA7r4TWwl27W7IcAhcTaIgMaDm0AJ2m2iTZqk+LwzsV12Sojf++KK+r95ajY6T61tdL/c+RTJC3QaAfNiIUIiqkpthqU/O9GHPuASZ94w8CY4oajej9K/ncjrIdWw2jpifwpryKpy8hYN4taIa3/NEA2oX7PcihNQ6mIiKh9lK9+EMc/vhr28u0oWzUfpRv/idrt//Lbz9VQitLPb8Hxj6/2KYKlvwRSw77PUbbiTpR/M9//RdVBhCPQUOoQGWMV7b5O7TrGgYpv+QSjvufwa3JjOY59eDmOfTLbfYi9TlOAyXMqn8DY8/qKA47qfd79bNWq/QK8b2cjjn18Dao3LdR9D21F0zfNQ8A987zbPmOsWKtakDFWop4xVt8E8b0h4ls9PGCVdM0Q/fAzxs76o5E0ldoRA2OKC40HV6PkfzfBWXMAyT1OQ5epr8GU0SvWzaJWMiRnIbXfORDOBjTs/SzWzSEi6lRsx34AADTsXwHFWgEAuuvLW49v8P4jjGHAjYe+cZ//6Pd+51IHEeqAQzNPU+hkTgMFPppCWk5txtipP8dYu/ST06dKtX9mz9VQCsA959RecxSH3vslKtY85H6usRy12/7pDpDUQbnTplrKxxl4fdsA1bjt5dvgrN6L2s2L9N9DFAkhUPLFbShbNU93GHxbZ4yFKjB2WVuQMRaugCMKWtwm1U0ORXUDx/1yvhljn6HVzce1cI6xq6HM89hWsgnH/nsV7JW7wz6e2k7UAuP//e9/GDJkSLROR52EcNlR9dOrKF99P4SzARkjfovcSY9BNqfHumkUJeoiXHp34ImIqG256o97HusVzlKsVd7nFf3iW5r1jVXziD2v0VAKZ+1hbWCsDjg0Abd6qLPOUkEBCMXlU906jCydcGrmKesGhqo+qd67CgDQeOArAMCxj3+L6g1/QcO+L/xvFDRnuxWHZh6zS5MxDjTEtv1yU46q3bCXbIT10Dc+w9ibrsme4exxmjFug+WaNG2y+wTGivbnrJkeoBr9FqjieCBVP76Emi1LPDdiAKB64xtw1hxA6We3RNR+ahvMGFPMOKr3oeR/N6Fu+3uQTBbkTnoMGSN+y+WYOhhzziCYc4fCWbMfNnVWgoiI2oe6arLODUrNF3y/NX/9+WbYAODosl/h2EdX+GRV1UNNtesRex8HH0qtfWFtxjicYMQdTOsPCfe20/v+FZ+CXqJprVqXtcJvfrMnqHc5oDi9AZN6KHWgQmWaYdlRzob6ctYc8r6Wps9E0zaX5r/Rpp6L67JWRB6Ai+jPMVbsqpsXvoGx7w0Ql3YIvPexdu66o3o/XI0Vuq8nXA7U7fgPajb+TdMfhuSspudtEIoTjpqDTCLEkDHUDvfcc09YJzpy5EirG0OdgxAC9bs+QNWGVwGXHeYuo5Bz+n0wpnWJddOojVgGTkfFuq2o27kUyd3GxLo5REQdluK0wlV/DKbMfqqt6sDYP1DTLGcURhEhSTIEfM6pWv5GOx9YP9Or2Kpw7L9Xw5CSE/J13cdFGDQoLp/lm7ztcNQcgKNiJyRTqmeby6YuGKbKkttq/IfUes4rNIGuYlcPV9dvr2Yor63GEyC1Be3w80adHdo2Y6zmaiiFISkzsoPaYB1j9c0LxVHnLih3eB3MecO01dgVp/bnrskYq4bP22tw/OOrAQC9frPS//Uc+hlq9e9I1Y8voX7XB8id+BhSeo1r2RujVgkZGC9btgz5+fnIz88Pul9Njf+cFSJfjpoDqPzuWdhLNgKSARmF1yN98GWQ5MAXWUp8KX0mQd7wKqyH18BZfxzGtK6xbhIRUYdUsfZhWA+tQf7kF70b1QW1dJY40nzBD6NQou88XXWGy15VrHpZ1Wv5zPtVc9bsh7Mm9LJ+QjgBvXV4QxwjAgylPv7fqwAAliHe6sDOhnLPY1eDt4K3Yq3wWSpKG2Cq5xUr9lqE5u0z4WwAkBXGMeFpPLga1qPfIevk2yHJBm1gbPfP9nszxm2/tnL97o+AgmkRHSOEEvVstm9wWrNpIWq3LkFq/6lI7XuO9znFoZ0e4NQfSq1ev9vZUAKzRfs9R/16ztrD3u2qGyTNK3g0HvyagXGMhAyM+/bti5EjR+Kpp54Kut/y5cvxhz/8IWoNo45FuByo3fYOaja/BSgOmLIKkH3aXJhzBsW6adQOJIMZaQXno3bLW6jf9SEyC38X6yYREXVI1kNr3P89+p1nm7pIkOKywVa6Ga7640jt5w4ANMNDdYZJ+9IOkXZpCxKp5k8GLqjVwgBMcUUeIClO7VBYnaHUSqM3GHY0eIfCuhq9RZJc1iqfpai0lYw1BbciXIUh0HrMkajf+xnqd3+IvEmPo3z1/QCA5J5nIKXnaZrz6y2x5fl5tMfaysIFe/mOyI5Rol98SztKwgprc6G6vZ8hpddE73PCFTBjrKiXAVPPWW6sAHwCY/Xz6vWL9aYlSMaUiN4LRU/IwLiwsBAbNoSeFyhJEsfEkx8hBKxH1qF6w2vu4VUGMzJG/Q7pQy6DJIf8+FEHknbiBajdugT1xf9FxoirIBmSYt0kIqIOwXr0e0AIJPc41bNNu96qtpJz6ee3AgCSuhbCkJLrMyQ0+Fq+AKA41BnmOs0arr6FjPREUsFXe5wzrHnFmmOEy2e5JvdjdYDoslV5Hmszxt7AWDgafIZSaytiq7PEit5w5WBtdFrhaiiDITUvouPUKtc9BgCo3fZP73mbgi7NOs46bWvrqtTN5JQ8KI1lPkPNwyCiX3xLO1fYBjTXtxGKdoSByydjHKD4lmaotOrc1pJNqNm8BKn9JnuPCzG6gKMoYydkZDJr1iwMHTo05IlOOeUU/OMf/4hKo6hjsFfuQvVPf4Ht+E8AgKRuJyH7lD/AmM5lmDojY2oXpPQaj8aDq9Bw4GuknTAl1k0iIkpY9Xs+hWKrQdqAC1D21V0AgJ6//sLzvKYSdYAv866GUhhScjVf5PUyWH7Ugaa91icID7CEklpLgxyfdYzDPkbdXkcDqn54CUmqehfqjLGzscrz2KXarjgbNDcAfANM9ZzhSDPGNVsXw3poDXInPoqUXmdEdKwvZ6230Fbz8N6Q88aFy53cauOh1LLZ0hQYhzPU3EsIBVKUg3bhkzFWVEOh/dYn1vzcA80xVg3NVv38Sz6/HRAu2EqKvPtq5hv794Vir0PjwdWo2/Uhcsc/wJVa2lHIwHj48OEYPnx4yBPl5OTg1FNPDbkfdXyOqj2o2bIEjftXABAwZvRB5ugbkdzjdEjqypjU6aQNnI7Gg6tQv3MpA2MioggpthoozgbI5gxUfvskAMBo6e55Xj130WWt0Bzneaz6Iu5qKAVyB2ur6+oNtQ3apto2r6rcTPisYxzWMYpLM5S6Yd/nsJdvQ93O/3i2qTPDLpsq86vKJAtHo88cY5+MsfrmQ4SBcfPw9+qfXm11YKy58dEU2Adc71lzYPSzsr6aA7xIP2PuodTRDoy1lcjVgbF6vjB85qhr5uCrPvfqEQiNh1ajesNrME2+x9NuzeupR1Xo3LRQbNWe4fDWYz8itc+Z4b8xahWOZaWosVfsQM3mxbAeWg0AkJOzkTHit0gr+CWHTRMAIKlLIYwZfWEv3wZ7xQ7OMSciisDx5dfDVX8MuRMe9mxzVO1RPfYWvlLUgbFq6Kq6oFTzeqq6lYrDFPGw2Nbwmc8cFt+h1HrrOKv7Rx0Yq9d3dgYPjNWZRHWBpkgEyqSWr3kIzur96DL19ZDfp9TzopsD0HD6TCjONp9j3NLMp2iDoF09HUA46rXz5FUjBYTi0C73FeB3RT2HuGHPcgBA8dKbIRlT/I8J8V40N7ICLP9EbYPRCrWKcDnQeHAV6nYthb10MwD3HJL0Ib9G2oDzIRuTY9xCiieSJMFy4kWo+vFF1O1chpzT/hTrJhERJQxXU9Ee9Zrwjur9qsf7vPuqvlAH+jLfPKRTOFoTGNdp10luQ0JxhlU12/cYTWAcMmj11stRzz1WnL5zjH3WOw6wjE9EbRUKytc8DENyNlJ6T4C9fBtS+5/XNALPPUxavQyXYq9F2df3Iq3/ed42q37uzX0V1vBzxRn1tYJ9tXhIsFCiXnxLMwxa9XMGfH53lMDFt3zOqL+5ee5yBFyNparHZX7PCyEgnI2QVcuMtYS9cjcaD65G+tBfQ2bBLwAMjKmFHFV70bDvC9Tv+cQz/MSY3guWwb9CWv/zIBnMMW4hxavU/ueieuPf0LD/S2SNvglyUkasm0REFDOKrQb1+z5HWv/zgn7RVQc3ttKfPY/V6wa76o569w9juGpz4KSEMy840DnsNYBsavHxkb2Y0y+ICUUoTk3GL5ziYJ59VRljKE79is6ep9XFnFrWn8JRh8b9XwJw3/xwVBXDXr7d87yjslgTGDfs/Rz20p9hV30e1CMFvBnj0O1xZ2Xbeo5xSwPjFlQjD+OczVyqNY0B7TQE4bJr9o14xEIL2u1SVXZ3NZRBuOywHd8Ac/4IyKZU1Gx8A7Xb30PepMeR3P1kv+Pr93wKKC6kDTjf7znhcqBu1wdI7n4yqn96FbbjP8HVWIrUPmfBemQ9Mguv79Tf4RkYU9ictYfQeHA1GvZ94R2uJclI7nUGLCdOR1K3MZBacGeMOhfZlIbUE6agftcHqN/zKdKHXBbrJhFRhJYsWYK///3vKC0txZAhQzBv3jyMHDky1s2KuYb9X0GSjUjpPQG1W99B45FvkTfxEb+AQLjsaNj/FVJ6T0Dpij/CUbkbcDmQPvTXfud0WatgL98OY1oXzzZnzUHPY0et97Gz/igioVgr4ag52LqMsa0WkrF9vkgLl10zzDQsPpWsIyn8pJ53CvhnFjVtizCTHUrz9yxbySbPNvUyP4A2gNNjr9iBim+f0mRAA1KcbV6VWjKlteg4obggteEwb80NEPjeXGjdz7W1Q8Bd1kpU/fgS6nd/BMvAGcg8aQ5qty4BANRseQvJ3U9G48FVACSk9J4AZ32Jp/5AUveTUfXDSzCk5CD71Dvcx/y8ELVb34a120me4rjOqn0oK3YX8DNm9EFa//MgXNZOWfSLgTEFJFx22Ep/hvXwt7Ae+RZO1cXXmHkCUvtNRmq/yTCmdQ1yFiJ/lhMvQv2uD1C36wNYBv+KN1SIEsgnn3yCxx9/HAsWLMCoUaOwaNEizJ49G8uXL0dOTk6smxczzrojqFizAACQP/nPqC56HQBQu/3fyBx5DazHfoKrsQyp/X6Bms1voXbLW7AeXuMOigHYSjfB8e1+2I7/hLxJTwCyCZIkofK7Z2A7vgFJ3U7yvJYmA6ga5umsiywwbtj7PzTs/V9L3zIAd8ZYUtpnGKbLWg5AQDKlhV3AyXe5pkgqL7t8AmHfAMrnlcI+byTUQZqroQS240UwpveCUByaYmv6x1aiYc8nYb2OUFwRL4UVKcnYwmUa2yJjrKLYfG6AWL0Z5NBD70OdvHV9qlgr0FC+FQDQsP8LWIZ4b545q/fDXrED5asfAADknfM8XKrPRHXRG7Aedhd2S+p2Mlz1x2CvcK8hbTv2o2c/R413Ooa9fCsaD6yEvWIHuk5bqLkhpyaEAsVa6V7uTQgIR12HCKQTKjCO9A71p59+ij//+c84fPgw+vXrh7vuugsTJ6oX7RZ48cUX8a9//Qs1NTUYM2YMFixYgL59+7bH24k7zXel7aU/w1a6yT18R/ULbcoqQHLP05Ha92yYsvrHsKWU6ExZ/WHuMgr2ko2wHf0eyT3GxrpJRBSmhQsX4rLLLsMll1wCAFiwYAFWrlyJpUuX4rrrrotJmxz1pXDWVUFRdIIToUBxNEA2pUIyJMHZUAJTRm93UCFJMKTkoX73RzDnj4RkMKN2y2JYBk6HvaoYrtrDSDvxQtRt/zeSup+CpLxhaDy8Fqas/kjKHw5b6WZUb3wDSV1GwZCc7XnJ2q3veB7bjn6HxtwhKP/6bk976nd/CABNmZ6m91BZDFeDe4mlmp//D9ZjPzYFf+73pP4iG4i6aFB7Uey1kNupKnVz5tOQkgNnuJWNXfYWz0/1BN8GM+Cy+wXK7a1+1weo3/VB25xcODXLbrUF2dCyujNCtHHG2GcUQrsWlAvBWXvYcyNMsdVoh83bqlBf/Knn3w17lgOqNZCth7/xPK745sGAr6G+ydR4YKVnKkDVjy/C1ViO5K6jkTHyOjTsXQ57+XZYBk5H9aa/w3poDTLH3ALbsZ9gPboe2WPvgmxOh6u+BKkn/ALO+uPuucsGE4S9HoqjHpIxCabME2A99iMkgxkpXUag7vAG2BslyKnd4GqsBKBAkk2AZACEE4bk3JbfVIlQxIGxEAKvvPIKLrvsMuTl5Xke5+fnt0X7PCK9Q71hwwbccccd+OMf/4izzjoL//3vf3HzzTfjgw8+QEFBAQDgb3/7G9566y088cQT6NWrF/785z9j9uzZ+Pjjj2E2d8zx9UIIKLZqOOsOw1V7BI7qvXBUFsNetdvvgiqbM2DuciqSu49Fco/TAt41ImoJy4kXo6JkI+p2LmNgTJQg7HY7tmzZgptuusmzTZZljBs3DkVFRS06pyy3rnBT/e4PceDbZ1txBgm+2T7rkW+95y/+GIB7mR8N2eS5eewo3xbweHv5NlSuf8rz76ofX4bQWSu4OSgGgMaDX0f2FmJIsVa2V+0tT39Hkplq6XxfNWNKHpx1R6D4zEXtSCThaod1jFs2skASCoC2uPni87svmwElxJrP7cx3fnjjga80/27++wS4/+7ISZneY1vw2VcfYz3kDqwd5dtQt+N9T1vqd3/k2af6p1c8j5uHcAPuoDog2ej9rEmGkFW6jem90f3Ct9plydeIA2NFUfDKK6/grLPOQk5OjudxWwfGkd6hXrRoESZOnIjZs2cDAG677TasWbMGS5YswQMPPAAhBP7xj3/g5ptvxuTJkwEATz31FMaNG4cVK1Zg6tSpbfp+oqm5Op1w1ENxNECx10GxVsBlrYCrscL7uL4Ezroj+sOPJBnGzBNgzj4R5vzhSOoyEsaMPhziSm0mpfcEyMk57mH6dUc1a3ESUXyqrKyEy+VCXl6eZntubi72798f4KjAjEYZubmWVrUp2TEK9iNjIVw+X+pV36EMZgtctlq47PUwpeXBVn0IptRcOBrKYas8gLTuI9FwfKs7Y6b7RU1yV14WCrIHT4PiaEDdwR8ghBGZ/c9E5Y5Pva+jKu7U/G/FWgFLr5PgqC+HrXJfq95vvDBn9IC99hhctfuRlNq66riRSkrLhN2/WK8uSURYLEnv9TK6BP7+FAOWnieh7nDoEQSRyMwwoxxtO8c4IysLLVl8yGgEDEag5TPh9RmS0uFSZYvNabmw10Y2HaG9NTYFq2ndR6H+6EZAcUAyJiGt6zDUHf4p+jdvZAOMKdlw1pchrfsoyKYU1B5w3/gzWbrAUede/s2c0QP2miMAgNSuw9BYthupXQa7q3ILF2SzBYYkC+w1R9BYsh2WPqdBcdrQWLodad1GQggXHPWlMKXlQ5IM7mWyFBckgxGWXicjL699hmm3aCi1EEL3cVtpyR3qoqIiv4B5/PjxWLlyJQDg0KFDKC0txRlneBdST09Px6hRo1BUVNTiwLi1d76FEKjZshi1jUdga2zwrJ8mFCfgsnuWHRCKA8JpheKodxcGCHOYkGRMgSmrAMb0HjBaesKU2Qfm7BNhyuoLydA+wxSiobmfW9vfHV1c95NsguXEC1Dz8yI0FH+ErNE3xKYZ8dxHcYT9pCWaKtS6h4fVQbHXA4oNVZUyGqproLjsEJ7/OTyVTSVjMtIHTodsblkRmnglhGjR3XynU0FNTeu+7spJ/TBg+quorKzXH0odhBACUOyQDEnIrD0CZ2MZkvJHwHr0BxhSsmFIyYP16A9I6X0GFFsthMsOU0YvAEDGWBcAAUk2wtrYgMYDXyN95DWo2/G+Z+6nZfCvUL1pIQAgbdi1sJVvh+2Hl9zPDZqOuh1L/dqUO+4+1O5cipRe42FM7w5n7VFYj/0A27GfWtFL0ScMqTCm94Kj5gDqRPv+XXAh/CG5Tlvri2IJk3ZkomRKjXqxrXCZsk9E9pnPom7JmVE9b1VFNVzOts2W1rfwV91hs8Mp2qBtxhTAXu+9EZaUDcRpYJzc/WRYj/7g+be515nuwBiAOWcwTD3PAg67/0ZkDL8SNVveDmtdavU6y7I5wzOMPPeM+2E9/hPSB82AKaMvhMsG2WxxxyM/vQZDSi4sJ16Iyh9ehDG9FzKGXoa64uUw55yIpLwhQV9Tfb2QZQnZ2Wkh/36Xl4dfTT6QjIwUmEyGoPskxBzjltyhLisrQ25urt/+paXuEujN/9U7Z/NzkYrGnW+XrRYHN74Zdnl32ZwGY1o+DOY0GJIskM1pMJgtMKXmwJiaB1NaLoypuTCl5cKU1gXG1Jx2GYrQXrKzO9aXy7YSr/2UfuqvsWXzYtQXf4wTzrwVcjvNIdETr30Ubzp6PwmXA/baY7BVHYS95ggc9WVwNJTDUV8GZ9Njl60GSiuq+Ob0Goys7mdGr9HtKDs7GwaDAWVl2nRdRUWF3/U0XJEGs8HO06JzSWYIRUBO6w5zWncI4S5U0yyl7zkAADkl2ae97hFVQhHIOeNBKGPKYUjNh/XI957AOG3wZXA2VsKQmg9T7jAYswdBuJwwZZ4AY0YvT2CcWjANDcXuIknJfc5GSr9faJrorC9RBcb+Q7/l5Gz3yLGmYZByUmabD/uVZBNSeo1Hzc//51lfub1IxvD/DjV/6ZcMSZEvtdNETtZ+n5SNqXC1R2Asyd7ER9NjY0ZvCAEk9zgN1iPfQjJZdIfmR6p682K42niOupBM2vcU7nFCaZNh3pJscn8umgpsyclBige2oN2tJSdleOY/p/Sb4gmMjZaeSOrunYJmzhuK1P7ToDitEC4b0gfPRP3ez+GqPwbJmIycMx6EcNSjvvgT2I7/hLSB01G/0/23J6nbybAeWg0ASO03GXU73wfQ9Heo6W+fAACjselvnwGZY27xvHb2aXd79kkbcAGA8P6m+yZWW/z3O8oSIjAOJNQdar3nfLf5/ruld72B6Nz5BiT0vPAtpBrrUVvvBCSjuzKlbIJkMEGSjZBkM2Bw/1eSg9/5AABn0/8arQCs8TEMqLXCvcPU2cV/P6Uipfd4NB74Ggc3fARL//afwhD/fRQfOlo/CcUJR81BOCp3w16xG46qPXDWHnYvhxLsLrskQzalwWDpDtmUBtlkgWx235SUjSlITkuD3QH3XDXZBMlgbvrb7f6fbE6HM6Ow1Xe/w7nz3RbMZjOGDRuGtWvX4uyzzwbgnmK1bt06XH311e3ennghSTIMqe4pZZbBl8J67EdYTrwYsjEZ2afc7t1PNmqWqEsfNgtCcSJ9yGUQ9jqk9puse103ZXqLghrSusHlsyyTbE6HkM1wNQXGhtT8tp8PazAj7cSLUPPz/3k2SYbksNbMbS0pghEXzcGwZEptcWBsSNEGxpIpDWj0H8stGZOjMqe5WXL3Uz3z1XPOeAB1O/4Ny6BLPf+2Hl4HoThQ+e0TTQ3wTgOwDLwELls1Gvd/EdZrqQvBtRnZAEk2RfxzEIoLUltUpZZNkIzewNgQJDCWTZZ2L8plzOgDe+lmAEBS/nCkD78KtdveRfqIq2G09EBSt5NgL9uG1P7nQZINSB/8K8+xksG9trhwWpHS83T3ObqfAmfNQUiGJE9gnNzdGxhnjJoNxVGP1L7ndKgkWiQSIjBuyR3qvLw8v/3Ly8s9+zfPiS4tLdUU76qoqMDw4cNb3NZofGE0WHrCkmuBrbwu6PkE3HeqO7N4ucMU7+K5n9JOvBiNB75G7Y5lSO13bszaEc99FE8StZ8Uex1spZthL90IW8km2Ct3aZa5aSan5MGY3hNGS08Y07rBkJoLOTkXhpRcGFJyICdlBbwhKcsScnMtKO/gf7uvueYazJ07F8OGDcPIkSOxaNEiWK1WTJ8+PdZNiwvJ3U5Gj0s+gGQMXWgoc9Rsz+PcCQ8F3C+lz1loPPA1LIN/1ZShhSaDJSdlQRgaPQW8DCn5nmWgAhW3Mab3hqux1BvINVVeDpckm2BIdg83dzWWAZAgmS0QjW0fGMstWA9XNqZCQWXoHX1IxmS/QFwy6c+plkyWFgfGyb0mwJCcBXPeME+ga8zoAzQFxql9zkRqnzM9+8umVKT2O0ezzrExvYdnjeukHqcipcdYHDq0KqKfa1uSJIO7aF2kNyiEq02ytZLBBElVKVvvBkjzvHLJbAEiCIwlg9k9haYVkrud7AmMDWndkTnyWmQMvwqS7A7f8iY9BuG0QU7K8Ds2Y+RsVHzzIHLGL/BsMyRlwpCfCeGyuVeXkU1I6z8VwmVHUv4IyKZU5Jx+T6vanOgSIjBuyR3qwsJCrFmzBldeeaVn29q1a1FYWAgA6NWrF/Lz87F27VoMGjQIAFBXV4eNGzdi1qxZbfuGiMgjqUshjJn94CjfBnv5dphzB8e6SdQBCKHAUbkL1sPr0Hh4HRwVO6EefiqZLDDnDYMpawBM2QNgyi6AMb0XZGPLlhPpTKZNm4aKigq8+OKLnuUT33jjjU69hrEvOUDg1FKG5CzkT34BAFC98W8AoMm8GZKzoDhMnv2Nlh7etiRlQLH6B4TZY++EKWcgXPUlqNm8CEl5w4NXkvUhye7XM2b0aQqMBWRDkk7tYP+h360lmyKftuYbzGYW3ghj1gmo+GZB0LVqJWMqZKPq2KaRIN4dVDcojMlQWjjkVjanIfvUOwAA5pyBUJxW9xz3I+uQOer6wMclZ3keG9K6ewLj5r9lkmSEQHwExpBkSAYTRKRL+woFog2Wa5Jks2YZIDlF+zdMNqXB1RQYy6a0iEqTSaa0lgXGqorNqSecC2f9MSR3PcmTwW0OigH39IBA9YFS+0xC8q8+1r2JJBmS0HXam55/qzPNnV1CBMZA6DvUc+fORdeuXXHHHe4/KldddRVmzZqFN998E5MmTcInn3yCzZs349FHHwXgHkJ91VVX4dVXX0WfPn08yzV169bNE3wTUduTJAmWEy9C1Q9/Rt2uD5DDwJhaSAgBe+nPaNj3BRoPr9EsQWdI7YKkLqNg7jISSfnNVfc751CxaJg1axZvIsdIc5CmHo4qGZIhS96RDM3DuoGmgjrNgbEqeywZkyEbUyBn9kXuGQ9EPJS2eaimOkiUdG4suTNnra8MrTlnCzLGvoGxZdAM91QH1VBaPbIpTXOsZDBrgxNjijeraDC7328LssbqzKUpq7/ncbfz3wp6nDG9F8xdRsFZvQ+mrALYjn7X1K6m87XzvNhgJMngng4YIaE42mQotWQwQVJUGeNk/yJrzTQBpmRwV6nXmfdsGTgDdTvfR+bwK1H5g/tGk3dURWhyUhaUpn0NKbnIaZrD2xItGVnR2SVMYBzqDvXRo0chy96lhcaMGYNnn30WL7zwAp577jn069cPr7zyimcNYwD43e9+h8bGRjzwwAOoqanBSSedhL/97W8ddg1joniVesIUVBf9FQ37v0Tm6BthUK3DRxSKs+4I6os/RcO+z71FgCQZ5vwRSOk5Dsk9xzEQpg7DMmQmKr6Zj/Rhs1C3/d8QLivklBxPkSnA5wt9kneZE2Oqe9kVQBuIuXeM8CthU4DTHITLyTm6gbF7iHZ0A+OWVHXXZH0l2T2kF9rAXrWzJ+iRTCmaAMMdGJtU/07yLuMkmyDJZghEHhi3dJSBJMnIP+cFQLGjbteHqna5fxZtkWltMdmguakQLuG0QYQxNSHy9pggG72jGWSzRbM+uebnrvrMSbIRkCR3hWZoKzunj7gamSfNgatql/e8eoFxgCkOhmRvYKz72aQ2FfGnU5Ik9OjRA2azWfO4PQS7Q/3WW/531M477zycd955Ac8nSRJuu+023HbbbVFrIxFFTjalIfWEc1G/axka9izXFKch0iOEAtvRH1C3831Yj6xH81BNc/4IpPb7BVJ6T4RBNcSQqKNI7XMmTOe/BaOlO1L6nIm6be8irWAa6nf/17OP+gu9nJTledy8HikAzRBSAJpgLxzNGePMwushXHakD70cVT/4D8WWZGOUB1K7A5GwqgSr9tFmfZO9Q1N1hqLK5nRPll02pkIyeYMy2ZSmuYmgvhkgGczuGwEt0JIsuOdYSQIMSZrgunmOu2RIglAiHbvcRiQDYIjscwYAwtUIiOivYysZmqpkN//bmALZlOopXKf+mWiG78tGqBdK1yx51PTZkpOzPc8bLd3hqNiueW3ZnOapOK1myuznrQ9A7S7iwFiWZaxYscLzb/VjIqKWspx4Eep3LUPdrg9gGfwrSKqLFVEzoTjRsPcz1G59B87aprl0KXmwDDgfqSecC6Ole4xbSNT2TBm9AQDm7AHIGTcPgLuCccOe5cgcfaMmkDOov6CneB/7ZowjDoyb9pfN6Z6CPXoZLnd2LbpL3bgDY0PIc0qy2VMlWxs0eoNhT2CsaqMhKcsTGEumNG3m0JSq6SvZmOKZeyoFmX8cSjSGvWoCuaaAXTalwhVkOafWLGMVKUluwVBqSXbPt26L4luyGZC855WMKZCMqYCtumk+tLetms9A02e6ea60bEzxzq1vOsaQnO2eTy0EssbcjMYDK5HabzIa9n3uPofJAjQFxuoiX8k9x6Fh3xdI6n5K1N8vhZYwQ6mJqGMzZZ0Ac5dRsJdshPXo90jpMTb0QdRpCJcD9XuXo3bLEs9waXP+SFgGTkdK7wktGp5H1JEkdz8ZPS51D6W1HS/ybDekdfM81gTGvuvGhxMYqzOwepk/vYrtkjFgEGsZPBP2ih1w1hzQLRAWiGxMhiTJITPR7vnN1qZmpKi2q7K8nvftzQDKyVlA02pXsqkpWGp+zpTmM8dYmzHWzLk2JAedv6xpaxQKtsnq92h2ZzgzR9+EijULYBl0Cep2/Mf/dY0p7RYYNxffiugQYyqEo67VFZ71m2NyzxVu4l6CL9V9o0Mo2iHzZm3GWH3zXn0jyjsSwYShv/0QVTVOSKZ09PjVx5AMSZ7AWDane26oGFLz4ayu9zzuccmH/r+f1C74TYKI4oZl4HRUlGxE/c5lDIwJgLugVuP+Faje+Fe46t1L0ST3OA3pw69EUt6wGLeOKD6p55WqM6WmlCzPY98hxJIh9FdCTWEpvcyfTqQqyQZIkgEC/sN5DSm56DL5z6hc/zTqiz8O+fqeczZnjEPRBKmqLLFmLnRToyXJ+1Czb6p77qnq3/CZY+x9bNZkRN3rGocXGEejIr6iKvrVHLil9j0Lyd1PgauhNGBgDFtVq187HO7iW5EFxs0Zb2ftoeg3yGCEJHk/97LZp9Ca6kaPJmMsGf2GYOsxW7rAYHMv3+c7h9yQnO35jTCk5MFZvc/9OklZussvUftgYExEcSOl13jIKbmwHvkWzrqjHBbbydnKtqL6p1dgL9sCwB0QZ4z4LZf0IgohKW84TLlDkNrnLE0QqJ537ztdRROwBBgCLBmSPIGxXuZPdy6rrA0ifF7Uu0+I14Zq2SfJmKKfnfZrrzpI1Q+MVYu4qY4zaR77VqFWB0yaoMhnKLVuMbIAlBauf6yW3G0MDGndkVYwTbNdNlugBFiDVzalRLQMUavIkc8xDtTuaJBkbYYfshmyWRWUqm+A+A6llkMHxkGpPlPq9ZMNPktGUftiYExEcUOSjUgrOB+1mxehbteHyBp9Q6ybRDHgslWjesNf0LBnOQDAlD0AmWNuQXLX0TFuGVFikIxJ6HruXwAADQdWerYHLcKkyYLqLznkmx31o3N+STIEDGKlpqyvOmunXp9Z+9reZZ+kcIdSB8jsyupseXMQrq5arwrkZbPPKgmKA5LsDZ60Q6lNmqBaNiaHDDpzxs1D3a4PkdJrfIg9Q5PN6eh+0Tu6z2lGCBjMQNPQ5KSuoyGn5HmWeWpLLVmuqSVLX4XLPSdc9ZmWJG0mWBW8ajL6Pjd7WjKVR31jSr28mnrYPrU/VrchorhiGXABIBnQsOfj9pv3RHFBCIGGfV/i+H+vRsOe5ZCTs5E9di66nPs6g2KiFlLPp80ddjGSuoxC7plP+u+nzooGqKysDYz9s6HC5Wg+mfqgwMUUPRljVeAcIMjQvnZS6KHUkhzwPekOpRaqMFsIJPeaAABI6Xs2ACC51xkAAHP+cJ+q1Kp2yT5DqXX6CIDmJkRqv8no8osXW7xcU7ikAMPKDWndkH/WU8gcfSMAwDLoV23ZiLiqB+E7GgCAdui7+jmfG0eaERYtKAwmVJ83Q0qe99xcVjCmQgbGa9euDetEDocDf/zjH1vdICLq3AypeUjpPQGKrQYN+1fGujnUTlwNZSj/+l5UrH0Yiq0KaQXno9v5/0BawTTNsEUiiow602WydEHXKS/q1nDQZFfVWb0AwaXenNjmjLT2XIbAQ6mbfrcln6BDlzqwk6TQfxckWRNwawpuqc5lSGnK1mmy3QI54+5D94v/DVNGLwBA1phbkTN+PiyDLtVWpTaoi3qZtO3UZBkjX6YomjQ/O02W1N1HlsEz0f3ifyG13zlt2IjIi29lj53bRo2Bex3jpqHLppyBALyffTk5O+DnUjImaz5/IoLAuHn+sGZagzEFeWc9jS5TX4/8PVBUhQyMb7rpJnz99ddB92loaMD111+Pzz77LGoNI6LOK+3EiwAAdbuWxbYh1C4aD63F8U+vhfXIOhgtPZF3zvPIHnsnZHP0160k6mxMOSfClDsEWSfdAjlYUKLOjqmDgECFpnQCY1NGXwCAOXeI5rySpJ8RlnTmGAfKKPoFzOFkjDXtVQ0lVh2bWfg7QDZ6MqbNryUbk2FI9WbyjJbuSO1zpjujF6AqNWTfqtTqbHJsA2PIgQL25uHssntIbzhFzVpIkg36RduCSD1hiuc7QdTbY0xCWv9pyJ34KHLHLwAAZJ1yG5K6jkH+2c/6jDhQ/R4Yk7U3OiIIjPPOfh6p/X6BjJHXerYptkokdz8F5pxBrXg3FA0hA+PJkyfj1ltvxRdffKH7fEVFBa688kps2LABL7/8ctQbSESdT1KXQhgz+8FRvg328u2xbg61EeG0ofL7F1C+6l4othqkDZyOrtPe5LBpoiiSTWnoeu5fkDFkZtD9tNlgnyxo82O99X9VMk+6BenDr0bOGfer9kvWBFuSb6EtQFvMSjP8WFUQyzdDrJeFVs/7lOSAWWL1fqbMfug5839IH/JrzzZDcvACSIH6RDam+ATG6psK6vfd/sNl1UN01YWk/ALhtmybZIg4YwxI2nm3gUYfhH069dxgMyTZgJReZ3iKfRrTuiH/nOdgyurvc8NGe7NI/TmOZB60ObsAOePugyE5G7kTHoYpewBSTzi3Ne+Ioijkp+uZZ57BBRdcgNtvvx2ffPKJ5rlDhw7h8ssvx6FDh7Bw4UKceeaZbdVOIupEJEmC5cSLAQB1uz6IbWOoTThrD6Hks5tQv2sZ5KRM5E56DNkn38a1G4liRJMdU893lQNkQHUq8RqSMpE58hpNlV3JaNbOIZbUAWLTdp+qz97XVu0rtKW2dIdSq4M8yeBTGMt/+HCgc4WqDOxbpdr7ONmnurc6U64KkhHbeaSG1C6ex3590drAMwhJ9lmuKZzXkmTIqnWCWxsYa+eAB89eB5x3L8maz2bz8PPssXdF1JaU3hPQ9bw3YEjODr0ztYuQM+AlScJjjz2GpKQk3HXXXbDb7bj44ouxfft2/O53v4PBYMCSJUswYMCA9mgvEXUSqSdMQXXR62jY/yUyR98IQ1Jm6IMoITQe/hYVax+GcNQjqdtJyDn9Xs0XaSKKAU0FXvVarqr5tKqAMdybWJJs1gRbkmz0VJP2VKVWB62qIEiSTZ55y555nM3n0hny614v2QlAQJIMmnnQ2qrM+l9/s0+9A43Fy9xFIIORfYbVqtquDaDUmXJ1pjS2gbFRFRj7VQxvw6HUfhnjgEtzqXaRJBhSu6q3tLIJZgiX1fM46L7qn5n6Zy7Jmn5KO/FipPQ5SzNvmBJT2KXhHnzwQSQlJeHee+/Fjh078K9//QtdunTBm2++iW7durVlG4moE5JNqUg94VzU71qGhj2faoa5UWISQkHtliWo2fQmAIH0oVcgY+S1LK5FFAc0wasqY6xZfshk8W4Pd41eSdZm+XSGUqsDWM0wblUQ7ckYNw+/1mSHmwIsSXL/Twj3HGN10GpMgmXgJWjY9znSB12q29T0gRei3+m/QXl5HRQl8GJQmmV8VMO1ZUOydii1rB8YS6YUT3AWC+q5074Z41YPVQ5Gkn3mGIcIcpvaktrvHNgrtiO1z5ko++pPEAiy7FgohggyxprfA++NFcVe57fME4PijiGimul33303kpKS8Ne//hWjRo3C66+/jsxMZnGIqG1YTrwI9buWoW7Xh7AMntmmQ7yobQmnDRXrHkPjwa8hGZORfdrdSO1zZqybRUQ6fLO2nsfqQEIJtUJvE+EKPcc40FxgdQCanAVX/VFAcTbvqGmjcNnc2yRDU5CsnWMsJ2Ui6+Q5yBxzU6uXDNIMx1UHT6YUbVGmAEXHjBl9YLdWtqoNLZF10u/hrDsMWT2H2ue62mbLBUmye963+ucmGUIEuVLToUZkn3xb80Eteu3mzLQUQWCsvhEkJ6VDMqZAOBuh2Kp8stjUUYT8y3Daaaf5/ZIIIVBcXIypU6f67b9u3brotY6IOjVT1glI6lIIW0kRrEe/111ihOKfy1qF8lX3wV62BQZLD+RNfBSmrBNi3SwiCkA9lNq3QnVyr/GwHvoGxow+YZ1LuOx+Q6m9j5uGUmuqJKuf9waZhpRcbQjlu/axywZJlgFFhoA7A64+r8Gc6ff6LaW+caCdT52sfa/qx6rMu2XABago2YjUgmmtbkskLINmAAAa9nkL6voVw2qrodTN51WHFKGC3BAF1iJ67ebAOECVdT3qlRFkkwVJXUbBeuRbGNK6t2jtYop/If86XHHFFVxsmohiJm3gxbCVFKF+51IGxgnIWXsIZV/9Cc66wzDnDkXupMc45Iwo3mkCWfU8SyNyJzwMKI6Q2bZmwmX3D2J9Xkcz5DlAEJ3abzKsh75Bcq8JTftps9ACaMoYS57X8R1KHS3q4d6awFg2w1l7SLWj/lBqU84gdJ/+PuRY/S0MOPcZbTaUuvnnZQiSrdY5SGebzjGy0TuSQO80ssG7xnYkQ6nNqqkDsgHZp92Nuu3/hGXgJaj8/rngbaeEFDIwnjNnTnu0g4hIV0qv8ZBT8mA9sh7OuqOeJRUo/tnLt6Ns5Z+g2KqR3GsCcsfNY9VpogTQHEQA2oyiZDC7kyVhBsWec/kMn1Wd0P0fdcZY/bzqtVN6jUeXqa/DlNGvaT9VgKQuyNU8FVkyaALYaNIMn1a/hiQhucdpaNj3OSyDZ2qDNZ/1m0NVvm5LmroOfutDS+odVZlRCUDgeddhvCgAILX/VDiq9sCUMxBVP70S/BCdxXMkSfZrhSQbIYIExprPn2YERIjA2CebbkjOQmbhDe5/iFb0BcUtTtgjorgmyUZYBpwPQKBu14exbg6FyVayEaVf/gGKrRqWQZcgd/x8BsVEicJl9zzUFBmKZBhyUybSdyi1X3Vf+GQtA2SMIRlgzhnk+TuiCe48BblkCDQFcrIBKX0mwZDWLerrxKrX1ZWMKcg/5wWkD5sFc95wpPQ9G12nvYnM0TcFybzHuOBgoD6G/o0LANpMf0s0D5uXjcg6+fdI6z819IjUcDPG6iXAfDPg8Bm+r74REOIGjyElP+B+sSyeRm2HgTERxb20gvMByYCGPR+7C6xQXLMeWY+yr+ZCOBuRMfJaZI65lZWniRKIZErzPlYPR9YJOgJJH3o5ACCt/9Qgxbea5516AyBNEC2ps6w+QZL6nM0TVyVZVb3aAENKLrpdsAQ5p98TdrvDIaszxrIBSV0LkTlqNiRJgiRJMGX1d7dXDvS+Y/z1O8yh1Nrh6q37G+5X/RpA6DBEL3CW/J7zHdXg/zLqNbrTWCcUmQABAABJREFUgu+rYkjOQtdpb6L7Rf/0e06x1zedI8zq7JQQGBgTUdwzpOYhpfcEKLYaNOz/KtbNoSAaD65C2ar7IFw2ZI65BRnDr2KdCqIEkT/lVaT0PRvpQ3/j2aYZjhxBYJwx4rfoev5bSBtwYcAiVM3bZXOG98AA+/pSB1qeQa2aTKhB899oUg+lDrpfoCG8bblWcBgCtcu9QZ3dD5A9bgm9n0OLMsbeOeSeTToF3bSHeLcZUnKRPvQ3MOePhDEt9HKzpqz+MCRn+21XHHXuc6vmIVPia31pPiKidmA58WI0HliJul0fuDMQFHca9n2JinWPAkIg+9Q7kTbg/Fg3iYgikJQ3FEl5D0Co5k9qM2zhB8aSJMOU0dv9D03mVBWINQVhxrSuyBk3D8aM3qgv/lT1ekGmX2iyru72Sup5sG0YfGqqdgejDtQ1c5FjHBhrqoBrf6aST8a4+ZMgyabWzDAOcDOgBVWpVefzLPUUaIksvW2SjMzC64O/bhhEU2AsMzDuUBIiY3zkyBFcf/31GDVqFE4//XQ89dRTcLmCr59XVVWFO+64A2PGjMEpp5yC++67Dw0NDZ7n169fj5tuugnjx49HYWEhLr74Ynz88cdt/VaIqIXMXUbBmNkPjvJtsJdvj3VzyEfDga/dQTGAnHHzGBQTJTD1KA/1kjWRDKXWnlD1ddOgP9c2td9k9xxiTcY4yFBXWW+uqeQZSt2WWVnJYELe2c+iy9S/hdrR+1A9/DqCGwxtIWhbAmWMWzrH2FMYLcDPK9ihes97hsoHWAJM5+euziJLURrGnjH8t+7/DpsVlfNRfIj7wNjlcuGGG26Aw+HAu+++iyeeeALvv/8+Xn755aDH3Xnnndi9ezcWLlyIv/zlL/j+++8xf/58z/MbNmzAoEGD8OKLL+LDDz/EjBkzcOedd+Lrr79u43dERC0hSRIsA6cDAOp2/CfGrSG1xkNrUbHmIUAI5Jx+L1L7nRPrJhFRlGiyti0MjKUAc1p1g9dwA2Pd9KUqY6wXOEdRcreTYM45Meg+6oBMVmfeQ1RDbmvq4fGxnWPseTbA4yA/Q/W8dL1565p9o1hErIll0Az0uORDpPabHJXzUXyI+8D4m2++QXFxMZ5++mkMGTIEkyZNwm233YbFixfD4XDoHlNcXIzVq1fj0UcfxahRo3DyySdj3rx5+Oijj1BWVgYAuPHGG3H77bdjzJgx6NOnD6666ipMmDABX3zxhe45iSj2Uk+YAsmcjob9K+BsKIl1cwjuQlvl3zwICBeyT5vLLwlEHYzks8xQy04SYK6qbhYxQCVnX55lhKBdOsfzOA6+4kr6gXG0grOWkoIExlKAjLGkKoSW1O0k99OaNYkDBL7NP49ggbXvElF62/0OCRDs6s5l1g/2W0tOygi9EyWUuJ9jXFRUhMGDByMvL8+zbfz48Zg/fz727NmDQYMG+R2zYcMGZGVlYfjw4Z5t48aNgyRJ2LRpE84++2zd16qtrcXAgQNb1V5Zbn2RmeZzRONcHRX7KDwdrZ9kcyrSB16Ems2LUb/zfWSPuan15+xgfdRW9PrJevRHlK26H1AcyBl7BywDpsWqeXGBnyXqiITwTl0LulZsMJrAJEAQ5NmmDlyCzWoV/o8l9ePY/x5qKnqrg9EYt00yqeY7+w3rVgem+sFn9ugbkZ2XjSMbP0H1pjebnjcAwaY5Bp1j7Lt2ssv7OOD59Odv6w6lVvd3jG9KUHyL+09HWVkZcnNzNduag+SysjLdwFjvGKPRiMzMTE/G2Nfy5cuxZcsWPPLIIy1uq9EoIzc3epPws7PTQu/UybGPwtOR+injtFnYsu2fqN/9EU6YeBMMSdH5netIfdSWmvup/thmHFp1H6DY0evMucgfdVmMWxY/+FmiDkWVjRWKPciOgemtOQwECmK8zwt1VjhIu1RHt6R5bUZWB8YhlgZqT+olhoIOpQ6w3JRkNCM55wTNcHV1oS6t5jnf/kGu3g0CdVEtKdjPU3WsMTUfdp3tqp1Vh8V96EMxFLNPx0svvRRynnDzfN9Ad9aC3XHTe04Iobt9/fr1uOeee/DII4+goKAgaJuCcToV1NQ0tvj4ZrIsITs7DZWV9VCU1tQA7LjYR+HpmP2UgtR+k1Ff/CkOfP8eMobMbNXZOmYfRZ+6n2yV+3H8s99DcTQis/B6yL1+ifLyulg3Meba87OUkZECk4lrQ1M7UAWnmuHAkdAMjw3wuHmTOoDUDX6bngpRIzloUNVONAFoPAXGgebnujeoHquHKJt0HgfILuvRHUrdfLzqZxni8+F9Sn9esabitmejOmPMv5sUWMwC4yuvvBIXXnhh0H3y8/ORl5eHLVu2aLY3Z319s8LN8vLy/DLDTqcTNTU1fsd89913uPHGG3HPPfeEbE84ovllSFEEv6iHwD4KT0frJ8ugmagv/hS12/6NtBOn+1/YW6Cj9VFbsdeVomTFnVBs1bAMuhSWIZez33zws0QdiRAudDn3NViP/Yikbie36BzaJYCCB1OaYl9BMsaa8+gF0HE2lDrehvBKhmQIl9V/uyZoVq93rF4r2NS0rza7HPSvnm5RLL11isObY6wJ2iUZ3S5+D67646jdsgT+FYj0s+BEvmL2W5qVlYWsrKyQ+xUWFuL1119HeXm5J6hdu3YtMjIy0L9/f91jRo8ejaqqKmzZsgXDhg0DAHz77bcQQmDkyJGe/davX48bb7wRd955J2bObF3WiYjajynrBCR1PxW2o9+h8cDXrILcTpy2WpSuuAuu+uNI6TsZmWNujvlcOSJqY8IFc+5gmHMHt/wcAQpuSTqVozWZ1WAjA/UygwGrG8dG0HWYY6zHpR8EH6oOaIJPTTXx5nnJIW5yaE4VrCiWet1sWVYF2MFGhmoDaGNqFxhTu6BWd2f1YwbGFFgclOwLbvz48SgoKMDcuXOxfft2rF69Gi+88AKuuOIKmEzuX8xNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75ievX78eN9xwA6688kpMmTIFpaWlKC0tRVVVVazeKhFFIH2Ie05r7bZ/QgQZbkfRoTht2PPhH+Co2oOkbqcg57Q/RW09SCKKP2kFvwQApPQa3/qTBaxKrROkqALjYIFlyCGz8XDTLo6zk5IhSbNsk/4+esOnVUFygOyy7rl05vbqXkNCVS3XeS50pekgQ8eJVOL+02EwGPDaa69h/vz5uOyyy5CSkoLp06djzpw5nn0aGxuxd+9ezfJNzzzzDB5++GFcffXVkGUZ5557LubNm+d5funSpWhsbMTrr7+O119/3bP91FNPxVtvvdU+b46IWiyp6xiYsgfAUbkTtpIiJHcdHesmdVhCcaFizUNoPLIB5tzByJ2wQPuFiYg6nKxT70TmmJtbPq84gFDLP0kBqg377WdQB8bxWYgrmksDxYKkFwwDniA51LB4Dd2McfCh1PrzxPWGzauOMekV5FTfMEnsnwm1rbgPjAGgZ8+e+Nvf/hbw+bFjx2LHjh2abVlZWXj22WcDHvPEE0/giSeeiFobiah9SZIEy+CZqFz3GOq2/ZOBcRuq3vAaGg9+g6SsPsg760lIptRYN4mI2pgkSZCiFhSrghlZOzfU/4VDFFJqPo16yaE4DYwTPQhTD2vX3NBofhxJ1lY3++tffEsKs/iWz8k9jwyp+f7PGnTaTqSD4+CIKGGl9j0bhtR8WI98C3tlcayb0yHV7foAdTv+BTkpEwUXvQhDclasm0RECUc9h1S/mrDe83KwwDgpS2erpPswVozpPQC4s5hyUmaMW9MCmiyxOrhs/rmFqvasXiYpysW3NKfxntto6aZzSvW89cS+WUFti4ExESUsSTbCMuTXAIDaLYtj3JqOx3pkPap++DMgm5A36REkZfWOdZMohrZv344//vGPmDRpEkaNGoVp06Zx6hGFR10HQp0RDlaQCb7DpbXSTrwQyT3PQO6kJ/RH18bBV1xDcja6nr8Y3S96B0ldCpEx6nfIn/JqrJsVNvWUGd1Ma6j54lLwIcytm2Os/zppJ0xFUvdTkDPuft3zMGNMwcT+rwYRUSukFfwScnI2Gg+shKPmYKyb02E4qvag/JsFgFCQc9qfkNxlZOiDqEPbvHkzcnJy8PTTT+O///0vbrjhBjzzzDN45513Yt00SiBSiKHU6mA5udcZAIDUfpP99pONKcib9ChSep4W4IXiIGUMwJTRC7I5HZIkIWPYFUjKGxrrJoUt4Bzj5m0hi2+pA2O9kMP/Z6QNloP8DNU3QzTz0pOQf9bTmtUqNNnqOC6IRrHH2yZElNBkYzIsg3+FmqK/onbr28g57U+xblLCczWWo2zl3RDOBmSMuEb3Syl1Ppdeeqnm371790ZRURE+//xzXH755TFqFSWEQBk7nWDJkOYdCmvK6I0el34UoKCSl2iKkrh8XJSpA0q9gouhim9JkieA1f3ZhCq+FeYcY80SX3o0Bd8YGFNgDIyJKOFZTrwItVveRsPez5Ax4moY0/znGFF4FGcjyr6+F66GEqT2+wXSh18V6yZRHKutrUVmZuvmTspy64KZ5uNbe56OLpb9ZEjK8DxWF0IyGIyQfNqTnDcIueMfhDnnRMiyBDk5A6FIaI6/JPe8WMUBV2N5xO+VnyUtdTArq+d+N/WPOkusnzFWBbZC8e/X5iH2kgEQrqbXVA+llnR+FpLnOc+rGExBf2a+7WyPny8/S+GJt35iYExECU82pcEy6BLUbl6E2q3vIvuU22PdpIQkhIKKtY/BUbED5vyRyB57FzMwFNCGDRuwfPnyoKtGhGI0ysjNDZ4NDFd2dnSXFeqoYtFPjuw81DY9tqSnoarpcW5ehu6cz9zcCyM6/+GmP1MGowxDdl9Yy3dDaSxp8Wers3+WDjT9NznZhPqmxympSZ6fYXP/pFmSUd60zWQ2w958gqZAV5Ikz4hnk0ny+3mUyAIOuEcRCJc7MDaYjGhefNVoMvodc0SWoAAwGCQ4m7alpqXo/qyb30dSSjIamx6nW0zIitLfnHB09s9SuOKlnxgYE1GHkD7oEtRtfw/1xR8jY/iVMKTkxrpJCae66HVYD62G0dITuRMfDj08jTqEl156CS+//HLQfb7++mt06+YdibFr1y7cfPPNmDNnDk4//fQWv7bTqaCmpjH0jkHIsoTs7DRUVtZDUfSW7SEgtv1kc3mLaNU3uDyPKyqtUTm/0pR5dDkV5J7+J5SsuAvZY+eivLwuovPws6RltTk8jxsbvY8rK+uRnZ2GhgbvNqdLdaBqCHUzu83m9/NwOpqOVw2ZdqnO43IKv2Oafy4ul/cFGq2uoD9ru927b01NHVwRfi5agp+l8LRnP2VkpMBkCj6UnoExEXUIclIG0k68CHXb3kXt1neRddItsW5SQqkv/hh12/4JyZyO3DOfgCERlxahFrnyyitx4YXBM3T5+d61QXfv3o2rr74aM2fOxA033NDq14/WlyFFEfwCGoZY9JMpv9D939whmrmo0WqHJMkQAITLBmP2QHSfsQySJLX4/PwsNRGq4cop+UjpPRGmnIGevhFCPaJIp2iWasSRUFx+fSqah0/LJojmnK4qSBbQ+xkKn/8G2k/dHNU5Xf7taEv8LIUnXvqJgTERdRjpg2eifucy1O1ahvQhM2FIzQ99EMFWshGV3z8PSAbkTngIpgwuy9SZZGVlISsrK6x9d+3ahauvvhoXX3wx/vCHP7Rtw6jDMGX0RrcL34EhJQcNB76O+vmNGf1gL90EZ+0hACzC1RYk2X198NnofayexysZ0DRI2vu8UPxP2hQYaypFa4pvhflzDFVQS3V+odcOoiZcromIOgxDSg4sg2YAigM1XNc4LM66IyhffT+gOJF1yh+Q3HV0rJtEcWrXrl246qqrMG7cOFxzzTUoLS1FaWkpKioqYt00SgBGS3dIhqQ2OXfW6Jvc/z3lj21yfoL+0lrq5ZokvWrjqoyxbmCsNO2uWhZKU+k6zDAlxH6agl6KK/CO1OkxY0xEHUr6kF+jbtcHqN/9X6QP+TWMlu6xblLcUhz1KPv6Xii2GlgGXQrLgPNj3SSKY8uXL0dFRQU++ugjfPTRR57tPXv2xIoVK2LYMkoobZCxM+cNQc9ffxmgMjJFhe5yTAHWB5ZUQ6kl2f0z1wlIRfM2TQE29drH4WWMQy7BJBuRWXgD6nb8Bym9x4d1TuqcGBgTUYciJ2UgffBM1Py8EDWbFyHntLtj3aS4JBQXKtY8DGf1PiR1PxWZo2+MdZMozs2ZMwdz5syJdTMo0SnO0Pu0AIPitqW7prAmY6zuf8n7X8kACMUzn1jDM8dYJ6gGoDuwVS/jGzJjbET60MuRPpTrrVNwHEpNRB2OZfClkJMy0LD3Mziq98e6OXGpuuh1WI98C2NGX+Se8YDukilERNGmGyBRnFIVQ9INPvXnGKszxp6gV+fn7skYS+FnjA1pXQEApswTVLuFCGd404TCxMCYiDoc2ZSG9CG/AYSCmp8Xxro5cad+939Rt/09yEkZyJv0GGRz+63pSESdHOd4JgyhCoz1hitLmkJZquJbTcGtJEmQ5CDL/nkyxur5yeostH+YknXy75E24EJkn/Yn1THBA9+QQ62JmjAwJqIOKW3gxZBTctF4YCVsZVtj3Zy4YTte5K1APf4hGNN7xrpJRNSJiDYaSk1tQITIGKszupqMsfdB7qTHYcrqj+yxf4Ivz+gBnaDa50QeSfkjkH3qHyGb0vRfWyV77FwYUvJgGThd93kiXwyMiahDko3JyBx5HQCg+qdXIUTs18eLNWftYZR/8wAgXMg+9Y9I6loY6yYRUSfTXPwojcFK3ErucZr7v13HeDfqDGvWVBnXBM7eqtRJ+cPQddqbMGcX+B1vyuzf9N+++ucJMUQ6fdgsSIZkpDS111dawTR0n/5vGFLzgp6HqBkDYyLqsFJPOBemrALYyzaj8WD0185MJIq9zluBevBMpBX8MtZNIqJOyGjpgZ6X/Q/ZJ98W66ZQADnj5yP/Fy8jpd9kzza9TL+cnOV5LOnNDQ5RVTp3wkNIHzYLWWNuCbBH8OMzR81Gj5mfQk7KCLofUbgYGBNRhyXJBmSOuRkAUL3hdQiXPcYtig2hOFG+5iE4a/YjucdpyCy8IdZNIqJOrK3WM6bokI3JSMofrlmnGIrDbz+DKjDWz+4GD2yNaV2QOWq2NrCVIluuSQpzSSeicDAwJqIOLbnbSUjuOQ6u+qOo2/F+rJsTE9Ub/gLb0e9gzOyHnDPu57ImREQUEd2MsVmdqdWZG9yioFVd0IthCrUvfuKIqMPLHH0jIBlQs/kfcDWUxbo57apux/uo2/EfbwVqdcESIiKiMAiXf8Y44PrDkneOccSkgP8ganMJERgfOXIE119/PUaNGoXTTz8dTz31FFyu4OX+q6qqcMcdd2DMmDE45ZRTcN9996GhoUF3359++glDhw7FjBkz2qL5RBRjpow+sAy+FMLZgKqfXol1c9pN46E1qPrpZUA2IXfiYzBaesS6SURElIgCVBPvMvWvyJ/yCtRBbPOjlgxzlhB+8S2iaIv7T5zL5cINN9wAh8OBd999F0888QTef/99vPzyy0GPu/POO7F7924sXLgQf/nLX/D9999j/vz5fvvV1dXh7rvvxmmn6Ve0I6KOIWP41TCk5qPxwFewHv0h1s1pc/by7ahY8xAgFOSMuw9J+cNj3SQiIkpQQmeOMQCYcwYiKW+YdtizJyBuScaYWWKKHWPoXWLrm2++QXFxMRYuXIi8vDwMGTIEt912G5577jncfPPNMJlMfscUFxdj9erV+M9//oPhw91fBufNm4cbbrgBc+fORV6et2z7Qw89hKlTp8JkMuGrr75qdXtlufW/0M3niMa5Oir2UXjYT15yUhqyT/49ylbdj6ofnkf38xdCMiR1yD5y1h1F2df3QLhsyBpzEyz9zmr1OTtiP0Ub+4iIOhrLoF+hbse/kNJnUog91X/3WjGUWnMMl1mk9hX3gXFRUREGDx6sCWbHjx+P+fPnY8+ePRg0aJDfMRs2bEBWVpYnKAaAcePGQZIkbNq0CWeffTYA4JNPPsHOnTvxyCOP4PXXX291W41GGbm5llafp1l2NucChsI+Cg/7yS0n5zzYDyxHzb41cOz5N7qf5q3O3FH6yGmtwa5P7oFirUTeiEvRa/x1Ua3a2VH6qS2xj4ioo8g66RZkFs4OXUlc7zrTorhYdZBgYEztK+4D47KyMuTm5mq2NQfJZWVluoGx3jFGoxGZmZkoK3MX3jl69Cgee+wxvPnmmzCbzVFpq9OpoKamsdXnkWUJ2dlpqKysh6Lwj4Ie9lF42E/+LIVzUHvwBxz7/k0gbyySc0/sMH0kXDaUfDkXtoq9SO55OlJG3ISKivqonJufpdDas48yMlJgMrG6OBG1vfCW19KLgjmUmhJLzALjl156KeQ84a+//hpA4Mn7wbIges8JITzb586di+uuuw4DBw4Mt8lhieaXIUUR/AIaAvsoPOwnLzm1GzJG/Q7VP72M8jWPodt5rwNIS/g+EooT5d88BFtJEUzZJyJn3P0QMEBE+T0lej+1B/YREXU6UQpoJUl9w49/R6l9xSwwvvLKK3HhhRcG3Sc/Px95eXnYsmWLZntz1tc3K9wsLy/Ps08zp9OJmpoazzHfffcdfvzxRzz99NMAAEVRIITA0KFD8dZbb+Gkk05q0fsiovhnGTQDjYdWw16yEdWb/4G8s2+LdZNaRQgFld89A+uhb2BM74W8M5+EbEqNdbOIiKiziFYFaYkjYSh2YhYYZ2VlISsrK+R+hYWFeP3111FeXu4JateuXYuMjAz0799f95jRo0ejqqoKW7ZswbBhwwAA3377LYQQGDlyJADgo48+0hzz9ttv44cffsBzzz2H3r17t+KdEVG8kyQZOaf9Ccc/uRY1m5egfug5gKlfrJvVIkIIVG94DQ17lsOQkoe8s5+BISUn1s0iIqJOJUpDoFWBsRBKdM5JFKa4X65p/PjxKCgowNy5c7F9+3asXr0aL7zwAq644gpPRepNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75icPHDhQ87/c3FyYzWYMHDgQKSkpMXu/RNQ+jJYeyBx9MyBc2PfpPVDstbFuUovUbl2Cuu3vQTZnIO/sZ2BM6xbrJhERUScTrSKPmmWfOJSa2lncB8YGgwGvvfYaZFnGZZddhrvuugsXX3wx5syZ49mnsbERe/fuhcPhXWPtmWeeQf/+/XH11Vfj+uuvx0knnYQFCxbE4i0QUZxKG3ABUvucCXvNEZSvexIiwSpg1m57FzUb34BkTEbemU/ClNkv1k0iIqLOKFoBrSbAZiEual9xX5UaAHr27Im//e1vAZ8fO3YsduzYodmWlZWFZ599NuzXmDNnjibYJqKOT5Ik5Jx2F5zVu9F4cDXqdvwH6YMvjXWzwlK79V1UF70GyZCM3EmPw5w3JNZNIiIigjcwbl1gK3G+MbWzuM8YExG1JdlswQnTngBkE6o3/AXWYz/GukkhqYPivDOfQHLX0bFuEhERdWbqjHHz6KvWDq+WGaZQ++Injog6vdQuQ5Az9g5AuFC++gE4qvfHukm6hBCo+fn/NEFxUtfCWDeLiIjIo1WTklRTmpgxpvbGwJiICICl4DykD/0NhKMeZV/fA5e1KtZN0hCKC1U//Bk1P/8fJGMq8s56kkExERHFB3UF6abHUmuXcGJgTO2MgTERUZOMUbOR0nsiXHVHULZybtxUqhYuGyrWPoz6XcsgJ2cjf/KfkdRlVKybRURE5KYpXhmdOcYMjKm9MTAmImoiSTKyT78X5i6j4KjYibKVd0NxNMS0Ta6GMpR+cTsaD6yEwdIDXX7xMsw5J8a0TURERFo6aw63Ni6WGRhT+2JgTESkIhuTkTfpcZjzhsFetgVlX90Fl606Jm2xl23D8f/dCHv5NpjzhqHLL16GMb1nTNpCREQUiGa5Q8/j1g6lZphC7YufOCIiH7IpFXlnPgFz7lDYy7ag9PPfw1l/vN1eXwiBuh3vo+SL30NpLENq/2nIP+d5GFJy2q0NREREYVPPMUZ0qlKz+Ba1NwbGREQ6ZHM68s55Fsk9ToOzZj9K/ncjrMc3tPnruhorUP71Paj68UUAAlkn/R7ZY++CZDC3+WsTERG1XmvqUquOZcaY2hk/cUREAcjGFOROfARpAy6EYq1E2Yo7ULNlMYTijPprCaGgbvdHOP7xb2E98i2MGb3RZcqrsAyaAam1a0ESERG1JVXG2DusurXrGDNjTO3LGOsGEBHFM0k2IvvUP8KcPxxV3z2Hmo1voPHAKmSPvQPmnEFReQ1byUZUb3gN9vJtACSkDZyOzMIbIBuTo3J+IiKiNqUzx7i1yzW1erknoggxMCYiCkPaCVNgzhmEyu+ehr10M0qW34iUPmciY/iVMGX1j/h8QnHBduwH1G77J2zHfwIAmHIGIfuUP8CcOzjazSciImozAjpzjFuLc4ypnTEwJiIKkymzL/Inv4j64o9Rs+lNNB74Co0HvkJS19FI7fcLJHc/FYbUvIDHC8UJe/k2WA9/i4b9X8DVVNDLmN4bGcOvQkrfs7k8BRERJR6hEwy3tvgWr4fUzhgYExFFQJJkWAZcgNR+v0D97v+ibvu/YDu+AbamwlwGSw+YMvrAkJoPyZgCKE64bDVw1h6Es3ofhMvmOVdS1zFIG3ABUnpPgCTzzzERESUq9VDq5uxxywJjU85gOCq2w5w3ovXNIooAv4kREbWAbExG+uBLYRk0A7aSjWg88DVsx3+Cs+YAXHVHdI+RTGlIyh+J5B5jkdLzdK5JTEREHYNmuaZWnQj55zwLR+VumPNHRumcROFhYExE1AqSJCO562gkdx0NAFAcDXDWHoLLWgnhbIQkmyCb0mBI7wFDSj4rTBMRUcejGUrdfJ1r2Vxj2ZSGpC6jWt0kokgxMCYiiiLZlApzzsBYN4OoTR04cAAXXXQRzGYz1q9fH+vmEFGMaYpvNd8A1pt3TBTHWAediIiIwuZ0OnHXXXfhpJNOinVTiCheqINgzzJLDIwpsTAwJiIiorC98sor6NWrF6ZNmxbrphBRvFDNMZaahlKLFsw7ZpKZYolDqYmIiCgsP/30E5YtW4Zly5bhyy+/jMo5Zbl18+6bj2/teTo69lNo7KPw6PWTpnxG0z8kRN6XktQx+p+fpfDEWz8lRGB85MgRzJ8/H+vXr0dqaiqmT5+OO+64AwZD4PXNqqqq8PDDD+Orr76CwWDAlClTcN999yE1NdWzj6Io+Pvf/45//etfOHLkCLp06YLf/va3uOqqq9rjbRERESWMuro6zJ07F4888ggyMzOjck6jUUZuriUq58rOTovKeTo69lNo7KPwqPup1mxAfdNjWZahAJBlhP37faDpv0lJxqj9TYgH/CyFJ176Ke4DY5fLhRtuuAF5eXl49913UVJSgj/96U9ISkrCbbfdFvC4O++8E6WlpVi4cCEcDgfuvfdezJ8/H0899ZRnn8ceewxr1qzBPffcgwEDBqCyshKNjY3t8baIiIjiwksvvYSXX3456D5ff/01/vznP+PMM8/EGWecEbXXdjoV1NS07roryxKys9NQWVkPReE4zEDYT6Gxj8Kj1082q93zvCLc2T+XS0F5eV1Y58w6eQ6qfngJ5hMuDvuYeMbPUnjas58yMlJgMgVOqgIJEBh/8803KC4uxsKFC5GXl4chQ4bgtttuw3PPPYebb74ZJpPJ75ji4mKsXr0a//nPfzB8+HAAwLx583DDDTdg7ty5yMvLQ3FxMd555x189NFH6N+/PwCgd+/e7freiIiIYu3KK6/EhRdeGHSf/Px8rF+/HseOHcPbb78NABBCQFEUDB06FE8++SQuuOCCFr1+tL4MKYrgF9AwsJ9CYx+FR91PuvOJhRJ2P1oGXoK0ARdBko0dqu/5WQpPvPRT3AfGRUVFGDx4MPLy8jzbxo8fj/nz52PPnj0YNGiQ3zEbNmxAVlaWJygGgHHjxkGSJGzatAlnn302VqxYgV69emHFihWYPXs2JEnChAkTcOedd8JiafkQjmiMkY+38fbxiH0UHvZTaOyj8LCfQkvUPsrKykJWVlbI/f7+97/D4XB4/v3ll1/izTffxJIlS9C9e/c2bCERxT29qtQRVtKS5LgPS6iDi/tPYFlZGXJzczXbmoPksrIy3cBY7xij0YjMzEyUlZUBAA4ePIjDhw/jiy++wNNPPw273Y5HHnkEd999d8ghZYFEc64UED/j7eMZ+yg87KfQ2EfhYT+F1lH76IQTTtD8e/PmzZBlGQMHct1uIvIGwZJnS+wzgESRiFlgHO6cJgCQJP2774G2B3pOCOHZLoSAw+HAk08+ib59+wIA5s+fj1mzZqGsrEyToQ5XNOZKAZyXEA72UXjYT6Gxj8LDfgot3uZKERG1G/VQ6hZmjIliLWaBcbhzmvLy8rBlyxbN9uasr29WuFleXp5nn2ZOpxM1NTWeY/Ly8mA0Gj1BMQAUFBQAcFfBbklgDERvrlTzufgFNDj2UXjYT6Gxj8LDfgqts/TRjBkzMGPGjFg3g4jigNAEwc3JqcjXMSaKpZgFxuHOaSosLMTrr7+O8vJyT1C7du1aZGRkeIpm+Ro9ejSqqqqwZcsWDBs2DADw7bffQgiBkSNHevZxOp04ePCgp+jW3r17AQA9evRo7dsjIiIiIuoULCdeBOuh1cgYeS3qiz9xb2TGmBKMHOsGhDJ+/HgUFBRg7ty52L59O1avXo0XXngBV1xxhaci9aZNmzB16lQcP34cgDvzO2HCBMybNw+bNm3Cjz/+iIcffhjnn3++JxN8xhlnYPDgwbjvvvuwfft2bNq0CQ8//DCmTJnS4mwxEREREVFnk9z9ZPT41SfIGH6Vaig1M8aUWOI+MDYYDHjttdcgyzIuu+wy3HXXXbj44osxZ84czz6NjY3Yu3evplrmM888g/79++Pqq6/G9ddfj5NOOgkLFizQnPevf/0r0tPTcfnll+Pmm2/GyJEj8fjjj7fr+yMiIiIiSnSyKRUAIDUNpWa+mBJN3FelBoCePXvib3/7W8Dnx44dix07dmi2ZWVl4dlnnw163q5du+KVV16JShuJiIiIiDq95gK4zBhTgon7jDERERERESUIybtgE1EiYWBMRERERERR0pwxZmBMiYWBMRERERERRUdz8S1mjCnBMDAmIiIiIqLoYsaYEgwDYyIiIiIiigqpKWMsmDGmBMPAmIiIiIiIooRVqSkxMTAmIiIiIqKoSCv4JQDAMuiSGLeEKDIJsY4xERERERHFv7SB05Hc41QYLD1j3RSiiDAwJiIiIiKiqJAkCcb0XrFuBlHEOJSaiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqDIyJiIiIiIioU2NgTERERERERJ0aA2MiIiIiIiLq1CQhhIh1IzoKRRFwuZSonMtkMsDhcEXlXB0V+yg87KfQ2EfhYT+F1l59ZDDIkGWpzV+nrUXrusnPZnjYT6Gxj8LDfgqNfRSeeLpuMjAmIiIiIiKiTo1DqYmIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsA4zixZsgRnn302RowYgZkzZ2LTpk2xblK7ef3113HJJZdg9OjROP3003Hrrbdi3759mn1sNhsWLFiAsWPHYvTo0ZgzZw7Ky8s1+xw5cgTXX389Ro0ahdNPPx1PPfUUXC5XO76T9vPggw9i0KBBWLx4sWcb+8jt2LFjuOOOO3DqqaeisLAQM2bMQHFxsed59hNQV1eH+fPnY8KECRg1ahTOP/98LFu2zPN8Z+yj77//HjfeeCPGjx+PQYMG4auvvtI8H60+Wb9+PaZPn47hw4fjF7/4habfKTK8bvK6GQleNwPjdTM0Xjf9dajrpqC48fHHH4thw4aJf//732LXrl1i3rx54pRTThHl5eWxblq7uPbaa8V//vMfsXPnTrFt2zbxu9/9Tpx11lmisbHRs88DDzwgJk2aJNauXSt+/vlnMXPmTPGb3/zG87zT6RTnn3+++O1vfyu2bt0qVq5cKcaOHSteeOGFWLylNrVixQpx4YUXivHjx4u33nrLs519JERVVZU466yzxN133y02btwoDhw4IFauXCmOHj3q2Yf9JMS9994rpkyZIr777jtx4MABsXjxYjF48GCxfv16IUTn7KOVK1eK5557Tvzvf/8TAwcOFCtWrNA8H40+OXDggBg1apR4/PHHxe7du8Vbb70lhgwZItasWdNu77Oj4HWT181I8LoZGK+b4eF1019Hum4yMI4jl156qXjooYc8/3a5XGL8+PHijTfeiGGrYqe8vFwMHDhQ/Pjjj0IIIWpqasSwYcPE8uXLPfvs3r1bDBw4UGzatEkI4f7lHDJkiCgtLfXs8/bbb4uTTz5Z2O329n0Dbai0tFRMnDhRbN++XZx11lmeCzz7yO3pp58Wl19+ecDn2U9uv/zlL8Vrr72m2TZlyhTxxhtvsI+E8LvAR6tPnnrqKXH++edrXuv2228X119/fVu+nQ6J100tXjcD43UzOF43w8PrZnCJft3kUOo4YbfbsWXLFpxxxhmebbIsY9y4cSgqKopdw2KotrYWAJCZmQkA2Lx5MxwOh6aPCgoK0KNHD08fFRUVYfDgwcjLy/PsM378eNTU1GDPnj3t1/g2ds899+DKK6/EoEGDNNvZR24rVqzA8OHDMWfOHJx++umYMWMGPvjgA8/z7Ce30aNH48svv8Tx48chhMDq1atRUlKCcePGsY90RKtPioqKNOdo3qez/q1vKV43/fG6GRivm8HxuhkeXjcjk2jXTQbGcaKyshIul0vzoQCA3NxclJaWxqhVsSOEwOOPP45TTz0VBQUFAICysjIkJyfDYrFo9s3NzUVZWZlnn9zcXM3zzX3avE+iW7x4MRoaGnDttdf6Pcc+cjt48CDefvttFBQU4M0338Qll1yC++67D19++SUA9lOzefPmoU+fPpg4cSKGDx+OW2+9FY8//jiGDBnCPtIRrT4JtE9VVRUcDkdbNb/D4XVTi9fNwHjdDI3XzfDwuhmZRLtuGqN2JmoTQghIkhTrZrS7hx56CDt37sQ777yj2a7XF0KIkPsE255IiouL8eqrr+K9996DLOvf1+rsfQS43++IESNw++23AwCGDBmCzZs345133sE555wDgP0EuL8sbtu2DX/961/RtWtXrFu3Dvfeey+6desGgH2kJ1p94ruP7zmo5Xjd5HVTjdfN8PC6GR5eNyOXSNdNZozjRHZ2NgwGg9/dooqKCr+74R3dww8/jBUrVmDRokXo2rWrZ3teXh4aGxtRV1en2V/dR3l5eX592Pxv3ztNiWjjxo2oqKjAlClTMHToUAwdOhSHDx/Go48+iqlTp7KPmuTl5aF///6abQUFBTh69Kjn+c7eT1arFc8//zzuvvtuTJo0CYMHD8Y111yDSZMmYdGiRewjHdHqE719ysvLkZWVBZPJ1FbN73B43fTidTMwXjfDw+tmaLxuRi7RrpsMjOOE2WzGsGHDsHbtWs82RVGwbt06FBYWxq5h7UgIgYceegifffYZFi1ahN69e2ueHz58OEwmk6aP9u7diyNHjnj6qLCwENu3b9eUgV+7di0yMjL8/uAnosmTJ+PDDz/EsmXLPP/r0qULrr/+erz22mvsoyajR4/G/v37Ndv27duH7t27A+BnCQCcTiccDgcMBoNmuyzLUBSFfaQjWn1SWFiINWvWaM69du3aTvO3Plp43eR1Mxy8boaH183QeN2MXMJdN6NayotapXnZiffff1/s/n/27ju8rer8A/hXV5L3HrHjFSdO4jjOcDbZJKyQsqHQllX2LvwKpEBDSRhljzJadqDMAiVQ2hBGQghkk8Rx4kw7cbz3nlr394ct6V75ypJsyZKt7+d5eFCurq6Ojq4lvfc95z0FBeKDDz7oV8tOPPTQQ+KMGTPEHTt2iNXV1Zb/bJedOPXUU8Vt27aJ+/fvFy+77DLFku/XXnuteOjQIXHz5s3iKaecIj7//PNeeEWDQ1pdUxTZR6Ioirm5uWJWVpb42muviUVFReLnn38uTpo0SdywYYNlH/aTKF5xxRXieeedZ1l24uOPPxYnTpwofvnll6Io+mcftba2igcPHhQPHjwojh8/XvznP/8pHjx4UKyurhZF0T19UlxcLE6ZMkV88sknxYKCAvH9998XJ06cyOWa+oHfm/ze7A9+b/bG703n8Huzt+H0vcnA2Me899574qmnnipmZ2eLl1xyibhv3z5vN2nQjB8/XvG/f//735Z9Ojs7xVWrVomzZs0Sp06dKt5+++2y8u6iKIqlpaXi9ddfL06ZMkWcM2eO+MQTT4gGg2GwX86gsf2CZx91++6778Rf/epX4qRJk8Tly5eLa9euld3PfhLF6upq8U9/+pO4YMECccqUKeLZZ58tvv/++5b7/bGPtm/frvg59OKLL4qi6L4+2bZtm3j++eeL2dnZ4mmnnSZ+/vnng/Yahxt+b/J701X83lTG703H+L3Z23D63lSJIit+EBERERERkf/iHGMiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIvGbdunX4/PPPvd0MIiKiIYHfm0Sew8CYiLxm/fr1WLt2rbebQURENCTwe5PIcxgYExERERERkV9TiaIoersRROR/7rvvvl5XvW+//XbccccdXmoRERGR7+L3JpFnabzdACLyT7feeivKy8vR0tKChx56CACQmJjo5VYRERH5Jn5vEnkWA2Mi8oq0tDRERUVBFEXk5OR4uzlEREQ+jd+bRJ7FOcZERERERETk1xgYExERERERkV9jYExERERERER+jYExEXmNVqtFV1eXt5tBREQ0JPB7k8hzGBgTkdeMHj0aR48exffff4/9+/ejqqrK200iIiLyWfzeJPIcrmNMRF5TX1+PBx98ELt27UJTUxPXYyQiIuoDvzeJPIeBMREREREREfk1DqUmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msabzdgODGZRBiNJrccS6MRYDC451jDFfvIOewnx9hHzmE/OTZYfaRWCxAElcefx9Pc9b3Jc9M57CfH2EfOYT85xj5yji99bzIwdiOj0YTGxvYBH0cQVIiNDUNzcwdMJtENLRt+2EfOYT85xj5yDvvJscHso6ioEAiC2qPPMRjc8b3Jc9M57CfH2EfOYT85xj5yjq99b3IoNREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+bUhFRh/8MEHWLp0KSZPnoxLL70UeXl5fe7/9ddfY9myZZg8eTLOPfdcbN68udc+BQUFuOmmmzB9+nRMnz4dv/nNb1BfX++pl0BERDRsPPTQQ8jMzMT777/v7aYQERENyJAJjNetW4fHH38ct912G9auXYvMzExcf/31doPYvXv34u6778Yll1yCL774AqeffjpuvfVWFBYWWvYpLi7G5ZdfjrFjx+LDDz/E2rVrcd1110Gr1Q7WyyIiIhqSfvjhB+Tm5mLEiBHebgoREdGADZnAeM2aNbjssstw8cUXY+zYsVi9ejUCAwOxdu1axf3fffddLFq0CNdffz0yMjJw5513YuLEifjggw8s+zz//PNYtGgR7r33XkyYMAGjRo3CGWecgfDw8MF6WURERENObW0tVq1ahaeeeooXk4mIaFjQeLsBztDpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK6666TbVuwYAE2bdoEADCZTNi0aROuv/56XHPNNTh8+DBGjRqF2267DQsXLux3WwVB1e/H2h7DHccarthHzmE/OcY+cg77yTF/6qP7778fV155JTIzMwd8rIH2lz/1+0CwnxxjHzmH/eQY+8g5vtZPQyIwbmhogNFoRFxcnGx7bGwsTp48qfiY2tpaxMbG9tq/pqYGAFBXV4f29na8+eabuOuuu7BixQps2LABN910Ez777DNMnDjR5XZqNAJiY8Ncfpw90dGhbjvWcMU+cg77yTH2kXPYT44N9z56//330d7ejmuvvXbAx3Ln9+Zw73d3YT85xj5yDvvJMfaRc3yln4ZEYGyPKIpQqexfYVC6z7zNZDIBAE477TRcffXVAICsrCzs3LkT//rXv7B69WqX22MwmNDc3OHy42wJggrR0aFoaGiDySQO+HjDEfvIOewnx9hHzmE/OTaYfRQREQytVu3R51BSWFiIv//97/jkk08gCAOfjeWO702em85hPznGPnIO+8kx9pFzfO17c0gExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/6OhoaDQajBkzRrZPRkYGysrK+t1Wd76pJpPIPyYH2EfOYT85xj5yDvvJseHcR/v27UN9fT3OPPNMyzaj0YjHHnsM77//PtavX+/yMd3VV8O5392J/eQY+8g57CfH2EfO8ZV+GhKBcUBAALKzs7F161YsXboUQHfGd9u2bZZsr62cnBxs2bIFV155pWXb1q1bkZOTIzum7VDsoqIipKWleeaFEBERDWGnn346Jk2aJNt23XXX4aKLLsKFF17opVYREREN3JAIjAHgmmuuwYoVK5CdnY0pU6bg3XffRWdnp+WLeMWKFUhISMDdd98NALjqqqtwxRVX4O2338bixYuxbt06HDhwAI899pjlmNdeey3uuecezJo1C7NmzcKGDRuwY8cO3HvvvV55jURERL4sIiICERERsm1arRbx8fFIT0/3TqOIiIjcYMgExsuXL0d9fT1efPFF1NTUICsrC2+++SZiYmIAABUVFbL5TtOnT8ezzz6LF154Ac899xzS09PxyiuvICMjw7LPsmXL0NzcjFdffRWPPPIIMjIy8Oqrr/ar8BYRERERERENTSpRFL0/oHuY0OuNaGxsH/BxBEGF2Ngw1NW1+sR4e1/EPnIO+8kx9pFz2E+ODWYfRUWFeKX4lru543uT56Zz2E+OsY+cw35yjH3kHF/73hx4SUkiIiIiIiKiIYyBMREREREREfk1BsZERERERETk1xgYExERERERkV8bMlWpibzBZDKgraMcbe3lMJp0gEqF4IBYhIYkIzAg0tvNI5IRRRFtHeVo76yCTtcMlaBGgCYc4aGpCAqM9XbziIiIiHwWA2MiG126JpRUfo+Kmm2obdgHk0mnuF9E6Ggkxs/BqOTliAgdNcitJOpmMhlQVbcTxRXfobpuN3T6JsX9ggJjkRg3B0kjFiExbjZUqqFf0ZiIiIjIXRgYE/Vo66jAocJ3UVK5wRIMazVhiI2ciNCQZGjUIRBFAzq66tDUUojmthNobjuBo0UfIyFuDiaNvQFREeO8/CrIX5hMBpws/waHj/8T7Z2VAABBpUVM5ESEhaQgQBsJEUbodM1obj2B5rYiFJWtQ1HZOoQEJWLsqEswJuU8qNWBXn4lRERERN7HwJj8nl7fioOFa1BY8gVE0QCNOgTpqcuRmngaYiInQhCU/0zaO6pQXPEdTpR+haraHaiq3YExKedj8vibodGEDPKrIH/S2HwMu/OfQmPLUQBAQuxspCcvx8j4eXYDXZ2+BZW123Gy7GtU1+9G3pGXUXDyM0wadyNSEpdCpVIN5ksgIiIi8ikMjMmvVdbuwJ78p9HRVQONOhjj0q/EuFGXQutEYBsSnIAJY67A+PTLcKLsfzhY8DaOl36JqrpdmDN1NaIjxg/CKyB/Iooijp38BAeOvQZRNCI2ajKmjL8VMVETHT42QBuOtJFnIG3kGWhqOY78gjdRUbMFO/c/jOKK7zA9+14Ecx4yERER+SkGxuSXTCYD9h/9BwqKPwMApCaehimZdyAoMNrlYwmCFhmpFyB5xGLsPfQMyqt/xo87b8fMSfchJXGpu5tOfspo7MLu/KdQUvk9BCEAUzJvR0bqBVCpXF9cIDJ8DOZN+ytq6vdiz8FnUFm7Dd9v/T1mTnoAI+PneqD1RERERL6NyzWR3+noqsPmX+5CQfFnCNBGYm7OY5g95S/9CoqlggKjccrURzFp3M0wmnTYkbcahcVr3dRq8mcGQzu27L0fJZXfIyQoAafOfgVj0y7qV1AsFR8zDafNfQsZaRdBp2/G1r3341DhOxBFk5taTkRERDQ0MDAmv9LUchw/bL8JdY37ERWRiaWnvI6kEQvcdnyVSoXM0b/F3JzHIAgByD38Ao6d/MRtxyf/YzB04Oc996Kmfjciw8diyZxX3TpMX6MOQs6EO3HK1EegUQfhYOEa7Mhb3b08GREREZGfYGBMfqO2YT9+3HUHOrpqkDbyLJw66yWEBid65LmSRszHvGmPQy0EIu/IKygq+9ojz0PDm8lkwPa8h1DXeAAxkROxaOYLCAqM8chzJScswpI5ryI0OAllVZuwZc+foDe0eeS5iIiIiHwNA2PyC5U12/HT7j9Cb2hF5ujLMXPS/R5fpiYhdibm5jwGlUqNPQefRlXtLo8+Hw0voihid/5TqKrdgYjQ0Zg//SkEaMM9+pwRYek4dfbLiAwfi5r6Pdi86y506ZTXRSYiIiIaThgY07BXVbsL2/Y9CJNJhymZt2PSuBsHbWmahLhZmD7xXoiiEdv3/QXNrUWD8rw09B0t+hDFFd8gOGgE5s/wfFBsFhQYi8Uz/4b46Bw0thzFz7vvhk7fMijPTUREROQtDIxpWKuu24OtuQ/AZNIhJ+v/MG7Urwe9DenJZyNrzO9hMLZj+76/wGBoH/Q20NBSVfcLDhx7E2ohCPOnPYGQoBGD+vxabRjmTX8S8dHT0NhyDD/vvgd6feugtoGIiIhoMDEwpmGrtmE/tu69vydTfAcyUi/wWluyMq5GQtwctLSdxJ6Dz0AURa+1hXxbe2c1duY9DMCEGdn3IjI8wyvt0KiDMG/aXxEbNRkNzYfx0+4V0Bs6vNIWIvKe9o4qGI1d3m4GEZHHMTCmYam57SS27r0fRlMnJo27GeNGXeLV9qhUAmZN+jNCghJQUrkBRWX/9Wp7yDeJogm/7H8MOn0TMtIuQurI073aHo0mBPOnP4WYyImoazyA73++HyaTwattIqLB09pejq9/uhQbd9zsluMZTTq0d1S55VhERO7GwJiGnc6uOmzZvQJ6QwvGp/8GmaN/6+0mAQACAyIxe8pDAATkHXkFbR0V3m4S+ZiC4s9Q05CLyLAMTB5/i7ebAwDQakIwb9oTCA9Nw8myzcg99CJHPBD5icbmowCA5tbjbjnejztvx9c/XYqWtlK3HI+IyJ0YGNOwYjC0Y8ue+9DeWYmUxKWYNO4mbzdJJjYqG5mjfweDsQO7DzwBUTR5u0nkI5pbT+DAsTcgqLSYNfnPUAsB3m6SRWBAJBbOeArBQbEoLPkCR4s+9HaTiGhQuPc7qqH5SM//D7n1uERE7jCkAuMPPvgAS5cuxeTJk3HppZciLy+vz/2//vprLFu2DJMnT8a5556LzZs32933hhtuQGZmJn744Qd3N5sGiSgasSPvYTS2HEVcdA5mTrofKpXvneJZGVcjMiwDNQ25KCz5wtvNIR8giibszn8KJpMOE8de57V5xX0JDUnC8lP/BrU6GAeOvY6Sig3ebhIReZinRoeoVGqPHJeIaCB8L2qwY926dXj88cdx2223Ye3atcjMzMT111+P+vp6xf337t2Lu+++G5dccgm++OILnH766bj11ltRWFjYa9/333+fQwOHgfyCt1BZuw3hoaMwN+dRn8q4SamFgJ6gXY38Y2+go6vO200iLztR+l/UNx1EdEQmxqdf6u3m2BUfOxFzc1YDELA7/0k09AyzJKLhSXRzxthMhcFZMpGIyBVDJjBes2YNLrvsMlx88cUYO3YsVq9ejcDAQKxdu1Zx/3fffReLFi3C9ddfj4yMDNx5552YOHEiPvjgA9l+BQUFeP311/HXv/51MF4GeUhJ5UYcOfEBtJowzM3566Ct+dpfURHjMDbtYhiM7dh/5O/ebg55UWdXAw4cew2AgGkT7/b5TMrI+FMwefzNMJq6sG3vA+jsUr44SURkj69/zhGRf9J4uwHO0Ol0yM/Pxy23WIvRCIKAefPmITc3V/Exubm5uO6662TbFixYgE2bNsmOe/fdd+P+++/HiBHuWSdUEAZ+FdR8DHcca7iS9lFD81HsPvAEAAGnTF2FyPBU7zbOSdnjrkVJ5UaUVH6PMannYkTsNLc/B88lx7zdRweO/QN6QyvGpl2M2KgJXmmDM6T9lDn6MjS1FqC4/FvsyHsIi2c9D0HQermF3uftc4nI3TxWB0PFvxEi8j1DIjBuaGiA0WhEXFycbHtsbCxOnjyp+Jja2lrExsb22r+mpsby7+effx7jxo3D2Wef7ZZ2ajQCYmPD3HIsAIiODnXbsYaroGAdtm9aCaOpC6dMuxPZE5Z6u0kuCMOCmXfj+y33I+/o33DJ2R9BrfZMcMFzyTFv9FFFdS5Oln+DkKA4LJzzBwQGuO/zw1PM/XTmwlX48vsy1NTl4eDxV7B4zkovt8x38O+NhjJRNGH7vgcRHzMDWk2IR55DNXQGLBKRHxkSgbE9oihC1cdVR6X7zNu2b9+O9evX48svv3RbewwGE5qbOwZ8HEFQITo6FA0NbTCZOPdZiSCoEBkZiK9/uAet7ZVIG3k6UkZchLq6Vm83zSVRYfMwImY6quv34Jd9H2LsqIvdenyeS455q49EUcRPO58BAGSPuxGtLSq0wnfPX6V+mjP5YXy/7QYcKvgcoUHjMDrlV15upXcN5rkUEREMrZbDUcn9GlsKUF79M8qrf8bM7Ps99Cz8PiLPa20vRXn1FoxNuxgqlRomkw5qdaC3m0U+bEgExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/Xbt2oaKiAqeccopsn1tvvRXz5s3DW2+91a+2uvPHkMkkMpjpwy/7X0d1/V5Eho/F9IkrIIqeq6DpSZMzb8OGbdfjYMG7SB15FrQa92ebeC45Nth9VFq5EfVNBxEVPg6piWcMmfdH2k+BAXGYM2U1Nv9yF/YcfB6R4eMRFT7Wyy30Pv690VAmmgzW2x4qviWKRo8cl0jq+63XwmjqglYTgrrGAzhZvh5nL/oUIUHumT5Jw8+QGMsSEBCA7OxsbN261bLNZDJh27ZtyMnJUXxMTk4OtmzZItu2detWy/6/+93v8J///AdffPGF5T8AWLlyJVavXu2Jl0FuVFm7E3sOvAWNOgSnTF09pK8ARoWPRdrIM9Glb8TRoo+93RwaBEaTDgeOvQEAmDz+Vp9cVsxZcdFTMGncjTCZdNi+7y/Q6303601EjkmDYU/NMTZJgm8iTzGaugAAre3lOFm+HgBQXfeLN5tEPm7I/Bq75ppr8PHHH2Pt2rUoLCzEqlWr0NnZiQsvvBAAsGLFCjz77LOW/a+66ips3rwZb7/9NgoLC/HSSy/hwIEDuPzyywF0zzceP3687D8ASEpKQkpKyuC/QHJaR2ctduY9CkDEzEkrEBYy9N+v7LHXQRACcKzoE3R01jp+AA1px0u+QFtHORLj5mJE7HRvN2fAxo26DEkjFqCtvQy/5D85JEduEFE3aTbXU5ldk8jAmAaP9DweyheiyfOGzNmxfPly3HfffXjxxRdx/vnn49ChQ3jzzTcRExMDAKioqJAV1po+fTqeffZZ/Otf/8L555+Pb775Bq+88goyMjK89RLIDUwmA3bufwRdukZkj/s1UkcOpWJb9oUEJ2Bs2sUwmjpx6Pg73m4OeZDB0I7Dx98HIGDy+Ju93Ry3UKlUmJF9H0KDk1BevRkFxZ96u0lE1E/SC1vuDGClx+VQahpM0vOYS4VRX4bEHGOzK664AldccYXife+9916vbWeffbZLFaePHDnS77bR4Dh0/F3UNuQiKmIc5s74I5oa9d5ukttkjr4cJ0q/QlHZOmSOvhyhwSO93STygMKSL6DTNyFt5FmICEv3dnPcJkAbjlOmrsYPO2/D/qOvIjoiC3HRk73dLCJykTRodeeQZ5Ool9xmxpgGjyxjPHRyguQFPDtoyKiq3YXDx9+DRh2CuVNXQzOE5xUrCdCGY+yoX0MUjT0ZRRpu9Ib2nnnkAiaMucrbzXG7qIjxyJnwB4iiETvyVqFL1+jtJhGRi0wmveJtnb4F32+9FkVlXw/4uKKJGWMaPPKh1MwYk30MjGlI6Oisxa793fOKZ2Tfi7DQoT+vWMnYtIuh1YThZPnXaOuo9HZzyM2Ol6ztyRafgfBheg6nJ5+DtJFnorOrFrv2P+ax4j1E5BlGSWZXlGR2T5R+habWQuzOf6Jfx5VlopkxpkEkHfnAOcbUF54d5PMs84r1jRiTegFSEofHvGIlAdpwjE27GKJoxJETH3i7OeRG5myxSqVGVsbwyxabqVQqTMv6I8JD01FVt5PnMdEQI88YGxS3u+LYyc9QUvG97CKZP84xNhq7sGnn7The8qW3mzIkuHMYv8g5xuQkBsbk8yzzisPHYcr4W73dHI8bO+rX0GhCUVS2Du0dVd5uDrlJYfHn0OmbkTbyjGFRSb0vGk1w9zJqQhDyC95GTf1ebzeJ3OS1117DxRdfjGnTpmHu3Lm4/fbbUVRU5O1mkRuZTDrrbdl8Y9cDY1E0Ie/IS9i5/xFZYOyPyzVV1u5AXeN+7D30nLeb4vMOFb6Dtd+fhubWIrccz+SBSusNzUexededaG0vdcvxyDcwMCafJp1XPGfqqiG9XrGzrFljA7Ntw4TR2IWCk5+ie27xld5uzqCICEvHtIn/B8CEnXkPo7Or3ttNIjfYuXMnLr/8cnzyySdYs2YNdDodrr32WnR2dnq7aeQm8gDYGswaJQFzf44lQlqV2v8CY4DL2DnrYOEaAHA4n71L14jahv0Ojydfgsw959623D+jpiEXvxzo39QC8k0MjMln9ZpXPMyzbFLjRv0aanUwisq/RmdXg7ebQwN0snw9uvSNSEk81a/O41FJy5CevBydunrs3P+oXw6fHG7eeustXHTRRRg3bhwmTJiAJ554AmVlZTh48KC3m0ZuIg2ApUssGY2uX/yQF9ySDMsWjWhtL0Nl7Y5+tnIoUg34CMM90277HWES+74Y893Wa/DjrtvR0Hy0z/1MJun8dvd8D5mM3W3r0jW55XjkG4bUck3kP/xpXrGSAG0ERif/CgXFn+F4yVpMHHutt5tE/SSKRhw9+S8AwPj033i5NYNv6oQ7Ud90CDX1u3Ho+HuYmPF7bzeJ3KilpQUAEBkZ2e9jCMLAAgbz4wd6nOHO2X4SRXsZY2tg7HRfq6xBiMHUJnkSI775+XcAgGUL3kd4WJpzx/MwT55L0mP25/jVdXvw4667MGvy/UhPdn4pUk/wRD8VnPwcew+9gNPnvmHZZjLp+3yOLl33SKTm1kLERmXa3U+E9IKCyS3tVquDAH3334XS8fi55Bxf6ycGxuSTrPOKx/vFvGIlY0f9GoUla1FY8gXGj/4dNOogbzeJ+qG8+me0tZchPmY6oiPsf3EPVxp1EOZMXY2N22/CocJ3EBc1GSNiZ3i7WeQGoiji8ccfx+zZs5GRkdGvY2g0AmJjw9zSnujoULccZ7hz1E9BFdbiRAGB1h+rarU1uHD2PWttb7ceN9gacAcGWQcsmlQViI2d2H3bZEBrezUiwpJgNOrQ1lGLiLAkp57LnTxxLjW3B1tu9+ec/2n3OwCAXfufwIwpv+51f1NLMcqrdmNCxgVQqQYnyHBnP326/gUAQFH5vy3btFqTU30VHNz354ggWM/d0FCNWz5zAgOC0d4JiKKuz+Pxc8k5vtJPDIzJ51jmFWtC/WZesZLQ4ESkJJyKksoNOFn2NTLSLvR2k8hFoijiyImPAPhnttgsInQUpk+8G7v2P4qd+x/BaXPfQnBgrLebRQP08MMP4+jRo/joo4/6fQyDwYTm5o4BtUMQVIiODkVDQxtMJs7jtMfZfmpv75Tctga27R2tltt1da1wRlt7o+V2ba21mGR7e5d1e10lIkO7j7dlzwMor/4ZS+a8gn2H/476pnycteCfiAhLd+r5BsqT51JLi7Vfne0/qS5d9+MFQav4+M++6V7RQq8LQnLCQrvHMZkMqKnfi7joKf3+feXJfurSWYPY9o52p/qqpaW1z/06O9sl+zp3TMe6+06nVz4eP5ecM5j9FBERDK2276rkDIzJp8jmFU+8F2Ehyd5ukleNT/8NSio34NjJTzEm9TwuMzDE1DbkoaH5ECLCxiAhdra3m+NVaSPPQG1DHk6U/gc78x7GwhnPQhD4FTRUPfLII9i4cSPef/99JCQkDOhY7voxZDKJ/AHqBEf9JJ2PaTRas7wGY5dkH+f6WW+0zhHV6a3Bg7RCdWdXveV45dU/AwCqan9BfVM+AKC24SDCQkY59Xzu4olzyWSSVuV2/dimnvdCELQoLt+IppZCZI+73nK/eX5uc2sJRsbbP/6RE//CgWOvIW3kGZg1eaXL7ZC1yRN/c7J57Xqnjm80GfrcTzp32Wjse19nmS8qmEw6B39P/Fxyhq/0E4tvkc8wmQzYmbe6Z17xhUhJXOLtJnldVMR4xMfMQFtHGcqqfvJ2c8hFR4us2eLBGtrmy6Zm3o7I8LGobcjFocJ3vN0c6gdRFPHwww/j22+/xbvvvovU1FRvN4ncTFpwyyT2b+1iy7Fk6yBbb4uSucsGY+8RA4KgldweHhfQ+rsOtOXxPe+FoNJgR94qHD7xnuKSjiYH1cMrarYCAIorvhtQezxFWr1c6bV0dtXheMmXspUObPdrbD4KvcE6p11+Trun+JZa8M/RjMMdA2PyGQcL30ZtYx6iIjIxJdM/5xUrMQ/BPXbyEy+3hFzR0laMytptCA6MR2riad5ujk9QqwNxytTV0KhDcPjE+6is3entJpGLVq9ejf/85z949tlnERoaipqaGtTU1HC5pmFEGrQOOJiTPF4aZEsDFSUqlTUYFlTDJDAe4EUG84UFtRAgOWbvIM/598z3L9aaFJZW2nPwOew99Bzyjrxs3U9y0aWh6TA2bL8BP+76g+RR0qXC3BMYSy/e0PDBwJh8QmXNdhw58QG0mjDMmbJK9sHv7xJiZyE8NA31TfloaD7i7eaQkwpL1gIAMtIuHDYZD3cIC0nBjOwVAETs2v8o2jurvd0kcsFHH32ElpYWXHnllViwYIHlv3Xr1nm7aeQm0mHOA89yKmeMIXkOJdLfAKph8vk50KWWzO+FNCBTqVQoq9qMjq46yzbjMAqMVQptbGjqXhpOukST9KJDVd0vAICmlgLLNtEDgTENT8Pj04aGtPbOauw68BgAYEb2nxAWMvgVKH2ZSqVCRupFyD38AgqLP8fMSfd7u0nkgN7QjpNl6yEIAUhP/pW3m+NzUhKXoLZhHwpL1mJn3sNYNPMFXjwYIo4c4cW54c6tgbF0HWNReSi1UvJY+nmgGsI5HFEUkV/wBmIis236wgSVyrXXZQ2MrX1TUb0F+468hMCAGOt+Dtb+Nb+/Q2J6j5N9JL3o0Kmr672D2P/AuK7xAIIC4xAanGh7UJeOQ0PD0P20oWHBZDJgx75V0OmbMTbtEiQnLPJ2k3xSWtJZ0KhDUFK5EV26Rm83hxwoLv8GBmM7UhOXIjAgytvN8UmTM29FdEQm6hr3I7/gLW83h4gslAPj/mTapNlL28DQcht9H3coZ/iaW4/jyIkPsC33AZvsuesXHMyPF1TWjHFjyzEA1vV8+3tsX6WUMbZSngvf2dU7MJbNW3bhfOrsqsOmnbdh/U+XOf0YGtoYGJNXHTj2Buqb8hEdkYXJ42/2dnN8llYTglHJZ8Nk0uFE6X+93RzqgyiKKCz5HACQkXaxl1vju9RCAOZMWQ2tJgxHiz5ERc02bzeJiGCTMZZmefsRoMrmGMuGEvedwTOZBhZE+gqD0Tr3Xvo6jA4KZClRyhgrDc923F/mvh8KGWPn2ijrW6NS30rONxeGtNsmIrp0TThYsEZW+Gsg6hoPYOf+R2WFwsi7GBiT15RXb8Gxkx93zyue+hALGTiQkdq9jvHx0i8HPFeJPKe6fjda2ooRE5mN6Ijx3m6OTwsNGYkZ2X8CAPxy4K+KFVaJqP9q6vch78g/XApqRTvDTvvzvSMdPi0vviXJGJt6t00aOCoVYBo6pJlK6+vo0jXgu62/R1GZ83PzrX1m/emuVNDL2aC772xs93mQe+gFlFR873Qb3UJy/rltGL1k1LMrGWPRZrj0noNP49Dxd7A7/ym3NGvTzttQUvEdjpd84Zbj0cAxMCavaGkrxS8H/goAmDnpAYQGj/Ryi3xfeGgqEmJno6OzGhU1W7zdHLKjsLi76NbYtIu83JKhITlhEcam/Ro6fTN25K3mRR8iN9r8yx9w7OTHKK36EfuPvo73Pl+GusaDfT5GOrRZGkT0J0CVZ4ytx1JaPkcaLOsNrZLHDd3PBOlrlvZFQfG/0dx6Arvzn3T9mKK9LHw3pQsNsvvNfd+TjbXXv82tx7vrQOx/xOU2uo975vHK57Q7HxgbjfJq+/WN3Wtrt7QXu6Vd5HsYGNOgMxjasT13JfSGVmSOvhxJI+Z7u0lDhnlobkHx515uCSlp66hARc1WBAXEIDlhsbebM2RMHn8ToiOyUN+UjwPHXvd2c4iGnbb2Mhw+/j7aOqpxovSrPve1lzEW+xUY28kYywIVQ8//rduMxi7Fxw01RpPkdZikGeNG1w/WE8jK+kZp2LTD0cfW97e08ges/f40lFX/1Gsvbw3vlZ8bfVcvt3L0ouXndHPbSZRW/uDwqNKh8KIoQm9oBwBo1MFOtss5Adootx6P+o+BMQ0qURSxO/8pNLedwIjYWcgee523mzSkJMbNRmhwMmobctHcWuTt5pCN4yVfAjBhdMp5nBrgAkHQYs7UVdBqwnHs5L9QXv2zt5tENKx06Zuc3lc+fFo5e+wsWcZZGsSJvTN40ueVZupcmRPqa2SvQ/KadTrn3w8z89Bn6TGVs/jOB4l7Dz0PAMhXuCApDeoHk/QCgmJ2V3HesYji8m/xy4HHFY9pW2n9uy1XYUfeKnR01vTZFmlfG42dMJq6/61Vh8guIHV21eNE6X+dGt1QVrUZ/910AZpajlu2qdUBOHz8PZwsW+/w8eRZQyow/uCDD7B06VJMnjwZl156KfLy8vrc/+uvv8ayZcswefJknHvuudi8ebPlPr1ej6effhrnnnsucnJysHDhQtx///2oqen7j4QG5mjRxyit+gEhQYmYPflBqFRqbzdpSFGpBIxOOQcAcKKMRbh8iclkwMny9VCp1Bidcq63mzPkhAYnYtbkBwAAvxx4HK3t5V5uEdHwoXMiQ9nWUQGdvhn2CmOJdoZCKyko/jcKiv8tG5Ytzz5LC3wpBMbSTKuTmWpRNCLvyCuorN3p1P6DQfo6pH3hyoUKq57AWDr/2k6hrfLqLdhz8BnFjKu19JYAgyUDGtprP+UiVp4nKlw0ceYxuw48hpPl69HaXtbnMds7qy23HWXFDcYO677GdsttjSYE0r+T/II3sefg007NPd6+70F06RqQX/Cm7HnyC97EL/nKgT0NniETGK9btw6PP/44brvtNqxduxaZmZm4/vrrUV+vXBlu7969uPvuu3HJJZfgiy++wOmnn45bb70VhYWFAIDOzk4cPHgQt9xyCz7//HO89NJLKCgowG233TaYL8uvVNX9ggPHXodaCMTcnEcRGBDp7SYNSaOSzoZKpUFx+TeyIVXkXZW129Gla0BC7GwEB8V5uzlD0sj4eRif/lvoDa3YtvcBVuokchOjbKmk3kGtwdCO9T/9Bt/8fIXdwMTebSX7Dr+IfYdflAXTsvnGCseyO5TaQRauqeU4Sis3oanlOI6d/ARb9tzrM5WspYGVNPNtDkhdoVIYSq30PqigwrbcB3Ci9CtU1+/u85jmYerdgZ6cweh6G93B3gWUvkgvFiitDy2/6CK9sNB38C/NGEvfM0HQyNpmzv4WV3zjVHu722nNfHvrIgT1NmQC4zVr1uCyyy7DxRdfjLFjx2L16tUIDAzE2rVrFfd/9913sWjRIlx//fXIyMjAnXfeiYkTJ+KDDz4AAISHh2PNmjVYvnw5xowZg5ycHDz44IPYt28fqqpYGdXdWtvLsTPvYQAmTM++F1ER47zdpCErKDAaSSMWQKdvRln1ZscPoEFhri6anrzcyy0Z2rLHXo+E2NlobjuBnXmPDOk1TIl8haMKxE2t3T/sdfomu4Gxs0s3SQMPUbYmsvISTOZjmfqZMf5+2zXYkfcQWtpLLNukAak3SYNY+dBk54pKdXY14Ofd96Kmfh/MGWN58S2lOcZ9B1zWe61t0CoFxv0I3t1BNscYzgXGHZIssNJcePmQfmufGB1cQLG33JYoyv8GlPrPMWsIZlvki7xH43gX79PpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK66+TzVxcsWIBNmzbZfZ7W1lao1WqEh4f3u62CMPB14czHcMexfIFO34Kte/8Enb4J40b9GunJZw74mMOtj1yVkXY+yqo24UTpV332p7/3kzPc0UedXXWorN2OwIAoJCfMG5b9PVjnkiBoMTdnFTZsvxmVtduQX/AGpmTe4viBPoB/bzRUtbRZg0qlYc7d253L5On1LdbH2ym+JQ/u+s4YOzvHWBrI+Uola+nrkBVycjIwPlL0AarqdqKqbic06u7gy96Qc2eZp7BJ31uNOshy+2DhOwgLTvJe8S3R9eJb0gsASnPhRTuBsaORBfJgWL4Ot+zikEKW2jHrOSAbci8aOc3Qi4ZEYNzQ0ACj0Yi4OPnwxNjYWJw8eVLxMbW1tYiNje21v705xF1dXXjmmWdw3nnnISSkP1d+AI1GQGxsWL8eqyQ6uvecj6HGaNJj3Q/3oqWtGGlJC7Bk3goIgvv+4IdDH/VHTMxC5B5KQW3DPgiaGkRHju5zf3/tJ1cMpI9yD34OUTQic8yvEB8f7cZW+Z7BOZfC8KulL2LtN1fhyImPkJQ4AZljhs68bf690VAjHTarVDEasAmS+8jk6SSBsaxQlIOMsd3hrqIe9U2H0NB0GBlpF8qeS3pMX1z7WNp/BkOH9A7Z9raOckSGZ/R6vPT1KQ0Rlh3TcmjnRtmooLKEZub/6w3tOFS4BkD36B1vkI9SsP9apBcX5Gtk9x0YOzNH21FbRNEkC9odjciwc3Rrm2wuoGg1/A7xliERGNsjiqJsjL4tpfuUtun1evzf//0fAGDlypX9bo/BYEJz88CH7wiCCtHRoWhoaIPJ5J413LxBFEXsOfgsyip3IDJsDKZPXImGBvcMbxoufTQQo5J+hf1HX8Oe/f9CTtbtivuwnxwbaB+Jooj8o91TOhJjz0BdXauDRwxNg38uxeCUqaux+Zd78OP2RwFTHOKiJw/C8/bfYPZRREQwtFpmFchJkt8+SkGjLMMqKg9/FmXVgk1obS9FSFAiBEH+U1K6BrF0SLP0eZXmG8uzegbZ7R923AwAiI+ZhoiwdMt9XboGy22j9Ll8JGMsGx5uZ7js5l/uREPzESyd8xqiIyfI7lMLgX0eX2nIuL2h8PuPvgq1OqjPwFHpgkX37b5/b7uTvTY4+xil995kJzA2OphjbLJzToowye5TumjhiHSuv2wuMwNjrxoSgXF0dDTUajVqa2tl2+vr63tlkc3i4uJ67V9XV9drf71ej7vuugulpaX45z//ibCwgWV83fljyGQSh3Qwc+zkJzhe8h8EBsRg3rQnoBaC3f56hnofDUTayGU4cOxNnCxfj+yx10Ottv8F6s/95Kz+9lF940G0tJ1EdEQmwkNHD/t+HsxzKS56OqZO+ANyDz2PLXsewKmzX0F4aOqgPPdA8O+NvOlE6X9x+Ph7WDLn79aN0rWJlQIH6bxgJ+YYV9XuwM79jyBt5BmYNVmeUNDp7QTGJuW5sUrFt+xlAG0DJYM002aQBuG+UXxL3n/SdZyt70dD85Ge/x/tHRirAyT/6h2YKgfGvYdat7aX42jRRwCAyPCxdh9jr0CaSdRDrQro9Th3sT9837mh1PJzq3ewKysCZ+xfxli0ubAjb5vrFw1kUwdMNudx39dDyIOGRPGtgIAAZGdnY+vWrZZtJpMJ27ZtQ05OjuJjcnJysGXLFtm2rVu3yvY3B8UnT57EO++8g6ioKA+03j+VVf2IvCN/hyAEYN60vyIkOMHbTRp2ggJjkDRiIYtweVlReXfRrVEsuuURGakXYGzar6HTN+Hn3fegs6vO200i8ml7Dj6N9s7KnnXVu8kDj74zxrKCWXaC0uKK73v+/53CsSQZObtDqXsX8rK35rGsAJJNYCwbquyDax+Ldl6TUvEtpYvb0rm/jqotW7f1nqvd1FLQ+35JBticvZQVTrPbdveyHZZsOzLBGdL2KWWB+xqm33fblC8MmUw6txaGlBVp85HCcf5qSATGAHDNNdfg448/xtq1a1FYWIhVq1ahs7MTF17YPd9kxYoVePbZZy37X3XVVdi8eTPefvttFBYW4qWXXsKBAwdw+eWXAwAMBgP+8Ic/4MCBA3jmmWdgNBpRU1ODmpoa6HQsmz4Q1XV7sDPvEQDA7MkrEROZ5eUWDV/m9XJPlH7l5Zb4J4OxEyWVGyEIAUhNPM3bzRm2pmTeipTEpWjvrMSWPX/iMk5ELpL/qFcaairN0DpeR9bQx9+gyc68Wvl8ZYWMMZSHrUovhtlmA6Xtszds25tM0kyltC8VlsySBsFWrmcilap7yzP0CmsbWzLG1v61l+13p7Kqzfj8u6Woqd9rfS4H84WVOMoY26tKrfS6TCYDquv2wGjskr9/Jmm/6mUXkPo3lFp67nYq3qbBNySGUgPA8uXLUV9fjxdffBE1NTXIysrCm2++iZiYGABARUUFBMF6Yk6fPh3PPvssXnjhBTz33HNIT0/HK6+8goyM7uIGlZWV2LhxIwDg/PPPlz3XP//5T8yZM2eQXtnw0tB8BNtyH4BJ1GPaxLuRnLDY200a1kbETEdocBJqG/ahpa1kSAwzHU7KqzbDYGhDauJpCND2v5o99U2lEjBz0v3o6mpATcNebM99EPOnPwlB0Hq7aURDgqM1iO0Nc7a3rJC+jzVuZev12pn3K69W3RMYy4JI5UDHXH34aNG/UFLxHaZOuENyn+cDOVfZDr+1blcKTntvc7TOrhJplt6ciZQvtaU0YkDf6/n0+rZe97vbrv2PARCRe/hvkudylDHuuVggOTWNDofOS4ct9x0YHzv5CQ4cew2jU86TzfEWbTLGThYWt0v6tyF9z0TRiJa2UgQGRCBAGzGwJyGXDZnAGACuuOIKXHHFFYr3vffee722nX322Tj77LMV909JScGRI0fc2j5/19JWgi27V8Bg7ED22OsxJuU8bzdp2FOpBIxKPhsHC97CyfKvMWncjd5ukl8xr13MYdSepxYCMDfnUfy46w+ort+NHXkPY86Uh3oV/iGi3mQZ4z4CI0A+rNOevta4NdnN4vY9b9jemsdGhWGy+492z5+uazwoeS7psG3fWP/c3vBwpfdAaQiwdJuzWUmlgEsa1Ck9j7lt0vukRdTKa7bgWNEnmDftMUSE9b0Khis0mmAYdZ2yUUCOi2+JPfcpX3RwRD6suvtxjS0FCAyIRnBgLCpquqdtnij9DzJSrVXQewfskqrY/bhwIHufJHOMu3T12PzLnQjQRuLcJf9x+bg0MENmKDX5ttb2cvy0+4/o0jciI+1iZI5WvoBB7jcqaRkAFU6Wf+PWOS/Ut7b2CtQ07EVIUAJGxEz3dnP8glYbhvkznkZoSDLKqzdj14HHeM4ToTvLdeTER7JtssyYrOCQ0lDqvgMnW8rZTT0Mxk6beb92MsbSDKZlHWPHw11NJh30doJy2yD8ZPl6FBavdfhaPMnePF3lIbyOtjk3rFqWMbZkgiXvr8KFD/NFC3lgbA1Wcw89j7aOMvy8Z4VTbXCWumf4uDQId7gsmGU+dN/96QyTSYequl+wYdt12NUzBVCjDlZuiyzrbrR70cNZSpl9AGhqPQEA0OmbXD4mDRwDYxqwtvYK/PTLXejorEbayLMwNfP2QSvrT0BI0AiMiJ2Jzq5aVNXu8nZz/MbJ8q8BdF+Y6M/8Iuqf4MBYLJr5AkKCR6K0ciN+OfAEg2PyS/VNh1BVuwuiaETekVdw4NirsvtlyyZJMlKiaMTBwnfw8+57LQGuvHiR44yxStV7qbBvt1yFLzecJQvC7M37VSpqJBtKbW99YpPOZjkoa5Asnc9sMLThlwOPI/fwC04XcPIEe+vgOp8xlgRcThei6j1sWvHCh3S5IEsAbX0+aT8HBXRPW+zorHaqDc4yB6HyqujK54l1m6nXY/o7rtlk0qO+MR8AUNPQPc9ZLZnrrVTh29wGe1XU7WluLUJnl3V5MVmBOZM1SO7skq+oQ4OLv+ZoQNraK7D5lzvR3lmFtJFnYuakPzFI8IL0pO4pA0U9wRp5liiacLJ8PQBgVJLydA3ynJCgEVg083kEB41AccW32HPwGQbH5Hd+2HEzft5zD1rbKyzbjLLli9oVt5tEAw4VrkFV3U60d1R1b3NQvMiWUiavraMcANCpq7cey87SOEpVqeXVsO3MMTbpZK9LdlsShEuHWNtbP9iT9D1LVtnLKirP81Ya4iytoOxsISrpY3oCY4WMsbS/zfPCbS9CeJpa6L0ElKO52OZ+cMda1d39Iw+qpdNz7BXIEkWT7EKF0ajcV1t+eRpHiz5BW0clvtt6NTbusE53k62nLPn7bHfzxQdyDSdnUb+1tJXi59139wTFZ2DmpPsUryKT5yWNWACtJgwV1VvQpWtCYECkt5s0rFXX70F7ZxXio6chNGSkt5vjl0KDR2LRzOfx4647UVS2DkZjF2ZOeoBzjskvSH+kN7cet9zukgy/NMiGakqXMupd5EoeODkOiPoaOtreUaG4n72MsbUisnKBMNuleKQBsHS4r/Q16mT90AGNJqSPV+NelbU7sWXPvRif/lu7y/0okb7OorJ16NI1KQa5jihVIJcX3DL1bOvdNnlfK69p7E7KQ/L7Lr5lDujdsVa1yaSHqJI/h20hLOt2+agL6VrUSm3RG9qw/0j39Aa10H3+STPu8nn91ufU61tcfh3kPkztUb80NB/FjztvQ3tnZU9QfD+DYi9SqwOROvJ0mEQ9Siq/93Zzhr2TPUW30ll0y6vCQlKweNbfEBKUiJLKDdiWu9KpwkFEQ1VV7S4cO/kZ2trLLNukGVqdrtFyWxYYm+QZYzNzYOlqplA+9FW0rIMLwJKFtj2uaGeOsaUqNZSDL9u2SQNjexlj6RBrvWFw14VtajkGADha9JHN8PC+Aznp69yd/yQOHHsVBmmm38kMrlGWce2dMVZiCYyNyueBp5a/UsycO1iuyRwsu2OUkMlk6HUuS+ewy5a+sgmYZUOpFbLc0qH9lbXbej230WYkhJmB32Fe5VRg/MMPP+Dqq6/Gueeei7vuugu7dvWex7hv3z5kZXG9Wn9QXbcHm3fd2V1oK/VCzJz0AINiH2AeTn2yjMOpPUmnb0FZ9U/QaEKRlLDI283xe2EhKVg8+yWEh6ahsnYbft6zwjKMkWi4+XnPPcg78hIaWwos26QZJmnG2CirTiwNsHoHxq4W3zLaBFDS4KJDtu6w8xlje4GObSEuacChN1ozxvKAWfra7VfQ9gT7r9lRxrh3v0svdPRvTd/ec4yVmAN4e8N7RQ9V+XbYLulQZkNHz0UY97XFJOrlF15EvezvRhr8yi5SiEab+ce9LyLIRjYoZIFNdi5GGWXV1X1jPW5/4jAw3rJlC2699VZ0dXVh1qxZKC4uxlVXXYUnnnhCdoWQ/ENJxffYsmcFDMZ2TMy4FlMn3Mk5xT4iKiITEWGj0dhyDI3Nx7zdnGGrpHIDTCYdUhOXQiMp0kHeExI0AotnvYSoiEzUNuTih523oU0y75JouOnSWYv46CQXgrpkGWPl5WAM0mCyJzsmurhckzSrZzB2yLLTzizRJGUJjO0EX7bBmtFOxli2Bq9BOWAeDAY7Q3EdMb9O6W/rrn5UJpYtY+RqxthOFtNTNRwcHdccmLa2l+PLjcuQe/hv7g2MbTLGRmOnLACWB7/yOcb2hvubR0bIRzA4P89d+rfqzEWq/urorOEIKwUOI5qXX34ZF1xwAT7++GP85S9/weeff45HHnkE//rXv3D77bejq4ud6g9E0YQDx97Azv2PwCQaMS3rj8jKuJrVp32ISqWyDO1lES7PMWfk05M4jNqXBAZEYdHM55EQNwctbUXYuOMm1DbkebtZRB4hrW6rN0gyxnaGUkt/xEsDaXPlYaOdLKc98qJEHfIf8y4Gojp9Mzb31Apw9Fwm0WAzx9je0k2DO5S6qeU4isr+1/Pc0gsDzgdxluyuJBjS6ZsH1C7rUliOMsZ9F99yx3xexed1UGnbfH9p5UYAwPGStW4NjEXRIBv9YDBIz2XBZo6x7VDqvteolo1skFyoccTeMk6uMhq7UFz+reIQfr2hHd/8fAXWbb4EJpMB1fV7ZCM9/JnDwPjYsWM477zzZNsuueQSvPfee9i3bx+uvvpqNDY2eqp95AP0hnZsy12JIyfeh1YThvnTn8CY1PO93SxSkDbyTKhUapRUfO/RK43+qqmlEA3NhxEeOgrRkZw64mu0mlDMy/krMtIuhk7fhJ9++aPdH9tEQ5l0SRedZJimdBqBvWrM8sxqdwApD4ZdGw1oMHTInqs/GdqahlyUVf/ocD+TyWB3LrGsTbL2eH4o9ffbrsHu/KfQ0HRYFhCJLqxvKyoMwZVe6OgPS3E1R8O4LQXQBvd3g8OMcU+hLZ2HClKZTHqb+b0dkmDUZLP0mG3GWFKVWnKMppZCHCx8R3ZRQ7r0lSPSjLVO34Qfdtzaa41yZ+Qd/Qd2HXgMew+90Ou+zq56GE2d0OmbUVGzBT/98n/49ufLXX6O4chhYBwYGIj29t4fKpMmTcJHH32E+vp6/OY3v0FpaalHGkje1dRSiB923ISKmi0IC0nBkjn/QGLcHG83i+wIDIjCyPi50OmbUFG91dvNGXbMmfj05OUcLeGjBEGDnAl/QE7W/0GECbvzn8QvBx6X/VglGoqkQUSHJDDWy36AS4dJOz7nzYGQo8JQfekefjo4SyKZRL3NesXKQa9RNse4E6Io4kTp/9DaXu7+Nkn6rlPXKK8wbKd9SoxGHXbkrcaREx9Ktg5syqI1C+1oLq85Y+yezLBO34y9h55HR2cNmltPYPMv/6c4vcXReSeKRhiNXWhqLXRLu3o/v81QalOXzegHO5XdRaPNUlzWY2z+5S4cKlyDY0WfWra5VvfCGnBX1u5AfVN+rzXKnVHbkAsAKK3c0Os+6aiO1p5CfoM95cBXOQyMMzMzsXnzZsX7UlNT8dFHHyEkJAT33Xef2xtH3iOKIgqL12LjjpvR0laMhLg5WDLnVYSHpnm7aeTAqJ4hvic5nNqtTCY9Ssq/g0qlRtrIM7zdHHIgI/UCLJr5PIIC43CyfD027rgZza1F3m4W+RGDod2pNUnrGvPx7ZYr0dTS949/aSZJNsfY0HtoNCCfE2mPOwLj7izbIAXGNhljeyOjDDaFx6rrd2PPwafwzc+/dVtbCku+QFnVZllWt0tXJx/qbXR+CG1twz6UVm7EsZP/clsbLRW/3ZgxbmopRHn1lj7rDOUeegHHS77Alj1/wta9D6Cmfg92H3xa4XkdD9vPO/IKqut6F/11B5NoUJjDLhltYCdIFmFyOAy8ua1I8jz9+/vqlAxvdrWuU2BADADlgNfeUm5tHRX4/LulOFj4jostHT4cBsZnnnkmNm/ebHe4dGxsLN5//33MmjWLxbiGic6uOmzLXYncwy9AFE2YPP5WzJ/2BAK04d5uGjkhMW4OAgNiUFm7Ex2dNd5uzrBRUbMNXfpGJMadgqDAWG83h5wQFz0Vp899Cwmxs9HSVoQN22/A0aJ/eayQDFFV7S5L8cOte+/H15t/LVu+SMmmnbeipa0Y+QVv97mfvWWKdHYyxs4wZwgHFhh3DloRH5NJL5/DayeQkxcw6pJ9F7rj71+nb0Huoeexfd+D0EuGand01dl9nxzp6HL/97XTyzUpzDG2Z8P2G7Flz/2orNlrdx/ziIam1kK0d3af/9LKzC1tJejsanDqvDte+qXDffrLZNLLziGDod1mXrF02L5tUa6+A2Nn1gN3pKWt2HJbp2+CyWRAZe0OSxv3HXkZG7bdoPj311dxUGkw3Cm5yFZQ/G+IohGHCtcMuO1DlcPA+De/+Q1++OEHREVF2d0nJCQEb7/9Ng4fPuzOttEgE0URRWVf49stV6Oi5meEhiRjyexXMD79MlaeHkIEQYO0kWcCMOFk+bfebs6wcVIyjJqGjsCAKMyf/iQmjbsJEEXsP/p3bNp5O7PH5HYGQzt+3nMPNmy/Hnp9K2p6hjLWNioXgbMdXhkYEOng+NJiPpIsseQ4BhcDY3NgMpB1ag3G9kEbhmkSDS5PizAaO23mZA98Obe2DuuQbOma0jp9s01xMNfeD3dzdrkm9GRAnQlUzcF2W3sNTCaDYlJMqwmV7N8dxJmX9axvPIhvt1yBnXmrnVqOKDgw3uE+/WUSDbKgUmeQz2WW3ufMCAzbYw+UdDRC9/D057BlzwoUlnRfLCg4+SkaW46isnZHr8cqZbSPnfwM3/x8hWwkS5dkHXRWqXZyHWMa/ppaCvHT7ruxO/8J6A2tGJt2CU4/5U1ER07wdtOoH9KTu9c0Lir7miM53KCjqw6VtTsQGBCNxLhTvN0ccpFKJSBz9O9w2tw3EB2Rhfqmg9iw7XocOPa6S3MAifoirera0HzUcru1rXcNlqq6XfjPD79CkZPrzouiSbYer70CVK5njN00lNo0WBljnctBuMHYJQsE3FHISRoMS5dHNBjaZYH7YBezsmW+kOBMAGo7rNiRorLN+Pe3S1FS+X2v+6TJFI06uOf43edYdf1uAEBNw16nhhi7I8C0e2yb4lu2VcANA6gQ7Y73XlpxXm9os1Q+P1H6lew8lg7bNlOqDp935CW0tpfgROlXlm3SCvfSCz7+uoayxtsNIO/q7KrHwcK3caL0fwBMCA9Nx4zsexEbNcnbTaMBiAhLR3REFhqaD6GqNg9aIcPbTRrSisu/gSgakTbyTAgCPzaHqoiw0Th19ss4dvJTHCp8B0dOfICTZV8je9wNGJW0jCNjaEA6u6yZl+bW49btkoyMWf6xNwAAu/OfsGzT61t7hpjWIz5mqnXfgrdwtOhjZKRe5LANrgbG7iq+pcLgFCM0mVwL3oDuTJ88wz6wJZAAoEPyXkuHQOsNbS4vV+VJjc1H8OXGZdBqHE+FE01GmFwY/ltQ1H1RZ9f+xxCgjURbexky0i4EIB/FoFJpZNtcXZu5S9cEtToYYSHJaGopcOmxjoiiUR4Y6+Tnhr3iW4NFGvy2tlsvsBkM7WjvqLT8u6vnfDSPhIoIS5d9FlTV7pL9DXTpG623JUOppdM+9IY2h6NYhiP+wvNTnV0NKCj+FIXFn8Ng7IBWE46JGb/HmNQL+MN/mEhPPhsNzYdw5Ph/MGns/3m7OUOWKIqSYdRne7k1NFCCoEHm6N8ideRpyD/2OoorvsPu/CdxtOhfyBpzJVISl1iG/BG5olNnzRi3SX+09gyHbGg+grb2cqQkLoFaCOz1eJ2+CdtyH0BLWzHmTXsSI+O7R6ccPv5PAEBJ5XcO2+BqYNzeWYXSyo0DyxgbOjBYAxBNJr3LgafR2CULMAa6NnD3MazBnTQbbTAM3rByV+gNjrPkrmaMpbbsuRcAkBA3G2EhybLg13zxxTxMWefyElQmBGjCIKjc/9vUdo6xzmATGEtGQgxW5XUpaTDbKBmF0tFVIzuPO3UNaO+sxvfbrgMg4ox578g+C37ec4/suO0dFbLHmkmDZL2h1anAuKOrDlp1CDSaYOdelI9jBORn2joqcOzkpygq/S+Mpi4IKi3Gpv0aWRlXIUAb4e3mkRulJC7FviMvo/Dkd5gw+hYIqt4/xMix+qZ8tLQVIzoiCxFho73dHHKTkKARmDV5JcakXoj9R/+Busb92Ln/ERwsfAfj07sD576Kl9DwJYrGfl0ckWaMpUMSu3QN6NI1YeP2GwEAocEjFYfz6gytlmI7TS3HIIoG2SgGZ4YAu7JeKgBU1/2C6rpfXHqMLYOxc9BGW5hEg8uBrdHYJctg2s4j7Q/p3E9pYS+9odUrAZQ7iKKxn8N/rdO1GpoOISwkGTqdNTA2B5cGQxtMJgM6+7E2s0YTCkHQ9qNtfTOZDLIiWbYZY6nBmi4gJS0E1ioZvi+KRllhri5dAyprt1vmfxdXfOf0RTKjUbl2QXtnFVraShAfPQUaTYhlu8lkwM97ViAiLB0TRl+Jb3++HFERmVg862+obzqE0OCkIZ1pZmDsB0wmAypqt+FEyX9QVbcLgAi1EIixab/G+PTLEBzkucIG5D0B2nAkj1iIksoNKKvajNRELjHUH+Y5gCy6NTzFRmVj8ayXUNuQi0PH/4ma+j3Yc/Ap7D/6d4xKWobRqechInSUt5vpcz744AO89dZbqKmpQVZWFlauXIkpU6Z4u1n9Iooi2jsqERQUi8raHdix7yHMzXkMTS0F6OiqxaSxN+BI0YdISzqr17nQ1FKILXvvw+jkX8mybfLAuEkWfNY25ikOr5YuzdLcWoT8gjdl9zsTtHhjTqvB2AFhkEZZmEx6tLu42kL3UGprMNzRWY1fDjyBtKQzUVa1GVW1O7Fkzt9xsOBtxMdMRWzsBYrHKav6EQeOvY7J42+RZYylgXH3xZGhWdeje03fga1j3NJeClEU7Q6X1htaZVlJZ6kFrUfOMZNokzHu46KLt1czaLNZg1s6tLqzqwEtrSct/25pPenyRTJbu/IeQaeuHhlpFyNnwh8s25taC1FTvxs19bsRGpwEg7EDtQ25KKvajO37HkRM5EQsmfOPAT23NzEwHqZE0Yiahn0oq9yEsuqfLFXnggLjMDr5HGSkXYjAgCjvNpI8Lj3lbJRUbkBR2dcMjPvBYOhAaeVGCEIAUhOXers55CEqlQrxMdMQHzMNdY0HUFj8OUqrfkRB8WcoKP4MUeHjkZK4BCmJSxAaPNLbzfW6devW4fHHH8fq1asxdepUvPvuu7j++uuxfv16xMTEeLt5DomiCJVKhS5dEwSVGtX1u7F9318QH50DvaENomjE1r33WfZvbj2B2oZ9OHLiA5wx710cO/kJxqRegOiI8Sgs+QIdndU4WLgGqYmnWR4jnavXpWtAfdNBy7+bWgplgZV0P7OK2m3uftkeYzR2wDBIU7C6dA0wGjsgqLROrw1rsMkYF5WtQ2t7qWWKDAAcOPYaisrW4Xjpl5gwbjFMJhUAayAmikbsyFsNUTTiyIkPoBYCLPfJgm5J9euhZiBDqc06Oqtg6PkbUqLTN8uy7c4SBC1UHjjHbOesu2OYvae0dpTJ/i2/+FYvG9Lf2FIw4EDefPGuqnYnSis3oamlAONH/xZ1Dfst+0j/hsxTPuqbDqKppRDNrUUYOWJ+r5FXza1FKKvahDGpF6BL34Saul8QHvFriKIIo0kn+9vyBpfPMlEU8corr+Cyyy5DXFyc5XZ8vOezjq5eof7666/xt7/9DWVlZUhPT8e9996LRYsWyV7Liy++iE8//RTNzc2YPn06Vq9ejVGjhmZ2oK2jEjX1u1Fd1/2feXK9SqVGQtwcjEk5D4lxp3AOsR9JiJ2B0JAEVNftQVtHJUKDE73dpCGlrPpHGIztSB15BrTaMG83hwZBbNQkxEZNwpSuehSVrcPJ8m/Q2HIUjS1HceDYa4gIG40RsTOREDMTcdFTh828KlesWbMGl112GS6++GIAwOrVq7Fp0yasXbsW11133aC3R29ow5Hjm9DQWAeDoRNaTSi6dI1oaj2OlITFaOuoRFHZ/5CSsASdugaUVm7E6JTzcKLsKwgqDUKCEgAANQ25inN/axv2WW7/tPtudHbVorz6Jyw95XWUV2223CddMkVeKbpFFhg3NB1x+JpcXXbJmwyGDo8Mc1XS1jM3MiQ4Ea3tJU49xmjslA2flmbazIrK1llub9v7AgqKvkFM5ESEBiciJiobIUGJlkCjofkIQoOTFZ9L9GAFZU8T3RAYF5Wt63Moeb8DY5UGgsr951j3fHBrht+XA2NzZjtAGwGdvhmtkgyy3tAqX0LMJogeiNb2EuzIWwVARGXtDoRIfkdKi6E1tlirs3+/7VoAwIiYGUiImwO9oRUqCEiMPwW79j+G1vYS1DTsQ2dXPVraitDYmgedzoiKmq0Yn/4bxERmo7n1OFQqAcFBIxAXNQUhwQlue019UYkuruViNBoxadIkfPbZZ5gwYYLldnZ2tqfaCKD7CvWKFStkV6i/+eYbu1eo9+7di8svvxx//OMfsWTJEvz3v//FG2+8gS+//BIZGd0Vel9//XW8/vrreOKJJ5CSkoK//e1vKCgowP/+9z8EBLh+xUKvN6KxceBLfwiCCrGxYaira4XJ1PvtEUURnbp6NLUUorH5CBqaj6Kx+SjaO63FPlQqNeJjpiElYQmSRiwYdtlhR31E3QRBhYKSd7A3/21MzLgGWRm/93aTfE5f59LmXXeipiEXC2c8hxGxM7zUQt/gr39zoiiiqbUQpZU/oKxqM1rbrfO6VCo1IsPGIDpyAqIjJiA6chxGpWahpVn0eB9FRYVAqx38ImE6nQ45OTl4+eWXsXSpdRTFn/70J7S3t+Oll15y6Xh6vRHNzQMrVnTkxIfIO/LqgI5B/RcfnYPg4BEoLv920J4zLnoKahuU14e2FRaS6nQQ7c/OWvAetux5wKN9NWfKg9iR94jLjxsROwMadQjKq39ya3tsRx5oNWEDHoLsaTGRE1HfdBCCENBr6oRKpUZgQLRs3e7hICgwDucu+XzAx4mICHb4vdmv1KE0lh6sNVJdvUL97rvvYtGiRbj++usBAHfeeSe2bNmCDz74AH/5y18giiL++c9/4tZbb8Xpp58OAHjqqacwb948bNy4EcuWLRuU16XEYGhHXUMFqmrL0NFVjy5dAzq76tDWXoHWjjK0tpcpVGVUISJsDEbEzsCImJmIi54CrWSyPPmvzDHnYW/+2ygqX48JY67ikjROam0vR01DLkKCEhEfM83bzSEvUalUiAofi6jwsZg07ga0dVRaChbVNOxDY8sxNLYcwwn0rAu5DQgKjEV4SCpCQ5IQFBiHoMBYBAfGIygwBsFBIxAcGOvdFzUADQ0NMBqNiIuLk22PjY3FyZMn7TzKPo1GQGzswEZj5IRcjJCQIAAiNOogdOlaYDLpERmRhvyjn0KrDUFWxoXYtud5iBCRkXY69h/5CKEhCWhtq3B4fFvZ436Nto4aFJVuAgCkjpyHkoqtDh8XHTkGHZ316OxqdPk5fVF4WDJaWsvQqa9BWNjgDqEPC41FrZNTVTt7llMK0IZBp3cu6AkPTUL2+F/DaNJjd97rMIkGhATFITVpHo4c/09/m+3TwiO0AAY2x9gRvbHc8U4KAgODoNW4vxii7XB8Xw+KASA2Oh31TQctQXFQYJTlMyU0OL7n3+4PjGdOuRm/5Dl/ATI+NhtdumZEhY9CUsJMdHU1Ye/Bd6DVhGBy5m+wJ/8tAN2fp/nHPoVaCMDiUx7E0eP/g0YTjJSRcwBRRGt7JWKixg34e8JZQ2JMrU6nQ35+Pm655RbLNkEQMG/ePOTm5io+Jjc3t1fAvGDBAmzatAkAUFpaipqaGsyfP99yf3h4OKZOnYrc3Nx+B8aCMLC1/AyGdvzvx1/3WX1SowlFVMR4RISOQnRkJqIjMhEVMc6vAmFzPw+0v4c7QVAhKiLNcnW9vmk/4mNyvN0sn2LvXCquWA+ge562Ws3le/g31y08dCTCQ89FRtq5EEURHZ3VqG86jPqmQ2hpK0JbRymaW8vQ2VWHmoZchSOosGjWc0gYZiMQzPN2XWUwmAacMRaEIORMvAoNDW29MvWLZi623D5rwSyoVAJUKgHpSZdBqwnFidJ1KCpbjwljfoete/8MAIiJzEJ90yHZcWKjslHXmA8ASIpfhoiwdIQEjYagUiMhdqYlMNZqw6GXfH8HaCMt84lDgpIhihqHgbFaHeSVNVNdJSAQQYExaG2rREjg4M69V8H53zvmob2hwcnQ6a3D2FMTlyIoMA4VNdvQ2l4ClUqNuOhJqKnfh8njb0ZywqkAAI0qESdK/4esjKvQ2GwdLhoYEGOp3wIAaiHQK5WL3aWoeC86BnDRJj15OUorN8mmEdgyB0OuMhoAlQfzcCqV2uvFtZyl1ciHFIcGp1o+UwID4qEWPLOaQlrCxTga9g2aW08gc/TvcOTEhz3PGW2pjxAbNQmCoEVj8zHMmPgAwkNTZceIj16EAG1ET1bbhNDgRIxOORtpyQsgGqMRHpqOuTmLez03ANTVDfyihccyxoOtP1eoa2trERsb22v/mpruK4fm/ysd03yfq9xx5dtkCsbo1FPR0dmA4KBoBAfFIjgoBiFBsQgPS0JkeBqCAqP69QNkOIqODvV2E4aESZkXYNP2PJTXfocJ4xZ4uzk+SXoumUxGlFR8AwDIyb4YEWGcX2zGvzlb4UhNyQDwK8sWo0mPltYytLRVoq29Gu0dNWjrqEF7Ry0AEanJ4xEeOjTPqejoaKjVatTWyjMS9fX1vb5PneWuYecmk6Mh7GqIYncQr9V0LycyOuU8jE45D6IoIiF2NnT6Fsyesgo/774HoSFJGJ18DvYcfAZZGddCow6GTt+CiLCxAICsMb8HIF87OCw4CY0Ga+GbsJBk1Dc19dxOgyiqLOuRBgXEKFanHhEzAxU1WxAeOgqjU85Fa3sZ6hvz0dhytNe+3qRSqREekobOrlzUSgryDAatxvXlJUNDktHQ3B0YBwfGY/aUhwB0Vw1vbS/ByPh5OGXqX6AJaIBoTLScS0kjFiNpRPePdYPBOnQ1LCRZFhgHBcWhzbKkjgDA1I9X5j2/HHhyQI9PTz4H49J/g++2XNXrPrU6WDbS0dXh7SqVxqPry2s1YbKCeL40pFqjDpatjW07vz08NA11jd1/f8FB8W7tpxGxs9DQdAjpyedApQrAopkvoLZhH5JGLLAExpHhGZaq+yFBCZg1+UEYjB3QakJ6fR6Hh46x3DZ/fooiMCp5oc9M0xoSgbE9jq5QK91nu8323/296g2458o3AORMWIHo6FDFq9/tbUB729ApyuEpgqCy20dkZe6nmIj5UKuDUHjyO0wcc5tfjS5wROlcqqzdidb2SoyInQF9VwTqunzjC9Kb+DfnmLmPmpt0MJniEBIQh5AAAFHy/XSdQF3nwM4pZ658e0JAQACys7OxdetWyxxjk8mEbdu24eqrrx709riLSqXCghlPW/595vx3AQhQqVRITlhk/4EAtBrrxSKtNgIadYilUnFoSLKl8FZYSIps+ll0ZBYqarb0Ot64UZdidMq5iIoYbxl2v3nXXY5eAQZ7mSCVSoPE+Lmoacgd9ExpgNa5wFiaCQwOtF64CZLcnpJ5G+KipyAx7hSo1YGIiRprNzsVETZKcns0GpqPWIa0BgdaA+MAbbhi5fHhLEAbKSvwGRaSYil0FhMxATUNewEAsVGTMTJ+Pg4cc35YrqDSQqXyXMhi+35pNaGWwFil0ni1qFpgQDRMXd1rTKtU6l4rI4SHplluh4WkwGCwxiH9CfClIx9iIiZgwfQn0X2hBwgMiEJyQvdFopHx81FRswUpCafCYOhAfVM+RsbPg0qlGtK/MYdEYNyfK9RxcXG99q+rq7Psb66iXVNTIyveVV9fj0mTJvW7re78wej46jexj5yjFoKRPGIxiiu+QUnFD1yTV4H0XDpR2l2hdFTS2Ty/bPBvzrHh3kfXXHMNVqxYgezsbEyZMgXvvvsuOjs7ceGFF3q7aW7jatYldeQZKKn4DqmJS9DaVmIJjMMk2Z3IsDHQqK0/GONjciyBsfTHd3BQHMJCUmTH1zj4oalRB8No6rIEgUqFedxNENQYGT8f+49a1ywdrCAiQBvp1H7STKA0mA6SzPMPDIjE6JRznDpeYID192JYSAoCNGGWrH9w0AhJ+yL8LjAODIiEIGgwMn4eWtvLerKKHwDoHmJb33wYALBo5gsorvjOpWMLgsajlc+1mnD5v7XhQGf3kmtqdSAMhoGc0wMbPaBWByFQG4mOrhoEaCO622Y+shCA0BDrZ0xYSLJsXe3gwHhLYJw5+vLuav0tBZaRE0pCghPR0nbSctveZ+HMSfejtmEfRsbPR2L8PNQ35iNpxMJ+v05fMSSq8EivUJuZr1Dn5OQoPiYnJwdbtsivxG7dutWyf0pKCuLj42XHbG1txb59++wek2goS08+GwBwsuxrB3v6N52+BeXVP0OrCUPyiL4zRUT+aPny5bjvvvvw4osv4vzzz8ehQ4fw5ptvDok1jD1lRvYKzJ/2JEYlLZct7RYdOcFyOyJsNBLjZiNpxCJMzLgGYSHW+XfSTFugNqrX8R1lYARBC0Gy/qdW7XrGRnBx/VCVSoOwkGTZD+cAzeBMEQjQhsOZn7DSbL40MJZud4VKpUL22BsQHz0NyQmLZO91cKB12dIAbbjSw4c1c5/Om/Y4zpi3BlrJuaDVhuPM+f/EsgUfQhA0vda2dUQQtBDcnDGWZqBt3y/puaK0hJsrBrpEqkYdZLngpVYHIUAyjSAoIBqxkdZkXkzkJAQEWC8aSZdWykz/HWZkr4DGwd+oNAMdGpxkd78AbTiSRiyASqVCcGAskhMWDYtpnkMiYww4vkK9YsUKJCQk4O677wYAXHXVVbjiiivw9ttvY/HixVi3bh0OHDiAxx57DED3h9tVV12Fv//970hLS7Ms15SYmChbgoJouIiLnoqQ4JGobcxDa3tpr4wEdSup+B4mkw6jkpZBrR7YFyLRcHXFFVfgiiuu8HYzfIZaCEBi/CkA5EFXfMw0zJnyENTqYMvnydyc7uVqmloKLftFho+1DDvVKARtAZJg2Xa+pvn5AVi2azQh6NI3uvQaXM0wq1Tq7nVGA+PR3lkJlUrd/Ro9W9gYQPfrEwSNgzarZJn2AG04IsMy0NRaiLDQ/n//TRhzBSaM6T73pcGfdFlMZzPaQ1V68tkoqdiAmZPvx+4DTyE95RzZihcqlRoatXWNd406CCGSjLpa7dr674JKA0Fw79QRaSZYeoEDkAfKahcvGNka6EogaiEQpp5RGBp1sKxtgQHRCAqMxsSx10FQqREemoLm1uOW+2OjslFZu637sT2fKxqF3zUadYilaJpWE4qE2NmoqtuJqIixA2r7UORyYKxSqZCUlISAgADZbU9bvnw56uvr8eKLL6KmpgZZWVmyK9QVFRUQBOvJN336dDz77LN44YUX8NxzzyE9PR2vvPKKZQ1jALjhhhvQ0dGBv/zlL2hubsaMGTPwxhtvDMrrIRps3ZVYl+Fg4RqcLFuP7HHXe7tJPqmovDujzuHmRNQf0sBYow5CSqLyxXbpXMGo8HEoq9oEQLk+SqAkC6TVhPYKjG2zvY6GXruD0JMpDg7qDoxF0ag43NV2rVh30GpCIajUfQ5QFVQam6xlBKZO+ANqG/YhM/23bmmH9PUGSoLh4KB4pd0HVXREJto7qy0Vg90pbeQZWHbqY6ira0XyiMWKw23Vkqyw2iZD7GrGWCVo3D7HWC0EwIDumj0BGvsZY5Wgls1Vd32awsCyqGp1EKZl3Y2d+x9GevKvZBloc3Y4a4y14Jn0cyUhdhbyC97sbkXP54rSMrvBQXFoaSvueb5gzJ32GExGXa8LBv7A5bNMEARs3LjR8m/pbU/r6wr1e++912vb2WefjbPPPtvu8VQqFe68807ceeedbmsjkS9LSzqrOzAuX4+JY6/xaJXHoaippRCNzUcQEToa0RETHD+AiMiGs3MhpcFr6sjTUVW7A+NH/05xX1mQoZDBUgsBst/fGicyciPj50NvaEVtwz6n2mvL/P0hDSKUhmMLggYmo/sDY0eBkkrQICjQOrw/QBuB6IjxHluyMECSMbYtkOQNY1LPx6ik5Vj7/elun/ctHU1l73eENPi1PR9dHkqt0rp9jrF0iLRGEwzpXGDZOa1SQ1BpYDQPZ3YxMFYNMDDuvrh2KhLjZjt1wUtWjCs0DWfOfw+Cytp3Shls6QiHAG041ELAgDPlQ9WQGUpNRAMXGjwS8THTUVO/B9X1e5AQO8vbTfIpRT3zr0clnz0s5soQkRe4UHftnFP/A0BEYEAUFs9+yf4hRWtu1Bx8SrNYanUgYLJ+ZkkDEXtrtGakXYiE2FmoazyAA0dfQ0LcbEt2yRnWzJX1BauVMsaCFjAOfMUOKY0m1GGgJKg0CJIWy+pjvmR/SYMr6ZqtvhAYdw91V0GlEqCQJLRQC0EwmlxbN9uZwFZaJMp2aLlaFjSH9Ln2MdBTfMvNF/Klwb1aCIRWE2IpVCUtxqVSqaESNEBPpWa1OtClSs/9GUotHWVhbqc0KE4beSaKK77FmJTzez1WrQ5E0oiFMJp00GpCoNWkye6Pj5mGipotssy3NHgPDIh2ub3DyZAovkVE7pOexCJcSkwmPYorvoVKpUbayDO83RwiGqJSR54GoLsSryOBAZGyuan2jEk5F8kJp2LxrBeVM8bqQNl26RBIe5kfczGj2KhJWDz7JYSFJCvuZ4/58dKhmUoZ4+6MovKFxuiILKefT5qZ1KpDHAZKgqCR/cj3xLDQ5ITuYcQzJz2AsJBkxEfnICJsjCxT7S3m/nKUsezOljrDGjJonSiyJr0oERQoD7akF26cKYQmCO5frkl6UUMQAnplTc1UPRljpcdJ2cuc9ycwlr4nSqM/crLuwtJT3kDSiPmKj5+b8ygWTH9K8b6M1AsxYcxVWDzrRZj/LkXJxS1/LBwnxcCYyM8kJSyCRh2CsuqfoNO3eLs5PqO8egt0+iYkxs31iR81RDQ0JScsxvzpT2HO1IfddkyNJgSnTF2NuOipltEs0h/iasEmMJYEG/Z+yNtmXF0NPMzPb57fOH3iPYpZXHORLiWjks7C3JzHkOTECgC2c1ZVCtV+pX0iqDRIGrEA0RETMHn8rQ6P3x+jU87B+Uu/xqikswAAC2c+h9Pnvu1yhW9PMPeF6GAIg+17M2ncjYr7See5BwQ4XkdaviSWPDCWZYydGB7cXXzLzUOppRljdYC84JbNUHHB5m9N8Xiy7d19Gh6WLBvt4Szpsm5K/aPVhCI6YrzLxwW6Lxhlj70OMZFZlvdeFE2YPflBJI1Y4PercTAwJvIz3fNVlsBk0qG0cvBqBPi6E6X/A8CiW0Q0cIlxcxAsCQzcyWQuAiTNYqkDIEh+zEszevaq69tmuFzNbJmHUsdETcRFZ2xEevI5dgJjASo7PzdVghpJIxbIsub2AnTp8F2VSqW4fI88C6hFRFg6lp7yGsanX+bUa+oP2yDKtm3uznQ6y9znSsPopRLj5iAmciLm5vwV5y75yuYihfV9k2ZUNU4sByZfHkueYZa+l85mjN0+lFpy8UIQAmTnrvT9E8xDqc3/Vitf9JCeBxMzrsbolHNxwRlvw9CPaQTyit6uVfB2hfncCNBGIHXk6Zib85jfr8bBwJjID5mDv5Pl673cEt/Q2laJytqdCAqMRWLcHG83h4jILtHU/WPW2YyxIEjnUkqCAZuAzdVijNL9LfNZFX5W9pUxVkHd00bpUFXlzKBtFlYevGh79pEEN27OMLpC+tyuFDFSykaqBdcKVZmpepY3UqpCLBUSlIglc/6BpBHzEaCNsBk2bG17oLRSsxM1OFQqFSaOvQ4TM67ttb/0vQwKjLNzBOs5050xdvNQapuCdiaTtUCcNBDuPZRa+jckfZ+t711E2BjMnHQvQkPiHV6YUOJoKLW7jEm9AAAw3k1V2ocDh4Hx1q1bnTqQXq/HH//4xwE3iIg8LyYyG2EhaahvOojm1iJvN8frjhz/CoCIUUnL3P7lS0TkTubPKJOk0rBlDeEe8mHH1h/y0h/ctp91rmaMlQJp5W0CYC8w7gmYZEGuvYDWJsBTSda1Nb92eYDtveHM/Q2MBUGL8em/QfbYG6yPt5OhdHgsy3vRPZTX/hxYm5EDsn61Prczw6dtZY25ClkZVys8pwoj4xcgMW4u4qKnKj5W+l52F99y74UOrWSIsiBoLcuqjU45z6aKs1qW9ZdnmiXvs1o+Z7kvju6XZYydngPuuimZt+HshZ8gPkb5PfBHDj8Fb7nlFvz444997tPe3o4bb7wR3377rdsaRkSeo1KpkJ68DABwsty/i3CJogmHC78EwGHUROT7zD/AjUZrJWGVSrCbDZZu12ikw5EHljFWGtqqlB0T+soY92xXOREYm49t3lcavJgDDacC7EHQ38y1IGgxefwtmDDGujRpf4diW7P3ff/Ut31vZPO0JedOcNAIZI6+ArMmr+xXe2zNm/YY5k9/QjZCQP7c0qHNWlnA7g4ayfBujToE40ZdikUzX8SkcTdAEOSjIaT/FuwFxrKRGdL3vPvij3Qour15ykrPofZgxlgtBCAkOMFjxx+KHAbGp59+Om6//XZ8//33ivfX19fjyiuvxN69e/Hyyy+7vYFE5BlpI88EIKC4/FuYTO5d43Aoqa7bg5a2csRH5yAsJMXbzSEi6pP1R7U0g6qy/4NdtjSO9XbvodTOZIytQ2KVil8pBcYqqO3PMe7ZLssOyrJ1SkGh2Osx1oJk0sDYixljyWtwJeOntMxTf+fWmgNJ84URe0N6bS+IyAtNSS+2BGDSuBvcvmqDSiUftmx9PtuMsXtHc0mLbWk0wVCpVIiPmdprOLlgO5RarTw1wV7GeMmclzEyfgEmj79Zsm+A4r5KxzUY+l7KitzL4afgM888g3PPPRd33XUX1q1bJ7uvtLQUv/3tb1FaWoo1a9bg1FNP9VQ7icjNgoPikRA7E526elTV7fR2c7zGXHRrdOo5Xm4JEZFjoT3LKgUHxlu2GU1dsoBGPqRYWpRLsr6xYD8gskeexXMuY6xSCQ4zxrJgTDb30/p85syWaCk+Jnn+nmHW0ufxbsZYGkg5DoyjwrsrDCuNWupvgG+ev61UTEl2EaVXETbl7Ki9ud8DJR8yrTwEXRC0bn8/pfPwbQuA2QbrKjvLNdkbSi3tq7joyZg37THZ36u8X5WXX5s//SkkxM5GSuISp18TDZzDyy8qlQp//etfERgYiHvvvRc6nQ4XXHABDh8+jBtuuAFqtRoffPABxo4dOxjtJSI3Sk8+G1V1O3GybD1Gxs/zdnMGXZeuCWVVmxGgDUNKwmJvN4eIyKFJ426AKBoxNu0S1DcdxJ6DzyAl4VTU1O+17CPIhk9L5ytKM8a2yzU5ERirNDBB17N/75+QJsXA2HYotQqWbLfCUGpZVlsIAHqq+qYmno66xgNIiJ3d81DrY5TKSzlav9eTpAGTM8WTZmSvgN7QirjoHMu2iRnX4GDhGsRFT0FbR5nLbTC/n0qBl/x9tB8Y25tP606ybKxKC/P4Nek5rFJpXB7q74i88rO8yrZ8NIJgc6EjUHE/23WRbdkLhtVCAPQ2+6rVgUiMm8NioF7g9LiEhx56CIGBgXjggQdw5MgRfPrppxgxYgTefvttJCYmerKNROQhI+PnQ6sJR3nNFnTpGmVLZviDkorvYBL1GJt+AdTqQJhMfVfvJCLytgBtBGZkrwAARIaPQerI06FRB6G8eotlH8FOhksWGPcqvuVMxlgDGHs/h5k1YyzAWvRJnjEWVBqYxO5QwDqUWjmQlLZxVNJZCA8dhaiIcb2fXzQ/lyQYdqJysqeo7b0eldb62lUaiD0F1DSaUMvrMsvK+H3PxY9DTtcCEYQAmEzmgLenbxWKdwmC1vI+9jmUWj0IgbG9jLHNc0vfW5VK3a9qz1LyAlc2gbHN6Au7w8vtDKUODe4dF0lfj9rBHGJHc5DJc1wqQXjffffhhhtuwDvvvIOxY8fio48+YlBMNISp1YFIHXk6RNGA4grlOgLDlSiKKCrrnh6SlXG+l1tDRNQ/5gyrubJsd3V9ba/7u29LgzTX1zGWrc+rUAxJaZiz7TrGKpv7bNuoVitntVUqNUbETpfMDVUKfCXBkxczxtLXqJENX7eXGVfOU2m1YS5lSpWGus+a9GcEB8bLimYJsoJXfRTfkhU480xgLBu2bC8Dq5JXpVbLssn9yySrJe+L1iZjLJurrtLK2yXNGEvnkkuOYRto27ZZK5nfrLxusPfOXX/nMGN8yimn9Fp/TBRFFBYWYtmyZb3237Ztm/taR0Qel568HMdL1uJE6VcYm3axU+sTDgeNzUfQ1FqIqPBxiIvJQn19m7ebRETUb2kjz0JE6GhER2ahuv4Xy3bpSCBZVWrbjDHsDHeWbrVTJMvMXMhRJWgAY3dmtDvbJ8/AGU09x+sJyuwWCLOTTbQl2hlM7QtsL0aY85zSIbS2c1ylHAV+0syz7MJFT9/GRmVj+eLP0NnVIGmHcsEr23/LLlIMQsZYbWfOriBobOaPW4fYCyotjP3IHgdL1k+Wvk7bNtkW/pIXubNuDwyIxJwpDyFEoYBa977W1yMr/KXuvU61dCk2GlwOA+PLL7/cb34oE/mj6IjxiI6YgIbmw6hrzLO7puBwc6Ksp+hWynJ+xhHRkCcIGsRETey+rVIeqqnV9FWVWl4R2DzkV/Ycsqxd70DJ/IM/ODAOre0lPe3SyoY1ywOx7u3S4EBlJxi2zWwqD6WVPo9vfK7Lh4ZLMrCSwK+veciCg2WK1IIWBqOh57b9TKo82JPuZ5sxtvabNNvtseJbKuWLLfaKXHXfJw9OzRdaXBEdMQHjRl0KEWKvc8V2+TD76xjL+9u8FrIS2ZrQsqWbeg91FxkYe43DwPiOO+4YjHYQkReNST0fu/MP43jJl34RGOsNbSiu+A5qIRBpSWd6uzlERG4lX3dVMnxXOqy3V0AkGe4syfjKj9t3Bnf6xHuRd/QVZI+9Ht9tvbp7P5XWZo6xfI1YwHb4tHJVZFvyLHFPVWpJYOyLy9xIg0CNIF1T2v4wdkcZY1n2tI8LCfK1leXLEdmjsTOs3Z1ss7PW2zbrckuCV8HB3Gf7c5CtIyFUKhWmZN7muE0qTR+Vs/uu0i4lDYClGWOVQvsHOn+a+s+lOcZENDylJC6FVhOG0qofZcOthqvi8m9hNHYgdeRpsi8oIqLhwNhTgAmwnQfZe9immUrlOFiSB1e9f9CHhozE3JxHERGWbtmmFgIsSwd1P4/0tkLG2KZQl33WwFgUzVWuu6tXA0B0ZFYfjx08hp6gFbCfDe+Lo4DLdpi60vbu4ygPWe4rKBf6yNq6i721p22Lb9krKGcvMFZ+LufmIws2GWN7Q8/lFyKcD4zlw+sVqrubmDH2FgbGRASNOghpSWdBFA1OV78cqkRRxPGSLwEAY1JYdIuIhh/pD2t59tj+j3dZxlghqwvYZnOdC5RUgrqPY5urUkszw86tRaxVS+flmoNkFWZOuh+zJq9E5ujLnWqfp0kDY+lFCmezgo7nGNvMvbXzOHvrEytlLM2kAbTyPO6Bs1eRXB78auyuJay8HJWdwNjJeee2GWLb5ZuU2u5UZl9hX6X2KxXvosHBwJiIAABjUs4DAJwo/Qqi2I8JO0NEXWMemttOIDoiE9GRE7zdHCIitxsRMw0jYmdi+sR7ZQFFV1ez3ccI9gJglXKW09mhtd3rGEuGwUqDDPNyTQrBMmCvYm83rcJoHxVUEAQN0kae4fXRQOnJ5wAAkkcssmyTXphwtn0uBcYq+4Ga9D3QasIkj7GflZe+3zpdk+PG9oP0vZcGhNL3XmUznFl6n23hLKCPCypOzjuXj57Q2AzrVg5qHQfGGkRHZCFpxEL5xSHJObFkzqtIGrEIEzOucaqd5H5Or2NMRMNbRFg64qKnorZhH6rqfkFi3GxvN8kjLNniVGaLiWh4EgQtFs54FgBQUrnRsl2tsKatWa85xpbt0qDV9aHAEE12j2F5TjsZZaVsmllgQGTvjT5ScAsApk+8G1kZV/dax9gsPGw00pKWISo8o8/jqPocTi6vJi4PJu3nvgK0EdY22VkqynL0nrWRFfvbDaTnmlYaGMuywlpIC6upHRQu63sIvmO2IyOURjl033ZurrbZkjn/gEqlwrGTnyneHxOZhbk5j/SnyeQmzBgTkYV5aPGJ0i+93BLP6OyqR2nVj9BqwpCSeJq3m0NE5HHSICF73K8xJvV8LJ3zWq/9bKtSK27vxxxZk2iQBW/yAKJ7e0RoOsJD0zF21K9tAg/7P1PTRp4BoPt7y1PDfAdCpRIQEjSijznAAtKTz0ZUxPg+jyPP3ivNp5UExnYym7ZkgXEfQaQoGnHGvHeRM+EuJCcs7rOd/SWrRC0bSi1Z91cTJsuwOxxKPcD50PL3SaNYMK77uZ0fSt29j6rX44zGzgG1ldxrSATG5eXluPHGGzF16lTMnTsXTz31FIzGvudmNDY24u6778b06dMxa9Ys/PnPf0Z7u7VC4Y4dO3DLLbdgwYIFyMnJwQUXXID//e9/nn4pRD4tKWEhArVRKK/eivbOam83x+2KytZBFA0YlXR2n0VoiIiGC+mP/ICAcMzIvltxGokzmbDeWTzHTCZDH3OMVZY2njn/XUzNvN0mGLafAY4IG43zlq5DTtb/OZWt8xZ7xcT6Cvplj7dTYVzpOGo7RcxsSYPMvoJIk2hAWEgSMtIudLpwlaukr0mrVh5KrVYH2sxFlmTGlfqkzyy4Y7YFtlR2LxRJ52o73z/Sdatb20sBAJo+1rKmwePzgbHRaMRNN90EvV6Pjz/+GE888QQ+//xzvPzyy30+7p577kFBQQHWrFmDf/zjH9i1axdWrVpluX/v3r3IzMzEiy++iP/85z+46KKLcM899+DHH3/08Csi8l1qIQCjkpcDMOFE6Vfebo5biaLR8prGpJ7n5dYQEQ0O+fBn+wGD/Ae/8hxI+RBcZwNjvU3Bor6DQ2kFa4h9Z4K1mlCoVCrMmvwg1OpgnyyoaHeIOpwLpOwFYlbW48sCxj4CWen87L72G4xlg+wVdOtrqS5HQ5ilS2HJHudk8S1Z+wQNggKjJcdQLr7lysUZjWSOd2zUZADAqKRlLreN3M/nA+Off/4ZhYWFePrpp5GVlYXFixfjzjvvxPvvvw+9vvcaewBQWFiIn376CY899himTp2KmTNnYuXKlfjqq69QW1sLALj55ptx1113Yfr06UhLS8NVV12FhQsX4vvvvx/Ml0fkc7qLcAk4UfoVjMYubzfHbSpqtqO9sxLxMdMRHprm7eYQEQ0Kwcl5kPbm9kq3S4sjuTSU2s7waJXCz1BpUC7CuUKQiXGzcd6S//rkRU/5MHLlJZP6ItgZim05vqywmZOBsdq591E0DUJgbGfpqL6CcqPJ+ttE+jpnT3kIcdE5SE9ernh/v9qn0mJM6gVIG3kWFs96yf5yTU5e6ADkGeMpmbdh1uSVmDz+5gG1k9zD54tv5ebmYsKECYiLi7NsW7BgAVatWoXjx48jMzOz12P27t2LqKgoTJo0ybJt3rx5UKlUyMvLw9KlSxWfq6WlBePH9z3XwxFBGHjhB/Mx3HGs4Yp95Jz+9FN4WBKSExagrGozSqs2YnTKcscPGgIKij8FAIwbdbGsP3guOYf95Bj7iHyRSbQu3dQ9PFV5jVTB3hBRO4WHHBc4EgCYujPGsuCw7zV07QUejvRdRMp77GV8nW2vysEcY2nxKXvrQZtNzLgWLW3FCAiIkhzTfjuk546n2BumrBTQjoyfh4qarYgKH4fSnqJy0v1SE5ciNXEpTpavlx3HGmT3J2OshkYdhFmTHwAAlFf/bLlPNsfYhaHU0vdJqwm1zJcn7/PNTxGJ2tpaxMbGyraZg+Ta2lrFwFjpMRqNBpGRkZaMsa3169cjPz8fjz76aL/bqtEIiI0Nc7yjk6KjOd/AEfaRc1ztp5lTrkLZd5txovTfmDHl17Ir0kNRbf0R1NTvRURYCiZNOFNxLU+eS85hPznGPiJfEh2RiaDAOGSknd/nZ7m99XDtLeNkcjDMVi1oYTR1wWQyyIb4yoJdheBNGjRo1EN/PVdpn0urgju9DrSDCwXBQXFoaDYfXzoHvPdSV1kZVwMAqmp3SY7ZOxQI0EZAp29GcNAIp9o4EPaW6oqLmoyMtIuREGtdIWNuzl9hMulQUrlB8nilLLq8kJwJOvMdLrevs6te3l7ZcG/Xim+ZKS0xRb7Ba4HxSy+95HCesHm+r70P8r4/4HvfJ4qi4vYdO3bg/vvvx6OPPoqMjL7L5vfFYDChubnD8Y4OCIIK0dGhaGhog8nke5UWfQH7yDn97SetMA7REZmoazyCw8c2Y0TsDA+20vN25b0LABiTchEaGuR/ozyXnMN+cmww+ygiIhhare8WHCLfERgQiV8t/rfDkQzy6sbKP/hlw6odBK0Tx16L/Uf/gYy0C3tl8JSe0/rc1oBOO8wKEqkF+dq8zrC3prRZcGC85XZQQIx13z4y0rZrBNs6dfbfcbJ8PcaPusypNg6EWh2IiWOvQ0jgCOgNrdZ2CWrkTPiDbF+VSgW1OtBupW/rfjb391zDUQtaGI3O/U7XasKhN7T0CmKl0wyk97kyxzg4MLbnWAyQfY3XAuMrr7wS553X91yQ+Ph4xMXFIT8/X7bdnPW1zQqbxcXF9coMGwwGNDc393rMzp07cfPNN+P+++932B5nuPPHkMkk8geoA+wj5/Snn8aO+jV27X8UR4s+RVz0dA+1zPM6u+pQUrEBGk0o0pLOttsPPJecw35yjH1EQ5O9jLF8qOvpc9egufUEwkNT+jza+PTfIG3kWQgKjEZxxbeSY0vnZfYO1mXVhzVDP2MspbaXOe+DbO63JBBTq4NhNHYgJXEJVCo1YqOyHWbxzWRrKyu0Izw0FZPG3eDUsdwha8xVAIDjJdalIpXmn5vZWz5J6bHSwD8kKAE6fbNTbTpj3hoUV3zXU3dF8tyy6tjWfnQlY6zRhODshZ8Muws/w4HXAuOoqChERUU53C8nJwevvfYa6urqLEHt1q1bERERgTFjxig+Ztq0aWhsbER+fj6ys7MBANu3b4coipgyZYplvx07duDmm2/GPffcg0svvXTgL4poGElJOBX7j/4DFTXb0NJW6vBHkK8qLPkCJlGPjOQLoR1mP7KIiNxFNuTXTsZYUKkRGT4GkeHKv79smav5yiv5Ks8pVdoWHBjX6/6hTN2vOcbSqtPWwPiMee+gqaUAcdFTERc9FQBQWrnJuXZIA2MfWurKUcVy633ScyS+9/2C8vD/0JAkNLYcc6otwUHxyBz9u17bpe+hdNSEq0W+QoITXNqfBofPV6VesGABMjIysGLFChw+fBg//fQTXnjhBVx++eXQars/uPPy8rBs2TJUVVUBADIyMrBw4UKsXLkSeXl52L17Nx555BGcc845lvnJO3bswE033YQrr7wSZ555JmpqalBTU4PGxkZvvVQinyIIWmSkXghARGHxZ95uTr8YjV09V6AFZKRd5O3mEBENCfaLb/UviLJ7DIXpbdIM9aiks5CevBwLZzzXr+f1NdJso1plfzkiKVlgrLEGtKHBiUgascDuvn2RHseVAmee5qgwm/U+6zmUlnQWJoy5Cqed8qb1flnG2Lrv2LSLER0xATOz7+9/G2WBcf8yxuS7fD4wVqvVePXVVyEIAi677DLce++9uOCCC3DHHXdY9uno6MCJEydkyzc988wzGDNmDK6++mrceOONmDFjBlavXm25f+3atejo6MBrr72GBQsWWP6THpfI341OOQ9qIRBFZV+jS9fo7ea47GT5euj0TUhOWIjQ4JHebg4R0ZAgLzDkjsDYGgDLghaFJW5k2T5BixnZfxrydS6U9KeKtqOiTc6uOywbSu3kXOfB4Gg0gdJ9gqBB9tjrEBUxzrrNzhxkrSYcS095DaOS+79msCww1vhm5p36z3f+GvqQnJyMN954w+79c+bMwZEjR2TboqKi8Oyzz9p9zBNPPIEnnnjCbW0kGo4CAyKRnvIrFBZ/joLifyN77HXebpLTTCYDjpz4EACQmd57OBQRESlT21kPt/+BsZ11jBUzxsM3wJBnMl3PTUkDWiXOB8bSuc6+EwqopBl1haraZg7nGNu5vz99bkvNjPGw5vMZYyLyrvHpv4VKpUFh8efQ61sdP8BHlFZuRHtnJUbEzkJ05ARvN4doyDt8+DD++Mc/YvHixZg6dSqWL1+O9957z9vNIg+wtwxNvwNjKAcnyusY+06g5naSCwH9Kc/naNizs8W33PGeeoI0ey0tVGZLOqpAqUiX7XJNkjsG2EL3FN8i38XAmIj6FBI0AqOSzoLe0IrCki+83RyniKIJh098AACYMPpKL7eGaHg4cOAAYmJi8PTTT+O///0vbrrpJjzzzDP46KOPvN00cjPZmsaSwKK/2Vx5AKw8rNosNqq7aOqI2Fn9eq4hQ3Q9NBZFk4P7nQuMfZU0ey0dsmxLvmxY7wBadvFFOjzbDWGP2s5Q6qDAGKXdaYgZxpfliMhdxqf/DkVlX6Pg5KcYO+oSWWVMX1RRsxUtbUWIjZqMuOgpjh9ARA5dcsklsn+npqYiNzcX3333HX772996qVXkCdIAS57h7WdWTDrH2EHGOCgwFuctXedw2PBQJF+eyv2B8YiY7rnYKYlLHR5r4YznYDTpXG6DJ0mLb6n7CIylF2jUCueJbSV163b3Zoylw71DgkYM+NjkfQyMicih8NAUpCSeitLKjSgq/S/GjrrE8YO8RBRFHD7+TwBA5ugr3PJFSETKWlpaEBkZOaBjCMLA/kbNjx/ocYY71/rJGoCp1ZJAQK3uVz/LAhlZVlBQPF5gQJjLz+EOnj6XZEXIVP15Huv7ovTYsNBEXHj6eqjVwQ6/+xLjZ7r43Fae6ieNWrqGtf1h49JzSK3ufXFFrVYuviUI/Tt/pWSBsdp6bI0mwGY/fi45w9f6iYExETllwugrUFq5EUeKPsLolHP7nP/jTeXVP6Gh+QiiIjKRGDfH280hGrb27t2L9evX91kc0xGNRkBsrHuCoOjoULccZ7hzpp8CA63BRnCQda3W8PDQfr1fQUGSzFqINcMXGxuB4CDvBMF98dS5FBJqHW0VGhbocl8GBVmDL/uPHbz+dHc/mRBhud1X3+hNwX3uZ0S45XZAgLXPoqPDEBHmvv6Jj4/C0rkPIzgoxm57+bnkHF/pJwbGROSUyPAMJCcsRlnVjygo/hyZo31v6KQoGnGw4G0AQPbY65ktJnLCSy+9hJdffrnPfX788UckJiZa/n3s2DHceuutuOOOOzB37tx+P7fBYEJzc0e/Hw90Zxqio0PR0NAGk6k/JY38gyv91N7Rabmt11s/R9va9Kirc70Io05nHZrd1WXNejY0tKM9wLn1fAeDp8+ljnbrsqJdnRqX+zIt8QJUVudjQsYV/Xof3MVT/dTSYu2fvl5ffX1Dn/u1NHdZbhsN1vO3qbED+q6B99uCGU9CBTXq6loRG3mqYjv4ueScweyniIhgaLV9TwdhYExETsseez3Kq3/GkRMfYHTKOQjQhjt+0CAqqdiA5rYTiIuagoThXriFyE2uvPJKnHfeeX3uEx8fb7ldUFCAq6++GpdeeiluuummAT+/u34MmUwif4A6wZl+MpkMltvyIkjqfvWxvM6UINku+OR75qlzSasJx6KZL6KiZisSYue4/ByBAXE4be6bljZ6m7v7SZRUL+/ruHpDR5/7iaJ0yLo11DGJ7um3hNhTHLZR2j5feK98na/0EwNjInJaeGgaRiUtQ1HZ/3Cs6F/IHne9t5tkYTIZcLBwDQAgexyzxUTOioqKQlRUlFP7Hjt2DFdffTUuuOAC/N///Z9nG0ZeZP381KitQ6ndscawtMq1vBjV8HXq7L+juPwbpKf8CmohAPExU116/KxJf0ZrR7nPXYx2N2erRpuLao5OOVf5OLLiXJI1ubkYDznAwJiIXJKV8XsUV3yHYyc/RUbahQgKjPV2kwAAJ0q/QltHORJiZyMu2rUfHUTk2LFjx3DVVVdh/vz5uOaaa1BTUwOgu9BNTAyXKhkO5k9/CocK30HWmKtwovQ/AAC12pox7v9ardZMkHwNXf8IVGKjsi3LUPVHWtKZbmyN73J2uakAbQQuPH2DrLCWlPQcC9BGSLb7x4UY6j8GxkTkkpCgEchIvRDHTv4L+QVvYUb2Cm83CTp9Mw4Wvg1AwKRxN3q7OUTD0vr161FfX4+vvvoKX331lWV7cnIyNm7c6MWWkbskxs3pVbRQvtyNGzLG0mDGTwJjco40iHXEXlAM2AbG4YrbiZQwMCYil00YcyVOlq9HUdk6jE45FzGRWV5tz8HCNdDpmzE65VxERYzzaluIhqs77rgDd9xxh7ebQYNMOkezv4GFKPp3xpicExQYg0UzX0DwANcElp5X0rWRGRiTI/xEIiKXBWjDMWncDQBE7Dv8IkTR5PAxntLcegLHS76EVhOG7LG+M+eZiGg4cE8gaycw5s9QshEfMw1hIckDOoZ07rpsHWMV84HUN34iEVG/pCcvR1REJuqbDuJk+XqvtEEUTdh76HmIohFZGVcjMCDKK+0gIhqupIGFs3NAe7MGxoIbMtBEfZFerJddiBF4vlHfGBgTUb+oVGrkTPgDABXyjvwdHV11g96GE6VfobZhHyLDMpCRetGgPz8R0XAnzRJLl3Fy7RjK85RZDIk8ISQ4EePTf4M5U1bJzjdmjMkRBsZE1G+xUZOQkXYh9IYW5B56TjaPzNPaO6ux/+irAATMmPSnPgtxEBFRf1mD1/5mjLWaMMttgVk78jCVSoXJ429BSuISm+JxDHuobzxDiGhAJo29ESHBI1Fe/TNKKwenMq0oithz8BkYjO0Yn34poiMyB+V5iYj8j/WCp0nsX8ZYy8rA5CUqXjQnFzAwJqIB0WiCLUs27T30HNraKzz+nAXFn6GqdgfCQlKRlXGNx5+PiMhfSUcCqYXAfh0jQJIxZsEtGkwcPk2u4KcTEQ3YiJjpGJ/+G+gNrdie9xCMxi6PPVdD81HsP/oqBJUWc6Y8BI06yGPPRUREJiya+QLGpv0aI+NP6dcRggJjLbe9uYoB+R+OUCBXMDAmIrfIHnsDYqMmo7H5CPYdedkjz9HZVY/tuSshigZMzryFaxYTEXmYKIqIj5mGqRNu73eQkTRiIVITT8MpUx+Bqd+VrYlcx/oj5IohERiXl5fjxhtvxNSpUzF37lw89dRTMBr7/mBtbGzE3XffjenTp2PWrFn485//jPb2dsV99+zZg4kTJ+Kii1jVlqi/BEGDOVMeQqA2CidK/4NjJz9x6/GNxi5sy/0z2jurkDryDFahJiIaBO7I8AqCBrOn/AXJCYsGsOQTkesEZozJBT4fGBuNRtx0003Q6/X4+OOP8cQTT+Dzzz/Hyy/3nZG65557UFBQgDVr1uAf//gHdu3ahVWrVvXar7W1Fffddx9OOaV/w4OIyCo4KB5zpz0GQQhA3pFXUFKxwS3HNZn02JG3CvVNBxETOREzJt7LZT6IiAaFe1cbYGBMg0nFOcbkAp8PjH/++WcUFhbi6aefRlZWFhYvXow777wT77//PvR6veJjCgsL8dNPP+Gxxx7D1KlTMXPmTKxcuRJfffUVamtrZfs+/PDDWLZsGaZNmzYYL4do2IuNmoQ5Ux4CIGDXgcdQXP7tgI5nDoorarYiLCQNc3Meg1rdvwIwRETkGnfPCWZgTIOJSzSRK3z+Mkpubi4mTJiAuLg4y7YFCxZg1apVOH78ODIzey/TsnfvXkRFRWHSpEmWbfPmzYNKpUJeXh6WLl0KAFi3bh2OHj2KRx99FK+99ppb2isIA89imY/hjmMNV+wj53irn1ISF2LOlJXYuf8x7DrwGLr09Rif/huXs7xdukZs3fsgahv2ISwkBafOfgHBQbGOH+gCnkvOYT85xj6i4cm9GWPOMSYiX+XzgXFtbS1iY+U/hM1Bcm1trWJgrPQYjUaDyMhIS8a4oqICf/3rX/H2228jICDALW3VaATExoY53tFJ0dGhbjvWcMU+co43+ik29gJER0fju5/+hLwj/0Bz22GcesqDCAqMcurx5VW78cOOh9DSVo74mCwsW/wCQkPiPdZenkvOYT85xj6i4US6BrE7RIaPAQCEBCW69bhEynihkpzntcD4pZdecjhP+McffwQAu1mmvrJPSveJomjZvmLFClx33XUYP368s012yGAwobm5Y8DHEQQVoqND0dDQBpPJvVdqhwv2kXO83U/hwTOw5JS/Y1vuQygq/QEffrkbEzOuRnrKr6DVhCg+pqWtBIcK/4mT5d8AAFITT8PMyX9CZ0cQOjta3d5Gb/fRUMF+cmww+ygiIhhaLYvKkOcsmfMqSiq+x+jkX7n1uCNiZmL+9KcRHeG+319ERO7gtcD4yiuvxHnnndfnPvHx8YiLi0N+fr5suznra5sVNouLi+s1l9hgMKC5udnymJ07d2L37t14+umnAQAmkwmiKGLixIl47733MGPGjH69Lnf+GDKZRP4AdYB95Bxv9lNk2DicNud17D/2Gk6UfoXcwy/hQMHbSIidhZjIiQgOjIXJZEBreylqGvairvEAACBAG4mpE+5AauLpUKlUHm8/zyXnsJ8cYx/RcBATmYWYyCy3H1elUiExbrbbj0tENFBeC4yjoqIQFRXlcL+cnBy89tprqKurswS1W7duRUREBMaMGaP4mGnTpqGxsRH5+fnIzs4GAGzfvh2iKGLKlCkAgK+++kr2mA8//BC//PILnnvuOaSmpg7glRGRLa02DNMn3o2M1Atw7OQnKKnciLKqTSir2tRr35CgRIxOORcZaRfZzSoTEREREbmTz88xXrBgATIyMrBixQrce++9qKmpwQsvvIDLL78cWq0WAJCXl4cVK1bg3XffRUJCAjIyMrBw4UKsXLkSq1evhl6vxyOPPIJzzjnHMj/Zdgh1bGwsAgIC3Dq0mojkIsMzMHPS/cjJ+j/UNuxDc2sRunT1EFRaBAeNQHTkBESFj+NSTEREREQ0qHw+MFar1Xj11VexatUqXHbZZQgODsaFF16IO+64w7JPR0cHTpw4IVu+6ZlnnsEjjzyCq6++GoIg4KyzzsLKlSu98RKIyIZGHYTEuDlIjJvj7aYQEREREfl+YAwAycnJeOONN+zeP2fOHBw5ckS2LSoqCs8++6zTz3HHHXfIgm0iIiIiIhq61OpAbzeBhpAhERgTERERERG5YkTMdKQnL0di3FxvN4WGAAbGREREREQ07KhUAmZk/8nbzaAhQvB2A4iIiIiIiIi8iYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERuaS4uBjTpk3DnDlzvN0UIiIit2BgTERERE4zGAy49957MWPGDG83hYiIyG0YGBMREZHTXnnlFaSkpGD58uXebgoREZHbaLzdACIiIhoa9uzZgy+++AJffPEFNmzY4JZjCoLKLY8f6HGGO/aTY+wj57CfHGMfOcfX+omBMRERETnU2tqKFStW4NFHH0VkZKRbjqnRCIiNDXPLsaKjQ91ynOGO/eQY+8g57CfH2EfO8ZV+GhKBcXl5OVatWoUdO3YgJCQEF154Ie6++26o1Wq7j2lsbMQjjzyCH374AWq1GmeeeSb+/Oc/IyQkxLKPyWTCW2+9hU8//RTl5eUYMWIEfv/73+Oqq64ajJdFRETkdS+99BJefvnlPvf58ccf8be//Q2nnnoq5s+f77bnNhhMaG7uGNAxBEGF6OhQNDS0wWQS3dSy4Yf95Bj7yDnsJ8fYR84ZzH6KiAiGVms/dgSGQGBsNBpx0003IS4uDh9//DGqq6vxpz/9CYGBgbjzzjvtPu6ee+5BTU0N1qxZA71ejwceeACrVq3CU089Zdnnr3/9K7Zs2YL7778fY8eORUNDAzo6BvYFTURENJRceeWVOO+88/rcJz4+Hjt27EBlZSU+/PBDAIAoijCZTJg4cSKefPJJnHvuuf16fnf9GDKZRP4AdQL7yTH2kXPYT46xj5zjK/3k84Hxzz//jMLCQqxZswZxcXHIysrCnXfeieeeew633nortFptr8cUFhbip59+wr///W9MmjQJALBy5UrcdNNNWLFiBeLi4lBYWIiPPvoIX331FcaMGQMASE1NHdTXRkRE5G1RUVGIiopyuN9bb70FvV5v+feGDRvw9ttv44MPPsDIkSM92EIiIiLP8/nAODc3FxMmTEBcXJxl24IFC7Bq1SocP34cmZmZvR6zd+9eREVFWYJiAJg3bx5UKhXy8vKwdOlSbNy4ESkpKdi4cSOuv/56qFQqLFy4EPfccw/Cwvo/38kdk8d9bSK6L2IfOYf95Bj7yDnsJ8eGex+NHj1a9u8DBw5AEASMHz/eSy0iIiJyH58PjGtraxEbGyvbZg6Sa2trFQNjpcdoNBpERkaitrYWAFBSUoKysjJ8//33ePrpp6HT6fDoo4/ivvvuczjXyh53FhEBfGciui9jHzmH/eQY+8g57CfH2EdERERDj9cCY2eLfQCASqV89d3ednv3iaJo2S6KIvR6PZ588kmMGjUKALBq1SpcccUVqK2tlWWoneWOIiIAJ+w7g33kHPaTY+wj57CfHPO1IiKedtFFF+Giiy7yahuIiIjcxWuBsbPFPuLi4pCfny/bbs762maFzeLi4iz7mBkMBjQ3N1seExcXB41GYwmKASAjIwNAdxXs/gTGgPuKiJiPxR+gfWMfOYf95Bj7yDnsJ8fYR0REREOP1wJjZ4t95OTk4LXXXkNdXZ0lqN26dSsiIiIsRbNsTZs2DY2NjcjPz0d2djYAYPv27RBFEVOmTLHsYzAYUFJSYim6deLECQBAUlLSQF8eERERERERDRGCtxvgyIIFC5CRkYEVK1bg8OHD+Omnn/DCCy/g8ssvt1SkzsvLw7Jly1BVVQWgO/O7cOFCrFy5Enl5edi9ezceeeQRnHPOOZZM8Pz58zFhwgT8+c9/xuHDh5GXl4dHHnkEZ555Zr+zxURERERERDT0+HxgrFar8eqrr0IQBFx22WW49957ccEFF+COO+6w7NPR0YETJ07IlpF45plnMGbMGFx99dW48cYbMWPGDKxevVp23Ndffx3h4eH47W9/i1tvvRVTpkzB448/Pqivj4iIiIiIiLzL56tSA0BycjLeeOMNu/fPmTMHR44ckW2LiorCs88+2+dxExIS8Morr7iljURERERERDQ0+XzGmIiIiIiIiMiTGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NZUoiqK3GzFcmEwijEaTW46l1aqh1xvdcqzhin3kHPaTY+wj57CfHBusPlKrBQiCyuPP42nu+t7kuekc9pNj7CPnsJ8cYx85x5e+NxkYExERERERkV/jUGoiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2Mf88EHH2Dp0qWYPHkyLr30UuTl5Xm7SYPmtddew8UXX4xp06Zh7ty5uP3221FUVCTbp6urC6tXr8acOXMwbdo03HHHHairq5PtU15ejhtvvBFTp07F3Llz8dRTT8FoNA7iKxk8Dz30EDIzM/H+++9btrGPulVWVuLuu+/G7NmzkZOTg4suugiFhYWW+9lPQGtrK1atWoWFCxdi6tSpOOecc/DFF19Y7vfHPtq1axduvvlmLFiwAJmZmfjhhx9k97urT3bs2IELL7wQkyZNwhlnnCHrd3INvzf5vekKfm/ax+9Nx/i92duw+t4UyWf873//E7Ozs8XPPvtMPHbsmLhy5Upx1qxZYl1dnbebNiiuvfZa8d///rd49OhR8dChQ+INN9wgLlmyROzo6LDs85e//EVcvHixuHXrVnH//v3ipZdeKv7ud7+z3G8wGMRzzjlH/P3vfy8ePHhQ3LRpkzhnzhzxhRde8MZL8qiNGzeK5513nrhgwQLxvffes2xnH4liY2OjuGTJEvG+++4T9+3bJxYXF4ubNm0SKyoqLPuwn0TxgQceEM8880xx586dYnFxsfj++++LEyZMEHfs2CGKon/20aZNm8TnnntO/Oabb8Tx48eLGzdulN3vjj4pLi4Wp06dKj7++ONiQUGB+N5774lZWVnili1bBu11Dhf83uT3piv4vWkfvzedw+/N3obT9yYDYx9yySWXiA8//LDl30ajUVywYIH45ptverFV3lNXVyeOHz9e3L17tyiKotjc3CxmZ2eL69evt+xTUFAgjh8/XszLyxNFsfuPMysrS6ypqbHs8+GHH4ozZ84UdTrd4L4AD6qpqREXLVokHj58WFyyZInlC5591O3pp58Wf/vb39q9n/3U7Ve/+pX46quvyradeeaZ4ptvvsk+EsVeX/Du6pOnnnpKPOecc2TPddddd4k33nijJ1/OsMTvTTl+b9rH782+8XvTOfze7NtQ/97kUGofodPpkJ+fj/nz51u2CYKAefPmITc313sN86KWlhYAQGRkJADgwIED0Ov1sj7KyMhAUlKSpY9yc3MxYcIExMXFWfZZsGABmpubcfz48cFrvIfdf//9uPLKK5GZmSnbzj7qtnHjRkyaNAl33HEH5s6di4suughffvml5X72U7dp06Zhw4YNqKqqgiiK+Omnn1BdXY158+axjxS4q09yc3NlxzDv46+f9f3F783e+L1pH783+8bvTefwe9M1Q+17k4Gxj2hoaIDRaJSdFAAQGxuLmpoaL7XKe0RRxOOPP47Zs2cjIyMDAFBbW4ugoCCEhYXJ9o2NjUVtba1ln9jYWNn95j417zPUvf/++2hvb8e1117b6z72UbeSkhJ8+OGHyMjIwNtvv42LL74Yf/7zn7FhwwYA7CezlStXIi0tDYsWLcKkSZNw++234/HHH0dWVhb7SIG7+sTePo2NjdDr9Z5q/rDD7005fm/ax+9Nx/i96Rx+b7pmqH1vatx2JPIIURShUqm83YxB9/DDD+Po0aP46KOPZNuV+kIURYf79LV9KCksLMTf//53fPLJJxAE5eta/t5HQPfrnTx5Mu666y4AQFZWFg4cOICPPvoIp512GgD2E9D9Y/HQoUN4/fXXkZCQgG3btuGBBx5AYmIiAPaREnf1ie0+tseg/uP3Jr83pfi96Rx+bzqH35uuG0rfm8wY+4jo6Gio1epeV4vq6+t7XQ0f7h555BFs3LgR7777LhISEizb4+Li0NHRgdbWVtn+0j6Ki4vr1Yfmf9teaRqK9u3bh/r6epx55pmYOHEiJk6ciLKyMjz22GNYtmwZ+6hHXFwcxowZI9uWkZGBiooKy/3+3k+dnZ14/vnncd9992Hx4sWYMGECrrnmGixevBjvvvsu+0iBu/pEaZ+6ujpERUVBq9V6qvnDDr83rfi9aR+/N53D703H+L3puqH2vcnA2EcEBAQg+//Zu+/4pqr+D+Cf3MzulZYWKBTKngVkb0QEFMWJA5wIivpDRXmcj+B+3PsRBzwouAVciMjeQ2wZZZcySkvbdO+Me39/tEnPTZNmNOnN+L5fL1+WNLk5Oblp7vec7/me3r2xa9cuy208z2P37t1IS0uTrmGtSBAEvPDCC1i/fj2WL1+O5ORk0e/79OkDpVIp6qPs7Gzk5uZa+igtLQ3Hjx8XlYHftWsXIiMjm/zB90cTJ07EL7/8gjVr1lj+S0hIwJw5c/DJJ59QHzUYMGAAzp07J7rt7NmzSEpKAkDnEgAYjUYYDAbI5XLR7RzHged56iMbPNUnaWlp2Llzp+jYu3btCpq/9Z5C35v0vekM+t50Dn1vOkbfm67zu+9Nj5byIi1i3nZi1apVwunTp4XnnnsuqLadeP7554VBgwYJe/fuFQoKCiz/WW87MW7cOGH37t3C4cOHhRkzZtgs+X7PPfcIx44dE7Zt2yYMGzZMeOeddyR4Ra2Dra4pCNRHgiAIGRkZQs+ePYUlS5YIZ8+eFVatWiX06dNH2Lhxo+U+1E+CMHPmTOGaa66xbDvx7bffCr169RJ+/vlnQRCCs48qKyuFo0ePCkePHhW6desmfPnll8LRo0eFgoICQRA80yfnz58X+vXrJ/znP/8RTp8+LaxYsULo1asXbdfkBvrepO9Nd9D3ZlP0vekc+t5sKpC+Nykw9jFfffWVMG7cOKF3797CjTfeKBw8eFDqJrWabt262fzvp59+styntrZWWLRokTB48GChf//+wkMPPSQq7y4IgpCTkyPMnj1b6NevnzB06FDhtddeE4xGY2u/nFZj/QVPfVTvr7/+Eq666iqhT58+wtSpU4XVq1eLfk/9JAgFBQXCv/71L2HUqFFCv379hClTpggrVqyw/D4Y+2jPnj02/w69//77giB4rk92794tXHvttULv3r2Fyy+/XFi1alWrvcZAQ9+b9L3pKvretI2+Nx2j782mAul7UyYIVPGDEEIIIYQQQkjwojXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBDJrF27FqtWrZK6GYQQQohfoO9NQryHAmNCiGTWrVuH1atXS90MQgghxC/Q9yYh3kOBMSGEEEIIIYSQoCYTBEGQuhGEkODz5JNPNhn1fuihh/Dwww9L1CJCCCHEd9H3JiHepZC6AYSQ4DRv3jzk5uaioqICzz//PAAgMTFR4lYRQgghvom+NwnxLgqMCSGS6NChA6KjoyEIAtLS0qRuDiGEEOLT6HuTEO+iNcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEMkolUrU1dVJ3QxCCCHEL9D3JiHeQ4ExIUQynTp1wsmTJ7FhwwYcPnwY+fn5UjeJEEII8Vn0vUmI99A+xoQQyRQXF+O5557D/v37UVZWRvsxEkIIIc2g701CvIcCY0IIIYQQQgghQY1SqQkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDWF1A0IJDwvwGTiPXIshYKD0eiZYwUq6iPnUD85Rn3kHOonx1qrj+RyDhwn8/rzeJunvjfp3HQO9ZNj1EfOoX5yjPrIOb70vUmBsQeZTDxKS6tbfByOkyEuLhzl5TXgecEDLQs81EfOoX5yjPrIOdRPjrVmH0VHh4Lj5F59jtbgie9NOjedQ/3kGPWRc6ifHKM+co6vfW9SKjUhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKDmV4HxypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3btib3OX36NObOnYuBAwdi4MCBuOWWW1BcXOytl0AIIYQEjOeffx7du3fHihUrpG4KIYQQ0iJ+ExivXbsWr776Kh588EGsXr0a3bt3x+zZs+0Gsenp6ViwYAFuvPFGrFmzBhMnTsS8efOQlZVluc/58+dx++23o0uXLvj666+xevVq3HvvvVAqla31sgghhBC/tHnzZmRkZCAhIUHqphBCCCEt5jeB8bJlyzBjxgzccMMN6NKlCxYvXgy1Wo3Vq1fbvP/y5csxZswYzJ49G6mpqZg/fz569eqFlStXWu7zzjvvYMyYMXjiiSfQo0cPdOzYEVdccQUiIiJa62URQgghfken02HRokV4/fXXaTCZEEJIQFBI3QBn6PV6ZGZm4oEHHrDcxnEcRowYgYyMDJuPycjIwL333iu6bdSoUdiyZQsAgOd5bNmyBbNnz8bdd9+N48ePo2PHjnjwwQcxevRot9vKcTK3H2t9DE8cK1BRHzmH+skx6iPnUD85Fkx99NRTT2HWrFno3r17i4/V0v4Kpn5vCeonx6iPnEP95Bj1kXN8rZ/8IjAuKSmByWSCVqsV3R4XF4dz587ZfIxOp0NcXFyT+xcWFgIAioqKUF1djc8//xyPPPIIFi5ciI0bN2Lu3Ln48ccf0atXL5fbqVBwiIsLd/lx9sTEhHnsWIGK+sg51E+OUR85h/rJsUDvoxUrVqC6uhr33HNPi4/lye/NQO93T6F+coz6yDnUT45RHznHV/rJLwJjewRBgExmf4TB1u/Mt/E8DwC4/PLLceeddwIAevbsiX379uG7777D4sWLXW6P0cijvLzG5cdZ4zgZYmLCUFJSBZ4XWny8QER95BzqJ8eoj5xD/eRYa/ZRZGQIlEq5V5/DlqysLHz88cf4/vvvwXEtX43lie9NOjedQ/3kGPWRc6ifHKM+co6vfW/6RWAcExMDuVwOnU4nur24uLjJLLKZVqttcv+ioiLL/WNiYqBQKNC5c2fRfVJTU3Hx4kW32+rJN5XnBfowOUB95BzqJ8eoj5xD/eRYIPfRwYMHUVxcjEmTJlluM5lMePnll7FixQqsW7fO5WN6qq8Cud89ifrJMeoj51A/OUZ95Bxf6Se/CIxVKhV69+6NXbt2YcKECQDqZ3x3795tme21lpaWhp07d2LWrFmW23bt2oW0tDTRMa1Tsc+ePYsOHTp454UQQgghfmzixIno06eP6LZ7770X119/Pa677jqJWkUIIYS0nF8ExgBw9913Y+HChejduzf69euH5cuXo7a21vJFvHDhQrRp0wYLFiwAANxxxx2YOXMmli5dirFjx2Lt2rU4cuQIXn75Zcsx77nnHjz++OMYPHgwBg8ejI0bN2Lv3r144oknJHmNhBBCiC+LjIxEZGSk6DalUon4+HikpKRI0yhCCCHEA/wmMJ46dSqKi4vx/vvvo7CwED179sTnn3+O2NhYAEBeXp5ovdPAgQPx1ltv4d1338Xbb7+NlJQUfPTRR0hNTbXcZ/LkySgvL8cnn3yCF198Eampqfjkk0/cKrxFCCGEEEIIIcQ/yQRBkD6hO0AYDCaUlla3+DgcJ0NcXDiKiip9It/eF1EfOYf6yTHqI+dQPznWmn0UHR0qSfEtT/PE9yadm86hfnKM+sg51E+OUR85x9e+N1teUpIQQgghhBBCCPFjFBgTQgghhBBCCAlqFBgTQgghhBBCCAlqFBgTQgghhBBCPOJCTQEeO/IhTlZekLophLjEb6pSE2JLjakOmWVnkVNTgEpTLWQA4lSR6BTaFp3D2kIuo7EfQgghhBBvy6stQht1DN46/R2OV57DouPL8PVl/5a6WYQ4jQJj4ndMAo9dRUfx18l9+Ft3AgbBZPN+kYpQjNcOxDWJI9EuJL6VW0kIIYQQEhy26jLw6qkVuKrNcNSa6gAAet4gcasIcQ0FxsRvCIKA3SWZ+Pzcb8it1QEAIhShGBHVDZ1CkxClDAcvmFCoL8PxinM4UpGNny/twK+XdmFKm6G4u8NUhCtCJH4VhBBCCCGBZVvRQQDA7/m70SEkAQAoa4/4HQqMiV8o1pfj7azv8HfpCQBAWlQX3NVjMrrLO0ImyGw+ptRQiXX5e/Fj7hb8nr8be0uO4okut6J/VJfWbDohhBBCSECTofFajBfq96OVyWxfnxHiqygwJj7v79ITePP0Nyg1VKKdJh4PdJqOIbE9GjcEF2xvCB6tDMct7S/HVW2G479n12CT7h88fexTPNjpekxtM6yVXwUhhBBCSGDimCBYQENgDAqMiX+hwJj4tFW52/DZuV8hQMBVbYZjTsdroJYrXTpGhDIUC7vehrSornj/zI94/8yPKNKXYVbylV5qNSGEEEJI8OCYjW7MExaUSk38DQXGxCeZBB6fnf0Vay5th5pTYkGXWzAmrn+LjjkpYTCSNLF4/vgyrMz5C3KZHLe1n+ihFhNCCCGEBCc2bZoHX38bzRgTP0NDOcTn8AKP97J+wJpL2xGlCMNrve5vcVBs1jcyFS/1nI0QTo0vL6zDb5d2eeS4hBBCCCHBirOxxpijNcbEz1BgTHyKIAj44MwqrC/cD60qCm/3eQg9Izp69Dl6RaTghZ73QCmT4+PsNUgvO+XR4xNCCCGEBBOZjTXGHIUZxM/QGUt8hiAI+OTsz/ijYA9ilBF4rdf9Xtt/uG9kKv6v843gwePlE1/iUm2xV56HEEIIISTQsTPGJqE+lZpmjIm/ocCY+Iyf8rbi50s7GtKn56K9l4JisysSBuOGpLGoNNXgtVMrYeRNXn0+QgghxJ/UmQx45PD7+OXSTqmbQnycrRljWmNM/A0FxsQn7Cg6hM/P/QY1p8QLPe9Fx9DEVnneuztMRffwZByvPIcVOetb5TkJIYQQf7C/9BiOV57Hx9mrpW4K8XHsjLFgWWNMYQbxL3TGEsmdqDiP1099DRlk+FfX29E9vEOrPbeCk+PJrjMRKlfj+4ubcKLifKs9NyGEEOLL+IaUWEIcYYNgSyo1zRgTP0OBMZFUqaESL55cDr1gxOyOV2NEbJ9Wb0OSJg73dZwGHgLeOfMDpVQTQggJanuKM3G+Oh98Q0osIY6wadOW4ls0Y0z8DJ2xRDImgcd/Tq2ETl+Gy7WDcH3SGMnacmXCEPSN7Iyz1Xn4MW+LZO0ghBBCpJRfV4xFJ5ZhzsE3LCmxhDjCFtoyb9cko+JbxM9QYEwks+LCeqSXnUJKaBIe7nyDpH9AORmH+Z1vglKmwMoLfyG3VidZWwghhBCplOorLT9TWEycxW7NxINSqYl/8qvAeOXKlZgwYQL69u2Lm2++GYcOHWr2/n/88QcmT56Mvn37Ytq0adi2bZvd+953333o3r07Nm/e7OlmExv2lhzFNxc3IFSuwXPd7oBGrpK6SWgfEo9b2l8Og2DEF+d+l7o5hBBCSKszoXFdMaVSE2fR7DAJBH4TGK9duxavvvoqHnzwQaxevRrdu3fH7NmzUVxse//Z9PR0LFiwADfeeCPWrFmDiRMnYt68ecjKympy3xUrVlC6UCvS1ZXhzdPfAgAe73KL1/YqdseNSeMQr4rGzuLDOFTW9FwhhBBCApn4eoiujYKdkTfhUm2Rw/vR7DAJBH4TGC9btgwzZszADTfcgC5dumDx4sVQq9VYvdr2FgLLly/HmDFjMHv2bKSmpmL+/Pno1asXVq5cKbrf6dOn8emnn+KVV15pjZcR9HiBx1tZ36LCWI3piaMlKbbVHLVciXs6XgUA+PTcL1SRkxBCSFDh2RljmjQIeotPLMNd6a/iaMXZZu/HrjE2p1VTxgHxNwqpG+AMvV6PzMxMPPDAA5bbOI7DiBEjkJGRYfMxGRkZuPfee0W3jRo1Clu2bBEdd8GCBXjqqaeQkJDgkbZyXMtHzMzH8MSxfM3qizsa1hUnYnanq9x+jd7sownxA/DLpR04VnEOW4rSMTHhMo8/R2sJ5HPJU6iPnEP95Bj1EQkEbDAsUGAT9PaXHgcAHCw7jV4RKXbvJ2Pm2sxp1ZSNSfyNXwTGJSUlMJlM0Gq1otvj4uJw7tw5m4/R6XSIi4trcv/CwkLLv9955x107doVU6ZM8Ug7FQoOcXHhHjkWAMTEhHnsWL7gVFkOlp5fCyWnwGuD70NSVEyLj+mtPnq83824d+cbWHnxL1zffTSUnNwrz9NaAu1c8pQyfRX2647jok6HWpMesepI9I7piB5RHWibCTvoXHKM+oj4MxOTKUWBDTFTcs2HDOyMsfknGlgh/sYvAmN7BEFodrG/rd+Zb9uzZw/WrVuHn3/+2WPtMRp5lJfXtPg4HCdDTEwYSkqqwPOB8UdFzxvw5MHPYOCNmJtyDWKN0SgqqnT8QDu83UfJSMRl0T3wd+lxfHdsM6YkDvP4c7SGQDyXPOF0ZQ6+ztmAXUVHbKZ6aVVRuKHtWFydOAJquVKCFvoeOpcca80+iowMgVLp3wN2xDeZBJPlZ0qFJWYqWfMhA7uPsflnGlgh/sYvAuOYmBjI5XLodOItdIqLi5vMIptptdom9y8qKrLcf//+/cjLy8OwYeKAZ968eRgxYgS++OILt9rqyYshnhcC5gL0i7O/42z1JQyI6oprE0d57HV5s49mtZ+Ev0uPY+WFvzBeOwgqB6OlviyQzqWWqDMZ8L8Lf2BN3nYIEBClCMOw2N7ol9AJxloBhbWlOFh2GocrzmDJ2V/w66VdeCx1BvpEdpK66T6DziXHqI+IPzMwgbGR+ZkEj79LjuPLC3/i393vstzmaMaYZZ49poEV4m/84kpfpVKhd+/e2LVrFyZMmAAA4Hkeu3fvxp133mnzMWlpadi5cydmzZpluW3Xrl1IS0sDANx222248sorRY+ZNm0ann32WYwdO9Y7LyRIHS7Pwuq87QiXh2BB6i1+k6LaPaIDhsb0wt6So/izYC+mJY6UukmkBYr05Vh0fClOVeUgTK7BnR2mYHLCEGgUKsTFhaOoqBI8L2Bm8iScrb6EZed/x96SY1iY+V880Olaev8JIUHBwBstP5soMA5Kzx7/HACwMme95TaFrPkMFTZtWsYkUxPiT/wiMAaAu+++GwsXLkTv3r3Rr18/LF++HLW1tbjuuusAAAsXLkSbNm2wYMECAMAdd9yBmTNnYunSpRg7dizWrl2LI0eO4OWXXwZQv97Yeg0yALRt2xbt27dvvRcW4GpNeryT9QMAYF6n66BVR0ncItfMSr4Se0uO4ofcLZiSMAwKP19rHKzy64rxxJGPUaAvRe+ITniq68xmz8WU0EQs6n4P/ircjw/O/ISPslejRF+BOzpMbsVWE0JI6xPNGPMUGAczE5MK7WjGmC3aZim+5Z1mEeI1fhMYT506FcXFxXj//fdRWFiInj174vPPP0dsbCwAIC8vDxzXOBM5cOBAvPXWW3j33Xfx9ttvIyUlBR999BFSU1OleglB6csL65Bbq8PQmF4Yrx0gdXNc1iWsHQZFdceBshPYVnQQE+IHSt0k4qIifTmezFyCAn0pxsalYUGXW5xKi5fJZJiUMARtNfF4/vgX+PriBqg4JW5pf3krtJoQQqTBzhgbaMY4qIm3YGq+2r7AbPNlnjGm7b6Iv/GbwBgAZs6ciZkzZ9r83VdffdXktilTprhUcfrEiRNut400dbTiLFbnbUeYXIP/63xDs4XSfNnN7cbjQNkJ/JC7GeO1A/z2dQSjWpMe/z72OfLqijAyti8Wdr0VcgfpYNb6RHbCSz3vw9NHP8X/LvyBJE0cxmrTvNNgQgiRmEGgVGpSj73aYauV2yKaMTYX36I5Y+Jn/GOxJ/E7et6Ad7K+hwABc1OuQZzKv1KoWf0iU9E9PBnZ1Xn4u2E/P+L7BEHAe2d+RFZ1LvpFpuJfXW93OSg26xnREc90vwMcZHg76zucqszxcGsJIcTz9LwRl2qLXXoMmz5toFTqoMZOBJjsBLmnKnNwrOKcKAjmaB9j4qcoMCZeseLCX7hQU4BBUd1xRfxgqZvTIjKZDDe1rS/69n3uZolbQ5z1a/4ubNb9g3hVNJ7uNqvFVcUvi+6OezpehTregJdPfolqU62HWkoIId7x5NFPcFf6KzhXfcnpxxiZGWMe4lnCw+VZqDBWe6x9xLex6dO8nRnjhw+/i0ePfGBzdphmjIm/ocCYeNzJygv4MXcLQuVqPJJ6U0CkHo+I7Y32mngcLj+DE5XnpW4OceBCTQE+P/srFDI5nu12B6KV4R457g1JYzEqti8u1RVjydlfPHJMQvzJkiVLcMMNN2DAgAEYPnw4HnroIZw9e1bqZhE7jlacBQAcLM9y+jFsSiybPptRdgpPZP4XC4586LH2Ef9hK5W6zmSw/EzriUkgoMCYeJSeN+Lt09+BB4/ZHachXh0tdZM8gpNxuC5pNADgl7ydEreGNMck8Hjr9HfQC0bMbD8J3SM6eOzYMpkMD3e+ETHKCPxZsA+7i4947NiE+IN9+/bh9ttvx/fff49ly5ZBr9fjnnvuQW0tZVD4shpTndP3ZfeeNTKFuDLLswEA52sKPNcw4jesswcAQKcvs/xsa3ZY5qBgV7ASBAEfnvkJv+fvlropxAoFxsSjvs3ZgLM1l5AW2QVTEoZK3RyPmhA/CGFyDbYVZaDUUCF1c4gda/K24XjlOXQLS8ZN7cZ5/PhRyjA8mnozAOCj7NWUUk2CyhdffIHrr78eXbt2RY8ePfDaa6/h4sWLOHr0qNRNI82oMdVhQ8EBPHPgC4dBssDMDBqZ4lu1vN5r7SO+iQ11baVS6/SlzO8pldpZOn0ZfsvfjQ/O/CR1U4gVv6pKTXxbVtVFfJe7CRpOFTAp1KwQuRqTEoZgdd42rM3fi9vaT5S6ScRKkb4cKy78BbmMw2NdZrhdbMuRITE9MS5uALYUpWPlhb9wX8o0rzwPIb6uoqJ+kDAqyv0CixzXsu8K8+NbepxAVsPX4fVTXwMAYrlI3NXB/o4dgoyZMYbtwDhQ+5rOJTH2Mo6H0KR/6oTGVGrba4wDvy8rjTVQyhRQy5Wi25s7lwwwNrlfsPK1zxwFxsQjjLwJb2d9D5PAY27HqUjUxEndJK+YljgCa/K24/dLu3Bz2/FQcN4JvIh7lp77HTV8HW5IGouU0ESvPtd9KdOwr/QoVudtx8T4y9ApLMmrz0eIrxEEAa+++iqGDBmC1NRUt46hUHCIi/NMDYCYmDCPHCcQ8YrGALdaVttsn6sLGy/wOSVTfEnROGPoqffMV3nrXPpbdwIp4YnQavxjpw61uvFcCAlVNnnfQ8NUlp8V6sYkVDlX/7OMC+xzRRAETPp1AcIUGmyb+p7N+9g6l4rLG1PQ+TAjVp/bjls7T0SEMsRrbfV1vvL3mwJj4hE/5G5GVtVF9InohKsTR0jdHK9pq9FicHQP7Cs9hl3FhzGG9rP1GUcrzmKj7gBilBG4rf0VXn++OFUk7kiejE/O/ozPzv2KV3rN8fpzEuJLXnjhBZw8eRLffPON28cwGnmUl9e0qB0cJ0NMTBhKSqrA85S6aUt5dWMl6Tq9AUVFlXbvW13dmGpdVdv4c1lN4zGae7w/8+a5dKYqF/dnvI0QTo2fh7/i0WN7S11d44xweWUN7tn6BnqEJ+O+ztMQExOGiorGz25VTeOyIvOWX0aTKWDPFQAwNKzBrzLWokBXDrmscXCguXNJV1Fu+fm5/cuwv+Q4ThTl4Onus1qn4T6kNf9+R0aGQKlsfkKLAmPSYmerL+HrnL+gkinwaOrN4GSBvXT9mqRR2Fd6DD9f2kmBsY8QBAFLzv4MALinw1SEKTSt8rxXtxmBXy7txD9lJ/FP6UkMjO7WKs9LiNRefPFFbNq0CStWrECbNm1adCxPXQzxvECBsR1srwgO+snE/M7AFN+qZdYmB3o/e+pcMgkmPJm5BINiuqOtRgugPq3dX/rPxDdmCRTUleBg2WkcLDuNe1OuBgAYmd+ze16b1xsLQmB+JpeeWwuFjMPN7SZYbiuoLUEbdWyT+9o6l6qNjZ+l3JoiAEB66amA7Ctn+crf78COYIjXmQQe72R9B4Ngwp0dJqNdSLzUTfK6gVFd0U4Tj8yKbJypypW6OQTAnpJMnKi8gNSwdrg8flCrPa+Ck1vW6i09/7vdfR4JCRSCIOCFF17A+vXrsXz5ciQnJ0vdJOJhAlN92MgEO+zWPMQ5pypzcLjiDP53/g+pm+IWA7OntS1spWoTU6it8ffSBzre8H3uJnx9cYPo9evqypp5hBi7Xt+8e0uZscpj7SPuo8CYtMiavG04UXkB3cOTMT1pjNTNaRWcjMPUNsMAAOsK9kncGmISeCw/vw4AcFfy5FbPWBgd2w/dw5NxuuoithYdbNXnJqS1LV68GL/88gveeusthIWFobCwEIWFhbRdk49jt81xVBiTrS7MBkYGG4EPaR67969vlBZyjZ7JGLBVdZoXVTDnm9weiFWpBaYf7O357QgbGEcpfGNtLalHgTFx28WaQiw/vw5KmRyPps4Qra0IdJfHD4JCJsemwgM0ii6xbboMnK25hF4RKbgsukerP79MJsM9Ha4CAKy4sN6lL0dC/M0333yDiooKzJo1C6NGjbL8t3btWqmbRjyEneWjv2ctY2vvX3/CptIbbc0IiwLDxt+bA2LBRjDt79h+0PON138mF97rOhNT4Z0ZqDpQegIPH3oXBXUlLWwlcRetMSZu4QUe72R9D71gxB3Jk71eAdjXRCvDMSK2D7YVHcTO4sOYED9Q6iYFJZPAY0XOegDA3R2mSLZFWP+oLugXmYpD5VnYUXQIY2ntOQlQJ06ckLoJxAm8wLudPSO4OQtGmrI1y+or/i45Dr1gxIjYPnbvw2YMGG2kVbODKGzAaFlj7MKMsYE34kJNATqFJvn0dp960br7xgDX3Rlj9hR55thnAIDl59fhia63tqCVxF3BM8VHPOq3/N04UpGN1NC2uLnteKmbI4nJCUMBAH8U7JG4JcFrZ9EhXKzVIS2qK/pGurddjKeY97X+JmcDrTUmhEjm+4ubcNWef+FSbbHN3zuaxRPPGFP6dEuwM66+Nnv67PHP8cKJ/zV7H3aNOVtcy0ycSs0Exg2zp64MDLyd9R3mHXob23x8SZKB2bu5mmcK0rnwve8oiA7Utdn+gAJj4rJLtcVYeu53cODwaJcZQbuXb1pUFySqY3G4/Axyagqlbk7QEQQB3+VuBgDMYCpDSqV/ZBf0DO+IszWXsKfkqNTNIYQEqaXn10KAgL8K91tuY9cY25vFMwduvI21osQ9tUyqrd5HBxmaC9j1ojXmTYN8e2n3JmaNsa6uDEvP/Y4yQ/PFpTbr0gHA578/2RnjGlNjbQVXZowd3TeYlib6Gup54hJBEPDemR9Qy+txc7vx6BLWTuomSYaTcbgyYQgA4M+CvRK3Jvj8U3YSWVUX0TWsPdIiu0jdHMhkMtzKzBr72uwAISS42AuGTTb+NpkEEx46/C7ey/rB6r6NF/CCn6+XlUIdkzLLzh5LzVYQa4tojTE7e9wQ5POC7arUbPGtV059he9zN+Pj7NVOtY3z8TJl4sDYvVRqUb+h6YAJR+GZZKjniUvWFexDetkpdAhJwG3tr5C6OZK7In4wOMjwV+HfPvWlFwy+v7gJQP1ssa+sRxoc3QOdQ9viVFUOjlSckbo5hBACwPG2OuerC5BVdRF/FOwVF1Rit26i2WOXscWZHG191JpEAbtVu8RVl22nSpuvd9hzxSgKkgXL709V5gAA8mqLnGqbj3yd28W+pzXs3t5OZAT8lLsVGwr/Fs+0800/V5yvd0IAo8CYOC2vtgifnv0FHGR4LHUGVBzVbtOqozA4pidKDZXYW3JM6uYEjeMV53CwPAvtNFoMb6ZwSGuTyWS4Lmk0AGB17naJW0MIIfV4O8GO2cXaxuVA7Iwx7+TMorOOlJ/B0nNrgyZFu44NjJmfpc4oYmc6jVZrh+2lRxtspFWLBlz4pmuMBQiWgNrZZXcyH58xZidBqpnA2NHnQxAEfHbuV7x5+lvHM8YUGEuGAmPiFJPA463T36KGr8PN7SagR0RHqZvkMyY3pFNvKPxb4pYEj1V52wAAN7Yd53NrccZqByBGGYHdJZnIrdVJ3RxCSJBiL63FF+JNg7ISQ4Xt+9pJlXXX45kf4/vcTfin9GSLj+UP2OrDbDAq9exxXTNtEexkDLDFt8zBtHjGuOn5IQiCZaBFKXM2MPat73Rrerb4FrvG2EHBLIOoOBnTb7ZmjH28DwKZX/X8ypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3bNsvvDAYD3njjDUybNg1paWkYPXo0nnrqKRQWUhElW1bnbauvQh3WDrdTCrXIZdE9EKUIw/7SYyg1VErdnICnqyvDjqLDiFSEYoJ2kNTNaULFKXB14ggIEPBz3g6pm0MICWDmIOaP/L34/dIu8e+Ynx0FuOzv7c0YWs8stkQNU803kLH9xwZRUi+9YvvfOjBmZ4HF64ptzBg7yChgsw8UMueyDH19spQdIGDTqh2lUrPbXdlbm23m7lZrrkovO4XXTq4UbTsV7PwmMF67di1effVVPPjgg1i9ejW6d++O2bNno7jY9nYE6enpWLBgAW688UasWbMGEydOxLx585CVlQUAqK2txdGjR/HAAw9g1apV+OCDD3D69Gk8+OCDrfmy/EJ2VR6Wn/8DSpkCT3S5FUpKoRZRcgqM1Q6ASeCxVZchdXMC3u/5u8GDx+SEYVDLlVI3x6ar2gyHUqbA+oL9qDLWSN0cQkgAev74F5h36G1LUcwPsleJfm9r+xzA9hY69rYV8sSMcZG+HBWGatFtzgZJ/o4XBcZsMCpthepmU6ntvOfsOWJZY+xg7To7yOLstaPvF99i0+Mb+8RRKjUbUNeJqpU3HSSRt9LowFNHl2BLUTrWXKKlX2Z+ExgvW7YMM2bMwA033IAuXbpg8eLFUKvVWL3adpW75cuXY8yYMZg9ezZSU1Mxf/589OrVCytXrgQAREREYNmyZZg6dSo6d+6MtLQ0PPfcczh48CDy8/Nb86X5NANvxBunv4FBMOGuDpOREpoodZN80sT4+plLSqf2Lj1vxB8Fe8BBhqsTh0vdHLuileG4PH4Qavg6rCvYJ3VzCCEBaG/JMWRX56GSGXxjg9o60WyW7WDX1m329jEWVah2co2sIAi4/cALuOnvf4tuD5Y1lGyfsQWvpF5jLS6+5dwaY1tBsr3iW2bseaJwMpUaPh4Yi4qQCc4HxuyMcZWx+ewBV/Z/9oScmoJWfT5f5hdDdnq9HpmZmXjggQcst3EchxEjRiAjI8PmYzIyMnDvvfeKbhs1ahS2bNli93kqKyshl8sRERHhdls5ruUfaPMxPHGsllp54S+cqc5Fv8hU3NBurM98mflSHwFA94hkdAhpg1NVObhQm4+OPjKA4Gv91FI7dAdRaqjEqLi+SAyJ9cgxvdVH17UdjXUFe/FH/h7c2G6sz1TOdlegnUveQH1EWgs7y1egL2m8XWBnpWwHYrZm9tjH2Zsxtp6BlsNxoMMG5yypU4lbCxvgsOmqrR34WBMV1bJ6L+xXJWdSiAUjDhZniW5zNGNs6ytQEAQUGyoQp4pkb3XqNUhF3He2B45sYe/rKK3eE+v5XaGrK2vV5/NlfhEYl5SUwGQyQavVim6Pi4vDuXPnbD5Gp9MhLi6uyf3trSGuq6vDm2++iWuuuQahoaFutVOh4BAXF+7WY22JiQnz2LHcsV93At/lbEKYQoOXh9yD+NBIxw9qZVL3EevalBH44Nhq7Kg4hIHJ0u+ry/KlfmqJ3zN3AwBmdb/Co581wPN9FBfXFf3PpeJgSRaykYvBcd09enypBMq55E3UR8Rbcmt1KNaXI1HdeH1TUFdq+Zkt9sTut2qv8I+Z3bRr2F5DahIEyJ0Y/6mzs7WNvYDZnwiC4HDAkw1wREGkjUrErcnegAfQXPG1xp8/zFqFU1U5CJeHWG5zlB5uK3D8LncT/nf+Dzze5VbmOEbsKDqM7y9uwgs970W00rPf9c6qMFZjX8kxjNcOACfjkFNTiDbqGLuVutnPii3sfdnA2FYqtZ43YVfxEfyUuxXPd78LkUrvfKfIZRxMAo9a3oD8umJkVeVihA/t9CEFvwiM7XH0R8nW72zdZjAY8OijjwIAnn32WbfbYzTyKC9v+XpCjpMhJiYMJSVV4HlpRs5K9BV4OuNzCBDwcOcboK7RoKjGdwpL+UIfWRsW1gcfYg1+P78HtyRM9Ilqyb7YT+46VnEOmaVnkRKaiBS0RVGRZ85Hb/bRJO0QHCzJwjcnNqKzrJ1Hj93aAulc8pbW7KPIyBAolc6mJpJAcU/6awCAV3rOsdxWylSUZmclxUFZ8ymfRjsp0/Z+ri805PgSspYp8sTuY6v388CYF3jcf/AtdAhJwLPd77R/P2YQQjQ44UMzxsZmim/Zm1k+VVW/N3GlqYa5r6PAuOnvv8nZAABYk9dYHFfPG/HSyeUNt2/HXR2mNHtcZ6wv2Idu4clICU1y+jGPHv4AObWF4AUeSRotHs/8CMNjeosCR1fWGLNZHlVsYGzjs2AUjHjhxP8AAJt0/2B6wzaQnmY+DWUA7k3/D4yCCW/3eQi9IlK88nz+wC8C45iYGMjlcuh04q1PiouLm8wim2m12ib3LyoqanJ/g8GARx55BDk5Ofjyyy8RHt6ykSlPXgzxvCDJBSgv8Hjj1DcoNpRjUvwQjIsb4LMXwlL1kS1xyiikRXVBetkppJecwsDoblI3ycKX+sldv+XVV1ydljgSguD5fSC90UejYvrhv/I12FF8GEW15YhRub9Mw1cEwrnkbdRHxNsu1TUWHmVnX+2laLJpnLaq59orsmRvZtHk5N/fOlNj2wr1pTbb7I9qTHU4X5OP8zVNa9KYBB5Hys+gT2Rnq6re4qrEJfoKRCnDWq0CMYu3sw0TYL0e3flUYceBYdPfqzkl6niDKDhkMx3YLAN3nay8gLezvgcArBv+ptOPy2nY27vIUI4LNfU/7y7JxLDY3pb7uLLGmL0v+7pspVKzn7VwhXtZrK6QyWSW57xYUxjUgbH0U1pOUKlU6N27N3btatyKgOd57N69G2lpaTYfk5aWhp07d4pu27Vrl+j+5qD43Llz+N///ofo6GgvtN7/rMrbhr9LT6BDSALmdbpW6ub4lcvjLwMAbCw8IHFLAkuVsQbbig5Cw6kwXjtA6uY4TS1X4oqEwTAJPP4spCJchBDPYAMJdpaYveAWp1KzF/ACNhT+jU/P/tL4e95Oyq+9GWMHaaOWtjGp3dUOCg75k2qrgO3v0hP4OHs1eIHH+oJ9+NfRT/D26e9EgxBsv56qysGtBxbj3awfW63NLHvpwID9Qm229ilmOf590/dcxdXvLKEXDcaw2yG1/Dxh9+h2R4wywu4AgStrjO2tx7bVb+znw9n9n91ja1mFtIXhpOYXgTEA3H333fj222+xevVqZGVlYdGiRaitrcV1110HAFi4cCHeeusty/3vuOMObNu2DUuXLkVWVhY++OADHDlyBLfffjsAwGg04v/+7/9w5MgRvPnmmzCZTCgsLERhYSH0+uDdz+t4xTksO78WKpkCT3WdBY1cLXWT/MrI2D7QcCrsKD7kkZFOUm+LLh11vAFjtWkIlWukbo5LprYZBgD4I3+P5JVICSGBgQ04RcGnyfb+tEarC/g3T3+LVXnbUNiwPtnejDG7D629FNvmsAXA2Flif58xZmfmeYHHs8c+wy+XduJoxVkcrzwPANioOyCaWWdTqc27Faxv5QHTHUWHsSZvu+i7qMmMsZ332VHg64itIFfdEBjbq6BuEKQ/Twy80e62VAarvYkPlJ7A2epLdo/T+LPtz5uZqNCZFz8r5p6WMZXAW7vwl6/xi1RqAJg6dSqKi4vx/vvvo7CwED179sTnn3+O2Nj6yrR5eXnguMY4f+DAgXjrrbfw7rvv4u2330ZKSgo++ugjpKamAgAuXbqETZs2AQCuvVY8K/rll19i6NChrfTKfEeJvgIvnfwSJoHHvM7XoVOY82sxSL0QuRojY/tio+4AdhdnYkL8QKmbFBDMFxGTE/zvc5kckoB+kak4VJ6FA6UnMDimp9RNIoT4OXb2lQ0+nZkx5m1UGhZXHHZ8IV5prMEn2T/jmqSRzaZdsrPZor1b/T4wbuxndk9gQIYEVbTlX6IZdyYYyq2xXQjW28xrd+emXGO5rckaYyYwZQdGWhoY23q80jJj3Hg+mJpJ85aCnjfazZxgg9pyYxWeOfYZANsp2wY7AbXNGWOrCuCeVG2qxb+PfYGpbYZb3l+2+lJL32d/5zeBMQDMnDkTM2fOtPm7r776qsltU6ZMwZQpthftt2/fHidOnPBo+/yZkTfhlZNfQacvw8T4QZiaMEzqJvmt8doB2Kg7gC26dAqMPeB01UWcqspBx5A26BHeQermuGVKm2E4VJ6F9YX7KTAmJEgcKT+DoxVncVPb8R7fro0t3lPLrOOt4dnAuPF2e+uGzfcR7c3qRDDyTc4GbClKx5aidJtBwOqGYkpaVZTltub2zvU37Iyxjlk7recNooJborW8zGsuN1Z7t4EOlOgb04utC4E5mybvKlsBl5qrD0PYQRN72QvuqjW5ngVqshooYgdCxDPabKXpxvvUmvQI5cQZl0bRjDE7UNU0ndneZ9cT/sjfgyMV2ThSkW25jZ0xdqe/AonfpFIT7/rs3K84XHEGXcLa4eFON/r9nqtSSovqiihFGA6UnUCZoUrq5vi9dfl7AdQHl/56Xo6I6YMwuQZ7ijNRYZD2gogQ4j1r8rZjV/ERAMDjmR9j6fm1ONGQWmsPL/DIqSl0qaBgFTNj7Mw6XvEa48aLfvNjjXZms+zJqyuy+ztBELDk7C9YcvYXu+nTzqZi+yo2MC5m1rBWm+rsrjtlZ2YFiffqLdKXW362DoS9VTHbVmAsb1g/a29dO+eB73z28+HsZ8w61dlgZw00ez924IctjldQV4LVedtE2RyOZmUNdoJoTyh0sGcxe24HIwqMCTYU/o2fL+1AlCIMz3W/E2q5Uuom+TUFJ8fouP4wCTx2FB2Uujl+rdakx2bdP1DK5Jig9d/Zd7VciXHaATAIJmwuSpe6OYQQL6g21eKTsz/jhRP/E12Alxqa31rum5wNmJ3xH6zN393s/dhjVjHb5Nhbx8sGuOKq1I2Bh3l2yMTbTg+1p8pof2vKCmY2lD2W9VZSv13ahReO/88vC3Gxs4PlzAB4LV8nWhfL9rXRB9KCzYr0jcGR9SCFt2ph2Hr9tgJVcSp3y7mzf7b4s2O0GjiyPYiktxPMPpX5KZac/QXf5W623OYoMG7psoPcWh0u2knXt1WMzNWBsUBGgXGQO1KejfeyfgAHGZ7qNhNt1LFSNykgmCsnb9FlSNsQP7ej+DCqTLUYEdvXaxvct5YrGiqW/1WwX+KWEEK8gQ388pkZI0drBL/KWQ8A2KRrftCMDWAqmcCU3RKpzs62N+JiPkywamvG2JnAuJlZJXY2kp19sp4x/jB7FXaVHMHfpf63rI3tI/F64zqrCsu2i1d5ertBV7HBUZPA2Euz2bYCLlsz5x5PpbazBr857PPqeaNott9emrPezqDUhZoCAMDZ6jybj3P4/G4Eqvekv4Z7M/5j83fs3uKNtzX2kS8N4EiBAuMgllNTiMUnlsEgmHB/p+lIi+oqdZMCRs+IjkhQx+BwxRlL1U/iunX5ewAAk9v4X9Eta93DO6BDSAJOVeWIviAJIYGBDfxKmFniCieX1MQ62OdctA+qnarU9i7O2QDEei0kYF18y/GFeHPptkWGxsC4wmh7Zpt9vpyGwMGTcmt1Xq2uy/Yt+7pqTXrReyCq/izxumrx2nJxNWWW12aMbbx+W+cR78FK2IB4wKrUUIkFRz7CBgdbaopmggWDVcq07cDY3u22OBp8sLevs9me4kw8c/Qz0QCZmb3iYI2apqezA11GwQRBEDyyVZY/osA4SJUaKvHcsc9RYazGDUljcU3iSKmbFFA4GYdxcWkA6rcaIq7LqSnEkYpsJKnj0D8yVermtJhMJsMV8YMBAH8V/C1xawghnlZnJ0AtNToXGEcpwpv9vVG07pGdJbZX+dn2hS07a+bujLFCZv/ysZY5vmhm284a4+Zmn93xZ8E+3JP+Gtbk7fDocVnse8EGXtVWM8biLbPYgYrWZy+Ia60ZY5up1DZnjO3vsewO9nV/c3EDMiuy8ebpb5p9DNtWvVUqtbiInL0Z4xZubSVK5W6aSr3oxDIcKDuBb3I2NPkd+5mrMFZj5YX1WJO33XKbzEZgXGcSD1q9eHI5rtn7ZFCuN25RYFxXV4cLFy6gro72a/Un1aZaLDq+FHl1RRgZ2xf3drxK6iYFpHHmdOqiDGkb4qc2NozoTowfBK6ZizB/MiF+EDhw2KT7J+jTlQgJNGywwa4rZlOdWdbVXx0VGtLbWc/IHkec5mn7edlgxNaMsTOzdLaKZ9WZDKgy1ooCkUo7M8aenhVk/Td7DZTj3n8AAQAASURBVADgl0veC4z1otl7cSVw8Wxy43sgSqW2eg8ueGHW3Jq9tF/ze1lhrMavl3Z6bc23rffZVmBsb/9td7Hn6umqi049prk1xuzn2Trl2owdBFE0FBhzhd5O0Tpr52vym9xWzgzElRoq8VXOenxy9mfLbbb+yojPU95SQNDensyBzKmrzWXLluHaa6/F1KlTsXLlSgDA559/jqFDh2LSpEkYMmQI3nnnHa82lHhGncmARceX4XjlefSKSMETXW4NmKDD13QKTUKHkDbIqrqI89VN/3gR+3iBx0ZdfWB8efwgiVvjOXGqSFwW3R0lhgr8XXpc6uYQQjyIvWAuYwJjg419gfeVHMP0fU/jz4Y92gHHlZrtBTa1dotvOQ4qzGsn2QDEmUDVVrr1fRn/wQ37nxX9rtLUWIirzs6a5zoPbw9j7o8kjdblx2ZV5WL5qT8dphPbmzE2CEa7Bcd4O3sCP3PsM9yX8TrOVOW63F5rgiBgVe42m8di96e23h7paMVZvHziS3yUvRpLzv7S4nbYYisrwdZaa3tr411hEng8ffRTLD+/TrQ+2NlzzSCaMTZYzbbb3naM/Uyer8nHh1mroKstg5pzvaCtoQV9wO6GklPbtACXrXwAe9tlBSOH+xh//fXXeP3113HVVVchOjoa7733HoqKivD5559j7ty56N27Nw4cOIAvvvgCXbt2xdVXX90a7SZuMPBGvHRyOQ6VZyE1rB1e6HEvNHKV1M0KWDKZDOO1A7D8wjps0aXjjg6TpW6S38isyEZBXQn6RnRGoiZO6uZ41BUJl2Ff6TH8Vfg3hsX2lro5hBAPYS+Yqx1Uwl3ZUHDr/TM/Wm5zVH3W3kyko/WIzR+z/iLY1YthvdWFtFwmR0HDfr4FdSWW37EzxrUm22uMna0U3JxLtUV44cRyzEqeZLnNnbWyD2S8BQBQdVFiYsPSF7MqYw3y6orRJaydeL23aMbeaDXb5zgQy2zYT/ZMdS46h7V1uc2sQ+VZ+PRcfWBrvb+0vRTvA6Un8MX53y3/Pl55rkVtsMe8dvVQeRaePfYZxmrTYHK0h6+bQVqxvhz/lJ3EP2UnMSK2j+V26zTxGlMdBAgIlWtEt4tmrQWT3fPVXnr6ypy/UMcbkF5xyq3JJ7ad5iA9uyoP7UK0UDkItCuZqvBsJoIgCJDJZDY/6+zMPTvow27/FiwcBsbffPMN5syZg0cffRQAMHr0aNx///148MEH8eCDDwIAxo0bh7q6OqxYsYICYx+l54147eQK7C89jg4hbfBKzzkIV4RI3ayAN84cGBdlYFbylX67D29rMxfGCKTZYrOhMb0RLg/BvpKjqDTW0OeQkADBXhiza/NsBavm/VvtFUSyxd6McUu2djE1XAS7OivFtrXaVIcIRajl3+zFuL1UamdTRZ31yskVOFOdiw/OrLLcZg6Ma016qDiFSwHK8coLmBg/2BJMAMDH2WuwUXcAj6XeLAoeRDOIvFHUN668thBO7fR97bH1fIIg4FJdsd22FOqb39fWk4yCCUfKz8AgmLCh8AA6hCQ0uY91GrM72CyKS7WNFeLFKex1uDv9VYTKNVg64ElxG6wqixvtzAzbG6wy/3yhqgDh8pZ9xxsEI/7I34P3zvyI29tfgZntGwd/zPUCygxVkAGIVIaJXjtb/NUgGKGSKR0ONpQxqdiVJvvbsrH0vAGlhkokqGOcur8vc/hX4sKFCxg+fLjl34MH1/+hGDpUXCV25MiROHfOO6NMpGVqTXVYdHwpdpUcQTuNFq/2moMoP9/6xl8kaeLQI7wDcmt1OFl1Qerm+IU6kwHbiw5CJVNgdFw/qZvjcSqu/nUZBBN2FB2SujmEEA+ptRMY27q4V9pYd+goiGIvzsUzSrbTPJ1hvkh2NTBmA4waU52oDRdrdZaf7VXMrmJmotj75Nbo8MPFzS7P9hbo62epQ+QqcA2XtjwEFNSV4K70V/DCieUAgIyyU3j/zI+iWW09b8SX59chi1l/Wqwvx//O/4E7019BacPWRublPXtLjokCInb7G71gEKWS17rwftS4+N7ZYmvm77f8Xbg7/VV8d3GTzce4es60hFEwWVVNbnreiVOp3QyMmVl8ds9vNnX7cPkZlBoqkVura7KNExs8GgWT1UCI7c+pvUEpW+uoXWHkTfjywp8AgDV520Wf1RpTHQRBwMwDL+LWA4shCILotesasjiAxj5xNNhQymzl1dx+5eer8/HZ2V+h54146/R3uOOfl3Gy0v+vcx0GxiqVCrW1jX/A1Or6Ea3Q0FDR/ZRKpeh+xDdUGWvw9LHP8E/ZSaSEJuGN3vMQp4qSullBxVKEi6pTO2V3yRFUm+owPLYPwgJ0NnW8diAAYLPuH4lbQgjxFL0oMK6zebuZrdlLPW/A36UnLIUHzX64uBm3/L0I+0uO2XxeNkh2NZXa6GZgzKo21YkCCzaVk71IZwOKKjv7G9+T8Rq+OP+7y4OGbKVdeUPfGnkTdhQdRqmhEntKMmESTHjj1DdYm78HP+Vutdx/Zc56fH1xA1468aXlNgECvr24EQV1JU2qWytkclFAx6ZSG3iTeKDCTuE1W2o8UAFYXCG7/ng/XNwMwP73jXUROG8yCibxnrk2zjtRITg3i2+xwT47CCPeUq0xACzWl8PAG7EmbztyagqbrPEVD4TYfk/tfYZaGhgbBCO4hvM7QhEq6r9qUx3KjFUwCEaYBB4Xa3Wi39sagHI02MCez5XNnJOPHvkAP+VtxfcXN2FrQ5FZc9Euf+YwME5OTsaJE42br8vlcuzYsQM9evQQ3S87Oxtt2rTxfAuJ2y7VFmNB5sc4WnEWPcI74I1eDyBWFSl1s4LOmLj+4CDDVt1Bh8VVSGM16kBMozbrE9kJ8apoHCqnfa4JCRTsxXiNKDCuvxBdk7cdTx5dgjqTQXTx2fh4A145+RXeOP0NDpadttz+xfnfUWqodLj3av1zuZaWbA48WvLdVGOqEw0E2JsNZgMwtn9sFUSqNrm224k5MOYFwVLdu47Xo4TZUzm3tsiyxzJbNdzc13l1RTaPXW2qtRr0qBUHSlZVwUXFt1yZMXbxNTs6hjkIdDQT7UobW8rIm0TnvqMBGXcHbMQzxrbPR7ZIVbGhHF+c+x2fnP0Zn5/7TfT+mgST3WUMzmhuz29nGAWTZV2xgTeKBluqTbXIZTI0zlVfsruk49dLO/H26e9sztKzau38HbNm7lf2+Vsz+8BbHAbGN9xwQ5OqcVqtFnK5OA1o9erVGDJkiGdbR9yWWZ6N+Yffw9nqPAyM6oZXes1BhDLU8QOJx8WqItE/qguKDeU4XJ4ldXN8WrG+HAdKTyBaGY5B0d2kbo7XcDIO47RpECBQJgEhPiSj7BRu3Pccjlacdfmx1hesZnrBgEpjDT45+zMyyk4hq/qizWBEzxssj7O1DYsze7q6ul7XHHi0ZIueGqsZY/a12ytaZGvvZYPVumVXsFtdmVOpa3h9k1lBW+0ykzOz+Gxba0x1qGBmwSuNNaJZNzaV2mBVfMuV2UJXX7MttiqUO5oR9vR2WY6ey7q/muNu8a1aJ94DdnCkRF9hSaXfU5JpNWNsf42xM1o8Y8wboeTqS0LpBWOTATgdM7hebqy2OwD1Q+4WrC/cjzPVzVc/r3VQONAam6Via8DP3zgsvnXbbbc5daAff/zR8Z2I1wmCgHUF+/Bx9ioYBBOuSRyFuSnTLIU+iDTGawcgvewUtugykBbVVerm+KzNunTwEDBeOzDgz9nx2oH4IXcLNuvScVO78VI3hxAC4I1T36DSVIPXT32NKW2GodxQhftSptm9v0ngsbfkKAZGdW2S4mim5w3Iq22cjSzWl9ucJWVnbcuZQMzMuYtU9wLjlswYV5vqRFvSWFf+NTMItmfdzBf67EV8mbExaLGnxlSH97J+xKSEwY0zxmgMYvS8ASX6xuOwRYXY5zI/lp0DKtU3BtSVxhpREbEqUw2i+HDLv623a7K1lZUzWjJjvOz8WhyvOIc+kZ0tt/ni7J1BMIqCp2oH6eNGDxTfsqeYXUtrqrMqYsfMGPPiqtSupp63PJW6cV22njeI2ykYRTPi5cYqu3+HnMWLCpTpkVurQ4wyAiFy28XhxBXaWz64IzXawDaAVBlr8dqplXjvzA8wCQIe6nQ95nWaHvABhj8YEdsXSpkcO4oOubwGLJhsakgVnBjAadRmncPaIiUkEWeqc3G2+pLUzSEkaNWZDPj10k6cr863VIkvN1Zh2fm1+ClvK/aXHMON+57D5sKmazT3FGfihRP/w4LMj8XFpayqUrNpusX6cpsX7tbrdH/P340/8vdabquwESw3eS0uB8YN+xi3YNawxlTr8gWxwcZMMnsRX2qoxNr8PVhw5CO7x16VuxVbitLx9LFPmcDBaLlQ1/NGlDPBcDmTOsv2JQ9e9H8AKGSKFlUaa0TvZ0WTGWP72zW5wtY5YeRN+DZno6hYmDVdXRm+u7gJB8uzRN8l5n5V+NA1oJE3iWYk7Q2imBkatnhyliAIDenGjs9Hdq/xalMtdEx1bnZgxiiYROnHrn7GWpxKzTfOEpsEvsl5wqaElxuqbK4zd9fJqgu4J/01vHDif6Lb2feELdbV0ufzBRQYB4hDZVl46NA72FqUgQRVNN7sMw9XJ46QulmkQbgiBIOje6LSVIMDpSccPyAInanKRVZ1LlJCk9A5tGV7OfqL8fFUhIsQqW3SHcBH2avx6JEPLAX/2CDt3awfUGmqwX9Of93ksaeqcgAAWVUXm6Tfmul5o6iWQLGhwuasE7s1SpmhCh+c+QnvnfnBpdfi6sBrRtlpvHpyRYvWmdaY6lDNuz9TZO4Lts8qDNV4/8yPyKzIRqadtPbzzLZQ5vazgbCeN4iOyaZVs4GxrcC7gpkhrjDViKrz1vF6UaptjdWMsaM1nPboeQMqjNXQ80a8l/Ujnj++FL/n78b/LvyBhw+9a/dxxcw6ajaANvdrS2csPckomFDjwrkiQBANWADAjqJDWJj5X1FqvNmKnPWYvu9pZDsx2MyeA9WmWlFqdVFdY5BsEIyiNjizpIHV0lR1g2C0vJdGwdRkb2H2vC4zVooyBRwNPDhiTi9PLzsFAPi75DjmZLwhSscuYbIrak16bCs6iNdPfd2i5RlSosDYz1UZa/Be1o9YePS/yKsrwsjYvvio/2PoFZEiddOIlXHxVJ26ORuZ2eJg2e95nDYNALC58B+XtychhHhGfkMwUWVntsP6wvZc9SXL57XYKuXWTJReyxtEAVulsdpmIMo+ni1o4wpXZ7N0+jJLRVl3VfN1LUqhrDTVYE7G6/j24kbLbewMe6Gd2VJbhb3YlHCjYBK1q9BqLaal/Q7aXmWsEVXnreMNohlv61RS60DOWTk1hbh5//P4z6mV+KNgD/aWHEV2dR6A+jRwQRCQX1fc5LuCDfDYwLiON9TPoLqZ2u0N9e+Ja4MwNSY9ivTlOFSWhTJDFd7O+h6HyrPwcfaaJvddmfMXTAKP3/J3OTwu+3krMVSI3rciZrChNat222LkTaJgt5T5WwKI10pXGmu9VkzNJPB49vjnOF+Tj+8bKp0D4sC8mq/DKye/wibdPzhSkW33WHreiOeOfW6pDl9QUwJTK651b47DNcbENxl5E/4o2IMVF9ajzFiFKEUYHug0HWPj0oImqPA3Q6N7IYRTY09JJmpMdXbXawQjk2DCJt0/4CDD+IbtrYJBG3Us+kR0wpGKbBytOCtaH0aIL1u5ciW++OILFBYWomfPnnj22WfRr59/7TueUXYKKk4purC0FSSxa1N/z9+ND878hPs6TsMNbccinwng2KCkRrS3rVGUxltqqLQ5i8fedq66afEtZ7gblLVEjdUaY3ecrykQzQDn1xVbfr7E/MxiZ6rsvW42AGZTZatNtfgpdytilREO0z8rjeIZY5PA21wjbj6uu8zZBzuLDzfexuwL+1H2KvyWvxvzO9+IKW2GIbsqD1/l/Ik26ljLfdhzdVXuVrx5+huf2g3DKIhTqZ3xUfYqbG6YUBivHWDpYzaF90TleXQMcW1nHHZAQcfMEAPiQm2tWbXbllpeLxqIKWNed/2/G/9+VRlrLIW6PI3tE7ZmAts29vb82mLAanfYHUWHkaSJRR1vwP7S49hfehx9ojrh0Z0foHtEB7zd+yHJYxgKjP2MkTdha1EGvsnZgJzaQsggw6T4wbi349WIUoZJ3TzSDLVcieGxvbFJ9w/2FGda0mgJkF52GiWGCgyK6h50+2yPjx+IIxXZ2KT7hwJj4hfWrl2LV199FYsXL0b//v2xfPlyzJ49G+vWrUNsbKzjA7SyCzUF+O7iJsxoNwE5NYVYceFPzE+9CU8eXQIAooKIF5ngzJYPzvwEAPjs3K+4oe1YUdBmL4DT80ZRwFJsdWFriyvpplKrMdVZtpPxFHaAoshGyiwgnqmyh50t1THrhoH699AZNXyd6P0D7GcXeKKyNCuLSVn9LX83gPrgYkqbYfj38S9Ea6GtHa4449JzjdcO9PqyHgNvdLh9lLXNTJYd+7O5r09WXsD8w+8j1cUlWOzShSK9ODBmzzlXszA8zfpcYwfyrP9dZapFCLwz6cJW6j9XYztVnR0Yyq3V4VJtMSKVoQiVa3C84hxeOrkcAPBwp+st99tYcAA8BByrOIcCfQniVdGQQSZZgEyBsZ+oNNZgQ+HfWJW7FQUNfwjTIrvgvpRpSA1rJ23jiNPGaQdgk+4fbClKp8CYYS66NSEI+2RMbH/8N3sNtukO4oGU6V4b7SXEU5YtW4YZM2bghhtuAAAsXrwYW7ZswerVq3HvvfdK2jYjb4KCk+PXSzuxJm8HHux0Hdbm78GO4kM4WnHWkqK84MhHlsdkNKyfA1zbHia3VidKz7UXqOl5g2jG2Poi3N9VeyEwZpXoK/BL3g4kqGNQaapFp9BEdA5t61RgDNRXnRYgoLDO/X63Ln7FpuG2thJDBQRBaDYodsf1SWNwsOy0aM2yp7kzY2yP+T3ZV3IMgHgQwVU6q89kmcFxVXSpNAmMjWxgXOO1gPJweeNAizODBduLDuHH3K3oF5WK13rNFS3Z2FZ00PKz+f0D6tePf5OzEUmaOLzV50GoOCVya3UIl4cgspUm/1y+AhMEAR999BFmzJgBrVZr+Tk+Pt4b7RNxNXXrjz/+wHvvvYeLFy8iJSUFTzzxBMaMGSN6Le+//z5++OEHlJeXY+DAgVi8eDE6duzo9dfiDANvRHrpafxVsB+7io9YRj4HR/fATW3Ho29kZ8lTDohrBkZ1Q6QiFH+XnkC5oarVPui+rMZUh53Fh6HhVBgZ20fq5rS6CGUoBkf3wO6STBwoPYFhsb2lbhIhdun1emRmZuKBBx6w3MZxHEaMGIGMjAy3jslxLfsey60txJKDP+NwUTZOV+ZgeGwfSzrqW1nfotxQ3XC/xnW7nlh3+WfBPqeK2xgFk+jilV2XHAhqTHXQyL0XGB8oO4EDZY1FK5UyOZ7oeqvTRY20qigU6ktbNAufb5UNYG/GuDWcqc7FCyf/5/HjquQKKDjvVrCuEwxu7U3cPTwZIXI1MspOW26rNNXg6WOf4p/Sky1ul3VGgLtbbrUG67aKZoyNtVDKvDO47moGgrlOQEbZqSbv08HyLMvPbKbNsvN/wCiYcKoqB5+c/Rmhcg1+zN2CBHUMvhr0TKvEPC73Hs/z+OijjzB+/HjExsZafvZ2YOxq6lZ6ejoWLFiAxx57DOPHj8dvv/2GefPm4eeff0ZqaioA4LPPPsNXX32F1157De3bt8d7772H2bNn4/fff4dKpfLq62nO7uJMbDuTgd0FmZZUkVC5GhPjBuHqxBE0Q+zHFJwco+P64/f83dhRfBhT2wyTukmS21V8BHW8ARO0A6EJ0nXX47UDsLskE5t16RQYE59WUlICk8kErVYruj0uLg7nzp1z+XgKBYe4uHDHd2zG2tO78dO5bZZ/s2s07aXhesJ3Fzc5fd9ifTk4yMDDt4ohtYRGrkKtSY9SvgIR8pBWe16DYMIrJ1c4ff+E0OgWz64WGuofH6bQoMpYK3ml593FmR4/pjY2AmqFEvBmFr/GvfXOUZowxKkjkWE16d/SoFjNKUWzn7GqCJ8fuKoS6rMVQuVqUeq+XMah2lSLEKV3rqPOtWBbSWffJ3awa23+HgD1r3NWl4nQaiPcfn5XuDWswO5f5cr+Yi3haurW8uXLMWbMGMyePRsAMH/+fOzcuRMrV67Ev//9bwiCgC+//BLz5s3DxIkTAQCvv/46RowYgU2bNmHy5Mmt8rqsVRir8fyxpQDqP7BDY3phTFx/jIztC41cumCdeM44bRp+z9+Nzbp/KDAGsKlhb9AJQbB3sT1DYqgwG/FvgiC4NZpvNPIoL29ZWurU2GHoPbIj9FU8IACLji1DpDIU47UD8fm53wAA1yaNxM95O1v0PGbDY3sjqyrXksoZoQh1uMdwtakOWlUUKozVkq9Z9JR4VTTy64pxvrIAEbJQrz/fR/0fRfuQeHx8ZjX+LNjv9ONUgrJJEOGqvOr62a9oRTiqjP6/V6stFaW14Hjvzsjlldpeh++IklciTLA/+BKvcm/wI1oZbqlKDwCxykifD4x1NfWjAxGKUNE5rVVFIb+uBMV13hsMlEGG9iHxuOCgFoOZUiZHWnRXnK8uQJhCg6sTR+D9rB+bfYxWFYV/dbsNa3J3IFyhwW3JVyBJE4eiopant0dGhkCpbD4rwi8Ws7mTupWRkdEkYB41ahS2bNkCAMjJyUFhYSFGjhxp+X1ERAT69++PjIwMtwPjlqaERanCsLjXPYiKCEVXeXsoZd5LT/Jn5n5uaX9LoW9UZ2hVUThSno1iQzm0au8Vm/L1firWlyO97CRilBEYFNMVnARLA3yhj0I5NUbG9cGGwgPYU5KJyxN8b5DAF/rJ1wVDH8XExEAul0OnE28nVFxc3GQW2Vk837IBdo6TYWBcNxShEjwv4MuB9Sl3Rt6EEn0FIhShmJY4Auvy96GON2BGuwn47uKmJrNFzkpQxaBLaDt8lbMeANA7ohP2lDiewYtUhNVXNA6QwFghk6OtJh5nq/NwpmFbIW9KDa3PlhsR29elwFjDqRAmD7EEEZGKUFG16ubEKSNRZCi3pMzHKCNw0c2ttDxhVGxfJKhjkBySABWnxFZdBvaVHnP8QCdw4CCXeTeVukxf5fhONoTIVYhRNs4YmrMvAGDVkJdwuPwMnj++1I3jaqDhVJbK03GqKJxu2LvXV5lTpyMVYU2C+vy6Eq9WIe8e3gFRyjCnA+MoZThe7DHb8m+TwFsC444hbXCupr76fo+oDsgqz4VBMKJ/ZBf0jUhF3+6plse19DvCFX4RGLuTuqXT6RAXF9fk/oWFhQBg+b+tY5p/5ypPpIQBwNVxQ1t8jGARE+Ofa3SnJA/BV1l/YX/NUcxse4XXn89X++nPrD3gIWBq8hAkaKWtRi11H13TeQQ2FB7AjrJDuLnnWEnb0hyp+8kf2OqjrPJcbL6UjuyKS/i/XtejTUiMBC1rOZVKhd69e2PXrl2YMGECgPolVrt378add94pcevqmWeuFZwc96VMs9z+dp+HECJXQ6uKRjuNFp1C2+Lhw+8CAMLkGqfXjWpVURgZ2xcrc/6CRq7CqLh+TgbGoajj9U4XjfJ1Cpkcg6N74Gx1XpPiVC2hlMkt61A7hSYhuzoPfSMaK/b3Zar3D4zqhn/Kmk/T1MjVCFOEWGYU49UxzgfGqijRnraxqki79zUX+fKmdiHxuLvDVMu/M5vZK5YVpQhrsjbVmlwmh8LLgbF1kStnhco1iFE29v3N7SZgV/ERjNWmIVSuQZI6rplH26fhVAiRqy2Bcbwf7IphHliLUDRmaYRwaoQrGmfUnclicVaUIgwauQr5dSWY0W6CU3/rEtQxKKgrwTir7TflMs7yM5sFG6MKx8zkK7BVdxC3tp/okXa7yy8CY3scpW7Z+p31bdb/djcdDPBMShhQP/odExOGkpKqVh0l8Sf+3kfDwvvgK/yF387uwZTo4V57Hl/vp1/O1m8/MSKin0fSZNzhK33UhUtGlCIMewqP4sylS4hStnyQzZN8pZ98mXUfFdSVYH3+fmzVZVhGxgFgfPQAKKJblg3kTEqYt9x9991YuHAhevfujX79+mH58uWora3FddddJ0l7nMXW55iUMET0u46hiaLtSKyxgUWSRou2IVosHfAkABkK9Y1BYXOz0JHKMKeC7xhlRJPgOVYZ6dVqwe6Qy+SYGH8Zvr64we1j9IpIadLvsapIy0zYg52uw8nKHIyK62v5fahcg0dTb8au4iMYEtPTcWDMqRAu11j+3UYdg6xmZgXj1JEoakhH1aqicLKqfi9hDjJEKewPDIbK1V4pytVOE4+LtfUTNuysKQDRHsa2pEV1xcs9Z+OlE19it4OARi7jvF58qyWBcayq8bV3Ck3CXR2mWP7dPiQeIZwaNXydJShzhkauQqhcY/m8WW8XyYGz7JHtboaJp4TLQ0RbTLFbtGrk9VkRZrHKCI8Fxhq5Cu/2+T9crC1En8jOOF7ZOCHJLlFgZ94f7FT/XTA4ukeT413dZjh+y9+Ny7WDkKTWYktROsYk9sPlkYMxo93lHmlzS/hFYOxO6pZWq21y/6KiIsv9zcXCCgsLRcW7iouL0aeP+5VxPXnByPMCXYA64K991DmkLdpr4nGqKgcXqgrQLsS7xet8sZ/OV+fjVFUOOoQkoHNIW8nbJ3UfceAwOq4/fsvfhW2FB3FV4gjJ2tIcqfvJ1wmCgAPFJ/Fz3g7sKc60pPt1Dm2L0XH9MDy2N1JCk/y6D6dOnYri4mK8//77ll0iPv/8c5/cw9iR13s9gK8vbsBVbYZZArREdWyTPYl7RHTE3pKjAICu4fUBdqKmfpaK3bszTB4iuniWyzhLamOEIhTl8sZZO/aim6VVRVku1N/s/SBKDZX47uJGnwuMFTIOSZo4qGQK6AUj5DIOMsiaVItuLqAYF5eG2R2vxsnKC/jk7M8AzGuX6wObTqFJNvd3vzJhCK5MGOJUESqNXIUwZjZtVGw/dAtPRrewZDx97FMA4vdcq46yBMbsDHGoXAM1M8tl/f6FMIGxJ4KowdE9sL/0OCbGD8LyC+sAAEkaq0xIGzPYSpnCUuAtlFNDLpM7tZ2WQiYXzeh5g3l7M60qyqUgOUSuRiwzY9wkgJVx+N/Ap1GsL8dn5351PjDmVAhlanporY4bKldbgtFQuUbSwDhKGS4KjCOYQZpQuRphisbBH60qWjQY2xIKmRwxqgjENAxMRCkaB+1jlZGoNjUO2pgrUbfVaJEckmDzeHd3mIoJ8YPQM7wjxmjTcFXSMIxP6Y/iYvfS7D3NLwJjd1K30tLSsHPnTsyaNcty265du5CWlgYAaN++PeLj47Fr1y50794dAFBZWYmDBw9i5syZ3n1BJOjJZDKM0w7Aipz12KJLx+3Jk6RuUqvbpGsouqUdRNuONRivHYDf8ndhsy7dZwNjYpsgCDhQehIrj/6FIyX16Y3RynBMThiKy+MH2b1I8FczZ84MiO/KflGp6BeVKrqQTtTENQmM63gD7kqeggJ9CRJU4jR49oI0XKERBbChco1l5iZCEYpQZuYyUhnaZE9SAJiUMBja0iiM1w5An8hOAIBVeVtb8CqdYy9Qt0chk0MmkyFeHYOLtYXgwEHJKWA0iQNjpUwBPYw204wVnAK9IlJQxuzz3C4kHkcaUoTZ/rIljPk9O9NuDtYB84xxY2AcptDglvjLYeAbq4O308Rb3vNYdePMJFsDJEyhgZoJMEPkKtEMcX1byxp+p3YriAqXh2Bep+sQIlejb2RnlBoqkaCOsQTG1n9HxmsH4Hx1PobF9sZjRz4EUP93x5w2bk5XVXGOL/flMu+vMTYHTgnqGJcC41C52jIQxUHWZIAAqJ9BjVKGuVSotn79ORNQqqPFz6vQWIJRDSdtAdxoZbglcwAAothUarlaNGMcowqHQiZ3ekuz5lin10cz2WyxqkjkNLQpXh1teX/ZNG9rYYoQ9IpIsRwrVh3hU9eAfhEYA45TtxYuXIg2bdpgwYIFAIA77rgDM2fOxNKlSzF27FisXbsWR44cwcsvvwygPjC544478PHHH6NDhw6W7ZoSExMtwTch3mQOjDfr0nFb+yt86g+Dt/ECbwmMrdegBLOeER2RoI7BkYpsFNSVIEHtn+tQg82pyhx8evYXyz6PncPa4sakcRgV18+pC1IivWgmRXVYTC9klJ0C0LiGtY06Bre0t53mxwZdGk4tmiUOl4cwgXEIQhWNs1PRinCbgXFySAKmJY4U3aZycW9SdtbQWSpOYUmFdIY5iIpUhOIi6veGDuM0qLa6Fldwcih4zub+tYqGGUr2YptNF3b0vSieJWucaQ9ThEDf8HOIXCW6XwhX/x4omc9mh9AEy17JcZrGYFirirb8HC4PEc28hlilTrMzjyGcGqVwb3nQhPiBjc/ZMNN9VZvhOF+T3yR1Wi6T456OV4luYwNjc5vUTswYy2VyyOHdGWMASFLHYWRsn2aXLlgLkWug4hT49rJFKKgrsTlTbiaD89dSGrkKIXzj+xalCBMFlOzAjNQ7w0RbLa+KZWa3Qzg1YlSNv49ShENlY5DKHZ1C29ptR6I6FodQvydxx5A2ONSwP3FzSw58ncvf2DKZDG3btoVKpRL97G2OUrfy8vLAcY0f6IEDB+Ktt97Cu+++i7fffhspKSn46KOPLHsYA8B9992Hmpoa/Pvf/0Z5eTkGDRqEzz77TNI9jEnwaB8Sj65h7XGqKgdZ1bnoEkT7Ux+tOIuCuhL0jeiMRI3/pV96CyfjMC5uAL7P3YStugzc1G681E0izagy1mD5hT/x26Wd4CGgY0gbzOt9LfqrugJC8Ax0BQIVp0CSOg75dSW4qs1wrC/Yj3YhWjzS+WasubQd11gFqix2ezU1p4RCJrcExpHKUNEsCjuTEq+OxtmapnuD2pqZUjoYYGGr9Jpfj8HkWmDsaiCtaLjmYmeUzIEjO/tcn6IrtxMY17+uECbo6BHewek2sGmd8eponKrKAVAfrJuDZHNVajP2/Vqa9iSyqi+CA4fVedsB1K8xNktkAtFQqxlj6/eJDaJC3dxyL0Zle6/Whzvf4PwxmIEF82tVOpVKzVneU2+6ss0Q0YCD/fY0BqhhDa8jWhneJEC05krfazgVDMz7Vp/VobYUZxMNdkiwjSJbiC6mSWAsfp/baRqX5LVRx0ApU6Alm1I/3uVWXKotwkSrrTTZtc3dIzpgfeH+htsb2+fPEz0uB8Ycx2HTpsZN7dmfva251K2vvvqqyW1TpkzBlClTbNy7nkwmw/z58zF//nyPtZEQV4zTpuFUVQ626NKDKjDeWHgAgHhknNQbr60PjDfr0ikw9mH7S47hnawfUGwoR5hcg7s7TMVVScORoI1EUVEleMF/1xAHqw/7PQIB9UHox/0fs9x+e/vmdw7gmHWZoQoNlDIF6lCfRhvJzJxEKEJFQYu9jBC1G4GxmlOhhm+8CFZxSpcLQbm6zYt5xrhTWFscrjiDDiFtLMdQcnLU8Y2Bsb1qx+YZ4+SQBPSKSEH/yC4YGtML96dci57hHR22gZ05ZPuW7XeNXIVwgZkxZgKctiH1hdTMGQIAoGVmjNsyKbtRinCrVGpxoMTOSmtcDKLMmQl3Jtu/ZnUWm6ViDlYczRjLIAMn4yCHd1Kp2TXXSeo4h+czUJ8mby545yilnnVlwhD8Vfg3BkR1RXrD+2pvzbdGroKJGbCJVIQhVK6xBMbs4Af7szPLDtjMEXepORUMDanc7GBCqFzdJGjvENLG8u/+UV3wfe7mFj13sia+SVAMiD9b7MDRlQlDsEn3DybFD27R80qNcrwIkdCYuDR8fu53bNGl454OU0UXWIFKzxuwregglDI5RsX1k7o5PqdTWBI6hrTBmepcnKu+hI6hiVI3iTD0vAFfnPsdP1/aAQAYrx2IOR2nIUYVIck+3MRz2AJN7opQhNZX9jU1/pv9HRu8xTPrGdmZIVspm0oHqdQqTmEVGHv/8s4c7N7TYQqUMjmmJY7Ev49/AUC8LYt1USf2tSoa2imXyfF2n4cs95meNNqpNshkMsxoNwF/l55A59Aky+0RSvH6S3agytbMHzujzM4Ys7OTCepoUSp1mFWwxr7Xrs4Yz0q+Ev/X+UaPZFBF2UhLd1R8yzxA4a1rkDhVFHIb9n9O1MSiwuC4YnK4ItQSGLsyW9snsjM+7vcY4tXRuGn/vy2PNwfGbMBqfW6o5UrRc7EDOuLbORgFQZSlYY3NHHGXRq6yrHFmB2nC5SGiAbQQuRqJmlg8020WjAKPjqGJDv9mOGJv8CJWFYlBUd3ROSxJtEVUvDq6oVK/fwv8q3BCfFi8Ohp9IjtBpy9zab2NP9tXchxVploMienVbIGGYDZeWz+TvkWXIW1DiEhujQ7zD7+Pny/tQIQiFM91uxP/6nqb3fRHEnxqTXWii2l2diXcOjAWzQAxs402ZoxtzSKzlJxCtLbSmSrEA6O6oXt4sqXar6t/j80zxhq5GvelTEOiJtbSAg7WgXFjn7BpvZ6ognx3h6n4qN+jooGNKKt+Zy/gQ2wMPLCvnU0VZQPFMLk4lTpUIQ6MrWepXREiV7U4KE6L7AIAGM0MOJsHSNiBElvnl/n98VZV6jimorSzM8bigQbnZ4yB+joP7OPZ18zWBAiVq5u8V+yAhzgwbryf3Gqwx9a6Zk8UMmPbza4pDlOE2MxeGB3XH+Mb6raw7/nE+MvQP7JxKSnbdvY47M/2sjzkMg4v97oP93a8Gu019cXgLovu7toL82E0Y0yIxMZpB+Bw+Rls1qXb3JYi0GzSNaRRaymN2p5x2jT878If2KJLxx3JV/r1ep1AkV52Ci+f+BKVphr0j0zFE11uE1WsJcEtNbQtsqpz0VYTj6yqXMvt7MxlhCIUWlUUeoR3wDjtANHFfpgixDI7ZiuoYi/K2f1CzeQyDgpZY4ErNjC2Xn9sdl3SaAyO6YlLtcX4LX8XktSx+CB7ldOvWWEjiDI/C5s9oeDkovuqOIWlQFdLZ7VY7Gtmt7IJl4eg2tiYVm4uvsVK1MTipR6zkRyWgF7xybi741QMiqq/2L8jeTK+vLAOA6O7i/aG1XAqq+24GgMuVwcZVLKW7WsOAM90vwN5tUXoFp5s2R+6e8N6beuZblvnD/t/T2O3V4pQhDoVGEcyfWg9O+8qNuALZz5roXKNZUmDOXWfHeCQM2uuNcx5w8lk9YM/DZ83pUxuqYJuFquKQHVNy/a1ZrcHY/8uhMjVogGcEAfLLx7vcgsAYPLuxwHUF/4raqiez6aZsz87le6u0ODnIa96fZuv1kSBMSESGx3bDx9nr8b2ooN4IGV6fRpegKowVGNfyTGEy0MwOKan1M3xWYmaOPQM74hjledwovI8ekQ4XmtHvOeXSzvxSfbP4MHjhqSxuKfjVQF1IUBa7qWe92FdwV7c0HYs9pQcsdweJVpjXF/V+N2+/wcAOFh2WnS/XNSnmtpaD8qmcWrktgJjcYEr9hhKTmFzfaV5RitRE4vZHa/G9qKDzr9g2J9RsnU/uY0CXfVt8NzniD1uFDMgEa4IQawqEkqZAlPaDLU70HhZTA9wXP1a21vbX27Za/y29hNxbeIohCk0ovdMzaks6bIKmVy8FZeLVXnV8pYHxhGKUESE17/u13rNRZmhypKubz3TXWS1J7b5vXT2PXVVqEKNaxNHIVoZDplMZndARAaZZVuvSKXtWXx3sDO6bPZAmFyDoTG98GqvuZYMDva9sD9jzIm2H1NwCugbit091+1ObCs6iMtiuuOt099Z7u9OWrX1Gud2Gi0u1urQRh0jGvyxlWreXNaIRq5CQxkEaDgVylE/4FOfmVL/s7PngifOXV9CgTEhEotUhmFQVHfsKz2G9LKTAR0wbis+CKNgwhhtf9rGxoHx2gE4VnkOm3XpFBhLRBAELDu/Ft/nboZSJsejnWfgigT/LixCvCNGFYFb208E0FhpGQD6RnYGBxm0VutTAfGaZraIlK11nuxska2gQiHjREEmu70TWwyMZR2Uci6urmsuVZSdn1bKFHZTN52ZlXKWmjlWolq8HjNCGYrVQ152uw6AubCWKFCR11cgr4MBSplCVHBLlI5tp1BTCKe2rAuP8PD2NipOKVrDzp4PtmbMvZ1KzUGGBzpNZ9onTu02D/SwM6/s8oEWr31m3vdwedMU7QFRXS23VTHZBew5zr6/cplctDaZzYJIi+qKkXF98XfpccvvQzi1Za2wK8QFtlR4oce9+PLCn7i3w9Wi98rWvs7KZj6f7N8idlbaW59Nf+LwTNu1a5dTBzIYDHjssccc35EQ0oR5L9/NunSJW+Jdmwrr9y6eoG1a6ZCIjY7rDw4cthUdFFXNJK3DJPB4/8xP+D53M8LlIXit1/0UFBOnsDMtscpIfDd4MT7o+0iT+4UzM4zs+kFb2IDMfHyOmQVTyBSi52Uvau1lITUJjF0MPmzNKJlbJDBBg0ausrmlk602tAQbSHVntnwy7x2t4OQtDrDYwQzzjDFQX4WbTWdlZ4yVdvqfDXq8PVDMrodmzwfzOeTtVGrrfmfPTzYYE836e3CwgP2ssYMW1uvEAVhmgjWc+LwNFQXG4oEodrDK/Bh2MMvt7buYtdkRijC0C4nHU91mNlnG0z4kocljmwts7a0rVosG4AI3e7E5Dj8BDzzwALZu3drsfaqrqzFnzhysX7/eYw0jJJgMj+0NNafE7uJM1Jr0jh/gh3JrdMisyEYbdQx60QyoQzGqCAyI6ooSQwUOlmVJ3ZygYuRNeP3U1/ijYA9ilBF4o/c89I7sJHWziJ9gAw8FJ0eEItRmKmg4s4bSlcEvc5DBpgRbpyuLZn7spK1aByvOzKayKanOBlFqTgU50yfWs9mewm5XE6EIxfzON2FOx2s8UgTJLFwhLpJm7meFTCFKZ2WDOnuvsTVn5HpFpDQ+r43+sAy2eCkYss5GYPtEFIwxfdI5rB3+1fV2fJa2sMXPzw5UtAtp3O83WtF0T+T7U65F17D2eL33A6K18aI1xg3bW9lqt3kv6Oa29nIWm0lia/DkxR73YnbHq5FiY/cKW59P8/vcIaTx/uyAUijzGmnG2I6JEyfioYcewoYNG2z+vri4GLNmzUJ6ejo+/PBDjzeQkGAQIldjeEwf1PB12FV8xPED/NBfhX8DAK6IHxwU21J5wvj4+kyCLQGeSeBLTAKPN05/g61FGUhUx+KtPg+iU1iS4wcS0kBlY/bIFnYW6Yr4yyCDDPenXGvzvtWmxq2YbF7wcuIquexsVXPVZUX/diKVmj2WrZno8Q1701+ZMMRym4pTNCm+Za8NLaGRq7B0wJN4p8/DUMuVmNJmKK5vO8ZjxwfE2zqp5UpL8CBAQOewtpbfsUXX2H4SVw5vvcAjQhGKp7rOxLPd7rQ5UOD9GWPxoAs7M6wRDeIw55eMw3jtACTbmA11Fft+hMrV+N+Ap/BCj3ttFlBsFxKPD/o9gm7hyaK+aq4qNdtu8yCA2qpYljvCHWwhNzimJ25sO87Ob5sOdH2WthBPdLkVg2Maq0irRUXrmPOWZoxte/PNNzFt2jQ88sgjWLt2reh3OTk5uPXWW5GTk4Nly5Zh3Lhx3monIQFvYsJlAIC/CvdL3BLP4wUeGxoC44nxl0ncGv8xPKYPVDIFdhQfht5G8RziWbzA492s77G1KANt1DF4o/c8tNVopW4W8TNsINTcrAs7QNgjoiN+Hfqa3f172SDKfMHKZCtDIZOLLmTZWSC2DeIZX/GFrzMDlmxasK0L55vajsfbfR7C3R2mMseVWa3VbH69dEu01WjR04sZSeIUYJWlz3iBR4QiFNckjsSYuP6idby20mwBIDWsPW5rNxEv97zPa+1ljdWmYVRcX1EbzKeQOcizVWncE6y3M2LPI/G56tk0e3PQeE3iSNHzJWriMMSJei5sX2ms1jzbmzE2Z3KwAafGhcCYfd2OAuPmcDYC4yRNHC6PH2T3dbHPF6wTGA7/IslkMrzyyitQq9V44oknoNfrMX36dBw/fhz33Xcf5HI5Vq5ciS5durRGewkJWAOiuiJOGYmMstMorCsVFc7wdwfLs1CoL0X/yNQW79UYTMIUGgyJ6YUdxYewr+Q4RsX1lbpJAUsQBHycvQZ/Ff4NrSoK/+l1f0B9BknrUbgQ7C3qfrdlK6XmdiS4qs1wnK2+hKlthuG/2WsANNQTEszPKbdf4Eq0vrexQrX1DLEzqdTsBbW9mUc2bRcA9LzRqm3MzBvnvxffnUOTLAGfeV3qvE7XAahfOmTGBk1KTgFDQ/VihYzDHR0mt1ZzLdjzzNxu8/vqybRzlnWQy25PpbGTSu2Jttzb4Src3v4KcVV3B3uCs8T7b4szHXjB9hpjW8/D7p3siLnSOVB/XXhF/GUeL8oqWnbBVJUOa0EgHiic/uv9/PPPQ61W4+mnn8aJEyfwww8/ICEhAUuXLkViYtPcdkKIa+QyDpfHX4bvczdhY+EB3NL+cqmb5DHrC+pnwal4kevGawdgR/EhbNH9Q4GxF317cSN+y9+FGGUEXut1PxJtVPkkxBmupCAOi+3t1P1C5GrLXqTmYEwODqaGasfOzhir5I37lLpTlVohWh/s3OusNentzlC5MojgKyYnDMXZ6kvoGt7eMivHVigGxAE/20/iVGFpUlVtPa85WG6t4lvs86SEJOJw+RkA4v7xRFtkMlmTNGZXtsRkZ9AVVm0z2VkeYMYOTnUMbYMdxc49J1tFXsUpsaDhc+8q6y3dWPb+VngrY8CfuPQX6cknn4Rarcann36K/v37Y8mSJYiKar6SIiHEeVck1AfGfxX+jRntJtjdb9GfVBlrsKv4MEI4NUbFUmDnqsExPRAm12BvyTFUGWtoRNcLNhX+g+UX1iGEU+OlnrPRninOQoirvL3HtXnrH07GNc4Yc3Jxmq+dvVjZC/imxbecCIydTBNn1fJ6q7RSx+uffdkjqTdZfjb3mQBxYGw/8PBs4OcOWzOx5hlP9hxg9xRuKetUavbahh2EFFcs98654cp+wnI757uKU4iOY2uAJ1ShwS2dJiBKCBetTW98jBxGG0X3lJwCaLi5JUsNahoKudoa8BLVI2DOT5mLW7YFIoc9PmzYsCYX54IgICsrC5MnN00B2b17t+daR0iQSQ5JQI/wDjheeR7HKs81SUnzR9uKDqGON2BS/BCX1tmQeipOiZGx/bC+cB92Fh/BJJp196iDZafxdtZ34MDh6W4zkRrWTuomET/nyoW3O8yzk5zVbJa9LXDsBcxNt2tyLZXaUWAcJtegylQLAYLditn+PkNlvj5uMmPMpo6zgxTsVkmSzRg37XPzeykXnVMcDB7aKtDWufV2n4fAQYaTlReatMO6LZ5k5I1O31dhZ4ZfxSlRxxxHYWdJwBN9Z6CoqBJHyrKb/E4u4yyBsVzGWf5uiDIMXJjdtlbbULCPLRpmaa+9Nf8teL5A4TAwvv322wNi1ooQfzEx/jIcrzyPDYV/B0RgbC4mRgGd+8bHD8D6wn3YokunfvSgCzUFePHEchgFE/6v840eX8dFgpN5Rtdrx2+4gOasCmmx1bBFayNl4jWujfdpWVVqR7NZL/acjQ/PrMK8lOuwIqdxO0+1n6dSs8zvgPV7bn8gwPuBnyO2ZgXN76v1GnLPBcZNn9N8fZNVddFymzdTzduoY5BfV4KONrY2skf83onPffb9c7QMoWd4R1yTOBI9I1Lwn1MrLccwp0yz64o9tc7anEptqyK2ws752Sm0bZPbgo3Dv0gPP/xwa7SDENJgrDYNS87+jK26DMzteK1otNnf5NQU4mjFWbTVaNE7AIJ8qfSLTEWMMgIZZadQoq9AjCpC6ib5vSpjLRYfX4ZKUw1ubjseU9sMk7pJJEA4s1a3JRpTqRsDYw4yu0GvvZnkpjPGjtNolS7MGPeKSMHH/R8DYP9C3JX1nr6osK4UgHifXMB+KrWn19C6w9bAjfm9Z9vkyfY1N+jC2Tk3PN0/H/Z9FBdqC9AtPNnpx7Bbqll/vtiBKUcJ5zKZzFKYzRwYKzi5KGXaHCQrPTR4MiYuDd/nbsIV8U0H0+V2qoKPjO2D/+t8IwZEdXX7ef2df+ewEBKAIhShGBbbG1WmWuwpyZS6OS1ini2+Iv4yyjxpAbmMw9i4NPAQsK3ooNTN8Xu8wOPN098gp7YQQ2N64q4OU6RuEgkgcapIrx7fHEiw6bsymVVgDHGatZnKyVRqexfkojXGLsz22quYLVVw6CkpDbOPo+P6iW63O2PM9J9Kotly3kaqv/l8sXfetFRz3//suvdQufe2C4pQhrqchRcq11h+DmN+tt6CzJ212PaWJXhqsOiO5CvxZu8HMTP5ChvPbXsARCaTYWqbYUgK4uKT/v0XiZAAZR7h+7Ngn8QtcZ+RN2F9wX5wkNHexR4wXjsAALBZly5xS/zfNxc3YndJJtpptHiiy21Bu18j8Y7OYW29enzzrKNBaFzjKIP9mSbrokGW+8BqH2PYvlhmZ8ZEValduIBng25VAKVpLux6G+5PuRb3drxKdLu9gQCFnbT21mRrDbztGWNmPXQLwwVbe+qasf0TwRSXtFXpubWxacjhilDLzzJwor4SBNcDY9Fn1IUlCs5ScHL0iexkZ1u1xttsFQALZtKfdYSQJgZFd4NWFYX0slO4VFvkl1vH7CnJRImhAkNjetF+sB7QLTwZSeo4HK88h7zaoqAe0W2JvSVHseLCemg4FZ7rfhfCqco38bCJ8YNwsaYQI2L7eOX45pkm9oJW1iSV2vYWQWxQ2rQqtXjNMhpSOzkZB77hudy9gGfjBk9VOvYFcaooTE8a3eR2e/s2qzhfDYzr33sFO3NpNatoa6a5OWxBqeYGH9lzMkLZGHyqXdhv2FvYwJh97wTwos+LezPG7Cxx488aG8WyPM0fq8G3FhomJ8QHyWVyXJkwBAIE/FGwV+rmuGVt/h4AoLWbHiKTySyzxlto1tgthXWlePP0txAgYEGXGZY0SEI8SS6T456OV6FHREevHN+caskGODKZTDSrp3BmxriZNcb21ppq7AQKjvBM4OCpgk7+gg382ArBnpoZdJWtNcbmQRaVnWDNnZR39nxsruK5eMa4MTDW+EJgzNneSaPGpG9xKjX7utl+t16v7g3sc09KGIyBUd2wIHWG15/XH/hFYJybm4s5c+agf//+GD58OF5//XWYTM3/YS0tLcWCBQswcOBADB48GM888wyqq6stv9+7dy8eeOABjBo1CmlpaZg+fTp+//13b78UQpw2OWEoOMiwvmA/jLx/XUjk1urwT9lJxKuicVl0D6mbEzDGMenU7qRuBTOTYMJrp1aiwliN6YmjMTquv9RNIsQttmZ7BEEQF+Oyt81MM2uM5XZSqdmfo5Xhlp9dC+wa/1752/dZS7EFNJUy29totSZbM8a1DXve2ivU5s4Mo7NVm1V2AmNfrIxsDmBrTHXi4ltufB2r7GypFsn0gbfEqiIxN+UavNZrLiIUoXil1xxcQTteAPCDwNhkMmHu3LkwGAz49ttv8dprr2HVqlX48MMPm33c448/jtOnT2PZsmX473//i/3792PRokWW36enp6N79+54//338csvv+D666/H448/jq1bt3r5FRHinHh1NAbH9ECJocLvinCty6+f5Z6cMMTvi6v4kg6hbZAa1g7na/KRXZ0ndXP8yooLfyGzIhtdwtrhHqv1gIT4E1sVng2CCTLYLp7lfFVq5vGwHdS4UpWaxQYOHUPbAADiVdFOP96f2etzpUTprLZSouv4horIbEovM2Przve4KDB2Y8bYFyqWdwhtgwFRXS0FGs2p1TWmOvEaY7dmjNm09cbXGtZKy3uuSxqDtCCuPm2Pz1+x7tixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nQ4AcP/99+ORRx7BwIED0aFDB9xxxx0YPXo0NmzY0Jovj5BmTW0zHEBjWrI/MPBGrC+sL7o1KWGI1M0JOJRO7br0slP49uJGhMrVeLrrLJ8o6kKIu3qEd7D8/+N+j2FwdA/MaDdelCLLXrSr7BR8arrGmJklZoIScYDj3mVjuKKxou/AqG5Y3OMevN93vlvH8jfsDK0vFCFj22MOSusa9rxlswDUTNo3Z+d8ag4nmjF2LjD2hfRpllzG4dVec3FLu8sBANqGeikqTil6L01uLA+Q2Rm8oroX0vL5q4OMjAz06NEDWq3WctuoUaOwaNEinDlzBt27d2/ymPT0dERHR6NPn8bCFyNGjIBMJsOhQ4cwYcIEm89VUVGBbt26tai9HNfyLWnMx/DEsQJVsPTRkNie0Kqi8E/ZSVyqK0LbEK3jBzGk6Ke9xUdRaqjE8NjeaBMS02rP6y5/O5fGxafh83O/YUtRBu5JmdpqFZX9rZ/MSvQVeOPU1xAgYH7qjWgfFu+15/LXPiL+5aZ2ExCtisCImD6IUUXgxZ6zAQCVxhoA9esi2WCWnYFSy+1f9omqUovSqpnqxKJ0befP806hSZafZTIZhsb0cvqx/q7aVGv5WSaq8C39jLGGU6GON1hmjEXroZkglW3r0gFPYWfJYewuO4KM4tN2n4cNhp0tvuWL6dOsJ7vejo+zV2NOx2vwvwt/WG43V6xOVMc6fSy2f9gBieSQBABA17D2LW0ucYPPB8Y6nQ5xceLqq+YgWafT2QyMbT1GoVAgKirKMmNsbd26dcjMzMRLL73kdlsVCg5xceGO7+ikmBjvL8D3d8HQRzd0Go0lJ37D5vJ/8H/tr3frGK3ZT78f2wUAuLXrBI9+HrzNX86lOIRjYFxX/FN0CjmyAgyI69Kqz+8v/WT2n/0rUWyowLUdRuLGHmNa5Tn9rY+If1FxClzVkE3EmpU8CVXGGjzY+XoU68stt4uK/DQTeNjbx9h6reirvebiWMU5dAxxvnjdFQmDcaD0JEZZ7fcbDKqNjYEx18L0W08wz06qOSWmJ43G8gvrMKlhi0h2Cy62OjJ7DmjVUbiu7WjsKTvS7POIB1TsB8bqZiql+5rkkAS82mtuk9tvaXc5FDI5Zne82q3jsjPGYfIQ/DT4JWjkvj1IEKgkC4w/+OADh+uEzet97W0M3tyG4bZ+JwiCzdv37t2Lp556Ci+99BJSU1ObbVNzjEYe5eU1bj/ejONkiIkJQ0lJFXieCuzYEkx9NDZiID7DWqw+ux03aMe5VMq/tfvpdGUO0otPo51Gi27yDigqqvT6c7aUP55Lo6L745+iU1iTtRMd0DqVlf2xn7bpDmJj3j9oo47B3UlTvX4+tmYfRUaGQKmUfg0e8R0poUl4rff9AIAyQ+O5LkqrbmYZgTNVqeUyDgOiumKAi2sTVZwS/+5xl0uP8XdXtxmB3/J3YXRcf/yaXz9gzM7K8xIFxg90mo7a09/j3o5XoVt4MkbG9rXMUqpk7OwtGxjbKPjm4Hns7YVtTXxO+sd3i7Wu4e3xVLeZLj2GHYhSWi1dCGOWHpDWJVlgPGvWLFxzzTXN3ic+Ph5arRaZmeLCQ+ZZX+tZYTOtVttkZthoNKK8vLzJY/bt24f7778fTz31lMP2OMOTF0M8L/jNBahUgqGPYpWRGB3XD1uLMrCx4ACmuLH9UWv106rc7QCAaxJHAYIMvB9VTvanc2lUTF98JFuFbboMzO14TatWN/WXfio1VOKDrJ8AAI+k3gwNp261dvtLH5HAxdlZF1xrsl2bBRCnTyvs7Ins6zN6vuTBTtfh9vZXIEYVYbmNDYBc3RfYU9pqtHijzzzLvzs0FEMDYLUXtu3BEbP2YfHIKD4NDpzNLaDYwE/WzHmjkasxMf4ytNVo0U4TD60qCoOim2aDBhpxWr3tAnmk9UkWGEdHRyM6Otrh/dLS0rBkyRIUFRVZgtpdu3YhMjISnTt3tvmYAQMGoLS0FJmZmejduzcAYM+ePRAEAf36Nabx7N27F/fffz8ef/xx3HzzzS1/UYR4yfSk0dhalIE1edsxOWFos9kSUinRV2CrLh2hcg2uSLhM6uYEtEhlGIZE98TukkzsLTkalOmJjnycvRplxipMbTPM5dktQvwdG3Sxs5Tmdci2iGawZLaLb9EuA86TyWSioBgQryX1xS332NlbNnCzdcXxWO+bEMKr0T+yK5499lmT37MDKvJmZowB4PEut1h+/mrgsz55jWNN5uA1uYLtd6m28SL1fP4v3KhRo5CamoqFCxfi+PHj2L59O959913cfvvtUCrrR1UOHTqEyZMnIz8/HwCQmpqK0aNH49lnn8WhQ4dw4MABvPjii7j66qst65P37t2LuXPnYtasWZg0aRIKCwtRWFiI0tJSqV4qIXb1jOiIHuEdcK4mH+llp6Rujk1r83fDIJhwZcJghMopDcjbrmyo+P1nwT6JW+J7thcdxLaig0hQRePeDu6t+SLEn+l5o+VnNuA171drCzsbzAZw4sCY0vdbQsnJ0S0sGQDQLTxZ4tY0xb7vjmZ8o1RhuC9lmqjglL0tw1zJNPCHoNgTZHaKb9GuCdLy+cBYLpfjk08+AcdxmDFjBp544glMnz4dDz/8sOU+NTU1yM7OFm3f9Oabb6Jz58648847MWfOHAwaNAiLFy+2/H716tWoqanBkiVLMGrUKMt/7HEJ8SXTk0YDANbkbZe4JU3peSN+y98NGWT1adTE6wbH9ECMMgIHSk+gsK5U6ub4jDJDFT48swpAfQo1rdUiwcggsIFx46XerZ0mICU0EU93m9XkMZwolZpmjL1BKVPgzT4P4suBz6BdiPcq5LuLrT7Nng/NhaqcvWCYnXEOkmDXFWyXsCn27Dpv0vr8YliiXbt2+OyzpmkaZkOHDsWJEydEt0VHR+Ott96y+5jXXnsNr732msfaSIi3jYrtB63qN+wrPYYLNQWWYhm+YGPhAZQYKjA8pjeSNLbX/hPPksvkuCL+MnyfuxkbCv/Gre0nSt0kn2BOoZ6SMBQDo1u2/R4h/qqtpj47LlweIgpw2oTE4NMBT9hcAy9OpbY9Y9xcESXimJyTQ8UpkKD2za0M2b2L2WC2ubRh0RZeoiDZdpAdKFr+SaAZY18UeGcqIQFKwclxTeJIAMD3FzdJ3JpGJsFkac+Mdrb3CCfeMakhnXp9wX7JCrn4kh1Fh7G1KAPxqmjM7jhN6uYQIpnkkAS81/f/sHTAk5CL9h62f9nH/k48Y2z7Z+I6T65L9QYVp8DSAU/i28sW2Z0JtsbZSbUXb//l26/bHUbB1KLHi1KpRWuMacZYShQYE+JHrmozAuHyEGzS/YP8umKpmwMA2F50CHl1RUiL7IIeER2lbk5QaR8Sj94RnZBXV4TD5Wekbo6kyg1V+DC7vgr1/NSbKIXaC44fP47HHnsMY8eORf/+/TF16lR89dVXUjeL2NE9vAMilWF2t2GyxtmZwWKrVVMqdeBrq9EiWhkumjHmmglsOTvnh7trjP1Fc+v1naGws6ZfSYNPkgq8M5WQABam0ODapFEwCTx+uLhF6uZAEAR8Z54tbn+5xK0JTlSEq95/z65BqaESVyYMwWVBsNWHFI4cOYLY2Fi88cYb+O233zB37ly8+eab+Oabb6RuGmmGszN/smb2VXXm8SSwiNYINxMu2AugxQFz4AV7tXx9YOzq9kqv93oAPcM7irKa2M8brceWFv2FI8TPXJs4CiGcGn8W7EORvlzStuwrPYbs6jx0D09GWmQXSdsSrEbH9UMIp8aOokPNbsUSyHYVH8FmXTq0qijMoRRqr7nxxhvx7LPPYsiQIUhOTsa1116L66+/Hn/99ZfUTSPNsLencXPE1YkpMA5Gzr7vcpntdcWBPqBiDow1nMrBPcX6RaXinb4PI1HTWM2b/bwRadE7QYifiVSG4arE4fgxdwtW5W7FfSnSBAKCIGDFhfUAgBntLqdRTomEyNUYq03DuoK92KJLx9WJI6RuUquqMFTjgzMNKdSdb0SYIkTiFgWXiooKREVFtegYHNeyvx3mx7f0OIFKwYln7jjOcT0Cds0ju95YwckDup+9fS7JZP5znorXCDODK5xM1E92K5gztysD8Lwxp1Jr5Gqbr82Vc0klb5x1DrR+csTX/n5TYEyIH7o+aQx+yduB3/J34bqkMdCqW3Zh6o6dxYdxqioHXcPaY1hMr1Z/ftLoyoQhWFewF2vz9+CqNsODapDiv2fXoMRQgUnxgzE4pqfUzQkq6enpWLduXbO7RjiiUHCIiwv3SHtiYsI8cpxAEyM09q9cJnOqnyJCGweYNKrGi/aoiFCPvV++zFvnUmioym/6L6xQbflZrWoMF9j2x8SEQWFgUvDljffTKBvPm5ioML953c6qE+oD43CVptnX5sy5FBnR+HkLtH5ylq/8/abAmBA/FKuKxPSkMfg+dxNW5KzHI6k3terzmwQTll9YBwC4u8PUgCys4U96hHdAamhbZFXn4ljlOfSKSJG6Sa1id3EmNun+QZwyEnNSrpG6OX7rgw8+wIcfftjsfbZu3YrExETLv0+dOoV58+bh4YcfxvDhw91+bqORR3l5y5YAcFx9sFdSUmVzG6JgV1RWYflZJVc61U/GusZZZb5xS2TUVOlRVFTp8Tb6Cm+fS9XV/tN/tTUGy88mY2NfFBVVivqpQt/4+ZUxXcY+prKiDkXwj9ftrFGx/bA2fw+GR/ex+Z66ci6VlFfh+rZj0EYd4zfnh6e05t/vyMgQKJXNr3enwJgQP3Vzu/H4o2AP1hfsw3VJo9ExNNHxgzxkQ+EBXKgpQFpkFwyI6tpqz0tsk8lkuDpxJN478wN+vbQzKALjCkM13j/zIwDg/1JvRDilULtt1qxZuOaa5gcW4uPjLT+fPn0ad955J26++WbMnTu3xc/vqYshnhcoMLZBAfGFoDP9pGDWirJVcmXggqKPvXYuCZ47373P9v7EbPt5XhAFw2zBLfYxnBB45839KddiVGw/9ItMbfa1OXMuVRlrMKfjNZb7ByNf+ftN0zyE+KlwRQhuaXc5eAhYdv6PVnveGlMdvrrwJwDgrg5Tgipt15eN1w5AmFyD7UWHUKKvcPwAP7fk3M8oMVRgYvxlGEqp/C0SHR2Njh07NvufXF4fHJ06dQp33HEHpk+fjkcffVTilhNn9I1MxcIut2HFZc86/Ri2iJKGa0yp5eiy0S2Pd7kVKSGJmNrG/eyK1sZu09VcoU97xd0CvWibilNiYHQ30Rprd1Wb6jzQIuIJgXemEhJEpiWORII6BntKMvF3yfFWec5vcjZCpy/D2Lg02rfYh2jkKkxKGAyjYAr4rZv2lhzFhsIDiFVGYi6lULcac1A8YsQI3H333SgsLERhYSGKi31jT3Vi34T4gUhQxzh9f15oTKXWMIWBAjHAaQ0T4wfhk7THEaX0jXWUzmAHvYfF9AYA3Jk8ucn97O1jzGYd0HIr21LD2gEAUlox4480j85UQvyYilPggZRrAQAfZa9Gncng4BEtk1NTiFV5W6HhVJjd8WqvPhdx3dVt6itS/56/GybBJHFrvKPCWI33sxpSqDvfgAhFqMQtCh7r1q1DcXExfv31V4waNcry34033ih104iHmZjA2N4WPCSwsanQt7S7HG/3eQi3tLu8yf1kdqpX29sLmzR6rddcLO5xD8bE9Ze6KaQBrTEmxM8Nj+2DYTG9sackE99e3Ig7OzQd0fUEXuDx4ZmfYBRMuCP5SsSro73yPMR97ULiMTCqG/4pO4m9JccwIraP1E3yuE/P/oIiQzku1w7CsNjeUjcnqDz88MN4+OGHpW4GaQXiwDiwU2KJbeyWXWq50m7tCtFaYma+TcVRpoEjEYpQWgrkY+hMJSQAPNDpWqg5JX7I3YzsqjyvPMfv+buRUX4aKSGJmJ40xivPQVpuWuJIAMCavO0St8Tz9pUcw1+FfyNGGYH7GzIlCCGex2acsGtNKSU2eLCBcXPszRirOZXN2wnxZXSmEhIA2qhjcUfyZBgFE/5zaiX0vGdTqnNrdfj83G+Qyzgs6HILVE5+YZLWNySmJ9pptDhUnoWTlRekbo7HVBprGqtQd74REUpKoSbEW+zNGLO3k8CmlLn+Pc+eKxp2xhgtL1BFSGugwJiQAHFd0mikRXXF2ZpL+OLc7x47bp3JgFdOfoU63oBb2l2OruHtPXZs4nlyGYfr244FAPyUu1Xi1njOp2d/hU5fhvHagRhOKdSEeJWRnTFm1hgb2U2NSUBzdsaYxYlmjCmVmvgfOlMJCRCcjMPjqbcgQhGKny/twIbCAy0+piAI+Ch7FU5XXUTfiM64td1ED7SUeNtE7WWIUoRhe9FBXKr1/4rB+0uOYX3hPsQoIyzF5ggh3sPuC84GNUaaMQ4aLZ0xVssplZr4HzpTCQkgWnUUnuo6Exw4vJf1PY6Un2nR8VblbcP6wv2IU0bi6W6zPLJfH/E+tVyJaYkjwUPA6rxtUjenRSqM1Xg36wcAwMOdb0CkH213Qoi/+bDfo5icMBQ3tR1nuY0TBcY0YxwslG5837PFtzS0xpj4ITpTCQkwA6O74cFO02EQTPj30aU4WnrWreOsy9+Lz879CjWnxHPd70SMKsKzDSVedXXiCKhkCvxZsA/lhiqpm+O2T7J/RpGhHBO0AwOyyjYhvqRLWDs8knoTwqxmjGUNlYdd2QuZ+LcWzxhTKjXxQ3SmEhKArkocgVvaXY5KUw0e2PUu0ktPOf1YQRDwY+4WvHvmB8hlHJ7rdid6RHT0YmuJN0Qrw3FlwhDU8nqs8tNZ413FR7BRdwBxykg80Gm61M0hJCjJZRyWD3waz3e/y+6WPSTwcEy1aWcpmPXobCo1J6NsM+IfKDAmJEDdmTwZM5MnodJYg6cyP8V3FzfByJuafUylsQavnVqJz8/9BjWnxPPd78ZlMT1aqcXE025uNwFKmRy/XNrhd7PGZYYqSxXqR1JvQoSCqlATIgUZZEhQx2A4ZWwEFc6NEIGKbxF/5xdnam5uLubMmYP+/ftj+PDheP3112EyNX+BX1paigULFmDgwIEYPHgwnnnmGVRXV9u87z///INevXrh+uuv90bzCZGETCbDHR2uxAsD7oZcxmHZ+bV46NA72FT4T5PtnEr0FfgxdwvuSX8VW4sykKCKxuu9HsCQmJ4StZ54Qrw6GlcmDEW1qc7vZo0/zP4JpYZKTE4YisF0HhIiGZ4KbgUld4JZDTNLzK4x5uD67DMhUvD5zUhNJhPmzp0LrVaLb7/9FgUFBfjXv/4FtVqN+fPn233c448/jsLCQixbtgwGgwFPP/00Fi1ahNdff110v8rKSjz55JMYNmwYSktLvfxqCGl9VyUPQ1vE472sH3G4/AxeP/013smSIyU0CWFyDYoN5cipKQQPARxkmBQ/BHNSpomqkhL/NaPdBPxZsBe/XNqB65PG+EXxqq26DGwvOoQEVTTu6zhN6uYQEtR4CFI3gUiAcyMwDpc3XjewM8YyN9KyCZGCz88Y79ixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nU503xdeeAGTJ0/GgAEDWuPlECKJDqFt8HqvB/Bqr7kYFdsPak6FU1U5yCg/jfM1BYhVReLaxFH4pP/jeKzLzRQUBxB/mzUurCvFB2d+AgA81mUGwhQaiVtESHATKDAOSu6sMWb/XstpXTHxQz4/Y5yRkYEePXpAq9Vabhs1ahQWLVqEM2fOoHv37k0ek56ejujoaPTp07geZsSIEZDJZDh06BAmTJgAAFi7di1OnjyJl156CUuWLPFIezmu5aNi5mN44liBivrIOeJ+4jAophsGxXQDL/Ao0VeghtcjShkW1Os3g+FcuiV5Av4s2IfVedtwTdJIaNVRLh+jNfrJJPB4/fTXqDTV4Pq2YzAwppvXnssbguFcIsGHFygwDkaRCtezi0LlasvPtK6Y+COfD4x1Oh3i4uJEt5mDZJ1OZzMwtvUYhUKBqKgoy4xxXl4eXnnlFSxduhQqlarJMdyhUHCIiwv3yLEAICbG91MepUZ95Bxb/RSPSAla4rsC+VyKQzhuK70cy0//ie8KNuLfaXe4fSxv9tNnJ37H4fIz6B6VjCcG3AyVXOn4QT4okM8lEnxoxjg4JWni8GjqzegQ0sbpx4TIG2eMOZkMQ2N6AXT+ED8iWWD8wQcf4MMPP2z2Plu3bgVgf21Cc2sWbP1OEATL7QsXLsS9996Lbt08NyNhNPIoL69p8XE4ToaYmDCUlFSB5+kPii3UR86hfnIsWPpoetxorDm7A7+c34UpscPQOaytS4/3dj9llmfj0xO/Qc2psLDzbagorQNQ5/Hn8abWPJciI0OgVFKqIvE+gWaMg9aVCUNcun+IaMZYjsU97vF0kwjxKskC41mzZuGaa65p9j7x8fHQarXIzMwU3W6e9bWeFTbTarVN1hIbjUaUl5dbHrNv3z4cOHAAb7zxBgCA53kIgoBevXrhq6++wqBBg9x6XZ68GOJ5IaAv1D2B+sg51E+OBXofhXAa3J48CR9nr8aS7F/wSs85bhVE8UY/VRiq8erJleDB44GUa9FOE+/X70Wgn0skuFDxLeKsEKpETfycZIFxdHQ0oqOjHd4vLS0NS5YsQVFRkSWo3bVrFyIjI9G5c2ebjxkwYABKS0uRmZmJ3r17AwD27NkDQRDQr18/AMCvv/4qeszXX3+Nv//+G2+//TaSk5Nb8MoIIcQ3TU0Yhl8v7UR62SlsLcrAOK30RQdNAo//nF6JgroSjInr7/IMBSHEuyiVmjiLnTF2p6o1IVLz+bN21KhRSE1NxcKFC3H8+HFs374d7777Lm6//XYolfXrzw4dOoTJkycjPz8fAJCamorRo0fj2WefxaFDh3DgwAG8+OKLuPrqqy3rk7t16yb6Ly4uDiqVCt26dUNICFXkJYQEHgUnx8OdbgAALDn7CyqMtvd2b00rL6zH36Un0CEkAY+k3kTbehDiYyiVmjhLHBjT33Lif3w+MJbL5fjkk0/AcRxmzJiBJ554AtOnT8fDDz9suU9NTQ2ys7NF2ze9+eab6Ny5M+68807MmTMHgwYNwuLFi6V4CYQQ4jP6RaViUvxglBgqsOz8Wknbsrs4E19f3IBQuRrPdb8LoXLamokQX2HO3hge21vilhBfd1u7iUiL6or2IfGW2zjfDzEIaUIm0FCgxxgMJpSWtnwGhuNkiIsLR1FRJa1Ts4P6yDnUT44FYx+VG6pwX8brKDNW4ZWeczAw2nERQk/309nqPDx25CNUm2rxXLc7MTKub4uPKbXWPJeio0MDoviWJ743g/Ez7A5X+0kQBNTwdUE1YEXnknPs9ZOBN2La3icBAF8P+jdiVcG7+wWdS87xte9NGs4hhJAgE6kMw4OdrgMAvHn6W5QZqlr1+Yv0ZXju2BeoNtXitnYTAyIoJiTQyGSyoAqKScspZI1BB60xJv6IzlpCCAlCY7RpmBQ/GMWGcryT9X2rrSOsNtXi38e+QKG+FJdrB2FW8pWt8ryEEEK8i60RIacQg/ghOmsJISRIPdBpOtpptNhTkokfc7d4/flqTXq8cPx/yKrORf/IVCq2RQghAYqKbxF/RIExIYQEqRC5Gk91mwU1p8TS82uxpzjT8YPcVGcyYPGJZcgoP43U0LZ4rvtdUHKS7RhICCHEiyiVmvgjOmsJISSIdQlrhye63AoBAl47tRLHKs55/DmqjLVYdGIp0stOoVNoEl7tNRfhCtoWjxBCApWcAmPih+isJYSQIDcqrh/u7jAVtbwezxz7DCcrL3js2EX6MjyR+THSy04hpSEojlSGeez4hBBCfA9t10T8EZ21hBBCMKPdBNzabiKqTbV48ugSHCg90eJjHq04i/mH38eZ6lykRXbBW73nIVoZ7oHWEkII8WW0xpj4I1rgRQghBABwR/KV4GQyrMz5C88d+wL3drwK1yWNdnmtmIE34sfcLfjqwnrw4DEx/jLM73wjrSkmhJAAd3/KtSjSl9EaY+KX6CqFEEIIgPqtNmYlX4m2Gi3ezfoen537FbuLj+DhzjegU3iSw8cLgoADpSfw6blfcb4mHyqZAvM63YArE4ZQ9WlCCAkC05NGS90EQtxGgTEhhBCRy+MHoVNoEt46/S2OVGTj/oNvYXRcP9zYZQw6c+2gsPrqKNKXYVfxEawr2IesqosAgLSornio0/VoHxIvxUsghBBCCHEJBcaEEEKa6BzWFu/1nY9fLu3E97mbsK3oILYVHYRCJkf7kAREKkJhFEwoqCuBTl9meVzXsPaY0e5yjIztQ7PEhBBCCPEbFBgTQgixScHJcX3bMZjaZhj2lGZid/kRZOhO42x1nuU+HGToEJKAQdE9MCq2L3pFpFBATAghhBC/Q4ExIYSQZmnkKkyIH4ibeoyBTleBcn01KozVUHIKRCnDoOKUUjeREEIIIaRFKDAmhBDiNJlMhghlKCKUoVI3hRBCCCHEY6iWOiGEEEIIIYSQoEaBMSGEEEJccv78eQwYMABDhw6VuimEEEKIR1BgTAghhBCnGY1GPPHEExg0aJDUTSGEEEI8hgJjQgghhDjto48+Qvv27TF16lSpm0IIIYR4DBXfIoQQQohT/vnnH6xZswZr1qzBxo0bPXJMjmvZ9l7mx7f0OIGO+skx6iPnUD85Rn3kHF/rJwqMCSGEEOJQZWUlFi5ciJdeeglRUVEeOaZCwSEuLtwjx4qJCfPIcQId9ZNj1EfOoX5yjPrIOb7ST34RGOfm5mLRokXYu3cvQkNDcd1112HBggWQy+V2H1NaWooXX3wRmzdvhlwux6RJk/DMM88gNLRxixGe5/HFF1/ghx9+QG5uLhISEnDXXXfhjjvuaI2XRQghhEjugw8+wIcfftjsfbZu3Yr33nsP48aNw8iRIz323EYjj/LymhYdg+NkiIkJQ0lJFXhe8FDLAg/1k2PUR86hfnKM+sg5rdlPkZEhUCrtx46AHwTGJpMJc+fOhVarxbfffouCggL861//glqtxvz58+0+7vHHH0dhYSGWLVsGg8GAp59+GosWLcLrr79uuc8rr7yCnTt34qmnnkKXLl1QUlKCmpqWfUETQggh/mTWrFm45pprmr1PfHw89u7di0uXLuHrr78GAAiCAJ7n0atXL/znP//BtGnT3Hp+T10M8bxAF6BOoH5yjPrIOdRPjlEfOcdX+snnA+MdO3YgKysLy5Ytg1arRc+ePTF//ny8/fbbmDdvHpRKZZPHZGVlYfv27fjpp5/Qp08fAMCzzz6LuXPnYuHChdBqtcjKysI333yDX3/9FZ07dwYAJCcnt7i9nsiR97V8e19EfeQc6ifHqI+cQ/3kmL/2UXR0NKKjox3e74svvoDBYLD8e+PGjVi6dClWrlyJpKQkL7aQEEII8T6fD4wzMjLQo0cPaLVay22jRo3CokWLcObMGXTv3r3JY9LT0xEdHW0JigFgxIgRkMlkOHToECZMmIBNmzahffv22LRpE2bPng2ZTIbRo0fj8ccfR3i4e+udPLlWCvCdfHtfRn3kHOonx6iPnEP95Fig9lGnTp1E/z5y5Ag4jkO3bt0kahEhhBDiOT4fGOt0OsTFxYluMwfJOp3OZmBs6zEKhQJRUVHQ6XQAgAsXLuDixYvYsGED3njjDej1erz00kt48sknHa61sscTa6UAWpfgDOoj51A/OUZ95BzqJ8d8ba0UIYQQQpwnWWDsbLEPAJDJbKel2bvd3u8EQbDcLggCDAYD/vOf/6Bjx44AgEWLFmHmzJnQ6XSiGWpXePJiyFfy7X0Z9ZFzqJ8coz5yDvWTY8HSR9dffz2uv/56qZtBCCGEeIRkgbGzxT60Wi0yMzNFt5tnfa1nhc20Wq3lPmZGoxHl5eWWx2i1WigUCktQDACpqakA6qtguxsYE0IIIYQQQgjxL5IFxs4W+0hLS8OSJUtQVFRkCWp37dqFyMhIS9EsawMGDEBpaSkyMzPRu3dvAMCePXsgCAL69etnuY/RaMSFCxcsRbeys7MBAG3btm3pyyOEEEIIIYQQ4ic4qRvgyKhRo5CamoqFCxfi+PHj2L59O959913cfvvtlorUhw4dwuTJk5Gfnw+gfuZ39OjRePbZZ3Ho0CEcOHAAL774Iq6++mrLTPDIkSPRo0cPPPPMMzh+/DgOHTqEF198EZMmTaLZYkIIIYQQQggJIj4fGMvlcnzyySfgOA4zZszAE088genTp+Phhx+23KempgbZ2dmibSTefPNNdO7cGXfeeSfmzJmDQYMGYfHixaLjfvrpp4iIiMCtt96KefPmoV+/fnj11Vdb9fURQgghhBBCCJGWz1el/n/27ju+jfL+A/jnTst77x07sRM7w9kkcRIIIQ2UDSU/9gpQVqFllNUSoIwCYVNICVAgFEqB0FJCGJkQZxPHiTPtxHvJlvfUuN8fsuQ7+U7Lmtb33VdeNRqnR49Ouvve832+DwCkpqbinXfekbx/7ty5OH78uOC2qKgorF692up2ExMT8eabb7qkjYQQQgghhBBC/JPPjxgTQgghhBBCCCHuRIExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCAxnAcx3m7EWOFwcBBrze4ZFsKhQxard4l2xqrqI/sQ/1kG/WRfaifbPNUH8lkLFiWcfvruJurjpu0b9qH+sk26iP7UD/ZRn1kH186blJgTAghhBBCCCEkoFEqNSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBsY/5+OOPsWTJEkyZMgVXXHEFSktLvd0kj1mzZg0uu+wyTJ8+HfPmzcNdd92FyspKwWMGBgbwxBNPYO7cuZg+fTruvvtutLa2Ch5TX1+PW2+9FdOmTcO8efPw/PPPQ6/Xe/CdeM7jjz+OvLw8rFu3znwb9ZFRY2Mj7rvvPsyZMweFhYW49NJLUVFRYb6f+gno7u7GqlWrsHDhQkybNg3nn38+vvrqK/P9gdhHe/fuxW9/+1sUFRUhLy8PW7ZsEdzvqj7ZvXs3LrnkEkyePBnnnHOOoN+JY+i4ScdNR9BxUxodN22j4+ZIY+q4yRGf8c0333AFBQXc559/zp08eZJ77LHHuNmzZ3Otra3ebppH3HTTTdwXX3zBnThxgjt69Ch3yy23cGeddRbX19dnfsyf//xnbvHixVxxcTF36NAh7oorruCuuuoq8/06nY47//zzuRtuuIE7cuQIt3XrVm7u3LncK6+84o235FabN2/mLrzwQq6oqIj76KOPzLdTH3Fce3s7d9ZZZ3EPPfQQd/DgQa66uprbunUr19DQYH4M9RPHPfLII9yyZcu4PXv2cNXV1dy6deu4iRMncrt37+Y4LjD7aOvWrdxLL73Efffdd1xubi63efNmwf2u6JPq6mpu2rRp3LPPPsuVl5dzH330ETdp0iRux44dHnufYwUdN+m46Qg6bkqj46Z96Lg50lg6blJg7EMuv/xy7sknnzT/t16v54qKiri1a9d6sVXe09rayuXm5nL79+/nOI7jOjs7uYKCAm7jxo3mx5SXl3O5ublcaWkpx3HGL+ekSZM4tVptfsw///lPbtasWdzg4KBn34AbqdVqbtGiRdyxY8e4s846y3yApz4yeuGFF7grr7xS8n7qJ6Nf//rX3Ntvvy24bdmyZdzatWupjzhuxAHeVX3y/PPPc+eff77gte69917u1ltvdefbGZPouClEx01pdNy0jo6b9qHjpnX+ftykVGofMTg4iLKyMixYsMB8G8uymD9/PkpKSrzXMC/q6uoCAERGRgIADh8+DK1WK+ijnJwcpKSkmPuopKQEEydORFxcnPkxRUVF6OzsxKlTpzzXeDd7+OGHce211yIvL09wO/WR0ebNmzF58mTcfffdmDdvHi699FL85z//Md9P/WQ0ffp0bNq0CU1NTeA4Dj/99BOam5sxf/586iMRruqTkpISwTZMjwnU33pn0XFzJDpuSqPjpnV03LQPHTcd42/HTQqMfURbWxv0er1gpwCA2NhYqNVqL7XKeziOw7PPPos5c+YgJycHANDS0oKgoCCEhYUJHhsbG4uWlhbzY2JjYwX3m/rU9Bh/t27dOvT29uKmm24acR/1kVFNTQ3++c9/IicnB++99x4uu+wyPProo9i0aRMA6ieTxx57DBkZGVi0aBEmT56Mu+66C88++ywmTZpEfSTCVX0i9Zj29nZotVp3NX/MoeOmEB03pdFx0zY6btqHjpuO8bfjptxlWyJuwXEcGIbxdjM87sknn8SJEyfwySefCG4X6wuO42w+xtrt/qSiogJ/+9vf8Nlnn4Flxa9rBXofAcb3O2XKFNx7770AgEmTJuHw4cP45JNPcPbZZwOgfgKMJ4tHjx7F3//+dyQmJmLnzp145JFHkJSUBID6SIyr+sTyMZbbIM6j4yYdN/nouGkfOm7ah46bjvOn4yaNGPuI6OhoyGSyEVeLNBrNiKvhY91TTz2FzZs344MPPkBiYqL59ri4OPT19aG7u1vweH4fxcXFjehD039bXmnyRwcPHoRGo8GyZcuQn5+P/Px81NXV4emnn8by5cupj4bExcUhOztbcFtOTg4aGhrM9wd6P/X39+Pll1/GQw89hMWLF2PixIm48cYbsXjxYnzwwQfURyJc1Sdij2ltbUVUVBQUCoW7mj/m0HFzGB03pdFx0z503LSNjpuO87fjJgXGPkKpVKKgoADFxcXm2wwGA3bu3InCwkLvNcyDOI7Dk08+ie+//x4ffPAB0tPTBfdPnjwZCoVC0EenT59GfX29uY8KCwtx7NgxQRn44uJiREREjPjB90dLly7Ff//7X3z11VfmfwkJCbj11lvx9ttvUx8NmT59OqqqqgS3VVZWIjk5GQDtSwCg0+mg1Wohk8kEt7MsC4PBQH0kwlV9UlhYiB07dgi2XVxcHDC/9a5Cx006btqDjpv2oeOmbXTcdJzfHTddWsqLjIpp2Ykvv/ySKy8v5/70pz8F1LITjz/+ODdz5kxu9+7dXHNzs/mf5bITZ555Jrdz507u0KFD3IoVK0RLvt90003c0aNHue3bt3NnnHEG9/LLL3vhHXkGv7omx1EfcRzHlZSUcJMmTeLWrFnDVVZWcl9++SU3efJkbtOmTebHUD9x3DXXXMNdeOGF5mUnPv30Uy4/P5/7z3/+w3FcYPZRd3c3d+TIEe7IkSNcbm4u9+GHH3JHjhzhmpubOY5zTZ9UV1dzU6dO5f76179y5eXl3Lp167j8/HxarskJdNyk46Yz6Lg5Eh037UPHzZHG0nGTAmMf89FHH3FnnnkmV1BQwF1++eXcwYMHvd0kj8nNzRX998UXX5gf09/fz61atYqbPXs2N23aNO6uu+4SlHfnOI6rra3lVq5cyU2dOpWbO3cu99xzz3E6nc7Tb8djLA/w1EdGP/zwA/frX/+amzx5Mnfeeedx69evF9xP/cRxzc3N3B//+EeuqKiImzp1Knfuuedy69atM98fiH20a9cu0d+h1157jeM41/XJzp07uYsuuogrKCjgzj77bO7LL7/02Hsca+i4ScdNR9FxUxwdN22j4+ZIY+m4yXAcVfwghBBCCCGEEBK4aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrNmzYgC+//NLbzSCEEEL8Ah03CXEfCowJIV6zceNGrF+/3tvNIIQQQvwCHTcJcR8KjAkhhBBCCCGEBDSG4zjO240ghASehx56aMRV77vuugt33323l1pECCGE+C46bhLiXnJvN4AQEpjuuOMO1NfXo6urC48//jgAICkpycutIoQQQnwTHTcJcS8KjAkhXpGRkYGoqChwHIfCwkJvN4cQQgjxaXTcJMS9aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrFAoFBgYGvN0MQgghxC/QcZMQ96HAmBDiNePGjcOJEyfw448/4tChQ2hqavJ2kwghhBCfRcdNQtyH1jEmhHiNRqPBn/70J+zduxcdHR20HiMhhBBiBR03CXEfCowJIYQQQgghhAQ0SqUmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQ5N5uwFhiMHDQ6w0u2ZZczkKnc822xirqI/tQP9lGfWQf6ifbPNVHMhkLlmXc/jru5qrjJu2b9qF+so36yD7UT7ZRH9nHl46bFBi7kF5vQHt776i3w7IMYmPD0NnZB4OBc0HLxh7qI/tQP9lGfWQf6ifbPNlHUVEhYFmZW1/DE1xx3KR90z7UT7ZRH9mH+sk26iP7+Npxk1KpCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEOKUxx9/HHl5eVi3bp23m0IIIYSMil8Fxh9//DGWLFmCKVOm4IorrkBpaanVx3/77bdYvnw5pkyZggsuuADbt28f8Zjy8nLcdtttmDFjBmbMmIH/+7//g0ajcddbIIQQQsaELVu2oKSkBAkJCd5uCiGEEDJqfhMYb9iwAc8++yzuvPNOrF+/Hnl5eVi5cqVkEHvgwAHcd999uPzyy/HVV19h6dKluOOOO1BRUWF+THV1Na6++mqMHz8e//znP7F+/XrcfPPNUCgUnnpbhBBCiN9paWnBqlWr8Pzzz9MxkxBCyJgg93YD7PX+++9jxYoVuOyyywAATzzxBLZu3WoOZi198MEHWLRoEVauXAkAuOeee7Bjxw58/PHH+POf/wwAePnll7Fo0SI88MAD5udlZmZ64N0QQggh/uvhhx/Gtddei7y8vFFvi2UZlzx/tNsZ66ifbKM+sg/1k23UR/bxtX7yi8B4cHAQZWVluP322823sSyL+fPno6SkRPQ5JSUlIwLmoqIibN26FQBgMBiwdetWrFy5EjfeeCOOHTuGzMxM3HnnnVi4cKHTbXXFB+trO4kvoj6yD/WTbdRH9qF+si1Q+mjdunXo7e3FTTfdNOptyeUsYmPDXNAqIDo61CXbGeuon2yjPrIP9ZNt1Ef28ZV+8ovAuK2tDXq9HnFxcYLbY2NjUVVVJfqclpYWxMbGjni8Wq0GALS2tqK3txdr167FvffeiwcffBCbNm3Cbbfdhs8//xz5+fkOt9OVB3jAd3YSX0Z9ZB/qJ9uoj+xD/WTbWO6jiooK/O1vf8Nnn30Glh39bCydzoDOzr5RbYNlGURHh6KtrQcGAzfqNo1V1E+2UR/Zh/rJNuoj+3iynyIigqFQyKw+xi8CYykcx4FhpK/Mi91nus1gMAAAzj77bFx//fUAgEmTJmHPnj3417/+hSeeeMLh9rjiAA/Ql8ke1Ef2oX6yjfrIPtRPtvnaAd4dDh48CI1Gg2XLlplv0+v1ePrpp7Fu3Tps3LjR4W26qq8MBo72TTtQP9lGfWQf6ifbqI/s4yv95BeBcXR0NGQyGVpaWgS3azSaEaPIJnFxcSMe39raan58dHQ05HI5srOzBY/JyclBXV2d02115YfqKzuJL6M+sg/1k23UR/ahfrJtLPfR0qVLMXnyZMFtN998My699FJccsklXmoVIYQQMnp+UZVaqVSioKAAxcXF5tsMBgN27tyJwsJC0ecUFhZix44dgtuKi4vNjzdt0zIVu7KyEsnJyS5tPyGEEDIWREREIDc3V/BPoVAgPj4eWVlZ3m4eIYQQ4jS/CIwB4MYbb8Snn36K9evXo6KiAqtWrUJ/f7/5CvWDDz6I1atXmx9/3XXXYfv27XjvvfdQUVGB119/HYcPH8bVV19tfsxNN92Eb775Bp9//jmqqqrw3nvvYffu3VixYoXH3x8hhBBCCCGEEO/wi1RqADjvvPOg0Wjw2muvQa1WY9KkSVi7di1iYmIAAA0NDYJCIDNmzMDq1avxyiuv4KWXXkJWVhbefPNN5OTkmB+zfPlydHZ24u2338ZTTz2FnJwcvP32204V3iKEEEIC0ebNm73dBEIIIWTUGI7jxuZEKC/QavVob+8d9XZYlkFsbBhaW7vH7Dy10aI+sg/1k23UR/ahfrLNk30UFRXileJbruaK4ybtm/ahfrKN+sg+1E+2UR/Zx9eOm36TSk0IIYQQQgghhLgDBcaEEEIIIYQQQgKa38wxJmPLoEGPLq0WABClVEFmZT1qQsjY1qfXoVunhZxhEKVQWV2fnhBCCCHEHSgwJh5T29uNTc012KtpQnVPJwxDt7NgMCE8CnNjk/CrpAxEKlRebSchxP2Od7bhx6Zq7Gtrhnqgz3x7sEyOieHRWBCXjMUJaQiW0WGKEEIIIe5HZxzE7Rr7e/Bh5TFsV9eZb4tVBiFOFWy+/3hXG453teHT6uO4NHU8rsiYACXr/4VlCCFCdb3deLviEA60qwEY5/MkB4UiWqnCgEGP2t5uHGhX40C7Gh9WHsNl6eNxUUo25CzN/CGEEEKI+1BgTNyG4zh811iFtafK0G/QI0qhwgUp43BmQhoSg0IEj6vq7cJ3jVX4vrEan9acwM8t9Xg0fzbSQ8K9+A4IIa7CcRy+bajE2tNlGDQYkBwUgkvSxmNBXLIgS0TPcTjS0Yrvm6qxrbkO758+gs1NNXhg4kxkhUZ48R0QQgghZCyjwJi4xaBBj1dPlGCbug4sGKxIz8Vv0scjSCQtkmEYZIVG4LacKbg4NQd/Ky/F/rZm/KFkOx6aNBszoxO88A4IIa6i5zj8veIQvmmohJxhcF3mRFyaNl50FFjGMJgSFYcpUXFYkZ6LN8sP4lBHK+4r+Ql3T5iGMxPSvPAOCCGEEDLWUW4acbku7SAeKS3GNnUdElTBeLGwCNdmTRQNii0lBoXg8YK5uCojD316PZ4q24PdrY0eaDUhxB0MHIfXT5bgm4ZKRCmUeHbqAlyRkWtXanRaSBienjIf12dNgtagx4vHf8HnNSc90GpCCCGEBBoKjIlLdWkH8dihnTjW1Ya88GisLlyI3PBoh7bBMgyuyszDneOnQscZ8NzRfTjaqXFTiwkh7sJxHNZUHMKPTTWIVQbhhWkLMSkixqFtsAyD36RPwOOTz0AQK8M/Ko/iw8qj4DjOTa0mhBBCSCCiwJi4TK9Oi8cO70RFTwemRsbh6SnzEK0Mcnp75yZn4bacKdByBjxVtgcNfT0ubC0hxN3+V3/aPFL89JT5SA4OdXpbM6MT8NSUeQiVK/BZzUl8UVvuwpYSQgghJNBRYExcQmcw4Nmj+1DR3YEpkbH4c8Ecu1KnbbkgZRwuTMlGp24QfzmyBwN6vQtaSwhxt0PtLXjnVBnkDIs/FcxFWkjYqLc5KSIGT04+A6qhkeNNTdUuaCkhhBBCCAXGxAU4jjMvv5IZEo7H8l0TFJvcnF2Awqg4VPV24b3TZS7bLiHEPTq1g3j+2H4YwOGO8VOR5+B0CmvywqPxyKTZkDEMXj1xEAeHln0ihBBCCBkNCozJqH3TUImNjVWIVqjweMFchMoVLt2+jGHwh7wZiJAr8U1DJXa1Nrh0+4QQ13qrvBRt2gEsTUzHsqQMl29/ZkwC7p4wDQZw+OvR/VAP9Ln8NQghhBASWCgwJqNysqsda0+VQc4weKxgDhJ46xO7UowyCL/Pmw4A+Ft5KXp0Wre8DiFkdH5S1+GnlnrEq4Jxa/Zkt73O0sQMnJ88Dp26QTxzZC8GDTTNghBCCCHOo8CYOK1bp8Vzx/ZBxxlwc/Zkl6ZLipkdk4izEtKgGRzAP04fcetrEUIc16PTYk3FYQDAvbmFCHFx9oilm7MLkB8Rg5Pd7XjvFP0mEEIIIcR5FBgTp3Ach9dOlKCpvxdFcSk4PznLI6+7clwBwuUKbKivxCFNi0dekxBin0+qj6NdO4AlCWmYFhXv9tdTsCwemjQLEXIl/tdwGvs0TW5/TUIIIYSMTRQYE6dsaa5FcWsDkoJCcPeEaWAYxiOvG6lU4cZxBeAAvFq6n9YyJcRHVPd04ev60wiWyXHjuHyPvW6MMgh3T5gGAHjlRAnaBwc89tqEEEIIGTsoMCYOaxnow5qKQ2AA/D53usuLbdlydmI6ssMicUjTgh0tVIiLEF/wzqnD0HMcrsrIG9X65c6YF5eMXyVlol07gNdOltAFM0II8VP1fd3o1g56uxkkQFFgTBzCcRxeP3kQPXodLkrNRkFkrMfbIGMY3JxtHJF6/9QRaA0Gj7eBEDLsYLsaB9rVSAsOwwUp47zShluyC5ASHIo9miZsU9d5pQ2EEEKc160dxK37NuOa3d95uykkQPlVYPzxxx9jyZIlmDJlCq644gqUlpZaffy3336L5cuXY8qUKbjggguwfft2ycfecsstyMvLw5YtW1zd7DHlh6Ya7G9rRlpwGK7NnOS1dkyPTsC8xGQ09PdgY0Ol19pBSKDjOA4fVh4DAFydmQc5653DSpBMjt9NKAQA/L3iMDq0lFJNCCH+RDM0FUZHWT/ES/wmMN6wYQOeffZZ3HnnnVi/fj3y8vKwcuVKaDQa0ccfOHAA9913Hy6//HJ89dVXWLp0Ke644w5UVFSMeOy6deso9c4ObYP9ePfUYbAwVpxVyWRebc9dk43LN/279iQt1UKIl+xra8bxrjaMC43AgrgUr7ZlcmQszk3KRKduEGtPlXm1LYQQQhzjoXI1hEjym8D4/fffx4oVK3DZZZdh/PjxeOKJJ6BSqbB+/XrRx3/wwQdYtGgRVq5ciZycHNxzzz3Iz8/Hxx9/LHhceXk5/v73v+OZZ57xxNvwa2tPlaFHr8MFKdmYGBHj7eZgfGQ0FsQlQzM4gO8bq73dHEICjoHjsG5otPiazIlgfeCs5oZx+YhRBmFLcy32a5q93RxCCCGE+Am5txtgj8HBQZSVleH2228338ayLObPn4+SkhLR55SUlODmm28W3FZUVIStW7cKtnvffffh4YcfRkJCgkvayrKjPzE0bcMV23KVkjY1tqnrEKsMwrXjJnq9babXvyorDztaGvB57Umcm5IJBevdUWxf44v7kq+hPrKPWD/ta21CRU8HcsOjcEZckseq01sTrlTirglT8WTZHrxRfhBrZi9BkMwzhzralwghhBD/5ReBcVtbG/R6PeLi4gS3x8bGoqqqSvQ5LS0tiI2NHfF4tVpt/u+XX34ZEyZMwLnnnuuSdsrlLGJjw1yyLQCIjg512bZGY0Cvx1v7DwEA7ps+G+mJ0V5u0bBZGalYWJuKnxrrsLO7GZeMm+DtJvkkX9mXfBn1kX34/fSfstMAgJUFUxEXF+6tJo3w69gJ2N7WgK31NfhfSxVuy5/m0denfYkQQhynp2mNxMv8IjCWwnGc1REKsftMt+3atQsbN27Ef/7zH5e1R6czoLOzb9TbYVkG0dGhaGvrgcHg/R+Jf1YeR013F2ZGJ2CaKhqtrd3ebpKgjy5LzsFPjXX4x9HDWBCeBJkPjFr5Cl/bl3wR9ZF9LPvpWKcGB1qMhfjylVE+8bvAd336ROxsrMdHx49gQUQSkoPdH6x6cl+KiAiGQkEZMoSQsUPH0SojxLv8IjCOjo6GTCZDS0uL4HaNRjNiFNkkLi5uxONbW1vNj9+7dy8aGhpwxhlnCB5zxx13YP78+Xj33XedaqsrT4YMBs7rJ+qNfT34V/UJKFkWv82ZAo6DTxUqMxg4jA+LwtTIOJR2tGCnugHz45K93Syf4wv7kq+jPrKPqZ8+ry4HAFySlgNwxvnGviReGYzfpE/AuqpjeLv8EB4vmOux16Z9iRBCHKen303iZX5RfEupVKKgoADFxcXm2wwGA3bu3InCwkLR5xQWFmLHjh2C24qLi82Pv+qqq/Df//4XX331lfkfADz22GN44okn3PE2/NJ7p49Ayxnwm7QJHhlxcdbFqdkAgP/Ujaw6TghxrbrebuxsbUC0QoWzEtK83RxJl6blIDkoBHs1TdjT2ujt5hBCCLGCRoyJt/lFYAwAN954Iz799FOsX78eFRUVWLVqFfr7+3HJJZcAAB588EGsXr3a/PjrrrsO27dvx3vvvYeKigq8/vrrOHz4MK6++moAxvnGubm5gn8AkJKSgrQ03z3R86TS9hYUtzYgXhVsHBXyYbNiEpEaHIqyTg1OdrV7uzmEjGnr6yrAAbgwNRtKHy54p2RluDVnCgDg76cO07JuhBDiw/hzjGm+MfEGvwmMzzvvPDz00EN47bXXcNFFF+Ho0aNYu3YtYmKMywY1NDQICmvNmDEDq1evxr/+9S9cdNFF+O677/Dmm28iJ8e3Azxfoec4vHPqMADghqx8j1V1dRbLMLgoxThq/BWNGhPiNj06LbY010LFynBuUqa3m2PT7JhEzI5JRGN/L76spd8GQgjxVXreiLGeRo+JF/h2tGPhmmuuwTXXXCN630cffTTitnPPPdehitPHjx93um1jzQ+N1Tjd04lJEdFYFJ/i7ebYZUliOj6sOoafW+px82ABYpRB3m4SIWPOpqYaDBj0WJaUgTCF0tvNscut2ZNxoK0Zn9ecxLKkDPptIIQQH6TjjRLrDAafzkgiY5PfjBgTz+nRafFR1VEAwC3Zk31ibVJ7BMnkOCcxA3qOw4+N1d5uDrGhT6/DofYWbGmuxc/qelT2dPpUYTcyEsdx+KbeuETTeclZ3m2MA5KDQ3FBSjb6DXqsqzzm7eYQQggRwR8l1hpoxJh4nl+NGBPP+Ff1CXRoB3F2Qjpyw31nzWJ7LE/KxPq6CmxsrMJl6RNo6SYf1NjXg4+rj2NHSz0GLQ588apg/Do5CxekZEMloyvFvmZ/SxNqeruRFx6N8WFR3m6OQ1Zk5GJTUw1+aKrG+SnjkB0W6e0mEUIIwfBqJzpeVWotpVITL6ARYyJQ39eN/9afQhArw3VZk7zdHIelhoRhamQcmgf6cKCt2dvNITwGjsNnNSfx2/2bsaW5FjKGxfzYZFyeNh4XpmRjUkQ0Wgb68I/Ko7j7wFYc7dR4u8nEwhenTgIAzk/J8m5DnBAmV+CqzDxwANaeKqPsBEII8QEGjsPNe3/Ek0f2CApuUYVqzznYroZmsN/bzfAJNGJMBN47fQQ6jsNVGRMQq/LPeXjnJmeitKMF3zZUYVZMorebQwAM6PV44fh+7GpthIqVYUXGeFySmjOiqFttbzfePV2GvZomPFy6A7+bUIglieleajXhax3ow7b6GkQolFgQ5x91BywtT8rE/+pPo7SjBXs1TZgTm+TtJvmdNWvW4Pvvv8epU6cQFBSEmTNn4v7770dWVpa3m0YI8UODBj2aB/rQPNCHhbxjC6VSu9ep7g7EKoPQOtiPRw/thJJl8eWC873dLK+jEWNidrBdjV2tjUhQBeOiVP+t3n1GbDKiFErs1TSiZaDP280JeP16HZ48shu7WhuRGhyK1YULcWVGnmil87SQMPw5fw7uGD8VBg546cQBbBia00q868emGug5DuckZvhtQRQ5y+Lm7AIAQxcB6cTLYXv27MHVV1+Nzz77DO+//z4GBwdx0003ob+fRhsIIY4TjhIP/01JPe7To9Pidwe24erd36GhvwcARkxtC1QUGBMAxh+mtafKAAA3jsv36/mdCpbF0sQMGAB8T0W4vErPcXjx+C842N6CcaEReH5qEbJCI6w+h2EYnJechT8XzIGcYfFWxSFsV9d5qMVEDMdx+GHou7QsOcPLrRmdWdEJKIyKQ21fN75trPJ2c/zOu+++i0svvRQTJkzAxIkT8dxzz6Gurg5HjhzxdtOIiL2aJqw+/gtdBCI+i79v8otvGUCRsbv06LTmv9sHB7zYEt9DqdQEALC5qQanezoxMTwaRX6aJsn3q6RMfF5bjk1NNfi/jFywVITLKz6sPGoeKX56ynxEOLC8z6yYRDw4cSaeO7oXr5w4gNTgMORQwSSvONqpQX1fDybHxCE9JBwGg/+esDAMg5uzC/C7X7bhk6rjOCs+1W+WnfJFXV1dAIDISOe/myw7ut9n0/NHu52x6Imy3QCAmTEJWDp0UYv6SRrtS/ZxZT/pmeHjiSAYZvz7c/DlfYnjNYm/8ow32upr/USBMUG/XmdenmlldoHfLM9kTXJwKAoiYlDWqUFZRyumRMV5u0kBZ6+mCV/UliNMrsCfC+Y6FBSbzI9Lxo3jCvDu6TI8c3QvXi1cREGMF/zYVAMAOD8z28stcY1xoZE4JykD3zdW4181J83p1cQxHMfh2WefxZw5c5CT49z0G7mcRWxsmEvaEx0d6pLtjEU6xXD/UD/ZRn1kH1f000DP8N+qkOHje0RkMGKjXPPb4E2+uC/1dA+PzEeED9cTctVvsTN8pZ8oMCb4srYCmsEBLIxLwcSIGG83x2XOTkxHWacGm5prKDD2sLbBfrx64gAA4N7cQqQGO/9je3FqNo53teHnlnr8/dRh/CFvhquaSezQr9fhp5Y6qFgZzknLxEDnoLeb5BLXZk7E9uY6fF1/CucmZyJlFPtooHryySdx4sQJfPLJJ05vQ6czoLNzdLUgWJZBdHQo2tp6/DqbwZ1aOnvR1tZD/WQD7Uv2cWU/qXu7zH93dg//FrS196JV778Xwu3pI3V/H/ZoGvGrpEzs0zQhQqFCfqT7z8M1vcNXI3q6h1Op65rb8fzR/Tg3OQuzYz1TvNaT37mIiGAoFNanilJgHOBaB/rxRW055AyL68f53/JM1hTFpWBNxWHsaKnHb3OmiBZ7Iu7xZnkp2rWDWJ6UiTNik0e1LYZhcNf4qTjS2YrNzbVYEJeCuVRN2GN2tNSjT6/HWQlpCFMoMYCxERhHK4Pwm/QJ+KjqGN4/fQSP5s/xdpP8ylNPPYXNmzdj3bp1SEwc3QmUq06GDAaOghkJvTqtuW+on2yjPrKPrX56/eRBcODwuwmFko8Z1BtE/9YZDFa33TbYj3C5EnLWt8slWeuje3/ZhjbtAAwGDm9VHAIA/G/hhW5vk47f57w53t81VGNXayN2tTZ6pB18vvKd8+29ibjduqpjGDDocWHqOCQF+UYag6uEyBU4IzYJfXo9drY2eLs5AWP30I9qUlAIVrooRTVMocRd46cBAN4sPygoHEHc64ehNOpzkvy76JaYi1NzEK8Kxs7WRhxqb/F2c/wCx3F48skn8f333+ODDz5Aejotp+YP+vQ6bzeBBKDvGqtsFkHlF98aNOjNf1tba765vxfX7v4efyzdMfpGelGb1jha29jf69HX5c/llur/QEWBcQA71d2BH5uqESFX4or0XG83xy3OHloDd9PQyT1xr369DmuGrnq6epR+TmwSzkpIg2ZwAP+qPuGy7RJpjf09ONzRigRVMKaOwekIKpkMN2QZM2XWni6DgdYHsemJJ57Af//7X6xevRqhoaFQq9VQq9W0XJOPo8CYeJq1wJZPy6tEPaDnBcZWnnO6pxMAcLyrzam2+ZogD68Ewx+Y1XFUsZ6PAuMAxXEc3j1dBg7AVZl5CJMrvN0kt5gWFY9YZRAOtrdATWsau92/a8rRPNCH+bHJmBXj+vkpN47LR7BMhv/Wn0Jdb7fLt0+EtjUbl8k6KyF9zFZ2XxSfirzwaFR0d2BzM11As+WTTz5BV1cXrr32WhQVFZn/bdiwwdtN8wkDer1gXVZfoec4fFZ9Ajdt2UgZN36oorsD+9uavd0Mu3xecxJrKg4JAl5rFx2lRiytPcfTgaS7qVhPB8biI8a0rBsFxgFrX1szDra3IC04DMuTMr3dHLeRMQzOSkgDB2BLc623mzOmaQb78VVdBZQsi1tyJrvlNWKUQbgiPRc6jsPa02VueQ1ixHEctg2tH31mQqqXW+M+DMOYU/4/rDxKI2s2HD9+XPTfpZde6u2meZ2eM+Cy4m9wz4FtAICtzbV44dh+jwfK3TotDrarR4zY/eP0UZS1tWJ9bYVH20NG754D2/D44V3o1+vQ2N8jWO/X1/yj8ii+rj+NPt3wb6m19vJHLPnzXQ0chy9ry3GsUzPiOUoPB5LupuC9H09kLgkCY17/aykwpsA4EOk5A947ZQwqbhyX7/OFC0brrIQ0AMB2Cozd6tPqExgw6HF+yjjEq4Ld9joXp2YjMSgEezVNONLR6rbXCXSVvZ2o7u1CdmgE0kPCvd0ct5oUEYNF8anQDA7gi5pybzeH+ClTIFA5lOb54vFfsE1dhzIP/049XLoDjx7aKRhh5C/D2DZIae/+an9bM1bu3YS/Ht3v7abY1K0fzkywFnBpJUaMj3e14b3TR3D/wZ9HPGesTXvR8t63J+b58ucY80f2OasJ7IFhbEdERNR3DVWo6evG1Mg4zHFDuquvyQyNQFZIOCp7u1A1dMJCXKu+rxvfNVYhVCbHb9ImuPW1FKwMV2XkAQDWVR1362sFMlMa9eKhC0tj3Q1Zk6BgWKyvq6BpF8Qp/JFhT5zo9ui0okGuaf7lia52t7wu8Z59GuPFjmI/KCjKT9nXOjFibC17h/9d8+XRc3vxLw64atRWZzDgcEeraP/oBanUFAzzUWAcYHp1WnxcfRwMgJuzCwRXkceyRaZRY3W9l1syNn1cdRx6jsNlaeMRrnD/uoNnJqQiNTgUpR0tKKVqwi5n4KVRL4ofu2nUfAlBIbg4LQcDBj0+rDzq7eYQP6TjnWy28gJWd41urdj5La7d/b1kkaPRHN2b+nvRq/OvaQX9ep3dBZ/8lczHz9n4/S8IjK2OGA8/h38RyVo2Iz+Ytmc/3d3aiMa+HpuP85ZBfgEyF11I+7DqKB4q3YGPRQYQpFKpfbE+gqdRYBxgPqs5iQ7tIM5OTEdOWKS3m+Mxi+JSAADb1bVj/sDpaXV93fhJXYdIhRIXpmZ75DVlDGseNf646hh9pi52tFMD9UAfJkfEujUt3tf8Jm0CohQqbGmuHTPVTonn8EdmOrXD630bXJyeaBlo6zgOm5pq8IPlsjiM6J82dWgHcPPeH3Hbvk3ON9LDSttbcHnxBvyv/rS3m+JWtgJjrUGPp4/sQXGLdwYB+CPD3bzA2FrlY+GIMX+5JunX0UsEdmJOdXfgqSN7sNKH92d3ZJj8NDQQJFZfR6r4lquCcn9GgXEAqevrxld1p6BiZbgmc6K3m+NRScGhyAuPRkN/L052t3u7OWPKF7XlMAC4KCXbpcsz2VIUn4qMkHCUdWpwiOYau5RptHjxGC66JSZELse1WcbfxndPldEFF+IQnUQVXlcWtHn26F5ctWsj+vXCwkYvnziAV0+WCB7LSITDtvbq+qGRNdMaq/7g9aH3/o8xnu0h9ZmaFLc0YmdrI545us9DLRIa5C23JAiMraTrSo1YWgsQ9YLvmvU2NQ94do1gW2p7u/F2+SHBxTPhPGsDWgb6BN9xZ5gqXWtF+lGwjrFEKnugosA4gKw9VQYdZ8CKjFzEBdAokMmieNOocZ2XWzJ2tAz0YXNTDYJlcpyXMs6jry1jGPwmfTwA4MtaKpjkKjqDAT+r6yFjGCwYyrQIJEsTM5AVGoEjnRr87KVRF+KfhPMeh//u17tuFGZHSwO6dVqUd3eYb+uWWH6JH0I5ks7tj0u2mIKM5OBQAECXdtBnL2xxHOd00NNvsP48A7z72Q3w9h3hHGPp74BB4nujFVRLNj7fVJWbH2hLZWQcam9BY1+PzcDZ0x49VIz/NZzGB7yLOPyAVDPYjxv2/IBb920e1esohlLRxYJd/ldDZ+fFiEDhV4Hxxx9/jCVLlmDKlCm44oorUFpaavXx3377LZYvX44pU6bgggsuwPbt2833abVavPDCC7jgggtQWFiIhQsX4uGHH4ZarXb32/CKvZom7NU0ISkoBBd7KN3V1xTFpYKBMb1krFU09Jb/1J2CjuPw6+Qsr6yFvTAuFfGqYOxra6bCai5S0q5Gp24QM6ITEOGB+eK+RsYwWDnOuHzTP04fpRMFYjepka9+N+xD/NGmFl6xOMFIGsQDDluHP2uFknyWKcWY47CjpR5X7tqIH5qqrT/HS1Yf/wWXF29A64Dj1cFtzadlvXxaz/+95F8QsjZiLAyMxYtQ9Qy97zt/2YqVezcJRoHFikt1DA7g4UPFQ+nTvnW+Z6o/0Nw//B74/VbT2w3AGCCPhmlJK7FjmGDEmJ9KzfvMAnW+sd8Exhs2bMCzzz6LO++8E+vXr0deXh5WrlwJjWbk+mYAcODAAdx33324/PLL8dVXX2Hp0qW44447UFFhXL+vv78fR44cwe23344vv/wSr7/+OsrLy3HnnXd68m15hNZgwNpThwEAt2RPHnPrv9krVhWEKZFxaB3sxxGRdfGIY3p0WmxsrISCYXGRly62yFkWF6YYX3t9Ha3N6QqmeUmBUnRLTGF0PObEJKJpoBdf0ZqvxE56g3h6oq3RwZaBPrx3qgztg/anLnfy0pxbeAGWVHVb/omwrTnPWou1ZP9x+ojPFznkj46/dqIEAPBJ9QmvtMWWrUNZa6Ud9vUpf+SbX6m5ZaBPsCQX4P3iXPw5qvy/xdJ5TSRHjPn78tD3qWkomGzgFdISG+jo442s+9qIsQl/aST+e+3Vi2eAOEo5NGKsE+kfg8TIPP8zM/jjBTIX8JvA+P3338eKFStw2WWXYfz48XjiiSegUqmwfv160cd/8MEHWLRoEVauXImcnBzcc889yM/Px8cffwwACA8Px/vvv4/zzjsP2dnZKCwsxJ/+9CccPHgQTU1Nnnxrbvd1/SnU9fVgxtDJXiAzpVNvozWNR+3Hpmr06fU4KzEN0cogr7XjV0mZCJXJsbW5VjByQhynMxiwW9MIOcNiboD/VtycXQA5w+JfNScFV/YJkSIMhnkBgo1U6meP7sOXdRV4Z+gCtj16eQESfy7woB2jP7ZSpfnbLmlX4/PacjxyqNjutnmKnjPgo8pjOMVLK+cA9Ay1P8OH1l9vHxzA7tZGp9K7+Z8d/7O598A2PH54F452avB9YzXKfWB5rkGJwFgsODORymzgb0tvsc/yK1YbOOBguxpdvCwKYaqwbwZ4/ICd/177XFQN3togmNTvgaDPA3TE2HOVckZhcHAQZWVluP322823sSyL+fPno6SkRPQ5JSUluPnmmwW3FRUVYevWrZKv093dDZlMhvBw539MWXb0V+tM23DFtjQD/fik+jhkDIPbxk+BTOY310KscraPihJS8VbFIexobcAduVMhY8ZGf0hx5b7EZ+A4/K++EgBwUWqOy7fviDClAuelZOHfNeXY2FiF68ZNcuj57uojf3S4vRXdOi1mxyQiTClMow60fkoPDcfl6ePxafUJvHPqMP40ea7N5wRaHxEhnWBeMa84lo0RWlMFdEcu7AkD7+HXEqSyCkZ/ONG/xfTx5oZ28IINT+rWaREsk6NbN4g/HPgJF6fl4AKLOhY/NNbgXzUn8K+aEwgfmsrDf2e+9C184OBPaOjvxZ/y55hvs7d9/MCOP2LcPvTZbFfX4euhatx3jZ82+saOgtSFGWsF6KQqTPOfo+M4wUUF/uscaGvGmlOHkRocijWzzh6xndZRpiS7C3/EmP9+uiRqBjhKYWW5K6nlmgYtskUCkV8Exm1tbdDr9YiLixPcHhsbi6qqKtHntLS0IDY2dsTjpeYQDwwM4MUXX8SFF16IkJAQp9opl7OIjQ1z6rlioqNDR72N1/eVok+vx1XjJ6IwPdkFrfItjvZRLIDZ8UnY1dyAaq4Xs+KS3NMwH+OKfYnv54Y6NPT3YEZcAmZler9A0zXBk/FFTQW+b6rGXTNmQOHEdAFX95E/2ldVBgD4VdY4yd+yQOqn2yOnY1tLHXa2NuLoYAeKku1LLw+kPiLD9BIBjOVolxRba8DrJQJv/smscF6n+EmurZGgPsGokedH2zSD/bhu9/eYHhWPaVFxaBroxZqKQyMC49q+LvPfYtWafem0vmEo66SCN7ptb2AsTC8emX1Q19dt/lvNu7jCcRwYK6nVb548iF69Dg9MnGlnS2zj72eCVOpRFt/ScQZBMS/+xaBjQxeW6njp1fyg2lczfqRGtTs8UA1eqiq1VGX9QOIXgbEUW196sfvEbtNqtfj9738PAHjsscecbo9OZ0Bn5+hTOVmWQXR0KNraemAYxeSIkjY1vq0+jWilCpckZqO1tdv2k/zEaPpoTlQidjU3YENFBcaxrruQ4YtctS9Z+uexIwCAcxMyfWK/UgCYE5uIXa2N+Pr4SSxOSLP7ue7qI3+j5zhsrasBCwaTg6JHfK6B2k+3jpuMJ8p244UDe5AtWwKVTPqiiyf7KCIiGApFYNaL8FX8AkP2ppHy2SpgKEi3lBol5t0ulaJqK7WUH1B7o0L10aEaIAfa1RgfHiX5uB4bKae+eGLPb5O9rbO1nI6GN8ec//kPGPRWl1D8ttE4sOTKwFgvOV/V8eJbg4LvkEGQRj5gI+WX32f8gNpW3OBJBsGI8fD76R3lMk3WfNdYhQ0NlVielGm+jf+7xb+IR6nUPiw6OhoymQwtLcJCBRqNZsQosklcXNyIx7e2to54vFarxb333ova2lp8+OGHCAsbXaDkypMhg4FzenuDBj3eOHkQAHBr9mQEs/IxeTLrTB/NjU4EC6BY3YBbs6d4vViFJ4xmX7JU29uN/W3NiFcFY05Mos/sV+clZ2FXayP+V3caC+McLxzlyj7yR2UdrWjXDqAwKg5hMoVkXwRaP82OScScmETs0TThs+oTuNqONeADrY+IkWDkRXCCaV9wGWxjHXj+GrH9EnM5ewXrG4sX3LJ1wuvuitq28E/Ue62klfIDnuGi1PzA0/e+g3qJ9Fmrz7GxJjb/wgu/6JS1CzJai6yA0U4rUw/0oUM7IGirvRWO9RL7Jv+96g2ccNsWQbMl/vevR68TPFbB+MYFRf4FgUGJonmjIdblrw/FBVt4dXa0EhfxbBXpM9nSXIOMkAjkhEU62VLf4hcTLJVKJQoKClBcPFz8wWAwYOfOnSgsLBR9TmFhIXbs2CG4rbi4WPB4U1BcVVWFf/zjH4iKinJD673j3zUnUd/Xg5nRCSgKwLVIrYlUqjA5Mg5t2gHzlWliv28ajHOZfp2c5VNztAuj4pESHIqyTg0qaekmh+0YWrN3Pv1ejHBrzmSoWBk+rylHfZ/3MySIb9JLjOxJBQWOFmIakBwxFq+ArZdIi7Q1kspvb4+L5jvydQwO4MY9P+DrulOi90uN9lnir+lrurzNf2e+eG1KGAzZd9FBJ6jObH3pnX69fWnwnVp+WvLoA7GVe3/EvQe2o41XWZ3fVrHvwF+P7sMLx/ZbzHcV7x8dZxDsFwMSUwbEtsN/rL0XIzyB3yOC4NRVgbGVwNZy/rb5dokl56TU93Vj9fEDuOfANidb6Xt856zWhhtvvBGffvop1q9fj4qKCqxatQr9/f245JJLAAAPPvggVq9ebX78ddddh+3bt+O9995DRUUFXn/9dRw+fBhXX301AECn0+F3v/sdDh8+jBdffBF6vR5qtRpqtRqDg94pNuEqtb3d+HdNOVSsDLePn+IzaSO+pCjOON+6uKXByy3xL4MGPbY010LOMDgnMcPbzRFgGQbnJWcBAL4ZKkRC7GPgOOxsaQADYF5sYMy7d0RSUCiuSJ8ALWfAGydLnaosS8Y+R04wj3VqsGLnt9jT2mi+zdZuxT+pl0ql7pMoeKS1YwRba9CD4zjB/e4ovrVNXQf1QB/WSFThFs55lO4UsXnFfD45YiyRamz9OdZHjPmBZZ9ExoDJpqZqfFx1DF264c/V2lJK9jK9Vnl3u/k2QYquSFt+aqnHNnWdYE1uvcQ+axkY99sYMZZagsiX1qU3SHyujganUqw9U1DkjP96Dhbfcmfat7f4RSo1AJx33nnQaDR47bXXoFarMWnSJKxduxYxMTEAgIaGBrC8CmwzZszA6tWr8corr+Cll15CVlYW3nzzTeTk5AAAGhsbsXnzZgDARRddJHitDz/8EHPn2q5A6osMHIc3yw9CxxlwTeYkJAVRERgx8+KS8VbFIRS31GNldgFYunhgl+KWBnTrtCiKS0GkUuXt5oywNCEdH1Uew5bmWtyUXWAzNZEYnexqR8tgPwoiYry69JYvuzRtPLar61Da0YLvGquwfOgiDCEm1uZHWlpTcRi9eh2ePbrPfJvN9YU5/lxi8eWg+KOo/JPtQRtznvv0OnPBq6Sg4QKk7hgxDpFb/13mvzdrx2bhfca/+cGw74XFwkBi0MYyXia2LhTwA5h+G4Hxy0NrPGeHDqe9DrqwwBq/EJi1AI9/cbGcV5BMuFyT8H0L5vDrxfdnncGANu2AXyxBJAzYJS4IGAyQWalrYY21wJbfD3qLCxBij5HkO93pMn511njNNdfgmmuuEb3vo48+GnHbueeei3PPPVf08WlpaTh+/LhL2+cLNjZU4lBHK7JCwnFxao63m+OzopVByI+IQVmnBie62jAxIsbbTfIL3zdWAwB+leRbo8UmYQolFsQlY3NzLX5W1+McH22nr9nRSmnUtihYFvfkFuL+kp/w7ukjmBmTiHhVsLebRVysZaAPX9efxqVpOYhUOHbxj3/irrUx8mIK6qSqw4rRG/hBg/gc436pEWMbJ7x7WpvQp9ehuLUBF6Vki27PVWzN8ezVDwfj1tIaR4bFxvN0Zuj/fTGzo5ufwuzEiLGt+wWp1FZScvlLGNkboNujz46q6IBwX+fPI+dfXBLMgzZYpFIbxPfzJ4/sxi9tavxfeq7o/b4UGPMvYvAveo2oEq0HlCzrcPantVR6y9H44b9tT7ngOA5vlJciKyQc2bx5xTqDAa+dLMGCuBTM9ePMM79JpSa2Nfb14L3TR8CCwb150wULoJORFgwFATsondou9X3dKO1oQYIqGNOi4r3dHEnLhqot/tBU7eWW+AeO48xTCiiN2rrc8GhckjYefXod3jx50CdPvMnovHjsF3xRW443T5Y6/FzhSb34iaeJqeijwWK0y/r2xQPvQUGQwF8ix/5Uav4SMcJRO9fPfbRVUXjAiUCNHzOYUqztLR7kSQMWn09xSz1qerusPMN2MCc1b9na89r4gbGVpZQcJVUUy2Cxzwn2X/7j+I+xCNikCnvx08d/aTMuybqvrclmm7xN+B0W/662DQ7gsuJv8Pyx/aLb2K9pxvraCtH7dFYm2QtTqcWrgkvtP53aQXzXWIU1pw4L+na7ug6bm2vx1JE9kq/rDyhyGiMMHIdXTpag36DHFekTMD4syttN8nnzefOM6QTXth+aagAA5yRl+HTqeUFEDJKDQnGkU4PaXiqUZMvpnk409vdiQlgUEoKcW8M9kFyVkYfU4FDsa2vGZl5lTzI2mNbGrex1vICfI3OMxYpF2QqApOYF8k+qpeZTWgZMzf29ONnVLnG/+Em6qwoX8degFZvfKrWWrbXHmXDccJBsLTDwJE4icK3t7cYzR/fh9v1brD7f5vJaDqTwm/CLZA26oPiWiVZiJNfys9JKjAzz6SwuLkkVIesTmec6KHHhyJeW8JL6jeDfXtbZCsA4H1vM42W78O7pMtGLK9Y+f6liX1red0bqwpJg/jbvAoWGd7HFn1FgPEZ8U38ahztakRUagRUZubafQBCnCkZeeDSaBnpRwZvjQkbSGQz4sbEaLIClPlZ0yxLDMDgnMR0AjRrbw5QxsWDoQhGxTiWT4Z4JhWAA/L3iEJr7e73dJOJCCtaY5uvMkimSaaBWUqn5bL2mcMRYPJVaquCWZZBy094f8fuS7egeSmMV3M87IXZH4aJ+G6PQgiJLVkaPhSPfwyPwphFjXxkdFFZaHm5Tp52FzaylRFtu01o1dH6A3sbLEHBlQapBiUwJvUWQpRVczBF/f3qLkUyp9ZzFvjdS+62v7BOAdAaGzsZ7E9Pc3zfiNmsX2gQp75ap2zaeL5i64aPzt0eDAuMxoKqnE/+oPAoZw+APudOhoBRqu5mCgZ8lrsYRo31tTWjTDmBGdIJfzKtckpgOFsCmphqXpf+NVcXmZZooMLZXfmQsLknLQY9ehxeP/2L3OrXE9ymHjp9agx4fVR7FW+X2p1QLRowtCuhYEquobHOOseRIru0gWRgwDf/dPRScDUiMqmktgoqD7Wp08EYbnSGYBy3ynvkn2Pz5xoAwuOP3t+l2PWcAax4xNm67V6fzajViqbmx9qZ6W6vMDdg/Siu1DJcri29JLaNk2RadPSPGgmkGnGTQJrYPCS4c6W0He87gOM78/XGGVDYEv+38KQ7WNPT3jLiN319HOzXYr2k2/7et6QyA9Og6/zPmX9zxxprn7kARlJ/r1+vw12P7MWDQ45rMiYKJ8MQ2/jxjSqeW9uNQGvUyPylmFacKxozoBLRrB7C/rdn2EwJUTW8Xavq6kRUagZTgMG83x69cmzkJOWGRONKpwWc1J73dHDJKpgJAphHjQYMB/6o5iW8aKu2e8ypYakbkJL6hrwfbhtLvxYJg24GxeOA9IFlwS3xUSFCsaehkViqI5gdNu1ob8eihnfhz2S6r7RSjMxjwxsmD2NPaKFo5m+M4vHeqDD+p6yRHjE91d+CCn7/G10PL8YkFXjqLEePDHa34v50bJOdoeoJwCSLxFGBrF3BtXXjj3yuVEt822C95AWW0xbck56QLRnylR4ylUvSF+6xBMjVerO/4o9D8CxCuDIw3N9fi/3ZtxLbmOpuP7dfrcPcvW/GP00dstoX/btp5F6EG9Hoc7dTgjv1bUNnTKXjfYssm8bf/wMGf8biD31vJwJj3GfPTp7t4QbI/n0+PKjAeHBzE22+/jYYGKl7kLWtPlaG6twvTo+JxWdp4bzfH7yQGhWB8WCQa+ntwusfxOWWBoFM7iH2aJoTJFZgdk+jt5tjNVJGa0qmlmYpuLYil0WJHKVgWD+TNhIqV4ZOqEzjaqfF2k4iTfmlrxhU7v8U/Th8xjxjzT9ab+ntR2t4iqCIrxlqxK47jcMu+TXjh+C+o6e0yn/TLeCnVOgOHjsEBtAyMTIs0bkd8lEyYlioeJPOJrXvLD2gE1XJ529jZavy9cGbq0XZ1HTY2VuHJI3tEA/m6vh58WVeBvx7bL1l9++Mq40oiayoOAbDsD/3QbcJ+OdapgQHGoN5bpOaD9+mG+5m/rrBJcUs9bt23CaUdrXa/lljxre8aq3Dt7u+xvm64SBP/Mxjt3HGpZcqsFXxzdKqCluMkLxyJZQNIXczSGgzY3FSDxr6RI6yO+qTauD/+rfwgyrva8dDBHZJB8sH2Fpzu6cTnteUOvUY7b8S4SzeIJ8p2o7q3C3+vOGyeBgGIv9/Rpo3rOQM6tYMjglypecX8fdifR49HFRgPDAzg1VdfRV2d7aslxPV+VtdjY2MVohQq/CFvuk8XRPJlplHjYqpOLepndR10HIeFcSnm0RR/MCcmCRFyJfZqmuxORwo0pn2e0qidkxYShltzJsMADs8f2z/qFFPiHaZA7/PacigY42kR/6Tys5oTeORQMV449suI5+oMBmxoqES3Tis5cqbnOMEJbod2UDQw0HEG/LlsF27Y84OganBTfy+2NNcKRoXEgkLAvpE4fvDcOxScaSVGafnvo2kU8+mrecWBxIqI8YNxqbmklumiYo/jVy/Wc5wgeLB1YcPVenVa7NU0WcwxFh8xVg/0YVtzreCixTNH96G+rwc7HTg34X/ipn74V/UJAMAnQ/8PWKbSji6AEixNJmiL9NI/jgZtes4g2U6xsUmp7f+r+gReOnEAbw1dXBmN9JBwAECPXod/1ZzA4c5WvHe6TPSx/PWdHcH/zg8Y9Ob9ecCgF6TDDxhERoxHWXxuQ0Mlrtq1EV/yLqiYXtuE//3q0loP1P2FzXWM582bJ3kfx3HgOA6333475EMLtu/cudN1rSOSanq78OrJEgDAfXnTEa0M8m6D/Nj82GR8UHkUxa0NuCZroreb43NMlXeXDBW08hcKlsXC+BR801CJn9X1+HXKOG83yac09vWgoqcDacFhyBg6wBPHLUvMQGl7C7ap6/Dc0X34W+I53m4ScZCttL/dmkbB//N911iFtyoO4X/1pzErJsF8u+Vczw5emmGPTmtOg+S/ttZgMAfpJe1qnJVg/M1dffwXHOnUSH5PpapSS43K8U+oe4bm8PJPZPmpzvYu/2ML/wRarCiYVNA/IFIkyDQEIJZKbeA489JAeo4TvNeWgX6khYSB4ziH14R1xqqy3TjSqcF1WZPMtwlG5nl/v3T8AGr7ulHf34MrM/IE27GcZ20vvfmig/F1WAwHrrYKUg3o9SjvbkdBZKzN17Gnjoe1VGp76AwGQcVkZx1oNy7n5IopVnLePmR6P/z1oTmOw6p9xYiEQqSigH34F6ks528PGIT3cRyHj6qOoVenwy05k0c9YrxVbRz0LG5pEGSk8tvEv9gkmLdu54hxc38vKns78evYCaNqqyvZDIzb29sRGxuLyy67DAqFQnBff38/1q5di6VLlyI1NdVtjSRC3TotnjqyB316Ha7MyMX06ATbTyKSUkPCkBkSjqreLtT0dpmvAhLj2sXHutqQHBSCieHR3m6Ow85KSMM3DZXY3FxLgbGF4tbh0WJPnCSOVQzD4O4J01Dd24WD7S34W1kJrk6hlQH8CT+wFDv1DpYpBFVc+UwjwaYpTWLbNKUkmvTqdeaRUqkRth5emu2RoTT9Bon0T6mRaqniTvy22R4xHr7dVb8SYssL8ftHavkh2VALOPPjRr4/PWcw96mOMwhHtHSD+KDyKLY21+IvU+Yh1c11FUyf24muNvNtAxJLI9UOjShuaqrBRSk5I1LsnWHqH9NFB5ZhzRcNhBccRm7/uWP7sFfThEcmzcL8oaw6KdaW1DKxHDF2NDDWc5zPFTnkvyOxY2i3Totvq43z4c9OcG5gQZDdwQtCe/Vai+XYDKjv7zHXu1iamO6yCtwDFpkWgqrU/MDdjotyAFDd04WdrQ24PH08/nJkD071dEIVqsT0YNsXYTzBZmD8xRdf4KmnnsLGjRvx4IMP4uyzzzbf19XVhbVr1+LSSy/F7Nmz3dpQYqTnOLxwbD/q+3pwRmzSiCuLxDnz45JRVd2FnS0NSM+gwNhky9Bo8ZkJaX4ZPOWFRyM5KATHu9pQ39dNBaZ4TMs0zaf5xaMWJJPj0UmzcW/Jdnx88ijS5CFYGEcXi/0F/wSTEwkm5VZ++/hTmKSWPdFxnDAw1mlFTxz5t4mtzWpPFWNHAw7T6LBUii8/6LZVHdnq6wgKTY0sItbNm5/YrRUfebJ8/2KBkmXBJ35g3KvT4d9DgcMXteX43YRCR9+GU4J4U5BsfYYd2gFcsXMDohQq8238VHlHmIJR077IMjBHc4IRY5F9Zq+mCQBQ1qGxGRjbO2J8uKMVQTIZxodFORy06TjDqPY/d+A3RybyG8EPZGudTKUesEi3N+nR6UbUFuDXJijvbndZf1l+UsLAWCd6u7WLJY+X7YJ6oA8Mw+DUUG2fH2qrMH2CbwTGNucY5+fn45NPPsHtt9+OVatW4cYbb0R5uWOTx4lrcByHtacOY39bMzJCwvGH3Bk0r9hFzNWpW2mesQnHcdg6FBiflZDm5dY4h2EYnDnU9q12VI4MFC0DfTje1YZEVQhyqJK9SyQFh+KhSbPAgsFLxw7gsAMFc4h38U/oxM4l+cGVJX76oFTVaD1nQCcv8OvR60QDWP62xAJje1KZHV2WyNSOQT1/xFh8Lu5o5uhKrStrOoHm9zG/JgS/lyz7xNaJv44zCIKTHl5K8mgrMdvCT5HvsrL/WDJlJvDnpEtlK9hiGXxKzQW2FqSGK5Q2X8eeEeNBgx4Ple7AvQe2j2iLPXRWim95i63vGn+ftnfNakv8742aN8e/V68TVIwfMOjROjCcxq0e6LO5/rW9LEf7+cF6v0SQbK1vTAH+L7zlo3xpWU27i29dfPHF2LhxIyZOnIjLL78cTz31FNrb293YNGLp89pyfF1/GpEKJR7Ln40Quc0Bf2KnzJBwpASHoqK7A40i68EFomNdbWjo78XE8Gi/Hmk1BfVbmmv9egkBVzIVc5kXl+SXmQC+akZMAv4wbSa0nAFPHdmD6p4u208iXieYqydyQscPrix/Q/gpzwMS8zb1HGdeDgoYGjEWOcm3DIy7tYNWg3IxjlYYNp3ADnLW+wAQnvg6Ot+Yn3LJv0hgCpD4rykVSPZZnHjbOpnWc5xooTHAvmBuNPjb5xdS8yTTZ8RapKBbsnaBQWpfMJHKfrDEH+3s1A46XnzLYHBZoOcqUhd7THot0videg3e96aNd7FExxkEVc0H9HrB/OYenc6FI8YWgbE9I8ZWPiuWt5waX3FLPd4qL3X4oomrOVSVOjQ0FH/84x/x5ZdfoqqqChdddBGdVHnIj03V+KDyKIJYGVYVnOHXgYovYhjGnFJK1amNNg+tXeyvo8UmKcFhyAuPRkN/D050tXu7OT7BlBmxwEaKHHHcb3Ly8Jv08ejRafF42S40j6KSL3GvDfWnsbmpRhBM9tgIRDu1g3in4rA5bZGfAtwjUWBKz3Ej5uKJBXX9FkHc/+3aiGt3fefAOxrFiLEd1az5tzr6OsIAdWQ/CQuIiY9M80dOjVXAbZ9A8wMLfhEr/ufR3N+LRw8Vo7ilAV/XncIV338tWD/WGfygpd1LqyKY+kcszZfPcl8UjHZbGenc1dSAy3dswH/rT9lsSzMvMK7u7XJqxNjdFzPsMWjQY2NDJfr1OosR0pFt41/UcvQClwn/N8Fy1Jm/X1lWqe7R2/f9sMfIEWP+tAvxegT725rxlyN7RFdqMAXa/IxXA8fhL2V78U1DpV37kzs5tVxTdnY21q5di5dffhkPPfQQMjIyXN0uwrOluQavnSiBjGHwSP5sTAiP8naTxiRatmmY1mDATy31kDMMFsb7/1xJ/qhxoGsfHMCRjlbEKIOQ54cF1fzB9ePycVZCGtQDfXjkUDEFx15m4DjU9Rrn+PXqdNiraYLWYMDfKg7hpRMHBEGercD4lZMl+E/9Kbw4tHQTf8SY/1zhiLEBfQbhyIqtk/zmAeM+42gw4Hxg7NjzHE1F7hcUDuIvzWTcjqAqth3b7tFp7RoR448y90qsG/zayRIcbG/BR5VH8Vb5IVR1d5rnIjurT1Ct17PLRJmYRoxt9VJlTyeu3fUdNtQbC0UNWAnG+D44blya6Mehi+jW8NOAK3s6Hd6vjcs1uT7jq1+vc2i7b5UfwhvlpXj3VJlkGrEpKJRaj9wR/LZZfhYdFoGx5TJKruotjjNmPRwdKiYnlRnD91nNSexqbcTr5Qfteg1+/9W7YI3p0RjVOsaLFy/G9ddfj8TERFe1h1j4sakaLx0/AIDB/XkzMIMqULvN+LBIJKiCcayrzSU/aP5sn6YJ3TotZsUkIsKOOUa+bmFcCmQMg+3qOp+ay+INu1obYAAwLzaJahS4CcswuDe3EEVxKWjs76Xg2Mu+bajEbfs34/vGKrx4fD+eKNttXtsVADT8FEQb82gPDi33UtFjXFapR2JUSFC0ysAJR1nsCJRMRWkcNeBkKrWjI3i2UmwB48ijKUDkBxH8oFFrMKBLO2hRAM22bp3WrnRcqYCcv+aqKXW7aWD4OzqaNZstX8uevnKHI50a/K281GY/HepoQZt2AH+rOIQ/HdqJmt7hQlH9EqP3AByazsf/Xr1dcQinhpYls5eWM7j82F3V04n/2/ktHjz4s93P2TR0EeBQR6vgAg7/u//44V3Y1dqIT6pOjHj+aFimY/Nfc0CvF3yvOlyYpWAAh4dLi/HAwZ9xqrvDof25ysrvGP83kX/xyNPrjVsaVWBM3OvrulN49UQJWIbBQ5NmjomRO1/GMAzmxRnTqXe2jlyvMpBs8fOiW5YilSrMiE5Ap24Qv7hg/UJ/Vkxp1B4hY1g8MHGGOTj+Y+kOqycJxPVMI4SfVB8HALxz6jD2DFXb3dQ8PMrFDwRsMc2PM6UX2pMuqQcnHEG0Y11aWyPXUrSOjhhzzo0YV/Z04r6Sn7DLSsHKn1vq8ZviDdiraZJcAupQRyuu3LUR3zdVO/T6xlRq2yE0PyDvkkh7t/xMTbY21+KFY/udOlEXK57mad83VmNDQ6XNx/H74kC7Gn89ts/83/16PY53tokGsiqZbMRt9jrY3uLQ4/UGzuVVqfdomqDjOBzvarM7dd50LVnJsiNGaC25OoXecsTYct1gfqDZ4WSxLzEd2gFzVe2drQ12ZXSYWF7K4Kd38/uszwWFylyFAmMfpOc4vHRwH94qPwQZw+KRSbNtlssnrrHAPM+43sst8Z5unRZ7NE0IlSswO2bsZINQOjXQrR3EwfYWRMiVKIiM8XZzxjxTcGxKq37w4M/mEUfiXv+pq8AVOzfgZ3U9VKxxZEvBDJ/I87OCHAliTIHWgEEPPWdAt96OwNhgEJxEuzO11tHiW419vdjUVO1wYPzC8f043tWG908fkXzMG+WlAIC/lZeOWAvVZJvaudUCnBkR459wd+sGzYGw6WICPzDu1Wnx4vFfsE1dh6/q7J/zuE/ThJ/UdT4RGNvLco9p5I2W9+i0eOxwMX53YJt5He2f1HW4a98WVHU7fqEvK8S4HGbzgGMj8jrO4PJ1jI/z1peu6rXvvTBDF1H69DrBPu3sHGJHWAaMllkJ/ItA3S4MLvm/KUc7NQ6NGFsrVtimHc7U4S/R5q05+SYUGPsYjuPwTNke/KviOCIUSjwzZR7mxiZ5u1kBY2JEDKIVKpR1tIoWDQgExS0N0HEGLIhLhpJ1/oqwr5kbk4RgmRy7NY2C4i+BZLemCXqOwxmxSZAx9PPvCTKGxR9yp2NFei569Dr8+fAulI+BInAff/wxlixZgilTpuCKK65AaWmpt5sk8M4p4/zHna0N5hFafnVVV4w9qfv7BL8lUieMOo6zmOvqO78/hztb8fKJEoeXBDI9vs7KfMAQmfGCxIBe7/J0YmeKY1kuA/VFbTmKWxrMqdT8sItfLOr0UNr8xoZKPFy6wxwgWlIP9GFV2W789dh+h7IQfFljf6/5sz4yNMf0r8f241RPJ8o72h3eXnxQCADHL+Do3VB8iz+XtaGvFxwnnPJgUtPbhaqeTvTqdOa09A7toMfXVe63+A5ZS6V2dokvW051d4r2kRTLKRrCUe7h+zS8paZcmQbuDDoz8jF9eh32apqRFR6Bl6cvQn6kbyx4HSjYoXRqA4BdmsBMp96mNo6oLh5jqfsqmQzzY5MxaDBgZ4CuV20qLDd/aMoA8QyGYXBt1kTcM6EQ6cFhfj+3e8OGDXj22Wdx5513Yv369cjLy8PKlSuh0Wi82q4+vQ67WxsFRZaqejrNJ5CuHtU51dNpV4Bt4AyC9ENb85j9jdRFZFMKspxlXB5EOJNuaZle+kHlUTxzdK9gmRsTftB0uqcTPTot3igvxaGOVvyr5gS0BgM2N9UIUowPtA1ng1hLMfcn/AsatX3dox6JTFSFOPU8HWeA3uDafUjNG7VuGejDuqpjuLz4G/ynrsJ8e+tAP+7+ZRvu/mUbjnQOr03f68XvcPBQCrugCj5nEATGlkssuUqnblCw3JotXbpBrKk4hFdOHMA7pw6bU7Kt6dAOoq63G388+DNeOLbf4WyW0aKFcH1MiFyBf5xxDrISo9HZ1geDi38IiG3zY5OxoaESxS0N+FVSpreb41GawX6UtrcgRqnC5Mg4bzfH5c5MSMWm5hpsba7D2YmBVU2/V6fDL23NCJXJMS0q3tvNCUjnJGXgnCT/3+/ef/99rFixApdddhkA4IknnsDWrVuxfv163HzzzV5pE8dxePzQLhzuaMUZvCyryl73rSVdYWcBIQMsqxT7zoixK5zsbsfM6AQc6mhF62A/vm2oxJyYRPNIrMYN2VeOpFsGy+To0+ucXoKpoa8Hpbw5sQfbW/BjUzXeLC8FA+NF5JkxCTjBS82tduN+5y3HOjU4MsqVDKKVKqeepzMYoGNdO2LMH1Vt6O/BjpYGcADeP30ESxLScbqnE/vamsyjxN82VLn09Z0VLleiT9834nfEdLFIybIOj8g7os6BbAgdx+HroWrnAPCdHX2o5zi8erLEnKEwPiwKl6TlON5QJzk8YsxxHN544w2o1WrB357gaOrWt99+i+XLl2PKlCm44IILsH37dsH9HMfh1VdfRVFREaZOnYobbrgBVVXe3/FjlEFQjKEUVn8zJSoWEXIlDrarPTJvxJf8pK4HB2BhfKrNtQ/90dSoeEQrVDjYrkabyCjBWLavrQlazoA5sUlQsJQsRJwzODiIsrIyLFiwwHwby7KYP38+SkpKnNomyzKj+nekU4MVP/wPhzuMIzq7PFQ88VSP/ZV1e+xIufZXn9WcxNunDuGRQ8VYffwXHOnU4B+VR936mo6MWoXJFQAcX/rKhAMExcHUA334rrHKfN9WdR1WHz8gmC/d5YfnDg9OmokohXTgeqijFU8e2TOq14h0MjDWg3PLck0m+9uazQGwjuPw6OGdeORQMb6sHR493usjWYThQyuFWAbGHdoBMBje391lNCntlungUkxBMWDMYhztMcL0zx4Onx0ZDAa8+eabaG5uFvztbo6mbh04cAD33XcfLr/8cnz11VdYunQp7rjjDlRUDO/k77zzDj766COsWrUKn332GYKDg7Fy5UoMDnq3IhrxLhnDYm5sEnQchz0BVp3alEZ9ZvzYqEZtScYwWBSfCgOA7erAKrBmTqOOpTRq4ry2tjbo9XrExQkzSmJjY526SC6Xs4iNDRvVv3ZGi6ruTnN1YU85xhshtKVHrx1zFxszwyIQHxSMI50afFNfCWB0lYod0WVlGSFL0UFBTr+OKQjZO1TNPCciEgBQPpQtkBkWYX6sPxXcEjM7PQWJoaFufY2UmAjbDxLByFgwCtdf0DV9vqZBkIVJxilk/BT5tFBjwTBfWegxJjgYwMgpGYMGA4JkcgQr3BMYO7I8lyW5EzVNpsTEIT0sHOXdHRgIwqiPE7GxYVAobP8+ObWX8auMWVYccxd+6tb48ePxxBNPQKVSYf369aKP/+CDD7Bo0SKsXLkSOTk5uOeee5Cfn4+PP/7Y3O4PP/wQd9xxB5YuXYqJEyfi+eefR2NjIzZv3uyR90R8l2kOZvEYmSdkj/q+bpzoakdyUCjGh0V6uzluc+ZQdeqtAVSdul+vwz5NE4JYGa2FTtyC4zgwTgR+Op0Bra3do/q3ICIRaxcvw5o5S3BxarZ52+G8kZNgFwZsueFRYAB0OTDfsl+vR6hMMaaC41iFCi9PX4SrMvMwPiwSj+TPxvqi87Eyu8BtrxkzNOLY0G1/OqcSrNMXTWbwpp0oGBZL49PN/70gLhlvzTwLb89aYr6tMMp/pyD1dQ4gWCIsODc5E5FDQeToXkTv1CfRN6hF34DrB61ilCrB78TCmBTMHDpGLoxPwSvTF+GVwoWCxyi8XLgyyOIzUvIywFSsDKybwrJ4VbDTz3122nykBjt20SUjKAzzY4zTYv686+dRHydaW7uh1doesfaLOcam1K3bb7/dfJut1K2SkpIRc52KioqwdetWAEBtbS3UarUgHSw8PBzTpk1DSUkJli9f7lRb7R2qt2cbrtjWWOXuPpoRE48QmRy/tDVjgNMjWOYXX5URHOmnn4aWqDorMQ0y2dhNtc2NiEJqcChOdrejob8H6WHGq8Fj+ftWolGj36DHwvgUBCuc25fpd8m2QOij6OhoyGQytLQI1yHVaDQjRpHtNdpaGizLYEpsPFpbu5EfEWNeXmdBXAo2DqW85oRFmVOtRytGGYTU4DBzIZlIhdKudUODZLIRRXL8WahMgSi5Cldl5OGqjDwAxs+ykBdMTgiLwsnudpe9ZmJQCDq0jhUAUjAsgmQyc8GkCLnS7ufPiI43p0jnhEViKq/2xpyYRBgMHNKCw5AcFIqG/h4UxaXieFeb26oCu5MMDEIl0nBnRSfi6oyJuGHPD+aUY2fIwSBoaM63I3QGw4gKx64QLldCDhZdOuMIcXZIBP44cRYOtDdjZnQCgobO/TJCwlE2lN6bGx5l/tsbwmTCzyhMroRmaGpYkEwGJeOerI0EVQiqepybO58ZHIEYZZDVKvYAECpXmFPEs0MjkR8Rgy9qytE62A+93uDUxVdH+cXZvrXULak5wS0tLYiNjR3xeFOql+n/XZUOBgynhLlKdLR7U1rGAnf20aKUNGysqcSxwQ4sTfPvIly2+onjOPz0izEwvih3AmLDXbcf+6LzsnLwztFS7O5qxtR04xXJsfx923fK+Jt27rjsUf9GjeV+cpWx3EdKpRIFBQUoLi7GkiXGkTKDwYCdO3fi+uuv93LrgLmxybgkNQfhcgXCeCNcueHDgTELZlRVW4NlcuSERZoD42iFys7AWI4Bgx59/hcziZIKorJCI3B52ngAxjm4rgyMVawM8apgwVq7tshZi8BYMTIwDpbJzMFsckgoGnqNJ/AFEcPnkTOiE5AZGoGrM/PQ3N9nzj4CgEfzZ+N4VxvOSczAf+oqUGNH9V1fo2RlCJOLjwqHyhWIUqqwunAhVKwMv93vXGalgpUN9bVjgbHeDVWpAeNFkkRVCCqG6gUkBoWAYRgsiEsRPG5caKQ5GB7v4cBYxjCC+dURFiP3YXLFcGDMyiB3Uw2RhFGMGIfI5YL56zHKIHOb+VKCQs2/FzmhkUgPCceHc38FFSvzSFAM+ElgLMVW6pbYfZa3Wf63s+lggDElrLOzz/YDbWBZBtHRoWhr66Gq1BI80UezIuKxEZXYePoUpgf757JZ9vZTRXcHKrs6kRMWifBBGVpb/e+g7oi54fF4B8CGqlO4LCkbMTFhY/b7pjXosa2+FkqWRZ4y0unPln6XbPNkH0VEBNs1X8odbrzxRjz44IMoKCjA1KlT8cEHH6C/vx+XXHKJV9rDJ2MY3DyUynuUd/I6KzrRXEgnJTjUrmVDpITI5IhVBQNDI4mpIWF2Vb8OksnQp7f9mfGDNE8KYmV2F8cBrBf5uWFcPgDgy9py822hMrl5XqSCYZ0q4qNgZYhUqBwKjBUMCxWvoGl+ZAxq+7qRFRJu/twmhEWjtMOYBTE5Js4cGMeqgnBLdgFK2lvMq1RcOTQ6zpcVGoGsUOP82ThVsDkwlgoAfJGSZSU/U9PtOUPTrBzdV0wULDs0CutYhXCtG6pSA8Y5xoVRcdjUXIOliemS5/9nJqTifw2nsTAuBTFK5+esOyNUphBcyLG8eMH/zFQyuSC12pUcTaWeH5uM1sF+zB1aJSCKV3gtXhVs/l6EyRXmOd4ZIeHmwDhzaG635YUAd/OLwNiZ1K24uLgRj29tbTU/Pj7emOqjVqsRExMj2ObkyZOdbqsrT4YMBo5OQG1wZx8VRsZDxcqwt7UJfVqdx4qKuIOtftrSVAPAuOxEIOxzSapQ5IZH4URXO451tGF+TNiY/b7tb21Gn16HebFJUDGyUb/HsdpPrjTW++i8886DRqPBa6+9BrVajUmTJmHt2rWCY6kvmBgejWVJGQiRyZHMm9/GH+11RrBMjoyQ4cyLjJBw7IDtehRBrBxK1na14gi5Cn16YeAXpVCifZRryNri6Ch6uB0nrPx5qdHKIPQM9XuwTA6tA+nQJgqGRYiDU5uULAsV7zkTw6Pxm7QJSAgKxkU//w8AMC40whwY50VF44daYzaigpXhotQcXJRq/3IxCUHDa/XGejkwzgmNxO/zpuPT6hP4uUW64CQLBjJGGBjz9znLgPmZafOx5tRhBDMylLQLz7WtUbAsglnHQ48+vXvOwcLlChTFpWDC7CgkWFljeWJEDN6aeRaSgkKxaeh8CXD/0kiAsaCdXM+aU9jDFZap1MJaCjI3zYGO5/WP5Si2mGilCo/kzzb/N/+CQizv72ilyhwYnxGbhMzQcCQFhXhtdR6/mEjIT90yMaVuFRYWij6nsLAQO3bsENxWXFxsfnxaWhri4+MF2+zu7sbBgwclt0kCS5BMjlkxCeg36FHS7pklybzBwHH4SV0PBsCi+FRvN8djTJW3t4zxIlymAnKWqWGEjMY111yDLVu24PDhw/j3v/+NqVOnertJIzAMg99NKMTK7MmCNL6zhlJgM0LCndpusEyOCWHG9VzD5QpkhthXaVclk0Fpx8leGO/E99bsybggZZxxhNrN7DnBFwZOtpfeieA9hj9iFOxkhVvFUFq0Y8+RIYjX7yrWeKFExrD4fe50zItNMo9qAcCFWeNxTdZEvFS40Kk2xqmGT/odbaurKWUsskIjbC7RZxpl5KfHR/I+u0iLz3piRAw+PPs8ZDtYqFPJypzqkx69Fjo3FPsNVyjBMAySgkLB2sgWTQ8Jh8JiVJ3/t7sSfeUMI7goEG5lxDhIJnfbcowJQcO/QaEy25WvVRa/dfziW+m8395oXpAcrlDi0rTxmO/F8xW/CIwBY+rWp59+ivXr16OiogKrVq0SpG49+OCDWL16tfnx1113HbZv34733nsPFRUVeP3113H48GFcffXVAIwHzOuuuw5/+9vfsGnTJhw/fhwPPvggkpKSzPOmCDEtbbPDypVWf3ekUwP1QB8KImMR54GTL1+xMD4FLBhsb66Dzs1XfL1FazBgZ2sj5AyLOTGJ3m4OIV6jYFm8MeNMrJ19NmbFJOKlwoV4dNJs208UESyTI1YVhA/nLsPrM84UnJhaqzodxNoZGPO2d2FqNm7LmeLUcieOsidVkp/WGGXHmrSCEWNecMUf9Y1XBePZKfNx13jbF1eUrMzhYpiWwTT/77MT0/Fo/hykDJ20h8kViFSqcFVmHnLDox16HZPJQ/OS58Qk2vV5m9vlhhEyxVAhJtuBsfFxggsfvM9X6vmWwY/t9rDmglb2CpMr0KfXo7Kn06HnWWuDiWWQaY9Q3kUdfloz/+KBK9OZ5QwL1dD2ZAwzYv/ntyGIlbmtajb/9yHaju++ZQ2C1ODhLBt+kM0fSQ4dxZJQruJwCxiGQUpKCpRKpeBvd7OVutXQ0ACWtyPOmDEDq1evxiuvvIKXXnoJWVlZePPNN5GTM5wOc8stt6Cvrw9//vOf0dnZiZkzZ+Kdd97xyPsh/mF2TCLkDIvdmiZoDQa3XYnzpm1DI6aLA2i0GDBepSyMjsMvbWrsUzdigty59RV9WWlHC3p0WsyOSUSIlfmAhAQC0xxQAMgNjxYsN8mf52aLaT1P0wldM2++q5JlJecHG0eMh48hcoYVrfBbFJcCBcPiYl76rjtOdhfFp8LAcbgmcyK2NNciJTgEL58osfqceFUw6ocqy9ozYhwpNWLMO7lXsTJMiYqza8RawbJQOjimY5xjPPx6YiOWcapgvDZ9MeKDR39xeEpUHD6ddy5ULIu/Httv9/NmxiTgZFc70kLC8Euba7LUTOcstvYf037JD4ztuVDiaJCrZFmHL2y4eomzULkC7VrjHOcIJ9b85Qd84RYXEkzbnRebjG3qOtwyaQreOXpoVO2VsyxUnHGflTHMiKCb34ZQucJtVe/5+0acKhhVInUV+KnlloFxRkg4rsmciHGhERjgzU/nB9n2jES7m8OBMcuygnV+Pbnm7zXXXINrrrlG9L6PPvpoxG3nnnsuzj33XMntMQyDe+65B/fcc4/L2kjGlhC5AtOj47FX04TSjhbz+nZjhc5gwI6WBshEqjAGgjPj0/BLmxrf1VRiwjjfSwUdreIWYxp10dC63ISQYfxCOxEKpdXAmF9EyTIg5M+FU7LCwln8uXgqixHjIJkM3bqRwWBGSDjOTc4S3CazsQSYZTEreypvn5WQhtlDmSTXZk3EXk2T1ccDxn5YGJeC0o4W8yirNfwRY376pGVgDAByO5Y5UzCswxeoLUeMpUY5s8MiXbbUmimI4H/etj6TMLkS7805B+2DA7hm93cuaYcp08BWnylERowvTMnGj001VqdY8VN85QxjM93ZmVR4eyq+OyKMFxg7N2LMC4wtMiIqh/4+LzkLd+dOQ3piNN49egijyUmTM6z585Ex7IgsBP5nFiJX2Jz76yz+RRCp/SlEpsCgwdi3loExwzD4v4xcABD81vBHjH3hAv7YG/4ixMUWDAUVpiBjLDnQrkanbhAzohM8XvnPF5wRmwwVK8PW+hr0j5G1RU30nAE7hy56zI1Jsv0EQgKYrRPkZF5BJcsUYv5JouVJK390J8iiYqzUyJnYciu2UqmVMunXlWI5EmfPyJyCZXH/xJn4cO4yu0b+gmRyXJAyDldm5GIcb8Sen0qtlBnbKvUeWd7sTQUrLL5lTyqvgmUFAZyjo5yjwR+ptVU8yvRYfjqpPaPyVrc5tB/YSukWGzHOCo3Ap/POxe9zp0s+j9//IXaM9skZx0eMk4Ncu/xdmGDE1/HzHv46wvyCXfyRzxC53BzkjXailoJlYRgKdhUWgbGMYQT7c6jFHGN3pVXz15Tm/25E8c4jrVWt5+8DgsDeg99NKRQYE2LD3JgkyBgGu1ob3HYlzltMadRnBlgatUmIXI4zYpPQq9Nhd6vt0RJ/crijFZ26QUyLihOs50oIGal9cHj5GLETd8HcWotgRSkIjIWnVaY5noDIiLFEsCJ2MmtzxM8iqOW/jlwi4LUMRKUCU/6zFQwLGcM4VPn2tpwpuDpzoqBN/PczPGI8fBv/NfkB5fByP0ZSQRa/DxWsTJCi6Y65vFLE3qcU00gqPwMhxo65nJYEn5fdqdTG1+SP8rEMgzC5wuq+x/9sbM0PVTAsGItAzp69aFXBXIeDaUv8iyvJwaGYHhWPuTFJSA1xPOjmj2rmhA1f7OFXbU4Ldq6wnxg5w5oDUQXLCn5jVKzM4jMQfl6uruT9zJT5yAwJx7VZE823BQm+18N/W7vMxv9Nmh2biJSQMKzMLrBZAM0TKDAmxIZwhRJTI+PQoR1EWUert5vjMv16HXa1NkLFygQVOQPNmYnGCrVbx1h1alOGQyCmyBNir0vTjPN4zxyqVA2IB1usYFTEMjDmB6GsZFBnWZVaarkjsUDE1oixbChgFduGVGBj74ixVEDrKH5wJhcZZReMrrIyyb/5n0+IRDDGH0FXMKygrz259CK/72y9rljg7MyauZb7IyC1Tw1/3qagPFyuRH5EDM4dWrPZFkdGjIdHr4fbwtpxgSU5OBS/5k0tYJ2o/2wZTD41ZR7+VDDHqaWN+H3JHzGOUqrw/NQFWDvrbJfWo5GzDLSc3vzaltMx+NMVQmQKKHkX4xwp/maPqVFxeHPmWUjjFdLiL4UmYxjzqK+1Yq5pwWFgwWB2TCJilEFYv/wiXJo+3qVtdZb3x6wJ8QPz45JxoF2N4pYGTI0SXzvb3+zRNKHfoMfi+FSPppb5mpnRCYhUqrBP04RO7eCYSCnXcxyKWxrAAjiD0qgJkXRjVj5+nTwOndpB/KvmBABjOp/G4nEsGPx91hL06nQjUp35J8FyhgXLm1ccZBHU8edXSv3WiAXB/CCGAUbMVJUxDOQMC/3QCbRSkE4pQx9GFgSzNmLMny+qYmXmYjmOViHmU0qkeJpHjBlhsNxvek2ZDBia/q2SyYWBscSxS8Wy6DG9FssimOEHE5473lkGZPzbLYuN8QPnS9Ny0DogXP/Ych65tdc0fV7mEWNBCr9xHjzLMIBpPx3qE5Zh8Py0IrveGyBMRZa6SGGaW23qi2CLQEpnIxGPZRjBkj4yhjGnFtuLvz+5opjXS4ULwYIRfA9VrAz5kbEjHnt2Yjo2NdVgdkyiXfP4LckZ1hzAtw0OWOxTcsHFk3CFxYjxKAP0+bHJqOvrxnKLmgf87yr/N03Osnh71hJU93QJih1aClMo8dn8cz1Sbd9RvtciQnzQGbFJYGBcE9bRH2Rfta25DkDgVaO2JGdZnJ2aAT3H4ecxsizX0U4N2rQDmBwZh0gnUvEICRQMwyAxKEQ48iVygt+n1yElOAzjw6NG3CeY88cyghEtfhAWJBOm9ErNwRMbbVKy1keBZEMB+fA2hCerYiwLevH/WyEx0jmawFhucQHBcvv84ltSr6liZYI1kKVGKRUWQSg/RdgXUqnFPkN+u24aV4AHJs4cEUw7+poK84jx8HbEMiKcXV4om5dKLDU6ORycG+8/JzED06LicGVGrs0g1fRdOicxAwURMbgvb7pT6baCizIuGM3NDY/G+PAou4q6/S63EK9NXyw413LkHcgZFjdkTQIAXJKaM2LEOJYXGGeGCNesFvtMHJm3HqFQ4s2ZZ+GClHGC2/mfG/99yxkGMcogFEbH29x2kEwu+dvkTTZbVFxcbNeGtFot/vCHP4y6QYT4omhlEAoiYqEZ7MeJrjZvN2fUurSD2N/WhHC5AtPHWKVtZ/wqPQvA2EmnNs0dXxRPadSE2EMwT48XbJlO/zp10pVxBSnCFinNlgEeP+jmj7bJGfGg0cRWOrNxxNh2KjW/bdZGjKXmTVsW+XKEUiI4M72u3K5UamHxLalRSpVFf/EvZzMenMfIbwf/QohYICqWai3IRrA7MB55UUQhGOEb2WfOjtyFyBU4KyENC+NSbM5RN72XULkCT0+Zj6szJ9oOjBnT68jx12lFOCshXfQ5ttKrlS66uGNJsG/KxN+/gmWRHRZp8Z2y3gZ+XypYFosT0vD2zCVYkTFB8P6DZDLBnOdYVdCIKvkmr89YjPfnnGPX+uMmUp8PI5KGb3y87wW6jrL5Dm6//XZs27bN6mN6e3tx66234vvvv3dZwwjxNfOHqlOPhVHFHS310HEcFsSljMm1mR01NTYeCapgHOnUCNYk9Uf8Jbjm0/xiQuzCP8FNCOJXmjWOxgxIrE0MCE8eZQwjGNGyDPD4I5z89Uct0xFHtE9mfeTQWBCLEX2MVGVka3OMpUaoRxNU8ANayyJPgGV1b/E2q2TCdPQQQYAt3u9KVoZ5sUlYHJ+KVQVznW6/M/jBMD91XiyA4K+1PHwbv5iRfQF9sMgos6BvRV57NOnF9+XNwB8nzZJcbst0UUKsAJjtwHjk/WLP4QelYvuokrE/KHWEI9kUjszVt1zvHADSQsKgYGWCoNT0mh/NXYZ1c3814rn8NoXLlYhXBds9Sg/YdzEmiLffjoXzSZvvYOnSpbjrrrvw448/it6v0Whw7bXX4sCBA3jjjTdc3kBCfMWCuBQwALar6/2+OvXmoRHFJbyCM4GMZRhz8Z2t6jovt2Z0Dra3BPQSXIQ4g3/Syl+f99H82UgOCsVdE6ZJPpexGKllJUZTVDKZoHIvvyCUoLKr6IjxyBNlwQkswwoKGVmOmA63YeRIrdh/S6Vjjiao4J9k8wNj84gi7/X5FxCsFd8SrIcssYyTkpVBwcrwwMSZmDW0brOnhPGyAoIF1ZhHBidi5xX8/uZsrEttwu9b02sK0/2N/cx/OVvrD9uDv/+Y3h+L4fcltu/YCvbF+kksWOZXfxerwi5W7M0VLANPa5QiFywA8bRqe1O/TRdYopVB5pFgqQthptttBcaWNRNssXaxzR/ZfMcvvvgiLrjgAtx7773YsGGD4L7a2lpceeWVqK2txfvvv48zzzzTXe0kxOtiVUGYEhkHzWC/X1enbujrwZFODZKCQjApIsbbzfEZZ/GqU3N+fOFjm5rSqAlxFH/EaWJ4tPnvvPBovDP7bLt/K0NkCuEcY95oShArF5wc80cTVbZGjHnPMwUG/AE6GStMpZYKZoPsHDG2p0L0aARbLDEDCN93iFy8wJbKYuklfhqpMK3VPamzjuJ/xoIgQyR+6NNrR9zGTwG297AktpxVQaRx/01QBYsGmxqLQl/O4O8/w/soAz03vNSQJVtxlFgQzA+6TVQ20nmFWRyuG9VUsTKcEZuEJQlpyA6LtPpY4fQG66PHUunQlsRq3kj9xphex1bwKlULQIrlBTp/Z7M0H8MweOaZZ6BSqfDAAw9gcHAQF198MY4dO4ZbbrkFMpkMH3/8McaP940y24S405kJqSjtaME2dZ3fVqfe3FwDAFiSkO7RuVa+LjM0AuNCI3C6pxOVvZ0YF2r9IOeLBvR67GxthJJlMTcm2dvNIcRv8E+mx4VGYFlShqCojb2CZfIRcwBNVDIZMpXG9U3PiE2SDDjFTlyVNu4fMbdZYgTaWgAhlxil4o9yu2qpIwNnLPy4TV2HZUkZxtdn+K85fEIfHzS87ItKJhee7EtUx5VKJ/U0qQsR/E9wVnQC9rU1u+xCtTBjwfjZRSpUeG/2UjAMg7+U7QFgLHY2PjQaRzvbEKkcfXYR//MzVZtmedXNxYMmx1OpTTfJeZW9bc3FFsyfd+FyXQzD4LH8OXY9VpDFYFFTYBDCauP2jhiLncLxH8/PGjMHxjbGRPlrokutgc5nrW6BP7K7Zv3jjz8OlUqFRx55BMePH8e///1vJCQk4L333kNSEi0HQgLD/Nhk/K38EHa01OO3OZMFV/X8AcdxlEZtxZkJaTh9+gi2Ntdh3Dj/C4z3tTWhT69DUVyKZFEaQoh1IXIFfjeh0KnnMozl6JQw+E0KCsW6ub9CuEKJQ+0t5vtCJSpUm7fL+1tsRMw4x1gihVIiSLQ86RUE9PyRbt4IpFiatzPC5Arcm1uIW3MmI3KoSi7/9S1HiU10nAEMwyBCrkSnbhBxqiDRx0mNHnuaZcVyE34K8WP5c9CuHRBd93VArzP/bRBJpZbxlgbj32bCT9E3zZ03bYcBg4cmzsbntSdxWdroB7eEI8ZD/897n2Jz46VCZc58/8jAzPR2+QGlUuJCkNhru3ptX3vxv4dhCgXQZ/xbLJi0rKouhb+Osgn/Ygz/4p55CoatEWOJKRVS+NvzxSrTjnLozOmhhx6CSqXC3//+d0ybNg1r1qxBZKT/nTwS4qwwhRKzYhKwq7URv7SpMTfWvy4KHenUoKm/F/kRMUjizaMjRovjU/GP00ewXV2H67MmObUshDdtH5ofTWnUhDjuo7nLRr0NrcEgDIxlIwM001xAlUg6sRTTurSAeDAhZ1jJVGr+yapgxNjiJFZsCSVAGPDw2+GMv05dgH1tzZgeHQ+WYRDJLy7Fe51QQQVnGa7OzMMOdT3GDa2N+tass9DU3ysICoWj83Le8713sj4uNAK/Ts5CfkQMqnu7zbdbFlsTC4oBoJ9X9E0skzpUphhRMZ0fTIqOuPK2F6sKwm05U2y/ETvw9zNzurONY6jURR7TKLNEPS/z40wi+YXNrD0J3ssg4L9uhHy4MrRYMKmUSLs2uSV7Mj6oPCJ6QYM/lz2Wd+HI9P1yZI6xPRcRZA6OMPs6m4HxGWecMSLdkuM4VFRUYPny5SMev3PnTte1jhAfdGZ8Gna1NmJrc63fBcY0WmxdnCoYkyNjcaijFWUdrZjiR+nyvTot9mqaECKTe7zADCFjQbQTqdOWBvR6i1Rq/hxj4UkmPziSWtPYpI8XIJmCCX6gJGMYyVEmYYVn8SrOpm2YWC6nFKcMQstgPxKDRo5QOaIgMhYFkbE2H2e5fu9vUifgyow8822RChUiFSrB8on8UW5fGCEEjMHI7eOnAgA+qz5hvj1GGYTTPZ02nz/IuxAhVvsiRC4fERjbCnxM5/SurqUhrM4+cnRSrLiYWAwrY1joOP2I51t7vWje2ryhImtb81/ZW8VTpVKcxS7c2BoBvyg1GxemjBOdDscvXBerHHnBxdbFCntHq034FzcCYsT46quvpnmIhPDMjklEsEyGPZom9Op0fpOyOmjQ42d1HRQMiyJaxkfS4vg0HOpoxVZ1nV8FxrtaGzFoMGBhQqpXTwQJCWRaTjhiHCQ4yRR+Ly0rJ1tjGvkJlsmGCxuBgX7olF/OstLFfSTm4Y6YYyw5X1eG12ecifq+HmQNjdi6Gz90sTZlSSp9PMTKBQlv4c9tjZcYIbZ0Wfp4HGhX44asfLx6sgSAMWPANCNVbE1ivmCR+02jua4ODwVVqUVSqbWcwfIpovGFICVbLJVa9PUY/GPOOWgZ6MO/a8qttm20WQ/O4n/Hwy0yIizxv7NSwalUbMY/J+WPGJvYunASIsi2cHTEOAAC47vvvtsT7SDEb6hkMsyLTcbm5lrs1jTgrIR0bzfJLntam9AzNP80jJbxkVQUl4y3Kw7hZz+bR24qqrYoIdXLLSEk8Nw0Lh/vnT6C81PG4Z2Kw+bb+ZVqLUdT+EGNeqDP6vbPScxAj06L+XHJeOHYfgBDIz9DUYKMYQQnpfzRYIXEfFt75xgrWRbhCiXyPHjc4PeUtVErqYJj6SHhw8/34hxjPn6QsSQhDRsbqzDbRnZPUlAo1s5eCgB49eQBAMKiU1J98/SUeTjQpsYUkdF5U5eJVTQeDctA1fT/pkBeZxgZGMtEAl/+dqwNzPG/TzLGmI4epwpGRmg4dmsaBY/lXzRypqieK0hNbxD7DKVqBNiDH9hGDC0hxb84ZGvEmB9YWwuMTb95v07JwsbGKgABEhgTQkZanJCGzc212Npc5zeB8SZzNWpKo7YmTKHE7JgE7GxtxO7WJhT5wXxd9UAfDra3IEYZhMKoeG83h5CAc2naeCxPykSIXIH3eCee8apgPD1lnug6sfxA7tLUHPzS1oy7JdZLVrAsfpM+AcBw8SF+GqqcsTJiLJFKbRl08P87aBQn5q4gqJDNWBsxFk9b54/Iuqpg2GjxlwnKj4zF32ctQbxI8SQphqHPPYiVY9BgTJ8We28cgGlR8ZgmcSxgzCPGrg2M+VvjzzGWMSwMnEEildr6OsXW5kjz7+PvBxemjMP25jr8OiUL750+AsDYT2tnnY2jXW2iFws8QS4xEm5rxNjRi/P835VgmRyfzTtPsiK6GKkpCZYuTRuPi1KzhanUYyDDmAJjQpxQGBWHKIUKB9qa0TrQL5qu4ks0A/3Yr2lGpEKJGdEJ3m6OzzsnMQM7WxvxQ1O1XwTGW5pqwMF40cNWmhQhxD1Ma+panrBLBSj8E9jc8Gh8teB8u6aumdKn+SfXxjnG/GBS/G97KzSrLFKpPeWpyWfgf/WVWJ6UaQ5qnBkxljMsnpu6AP16nc9MB1SxwlPulOAw57YjkwFDxarFLlrYCnj5xbdcScdLlR5O9weyQiNwsrtdNH1c7Hhlbyq1sFI7b76xMgjvzjGOsg/vQzIkBYd6tegowzB4b/ZSKFkZvm2oNN8uVgxMrJCZI6/D345lporY586vbs7//bL13becjiFVRM6fUGBMiBNkDIsliWn4srYCm5trzFfyfdUPjdUwgMPZCeljojiCu82MSUCMMgi/tDWjub/XvMyFL+I4Dj8OZQOcnegf2QuEjGW2RrxMLNMp7Q3gDCInsAwYyVRNW2u8ilFJjDi72/ToBEy3uHhrrVgSv3q1YP40yyAvzDsjg1JG24+mgJc/b9iZqT6m/cbVxbe0vFRp/r788KRZ+LK2AisyRp4nie3zlushS2FsVN/m80bWgxjTuQS/vWJt49/WoR1w+HUeyJspuFBhi5xhoRcpeGZvRffXpi/GjpYGLEn0/4xE39hTCPFD5yRmAAB+aKp2+QHGlQwch++G5n8sS8r0cmv8g4xhcU5iOjgYP19fdqyrDfV9PcgLjxbMqyOEeIegOq+doz2OjGqajjf8wIBhLOYVS6xF2qvT2vUa/JEgpZdTka2d4IfLh+c98+dRjsXMGVMqtUqisJq12/jOHJpOdUFKtusaB+nPKSEoBL8dP0W06rtp3rFg9Few3rN9/CUwNpHZGJVVMKx5CaoYJ+ZEL05IlbxQLna6KhyhFr/dmuywSFybNVF0+S1/4xfvoL6+HrfeeiumTZuGefPm4fnnn4deb72qXHt7O+677z7MmDEDs2fPxqOPPore3l7z/bt378btt9+OoqIiFBYW4uKLL8Y333zj7rdCxpD0kHBMDI9GfV8PjnZqvN0cSfvUjWjs78XkiFikhTiXuhWITBc+fmyq8dryDvbY1ESjxYT4ElvryPI9PWUenpx8hkPbN6eSWmxaOAolXnyrW2tfYCxYN9mHA2PhexamUvua0R5HxJY2El0D10a6/LlJmXhjxpm4KTt/VO2xxC+uZW9Aa/ps+cGhzIHvj4mtlF9fmWduwn9fYvNyWYbBq9MX454JhZgXl+zS1xZLtZdLZLn47pmP+/jWniJCr9fjtttug1arxaeffornnnsOX375Jd544w2rz7v//vtRXl6O999/H2+99Rb27t2LVatWme8/cOAA8vLy8Nprr+G///0vLr30Utx///3Ytm2bm98RGUuWmkeNa7zcEmn/OW1cuuBXyRlebol/SQoOxbSoOKgH+lDSpvZ2c0QN6PXYPrQE1yJagosQn2BvKjVgLJLkaN0H02gTP9Bihv5nIucVrOJXqS2INqYXF0TEWH2NPr3O/LfegZRMV7pwaERzpp39w+9qXxwxHm2xK1Pgz1/bWHQNXCvFygBjdkJWaITLR/f4yzGZdk1bmRCm9GuVxGi//YGx+HvJC48GAJ9belFszWc+jjPO1z0nKcMj+7JYRXFjOwIvNPb5wPjnn39GRUUFXnjhBUyaNAmLFy/GPffcg3Xr1kErceWzoqICP/30E55++mlMmzYNs2bNwmOPPYavv/4aLS0tAIDf/va3uPfeezFjxgxkZGTguuuuw8KFC/Hjjz968u0RP7coPgUqVoaf1HWCEwlf0TE4gK31tQiTKzA/lgInRy1LNKaem1LRfc3O1gb06nU4IzaJluAixEcIT3pdf1JrOonlB6wMhKN0/BFj/pzUxSnpeKGwCI8XWB+l7tMNH88cmavoSrfmTMZ/is4XTcHle2TSbFyUmo2skOE1ln1xxHjyUDXkZYnOXaQ2pbTzA9Bzk7MQrwrGHTlThh8n8857548YG0QKxInRiiw7JZMI0qyR+ryfmjwPf526ALN8rOgo/z2KXTAxuHGsVqxPBanUDIMbx+WjICIG48Oi3NYOX+XzxbdKSkowceJExMUNX+0pKirCqlWrcOrUKeTl5Y14zoEDBxAVFYXJkyebb5s/fz4YhkFpaSmWLFki+lpdXV3Izc0dVXtZsVwXJ7fhim2NVb7SR2FKJYriU7CpqQY7Wut9bg7vpuYa6DgDliRmIVjh8193r7C2Ly1ISMbbFQrs1jSiQzdg8wTN00xrB/4qOdPt3wVf+c75MuojAlimSbo+SDHNwdQaeCfPjHDuoDCtmF+llkFBZCwMBvET75nRCdjf1oyCyBj8r+E0AIguNeUp9oxqzo9Lxvy4ZBxqbzHfZm9A5UmRChW+WnC+0wUwTfNk+UWuohQqvD/nHADA3yoOARCvcuwJprmwUQoVr8Kx9eeYU6ktCqeZiAfWI/dHqQtQIXI5Cry0PJM1QTbS3V29xjQf/0KZCb+OAAsGl6WNx2Vp493WBl/m82fKLS0tiI0V7tSmILmlpUU0MBZ7jlwuR2RkpHnE2NLGjRtRVlaGv/zlL063VS5nERvrujmc0dHeKyvvL3yhjy7PzcOmphpsVtfiyoICbzfHzMBx+H6/sXDUiokTERtJ84utkdqXLsjKwT/Lj2FbewNunjRF9DHeUNHRjsMdrUgLDcPZ48d57ETQF75zvo76KLCxgqJYnhkx7tZq0TLYZ/5vhcSomzHQlD7pfnjSLJzu6cTE8Gj8FftHbMuX8QNOXxwxBuwvZiRGKZJKLRZAeXJ5Lb4rM43n4+clZ+GPpT8DsH1hY3jEeHSp1L76eUsRC0753DliHCIWGPMCdV+8qORJXguMX3/9dZvzhE3zfaUOLNYOOGL3cRwnevvu3bvx8MMP4y9/+QtycnKstskanc6Azs4+2w+0gWUZREeHoq2tR/KqbqDzpT7KYEKQFhyGUk0L9lTWIic8yqvtMdmnaUJ1dxemxsYj1qBEa2u3t5vkk2ztS2fHpOETHMMXFSdwflymzyx39c+TxvUZf5WYiTZNj9tfz5e+c77Kk30UEREMhcI7J8DEOnefWJqCAA7AWQlp2NJci2lRcQhXKPH8sf343YRCyfm2xr+l980gmRyThuYf/2XyPGxsrMKyJP+oT2GroJG/448Y3zyuAMe6NEgSWUpQbL1gTwiTK3BLjjFT0/TzZ+tTiFMFo7avG4mqEFT2dAKwLF5n32v74pxya4JsBcZuHDEO4S1xZqJkhSPGgcxrgfG1116LCy+80Opj4uPjERcXh7KyMsHtplFfy1Fhk7i4uBEjwzqdDp2dnSOes2fPHvz2t7/Fww8/bLM99nDlyZDBwNEJqA2+0ke/Ts7CmlOH8XXdafwut9DbzQEA/Kf2FADg/3LyfKaffJlUHyWqQjArJhF7NU34WV2PRfGpXmidUJ9eh01NNVAwLM5OSPfoZ0v7km3UR4HN3Sfp/O3/Pnc6zk5IR35kDBQMi8Iz4hGhUGJ/W7P5MY4UA+MrjI5HYXS8axrtAbFDqbwKhoXKRuDhj0yB8aDBgEvScgAIB3Jenb4Ye1obsdAHjlGm3czWr+Bj+XPwWc0J3DAuH7t3Nw4913oqtdhPq78tE8QftRXrI7cGxiLfDUcq6Y91XtuToqKikJmZafWfTCZDYWEhjh07htbWVvNzi4uLERERgexs8TXYpk+fjvb2dkFAvWvXLnAch6lTp5pv2717N2677Tbcf//9uOKKK9z3ZsmYd3ZiOoJlMmxV16JTO+jt5qC2txv725oRpwrC4hRaxme0LkgZBwD4X/1pL7fEaFtzLfr0OhTFpyCCim4R4lPcPmJsUSinMDoeSlYGhmHMvwd63jxUftDgbymnjohTBeOdWWfjndln+9y6ta4wYagQUq5EVlpOWCSuzMzzidFTU6BlKyU4LSQMf8ibIVir11aQljg0Sp4QNDwyLvezug625oG787LqlKE519mhw8XqGCdG6ccqn//lKCoqQk5ODh588EEcO3YMP/30E1555RVcffXVUCiM6QClpaVYvnw5mpqaAAA5OTlYuHAhHnvsMZSWlmL//v146qmncP7555vnJ5uC4muvvRbLli2DWq2GWq1Ge3u7t94q8WMhcgWWJKRj0GDAD03V3m4Ovq43jhafnzLOZ1J//VlhVDzSgsNwpFOD8u52r7aF4zhsaKgEYJzLRQjxLe5ORcy1ESABwnRJfntkY/ysNzk4FHFeSiV2txvG5ePGcfl4eNIsbzfFJtOorzPL/fBjYUbku3TjuHyclZCG+/JmmIOYlCD/quvAv3DTrRu5wo47R4wnRsTg5cJFeG7qAvNt/MrY/jb67mo+/+5lMhnefvttsCyLFStW4IEHHsDFF1+Mu+++2/yYvr4+nD59WrB804svvojs7Gxcf/31uPXWWzFz5kw88cQT5vvXr1+Pvr4+rFmzBkVFReZ//O0S4ohfJxtHFTfUVwrWl/S0bp0Wm5pqoGJlWE6Bk0uwDINfD40af13n3VHjQx2tONXTiezQCEwcWqOREOI73D1id3n6eNw5fir+lD9H8jEFETG4NnMiXphWZHPNVOIfgmVyXJY23udWRxBj2uecmVEiuJAj8l2aGhWH+/JmIFKhwjuzl+LhSbOQ74OVp63hFxur7e0CAETIlbg+axIA91/0nhAehRC5QvQSntSa0IHCLyZhpKam4p133pG8f+7cuTh+/LjgtqioKKxevVryOc899xyee+45l7WRkIzQcEyNjENpRwv2tDZiXlyyV9rxfWMV+g16/Copk9JsXejshHSsqzqGrepaXJM10WsFTtbXVQAALknLcUvFW0KIb1OwMpxr48SZYRisyDAuP1nq48sYkbHH3lRqMfxd1Nb+mhgUYk6t9icJqmAUxaVgfFgkdByHdVXHsCIjFxelZuPClGyobCzn5Gr8T8lby335isC+LECIi12Uapz3/nltuVMpRKM1aNBjfW0FGAAXp4rPwSfOCZHLcX5yFvQch69qK7zShuqeLuzVNCFOGYSFcd4vsEIIGcmdS604g58mGeijQcQzTBn7zmTPBUIhKIZh8NCkWbg8fQKuSJ+AN2aciQuHstI8GRSL9W6gT78L7HdPiIvNjklEZkg4jne14VBHq+0nuNiPjdVo0w5gXmwy0kPCPf76Y92FKdlQsTJsbKxCh3bA46//ZV25sR2p2QF/8CKed+zYMfzhD3/A4sWLMW3aNJx33nn46KOPvN0sn+PFmTSiunjTzCjLhHgCa06ldmbEmLcOuMta5LtYhkFWaITPfDdlAdHr0ujMihAXYhkGl6dPAAD8u+akR19bZzDg81pj4HRFxgSPvnagiFSqsCwpAwMGvccrVLcM9GFrcy1CZHIsT8r06GsTAgCHDx9GTEwMXnjhBfzvf//DbbfdhhdffBGffPKJt5vmUzgfGzGeFZOA2TGJeDR/trebQgKEqWiWM9+FwA7LPG1kb4/VUXp7+cUcY0L8yaL4FKyrOoYD7WqUd7VjvJXKoa60TV2L5oE+zIxOwPgwz7xmILokNQcbGirx3/rTuCglG2Eemsf9eU05dByHi5OzBBVnCfGUyy+/XPDf6enpKCkpwQ8//IArr7zSS63yPb62hHWQTI7HC+aCHeMVqYnvGM2IMX9JMR/7Ko1Z/AsYFBgTQlxKxrC4LDUHf6s4hI+rj+Pxgrluf02twYBPqk8AAK5Ip9Fid0oICsE5iRnY2FiFL+oqzFUk3Uk90IeNjVUIlslwSVqO21+PEHt1dXUhMjJyVNsYbcBmer7PBH784kG+0ib4YD/5IOoj+9jqJ35g7GhfWq5B7a+fhT/sSwyDoasP/CXdWI+22df6iQJjQtzgnKQMfF5bjr2aJhzuaMVkNy8l8F1jFRr7ezEzOgEFfrZsgT/6v4xcbG6uwX/rTuGClHGIcfPyGZ9Vn4COM+CylAmIVKjc+lqE2OvAgQPYuHGj1VUjbJHLWcTGhrmkPdHRvrGWaVRIEDBUYsJV782VfKWffBn1kX2k+mllwRQ8tmcH7pwy3eHvQHDQcEaUXOG63wdv8Yd9SS4fvhgRHhbklT73lX6iwJgQN1CwMlybNRGrjx/AP04fwQvTitxWWKFPr8On1cfBAB4ZvSRAnCoY56eMw5e1FfhX9QncPn6q216rrq8bPzRVI0Qmx8WpNFpMXO/111/HG2+8YfUx27ZtQ1JSkvm/T548iTvuuAN333035s2b5/Rr63QGdHb2Of18wDjSEB0dira2Hhh8II9ZoR/+rW9t7fZiS4R8rZ98EfWRfWz104zgOHy+4DyEyBUOfwcGBnTmvwcH9T71HXKEP+xLpl8qrVZvvq2/Z8Cjfe7JfoqICIZCYb3qNwXGhLjJ4vg0fFlbgWNdbditacQZse5Z1/iLmnK0awdxZnwqssNGl9JI7PebtAn4rqEKGxurcH7KOLdVAX/3VBl0HIer0icgnNalJm5w7bXX4sILL7T6mPj4ePPf5eXluP7663HFFVfgtttuG/Xru+pkyGDgfOIENFQ2fGrlC+2x5Cv95Muoj+xjrZ+CWPmo+9DA+f/n4A/7krB1jFfa6yv9RFWpCXETlmFwQ1Y+AODdU0cwaNDbeIbj6vq68XltOVSsDNfRaLFHhSuUWJGRCz3H4a3yQ25Zt/pAWzP2aJqQGBRC61ITt4mKikJmZqbVf7KhtTVPnjyJ6667DhdffDF+//vfe7nlvimCLmAR4jT+sZSWJfScS9NyIGMYzIxO8HZTvIr2OELcaEZ0PGZFJ6Chv8flyzdxHIc1FYeg4wxYkZGLhKAQl26f2HZhSjYyQsJR2tGC7ep6l25ba9Dj7xWHAQA3jcuHkrWe/kOIu5mC4vnz5+PGG2+EWq2GWq2GRqPxdtN8yrKkTBRExOD+vBnebgohfk0W4BWS3U03dBEiWCbDTeMKsH7B+QF/YY8CY0LciGEY3D5+KlSsDP+uOYma3i6XbXurug6/tKmRFhyGS2juqVfIWRZ3DM0vfufUYXRoB1y27U+qT6CmrxuFUXGY76Y0fEIcsXHjRmg0Gnz99dcoKioy/7NcxinQBcvk+Ou0IpyZkObtphDi1/hLNxH3CZMbg+FAX6oJoMCYELdLDArBVZl50HEcXjp+AFqDYdTbbO7vxVvlpWAA3DVh2ojlDYjnTI6MxbLEDLRrB/D6yYMuSaku72rH5zXlCJbJ8LsJhW4r3EaII+6++24cP358xL/Nmzd7u2mEkDFITsc+jwiTK2w/KEDQ2TQhHnBxajbyI2JwsrsdH1YeHdW29JwBq4//gl69DpeljXf7UlDEtltyJiM5KAS7WhvxXWP1qLbVq9PixeO/wAAON40roBR5QgghAYnmGHsGFfYcRnscIR4gY1jcnzcDYXIF1tdVYGdLg9PbWnuqDGWdGuSERuLqzIkubCVxVrBMjvvzZoIFgzUVh3C007k5lwaOwysnSlDb1405MYlYnpTp4pYSQgghvoufcyWjVGq3uiBlHADgrHia9mFCexwhHpIQFILf504HALx4/BcccyJ4+rruFL6uP40IuRIP58+iFGofkhcRjVtyJkPLGfD0kT2o63NsHUCO4/Du6TIUtzYgOSgEf8ibQSnUhBBCAhalUrvXrdmT8fn885AR6p7lJv0RnVUT4kFzY5Nw87gCDBj0eLxsN450tNr93K/rTmHNqcNQMCwezZ+NpKBQN7aUOOOClHE4P3kc2rWDeLi0GLW99gXHHMfhg8qj+E/dKUTIlfhzwVya80MIISSgUfEt92IYBkG8ddcJBcaEeNwlaTlYkZ6LHp0Wfzq8Cz82VVst2KQ16PFWeSnWnDoMJcvisYI5KKB5xT7r1pzJWJaUAc1gP+47+BP2tDZafXzP0Jziz2vLESKT44nJZyA9hK7eEkIICWw0x5h4Gl0mIMQLrs2aiAiFAu+eKsMrJ0rwk7oeV2bkIi882pw+qzUYsLu1ER9WHUV9Xw8iFUo8NHEWpkTFebn1xBqWYXDX+GmIkCvxeW05njyyB0VxKfi/jFxkhUaYHzdo0GO7ug4fVR5D62A/4lXBWFUwF5m8xxBCCCGB5sqMXHxSfQJLE9O93RQSYCgwJsRLLkrNwYSwKLx04gD2tzVjf1sz4pRBSA0Jg9ZgQGVPJ3r1OgDAjOh4/G5CIeJUwV5uNbEHyzC4YVw+8sKj8XbFIfzcUo+fW+qRGBSC5KAQDBj0ONXdiQGDHgBwZnwqbsmZjEiFysstJ4QQQrzr6syJWJGeSyPGxOMoMCbEi/IjY/HWzCXY1FSD75uqcLKrHS2D/QAAJctiTkwifp0yDjOjE7zcUuKMeXHJmB4djw0NldjcVIPK3i409fcCAIJlMhTFpeDClHHIp9R4QgghxIyCYuINfhEY19fXY9WqVdi9ezdCQkJwySWX4L777oNMJpN8Tnt7O5566ils2bIFMpkMy5Ytw6OPPoqQkJFrgv7yyy+45pprMHHiRHz55ZfufCuEjKBgWSxPzsTy5Ez06XVoHeiHnGEQHxRMSxWMAUEyOS5NG49L08ajR6dF++AAFCyLWFUQfb6EEEIIgJvG5eO900fMSwgR4g0+Hxjr9XrcdtttiIuLw6efform5mb88Y9/hEqlwj333CP5vPvvvx9qtRrvv/8+tFotHnnkEaxatQrPP/+84HHd3d146KGHcMYZZ6C9vd3N74YQ64JlcqSFhHm7GcRNQuUKhFK1aUIIIUTg0rTxuCAlm5ahJF7l83vfzz//jIqKCrzwwguYNGkSFi9ejHvuuQfr1q2DVqsVfU5FRQV++uknPP3005g2bRpmzZqFxx57DF9//TVaWloEj33yySexfPlyTJ8+3RNvhxBCCCGEEGKBgmLibT4/YlxSUoKJEyciLm64Em9RURFWrVqFU6dOIS8vb8RzDhw4gKioKEyePNl82/z588EwDEpLS7FkyRIAwIYNG3DixAn85S9/wZo1a1zSXpYd/WLkpm24YltjFfWRfaifbKM+sg/1k23UR4QQQoj/8vnAuKWlBbGxwsI0piC5paVFNDAWe45cLkdkZKR5xLihoQHPPPMM3nvvPSiVSpe0VS5nERvrujTY6OhQl21rrKI+sg/1k23UR/ahfrKN+ogQQgjxP14LjF9//XW88cYbVh+zbds2ADCv62pJ6nap+ziOM9/+4IMP4uabb0Zubq69TbZJpzOgs7Nv1NthWQbR0aFoa+uBwcC5oGVjD/WRfaifbKM+sg/1k22e7KOIiGAoFNIFKAkhhBDiGK8Fxtdeey0uvPBCq4+Jj49HXFwcysrKBLebRn0tR4VN4uLiRswl1ul06OzsND9nz5492L9/P1544QUAgMFgAMdxyM/Px0cffYSZM2c69b5ceTJkMHB0AmoD9ZF9qJ9soz6yD/WTbdRHhBBCiP/xWmAcFRWFqKgom48rLCzEmjVr0Nraag5qi4uLERERgezsbNHnTJ8+He3t7SgrK0NBQQEAYNeuXeA4DlOnTgUAfP3114Ln/POf/8S+ffvw0ksvIT09fRTvjBBCCCGEEEKIP/H58m9FRUXIycnBgw8+iGPHjuGnn37CK6+8gquvvhoKhXHZk9LSUixfvhxNTU0AgJycHCxcuBCPPfYYSktLsX//fjz11FM4//zzzfOTc3NzBf9iY2OhVCqRm5uL4OBgr71fQgghhBBCCCGe5fOBsUwmw9tvvw2WZbFixQo88MADuPjii3H33XebH9PX14fTp08Llm968cUXkZ2djeuvvx633norZs6ciSeeeMIbb4EQQgghhBBCiA9jOI6jiVAuotXq0d7eO+rtsCyD2NgwtLZ20zw1CdRH9qF+so36yD7UT7Z5so+iokLGRPEtVxw3ad+0D/WTbdRH9qF+so36yD6+dtz0+RFjQgghhBBCCCHEnSgwJoQQQgghhBAS0CgwJoT7EWkvAAEAAElEQVQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQohDqqurMX36dMydO9fbTSGEEEJcggJjQgghhNhNp9PhgQcewMyZM73dFEIIIcRlKDAmhBBCiN3efPNNpKWl4bzzzvN2UwghhBCXkXu7AYQQQgjxD7/88gu++uorfPXVV9i0aZNLtsmyjEueP9rtjHXUT7ZRH9mH+sk26iP7+Fo/+UVgXF9fj1WrVmH37t0ICQnBJZdcgvvuuw8ymUzyOe3t7XjqqaewZcsWyGQyLFu2DI8++ihCQkLMjzEYDHj33Xfx73//G/X19UhISMANN9yA6667zhNvixBCCPEb3d3dePDBB/GXv/wFkZGRLtmmXM4iNjbMJduKjg51yXbGOuon26iP7EP9ZBv1kX18pZ98PjDW6/W47bbbEBcXh08//RTNzc344x//CJVKhXvuuUfyeffffz/UajXef/99aLVaPPLII1i1ahWef/5582OeeeYZ7NixAw8//DDGjx+PtrY29PX1eeJtEUIIIT7h9ddfxxtvvGH1Mdu2bcOrr76KM888EwsWLHDZa+t0BnR2ju64y7IMoqND0dbWA4OBc1HLxh7qJ9uoj+xD/WQb9ZF9PNlPERHBUCikB1Xx/+zdd3hb1fkH8O+9mpaXZMmOY2c7ew9CSAgEAqWBAmWVlEKgQICyftBCKbS0rFIoqxRoC4VCIQQoLYRRAmWEDJKQhJBBduIMJ/GU5KU97v39oeFzZcmSbMm6kt7P8/DgaFwdHV3pnveM9yALAuOvvvoKtbW1eOWVV2AymTBu3DjcdttteOqpp3DTTTdBpVJ1e05tbS3WrFmDd955BxMnTgQA3Hvvvbjhhhtw1113wWQyoba2Fm+++SY+/PBDjBgxAgAwePDgfn1vhBBCSKYtWrQI559/fo+PKS8vx4YNG9DY2Ig33ngDACCKIgRBwPjx4/HHP/4R5513Xq9eP1WNIUEQqQGaAKqn+KiOEkP1FB/VUWLkUk+yD4y3bt2KsWPHwmQyhW+bO3cu7r//fhw8eBBjxozp9pwtW7ZAr9eHg2IAmDNnDjiOw/bt2zF//nysWLECgwYNwooVK7B48WJwHIdTTjkFd955J4qKej+tKxVz5OU2316OqI4SQ/UUH9VRYqie4svWOtLr9dDr9XEf949//ANerzf87y+++AIvv/wyli5dioEDB6axhIQQQkj6yT4wNpvNMBqNkttCQbLZbI4aGEd7jlKpRGlpKcxmMwDg6NGjOH78OD7//HM8/vjj8Hg8+P3vf4+777477pSyWFK5VgqQz3x7OaM6SgzVU3xUR4mheoovV+to+PDhkn/v2LEDPM9j9OjRGSoRIYQQkjoZC4wTXdMEABwXvfc91u2x7hNFMXy7KIrwer344x//iKFDhwIA7r//flxxxRUwm82SEepEpWKtFEDrEhJBdZQYqqf4qI4SQ/UUn9zWShFCCCEkcRkLjBNd02QymbBz507J7aFR38hR4RCTyRR+TIjP50NHR0f4OSaTCUqlMhwUA0BNTQ2AQBbs3gTGQOrWSoWORQ3QnlEdJYbqKT6qo8RQPcWXL3V00UUX4aKLLsp0MQghhJCUyFhgnOiapqlTp+KFF16AxWIJB7Xr1q1DSUlJOGlWpGnTpqGtrQ07d+7EhAkTAABff/01RFHE5MmTw4/x+Xw4evRoOOnWoUOHAABVVVV9fXuEEEIIIYQQQrIEn+kCxDN37lzU1NTgrrvuwp49e7BmzRo8/fTTuPzyy8MZqbdv344FCxagqakJQGDk95RTTsG9996L7du3Y/PmzXjooYdw7rnnhkeCTz75ZIwdOxa/+c1vsGfPHmzfvh0PPfQQzjrrrF6PFhNCCCGEEEIIyT6yD4wVCgWef/558DyPhQsX4pe//CUuuOAC3HrrreHHOJ1OHDp0SJIt84knnsCIESNw1VVX4frrr8eMGTPwwAMPSI7797//HcXFxbjssstw0003YfLkyXjkkUf69f0RQgghhBBCCMks2WelBoDq6mq8+OKLMe+fNWsW9u7dK7lNr9fjySef7PG4AwYMwF/+8peUlJEQQgghhBBCSHaS/YgxIYQQQgghhBCSThQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJa5woimKmC5ErBEGE3y+k5FgqlQJerz8lx8pVVEeJoXqKj+ooMVRP8fVXHSkUPHieS/vrpFuqrpt0biaG6ik+qqPEUD3FR3WUGDldNykwJoQQQgghhBCS12gqNSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBscwsXboU8+fPx6RJk3DppZdi+/btmS5Sv3nhhRdw8cUXY9q0aZg9ezZuueUWHD58WPIYt9uNBx54ALNmzcK0adNw6623wmKxSB5TX1+P66+/HlOmTMHs2bPx2GOPwe/39+M76T/33XcfxowZg9dffz18G9VRQGNjI+644w6ceOKJmDp1Ki666CLU1taG76d6Amw2G+6//36ccsopmDJlCs4991y899574fvzsY42bdqEn/3sZ5g7dy7GjBmDL7/8UnJ/qupkw4YNuPDCCzFx4kR873vfk9Q7SQ5dN+m6mQy6bsZG18346LrZXU5dN0UiGx999JE4YcIE8T//+Y+4f/9+8d577xVnzpwpWiyWTBetX1xzzTXiO++8I+7bt0/cvXu3eN1114mnn3666HQ6w4/53e9+J86bN09ct26d+N1334mXXnqp+JOf/CR8v8/nE88991zxpz/9qbhr1y5x5cqV4qxZs8Snn346E28prVasWCGef/754ty5c8UlS5aEb6c6EsW2tjbx9NNPF++++25x27ZtYl1dnbhy5UqxoaEh/BiqJ1H89a9/LZ511lnixo0bxbq6OvH1118Xx44dK27YsEEUxfyso5UrV4pPPfWU+L///U8cPXq0uGLFCsn9qaiTuro6ccqUKeIjjzwiHjhwQFyyZIk4btw4ce3atf32PnMFXTfpupkMum7GRtfNxNB1s7tcum5SYCwjl1xyifjggw+G/+33+8W5c+eKL730UgZLlTkWi0UcPXq0uHnzZlEURbGjo0OcMGGC+Mknn4Qfc+DAAXH06NHi9u3bRVEMfDnHjRsntrS0hB/zxhtviCeccILo8Xj69w2kUUtLi3jqqaeKe/bsEU8//fTwBZ7qKODxxx8XL7vsspj3Uz0F/OAHPxCff/55yW1nnXWW+NJLL1EdiWK3C3yq6uSxxx4Tzz33XMlr3X777eL111+fzreTk+i6KUXXzdjoutkzum4mhq6bPcv26yZNpZYJj8eDnTt34uSTTw7fxvM85syZg61bt2auYBnU2dkJACgtLQUA7NixA16vV1JHNTU1qKqqCtfR1q1bMXbsWJhMpvBj5s6di46ODhw8eLD/Cp9m99xzDxYtWoQxY8ZIbqc6ClixYgUmTpyIW2+9FbNnz8ZFF12E999/P3w/1VPAtGnT8MUXX6CpqQmiKGLNmjVobm7GnDlzqI6iSFWdbN26VXKM0GPy9be+t+i62R1dN2Oj62bP6LqZGLpuJifbrpsUGMtEa2sr/H6/5KQAAKPRiJaWlgyVKnNEUcQjjzyCE088ETU1NQAAs9kMrVaLoqIiyWONRiPMZnP4MUajUXJ/qE5Dj8l2r7/+OhwOB6655ppu91EdBRw9ehRvvPEGampq8PLLL+Piiy/Gb37zG3zxxRcAqJ5C7r33XgwZMgSnnnoqJk6ciFtuuQWPPPIIxo0bR3UURarqJNZj2tra4PV601X8nEPXTSm6bsZG18346LqZGLpuJifbrpvKlB2JpIUoiuA4LtPF6HcPPvgg9u3bhzfffFNye7S6EEUx7mN6uj2b1NbW4q9//Svefvtt8Hz0fq18ryMg8H4nTZqE22+/HQAwbtw47NixA2+++SbOOOMMAFRPQKCxuHv3bvz973/HgAEDsH79evz6179GZWUlAKqjaFJVJ5GPiTwG6T26btJ1k0XXzcTQdTMxdN1MXjZdN2nEWCYMBgMUCkW33iKr1dqtNzzXPfTQQ1ixYgVeffVVDBgwIHy7yWSC0+mEzWaTPJ6tI5PJ1K0OQ/+O7GnKRtu2bYPVasVZZ52F8ePHY/z48Th+/DgefvhhLFiwgOooyGQyYcSIEZLbampq0NDQEL4/3+vJ5XLhT3/6E+6++27MmzcPY8eOxdVXX4158+bh1VdfpTqKIlV1Eu0xFosFer0eKpUqXcXPOXTd7ELXzdjoupkYum7GR9fN5GXbdZMCY5lQq9WYMGEC1q1bF75NEASsX78eU6dOzVzB+pEoinjwwQfx6aef4tVXX8XgwYMl90+cOBEqlUpSR4cOHUJ9fX24jqZOnYo9e/ZI0sCvW7cOJSUl3X7ws9GZZ56JDz74AO+99174v4qKClx//fV4/vnnqY6Cpk2bhiNHjkhuO3z4MAYOHAiAziUA8Pl88Hq9UCgUktt5nocgCFRHUaSqTqZOnYq1a9dKjr1u3bq8+a1PFbpu0nUzEXTdTAxdN+Oj62bysu66mdJUXqRPQttOvPvuu+KBAwfE3/72t3m17cR9990nzpgxQ9ywYYPY3Nwc/i9y24nTTjtNXL9+vfjdd9+JCxcujJry/ZprrhF3794trl69WjzppJPEP/3pTxl4R/2Dza4pilRHoiiKW7duFceNGye+8MIL4uHDh8V3331XnDhxovjFF1+EH0P1JIpXXHGFeP7554e3nXjrrbfE8ePHi++//74oivlZRzabTdy1a5e4a9cucfTo0eJrr70m7tq1S2xubhZFMTV1UldXJ06ePFn84x//KB44cEB8/fXXxfHjx9N2Tb1A1026bvYGXTe7o+tmYui62V0uXTcpMJaZJUuWiKeddpo4YcIE8ZJLLhG3bduW6SL1m9GjR0f975133gk/xuVyiffff784c+ZMccqUKeItt9wiSe8uiqJ47NgxcfHixeLkyZPFWbNmiY8++qjo8/n6++30m8gLPNVRwGeffSb+4Ac/ECdOnCiec8454rJlyyT3Uz2JYnNzs/irX/1KnDt3rjh58mTx7LPPFl9//fXw/flYR19//XXU36FnnnlGFMXU1cn69evFH/7wh+KECRPEM844Q3z33Xf77T3mGrpu0nUzWXTdjI6um/HRdbO7XLpucqJIGT8IIYQQQgghhOQvWmNMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCMmY5cuX49133810MQghhJCsQNdNQtKHAmNCSMZ88sknWLZsWaaLQQghhGQFum4Skj4UGBNCCCGEEEIIyWucKIpipgtBCMk/d999d7de71tuuQW33nprhkpECCGEyBddNwlJL2WmC0AIyU833XQT6uvr0dnZifvuuw8AUFlZmeFSEUIIIfJE101C0osCY0JIRgwZMgR6vR6iKGLq1KmZLg4hhBAia3TdJCS9aI0xIYQQQgghhJC8RoExIYQQQgghhJC8RoExIYQQQgghhJC8RoExISRjVCoV3G53potBCCGEZAW6bhKSPhQYE0IyZvjw4di3bx8+//xzfPfdd2hqasp0kQghhBDZousmIelD+xgTQjLGarXit7/9LTZt2oT29nbaj5EQQgjpAV03CUkfCowJIYQQQgghhOQ1mkpNCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvKTNdgFwiCCL8fiElx1Iqefh8qTlWrqI6SgzVU3xUR4mheoqvv+pIoeDB81zaXyfdUnXdpHMzMVRP8VEdJYbqKT6qo8TI6bpJgXEK+f0C2tocfT4Oz3MwGovQ0eGEIIgpKFnuoTpKDNVTfFRHiaF6iq8/60iv14HnFWl9jf6QiusmnZuJoXqKj+ooMVRP8VEdJUZu102aSk0IIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYSQXrnvvvswZswYvP7665kuCiGEENInWRUYL126FPPnz8ekSZNw6aWXYvv27T0+/uOPP8aCBQswadIknHfeeVi9enW3xxw4cAA33HADpk+fjunTp+PHP/4xrFZrut4CIYQQkhO+/PJLbN26FRUVFZkuCiGEENJnWRMYL1++HI888ghuvvlmLFu2DGPGjMHixYtjBrFbtmzBHXfcgUsuuQTvvfcezjzzTNx0002ora0NP6aurg6XX345Ro4ciTfeeAPLli3DtddeC5VK1V9vixBCCMk6ZrMZ999/Px577DG6ZhJCCMkJykwXIFGvvPIKFi5ciIsvvhgA8MADD2DlypXhYDbSq6++ilNPPRWLFy8GANx2221Yu3Ytli5dit/97ncAgD/96U849dRT8ctf/jL8vKFDh/bDuyGEEEKy1z333INFixZhzJgxfT4Wz3MpeX5fj5PrqJ7iozpKDNVTfFRHiZFbPWVFYOzxeLBz507ceOON4dt4nsecOXOwdevWqM/ZunVrt4B57ty5WLlyJQBAEASsXLkSixcvxtVXX409e/Zg6NChuPnmm3HKKaf0uqyp+GDldpLIEdVRYqie4qM6SgzVU3z5Ukevv/46HA4Hrrnmmj4fS6nkYTQWpaBUgMFQmJLj5Dqqp/iojhJD9RQf1VFi5FJPWREYt7a2wu/3w2QySW43Go04cuRI1OeYzWYYjcZuj29paQEAWCwWOBwOvPTSS7j99ttx11134YsvvsANN9yA//znPxg/fnzS5UzlBR6Qz0kiZ1RHiaF6io/qKDFUT/Hlch3V1tbir3/9K95++23wfN9XY/l8Ajo6nH06Bs9zMBgK0dpqhyCIfS5TrqJ6io/qKDFUT/FRHSWmP+uppKQAKpWix8dkRWAciyiK4LjYPfPR7gvdJggCAOCMM87AVVddBQAYN24cNm7ciH/961944IEHki5PKi7wAH2ZEkF1lBiqp/iojhJD9RSf3C7w6bBt2zZYrVacddZZ4dv8fj8efvhhvP766/jkk0+SPmaq6koQRDo3E0D1FB/VUWKonuKjOkqMXOopKwJjg8EAhUIBs9ksud1qtXYbRQ4xmUzdHm+xWMKPNxgMUCqVGDFihOQxNTU1OH78eK/LmsoPVS4niZxRHSWG6ik+qqPEUD3Fl8t1dOaZZ2LixImS26699lpcdNFFuPDCCzNUKkIIIaTvsiIrtVqtxoQJE7Bu3brwbYIgYP369Zg6dWrU50ydOhVr166V3LZu3brw40PHjJyKffjwYQwcODCl5SeEEEJyQUlJCUaPHi35T6VSoby8HMOGDct08QghhJBey4rAGACuvvpqvPXWW1i2bBlqa2tx//33w+VyhXuo77rrLjz55JPhx1955ZVYvXo1Xn75ZdTW1uLZZ5/Fjh07cPnll4cfc8011+Cjjz7Cf/7zHxw5cgQvv/wyNmzYgIULF/b7+yOEEEIIIYQQkhlZMZUaAM455xxYrVY888wzaGlpwbhx4/DSSy+hrKwMANDQ0CBJBDJ9+nQ8+eSTePrpp/HUU09h2LBh+Mtf/oKamprwYxYsWICOjg48//zzeOihh1BTU4Pnn3++V4m3CCGEkHy0YsWKTBeBEEII6TNOFMXcXAiVAV6vH21tjj4fh+c5GI1FsFhsslunJogimpw+OP0CdEoe5VolFD0kQEsXOdeRnFA9xUd1lBiqp/j6s470el1Gkm+lWiqum3RuJobqKT6qo8RQPcVHdZQYuV03s2bEmGTW7jYXPjrWjm8tTth9Qvj2IiWPE8t1uGCIHkOL1BksISGEEEIIIYT0DgXGpEctLh9e3GvGBnOgR1/NcxhbqkGxSgGb148DnR6saLBhRYMN368uxtUjjShQZs3SdUIIIYQQQgihwJjEtsXiwBM7mmHzCRigVeLS4QacMqAQGkVX4Ov0Cfi8vhP/PtyK/x3vxHetLtw3tRKVBaoMlpwQQgghhBBCEkdDeySqL+o78eDWRth8As4bXIJnTxqEM6uKJUExABQoeZw3pBTPnDQYJxh1qHd48atv6nHE5slQyQkhhBBCCCEkORQYk24+r+/As7tbwHHAzyeUY/FoU7eAOJJercCvpwzA96uL0ebx44GtDWhx+fqpxIQQQgghhBDSexQYE4n1zXY8t9sMBQf8atIAnFZZnPBzFRyHG8eYcObAYljcfjy4tQEuvxD/iYQQQgghhBCSQRQYk7CDnW78aWczAODOiQMwq7ww6WNwHIebxpowtawAdXYv/rbHDNoRjBBCCCGEECJnFBgTAECH14+HtzXCLYhYVFOG2RXJB8UhCp7DHRMqYNQosLLRhpWNthSWlBBCCCGEEEJSiwJjAlEU8dfdLTC7/Th1QBEuGlra52OWqBW4Y0IFOAD/2GdBm8ff94ISQgghhBBCSBpQYEzwWX0n1rc4UFmgxI1jTeA4LiXHnWAowNmDStDpE/DSPnNKjkkIIYQQQgghqUaBcZ5rcHjx0j4LeA74xYQK6JSpPSUW1ZTBqFFgTZMdWy2OlB6bEEIIIYQQQlKBAuM8Jooi/rbXDLcgYuEwA8aUalP+Gjolj+tGmwAArxywwk+JuAghhBBCCCEyQ4FxHlvVaMM2qxODC1W4eJg+ba9zUrkO40o1OGzz4MsGSsRFCCGEEEIIkRcKjPNUh9ePf+y3AABuGlsOFZ+adcXRcByHq0cZAQBLD1rhpr2NCSGEEEIIITJCgXGeeqO2FR1eAd+vKsZ4feqnUEcaU6rFnIpCWN1+fFrfmfbXI4QQQgghhES3t92Fv+81wyvQMscQCozzUJ3Ng/8d70CRkscVI8v67XUXBqdrv3ukDR4aNSaEEEIIISQj7vqmHh8d68CnxzsyXRTZoMA4D71ywAIBwMLhBpSoFP32usOKNZhVroPV7ccXtNaYEEIIIYSQjGpy+dDu8WNXmyvTRck4CozzzLcWB761OFFVoMLZg0r6/fUvHWYAEBg19tPUDUIIIYQQQjLG7hVw89dHcc/mehzsdGe6OBlFgXEe8YsiXg4m3PrpqLK0JtyKZWSJBlPLCtDs8mGD2d7vr08IIYQQQggJsPv86PQGljjW2TwZLk1mZVVgvHTpUsyfPx+TJk3CpZdeiu3bt/f4+I8//hgLFizApEmTcN5552H16tUxH3vddddhzJgx+PLLL1NdbNlY3WjDUbsXE/RanGjSZawc5w8uBQB8WEdrGgghhBBCCMkUu68r70++ZwDKmsB4+fLleOSRR3DzzTdj2bJlGDNmDBYvXgyr1Rr18Vu2bMEdd9yBSy65BO+99x7OPPNM3HTTTaitre322Ndffx2imNvTen2CiLcOtQIArqgpA8f1/2hxyDRjAap1Kuxqd2F/R35P2SCEEEIIIaS/hWaOOv1dMVCOh0NxZU1g/Morr2DhwoW4+OKLMXLkSDzwwAPQaDRYtmxZ1Me/+uqrOPXUU7F48WLU1NTgtttuw/jx47F06VLJ4w4cOIC///3v+MMf/tAfbyNjVjR0otHpw7Sygn7ZnqknPMfhvOCo8X+Ptme0LIQQQgghhBBAQH5HxspMFyARHo8HO3fuxI033hi+jed5zJkzB1u3bo36nK1bt+Laa6+V3DZ37lysXLlSctw77rgD99xzDyoqKlJSVj4F63ZDx0jFsQDAK4j41+E2AMAVI8tSdty+OKO6GEtqrfiqyYZrRhth0CR3Kqa6jnIV1VN8VEeJoXqKj+qIEEJItmGvWPmeFzcrAuPW1lb4/X6YTCbJ7UajEUeOHIn6HLPZDKPR2O3xLS0t4X//6U9/wqhRo3D22WenpJxKJQ+jsSglxwIAg6EwJcd5Z78ZZpcPc6tLMHuEKf4T+sm5NWX4114z1rd7sGicvlfHSFUd5Tqqp/iojhJD9RQf1REhhBC5i7aMlALjLCaKYo9rZaPdF7rt66+/xieffIL3338/ZeXx+QR0dDj7fBye52AwFKK11Q6hj2eo2y/gle8aAQCXDi6BxSKf/YPnlRXgXwDe22fG2eUFSa17TmUd5TKqp/iojhJD9RRff9ZRSUkBVP24Dz0hhJDcxLa+RZpKLX8GgwEKhQJms1lyu9Vq7TaKHGIymbo93mKxhB+/adMmNDQ04KSTTpI85qabbsKcOXPwj3/8o1dlTWVjSBDEPh/vf8c6YPX4MaeiEEML1bJq0FbrVBhXqsHudje2W52YZChI+hipqKN8QPUUH9VRYqie4qM6yl9NTi90Sh7F1GlBckBthxsGjQJlSS53I9kr3y9dWZF8S61WY8KECVi3bl34NkEQsH79ekydOjXqc6ZOnYq1a9dKblu3bl348T/5yU/wwQcf4L333gv/BwD33nsvHnjggXS8jX7nE0S8VxdIbrVwmD6zhYnhrOoSAMCnxzszXBJCCCGk9zx+AdevO4orVkdf4kVINml1+/CLTcdx9Vd1mS4K6Uf5npU6a7qArr76atx1112YMGECJk+ejFdffRUulwsXXnghAOCuu+7CgAEDcMcddwAArrzySlxxxRV4+eWXMW/ePCxfvhw7duzAww8/DCCw3jhyDTIAVFVVYdCgQf33xtLoqyYbWlw+zDAWYFixJtPFierkikK8uNeM9S12dHr91MtOCCEkK3nyfaiF5BSz25fpIpA0C/9iMXOpKSt1ljjnnHNgtVrxzDPPoKWlBePGjcNLL72EsrIyAEBDQwN4vmsAfPr06XjyySfx9NNP46mnnsKwYcPwl7/8BTU1NZl6C/1KEEW8c6QNAHDxUH1Gy9ITjYLHvMpifHy8A6sbbfhBcBsnQkjiLC4f9na4YPMKKFYpMLZUk3Smd0JI3+R3c5LkGj+d0HmDXWOc7597VrWcrrjiClxxxRVR71uyZEm3284+++ykMk7v3bu312WTm80WB+rsXowp1WR83+J4Th9YhI+Pd2BVEwXGhCRjd5sLSw9a8V2rq9t9M4wF+MmIMowskedsEUJyDdugdPsFqHkOHkGERpEVq9YIkfDTDIicF+0T9uX5555VgTFJ3DvBfYsvHqpPKttzJowu0WBggRJ7291ocHgxUKfKdJEIkTWvIGJJrRUf1LVDBFChVWKGUQe9WgGr24dvLA5stjixxXIclw7X48fDDbL/HSAk2wnM4jybV8Df9pqxyezAklOHooSWCZEs09uRww6PHx5BhElLIUY28lJgTHLNrjYXdre7MbhQhZkmXaaLExfHcTitshhvHmrFqkYbfjzCkOkiESJbLr+AP37XhG8tThQqeSwebcS8yiIomMDXJ4j4rL4Trx6w4K1Dbah3+PB/48uh4ik4JiRd2ECi0ydgk9kBADjQ4cZ0o/yvxYSwkl1rGtpCddGaQPK59+YPpw5ZuQt+xOynlO+BMc3vyUGh0eKLhurBZ8mP0rzKIgDAqkZb1A3HCSGBC9bD2xrxrcWJwYUq/HnWIMwfWCwJigFAyXM4e1AJHjuhGuVaJVY32fDc7hbJiBYhJLXY75dXEMJ/09eOZCOfEP8xIX/a2YyfflUnmYab72tVs1VvPraDnW4srbXmxPR7CoxzzOFON76xOGDSKHDqgKJMFydhA3UqjCnRoN7pxf4Od6aLQ4jsiKKI53a3YHurC8OL1HhkRhXK40xVG1KkxqMzqmDSKLCy0YY3Drb2U2lJrnrhhRdw8cUXY9q0aZg9ezZuueUWHD58ONPFkgW2Tcj+nf1NRZKPkhk5XNloQ5vHjyaXN3ybn3qEsgbHjBn3Jrb9+cbjePtwG75szP6tVykwzjHvBvctvmCIHsosmzYZGjVe2WjLcEnyk8cvYH2zHS/vt+BPO5vx/B4zPq/vQIfHn+miEQAfH+/AykYbTBoFfju1MuGtzUxaJe6bOhCFSh7/PtyGby2ONJeU5LKNGzfi8ssvx9tvv41XXnkFHo8H11xzDVyu7gng8g0bCEgDYwoQSPbpzfZjHmaY2EenvexF+4j68ntldmV/e5HWGOeQJqcXa5psKFby+F51caaLk7S5A4rwj/0WfNVkw7WjjFBkWWCfrQRRxCfHO/DWwVa0eyPmTh0H1LwF368uxk9GlEGnpL60TKizefDKfisUHHD35EoYk9yKaUiRGreMM+GP3zXj6Z3NeGbWIOhpOyfSC//4xz8k/3700Ucxe/Zs7Nq1C9OnT89QqeRBOmIcPUgm+UkUxazLUM4uB0iUiwmMc2Faba6L9gn15WPLhVkC1DLKIe/XtUMQgXMHl0KbRT++IaVqBSYbCrDF6sTONhcmlxVkukg5r8Pjxx+/a8KONhd4ALPLCzGrXIdyrRIdXj+2WZ1Y2WjDh0c7sKHFgd9MqcSwInWmi51XfIKIp3Y2wyOIuLKmDKN6uf3SnIoiLKh24pPjnfjHfgvumDggxSUl+aizMzB1rrS091vt8X3sBA09v6/H6SuRfXlm3b+IzJcNkFE9iSK+bLBhokGLigJ57UKRrjr6224zlh/rwF9nD8bgLLmGepkYJ7I+YtWTw8+srecyf65lkly+b4kQI/72A3D4BJSqk8um70fy71du9USBcY5o8/jxWX0nNDyHcwaXZLo4vXbygEJssTqxrtlOgXGaNTu9uG9rI+odXgwvUuP/xpdjRLE06JpTUYTLhhvw/F4z1rc48KtvjuM3kyvps+lHHx1rxyGbBxP0WlwwtG/7fF810ohNZgdWN9lxWqUDM7Igaz2RL1EU8cgjj+DEE09ETU1Nr46hVPIwGlOTD8NgKEzJcXrLzHV1SBcVa8N/a3SalL3HVMh0Pa053o4/7WyGTsnj80smZbQssaS6jpYfqwUAbLF5MXVoWUqPnS7Klq5lN7HO38h6EjRdHR3FpToYC7OjEyCdMv19i0YQRWlyXkXX3xqtCr/YdByHO9xYfuGEpGaXKTXKXv/WyaWeKDDOER8dbYdHEHHe4JKs3i9xlqkQf+XMWN9ix3VjjN2y7ZLUaPf4cd+WRtQ7vZhl0uGOiRUxp3jpNUr8atIAvH24DW8cbMXD2xvxwLSBGFuqjfp4kjoWtw9vHGyFggNuHGvq8/dBp+RxwxgT/rC9CS/tt2BKWUHW5SIg8vHggw9i3759ePPNN3t9DJ9PQEeHs0/l4HkOBkMhWlvtEDI4fdPa3rXOupV5T5YOJyyWzI+MyqWe9jcFZhk4fAIsFnnlFEl3HTkdHtm951g6bF2JUCPLHKuejlu7gmmz1Q6ly5P+gsqUXL5vkSwuH3665ohka1S3t2ttsMPpxeFgEtydx9owVp94W8/ei/O7P+uppKQAqjgxEgXGOcDhE/DRsQ4oOOCHQ/SZLk6flASnU2+1OrGrzYVJBhqZTDWvIOL324JBcbkOv5o4IO56bo7jsHC4AUqOw2u1Vvx+ayOePLEaA2Q2DS7X/HO/FS6/iIuGlmJwinreZ5UXYmpZ4Dv2WX0nzh6UvTNMSOY89NBDWLFiBV5//XUMGNC3afmpagwJgpjRBqhkqxpmraXbJ8iqYZzpemK7YOVUL6x01ZEoZrbuk8GuEbZ7/Njb7sKUsgLJ3sSR9dTq9oX/9vjldd5nSqa/b5FWNQQ6pt5idqlgM5Cz+RF6Ol8tbh82mx04Y2BXTiNvH96rXOop+xaikm4+Pd4Bu0/AvMqiuNu3ZIOTKwLTKdY22TNcktz02gEr9nW4MaZEgzsmVCSV5OziYXqcN7gEnT4Bf/yuCR5/8sk5SGIOdrqxuskGg1qBS4cZ4j8hCVeNLAMH4M2DrXAks1klyXuiKOLBBx/Ep59+ildffRWDBw/OdJFSaqvVgavWHMHe9uSzbEuSbzGr9pLZ9iZXiaKI9+vacKDDndezVLLpTGDLuqTWivu2Nsbd8s/JtAloH2N5ckX5YNhOPTZ/Vk/f1Hs3N+Ave8z45HhH+LZcaBJSYJzlvIKI948Gtmi6MMtHi0NOKi8EzwHrW+w5keFOTjaZ7fjgaDuKlTx+OWlArzJk/nSkEeP1WtR2erCU9sVNm6W1gbpdONyAghRnAx9RrMFplUVo9/rxQXCLN0IS8cADD+CDDz7Ak08+icLCQrS0tKClpSVntmv64/YmtHn8+Nsec9LPZa9X7LY1vdn2JtdssTrx8n4r7th0nJZIZQl25HCrNbA04O3DbT0+x81mpab2myy5o2Qb98fo1OtJvTOwZ/UhW9d0eV8OfOYUGGe5VY2dsLr9mGXSYUiWZDqMp0StwER9Ado8fuxuy43GlhzYvH48tzvQ2Lt1fHmvZxcoeQ53TqhAoZLHB3Xt2NOLkRXSsz3tLnxjcaBCq8SZVenZeu2yEQbwHPDfo+1w0qgxSdCbb76Jzs5OLFq0CHPnzg3/t3z58kwXLSVC00R7841g4182GKYRY+AI03hW5HFcnE1xA3vaGhLMTuySjBjL6822uHxY15wd67vTyRllg2m/GH3EOJFRf/bxvhz4rcv+ebd5zC+KePdIYLTn4mH6zBYmxU6uKMT2VifWNtsxkdYZp8Trta1o8/hxxsAizCrvW/Y/o1aJa0aV4dndZjy7qwV/OrEa6izcIkyultZaAQA/Hm6AKk3TDgcUqDBvQBG+bLThf8c7cMFQfVpeh+SWvXv3ZroIaRX+tvWiUc82LtmRsxxoK/ZZm6cruQ9Nsc0O7MeUaEcR2wkkh/7WOpsHa5tt+NEwA362rg4+EfjDdAUm5HG7Mt6IMfu5JzICzI4wy60zpDeoJZvFNrY4cNzhxUS9FmNyLEPwSRWF4AF83WKXTOchvbO33YVPjnegWMnjpyONKTnmGQOLMa2sAMccXnxwtCP+E0hCdre5sL3VhSqdCqdVpneLl4uH6cEBeK+undaLE4KuwDiVI8aJTk3MZe1MYEwj6NlBkIwcJvaZ+SKec7jTjcOd7thPSLP/23AMbx1qw/+Od4TL1uTy9fykHOeO0jPlj5F8K5ER4GRHmOWOAuMsJYoi/hNc63FRDo706NUKjNVrYXX7UZvBH9VcIIoiXtxrhgjgqlFlKElyw/ZYOI4LbqkF/PtwqyQbJem9ZXVtAICLh5YmlRitNwYXqnFSeSFaPX6sbKQpZoSElr/2pj+WDR6kWV77Wqrcwo5C5cIIUzIEiFjbZMMftjfKtoNgi8WBg51uiEjsHGYDKTbA8okibtt4HLdtPJ6WciYiVJpmJhjO49xvAKJ3TPkl38mu2xMbMe6SC1VLgXGW2tbqxIFON4YXqTHdmJtTQmaZdACAr5lN5knyVh1rx952N0YUqyVp9VOhWqfGDwaVwuUXKRFXChx3eLCxxQGDWoF5lelZWxzpgqGlAICPjnVAzLNGKiGR+tKwizXClm/BXzRsvq187jTwCiIe29GMDS0ObGyR384bbr+A+7c24ucbj0uzrPdwDgsxAik5TKUOYc85ZZ4nf4v27mMFw4l8hpJzIweqlgLjLPXO4a61xVyOfslD62DlePHIFn5BxPPbGwEAV9aUgU/DubJwuB7FKh6f13fiqN0T/wkkpvfr2iECOHdwadrWFkcaU6JBTbEah20e7KJkdyTP9S35Fo0YJ0Ky33OedRp4hegjc3LhjnHe9nQOxxptZLcCzHSnK3vOUVb07mLlR0hkVkOu/b5RYJyF9ne4sL3VicoCJeb0MYmSnA3UqTCkUIU6uxcNDm+mi5OVVjR0oq7TjcllBZhalp6ZBUUqBS4ZqocI4O1DNGrcW20eP1Y02KBVcFhQ3T+jxUAgEDh3cGDU+L/HaK04yU+hhmFX8q3eHCPW3znWcuwFNhTxxQik8gEbaGQqPnP4BPzncBusUZY/eWOsNe1pxFgy2sg83+aTT8I1L30Hu0Q579jPxxMxHT4eCoxJxrFri9O9BjHTTgyNGptp1DhZflHEvw+1AQCuHFmW1pkFCwaVoFSlwJomO40a99KnxzvgFUR8r6oYRarUrANP1NyKQpSoeHzdYkdLnicmIflnd5sLl3x5CCsaOsPBigAR/zrUipf3WxI+jhBj+nS8hmOn148P69phl9Pc0xTjmNZ4rOAr17j8Ana1uSKSGXXdn6kG+JJaK5bUWvHod03wCyL2tbvC5yv72bCfTE+fUqzz3ubterOZXk+dz7MUEsHWiJtJxJlQ8i3m2bkQkWRVYLx06VLMnz8fkyZNwqWXXort27f3+PiPP/4YCxYswKRJk3Deeedh9erV4fu8Xi8ef/xxnHfeeZg6dSpOOeUU3HPPPWhpaUn32+iTo3YPvg6uQZyf4vWickTrjHtvXbMdDU4vThhQlPas5VoFj4uGlgZHjdvS+lq5yC+K+LS+EwBw9qCSfn99tYLHWVUlEMRAgE5IPvmysROCCPx5V4ukYffGwVa8X9eecEOaDWu9STTE/7SzGS/tt+DVA4kH4dmGzczNBoeZHklMp0e2N+GezfX4qqmrY5+th3QsbUrE4eCe0nvb3XjzUCt++U19uBPdE2ObsZ4D466/2azUnWxgnOFgVLqNVA6fdCnA1lUiHRq5VptZExgvX74cjzzyCG6++WYsW7YMY8aMweLFi2G1WqM+fsuWLbjjjjtwySWX4L333sOZZ56Jm266CbW1tQAAl8uFXbt24cYbb8S7776LZ599FgcOHMDNN9/cn28rae8eaQMA/HBI/61BzKSRJRqUaRTY0+ZCB7PdA+mZKIp4Jziz4MpxFf3yml2jxjYco1HjpGw2O9Di8mFKWQGqdeqMlOH71cXgAHzR0Ek96iSvVGhV4b9DV1X2K+BMcCQ31ihxvLblZosTAHDUlrtLhmIl98nlEeOt1sDnuru9K3dDb7ZASqdPgstn1jQFdiVgp9Gy+932VFTJGuMYU6kzPWLsZNfNyqDeMyle5OCL8V1NRDIPr3d4E/5t7U9ZExi/8sorWLhwIS6++GKMHDkSDzzwADQaDZYtWxb18a+++ipOPfVULF68GDU1Nbjtttswfvx4LF26FABQXFyMV155Beeccw5GjBiBqVOn4re//S22bduGpqam/nxrCWtx+bCq0YZCJY/vV/f/qFIm8ByHE006CAA2mWnUOFGbLU4csnkwqkSDGQPSuxduiFbB44LgqPEHR9v75TVzxSfBUdqzM/i9rihQYXJZASxuP7YFG3SE5AO2oRhacsK272wJNt5iZedNdFS0SJU1TbKk+WOM2OXyiHGITtn1ubIdAR4ZjFy6gmXQKgJlZANYFzt63MMxYnV6sEsDMj1K65CUJYMFyQKxpv7Hfjzzd4Kv0eLy4cb1R3H7xmPwiyJe29WEQzLZmlWZ6QIkwuPxYOfOnbjxxhvDt/E8jzlz5mDr1q1Rn7N161Zce+21ktvmzp2LlStXxnwdm80GhUKB4uLeT1HmUzCKGzpG5LECU7oCGWuLUrQXbTY4qaIInxzvxEazA98LTjONVUck4L3gXrgLRxjAcVy/1dOCQSX416FWfNlgw6KRRpRmwXma6XOp0enFtxYnyjQKnFRRmNFz+ntVxdhmdeKLhk6cEJHYL9P1lA2ojrJTtDVybDPe7hWABHIX+sXowV+io6I5HRjHGEHP5RHjEJ2i63ONlagqU7zhwDhw5rOjxC5mrak/Rlm9ghh7D9wkp+Smky/GdzMfxfvKsfWTWPKt5H/rzMFcJo1OH7ZYHOHdU94/Y0RCz0+nrAiMW1tb4ff7YTKZJLcbjUYcOXIk6nPMZjOMRmO3x8daQ+x2u/HEE0/g/PPPh06n61U5lUoeRmPqRucMhq6GqdXlxaf1HdAoOFw5pQoGbVZ8dClxml4H3XdN2GJ1oLBUBy3T+8rWEQmobXPiu1YXqovUWDAmMI26v+rJCOC8GiP+vc+MVRYXrp44oF9eNxUydS79a1s9RAAXjjKhojyzeQN+UKrDC3st2NDigLJIi1JN998Z+s7FR3WUXaJlkGZD1ESTYsWaJhvt2R6/gI1mB6Ybu9obhcrcDYwljWewDenoj9/f4cYArRIlWdC5Go90fbV8gkVW1BFjX88B0tcNHfjFqkO4cEhp+DbJzAAZdQKwxc/3qdTxfs2knVjx6ypWNv6esEtBZfQ1AJAlgXEsoij2mGk32n3RbvN6vfj5z38OALj33nt7XR6fT0BHR9+nIPI8B4OhEK2tdgjBM+Yf+8xw+0VcMKQUgt0FS54laZ5uLMBXTXas2N+CWcFRtcg6IgFLdwU6fxZUFaO9zdHv9XRWuQ7v7AP+va8FCyoKoFbIu7GXyXPJJ4j4b60VPAecYtDCYrH16+tHc8qAQiw/1oFlu5pwHtPgoe9cfP1ZRyUlBVD1c/byXBVtbTDbVDju8OLDo+24ZJi+x0SGkhHjOGtJ3zrUhneOtGFuRXKdKKIoQkD/78Xa6PRiX7sbp1b2rvM/1ohxtLo5Zvfgzk3HUapS4LVTh/bq9eSEnZLMrnWVw1TqEE1wxNgjKWv06ceiKMLlF/HqzmYAwLK6rqVTsUZm+zMYFUQRbxxsxQmmrk4nNhjMdJDeH17aZ4ZHEHHT2HJsMtuhVfCYZAhMe4kX7Ca7DESI8vsZD/u9d0RMuVdmeMZVVgTGBoMBCoUCZrNZcrvVau02ihxiMpm6Pd5isXR7vNfrxe23345jx47htddeQ1FR30Z8U9kYEgQRgiCize3D8qMdUPNcIDDOgy91pBNNhfiqyY4NLXbMZH/sgnVEAmxeP75s6ISG5zC/sihcN/1ZTxVaJWaVF2J9ix0rG2w4syo7sqdn4lza1GJHm8ePmSYdDGqFLM7l+QOLsfxYB76o78APomTIpu9cfFRH2cXPNvqD/2c/vqW1VnT6AiO8PU31k6wxFnpuLG5vDXSib2ByZyQSOzz6XRO+a3Xh1VOG9msCzhvWHQUAlGuVGKdPfpcDtiHsiVM3R4JZk9u9uZFwk93+xsNMVZbTiHGIJPmWnw2Quv7+5wEr3qtrhzHKzEU2kJJmN05xQYM+PNqOz4534NETqsNruVc32fDvw234dzABKRAI5kOSTSiVjT48GshbcuMYE36/LZA3KfTbFS/YTTZBXOQIs18QYfMJPS6l88U4z7wyCIzlPZQTpFarMWHCBKxbty58myAIWL9+PaZOnRr1OVOnTsXatWslt61bt07y+FBQfOTIEfzzn/+EXq9PQ+n7blldOzyCiLMHlcAQZWpjPphuLAAP4BuzQ/IDR6S+aOiEWxBx2sCift8Ll3Xe4EBA9fEx2vqnJ180BLZoOkNGW6+NLFZjkE6F2k4PjjsouzjJfdEaf+xt7MhZz8eJ/vyeRmjY61kiV7avWxyw+wRY3D581+rE2qb+nWVidSe+z3mj04vndrfA4vbFDJii1b2cRlJ7i/1cIxv+0f7OtNA5KtnWKEYw+V5whNgSZc/7WM9J13t9aZ8FR+xerGvu+h4c6OiexIl99VxPvsV+pzqj9EjEHTGO03EFSM/vyGUjv9vSgCvXHEFLlPMj/BrMcdl17XLI1J4VgTEAXH311XjrrbewbNky1NbW4v7774fL5cKFF14IALjrrrvw5JNPhh9/5ZVXYvXq1Xj55ZdRW1uLZ599Fjt27MDll18OAPD5fPi///s/7NixA0888QT8fj9aWlrQ0tICj0c+jcE2jx/LjwVGi9l1HPmmWKXAWL0WrR4/DnbK5/ORE0EUsTwYiJ4zKLPnyni9FkMKVTjQ6cb+KBcpArR7/PjG7ECxipdM+co0juNwSjCT+ZrGPFuzQfIS24APjVWwjWd1giMYgiQQ6Lo92ghNqPHFNluTaRSKInDvtw14bEdz2hqTZpcPKxs7JY1gTRJLY/6wvQmf1Xfixb2WmNmYo9WNnALG3pI2/KNPsZfT+wx9DrEC40TXjkpGG/uxE4Cdoh4tIBMj6v2o3ZNQp5JfEHHP5nq8dbC1230tLh/+sc8iu61E2an7ligdWfE+Cn+MoDfWMSJHjHe0BbYni9ZBEe24bMeRHKa5Z83w4znnnAOr1YpnnnkGLS0tGDduHF566SWUlZUBABoaGsDzXT/Y06dPx5NPPomnn34aTz31FIYNG4a//OUvqKmpAQA0NjZixYoVAIAf/vCHktd67bXXMGvWrH56Zz1bdqQNHkHED4eU5u1occgJRh12tbmwyezAqF5M5cp1W61ONDp9mKjXYlhRZvbCDeE4DguqS/D3fRZ8crwDo0rKM1oeOVrVaINfBE4dUCS7PclPrSzCm4dasarJhoXD9T3mciAk20Vri7FBgYrneowMHD4BBQouZrblaCM0oa88e1cyI1kdzDRjnyBCoUj9d/TOTcfR6vFDw/duDOVocEp0m0faOPcwI/DR6sYdEVD9fa8ZpwwowuSyBFKD9zObN7C93ZyKQsnvJNvAZ7M7xwo8My1UrFjLAWJlpe6Jlz1Wmt8rux9utK8q+9Vy+wXc8vUxAMDLpdqoU8JDjto92NXmwq42F348wiC576kdzdjV7oLZ7cOvJskn0Si7Ztfi7h60x+tIi5UPgMXWZ6w1xj11KLLnFttR5pXBVyKrIq0rrrgCV1xxRdT7lixZ0u22s88+G2effXbUxw8aNAh79+5NaflSrdXtw8c0Whw206TDa7VWfGNx4CcjyzJdHNn5vD4wLVcue1yfNrAYrx6wYk2jDVePLMvo1G45WhGcRi3HNdhVOhVGlWiwv8ON2k4PRpZoMl0kQtKGbSiG/mIDmJ7WvO1pd+FX39RjUU1ZRPKtnqcjRtsvOV7wwI7cHrZ1zZzyCCI0afh5bQ2OhB21d72WO8Fp5UBX41mt4CWBizQxWffnsY/9vL4Tnwb/k8NWLpH+vs+CVY02XDpMj8trutoliYyIZWpwLHQeceg6/0LnXqxR4t7MPu5rYJ0MV5whbTZ4a2FGUTt9AozRnhDUU9KweqcXAHBQJvvvhrDfH3bpgyCK4Dku7nnH3h0riI6VaJA9dk99dT7J94OmUpMEvX2oFe48X1vMGlyoQoVWif0dbrQmsc4pH3R4/NjQYkehksdJ5fKYlluo5HFqZRHcgoiVjZnPtiwnBzvdOGTzYFiRGsMzPLofyykDAtly1/TzGkZC+hvbsAsFDewoRk9NtU+PB5avLKm1Roy2df0dauzZfQJqg9MLo7UZ400jZMvEThf1CiIsLl/UNZ+pwI7gunsR4Kh5LqE9nr2CGM54HHLMLu+lU7uC00Y/isinIZlKzWZ3TmCaarpFiyFDn0msteC94YsRPKVCZAcNmwcg3neLPb/idfSwa3QFMbBn8zdmB7yCGE725ZDZomWHnx0x7vpNCNVBMqX1CiJe2mfGjlbpjjtCjPOE3RO+p8+crTK5TaWmwFimjnW68fGxDugUHC4Zqs90cWSB47jwWszNTCZPEpiW6xOBeZVFstoeaUFw9PqT4x2UNI3xRXB0f/7AItlOU547oAgcAoFxInsZEpKtIoOzSO4eRqMqC1Rdx0H0oCd0yMVfHcEvNh1Hi8sXNdiOFyix6yhtXun03GvW1uGatXU9Pr+32NE+j19Ek9OLbdbEt6ZU81zMhnToLbn9Ai758hAe3t4kqQerzNZvRjIGh+qdEcGRP0ZngnQqdZoLF0OoftlLjzccGKduqrdkxDiF15ANLXb8ZNVhLDvSFr7NK4j416FW3PNNfdRys3XNTm3v6bsNSL9ndp+AVw9Y8dC2Rrxx0Bred1x2gXGMqdShacrJfBbrm+348GgHfvNtg+T2WB1d7PndU6dDrCz1FBiTmF78rhF+EbhwqD4nNrhPldBWTRspMA4TRRGfBaflfk9m03JHlmgwsliDo3Yv9lESLgCBBtOaJht4DphXKa/Pi2XUKDHRoIXF7Q+PihCSS3a3uVDb4ZaOkkVpl/XUwGP3E2aPI5lKjcCaYEfwAWaXL9wAZKcbxguU2ODL7utq8NY7vOG/RTEw6prKxjrb2PUIIq5fdxS/29KAZqe3h2d1UXCxA65Qp8Tx4HvYZHbEbGjLUaxuTelU0dij5U1Ob7egOt1C5xlb9tCU4VRO9falKeD5+14zfGLX8rGQNw62Yle7C83OKNmyY4wYx8uA3sms5e/0CuGdNjZbnFAGKzBTHRyxsO+JLX/ou5TMR+GI6Dj41uLAjeuPoo5ZysF+R20+IertIdusTjQ4vLG/HzKoSwqMZehAhxuf1bXBoFbgfFpbLDFRr4WG57DV4oA3ibVOuay204MjNg+GF6kxolh+a0FDa2i/iLiI5avtrU60ewVMLSuAXuadXnMrAtmp1zVTdmqSvfxiIAutZGskUcTdm+vxi03H4wZiPTXWXDESSUWOlrEjT25B6Bq1Y18nTouVDdDtTAO0ltmpweUX8eI+Cy5bdVjSeO0LtrHL7sNrSzCg84uxp+iGjiCtL/a5Mmgp94BD97XiQOytiti/LW4/rl93FP+34VhayxjS4fXD5vVHXe/r70XQFE+8teS9FToUW8cWyVraaGWJPpIZbyq1M+KxoaDTpFGEXycNee/6xMNUtiuiU0YUxT7NAHtgayPqHV68wWTplpzfPXQ6WNw+/G5LA362/mjEVOroSw0yhQJjGXrtgAUAcNkIA7QymhYrB2oFjyllBXD6RWxtocY60NVrKsckTkBgraqK57CmyZZU4pZctTq4Zje0JZKcnVSuAwdgfYudplOTrPX2oVbc8vUx/O94J9o9fnxR3ymZlpzMuR25JCTW1kORmV3ZEV6XXwzfL8lkHKcc7Gg2GxjbmFEhp18Ir3dd32LH+mY7HvuuSZIJOhFsnbCjTg5f7IYvEAiwdrY6u40yx5p6GbrdKRk1Yh+bVLH7xTuH2/DMruao580bB614Ya8ZbHXHmj7dEBwlb07T2nCWXxCxaPUR3LbhmKRTJrw9mRj6f+p+52PtaZwO7PeB3Rc3/Pqx1hjH6Qlgzz/2fNco+PB3mE/hcqhvzA7c8vVRNMaZjfGN2YGHtzVKvvshkd+9kGd3t+CatXVxE5Ulgn3PksA4xhRpAJJtrSTJ6XJpKnVoyg5JHZvXjy0WJwYXq/E9mWQXlpvQdOq19R1xHpn73H4Bq5tsUHKBLXbkqEilwCyTDg6/iK9b8nsKvFcQ8XWzHSqew0nlhZkuTlx6jRLj9VpY3X7sa6ep8CQ7fVDXDgD477F2/H5bI57Z3YJ3JOsTEz9WZJvSFSOjauTfduZFXD4hagPQLwR2o4i2D2vkMdlGJzttmv1byXF49LsmrG22J50AUTI9kil7E9NgjzYF+N26Nvz62wb8c78lfJvLL0gTk0V0GgDSjgO/ZLRVfpHxa7VWfNFgw+42VziyFBEIzv51qA3Lj3VIRhrlMB18b3Apk9ntl5zDofAmVOepHKGX7HXbj1mpo52XyawxdvgE/HO/BW1unyTQ80Z06IRyCqRyxPihbY04avfirYOtWNVowy1fH0VblHX2D21rxEazA0tqrd3uY38b2MGIrVYnrG5/SjpiChQxAuMYQTkg7byItRY5K0aMv/rqK9hs0h/Uzz//HBdeeCEmTJiAiRMn4qKLLsLKlSvTVca8UqRS4J7JA/DEqSN63CIin80wdgXG+d4xs8nsgN0nYFZ5IUpkvB3SGcHR7NAWRflqs8UBh1/ECcaCcEZLuZtdEQjg1zZTdmqSnQqYJDmhXAdsltVOX+IJnvyiCLdfCF972Ia1RzJtses5gRHjrhucfjHcAGSvYV5RxL3fNmDx2jrJPsVdx4y+Li/y2CHs1dGS5E4OkqzKbBDuZ1+rewCyPrjs4jNm6YzHL0YEu907ECQjfjGmgsoB+3nV2b2SSma37WGDmViBMduJke4p4+znH3otEcy05ChZqVMp3WtH3f7o34Fo2LvdfgENDi9+s7ke79e1AQD+sd+CZXXteHBbY8z9dn2CGP6+p+NKLgJ4amczjtq9WNNDp1adPdBR5fAJ4fOpp+A0leULYX8Fespqzmb4Zr8f7ojfzWanNzybIhPifp7XXXcdDh48GP73Z599hltuuQUajQZ33HEHfvGLX0CtVuOmm27CV199ldbC5os5A4owWIZrReXCqFViRLEax22ecMKOfBWaljtPpqPFIVPKCmDUKLDN6ow5GpIPQhe4bJhGHTI7OLK9rsme9x1RJDuFOqGk27SwU4UTH5XcaHbg0pWH8WXwu+yKEcR1GzFmgiCXXwg3GqWjpyKOBa9pWyzdsz5Lp4NGD1DZYCsycVAyvDFey8UU2Bkl2lEFO/Sl04dFSYM52npidkTdJpkWK6/fHDbocvoFyYgiW/ftbGAc43eT7WSwJfn5xOMTREkZoq079YtdAU7o7nSN7KYy8I92JPZcTOaVXP5AMswdbS68vD8w+hpKKlfb6YkZZLqYzi2O4yCKYtRpzb3FjosVqmKHaqEEYDetP4rr1tZBFEVJOT0p7Olgv7eJ5BeIfG3298jKZMtmv+NNTi+uW3cUv/62vi9F7ZO4gXFkQ+ivf/0rTjvtNLz11lu49tprce211+Ktt97CySefjOeffz5tBSWENdMUaKxvyuOpuTavH5vNDhQqeUw3ymPv4lgUHIfTK4shAvgyT0eNnT4BG80OaBVd245lA5NWidElGjS7fNjXlvgWLYRk0jG7Bw9ubcAxuyc8pVPJNDbZxlhnEg3af+wLTBF+fo8ZgDQZFbu2MXK7JkdEYBytXcnGJOzU4sM2Dz6r75AEZZ4YI8ZsMMSOOie6dq/N7cMnxzoka5LdEcFgtL9DQoFx5CiSpD6Y+0LFYhvzbIAhmWYZ5T3sbHVGHV1PF/ZccfoESeAkCYyZx8Wqevb2aHWZrHaPH98FZ0I8tK0RV645Et7bmq3faK8VCvLSNZU1HWtH2aK6ell/3oj17wAks7nY+vBEdoowW1x9crwTl68+gtVJLlkAgNoON+765njMtlFPWctDU/hbPX7YfAIanD7J8oNUjhg7JR058b9zkR1CNl/03w72O74/OKPH6vZnbAlC0jMA9u/fj4ULF3a7feHChdi5c2dKCkVIPCeWBwKLb8z5m4Dr6xYHfGJgqqsqC6bdz68KjJJ+0dCZlyOPG80OeAQRJ5UXQpNlSfVC06lXHm3PcEkIScxd39Rjs8WJtw61hhtY7O8k2xhLZjQ11KBTB48Ve8S46zmCKEoCcXa0icUGoGySqxf2mvHcbjP+dai167ExAjKbL8YoYYKNzF9/24C/7TXjA+a7ztZVrJHqkGjXIp8gxgwOQ0EJ2wiONa06spH/VZMNv/62Ac/uaon1dlKuIyLRWay13m3u5IL1VIzsPbStEfd+24DNZge2BveZ3tMe2GqP7cCJ9ln4w0Fen4sRVTqOK8k03csgyiOI3abrs3GodCo1E3D6xfDjvIKIz4I5b57a2Zx0GT5v6MTedjeeZs5jdgTcEfE9EyNmKbCz8OrsHumIcQqDS1uMWR2xRHaGuGL8jkh+99jM+/3Y4cVKunVWVFQEna77aEdBQUFeNnZJZows0cCgUWJnmyul01eyyZrgNOpTs2RabrVOjbGlGjQ6fXm5L+6aLMpGHWlOKDA+RoExyQ6h4ErFc+Hgi82kGi2hTSJCjThlODCOPvLhk0yllgY+XkGMOoJmjzGiEvq9ZDPVemIEkpJs1b7oDdGehJYnHWa2eooM6sNliBLtqKJk6PWL3UflQqKNGEvXGEsTf92zuR4bgjtS/O94IBjZaO6/mWPOiKnkvhifQ3uS7RKvIPZ514bQaNsGZsAgNGoXL0AKva10rXVOx3FTMQrtFcRu3+EOyd6/XY9lO6t8Ylfnll8ECoOjzL0pUbTvUaunK9gNdbh0eP0QIqZKO3wCzExgbPMKMRNb9VWHN/q64FgiP3PJzBOmLtnfF3Z0vDNDKekTCowXL16M2bNnY/bs2bDZbNi9e3e3xxw8eBDl5eUpLyAh0fAch9lVxfCLCPeM5pM2tw/brU4Y1ApMNGgzXZyEzR8YSMK1qhfTjbJZp9ePLRYHipWB7cayTWWBCiOK1TjS4U7Z3qiE9AdR7GpAS5M+9e54oRHRUIMzVqIots0uiNJp1l4h+oixJLFVlEZhrDKzr8uO6nRGNGS/szrx2q6mhLan4pgdliOTFYVEC7aiHTlyH2OWEGXEWNrB0PXYp3e1YFebC8/ubgk+t+u+1Y02/GZzfdxtbnpji8WBu785jhaXr9tUcrYOOiTbWiXXqP/oWDsuXXkYO1v73p6RJDkKjlzHG5H2M0FeOiQbxG6zOvHI9kZYoySNCx0qXpKtRLgFQfL9sTNJrABpB1enV5pQjT1nU11t7PfY7hPwjdmBRauP4MOj7ZLyOnyCZHDI5vVLk4SlsGDseZVIwO0TgAMdbrQFP8NYs02kyxGi/5b1J2W8B9xyyy3dbjMajd1u+/TTTzFr1qzUlIqQBJxcVYLlh1rxjdmBuVk4CtcXa5vtEACcXFEIRQr30Eu3kysK8fe9ZqxttuO6MaasmAKeCuub7fCJgZHXbH3PsysKcbDTgw0tdgwaqs90cQhJiMMvhEckersOkRW57650NDX68SNHeQL7+nZ/XOR61RUNnZIkPLFG/ZwxRonZhqXTL+DXmwMJbbQTynF6Zfd979lZf+yIFUsyYsyU54jNg0E6VdR1gb4eRoydfgGvHrBIMjrHmhYbWi8bClzYnTv+dagVxxxe/H2vGb+bOjDq8xMliiL+d6wD4/UaVOvUuH9rI4BA8G3SdjWb2XWmgHR9d7TEZD35oiHQWfzCPguemTWoL8WXlikYNMUbMfaLgfedvuRbyT3+1QMW1HZ64PA146HpVZL7Qu8vFdOEIwNcm1eQdFBJ7mMD5ojOrd78tDQ5vdAq+KidZJL1uD4Bz+8N5DT416E2yVaPDr8o6SDojFj3nkqSnAUJvESd3YM7Nh2HQa3AP08ZGrHsJHqFSaZSB+tgk9kOBcf1Wy6dXgXG0SxZsqTPhSEkGSdWFkPJBbbA8YtiVgWIfRXKRi3XvYtjKVIpMMOkw4YWB761ODArC/byTYU1TYGpbdncgTOrvBBLa1uxscWOiykwJlnC5hXCo7qpGGEKHUJEYF2mO8ZaOZaAyKzA8VvRNp+APye4dpY9GrsuT5LdmXn9fe3uqIExG2hYY6yRZV8r9J7WNdvwx++accGQ0qh14O9hjfGyI+1ojZjWHutjCgXCofvZUcjQFPC+jDJ9dLQdo/Va6PzAc8FR6WXzh4fvb3J5UcRkCHb5pEEVO6IWuS40UdYYuzY8tbMZdTYPnpxZDUWczlV2lDUUoCc29TV9ybf8YmDKMgeEc2xsNjug4ICpUQKeZmfgPZijnIepDPw8gtgtuZwjIigNYc8td8Q5bU9iyzcg0Llz/bqj0Co4TI0yi4wdBXb5xfBeySqekwSYXkGU5hjw+lOaiZqVTJJCIDBaDCD8/ZZOpY7+/XBGvJcDHW78flsTCpU83pg3LMkS9052ZYAhhFGoUmCCoQAdXiG8tiYfNDu92NPuRkUwW3C2mRcMDlfmyXTqVrcPO1oD094nZNG090jDitQYoFNhb3vX1ChC5IhtOLe6/Smf5hjS6RMSGgXxR4wYJxKgsyOoyWCD4cgtokJiBRaR0zfjCb2n0J7F79W1wyV0f15PiZEig+KesNMvBVGaNCkUKvb2sz7u8ODv+yy4c+Nxye8bOwrc4PBK16MKQsykYclOpQ4RERiZ/sbsQKfXj6N2Dzx+AasabThk86DRJZ0q7hVEvLDXjO3MkjLJyHWwvJ4on0skvxh9JkMqeAQRt3x9DL/e3AAg8Pk9uK0R921tjJonJlQMNkjZ3eZChye12Yo9flFyXtl93adWh7CJ7SITdrHfu0TWU4fWBbv83ZN/AdIRWZdfDCf7c/uFbr8z7ZKp1GkcMfYkd05HPppdThLrN1CS+donoCG4NGKGsf+WoMUdMSZEzmaadNhmdeIbswNjS7M36EhGaPTxlAFF4LJwlHymSQedgsMmswN2nxBOWpGrQtPe5w7IrmnvkTiOw9zqEryz34JvLA6cWVWS6SIRImFx+bD8aHs4izqAtG7l0+5JbD2fICY2WsKyJJnVOCRWQCtZhxzjMYkEw6xQsMW2w11RKiFVmXHZ99Dh8UsD5eD/exsUmF1d9b2fSQ55xN6VU6HV45eUwekXJYG4PcZIYzJsPgFPBjMbzzAWYLPFicuGG8L3H7d7Ua1Th/+9qtGG5cc6sPxYR/i29ogp9EBin4FPTF/yrcM2D1pcPrS4fOEp8SF72t0o0yhQoOAxUKcC0LX2PHTJ3Gp14L4tjRhbqklpR5c3YsQ4cqaEPcaIcSTJsgWfgCKVosfXtTCdL+YYswRC3Mxadm+ULNqRHSHp2uUo2RFjli+i3LGKGJkvIXQ+juzHQaDcbpGSnDczuB/spn7MSplpXdmos3MaslrBY05FEbyCiPXNub/d1uoszkYdaW5VKQBgYx7vH07k63ff1uPtw22SbY0S2Vakt+I1aEMCI8Y9b3OUKrEa7+woU0eMUdpk6yoUhNY7ukYxo40Yp6OhbnH7o9Zjp9eP/R1ufFDX3i3IO2zzdAvKNpsd+Ptes+SzrGNG64/au95bm9svqcfIUWH2372dSi0pmyUwChy6hgBAk1Na/mjZ1dnOAadPhBgxYyEWvyD2aq1sItgs599aHWhm6nt3mws/33gcD2xtCN8W6l8JJZf6+97A/uF72lM7O9ATkZXaEjEbKlaW90jsrAir2x+exWj3+qMmqjIzr3PM0XPCOJcgwh78XvvE7tO22ySBsdgva4yT1e6JXg89sfn84Y6KMk3/jeNSYEyyWlWhGtU6FQ7bPGhOQzZKuTlq9+CQzYPBhSoMLVLHf4JMzQuujV7VGH1D+1zR5PRib7sblQXZOe090rSKQhQoOGyxOlO6DQTJPkuXLsX8+fMxadIkXHrppdi+fXumi4S6YBBT29k/mdObEwyMA1mpkxsx7q1Y2xeyIzGxRn6SXSfp9oswu3ySekhmT+i+MLt9cEWpx06vgGd3t+Af+y14v65re7nDnW7ctuEYbt1wTBI4PLitER8d68DnDV3XorqOrhHjo0xA1+kTJO8vcoTdLplO28s3FsVxJnCKDITjtXu2tzpx6crD2JdAQMluQZROL+2zYGdb19TvVcHAv8Hpg9svSEZI7T4BL+6zSOoglTyCKEmU1mNgnGBg+PD2Rty56Ti+Mdvx44/24M6Nx7sFqxZX4t81l0+QlCNyVFuyt7ZPSOnexdLX6f13uy1itkUibF4hvF6+TN3zCHwqUWBMsl4+jRqzexdn4zTqkAkGLYwaBb5rdXXrwc8lXzFJt7L58wpRK3hMN+ngEURsT8G2IiQ7LV++HI888ghuvvlmLFu2DGPGjMHixYthtVozViZ2XWhLP/2mJPo6IqTJt1KRBCwWRwLH7vQK2G514itmJLLd4086cZVXEPHukbZut/UHi9sXtaHtFkQcCQazu5gp0ZssgfaB3Rd47/d8U48lB7rOV/axsUaMAemIbeR7TVdAwjru8OClfWZ8cqwDKxo6JSOPsXgEMaG13OlMvsVy+UV8zEz9Zr9HR+1eSQDm8otp3ZLTI4iSta89BayJfj8ag+fIWwdbYXH5cNjmwY7g9dLjFwJTypPI09Hq8UvW60YG75FTqeU4Ytzq8Se97t7mE8KdAEYtjRhHlWwP9ccff4wFCxZg0qRJOO+887B69WrJ/aIo4s9//jPmzp2LyZMn46c//SmOHDmSzrdA0uDEPAmMRVHEmsau9cXZTMFxOGVAEUR0Bfu5aE0OTaMOCWUSp+nU+euVV17BwoULcfHFF2PkyJF44IEHoNFosGzZsoyV6SAT2PSXFlfio1iR+99mUqvHj99uacDjO5rx7pE2PL/HjCvXHMGKhuRm8HgEEeua7eA5oKa4f2cw1Tu83ZL7RNrX7sLBTje8gohtTHD16gELdrW78J+IoD6EXXN61C6dfZDMZ54O61sc+PBoB/6214w/72oJT7dOBb+Yvmm4Id+vDmRDj5ZtGgDu2HQcbx6UdrC1efyoKlBhgj71eWQCyaxijxizkv3W7mVG6d881IqrvzqCH608jOvX1WFDS+LLyCI7XCJHjCO3CUvbiHGSybdYbR5/0jkM7N6uwNgg5xFjURTx3HPPoaWlRfJ3uiXbQ71lyxbccccduOSSS/Dee+/hzDPPxE033YTa2trwY1588UUsWbIE999/P95++20UFBRg8eLF8Hj6ZxoWSY2xpVoUKXl81+rsdSbIbFDb6UG904tRJZpwgopsdlplbmenDk17H1KowrAsnvYeaYZRBx6BjiihH0YXiLx4PB7s3LkTJ598cvg2nucxZ84cbN26tVfH5HmuT//t63Djli9r479QirUkMx2SaXz306BqQl49YMXHxwOjd9tbk+tcaHL50OrxY2ihut+vSYlMrW33Cvj5xuP4+cZj+K6VTaiVeHDbGWxTVAffX6LT57ORACDdTahxCQS3oT2dWWVaBQrSkKgzchS4p8C4L/a2u8NBniD2bclBaHpxqDbYfHfpHDHuS/KtZ3e3JB2wd/r8sLh9KFLyKFAp+nyd4ONscxaS9FkmCAL+8pe/oLm5WfJ3uiXbQ/3qq6/i1FNPxeLFi1FTU4PbbrsN48ePx9KlSwEEAvzXXnsNN910E84880yMHTsWjz32GBobG7FixYq0vx+SOgqewwyTDj4Rkl7hXNM1+pidSbciDStSY0ihCodsHtTZcq8zKhdHiwGgRK3AOL0WrR4/anu5pQzJXq2trfD7/TCZTJLbjUZjrzrJlUoeRmNRn/470oeRjL5oSCJIcvqF8JYrclGqVmBGRRFGG3q3FUqoI3pEmQ7Gov7JoVAczPa7vyPxa0ZoOvTIPow4jg7utRvq31Bm+LOcU9V9H+q+KiopgJDmtzV6QAm0iuQD3PIiDfS61HcwR24l1pd1tIk4bVBpn4/RFoyE9RHTi/UaRXBqeHoC4/7+lW1x+eEWRJQXqvt8jQj9p4qTLRzo5XZNIjNKIPbDiEGoh/rGG28M3xavh3rr1q249tprJbfNnTsXK1euBAAcO3YMLS0tkl7v4uJiTJkyBVu3bsWCBQt6VdZEeyQSOUYqjpWrIutoVnkhVjXasMniwMmVuRWIAIGtC75qsoEDcGplceI9X7I+lzicNrAYrx2wYnWzDVeWGDNSinTUkSiK4W21Th2Y+OclZ2w9zSovxM42FzaZnRij77/9BeVO3t+39BJFsVfr6H0+AR0dfevQnKPX4KuKIiCYuGdnmqdVDyxQosHpS2o/b7dfRJGShyCKMbd16m+/mjQAk8oC39+b19WFk5clq0AUoEzfrlgSgwpVaHIA1jhrZi+vMaBMo8TgQjWe3tmMNo8fN48x4ecbjgEAVDyHwYUqFCh47G5zxW30V6qkwVyJko9bhnQZVqTG3ePLcX59apNXtljt8KR5yNjncKNcq8BRu/R1lBxww9hyvLCnJer3QyuKEBLYi7m3ChScZO2/VsElnSwqlnmVRVjVaMNtE8pxxsBirDne3qfkbM2OQKdQsZIHO2e2VKVAm9svmVqdzULZwvVKDhZLamYWlpQUxA2Os2If4556qGOtCTabzTAajd0eH+rRDv0/Vb3eQFfPd6oYDLkxMphOoTo6s7gAT+5owmaLE3pDIRQ51jDd0myD2e3H9IpCjK7WJ/18uZ5LP9Sq8doBK9Y02XHbiUPAZzBBVSrraI/VgXqHF+PKCjBpsCH+E7KIwVCI749W4uX9FmxudeK2FP7m5Qq5ft9SwWAwQKFQwGw2S263Wq3drqeJEvo4wlGo5PHc/BpYLDY8uq2xT8dKRLlWiRaXL9yAV3CJZSHWKDj4RA6+NCbfSsYgnSpc94ML1b0OjIuVin4bQdXyHAYVqmH19NyZYtIoMX9gYFT1uZMGQRADwXDImBINHp5RBQC4bm1dj1OkC5V8t6y4xarogTGP9I+s6dUKiGJg3WUiSbUSdd+3DeGp4+mi5jhUaJXdkpqVqhU4q6oYgiDib3sDvy2VBcpwIqsSFZ+yQDUag0YJJzM9X69WhF+7L0HyFFMh/m98ORZUl2BcqQaiCPT2mxIqR6gspUxnjVbBoUDRP9/BQiWf9HrhZLF1blAr+nyNSEZWBMaxxOuhjnZf5G2R/+5trzeQmp5vIDDaYDAUorXV3q8nQzaJVkcTDAXYbnXi60MWjE1DkoZM+u++QGfNbKMuqZ4zuZ9LagAT9FrsbHPhq1ozJvRySl9fpKOOPtwXuLDPMSX3eckZW086QcSgQhUOtLmw61grBhRk/5r3VOjP71siPd/poFarMWHCBKxbtw7z588HEFhitX79elx11VX9Xp5IJUydsI2rVDbmNAoeJm1Xo71QySc0BVPNc/Dw8RvZHAKZrFOlWMmHAx6TVhnes7eUCfYGF6okf0cGLj0pVSt63dhPllbBQ8sEADzXtWa7RNX1ObCBrILjEHrKaZVFWNlowwnBpJ1AoPw9BcYGtSI8hRsIjG7GWu9apErsXEjUsCJ1eA/g0yuL8GWjLZxw9LdTKvFarRXVOhU+YrI8h0wyaHHE5km4POkOioHAd7JCqwIQaCureQ4eQURRsH4HSc5Ddfg7VqpSgEP6RkINaoVkP+4yTdf3u0DBw+VP7rUX1RigVvD40YRKeG0ujGfapJeNKMOSWmv4XExUhVYp6bxif+s0PI8CZoq6iufSttbYoFb0+rf0BKMO31jiJ+4cWBBYZgcEOrn6U1YExr3poTaZTN0eb7FYwo8vLy8HEBg5Lisrkxxz4sSJvS5rKhtDgiDKMpiRE7aOZhp12G51YkOzPSf2jA3xCYFp1AoOOKlc16tzQs7n0rzKIuxsc2FlQyfGlWauQyNVdSSIItY0Bqa9n1xeKNt6761QPc006nDM3o4NzXacO7jv66ZyiZy/b6lw9dVX46677sKECRMwefJkvPrqq3C5XLjwwgszXTSUqLsah2xDsliVusBYyXEo701grOChSuC8KFHxaI84XrzRwchRa7ZToFitCAc95wwvw+t7mvGjYXrJ89mkSKUqBY4i8cC4RMX32/pDrYKDkWkol6kV4QzHFVoVOryBvAeGGI3pW8aV46yqYoxlrjXRgvoKrTIcLBs0CpRIRuf4mOvFEz0XohlVosFhmwcnGHVYH8xaHLoNAG4dX46LhupRHQwea0o0eGDaQHxrcYQD41Lm3DlvcClmlRfiohUHU7qvcl9oFDwqCwKfTaGSD+/pHUrkOKRQHT6Xx5RqwruNlKoVKQ/02OnTkVmPjZquf6t5DkquK8lV5LTrELbuhxapMauiCCUaJSL7xn84pBQzjIFBgHiBMfs9rtCqJIEx27FVoOQknTU6BY92IfUdCSqeQ6Eq8TXiCg64c2JFsEOLhyiKCQXGo0s04cB4RHH/tuezYrsmtoc6JNRDPXXq1KjPmTp1KtauXSu5bd26deHHDxo0COXl5ZJj2mw2bNu2LeYxibyF9jPeaE48DX422GZ1otMrYFqZTtJDmCvmVBRCyQX2/O2vPTDTaXebC2a3HxP02n7de6+/5dP+4UTqnHPOwd13341nnnkGP/zhD7F792689NJLkk7mTGF/I8uZ719xCn871QpOcuxCZWLHVvMcVAnMSGPLevv4clw+wgBTnN8SXURCoyKmkcxOuZxg0uHN04bjsuHSJR5TDAW4cEgpbhlngjrJKZmlaoXk9dJJq+BRxgQtFcxslVDABUDyGJaK5zDBUCBZbjUluM56alnXjCV25DJyxLhIxUumZbNBskYhvS8ZVToVXjtlKO6cWIEzq4oxw1gQHslX8xwUHIchRWooIs6hYubzZc8TTfBz7G150kHNczirugSXjzDg8ZlV4ZHUMSWB/5eoFfjjCVV4dtYgVDGfbYkq9Vmp2ePpuwXGXfWo4jlomO9XIfM89rNnO2Mij8dS8RyGF2ugS+D9sL9nFQXS3wD2HI+cSaFXp+f7WKLiE/oNC1HzHOZUFGG6UYfxem3CSy7YGR1jSvs3MM6aVlu8Huq77roLAwYMwB133AEAuPLKK3HFFVfg5Zdfxrx587B8+XLs2LEDDz/8MIDAFOorr7wSf/3rXzFkyBAMGjQIf/7zn1FZWRmeHkayy0CdCoMLAz1qTU5vzkzvXB3KblyZm+sWi1UKzDDpsKHFgc0WB04qz+73Gfq8Ts3BJHCssaVaFCt57Ahuk5bIRZ7kjiuuuAJXXHFFpovRDduQZIOEkiRGOeJR8Zxkqq5BowASyIOk4bmEghT2u3R6cJ3sljg7LqgVHJT+rlGtYlXXSGqJJKhTQKfoPruN4zj8dFQgL8vmJDu7SlQKuNOYGImlVXCSDscBWiV2Bf8eXarBV812VGiVSXWEXDbcAJNGiSllBfjZ+qMAIAk+dUoeJcznXapSSAKiQiUPT3A0X81zUPdyGqua58Kf/a3jArMavYKINo8fZ1WVxHyeXt1VHyatErWdgZE2DS+v32QFF8jmreQ5XBrsmLlzYgX+e7QDFzMzGEYFg2R2hkSpWoG2FCeVCkw9DhxTp+Qlyy3YwFgZ8b0tZL5bBQoenuDIrFGjwOHgAPDgwvgZtBMNjEMzFwZEdI5FdoKwU6lL1QqglzkDelJZoEoqn4AmosNOmUBQreQCHe//N64clQVKlNFU6ujOOeccWK1WPPPMM2hpacG4ceMkPdQNDQ3gmR+B6dOn48knn8TTTz+Np556CsOGDcNf/vIX1NTUhB9z3XXXwel04ne/+x06OjowY8YMvPjii1Crc2fP0Xwz06TDUXs7NpodOC8Hpne6/QK+brFDzXOYZcrugLEnp1cWY0OLAysbOrM6MPYJItY226HkgNkV2fs+EqHgOUw36bCq0YZtVmfOv1+SHdgpkOzatFTOtlHznKSxlugaOLUiscB4okGLwzYPrqjpGtWN97zQqJYv2LBnR7WKmaCuUKUA4kyxVCewnU5obSgQaITbfekblWTXXGsVvOQzZkfRRhRr8OysQRhQkFzTVsFzWDBIGngWqXhMKyvAFqsTU8t0ko6VErUCKqa9WaDkw0FcKDDuzbw1bZSRehXP4aqRPe/YUK5V4uzqEuxpd2FooRobWgIdG6ERY9lMo45yDhs0SiwaGX2mCRs4GjUKNLtSe46xgWTovAoFxuw0ZSXHSTtCFOxnz6E9GH+Wa5W4fIQB1TpVQltSsa+vZwJ/yTII5rwbWtQVm+gUnOQ7XqDgJSPgpT2MWPdFlU6VVAeFMuIjSyQxrprnwHEczkjDlmSJSDow5jgOVVVVUKvVkr/7Q0891EuWLOl229lnn42zzz475vE4jsNtt92G2267LWVlJJl1oqkQ7x5px6YcCYy/MTvg8os4uaIwLZvby8UJJh0KlTw2mR2wef3hRBzZZmtw2vtMU25Oe480MxgYbzTbKTAmsjBOr8W5g0rAcdKGNTu1MdYawUSpeE4yjTHWtN1I6uBoWTzTynS4YkSZpBEZb/qiKmJUix0xZYO6IhUPuHtu2LIBTKyMvOwoaZGKl6zTZZN9JapAEcg2vb+j+97oBQoOjmAZdEpe0hFRycwMK1byGFLUt/boJcP0+M/hNlw8TI8CnkeD04tJEUkheQ7dRoxDNAqu1/tVFyQQTMXys7GB/Dkf1rWHbwuVQy4TqSNHD+Op0qlQpOQxuawARSpFn+onmgKl9Dxng1kN00mh4iM+b+b7pJN89nx4JDwR7G+BUdMVGBcpu5J9sbMjqnSqcCdRiVohmRGgVXAolXznFSlL4scmtRtSqIbNm/h2eJHJjCMD5WhUGZ7pkPSr8zyPFStWYNSoUZK/CZGD0aUalKh47AxO78x2a/JkWq6K5zC3ohA+EVjbnL1rxMOf14Dc/rxCppUVQMEFpl76+2FPe0Li4TkO140xYfFok2QETromuG8NLxXPSYIzY6IjxhHBa6xRYBXPdRtZiTcTXMVLA7JSZo0h20lXmECHHXucWMEI21Gr4DhJgMBOO04kKCtW8lg6bxiuGBE9qNCySYWUHAwaJaaWFUDDc5jOrAuOlXArGYtGluGziydiaJEGJq1SEhR/LziCNUGvlXx2kdmAVREdC4lKRee3lok8QoGoJk4ZkiljX8QrR6RCJY9/BtdcA9J6Lk5BXemijBgDwES9VtIR1W0qdcRIbUi0EfFEsTPv2YGBYcyU7MjfGbY+tQoeJi3zPVfySNXHynZojChWx/0tYkUWoaffvJBkcxykWu4OQZG8pOA4zDDq4BOBLQlkvpMzu0/ANxYndArpxT9XnRZcS7eyITu3NwpNe9fwHE4s18V/Qg4oUikwXq9Fu1fAgSgjPYRkEtugY9fjJRIc9kTNcxherMbC4XpcPsIgGTHuqW0cGTTFakhHa/OzoyjRGpeRx2Yb0WzQmlBgrIgf2EXezI5+DWNGbdnGOztaxL5FZTCxVKxplmwAEwpE7ptaiX+eMhR6jRIvnTwEj8yoSsn0UZ7jYtbR4tFG/OWkQTh/cKmkjgqZN6bmecl7TmadbypGRKONesY7bqpHYmPpzUi6KnhuANKOg6IU5AxgO3C0Cg7XjzHhzKpi/GSEQfJdUnJcxOcdfcS4NwHd3OBMq1lMm4E9fnmBdK3ztGA263Gl2m4zO9jOv0GF6pTtLc4BeGJmFRaPNmJCRAKteC8ReTe7dl8tKX/Pv2/9iQJjknO6slNnd2C8oSWQpfmkisKE1nxlu3GlmkAilXYXmpypTxqRbpuC095nlesSWl+UK3Ll+0ZyT4U2+jrgvmZQVvEceI7DT0aU4dLhBklDsafkMmpemtE11ghatGOwAao2+Hps+1HFcZLHGJhgvUoXmG5coEhsKjcbzLGjV+zxewpyRhR3BcbsbyH7HGWUv5UxGs0FUQIRnhmlLtcqJfvEpotWwWNQYWAZoSpG+dQRU6mTGzHue0DABrmhDoWbx5mg5jksqom+lre/RozVfZwiywbDxTHOy2SwWzQVqxQo0yhx67hyTDAUSIJcZcRsjNgjxsm/v9snVOCvswdhurErMGZ/nyYZClCo5LGgOjBwcNv4CvxomB6LRxslQblWwWOQTg01z4EHMF6v7Za9vLc4BBKinTe4FBzHSb6nyWSoBqTfe0lgHyPTdybkT+uN5I1pRh2Uwemdvize/md1Y35Ny+U4DvOCU8ZXJbHpvVyEPq9T8uTzCpkZTApH2zYRuWFHLgsljeq+B8YsSUMx4j62za7kpVOiY625jBa8RhsJZJ+t4qVZadnAYZKhAPdNrcSLc4dGfb1IbIDGrltkG/7RtqN5YmYVHpo2ULJ9lSSYjjEqFGpcKyV1E32qslyy38cKlNQ8J3mf2iTKm4os0uyZEzqPppbp8K/ThuGkGDOZetpaKJV0fQz82enTxRH7SvcGu8SgJKIO2M9XHREYs+dggWTqeu9GxKt1ask5xCbZKlTyWHrqUPxsTGANuV6twBU1ZShSKaT7GAeTb/1t9mA8ekIVyrXKhNbzJiIy9mV/n+KN7nZ7LvNv6TruxI+ZbvL4hSEkhXRKHlPKCtDpE7CzLfEkAXLS5vFjW6sTpSoFJhtyfxp1yGkDA0Hll402iFm0ZtXm9WOzxYEiJY9pxvyYRh1SpVOhWqfCEZsHzVk40k9yl0bB44YxRtwyziQZnUg0i3QskSMakuC3W0NQOs1WujY1/nq7EOlobaDpxkWMsLKN68iRnOlGXcJTjUsl2ztFT0g0K7h7AHt9GlWixeSyAknwzwbokhFjyRrO7rexnxebeTrTjeaQWGuMI4MobRLltfn6vh1RrBkBfERmZfbvGSYdfj15AM6uDmTm/n6asgH3dSYVe75LM0r37pzoqbNMsuQhYhZAtFF5oG8jneysgzGl0tkPHMd1S2IVKFf3OjBpleHnJ5IBOhF8xITonjoC4z5XUq989NspMCYk9UIZctdnaSKntU02CCIwd0Bhyn7cskG1To1RJRrUO7xRs5PK1foWO3wiMKeiUDYNt/4Umk5No8ZEbs4ZVIrvVZVIRvHOCgYAY0o1vTpmZAM42rTgaP+OzEodKwlY9KnUTLKrKE9T8tJ1kL0ZvQqJ3Kqmqwxdf58xsBj3Ta3EryZVRC1LiCRYl4wKdX+8goveaFbzHH4ywoBRJRoM0nVloc6knqbWSgJj5j72Y2M/nsuGG1Ck5DEzBZ2qkwxaLKox4MmZ1T2WWRVxXs4qL8R1o43486xB3bauSpVUTJF9ZEYVFtWUYVRJ13e3t8n02GA4cheJyE6EWGv82YC2L9859j1UaJPvuKsu7P69SGTP4EREHiaZ0d2BOul7ibVcIplR6HSLezatW7cuoQN5vV784he/6HOBCEmFWaZC8AC+brFDyKKRx5DVwezG83I8G3U0pwff88osmk69ujHQAZPr2cNjocCYyB07cje0SI0X5wzGryYOSPj5saZSAhGjnxGtyMhghJ0uyzaGo02BlRxHEfs1QsdmA8vxei0uGlqKB6cNjPZ2eiTJOB1j6reS5zDdqIu6tR47Ws0GH7ECs9D7iQzW2PsXDjfgiZnVssm3Eet80Cn5mCOz7OfKflY/HmHAklMDicT6iuc4XDLMgJEl3Tt9VDFGN/lgWRQ8h2FF6rSNmKUi3hmv1+KSYXrJ96E4yjmYyDTi8foCGNQKVOtU3YIx6bnIS6b5s5+jdMS49zWnVfA4u7oEV40sw+BCFS4eqsddE7t3OkUKze4YWdz9805ZYBx5XOZtxgpiQx0XFw/VS26XLi2J/t3I9BrjuN/CG2+8Ec888wzmzZsX8zEOhwM333wzNm3alNLCEdJbJWoFJhi0+K7Vhb3tbozrh8QcqdLk9GJPuxuVBUqMjnJxy3VzBxThH/stWNNkwzWjjCnLrJguLS4fvmt1wqhR9EsCGDkaV6pFkZLHd61OOH1CTu+5TbKTgufw6Iyq8NTgigIVvEwOChXPSf4dqUTFwxzc/zcyiy/7z+7bLEkbfOyaRHYtrobZLzhaY9PD7CUculvBAaHFC0qOQ4vbxzyGw1UjjTHfT08MMUaME53iyAaKRcroU6mjBYxso1kjWZssv2sA+xvHrk/VKbmITgxI/vbEOB6foiCmJ7HqP7J601UWhy91gxTxthRT8xx8UfbfVnBA6OZCJY+/zxkcda9fSV0pOGgEdsS463F9XWPMCu1FDQBXjoyeKC3Sn2dVw+YTom5Vlqo+pO7rhOOP7i6qKcOwInW35RscF+u7kUUjxmeeeSZuueUWfP7551Hvt1qtWLRoEbZs2YLnnnsu5QUkpLdmB9dArcuy6dSrmb1wo60ryXWlagWmG3Xo8ArYYpX/COSqxk6IAE6rLE5ZFshsowiOHvlEYKvVmeniEBLVOL0Wg5l9QdmGWbxRCjb4icwezDbqeHRPisX+zTbi2TWObNAZbbTL5RfCf4fid/Z1OA6YbAh0zJ3bx6mwAwpUuGtiBf48a5CkYzLRDi+2kc6+R+lepczoczj5FjttO3rdyAWbOdgQkQQp2mgsIH3/mXhH7HmlkgTG0tKksrrZQzl8QszHJUsZEbhGUsUYvY18r2oFHzUJXuS2auzMh1hJ7tht2/qLQaOU/KaxUjViHFk7saY9R/7uxctpIB0xlj43k+L+yj3xxBM477zzcPvtt2P58uWS+44dO4bLLrsMx44dwyuvvILTTjstXeUkJGknBdcZf91iz5pETqIohjMy5+u0XAA4LfjeV8h8T2NRFMNlnD8wfz8voGs69Tc0nZpkicjkVT1h1yB2GzFmjqPgOckIS+TIkzZG4p5YiWhChgQz1Q7SqeAPXs8UEQH5D4fo8cC0Slw7uncjxayTBxRhWJFaMi060f1u2UBRkrFZIQ02QkIxB9uQl+wPK8fAmAmU2DWhganUzFT0GFNHM9GHyp7v7OeSzhFjngNODrbFxupTNwNOMi0/amKqvr2HyORbPxxSiillBbh3ygBJ3bHnelWBPNa/h7C/D4+dUIUHplX26jiRAzSqGJ090qUCyZUv1jKDTIg7lZrjOPzhD3+ARqPBL3/5S3g8HlxwwQXYs2cPrrvuOigUCixduhQjR47sj/ISkjCjRokxpRrsbXejttMTdc2N3ByxeXDU7sXwInXMXsB8cKJJhyIlj40tdrR7/AlnU+1v+zrcOO7wBpLC5PHnBQDTjQXgOeAbiwOCKPbL1MBsI4oijtq9GFyoysvZIHLGNqR5AJFjW2wgFxkgsiNxPAKBRSh4jVxXK5lKHWP9bbSG4ckVheAnVmCCoQC/3lwfeC1OGmipeA5Ty1KbFb83e+sWxxglVsUY5Ys2YixZuynDqdTsFHF2uyNFRPZn9jNK1QheKpRplAACCS4jf6tj9UMoOSDZ2dA8x+GWceU40aQLJ0VNBXWMZFjXjCrDfw634cyqYrxxsLXXx+clnWY8ilSK8Hr9Y/auCfGlagVuHmtCsUohu990dhQ2MtN1Mtx+6a9hrPXAKp6DJzidJZHrP3ueSTr5MlyNCa/0v++++6DRaPDrX/8ae/fuxb///W9UVFTg5ZdfRmVl73ohCEm3OeWF2Nvuxvpme1YExquaaLQYCExvOq2yCP891oGVjZ344RB9posU1YqGTgCBDK35rkilwPhSLXa0ubC/w92nC3Gu+s+RNrxe24rfTqnECab82tZL7jQRIx+eiPXGbGMtckpx5GgH267rnlAqevKteCNcPMfh5OAe6aGEkmyZ0hV0sZ0AiW7/zHMcLhxSCo6LvUY53hpjaaeB/HIWSBKncRwKFBycfhFlGgVEZtVqrBHjTDNppcE8SzJFHwi/G2WMdbs94REYRT8txddI9nvFfhY/HKLH+YNL8UXw2gxI30NvPoHIGQuFEcnWQlnu5aavvwlVBSrUO72YGLFlKPs7IE2i13V7In1Z7E+skpdPYJzUr83dd9+N6667Dv/85z8xcuRIvPnmmxQUE1kL9VCuy4Lp1IIoYk1TYD30KQPyOzAGgO8F91L89HinLD87j1/AmiY7lFxgWy1C06l70ub24T+H26DkgMFRttYgmaVWRB+BCuE4DiOK1VBy3fdNjRztYJ/OjnYGslJHb9AnOk05VBYgcM24eawJo0s0OKMf9p5NZh/an44y4qqRRkkDOVomaqCrUcw2jmNls5aL0GcXKtvzswfjsROqMKhQjQ5v1whbrOmimgwH+wZ117hYZPWyo32xPr/Qb/2wop5nSqXro2PPiQuGlmKyoQB3Twpkmec4LqXJnDq80v2lJYGxTLKkR9PTVp+J7P188zgTbh1nwmUjDJLbY2XhT3Y6NLtjjPQ3VOZTqU866aRu0wNEUURtbS0WLFjQ7fHr169PXekI6aMBBSqMKFbjYKcHdXYvhsb5Ec+kPe1utLh8mKDXorwX+9jlmmHFGowq0WB/hxt7ZJhZfKPZAbtPwMkVhVG3i8hHM8t1eOWAFZvMDlxek1hWzXzxr8NtcPlF/HBIKQbIbC0aiZ/8igPwxMxqCGL3hlvk2rqekm+xDUlJIq4kMrmHyuoWRJxVXZLWESu23Z9MYBwinXbJbgPVvb7ZxrGWT3w0PRMUPIdX5w4Jd6joNcrwdkvnDy7FYZsH144y4vP6rpFLdm1mpU6J9nZpwNUfFlQX47DNI0kUFRk4SmYiMKPE7Ln74xEG3Dd3GN7d2YSX91uC93dNtQ79na71omxXebFKgYemS7clU0R870IzQJIpzi8nVuCfB6zhNdIhbCdaT8FnpvW0CkLDd2XBZ0fUWSqew5lV3X9bYiXfUkX8DsYTaxOAyoLMtn/jvvrll18uu3nzhCTj5IoiHOy0YnWTDYuK5NtY/zI49edUGi0OO6uqGPs73PisvkN2gXFoGvV8mkYdVq1To0qnwiGbBy0uH3XwBDU7vfj0eAcKFBwuGabPdHFIFJHBQLT7FRwXtcHH3sZzXLDNFGj1RU4fHl2iwU1jTZhaVoA2T1dgFC0zbiyh0bKetpdKFZ6ZfJrIKFOkyORjXcftEm/f5n54m70Sa9/hgToVHplRBaDrOgFI13xOL9Nhb3Bbxv5049hyAMDqxq7ElpFTbqUjxl3nsiQDMcehTKuKGUQrOA4+UUzbiHG8UzHWqGYyxZk7oAhzY7THrhttzHiSqHh6GnmN7MyLtnY85lrzWEsiup03PYv8Xk82aLG91YVZ5ZmdgRf3G3nrrbf2RzkISZtTBhRiSa0VaxptuGKEQZYdPW6/gK+abFDxHE3LZYT2NP6qyY7FowVJptJManZ68a3FCYNagWllBfGfkEdmmnR4v64d35gdOLuP28bkin8dboNPBC4eUirJbkzko52Z/hptbV5PV43Iqac9jRhzHIfvB0d4ncz2NVZmD+J4QkFjkss9e4VtHJ9WWYSlB1vxoyQ6dyKT80Q7bry1kJHrvbOJIkaAdmplEQYUKLut3+wvsaZIA5GfTfTHhf5m35+K4+AKBtFKnoNbSF8SxtElGlwzqgwT9NHrT7r9T9ffFVoljti93Z+QpHMHl/b5GOnWU80rIoJYn9h99JiPcYRY09Rjfb9jKY5IWnDv1IHo9PhhynCHujxamYSk0YACFcaWatDk8mFfhzvTxYlqfYsdDr+Ik8p1KKKGc5hOyWNuRRHcgijp4c60z+oDexd/r6pY1lOpMiG09myTObv2D0+XBocXKxo6UaTkcX4WNKbyVTszehttTWKi2XgVHCddY8zHXivLjhKPLg0kh5xhjB8o9eea21C2/UIlj4oCFd49fTiuSGKZBDvym8j+viFuJuovSTTrlwzFmomg4IDTBxZnbFZNT/XP1rZkynuUkcJYycVCAXW6TlWO4/DDIfqYSVUVMd7fNGPg+lQkk072dOqpTyL22uD4z2erTpJdPsk1xvqI3UYKlHzGg2KAAmOSJ0LTk1fJKLhihfbCpezG3X2vOpiEq74jwyUJ8AkiPqvvBA/INhtlJo0r1aJQyWN7qwsuf+SmN/nnrUOtEETgwqGl1OklQzePNQEALhmqD98WLVBL9FxWKzjJrKRYIyqANFA8u7oEv5tSGU4g1JPQiPOFQ9Lf0TKsSI0/TB+Iv540CEDyayo1MToG2MNEO6RbEPDMrEFYPMqIqVk8KydWgJbpBEOSgDaiKLG2mGIfF/os+RgBVuj2TAUZsUY15w8sxk1jTfjjCVWZKFa/6nHEmPlgIpeCRPubxa6Vl+zFnuAa41BnELtzhZzmhFBgTPLCyQOKwHPA2mY7/DKbltXi8mG71QmjRoHJWdwASJcxJRoMLVShttODve2uTBcHm8wOtHr8mG7U0RraKJQ8h+nGAngFEduszkwXJ6PqbB6sarShVMXjB4NotFiOzqouwbunD5fkMIi25tWV4LxlDS/drkkdZZQt/Fim9ahV8Jhh0kkS+8Qyq7wQL88dgqtG9k/OjAmGgpjraeOJ9f7ZaZrspgMjigMj1COKNBhapMZ5Q0plufwpUWyAwK7RzvREo1gBe+C+6H9LOjkUUUaMo4w2ZqoDIFaCKJ4LdCyFZkLksp5qPtZ64Mg92aM+l6lPXYwt53oaMX54+kDcNNaE0wfKM58OBcYkL+jVCkwxBJKdfNcqr8b6lw2BabmnDyyWfTKHTOA4Lrye579HMz9q/MnxQBkWDKLR/VhmmgLr5Dfm+bZNbx1qhQjg4mH6bnvfEvlQ8JykQRjtb3eiI8Y8Lwl6ehoxZqdSq5NMbGXUKLMiYIzcriok1pZWD00biIemDcT0BKaUZwP2ms4GlpmeOyKZ9txtjXGMoCnKuRxvSnymOgBiraHOdIeEXMSaPh259Vw0bH0WMD+WmgSzdQ8oUOH71SUxZxtkWlZcqevr63H99ddjypQpmD17Nh577DH4/T2nuW9ra8Mdd9yB6dOnY+bMmfjNb34Dh6OrkbZhwwbceOONmDt3LqZOnYoLLrgAH330UbrfCsmgUyuD06mb5DOdWhRFJruxPHvP5GBeZRGKlDzWNttgSSJJTao1OLzYanXCpFFgenCtEuluurEAPAdsNjskexXmk2N2D9Y122FQK7CAptzLXuT2LiGhbZQSHTFW8ZykwRcrMASiT03NNez7KmXWFLJvl515U6QKzJzKhqA/Eez7ZIMIPsOft7aH8zJWxnB2qXfXVOrojw397GfqXcZMCpWxEvW/aEnrpgRnJU4yRJ8hw/52xVxjHGMqtTZGPoFEDJTRCL7sA2O/348bbrgBXq8Xb731Fh599FG8++67eO6553p83p133okDBw7glVdewd/+9jds2rQJ999/f/j+LVu2YMyYMXjmmWfwwQcf4KKLLsKdd96JVatWpfkdkUw5qbwQap7Duma7JBtoJu1ud6PB6cO4Ug2qdfL5YZAbjYLHWdXF8IvA/45nbtR4+bHAa59VXUKj+z0oVikwrlSLVo8ftZ3yTHiXbsuOtEMEcP6Q0qS24iGZwTb22D2FQ8tbaooT+30WIEoaVrGyMgOQBH+ZXnOaLuy6Q3bvXPb3c1AOX/uUUTpZgMx3hLB7aKsizj22aOxoYrTkabGybodCskx1cMRe252J0mRGtMD4vimVeGXuEAxhAlFJhmrmxytmVuoYW7CxMyJ62kM5mokyGmiQ/dX6q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXm/0lOu1tbVYs2YNHn74YUyZMgUnnHAC7r33Xnz44Ycwm80AgJ/97Ge4/fbbMX36dAwZMgRXXnklTjnlFHz++ef9+fZIP9IpecypKITLL2JtszxGjUNB3hlVNC03nrOrS8AD+ORYZ7/s3xnJ7hPwWX0HVHzXdisktlB26o0t+Ted2uzyYWVjJwqVPI0WZwk2AGCTpN04thyLRxlxwxhTQsfxCaJkpGVEcVfW3GjB76kDCjE7w/t2phO7Zlqv7hoZVvEc7ptaiYXD9RhbGj2zcC5gOwY0PQSj/Y1d2hE5jZWLMZVaxXcPGWJNWRaDQ8YZS77FvDC7RV6udkBF4wnvKd11m4LnUKZRSn6jlJKOkPidCLEez64xTrRD5KmZ1bhyZBlOl9GODbLPHLN161aMHTsWJlPXRWnu3Lm4//77cfDgQYwZM6bbc7Zs2QK9Xo+JEyeGb5szZw44jsP27dsxf/78qK/V2dmJ0aNH96m8qZgeEzpGpqfayFlv6+is6hKsbLTh83obzspwMpx2jx9fNdlQqOQxb2BxWj7vXDqXKgvVmFVRiPXNdqxptuHMqtQEHInW0Wf1nXD6RZxVXYyyPEy6ley5dGJFIf55wIpvLA4sGmVMZ9FkI1Q379cF9i2+cHAJitSZXk1IEsFOpWb31yxU8jgviezPPlE60mLUKPD0idUxt3u6Y2L8LNTZLFamWhXPYbpRl/NLUrSK6KPEmd7mr6ep1CzpjIfu98daJyqE7+99GfuCHb02xJjCn+tCI8bRZiewv1GKGN/RWJ0I0qnXXbdrk8yTAAA1JRqM0mtltXRC9q07s9kMo1HaqAoFyWazOWpgHO05SqUSpaWl4RHjSJ988gl27tyJ3//+970uq1LJw2hM3TpRgyF3e5FTJdk6mldWiEF7zdjd7kKnUolhTLr4/vbx7uZA43lEGaor0juqlCvn0qKJlVi/ohbvH+3AjyYOTGnvb0915BNELF9bBwD46eQqGDN43mRaoudSWZmIQUVNONjpgb9AjYocni7Janf78L/jnVArOFw1pQplWlWmi0QSwI58FCl735nhE8SIrYg4DC/O3RHReBQ8hwuGlKJMo+gxE3Ku0vRh3WU6sQF7T58Fe1+0BEmxslKHJnXJYYQ22f11c4U7HBh379GQTpePscY4xnF5yd/s+S37ScgJyVhg/Oyzz8ZdJxxa7xurJ6GnHoZo94miGPX2DRs24J577sHvf/971NTU9Fimnvh8Ajo6+p7xmOc5GAyFaG21Q5DZ1kJy0Zc6ml9ZhNcOWPGfXU24enRmRrIEUcS7+1oAAKcbC2CxpGdqd66dS4MVwHi9FrvaXPhodxPmDOh7R1QidbSqoRNNDi9OMOlQ7POl7fOSs96cSzPKCnDM5sGn+1pwtoymSqULz3NYdrwTTp+AcwaVQLS7YbGnZ411SUkBVLQvcsqwjfriaENjCfJGTKXOjaZi31wdnDHS6e1KmprpqcT9hQ1A5ZR5VxVjlDBSvGC+mPkNkowYh6ZSZ+gts+u5Y+1pnOs8wUz6migfMHtLrO25YlWVlqlbScdIjvzYZSwwXrRoEc4///weH1NeXg6TyYSdO3dKbg+N+kaOCoeYTKZuI8M+nw8dHR3dnrNx40b87Gc/wz333BO3PIlIZfAhCGJOBDPp1Js6Om1AEV4/YMUX9Z24fIQhIxerby0ONDp9mKjXolqnSvvnnEvn0o+G6fHA1ka8fagVs0y6lE3BiVVHgiji34fbAADnDy7NmXrsrWTOpROMOrxf146NLY68WJft8gv49z4zeA64YAidK9mEHTUp7cX096oCFeqdXpRrlWhyduU/yZP4LyHqOKOPuainfazloqdRXTaQLFMroeY5jGf2/B5S1DUTiA1AQz99mXrHRSoFnpk1CKVqBb6o7wzfrpLnR5AWFw7V48V9Flw0VN/tPskU+BhrymPFuVoFj6dPrEaxSgEzs0sIjRj3kV6vh16vj/u4qVOn4oUXXoDFYgkHtevWrUNJSQlGjBgR9TnTpk1DW1sbdu7ciQkTJgAAvv76a4iiiMmTJ4cft2HDBvzsZz/DnXfeiUsvvbTvb4pkBaNWielGHb6xOLDRbMeciv7fJunjYHbjswflfrCQatPKClBTrEZtpwdbrM60r1H7usWOIzYPxpRqMNmQv1Ooe2O8XotCJY/trU64/ULOZ2f+9HgH2j1+nFZZhAEFNIU6m7CBml6twA8GlaBMk3gT6f5plfj4WAcuGabHvd+6wrfn9hmfHOkWOhksSD9KZAQuUxaPNsIVZ39uNuuwWsHhrXnDJO9Dp+Rh1Cig5jlJUNW1xjhzb3poMGiPNx08V507uBQnVxTCEOV3TDKVOsk1xgDCy0NaPWxgnBt1K/ufprlz56KmpgZ33XUX9uzZgzVr1uDpp5/G5ZdfDpUq0PDYvn07FixYgKamJgBATU0NTjnlFNx7773Yvn07Nm/ejIceegjnnntueH3yhg0bcMMNN2DRokU466yz0NLSgpaWFrS1tWXqrZJ+tGBQIAv0f4/2/9Y/DQ4vNpkdMKgVmJXD2UjTheM4XDJMDwB462BrOPtlOgiiiH8dagMAXDbcIKsEEdlAyXOYVlYAjyBiq7Xvy0zkzCeIWHakHQBwcfD8JNmDbRAWKnlcP8YU/p1JxIACFX46yogilUI6lZp+M8JiJWrKZex7ltuW7ucNLsWPhhl6fEzklGsFz3W7Dr548hA8e9JgyXco01mpWewU33z7PkYLioHYW3KxnRuJVBW7xjhXpqnL4ZztkUKhwPPPPw+e57Fw4UL88pe/xAUXXIBbb701/Bin04lDhw5Jtm964oknMGLECFx11VW4/vrrMWPGDDzwwAPh+5ctWwan04kXXngBc+fODf/HHpfkrhlGHQYWKLGzzYWD/bzP6vt1gf1NfzC4JGd+SPrbSeWFGF6kxt4ON75O43ZA65vtOBwcLZ4a3M+UJCe0bdM35tzetml1kw1mlw9zqooxLI+TLWUrtsFc2MfFcuyvep61wxOWL2uMs/0Sz06zjRVUKjguZltGDn0B1M7qjmOzUnPSzo+QRDoR2MeXqGUfUiZE9lmpAaC6uhovvvhizPtnzZqFvXv3Sm7T6/V48sknYz7n0UcfxaOPPpqyMpLswnMcfjC4FC/ts+DDo+24bXxFv7xuu8ePLxo6oVVwtL9pH/Ach6tGluH+rY14rdaKE026lG9/4RVEvFZrBQD8ZASNFvfWdJMOPIBNZgcEUczJHntBFPHukTYAwKJx/fNbQtKnr4FxIpld812+jBjXFGswtlSTE9tSxduNhw2CFRwHnyjCL4Nh8nzphEkG+/WLtS9xIrXG/tZNMRRgUY0BU7J8ECE3wntCeuGMgcUoUHBY3WhDm8cf/wkp8PGxDngEEWcOLJZkcyTJm1pWgMmGAtQ7vPiUSa6RKsuPtaPR6cMMYwGmlmV/oyZTSlQKjNVr0erxo7bTk+nipMUmswNH7V6M02sxpbz/cxaQ1FL3cS28ZDsTapTnNSXP4Y8nVGPh8J6nLGeDZLY6CnV8+DMfF9OIcRTsb1SsbdQS2ZaYPSUCy9wMGFWS3blYKDAmeUun5HFmVTF8IvDxsfa0v57bL+CjY+3gOeD8Ibm/dU26cRyHq0eVgQewpNaa0s6NDo8f/zrUBp4DfjoyM1t65ZJZwenUXzfbM1yS1BNFEf8JZi1PZk1qNtqzZw9+8YtfYN68eZgyZQrOOeccLFmyJNPFSplTBhRibkXf8z5I9zHu8+FykhxGEvtbKBlUZUFWTNbsJpkR49B575NBZv5UzybLBWyHnYKPHhgnUmty+HxTjQJjktfOG1wKngM+PNoBh6/n7Ix9tfxYBzq8AuZWFFLG2hQZUazB2YNKYPcJeGW/JWXHfWm/BXafgO9XlUi2oyC9MzsYbKxttqU1WVom7GxzYV+HG0MLVTjBlNszC3bs2IGysjI8/vjj+O9//4sbbrgBTzzxBN58881MFy0l7pw4AL+cNKDPx+FoKnVcOdiejmtQoRrPzhqEP504KNNF6ZV4sx/Y3/bQ2mQ5dIDQd7A7TjJ9uutvdolDIrNdvDn4Rc7ObitCUmRAgQqnVxbhiwYblh9rxyVxMjT2lsMn4N0jbeCBnJhSJSdX1JRhXbMdKxttmFdZ1Oe1XBtb7FjVaINRo8CikWUpKmV+G1CgwshiDQ50unHY5glv9ZAL3gmuLb5omD7np81ecsklkn8PHjwYW7duxWeffYbLLrssQ6WSn1jTFEmXHGxPJyTbOlrZzynewKt0jXHg/3KYSk26Y3+j2ARr7JZLifx0DS/WoKpAhZnludMpTIExyXs/GmbAlw02vFfXjh8MKkVBHxOvRPPRsXZ0eAWcVlmEQYXZdWGUO52Sxw1jTHj0uyY8vbMFf55VHXOLgng6PH78ba8ZAHDT2PI+J+EhXeZUFOJApxvrmu05Exgf7HTjW4sTFVolTsnAfuhy0NnZidLSvi0N4fs41TH0/L4eJ1XYcigVnGw6TORQT1eOLMPHxzows1wnm8+LJYc6khWmGlQ8361+pPXUfTsuvyhmvC7Z719/lkXO55JC0f2zAiL2Gk8g14KG5/DC3CF9Kovc6okCY5L3BupUOLWyCCsbbfjwaDsuTfGIbofXj2VHAmuLf0yjxWkxu6IQ368uxv+Od+KpnS24f1pl0iM1flHEkzubYXX7MX9gUc5Pi+1vcyoK8VqtFWub7TmT5TuUifqCIaV5uY5ty5Yt+OSTT3rcNSIepZKH0ZiaTgWDQR77wmuYxIrlpuIMliS6TNbTz4xF+NkJGXv5hMnlXMo0NdPJXFSs6fZdZetJrTZ3/a1UAPBBAJey73dvFbu68o9koixyPJcMIrM9na5rsKaY+bu/60ou9USBMSEIBKxfNdnwzpE2nFlVjLJejjhG80ZtK+w+AWdXl2CgjtYWp8u1o4zY0+bC9lYnXtpnwfWjjQkHX6Io4pV9Fmy1OjG0UIUbxpjSXNr8M1CnwohiNQ52elBn94YT0WSrBocXa5vsKFUFkvhls2effRbPPfdcj49ZtWoVKisrw//ev38/brrpJtx6662YPXt2r1/b5xPQ0eHs9fOBwEiDwVCI1lY7BBnM0fX5uhriFostgyWRkls9yRHVkZTT5Q3/3druCp/P0erJ5fF1PVEI5Gzx+oWMfwc6O1zhv/uzLHI+l9g68bq7PmMf8xn2V131Zz2VlBRAFWdHGAqMCUGg0X7u4FK8V9eOpQdbceu48pQc91CnG/873oEiJY+f1NBocTppFDzumVyJX31Tj+XHgnWewMikKIp4ZWcT3q9rR7GSx92TK6Ht43YtJLqTKwpxsNODtc02DC3K7vXb79W1QQBw7uBSaLL8fFm0aBHOP//8Hh9TXt71m3jgwAFcddVVuPTSS3HDDTf0+fVT1RgSBFEWDVD2bJBDeSLJpZ7kjOooQGBykrr9Qrc6YeuJzbP1/eoSvLjPgh8MLsl4PQ4KDkgY1IqMlEWW5xJTHAU7BZ5pLvV3meVSTxQYExL0o2F6fNHQiS/qO/H9qmKMLu3bXmyCKOKFvWYIAH4ywoAS2rc47QbqVPjd1Erc+2093j7chjaPH9eNNsbcl9QriHhxnwX/O96BAgWH+6ZVoopG9dNmTkURltS2Yl2zHT8Zkb2Bcavbhy8abNAqOJwzqCTTxekzvV4PvV6f0GP379+Pq666ChdccAF+/vOfp7dgWYqjPLgky2kVHFx+EQZNV7vFEydoYbNS/2BQCaYbdRgog62pBupU+POsQTBpqA0Wwq78UUjWkdNvV3Z3cxOSQkUqBa6sKYMI4M+7WuDx9237pv8e7cDudjeGF6mxoDr7G8/ZYmSJBn+YUQWDWoFP6ztx+8bj+MbsgMBctEVRxLcWB+7YdBz/O96BMq0SD82oyvqN6eWuSqfC8CI1jtq9qLN5Ml2cXvvgaDu8gogF1SUoyqMOr/379+PKK6/EnDlzcPXVV6OlpQUtLS2wWq2ZLpqs5MDyeZLnHj+hGucPLsXFQ/Xh2zxJpJjmOA5VOpVsckkMK1Ln1W91PJKs1EwwTFn0acSYEInvVRVjbbMdW61OvHmoFVeNNPbqOEftHiyptULJAbdPqMjLxDyZNKJYgydmVuMve1rwrcWJh7Y1wqBWYERxYF3rYZsHFndgHeBEgxYPzR0Opcsji2k8uW5ORSEO2TxY12zPuq1LAMDuE/DJsQ4oOeD8IX3LxpxtPvnkE1itVnz44Yf48MMPw7dXV1djxYoVGSyZvNDPPcl2Q4rUuHZ0oP1TqlKg3etHZZzRX7p6Zg+2w0Ih+TsTpZEXCowJYXAch1vGleP/vj6KZUfaMUFfkHR2YodPwCPbm+ARRCyqKcOwLGz85wKTVonfTanEBrMDH9a1Y1e7C5stgSQ/PIDxpVqcO7gEcyuLYCpUw+LK3hHMbHLygEIsPdiK1U02LByul82IQqI+PtYBh1/EWVXFMKYwSV82uPXWW3HrrbdmuhiyR1PxSC7504nV+K7NidkVPWcNNqgDv4fFKvoGyB3beaeU/J1d1+N0yK+rOiEJKNcqccu4cjy2oxlP7mjCYzOrMTjBvYe9gogndjThuMOLmSYdLhqaXyNKcsNxHE4qL8RJ5YVw+AQ0u3yAKKK8QBXeozjbArNsV61TY1SJBvs73DjQ6cGokuzZ09jtF/BBXTt4ABcyUwwJYcll32JCUsGoVeK0yviZ9y+vMUCAiHMHUbtH7thfKEWM0eN8Rd06hERx8oAiXDpMD4dfxG+/bcAxe/zRRK8g4skdzdhscWKQToXbx5dTA0lGdEoew4rUGFasCQfFJDPmVQb2R1zV2JnhkiTn8/pOtHv9mFNRSEnaCCGEUaxS4Kax5Vm5RCbfsG1TNjcpTYenwJiQmC4bYcD3q4vR6vHj7s312Gx2xHys1e3Db7+tx/oWOyoLlHhw+kBK9EBIDKdUFILngNWNdvizZF23TxCxrK4dAHDxMH1mC0MIIYT0Eh9j+rRIoTEFxoTEwnMcfjbGhB8OKUWnV8CD2xrx1M5m7O9whTMcm10+/PtwK275+hh2t7sxqkSDP0yvyru1h4QkQ69RYlpZAdq9fmxrdWa6OAlZ3WRDi8uHGcYCjCjOnunfpP9R05IQImexplKL9ONFa4wJ6QnPcbhmlBHjSrX42x4zVjXasKrRBjXPQckBjuD2BTwHnDe4BFfWlMXcM5cQ0mVeZTE2W5xY2WjDdGNyCe76myCKeOdwGwDgkmGGzBaGyJ5IrUtCiIyxU6m1TCrqvm1SmhsoMCYkAbMrCjG1rACfN3Ti62Y7jtg98AsihhapMcVQgAWDilGto3U1hCRqVrkOWgWHr5vtcI4RUCDjdd8bWhw45vBivF6L8Xra65r0jBqXhBA5M6gVGFWiwegSDfRqWvbHosCYkAQVKHmcN7gU5w2mjIuE9JVWwWN2eSG+bLRhbbMNZ1aVZLpIUYmiiH8fbgUA/IjWFpNE0IAxIUTGlDyHJ2ZWAwC2WbuWMxXJuIO6v2RFDdTX1+P666/HlClTMHv2bDz22GPw+/09PqetrQ133HEHpk+fjpkzZ+I3v/kNHI7oyZO+/fZbjB8/HhdddFE6ik8IISSK71UFtgD533H5ZqfeZnWittODEcVqTCsryHRxSBaguJgQki18TALM0wcW4weDSvDHE6oyWKLMkn1g7Pf7ccMNN8Dr9eKtt97Co48+infffRfPPfdcj8+78847ceDAAbzyyiv429/+hk2bNuH+++/v9jibzYa7774bJ510UpreASGEkGjG67UYpFNhX4cbhzvdmS5ON6Io4q1DgdHii4fqac9rkhAKjAkh2cLH5ERQ8RyuH2PC2NL8XTIk+8D4q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXq836nNqa2uxZs0aPPzww5gyZQpOOOEE3Hvvvfjwww9hNpslj33wwQexYMECTJs2rT/eDiGEkCCO43BWdWDU+NN6+Y0ab7M6sbvdjSGFKsypKMx0cUiWoNxbhJBs4acfLAnZrzHeunUrxo4dC5PJFL5t7ty5uP/++3Hw4EGMGTOm23O2bNkCvV6PiRMnhm+bM2cOOI7D9u3bMX/+fADA8uXLsW/fPvz+97/HCy+8kJLy8nzfRxRCx0jFsXIV1VFiqJ7iozpKTLrqaX5VCV47YMXKRht+OtoIrUyyuouiiDeCo8U/qSmDMoFy0blEAEBBHz8hJEsMLwpsPzhIp8pwSeRB9oGx2WyG0WiU3BYKks1mc9TAONpzlEolSktLwyPGDQ0N+MMf/oCXX34ZanVqsgkrlTyMxqKUHAsADAYaoYiH6igxVE/xUR0lJtX1ZARw+mA9Pqtrw3a7D2cPL0vp8Xvr64YO7G13Y6Rei3PHDZBsbxEPnUv5Tc4Z1gkhhDVQp8LzswejTEPZqYEMBsbPPvts3HXCq1atAoCY67p6Wu8V7T5RFMO333XXXbj22msxevToRIscl88noKPDGf+BcfA8B4OhEK2tdggCTXGIhuooMVRP8VEdJSad9XR6uQ6f1bXh7T3NOLEk89ueiaKIv22pBwBcOrQUrVZ7Qs/rz3OppKQAKhU1ZOSoQCazHgghJBEDabQ4LGOB8aJFi3D++ef3+Jjy8nKYTCbs3LlTcnto1DdyVDjEZDJ1W0vs8/nQ0dERfs7GjRuxefNmPP744wAAQRAgiiLGjx+PJUuWYMaMGb16X6lsDAmCSA31OKiOEkP1FB/VUWLSUU/jSzUYUqjC3nY3drU6M574Y5PZjv0dbowoVuNEoy7p90vnUn4rUNJcakIIyUYZC4z1ej30en3cx02dOhUvvPACLBZLOKhdt24dSkpKMGLEiKjPmTZtGtra2rBz505MmDABAPD1119DFEVMnjwZAPDhhx9KnvPGG2/gm2++wVNPPYXBgwf34Z0RQghJBsdxOH9IKZ7bbcYHde0YOylzgbFfFLHkgBUAcNlwA2WiJkmjEWNCCMlOsv/1njt3LmpqanDXXXdhz549WLNmDZ5++mlcfvnlUKkCQ//bt2/HggUL0NTUBACoqanBKaecgnvvvRfbt2/H5s2b8dBDD+Hcc88Nr08ePXq05D+j0Qi1Wo3Ro0ejoID2qiSEkP40b0ARSlU81jfb0eSMvuNAf1jR0Ikjdi/G67WYadJlrBwke1XTtERCCMlKsg+MFQoFnn/+efA8j4ULF+KXv/wlLrjgAtx6663hxzidThw6dEiyfdMTTzyBESNG4KqrrsL111+PGTNm4IEHHsjEWyCEEBKHWsHjnEGlEAD892hHRsrg8gt442AgE/XVI8totJj0yuyKQlw9sgzPzBqU6aIQQghJAieKtIFVqni9frS1Ofp8HJ7nYDQWwWKx0Tq1GKiOEkP1FB/VUWL6o57aPH4sXlsHBQe8ePIQlPRzcqm3D7Vi6cFWnFxRiLsmDUj6+f15Lun1upxIvpWK6yZ9hxND9RQf1VFiqJ7iozpKjNyum7IfMSaEEJIf9GoFvldVDJdfxPt17f362la3D+8caYOSAxbVyGPLKEIIIYT0HwqMCSGEyMbFQ/VQcsB/j7ajw+Pvt9d9Zb8FLr+IcweX0tYVhBBCSB6iwJgQQohsmLRKnFVdApdfxHv9NGq83erE6iY7yjQKLBxu6JfXJIQQQoi8UGBMCCFEVi4eqoeK5/Dh0Xa0uHxpfS2vIOKFvYF9768dZYROSZdFQgghJB9RC4AQQoismLRK/HBIKTyCiCW11rS+1tuHWnHM4cWUsgKcXFGY1tcihBBCiHxRYEwIIUR2Lh6qh0GtwKpGG/a2u9LyGvs7XPjPkTZoFRxuGmui7ZkIIYSQPEaBMSGEENnRKXlcEcwO/bc9ZnhTvI2D2y/g6Z0tEETg6pFGVBZQwi1CCCEkn1FgTAghRJbmDyzCBL0Wh2wevHO4LaXH/sc+C445vJhuLMD3q4tTemxCCCGEZB8KjAkhhMgSz3G4dVw5NDyHtw+34mDn/7N33+FxVPf++N9ndtW7JVnF3XLvhWZjUxziryFAaIHLpaVwISHhS+4FfCHhJiYkIaGFhHAvJAF+XCDwvbnBJCRAEjDVBgPGRu5FLpItWV2WZLXdnfP7Y7SrmdWOdrbPat+v5/EjeTU7e/bs7Mx8Tvmc/qjs9836TvytvguF6Q58Z3Yph1ATERERA2MiIrKviuw0XD9tDDwS+Pn2RnS7IlvbeHdHH57Y2wpFAGvnjUVxhjNKJSUiIqJkxsCYiIhs7Uvj87GsNAfHe914eGcT3GHONz7c1Y/7Pj8OlyrxjenFmFuUFeWSEhERUbJiYExERLYmhMD/nVOKCTlp+Ky1F7/c1QSPDC04PtzVj3XbjuOkW8UVkwpx4YSCGJWWiIiIkhEDYyIisr1sp4J1iyowNtOJ9xpP4oHtjejzqJae+1lrD+7eUo/2AQ/OH5ePa6uKYlxaIiIiSjYMjImIKCmUZDpx35IKVGal4aPmHqz95NiIaxx3uzz4zd4W3LvtOHo8EldNKcTNM4uZbIuIiIiGYdYRIiJKGuVZafj5qZV4aEcTPm/rxb9/Wo8lxVk4qzwXVXkZcAqB470ufNrSg7ePd+OkW0WuU8G3Z5dg+djcRBefiIiIbIqBMRERJZX8NAfuXVSOtxq68MLBdmxp7cWW1t5h2ykC+D+VefinqUUYw+zTRERENALeKRARUdIRQuC8ynycU56HT1p6sKO9F7UnXVClRGmmEzMKMrCsNAdFDIhjora2Fl/+8peRnp6OzZs3J7o4REREEeMdAxERJS2nIrBsbA6Wjc1JdFFShtvtxp133omlS5di+/btiS4OERFRVDAwJiIiIssef/xxjB8/HmeeeWZUAmNFiSwZmvf5ke5ntGM9Bcc6sob1FBzryBq71RMDYyIiIrLks88+wyuvvIJXXnkFb731VsT7czoVFBdHJylaURFHDVjBegqOdWQN6yk41pE1dqmnpAiM6+vrsW7dOmzevBnZ2dm49NJLcfvtt8PhcJg+p6OjA/fddx/efvttOBwOrF69Gt///veRnZ3t20ZVVTz11FP4wx/+gPr6eowdOxZf/epXcf3118fjbRERESWN7u5urF27Fj/+8Y9RUFAQlX263So6O4cnTguFoggUFeWgvf0kVFVGpVyjEespONaRNayn4FhH1sSznvLzs5CWZh47AkkQGHs8Htx8880oKSnBSy+9hKamJvz7v/87MjIycNttt5k+74477kBzczOeeeYZuFwufO9738O6devwwAMP+Lb56U9/io0bN+Luu+/GtGnT0N7ejt7eyC7QREREyeSxxx7Dr3/96xG3effdd/HLX/4S55xzDs4888yovn60boZUVfIG1ALWU3CsI2tYT8GxjqyxSz3ZPjD+4IMPUFNTg2eeeQYlJSWYPXs2brvtNjzyyCO45ZZbkJaWNuw5NTU1eP/99/HHP/4R8+bNAwDcc889uPnmm7F27VqUlJSgpqYGL774Il599VVMnToVADBhwoS4vjciIqJEu+6663DxxRePuE1paSk2b96M48eP4/e//z0AQEoJVVUxZ84c/PznP8dFF10Uj+ISERHFhO0D423btmHWrFkoKSnxPbZixQqsW7cOBw8exMyZM4c9Z+vWrSgsLPQFxQCwfPlyCCFQXV2NVatWYcOGDRg/fjw2bNiAG2+8EUIIrFy5EnfccQdyc8Of7xSNyeN2m4huR6wja1hPwbGOrGE9BZesdVRYWIjCwsKg2z311FNwuVy+/7/11lt4+umn8cILL6CioiKGJSQiIoo92wfGLS0tKC4uNjzmDZJbWloCBsaBnuN0OlFQUICWlhYAQF1dHY4dO4Y333wTDz74IAYGBvDjH/8Yd911V9AhZWaimUQEsM9EdDtjHVnDegqOdWQN6ym40VpHU6ZMMfx/x44dUBQFM2bMSFCJiIiIoidhgbHVOU0AIETg1nezx83+JqX0PS6lhMvlws9//nNMmjQJALBu3Tpce+21aGlpMfRQWxWNJCIAJ+xbwTqyhvUUHOvIGtZTcHZLIkJERETWJSwwtjqnqaSkBDt37jQ87u319e8V9iopKfFt4+V2u9HZ2el7TklJCZxOpy8oBoCqqioAWhbscAJjIHpJRLz74g3oyFhH1rCegmMdWcN6Ci5V6uiyyy7DZZddluhiEBERRUXCAmOrc5oWLVqEJ598Eq2trb6gdtOmTcjPz/clzfK3ePFidHR0YOfOnZg7dy4A4KOPPoKUEgsWLPBt43a7UVdX50u6dejQIQBAZWVlpG+PiIiIiIiIkoSS6AIEs2LFClRVVWHt2rXYs2cP3n//fTz66KO45pprfBmpq6ursWbNGjQ2NgLQen5XrlyJe+65B9XV1diyZQvuu+8+XHjhhb6e4DPPPBOzZs3C97//fezZswfV1dW47777sHr16rB7i4mIiIiIiCj52D4wdjgceOKJJ6AoCq666irceeeduOSSS3Drrbf6tunt7cWhQ4cM2TIfeughTJ06FTfccANuuukmLF26FPfee69hv7/5zW+Ql5eHq6++GrfccgsWLFiA+++/P67vj4iIiIiIiBLL9lmpAWDcuHH47W9/a/r3008/HXv37jU8VlhYiIcffnjE/ZaVleHxxx+PShmJiIiIiIgoOdm+x5iIiIiIiIgolhgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQhpZSJLsRooaoSHo8alX2lpTngcnmisq/RinVkDespONaRNayn4OJVRw6HAkURMX+dWIvWdZPHpjWsp+BYR9awnoJjHVljp+smA2MiIiIiIiJKaRxKTURERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgbDMvvPACVq1ahfnz5+PKK69EdXV1oosUN08++SQuv/xyLF68GMuWLcN3vvMdHD582LBNf38/7r33Xpx++ulYvHgxbr31VrS2thq2qa+vx0033YSFCxdi2bJleOCBB+DxeOL4TuLnhz/8IWbOnInnn3/e9xjrSHP8+HHcfvvtOO2007Bo0SJcdtllqKmp8f2d9QR0d3dj3bp1WLlyJRYuXIgLL7wQr7zyiu/vqVhHn3zyCb75zW9ixYoVmDlzJt5++23D36NVJ5s3b8all16KefPm4Ytf/KKh3ik0vG7yuhkKXjfN8boZHK+bw42q66Yk2/jrX/8q586dK//3f/9X7t+/X95zzz3y1FNPla2trYkuWlx8/etfl3/84x/lvn375O7du+W//Mu/yHPPPVf29vb6tvnBD34gzz77bLlp0ya5fft2eeWVV8p//ud/9v3d7XbLCy+8UH71q1+Vu3btku+88448/fTT5aOPPpqItxRTGzZskBdffLFcsWKFfO6553yPs46k7OjokOeee66866675Oeffy5ra2vlO++8IxsaGnzbsJ6k/N73vidXr14tP/74Y1lbWyuff/55OWvWLLl582YpZWrW0TvvvCMfeeQR+be//U3OmDFDbtiwwfD3aNRJbW2tXLhwobz//vvlgQMH5HPPPSdnz54tN27cGLf3OVrwusnrZih43TTH66Y1vG4ON5qumwyMbeSKK66QP/rRj3z/93g8csWKFfJ3v/tdAkuVOK2trXLGjBlyy5YtUkopOzs75dy5c+Ubb7zh2+bAgQNyxowZsrq6WkqpfTlnz54tm5ubfdv8/ve/l6eccoocGBiI7xuIoebmZnnWWWfJPXv2yHPPPdd3gWcdaR588EF59dVXm/6d9aT50pe+JJ944gnDY6tXr5a/+93vWEdSDrvAR6tOHnjgAXnhhRcaXuu73/2uvOmmm2L5dkYlXjeNeN00x+vmyHjdtIbXzZEl+3WTQ6ltYmBgADt37sSZZ57pe0xRFCxfvhzbtm1LXMESqKurCwBQUFAAANixYwdcLpehjqqqqlBZWemro23btmHWrFkoKSnxbbNixQp0dnbi4MGD8St8jN1999247rrrMHPmTMPjrCPNhg0bMG/ePNx6661YtmwZLrvsMvzpT3/y/Z31pFm8eDHeeustNDY2QkqJ999/H01NTVi+fDnrKIBo1cm2bdsM+/Buk6rn+nDxujkcr5vmeN0cGa+b1vC6GZpku24yMLaJ9vZ2eDwew0EBAMXFxWhubk5QqRJHSon7778fp512GqqqqgAALS0tyMzMRG5urmHb4uJitLS0+LYpLi42/N1bp95tkt3zzz+Pnp4efP3rXx/2N9aRpq6uDr///e9RVVWFp59+Gpdffjm+//3v46233gLAevK65557MHHiRJx11lmYN28evvOd7+D+++/H7NmzWUcBRKtOzLbp6OiAy+WKVfFHHV43jXjdNMfrZnC8blrD62Zoku266YzanigmpJQQQiS6GHH3ox/9CPv27cOLL75oeDxQXUgpg24z0uPJpKamBv/5n/+J//mf/4GiBG7XSvU6ArT3O3/+fHz3u98FAMyePRs7duzAiy++iC984QsAWE+AdrO4e/du/OY3v0FZWRk+/PBDfO9730N5eTkA1lEg0aoT/23890Hh43WT1009Xjet4XXTGl43Q5dM1032GNtEUVERHA7HsNaitra2Ya3ho919992HDRs24Nlnn0VZWZnv8ZKSEvT29qK7u9uwvb6OSkpKhtWh9//+LU3J6PPPP0dbWxtWr16NOXPmYM6cOTh27Bh+8pOfYM2aNayjQSUlJZg6darhsaqqKjQ0NPj+nur11NfXh1/84he46667cPbZZ2PWrFn42te+hrPPPhvPPvss6yiAaNVJoG1aW1tRWFiItLS0WBV/1OF1cwivm+Z43bSG183geN0MXbJdNxkY20R6ejrmzp2LTZs2+R5TVRUffvghFi1alLiCxZGUEj/60Y/w97//Hc8++ywmTJhg+Pu8efOQlpZmqKNDhw6hvr7eV0eLFi3Cnj17DGngN23ahPz8/GEn/GR03nnn4c9//jNeeeUV37+xY8fipptuwhNPPME6GrR48WIcOXLE8Njhw4dRUVEBgMcSALjdbrhcLjgcDsPjiqJAVVXWUQDRqpNFixZh48aNhn1v2rQpZc710cLrJq+bVvC6aQ2vm8Hxuhm6pLtuRjWVF0XEu+zEyy+/LA8cOCD/4z/+I6WWnfjhD38oly5dKjdv3iybmpp8//yXnTjnnHPkhx9+KLdv3y6vuuqqgCnfv/71r8vdu3fL9957T55xxhnyF7/4RQLeUXzos2tKyTqSUspt27bJ2bNnyyeffFIePnxYvvzyy3LevHnyrbfe8m3DepLy2muvlRdffLFv2YmXXnpJzpkzR/7pT3+SUqZmHXV3d8tdu3bJXbt2yRkzZsj//u//lrt27ZJNTU1SyujUSW1trVywYIH8+c9/Lg8cOCCff/55OWfOHC7XFAZeN3ndDAevm8PxumkNr5vDjabrJgNjm3nuuefkOeecI+fOnSuvuOIK+fnnnye6SHEzY8aMgP/++Mc/+rbp6+uT69atk6eeeqpcuHCh/M53vmNI7y6llEePHpU33nijXLBggTz99NPlz372M+l2u+P9duLG/wLPOtL84x//kF/60pfkvHnz5AUXXCDXr19v+DvrScqmpib57//+73LFihVywYIF8vzzz5fPP/+87++pWEcfffRRwPPQr371Kyll9Orkww8/lF/+8pfl3Llz5Re+8AX58ssvx+09jja8bvK6GSpeNwPjdTM4XjeHG03XTSElM34QERERERFR6uIcYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIgS5rXXXsPLL7+c6GIQERElBV43iWKHgTERJcwbb7yB9evXJ7oYRERESYHXTaLYYWBMREREREREKU1IKWWiC0FEqeeuu+4a1ur9ne98B7feemuCSkRERGRfvG4SxZYz0QUgotR0yy23oL6+Hl1dXfjhD38IACgvL09wqYiIiOyJ102i2GJgTEQJMXHiRBQWFkJKiUWLFiW6OERERLbG6yZRbHGOMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExECZOWlob+/v5EF4OIiCgp8LpJFDsMjIkoYaZMmYJ9+/bhzTffxPbt29HY2JjoIhEREdkWr5tEscN1jIkoYdra2vAf//Ef+OSTT3DixAmux0hERDQCXjeJYoeBMREREREREaU0DqUmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmnORBdgNFFVCY9Hjcq+nE4Fbnd09jVasY6sYT0FxzqyhvUUXLzqyOFQoCgi5q8Ta9G6bvLYtIb1FBzryBrWU3CsI2vsdN1kYBxFHo+Kjo6eiPejKALFxbno7OyFqsoolGz0YR1Zw3oKjnVkDespuHjWUWFhNhTFEdPXiIdoXDd5bFrDegqOdWQN6yk41pE1drtucig1ERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGltKQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee++9YdscOHAAN998M5YsWYIlS5bgn/7pn9DW1hart0BERDRq/PCHP8TMmTPx/PPPJ7ooREREEUmawPi1117D/fffj29/+9tYv349Zs6ciRtvvNE0iN26dStuv/12XHHFFXjllVdw3nnn4ZZbbkFNTY1vm9raWlxzzTWYNm0afv/732P9+vX4xje+gbS0tHi9LSIioqT09ttvY9u2bRg7dmyii0JERBSxpAmMn3nmGVx11VW4/PLLMW3aNNx7773IyMjA+vXrA27/7LPP4qyzzsKNN96Iqqoq3HbbbZgzZw5eeOEF3za/+MUvcNZZZ+HOO+/ErFmzMGnSJHzxi19EXl5evN4WERFR0mlpacG6devwwAMPsDGZiIhGBWeiC2DFwMAAdu7ciW9961u+xxRFwfLly7Ft27aAz9m2bRu+8Y1vGB5bsWIF3nnnHQCAqqp45513cOONN+JrX/sa9uzZg0mTJuHb3/42Vq5cGXZZFUWE/Vz/fURjX6MV68ga1lNwrCNrWE/BpVId3X333bjuuuswc+bMiPcVaX2lUr1HgvUUHOvIGtZTcKwja+xWT0kRGLe3t8Pj8aCkpMTweHFxMY4cORLwOS0tLSguLh62fXNzMwCgtbUVPT09+N3vfofvfve7WLt2Ld566y3cfPPN+N///V/MmTMn5HI6nQqKi3NDfp6ZoqKcqO1rtGIdWcN6Co51ZA3rKbjRXkfPP/88enp68PWvfz3ifUXzujna6z1aWE/BsY6sYT0Fxzqyxi71lBSBsRkpJYQwb2EI9DfvY6qqAgC+8IUv4IYbbgAAzJ49Gx9//DH+3//7f7j33ntDLo/braKzszfk5/lTFIGiohy0t5+EqsqI9xeIlMAIVWd78aij0YD1FBzryJpUqadIzo3xrKP8/CykpTli+hqB1NTU4D//8z/xP//zP1CUyGdjReO6mSrHZqRYT8GxjqxhPQXHOrLGbtfNpAiMi4qK4HA40NLSYni8ra1tWC+yV0lJybDtW1tbfdsXFRXB6XRi6tSphm2qqqpw7NixsMsazQ9VVWXU9ud2Acf2A8cPC3S1A6pHICNborgCmDBToiBwNdpeNOtoNGM9Bcc6sma01ZPqARoOAfUHBTpbAI9bID1ToqgMGDdNorgy9EB5tNWR3ueff462tjasXr3a95jH48FPfvITPP/883jjjTdC3me06mo013s0sZ6CYx1Zw3oKjnVkjV3qKSkC4/T0dMydOxebNm3CqlWrAGg9vh9++KGvt9ffokWLsHHjRlx33XW+xzZt2oRFixYZ9uk/FPvw4cOYOHFibN5IgjTVArs/Fujv0e7unOkS6RkSfb1AfY1AfY1AxVSJ2adLOJlDhYhSxIkWYMdGgZMntHOjwymRmSPR3ws0HhFoPCIwplxi7nKJrOjNkklq5513HubNm2d47Bvf+AYuu+wyXHrppQkqFRERUeSSIjAGgK997WtYu3Yt5s6diwULFuDZZ59FX1+f70K8du1alJWV4fbbbwcAXH/99bj22mvx9NNP4+yzz8Zrr72GHTt24Cc/+Ylvn1//+tdxxx134NRTT8Wpp56Kt956C5s3b8add96ZkPcYbVICNZ8LHKzWbvrKJ0tMniuRN0brAXEPAA2HJQ5+LtBwUKCzFVh6nkSmPYb5ExHFzPHDwI4PBFRVYEyFxNQFEkWlgFAAjxtorpOoqRZoOy7w0V+BxaskCksTXerEy8/PR35+vuGxtLQ0lJaWYvLkyYkpFBERURQkTWB8wQUXoK2tDb/61a/Q3NyM2bNn43e/+x3GjBkDAGhoaDDMd1qyZAkefvhhPProo3jkkUcwefJkPP7446iqqvJts2bNGnR2duKJJ57Afffdh6qqKjzxxBNhJd6yGymBPR8L1O0VcKZJzF8pUTreuI0zHZgwAyifJLH9A6DlmMAnfwdOXc3gmIhGr4ZDwPb3BSCAmaeqmDjLOFza4QTKpwBjJ0rs2wLU7hH49O9acFxckbhyExERUewIKWXiB3SPEi6XBx0dPRHvR1EEiotz0draHfZ4+wPbtJ7i9EyJU1ZL5BaOvL2qAtXvCTTVCuSNkThtjYTDxs0m0aijVMB6Co51ZM1oqae248CWNwWkBBaeJVE2KfhzDu8E9m1R4EyTOHWNRF5R4O3iWUeFhdkJSb4VbdG4bo6WYzPWWE/BsY6sYT0Fxzqyxm7XzchTSpLtNB4BDlZrPcVLzwseFAOAogALzpIoKpPoahPY9VESp6wmIgqgv1drAJSqwOzTrQXFADB5LjB1gYTbJbD1LYGBvtiWk4iIiOKPgfEo09MJ7NgkAGjDp/PGWH+uNzjOyJZoOChw/HCsSklEFF9SAjs3CQz0CYybLjFhRmjPr1ooUT5Zoq9HYMcmrceZiIiIRg8GxqOIlFpQ7HEJTJ2PYXOKrcjIAuadqd3x7d4s0B/5ssxERAlXf1DLo5BTIDHzlNCjWiGAOcsksvMlWo4KHN0Xg0ISERFRwjAwHkXq9gAdTdoc4akLw+/OKK4Axs+QcPUL7P+MQ6qJKLm5+oF9n2rnsrnLwl+WzpkGLFgpIYTEvs8E+iJPKUFEREQ2wcB4lOjtBvZtFRBCYt5yCSXCT3b6Eom0TIn6Gm0ZJyKiZHVgm4CrX2DcNInCsZHtK78YmDQH8LgEdm/mkGoiIqLRgoHxKLH/MwHVLTB5HkKaV2wmLR2Yvki749vzCW/+iCg59XQBR/cBzjSJ6UuicyKrWiiRlSvRXCfQciwquyQiIqIEY2A8CnQ0AccPC2RkSUyZF70Idtw0ILdQoqNJoK0harslIoqbms8FpBSYNFciPTM6+3Q4gZmnaufafVsEVDU6+yUiIqLEYWCc5KQE9gzOnZu2JPy5c4EIRVuiBPDeXEZv30REsdbdATQcBNIyJSbNju6+S8cDRWUSJ08IHDsQ3X0TERFR/DEwTnLNdUBni5Zwq3Jq9PdfNgnIKZToaBZoOx79/RMRxcqh7QKAwNR50W00BLQs1d7s1jXbBNyu6O6fiIiI4ouBcRKTUuvJBYBpiyREDBJICwFUzddu/g5WM0M1ESWH3m7g+GEgLV1i3PTYvEZ+MVA+WWKgT+Do/ti8BhEREcUHA+Mk1lwHdLUL5JdIlIyL3euUTQKy8yTaGwU622L3OkRE0VK7W5tbPGEWot5brKdNN5E4vEPA447d6xAREVFsMTBOUvre4qqFsekt9hIKMGGW1mtcu5u9xkRkb64B4Oh+QFEkJsyMbXKE3EKt8XCgT6BuX0xfioiIiGKIgXGSaj6q6y2ujP3rjasCHGkSDYeA/t7Yvx4RUbjqawCPW6CiCsjIiv3reZMUHtoBeNzMUkhERJSMGBgnqSO7tJ7bqfNi21vs5UzXlm+SKufSEZF9SQkc3aedFCfGuLfYK68IGDtRor9H4NBujqcmIiJKRgyMk1BnK9DeKJCdJ1E6Pn6v673JPLafSzcRkT11NAEnT2ijafLGxO91J8/RTop7trh4fiQiIkpCDIyT0OHB3uKJsyVEHD/B7Hxt3c6+kwJtDfF7XSIiq7y9xROmxzc6LSgFCkokTrRKtPL8SERElHQYGCeZvpNA4+HBJUimxf/1xw3ebB47wCRcRGQvA31A4xHAmSZRNjm+ry0EMHmu9vvhnfF9bSIiIoocA+Mkc2RwCZLxMwGHM/6vXzZRu+lsqgVc/fF/fSIiMw0HAVUVqJga2yWazGhL2wm0HBPo7oj/6xMREVH4GBgnEY8bOHYAEIqMW1IZfw4nUD5Fu/lsOJiQIhARBVR/UBvJMm5aYs6PigLMXKy1WNbu4agaIiKiZMLAOIkcPwy4BwTKJgIZ2Ykrh/em81gNb/yIyB66O4CuNoGcgvgm3fI3bX4aHE6J+oPaesqUfPi5ERGlpqQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee+89023/5V/+BTNnzsTbb78d7WJHjTepzPgZiU15ml8M5BRIdLUJnDyR0KIQEQEAGg5p58eKqfFZws5MeqZAxRRAdXNUTTKq3Q28/ZLCz46IKMZcA8CJlkSXwihpAuPXXnsN999/P7797W9j/fr1mDlzJm688Ua0tbUF3H7r1q24/fbbccUVV+CVV17Beeedh1tuuQU1NTXDtn3++echbb6+RmcrcKJF6w0pKktsWYQAKqZo9eW9GSUiShQpgYZD2u8VUxJbFgCYMFP7eXQfl7ZLNge2ade0Qzt5bSMiiqWPXxf48C8Crcc9iS6KT9IExs888wyuuuoqXH755Zg2bRruvfdeZGRkYP369QG3f/bZZ3HWWWfhxhtvRFVVFW677TbMmTMHL7zwgmG7AwcO4De/+Q1++tOfxuNthE3fW5zI3hCv8snaz+OHwRs/Ikqojiagr1ugcKxEVm6iS6ONqskbI9HdIWzXGk5ERGQHJ09oAU1jnZrgkgxJQF7j0A0MDGDnzp341re+5XtMURQsX74c27ZtC/icbdu24Rvf+IbhsRUrVuCdd94x7Pf222/H3XffjbFjx0alrIoSedTq3Yf3p3tA6w1RHBLjpwkoNmjOyC0E8oslOlu17KsFxfF9ff86osBYT8Gxjqyxcz0dP6z9rKxKbPm8r+1wCEycKbHzQ61Rc0yCR/kQERHZVV+PfXrYkiIwbm9vh8fjQUlJieHx4uJiHDlyJOBzWlpaUFxcPGz75uZm3/9/8YtfYPr06Tj//POjUk6nU0FxcfS6K4qKcgAA+7a54HEPoGqeE+WVGVHbf6SmzXPhs3cH0NGQjqkz0hNSBm8d0chYT8GxjqyxWz2pqkRTbQ+EAOYszkFGVuID96KiHOSeIrF3Sw8ajwjkrslGRmbiy0UWeD8m+9ynERHZVmerlhA4Iyv8ffT32ueEmxSBsRkpJcQI44oD/c372EcffYQ33ngDf/rTn6JWHrdbRWdnb8T7URSBoqIctLefhKpK7NkKAAJjJ7vQ2uqKeP/Rkj/YyX5o1wAmzh2I6xBv/zqiwFhPwbGOrLFrPbU2AP29AsWVEt09J9Hdk7iy+NdRxRSgbq/Ajk9OYvKc6L5Wfn4W0tIc0d0pERGRRX09wEd/1Yaxrr4+/OHQDIxDVFRUBIfDgZYW42Sttra2Yb3IXiUlJcO2b21t9W3/ySefoKGhAWeccYZhm1tuuQXLly/HU089FVZZo3nDqKoSHS0SXW0KcoskcoskVPsMw0d6FlBUJtDeKNDepKKwNP5lUFVpq5t0u2I9Bcc6ssZu9XT8sNYiN3aifc6P3joaN10LjOv2ARNm2iM/BI0s0g5jKcHPmYhSQr+uIVpK4OB2oLgCIccD9rmjSJLkW+np6Zg7dy42bdrke0xVVXz44YdYtGhRwOcsWrQIGzduNDy2adMm3/b//M//jD//+c945ZVXfP8A4J577sG9994bi7cRlvoD2hV2XJU9b6rGTtQO56ZaGxaOiEY1KYGmWgCQGDsh0aUZLn+MloTrZIdAZ2uiS0OWRBAZSwl89BeBHRt5PSSi5ON2AZ+9JdB81Nr2+pxHbQ1AzTYFH7+eFKGlqaQp/de+9jW89NJLWL9+PWpqarBu3Tr09fXh0ksvBQCsXbsWDz/8sG/766+/Hu+99x6efvpp1NTU4LHHHsOOHTtwzTXXANDmG8+YMcPwDwAqKysxfvz4+L/BAFSPlnRLCImKqYkuTWDem9GmWmanJqL4OtGsDaMuKotsflMsjavSToz1NQyWRjv3ANDVLvhZU8qTUpt7apdRPGTNsQNAyzGBrRushYdCt9lAf4wKFWdJMZQaAC644AK0tbXhV7/6FZqbmzF79mz87ne/w5gxYwAADQ0NUHRNF0uWLMHDDz+MRx99FI888ggmT56Mxx9/HFVVVYl6CyFrOgq4+gXGTpBIz0x0aQLLytV6RLraBE6ekMgtTHSJiChVNA6OVCmbaN9WufIpwN4tEg2HgBmnAA5OC7YdtwtoPAyMnZTokhCNDod3Avs/UzBpjsTMU+x7fiZNdweQmaN1yIVCP5LVjqNaw5E0gTEAXHvttbj22msD/u25554b9tj5558fUsbpvXv3hl22WDi2X/tZWWXvk0rZRC0wbqoFA2MiigspgcbBRQnsHNCkZwKl47XpJs110rcGPNnHoR0Ch7YLNNbKoaHUYdCPmuJcY0plDQe1g//YAWDmKQkuDI3o5Alg058VZOVKTJgZWrwRzZGiUtUaKZ1p0dtnOJJmKHWq6T2pouUYkJ4pUWKPkd2mxk7UfjZynjERxUlXG9B3UqCgRCIzO9GlGdm4adrdw7EDPEfaUU+n9rPlmBiaYhzmHGMvt30WkCCKO+93IZQznqtfa+zk8Ov46u7QfvZ2i5Ab8/TnvEgbAj/bAGx4UUF/5Iv7RISBsU0d2uWBlAIVU42T2+0opwDIztd6jXu7E10aIkoFTXVD2ajtrrgSSM+SaG3Qlrcge8kpiM5+pO6G3j0QnX0SJbUQ7l+3vi3w+bsKju6LXXFoOEU/vSfUwDiMRgwpAVeA82PzUe3F24+Hvs9osnnIlZqkBA7u1Jqb7T6MGtBaifRJuIiIYq3lmPaz1OYjagCtcbNyKgAp0FCT6NKQP8Wh7/YY/Blhj3GgG79kI6XWi0cUKm/AFEovYkeTtnFHM0fWxJO+8y3UmjdMH7EYJO/5WODtlxR0tgX+e6IbjxkY21BnK3CiVSK/WCKvKNGlsca3bNNRntCIKLb6eoDOVoGsXBm13r5Y8zZyHqsRSZ3B/8knn8Tll1+OxYsXY9myZfjOd76Dw4cPJ7pYthDOTaKd7dgo8Pb/U9BlcgNLZMY3lDqMW0LeRcZXRD3GunOex2Lirrq92ot456H76+tJ7BHAwNiGjg4m3Ro3LbHlCEVBCZCWKdHRODpayonIvvS9xcmS4Ci3EMgvkejpFDjRkujShO/jjz/GNddcg//5n//BM888g4GBAXz9619HX19foosWFZEcTv7Jt5Kd98bV6pqmRF7ewz9JTs8pLaLM0vrAOMS8Ch534MdDzYwdbQyMbca7drHigG3XLg5ECKB0HCClQGt9oktDRKNZ8+D84tLxyRV9TJotAciEX/gj8dRTT+Gyyy7D9OnTMWvWLPzsZz/DsWPHsGvXrkQXLaoktGHEoSSC0fcSSwl0NANHdke9aPHH6IZC5f0uMMqwvUga8SJJOGjXPAxJtVxTKlBV7Ro0da4T6RmupMrOVzJOor5GoOWYQPnk5LphJaLk4HEDrccBh1OiqCzRpQlNxRQtmE/0chTR1NXVBQAoKAh/TLuiRBZ5eZ8f7n6EyX/e/n/aXf2ar1q7nhl6XiDw8evaA2PKJApKwipaVIVbT4oibJ8ENFoiPZZSRbB68n5jFBF6XYownmNHyXIsCZMTYKjllmpozzXrMQ7ntaOJgbHNONOAc64ESsemo60tudZ7KK4EhJBoPsY1HGPlZCfQWq+l1Xc4gNxCieJxQFp6okuW2k6eAFobtM9FcQB5RRIllYCTn0vUtTUCqltg7ERpnBuVJEZTUCylxP3334/TTjsNVVVVYe3D6VRQXJwblfIUFeWE9bz6rAEA2vVWURQAEo7Bn979WrlRE24PAG1IeV5elu/3zPRMFBfb53bLej2dBADk5maguHgUHbgWhHsspRr/eurvlUjPBAR6AUg4nAqKi62up6cdbxmZaehscmDHhwM476pMZOUkd6uM3Y8l18mh81ZWVgYArSvXynlZ/9z09HR4z6MjP1f7nCEdGBpaMCQzMw3FxRnWCh8D9jlTk4/DCYgkjCrT0oHCsUB7o8CJFonC0kSXaPTo7gD2firQWu9/XAg4nBLjZwBVC0dXT1Qy6GrTPpe244E/l4mzganzJRw800ZNy9HkHEY9Gv3oRz/Cvn378OKLL4a9D7dbRWdnZAtXKopAUVEO2ttPQlVDPy5OngS8PSVSVQEIeDyq77HmxpOWGrlOdAzt58SJXt/vnZ19yGgNuVhRF3o9aeXv6elHa2tqpKeO9FhKFYHqqfkosOVNganz5WAiJgFVVdHaanUdT+146+93YdNrWnfi1g96MPOU6Jc/Hux+LB3ZDZxo8U7bHDxXdfT7fh/pczt2AMjK9a45PXieODng+72luRvCpD1DCG3apcvlQaB5Gn19LrS2xqZjMD8/C2lpI7eo83aNoqp0vER7ozacurDUfieCZHR0H7DnEwHVI5CZK1E5Bcgp1OYptjcKHD8MHNkl0FQLLF4lkVuY6BKPflICdXuAvVsEpCqQlSdRMQXIKZBQ3UBbo0DjEeDQdu1zWXSuRE5+okud/KT0JgKSKBmX6NKktvvuuw8bNmzA888/j7KyyMa0R+umUVVlWPtSdUMAAz17YEBCsXC35A0GAED1yKHfVWmraVHW62lo7So7lT8ewj2WUo2+nur2acfLwe0CaenetNShfL8HG6f8Mh0n++dgx2NpoA/YvVmLXPOLhxoB9clzzcrsGgC2f6A9d8kXhp6rHxrtdpt3CEgZoOPPL6N/IuuLgTFFVel4YN8W7eZ12qJElya5SQkc3A7UbFMghMT0xSomzTWuOTdumsT0xcDuzUBTncDHr2tB2JjyxJV7tJMS2LdF4MguAaFIzDxFxYRZfp/LdO1z2fkh0FovsPk1YOl59phnmMy6O4C+kwIFJRIZWYkuTWqSUuK+++7DP/7xDzz33HOYMGFCoosUOTn8d/2grZHmwhl2M8qyUvsIoKdLW0qyfHKiC0N2pb8GRisrdTInKrQz/TlNnzRQX99mUyL9t/E9rhp/N++X1Xaq37edzpfJPXCfbCc7H8jKlehqEwlfpDvZHd6pBcWONImlqyWmzEfABCgZ2cDCcySmLpBwuwS2vi3QaYNhe6PVga1aUJyWLnHaGolJcwJ/Lpk5wJJVEpPmSLgHBD57S6C7I+7FHVW8y8ZwGHXi3Hvvvfjzn/+Mhx9+GDk5OWhubkZzc3NSL9cUMKANJzD2y0rtNRp6Wz9Yr6D6PQUdTYkuCdmVfuhstCYDjob1wO3INKA1CXot7Uf/3BA/N2mjyJiBMUWVEFqvMTC01iiFrqkW2P+ZgOKUWHqexJggIxWFAKYtkqhaqMLj0oIwNkxE37Ea4NAOAWe6xCmrg/cACwWYsVRi0mwJV7/A1g0CrtSYqhcT3jn2HEadOC+++CK6urpw3XXXYcWKFb5/r732WqKLFrZg92Th9Bjre6FVi8+3K/2NM68rZMbQuzj4ezjxjn4/o6FRyY7MAlrVpHHP8FyzBsAQg2rD8WKj0TYcSk1RVzJOonaPNs94/HT7tAIli95uYMdGAUBg/plqSEnMpi4A+nokju0XqH4POG1NzIqZcrragF0fCgghsfBsibwx1p4nBDDjFInek0BTrcCOTcCicySztofI7QI6moC0TOt1T9G3d+/eRBch+gJcpqI5lNqTRMNBO5qAw7sE5pwx9AakrvzJmAme4sOwXFkEgbEeh1LHhmH4tC7HwrBe3wDfd7Pg2XCeCyWFAczPnYnAHmOKuqIyQHFItDWwtS9UUgI7Ngm4XQKT50qUTQrt+UIAs06TyBsj0dEkcLA6NuVMNaoH2P6Blmhr+lKJ4orQni8EMG+5RHaeRHOdwLH9sSnnaNbeqCXtKK7gUnAUXYFuxAw3fBEGxsl0c//xGwqaagUO79TdLOuu4wyMyYxhKHUEgbEh8OI9ZEwYzlUmQ6lNn2vy+VjpbdbTX8bt9JkzMKaocziBorGA2yXQ2ZLo0iSX2j1A+3GB3EKJaYvCazZzOICFZ0soTomaauBEK68skTqwTaC7Q6CoXGLS7PD24UwH5q+UgJDYt0Wg72R0yzjaeYdRF1dyFApFV8DAOMSbxZGeYzWwthNjcp6hW1i2SZEZQ66NoYTmITMLtih6IpljbLp9iEOpYdOh1AyMKSaKx2lHdsuwdXfJTH+vFoAJITF/hYyoZT47T5tzLFWBj/7Wn/ATTTLragcO7wIcaRLzlkc2BLqgBJg8R2s02vMJvxuhaKnXfobaW08UTLAeY6lqOTPcwZbWNOllTqYeYy99759/tlmiQKLWY5yE35dkY9aIZ6XnVv+4R3dODLXH2LBPBsY02nlvXlvrE1uOZHJgq4DHJTBxFqIyh3LiLCC/WKKlQcVRDt0Ni5TAno8FIAWmLZLIyo18n1ULJTJzJJpqBdqOR76/VNDbDfR0aiMpMrMTXRpKRiMGdEF6jI/uE/jsLQWfvzNyY5ZqEhjre1yThb73z2xpFyK9aE1x0QdGnDYTG2ZDqa0Epfpzqem5wUpwaxIMJ/ocw8CYYiK3EMjIljjRCmbhteBEC3DsgJZYaOrC6DSXKQowd5n2+4GtFno7aJjGI0B7o0BOocSEmdHZp8MJTF+ifcZ7PxUJbx1NBq0N2s/iysSWg5JTfQ3w5vOKb9SBP8NN2eBP/c1fR7N2d97aEOQuPYJlT+xG3/vnHhj6nT3GZEYEGkodBsP3hYFxTJgNpbYSJBt6jN1DH1Covb5m2yf6fMnAmGJCiMFeYyl8N7Vkbv9WLQv19EUSaenR229BCTB5lgP9vcZkKhScqmpLZgHArFNlwLWKw1U+GSgo0db7bjgYvf2OVr75xRVJGGFQwu36SDt+DmwNfA4MtMySoddCWDvujDebgZNXJQtDVu4I1iel1GG2/M5ITnZqq3D09wZ+bjLctTQeQdKN/opouSazKSMh9jwzMI6CF154AatWrcL8+fNx5ZVXorp65JS7r7/+OtasWYP58+fjoosuwnvvvef7m8vlwoMPPoiLLroIixYtwsqVK3H33Xejubk51m8jZZQMJslp5TzjEbU3Am0NAtl5EpXTor//hSvSIRSJw7tgvPjQiOoPAL3dAsWVoWehDsa7hBMA1FSLpLxxjhepaj3GiiJRFGQ9b6JAvI1a/t+zpjrt2Ap0U2bIxGzxEhbJmp52Y7hZNrlxpvjq7wV2bhI4eSLRJQksnON829sC9TUCuzeH3/OYSKoKfP6ugk//rti+rAYWeozNGjesDKWOKDDmUGprXnvtNdx///349re/jfXr12PmzJm48cYb0dbWFnD7rVu34vbbb8cVV1yBV155Beeddx5uueUW1NTUAAD6+vqwa9cufOtb38LLL7+Mxx57DAcOHMC3v/3teL6tUW1MBQBItNbb/+SWSAc+1y4IUxdEt1fSK7dAwaTZgOpmr7FVqgc4uF2rq3CzgwdTNFbrAe3tEjh+KCYvMSp0tgHuAYHCsdowdKJQicFEht4bLu/1aNvbCrb8Qwk4101/cyYsnpfNbgwTfaMXDrMbXgbGibPnY4FjBwS2brDndTzQ8e/9aTaVy7s6Q2/X8Of6/24nh3cBR3Yb33N/T+LKEyqzJZes1L3pEk2hJt8ynCN166Yn+DNPmtuMZ555BldddRUuv/xyAMC9996Ld955B+vXr8c3vvGNYds/++yzOOuss3DjjTcCAG677TZs3LgRL7zwAn7wgx8gLy8PzzzzjOE5//Ef/4GvfOUraGxsRFlZeF0TitWmZQv7iMa+EikzWxvKe6JFoLdLm3ccLaOljtqOa8sz5eRLVFaJqAfG3vqpmi9Qu0fi6D6gaoFAemZ0XyeZBTqWju4D+k4KjJ0gUTQ2dsfYtEVaj9XB7QLjqqzfgCdCor5zbYNTMUrG2f/7PlrOS6ONr8fYAzQcBHZtFjhtTeAbsaHgWbdEkdXAeBT1GJsOkWRgnDC93drPvh4tL0lvF1A+ZejvJ1qAplotUWQiriWBpiRAAnV7gd2bFSw4S0X5ZONzFAXwwLzBxa7H275PtQoeVzVUwN5uIDMnUSUKjem5KsQ5xqbDp60k8bLpUOqkCIwHBgawc+dOfOtb3/I9pigKli9fjm3btgV8zrZt24YFzCtWrMA777xj+jrd3d1wOBzIy8sLq5xOp4Li4iikrR1UVJQk37ARTJg2gBMtLvSeyMCkqrSo7z/Z66j6vT4AHiw4MwOlpdGvH6/ycTmYvqAfe7e60XgoDYtWRHEi8yjhPZY8bol3d/QCkFh6dhbGFEewblYQxcXA4R29aKxT0d2agcmz7H9Kjvd37rPmXgAqqubE9rOIpmQ/L402+qHU2z/Q/nNg29Dfg/XuWm2wNM30atOb+5GYDZ9Ohh5jKUdnNmNvY4XDAWx+TTsoi8pVZGRpj3sfyymQqKyKf/kCBTdSAnu3aB/GoR0C5ZONUY93WUqzeeyqDRuVzALDZPhueJmuY2whMDZrKAt1frLZuseJPl/a/y4MQHt7OzweD0pKSgyPFxcX48iRIwGf09LSguLi4mHbm80h7u/vx0MPPYSLL74Y2dnhrQfidqvo7Ix8EqeiCBQV5aC9/SRUO54VQpBTBAACR/b1o3RS9NJTj4Y66u4A6g8KZGRL5JX2o7U1+um79fVUMU1i3+fAns8GUD51AGkZUX+5pOR/LB3dr80tHjtBQjp70doa29efMBtorBPYsbkPuSX2vaFLxHfO7QKajwHpmYCqxP6ziFQ86yg/PwtpacnRUJAIUgKdrUD+mKGbb2vDB8P/Appmek2SS5Qx22zgxxN90zoSqQJb3hIY6AOWfSkxvaax5A0eFSeAwUzhHvfwhgDv8OR4MxtK7Q2AAjUweac5qPrjLcSex3jTfzdcuoztdv5u+LMyHNqs7s3WQLY0DFt/jmSPcfRJKSFGuIsM9LdAj7lcLvzrv/4rAOCee+6JqEzRvBlSVZm0QZ9XXjHgSNOGDLtcEo4o38clcx0dGpzvO3GWVv5YtjaqqkR6lsS4KoGj+wWO7FExdX7sXi8ZqaqExyN987AnzZVxaQEuKtOmGZxoEWhvVFE4NvavGYl4fuda6gEpFRRXSEgpE37BtCqZz0ujRc3nAgerBWYsHfoSm/aS6G7uAgn2d9/+I5lvZwOGbLNJ2GPc1a4lsgQAt0uOusZfVddj7DXQC2z+q8DUBUMfnraETvwPOrMeY29jkxLg/s8bLHts2nsYiCEw1vVnhPLdkCqw+Q2BwlJt1Yt4M+u5NQtW9Ux7mK2c88x6jG10vkyK9rSioiI4HA60tLQYHm9raxvWi+xVUlIybPvW1tZh27tcLnz3u9/F0aNH8fTTTyM3N3pDoUk76RWXA6pHoKMp0aWxj4E+oKEGcDglxs+I3+tOmqudcer2MBNyIK31QHeHQEGJRGFpfF5TCGDSbO1zObLbpt3FCeJbpqkySSILso2D1dqx01g7tFa4vgfRrHc0EKvnSitrg9qZ4YbXtMfYvueoZAngw+UNHvVJCOv2CbgGBPZ+qgzbLt4C9jbql14KcOgoQXqM7di+6I5Cj3FPN9DZIlCboGt+tNYxjmQotf6zNZvnnAhJERinp6dj7ty52LRpk+8xVVXx4YcfYtGiRQGfs2jRImzcuNHw2KZNmwzbe4PiI0eO4P/7//4/FBYWxqD0VMxlm4ap26utczluOqK6bnEwOflAyXiJ/l6BxsPxe91kcXiXdoxOnivjOqS5fCqQlinRWDuUYIXgWwM92stlUerIyR+60dJ/p82WHAlE9ZifDFRVW8fUNTDCHOME39xLCdTu0abvBNvOy5B8y2TpJrsJZRRAMvK+J30DT6D36THJAB0rUtXKYdZj7BWox9j7zdJPYVADBdg2Eo0eY/dA8G1iyUo+hEh6jBtqBN5/WQwb1m/2uqqNslInRWAMAF/72tfw0ksvYf369aipqcG6devQ19eHSy+9FACwdu1aPPzww77tr7/+erz33nt4+umnUVNTg8ceeww7duzANddcAwBwu934v//3/2LHjh146KGH4PF40NzcjObmZgwMJPiIHWWKK7WfrfWJLYddqCpwdL9xGHU86XsnE30CspOuNm0YXlauxNgJ8X1thwOYMAOAFKjdwwYkQGsg6OkUyC2UyAgv7QMRFAci7jEeydF92jqm1e8K2/YYd7UBez5W8MErAnKEk76VpEJSBQ7tADa/LmwXfCbLXOhwea8MwRoq4t1j/P4rApteFcb69/4M0mMcqEfYbIitXZgFxqGU1RX9lDIhiWiOselQ96EP+NgBgd5ugf1bjR96JL3N8ZI0c4wvuOACtLW14Ve/+hWam5sxe/Zs/O53v8OYMWMAAA0NDVB0M/uXLFmChx9+GI8++igeeeQRTJ48GY8//jiqqrRUfcePH8eGDRsAAF/+8pcNr/Xf//3fOP300+P0zka/7DwgO0+iq12gv1f6MiimqpZjQH+PQHGFRHZ4CdAjMqYcyC2U6GwVONEsbT+nNV5q92g/J85KTNKWCTMkDm0H6muA6YsDt66nEl9vcWViy0HJTZvjqP2uv0ULpcd4JF3t2l5bGwQKx+p6PWyUWVe/hqzHDRyr0a4D/tdi06Q6fjet+z/TTpDdHRL5xhynCTHQB/T3Dr/R7mjWek9HzTlk8AA2fJ4BguB4Nli4XUBft1aw/DHDj39DEBVoB1L/i7YfwxDbAE/q6dKuD+OmWc8YH03684X+swilx3hAFxi7XUDzUaB8UvyWbDRbrklf3x631ghWNgmGe9VQ1jXXr0897HUtnG8SIWkCYwC49tprce211wb823PPPTfssfPPPx/nn39+wO3Hjx+PvXv3RrV8ZK64EujZq61JWjE10aVJrKP7tJP/+BmJuVvyzmnd+aHWO6m/mUtVrn6J+oOA4pConJaYMmRkA6XjgaY6gaY6OWy9x1Tjm19cweOTImBhnlwogbF/BuDM7KEberPhoIm+0dMHTwd3ubH9fYGMLODsrxgrx6yX2Kw3xy4Z9N97WUB1C8xZNlRQ1QN8/LoWZXzxOtU2ZT26HygoAfKKwnjy4HvQD5VWAxy78XyvJ0/oyhLomDdJtjRsO12+sGA9/7s/EmhtEOjtkpixNP7XB8M0A/dQZVv5nm//QPvuaecNzb4tAkf3CXQ0Scw+PT7vxyxAhe4ctusjgZMnBNobJZZ8QQbcPth77u8zf1279hgnzVBqSm7em9uWFJ9n3Nut9RinZ0mUxnm4rl75FMCZrs1pHegLvv1od2i3Gx63QMWU+M759jdusLHE23iSqqSq9QgoikRRWaJLQ8lMVTF0w6274QrW62bG/6ZNP7LDrnOM9b0xPZ1aYfp7h59jrMw71A8BTVSSJ3/e4GRAt1pmj66nyi5DvjuagV0fKvjwVeu33t5lxzyeoREP+uRPZj127gHzOeU9XcAnfxPoCLx6aUj6dXVurGdvY5Hu7wHK6u2hNBvNEahhq30wkWvz0RAKGkX6AN9j4bPQ/73hoMDhncbkp97P4ei+6JXRTGeb1gtsZdrByRPap9LTaXw8lB5j/88vkqRf8cLAmOJiTDkghERrQ+IP+kQ6tl8AEAkbAuTlcAKVU7UMo8cOJK4cdiAlsO9z7S45Ub34XiUVQGaORNtxYbixSzWdbYB7QKCwzJiBlShUUh26+dbffOmT3+h7fazsT89j0mNkpx5jfcAyUsOflTnG+obUSIagR4v+vXl0SdL0PZnuOCejMhPOvNKmOuCjvyrY/r7w9QTrM4ObfQYf/VVg05+VgNeR3ZsF2hsFtm6IvAE2+MgLASG0L2CghpRA341g0xD01wS3y/hZx9KJFu31DNMwQhgCbBZEZ+YMPj+CNdSt+ugvCvZ/pqCp1iTZWQD+07r0x1/I5zZD41vg95vo8yUDY4oLZzpQUAoM9IqgmTFHK1XFYBAqMX564lsHvEHgsf2pnYSrowk40SKRXyxREHj1t7gRCjBu2tDnkqq8ifo4jJoi5fEM3WgZ5xWH9/3yP1ca5saF0GPs8QANB7UA3ePWViqIVaCpL6NrhNyi5r05ukDMZhmq9T2W+iHGblfw4DHe9AGda0DrtT1+eOTneNdlbqoVxm5V735Mgu2eLm3j7vYAzxk8BqLRYKCa9J4GEmgodaAe4VAalT75m8DGPykxua/0uLVrkZTaz82vKdj2jjHJmNmyZmb783L164LLGH2PPB6g+Vjg72mvLlt0sCXY/D+iSJZFs3Kvmej7UQbGFDfem9xUzU7d2qANXyuuBLJssFx2biFQOFaip0ug7XiiS5M4tYOpBibOSmw5vMZNAyAkjh0YnWtxWtE6eDNYMlqS5lDCqLrAOBo9EaoHaGscutnU3+yGkpX64OcC2z9QsOsjgW3vCOzerKDm8+g2hvX3auXQ3xgP9AeeKziszCY366EEQvGgL4/bFfh3O5QTMB4HtXuA9kaB6vdGvg13pg39HujoCNTQYQgsAj3JO3w5CoebWe+pgRi+7bAimc1FDhIkdbVpOz8RhWHh/ra8KbDlTQXNR4euSW0NYliCKi9V1UZUmDU46Lc1NOjEKDCu2Saw9S1lWGZoIPDcdFP+w6FDCIz9P75RHRjX1dXhnXfewbvvvovjx1P4rposG1q2KTV7wo4f0t535VT79IJ5e65TdU7rQB9w/DCQlgFUTEl0aTSZOVpAONAn0HIs0aWJP7dL68VPz5TIDSdBDZGOPjCORnbowzsFPv2bgn1bhG//+tfyCtZj7M263lQ7dE2M5vSJvh7g3T8o+PRvwq/HOHDmbP//mw3rTJbA2GPDwFgfAJ3sMF/GRs+Rps92NvzvgXr7gjXKBFrXO1yqSe9pwG0DDaX2/abrQdUnsbP4nY1FI3JH09AcW2nSaGTMUC3wzv8o2Pgnk++OSWCsr5eOZmDbO8Lw93B552Af2z/8b54I6stKA9rQBn7/tfC6th9K/dRTT+Gpp57y/b+7uxv/+q//itWrV+Ob3/wmbr75ZnzhC1/AD37wA67/SyPKL9YSPrU32edCFS8et3YDpDgSm3TLX9kk7TNpqkNUTsTJpuGQdmMxZbbTVnNZK6u0q0nDwdRrsGg7rt0YFVfYJ+stJRf/pUgCzTEOlzcng/enocfIZNkT7+vu/VRg05+FaY9SVk7k5fPyzrvsaPYLjHVDb/0DFSs9NZ4wA2NXP1D9nkDjEevPsUJ/k27oMdaVzePSyvrZW9F//VAYkqDpGkH2fybw5gsCfT1BdmDxfGg2l9739wDreofLSkOJ9/UCDr0PcswF/M4GWg85hsP6HU6/KQT6HmP9aIzB+ff9PSLgEHdDED0Q+PGPX9fm/x7aEfnFL31wOTb9tAKvUHqM/c8LwRKqhbIvs22kqmXwPrwrtP1HQ9CvxYsvvojCwkLf/3/yk59g06ZNuP/++/Huu+/inXfewX333Yc33ngDjzzySCzLSklOUbQkXKpHoKMp0aWJr+Zj2py20vHGoVGJ5nAClVVacFhfk+jSxF/9Ae2CUTXPRlExgNIJgDNNorlu5DmBo5FvmaZK+4ysoOQi/Yd3DvZABZtLZ4X3JtabkMYsUPTvMR7oA47sEujuEIZkQbE6yvXJHfVJqfQ9xv43tVYaDlSThoBg9m8VOH5YYO8n0W3tstpj3HwUaDkm8Pm7iZtBaDY/+9AOASkFmusCPEc3F95qzQVaZ9ft0ubjfv7uUE6RaHwSw75rATcaHF0xuK2rX2ukOLQj9KzGZqKdYM0/g70+kJUmn6P+mDPM4ZVax4P+czH7PdC+wjVSor2QciyM0OsbamOj1cC4q13rGNj3qRL3lVOCniGampowceJE3///8Y9/YO3atbjkkktQVlaG8vJyXHbZZbj99tvxl7/8JaaFpeRXUpmayzZ5h1FXTLHfzb53OHV9TWol4epsA7raBfKKJIrG2ivdgsOh9earqkDj4USXJr68Q0yLKxJbDkpeoQzvDHnfg0GmNzBWTW5w/QNj/YgcQy9eBL0vI9GXRX9jqW9oC6fHOJSh1F3twMdvaBn2vWXo64nOtb+zFTi8y2+Oq8nwabcbMavnUJglavMKFMgYjimLr6PvrXQNDM6NPa7NaW48InyNJvpANdxrv2GUhMWh1McOaI0U+z9Tgr5uoKHU3iNI/1zv+4wWQ+DqEsYGMF1DU6BGCMBYL/u2aNMamuoCPy/Q98hhow6UkZJvhZpJ21JgrGoZwL3ivUJH0LvB4uJiwxxil8uFysrhGVEqKirQ3d0d3dLRqDNm8GbXe/ObClwDQMtRrQewZFyiSzNcbiGQXyxx8oRAZ2uiSxM/9TXaCX3cNEDYcMyudzh1fQoNp+7tBno6BXILJTKyE10aSjbengbDTWeshljK4fs3W45FqubBqf7UE83hoOaBsbXkW2aMc6pHPjd98jeBjiaBPZ+IqE+L+OivCvZ9qhhGn+kbHPyDlAH9+stxXr6p7bh2c2/IYBwoG3Og7OW6slrNXhwo6DL0qHqXfQJwdD/w9v9Tws5nEUqQ5N3WrAEpkJH+7j9lIpr8G1ZUkwB4WANMgMe9w6Lr9uoC4yBz4KOxnGfU5uoOjnjx3h+GtN9h2besPEkYGtDCWeYsEkGr/oILLsB//dd/ob1dy/n+xS9+ES+88AI8uquB2+3G73//e8ybNy92JaVRITsPyM6T6G4X6A82n2aUaKrTev7GThy+Hpxd+IKwmtQIwtTBpVKEkKiYmujSBFY4FsjMlehoSp01jX3LNDEbNYVhzyfAh68qqN0du6V6hKKdK703x2ZBeKCh1F5ul+7v+iHPUSyr2XxGlz4rtX+PsZXAWDccPVAg3d0BbPqz0NZ8HezFC/eq0nwU2LFR+DJr+4YFG97P0N7NAhbVrSUzDPS3WOvrAT79u4IP1iumidq89O9r3xaB7R+IsBp5As17Nwvsdn2oHYCHdwX/lKQEtr0tcGCbtm1/nwyp912q2qg0w9rfweYYj/B39wijHyJl7DE21r1hfrDJUOpg5fEEaWCKylJaus/m+BEtE3q4PvmbwEd/1ZbFCukzH2F+8kj058t4D6UOOrHu1ltvRXV1NdasWYM1a9agqqoKv/3tb/HFL34RixcvBgB89tlnOHnyJJ555pmYF5iSX3El0LNX6zWurEp0aWLPO4y63IbDqL3KJwN7P5VoOATMOEUbyjuaNR/TbqhKJ0hkZCW6NIEJAVROAQ5u15KEVS1IdIliz7skBucXUziODN7ct+iWBIz2UGrvPGXvja3ZUFL/HmOXPjAeGHq+/pY40oCtqx3YuUmgfLI0JBPU92Tpe6tHykptRaCb/x0btXnU294Zeiwtw9hjC2iNYHljgPRM8/1v3aAFbSXjJOprtCz95/6TxIBuWLr+plkfcPkHlPpep3gGxgOGZXkC9xgGeuzwzsFzoW4td6tz5AMFxsY1dLWf+r1ZSfzW3ws01Qk01WmrBuz5uAfZeZaKZChPKD3GkAJSSgihrSBRUDLU6Wg2dDka/Oeum81lV/0CaK+WYwI1nwNnrPZAKHLYZxfsswyUNC1U+nqujmBuvZTAyRNaeTuaQztP+I+CsBwYm3zH4yFoTWVmZuLZZ5/Fd7/7XezatQuPP/44enp6UF9fj7/+9a/YunUrVq1ahVdeeQVz586NR5kpyXlver03waPZQB/Q1qBdRMaUJ7o05tIzgdLxWgt/oAQgo4036da4KnsHYBXe7NQpMP9bqlpjmaJIFI1NdGkomRmGJ0ch4VZA0tv7NfTQSHOMjcGpCHgjH+mw74aDAp2tAvu2KJZ6ssKZY6wXsNdz8LX8k3Tp66alHtjypoJP/2490Gs5JgBoicv0N8pmqyn4B4dmaxx7SQns+ST6WasNr6sf6h0gOHcPBvb6z0GfxMkqfQ+kLzA29HgOfx0rgaW+cWHPx94lxkL7fqmqf/1b66luqgWq31PwyRvCN6RcH1x63EDjEa0RORr8G1b8e5ADbaf/TOv2at/Fv7/YF9aKF26XVle9EcxQjVYDkP77drJDhNZjHMaoFP/X1I8KiQdLH5eiKLj66qtx9dVXw+VyoaOjA6qqoqCgAJmZIzT3EQUwpkwbwtpar53wbDi9M2oaj2jzbsomyajMGYmlcdMkmmoF6mu0HofRqr8XaDkGpGXYc863Xk4+UFAicaJFoLNVoqAk0SWKnc427YZtTIW01dJZlHxiNq/Yj9tviKXxRtS4Fqt/b6bH15MXvSG+ZkG62bBM7w1uZytQUy1QNDa0837AG2TvLnTX9YF+Y3naBhvFuzuE7gl++9bVa1e7Pqu2Meg2603SB02qR5jWjVd3B1C7W6B2NzB7scTxw1qPdlZu4P1bpe8p10+JCdRj6A2c9Z9XJIERoBvZECALsVkvqL/Du4ADWwXmnBH5fYF/I4kVbQ3Atne0G6i+HgHFMbwcvd3wZRwvKlORGWGOCv+GFcOSZyaBvenc9TCqzeMGPv27Nkd/2UUq8orC20c06BtaerpC7DH2H5USxlDqeC/vGvLtR1paGkpLS2NRFkoRznSgoFRbPL27XSJvTKJLFDsNSTCM2qu4UuvZbq0H+nswapMfNRzSGisqpkrbzvnWK5+iBcbHDwsUlNj/OAqXb35xxeh9jxQ7UnfHFa9kLa5+86zUelL160H1S+bje9yjBSF9JwVmniJDbjTWD5P2uILfsB+sFtj9sdYLBGhJIkPhDRZcA0DNNoGJs2XADkD90HEAhvwiZo3j+veiX95qoNcYpJj1GOt5POa9fB3NQHsjDI2OR/Z6sO0dAcUBnHeNHFbOw7u0JIGzTw/+GemPxWBDQj1uoPp9YZjeE+kSY4F6jIcYGxzM7PtUCzgP7YioKL7yhJr8bOsG/2HIw7fRrwHd06ldT0rGIeypUv6BsdkIDEO5TJKPhXNFc7uArjZvAxISGhjr9XQD6RnWt1dVbSQGpJZjp9Bi45vbr/7jie3ylBAllVpSoZbBeUajUd9JLfjPzJEoTIK2JEUBKqZq8/QaDklMHoUzI6RMnmHUXmWTgL2faD0YM5aO3hEW3iXcSph4i8IQaA5lrPkHfGY3cFL63Vh7Am+reoaCkOIKidLxwcsgVW1o8phy4zxmffBp1hvYdtwv4Ahx6RXve9j/mcDRfQJtQwuYGHqGPB5jQ4C+F9Q9oM1B9urr0aZUFOoCVf17Gegz9kK5LSzT499LqQ9sPn5dq+/Jc4cK3HbcM/g8bX7rjo0Cxw8Dp58vkVc09BmVTpAoDTLqyLB0UpDjsqnO2vsJxdDIhJG3s/KdGbDQCBGMqgYeRj4S/+My0HGqr7e9nwp0tQkUlUucunr4db6/d/CYk8C2d7TnLV4l0dUGfP6uwKQ50hD8qX7Hb8iJscK41dAf81YafwKJRWA80As4Q1lKSmqjMLyyLE5VCJa1O5ZsPriTRitv1tnRPM/4+GHtZ/nk5Alm9NmpR+Oc1q42bfheXlHyjFTIzAaKyoD+HmFYmmQ0cQ8AJ5q1EQu5YbSMEw30hZ6kKPLXBKC7STftMVKHD20OfHM/9Ht3h7Uy7PpIYOsGBXX7jMN2jXNTrdWHECEOpR4MurxrjnZ3DA1Z9u8hN1s+yr8Xdcs/BHZuVAxL2/T7zTcc6A09gPdPQLbnY+EbpQJoicu8OlqNow8aDgpIVaCxVqBb13vd1aZNl3r/ZYGutsCvrZ8f6Z+AzF+0g2IgcPKtQEbqMR7aJvLyhdNjHGjo9Ei8Pa3tx4eX90SLtqbw/i1ax0zLMYGWYwJ9J4H9WwV6uwX2fyZG7DEONTAOZ9kkfRb1/hDW/u5s1e49pYzNsmSugciWgerttvZeVJO1ouOBgTElRP4YwJku0dEY/4M+XpJpGLVXXhGQN0aiu8P8Qp/MvMtRVU5Lns8EgG/O9/HDSdLCEqK241qgUFyZPI1IZC/9cc5cChiHb47EP0mXWe9cvy7gs3oDeWxwBExTrTAO2w2jlynk5FuDN8je4FZRpO9mXPVLjKR///0mGWf12W+bdevqunRBgtsV+ogAj9sYJBw/IlC7R2DLm0O3wPrrXUfL0J2/voGis8XY293Xra3R3NstsH1j4M/LMFfSFf+T24lmgS1viqBzld39g0niXMDm1wR2faSVNdrDWP0biaxQPQLpWRJ5RZFft73Zvo/sNt7jnGgBegfngHvcwnCMetx+ib5C/BwDrU8dCqs9xn09wMdvCFS/p6C+JvQRIJZIEfd1hRkYU0oQClBcoV082xsTXZroO9mptVrmFMiw5oYk0mhd01j1aPOLhZComJLo0oSmbJJW7sYjoa0hmCy8w6i5TFPyeOGFF7Bq1SrMnz8fV155JaqrqxNaHn2PcbxYvWH1Dwas3Fj2dgHV7wns3CSwf6vAe38U6GzTAi1vQK4PZKVq7JEMr6Eg9J7Yk51DPVqqKuAOEDT4B8b6hGMDJkONe02yHbsHQn9v/kOp+wM0aOh76Hq7hyrW2xsOaImH9M/t7R4KfP3njB87oM1zjXcQEUhrvZbEaSRSCnhcQONh4ESLNjTe4wl/GK8Z/957q9IyEFZOkGP7gY/+OhTo6gN9byMMoH22PbrGg+4OXWNMpEsnRRig9vdqx1lT3fDe2oPbh9YNb64b6mltqo3d/Vu8l0+KVzJFLwbGlDCjedmm44NLBpRPDj2BSqJVTNGCsIZD8U96EEst9dqwtpJxI6+daUfpmdocwoG+0dmQ1Nqg/SyuSGw5yJrXXnsN999/P7797W9j/fr1mDlzJm688Ua0tSVumElCAmPLQxyFocfSSrDU2qAl3Dt2QODQdoG+kwI12wQ2/llg45+0oZ/6G9SeTmPm4Xj0TqoeLVtxMFogHHg7/bxoKxmY3a6hnj2r/IOxvhCWQDrRoguYTxp78ntPDvUkar9rj7cdB3ZuUrDlTSXuQUQkXANAly4g7GqLQWCshjfE1+EAlDCyIu38UEFnq8C7fxjsOdd99vrh852twhDA6v9mZZh5LPX3ADs2CWx7W8HeT42jJw5sVdDdIXBkt7Y8lFdHc+zK4wmQ4TwWFKd2To/2WvRBXzfUJ0gp8etf/xrNzc2G3+Mh1Bbq119/HWvWrMH8+fNx0UUX4b333jP8XUqJX/7yl1ixYgUWLFiAr371qzhyJMqL2JEp702wfp7PaCClfhh1ggsThvRMoGS8FkS2HAu+fbLw9oBXJEnSLX/eIfnHDyVZS0sQPV1a71BekQw7gyjF1zPPPIOrrroKl19+OaZNm4Z7770XGRkZWL9+fVj7UxQR8b/+BATGoQxXdofYYxxI81EBV5+AxyXw3h8VvPdHfVbh+J8XVI92/XY4ZdjZ5FsbtIBl5ybhG+Y6kp5OLWu3UKy/npb8y7h8k1Wdrbr/SGEIOHo6dfPLVYG6vQIf/UXg078ruucnz/naPSDQ0zn0/60bBBqiPHJM9YiQ6t9LcWjBcfgEWusFunVLf+l7jPUjAwBtJIT+uYnU0wm0HNXKcHSflkW+vkb4EokC2pJW+mH/8V77NxbS07WfHk90rhGKYq1OQm5/UVUVjz/+OM4991yMGTPG93usl3DytlDfe++9WLhwIZ599lnceOONeOONNzBmzPAsOlu3bsXtt9+Of/u3f8O5556Lv/zlL7jlllvwpz/9CVVVVQCA3/72t3juuefws5/9DOPHj8cvf/lL3HjjjfjrX/+KdO8nQjGTlQtk52vzWft6ZMTrztlFV5t2wcwbI5GTn+jShKdyqkRznUD9QYGxE5MzkNRz9QPNR7V57VYyvdrR2InAro8kmmqB2aeHN6zMjnzLNDEbdVIYGBjAzp078a1vfcv3mKIoWL58ObZt2xby/pxOBcXFkS0Wq3okdh6J/5hVd78DgLW5DapbgTc9bbTm/sUryZiZk4OBYWmlgrwiBa0NoXftNB4J7T30DA6xLqlwoPmYxbp3DdV9qPpOaq+XWyDQfUKOOCR5zyfJHYzs+lDBCUPiMYG6fdF9jYy0DAChd8FmZDqQniEAxGYYm3f0R0bWYC95LObnhk3XqKMKbPzz8C0G+gQG+rSM0emZAj1d9rpvc6aFnrQsPVNBf6+EVBUUF8cvQAhruSb9eoEyTqlr9S3UAHDvvffinXfewfr16/GNb3xj2PbPPvsszjrrLNx4440AgNtuuw0bN27ECy+8gB/84AeQUuK///u/ccstt+C8884DADzwwANYvnw5NmzYgDVr1sTlfaW64orBNecagHFViS5NdHgTJFUkUdItf6XjgbR0ieaj2nC9ZBt67O/4Ee0msnyyjLDVOXHS0rWljJqPCrQ2JG+A74/zi5NLe3s7PB4PSkpKDI8XFxeHNeLK7VbR2RnZeM1D2wWO7I1oF2Hp7PDAam/SQL+qbStkWDfdQkhfQD1tkUT9QWOPZSKlZXqgwnpdBFJUJtHeaP35GTnWX6+3R7W8rZmiMhXduh7GnAJp6HH0yiuSKJ+s9XIdrLbH52OVNygWioxZo0tbaz/C+Sw8Hg/cHoT13OJKrePl2IHhz80vluhqH2pkyhsj0X/Mnp9b+WSJpsF5xN7PKDNHorhi6L3lFEgAEjCZox8JZ7oMO3P69CUSuzcDoX1+KhQn4BqQaG21MM/Cgvz8LKSljXwTmBTrGIfTQr1t27ZhAfOKFSvwzjvvAACOHj2K5uZmnHnmmb6/5+XlYeHChdi2bVvYgbHVrnor+4jGvuyudDxQtxdoaxCYMN368+xaR1IOLdNUMVVASfAs/nDrybumce0egcYjwKTZsShd/DQc1H6OqxpeF3Y9lgKpmKr1fDceESibGN/XjkU9qao2H09xSBSXJ/77EqlkOpaiTUoJEWZCBTXCtK3a3MP41XlWrkRvtwjpJtE9oB3nihK85yQtU/oyMc9YqqKnS8CZBhzeqf198jyJMRXAx697e7mkL6N1eqY0JJKKB2cGkJYhEe5nMHaixNzlEh++CuQWaj123iV3zOTkW38977DScOtGCImiMom6fYPfb4c2GuzkiaHye5MdTVusNVq21MNy+ewmtxCorFJx8HMR9SH64a6FrCgI+/pQOl77TAIFxpk5WgK4vsG4K78YtppCpm+kqJgqMW2xNkImOw9orJUoKtPK631vuUXRWW86kLT08BOROZwSikOElLdGKNrweddA5NeII0iSSQABAABJREFUUCRFYBxOC3VLSwuKi4uHbe+dD+39GWif4c6ZjsaQML2iopyo7cuu8vMktr7dg7YGgTFjskO+sbJbHTUd86DvZB9KxykYP9E+EybDqac5Sz2o3dOHxsMOLFlhn/cSqq4OFR1NvcgtEKiabX6M2e1YCiQ/T2Lnph401QkUFmTD4Yz/jVc066npqAceVx8qpzhQOjbJhyXoJMOxFK6ioiI4HA60tBgn5bW1tQ27nsZLvm42VXae9A23jZWMbKD35FDPr74315yAwzmYjDFIYFw0FmiqBcZOkJg8FwAkTrRoS81UVmnBdUEJUFAqMdALlE4Aandrz83MjX/W2LQMifSM0J6TWyR98z3zx0ikpQMrL9NufrduEAiWXyu7IPRypmca60ZRtHXTT54YOaFQZg6Qo3u97DwgXXdJLB2v5UdwOLVRPQCQrbsVjGUPbFToRjFkZkvMOUOioATILZTY8g9vY580LMEVrlASn+kpjhCnD+neU1au9hl6ZeZI3xD5zOzBTO++wNjY4OJwSt+x4UyTAbOux1J23lADTN4YGKYcelfXKB039FjpeG0aXCykZVhLkBeIM037/EIJjBWH9p0a6BNQVRm3hvOkCIzNBGuhDvQ3/8f8/x9Jq3c0hoQBWm9DUVEO2ttPxrWVJFEKS4H2RoHD+08ivzj49oB962jvNgAQKJ3gidrQj0hEUk/Sqd0MtDWqOFLTjdzC2JQx1vZvBQCB8ikq2tqGX5XteiyZKR2vDdffU30S5ZPi97qxqKeDuwFAIL/UbYvvS6TieSxZGRIWC+np6Zg7dy42bdqEVatWAdByj3z44Ye44YYb4l4eACgcC8xfloYB9wCa67SEbrHkcAIZmUMZe53p1hJqOZzW1ukeP11i6nwtaPMqKAHOvERF1mDAJQRw6moJKbVRV96b+excbb1dqwrHSpRNkti3RYQdvKWlA2kW2rXSMqSv9zYtXetpba7TRsIAQ3WTpguy9UGlvgEiJ89qg8SQjCxjgqIv/LMEBPD+y2LYWqn63uWsXCArb+hv2flARvZQAJWZDYybZvy+6wMxfXBjR/ljtCRjxRUSS7849D4KSoD0LInCUm2JsFCOKzPhBlbeIMmq3EKgezCzdGaOdmx5h+tPmCGxf6v3s5UY0CWqyikwBsDpWUNZ0NMyQp8nG6mScdqxI4R5Hp6MbGDROSpcA9r9gX8isWhJiyD1kjNd6/0NJQuB/jNX3YASp9RPSREYh9NCXVJSMmz71tZW3/beZGHNzc2G5F1tbW2YN29e2GWN5s2QqsqkuFGPVHGFFhg3HzPeCFhhpzpSVS1gEUJi7ERpq/Vmw62nyqnA/q0CR/cDM5bao55DIeVQNuryKSN/JnY6lkZSNkk7zhoOaj1K8RbNemoenF88ptxe35dIJcuxFK6vfe1rWLt2LebOnYsFCxbg2WefRV9fHy699NKElEcIYMHydLS2DsRllQNF0W5GfYFxmvXA2MroWmcaAjYS+ydz9Pag6XNA6AM4K3ILtakyNZ+HP0wyPcNaHor0zKF6cqYB886U8Li0uvTfziszZygwycge6nHMzNHev39A608fWOt7eZ3pEmKwByotfXC/ul7GnIKh3uWsXK28JeMkWo4JjCmXht7LQHWu/3t6ZmIC4zEVEu6B4JmxiyuB+StVQy83oL3nsy7XzmOfvRWdXsiO5sHh/9kyhOXOQu8xzh8zFBh7e/sXni3R2y2RluFtMAdyCo1LUmXlaseZe/DzSs80BsbhBvbhqpgikZ0ng3YajdVNrUrPHGq00fd4RyotxFEhes600JfbUnRLdHk88QtYk2JGl76F2svbQr1o0aKAz1m0aBE2btxoeGzTpk2+7cePH4/S0lLDPru7u/H555+b7pNiw5uNtrXexkONLGg7rg35GFOR/MmqvLSWfImGg8MXlk8GHc3aupOFpdqcnNGgZJx2sWs+Fv/W62ga6NN6IDKzpWGYItnfBRdcgLvuugu/+tWv8OUvfxm7d+/G7373u4ArRMSb+c1z9BoqhALD0mLONGvPczj9lpwRgcvksLg/L/25raBEv8/g79lbnkiy3KdlwDCUWptvPPx3/XXRkabVm39QDGi9eL7fdT2v+sDWaqDk1PUy6V9f3/slBvej783X/11LaKQF8qesVjFhpjbcfai8gV978lzteRNmJqaRrGKKxBlfkkGXtnI4tTnTIkBE4J3ba/UYtyrUc76iAA6H9XrMLZKomCox81TVNwQ3PVPrBc/K1UZKOJwS+WO0hGmAtkqKovg1oOiisZB7TE2+36FwpgMTZmrltipDf5xH8V7UGWGPcajnGEUZOj8FawCLpqToMQaCt1CvXbsWZWVluP322wEA119/Pa699lo8/fTTOPvss/Haa69hx44d+MlPfgJAG0J9/fXX4z//8z8xceJE33JN5eXlvuFhFB/5Y7QMyO1N2sEfynAZO/GuL5vM2aj9ZeZoPfqtDQKtx6Vv/lSy8K7BWJmkaxcH4nACYydoa2U3H5W+eUbJpq0BAASKK6Wl4aVkL9deey2uvfbaRBdjGLOs8w5n9G6uFAVw6m8+LfakKA6/4CtNSyzjL9QgJF9306yf8pKWEbwn29sjE2lgrL8B1/cM63/X19NI71EfaOobCfxPEw5H0OnaWm/+YM9vWvpQT5rhM5ND+/deKYSiDU9tqReYOGvovYwp137PzgemzJPIzDE/f01fLDFxdvzmRvrzvm6wxWOsrNQQzeUBS8ZLlI6XaGsIscfYwr3h7NNVHN0nMK4KSJsT+I0LAZyyWutNT88EyqcAHo/qC9Yz/RpgvPTHjOKQg/Nlzd+Dw8KIhsDlG5oiEE4vrT6wT88Ymj8dqYh7jEP8HuiHUts6MBZCoLKyEunp6YbfY+2CCy5AW1sbfvWrX6G5uRmzZ882tFA3NDRA0dX6kiVL8PDDD+PRRx/FI488gsmTJ+Pxxx/3rWEMAP/yL/+C3t5e/OAHP0BnZyeWLl2K3/72t1zDOM6EAoyp0DLttjdKlIwL/hy78Xi0ZCmKQ2LshESXJroqqiRaG7QF5UuSaEkdj0fLEK4oEmVxnIsbD+VTJBoOCTQeFknbEMNlmigW9Dey2s3rYPKgaAbGDi0TtPemOMNibkL/Rl9neuDAONTGYUUBzvyyNqRHH3BaCYwdTu37F8kydmkZxtfNLRwaOpyRNfS7vsd2pMC4uEJrYPYOXfYqKtPmT2bmaGUOFqwJIQ11qe/xMgY5Q3/3Dp8WQhueOnaieXA1fcnI5y6haPOPQ0k4FE2+HmBvkjj9fG3d75aC3ghP0/r55RWTZci7G2mEgCNNwjM4J3jCTGs99IoydDwKAYzXrYpiPIcM/a4/foQyOPLeO5IuwDJsaenhnXOcGUONOeH01KeH0Whnhb5hKVSjOjBWFAUbNmzw/V//e6yN1EL93HPPDXvs/PPPx/nnn2+6PyEEbrvtNtx2221RKyOFp7hSovGIQGu9QMm45LtRbjkGuF0CYyfKiIab2NHYCdrNU1OtNgctWd5fc532mZRNklG9ONhBcYU2R675mHZjHUlSjESQUvvOCCF9UymIosFwI5sGDAwGJVZ6Fy2/hmK8+UyPIDAe+ps++23oZfL2dumDMP15z2yuoW8odYg3rf69Wvpe06Iy7XoOGJNQGW/Yza/zigOYv1L7e2vD0ONVCyWkqjXWAsF7EIVirHOzHuu5yyS2btCGPu/6SCt3XhRnBeiHKAeb86k4JVS/v4ebEdr/M1UUwDMYyOnnxVvpic0enN8e7pJXmTlDr5dTEHqCPEWRfo03xt5/TwymFaVlSPMeY0Urgrc+Hc6hMsw8Veu1njQb2PWR9lgoGa3T0ocC43BGU+m/Z9l5QGvouwgokvuMkLOKQzs3SW/yrTg2LiXpoFUabYortJ8tDcDMxBYlLN5h1OVJ2ns3EmealvCpvkbg+BFpaFm1s4aDQ2v/jTaKAyibqK1d2FwnUVkV/Dl20tmqzccvKpNJF9STvelvvhxpAAZvMKM5RUf4zUPUJ7sZicMJQ8+bf8+Ot1ckkmGrZjfyzrSh/RuC8PRArxn8/TjShpJ1eet28SoVrn7j8GdDYKxb69hqHg795+ZwAjNPHapAfZm9PaCGUQKK8Wbev8fPK6cAWHGptt/MbImWo05Mmh29Lip9cOPU9SIGyqpdUALMXabNi33vj1ohHU5ADSMxmvc9entU9UOq9YGxldECU+drQ4eLKyTcLomD1QIZmQ60NFhLPpKVC3S1ab/nFGhZrkPhH1il6UZbpKX5vuZRMW2RhNul/Ty8a+jz0a/V7e0x9nI4hgLjcdOASbO1DNi+52ZazwmSnQf0dIZffv33vqBEom6vVo6ySRIdTdrj3nXPw91vOALNYQ+2vfczj2ePcVIk36LRLytXS3BxskOEvc5dorhdQPNR7eJTmoTDwK3wztH1Bpt219+r9UimZSTn0HwryiZrn8nxw8nxmeg1H9XKnIyjQ8jeDENndb9Hc46k4jAmuNEPpR6W6Eh39+xwGnvn9M+LxagW/f71wWqgoZZKiHWlr2dv4Fc6HqisMs4Rzsobev9mvccj8Sa+ClgGfSOIbq60GKxz4RiecMs7DNvs9cdOBFZelBn1ZFNe/kPdveavUFEyTmLBCi1RpL6uRJjHrrfH2Hus+o+m8LKS7E1xaCtTFFdqDeVnfhlIzwxtqSzf6zkjG1YLGBs5oj2KLSNby2CdU2A8xvSNLIowvgd92byPp5kM3R8S+Nj2XhcLS8O7PgqhfW/SM42JLeevlDjrChlycj8vp98yasHLYdwm1M/ckSxDqYlipbhSm4vUfAyYMCPRpbGuuQ5QPQIVk2TSJg4LpqhMu6FobxTo6bJ/hufjhwEptfm3iUp8EmtjyrXAv7VemxeXTJnQW45pP0vHJ7YcNPooDt1SJfqb/yiemxVFG2pbXKFNndFnVtYPV/X+X9UN59b3mui/s7EYCqoPfswCIW82af8gM9jQxZESOuXqbsb1WaX1r2v1vDx+OtDdIVE+efgLGuaCKkOPqR5AerTgRR+QZGRp84Kb67Qe0ETw79H3zmkeO3H46KaMLIn+XoHMHGCgFyHzHmvzV0psfx+YdZr0Lbuk/yycYX43VI/1OhQKcNYVquFzCoU3O7aXPhguGafdm4QbSI74uiaBsXAYx1QYGoqU4WUMVMdmCQGzcoGzr1DDDmABYNlFEpBDxxcwVH+h9tx6GRoGHMbzXCAOp7GXXP/5ma5BrpurrTikr9WNPcaUkkrHaye15rrk6gFrGMXDqL2EgG+4bsPBxJYlGCm1IcbA6MpG7U9RtJZ7KQWaahNdGuv6e7V1NTNzuUwTRZ/DrFcsij3G3rmrS78osfBsY+Ob/02n4hdwGpYvyhr6vahM+2mW7CkUzjRtH7mFxt5qX5l0ZfT1GAfofR3JSHMftTnCKhasVA3Bf0YWsOQ8FRNnSV9252AUBzDnjMDbG4ZSD5ZHUeCLWBSHsb4zc4CKKcCCs2TCGhKFSXAXqM5PO19i6gKJCTOsHxOKrifPWz8FJdpQcX0+B6sZwkcSytrzQmiJyNID9F6bP8f4XhSTHuMx5cDpF6hYcl5sA2P/hh39Z6kEGEGhL2NRWYCGHUMwrXuvg+ukRzJqQRkchhzoOFfCvMUOlLBuJN4lpvLGDI7g0NeXyfMVv228yQEZGFNKKirTLuhtx+P7JYjEQB/QWq9dfL3zpEerysHW7PoaEXT5h0TqbAW62wXyiiTyixNdmtgqT8Lh1L7e4nHhJRYhGonZcFErCYYsv4bfMELDDZ/fXZU+IFecxkSA+uGy46Zpa+QuOCvyk+sZX9LWb9XnHvC/4fTyzTE2GRZqJlgm7oop2jI4/omASiq1nstwe62CEbo1lxQHkFek/Z5XZI9l4Qy9bkHqICtXm+eqP06CCRSgBfp/tsmSWKGomKQdSLlFVobVGv9vZcSAfgi54hhhWLNDC8JiMfxdcZg3LukDzEANb2npwLipDkyaLVExVXtMPzVA/5z0EINOqxSHlqV76oKh1w33u5ceYmNKZg5w1uUqTjt/eBZ5S4Gxbh3jeCbfClo9mzZtsrQjl8uFf/u3f4u4QJS6FEUbTq16hCETpZ011Wo9dmWTQp8/kWyy87U5L73dwpfAwY68vcXjpts4eo+SorHacLu2Rq0nNhl4l1/h/GKKBbMenuEZbaPzGsDwmzk9/+RR+ht6fXDiTNd6vqJxHcnOBybNNgYj/sOOTztf69H1Brih9hh7ex+9vUFm/AOYaArUQCvE0OOKQ5uusfgLKuatsMf5Rt9QUFiqNYgsWDly12uwY8I0eBuhvvXBbLjTDGafmoYlqyTmLbcQGI8wksLs++j/vTJt9IrhvZfh++v3HRFBGpOEAM65NBOzT9cahc78sopT/0/getevAx7JEOpAZp8uMW2RsUc6HGbDys0IRQuOA2W+NyuDf2OIt6HHVj3G3/rWt/Duu++OuE1PTw9uuukm/P3vf49awSg1lU4YHE591AZNuxakwjBqPe/Q5Poae34+Hjdw/JDWo1MxJdGliT2hAGWTAUiBxiOJLk1wqqqNsFAc1odSEoXCNMFQFBNx+d/k6/+v/R44c7LDaZ4EK9bL4Pn31hSWaj26gf5uJVCaOEti3pkqlnwh+Fq+Z12u4uyvhDDu1iJ9oGIohTcwHvxcSscN9Rwnmr6n3ZkuMXe5NHwOgQQ7Xg0BW4B514EUlurKEWYg5nAIjJ1o7dgd1mNsGElhsn+/76whkDTJMB5t+l5S/0Yu45zZ4PvKKTD/zutfJ9YrNUSjvqwcM8NGLIQ1lFr7faQlzqItaPWcd955+M53voM333wz4N/b2tpw3XXXYevWrfj1r38d9QJSaimpBCAkWo6OnNzDDvp6gPZGICNbomhsoksTH2WTtaCz8Yg9h7s3HvGuJx2bLK92lEzDqTuatM9nTHl0kyEReQXKVAz4BX4RBsb+AYf+BlAI4//9e5yKK4Dpi1Usv1iNyjzPcAQKmMzqzRhy6oZjDuadCDakGtB6jaxsFyrD/Elv0YTuVxuN4iqu0EpVMn6oDq1+5sHeh1mjRqDnzV+hYtoi1bcusf/zw2FpWPQIGYrNvo/+31/D9yU9cONTtOlfM92QfT7y48ssa3Ws712iMaXAUh6CEUYJhB4Yh1a+SAT9WB966CFcdNFF+O53v4vXXnvN8LejR4/i6quvxtGjR/HMM8/gnHPOiVU5KUWkZ2otmf29wrfmnV0dPwwAAuWTU2euZFq6lj3T7bJnD2UqDaP2KijRMoZ3NNl/qTNvYr3S8anz+VB8GXuMAwchkc439g8EhiXfMhnC7HBq14op84HcwtB7aSOhb2gOdFNqtlyTWS+PHaYOmS7lNJjV1k7X5UXnSiy7SMWYsqHHrH7mweraMKQ3yBDjiqnA1AVa3UxfrGLK/MjnXps+XxcMWw2ShDAfFm74DsfpWDRrvBJ+yzWFc0UzW3M81ueCaDQYWZnzO9K8crPPzP9z9TaaWF0DOhqCVo8QAj/96U/xla98BXfeeSdeeeUVAMCePXtw9dVXo7+/Hy+88AIWL14c67JSivBlpz6a4IIE4V3TtyJFhlF7eYPOo/tsdNcBoKcTaG8UyMpNrWG6QgDlk7Xfj9uwscJLSqCpTvu9dEJiy0KjV65uyKxxvnH0epj8A2vDUOqReoz9nye0Obq5hfFNDBXoxlg/T9UwN9nkZtYOvbHjpwMTZ0ucdr461Etsr8uSj8M5fDi31bIag4jh9xv6/ThDGGI8ZT4wfXHk9y9mr6NPTjVSkOQwaYgJNCzce5xm6pZIi2UPq1mvvsfj977DqEZ9neiHUsf6GI5GQ4InjMDYcJ602GOsjWyQaG8MtYThs9wu8cMf/hAZGRn43ve+h7179+IPf/gDxo4di6effhrl5Sl0F0oxVzoe2P+ZNs+4aqE9g86TJ4CuNoGcAom8MYkuTXyNKQey8yQ6mgW62qVt5m75lmiaZo/so/FUPlni8E6B44cEJs+x53emux3o7RYoKJGGmxqiaMrMBs74kgqPBzjZMfR45Es36dZHDhIYw2JgDGgZpOMt0OnRLOhVFMB7DywcAFzDt0kUxQHMOnWw/kwScdmZ1U/ef1kg1W9Yqf59psUpKZXh9UdKpDQ4tXykOcb+2Z59634HGMWw8jKJ3m5pqLxYfs7Z+VpWZ+8ayYpDQvUIuPqNAXmkU/+0ZcXic8CG8t11OGXA+b2GHmPd2sN6w0bW6NaYN02+5RcYZ+UCM0+VcPXF78scUof9XXfdhYyMDPzmN7/BwoUL8eSTT6KggAtRUnTlFABZuRKdrQJ9J0NbqiBe9L3Fdr/4RpsQwPiZEvs+FTi6T2D26YkPxFQPcOwAACExriro5qNO3hitsaKzVaCnSyI7L9ElGs7bWzx2QuKPFxrdvMu09XQOPeaMMDuyMx1wD2i/+wfW/kGlaTZok8y18ZAV5Dpq6LXT9/SZDFm1w1DqoGx+bXZaHUrtNz9+WGBssjZyvBovDMeLIiHVweBH6BpVRug91M8VN8v07K2DjCztX7xGFAoBwz1OWrq2AoRrwG/efISXNYcTWHmZaovcG0JIyMFAt2wS4OqXqBhMvDrnDBW7PlIwZZ7E5+8Ofc6q7/0PBb/CYawUsyXjgm0zabZ3v/ER9CM444wzIPyOaCklampqsGbNmmHbf/jhh9ErHaUkIbR5rEd2acshTZyd6BIZSQk0HNJ+D5ZNcrSqnAoc+Eyi/iAwfUl8E8cE0lgLDPQJjJ1gz4aUWPMOpz64XZv7PnV+oks0XFOtdh0ZOzHBBaGUYQgYTOYnWpWmD4xH6DGGMMZjwXqMY83bw1VUJnFk92DJAgSM+uViTIdSxzDJUcR0ybe87NpovfQ8FY21AqXjrW3vP+zYf7qllUzsseTfYOLx9hKPMPRe/9nkF8O3RKfZetr+DTGFpdAawqeFXeywzDpNCwhnLJGoPzj0JsJphND3MovB3lE7EAogB1s0nGnAvDOHCjp+BlA5TYWrX7e9fmSAAsjB3xW/75+VeeF2yGMQ9GtzzTXXDAuMiWKtbJLEkV0CjbUCE2fbq4fpRIs2JLSw1J49c/GQnqllqG44KHD8kMT4GYktT90e7Rw1Yaa9jpV4Kp8icXC7QMMhgSnz7DWSoacL6GrXph7kcJARxYn+xizSdU/1PXGB5grrX9OsxzgRgfGyCyU6WmTQBqmCkqHfrcwxtiupWxXKritbFFcCxZXWC+c/lNpfdh58yUozsnQ9dnG6BvgPf/VmEB42xcDP1AUSQvFeq8Sw5+i/L/5LQqVlAOddI+N+TJZNAs67RoXiABoODj1eMUWivQmYf6b1z1XGaTh4qPTD2QOVS/EfFaMbGWBoGPFrSDNbJUA/ysDKkk6xFvQ0feutt8ajHEQGBSXaMkjtjdqwlVgs9RAu7zDqVFm72MyEmRINBwXq9gmMm564QKyzFehoFsjOlxhTkZgy2EFuoZbIp6tNoKtN+oaT2kGzbxh1YstBqUUfRBgyyoYTGI+Q1Vrx6zE2nWOcgBu9nAL4GqO88wUDJSvKzgPmLFORmQ001QXuCbNzYJxbpC2fqLq14LC/V6CvO9Glig6zXlQvb8LSwlKJ9ATkb7CUrC3A/cG0RVq5D+0weX6Q0RaJOh4DBWwVU7VcH1bOLRNmStTtFSifLH0rNfTbaEWJkXr6fY+bTLcY6XxhNnpG6JZYs8MIFRuf5iiVCQGUTQQAgabaRJdmiKpqQ1WFkL5MwKmqoATILdICsRMtiStH3V7tDD1xpr16SROhcqp2edEP8bID7412KecXUxzp5y7ql7EJZ+rHiNmlR5hj7NDNs0v0/MGl5wFV852Dc/aGGz8dKBnnP2dU97uNh1IvWCkxplxi7nKJJedJZOZIzDxtdJxv9J+Bfu3bxV9QMW66RPkUYOHZEpPmGHvME8EsSBopYDQ73vyDJ7uz2uA261SJMy9RUT55aH1rOyVxDdbTr/1h6Fez7OMjBcb649gsGGZgTORn7CTthNF4xD5nxNZ6wNUvUFxpvOlKRUIAE2dpn9GRXYn5jFz92nxvh1OiMgWTbvkrn6I12jQc0hpx7KC/R+vJyciShuGaRLGmH2mk760tGRd6wGQMds3/Nmy5pgh7qqNpTDlwxuqMoFOAzG5u7RycZGQDp6yWKK7UlkU663KJ0nGJLlV0GLJO63r7S8cBc5cZhxMnOjAOpcfY9zezXsbR0a4xjFCAnHytThadK3H6BSqKK+P3+sEa6BSThgo9Kwn6/J9rNjTe7PNP2IiAxLwsUXBFpUB6pjaceqAv0aXR+LJRTx2lZ+wQVUzVPqPGWm0eabzV7QNUj0DF1OFzkFJRRhZQPA5w9Qm0HEt0aTSNRwBAoHyyvW+safTRB8b6m6+yScCs01QsXjUURQgx8jndECyOcGOpOGDoTSkqAybNkZh9upo0x79prw8vewkX7DoXyzV9rVDMeoxHCozNRiikQITicGqj7+J5bgg2Ysb4uQX+0ltJ0DdSj7HZuul2mGOcAocdJSuhaBlspRS+pV4SydWvZcl2pknOlRzkcAz2GksR915jjweo3S0ASEyy6dq9iVA5uKxCfY097sKPH+acfEoMxaGtD5qdJ4fN05w4C4acBEGHCQttDu7UBXLEucIOh1+PsROYeYrEhJlhvYXEMOkNosQLNk+9ZBxQtVDF6Rckpus4rB5jkyCrsFRi8lyJJV+wyfAnP3ZN7hZMoMYVoegCVQufm+nw9xFGyJgtCWc2fJqBMVEAZd7h1IcTf5OvDU8VKJ+S+LlidjJ+htb6d6wmvj37DTWDSzRN1IYlkaZ0POBMl2g+CsOSConQ260lRsvKtVcyMEodZ39FYvmXZcCbvZHmw/kTQpuD600YZEbxC4wTf+UKndmw8VTowbO7YFNkhACqFiJh01bMhtKOOMd4hOfMWCpRYtMh8d7l25JtKIUzbXh5zRo0TINTCwnXhp1TLcxF1k9R5FDqEdTX1+Omm27CwoULsWzZMjzwwAPweDwjPqejowO33347lixZglNPPRXf//730dPT4/v75s2b8a1vfQsrVqzAokWLcMkll+Cvf/1rrN8KhWhMGZCeJdF6XJurmEjHDmjf5HHTkuskGGvpmcC4aYDqFji6Lz6vKVXg8E7t85gyj5+HnsOhrWksVeFbbztRjh/WfnIYNSWKogwuLxLgbsd0CGeQYdUjcfgNpU7GyNhsOGOi16unxM8hDsY0+dYI34NwepntwDUYGKcl2TSuksH5zN7EX8DIjROB+OdVCPi733P1w/zNtisoGSxTBOfgSNk+MPZ4PLj55pvhcrnw0ksv4Wc/+xlefvll/PrXvx7xeXfccQcOHDiAZ555Bv/1X/+FTz75BOvWrfP9fevWrZg5cyZ+9atf4c9//jMuu+wy3HHHHXj33Xdj/I4oFEIBKqYAkAINhxNXjs5WoKtNILeQPV+BTJojASFxZLeA2xX712usA3q6BIrKmdApEO9wam9jTqJwGDXZhaJoCeCKygPPbQt2Q271Jn1Yj7HNb+4DMRvmmGwBwGjkTRw31qYZ/s3WCx+px9gwzUE/FNfm3x1vj3Gy5TfJGwOsvEzF4lWBA2OHheHMpue4EUbhZGYDS7+oYsWlqum5V1GAs7+i4qzLGRib+uCDD1BTU4MHH3wQs2fPxtlnn43bbrsNzz//PFyuwHfgNTU1eP/99/GTn/wECxcuxCmnnIJ77rkHr776KlpatHVlvvnNb+K73/0ulixZgokTJ+L666/HypUr8eabb8bz7ZEFFYM31Q0JXIJG31ts95N1ImTnaQ0Yrn6B2j2xfS2pAjWfs7d4JAUlQG5hYpfSOnlCa0zKKZDILUxMGYi8hADOukLilC+aJJOJUtIfKUdDYKxbYkrfY5xkAcBoUlCqNT6XTgBWXKpiwdn2vPaZZYIfaVisPvgym4dqR9mD64MnY+N8Vq7ffF6TtdctDWc2mToSaA52cYV2vwiznmWhHUOZCViP28v2MyW3bduGWbNmoaRk6MhbsWIF1q1bh4MHD2LmzOEZLbZu3YrCwkLMmzfP99jy5cshhEB1dTVWrVoV8LW6urowY8aMiMqrKJF/k737iMa+RgP9Tf7JE9pSDPGsI48bOH5IS04wbppI2LyHcMSznqYtAo4fkjiyU2DS7Nj1LtQfBk52CBSNlSgdJyK+eI7W79uEmcDuzcCx/QJFYyPfX6j1VF+j/aysAhyO0VW3ZkbrsTRaWB3OGUlgrKownUuXLEx7jBOc8TiVnbZGQkrtOA223FYiGeaIWpyfbljuRx+V2Py7M3+FRN1eYPIoSP5p9hlYud816zEeKTmZ2RJNdjhf2j4wbmlpQXGxceyqN0huaWkJGBgHeo7T6URBQYGvx9jfG2+8gZ07d+LHP/5x2GV1OhUUF+eG/Xx/RUU5UdtXsps2bwDbPnChvSEdk6cNRVzxqKODO11wDQxg4gwHKsYl5+LF8ain4mJg6rx+1Gx3o+lQGhYsj35krHokNlb3ApBYem4WSkqil7ZwtH3f8k6V2LelBw2HBJatzkZ6ZnSuOFbqSVUlGg71QgiJeadkIzsviVqTomC0HUupIFpDqVWP3/28DW70QmU2x3hMucTBaoG8ouQPBJKN//rYdpWVI+E96EdaukfPP2O8l93fb2Y2MH1xsn8XtM/L0GOsb9CwcItlNkJGHSEVlCGWZmCseeyxx4LOE/bO9xUmNWX2uNnfpJQBH9+8eTPuvvtu/PjHP0ZVVdWIZRqJ262is7M37Od7KYpAUVEO2ttPQlWT/UsXHQWDy2rU7BjA+FkDcDrjV0e7PgUAgbIpbrS2dsf0taIt3sfS+JnAwZ3Ark8HUDJhABlRHg5Tuwfo6hAorpRwZvWitTXyfY7m71vFFODofoEdn57EpNmR7SuUemqqA/pOCpSMk+gd6EFvFD6nZBDPYyk/PwtpaVxLJ1qCDaW2ujSL6kn+odRmw1nHlAOn/h8VuUXxLxPZ28KzVZw8AWTperOt9hgn61Dq0cTs/Bdqj7H/UnVWnsMe40HXXXcdLr744hG3KS0tRUlJCXbu3Gl43Nvr698r7FVSUjKsZ9jtdqOzs3PYcz7++GN885vfxN133x20PFZE82ZIVeWou1EPV0YWUFwp0Fov0FSnonyS9nis6+hEC3CiRUFuoUThWBl0qQS7itexlJENTJylrWm8d4vEvDOj95oDfcD+z7R1i6cvjv5nMRq/b+NnaIFx7V5g/IzozI+3Uk9H92svVDkteb8zkRiNx9JoF+zmbKTeD8N2o2AotWEopV/bS1FZfMtCyaFs8J6so2noMatr0hqTbw31OCfjdyfpaLdUxodCWMYOGD5H+JTVKlqOCRRXjvAks4ZIG3zmCQuMCwsLUVhYGHS7RYsW4cknn0Rra6svqN20aRPy8/MxderUgM9ZvHgxOjo6sHPnTsydOxcA8NFHH0FKiQULFvi227x5M775zW/ijjvuwJVXXhn5m6KYmjBDorVe4Og+4QuMY612j/YtnTCLSbesmrpAouEgUF8jMH6GRGFpdPZ7YJuAa0DbJzODW5NfDOQXS3S2CrQ3Sowpj/1rDvQBzXVAWrrE2PGxfz2iaAjWuxVkhUhkZkv09QhkZPotLZiE1w1jVtqhQIUoGLPlvUac32+2JBgPu5jzxsVmw5lHatAw7ET365hybdrFiE+xcY+x7Sd+rVixAlVVVVi7di327NmD999/H48++iiuueYapKVp36Dq6mqsWbMGjY2NAICqqiqsXLkS99xzD6qrq7Flyxbcd999uPDCC33zkzdv3oybb74Z1113HVavXo3m5mY0Nzejo6MjUW+VgigZry230XIM6OmK/ev192rrsDrTpLZkFFmSlg5MX6KdFHd/JCz3tIykoxk4uk8LtqYtYk9cKCbO0urryK74XHGOHQCkFKiYavGiSmQDhiVDwugxXrpaYsJMiWmLZfIPpdZ1mTj4HaYQGINcGfDxkZ7DodSJYXbOiiT5luXXY2AcGofDgSeeeAKKouCqq67CnXfeiUsuuQS33nqrb5ve3l4cOnTIsHzTQw89hKlTp+KGG27ATTfdhKVLl+Lee+/1/X39+vXo7e3Fk08+iRUrVvj+6fdL9qIowLjpACBwdF/sX+/oPkCqApXT/FoxKajKKqCoTKKrXaCmOrIznccN7NgoAAhMXyoNWS8puPLJQEa2RPNRLat7LKkqUOcdZTGTDRiUPESwHmP3yM/PyQdmn66dn5I9MLY6BJbIn1nvr9XkW4LHXkKYDmcO8fxl9Xxn2ittg/Ol7bNSA8C4cePw29/+1vTvp59+Ovbu3Wt4rLCwEA8//LDpc372s5/hZz/7WdTKSPExfrrEwe3A0f2AZ1XsbrzdLqB2t4AQEpNm8wY/VEIA886U2PQqcGgHUDIOYS8ZtG+LQE+nlshp3LToljMVKA6t13j/ZwKHdwnMXRa747mpDujr0ZKj5RTE7GWIok4xCWaFIiHVEEe+jKLAOJKlqyj16INcw1Bqi8m3DCM3GBjH3uBYakMsHOI5y5CYMJweY5udL3nKo6SSmQOMnQAM9Akc2h2kCT8Cx/YDrgGB8inaQugUuqxcYNapEpAC1e8K9PUEf46/YweAur0CaZkSc5Zxnne4xs/Qkpo01GhTBGKldrf2AU1kY9KotGfPHvzbv/0bzj77bCxcuBAXXHABnnvuuUQXKyrcQwPODDfxzsHug1ACY7NhgsnCUP7EFYOSkGFYtG7FxhF7jE0CYw7jT4xQ77PCCqpNeoztcI+XhKdsSnWT5w7OX/3EZXkJjVCoHuDw4HxM72tReCqrgHHTJPp7Bba9LeAesP7c1gZtjrIQEgvPksiM8tJPqSQtHRg/HVBVEbO5xidagI4mgex8iZKRslFS0tqxYwfGjBmDBx98EH/5y19w880346GHHsKLL76Y6KJFzBAY674iJYMJ5ApDGfFisx6QUBmCed4lUghMk29ZHUrNHuPEi2D4dFhDqW02xzgphlIT6RWWavNX2xuBplqgdEJ093/sANDfI1AyXiKP6zVGRAht3l1PF9DeKPDpP4Cl50mkZYz8vNZ6YOvbAqoqMPt0NS7ZlEe7SXMk6vZqa0FPmqMtgRZNBwfnkk+ew5790eqKK64w/H/ChAnYtm0b/vGPf+Dqq69OUKmiQ99op785n326xJhy6VuOxopkP/7ZY0zhCmeOscOpNaBn50nT3mOKDW9Wav/R0NMWq2iuE9ZWAAnjJGE6qsYGJxwGxpSUps4HtjQCB7drLfrRuhFxu+BLFjVtIXuLo0FxAIvPlfhsg9aj+OFfgQUrAy/jJFXg8C5g/1YBSIEZp6iYMDP+ZR6NMrOBCTO17NSHdgwOc4+Szlag+ahAZrZEZVXUdktJoKurCwUFkU0oVwKlgQ7j+eHsJyNLG9GSlgGgy7u/ob+nZwhMmBHaPo29ITa40xtktZ7yx2j1MnaicVs7vZdYieRYSiVm9eT/3fFyOMWI92nzVwCAQFvj0GMOZ3J/Bsl0LBmGQyvAtIUC0xb6/yUwQ48vrL1f45B5Yfg90Q0iDIwpKWnJnBS0N6loqg2tNX8ktXuAgV6B8slcKzeanOnAki9I7NwENB4R+Ph1LVtyxVQtSZPHDXQ0afOJuzsEFIfEnDNUBllRNmWexNF9QN1eYNLs6M2f9/YWT5kvOfwthWzduhVvvPHGiMkxg3E6FRQXR+dALCrKCfk5q/9Jxe4tLkya4cRb/9sHAMjKcaId2qTicMqWkdEHRPD8WLNST5d/S0IIgcN73AD6AdjzvcRKOMdSKgpcTycBAKVlOQC05CIlJdaOHTngAaB9D0fL8WbnY0koJwEVcDodAFQAQE5uOoqL00d+IgDv55yR4YT3fJeW7kRxcfClQwa6hj7nrOw0ANpclqIx2cjNT2xkzMCYkpIQwOKVadjwx37s/0ygdIKMuJWpvxc4vEOb08q1cqPPmQYsOEvi2AGJ/VsFjh/W/vkrHCsx+3QOY4+F9ExtGPXBaoF9W4CFZ0d+nHc0AU11AhnZzBqerB577DH8+te/HnGbd999F+XlQ3Ma9u/fj1tuuQW33norli1bFvZru90qOjsjywinKAJFRTlobz8JVQ39mJ62BOhqd8HbO6Kqbt/vra3dIe9PWzky/OfHSjj11N0N2PG9xEqkx1KqGLmetOPlxImTCPXY6eoaen6yH2/JcCxpeXoE3G4PvPXePzCA1lYrCWG07QcG3IbfrXxuXbrzysDAUIKHjo4e9LsCPyca8vOzkJY2cus9A2NKWhWTnSiu6ENrg8DRfRITZ0W2v/2fCbhdAhNnSWTnR6eMZCSElgSqfLJEU61Ea4NA30ltWE1uEVA2UaKgNPnn6NnZ5LkS9Qe0nvvWeoniCBJlSQns+WRw6sFi9hYnq+uuuw4XX3zxiNuUlg7NfThw4ABuuOEGXHnllbj55psjfv1o3TSqqgx7X94bRECb86jfZ+iGTmB2vCEOpZ5yiwBAIDsv/LpNRpEcS6kkcD1px7+ExFBjk8W6FEPPHy31b+9jafCzkvpHJFTV+nMNpLXPTX++hRg6TqS0+tqxw8CYktrMU4BNr0oc2CZQNkmGnVCorRGorxFIz5SoYm9xzDnTtIzVlVWs63hzpgEzTpWofldg98cCyy6SYS+LUV8DdLYK5BdLVE6NbjkpfgoLC1FYWGhp2/379+OGG27AJZdcgn/913+NbcHiSJisvxrWvkZRw15OPnDmJWrUk/XR6OVd+1sIYOVloUU5o+m7kxQC1HfIS8xFmHzLblmpmfONklp+sZZQyD0gsOfj8L5R7gFgx0btuTNPkUizMrWCKImVTQSKKyR6OgUObA3ve9N3Etj7iZbTctZpzESdCvbv34/rr78ey5cvx9e+9jU0NzejubkZbW1tiS5axPTHryPCwNgOmVWjKSc/8sYCSh2r/kni3KtUCKHlsQgll0UsluAkc6rbmyBs6LGQ1zHWbW/14zPLSm2H+wj2GFPSm75EorlOGxpaXxNaVlwpgd0fC/R1C4ydKFE+JXblJLILIYC5yyU2vaplqS6uDG3tYakCOzdpUw8mzQmcYZxGnzfeeANtbW149dVX8eqrr/oeHzduHDZs2JDAkkXOEBg7h4b2RbovolTjcBqnI4SC353EyMjW/SeCwNj6k4Z+tVuPMQNjSnrONGDeColP/wHs+kggr0gib4y15x7eCTQc1BIHzTmDvV6UOjJzgDlnSFS/J1D9nsDp52sZwq04sE2gtUEgp4CJ6lLJrbfeiltvvTXRxYgJ/bk/0t5R9noRhSc7HyifIlFYyi9RPOmnSoR8H6zf3upUct1zDKM0bXAPzqHUNCqMKQemL5ZQPQKfvSVwsjP4c+prtIRbikNi0TkS6cEzzBONKuWTtWRc7gHte9NrIQlo3V7g0A4BZ5rEonNl2D0DRHYSzcCYiMIjBLBgZeTJVMmaMRVaJDt24lBEa3WOcWaO9pzcAkPmLkvMpq7YoXOKgTGNGpPnAuOmS/T3Cnz6N4GO5sDbSQkc2g7s2Kj4TsIFJfEtK5FdTF8iUT5Zordb4OPXBU60BN5OSmDHRwPY+aGAUCQWnC2Rw+ztNFroh/Y5gPRMicKxYfZasbOLiJLA4nMlzrhQxZihlfgsB6en/h+JmaeqmKBrxAgnsDXMN7ZBYMy2fho1hNCGhgoAR/cLfPIGMGEWMGGGtvySVIG249oarh3NWk/xwnMkSscluuREiSOENhXB4QSOHRD4+HUtod2EmX7fm+1AR5MLDqcWFIcyJ5nI7vxvzs7+SvjRLYdSE1EycDiBfL+ph1aD06xcYNJs42OKxe5Wl26ZZAbGRDEkBDD7DIm8MRL7PhOo3a39UxyDa6NJ7VuXWyQx/0zrc5GJRjNFAeYs031v9mj/FIeEVAE5+L0pKlUwZ7nH8lxkomRhGD4o7HGDRkQUb5Gc+6w+NztP+5mVJ00zVCcKA2MadYTQerzGTpQ4uk+i+ahAbxeQlgHkj5EonyJRPskeX0AiuxACmDgLKJuk+96c1ILmvCIt2/vcpZlobz+pNTIRjSLGrNSR7Ys9xkSUrEJZXsuf1fvqrFxgxSUq0rOArtahk68dGiQZGNOolZEFVC0EqhbyLoXIKrPvjaIIKIoNrlpEMWAIjB2JKwcRUSKc+WUVHS1AUVn4+wglsM0ezFEy0B/+68UCA2MiIiJKafobOoU9xkSUYnIKEPE0qdEwEpOBMREREaW0aPYY22E4IBFRvIVz7iubBMxY5ERRhSv6BQpDUsT29fX1uOmmm7Bw4UIsW7YMDzzwADwez4jP6ejowO23344lS5bg1FNPxfe//3309PQE3Pazzz7DnDlzcNlll8Wi+ERERGRnUZxj7EyP7PlERMkonB5jRQFO/UJGREO4o8n2gbHH48HNN98Ml8uFl156CT/72c/w8ssv49e//vWIz7vjjjtw4MABPPPMM/iv//ovfPLJJ1i3bt2w7bq7u3HXXXfhjDPOiNE7ICIiIjszDKWOsMc4jYExEaWg0TBaxvaB8QcffICamho8+OCDmD17Ns4++2zcdttteP755+FyBe52r6mpwfvvv4+f/OQnWLhwIU455RTcc889ePXVV9HS0mLY9kc/+hHWrFmDxYsXx+PtEBERkY0xMCYiCt1oCIxtP8d427ZtmDVrFkpKSnyPrVixAuvWrcPBgwcxc+bMYc/ZunUrCgsLMW/ePN9jy5cvhxAC1dXVWLVqFQDgtddew759+/DjH/8YTz75ZFTKG42srd59MAOsOdaRNayn4FhH1rCegmMdjQ6RDqXOypUwjM0mIkoBTL4VBy0tLSguLjY85g2SW1paAgbGgZ7jdDpRUFDg6zFuaGjAT3/6Uzz99NNIT49O867TqaC4OIIFwPwUFeVEbV+jFevIGtZTcKwja1hPwbGOklukvR4VVcCJVonyyUxPTUSpQ1GS/5yXsMD4scceCzpP+N133wUACJOrlNnjZn+TUvoeX7t2Lb7xjW9gxowZVosclNutorOzN+L9KIpAUVEO2ttPQlWT/yCLBdaRNayn4FhH1rCegotnHeXnZyEtjQvu2pGiAHPO4HeEiFILh1JH4LrrrsPFF1884jalpaUoKSnBzp07DY97e339e4W9SkpKhs0ldrvd6Ozs9D3n448/xpYtW/Dggw8CAFRVhZQSc+bMwXPPPYelS5eG9b6ieTOkqpI3oEGwjqxhPQXHOrKG9RQc6yg5nXOlmugiEBElnYwsif5egdyiRJckcgkLjAsLC1FYWBh0u0WLFuHJJ59Ea2urL6jdtGkT8vPzMXXq1IDPWbx4MTo6OrBz507MnTsXAPDRRx9BSokFCxYAAF599VXDc37/+9/j008/xSOPPIIJEyZE8M6IiIgo2aRnJroERETJ54wLJTqaJUrHJ7okkbP9NOkVK1agqqoKa9euxZ49e/D+++/j0UcfxTXXXIO0tDQAQHV1NdasWYPGxkYAQFVVFVauXIl77rkH1dXV2LJlC+677z5ceOGFvvnJM2bMMPwrLi5Geno6ZsyYgaysrIS9XyIiIiIiomSQkQWUTRwdQ6ltHxg7HA488cQTUBQFV111Fe68805ccskluPXWW33b9Pb24tChQ4blmx566CFMnToVN9xwA2666SYsXboU9957byLeAhEREREREdmYkFJyIlSUuFwedHT0RLwfRREoLs5Fa2s356mZYB1Zw3oKjnVkDespuHjWUWFh9qhIvhWN6yaPTWtYT8GxjqxhPQXHOrLGbtdN2/cYExEREREREcUSA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIqKQ1NbWYvHixTj99NMTXRQiIqKoYGBMRERElrndbtx5551YunRpootCREQUNQyMiYiIyLLHH38c48ePxwUXXJDoohAREUWNM9EFICIiouTw2Wef4ZVXXsErr7yCt956Kyr7VBQRledHup/RjvUUHOvIGtZTcKwja+xWTwyMiYiIKKju7m6sXbsWP/7xj1FQUBCVfTqdCoqLc6Oyr6KinKjsZ7RjPQXHOrKG9RQc68gau9RTUgTG9fX1WLduHTZv3ozs7GxceumluP322+FwOEyf09HRgfvuuw9vv/02HA4HVq9eje9///vIzs72baOqKp566in84Q9/QH19PcaOHYuvfvWruP766+PxtoiIiBLusccew69//esRt3n33Xfxy1/+Eueccw7OPPPMqL22262is7M3on0oikBRUQ7a209CVWWUSjb6sJ6CYx1Zw3oKjnVkTTzrKT8/C2lp5rEjkASBscfjwc0334ySkhK89NJLaGpqwr//+78jIyMDt912m+nz7rjjDjQ3N+OZZ56By+XC9773Paxbtw4PPPCAb5uf/vSn2LhxI+6++25MmzYN7e3t6O2N7AJNRESUTK677jpcfPHFI25TWlqKzZs34/jx4/j9738PAJBSQlVVzJkzBz//+c9x0UUXhfX60boZUlXJG1ALWE/BsY6sYT0Fxzqyxi71ZPvA+IMPPkBNTQ2eeeYZlJSUYPbs2bjtttvwyCOP4JZbbkFaWtqw59TU1OD999/HH//4R8ybNw8AcM899+Dmm2/G2rVrUVJSgpqaGrz44ot49dVXMXXqVADAhAkT4vreiIiIEq2wsBCFhYVBt3vqqafgcrl8/3/rrbfw9NNP44UXXkBFRUUMS0hERBR7tg+Mt23bhlmzZqGkpMT32IoVK7Bu3TocPHgQM2fOHPacrVu3orCw0BcUA8Dy5cshhEB1dTVWrVqFDRs2YPz48diwYQNuvPFGCCGwcuVK3HHHHcjNDX++UzQmj9ttIrodsY6sYT0FxzqyhvUU3GivoylTphj+v2PHDiiKghkzZiSoRERERNFj+8C4paUFxcXFhse8QXJLS0vAwDjQc5xOJwoKCtDS0gIAqKurw7Fjx/Dmm2/iwQcfxMDAAH784x/jrrvuCjrXykw0k4gA9pmIbmesI2tYT8GxjqxhPQXHOiIiIko+CQuMrSb7AAAhAre+mz1u9jcppe9xKSVcLhd+/vOfY9KkSQCAdevW4dprr0VLS4uhh9qqaCQRAThh3wrWkTWsp+BYR9awnoKzWxKRWLvssstw2WWXJbQMRERE0ZKwwNhqso+SkhLs3LnT8Li319e/V9irpKTEt42X2+1GZ2en7zklJSVwOp2+oBgAqqqqAGhZsMMJjIHoJRHx7os3oCNjHVnDegqOdWQN6yk41hEREVHySVhgbDXZx6JFi/Dkk0+itbXVF9Ru2rQJ+fn5vqRZ/hYvXoyOjg7s3LkTc+fOBQB89NFHkFJiwYIFvm3cbjfq6up8SbcOHToEAKisrIz07REREREREVGSUBJdgGBWrFiBqqoqrF27Fnv27MH777+PRx99FNdcc40vI3V1dTXWrFmDxsZGAFrP78qVK3HPPfeguroaW7ZswX333YcLL7zQ1xN85plnYtasWfj+97+PPXv2oLq6Gvfddx9Wr14ddm8xERERERERJR/bB8YOhwNPPPEEFEXBVVddhTvvvBOXXHIJbr31Vt82vb29OHTokGEZiYceeghTp07FDTfcgJtuuglLly7Fvffea9jvb37zG+Tl5eHqq6/GLbfcggULFuD++++P6/sjIiIiIiKixLJ9VmoAGDduHH7729+a/v3000/H3r17DY8VFhbi4YcfHnG/ZWVlePzxx6NSRiIiIiIiIkpOtu8xJiIiIiIiIoolBsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUoTUkqZ6EKMFqoq4fGoUdlXWpoDLpcnKvsarVhH1rCegmMdWcN6Ci5edeRwKFAUEfPXibVoXTd5bFrDegqOdWQN6yk41pE1drpuMjAmIiIiIiKilMah1ERERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBjbzAsvvIBVq1Zh/vz5uPLKK1FdXZ3oIsXNk08+icsvvxyLFy/GsmXL8J3v/P/s3XmYHFW5P/DvqaWXmcksmQmEsIVMSMi+sERCILKIAQHZLqhsgiyCcuF3wVxQroCIKAiioheURYQIohAUBa5KCASygJAQEgiQAGFJgMyW2Xqp5fz+6GWqerqne2Z6qZ7+fp6Hh0lPdU/16eqqes95z3u+jffff9+1TSQSwfXXX4958+Zhzpw5uPTSS9Ha2uraZtu2bbjwwgsxa9YsHHzwwbj55pthWVYR30nxXHvttZg8eTIefPDB5GNso5hPPvkEV1xxBQ466CDMnj0bJ598MrZs2ZL8PdsJ6O7uxnXXXYdDDz0Us2bNwnHHHYfHH388+ftKbKOXX34Z3/zmN7FgwQJMnjwZzz77rOv3+WqTNWvW4KSTTsL06dPxhS98wdXuNDi8bvK6ORi8bmbG62Z2vG72N6Kum5I84+9//7ucNm2a/POf/yzfeecdec0118gDDzxQtra2lnrXiuK8886Tjz76qHz77bflm2++KS+44AJ5+OGHy1AolNzm+9//vly4cKFcuXKlfP311+Vpp50mv/a1ryV/b5qmPO644+TXv/51+cYbb8jly5fLefPmydtvv70Ub6mgli1bJk844QS5YMEC+cADDyQfZxtJ2dHRIQ8//HB51VVXyddee01+8MEHcvny5XL79u3JbdhOUn73u9+VRx99tHzppZfkBx98IB988EG53377yTVr1kgpK7ONli9fLm+77Tb5f//3f3LSpEly2bJlrt/no00++OADOWvWLHnTTTfJzZs3ywceeEBOmTJFvvjii0V7nyMFr5u8bg4Gr5uZ8bqZG143+xtJ100Gxh5y6qmnyh/84AfJf1uWJRcsWCDvvvvuEu5V6bS2tspJkybJV155RUopZWdnp5w2bZp8+umnk9ts3rxZTpo0Sa5fv15KGftyTpkyRe7YsSO5zR/+8Ad5wAEHyGg0Wtw3UEA7duyQhx12mNy0aZM8/PDDkxd4tlHMLbfcIr/61a9m/D3bKeZLX/qSvPPOO12PHX300fLuu+9mG0nZ7wKfrza5+eab5XHHHef6W5dffrm88MILC/l2RiReN9143cyM182B8bqZG143B1bu102mUntENBrFxo0bccghhyQfUxQF8+fPx7p160q3YyXU1dUFAKirqwMAbNiwAYZhuNqoubkZ48aNS7bRunXrsN9++6GpqSm5zYIFC9DZ2Yl33323eDtfYFdffTXOOussTJ482fU42yhm2bJlmD59Oi699FIcfPDBOPnkk/GXv/wl+Xu2U8ycOXPwzDPP4NNPP4WUEitWrMBnn32G+fPns43SyFebrFu3zvUaiW0q9Vw/VLxu9sfrZma8bg6M183c8Lo5OOV23WRg7BHt7e2wLMt1UABAY2MjduzYUaK9Kh0pJW666SYcdNBBaG5uBgC0tLQgEAigpqbGtW1jYyNaWlqS2zQ2Nrp+n2jTxDbl7sEHH0Rvby/OO++8fr9jG8V8+OGH+MMf/oDm5mbce++9OOWUU/C9730PzzzzDAC2U8I111yDvfbaC4cddhimT5+Ob3/727jpppswZcoUtlEa+WqTTNt0dHTAMIxC7f6Iw+umG6+bmfG6mR2vm7nhdXNwyu26qeXtlaggpJQQQpR6N4ruBz/4Ad5++2089NBDrsfTtYWUMus2Az1eTrZs2YJf//rXeOSRR6Ao6fu1Kr2NgNj7nTFjBi6//HIAwJQpU7BhwwY89NBDOPLIIwGwnYDYzeKbb76J3/zmN9h1112xatUqfPe738XYsWMBsI3SyVebpG6T+ho0dLxu8rrpxOtmbnjdzA2vm4NXTtdNjhh7RENDA1RV7ddb1NbW1q83fKS74YYbsGzZMtx///3Yddddk483NTUhFAqhu7vbtb2zjZqamvq1YeLfqT1N5ei1115DW1sbjj76aEydOhVTp07Fxx9/jBtvvBGLFi1iG8U1NTVhwoQJrseam5uxffv25O8rvZ3C4TB+9rOf4aqrrsLChQux33774dxzz8XChQtx//33s43SyFebpNumtbUV9fX10HW9ULs/4vC62YfXzcx43cwNr5vZ8bo5eOV23WRg7BE+nw/Tpk3DypUrk4/Zto1Vq1Zh9uzZpduxIpJS4gc/+AH+8Y9/4P7778eee+7p+v306dOh67qrjd577z1s27Yt2UazZ8/Gpk2bXGXgV65cidra2n4n/HJ01FFH4a9//Ssef/zx5H+77LILLrzwQtx5551so7g5c+Zg69atrsfef/997LbbbgB4LAGAaZowDAOqqroeVxQFtm2zjdLIV5vMnj0bL774ouu1V65cWTHn+nzhdZPXzVzwupkbXjez43Vz8MruupnXUl40LIllJx577DG5efNm+T//8z8VtezEtddeK/fff3+5Zs0a+dlnnyX/S1124vOf/7xctWqVfP311+Xpp5+etuT7eeedJ9988035/PPPy8997nPyZz/7WQneUXE4q2tKyTaSUsp169bJKVOmyLvuuku+//778rHHHpPTp0+XzzzzTHIbtpOUZ555pjzhhBOSy048/PDDcurUqfIvf/mLlLIy26i7u1u+8cYb8o033pCTJk2Sv//97+Ubb7whP/vsMyllftrkgw8+kDNnzpQ/+clP5ObNm+WDDz4op06dyuWahoDXTV43h4LXzf543cwNr5v9jaTrJgNjj3nggQfk5z//eTlt2jR56qmnytdee63Uu1Q0kyZNSvvfo48+mtwmHA7L6667Th544IFy1qxZ8tvf/rarvLuUUn700Ufy/PPPlzNnzpTz5s2TP/7xj6VpmsV+O0WTeoFnG8X885//lF/60pfk9OnT5bHHHiuXLl3q+j3bScrPPvtM/vd//7dcsGCBnDlzpjzmmGPkgw8+mPx9JbbR6tWr056HfvGLX0gp89cmq1atkl/+8pfltGnT5JFHHikfe+yxor3HkYbXTV43B4vXzfR43cyO183+RtJ1U0jJih9ERERERERUuTjHmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJqKSefLJJ/HYY4+VejeIiIjKAq+bRIXDwJiISubpp5/G0qVLS70bREREZYHXTaLCYWBMREREREREFU1IKWWpd4KIKs9VV13Vr9f729/+Ni699NIS7REREZF38bpJVFhaqXeAiCrTJZdcgm3btqGrqwvXXnstAGDs2LEl3isiIiJv4nWTqLAYGBNRSey1116or6+HlBKzZ88u9e4QERF5Gq+bRIXFOcZERERERERU0RgYExERERERUUVjYExEREREREQVjYExEZWMruuIRCKl3g0iIqKywOsmUeEwMCaiktlnn33w9ttv41//+hdef/11fPrpp6XeJSIiIs/idZOocLiOMRGVTFtbG/7nf/4HL7/8Mnbu3Mn1GImIiAbA6yZR4TAwJiIiIiIioorGVGoiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiaaXegZHEtiUsy87La2maAtPMz2uNVGyj3LCdsmMb5YbtlF2x2khVFSiKKPjfKbR8XTd5bOaG7ZQd2yg3bKfs2Ea58dJ1k4FxHlmWjY6O3mG/jqIINDbWoLMzBNuWedizkYdtlBu2U3Zso9ywnbIrZhvV11dBUdSC/o1iyMd1k8dmbthO2bGNcsN2yo5tlBuvXTeZSk1EREREREQVjYExERERERERVTQGxkRERERERFTRGBgTERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGJejkA2x0wK4LhoREREREdGwaaXeAcqRJaGtCUNfFYLymQUAkD4Bc5YfxpFVkA0DL1hNRERERERE6TEwLgOiw4L/gU6oH5kAAHuMChkQUD4xob8chvZaBJH/GAVrpr/Ee0pERERERFR+GBh7nGizEPjfDiidNqy9NERPGgV7XPxjC9nQl/dCfy4E/x86EQ3XwDwoWNodJiIiIiIiKjOcY+xlvTYC9+yE0mnDnONH+KL6vqAYAIIKjGNqEDmrFlAA32PdUDdFSre/REREREREZYiBsUdJKeH7UxeUFgvmVB8i/zEK0ETaba1pfkT+YxSEBPx/7ILotIq8t0REREREROWLgbFHWc91Qd0QgT1aQeT0UYCaPihObj8nAOPgAERvLKCGZMVqIiIiIiKiXDAw9qIuG9E/tUIqQORrtUAgt48p+qUa2Luo0N42oK5nSjUREREREVEuGBh7kP73biAkYc0Pwt5TH8QTBSIn1gAAfE/2AAZHjYmIiIiIiLJhYOw1IRvaK2GgVoVxdPWgn243+2BO90HpsKGv6C3ADhIREREREY0sDIy9JiAQ/XIN/P+5KxAc2scTPbYGUgH0FSEgYud5B4mIiIiIiEaWsgqMlyxZgiOOOAIzZszAaaedhvXr1w+4/VNPPYVFixZhxowZOP744/H888/322bz5s246KKLMHfuXMydOxdf+cpX0NbWVqi3kJ0QsBZUQZ0QGPJLyEYV5mw/RK+Evjqcx50jIiLqc+2112Ly5Ml48MEHS70rREREw1I2gfGTTz6Jm266Cd/61rewdOlSTJ48Geeff37GIHbt2rW44oorcOqpp+Lxxx/HUUcdhUsuuQRbtmxJbvPBBx/gjDPOwMSJE/GHP/wBS5cuxTe+8Q3o+iDm9XqUcUQVpAD053s515iIiPLu2Wefxbp167DLLruUeleIiKhM2TsMwPRGrKKVegdydd999+H000/HKaecAgC4/vrrsXz58mQwm+r+++/HYYcdhvPPPx8AcNlll+HFF1/EkiVL8P3vfx8A8LOf/QyHHXYYvvOd7ySft/feexfh3RSeHKPBmu6D9noU2voIzP2HPgJNRETk1NLSguuuuw6/+c1vcPHFFw/rtRRl4OUIc33+cF9npGM7Zcc2yg3bKTu2UW7UT0yEb/0M/gk6Ihc3lHp3yiMwjkaj2Lhxo+viqygK5s+fj3Xr1qV9zrp16/oFzAsWLMDy5csBALZtY/ny5Tj//PNx7rnnYtOmTdh7773xrW99C4ceeuiQ9zUfX4B8fZmsQ6qgvR6FvioE+8DgsPfLS3jCyQ3bKTu2UW7YTtlVUhtdffXVOOusszB58uRhvY6mKWhsrMnLPjU0DL5gZSViO2XHNsoN2yk7ttHAzI2diAJQ3jXydi0YjrIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7b79ixAwDQ2tqK3t5e3H333bj88suxePFiPPPMM7jooovw5z//GVOnTh30fubzAg8M/8skR0uEn+iB8qGB+k4N6j4jb9SYJ5zcsJ2yYxvlhu2U3UhvowcffBC9vb0477zzhv1apmmjszM0rNdQFIGGhmq0t/fAtr2RjudFbKfs2Ea5YTtlxzbKjQYDiQmsra3dBf1btbVB6LqaZX/KmJQSQmTumU/3u8Rjth2r1nzkkUfinHPOAQBMmTIFL730Ev74xz/i+uuvH/T+5OMCD+T3y6Qe5IdvqYGeJ9tgfKV22PvmFTzh5IbtlB3bKDdsp+yK2Ua5XOALYcuWLfj1r3+NRx55BIqSnzIl+Wor25Y8NnPAdsqObZQbtlN2bKOB2f6+WM0L7VQWgXFDQwNUVUVLS4vr8ba2tn6jyAlNTU39tm9tbU1u39DQAE3TMGHCBNc2zc3N+Pjjj4e8r/n8UPPxZbLn+KE/2QP1tTAix1cPeQkor+IJJzdsp+zYRrlhO2U3ktvotddeQ1tbG44++ujkY5Zl4cYbb8SDDz6Ip59+uoR7R0REZcVjM4/KIkry+XyYNm0aVq5cmXzMtm2sWrUKs2fPTvuc2bNn48UXX3Q9tnLlyuT2iddMTcV+//33sdtuu+V1/0vKr8Cc4YcwAW1DpNR7Q0REZeyoo47CX//6Vzz++OPJ/3bZZRdceOGFuPPOO0u9e0REVE6cfchW6TuUy2LEGADOPfdcLF68GNOmTcPMmTNx//33IxwO46STTgIALF68GLvuuiuuuOIKAMDZZ5+NM888E/feey8WLlyIJ598Ehs2bMCNN96YfM3zzjsPV155JQ488EAceOCBeOaZZ7BmzRpXleqRwJzrh/7vMLRXIzBHWBEuIiIqntraWtTWuqfl6LqOMWPGYPz48aXZKSIiKk92ys/FnyHkUjaB8bHHHou2tjb84he/wI4dOzBlyhTcfffdGD16NABg+/btrvlOc+fOxa233orbb78dt912G8aPH49f/epXaG5uTm6zaNEidHZ24s4778QNN9yA5uZm3HnnnUMqvOVl9j467HoF6rsGRLsF2VDio46IiIiIiCqbLP0osZOQ0mN7VMYMw0JHR++wX0dRBBoba9Da2p23eWr60z3wPduL6BerYBxR/hVTC9FGIxHbKTu2UW7YTtkVs43q66tKUnwr3/Jx3eSxmRu2U3Zso9ywnbJjG+VGezsK/z07AQA9NzQBvsJNOs7lulkWc4xp+My5fgCAto7zjImIiIiIyEM8MFbLwLhCyF002GNVKJ9aEDvMUu8OERERERFVMpnh5xJhYFxBzOnxUeMN0RLvCRERERERVTQGxlQqicBYfZ3p1EREREREVAK9NmBLd1VqBsZUTHKsCrtRhfqxCdFulXp3iIiIiIiogohOC9XXtyLwm50cMaYSEgLmDB8AQN3AUWMiIiIiIioeZXtscE59z3AX3GJgTMVmJecZMzAmIiIiIqLikQHHkkwcMaZSsvfQYNcpULaaQLed/QlERERERET5oPcFxsIRDAsu10RFJwSs/XwQElDfZnVqIiIiIiIqkkzp06WPixkYVyJrv9g8Y20TA2MiIiIiIioSZwAc5RxjKjFrog9Si48YWx44ComIiIiIaORzzOQUIQbGVGo+AWuCDhGSUD4wS703RERERERUCVzp0wyMyQMS6dTqW6xOTURERERERWBn+JmBMZWKNTm2bJPKecZERERERFQMzlFijy2Qw8C4QskmFXaTCnW7BdFhlXp3iIiIiIhopHOODNvOVOrSDxkzMK5g1uR4OvVmo8R7QkRE5AG2hNhuum/WiIgof1yBcYbHS4SBcQWzJuoAAHUz06mJiIj0p3tQdXs7tBWhUu8KEdGIJDLNMfZAWjUD4wpmNeuQCqC8E/VE+gIREVEp6avDAABtbbjEe0JENEJlSqX2AAbGlcyvwN5Lg9ItIT7hPGMiIiIiIiogx2CcYCo1eYk1MTHPmOnURERU4USpd4CIaIRzBsPOcTkGxoOzZMkSHHHEEZgxYwZOO+00rF+/fsDtn3rqKSxatAgzZszA8ccfj+effz7jthdccAEmT56MZ599Nt+77Wl9gTELcBERUeVRPjYQ/EkrlC1RBsZERIWWIZVaMDDO3ZNPPombbroJ3/rWt7B06VJMnjwZ559/Ptra2tJuv3btWlxxxRU49dRT8fjjj+Ooo47CJZdcgi1btvTb9sEHH4Ss0Dm29l4apE9AfTcKmJXZBkREVLl8f++B0mYj8Nudyce8cINGRFQO1PURBP63HQjnWD0rY1Xq0p94yyYwvu+++3D66afjlFNOwcSJE3H99dfD7/dj6dKlabe///77cdhhh+H8889Hc3MzLrvsMkydOhVLlixxbbd582b85je/wY9+9KNivA3vUQWsZh0iCigfcNSYiIgqi6yK3QoxGCYiGrzAkk6o75vJ4oVZZapE7YFzsFbqHchFNBrFxo0bcfHFFycfUxQF8+fPx7p169I+Z926dfjGN77hemzBggVYvny563WvuOIKXH311dhll13ysq+KMvw8rMRr5OO1cmHv6wPejELbYsCc6C/K3xyuYrdRuWI7Zcc2yg3bKTu2UXmSdWUzRkBE5F1GjpGtc2TYWZWagXFu2tvbYVkWmpqaXI83NjZi69ataZ/T0tKCxsbGftvv2LEj+e+f/exn2HfffXHMMcfkZT81TUFjY01eXgsAGhqq8/ZaA7EP9CH8127437NQl8f9L4ZitVG5YztlxzbKDdspO7ZReZFVjo4M9mkQEQ1NrusQZ0ylzuO+DFFZBMaZSCkhROarWLrfJR5bvXo1nn76afzlL3/J2/6Ypo3OztCwX0dRBBoaqtHe3gO7GOt7+SUC1QLWexG0bu8CfN6/Myh6G5UptlN2bKPcsJ2yK2Yb1dYGoetqQf9GxUh3yeMhTkQ0OLle9xzBsNeWayqLwLihoQGqqqKlpcX1eFtbW79R5ISmpqZ+27e2tia3f/nll7F9+3Z87nOfc21zySWXYP78+bjnnnuGtK/5vBmybVm0G1Brgg7t9SjwXjSWWl0mitlG5YztlB3bKDdsp+zYRkREVGmElX0bIKWeg8dSqctiYo3P58O0adOwcuXK5GO2bWPVqlWYPXt22ufMnj0bL774ouuxlStXJrf/2te+hr/+9a94/PHHk/8BwDXXXIPrr7++EG/D06wJ8WWb3mUBLiIiqnAeuEEjIiorOQbGLL6VB+eeey4WL16MadOmYebMmbj//vsRDodx0kknAQAWL16MXXfdFVdccQUA4Oyzz8aZZ56Je++9FwsXLsSTTz6JDRs24MYbbwQQm2+cOgcZAMaNG4c99tijeG/MI6x9dACA+m4UBjg/joiIKpD3ZxIREXlTrplSruJbGR4vkbIJjI899li0tbXhF7/4BXbs2IEpU6bg7rvvxujRowEA27dvh6L0DYDPnTsXt956K26//XbcdtttGD9+PH71q1+hubm5VG/B0+SuKmSVgPKhGasqp/PugIiIKkDp78WIiMpfriPGmVKpAaibIoAJWNNLs0pO2QTGAHDmmWfizDPPTPu7Bx54oN9jxxxzzKAqTr/11ltD3reypwhY++jQNkahfGDAbi6fecZERERDxsCYiGj4ch4xdj7H/XPgvk4AQM9PxuRttwajrAJjKixrQiwwVt9lYExEeWBIaK+Eob4Vhei0IYMCdrMPxkEBoLosSlzQCCA+NeH7Zy+ix1VD1qep5J3uXo7BMhHRoIhhLtckunN9gcJhYExJ9gQfgB6o7xpgCS4iGg71rSh8f+6C0plyoXvHgL6sF9Hjq2EeGAAGWHKPKB8Cv9sJpc0GDInIuXX9N3AeojwciYiGZkjFt/qiZKXF8QJSluT+gIExJdljVciggPKBwXnGRDRk2gu98D/RAwAwp/tgzA9C7qJB7LSgvRKGtjoM/6PdUD61ED2umsFxGbnrrrvwj3/8A++++y4CgQD2339/XHnllRg/fnypdy0j0WW7/t8PR4eJiIbPGnzxLecoswilFOVKk+BTaMxloz7xecbCBJQPOWZMRIOnrQzB/0QPpAaEz6hF5Kw62M0+yFEK7D10RL88CuFv1kNWC+gvhKD/X0+pd5kG4aWXXsIZZ5yBRx55BPfddx+i0SjOO+88hMPhUu9aZkq84yXTPZvjJo0xMhHREOWaCZ1puSY7Q7XqIuKIMblY++jQ3ojPM57AecZElDv1rSh8f+2GVIHweXUZaxXYe+sIXViP4J0d8D0bgj1WgzU7UOS9paG45557XP/+8Y9/jIMPPhhvvPEG5s6dW6K9yiI+BCAyFYbhHGMiouJxnl+tDMGwLVGKuS0MjMnFnpBYz5jzjIkod6LTgv/hTggJhP9jVNYCfnKshvDXahG4dyf8S7sRGq+nL4xEntbV1QUAqKtLM3c3R4oyvJufxPMzvk4iN85Ov41w3JcJIQBIQAx/v7wmazsR2yhHbKfsKrGNRI7nTVe6svP86wiMFSn6sn2KiIExudjjNEh/fJ6xKQGtcr7QRDREUsL3526IXgljfhDWnNxGf+1JPpgLgtBXhOB7tAuR8+o437iMSClx00034aCDDkJzc/OQXkPTFDQ21uRlfxoaqvv2LWrDWtsLdXYVQqoCwIIq0v+taCACEyEAgIjfiKlK/vbLa5ztROmxjXLDdsquEtqoF58BAHw+DaNyOG8aQQMGYtOoVCiQ8apdfl1L1u8aXVcNUVv8znIGxuSmCFjjdWhvRaF8bMLeWy/1HhGRx6nrItDeisIeoyJ6zOBuAqJfrIa6KQrtbQPmG1FY0/wF2kvKtx/84Ad4++238dBDDw35NUzTRmdnaFj7oSgCDQ3VaG/vgR1Pl9b/3AltTRjmgiBUSAgAlmGhtbW73/P13mjyZkha8W1tG52/2gbRbSN6fv2w9s8r0rUTubGNcsN2yq6S2igY/380aqI7zTk2ldYTRSK6sE07mTAdCRnJc3FbSzdg5Dcwrq0NQtcHfk0GxtSPPV4D3opCed9gYExEA4tK+J6M9fxGTqkBfIMc8dUFosfXIHDvTvie7EFoso+ZKmXghhtuwLJly/Dggw9i1113HdZr5eum0bZl8rXUf8eKgYn3DUglPlPNTv+3pHNeW6IQlwC0V2KvYZt2SVL6CsXZTpQe2yg3bKfsRmobiQ4L6sYozM/1ZYhJ5HY+l455xdKWfTOJnas1mRKyBO3GwJj6scbH5xm/b8BcWOKdKVOiw4L6egTKdhPCAuwGFdZkX6zTgamiNILoy3uhdNowZ/ph7zO0gn3WZB/MSTq0tw1oL4Vhzg9mfxKVhJQSN9xwA/75z3/igQcewJ577lnqXUpLxG+wZL0C0RuPfDNVOZVZbr5MAKxFSZWkx4a6OQpruh+iV0J5z4A1w8f7F0oK3NURWx/eGbzmenhkmFfMqtTkSfaeOqQKqFuNki2wXbZCNnxP90BbE3YVdAEAPNsLaw8N0RNrYO/JkXgqf6LTgv5cL6QGRI8d3jwq45gaaG+3Q1/eC/OgAEeNPer666/H3/72N/z6179GdXU1duzYAQAYNWoUAgHvVRaXNUrfaK8tIXZaUDdEYB4UBPQsyzglROXgMyGIyljg3p1QPzIROVFCf7YXyk4b4bNrOdWFkpS2WOSqfGJl2TINZ9BrZXi8RKPsDIypP13A3l2D+oEJ0WJBjuFhkgvxmYnA/Z1QWizIoEB0XgD2BB+kD1C2W9BeDkP9yETg1x2IHl/DUTEqe/ryEIQJRD8fhGwY3lwge5wGc4oP2ptRaGvDMA/k98OLEvOJzzrrLNfjN910E04++eRS7NLABJKjGAJA4O6dUD6zIMIS5tx4B0yWkQkRlVy9iSqK+pEJAFA+MqHsjAdALRaGEAKVniXhf7gL5jQflwUsAGHlfnYUHRZkUHF3RsoMo8Txg03ZakCEbFj7FadThhEPpWXto0P9wIT6ngGTgXFW4hMTwbs6IHolzKk+RE4dBVT3FaS39wHMzwWgrQnD90Q3/H/phohIGIdXlXCvRzaxw4S6KQqlNXZ2tceosPbzQzZySaB8EJ0WtDUhSB0wDs3PcWwcXgXtzSj05SGY+wdG1LzOkeKtt94q9S4MjkTyZksKAeWz2PlA+cxC1Y/bAADGgVlulqMMi6lCOdbVkXp5no/VzQa09RFo6yPoYWCcf7n2lvTaqLqpDbJGwDjA8Tm4guG+c62wY6dv/5JOiKhE73UMjKmE7PE68FwIyvsGcBBHbgYi2i0E7t4ZW6pmQRDRL1Wnv6FXBMyDg7DHagjc2wHf0z2QfsGR4zwTrRZ8T3RDezPa/5d/7YE5zYfocTWQoxkgD4f+fHy0+LAgUKNkf0IO7L31WKfcewbUdwxYkzmxk4ZJom9EItNhKjP8HCcMjhhTfmivhmHtoUHuUia3385bGX95BsYw+e0tKGf7DtDUIp55ILqleztHYNxvvnG3DWWnDXts8e7X8nM3QyOOtXeiAJdZ4j3xOFPC/2AnlC4bxoEBRI/LEBQ72PvoCJ9bB6kBvie6oWxJE8DRkKhrwwje3gbtzSjsOgXRI6sQPqcW4bNrET28CnatAm1jFMGftUPdGCn17pavXhva6hCkBhiH5TfrwTg41pOsrRreEj5EAGI3YIkRDecdT7pK1Intnf8HOGJMeaFsNeD/Yxeqbm0v9a7kzjliXCaxPBWZc8RYAuqbEfj+3NV/jrBwb5dkZwisLUDZEc/4K2JHEgNjSq9agT1GjaWhdpWoNFwZ8D3VA/UjE9beGqIn1eRcqMye4EP05FEQNhBY0sk2zgPt+V4EHu4CTCB6ZBVCi0fDOLoa1lQ/rGl+GIuqEVo8GtHDqwBDwv9AJ7TVDL6GQns5DGEglu48Kr+XEWuaH/YoBeqmKERbWc5oI69J3Gw5D9V0wbDzZ2fVVAbGlAeiowzPZ857Gn4NKA3XHGMJBH7XCf3lMNS33IM+ztFgkSlLx075OT4aLYtY/JCBMWWUXLZpq1HiPfEm5T0D+gshyCqByNdqAXVwX1xz/wCMeQGIHgn/0q7sS4ZQRtrqEPx/74HUgcg5tTCOrk5f1VgXMBZVxz8vwL+0G+racPF3uJzZEnp8NNc4pADTADQB86AAhAS0l9hxQcMk0Tci4bzJz3aT5kwPZGBMQyUlfE90Q10fKc8VPhxRgijX/nt+fQtCJg5nV1VpR2On9gNlSrnOMMcYtuwLuos4842BMWVk7xMPjN9jYNyPKeF/tAsAED2+BrJ+aN/a6JdqYI+OpfeqrzG1dyjUt6LwPd4NqQLhc+tyqlxozfQjcmYtpALof+yE9Q6D41wpG6NQ2m1Y++qQuxYmvck8KAApAO3fEfeFkmiwbNmXweeMS5w3Y84ZQ4nDLdMSIkSDoGy3oL8QimWGlbtcBry7be918vP7WxiJCNIR8Lo6GVMjTNMd9CYNNGKc+PcgB56Gg4ExZZQYMVbeZ2CcSn8hBGWHBWtfHeacYVTK84tYBWsAvr/1ABGPXVA8TnRa8D/cCSGByGmjYDfnXqzJmuJH9Ms1EBYQvfNToIdXz1xoL/YCKNBocZysV2FN1KF02VA38/xDQycspB8xcna4uEYyZPx5GW72iAbDw9kG6obI4DKmsqwrq74ZQfUNrdD/r2eYe5Yfot0CwjYEi28VRmI8KGWOcVJKhCmcl/JIhvOrM5PHkn2vzRHj9JYsWYIjjjgCM2bMwGmnnYb169cPuP1TTz2FRYsWYcaMGTj++OPx/PPPJ39nGAZuueUWHH/88Zg9ezYOPfRQXH311dixY0eh30bZkKMV2KMUKNtMT5/ci67Hhv5sL6QCRL6c+7ziTOxmH8zZfihdsdelHNkS/j92xaqBzw8OaX1Cc14A5twAZLsF3586vdfT7TH2x1GoWwzYjWrBK0abc+NFuJjqTsPhKrLV96NrvpuRZvSCI8aUD3b/ThevCDzQGavLMZA068pmor0cO1f7nvXAFJiQjaoft8WWZDO81e4jh3D9D4D7eEktROscWQ6n/0yE8/tiI9mBKRkY9/fkk0/ipptuwre+9S0sXboUkydPxvnnn4+2tra0269duxZXXHEFTj31VDz++OM46qijcMkll2DLli0AgHA4jDfeeAMXX3wxHnvsMfzyl7/E5s2b8a1vfauYb8vbhIA9XoOwAeUDjtok+J7thQjLWLpnntZ4jh5TDakD+opeiNYyLNBRAtqqENTNBuyxKqLHVg/tRYSAcXINxC4a1I1RqK+zQvhAzBWxmyhjXuHXGLam+yF9sVENZlLQkFkZAhNXKnWax1PnurVaWUfMvEx86o0ObvXtKHxL01SsHakcl3PhpUU+pPv4zsgZVHptWoshM3Y2iJDs+7+HR4yVrQb8D3cCYRv6k93QVnqgUyFnado1U7VpwB0YZ7qmp6RSi+SKAkyl7ue+++7D6aefjlNOOQUTJ07E9ddfD7/fj6VLl6bd/v7778dhhx2G888/H83NzbjsssswdepULFmyBAAwatQo3HfffTj22GMxYcIEzJ49G//zP/+D1157DZ9++mkx35qnJQtwMZ0aQCw1R1sZgvQB0aOGGIylIetVGAurIExA/5c30pC8THRa8P1fbNQ+/JVaQB/GSdOvwHf2GACA76/dQIjDQ2mZEubKLkilbzS3oHwC5nQ/hAFoXFqLhip1zlryZ8eNmePylhxJdgQ06sYoqm5ug29pdwF2sPDEpyaqbmuH/47SLxMUuGcn9NX9K9aOVK6K5l4K0JxB+gB98c5siqzFt4pZW6zbRvU1LfD/IcOIt6uqvONxjwX3wV93QFsbgf5CCL7nQvD/pYzOMema0tlRkXJcuTqGMh1LqYW4SlB8qyxWJYtGo9i4cSMuvvji5GOKomD+/PlYt25d2uesW7cO3/jGN1yPLViwAMuXL8/4d7q7u6GqKkaNGjXkfVXy0KuReI18vNZwyX18AHqgbjVheWB/EkrVRvqKEIQFGIdXQanL7zfVWlgFuSoEbW0E1pEWZB7WbfPSsZRP+t97ICISxmFBiN31YV2PFUVAnRqEdUAA6r/D8P+zF8aJQz8HjFTaxgjQbcOe7s/7sZ+JvX8QeDUC7bUI7AMKN6c5X0bq962sWbLvBs550+UMhtMELM55b9qm2J21/lIY0VPK79ygtMfuUJXtJqRX0nk9MHpdFJkCYylLW6U6krJfmTqXnSPGHuozVj+KfYG19RFEzkizgbNGwE5HhGahqEFWzryUTTBYmVKpUztccsk+SE2lLkHxrbIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7bZ5pDHIlE8NOf/hQnnHACqqqqhrSfmqagsbFmSM9Np6EhfyOSQyXrJUL+DqhbDYyur4Yo4sGZi2K2key0EHp5B+ATqD1+DMSo/J9djWNtGH9qQ/WKKPwX1uftdb1wLOWL9VYIkXURiAYVtafvChHMT+JLzZm7IrTxQ2irQ6j5UiOUsYWdQ1tuwmu7YAMIHlGPUY3FOZ7kQRKhP3RCfSeK0cEqiKrySHIaSd+3cidsZF+beITOQRSdFmSVAulcus4r7zWXewkpY4Glvzy+9+k4U0ZdxYdMAHrRdyfJNcdzoKDMcAfQgZ+3w95Lg3lKbZoXzdvuZSUDWY4JZwp7pyNaMyRQxDVxcxbw4D5lk+ZU4jqvpga/6aaspHLWfijRHOOyCIwzkVJCDNDjlu536R4zDAP/7//9PwDANddcM+T9MU0bnZ3Dnx+gKAINDdVob++B7YF5OL49NaibDbRv7IDcvYRncodStJH2dDf0qIS5IIi2aAhoLcAfma0i8JQCc003ehb4hr0cjteOpWGTEr6HO6ACiCyqRm9vLzDMemWJNuqwwlA+H4T+VA96HtqB6Nl1ednlEaHDQmBDCKJORdceEnZr8dK99Kk+aC+HsfPFNljFSOEehmJ+32prg9B1Lw59eIxz1MH5kURyDAwGSbRakAEBVJc2mBMdFqpuaoO1hxZb1z3B6yUsTAnRYUE2afA/1AXttQh6rxoN2VCmx7ozUIikdMYMZwrQMIlIXwQiTJlxqV9nMC/aLajbTKjbzPSBcVEjY+fP/UffnVXlncG9sDK/11KSzt03JaCVUaDsbFDH8Z46p17kkr6fOt2lBFWpyyIwbmhogKqqaGlpcT3e1tbWbxQ5oampqd/2ra2t/bY3DAOXX345PvroI/z+979HTc3wRnzzeTNk29ITwYw1Xoe62YB414C1m7cOmaK1UcSOzS1WgOiCIGSh/qYGRBcG4f97D9TlvYj+R37S9rxyLA2X+mYE6lYD1m4qjJm+vBZwsW0J85Ag1JUhqK9HgPeisPf2RkdQqekvhyAkoM2vQUjk9zyXjTktFhgr68MwZg9jabQiGinft7Llmucmk+cJZ8VT90jewJ+VVHKYXwkAhkTVzbGCoD0/GZP7/haAsj12F6p+ZMKwU9rDCzK0uf/BTmhvRhG6uB7aa7HaAuq7Bsz9yzMwdqbpC2f9ilKnJbtGjFM+C5n+d5m+A+racKxIkiOWE9tNBB7uROSkUbDHF+A66jyOQxKoSq2A7NiXXOa2lphI7UAph8A4TSaOK+BNPdc409tzSaW2HMW3uI6xm8/nw7Rp07By5crkY7ZtY9WqVZg9e3ba58yePRsvvvii67GVK1e6tk8ExVu3bsXvfvc71NfXF2Dvyx8LcAHaS2GIkIQ5x1/wnmvzoACkX0BbG4bo9Hr3fhHZMrk+ovHF6sJUKdQFjC/ERldYBC1OSmhrYzeo2oLiz6+09vVB+gXUt6OVMy+Rhie14Fa6GzhjgMAgVa6nfC9UTzcTqYeO86PV//cl4Qi4RFRCtFhQ3nEX4dLejP1b3dL3uPRWf/zgONve2RlT4o4zV2dQasZEpnmi6Y7vkI3Aw13w/6nLFRj7/9gJ5RML/j905mFv+3N1OKS7TcowYuzVwNg1qu2F88hgZKr2n9rWOSyBJ1Kfn/gcixitlkVgDADnnnsuHn74YSxduhRbtmzBddddh3A4jJNOOgkAsHjxYtx6663J7c8++2w8//zzuPfee7Flyxb88pe/xIYNG3DGGbFZ+qZp4j//8z+xYcMG/PSnP4VlWdixYwd27NiBaLQyqiXmyt5Lg1QA5X3Dc+vwFYUtoa+Orc9nHDq0+eeDElBgfC4AYaHMSvcXlro+AnW7BWsvDdZ+hZv/a871wx6tQHvbgPJR5XYGJYhPLCg7LNi7a1B2K8G8a03AmuKDMFAxlWxpmFJv7O3+j7vXMc7yejl2whVt3rIloa4NA73xNxG/kVbfjKDqmhaor4Xdd3eOIEGWsq/V+fWNSgRvb0Pw7p1QPu7/AUhnmnE5jJ5l4jzOou7RsJJy7le/EeP0v0sXsCkfOodmHT/2Dj2gEe0WEM4SwTrbL2TDf+9OqI7VC0SmziAvBMaGjN1PW+6OoqRofG59mWQdOdvaNRKcelzlkrnifNiVSs3iW/0ce+yxaGtrwy9+8Qvs2LEDU6ZMwd13343Ro0cDALZv3w5F6fsGzp07F7feeituv/123HbbbRg/fjx+9atfobm5GQDwySefYNmyZQCAL3/5y66/9fvf/x7z5s0r0jsrA34F9m4a1I9NiHYbcnR5pjQNlbLZgNJiwRqvQRYpldw8JAh9RQj66jCMw6vKuvhIXkgJ37OxycTRL1YXtpqnKmAsrIJ/aTf0Zb2IVPhcY2197GbDmlW6NGZzmh/augi0DRFYM8ojnZpKyHljb8v0VakHI9cbVOf8uk4bsrEw10p9RQi+p3pgNeswZ/rhX9qN8Bm1sSwjCQT+0IXw1x1zQFPXbC7VnZ9zVMyQyQ4J9R0Ddmr9Ej3DiHe5sVICngSJWHtoKE116kzreKf+LtOIceJ9Zci8SAZ6gy10FbJR9eM2yCqB3mvTT5VM/Vv66jC0t6LQ3or2TWFwBp2uVOrSB5v+R7ugrY0g8mXH1E3nuaPLRtXP2mHtoyP8zfri72CuErvsSp/u+7HfSH6G7Vz6dWqy+NaAzjzzTJx55plpf/fAAw/0e+yYY47BMccck3b7PfbYA2+99VZe928ks8frUD82ob5vwKywwFhfHRu1NQ4u3nIxsk6FOdsP/dUItH+HYR5ShJFqD1PfikL5xIK1pwa7ufDzfs0DAtCf6YW2MYroJybk2LI6VeaPlH2B8czSFb6y9vNBaoC6KRq74fFYdXzyGGcwYjuWXhpqxlOOxblca772Fi4wVrYk0o0NqFviy9ZsjEA6C345b7QdAY3sMOF7uB3G54Owpha3k8mVPuwYPRY70/RYZBi1LDeuzATHcaR8aiLwk05EDw/CWJS/1Uxy5gqMU36XYdRPpBYPS9020r8TQA4yMBY9sR1Ljjhn4gys0o0ue3jEODk1yTnC7fi+Ktvi9QHeK5OMNStNh0nqz0gJlDNWpXbPaU8+p4hLIFb4MBTlKjHPWCmXL2qeiHYL6htRyBoBa3pxbyLMeNq2vipcmSnsDvryeOfE4VXF6V3XBIzDYh0hvuXDLHtdxpTtVixbYg+tYDf5OfEJWM0+iLCEsrWyzkGUO+XdKII3t7pT7nO5GctC5Hr6LVKqbGq1VyCeeizTbyN6+964+Wwn1K0GAvcXZu7ngJyjSa5U8/jPzjnI3SlL7JSrDAGa9mLsmuZ7trjTpbRVIfie6HYHIAOkUmcLfEWGVPFkQDPYytvZOqFCNsQnpjvFO91znCPGhjvY8gznvjg7inq8tJMDSDdiPNA6xs5jLmPxrZTtE69RxLEJBsaUE3ufyizApb0US00zDgoWfZ6TPU6DtZcGZYcFZUtltbuT8r4B9T0D9hgV1pTizXE15wUhgwLq+kjFFkFTk6PFpU9fTswr5zxjysT/vx1QWm3oL4X7HrSKN1rkCvYKWf05UWDLeQcn4e5Ade6L8/KRJVARXTa0l0N53X91XTj2vc1UmCdNqrtrnd1yC4wtCfXNiKsieuzxvh+Vz0pzTfE/3g39hRBEl7PjIWUj5+eQoTMjGQRb6Y+z5PJDg0xddo1Kp8kUCN7ajqqftUO02Wm301aHEPxpW+b3F5Xw/a07Nse31JwdWc4R404PBMa9sQ6IXDiDXFfHQ7+q1Bl+dko9RySOHxbfIq+RoxTYjWrsZF4uvVnDZUto/w5Dilil6FJIpG/rqyq3CJf+fGzE1vh8VVHTaeATMA6KF0FbHc6+/UjjSKM2PTCv15ocC4y1TQyMKYsMoxY5j/wOlXPUJ49rI/eTeG1nEoeU7iJi0TRBDADhG/i2L3BXB/x/7ob2Sp7OebZE4KEuBO7dmdJJkabDIkN6bNbiaB6jvRpB4Hed8P9up/v4c45yhksb7CvO9PWU4FVkKpLkGjFO/N7xPGcHhtL/9zlxVu7utaG8G4XY2fciSjzgVdodL+z4rvmXdkPZYUFf4zh+nfORn+2FviKEwN0dg9yxAnBNLXDXJyi1qlvaYh0QuQwKZJjq0G90PnU0ON1zXNkKSH62kss1kRdZ42O5DGqFpDKqmw0onTbsZr3gSzRlYs3wQ1YLqG+4Lw6VQrTFUtntGgGzBGvYmgcHIQWgrwmVdpmTElC2mVBa42nUHqgrIBtV2GNUKJ9YsaqlRJk4U3LzPXI7wAiYu+pw4c4XyQDLmcWUKOaUug3guumWWar9Kjti3y3Rnqebc+dImPM1040eWRkCx2wjxobsq9BdROITM3kuEi1mMsNGiY+0aW8b7uOlkJ0lgyQ6+j6AAQMYZ+CbbjTQ+TmmC4wH+bG4Rk4/NhG8ayeCN7XFXyt99kfadcid3wXHPqrx5cE80dmSqWJ5iZYlFJ+a0F4KxTrZ4nO8XSPzqdunS6V2SnmqGGz2ju3IuCjiLQgDY8qZXWHzjBM95sYBpSs6BF3AODAAYcfSuiuNtjoEIWNpzaVYskM2qLCm+SC6JbTXItmfMIIkbvJMD6RRJzCdmgYt38HIQDd0rlTqPP9dp8SdmzMV005dLsrxO+d+hTOPFDrJagHtpRCCN7cCXUMPOp0BiPjM8WGkm+PqDMJC7pRa/ekeBH/WljZIDvxvB6qvbwXCdqxwUTECC0ui6mftqPpxLGiruqUdgSWdULaZkIG+a5UrmHR2VpS4n1V0ODspUnYmQyq16/ndNsznOyFcI/uO10mM8A0jlTqRDp0MwJwFuUKOnUw3+p6pM6X0g7F9nLvoHDF27nsR68sEf9YO/6PdUN5x5sRnasf0HQ+ZtgEwcMXqNFzFt7w0YtzS0lKM/aAyYFXSPOOQDXVDBNIvYE0rbWBgzouNWmprwoWdt+Y1hoT+chhSAczPla5zwjgkls6uvRCqnCJormrU3gmMzURgzHRqGshA89yGa6AbOmfgU8BztVTSBB2m7LccUpLjZ+kMIgboNBAWYjfJrTa0dcPolM1QHTtdwJhplFsYgO/ZXiifWFA+S9lpW0L9OF7Fd6uJ4M/bUfWj1oKfq10FkuyUgM11HDie48o6KsG1xBnMOI+DgUaMM/At6UT0dy3Qnu7pe9B5zMUP0VwCIJdohuPTlO7jx7H/ItR/hz0xIpyFyOH7Wswsg0QHhLqt74+mTfmXMrfDN5HFkvguDnapLAt951EvjRgfeuihOPnkk3HPPfdg+/btxdgn8ijZpELWCCgfF6lHtoS09REIEzBn+Qe/Dl+eydEqrEk+KF12RY2UaevCEL0S1nQ/ZG3pUnntfXRY4zSo20woWz2UC1dAyscmlDYb1p5ayaYRpGOP1yF9AurmaPkV5KHiyZBGmRepAa8hof+jB6LTchcqMgH9yW4Ef9Ka/+tluvmbJtzfiUypmc4R437ViDPMJx3ONTCa4TVT9z3lMZGyrmtSanqmY66saI2nNYdk+lHEPBLdjv1z7kNYQjgv05lSqUtx+nL+feex0i8wzr5ziSDV1cGRLhgdZAeRyNSR0m27v9fOwDjdtSDTvFcvXTZCGb4bzuPHkEDKey801xznlO+Ruj6Cqh+0Qvkw+72Q6LZRfU0L/H/oij0w2NF6Z1VqLy3XJKWEYRi47bbbcOSRR+JrX/salixZgra2tmLsH3mJELDG6xAWoHxYBt1xw6D9O9ZDbu5fwjRqB/PA2H5oL1dIOrWU0FbGU9kPKd760WkJkRyx1l6qjCJoXkyjBgBoAtZEHcIAlA9G9jmIhk4Usv8w5eZOf64Xvmd6Ebijo9+Ise+5EJQ2Oz9LjNkS+nO9seAv8Wdca+S6i2+5ggpnZqQz9TW108AZmEbycyPuCnRco5RpAhtXhWPH752js/H9Ut+MwPdYl+vG3bmdKHTnvWM5KWfNA9Er3Z0BmbIXHD8qb0fh+2Nn3upYaKtDEJ+mCVwyjVAOkEo9GO7CSfF/DLYv2dkGzk6cqEyZEpCh4yexL2VQhsJVjC1DZoHSZqH6htZY8bpi7Zejno1rSgOAwJJOiF4J3z96Up/WTyK7NJF9NujpJTaSx5H00ogxANx444147rnncNVVV8G2bfzwhz/EYYcdhm984xtYunQpuru7C72f5BGJ9YxHcjq12GFC/cCE3aTC3ruIi6cNwJriixXh2hR1956PUMr7JtRtJqxxmic+A3O2H9IXP8GnSdsaUZxp1B6oRp3K2jeeTv3OyD0H0eDJTEsV5ZnSbsF//87kfNlEsKfstDMuR9Jvndgh0P4dhu/JHgRva+srYuMcRDFl5grCmeYYp+6X89+O81zqzfGgOIOxTCPGaQo5ZSpGJCIyVun6d53Q14RdxUBdAXSBA2Pn31Kc83VDdsYUWdfa0o6fg/fshP5qBOqG4dexUN6Nwr+0G1W3tfff50zpunbfY+pb0fys9Rv/WAZd/M7ZRs5Oj6jMfCyV66Ug0zHqLEAWz1JT3y3im3R1ZqU/GGQu61OnvL9BHwu2IyPBa4ExADQ1NeHss8/Gww8/jGeeeQb/+Z//iba2Nlx99dWYP38+vv3tb+Opp54q5L6SByQLcI3gwDi5RM0cPyBKm0adpAmYc+JFuF4d+aPG+urYyKw5P+CNz8CvwJwdgDAAbd3ILsKlfGRCabdh7eWtNOoEa2K8c25z5UwroBxkCqryzP9wF7Q3ogg80AkArkJLrqrKjirJonv4kUaySqyJ9KNwBgYOKuLkQIGxc8S5J8Po3CCJDKnU7iAt/limEeOU13B2Dmdq50LPMXWNfnendCJkSh/PJg8FhgY89jOsba102PD/bieCN7chcO9O6M9kHw3Muh+JP5XLKKEtEfh1O/wPd7q/Q6704pSMCGfw5qX06AEoWw2INsdobIbRdNfosfPckWbevPjUhPp2+muh8oGB4I9boXw8uC+D69zRKxG4syOZRZmk5/A6qbs12ArlliOV2kvFt9IZN24cLrzwQixduhRPPfUULrjgArz77rv4r//6r3zvH3mMPU6D9MWKXAx6In2Z8NLarU6GM516JBeB6rGhvh6BDAiYs7yRyg70rWWtrRnZRbg8m0YdJ8eosGsVKB+ZJVmihTwqmj6oyjelJT6PNT5i6LqJdN7QOoO3PGT5uEZorP7zO4Ul3YFlxhHjDHNekZLa6RwxzrLEU/odjr9WhjmjrscTf9c1B9bxszOgjkpX0O6a69ud/vULwrn/Ifd7FJlGNrPJRyp1mqJmypYoqv97B9Q3+iIVZzCpvhOF9mYUSnxuqbYhj52OubynXgl1qwltbcQdLKZ27uR7yURbQnslDKUInaziMxPBX3cgeHv/kfyBKK2Ok0pIQnRa0J/sTl77qm5rR+Cencn59U7+hzqhtNvwL+kc3L462l1dH4H6ngH/n7rcGw2ls2wII8aeLL6VzT777INLL70UTz75JJYuXZqPfSIvUwXsvXSIiISyfeQVIhKfmVA+sWCPVSF3LX0Kr5Mcq8HaU4OywxrRRaC0dWEIKz5iX+LCZ072Hhqs3VSo261YUDYSeTyNGkCs1sG+OoQscnoZeZsxwNzZApCJc5Mr0MwQEOWhEJSr8m4uI8ZRmfZn1xJPA6RSu0ZEhzDfOPCLDgTu7HD/bWeAbaRpN+dooXM/U4PrTKPEztG1QqdSO4Pf3pS/Gx3aZ5+2AvBgpTnu/I/Eghr/kxlGggtZqCyXZXmcn2GnY0TVtZY18t7hpbxvwP9IF4K/3VnwgZ5E4dTBzt13tU2vhP/+TvieC8Xm+Do66AeqY5DTcSUzHLPOpzrrAgwlC2bQc4z7Royll4pvjRs3Dj6fL6cX22+//Ya9Q+R91ghOp/bqaHGCGV9TuV9ay0ghJfT4es2JgmOeIQTMg+JLN43QNaWVD00oHTas8RpkvffSqBP65hkznZpiZJ6KReUqEay51nENpb+5zEchK9fIdCTNTakl3SMymapSO6WOGDsv6dmq/g6k24a6zYT6npGxHVx/K74fmVJLXcFeRLqLbDkDB+fjhoS2ohfa872D2/dcOYP13pS2ypQGnkU+AmMR6f+3sx1/+Sq0lva1bWQNOl3ztXc4oqfUTIE8B8aurI40gZ62JhRL7x5KxkSc8fcOqC+Fhj5P35mNELahxjvllQ9N17rOSluaqFOLB5MD9eNHY1X1lY/TL9Hk6jzLsFxWTkw5+KJuFvqOHS+NGC9btowBL7kk1zN+b+SNmmmvezuN1Jzlh9QB7bXIkHrxvU75MDZib+2uwd49h0ksRWbOibf/ugiQ7ua0zGkeT6NOsCfGA+PNI69zjoao2Mt3Jeb8Om94nenHg7yJFDtMBH/UCt9fMxQzdd4gp+sPMqU7lTuaIQh1SrP0VPI5KaN12ith+O/fmVM6q/JJ372BMxU0Yyp1jw3/AzuhZlgvOXXNY1cg2uUeUUtQtxjw/60H/r/35C0FV/nYgP50N0SH5W7flBFj1+czmABiGNcUZZsJdV04fRtnCc4LGRgDgPpmFFU3tGRczcQ11aDHHQgmRWXei2y5UvJ39m97/2Pd0NZGoG7KoQNWSqibIq6KzgjZMB5tg+9PXa7vxKD20dnx5jzWQ7ZrWSXnsZ+U+PUAyY/+R7vge6YXvqV95x2RqdOnO/35LScRCTHYUXnbkf3j9TnGVNnsPXVIJT5iPILmWopPHWnUu3grjTopqMCc4YeI9qW8jiSJkdjEfF7PcbX/CButtCXU9RFIAVjTvR0Yy1EK7LEqlBbLtVQKVS5Z6DmlKYRE7GbdObqSaV3SHG4i1XcNKDtt6C+mXxIu7Six8/ep7z+H9hCmdF/DM6SCi14b/kdiRcdyWr+0K8MIYIZRaGHG5rXqr2a/psXmGKcfJXZt95ljBKwzP52Y/ke64Hs2BP2ZXneQ5gweUlKpB1MYKlMHivjUHHh+ZsRG8OftCDzUBeFo72Qbl3hGUuD3nRDdMvOx7ez0ydC5hJSq1PngCjQ7Uo6RTOtoZ6C9EELgvk74nnAEmI5AcuiBsWNU2Dmq2yXd7RNvN+U9o68DIl31+hTKe7Ft1RymhyltQ5+qEJsjPqinxFOpPThiTNSPX8Aep0HpsiHaRs6omddHixOS6dSvjLB03ogN7bUwpB4bGfeqZPuPsOrgyocmlJ027PE6ZJ1306gTrIlMpyaHaPGvRaLL7lfBNflzOP3PqbTVIWgv9rqD6nQjnFkO89RR5FyW3PE91YPgj9qgbDXge6I747xB52iacw5oxn1xBjrOKrzOpw61I8Nwj/QhQ4qq4tznjkF0nhkSdkssWFA+NGKp2KYEbAnlk3jhtS7bPaoWShkxHmoA53hNdUME2sthKFuiqLqtHb5HuzI+TWl1BGAtjveaeL0izs8ciMywG65OmAGKb+U9lTolDV99K4rAHe1QN0bcnS85BMZqPMDUXncUOHOOSLcP8fwUzvBdiqZWZ5cQrRYCd3UgeEcHRIvV164DfdcG03HTkb2idkaGHHTxLWGhb15yEaNVjw6LkdfZ43WoH5lQ3zdgNnr/JjoXZZNGuo8Ou0GB+p4B0WpBjpT2fy0CEQWM/f1A0Lt9dsn2fze29IIcPULav0yO/wRrXx36CyGoW4zk3G+qYMVOpUYsSHSNcDkDJOcIb6YRY1PCH09hNA7oy5IR3Xa/Of75DgoAJAO94K87AADq6PTnXVcAkSblNEFb0Qulw4YM9kVAGYPtISZ6pFYnztQB4BwBHGifU+lPdCO8ageU8+qg/asH6gcmhCFdNS9Epw1Z29dWrkA9ZY7xYIiQhP/3O2Hto8P/t1ihLGNe7O/qr0QQPQ2xEf7UJQx703cCJIN3j6wgoqSOyiZkGil3HiOGzHtw5C5sZUN7NQz1QxPiiW5EzqhN/i5RrVt0WJCjlL603oiEtjacrLuTfK2dVmwJpeq+7/BQ14Z2Pk9JCa5d0xR6baibo8kMBe31vul2IorY+UgCCKQ04iCOjX6j6oMgjKGMGAOwAKmg/zFfQN69+yRPS8wzTqRhlDvxqQnlUwvWbirkGI/3FykC5v4jrwhXMo36QI8HOYqAOXeEjdq70qhzK7ZYatZ4HVIAyrsja0pHuViyZAmOOOIIzJgxA6eddhrWr19f0v0pdio1EA+4nDf1Kcv29P2c/oZS+bTvTlF7sy+NWH3HQPBnbdCf6YGy1YD6RqTwyw8hcwDpDFCUTGnJtoT/bz3QXwi51nrP+3rChsyYPu3kGtFNBEADnSdCdqwq/6pYuq+2KgT1g3iho22mq22U1DnGzp/DcshBv/ZGFNrGaDIoBgDls74X05f1oOrqFqjx7DbRFlu6x5li6wye1I1R+H+3c/CjewWSdtpLVOY0X1WkrGOcl/1xjrj2yGTav9Juu78LPTa01SFU3dQG/em+z0Z/rhf+pd3wP9LlyhYJ/GYn/H/uznvht9TMB1cnSK90TVtQPjFdx2Hwp+2ovrYV6LZdFazT1ivI8e8PShT9q+BnY8fnJRd57IGBMQ1JoodMHSGVqZNL1JTJaFkyMH4l7Jne4OEQ202oH5qwx6iwx3u8YwLoC4xfHRntr3xgQum0Ye+jQ9aWyQh4QIG9uwal04ZoHXpPNg3ek08+iZtuugnf+ta3sHTpUkyePBnnn38+2traSrdTJQiMlTbLXfDKsQvOm/hEKrX6dhTCMdfQNR/UMeqorQxB+cSC7x+9CP66A4H7O93rmRZKDoMyroAh2jdH2bmOqmtecZ4JQw56XWjRIyE+NRG8uQ36P/svWaS+GUHVDa3wPdH3O7HNEWx+Yrnfd0hmPN6GtIzNAFTH4IPv/3ohZF+HbOD+nfA9F8q4DJP+chjam96ZaiI6bFc6rf/hTlRd2wLlgxzuIwsxx7jbPdLuDG6dSzKKHgltTazNfc+Hktf8xJKl6semu7J2PJ1dzfPAUeqIrbv4lu2e07zN3RuS6NCquqkVwV93xOYhG3JQVdMzjvjnwpCDL4JnIzbKXMTCWwADYxqqGgV2kxq7AOb5QlAKXl+mKZUcrcJq1qHstKFsKf/OCf3l2EXHOChQ1JSZoZJNKqzxGpQ2e0QsW1ZuadQJdqJC/rveufmrBPfddx9OP/10nHLKKZg4cSKuv/56+P1+LF26tHQ7VYI5xsqnOQaAEQl1XRiBe3Yi+Mt2iM9MiHarX2pkgrqt/xDfkJd7GYRcRhZFpwXREUsVrbquBYF7dgKWhLK9SEXwwtLVoZAL0W1Df64XSpsN3796+82T1v/ZC2HBVRzKNUe5zV3kT9jIXPSrCJcD0WEBsm/Oc76Ez62FrCrc9VfIvuBOtFrQ1kYg7NwKP4koClp8K/W7rDqCddFrQ3F+/omR5e2O4Lml8Md/Iq1axscOUjtrnIGyM9PA9RrxXVY3RgbdiTOcEWNhyMGvY5xYrsnrI8ZSStxxxx3YsWOH6+diGGzq1lNPPYVFixZhxowZOP744/H888+7fi+lxM9//nMsWLAAM2fOxNe//nVs3bq1kG9hRBkpo8biExPKZ2WSRu2QKAKll3s6tRGbpyPVvpHYctA3al/m1cHLqBp1Kqs5ERiX9zmonESjUWzcuBGHHHJI8jFFUTB//nysW7duSK+pKGLY/8kSzDHOdWRUmIC+MpT8uerWdlT9uA36P9KP9HmZ+r6J4I/bELhnJ4QVS/v2/as3bTBfCMr2WIqonWE+dNrn9Niuc0Tg/k4EfrcTwVvaUHVDK9SPB953YQPaB+5t8lXpeijU7RYCv92Z/xdu0CB9he2Y1t4z4H+0C1U3Dy67RBgy7ynhztdL/S47R7GVdtvVMeV/ohvBO9pdHVtDnUM8FLIhFik6pzUI2fceZA5fDd+zIfgfzlzQLZ3hzDFWjMG3kbDjwbQ6/OtD4r+c9nWwb862bfzqV7/CZ5995vq50AaburV27VpcccUVOPXUU/H444/jqKOOwiWXXIItW7Ykt/ntb3+LBx54ANdddx0eeeQRBINBnH/++YhGOfqQi+RoTZnPM05Uoy6XNOoEc7of0i+gboi41s8sN+obEYheCWuKD6gpnyQWc0Z8TePXizP/r1CUrQaULhv2BD1WWKSMcJ5x8bW3t8OyLDQ1Nbkeb2xsHFInuaYpaGysGdZ/DQ3Vxf0O+mM3WDmPGANQt5qAJoC64RfkKbVkyniNAvgE9GW90J/N73zKjH873uTauNyv1+qHpiuIUT4yob4ZjS33luOoWTKwjgeOpZ63qxYgU6y+sQqqv7DDc74/dSXriQyGLhX4RBGGDuNTiQYa+VffMXJatqxQtDGxOiCpnTOi0wZ8AsoYPd3T+hnsoNZwzle+hzoH/RxVKBA2oOjDv0Yk/tP17MfQkIbHpOMGRBbpZsSZugUA119/PZYvX46lS5fiG9/4Rr/t77//fhx22GE4//zzAQCXXXYZXnzxRSxZsgTf//73IaXE73//e1xyySU46qijAAA333wz5s+fj2XLlmHRokVFeV/lbKQU4CrXNFL4BMyZ/tg8ovURmPM8XrQqg0QatbPqZ1kIKrCm+aGti0DdEIFVRqPdTmV7/ANAUIG9mwZ1mwnRbo+YCuHlSEoJMYRpEKZpo7Mz/fqmuVJMILi2eKOvdoMSS2Md5Jw5a6IO4+RREB8Y0J/tdRVNKjfR00bBmumHaLHgu29nMvVYKsUJ+KM1g7iBjafMmvODsbTvD0yYC4Owd9fhW7IT4jML9hQf1I3xQRG/SFb0tffSoHxgJqeM2buqJQ2KCqmjOwSfsAsyx9J5XBgLqyCbVMh6Bb57d+a01rPZa0JaIu9ZtVIHoIhkATBrTxXqxr4OL+nv+505yw/ttb4MManEV2gpcsZStFq6jn1ZqySDZLtGAH45IubJWmELCgBLSLS2dmfdPhe1tcGswXFZ5I0mUrcuvvji5GPZUrfWrVvXL2BesGABli9fDgD46KOPsGPHDlc62KhRozBr1iysW7duyIFxrkP1ubxGPl6roJpU2HUKlG0mlIgs6hI7+WqjRBq1PU6D2EXPpfaIp9gHBoCXw9D/HYZ9cFW/33v9WBLtFpTNBmSdArmfvyT7OZw2sg4MQlsXgf5qGPKAMuyYsCW016OQArBnBgZsA68eS7JZB7aZ0N4zYDWV9pLm1TbKp4aGBqiqipaWFtfjbW1t/UaRc2UPs4Cd9mwv7M3Fm9IggwpksC+90nnzPBBrVxVWnQLM8AMdFvwfm7BrlbSVnmWVcBUD8hojPpUEu2mIfGUUAks6EV1YBX112FWIq1Ds+tzuN+wGJTlabI7XYM1yd2CGLm2IzSH9xEoGxurMKlgvxzpazGYffPE0aikAa1ctGRindgJIgZyCvOEwDgjAHq/BHqsBAtCf7YW2IT9ZjraQkFphzl3mHD+gCshRCowvVCVrieijlNzS0sP5X64JAGRAAfS+KvLWXnpfBwkAexcVavzztsdpiOytQ303iugJNZCKgLYxUvDAWKruyvB2nbsh7HoFarwNZa0CGVQGbKre/9cAdasB/2OxYHOwx22xzk3JwmDK8K8Rg1EWgfFAqVuZ5gS3tLSgsbGx3/aJVK/E//OVDgb0pYTlS0NDdd5eq1AiU0OwVnWjbocKbU7x93e4bRRd0QYTgP/gUajJ42dXLHK0RHjXHigfGGiI+qDsln6pHa8eS8YL7TAkoB1ai+oxo0q6L0NpIzlPIvznLqibDTSIAJTRZXFKTbLeCiHSZUOZEkDj3rXZnwDvHUvmbIHoihCCH0v4F3njO+y1Nsonn8+HadOmYeXKlTjiiCMAxKZYrVq1Cuecc06J9644pAbYo9Xk3FQ5SoGIpA8GnTedckzfSIU5PwhZq8Aer6PqR7EpYfYYNTlP0Jrsg7Z28MH+YG9yrYk6jAMD8P+lO+vNrr2LCuUzC2bKkm72BB96r2kEhIhVQU4JjAsximzXK1nfq1QAe08dSnt8utTENNdHTUDWqrA0ARkUsHfR4JvVFxhbE3Xg2fjr1SuQNX2Bo6xW3BWyqwTQk/8beBkUfZ0w9YprScPEfNOMz60SMPfzQWmxkstPZdxWFYWLCoIKosf3Pz/LOgXIITAWLRYwpgAZQQEB6RdAW3zEdawK6YsV+5IiVmgTicC4XoE1OwDzEEf7O9azltXCvaZ1nsgqBeix+4pvpXQKydEqkOi8qVFi7yfxO0enXfiMWshGBXKsBnOsBu21CJT3DFj7+aC9kVvnilRjgbnaW4Rie0bf3yym8rqLS5EtdSvd71IfS/33UNPBgPykhAGx0YaGhmq0t/cUtZdkKNQ9BXyrgN51nTD2Kt6+5qWNpIR/dRcUAF0TBWSeUjWKTZvjg/60ga5/tcE81n3h8fSxZEv4n98JBUD3NKVk7T/cNtLm+KEv60XXv1phHlleAZG+ogsagPAUHT1Z2t+zx1KTjYAAjDd60V3i73Ax2yiXlLBCOffcc7F48WJMmzYNM2fOxP33349wOIyTTjqpJPvjujlNGV0pCF1AjlaARGBcqwDxqrSpwZocrSZHUG1ncUdV9Bu9tBv7AmN7Nw3R0SogAN+/BjF/1y/caytnYTeqsGYHIJ/uyRoYR4+Nnd+s5jQBZvy+KW3xpmD+A0ZZo8TuYAcarPMJGAcFoG6MwDgsCFQPMI5WpaD3e41QfALV4di0ElklYO/e95nJRtWdGVctAEf9IlmlQPTEjwNHMDtUUo/NdbV3UWNz1BEPJJ3bZKnLYe2pI3p6LfwPdiK29s0AVAAFynaRmaa96rn9PSEBkaHS8nDIQKxDJPnvUUrsOxuv+O1sX1nf/3zrPPdYe+nJ5bHsUQqUQS4rlpEOICCA+PfTrnPvh+3oHJH1qmvZNVmrJKto23tqro6U8NfrIEI29BW5xy2yQY3VSiiGxFSVImdglUVgPJTUraampn7bt7a2JrcfM2YMgNjI8ejRo12vOX369CHvaz5vhmxbeusGNA25jw4fALHFKMm+DqeNktWox2mwRqtlux6tMccP7f96oP47jOgXqtKu+ebFY0l5Jwql3YY1QfdE+w+1jYy5scBY/XcY0c8Hy2K5KQCALaGsD0MKwJjmy7n9PXcsBQTssSrU7RZkq5l1BKUYPNdGeXbssceira0Nv/jFL7Bjxw5MmTIFd999t+taWkzOonGyOsfUzOHQhKsqst2ouoszOdKq7SY1uQaxnWXEKzG6p26OwmrWYe8RiyYSgXEuKdvSJ5LrJuckHsjKgCM40NIXl5J1KuxxA982it40aeE+EVtOJo8fi6xRYkFVSjXyREVeYcf+rr2vD703NuV2XtYFIASUPXyIfLMe5i7uQNjaU3O3U0C4RsNltQDiCYdDDYylX0A2KLDrVFhTfFDfisL4QhWCv+gAANi7uNvfnOyD76kemFN8yaDMleoaHz3MGJg6qaJwo3MZAuBEoD9Qeq4zkyLfZEC4OkzsOjWZTi6kOzC2m9IExo5zj723DsQ/A+OoKugvhRE4ugHR+4a5co8mIAOA6JWxpZpSltSSDY59qFdc3117nNZXrbo2pRPFJyB9qvuYzpLdYe2lQWkrztJsyf3w+nJNpeBM3UpIpG7Nnj077XNmz56NF1980fXYypUrk9vvscceGDNmjOs1u7u78dprr2V8TepPjlZjc3i2m0CaC6KXJYoOlVs16lSyXoU1UYfSZUN9p3wqqieWmSq7olsp5BgtdrFosWJFWsqE8p4BpVvCbtbLqhp4OvaE2AgWl20qnjPPPBPPPvssNmzYgD/96U+YOXNmyfbFOYqWbQQtL39Pi48eJv7tuGFOHTG1d3Pc1Q00YonY8iuRr9ei97qmZFDs+ru5LKXjH1zHXPI1nemXjmDQ+TedN9CZmAfH0kyjixzZMz6R8ebWnJF++k82cpSSfj6sCiARXyX2dwidlXazL/l5RU6pgV2rwJwdcI8uBhRXwCcdn68MDPE4VIDQZQ2InFcH8+AgIl+vg71737Fg7+puSLmbht6rRiNyRt9UGNcoZ6INcjl2VKTtWM8HmSEwjh5ZBWN/P0Lfqu/bNuUYjpxcwCkyASWWqpxQJWDNiN0TGgcFksuSAkh7nXS2tTVeh3FIEMahQZgHBRC5fDS0Q4c/RUzqom+UVhfuQFZ3p9PLetW1FrU10bH/GT5bV3unWcfadgT/1r6+4o0YJxTomMykLEaMgeypW4sXL8auu+6KK664AgBw9tln48wzz8S9996LhQsX4sknn8SGDRtw4403AoilUJ999tn49a9/jb322gt77LEHfv7zn2Ps2LHJeVOUG2uCDv2VWAGCslkHVcq+arwzymSfB2AeEID2jgHt3xFY+5XB++m1oW6IQPoFzHI5ZgZg7h+A+kE3tH+HEd07t6USSi1RXbMsq1GnsCbo0F8MxZZt2r+8O1po8OQ4DfpZTeiJRKC+UoR13TUB2xEYu0aSNHc6tzXZh8gYDdakzOeF6BFV8C3rhTk7EAvi9P6/15f3wprph/LiwGmPqUFFVokRY1/KzXE8RVgGRbIITi6vbc7xx0ZWm1T4no7N05W6gND6j+4CgLW3jsipo+D7ew/0LMv4SF/fvqCqfzsBAHQBEf87uQTyuTAPCsI8KD6vdKdjACAoYunO8angruXugkP72zIo0qaOhi5riA0+pClympolI2sVIJF27O8LqLJSULjRuUwjxmM0RE+rhXO5vdTMCHu8jujhVfAVYEmw1FRqKALGYUHYY1RYk32ACkSPrsqcKaEKhC5rgPK+AXtvDdF9CnD915FMo5a6gPQ7Oj6qFFh79O2bvbfm6qCXoxT0XtkwcHDp7BSrUiC6U0aEFSB8Xh2UzVFYKZW5B8tZDC9nXp9jLITAuHHj4PP5XD8XWrbUre3bt0NR+g6WuXPn4tZbb8Xtt9+O2267DePHj8evfvUrNDc3J7e54IILEAqF8P3vfx+dnZ3Yf//98dvf/rYo72cksZt9wCsRqFvKJzAWn1hQdliwdtdcvf3lyprmhwx0Q30jErt4Vnl7BFBbF4EwAWN/f2492R5nzvLD90Q3tNcisQIjXn9PloT2egRSGRkdQ1ZyTfXyyZigPBIC+uGjYLV2Q1lbpMB4Lx3mFF+sIJMjlRGqiP1nyeS25gEDd9YYR1fBmu7LePNtfLEaxheqoHxsQs8SGA96xDixvWOEMzbyGU+/rBLAzvgvcgn2hIAck/I+grEU3bTP1kTsbztHXuPFj/rtqyNIhyJSnhP7ndQFRGLIuADnYedonAwq8b8RD1qcc90HGRhb++pQ3zEQ/WL6OhXZUthd++gc1Y6PYmcasU1upyLWKZPH0TnXfPtsgblzVN8ZqMXnPZsHBaAv74VxRBX0Zb35q/4dELD29UGuCsE4KP49VQSsaX3XRSNL7RB7nDbg55NYTinX6vX9ODp7hCX7MiEQPx6rFEQXVUMqgKxVIev7Ak+7Qe3/fUzdP3/K66VSYx181mRf8t+5klp8LnOvDfVDE9Y+OgK/H9yaxrLIt7ODDowVRcGyZcuS/3b+XGhnnnkmzjzzzLS/e+CBB/o9dswxx+CYY47J+HpCCFx22WW47LLL8raPlchqjt+Uvls+N6XJNOoREBQAAHQBc7Yf+uowtHWR2HqNHqaV69rFmQQVWNPjaxpvjMCa4+33pW42IHolzP18nu9EyUm1kqyYKzotyNry7+yiISpC2p3UAegCka/XAQDEZ44pFCpid1aJy2EuaYdCuNJl01KEK7hxzW11BJK5pFs75xAnA6dMN8fBviB5qEVwpC4gVEcA6SyQpiS2cTzBJ4BomgAi5c+7Uql1xNrc2UYFOBb6Bb+as92UtNvlInp0NeSX03QqDGUfnSOKiWkG2Y4LNeX/+aD3fY65zHFOBNKuYzj+GcrRamyuuALoz/VmrSOWKxkQsMfr6P3+0Jaay0Xkonqoq0Owm1T4lw6+QKTUBYx5Qfie6YVxYMAducWPOePwvuU6nfPQ5egcPlB/+mM4o8GkUquxef4AYM0ClM05Vr92znUucur2CLgjolKT9SrsRgXKJxbQXQbzjGVstAwYGWmkCYlRCe3fRRgxGQblYwPqNhP2WBX2HmUzmyMrM57Cq3u8/QFAfS22j9askXP8J+aCKe+XzzxvKoBi3NWk3qg5gzFNuAIymc9TnJ5+VM0V9DhvcjMkv7nmwlZnmWOchznbwpDuNnO+D8fcyeTfdO6L88/Hg2mZ+HW6UUjn9gXoH3PN3w0K9xxs50jtIDvnpH/4QXGiuJs1pe+DT3QeZD0OEwFoPkeMMx2jmSh9/0/urzOgVoVrVFsOcVedx9RgR/aH9Pd20RA9rsbdcZLl8HC9N03A+EIVQhfUxQJgx+h62kwAX6yInzVRz6ndXd83Z7Gx+PHUL1V/MIdp6vvMtbmdf6PIkSoDY8oLq4yK37jSqBtHzsiSvYcWW9bhYxNiu3eDg0TgbhwQKJ8KzjmwJuqw6xQoWwyI9uJUbRwSU0LbEIXUAHPqyJk2YifSqd/3/jmICqgYp/SUG0PXzama8vt8jnY4ggTX6LFzhNCXQzDiHOVMM2LsDDjt+jzcJkak63Nx7Xvi8QxFrJzvIdmRqg8Q7AnAjq81XJBCbM5OjzGq+7N2prg6C8LlcgjkuGzRQMLn1yF8Vi2s6f7YyCL6Mvqc7Ziu3WQhRowdl5ec5r4nmszGwIF68pgZ4n4592WoRdKG+3ezBazOz0tHLKtkoi/n/Y2cW4fwBfW57ZeWPjAOn1EL49AgIiekFD8bROdJv88v58C4f9ZAsTAwprxIplNv8X469UipRt2PELFgEx4etTQktLURSBUwPZ5uPGiKgDk3ACEB7VWPtj8A9a0oRETC2i/3i2w56BsxZmBc0YqRSt1vxDjl7zv3IY8jxjLDiLGryJTz8XQBKOAOfuLPdY0aOfY5MdfSGj/4NxKNp3eacwP9054T4unZrtHWqvSBfvTLNTCn+hA+J16B2dnOiWQ1AUTOqIWxvz+2dnEBRE6uQXRhMDbn0tG5azc5iiA5U6kzNJ0zvVhmqVieC1mvJuu8RE+pQc9NTcnK2q5jIfGZC0fQnmjLPAbGrk6aXK41iVR9W/ZFJ2mD+Ph2Q5xDnrrkVrG4vmPOwDfNLmTr4Ep8H/NxH2vvoSF6RBVCF9W527taxEa6x6Z8CNrA++6S+rHnOB3DlXXj9eJbROnYycDY4zelI6wadSprbgDy6R5oa8OIHltd9IXRs1E3RCBCEuZ0X9kvEZSOub8fvmd7ob0ShnFElSdHxJPVqGeNrI4J2aDArlWgbDOBiA34R97xRdm50iQdc1ldhYCGKzUwdo1uwD06mtcR4/Tpxq6RykyjUvG1hGP7KBD+yigo203I+ni6pCuQcwR7u2voXTwasmbw78M4ugrWjFhRMc1ZLdyVSh3fb+fcxgyj17JWQeScur7fOdcKj/8oRWz5tuiEwmXDmPMcAbezmnJTbOlE9Ep37YY06y0DsZR1YcQj+sFWE89GCPfonPP1NQEgHnymrhWbz44lX4bjMgvX93SA74/09RVakzogBrj9dM1rz9SpVGiZgl0NQOq+O9suTWAcOaMWygcmrGl5OM6FgBEv+qZ86KhonWl5J1dGDPrv+4B/K8ftnMFwke9jeedAeSFr1eQi7GKnd9NIle0WlJaRl0adIEcpsCb7IHok1E3eG73XV8cqqhqf83ZxsKGSYzRYe2tQWm1vznWNSqhvRCB9iI0YjyRCwN5bh5Aoq/WkKc+U1AAgLp+n+9QhBdV9o+26ocxnYOwMuJ1zXTONROnpf4YGWHMCMI7tS5G0ZvpjaZP/McrdVok1m4fS0aTEi4oJ4R5lcqWex0cvndWene/TeZpKuVEXzpImiWCqRJ2RiZGz8DfqEP7PelfwkLFzpIhDU5ZzGcF034Vk6nL+/qZrrnouAajZtyRR8nkD7Y9IH2imHcV0Hn8ZOpUKzfU9rUvpOBlg23QjxrI2nh2Q7+M9TadVP5nqBeQi181z2Y8CyXqmW7lyZU4vZBgG/uu//mvYO0Tly4pXnlPf9u6osTpS06gdvFqES2w3ob5vwm5SkxkGI5FX2x8A1DcjEAZgTR0Zy2SlsvaJXUE5z7iCpQR1fY/n73gfqPKz9IvM+zBczqI71Y6fnTf3wQw31K45pmn2X42lTZoHBNyvl68bb2ebpC7Hk7qvOXYsuD6HZGA85D0cmtR6o4rov+yRK0h2/FzMFQFqFITPqo2loTs6jxKjs8n9Gub3xNWp4VwKM4cR4+SIri76Ps9c/26GAnRJznZ3rDftWnu6wJzBrl3f1zbpC2g5nlfMa3Uu58zhZMTk2Nyu9+y1EeOLL74Yzz333IDb9Pb24sILL8Q//vGPvO0YlR9rUjyd+m3vjVQCGPFp1AnWfj7IKhEbMfZQlXB9TXy0eF7Acyne+WTO8EPq8bns6ZYcKSFtXSKNemQe//Z4FuCqeM5U6kKNGA90kx9Q3MFcgc51rsJSrnVN08/PdS+Bk+W1CxAsyEwjdvF9cQXjzhvvAUb0nFlf9i5qv8eKIrHs1ZiUv+v8pytt1hEc7aoi/JVR6L28oXD752BN98Oa6u8Lgp2Xp8RxmjIVYdCc78/5WQwigJK+wQfGyJQdkXjMmdVRoyB0UR3C59UVd2k/5/fR0bGVdkQ4lyJ6BdCvkGA6zs8yW8df6q7n+lbSnCOKJevZ76ijjsK3v/1t/Otf/0r7+7a2Npx11llYu3Yt7rjjjrzvIJUPq9kHqQLq5qh77o9HKNtMKK0WrD1GZhp1kiZgzglA2IDqlSJQEQnt1UisEvL+I2tuaz/xNY1FVELbECn13vTptqFuikJWCViTRlgadZw9VoP0CSgfGIDlvXMQFUGG0cbhLkPjGukb6EZVQXFu5JwBsLMqtXPE2LU2sOPnLG3hTIHNG9coev+OA9mkIfrFKoTPdY9oDtQJET28CtYeGsJfGYXI6aMQXRhE9ItVGbcvhOhx1bD20RE+t871uKsjIHU+aYIiYM0JQO5W7FzR+P44T5GJY2W41YCdb8UnYE71wZwyuOuNK2jMMWMhYxune0wVsCf4YsXTiilN0Tkgw/xrPcPxU2jOr36GtpfDycTJ9fPMUAywGLKe/X7605/i+OOPx+WXX44nn3zS9buPPvoIX/3qV/HRRx/hvvvuw+c///lC7SeVA19soXTRK6F87L05fuprI3u0zCmZzvtyCFKWPkDQ1oUhIjK2bnQeqm96nZFsf490TADQXgtD2IA525/feY9eogrYe2sQUUDx8JJlVDiuUS5Xtehhvm51huJQqUIyvwW3Mu1PpuJbVemLaLmCzWwjxoXoOHbti/Pxvh+NI6ph7efPvfBOtYLwpQ2x4HIXDcaxNZBNxb2Ltpt9CH+zHnJ05hFj102+mvvnUDDp/m5iCawMn02uo8euDgENiJxTh8jX6wZ4Rp/QhXWwJugwFlXn9secf7cmw3Gf5rFiB1pJQqD36tHo+X5jxqkFSY5gOG9FA3MwUAGzpEz1AnKQ89rTJRoxB3KY/SKEwI9+9CP4/X585zvfQTQaxYknnohNmzbhggsugKqqWLJkCSZOnFiM/SWPsyb5oG4xoL4dhb2nh+aROtKoR/L84gR7nAZrdw3qxybst8NAUwl3Rkpoq2MBoqua5whmT9Bhj1agvmtAfGpC7lr6BQC0V+IdQyN8xN4ar0N9x4DyvgF7Dw+dg6g4MqZSD3PEuFoBdsampgw0giMKnKlgNyhQ2m3YjtTdTHOMXUFOphHbNGSjivBZtbCb8he5ueaeun5Ol/bq+IcHs89y4mzjfhWh40o1pShN33Tyc3AFkH1Vn6ECiM8BDl1YB98LIQSmVMN4tB3mdB+0DfEpdM5AaZBBk93sQ7h5EKO4zinmo9JPIUhyBfyl6xhOVIF3dZykS6XWM3yPCy2Sw/dtMMvRDTGVOuM0kCLI+W7t2muvhd/vx3e/+1289dZb+NOf/oRddtkF9957L8aOHVvIfaQyYk3yAU/1QH07CuPIwff6FYryoQml3Ya1t9Z3YhrhzEOCUB/pgvmvTuArpfsslK0m1G0mrN1U2HuXPkAsCkXAnBeE76ke6GvCiJ5Qk/05BSQ+MWOdJLuosHcf2Z+B5ZhnbC4o8c5Q8SkZbtqGe9rPUiU2dGEdfH/rQfSoKvj+0j3MP5ZZ6IrRQFRCmI5lguoypFJnGKnMZfQvsR5u3qgZAsIBRi/7bVtOMgU+ecxiGC7XSGTiEMq03rUmkjUz7GYfovv6UdNQja49AbtKQNvQBgCutZmHFYAmOpgGeomU/e/9rwYoO6y0mVqukUovXALVLB0ImkDvd0ZDez0Cq4hZjvY+sQ/QHGDVCvdyTfkvviUFSjpiPKh+iKuuugoXXHABfve732HixIl46KGHGBSTiz1WhV0jYsulhL1T+EmroDTqBHOmH7JawFrbA9FRuiW09Bd6Y/szP+jJdX0LxTggAKkC2qvhkhfhSqwhau4fGPGfgb2XDqkgtlyWB6YRUJFlGBl1jVIOZQQmQ2psgt3sQ/iyBsgmzb2MUL7pAqhWXCNk9i6a+/fJ/XS8UdfocYnPAa7gK81omXOZn+oyPV9lmCft6qAo8ZQWV7CYaHLXMjkDz9EXioDcXU9ZCsyZZjv0fROJomZVubeR3FXL3KGjeKfdAfc5KH1qt4RsUmEcXlXUziF7nIbeq0cjcnZt5o0ypKXnlCad4zayVFW5kUO/yec+9zmIlBspKSW2bNmCRYsW9dt+1apV+ds7Kj+KgL2vD9raCNQtBqxpHghEbQl1fQRSANYIrkbdjx4btdSX9UJdFYL1xeKPGos2C+qGKGR1rCBYRalRYM3wQ1sXgfZaBOaBJXr/loS2Nnb8m3Mr4Pj3CdjjNKgfmRBt9sgutEf9ZboBTp3bOcjg1RVMZ7tRK0Z/jPN9NihpH3cXenL8XIqvhLNNMs03TnAEVEVd0qhAXB0prtG2ou9KZokiaK6OFWcRrAGeq6UPjPOSslwzwOfvfHnX8ZVlWw8ExlnPISUcV8qaVelsXz3lu5w6BtMvlTqHthcpr+u1wPiMM87oFxgTDcScFA+MN0U9ERgrW00onTasCXpxS/N7gHlwEPryXmhrQogeUTX4xdiHSX8xBCGB6MHBov9tLzDmBWKB8ZpQyQJj9e0olC4b5qTKOf7t8TrUj8xYOjUD44riShPOFISoAjAGGb2qAr1XNECEZPYR1yLd1PZeNTo2J1ARiPzHqIHn46o5BjmF4hxx1zN0XqR5zJrmA57phblvGdcLcKVSD30ObkEljh1nMweydGAkZMqmyEMAmvM8d0db2qlLZwEZC76VStbK76VL8svKXUAupcMxZb9lIOV95tLPJTw+x/jSSy8txn7QCGJN9kEKxNbRtWXJ5whp6+NppBVQdKufehXq3GpY/+6Bti4M88AiFr8K29BeDkNqgPG5yii6lcreR4e9iwr1QxPKxwbs3Yt/c6etiR//B1XOZ2CN16G/EILyvgGM8GJjlCJTkanBFIxJRwHkLlpOg8HWPjrU9wxYuxW2U0Y29L1+YiUC9waZnliY/RmIrHfcEWebZ+tcC3d3Hb3faSjv2iCO9nZVqC5VYJxmsEvEiy65AhJ/joGxMy24yvn+hryHCF1cD+2lEIzD+i+/JZtUoMuGvasKpSUWiTlTb80DgvA9G4IxPwB9ZXy+cZZ1josta4q4l4vOOdOnXZ0nAqknF5nasZFrKnVtjqsAFED556iQ91QrsMfrUDptKNtKvGSKLaG+Ho2lkVZSGrWDdnRsqQT9uVBRT7bay/ElmmYHgFEVeqoRAsbn4ks3rSr+0k2i3YK6KQp7lAJr6shcuzgd21GAiypMhlTqbJWQs79u7psaR1Uhekw1oqcNME+vwtjj+u6ms1ULT72Zlk2aN9Jfh0iEHNddbZgdNHmWnCKQqEbsDCCdQc9AmaPO32VaLmyQ7PF67PuTZrQw8h+jED089h1Lcu53k4qeG5oQPb6v6KXMMq+96IID70NB6xQMl5rhGHG0sTk9dr9hHJ7SsZFTYCxcHWFp13kuoAq9W6VCM+M34erGaEn3Q9lsQOmyYU/UB56rMoKpEwOw9tGh7LCgvlGkz8OQ0J8PxX48tHJGKtMx5wYgfQLa2jDQXdyrnbYmDCEB86CAN24GikSOUmA3qlA+s4AeL99hUN5lSpkc9vqxg/j+qALG56tcwWAxGfFpG16YypRgTfYhcnw1Qv9Z704hTvNZ2OM0hM+pRe9/jy7a/hWSa+TUObrqgZHLxGhccsQ409zOHHfVNWJcoM4M2ajCWFQNOcbR2ZIaQPtEynz74X7/88vZziLcf8CiqEs0DZbztOZcHs5xjjUOq0LPjU39z4G5plI7Mkz6jToXmJebnspYYnRKfTNS0v3QX42nkc6t7HRK84hYr53+bG9RKvVqL4ehdNowp/kgx3qgW7yUggrMAwMQJqCvChXv75oS2suhWLZEqQp/lZA1PnbcqVs5alxR1Aw3w5mC5Fx5IIbJVfSUGvRc2+i+KZWxNZCBWAXtohMC5oKq2HSSHD4La6ofcrQHIphhCH27HuYcP4xD+0bN3GtLl/6gMg6KXRvMRDVnZ4CpDCEwds4pLealP1sng/Nc4IH5u86q8qIr1nlr1ysInV8Ha08NxtHeWe40lSsTx/l5O7+uCtJnDORSs0oBZJ2KyPHVCJ9bW/TpmBV+x0qFIps02GNUqNstiDarNBe4iIS6IQLpA0wP9ZyXgj3ZByteqVd5x4A9qYA3RqaEvjy2RJNxlHdP7sVkLAhCWxmCvioE4/PFKYKmboxA6ZYwp/hccxErhT1eB16JQHnfgDW1sr//lSTTMijugk9pnqcCYqAb5nIaRhACSDOHMfr1OtR2aQhNQknmGSd4YqS0COw9dUS+ors7o8Xgg828E33/N75YDWuKD/ZesWFt12fj3L8cLyGuubNF/JxlloxA13fe8sD83aCC3ssbgCoB0WXD95duRE4fBdmkIbyvx6c9ZepwdAawGT6OwSzpZC7oP7+8GMriVL9t2zZceOGFmDVrFg4++GDcfPPNsKyBu3w6OjpwxRVXYO7cuTjwwAPxve99D729vcnfr1mzBhdffDEWLFiA2bNn48QTT8Tf//73Qr+VipJMp36zNOnU2oYIhBHvCS3yHAXPEQLG52Mpzb5nego6aqz9Owxlpw1zqq9kqYReI0ersKb7IHpkLKW64H9QQl8RG502D67MVHZrH84zrkiZim85R8LSjdSVxd3Q0MmggBynQ5s/quRrmQ/YATESOdvbmVZdogJLkS/XwG5UET6vDlAF7H18fd8JZ2eSs5Mp19HtoOhLay5Cf2zowjoYC4LZa2hoHuiQSCF30yDrVNh76Ah/K7YGellwjQxnSFHPdI4ZRGBcKp7/FCzLwkUXXYSmpiY8/PDD+Oyzz/Df//3f8Pv9uOyyyzI+78orr8SOHTtw3333wTAMfPe738V1112Hm2++GQCwdu1aTJ48GRdccAGampqwfPlyXHnllaipqcHChQuL9fZGNGuqH3guBG1jBOYhxb8515hG7WLN8MMe2wv1fTO2lNaUAoyiGRL6svho8ZGl6e3zKuPQKmivR6E/H4pVkC1gepDyvgH1QxP2WBXWpDJe5mQYZJMKWS2gfGTGluapkFGqipcplTp1vc1UaSqqupT54eOp9YBND4zYlYrzmCxRM8ixGkKLM8zfDgiYs/2xJY+cS5rlePjIgILe7zfGPuMidMDYzT5Ec5kaoAmEz6qF9koY1nRmEA2HK5Xa1Xni+DnTR5/DIZHTqHIBeehMmd4LL7yALVu24JZbbsGUKVOwcOFCXHbZZXjwwQdhGOlHArZs2YIVK1bgxhtvxKxZs3DAAQfgmmuuwRNPPIGWlhYAwDe/+U1cfvnlmDt3Lvbaay+cffbZOPTQQ/Gvf/2rmG9vRLP30mCPUqC8awBdxS2AIzosKFsM2LUK7ObKDAz6UQSii2Kpzb6newrSW62v6I2NFk/3wd6D7e5k7633FUFbX9i59/pz8cJnh1WVfHSoZISAtbcOYQHKhxw1rhiZUqmzFRLKclNX6pu14cq6PEwxDXYN6RHElapc4qUs0xICka/WxqZBOa4dIsfPTPpFrBMq2zq9RSY1wJruR+ScurKucO4JqXOJkz/nsLyX8/ycMXgu7efj+RHjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX4/p06cnH5s/fz6EEFi/fj2OOOKItH+rq6sLkyZNGtb+Knk40SVeIx+vVVKKgD3LD+2FEPQNEViH5G8EMVsbaa9FYtV45wagaN46QRdTajvJqX5Y43Wo7xvQ10VgHZDHkfxOC/ryEKQKmF+qKZvjt5jfN/OL1VDv7IDvmV5EZhdm1Fh8akJ7MwpZp8CeE8jb+yrH85Kc4APeiELbasKcWPhRgnJsoxHHVZU69wq7UhUQiSE8Bf0K9Hh6+ZQBSB0QBjw1rcWa4Qf+1oPoERWYVaQA4a+MgvZq2PtL6Dm+S3atAuUTK7kMTyayzlv3W/ZoBUqbDXt37xz/ZS+oIPzVUZD1KsROx4kyU8DslDrHPl1/C1OpB9bS0oLGxkbXY4kguaWlJW1gnO45mqahrq4uOWKc6umnn8bGjRvxwx/+cMj7qmkKGhtrsm+Yo4aG8i9cZC3UEHkhhMBGE4ET8tc2CenaSEqJ8CvtkABGHTkaSqPHLz5F4Gwn62s6Ij/aBt9TvQgeOhqiKj8TgSJ/3QErIqEdXYfqyfV5ec1iKsr3rREILw8Dm8Ko2wxoB+f/OxH506ewAPi+WI/qXUfl/fXL6bxkzdIQ+Vs3/B/bqMvjuTmbcmqjkca15qVzFDhTtd0026a9MSvTUc7Q/xsN5UMD9kSfZ1IEZb2KnpuavDliWmgCsOYEYM0pgylejo8neuIo2K+FXRW2nXq/OxqiR7rXMfaA8MX1UN41YM1i+nQ+WbNjx6+6wdFj6JzGksscYwVAug7HSg2Mf/nLX+KOO+4YcJvnnnsOACAyNHCmxzP9TkqZ9vE1a9bg6quvxg9/+EM0NzcPuE8DMU0bnZ3DX45FUQQaGqrR3t4Du0TFGfKmTsLfoADvhNG6ZSdQn58gbKA2UjZH4f/UgDVeR3sgCrSWdi3lUkrbTg2AfkAA2r/D6PrDZzBOGn7wpGyOwr+iC7JaoOsQHWjtHvZrFkuxv2/K5wPwbwoj/HgbIs3I65IdYpuJwEs9kKMUdM5S8/o5lOV5qUYioAPWO2G07ugq+I14MduotjYIXa+8auPZ2HvpMCf7YgUGRfoR47QVbPsVlEn5/KJlcsynkI0qrEYPHieVGBSXG2faa4MC44jMHX6yToWsK8I+DZKsVWHN9uDxP1JkqlyeQyp1xroOJe5bKVlgfNZZZ+GEE04YcJsxY8agqakJGzdudD2eGPVNHRVOaGpq6jcybJomOjs7+z3npZdewje/+U1cffXVWfcnF/m8GbJtWT43oAMwZ/rhey4EZV0Y5mH5TZ1K10aJtWLNgwIjov3yIbWdIsdUQ90YgboqBGOOP7lUw5BEJfx/7oy97pdrYAdEyaptDkexvm/2Pjq0iTrUzQaUVSGY8/OXzu7/RywQjh5eBVtDQT6HsjovKbFASd1iANvMoqWTllUbjTSqQOS82B269kpfBXjpOMUZ8wMQrRbsfXToL8Q7szNVV43LdY4l0YihZMmyIHLVdMih8ncuS4BVavGt+vp67L333gP+p6oqZs+ejU2bNqG1tTX53JUrV6K2thYTJkxI+9pz5sxBR0eHK6BevXo1pJSYOXNm8rE1a9bgoosuwpVXXonTTjutcG+2wiVSWLTXCltwCADQbUPdGIEMCpgzmTqTUY2C6JeqISTgf7gTiAx9Ap3vqR4orbHlmSy2eU6iX6qBFIDvHz1AT34mLyrvG9A2RmHXKTDnlUGaXpFY42MRkcJlmyqOs2Kqa8S4WkH4PxsQ/ZJjBCzbaEflJh5RhZIcaKVsnB0mzn7nXAJjjxbf8tZkgDQWLFiA5uZmLF68GJs2bcKKFStw++2344wzzoCux2541q9fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45PzkRFJ911lk4+uijsWPHDuzYsQMdHR2leqsjlj1Ogz1GhfqRCfGJWdC/pb8ShrDiSzRxeZYBmQcEYE7zQWm14X+se0hrG6uvhaGvDEFWC0RPrCn5Ca1c2OM0mPMCECEJ3z978vCCEr6/xEaLjUXVrLrpYMcDY/U9BsYVx7kyjnOOceLa4Py9Y0qDVJw/xzct01Rq8phyOjX7ymlnqRRkpmKHGYtvYXDblIDnA2NVVXHnnXdCURScfvrp+M53voMTTzwRl156aXKbUCiE9957z7V8009/+lNMmDAB55xzDi688ELsv//+uP7665O/X7p0KUKhEO666y4sWLAg+Z/zdSlPhIB5YGwES385nGXjYbAltDXxZWoO4ohZVkIgcsoo2HUKtHUR6M/2DurpyocG/H/ughRA+Cu1kHXsXh6M6BeqIYMC2uowlGEGbdrqMNRtJqy9NZhzOGrvZO2tQYr4iPEQOn+ojDlHM5wjxsnAOEP6tOPOyJoWK95oTeDyc1RhOLhA2WRIpZaZUu9Fhm1yGUkuEs9XpQaA3XffHb/97W8z/n7evHl46623XI/V19fj1ltvzficH//4x/jxj3+ct32kgRlzA9Cf7oH2ahjRYwozoqW+GYXSasNq1iHHlsWhXXrVCiJfr0Pgfzvg+79eyICS05xXsd1E4N6dEFEgekw17Ems/D1oNQqix9fA/0gX/I90InT5aMA/+O+FaLHge7IbUgGiX+aofT9+BfY4DerHJkS7DTmaHTgVwxHLukeM02yrph/tiH55FMxpUVjT2OFEQ2c3KFDabdi7lc+9iWRgTNm4RowdP+dy6CgpPydWfuKIMVWEUQqsqT6IXgl1Y2HmGuvPx0Y8jUPzuDZvBbDHaYicWQupAf6/dEN/ugewMo+sqZsiCP5vB0SvhHFoEMZCtvdQmXP9sXT2Nhu+vw4hnd2S8D/SCWEAxuFVsHfnqFY6yXRqzjOuKDLouMVx3uSn65jtVy01/hp+EVtah2mlNAyhbzcgfE4trCll1IlcRrtKJSLc58qkXPqfnefcDB2TpcDAmIommU69Jv/p1MqHBtT3TdhjVFiTeTYfLGuyD+Hz6iB9Ar5nexH4dQfUt6OuqsZihwnfI50I3NcJEZGIHlUVK17DEcqhEwKRk0fBrhHQ/x2GtnJw3w3fE91Qt5qwdtdgHJnfiu8jSbIAF+cZD8umTZvwX//1X1i4cCFmzZqFY489Fg888ECpdysjGUiTPg2kXSJNZiq+xbskyocaBdZUf1ldL2UelxKkEcp53gxk6XxMpaQPhiVTqalSWJN8sEcrULcYUD428jq6pT8XHy1eEOSyAkNkN/sQuqwB/j92Qv3AhHrPTsiggN2gQvTaUDpi1ZNljUDkxFGwZjC1MC9qFETOrkPgNx3wPdENWS1gzc4+R15/rhf6qnDs8zirNq/rIY809j4cMc6HDRs2YPTo0bjllluw22674dVXX8X3v/99aJqGr371q6Xevf6CgxjBUDNsy68VVSrOOqFsnAUMA47odkgjxvGBmBJ3HjEwpuJRBIxDq2LpuitCiHwlP4Gx2G5Cez0Ke5QCc38W3RoO2aQifHE91Ncj0F+KFYVSt8UqiVu7qbBm+mEcHASCHEbJJ3tvHZHTRsH/UBf8D3chGpIwPxdIf4GwJfR/9sK3rBdSB8Jn1UE28A5mIHKUArtRhfKZFVseq5rH71Cceuqprn/vueeeWLduHf75z396MjB2pVJn+4o4RywyjGQQVRQOMlA2zmPEmUqdS3DrPLey+BZVKvOAAHz/7IH6WgTii1Zebuh9/4otd2McXsUqivmgCFizArBmBWKp1CEZO+FxCaCCsmYFEBEC/oc64X+8G+pbUUQXVfcVkpMSyscmfH/vgfquAekXCJ9bl5w/SwOzxmtQWi2oW41YSiPlRVdXF+rq6ob1Gsowb8ATz+/3Oo6PWdGUftu7OM5vwnHDpqgjJzLO2E6UxDbqIxz3U6ntwXbKrhLaSDjPm1rm4yUt5zaq+/xbyjZjYEzF5RMwDg7C90wv9BUhRE+oGdbLiY8NaBuisGsVmFyiKf8UAVSP3JO611gz/Qg31MP/UCe0N6PQ3ozCblIhaxWIDgtKWyyd3R6rIvzVWlZfHwR7vA68EoHyHgPjfFm7di2efvrpAVeNyEbTFDQ2Du86kNDQUN3vMeM/LEAVCO5ag8jUbii76q6/14vPAAD+Kh0WYoUhtYAKG7FMmXztm5ekaydyYxsBMmgjhHaIvX0Zvwdsp+xGchvZkSjCaAMA1NQFEEUngIHPm4lzrubrO88KJZlIDc2noqaE513eVVHRGfOD0Ff0QlsdgnFocMijxlJK6H/rjr3mERwtppHB3lNH6PLR0FaHoL8cjqX/tsTWMbDGaTDnBWAeEOAI/iBZjnnGnGns9stf/hJ33HHHgNs899xzGDt2bPLf77zzDi655BJceumlOPjgg4f8t03TRmdnaMjPB2KjCw0N1Whv74Ftp1R2Pyh+m9PWA5w7KvZza3fy14ma+hHTTN4QGZpMZl63OrYtdwO2EwFgG/VzQxOgC/SmfA/YTtlVQhuJDhOJIamu3kgySWeg82binGvaVl82tWPE2DBt9BTovFtbG4SuDxxzMDCm4qtRYBxaFRs1/kcPoqfXDullrFd6oG42YO+icrSYRhafgHlYFczDqoBeG6JXQtYIIDBy0jqLTTapkNUCyscmEJVcfsfhrLPOwgknnDDgNmPGjEn+vHnzZpxzzjk47bTTcNFFFw377+frptG25ZBfy1kJ1bnm8Ui8oR1OO1UKtlFc4ruQoS3YTtmN5DZSjL73JdH3cy7vV2aq/i9K214MjKkkjMOC0FeHoK2NwDzYgL3XIOdJhm0Yf+wAAESOr2FFXhq5qhRIrsQ0fELAGq9D2xiF8qEBu5nLuiXU19ejvr4+p23feecdnHPOOTjxxBPx//7f/yvsjhWTYxDBtR4nERGlJx0B7HBiWec9fImrUnP4gUojoCC6qBpCAv5HuwBzcN8o/a/dkK0mzJl+2JN4g0tE2VlctmlY3nnnHZx99tmYP38+zj33XOzYsQM7duxAW1tbqXdt+DJVVyUiorTs3TSYc/yI/Meo4QXGmSpUlwBHjKlkzAMD0NZFoG4xoP+zB8YxuU22V9dHoL0cBmpVGCePKvBeEtFIkajgrTAwHpKnn34abW1teOKJJ/DEE08kH999992xbNmyEu5ZHkQdKYEMjImIslMEIl+JTYdU10cG91yRvip1qYdsGRhT6QiByCmjEPx5O3zLQ7B312HNHLharPKRAf8jnZACCJw3BqFqO+PcFyIiJ3ucBqkD6lYzdt4YwctoFMKll16KSy+9tNS7URAiwsCYiGjI5CDvxVOyp2Wax0uBqdRUUrJRReRroyAF4P9jJ9S3ohm3VT42ELh3J4QBmMfWQJ3JiZdENAiqgL23DhGRULabpd4b8pKw3fdzgIExEdGg5GmOsWRgTJXO2s+P6Ak1ECbgv38n9OW97jnHloS2OoTA/3ZA9EgYC4IwFwYzvyARUQYW06kpDRFyjBjHl/6za3mLRESUC7lLLAlZ5tqx6AykXXOMSxsZM5WaPMGcHwR0Ad/jXfA91QPthRDsCTogAOU9A8pOG1IBosdUw1gYhFLiLw4RladkAa53DZiHlHhnqOSMQ4LQXwzBnOmH+mE8i0ABem5o4tABEVGO7HEaQhfVwd5l4NBSCkBIZE69ZvEtohjzwACsvTT4/q8H6htRaK/1TeQ399VhLKqGvccgl3UiInKw99Ih1VhgzHnGFD2uGsb8IGRAwP/3ntiDAlznmohokOwJQ1wlRmHxLaK05K4aImfXAb12cg6gPVYDqtl1T0R54BOw99KhvmdAfGpB7sbLYEVTBGSTCvTY2bclIqLhEYilUcuUx9L9XAKMNsibqhTYzT7YzT4GxUSUV9aEeDr1lszF/qjCuG7MOFpMRFRQDIyJiIhKz2pOBMYswEVxzpsx3hkRERVGusCXgTEREVFp2HvpkBqgvmdwHXSKcVVFLdleEBFVBteIsUj/cwmURWC8bds2XHjhhZg1axYOPvhg3HzzzbAsa8DndHR04IorrsDcuXNx4IEH4nvf+x56e3vTbvvqq69i6tSpOPnkkwux+0RE5CV6fD3jENczpjimTxMRFZxIhG/OAoceytjxfGBsWRYuuugiGIaBhx9+GD/+8Y/x2GOP4Y477hjweVdeeSU2b96M++67D//7v/+Ll19+Gdddd12/7bq7u3HVVVfhc5/7XIHeAREReU1inrHCdGoC3Ddmasn2goioIshMgTFTqQf2wgsvYMuWLbjlllswZcoULFy4EJdddhkefPBBGEb6G5otW7ZgxYoVuPHGGzFr1iwccMABuOaaa/DEE0+gpaXFte0PfvADLFq0CHPmzCnG2yEiIg9IzjN+l4ExwXUzJnWOHhMRFZQ/fWAsuY7xwNatW4f99tsPTU1NyccWLFiA6667Du+++y4mT57c7zlr165FfX09pk+fnnxs/vz5EEJg/fr1OOKIIwAATz75JN5++2388Ic/xF133ZWX/VXysCZm4jXy8VojFdsoN2yn7NhGuRlx7bS3D1KPzTNWJACV5+6K5vzINH5+RESF5B4xzjB6XAKeD4xbWlrQ2NjoeiwRJLe0tKQNjNM9R9M01NXVJUeMt2/fjh/96Ee499574fMNcUHqFJqmoLGxJi+vBQANDdV5e62Rim2UG7ZTdmyj3Iykdgrv2w37jRDqe3So+wTy9rojqY0qhiswLtleEBFVBkdgLFzFD0sbGZfs9P/LX/4y6zzh5557DgAgMjRSpscz/U5KmXx88eLF+MY3voFJkyblustZmaaNzs7QsF9HUQQaGqrR3t4DmxVT02Ib5YbtlB3bKDcjsZ20vRTobwDdr+yEWTv8IlzFbKPa2iB0nZNh88aZyscRYyKigpACEBKwmxzXLw/NMS5ZYHzWWWfhhBNOGHCbMWPGoKmpCRs3bnQ9nhj1TR0VTmhqauo3l9g0TXR2diaf89JLL+GVV17BLbfcAgCwbRtSSkydOhUPPPAA9t9//yG9r3zeDNm2HDE3oIXCNsoN2yk7tlFuRlI7mRN06ADE5ijshVV5e92R1EYVw9mZzjnGREQFEbq8Adr6CMyDAvA/3t1/g0oNjOvr61FfX591u9mzZ+Ouu+5Ca2trMqhduXIlamtrMWHChLTPmTNnDjo6OrBx40ZMmzYNALB69WpIKTFz5kwAwBNPPOF6zh/+8Af8+9//xm233YY999xzGO+MiIjKgb2HBukTsfWMTcm5pRTDVGoiooKQYzUYY1NOslyuKXcLFixAc3MzFi9ejE2bNmHFihW4/fbbccYZZ0DXY1VF169fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45P3nSpEmu/xobG+Hz+TBp0iQEg8GSvV8iIioSVcCaqEMYgPI+q1NTDFOpiYiKyEOnXM8Hxqqq4s4774SiKDj99NPxne98ByeeeCIuvfTS5DahUAjvvfeea/mmn/70p5gwYQLOOeccXHjhhdh///1x/fXXl+ItEBGRR1n7xoovqu9ES7wn5BkMjImIisc586hSU6kHY/fdd8dvf/vbjL+fN28e3nrrLddj9fX1uPXWW3P+G5deeqkr2CYiopHPmhQPjN82YBxT4p0hbyiLOyMiohGoxOU5PD9iTEREVCiySYU9WoG6zQS67FLvDnkB16EmIqpIDIyJiKiiJUaNNaZTExERFZeHFnFgYExERBWtL52agXEli3y5BpETa0q9G0REVCKcSUNERBXNatYhlXhgbEum0lYocz5XpCAiKqkSX345YkxERJUtoMDeW4fokVC2m6XeGyIiIioBBsZERFTxrEk6AEB9i+nURERElYiBMRERVTxzih8AoL7BwJiIiKhoWHyLiIjIO+RYFXaDAvVDE4LLNhERERUf1zEmIiIqMSFgJUaN34yUeGeIiIgqj/SXtvoWA2MiIiIA5tT4sk1MpyYiIio6WVPa0JSBMREREQB7Hx3SL6C+EwWiHpr0REREVAkYGBMREXmAJmDt54MwEQuOiYiIqGjsegbGREREnpBMp97IecZERETFEDmvDtGFQdj76CXdD62kf52IiMhDrMk+SA3QNkYRNSWglbYQCBER0UgmJWBP8cOe7Cv1rnDEmIiIKCmowJrsgwhLqG8znZqIiKhSMDAmIiJyMGfFlm3SXmM6dSYffPAB5syZg3nz5pV6V4iIqIyJoHfCUe/sCRERkQdYU/yQvvg8Y1an7sc0TXznO9/B/vvvX+pdISKiMieqvROOemdPiIiIvMAnYE31QxiA+iZHjVP96le/wh577IFjjz221LtCRETlzkOBMYtvERERpTBn+aGti0B7LQJrVqDUu+MZr776Kh5//HE8/vjjeOaZZ/LymooyvAJniecP93VGOrZTdmyj3LCdsmMb5U5Uq55pp7IIjLdt24brrrsOa9asQVVVFU466SRcccUVUFU143M6Ojpwww034Nlnn4Wqqjj66KPxve99D1VVVcltbNvGPffcgz/96U/Ytm0bdtllF3z961/H2WefXYy3RUREHmVN8kEGBdRNUaDbBmq806NdKt3d3Vi8eDF++MMfoq6uLi+vqWkKGhtr8vJaDQ3VeXmdkY7tlB3bKDdsp+zYRplFZnfDWtcLdWYVGhpKu0xTgucDY8uycNFFF6GpqQkPP/wwPvvsM/z3f/83/H4/LrvssozPu/LKK7Fjxw7cd999MAwD3/3ud3Hdddfh5ptvTm7zox/9CC+++CKuvvpqTJw4Ee3t7QiFQsV4W0RE5GWagDk3AP3FELRXwjAXVmV/Tpn65S9/iTvuuGPAbZ577jn8/Oc/x+c//3kccsghefvbpmmjs3N4111FEWhoqEZ7ew9sm3PCM2E7Zcc2yg3bKTu2UQ6+Wg3lpGpU7aoXpZ1qa4PQ9cyDqkAZBMYvvPACtmzZgvvuuw9NTU2YMmUKLrvsMtx222245JJLoOv9exi2bNmCFStW4NFHH8X06dMBANdccw0uuugiLF68GE1NTdiyZQseeughPPHEE5gwYQIAYM899yzqeyMiIu8yDooFxvrLYZiHBQHhjVSvfDvrrLNwwgknDLjNmDFjsGbNGnzyySf4wx/+AACQUsK2bUydOhU/+clPcPzxxw/p7+frZsi2JW9Ac8B2yo5tlBu2U3ZsoyyqYtdVr7ST5wPjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX58MigFg/vz5EEJg/fr1OOKII7Bs2TLsscceWLZsGc4//3wIIXDooYfiyiuvRE3N0NO68pEjz3kJ2bGNcsN2yo5tlJuKbKdxOuy9NCgfmNC2mrAn+AbcvFzbqL6+HvX19Vm3u+eee2AYRvLfzzzzDO69914sWbIEu+22WwH3kIiIqPA8Hxi3tLSgsbHR9VgiSG5paUkbGKd7jqZpqKurQ0tLCwDgww8/xMcff4x//etfuOWWWxCNRvHDH/4QV111VdaUskzyOVcK4LyEXLCNcsN2yo5tlJtKayfzSBvR+1pQ9aoB/4Gjc3rOSG2jffbZx/XvDRs2QFEUTJo0qUR7RERElD8lC4xzndMEACJD+lqmxzP9TkqZfFxKCcMw8JOf/AR77703AOC6667DmWeeiZaWFtcIda7yMVcK4LyEXLCNcsN2yo5tlJuKbaeJAoEqAfPlHvQcuROyIfP8pGK2US5zpYiIiCh3JQuMc53T1NTUhI0bN7oeT4z6po4KJzQ1NSW3STBNE52dncnnNDU1QdO0ZFAMAM3NzQBiVbCHEhgD+ZsrlXitiroBHQK2UW7YTtmxjXJTce2kAcbBQfie6YX6fC+ix2fPCqqUNjr55JNx8sknl3o3iIiI8qJkgXGuc5pmz56Nu+66C62trcmgduXKlaitrU0WzUo1Z84cdHR0YOPGjZg2bRoAYPXq1ZBSYubMmcltTNPEhx9+mCy69d577wEAxo0bN9y3R0REI4QxPwj9uV5oL4UQPbIKqOLSTURERCON56/uCxYsQHNzMxYvXoxNmzZhxYoVuP3223HGGWckK1KvX78eixYtwqeffgogNvJ76KGH4pprrsH69evxyiuv4IYbbsBxxx2XHAk+5JBDsN9+++F73/seNm3ahPXr1+OGG27A0UcfPeTRYiIiGoFqFJgHBiCigP4il/QjIiIaiTwfGKuqijvvvBOKouD000/Hd77zHZx44om49NJLk9uEQiG89957rmqZP/3pTzFhwgScc845uPDCC7H//vvj+uuvd73ub37zG4waNQpf/epXcckll2DmzJm46aabivr+iIjI+4zDqiBVQH++F+iyh/YiUQl1bRgwR36aNRERUbnxfFVqANh9993x29/+NuPv582bh7feesv1WH19PW699dYBX3fXXXfFr371q7zsIxERjVxytApzfhD6ihB8/+pB9KRRg34N39Iu6K9GENYErBn+AuwlERERDZXnR4yJiIi8IHpEFWRQQFsThvKhkf0JDsqWKPRXI7BHKbAm6gXaQyIiIhoqBsZERES5qFIQPbYaQgL+R7pyT4nutWPbA4geVw0EeeklIiLyGl6diYiIcmQeGIC1rw7lMwu+v3YDMktwbEv4H+2C0mHDnOWHNYsp1ERERF7EwJiIiChXQiBy6ijYoxToa8LQVgxQpVpK6E/1QNsQhT1aQeSkGkCI4u0rERER5YyBMRER0SDIehWRc2ohNcD/9x7o/+gBrJSRY0PC92g3fM+HIKsEwl+vYwo1ERGRh5VFVWoiIiIvsffUEf56HQK/74TvmV6ob0RgzQvC3EtA29wDdXUISpsNe5SCyLm1kLvycktERORlvFITERENgb2vD6Fv18P/aBfUrSbUx7sRRTcSNafNqT5Ev1wDWa+WdD+JiIgoOwbGREREQyR31RC+uB7K+ya0zVEETRUhvw1jig9yN15iiYiIygWv2kRERMMhBOx9dJjNPvgaa9DV2g1p57iUExEREXkCK4EQERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGBMREREREVFFY2BMREREREREFY2BMREREREREVU0IaXkYot5YtsSlmXn5bV0XYVhWHl5rZGKbZQbtlN2bKPcsJ2yK1YbqaoCRREF/zuFlq/rJo/N3LCdsmMb5YbtlB3bKDdeum4yMCYiIiIiIqKKxlRqIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjD1myZIlOOKIIzBjxgycdtppWL9+fal3qWjuuusunHLKKZgzZw4OPvhgfPvb38b777/v2iYSieD666/HvHnzMGfOHFx66aVobW11bbNt2zZceOGFmDVrFg4++GDcfPPNsCyriO+keK699lpMnjwZDz74YPIxtlHMJ598giuuuAIHHXQQZs+ejZNPPhlbtmxJ/p7tBHR3d+O6667DoYceilmzZuG4447D448/nvx9JbbRyy+/jG9+85tYsGABJk+ejGeffdb1+3y1yZo1a3DSSSdh+vTp+MIXvuBqdxocXjd53RwMXjcz43UzO143+xtR101JnvH3v/9dTps2Tf75z3+W77zzjrzmmmvkgQceKFtbW0u9a0Vx3nnnyUcffVS+/fbb8s0335QXXHCBPPzww2UoFEpu8/3vf18uXLhQrly5Ur7++uvytNP+P3vnHdZU0v79b0CkCIKAAqIICicgCAiKropiw7K6K5a1LPayoq69rq6yumvvYMWGvXewKzZURMGKIEoRpEkRkBbIvH/wnvMQkkASgujP+VxXLuXMmTlT72n33PMbGTZsGOdeXFxM+vTpQ0aNGkVev35NgoKCSJs2bcjGjRtrIknVys2bN8kvv/xCOnToQA4cOMA9p3lESFZWFuncuTOZP38+efbsGYmPjydBQUEkKSmJe4fmEyF//fUXcXd3JyEhISQ+Pp4cPHiQWFtbk0ePHhFCfsw8CgoKIuvXrydXrlwhDMOQmzdvirgrI0/i4+OJg4MDWbFiBYmOjiYHDhwgNjY25P79+18tnf9XoP0m7Tflgfab0qH9pmzQflOc/0v9Jp0Yf0MMHDiQLF26lPu7pKSEdOjQgezatasGY1VzpKenE4ZhyJMnTwghhGRnZxNbW1ty+fJl7p3o6GjCMAx5/vw5IaS0cdrY2JC0tDTuncOHD5NWrVqRoqKir5uAaiQtLY107NiRvHnzhnTu3Jnr4GkelbJmzRoydOhQqe40n0r5+eefyfbt20Weubu7k127dtE8IkSsg1dWnqxevZr06dNH5FvTp08nEyZMqM7k/J+E9pui0H5TOrTfrBjab8oG7Tcr5nvvN6kq9TdCUVERXr16hfbt23PPVFRU0K5dO4SHh9dcxGqQnJwcAICuri4A4OXLlxAIBCJ51KxZMzRs2JDLo/DwcFhbW8PQ0JB7p0OHDsjOzsb79++/XuSrmQULFmD48OHg8/kiz2kelXLz5k3Y2dnhzz//xE8//YT+/fvj3LlznDvNp1JatmyJGzduICUlBYQQ3L17F6mpqWjXrh3NIwkoK0/Cw8NFwmDf+VFlvaLQflMc2m9Kh/abFUP7Tdmg/aZ8fG/9Jp0YfyNkZmaipKREpFIAgIGBAdLS0mooVjUHIQQrVqyAi4sLmjVrBgD49OkTNDQ0oK2tLfKugYEBPn36xL1jYGAg4s7mKfvO987BgweRl5eHMWPGiLnRPCrlw4cPOHz4MJo1a4Y9e/ZgwIABWLhwIW7cuAGA5hPLokWLYGZmho4dO8LOzg5TpkzBihUrYGNjQ/NIAsrKE2nvZGVlQSAQVFf0/89B+01RaL8pHdpvVg7tN2WD9pvy8b31m7WUFhKlWiCEgMfj1XQ0vjpLly5FVFQUjhw5IvJcUl4QQip9p6Ln3xPv3r3D1q1bcfz4caioSF7X+tHzCChNb4sWLTB9+nQAgI2NDV6+fIkjR46ga9euAGg+AaWDxYiICOzcuRNGRkZ48OAB/vrrLxgbGwOgeSQJZeVJ+XfKh0FRHNpv0n6zLLTflA3ab8oG7Tfl53vqN+mO8TdCvXr1oKqqKrZalJGRIbYa/n+dZcuW4ebNm/D394eRkRH33NDQEPn5+cjNzRV5v2weGRoaiuUh+3f5labvkWfPniEjIwPu7u5o3rw5mjdvjsTERPz333/o2bMnzaP/j6GhIZo2bSryrFmzZkhKSuLcf/R8KigowIYNGzB//nx06tQJ1tbWGD16NDp16gR/f3+aRxJQVp5Ieic9PR16enpQU1Orruj/n4P2m/+D9pvSof2mbNB+s3Jovyk/31u/SSfG3wi1a9eGra0tgoODuWdCoRAPHjyAo6NjzUXsK0IIwdKlS3H16lX4+/ujcePGIu52dnZQU1MTyaOYmBh8/PiRyyNHR0e8efNGxAx8cHAw6tatKybwv0e6deuG8+fP4+zZs9yvQYMGmDBhArZv307z6P/TsmVLxMXFiTyLjY2FiYkJAFqXAKC4uBgCgQCqqqoiz1VUVCAUCmkeSUBZeeLo6Ij79++LhB0cHPzDyHplQftN2m/KAu03ZYP2m5VD+035+e76TaWa8qJUCfbaidOnT5Po6Gjy999//1DXTixZsoQ4OzuTR48ekdTUVO5X/toJNzc38uDBA/LixQsyePBgiSbfx4wZQyIiIsidO3dI27ZtyYYNG2ogRV+HstY1CaF5RAgh4eHhxMbGhuzYsYPExsaS06dPEzs7O3Ljxg3uHZpPhHh6epJffvmFu3bi6NGjpHnz5uTcuXOEkB8zj3Jzc8nr16/J69evCcMwZP/+/eT169ckNTWVEKKcPImPjyf29vZk1apVJDo6mhw8eJA0b96cXtekALTfpP2mItB+Uxzab8oG7TfF+b/Ub9KJ8TfGgQMHiJubG7G1tSUDBw4kz549q+kofTUYhpH4O3XqFPdOQUEB8fb2Jq1btyYODg5kypQpIubdCSEkISGBjBs3jtjb25M2bdqQlStXkuLi4q+dnK9G+Q6e5lEp165dIz///DOxs7MjvXv3JmfOnBFxp/lESGpqKpk3bx7p0KEDsbe3J7169SIHDx7k3H/EPHr48KFEObR582ZCiPLy5MGDB+TXX38ltra2pGvXruT06dNfLY3/16D9Ju035YX2m5Kh/Wbl0H5TnP9L/SaPEGrxg0KhUCgUCoVCoVAoPy70jDGFQqFQKBQKhUKhUH5o6MSYQqFQKBQKhUKhUCg/NHRiTKFQKBQKhUKhUCiUHxo6MaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhVJjBAYG4vTp0zUdDQqFQqFQvgtov0mhVB90YkyhUGqMy5cv48yZMzUdDQqFQqFQvgtov0mhVB90YkyhUCgUCoVCoVAolB8aHiGE1HQkKBTKj8f8+fPFVr2nTJmCP//8s4ZiRKFQKBTKtwvtNymU6qVWTUeAQqH8mEyaNAkfP35ETk4OlixZAgAwNjau4VhRKBQKhfJtQvtNCqV6oRNjCoVSI5iZmUFPTw+EEDg6OtZ0dCgUCoVC+aah/SaFUr3QM8YUCoVCoVAoFAqFQvmhoRNjCoVCoVAoFAqFQqH80NCJMYVCoVAoFAqFQqFQfmjoxJhCodQYampqKCwsrOloUCgUCoXyXUD7TQql+qATYwqFUmNYWFggKioK169fx4sXL5CSklLTUaJQKBQK5ZuF9psUSvVB7zGmUCg1RkZGBv7++288fvwYnz9/pvcxUigUCoVSAbTfpFCqDzoxplAoFAqFQqFQKBTKDw1VpaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkyhUKqdR48egc/nY/jw4TUdlWolISEBfD4fXbp0qemo1AgfPnzAtGnT0LZtW1hbW4PP5+P69etVDvdHqT+U/5vMnz8ffD4fp0+fVmq4w4cPB5/Px6NHj5Qa7vfMggULYGNjg+joaKWEd/v2bfD5fGzevFkp4UnCx8cHfD4fPj4+1faNHwman5SqUKumI0ARZ/jw4QgJCRF5pqmpCW1tbTRq1Ah2dnbo0aMHWrduLTWM06dPY8GCBSLPeDwetLS0YG5ujs6dO2PkyJGoW7eumN+UlBT4+/vj3r17+PDhAwQCAerVq4f69evD3t4eLi4u6N69O9TU1ET8lZSU4MyZM7h48SLevHmDnJwcaGtrQ19fH5aWlmjdujW6deuGhg0bypwXrGD7888/ZfZDofzIPHr0CCEhIXBxcUGbNm2+2neLioowcuRIJCYmwsDAAI6OjuDxeNDT06vU7759+5CTkyNVJv2IRERE4Pr167CxsUG3bt1qOjqUr8z3Xv5lxyCTJk3CtGnTKnyfz+eLPatduzYMDQ3h4OCA33//vcIxDwC8efMGZ8+eRc+ePWFpaVlpHKOjo9GvXz8IBAKYmpri5s2bYu906tQJDg4O2Lt3L4YMGYIGDRpUGm5ZEhIScObMGZiamqJ///5y+aVQKF8fumP8DWNiYgInJyc4OTnB0tISmpqaePbsGQ4cOABPT0/0798f7969qzCM2rVrc2E4OjpCS0sLr169gq+vL/r164ePHz+KvP/o0SP07t0bu3fvxtu3b6Grqwtra2toa2sjMjISR44cwYwZM5Ceni7iLzc3F56enli4cCEePHgAQggsLS3RsGFDpKWl4erVq/jvv/9w9uxZufLA19cXvr6+cvmhUH5kQkJC4OvrK7a4Vt3cuXMHiYmJsLe3R1BQEI4ePYojR46gVatWlfrdv38/fH19kZ2d/RVi+n0QEREBX19fpey4U74/vvfyL9vXnzt3DoQQmfwxDMONWZo0aYJPnz7h0qVLGD58OHbv3l2h33Xr1kEoFMLLy6vS7xBC8Pfff0MgEFT6rpeXF/Ly8rBlyxaZ0lCWxMRE+Pr64syZM1LfqVevHiwsLFCvXj25w6eIQ/OTUhXojvE3zIABA8R2SnNzc3Ht2jX4+Pjg1atXGDRoEI4cOSJxtRUA6tevjyNHjog8u3PnDmbOnInExEQsWbIEfn5+XNjTp09Hbm4uOnTogMWLF6NJkyacv/z8fNy7dw8nTpwAj8cTCXP16tV4+vQp9PT0sGLFCnTu3Jl7hxCCiIgIXLhwAbq6ulXOFwqF8u0RExMDAHBxcUHt2rVrODYUCqWm+PjxI0JCQqCiogJNTU0kJibi8ePHcHFxqdTvokWLRDRdsrKysGjRIly7dg3r1q1D165dYW5uLuYvNjYWd+/ehZ2dHRiGqfQ7R48exdOnT9G1a1fcuHGjwnc7duwIQ0NDnDt3DnPmzIG2tnal4cuDp6cnPD09lRrmjwzNT0pVoDvG3xna2trw8PDA6dOnwTAMvnz5gmnTpqGkpETmMDp27IjJkycDAO7du4esrCwApWdpMjIyUKdOHfj4+IhMioFSde7u3btj586dMDIy4p4XFxfjwoULAErP93Tp0kVk4szj8dC8eXPMmzcPv//+u6JJp1Ao3zCFhYUAAA0NjRqOCYVCqUnYHeK2bduid+/eACC3thgLu9iuqamJkpISXLt2TeJ7x48fByEEffv2rTTMtLQ0rFu3DtbW1jLZLVBVVUWvXr2Qn5+P8+fPy50GCoXy/UB3jL9T9PT0sGrVKnh4eCAmJgZXrlzhOiBZYM/qCIVCxMfHQ09PDx8+fAAAWFhYQEtLS+aw0tPTkZeXBwCwtbWVIxXS8fHxEVGhLr8jfuPGDTRq1AglJSW4desWbt68iefPnyMlJQWFhYUwNjaGq6srJkyYIDKJZ5k/fz7OnDmDFStWoFWrVti0aRMePnyInJwcmJmZYdCgQfD09ISqqqrE+KWmpmL37t24ffs2kpKSoKqqCoZh8Ntvv8HDw0NsR51Nz5QpU+Dp6YktW7bg5s2bSE1NRceOHbF161YAQFhYGPbu3YunT58iMzMTWlpa0NfXh52dHX755Rd06tRJpvxTRr64urpi8+bNCAoKQmZmJndGaty4cVLz5ezZszhw4ACio6OhoaEBJycnhc+HJyQkoGvXrtzZr8OHD+PYsWOIjY2FhoYG2rRpg2nTpqFZs2Zifrt06YLExETcuHEDHz9+xK5du/D8+XNkZWXB19eXO7OXkpKCHTt24M6dO0hJSYGmpiZsbGwwePDgCtvT7du3sXPnTrx+/Rq1atWCra0tJk6ciEaNGkl8/9GjRxgxYgRcXFxw4MABie+wdTwyMlLMraSkBOfPn8f58+fx+vVrfPnyBfXr14eVlRV69eoFDw8PkTAA8WMIHh4eWLlypdQ0laW4uBjHjx/HuXPnEB0dDYFAgEaNGqF79+4YO3asyDng8m217HcrSi8gbguha9euIu779+8XOydNCBGpC1paWmjXrh1mzZoFU1NTid8pKCjA4cOHERgYiJiYGAgEAjRu3Bi9evXC6NGjUadOHTE/irTF2NhY7N69G8HBwUhNTYWGhgZsbW0xfPhwsbRVBFt/AeDMmTMiaphl8zQtLQ1XrlxBUFAQYmJikJqaCnV1dVhaWuLXX3/F4MGDoaIivv5dtq4FBgbC398fUVFRUFVVhaOjI/788084ODhIjd+DBw9w8OBBhIeH4/Pnz9DT04OLiwv++OMPidpLsrTH4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD5fZPoUy8uXevXvYsWMHXr9+DaFQCDs7O0ydOlXqOdfs7Gz4+Pjg2rVrSE9PR4MGDdCzZ09MmTJFpjhLyi+g4vIvS2xsLDZv3owHDx4gNzcX5ubm8PT0xODBg6V+5+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxMRyCkce7cOQBA37590ahRI5w4cQJXrlzB4sWLFVo409HRgbm5OSIiIpCQkCDxncDAQACQyfDhv//+i9zcXPzzzz/cgl5ldOnSBQcOHEBAQACGDRsmk5+y9mJCQkJE2kbZM81lxwdl+0tWPnp4eOCff/7Btm3bEBAQgJSUFDRo0AADBgzAhAkToKqqisLCQvj5+eHChQtISkqCgYEBfv31V0yePFnMHgyLsuQVy/nz53HixAlERkbiy5cvqFu3LgwNDdG6dWsMHToUVlZWYn6qQ5ZIy08WecdviqaN8n1CJ8bfMc2bN4eDgwOePXuG27dvyzUxlnTeh1UPio2NRVZWlkxGcwCgTp064PF4IIQgPDxcKQKCPV/99OlTAICTk5OIu7q6OoDSAdDkyZOhoqICAwMDNGrUCEVFRUhMTMTBgwdx6dIlHD58WKLqFQDExcVh5cqVyMvLA8Mw0NTUxNu3b7F8+XI8ffoUGzduFBOSoaGhmDRpEj5//gx1dXWYmZkhPz8f4eHhCAsLQ3BwMNasWSNRuGZkZGDAgAFISkqCpaUlmjVrhlq1SpvhzZs3MWXKFJSUlEBbWxuWlpYQCoVITk7GxYsXkZubK/PEuKr58vHjR3h4eCArKwtWVlaoVasWYmNjsX79eiQmJmLp0qViflauXIm9e/cCAIyNjWFgYICHDx/i/v37mDRpkkzxlsayZctw8OBBGBsbo1mzZtxi0N27d7F37144OjpK9BcYGIgNGzZAW1sbZmZm0NTU5NxevHiBcePGISsrC+rq6rCyskJWVhYePnyIhw8f4t69e1i+fLlYmAcOHMC///4LADAwMICJiQlevXqF0aNHY/bs2VVKpyRyc3MxadIkzvKssbExGjVqhJSUFNy5cwe3b9/mJsZOTk5ISkpCUlISTExMYGJiwoUjrazLU1hYCC8vL9y/f5/zp6Wlhbdv32L79u24ePEi/P39uUUAtq1K+m5lKo0GBgZwcnLCy5cvUVRUBDs7OxE1bB0dHTE/c+bMwYULF2BmZgZzc3O8f/8eAQEBCA0Nxblz58TOlaWmpmLs2LHcxM/ExARaWlqIiYmBj48Prly5gv3794v4U6QtXrlyBbNnz0ZRURG0tLRgYWGBrKwsPHjwAA8ePMDEiRMxY8YMmcrAzs4OampqiI2NhYGBgYj2Ttk8PXHiBDZt2gR1dXU0aNAAfD4fmZmZIrJo8+bNEmURAOzZswerVq2CgYEBmjZtivj4eNy9excPHjzApk2bJBp9WrVqFfbs2QOg9CyflZUVEhMTERAQgGvXrmHz5s3o3LmzxO9V1B5nzZqFy5cvAwAaNmwIAwMDZGVlISoqCq9evYKDg4PME+Oq5suxY8ewZMkS6Ovro0mTJoiLi0NISAhGjx6Nffv2iU0aMzIyMGzYMMTExEBFRQVWVlYoLi7Grl278OjRI5iZmckUbxZZy5/l9evX8PLyAiEEFhYWSE1NRVRUFBYvXozPnz9jwoQJYn4OHDiA5cuXQygUQkdHB5aWlkhNTcWtW7cQFBQEb29vDBkyRK54A8CzZ88QExMDdXV1uLu7o06dOmjYsCE+fvyI69evo0+fPnKHCZQe5QIgcdH+w4cPSEpKgp6eXqV5HRQUhMuXL2Pw4MFwdHSU2aJ3ixYtwOPx8Pz5cxQVFcl0XIRhGK4Oa2tri5Rd/fr1ZfouAAgEAowaNQrh4eGwtLSEsbEx4uPjsXHjRiQlJWHhwoUYOXIknj17hmbNmsHExARxcXHYtm0bUlNTJfZjypRXQOlxOvYMeP369dG4cWPk5uYiPj4eUVFRMDU1FRsbVpcsqQhFxm+KpI3yHUMo3xyenp6EYRiyefPmSt9duXIlYRiG9OjRQ+T5qVOnCMMwpHPnzhL97d69mzAMQ6ytrUlGRgYhhJCYmBhibW1NGIYhv/76KwkICODcKmPo0KGEYRji6OhItmzZQqKjo4lQKJTJb0UwDEMYhpHqnp2dTU6dOkXS09NFnn/58oX4+voShmHIqFGjxPzNmzePMAxDbG1tiaenJ/n06RPndu/ePeLo6EgYhiGHDx8W8ZeamkratGlDGIYhGzduJHl5eZzbmzdvSM+ePQnDMOTIkSMi/jZv3kwYhiE2NjZk4MCBJCEhgXPLz88nhBDSp08fwjAMWb9+PSksLBTx/+LFC3L27Fmp+VAd+TJp0iSR8r969SpXP969eyfiLygoiDAMQ5o3b07OnDnDPc/JySF//vknsbW1JQzDEE9PT5nT8OHDBy5MW1tbcv78ebFw2TrO5iFL586dufzesGEDKSoq4twKCgpIXl4e946XlxfJysri3G/evEkcHBwIwzDk6NGjIuG+efOGNG/enDAMQ3bs2EFKSkoIIYQUFhaSpUuXcuks3+4ePnxYafql1XU2nW5ubuTx48cibsnJyWJygq1rssgPSaxatYowDEN++uknEhYWJvKt3377jTAMQwYPHizmryrfZcviw4cPEt3Z/LO1tSXt27cnT548EYkX23bWrVsn4k8oFJJhw4YRhmHIpEmTSFJSEueWkZFBvLy8CMMwZMaMGSL+5G2LkZGRpEWLFsTW1pYcOHCACAQCzi0kJIS0b9+eMAxD7ty5I3OesDJ83rx5Ut95/PgxCQ4OFvkeIYTExsZyMvncuXNi/ti6ZmtrS3bt2iVSj5ctW0YYhiHOzs4kNTVVxN/x48cJwzCkY8eO5Pbt2yJuR44cITY2NsTZ2VlEnhJSeXt8+fIl983Q0FARvwUFBSQgIIC8fv26gtxSbr7Y29uTY8eOcX1YYWEhmTFjhtS6P23aNMIwDOnduzeJi4vjnr948YK0b9+ekwunTp2SOQ2ylD87VrC1tSWLFy8W6Y/27dvHpSU7O1vE37179wifzyfOzs7k/PnzIn311atXScuWLYmtrS2JjIyUOb4sS5YsIQzDkGnTpnHP1q5dSxiGIWPHjpXqj837hw8firm9e/eO2NjYEIZhRPoXljNnzhCGYciYMWMqjNuXL1+Im5sbadu2LcnMzCSE/E+2SBsrlcXd3Z0wDCMmhytCFtkvTXaydcDW1pb07t2bxMbGcm7BwcHE1taW8Pl84uXlRXr37k1iYmI49/v373P1Ljo6WiRcZcur9PR0YmNjQ5o3b06uXbsm4lZcXEyCgoLEyrW6ZAkh0vNTkfGbImmjfN/QM8bfOcbGxgBKV6xl5e7du5zqbvv27bmdEnNzc26FMCIiAjNmzEDbtm3RrVs3zJw5EydOnJBqNdbb2xv6+vrIy8vDpk2b0Lt3b7i4uGDkyJHw8fFBVFRUVZIpFR0dHfTv3x/6+voiz7W0tDB58mQ4OztzakKS4PF4WL9+PQwMDLhn7du359Tfdu3aJbK7vmfPHmRmZmLYsGGYNm2ayColn8/H+vXrwePxuJ3T8qiqqsLHx0dE5ZNVLYuNjQUAjB8/Xmw12s7ODr/++mtl2cFR1XzR1dXF6tWrRXbRunfvzqmp3blzR+T9Xbt2AQAGDx6Mfv36cc+1tbWxevXqKhkrKS4uxpAhQ0TOjrHh1qtXD4mJiZwaXXlcXV0xffp0EVUydXV1BAQEIDExEXp6eli7dq2IUbjOnTtzVk137NghUv579+5FcXEx3NzcMGHCBE4ds3bt2li0aBEsLCwUTqckXr16hStXrkBNTQ27du0S26kyMjJS6lVmubm5nLG+RYsWiezEGxkZYcOGDahVqxbCwsJq5O5UgUCAhQsXimiQGBkZcVfB3L59W+T9oKAghIaGwsbGBhs2bODkJVC6Q7F27VoYGxvj0qVLSEpK4tzkbYu+vr4oLCzE9OnT4enpyWmBAKXHVv755x8AkCoXFKVVq1b46aefRL4HAE2aNOHU5lm1Vkm4urpi7NixIvV44cKFYBgGOTk5OHr0KPeuQCDApk2bwOPxsHnzZnTs2FEkrCFDhmD48OHIycnBiRMnpH5PUntk87tt27ZwdnYW8aOuro7evXvDxsamktz4H1XNl/79++O3337jdo3YfFFTU0NYWBg+f/7Mvfvhwwdup3vFihUiO5Z2dnZYtGiRTJaPq4KFhQWWLFki0h+NHDkSzZs3R0FBgVhbXbduHQghWLZsGfr27SuyO9a9e3dMnz4dAoGgwmMQkigqKsKlS5cAQERes+0lODgYaWlpMoeXnZ2NO3fuYPLkySgpKYGZmZlEzTj2do3KrlLauHEjPn78iLlz58qsEVcWNvzyt3lUN8XFxVi5cqWI5sBPP/2E7t27gxCCmzdvYuXKlSJaQe3ateM0Pu7evSsSnrLlVXx8PEpKSsAwjJiWiaqqKjp16iRyJKY6ZUlFKDJ+kzdtlO8fOjH+zmHVir58+SLRPS0tDUOHDsXQoUMxZMgQuLq6Yty4ccjJyYGxsTG8vb1F3p8wYQIOHTqErl27ckLmw4cPCAgIwKJFi9C5c2ccP35c7DsMw+DixYsYO3Ysd3Y1OzsbDx8+hK+vL/r27YsZM2YgNzdXian/H6GhoVi1ahUmTpwIT09PLs3sgOvNmzcS/bm7u0tUaRo8eDDU1NSQkJDAWdsFgKtXr3LukrCxsYGpqSliY2ORkpIi5t6uXTuRwXlZWPVTdmChDBTNl59//lniuUv23CF7Hh0A8vLy8OTJEwCQaAlSQ0MDAwcOrFI6JBltKxvuvXv3JPpjVYzLww4UBg0aJFE1b9iwYVBTU0NiYiLev38v5k9SOnk8nsxnz2SFNTTTpUsXiWeplc2TJ0+Ql5eHBg0aoEePHmLuDRs2lDrY+hro6uqiV69eYs/ZehkfHy/ynG2vHh4eElUf2fPJQqEQjx8/5p7L0xaLiooQFBQEFRUVDBo0SOI7nTp1gpqaGkJDQ1FcXFxpmPKQl5eHU6dOYcGCBRg7diyGDRuGoUOHYt68eQCkt3FAcrsqW4/Ltqvw8HCkpaXB2tpa6vljtm5IWzSR1h5Zmfjs2TOlTTqqki+S5Dt7JAUQlX93794FIQSOjo6wt7cX8+fu7i733bfyMnDgQIlnplu0aAFAtF0kJSXh1atX0NPTk9jGgcrLURpBQUHcMSxXV1fuuaWlJWxsbFBSUsIZ6pTGiBEjwOfzwefz0bp1a4wfPx7v379Hx44d4e/vL7EdsxsDFd168fLlSxw8eBCtWrWSWg8rgw1fno0IZWBjY8OVZVmaN28uk3vZ+lod8oqVl7GxsRW2K5bqlCUVocj4Td60Ub5/6Bnj7xx2QixtR66oqIg7pwuUDgRtbGzg5uaGUaNGSVw1bdWqFVq1aoWioiK8fPkSL1684M6d5ebm4u+//4aWlpbYWSEDAwPMnTsXc+fORWxsLF68eIFHjx7h5s2bSE9PR2BgILKzsyu9i1AeBAIB5syZU+kAlrW8XZ6mTZtKfK6trQ0jIyNuYty0aVPk5eVxhj+8vb2lnk/LzMwEACQnJ4sZuJL2PQAYPXo0vL29sWjRIuzZswcdOnSAk5MT2rRpI7bzWxlVzZfyFslZ2HiwxtaA0nPaJSUlUFNTk3qO1dLSsvJIS0FNTU1qfNhwyy5elEXaZJJdGJAWLx0dHTRo0ACJiYmIjY1Fs2bNkJ2djU+fPlXoryrplAR7T7m0M9TKhs1HCwsLqQbWrKyscPnyZS4PvyaNGzeW+JzV+ChbLwFwmionTpzgdvXKw07EkpOTuWfytMW4uDgUFhZCTU0NEydOrDD+hYWFyMrKgqGhYYXvyUpkZCT++OMPkd3u8khr44D09iGpXbF5mZycjKFDh0r0xxoyKpuXsnyvZcuWaNmyJcLCwuDu7o42bdqgdevWaNWqFRwdHcV2fiujqvki7ZyqgYEBYmJiROoZm0fS0qaiosKd+60upMlHSe2CNe4nEAik3hLBaslIK0dpsEbCevToITaB/eWXXxAREYEzZ85gzJgxUsNgGAba2toghCAtLQ0JCQlQVVUFn88XsZlQlqKiIgDSdwxLSkqwePFiqKioiG0GyAMbvqwGu5SFNLnHyiJ55GJ1yCsjIyP07t0bgYGB8PDw4GSls7MznJ2dxQyuVacskYai4zd500b5/qET4+8ctuOXNnEqa/lQXmrXrg0nJyc4OTlh5Po355AAAHFKSURBVMiRePPmDcaNG4e0tDT4+PhUaETD3Nwc5ubm6Nu3L/Ly8rBw4UIEBgbi3r17ePr0qZgxLUXZtWsXLl26BENDQ8yePRutWrVCgwYNuA5s7ty5OHfunNRVz7Iq1OUxNDREQkICt/iQk5PDuYWFhVUat4KCArFnFVn7Hjp0KHR0dLBnzx68evUK79+/x/79+1GrVi107doVf/31l9Td5vJUNV+kGbJgdyXKqhez+aOnpydx1wKoOJ8rQ5ZwpWlMSEsHO1CorPwTExO5sMsOLqT5q0o6JcFqWEgyQlUdsGmsaCBUWZ5XJ9Laj7T6wbbZt2/fVhp22cGuPG2RPV4iEAhEFiGlIUkuKEJJSQmmTZuGpKQkdOjQAePHjwfDMKhbty5q1aoFoVAIGxubCnd8KqvHZcuYTWdmZiY3eJSGtIlDRXLFz88PW7duxblz53Dv3j1ut7pevXoYM2YMxo0bJ7Wcy6KMfKmsnpWVf7LKkupEHnnNluOXL18qra/yTAAzMjI4LZJffvlFzL1Pnz5Yu3YtoqKiEBERIVU1vvw9xk+fPsWUKVPg5+cHHR0d/PHHH2J+2AX+siruZTl06BBevXqF8ePHV8lIEht+eQN/1Y20+shO7ipzl1T+ypZXq1atgqWlJU6ePInQ0FCEhoYCKDXOOmTIEEybNo0bf1SnLJFGVcZv8qSN8v1DJ8bfOawKa0VXaygLa2treHl5YenSpYiNjcXnz58rVF1i0dLSwrJly3D58mUIhUI8f/5caRNj9pzY8uXLJVpsltZRslSkEsXuDrIqxWU7n2fPnlXLSmGfPn3Qp08fZGRk4PHjx3j06BECAgJw5coVxMbG4uTJkzJZw6xqvsgDmz9ZWVkQCoUSB6/p6ekKhy9LuJLUviuCLcuK4lVR+aenp0vcvZAWnqQBSlnK73SysJogZTv16oRNI5t2SSia5zUBmx4/Pz+xc2yVIWtbZPPB0NCQs+T9NXjx4gViYmLQsGFDbN26VWxgVtGOKEtGRobExTZJZczmZe/evbFhw4YqxFwyOjo6mDdvHubOnYu3b98iNDQUt2/fxu3bt7Fu3ToAkGhduTzKyBd5kEeWfAuw8XVwcJB4LEpRAgICuLPU0naiWc6ePSvzmXEnJyesXLkS48ePh4+PD37++Wexa/HYjQFp/drr168BlGqOlL36CgAX56SkJLRv3x5A6VlxSfKCDV9eDa5vieqSV7Vr18bkyZMxefJkxMbG4smTJ7h79y6uX7+O3bt3Izc3l7vNorpliSSqMn6TJ22U7x96xvg75tWrV3jx4gUAwM3N7at8s6zKjjwGRbS1tbnOhFV7Ugasakx5gy1A6c7By5cvK/TPqqqWJzc3lztjwqoH6+jocKrRsuxAVQV9fX306NEDixcvxoULF6Cjo4PIyEg8f/5cJv9VzRd5MDMzg6qqKgQCgVT1Wmn5LAsCgUDs7Gj5cGW9ioiFfV9aOebk5HCqj+y77L2FABAdHV1hfMrDrm5LGzxLSx+r0hoeHi7RXRLSVMRkgTUe9v79e5SUlEh8h80zefO8JmDzryrttbK22KRJE6ipqSE9Pb1KC0Dlqawc2TZuZ2cncbdCFlkhrb5KalfsTlt1yz4ejweGYTBs2DDs2LEDf//9NwDIPIlTRr7IA9tmpOWlUCiUetSjIqrSjiuCLcf3798r9bw7O+HU0dGBoaGhxB+7s3vx4kWp8kUSHTt2RLt27SAQCETuTGdhz9JKk8ssWVlZ+PTpk8iPnewKhULumaQxCiGEK0f2e7JQXeWoKNUlr8pibm6OAQMGYOPGjdiyZQuA0juZ2fr2tWRJWZQ1fqssbZTvHzox/k7JysrC/PnzAZR2zO7u7lUOMyMjQ+qOFgurglK3bl1uoltcXFzpDmRcXBwnhOWx3Muu6klT52HdJa3IX7x4sdKV+qtXr0p85/jx4xAIBDA1NRU5F8zm8759+2SKvzJo0KABt0Iu6zm1quaLPNSpU4fTADh8+LCYe2FhIU6ePFmlb1QWbllDL7LAvn/y5EmJu7VHjhyBQCBAo0aNRMq/Q4cOAEpV8yQh7Tl7ZjEhIUGilkJZ679lYevbzZs3ZV5cYCcDiqjsOjs7Q0tLC2lpabhy5YqYe1JSEm7cuAFA/jyvCLa+KvvsHmtc6NixY9w9qFVBUlvU1NSEq6srCCHw9/ev8jdYKitHNs+kWfmVRUZJalfA/+px2TJ2dnaGgYEB3r59K9XYXXXALu7JK/uqki/y4OrqCh6Ph/DwcIkLjteuXVPofHFV2nFFNGnSBHw+Hzk5OTh16pRSwnz37h1evXoFoLRO3b9/X+Lv5s2b0NLSwqdPn+SuQ+x52AsXLogYkwJKd7/V1NTw7t07ifJ85cqViIyMlPjbv38/gNJjZ+wzSfd3v3//Hjk5OWjYsKHM92kDlY9hvjbVJa+kwY4NBAIBp61RU7JE2eM3SWmjfP/QifF3Rm5uLs6ePYv+/fsjKioKWlpa2LRpk0xnryrj/Pnz+OWXX3D06FGxwXt+fj78/f3h5+cHoNQiIPvNvLw8dOnSBatWrcKbN2/EJtchISGYMmUKCCEwMjLiJheywO5Qh4SESHRnr69ZuXKliMXrmzdvwtvbu9JzH4QQzJo1SyS9Dx484Falx44dK7LiO2HCBOjr6+PixYv4559/xM7H5ObmIjAwECtWrJA5jay/6dOn48GDByIr6YQQBAYGIioqCjweT+aV6qrmi7yMGzcOQOkEr6zV0dzcXMybN69KqsC1atXC4cOHERAQwD378uUL5s2bh4yMDJiamkq8wqMi+vTpA1NTU2RlZWHOnDki15Ddvn0b27ZtA1Ba3mXLf/To0ahVqxZu3bqF3bt3QygUAijVgvjvv/+k7gzp6urC0dERRUVFWL58ObcjQQiRqN7HYmNjg169ekEgEGD8+PHc0QmWlJQUsR0Uts2EhYXJvYqtra3NWST+77//8OzZM5FvzZgxAwKBAC1btlTqFRWVtXNF6datG5ydnREXF4fx48eLLS4UFxfj4cOHmDVrFlcmirTFadOmQUNDA35+fvD19RU7f52ZmYkTJ05w1+TJApsnL168kDipZ41ShYWFiSw85efnw9vbW6bzg7dv38a+fftE6vHy5csRFRUFbW1tEeut6urq3HV+M2fOREBAAOePJT4+Hlu3buWsv8rK+fPn4evrK6Y5kZuby/U5tra2MoWljHyRh8aNG3MD7gULFohM2l6/fo1///1X5EoZecIFpJd/VZgzZw5UVFTw33//4dChQ2I7pCkpKfD39+eubqsMVn41b94cDMNIfa9OnTrcpPPs2bNyxblNmzZo2bIliouLuTrBoq6ujtatW6OkpEQu7Rp5YGWvPOMXANxCWnR09Fe3Zi0NZcurBw8ecIsPZSksLOTCMDEx4c7hV6csqQhFxm/ypg0ALl++jC5dunDXW1K+L+gZ42+YU6dOITg4GMD/dmU/fPjACRA7OzusXr1aade48Hg8REVFYcmSJViyZAlMTU2hr6+P3NxcJCUlcSueHTp04IQa6y83Nxd79uzBnj17ULduXZiamkJFRQVJSUlcZ6Cnp4fNmzfLZTShV69eePv2LSZOnAg+n8+duVy/fj3q16+PqVOnIjg4GLdu3YKrqyssLCyQkZGBpKQktG3bFg0aNMD58+elhj927FgcOXIEnTp1gpWVFXJzcxEXFwegdHWxvMXEBg0aYMeOHZg0aRIOHz6MY8eOoWnTptDS0sLnz58RHx8PoVAo95lvoVCIS5cu4dKlS9DQ0ECTJk1Qu3ZtJCcnczsfEydOlFl9tar5Ii9ubm4YMWIE9u/fj9mzZ2PdunUwMDDgVHKnTJmi8FkiIyMjdO7cGTNnzsSaNWu4cPPy8qCpqYk1a9bIfd5bQ0MDGzduxLhx43D9+nXcu3cPlpaWyMrK4lQxBwwYIHatg7W1NebMmYMVK1Zg9erV2LNnD0xMTBAfH4+cnBzMnj0bq1evlvjN2bNnY/To0bhw4QJu3bqFJk2aICUlBenp6Vi6dCmnMlqef//9F+np6QgJCcGwYcNgYmICQ0NDpKSkIC0tDYQQ7t5toLR96urq4smTJ3Bzc0Pjxo1Rq1YtuLq6ynRGc+rUqXj9+jWCg4Px22+/wcLCApqamnj79i23i7527VpZs1omevXqhaCgIHh7e+Pw4cOcyuVff/0l1/215eHxePDx8YGXlxceP36M3r17o1GjRjA0NEReXh5noRUoPY8PKNYWra2tsWnTJsycORM+Pj7YsWMHLCwsoK6ujvT0dHz8+BGEELkWcGxtbWFubo7Y2Fi4ubnBwsICampqsLa2xsKFC2FoaIjRo0fDz88PCxcuhI+PDwwNDfH+/Xvk5+fj33//xcKFCyv8xsyZM7FixQr4+flx9fjz589QVVXF8uXLxa4ZGjRoELcYM3PmTHh7e8PMzAyEECQnJ3NaQfJa/s3IyICPjw98fHxQv359GBsbo7CwEPHx8SgoKICOjk6laWFRRr7Iy5IlSxAZGYmoqCj06NEDVlZWKC4uRnR0NFq0aIHWrVuLLOzJQmXlXxVcXV2xdOlS/PPPP1i6dCnWrl0Lc3NzqKqqIjU1lTtGNH78+ErDEgqFXF9S/n5vSfTr1w/nz5/HjRs3kJOTI5dhwT/++AMTJ07E6dOnMXnyZJFbHwYNGoTg4GBcvHgR7dq1kzlMWWHLT96rB/X19dG2bVs8fPgQ3bp1g6WlJdTV1WFoaPjVzteWR9ny6suXL9i7dy/27t0LPT09mJqaQigU4sOHD8jNzYWampqYJejqkiUVocj4TZG05eXlITExUWnxpnxd6MT4GyYpKYmzOq2hoQEdHR04ODjAzs4O7u7ucHFxUer3hg0bBmtra9y7dw9PnjxBcnIyZ1bf0NAQzZs3R58+fdCjRw8RIaCjo4MrV67g3r17uH//PuLi4pCYmIi8vDxoa2vDyckJHTt2xJAhQ+S25jhhwgQIhUIEBAQgOjqaW9lmB7PNmzfH4cOHsWnTJjx58gTv3r1D48aNMWPGDIwdO1bqZIOlSZMmOHnyJDZt2oQHDx4gJycHlpaWGDRoEIYPHy5xJ97e3h4XL17EwYMHcfPmTcTGxkIgEKBBgwZo06YNOnXqJLdqe506dbBmzRoEBwfj+fPnSE5OxpcvX6Cnp4fOnTtjyJAhcp0jr2q+KMLChQvRvHlzHDhwANHR0cjPz0fbtm3x559/Vtl41N9//41mzZrh2LFjiI6Ohrq6Otzd3TFt2jSFr0iyt7fH+fPnsXPnTty+fRuRkZHQ1NSEi4sLhg4dKnVQMGrUKDRp0gR+fn6IiIhAbGws7OzsMHHiRDRq1EjqxLh169bYs2cPfHx88PLlS8TExMDW1pYz9CKtTLS1tbF3716cOXMG586dQ2RkJNLT01G/fn106tRJ7F5fbW1t7N69G5s3b8bz588RHh4OoVAIU1NTmfJFXV0dfn5+OHbsGM6dO4e3b9+ipKQEjRs3Rvfu3TF27FiZjO7JQ79+/ZCdnY2TJ08iLi6Okztld/IVxcDAAIcOHcLZs2cREBCAiIgIpKSkoF69erCxsYGLiwvc3d05LQpF26KbmxsCAwPh7++Pu3fv4sOHD5yWTMeOHdG5c2d0795d5nirqKhgx44dWL9+PUJDQ/H8+XOxc5mzZ8+GiYkJDh8+jLi4OBQUFKBly5YYO3Ys2rdvX+kEasyYMTA2Noa/vz+3E96hQwdMmTIFLVu2lOhnypQp6NixIw4dOoTHjx8jKioKGhoaMDY2xk8//QR3d3e5DZ316NEDxcXFePDgAWJiYhAVFQVCCBo2bIgOHTpg7NixcqmvVjVf5MXAwADHjh2Dr68vrl27hnfv3sHIyAjjxo3D5MmTFTLMI0v5V4VBgwbB2dkZ/v7+ePjwId6/fw9VVVUYGRnB3d0dXbt2lWnH68GDB0hJSUGtWrXQt2/fSt//6aefYGRkhJSUFFy+fFnqXbqS6Ny5M6ytrfHmzRv4+flh0aJFnFu3bt2gr6+Pq1evYsmSJUrVikpJSUFISAj4fL5Chk7XrVuHdevW4f79+3j16hWKi4tllsfVhTLllbOzM/7++2/cv38fb9++RUxMDDcmcnd3x5gxYyRaA68OWVIZ8o7fFE0b5fuFRyo7VEqh/B9k/vz5OHPmDFasWIH+/fvXdHQoEkhISEDXrl2rdOUYhUIRh8/nA4CYeiCF8j2zZ88erFq1Ct7e3lLvx1WEtWvXws/PD5s2bULPnj2VFi6FQvn2oGeMKRQKhUKhUCjfNZ6enmjUqBF27typtNsvMjIycOjQITg6OtJJMYXyA0BVqSkUCoVCoVAo3zW1a9fGqlWr8ODBAyQlJaFJkyZVDjMxMRFjxoyR6xgEhUL5fqETYwqFQqFQKBTKd0+rVq24WxmUQYsWLdCiRQulhUehUL5tqCo1hUKhUCgUCoVCoVB+aKjxLQqFQqFQKBQKhUKh/NDQHWMKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkzB6dOnwefzMX/+/JqOitK4dOkSBg4cCEdHR/D5fKVaqaSIw+fzwefzazoaHF26dAGfz0dCQkJNR4XynUHrDuVb4fXr1xg/fjxat27NydiIiIgqh/u99fnfW3y/dWh+UqrK8OHDwefz8ejRo5qOitL54a5revToEUaMGAEAqFevHq5fvw5tbW2J77ID/Rs3bqBRo0ZV/vbp06eRmJgIDw8PpYQnKz4+PgCAP//886t9syIiIiJw/fp12NjYoFu3bkoP/+7du5g+fToAoFmzZtDV1UWdOnWU/h15SEhIQNeuXQFIr09xcXEYOXIkkpKS0LJlS+zatUtq3awqaWlp2LJlC+7cuYO0tDTo6uqiffv28PLygrm5ebV8U1k8evQIISEhcHFxQZs2bWo6OpVy/fp1REREoFu3brCxsanp6PzQfG9152tSU/0TRTKfPn3CyJEjkZ2dDWNjYzRr1gw8Hg9aWlqV+v3W+vyKyM7Ohr+/P3R0dDBq1Kiajg6FQvnB+aF3jDMzM7F///6v9r0zZ87A19cXiYmJX+2bAODr6wtfX9+v+s2KiIiIgK+vL65fv14t4R89ehQAsGDBAgQGBuLIkSPYtWtXtXxLWbx//x6enp5ISkqCi4sLdu/eXW2T4vfv36Nv3744cuQIsrKyYGVlBYFAgLNnz8LDwwNPnz6VO0wLCwtYWFhUQ2zFCQkJga+vL0JCQr7K96rK9evX4evrq5SdHkrV+N7qztekpvonimQCAgKQnZ2N7t2749atWzh69CiOHDmCJk2aVOr3W+vzKyI7Oxu+vr4VjsV0dHRgYWGB+vXrf8WY/d+F5ieFIp0fbseYRVVVFSUlJdi7dy88PT1Rt27dmo4SRUnExMQAAFxdXWs4JrLx9u1bjBo1Cp8+fUK7du2wdetWaGpqVsu3hEIhpk2bhszMTHTp0gVr1qyBtrY2ioqK8O+//+LYsWOYOnUqrl27JlccLl++XC3xpVAolB8Rth9r164dVFR+6D0MdO/eHd27d6/paPyfgeYnhSKdH1baGhsbo3Xr1sjOzsbevXtrOjoUJVJQUAAAUFdXr+GYVM6bN28wYsQIfPr0CR07dsT27durbVIMANeuXUNUVBR0dXWxevVqble6du3aWLx4MczNzZGWlobjx49XWxwoFAqFUjGFhYUAAA0NjRqOCYVCofw4/LATYwCYNm0aAMDf3x+ZmZly+SWE4OLFixgxYgRat26NFi1aoFu3bli2bBlSUlJE3n306BH4fD6nvjdixAjOkAafz8fp06dF3i8oKMCePXswcOBAODs7w97eHj///DN8fX3x5csXmePo4+MjYhCp7DelGZcpKirC1q1b0aNHD7Ro0QIdOnTA4sWLpeZPcHAwli1bhn79+qFNmzaws7ND586dsWDBArx//17s/S5dumDBggUASlX3ysZn+PDhMqdNEqzRHFYVsGvXrlLz+O7du5gwYQLatm0LOzs7uLm5YcGCBdwqfXnKGhp48+YNpk2bhvbt28PGxgb79u1TKL6vXr3CyJEjkZGRgS5dumDLli3VPpm/evUqAKBnz57Q0dERcatVqxb69+8PQP4dYGnGt8oaMnr+/DkmTpwIFxcXODg4YODAgbh27Zrc32FVBH19fUXqjzRDIop898GDB5g8eTLat28POzs7dOjQATNnzkRkZKTMcU1ISACfz8eZM2cAlKr2l40vew6Q5fPnz1i/fj169+4Ne3t7ODs7Y8iQITh69ChKSkrEwmflyvDhw1FcXIzt27ejV69esLe3R/v27bFgwQIxWSQLZcssJCSEayfW1tYixx9SUlKwdOlSdOvWDS1atICLiwtGjhyJwMBAsTBv3rwJPp+PcePGiblt3bqVy5P4+HixPLG2tkarVq0k5oE8fE91R9Ewi4qK8Ouvv4LP52PNmjUSw5ozZw74fD5GjRoFQojM/RNbn7t06QIAOHHiBAYNGgQnJyfw+XxkZ2dz30hNTcWKFSvQs2dPODg4wMnJCUOGDMHp06dBCBGLE9tX+fj44PPnz1i2bBnc3Nxgb2+P3r1748iRI9y7nz9/xsqVK9GlSxe0aNECPXr0qFQGv3z5ErNmzUKnTp1gZ2eHNm3aYOLEiQgNDZX4fn5+PrZt24Z+/fqhZcuWsLOzg6urK4YMGYJNmzbh8+fPFX6vPAUFBdi5cycXXsuWLdGvXz/s3LmTW8hlmT9/vki+l5UblRlL+hp9PlCq/rx582b88ssvaNmyJRwdHdG/f3/s27cPAoFA5nyZP38+Z3sjMTFRLL4s0oxFlZWBQqEQe/fuxc8//wwHBwd06tQJq1atQn5+PoBSban9+/ejb9++cHBwQIcOHbB06VLk5uZKjZ+89bgybt++jfHjx+Onn36Cra0t2rRpg969e2PhwoVSjzDJW3dlGatUZnxLkfJVJG2SKCgowMWLFzFr1iz06tWL+36fPn2wYcMGqW1P1jFaSUkJTpw4AU9PT27s3r17d6xYsQIZGRkyx5MlKSkJ3t7e6N69O1q0aAFHR0d06dIF48aNw8GDByX6kSd/161bBz6fj4ULF0qNQ2ZmJuzs7GBjY4PU1FQRN3nTK4+cL8+AAQPA5/MljgFYLl68CD6fjwEDBkh9p6b5YVWpAaB169Zo164dgoODsXv3bsyePVsmf4QQzJ8/H2fPngUAmJqaonHjxnj37h0OHjyIgIAA7N69G7a2tgBKz3M4OTkhKioKubm5YBhG5PyogYEB9//U1FSMHTsWUVFRUFVVhYmJCbS0tBATEwMfHx9cuXIF+/fvR7169SqNp4mJCZycnDih5OTkJOJefhImEAgwduxYPH78GBYWFjAzM0NMTAyOHTuG8PBwnDx5ErVr1xbxM27cOJSUlEBfXx9GRkYASju406dP4/Lly9i1axecnZ259+3s7KCmpobY2FgYGBiInJdiGKbSNFWEnZ0djIyM8PLlSxQVFcHOzo6Lb9k83rRpE7Zu3QoAqF+/Pvh8PmJjY3H69GkEBgbCx8cHHTt2lPiNx48fY8eOHVBVVUXTpk1Rp04d8Hg8ueP6/PlzjB07FtnZ2ejRowfWrVsHNTU1BVItH+Hh4QAgUiZlYZ+/ePECJSUlUFVVVcp3b9++jRUrVkBTUxONGzdGYmIiXrx4gSlTpmD9+vX4+eefZQrHyckJSUlJSEpKgomJCUxMTDg3SUbDFPnuqlWrsGfPHgClBvqsrKyQmJiIgIAAXLt2DZs3b0bnzp0rjau6ujqcnJwQFxeH9PR0mJubQ19fn3MvG/cPHz5g5MiRSExMRK1atWBlZYX8/HyEhYUhLCwM169fx9atW8XaH1Aqj/7880/cvHkTZmZmsLS0RFRUFE6fPo27d+/i0KFDMp1LLE9gYCA2bNgAbW1tmJmZiWgyvHjxAuPGjUNWVhbU1dVhZWWFrKwsPHz4EA8fPsS9e/ewfPly7v3WrVtDRUUFT548QXFxMWrV+l/XU/a876NHj2BmZsb9/fjxYxBC4OzsXOW6+D3VHUXDrF27NtauXYsBAwZgz5496Nixo4iRscDAQJw/fx66urpYuXIleDyeXP0Ti7e3N44cOQIjIyM0bdoUHz584NxCQ0MxadIkfP78Gerq6jAzM0N+fj7Cw8MRFhaG4OBgrFmzRqLczM7Oxm+//YbExERYWVmBx+Ph3bt38Pb2Rk5ODgYOHIhhw4YhISEBlpaWIIQgNjYWK1aswJcvXzB58mSxMA8cOIDly5dDKBRCR0cHlpaWSE1Nxa1btxAUFARvb28MGTKEe7+4uBijR49GWFgYAMDMzAy6urpIT0/HixcvEBYWxk3KZSEzMxOjR49GREQEeDweLC0twePxEBkZiYiICFy+fBl79+6Frq4ugNK6KE1uVGYY8Wv0+e/evcPYsWORlJQENTU1mJqagsfj4c2bN3j16hVu3boFPz8/ibKqPObm5rCzs8PLly9Ru3Zt2NnZVepHGjNnzsSlS5dgYWEBU1NTxMbGYs+ePYiKisKuXbswffp0XLlyBebm5mjUqBFiYmJw6NAhvH//XuLCSlXqsSQOHTqEpUuXAgD09PTA5/NRUFCApKQkvHv3jusvyiJv3S2LomMVRcpXkbRJg10IUFVVhaGhISwsLJCXl4e4uDhs374dly5dwtGjR0X6UlnTnZubi0mTJuHRo0fg8XgwNjaGiYkJ4uLisG/fPly5cgUHDhxA48aNZYprYmIiBg4ciIyMDKipqcHMzAwaGhpISUnBvXv38OTJE3h6elYpf/v27YudO3fi6tWrWLJkicR2dfnyZQgEArRr1w4NGjTgnlc1vRXJeUkMGjQIL1++xKlTp9C7d2+J77AbBewmzDcJ+cF4+PAhYRiGdO7cmRBCSFhYGGEYhjg6OpJPnz6JvMswDGEYhnz48EHk+cGDBwnDMMTBwYHcvHmTe/7582fyxx9/EIZhSNeuXUlBQYGIP09PT8IwDHn48KHEuAmFQjJs2DDCMAyZNGkSSUpK4twyMjKIl5cXYRiGzJgxQ640s+mQxqlTpwjDMMTW1pb06NGDvH37lnN7+/Yt6dChA2EYhhw9elTM75EjR0TiSQghRUVF5OjRo6R58+bE3d2dCIVCid+bN2+eXOmQlc6dO0ssN0IICQoKIgzDEBsbG3L8+HEubgUFBeTvv/8mDMOQ1q1bk7S0NBF/bNnZ2NiQBQsWkC9fvnBu+fn5lcbpw4cPXDmcP3+eODk5EYZhyMyZM0lxcXGFflNTU8mQIUMU+pWlsLCQWFtbE4ZhyNOnTyV+Kzk5mYtnfHx8pelikVbH2LKwtbUlvr6+pKioiBBCSElJCVm5ciVhGIZ07NiRlJSUyPytzZs3E4ZhyObNm6W+o+h3jx8/zrndvn1bxO3IkSPExsaGODs7i8mKipg3bx5hGIacOnVKortQKCQDBw4kDMOQwYMHk+TkZM4tLCyMtG3bljAMQ9atWyfij5Vltra2pGXLluT+/fucW1paGidLfvvtN5njSsj/8s7GxoZs2LCByztCSttJXl4e946XlxfJysri3G/evEkcHBwkyot+/foRhmFIeHg496yoqIg4ODgQV1dXwjAMmT17toif//77jzAMQ/z8/ORKgzS+t7qjaJj79u0jDMOQTp06kc+fPxNCCElKSiKtW7cmDMOQgIAAsW9V1j+xMszGxobY29uTK1eucG6FhYWkpKSEpKamkjZt2hCGYcjGjRtJXl4e986bN29Iz549CcMw5MiRIyJhs+Via2tLfv/9d5KSksK5nTlzhuujx4wZI+Z++vRpwjAMadGiBZdWlnv37hE+n0+cnZ3J+fPnRfqiq1evkpYtWxJbW1sSGRnJPb9y5QqXd9HR0SLh5eTkkBMnTpCEhASJeSSJqVOnEoZhiLu7u0h40dHRxN3dnesHylOZ3KiI6urz8/LyuDj//fffJDMzk3NLSEgggwcPJgzDkLVr18ocV7ZesWOyiuJbfsxQVgZ26NCBPH/+nHOLiIggLi4uhGEYMnnyZDH3169fc+2hfNtStB5LQyAQcN86dOiQSJ8vFArJo0ePyLVr10T8KFJ3CZFtrCItPxUpX0XSVhEJCQkkICCA5OTkiDzPzMwkS5YsIQzDkIULF4r5kyXds2bNIgzDkKFDh4q0xby8PG78J09/uWzZMsIwDBkzZoxIXhFCyMePH8nevXtFninafvr27UsYhiFXr16VGA+2ry8vKxRJryxynhDJ/UVOTg5xcHAg1tbWIuMYluTkZGJtbU3s7OxExg3fGj+0KjUAODo6ws3NDXl5edi5c2el7xNCsHv3bgDApEmTRFb/69ati3Xr1kFPTw8fPnxAQECAXHEJCgpCaGgobGxssGHDBhgbG3Nu9erVw9q1a2FsbIxLly4hKSlJrrBlobi4GKtXr4alpSX3zNLSklN/vH37tpifIUOGiMQTANTU1DB48GD07t0bsbGxePbsmdLjqihsGQ8aNAiDBg3iVhLV1dXh7e2Npk2b4vPnzyKqe2WxtLTEsmXLRK7MkPcM2Pz585Gbm4t+/fphzZo1le6EFRYW4unTpwr9ypKbmwuhUAgAUo3NsbsWAORWF6yIdu3aYfLkydyuuIqKCmbMmAFDQ0MkJydXSc1UWd8VCATYtGkTeDweNm/eLKY1MGTIEAwfPhw5OTk4ceKE0uL48OFDPH/+HGpqatiwYQOneQGUyidWherAgQMS1f4EAgGmTp2Kdu3acc8MDQ2xfv16qKmpITw8XKG7Bl1dXTF9+nQRTQZ1dXUEBAQgMTERenp6WLt2rUid6dy5M7y8vAAAO3bsEFE3dHFxAQCRuDx//hz5+fno06cPTExMxKxFs3+zfr8mNV13qhLmiBEj0KFDByQlJWHJkiUQCoWYO3cuPn/+jF9++UXqar4slJSUYOrUqXB3d+ee1a5dGyoqKtizZw8yMzMxbNgwTJs2TUTLgM/nY/369eDxeFLteqiqqmLt2rUiux79+vWDg4MD8vLyEBoaKubu4eEBe3t7FBYWitXzdevWgRCCZcuWoW/fviI7Zt27d8f06dMhEAhw4MAB7nlsbCwAoEePHmjWrJlIeNra2hg4cCBMTU1lyqu4uDhcuXIFALB69WqR8Jo1a4aVK1cCKLVAXdluTHUgb59/6tQpxMbGolOnTli6dCn09PQ4N1NTU2zatAlaWlo4dOgQd0b6ayAQCPD333+L7OJbW1tj0KBBAEpta5R3t7Gx4dzv3LkjEl5V63F5MjMz8fnzZ+jq6mLYsGEifT6Px4OLi4vY1ZWK1N2yKDJWUaR8FUlbRZiamqJ3795it3Lo6enB29sbxsbGCAgIQHFxsVzpjoqKwoULF2BkZIRt27aJtEVNTU14e3vDzs4O4eHhMqt+s0fvhg0bJpJXQKn2RvnrxxRtP3379gUAXLhwQSwOSUlJePLkCdTV1UVkclXTW5Gcl4a2tjZ69OgBoVCIc+fOibmfPXsWQqEQ3bp1Exk3fGv88BNjAJg6dSp4PB6OHDlS6Zm8d+/eITExEWpqahg2bJiYe506dTjd+bt378oVD/b8p4eHh0R1CS0tLbRr1w5CoRCPHz+WK2xZsLa2hr29vdhzBwcHAJDacUdERGDDhg2YNGkShg8fjqFDh2Lo0KFcHL+Va2q+fPnCCQD2LuuyqKiocGov0sru119/VZp6cVpamlThXpZGjRohMjJSoV9ZygpaaWpuZZ+XP/tWFX777TeJ37K2tgYAsbOlNfHd8PBwpKWlwdramqvz5WE7eGVeas/Wte7du4uo97L06tUL9evXR15ensQOTE1NDQMHDhR7bmRkxFkevXfvntzx8vDwqDC+gwYNknin6rBhw6CmpobExEQROwOtW7cGIKo6zcqINm3aoHXr1khOTubKJDs7G5GRkahTpw53LOVrUtN1pyph8ng8LF++HHp6eggMDMT48ePx6NEjmJqaYvHixTJ9vyKk1Q22Dxs8eLBEdxsbG07NVVJf6+rqKrbQCgDNmzeXyb1sH5WUlIRXr15BT08PPXr0kBgfSfnHhv/gwQNkZWVJ9Ccr9+7dAyEEDg4OEsuwZcuWaNGiBQghCrXRqiJvn8+Wr6S2AZTKnBYtWuDLly94+fKlkmMrHV1dXZEBPAtbL6S5s3Kl/Nnrqtbj8ujr60NdXR3Z2dm4f/9+pe8rWnfLoshYRZHylTdtskAIwe3bt/Hvv/9iwoQJ+P3337lxZW5uLqdaLQlp6S5rX0XSpExFRYXb6JJVRrP99fXr12Uayynafvr06QMej4egoCCxxfGLFy+CEAI3NzeRxQRlpFeanK8IdixS3q5P2WfftBo1fvAzxiy2trbo1q0brl27hh07dlQ4cGBXk42MjKTeM2tlZSXyrqxERUUBKD3sLs340cePHwEAycnJcoUtC2XP9pWFPWMmyfDX8uXL4e/vX2G4VR1cKIv4+HgIhULUqlVL6p27lZVd+R0ERVi2bBn++ecf3L9/H1OnToWPj89XOV9c9nxZUVGRxHfKPlemNVRpZ1zZupWXl6e0byn6Xbb9JScnY+jQoRL9sYsLymx/bF2TVrdUVVVhYWGBtLQ0xMbGiu0cGhsbS5VFbJjSjMpVhLT4sPEtu8tUFh0dHTRo0ACJiYmIjY3lwmHPGT99+pQ7ZxwSEgJVVVU4OzsjNTUV58+f584ZP378GEKhEE5OTkpbjJKHmq47VQ3TyMgIS5cuxdSpU3Hv3j2oqKhg1apVYkb35KVevXoSz/fl5eVxEwxvb2+p5xlZo07Jycki2hEApJ51Y78nzV1SmbALgwKBAL///rtEf6xGQ9n86969Oxo3bozIyEi4ubmhXbt2aNWqFVq3bg07Ozu5bEpU1raB0j7nxYsXco8XlIG8fT5bJ7du3cppzpWHTYcihv8URdF6w7qXTacy6nF5VFVVMWLECPj5+WHMmDGwtbVFu3bt4OTkBBcXFzH5rWjdLYsiYxVFylfetFVGbm4uvLy8Kr1rXtq4Ulq62bTdunULL168kPhOeno6ANlltKenJ86ePYvTp0/jzp07cHV1hbOzM9q0aSOxbSnafkxMTNCqVSs8fvwYV69eFZlYsrvIv/zyi8RvKZpeaXK+Mlq3bg1zc3PExMQgLCwMLVu2BAA8ffoUsbGxMDIyQvv27eUO92tCJ8b/n6lTp+LGjRs4fvw4xo0bh4YNG0p8jxWghoaGUsOqaCJZETk5OQBK77WtjOpQU5K0+wNAasdw/vx5+Pv7Q1NTE7Nnz0b79u1hbGwMDQ0N8Hg8zsiVLCtpXwO2POrVqydVHaSyslPGVUouLi7w9fWFl5cXbt26hTlz5mDdunXVPvjX1taGiooKhEKhVMuCZdWnlanqIi3f2HIgClj4VPZ32TzJzMys1Eq9MtsfO5ivSKawbpLqpSTjSLL4qwxpecfGt7LvJiYminxXV1cXDMNwRkZsbW0RFhaG5s2bQ1tbmzMSFRISgkGDBnG7yTWhRg3UfN1RRpiOjo7Q1NREfn4+LCwspBrdkwdp/QTbfwHgDFdVhCSNlMr6oMrcJZVJWU0haZTNP01NTRw+fBibN2/G5cuXcePGDdy4cQNA6QB18uTJnApuZcjSthUdLygDeft8toxfvXpVadjK1DiqjKrWm7Ioox5LYubMmTA2NsahQ4fw6tUrLg/V1dXRt29fzJs3jzvipGjdLYsiYxVFy1eetFXGypUrERISAnNzc8yYMQOOjo7Q19fntNl+//13hIaGSh1XSks3m7b4+PhKNdRkldHW1tY4fPgwfH19ERwcjDNnznDGpezt7TF//nwRmVuV9tO3b188fvwYFy9e5CbG0dHRiIyMhK6urtiCeVXTK63NyMKAAQOwbt06nDlzhpsYs/nSr1+/b/5edjox/v8wDINevXohICAAW7duxb///ivxvTp16gAAPn36JDUsdhWGfVdW2Iro5+cn1SrytwR7hmDu3LkS1cqVeUZVGbDlkZmZCaFQKLFxKlp28uLq6oqNGzdi2rRpuHTpEtTV1TkrseVJS0vD1KlTFfpO2bPStWvXRsOGDZGQkID4+HhOYJWFVZ1TU1OTujj0fxW2/fXu3RsbNmz46t+tSKawbpLqZUVXTFTkT1HY+LJtRZ7vtm7dGm/evMGjR48gFAqRl5fHTXzNzMxgbGzMTYhr8nyxvFRH3alqmOT/356Qn58PFRUVvHv3Dn5+fvjjjz+UEr/ylB1IPXv2rMbv32Xj4+DgIPe97A0aNMC///6Lf/75B69fv8aTJ09w/fp1PH78GIsWLYKWlpZMlvRladtfq89RBlpaWsjOzkZgYKBStKe+RaqrHrNHtTw9PZGUlITQ0FAEBwfj8uXLOHnyJFJSUrBr1y6ROChSd6uCouUrT9oqori4mLPNs3XrVolxUHRcyeapt7e3VA0cRbC3t8fOnTs5i+UhISEIDAzE8+fPMW7cOJw7d47bPa5K++nZsyeWLVuGhw8f4tOnTzA0NOR2i3v06CF2PK660isLHh4e2LRpEwIDA/HXX38BAHeFkyLq2V+bb3va/pX5888/oaqqijNnzkhdYWGvS0hJSZF6/x2741vZ1QrlYVUTZdkx/hZg1Y2k7UJIM7qlyPVGysDMzAwqKiooLi6WqlqqaNkpQrdu3TjjW2fPnsWSJUskvqcs41vA/86OPXnyROK32Od2dnY1or4qC9VVf1g1emW3v8riy9a16Ohoie4lJSVcfZVUL5OSkqTuNrFnfJVZn9mwpOVTTk4Od5di+e+W3RWWtCPcunVr7nzdmzdvoKWlVaUrXMrzPdWdqobp7++P4OBgmJqacteX+Pj4yLRboQg6OjqcSum30Iex+ff+/XuFtZZUVVXRokULjBo1CgcPHsTYsWMBQObJSmVtG/i6fU5VqY4xSk2NB6TxNeqxiYkJ+vbtixUrVuD48ePg8Xi4e/cuZ1RVGXVXEZRRvpWlrSIyMjKQl5cHPT09iRPH7OxshY4FAdU/vtbU1MRPP/2EadOmISAgAC1btkReXp6IwayqxEFXVxeurq4oKSnhJpkXL14EUHoGuTw1OZ+oX78+OnbsiJycHFy7dg1Xr15Fbm4unJycpB5j/JagE+MyWFhY4JdffkFxcTG2bNki8Z1mzZrB1NQUAoEAhw8fFnPPy8vDqVOnAJTuCpaFXXmUpnrDGlk4duwYdym9Mqjsu1UNV9JqeGhoqFTjG+xZ16+pagWUrsizd+nt379fzJ0QgkOHDgEQL7vqonfv3vjvv//A4/Fw7NgxrFixQuwdZRnfAsAZILl8+bKIyhhQulrLGkfo2bNnNaRWOVRX/XF2doaBgQHevn2rVEM4lcWXrWvXr1+XOHi4fPky0tLSoKWlJfEuSIFAgJMnT4o9T01N5QxwKLM+s2GdPHlS4tnwI0eOQCAQoFGjRmjatKmIW6tWrcDj8fD06VMEBwdDVVUVrVq14tzZifPWrVtRUlICJycnkTuPq8r3VHeqEmZUVBTWrVsHFRUVrF69Gh07dsSECRMgEAgwZ84cielXRj/ByhdJ98J+bZo0aQI+n4+cnByuT64qbPtjF34qw9XVFTweD8+fP5e4UBweHo4XL16Ax+OhQ4cOSokjUH19PjtG2b9/P3fDQVWprrhWha9Zj62srLhz/2y9qo66KwvKLl9JaasIti7k5uZKHAMfPHhQ4YUCNm0XLlyoUNtJGdSqVYszalc23VXN37LWqZ8+fYqEhAQYGxtzhi3L8jXTKwn2uElZ9fJv3egWC50Yl4O9nkOSWXSgdHWTvcpg27ZtCAoK4txycnIwZ84cZGVloXHjxmKqVqwBCGkWpbt16wZnZ2fExcVh/PjxePfunYh7cXExHj58iFmzZkk1niQJ9ruVGTOQF3ZAu2HDBpHJ8dOnTzF9+nQRY0+S4vPixQupCwAJCQng8/ng8/lKtQA8YcIEAKUGzk6ePMmdSSssLIS3tzfevXsHXV3dr6p64uHhwe0W79u3r1rVeN3d3WFlZYXPnz9j7ty5nNZDUVERli5ditjYWNSvX1+q1cRvAbb+hIWFKXU1XV1dHTNmzABQemYqICBArPOKj4/H1q1buQmnPPENDQ2VeJa6bdu2cHBwgEAgwIwZM0SMbjx//hzLly8HAAwfPlyiIRM1NTX4+PjgwYMH3LP09HTMmjULAoEA9vb2SlVH7tOnD0xNTZGVlYU5c+aInFe/ffs2tm3bBqC0rZXfDapXrx6srKzw5csXPHz4EDY2NiJpYuPJnumU1OEDpdYtWfkgD99T3VE0zKKiIsyZMwdFRUUYN24cJ6enTJmCFi1a4N27d1izZo3Y9yrrn2RhwoQJ0NfXx8WLF/HPP/+InY3Ozc1FYGCgxAXA6mDOnDlQUVHBf//9h0OHDon1mykpKfD39xc5crJ3717s3btXzHhURkYGt6Aqq5V0MzMzbpFx3rx5IlbaY2JiMH/+fADAzz//LNVAlCJUV58/ePBgmJub48mTJ5g+fbrYQl5RURGCgoKwYMECmcPU19dHnTp1kJ6eLjbmqSmUXY+jo6OxaNEihIeHi/QBJSUl2LdvH7Kzs6GhoSGyS6pI3a0qipSvImmTRt26dcEwDIqLi/Hff/9xaSaE4MSJE9iyZYvUcWVlNG/eHH379kV2djZGjRqF58+fi7gTQvDs2TMsWbJE5qvTFi9ejIsXL4ppbL158waXLl0CABGNp6q2ny5duqBOnTp4/vw518/+/PPPEo8FVkd65aFTp06oX78+Hjx4gIcPH0JTUxO9evVS+neqA3rGuByNGzdG//79cezYManvDB06FM+ePcPZs2fxxx9/oFGjRtDT08O7d++Qn58PPT09bNq0SawB9+7dG4cOHYKfnx+uXbuG+vXrg8fjYfz48ejYsSN4PB58fHzg5eWFx48fo3fv3mjUqBEMDQ058/TsIXl2sCwLvXr1wtu3bzFx4kTw+XxuILp+/XrUr19fgVwqZdy4cQgICMCLFy/QpUsXWFhYID8/H3FxcbCyskLfvn2xZ88eMX+2trYwNzdHbGws3NzcYGFhATU1NVhbW3N3tlYXnTp1gpeXF7Zt24aFCxdi06ZNMDIyQmxsLHJycqChoYG1a9dWaCylOhg6dCgKCwuxYsUKbN++HRoaGtx9sMpERUUFmzZtwrBhw3Dz5k107NgR5ubmSExMRFZWFjQ1NbFx48YqGV6objp06ABdXV08efIEbm5uaNy4MWrVqgVXV1du4UNRBg0ahJSUFPj6+mLmzJnw9vaGmZkZCCFITk7mVl69vb1lDrN79+7YsGEDAgICEB4eDhMTE6ioqMDDwwP9+/cHj8fDunXrMHLkSISFhaFr166wsrJCQUEBN5Du0KEDpkyZIjF8R0dH6OjoYNSoUWjSpAm0tbXx9u1bFBUVwcDAAKtXr1aquqKGhgY2btyIcePG4fr167h37x4sLS2RlZXFHa8YMGCA1KtOXFxcEBUVBUKI2IS9SZMmMDY25qxkKvt88fdWdxQJc8OGDXjz5g2aN2+OP//8k3teq1YtrF27Fh4eHjh06BDc3NxENAkq659koUGDBtixYwcmTZqEw4cP49ixY2jatCm0tLTw+fNn7mYAaddPKRtXV1csXboU//zzD5YuXYq1a9fC3NwcqqqqSE1N5Sa/48eP5/x8/PgR+/fvx8qVK9GwYUOR/lcgEMDIyAjTp0+XOQ5LlixBbGwsIiIi8PPPP3MqjtHR0RAKhbC1tVXKFVplqa4+X1NTEzt37sSECRNw5coVXL16FU2aNIGenh5ycnIQHx8PgUAgV//J4/HQs2dPnDp1Ch4eHrCysuL6H2l39FY3yq7HAoEAJ06cwIkTJ6CtrQ0zMzPweDyu3+XxePjrr79EFgkVqbtVRZHyVSRtFTFr1ix4eXnhxIkTuHr1Kho3bozk5GR8+vQJHh4eSExMVHjBZ9myZcjJyUFQUBAGDRoEIyMjGBsbo7CwEPHx8ZwGlKTrPCXx7NkzHDt2DKqqqjAzM0PdunWRmZnJHcV0cXFBv379uPer2n40NDTg7u6OM2fOcHdvl7dGXZ3plQdVVVV4eHhg586dAEp3sOW1UF5T0ImxBLy8vHDmzBmpu7I8Hg8rV66Eq6srjh07hoiICKSkpMDIyAhubm6YMGGCRPP9rVq1wrp16+Dv74/o6GjOLHvZw+gGBgY4dOgQzp49i4CAAC7sevXqwcbGBi4uLnB3d5dr1WzChAkQCoUICAhAdHQ0l66qWtY1MTHBsWPHsH79ejx8+BDv37+HiYkJxo0bBy8vL+zdu1eiPxUVFezYsQPr169HaGgonj9/jpKSEpF32B1odXV1pRv5mD59OpycnHDgwAE8f/4cb968gYGBAbp164YJEyaIqX9+LUaNGoX8/Hxs3LgRGzduhKamptgF8cqgWbNmOH/+PLZu3Yrbt28jKioKenp66Nu3LyZPnvzNnwHR1tbG7t27sXnzZjx//hzh4eEQCoUwNTVVSvhTpkxBx44dcejQITx+/BhRUVHQ0NCAsbExfvrpJ7i7u8tlHM/MzAzbt2/Hjh078Pr1a3z8+FFsUti4cWOcPn0au3fvxrVr1xAdHY1atWrBwcEBHh4eGDRokFSVYnZBzc/PD+fOncPbt2+ho6ODjh07Yvr06RLvfa0q9vb2OH/+PHbu3Inbt28jMjISmpqacHFxwdChQ9G7d2+pflu3bo2DBw8C+J/qdHn3CxcuQFNTEy1atJAYBisf2HtKZeV7qzvyhvno0SPs27cP6urqWLNmjZhBFnNzc8yfPx+LFy/GggULcOHCBdSrVw+AbP2TLNjb2+PixYs4ePAgbt68idjYWAgEAjRo0ABt2rRBp06dJN4pW10MGjQIzs7O8Pf35/opVVVVGBkZwd3dHV27dkWXLl2494cMGQI9PT08fPgQ8fHxiIiI4K74c3Nzw5gxY7g8k4V69erhyJEj2L9/PwIDA7n7VxmGwc8//4wRI0Yo3VBZdfX5QOni1dmzZ3Hs2DFcvnwZ7969Q2JiIurXrw8HBwe0a9dO7qM4CxcuRJ06dXDjxg1ERkZCIBBUOZ5VRZn12NzcHP/++y+Cg4Px+vVrxMfHo7CwEPr6+ujVqxdGjBgh8ZiMvHVXGchbvoqmTRpubm7YvXs3tmzZglevXuH9+/ewsLDA5MmTMXTo0CpN4jQ1NbF9+3ZcuXIFZ86cwYsXL/D69Wvo6urCwsICTk5O6NGjh8xjoAULFuDWrVt4/PgxkpOT8eHDB2hqasLJyQl9+vTBb7/9JnYVZ1XbT9++fTnVZEtLS1hbW3+19MpL//79uYnx92B0i4VHquueFAqlCuzevRurV6/GsGHDpBqlolB+ZB49eoQRI0bAxcWlxnZWaoo//vgDQUFB2Lhx43ejnkWhUCgUyo/C48eP4enpCVNTU9y4ceObM7QnDXrGmPJN8vTpU9SqVQtjxoyp6ahQKJRvCEIIwsPDYW5uzhkYoVAoFAqF8u3AGgUdMGDAdzMpBujEmPKNEhYWhl69einVIAmFQvn+effuHbKysjBu3DiJRkcoFAqFQqHUHBEREQgICEDt2rU5C9XfC/SMMeWbJDg4uKajQKFQvkEsLS0lXkVGoVAoFAql5pgxYwYSExPx+vVrCAQCjB07Fg0aNKjpaMkFnRhTKBQKhUKhUCgUCkVhnj17ho8fP6JBgwb49ddfMXXq1JqOktxQ41sUCoVCoVAoFAqFQvmhoQe0KBQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxpUbw8fEBn8+Hj4+PUsJLSEgAn89Hly5dlBLet8D/xTRRJKPs9kChKIv58+eDz+fj9OnTNR2Vb4IPHz5g2rRpaNu2LaytrcHn83H9+vUqh/vo0SPw+XwMHz5cCbGkUCiU75/hw4eDz+fj0aNHX+2b/2cnxtevX4ePjw8iIiKkvrNv3z74+PggOzv7K8bs2yEhIQE+Pj50wKMgstSxijh9+jR8fHyQkJCg5JhRqovTp09Xulhx48YN2NnZgc/nY9myZaD2DSnfKhEREfDx8VHKxO5HoKioCCNHjsTly5ehoqICR0dHODk5QU9Pr1K/P/p4QxrZ2dnw8fHBvn37ajoqFEqN8y22h0ePHsHHx+erTk5rkv/TE2NfX98KJy379++Hr6/vD9tRJSYmwtfXF2fOnKnpqHyXyFLHKuLMmTPw9fVFYmKikmNGqSmuXr2KadOmQSAQYMyYMfj777/B4/Eq9VevXj1YWFigXr16XyGWFEopERER8PX1rXBiXL9+fVhYWEBHR+crxuzb5M6dO0hMTIS9vT2CgoJw9OhRHDlyBK1atarU748+3pBGdnY2fH19sX///pqOCoVS43yL7SEkJAS+vr4ICQmp6ah8Feg9xhQKhaIEAgMDMWfOHBQXF2PixImYMWOGzH49PT3h6elZjbGjUBRj1qxZmDVrVk1H45sgJiYGAODi4oLatWvXcGwoFAqFomzoxJhCoVCqyLlz57BgwQKUlJTgzz//xJQpU2o6ShQKRckUFhYCADQ0NGo4JhQKhUKpDr75iXFBQQGuX7+OW7du4fXr10hOTgYhBI0aNULXrl0xZswY6Orqcu8nJCSga9eu3N8LFizAggULuL+nTJkCU1NTkWdl3wdKVZ7atGnD/Z2dnY19+/bh+vXr+PDhAwghaNq0KX755Rf8/vvvUFNTE/F/+vRpLFiwAB4eHli6dCl27dqFc+fO4ePHj9DV1UWXLl0wY8YMMbXJsv5Wrlwplhds2kxNTXHz5k0Rt2fPnuHq1at4+PAhkpOT8fnzZ9SrVw9OTk4YO3Ys7O3tRd4fPnw4pxYREhICPp/PuUkK/+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxUNbLCwkLs3LkT58+fR3JyMurVqwc3NzdMnz5d4vvK5PDhwzh27BhiY2OhoaGBNm3aYNq0aWjWrJnYu2zaIyMjJYbF5hVbL2SpY3/++afUuD169AgjRozg/i77fwBYsWIF+vfvL+YvICAA+/btQ3R0NFRVVeHs7IwZM2bA2tpa4nc+f/6M3bt34/r160hISICamhqsrKzQr18/DBo0CKqqqmJ+wsLCsHfvXjx9+hSZmZnQ0tKCvr4+7Ozs8Msvv6BTp05ifmJjY7F7924EBwcjNTUVGhoasLW1xfDhw8XaVlUJDg7GjRs38OTJEyQlJeHLly+oX78+2rZti/Hjx6Np06YS/Z0/fx4nTpxAZGQkvnz5grp168LQ0BCtW7fG0KFDYWVlpXCcTp06hUWLFkEoFGLWrFmYMGGC3GH4+PjA19dXrO4oKktYcnJycODAAVy/fh1xcXEoLi6GsbExHBwcMHDgQLi4uHDvdunSBYmJibhx4wY+fvyIXbt24fnz58jKyoKvry+6desGoFQmHz58GIGBgYiJiYFAIEDjxo3Rq1cvjB49GnXq1BGLx9cstwcPHuDgwYMIDw/H58+foaenBxcXF/zxxx8ico4lKysLfn5+uHXrFnfeX19fH40bN0aHDh0wevRopewOlpUj2tra8PX1xdOnT1FQUABLS0sMHz4c/fr1k+r/7t27OHDgAJ4/f47c3FwYGhrip59+woQJE2BhYVHh93R1dbFt2zaEhoYiIyMD8+bNw/79+7ljHGfOnBE5UuPi4oIDBw4AKDW+debMGalyqSrxMjIywubNm/HgwQPk5ubC3Nwcnp6eGDx4sJi/4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD0fDhg0rLYey4R0/fhznzp1DdHQ0BAIBGjVqhO7du2Ps2LGoW7cu9y7bPll8fX25v8vmlSTYNsxS2XgDAAghIn2YlpYW2rVrh1mzZsHU1FTidxRpl5UhT5hPnz6Fp6cnVFRUcOLECdjY2IiE9enTJ/Tt2xcZGRlYtWoV+vXrx9UtoPRoV/n2yfbJZeWjp6cntmzZgps3byI1NRUdO3bE1q1bOT/ytv+yci8lJQVbt27F8+fPQQiBg4MDZs+ezaUlLCwM27Ztw7Nnz1BYWAh7e3vMmTMHLVq0kJh/JSUlOH36NM6dO4fIyEgUFBTA2NgYXbp0wR9//AF9fX0xP9HR0di5cyceP36MtLQ01K5dG/r6+rC2tkaPHj3Qt29fWYoOgGJytzrzuiLS0tJw5coVBAUFISYmBqmpqVBXV4elpSV+/fVXDB48GCoqkk9/lpSU4Pz58zh//jxev37NpdPKygq9evWCh4eHmJ+IiAj4+/sjJCQEaWlp0NLSgqmpKdzc3DBkyBA0aNBA5P2vMQ+QtT1UJpOlzSVKSkpw69Yt3Lx5E8+fP0dKSgoKCwthbGwMV1dXTJgwAUZGRiJhlY1DWbkHQOJc5fLlyzhx4gRevXrF9Qeurq74448/0KhRI7G4AkBKSgo2btyIO3fuICcnB6ampujXrx/Gjh0r8f3q5pufGL98+RKzZs2CqqoqDA0NYWFhgby8PMTFxWH79u24dOkSjh49ygkYdXV1ODk5IS4uDunp6TA3NxcRPiYmJjAwMICTkxNevnyJoqIi2NnZiQx8yp6levfuHcaOHYukpCSoqanB1NQUPB4Pb968watXr3Dr1i34+flJHDgJBAKMHTsWjx8/hoWFBczMzBATE4Njx44hPDwcJ0+eVJo61uzZsxEfHw89PT3Ur18fDRo0wMePH3H58mVcv34d69evR48ePbj3GYZBVlYWoqKioK2tDYZhOLf69euLhH3gwAEsX74cQqEQOjo6sLS0RGpqKm7duoWgoCB4e3tjyJAhIn4KCgowZswYPHnyBADQrFkz1KpVCydOnMC9e/eq1dLysmXLcPDgQRgbG6NZs2aIiYnBlStXcPfuXezduxeOjo5VCl+WOlYROjo6cHJyQlRUFHJzc8EwDLS1tTl3AwMDMT8bNmzA9u3bYWxsDHNzc8TExCAoKAihoaE4efKk2AD0w4cPGDlyJBITE1GrVi1YWVkhPz8fYWFhCAsLw/Xr17F161aR+nfz5k1MmTIFJSUl0NbWhqWlJYRCIZKTk3Hx4kXk5uaKTYyvXLmC2bNno6ioCFpaWrCwsEBWVhYePHiABw8eyK1SXBnjxo1DSUkJ9PX1OQGemJiI06dP4/Lly9i1axecnZ1F/KxevRq7d+8GUFq3GzdujNzcXMTHxyMqKgqmpqYKT4yPHj0Kb29vEEKwYMECjBo1qkrpk4YisiQ6Ohrjx4/Hx48fwePxYG5uDi0tLSQkJODcuXNISkqSOKAPDAzEhg0boK2tDTMzM2hqanJuqampGDt2LKKioqCqqgoTExNoaWkhJiYGPj4+uHLlCvbv3y82Uf9a5bZq1Srs2bMHQOm5bSsrKyQmJiIgIADXrl3D5s2b0blzZ+793Nxc/Pbbb4iLi4OKigqaNGmCOnXqIDU1FaGhoQgJCcGgQYMkDmAV5enTp9i2bRtUVVXRtGlTfPr0CS9fvsS8efMQGRmJefPmifnZtGkTNyCtX78++Hw+YmNjcfr0aQQGBsLHxwcdO3aU+L3Hjx9jx44d3Pfq1KkDHo8HOzs7qKmpITY2FgYGBmjSpAnnp2x/UBFVidfr16/h5eUFQggsLCyQmpqKqKgoLF68GJ8/fxZbYJo1axYuX74MAGjYsCEMDAy4PuzVq1dwcHCQeWJcWFgILy8v3L9/HwC4tvH27Vts374dFy9ehL+/PzeQMzExgZOTE5KSkpCUlAQTExNOzleWV/KMN1jmzJmDCxcuwMzMDObm5nj//j0CAgIQGhqKc+fOibUvRdtlRcgbppOTEyZMmIBt27Zh9uzZOHXqlMjO+oIFC5CRkYGePXtyC0Dm5uaws7PDy5cvUbt2bdjZ2VUYp4yMDAwYMABJSUmwtLTkxhUs8rb/sty8eROrVq2Cjo4OGjdujLi4ONy7dw/Pnj3DsWPHEB0djVmzZqFOnTowNTVFbGwst8h98uRJsUX33NxcTJo0CY8ePQKPx4OxsTFMTEwQFxeHffv24cqVKzhw4AAaN27M+Xnx4gWGDx+O/Px8aGpqwsLCAqqqqkhKSsK1a9cQGxsr18RYEbn7NfJaEidOnMCmTZugrq6OBg0agM/nIzMzE+Hh4QgLC0NwcDA2b94sZrOjbD4DgLGxMRo1aoSUlBTcuXMHt2/fFpsY+/v7Y+XKlRAKhdDS0oKVlRW+fPmCt2/f4tWrV2jUqJHIhPNrzQPkbQ/ykpaWhsmTJ0NFRQUGBgZo1KgRioqKkJiYiIMHD+LSpUs4fPgwzM3NOT/S5B4bX5bi4mLMnTsXAQEBAMAtTMTFxeH48eO4fPkydu/eLbZJFxcXh2HDhuHTp09QU1MDwzDIzs7G+vXr8ezZs5oxXkq+cRISEkhAQADJyckReZ6ZmUmWLFlCGIYhCxcuFPM3b948wjAMOXXqlNSwO3fuTBiGIR8+fJDonpeXR9zd3QnDMOTvv/8mmZmZIvEaPHgwYRiGrF27VsTfqVOnCMMwxNbWlvTo0YO8ffuWc3v79i3p0KEDYRiGHD16VKK/efPmSYzPhw8fCMMwpHPnzmJuZ86cIbGxsSLPSkpKyNWrV4mjoyNp1aoVyc3NFXF/+PAhYRiGeHp6SvweIYTcu3eP8Pl84uzsTM6fP0+EQiHndvXqVdKyZUtia2tLIiMjRfytXr2aMAxD2rdvT16+fMk9j42NJb169SK2traEYRiyefNmqd+WBzZvmjdvTmxtbcn58+c5t5ycHPLnn39yeZefny/il2EYwjCM1LA9PT0JwzDk4cOHIs9lqWMVIS3c8mmytbUljo6O5Pr165xbdnY253/mzJki/oRCIRk4cCBhGIYMHjyYJCcnc25hYWGkbdu2hGEYsm7dOhF/ffr0IQzDkPXr15PCwkIRtxcvXpCzZ8+KPIuMjCQtWrQgtra25MCBA0QgEHBuISEhpH379oRhGHLnzh35MqYCjhw5QpKSkkSeFRUVkaNHj5LmzZsTd3d3kTqanp5ObGxsSPPmzcm1a9dE/BUXF5OgoCCp+S8Jto127tyZHDhwgPD5fMLn88nBgwerlK7NmzdLbA+KypLc3FzSpUsXwjAMGTFiBImPjxdxf/XqFTl06JDIM1Ye2tjYkA0bNpCioiLOraCggAiFQjJs2DDCMAyZNGmSSDlkZGQQLy8vwjAMmTFjhlj6vka5HT9+nDAMQzp27Ehu374t9n0bGxvi7OxMPn36xD3fs2cPYRiG/PLLL2LxS09PJ/7+/mJyU1HY9mpra0umTZsm0qedPXuWNG/enDAMIxb3oKAgrlyOHz/O5VNBQQH5+++/CcMwpHXr1iQtLU3i92xsbMiCBQvIly9fODdWBlbW5xAiXc5VNV62trZk8eLFJC8vj3Pbt28fYRiG2Nvbk+zsbO75y5cvCcMwxNnZmYSGhoqEV1BQQAICAsjr16+lpqE8q1atIgzDkJ9++omEhYVxz5OTk8lvv/3Gyc7ySGunslDZeIPtj21tbUn79u3JkydPROLFyufycrsq7VIaioYpEAjIgAEDCMMwZOnSpdzzAwcOEIZhiKurq8g4ipCKxzUsbL7b2NiQgQMHkoSEBM6NrcuKtH9C/lcutra2ZMeOHaS4uJgL948//uBkqLOzs5j7+PHjCcMwZPr06WJxnjVrFmEYhgwdOpRER0dzz/Py8rj28dtvv4n4Yb83b948Mbnz7t07cuTIEal5JAl55S4h1ZvXFfH48WMSHBwsMo4gpHTMOHToUMIwDDl37pyYP3Zs5+bmRh4/fizilpycLNZWb926RRiGIdbW1mT79u0iY53CwkJy4cIFkXC+9jxAlvZQ2dhTmlzPzs4mp06dIunp6SLPv3z5Qnx9fQnDMGTUqFFi4cki99avX08YhiE///wzCQ8P554LBALi4+PDpalsfguFQjJo0CDCMAz5/fffRfqKu3fvEkdHR26uIM84rap88xPjyujYsSNxdHQUa0zKmBizwnz8+PES3ZOTk4mjoyNp2bIlKSgo4J6zlZLP55Nnz56J+WM7fy8vL5HnVZkYV8SGDRsIwzDk4sWLIs9lmRh7eHgQhmFIYGCgRHd/f3/CMAxZtGgR9yw3N5c4OjoShmHIpUuXxPw8e/aMm4wqe2LMMAxZtmyZmHt+fj5p06aNxDrxrU+MGYYhfn5+Yu4RERHcYLEswcHBnED++PGjmL8LFy4QhmGIo6OjyODczs6OMAwjtgglDbZDkhQ3Qgi5fv06YRiGjB49Wqbwqsrs2bMJwzAiA92wsDDCMAzp16+fUr7BtlF2EsMwDDl27FiVw61sYiyvLGEnfO7u7mILQdJg5eGECRMkut+8eZMwDEN+/fVXsYUTQko7144dOxJra2uJ9U4ayii3oqIi0r59e8Ln80U65bIsX76cMAxDtm3bxj1jB6j+/v4yx1dR2Pb+008/ifQXLP/8849EecxOUBYvXizmp6SkhPTs2VNi3WG/17dvX24wX56qTIyrGq8+ffqQkpISMb/9+vUjDMOILIhcvHiRMAxDJk+eLDWespKTk8P1TwEBAWLuiYmJXPsuL5u/xsRYWn977do1bhGnLNXRLqsSZkxMDJe/QUFB5O3bt8Te3p7w+Xxy//59sbDkmRjb2dmJTfQIUbz9E/K/cvnjjz/E/ERHR3NlUpF7+T44MjKSWwjIysoS81dSUkL69+9PGIYRWQDp0aMHYRiGRERESM4IJSJJ7hJSvXmtKHFxcYRhGDJmzBiR5+yCma2trcjiQ0WU3QCQha89D6jOiXFlsAsQKSkpIs8rk3vp6emkRYsWxNHRUWwRnmXy5MmEYRiRTauyi4FlN3BYdu3axbW/rzkx/i6uayKE4Pbt2/j3338xYcIE/P777xg6dCiGDh2K3NxcTrVa2Vy9ehUA8Ntvv0l0NzIyQosWLfDlyxe8fPlSzN3a2lpMbQAAHBwcAJSquyqTuLg4bNmyBVOnTsXw4cO5PLp06RIAyH2tUFJSEl69egU9PT0RNeyysOcOy95vFhoairy8PDRo0ADu7u5ifuzt7bk8qA5+//13sWcaGhoYOHAgAODevXvV9u3qQtKZO2tra6irqyMnJweZmZnc87t37wIAunfvLlGtu1evXqhfvz7y8vLw9OlT7jn7LltfKqKoqAhBQUFQUVHBoEGDJL7TqVMnqKmpITQ0FMXFxZWGKSsRERHYsGEDJk2aJFLPHz9+zLmzsGmKjY3FmzdvlBYHUka9JykpSWnhSkNeWXLt2jUApec55TUUJOk8FvA/eejh4SFRZYw9BykUCrmyKEt1llt4eDjS0tJgbW0tVbZIklXsd27fvo38/PxKv6MMBg4cCHV1dbHnrNx68uQJ8vLyAABfvnzh2mh5WwQAoKKiwlkzZ9t9eX799VeJ9gSqgjLiNXDgQIlnBtnzmvHx8dwzY2NjAKW2ND5+/FiluLP526BBA4n9WsOGDbm6Ii3u1Ymuri569eol9pyt12XzBah6u5REVcI0NzfnjgP89ddfmDlzJgoKCjBixAi0a9dOpu9Lo127dlxdKIui7b8skvqxZs2acfKzIvfyfTCbfz179hSxgcOioqLCqRlLkkdXrlxRmgqpPHK3LNWZ19LIy8vDqVOnsGDBAowdOxbDhg3D0KFDufpUvi9g+7kuXbpItB9THvYYTq1atWQ+v/q9zQNkITQ0FKtWrcLEiRPh6enJ1YnY2FgA4vlcGXfu3EFhYSHatWsncjSgLJLqxJ07dwAA7u7uYmebgdJxb/mz21+Db/6McW5uLry8vCq9PysrK0vp346KigIAbN26lTvrVh62IqWkpIi5mZmZSfTDniH98uWLEmJZyp49e7Bu3boKJyDy5hF70F8gEEicbAL/myAkJydzz9grLZo2bSrVWEKzZs3w7NkzueIjC2pqaiJn5cpiaWkpEr/vhXr16km9Q1RfXx9JSUnIy8vjznqxdVJaR6GqqgoLCwukpaUhNjaWOwM4evRoeHt7Y9GiRdizZw86dOgAJycntGnTRuyMZVxcHAoLC6GmpoaJEydWGP/CwkJkZWXB0NBQnmRLZPny5fD396/wnbL13MjICL1790ZgYCA8PDy49Dg7O8PZ2Vlh67LGxsYYMmQI1q1bh61bt0JTU1Mho1uyIq8seffuHQAodJ5eWr1h5eGJEye4s57lYSctZeUBUP3lxsYtOTkZQ4cOlRg+a1G4bNwGDBiAvXv34t69e3B1dYWrqytatWqF1q1by3zOVl6kGRqzsLBArVq1UFxcjPj4eFhbWyM+Ph5CoRC1atWSaMgKAHfOmm335ZFlwCgvyoiXNDnN1ml2cQAAWrZsiZYtWyIsLAzu7u5o06YNWrdujVatWsHR0VHk7GNlsPKfPb8pLe6XL1+WGvfqRNrAUlK+AFVrl9KoaphDhgxBUFAQbt26hU+fPsHKykopV35JazuKtv+ySJOx+vr6+PjxY6XuZftgNj63bt3CixcvJPpLT08Xi8+oUaPw4MEDbN26FefOnUOHDh3g7OyMtm3bSpw4VIa8crcs1ZnXkoiMjMQff/xR4UJz+bjK289FR0cDKE1bWeN6FfE9zQMqQyAQYM6cOZVufig6V3j58qXUOpGTkwNA8lxBWh+lra0NIyMjzijm1+KbnxivXLkSISEhMDc3x4wZM+Do6Ah9fX1uFfP3339X+o4UC1uQr169qvTdgoICsWdaWloS3y1vPKCqPHnyBKtWrYKqqiqmT5/OWa7W0tICj8fDyZMnsXDhQrnzKDs7G4Do7oA0WEEI/K/jlmREikUZkyRJ6OnpSZ2M14QgUgbS6hEALq1lV5fZ/K8oj1m3snkxdOhQ6OjoYM+ePXj16hXev3+P/fv3o1atWujatSv++usvbgWZrRsCgaDSugFIbh/ycv78efj7+0NTUxOzZ89G+/btYWxsDA0NDfB4PM4QUPl6vmrVKlhaWuLkyZMIDQ1FaGgoAKBOnToYMmQIpk2bJnEHrzImTJiAgoICbNmyBevWrYOmpiaGDx9e5XRKQl5ZkpubCwAyd/5lKWtsqyysPHz79m2lYZSVB1+j3Nj6mJmZKbJzU1ncGjRogGPHjmHTpk24desWAgMDERgYCKC0s541a5bSLatLk4sqKiqoV68e0tLSuHbJ/luvXj2F5Zq08qwK1RkvSTJNRUUFfn5+3ITh3r17nOZPvXr1MGbMGIwbN05qXMoii3ysyb5CWluXljZF22VFKCPMtm3b4tatWwCAvn37KiRjyyMtbxRt/2WRVh9ZGVuZe9n6yuZffHy82A5/RfHp1KkTdu3ahW3btuHp06c4duwYjh07Bh6Ph59++gl//fWXzIYiFZW7LNWZ1+UpKSnBtGnTkJSUhA4dOmD8+PFgGAZ169ZFrVq1IBQKYWNjIxZXtp+TtnFQHnnfB76feYAs7Nq1C5cuXYKhoSFmz56NVq1aoUGDBlzbnDt3Ls6dOyf3XKHspLeyxRBF5gp0YlyG4uJizsLZ1q1bJa4qfP78udq+r6WlhezsbAQGBlbLqnt5JAnYskhT9Tt37hyA0h0/Ly8vMXdF84ht0A4ODjh+/Ljc/tgVUUl8+vRJoThVRlZWFoRCocRBBBsfaddWEEIkCqvyK/TfOmz+V5THrFv5vOjTpw/69OmDjIwMPH78GI8ePUJAQACuXLmC2NhYzoIi68/Q0JCz7FrdsPV87ty5GDZsmJi7tHpeu3ZtTJ48GZMnT0ZsbCyePHmCu3fv4vr169i9ezdyc3OxdOlSheI0depUFBQUYPfu3fjvv/+goaEhVbX8a6KtrY2srCxuEKMM2Hrl5+cn1dKwJL5GubFx6927NzZs2CBXuiwsLLBx40YUFRXh+fPnCA0NxZUrV/D69WtMmTIFhw4dgpOTk1xhVkRGRobE50KhkBtosu2L/TczM1NhuVYd1ES8dHR0MG/ePMydOxdv375FaGgobt++jdu3b2PdunUAIJPWhizysSbyVFEUbZfVGeb79++xceNG8Hg8EEKwfft29OjRQ8SKrTKpSvuvDtj4eHt7S91Bk0aHDh3QoUMH5OTk4MmTJ1wfHBwcjNGjRyMgIECienZ5FJW7lVEdef3ixQvExMSgYcOG2Lp1q9giirQdTPY2D3ZiVhnyvg98/XmALFR1rrB8+XKJV29WtU6MHz8es2fPlttfTcwVKuKbPmOckZGBvLw86OnpSayQ2dnZUtVilbEaw6reyrJqqgzYFUlplUTaOWr2LkppZvelqSxXlkfsyuT79+/lWkFiVetiYmIgFAolvvP+/XuZw5MHgUAgdYWWVbsp3zlX1jilhVcTK36ywKaPVRsqT0lJCddupA1U9PX10aNHDyxevBgXLlyAjo4OIiMj8fz5cwClapBqampIT0+vUKgpE3bVUN56XhZzc3MMGDAAGzduxJYtWwCU3vlXFY2TuXPnwtPTE4QQLF68GOfPn1c4LGXByq7w8HClhymvPPwa5cbKqqrI6tq1a6NVq1aYOHEizpw5g169ekEoFOLkyZMKhykJabIvNjYWxcXFUFVV5dTvzMzMoKKiguLiYql9HZtmRSYdisqw6o5XRfB4PDAMg2HDhmHHjh34+++/AUDmxVu2f3r//j1KSkokvlNdca8OqmOcUpUwi4uLMWfOHOTn52PkyJEYMmQI8vLyMHfuXIlyVhn9qDLavzJRRpno6OjAzc0N8+bNw6VLl9C4cWOkpaVxu/CVoQy5K4nqyGs2rnZ2dhI1C9hxR3nk7efKjmllXTT+2vMAWdqDonOFiupESUmJxDPSssRJ0TrBymJ2bF6e3Nxcierp1c03PTFmz5Hl5uZKXAE5ePCg1AEt27gqUuFkw5em7sEa5ti/f7/UCZ4yYQdDb968gUAgEHM/duyYRH9sWiWtrMTHx0sVpGz6peVRkyZNwOfzkZOTg1OnTlWegP+Ps7MztLS0kJKSguvXr4u5v3z5UqkD9vIcPnxY7FlhYSE3wHV1dRVxY890SRK+gYGBUgWoLHWsIirLf0Vh03f9+nWJ53UuX77MXWgvy05YgwYNuPs8U1NTAZQKZldXVxBCKj3DpCzY/JJUz0NDQ6UKdWmwaRcIBFW2UbBo0SIMHDgQQqEQ8+fP5wx21BTdu3cHUHoHuazqbJXBysNjx47JZajqa5Sbs7MzDAwM8PbtW6UZ12vZsiWA/9V5ZXHy5EkUFRWJPT906BCA/8lPoHTHkk3v/v37xfwQQjh/5eWaLCgqw6o7XvLADvJkLSc2f9PS0nDlyhUx96SkJNy4cQOAcuNe2XhDURRtl9UVpo+PD16+fAmGYTBr1izMnz8fFhYWePbsGbZt2yb2vjL6wepo/1WBzb8LFy4oZeG4Tp064PP5AGSv58qWuyzVkddsXNPS0iS679u3T+Jz1rjrzZs3pU6uytK4cWNYW1ujuLhYapjl+drzAFnaAztXkHR+PTc3l9O0lRa2pDpx8eJFqbuzlfUTbm5uqF27Nu7duyd1Q0YSrHy9evWqxHp9/PhxiXOh6uabnhjXrVsXDMOguLgY//33HzeYIITgxIkT2LJli9RzK+xkJzQ0VKq6AfuONMNegwcPhrm5OZ48eYLp06eLTTJYy7wLFixQKH3lsba2hpGREdLS0rBx40Yu3sXFxdiyZQsePHgg0V+rVq0AADt27BDZ3YyOjsbEiROlrvawk53o6Gip6n1z5syBiooK/vvvPxw6dEhsQJeSkgJ/f38cOXKEe6atrY0hQ4YAAP7991+8fv2ac/vw4QPmz59foaW5Ll26gM/nw8fHR+o70qhVqxYOHz4sIhi+fPmCefPmISMjA6ampujdu7eIH1alZOPGjSKrU2FhYfjvv/+kxlWWOlYRrH9ZLYXKStu2beHg4ACBQIAZM2aIpOn58+dYvnw5gFKLxaxqUW5uLqZPn44HDx6I7KIQQhAYGIioqCjweDw0b96cc5s2bRo0NDTg5+cHX19fsfN4mZmZOHHiBLZu3SoWRz6fDz6fj9OnT8ucLraeb9iwQUSAP336FNOnT5coCx48eICVK1dyxiFYCgsLuXiZmJhUeMZFFng8HpYtW4Y+ffqgpKQEM2fORFBQUJXCrAqDBg1C48aNERsbCy8vL06rhCUiIkLiAlJFdOvWDc7OzoiLi8P48ePFBiLFxcV4+PAhZs2aJSInvka5qaurY8aMGQCAmTNnIiAgQGwQEx8fj61bt4osWqxfvx7Hjh0TWxhJSEjAiRMnAAC2trYibj4+PuDz+ejSpYuUnKqYz58/Y8GCBSLt5cKFCzh69CgAYNy4cSLvs+rBJ06cwMmTJzlZU1hYCG9vb7x79w66urpyq2wC/5NBL168kHsCVJ3xKs/58+fh6+srpr2Tm5sLPz8/AOLlJA1tbW1OtfS///4T2TlLSUnBjBkzIBAI0LJlS7Rp06bKcWepbLyhKIq2y+oI8+nTp/Dz84OamhrWrFmD2rVrQ1NTE2vXroWamhq2b98utlOpr6+POnXqID09XabJjSQUbf/VRfPmzdG3b19kZ2dj1KhRYovuhBA8e/YMS5YsEbFKPH36dNy4cUOsnB4+fIjg4GAApbuqsqCI3JWF6shr1oBeWFiYiIZOfn4+vL29pdoxsbGxQa9evSAQCDB+/Hg8efJExD0lJQW+vr4iz2bOnAkA2LZtG/z8/ETyuqioCIGBgZw9C+DrzwNkaQ/shPLGjRsim09ZWVmYN2+eVJVotk6sXLmSO28NlC4seHt7VzqfCgsLk7gZWb9+fYwZMwbFxcUYN26cxAWTyMhIrFmzRqSM2rRpgxYtWkAgEGDWrFkii0jBwcHw9fWVOv6+fPkyunTponA/XBHf9BljAJg1axa8vLxw4sQJXL16FY0bN0ZycjI+ffoEDw8PJCYmSuxounfvjg0bNiAgIADh4eEwMTGBiooKPDw80L9/fwCl19YEBQXB29sbhw8fhp6eHoDSKwZsbGygqamJnTt3YsKECbhy5QquXr2KJk2aQE9PDzk5OYiPj4dAIFCaISkVFRXMnTsXs2bNwq5du3Dy5Ek0atQIHz58QF5eHhYsWCDxLORvv/2Go0ePIi4uDr1794aFhQWEQiHevXuH+vXrw8vLCxs3bhTzp6+vj7Zt2+Lhw4fo1q0bLC0toa6uDkNDQ+7siKurK5YuXYp//vkHS5cuxdq1a2Fubg5VVVWkpqZyk67x48eLhD116lSEhYUhLCwMHh4esLS0RK1atfD27VvOou+BAweUkm9lMTIyQufOnTFz5kysWbMGBgYGeP/+PfLy8qCpqYk1a9aIWbQdM2YMzp07h8jISHTt2hVNmzZFQUEB4uLi0LdvX6SkpChcxyqid+/eOHToEPz8/HDt2jXUr18fPB4P48ePr9JZMR6Ph3Xr1mHkyJEICwtD165dYWVlhYKCAk6Ns0OHDpgyZQrnRygU4tKlS7h06RI0NDTQpEkT1K5dG8nJydwq7sSJE0VUC62trbFp0ybMnDkTPj4+2LFjBywsLKCuro709HR8/PgRhBCxhQhFGTduHAICAvDixQt06dIFFhYWyM/PR1xcHKysrNC3b1/s2bNHxM+XL1+wd+9e7N27F3p6ejA1NYVQKMSHDx+Qm5sLNTU1eHt7K0WdT0VFBatWrUJRURGuXr2KqVOnYseOHfjpp5+qHLa81KlTB9u2bcO4ceNw//59rl5raGggMTERWVlZcHFxkXj2TBo8Hg8+Pj7w8vLC48eP0bt3bzRq1AiGhobclXnsbhi7+AJ8vXIbNGgQNxCaOXMmvL29YWZmBkIIkpOTuU7X29ub8xMdHY0dO3ZgyZIlaNSoEfT19ZGdnY24uDgIhUJYWVnJfK2HrEyePBlbt27FzZs30bRpU6Snp3ODrREjRoid/erUqRO8vLywbds2LFy4EJs2bYKRkRFiY2ORk5MDDQ0NrF27VqF+yNbWFubm5oiNjYWbmxssLCygpqYGa2trLFy4sEK/1Rmv8mRkZMDHxwc+Pj6oX78+jI2NUVhYiPj4eBQUFEBHR6fS+JZl6tSpeP36NYKDg/Hbb7/BwsICmpqaePv2LQQCARo1aoS1a9dWOd5lqWy8oSiKtktlh5mbm4u5c+eipKQEs2bNgrW1NReenZ0dJk+ejI0bN2LOnDk4e/YspxXB4/HQs2dPnDp1Ch4eHrCysuLc5BkjKNL+q5Nly5YhJycHQUFBGDRoEIyMjETqLWu7pOx1Z/fu3cOlS5egpqYGc3NzaGpqIi0tjZMPffv2lfnKK0XkrqwoO68NDQ0xevRo+Pn5YeHChfDx8YGhoSHev3+P/Px8/Pvvv1Lb97///ov09HSEhIRg2LBhMDExgaGhIVJSUpCWlgZCiMhYp1OnTliwYAFWrVqFtWvXYuvWrbCwsEBeXh4SExNRVFSEFStWcJPIrz0PkKU9NGvWDIMHD8axY8cwefJkmJqaQk9PD2/fvoWuri4mTpwocWNp6tSpCA4Oxq1bt+Dq6goLCwtkZGQgKSkJbdu2RYMGDSQeBevQoQN0dXXx5MkTuLm5oXHjxqhVqxZcXV25BdJp06YhPT0dJ06cwNixY6Gvr49GjRqhuLgYiYmJ3GS97GIjj8fD6tWr4enpiZCQELi5ucHKygq5ubmIi4tDly5dkJOTI3HziC2v6uCb3jEGSrfod+/ejVatWqGoqAjv37+HkZERlixZghUrVkj1Z2Zmhu3bt8PFxQWfP3/GkydPEBISIpKR/fr1w8KFC8Hn8xEfH4+QkBCEhISIqM42adIEZ8+exYIFC+Do6IiMjAy8evUK+fn5cHBwwNSpUyWqkilKnz594OvrC3t7e+Tn5yM+Ph729vY4dOiQxMPyQOkK+OHDhzFgwADUrVsXMTExyMvLw+DBg3HmzJkKzfyvW7cO/fv3h7a2Nl69eoWQkBCxFd1Bgwbh/PnzGDJkCBo0aID379/j/fv3qFOnDtzd3bFq1SoxoyeamprYt28fJk2ahMaNGyMuLg6ZmZkYOHAgTp48KdV4RHFxMWeApuzupDz8/fffWLJkCXR1dREdHQ01NTW4u7vj5MmTEs9W1KtXD4cPH0afPn1Qp04dxMTEoHbt2li4cCHWrFkj9Tuy1LGKaNWqFdatWwd7e3ukpqbi8ePHCAkJUYqxgcaNG+P06dOYMGEC/l979/fSZB/Gcfztr0DcKrADTaMSEyxIM1IGsq1OFrQDFYMOMkqqURqW1JFoHkywogM7apYIoeIvFAqiv2EHFkUzt4nBJHVYZCT2C9bBQyNbPc8m88fTPq/j3V++7N5973t9r/u+rtzcXPx+P7OzsxQVFdHa2orL5VrWnzIjI4Nbt25RWVlJTk4Os7OzjI+PEwqFOHz4MC6XK7xL/DOr1crjx4+pra1l586dBAIBfD4faWlpmM1mWltbI/7Qfn5cKpZznJ2dzcDAAEePHiU9PT0c5J89e5b+/v7fVn88ePAgzc3NHDlyBKPRyNTUFH6/ny1btlBVVcXo6ChWqzXqOfyX1NRUbt++jcVi4fPnz1y8eHHZ7vNa2rNnD48ePaKuro6CggJmZmaYmppi69atVFVV0dDQEPOYmZmZ9Pb24nQ6MZlMfPz4kZcvX/L+/XsKCws5f/48w8PDy3ae1/K81dfXMzg4SEVFBUajEa/XSyAQIDMzE7vdzp07d6ioqAh//sKFCzgcDoqLi/n06RMej4dgMEhhYSGNjY0MDg5GVPb+8ftd6f2ppKSE/v5+ysrKmJ6e5t27d+zbt4/29vY/Lv4uX74cLoT05csXXr16RUZGBpWVlYyOjq54Iy05ORmXy4XNZiMlJYXnz5/jdruj7mO5WvP6lc1m49q1a5SXl7Np0ya8Xi+vX78mKyuLkydP8vDhw6gzafBP1uvevXu0tLRQVFTE3Nwck5OT7NixA4fDwcjISPiJqniJZr2xUiu5LuM9ZltbG4FAgNLSUs6cORMxnsPhCGehf127NTU1cerUKbZt28bExET4u4lVrNf/akpPT+fu3bt0dHRgtVr59u0bHo+H+fl5du/eTU1NDT09PcvanbW3t3PixAny8vKYn5/H4/GwtLSEyWTi5s2b/7oe+dVK7ruxiPd3ffXqVVpaWsjPz+ft27dMT09z4MABurq6qK6u/uNxBoOB7u5unE4nhw4dYnFxkYmJCdLS0rBYLNy4cSPimNOnTzM0NITdbmfz5s14vV4WFhYoKCjg0qVLEa9QrHUcEM31cP36dRobG9m1axfBYJBgMIjdbmdkZITt27f/dty9e/fS19eH2WwmKSmJyclJDAYDV65c4f79+39sX2cwGOjq6sJsNvP161eePXuG2+1eVi8jOTkZp9NJd3c3NpuN1NRUxsfHefPmDdnZ2Rw/fpzOzs6IREFeXl54E8BoNOLz+UhJSQknXNajlk9SKF5dxEXi4MWLF1RXV4cX9Ru1wJWs3JMnT2hoaMBisdDZ2bne0xGJid1ux+fzMTQ0xP79+6M+rqamBrfbzYMHD+L6iK6IiIjEx4bPGEti+fEuyblz5xQU/6V+nONoWquIbCQfPnzA7/djMpliCopFRERk41NgLBvK2NgYOTk5HDt2bL2nIqtkbGyMkpKS8Ds8Iv8XT58+JRQKaVNHRETkL7Thi29JYuno6FjvKcgqi3dfWJG1YrFYIipli4iIyN9BGWMRERERERFJaCq+JSIiIiIiIglNGWMRERERERFJaAqMRUREREREJKEpMBYREREREZGEpsBYREREREREEpoCYxEREREREUloCoxFREREREQkoSkwFhERERERkYT2HRSRoKqf7C0rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(8, 2, figsize=(11, 27), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + " axes_rows[0].plot(lc_ar4.time, taper, color=palette[idx])\n", + " axes_rows[0].set_ylabel(f\"K = {idx}\")\n", + " axes_rows[0].set_xlabel(\"t\")\n", + " \n", + " axes_rows[1].plot(lc_ar4.time, tapered_data, color=palette[idx])\n", + " axes_rows[1].set_xlabel(\"t\")\n", + " \n", + " idx += 1\n", + "axes[0][0].set_title(\"DPSS tapers\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Tapered time series\", fontsize=18, pad=15)\n", + "fig.tight_layout()\n", + "txt=\"DPSS tapers and product of these tapers and the AR(4) time series.\\n\\\n", + " Note that, for K=0 in the top row, the extremes of the time series are severly\\n\\\n", + " attenuated, but those portions of the extremes, as K increases, are accentuated.\"\n", + "fig.text(.5, -0.025, txt, ha='center', fontsize=18)\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "b373cc2c", + "metadata": {}, + "source": [ + "#### Now let's see their frequency domain representations (here PSD)\n", + "\n", + "We can have a good look at the leakage properties of these tapers (and the resulting time series) from their PSD representations." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eb8f5358", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAp2CAYAAABbLXaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gU1dfA8e9sSU9IhdBD2xASQi/SOwhYAAELior6qoCCvYu9YIefDUERsaKg0hUBQTqE3gkJJBAgjfRky7x/JLvsJptKSAI5n+fhIZl65+5kZvbMvecqqqqqCCGEEEIIIYQQQlQxTXUXQAghhBBCCCGEELWTBCWEEEIIIYQQQghRLSQoIYQQQgghhBBCiGohQQkhhBBCCCGEEEJUCwlKCCGEEEIIIYQQolpIUEIIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIB6GhoYSGhlbLvrdu3UpoaCh33nlnle3zzjvvJDQ0lK1bt1bZPsXV5ZlnniE0NJTffvutuosirhIHDx7k/vvvp0uXLrZr6qFDh6q7WNUuNjaWiIgIHnvssUrb5rhx4+jSpQupqamVtk1RPr/99huhoaE888wzV8V2a6uaXJ+66i6AEOVx5513sm3bNodp7u7ueHl50ahRIyIiIhg6dChdunQpdhu//fYbzz77rMM0RVHw8PAgJCSE/v37M3HiRHx8fIqse+7cOebPn8/GjRs5ffo0RqMRPz8/goKCiIyMpGvXrgwePBi9Xu+wntlsZvHixSxdupTDhw+Tnp6Ol5cX/v7+tGzZki5dujBo0CAaNGhQ5rqYNWsWAFOnTi3zOuLq8NtvvxEfH8+oUaNo1KhRdRdHiGuGs3uIM6NGjeLtt9+ughKJivrmm29IT08v9n5dnRITE5k4cSJpaWkEBwfTokUL23NGTaGqKoMGDSIuLg53d3c2btyIl5dXscvPmjWL2bNnO0xTFAUvLy9CQkIYOHAgd955Z4nbAHj//fcxm808/PDDZSrn448/ztKlSwF46623GD16dJFlJk+ezAMPPMBnn31W5PmuLOSeWz3S0tKYP38+3t7e3H333dVdHFHNJCghrkr169enfv36ABiNRi5evMiePXuIiopiwYIFhIeHM3PmTFq0aFHsNlxcXIiIiADyb85xcXEcOHCAAwcOsHjxYr777juHIMHWrVt5+OGHycjIQKPRUK9ePQIDA8nMzOTIkSMcOHCAH374gfXr1xMcHGxbLyMjg/vvv59du3YB4OvrS8uWLdFoNJw+fZro6GhWr15NRkZGmW/SgO3hQIIS157Fixezbds2unbtWusekNzd3WnWrJnt71uIK8H+HuJMSEiIw+9BQUE0a9YMb2/vK1wyUVbffvut7YtkTQtKLFu2jLS0NAYPHswnn3yCRlPzGibv2LGDuLg4ALKzs1m1ahVjxowpdT0vLy8MBgMAFouF+Ph49u3bx759+1i8eDHff/89gYGBTtfds2cPq1atYujQobRs2bLUfW3cuNEWkChJ3759CQ8PZ+HChUycOLFcL3igdt9zq1NaWhqzZ8+mYcOGxQYlvL29adasGUFBQVVbuGtUTa5PCUqIq9KYMWOKfBnPyMjgr7/+YtasWRw4cICxY8fyww8/FNsMPSgoiB9++MFh2r///stjjz1GfHw8L7/8MnPmzLFte9q0aWRkZNCrVy9eeuklmjZtalsvOzubjRs38ssvv6AoisM23333XXbt2oWvry9vvfUW/fv3ty2jqiqHDh3izz//pE6dOpddL0Jc7SIjI1m5cmV1F0Nc45zdQ0ry+OOP8/jjj1/BEolrycmTJwHo0aNHjQxIACxZsgQAHx8f0tLSWLJkSZmCEm3atGHBggUO09atW8e0adOIjY3l3Xff5d1333W6rnU9Z60dCsvJyWHGjBm2F0AHDhwocfnRo0fz2muv8dNPPzF9+vRSty+uDoMHD2bw4MHVXYxrRk2uz5p5pRSiAry8vBg1ahS//fYbBoOBzMxMHn30Ucxmc5m30adPHyZPngzkR+it/RPXr19PcnIynp6ezJo1yyEgAflvdwcPHsyXX35JvXr1bNNNJhN//vknAM8++ywDBgxwCFooikKbNm14+umnueOOOyp66EIIIYSoIXJzcwFwc3Or5pI4l5OTYwv+zpgxA0VR2L59O2fOnKnQ9vr168fEiRMB+Ouvv5w+d6WmprJ69Wr8/Pzo2bNnqducNWsWp0+f5vnnn8fT07PU5YcPH45Op+O3334r13OfEKJmkKCEuOb4+vryzjvvAPlvK1atWlWu9a35KCwWC6dOnQLg9OnTADRr1qxcfUKTkpLIysoCIDw8vFzlKM6sWbMcWn9YE2hZ/1mbY5rNZv7++2+ee+45Ro4cSZcuXYiMjGTIkCG89tprnDt3zun27RO6nTp1iscff5yePXsSGRnJyJEjmT9/fok3/PPnz/PWW28xbNgw2rVrR8eOHbn11lv57bffUFW12OOZNWsWKSkpvP766wwYMICIiIgyd2c5fvw4Tz31FP379yciIoKOHTsyaNAgpkyZYgsKWdkn+cnKyuLdd99l4MCBtG3bln79+vHmm2+SlpZW7L5ycnKYN28et9xyC506dSIyMpIRI0Ywe/ZsMjMzi10vPT2dTz/9lNGjR9OpUyfatWvH0KFDeeqpp2x93K1JHq2/33XXXQ6frTXJXlxcHKGhoQwYMACAX375hbFjx9KxY0dCQ0Nt5T99+jRz5szhrrvuol+/fkRERNC1a1cmTpzI8uXLy1S3ZTF16lRCQ0OdbnPw4MGEhoZy++23F5n3zTffEBoaymuvvWabVlyiy8LHvGzZMsaOHUuHDh3o3Lkz//d//8fhw4eLLeO5c+d49tlnbefy9ddfzxdffIHJZCrx2EwmE99//z3jx4+3fd7Dhw/nww8/LHKeqKpK9+7dCQ0NJTEx0WFeQkKC7XP86KOPiuzn4YcfJjQ01OF6ZTKZ+O6772z7joiIoGfPnowePZp33nmnwl8gRPmVlujy119/ZfTo0bRr147u3bszefJkDh8+XGri1rS0ND755BNuvPFGOnToQPv27Rk9ejTffPMNRqOxyPL216+8vDw+/fRThg4dStu2bW2t+FJSUpzuKyoqikceeYRevXoRHh5Oly5dGDp0KI8//jjr1693WNb+upyUlMRLL71Enz59aNu2LUOGDGHWrFm2L96VcVxWFy5cYObMmdxwww106NCBDh06MHz4cF5++WUOHjzoUAfx8fEADBw40OE6aU1Ya1/3JpOJuXPncuONN9K+fXs6d+5s2+fRo0eZNWsWt956K7179yYiIoLrrruO//u//+O///4rtqzOFD5Pnn32WVu5CieWO3HiBM8884zt2ty9e/cS91kZ90qrv//+m4yMDBo2bMjw4cPp0qULqqry+++/l2s79tq2bQtAVlaW03Pw77//Jjc3l969exfJu1XY4cOH+eabb+jTpw9Dhw4t0/79/f2JjIzk/PnzZcobA2W/50J+15OZM2cyZswYevbsSUREBL179+bRRx9l7969Trdf1c8bZT3nAWJiYnjxxRdt5enSpQt33303a9asKbY8ZrOZ+fPnM3LkSCIjI+nZsydPPPGE7Rm5PJ555hkGDhwIQHx8fJFnWaviEjPaH6vFYuHrr79mxIgRtGvXjr59+/LOO++QnZ0N5D/Pf/vtt9xwww20a9eOXr168eqrr5KRkVFs+cr7LFua9evXc//993PdddcRHh5Ot27dGD58OM8//7yte3dh+/fv5/HHH6dv375ERETQrVs3HnzwQXbs2OF0efuk3YcPH+bRRx+lZ8+ehIWF8c0335RYn1YVuXZX5Nicke4b4prUpk0b2rVrx549e1i/fj3Dhw8v87rOLjbWxE0xMTGkpqbi6+tbpm15enqiKAqqqrJ7925atWpV5nIUp379+nTs2NH2h96xY0eH+a6urkD+w93kyZPRaDQEBATQqFEj8vLyiI+P57vvvmPFihV8//33RfpOW8XGxvL222+TlZWFwWDA3d2dY8eO8eabb7Jr1y4++uijIl1VduzYwcMPP8zFixdxdXWlSZMmZGdns3v3bqKioti0aRMzZ84ssh5AcnIyY8aM4ezZs7Rs2ZIWLVqg05V+idq3bx933nkn2dnZtnwEWq2Ws2fP8tdffxETE8MNN9xQZL28vDzuvPNO9u/fT4sWLWjWrBnHjh1j/vz5bNiwgYULF+Lv7++wzvnz55k0aRJHjx5Fq9VSv359PDw8OHnyJLNmzWLVqlV8++23+Pn5Oax3/Phx7r//fs6cOYOiKISEhODh4UFcXBy///47Z8+eZcGCBXh7e9OxY0eOHj1KRkYGBoPBIWlYQEBAkeOYMWMGP/zwA/Xq1aN58+YODweff/45ixYtwsPDg7p16xIaGkpSUhJbtmxhy5Yt7N69m+eee67UOi5N165dWb16NVu3bnX4Wzt37pwtsLd3715ycnIc3hxaHwRLSkzrzIcffsjnn39OcHAwISEhnDx5knXr1rFjxw4WLVpEs2bNHJaPjY3l9ttvJzExEb1ej8FgIC0tjQ8++IA9e/YU+4CRm5vLQw89ZPuSYP3cjh07xueff87SpUuZP3++rQ+yoih06dKF1atXs23bNoe6sB/Zo/ADs6qq7Ny5s0hdPP7447a3mQ0aNCAgIIDU1FSOHj3KgQMHaNeuXbn7TovK9+qrr7Jw4UIg//ocEBDApk2b2Lhxo63lnTMnTpxg0qRJnD17Fr1eT8OGDVEUhcOHD3PgwAHWrl3LnDlzcHFxKbKu0Whk0qRJbN++nWbNmtGkSRNOnjzJTz/9xO7du1m0aJHDev/88w9TpkzBbDbj5eVFy5YtsVgsJCQksHTpUjIyMujbt2+R/aSmpjJ27FgSEhJo2bIlXl5enDhxgtmzZ7N582bmzZtXpDVARY9r+/btTJ48mYsXL6LVamnRogUajYa4uDh+/PFHcnNzefvttwkICKBjx47s37+fvLw8IiIiHLZVOO+HqqpMnjyZdevW0ahRI1q0aEFSUpJt/ptvvsnmzZvx9vYmKCiIoKAgzp8/z7p161i3bh3PPvtsmZPwhYSE0LFjR2JjY0lKSiIkJMR2H7G/165bt45HHnmE3NxcvLy8CA0Nddjn1KlTmTJlitN9VPReac/adeOGG25AURRuvPFGtm3bxu+//85DDz1Urm1Z5eTk2H52d3cvMn/79u1Afhe9klgsFl566SW0Wi0vvfRSucoQGRnJrl272LFjB9ddd12py5fnnvvEE09w6tQpfH19CQoKom7dupw5c4aVK1fy999/88EHHxQbQKnK5w0o/ZxftWoVTzzxBHl5eXh4eNCsWTNSU1PZvHkzmzdv5sEHHyzSBUZVVaZPn24LnDdu3BgfHx9WrlzJv//+6/TFQ0lCQkKIiIhg//79DjneKuKxxx5jxYoVNGvWjIYNGxITE8O8efM4evQoX331FdOmTWPVqlWEhITQqFEjTp48ycKFC4mOjrZ9Wbd3Oc+yzixcuJBXX30VyH9xGhoaSk5ODmfPnuXEiRO4uroWeZZfsGABb775JhaLBW9vb1q2bMn58+dZu3Yt69atY8aMGdx6661O97d9+3a++OILtFotzZs3t30XKU1Frt0VObZiqUJcRSZMmKAaDAb1k08+KXXZt99+WzUYDOrQoUMdpv/666+qwWBQ+/fv73S9uXPnqgaDQW3durWanJysqqqqnjx5Um3durVqMBjUm266SV22bJltXmluu+021WAwqO3bt1f/97//qcePH1ctFkuZ1i2JwWBQDQZDsfPT0tLUX3/9VU1KSnKYnpmZqc6ePVs1GAzq3XffXWS9p59+WjUYDGp4eLg6YcIENTEx0TZv48aNavv27VWDwaB+//33DuudP39e7datm2owGNSPPvpIzcrKss07fPiwOmzYMNVgMKg//PCDw3qffPKJajAY1LCwMPWWW25R4+LibPOys7NLrYf/+7//Uw0Gg/r000+rGRkZDvNOnDhRZH/Wzz88PFzt3bu3euDAAdu82NhYdfjw4arBYFCnTZvmsJ7FYlFvv/121WAwqA8//LB69uxZ27zk5GT1oYceUg0Ggzp9+nSH9TIyMtQBAwaoBoNBveuuu9RTp045zD9w4IC6cOFCh2nW83zLli1Oj/n06dO2OouMjFRXrVplm5ebm6uazWZVVVV13bp1alRUVJHz7eDBg7bPY8eOHUW2X9q5VdihQ4dUg8GgDhs2zGH677//rhoMBrV3796qwWBQN23aZJtnsVjUrl27qgaDweEc27Jli2owGNQJEyY4Pebw8HC1ffv26t9//22bl5aWZquzxx57zGE9i8Wijh07VjUYDOodd9yhXrhwwTZvw4YNavv27dXw8HCn9f3OO++oBoNBve6669SoqCjb9ISEBHXcuHGqwWBQx48f77DO/PnzVYPBoL700ksO059//nlbXYSHhzuc29b6Gz58uG3a/v37VYPBoHbq1KnIZ5STk6MuW7ZMPXjwoCrKpzz3EHvW6+Kvv/7qMP2vv/6ynZfLli2zTc/IyFAfe+wx27lV+HzOyspShwwZohoMBvXFF19UU1JSbPPi4uLU8ePHqwaDQX3vvfcc1rO/fg0dOlQ9duyYbd6xY8fUXr16qQaDQf3xxx8d1hs5cqRqMBjUDz74QM3NzXWYt2/fPnXJkiUO06zX5fDwcHXkyJEO1639+/erPXv2VA0Ggzpz5sxKOa6zZ8+qXbp0sV177a8Jqqqq27ZtK1LG/v37qwaDQT19+rTqjPVaEhYWpnbr1k3dvn27bZ7939+KFSvUQ4cOFVl/69atas+ePdU2bdoUu4/iFHe+qKqqnjt3Tu3UqZOtjqxlsVgs6s8//2x71vj3338d1rvce6XV+fPn1bCwMNVgMKjHjx9XVTX/Gtq2bVvVYDCou3fvdrqedf+Fz2WrJ554QjUYDOrAgQOdzh84cKBqMBjUXbt2lVi+b7/9VjUYDOr//vc/2zTr362z+rT3559/qgaDQZ04cWKJyxVW2j1XVVV18eLFakxMjMM0s9msrl69Wm3fvr3auXPnIs8gVf28UZZz/siRI2rbtm3V8PBwdcGCBarRaLQts23bNtvfduHzb+HChbZn2Q0bNtimX7hwQb399ttt17qnn3662DoszHpfL+55XFUv1WHh7VqPNTw8XO3Vq5e6d+9e27xDhw7Zni8mT55cZP7Bgwdt15v169c7bLeiz7LFMRqNtn0tXLhQNZlMtnkWi0XdunWr+tdffzmss3HjRjU0NFTt1KmT+scffzg8w61evVrt0KGDGh4erh45csRhPet5HBYWpj777LNqZmambZ718y+uPity7a7IsZVEum+Ia5Z1BIzk5OQyr7NhwwY+/fRTAHr27GmLQIeEhNiixocOHWL69Ol0796dQYMG8dhjj/HLL78U2wRvxowZ+Pv7k5WVxccff8zw4cNtTehnzZrF0aNHL+cwi+Xt7c3o0aOLRN89PDyYPHkynTp1YtOmTZw/f97p+oqi8MEHHzi8KejZs6ft7c1XX33l8IZ53rx5pKSkcPvtt/Poo486vCkJDQ3lgw8+QFEUvv76a6f702q1zJo1i4YNG9qmlaU/bkxMDAB33313kX6nzZs3LzaSbDQaefHFF2nTpo1tWpMmTXjrrbcAWLFihUOrA+ub+LCwMD788EOHEVb8/Px47733CA4OZsWKFZw9e9Y27+effyYuLo6QkBC++OILGjdu7FCONm3alPsNg5XZbOaRRx5hyJAhtmkuLi62xGp9+/alffv2RSLkYWFhtjdQl9Nc1yo0NBRfX1+io6Mdui1YWwTcf//9gGNrgSNHjpCamkrLli2dtgApjtFoZPLkybZmn5B/rj///PMARZqhb9u2jT179qDX63n//fcdssL36tWLKVOmOG2SmJGRYUuE+8ILL9C+fXvbvHr16vHhhx+i0+mIiopyOK6uXbs6HLt9OQICAhg9ejRGo5GoqCjbPOv61nXh0nndvXt3OnXq5LAtV1dXhg8fTlhYWDG1JEoze/bsIs2FnXUBKM3cuXOB/HPcvmWMp6cnb731lsN1wt6vv/5KTEwMffv25dVXX3VofdewYUM+/vhjPDw8WLhwodNuEiaTiXfffddhBIOWLVty3333AUX/Dqzn0/3331+khUJERAQ33XST03IajUbefvtth+tWeHg4L7zwApD/lsy+GXlFj+urr77i4sWLdO7cmffff7/INaFLly7FlrE0ZrOZGTNmODRft7+3DBs2jNatWxdZr2vXrjz66KOYTKZK7e72ww8/kJ6eTsuWLXnllVdsZVEUhbFjxzJ27FgAvvzyS6frV/ReafXHH39gNptp06aNbYQyb29v+vXrB1xqRVEWZrOZU6dOMXPmTP744w8A/u///q/Icqqq2u6LdevWLXZ7CQkJfPjhh4SEhNjO5fKwjihwJbq23XzzzUXyiWk0GgYPHmwb/nXdunVO162q5w2rks752bNnk5uby7Rp05gwYYJDK5suXbrwyiuvADg8q6mqyldffQXAlClT6NWrl21eYGAgH3zwQTG1duVZ69bafQigdevWtr+jv/76q8j8sLAw2/x///3XYXuX+yxbWEpKChcvXqROnTrcfvvtaLVa2zxFUejatSuDBg1yWOf9999HVVVee+01W2smq8GDBzNt2jSMRmORhLNWLVu25LXXXnPobl7aNaIi1+6KHFtJJCghrlnWP8bi+vlfuHCB2267jdtuu83Wl/S+++4jPT2d4OBgZsyY4bD8Aw88wMKFCxk4cKCti8Tp06dZtmwZL7zwAv379+fnn38ush+DwcDSpUuZNGmSLQlmWloaW7ZsYfbs2dxwww1Mnz69xL5tl2PHjh288847PPjgg0yYMMF2zNaH1OL64Q8ZMsTpkEHjx49Hr9cTFxdnyzAOsHr1att8Z8LCwmzN6pzls+jRo0exD/AlsQ7rt2rVqnL186tXr57DF1uryMhI2rVrh6qqDn17rcc3atQop82pPTw86NGjBxaLxdZMFfJviJDf1+9KJD0bNWpUifNTU1NZuHAhTz75JPfccw+33347t912G++99x5Q/OdfHoqi2B5+7L+Mb9++nYCAAG655Rb0er3DvIp23QDn51jr1q1xdXUlPT3doT+z9YFjyJAhDklo7bflrH/zzp07ycrKom7duk6b5DZo0MB2s92wYYNturMAzblz54iNjaVLly5069YNcAzQWM8X+7qw/i3s2bNHckdcAdZucMX9K8vQn5mZmezevRuAW265pch8FxeXYr9IW68n48aNczq/Xr16tG3blszMTPbv319kfuvWrZ02g2/Xrh1AkT7e1uvkihUrijka5zp06OA0H9KQIUOoW7cuWVlZDn2GK3pcf//9NwD33XdfpY9W4eXlVWq2+XPnzjF37lymT5/OxIkTbffJb7/9Fsh/GVFZrNeLCRMmOG1SfddddwGXrkGFVfReaWXfdcPejTfeCMDy5cvJy8srdv1t27bZgndt2rRh8ODBfPXVVwQEBPDSSy/ZvuzZS0tLs+XvKWmksVdffZXMzExmzJjh9D5bGuu2y/MyqjxiY2P53//+xyOPPMKdd95pO0+sf1fFnSdV9bxhVdw5n5eXx7p169BoNE4/J8h/maHX69mxY4ftM4uOjiY+Ph69Xu/0/luvXr1qG9GhTp06Di9mrKwBoOLmW69r1jxsVpf7LFuYv78/rq6upKWllSlHzdmzZzlw4AC+vr7FdgeyPnsUFzy/6aabHAIEZVGRa3d5j600klNCXLOswQj7/oH28vLyHB6mPDw8CAsLo1+/ftx9991O80Z07tyZzp07k5eXx/79+9m3bx8bNmxg8+bNZGRk8OKLL+Lh4cHIkSMd1gsICOCpp57iqaeeIiYmhn379rF161b++ecfkpKSWL58OWlpaba3bpXBaDTy5JNPlvoQah1hpLDmzZs7ne7l5UW9evVsQYnmzZuTlZVlu7BbM3k7Y/2ymJCQUOQLYnH7K83dd9/N5s2b+fTTT/n999/p1asXnTp1onv37k6/hFo1a9as2IffFi1asGfPHoegi7VFyy+//FLskJXWL48JCQm2aSdOnABweNNeWfz8/Iq0hLG3efNmpk2bVuxnDMV//uXVpUsX/v77b1teifPnzxMTE8OwYcNwd3cnMjLSIa+ENShh3zqgLPz8/Ir9wujv78/Zs2fJysqytXKyfobWN4KF2Z/P9qzrWXOUONOqVStWrlxpC/BBfoCmU6dOrFmzxpZXwv5YO3To4BCgUVXV9lBpXxfWJH9RUVEMGTKEbt260aVLFzp37kz79u3L3YdcOCrvkKDOnDp1ytbf1/6ttT1nb+Dh0vXk008/Lfa6bz2vnD34NmnSxOk61hYGhYPx99xzDzNmzOCFF15g3rx59OrVi44dO9KtW7cSryHFXZc1Gg3NmjXj/PnznDx5kt69e1f4uDIyMmxve6/EdTIkJKTEB/SlS5fywgsv2JLiOVNZ10m4dPz2rVzsNWvWDJ1Oh8lk4tSpU0XOoYreKwEOHjzI0aNH0Wg0jBgxwmFe37598fX1JTU1lXXr1jn9Igf510yDwQDk55GIiYkhKysLHx+fYoPM9q1irC91Cvvrr79Ys2YNI0eOLFM+CGesgX/7/BaVZd68ebz//vslJkcu7jypqucNq+LO+djYWHJzc9Hr9Tz44IPFHgfkf2apqakEBgbayhYcHFzsM3Vx99grrXDrUyvrda20+fbXysp4li1Mq9Vy1113MWfOHO69917Cw8Pp0aMHHTt2pGvXrkXq88iRI0D+M3xxo/JZX8A5++yhYp9FRa7d5T220shTjbhmWR9yinvgatiwIf/880+Ftu3i4mJ7ozZx4kQOHz7Mfffdx4ULF5g1a1aRoIS9kJAQQkJCuOGGG8jKyuL5559n+fLlbNy4kV27dpU9IUwpvvrqK1asWEFgYCBPPPEEnTt3pm7durYHgqeeeorff/+92BtsSU3qAwMDiYuLs13M09PTbfPsm6UXx9kDQ3lGNbHXt29fvvrqKz777DN27drFTz/9xE8//YSiKFx33XU899xzThOMlnZ84Hizsh7jsWPHSi2T/QOYtQWMj49P2Q6oHEqqs4yMDFtA4oYbbuCOO+6gefPmeHl5odVqOX36NIMGDSp19ImysrYAsH7ZLhx06Nq1Kzt37iQqKoru3bvbskeXt6VEScdsfeizbzFjfdNYlvPZnnU9++4ehRX3BbBr166sWbPGFqCxBh26deuGm5ubQ4AmNjaW1NRUmjdv7rAvjUbDnDlzbMG2jRs3snHjRiA/MHPvvfdekbfKouysn3tJwxUWN896PTlw4ECp+ynP9bK4h+jbbrsNb29v5s2bx4EDB4iOjubbb79Fp9MxcOBAnnvuOadv3yt6nSzPcdmvX9XXydOnT/PMM89gNBqZOHEiN910E02aNMHT0xONRsPmzZu5++67K+06CaVfk7RaLb6+viQmJjpt6VnReyVcaiXRtWvXIl+m9Ho9119/PT/88ANLliwpNijRpk0bh2bjmZmZzJw5kx9++IFJkybxxx9/FEm+aP+SJy0trcixZ2dn89prr+Ht7V3sqABlcfHiRQCnyR8vx86dO3nnnXfQarVMmzaNgQMH0rBhQzw8PFAUhUWLFvH8889X+HkKKud5w6q4c8TazdhoNJZpVITCf6NlOY6qVtq1sDzXysp4lnXmscceIzg4mIULF3LgwAHb9dHV1ZUbbriBp59+2nbts35GmZmZpX5GxY2A5CzRbGkqek8qz7GVRoIS4pplzWZvbc56JbVu3ZqHHnqIV199lZiYGFsfq9J4eHjw2muvsXLlSiwWC3v37q20oIQ1V8Cbb77pNKu69eZdnJKaP1qbpVsfuO0v+nv27Knysdl79epFr169SE9PZ+fOnWzdupVly5axadMm7rnnHpYtW1bk8yjP8cGlY5wzZw59+vQpc9m8vLxITU0tcdivK2H9+vWkpqbSvn17p1miK/PNH+R3W6hTp46t24I1KGENVnTr1o3PPvuMrVu34u/vT0pKCs2aNXPaRagyWT83+8zjhRUevtN+PWfzrKzbLPzFs3BeCesxW9+M2gdojh8/DjgPznh7e/P000/z1FNPcezYMXbs2MH69etZv34977//PpDfrUxUD+vn7qyJvVVx3Qc9PDxIS0tj+fLlVfaGceTIkYwcOZLk5GS2b99uu06uWrWKmJiYIiN2QMWuk+U9Lvv109LSKv0LZUlWrFiB0Wjk+uuvdzoSUWn3yYrw8PAgPT2dpKQkp60ezGaz7fpcUsCrvEwmE8uWLQNgy5YtDsMuFvbvv/+SkpJSps/C09OTl156icOHDxMVFcUHH3zgMMwz5L/I8fb2Jj09ndTU1CJfbpOSkjh37hwuLi7cfPPNRfZh/RzeeOMN3n//fVq1auV01ARrvZXU+qcirM9T99xzj9PRSSrzeQoq/rxRGus+AgMDy9Xc3rpeee+jV5sr9Syr0WiYMGECEyZM4OzZs+zYsYNNmzaxcuVKFi1axLlz52w5O6xlaNeundMu4VdKRe9J5Tm2UrdV0cILUZMdOHCAffv2AdiSN11p9k3EShqHvTAvLy/bDbSkfpzlZX3zWzhJHuQ/9Djrp2zP2u2gsIyMDFvTLesQZ97e3ra3LmWJ7F8p1mRdTz/9NCtWrKBx48ZcuHCBtWvXFln25MmTWCwWp9uJjo4GHIdws36hLO/xWdez9j2vKtbPv0OHDk7fCBQ3rnpFaTQa27m2bds2tm3b5vBF3L7bgrPuCleKdXjQspzPztaLjo7GbDY7Xdd6LhQeVrd169b4+PgQHR3NoUOHiImJcQg6WI9769atDq0oiqMoCgaDgdtvv50vvviCF198EaBKH1hEUU2aNEGj0ZCWllZs3g9rU9zCKno9qQz+/v4MHTqUl156iT///BNvb2+OHDni9JpQ3N+NxWKxNem+3Oukl5eXbWjb6rpOOrtPQv4Xk8pmra/i6ujkyZOYTCa0Wm2x3XQqYsOGDSQmJqLVagkMDCz2n4uLC0aj0RbAKAuNRsOTTz4JwG+//UZsbGyRZayJeYs7pyD/GSgxMbHIP+szVUZGBomJiQ55g+xZt22fULIyxMfHAxU/T6rqeaM0TZs2Ra/Xk5SUVGKAoTDr/TAhIaHY/GfW4yiPsg6pWVWq4lm2fv363HDDDbz11lv8/PPPKIrChg0bbK27rS17o6OjK7WFVmkq45wr7dhKI0EJcc1JTU21Nf9r1qxZsU0QyyM5ObnUJIrWpl4+Pj62IIPJZCo1gm4dz9xa3rIqre+kdb6z6PXSpUtLjWqvXr3a6TI///wzRqORhg0bOrzlsdazs7cX1cHT09P2JsjZCCMJCQlOu+/s37+f3bt3oyiKQ4Zpa8Khn376qcS+x4VZkz8tWLCg2KZ2hVVGv1hrN50LFy4UmWc0Glm4cGGFt10c65ftZcuWcfLkSYcv4m5ubrRt25a9e/fakk9WRVDC2td99erVTs8D6/lcWKdOnfDw8ODChQu2cdntnT17ljVr1jjsw8o+QDN79mzAMejQsWNH9Hq9Q1CiPN1YrNsubuQcUTU8PT3p0KEDkJ+5vDCj0WgbkaAw6/Xk22+/LfbLSlWoW7cujRo1ApyfT1FRUU6T9/3111+cP38eDw8Phy9qFT0ua+K2efPmlTlhsfU6WdbrqjPW66Sze93FixdZvHhxhbddHOv1YuHChU6P1Zpc03oNqizWrhuDBg3iv//+K/afdbSk8ozCYS1v165dMZlMfPHFF0XmW5MhOwt+NWrUiCNHjhT7z3qveOuttzhy5Eixo0ZZt20/6kRZlHbPLek8OXXqlNMXH/aq6nmjNO7u7vTu3RtVVZk/f36Z12vevDkNGzbEaDTyyy+/FJl//vx5W6LE8riSOUAqqiqfZVu1amXLkWW9/jZt2pTQ0FDS09Od3leulMq+Jzk7ttJIUEJcMzIyMliyZAmjR4/m6NGjeHh48PHHH1dKn+s//viDG2+8kR9//LFIM7zs7Gzmz5/PnDlzgPxsydZ9ZmVlMWDAAN555x0OHz5c5AFk27ZtTJkyBVVVqVevnsNNqTTWlhmFhx60st6U3377bYfI9j///MOMGTOKTTZlpaoqjz/+uMPxbt682fYla9KkSQ5R7gceeAB/f3+WLl3KK6+8UuRNRkZGBsuXL7cNgVVZpk2bxpo1a4q0MtmyZQubNm0C8oe8K0yv1/P66687jD5x+vRpnn32WSD/Am3f+mXQoEF06tSJ2NhY7r///iJve0wmE1u2bOHxxx93KMvYsWNp3LgxMTExPPTQQ7Y3LlaHDh3i+++/d5hm3a+zrNplZf38V61a5TA6RGpqKtOnTy+SQ6EyWL9YW7+sF37737VrV4xGoy0oUZGRN8qrW7dutG3bFqPRyOOPP+7wdmjTpk3Mnj3b6egbXl5etqFa33jjDYc3YefOnWP69OkYjUY6dOjgtJWD9SHaWhf2ARhrgCYqKork5GRCQkKKDJP3xx9/MHv2bE6dOuUwPSMjw3atcTYqgqhakyZNAuCLL75wSEiXlZXFc889V2wLivHjxxMSEsLOnTuZNm1akTdJ1iz51uvR5bDml9m8ebNDqx9VVVm+fDlHjx5FURSnb5f1ej1PP/20w2gehw4d4vXXXwfyc1XYNzuv6HHdd9991KlTh23btvHEE08Uuc/u2LGjSICntHtgWVivk99//71DX+qzZ8/y0EMPldg1p6Ks+T2OHz/OjBkzHIIqv/76K4sWLQIqt2tWWlqa7YtzaUOrWrtP7Nu3r8RWDc5YhwP9448/ipz71ucba9fayqaqKlFRUWg0Gnr06FGudUu751rPky+++MLhmnz8+HEefPDBUt/4V9XzRlk8+uijuLm5MWfOHGbPnl2ki1lKSgq//PILn376qW2aoii2a92sWbNsz1aQ36Xj8ccfL1cZrPz9/fH09CQpKanc59qVUtnPssePH+eFF15g9+7dDt8BzGYz33zzDWlpabi5uTl0mXjyySfRaDS88cYbLFy4sMhnfO7cOebPn28btrwyVOTaXZFjK4nklBBXpV9//dV2UbS2Rjh9+rQtuhcREcG7775baX11FUXh6NGjvPzyy7z88ss0bNgQf39/W9Zwa5S3V69eTJ8+3WG9jIwM5s2bx7x58/Dx8aFhw4ZoNBrOnj1re/Dy9fXlk08+KVdymuuvv55jx47x4IMPEhoaasty+8EHHxAUFMQjjzzCpk2bWLt2Lb1796ZZs2YkJydz9uxZunfvTt26dYt9iwf5D9s//PADffv2pVWrVmRkZNiaZA4ZMoTbbrvNYfm6devyxRdf8PDDD/P999/z008/0bx5czw8PLh48aItU31l5/jYuHEjK1asQK/XExISgru7OxcuXLBdUG+44QanDyhDhgwhNjaWm2++mRYtWqDT6Th27Bhms5mQkBBeeuklh+UVRWHWrFk89NBDbN++neHDh9OoUSMCAwPJysqyZbWG/DweVp6ennz22Wfcd999/PfffwwcOJDmzZvj5uZGfHw8qampdO3a1fYFGGD48OEsXLiQOXPm8NdffxEUFISiKNx///1l7l8aERHB8OHDWb58Offddx+NGzfGx8eHY8eOoaoqL7zwAi+//HK567skbdq0sfUbhqItIbp168bnn3+OqqqEhISUmrW6MiiKwrvvvsuECRPYtm0b/fr1czifBwwYQHp6utOH0UceeYSDBw+yadMmxo0bR7NmzXB3d+fYsWMYjUYaNWpkG1q1MOuxq6rq0I3Ffr41iZWzFiPJycnMmjWLWbNmERQURHBwMLm5uZw6dYqcnBy8vb15/vnnL7d6ai37e4gzISEhZXroHDhwIHfccQcLFy7k0Ucftd0bTpw4gdlsZsqUKXz44YdFguPu7u58+eWXPPDAA6xatYrVq1fTtGlTfH19SU9P59SpUxiNxkpJHmexWFixYgUrVqzAzc2Npk2b4uLiQkJCgq0l1YMPPlikGxLkP6iuXbuWoUOH0qpVK0wmky0PSocOHYqMYFLR46pXrx6zZ89m8uTJLF26lJUrV9K8eXM0Gg1xcXFkZGQwatQo27CVkH8PXLduHTNmzOD777+3JVN87rnnbF0FSjNo0CDbKDe33HILISEhuLi4cOzYMdzd3XniiSd44403ylrVZVK3bl3ee+89HnnkEX788UeWLl1qG8nE2pVs6tSpRVpgXY7ly5eTm5uLn59fqfeQJk2a2Ork999/57HHHivzfnr16kVERAT79+9nzpw5DveYTp060aJFC6Kiojhz5oyty05l2blzJwkJCfTu3ds2BG5ZlXbPHTduHD/++COxsbEMHz6cZs2aYbFYOHHiBEFBQTz00EN89NFHxW6/qp43yqJ169Z8/PHHPPbYY8yaNYsvvviCZs2a4erqSlJSEmfOnEFVVYYPH+6w3m233cbmzZv566+/uOeee2jatCleXl62l4CTJk3i888/L1dZFEVh2LBh/Prrr4waNYpWrVrZWgfZJ1OtSpX9LGttXfLLL7/g5eVFkyZNUBTF9vynKArPPfecw0gVvXv35tVXX+WVV17h1Vdf5b333rONqGJ/nbC2aqoMFbl2V+TYSiJBCXFVOnv2rO1Lp5ubG97e3rRr146IiAiGDBlS6c3Cb7/9dlq3bs3GjRttNz7r8DmBgYG0adOGkSNHMnToUIeIube3N6tWrWLjxo38999/xMbGEh8fT1ZWFl5eXnTs2JE+ffpw6623lju51wMPPIDFYmHZsmUcP37cFkm13qjatGnD999/z8cff8zOnTs5ceIEjRs3Zvr06UyaNMnWL704TZs2ZdGiRXz88cds3ryZ9PR0WrZsydixY7nzzjudtkCJjIxk6dKlfPfdd/zzzz/ExMRgNBqpW7cu3bp1o2/fvpXSncbe22+/zYYNG4iKiuL8+fOkp6fj5eXFddddV+Qh1p6LiwsLFixg1qxZrFq1ivPnzxMUFMTgwYOZOnWq00SlAQEBLFy4kCVLlrBs2TIOHTrEuXPn8PPzIywsjK5duzJkyJAirVBatWrFn3/+yTfffMPff/9te+tYt25dBgwYwJgxYxyW79y5M++//z7z58/n+PHjtmGYRo0aVa66sQbmlixZQkJCAllZWfTp04cHH3zwiiSTs3ZbWLdundMv4ta8EkajsUpaSVg1b96cX3/9lY8//ph///2XY8eO0ahRIx577DEmTZrEPffc43Q9V1dX5syZw08//cTvv/9ue4hs3LgxgwcPZtKkScUmtA0LC7MFaLp06VLkTZo1QAPOW4wMHToUk8nE5s2bOXnyJEePHkVVVRo0aECvXr2YNGlSpT/U1yb29xBnyvOG/MUXX6RNmzYsXLiQEydOkJmZSbdu3Zg6dartS7+zh7KmTZuyZMkSfvrpJ1auXMmJEyeIj48nKCiIdu3a0aNHD4YNG1b+gyvE09OTmTNnsmnTJvbu3UtCQgKZmZn4+vrSv39/br311mJzL/n6+vLLL7/w8ccfs27dOpKTk2ncuDE33ngjDzzwgNNEcBU9rq5du7J06VLmzZvH+vXriY2NRa/XExwcTLdu3Rg3bpzD8jfffDNpaWksWrSI2NhY2z25PEmFtVotc+fO5ZNPPmHlypWcPn0aX19fhg8fztSpU4sdcu9y9evXj8WLFzNnzhw2bdrE4cOH8fT0pG/fvtx1113lajVZFtauGCNHjnTaMqywm2++maioKP744w+mTZtWrhanDz74IFOmTOHXX3/loYcecmgFNm7cON566y3+/PNPW6uKymJ9yTJ+/Phyr1vaPdfLy4vvv/+eDz74gHXr1nHy5EmCgoIYP348U6dOtbX+K05VPm+URb9+/Vi+fDnz589nw4YNnD592tZit0+fPvTv39/W9dRKo9Hw8ccfs2DBAn755RdOnTqFj48PQ4cOZdq0aRVu2fn888/j6enJmjVrOHLkSLlysl0plfksGxISwuuvv86mTZs4ePAgp06dIjc3F39/f66//nruuusupwnux44dS6dOnZg/fz5btmwhOjoarVZLvXr1GDJkCAMHDmTAgAGVetzlvXZX9NiKo6hl7bwnhKgVnnnmGRYvXsxbb73F6NGjq7s4le63337j2WefZdSoUbz99tvVXRwhxDVs3rx5vPPOO0ycONHp6A411axZs5g9ezZTpkwp0hpCiIrKyspiyJAh6HQ6Vq9eXWS0l4pKTk5m4MCBNG7cmCVLltSYoZLleUOIsqsZf7VCCCGEENcQs9lse0NdXNZ+IWoTDw8Ppk6dytmzZys1id+8efPIysriiSeeqDEBCSFE+Uj3DSGEEEKICpo/fz4dO3akbdu2tmkpKSm8+eabHDlyhODgYPr371+NJRSi5rjllltISUlBp6u8ryD+/v4899xzZc65JISoeSQoIYQQQghRQWvXruXNN9/E09OTJk2aYDabbWPMe3h4MHPmzEprpi7E1U6r1fLggw9W6jbvvffeSt2eEKLqSVBCCCGEEKKC7rzzTnx8fNi/fz8xMTGYzWaCg4Pp0aMHkyZNcjqqhRBCCCEukUSXQgghhBBCCCGEqBaSDUYIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIIYQQQgghqoUEJYQQQgghhBBCCFEtJCghhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCghJCCCGEEEIIIYSoFhKUEEIIIYQQQgghRLWQoIQQQgghhBBCCCGqhQQlhBBCCCGEEEIIUS101V0AcXWwWFTMZstlb0en02AyXf52rkVSN45Onz5F48ZNbL9L/RRP6qZ4UjfFq4y60Wo1aDRKJZVIWMk998qTuimZ1E/xpG6KJ3VTssutn2v5nitBCVEmZrOF1NSsy9qGRqMQEOBFWlo2FotaSSW7NkjdFHXnnXexZMlyQOqnJFI3xZO6KV5l1Y2vrwcajbYSSyZA7rlXmtRNyaR+iid1Uzypm5JVRv1cy/dc6b4hhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCEl0KIYSoNKpqwWKxoNaAHFcajUJeXh4mk0mSbhVS1rpRFNBotCjKtZntWwhxdaque43cV4ondVOystRPbb7nSlBCCCHEZTObzaSlJZObe3kjBlS2xEQNFosMT+ZMWetGUTT4+9dFr3etglIJIUTxasK9Ru4rxZO6KVlZ6qe23nMlKCGEEOKyqKpKUtJZNBotfn510Wp1QM2I8ut0CiaTvLFxpmx1o5KRcZHk5PPUrduoVr69EULUDDXlXiP3leJJ3ZSs9PqpvfdcCUoIIYS4LBaLGYvFjL9/PXQ6fXUXx4FOpwHkrY0zZa0bL6865ORkYrGYC74ECCFE1asp9xq5rxRP6qZkZamf2nrPrT1HKqqdy4r15Ow+iIdGA1otasH/6DSorq6obi6obq6obq7g5orF0wPVxwuLtxeqjxeqlwdoJDerEDXNpT69tSeiX7vkf641IU+IEFctoxG3P9agScsga+JoeZ6pALnXiNqhdt5zJSghqozq6Q5enmAyg8WMYjJBbh6KxQKkl76+oqB6e2Lx98US6IclwBdLQP7/qqdHfnYYIYQQQogaxmXHfvRHTwKgSUrFEuRfzSUSQoiaQ4ISosoY+3TFZ9QAkpIyHLPOWiyQk4eSk3vpX3YOSmYWmrQMlPTMgv8zUNIy0KVlQEycw7Ytnu5Ygutirh+EOTgIS/26+S0rhBBCCCGqmeZc4qWfLyRJUELUOHPnfsGmTRuZO3dBdRdF1EISlBDVT6MBDzdUDzdKbalkMqFJvogmKRVNUkr+/4nJaBJT0J2IRXci1raopY435iYNMDVpgLlJA1Rfnyt6GEKIq8sbb8xgxYqlRaYvXfo3vr6+VV8gIcQ1S5OSeunnC8nVVxBR5d54YwbZ2Vm8/vq7tmnLl//JzJlvMn36U9x446hybzMt7SIffjiT//7bgEajoV+/ATz66BO4u7tXuJy33XYnt9wyvsLrX61uueUGbrttAmPG1L5jr0kkKCGuLjodlroBWOoGOE43mdCcT0J79gLahAtozp5HcyEZ/b4j6PcdAcDi44W5aUNMLZpiatYI3GrXUDtCiKJ69OjN008/7zCtTp06Dr+bTCZ0OrldCiEqSFXRJF+0/SpBidrtl19+5NNPP+aFF15h4MAhFdrGK6+8SFJSIh9++D9MJhNvvfUK7733Fi+++GqFy+Xh4QFIK2NnTCYTWq22Vo2GUdUky464Nuh0WBrUw9gpgpwR/cm6bzwZ0+4he8ww8rpEYq4XiJKWgX7fEdyXrMbr429w//4P9Nv2oNg9KAghahcXFz0BAYEO/8aOvZFvv53Hq6++yODBffj44/cB2LMnioceupcBA3oyZsxIPv30Y/Ly8mzbSkpK5KmnpjFgQE/Gj7+ZdevWMGLEQJYv/xOAXbt20KtXZ7Kysmzr/PffBnr16uxQpn//Xcfdd9/OgAE9GD/+ZhYunO8wrnmvXp1ZunQJTz01jYEDe3LnnePYs2e3wzZ2797Fww/fx8CBPbn++gE8+eSj5ObmMn/+XO655/Yi9XDrraP44YfvLrs+hRBFKZnZKHlGLF6eAGgyskpZQ1yrvv56Dp9/Pos335xZ4YBETMxJtm7dxDPPvEh4eATt2rVn2rQn+euvlSQnJxW7XlpaGm+99SojRgxk6NC+PPbYFGJjY2zz5879gkmT7rT9bjKZ+PDDdxk6tC8jRgxk7twveOGFp3jjjRm2ZXJzc5k160NuumkYgwf35v7772H//n22+cuX/8mIEQPZtGkjt946miFD+vLCC0+RkZFhW2bt2r+5885xDBjQgxEjBvLYY1Ns97w33pjBCy88xdy5XzBixECGDevHJ5+8j9lsLrYMDz10r0MZoPh74pQpD5CQcJYPP5xJr16dbfdja7n//Xcdt98+hgEDepCamsqUKQ8we/ZHDtueNOlO5s79wvZ7r16d+eOPxTz22FQGDuzJXXeN5+jRwxw/foxJk+5i0KBeTJ8+mZQUCU7ak1c/17jo6Giee+45MjIycHFx4bnnnqNz586lr3gtcHfDZGiGydAs//fsHHQx8eiOx6A9cQpdbDy62HhYswlz3QBMbVpiDGsp3TyEEHz//bfce+8DTJr0fwDEx8fxxBOP8n//9zDPP/8KSUmJvPfeW5hMJh555HEg/+EpNTWF2bPzH04+/HCmQwCiLPbs2c2bb85g2rQnadu2HadOxfLuu2+g17swbtxttuW+/vorpkyZxtSpjzF37he88srz/Pzz7+h0Ok6dimX69MncfPMtPP74MwBs374FVVUZPvwG5s37kmPHjhAWFlawzyjOnj3D0KHXX3a9CSGKUi6mAWAJDkRzPBMlJ7eaSySqmqqqzJr1AUuX/s7778+iffuODvO//XYeCxZ8XeI2Fiz4heDgYPbv34uPTx1atw6zzevcuSuKonDw4AF69erjdP2XXnoGd3d33n9/Nh4e7vzyy09Mnz6ZhQsXOe32sXDhfNasWc2LL75Kw4aN+eGHBWzfvpU+ffrblvnoo5nExsbw2mtvExAQyJo1q5k+fTLff7+IoKC6AGRlZfHrrz/z2mtvkZOTw4svPsN3333Dgw9OITExkRkznufhhx+hT5/+ZGZmsmvXdodybN26BVdXN2bPnsPp06d4661XCQwM4vbb73Jahr/+WulQhpLuiW++OZO7776dUaNuYfjwGxz2m5WVxY8/fsfzz7+Cp6cnnp6eJX4+9r755iumTp3OtGmP89FH7/Hqqy/h7+/PlCmP4ubmycsvP8uXX37K00+/UOZtXuskKHGNc3V15c0336R58+acOHGChx9+mFWrVlV3saqHuxumsBaYwlqAxYLmzPn8PBRHT6I9n4T2fBKu67ZiblAPY5uWmNq0zB/VQwhxzdqwYT2DB/e2/d6v30AAOnfuxrhxl1oUvP32awwbNoJbbrkVgEaNGjN58jReeOEppk59jNOnY9m2bQvz5n2HwdAagMcff5r77rurXOWZN+9L7rrrXoYNGwFAw4aNmDjxXhYt+skhKDFy5E307z8IgHvvfYDbbx9DfHwcTZuG8N1339C2bTseffRx2/ItWrQEwM3Nja5du7Ns2Z+2oMTy5X9y3XU98fcv1C1OCFEplOz8IITF2wtVq4HcvFLWEGXltvQfdAWjmlQVc2hzTCP6l76gnU2bNmI0Gpk9+8siAQmAm28ew4ABg0vcRmBgIADJyUn4+zsmStXpdHh7+xTbUmLPnt0cOXKYP/5YhV6vB2D69Cf599+1bNq0kYEDi+77119/5q677qVXr74APPnkc2ze/J9tfkJCAsuX/8nixctt9497772PjRv/ZfXqFdxxx0QAjEYjTz75HMHBwQBcf/1Idu7MDzwkJSViNpvp23cAwcH1AWjZspVDOVxdXXn66RdwcXGhWbPmxMWd5qefFnL77Xc5LcPdd9/Hpk0bbWUo7Z6o0Wjw8PAgICDQYb9Go5EnnniW5s1bOK3Tktjfo2+77U6mT5/MAw88TIcOnTCZLIwceTO///5rubd7LZOgxDWuYcOGtp+bN29Oeno6qqpKnyiNBkujYPIaBZPXtxuaC0noDh5Hf/A42jPn0J45h/rPZkytmmJs3wZzs8Yy5KgQ16DOnbsxffqTtt89PDx44IG7Hd5AARw/fowTJ46xcuWlxJgWi4Xc3FySkpKIjY1Br9fTqlWobX5oaJjt4a+sTpw4yr59e/j66zm2aWazBVW1OCzXvHlL28/WB9WUlGSaNg3h+PFj9OnTr9h9jBhxI++99xaPPjqd3Fwja9eu4YUXXilXOYW4ZpnMYDaDq0ulbVLJzgFAdXdDdXVFyZWWErVNy5YGkpOT+Oqrz3nvvU9wc3NzmO/jUwcfnzrFrO2Ms2fS4p/vjx8/SmZmBsOHD3CYnpuby5kzcUWWz8jIIDk5ibCwcNs0vV7vEDCIjj6O2Wxm/PibHdbNy8tzWM7T09MWkAAICAggJSUFyA9AdOjQibvuupXu3XvQtWt3+vcfiKenl235Vq0MuLhc+nuMiGjLp58mkpGRUaYylHZPLI6rq2uFAhIALVpcOn5rsKRZs+Z20/xtdSDySVCihtu+fTtz585l//79XLhwgc8//5z+/R2jswsXLmTu3LlcuHCBsLAwXnjhBSIjI4tsa82aNYSFhUlAwglLUAB5fQPI69MVzdnz6A8cQ3fgGPojJ9EfOYmljjfGdmEYI1ujepe9+ZYQomZzd3ejUaPGTqY7NmXNzs5i9OixjBo1tsiyvr6+qCqlXls1Gmsap0vjDJlMJodlsrKyuf/+h+jdu2+J23JMvJm/X/u8EyXp1asv7733Nhs3/ktmZhYuLi706NGrTOsKca1zXbSCvVE78XnobuqHNK2UbV4KSriCmwtKVjaYTCAJdC9bzsgBpS9UyXQ6DZjKdr21qlevHq+88iZTp/4fTz75KDNnfuwQmChP9w1//wBSUhxbRJhMJtLT0/Hzcz7UbHZ2FkFBdfn448+KzPPxKb7bcuH7mqpeun9lZ2eh0+mYN2+hbTmtVsFsVh26OhROFK0oii3QrtVq+fjjz9i3bw9btmzihx8WMHfuF8ydu8D2Zb64e6uiOC+DVXm6WzhTOHAE+fdx+zqAovdxcDxma7EcpylFXjbUdnI1rOGysrIIDQ1l9OjRTJ06tcj85cuX89Zbb/HKK6/Qrl075s+fz3333cfKlSsdmnbFx8czc+ZMvvzyy6os/tVHUbA0qEdug3rk9r8O3dFo9LsPoos9g+u/23DZsB1TWAvyurXHEhxU3aUVQlSRVq1COXky2mkAAyAkJIS8vDyOHTti675x5MhhjEajbRlfXz8AkpKS8PDIf1g6fvyow3YMhlBOn44tdj9l0bJlK3bt2sHdd9/ndL5Op2Po0OEsXfoHOTk5DB16vYwuIgSgZGWz6u+V/Hs6GuWTFKa8+FKxX/LKtd2C7hvWlhIASk4eqpf83dUmDRo0ZNasL5g69f946qlpvPvuR7YvvuXpvhEREcnFixc5cuQwoaH595tdu3agqipt2oQ7XddgaE1i4gX0ej316gU7Xcael5cX/v4BHDx4gIiI/BedRqOREyeO23JFtGplwGQycfFiqm0ZnU6DqZwBG41GQ7t2HWjXrgP33vsAN9wwmK1bN3P99SMBOHr0CHl5ebbWEgcO7CcgIBBPTy+nZSis9HuiHrO5bGX29fVz6CKTlZXltKWJKD8ZfaOG69u3L9OnT2fIEOcZer/++mvGjx/PmDFjaNmyJa+88gqurq4sXrzYtkxGRgYPP/wwL774Ik2bVjzqr9Eol/2vsrZTJf9cdFgiDOROuJmsB28nr3t7cHNBf/A4nl8vwuP7P9BHn0Kj1MK6qYJ/hetD6qfsdVVdZbiW3XHHXezeHcVHH73HsWNHOXUqlvXr/+F///sYgCZNQujcuSvvvPMGhw4d4NChA3z44bsO3TcaNWpM3br1+Prr/GRda9f+zbJlfzjsZ+LESSxf/ifffPMVJ09Gc/JkNKtXr2D+/LllLuuECXezb98ePv74faKjj3PyZDQ///wDOTk5tmVGjryJLVs2ExW1k+HDbyzTdmvj5y5qF/PhE2w9cwoA9cBRti5bjuZ8Eq7/bEJJyyhl7eLZWkq4uaJau4VIF45ayRqYOHMmnqeemma7Lvv41KFRo8Yl/rMGj0NCmtGtWw/eeec1Dh7cz969u/ngg3cZPHhosbmBOnfuSps24Tz77ONs376FM2fi2bNnN//738cOI3DYGzNmHN9+O4///ttATMxJ3nvvLfLycm0tEpo0CWHgwMG8+uqL/PvvOs6ciWf//n18/fUcoqJ2lqk+DhzYz7ffzuPw4YMkJJxlzZrVZGdn06RJiG2Z3NxcZs58k5iYk2zYsI4FC75m7Nhbiy3DgQP7HcpQ2j2xfv367N69iwsXzpOamlpieTt06MR//21g69bNnDwZzdtvv4bzrjSivCREexXLy8vjwIEDPPTQQ7ZpGo2GHj16sHv3bgDMZjOPPvoo48aNo1evijfP1ek0BAR4lb5gGfj5XYXdHwK8wNAI9aZ+mHccwLx+O9rYeLSx8Sj1AtAN6IamYxsU7eXF+a7KurlC9HptkXNO6qd41Vk3eXl5JCZq0OmU/GatNUxxZVIUBUVxXmaNxnF6WFgYn376BZ9//ikPPXQvGo2WRo0aM2LESNtyM2a8xhtvvMrkyfcTEBDI1KnTeOedN23b0ulceOWV13n33be4++7b6NChI5MmPcBbb71m20bv3r15990PmTfvSxYs+Bq9Xk+zZs0ZM2acQ3m02kvls/6v1WrQ6TQ0b96Mjz76H599Novff/8VNzd3IiPbMWbMLbZlW7VqSWhoaywWM6GhhlJqUEGj0eDn5+HQr1c4l52dzfDhwxkxYgRPPPFEdRdHlEP80aPkmk009fHjVHoKB9et50avurgcOoF+z2Eypt9boe0qObmk5mSjcdGjd7NrKVGZhRdXDfsWE08/PZ133vnQaVeBkrz88mt88MG7PProw2g0Cv36DWTatCeLXV6j0fDee5/w+ef/4/XXZ5CWdpGAgEA6dOhUbPeNO+6YSFJSIq+88gJ6vY7Ro8cRGdne4T7wwguv8vXXc/jkk/dJTLyAn58/ERGRDBo0tEzH4enpye7dUfz88/dkZWXToEEDnnrqecLDI2zLdOvWnaCgujz88H2YzSauv/4Gbr11QpnL0KRJU95/fxZffPE/2z2xbdtIbrppNACTJj3IzJlvMn78zeTl5bFx445iyzty5E0cPXqEl19+Djc3N+699wHi46WlRGVQ1MIdY0SNFRoa6pBT4ty5c/Tp04dffvnFIYfEu+++y65du/jxxx9Zu3YtU6ZMoWXLS0nRFixYUGL/MWeMRjNpadmXVX6NRsHPz5OUlEwslqv8tLNY0B6NQb91N9q4hPxJ/nXI690Fc5uWoCnfF7Nrqm4qyY03Xs8ff6wApH5KUhPqxmQycf58HIGBDWtcN4CKNCWtTCNGDGTy5GlFhhqrbhaLhXHjbuL22+9i9OiieTLsmUwmEhPjqVu3UZHP18fHHb1eeyWLetX58MMPiYmJoXHjxhUOShiNZlJTyzecbGEajUJAgBdJSRly3SykuLr574NPWLNqJTe2DOdAYgLHXOChdtfR0pj/JjT96f8r9/0dYPcb7/HHv/8QNLgvU1t3xn3fUbLGj8TcvOLdtK6kmnruWK9F1X2vqe77SnUxmUyMG3cTY8fexm23TXC6TGXXzRtvzCA7O4vXX3+30rZZncpSPyWd576+HtfsPbdmPT2KSmE/ukb//v05cOBApWy3sm5MFotao25yFaNgMTTDaGiG9vRZXDZuRxcTj9vvf2PeuIO8Xl3yhx4tZ1LRa6NuKk/hupD6KV511o18JleX5OQkli//k4yMdIYNG17m9eTvr3QxMTFER0fTv39/oqOjq7s4opxOnT0DQHD/3mjWbeRYUhwHTx6nZaOCTPp5Riho6VBWJpOJ1Xvz37yeSbzA/nPxdAEZgUPUeGfOxLNr13YiIzuQm5vLTz8t5OLFVNtQl0JUpprXzlaUmZ+fH1qtlsTERIfpycnJtmQ44sozN65P9m03knXHTZga10eblIr773/hMfdntNGnq7t4Qgjh4MYbh/LTT9/z3HMv2RJuivzRrh588EF69epFaGgoa9euLbLMwoULGTBgAG3btmXcuHHs3bvXYf4777zDY489VlVFFpVIVVVOnz+LVqMQ3KI54QHBKEYjh+JP27LtK7l55d7usWNHyc7OyX9HodNy+Fx+4EPJKf+2hKhKGo2GpUv/4P7772LKlPs5e/YMs2Z94TC8pxCVRVpKXMVcXFwIDw9n06ZNDBiQPySSxWJh8+bNTJw4sZpLV/uYmzQg+46b0MbG47JhO7q4BDx+WoqpRRNyB/TAEuhX3UUUQlSxZcvWVHcRirD2l62tTZCLc7mjXf3999+EhITQrFkzoqKiquEIxOVITEwkOzuHZt5+aP398HZzp5HGhfjsFM5lZRDs6Y2SV/48EHv37kYxmxnTpiM/aiwcTYhHDfaBPAlKiJotOLg+n38+r1rL8PzzM6p1/6LqSFCihsvMzOTUqVO23+Pi4jh06BCBgYEEBQVxzz338NRTTxEeHk5kZCTz588nJyeHUaNGVWOpazFFwRzSiOymDdEdPYnrP5vRnTiFNvo0xo7h5PbqAh7lS2YkhBDiyuvbty99+/Ytdr79aFcAr7zyCuvWrWPx4sVMmjSJPXv2sHz5clatWkVmZiYmkwkfHx8eeOCBqjoEcRlOn44Fs5kmfkFYfLwBiPCvS/zFFA4mJhDs6Q25xlK24igvL48jRw7jioZ2TZqx0SOXuPO7SczOxCevfNsSQohrmQQlarj9+/dz11132X5//fXXAZgyZQpTp05l+PDhJCcn88knn3DhwgXCwsL46quv8Pe//HG1xWVQFEyhzTG1aIp+5z5c/9uJy8796A8cJbdvN4wdwsudb0KIq82LLz7Dvn17S1+wkrRtG8lrr71dZfsTtUdZRrt6/PHHefzxxwH47bffiI6OvqyAxOUOuWo/XLBw5Kxu4uJOg8VCUx8/FC93VL2ONgHBrDp5hP1JCQxo2gptXh7KxTRc1m7B1C4Mc4smRTeenYOSm4fq68PRo4cx5uXSMaAuLu7uNGoURPyevcSlXyTcZKqxn01NPXdqWnmEuJJq29DbEpSo4bp168aRI0dKXGbChAlMmOA8C66oZjotxm7tMbUNxWXDdvRRB3FbtQH9/qPkXN8XS5Dz8aSFuBZIgEBcK1JSUjCbzUXyNQUEBBAbG1vp+6v1w3BXEfu6SUpKQCkISvgH+5Hr4Ub9PG8C3D04nZbKxdxsfLfvQY3OH/5Pd+gErq9OQfHycNhmzsvzIT0T19emEh19GDe9lnZBDdC6u9KmjYFda/4m7mIqnbUKPpX0GV8pNe3cqUnDT1f3/msyqZuSlV4/tXMYbglKCFEFVA93cof2wdguDLcV69HGn8Nj3iLyurUjr2dncNVXdxGFqFV+/fUn5sz5jOXL/0FTMMRfUlIiN900jN69+/HWW+/Zll21ajlvv/0aK1euxdW1Yt2v1qz5i5dffpZ+/QY4Hdrs5Zefo1mz5tx993306tUZFxdXfvzxN+rWrWdbZsqUB2jdug1TpkyrUBlE5bMf7cre6NGjL2u7JpNFhuG+ggrXTU5ODidPniJQ54KPtw/JKZm4u7qgURTCA4P5Nz6GqHPx9HN1d9hOasw5LPWDHKZ5pmcCEH8gml3bo3DVaAn1r4tJo8XDw488k0p8+kVy0rNJS8qosmMuj5p67phMJiwWCyaTClRfPhzJx1M8qZuSlW1IUBWLxUJKShY6nWPumWt5GG4JZQlRhSzBQWRNHE3OwB6g1eC6OQrPr35CExNX3UUTolbp0KETGRkZHD16qSXa7t27qFu3Hnv2RNmy7Vunh4WFVzggce5cAv/730dERrZ3Ot9kMrF162Z69uzjMP3rr+dUaH+i8lXHaFfWIVgv519lbeda/GdfN6dOnUK1qDT1rIPqos+f7po/9GeX4Caoeh3bEk45XBcA1Owcx+3ajahx6Muv0WzbQ2TDJmg1GlS9nsDAIPSuLsRnXETNzav2Orgazx0haovadv5LUEKIqqbRYOzajsz7b8XUsima1DTcF/6BcfEaMJqqu3RC1ArNmrXA19ePqKidtmlRUTsZNmwEer2e48ePOUzv2LFzhfZjsVh4/fWXmThxEg0bNnK6zO7du/Dy8qJVK4Nt2pgx41i+/E9OnYqp0H5F5bIf7crKOtpV+/btq69g4rJpY+KI37kLLBZCvH3BJb/louqWH5QI9vSmSd1gLmRlEn0xCdXVhbwO4QAoObkO29KkXMxfV1XZcfQQAN00+d07VBc9Go2G+vXrk2MykZSSXBWHJ4QQVwXpviFENVHreJN9y/XoDp3AbdW/mDfsxP1QNNk3DMQSHFT6BoQQFaYoCu3bdyQqaie33Zafk2f37l08+ujjxMefJipqJ61aGUhMvEBc3Gk6dOgEwIQJ4zh37myx242M7MD7739i+/3777/Fzc2Nm24azf79zpN+btz4Lz179naY1r59R06cOM6XX37G66+/c7mHK8pARruqhcxmPH74k4S9W6BpEE3rBKBa+3DrL3Wr7N4mktOnT7Em9hgh4RGoBXkkNGfPo8/KtiWvtgYloi8mcSYjjfpePjRWCx61C4Id9Rs04gxwJvE8l8KQQghRu0lQQojqpCiY2rQku0l9vFb/C0di8Jj/G3m9O5PXvQNopDGTEFdKhw6dmDPnUywWCxcvphIXd5qIiHacPn2a7du3Mm7cbezatRMXFxciItoC8N57H2MyFd+iybWgyTfAkSOHWbToJ+bOXVBiOf77bwNPPfVskekPPjiZ++67i8OHD9K6dZsKHqUoKxntqvbRXEjGolqITUtBT10aePqgFuR4Ul0uPSJHtg5j7b9rOZaSyImsNJoUtKJw3bI7f1lXV0zhrVAupgOwJja/pVX/xi3RJabkL1MQ5GjYuDE7gTgJSoga6qGH7uXWWyfQt+8AAI4dO8rbb79GdPRxmjZtxieffMaECeOYO3cBQUF1q7m04lohQQkhagDVxwv9/WNJW70Fl3824bp+G9oTp8i5cRBqHe/qLp4Q16SOHTvb8kqcORNPaGgY7u7utG/fga+++hxVVdm9eydt2kTY8kkEB9cv07bz8vJ49dUXmDbtCQICis85cOLEcdLSUunQoWj3EIOhNf37D+Tzz2fz0UefVuwgRZnJaFe1jybhAmcy0sgxmWjiF4DWosHopKWE4leHQU0N/Hg4iiX7d/DwdV0dt5OY3xVDyc7hYGICx1ISCXT3pF3dS9cLa5CjQdMQAE4nXbiCRyZqil69Su76d8899zNp0v9VSVkOHz7EV199xuHDB8nOziYwMIiIiEieeeZF9AXn+4YN68jMzKRPn/629T77bBZ169bjjTdm4u7uho9PHa6/fiRz537BM8+8WCVlF9c+CUoIUUMoGgVTl7aYQhri9scadHEJeHy9iJwbB2Fu3ri6iyfENadZs+b4+fkTFbWTs2fjad++Y8H0FigKHD9+jN27dzFw4BDbOmXtvpGUlEhsbAwvv/ycbZ7Fkp9xu2/fbixa9CdBQXXZuHE93br1QKdzfju+//6HueOOW9i5c3tlHLIQwo4mIZHo1CQAWvj4Q6oZClpBqPpLf5PmuoF0rNeQ7QmnOJqRxoodmxlrtx0lzwhA5sU0Fh/bB8CNLcPRKHatHQu6bwTVr4+rVseZlCQsFott9B9xbfr995W2n5cv/5PFixcxZ8582zR390tDyqqqitlsLvZ+cDlSUpKZPn0yffr048MPP8XDw4P4+DjWrl2DxWIG8s/PRYt+5vrrb3AYVSg+/jRjx95KcHCwbdqIETdw9913MHnyNLy95eWZuHwSlBCihrEE+JF11yhc/9mMy459uP+0lLxencnr1RmcDD0nhKi4Dh062YISDz/8KJCfbyIysj1r1qzm1KlYWz4JKHv3jaCgunz77Y8O8+bM+YycnBymTp2On19+k/+NG/9l7Nhbi91eo0aNGTnyJj7/fFaFR/8QQjinSU7lREFQorm7F6ReRHUtaCnhYjdUt4seRVEYG9qOj+IPsWlfFL7ZWgY1NaAoCkp6JhkZGfz41zJSc3PoWK8RYQH1HPZl7b6haDQ0rOPHifRkLlw4T716wYhrl31LOQ8PDzQajW3arl07eOSRB3nvvU/44ovZREef4PPP5/Hbb7+QnZ3lMHz0Cy88hbu7B88/PwOA3NxcvvzyU/7+exVZWZm0bNmKyZOn27oaFrZv315yc3N46qnn0Wrzh5Rs2LARXbt2ty2TkpLCrl3befzxp23TrC09PvroPT766D1by44mTUKoWzc/sH799SMrp7JErSZBCSFqIq2W3MG9MDcMxm3FOlw37kAbf46cGweieriXvr4Qokw6dOjEp59+TF5eHpGR7WzT27XrwNy5XxaMunDpIa+s3Td0Oh3Nm7d0mObl5Y1Wq7VNT0pK5NixI3Tv3rPEbd1zzwOMH38TqorklhCiEqnJFzl5MRmdRkMI+cEIa1BCteu+oep0GCMMBOw/yu23TuCbtStYfWg/h5PP0y6oARkpZ/jv6HZyEs/RvI4/txgii+7LLsjR2D+Q6NQk4uJOS1DiMv36688cOnSwSvcZERHBzTffUmnb++KL2UyZMp169YKpU8e3TOt89NFMYmNjeO21twkICOSvv1Yyffpkvv9+kdM8D/7+/uTl5bFx47/06dPPoSWE1d69u/Hw8KBx4ya2ab//vpL775/IqFG3MHz4DQ4tO0JDw9izJ0qCEqJSSFBCiBrM1KYlWfUCcPttFbqTp/H4ehHZo4ZiaSCJhYSoDB07diY7O5vWrdvg6ellm96+fSeys7No376jQ/LKyvTffxto27YdPj4+JS4XGBjILbfcysKF80tcTghRdqpFJeHsGbJNRlr4BuBSkKRSddJ9A52WnOH9yOsQTqOG9bi/eRP+OPI8p9JSOZWWCjotxo7hdGsYwhi/huRNGofRbMbtt1VoMrPzt2EXlGjkHwjHDxEfd5pOnbpU1SGLGur++x8u13mQkJBQ0BVkOf7+AQDcffd9bNq0kdWrV3DHHROLrBMREcntt9/FSy89g7e3N23atKVLl24MGzbC1v3i3Lmz+PsHOAQsAgIC0Wg0eHh4FMmPFBgYyIkTxytyyEIUIUEJIWo4S4AfWRPH4LZiPfqDx/BYuIScEf0xtWlV3UUT4qrXtGkIGzfuKDK9deswp9Mvh7XZrdXGjf/Sq1efIss52+9DD03loYemVmp5hKjV0jM4lngOgJZ+gWiycoBLQQn7IIKq04FWi6VRfquGeiEhTO/UhxOpScSlp+Ki0xPSticNTsQBkFvHBzzcCpJl5gcl7FteNArMf7EQZzcEraiYMWPGVfk+dToNJpOl0rbXunVYuZaPjj6O2Wxm/PibHabn5eXRsmXxz4YPP/wIt902gR07tnHgwD4WLpzPwoXz+eqrbwkMDCI3NxcXl7IH4V1cXMnNzSlX2YUojgQlhLgauOjJuXEg5vpBuP6zGfff/yY3MYW83l0kz4QQV6l27dozYMDg6i6GELWSmpLGoaRzqDotrf3tWh866b6BXuu4slaLpUE9WioKLf0K3h4XBCTyt1EwrKjWbj27lhe+3j54ubhw7uwZTCbTFUlsKK4ebm6O3XIVRUFVVYdp9rmMsrOz0Ol0zJu3sEg3DE9PzxL35efnz+DBwxg8eBj33fcQt946iiVLfuW++x6kTh1f0tPTylzu9PQ0fH39yry8ECWRlL9CXC0UBWPXdmSPvR7VRY/rfztxW/IXGItPuieEqLnuuGOijPEuRDXJjDtLTFoy3r6+NPSqY5tuS3RpF0RQnQQNssdeT167sEvL27MGI3SXghKq3c+46Gni7YfFZCI+Pg4h7Pn6+pGcnGT73WKxEB19wvZ7q1YGTCYTFy+m0qhRY4d/1iTKZeHl5UVAQADZ2fmteQyGUBITL5CZmVGm9WNiTtKqVWiZ9ydESSQoIcRVxtyiKVl3jcbi643+8Ancf/wTsqX5nBBCCFFWh7bvRFXBYGjt8LbZllPCfvQNnbbw6qieHuQO74e5Qb0i82y0do/ZdoEN1cuTZnX8UXLyiIk5WfGDENekDh06ceDAfv7+exWnTsXyySfvc/Fiqm1+kyYhDBw4mFdffZF//13HmTPxHDiwn6+/nkNU1E6n2/zvvw289tpLbN78H3Fxpzl5MprPPpvFyZPR9OzZG4BWrULx8anDvn17Sy1jbm4uR44cchi9Q4jLIe3FhLgKWYL8yZo4Bvefl6OLS8BjwWKyx49ErSNjRQshhBClObAn/4uXoX17OHgpt4NqTWxr331DWzQoYVvezUlLCes8rfOWEub6QTTzDUC5cIKYmJP07du/nKUX17LrruvJHXdM5KOP3kNVLYwdextdunRzWOaFF17l66/n8Mkn75OYeAE/P38iIiIZNGio022GhDTDxcWFjz9+n/Pnz+Hm5kbTpiG8/vq7dOyYP+ynVqtl+PCR/PXXSrp371FiGf/7bwN169YjIqLoSDNCVIQEJYS4Sqke7mTdfiPuS/5CdyIWj29/I3vcCCz1AktfWYhKdOklo1rSYuKqlf+5Svoaca0w5uVx4NhR9DodzTq2dwxKuFlzStg9Ipdw8jvtvmFlH8ywaylhCQ6ikVcdXGNziI2NwWw2oy0h8CGuDWPGjGfMmPG23zt27FxsQuX/+7/J/N//TS52W3q9ngceeJgHHni4TPtu2LARTz/9QqnLjRt3BxMnjufChfO27oWLFv1ZZLlffvmBiRPvK9O+hSgL6b4hxNXMRU/2LcPIaxeGJiMLj4W/o4lLqO5SiVpGo9ECCnl5udVdFHEFmM35eWvyP2chrn5H9u0lNzuH1k2b4eJRKDGgNdGlffeNkriUFJSw775h11IiOAiNi57mFh2m84mcORNf1qILcUUFBgby1FMvcO5c8c+SaWkX6dWrD4MHO2+VIURFSEsJIa52Gg251/dF9XTHddMuPH78k+yxwzE3bVjdJRO1hKIoeHr6kJaWDFAwpFhNea2uYDJJCw7nylI3Kunpqbi6ehTJ8i7E1WpfVBQA7Zq3cggcqBoNaAp+15ctKFG4pURun66X5jl037B75HZ1Ie+6jrQ4cZjDFy8QE3OSxo2blPcwhLgiSutO5ONThzvumFhFpRG1hQQlhLgWKAp5fbuBix7XdVtx/3kZ2aOGYm7ZtLpLJmoJr4Ls9fmBiZoTBNBoNFgslTee/LWkrHWj0Wjx85NRQkQNlZuH259rMHaJLFMwPicnhyOHDuKq1WEIaY7ZvtuEfcsGrQZTy6ZYfErO1WQflMgZ1BNjF7s+9g7dNxxbGplCGtHCLxAunuX48WP07t231LILIcS1SoISQlxD8q7riKrX4/bXRtx/XUnOqCGYDM2qu1iiFlAUBW9vX7y86mCxmFFrQFxCo1Hw8/MgJSULi6UGFKgGKWvdKEp+UEJaSYiaymXzLvTHYtAfiyH92YcuzTCZUPKMqB7u+b+rKsrFdPYePYQ5N5e2QfXReXlidghE2AUOFIXsscNL3b99UEL1cHOcab9tjWOPadXDjcbedfDQaImJOUlubi6u1iSbQghRy0hQQohrjLFzW1S9Drfl63BbvJrs0UMxtwqp7mKJWkJRFLTamnFr0WgUXFxc0OnyJChRiNSNuFZoMrKcTnf/bTW6E7FkPDwBtY43rmu3oN8Sxc7cBDCZ6d6gKaq7a36XjQJqRZJNOoyq4Tg8qP2IG4WTZaru7mgUDaG+QeywmImOPkFYWJvy778WkaTKonaoncmlJdGlENcgU7swcob3Q7FYcF+8Cu2J2OoukhBCCFH58vKcTtYV3Pe0BcmfXbbu5nR6KucPHqZ+HT+aePuCm1uxySjLyhLgB4A50A/Vv47jzJKSw7q5oCoKrev4A3Ds2JFy77u2kaTKojaorcmla8brLCFEpTO1CyPHouK2cj3uv64i+5brMTdvXN3FEkIIISqNJiO76ES7/mNKQdBC1WrYevYUmC10axGKciEb1d3VscuGtvzv6iz1Asm8axSWuk6G4y4pyKEoqO6uhJp8ITeLI0cOo6qqdJUqQc1JqiwJlIsndVOy0uqn9iaXlqCEENcwY4c2YLHgtnoD7r+uJPu2kZgb1a/uYgkhhBCVQkm5eOkXkxl0WpSsS4EKbfw5VL2edFR2nYvDxcOdDg2awoXDqG5uDm2kK9R9A7A0DC6mcCWvp7q7452VQ+P6DTl9No4zZ+Jp2LBRhcpQW9SEpMqSQLl4UjclK0v91Nbk0hKUEOIaZ+wUAWYzbms24f7LcrLuuBlL3YDqLpYQQghxeVTVIQChZGah1vFGSUmzTdPvO4J+3xHWnzyMyWKhV/0muBV8KVDdXR07blcwKFF8+UqZ7eEGSRDRoiWnz8axf/8+CUqUorqTKksC5eJJ3ZSsLPVTm5NLS1BCiFrA2LUdSlY2rpujcP9pKVl3jkL19anuYgkhhBAVZzI7NEawBiU0qWkOi+WaTGyKj0GrUejToBlKVg4Aqnvh0TIqOyhR8hcz6/4jQlqwYuM6DhzYx5Ahw2rlF5Lyqq6kypIkuHhSNyWT+imZJLoUopbI69uNvPZhaDKy8PhxKUqm84zlQgghxNVAMRodfy+4r9m3ngDYfCaGbJORDnUb4ado0cbGg06H6uPlsJyqq+TH4tJe47voAfBz96RRo8akpCRz5kx85ZZBCCGuAhKUEKK2UBRyh/bBGNoMTcpF3H9ZAYUe6IQQQoirhtHk8KuSnT8qg5J7aUSOHJORdadPoCjQv0nL/PkmM9peHcDN1XF7Vd19wzocqdlCREQkAAcO7KvcMgghxFVAghJC1CYaDTk3DsLUKBjt2fO4/flP6W9yhBBCiBqoSEuJnKJBifWnT5BpzKNzcGPqelxqGaEEFx0to6KJLotXyv21YLQPzbkLdIhPBYvKnj27JVGgEKLWkaCEELWNTkfOmGFYfH3QH4nGZd3W6i6REEIIUX55hVpKFApKpJny+DcuGp1Gw5CmoY7LFm4lAaCp5FwOpQX9C1pKuK3dQr0TcbTSu5OWdpHo6BOVWw4hhKjhJCghRC2keriTPW44qpsLrlui0O8+WN1FEkIIIcrF2lJCLcjNoOQUtJDIzQ9OLI07Tp7ZTI+GIfi6uTuu7ObibIuVW8AyBiWsOoeGA7Bz5/bKLYcQQtRwEpQQopayBPiRPXoYqkaD66oNaE+fqe4iCSGEEGVXkFPC4p3fLcO+pUR0ahK7khLwdnFlcFNDkVUVVyctJap40AtV6/gYHt6oKa6ubhw8eICsLElGLYSoPSQoIUQtZm7akNyhvVEsFtx+W42SllHdRRJCCCHKRCkISlhH0bAGJSxZOfx2bB+mpg0Z3rMvbjp90ZWroKWEMbI1ALk9OjpfoFBLCb3JTLt27bFYzOzZE1WpZRFCiJpMghLXuEceeYQuXbowffr06i6KqKGM7duQ16ENmqxs3BevApO5uoskhBBClK6g+4bF2xO4FJRYd2gv5zLTaRYWhuHpRzE1bVBkVcXVSVCikltKWBrUI/2J+8jr2835AoUSayo5eXTpkr/sli2bUCURtRCilpCgxDXujjvu4J133qnuYogaLndwL8wN66E9cx7XvzZUd3GEEEKIUtlaShQEJcjJJT4+jr+P7EOv03HjzWNQFAXVxUkAoipySgDonbTSsCrUUkLJzSU4uD4hIc1JTk7iyJHDaI+dxGP+ryhZ2ZVfNiGEqCEkKHGN69atG56entVdDFHTabVkjxqKxdMDl92HJPGlEEKIGs+W6NLDHVWjwZSZxaJFP6GaTIwIa09gYMGwn85aRTgLVFRzTgklO7+lR48evQDYvPk/PBatRHvmPLp9R6q2cEIIUYUkKFGNtm/fzoMPPkivXr0IDQ1l7dq1RZZZuHAhAwYMoG3btowbN469e/dWQ0lFbaB6e5I9emh+4svVG9GcT6ruIgkhxFUlOjqaW2+9lZEjRzJ69Gh27NhR3UW6Jimpaei3RKGNzU/QrLroUd1c+HPPNpKiTxLqG0j3FpeGAFV12qLbcDr8ZxVHJYq0lMgfPSQ0tDV+fv5EHz/G2Yy0/Jk6HVgsuC39B93ew1VbTiGEuMIkKFGNsrKyCA0N5aWXXnI6f/ny5bz11ltMnjyZxYsXExoayn333UdycrJtmZtuusnpP7NZ8gKI8rM0Cia3XzcUsxm3Jashz1jdRRJCiKuGq6srb775JkuXLmXmzJk8//zz1V2kq5LmQlKJ3RXcVqzDbe0WdNGn8ifodWxWctl69hR1LqQyLrQ9uNmNrqEpGpRwqopjEkWCEgU5MTQaDd2794CsbNadPpE/LzsH7Zlz6PcdwX1Z0ZdYQghxNdNVdwFqs759+9K3b99i53/99deMHz+eMWPGAPDKK6+wbt06Fi9ezKRJkwD4/fffq6SsABqnbxXKv/7lbudaVJPqxty9PabYeHQnTuH210bybhhQbWUpXC81oX5qGqmb4kndFE/q5spo2LCh7efmzZuTnp6OqqooitRzWSlZ2XjMWwSqStY9t2CpF1hkGU3yRYffTyclsvjMCbSKwl1NwvBxdcPoX+fSAtqyvoOr4s+pcLkKghIAnTp1YcOvv7H7fDyDQwz4ZGZDdk7Vlk8IIaqIBCVqqLy8PA4cOMBDDz1km6bRaOjRowe7d++u8vLodBoCArwqZVt+fpLjojg1pW7UiTeS+97X6PcexqNtC7Sdwqu8DHq9tsg5V1PqpyaSuime1E3xpG4cbd++nblz57J//34uXLjA559/Tv/+/R2WWbhwIXPnzuXChQuEhYXxwgsvEBkZWWRba9asISwsTAIS5aRJTEGxWABwXfMf2bfdCPZ1aLGgpGfafk3Nyeb7lX9gspi5uUUbmtfxz1+s7qVghqqtmS0l1EItJTTZOegOHcdkaIarqys9I9rzz/7DrIk9xuiOkWgu2g3bbTYXGb1DCCGuVhKUqKFSUlIwm82XkjQVCAgIIDY2tszbeeCBB9i7dy/Z2dn06dOHL7/8ktatW5e7PCaThbS0y8v8rNEo+Pl5kpKSicUiw1zZq4l1o7lhEG4Lfyfvl9Vk1/FF9atT+kqVyGg0k5SU/wBWE+unppC6KZ7UTfEqq258fNzR66+dL0bWbpWjR49m6tSpReZbu1W+8sortGvXjvnz53PfffexcuVK/P39bcvFx8czc+ZMvvzyy6os/jVBk3KpFYQu9gzeb39O9sgBmNrm54hQ0jNRCobKzDYZmbtvK6khwXTo0oWeJ9Ns65rrBlzaaKEWCebG9Z3vvKoDSJqiLTjcl/yFqXkTsseP4DpDGFv0enadi6Pf+fP4eV8K1CuZ2ag+lfOySAghqpsEJa4y5W0GWpkPRJX1UG+xqPIFoRg1qW4sTRqQ17MTrv/txOWPNWTfcZPTB6grWoZCdVGT6qemkbopntRN8aRuHFVGt8qMjAwefvhhXnzxRZo2bVrhstTWLpPWoISxrQH9vqMAuBw4iqVd/gsVTXp+sNpkMTN//3YSMtNpGTmYUaNuQfnw60sbqhdgO3bFLtFl5mP3onF3xRMndaMoVVpfSjEBPV30KTRGI65o6N2oOatOHmHt3l3cEhRkW0abmYXF1/uKlOtqPXeqgtRN8aRuSib1UzIJStRQfn5+aLVaEhMTHaYnJycXaT0hxJWS17MTuuOx6OIS0G/fi7Fb++oukhBCVIuydKs0m808+uijjBs3jl69elV4X7W5y2ReRiYWwLN/F9SOYRjn/4425aKtPswnjWRbzMzfv4MTqUk09K7D1EcexkWnJ9duO34NA1Bc9ACYgv0xFUwPaHTpGcpaN9ZMDW5ebnhXUr2XhbmOJ8Wlk/bTg1mj0qthMzbGnWRX7An6nonH2sbDR7GgvcJlvdrOnaokdVM8qZuSSf04J0GJGsrFxYXw8HA2bdrEgAH5iQYtFgubN29m4sSJ1Vw6UWtoteTcMACPrxfhun4b5hZNsAT6l76eEEJcY8rSrfLff/9ly5YtJCYm8vPPPwOwYMECfHx8yrWv2txl0u1CClogRdFDo4a4B/qhSUwh6fQF8HBHOZXA9/u3c0hnoX4dX+547lkyMoyAEQ9FsXXtSE7LAaUgTNGsKS7d2mEKa0lmUkaRutHcfgMuG3eS1aU9alJGsWWrbNrMXNyKmXfxXCq61EzcdHoGhxhYcnw/f0Zt44EW7QDIOJOIqUEx3VAu09V67lQFqZviSd2UrDLq51rrMmlPghLVKDMzk1OnTtl+j4uL49ChQwQGBhIUFMQ999zDU089RXh4OJGRkcyfP5+cnBxGjRpVjaUWtY0lKIDcPl1xW7sFtz//IeuuUZJcSwghCth3q+zfvz8HDhyolO3WmC6TqgomM+ir6JHRmN92wKLXg0XFHBSQn/zyfDLZ9QL4+Y9fiU6+QGD3ztzx5FO4eXldOj6dFowmVL0Oi1pQdgBFQ86AHvk/29WFtW4sTRthatqoyPwrTVEudYlUNRpbgk8ANScPcvMA6F6/Kf/Fn+ToubMc8atPqH9dyMm94l/8pHtX8aRuiid1UzKpH+ckKFGN9u/fz1133WX7/fXXXwdgypQpTJ06leHDh5OcnMwnn3xiy/L91VdfOSTTEqIqGLu2Q380Bm18Ai6bo8jr1bm6iySEEFWqtnardF27BZetu8n4v9tQ/X2v+P4UY0FHi4I8EKqnOwA5m3bw3e+/EJecRLCnNxPuuQ8PL8fuC6pOh2I0oequksdbuwScqpsrSpZd65g8I0pBUEKr0TC8eRjzD+1i6YmDtPILBGs9CSHENeAquWpfm7p168aRI0dKXGbChAlMmDChikokRDE0GrJHDsBz7s+4/LcTU1gLLAF+1V0qIYSoMrW1W6XL1t0A6A8cI693lyu/Q1NBUKGg9Ynq5sr5rAy++vFbUrKzaO4bwMTwzpjrBxdd15rQsqpadVwujWNQArughJKbB3n5QQmLuxvhAcE09/YjOjWJ/+Jj6GZsnz88ak4uqod7VZdcCCEqVdWm0hdCXLVU/zrk9e6MYrHguvLfS81ihRDiGpGZmcmhQ4c4dOgQcKlb5YULFwC45557+PHHH1m8eDEnTpxgxowZtadbpV3XgitJMZouBReAAwnxzNq1gZTsLNrXbcD9kd3w0LuAq0vRla23pSoeKaqiVPtyurk6zFPsWkqoHu4oisLNLSPQKAqrTh4h9WIqLhu24/XxN2jOXqjKYgshRKW7SkLJQoiaIK9LJLr9R9GdOoNu3xFMka2ru0hCCFFppFtlIXaBCE165pXfX0H+CtXNFYvFwpo1q9nwzwp0JhMDmrRkWLPWJQ+LbsshcZUMuWfffcO9cFAiDyUvP7+G6uEGSVDfy4e+jVuw9tRxlm/bxN2++XkwXLZEkTNqSNWVWwghKpkEJYQQZafVkjOsLx4LFuP6z2bMLZtKs1EhxDVDulU6UtIujUShpFyslG1qzifhunoDOdf3Qw3wdZxptqCoKkl5uXz39RxiYk7i5u7BnRFdCA/M765hcXfD2CHc+cYLghLq1RiUKNRSgtz8lhKqix7scmQMatqK3efj2Rd7goMmHW0Cg9EmnL+0ydh4NAkXZAhvIcRV5epo3yaEqDEsjYIxdmiDJjsH17Vbqrs4QgghrhDNxfRLP6ekVco2Pb5bgu70WVzXb0G5mO7QFVDNM7I94TQfbv6LmJiTBAc34OF77rMFJFRFIfPRu8nr29X5xq+ylhJq4ZwSdpTc/NE3VBcXVLvuLHq9Cze3jEDJzuHXo3vJMuahSU2HnPzhTz2+/wO3fzajSUypmoMQQohKIEEJIUS55fbtjsXDHf3ew2hPnanu4gghhLgCFLsuG0pB0sXLoTt8wpYnQXcsFq9Pv8Nlw3YAUlKSWfj9t/x8eDd5FpU+ffrx4IOTCQiub1tf9XArMeCg2IISl13UqqG5FGwoEpRIS0dR1fxj1jku1yYwmM6+dUnLy2XxsX35m0pMccz1lHv5n5cQQlQV6b4hhCg/d1dyB/bA/c81uP79H1l3j7lqEosJIYQoG6Xg7TsAJnPFt1PQDcR11b+XphXkq9Bu2MbW5ctYnZVMnquO+u6ejOk3lHqDhwGOX9ZVd7dS9nR1tZRw6L5RKHGnJjW/ZYrq4Q5au6CEe/4oHTe3jOBESiK7z58hIrA+hqQUVF8f23JKds4VLrwQQlQeCUoIISrEFN4K8879aM+cQ7f/qCS9FEKIa4z9F1tFVfMTX1YgAO31vwVFpqmqyt4LZ1l58jCJ2ZloNQoD7p/E9XXOoNRrgHVwTIegRGk5jKwNBa6WoIR9XdoFHuBSdxnVw92h+wZu+YEZN52eca3b88XRKH47tpcpp/rg6e9rW0yxG15UCCFqOnm1KYSoGEUhZ1APAFzXb4WCLOFCCCFqFuViOp6zv0W/Y1/51rNvKQFFW0sYTfl5IUpidlzHXL8ux1Iu8MmuDXx3cCeJ2ZmE+gfxeOd+DOzWE71Wi6q3e2dm93PhESqKsI4WcpUEJRyGBNU6PpIrJlP+Mh5uRVtKFGjlF8R1kR3JMhr5afUy1KRLeSSkpYQQ4moiQQkhRIVZGgZjbNMSTUYWLluiqrs4QgghnNDvOYQmPRO3vzY6DPNZmsJBCesXZSv3H//E69PvUEpIgmndhqqqHExM4H97NvHlvm3EpV+kkXcdHmjXnfsiuxNQv/6l7esdG/IaIwxYfL0xti2lRd7V1lLCvvuGi4vTRVRPd8ecEi56h2DGsL4DaODlQ8yZOP75d51tui0oYbGgZGZVbrmFEKKSSfcNIcRlye3XHd3Rk7hs3YOxfRtUH6/qLpIQQgg72vhzl34+fRZz04ZlWs8WUNDrUIymIi0ldHEJALhsjUKbkEj2Ldejenk4LGO6mM72hNOsP32Cc5npmBsFE+znz9B6TYkMqo9SEEBQcvPAWNA6QOfYlSHnhoFlO9CrbPQN++4bplYhGNu0xNSqGe6//2Wbrnq42+oFyB8eVK+zJbLU+vsxIbwzH+3bzLqo7RgCQwj1r4uSlR+UcNm4A9f/dpJ51ygsDYOr5riEEKKcpKWEEOKyqHW8yevaDsVkwnWdDBEqhBA1jTY+wfazklrK0J5GU/4oGSlptmEmVc+CQIN9UMKuFYVL1EG0Z8+j333QNu3cuQSWLfuTdz9+j58P7+ZcZjohdfy5Y9ztTB92M+3qNrAFJCA/AKLkFmxTr6/YgV5to2/Yd9nQ68i5aTCmNi1R7btreLjnByKsv2u1qPa/u+gJCAhkbPNwsFj44VAUKTlZtpwSrv/tBMBle/m67gghRFWSlhJCiMuWd11H9HsOoz9wjLzuHbDUDajuIgkhhID8vA92b9o1WSXnGnBftAJdTBymJg1sLSUsXh5oUtNQzGZbDwnt+aQi66Yac9mz+T/27t1NXNxpAHRZWbQPakCXQQNp3LcX5pBGWDZsB7vWG7ayFeSnKNxSoqyMkaG47D6EydC8QutXOfucEvatO/Q6Wy4Oi4c7SqHgBYVybqjenrQPrE+0l57NCZv5ev92/i+ksUNXHenCIYSoySQoIYS4fC568np0xO2vjbhs2E7OmGHVXSIhhBAUTXhofYOujYnDZdtecvt0wRIclD9TVdEWdMnQxiWguruhKsqlUS+sLSVUFU1yKqqqkpidyZHk8+y9cJbjsVFYgvwBCAgIpHPnrnTRuBO4fge5rQzkNWucv5nQ5rY3+A5ls7bi0Ffs8TR3cG9M4QbMja7ubgqqXncpn4e7q2NLCZ1jIlBVq83vMnMObmgSSuKRYxxLSeTnrRsYO/JStxftmfP5LUmulq4tQohaRYISQohKYWwfhsuWKPRHT5KXcOHSQ64QQohqY80toLq6oOTmoWRmQ3YOHj/8CYDF1wdTeiaum6PIGXCdLdmkUpAg0eLuZku0qJhN5O7YS8IPizjkAicOHSQp+9IbeN9GQYT17ENERFsaNmyEoii4FAQfVA8323KWeoFk3zgQ9z/WOJRVk2ptKVHBx1OdFnOTBhVbtwZR7bqvqC4ujsOFarUOQQr0OiwFeTx0aelMaNOJWbs2cuDsaQJWLOfGgsUUkym/y437pc/BKYsFl+X/YmreANqEVtIRCSFEySQoIYSoHDodeT064bbqX1w3bCd77PDqLpEQQoiClhKWAF+0Z86jZGWjPXvBNluTlIzHzvx8Ax6/LHdYNc9s4mxOJqdPHiPu8G6OzznDxS2OLRwaePkQ6l+X8MBg6t04DON1HcFiQRsbj7lJA1tLDbXQl2FTuAEKghKqTodiMqG5eHktJa5G2SP6F2294GLXEsLVxaE7i9OWEgUtWZScPDz0LtzTtiuf7N/K2q3/UV/nT5fg/BYqGmuQqQTamDj0ew5h2nNIghJCiCpTe676QogrztiuNS6bd6E7HovmzHksDepWd5GEEKJWU2xBCb9LQYmES0EJ49nzJGamk5qTRXJONqm52STo4PzZMyRlZ6HW8UZ1dUFzPglLXjr1PDxp4uNHK98gDP5BeLu42raVW9C9Q7f/KO7L1mIMa4GSnglQZFQOe5Y63miTUlCsLSW0FcspcTUyRRYd5tS+pQR6nWNLCZ3OMRGoXgcujolB63p4MaFtF+YknmTRkT146vS0CQxGyciCQP8Sy6M/cMz2s5KeCZ7Ff25CCFFZJCghhKg8Wi15PTvhtmJ9fmuJ8SOqu0RCCFErxcfHsW7dAdJ2HkI5fIAcSwocOkH2Ycjc5krumQQyjUaMFnN+wkW7pIjmBnXRZmcR4O5BQCsDwb7+tEhIpWkdfzz1LsXu05pQUxedn+RSf+hE/vYC/TA3qFdkeVOLJuhOnMIU0Qrt+m2XBs3Q1vLB4exbiiiKrfsMADotqtulQJCq1eZ38Sgk1DeQseEt+PXEPL47uIsH2nWnXhmSXWrOJTr8bG7epGLHIIQQ5SBBCSFEpTK2Dc1vLRF9Ck1cAparPOGYEEJcjTZv3sThw/vIOxGHJiEBsxtoUi+gmMyo7q5o8nJwC/DHLysPX1d3/Nzy//m6euB9y0iartuBq05HzvB+KCkXcd0cVeo+NReScV25Hk1SisN0Y7swx5EmCmSPGYaSmY2Snokr2y7NqEUtJZwpnFOj8BChqvuloAR6HWqhlhKqooDZTPuQlhhbhvP76WN8vX8b98Zdh3+4ocR9a9IzLv18LhGsQYk8Y36wRBJlCiGuAAlKCCEql1ZLbs/OuC9bi+t/O6W1hBBCVIORI2+kT5/ryF7+H24HjmEa3g+37fvwSMvE3cUVdxdXzOGt0O89XGTdzObNcd24GwCLjxfatEtfVHP7dcd13Ran+9RFn3I63VK/mK58Wi2qj1f+qBD2nAQwajW7lhLmhvUcWjOg0xbpvqG6uaLJzkExmujdqDkpvl5s2LGVr5f8wsROkQQGBjrfT24eSk6e7Vel4HPXxsTh/ssKjB3DyR3Yo/KOSwghCshVXwhR6UzhrbD4eOW3lnAylr0QQogry83NjbCwMAx+gTT3DaBRs+Y0CK5PoLsnnlod+HihuhbTFcNVT/aNgzBGGPJHs7B7c2/x8Sx3Wcz1ivkSXED1dHf8vZZ331DsutIA+a0UCqieHo7dN3S6op9jwe9Kbn6AYWjPvnSr34T0i2nMm/clSUlF78tuS1bj/cHc/G0WtMRQMvK7e7gvWoFiMqHbd+TyDkwIIYpRu6/6QogrQ6slr2s7AFy27K7esgghRG1W8MVUdXVxGAHD4uVRbFBCdXHBFN6KnBsG5rdmsB/9wce7TLs1hrfK34+PV5E3+UUU/mKtqd3dN7A4thyxJo02RuR3vbAPSqDTOnTfULWXRudQcnLzJ3p7MsYQSZcmzUlPzw9MXNy8A21svG09a/4PAHP9/PwfSkYWqKotV0jhEVSEEKKySFBCCHFFGNuFobq5ojt4DOVienUXRwghaiXFmP+WXdXrHd+we3uWEJQoFESwC0pYyjgag6lZYzKmTiRz0rgyLe9QllreUqJwdxbV04P0Jx8gZ0T//N/tgxIaDdgnutRrL+XkKAhKqK4uKIrCmA7d6NChE2nJycx/600yv/o+fznjpZYYAJb6QaCAkpEJBQEJAE2Wk0SZFgsu67ehsRvRRQghyquWX/WFEFeMi568ThEoqorLjn3VXRohhKh1TP/uQBtT8DbcVQ92CRJVL0/HL7f2CucosE88WVqrhwLmxvXzhwEtbh+F2SdzrO05JVRL0Wk67aVcG+6OderQUkKns7VssbWUsHbnsKjcfPMYOrQwkJqbw6e7/+Ns3GmUtEyH7VkaBYOnB0pmFordiB1KTh4UDPtqK9axGFw37cTz60UVOlQhhAAJSgghriBjxwhUjQb9nkMOfWKFEEJcYbl5mJb8Y/tV1esdu294e9q+rAJY7JvmlxAUUO2Gq7QU05w/65ZhqL4+5SqufReR2j76RuHuG4Wpbo717jAkqE5na9liDUrY5lssaDQaxnbtTY+GIWTk5TH38085dfiQbfW8Dm0wt2iC4u2JYragSUp12JdSeFhR+/wXhROWCiFEGUlQQghxxaheHpjatETJzUO/XxJkCSFElTFdanavQv7QkXZfZi3+vg5dJlT/OsVuSrFrwo9dUEL1Kxp4UN1cMLdqVv7y2nfZqOXdN0yG/PrLa9/G6XzVrXBiS7uWEnqdLaij2HXfAGwBBG3KRW5uGcGgpq3IS0vnmx8WcDjpHLk9OpI7rC8oCoqPV/6yhZJVK5nZjvu2OzcUu1FahBCiPGr3VV8IccXldW4LgH7HPnmLIoQQVcQhkOCiB0WxjaoAYKkb4BCUsJSUwNI+54BdKwqLb9FARuG3+GVm3zqilgcljJ3bknnnKHKH9HI6v0i3G/uWLfbdN7Jz8pe3dd/ID0poklNRFIWhzVozoksPTNk5fL1/O1tPn7y0He/83CGaxGSHXRVuKWHrIgJo7YcqFUKIcqjdV/0S5OXl8dlnn3H4cNHxu4UQZWepXxdzw2C0SakOmb6FEKI0ci++DPZBiQKqa/GJLlXv4of6VP19gfwRO+xZnHTRKDZPRSlUySlxiaLk53UorhuLTkfmvWPJeHhCkVmq7lKiS1tgqlBLCetQnwC9m7ZkXLfeKAos3ryeVatWoKoqSsEwrZrElPxVPfKDTdZAh62o2ZeCEtgFKIQQojxq+VW/eC4uLnz++eekpaVVd1GEuOrldQwHQB91sJpLIoS4msi9uOIU+9YNBTkKVBed3QKKQxLKwgEHe6ZWIWTfNIisu29xmK76Fm1dYZ9zoly0klOiPCz1AlHrXKp/S8FnoXp7Fqk/taB7h5JnxO3XlejiEmzzlOxcOjZpwQOR1+Hu7sHGjev5/vsFGAuSZ1qDEtYcIUqh/FD2LSWUQkkwhRCirCQoUYLIyEgOHDhQ3cUQ4qpnat08f3jQoyeLJskSQogSyL24guxbShS8Ibc0qEfO4F5k3pMfXHBoKVFM0koAFAVTm1ZFWlPYr5MzsAeqVoO5UXDFymvfZaO2t5SogJwhvckZ2IOcYX0dk4ZyqYWMJvki+qMnHeYpRiOK2Uxz3wAevGMi/v4BHDx4kP+t+J3UnGwUc36gwWINgJgcW+DYByUKzxNCiLKqYDi75jp27BjR0dG2tyo+Pj40b96cVq1alXtbTz75JE888QR6vZ6+ffsSEBCAoigOy7i7u1dKuYW4pul0GNuG4rJ9L/q9h8m7rmN1l0gIcZWQe3HFKE6CEigKxoI8PwBotRgNzWxJiY0nYjFGhJZ5H6qrCxkP3gE6Daq3F8YO4baRH8rL/ou0WstzSlSEuUVTzC2a5v+iLVSXJdVnntE2PyCoLg888DA//vgdcQf28/GxKCa06UQL30DUgpwjhVtDSEsJIURluGaCEosWLeJ///sfCQkJqIWS6SmKQv369Zk8eTJjxowp8zbHjRsHwOuvv84bb7zhdJlDhw45nS6EcGTs0CY/KLH7EHndO+Q3HRZCiFLIvbiC7EdFKGGxnDHDLv08amiZNp3XrT26IycwN6jnMBoHFe26AaCxC2ZIS4nLouoKfSYl1KeSZ7zU5UanxdPTk3vvvZ91v/zAhgMn+HLPFkY0D6PL4IKkm0ZpKSGEqHzXRFBiwYIFvP3224wbN44RI0bQvHlz6tTJzwh98eJFoqOjWb58OS+//DI5OTnccccdZdrum2++WeRtjBCiYiwBfpgaBaOLS0AbdxZz4wbVXSQhxFVA7sUV45BTopLlDriO3P7dKze4rJPRNyqNXf2puoKRVxQFxe6lnarXoRhN+TkirB9jwWeg1Wq55ZaxNPjvAL8e3cuf0Yc48d8/3G7SoBQOPNi3lMjJxXXZWpTcXHJuHFzhVjNCiNrnmghKfPPNN0ybNo3777+/yDx/f3/8/f3p3Lkz9evXZ968eWUOSowePbqyi1otsrOzGT58OCNGjOCJJ56o7uKIWszUNhRdXAK6fUckKCGEKJNr5V5c5ZyMvlGpKjlQpEpOicpjHwywtoLQasC+e4VWA0byh3stqHv7FhaKpzudgxtT38uH+Uf3sPfEURJPX2Bs8wYE2O1Kyb0UlHDZud/2szE+AXPThpV5VEKIa9g1cdVPTEwkMjKy1OUiIyNJTCz/GMrHjx9nyZIlfP7551y4cAGA2NhYMjIyyr2t6vD555+XqX6EuNKMrVugarXoD5248g/MQohrytVwL/77778ZOnQoQ4cOZfny5dVbmKvtGquV7huVxT64YMvVUahO1YLuMkqe8VIuCPtgRkES04ZedZgyYDihLVpxPiuDT1csZtOmjbau0sXlkdDGn6uMQxFC1BLXREuJ0NBQfv75Z7p06YKmmBuZqqr8/PPPhIaWPYFTZmYmzz33HKtWrUKn02E2m+nduzdBQUF88MEHNGjQgKeffrqyDuOKiImJITo6mv79+xMdHV3dxRG1nZsrJkMz9IeOozt2ElOb8iegFULULlfLvdhkMjFz5kwWLlyIVqtl/PjxDBo0CBcXl9JXvgLsE11m3zSoWspQLjIMaOXROmkpUeT5WEXVavMTXRaMwqJq7VpKaDWoWi2K2YyXSWXC2NvYfTSeP1LiWbFiKcePH2P06LF4mYsLSiQ4nS6EEM5cE6Hop59+mn/++Yfhw4fzwQcfsGTJEtasWcM///zDkiVL+PDDDxkxYgRr167lmWeeKfN23377baKiovjmm2/YtWuXQwLNvn37smHDhssq9/bt23nwwQfp1asXoaGhrF27tsgyCxcuZMCAAbRt25Zx48axd+/ecu3jnXfe4bHHHruscgpRmYxtDQDo9x2t5pIIIa4GV/peXFn27NlDaGgogYGB+Pn5ERkZyc6dO6uvQKb8nBI5Nw26KgLAqgQlKo/9SCYFQQm1UFDC1KoZqos+P/eINU9EoRwQ5pb5o3koeXkoej29GjVnSt/rCQwM4tixI8ye/REHz51xWgTN+aTKOhohRC1wTbSU6NSpE7///jtfffUVf/75J//P3n3HR1HmfwD/zMz29EYgobcQQgJIR7qiiKdgPxV7ORunnvUsd+p5ds9T7jxFEevpTz3LqQgcKhaa9E5IaCEJ6X37zjy/P2ZndjfZTXaT3WzK9/16+TI7OzvzzJMlM/Od7/N9Tp065fN+v379MHPmTNx4440YOHBg0Ntdu3YtHn74YUydOhVis0hwRkYGSkpKOtRui8WCrKwsXHjhhVi6dGmL91etWoWnn34ajz/+OMaOHYt33nkHN954I1avXo3k5GQAwKJFi/xu+7PPPsMPP/yAwYMHY8iQIdi5c2eH2kpIuIhDBkAyGiAcLwasNjVFlBBC/In0uVixdetWrFixAvv27UNlZSVee+01zJ0712edDz74ACtWrEBlZSWys7PxyCOPqMMjKyoqkJ6erq6bnp6OioqKsLStPdRMCa02am0ICRW3DBvv6VWhcf/+lboReh1s586Fa8gAaI4Xg7PaPN+VZkEJx4JZgM0Gx+Rx6pCQjNh43HrdZVi16its3/Yr3t67FxP69sei4WNg1GjBeB4s1gSuoUkOdmg0AGM04xYhpFU9IigBAAMHDsQTTzwBQC7s2NDQAACIj49v9/zldrsdiYmJft8zm80QOhjVnz17NmbPnh3w/ZUrV+Kyyy5TpzF9/PHHsX79enz++ee44YYbAABffvllwM/v3r0bq1atwpo1a2A2m+FyuRAfH4+bb765Q+0mpEN4Hq6sIdDtOghNwXG48kZFu0WEkC4s0udiRTgeFHQpDvlGk3Vkms7ORDM1hA3zGjLEtL41JZhOC1fWUPVnAOCsNrnQaLPAAYs1wXqF/PCLa7LI/3e6oNPpsHjxRcgekYVvdz+K7RUlKKytwsUj8zByyDBIyYnQNDSBr2sEX1IGw5qfYbn+Ykipvv9OhCNF0G3bC+vi+eoQEkJI79RNzlShMRqN7Q5EeMvNzcWXX36JWbNmtXhvzZo1GD9+fIf3EYjD4cD+/ftx6623qst4nsf06dOxa9euoLZxzz334J577gEgZ04cPXq0QwEJnu9YlFv5fEe30xP1tr4RRw8Hdh2E9tARSOOyA67XvF96S/+EgvomMOqbwLpT33TWubijDwr69OmD8nJPcb/y8nLMmDGj3e3p6O9GmbqR12u7xe/ZOygR6fZ2p+9/e3AGrxt8bbPfP8d5XitBCacLTK9r/Zyrk28ZONGlLs8eMRKjJ83BlycPY0fRMazY+ytOEy1YOPdMJAAQ6hpgWLVe/vjmnXCc71vbxPTxN/J7h4/BNTa4BxTCkSJICXFgqUlBrR9uPf270xHUN62j/mldjwxKhMudd96J6667Dtdeey0WLFgAjuPw448/4u2338aaNWvw/vvvR2zftbW1EEURqampPstTUlJw4sSJiO03EI2GR0pKbFi2lZQUE5bt9ES9pW9YYhbsX66D5lgxYgwCuJiWQUStVmjxnest/dMe1DeBUd8E1h36JprnYkUwDwry8vJw6NAhVFVVQRAE7N69G3/961/btb9wnHMdHIMEIC45DnyYzt+R5Io1QCnNGa7rjbZ0h+9/e0iWBDjcPxvijIhLiYVNuSESPN8tR4wBkns9Tqdt9ZzLXEbYAQiSpK7HmnjYtTpcMWkG8uJT8Z/De7CzsgQF67/BQjEGU+wWKAOu9DwHw8ZtELcfAJ81GLA51H3HJhghBPE7Z2Yr7B99LW/vhXvBRXGWlp763QkH6pvWUf/4R0GJVkycOBFvv/02XnzxRfzlL38BYwzLli3D2LFjsXLlyqhMs8kYA9eOcXkdnefd5ZLQ0GDt0DZ4nkNSUgxqa82QJNb2B3qR3tg3uhFDoN11AA1b9sE1tmW2hNMporpanuqvN/ZPsKhvAqO+CSxcfRMfb4RWG9m0+65wLg7mQYFWq8W9996LK664AgBw1113Qa/Xt2t/4TjnGmwOCAAabC6I1V1n2tRANGYHlN6qjnB7e/rfBs7qgsn9s01kaKhuglGUwAOQmKd/9eDVGwGJ51s/5zIGE8dBsjnV9biGJpgAuDQa5KT2xZCEZHwFM7ZUFOP/CnZhy9siLjGkoo8pFg6zDfyJU+AbmiBt3efT3qbKBriC+J1zlTXqcdX/egDiiMHt7qP26unfnY6gvmldOPqnM8650UJBiTZMmDAB//73v2Gz2VBfX9+hGhWhSEpKgiAIqKqq8lleU1PT4qKos4TrD4wkMfpjFUBv6htn1lBodx0An38MUq7/tM3mfdGb+idU1DeBUd8E1l36Jlrn4rY0f1Bw1lln4ayzzgrLtjv6e3FOyoNuQF+IifHd4nfs3cLOam93+f6HivOqIyIJgnyMXrPWKMfMvIqgMmU9Ly36h+PAN5mhXfsL7GeeDs4l50EotSlMWh0Wz5qBXJOAb//yNI6dOI6/Ne7D3AHDMTMzHQa7A37Z7EH9HgSLJ1DHF56Ac9igNj8TKT31uxMO1Deto/7xj0odt2LTpk2wWuU/gAaDAenp6Z12EaTT6ZCTk4ONGzeqyyRJwqZNmzBu3LhOaQMhkSQOzADTaaE5XuyZjowQQpqJ5rlY0RUfFLRFHDoQ2vPm0KwHvZB3oUsoAQolKOH1fWDexSWDKDTKSfKAC93WPeDqGgBlNhyvYrMsxogBY3Jw14RZOGfQSPDgse5EAV5c/Rl2nzjiM6Wvc/Rwebs2e1DHxVk962kPFMozfBBCegTKlGjF9ddfD0EQkJ2djYkTJ2LChAmYMGECkpLCU1zHbDajqKhIfV1cXIyDBw8iNTUVaWlpuO6663D//fcjJycHeXl5eOedd2Cz2XDBBReEZf+ERJVGgGtwf2gPH4NQVApxaPDT9RJCeo9In4uD4f2gYN68eQA8DwquueaaTmtHj0bBk/DxypRQpvKEnwezzBBaUMKbJv8oxCED5BdeQQkpxgRoteAS4jBPEDB2UgJWHT2AvdXl+Hd1DTamnMTC0+egzyXngzNboT1QCNjswU0barWpP3I2O0zvfwHzrVfSd4eQHqBHBiUYY/jnP/+Jyy67DKmpqerPaWlpIW1n48aN2LZtG7Zv345ff/0V7777LiRJwtChQzFhwgRMnDgR559/frvbuW/fPlx99dXq6yeffBIAcMcdd2Dp0qVYuHAhampq8Morr6hzor/55ptdc+oxQtrBNXwQtIePQVN4goIShBC/In0uVtCDgiij+8rw8b5JV4ZouDMUWIBMCTV4EewubHZAlDMnmOBJvGYxctUHKSkBmkYzUo0xuDpnEo7UVeHLwv045rLh5bJ8jPv5O5ydOwEmALo9h6A9dASWKxZB6hf4Wp3zCkoAAF/fCK6mHiwlMaS2E0K6nh4ZlJAkCf/85z8xd+5cJCcnqz+HGpRISkrC/PnzMX/+fADyHOabN2/GypUr8fHHH+OTTz7p0IXQlClTkJ+f3+o6S5YswZIlS9q9D0K6MtE9HlRTeAL2+TPoaQchpIVIn4sV9KAg2ujvfyQwJQPCz/ANGLwKsYaYKcE5nP6Hb5gM8v9jfWcYGJaYirsmzMQmI4dV9mrs2rUD+7dtw9wqG+YMGAYTAP33G2G9clHgfbqHedjnToVm32EIlTXQHC+Gk4IShHR7PTIoAcBnzJr3z6Eym83YuXOn+pRmz5490Ov1mDNnDiZMmBCOphLSa7FYE8R+fSCcqgBfVQspjS7uCSEtdca5mB4URBnFJCKjebDf6yXzmh0mmEwJy5WLoN2xH9qDhYDDqdaYgMBDMhrAW21gsXKmBNO13B7P8ZiUm4eRMybgp59+wMaffsQPRYXYXHoCcwcOx9TkBM+6JWUwfrkOYnoqbBctkJvuzpQQ01Igzp4C06ffgq+sDqobCCFdW48NSoTDhRdeiPz8fKSkpGDixIlYsGABHn74YWRlZbVrWk5CSEuuoQMgnKqAcOwkBSUIIS3Qubh3YEZDtJvQM7kDB5y/QpfeNSWEtjMlxIEZYIIA7cFCn0wJJvAw37ZEXqYENwIEOZjJCIPBgLPOOgdTJ0/F5rsfwq+nirDq6EH8XFmM6eOGYuLESTBu3AG+vhF8fSNs7noTSqFLZjR4jivIIpmEkK6NghKtyM/Ph0ajwbhx4zB+/HicdtppdBFESJiJg/sDG7ZDKCqFc/LYaDeHENLF0Lm4d3CNHAL7tPFwDR8c7ab0LEowoo3ZN1hMkDPauKf/lIMS7kwJXgB0WnVqUAA+P/s0xyv4FJ+YhAvHTMCs/kOx9ng+dlWV4euvv8Avv/yI+TVOTDElQsMLgNMF6LRqpgQzGsC5AyKcLcA0o4SQboWCEq3Ytm2bmi66du1avPjii9BqtTjttNMwceJETJo0iabnJKSDxIx0MI0ATVGp/OSDp5mKCSEedC7uJTgOjjlTo92KnkeZHtRvUMIzfENKjA9qc2qwwelUAwMQ/Jy3A2VKaH2XM4MeaaZYXDl6AuY01eOLEekoOHwIX2zfh/U6PWYPGI6chkZoUpPBOd3Th+s0YEzeDmVKENIzUFCiFUajEdOnT8f06dMBAE6nE5s2bcIbb7yBF198ERzH4eDBg1FuJSHdnEaAmNkXmhMl4MurIPXrE+0WEUK6EDoXExI6y5WLoDl4BK6sIYFX8hq+ISUlBF7PC3PP5sFX18L42Rp5oZ+hH82DD6pmBTW9MyoyYxNw9VXXomzzr9hwrAL7q8rxZeE+rP77C5hxzjmY7XTACIDxvDrtaaSDEsKJEojpqb5FQQkhYUdBiTbU1NRg27Zt6n/5+fmQJAkjRoygQpeEhIk4KBOaEyUQTpRQUIIQ0gKdiwkJjTgwA+LADM+CtjIlkoLLlIDeHZSweKbnZP4yJbQBhm80z6DQ6XxecmYLRqzfgRFjJqO0qQHfnyjAjoYGrF79DTYePoHTE/ogz2xGbGqKPLNIBIMSfGk5TP/+L6TEeJhvvTJi+yGEUFCiVWeffTaKioogCAKys7MxZcoU3H777ZgwYQISExOj3TxCegxxkHzhpDlRCufU8VFuDSGkK6FzMSFhoExE512LxStrgSUEGZQQBDCe98y84V7WYnfBZkrofYMSfEWN+nPfAQOwJDYeM2aMxfdlRTi0rwDrThRg7csvYtyECTjDaUc/ickBl1ZqzHBmC3Q/boFr5FCIwwcFcZDuttQ1uv/fANgdQLO2EkLCp0cGJTiOQ0ZGBnQ6nc/PoTr33HPVsapGY5AFgAghIRP79QHTaiAUn5KreQdRBZwQ0jvQuZiQMFAzJXwXO07Lkd/ThHDe1Wl9MxT8Zkp4bjF8ghgtghK+GRV8lRyUcIwdBSklCYbvN6GvIRaXXPJb2EuasGnfLvysEbB9+1bs3puPbGMCJubPxpBWit8a//1fCFW1ECpqYAkhKAGXy3OIRSUQR7QyFIYQ0iE9MijB8zy+//579bX3z6H4/e9/H64mEUJaI7jrShwvBl9ZA6lvWrRbRAjpIuhcTEgYMDVVwmex/exZoW9Kp/Wp5cD8Zkp4zcRhNIAzW9zrNit02eyhoVBRLS9PiFdn6lBm3UjWG3HesBxMvfMabN+5HVuPleJQZQX2vvUG+gwYgClTpmHs2HHQew1LAWMQqmrl7dhDG+rhfYzKdKSEkMjokUGJcDp58iTefPNN7NixA3V1dUhMTMSECRNwww03YMCAAdFuHiE9hpjRB5rjxRBOVVJQghDig87FhHRQgEyJdm2q+XSf/mbN8s6UMBkAd1CiRUZGs23xlXKmhJQQpw7t4JT6Fe5jMBiNOP30mZh7sg4HNm/BurQ4lFSU4auvPseaNaswfvwETJo0BYO/2+z5LCBPLRoCn6BEiJ8lhISGghKt2LdvH66++mro9XrMmTMHqampqKqqwtq1a/HVV1/h3XffRU5OTrSbSUiPoBS45E9VAONHR7k1hJCugs7FhISB+4aetVJ7IWjNi1i2UVNCyXgAIBen9F4vQFCCJcSqdTA4p1P+QZLk9ruPgTcaMT49E1mXLcIJXsSWLZuwd+8ebNmyEVs2b8CoglJMyxiMMal9IfA8OIu1zfoT3ji7w/OzwxnUZwgh7UNBiVY8++yzGD16NN544w2fcaxWqxU333wznn32Wbz77rtRbCEhPYfYT86OEE5VRLklhJCuhM7FhHSclJ4KobwKUnJih7fVPJDgb/YN1jxTQtE8U6JZlgUnigAAKTZWHfIB0V2PQmIA7zV7iMkzvKN/1lD07z8ACxaci507t+PXX37Gkbq9OFJXjVidDqel98fE9AGIdTiDLljpM90oBSUIiSg/+VZEsXfvXtx4440tCmsZjUZcf/312LNnT5RaRkjPw+JiIcWa5KckTjr5E0JkdC4mpOOsFy2Afdp42OdN7/C2fIIMgP/Mg2Y1JdSfm9WUCJi1oNN4AhjuQAUkySeIwWJN8iaaLOqymJgYzJgxC/dc9zvcmDcFOanpsDid+OnkUfxt2494/dVl+PXXLbBa3VkTXtkQzfkO34jMdQl/qgJ8cVlEtk1Id0KZEq3Q6/Woq6vz+159fb1vIR1CSIeJ/fpAW3AcfHl1tJtCCOki6FxMSMexhDg45kwNy7akpASf15xLbLm/AMM3WmZK+A9KMK0WnHtYiJI9wTUbeiHFtAxKqJu12pCV3AdZyX3Q6LBje9lJbC07ieKiEyiuqcSqVV8hTxuLaXUO9Lv7d0BGestGeAcsIpApodl3GMavvgPTatB09/UthsFo9uaDc4lw0pBW0gv0iEyJjRs3BrWe0+nEH/7wh6C3O2fOHLzwwgvYtm2bz/Jt27bhxRdfxNy5c0NqJyGkdUqBSxrCQQhR0LmYkK6leVDCb3ajd6aEwStw2MbwDc/nNZ5hIW1lSpjNLT7OWazqvmPj4zFj5izcO2kObr3ockycOBmCIGDfTz/hjT2b8cIjD+Gbb77CyZNFYOosJZHPlNDuOuDetgtcfaPvm5IE49ffw7D6R/AllElBer4ekSlx66234pVXXsHs2bMDrmOxWHD77bdj69atQW/3wQcfxG233YYlS5YgJSUFKSkpqKmpQXV1NcaPH48HHnggHM0nhLiJ7mKXwqnKKLeEENJV0LmYkK6FJcX7vPaXKQHvOhPeGQDNghCSyXdYFgAwjUbOiFA+p2yfMTDvmhKxMfImm6wttqHMumGfNh7OKeOg++lXaE6UYmBCMjJmTMM55/wGx6sex86KYuSbzdi8eQM2b96ApKRk5OWNRW7uOAz1Dko4nBCOnICmrBJs0ZyWxxsquwNCSbn6kq+ph+hV74OrrVd/1u3YD1tm347vk5AurEcEJc4880zccccdeOmll3DmmWe2eL+mpgY33XQTjhw5gn/84x9tbs9ms+HHH39ESUkJLr/8cixZsgTHjx9HZWUl0tLSMHbsWMyYMSMSh0JIrya5i13ylClBSK9H52JCuiYp0TdTQkqIbbkSx8GZPVwexuFndg6Fa8xIOCprwAx66H/6FYDX0A+NMnxDKXQpAZxXpkSMHNDwmylhdmdKmIwAx3mmF3UPydAJAib07Y8JffujXifg19PHYO/e3SgqOoEff/wBP/74AwbmF2FscjrGpPZDitMJ08er5G1OHgPoWwZTQiGcqgAnSeprvrYe3qEdwT0LCQBwTS2Pj5CepkcEJV544QU8/PDDuOuuu/Dcc89h4cKF6nvFxcW44YYbUFdXh5UrV2L8+PGtbuvkyZO49tprUVJSoi6LjY3FSy+9hJkzZ0bsGAgh8sWDFBsDvrbeM6c6IaTXoXMxIV0XizXBNSgT4Hm4sobAlT3c73q2xfMBAJo9hwJvjOdhP2M6+NJyNSgBd1CCCc0LXTaffcMIxnHgq2qh3X0QzpyRnkCG1SsoAQAajc+2uDrPcIkEh4ipU6Zh6tTpqKmpxt69e7Bnz26c2roXpxrqsPpYPlKP70eeMQFj0vphSG090LdjQQmuoUluTloyhMoa8DV1vt3iHZRwZ30AAFfbIAdYmhcbJaSb6xFBCY7j8NRTT0Gv1+O+++6Dw+HA4sWLcejQIdx0000QBAEffPABhg/3/0fT2/PPPw+e5/HBBx9gzJgxKC4uxmOPPYbHHnsM3333XSccDSG9m5ScAE2T2ZOuSQjpdehcTEgXxnGwXnF+8Ou3kimh0nmm6WRKPQrvmhKMgWMMzHv4B8dBSkqAUFMHw6r1YFotXKPla33OKt/Iq0U2lWCF+9qCr2/w3b/DCb6qBgO++B/SzjsDs2fOhrncgT2N1dhffAKllZX4HpX4vqgQKS/WYOicWRg1KgeDBg0GH6guRiv4Rjn7QRzQTw5KNKsp4T20Q6mPAYcTMW99DEgSzDdfDpYQF/J+uyybHTD0wKLFzYqzksB6RFBC8ec//xl6vR4PPfQQ8vPz8cknn6BPnz5466230LdvcGOxdu7ciQcffBATJkwAAAwbNgxPPPEEFi5ciIqKCvTp0yeSh0BIryclJwJFpeBcrmg3hRASJXQuJqQHCeKejBk8QQklUwKCZ/iGpuC4e1u+G3NMHQfjqvUA5CEQuh+3wDF5HDi7uzCle7tMyZRwX1twzWbT4BwOGP/7HfiGJhi++QHmGy5F35g4pA0ciLP6Dka11Yz9VWXYW1WGospKbNy4ERs3boDRaMLw4SMwalQ2hg8fCZPJFFyXNMqZElJ6qvza6smGgM0O4UQJJKMB4NyZEoyBr61X263dfRCOWZOD2ldXp911APpvf4RjxkQ4Zk6KdnPCxvD5GvA19bBcc1HLAq+khR4VlADkglh6vR7Lly/H2LFj8frrryMhIaHtD7pVVlZiwIABPssGDhwIxhiqqqroQoiQCJOS3f9enRSUIKS3onMxIT1IEKMxvacNVWtK8Lw8PKOuAcb/rJbfa5aV4MobBfHX3RCqatXhH0JRqVqvgSkZGM0yJZpfY3B2p2e2DY7zPBjRasC0GqQgBrMGDMOsAcPQNKQvfh3WD/v378exY0exd+9u7N27GwCHgQMHYuTIUcjKGoX09L7gAjwlV6YxFdOS5ddeQzQ0BcfBSRJcwweBL6sEb7EBNgf4Gk/xS857utIO0G3YDq6hEfYFs6PzRF8UoVu/BRwA/S/b4BybDRbvp0ZJdyNJ0B46CgDQ7s2naV2D0COCElOnTm3xj54xhiNHjmDBggUt1t+0aVNnNY0QEiIlKEGZEoQQQkhPEERUwnuIh9d0ohAENbsBgE9NCQByQc1xoyGs26Au0hSXQUxJlPfsLnDJms3kwTV/8OFwqFObMp1WXY9pBDCd1mf9OLuEKVOmYdKkqbDb7ThypBCHDx9CwZ49KPnuRxTlH8a6dWsQH5+AESNGYtiwERg6dBhiYmI8h+EevsES4+Xte2VKaPflAwCcOSOga2wCKuUhHHxtnVd7OzBFKWPQ/bzVp7ioc9JYSKlJ7d9mO/FlVeC9jl04VQFXDwhKcPVN6s+agmMUlAhCjwhKXHnllQEjke1x4403QvAz/u3aa69tsZwCHISEF1OmxKJMCUJ6NToXE9JDhFi3mnlPJ6rhAe/LAX/1G/z8neDsTjCO8wwFUQtdujfm8pMp4Z7lg2k1nmsQjcYdJPGadtQrS0Gv12P06ByMHp0DU6kVZcOM2GfksS8tBqe++wm7tu/G9hGDAXDo1y8Dw4YNx7BhwzG6rgE8z8vFOk0G8HWN7toZgHC8BJLJCHFQJthuuUgob7X6Zko4/QQlGANfWg4pI73VrAfN3nzoN2z37cJjJ0MOSghHTkC3ZTds550BFhfT9gf84KtrAQCS0QDeagNfVglkDW3XtgC5qKpu535YzzvDcz0ZBXxNrfqzdxYMCaxHBCWWLl0atm3dcccdYdsWISR0UmI8mHfqJCGk16FzMSG9F+dV6JoJgm9JiuaZEpCzGZrjm8xgBr3n5rzZ8A0l84FpNeCcLs/QDQDCqUp5FjD355RsC3V//rIUbHYI9Y3IjE1A38x0zB6TBbHchcLaKuydMA6FRwpRlp+P8p278Ut6Kozb92FQn77o/9NIjLaaMUiSwFntABg4AFJCnDx8xaRMe2oFX1nt6SM/bdAcOgrjF2vhGJsN+8I5LduorHf4WItlQlEpnJPyAn6mBYtNnSJVu/sgHDMmBv9ZL0pQwpUzArpteyGUVbZrOwr9z1vBNzTB9OFXMN9+VdCfE06Wgj9VKfdBGB5089V16s/e3y0SWI8ISoQTXQgREmWCIFeUFiU5PVGnbfszhJAehc7FhPQcIc8S4f1QonkWBOcvU8L/7BfewQQ1cKEEPNz7YDFGcHWNPkMjOFGE6RP5hptpNUCzoIQydEIoOA79hu2wXnwOuAbP7BlcTT2EolIYtDqM7ZOBoeeeDzRZYH/pDRRIldjftz9OCgdR2FCDQ+vWYH3+MegaLegb68DgAYOQXVuJzIH95P27C3XyNfUQyqrA4K4b6i8oceQEAEC3+yDsZ0xv2W6lfdaWT+75hiY/awamOXZS/Vk4Xgy0MyghVLmDEllDodu2F5zXLCRCwXFwDgdcOSOD2xhjaq0Nrsmiznyh27QDfGUtbOfNCxhwML3/JQBA6pMCcXD/dh2LN+/ZVPz1N2mJghKEkC5HqSvB19arlakJIYQQ0v2IA/rBuuhMiP3SW12PCQI4UfSt99A8KOEnUyLQlKM+GQ6BMiVMJqCuEVyjxX+jBKHlwxGHE2AMpk+/BQDoNm6HOKCfp4lWG5hXVgNfKxfqjDPGINUYgwmj8qBp4FCUaML+MUNQYv0WJw8exLGjR3Hs6FH8fOgIUJKP9KYSDLUxjKqqRP+9B6EH4MoeDu3BQv/DN0RPhglfXQcpw39BYH9P7jlzgOMPQCj3ZDQIxWWAJAF86DNM8DV1AAAxPVX+/XvdwCv92zQgI6jil1yTxROUkOQHW0J5FfTrtwAA7POmgsXGAHYH+MoaSJnuYS5ew3E0h4+HJSjhMwTZZm93//QmFJQghHQ5knscIAUlCCGEkO7PNXpE2ytpBfnG2itTgjXLgmg++4a8TttBCRagpoQUY4QAgDOb/W9Dq5GfuHtth3O5fAIAnMXm82Qc8GQAAIDh6+/B1zWon9UUHAfP8cjMyETKrDnQO7TQJA/EsZmn4cSpEpRUW1BgElBcfBKlFdXYdLwE2L8NqQYT+motGFZcjgG8iARR9Kmvw9d5PZ1vZciAvyf3nNmqZhYEgy+rkvuD48AxJgdqQpj2UvfDZkAjgGs0y9kgeh2Y0SAHRxjz6V/tvsNwTD+t7TZV1fgek8UK4WiRZ4HdCcTKQzx0W/fAMWUc7POm+QwZEU6WBn0MrfEegswBgM0BxBrDsu2eioIShJAuR0pyZ0q4I+iEEEII6dmYRgMODrXgJAA/wzf83DRrAtzO+MmU4KtqYfzwK3DK7BcxJnl5k7XFx5X9M51nnyzGKA8x8Bo+wZkt4NwBASkxzic4AABCuXwDb77pMsT+6wPwdQ3ytgwGdZs8x2NgTROGlJnB50yEbcZEnMoegpPf/4jSb9agqKEWlRYzyk4ew74jR8GK8iFZTiEjIwP9+w/EgAEDMOLUKaQxDhzHgbMFGDLAmLt2hYeUECcHVax2wGTw/7lm+IpqMEGAlJ4CobRCrnER7GdPVUK/eaf6WkyQC2wyox58kxmwO3xrfJSUAYxBOHoS4uBMaLfvg27jDliuu9hnaJBQXOazH85s9dkO53CAARBOngIA6LbskoMSpeWedcJV/0GZvUWvA2d3yIEgCkq0ioIShJAuR82U8Ko0TQghhJCey3bBWTB8uQ6238z1LGwxfMNP/QhNEDUlBPmWh2+ygG/yDFVgMUohSTlIIcWYAK3GEzjQanzulliMEahv9Ak8CBXVamBEzOjbIiihtIUlxHkyCwAw9028lBgPANAeKPR8wGREamoq0sefBtORCgCAxelA/rkzUbnyQxQ11OCIXo/i4pMoLj6JzRskaLfvg0GjQUZsAvrESkizNyAjIxNpaX3AK/3mcMpDG7xIKYng6xvBmy2QggksSBJ4qw1SfCyYXi/3n8PRxoc8tHsO+vZNrDxzBzPK++asNp/fEWe1Q//DZjmIMH0C9BvlmUO0O/bBMXeaup5S58I1MAOaolLwFqtPAEYpDqrU6ZBfMPAlXkEJu+9xaPbmQ3ugELazZ4K5f0/BUDIlpLgYCHZH4CARUVFQghDS5bAEeewg1xTaGEdCCCGEdE9i/34tZkxoMbOGv9k3Qqgp0WIdd6YE586UcOWMgDNnBGJWfur+nMZnn0p2g3DQE0DgbHZwTXJQQ+yXBu2Bgpb7UWYC0evkGgPw3IRLfm52mVG+2YfOcwxGrQ7Dx43F2FH7wDVZ0Hj/zaiprUVxcRGKD+WjqqAEpU0NOFpXjYJd2yFVyDfpgqBBenpfZGRkICMuEUPra9A3Jg4Gjda3D8wWIC25WUOY/J93MEi5udfrwPTueht2PzUuAuDrfYtqsliTT39wVpvanwAAqw3aLbsAeIp5KuupnE7wpRWQYk0QB2VCU1QKzmL1DQa4Ayecd1udLgil5WA8L2c1WG3qMBaurgHGr78H4M6qOHtWm8fGmS3gSys8mRKxMUBVLTirPdSZcXsdCkoQQroc5UKCplEihBBCei+foRxAgNk3AgQcTF7p8oGCEsqUmy7PFKHKzbHyOab1KnSpk2+ddJt3+TbLIgc1lOGnLfbjvq5hBp16beMJSrT8jDq0w2vfLDZGHk6i1YJnDJwkISUlBSkpKRif3h8xR2shMQmVFjNODE7H8cxUnDpVirKyUygtLUZpaTFgtkK7Xw6aJOoNSI+JQ7LGigFlVUg8chTJGX2g8wqEaPbmw/jNDzBffaFcGBKebAKm16lBE87p9LnpFk6UQDheDMfpE1oMr2meNSD5yZRQhtco66thIa/giOCuayGv4wDHmJy9oQZZmg3fcAcjOLtnGV9dB95shdg3FRDlDBA4nIBe5zMjiebgEdjPPD3gd00+AIbYV96Rf9TKx8ziYtRjoqBE6ygoQQjpcpR0QNiDTwckhJBoO3r0KB566CE0NTVBp9PhoYcewsSJ7ZsqjxACwO77cIL5m30jQMDBe0YM8DwYz7cYuqA+6VfotHJWg/K+RgPmNfuGd5BAio8FMxkhlFWCs9jAOC7g9KdqUEKvByAP71CDH0Z9yw8oBT692qfOQOFuD+dwqgU81WEHCfFI53gk9x2A7HPmyZ9jDPX1dSgtLUX5jt2oLW9EqY5DbVk5qmM0wOEDEIpKIZrLIa1fhaSkZPTpk460tD4Y8M2PSDPGInHtemiuvVSuV6HsS69X+4ZzeIIS2u83QbdJrhkh9u8HcdhAn0NrXmjTkynhHgpitcu1Jdx4i2d93qsoJV9V6ynO6Z6NhGm1XkNymg/fcLfbK1NCOCUPjZHSUsDV1qt9yfQ6n2tQ3mqD5kAhXLlZCEQo8hTJVGZ3kZS2+JsthfigoAQhpOtRpu6yU6YEIaT70Ov1eOqppzB06FAcOXIEt912G9asWRPtZhHSbTUf4++vpoT38A0p1qTWIxAzm01BqhEAR7OghFdWAOAOOnhPAaoRfPep9dw6MZPRc1MuSWA6rXqD3aKN7kCHdz0D5lW/gRn04Gx22ObPgFBcBrF/X3f7vIIg7qGt6jKHE1AyPdwZAVJivPyE3ztDgOOQmJiExMQk5DEdjCfr4ZgyDk2nn4aqmmpUbdqGum/XoSQ9AaVJcaitrUFtbQ3y8w9Cm79H3ufRPeCLDyA5OQV9eC0yjx1CoglI5jOR6XR4hqTUN6oBCcD/TB9oVmhTCbZ4Z0o0X0fdntdMKJwoyoEDg94zjaxWA0nJTmhsalboUsmU8Ao2uKc2lVISIbizXTi7HQyxahBDzEyHUFIO7Z5DrQYl+IrqlguVIUQuseV7xAcFJXqwvXv34pFHHlFfFxQU4D//+Q+ys7Oj2CpCgsBxAM+3vBghhJAuLDMzU/156NChaGxsBGMMXJDT7BFCfLUMSrSeKcES4uBKSoCUkghofbMgmCCAQ7Mn1vrmQQmNzwwfrHlNCe+sCb3OJ52fabW+Qz/87EfNBIVX5gMA802/BWezQUpNhnNirtf+dC3XdwdGfIZMKEGBxHigqNR/MADwGTqi1evRr18G+k+cCFN+CZw5I2E7/ww4HA5UVJSjqqIC1gobKi1NqBCAUwDKykpRXteAgyeOQ7JWg+3RQyg+BU3FYSRkj0SmKCG+sBDJBhOSDEaYTp5E7LABMBrdQ2kYazE01zW4v9omwD18wx1k8Jfd4nM8Zosc8FHW12rVbBW+ps73+2N3AKLoM12nMgRESk4EXy4HFZTPKMM9XEMHgi+tAF/bevF1vrGpxTK1EGjzYUikBQpK9GC5ubn48ssvAQAlJSW46qqrKCBBug+eA+cS5eiyjv5UEUI6buvWrVixYgX27duHyspKvPbaa5g7d67POh988AFWrFiByspKZGdn45FHHkFeXl7I+/ruu++QnZ1NAQlCOoBzNE97b73QJTMaYL1kof+N+RnmwZpPJ9oskAFJ8v2cd6aEXuc7Rak7oOEalAnNiRLfmTaUISHeQ0O8al6wWJP/LAuv/Unx8s22GqjwGobgnSnh/bo5JVjBvIaMqEMMzHKGid7uwMj/bcbQUcOgHyxnBjCNgMY/3ACz1YLajVvR+PVanBqYjiqHHfW1Tah0uVBWVobaomJIZdVgiXHg6hohlR8F+/QDaAdmIjElFYkxMeiTvxvxphjEa3SIyRsNQ10N4uLiEacMRXG61OEOLD4WnHsmFH94sxViSpJnfXdNEKbVQKiq9T12h7NFQU6hzJMpoWax2NxBCXemBDMawGJNcvF1UQxYV8K7Dgbg/l4q3x2RMiXaQlf6vcTq1atx9tlnR7sZhASNudMlObudghKEkLCwWCzIysrChRdeiKVLl7Z4f9WqVXj66afx+OOPY+zYsXjnnXdw4403YvXq1UhOlqvSL1q0yO+2P/vsMwjui9WSkhI8//zzWL58eeQOhpDeiPkpF9gsKBFQ8wAE4KndoHxe26woo9MFl7smgnP0CJ9MCeh1Pu1RPmtbPB/67zfBOXYUTO/LDwfVmhLe+wsmYMnzYFoNOKfLM8xBr9Rx8GQBcO4baSkuRs4uaDMo4TV0xHv2DQDafQUQyqp8C0m6ROg37YTpeDGSB/SDvt8g2KdPhhQXCyOXANu08WiYnAv7KytQk1KJ8nFZMK/fiFqbBTW1ZlRJxSh3OVFus+No6QmwuBi4RgwGju0D/rEPAKBrsiLlWCliqo4igXFIqLfAmNkP8XWNiNXqEavVIUYn/1+blAih0ay22TN8QwtwHKTEeAiVNfLxuYNDnN0RcOpSKTHeU2RdrT3hDkrotGDxceAbzeCaLAHrhjQPSkAjeAJmFJRoE13pR1FnPrFZvXo1Hn300XA1nZDIU8Zw2hyAe3ygZs8hCAcKwbRauEYOhitnZBQbSAjpbmbPno3Zs2cHfH/lypW47LLLcNFFFwEAHn/8caxfvx6ff/45brjhBgBQMxADaWpqwm233YZHH30UgwYNandbeX9p6u34fEe30xNR37SuK/WP2CcFgtdYfQ6sZbu8H1wYDYHb7SdTgm+2jNNrfT7PiS5wcTEwP3AzIAjQ7jzgWVmvkzMpFFr3Z2NNcJx/hu92BQE8z4F3eoYOBNu/TKeVb7oT48DzHDj3zTPvcKqFP3l3DS7OZACMerlYJAeA48CfKAHX0AQxNwu8EqwwefWTUQ+mEcA3WSBU14JvlpmgDKHQ/7wVAKA5eUp+w6AH584uEFwi4p0iDEyLzLyxGHnGDBhLGtVtiKlJqLryPDQVHIH93f+gpl8KaiaMRkNDA+rr69HQUI8mZymqrGZUlpUCNrscALDVgKuqa9EnQlIC4ix26BtPwjhqBGKq6xB3+DB0egc0Jgnx1acQW1ENo0YLfWZfxNQ0QNvUCI2fWmVMI4DXacG5s1h4h1P+XSk1KAx6ear6EkBobIKU1HIKVwDgm2dKaDTgtPL3ixfFLvXvqiuioEQUdeYTm5qamnYFMwiJGvcTBHXqKVGE7n8b1Oi/puAYzJl95fGThBDSQQ6HA/v378ett96qLuN5HtOnT8euXbuC2oYoirjzzjtx6aWXYsaMGe1ui0bDIyUltu0Vg5CUFBOW7fRE1Det6wr9w265FOLeArg+XwcA0GkFxPr5t6FUUDCmxCMuwL8du0aQazDotRAm5YJLiEVSSiy8b1MT0uLBp8TCdf5cuP63CfEzx4Pzqv0gJsepVSkMibGA0wnlGbjWpEdMs32r7XLaEZ8SCweToIQxgv03bjcZwMxWJA7uCy7GCFdSHFwAYrUcNO5tKNuN75MIZ4wRzGxFcrwBnE4L21/lQKp+6hg4XS5IABL6JYP32r89Phasph6m5R95dizw4PqkgI+PgZR/XK6tIXkyQ2JT4oH4WDgBGDgGrqoaLgDaUUNg6JsE75wEwe7AoEF9IVoscKb2hTAhD9pLF/gcp3SyDOYXVqJpeCbqSk6hseQUrLnD0bB5J5qcDpgdDjQ57WhyOmBJSkB9XRG4ynLwsRpIpyohlZ4Ar3OCt1VDOloM6WQZAIAXh0PaXwju8DbwO9aD21sAvaCBThCgEzTQmYyI+cgATVEZNAcOwxjjgLGpFNzO3RCOn4S+oD+Eygqg5BgMu7dB5xoBjUYDvr4J2HkQhnnTIJiMqDxZJGdkQC4uygsStPZG1DQ1QNNUh1S9fF3bFf5ddUUUlIiiznhiAwBr1qwJy9ANemoTOdQ3frgzJXiHA+A5SIUnwdnsEAdnQkpPhXbLbhh++hX2xfOj3NDoou9OYNQ3gVHftFRbWwtRFJGamuqzPCUlBSdOnAhqGz/99BM2b96MqqoqfPzxxwCA9957D/HxoQVPXS4JDQ3WkD7THM9zSEqKQW2tGZLkJ+W9F6O+aV3X6h8OGD0SMe6ghMPuQmN1y4KCym2emXFw+XkfAHT9+kB7qhKugZkwz54qL6y3wvsWsc7iBKtuAnKzgTGjYHYC8NqeRqOFUo3BKgEQAaUUpQNci7Zpp46DbvMuNA0bDKm6CZq+adDvL4Rr5BBUB2hnc8L0CeBrG2C2iYCtCRoJ0AOw7SmEfdBAQKeFvr4JGgB1Dgl6rRYCgNqSarC4GPX4akuqoW9oggCgzi7Jx+mmT0qApsZTyJHpdbD84Xr5vc/XyjeMzb4LjU4JzOaCEYC90QIcK4EGgDUpES67BO8KGazJgurqJggVdTAAsPICGpodP2d1wiQIiIcGCTGJ4NM42MdOhL7M0qJP7PNPh3btz2gYNgA186bCuWUHJP1mNJw2Gk3DB8Da2ATHoQJYJQmWWCPEklpYTAZYdEaIGg0cogizU3noZYdr70HwVTUQKkoh7XRBrCyDpuAYuNoGuNYxcGYLhOMlkCyVEDfLM6NoDhTI2Rxf/xfi4Exodh6QhwO5i1oyox5S8QEI+ccgndgL7d5f8dxzT8Nsdrb731V8vBFarf+aFt0dBSW6qHA8sVGEY+gGPbXpHNQ3HkpKZbyOh5AUA+d3GwAA+im5EMaNgv1AITT7C2A6ayp477nIeyn67gRGfRMY9U3bQpk9Y+7cudi/f39Y9huum0FJYl3gxrJror5pXZfsH0lqtU2SQR/wfdtZM2GflCfXUFDWafZvWxI0YN6fb1bDQozzXAtLWq3PzBBMq2mxb/ucqXBMzAWLiwUkBseEXEgJ8fKME0H2rTR6hPsHpu4XADSHjkCKNcE+f4anpoROB2aQ60WwJguY90wiZis4i5y7Ier1Pvu3LZgN/feboD1YCABwjRwCyV1UtEUxUK/jV99zOMG5Z69w9UmB2GxWE47J3yXBvX9J3/L3xAnKtlyA0wnG85C8pk2V4mPl6U4hz9ihMxiQcPwUNDojtMlp0Kekw5adA+f4HPkDZ8gPrTizBbFlDoj9+sAxMRfGmO8gGQ3gLFY4RBHWtETUXbIQ0v7D4Fd9D/OYEWg6LQfcf/8HVlqGpoVnQjRboFv9I+x9U2GdMQEulwhtgwixoREiGCxDRkBbUg9XSiL4qlowMLjiY+AcPgzaKgtcffsgccJEaLVaSJKj6/276gIoKNFFheOJDQCUlpaipqYGubm5ba/cCnpqE1nUNy0pp/mmynpINU0w7isA4zjU9+sHNDmgmTER+m9/hGXNJtgvOKvtDZqt4MurwEkSxKED/M513h3Rdycw6pvAwtU3PempTVJSEgRBQFVVlc/ympqaFudiQkiUtPHnSrkh94vjwJITfZfxzQtdNpt9o/n2vWbIYHqtbwFDfzfvHCcHJBSCAFfW0Fb30SavG35Bqe/g8CrK6J5ZI2blp75NsdrA2exyQc5mtTRYfCxsi+fDNaQ/tAcKYZs33fNegD5hGsEzXarEwFdUA1oNWFICAE6uheE9e4rd4bfQpro9pYio0ynX0HDPpKGQkhPVoIQUHwdnbhZ02/ZCKCr1TAnq53fAePexSpJnRo24GPBWG/QaDYSEBAgpKdD07QtjQjIc6Rmwj86BactBCEyPpmnTwfR6xOafAtPpYJ43H+A4GCvtan0N28TTYaiR4JgyDrotuwAAYmZf2OZNQ4xZB2f2MDgWnk2zMbWCghLdTKjznWdkZGDdunVh2Tc9tYk86hsPpXgTs9mB4jKgwQxpUAYko0F+2jB6BHRrfgZ/vBiSKLVaxVq3eSd0P2xWJxIT05Jhnz8D4qDMTjiSzkHfncCobwKjvvHQ6XTIycnBxo0bMW/ePACAJEnYtGkTrrnmmii3jhACwP/sG95ve025GZTmDyj8FMP04T0dpFYL6DxBibYCGuHCvIISfGUN4PJMoQmdNmAfcBYbYLOrs3j44xqbDdfYbN+FugDHxfFgnHumNIsVnM0OLqOP3KcSAzMafIISnMMJzuqu4OFvlhT37CWcwwk4XWAmg29QIiUROF6srqtOf2q2eGbf8NdWZcYTUQTnnhJUnnFEzuxQZ0ZRvgvu4RdqAEOvAzQCpD6pEE5VgKtvBEuMB2fxPKzVFB6XP5qSqC5jGt7zfXLR7Btt6RmPCnsgemJDej1lSlCbA8Lh4wDg+3RBp4WY0Qe8xSaflAPQ7jwA/Q+bAa0GzpyRcPXvC6GyBsaPvgZfXBbJIyCEdDFmsxkHDx7EwYMHAQDFxcU4ePAgKivlueqvu+46fPTRR/j8889x5MgRPPbYY7DZbLjgggui2WxCiKKtoESgG+hAOM5niEPzKUJb5XD6PpnXds6zXu+gBCdJ8jWQw+nOXOADBiX4ugZwCD1w03yaVM8GOTVTQilK7p3FIcU1Gx7odHllSvhpgyDIgQG7Qx4Wo/UNsEjeWS4cp2at8GYr4A7K+G2rcj0pSYB79g3m3Ta9Xt2/vCNRbS8D1AwY5XiUguu82VPrQnP0pLzdpATP1KJNFnWbHE0J2iYKSnRR3k9sFMoTm3HjxkWvYYR0FiX6bneAr6oFAEiZ6T6rKJkOwokSv5vgT1VCv/pHMIGH9eJzYDv/DFiXLIbtjOngJAnGL9aqc1wTQnq+ffv2YfHixVi8eDEA4Mknn8TixYvx0UdyxfmFCxfiwQcfxCuvvIJFixbh4MGDePPNN9UZrwghURYgKMHcT6RZ8xvhYHhnSwQxtJPPGgwAEDP6gHlNRxrw5j3MmM63XoNQVgnO4VIzNfwNjQAArl6eopM1q/fQ9v4CBHp43pOl6s5U4LyG8zX/XXBOJzhb4OEbAACdFrwSuNBqfIIXklcWAqBkOzTLlPAblFCGmEhqpoSUnODZjtIf7oAU586UgCT5BqkEr6wHl0ut46Fuh+MgpSZBSpK3zdfUgymfoaBEm2j4RhSZzWYUFRWpr5UnNqmpqUhLS8N1112H+++/Hzk5OcjLy8M777xDT2xI76FG3+3gvMYQehMHZQIbtkM4UQLnpJZT3mp37gMHwDZ3GsTB/eWFHAfnpDwIFdXQ7s2HfvVPsF20oMVnW+VwQnugAJr9BfL4zNgYOEcNhSs3q8fUqiCkJ5oyZQry8/NbXWfJkiVYsmRJJ7WIEBIa/0GJpjuuAWe3Bx5q0BqBB0RRvoEMYoi09saLUHuySr4prvfMINFZQQkYfIMK/KkKcC4XWIxRbkegTIn6BvmHUPsomEwJZfiIV+ZIi8CD06UO3whU+4NpNWomAjQaeYiM8l5sDOyzp0ByDz+R3MfLmS1qoMbvEBqel781ElMzOsS+aZ7tKsM3BN/hG5CY7zWdGrQQIRyXH4Z5181wnpYDZjJCSkqQA0WMqcM3OJenICrxj4ISUbRv3z5cffXV6usnn3wSAHDHHXdg6dKlWLhwIWpqavDKK6+gsrIS2dnZ9MSG9Brq2D67A3xjkxyhjjH6XI+ImelgGgGaolI5ou198rA7oD1QCKbRwJmb5btxjoPt7FkQjhdDe/gYHFU1kFKD+3fF1TfC9NFX4L2mzkJFNTRHiyBu2wvbojOD3hYhhBBCQhBo+IZR739IQDCUJ+lBDt3gBEHOApCYbyCis2pKNMuU0BTJxRaVtoj9+/r9HK9kSuhCzJQIVOiS49SsVvjJVGi+H762vvXhG/DNyvDOQpHboYFj+mme10qmRJMFiOPVdfxSpupU6kR4B0yUukrNshq4ZteVSjYORBHG/6wGALiGDYLUJxngODgmjQUAOCaPhfZgIezTT/OpZ0FaR0GJKKInNoS0wn2RwDdZwJmt4FIS5ScY3hckGg3E/n2hOV4CvrwKUr8+6lvag4XgnC45IOHvqYFWA8ekPBi+3wTtr7thXzi3zSZxtQ0w/ftL8A1NcA0ZAMfpEyCmJkGorIHuxy3QFJfB+OFXsCxZ7K4+HQZ2h3zMoRbvIoQQQnqaCBTmZTwv11oQQp9JiCV6MjhDLrLZXl7FOCWjAXyt+yGJ+4aeJcaj6ebfInb5Rz4f4+qUoESIwZPWhm8omRKs2Y29n88Zv/7es/9Afe0dAGk+k0bzgINeByYI4MxWT12IQIEhnncP31CKV3p+V3yT2d32lsM3fGqGKPUhmizqVLCO0ydASvN9ECVl9EHj3dfL9TWUQp8UlGgTBSUIIV2TOzrNV8v1JJAY53c1cUAGNMdLIBSX+QYldsuF7JzNq0h7cY7Nhv6XbdDuOwzHrCk+U321wBgM33wPvqEJztEjYPvNXPUEJQ7MgHXJYujX/ATdzgMwffgVLNdeBGYyhnLEHnYHdBt3QHuwUH2yIcXFwJU1FI7pp6lPBwghhJDegAHyDFptFLpsF+VpeHuCErExaLr1SmiOF8M1ckiYGxYAx8Fy8QJAo4H++02Akn3gnWWQkgTn6BHQHijwfEz5IdSaEgGHb/C+RULhW1OiRaFLZXuB6kk025eSoWG5chH42vqW1z7uYpd8fSNEpQ8CHRvPg/MKSkCvhX3OFOjXb4Fj3Gj5s3yz+g+S5MmiAdTvh1AlF1d3jhzSIiChMvgWz+Ro9o02UVCCENI1uU90ylg9LkBQQi0o1Gj2fNRsgVBaASkxPmAaIwDAoIdz3Gjoft0N7a4DcMyYGHBVzeFj0Jw8BTE1Cbbz5rWsHcFxsJ81E5zNAe3BQujWbw4q+6I54XgxDF+uA2+xginHx8lZGrpte6Hdcwi2s2fBNWZkyNsmhBBCuqXmmZLh3jYQ2swbXlhiPJzuG9vOIo6QAyDMsMPTjmZZAs2HP3iWhylTguNa1uDwyixw5YyAo7gMfG29PMzWLVCwovm+1OEoAzMgDszwuzqLMQL1jXLQopW2Mp4H53Sp03gyvQ6OqePhmJDr+Yzy+5f815RQhm8oM76xpPjAx6Gg4RtBo6AEIaRr4jgwvU6NanOJ/v/4K9WduSZPUIKvrgMAiP36tFm0ypk3Crpfd0NztChwUMIlyk8jANjPOD1wMUuel2tVnCiGbvchOMeNhpSR7n9dfx8vLoPx02/lYSdjRsI+ZwpYnFzQibNY5eyJbXth/Oo72Kw2v8U9Q8YYhMIT0B4+Br60HJwkQYoxQRzcH868Ua3OZ04IIYR0CndQgovA8A2ffXQzPlkHzW/Imw9/UD4TYlAiUE0JefhGs+shre9wB/vCOdBu2eUTlGhteKtP24Ko0SHFmCBAHj7C9LrAv0OBB2d1gWt0qW0D4Ntn3lkNjMnb9Cl06RuUkJIS22wfOE4uoElBiTZRUIIQ0mX5BiUCZErEuoMSjS2DEs2nj/L7+dQkSDEm8KUVcv0GP6l/mgMF4Osa4Bo2EOLQAa1v0KiHfc5UGFeth2HtL7Bcc2FQFzpcTT1MH38DzumCbe5UOKeO93mfmYywn3k6XIMyYfxiLQzrNoAZDZDysgJssW18VQ30q3+C5uQp3+U19dCcPAXdL9vgmDZeDta0I62VEEIICQvlPBqJbAllm908KNEyUyLATX3Yhm/4y5Twc63QrF3e03G22JdXcUymbzso4T2ko9WpToOZGU3NlBA92RLen1MyJdzXm1JqYtvbBABBAEdBiTZRUIIQ0mV5n2C4AGlySh0I3idTQq5DISUntr0TjoM4OBPa/QUQikohjhjcYhVt/lEAgGNicJkJrrxREHfsg3CqAkJxGcQB/dr8jOG7DeDsDjimjG0RkPAmjhgM68XnwPjR1zCs/RnWQRlASujZDHxpOUz/9w04mx1iWrJctHNgBphOC76uEZr9h6Hbvg/6jTugOV4My6XnAq2MAw2J3QHd9n0QjhZBKC2XUyT1WrgGZsKVNRSu0cNpalVCCCEeWo172s4InBsiNSykE/jMYtE8CBEgmBBypkSAOlaM431rLgDg/GRnNA9qSAn+HzIB8A2YBBE8UaZBBYIPSkgB6n2phU5FSQ1KMK/j8y6EKvbrA7F/29d2yuc4ZXYSEhBd9RFCuiyfoESATAnotHJGRZNFXcTX1AEILlMCAFyD+wMANMeLW77pcEI4Xgym10Ec5H9MYwscB+f4HACAds+hNlcXjhZBU3gCUmIc7LMmt7m+OGQAHFPHg7M7oP9yHViI6ax8WSVMH34FzmaHfeo4WK6/BK7s4fKFh1YLKS0ZjjlTYb7+UogZfSCUVsD0ySpAmYe8AzR78xHz2r+h/3GLnKGh1cqBJZcI7eFjMH71HUxv/wd8cVmH9xUIZ7FCc/gYtLsPQrM3H3xZZbe+KCWEkJ7Octm5EDPSYV84J/wbd//9b160sTvwzZRoNoVmwOEboWVKBAwO8FzLBwh+MyWatauVYaG+U4IGE5TwCpi0sr73MAzrlef7X0mdfUP0zPLiZ/gGALgGZwafWaMRaPhGEChTghDSdXlNr8UlxgNW/5FmKTYGQnWtOvxCHb4RTKYEAHFQJgBAOFHS4j3NsZPgXCKcI4aENITBmT0c+nUboDlYCMyfEbhQlCRBv24jAMA+b3rAMaDNOWZNguZoEYSTpyDtLwQygovYw+WC4b/fgXM4YZ8xUR6aEeDEypLiYbn8fJg+/ApCSTkMX66D7aIF7UtxZQy6n7dCv2E7AMA5ZiQck8dC6pMib8/lgnCiFPoN2yGUlMH0wZewnTcPrtEjQt9XAELxKeh+2gqNn9+zZDLCOTEXjkl5gX9XhBBCokLKSJeHQ0aCEpPu7kGJ5ueuQNcsQQyLCIq/4Rt+sjO8h5XYzpjeaoaB98OooIZvxAY5fMMrw0aKCVBoUwlAeGVK+Ct0CSC06wRBkKdMVbZJ/KKgBCGky1JOMEyrAYz6gEEJFmcCqmvBNZnlNLn6Rrm6c5AnDZYQBykpAUJlDbgmi89JTlNwHABCn+pLr4Nr1DBo9+ZDc+gIXHmj/K4mFJVCqK6Fq3/f0PYhCLDPmgzTp9/C9d1mYMnioD6m+3mbvL8hA1oNSHg+oIXl0oWIefczaAuOw7W/oF0zf+h+3AL9pp1geh2sFy1QA0EqjQbisIGwDB0A7c790K/9BcYv18HmdLU6rWtQRBH6NT9Dt/MAADl11DUoEywhTg6GlJRDKC6D/qdfod2xD7bF8yEOCDIrJgR8abk8TOh4sTzcSJTkGWIy+8KZNwpSRtuFWQkhhIQXp9aUiG472sXr4U0whSGBdmRKBMLJN+yM4zx92EamhHPy2Na3GXKmROjDN6AJXKyccRwgSuD81ZTwCmwELP7pr41KcIimBW0VBSUIIV0W08snWxYfC66VmzXmLnbJN1nAJLlishjk0A2Fa3AmdLX1EIpPwTVqmLxQkqApOA7G83ANGxhy+515o6Ddmw/t3vyAQQnNgUJ13VBvSMXhgyD1SQZfdAr8iVJIAabMUvBVNdBt2QWm08J2zuzg92c0wHbuXJje+wL6dRvgGjoQMAVfX0I4WiQHJAx6WC4/D1LftMArcxycp42BFBcD42droV/9E8S05JBmMfHGbHYYPvoawvESSDFG2OdOgytnRIuUU662Afoft0B7sBDGD7+C7Zw5cOW2v4ioz7Ybm6D/3y/Q5h/ztEurAXgeQmUNhMoa6HYdgGtQBmznzA1umrH2cLkgFJVCc7wYnMUKp0kPnD4J0Ovb/iwhhPRY3bnQpefvt5jZ7DwZ4Ml8KDfU6qYS48HXNfguVOot8Bwgyn3ot6ZEkBmgQLNARBA1JaQ4z1CQoIMSrWW9Cu6hFn6DEp7PhVSXQwnU0BCOVlFQghDSZTGDO1OijWkpvWfg4Gx2eVlyUkj7klLk9Tmvky5fWQPOZodrUGbI1aoBQBzQD5LRAKGkTI6QN3+CIIrQ5h+Vgx5ZQ0PePjgOjmmnwfDlOmg37YCrjaCEdutecIzBNmOinCUQArF/PzjGZUO36yD0P22BfcHs4JposcLw9Q8AANvCOa0HJLz3N2II7GdMh+F/v8D4+VqYr78k9EKbjMH5728gHC+B2CcF1ksWBvwusaR4OUNiYAb0a3+G8evvYdXrQs+QaYYvLoPpk2/A2RyQEuLgmDwWrlFD5UAaY3J9i/xj0G7bC82JUsSs+D/Yzp0HV/awDu3XhyhCu2M/dBu2g7faPIsB8FnDIWX2Dd++CCGku+nGwzfElGQwgx7O7GEtz6+BaiW1o1io9eIF0K/9BUJpBTiXO2tV6S+OB+C+ifdXXDOEYQveQzaCufH3Oaf7y9JQeAcXWiukreHlLAl3TQmfQpfewZWQhm+4a1VQpkSrqNAlIaTLUqLeUhtBCRbnDko0mUOaDtRnG+598A1es3i4AxRSamgBDhXHQcpIBydKcjHFZoSjJ+Wgx7CBvimYIRBHDwfiY+VtWayBV7TaoN13GEyrafdwCPucqWA6LbR78lvflxfdj7+CN1vgyBsVcuDFOWEMnNnDwTc0Qf/z1pDbq92wHdK+QkjJCbBcuajN4BYAOE/LgW3xfACA4avvwFdWh7xfhXCiBKaPvgJnc8AxIRfmGy+Dc2KumtkDjgOLMcF5Wg4sN1wC+4yJgEuE4cv/QbPvcLv3641raILpnc9gWLcBnM0O54jBsC2cA+uVi6D7402QgpgZhhBCerRuPCUoTAY03Xkt7GfPavEWSwyQddeO45TSUmC9chGk9NSW2/GegcNPYEA59waVMeFTUyKIh0Fex8LVNwZcLdhZWxjvzpQQ28iUaM/wDcqUaBUFJQghXZZSVZklBZ7TGvCeFtQS2nSgXpTAB9fgOakpWRNSoBN7EJR0SqG0vMV72oPy0A3X6OHt3j54HkLOMHAAhCNFAVfT7jkEzuWCc0xWuwMgMBrgzB0FThSh3d32rCJcoxnavYfA9DrYz5ge+v44DrazZoLpddDuPACutqHtz7jxZZXQ/vgroNPCdvE5IR2za9Qw2GdOAudwwvD52nZdSHB1DTD+ZzU4pwv2OVNgP6uVYqcAIAhwzJwE2/lnApADIq39PoPBV1TD9M5nEMqr4BrQD5brL4Ht4nPgHJsNaXAm+LR2BtsIIaQn6c41JQD5xtlPoME1YjBsC2aj6ebLm63f/gNl/j7rvW9/hS7jY2G+7mKYb7uy7e17D98IMhvBNWyQ/NnWrvuCnWZc4OWaEsxPUMK7FkWIhS4BUFCiDRSUIIR0Wa5RQ2FbOAfO03JaXc97+Eao04Eq1EyJxiZ1GV8nBygCPm0IghqUKGkWlGAMwtGTYAIP1/DB7d4+APA5clBDU3jC/wqMQbd9HwDAOXFMh/blnOCe6nTHvjZTMnVb94ATJTjG57Q/EGIywDFlHDhJgv6nX4P+mH79FnAANOfNAUtLDnm3jtMnwDW4P4TqOmjdfRc0SYLxv9+BsztgnzoOjmmnBf1R1+jhsJ13BjgAhq+/95nqNhSc2QLjx9+AbzLDkTcK1svPk2c6IYQQEkB3jUoEwHFwjh8NlpzQYnlHttnaMi5AvQapb5rv9J0B+EwJGuSwWesF82E7eybsMycFXinooIR7pgxlqIX37BvtzJRQs0do+EarKChBCOm6tFp5qEEbtQSU4Rt8RTX4U5WQTIagUvV9tmEyumfu8A5KhCFTol8fMI5rkSnBma3grTZIqckdnoKSHz4QTKOB5miR30g8X1ULvr4RYma6vL8OkFKS4BrcH3xDU+AgCADY7NDu3A8mCHBOyu3QPh2T8iDFGKE9UADOnQnTGuF4MTTHTkJKToAwNa99O+U42M88HYzjoP9lW9DDVQBAt3kXhJIyiH3T4Jg1OeRdu3JGwDF+NHiLFYavvw88LjgQUYTh87XgG81w5mbBvnBOSNPZEkJIr9Kdh28Eg+PgfRZhwd6g++Pnsz7ZE/5qSoTAJxAR7HlLq4XztDGt7zvI7BBlmAfXKA/l9Tk2n0KXIRTvdH+Oo0yJVlFQghDS7SnRd6GmDhxjcGUPD/3iguPA4mLkQoBOuYiTOnwjxKKQPvQ6SGnJ4BuawHlnYbhrFXQ0SAAAnE4LcUh/cA4nhJOnWrwvFJUCgFywMwyUzBWNe/iJP9oDheAcTjhzR3pqKLSXTgvnBDmwod1X0Obq+h+3AAAcc6YEfGoTDCktGc7TcsDZHdBt2B7ch2x26DbvBON5WM8/s93BAPsZp0NMTYLm2EkIrQV//NBt3gXNyVMQ+6bCdvasnnuhTQgh4dDdh28EwzuYEO5MCZ8hDh2cQ8H7IU04z13Bxvbdx2L6ZJXPawC+9TLaNXwj+IKfvREFJQgh3Z9GgOSVTeHMGdmuzUgJSl2JJoAx8PWN8nbbMfOGN39DOPjKGnmf7Rha4HcfIwYDADQFx1u8pwQlxDZm5wiWa3B/OfvjRGnAp/iaI/KNtGv0iLDs05kjb0d7oKDVzAG+qgZCaQXE1CSIozo+g4VjxkQwgYd2b74arGqNbvs+cHYHnHmjwEIcQuRDq4F97jQAkIt8BpktwZktnqDIorM6/NSKEEJ6vG48+0bQvI+tQ5kSbdWU6GBWniBAzOwLZ1bHZr5qKchzaPPzPA3f6DQUlCCE9AjKEA4pKQFSRp92bsNTV4JrMoMTxQ7Vk1CIGYGDEmK4ghKD5SwI4VSzWT4Yg1BUCsbzEMM19aNeBymjD3izp7CoD5cI4UQJmE4LsX949skS4yFm9gVf1wC+eX0OL5r97uKhOSPCcoHJTEa4Rg4FZ3dAk3+09ZUdTuh+3Q3GcXBMHd/hfYvDBkLs1wdCeRU0h48F9RndL9vkDJUJY1qOIyaEENKSGvTtwUEJ72BCV86UAGC5ajFsFy7o8HZ8BBvYbz5UM8DsG6FkStDwjeBQUIIQ0iMoM3A4O3AzKsXLwzS4hqaw1JNQt5uS5N6uZ2YPIcyZEiwhTq6J4S70qeCr68BbrJD6pXW4doU3ZSiIcLykxXvCyVPgnC55nTDWMlCzJfYHGMLBmJxJAcCZHZ4MDQBwjpOnUNXuPtjqeto9h+QpXnNGgCV1/HsDjoN9lly4S7ex7eEjXG0DtDsPyLOdTJ/Q8f0TQkhv4L5hZT04JuGbKdGR2Tf83Dp6F7r0MyVoyCKRsSIFGZRwOH0XePUV8z62ULJN3J/jauvBQq0R1YtQUIIQ0iO4hg2CFB8LZ96odm9DnYGjoQmce+YNKbED9SSU7bqHlnBWm3sBA19VA6bThlyQMyCeh5QUL9fEsNjUxWo9iTAN3VCIg/vL2z/RMiihDN0Qhw0M6z5d2cPAeF6uZeHnxM6fqgRf1wAxo094ggJu4qBMSIlx0BSVgquuC7ie5tARAIDjtI7NcOKz7yEDIKYlQyirAl/VepFP7d5D4BiDY1IeYGq9OCwhhBCZetvZW4ZvdOQ42xq+0WWLKrcvGMACZUqEsg335/Rrf4G0bX+7ttEbUFCCENIjOCfmwnz7VWAdKEopxbunFvXKlAjH8A1PUMIu/7+uEZzTJWdJhPEiSJkGlffKlgh3PQmFmJkOphGgKSppMTWocLQIAOAaGt6gBDMZIWb0AW+1gaupb/G+1l1405k9PKz7BcfBmSsHu7T5R/yvY7FBKC6DFGtq9/ChQPt2uY9HCXr4xRi0+w8DAJy5WeHbPyGE9BYUlGgX3xkquuitZXszFAIVugyFV58wc/um+e4Nuug3hxBCOh9zD9/gwzx8AwYdGMepmRJ8lTzzhpiW0vFte5GSE+XtewUl+Ar3vtx1LcJGo4HYvy84mwN8WZW6mGtoglBdBzE1qUMBokCkvmkAAKGsosV7StaGK2to2PfrGjJA3oef2U0AOTuEYwyu4YPDfsHnHCUfT2uznQglZeDrGuHq3zcsgTRCCOl1enBMgrnPS4zjwh986Q6ZEu0dNeEdlOB5WM87A5bLfhPaNnxm7ehY4fSejIIShBDiJsV7Zt/gwhmU4Dgwox6cxSYXngxzPQmF36CE2QKm1QAGfVj3BQBihlzEUqjwBCV49/AGJXgQ9n32k7MQWhT0FEXwVTWQjIbwDYnxIvVNBdNo5GKlUstpvTQFciFKl3sWlHBiKUkQ+6RAqKpVC6S22P8+OUvCNaZ9M88QQkhvxZQn2WEo0thlKdkMHagnEXjb3kMcuuitpZ/ztj+WSxb6LmjWX64xIyEOHRDSrr1n7eDCWNurp+mi3xxCCIkCvQ5MrwNf3wihqgaM48J2g8uMBrnystMFvlKuDSClJoVl2wp1+IZS98AlgrPZwWJMYd2PgiV6CoMq+PowBnP8kPrJwQ6+zDcowVfXgRMlSOmpkUnBFQSImX3A2R0tAwMuFzRHT4JpNeosKOGmDuHwly0hSdAePAIm8HCGYRpUQgjpTSxXLIKrf1/Y5s+MdlMih+N9/99e/jIOvAtddmS60Qji3O1mbVwfiMMHQUrymrkqHMfTzlk7epuu+c0hhJAokeJjwblc4GwOuLKHheeEBN9il1yjfBMvJYT3xl1KloMcSqYE5x67GKmghKROoWpWl6kZJhEYugHI2SBMp4VQVunz5IMvl7M1pPTwDonxJvbvB6DlEA6huEyebWTIgIg9aVMyMJQaId74yhpwNjvEAf0AIxW4JISQUEj9+8J61QVhLZDc5UQyU6I71OJQakoE0Vbv4pYsHJkf3sM39BSUCISCEoQQ4kUcmAmm18F21kzYzj8zbNv1DkrwTe5gQWyYgwVGPSSTAXxtPSBJ4MzyfNtSrDG8+3FjXsNdFLx71pKIXdxxHMS+aeCcLt+Cnu6ghNgnNTL7BeSbfshBCG/KrBhSvzAWuGxGSkkE02ogVFS3KNglnJLra4gR3D8hhJBuTLkZj0QAIRKBjrALPijhczxh6C/f4RtUUyIQCkoQQogX+/zT0XTXdXBOGBPek7fXDBxckxnMoAO04X+qLiUnghMlcPWNkc+U8BuUUDIlIvfESalXwXvVlVAKekrpEQxKZKSDcZycKeEVGOCr3UEJ9/CZiOB5SGkp4OwOdbpa9S33UJZI1fEghBDSzUUwm4F10SEbPpRTdlBBCd7/z+1FwzeC0g2+RYQQ0ok4LmxDNrwxo1xokm9wTwcaExP2fQBexS6r68BHOCgBnRbMoAff0KTepHP1DWACDxYXmeMDALGfMgOHOyjBGITyKjBBiGxgQK+DlJ4KvskMrt4TGFAyNiK6bwCie2iKd2FRwFP0kzIlCCGE+KVmSkRw210Zcw/3DKapPrOJhHn4BgUlAqKgBCGEdAJl+IbyRD/sQzeU/SjFLmvq1OEbEQtKwFODA1Y74HCCt9jkqVUjeJEiprszJdxDNrhGMzibXZ7NJMJPbMQ+cmCAr6lXl/HVdWAcBykxIdDHwkJqdtwAAJcIvqIakikys46Q0FmtVsydOxcvvPBCtJtCCCEAABbJIRbdYfiGkikRzDWCd02JMFxTeNel4KimREAUlCCEkE6gBiWq5JkbIhWU8J4WlHPXrohUTQnAU1eCb2zyDN2I0Mwb6j7dfcdZbfK+lXoSERy6oe47Ru5LZWgM7A7wjWawxHjfpyERoGZKeAUl+MpqcJIEqW+f7vG0qhd47bXXkJeXF+1mEEKIR9jOD36m3/A3I0cXo1wbiUFMxc7CXFOChm8EpwdPyEsIIV2HJ1MiwkEJr0wJZpD3yUwRzJSIU+pKeIYzSImRmXlD5a7FwTldAACh0l1Pok/kZt5QKFknSlBCyZiI9NANAJDSksE4zidTwjN0g+pJdAXHjx/H0aNHMXfuXBw9ejTazSGEEJl6cx2B4DXr+lEJ+1kzICXFw3namLZXDndNiebDN8zOjm+zB6JMCUII6QRqUMKizIgRoZoSifHyjWt1vafQZYQCIIBXpkSD2TPzRoQzJcDzYFoN4JBP7JxFzpiI5HEqlEwJ3j00hq9xF7l0P4WJKK0WUkoi+EYzOPf3iFdn3qCgRFu2bt2KW265BTNmzEBWVhZ++OGHFut88MEHmDdvHnJzc3HppZdiz549Ie3j2WefxR/+8IdwNZkQQro+d1CCdeFsPWYywjF7SnD1rrwDEWGoKeEz+0Z3KAoaJZQpQQghnUAJSqivI3UDLQhgifHytKDKhUJM5IZveM/AwbnkzIVIzryhYFotOLtdfuEOTrBOSIv0ZEq4gwLVdQA6J1MCAKQ+qRCqasGXV0Mc0l8dykEzb7TNYrEgKysLF154IZYuXdri/VWrVuHpp5/G448/jrFjx+Kdd97BjTfeiNWrVyM5WU75XbRokd9tf/bZZ/jhhx8wePBgDBkyBDt37ozosRBCSEgimM3AsRCm2+wOvIdvhHv2DRIQBSUIIaQTtAxKRG52CiklEXxtPXizBUyvAzSR+1PvyZRoBOcODkS6pgQAQKeVswVEUd0v64T5v1sO36gD0IlBifQU4EAB+Eo5KMFZrGAcF9HvU08xe/ZszJ49O+D7K1euxGWXXYaLLroIAPD4449j/fr1+Pzzz3HDDTcAAL788suAn9+9ezdWrVqFNWvWwGw2w+VyIT4+HjfffHO72st3sHic8vmObqcnor5pHfVPYN21bziv2Tc60nbvT6rbaRaU6G5904JXIIIT+A4fD6f1DUp0+/6JEApK9BC///3vsWnTJsyYMQMvvfSSunzdunV4/vnnAQB33nknFi5cGK0mEtKrKVOCKqRIzoiRnAjgRMT3AzTLlLA75GWRrikBr6wIhwucQ95vZxSQkpRCl5bmmRJJEd+3vH/fIp+c3QHotT3nCVWUOBwO7N+/H7feequ6jOd5TJ8+Hbt27QpqG/fccw/uueceAHLmxNGjR9sdkNBoeKSkhGc2laQkClgFQn3TOuqfwLpb39gFHgzy8IGO/G1x6DRwT66pbsezbfk81N36pjmHQaseY2y8EUIH/xZLThscXq+7e/9ECgUleogrr7wSixcvxldffaUuc7lceP755/HBBx9AEARcdtllOPPMM6HrhKeJhJBmBAFMp/U81Y9g/QPv+gaRrrPA4mLAAAiVNYDTBWbQAwZ9m5/r8H7dAQjO6ezU4Rsw6MF4Xp7ZhDF3QVF9i0yYSGHuvuVsDkCSwDmckBIiHwTq6WprayGKIlJTfWdwSUlJwYkTJzq9PS6XhIYGa4e2wfMckpJiUFtrhiR1/UJ0nYn6pnXUP4F1174xihJ4AExiqK5uavd29A6XevOobMfgcEGAp6ZEd+ub5vQuST3GRosTYgf6CwA4mwjvK7GO9E98vBFabc8cDkJBiR5iypQp2LJli8+y3bt3IysrS73IysvLw/bt2zFt2rRoNJGQXo8ZDeAcTrlIoz5ywUHvoQSRrCcBQA62xJrAu6cftc2Y2DlP7ZWghMPRqcM3wHFgMUZwTRZwdQ3gXKI8FWlnZSoY5GPk7HbAnZnCOiEI1FsxxjxpzyG48MILO7zvcF3USxLr1jcIkUR90zrqn8C6W98wpcYUOva3xbs0hbqdZsM3ulvfNMc43utnruPHEmOC9aIFYMkJMKD790+kUAnQTtAZFb/9qaioQHp6uvo6PT0dFRUVHd4uIaR9lKfpkR7/75MpEeHhG4CnroQzZyScE3Mjvj/Ae/iGUx02An3nzP/NYozgGINQXAag84ZuAADTezIlOJs7KBHBAFdvkZSUBEEQUFVV5bO8pqamRfYEIYR0O51xD9xThhF61XxgYar/4Bo5BKwTpi3vzihTohNEuuK3QFVdCekWlKCEFOkhFTFGML0OnN0R+UwJAI6p4yEcOwn7GdM776JEq2RKyMM3mMB3WoVrZpJ/f8LJUgCdNB2osm8lK8JuV2cfoaBEx+l0OuTk5GDjxo2YN28eAECSJGzatAnXXHNNlFtHCCFdmOSuwNBDYhK+U4LSPVZnoaBEJ4h0xe9A+vTpg/LycvV1eXk5ZsyYEfJ2FFQJPHKob/xr3i/dvn9M7roDcTFhOxb/fcNBSk6EcKoCiA3fvgKRsodByh7Wual37htx3umSAxM6XYvjjNT3RqnToSk6Jb9OTeq876a7YCpvd4B3D1uBUR/y/nvMv6kQmM1mFBUVqa+Li4tx8OBBpKamIi0tDddddx3uv/9+5OTkIC8vD++88w5sNhsuuOCCKLaaEELCKBJ/8pUsDK5nJOD7ZEdQUKLTUFAiysJR8TuQvLw8HDp0CFVVVRAEAbt378Zf//rXdm2LKoF3DuobD61WaPGd6+7940yKgwhAn5qA2DD9e1I07xtH/z6QTlUgtn9qhytHd0XOhBiIAOK0HJwuF7j4mIB/o8L9vXGmJkAEwNfWAwDih2WA76Q+ZozBznHgHQ7E63g4ARgSYhHXzv13939Todi3bx+uvvpq9fWTTz4JALjjjjuwdOlSLFy4EDU1NXjllVdQWVmJ7OxsvPnmm2rGIiGEdF+RG7/BMTlTgvWUGLdXpgTTUFCis1BQIsrCVfH75ptvxp49e2C1WjFr1iwsX74co0aNwr333osrrrgCAHDXXXdBr29fQTSqBB5Z1DctOZ2iWtm5p/SPlhOgA2DV6NDQwWrOikB9w00eByEhHuaUVCBM++pKtCKDDoC5rAY6AC6NBk3NjjNS3xuNoIHyl5TxPGo5Taf2scmgAyw2NFXWQw/AyriQv0/h6pvuVAl8ypQpyM/Pb3WdJUuWYMmSJZ3UIkII6WwRiBz0sEwJn2GolCnRaSgo0UWFWvF7+fLlfpefddZZOOuss8LSJqoEHnnUN76a90V37x/n8EHgjxfDOWxQ2I+jRd/Ex0GcNFa+WGDdt88Ckdw1JdBoBiAXvgzUp+H+3khGT50OlhgHieOBTvxeMr0evLUBzCIHiiW9rt3H193/TRFCCIky1oNrSlCmRKehoESUUcVvQnoPqW8arEsWR7sZPYIy+wbnnopUmSK0U/btVTxU7MSZN9T9u4td8vWN8msqdEkIISRalLg230MyJbyHbwh0q9xZesi3p/vyrvitUCp+jxs3LnoNI4SQrkyZfaNJyZTovBtz72lWWSfOvKHu0+Au8ukOSsDQvmF5hBBCegl1iEXHNiOlyw9MxX59vBYqmRI9I1XCp9Clhm6VOwuFfzoBVfwmhJDwUjIleHemBItapkRip+1X3b+7NhBHmRKEEEKCwIUpKuGYOh4s1gTXyCGehWEKeHQZlCkRFdTTnYAqfhNCSJhFc/iG0QDG8+AkCVJUhm/4ZkqwdhYwJoQQQkKiEeAcN9p3mVK3qodkSvgcB9WU6DQUlOgEVPGbEELCS60p4XK5X3ditgDHgcUYwTWaIUVh+AaUTAmHEwBlShBCCIminhaU8K6NIdDwjc5CQQlCCCHdTovhGvrOy5QAAPusyeAbzYDJ0Kn7BTyFLlUGCkoQQghpRSQnWerJQYmeUryzG6CgBCGEkO6nWVCiM2tKAIArb1Sn7s9b88wIypQghBASlAjEDbgeF5TwOo6eckzdAIV/CCGEdDtM2zwo0XtuzL0zJZhWAwg05pUQQkh0MKOcMciikDkYCYyyI6KCep0QQkj3o9X4ZqN2cqZENHlnRlCRS0IIIW1ikRu/Yb14AZwjBsP+m3kR20enouyIqKDhG4QQQrofjpMDEUqxx14UlIB3pgQN3SCEEBK08N9wS6nJsF18Dni+h9zMU1AiKihTghBCSLfkHYjoXcM3vI6VilwSQggJFt1vty2CWSUkMApKEEII6Z68syM6efaNaPIeskHDNwghhJAwoqBEVFBQghBCSLfkmynRi4ISNHyDEEIIiQxJinYLeiUKShBCCOmWvGfg6E3DN6DVgLnHvDIavkEIIaRN9PQ/WBxlSkQFBSUIIYR0T96BiF6UKQGOU7MlaPgGIYQQEkYSBSWigYIShBBCuiVlyAbTanpftWxl2AZlShBCCAlWbztXtgcN34gKCkoQQgjplphO4/5/77sxp0wJQgghQaOH/8GjTImooKAEIYSQ7kkJRvSmoRtunqBE7wvIEEIIIRHDKFMiGigoQQghpFtSCl32xhtzpcAlFbokhBBCwkgQot2CXkkT7QYQQggh7aLUlOiFmRJi/37QHC+BlJYS7aYQQgghPYZjUh6E0go4Jo+NdlN6FQpKEEII6ZbUYEQvDEo4J+XBOTGXipYRQghpmzLNJZ0z2mbQw3rZudFuRa9DwzcIIYR0S+rsG72w0CUAurgkhBBCSI9AQQlCCCHdkxKU0Pe+TAlCCCEkWMxokP9voBmbSNdEQQlCCCHdkmtABpwjBsOVMyLaTSGEEEK6LOuiM+EaPgjWRfOj3RRC/KKaEoQQQronkwG2i8+JdisIIYSQLo2lJMF6ycJoN4OQgChTghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhUUlCCEEEIIIYQQQkhUUFCCEEIIIYQQQgghUUFBCUIIIYQQQgghhEQFBSUIIYQQQgghhBASFRSUIIQQQgghhBBCSFRwjDEW7UaQrk+SGERR6vB2tFoBTqcYhhb1PNQ3vg4fPoSRI0epr6l/AqO+CYz6JrBw9I0g8OB5LkwtIgo650Ye9U3rqH8Co74JjPqmdR3tn558zqWgBCGEEEIIIYQQQqKChm8QQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkqQoH3wwQeYN28ecnNzcemll2LPnj2trv/tt99iwYIFyM3NxXnnnYeffvrJ533GGF5++WXMmDEDeXl5uPbaa3HixAmfderq6nDPPffgtNNOw6RJk/Dwww/DYrGE/djCobP7p7i4GA899BDmzZuHvLw8nHnmmfjHP/4Bp9MZkePriGh8dxR1dXWYNWsWsrKyYDabw3ZM4RKtvvn+++9x0UUXIS8vD9OmTcMDDzwQ1uMKh2j0ze7du3HVVVdhwoQJmDx5Mn73u9/hyJEjYT+2cAh3/6xduxY33HADpkyZgqysLBw+fLjFNrrT3+TeINzfgZ4klL4pKCjA0qVLMW/ePGRlZeH999/vxJZGRyj98/HHH+OKK67ApEmTMHnyZFx//fXYu3dvJ7a2c4XSN+vWrcNFF12EiRMnYty4cVi0aBG++OKLzmtsJwv1b45i+fLlyMrKwrPPPhvhFkZPKH3z2WefISsry+e/3NzcTmxtF8QICcI333zDcnJy2KeffsoKCgrYI488wiZNmsSqq6v9rr9jxw6WnZ3N3njjDVZYWMj+/ve/s5ycHFZYWKiu8/rrr7MJEyaw//3vf+zgwYPslltuYWeeeSaz2+3qOjfccAM7//zz2a5du9jWrVvZ/Pnz2X333Rfx4w1VNPrnxx9/ZA8++CD7+eefWVFREVu3bh2bNm0ae/755zvlmIMVre+OYunSpeyGG25gI0eOZE1NTRE7zvaIVt+sXr2aTZo0iX300Ufs6NGj7PDhw2zNmjURP95QRKNvGhsb2aRJk9hDDz3Ejh49yg4dOsR+97vfsTPOOKNTjjkUkeifzz//nC1btox9/PHHbOTIkSw/P7/FdrrL3+TeIBLfgZ4i1L7ZvXs3e+aZZ9jXX3/NTj/9dPbee+91cos7V6j984c//IG9//777MCBA6ywsJA9+OCDbOLEiay8vLyTWx55ofbNr7/+ytasWcMKCwvZiRMn2Lvvvsuys7PZhg0bOrnlkRdq3yj27dvH5s6dy8477zz2zDPPdFJrO1eoffOf//yHTZ48mVVUVKj/VVZWdnKruxYKSpCgXHzxxeyJJ55QX4uiyGbMmMHefPNNv+vfeeed7He/+53PsksuuYQ9/vjjjDHGJElip59+OluxYoX6fkNDAxszZgz79ttvGWOMFRYWspEjR7K9e/eq6/z4449s1KhRXe4fbjT6x5833niDnXXWWR05lLCLZt988skn7Le//S3buHFjlwxKRKNvnE4nmzlzJvv444/DfThhFY2+2bNnDxs5cqTPhfaOHTvYyJEj27zo6mzh7h9vJ0+e9BuU6E5/k3uDSH4HurtQ+8bb3Llze3xQoiP9wxhjLpeLjR8/nv33v/+NVBOjpqN9wxhjixcvZsuWLYtE86KqPX1jsVjYOeecw3766Se2ZMmSHhuUCLVvlKAE8aDhG6RNDocD+/fvx+mnn64u43ke06dPx65du/x+ZteuXT7rA8CMGTPU9YuLi1FZWemzTlxcHMaOHauus3PnTiQmJmLMmDHqOtOnTwfHcUGni3WGaPWPP42NjUhISGj3sYRbNPumqKgIf//73/Hcc8+B57ven7po9c2BAwdQXl4OjuNw/vnnY8aMGbjlllsCDn+Jhmj1zZAhQ5CYmIhPPvkETqcTVqsVn3/+OXJzc5GcnBzWY+yISPRPMLrL3+TeIFrfge6gPX3Tm4Sjf6xWK1wuV5e63giHjvYNYwybNm3CsWPHMGHChAi2tPO1t2+eeeYZTJkyBTNnzuyEVkZHe/umqakJc+bMwezZs3HbbbehsLCwE1rbdXW9K3XS5dTW1kIURaSmpvosT0lJQWVlpd/PVFVVISUlJeD6yv9b26a/bWg0GiQkJKCqqqr9BxRm0eqf5oqKivD+++/jt7/9bbuOIxKi1Tculwv33Xcf7rzzTgwYMCAsxxJu0eqbkydPAgBeffVVLF26FK+++iq0Wi2uvvrqLlMbIFp9Exsbi3feeQefffYZxo4di/Hjx2PXrl149dVXw3Jc4RKJ/glGd/mb3BtE6zvQHbSnb3qTcPTPiy++iH79+mHq1KmRaGLUtLdvGhsbMX78eIwZMwY333wz/vSnP2HatGmRbm6nak/f/PDDD9i8eTPuv//+zmhi1LSnb4YOHYqnn34ar732Gp5//nlIkoTLL78c5eXlndHkLomCEqTdGGPgOC7g+/7ea76s+evm2/S3jbb221V0Rv8oysvLceONN+Lcc8/FhRde2M4Wd55I981rr72GpKQkXHLJJWFobeeKdN9IkgQAuPXWWzF//nzk5eXh2WefRUNDA9avX9/B1kdWpPvGZrPhkUcewdSpU/Hxxx/j3//+N/r164fbb78dLpcrDEcQWeHon7Z057/JvUFnfAe6K/qeti7Y/nnjjTewatUqLFu2DDqdrhNaFn1t9U1MTAy++OILfPrpp7j77rvx1FNPYdu2bZ3YwugJ1Dc1NTV49NFH8dxzz8FoNEahZdHX2vdm3LhxOP/88zFq1ChMnjwZy5YtUzM1eytNtBtAur6kpCQIgtDiSVhNTU2LqKAiNTW1xfrV1dXq+mlpaQDkp5feadE1NTVqarC/bbhcLjQ0NLR42hNN0eofRXl5Oa6++mqMGzcOjz32WEcPJ6yi1TdbtmzBtm3bMHr0aADyiQEAJk2ahN///ve45ZZbwnB0HRPNf1eAPFRBYTKZkJGRgdLS0g4eVXhEq2+++uorlJeX45NPPlEvJP72t79h0qRJ2LhxI2bNmhWeA+ygSPRPMLrL3+TeIFrfge6gPX3Tm3Skf1asWIHXX38dK1euxMiRIyPZzKhob9/wPI9BgwYBALKzs3HkyBEsX74cEydOjGh7O1OofVNQUIDKykpcfvnl6jJRFLF161a8//77PWr2lnD8zdFqtcjOzu5SQ2k7G2VKkDbpdDrk5ORg48aN6jJJkrBp0yaMGzfO72fGjRuHDRs2+CzbuHGjun7//v2Rlpbms82mpibs3r1bXWf8+PGoq6vD/v371XU2b94Mxhjy8vLCc3BhEK3+ATwBiZycHDz99NNdrnZCtPrmqaeewpdffokvvvgCX3zxBZ588kkAwEcffYRLL700fAfYAdHqm9zcXGi1Wp8Tn81mQ1lZGTIyMsJzcB0Urb6x2Wzged7nyYbyWglsdQWR6J9gdJe/yb1BtL4D3UF7+qY3aW//vPnmm3j11Vfx5ptv9tipC8P13WGMweFwRKCF0RNq3+Tm5uKrr75Sr8O++OILjBkzBhdccAE+++yzTmx55IXjeyOKIgoKCtQHKL1Sp5XUJN2aMtXNZ599xgoLC9mjjz7qM9XNfffdx1544QV1/e3bt7Ps7Gy2YsUKVlhYyF555RW/0/NNnDiRrVu3jh06dIjdeuutfqcEXbx4Mdu9ezfbtm0bO+uss9i9997beQcepGj0T1lZGZs/fz67+uqrWVlZmc+0Ql1JtL473jZv3twlZ9+IVt888cQTbPbs2WzDhg2ssLCQ3XPPPWz27NnMbDZ33sG3IRp9U1hYyMaMGcP+8pe/sCNHjrBDhw6xpUuXsmnTprG6urrO7YA2RKJ/amtr2YEDB9j69evZyJEj2erVq9mBAwdYbW2tuk53+ZvcG0TiO9BThNo3drudHThwgB04cICdfvrp7IUXXmAHDhxgJSUl0TqEiAq1f5YvX85ycnLY6tWrfa41uto5NRxC7ZvXX39dnZq9sLCQrVy5ko0ePZp9+umn0TqEiAm1b5rrybNvhNo3y5YtU783+/btY3fffTfLy8tjR44cidYhRB0N3yBBWbhwIWpqavDKK6+gsrIS2dnZePPNN9U06FOnTvk8pT/ttNPw4osv4u9//zv+9re/YfDgwfjnP/+JYcOGqevcdNNNsFqt+NOf/oSGhgZMmDABb7zxhs8YxRdeeAF/+ctfcM0114DneZx99tl45JFHOu/AgxSN/tmwYQNOnDiBEydOtEgrz8/P74SjDk60vjvdQbT65oEHHoAgCPjDH/4Ap9OJ8ePHY+XKlTCZTJ138G2IRt8MGzYMr732GpYtW4ZLLrkEGo0GY8aMwZtvvtnlqsxHon++//57/PGPf1Rf//73vwcAPP3002qtmu7yN7k3iMR3oKcItW8qqurRcwABAABJREFUKiqwePFi9fXy5cuxfPlyXHDBBXjmmWc6u/kRF2r/fPjhh3A6nerfBMUdd9yBpUuXdmrbIy3UvrHZbHjiiSdQVlYGg8GAoUOH4vnnn8fChQujdQgRE2rf9Cah9k1DQwMeffRRVFZWIiEhAWPGjMH//d//YejQodE6hKjjGOtCOamEEEIIIYQQQgjpNXpnOIsQQgghhBBCCCFRR0EJQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhWaaDeAEEJas2zZMvzjH/9osXzatGl4++23O79BhBBCSA9F51xCSDRQUIIQ0uXFxcXhzTffbLGMEEIIIeFF51xCSGejoAQhpMsTBAHjxo1rcz2bzQaDwRD5BhFCCCE9FJ1zCSGdjWpKEEK6peLiYmRlZeG///0v7r//fkycOBG33HILAKCurg5/+tOfMH36dOTm5uK3v/0tdu/e7fP5hoYG3HPPPRg3bhxmzJiBf/3rX3j22Wcxb948dZ1ly5ZhypQpLfadlZWF999/32fZJ598gnPPPRdjxozB3Llz8cYbb/i8/+CDD+LCCy/Ehg0bcN5552HcuHG4/PLLUVBQ4LOeKIp4/fXXcfbZZ2PMmDGYNWsWHnzwQQDABx98gPHjx8NsNvt8ZvPmzcjKysKhQ4dC7EVCCCGkbXTO9aBzLiHhR5kShJBuweVy+bxmjAEAnnvuOcyfPx8vv/wyeJ6Hw+HAddddh4aGBtx///1ITk7Ghx9+iGuvvRZr165FWloaAOCPf/wjfv31Vzz00ENITU3FW2+9haKiImg0of9ZfPPNN/HSSy/hxhtvxOTJk7F//368/PLLMBqNWLJkibreqVOn8Nxzz+HWW2+FXq/Hc889h7vuugtff/01OI4DAPzpT3/Cl19+iRtuuAGTJ09GfX09Vq9eDQA477zz8Oyzz2LNmjW48MIL1e1+/vnnyMnJwahRo0JuOyGEENIcnXPpnEtIZ6KgBCGky6urq0NOTo7PsieffBIAMHbsWPz5z39Wl3/yyScoKCjA119/jcGDBwMApk+fjgULFuCtt97CAw88gIKCAqxbtw4vvfQSFi5cCACYMmUK5s6di9jY2JDa1tTUhH/+85+49dZbcccddwAATj/9dFitVvzrX//C5ZdfDkEQAAD19fX48MMP1XYxxnD77bfj6NGjGDZsGI4cOYJPP/0UDz/8MK6++mp1H0ob4+PjcdZZZ+Gzzz5TL5DMZjPWrl2Le+65J6R2E0IIIf7QOZfOuYR0NgpKEEK6vLi4OKxcudJnmU6nAwDMmTPHZ/mmTZuQk5OD/v37+zzpmTRpEvbt2wcA2Lt3LwD4pI3GxMRg+vTp2LNnT0ht27lzJywWCxYsWOCzv6lTp+LVV19FWVkZMjMzAQCZmZnqxREADBs2DABQXl6OYcOGYcuWLQDg80SmuYsvvhjXXnstTp48iQEDBuDbb7+Fy+XCb37zm5DaTQghhPhD51wPOucS0jkoKEEI6fIEQUBubq7PsuLiYgBASkqKz/La2lrs2rWrxVMeABg4cCAAoKqqCjExMS0KdDXfVjBqa2sBAOeee67f90+dOqVeIDWvXq7VagEAdrsdgPx0ymQytfrkaMqUKRgwYAA+++wz3Hnnnfjss89wxhlnIDExMeS2E0IIIc3ROdeDzrmEdA4KShBCujVlXKgiISEBY8aMwWOPPdZiXeVJT2pqKsxmc4vK4dXV1T7r6/V6OJ1On2X19fUt9gcAr7/+ut8LrCFDhgR9LImJibBYLGhqagp4kcRxHC666CJ8/PHHWLRoEbZv396iwBchhBASCXTOpXMuIZFAQQlCSI8ybdo0bNiwARkZGQGfwihPgL7//nt17KjZbMbGjRt9LkzS09NhNptRXl6O9PR0AMCGDRt8tjV+/HgYDAZUVFS0SGsN1dSpUwEAX3zxhU+xruYuuOACvPLKK3jooYeQnp6O008/vUP7JYQQQtqDzrmEkHCgoAQhpEdZvHgxPvroI1x11VW4/vrrMWDAANTV1WHPnj1IS0vDtddeixEjRmDevHl47LHH0NTUhLS0NKxYsaJFaunMmTNhMBjw0EMP4brrrkNxcTE++ugjn3Xi4+Nxxx134K9//StKSkowadIkSJKE48ePY8uWLfjnP/8ZdNuHDh2Kyy67DM888wyqq6sxadIkNDQ0YM2aNXjppZfU9dLT0zFz5kysX78ev/vd79SiXoQQQkhnonMuISQcKChBCOlR9Ho93n33Xbz88stYtmwZqqurkZycjLy8PJ8iW8888wwee+wxPPXUUzCZTLjiiiuQm5uLNWvWqOskJyfjlVdewXPPPYfbb78dOTk5ePHFF9UnPYqbbroJffr0wTvvvIOVK1dCr9dj8ODBLdYLxp///GdkZGTgk08+wRtvvIHk5GS/T2XOPPNMrF+/vtUCXYQQQkgk0TmXEBIOHFMmHiaEkF5OmY/8+++/j3ZT2nTnnXeisrIS//73v6PdFEIIISRkdM4lhCgoU4IQQrqR/Px87Nu3D//73//wt7/9LdrNIYQQQnosOucS0jkoKEEIId3IrbfeitraWlxxxRVYsGBBtJtDCCGE9Fh0ziWkc9DwDUIIIYQQQgghhEQFH+0GEEIIIYQQQgghpHeioAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkoQQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQpNtBtAugdJYhBFqcPb0Wh4uFwd305PRH3j6+TJIgwYMFB9Tf0TGPVNYNQ3gYWjbwSBB89zYWoRUdA5N/Kob1pH/RMY9U1g1Det62j/9ORzLgUlSFBEUUJdnaVD2+B5DikpsWhosEKSWJha1jNQ37R01VVX44svVgGg/mkN9U1g1DeBhatvEhNN4HkhjC0jAJ1zI436pnXUP4FR3wRGfdO6cPRPTz7n0vANQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBhS4JIYSEDWMMkiSCdYEaVzzPweFwwOVyUdGtZoLtG44DeF4Ax/XMat+EkO4pWucaOq8ERn3TumD6pzefcykoQQghpMMYY2hqqofZ3ACg61yMVFXxkCSansyfYPuG5wWkpPSDIPTMit+EkO6jK5xr6LwSGPVN64Lpn956zqWgBCGEkA5TLhLj45Oh0+kBdI0ov0bDweXqOkGSriS4vmGoq6tCQ0MNkpLSOqVdhBASSFc419B5JTDqm9a13T+995xLQQlCCCEdwhhTLxJNpthoN8eHRsMDoKc2/gTbN3FxiaitrQBjEjiOSlERQqKjq5xr6LwSGPVN64Lpn956zu09R0oIISQiJEkEwNxPrUhPIwjy8wtKySWERBOda0hv0FvPuRSUIIQQ0iGeQmNdY8gGCTf599oVipcSQnovOteQ3qF3nnNp+AbpVSSnBa6GIrjM5ZDsdZBstRBtdWCiA5CcYJILAMBp9OAEAziNAbw+HoIhBYJR/k8TlwFOoCg9IYQQQgghhHQUBSVIj8VcdtirD8BRsQf2qn1w1Z+AaKkIw5Y5CDHp0MQPgDZhCHTJWdClZEGIzeyVU/gQQgghhJDubcWK17Fx4y9YseK9aDeF9EIUlCA9imirhfXkT7Ce+AH2qn2AO/MBAMDxEGIzoI0fBE1sBnhjMgRDInh9opwZwWkAXgOAAxPtYKINzGWDZKuDaKuBaK2GaKmEq/EkRHM5RHMZ7Ke2ejavi4M+LQ/69PEw9D0NmoTBvapADSHdzV//+hi+/fbrFsu//nodEhMTO79BhBBCepy//vUxWK0WPPnkc+qyVau+wvPPP4W7774f559/QcjbfOedFdi0aQMKCvJhMBjwzTffdbidl19+FS6++LIOb6e7ufji83D55Utw0UW979i7EgpKkG6PSSKsxT/DXPgV7OU7ASYXhuH1CdD3GQtdWi70ffKgTRgctmEXzGWHs/EknLVH4Kg5BGd1Phy1BbCVbICtZAPqAfCGJBgyp8GYOQOGvhPAaWjIByFdzfTpM/HAAw/7LEtISPB57XK5oNHQ6ZIQQkjHffLJR3j11ZfxyCOP44wzzmrXNlwuF+bOPQM5OblYvbplcL09TCYTAFNYttXTuFwuCIJAGdERRFdZPdzRo0fx0EMPoampCTqdDg899BAmTpwY7WaFBXPZYT62Go0H/w9iUykAORBgHDgHpoFzoUsbE7FMBU6jhy5pOHRJwxEz9Gy5PaIDjqoDsJXvhL18OxxVB2A5sgqWI6vACXoYMqfBNPgsGPpNAidoI9IuQkhodDotUlJSfZZdfPF5OP/8C3D8+DH8/POPWLDgXNxzzwPYvXsnXnttGfLz85GUlIQzzpiPG2+8FTqdDgBQXV2FZ599Etu2bUVaWhpuvXUpnn/+Kdx++11YuPA87NixDb///S1Yu/Yn98UfsGHDz3jggbvxyy/b1P3/9NN6vPXWchQVHUdaWh+cf/4FuPzyq8Dz8t+zGTMm4sEHH8FPP63H9u1bkZGRiXvvfQhjx45Tt7Fr1w4sX/4q8vMPQqfTY8yYXDz55HP46KP3sX79d1i58t8+x/zb316ARYsuwuWXL4lENxPSrdjKd0ITkw5NbEZYtidaq1G+6jrEZl2M+DFXh2WbpHtaufINvP/+23jqqecxbdqMdm/nhht+B0DOuAhWQ0MD/vnPv+OXX36Ey+VCTk4u7rzzXgwaNBhAy+EbLpcLy5b9DatXfwONRoMLL7wUx44dgdFowsMPPwYAsNvtWL78VaxbtwYWixnDh4/E7bffhTFjctX2/fOff8fDDz+OV175G2pqqjF58hQ8+OCfEBsrT+v6ww/r8NZby1FSUgyj0YisrGy88MIr4HlezTIZMmQYPvvsY4iiiIULz8Ptt98FQRACtGEEbr/9brUNQOBz4j33LEVZ2Sm89NLzeOml5wEAv/yyTW33Aw88itdeW4bi4pP48ss1ePTRBzBq1GjcccddXr+LqzB9+gz1dzJjxkTcf//DWL/+e+zevQOZmf3xyCOPg+cFPP/8X3HkSCFyc8fiT3/6C5KSkkP8zfdcFJTo4fR6PZ566ikMHToUR44cwW233YY1a9ZEu1kdwiQRlqPfon7PCki2WgCAPv00xGZfBkPfieB4ISrt4gQd9OnjoE8fB+A6SPYG2Eq3wFqyQf5/0XpYi9aD18fDOHAeYoafB13SsKi0lRDSun//+11cf/3N6kVGSUkx7r33Tvzud7fh4YcfR3V1FV544Wm4XC78/vf3AJBTdOvqavGPf7wOAHjppedhsVhC2u/u3bvw1FOP4a677kNu7lgUFZ3Ac8/9FVqtDpdeerm63sqVb+KOO+7C0qV/wIoVr+Pxxx/Gxx9/CY1Gg6KiE7j77tuxePHFuOeeBwEAW7duBmMMCxeeh7feWo6CgnxkZ2e797kTp06V4uyzz+lwvxHS3YmWKlR9dzcAoP8V68OyTWvRj5DsDWjY8xYFJXopxhiWLfsbvv76S7z44jKMG3eaz/vvvvsW3ntvZavbeO+9T9C3b992t+FPf3oQRqMRL774D5hMRnzyyf/h7rtvxwcffAqj0dhi/Q8+eAfffbcWjz76BDIzB+DDD9/D1q1bMGvWXHWdv//9eZw4cRx/+cszSElJxXffrcXdd9+Of//7U6Sl9QEAWCwW/Oc/H+Mvf3kaNpsNjz76IN5//23ccssdqKqqwmOPPYzbbvs9Zs2aC7PZjB07tvq0Y8uWzdDrDfjHP97AyZNFePrpJ5CamoYrrrjabxv+97/VPm1o7Zz41FPP49prr8AFF1yMhQvP89mvxWLBRx+9j4cffhwxMTGIiYkJuq/ffvtNLF16N+666x78/e8v4Ikn/oTk5GTcccedMBhi8Oc//xHLl7+KBx54JOht9nQUlOjhMjMz1Z+HDh2KxsZGMMa6bfqRo7YQtVueg7PmMADAOHAO4rJ/C13KqCi3rCVeHw/TkPkwDZkP5rLDWroJlmP/g610M8wFX8Bc8AV0qTmIGbEIsYPnAIiNdpMJ6XV+/vlHzJ8/U309Z84ZAICJE6fg0kuvUJc/88xfsGDBubj44t8CAPr3H4Dbb78LjzxyP5Yu/QNOnjyBX3/djLfeeh8jR8p/j+655wHceGNoNyBvvbUcV199PRYsOBcAkJnZH9dccz0+/fT/fIISv/nNIsydeyYA4Prrb8YVV1yEkpJiDBo0GO+//zZyc8fizjvvUdcfNmw4AMBgMGDy5Kn45puv1KDEqlVfYdq005GcnBJSWwnpiVyW8rBvU7RWqT9LTgt4LaXIh0vNpqdhLf6lU/dpGjgTSVMeDOkzGzf+AqfTiX/8Y3mLgAQALF58EebNm9/qNlJTU1t9vzW7d+9Cfv4h/Pe/a6DVytm6d999H3766Qds3PgLzjij5b7/85+PcfXV12PGjNkAgPvuewibNm1Q3y8rK8OqVV/h889XqeeP66+/Eb/88hPWrv0WV155DQDA6XTivvseUgMq55zzG2zfLgceqqurIIoiZs+eh759+wEAhg8f4dMOvV6PBx54BDqdDkOGDEVx8Un83/99gCuuuNpvG6699kZs3PiL2oa2zok8z8NkMrXImnQ6nbj33j9i6NDQHyB6n6Mvv/wq3H337bj55tswfvwEuFwSfvObxfjyy/+EvN2ejIISXdzWrVuxYsUK7Nu3D5WVlXjttdcwd+5cn3U++OADrFixApWVlcjOzsYjjzyCvLy8Ftv67rvvkJ2d3S0DEoxJaDzwIRr2vAUwEbqU0Uic+PsuGYzwh9PoYRo4B6aBcyDa6mA5/j+YC/4LR9V+OKr2o37nv+AafwWE/ucAWgpOENJZJk6cgrvvvk99bTKZcPPN12LUqGyf9QoLC3DkSIHP2F1JkmC321FdXY0TJ45Dq9VixIgs9f2srGz14i9YR44cxt69u7Fy5RvqMlGUwNy1chRDhw5Xf1YuVGtrazBo0GAUFhZg1qw5Afdx7rnn44UXnsadd94Nu92JH374Do888nhI7SSkp2KiA6LEwHtdKjHJhfrdb8I4YCb0qTkhb9NRW+j5ufogOF4LXepocDxdhvcWw4ePRE1NNd588zW88MIrMBgMPu/HxycgPj4hwKc7rrDwMMzmJixcOM9nud1uR2lpcYv1m5qaUFNTjexsz/ddq9X6BAyOHi2EKIq47LLFPp91OBw+68XExPhkeKSkpKC2Vs50Hj58BMaPn4Crr/4tpk6djsmTp2Lu3DMQE+O5Fh4xYqQ6TBIAxozJxauvVqGpqSmoNrR1TgxEr9e3KyABAMOGeY5fCZYMGTLUa1my2gdERn8NuziLxYKsrCxceOGFWLp0aYv3V61ahaeffhqPP/44xo4di3feeQc33ngjVq9ejeRkzzilkpISPP/881i+fHlnNj8sJEcjajb+FbbSzeAEPeLH3YbYkRd025ktBEMi4kZdgtisi2Ev3wlzwRewnvwZpzb9E5zmLcQMPw9x2ZdBMNJTS0IizWg0oH//AX6W+6ayWq0WXHjhJbjggktarJuYmAjG0GbAV6kJATB1mcvl8lnHYrHipptuxcyZs1vdlm/hTXm/kiT5X7mZGTNm44UXnsEvv/wEs9kCnU6H6dPbP7aZkJ7kcH4+3v26BH0Tdbiyzx8QN2gmBGMKmg5+hKaDH7VrSIer/pj6c82GJyDZ6xE/9ibE51wZxpb3TsnT/tjp+9RoeLhcwf29VaSnp+Pxx5/C0qW/w3333Ynnn3/ZJzAR6eEbVqsFaWl98PLL/2rxXnx8fMDPNT+vMeY5f1mtFmg0Grz11gfqeoLAQRSZz1CH5oWiOY5TA+2CIODll/+FvXt3Y/Pmjfjww/ewYsXrWLHiPfVmPtC5leP8t0ERynALf5oHjgD5PO7dB0DL8zjge8xKs3yXcS0eNvR2FJTo4mbPno3ZswNfnK5cuRKXXXYZLrroIgDA448/jvXr1+Pzzz/HDTfcAECOdt5222149NFHMWjQoHa3hec7lmGhfD6U7bjMFaj8/j44649DEz8QabP+Am3i4A61o+vgYMqYAFPGBIhNJbAV/gfVB75C06GPYS74ErFZFyI+53II+shFzru65t+Zjn4He6Ku0De94fcyYkQWjh076jeAAQCDBw+Gw+FAQUG+OnwjP/8QnE6nuk5iYhIAoLq6GiaTfLFUWHjYZzsjR2bh5MkTAfcTjOHDR2DHjm249tob/b6v0Whw9tkL8fXX/4XNZsPZZ58T1OwiPM/1it816b0YY1j93Q9wiUBxtQM7fv0JYyt3IHnGYx3YpgTRWqO+luz1AABb8S8UlOhlMjIysWzZ61i69He4//678Nxzf1dvfCM9fGPkyFGoqqqEVqtFenrbgY3Y2FgkJ6fgwIH9GDNGzr52Op04cqRQrRUxYsRIuFwu1NfXqeu0J2DD8zzGjh2PsWPH4/rrb8Z5583Hli2bcM45vwEAHD6cD4fDoWZL7N+/DykpqYiJifXbhubaPidqIYrBtTkxMQk1NdXqa4vF4jfThISOghLdmMPhwP79+3Hrrbeqy3iex/Tp07Fr1y4AgCiKuPPOO3HppZdixoz2PwnTaHikpIRnWEFSUnCRS3vdSRT87w44m8oRP+h0DF74NARdx6KeXVZKFjDoIfSb+jtU7HgPlXs+RuOBD2Eu/C/6jF+CPhOugqBtWYSoJ9NqhRbfuWC/O71RNPvG4XCgqoqHRsNBo+l6GUyB2sRxHDjOf5t53nf51Vdfi5tuuhavvPIizjtvEfR6PY4cKcS+fXuwdOndGDp0KCZNmoLnnvsr7r//IQDA3//+HLRarbqtwYMHok+fdLz99hu44YbfobDwsFo5XdnX9dffhPvvvxt9+/bF3LlyfYv8/EM4daoU113nuaASBE/7lP8LAg+Nhse1116PK6+8FMuWvYjzz78APM/j1183Y9GiC2AwyH9HFi++AEuW/BaMSbj77nvb+L1x4HkeSUkmnxRaQnqa8lPFqK7y1H84UGTB2CGx4ATP9z7UulzM0QQwscVyTfzAjjWWdEtKYOL3v7/FJzAR6vCNsrIyNDbWo7y8DKIooaAgHwAwePBQv8MGJ06cjNGjc/DHP96DW29diszMAaisrMQvv/yI3/xmkToDh7eLLroU7777FjIz+yMzsz8+/PA9OBx29fs/cOBgnHHGfDzxxKO44467MXz4CDQ01GHTpo0YN+40jB8/oc3j2L9/H7Zv/xWTJ09FYmISdu3aAavVioEDPe2x2+14/vmncOWV1+DkyRN4772VuOKKqwK2oba2Fr/+ukltw5Il1+Kaa36Ll1+Wz98cx2Pr1i04//wLYDAY0K9fP+zatQNz554BrVaHxMTEgO0dP34C/vWvZdiyZRP69El3D7WkYH04UFCiG6utrYUoii0ipykpKThx4gQA4KeffsLmzZtRVVWFjz/+GADw3nvvtZqq5Y/LJaGhwdqh9vI8h6SkGNTWmiFJrNV1XZZKlK+5A6K5HDFDz0bC1PtR18gANHWoDV2V0jdNDgMMo29ExuALUL//PTQVfIWyLa+jcs9/kDj+ZpiGzO+2w1ZC5XSKqK6Wf9+hfHd6m67QNy6XC5IkweViALpWOmJrT20YY2CM+X1fknyXDx06Ai+//BreeONfuOmma8HzAvr3748FC36jrvfww4/jmWeewC233ICUlFTcdtvv8cILT3ttS8Cf/vQXvPDCM1iy5DKMG3carr32Rjz77JPqNiZPnoann34Rb7/9Jt5++y3odFoMHjwUF154iU97RNHTPuX/oijB5ZKQkTEAL764DK+//k98/vl/YDAYkZubh9/85gJ13QEDBiMraxREUcTgwcNafbLlcjFIkoTaWgs0GofPe/HxRmi10ZnxqKuyWq1YuHAhzj33XNx7773Rbg4Jkmirw/aVF8BeUYfJI+NwuMSCkhoHGiwu/D975x0dR3X24Wdmtquuqi25994bxrhRY0hoiYHgUAIhoSW0jxBKgISE0BJCQkIoIZCYECCUUE017rj3blm2ei+r7bsz3x+rXe1KK2nVZek+53DYnblz7ztX452Z332L1dPw7KG6a1BMyW3ot4ryWi+r91QzPNPEzFEJAEi6/rXQIGgg3GPi5z+/ncce+0PUUIGWeOml5/j444YcR9deG/C6efPN/zFwYNNStrIs8+STz/Dcc8/yyCMPUVtbQ2pqGtOnz2z2neDKK6+moqKchx++H70+UBJ0ypRpEeL0/ff/ipdffoFnnnmK8vIyrNYUJk2awllnnRvTecTFxbFz5w7eeOM1HA4nWVlZ3H33fUycOCnUZu7ceaSnZ3DTTdfj9/v41re+zeWXN5Svbs2GIUOGhu6J773XcE+88MJLALjuup/wxBO/5bLLLsLj8USU6G7MBRdcyOHDh3jwwXsxmUz88Ic3UFAgPCU6A0lrHBgj6LWMHTs2ItFlSUkJCxcu5M0334xIbPnYY4+xc+dO/v3vf3fa2F6vn+rqtpW2a4wsS6SmxlNRUdfiy5PqtVP66c34anIxDz2TlPn39fkX8ebmxmcvpmbn8zhPfAmAPnU81pk/xZA2vrmu+gwXXbSMd9/9CIj92umP9Ia58fl8lJcXkJaWHVMYQHfSHlfSzuT888/k5ptva1JqrKdRVZXlyy/k+9+/iksuaZonI5yW/r7JyRYhSjTiD3/4A7m5uQwePLjdokR33nP7I9Hmxpm3lpVP38zekw4umpdKQYWbLUfqWDolmcWX3kHtzkBOroxzn2s2ybY952MMqRPQJzWEyrpLd/GH+y6n1GFC9dj4wZIMMpMNWEacR8q8tlVw6C5667XTW+41PX1f6Sl8Ph/Ll1/I9753BVdcsSJqm86em9/85iGcTgePPPJ4p/XZk8QyP/31ntu33/T6OFarFUVRKA9zNQSorKzsUNxZT6JpGlWbHsNXk4tx4BxSTvtFnxckWkIXN4DU039J+tl/Qp8yFm/FAUo/vYnqrc+gejv2wCoQCPonlZUVvPbaq9TV2TjvvGU9bU6fIjc3l5ycnBZzQQl6J5LeQmFlwBMoK8XAqIEBT4ajRU5UR8Nzls9eHPV4b00uVZseo+TDqyMS4RXlH6O42otsCHhIHCoIeJ1q3o55nwoEXU1hYQEffPAuJ0+e4MiRw/zud7+mpqY6VOpSIOhM+u/bXh/AYDAwceJENmzYENqmqiobN25k2rRpPWdYB6g79BbOvDUo8Vmknv6AKJdVjzF9Mhnn/hXr3P9DMsRTd/htSj64qttrcwsEglOf73znXP7zn9e4995fhhJuCgIluH/yk5+wYMECxo4dy1dffdWkzcqVK1m6dCmTJ09m+fLl7N69O2L/Y489xh133NFdJgs6EXtdDZV1PpLjFCxGhYFWAxajTH65m7rqolA7zRcQE+qOvo+zYFNou+qxhT57Kw6GPu/etROAGVMD7ui5Ja76flxddi4CQWcgyzIffPA/fvSjq7jllh9RVFTIn/70t3ZXABEIWkK88fVy7HY7J0+eDH3Pz8/nwIEDpKWlkZ6ezrXXXsvdd9/NxIkTmTJlCq+88goul4uLL764B61uH97afGp2Pg+yntQFD4dWFQQBJEkmbuT5mLJOo3r7szhPfEHFmvuxDDub5Fk/FfMlEPRCPvzwi542oQnBeNn+6oLcHB0twf35558zbNgwhg8fzo4dO3rgDAQdIb/+WSsrxQgEQhhGDjCx54SDw0dyGFOfg7Du0H/RxQ2kevNTAGRf8VWgvF+Y96Kn8hCGtPF4ak6y/ev/ALBo4WIO7/yC0hovTrcfg1+IEoLezYABA3nuub/3qA333fdQj44v6D6EKNHL2bt3L1dddVXo+yOPPALALbfcwq233sqyZcuorKzkmWeeoaysjPHjx/Piiy+SkpLSUya3C03TqN76B1C9JE79EYaU0T1tUq9FMaeQevoDuIafQ9U3T+DI/Qx36U6s836OacCsnjZPIAjxwAP3sGfP7tYbdhKTJ0/h17/+XbeNJ+hbdLQE965du/joo49YtWoVdrsdn89HYmIiN9xwQ7vs6Yky3P2FaHOTX1gABEI3gowaaA6IEsfzGTMtUNHAW3WUsi9uC7VR6/LRJw0Bf1g4huZFliVOHlxPtd1PVoqBtIFDGWA1UG13UlLtJXGgs9f+bXrrtdPb7BEIupL+VoZbiBK9nLlz53Lo0KEW26xYsYIVK6InnDlVcJ74EnfxNnSJQ0kYt7ynzTklMGXNJfP8l6ne+kccuZ9T/uVdxI/9LknTfoykNC0HJRB0N0IgEPQVYinBfeedd3LnnXcC8Pbbb5OTk9NuQaInynD3R8LnpqSsFIDs1AZRYkiGCb0ikZNXhm/yQHRK0xcEnf0gqSMmQHGD15HZGEgUebi+TOO4QRayJixkQLKBg/lOSqo9jNXcnfY37ip627XTm8pP9/T4vRkxNy3T+vz0zzLcQpQQ9Dia6qNm90sAWGffLl6o24BsSCBl/v2YBi2gevPvqTv0Fu6yvaQueBBd/MCeNk8g6LX897//4YUX/spHH32JLAceECoqyrnwwvM444zFPProk6G2q1Z9xO9+92s++eQrjMa2lW0L8sUXn/Hgg79g8eKlUbOIP/jgvQwfPoJrrrmeBQtmYTAYef31t8nIyAy1ueWWGxg3bgK33HJbu2wQtJ9YSnB3Jt1dhru/0XhuVFXleG4BBp3EsNlX4K/NxVW8Db0iMSzTxJFCJ8dLXIzOalrGs7r4GFJWHbXVVaFtjjo7ZWW1bNu5HwmYd/G9VNV4GHfW7Wwoep2SmpP43I5Q2eveRm+9dnpL+WkR+tY8Ym5aJrbqG/2zDLcQJQQ9jjNvDf66QowDZmLMnNbT5pySWIYsxpA6gcr1v8JTvpeSj39Eymn3YB60oKdNEwh6JdOnz6Suro7Dhw8xblygxO7OndvJyMhk164daJqGJEmh7ePHT2y3IFFSUsyzzz7NlCnTou73+Xx8881GVqy4JmL7yy+/wM9/fn+7xhR0D+HXSTiXXHJJh/vurJfBwEt373mx7E0E5ybv2G5shTsZkm7EkDoWR83xUJsJgy0cKXSy94Q9qiih+X2Bfjz2hn59bo4cOUJtTQ1DM4wkJA9AVTWGzfwuxk/2UpKfi+pz9fq/S2+7dnqTLQJBV9Pb/v11NcK/RtCjaJqGbd9KABImfL+HrTm10cVlkH7W08SPvxzNW0fFmvup2fUimiYUa4GgMcOHjyQ52cqOHdtC23bs2MZ5552PXq/n6NEjEdtnzGhfvhZVVXnkkQe5+urryM4eFLXNzp3biY+PZ/ToMaFtl166nI8+ep+TJ3PbNa6gc+mLJbgFDex+82YAslMMyDoz0PAiMGKAiTijTE6xC5vD1+RYTfMDoIaV+NT8XrZt24LmdzNpaByyMREAk8lEamoatU4Nh713ekkIBAJBTyBECUGP4i7agrf6GPqUsRgzZ/S0Oac8kqwjefpPSF30WyR9HLZ9/6JizQOoXnvrBwsE/QhJkpg2bUaEKLFz53amT5/BtGnTQ9vLy8vIz89j+vSZAKxYsZyzzz6j2f/uvPOnEeO89tqrmEwmLryw+ZXzdevWcPrpZ0RsmzZtBjNnzuH55//aWacs6AB9sQS3IICmqRSU1gIwMMWApDNFiPnG5KFMHBqHBmw7FkVIUANCheZrqL5hq7Nx4MB+jIqfUQPNyMak0L6srGwkWUdJpRNNbSpyCAQCQX9EhG8IehT78U8ASBi3PKoLrKB9mLPnk3HuX6n4+j5cBesp/fRm0hb+Bl1Cdk+bJhD0GqZPn8kLL/wFVVWpqakmPz+PSZOmkpeXx5Yt37B8+RVs374Ng8HApEmTAXjyyT/i8zX/ImE0GkOfDx06yFtv/YeXXvpni3asX7+Wu+/+RZPtP/nJzVx//VUcPLifceMmtPMsBbHSn0pwCxrw1eRSWOkGYGCKEUkXGaJhSB3PzJHH2XbUxq7jduaMScBibIjp1tSAp0R4SdBNO46gqulMGZ6ATnGghIkS2dmDQNZRUuNB8zmRRDlvQS/jxht/yOWXr2DRoqUAHDlymN/97tfk5Bxl6NDhPPPMX1mxYjkvvfRP0tMzethaQV9BiBKCHkPzuXEVbERSTJgGnd7T5vQ59IlDyDj3L1Ss/xXuoi2UfnojqYsexZg2sadNEwh6BTNmzArllSgsLGDs2PGYzWamTZvOiy8+h6Zp7Ny5jQkTJoXySQwYEFsCWY/Hw69+dT+33XYXqanNu/cfO3aU2tpqpk9vGh4yZsw4liw5k+ee+zNPP/2X9p2kIGb6SwluQSRVJblU2/2kJegwG2QknQlCnhISuvgs4kwKU4fHs/1YHWv31XDujLC/eb23g1rvKWFz+Ni8aQ36tEnMnGgEzYVkaKiykZ09CEnWUVzlQPU5kYUo0adZsKDl0L9rr/0R1133426x5eDBA7z44l85eHA/TqeTtLR0Jk2awj33PIBeH0gyv3btaux2OwsXLgkd99e//omMjEx+85snMJtNJCYm8a1vXcBLL/2Ne+55oFtsF/R9hCgh6DFcRZvRfE7Mgxch69qXQE7QMrIhgbRFv6Nmx1+oO/Rfyr+4g5QFD2LOnt/TpgkEPc7w4SOwWlPYsWMbRUUFTJs2o377SCQJjh49ws6d2znzzHNCx6xYsZySkqJm+5wyZTpPPfUMFRXlnDiRy4MP3hvap6qBF51Fi+by1lvvk56ewbp1XzN37nx0uui34x/96CauvPK7bNu2pTNOWdAC/aUEtyCS3Lw8AAalBbycAs8j9TklJAnFElgJPm1cIgfzHew54WBstoVhmYHnFk2rD9/wOtE0jS92V+P1a0xPysWkJiEbk5CkhmjpQPiGQnGVB83n7qazFPQU7733SejzRx+9zzvvvMULL7wS2mY2W0KfNU3D7/c3ez/oCFVVldx++80sXLiYP/zhL1gsFgoK8vnqqy9QVT8QECXeeusNvvWtb0d4LxcU5PG9713OgAEDQtvOP//bXHPNldx8820kJAhhTdBxhCgh6DGceV8DYB6yuGcN6eNIskLyzFtRLBnU7PgrFWvuxzr7DuJGXdDTpgkEPc706TNDosRNN/0MCOSbmDJlGl988SknT54I5ZOA2MM30tMzePXV1yP2vfDCX3G5XNx66+1YrYGV1nXr1vC9713ebH+DBg3mggsu5Lnn/tTu6h8CgaB5TpzIB2BwvSgh6cygBRNdSihxAVHCbJA5c0oy72+p5IOtFVy2IIP0JH2Dp4TXwaZDNo4WuUiOUzhtbOBFTdbHR4xnMBhIT46nqKAUW20NKYmDu+EsBT1FuKecxWJBluXQtu3bt/LTn/6EJ598hr/97c/k5Bzjuef+zttvv4nT6YgoH33//XdjNlu4776HAHC73Tz//F/4/PNVOBx2Ro0azc033x4KNWzMnj27cbtd3H33fShKIPwoO3sQc+bMC7Wpqqpi+/Yt3Hnnz0Pbgp4eTz/9JE8//WTIs2PIkGFkZASE9W99SzxPCjqOECUEPYLm9+DM3wCKAVPW3J42p1+QMP4yFHMalZsepWrzk/jdNSROvLKnzRIIepTp02fyl7/8EY/Hw5QpU0Pbp06dzksvPV+f4LDhIS/W8A2dTseIEaMitsXHJ6AoSmh7RUU5R44cYt68lsPXrr32Bi677EI0DZFbQiDoZHJPBkSJQRGiRH34RpinBMDYQRaKqz1sOVLH62tKWTgpiSlpLqio4OMNh9l5oBaDTuI7c1LR6wLeEZIhrsmYAzOSKCqA/IJ8UgZN6uIzFPR2/va3P3PLLbeTmTmApKTkmI55+uknOHEil1//+nekpqbx2WefcPvtN/Paa29FzfOQkpKCx+Nh3bo1LFy4OGoet927d2KxWBg8eEho23vvfcKPfnQ1F1/8XZYt+3aEZ8fYsePZtWuHECUEnYIQJQQ9grt0N5rPgWnQGch6S+sHCDoFy7AzkU1WKtbcR+2uF9D8HhInXyOSjAr6LTNmzMLpdDJu3ATi4hpWNKdNm4nT6WDatBkRySs7k/Xr1zJ58lQSExNbbJeWlsZ3v3s5K1e+0mI7gUDQNmy2WiqqqkmJ1xFnCqweS4oxrCCohM4S+YK3cGISOkVi40Ebn+2s5qsjGzCvfYK6I0VYjDLfnpNKRrIh1F7WNxUlstKT2A4UFhYypWtOrd/w3/++wYED+7t1zEmTJnHRRd/ttP5+9KObmDlzdszti4uL60NBPiIlJRWAa665ng0b1vHppx9z5ZVXR7F5Ct///lX88pf3kJCQwIQJk5k9ey7nnXd+KPyipKSIlJTUiGfC1NQ0ZFnGYrE0yY+UlpbGsWNH23PKAkEThCgh6BE8lYG4XWN6dDczQddhGjCDtCVPUr76bmx7XwHVQ+LUG4QwIeiXDB06jHXrtjbZPm7c+KjbO0LQ7TbIunVrWLBgYZN20ca98cZbufHGWzvVHoGgP6F6HUg6c8S97ujRo6CpDE43Yso6jfixlyDJCklTr6P8y7tImfdzJF2kKClJEqePT2LkADPbj9VRUl1OvFzChJEmZo7LxKK4IttHWXgZmGEFoKCwsAvOVHCqMW7c+Da1z8k5it/v57LLLorY7vF4GDVqdLPH3XTTT7niihVs3bqZffv2sHLlK6xc+QovvvgqaWnpuN1uDIbYRXiDwYjb7Wq9oUAQA0KUEPQI3qqAsqpPaf7HU9B1GNMnkr70Kcq++j9s+/+N5veRNOMmIUwIBN3I1KnTWLr07J42QyDo83hrTlDy4dXEjbwA69y7QtsPHz6IpqkMzzRhSJ+EaWBgtdo0YBbZl3+BJAe8JzKX/R1vzQkq1z8cOnaA1cCyWcEqHMeBJAypw/FUHIgYW9Y19ZTISElEkaGgsAhN08S9twNceunybh9Tp5Px+dTWG8aIyRRZhlaSJDRNi9gWnsvI6XSg0+n4+99XNrl24uKaXm/hWK0pnH32eZx99nlcf/2NXH75xbz77n+5/vqfkJSUjM1WG7PdNlstycnWmNsLBC0ht95EIOh8vFVHADBYR7XSUtBVGFLHkX7m75GNSdQdepPaXS/2tEkCQb/iyiuvFjXeBYJuwHlyNQD2Yx8AAa8JZ9VJjhw5jCzDkHQjkhy5ThcUJAD0ySMwxFBOW5c4pMm2aJ4Sit5ARpIBp9NJZWVlW05F0A9ITrZSWVkR+q6qKjk5x0LfR48eg8/no6ammkGDBkf8F0yiHAvx8fGkpqbidDoBGDNmLOXlZdjtdTEdn5t7nNGjx8Y8nkDQEkKUEHQ7qteBz5aPEjdA1OfuYQzW0aQt/T2SPh7b/pXU7lvZ0yYJBAKBQNCpqF57xPfiD6/j898vw2GrZFhWGgadjCTrW+yjsWgRjWiiRLS8WZKsIyvFAJrKiRPHW+1X0L+YPn0m+/bt5fPPV3Hy5AmeeeYpamqqQ/uHDBnGmWeeza9+9QBr1qymsLCAffv28vLLL7Bjx7aofa5fv5Zf//qXbNy4nvz8PI4fz+Gvf/0Tx4/ncPrpZwAwevRYEhOT2LNnd6s2ut1uDh06EFG9QyDoCCJ8Q9DteIKhG1YRutEbMFhHkrbkccq/vIPaXS8g6y3Ej7m4p80SCAQCgaBT0LyOiO++ukJySlz43bWMHDIUOABhnhHRkJSWRQsAXcKgpsdFSXSJpDA43cj+fI3jx3OYMWNWq30L+g+nnXY6V155NU8//SSapvK9713B7NmRleruv/9XvPzyCzzzzFOUl5dhtaYwadIUzjrr3Kh9Dhs2HIPBwB//+BSlpSWYTCaGDh3GI488Hrr+FEVh2bIL+OyzT5g3b36LNq5fv5aMjEwmTRKpWgWdgxAlBN2Ot7I+dEPkk+g1GNMmkLroUcq/upvqrX9E0scRN/ycnjZLcIrQENKqtdRMcMoS+LuKsHfBqUq4p4Q9ZxWapnGk0AnJKqOHZMBJWvWUIAZPiWBOiojDonpKKGSnGqFelBD0Dy699DIuvfSy0PcZM2Y1m1D5xz++mR//+OZm+9Lr9dxww03ccMNNMY2dnT2In//8/lbbLV9+JVdffRllZaWh8MK33nq/Sbs33/w3V199fUxjCwSxIMI3BN2Opz6fhPCU6F2YMqeTesavQFKo2vQYruLtPW2S4BRBlhVAwuNx97Qpgi7A7w8kWJNbWUkWCHor4Z4SVZsepbTGS1Wdj6zMVJLM9QkLWxEdWhMtrPN+Hl2A0JmbNpZ1mA0yGanJ1NRUU11d1fpJCATdQFpaGnfffT8lJcXNtqmtrWHBgoWcfXZ0rwyBoD0ITwlBt+MJekoIUaLXYc4+DeucO6n65nEq1j5AxjnPok8a1tNmCXo5kiQRF5dIbW0gYVugpFhvWVaX8PmEB0d0YpkbDZutGqPRIioECHotmupDddegmFOj7ld9kTklDuYHRIohvg3UHQoI8K3mjJAaRLmEiSvQfE7qDv0XAEPGVOJGfKuZ45qu/0lSYKyh2Rnkr/6AHW+Xs+SHItm0oHewaNGSFvcnJiZx5ZVXd5M1gv6CECUE3Yrm9+KtyUU2WZGbeXgQ9CxxI5fhqyvEtu9flK/+ORnn/KXZBz2BIEh8fBJAvTDRe0QAWZZR1c4r3daXiHVuZFnBahVVQgS9l9o9/8C271+kLXkiaghFuKeEpmkcyq+vNjCg4TG41USXYaKcedAC9CljQ6KEJBuaP1CL8ntY73U00FiG31HO0X2bafk1UCAQCPo2QpQQdCt+jx1UH4o5Vay69WISp/wQX10RzhNfUP71vaSf9UdknamnzRL0YiRJIiEhmfj4JFTVH/U5vLuRZQmr1UJVlQNV7QUG9SJinRtJCogS4vda0Jux7ftX4P/7/x1VlAjPKZFX7qbW6WdQqoEES9hjcFvCk2R9xL+JlpJgRg3pqPeUSPfsQJYgt8SF6vcix5BMUyAQCPoiQpQQdCuaVr8qJ4nY5N6MJMmkzPs5ZY4yPGW7qd78JNbT7hMvJoJWkSQJRekdtxZZljAYDOh0HiFKNELMjaAvIZvTUJ3l+Gx5UfdrXmfo8+7jAYFi8rDIqhitJroMb9tIPIh2bOLU6/E7yjBlnxbF4MAzkMkgk5ViIL/CQ2FeDoOGjY3Zhv6ISKos6B/0z+TSItGloHvR/EDgpVfQu5EUA6ln/ArFkoEj93Psh9/paZMEAoFAIGiCPnEwAH5HWdT9mt8DgMPt50iRE6NeYkx2Iw+GGKprBGksQkTzlLAMPRPr7Nuj5qqQwrwyhg8IeCEePLA35vH7KyKpsqA/0F+TS/eO5SxBv0FThafEqYRiSib1jF9R+tmtVG9/Fr11FMYMUZNaIBAIBL0HKSxEQtO0Jl59mhZ4yN930oFfhanD49ArkW1aTXTZUtuwnBIZ33oRny0fXfzAFjpoOH5Epom1+2o5euQAZzWTK1MQoPckVRYJlJtHzE3LtDY//Te5tBAlBN1LKHxDeEqcKhhSx2GdfXugIse6B8k87wUUS1pPmyUQCAQCARBIoh1C9YBirP9oC3hJqD5UVWPX8ToApjQK3YCGPA/tIdxTwmAdhcE6quX2YaJGWqKeeJPMybyT1NXZiI9PaLcd/YHekFRZJFBuHjE3LRPL/PTX5NJClBB0K5oI3zgliRu5DE/FAexH36di/UOkn/l0m1aVBAKBQCDoCvzOSlRnRei75nMjKUZ8tgLKPv8Zfmc5AIcLnVTb/QxNN5KWGCV/RAy5cCSdGc3nRDYkRm5vQz4KICJURJIkRmeZOej1sm/fPubOnde2vvoZPZ1UWSRQbh4xNy0Ty/z05+TS4q1C0K00hG8IUeJUI3nmrXgqj+Ap20vt3n+SNOXanjZJIBAIBP0Yb20+JR+siNim+d3U7nmV2j1/b9imaWw+bANgzpjongixeEoMvPi/aD4nks4YuaONsd9SoxDWsdkWDub42Lt3txAlYqSnkiqLJMHNI+amZcT8tIx4MxR0L/WeEiKnxKmHpBhIPf1+JJ0J275/4i7d3dMmCQQCgaAfY9v/rybbKjc9HiFIAJwodVNa42VAsp4h6cYmxwAQg7eDrLegmFOj7YnF3LDmkc9A2akG4sx6cnOPU1dX17a+BAKBoA8gRAlBt6KpInzjVEaXMIjkWbeBplK54TeoHltPmyQQCASCforfWdlkm7t4S8R3TdPYcLAWgNmjE5p1i5Y6kOm+ra7WjcMfJUli3PABgMb+/fvabYdAIBCcqog3Q0G3ogUTXfazMjd9CcvwczEPWYLfUULV5t+jdXdAp0AgEAgEgOZzttrmWLGLwkoP6Ul6xmSbm23X5rwQkQe3sX3TZ6CxwwKJ7fbs2dl+OwQCgeAURYgSgu4lFL4hLr1TFUmSsM65A8WSifPkVzhyP+tpkwQCgUDQD9G8jhb3q6rGun01AJwxIbFlj4aOJG9u4zNNhKdEvRgyON1CUlIyubnHqaioaOZIgUAg6JuIN0NBtxJMdCnCN05tZEMCKfPvBaBm25/xu6p62CKBQCAQ9DfUVjwl9pywU27zMSjNwPBMU4ttO1ZRqo2Z8sPGUizpAPhqjjN17CAAdu7c1gFbBAKB4NRDvBkKupdg+IZIdHnKY8yYStzoi1A9tVRvfaanzREIBAJBP6Ol8A2H28/a/TVIwOJJya3nfeiAKNHWhZbw/BVBUcJVuJHskudA9bF9+zbUYLUygUAg6AcIUULQrWgifKNPkTTtRyiWDJwnv8KZv76nzREIBAJBP0LzNi9KrNlbg8ujMW1EHAOshlb76pCnRBsTXYYvzOgsGaHPiRYdg9P01NbWcOzYUdylu/FUHmq/XQKBQHCKIN4M+zg//elPmT17NrfffntPmxJAE+EbfQlZH0fy7DsAqNryB1SPKGUmEAgEgq5HU/1oflfUfXnlbvaedGAxypw+Piliny5pGAnjL0NntkYe1BEPzg7klFDiMiP2TRwYeE7atGkDZZ//lNJPfozPUdp+2wQCgeAUQLwZ9nGuvPJKHnvssZ42I0SwJKjwlOg7mLPnYRl2NqqznJqdf+tpcwQCgUDQD2hOkPD4VFZtD5QKXTw5GZMh8nlDMadhnXkT+oRIMaCtZT0jaWNJUCk8p0RGxL6RaR4SEhI5fHAvVXVeAOoOvd0B2wQCgaD3I94M+zhz584lLi6up80I0SBKiJwSfYmkGTcjG5OxH30fT8XBnjZHIBAIBH2c5ipvfLW7mmq7n9FZZsYPilYCNCAgdKgEaOMe27rQEiWnRGiX6mHu3NNQ/R62Hwt4H3qrc/C7azpsp0AgEPRWhCjRg2zZsoWf/OQnLFiwgLFjx/LVV181abNy5UqWLl3K5MmTWb58Obt37+4BSzsREb7RJ1FMySRNuwGA6q3PoGlaD1skEAgE3U9OTg6XX345F1xwAZdccglbt27taZP6LNEqbxwpdLLnhIM4o8w505pJblm/SVY6T5RoHILRGuHhG7I+cuFI87mYNWsOMir7Tjpwe1XcRZsp+u+FnWKrQCAQ9EY6Uv9I0EEcDgdjx47lkksu4dZbb22y/6OPPuLRRx/l4YcfZurUqbzyyitcf/31fPLJJ6SkpABw4YXRb1Jvv/02itL7vBFCiS7l3meboGNYRpxH3eF38VTsx5n7OZbhZ/e0SQKBQNCtGI1Gfvvb3zJixAiOHTvGTTfdxKpVq3rarD5JY0+Jqjovn2wLhG2cO8OK2djcc0YUT4l2LpRknv8KrqLNmIcsbtuBYd6ikj7Sm0P1OYmLi2PqhJGsO6axJ9fOrNEJgX1eB7Le0i5bBQKBoDcjRIkeZNGiRSxatKjZ/S+//DKXXXYZl156KQAPP/wwq1ev5p133uG6664D4L333usWWwFkuSPxlvXHBz0lZLnD/fUlgnNxas+JgnX2rZR+eis1u57HMvQMZF0019nYaTwvp/b8dA1ibppHzE3ziLnpGrKzs0OfR4wYgc1mQ9O0DuYrEEQj3FPC41N5b1MFbp/GvLEJjBjQ+r3HOvZcbHnfYBl2Nslz7myXDfqkoeiThrb5uPCSoNE8JQDmTB3N+vdhyxEbU0fEo1ckPJWHkPXxGFJGt8tegUAg6K0IUaKX4vF42LdvHzfeeGNomyzLzJ8/n507d3a7PTqdTGpqfIf7qa4IeEqYzaZO6a+vYbX2nvwf7SJ1Pp7cc6k+vApfzlsMPO3G1o9pBr1eaXKNnPLz04WIuWkeMTfNI+Ymki1btvDSSy+xd+9eysrKeO6551iyZElEm5UrV/LSSy9RVlbG+PHjuf/++5kyZUqTvr744gvGjx8vBIkuIlgOVNM0Vm2votzmY1iGkfnjEls8Tqr3lEiZ8B08xmEoCUM6Vg60PYSNJ+kiPR+CokRqgp4x2WYOFTjZnVvHzJEJlH8RqKSW9b2PhMeEQCDoUwhRopdSVVWF3+8nLS0tYntqaionTpyIuZ8bbriB3bt343Q6WbhwIc8//zzjxo1rsz0+n0ptbfP1wGMh3FPC5fZTUSHKRwaRZQmrNY6qKjuqemrnY7BMvI6aY6sp2fYqctZZ6OIHtqsfr7fhGulL89PZiLlpHjE3zdNZc5OYaEav7zvheJ0RVglQUFDAE088wfPPP9+d5vcrtHpPiTX7ajhU4CTJonD+rJTWvX/qRSJJkjBYR/bIb0N49Q25UfiG5nehaRqqt455YxM5VOBky2EbU4fFo1MCthe+uYy0pU9hGjCzW+0WCASCrkKIEqcYbXUD7cwHos64ccv1ooSGLF4SoqCq2ik/L7I5g/jxl2Pb+wpVO14k9fT7291X47noC/PTVYi5aR4xN80j5iaSzgirrKur46abbuKBBx5g6NC2u/YLYkP12tl2zMaWI3WYDBKXzk9rIY9ELyPcM0M2RO7TVFA9aJ460pP0jM4yc6TQye5cOzNGNngPVqx9kOzvfdBNBgsEAkHXIkSJXorVakVRFMrLyyO2V1ZWNvGeOJUIlgQV1Tf6NgkTLsd+9H84T3yBZ8IVGKwje9okgUAg6BCxhFX6/X5+9rOfsXz5chYsWNCh8Tolj1Mn9NNb2b13H6t316DTKVw8L4WUBD2DLl9FwX8vjkiCaRl2Jn57Ke6yPYENktTzc6M0PH4rikzixCup3beyYb/qRvMGPAXnj0vgaKGTTYdqmTTUgkFX//ykervM/h6fn16MmJvmEXPTMmJ+WkaIEr0Ug8HAxIkT2bBhA0uXLgVAVVU2btzI1Vdf3cPWdYB6T4n2ZroWnBrIOjOJE39A9bZnqN31ImmLH+1pkwQCgaBDxBJWuWbNGjZt2kR5eTlvvPEGAP/85z9JTGw5z0FjOiuPE/TuvCGa6sPnrEIfl96m47Zs2cKHX25CkuDaH91CpncnA+ZcjzUzDet1H+F3VrP/lYsAGDDlOyQNX8COPwZCHYwmc2hOempu/G7Ir/+cmhpPypm34z/9h+S8fwf2ol1IpWvRS4HcEpPO/DHjjzzF/jwHWw7bOH1CEgCa6u3y3Fy9+drpacTcNI+Ym5YR8xMdIUr0IHa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3INWd4ygp0R4OSxB3yRu1AXYDv4HV+FG3GX7MKZP7GmTBAKBoNMJD6tcsmQJ+/bt63CfnZXHqbfmVNH8Xio3P4X92McADLzgFfTJw3CXH6B6+3MkjP8e5uzTIqpUBNm+fStvv/0WPq+bb89JZeTYGVgG/xQV6vMQSYCVjDN/j7NgA96EKVRU1JFx1h+o3v4ccZNvoKrK3qNzo6l+JH0cBuvIsPxaOvwEQjnyv34i1FbKPIOLbhrJofuuYctRG1OGxZFg0YGmdllurt587fQ0Ym6aR8xNy3TG/PS1PE7hCFGiB9m7dy9XXXVV6PsjjzwCwC233MKtt97KsmXLqKys5Jlnngll+X7xxRcjkmmdamiaCN/oL0iKgcRJ11D1zWPU7n2F9CWP97RJAoFA0G66O6yysx7qe2PekOqdL4UECQBH0VYSEofiyFuHu3Qn7tKdAKQuehRz9mlAQPxZv34tn3z4Lv7aHC5aMJzBsgt0lqjnZ8icgSFzBpoWONaQMZ2M8/4GNMxtz82NTNal74GkRI6vmCJambJOQ0kcTnrCUBYsXsbadWtZf6CW82YGngO72vbeeO30FsTcNI+Ym5YR8xMdIUr0IHPnzuXQoUMttlmxYgUrVqzoJou6gWD4RpTVD0HfwzL8bGr3voK7aDOeioMYUtte+UUgEAh6A302rDIGNL+b6m1/xjL8XIzpkzrcn7toc+QGvycwjuqN2Fyz46+Ys09DVVU+/PB9Nm/eiL9yD+eNqWWwXA2ArD81y4tHK0Pa2DMkbvR3Al44ksK3rn2cXQcvY9/JfUwdEc9Aq6HJ8QKBQHCqIparBd1KQ/iGuPT6A5KsI2HilQDU7n21h60RCASClrHb7Rw4cIADBw4ADWGVZWVlAFx77bW8/vrrvPPOOxw7doyHHnrolA+rjAXb/n9jP/o+ZZ/d0mRfxdpfUrX5qZj60XxuSj6+Hm/1scjtfnf9/z0R23WJQ3E6nbz22j/ZvHkjcXFxXH7mSEYObCijKRv6Tny26okMx9Anjwh9NplMLJ43GQ34bEcVqqrhd1Z0s4UCgUDQNQhPCUH3Uu8pIcI3+g9xw8/FtvefuAo24Kk6JipxCASCXkt/DKuMBU/V0ajbNU3FmbcGgOTZd7RastxVuhNvlL5CYkQjUaLMBv987s9UVlaQlpbOD35wDVLOv7AfPhhqI+ksbTmVXo3qro34rlgyIr5PnzyWLasNFFR62JFTh+6j68i69N1utFAgEAi6BiFKCLoVLVR9Q4Rv9BckxUD8uOXUbP8zdQffIOW0X/S0SQKBQBCVfhlWGQP+uqLAB1kfEBBkHZIkhzwcAFR3NYrJ2vRYZwXusr2YBy+MGrIA4HeU48xbg+qr95jQNPaecPB17nr0mXMYP34il1zyPUwmE1XHImOxZcOpGb4RDdVTE/pszJzRROSRdSbOmmbln1+VsP5ALWOyyhmo+pqdV4FAIDhVEMvVgm4lmOhShG/0L+JGLkPSx+M48QV+R1lPmyMQCASCNuCrFyUkxUDBf86h6psngUA4RhBXwQY85QeaHFu66kYq1z1Iwetn4sxfF7V/R+6nVKz9Jc4Tn+Nw+/msbC6rdlTh87o5a9F8LjxtIEajMTCm3xVxbF96ITcPWQJA/PjLSVv8WJP9kmIkPUnPzFHxeHwan+6sxlub36SdQCAQnGqIN0NB96KK8I3+iKy3ED/6O6D6qDv8dk+bIxAIBII2oPkcgf977QA4cj4KfA/zlKj65glKP72xwSOyHr+jtL4TFfvhd5ofQ9M4XOjgH1+UcOREKclxCt8/cxRjXW9RtfERnLmf19viaraPU52kKdeRfubTJE29HknRN9kvKQFhZv64RKzxOo6XuNiy4bOINpqmUvblXdTsfrlbbBYIBILOQLwZCroV4SnRf4kfcwnIOuqO/A/V5+xpcwQCgUDQAXx1hZSu+kmT7aqrqs19Vdt9vLOpgv99U4nDrTJ71iyuWppJllXGV3sSAHfpLqBvixKSoseYOa1Z7w9JFxAl9DqZy66+DQn4eNUqKisbEl76HeW4i7di2/tKd5gsEAgEnYJ4MxR0L6HqGyKnRH9DsaRhGbIYzWvHmftFT5sjEAgEgliJspBQvfWZqAJEW0L0PD6VDQdqefnzYnKKXSTHKXx3fhrfufBSDDoZzeto6NdVCTSIEnrrKBKnXNfWMzmlCXpKAAwdOYE5YxLwOOt455230LRgrg0t+sECgUDQi+k7gXiCUwJNVN/o18SNvghH7ufUHXkXy8jzW83ULhAIBIL2oWkaaid4FWiaGqqcFY6rcFPU9n5HKaSOa7FPv6qxO9fOpoO12N0qihwISZgzJgGdIiHpTEg6C6rXDrIOVB9+Z0CUCJ5T2uLHUcx9u+pJYySdqeGzYmL++ETyfWZyc4+zZs1q5o1Poezzn4XaaH4PkmLoCVMFAoGgTQhRQtCtNIRvCE+J/oghbSL65JF4q47iqdiPMW1iT5skEAgEfZKqrc9QmPs5Ay98HWIsm+l3ViIbk5DkwD1a9dRRs/P5No3ra8FTwufX2J/nYPPhWqrtgeeBcYPMLJiQRHJcwyOppBiQ9Rb8rkoUcyp+Rxlq0FOiPtFl+At6f0GSG/JMSDoTiizx7TPG8sZ2A59//imG3esYnNrwfOV3V6NrVFZUIBAIeiNiuVrQvYhEl/0aSZKIG3MxAPbD7/WwNQKBQNB38dny8btrYw6n8NacoOidS6hc/3BoW82uF7Ef/V+bxo02ntursvmwjRc+LeLTHVVU2/0MyzBy1ZIMLpidGiFIAEiyAUlvAU1FqhdU/I5S6o6+Hwrf6I+iRHhoRvD80xIVvv3tCwGNDzaX4HD7Q21UV03jDgQCgaBXIt4MBd1KKCu3ECX6LZZhZyLpzDjzvg645goEAoGg0wm67VfvfAFPxcFW2wfDMZx5a0LbvNU5bR43XJQoLi7i851VPP9JEWv21WB3qYwaaOL7C9P57unpZCRHCy2QQNYh6eOAyMSWzrw1ge+Kod8vbgRFCc3nZvr0mUyfPhO7S+WjrZWoakC8aE/SUYFAIOgJRPiGoHsJhm/IInyjvyLrzJiHLMGR8xHOk6uJG3l+T5skEAgEfY5gUkRn/jqc+evIOPc5DC3ketD8nibbVI+tzePa62zkbPmGbdu2UFCQj+24HUWGyUMtzB6dQEpC01KXkXYbkCQJWWcO2OCubrDHVYXmdyH3Sy8J0CePBMA8eCGSUi9K1IezXHDBhez/8AFyS92s3V/DoknJuEt3oUscjC5+YI/ZLBAIBLEgRAlBt6KJ8A0BEDfiPBw5H2HP+USIEgKBQNAFNE5wWLP776QvebzZ9prqbbotRlHC6VE5VuTkYL6DAsdGTIMC9/j09Axm6ZOYMNiC2diwGCEbEpENCfjqCpp2Vp83IWi/5neHdvkd5Wg+N7IhMSa7+hqy3kL25Z+DpKB6aoEGTxIdbi6cm8bKr0vYcqSOtEQ9E1mJbf9KBn1/NT57Cbb9/yZp6vXIhviePA2BQCBoghAlBN1LKNGlECX6M4b0ySjxWXjK9uCz5aNLGNTTJgkEAkGfIrx8JIC7eCuqr3kvA83TEE5Xtfkpkmffgeqpi95W0yiu9pJb4uJEqYvCSg/1EQMkpEjMnj2XKVOmMXToMAr+3TQnRcr8+7Dt/3dIlDCkTcRTvq/ebkPwBCKOUSzpodCQ/plPIoAkBx7d5bDwDc3vwVdXiDVex3fmpPLW+nI+3VFFcpyO7FQjmt9D6ac3oTorkGSF5Jm39uQpCAQCQROEKCHoVkROCQHUJ7wcfh61e/6O/finJE35YU+bJBAIBH2KJqUgNRVv1TGM6dGrHvnrq1sA2I++T+Kkq0KhAV6fSnG1l8JKN0WVHgoqPDg9DWVCLUaZUQPNjM02M3LCNAacc3ErtkUKJulnPUPB62dG2h3+nCDJKJYMIUqEIxsACZ8tj4I3zw+FaAxJN7F0SjKf76rmvW8q+P6iDDLtpajOCgA01deDRgsEAkF0hCgh6FY0VZQEFQSwDD+L2j1/x3nyKxInX4skST1tkkAgEPQZwkUJJT4Lf10h3spDLYoSPr+Gzemjwubj0Fefc2RzBeU2L5U2X8gTQjYmoujjGZxoY1imkeEZJtKT9KHfcJmw6g/NhH9IihHCfvMDJUglQAvZLYXlnpJkA4o5Nex4IUpIkoSkMwbCN1QvvtqToX3TRsRTXutl53E7/91Qzg9HvkRwthWTtWcMFggEghYQooSge6kP35CEKNHv0cVnobeOwVt1GF/NcfTJI3raJIFAIOgzaJKe4ioPflXDYBqEvSQH/Y61GJ3DcDqdOJ0O7HYHVcc3UG33UHZ0Pbba6tDx5oLPcRY4AYgzygxMMZCVYmTExAWMWfpTKlddF33c+twUmuqj8K1vR20j6YxNNyp68HsaFi3CPSUUPYo5LfRVnzS0DTPRd5F05ojqJOEsnZJMncvP0SIXK//9OsvPSMegk1F97qjtBQKBoCcRooSgWwkmuhThGwIA85BFeKsO4zjxFUlClBAIBIJO45O1e9i4uhQA04ATuIrLkQ2ridvXIAhoqkrd4bcBUHQGkuMUEsw6UhJ0DJs3GWPePtIS9ViCSSplPRln/RR90jCMGdNwl+5sOnC9R2RLlTuahJYAOksmPlsefkfA5vCE2JKsxzLyW7iKtwEqiVOvb8tU9Fkah8GEI8sS589O5b/ry8iv8PC/byq4+LQ0NJ+jGy0UCASC2BCihKBbCeaUENU3BACWIYup3fUCzpOrSZzyQxHCIRAIBJ3EhLEjqTxsRpIgedIMXMeLkLw1WEdZSB21BLPZjFFyU7duLYkWHXFGGVlu+A1OHJ1CrashTMI8ZAkpp/8y9DudftbT5L+2uMm4wZwFLYsSTV+mdQnZ+Gx5aF57sFFYez0G62gGXPAKmqaJe0U9reXW0CsSF81L4/W1peSWevhoayXfGyZECYFA0PsQooSgexHVNwRh6BKyQyEc3uocDNaRPW2SQCAQ9AlGDh+KdU4gD0P62edj21eNq3Aj8CXZ836BpOjxVB2h9ED01XafozjiuyQrTcQA2ZiE6q6J2BYM31DdbRUlBgObwhuFjd3gWSEEiQbCc2skz7kTxZhExdpfRrQxGWQunZ/Om1t8HCoo439fbeea+SqyLJ7DBAJB70H8Igm6lYbqGyKnhCCAechCAFwFG3rYEoFAIOg7hIdISDojcWMuCn1X670RVFd1s8f77SWRG+Sm61iZy/5O2uLHIzeGwjdqmzcuSviGaeCswC5LRsDm8MWLKGMLInNzmLPmYco+PWq7BLPCigvPINGssO9oEW+//SaqqkZtKxAIBD2BECUE3YsaTHQpLj1BAFPWPABchd/0sCUCgUDQdwj3RpAUI+asuRgzZwCgeuoA8LuqIg+S9aGPjUUJSWoqDCjmVExZc0hd9DsM6ZMDxzlKKPviDlR3dZP2qWf8iuTZdyBHCTswZc0lddGjpJ/953pbIsM3BE2RdeaGzyZrRMWSxiQlxrP8jHQSzTK7du3gnXfeCgkTfmcFtftWovm97balds8rVKx7CE3T2t2HQCDov4g3Q0G3EvKUEG6Dgnr0ySORzWl4KvajultYWRMIBAJBzER4StS7+cuGeAA0b0CUaOwpETfiPDLOewEAnz0yfKMlbwVz9jwyzv5TaBx3yXY8FQebtDMNOoP40d9poZ/T0MVl1BsdnuiyqWeFAHy2/NBnqRVvEsuwc0iO03HZksEkJiaxc+d23njj3/j9fko++iG1u16g7sh77balds/LOE+uDl1bAoFA0BbEm6Gge9FE9Q1BJJIkYcqaA5qKq2hLT5sjEAgEfYJIUSLwWaoXJYKeEqo70lNCNiahmKyBL/UJK0N9tLAK39BBQxu/s7ypTW3IByFJwlOiNcxDlwKQesavm28zeBEDvr0ycJ8Fkowq1113A1ZrCvv27eGf//wHbnv9ddDobx6O6qnDcfyzJt4U9pxPsB18K/Rd83vaezoCgaAfI94MBd1KMCu3JHJKCMIwixAOgUAg6FQic0rUe0ro60UJbzB8ozriGNmQgGxORQoLC2jY2XpeByki/KMsYl/CpKtisjuss7CxhSgRjcTJ15J16f8wDz6j2TaS3owuIRtJkpF0JjSfk5SUVH70o5+QkTGAI4f28Ob6cpweNSRaRcN28E0qN/6GinUPRWyv2vQ7arb/OfRd87k6fF4CgaD/IUQJQbciEl0KomEcMBMkBVfR5oZrRCAQCATtJjKnRECgkJt4SkRWzpCNiUiShC5xSNP+ouSUaEKYcOGzF0XYkjTlhxFN40YFwjiaFSuEp0SrSJKEbExsuU2YoCPpLKi+QEnQhIRErrvuBgamWiis9PCftaXUVFc1Od5TeYjKTY/jrT4GgKtgPZrfDYDqbVpeVBWihEAgaAdClGgGj8fDX//6Vw4ebBoTKegAqgjfEDRF1sdhSJ+E6q4OPfgIBAKBuBe3nwhPifp7btBTQqsXJbT6l0p9ypjAfkPgBVcfRZSIzVOiQUjQPA0lQYNlQsOxDF3CwIvfJnHyta32JQlPifYT9neTdWZQffgdZbjL9mCxWFhxydkMyzBSXuvjpdc/pqAgP+Lw0k9+jCPnI1z560LbQolSo4ToaH4hSggEgrYj3gybwWAw8Nxzz1FbKxLvdSaaJqpvCKJjzJgKgKd0Tw9bIhAIegviXtx+wj0lQtsMkeEboVXzCd/HNGgBxszpAM14SrTu4diseNCMB5xiTmk+z0REokshSsSKZEiI/B7uKaGPA6Do3e9R9tmt+Byl6HFz8WlpTBkWR53DwYsv/o39+/e1OEZQZPI7K5ru87k7egoCgaAfIt4MW2DKlCns29fyD7OgjYhEl4JmMKZPAcBdJkQJgUDQgLgXt49oIQ+Nwzc0nxMAc9ZppC18BFlvAaKLEsSS6JLYE1m22lP4c4II34iZgd95jczzXwl9D6/K0TjUo/jd5VRt+h2KLHH2tGTOnDcBn8/Hylef55X7zyb/rYujjqH5A/nB1KiihPCUEAgEbSeGAMH+y//93/9x1113odfrWbRoEampqU0UfbM5SjIoQbNoasBTQuSUEDTGkDYBJBl32R5R51wgEIQQ9+J2EiXcIhi+4a08jKt4G6rXGVgkUCJLbkYL32it5CTQrEdEuwjPKSFKgsaMbEhADveWCPOUkI3JzR4nSRLzpgxl0MzTef2lR/l03W7yBps5Z5oVva7RQlJLnhIifEMgELSDfiVKrFq1ittuu40DBw7E1H758uUAPPLII/zmN7+J2ibWvgQBgkkMRfiGoDGy3oLeOgpv5WH8YQnSBAJB/0bci9uHbEjEOm4ZqmlQwzZjEgCeiv2Uf3knEHDpbyzy6BKym3YYw327UxMVR4Rv9KvH1U4lfO4UU1KLbTW/l4nTJvGDixfxzxe2ciDPSXmtj+/MScUa39CPCN8QCASdjfiVb4Hf/va3baqpLYgBEb4haAFj+mS8lYdxl+7uaVMEAkEvQdyL24ckSQw799dUVNShqgHvM13iEJS4gRHCbzBkI+JYJYpnQiwebM2IEsaMaTHZHGFDeLiIyCnRbqQYPSUA6g69BZLMQGscP1iSwYdbKjlR5uZfq0s4f1YKIwYEPJKCooTqaZrrJRgSJBAIBG2hT4gSv/jFL2JqV1hY2KZ+L7nkkvaYI2iBYKJLIUoIomFInwKH/otH5JUQCAT1iHtx5yFJEmmLH6Xkw2satumaihIApoFzcRV9E7YllrC6SFHCmDGNuDEXYRowsx3GhodviJDPdhOeU8KU3GrzuoNvAGAxKlw6P421+2vYcqSOdzZWMG9sAqeNSwQ1kFOCYEhuGMFyoQKBQNAW+oQo8e6775Kenk56enqL7dqbvfvo0aPs3buX4uJiLr30UtLT0zlx4gSpqanEx8e3q8/uxOl0smzZMs4//3zuuuuuHrUlmFNCPGAIomFMnwyIZJcCgaApp8K9+PPPP+eJJ54A4Gc/+xnLli3rYYuaok8ahnnIYpwnVwMg6aLn40hd/Ciaz0nhm+fH3Hfj8A3ZZMUyZHH7DBXVNzqF8ISnirHl8I3GyLLEoknJDLQa+GR7FRsP2ThZ5uYHcyoZkBG20BSGGpboUtNUXAUbMKRNQolBEBEIBP2XPiFKDB06lClTpvD444+32O6TTz7h9ttvj7lfu93Ovffey6pVq9DpdPj9fs444wzS09P5/e9/T1ZWFj//+c87an6X89xzzzFlypSeNiNAKHxDiBKCpijmFBRLJr7aPDStaTk7gUDQ/zhV7sU+n48nnniClStXoigKl112GWeddRYGQ+9L0hheLjRa+AYEcj8FS0gGiMFTovHKeQfu9RElSEVOifYTJu60Fr7RHGOyLaQnGfhwSwUFlR6ee+k1Ll2RSlaUcJ3wRJc1O56j7uAbxI36DtY5d0Ttu+7wO/gdZSRMuCIyQadAIOhX9Akf+mnTprFr165W20mS1Kas/r/73e/YsWMH//jHP9i+fXvEsYsWLWLt2rXtsrc7yc3NJScnh0WLFvW0KUB49Y0+cekJugB98nBAE2XFBAIBcOrci3ft2sXYsWNJS0vDarUyZcoUtm3b1tNmRUXSmRo+62OsXBLT41PkS6qvNjdmm5oQ4SkhFjI6g454nFjjdVyxKIPZo+Nxu1288cZrfLT2AB5f5N88PNFlMBTEU3Gw2X6rt/0J2/7XqNn5fLttEwgEpz594s1wxYoVXHnlla22mz17Nq+++mrM/X766afcddddzJs3D0WJvCFmZWVRUFDQZlvD2bJlCz/5yU9YsGABY8eO5auvvmrSZuXKlSxdupTJkyezfPlydu9uWwLAxx57jDvuiK5O9wii+oagFfTJIwCRLEsgEATo6ntxkI7ek0tLS8nMzAx9z8zMpLS0tFNs62wiPCWaCd9ojEbrlTU0NbJN/Njvts2wMCKECEl4SnQGeutI9MkjUCwZ7TpeqQ/n+P7F5xAXF8+uw0W88kUJJ8vCQjbqPSXUsHu4PqmhxKyn6hjFH/wAd2n9YmL9c6HqrmmXTQKBoG/QJ94MJ02axFVXXdVqu5SUFObMmRNzv263m+Tk5Kj77HZ7k4ejtuJwOBg7diy//OUvo+7/6KOPePTRR7n55pt55513GDt2LNdffz2VlZWhNhdeeGHU//x+P59//jnDhg1j+PDhHbKzMxGJLgWt0SBKCE8JgUDQ9ffiIJ1xTz5VCBclmkt02T4C7hR66ygGXPgGluHntr8rURK005EUA5nL/k7yzFuabSObUkKfFXNq1DYjhmRyyy23MWaIlRqHnzfWlfPFriq8PhXN58JTdZTCN74Vaq+FhfVUbfodvto8KtY+GNFntPwUAoGg/yB+5Vtg8uTJvPfeeyxcuLDJvlWrVjF9+vQO9b9o0aIWwypefvllLrvsMi699FIAHn74YVavXs0777zDddddB8B7773X7PG7du3io48+YtWqVdjtdnw+H4mJidxwww3tsleWO1aSTZYlqF9FkRWdKPEWRnBuOzrHfQGDtUGUaDwvYn6aIuamecTcNM+pNDddfS8O0tF7ckZGBiUlJaH2JSUlLFiwoN32dMo9t5l+ZL0p7LMlprGkWGwKK/ttSMhsuW0ryGGeErKi79Rr9VS6/juKLDU9z/C/f9KUa0HWh8IndHGZeFwBoU0xp+B3VjTpU9J8JCQmcPGiMYyIK+LzXVXsyLFzvMTFd4ylDKx8IKK95ndRtfkJLIMWoPkc9Z3IkXap/lPi79Gfrp22IuamZcT8tIwQJVrgZz/7Gddeey3XXHMN5513HpIk8fXXX/OPf/yDVatW8a9//avLxvZ4POzbt48bb7wxtE2WZebPn8/OnTtj6uPOO+/kzjvvBODtt98mJyen3YKETieTmtrx7OYFmgpIpKWJZEbRsFrjWm/Ux1GTJ1AsK2h+Z5NrTsxP84i5aR4xN81zKsxNT96Lg8RyT54yZQoHDx6kvLwcRVHYtWsXv/nNb9o1XmfdcyH639ifmEjQWT4uKanFsU7W/99i0bdqU169KKHXt962NaTyOIKvw/GJcZ02H+GcCtd/ewn+3eLiTE3mrs5lpaz+8+DZlyEpevbUixKWlEF4Kg4AYLAk4YniCGQxB67PKr3MuEEWBqcZ+WxnFUeLXLz+yU7GptaxcFIyZkPA28VVsBEA+9EP0ccFKuXpjGZSUiwhO/U6uuRv3FX05Wuno4i5aRkxP9ERokQLzJo1i3/84x889dRT/PrXv0bTNP70pz8xdepUXn755S6taFFVVYXf7yctLS1ie2pqKidOnOiycZvD51Opre1YjL8sSwH3PEmmoqKukyzrG8iyhNUaR1WVHVWNPRlrX0WfOATNf4DSgjwUk1XMTwuIuWkeMTfN01lzk5hoRq/v2iSEPXkvDhLLPVmv13PXXXfx/e9/H4DbbrsNo7F9VYQ6657b3N/Y2ZCLELff3OI9WbGk43eU4TMMavXeHXTB9/m1Dt/n7XZPw2eHDzrxuaE//TbU1bmQGs2d296Q+6PapoLUMNd+fUPIhp/olWPqbHbkijo8nsCFFGdSuHBuKgfynaw55GbPCQfHil0snpTE+MGWCM9YnydwXWuSgYqy6tB2j9vd6jVTe+AN3CU7SVv0SI/lJutP105bEXPTMp0xP91xz+0phCjRCjNnzuS1117D5XJRU1NDYmIiZnOMmaq7AE3T2hX2cMkll3R47E75gVFVkBTxY9UMqqqJuQF0SSMBcFcewzRgZmi7mJ/mEXPTPGJumudUmZvedi8O0viefM4553DOOed0St+d9XeJ9jfW5LCcEvqEFsfKOPdveCr2Yxg4r3WbwsI3Omq/pjW8dGqSrkuu01Pl+u8ImqY2PUe5IXwjcC007JeN1tBnSTERDW9NHva8DRGJTSVJYsJgCyOyjazZ5WN3rp2PtlWx54SDs6clk5IQqPyheeuFB8WE3+dtsEP1t/q3qN72bGB8WxG6+KwW23Y1/eHaaS9iblpGzE90RLbBFti4cSNOZ0DRNZlMZGZmdttDkNVqRVEUysvLI7ZXVlY2Wak5ldA0v6i8IWiVQFlQ8Fbn9LAlAoGgp+nJe3GQvnZPjqi+YUxqsa1iTsE8aEFsCyIhUaLjK3nh1TdEosu2I+kDoRD6xKFN9+nCRClZifh76RKHIptSSB59dkTp2HDsR96l4utf4ClrWhHOJLs5Z7qVKxamk5aoI6/czStflvD13mrc3gYRQ1aMoPoaDgz/HAXN7wn7Il7oBIK+hviVb4Ef/vCHKIrC+PHjmTVrFjNnzmTmzJlYrdbWD+4gBoOBiRMnsmHDBpYuXQqAqqps3LiRq6++usvH7zJUP4h644JWCFbg8FYf72FLBAJBT9OT9+Igfe2eHP6yKRsTO69fxYTmd0WIHu3vLGwBQ5QEbTMDLngFT+VhjJnTmuxr7AERLjjJhniyL/0vqakJ5Hz5TNsGlfWgBrwfslON/GBJJluP2th00MaWI3XsO+lgwYQkJg2xgKJHCxMiWqu+4bM1lP6NECgEAkGfoE/+ymuaxrPPPstll11GWlpa6HN6enqb+tmwYQNbt25l27ZtbN68mVdffRVVVRkxYgQzZ85k1qxZfOc732m3nXa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3O4xexpNU5E6YQVF0LfRJQwGwG8v6mFLBAJBT9PV9+Ig/emeLEd4SnSeKJG29ElqdjyHddbPOtxX+LOC8JRoO4o5FXP2aVH3SUr0XBEQEKwkSUaSJBInXI639iSaz4WrcFOrY0qKEU1tCMnQW1KYO0ZiwuA41u2vYd9JB5/uqGJnTh3nLqnA2gZPCZ8tL/RZU4UoIRD0Nfrkr7yqqjz77LMsWbKElJSU0Oe2ihJWq5Wzzz6bs88+GwjUMN+0aRMvv/wyb7zxBm+++WaHHoT27t3LVVddFfr+yCOPAHDLLbdw6623smzZMiorK3nmmWcoKytj/PjxvPjii6SkpDTXZa9H0/xIsr6nzRD0chRz4BqPVopMIBD0L7r6XhykP92TIzwlDJ0nShjTJ5Fxzp87p7PwBQzhYdmpSDozusQh6JOGNdkn6xpCo2RDHKkLHsJ+9INWRQnFkoGmqaGcEfFjLiFh4gqK3rmEBLPCt2amMG1EPKt3V1NQ6eG1T/ay3/0fpni9pCbo8TvL8daeRJ84JGr/wlNCIOjb9ElRAgLeEtE+txW73c6OHTtCqzS7d+/GaDSyePFiZs6c2XoHLTB37lwOHTrUYpsVK1awYsWKDo3Tq9DUTok1FfRtZL0FJBm/M0otMoFA0O/oyntxkP50Tw5fKZd0PZ8wNCph4RtiMaNzkSSJzPNfiZonJFoeCfOwM7HnfoZiTMKZt6bJ/pTTf4kxczpln91KMGuEpDM1EZMGWg1cvjCdg/lO1h+TOXDwINuPlzBxiIX5432oH1xF1vKPI4SRIOFChOYPeGM4TnyJbd9K0pY+hWJKbsMMCASC3kafFSU6g0suuYRDhw6RmprKrFmzOO+887jvvvsYO3ZsuypgCEBTVWSR6FIQA5KsR/PWofncYIiebEsgEPR9xL248wnP+dBb51Akuuxamvu7RwvtkHVmMs76I66iLVFFCVP2fGSdKfK60pmjhutKksT4wRbGjckix7KQT179jL0nHRzIdzBteDzfObuYpPThTY6LyD/h96BpGpXrfwWAu2gLluFnt37SAoGg1yLeDlvg0KFD6HQ6pk2bxvTp05kxY4Z4COoomj8yeZVA0BxK4CHU7xLeEgJBf0bci7uAU+E+HG6jCN/ochKn/gjLsHNCVTui0ow4FBQfwr0sJJ252fYAOsnLabOnc/05AzhtbAKyJLHtWB1PP/MnvvjiU+x2e+QB4YkwVQ/eqqMNY+ktLZyZQCA4FRDScwts3bo15C766aef8tRTT6HX65kxYwazZs1i9uzZTJs2rafNPGXQwuqXCwStEXTX9TsrIbFn65ELBIKeQ9yLOx8lbgBxo76NIXV8T5vSPOHhG6L6RpeTOPHKVts0G0ZT/7eKyFWij+4pEUTzu9FUH0a9zOkTkpg+Mp5Nh2wc8bpZvfpLNmxYz5w58zj99DOIj4+PqM6h+T346sJyTLSSJFMgEPR+xK98C5jNZubPn8/8+fMB8Hq9bNy4kRdeeIGnnnoKSZI4cOBAD1t5ClEvSojqG4JYCD78qC6R7FIg6M+Ie3HnI0kS1jl39rQZLRLxrCBySvQKmg2jCYoSYaVGJaVpTolwNJ8nouKGxaiwdEoy5865ks0Hyti2bQvr1n3Nxg1fM3vOfKYmNHhOaH4P+BuqfLRWuUMgEPR+hCjRCpWVlWzdujX036FDh1BVldGjR3dacq3+gqbWq9zCU0IQC/UPP9GSXWpqIAxIuG8LBP0DcS/uh0SUBBWLGb2CcHFIUkIhucF7saQLyymhNyO18LwX8JTwNtmeFKdn2dmLmGLezo7CRNZ99DyrC7ezVqcwLqGKmaMS4JvHiRt9UUNfQpQQCE55hCjRAueeey4nT55EURTGjx/P3Llzufnmm5k5cybJyck9bd6pR73rnXi4EMRCQ/hGpKeE31lB6ae3gOYnftz3iB/1nYgHIYFA0LcQ9+L+iUh02fsI/zsoJit+Z3mkeNQ4p0T4sfo4NG94nggNzedsMobmc1K7+yWU0q+ZpYPx5wxk69FS9lUNZOdxO7uO2xmVZWZWxX/ITjUGD+qcE2yE6nUA9RXBBAJBl9Inf+UlSSIrKwuDwRDxua2cf/75oVhVs7mXlsw6lRA5JQRtIPjw4w8L39D8HirW/hK/vQiAmu3P4inbS+oZD/eIjQKBoOsR9+J+SkSiyz75uHrKESEORQmpkcPCNxqX9ZT1FvzeyOSVtXteadKH6nPhd1WFvseZFBZNSuaM1Mls3lDCjmN1HCl0cqTQyUCrgdmj45nl8zTppzMofHMZAIO+v7pL+hcIBA30yV95WZb58ssvQ9/DP7eFn/70p51lkgCR6FLQRhQ9oKGGhW9U73geT/k+DKnjSZ59GxVrfokz72tcxdswDRAu3AJBX0Tci/sp4YkuhSjR64j2N4kI34jiKQFlEdu8VUea9KH5nFFzj+lsB5k3NpFZoxI4kOdg21EbRVUe/re5km+q3mXRBelMmzYDi6XzvRp8tnxUrwNDyphO71sgEAQQv/KtkJeXx4svvsj27duprq4mOTmZmTNnct111zF48OCeNu/UQiS6FLSBQPiGJyKnhOPEVyDJpJ7xaxRLGkkzbqRy3UNUb/sTmd96UTy4CgR9FHEv7n9EJroUv+29AV1CNgmTrsaQOo6anX8LbAwuOFGfgLIexZIWcaysi00sqN7yh6jbVU9twAZFYvKwOCYNtZBb6mbrERvFNTY+/vgDPvtsFVOnTmPOnHlkZWU36UPTtJhzUWlhiTSL318BQPZln4Hcds9rgUDQOuJXvgX27t3LVVddhdFoZPHixaSlpVFeXs6nn37K+++/z6uvvsrEiRN72sxTB00kuhTEjiQrIMn4XQFRwueqxe8sR5c4NPSwYx68CGPGNNylO3HkfkbciG+1aYy2PKAIBIKeQdyL+ymiJGivJGnKtQDU7n6pfosW2ifp4wHQW0cj6+MijpMafe8okiQxPNPE8EwTzuwzOVCTxc6dO9i2bQvbtm0he0AG08cNYOai5eh0OlyF31C54TekLvotxvRJzfZbu/ef2HM+Jv3MpuKI6qlF0adFOUogEHQU8SvfAo899hgTJkzghRdeiIhjdTqd3HDDDTz22GO8+uqrPWjhqYUI3xC0DQnZlILqqkRT/bgqcgDQJw9vaCFJJEz6Ae4vd+I8+XVMooTfVU311qdxl2xH9dSht44hcfJVmLJOEwKFQNALEffiforwlOjdRBGKEsZ9F9kQT9zIZVGaN3gYJEy6Gtu+fzUsVnWQzJR4Ri+6mHPO+RY7d25n8+ZNHN7wKgdX1/Hpl+uYteB8svKfJDVOo3rrH8n81gvN9hUUW5z565rsUz02iBOihEDQFYi3wxbYs2cP119/fZPEWmazmR/+8Ifs3r27hyw7RQmFb4jLThAbiikFNBXVXYOr4hgA+qThEW2MGVOR9PG4ireFMmU3h6fyEKWf/AjnydWoXieyIQFv5UEqvr6X6i2/R9O0Fo8XCATdj7gX908iqm8IwbjXEfr7hN03ZUMCCeO+18RLAiLDcYzpk0ie1Xm5Ymr3vEzNzufx5r7PvHnzufXW2/nuHBNjssw4aorZsGEtL3+ax79Wl7DzaBVOZ9OqH43RPLYm21R3bYfsDA9vEQgEkQjpuQWMRiPV1dVR99XU1GA0ijKEbSLkKSFySghiQzGn4K0Cv6sSd70ooUsaFtFGknWYsubhPPE57uKtmAcvjNqX5ndTsfYh/I4yLMPOJnn27Ug6M66CjVRteQr70feRDYkkTftRV5+WQCBoA+Je3E8RCxi9m5D3Soxifng4js6EYsnsVHNs+18DwDJ0KYo5lSHpJoakm5BHn88x1yi+yn+X4iovn27JZ2PFb5gwYSIzZ85ixIhRUUUvNZooEWVbrDjzN1Cx5l7MQ88iZf59zQptzoJNuAo3kTzz1ghhTiDo6/SJX/wNGzbE1M7r9XLHHXfE3O/ixYt58skn2bp1a8T2rVu38tRTT7FkyZI22dnf0dR6Nz25T1x2gm5AMacC4HdWNHhKJA9v0s48aD4Azvz1zfZlO/gmfnsRpuz5WE+7F1lvQZIkzIPmk77kCSR9PLb9K3GcXN1uezW/G2feWmp2vUjtvn/hOPk1mto19dMFgv6CuBf3T0RS7N6NRFu9VxraS4oJxZjUuQbV09ibId5i4owzFnHtWZl8f2E608YMQFEUdu34hr+/+BeefPJ3rFr1MUVFhRHekqqnrmnfnvZ7SrgKAu8qzhOf46s53my7iq/vwX7kXVxF37R7rFhQvQ4q1j2Mq2RHl44jEMRKn/CUuPHGG3nmmWdYtGhRs20cDgc333wzW7Zsibnfe+65h5tuuokVK1aQmppKamoqlZWVVFRUMH36dH7+8593hvn9h/rYQfGgIYgV2ZQCBEQJZ8VRkA3o4rOatDNlzQVZh6twI5rqa1KFw+8oC8SvynqSZ9zUZIVCnzyC1NN/Sfnqu6nZ8TfM2fORlLZl2LYf/5Tqrc+geSMfZBRLOomTr40aYysQCFpH3Iv7KcJTonfTkZAaSUI2JnaeLWH4XVXoCV+80OqHlMhKNTJs3GCSFt7Lmr+cz+7DRVTJ32Lduq9Zt+5r0tMzGFhey7hBFkxRQjVUd/s9JTxh5U+9NSfQJ49osb3msTe7z1W0FUfuZ1jn3NnmZ5Ug9mMf4jz5Fc6TXzHo+6vb1YdA0Jn0CVHirLPO4pZbbuEPf/gDZ511VpP9lZWV/OhHP+LYsWP8+c9/brU/l8vF119/TUFBAVdccQUrVqwgNzeXsrIy0tPTmTp1KgsWLOiKU+nTiESXgrYSrLLhLNiE31WD3joqatlPWR8XqMJRvBVv5REMaeMj9tcdeQ/N5yJ+/BXoEgZFHcuUNQdT1jxchZuoO/wuCeOXx2SjpmnU7noh4DoqyZgHL8SUNRdN9eEq2IircBNV3zyOtzqHpOk3CndMgSBGxL24nyOeFXo57RclJEluVpSIG30h9iPvNTpAjig92hKqswLVG/ZCr6movoYcEqq7Fr3sY3ymj/GZ6WjDhnNCnczu3bsoKiog52At6w/UMujgN4xOtjEmy0yCJfDc0V5PCU314a3OCX331Z6I3i7MU8PfwljlX90FgDFzOnEjzmuXTbHOp0DQXfQJUeLJJ5/kvvvu47bbbuPxxx9n2bKGFcn8/Hyuu+46qqurefnll5k+fXqLfeXl5XHNNddQUFAQ2hYfH88f/vAHzjjjjC47h36BECUEbcQ8aAE1O/6G8+TXQPTQjSCGlLEBUaI2t4ko4SoMuEHGjTy/xfGSpt+Iq2gztXtfJW7U+VGTdTXGfvR/2Pa/hqSPJ3XBQ5gGzgrtix99Ie7S3VSsvZ+6Q2+h+d1Y59zZap+t4S7fjyPnYzyVh1E9tVQmDUROHodl1IXo4jo3Tlcg6AnEvVggvCp7OW31lJAkkmf9DHfpbnRJ0e/lhtQJmLLmNhElZJMV1VkR0zCVG38TuUEDv6PhWNVdg+quaTAr7z3mfft7LFiwkLKyMr58ZhUH850UllSRn2fjqz01DLQaGJ1lZmp6EdZgt6oP24H/Yh58Brr4gS3a5LcXg+oNfa/d8w9MgxZgsI6KNNXXkKzb7yht9Vy1VpJ7t4SkM7X7WIGgK+gTb4eSJPHb3/6W733ve/zf//0f7777LgAHDx7kiiuuwO12s3LlylYFCYAnnngCWZZZuXIlu3bt4sMPP2T8+PE89NBDXXsS/QERviFoI4o5laSp14e+G1pwd9QlBjwgfLX5Edv9zkq8VUdQ4rPQJWS3OJ4+aSiWoWeheetw5q1t1T6frYCaHX8FSSZ96ZMRgkQQY8YUMs75C7IpBfvR93HkftFqv83hd1VTsfZByj69CfvR9/FWHsJfV0RdwXZq971G8f+uoHrrn9D83tY7Ewh6MeJeLEB4lfVy2p5TIn7MxaQueBBJkqInepQkZH18k82yISH02ZQ1r43javgdxaFvqqcWv6uqYbffg/PEVwCkp6dz+vgkfnhWJlcuSmPWqHiS4xSKqjys2VfDX//9Bc888wc++eQTjm38F9Xbn6V01U9atSCYn8KQPim0LThmOH5HedjnsjaeZ9sIFzTCPUkEgp6iT3hKBHnwwQcxGo3ce++9HDp0iDfffJOMjAz+/ve/M2DAgJj62LFjB/fccw8zZ84EYOTIkfzqV79i2bJllJaWkpGR0ZWn0KcR4RuC9hA3+kIcuZ/iqTiIvtGqQji6hCEA+Gx5EdtdxYHkeKaBc2IqK2cZfg6O3E9xnPiiRbdITdOo/OZxNJ+LhElXY0gd14Jtg0iZfx/lX95F1eYnMaSNj5oboyX8zgrKvrwTX00uijmNhMlXYxo4B70lhXh9LQU7/kfdoXeoO/xfPBUHSF3461Ci0M7AXbYv4IlSfQyQkM0pmAbMxpQ1J2pIjUDQEcS9WCDJOtLP+mPEC6mgF9HmnBIxtJckZENTUUJSGirsWE/7BUX/vRAA2ZDYakiFpqn46orDNqj4bYUA6FPG4q08hDNvLQnjLwszQyIz3kvm5GQWTUqirMbLkUInObUSJSUlrFq1iuqT27G4ihk5oIb5044wbNgIFCW6kBZ86dfFZ6NLGIQj5xM0v6tJO3+YN4jz5GrUOXeBJOPMW4NiSceUGbm4qtUv9rWH8BAXv70EuVFlM0H70VQftXv/iWXoEvRiXmOmzz1J3nPPPRiNRp5//nmmTp3K3/72N5KSYs/wW1ZWxuDBgyO2DRkyBE3TKC8vFw9CHaFelJCEKCFoA5KskL74tyi1u9AyZoeXRI8g6CnhrW0kShRuBsA0cHZM4xkzpyGbrLiLt+F3VaOYkqO285Tvx1O6C13SMBIn/aDVfk0DZpIw8Ups+/5Fza6/k3r6/THZA4FVlrLPb8Nny8M4cA6pZzyMrDMDIMkSJuswkqf+EMvI86lc+xCeiv2Uf/2LwAN9fbv24qk8RPX2v+Ap3dVkn/3wO8gmK0nTfoxl+LkxiT4CQSyIe7EAwJgxtadNEDRL237vY7s9SEh6S8QW2ZiMpOjD+ml48ZdN1tbzPKjeQPhEGN7ak0DguUB11+Ip34u7bC/ust1R7JbISDaQYTVxhsmK4Yw7OLb7Cza688jdf5Btx+o4/I+XMBiMjBo1mjFjxjJmzFgSEhpyZmjegCgh6cyYsk+rFyU8TcbyOxs8JdBUane/hGxMpnb3SwBkLf8EOSzsIlqFkFgJFyV89hLx8tyJ2I/8D9veV6g7+AbZyz/uaXNOGfqEKDFv3rwmD8OapnHs2DHOO6/pSufGjRu7yzRBOMJTQtBOFHMqqYO+Q0VFXUQiqIg2xiRkYyI+Wz6a6keSFTRNxV28BWQdxszWw7cgsDpnHrwI+5F3ceZ9TfzoC6O2sx97H4D4sZfG7CmQMPFK7Effx3nyS7yTr0KfOCSm42p2PIfPlocpax6pZ/yq2WzbOksG6Wc9TdlX/4endBdVGx8lZcFD7RYCHblfULnpd6B60SUOJm7UhRhSx4Kk4LcV4DjxZSCR56bf4Tz5NSmnP4Dc6IGyI2iahrt4G86TX+GtPYHqrkE2paBPHoFl6JkY0iYKIUQgEAh6gLaXBI2lUzkil9PAS95FkmQq1j3U0EYOFyWSoZmkkUE0vxu/q7q+vRXVVRXyqJSNySROvpqqTb+jauOj+OoKmu1HF5+Fz5aPuWo92cXP8d2xYBs8gJwSF1VDx5OTc4z9+/eyf//egO0Dsxk7diyjR48lxRcQD2S9Gbne68N+9H2MmTOwDG0oaeytOgqAeehSnCe+xHFyNebs+aH9qqsKKcwDUvO0vxpIeHUPzdt8pQ9B2wmKXpoIi2kTfUKUuPLKKzv1wfT666+P6oJ1zTXXNNkuBI7YCbmZiZwSgi5ClzAYT/k+/I5SdPED8VYdRXXXYMyc3qaXZcuwM7EfeRdH7hdRRQnVY8N54isknQnL0DNj7lfWmYkffxm1O5/Htm8lKaf9otVjXMXbsB/7ANlkxXraL1ot/yUpBlIXPEzppzfhzFuD/dhHxI+6IGYbg9iPfkDV5idBkkmacTPxYy6JrBySNgHL8LNxl+2hatPjuAo3Uv71L0hb/LsOe2dAIFyk6pvHm2Ypr83DU7oL++F30KeMxTrnLgwpozs8XnNomobfURJakdInDEbSGVs5StAZiHuxQNCL6YTwDb11DN6qw2EtJGRDAtbT7kVnyQh5KkpyuKdEw6tLtFCPxmh+D/66IgAMKeNwFW7EV//SqBiTMA6YAdCiIAGBMEyfLZ/afStD2xIsOqYOjyf7iqvw+/0cP57DoUMHOXz4IEVFBRQVFbB69ZdIjjwyvOWMp5DxZjuapiFJEpXrH44QJdwlOwBImno9qrMSd+lO3KU7Q/tVd03EM4DaAVEi3FNC87vb3Y+gKdFCcwSt0ydEiVtvvbXT+rrllls6rS9BI9T6RJey8JQQdA26xIAo4avNQxc/EJ8t8JCht7btpdWQNhHZZMVTvhfN746IZwVwHP8Mze8mbuQFbfYMiB99EXUHXseR+xmJU65FF9d8vhtN9VO95Q8AJM/6GYoxtlA0xZRM6um/pHTVT6jd9SKWIYtjengL4qk4SNXWP4KsI/WMRzBnN59YzJg+mYxz/0LZl3fhKd1FxZoHSFv8WLtLn2qaRt2B16nZ9QJoKoa0ScSN/g7G9EmhDOyu4m3Yj36At/IQpat+TNL0G0kY9712jdccfmcFtv2v4cxbh99R0rBDUjCkjid+zEWYhywW+TS6CHEvFgh6Ox0XJdLP/D2eqiOUf3F7fZPA82Hc8HMiG4aFb0R4Suhar5DlrTmOp/IQkj4evXUkrsKNoZVs2ZiEbEoBxQBRwinC0SUMBjZFTUCp+Rzo9HGMHj2G0aPHoGnfpry8nMOHD3L06BEObzvG0SIXeev38cXOUuSiIoZmmBiabiTJVktCQiKqx4a36iiKJRMlbiC6hGzcpTvx1QsqEEh2LYWJ/h0TJRpCP6KFkvRWHCe/RjFZMWZM6WlTmkXzCZGnPYinqUaIB6EuJBS+ITwlBF1D4KEBfLZ8YA5qfYZtxWRt4aimSJKMIWUsrsJNeKuPN0li6cj9HIC4dnggyHoLcSPPx7b/3zhPriFh/PJm27qKtuCz5WPMmIZ58KI2jWNIHYdlxLdw5HxM7d5XSZ5xU0zHqR4bFWsfBNVL8qyftShIBJENCaQvfZKyz3+Gu3grdYfeikga1hbqDvyHmp1/Q1KMJM/6KZYRyyI84eSEQcQnDCJu5AXYj75PzY6/UrP9WTSvk4RJP+iw15ymadgO/BvbnlfqV48k9NbRKJb0QK35qiN4yvdSWb4X3d5XSJn/yy7z1PDZS3AVbMBdtre+hJ2ELiEbY/pkTINOj4gt7muIe7FA0MtpR0nQxsiG+Mjkjc30Gekp0bCwJRkiRYmkGTdTs/3ZiG2eskA4RcL45Ui6+kUE1RcY35SEJEno4jLxNcpHFY4+ZQyKpfnE0X5nVUTYiSRJpKenB6p5nH4GFVNUDq3Jo8I6jbwqiSPHVfaddLDvpIM1j/2W9PR0sq0yiYV1jJpan5Q76BFRbyuA6q5GDVtg6EhOifDqG5rv1FjZ99aepHLdgwAM+v7qmI/T/F5KV/0YU9Y8kqbd0EXWhY3XgVKt/RkhSgi6DVF9Q9DV6BMDokRwFcTvqgQCcaRt7ss6ClfhJjxVRyNECc3vxVN1BNmYiD5lbLvsNA9aGBAl8te1KErYj7wLQNyYi9r1sp009XqcJ7+m7vDbJIy/LKZqHLb9r+N3lGAesoS40RfFPJZsSCBl/gOUfHIDNbtexDRwNvoWSrhGw3H8M2p2PoekmEg78ymMaRObbSvJCvFjLkKfPILy1fdQu+fvyMZE4sfEbnNjNL+bqm+eCIhOioH48VeQMH55hKilaRru0p3Y9r6Ku2QHpZ/ehHX2HcSN/Fa7x22M31FGze6XcRxfFSqlHMRdvAX7kXeRjUnEj/seCeOWtxrSIxAIBJ1PV+Tzif582NxvXLgQkLYkUJbbby+h7tBbEe10ScNIGHcZzrw1kcfXex8qlgHRRQlZT/rSp9Anj8Ce80mzVjtyPsRdto+UeT+PWnpc0TwMSTcxbcECjGmTyElaRX65mxOlLqpSkik+eYCCg2V4yqsw5O4nfe+jZJBDmqeOQWlGUuJ1SJIUECWMDQk0eyJ8Q1P9OE+uxpR9GrLeguZ3U/71fViGnUnCqGUA+F1VlK/9FQkTv49pQNNS6e3FfvSDCJvDvVg9Vcdwl2zHW3WUhAlXRCTu9Nbk4K0O/NcdokR4wlJ32R6qtzxNyvz7MKaM7PKxT2WEKCHoPkT1DUEXo0sIVOAIeErQbk8JaAj58FYdidjurT4Gqhd9yvR2r8rrU8eimNPwlO3B76qKap+vrghX4TfI5lTMgxa0axzFnErcqAuoO/gG9uOrSJzw/Rbb+13V1B3+L8h6kmfc1Obz0ycPJ2nq9dTs+CtVW/9Ixll/jPlYn6OUqi1PgSSTsuChFgWJcIwZU0hb8gRlX/yM6u3PYkifiKGN4ToQEE0r1j+CK38tiiWTtMWPRhVVJEnClDkdY8Y06g69Rc3Ov1H1zWNIsg7L8LPbPG5jXMXbqVz/K1R3NZI+nrhRF2AaMBMlLhM0FW/VMZz563DmfU3trhdx5q0h9fQHoz4ICwQCQZfRCZ4STds0sznMUyJie1j4ZCjXT5S25sGLkHTGkAgRJPhdFz+AaK/lijklFCbQUqiebf+/AeoXGpp6CQYTHso6M5LOiNkgMzrLzOgsM2lLz+bERx9SUOEmLzGOqsQRVNTWUlZWhKeiOmC/QSYrxcAIxxaGjHZh8aoY9XJECEZb0DQNzdO+8A1n/loqN/waJT6Lgd95DWf+etzFW3EXbw2JElVbnsFdsh132W4GXf55u2yMRjARKIDPVog+eXjoe+nH14U+u0u2M/CiN8OObHjv8NUVUb76HpKm3YB50OkR/Wt+L868rzFlze1QKeLw0q7lX9+L5rFR9c2TDPjWX9vdZ39AvB0Kug2R6FLQ1QRezKTQioe/XpSQTSlt7ivoku+tjBQlPJWHAvsbhXS0BUmSMQ1aAGi48tdHbWM/9iGgETfygg7lLYgbeT4AjmMfNVu5JIht/2toPhfxo7+DYklv13jxY7+LLnEIntJduMv2xHxczfa/oPlcJIy/LKaQkXCM6RNJmnoDqF4q1/+qXfGctn3/CggS8VlknPuXVr08JEkiYdz3SF3wMEgylZseDZWfbS+OE19S/tVdqO5q4kZfxMCL/kPy9J8EvE4Sh6BPGoZl2JmkLniQARe8iiF9Mt7Kw5Ss+gmeqmMdGlsgEAjaRsdzSjRt0cxrSaN7YNLMW9ElDiVuWIMQHPSmiHa/DHoJymFeBigGJCUQAtdcyfDw/A2NbYiG314a+d1VTcnH12M/+n6ov8ZeH96qY8SZFMZkWzhzqpWbb7mDe+/9JZdfcAZzxiSQlWLA41M5Vuxi9aZd/OvND/jzB4X84/NiPv6mgM2bv6G4uAhVVVu1DwKCRM22P0eUUm1L+EYwaai/rhBv7cmo3hqeevGgs3MuaWqDeBJcfIpqY6O8H+GJJ2v3/RNf7Qkq1tzX5Djbgdep3PAIlRt+0yE7I/J11M+PKiqctIoQJQTdhwjfEHQxkmJEicvE7yipLwPWfk8JJW4gkj4Ob3UOmtrgQu+pOAAEsnh3BPPgM4DAyko0nPViRUfDAvRJQzGkTcRny8cTpQZ7ENVjw37kPSTFSEIrHhUtIclK6HhbWJbylnAVbcV5cjWKJYOESVe1a9z4cd/FOHA2vto86o7+r03Hukp2ULv7ZSSdibSFj8QU5hLEPOh0rPPuAU2lctPvUN21rR8UBXfpLio3PgqAdd4vsM6+LcI1uTG6hEGkn/kH4sdeiuaxUf7VXXhrm39IEwgEgs6kS8oxK814RDR6kU8YeykDLngF2ZAY1ibgKRHNq6JBlGjwlFCMSaFzMA9eSPrZzzY5zm9vSHIcS/Jmn70o4rvtwOsRq/uS3gJyo1CUiGdiCV18FmazmVEjBrNwYhLfX5TBLRdkc8XCdJbMyGL88AEkmBXKbT725tbw/vvv8Oyzf+SRRx7ixRef48MP32fHjm0UFxfh9/vxu6obwqcJVPioO/xfZGMySdMDuabaEr6hhgkYvpoTUV+2g9VNdIlDW+zLXbo7prwYdYffpWrL02i+2ESJkK2eOorfX0HtnldD21patAhWOnEVbgICi1Cu+ooo3uocij+8ttXFFk1TI/KAhLar3lbt7e+I8A1B9yHCNwTdgC5+IH57MT57KWoop0Rym/uRJAm9dRSe0l34bPnokwI3V0/FQQAMqe3LJxHEmDEVSR+Pq3gbmt+LFPYwpnps+GpyUeIGtFidI1biRi7DU74P+7GPMGZMjdrGVbAJze/GMuK8Nr2UR8My7Cxqd7/ckJPDOqrF9rV7Aw8MSTNuanc5UUmSSZ5+EyVFP8S2byVxI89HNraemV3TVGq2/RnQsM6+s815MCCQKd5dsgNHzsdUb382plKv4fgdZZSvuT+QXHT27cSNODem4yRZR9KMW9D8XuxH/0fFml+Qed6LomSpQCDoBjrPUyL9zKep3vFcswmZmwvfCK/EERIuoogHSr23pGJu8JpsHMphTJ8YEAjCXuDDPQbDS5FG9B2fhYSEr64gVClDU304jn8aIUhAINF1YzFH8zUkRZRN1tCzQPg5GwwmslMlhmdYMaZNxDZwL3aXn2KbgmfCYvLy8jhxYCOHt+0kN3VCKFJG8juxlH1K9sjJjFlyB1lZWcTbA56k8WMuwpAyJmCD34Pmc8d07wgkXQ7gd5Y3SeoYLlqEi0meqmMo5pTQIpGreBvlX96JPmUsmef9rb6/Smp2vUjChMvRJw4JbHPXUL316UB/Ycmd/Y6GvA3N4SrchM+WHyFghNvrrclFsWQ0W0Wt9JMfA5B9xZdUffMEvprjVKy5n6xL32t+0ObEh1OowklPIUQJQbchwjcE3YFS/xLvryvC76pCNia224XQYB2Np3QX3qoj6JOGonod+GpOoFgyOvziLsk6DCljcJdsx1dXEJGUyV2+H9Awpk/q0BhBzEOWULXlaZz569E0Naow6MxfG2g7aGGHx5NkHfHjl1Oz7U/Yj36AYfZtzbb11pzAU7YbJT4L8+COja1PHo5l2Jk4cj+n7vA7JE9e0eoxjtzP8VYfw5A2EfOws9o9dvKMm3AVbcZxfBWW4edgGjAz5mOrt/8FzWMjfswlxI++sE3jSpJE8uzb8NtLcBV9Q83ul2KutCIQCATtps05JZrfZcycRuZ5zzV/aDMeFOHPk5IcDN9o2lauv1+HJ0YMhm406U9T0SUOwZgxjfixl4Z1Ev05In3pkyhxAyl883z89iI0TcNVsIGqbx5v2n0U0T3cu04OqyYS/kIvm1ICfftcqPUv1XEmhVHxZrLPPg+Ak//6F9V2H77Jiyit1SgqKuTE/rUUV3sp3radw/Z3gUBeBou9mMHFO8garqLLd5Ba+wG2Y5+QufRxTFlzo54nBEIQIkQJR1nIniDu6qYCgLtsH2Wf3YxxwCzSlz4JNCzweOtDYgGqt/8Z54kv8VTsZ8D5/0Dzuan4+t6G/sIED9XXeoWLULWVMIL5PQBKPrwG06DTSVvYcriG5nOFPB1Udw0+Ryk6S0b0tv7ookR46IkgOkKUEHQf9fFukiw8JQRdR9CzwFuTA34PcnxWu/sKJrv0VB3BMuwsvJWHAa1D+STC0SUNDWSLrsmNECU89e6BhvTJnTKOrLdgSB2Hp2wPvpoTEcmhIODO6CrcjKQzYRoY+8t0S1iGLqVm259xFaxHm/WzZl19g9m040Zd0CleVAmTrsFx4kvqDv6HpAktlyXV/G5qd70IQNL0n3TIHVk2JJA842Yq1/8K275/xSxKBEJXvkKxZJA49fp2jS1JMta5d1H84TXUHXwT8+CFnSZoCdpGTk4O9957L3V1dRgMBu69915mzeq87PMCQe8htt9L06AFuPLXYRrY/MtuqzSX6DLsNzu4yh81p0RYCKekj0fz1qF6apq0kyQZjcCKvHXOHZH7wvqVZB1avYu+pBgDZUUTsvBWHUV1VTa7ii9HeUkOFyUiSp+GfVbMqQFRwu9GC09uWe/V4XdWIMsSKQl6UgaZmTFkMQDOgkkc//gYpTVe1OlnUlhYSO7uE5SX+LDnFHGk2IPjeMCjVJEhbfM9DJ9/PZmZA8jIyCQ9PYM4tRhzygjcJTuoWPtAhO1+R1mTJJnu6pMN51YvStTu+UdgX/HWhvOLUlHFVx+C6KsrDFS6qtiPp3xfk3YQW9nNaCE3wbDeIJF5vaJf043HKn53ebMlSZtLGtqWZKL9FSFKCLoPkVNC0A0EPSU85YHcD+3JJxFEbw248vtqTgT6rAwo+/pOEiWCQoS3+jjUP0QAoZhFQ1rnvVga0yfjKduDu3xvE1HCVbwVze/CPGRxxEpSR1BMVgzpE/GU7cVbdRhDlPKpmt8dKHsp64gb0TklNfWJgzBlzcNVsAFX8TbIaN77wZm/Ab+jFFP2fIydIACZBy9CF5+Nu2QHnoqDrYpXmqZSve0ZAJJn3tKsC2ksKJZ0kmfeQtWmx6jZ+RwZZ/+53X0J2o/RaOS3v/0tI0aM4NixY9x0002sWrWqp80SCDqfGEXc1NN/ibf2BPrklsP4WhwqhnwOQU+JaHkpwj0tFGMSPm9dxIp/WMPA/7UoSSPDbFDMyfjs5fWHBO6ZeutovFVH8VQcip6jQdZDlBfxCDukcOEjXJQIhJ2Ee0oAoVwR4S/u3uocHKof2ZCAJOtItAT+y168BEnWUbPLS9mOAnyjv021z8qhjzZQYfNRXuulwubHsW8Pu7Z8FRJeXCdXY03NJNnsJ8ngxBqvJyVeR3K8Dr29DIlGZavDRAm/vQh32R58dQWBKQgXh6LMRdCbQJIN1O56Edv+5vNSRcxDFO8Eze+Nmsehcd6PiGPCvCi0sLwQbUlS2VzuCCFKtI4QJfowe/bs4f777w99P3LkCP/9738ZP358j9gjwjcE3YEuvl6UqE9IKXdAlAgm0QrekHy2QoAIr4aOoE8KiAO+2hOhbZrqw1txEEkf12njABjqV849ZXth1Lcj9gVrt5sHndFp4wGYsxfgKduLM399VFHCmb8B1VOLecjiDolHjbEMXYqrYAP23C9gSvOihCP3MwDiRl7QKeNKskL8+Muo3vJ7bAf+Q+qCB1ts7y7ehq/2JIb0yZg6Ye4tw8/FduA/eMr24i7dHSplJ+g+srMbSrOOGDECm82GpmldkxRQIOhRYrumJcXQrjLNkcSwmBWl+oYhfTLWuf8X0cw87Exse1/FlB1ZDrL+4MD/o4gS4TkldKakBlGiPs+BIXUcjpyPcZz4ot6rEhKnXh/yxpPDEmuG4w+rghERphL2WdLHg6yvFyXCXpDrn6vdYaKEp3Q3tvo8TamLH2sYx1mOLm4Ams+JySCTOmQYo1PHM6ggTCjIPhv3wAvZ98Y1lNd6cSTPorhMobKihGqdpUnIhM74NdYEPUl6B0kWHaPWr8VcsgWtxkOiRYdRL1P22a3hs9hgelgoRvA3MvjiLimGCEFClzg04jkpcHy4KNG0eojqrokuBDTeFrZQqrqqGz6HzXMsXhkNtjSTU0JTW62A1t8RokQfZvLkybz3XiAZS0FBAT/4wQ96TJAARKJLQbcQyinhCJTm6sjLbvBhI3jzDNUa18d3xMQQuvrkmd6a3NA2b+URNL87kAgzhtWhWDHWe11EyxztLtkBktxiLGl7MA06nZqdz+HKX0/SlB9GGXc7AOYwL5FOGTd7PpJixJm/DrWZTNt+VzWuwm+QjYnNloNrD3HDz6V2999x5n2Nz16KLi563ClA3ZFAlZD4MRd3ykurJMkkjL+Cqk2PYtv/mhAlorBlyxZeeukl9u7dS1lZGc899xxLliyJaLNy5UpeeuklysrKGD9+PPfffz9TprR9Lr/44gvGjx8vBAlBH6Ubr+sYnhuD/84iEkRaR4cSJgZJnHQ1+uSRmLLmRBkmEL6hRfOUCBMJdObksGMCr1JBzzjniS9C+/TJI5EUE5rfhRJejjSMcE8J65w7w/oNyymhMyPrzGh+F1r9y3Kg38D9zVO+P9TWHV5lK6xymN9eUi9KBJ5nJJ2pSWJLi9lEirkKw4jAM078uJnUHTyG16dS4zFTWVVFVZ2PareeSpuHqlonZeU2ggU4D3/4Hu6ib/DUBp6/TAaJRLOORItCkkVHUqKPUfv3kZiYCFUVqKqGLEtoPieS3tIgImiR3hf65BEhUULSx6F57RGeEmqYh0PofN1VMXknhOf58LurI+arof82lPNsIXeE5qkDEmLvq58hRIl+wieffMK558aW0b3LEJ4Sgm5AMafWJ6sKXG+yKaWVI5onWAkieBNXw27mnYFiTEI2WfHV5oUqcLjL9wJ0ek4A2ZiILmkYvppc/M6KUKJO1evA7yhFF5+NbOgcsSWIPnEwusQheKuP4asrQhc/MGJ/UCDpjNCJcGS9BVPWPJx5X1Obux6sTR8+nXlfg+bHPGRJ80nU2oGkM2IZcS51B/6Dq2AD8WMuitrO7yjDVbAe2ZjcqR4qlmFnUrv7pfrKJ8cwWEd2Wt99AYfDwdixY7nkkku49dZbm+z/6KOPePTRR3n44YeZOnUqr7zyCtdffz2ffPIJKSmB35ILL4yejPTtt99GUQL3t4KCAp544gmef/75rjsZgaAH6U6xraXFrIxzn4t0mQ/PKREtlENWsAxZ1MxA9c+nqr/prrBnV12Uil5KlMSHsiEeTWvIPRGNoChhnffziOpP4feloICgOmyoHnuob7/TRe2+f+Ep2xPIleF3R1Z/0BpCEIJ5LsKfYxrbpHodgbDH4OH1L/56nUyazk2aJRBiGLTTW52Dy6NSbfdR6/Chm7WEws05lORVYnP4qHb4KK3xUloTtKmOzY5/IkmBMtjeygIsJpms0j+QnD4Y77584vUe4k124k0KcSYZs1HBEtfggSYbk/B77RHeC+FeF6HzrSuOqdSp5rUHQjU0LST4AKFKKuHzEHFcfUJTn70Y1VVF4qSr8FQeCS2IRUON4tEhaECIEj1Id67YfPLJJzzwwAOtN+xCNJFTQtANSLIOxZKBvz5usENhAbIeJDnkIRH8f2eJEhAI4QivwOG3B25oukarO52BMW0Svppc3GV7Qw9loXriSS3XE28vpoFzqas9ibtsT4QoobprA2VP47M6XMkkGuahS3HmfU3Vkc9JnNNUlAiGbliGnd35Y2fPrxclNjYrStiPfQiaStzIZZ0risg64sd+l5odf8GR+5kQJRqxaNEiFi1q5oUEePnll7nsssu49NJA1v2HH36Y1atX884773DdddcBhDwQm6Ouro6bbrqJBx54gKFD2//vSpY79tIXPL6j/fRFxNy0TCzzI+sbVpi7eh4lpUEQaDyWKT3SA1gOzx+ht7TJNiksfKPxcbIurF9TQznRUDtD08oaOmMiBBNiyrqotgRfhGWdKWK/rAvzlDCY66uFaKju6kByzfpwlWB4iDF9Et7aE/jDXqYJfwnWvIH+67cpenPEGIEmdbhKdzV8b+QhYEgZS9zI8zBnn0bl5j/grc7BZJAZYDAwwGrA4H2fSbMH4hhcEThe03B6VGocfmrtAZHCNGsOtTY7xepRKp0KdpefgoITFFfUYjsSPUGoacdnUFmAxaAQn+zHLNkxm1wMTfocneM4iu0waokLo0HGpJcx6SVKv74fy4BpUfsDSJhwBc789YFnIJ+9ybuJ5m5IiKn5HNAo9KLg35Hva357Sei5ojmkepFI/O5ER4gSPUh3rthUVla2S8zoVET4hqCb0MUPCIkSHckpIUkSks4ccg0MqvFylLJe7aVxBQ61Pr60cQ31zsCQPhn7sQ/whIkS3qAokdg1okQwqWZQ/AgSjIE1dmIyz3ACIRkSjqLdNHaaVb12PGX7UCzpGNImdvrYhrSJSPp4XCXbUX3OqNdLMI9H3MjzO31885BF1Oz4C66C9TD9J53ef1/F4/Gwb98+brzxxtA2WZaZP38+O3fujKkPv9/Pz372M5YvX86CBQvabYtOJ5Oa2jmeS1ZrXOuN+iliblqmpflJXHQLJ9wlDJhzPfGddK02hxZvJviK2Nq/C50tgeCrbXxySpv+HRUpOvyALGtNjnP4Ewg69MuKnoGn3YhiTAy10zQL+ZHdkZqZSVAi0BuNobblmRNxlERWlUiyJpEUNqbdm0RwzT0+KRmPyYLPVr84IikoOh2+sOOHLv4p+V89hj1MlDDpG0IJ4swKqanxVEoBrwVrWiomawJ5YX24Cr8JfZYUAwqRngZp488hc9ZVALiPDMRVGJoQUP14yg8QHrwgSRIWo4LFqDDQGhBAJl9+ITpzMsc/zqf6cDmqqpG++Pt49Bns+Ndq6px+7C4/Nqcfh0fF4fZjGjiQ/DKNyjofNtWN3+tB9dooiPuasp3/pjkMukKMehmjXgqIFQYZo15Gr9cxbsRYynNW46uyUb1nE+a4ZE4WOtErEnqdBJVFVNX50MmQ7KvD47Hj82vo5OheQt7yXVEsiCQxPvDaLX53oiNEiR6kO1ZsAFatWtXzoRsITwlB9xHMKwEd9JQg4BURTH7UNZ4Sw4CGChxBV85gks3OJOhyGcyEDQ1iQeO4284iKHZ4ayKTVDWUPe0aUULWW9AlDsZTexK/uxZJ3xDH6a08QqC0a9fE+0uyDlPWXJwnvsBdvB3zoMiEan53Dd7qHJT4LHQJ2c300n50cZnoraPwVh3FW3sy6t/WXX6AY2v/SfyM25DN6Z1uw6lIVVUVfr+ftLS0iO2pqamcOHGimaMiWbNmDZs2baK8vJw33ngDgH/+85+BGOo24POp1NY2jZNuC7IsYbXGUVVlR1VFgrVwxNy0TGzzY8S68HHcgLuirpk2nYPd3hCSUNHKWK66hld1p0dptX04qha4H/h9vibHeWobXrclRY9x9BWoqhbRTlKMESED1faG512fXw61TVnye/T7/0PN7r+H9tscKr6wvjy2sPNwy/gJ86jT/PjD0l6kzr8Pp5yNqk+OsLmuqiL0Oe/L32CrqsDjDIxRU6diV5ufG83vxW2PrFDi1WeHzsGnNDxbGdMn4y7Z2Wxf4ZQXFeA48S9qDgeqEsmyhG3/m3jK9zFqYPQFn4xzrqP00514fSq+xPHU1VRQW55HwqLzOe79EKdbxe1VcXk13F419J/Lq1Ln9GNr9FMqKQaOfbgKV2Ex3toaNtveQtaZqTvWMF+Gvf/DU1kcOL/t/8RTeSSUo0KWQJZBkaWw/4qQJQlJqs+2IitIqEgQ2jZSfZ0bb7uH6mpHu393EhPN6PV9MwxeiBK9lM5YsQnSWaEbHXU3kgj8gsqKIlyXGiFcSaPTeF5inR99fIMoobOkdGheZZ0JVfMjab6Qp4RisCB10t/KUO9J4K89gSxLIU8JnTkpJrvbMjc6S+AhQnVXh9oHk0cZkod2yfVntA4NjRPev6c+d4Ypc0qXXffGlNH4ak/iqz6KMXNGaLu3KpAZ3ZA6tsvGtgw6DeeJL3AVbiRuSOSKuSt47hldd+7mQafjrTqKu2ADxuSmXjB1h9/BfmI9plEXYWohGaeANlXPWLJkCfv27Wu9YQx01suyqmrixbsZxNy0TG+ZHy0sqWZr9mhhVTLQWdpmf/2imaapTY7TUMKa6aLOjaSLFCU0KUxIkJSG9rIRfWqjxPOSIaK/iGMVc0T+h4RJV4W87QAkU0ogaWSjHFp+d23E9+odz6ELVvWSja3MjYbfWRGxRUkaFjpGNgfEWyVuYJRFFAlT9vyAt14j7Ce+pnb3yxHbwkuaRkPSBTwL9DqZ+IQ4Ek2Qri8nc1QmGWMaxtanjifltF9Q8sFVDWehaXg0PS6nKyRU+PVpJJ9xOeU7PdTm1mKZMAWfLoUy1uD1qXh9GpI1kbr6OVJS4nB4JFS/DlXT8Pk1/GrgWnR71QiBKGSzIjepxOE/chSv19tr/l31NoQo0UvpjBUbgMLCQiorK5k8uWOJ5DrDldRn0lEFWOLMneaW2tcQLl0N6PVKk+sk5vkZMIya+gTU6VmDkHXRE0zFQpkpHp8NkhMVilQXkqInLT253f01xmseTymgOYtITY2npD6GM33gQOQ2eGTEMjdqspFCAG9NaG5L7QGH04zhE9AZu+LfZTzFcWn46gqwJhuRFT2qz0NexUEUYwIDRkzsspAu36BJ2HO/QHHmkpq6MLTdZs8BIG3YVBK76LcoKW4pFRsexVP0TZPr2LkvkCk9dcTcLvstNE88m9o9r+At2UTqwh812V9cERBGMkfOQGcWv8cAVqsVRVEoL4+Ma66srGxyLxYIBN1IW+4RYVWrZH3bnqkM1lE46wpD5bojTdCFfY6eByiQ9yGsxGe4mNmomlbjPE6NK2FEJroM5pQIkDTlh7jy14UbB9AkP5PqtjWx0Vdf7Svo8Wk97V5UZyW1e/4RKq0ZqnDhqoo4VjE3/A4qcZlAoOqIGla1ImC7kdTTf4m35jilqyJDCJsIHZZ0/I6yhmN15pBXamhbWMUzTfWF8mmUfHRtRDvTgJnoE4eQNOMWarb/OXCsJJG18EEkQzzlX9wOgC4pjQGTp1Irz6BW2UbSxIGYBsygxJ7c0FfWcFyFgYAdy4gpOHIKaQ5N01C1QNoJTdPQANmSgd9eihoo54IGDP7WNRgMBqD1qiD9ESFKnGK0td55VlYWn3/+eYfH7QxXUoc9cLzD2dQtrr8jXEmb4vX6Q9dJW+fHpQU8AiR9PFU1XqCZutExoBK4+VWUluP3OJAUc6dev5qmA0nBU1dORUUdXmcgiVVVjQ9ofZy2zo1kiMdrr6Siog5N9eGqOolsSqGmToK6rvl3qSQMwWcvpzT3EPrkYXgqDqP5Pegzp1FZGXv977biNwUe+mry96Eb1nButqKAKODSD8HbZb9FCvqkoXircygtyEcJy9Zec2IrAL64cV32W6gpg1DMadiLdjcZ3+cox1NTgCl1JDaXHtXRfhv6kiupwWBg4sSJbNiwgaVLlwKgqiobN27k6quv7mHrBIJ+TBtEiXDBQNJb2jRM8uw70CUNJ350lHxt4aKEEv31KUJYqLfZOvduqr55nMRJP4hoq5jTkU3W0It/40oY4ech681NK7CGzUmwMkgwR5NsTER11+KpPBDVTmR9SGSJG34OALYDr6P5XUj6eHRxGXircyK8PiSdKUKYMWbOIGn6jZgHnU7FuoeazIOkM4bKpIYTXgIVQJ8yNkKUMKZPwVX0TUQb2RAfmH/VB6oPT8V+ohEs72kaOIvwUSTFEHld1Isa+qQGT06tUQltNczLJNy+qONKEkro7xP4oDMn4PNECtyKLJ7vW0KIEr2U3rhi09GXZS1UYkkWL97NIFy6Imk8F7HOj2wJKPiKydrx+axfnfB7HGg+F7IloZP/RlKgxJWrGr/Ph+qxoZhT2zxGrHOjGK34bHn4PM5A6SrNjz5xSJded7qEIbiLt+OuzkVJHIrXWRmwxZLZteNaRwHgrjwcGkf1OvDV5qHEZSLpE7v4vAfjrc7BU3MSoyGQuFT11OGpOoJiTkOyDOjS8Y0DZuI4vgp3+UFMWXND210lgYRc8VnT+t1vjt1u5+TJhqSr+fn5HDhwgLS0NNLT07n22mu5++67mThxIlOmTOGVV17B5XJx8cUX96DVAkH/xpAyFgj8prZG+ItzWz0lFFMySVOujbovFk8JaBAKBl78NgBxI5dhGXFeE49ASZIwpIzFVbgp8L1xyVA5siRo07KXYf0FRYnMaWQt/5jaPf+g7sB/8NXmEY1oebGC3g76pGFoatOV/HBPjYD9MgnjLwsc67E1ahtZ1SMc58mvIr7rk4aHvD4GfHsltoNvRrHXjCTp0PChqT5MA+c2ES6gIQl5k7+PYoj8+9XbF57zqnGoRfg5ucPKpMaKHEUQiyhdK2iCyDjYSwlfsQkSXLGZNm1azxnWEUSiS0E3oVgySJhwBQmNVibaQ/DmHVD3tU5NchlEMVkDiavsRYFSZF2Q5DKIXF/KTHVX46tPPtlV5UCDhK9GBMauT+bZBRVGwlGMSegTBuCrzQtVUPFWHQW00ENuV6JLDDxAhz8Yusv3gaZiyJjaJUk2wwklUW1c+aQ+yWhc1rQuHb83snfvXi666CIuuugiAB555BEuuugiXn/9dQCWLVvGPffcwzPPPMOFF17IgQMHePHFF0MVrwQCQfejTxpK5vmvkHHe31pv3AFPiRaRInNKtGiCMTnCO625EEV9ypiw7iNf5MO/B0IagqKEFDQiav+yzoysa/m8NU/TsI7g+cWPvSSq6NLSOTeu3tVYwGgJXXgOsITsiFKzcaMvJOX0BwP3yvrxNdWLdd7dEXmigpgGzQ98aFRmW1IMkfMp14sS8QNB1geeTdTGokRtsHFomzFjGpbhsRUOkKL8DTS/L0pLQRDhKdGD9LcVG02r95SQ+oarr6D3IkkSSdN+3Cl9BZV3vyuwui91YjnQ0BimFOAY3prA74Fs7EJRwlif7NJVHVYOtGsqbwRpWI04GRo7YEvXihIAloxx1NiK8VYdw5g+CU/lISDyYbCrCM6rN0yUCCb0MmZ0fYnm4Lz7Glc+KQ0kXInPmo6tny3czJ07l0OHDrXYZsWKFaxYsaKbLBIIBLGgj1E874inRKz9SkpznhJBYvM+CxfHWwzfCBMlggsjEUKH3MgLox1iTPqZf8BbnYN5yBLqjkSp7NeCKJEy7+dUb38W54kv621sPY9X4tTriRv1bTzlkaEY4c9Y5sGLMA0IiA+SokfzAqoPxZxKwsQrcZdsb7D/nGfR1VdeC4oOoT4VY6PwG0N9Ox26+PqFi0ZCTfC73joKb+Xh0Bw08WhphmieEo2FD0EkQpToQfbu3ctVVzVkiH3kkUcAuOWWW7j11ltZtmwZlZWVPPPMM5SVlTF+/PhTe8Wm3lOiq5LaCQRdQchTIhj32VWeEoC3NhfomnKgDWMlA+B3VXd5OdAgDZ4SuUD3eUrw/+zdd3gUVdsG8HtmW3pvEHoLIYXem6AoYkNQrC8WbIiIvig29BO7YkGwIILYsAv6qgiK0qRID4SeBAgJpPe6bb4/NrvZze6mbkty/66Li2R2ypnDsjPz7HOeA8A7PAbFqVugKTgFVXi86eZCGdzb6cdW1KQaa0trg8+6CsPM83L/Ts4/fqAxKHLWtEyvLjVMR+obCWVAB4D1fYioDbGoHeDILxEshm845vFJaZEpUXf4htnxbAQlLAIRde6rjVNX1uUXcwNEpV/tDBxmVBGJpmC5rfOzP2TFUGAzeOh/a4MS9QzfqN0mHDJVILw6Dodf3xnwihpi2NYsw8C8TwRTpoS25rXaezHRKxiqsDirdWv3Y7umBFBbRLO21oUAQDI9s8i8QkxVyQRR3oiAlHG/1gExDt+oH4MSbtTuvrHh8A1qhYw3ADrjt/vOyJTwNgQljN9oOzVTwss4LWghtGWZAJz/gCx6hUBQ+EFbct4w1VrNxV/mgqCEV3A3AIC23DDfuLa05pyDrKurO5qt4RvGyuMyL+cHl2W+NampxemmIsnq/JMAJKjC451+fCIilzN/mHfg/abQiEKXaOKQPNFsNou6mQjmw/sEuReUYf2gLcs0Pbybj8AX6mQgm4Ye1G2eTIWAhDsbbJfNAEQDgRhB4WsYOqPX2PzyRhUxANU5h8zaUpOtIIgIGvRg7WHMMgwsMi6Mbap5sBfMZzOpc/51AweCTAlBsM6UMJyW4Z6u7NS6mvPwgaQpN71ucX8kymBdcdQ282Eoxn5hUKJ+fDokl5H0NUEJkW87aj2M37TUZko4PighqxlSoTEGJZyZKaEKAmAYQqEtuwgIMsh8wp12PMBwc6UI6AxJVw1dRR50LsyUkNVMcyppDLN86LWGv0Wlv9OPLSr9IHoFQ1t2wfTtjt5Y5LPO1G3OIIgyQxFTdYmpiFltpkbDBeOIiFobQXTSEOEm1JRo9C4FoaZWxsf11hgSRDmChsxD0JBHEDT0kZptrQtdGvnH3Gh7P438lt9WAKKhcxYEwZSJaWuIgyD3gq/ZrCb22mI+9MR8P3L/aAC1U5Fa/HvUHRZeJ6giiErLOhMWmRKGezpNUWrNpj7mG0Lu19HsOPLaL1gbYJ7xISpr7kNYU6JefDok16mpKWH14UHkwURTpoTzghLG7AVjIUhXZEpoy7Ogr8w3zELhoBus+hgDH7rKXJcO35DV3Azoa775kDTlgCA2qRBXS8gDugB6LbRlhkwNXVWBYTo2FwRFTMdHbRaOsTaKzLuVDgMkIqpHY8f8N3m/5pkLDrxmKgK7QhliezhhQMLd8I83DPMWlX7w6zO1tk6GYH/4hswnDAGJd1vvsJ4hGOZsD99o+JyN9xc2h29IkkWtB3vDQcyzUc0zJUKGL4Bvr2sQMmphzfbmmRJ1ZzYRrWpIWAzfEK0zJUyvmQ27kPlEWGZ9iPLa+njmbbZxz2Ye3DD9m9mY1YRqcfgGuYzE4RvUCtXNlBCdWFNCqpkhwrlBiSAAgDrfMH+53C/aaccyJ/OuCUpU5NUGJcyqkzuLqDTcDBj7Vq+pgCD3cfrMF0YK/85Q5yRBW5oOuV8U9FVFhhsdVx0/sCsqAWhKzkEVOQD6SsP72PieIyJqSwSZEpFXfWb6dto5x2hkxkELBSTMtP+indk3al+2MYNGI2o9GLa18XjYiICGzCsIGti+T5KgtxyOYact5pkSotmXBzKfcAQPm2+2onnmivWXnYIoN6s/UaeIqMXMJpYFKc2DFHK/jta1RGxkSggKP6C6zpAZ8/bV1K0wtods49MhuQ6DEtQK1daUKLD43ZGMNSVMv7tg+Iam0JCqKPfr4LRjWRzXxzB2VleZZxhKIFO6JFtBVnODo9eUQ5L0kDQVtqtiO4l5XQlDYEtyaZZC7QwchmKbzJQgorZOEdjVqUPkGs4aaNzsGy1shO2fjWxlOzQyKGErANGYTAmZKVPCRraKVCcYINoJStgpdGndHvs1JSz3XzOdqEXmhFkBTUXdTIna48t8Iy2zu0WZzaCErQCYef0I05cjOtaUqA+fDsl1OHyDWqHa2TeKan53Qk2JOkUPXTF8w/j/0Xy8pDPJagp66SpyoFeXQqYKdEm2gGhWU8JQvVxy7Nz1DTDWbtCWnDcFBEQX1JMwMs58oimpO3zDdW0gImpL7A09MD24N3KYRIvaYDElqK2HcluBheZnSigCGy4ObZxy3PyhX9VhmOHv8HjLoISdbBOLLw3qC6KYt9FWUKZm/4LCkBlpMfzGotBlnUwJs+EboiqwTuFUeW3Wt51tbDbVlCnBoER9GJQglzGNw2JQgloRYxBCqimQ6JRMiTq1FZyZKSEq/S0u4HJ/1wQlxJpMCU3RGUDSu6SeBFAnU6KmroQj565viLGmg6Yk3aUzb5iO798JEERTvRJjoU2RwzeIiJrF3uwbwSOehCKoB0LHvOCKRtT+aDNTwFamRNMLXao6DENAwp0I6D+rwc1qC13WPvSHjn4WISOfgX+/W+pM8WknsGNeU6K+4p8NDd+omW3D1hdJlsM36mRKmP0uKv0sZ10R5bb71Wwbn+5XQBEaC9/ul1vsBwDA4Rv1Yk0Jcp2a6KIjp2gicra6RZCcMSWoIMohqgKgrxmT6MwHdkGUQVQFmmpkyFw1fKOmpoSmKA2Aa4pcAobzNczxXgF9zQwcLs2U8IsyTMtZchY6F868YSTIlJD7doC2LBN6bSV0VQUQ5D5OqY1CRNQe2BvKoAzuhcgpn7ioEWYP7I0cvtH4Qpe16yn8OzVqGlEAUNRMtW0+LFRU+sOn+yTDfpuaKVFvI+sfvmH8ItTWkBWLdijqyZRQWAYlIMoREHcbNMVnEZBwB/L+fsy4F9Mqvj2vgioi0WKohrF4pqRjocv6MChBrsOaEtQK1c2McMbwDQAQvUJqgxJOLNAFwCIo4bLhGzWZEvrKPFMbXEWQexumxXRDpoQgyqEI6AJNUSo0hSmG47t46ITMPxraskxoi85C0pRbzrtORERN4glfrgkN1JRwWKHLxtahAODVcTj63fkzSjWBkGyU1bCoEWGv0GWj616YZ4rY+PeomemioX6wnn2jzlSeFpkSMsi8QxExaZndZpmOZ7adaUpQZkrUy/3/q6jdkPQ1QQmRbztqPVwVlDAViFL4On2KTuOxRFWgyx7QRbmXqQK18diuIip8Ab3WUGAT1tW2nU1eMxa3Ons/ANcO3wBq53evzksGwKEbREStXgPDN2wXumz68A17wyxsNkkQoArsZHfYheXwDfvBhw5Tv0eHaT/VfyyLDAYbmRI1mQo2gxzm04PWU+hSqJspITR8b2asG2HeB6wp0Th8OiTXYaFLaoWsgxLOSXsXzQIFzibWzMDhqiwJI2O2BFA7C4grGNNBdRW5Fr+7iiKoGwBDsUvA9TNfGKd9VeceMRzfxUERIqK2xTVTOtffhGZkSjSj0GWjMxcaoxHDNwDD9J+yhqYMb2j4hq6eTAnYLnoJWBa+FJV+FoGIxnxhJNq4vhqHb4BBiXpx+Aa5DodvUCtkldrnpKCEKXtB6e+U/ds6lszVQQnvcGiLzwJw8fCNmum4dBWGoSOCC4dvANZVy10984UpU6ImKCFyOlAiolbNYjaJRhe6bGxQwiyToLHZFY3Zr8WUoC3br9BQpoixuL6t9ptncugtZ9OoO3zDMGuXcYH9x+aoa7+CpjgdigDr4ZGm4RucErReDEqQy0gMSlArJMgsgxDOKHQJ1EbXnTkdaO2xggC4N1PCpcM3ar750FW6KVMisJvZb4LLh08YgxKm4qYcvkFE1HwekChhmSlgf0pMy00aW6/BPDvAcZkSFsdv6bSpYv2ZEqaXbLbfbGiFV53Zz8xn31D4QafXme3L3nEkyP062r2nMg6TZU2J+vHpkFyHs29QKyTIFJYXaKdlSgQBAESl8x/WvaJHQR7YDd5dxjn9WOZk3u4JSgh1hm+4OlNC5tfBNJZWVAU6vWZIXXLfKJjfhHH4BhFR0/nF3gy5fzS8w2Lc3ZRGDN9oyewbzSt02eB+zWtK1DPdZ6P2ZXbO9oMFdjI9zI6tDIlB0LD5tS+Z15RQ1l9Twjg00vi33TYojUEJZkrUh0+H5DLG6Xnqi2gSeSLzbAlnFbqsvbhFOWX/5pTBvRB11adQBvd2+rHMuS1TQmE5fMPVmRKCIEIe0BWA64duAIZvp2S+EabfOXyDiKjpggY+gI7XfQVR7sA6C83U4OwbNooyNr7QpfnwDecEJRyqvkwJm+23DIj49brG9LN5TQlBprIIeNQN9IRNfBP+cf9BQOJdNo8dNGQe/ONur72HZFCiXhy+Qa7DQpfUSolyL+g0ZTU/OycooYzoj7BL34EyxAO+gXES80wJmUuDEsbhGzU1JVw8+wZgmL9dU3jKZhEsV5D7RUNXng2AmRJERK2eeaaArawDmY2gRCNmjzDsunmzbzS4X0cWzbTYsf3v2G21v94vByxqdQiWdSTEupkSHRDYf5bdXfn1uR4AoC3PAsCaEg1hUIJchzUlqJUSFN5AJQzvXSddVAVBgFfkQKfs21NYZko4v3aGkTEdU9KUG47t4kwJoLauhKtn3jCS+0ejOvsAANvVwYmIqBVp4F7aZjChkUMmBKdlSjjp/qme4RvmtTUirvwY6txkKMMT7K4u6XUIm/Cmqa0WfdHMoZfGfXD4Rv0YlCCXMRW6FBmUoNZFkHnX/O3V4nGQ7ZkxU0JQ+DrvGxMbxDo1JFxdUwIAVFGDAUGEMizO5ccGaotdAmh4qjUiIvJsDQYlah/xvLtOhL6qsPFFls2zMOSOG3LhtHpKNjKwVVFDUJ21D15RQ0zLlMG9Gxy2KsiUUIXHmS+o/bG5QYma+x3jNKVkG4MS5Dp6Y6FLDt+g1sVY3NJZRS7bC9ErGKJXMGQ+EQ2v7Mjj1smMcEemhDKkDzre8KvTapI0xFizRFQGuDQgREREjic0VBbQ7Bv+oEFzmlTPSFTVTk2uCrOfVdBUgsIPPj2mQBHQ2WH7BGwX0A8d+wI0haehDE9s1D7CJryJ6twjUAT3stx3PcM3Gt2+mpoSFtOLkhUGJch1TIUumSlBrYsxGOGsehLthSCIiLxypUPHqDbquHUyI+pmTriKO4IhRsZMCVdPR0pERE7QhEyJphaYV0UMQPCIJ+DVYZhjMyUEASEjFjhsfyY2hm+ICh+oIvo3ehdeHYbAq8MQ6xfM62s080tVQaYABBmDEg1gUIJcRmJNCWqljMEIZkq0nDtmn6gbDBDcGBxwF3lAF6g6DGvSTRoREXmohoZCWxSrbNrDtCDK4dvjyua0yk2c91zhiEwJwHD/qNcxKFEfBiXIdSTj8A0GJah1MQ3fUDBTojWyCELIlM4b1+rBBFGO8AlvuLsZRETkAA3dS1tkJLb5YdOS83btgJoSht2ooFeXOqJFbRafDsl1TJkSbf3DkdoaYx0AY8FLal3Mh2u4a+gGERGR4zR++EZTMyVaH+cFJSyKm7cwUwJ6DSS91gGtapsYlCCXkWpqSrDQJbU2ppoSzJRolcyHb4jy9jd0g4iI2piGso5bUFOCbGvJ84tYcx+p13AIhz0MSpDrsNAltVLGi4mxgjK1LubDN9wxHSgREZFDNTR8w/z1th6UkJw4fMNcC4dvAICexS7t4tMhuYyp0GVDxXmIPIzAQpetmiDzMt3AsS4IERG1fo1/ELcYgkDN1qKaEjX3kXpNpaOa0+bw6ZBcR89Cl9Q6sdBl6yYIAoSaYRusKUFERERN1dJClwAzJerT/kqQk9sogrpBJhMBUeHUQrlEjib3jzb87dfRzS2h5hIVvtBpyqymByUiImqLZH4dIbWHh2BXDd9owTAY45dbem0VoGhg5XaKQQlymbBxLyA02BsFRdWQXPUBQuQAXlFDEHXdN5D5RLq7KdRMxiwX1pQgIqJWrxH30VHXfOm6B3aqlykooalkUMIO5tGTywiCCEHG/4nUOsl9ozgusxUzDttgpgQ5W2VlJSZMmIA333zT3U0hojar4WCDIIjtYDpQoDWkX5uGb3D2DbsYlCAiojbPOAMHMyXI2ZYvX47ExER3N4OIqJ1oBUEJ8+EbZBODEkRE1OaJxkKXcmZKkPOcPXsWaWlpGD9+vLubQkREDmHIkpV5BTd7D6Jp+AaDEvYwKEFERG2eMUNC4PCNdmvv3r144IEHMGbMGMTExGDz5s1W66xZswYTJ05EQkICZsyYgcOHDzfpGK+//jr++9//OqrJRETUAGeXzegw/SdEXv05RFVAs/chyJgp0RAWuiQiojZP5h1S83eom1tC7lJRUYGYmBhMmzYNc+fOtXp9/fr1ePXVV7Fo0SL0798fn332Ge655x5s2LABISGG9891111nc99r167F5s2b0a1bN3Tv3h0HDx506rkQUTvHApZmnNsXMlUgZKrAFu1DkNdOCcqMANsYlGgjHn74YezatQtjxozBO++8Y1q+adMmLF68GAAwb948TJkyxV1NJCJyG//Ym6AMiYEqcpC7m0JuMn78+HqHVaxevRo33XQTpk+fDgBYtGgRtmzZgnXr1mHWrFkAgJ9//tnu9klJSVi/fj02btyI8vJyaLVaBAQE4L777mtWe0WxZYV1jdu3dD9tEfumfuwf+zylb8zrbru7LUbu6htB8Jw+sMcrIh4ynwj4RPSF1sPb6i4MSrQRt912G6ZOnYpffvnFtEyr1WLx4sVYs2YNZDIZbrrpJlx22WVQKpVubCkRkeuJSn94dx7r7maQh1Kr1Th69Chmz55tWiaKIkaNGoVDhw41ah/z58/H/PnzARgyJ9LS0podkJDLRYSG+jVr27qCg1nc1R72Tf3YP/a5u2+qvZUoqfnZUZ8VjuKqvkmv+VuplHtcH1gJHYQOvX93dys8GoMSbcTw4cPx77//WixLSkpCTEwMwsLCAACJiYnYv38/Ro4c6Y4mEhEReaTCwkLodDrT9dIoNDQU586dc3l7tFo9SkoqW7QPURQQHOyLwsJy6PVM9TbHvqkf+8c+T+mbykq16ef8/DK3tcOcu/pGXa3xmD6ojyP6JyDAGwpF25zmlUEJF9i7dy9WrVqF5ORk5ObmYvny5ZgwYYLFOmvWrMGqVauQm5uL2NhYLFy4sMVTiuXk5CAyMtL0e2RkJHJyclq0TyIiovZCkiQIQtNTbadNm9biYzvqpl6vl/hgaQf7pn7sH/vc3TeSpLdoiydxdd9IUut6n7r7veOpGJRwAWcX15LJ2mbEjIiIyBWCg4Mhk8mQl5dnsbygoMAqe4KIiIgci0EJF3B2cS17IiIikJ2dbfo9OzsbY8aMafJ+jFh0y3nYN7bV7Rf2jzX2jX3sG/vYN5aUSiXi4uKwc+dOTJw4EQCg1+uxa9cu3HHHHW5uHRER1SWqgqCvLoLMJ9zdTSEHYFDCzRxRXMuexMREnDhxAnl5eZDJZEhKSsLLL7/crH2x6JZrsG9qKRQyq/cc+8c+9o197Bv72lPflJeXIz093fR7RkYGjh8/jrCwMISHh+Ouu+7CggULEBcXh8TERHz22WeoqqrC9ddf78ZWExFZ44ygQPikpShP+RUBCQwctwUMSriZo4pr3XfffTh8+DAqKysxbtw4rFixAn379sVjjz2GW2+9FQDwyCOPQKVSNaudLLrlXOwbaxqNzlS4iP1jH/vGPvaNfY7qm9ZUdCs5ORkzZ840/f7SSy8BAB566CHMnTsXU6ZMQUFBAZYuXWqq77Ry5UrTMEoiIvIcioAuCBr0oLubQQ7CoISHampxrRUrVthcfvnll+Pyyy93SJtYdMv52DeW6vYF+8c+9o197Bv72lPfDB8+HCdPnqx3ndtvvx233367i1pERNRc7eNzm9oP0d0NaO9YXIuIiIiIiIjaKwYl3My8uJaRsbjWgAED3NcwIiIiIiLyQMyUoLaFwzdcgMW1iIiIiIjIEUSlv7ubQORQDEq4AItrERERERGRI/jFTIe2NAO+va5xd1OIHIJBCRdgcS0iIiIiInIEUe6NkBFPursZRA7DmhJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbmFIEmS5O5GkOfT6yXodPoW70ehkEGj0TmgRW0P+8bSqVMn0KdPX9Pv7B/72Df2sW/sc0TfyGQiRFFwUIvIiNdc52Pf1I/9Yx/7xj72Tf1a2j9t+ZrLoAQRERERERERuQWHbxARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMSlCjrVmzBhMnTkRCQgJmzJiBw4cP17v+77//jsmTJyMhIQHXXHMNtm3bZvG6JEl49913MWbMGCQmJuLOO+/EuXPnLNYpKirC/PnzMWjQIAwdOhTPPPMMKioqHH5ujuDq/snIyMDTTz+NiRMnIjExEZdddhnee+89aDQap5xfS7jjvWNUVFSEcePGISYmBuXl5Q47J0dxV9/8/fffmD59OhITEzFy5Eg88cQTDj0vR3BH3yQlJeE///kPBg8ejGHDhuH+++9Hamqqw8/NERzdP3/88QdmzZqF4cOHIyYmBqdOnbLaR2v6TG4PHP0eaEua0jenT5/G3LlzMXHiRMTExODLL790YUvdoyn989133+HWW2/F0KFDMWzYMNx99904cuSIC1vrWk3pm02bNmH69OkYMmQIBgwYgOuuuw4//fST6xrrYk39zDFasWIFYmJi8Prrrzu5he7TlL5Zu3YtYmJiLP4kJCS4sLUeSCJqhN9++02Ki4uTfvjhB+n06dPSwoULpaFDh0r5+fk21z9w4IAUGxsrffzxx1JKSoq0ZMkSKS4uTkpJSTGt89FHH0mDBw+W/vzzT+n48ePSAw88IF122WVSdXW1aZ1Zs2ZJ1157rXTo0CFp79690qRJk6THH3/c6efbVO7on61bt0pPPvmktH37dik9PV3atGmTNHLkSGnx4sUuOefGctd7x2ju3LnSrFmzpD59+khlZWVOO8/mcFffbNiwQRo6dKj0zTffSGlpadKpU6ekjRs3Ov18m8IdfVNaWioNHTpUevrpp6W0tDTpxIkT0v333y9deumlLjnnpnBG/6xbt05atmyZ9N1330l9+vSRTp48abWf1vKZ3B444z3QVjS1b5KSkqTXXntN+vXXX6XRo0dLX3zxhYtb7FpN7Z///ve/0pdffikdO3ZMSklJkZ588klpyJAhUnZ2totb7nxN7Zs9e/ZIGzdulFJSUqRz585Jn3/+uRQbGyvt2LHDxS13vqb2jVFycrI0YcIE6ZprrpFee+01F7XWtZraNz/++KM0bNgwKScnx/QnNzfXxa32LAxKUKPccMMN0gsvvGD6XafTSWPGjJFWrlxpc/158+ZJ999/v8WyG2+8UVq0aJEkSZKk1+ul0aNHS6tWrTK9XlJSIsXHx0u///67JEmSlJKSIvXp00c6cuSIaZ2tW7dKffv29bj/uO7oH1s+/vhj6fLLL2/JqTicO/vm+++/l26++WZp586dHhmUcEffaDQaaezYsdJ3333n6NNxKHf0zeHDh6U+ffpY3GgfOHBA6tOnT4M3Xa7m6P4xd/78eZtBidb0mdweOPM90No1tW/MTZgwoc0HJVrSP5IkSVqtVho4cKD0v//9z1lNdJuW9o0kSdLUqVOlZcuWOaN5btWcvqmoqJCuvPJKadu2bdLtt9/eZoMSTe0bY1CCanH4BjVIrVbj6NGjGD16tGmZKIoYNWoUDh06ZHObQ4cOWawPAGPGjDGtn5GRgdzcXIt1/P390b9/f9M6Bw8eRFBQEOLj403rjBo1CoIgNDpdzBXc1T+2lJaWIjAwsNnn4mju7Jv09HQsWbIEb7zxBkTR8z7q3NU3x44dQ3Z2NgRBwLXXXosxY8bggQcesDv8xR3c1Tfdu3dHUFAQvv/+e2g0GlRWVmLdunVISEhASEiIQ8+xJZzRP43RWj6T2wN3vQdag+b0TXviiP6prKyEVqv1qPsNR2hp30iShF27duHMmTMYPHiwE1vqes3tm9deew3Dhw/H2LFjXdBK92hu35SVleGSSy7B+PHj8eCDDyIlJcUFrfVcnnenTh6nsLAQOp0OYWFhFstDQ0ORm5trc5u8vDyEhobaXd/4d337tLUPuVyOwMBA5OXlNf+EHMxd/VNXeno6vvzyS9x8883NOg9ncFffaLVaPP7445g3bx46d+7skHNxNHf1zfnz5wEAH3zwAebOnYsPPvgACoUCM2fO9JjaAO7qGz8/P3z22WdYu3Yt+vfvj4EDB+LQoUP44IMPHHJejuKM/mmM1vKZ3B646z3QGjSnb9oTR/TPW2+9hQ4dOmDEiBHOaKLbNLdvSktLMXDgQMTHx+O+++7Dc889h5EjRzq7uS7VnL7ZvHkzdu/ejQULFriiiW7TnL7p0aMHXn31VSxfvhyLFy+GXq/HLbfcguzsbFc02SMxKEHNJkkSBEGw+7qt1+ouq/t73X3a2kdDx/UUrugfo+zsbNxzzz246qqrMG3atGa22HWc3TfLly9HcHAwbrzxRge01rWc3Td6vR4AMHv2bEyaNAmJiYl4/fXXUVJSgi1btrSw9c7l7L6pqqrCwoULMWLECHz33Xf46quv0KFDB8yZMwdardYBZ+BcjuifhrTmz+T2wBXvgdaK79P6NbZ/Pv74Y6xfvx7Lli2DUql0Qcvcr6G+8fX1xU8//YQffvgBjz76KF555RXs27fPhS10H3t9U1BQgGeffRZvvPEGvL293dAy96vvfTNgwABce+216Nu3L4YNG4Zly5aZMjXbK7m7G0CeLzg4GDKZzOqbsIKCAquooFFYWJjV+vn5+ab1w8PDARi+vTRPiy4oKDClBtvah1arRUlJidW3Pe7krv4xys7OxsyZMzFgwAA8//zzLT0dh3JX3/z777/Yt28f+vXrB8BwYQCAoUOH4uGHH8YDDzzggLNrGXf+vwIMQxWMfHx80LFjR1y4cKGFZ+UY7uqbX375BdnZ2fj+++9NNxJvv/02hg4dip07d2LcuHGOOcEWckb/NEZr+UxuD9z1HmgNmtM37UlL+mfVqlX46KOPsHr1avTp08eZzXSL5vaNKIro2rUrACA2NhapqalYsWIFhgwZ4tT2ulJT++b06dPIzc3FLbfcYlqm0+mwd+9efPnll21q9hZHfOYoFArExsZ61FBaV2OmBDVIqVQiLi4OO3fuNC3T6/XYtWsXBgwYYHObAQMGYMeOHRbLdu7caVq/U6dOCA8Pt9hnWVkZkpKSTOsMHDgQRUVFOHr0qGmd3bt3Q5IkJCYmOubkHMBd/QPUBiTi4uLw6quvelztBHf1zSuvvIKff/4ZP/30E3766Se89NJLAIBvvvkGM2bMcNwJtoC7+iYhIQEKhcLiwldVVYWsrCx07NjRMSfXQu7qm6qqKoiiaPHNhvF3Y2DLEzijfxqjtXwmtwfueg+0Bs3pm/akuf2zcuVKfPDBB1i5cmWbnbrQUe8dSZKgVqud0EL3aWrfJCQk4JdffjHdh/3000+Ij4/H9ddfj7Vr17qw5c7niPeNTqfD6dOnTV+gtEsuK6lJrZpxqpu1a9dKKSkp0rPPPmsx1c3jjz8uvfnmm6b19+/fL8XGxkqrVq2SUlJSpKVLl9qcnm/IkCHSpk2bpBMnTkizZ8+2OSXo1KlTpaSkJGnfvn3S5ZdfLj322GOuO/FGckf/ZGVlSZMmTZJmzpwpZWVlWUwr5Enc9d4xt3v3bo+cfcNdffPCCy9I48ePl3bs2CGlpKRI8+fPl8aPHy+Vl5e77uQb4I6+SUlJkeLj46UXX3xRSk1NlU6cOCHNnTtXGjlypFRUVOTaDmiAM/qnsLBQOnbsmLRlyxapT58+0oYNG6Rjx45JhYWFpnVay2dye+CM90Bb0dS+qa6ulo4dOyYdO3ZMGj16tPTmm29Kx44dkzIzM911Ck7V1P5ZsWKFFBcXJ23YsMHiXsPTrqmO0NS++eijj0xTs6ekpEirV6+W+vXrJ/3www/uOgWnaWrf1NWWZ99oat8sW7bM9L5JTk6WHn30USkxMVFKTU111ym4HYdvUKNMmTIFBQUFWLp0KXJzcxEbG4uVK1ea0qAvXrxo8S39oEGD8NZbb2HJkiV4++230a1bN7z//vvo2bOnaZ17770XlZWVeO6551BSUoLBgwfj448/thij+Oabb+LFF1/EHXfcAVEUccUVV2DhwoWuO/FGckf/7NixA+fOncO5c+es0spPnjzpgrNuHHe9d1oDd/XNE088AZlMhv/+97/QaDQYOHAgVq9eDR8fH9edfAPc0Tc9e/bE8uXLsWzZMtx4442Qy+WIj4/HypUrPa7KvDP65++//8ZTTz1l+v3hhx8GALz66qumWjWt5TO5PXDGe6CtaGrf5OTkYOrUqabfV6xYgRUrVuD666/Ha6+95urmO11T++frr7+GRqMxfSYYPfTQQ5g7d65L2+5sTe2bqqoqvPDCC8jKyoKXlxd69OiBxYsXY8qUKe46Badpat+0J03tm5KSEjz77LPIzc1FYGAg4uPj8e2336JHjx7uOgW3EyTJg3JSiYiIiIiIiKjdaJ/hLCIiIiIiIiJyOwYliIiIiIiIiMgtGJQgIiIiIiIiIrdgUIKIiIiIiIiI3IJBCSIiIiIiIiJyCwYliIiIiIiIiMgtGJQgIiIiIiIiIreQu7sBRET1WbZsGd577z2r5SNHjsSnn37q+gYRERG1UbzmEpE7MChBRB7P398fK1eutFpGREREjsVrLhG5GoMSROTxZDIZBgwY0OB6VVVV8PLycn6DiIiI2ihec4nI1VhTgohapYyMDMTExOB///sfFixYgCFDhuCBBx4AABQVFeG5557DqFGjkJCQgJtvvhlJSUkW25eUlGD+/PkYMGAAxowZgw8//BCvv/46Jk6caFpn2bJlGD58uNWxY2Ji8OWXX1os+/7773HVVVchPj4eEyZMwMcff2zx+pNPPolp06Zhx44duOaaazBgwADccsstOH36tMV6Op0OH330Ea644grEx8dj3LhxePLJJwEAa9aswcCBA1FeXm6xze7duxETE4MTJ040sReJiIgaxmtuLV5ziRyPmRJE1CpotVqL3yVJAgC88cYbmDRpEt59912Iogi1Wo277roLJSUlWLBgAUJCQvD111/jzjvvxB9//IHw8HAAwFNPPYU9e/bg6aefRlhYGD755BOkp6dDLm/6x+LKlSvxzjvv4J577sGwYcNw9OhRvPvuu/D29sbtt99uWu/ixYt44403MHv2bKhUKrzxxht45JFH8Ouvv0IQBADAc889h59//hmzZs3CsGHDUFxcjA0bNgAArrnmGrz++uvYuHEjpk2bZtrvunXrEBcXh759+za57URERHXxmstrLpErMShBRB6vqKgIcXFxFsteeuklAED//v3xf//3f6bl33//PU6fPo1ff/0V3bp1AwCMGjUKkydPxieffIInnngCp0+fxqZNm/DOO+9gypQpAIDhw4djwoQJ8PPza1LbysrK8P7772P27Nl46KGHAACjR49GZWUlPvzwQ9xyyy2QyWQAgOLiYnz99demdkmShDlz5iAtLQ09e/ZEamoqfvjhBzzzzDOYOXOm6RjGNgYEBODyyy/H2rVrTTdI5eXl+OOPPzB//vwmtZuIiMgWXnN5zSVyNQYliMjj+fv7Y/Xq1RbLlEolAOCSSy6xWL5r1y7ExcWhU6dOFt/0DB06FMnJyQCAI0eOAIBF2qivry9GjRqFw4cPN6ltBw8eREVFBSZPnmxxvBEjRuCDDz5AVlYWoqOjAQDR0dGmmyMA6NmzJwAgOzsbPXv2xL///gsAFt/I1HXDDTfgzjvvxPnz59G5c2f8/vvv0Gq1uPrqq5vUbiIiIlt4za3Fay6RazAoQUQeTyaTISEhwWJZRkYGACA0NNRieWFhIQ4dOmT1LQ8AdOnSBQCQl5cHX19fqwJddffVGIWFhQCAq666yubrFy9eNN0g1a1erlAoAADV1dUADN9O+fj41PvN0fDhw9G5c2esXbsW8+bNw9q1a3HppZciKCioyW0nIiKqi9fcWrzmErkGgxJE1KoZx4UaBQYGIj4+Hs8//7zVusZvesLCwlBeXm5VOTw/P99ifZVKBY1GY7GsuLjY6ngA8NFHH9m8werevXujzyUoKAgVFRUoKyuze5MkCAKmT5+O7777Dtdddx32799vVeCLiIjIGXjN5TWXyBkYlCCiNmXkyJHYsWMHOnbsaPdbGOM3QH///bdp7Gh5eTl27txpcWMSGRmJ8vJyZGdnIzIyEgCwY8cOi30NHDgQXl5eyMnJsUprbaoRI0YAAH766SeLYl11XX/99Vi6dCmefvppREZGYvTo0S06LhERUXPwmktEjsCgBBG1KVOnTsU333yD//znP7j77rvRuXNnFBUV4fDhwwgPD8edd96J3r17Y+LEiXj++edRVlaG8PBwrFq1yiq1dOzYsfDy8sLTTz+Nu+66CxkZGfjmm28s1gkICMBDDz2El19+GZmZmRg6dCj0ej3Onj2Lf//9F++//36j296jRw/cdNNNeO2115Cfn4+hQ4eipKQEGzduxDvvvGNaLzIyEmPHjsWWLVtw//33m4p6ERERuRKvuUTkCAxKEFGbolKp8Pnnn+Pdd9/FsmXLkJ+fj5CQECQmJloU2Xrttdfw/PPP45VXXoGPjw9uvfVWJCQkYOPGjaZ1QkJCsHTpUrzxxhuYM2cO4uLi8NZbb5m+6TG69957ERERgc8++wyrV6+GSqVCt27drNZrjP/7v/9Dx44d8f333+Pjjz9GSEiIzW9lLrvsMmzZsqXeAl1ERETOxGsuETmCIBknHiYiaueM85H//fff7m5Kg+bNm4fc3Fx89dVX7m4KERFRk/GaS0RGzJQgImpFTp48ieTkZPz55594++233d0cIiKiNovXXCLXYFCCiKgVmT17NgoLC3Hrrbdi8uTJ7m4OERFRm8VrLpFrcPgGEREREREREbmF6O4GEBEREREREVH7xKAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRW8jd3QBqHfR6CTqdvsX7kctFaLUt309bxL6xdP58Ojp37mL6nf1jH/vGPvaNfY7oG5lMhCgKDmoRGfGa63zsm/qxf+xj39jHvqlfS/unLV9zGZSgRtHp9CgqqmjRPkRRQGioH0pKKqHXSw5qWdvAvrH2n//MxE8/rQfA/qkP+8Y+9o19juqboCAfiKLMgS0jgNdcZ2Pf1I/9Yx/7xj72Tf0c0T9t+ZrL4RtERERERERE5BYMShARERERERGRWzAoQURERERERERuwZoSRETkMJIkQa/XQfKA4aSiKECtVkOr1XJ8ax2N7RtBAERRBkFom4W1iKh1cte1htcV+9g39WtM/7Tnay6DEkRE1GKSJKGsrBjl5SUAPOdmJC9PhF7PSuC2NLZvRFGG0NAOkMnaZnEtImo9POFaw+uKfeyb+jWmf9rrNZdBCSIiajHjTWJAQAiUShUAz4jyy+UCtFrPCZJ4ksb1jYSiojyUlBQgODjcJe0iIrLHE641vK7Yx76pX8P9036vuQxKEBFRi0iSZLpJ9PHxc3dzLMjlIgB+a2NLY/vG3z8IhYU5kCQ9BIGlqIjIPTzlWsPrin3sm/o1pn/a6zW3/ZwpERE5hV6vAyDVfGtFbY1MZvj+gim5ROROvNZQe9Ber7kMShARUYvUFhrzjCEb5GiGf1dPKF5KRO0XrzXUPrTPay6DEkRERERERETkFqwpQeQgOl01ikpPo7g0DZVVOaiszkVFVS602jLoJR30eg0kSQ+5zAsKuS/kcj+olIHw9e4If99o6NALki4CosC0RCIiIiJynVWrPsLOnf9g1aov3N0UaocYlCBqJr1ei7zCw7iQsw35RUdRXJYKSdI1f4dJACAiwK8bQgL7IjgwFhEhQ+Dn09FRTSYiMy+//Dx+//1Xq+W//roJQUFBrm8QERG1OS+//DwqKyvw0ktvmJatX/8LFi9+BY8+ugDXXnt9k/Z38eIFfPrpShw4sA/5+fkICwvD5MlXYebMuyGXN//R7pZb/oMbbrip2du3VjfccA1uueV2TJ/e/s7dkzAoQS6l02sgteJBUpIkIb/oMM5d2IgLOf9ArSk2vaZShiAksC+C/PvA17sDvL3C4e0VDoXcD6KogCjIIQgitLpKaLTl0GjLUVVdgPLKC6iovAi19iJy8k6gpCwNJWVpOJu5HgDg6x2NyLCh6BA2EhGhQyCK/G9L5CijRo3FE088Y7EsMDDQ4netVtuiGz0iIiKj77//Bh988C4WLlyESy+9vMnbnzt3FpIk4fHHn0Z0dCecOZOK119/GdXV1Zg9e26z2+Xj4wPAp9nbt2VarRYymQyCwHomzsK7rDYuLS0NTz/9NMrKyqBUKvH0009jyJAhbmnLnsOv4NyFDRAEGZSKQPh4hcPftxuCAnojPHgAAv17euzUN5KkR2b2Fpw4swbFpSkAAEGQITJ0GKIjL0Fk6BB4e0U06sNKJlNBpQyyWCaKAkJD/ZCfX4byilwUlpxEftFhZOfvQ3FpCtLOZyLt/E9QKgIRHTkOnaImIjx4gMf2F1FroVQqEBoaZrHshhuuwbXXXo+zZ89g+/atmDz5Ksyf/wSSkg5i+fJlOHnyJIKDg3HppZNwzz2zoVQqAQD5+Xl4/fWXsG/fXoSHh2P27LlYvPgVzJnzCKZMuQYHDuzDww8/gD/+2FZz8wfs2LEdTzzxKP75Z5/p+Nu2bcEnn6xAevpZhIdH4Nprr8ctt/wHomj4/z5mzBA8+eRCbNu2Bfv370XHjtF47LGn0b//ANM+Dh06gBUrPsDJk8ehVKoQH5+Al156A9988yW2bPkLq1d/ZXHON998Pa67bjpuueV2Z3QzEREBWL36Y3z55ad45ZXFGDlyTLP2MWLEKIwYMcr0e3R0J6Snn8P//vdTvUGJkpISvP/+Evzzz1ZotVrExSVg3rzH0LVrNwDWwze0Wi2WLXsbGzb8BrlcjmnTZuDMmVR4e/vgmWeeBwBUV1djxYoPsGnTRlRUlKNXrz6YM+cRxMcnADBkhLz//hI888wiLF36NgoK8jFs2HA8+eRz8PMzTOu6efMmfPLJCmRmZsDb2xsxMbF4882lEEXRlGXSvXtPrF37HXQ6HaZMuQZz5jwCmUxmpw29MWfOo6Y2APavifPnz0VW1kW8885ivPPOYgDAP//sM7X7iSeexfLly5CRcR4//7wRzz77BPr27YeHHnrEtO9Zs/6DUaPGYNas+wEYrtELFjyDLVv+RlLSAURHd8LChYsgijIsXvwyUlNTkJDQH8899yKCg0Oa9R5oixiUaONUKhVeeeUV9OjRA6mpqXjwwQexceNGt7QlwK8rAvw6Qa2pRLW6GNXqAhSWnET6RUN7vJQh6BQ1EV07TkZQQG+3tNGW3IKDSDqxDMVlqQCAIP/e6NH5ekRHjoNS4e/w43l7hcHbKwwdI0YjAUBVdT6y8/YiI3sLsvP34kzGLziT8Qt8faLRo9N16BZ9JZSKAIe3g6g9++qrz3H33feZbjIyMzPw2GPzcP/9D+KZZxYhPz8Pb775KrRaLR5+eD4AQ4puUVEh3nvvIwDAO+8sRkVFRZOOm5R0CK+88jweeeRxJCT0R3r6ObzxxstQKJSYMeMW03qrV6/EQw89grlz/4tVqz7CokXP4LvvfoZcLkd6+jk8+ugcTJ16A+bPfxIAsHfvbkiShClTrsEnn6zA6dMnERsbW3PMg7h48QKuuOLKFvcbERFZkyQJy5a9jV9//RlvvbUMAwYMsnj9888/wRdfrK53H1988T2ioqJsvlZWVoaAgPrvBZ977kl4e3vjrbfeg4+PN77//ls8+ugcrFnzA7y9va3WX7PmM/z11x949tkXEB3dGV9//QX27v0X48ZNMK2zZMlinDt3Fi+++BpCQ8Pw119/4NFH5+Crr35AeHgEAKCiogI//vgdXnzxVVRVVeHZZ5/El19+igceeAh5eXl4/vln8OCDD2PcuAkoLy/HgQN7Ldrx77+7oVJ54b33Psb58+l49dUXEBYWjltvnWmzDX/+ucGiDfVdE195ZTHuvPNWXH/9DZgy5RqL41ZUVOCbb77EM88sgq+vL3x9fevtX3OffroSc+c+ikcemY8lS97ECy88h5CQEDz00Dx4efni//7vKaxY8QGeeGJho/fZ1jEo0cZFR0ebfu7RowdKS0shSZJb0o/69rgNo4fej/z8Muh0OlRV56O47AwKi48hJ38/8ouPIiX9B6Sk/4Dw4AHo22MmIkIHu7ydRmpNKZJOvIv0i38CAEIC49Cv192ICBns0v7zUoWia/RkdI2eDLWmBJnZ25F+YQPyig7jyKkPcDRlJbp0mIQ+3W6Bv29nl7WLqC3Yvn0rJk0aa/r9kksuBQAMGTIcM2bcalr+2msvYvLkq3DDDTcDADp16ow5cx7BwoULMHfuf3H+/Dns2bMbn3zyJfr06QsAmD//Cdxzz8wmteeTT1Zg5sy7MXnyVQAM34Ddccfd+OGHby2CEldffR0mTLgMAHD33ffh1lunIzMzA127dsOXX36KhIT+mDdvvmn9nj17AQC8vLwwbNgI/PbbL6agxPr1v2DkyNEICQltUluJqHF0erWp0DU51r7kV3Eh5x+XHjM6cgwGxz3VpG127vwHGo0G7723wiogAQBTp07HxImT6t1HWFiYzeWZmRn48cdvMW/eY3a3TUo6hJMnT+B//9sIhUIBAHj00cexbdtm7Nz5Dy691PrYP/74HWbOvBtjxowHADz++NPYtWuH6fWsrCysX/8L1q1bb7p+3H33Pfjnn23444/fcdttdwAANBoNHn/8aVNA5corr8b+/YbAQ35+HnQ6HcaPn4ioqA4AgF69LL+YVKlUeOKJhVAqlejevQcyMs7j22/X4NZbZ9psw5133oOdO/8xtaGha6IoivDx8bHKmtRoNHjssafQo0dPu/1qj/k1+pZb/oNHH52D++57EAMHDoZWq8fVV0/Fzz//2OT9tmUMSni4vXv3YtWqVUhOTkZubi6WL1+OCRMmWKyzZs0arFq1Crm5uYiNjcXChQuRmJhota+//voLsbGxHjEeShBEU82FqLBhiO15J6qqC3A+62+knl+L3MJDyN1/CFFhI9C/71z4+XRyafvyCg9j75GXUFGVDS9VGBJj5qBT5AS3951SEYDuna5C905Xobg0DWkZPyP9wh84m/kbzmb+jk5Rl6Bv99sR6N/0D1Ci9mjIkOF49NHHTb/7+PjgvvvuRN++sRbrpaScRmrqaWzYUFsYU6/Xo7q6Gvn5+Th37iwUCgV6944xvR4TE2u6+Wus1NRTOHIkCatXf2xaptPpIUl6i/V69Ohl+tl4o1pYWICuXbshJeU0xo27xO4xrrrqWrz55quYN+9RVFdrsHnzX1i4cFGT2knU1lVW5cJLFeaQ6/76rTdAp6vC1Mv+cEDLqDXq1asPCgrysXLlcrz55lJ4eVkGqAICAhEQEGhna/vy8nIxf/5cXHrp5Vbf9JtLSTmF8vIyTJky0WJ5dXU1LlzIsFq/rKwMBQX5iI2NMy1TKBQWAYO0tBTodDrcdNNUi23VarXFer6+vhYZHqGhoSgsLARgCEAMHDgYM2fejBEjRmHYsBGYMOFS+Pr6mdbv3buPaZgkAMTHJ+CDD/JQVlbWqDY0dE20R6VSNSsgAQA9e9aevzFY0r17D7NlIaY+IAMGJTxcRUUFYmJiMG3aNMydaz1ObP369Xj11VexaNEi9O/fH5999hnuuecebNiwASEhteOUMjMzsXjxYqxYscKVzW8SL1UIene9Ab26XI/M7K1IPv0xsvJ2I3fnIST0eQA9Ok91SVDgbOZ6HDj2JiRJh85Rl2JA7KNOGabRUoH+PTAw9lHE974Paed/xumz3yIj629kZP2NTlETEd/rPvj6dHB3M4k8mre3Fzp1ss4wqpvKWllZgWnTbsT1199otW5QUBAkCQ1+PhlrQgC1xX61Wq3FOhUVlbj33tkYO3Z8vfuyLLxpOK5er7e9ch1jxozHm2++hn/+2Yby8goolUqMGtW8sc1EbU1ZWSm+/n4xiirX45rJj6Bvj5bVWZEknakotiTpIAgyRzSTagyJb1rGgiPI5SK02sZ93hpFRkZi0aJXMHfu/Xj88XlYvPhdi8BEc4Zv5OXlYu7c+xEXl4DHHqu/HyorKxAeHoF33/3Q6rX6hn3Uva6ZF6uvrKyAXC7HJ5+sMa0nkwnQ6SSLoQ51C0ULgmAKtMtkMrz77oc4ciQJu3fvxNdff4FVqz7CqlVfmB7m7V1bBcF2G4yaMtzClrqBI8BwHa9bsL/udRywPGdjsyyXCVZfNrR3DEp4uPHjx2P8ePs3p6tXr8ZNN92E6dOnAwAWLVqELVu2YN26dZg1axYAQ7TzwQcfxLPPPouuXbu6pN0tIQgydIqaiA4RY3DyzFc4kfY5Dp1YgvyiZAyOWwCZTOW0Yx9L/RTHU1dDEGQY1O8xdIu+2u3ZEQ1RyH0R0/1W9OwyDWczfsXJs18hI+tvXMjejp5dpqNvj9s9MqhC1Jr07h2DM2fSbAYwAKBbt25Qq9U4ffqkafjGyZMnoNFoTOsEBQUDAPLz8+HjY7hZSkk5ZbGfPn1icP78ObvHaYxevXrjwIF9uPPOe2y+LpfLccUVU/Drr/9DVVUVrrjiSs4uQlRj1afPY9eenwAAwcGrWhyUqKqu/TZUq62EQuGHMxm/4kLOdowc8DJn1GpHOnaMxrJlH2Hu3PuxYMEjeOONJaYH36YO38jNzcHcuQ8gJqYvnn76/8yC3rb16dMXeXm5UCgUiIy0XZfCnJ+fH0JCQnHs2FHExxuyrzUaDVJTU0y1Inr37gOtVovi4iLTOs0J2IiiiP79B6J//4G4++77cM01k/Dvv7tw5ZVXAwBOnToJtVptypY4ejQZoaFh8PX1s9mGuhq+Jiqg0zWuzUFBwSgoyDf9XlFRYTPThJqOpftbMbVajaNHj2L06NGmZaIoYtSoUTh06BAAQKfTYd68eZgxYwbGjGnZN2GiKLT4T1P2o5CrEN/7Lkwc8SF8vCJxPmsTtu17FFpdmUPaUvfPibTPcTx1NeRyX4wb8iZ6drkWMpnolGO1tG9s/VEqvNGn+424cuxXiOs1C4Iox+lz32DjP7ch/cIGCIJj/g3d1R+Oeg+2xT+e0Ddt3W23zcShQwexZMmbOH36FNLTz2Hr1r/x/vvvAgC6dOmGIUOG4fXXX8bx40dx/PhRvPPOGxbDNzp16oyIiEisXm0o1rV58yb89tv/LI5zxx2zsH79L/j005U4cyYNZ86k4Y8/fsdnn61qdFtvv/1OHDmShHfffQtpaSk4cyYN3333NaqqqkzrXH31ddi9excOHtyPKVOubdR+2+O/O7UvZWVl2F0TkACAM6ebVqjWlsqqHNPPGp1hfweOLUZW3m4Ulpxs8f6pdTEGJi5cyMSCBY+YPpcDAgLRqVPnev8Yg8fGDInIyEg89NAjKCoqRH5+HvLz8+wed8iQYejXLw5PPTUfe/fuxoULmUhKOoT3338X586dtbnN9Okz8Pnnn2DHju04e/YM3nzzVajV1aYv67p06YZLL52EF154Ftu2bcGFC5lITj6C1as/xsGD+xvVH0ePJuPzzz/BiRPHkJV1EX/99QcqKyvRpUs30zrV1dVYvPiVmhmxtuCLL1bjxhtvttuGo0eTLdrQ0DWxQ4cOOHToAHJzc1BUVFRvewcOHIwdO7bj33934cyZNLz22oswZitSyzA824oVFhZCp9NZFb4JDQ3FuXPnAADbtm3D7t27kZeXh++++w4A8MUXXzRYobcuuVxEaKhfwys2QnBw09KpQkOHILrDl9i4bT6y8w5j56EFuHriB1ApHfftf/Kp73A0ZRUUch9cfen7iAyzHW11tqb2jW1+iIycg8GJN2Hv4Q9xPOUn7E1+FZm5f2LcsGcQFOD52TIAoFDIrN5zjumftsmdfaNWq5GXJ0IuFyCXe16s216bBEGAINhusyhaLo+NjcUHH3yE5cs/wOzZd0MUZejUqTOuuupq03rPP/8iXn75BcyZcy9CQ8Mwd+4jeP31V0z7ksuVWLToJbzxxqu4885bMHDgIMyadR9effVF0z7Gjh2LN954B598sgJffLEaCoUC3bv3wPTpMyzaI5PVts/4t0wmQi4X0aNHdyxZ8j4+/HAZfv75R3h5eSMxsT+mT7/BtG7v3r0QE9MXer0OMTF9GuhBAaIoIjjYx2JcL9lWWVmJKVOm4KqrrsJjj9kvPEeeJz39HCQAnbp442JmFTIzqiy+oW2Oyupc6PUSMtMrkdM3E107196zyUT+f2qPzDMmnnjiUbz++js2hwrYs2fPbmRknEdGxnlcf/0Ui9fMp5c2J4oi3nxzKZYvfx8vvfQ8SkqKERoahoEDB9t9JrjttjuQn5+HRYsWQqEwTAmamDjA4v/DwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllVzTqXHx9fXHo0EF8991XqKioRMeOHbFgwTOIi4s3rTN8+AiEh0fgwQfvgU6nxZVXXoObb67NYGqoDV26dMVbby3DRx+9b7omJiQk4rrrpgEAZs16AIsXv4KbbpoKtVpttw8BQ0D/1KmT+L//expeXl64++77kJnJTAlHEKS6A2PIY8XExFgUuszOzsa4cePw/fffWxS2fP3113Ho0CF8/fXXDju2RqNDSUlli/YhigKCg31RWFgOvb7pbzuttgLb9j2O/KIjCAtOxPih70AUm1ZEzpbcgkPYuvdRCBAxbujbCA/p3+J9NlVL+6Y++YXJ2Hd0MUrKzkAUFOjX6y707XGLx49rvfbaK/G///0OwLn909p5Qt9otVrk5GQgLCza44YBNCeV1JGuuupSzJnzSL0FyNxBr9djxozrcOutMzFtmnWdDHNarRZ5eZmIiOhk9e8bEOANhcKzP0tc7Z133sHZs2fRuXPnZgclNBodiopa9i29KAoIDfVDfn4ZPzfrsNc3Gzb8ik+/mofBI4KRfaEK2RdkePrxrxEb269J+z+W+ikC/XogOnIcTp/7AZ9+8QJST5WjT/erMO+R+diy1zArz4RhHyIkqGn7dgVPfe8YP4vcfa1x93XFXbRaLWbMuA433ngLbrnF9rAmR/fNyy8/j8rKCrz00hsO26c7NaZ/6nufBwX5tNlrrmfdPVKTBAcHQyaTIS/PMl2roKDA7rRBLeGoC5NeLzVrX6LojdGDXsf2fY8ir/AwDh1/DwNiH2lRWyqr8rDr4HOQJB0GxT2G0KBEt16Am9s39QkOjMOlI1bi9LnvcCx1NZJPr0BW7m4MSXgGvt4Njyt0p7p94Yz+aSvc2Tf8N2ldCgrysX79LygrK8XkyVMa3qAG//817OzZs0hLS8OECROQlpbm7uZQE505axhOERqmhFwmIOeiDsePH21SUKKyOh/HUw0FC6dfvhWFRRk4k2IIMJWVl+LfPX+Zsr11eo293RC53YULmThwYC8SEweiuroa3367BsXFRaapLokcyfPybKnRlEol4uLisHPnTtMyvV6PXbt2YcCAAe5rmBMp5L4YMeAlqBRBSD2/DukX/2z2viRJwqET76BaU4Qena5Dt+jG35y3NqIoR0z3W3HpyJUI8u+DvKLD2LTr7hb1HxG1TtdeewW+/fYrPP30c6aCm2SYgvuBBx7AmDFjEBMTg82bN1uts2bNGkycOBEJCQmYMWMGDh8+bPH666+/jv/+97+uajI5UGnZBaSkHoZCISIgUI4O0V6QyeQ4efK4aWabzOxtOHX2W5vbazRl+GPHTBw9XTudb7W6GKdOpUGvl+AfIEdh8XH8ueUt0+t6Se3ckyJqAVEU8euv/8O9987EQw/di4sXL2DZso8sZgAhchRmSni48vJypKenm37PyMjA8ePHERYWhvDwcNx1111YsGAB4uLikJiYiM8++wxVVVW4/vrr3dhq5/LxisCwxP/D9v3zcej4EkSEDIGXKrjJ+7mQsw0Xcv6Bj3cHJPSZ7YSWep4A366YMPwDHE35BKfOfo29R15CXmES+vd9mGNbiZzgt9/+cncTrBjHy7bXFGR7WjoF96ZNm9CtWzd0794dBw8edMMZUEt887/pyMzOQVQHLwiCAIVSQMeOQaioqMDWncsQGRWA42mfAgC6d7oaCnltQE+SJGTl70Fp+TmUlp8zLS8qOYWUU5kAgAFDgrBrWx5ysw1ZR6IoQKdjUII8V1RUByxf/olb2/DMM8+79fjkOgxKeLjk5GTMnDnT9PtLL70EAHjooYcwd+5cTJkyBQUFBVi6dClyc3MRGxuLlStXIiQkxF1NdomI0EHo2fk6pJ5fhyOnPsTQhKebtL1WW4lDx5cAAAb1ewxyubcTWumZRFGBhD73IzJsKPYcfhFnMn5BcWkqhvdfBB+vCHc3j4jILVo6BXdSUhLWr1+PjRs3ory8HFqtFgEBAbjvvvua1Z6Wzm5iPjMPWbLVN/l5hgBBaHhtgL5r91CcTxGwefsn6D84yLRcr6+CKNYWYk5N/xkHjr1tdZyL2cnIzMiHt7cMEVEqhIarkH2xCsWFGgSHKgFoPfLfx1PfO57WHiJnam+zXDEo4eGGDx+OkyfrnzLq9ttvx+23t2we7dYortc9yMzeivSLG9Et+qomFahMy/gZVeoCdIqaiMjQIU5speeKCBmES0eswO6k51BQfAx/774PI/ovQliw6wt9Utv07LNP4siRww2v6CAJCYl48cXXXHY8aj+MU3DPnl2bVVd3Cu758+dj/vz5AIC1a9ciLS2t2QEJd8541Z6Y901+bjUAICTMPCjhj7xMBdIyqpA4SDJNhRgQIEeAf+2/z/cbrAMSAJCamgJBkNCpq7ehKHGIAtkXq1BYYAhKePs47t/ZGTztveNJMz25+/iejH1Tv4b7p33OeMWgBLVaCoUfEmIexN4jL+F42qcID3mnUdtpdVU4dfYbAAJie9zh3EZ6OG+vcIwb+i6STizDmYz/Ydu+/2Jo/FPo3IFFjKjlGCCgtqIxU3A7klard/uMV22Zrb7Jz1NDgKHIpZFMoUNISAQOn9CiuEiLoGDDjF95+YXQqIMaPE5S0mlodVp07uYDAAgOMWxfWKAG4IuSklLk55c59NwcwVPfO1qtFnq9HlqtBMB9Q8849M0+9k39Gjf7hgS9Xo/CwgrI5ZZDvNryjFcMZVGr1jlqInx9opFbcACFJfVnlBidyfgfqtWF6BQ1AQF+3ZzbwFZAJioxqN98DIydD0nSY8+RF3HyzNfgbMHUlv3447eYPPkSUwE7AMjPz8OYMUPw1FOW0zhu3LgeEyaMRHV1VbOP99dff2LMmCFYuHCBzdf/7/+exqefrgQAjBkzBBMnjkZOTrbFOg89dB/ee29Js9tAjidJtd+em5s2bVqzpwM1Ms520pI/jtpPW/xj3jeFhQWoKNchIEiBXt1qi17rdNXo188w88a5tHLTcq22yrStTqe1OcV2WakWFzNz4eenQEioIRhhGLIBFOZravZT7fZ+aG3vHaL2or29/xmUoFZNEGTo0/UmAKjJfqifJOmRcu4HAEBsj5kNrN2+9Oh8LUYNfBky0QvJp5cj6cS7kCSdu5tF5BQDBw5GWVkZTp2qDWYeOnQAERGRSEo6aBGUO3ToAGJj46BSeTXrWNnZWXj//SVITBxg83WtVot//92F0aPHWSxfvfpjm+uT67l6Cm5yrbPnUgEA0Z06Ykj8UxjR/0UAgF6vRmJiAgQBOJtWAZ3O8LlQXHYGF3J2AADKK7NN18qI0KG1+0wth17SoEevYFPgysdXBqVKRHGRxvCQIXFKUCIigEEJagO6dpwMlSIIGVlbUF55sd5184uSUVGVjbDg/gjw6+6iFrYeHcJHYdzQJaYpV/ceeQV6vdbdzSJyuO7deyIoKBgHD+43LTt4cD8mT74KCoUCKSmnLZYPGtS82jN6vR4vvfR/uOOOWYiO7mRznUOHDsDPzw+9e/cxLZs+fQbWr/8F6elnm3Vccqz2OAV3e5KefgYAEBEZCACIjhwHUVRCp6uGt48SHTt5Q12tR8Y5w5Ca/Udfw65DT6OyKhcVVVkAgC4dLkff7rcBMHzDeTa1AnpJix69A03HEQQBwSFK6PUSSoo00OsZlCAiAhiUoDZAJlOhe+drAeiRkWU9r7y581mG6fk6R7Fmgj0hgbG4ZPgH8PGKwvmsTdib/DIDE9TmCIKAAQMGWQQlDh06gIEDB2HAgIGm5Xl5ucjIOI+BAwcDAG6/fQYmTRpr98/8+Q9bHOerrz6Hl5cXrrtumt22/PPPNowePdZi2YABgzB48DCsWPGho06ZGlBeXo7jx4/j+PHjAGqn4M7NzQUA3HXXXfjmm2+wbt06pKam4vnnn2/zU3C3F+nnDEGJqKja6cVlohI6vRp6vQa9+xqKUR5PLrFIodZoy6HTGYZ1yeU+UMgN650/W4nKSh2iOnrD28dyeI+xrkRBgYZTgpJHmj37bmzd+rfp99OnT2HWrP9gwoSRuPPOW1FSUoxrr70Cubk5bmwltTUsdEltQnTkeJxI+xwXcrYjpvutNtfR67XIyNoMQZAhOtL+tG8E+PlEY9zQd7Ft3yPIyPobkqTDsITnIIr8yKC2Y+DAwfj44w+g1+tRXFyEjIzziI/vj/Pnz2Pv3n8xY8YtOHBgP5RKJeLjEwAAb775LrRa+0E6lUpl+vnkyRP44YdvsWrVF/W2Y8eO7Viw4Cmr5Q88MAf33DMTJ04cQ9++/Zp5ltRYnIK7fdJoNMi8kAmlSkRwsL9puUymQlV1PvYffR3hkSqER6iQm1ON9DMV6NbTMCuFJOlMgQWZqIJC7ge9XsLx5BIAQGxcgFU2hKmuRJ6awzfagTFj6s+yu+uuezFr1v0uacuJE8excuWHOHHiGCorKxEWFo74+EQ8+eSzUCgMwbLt27egvLwc48ZNMG334YfLEBERiZdfXgxvby8EBATiyiuvxqpVH+HJJ591Sdup7eMTBrUJgX494eMVhYLiY6iszoe3KtRqnZz8fVBrihEVNhIqZaCNvZA5X+8ojB+6FNv2PoLM7K34V3oewxOfZ2CC2oxBg4aY6kpcuJCJmJhYeHt7Y8CAgVi5cjkkScKhQ/vRr1+8qZ5EVFSHRu1brVbjhRcW4pFHHkNoqP2aA6mpKSgpKcLAgdY3rn369MWECZdi+fL3sGTJB807SWo0TsHdPp0/nw6tVo3wCBXk8tq6MaJoCB5k5+8BAMQPCMDmP3KRdKAYHaK9oPKSQa/XQKc3TCUqE5VQKHyRcqIMpSVahEeqEBwmWQUljEUvC/LV0OmZKdHW/fzzBtPP69f/gnXrfsDHH39mWubt7WP6WZIk6HQ6yOWOv88qLCzAo4/Owbhxl+Cddz6Aj48PMjMzsHnzX9DrdQAM78sffvgOV155jUUB38zM87jxxpsRFRVlWnbVVdfgzjtvw5w5j8Df37/u4YiajE8X1CYIgoCOEWOQkv4DLubsQI/O11qtk5mzDQDQucOlrm5eq+XjFYHxNRkTF3K248CxNzE47gmb1eaJWpvu3XsgODgEBw/ux8WLmRgwYFDN8p4QBCAl5TQOHTqASy+93LTN7bfPQHa2/do1iYkD8dZbS5Gfn4dz587i//7vadNrxpk+xo8fjh9++AXh4RH455+tGD58lN2b0HvvfRC33XYD9u/f64hTJqI6zp5NgyTpEB6pgkyszXQy/xkAwiJU6NHbF2mny7F7ewHGXhoGvaStDUrIVMjOKkByUglEUcDAoUHQaiusAvnePjJ4eclQXKSBurpl076S5zMPSvv4+EAURdOyAwf24eGHH8Cbby7FRx+9h7S0VCxf/gnWrv0elZUVeOmlN0zbLly4AN7ePnjmmecBANXV1Vix4gNs2rQRFRXl6NWrN+bMedSU1VfXkSOHUV1dhQULnoFMZpgtJjq6E4YNG2Fap7CwEAcO7MX8+U+YlhkzPZYseRNLlrxpyuzo0qUbIiIM17Arr7zaMZ1F7RqDEtRmGIMSF3K22wxKFBQdAwBEhAx2ddNaNW+vcIwd/Da27JmDcxd+h5cqBPG973N3s4gcYuDAwaagxIMPzgNgCHImJg7AX3/9gfT0c6Z6EkDjh2+Eh0fg888tZwT6+OMPUVVVhblzH0VwsCHl/59/tuHGG2+2u79OnTrj6quvw/Lly5o9+wcRWauozMe2vU/h6LFAU1BClClNr2u0ZVbbJA4KRH6uGjnZ1dixJR/D4ktNwzeyLhZj9/YvoNNJSBgYiMAgBfSSBlptBQABgKEWhSAICA5V4GKmDrm5Ba44VXAULycAAQAASURBVPJwH330Hh566FFERkYhMDCoUdssWbIY586dxYsvvobQ0DD8+ecGPProHHz11Q8ID4+wWj8kJARqtRr//LMN48ZdYvPLpcOHD8HHxwedO3cxLfv55w249947cP31N2DKlGssMjtiYmKRlHSQQQlyCAYlqM0IDUqAUhGAnIID0GorIJfXfnBqtOUoKT8LH68oeKk4/repfLwjMWbwYmzZMxcnz6yBShmM3l1vdHeziFps4MDB+OCDd6FWq5GY2N+0vH//gVi1akXNrAu13zw1dviGXC5Hjx69LJb5+flDJpOZlufn5+H06ZMYMWJ0vfu66677cNNN10GSwNoSRA5yIHklLuTsxa59F9C982UIDJJDJtYGJaqq86y2UShEjJkQiu1/5yPrQhU+/GA1wiPlOHs+F9BuRZB/T/SK8UNMPz8IggySpINWVwmF3M8iyBESpsTFzCpkZTEo0VI//vgdjh8/5tJjxsfHY+rUGxy2v3vvfRCDBw9teMUaWVlZNUNB1iMkxDBc+c4778HOnf/gjz9+x2233WGjzYm49daZeO65J+Hv749+/RIwdOhwTJ58lWn4RXb2RYSEhFoELEJDwyCKInx8fKyGIoaFhSE1NaU5p0xkhbNvUJshinKEBiVCkrQoKTtr8VphyUkAEoID+7qlbW1BgF93jB70GmSiCodPvofzFze5u0lELTZo0BBUVlaid+8Y+Pr6mZYPGDAYlZUVNfUkVPXsofl27NiOhIT+CAgIqHe9sLAw3HDDzVCrq53SDqL2SKHwQX6uGnq9hOjoCAiCYBGUsMfHV46JV4SjZx8/ZFzcjuPHjiI3pxoBAf64/vobMGBIIARBgCDITNvU3W9ITbHLbAYlCEDfvrFNWj8tLQU6nQ433TTVYvankyePIzMzw+52Dz74MH766XfMm/cYOnbsiDVrPsN//jMDeXmGGYaqq6uhVDb+eqdUqlBdXdWkthPZw0wJalMC/brjYu4/KC47g5Cg2m8UC4sNU7yFBPJbxpYIDYrH8P7PY+fBZ7Dv6Ovw8+nEQA+1al27dsM//+yzWt63b6zN5S1hHAts9M8/2zBmzDir9Wwdd/bsuZg9e65D20PUnnmpgpB1wfBA1alzODQw1IUwCvTrieKyVJvbKpQiBg0LQsJAPUqK1ZDLInHpmFvQNXoIMjcHQa0pRnjIQGTn/QsAEEWFxfYJ/S7H9r+/Qk52kVPOrT2ZPn2Gy48pl4vQavUO25+Xl7fF74IgQJIki2XmwwYrKysgl8vxySdrrIZh+Pr61nus4OAQTJo0GZMmTcY998zGzTdfj59++hH33PMAAgODUFpa0uh2l5aWICgouOEViRqBmRLUpgT4dQcAlJSdsVheYApK8AG6pTqEj0JizIPQ69XYdWghqqrz3d0kolapf/8BmDhxkrubQdQuabXVuJhpCEqERRoeMEWzjIYxg9/CuCFL692HQiEiNEyJwGAFFArDg+XksV/jijFfY2j8M6b1zIMS0ZGXYGDcffDzl6O4qByVlSx2SZaCgoJRUFB7b6XX65GWVhsg6927D7RaLYqLi9CpU2eLP8Z6RY3h5+eH0NBQ03uwT58Y5OXlorzcup6KLWfPnkHv3jGNPh5RfRiUoDYlwK8bAKCk3DooIQgyBPn3cUOr2p5eXW5A146TUVmdi91Jz3FaM6JmuO22O2wWJCMix8vM3or//X0V8gqTkHLuR2RlnUNJsQYBgQrIlEUALGfc8FIFIzykv529WTNuq5D7ws+nI1TKQKiUhgdECbXfeouCHKKoQEioEpKkx/nz6Q44O2pLBg4cjKNHk7Fp00akp5/D0qVvobi4yPR6ly7dcOmlk/DCC89i27YtuHAhE0ePJmP16o9x8OB+m/vcsWM7XnzxOezatQMZGedx5kwaPvxwGc6cScPo0WMBAL17xyAgIBBHjhxusI3V1dU4efK4xewdRC3B4RvUpvj7doEgyCwyJSqrclFVnYdA/16Qy73r2ZoaSxAEDIz9L0rKziG/KBmHji/BoH6Pc6pQIiLySLuTngMAbN37MAAg5aTh2+AO0V6orDKMqZfJGq4pYY+tbY21JPQ688C9BJmoQFiEEtkXdDh7Ng19+vDbZqo1cuRo3HbbHViy5E1Ikh433ngLhg4dbrHOwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllV9jcZ7du3aFUKvHuu28hJycbXl5e6Nq1G1566Q0MGmSY9lMmk2HKlKvx558bMGLEqHrbuGPHdkRERCI+PtExJ03tHoMS1KaIogJ+Pp1RWn4W1epiqJSBZkM3mlZIiOonk6kwcsBL+Hv3vTib+RtCgxLQLfpKdzeLiIioQRcyDEM3LIISYvOL2oo2imQal5lnE0qQIIpKhEeqAKkaZ86kNfuY1LpMn34Tpk+/yfT7oEFD7NYuuv/+Obj//jl296VQKHDffQ/ivvsebNSxo6M74YknFja43owZt+GOO25Cbm6OKZPvhx9+sVrv+++/xh133NOoYxM1BodvUJsTaKorcRYAUF55EQDg79vVXU1qs7y9wjC8//MARBw68S5Ky+1Xfaa2qzZBRqpvNWq1DP+uTISi1sx8NoyqKh1ysqqgUokIDVeioioLgO3Agrn+MfaLzdoKaBizJ/TmQQlJD5mohH+AHCovAZmZmaiu5sw65BnCwsKwYMFCZGdn2V2npKQYY8aMw6RJtrMyiJqDQQlqc+rWlTDODa6U+7urSW1aWHB/xPb4D3S6Suw98gL0eo27m0QuJooyAAKnrGyjdDpD1XfDvzNR6yQKtcUmM9MrIUlAp64+EMXaaJsg2L8tju99H3p1vQEj+r+IHp2vt3rdfOYO0zIbmRKQJIiiAoIgIDxSxboS5HHGj59Q77CMgIBA3HbbHRyySw7F4RvU5gT49QBQOwOHWlMKAFAoGJRwlr49ZiKn4ADyi47gaMonSOhzv7ubRC4kCAJ8fQNQUlIAADXznHvKzYoArZYZHLY1pm8klJYWQaXy4Q0otWqiqIBObxiycf6sYbaBzt0s60zJZfbrTuklHQAgOnIcqtWFVq/bypQwZl5INdsCgAQ9BEGEIMgQHilDfgZw5kwqevXq3cQzIiJqOxiUoDan7rSgmpqghFLh57Y2tXWiKMfQhIX4a9csnDr7NSJDhyAidLC7m0Uu5OcXCAA1gQnPCQKIogi93nHzybclje0bUZQhOJizhFDrlZbxP2i0hnuBinIt8nKq4e0tQ1h47XCNyNBh6Bgx2u4+JH1tYEEUrW+f6yt0abEfSarZhxLhkRLyM4DTp09j0qTJjT8hIqI2hkEJanP8fDpCEGQoqzDUN1DX3IgoOHzDqXy9ozCo33z8e3gR9iW/ikmjP4dC7uPuZpGLCIIAf/8g+PkFQq/XQfKAuIQoCggO9kFhYQX0eg9okAdpbN8IgiEowSwJ8nQ6vRoHj72F6MhL0CF8JABAr9fgbObvOHj8LdN6Z1IqIAHo2sMy+yehzwMWdSfqklAbwBMEG0GJejIlLOlr1lfCx68awcEhuHgxE2VlpfDz430KEbVPDEpQmyMIMigVgVCrSyBJklmmBC/2ztYpaiIyc7YjI+tvHEtZhf597RcFo7ZJEATIZJ5xaRFFAUqlEnK5mkGJOtg31Naknf8Z5y5swLkLGzD98q0AgNTz63D45PumdfR6CWdSyiEA6N7L12J7H69Im/tVyP2g0ZbBxyvKtEwUFVbr2QpA2MqeqM2UUEDSlqF37xjs2bMLp06dNE3NSLaxqDK1D+2zuLRn3DkSOZhKEYhqdQG0ukpToUvWlHCN/jFzkZ23BynpP6Jzh8s4FSsRETldftERq2XGYZxGWReqUFmpQ1QHL/j5W94CK+wM8Zw44mNczN2Brh1rZxoQbWRK2Momsjl8oyZTQhQVkCQdevfuxaBEI4miDKIoQ1FRHvz9g2oC4O54cmOtIvvYN/VrqH8klJUVQxDEdldcmkEJapOUykCgHFCri6HWlEEQ5C2af5waz0sVgoQ+s3Hg2GIcOPYmJg7/yOb4WyIiIkcpLD4JwHKoZt1hFqmnygEA3Xv7ml4f0f8Fm8EDIz+fjujd9UaLZY29pvXqcgPOXdiA+N4PIPn0csPCmkwJ4zG7dO0MmUyOlJTT0Ol0kMna14NIUwiCgNDQDigpKUBhYY7b2sFaRfaxb+rXmP4RBBEhIRHtbtgknxSoTVIpDEX3qjVF0GhKoVT4t7v/3O7ULXoK0i/+gbzCJJw+9z1iut/i7iYREVEbVlmdBwDw9eloWmZeI6K4SIOsC1Xw9pahYycvAIZpPOsrbmmP+fSiPTpfjwDfrjbXCwrojesv+wuiKIdKGYD9R99A3x7/MeyjZgiIXA706tUbJ08eR2pqCvr0iWlye9oTmUyG4OBwSJIeer3e5fWLWKvIPvZN/RrTP+25jhODEtQmKZWGoERlVQ70koZFLl1MEEQM7Dcff+2cheOpq9Ep8hL4+nRwd7OIiKgNqazKRUHxcURHjoMgiJAkQNJrTa+bD7M4ecxQX6pPPz+IouGGXy5rXgaleaZETPdb4eNlf3Ya47rdoq9C146TTYESY6aETq9BfHwCTp48juTkwwxKNJIgiJDJRJcfl/V47GPf1I/9Uz/X/28mcgFjpoRxBg5OB+p6Ab5dEdPjduj01Thy6kN3N4eIiNqYTbtmYXfSs8jO32t62NfpNabXjcvKy7VIP1MBpVK0KHApE72adVzzYSH1Df2w3q42c8OYKaHXq9G3bz+IogwnThyHTqeztzkRUZvFoAS1ScZMibKKTAAscukuMd1ugbdXBDJztiK34JC7m0NERG2IWlMMACguTYNQU/BQr1ebXjemQJ86VgZJAnrG+EKhqL31lTkgU8LWTByN24cxU0INLy8v9O7dB5WVFUhLS23W/oiIWjMGJahNssqUkDNTwh1kMhUSet8PADh88j1IEosfERGRY6Wd/xlaXQUAoKIqGyVlZwEAer0GZaVapJ0uh1wuoHeM5b2AlzK4WcczD0Q0JVPCnMyUKaGBVleFuLh4AEBy8uFm7Y+IqDVjUILapNpMCUNQgpkS7tMp6lKEBPZDUelpnM/6y93NISKiNqa8MtPsNwl/7rwDlVW50OmrcexwCfR6CTFx/lB5Wc5s4eUV1qzjmdeqqDvDR6P3UROUKCo5jZ//ugI62XbIZHIkJx+BWq1uYGsioraFQQlqk4yZElXV+QAAJQtduo0gCIjv/QAA4FjKaujNipARERE5Q0HxMWRn5SH9TAVUKhG9+xqyJCaN+sy0jrcqtFn7Nh++0dwq+cYMi7OZvwEAzmWtQ1xcPNTqahw9esRqfUmSILl6qgkiIhdhUILaJGOmhBEzJdwrPKQ/IkOHobwyE2cvrHd3c4iIqI0rLj2D7VuPQgIQ1z/AVEvCW1WbHaFUBNrZun7mU4I2l7GmhEZbblo2ePAQAMDOXX+ioioHlVWGaU7VmhKs3zYdx1NXt/i4RESeiEEJapNUdW40OPuG+8X1vgcAcCL1c+j0TE0lIiLn2bN3O7KzChEcorCYccN8BgxlM7+wEMTmDdkwZxy+odVWmJZ1794T/v4+2L77Y3z/2/VYv206CktOoqgkBVXV+Tie9hk0mrIWH5uIyNMwKNHGPfzwwxg6dCgeffRRdzfFpWQyb9O3EACg4PANtwsOiEGH8DGorM5F+oWN7m4OERG1UdVVOuzacQySpMegYcEQxdohFuZDLxTN/MJCFGQNr9TQPmqCEuaZEoIgoF98TwDAmRTD8pRzP1oE8rPy/m3xsYmIPA2DEm3cbbfdhtdff93dzXA5QRAssiWae+NBjtW3x+0AgJNnvmJtCSIicoqDe4tQValGr5hghIRZzo5hninh6x3l6qaZGGtKGGcNMRo4IAGCAKSdLodWq0duwQGLdcyDGEREbQWDEm3c8OHD4evr2/CKbZB5XQkWuvQMIYGxiAgZjPLKC8jI3uzu5hARUSslSTqby9PPVOD8uUr4+MowcEiE1euCIGLiiOUYPWQBQgJjm3VspSIQHcJHo2+Pmc3aHqitKWF+Hn/suAMX8n9B564+UKv1OJdWgcrqXIshHjp9NbLy9iCJ02wTURvCoIQb7d27Fw888ADGjBmDmJgYbN5s/ZC2Zs0aTJw4EQkJCZgxYwYOH+b81Y2ltMiUYFDCU/Tt8R8AwKkzX7OSOBERNYtOV221rKJciwN7igAAI8ZEQSY3ZOR1jrrUYr3QoH5IiLm52ccWBAGjBr6CuF6zmr0PmWhdLLO0/Cwu5Gw3zRRy+kQZJEmyyI7Q69XYceBxpJz7Htn5+5p9fCIiT9LySj3UbBUVFYiJicG0adMwd+5cq9fXr1+PV199FYsWLUL//v3x2Wef4Z577sGGDRsQEhICALjuuuts7nvt2rWQyVo+5rE1U5lnSjAo4THCggcgyL8PikpPIa8wCeEhA9zdJCIih0hLS8PTTz+NsrIyKJVKPP300xgyZIi7m9VmSJKElPTvERoYD1+fjhav6fUSdv9TAI1Gj959/eAXVIzS8mIAgFzu447m1ku0EZQAAK2uEiFhSoSGK5Gfq0b2xWpUdy8yvW4ejKlWFzq7mURELsGghBuNHz8e48ePt/v66tWrcdNNN2H69OkAgEWLFmHLli1Yt24dZs0yROd//vlnl7QVgEWhqJZs39L9NFZtUEKEUuHb7LnEXcHVfeNeAnp3uwF7j7yC1PM/IDJsoN016/ZL++ifpmHf2Me+sY994xwqlQqvvPIKevTogdTUVDz44IPYuJGFfVvq36TnodaUIK73vTh88n0AwOSx31qsk7S/GPm5aoSEKpEw0HIGLnsBAHcyL8ZtS+++fsjPLcCJo6UYOijHtFynrw1KaHWVTmsfEZErMSjhodRqNY4ePYrZs2eblomiiFGjRuHQoUMub49cLiI01DHFIoODXVPjIijQMBe5SumPsLDWkSnhqr5xt6Cga5F8+iNcyNkBhaoEAX4drdZRKGRW77n20j/Nwb6xj31jH/vGsaKjo00/9+jRA6WlpZAkyaOD4q2BsQZRdOklpmU6XZXp53NpFUg5WQalSsTIcSGQySz7WxQ873bX1vANc9GdveEfIEdudjXOnEmB3Nuw3HwmDvM+ICJqzTzvU5oAAIWFhdDpdAgLC7NYHhoainPnzjV6P/fddx8OHz6MyspKjBs3DitWrEDfvn2b3B6tVo+SkpZF5EVRQHCwLwoLy6HXO7+WgE5rSNeUy/2Qn+/Z83q7um88Qffoa3As9VPsP7wGiTGzrV7XaHSmf7f22D+Nxb6xj31jn6P6JiDAGwpF2xkquHfvXqxatQrJycnIzc3F8uXLMWHCBIt11qxZg1WrViE3NxexsbFYuHAhEhMTrfb1119/ITY2lgGJFigsOQm5rDZwlleQZPrZ+HCur+qJfbu3QQAwcmwIfHytb20FDwxKNFRTSRQFxCYEYM+OAuzdcxIjx6sAWA7f0GqZKUFEbYPnfUpTvZr6jcuKFSscdmxH3dTr9ZJLHhCU8oCav/1azQOJq/rGE3SLvgbHUj/H2cyN6NfzHou5443q9kV76p+mYt/Yx76xj31jyRG1ngAgMzMTixcvdug1uL3R6qrw9+77LJblFx0x/azTVaG4SIO9289Ar5cwYEgQIqK8bO7L1vXF3SJCByPAtzsgCCgpS7O5Tueu3jh2WI6M83nIywlDWIQKerNMCQ7fIKK2wvM+pQkAEBwcDJlMhry8PIvlBQUFVtkTZJtxSlDOvOGZvL3CEBU2HFl5u5CVtxsdI8a4u0lE1M45otZTWVkZHnzwQTz77LPo2rVrs9vS2uo4NZVer0VW3r+ICBloKkSp1VYiM2c7OkdNRHlFutU21eoi089FxfnY/nceFEIn9I3zN81YUdek0atxIXu76XdRFDyib/x9O+KKsZ8BADbtvBeFJSet1hFFAbHx/ti7qxDJh0owflKY5fANfaVTzsET+sdTsW/sY9/Uj/1TPwYlPJRSqURcXBx27tyJiRMnAgD0ej127dqFO+64w82tax38fDoDEOHv09ndTSE7ukVPQVbeLpzNXM+gBBF5tMbUetLpdJg3bx5mzJiBMWOa/5nWGus4NdX+Iyux9/AH6NXtSlw2+mUAwNoNDyInPxleXhLkMpXVNsYij+XlWnz3zY+orNBh0Kie6NBda/c4PbomoKh0j+l38371lL5Rqbztvtaluw9OHitDbk41LmZWoWu0zvSaKNM47H1ii6f0jydi39jHvqkf+8c2BiXcqLy8HOnptd8EZGRk4Pjx4wgLC0N4eDjuuusuLFiwAHFxcUhMTMRnn32GqqoqXH/99W5sdevh6x2FK8d9Cy9lSMMrk1t0CB8FlTIYWXm7UVmdD29VqLubRERkU2NqPW3btg27d+9GXl4evvvuOwDAF198gYCAgCYdy9PrOEmSDtv2PYawoATE9b67Wfs4fXYTACAt/S/k930KWl0VcvKTAQC5+eeh19sONJSXa7H1zzz4KC6iUxdvjLtkIFLST9k9TkFBBSoqa7ML8vPLPK7ejKS3X/RSFAUkDgrEP5vzcPhAMRLiamtklZcXOaVmlqf1jydh39jHvqmfI/qnrdVxMseghBslJydj5syZpt9feuklAMBDDz2EuXPnYsqUKSgoKMDSpUtNBbVWrlxpMW6V6ufjFeHuJlA9RFGOLh0ux+lz3yIj62/07nqju5tERNQk5rWeJkyYgKNHjzpkv55cx6m49Axy8vcjJ38/Ynve1ax9aLTlAABFTd2n/MJjptcEyGzWWSgp1uCfv/NRXq5Fv8Eh6BITAoXCp97j6PUSIAmWv5v97AkPT6JonRViLqqjChFRKuRkVeP4sUxE1EzyotaUOrX9ntI/noh9Yx/7pn7sH9sYlHCj4cOH4+RJ6zGE5m6//XbcfvvtLmoRket1jppYE5TYzKAEEXks1nqqpdFWNGl940wTyac/Qml5OkYOeBlajTEoYUhlLi2vzRzVaCuh1hRZ7CMvpxo7tuRDrdajSzcfjLmkGzKyT1lMrRkdeQm6dJiEk2fWoKD4GFoLmUxZ7+sdwkfiwXuuwaKX7sDB/ecxMcIHCoUeak2pi1pIRORcDEoQkVsFBcTAxysKBcVHUVGZDR/vSHc3iYjICms91TJmOTTWtn2PQK9XmwIFOl0VNDpDYKOs4jwu5u60CEpodeVQa0pMv58/V4E9Owqh10voE+uPxEEB0GiLAACiWPtAr5D7oWPEGKSkr23uqbmFzG6mhICrxq+FShkMnb4aXXv44GxaHo4c9MWgYcHQMChBRG2E6O4GEFH7JggCOkVNAABkZG9xb2OIqF0rLy/H8ePHcfz4cQC1tZ5yc3MBAHfddRe++eYbrFu3DqmpqXj++efbZa2nulkM9mi1FUg+vQJ5hYcsMhf0ktZiasudB5+qkylRDrWmDHq9hMMHirF7ewGkmmk/+w8OhCAIqFYXAgBkZkEJUTCOta6bGu3Z1e5lMttTmQKAlyoEgiBAJiqRMCgQSqWItFPlKMhTQ62trSchSRKOpqxCbkGSK5pMRORQDEoQkdt1irwEAJDJoAQRuVFycjKmTp2KqVOnAjDUepo6dSq++eYbAMCUKVPw5JNPYunSpbjuuutw/PjxdlPrSaerRlHJaeQVJmFf8qum5ZKks7vN8bQvcPLMGqvler3GallxaYrpZ422HCUlhdj2Vx5OHiuFQiFi9IRQi2k/q2qCEuaZEoIoMzbKYt/Gmh+eSiGvvy4GAAiCCC8vGRIGBUICsP/fQmi11dDpDDOS5BTsw4m0z7Ft38NObi0RkeNx+AYRuV1QQAx8vDugoPgYKqpyWKCUiNyCtZ7sO5H2BU6c+cJq+do/J2Ly2G/g693B6rWyivM296Uzy5IwqlIXmH5OOXUGm//KRHW1HkHBCowcFwo/f8tbVuPwDvOaEgIMQQmplWVKeDVh5qnuPX1wNrUc+blqnD5RBvWEMnjLVKisynViC4mInIuZEkTkdoIgoEP4KABAdt5eN7eGiKjtqKzKRUbW3y3eT0r6D3ZfO5vxm83l9rIoqqrzbC4XJD/s3VWIP35PRnW1Hj16+2LiFRFWAQkApuEf5pkStcM2Wldley9l44MSgiBg8PBgiKKA5EMluHDhDADDUBkiotaKQQki8ghRocMAANn5e9zcEiKitqGo5Cx+3TId/x5ehJyCAw2uX16ZheTTK6DWlEKSJOw98gpOpBmyIwL8utvdrqT8nM3lejtBiWOpqy1+lyQJGemV+HN9Ic6mlkOp0mHMhDAMHh4Mmbz+LAeZaGPmCqmVBSWakCkBAIFBCsT1D4BeL2Ht2rXQ6XSmwqFERK0Rh28QkUcICxkAUVQiJ38f9Hqtu5tDRNSq6fUafP/LNNPvjZmpYeueh1BZnQtBkKF31xlIv7gRANC3x39QVV1gdzvzIpXm7GVK5OTvM/1cVqrFwb1FyLpQBR+vKHTtHoj+g32g8pLZ3LYu0Ww6TeOwjdrhG0Kdvz1TU4MSANAn1g8XMipx8UImtm7djPBOTZsRhYjIkzBTgog8glzmhbDgRGi0ZSgsOeHu5hARtWqaOun8kqRvcJvKakNdAr1eazElp06vRqWdIRcAUFp+DpKN7ASpngBzVZUOB/cWYeMv2ci6UAU/fzmumToMYyd0aXRAAqibKWE5fEMQWsdtrrdZUEKpCLC7np9PF9PPoihg2KgQiDI9tmz5GxkZF0yvSZKE4tJUmwVFiYg8Uev4tCaidiHSOIQjj0M4iIhaQqevtvi9bpCiLvOggq9PB4ugRHFJCiTJMsAQ4NfDfGv8svlqq2wKW8M31Go9jiaV4PefspBysgyiCMQPCMDlV0eie/eupqk+G8uipkTNOdQNkHj67Bsymcr0s62CoUaXjVxp8bufvxyjx8ZBkvT44/d9UFcbAk9ZebuxadfdWL/tRmg0ZbZ2RUTkURiUICKPERVmrCvBYpdERC1hnCrSSGun5kBZxQVs2H4LTp/71rRMgGARlMgvPmq1nVLuZ/G7RluGzJxtFsvMh29UVuhw+EAxflt7EceOlECvB3r39cOVU6MQGx8AmUyAUhGI6Jopor1V4QgJ7NfgedqsKWHMlKi5zTUWUu7S4YoG9+cu3qpwAMCguAV21zEELyxv3fvERiI+PhElJWXYu6sQkiShojILAFCtLkRx2RmntZmIyFFYU4KIPIa/bzd4KUNQWHISkmTrRpOIiBqj7rSb9mZnOHj8bZRXXsCRUx+alkmSZBGUKCo5bbWdeS0H0zF11SgtPw9/384ADMNACvLVSD1VjvQzFVDIAqHXA917+SI23h++fpa3oTKZCsMTn4NW9wQUch8cOrEUBcXH6j1P80wJ0+ANY6ZETYaEv28XXDvxd8hl3vXuy50mj/0aer0GcrkPwoL7I68wyeZ6giBY1PHUastx3XW3YOfeFbiQUYnTx8sgCEtMr2u0rDVBRJ6PmRJE5DEEQUBwYD9Iks7ut3pERNQwna7K4netrgJ6vRbH0z5HflGyaXlRySmrbSVJZxGUKC0/CwBQKYJMy0RBYbXdkVMf4I8dt+Nsxhbs2fMvfll3FH/9noOzqeUIDY7BqNEjMGVqFIaMCMbgxLutttdoyyAIMijkPgAAmWh9jLps15QwDGMQzApcKuQ+Hj2MQxQVkNecd32zhwiCZb0Nra4SXl5eGHNJR4iigMMHi5GTVZslo9Vy+AYReT4GJYjIo4QGGdJ1Gxr/TERE9hmHb6iUwQAMn6kp6T/iWMoq7DjwhGk9tabYalsJEtRqs6BERQYAQKkMNC0TzQIGowe+Dq1Wj/PnKrBrWz7eeOM1/PLLOuTlliIwSIEBQ4Jw591XYNSYeHj7GB6qo8JGWB03LCjR4nfR5tAM1FnHOnBR+0jvuUGI5hLq3Lobg0/efhUYPDwIkgTs2paPslJDDRA1gxJE1Apw+AYReZTgwFgAhpRUIiJqHmOhS5UyCNXqQmh1lTh3YQMAQ0YCALvTL0uSHmptbVDC+HkcFTYcpeXnEB4yGIChTkTWhSoUZe7A39suQqczhANUqvO47JK70CN+L/yDNBAEAV7evhbHMM9w6NfzbkSGDUNIzee/ka2AQ10yG4Uuo8KGo6jkJDpFTWhwe48k2J/KVLB4TYJWV4lqdRGq1YXo1tMXxUUanDpehh1b8jHxinBeS4moVWBQgog8SnBAXwACMyWIiFrAmCnhpQxGCc5Aq62ARlMKwJCBIEmSKThhTW+RKWEkF6PQK/J1ZGbmYPM/H+B8xkUAQPfodAgC0KWbDzp19UZURy907pQC6aIOxgdrmai0mJbUvCaFXO5tFZAwbtMQ88CFVJMjEdtjJkKD4hEePKDB7T2SZDm1qTnj8A2ZqIJOXwWtrhLFZWmm1xMGBqKkSIusi1X4d0cBYntZ/zsSEXkaBiWIyKMo5D4I8OsOvf4UKqvy4O0V5u4mERG1OqbhG6oQAIZCl8bil3q9GmpNMdR2povU63UoLMpF1oUqlBRpUFigQX6eGtu91sHftxMAoCC/HH7+ckR19MJt0+7FkTMHIZMLiOl+G06eWYOi0tOwGEghiBb1EGSiyuyItkcT28qUCPDtjpLyMzX7lEEUrW9lRVGBqLDhdnqmdRMEQ1/JZIagRG7BAeQWHDC9LooCRowNwV8bcnAxswqb/96LxJgHGl1PQ6/XNipDhYjIkRiUICKPY/jGbCMKio8h2mucu5tDRNTqGIdveCmDABgLXWogSRK0WgkXs0+jorwcFzOrUFGuRUW5DhXlOpSXa7Fz0zrk5J2CRltqsc8enSPQr+8QdO7cBXnlVSivPggAiI2Nx7HzQs06U3HyzBqLQpmAYUYMmVl2hHkWhPFBuy7zh+OOEWMRHjIQQf69sHXvw1b7aFPqG75RE8Cp79wVShFjJoRh88ZcJB9Ow+bNf2HixMsAGP4dSivS4e/T2arfM7I249/Dz2PckLcQGtpKh74QUavEoAQReRzj3PQFxccRHcmgBBFRUx1NPok/fsvGweB/cTE3C3KxAlXVJdBodNDrJfz791IIghwXcvKsto0I1cA/QIOgkGD4+usRFKxASKgSl4+9G6FB8QCAfw78gPLaSR4wJP4paLQVUMj9AADVausCmuZBBpmsNlNCsFOQUibUPnh7q8LQq8t0FBafMNtf3Qdz+7NWtCZdOkxCXmESene9wfrFmkCCrSlZzfn5yzF2Yii2bsrBV9++CG9vGUaOnICU9O9x+OT76NtjJuJ6zbLYZs+RlwAAR06tQL8YBiWIyHUYlCAijxMc2BcAatJ/iYioqXJy8lBcpIFKrEZ5mQ5yeSUAHZQqEUqliMgof/j5BkEV4AsfXxl8fGTw9ZPDx1eGfn1G49yFAoQE9kNRaQr0NcM+FHKzYpV1pq3s2nEygNphI5JUt4imZDGNqExUwte7I8orLyAooI/NczB/8BYEwy2rYDZcw5gt4OfTGWUV5xHg16PxHeTBukVfjbDg/vDz6WT1mmkYRiPiL0EhSowc54/tf2fisy9fQ0BAODKLfgMApJ3/2SooYfw381KFmpYZhnPwcYGInIufMkTkcYw3YuUVmW5uCRFR6zR8VB94h3TEsMQ7kXxaA4220OL1+N5joFT448CxHVbbVlQZPnsNQYOLqFYbghJys6CEBL3VdgDqfYA1f00Q5Jg44iOUlJ1DaFCczfUth3gY6lGIZnUpjJkS44a+i+y83ejS4Qq7x25NBEGAv28X26/VDN+w1f9eyhBUqQsslkVEeWHY6GAk7S3Bd999ja59ixAYan/IDAB41wQlikvP4I8ddyChz2z06XZzc0+HiKhB9j+RiIjcRC7zgigqUFGVbXfKOiIisk+nq4ZCIUKl9IGvT4TV61pdpd1Cl2Xl5wEAvj4dTcMxAEAh8zH9LEm2v6oXBJlFQUvT+pAgMxu+IQgClIoAhAUn2D0H8+EZoiir2c46U8JbFYpu0Ve1i2/0TX0rWQclZHJvm+t27uqDwcP8oNfrsfWvdFzMrETdehW2ZkY5fe57AMCRUx86qvlERDYxKEFEHkkmU0KSdKioynJ3U4iIWh1joUuZTAUfr3Cr17W6SqtClkaV1bkAgCD/XhZDNuTmD702HoqNRME8I8LwYNylw+UQmjirg/kMHcYMAcEiU6L9zRJhzHCQbPS/eRZJbI874e1VG4zq0EWN4E7bUa0uwc6tBbiYaTntdlV1bYaFcQiOxk7QiojI0RiUICKPZLwZLeMQDiKiJjM+WMpElcXDqZFWW9ngQ2doUILFg795QECqp6iBed2H+N73YdqkzfD1joJMaGJQQlb/8A1ZA8Ue26SamhKSpLN+CYa+Ucj90a/XXfD1irJ4vWt3GQYPD4ZeL2H73xdw/PgxAEBJ2RlUVdcWPNXpqgAAajtBKyIiR2v7eW5E1CoxKEFE1HymoIRMBW9VbVBCJqqg01dDp6uE9WNtLV+faHipQkzfoPt6R1u8Ht/7XmzZMxfDE5+12tY8U0Iu96mtX1BPHQNbLDIljMM3zAIe1rNvtH0+XpEor8iEt1d4nfoRtX1rLIapUPihrh69fSFJEo4cUOPrr7/EhEv7o6D6A8hltVkw2pqghDFoJTYxmERE1FTMlCAij2ScLo7FLomIms7e8A2lMhAAcD7rL5zP+svu9j4qwzbxve9FWHB/jBu6xOL10KB4TJv0NzpFTbTa1jy7wrwORVOn7DTPhBBtZUq0w6DEkPin0LXjZAxLfN5i+WUjV5llrxiCEnKZl8199Ozjh1HjDEGm77//AqdPlEGrqzS9bsqU0BgyJWwFN4iIHIlBCSLySMabTWZKEBE1na5mGk+ZqIKXKsy0XKUIbNwOah7+O0VNwPihS+FjYwiIaXrKOiwzJcxm7KinDoUt5pkSYE0JAICPVwSGxD8FP5+OCPDrDgAYNfB1BPr3QN2gj7dXpN39dOsZhNtumwlB1OPQviIcTSoxFS/V1mTZqDUlAGCzcCkRkSMxKGGHWq3Ghx9+iBMnTri7KUTtkilTopJBCaL2itfi5uscdQm6dBwDP59oi2KVSkWA1boqZbDVMrEFD6Lms2Ao5OYzdjQxKCGrDUoYZ99o75kS5sYNeRejB72BqLDhAGpnRBFqMiX6dr8dXTpcjgnDrGfPEAQRMTF9MfnqRCgUIo4dKcHenYXQ6STo9FXQ6dTQaA3DN7TaCqvtiYgciUEJO5RKJZYvX46SkhJ3N4WoXRIEGVSKIJRXXLRZ0KuqugCHTryL1PR1rBBO1EbxWtx83TtdjSkTlkIU5RbZCsbhG0aCIINC7m+1vdDE+g/mzGsQWBxbYX2cevcjWhe6tMyUaN9BCZUyEFFhw60zVmp+l8u9MTThGYQE9bPa1jibSUSkFy65PBzePjKcO1OB7X/loby8HFXVxaZ1tbpKu1PAEhE5AoMS9UhMTMTRo0fd3QyidsvXJxp6SYPKqjyL5TkFB7Bp1yykpq/FoRNL8Nu2G5CVu9tNrSQiZ+K1uOXMMyUUcsv6AKKohMzGMIgWBSXMMiXM6xqEBiUgrtc9GD/0vUbtR2YjKGG+7/aeKWHNsqZEfYyBDK2uEkHBClw6OQLBIUrk5lTj9/+dwI49n1rsV6erRGr6Ouw5/CL0eq1hqaRHZXW+Y0+BiNolBiXq8fjjj+Prr7/Gl19+ifPnz6OiogKVlZUWf4jIefx8DIW4yioyTMvUmlLsPPAUqtUF6BY9Bd2ip0Cnq8SeIy+ivOKiu5pKRE7Ca3HLmQ+hMB8SAQCQJNODvvkMDC0JSghmNSVkFvsU0LfHfxAWnNDI/dS2oXbYhtmy9jglaD0kGIbH2Kr1Ed/7vjpLDP1oLHDp7SPDJZeHIbqzNwoLS/DOO28h60KVaW2NrhKHTizB+axNyM7fAwDYl/wa1m+dhoLi4044GyJqTzglaD1mzJgBAHjppZfw8ssv21zn+HF+EBM5i68pKFFbV+JCznbo9FXo2nEyBsc9AcAwRvrU2W+w+/D/YcKw99tl8TOitorX4pYz/0y0zi6QTMMgFHI/00NqS4obWmRKiKp61mw8Y4BCEAQIggySpGOmRF2mERbWQYk+3W5FUWkKMrL+NqxhzJQwqxchl4sYMTYERw6W4NTxUvzzdx7iBwQiJs7PYr2cggPoED4K6Rc3AjBcl0MCY51zTkTULrSZoMTmzZvx6aefoqCgAD179sRtt92GoUOHWqyTlJSEm2++udE3L6+88ordytJE5HzGau/mwzfO19xQdelwuWlZXK97kV90FPlFR3D+4l/oGj3ZtQ0lIqfhtdix6tZhkCCZghYKhR8qq3MBtDQoYRYEsTMtZVNZ1JIQ5NBJunZfU8KaZaFLc4IgwNe7Q+3vdTIljERRQP/BgQgOUWD/v4U4cqgYBflqjBlUaFqnsNiy8Kwk6VGtLsKWPXPQOeoy9Ot1l8POiIjahzYRlNixYwcefPBB9O/fH0OHDsWhQ4cwc+ZM3HHHHXjiiSeafTMzbdo0B7eUiJrCOA5aU/MNTbW6CLkFB6BSBiMsuL9pPVGUI67Xvdi272GknF+LLh2vaNL/+9LydOQWHEJ5ZSaC/HsjPGQQvFQhjj0ZImoWXoudTJJMU3ia15sQWjDC13xKUPOsiZap/Uw3BiiYKWFJQv3FKM0LkMKspoQtXbr7IDBIgZ3b8pF5vhKrVn6GDj01CAxSmKabNR1X0uPU2W9RVpGB42mfMihBRE3WJoIS7733HqZOnYpXX33VtOyHH37Ayy+/jPPnz+Ptt9+GStX89MGUlBQkJycjKysL06dPR3h4OM6dO4fQ0FD4+fk1vAM3q6ysxJQpU3DVVVfhsccec3dziBpNXjMOWqsrBwBkZG2FJOkQHTne6kY3LDgRgX49UVRyEgXFRxEaFN/g/vV6LZJPr8Dpc99aLBdFJeJ734teXW5o0bhqInKc1n4t9hR6vQb9es3CsZRVAAx1CMyHbxg5aviGo5jPwlRb9JJBCQvGGTLsBOVlZjU4TJkSWvs1WQKDFZh8TXfs2HoeubnZOHYqBwOGBGHAAI3FenpJg+zcnS1sPBG1Z23ibvv06dO49tprLZbdcMMN+OKLL5CUlIQ77rgDRUVFTd5veXk55s2bh6uvvhoLFy7Eu+++i5ycHADA22+/jffff98RzXe65cuXIzEx0d3NIGoyucwQlDBmSmRmbwUAdIqcaLWuIAjo2cXwjWpK+o8N7luv1+CfAwtw+ty3UCoCENP9NgyOW4Duna4BJAmHT76PXYeeMVUZJyL3aE3X4k2bNuGKK67AFVdcgfXr17u7OTbp9RrE9piJkMA40zJjEEGhMA9KOGZKUEfRS7Wfxcb22po1hGwP3wAsh9UIggBJkqwyJeoGo/z9wjH6klAMG9ELer2E/f8WYstfZ1BRUVtjoqq6AGUV5wEAAX49HHUaRNSOtImghEqlsvhwNIqPj8fXX3+NgoIC3HzzzcjIyLCxtX2vvfYaDh48iE8//RQHDhywmKN5/Pjx2L59e4vb7mxnz55FWloaxo8f7+6mEDWZcfiGscBWeaVhdo2QwL421+/c4TIo5P7IzN5qCmTYc/Ls18gt2I8Avx6YOHwF4nvfh27RV2FQv8cwccRH8PPpgou5O5F0snFT1zWGJOlQVV0ASdI7bJ9EbV1ruRZrtVosXrwYa9aswTfffIMlS5ZArVY3vKGL6WtS72O63wYASIyZY3q4t8yUaMEtohNqgJgHiJkpYZtx9g17U4Ja9pcIra4CqDPkw0sVavo50L8XukVPgSAIiEsMxYQrIuDrJ0f62UK8997byM2pBgDkFSaZttHrLbMoiIgao00EJWJiYrBt2zabr3Xu3Blff/01fHx88OSTTzZpv3/88Qcee+wxjBgxAjKZZeS4Y8eOyMzMtLNl4+zduxcPPPAAxowZg5iYGGzevNlqnTVr1mDixIlISEjAjBkzcPjw4SYd4/XXX8d///vfFrWTyF2MwzeMAQaNthyioLCe0s64vswLUWHDIEk65Bcdsbvf0vJ0nEj9HKKoxMgBL8LXp4PF64H+PTFm8GKolMFIO78OZzJ+afY5SJKEzOyt2PzvbPz012T8tvV6/PzXldi6Zy4u5Pxj8YBFRNacfS12lKSkJMTExCAsLAzBwcFITEzE/v373d0sK7qah8aOEaNx7cT16NVluulhVemg4RvmQy0cxXyfxpoVrClRR0PDN+pkSqg1JVbreKvCTD8PjnsMKmUgAKCiKgehYUpMmhKBrt0DUFiYh61/5OLwgWJUVBaYttHrGw7Enb+4Cf/sfxzJp1egrOJCo07NXLW6GPlFyU3ejog8V5sISlx++eXYtm2b3SEaoaGh+PLLLzF06NAmPQBUV1cjKCjI5mvl5eVWN0dNVVFRgZiYGDz33HM2X1+/fj1effVVzJkzB+vWrUNMTAzuueceFBTUfvhfd911Nv/odDps2rQJ3bp1Q/fu3VvUTiJ3UdQM39BqDTUlNJpyi/RiW8KCBwAAcgsO2V3n0Il3oZc06NfzTvj5dLK5jq93FEYOeAmCIMORU8tt3rw1pFpdjG17H8bupOdQUHwMMlGFQP9eEEQZ8ooOY9ehZ7B170Ooqs5v8r6J2gtnX4uNWvpFQU5ODiIjI02/R0ZGmoaZeAKF3B8A4G32TbgxG61Lh0noGDEWYSG1BYQ9LShhM1NCxqBEU5hnSkiSDmpNqdU6XmZBCbnMC0pFAACgsiobAKBQihg5NgJXXX0Z5AoRJ4+VYtNv2SjIMwQj6hbBtGXPkReRnb8HJ8+swa5DzzT5PP7aNQtb9sxBUcmpJm9LRJ6pTRS6vPnmm3HzzTfXu46Pjw8++eSTJu03ISEBP//8M8aNG2f12saNGzFw4MAm7a+u8ePH1zusYvXq1bjpppswffp0AMCiRYuwZcsWrFu3DrNmzQIA/Pzzz3a3T0pKwvr167Fx40aUl5dDq9UiICAA9913X7PaK4otS8c0bt/S/bRF7BvblEpjoctKaHXV0EsaKOS+9fZTZKjh/2VeYZLN9corLiInfx98vTsgpvvN9e4rPCQB3TtdjbTzP+PU2a+QGDO70W2vVhdh+/7/org0BYH+PZEYMxuRoUNN43iz8nYj+dRK5BclY/O/D2LskDcQ4Net0fs3svfeqVYXI6/wMKrVxRAEEcEBvRHg190pBeg8Ff9f2dea+sbZ12Ij4xcF06ZNw9y5c61eN35RsGjRIvTv3x+fffYZ7rnnHmzYsAEhIZ4/W8+E4R/gbOZv6NPN+n4pPGQgwkMGorDkpGlZS4Zv6J2SKWEdlJA5oXZFW2Bv5hTzzBK9pIPGRlDCPGgll3mZglkVldmm5RL06NuvKyZdHYH9u4uQfbEKx/b3QmiHFPSJK8CZjF/RvdPVjWprWUXThlYDME1bW1J2FkEBfZq8PRF5nvZzd9oM8+bNw1133YU777wTkydPhiAI2Lp1Kz799FNs3LgRX375pdOOrVarcfToUcyeXfsQJIoiRo0ahUOHDjVqH/Pnz8f8+fMBAGvXrkVaWlqzAxJyuYjQUMdUNw8O9nXIftoi9k0thUKGsLBAyOXe0OoqoFaXAQC8vQLqfS+GhMTC2ysUhSUnEBAgQqHwsXj9fPYuAECfHlciPDyowXaMHvog0i9sRMq5HzG0/3/g5xvV4DZ6vQ4//zkHxaUpiI4ahsnj34FC7m2xTljYJMT2Ho/Nuxch5ezv+Gf/Y7hhytfw9gpucP+2GN87RSXp2JP0Hs5mbLEq0unrE4mB/e5A317XQ25nCExbxP9X9rWGvnHVtbilXxREREQgO7v2wS07Oxtjxoxpdnsc/UVAoH9X9O/7YAPb1D7MioKs2W2wGGrRwvNQyP2g0ZbBz6ej2TkZghJyuapZ+29NQbmmMNaUEATb52Y++4Yk6aDR2QhKeIWbflYofOClMgQlqjVFFttqdaXw9ZXjppunQqoci81/78KJoweQfk6HwvyXcMv1/eCjCodSGVBvm/19uzT730EURZf/G/4/e/cd3lT5xQH8e292d5tuWgpllNJBy17KEBBxAoqiiLhFQFSciHsibpwM+TlwobgREBVUluxZCi3QvZuO7HV/f6RJk2Y0adOktOfzPD62N3e8923IzT33vOftqu8db6C+cY36xzUKSrgwdOhQ/O9//8Prr7+O559/HhzHYeXKlRg0aBDWrVvXoTNayGQyGAwGREZG2iyXSqUoKCjosOM6o9cb0dDgfNood7Asg/DwQMhkChiNNI7eGvWNPZ3OgJoaOfg8CbTaBkuaKcNIUFMjd7ltZNggFJX/idNn9yA2crjNa7n5m03rhI5tdT8mEvTrNQs5+Z9i76H/ISt1Yatb5BVsREX1MYSHDMCIjBfRUG8A4PhYWSmPQac1oqB0CzZvfxQXDV3hUdq09Xsnv/BXHMp5GwaDCgJBMHrGXYRASRz0BhVq606iSnYY/+5/Fcdzv8fo7OcRGBDv9nE8odbUQK2RwcjpERyYaEkR9zX6d+Wct/omJEQCgcA7wyec8ee12MydBwWZmZk4deoUqqurwePxcOTIEbz44ottOp7fHgSwzccMCBC3uQ18q2+X7T2PWVd8jeKyPRjQ5ypL9oZAYLq5Dg8Pbdf+L4SgnCfYploSPB7PYb+otKGWn7U6GfYcfsZ2e5YPaURz4D0yUgqN1tEQGQPEYlMAJDa6H0ZkXYdxF0/Cg4//jsKCCvy1tQqyqsVI6luHrPRZuHj4UputQ4N7or6xEAAQHBjZ5r9hULDEa/9OPNXV3jveRH3jGvWPYxSUaMWQIUPwxRdfQK1Wo76+HiEhIZBIJK1v2EE4jgPThqrWM2bMaPexvfWl3mjk6AbBCeobW0YjBz4vEGquFiq1qZYKnxfYah9Jw01BicqaQ4iOGGZZLleWQtZwCkEBCQgOTHa7r3snXIOc/M9RVP4nMvrf4zJooFJX49iZ1WAYHgYPfAgMI2z1OFmpD0LWcAYVNftx6uxXSOl9o1vtsnb63Hc4lPMWABapyfOQ0vtGu4KgdY15OHJqJaplh7Ft910YM/hVRISmenwsRwwGDfIKN6Ko7HfUy/OtXmEQGpSM5J7XICl+ql8K09G/K+culL7x97XYnQcFAoEADz30EG680fTv9/7774dI1LaMJH89CKhvVFt+1qgNbgZu7TXPOsK0eR/NghEdPhm1tc0zKhkNpu9BcrkBNazn+++qAUuD0RQoMBg4h/0ulzfPjKHW1Nm9zmPF0Gqabw0aG/TQ6e2HghiMesjqTNdknZbfdCwBLrk0GSeO63D4QB2OHTmLnJNalJV8itTeC22ycBg0/7tQqeXIO3sAx/PWYnjGUoiEYW6fr0Ku8cL7yzNd9b3jDdQ3rnmjf3zxIMBfKCjhwu7du5GVlQWJRAKxWAyxWOyzY4eHh4PH46G6utpmeW1trd2XIkK6MkHTDBxyhSktWthKoUsAiGoqdlkts52tpqRiOwAgIWaCR8E9iUiKqIgsVNUeRLXsKKIinI9hzzn7P+j1CvRLmoWwkH5u7Z/PE2PEoGewbdetyD23Hr0TrrAUF3PHuaLtOJTzDlhWiDHZyxEtHexwvbDgvrhoyOs4dvpD5BVuwK5Dj2PCiA8RKGl9SIorlTUHcfDkCihUpirqpqBPTwBAfeNZ1Mvzcejk68g9ux7DM5+CNCytXcdzhuM4KNXlaJAXwGjUQCQMRVDQIHSRms7dlj+vxa1p+aBgypQpmDJlilf27Y8HARxn/bnItrkN5qFjDMPrkJsTc2CYgaBd+79QgnLuM58L4/C8OM71ZyGPJwKf13yN5TgGDIRgGQGMXHNAw2jUQ6c3Bc14rNhyLB5PhKTkAMT1EOPkUS3O5Fbjv121WHx2EMaOS8fooXejR8w4ywwwAKDXq7Bt950AgJ/+vAqjsl5CfPQYt87WaDTi9LkN0BvUGJA8x61tvKXrvXe8h/rGNeofxygo4cJtt90GHo+H1NRUDB06FEOGDMGQIUMQHt62Md+eEAqFSEtLw65duzBx4kQApg/f3bt345Zbbunw4xPSWfCbZuCQK01BCb4bQwGCAxPBMDwoVGU2yytrTdPzxcdc5HE7EmMvQVXtQRSWbXMalNDrVSgq2waWFWJA8lyP9h8SmIRePS7HueKfcPr8V0jv5179F5W6Gn/uWgaAw7D0pU4DEmYsy0dmygIYjBqcK/4Juw49hgnDPwCf37anzsXlf+G/Yy+A4/SIixqN9H53ISTIdsaf2voc5OR/gvLq3dixbxGyBtyP5MSr2nQ8RwwGDc6V/IqzRd+jUVFo89o/+/mIjBiEfknXIzZyhNeOSXzHn9dis+7yoMC6uGV7Zt8wF7pk27EPV8xTW/J4nSdA1Sk0zTDnLObeWjCexxPbzXDFMAwEgmBotM0zv3GcHvqmqbrNU3cDzYU0hSIW2cOD0COJwcG9dagoV2Dj13tx+NBxLH1gt02AQ2dozoABgN2Hl2LmlB2tnKiJwajBkdyVAODzoAQhxLsoKOHCrl27sH//fhw4cAD//fcfPv30UxiNRiQnJ2PIkCEYOnQorrqq7V+sFQoFCgubv0AXFxcjJycHkZGRiIqKwq233opHHnkEaWlpyMzMxCeffAK1Wo3p06d74/QIuSCYgxCKpqCEgN96pgTD8CAWRkClqYHRqLfMOCFXFANgEBLYy+N29IgZh0M5b6KkYgeyU+8Hy9pXfS+p/Bt6gwqJcZMhFAR7fIzU5LkoKN2MvIJv0afnTJsq6M4cP7MaOr0S/XvNQkLsBLeOwzAMsgYshkJVisqa/Th17jO3gyDWSip2YO/R5wAAgwc+gt4JlztcLyI0FaOzX8a54p9x5NQ7OJTzuumJWvylHh+zpbqGM/jv2AtoVJwHAIQG90VYcD8I+IHQaGWokh1EZc0BVNYcQEzkCAxJe9Stfm0LubIEpZX/olFRAK2uHkJBCIICEhEXPQYhgUkdcszuoKOvxe7oLg8KbIMSbc8wMhe6bE9gw5WU3nMgDc9EgDim9ZW7kYiwgSir2oXwkAFub5MUPxWyhlw0yM+Bz4otDwKstRwKCAC6pqm6+bzmgLbtlKN6REWLMPnyaOTlynHyaCPyTyvw1luvIUBagYReHPh8EdTqart9u0ujrWvztoSQzqVLBiU4jsN7772H66+/HpGRkZafo6KiWt/YSnh4OCZPnozJkycDME0XtmfPHqxbtw7ffPMNNmzY0K4vQsePH8fcuc1PU1944QUAwMKFC7Fo0SJMmzYNtbW1eOedd1BVVYXU1FSsWbPmgph6jBBvMc9aIVeWN/3uXoEgiTgKKk0VNFoZJOIoGIxaKNWVkIijHH7Bao1QEIzYyBEoq9qJqtrDiIkcZrdOQclvAExf8tpCIo5Cn8RrcKbgGxSUbMKA5Jtdri+rP4XzJb9BLArHwD7zPDoWy/IxJO1RbP33Zpw+/zWS4qchODDB7e0VqjLsP7EcAIcRmU8hIXaiy/UZhkFy4lUIEEdj1+GlOHBiOcSiCMRI7fvRXWVVu7Dn8FMwcjpES4chvd9dCLeaHs40flOC46e24kju+6io3ovte+djdPYrCA1ObvNxW6pvPIujue9aMnFaOn7mI0jD0pHRfz6kYeleO64zBoMGjcoigOMg4AchQBLbplpEnUVHX4vN6EEBYD3UqT1BCfMT844qchsTOczhZ3B3NyTtMRSWbUWv+Mscvs4ytl/7oyOGYGj64/hrr2lWFh5PZJP5YMZzEITX6U3Fp23Xt09JZ1kG/VODkdQ7ACeONkCtVuPknnLkHOcwZHg8pDFajz6frGeVkitLmo/MGTosCEYI6XhdMihhNBrx3nvvYcKECYiIiLD87GlQAjB9STl06JDlKc3Ro0chEokwfvx4DBkypF3tHDFiBHJzc12uM2fOHMyZQylppPsyZ0rIPciUAACxyJRSrdJUQyKOahrKYURQgPs33i1FRQxGWdVOyBpO2X0hVqjKUCU7BIk4GtERrodQuNKrx+U4U/ANisr/aDUocTxvDQBgeNYCCARBHo9RDBBHY0DyzTiRtxpHc1dizODlbm1nNOqx79iL0OsV6N/rxlYDEtZio0ZiyMBHsP/Ey9h//GVMGf2pXbqwO6pqD2PPkadh5HTI6H8v+iVd5/AmimV56BFzEaKlw3HgxKsoKvsdO/Ytwvjh7yEkqJfHx7XGcRxOn/8SJ/LWguP0CBDHIin+UoSHpkIsDIdG14DauhMorvgLNXXHsf2/Bejb8zpk9L/Hkr3jLQajFkVlv+Ns0c+oazxtMyWjSBiB2Mjh6Jc0C6HBfbx6XF/pyGuxGT0o8N7wjSFpj+LgydeQNeA+bzSLuEkkDEW/pOucvh4W0h89osehpNI0PMI8/MX8ecTjSSARSZGZMh/xsdYBXvsCxVpdAwDbTAnrzx27tol5GDw8HGMHLcYrb25BRZkC/2yvRGi4DhnZoYiKdv2wQKWuxtniH9GrxzTLMoVVUMJo1IPHo6AEIReqLhmUAExfFh397IkZM2YgNzcXUqkUQ4cOxdSpU/HEE08gJSXlgn7qRMiFxFJTQmEOSribKdEUlFBXAaGpTUM30K6ghPkpvKzhtN1rpZX/AgB6xk1p1xPGkKBeCA3qg3p5Puobzzp9oq9UV6KyZj8k4igMSL4aMlnbKvX36zUL50t+RXn1HtQ15iEsuG+r2xSUbkZN3TGEhaQgre9tHh8zqcdUVNYeQGHZVhw78xEGD1zi0fYKVTl2HV4Ko1GLQQMWo2/P1mcX4rFCDEt/AmJhOM4UfIPdh5/AhBEftmmYDWC6rhw7/T7OFHwDlhUio/8C9O050+5GLjZyOFL7zEVh6e84evp95BVuQKOiACMHPevwiWRbVNUewf7jL0KpNv0bEQsjEBrcFywrgFpTg7rGMygo3YyC0s1IjJuM7AH3QyRq23n7g6+uxfSgwHtBiZCgXhg//F1vNIl4EcOwGJn1HL7bOg6Aqcgy0JxBwW/KIkzpPRtSaZBlZguWsc+UME/Tbf05ZjQ6D0qYxcTE4uJJUagoDcfJoypUVlZg+9YqxMaLkZEdirBwAYxGnd0Qyd2Hl0HWkIO6hjOWZfKm4sqAqY4JhSQIuXBRSXIXcnNzwefzkZWVhezsbAwePJgCEoT4mHn2DbVG1vS7e0/VJSJTZpRKYxqvKleagxI92twW0w07gzoHQQlZg+lmxjzzR3skxl0CACgu/9PpOkVl2wBw6Bk3GSzb9q9iPFaIPk039eeKfmp1faNRj9xzXwAAslMfcFhbwx2ZKQsgFITiXPFPqKk77vZ2HMfhUM4bTTOc3OBWQMKMYRhk9J+PuKixkCuLse/Yi20OWp/IW40zBd9AKAjFhOHvo1/SLKc3cQzDQ1KPqZgw4kMEB/ZCRc1/TcVBW/8C35rcc1/g7/33Q6muQGzkKIwf/h6mjduIsUNWYHT2S5g48iNcOeEXZKYsglgUiaKy37Ftzx2oa8hr97F9ha7FvsN4afgGuTCYMyUYS6aE48KhjjK7dDpTwMLdTAlrHKdHYlIorp45CMNHRyAwkI/yUjV+/7UCe/+tRVl5gd02soYcALApZqxSV9rs0xG9QY1q2RFwnNGtthFC/IOuOC7s378fH3zwAfr27YutW7di9uzZGD58OO6++26sXr0ahw8f9ncTCenyWj5NFgjczJRoGr6hbgpKmNM825MpwecHIDgwEUp1OTTaepvX6pqCEu5OA+pKQoxpOERR+R8Ob5o5jkNB6RYA8EqxyKT4S8GyQhSWbYVOr3S5bknFDihUJYiOGIKI0NQ2H1MkDENG/7sBAKfOfu72dkXl21BRvRdBAYltytJgGBbDMp5AUEAiyqt3o6xqp8f7KK/+D7nn1kPAD8ZFQ99w+28eFBCP8cPfRVBAIsqqduLY6Y88Pra10+e/xvEzH4HHE2Fo+uMYM/gVSMPS7W7WBfwA9Eu6FpNH/w89osdBqSrDjn0PoLYuv13H9xW6FvuO9XuHghJdn2X4RlMmBN9pUKJ5+IY5+Ko115SwKozpTlDiSO674Dg9WEYAoTAQSckBmHp1DLKHhUEs5qHwvBIrV76FDRu+QmVlpd32zgLhzrI0/jv6PHbsuw9F5X+02jZrGm09Kmr2e7QNIaTt6IrjgkQiwejRo3Hffffhs88+w759+/D6669DqVTi9ddfx+zZs/3dREK6PAHPNgjh7vANsWX4hulLjTcyJQAgLNg0hKOusTlbQq9XolFRhABxDETCsHbtHwACA+IQEToQClWpZVYJa3WNZ9CoOI+w4H4IDe5tvwMPCQUhSIiZAL1BhaLybU7X4zgOuefWAwBSvDD9Ws+4SyERRaG8ejcaFUWtrm806nDs9AcAgMEDH25TwVLAdJM+qGms+9Hc92AwaNzeVqtrwIETrwAAhqQ94tZwF2tCQTBGZ78CoSAEZwq+RkXNPo+2Nyss+x3HTr8PHivC2MGvulVcVSgIxohBz6Jvz+ug1dXjlz/mQ62pbXU7f6Nrse9YZ/tQ0cCuz1yQ1Jxtx2Mdf6ZaF7o0Z0boLMM3mjMljG4EJfIKNjQdk2/ZF8sy6JsShMuuiUF6VggEQgb/7NyIt95+BV99tR7l5c3Tezsqugk4z5QoqzINrayqPdhq26zt2Hcf/j2wBOVVezzajhDSNl22poS31NbWYv/+/Zb/cnNzYTQa0a9fP68V1yKEOGeXKeHp8A21efhGCQAGgZL4drUnLKQ/isq3oa7hjGXmiLrGPAAcwqxmfmgvaVgmautPQtaQi5Ag28BDScV2AEDP+CleO15y4lUoLNuCgpLfkJzgeCYDWcMp1MvzER4yAFHh2e0+Jsvy0afndBw/swp5hd8iO/UBl+sXV2yHWlODuKgxiIoY1K5jx0YOR2zkKJRX70Ze4XdI6X2jW9sdO/0h1JoaJMVPRY+Yi9t07ODABAwe+BD2HHkKh3PexqTRH1tuDtyhVFfi0Mk3ALAYmfUCIsMz3d6WYRhkpiwAx+mQX/QjFMpSCEPD23AWvkXXYl+hTInuxJx1YK4p4Xz4RnMggMcTQ6eXw2DUAGBtAhmeDEljGYHN0A8A4PNZpKaHIFCixKEDeSg6V4ETJ4Q4ceIYlMYaDEgPRkSok0wJJ0GJ5nPwLIhtfiBQU38CsVEjPdqWEOI5Ckq4cOmll6KwsBA8Hg+pqakYMWIEFixYgCFDhiAsLMzfzSOkW2h7UKJ59g3zdKAB4ug2P103Mxe7tK4rYS586c2gRHjTkABZw2m7p+C19aaxtdERQ712vIjQNIhFUsgacqHTKxxmpJRX7QYAJMRO8Np4/t4JVyIn/1MUlGxGWt87XBaezC/cCADo2/Narxw7M2UByqv3IK/wO/RLmtXqjBhKdSUKSjdDwA9CZsrCdh07PvpixEiHo6LmP5w5/w0GuJl5wnEcDp18HXqDEv17zUZs5HCPj80wDAanPYiLRz4AeSPj8awtvkbXYt+xKXRJZQO7PHMwwhx0cD58wzpTonkdPl9icy1oGZTg8yQYkvYI5MoSnGiaLcp6nwHiaIfHU6jy0H9gMPqmMEgMvwp//70dZ46rUFKkQl7Pk0hIViGuh9jm2EajAbX1OZCIoiyFrq05ywJpjcGgbdN2hBDPUFDChcsvvxzDhg1DVlYWJBJJ6xsQQrzO+uaYx4rcnkqRz5dAwA+CSlMNhbIUgBGB7Ry6AQBhwc3BAjNzgCI82HtBiTAHwQ/AdFNa13AaLCtEcGBPrx2PYRhEhWehqPwP1MiOOXwyVFZtSmONjfTeUyOhIASJcZfgfMmvKKva5bRGRm3dSdTWn0RIYG9ERbQ/SwMAggMTESMdhoqa/1BevRfx0WNcrn/m/NfgOAP69JzR5lk7zBiGwaABi7Ft1zzknvscfXpOd2toUknFDpRX70FQQCIG9rm1XW0QCYMhh7xd+/AFuhb7ju3sG5Qp0dWZgw3moTrOMiWsM7ms1xHwbB8atAxKsKzQMmV0QelmyzBK02t8BAUmumxfgCQcI0eOxuDB2Xhr1Xc4nSNHaWkdCgrlCA7ho39qMJKSA8DjMZAri7Hr0KNgWSGuuWQr6lpkGbIsH3kF36Ky9gBGZb3g9vAkg1EDvV6J3YeXISF2Avr0dJxJSAhpny55xWEYBvHx8RAKhTY/e+q+++7DqFGj6EsQIX5knd7pbpFLM7EoEgaDynJj354il81tCEJgQA8oVCXQ6RUAmgMH3syUCApIAJ8nQV1jnk3VcIWqDDq9HGHBfd0O0LgrMiILAFAlO2z3mkpTg7qGXARK4hEcmOTV48ZFmYIBFdX/OV3nbLFpZpA+STO8OutC74QrAQDnin92uZ5GW4dzxT+Dx4rQt+dMrxw7ODABiXGToDeoUFi6tdX1OY7D6fOmmU+yBixud9bPhYKuxb5jPfsGSzUlujzL8I2m/zvLJmAd1JQAbOtJAEBavzudbse2GKLGsoJWA+vCphpNemMj+vQPwqVXxmDE2CBERovQ2KDHgb0y/LqxDCePNuDP3Q8BAIxGLY6ceht/7r0beU3ZdYApuHAkdyXKqnahXn7O5XGtGQxq5BV+h8raAzh48jW3tyOEeKZLZkqwLIs//2yeSs/6Z08VFRVhzZo1OHjwIOrq6hAWFoYhQ4bg9ttvR2Ki6wgvIaT9rJ8euzt0w0wijkSj4jwqakw3u+0tcmnZr1AKhbIEWl0DGLBoUBRAIoqCWBThlf0DpqeUocF9UVN3DHJlseXLW0cEQMzMdSKqZUfsXjMX+4qNGuX1qRijI7LBMHxU1OwDxxnsnmBxHNf0N2SR2DQzibfERY2GWBiB8uq9liE+jpwv+Q0GowZ9es70SjFTsz49p6Og9DfkF32P5MRrXPZttewoZA25CA3ui2ip94buXAjoWuwblCnRvViGb7RWU4Jpvl2weVDAt80Y6xk3GQJ+EHYdesxuO0d1c4IDXP/bNQfGzEU1WZZBXAIfcQlRqKnW4vTJRpQUqnDiaANyjjcioacEffoHguM2gmEYVNYesOxLr1dZfjYadS6Pa81g1KC8eq/b67dG1nAaBoMaKnUVEmIn0tTGhDTpkkEJbzl+/Djmzp0LkUiE8ePHIzIyEtXV1di6dSt+/vlnfPrpp0hLS/N3Mwnp0qxrSngclGiqK1FYZpoKzFs3crymp0MGgxqNuiIARoR6OAuDO8JDUlBTdwx1DaebgxJNs36EeXGoiFlQQIJVXQklBFZ9X169CwAQFznK68fl8wMQGZaBKtkhyBpO20012qgogFpTg4jQgRAIPHsPtIZl+UjqcRlyz61HUdnvSOl9k8P1zFOHujPLhSfCQ1IQEToQtfUnUSU7hOiIwU7XPVPwDQCgX9J13eqLLF2LfYeCEt2LOZPBHGg1XzPt13M8fMPRMDbrZbYFMm2zMIxGfauf59qmYITBaFvXQSQMhzRShlEXSyFv1CMvV47z+UoUnjf9FxomQN+UIIQGNQcidE1TmFrvtyWjUY9q2RHLlNuAqaaErGnK79CgPi7b2xqNth5/7mnOJhEKQywFswnp7igo4cLy5csxcOBArF692iZtVKVS4a677sLy5cvx6aef+rGFhHR9tk9lPBu+YZ6BAzAiRjrc4+kbnbfJ9KVMb1BDbzB96REJQ72yb2thlmKXZ5AYN6np56b6FU2veRPDMIgMH4Ti8j9RU3cMsZEjLK9Vy46CZYWIbOesF87ERA5HlewQKqr/swtKVNUeAgCv1ZJoKT5qLHLPrUdl7SGHQQmNth41dScgFkVaaop4U3LiNaitP4lzxT87DUoolGUoq9oJsUiKxNhLvN6Gzoyuxb5jG5Sgr4hdnXkIYN+k6yANy3A6k4/t8I3m4ILAQVDCOiPCeohhy+Eb5voTl4/7ARptLbbtvs1uX9qmQELLaZsDxLHQaGUAgKBgPrKGhiE9KwSF51XIz5WjTqbDgb0ynDzyL3okAcl9AxEWUm7ZXqdrgF6vQknFDsREDrdkOZ7M/9gy7bWZwaiBsSko4iyTxF2NigKb3+XKEgpKENKEwuAuHDt2DHfccYfdOFaJRILbbrsNR48e9VPLCOk+GIa1BCY8fUouEUdZfnb2BLwtzO3R61WWlFAez/vj3c3ZEHVNT2ksRS4Zgd00od7iaAiHVtcAra4BQQE9PJq60hPmAEhFzT6718wpuNERHTP1Y1hIf/B4EtTUHYfRaD+tXHn1HgBGxHXA0BUA6BEzDiwjQGXNfpv6IdbKqncB4JAUP9XmBqE7oGuxL1GmRHfCMs2zbkRFZDn9m/NsakM0/yx0kL1oHXww79+0D9trh3kKT7EoHBInw+b0egU4zmCXKSFoMSsXYJpONLlvICZNi8bEqdFISg6ARqtAXq4cW3+twPcb9iL/tBxarREqTTV+/Xsm9p94GblNdXoAoKTiH7v9Gq0CIlwr0462RqWusvmdodswQizoX4MLIpEIdXV1Dl+rr6+HSNQ9iowR4m/8pgwJjzMlxDEAgIjQgYgM994TfnMAQm9QwWBQm9rYAUGJ4MCeYFkh6uVnAQAqTRW0unqEBCd32I1paLApPdW6SrpcWQLAezU5HAkJSoZYGIGauhPQN/UpYHqaVlV7CCwrhDQsvUOOzbJ8SMPSTUVRG8/YvW6eCjUuanSHHJ/PE0MalgatrgF1jXkO16moNgVrYqQjHL7eldG12Hesg24UlOj6ggLdK/5sHWiwzqBxnCnR/O/RNlPC9pplHQB2FezW6uSWTAXr9vCdfB9gGAbSSCGGj47AFTNikTk4FMEhfFRXyXHwvzr8/G0Z1q5bjpKiGnAcB7Wmxmpr++mRDcbmoISxxewinlKoylo0tl27I6RLoSuOC+PHj8drr72G/fv32yzfv38/Xn/9dUyYMMFPLSOkezE/FfG0pkSMdCgG9rkVQ9OXevUJt3n4hsFq+Iaz+d3bg2X5EAqCodObpm2sazDdMHtrGIoj5uwSlbrasswcoAiUtH/2EmcYhkFIcB8AxqYpXE3qGs5Ap5dDGpbeobNNRDUFrVoW+TQadSiv+Q8sK0SUi3oP7T6+1JQFUllzwO41g0GDqtpD4PMCIA3rfrUT6FrsH/QUt+uaetFXGJX1IsJDUtxa32YWDatCxI5qSrA86+Ebzdu1LC5pnXXgKsiu0zfaDd/gsUKHWRoticQ8pAwMxqVXxmDi1Ggk9w0EywIF5xrw9x/V2PRDOf7bk4uqqiqn+9DbZEq0PSjBcRwqWhTMZCgqQYhFlxgwuGvXLowe3foTLJ1Oh0cffRRvvPGGW/t97LHHcO+992LOnDmQSqWQSqWora1FTU0NsrOz8eijj7a36YQQN5iLXXo6JSjL8pHaZ57322OpKaFqDkrwO2a6Qh4rAscZYDTqodU1AHBejMwbxMIIAAzUmuaghMIHmRIAECSJRyVMT5NCg5MBANV1ptR8VwUgvcGcSVNVexj9e91gWS5ryIVer0Bs5MgOCTyZRUcMxkmsRVXtQaT0nm3zWnXdMRiMasRHj/X6NLAXAroW+wfD0pSgXVWgJA6Bkji317eeRcMmU4LfSk0Jq3XNU2ibWWdKuMrK0eoa7YZvsKyg6SFFhc1yAT/IEsS3Zs6ekEYKMWhoKIoLVDh/VomqCg0O7juLyqLXERsbDy1bhchYPQICrdvdXBSzPUGJ8yW/WK5nhBB7XeLbzfz58/HOO+9g3LhxTtdRKpVYsGAB9u2zH6/cklqtxo4dO1BSUoLZs2djzpw5OH/+PKqqqhAVFYVBgwZh7Nix3jwFQogLAl7bMiU6SvPwDetMiQ4KSjRlBxiMGstQkfYW23KFZfkQCcOh0tSA44xgGNYnwzcAIDAgHgCgUJVYlilUpuJkwYFJHXrs8NABYFkhauqO2UxLai5M1hFTsNocP2QA+LwAVMuOwmjU2Tw5rKg2TWnb3YZu0LXYvxhQUIKY2GRKsK4zJayvhdbb6VrMeGF0sz5Dg/wc9HqlzTIeT+iwxlSfxOk4de4zu+UMw7MEFPh8Fr36BKJXn0DIG/WoqQgDXx+N8vJSnC8ph04vR1S0CIm9JEjoKQHLNFi1uTkoceTUexDwgzEg+WaX7Vepq1FQ+hsKy7Y5eJWykQgx6xJBiUmTJmHhwoV48803MWnSJLvXa2trceeddyI/Px/vvvuuy30VFRVh3rx5KClp/lIcFBSEN998ExdddJHX204IaV1ba0p0FPOXLoOhudBlhwUlmsbnGgway9Oijio2aSYRRUKjrYVGWw+xKNwSlAjs6KCExBSUkFsN3zAXBrMuWtoReKwQ0tCBqJIdRr38nGWITKPCNHQlKKDjhq4ApmBQVEQWyqp2oabuJKKsZjmxBCUiu0+VdroW+x/VlCDNrGuNNAclHGVK2NaRsM44sM1gcDfr4MCJ5fbHYAQOH1I4yliUiKLAwdiidoRJUDAfMdEhuHTsA6ioKMe6L/bhzBkVqio1qKrU4NC+OsTEitGjpwTxCWIEiA1NbTfi9PmvAcBpUEKvV4HHE2PHvvssgfaQoN7QG9RQNtWWMI8q5TgOSnUFAiWxbvQIIV1Tl7jivPbaa7jyyitx//33Y9OmTTavFRcXY/bs2SguLsa6deswfvx4l/tasWIFWJbF+vXrceTIEfz6669ITU3FM88803EnQAhxqbmmRGcJStgP3+iI2TdM+/VtpgQASMSm4SFqjSkgoFCWgGUECOjgwIA5E8M8XASwCkqIOvbYABDaNM2qXFFkWSZXmn4ODkjs8OOba1ZU1zXXtdDrVWhQnEOAh+nWFzq6Fvuf9c0n6d6sSzJZD8kQtjIjlvVsQi1rSjia6chdLCtEgIMbeD7PflaOwIB4Jw8NGPBYEXR6BRiGQWxsHLKHxWDaNbEYPyUKffoHQiBkUV6mxoG9MvzyXRm2bjqHnTv/RVVVmYP9NauqPYwf/5yKc8U/2WT+hYek2MxkYs68yMlfh83/XI+C0s1u9gAhXU+XCEowDIOXXnoJ1113HR5++GH88MMPAIBTp05h9uzZ0Gg0WL9+PbKzW5/j/tChQ7j//vsxZMgQiEQi9OnTB8899xxKS0tRWVnZwWdCCHEkNnIEQoOTEBGa6u+mAAB4/ObhGwYf1JQAzJkSpoJbHVnwEQDETTUrVJpq6HRyaHR1CAyI6/CbFPNNt0JllSmhqQLD8CAWhXfosYHmwIfK6oma3Jwp4WaV+vYICewFADaFPs3V2n0RFOlM6Frsf5QpQRxhrLIfAppmuHJGZzXsYnjmMwgOTLJkOLTnOsbjCTGwzzzER1+EGOlwy3JHwYdAieOgBJ8nhoAfCJ1eAY4zz7rBgWEYREWLMHh4OK6cGYdxk6LQNyUIYgkPleUKbNr0C557/nls21SJnOMNqKgot9re5NjpDwEAh3Jsa9hJxNE2M5mYAzM5Zz8FAJwr/qVp6KRpfy1radTWnUR+4ffudBEhF5wuMXzD7Omnn4ZIJMLSpUuRm5uLDRs2IDo6Gh9//DFiY91LiaqqqkJiou2Xv549e4LjOFRXVyM62vFcyoSQjtMzfhKyM65BTY0cRqP9lF2+5nj2DV9kSjQFJdiODUqYC2mq1NWQNwUIAiUdO3QDMBU0FQkjoFCVg+MMlunaAsTRPnlqKxFJAcBS5JPjDJCrSiAUhEIoCOnw4wdITF/wlerm4m3moER3ypIA6FrcGVBQgjhiPSuLo7oOgClz0DS8sbm4ZVTEIEwZ8ykaFcU4ePJVZPa/t81tYBkBhIIQjMp6Abnn1qOixjTEzdHDgaCAHjbZd2Z8ngR8fiDU2loYjVqUV++1CYgDAMsyiI4VITpWhKyhoZA3iNEjbBxyTu1DTp4Wslot3pW9hdDQMPTvn4L+/QcgObmPJcOupQBxtM3wy5bZIzV1x7Bpxwxk9J8PjbYep89/gcmjP0FIUC8AwF//zQcAREVkISSot/sddgFTaWpQUPIb+vac2WEPf0jn0KWCEoCpSrdIJMKqVaswaNAgfPTRRwgNDfV3swghXQjfUujS1zUlzJkSvhq+Ue2zmTfMAiVx0GhroVRXNU2XxnV4PQkz6wwRAFCqK2E0ahHcwUUuzcxPHZUq66BEU1CoqQgoIb5CwzeII9oWBSsdEfADYDCo7GbcAIDgwASMG/aO3fKJI1ehqvYwjp1+HwAgFIRCq6t3uH/rAprW71OHwzck8ZbsRtt9CC1DQ3V6JfYcedLlOTEMg3ApH5dOugyTp2Yi6IvfUFKkQmRgPEpLy7Bv317s27cXPB4PderziOshRlwPMQKDmm+1TJkSzqdJNTuZtw4Go2m4ZmHZ70jvd6fN67L6XFTWHkSfxOmdJnhoMGjAst7/bnL89EcoLNuCmrpjGDPYvr4I6Tq6RFBi5MiRYBjbuX45jkN+fj6mTp1qt/7u3btd7u+OO+4Aj2d/MZ43b57d8tb2RQjpesxBAb1e5btMCYNVTYkOzpQQW4YxVFtSTTu6yKVZUEA8autPQKEsBa9pvntf1JMAmoMSarUpKCH3UZFLMx5PZJr5RF1pmfmkOVOi+wUl6FrsXywFJYgDKk3rw6cE/ECoNTUOgxLOhIekQCgIdSsoYb42ALZTlFovN2ERFpKC0sp/7PbBwQh+01CSksodbrWRM5pqQBgMaoSGCxAaLkBG/2jESeciLy8fubmncPr0CZSXqlFeqsahfUBwCB8xcWJEx4rAGxJq016jUecwyGPkdFbr2Nfe2H/iZQCAkB+MnvFT3Gq7zf5bzPDUXueKf8XBk69idPaLkEov89p+AUBvMA0BKq/eA47j7O73SNfRJYISN910k9fepAsXLvTKfgghXVfz7BtWwzc6qqaE1fANfdPwDX4H15RoHr5RBcA0XMZ3mRJNxS5VJZbCpr7KlJCIIgA015RobErB9VVQAjBlS8i0Mqg1tZCIIy31Jbrb8A26FvtfZ3kCS/zPepaN5uC486fifJ7ps7vljButsb5RFglDIFc6WY+xmqLUKnhmfcOfnHgNUpPnQiyS2lyf+fxA6PUKcJzBkilxOOdNt9pnnjHEulbGsdMfQNmzAtnZi5GdPQSNijKs3/gnykrUKCtRo6Feh8YGOfJy5ag8vxZa7jgCQ+sREyuG0bgOOWf/5/Q4pp/1Tf+3H7paULYFiXGTPboHqqo9hL/334/s1AeRnHi129u5cuSUKfMlJ/9TZA70blBCIm4eqqfW1lqGWbaXwaDBoZw3kRR/KaIiWq85CABVtUdQUbMXaX3voM/HDtAlghKLFi3y2r7oixAhpDWOZt/ouOEb5voVvit0aR6+odJUQ6EqBwCfjV81D1OQK0shEoY1tcc3QQk+P8A0xrhp+IbcEpTwXZHJAEkMZA2noFSXm4IS3bSmBF2LOwH60k2axEePQb+kGxAfPRpCQSg02noMGuD8u3d46ADIGnIQGtTHo+NYBxiEAudDr62LRdpOQSqw+VncdANrPTuWgBdgCkoYDR4PUTLPlmEetmmWX7gRWQMWAwA4ToOoGBGiYkTIHBwKldIATpsOVWMsZNUCnMqXo7CwETnHGsHnM4iMFlnWD48QgGWZFsc0BSXM3zWsVdbsR2HZFiTF22eFO5OT/wkAUxFOR0EJnV4BpaoCocHJDrdXaWqg1dZB1nAaSfFTwTCMJYjSEUO+rIe4aDTuBSU4jkN94xkEByY5/b5UUrEDBaW/oaD0N8yc4l6mzN/77wMAhAX3RULsRLe2Ie7rEkEJQgjxJR7PevYNNRiG79VUSNtjmTMl1FaFLju2poSAHwyWFaJRUQCOMyA0uC8CxL4pLGiZFlRVYklhlYh8V9RQIopEo6IAOr3SMnwjONCHQQmruhIRoWlQqEohFIQ4LShHSEdhQMM3iAnD8JCZMt/y+4QR77tcP73fXRAJQtGrxzSPjmN9HXVVXNjZ8A3roAZrU2vCOlMiANCYAgxJ8Zeipu64JRDdOiM4zgidzj6Fw2jUg2X5dsEDSQAPQ4dPR1L8peA4Dj/9XoScU/tQUaZGVYXGMtTDdF4MpJHCpkCFEBGRQsvwjZZDWcJDUiBryEW17IhHQQld03AI68AOAMgaciFXFOPU2c/QoDhnU2DT+hy37rzZUsA0ODAR0rB0S+CkY4ISzTOQaLR1bm1TUbMPOw8+jBjpcIwdssLhOtazyHhq79FnUS8/h7S+t7u1fqOiEApVOeKjR7T5mN0BBSUIIcRDfEudBzX0elWHZUkAsFTqNhi0zUEJu3Gz3sUwDCSiKMv86nFRozv0eNbMtRMa5YWWZb7KlABMdSUaFQVQa2ogV5qCEr6qpwFYBSXUFZaq8IHdpMo66Vxo7DZpKwE/AAP73urxdqxVgEEkdJEpwVgXumzO6LG+0bQOVlhfo82BD44zIC5qNCaNGohftrs/jIHjDNDp1XbL9QYlhGwI9Hr7gIV5GlSGYRAeEYB+A4LQb0AQjEYOtdVaVFdqUVWpQU2VFpUVGlRWaIBjAMMAfXrvQnXxbwiN4KBSGiAJMN34B4hjIWvIhdFosDueK+aAgtGoRV1jHkICe8HI6fHnnrts1muQn7ULSuj0cpsZVRrk5yENS4d5mCfr4Y1+XWMeTp/7EtkDH7QM12zJelpUtbbW5f7OFGxAcEAiautPAoBlVhZHrN9rHOd51syps5+6HZTYuvNmAMAV478DQA8YnKGgBCGEeIhheOCxIugNSugNqg69aTYX1TQYNZZq3B09+wZgmh7THJSIjx7b4cczEwnDERTQEw2Kc9DqG0xt8WFQwpwaKlcWQ6Eqh0QcbRmu4wsBEtP01UpVuVU9ie5X5JIQ0v1Y39S6Hr5hlZloVWvBttaEVVDCqqaEeUpT85ADT6+nRs5gU1PCTKdXQCgIcTjMwhyUMB2/Gcuahm9ERoswAMEwGjk01OlQValFdaUGVRUaVFTU4d9/d0ChqkBpZRkkATxII4UYOKAKWmgQK9XaHU+jrbOZXcS2nc1t/2P37QgO7Am5gylTrYM6Zi3PzRy4t5yP1Y29waCBQl2OkMAku/1YHx8wXeMz+t/jcB2b4Rtamc1r5oLQptfqcDT3XQBAZkrrw/rNw2EBQKmqRGCA7RBJjjNAoapAkBdnvnI306O7oqAEIYS0AY8nhlbXAIDr0JvW5ilB1TAYtDbLOpK4qa6ERBSFsGDfTIkJmJ4kJcZdgpz8dVBragCwEAsjfHZ88wwcpZX/AjAiPCTFZ8cGbDMlaDpQ4l+UKUF8y/pptbMn54BttiAHo+Vn2/oSjjMlzMcw14fw9HrKcQa7mhIALBkSzZkSLNDUNqHV8Dv7cpXNWJZBWIQQYRFC9BsQBI7jECwaBmnQDBw5vhmKg7vRUKdDcaEKctl51DVW4eDOHTiydyUSEnqgRvEz+vcZjtLaLyEShuCqib84aKftjCiNikK7dWzPw3qZqul8TDOjnD7/pc3QEeu/36GcN1BQuhnDMpYhIWaCyywKZ1Ojtnzt2OkPEBLUG7GRI6BQlWPzP7OR3u8OpPS+yWY9V+8dM3PmKWAKrrQMSuw/vhyFZVswJns5KmsPobJ2v8v9cRwHo1HrsuYXxxmdvkYoKEEIIW3C50ksYzw7dPhG05cvg1ELg1ENhuF5nCLZFuZpOOOiRvs8jTsx1hSUMLVD6pPzNTNnSpinkJOGZfjs2IB1pkQFlN20yCXpHBgKShA/YllB082sEIVlW2xfY6yCEjaZEtbDN3gOl8dIh0LWkIP4qDFN67l+nwv4QTaziHBGZ5kSpnXMNRvCgvugrvEMANOMH23BMAyCQlgMHTwcYVGFCIuPgU5nhKxGh0DBIBw+VgStiofS0hKcO38MReV/Ywv+BssyCA2rgrHhO8TF9UBcXBxiY+MgFAptMgRc0TqYOcWcKREW3BeVtQcAAMfPrLZqb3OfF5RuBgDsO/YCautOICv1fgCmYEB+0fdIjL3Esi6fH4CSyn8gq89BWt87bf4mhhYBi5N5axEbOQIFJZsAGHH8zCqk9L7JZpiH9VS0pZX/Iiykv11dLPMsMoB9vQ4AlvdcSeXfOF/yq93rLe0+/ATKqnbiygm/QCgIdriOq+ALoaAEIYS0iU3hrA4NSljNvmHQ+GToBmAaslFevddrU4Z5Ijgw0VLEy5dDN4DmTAnzlxRpWJpPjy/gB4HPC4BSXQ550/CNAApKEH+gmATxI5YVYMSgZwDAPijBWo//bz1TAlY3uQP6zDU9bY8a6VY7xg9/D2eLf0JF9T7IlYUwcnqHNSV0LTIlQq2CEu48uW9uKg9hwf0ha8hp2p8CRqMe+UU/mvYlYBEdK0JmymAESndDGpaK6urTkNUaEBARDFmtFnUyHWS1Whw4sA/APvOeERkZiZKaWoSGCRAazkdIqAABgTyHgRmdrtFumTkoYQ6em867OXhhHRhgGL5lOtP8ou8tQYlT5z7HqbOfIr9wo82x9hxeBgCIlg4FAx6iIgYBsC10acJCq2u0CVZU1R6xzIwBwBLQB0zBggBxLC67+GubvVi3VaWpxvEzq9C353UQCAKhUrde+LRlhk1Z1U4AQH1jntMpRvUG+/cNaUZBCUIIaQPr4ACvQwtdmi58ppk+NBA4icB7W2R4JqaM+cQnx3IkIfYSU1BC5NughHk6VMBUnTwsxHdDVwDTk7EASQwa5OcsT6KopsSF4+zZs1i6dCnkcjmEQiGWLl2KoUOH+rtZbdKyOj8hvmSd3TA840motTJLzQBzXQjAvUwJ66wfHitEYlzzU/rWhAT1QtaA+7D9vwWQK83DN5xnSphv3EOD+wEwZQtYByWcxfqEglAYjTr0iLkYyqapuAFT5oVCVQq50naYhXmfdQ2nwfDViIgGIqJNdTg4zlQUMyP5KpSVlaK2RonS0hJUV1ehsMC27Xw+g5BQAUJC+QgNEyAkTIDQMAE0uga7NlpPgT5++PvY/t+9NsMVZA25+HbTjcjovxCBknibNv+9bzFiIkegvjEPgGmIopnGKlPhn/0PAADGD38f0rA0u+wCWUMO/th9B+KjL7Is23nwYZt1FFZBCdOxylFbdxJ7jjyFoelLES0dbDN849jpD0zbKUuh1Teissb1UA3A+ecjw7AordwJlhUgNnK4zWuO6o2QZhSUIISQNrAunGX9s7c115RQwcjpXI5X7Ep69ZiGmrrj6J14pU+Pa86UAExTrvH8cGMWII5Fg/wc1JpqxEaOouEbFxCRSISXXnoJycnJyM/Px7333ostW7a0vmEnMirrJTQqCixDmQjxB+tilolxkwDAEpSwznwwF6wEbGffsA5QsF64blrXonA0fKO5pkRTNoHVcAHrGUKc1ZSIixqN7NQHwLIC7Dz4qNV+VQ6fsAv4pgcU5gLYtm1lEBDIR37F4wAL3HTTDgBAQ0MVPtv4Fxrqdaiv06OhXoeGOh1qa7SorbHNSNgd/isyB/IRGRkFqTQSUmkk1Poi6HRG8HkSiIThAACttjmgoNM1olp2Cv/sfxihwX0ht+qmKtlhVMkOI0Zqe6MOwCYIY1Zbn2MTlLhi/I+WWVKU6nKbDIqWQ1LM9Zis/fWfaUrbAydewWUXf+Ow3xrk59GgONdiqeO/GI8nQlnVHhzNXYnR2S9bvcJi9+GlAICZU3bY1JGgoIRrFJQghJA2sC5u2ZHDN8zTj2qbUil9UeSyMxAKgjEq63mfH1csai6q6euhG2YhQUkor96NhNiJGJa+lKZmvID06NE8fWxycjIaGxvBcdwF9TeMjx4DYIy/m0G6OUezPzS/Zn2T7yxTovnnuMhRiI++GAkx49vRHlNQoqTib+gcFLo01zHQN9WU4PMlmDzmU5vZQVzh8cSWhw7WWR56gxIGc4YCP9BSqNKTISFGox4sy4eRqUdsvBix8c3fXziOg1JpQEOdHtAnQKMKQd7ZPdDpNCguLkJxcZFl3brGfFTVluJQwh9ITmpEQYUMUukZCMQqBAbxERjIg0DIQm9QoabumMO2qDT2QyNkDbkO2mwKNJiHabT8nmVsGhriiKPZRMysh8S2ZDOrSxNnxSl5rAi7DpmCR8fPfGS1vu0UrdbDRAw0fMMlCkp0YceOHcOyZcssv585cwbfffcdUlNT/dgqQroGno+CEjxLUMJcVLN7BCX8hccKLZXFfV3k0mxA8lxES4ciOmKIzZdv0n779u3D2rVrcfz4cVRVVeHDDz/EhAkTbNZZv3491q5di6qqKqSmpmLZsmXIzMz0+Fh//PEHUlNTL6iABCGdhat/N9Y35ImxlyD33Hr0S5pl83lpXXeCZfntDnKbAwVHTr0Lidg+i8gSlGjKmODzAlxOh9mS9bXd+tx1egX0TTfQQkFIm4ISOr0cImEY5Ioiu9cYhkFgIB+BgXzERaVg0ID7sPmf6xEekor+PW+CRiVGdXUNyisK8Pee3xGk40Ol0qOgsBhnixQ4m6eEdTaBUMgiIJBnClIE8RAcEgixRI/AQD4CgnhokJ+1a0PLG3kA0OoaUFN33DIEpGXAwNUNvjmLYnjGk9DqGnH41Fs2r+8+/CQaFQV22zkKSjjLbrCeAcam3XrbWhzWwQ9Hs7aQZhSU6MIyMjLw44+mwjglJSW4+eabKSBBiJf4qtAl25QZYR7f6atCl91ZcGAiZPVKSMPS/XJ8AT8QMdJhfjl2V6dUKpGSkoIZM2Zg0SL7uew3bdqEl19+Gc8++ywGDRqETz75BHfccQc2b96MiAhTFs3VVzsu/rpx40bweE1PU0tKsGLFCqxatarjToaQbmbcsHdQ33gWQQEJlmUiYSguH/ed3bqsi0yLtmCtshdU6hq719WaahgMGtTL8wEAAqtpQK2l97sTf+09YLecx1pf25uDK0aj1vJQQiQIsRRx5PMd79+RX7ZfjYkjV0GuLHa5Hp8fYJk5QtaQg73HF+KiIW+gT5+R2H98O0aLgwAEIWvAPASLh+DrX/6BvEEPuVwPhdwApVwPhcKAOpkOdTJThoOAz0BndaMuELCQBPBM/0mafxZLzMt4EIlZKNWV2P7fAgCmgBDDsBiZ9YKlIKZaK2v1vFlWCEmLWTcaFQUOAxKA4+CIs0CCbdZq89/LukAoxxlshpZQoUvXKCjRTWzevBmXXnqpv5tBSJdhE5TowJoSzcM3moIS3WT4hj8NTX8CWm0dRMIwfzeFeNm4ceMwbtw4p6+vW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wHAEux3Ri6X495778WTTz6JpCT3n5S2xLLty7Awb9/e/XRF1DeudYb+YRnW7vjR0ixES7Pc257H90r7m/vC9S1TQelmMAyLRkUhIsMzERrU02G2R2T4QEyftBnfb5tqs5zPFzvtd3XTkAfra5JIGODReew//jIa5C3rJdgS8AMgFATCdJNtGrZQXPEnYqOGQqFqHhIhEQchNjYOPRKDLTNsmHEcB43aCIXCAKXcCMYYjYqqAijlBigUeqiUBlMti3rn02MyDBAetgUcI4NIxEIkYRFg+BVBQcGoKguH3lgKZcNpcKweIjELPt9xRiGfL4TYg9o4jUr7TBJ3MiWs/8x66+ljoQfHWde+MAUl6HPHMQpK+JEv00g3b96MJ5980ltNJ6Tb8/nsG00pm92l0KU/BQXEAwE040V3o9VqceLECcyfP9+yjGVZjB49GocPH3ZrHwaDAYsXL8asWbMwduzYNreFz2chlbr/JNSV8HD307y7G+ob1/zZPyEh4nb9GwgNCfLKvyHzPsSi1q+9pVX/AAAG9r8KkZEhTtczGO33FRoSYjmWSGg7NIBj6gAAwUERKK82tyus1fZYay0gYdp/CCIjgyEUBECra7q5ZpSQSoMQFhKHatlRAEB4eDik0iAIBBJotbbDFRiGgVhiynyQRgIhQSFIkIc3nwvHQa8z1bFQqwwYMnAJNGoWCoUWv//9ElRNy2WyCpsSkweFewEAeQVlUKpqADRnq/D5DAQCFgIhC6GIhUDAQChkwVMfQFRkMk7nNEIoNL0uELDgCxjw+eb/TL+zLGP5nmXLcXaDWNwcFOLxmutO8PjN64eGCsAXNGfY8Pn6pv6jzx1HKCjhR75MI62trW1TMIMQ4pivCl22DEJQpgQhHUMmk8FgMCAyMtJmuVQqRUGB43Tflv7++2/s2bMH1dXV+OabbwAAn332GUJCnN+gOKLXG9HQ0L7xxyzLIDw8EDKZAkaje8X2ugvqG9c6Q/80NKpRUyNvfUUnFHJ9u7Y3M+9Dp3PeD+n97sDxM2ssN+g6jcjlsTkHxS/VasayjVZrO4xAVlfStF3zjXBdXfPNL8PwMTr7eew8+Hhrp4PUPrcgJ9/xdN+NjXWoqZGDx0oAmNoiV8hQUyMHg+bPMJXS1FaWEQFodLgvy3lpTK8HBfSARlsPnV4OgZBBqJBFaJgAQ4dcAQE/EAaDBkq2uWCk0chBqzVCozb9d9Hga6FQyBF46BQqqlSm5RojNGoDNGoj1CoDVCoDrLM8jKpDEIuKcKag3kHLbDGMKRjM5zOWoAWPz0IsUsNglINlGbAswPIY8FgG58PPoa6xDjweg5JzZ9AgbwDDMGio2ofyqkaAAX75ZTO0ujrk5cpN+zeew9hhaNe/q5AQCQRWgY6uhIISfuSLNFIA2LJli1eGblAqacehvnGsZb90pv4R8Ju/HAgFAR3WNoYRgGF4lrGO1imeQOfsm86C+sY56hv3eTJ7xoQJE3DixAmvHNdbN4NGI0c33k5Q37jmz/5hIGjnsXlubx8gjoFSXeHwNcs+GOc3ghGhtg/9BPxgj9vOMiKrbWw/b5SqKtN+ecGWZRxnXdRTgNjI0egRMw4lFTtcHidQ4jwLUKGuhNHI2WR/VtUewuZ/5iBAHNu8IsdrWq/1hyTmAqB8fhCEglDU1p+0arcQLCOB0ciBYZqzQ8TCCKi1tRCLeRCLTf2enm7qY4PwV5RV2f+tzBkYLBOGRnkNdFojBqVcDRE/Dlv+2Qqd1hTk0GmN0Ou5pv+M0Os4GAxNv+uMUKuM4KziwQyjd1hrokJSDoXKFLgRiwqg1piG2J4LOAa50hQEqSv7DXqDEiUVdQCAMyf24eZZGvrccYKCEp2UN9JIzbwxdINSSX2D+qaZQMCze891pv6plIVZfjanMnYUPk9kmRc9MNBxSmpn6pvOhvrGOeqbZuHh4eDxeKiutp2yrra21i57ghDSMUZkPouKmr2IDPdddu+YISvwz/4HLbUbHHF0Y2rWcjYOoaD1zKipF30FtaYW2/+7F0CLItYtgqCyhlNN+20OSlgX3jQX9TQanddpMOOx9rNGRIVnoUp2GAkxpiHkghZ1shoVhWhUFFp+FwpN58dnWy+8HR89FiUV2xEfNRpKdYVNUELID7IJ+Kb2uRU5+euQ1GMacs997nB/1lmqEaFpqK03BYEZhoFAyCAkKBI8gSlAMDB1IEKD+yA8+jnIGnJRWPa7ZXpVZziOg9EI6HVG6A0cjAYORgNgMHLgjKbXDAYOfJ4Qao0URgMHsSgGcoUBHMchPDgBNfWm7JAhaeOgVtfg6OlDAAck9ewDkUgEubz1v1N3REGJTsobaaQAUFpaitraWmRktG9qO0ol7VjUN/Z0OoMllbEz9o9a3XwhVSrglTRRZ1hWCMAUlNBpWZtjdca+6Syob5zzVt90pVRSoVCItLQ07Nq1CxMnTgQAGI1G7N69G7fccoufW0dI95AQOx4JsePbvR8O7n+uhQQmYWjaY/j34ENO1zFPM+mIWNgyKBHa6jEDJXE2wzFtCifCcWaWRBKDjP73Ijgw0TJFKdBchNPgoo3N69oHJTJSFoBhWIQG9QFgms7UmQG9b7bMfmKdKREoiYdCVWq3/pCBD6NHzDj0iL4IeYW2s6TwW0xrmpp8CyLDMyENTYOsPgeVtfazlFgXFheLIuxeF1n1vXmKz94JV6A3rkB51W6oWglKMAwDHg/g8XhwnQeiAyBpOiYDjc50LuEhQYhoMD04GjosE0pVGbRNwaRIegjgEgUlLjCepJECQHx8PLZt2+aVY1MqacejvrHVsi86U/9YT9/FY8Ud2i7bY4kcHqsz9U1nQ33jXHfrG4VCgcLC5id+xcXFyMnJQWRkJKKionDrrbfikUceQVpaGjIzM/HJJ59ArVZj+vTpfmw1IaTDtfLd2tAiCyEkqBeE/BCk9L4JfL4EfH6gpVCiOZOgNeabZsD2Oh8S1Nvh+nxWjP69rrduNADOo0wJR0EJluEjNDi5+Th850GJ2KhRzW22yloIDkxyGJQQCIKQGDuxaZ1eNq+1PA7DMIiOGAwAGJX1Iv458KBNZkXLYzoKngiF1kEJ23NVaUzDYEKCertV+NNdGl2d5WetvsHys9GohcHQPCVofWM+dE6mGCUUlOi0KI2UkM7NdvYNz6bm8vxYzRdWlgpdEtJmx48fx9y5cy2/v/DCCwCAhQsXYtGiRZg2bRpqa2vxzjvvWGa9WrNmjaW4NCHkQuFZsJWB42klzYwG2yyEAEksxmQvt/wuFkohN8+S5eDG3xHr9fhWWQf9kmaBZYXgOAOOn2ku/mgzxKOp1QBnCW64N3xDYLeMYW2z3VwFJazbbJ3pERzYE+XVu10eOzgw0eZ3gYsi4Xy+BNHSoXZBCeu/E9+uP2wzJRydKwBIwzKgVJU7ne6zPXS65kxWWUMu6hvzml/Ty3Gu6C9IQy72+nG7AgpKdFKURkpI52Y94waf33GzbwC2T1AcXYQJIe4ZMWIEcnNzXa4zZ84czJkzx0ctIoR0Cq0kIRs5vc3vLWfdCg9NgVxZCE/YZErYPOgQoX+v61FRs6/FMVs+lDA27cd0O5fW9w78c+BBDM94EgajBjV1J6HR1qGs6l+rYzrOlLD93fmQPJZnHUixzpTo6XQbs0BJHOKjL0JppWnqVFfBD8BxcMd6GI2j714iYVhzW1tsLxJGQKOtRXz0WAwasAglFTuw79gLrbbbVvPsHo5odc2ZEkdOvWP5OTnhaqg0VYgM7w8X5Um6NddhQdKhFAoFcnJykJOTA6A5jbSqypRedOutt+Krr77C999/j/z8fDzzzDOURkpIJ2ETlOjAKUEB23Gb1lkThBBCCHHAwbSbrri6EQfsa0q0zEqICs/26HgAwDDNt2H2WRBAdMRQpPe72+U6pv2YggrR0iGYPukPJMZNQq8el2NI2sPITn3AZl2HmRKtnLvt9laZElbfTSTi6Fa3ZRgWo7KagwCualeY9m9/vtbDaAR8+6Lf1kVG2RbnOn74Sowc9DxiI0eAxwpdfHezvT0ekfm01T5be57v+H0XEtQbY4e8goiwvq1s331RpoQfURopIRcu23GNHTukwjZdkjIlCCGEEEfM00kGByZ5tF1EaBqiIoagykFxRcC+iKRCaVs/oWfcJBSV/4EY6VDPGtyE52BoJsMw6Jd0nWUIh7OghPXNd8ub5pbZle5kSrjbTuvjSkMH2q07IHmu3TLbtjgeXmEWFmy6gbcuHGodDGpZKNO0rDnQ0TIAExSQYCnSCdgGhawJBcHQ6uotv1tPo8qyApdFT51x1O/EFgUl/IjSSAm5cJkv9DxW7NFThrZomdZJCCGEEHtTxnwGlaYagQFxHm3HsnxcPPQNfLd1nGVZSFBz8ceWmRHmabrNeDwRLh76RhtabOJsaKZtMUzH139XQYWWgQxHN8f232Gcj2WxfkgSFzUGNXXHMbDv7RAIgjBj8u84efY9nMr/AZeOXW8TAHDY7laCElER2RiV9RLCQ/pblgVIYgAAElEUBA6CEtbn29p3M2evtwxKBEhim/fPCKB3tFErnNW3IM0oKEEIIW1gTvvzRY0H2+EbFJQghBBCHBEIgiAQ2Kf1eypaOgxD0x+3/G4dlIiKSEV6v4XtPoY1V0/SgwJ6Qq4sdHgTbtrW+Q0vy/LBskLL031HdRpaZle4muXPuqZEXNQoxNnMxiHC+JFPYWCfhWDQ+k1460MhgPjoMTa/p/S6EQCQFD8VDfLzdusLm6bfdIfzoERIi9/tpxkFgABxLJTqcgCm90tlixog1loLwBAKShBCSJuwrBCBkh4IEEd1+LGcVbsmhBBCiPf1SZwOiUhq+d1cyyAoIBEzL1uPmhq5V6ZTHpaxDFpdg8tAwOTR62A0ap3exLdWD4PPE0PbFJRwdHPsSbYny7R+c81jhW71jSfDRsz4fAnS+t4OAFCpm2coTE64GgzLQ2T4ILf3ZT18g88LgN5gyn6xDkJcOeFnm7+Ndf8xDAuG4YHjDBjYZ14rQQkavtEaCkoQQkgbMAyDSaM/bvXLgDfYDt+gmhKEEEKILw1KWYD/jj2PzJR7vLrfnnGTW13HlO3g/JattaACjycGmmaFcJgp0WL73glX4XzJJgj4QdDpm6e4ZFmhy+CJp5g2BCWsCQTNmSOJcZMRGZ7h0fbW583nNwclBvaZB4WqFKl95tllTbQMSky7+LumPnIdhHEnK6S7ox4ihJA28tX0nNbZETR8gxBCCOkYKb1vwvniXxEVYTubRmLcJPSIGQc+vxM+8W4lUGA9y4Q7mRIRoam4+pIt0Onk2PT3TMtyRwGN9mjvjbr1cBbr70bjh7/nVlap9XkL+AFQa0w/B0jiMGXMp61uwzAsxKJwiEXhUKjKXB6Lhm+0jqYEJYSQTs6mpgQN3yCEEEI6RHq/u3D5+B8g4NtPV9lZbyyZVm7nbKfJtA8EOMq04PPEkIgjMWXMessy7wcl2tef1lOCWrdNGpaOsJB+rW5vG5Sw2pebD38YNG/fWt94u++6IgpKEEJIJ2cdiPBVdgYhhBDSHXlziIIvtNbelkMQhmc86fb21t85vFUXIbpp2tToiCHt2o914KgtQ1ttakrYTCXq6DzN6zYP07DevrW+aUv9jO6GeogQQjo520wJirYTQgghxMyzoERi3CTU1p9CXuGGVvfMs5ptw1vDR0dnvwylqhzBgT3btR/rTIe2ZJHaZkoEWi23f2bPMjwYOaNN6QjbQpkSu21stu+kWTadCWVKEEJIJ0c1JQghhBDiSGuZEiJhqN0yd2fcYG1m//LOQxEeK2x3QMJunzzP28Y6CUo4Yg5AcE4zJfjguQhM0OwbraOgBCGEdHLmQATLCDyauosQQgghXZ3r2znregmWLVj3vkvwrJ7wd8Yb6/CQAWBZYduGttpkOrgXlLAdvmHbh0JBsNPtKVOidTR8gxBCOjlzpgRlSRBCCCHEWmuZEo6GFrRWHLN539bTZroeouAPE0Z8AI4ztOmBjXWmRGvfr5r37zhTAmiuv9FyKlWAghLuoKAEIYR0cuaLZVsKORFCCCGkK2slKOEgmNCWm/hASZzH23Q0hmEd1oBwa1t4MnzDtC5nXVOiRWCHaSpmaT3Ew4xHQYlWUVCCEEI6OUtQgqYDJYQQQogVprWgBM9+etO2zDASKIn3eJvOjLEawiIWRWBI2qNOz9Hx8A3boIR5hg3OqLfbnmUoKNEaCkoQQkgnR8M3CCGEEOJQq1OC2he6bItASaxX9tNZWGc6sAwfifGTnK9rKXRptFrIa7GO6Xcj5yAoQZkSraKgBCGEdHKUKUEIIYQQR1qrDxEVkYVePS5HjHR4u44jEUe3a/vOxnoIS2vDWcx9zHHNQQm7TAm2KVOCM4DHk8BgULm9f0KzbxBCSKdnTr3k8+1TMAkhhBDSjbWSKcEwLIakPYKE2PGWZfZVD1oXKOnRhq06L+sZSBjW9XP65poSBqtlLYdvNO9v4ogPbWYractwme6GMiUIIaSTC5TEIbXPrYgMz/R3UwghhBDSibRWU8Ihzv2wxCWj1kKlroZYFO75cTox2+EbrWRKWIISVpkSLQtdWgU2QoJ6YVDKQhzKecMbTe0WKChBCCGdHMMwGNhnnr+bQQghhJBOpm2zT7gflAgL7ouw4L5tOEbn5tHwDUdBiRbbDOg9B5U1+5E14H4AzcM5iHuotwghhBBCCCHkgkRDA9rCOphjnjmjtXVdDd+IisjGNZN+B69p2AbNuOEZqilBCCGEEEIIIRegttQr4NpUVaJr8SxTovWgBABLQMLZ68Q56i1CCCGEEEIIuSBRpkRbeBKUkIijAABikdRqG9e30RT48QwFJQghhBBCCCHkAhIc2BMAENoF6z34gnWGSWv1HwYPfAg946ZgVNaLVtvTNJ/eRDUlCCGEEEIIIeQCcvHQt1BevRc946Z4vrEHs290B60FGALE0RiW8YTtNvRs36soKEEIIYQQQgghFxCxSIpePaa1aVsaWmCrtSlBHaGaEd5FvUkIIYQQQgghpFtqy1AMCkp4F/UmIYQQQgghhHQblClhjWllSlDH27gOZAj4gW1tTrdEwzcIIYQQQgghhHRLLNuGTIlWZj2JjRyJfknXIy5qVFub1a1QpgQhhBBCCCGEdBNxUaMBAD1ixvu3IZ1Em2bSYFwHJRiGRWbKvYiKyG5jq7oXCkoQQgghhHiJSqXChAkT8Nprr/m7KYQQ4pA0LB3TLv4WIzKf9ndTOoW2FLpEK5kSxDM0fIMQQgghxEs+/PBDZGZm+rsZhBDikkQc5e8mdBptKnTZAe3ozihTghBCCCHEC86fP4+zZ89i3Lhx/m4KIYQQt1GIwd8oKEEIIYSQLm/fvn245557MHbsWKSkpOCvv/6yW2f9+vWYOHEiMjIyMGvWLBw9etSjYyxfvhwPPvigt5pMCCHEB9o0vWcrNSWIZ2j4BiGEEEK6PKVSiZSUFMyYMQOLFi2ye33Tpk14+eWX8eyzz2LQoEH45JNPcMcdd2Dz5s2IiIgAAFx99dUO971x40b89ddf6NWrF3r37o1Dhw516LkQQghpv/R+d6NRUQABP6gNW1NQwpsoKEEIIYSQLm/cuHEuh1WsW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wEAP/74o9Ptjxw5gk2bNmHLli1QKBTQ6/UICQnBXXfd1ab2smz7vvCat2/vfroi6hvXqH+co75x7kLsm9Q+N7V5W4bx7FwvxP7xJQpKdBH33Xcfdu/ejbFjx+LNN9+0LN+2bRtWrFgBAFi8eDGmTZvmryYSQgghnZJWq8WJEycwf/58yzKWZTF69GgcPnzYrX0sWbIES5YsAWDKnDh79mybAxJ8PguptC1P7uyFhwd6ZT9dEfWNa9Q/zlHfONdd+kYiFrbpc7q79I+nKCjRRdx000245ppr8PPPP1uW6fV6rFixAuvXrwePx8P111+PSZMmQSgU+rGlhBBCSOcik8lgMBgQGRlps1wqlaKgoMDn7dHrjWhoULVrHyzLIDw8EDKZAkYj56WWdQ3UN65R/zhHfeNcd+sbtVqPmhq52+t7o39CQiQQCNoyfWnnR0GJLmLEiBHYu3evzbIjR44gJSXF8iUrMzMTBw4cwKhRo/zRREIIIeSCwnEcmDYUM5sxY0a7j+2tL/VGI9ctbhDagvrGNeof56hvnOsufcNxbfuc7i794ymafcMHfFHx25HKykrExMRYfo+JiUFlZWW790sIIYR0JeHh4eDxeKiurrZZXltba5c9QQghhFCdS++iTAkf6OiK3zxe10zjIYQQQnxBKBQiLS0Nu3btwsSJEwEARqMRu3fvxi233OLn1hFCCCFdGwUlfKCjK347Ex0djYqKCsvvFRUVGDt2rMf7MaNK4B2H+saxlv1C/WOP+sY56hvnumPfKBQKFBYWWn4vLi5GTk4OIiMjERUVhVtvvRWPPPII0tLSkJmZiU8++QRqtRrTp0/3Y6sJIYR0RgylSngVBSX8zBsVv53JzMzEqVOnUF1dDR6PhyNHjuDFF19s076oErhvUN80Ewh4du856h/nqG+co75xrjv1zfHjxzF37lzL7y+88AIAYOHChVi0aBGmTZuG2tpavPPOO6iqqkJqairWrFljyVgkhBBCmlFQwpsoKOFn3qr4fdddd+Ho0aNQqVS4+OKLsWrVKgwYMAAPPfQQbrzxRgDA/fffD5FI1KZ2UiXwjkV9Y0+nM1iqGlP/OEd94xz1jXPe6psLqRL4iBEjkJub63KdOXPmYM6cOT5qESGEEEIACkp0Wp5W/F61apXD5VOmTMGUKVO80iaqBN7xqG9stewL6h/nqG+co75xjvqGEEIIaQvKlPAmmn3Dz6jiNyGEEEIIIYRcONowWzRxgYISfmZd8dvMXPE7KyvLfw0jhBBCCCGEEEI6GA3f8AGq+E0IIYQQQgghXQWlSngTBSV8gCp+E0IIIYQQQkhXQUEJb6KghA9QxW9CCCGEEEIIIcQe1ZQghBBCCCGEEELc5MksiaR1FJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIcRtNHzDmygoQQghhBBCCCGEEL+goAQhhBBCCCGEEOImhjIlvIqCEoQQQgghhBBCSCuyBtwPPj8QvROv8ndTuhS+vxtACCGEEEIIIYR0dn16TkefntP93YwuhzIlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AXDcRzn70aQzs9o5GAwGNu9H4GAB53O4IUWdT3UN7ZOnz6F/v0HWH6n/nGO+sY56hvnvNE3PB4LlmW81CJiRtfcjkd94xr1j3PUN85R37jW3v7pytdcCkoQQgghhBBCCCHEL2j4BiGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/oKAEIYQQQgghhBBC/IKCEoQQQgghhBBCCPELCkoQQgghhBBCCCHELygoQQghhBBCCCGEEL+goAQhhBBCCCGEEEL8goIShBBCCCGEEEII8QsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBHHb+vXrMXHiRGRkZGDWrFk4evSoy/V/++03TJ06FRkZGbjyyivx999/27zOcRzefvttjB07FpmZmZg3bx4KCgps1qmrq8OSJUswePBgDBs2DE888QSUSqXXz80bfN0/xcXFWLp0KSZOnIjMzExMmjQJ7777LnQ6XYecX3v4471jVldXh4svvhgpKSlQKBReOydv8Vff/Pnnn5g5cyYyMzMxatQoPProo149L2/wR98cOXIEN998M4YMGYLhw4fj7rvvRn5+vtfPzRu83T9bt27F7bffjhEjRiAlJQWnT5+228eF9JncHXj7PdCVeNI3Z86cwaJFizBx4kSkpKTg888/92FL/cOT/vnmm29w4403YtiwYRg+fDhuu+02HDt2zIet9S1P+mbbtm2YOXMmhg4diqysLFx99dX44YcffNdYH/P0M8ds1apVSElJwfLlyzu4hf7jSd9s3LgRKSkpNv9lZGT4sLWdEEeIG3799VcuLS2N+/bbb7kzZ85wy5Yt44YNG8bV1NQ4XP/gwYNcamoqt3r1ai4vL4976623uLS0NC4vL8+yzkcffcQNGTKE+/3337mcnBzunnvu4SZNmsRpNBrLOrfffjt31VVXcYcPH+b27dvHTZ48mXv44Yc7/Hw95Y/+2bFjB/fYY49x//zzD1dYWMht27aNGzVqFLdixQqfnLO7/PXeMVu0aBF3++23c/379+fkcnmHnWdb+KtvNm/ezA0bNoz76quvuLNnz3KnT5/mtmzZ0uHn6wl/9E1jYyM3bNgwbunSpdzZs2e5U6dOcXfffTd3ySWX+OScPdER/fP9999zK1eu5L755huuf//+XG5urt1+LpTP5O6gI94DXYWnfXPkyBHulVde4X755RduzJgx3GeffebjFvuWp/3z4IMPcp9//jl38uRJLi8vj3vssce4oUOHchUVFT5uecfztG/+++8/bsuWLVxeXh5XUFDAffrpp1xqaiq3c+dOH7e843naN2bHjx/nJkyYwF155ZXcK6+84qPW+panffPdd99xw4cP5yorKy3/VVVV+bjVnQsFJYhbrr32Wu65556z/G4wGLixY8dya9ascbj+4sWLubvvvttm2XXXXcc9++yzHMdxnNFo5MaMGcOtXbvW8npDQwOXnp7O/fbbbxzHcVxeXh7Xv39/7tixY5Z1duzYwQ0YMKDT/cP1R/84snr1am7KlCntORWv82ffbNiwgbvhhhu4Xbt2dcqghD/6RqfTcRdddBH3zTffePt0vMoffXP06FGuf//+Nl+0Dx48yPXv37/VL12+5u3+sVZUVOQwKHEhfSZ3Bx35HrjQedo31iZMmNDlgxLt6R+O4zi9Xs9lZ2dzP/30U0c10W/a2zccx3HXXHMNt3Llyo5onl+1pW+USiV32WWXcX///Tc3Z86cLhuU8LRvzEEJ0oyGb5BWabVanDhxAmPGjLEsY1kWo0ePxuHDhx1uc/jwYZv1AWDs2LGW9YuLi1FVVWWzTnBwMAYNGmRZ59ChQwgLC0N6erplndGjR4NhGLfTxXzBX/3jSGNjI0JDQ9t8Lt7mz74pLCzEW2+9hVdffRUs2/k+6vzVNydPnkRFRQUYhsFVV12FsWPH4p577nE6/MUf/NU3vXv3RlhYGDZs2ACdTgeVSoXvv/8eGRkZiIiI8Oo5tkdH9I87LpTP5O7AX++BC0Fb+qY78Ub/qFQq6PX6TvV9wxva2zccx2H37t04d+4chgwZ0oEt9b229s0rr7yCESNG4KKLLvJBK/2jrX0jl8sxfvx4jBs3Dvfeey/y8vJ80NrOq/N9Uyedjkwmg8FgQGRkpM1yqVSKqqoqh9tUV1dDKpU6Xd/8f1f7dLQPPp+P0NBQVFdXt/2EvMxf/dNSYWEhPv/8c9xwww1tOo+O4K++0ev1ePjhh7F48WIkJiZ65Vy8zV99U1RUBAB4//33sWjRIrz//vsQCASYO3dup6kN4K++CQoKwieffIKNGzdi0KBByM7OxuHDh/H+++975by8pSP6xx0Xymdyd+Cv98CFoC190514o39ef/11xMXFYeTIkR3RRL9pa980NjYiOzsb6enpuOuuu/DUU09h1KhRHd1cn2pL3/z111/Ys2cPHnnkEV800W/a0jfJycl4+eWX8eGHH2LFihUwGo2YPXs2KioqfNHkTomCEqTNOI4DwzBOX3f0WstlLX9vuU9H+2jtuJ2FL/rHrKKiAnfccQcuv/xyzJgxo40t9p2O7psPP/wQ4eHhuO6667zQWt/q6L4xGo0AgPnz52Py5MnIzMzE8uXL0dDQgO3bt7ez9R2ro/tGrVZj2bJlGDlyJL755ht88cUXiIuLw4IFC6DX671wBh3LG/3Tmgv5M7k78MV74EJF71PX3O2f1atXY9OmTVi5ciWEQqEPWuZ/rfVNYGAgfvjhB3z77bd44IEH8NJLL2H//v0+bKH/OOub2tpaPPnkk3j11VchkUj80DL/c/W+ycrKwlVXXYUBAwZg+PDhWLlypSVTs7vi+7sBpPMLDw8Hj8ezexJWW1trFxU0i4yMtFu/pqbGsn5UVBQA09NL67To2tpaS2qwo33o9Xo0NDTYPe3xJ3/1j1lFRQXmzp2LrKwsPPPMM+09Ha/yV9/s3bsX+/fvx8CBAwGYLgwAMGzYMNx333245557vHB27ePPf1eAaaiCWUBAAOLj41FaWtrOs/IOf/XNzz//jIqKCmzYsMHyReKNN97AsGHDsGvXLlx88cXeOcF26oj+cceF8pncHfjrPXAhaEvfdCft6Z+1a9fio48+wrp169C/f/+ObKZftLVvWJZFUlISACA1NRX5+flYtWoVhg4d2qHt9SVP++bMmTOoqqrC7NmzLcsMBgP27duHzz//vEvN3uKNzxyBQIDU1NRONZTW1yhTgrRKKBQiLS0Nu3btsiwzGo3YvXs3srKyHG6TlZWFnTt32izbtWuXZf2EhARERUXZ7FMul+PIkSOWdbKzs1FXV4cTJ05Y1tmzZw84jkNmZqZ3Ts4L/NU/QHNAIi0tDS+//HKnq53gr7556aWX8OOPP+KHH37ADz/8gBdeeAEA8NVXX2HWrFneO8F28FffZGRkQCAQ2Fz41Go1ysvLER8f752Tayd/9Y1arQbLsjZPNsy/mwNbnUFH9I87LpTP5O7AX++BC0Fb+qY7aWv/rFmzBu+//z7WrFnTZacu9NZ7h+M4aLXaDmih/3jaNxkZGfj5558t38N++OEHpKenY/r06di4caMPW97xvPG+MRgMOHPmjOUBSrfks5Ka5IJmnupm48aNXF5eHvfkk0/aTHXz8MMPc6+99ppl/QMHDnCpqanc2rVruby8PO6dd95xOD3f0KFDuW3btnGnTp3i5s+f73BK0GuuuYY7cuQIt3//fm7KlCncQw895LsTd5M/+qe8vJybPHkyN3fuXK68vNxmWqHOxF/vHWt79uzplLNv+KtvnnvuOW7cuHHczp07uby8PG7JkiXcuHHjOIVC4buTb4U/+iYvL49LT0/nnn/+eS4/P587deoUt2jRIm7UqFFcXV2dbzugFR3RPzKZjDt58iS3fft2rn///tzmzZu5kydPcjKZzLLOhfKZ3B10xHugq/C0bzQaDXfy5Enu5MmT3JgxY7jXXnuNO3nyJFdSUuKvU+hQnvbPqlWruLS0NG7z5s023zU62zXVGzztm48++sgyNXteXh63bt06buDAgdy3337rr1PoMJ72TUtdefYNT/tm5cqVlvfN8ePHuQceeIDLzMzk8vPz/XUKfkfDN4hbpk2bhtraWrzzzjuoqqpCamoq1qxZY0mDLisrs3lKP3jwYLz++ut466238MYbb6BXr15477330KdPH8s6d955J1QqFZ566ik0NDRgyJAhWL16tc0Yxddeew3PP/88brnlFrAsi0svvRTLli3z3Ym7yR/9s3PnThQUFKCgoMAurTw3N9cHZ+0ef713LgT+6ptHH30UPB4PDz74IHQ6HbKzs7Fu3ToEBAT47uRb4Y++6dOnDz788EOsXLkS1113Hfh8PtLT07FmzZpOV2W+I/rnzz//xOOPP275/b777gMAvPzyy5ZaNRfKZ3J30BHvga7C076prKzENddcY/l91apVWLVqFaZPn45XXnnF183vcJ72z5dffgmdTmf5TDBbuHAhFi1a5NO2dzRP+0atVuO5555DeXk5xGIxkpOTsWLFCkybNs1fp9BhPO2b7sTTvmloaMCTTz6JqqoqhIaGIj09HV9//TWSk5P9dQp+x3BcJ8pJJYQQQgghhBBCSLfRPcNZhBBCCCGEEEII8TsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBCGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/4Pu7AYQQ4srKlSvx7rvv2i0fNWoU/ve///m+QYQQQkgXRddcQog/UFCCENLpBQcHY82aNXbLCCGEEOJddM0lhPgaBSUIIZ0ej8dDVlZWq+up1WqIxeKObxAhhBDSRdE1lxDia1RTghByQSouLkZKSgp++uknPPLIIxg6dCjuueceAEBdXR2eeuopjB49GhkZGbjhhhtw5MgRm+0bGhqwZMkSZGVlYezYsfjggw+wfPlyTJw40bLOypUrMWLECLtjp6Sk4PPPP7dZtmHDBlx++eVIT0/HhAkTsHr1apvXH3vsMcyYMQM7d+7ElVdeiaysLMyePRtnzpyxWc9gMOCjjz7CpZdeivT0dFx88cV47LHHAADr169HdnY2FAqFzTZ79uxBSkoKTp065WEvEkIIIa2ja24zuuYS4n2UKUEIuSDo9Xqb3zmOAwC8+uqrmDx5Mt5++22wLAutVotbb70VDQ0NeOSRRxAREYEvv/wS8+bNw9atWxEVFQUAePzxx/Hff/9h6dKliIyMxMcff4zCwkLw+Z5/LK5ZswZvvvkm7rjjDgwfPhwnTpzA22+/DYlEgjlz5ljWKysrw6uvvor58+dDJBLh1Vdfxf33349ffvkFDMMAAJ566in8+OOPuP322zF8+HDU19dj8+bNAIArr7wSy5cvx5YtWzBjxgzLfr///nukpaVhwIABHredEEIIaYmuuXTNJcSXKChBCOn06urqkJaWZrPshRdeAAAMGjQITz/9tGX5hg0bcObMGfzyyy/o1asXAGD06NGYOnUqPv74Yzz66KM4c+YMtm3bhjfffBPTpk0DAIwYMQITJkxAUFCQR22Ty+V47733MH/+fCxcuBAAMGbMGKhUKnzwwQeYPXs2eDweAKC+vh5ffvmlpV0cx2HBggU4e/Ys+vTpg/z8fHz77bd44oknMHfuXMsxzG0MCQnBlClTsHHjRssXJIVCga1bt2LJkiUetZsQQghxhK65dM0lxNcoKEEI6fSCg4Oxbt06m2VCoRAAMH78eJvlu3fvRlpaGhISEmye9AwbNgzHjx8HABw7dgwAbNJGAwMDMXr0aBw9etSjth06dAhKpRJTp061Od7IkSPx/vvvo7y8HD169AAA9OjRw/LlCAD69OkDAKioqECfPn2wd+9eALB5ItPStddei3nz5qGoqAiJiYn47bffoNfrccUVV3jUbkIIIcQRuuY2o2suIb5BQQlCSKfH4/GQkZFhs6y4uBgAIJVKbZbLZDIcPnzY7ikPAPTs2RMAUF1djcDAQLsCXS335Q6ZTAYAuPzyyx2+XlZWZvmC1LJ6uUAgAABoNBoApqdTAQEBLp8cjRgxAomJidi4cSMWL16MjRs34pJLLkFYWJjHbSeEEEJaomtuM7rmEuIbFJQghFzQzONCzUJDQ5Geno5nnnnGbl3zk57IyEgoFAq7yuE1NTU264tEIuh0Optl9fX1dscDgI8++sjhF6zevXu7fS5hYWFQKpWQy+VOvyQxDIOZM2fim2++wdVXX40DBw7YFfgihBBCOgJdc+maS0hHoKAEIaRLGTVqFHbu3In4+HinT2HMT4D+/PNPy9hRhUKBXbt22XwxiYmJgUKhQEVFBWJiYgAAO3futNlXdnY2xGIxKisr7dJaPTVy5EgAwA8//GBTrKul6dOn45133sHSpUsRExODMWPGtOu4hBBCSFvQNZcQ4g0UlCCEdCnXXHMNvvrqK9x888247bbbkJiYiLq6Ohw9ehRRUVGYN28e+vXrh4kTJ+KZZ56BXC5HVFQU1q5da5daetFFF0EsFmPp0qW49dZbUVxcjK+++spmnZCQECxcuBAvvvgiSkpKMGzYMBiNRpw/fx579+7Fe++953bbk5OTcf311+OVV15BTU0Nhg0bhoaGBmzZsgVvvvmmZb2YmBhcdNFF2L59O+6++25LUS9CCCHEl+iaSwjxBgpKEEK6FJFIhE8//RRvv/02Vq5ciZqaGkRERCAzM9OmyNYrr7yCZ555Bi+99BICAgJw4403IiMjA1u2bLGsExERgXfeeQevvvoqFixYgLS0NLz++uuWJz1md955J6Kjo/HJJ59g3bp1EIlE6NWrl9167nj66acRHx+PDRs2YPXq1YiIiHD4VGbSpEnYvn27ywJdhBBCSEeiay4hxBsYzjzxMCGEdHPm+cj//PNPfzelVYsXL0ZVVRW++OILfzeFEEII8RhdcwkhZpQpQQghF5Dc3FwcP34cv//+O9544w1/N4cQQgjpsuiaS4hvUFCCEEIuIPPnz4dMJsONN96IqVOn+rs5hBBCSJdF11xCfIOGbxBCCCGEEEIIIcQvWH83gBBCCCGEEEIIId0TBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF/w/d0AcmEwGjkYDMZ274fPZ6HXt38/XRH1ja2iokIkJva0/E794xz1jXPUN855o294PBYsy3ipRcSMrrkdj/rGNeof56hvnKO+ca29/dOVr7kUlCBuMRiMqKtTtmsfLMtAKg1CQ4MKRiPnpZZ1DdQ39m6+eS5++GETAOofV6hvnKO+cc5bfRMWFgCW5XmxZQSga25Ho75xjfrHOeob56hvXPNG/3Tlay4N3yCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiF1TokhBCiNdwHAej0QCuE9S4YlkGWq0Wer2eim614G7fMAzAsjwwTNes9k0IuTD561pD1xXnqG9cc6d/uvM1l4IShBBC2o3jOMjl9VAoGgB0ni8j1dUsjEaanswRd/uGZXmQSuPA43XNit+EkAtHZ7jW0HXFOeob19zpn+56zaWgBCGEkHYzf0kMCYmAUCgC0Dmi/Hw+A72+8wRJOhP3+oZDXV01GhpqER4e5ZN2EUKIM53hWkPXFeeob1xrvX+67zWXghKEEELaheM4y5fEgIAgfzfHBp/PAqCnNo642zfBwWGQySrBcUYwDJWiIoT4R2e51tB1xTnqG9fc6Z/ues3tPmdKCCGkQxiNBgBc01Mr0tXweKbnF5SSSwjxJ7rWkO6gu15zKShBCCGkXZoLjXWOIRvE20x/185QvJQQ0n3RtYZ0D93zmkvDNwjppDiOQ7W2HhUaGRr1SjTqlZDrVWAZBgKWDyHDRwBPjGhROGJFEQjiS7pltV5CCCGEENI+a9d+hF27/sXatZ/5uymkG6KgBCGdhNqgxT7ZKRyqO4N8RQnOKkpRr1e4vX0AT4xeAbEYENQTA4J6IjW4F6JEYR3XYEIucC+++Ax+++0Xu+W//LINYWFhvm8QIYSQLufFF5+BSqXECy+8alm2adPPWLHiJTzwwCO46qrpHu/z8ccfwunTpyCT1SI4OBhDhw7H/Pn3ITKy7cURZ8++Gddee32bt79QXXvtlZg9ew5mzux+596ZUFCCED/iOA6H6s9gW/V+7Ko9DrVBa3lNwPDQJ7AHEsRRCOEHIEQQiCC+BBwHaDkddEY9GvVKVGhkqFDXolxTi5ON53Gy8bxlH70ksRgZkYZR4WnoF5QAthsVzCHEHaNHX4RHH33CZlloaKjN73q9Hnw+XS4JIYS034YNX+H999/GsmXP4pJLprRpH9nZQ3DTTXMRGRmF6uoqvPfeW3jyycfwwQdr29yugIAAAAFt3r4r0+v14PF4lJHcgehbFiF+YOCM2F59CBtK/sJ5VTkAQMwTYqw0A0NCU5AS1BOJkmgIWPf/iRo5I0rU1TjVWIBceSGONOTjvKoc50vK8VXJH4gWhePS6OGYEjWMMigIaSIUCiCVRtosu/baK3HVVdNx/vw5/PPPDkydejmWLHkUR44cwocfrkRubi7Cw8NxySWTcccd8yEUCgEANTXVWL78Bezfvw9RUVGYP38RVqx4CQsW3I9p067EwYP7cd9992Dr1r+bvvwBO3f+g0cffQD//rvfcvy//96Ojz9ehcLC84iKisZVV03H7Nk3g2VNQcWxY4fisceW4e+/t+PAgX2Ij++Bhx5aikGDsiz7OHz4IFateh+5uTkQCkVIT8/ACy+8iq+++hzbt/+Bdeu+sDnnG26YjquvnonZs+d0RDcTQggBsG7danz++f/w0ksrMGrU2DbvZ9as2ZafY2PjcNNNt+CJJx6BwWAAj8dzuE1DQwPee+8t/PvvDuj1eqSlZWDx4oeQlNQLgP3wDb1ej5Ur38Dmzb+Cz+djxoxZOHcuHxJJAJ544hkAgEajwapV72Pbti1QKhXo27c/Fiy4H+npGQBMGSHvvfcWnnjiWbzzzhuora3B8OEj8NhjTyEoyDSDyl9/bcPHH69CSUkxJBIJUlJS8dpr74BlWUuWSe/efbBx4zcwGAyYNu1KLFhwv+U87dvQDwsWPGBpA+D8mrhkySKUl5fhzTdX4M03VwAA/v13v6Xdjz76JD78cCWKi4vw449b8OSTj2LAgIFYuPB+y75vv/1mjB49FrfffjcA0zX6kUeewPbtf+LIkYPo0SMBy5Y9C5blYcWKF5Gfn4eMjEF46qnnER4e0eb3QFdDQYku7uzZs1i6dCnkcjmEQiGWLl2KoUOH+rtZXqM2aJCnKEGpugY12npojXowAIL4AYgShSJJEosekijwOlGGwJH6PHx4/kecU5YBAAYE9cRVcWNwZb+RUNXrYTS2rbINy7BIlEQjURKNydHDAAAlqirskZ3ArtoTONF4Dp8VbcH6oq0YFj4AM+LGITOkD0V9CXHgiy8+xW233WX5klFSUoyHHlqMu+++F0888Sxqaqrx2msvQ6/X4777lgAwpejW1cnw7rsfAQDefHMFlEqlR8c9cuQwXnrpGdx//8PIyBiEwsICvPrqixAIhDZfQtetW4OFC+/HokUPYu3aj/Dss0/gm29+BJ/PR2FhAR54YAGuueZaLFnyGABg37494DgO06ZdiY8/XoUzZ3KRmpradMxDKCsrxaWXXtbufiOEEGKP4zisXPkGfvnlR7z++kpkZQ22ef3TTz/GZ5+tc7mPzz7bgNjYWLvlDQ312Lp1MzIyBjkNSADAU089BolEgtdffxcBARJs2PA1HnhgAdav/xYSicRu/fXrP8Eff2zFk08+hx49EvHll59h3769uPjiCZZ13nprBQoKzuP551+BVBqJP/7YigceWIAvvvgWUVHRAAClUonvvvsGzz//MtRqNZ588jF8/vn/cM89C1FdXY1nnnkC9957Hy6+eAIUCgUOHtxn0469e/dAJBLj3XdXo6ioEC+//BwiI6Nw441zHbbh998327TB1TXxpZdWYN68GzF9+rWYNu1Km+MqlUp89dXneOKJZxEYGIjAwECXfx9r//vfGixa9ADuv38J3nrrNTz33FOIiIjAwoWLIRYH4umnH8eqVe/j0UeXub3Pro6CEl2cSCTCSy+9hOTkZOTn5+Pee+/Fli1b/N2sdqnS1GFHzWH8W3MUp+XFMLYy328IPwDZof0xPjILw8JSwWedf2B3JKVBjdXnf8ZvlXsBAAODe+G2ntOQHpIMlmUQwBdDBblXj9lDEoWZkvGYGT8eJaoqbKn8D79X7cdeWQ72ynIwMLgXbuwxCUPCUig4Qbqlf/7ZgcmTL7L8Pn78JQCAoUNHYNasGy3LX3nleUydejmuvfYGAEBCQiIWLLgfy5Y9gkWLHkRRUQH++28PPv74c/TvPwAAsGTJo7jjjrketefjj1dh7tzbMHXq5QCAHj0ScMstt+Hbb7+2CUpcccXVmDBhEgDgttvuwo03zkRJSTGSknrh88//h4yMQVi8eIll/T59+gIAxGIxhg8fiV9//dkSlNi06WeMGjUGERFSj9pKCCH+9lreV9hde9ynxxwjzcCDfTyrP7Br17/Q6XR4991VdgEJALjmmpmYOHGyy31ERtpm9b3//jvYuPEbqNVqpKdn4tVX33S67ZEjh5Gbewo//bQFAoEAAPDAAw/j77//wq5d/+KSS+yP/d1332Du3Nswduw4AMDDDy/F7t07La+Xl5dj06af8f33myzXj9tuuwP//vs3tm79DTfddAsAQKfT4eGHl1oCKpdddgUOHDAFHmpqqmEwGDBu3ETExsYBAPr27WfTDpFIhEcfXQahUIjevZNRXFyEr79ejxtvnOuwDfPm3YFdu/61tKG1ayLLsggICLDLmtTpdHjooceRnNzHab86Y32Nnj37ZjzwwALcdde9yM4eAr3eiCuuuAY//vidx/vtyigo0cX16NHD8nNycjIaGxvBcdwFeQNaqKzAlyV/YEf1YUsgIkIQgoHBSUiQRCNKGAoRTwgjx6FRr0S5ugbnlGXIlRdiR81h7Kg5jAhBCK7rMR6Xx4yCkBX4tO3Pn/4ERapKhPIDcW/v6bhYOsinf4cekijclnQ55iZOxT81R/BVyR842Xgey06tQf/ARNzd6yqkhfT2WXsI6QyGDh2BBx542PJ7QEAA7rprHgYMSLVZLy/vDPLzz2Dz5ubCmEajERqNBjU1NSgoOA+BQIB+/VIsr6ekpFq+/LkrP/80jh07gnXrVluWGQxGcJxt8DU5ua/lZ/MXVZmsFklJvZCXdwYXXzze6TEuv/wqvPbay1i8+AFoNDr89dcfWLbsWY/aSUhXlq8owQu5n2J63EUYFp6KOLH7AbuDdaeRryjBdT0mtL4y6Tb69u2P2toarFnzIV577R2IxWKb10NCQhESEupka8duvHEurrjialRUlOHjj1fjpZeexSuvvOFw3by801Ao5Jg2baLNco1Gg9LSYrv15XI5amtrkJqaZlkmEAhsAgZnz+bBYDDg+uuvsdlWq9XarBcYGGiT4SGVSiGTyQCYAhDZ2UMwd+4NGDlyNIYPH4kJEy5BYGCQZf1+/fpbhkkCQHp6Bt5/vxpyudytNrR2TXRGJBK1KSABAH36NJ+/OVjSu3ey1bIISx8QEwpKdHL79u3D2rVrcfz4cVRVVeHDDz/EhAm2F7r169dj7dq1qKqqQmpqKpYtW4bMzEy7ff3xxx9ITU294AISSoManxdtxY/l/8LAGRHMD8DU6OEYH5mN5ID4Vs9HbdBgf91pbK38D/vqTuGj8z/h+9K/cV/ytRgaPqDD23+o/gyeO/U/qIwaDA9LxZK+NyBU4H4KmLfxWR4mRA3GuMgs7K49gS9KtuG0oghLTryH8dJs3J50OdWcIN2GRCJGQkKig+W2qawqlRIzZlyH6dOvs1s3LCwMHIdWP4vMNSGA5iFaer3eZh2lUoU775yPiy4a53JftoU3Tcc1Gl1njZmNHTsOr732Cv79928oFEoIhUKMHt32sc2EdCUcx+GtPZ+hmCvD+5ofgPM/YPOo11rd7ryyHAq9CktzVgEARkWkI0EShT+qDuDzoq1YkXYvIkWe3XSS1j3U9wafH5PPZ6HXu/d5axYTE4Nnn30JixbdjYcfXowVK962CUy0ZfhGWFgYwsLC0LNnEpKSemPGjMuRk3PCJpBgplIpERUVjbff/sDutZCQEKfHbHld47jm65dKpQSfz8fHH6+3rMfjMTAYOJuhDi0LRTMMYwm083g8vP32Bzh27Aj27NmFL7/8DGvXfoS1az+z3Mw7u7YyjOM2mHky3MKRloEjwHQdt+4DwP46Dties7lZtssYu4cN3R0FJTo5pVKJlJQUzJgxA4sWLbJ7fdOmTXj55Zfx7LPPYtCgQfjkk09wxx13YPPmzYiIaC6eUlJSghUrVmDVqlW+bH67nVWU4sXTn6FEXYUAngg3JkzGFTGjIOaJ3N6HmCfCWGkGxkozcF5Zhk8Lt2CX7DiWnVqDy6JHYn7vayD0oKCkJ3bXHsdLpz+DjjNgTsIU3JgwqdPMgMEyLMZIMzAqIg1/VR/CxwW/YnvNIeyWHcechCmYET+uU9XiIMSf+vVLwblzZx0GMACgV69e0Gq1OHMm1zJ8Izf3FHQ6nWWdsLBwAEBNTQ0CAkxflvLyTtvsp3//FBQVFTg9jjv69u2Hgwf3Y968Oxy+zufzceml0/DLLz9BrVbj0ksvo9lFCGmyc+c/OLVxFyqYBsTMHASeWIBqTX2rAYV7jtgGLjRG02xaK/K+BABsqtiNuT2ndkyjyQUhPr4HVq78CIsW3Y1HHrkfr776luXGty3DN6yZb5S1Wp3D1/v3H4Dq6ioIBALExNjXpWgpKCgIERFSnDx5AunppgedOp0O+fl5lloR/fr1h16vR319nWWdtgRsWJbFoEHZGDQoG7fddheuvHIy9u7djcsuuwIAcPp0LrRarSVb4sSJ45BKIxEYGOSwDS21fk0UwGBwr81hYeGora2x/K5UKh1mmhDP0R1HJzdu3Dg88MADmDLF8ZRB69atw/XXX4+ZM2eib9++ePbZZyESifD9999b1pHL5bj33nvx5JNPIikpqc1tYVmm3f95sp/dsuO4//g7KFFXYUT4QHw8+DHMSpiAAIG4zcdPDorHMwNvxdMD5iFcEIzfKvfg8ZMfol4v98r5Wf93pCEPL57+DHrOiPuSZ2Ju0qXg83he6Rtv/sfn8TA5Zig+HvIYZidcAiNnxNrCX/HwifdQqqn2S5sc9Ye/+udC+K8z9E1Xd9NNc3H48CG89dZrOHPmNAoLC7Bjx5947723AQA9e/bC0KHDsXz5i8jJOYGcnBN4881XbYZvJCQkIjo6BuvWmYp1/fXXNvz66082x7nlltuxadPP+N//1uDcubM4d+4stm79DZ984v40b3PmzMOxY0fw9tuv4+zZPJw7dxbffPMl1Gq1ZZ0rrrgae/bsxqFDBzBt2lVu7bc7/t1J92IwGPDPP9shZPkwqrRQnDTNjnVKXujxvhjY/vsQ84RO1iTdiTkwUVpagkceud/yuRwSEoqEhESX/5mDx6dOncSGDV/hzJlclJeX4eDB/Xj22WVISEjEwIH2WRIAMHTocAwcmIbHH1+Cffv2oLS0BEeOHMZ7772NgoLzDreZOXMWPv30Y+zc+Q/Onz+H1157GVqtxpKR0LNnL1xyyWQ899yT+Pvv7SgtLcHx48ewbt1qHDp0wK3+OHHiOD799GOcOnUS5eVl+OOPrVCpVOjZs5dlHY1GgxUrXmqaEWs7PvtsHa677ganbThx4rhNG1q7JsbFxeHw4YOoqqpEXV2dy/ZmZw/Bzp3/YO/e3Th37ixeeeV5AHQt9AZ6NHIB02q1OHHiBObPn29ZxrIsRo8ejcOHDwMwXWAXL16MWbNmYezYtqfn8vkspNKg1ld0Q3h46+lUm4r34oXcT2HkONyXOgNz+07x6rCTq6SjMKpnKpb89wFO1J3H46c+wqrRDyFc5J1zzG8oxfO5n0DPGfDEoDmYkXRR6xvBvb7pOEF4KHoWZva7CE8dWoeTdQWYf+R1LEqdgRt6T/D5sB+BgGf3nvNv/3Ru/uwbrVaL6moWfD4DPr/zxbqdtYlhGDCM4zazrO3y1NRUvP/+R/jww/cxf/5tYFkeEhIScfnlV1jWe+aZ5/Hii89hwYI7IZVGYtGi+7F8+UuWffH5Qjz77At49dWXMW/ebGRnD8btt9+Fl19+3rKPiy66CK+++iY+/ngVPvtsHQQCAXr3TsbMmbNs2sPjNbfP/H8ejwWfzyI5uTfeeus9fPDBSvz443cQiyXIzByEmTOvtazbr19fpKQMgNFoQEpK/1Z6kAHLsggPD7AZ10scU6lUmDZtGi6//HI89NBD/m4O8UBxcRGUSiVCIsIAZTmU+dUIzk7AaXkhxkozWt3eGgfbFG8JQ/92iIl1xsSjjz6A5cvfdDhUwBmhUIR//92BdetWQ61WQSqNxIgRo/Dccy87rWPEsixee+0dfPjhe3jhhWfQ0FAPqTQS2dlDnA7fuOmmW1BTU41nn10GgcA0JWhmZpbNdWDZsuewbt1qvPPO66iurkJ4eATS0zMxadKlbp1LYGAgDh8+hG+++QJKpQrx8fF45JEnkJaWbllnxIiRiIqKxr333gGDQY/LLrsSN9zQPH11a23o2TMJr7++Eh999J7lmpiRkYmrr54BALj99nuwYsVLuP76a6DVam2m6G7piiuuxunTuXj66aUQi8W47ba7UFJCmRLewHAtB8aQTislJcWmpkRFRQUuvvhibNiwwaaGxKuvvoqDBw/iq6++wl9//YWFCxeib9/momifffaZy/Fjjuh0BjQ0qNrVfpZlEB4eCJlM4XLayz21J/F0zsdgwOCR/rMxMcq+SrG3aAw6PJf7P+yTnULfwB54NX0+gvj20yJ5QmXQYP7hN1CqrsbshEm4Nan1afbc7RtfMXAGfFX8Jz4v2goDZ8SYiAw81O8GBPLdv2i211VXXYaffvoNQOfrn86kM/SNXq9HZWUxIiN7dLphAG1JJfWmyy+/BAsW3G831Zi/GY1GzJp1NW68cS5mzLCvk2FNr9ejuroE0dEJdn/fkBAJBAL/zGjUWb355ps4f/48EhMT2xyU0OkMqKvzbDrZlliWgVQahJoaOX1utuCsb3bu/AebN/+K+oFi/HNkF3RVckRPH4QrBkzAg31nudzn1N22f+u30+9DSnBPTN39EFQFtUg+xGJK1nhcMv1yhAqCIOL5rti2pzrre8f8WeTva42/ryv+otfrMWvW1bjuutmYPXuOw3W83TcvvvgMVColXnjhVa/t05/c6R9X7/OwsIAue83tXN8eiVdYz64xYcIEnDhxwiv79daFyWjknO7rnKIML+d+Dg4cHut3E8ZJszr0gihg+FjW7xY8dWoNjjTkY8XpL/FUyrx2ZQV8ePYnlKqrMSI8FXMTLvWo/a76xpcYsJjdYxKGhaXixdxPsbP2GAqOlOPJlFuQFND6WERvadkXnaV/OiN/9g39TS4stbU12LTpZ8jljZg6dZrb29G/v9adP38eZ8+exYQJE3D27Fl/N4d4qKjINExDEhMCSS8pdFVyqApqoeqvdrmdwUHBOh2nh4EzgjNykO06Cw2/Jw4cO4APeX8hPSUN7w16sEPOgRBvKS0twcGD+5CZmQ2NRoOvv16P+vo6y1SXhHhT58uzJW4LDw8Hj8dDdXW1zfLa2lqXxXA6K7VBg+dyTbNUzE2cinGRWT45rognwFMptyJeHIndshP4ofyfNu9rr+wkfqvcgzBBEB7oM+uCm+mkpb6BPbAy836MCE9FsboKi4+9g39rjvq7WYSQdrjqqkvx9ddfYOnSpywFN4lptqt77rkHY8eORUpKCv766y+7ddavX4+JEyciIyMDs2bNwtGjtp+Hy5cvx4MP0s3mhYjjOBQUnAfDsOBHBkKSFAGpKBTq87VQGTQut9Ua7YsLao16NOoV0JQ3wKjQokJTi80Ve6EulCFfWdpRp0GI17Asi19++Ql33jkXCxfeibKyUqxc+ZHNDCCEeAsFJS5gQqEQaWlp2LVrl2WZ0WjE7t27kZWV5b+GtdEnRVtQpqnByPA0zO5xiU+PHcgXY2n/myFgeFhT8AvOKco83ofeaMBH501F6+5Pvg5hgmBvN9MvgvgSPJ1yK25OvBQaow4vnv4MP5b96+9mEXJB+PXXPzrd0I1//92Pn3/eiokT6WmXNfNsV0899ZTD182zXS1YsADff/89UlJScMcdd6C2thYAsG3bNvTq1Qu9e/f2ZbOJl9TX10Eub0RMTCy0rAGCMAnGJA2BrlYBmUzmcluNg6CEjtNDppVDddb04EiVYfpOoC6us5tSkJDOKDY2Dh9++DG2bNmBLVt24L33VmPgwPTWN/SiJ554pssM3SCuUVCik1MoFMjJyUFOTg4AoLi4GDk5OaiqqgIA3Hrrrfjqq6/w/fffIz8/H8888wzUajWmT5/uz2Z7LKexAD+U/YNAnhiLkmf6JcOgb2APzOs5DQbOiI8KfvL4S8Omyj0oVVdjSGgKRkY4rn58oWIZFjclTMaTKbeAz/Dwwfkf8L/C3+iLFSGky2jvbFdHjhzBpk2bMHHiRCxfvhxffvnlBTcNd3dmHrrRs2cSVEZTZkRmmqm4ZUW+60J2jjIl9EYDajT1UJ6rAXgsggbEQCANhKFRDYNCi/fP/QADZ/DyWRBCyIWJakp0csePH8fcuXMtv7/wwgsAgIULF2LRokWYNm0aamtr8c4776CqqgqpqalYs2YNIiIi/NVkj3Ech4/O/wgOHO5MuhJSoWdFOL3p6tix+K1iDw7Xn8Fe2Um3gwtKgxrri7aCAYPbky7v4Fb6z+iIdLw08E48c2odvir5A7XaRizuMxM8pmsW3SHt8+STj+HYMd8N98nIyMTzz7/is+OR7sOd2a6WLFmCJUuWAAA2btyIs2fP4q677mrzMds75ar1dMHElqO+KSoqAMAgKSkJasMpAMCwjKHA90B1fonLftRyDoISMKA4/xw4jR7ipAiwIj6EUUHQ1SigrZbjp6B/kR7SC+Ojsr17cl7QWd87na09hHSk7jb1NgUlOrkRI0YgNzfX5Tpz5szBnDmOq+BeCA7Vn8EpeSGSA+JxafRwv7aFz/JwV6+r8NSptVhd8DOGhaeCx7SeULSl8j/U6xW4JHIIkgPjfdBS/8kI6YPX0hbgiZzV2Fr1H3ScDg/1ne1WP5HuhQIEpKuQyWQwGAx29ZqkUikKCgq8fjxfT8PdXVn3TU1NBSQSAbKyBkJz4BfwGBbDB2dCGChBY3kNJBIWAQEBDvdTxa+1WyYK4ON83hkAQEAf0/tGEBkEoAK6agXQS4oCfbnX/s4dobO9dzrT9NP+Pn5nRn3jWuv90z2n4aagBPG7L4u3AQBuSLikUxSGHB6eisyQPjjakI/9dacwInygy/U5jsOmij0AgJnx43zRRL/rHRiHN9IX4pET7+Ov6kMQsUIsTr62U/z9CHHHd999jdWrP8CmTX+CZU1fEGpqqnH11VNx0UXj8fLLr1nW3bJlE1555Xls3vwXRKK2TYv7xx+/4+mnH8f48RMdjo99+uml6N07GfPm3YGxY4dCKBThq682Ijo6xrLOwoV3YcCAgVi48P42tYF4n/VsV9ZmzJjRrv3q9UafTcPdHbXsG51Oh7y8cwgICATHCaHQqSFhRZDJlAjrFYPqk4XYsWMXhg8f6XB/lQ31dsuqamXIPXoKjIAHcWI4AEAoNd3ka6vlAICTNQWoqZF30Fm2XWd97+j1ehiNRuj1HAD/TcnZXacEdQf1jWvuTQnKwWg0QiZTgs/X2rzWlafhplAW8avjDWdxrPEsEiXRGBOR4e/mWFwVOxYA8Ev5rlbWBE40nkORqhIDgnp2+SwJa7HiCLySdg8iBCHYXLkXH57/kWpMkAtGdvYQyOVynD7dnIl2+PBBREfH4MiRQzbv5cOHDyI1Na3NAYmKinK8995byMzMcvi6Xq/H3r27MWbMxTbL161b3abjEe/zx2xX5ilY2/Oft/bTFf+z7puioiIYjUYkJvaE0chBbdBAzBPCaOQQndoTRs6IPf/tcbovtcF++MbfB3dBpVGbhm403USERIZDwBdAV60Ax3Go0Mj83g8X2nuHkO6iu73/KShB/Gpz5V4AwHXx4ztV+v+oiIGQCkKwvy4XZeoal+v+2pQlcVmM4ycoXVm8OBKvDLwbofxA/Fj+L9YV/ubvJhHilt69+yAsLByHDh2wLDt06ACmTr0cAoEAeU1p1+blgwcPbdNxjEYjXnjhadxyy+3o0SPB4TqHDx9EUFAQ+vXrb1k2c+YsbNr0MwoLz7fpuOT/7J13eBv1/cdfd6dpee+R7STO3hBGSAibsKEFWiijjDJLB6UL2kIpLQV+pbS0zFIoUMpKgQJhQwgESMh2tp043tuWrS3d/f6QJUu2ZMuOLcXO9/U8PEg3vzorurv3vT/vz9Ay2rpdCcL5cvcG1rXu5FNpF1du/D0qGmbFCEBWYS66jCQOVB2gpqY64vqRgi4/+PIjtraXYSnJDU7LNqeTkp2O6vTgs7mFkC8QCARdHDp3gYLDDrfqZW1LKXpJx5KsOYkeThiKpHB63lFoaLxZvzbqcp1eB2uat5CkmFiWNTeOIzx0GJeUx+9nfI9kxcyLNR/ydv2XiR6SQNAvkiQxb96CMFFi06YNzJ+/gHnz5genNzU1UlVVyfz5CwG49NILOfnk46L+9+Mffz9sP88//wwmk4lzzolu51+zZjXHHntc2LR58xawcOGRPPbY34fqIwv64XDpdiXozXs71lDlaGCnqYE6lz8fwiz7RYkknYnkaXl0eO3c+9+HcfhcvdZ3+cIt1u5mG+5aK0qqCWN+d3h3mj6Z5Fx/KYenyYaawBIEgUAgOJQQmRKChLGxfTc2n5NjMmeRpAzOFj2cnJ63mOeq3mN182auGndGxLrhze178WhelmXOxdT1VOVwZJKlkF9Pu4Kfb3+Mv+57hSJTNnPSihM9LIGgT+bPX8jjj/8NVVVpb2+jqqqSWbPmUllZybp1X3Lhhd9iw4avMRgMzJrlLy+7//4/4/V6o27TaOz+Hdi1aycvv/wfnnzyX32O47PPPuW2237ea/p1193I1Vdfxs6d25k2re9sG8HBczh0uxJ0s9dazQ3rHuTGCefRXF0PsoQxuzt00qz4A+aSFCOWkjw+27QBdYOHv298kR8t+g4A7R4be21VuHo4JTo2+x0VKbMKw64d0nQWUvP83xd3UyfqVOGUEBx6XH/9d7n44ktZtuwEAPbs2c0f/vBbysv3Mn78RB566O9ceumFPPnkv8jJye1nawJBbAhRQpAwVjdtBmDpIeowyDKkMclSSJmtmlpXM4Wm3nXDm9r9Fu95aVN7zTvcmJ1azE0Tz+fB8pe4e/fT/Hn2LRSYshI9LIEgKgsWLArmStTUVFNSMh2z2cy8efN54olH0DSNTZu+ZsaMWcE8ifz8gpi27Xa7ueuu2/nBD24lKyt65kBZ2V6s1jbmz+9dHjJ16jSWLz+RRx75Kw8++LfBfUhBzBwO3a4E3Ty26380u63c8dXfMTgcGHKSOangSN5vXA8QfNDg8LmRdDIpcwtp/2I/n6x6j7OnLWevrZr/VH9IrauZJZndbk9XQweOfc3IZgOWqeE3bBmGlKBTwt3YiaoJp8RoZ8mSvkv/rrzyGq666ntxGcvOnTt44om/s3PndhwOB9nZOcyaNYef/ewO9Ho9AJ9++jE2m42lS5cH1/v73/9Cbm4ev/vdfZjNJlJT0zj99DN58slH+dnP7ojL2AWjHyFKCBKCW/WwtrUUg6Trt7tFIpmfNoUyWzUb2/dEFCU2W/cCMC91cryHdkhyWt5iKhz1rKxdza93/oM/zboZi+7Qc8EIBAATJ04iIyOTjRu/pra2mnnzFnRNL0aSYO/ePWzatIETTzwluM6ll15IfX1t1G3OmTOfBx54iObmJioq9vPrX/8iOE9V/Tcgy5Yt5uWX3yAnJ5c1az5h8eJj0Okin46vueYGLrnkG3z99bqh+MgCgaALg+z/N+eqtaLXNIwFaaTqult+Bso3jsyYzhZrGcnT87HvbsRa08zlz99GyuzuYOudnf62sJpXpXVNGWgaaYvGIfVo/ZepT8GYYQFFxt3UiVfzDffHFCSY115bFXz91ltvsHLlyzz++NPBaWZz93dO0zR8Pl/U88HB0Nrawg9/eCNLlx7Pn/70N5KSkqiuruKjjz5AVX2AX5R4+eUXOf30s8IcPtXVlXzzmxeTn58fnHbGGWdxxRWXcOONPyAlJWXIxys4/BCihCAhbLPuw95VumE+hMse5qdN4eWaj9nYtocz8o4Om9fsbueAo4ExphyyjWkJGuGhx9Xjz6DSUc/6tl08sPcF7ii5XLQKFRyyzJ+/MChK3HDDLYA/b2LOnHl88MG7HDhQEcyTgNjLN3JycnnmmRfC5j3++N9xOp3cfPMPycjwW7jXrFnNN795cdTtjRkzljPPPIdHHvnLoLt/CASC3iR1CeauWitJGhjzU0kJFSW6yje+UXg8a1tKKe3YR8bSYni3ivavKlCSDCQV+x9WuFQPmk+l+aPdeFvsGIvSSZqa02ufmYZUJEXCkG3BXd+Bq90Wh08qSCShTrmkpCRkWQ5O27BhPd///nXcf/9DPProXykvL+ORR/7Bq6++hMNhD2sfffvtt2E2J/HLX/4GAJfLxWOP/Y33338Hu93G5MlTuPHGHwZLDXuydesWXC4nt932SxTF3w2mqGhMWJvb1tZWNmxYx49//NPgtIDT48EH7+fBB+8POjvGjZtAbq5fWD/99DOH5mAJDmuEKCFICLttlQDMTp2U4JH0zcyUieglhc3Wvfg0NaxDyOb2MgDmpU1J1PAOSRRJ4edTLuWmLQ/yees2Xq/7jHMKliR6WAJBRObPX8jf/vZn3G43c+Z0l5LNnTufJ598rKvrQvdFXqzlGzqdjkmTwh1UyckpKIoSnN7c3MSePbs46qhj+9zWlVdey0UXnYOmIbIlBIIhQkND0zRctVY0KRVDXgrJOnNwfmhOVIEpk9KOfRiykyk6aR4Nb3xEy0e7cVa2Yp6Yhc3dQOfWWjwtNnRpZjKXT4koxmcaUtE0DUN2Mu76DhwNHXH5rKOZV155kR07tsd1n7NmzeLcc78xZNt79NG/ctNNPyQvL5+0tPSY1nnwwfuoqNjPb3/7B7KysnnvvVX88Ic38vzzL0fMecjMzMTtdrNmzWqWLj0+4vdzy5ZNJCUlMXbsuOC0115bxTXXXM55532DFSvOCnN2lJRMZ/PmjUKUEAwJovuGICGU2fwhUMVJRQkeSd+YFAMzUibQ4bVTbqsJm9edJyFKN3pi0Zn5xdTvoJcUnqh4g722yG3UBIJEs2DBIhwOB1OmlGCxdIfczZu3EIfD3pUnMTxurs8++5TZs+eSmpra53LZ2dl84xsX43b3Tv0XCASDw+qx4213ojrcKNlJyHolzCmRFCJKZOi77en6CRlknTIN2azHvreR5vd20vrJXjwtNgwFqeSsmIli0kfcZ6Y+FQ0w5Ph/axwN7cPz4QQjimuuuYGFC49gzJixMZVC1NXV8dZbb3D33fcyZ848iorGcMUVVzNx4iTefTdya/ZZs+bw7W9fxq9+9TPOOutkbrvth7z00gt0dHQLY/X1tWRmZoUJFllZ2ciyTFJSEllZ2SQldf8byc7Opq4uejmjQDAQhFNCkBDKum7wiy2F/SyZeOanTWWztYyN7buZkjwmOH2LtQwJiTmpostEJKYkj+Gq8WfyyP7XuG/P8/xlzg8wyJEv1ASCRDF+/ATWrFnfa/q0adMjTj8YArbbAGvWrGbJkqW9lou03+uvv5nrr795SMcjEBzOdLjtuKrbAHDn6DBAmChhkg3B15YQB0WbpwPz2AyMFy7AXtaEp6kTSadgGpOOsSitz3LFTEMqKhr6LlHC2Wgd2g91GHLBBRfGfZ86nYzXO3QhpdOmTR/Q8uXle/H5fFx00blh091uN5MnR3fv3nDD9/nWty5l/fqvKC3dynPPPc1zzz3NE088Q3Z2Di6XC4MhdhHeYDDicjkHNHaBIBpClBDEHZvXSY2ziQJjVtiJ/lBlWorfxrbPXhec5la91LlayDVmkKq3JGpohzxn5x/Ll63b2di+h6cPrOKaCWclekgCwSHD3LnzOOGEkxM9DIHgsMTqseE40AqAVugXI1J13efz0LwrJcRY3ObpBEDWKyRPywPyALhq3Bl4NB/PVHYHG/YkXZ+MpqnoUk1IRh2upg58Pl+wxl9weGIyhV8LS5KEpoW3iw3NMnI47Oh0Ov7xj+d6iWAWS9/XpBkZmZx88mmcfPJpXH319Vx88Xn897+vcPXV15GWlk5HR+xCWUeHlfT0jJiXFwj6QpRvCOJOsHRjBLgkAPKM/kC6BldrcFqTu80/zyB+jPtClmR+VHwRFsXEq7Wr2d6xP9FDEggOGS655HLR410gSBCtNiuuOiuSUYch12+Zj5YpkRRDIHeKLolvFZ3I76Zf02ve5WNP46pxZ6BIMhr+m05DdjI+r0p9fV3vjQkOa9LTM2hpaQ6+V1WV8vKy4PspU6bi9Xppb29jzJixYf8FQpRjITk5maysLBwOBwBTp5bQ1NSIzdYZ0/r79+9jypSSmPcnEPSFECUEcScgSky2jOlnyUODbEMaElKYKBF4nWNMT9CoRg45xnS+N+FsNDQeKnsZrypaoAkEAoEgsTRU1IBPxVSUjiT7nzYnK92ihDmkfOPEnEUszujbYp+iS0KSJApMWb3mnV+wjG8WLQf8AZsAxrwUQGPfvvKD/SiCUcb8+QspLd3G+++/w4EDFTz00AO0t7cF548bN4ETTzyZu+66g9WrP6ampprS0m089dTjbNz4dcRtfvbZp/z2t79i7drPqKqqZN++cv7+97+wb185xx57HABTppSQmprG1q1b+h2jy+Vi164dYd07BIKDQZRvCOLO3hHmlNDLOrIMqTS72/GqPnSyEhQlco3CKRELJ+ccwfuNX7PFWsYrtZ9wUdEJiR6SQCAQCA5TVE2leV8diqTDNLb7PB6aexRavmFSDNw57Sp+v/tZPmneFHGbAZeF2sN2799u9+V2YL6hwB9wu29/902hQABw9NHHcskll/Pgg/ejaSrf/Oa3OOKIxWHL3H77XTz11OM89NADNDU1kpGRyaxZczjppFMjbnPChIkYDAb+/OcHaGiox2QyMX78BO6++48sWOBv+6koCitWnMl7763iqKOO6XOMn332Kbm5ecyaNWdoPrTgsEeIEoK4U9YZECUO7c4boeQaM2hyt9PkbifflEl9lyiRJ0SJmJAkie9P+gbXb36A56ve44TsBcJlMoroLmntfTEuGA34/6595PcJBCOKTrcDx/5mkvUmMifk48Lv4NPJ3dkO5gglGyl95GAFQjKzDX6xwSQbcKpugB51/11OiZwUUGT27d+Hpml9BmQKRgcXXHARF1xwUfD9ggWLogYqf+97N/K9790YdVt6vZ5rr72Ba6+9IaZ9FxWN4ac/vb3f5S688BIuv/wiGhsbguWFL7/8Rq/lXnrp31x++dUx7VsgiAVRviGIKx7VS4Wjngx9CpmGvtvgHUrkdmVHBBwSwikxcMaYc7igcBku1cOTFW8mejiCIUSWFUASLStHKT6fP2BNlkUYn2B0sHPvTlSnh8zxecEWhzISitR9WRzqbgiQooseIhgQJUyKkVeO+C1Pzf95xOVunfwtcg3pSDoZQ04ydrtN5EoIDhmys7O57bbb+/xOWq3tLFmylJNPjuzKEAgGg3BKCOJKp8eJT1PJGkGCBHSLDw1uvxjR6GoLmy6IjYuKTuDdhnV83LyRszuOZUbKhEQPSTAESJKExZKK1doC0NVS7FB56ifh9QoHR2RiOTYaHR1tGI1J4kmuYNSwZcsmAPKnjsfXlR3R8/stRfgNC20Z2ntet4vCojNj0iLnJ01PGc8zC2/ne5vuo73gAFqtPzAwP79goB9DIBgWli1b3uf81NQ0Lrnk8jiNRnC4IEQJQVzxdZ2kQ59GjATyukoNAmUbgf/nGNITNKKRiVkx8t3xK7h/7ws8tv8N/jTrJnGjM0pITk4D6BImDh0RQJZlVHXo+smPJmI9NrKskJEhuoQIRiZbrWW8WfcFPyj+BibFiNfrZfv2UlBkCiaPo1HrAMCn+f8tFCcVUmavCXbeCiVV3y1KjDHlUOVsDL43hgRjAiiSwuVjT4vaNlyWZIwFaWi1GmVle/ut4RcIBILRjBAlBHHFGxQlRpYNOOiUcLWiaipN7jbSdBZMiqGfNQU9OSF7AStrVrOzs4Kv2nawOGNGoockGAIkSSIlJZ3k5DRU1UeErLe4I8sSGRlJtLbaUdVDYECHELEeG0nyixJCPBSMVH5S+ncAJicX8Y3C49m+fRsOpwPzuAySzRY6nM6w5R+acwtOnxuLztRrW6FOie9P+gayJHNb6d9IUkwR/418a8xJUcclSzLGvBT0ej1lZXvxer3odOKyXCAQHJ6IXz9BXPF1PZUbaU6JUFGi1dOBR/OJ0o1BIksyl407jV/v/AdPH1jFEenTkEfY90EQHUmSUJRD49QiyxIGgwGdzi1EiR6IYyM4HHi34avga4fPn3mzbt2XeDUflpI8TIoBUwSHgyVKoGWoKDEleQxmxch/F9/DYMrVFGQkRWbcxIlU7i2nomIfxcVTBrydwwkRqiw4PDg8w6XFnYAgrgScEroR5pTICxElROeNg+fI9OlMSx5Pub2GNc3998MWCAQCgWAg+DQf/1f2YvC9hERtfS17yvdgTkvGWJSGSTaijxBoGQ2z3N2RI9CdwyDrI4Zi9kdAjJ80pRiA3bt3D3gbhxsiVFlwOHC4hksfGo+zBIcNIzVTwqQYSdNZaHC1dedJCFFi0EiSxGVjT+UXOx7jP9UfclzWXGEPFwgEAsGQ4VHDgyYlSeKKl35Gdd0erjznO+yUyjAphgGVk05IyufSMacwPWX8QY9P7jrnTSgu5hPeY/funZx++hkHvd3RzKETqiwClKMjjk3f9Hd8Dt9waSFKCOKKVx2ZmRLgL+HYY6tiT2clIJwSB8v8tClMsYxhj62Kje17WJA+NdFDEggEAsEIQdM09tlrGWfOQxfyRHGvrZo6Zwtz04rDlve63NRs3weKTMa0MdDsFyV0A3hIIkkSl449ZUjGH3g4k5yWQm5uPg0NdTQ2NpKTkwNAh9feZ7ePw5VDIVRZBChHRxybvonl+Byu4dJClBDElUC69UhzSkC3KLGpfW/wvWDwSJLENwuP5549z/JSzUdClBAIBAJBzLzXuJ7/K/sPp+cu5pbibwJ+oeKmLX8C4LG5PwlbfuembWguL0lTc/Ea/TezJnlgTomhROmqoH684n8cPXMGDQ11bNu2heXLT+Sz5q38dvfTXDXuDL5Z1Hd7xsONRIcqiwDl6Ihj0zexHJ/DOVxaiBKCuOLtEiVGWqYEdIsQ5fYaQDglhoJjs2ZTcCCLje172NNZxZTkMYkekkAgEAhGAF+1bgfg7YYvg6LEbltlcH6rpyP4WvOp7F6/FYCUOYW0e2wAmBRDwoKWA/v9rGUrU/L8T0W3bdvK8uUn8lrdGgCePPCmECWikKhQZRESHB1xbPpGHJ++GXmPqwUjmu7yjZH31TsxZyHz0qawOGMGl4w5mUlJhYke0ohHkRTOLTgOgDfr1yZ4NAKBQCAYKSRHKG3Y2LYn+LrDaw++tu9torOjE9P4TPTpSd2ihGxI2PWIHPIk1JkCOTl5wRKOkfjgRiAQCA6GkXdnKBjRjNSgS4DJliL+MON73Dntu3xn7KmHpbVqODgpZyFGWc/HTRuxeZ39ryAQCASCw56UCG07WzzW4OuAKKH5VKwbK3GrHlLmFgHQ7ukE6Aq6TMz1SOh+nT43s2bNBmDbti1ClBAIBIcdI+/OUDCiGclBl4LhwaIzsyxrPk7VzUdNGxI9HIFAIBCMACwRRImAAwLA2iVKdO6sx9fpQj82DWNuin85b7dTIlECgBxyCe5S3cyaNQeALVs2ISeko4RAIBAkDiFKCOLKSA66FAwfZ+QdBfhLOLR4p1YJBAKBYMQhRbhxDzggAKweG6rbS8fGKpAkzAsKgvMaulp7J9IpEZpl4VTdfOrdwRZdNW/v+ZSa6uqEjEkgEAgShbgzFMQVb1f5hrAmCkKZmjyW4qRC9tlr2WsTF2MCgUAg6JvA9QT4yx8A2rzdTokOrx3rxipUp4ekyTm4UnuLGGbFmLjuGyGihMvn4fGKN2geq1HlaGDzRuEaFAgEhxdClBDEFd8IDroUDB+SJHFCzgIAVjdvSuxgBAKBQHDIEygHBWjr6rRhDSnfqKurpbO0lolpReQcOSniNjL0yQkrlQgt33CqflElaVI2KDL2siZUjy/aqgKBQDDqEHeGgrji1USmhCAyS7PmAfBJ82ZRwiEQCASCPvFpoaJEJ5qmYe1ySmiaRumH60DVmHbsfDLTMnutf/XUM0jTJ3Ny7hEAXFx0YnwG3kVY940uUUI26jBPzELz+HDsa47reAQCgSCRCFFilPP973+fI444gh/+8IeJHgoAXpEpIYhCjjGdGSkTaHC1srPzQKKHIxAIBIJDGE+IKGHzObH5nMEHH/bdDbRU16PPtDBx3nTGmfN6rX9k9jQAJiTl8/riP3DFuNPjM/AuQjMltnfsD75OLvGPtbO0Vgj0AoHgsEHcGY5yLrnkEu69995EDyNIwG4pMiUEkTi+yy0hSjgEAoFA0Bde1Rt8bfM5gyGXXquTti/249Z8pC+ZhFGnZ3xSb1EiRd/dvcMg64Z/wD2I9nDGkJ+CPsuCp9mGu74jGBAuEAgEoxkhSoxyFi9ejMViSfQwggROrrJwSggisCRrDjISnzZvSfRQBAKBQHAI4w25Wbd5ndh9LjRVo2P1fjSPD9PcPIy5KegkHeOT8nutn6JP7LWRHOUSXJIkkmf5O4V0ltbi9LniOSyBQCBICOLOMIGsW7eO6667jiVLllBSUsJHH33Ua5nnnnuOE044gdmzZ3PhhReyZcvIvlkTTglBX2QaUpmaPI4md3swTV0gEAhGCuXl5Vx88cWceeaZnH/++axfvz7RQxq1eLVup4Td50DVVDo2V6M22tDnJJM8txAAnawwIaIoYe41LZ4oUvSAzaRJ2chmPY79LdQ01cdxVAKBQJAY4u9XEwSx2+2UlJRw/vnnc/PNN/ea/9Zbb/H73/+eO++8k7lz5/L0009z9dVXs2rVKjIz/aFN55xzTsRtv/rqqyjKoXfj79NE9w1B3yxMn8rOzgo6vPZED0UgEAgGhNFo5J577mHSpEmUlZVxww038M477yR6WCOGr1p3UGwpJMuQ1u+yPZ0S5Xv3Yt1QSbophdRlxUiK/zrDIOmYmFTYa32LzoQLW6/p8ULu4+GMpMhYpufTsaGSzz5fzZTzJ8RvYAKBQJAAhCiRQJYtW8ayZcuizn/qqae46KKLuOCCCwC48847+fjjj1m5ciVXXXUVAK+99lpcxgogywfXNkuWpWAIlV5WDnp7o4nAsRDHBBZllPBc1Xt0+hy9jos4Pr0RxyY64thERxyb4aGoqCj4etKkSXR0dKBpGlIfT8UFfra0l/GrnU+SqU/l+UW/irjMl63baXK1cUb+MWFOicaWRjb8dwNoGiUnL6I63Rmcp5OViJkRif6b9OWUAEienk/n1ho2fL2eb5xyHsnJKWHz/1HxJnmmTM7IO3o4hykQCARxQYgShyhut5vS0lKuv/764DRZljnmmGPYtGlT3Mej08lkZSUf9HZ8Tf4nG6nJ5iHZ3mgjI+PQyf9IFMdkzMCyw4TN68CSbsCkGILzxPGJjjg20RHHJjri2ISzbt06nnzySbZt20ZjYyOPPPIIy5cvD1vmueee48knn6SxsZHp06dz++23M2fOnF7b+uCDD5g+fXrCb35HCjs7KwBo8VijLvPrnf8A4LisufhU//WE6vbyxbsfkukwkjy7kJIZM2hq2YpL9QCgl/yXuuPMeRxwHDqlENEyJQIoZj2WaXl4ajx8+ulqTj/9jOC8VncHL9b4S36FKCEQCEYDQpQ4RGltbcXn85GdnR02PSsri4qKipi3c+2117JlyxYcDgdLly7lscceY9q0aQMej9erYrU6BrxeKKFOCafdS3Nz50FtbzQhyxIZGRZaW22oqmgBNi91ChvRWL1/KwvTS8Tx6QNxbKIjjk10hurYpKaa0esPvVLBwTIUZZUA1dXV3HfffTz22GPxHP6Ipt0TeylFq6cDj+ZF86k0f7AbrVnHrJmL2T/XglE2MD1lApva9wDdGVYPzLyRP5e/zJqWQyObS45BrEqZXYjU4GPdui857rhlJCf7H+bUuVqGe3gCgUAQV4QoMcIYqA10KC+IhuKiPpApISOLm4QIqKomjguwIH0qTwHrW3YxP3VqcLo4PtERxyY64thERxybcIairLKzs5MbbriBO+64g/Hjxw96LENRMjkU24kXnb7uHKH+xtzm7cSjemn5tAxXdRv6wnGceMEZrC1/Fp0sMzetOChKGBQ9siyRZrRw3aSzWdOyhSxDakz7GU5iuZZTkgxMnT+J5i2VfPZZt1ui3t0tSgzHZxhp3514Io5NdMSx6RtxfPpGiBKHKBkZGSiKQlNTU9j0lpaWXu6JkUSg+4Yium8I+mBe6mQASjv2JXgkAoFA4CeWskqfz8ctt9zChRdeyJIlSwa9r6EqmYSRU6LjLOvuuNTfZ3cZXFSs2YpjbyNKspHxZ80nPSsFysFiNjE9axwc8C+bkWoJbi+LZF5e/huyTen+eQk8Noa62C7BF524mC8qWti8eT0rVpxMZmYmbU0dwfnDWQo7Ur47iUAcm+iIY9M34vhERogShygGg4GZM2fy+eefc8IJJwCgqipr167l8ssvT/DoBk8gLVt03xD0RaEpGwWZclsNPs2HLH6qBAJBgomlrHL16tV88cUXNDU18eKLLwLwr3/9i9TU1AHta6hKJkdS+VKjrT34urm5E03TsHptvFKzmuOy5vBUxVuA3zH63xdWUr2pDNlsIPu0GTj1Km1Wf/mH1+VD79QHt+W0ecLKRVNJwetVIYOEHhub3RXTcg6fysKFR/Hhhx/wn/+8woUXfouy1prg/OEohR1p3514Io5NdMSx6ZuhOD6jrWQyFHGln0BsNhsHDhwIvq+qqmLHjh1kZ2eTk5PDlVdeyW233cbMmTOZM2cOTz/9NE6nk/POOy+Boz44Ak4JnRAlBH0gSRJmxYhb83LA3kBxSu92bgKBQHAoEFpWuXz5ckpLS4dku0N1UT9SSnSsXZkSqbokVFXjnt3/YnXzZgBeqPoAAE3VaPu8nNJKHbJZT87JxejTzXR6HXjU7vLQdF23e0CHEvXzJ/LYqCEtTb8z9lT+VfkO35twNhOSCvj59keD81w+D0uPOY4vv/yCzZs3cfTRS6hzdpdvDOf4R8p3JxGIYxMdcWz6RhyfyAhRIoFs27aNyy67LPj+7rvvBuCmm27i5ptvZsWKFbS0tPDQQw8FU76feOKJsDCtkYYv6JQYnSqfYOgwK0YA9tiqhCghEAgSzmgtq0wEG9p2s6Ozgm8XnRQUdDq8/kyJwG9/QJAIoHp8tHyyB+f+FtTscUw8/QhqjVaSFCM2rwOv6m8RKksymYZuZ4ouQjvQQwGN7puSS8aczPkFSzErRvbb68KWc6kejEYjJ510Civ/+wpvvf0/mhZ0u0p8mircpwKBYMRzaP5SHyYsXryYXbt29bnMpZdeyqWXXhqnEQ0/ge4b4gQq6I/AheleWxVwZGIHIxAIDntGa1nlYGh1d9DssTLZUjSo9X+xwx/CfWzmLCYkFeDTfFi7RAlfiIMggM/hofm9nbgbOtClmRl79ny8FgkcVjL0KVT7mrB6/U4LnaQEzx/Q3RL0UEPt8TkDYy4yZZOhT6HV48+NcHe1Np0/fyG/+u8DvLduHRbzBIyT/A+oPKoXJaR1tkAgEIxExJ2hIK74NBF0KYiNoFOisyrBIxEIBIcLNpuNHTt2sGPHDqC7rLKxsRGAK6+8khdeeIGVK1dSVlbGb37zmxFfVjkYLttwNzdt+RMtbutBbcfVdcPd6u4MOgc8XY6HAO5mGw1vbMXd0IEhL4Wcs2ZhNbmD5RoZ+hQAWtz+m/ieDz00eoschwI+LbJ9Wy/reH7hr7h18reA7mP0WetWHAvSsHudNK8tR3X5j5NH80bcjkAgEIwkDk35WDBqEZkSglgxyDoUxUS5vSbikzOBQCAYag7HssrB4Ol6wNDm6QwrlYiFwMMJAJvXCUCzp7scIfQm27a7gdbPysGnYp6UTebSyUg6mWa3lXS9PzcivUuUaPf6Ax91PR56dHbt41AjtHyjJ5IkYewqOwmINFut5RgLUkmamot9dwPt6w+QcewkXqj6gCvGnY7+EC1TEQgEglgQv2CCuOIT3TcEMSIhMdlSxBZrGZWOBnIZ2IWvQCAQDJTDsaxyoGghT/gH85Q+4GgA6PQ5uqZ1Oy48qg+n00nL6r3YdzeALJG2eALJswqC+RMaGq2eDnSSQqo+CfC7LcCfKQFw2djTeK9hHXPTigc8xnjQs3yjJwbZ30Ek4JSod7UCkHbEeBwVLdh21pM0JYdX+AS7z8ktxd8c3gELBALBMCLuDAVxRQRdCgbCFMsYQJRwCAQCwaFCQEgAsPtia2sZSpO72xXR6fVvqzlElOisaeHhh/+MfXcDstlAzukzSZldGBQkQtFJCqk6C0AwgyHw0OPbY07iqQU/J0kxDXiM8UDtp6wkIEq4g6KEv+OGYtaTfuR40DRaV+9F86q83fDl8A5WIBAIhhnhlBDElUD5hnBKCGJhQlI+AJWOhgSPRCAQCAQQLiDYB1Ea0RwmStiD21Q9PqxfV9JZWktzfjrmiVmkHzsJxaSPui2dpJCi63JKdIkSPcs3DlXUKJkSAYwhTglN06hzdbcBTZqai31fM66qNtrXHyD9qAnDOVSBQCAYdoQoIYgrge4bI+WiQZBYso3pADS52qMus7F9D6/UfIxB0jPGnMuFRctJ1pnjNEKBQCAYHXzdtguX6uGYzFl9LhdaamH3OVE1lTXNW5iTNjmY89AXPZ0Smqaxa/t26t7aiGpzIxl0VMyDzMKpEd0RoehkhdQuUaLN4y/fGCkPPfrKlIDuriEe1Uu71xYs4wB/5kTmcZOpe3UTnaW1mMcfXpkmAoFg9CFECUFcEU4JwUDINqQB4U/WAmiaxr+rP+Bfle90X9y1wqfNm/llyWWDblUnEAgEhyO/3PE4AG8fdV+fYkCLp1uUcPhcfND4NQ+U/YcJ5nwemXdrv/txhJR8VNdU888Pn2TD16tRHW7MxdmkL55Ac5KKRN+CBIQ7JQLngZFyfRGrU+Lz1m1MqR/Ta75iMZBx9ERaPt5Dy+q92E630ahZeaLif1w/4VyKzDnDMm6BQCAYDkbGL7dg1CAyJQQDIasr1b05Qtu5L1u380zlKoyynlsnX8xDs2/h2MzZ1Lqa+cm2v1HjbIr3cAUCgWBEEtoRo7/wys3te4Ov7T4XZbYaAPY76nD4XGxs3xMWhtkTt+rFa3XS/OFuPn3uTcrL92JITyJ7xUzyT5iOkmSIedw6SSHXmBE2baRcX/TXVSqQKQHwdOWqXvP1koK5OBvzxCx8HU5W/vcVfrPjKda37eLP5S8P+XgFAoFgOBGihCCuBMo3RsqTDEFiSVJMJCnGMLtvgFdqPwHgtinf5qScRUxNHsvtUy/jgoJlOFQX9+35d9iFtkAgEBxu7LVWc/FXd7K2pbTP5awee/C13Rc9J6LZbeW9xvVhy4aez2/d9jA/3/4oL9V8FHH9+vp61r39CXUvb8RR3gQmhbPOOo8ZFy3FVJhGcpfroS8CZQ3gFyWKTDlhroqRcn0xPikPgAnm/IjzDf20+ExSTEiSRMaSYpRkI1u3bWH/Fn/nmFZPB/+uej+iy1AgEAgORUbGL7dg1OBTRaaEYGBkGdKw+5xhgWp7OqvYai2n0JTNURkzgtMlSeLKcSuYahnLjs4KXqyOfGEsEAgEhwN3bXqGFo+Ve3b/q0/3QiCPAfruqGH12ACCIsCLNR/xZev24Pwyu9818Z/qD3GrfseFpmns37+PZ599mr/+9U8cKN2DpFdIXTSOogsXkjtrPG7Jv6wlhk4Zern7+kEnKRgVPTld+UMwckSJi4pO4LoJ5/C7GddGnG+Uowd8Ali6spNko47ME6aCLNG0tgx3s41KRwNPV67irl3/ZFfnAZw+95CPXyAQCIaSkfHLLRg1CKeEYKBk6f0lHA3OtuC0lbWrATi34LhgT/oAOlnhtinfRi/peLH6I2xeBwNF0zTWt+3iyYr/cdeuf/KX8ld4r2FdWC20QCAQHOpU2vydizyal59tfyTqcoHOFdC3KBE4h6eGOBqqnI29lrP5nNRY63n9kzdZ8rOz+PlDv2LXrh2kpKQy+bi5FFy8kNR5Y6j1tXLd5vvZ2VEBxPbAIrQ8I1DiMMbUnZ8wUh56GGQ95xYcFyxTjDS/L0IFHGNuCseduBx8Ks0f7EJ1+UWeXZ2V3LL1Ie7a9c8hG7dAIBAMByLoUhBXujMlhCghiI2srrDLBkcbKXIybtXD6ubNWBQTJ+csirjOGHMOJ+YsZFXDl6xq+IoLCpfFvL8aRxMP71vJ1+27wqa/Wb+Wfx54m6vGn8ny7Pn9psILBAJBogkty9hsLYu6XHuIU8IRUr6x11ZNkmKk0JQNdOdNpOottHttvbaj+VScNe04ypq457Xfsr+jhnZnCzuzXFy24jJOOfIE/q/8RbY3fR22ntoVUtlTZI5EqOgQcBMUmrLY0FWpEMs2RgKRxBUJKRjo2dNJMffIRZg/zcKxv5nmD3eTfep0JNl/ntrQvnv4BywQCAQHgRAlBHGlu/vGyHiSIUg8AVGiydlGcdIYapzNeDUfs5MnYVaMUdc7t+A4VjV8yWt1azi3YElM37l6Vwu3lv6NFo+VIlMO3yw8nvFJ+TS521jTvJVPmjfxx73Ps9dWxTXjzxLChEAgOGTxqL0DKzVNi/i71ebtXb5h8zq4acufAFh19P1A9zk8JcQpoXlVnLXtOPY146hoQfGAV/WyVt9CUnE2uSVz0GdbSC8pQFEU3Jq/tWWSYgxzZSiSHBQn+kIfwSkRei4YLdcXkiTxu+nX8ErNJ0FRwaKY6PT53X89RQsfPjKWTcZjdeCqbqP9y/2kHz0x7uMWCASCwSBECUFcEU4JwUDJNoSUbyQR7KpR1PXkLhoTkvJZkDaVDe27+axlG0uz5va5fIfXzh07nqDFY+WUnCO5edL56INBY+M5LmsuZ7Qfzd27n+bV2tV4NZXrJ5wzZMKET1OpcTahIJOmtwTrhQUCgWAwhOZEBHCpHkxK7+4WkTIlKhz1vZbzaj40TUNvVenYVoOzqg1XnRV8XZ0kFJnxUybTWgimcRnI+u4b58A+AlkTZjlclDDLRjyqp9/PpURwShjl7s+kG0XXFwvTS9hnrw2KEim6pKAo0dMR4lF9yHqF7JOn0fDaVjpLa9FlJJE8LS9sObfqRS8pQlQXCASHFEKUEMQVrwi6FAyQYPlGV6ZEtcNfvxxLD/ZzCpawoX03HzVu6FeUeKLifxxwNHBk+nRuKb4g4tO2OWnF3Dvjen62/RFer1vDtORxnJCzYICfKJxyWw3PVr7LxvY9ONTuC/SZKRM5KWcRp+QeIUQ8gUAwYCKJEk7VHVGUCARYAjh8Ljo8dnZ3VgKgurzs2LOd+uo6Ptn5BTVb1mHQVTDVkMaezmbcioxpXAamcZmYx2dw6rhlvF73Wa99tHftI+Dg6HlTbFIMQcGiL0KDLg1BUaK7lGG0/V6aQgQXi84EXaeJnp9zW0c5ALoUE1knltC4ajttn5ejSzZiGpMO+LulnP/V7SzOmMGd074bl/ELBAJBLAhRQhBXRNClYKAEQsAaA6JEl1OisB+nBMD8tKkYZT2brXvxqj50cmQxrMbRxHsN60lWzPx0yrf7tP9OtBRwe8ll3Fb6CH/bt5I5qcVkG9MG+Kn8zojH9r/O63WfoaFhkg3MTpmELElUO5so7dhHacc+3q7/gh9NvpAJSQUD3odAIDh8ieyUiNyFodNlx9PuwNfp4ovmtdy19348rXY8rXZUm5tv8hUn5S6iw2NH86pkjc/lO0ecxzrjAT5kezC7AGBiUmHYtk/PPYq3G75gn70Wj+rF3eWGuLjoRP6679XgckbZQKfXTn9ECro0hggto6V8I4AppDQlWel20PV0Sjy6//Xga2NBKhnHTqJ19V6aP9hFzoqZAOy31wGEdUwRCASCQwEhSgjiSkCUkEXjF0GM9HJKdCW9F5n6d0oYZB1zUotZ17aTnZ0HmJUaub722ap3UVH5RtHxMZVNzE4t5ryC43i1djV/2fcyd067KsZP48er+rhv77/5pHkTqbokLh17KqfnLg6Wi6iayvaOCp6oeIOdnQf4wda/cPf0q5mVOmlA++kPh89Facd+ahyNuDUv2YY0piWPI9+UNaT7EQgE8aeqsYaO0lo0rwqqhqaqvNu4ilTNhMPhwGaz4XA46Ozs4KPKL6h3tgDwgf4AnQFBQ5bQpZvRZ1rImlXMkgklVHW8y3FjT+CE8SdTdWAVUvWOsP1OTMoPe78ovYS3G77gk+ZNWHSmoBtiSdZssgyp3NnVGcKkGGj1WPv9XOFBl/7fzFA3wWh76BHulOg+P/X3OS1Tc/HZ3VjXH6Dp3R00HdOEZug/s0MgEAgSgRAlBHHFp6ookixqGQUxk2lIQUYKOiVqHE3IyOQbM2Naf2F6CevadvJ1266IokSVo5GPmzaSprNwTv6SmMd1xbjTWdtSypetO9jTWcWU5DExr/tQ+St80ryJfGMmf5jxvV4igCzJzEqdyAOzbuL5qvd4ruo9bt/xxJAJE22eDp6v+oD3G9djD0naDzAjZQLfKjqRIzKmH/S+BAJBYvj8409oX7svbNoXlZ+RaUgJmyZJMkqKCWNGGkqyETnFTGZqAbqMJPTpZiTFf/P7GZVUaW4kRUYn+S8fDUp4Bwi9pJDZo8VlaMvLt+q/CLq+9JI+zAFmkvsu30jVJWH12vn2mJOCQkbAKWEKK98YXU4Jc4gLJDlElIilDDZlbhE+hwdbaS3/fPpJjvvW6cMyRoFAIDhYhCghiCtezSfyJAQDQpEU0vUpNDnbsXmdNHusFJqyo5Zi9GRB2lQANrTv4nJO6zX/0+bNqGicnX9sn908emKQ9XyjcBl/2fcqL9Z8yC+nXhbTel+0lPJu41dk6lO5f+aNfZZ+KJLMd8aeilHW848Db3H37md4ZO6PSdenRF2nPza07ea+vf+m1dOBXtKxNGsukyyFmGQDdc4WvmgtZXvHfu7Y+STLs+dz08Tzhy1006epVDsacfhcyJLMOHMexh43OQKBYHAUHVlCGnuQZMlfXiHLHFd8Mqta17OsaCFnj1vKNlcFX9l2MdGWieSo63ebgfDLQJhkz7aUafpkDHL4pWXA7RYgEGZpkHWk6izB6SbZwI0Tz+fP5S9F3PcZecdw6dhTcISEYxojlG+MpqBLCHdKhJZvxCK+SJJE+uIJqA4Pjc2NrHzuP/gWelDMep6o+B/fHbdi1LRQFQgEIxshSgjiik9TR521UjD8ZBvTaPFY2dGxH+i/80YoY825ZBvS2N1ZhdVjI1VvCZu/vm0XAEdlzhzwuE7KOYJ/Vb3LZ81bqXE0UWjue1wdXjsPlb8CwC3F34g5i+LCohOodTbzdsOXPFj2Mr8uuWJQbqPVzZv5/e5n0dA4LXcxV45bQVqP4/G9CWeztrWUv+1byUdNG6l0NPC76df2Wu5gOGCv54XqD1jfthNrSA25jMy0lHGcnX8sSzLnxCw8CQSC3ngsEikzw7NoqnOc1MlO/uP8jCuzzuP3a38/qG3ruoQHQ09RQmcJuigCpOuTw943uduRkNBJCjql+9+4LEmcnreYE3MW8o2vbsethbsmZElCkeQw0SPg1DCOaqdEt1geKhBfPvZU9tlqUGSFMlt11PUlWSJz2WSKdo5j884tNL1dQfaKGbxc8zEL0qayIH3qsI5fIBAIYkHcHQriilf1jboLBsHwE7D/bm7fC8QWchlAkiQWppegobHZujdsXqfXwY6OCjL0KUzqEc4WC0ZFz7n5x6GisbJ2db/Lv1T9ES0eKyflLGJxxowB7evaCWdTaMrmi9ZSPmj6esBj3Wot4749zyMBt07+Fj8o/mZEoUGSJI7JnMWjc29lTmoxe23V3Fb6Nzq9jgHvsyce1cvf9q3kus3382HTBuw+F7NSJrIkcw5Hpk8nXZ/M9o79/GHPc9y45f8ot9Uc9D77wqf52NVxgC9aSvm0eTN7bdXBED6BYKRj9fQOjQxtwXkwBByPkZwSPd2QOknhqIxu0delejDIOiRJQpIkMvX+3/eN7XsAgvMCnFdwHDmGdM7IOzps36H7D20JqoyyS9twp4Qp+DrflMUj827lmJBjm6UPL50JICkyb5bsZ0/DQAs0AAEAAElEQVRKC54WG01vb0d1ebH7XDy+/42wkEyBQCBIBMIpIYgrPs3X6yJGIOiPceZc1lLKG3VrgdjagYYyNXks7zR8xQFHQ9j0Te17UFFZmF4y6JyTFXlH8UzlKj5r2cb1E8+NaoV1+Ty83fAliiRz5biB1/WaFSM/Kr6IW0sf5tnKdzk+a37MToI2Tyd37Xoaj+bjxonncVLOwn7XsejM/Hba1dy165983b6LB8te4pdTvzPo49ThtfPbXU+zxVpGsmLmW2NOZEXe0WFPATVNY2P7Hv5d9T5bO8q5ZetD3FL8zZjGOxBqnc08V/Uea1u2YeuRqWGQdCzNnsc5+UsGlBMiEBxqnJp3JIWpmaysWBOc5uhDlDDKelwxinL6qKKEJaxlp05SkCSJ30y7kicq/sfLNR93rd99+XndxHO4Z/e/uKBwWXBaIAy72FLE9yacw/cmnNM9L+Q3NiBGhDkl5FEmSoRlSiT1mq8LcY48Mf+nnPfVLyNuR9LJmJaPx/ieA1dNO41vleIsdvBK7ScAXDv+LJH3JRAIEoYQJQRxxav60OmEU0IwML5ZdAIfNm8Mhl0OpHwDoMDoD5KsczaHTQ+UbixKLxn02FL1FmakTGBbxz7KbDVRb2Q/bt5Ih9fOsqx5vWqsY2VW6kQWpE1lQ/tuPm7eyEk5i2Ja76kDb9HhtbMi7yjOyj825v0ZFT2/mHopN275E2tatvBm/VrOzD9mwON2+Tz8Yvtj7LFVUWwp4q5p3414DCRJYkH6VOalTWZl7af848CbPLD3BRRJZnn2/AHvtyc+TeXZynd5qeYjvJoPg6RjYVoJReZsZGSqnY1ss+7j/cb1fND4NefkL+GKcaeH3RQMJQ6fiy9aStltq6LB1Ype0pFlSGVOWjHzUqeIfA3BQbEkazbnZB0dJko4e7QENUi6YJlEsmIOihJFphyWZM1mq7Wc7V1lc6FEK984Pns+MjISEhpaWLmmOeSJf+h6S7PmMmleIbnGjOA0uevmWNP67hbRHXQZ6pQYXdcYob8/kX6LQgUek2wI+5v2RNYrZJ08jeZ3d+Kqbef1f/0H7xFudMlGtnWU49NU5qVNAfzH3uXzhG1fIBAIhgvxSyOIG6qmova4SBEIYiFVn8Rv5l3OjV/8GRi4KJFv8nfqqOtqeQf+C671bTuRkYJhmINlccYMtnXs44vW0oiihKZpvF7rvzE4ewCiQCS+PeZkNrTv5t9VH7A8ewFyPxfgOzsqeKfhK9J0Fq4ct2LA+7PozPx8yqX8qPSvPF7xBkdnzgpL0+8PTdP4y75X2GOrYmbKRO6efnW/gaKyJHNB4TLyjBncs/tZ7tvzb1J1SSw8CPHI4XNx757n+aK1lCTFyCWFJ3NuwXG9xmL3OXm/8WueObCK/9Z9yibrXn4//VoyDIMPF+2Jzevk2ap3eKv+i4hPpl+p/YQkxcgFhcdzQcFSTAMIYBUI+iJUYHD5PGE3r6HOq3R9MleOW8Hvdj8TcTuRyjd+O+2qYMcenaTg0bxhpRahN9Q9wzDH9HC/SfhFCZW+RYlAS9BQAW+0XWOElqboI5S/hjpTJEnCIOtx+6J3MZH1ClmnTKPlw93UNdbR+L8ask+fwU9K/w7AC4t+TaYxld9teZaVFWv45/xfBM+hAoFAMFyMrl9uwSGNT1OB0RdCJYgPR+XO4PqJ53JW3jHkxdgONECuIQMZmVpXt1Oiwd1Kk7udYktRr/DLgRLIh/iydXvE+XtsVZTZayi2FDEjZcJB7WtW6kTmpBZT7Wzkq9Yd/S7/RMX/APju+DNIiWD9jYWSlHGcV7AUl+rhhar3B7Tue43reL9xPVn6VG6fetmAOpwsyZrDjyZfhIrKA3v/g9VjG+jQAX/Z2G93Pc0XraUUmXL4y+wf8K0xJ0UcS5Ji4uz8Y3l03k+YlzqZ/fZabtv+d5rd7YPad082t+/lmk1/ZGXtp0hInJi9kJ9OuYQ/zbqZ+2fewI+KL2JJ5hw8qpd/Vb7DNZvuY09n1ZDsWyAIxeoN//fk9HW7KAJOBYMU2a0TuDkOdTxMTR7XPb/rRjlMlJCjixI9Cexf7bpuiIYhQqbEaOvwFSqy9HSmAL2CRfX9HFvoEiZOKiF9cj6+TheN/9uGu9n/fdjeUQEQdNh81db/eQb8v7N373qa9xvXx7S8QCAQhCJECUHc6BYlxNdOMDjOKzyOGyedP+C6V52skGtMp8ndHgwybHT5bzIHEpoZjbHmXAqMWey1VdPk6n3zuqkrwG1p1twhqdk9syvwbU3zlj6XO2CvZ1vHPopM2ZwcY6lHNC4sXE6SYuTthi/DHCd94fC5eOrA2wD8Yup3BuU2OClnISflLKLFY+Wv+17t184dicf3/48N7buZYM7nwdk3x5RJkmVI5a7pV7E4YwaVjgZ+s/MpPGr0p4+x8FnzVm7f8TgtHivLsxfw1Pyf85Mp32J59nymp4xnVuokTsk9gttLLuOxebdxbOZsGt1t/HjbX1ndvPmg9t2TNc1b+NFXf4v4fRUcHvQUJRw+F2NM/n8bgd/FaL9XitzbKdEzSwLCH0KEtu3U95MtFciN0PpxSgT2Eyp4jOYWl7GU/sUqykiKTO7yaVim5/tbhr5ZirOqja3W8vAFY/zN3dVZyZqWrdy/94WYlhcIBIJQRu8v90Hidrv5+9//zs6dOxM9lFGDT/MBo+8phmBkkG/y50rUu1oBaHK3AZA9yHyHUCRJCrol1rX1/s0IXOTNTp100PsCWJQxDb2k48vW7X3eKL/T8BUAp+QeedAX6ql6C+cVLMWr+fh3dWxuiVdrV9Pq6WB59nxmpk4c9L6vn3AOuYZ0VjdvDib0x8rHtZt4tWY1qbokfjPtygG5RQyyntunXsaMlAnssVXx1IG3Bjr0IOtbd/K73c/g1VRumng+P53y7T5FmgJTFrdPvYxrxp+FV/Pxh93PsaFt96D3H8CnqTy2/3Xu2vk0q+u20OrpOOhtDifiXHzwXDPhzIjTQ9vxArg1L3dPv4az84/l2vFnd02NfEMaySkRmj0QECNCS0LCnBL95BQEyzf6uSEOLBe6n9H44ON7E87mkjEnM8acw8+mXMLf5/w4OM/bIz/CEyFP4tkFd5AUwRnW5G4n/ZiJpCwYi+b20vTuDtZ+9XnYMrHKwCJ7QiAQHAyj75d7iDAYDDzyyCNYrdZED2XUIJwSgkRS0FXyUdsVdtnUZcfPMaYPyfZnpk4AYJ+9Nmy6T1Mp7diHUdYzxTI03RySFBML0qfS6XOwub0s4jIe1cv7jeuRkWMOxOyP8wuWYZT1fNK0CWc/rQXbPJ28XP0xOknhsrGnHdR+LTozV084C4Dnq96LeT236uX/Sl8C/G1QA8LUQNDLOn4+5VJSdEm8Wrt6UMJAo6uNP+59HhWNH0++OOawUEmSuKBwGT8svhAVlbt3P8P+Ht+vgaBpGn8tf5VXa1eTokvioaNuOuQ7jIhz8cHzzaLl/GP+z3pN//n2R3tNyzdlcsPE87Do/K0no4kCkRwKoQ8cAmJBaHvOAZVvEFv5RiQnx2h88HFewVK+M/ZUwB8mOtFSEJzn63GM2jydvdbPMqRGdAU2uNuQJIm0BWPJWDYZJIldH3zN22+/GXSl9edWCaDSPY7BONoEAsHhjbg77IM5c+ZQWlqa6GGMGkSmhCCRBG5Ig6JEl219KJwS4C/hAKjq0Xa03FaD3ediesqEmGp9Y+XYzNmAvyQgEl+27qDda+OIjGkDCqbsC4vOxDGZs3Cqbr6Ikp8R4J2Gr3CoLlbkHUXBIMSAnhybOZux5ly2dexjqzWyENOT/9Z8SrW9icUZ0zmyK4BvMOQY07ll0jcAf0ZHfzdKofg0lT/seQ6r1845+UsG1d705Nwj+HbRSdh9Tv6w53m8qm/A2wD4d/UHvN3wBRn6FP4y5xaOyZ01qO3EG3EuPngKTdn8qPiiAa8X7YY0UveNUIEgUtFHaBhlfx1tYi3fkCPsST7M2lrGUlYmSRLJirnXdHtIS2TLlFxyTpuBV6+xZs2nNH+wC9Xji1mU8IT8Ltn7Ea0FAoGgJ6NelHC5XFRWVuJyDfwH8ic/+Qn//ve/efbZZ6msrMRut+NwOML+E8SOt6t8QzglBIkg4JSocwWcEm3A0IkShaZsZCQqe4gS2zq6SjdSBl++EImjMmYgI/N5y7ZeT8oAPmvx502cknPEkO73+K7WnB81bexzuY+75q/IO2pI9qtIMhcXnQjA8zGEbXZ47Txf9R6KJHNNl8viYDg2czbTk8dTbq8ZUL7Dx00bKe3Yx2RLEVeNj2yjj4XvjD2V2amT2G+vZWXt6gGvv6W9jGcqV5GkGPnt9KspNB98lkq8EOfioSFDnxxx+ik5RwJw1bgzes2L9sBbH+y+EVlojeRgMMnd5QMpur7DhQPrR+u+MT15PAATkrodA2flHcPRGTNHdaZEJEJLVwDum3k935twdi9nXlKX+6UvjAWppJ85jYzMDJz7W2h4fSttza0xjSO0bKTtEC8LEwgEhx6jpgDsqaee4r///S8ej4dLLrmESy65hCeeeIK//vWvuFwuDAYDV1xxBT/84Q9j3uaFF14IwN13383vfve7iMvs2BFbKrGg2ykxGq2VgkOfgi7ram1XSGOT228HjyU4LBYMsp48Yya1rmacPlewjWMgT2LWEOVJBEjVW5iZMoGtHeXs76gjnXA3xM6OAwDMSSse0v0uTCshVZfE12276PDYSdH3zmiosNexz17LBHN+2E3DwXJ89jyeqVzFxvY91Dlb+mxT93HTRuw+F+eOW8K4pDxU9eDsxJIkceW4Fdy2/e88U/kOSzLn9LoZ6IlX9fFs5bsAXDfhnH4t6/3t//uTvsH1mx/g2ap3WZo9N+YuNG7Vy0PlLwNw88QLmGwpGvQ4EoE4Fw8NZiXyTemctEncNOn8iN/PqE6JCJkS/RHqjugv26W/8o37Z92Iw+ciWdf99P/GSefHPJbRxGm5i9nUvjcYgDw7tZjZqcW8U+/PFArkd1ii/P17oqSZuOTqK3nu/o9xVbXxzjOvctSVU5g+fUaf64U6Nlo9HTEFCgsEAkGAUSFKPP/88/zxj3/kjDPOID09nT//+c80NzfzxBNP8L3vfY+ZM2fy9ddf8+STTzJlyhTOPDO2p1X33HPPkCTlC/z4hFNCkEACN7B1zm6nhIxE5iA6QkRjrDmXWlczVc4mJluK0DSNUus+dJLCtK4ne0NJsaWIrR3l7O2oZpGpW5Ro83RQ62pmnDl30G1Ao6GTFY7Lmsub9WtZ07KF0yM4IT5u2gR0uyqGCkVSWJY1jxdrPuKzlq1cULgs6rLvNfjb0p07fgnEXm3RJ3PSilmQNpUN7bv5snU7x2bN7nP5dxq/otbVzMK0kiERpcaac/lG4fG8UP0B/6n+kO93lZT0x4vVH1LlbGRhWsmQ/03igTgXDw2Rgg4BzLIxqmDWX/mGLMkUmrLJ0oeLooFMidD1QzMlUvsTJQLlG1GsGookhwkShzNmxcid077ba/p+Rx0A45Pyge7SxVhw61WyT5mOdWMlrj1Onn/+GZYuPZ4TTzwFWe6+htvdWckHjV9z1fgzwkSJlhicEts79pOkGIdUuBYIBCOXUSFK/Pvf/+baa68NuiCOO+44rrvuOm688UZuvPFGAI4//nhcLhfPPvtszKLE+eePDtXd4XCwYsUKzjjjDG699daEjUNkSggSSYouiWTFTK2rGZ/mo8XdQaYhdUi/j2PMOXzVtoNKRwOTLUW0e220e21MSioMq6ceKgIXm2XWahaZujMTAi6J4RBCwF/K8Gb9Wja17+0lSmiaFizdWJY9b+j3nTW7X1Fiv72O3bZKxppzmZU+gZYWW8TlBsMZeUezoX03HzVt6FOUUDWV/1R/CMAV404fsv1fULiMlbWr+aDxa64cuyKiUyWUTq+Dl2s+xiDpuGkQ7XQPBUbLuTjRmKOJElGmQ19Bl903pk/Muy0oQvQkVJQIbR/an1ga7L4Rc+8HQTQmdJ0nZqVOYlvHvpjWaXF3IMkSaQvHMbtkHIYvW1i9+mMqKytJWzqJ6XnFzEiZwPe3/hmAiUkFYU6YSGGboaiayo+2/RWAVUffP5iPJRAIRhmj4pF1ZWUlRx99dPD9EUccgaZpLF68OGy5Y489loqKigFvf+/evfz3v//lkUceobGxEYCKigo6O/v+0T1UeOSRR5gzZ06ihyEyJQQJJ9+UiUv1UG6rRUUdsjyJAD3DLtu7Lswy9EPnxghlYtfF5t6OmrDpOzu7RImU4RElAh0b9tiqes2rcNRT62qmJHnskARc9mSqZSw5hnR2dFTQ7I7ckeG9hnUAnJp7xJDfhB+RMZ1kxcyXrdvp9EbPMtjRUUGDq5XZKZOGtMNFii6Jk3MW4VI9rGr4st/l321Yh1N1c2LOomH5e8STkXAufv/99zn11FM59dRTeeutwbeQHQ6iiQ992fqjZcLoQto/ypIc9d9ZqKQwoPINKbbuG4LoBIItF6RNBeDiohO4a9pVTEoq7HfdRld3jkTqxByuu+4mcnPz2bpnG3f+6S6uf+uusOX/tm9lWCcot+rpc/uB60GBQCAIMCruDg0GA05nd4Kw0eg/8SYlhZ/09Hp92HL9YbPZuOWWWzjzzDO5/fbb+fOf/0xDg/9m4//+7/94+OGHh2D0w8v+/fspLy9n2bLoNud4ITIlBIkmIBqsbdkGDF3IZc/tB8IuA0+L0vR9h7oNloBTYq+1Omz6jo79AExLHjcs+03RJVFoyqbG2dTrxnyvzT+WWSlDm6ERQJIkjs2cjYbG5y29O48EnBoyEicOotNFfxhkHUuy5uDRfKxp3hJ1uU+6wjCXZs8d8jGcU3AcAK/XfRYsi4uET1N5o+6zrnWOHfJxxIuRci72er3cd999PPfcc7zwwgs8+OCDuN3uRA8riFkeuFNiQfpUXjnit72m93cejyRR6EOEjFgzJWLt/CDozZ9m38wtk74ZLNkyKUaOzJjOD4svDGsPGulBUZ2rJfja6XOTnZ3N9dffxMxF81CdHprf3cmbb76B5vNf17k1L283fBFcpz/RIbRTR3/tpQUCweHBqBAlxo4dy65du4LvFUVhzZo1TJs2LWy5ffv2kZeXF/N2//CHP7Bx40b++c9/smHDhrDaxmXLlvHpp58e1LjXrVvHddddx5IlSygpKeGjjz7qtcxzzz3HCSecwOzZs7nwwgvZsiX6RXAk7r33Xn70ox8d1DiHCuGUECSauamTAXi/6Wtg6EIuA4zpIUq0e/1lA+lRUu8PFrNipMCURbW9CUfXhZ1PU9nVWYlJNgRFi+EgkOy+t4dboqxLlJhk6f9p3GBZ0lU2sbald5vIelcrzR4rxZYisoxD+/cNsDzYgWRDxPk+TeXT5s3ISCzJHHqX2lhzLgvTSmh0t7GxbU/U5da17qDW1czc1OIRXbc93OfioWLz5s2UlJSQnZ1NRkYGc+bM4euvv070sIJEy43oS5QAsOjMvLDo1/xz/s+D0/T9hLwScE6E/K1C3RT9iRL6kMwKweAYa87l9LzFvVwsU5LH8I/5PyPHkA5AkmIK/qYt7mqdXGGvDy7vVP3Cmk6n4+iTjyfr5GlIRh3vfPouDa9txd3cuzzO10/b4lDRor9SD4FAcHgwKn7tL7jggl5hSNnZ2ShK+Elz5cqVHHnkkTFv99133+XWW2/lqKOO6rWtwsJCqquro6wZG3a7nZKSEn71q19FnP/WW2/x+9//nhtvvJGVK1dSUlLC1VdfTUtLt4J9zjnnRPzP5/Px/vvvM2HCBCZOHNpWhINFDWZKjIqvnWAEsiDdb2Nt6LKmDrVTIk1nIUWXRLWjEVVTQ5wSwyNKQHe98H67P9Sswl6HU3VTkjx2WP+tBUs4OsNFifIuUaJ4GDs8TE8Zj17SsddW1eu3f2dnRXCZ4WJ26iSy9KlssZZji1DCsc1aTqungzlpk8kYwiDVUJZk+cWOr9t3RV3m3a4ylrPzlwzLGOLFcJ+LAxzsg4KGhoawBx95eXlBR8ehQLQSi6QYujKk61PCur2Elm9E3FfX/6P5HFL7yUL5cfHFFCcV8puSK/sdm2BwBIJCPaqXHxZfyJ9nfZ+Li04CYJ+9Nric09ft9rH5nJjHZ5J//jw+0+3F02Kj4fWtWDdVoYV0OPL2U3bjDWsfKkQJgUAwSoIuv/3tb8e03Msvvzyg7bpcLtLT0yPOs9lsvS6OBsqyZcv6LKt46qmnuOiii7jgggsAuPPOO/n4449ZuXIlV111FQCvvfZa1PU3b97MW2+9xTvvvIPNZsPr9ZKamsq11157UOMeLN1OCVG+IUgMucYMikzZVDubAMg2pg/p9iVJYqw5l+0d+2lwtQUzJYbLKQEwIamAtS2l7LfVUmIZFyyfKBmm0o0AAafEbltlcJqmaZTZajBIOsYOYzs4RVIYZ86lzF5Di8ca5njZ1ZWnMZyfX5ZkZqZOZHXzZvbYqpiXNiVs/qddpRvLsoa+dCPAovQSAL5uiyxK+DQfm6x7Mcp6jsiYHnGZkcJwn4sDBB4UnH/++dx888295gceFNx5553MnTuXp59+mquvvppVq1aRmRlbe9ZDEXNI1kNfhIoa/Zdv9F1+Ecg7iMZESwEPzz00XJ6jlUA3FKfqxiDrKUkZR7vH73qocjQGlws4JcAvSgAoFgPZK2bQWVpL+/oDWNcfwFHRQuZxk9FnJuHVvHhVHzafM2L5Ymj5xpv1aylJHjciQ3gFAsHQMSpEieFi9uzZvPbaayxdurTXvHfeeYf584evtZrb7aa0tJTrr78+OE2WZY455hg2bdoU0zZ+/OMf8+Mf/xiAV199lfLy8oMSJGT54E4YgRRtvawc9LZGG4HjIY5LOD2Py1AcnwXpU6mu84sSucb0IT/mY8w5bO/YT42rCWugfMOQPGx/20nJflt+haMOWZaC+8w2pg3r92lqyljA75QI7Kfe2Uqnz0FJ8lj0yvCeXiZaCimz11DhqCPHlB6cHgj5nJE6YVj/XZWkjA2KEgsypobN297l1jgqc8aw/Q3yzBmMM+dxwFFPk6eNXGNG2PxdHdXYfU4Wpk/FpOvd+WUk/ebE61x8sA8KcnNzqa/vtr3X19ezZMngXSoH+7eJ9De+fuI5/H1f+MMM3SBEHYOi63N8oTeYocvdNuXb1LtaSDEMbavigTKSvv/DRWjwaOA4pBssJClG7CE5D07VjYrKSzUfU+fsdupKkkTKrEJMYzNoXV2Gu95K/WtbSJ0/Bk+el0cqXuN/dZ/z6LxbmWgJLx9TpW4nxXuN6zkxd2HQyXioI7470RHHpm/E8ekbIUr0wS233MKVV17JFVdcwWmnnYYkSXzyySf885//5J133uHZZ58dtn23trbi8/nIzs4Om56VlTWoDiIHi04nk5V1cE97zV7/hXGSyXjQ2xqtZGQMTyDiSESvV3p9T4bi+Cxzz+WNus8BmJJXSJZlaL+LE5vyoAHsegd2yf9UaXx2LlkZw/Odn2eYBDuh0t1AVlYyaoP/CVR+esaw/jvLIpnxyXlUdNajpPiFl621ewGYkTV+2P+Nz8wZz/uN66mnObgvt89Dma2aNIOF2UXjgzdGw/Hv6githMf3/4/97tqwz+pRvRyw15NpSGFKQeGwPv1bUjCL58vr2eWpYHrh2LB5O5v3+5cpnNXn32Ik/OYk8lwcIJYHBXPmzGHnzp00NTWhKAqbN2/md7/73aD2NxTn3AChf+Ors1bwXNV7WD324LSB7GdRdgn7OmrJz0nrM+9Bkf3zJFkK2/5FWYkP3Q5lJHz/h4sUkxna/a9D/0ZjLbnssnY74Dyal3/WvsWLFR9H3I4+zUzOGTPDXBNrW9/mwAwNY14qq60bWTQu3E3Wam0Pe+82uEfcdeHh/N3pD3Fs+kYcn8gIUaIPFi1axD//+U8eeOABfvvb36JpGn/5y1+YO3cuTz31VELabGqaNqiL3IPt8+71qlit0dvfxUJ7h/8iyOtWaW4WNYShyLJERoaF1lYbqirSxgE8Hl/wezKUx2eSXISMhIqGbNfR7Bza72Kyz3+y2ddcR6PNf+El2WWa1eH5zqdKySiSTLm1lubmTho7ui72nPKw/zsrNhdR0VnPlwd2sSijhI11/pZwY5S8Yd93Hv72lqWNFTRn+Pe1s+MAbtXLPMsUWlpsw/rvKteXiYTElubysM9aZqvBq/mYmFRAS0vvALihZIbJnxf0SdUWjkueFzbv8xp/COhU/fiIf4uhOjapqWb0+uEtyTsUzsWxPCjQ6/XceuutwZLSH/zgB8FuYANlKM650f7GN008n3t2dws5A/m3+rup16Ci0dpi73O5wP58vkPzfC/OuXBU6kxW12/hhJwFYX+jHH06u+gWJZw+D+9UretzW5IskTLb75po+6yc5romGstqsUzLY09SCc0F4d+Bps6OsPet1s4Bf0+e3P8mGYYUzi/s7aAaTsR3Jzri2PTNUByfeJxzE4UQJfph4cKFPP/88zidTtrb20lNTcVs7rsWcijIyMhAURSamprCpre0tPS6KIoXB/sD41H9wUYysvixioKqauLYhNDzWAzF8UmSTXx7zMm4VDc6lCE/3oFE83pXC20e/4VXqmIZtr+rLMukG5Kxum34fCodHv+NTJJsGvbvUoHRLww0udpQVY2yTn+excSkgmHf93izP+Cz3FYb3NcOq//msMQyNmz/w/HvyiQbGWfOpcJRT7PTGgy03NvhD/6cmFQ47MdgVvIk9JKODW278fh8wWBTp8/F9o79pOiSmGju+28xUn5zEnUu7o+eDwpOOeUUTjnllCHZ9lD9XXr+jZdmzWPWwkl8++u7BrUfCQlVi20djUP7+zVSvv/DwfKsBeQbsyhOKgo7Bvldv+sBfKov5tas+nQz2Stm0L63CflLPbad9XxYvZIN2kI848xMsBSQY0zH7fOGrWf12Af0d1A1lf9UfwjAufnHxbzeUHI4f3f6QxybvhHHJzJClOiDtWvXMm/ePMxmMyaTCZOp/4TqocJgMDBz5kw+//xzTjjhBABUVWXt2rVcfvnlcRvHUOIT3TcEhwiXjh2am4ZI5Br8tf3+oEsbBkkXDBQbLtIMFppdVlyqG5vPL0oEktWHE0tXWF2n11+mUmavQUJiUhzaT2bqU0jTWah01ONVfehkJZgnMW0YO2+EMjV5LBWOenbbKllsmAFAub0GgOKk4WuJGsCkGCi2FLKz8wDN7vZgrsS2jv14NB9HpU0eFS0VE3kuDnAoPig4GDINqfx51vfJNKQOy/ZFxfShjyRJzEiZ0Gt6gTE8tNWnqXg0b6/l+tquZUoO5nEZtH1VgW1PM39//lHW6SqYunQeR0yeFxQ5JCQ0tGCAZqyEthQVCASjAyFK9MF3v/tdFEVh+vTpLFq0iIULF7Jw4UIyMjL6XzkGbDYbBw4cCL6vqqpix44dZGdnk5OTw5VXXsltt93GzJkzmTNnDk8//TROp5PzzjtvSPYfb7xdacu6/vqbCwQjmGyjvxNEnbMZq9dOtiFt2FPFU7vSza1eO51dLSr7S7cfCiw6/82hzedA0zSaXG1k6lMwKYOzrA8ESZKYkJTPZmsZVc5GJiTlB1u9jhnGzh+hTE0ey3uN69ndWcnijC5RwuYXJSZZhl+UACgwZbGz8wC1zuagKBHoQDI7ZVJcxjDcDPe5OBZG44OCkpTh7NAjZImRSr4p3CnhUt3BoPKBIBt1ZB5XjDo1n86tXtz7rWx7aTXlU3aStmgcisVAuj6ZVk9H8LwVKwHnrUAgGD2MSlFC0zQefvhhLrroIrKzs4Ovc3IGdqH6+eefs379er7++mu++uornnnmGVRVZdKkSSxcuJBFixZx9tlnD3qc27Zt47LLLgu+v/vuuwG46aabuPnmm1mxYgUtLS089NBDNDY2Mn36dJ544okR23rMR5dTgpH/5E4giIZB1pOhT6HB3QYMbzvQAGkGvyjR4bXTGXRKDP/T5IBTwuZ1Yve5UNHi4tAIMDGpkM3WMvbba5mQlE+H11/nnqqLT4jU1GR/uGRABAi0RNVLurgJI4ESmlpnM3PTJgMExZlC08h7gh+J4T4XBzjcHhQMJwFJIlbbv+DQoSCkfCNTn0qLx9prmbPyjuGN+s9j2p6cZyFv0ngyNjhpX38A+54GHPubSZlbxLgjF9DKIEQJ4ZQQCEYdo1KUUFWVhx9+mOXLl5OZmRl8PVBRIiMjg5NPPpmTTz4Z8Pcw/+KLL3jqqad48cUXeemllw7qQmjx4sXs2hW5x3yASy+9lEsvvXTQ+ziU8HU5JRThlBCMcnKN6bR25UlE6tE+1KTq/e31OrqcEjpJwTjMJSPQLXx0+hx0+uxd0+LX6m9Ckj9XYr+9DvB/fr2kDHu5TIBx5jwA6rtEgCZ3O50+B1MsY1Ck+PzOBZ5q1rqag9MaXW0A5BjT4zKG4Wa4z8UBDrcHBcNJwB2mxZg9ITh0yDNlckzmLGZmj+f1im7hoTipkHavDafPTZ5pYN/5XfZKLCV5mCdmYd1UTWdpLdb1B6jY58E+w0LnEb1DgasdjWxs38MZeUeHuQ3LbTX8cNtfBv8BBQLBIcmoFCUg/ER4MCdFm83Gxo0bg09ptmzZgtFo5Pjjj2fhwoVDMdTDBpEpIThcyDFkBNPL4+OU8O8jUL5hUUzDXjIC3U4Ju9eJrStXIp5OifyuC+MmdxuaptHhtZOiS4rLZwcwyQb0khJ0aJTZ/EGf8SrdACjsEiXqnC3BaQGnRKCcYzQQj3Px4fagYDgRxRsjF0WS+c30K8nKSubNA18Gp6fokvjT7Jtx+Nysbdk2oG0Grv9kg470I8eTPC2P9q8qkOp9tH66ly932dl2ydHMnDkr+Pt91aZ7AX/+SUnyOLK68k/+XP4SLtUzFB9VIBAcQoxaUWIoOP/889m1axdZWVksWrSI0047jV/+8peUlJTE7aJ3NBEIJtIJUUIwyskLuRlM08VBlOhySrS4rXg0L8m69GHfJ3RnSnT6HMEb83hkWQQIHNt2jw2n6sar+UiJo1NDkiRSdBbavZ1omsZ+h9+xMTEOQZ8BCkzd5RvgF+Eb3W2k6JIwxyHbIx6Ic/HI47yCZfy5/CUuLDoh0UMRHAShD5GMigGDrA/+1x8L0qZi97nY2VnRa54u1UTWSSUsZzovvvkyHY1t/Oc/z1FYOIZTTjmV4uIpwWXv3vU0Khq/m34NC9NL8HYJHAFUTeWVmk9YlD6NiZYC3qj7jDXNW/jt9GswyIO7zdE0jQpHHWNMuSIHTSCIE0KU6INdu3ah0+mYN28e8+fPZ8GCBeIi6CDodkqIH3jB6CbUNh8Pp0RqV6ZE4MY0Xm6FYKaEz9kdsBlHp0SgNKbN04nV67f/psZRlABI0Zlp8Vix+1y0uv0lO9ldbWHjQYY+BYOkC5ZvtHttuFQPY0zxybSIB+JcPPI4PW8xR2fOIF2fkuihCA4CXcj1WmhZXCyiRLo+GbWHgNCTojFjyTtjFrp6N0kH0ti6bzs1/6xiwoSJONPaMBamoXb9M/+4aSML00uC15IBVjdv5skDb/LkgTf56ZRLeHjfSgA2tu8OBhAPlI+bN3Hvnuc4OWcRP5588aC20ReBjlECgaAbIUr0wfr164N20XfffZcHHngAvV7PggULWLRoEUcccQTz5s1L9DBHDD7hlBAcJoTa5uOTKREuSlji5FawKF3dN7yOkIDN+IkSgUBLq9dGR5coEk+nROj+Orz2oDCSHoe/eQBZksk3ZXHAUU+n1xHMkxhNpRviXDwyEYLEyCfMKREmSvR/+6CXdWHihVk24lBdvZZJ1plx5it8nNuEI9vBWfXj2b9/H0012zHkpZA6fyzGorTgOmqPkMtAphDAvXueC75+oeoDSpLHDerBwGfNWwF4r3H9kIsSm9v38tPtj3DzxPM5I/+YId22QDCSEaJEH5jNZo455hiOOcb/o+HxeFi7di2PP/44DzzwAJIksWPHjgSPcuQQrCkUTgnBKCdclBh+p0R6wCnhiq9TQicrGGV9mFMinqKATlZIVsy0e2zB8pF4ixIBYaTDa6fdYwubFi8KTJkccNRT62wO5knkjCJRQpyLBYLEEOpsNSndAoMxBqeEXtKFiRfJOjMOd7gooZMUTIoRq9eOJEkkTczivLMu4eONa9C9vh53fQdNq7ajz0mmaXkRWrGGr0dOXOC3vyc7Oiv41Y4nuW/mDRiV/scbynCasP5T/SEAf9n3qhAlBIIQhCjRDy0tLaxfvz74365du1BVlSlTpoigywEiMiUEhwu5Ifb99DhkSgTKNwJhh/F0KyQrZlo9ncELw4B7Il6k6S1UO5to6nIIxFuUSA5xSrQHSkji6JQAKDD6W3/WuZppcrcD/g4wowlxLhYI4k+oUyK0fEMfg1PC0MMpEUk8iNQtaZe9kpf168k7fy6OihY6Nlbhaexk8//W8PAehZasKrSxeiTFP7Z2T2fUMey2VXLOVz/nvIKlfG/CwXfoGQpkUXYmEEREiBJ9cOqpp3LgwAEURWH69OksXryYG2+8kYULF5Kenp7o4Y04RKaE4HAhRZeEUdbjUj1xcUoESkQ8mheIb9ikRWem2WMN3gzHsyUo+J0o1c4mqpyNAKTo458pAV3lGx4bElLchZFAF5JaZzOtXRfoo6l8Q5yLBYLEEJopEeqOiMkpIevClkvWmXG63eHbl3WYlXBR4utWfwccSZJImpCFeXwmzspWajdW8d7uz6hxNuIyaSTPKPB38fD0bifak5W1qwckSkjD2D9GRjyYEwgiMSpFCUmSKCwsxGAwhL0eKGeccUawVtVsjt9F/mhFZEoIDhckSWKsOZcKez0ZcairTjOEP5mPp1Mi4Iyod/ldGilx3DdAWlepRJWjS5SId/mGvjvXwuq1kaIzx73tcXcHjhY6utwauXEM2xxuxLlYIEgMYU4Jpf+gS72k4Om61vOXb3Qvd8fUy3m26l3KbTU0e6xAV/lGD6fEurbwUixJkjCPy8Q0NgNrXQdJ21Uc+2qwrqugY1MVhllWvFOT0KXE16U3WGRxDSwQRGRUihKyLPPhhx8G34e+Hgjf//73h2pIAoRTQnB48bMpl9Lu6RxwLetgMCtGdJISLJGyxLN8o2tf9V1ZBvEK2QwQcKJUORqARHTf8O+v0dWOS/UkxKFQYOwSJVzN2L1OYHRlSohzsUCQGJQwp0RI+YYU+fbBKBvwdIUe+4Muu5ebmjyW306/mp+U/i0oSuglJUzsAIKiRk8kScJYkAoFqeS15dFZWottdwM1m8twb/JiHp+JZXoexsK0g+7MM6xOCVG+IRBEZFSKEkNJZWUlTzzxBBs2bKCtrY309HQWLlzIVVddxdixYxM9vBFFtyghVGLB6GeMOYcx5vi0ZZQkf8lAq8ffkjKe5RtJXU6JJlegfCPeooTfqVDjbAIS0X3D/3mru8pH4h1yCZBvysIkGyi1lqOTdOglhYw4lA3FE3EuFgjiTzSnRLTyDb2sgy5NoWemREAoMEjd03Sygkk2Dnhc+nQzGcdOInXBWGw76vDuqMOxvxnH/mZ06WYs0/OxTM5BNh56tzmifEMgiMyh96/1EGLbtm1cdtllGI1Gjj/+eLKzs2lqauLdd9/ljTfe4JlnnmHmzJmJHuaIIfAUVzglBIKhJ0yUSIBTQkXtGkd8RYmACBB4upao7hvVXeUjaQkQJQyyjgsKl/Fc1Xt4NB8FxqxRZREW52KBIDFEy5SI1hJUDnEY6CVdRPEidF2dpAtzYAwUxawndcFYUuYW4djfQuf2Otz1VtrX7sP2dRXGSZlYpudjyIr/73I0DvbBnFf1oUgyr9WtwSjrOT3vqCEamUCQWIQo0Qf33nsvM2bM4PHHHw+rY3U4HFx77bXce++9PPPMMwkc4cgi4JQQmRICwdCTqk8Cv2s2vkGXId02dJJyUBeYg6FnkGi8nQoBEaS6y6mRFufOGwG+WXg8b9d/SYvHOuo6b4hzsUCQGEJvoA1hokRkp0Ro2YRe1hGpEiN0Xb2k9Aq6HAySIpNUnE1ScTbuZhv5FQrufa3s3LkP28569DnJfKV8yezZc2LKpTlUyzc8qpdzv/oFs1ImstlaBiBECcGoQdwd9sHWrVu5+uqre/2Amc1mvvvd77Jly5YEjWxk4gs6JcTXTiAYakIdAvHMlAjdl0UxHXQt70BJ7yFCxNupETjugc4n8W4HGsCkGLls7KkAjDHnJmQMw4U4FwsEiSH0ei3U9aCXdZyeexRTLeGlU6EOLb2kCz6MCkUvd7svdHLvTImDxZBlYczxM1lx3cWkHz0RXXoSnsZO3nhjJffe+ztefPHflJXtQdO0Xuvu6Kig2d2Ot+v3PBSP6mWbtTx4LTsQOr0O2ro6I8VavlHnbEHtcfzaPJ34NDUoSAgEownhlOgDo9FIW1tbxHnt7e0YjQOvgzucEUGXAsHwESpKxLV8I8QpEe92oBDulNAnwKnRs1wkTZe4LIdTc48kw5BCSfK4hI1hOBDnYoEgMYRer/V0R9xS/A3WtpRy566nupcn1Fmhi3gDrw/NlJB0vbpvDAUu1U2KOZnkmQVYZuTjbuxkoXYEW7duYevWzWzdupm0tHQWLFjIvHkLyMzMos7Zwg+3/QWDpGNu2uRe2/zHgTdZWfspV4w7nZuzzx3QeC75+i5cqoc3j7o3JqfEFy2l/GbXU5yeu5hbir8ZnO6NcDw1TYv7wwCBYDgYFY+sP//885iW83g8/OhHP4p5u8cffzz3338/69evD5u+fv16HnjgAZYvXz6gcR7ueIVTQiAYNsKcEkr8WqMlhQgg8XYpQHi5RIrOEveLM6OsD0uiT5RTAvzW6cUZM0gfZSGX4lwsECQGXQ/nQ0963mCHvlckBTWCGyE0UyJS942hwOlzB50dkiRhzE3h9LPO5qc//SUXXHAhEyZMoq2tlQ8//IA//ek+Hn30Yd799D18djduzYtH7e2UeLv+SwDWNA/MmeX0uXGpHgDsPhdSyK3Xhrbd2LyOXut80rzZv8+GL3ttqyeR3CgCwUhkVDglrr/+eh566CGWLVsWdRm73c6NN97IunXrYt7uz372M2644QYuvfRSsrKyyMrKoqWlhebmZubPn89Pf/rToRj+YUN3poRwSggEQ02gFaZR1vsT0ONEqFMi3u1AITxDIhGiSKDzSUtXi7u0BLhFRjviXCwQJIZwp0QEUaJH9kJoFoMsSRFvmMOCLmUlqnt2QdpUNrTvHvCYAZyqG2MPscOhOkk3pFA8cxprUvexefwuMithbmseVVWV1OzdRG3rdoyFaVTPllFzvcgGv9tDkRTcXUJFz/OrW/Vwz+5nOSlnIUuy5vQayz57bfC1zevApXYLC7/Y8RizUyZx36wbeqzVW8wJfK6euFQPOllcVwtGPqNClDjppJO46aab+NOf/sRJJ53Ua35LSwvXXHMNZWVl/PWvf+13e06nk08++YTq6mq+9a1vcemll7J//34aGxvJyclh7ty5LFmyZDg+yqhGOCUEguEj4JSId/eJ0EyJeLcDBX+bOqOsx6V64v7ZA6SGihKjzKWQSMS5WCBILDo5ctBlgJ5dfkLfy0gszZ7LizUfclbeMcHpYc4ynSVitgPA4owZgxYlrhl/dq9ciDaPjXR9Cn/Y8xxft+8Ci0T9NJg4/iiUqgOY9jaw7vM9uKrbKG/YRLtqxzw2g6/NG5g7fU6ww5Shh2NkdfNmvmgt5YvWUlYdfX+vsey1VQVf/2z7o9S5WsLmb+0oB+A/1R+yu7OSX079TtTP5fC5ek1zqx4sxM8dKRAMF6NClLj//vv55S9/yQ9+8AP++Mc/smLFiuC8qqoqrrrqKtra2njqqaeYP39+n9uqrKzkiiuuoLq6OjgtOTmZP/3pTxx33HHD9hkOB1SRKSEQDBspev8NeTxLN3ruLxFOBfALAQ2u1rh33ggQKoYkagyjDXEuFggSj0w/Tok+RAlJkplsKeKVI+4mSenOfVFCnupnG9LQQlwBOknBq/mQkAbVqW1B2lTunPZd9LKOtS2lYfOu23w/j8+7zS9IhPBoxesArDjqKArGL8RV246zrBlpvxPH/mZeevHfvGV4jSZpJ+YJmTB7Qtj6gdKMaOzoqAi+7ilIBFA1lacOvAVAk7udKDpNmMsigFvre//DQYW9jjHmXPGQUTCkjIpvkyRJ3HPPPXzzm9/kJz/5Cf/9738B2LlzJ9/61rdwuVw899xz/QoSAPfddx+yLPPcc8+xefNm3nzzTaZPn85vfvOb4f0QhwHCKSEQDB+BG+N4h02GlmzEs+tHKGldQkAigjYhXJRIVEvQ0YY4FwsEiadfp0SP8o3Q94HXFl14V6ZWtzX4WpKkMFEicH2ok2TkQT7ACpRXGCOM98mKN6Ou927DOiRZwlSUTvrSYgovWUTWSdOYNnsWer0e54EWWlfvZcNT7/K3v/2NL774HKu1nagKAv4Qys3te/sd8357XfB1p9cRdkxCcUTIlHBHyL8YTja07eZ7m+/nwbIX47pfwehnVDglAvz617/GaDTyi1/8gl27dvHSSy+Rm5vLP/7xD/Lz82PaxsaNG/nZz37GwoULASguLuauu+5ixYoVNDQ0kJs7ulqtxRORKSEQDB+ZhlSAuIccJutCum8kIFMCuj9zopwaAZeKYZiS5A9HxLlYIEg8YZkSUu+b/J4PmUKDLqOFDje628PeT0seD8AUyxiqnU2AB0VSDvoBVqQAzd2dlVGX79nZQlJkzBMyOXnuGRQZs3nv1UocFS0o9RJ79uxhy5btvPHGa7SleGi3VGEem9GrE0aNs4lmj7XnrsKwKCZKO/YF33d47VGXjZYpMRD+Wv4q45PyOCv/2AGtF2BLVzvS9xrX8+PJFw9qGwJBJEaVKAH+QCyj0chjjz3G3LlzefTRR0lLS4t5/cbGRsaODe+7PG7cODRNo6mpSVwIHQTeYPmGcEoIBEPNeHMet0z6BjNTJsZ1v0bZgCLJ+DQ1YU6FgDshUZ0vAk6JVH38u3+MVsS5WCBIPGHdNyKEKfYq30AOZvwUGLMibvPbY05id2clP+hqdTk9ZTwPz/khhaZsLt/wu679RhYlflNyJY3uNh7et7LfsUdySrT0IxBEwqV6UCUN05h0TGPSydVn0O5MYnpjFs3ltZRXl9LRXknHhkru3f47pk4tYerUaRRNHMcnrZv73X6yzkxziHukI0I3Dk3TUFGjZkrESqu7g//V+zsWRhIl6l0tPLrvdb4z9lQmWgoibiPHmB62vQxDSsz7Fwj6YlSIEkcddVSvC0FN0ygrK+O0007rtfzatWvjNTRBCGqXCi2cEgLB0CNJEqfnHZWQ/VoUE1avPWFOhUCOQ6KCLgP7FSGXAoFgNBFaQtFTgIAI5RuSzNMLfkmjq418U2bEbZYkj+Pfi34dNq3YUgR0OzMUSY64vyMypqNIclRRIrT7hzHEtXbb5G/zx73PR1ynP6xeG9YQ90KDp5UGpZWKse1cfeyZGKvGs3/dazgqW7Hb7Wzc+DUbN37NmpatWDNUTGPTMRalo89MiihaJ+uSwtwOHV57r/KNO3Y+QbmtltPzFvdaP5Io0ehq465d/+Q7Y0/lyIzpwen9tQ99bP8bfN66jT22Kv618PaIy4S2S91nrxWihGDIGBWixCWXXDKkT6euvvpqFKX3jfMVV1zRa7oQOGIn4JSIdKIRCAQjF4tixuq1JyxT4pjM2ezoqGBe2uSE7D/QjjVNhFwOKeJcLBAklv7CJnsHXUqk65MHXUYYcEf0LN9YkDaVS8eeEtVpK+HPpjCHBGqGOiWOyJiGQdLh1gaev7CxfQ85hvRe09s8ndxf9gIAKXOKSJlTxM/n3cHevXvYvXsnr320FrXWg6u2HbNSh0uvYixMw1iYhqkwDV2qv/QxSTaGBVh2RijfWN/mD+esjxCUGSpo2H1O/lP9IeW2GvbYqvjVzifDOoJEy6roue9Gd1vUZUJFiaYepTgCwcEwKkSJm2++eci2ddNNNw3ZtgTh+AJOCdFPWSAYVVh0JnAlLlNiVupE/jR76M4DAyVYviFEiSFDnIsFgsTTX7ltT1FCOcj8/ICTVpaksG1NthQxI2VC8P281MlssnYHSD4w60aerXyX7004OzgtNN/HKOtJ0plwezpjHsvc1GI2W8v4qnU7J2QviGkds9nM7NlzKJk5nccKvsTTZMNZ3UZWs559B/bhKG/CUd4EgJJqwlSYRuMUA+kTu8+dHV47akh4pjMk3PKr1h299hkqEty75zm+jLBMcNkIokyru4Pf7PoHJ2YvDHOXPLb/dU7NPZLxSfm4VQ/f3/oQ+cZMdnZ2dxOJVZTwaSqKJKNpGnft+ifjk/K5YtzpMa07UlE1lWa3NazcRdA3o0KUGErEhdDwEcyUGB1NXwQCQRe5xgzKbbVkG2LP7xlNTLYUkayYmZ02KdFDGTWIc7FAkHj6a+Heu3xjaFzLElKYINKz7Pd3M67l97ufZU3LFgCmJ4/nnhnXhi1jVLqdEnpJh1k20kZsooRe0nHvzOv51vo7qXY29QrB7I8Kez2SJGHIScaQk8zynCNx1azFXd+Bs7oNV3U7nhYbNquTvWV2apRtNJhsGPNT2TU9DymvO0A61LVgjeCiCHVKBBwV0fCq4Z/jP9UfBluR7uqs5LisOcF5r9au5n91n/P6UX+gtGM/++217LfXhq3fHCJK/LvqfbZYy/j7cT/ErXrQdd1ivtuwjv8r+w/3z7yR8Ul5rG0tZW1r6aBEie0d+9lqLefCwuVIkkS5rYZXa1dz9fgzqXe2MDl5TPB7s7l9Ly/XfMxtk78dDKOOJ38uf5l3Gr7i7unXsCi9JO77H4kIUUIQN4RTQiAYnXx/0jf4VlHbYVtbmm/K4sUj7hSlaQKBYFSh9tHuEiKVbwzNb6CGFratQJvPAIokBztOQeROH3pJFzY/KaS047yCpaxt2UZdVznETRPPp8HVxo6O/WztKGdcUh7g7+zU6unA6rENaPyb2veEvS8wZSLrlWBYJsBfp97Md1f9mrQmGbXejre+CW+bg4371+DRvLTo7RjzU/nEuRqP04EuzRTxc4a2BO0vM6KnUyIgSASQeohMgXIXLcr3INQp8XTlKgAuX/17dlkreW7hHWQZ0vi/sv8A8HzVe/x8yqV9jq8/frTtr4DfKVOSMo5bSx/G7nPxfuP64DIXFi7nu+PP4KfbH/Hvt/r9MAdNgI8aN+BD5aScRTHte23LNgpMWTxY9jIFpix+OuXbfS7/TsNXAHzWvEWIEjEiRAlB3JieMp5UYxJ6SddXW2eBQDDCOJga4tGCECQEAsFoQ+3nJrdneUfPm9qDoS+nRKR996TnDXyS0u0+uLjoRL434Wy2WffxYdPXnJSzCJNioN7Vwj8PrOI7Y08BusOL+2vrGSDQEnR1c3jXjXxT704kRen5JE3KpmBmLun6FNx1O3DVWcm0WmitbsRX14Z9byPvNP2P+rbdSEYdhpxkjLkpGHJTMOQkIxt1waDL/v5W0Nsp0ZPOCJ0/IHLZB3SLEnafMzhtl9XfdnVj+15OylkYnH7AUc+PSv/a7xijEdp5xKG6uvbbuxvJizUf8d3xZwTfhwpKqqYGz9X3dgWfxiJKNLrauHPXP4Pvd3ZW9CtKBAh8T7dZy8kxpZPF4X2t1BdClBDEjZ9M+RaZmRZaWmxRVVeBQCAQCAQCQeLx0feNbs/yjaFs+a704ZSItO9I/LrkiuBNaGgIZiCceFbqRGaldrfRzjNmht1spuv8N5Cv1HwS05i9mg9N09hjqyLbkBa8ac+IINoHhBavpuJS3ShJBpImZZOVVEiWNBmtpQJXfQdF3kmUltbibrLhqmrDVdXWvY00M48U1ZN7rIScnYTmU5GU6GJOT3Eh0L41QI2zKeLnsnudEac3ulrRNI0D9voIny/8u3AwoZh2n5Pzv+ruBtI+AOdKIER0U/sefrb9UaZYxoR1KtM0ja3WcorM2WRFKUHtiFA288c9z+NWvdxeclmf+5clmSZXO7eW/g2Ar4sejXnshxtClBDElaHskiIQCAQCgUAgGB76e/oeqfvGUNAzU0If0SnRfynw0Zmzgq9DO0/Eei2apveHFx9w9L7pjoRb9QZv/DP0KZxXsBTQgplqoQRFCdWLyxfeEtSoGJCNOszjMsjNmULupFY0n4qnxc5J0kz+u+19XA0deNsdVLaX8UjNk/g0H9WdZegzktBnWTBkW9BnWtjXXs3ENH/LVU+PbIxkxRwmStRF6O4B0OmL7KCweu1ct/l+Ts49IurnGwhftJSSa8xgkqUwOO3L1u1hLgmA9n4CS0O/t4HP93jF/wDYY6tiT/nLwfm7bZXctv3vZOhTerWq7YsPmzZEnN7m6aTcVhN8r0hyVLFHEI4QJQQCgUAgEAgEAkEY/WUU9BQhQnMcDhY5JBRdF8kpMUABJFCaMJASk4GWJXo0D46ubhkmxcAFhcsA2NVxoNeykiShk5Qup4T/xtksG+nwOiDks7V2lY5IiowhJ5kL55zP6mx/Bwyf04O7sZMp8ix27t+NvE/B09SJp6kTe1fm5Vn/u5BrZp9PQUEh7clenPY29FkWnjmwKuayFFsEp8S05HHs7DxAhaM+ipNkYH8ffxeQpwCCbUy3Wsv49c5/9Fp2n72uz+9mqIgRKG+JJGxBdzhoq6cj6vbcIcJNT0JLQgBu3fYwVc7G4HsZGVsUUUcQjhAlBAKBQCAQCAQCQRj9OiVChINkxczV488asn2HOyV6364MNL8iYMFP0cXeujpVP7A2z1dtvJc/zLgOICxYc2ryWG6YcC4Af9v/3+B0RZLxal5Q/c6CdH0yta5mFG/3Z28JuVmelzqZ4qRuF4Fi0mMem8FRk5dSNxUKOpPw2dx4mm14mm24u/5f31hPU1MjNc5mmlq2A3C/eRP69CR0mUno081+h0VGErIx/FhrmhbRKTHZUsTOzt5iS4BoORShqJpKu8dGhiEl4j6qHI1h70/JOZJ3G7/i7YYvKDBlRt1uh9feJfj4cHUFgUZzbkQqPQnFp/ko7dgfdb5b9WJSuluphgoSAC0eK60DaEV7OCNECYFAIBAIBIIhoLy8nF/84hd0dnZiMBj4xS9+waJFsaW7CwSHGv07Jbpvnv8y5wfk93GjOFBCyzMidW0LLceIhcBnydDH3iWq5xPyJMUYMVwxgM3nDN6UmuRuUUKSJM4uWEKZrTpseb2kw+FzoeLEKBtI1pnBFV4uEVjnb3N+xBhzLpIkccfUy/nt7qeDy3hULw6fy+++SDaiSzZiHt/9t7hu2g/xtHTy9o7VbNlSj6fVjrfdiau2HVdtO5MsRZTbygGQLQb06X6BQpduZlfuLlpsLcEQzwCn5B7J/+rXAmD19s546MtdAH5B4pnKd3ih+gPun3kjyTpTr2V6Ck9z04p5t9Hf1eL5qvejbrvD68Ao6/H6fMFMiUi5JACfNG/qc5xPVLzJytrVUed7VC8e1cuqhi85LXdxr/kfNW3ko6aNfe5D4EeIEgKBQCAQCARDgNFo5J577mHSpEmUlZVxww038M477yR6WALBoFD7CbpUQm5ShypPonvbfWdKDFSUuHXyxfy5/GVui7FrAsDi9Bk8yuvB99mGNA44Gvpcx9ZVJhLqlAjQ0/GhSHIw58Eo60npCuCMRJ4xE0PXjfWxWbN5ffHvOfvLnwPgUT19iiVeg0Zx8RSmpVrJytoBgOZT8XY48bTYOc58BLXbV/nFCqsTl60NV3UbAI/vfpStHeXUelvQpZrQpZnRpZmo1e3jQsPRvNDxKRh73066+hElvJrKC9UfAPBuw1eckXd0r2V6ZpZMCnGJTE0eyxZrWcRtd3jtGGQ9Np8Tt+rhrfov2NijTWtPzLKRl6o/osicwzEhWST/q/usz/Vcqoe/7HuZL1t3UG6v7XNZQd8IUWIUs3XrVm6/vTutds+ePbzyyitMnz49gaMSCAQCgWB0UlRUFHw9adIkOjo6ej1hFAhGCtOSxwMwxTIm4vzQ8o3Q10NBqMgRqXxjoF3cZqZO5LF5PxnQOoXmbL4z5hT+VfUuAFkxiBKBbAJTBFGiZ3eS0Kf3dp+zT1HCHFIiAGCQ9Vw/4Vz+vv+/uDW/U0IvKb3CLKG7dMWjdpdUSIrsd0SkJ3H01OP4oGAf4BcrPG0OvG0OPO0OJqVOZXdZA9S1BMtCAN6seY1aVzM1Xe1KdakmdMlGlC6nRoW3jHppMqrHh6zvLSp5Q8o7TIoBZ5ejIZSeokSuMSP4Ot+YyRYiixKdXntQwHGpHh4KCbaMhkv18OSBN4HuTAvov0zIrXnY1L4XgAP2un73I4iOECVGMbNnz+a1114DoLq6mu985ztCkBAIBALBYcu6det48skn2bZtG42NjTzyyCMsX748bJnnnnuOJ598ksbGRqZPn87tt9/OnDlzBryvDz74gOnTpwtBQjBiWZI1m3umX0tJ8tiI80NvGoeiHWio+6G/8g11gE6JwWIJyaCIpfSjrSs/IJJTwtxjWugxc6mePkWJnjfoQNiNt1N1h7UhDaW9q7zCGyXnIXRckiJjyLJgyPLnaSydeQq79rtxd+ajOjx4rU687Q6W5h/PVxWb2bqnCq/ViaexE09jd3bCJ9tW0ZCynZqaL5FNepQUv1ihWIwoFgOrlc9w1VlRkgw0pbbiTI8gSoQIAgZJh0VnYlnWPD5p3oRPU5GRwr4HgXmrGr6i3tUK0KtzRzSiuYJkSaavr5pb9QRdIb44fSdHK0KUOExYtWoVp556aqKHIRAIBAJBwrDb7ZSUlHD++edz880395r/1ltv8fvf/54777yTuXPn8vTTT3P11VezatUqMjP9NdrnnHNOxG2/+uqrKIr/5qm6upr77ruPxx57bPg+jEAwzEiSxIL0qVHny2HlG0PrlFBCu28MgVNisISWjhSZsrl07Mk8W/le1OVb3V1OCdnQa16mIZUbJpxLkTkH6P0Uvi9RIuLYukSJDo/fCWFRTLRJnXh7uCXKbTWMNeXiUXu7KKC3WBJKvasVh+rPq1CSDChJBoz5qZx+1AqyWyfx1a42NE3zCxadLnwdLrwdTsYYiilWJqCzrcPb6ULtIVq8sPt5Glv9pSQvsoHt2Z9Qp1ajJBl4te4lXEaNZrkTe3MTitmA0ZKCzWbjnPwlfNK8Ca/mQ5Zk1JDPmmlIBWBD++7gNJuvd+eQgdDf99od4j7xqv2HewqiI0SJBBLPJzarVq3ijjvuGKqhCwQCgUAw4li2bBnLli2LOv+pp57ioosu4oILLgDgzjvv5OOPP2blypVcddVVAEEHYjQ6Ozu54YYbuOOOOxg/fvygxyrLB+ewCKx/sNsZjYhj0zexHh+dFu5mONjjGXqTrlO6t21UdL23HfJ2OP+OOkUX9vqScSfxeds2yjsi5we0ef2ihEVnijiuc4uOC77uKR6k6rtFieOy5pBlSOO/tZ8CkT+jUdEDYPX5nRBJOhOGroDHUF6o/oAXqj/goqITIo7ZEhIy2TPMs9LREHQCjDHnBDti6BUdZp1feAkIFpbkZJy5fsfDjMIj+O7Ec3jhsx3dokWHE5/Njc/uZkrKTErLG/HZ3fhsbra1loFPxdti5/n2V9nZUYFJMeLsGkuHYuQPa+6mzdtJTccWvsysp4EWNKOCbNYjGxRMU22ktPpoUNuRjAqyQYdsUJCNOiS9ErNr7ZH9r3H1hDMxyLqw3JRIhHYZ6fn3jIb43YmMECUSSDyf2LS0tAxKzBAIBAKB4HDA7XZTWlrK9ddfH5wmyzLHHHMMmzZtimkbPp+PW265hQsvvJAlS5YMeiw6nUxWVvKg1w8lI2NgbQ0PJ8Sx6Zv+jo/b1x1mmJ2VQoo+9nabkZAVKfj/rMzu7392RgpZaeH/Hoy13bcwQ/VvJRLp9m6hINViIiPDglHWB6f9YMY3eHB7d2ZBe5dAkJOW2u+4fD1KBsZkZMF+/+vs5FTSQlqSRtpWlsdfTmLH7wZINSYh9e6sGaTO19xr2lVTV1CY3Z3VkGNKp8JWH7aOR/NiVPTce+S1XPLJ74LjyZPSw7aVbkymztECgKTvHnOoyyLAp9SQNb7bhaNpGprbh8/mpsnuJsM+GZ/Dg87pQXV4SNfMTC6awIGWWtRmH/a2dlwOK74Q98felk3M16XwxoGtQfdIEElCCggUOhlZp/iFCp3sf69XkHQKkl7mGd0LPKt7kVvmfhN7eRN21YkkS0iyjKTIIEv+94qMw2nF2+lCkiXcmhOfy+MXPyT/PgOfHwkMOv/3RvzuREaIEgkkHk9sAN55550hKd0QT22GD3FsItPzuIjj0xtxbKIjjk10xLHpTWtrKz6fj+zs7LDpWVlZVFRUxLSN1atX88UXX9DU1MSLL74IwL/+9S9SU1MHNBavV8Vq7ePuIgZkWSIjw0Jrqw1VFbXOoYhj0zexHh9fyJPh9lY7biW2J8VRt+fz70tTwdrWbbu3Wd00ezvDlrU7ujMImpvD5w0lTlu38OK0e2lttWEMCZ1ckXE0D0srgwGTzU4rAD5H/+MKFXUuG3sqBnf3dvVePTq63SKRtuXs9K/fZPfvU6fqsHmjlyvsaq0Me//aUfdgVoxYrd0tPdOVZCroFiXK2mtweF0YZD1Oa7croLm5E6ctvFzhyPTpvO7wd6uwOuw0NXVEHUuA+WlT2Ni+B0mSkIw6ZKMOfWbvMpZJlkKunHcdlfYG1mzoYF7SJLY3ltFp60R1elHdXo6feDKyF75Kr8NnbUB1e1Fd/nma24fq8uKz9j4+OlkXsfTij+seQtVUXL7eeRcBHvn4r9S1lALQGuLsiIQxzYLnNA+dne5B/+6kpprRRwgOHQ0IUeIQZSie2AQYitIN8dQmPohj041er/T6zonjEx1xbKIjjk10xLHpn4F0z1i+fDmlpaVDst+hullWVU3ceEdBHJu+6e/4hMU6qBKqdLDHskuU0DQkrfvfnILSaxxqyM6H828Y2lVEQUZVNSpt/g4cEhKqqnHjxPN5sPwlgGAXCaNs6HdcgW4YUyxj+PaYkzlg7xYDLIqZ03KPYk3zNs4pWBJxW7qu2zhrV7hmzw4dPalztYS9N0r+MRql7vUy9OECaoOzFa/mI1lnxiB1O0RUVQt7LyNx9fgzkfTw2oHPcPk8uHz9ZywUmrL7bdcJ3cdeQUaSJDS97L/JT+7++xx95BKSFBOvZ+/A2RlZSNZUDc3rQ/OoqF4fmlclVTPR5uxA9fj887wqmsfHGF02LU4rHW4bmk9FUzVQta7XKqganSYJgzEVfBoKCnpV7/+HoXUFt2oE3xvSk1AURfzuREGIEocoQ/HEBqCmpoaWlhZmz559UOMRT22GF3FseuPx+IJPBsTxiY44NtERxyY6Q3VsRtNTm4yMDBRFoampKWx6S0tLr3OxQCAIDwGUh7jLTGhnCp3U+zdG0yJ3SxhqQvcdGFPgc59b4C/ROi1vMQ7VxaP7Xw8ua44QdNmTQAaBoascJBDUCJCsM5OsM/Pg7N7l3QEC3TcC3TXMcvTAyr4IbU2aaejuMKKXdLi7MhOMsr7X38EY8hmNsgGTYuDiicv9ooTqwa166I9IXUoiEcgbCYSeRspvCLSODf08vbYjS0gGHRgI+lBSDek43b2/Y7mWMShuK4rHGnV7bUAus4Jj1NCQkSN280hSjMjy0AbCjiaEKDHCGGi/88LCQt5///0h2bd4ajP8iGMTTq8nI+L4REUcm+iIYxMdcWy6MRgMzJw5k88//5wTTvAHwqmqytq1a7n88ssTPDqB4NBmqLtvhDoUIt1kanFqvxguSvhf/37h1azat57LxnaXRicr4XkafXW0CBBoZxno8GFRugMnU5T+8zn0IS1B/fs09bV4TIQKI2bFgMfrFyUMsj7YHaQ4qRAI7zASCN0MlLa4YxYlYhtzQPQKtId1+dy41PCyisDfSh+hW0tf6KKIGO1eW0yfIUDgO1loyqLK2dhrfuh3WtAbIUocoognNgKBQCAQDC02m40DBw4E31dVVbFjxw6ys7PJycnhyiuv5LbbbmPmzJnMmTOHp59+GqfTyXnnnZfAUQsEhz4yQ+eUkAh3SugjOCXUOIkSSgSnxPysKYyjIEzQNfUonUjVxV4aFxAXQh86GvspxYBuh0WA/so3YiEtZNwm2YAVf2CkUTagkxVeX/z74DExKd37D4R/BsQJt+qN6YY+FvEGup0Sge9Cmb0mbL5e0gWPn6EPp8SJ2Qv5oOnrsGm6KIJag6s1prH1pMicHVGUEPSNkGwOUUKf2AQIPLGZN29e4gYmEAgEAsEIZdu2bZx77rmce+65ANx9992ce+65vPDCCwCsWLGCn/3sZzz00EOcc8457NixgyeeeCLY8UogEERmIC7e/tDoWb4RwSmhJc4pEQlTj3KNgKtgoPsIEMvn6ynWmBUjR2XMjHm/kQh1W+jlUNHB/zcwyPrg3yb0eAQ+f6Cko7RjHw+Vv9Lv/oyyISYHQeD7Fem74B9r91hCxZpz8pdwdMgxiSTcRNpmun7wOXpjzXkRp0cq6RB0I5wSCUQ8sREIBAKBIH4sXryYXbt29bnMpZdeyqWXXhqnEQkEgkiEiRJy75v2OanFvN3wJfPSpgzrOEL3He2JOoTnKyQr5ohjjmUfN0w4lw+avo7pc+l7OCWSFBN3lFxOp9fBRet/HfP+AY7JnMUXLduZbCkMTgv9Gxj7ycgIzA91T2xo393vfg2yDr2s4FLDb9iz9Kk0R8hyiHZcfSEZI6ECxfUTz+Xt+i9Y2+oPIJYjCECRRKGBlG305Mj06QC8XPNx2HQ1TkLaSEWIEglk27ZtXHbZZcH3d999NwA33XQTN998MytWrKClpYWHHnqIxsZGpk+fLp7YCAQCgUAgEAhGLRLhGRVKBDHg+Oz55BjTmWwpGtaxKGFhnn04JUKewKfqB9bVKDQD4eyCJZzdFaDZHz3LFFJ0ZhRJJm2A+we4Y+rl+DQVt9Z9Mx762XuWivQk8PcyKH0v1xO9rEMv6XARLgJkGsJFiUD5RqTvAnTnakDvTInQsUcKSI20TXuP1p53Tvsuv975j4j7ztCn0Orpbn9qVoycV7C0tyghnBJ9IkSJBCKe2AgEAoFAIBAIBN0lAP3dAIPfzj8rddJwDynsBrcvp0Ro+cZA8iT82x3c7VjPm29LDOGY0ZAkCZ2kENrVNdwpEflvUmwposxWTaY+JbjO8uz5fNS0MbhMkSmbYzNn82LNR73WN0g6v/uhRzONLEMae2xV3eMbwGfJM2aGjT907L4QYWB59nxOyT2Spw+83e82+yrHyTSkhokSJsUQOQdFOCX6RIgSAoFAIBAIBAKBYMA8Me+nqEPUnvPnUy/lL+WvctPE84dke0OB0o9jI0CoUyJNH1ueRI4hnUZ3G+OTImcQ9EfPriTJusGLEgEUSeGsvGPIMqSxtnVbcLoxigPigZk38FHTJmalTgxO+3nJpSzLmsdvdj0FwDcKj+f0vKMiihIBp0RPskK6gMDAMkvOK1hKu7eTk3OOAMJFrlBh4KdTLgHgKe2tXtu4Z/q1/G3fSqqcjXxnzCkRSzwCZOpTKAt5b+oKBe2JECX6RogSAoFAIBAIBAKBYMCMMecM2bYmJBXwwKwbg+8z9Cl9dlKIB7EGXWYZ0oKvzXJsbS7vn3UDnzVv4+z8Ywc1NkWS0UkKXs1vM4j0ND9Dn4JH9fLHmdfjVN38YfezNLjb+tzujZP8otBXbTuC06I5JUyKkdPzFvferyEl+Dqzh8AQikHWRbzh77mONACvhFHR870J53S/DxMlegtokdrLLkifyhPzfxp8v89WG3V/Y8y5rGvbGXxvUgwR3S+ifKNvhCghEAgEAoFAIBAIDimeXXg7AzPuDz2RWoJGXq57Xp2rJaZt5xkzOb9w6eAHh7+EIyBKWHS9xZDjsuZy/YRzgk6DGSkTaWje2Gu5SCjEHnTZk0x9asTXPdFLurBgSoBcYwazUiaGTZuUVMhgCf0b+iKIErG0l43kfJhqGcuC9KnMSS1mZe3q4HSTbIj6XYlX15iRiGgJKhAIBAKBQCAQCA4pFEnpUwiIB7E6JQDOzDsaIKyUYbgJOElkZMyysdd8ifDSh0iugGgMJOiyJ2khLTV7lmKEYpD1wfINGZmH5/yQJ+f9lKSQ1qSn5h7J5eNOG9D+Q5FDPv/U5LEATEseF5wWS/lRpIyIh+bcwhXjTu9V4qOXdWFBraFEEkUEfoRTQiAQCAQCgUAgEAh6EGtLUPC3n5yTNpnF6TOGe1hBArkSFp0pYu5Cz7KHgZQQyGFBlwO7ZQwtuwkVKHqil3VBsUeRJIq7uqmEZnRcVHQCZqW34BIrocfgzPyjSdNbWJA2NTgtFvdCz/yOUEJFCVM/jpKBiEKHG0KUEAgEAoFAIBAIBIIeDMQpoUgKS7PmDveQwsg2pNPkbqfDa484v6dOMZDygfDuGwMr3wC4feplOFV3n24XvaQL3qjLUW7uIwVhhnJh4QnMT58SdX5qSNaGIikcnz0/bH5M5Rs9xvDrkiuDr+UBHCfhlIiOECUEAoFAIBAIBAKBoAe6GLtvJIpx5lx2dlb0sURPp8RARIluEWag5RsAS7Lm9LuMXtYFxyQTuQVpX50v7pt5PbNTi/vcR5E5hx8WX8gEc37E+bG4F0LHcPPE8zk6c2bwfagTI9ThEYmh6lQzGhGihEAgEAgEAoFAIBD0INagy0QxyVIIjdHn9yzoGKxToq/yhYPBIOuCN+qh2Q+hjoNo+z4z75h+BYkAp+YeGXVeTJkSIWOQe4gkoeM29OPqEG1BoyNECYFAIBAIBAKBQCDowUDKNxLBabmL2WotZ1mUspHemRKDFCX6udkeLHpJFxRK5LBgze79RXNKDJVIFItQEOqY6ZktEurwUEIySMyyEYfq6rEv4ZSIxqEn+QkEAoFAIBAIBAJBggkNj+wv6DIRmBQDd5RcztLseTEtf8XY00nTWbh96uX9LhvulBg6QcYS0lnDX77R5ZQIEVBCj3u0fUfrcDFQYinfkMPKeMLHE9Z9I+TW+oVFvwkTLGBgotDhhnBKCAQCgUAgEAgEAkEfHIpOif7o2ZFjoqWA/xxxZ0zrKmHugIP/7H+Z/QN2dOznrPxj/5+9+w6PotweOP7dmt4bIYQSIKGEEHoHwY4NG9Zr74rlei3X3rvXggVRRK+9oV79KVZQqtI7IQXSIL3Xze7O749kN7tJNnWzm3I+z8OjmZ2deefNZmfmzHnPy6mb77Luw2QdvtFykKHpjX1L7euKjgYKmu7XNhvFrjioRoeP1tOuCGl9pkTPC271BBKUEEIIIYQQQohWOOvJvCs1nyS0/dTYTofa9aDESN9BjPQd1Gy5ZfhE05v9cyPnUWqsbHGq05bW76yODqloGpxS22XT2L/WtIaHWVG69DvpyyQoIYQQQgghhBCtcMaNuas1rSnREd1Z6HJCwEhrBoRl+EbTtl479IzW2+ekjINBXuEUGErbvX7TYIi6AzO0mBUzGnrf58gVJCghhBBCCCGEEK3oibNvtM05QQlnB2SeGn2dNQPCUaZEWzROqnNx14gLWXX0T3aVpZBSmd3m+uommRu2wZG2smlMiiIhCQd641+XEEIIIYQQQrhMbwxKNL2B7ojuDErYDskwt1FToqnbYs4jVB/AqeHTnNKWEH0A1w49g0Cdb6feb3ssbX1GFGT2DUckU0IIIYQQQgghWuGo4GJPdF/sP/gs6zcWRc7p9Da6c/iGLUuhyfYONTk1YjqnRkx3ejvaMTNow3r2K6rtghJNako0KaJpau9O+iEJSgghhBBCCCFEC+4ZeQn5tcV4aHTubkq7zQ0Zz9yQ8V3aRndmStiyZEpoupDV4UpNAw22wao2MyU6WFSzP+k9IT8hhBBCCCGEcKH5oRNYHLXA3c1wOdun/t0ZlJgaNBqASYGjum0f7TEuIAaAqYGjW13P3CxTwnFQomlehGRKOCaZEkIIIYQQQgghrOyHb3RfUOLmYWczNWg004LGdNs+2uO8yOMY5BnOhICRra7XPFOitZoSSpOfJFPCEQlKCCGEEEIIIYSwUtsN3+i+W0ZPjQdzujjUxBm0ag2zQ8a1uZ65aVDCLlOi9eCNZEo4JsM3hBBCCCGEEEJYuaqmRG8Tqg+w+1ndyuwbTWMQZqkp4ZBkSgghhBBCCCGEsNLgmuEbvcWKxHtIqshkjN9Qu+UdKXTZtB6FaCRBCSGEEEIIIYQQVrZDEXrTdKjdJcorjCivsGbL7TIlaFro0j4IIZkSjsknTAghhBBCCCGEle1Tf1Uvma7THewzJVrPKGlaj0I0kqCEEEIIIYQQQgirtoYiiHqt1pSQTIl2k0+bEEIIIYQQQggrCUq0j/3sG1JTorPk0yaEEEIIIYQQwkqCEu2jpjFTQt1mUEIyJRyRT5sQQgghhJNUV1czf/58XnjhBXc3RQghOq2tG2xRT9XK8I2mTBKUcEg+bUIIIYQQTrJs2TISEhLc3QwhhBAupm1S6FJpMlyjaY0J0UiCEkIIIYQQTnDkyBHS0tKYN2+eu5sihBBdIvUPOq5ppsRJ4VPsfpZMCcckKCGEEEKIPm/Lli3ccMMNzJ49m7i4ONasWdNsnY8++ogFCxYwbtw4Fi9ezO7duzu0j2effZZ//vOfzmqyEEK4jTzV77imQYkbhi7iP/G3cGr4NKB55oRopHV3A4QQQgghultVVRVxcXGcc845LFmypNnrP/zwA08//TSPPvoo48eP5/333+eaa65h9erVBAcHA3DWWWe1uO1Vq1axZs0ahg4dyrBhw9ixY0e3HosQQnQ3yZToOE2T4RtatYYxfkP5PX87IJkSrZGghBBCCCH6vHnz5rU6rGLlypVccMEFnHvuuQA8+uijrF27lq+//pqrr74agG+//dbh+3ft2sUPP/zATz/9RGVlJUajEX9/f6677jrnHogQQriAZEp0nKPioJbl0qeOSVCij7j11lvZtGkTs2fP5qWXXrIu//XXX3n++ecBuO2221i4cKG7miiEEEL0SAaDgX379nHjjTdal6nVambOnMnOnTvbtY0777yTO++8E6jPnEhLS+tSQEKtVrW9Ujve39Xt9EXSN62T/nGsf/VN4w10e463f/VNy7RqTYvHr2mYocOkmPt1/7RGghJ9xCWXXMKiRYv47rvvrMuMRiPPP/88H330ERqNhgsuuIATTjgBvV7vxpYKIYQQPUtxcTEmk4nQ0FC75SEhIaSnp7u8PVqtmpAQX6dsKyjIxynb6Yukb1on/eNYf+gbr7LG+4WOfB/1h75xJMDXq8W+8j7mAYBZMffr/mmNBCX6iGnTpvHXX3/ZLdu1axdxcXHWi6yEhAS2bdvGjBkz3NFEIYQQoldRFMVuDvr2Ouecc7q0X6PRTFlZdZe2oVarCAryobi4ErNZUoZtSd+0TvrHsf7UNxWVNdb/LyysaHP9/tQ3jlRX1bXYV4ZaI1Bfp6Mr/ePv74VOp2l7xV5IghIusGXLFlasWMHevXvJz89n2bJlzJ8/326djz76iBUrVpCfn8/o0aN54IEHujzPeV5eHhEREdafIyIiyMvL69I2hRBCiL4mKCgIjUZDQUGB3fKioqJm2ROu4qyLerNZ6bc3CG2Rvmmd9I9j/aFvNDTe/HbkWPtD3ziiUdQtHrtKqQ9umxVzv+6f1khQwgW6u+K3RtM3I2ZCCCGEK+j1esaOHcvGjRtZsGABAGazmU2bNnH55Ze7uXVCCOF6C0InsrloH6dETHN3U3qNplOCWlgKXZql0KVDEpRwge6u+O1IeHg4ubm51p9zc3OZPXt2h7djIUW3uo/0Tcua9ov0T3PSN45J3zjWH/umsrKSjIwM689ZWVkcOHCA0NBQwsLCuPLKK7n77rsZO3YsCQkJvP/++9TU1HD22We7sdVCCOEenho9j42+2t3N6FUczb6hojFTQrRMghJu5oyK344kJCRw8OBBCgoK0Gg07Nq1iyeffLJT25KiW64hfdNIp9M0+8xJ/zgmfeOY9I1j/alv9u7dy2WXXWb9+YknngDglltuYcmSJSxcuJCioiJeffVV61DKd955x5qxKIQQQrSu5UC/WmUJSkimhCMSlHAzZ1X8vu6669i9ezfV1dXMnTuX5cuXM2rUKP71r39x8cUXA3D77bfj4eHRqXZK0a3uJX3TXF2dyVosSPrHMekbx6RvHHNW3/SmolvTpk0jKSmp1XUuvfRSLr30Uhe1SAghRF/iKPdQLZkSbZKgRA/V0Yrfy5cvb3H5SSedxEknneSUNknRre4nfWOvaV9I/zgmfeOY9I1j0jdCCCGEczi6d7PWlJCghEMtD3wRLtMTK34LIYQQQgghhGg/lcPhG1Losi0SlHAz24rfFpaK34mJie5rmBBCCCGEEEKIdlE7ypSQ4RttkuEbLiAVv4UQQgghhBCi/5FCl22ToIQLSMVvIYQQQgghhOi7HA3fUCE1JdoiQQkXkIrfQgghhBBCCNF3qduaElRqSjgkNSWEEEIIIYQQQoiukJoSnSZBCSGEEEIIIYQQogtaDkk0zr5hkpoSDklQQgghhBBCCCGE6IK2pgRVJFPCIQlKCCGEEEIIIYQQnTDYKxyAId4DWnx9qPcAPNQ6YvwGurJZvYoUuhRCCCGEEEIIITrhtYR/Um6sIkTv3+LrY/yG8s30JwkPDaCwsMLFresdJFNCCCGEEEIIIYToBL1a6zAgYaFRaVzUmt5JghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItVIqiKO5uhOj5zGYFk8nc5e3odBrq6kxOaFHfI31j79Chg8TGjrL+LP3jmPSNY9I3jjmjbzQaNWq1ykktEhZyzu1+0jetk/5xTPrGMemb1nW1f/ryOVeCEkIIIYQQQgghhHALGb4hhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCgh2u2jjz5iwYIFjBs3jsWLF7N79+5W1//xxx855ZRTGDduHGeccQZ//vmn3euKovDKK68we/ZsEhISuOKKK0hPT7dbp6SkhDvvvJOJEycyZcoU7r//fqqqqpx+bM7g6v7JysrivvvuY8GCBSQkJHDCCSfw2muvUVdX1y3H1xXu+OxYlJSUMHfuXOLi4qisrHTaMTmLu/rm999/59xzzyUhIYEZM2Zwzz33OPW4nMEdfbNr1y7+8Y9/MGnSJKZOncr1119Pamqq04/NGZzdPz///DNXX30106ZNIy4ujkOHDjXbRm/6Tu4PnP0Z6Es60jfJycksWbKEBQsWEBcXx4cffujClrpHR/rn888/5+KLL2bKlClMnTqVq666ij179riwta7Vkb759ddfOffcc5k8eTKJiYmcddZZfPPNN65rrIt19DvHYvny5cTFxfHss892cwvdpyN9s2rVKuLi4uz+jRs3zoWt7YEUIdrh//7v/5SxY8cqX375pZKcnKw88MADypQpU5TCwsIW19++fbsyevRo5e2331ZSUlKUl19+WRk7dqySkpJiXeett95SJk2apPzyyy/KgQMHlBtuuEE54YQTlNraWus6V199tXLmmWcqO3fuVLZs2aKceOKJyl133dXtx9tR7uifP/74Q7n33nuVdevWKRkZGcqvv/6qzJgxQ3n++eddcszt5a7PjsWSJUuUq6++WomNjVUqKiq67Tg7w119s3r1amXKlCnKp59+qqSlpSmHDh1Sfvrpp24/3o5wR9+Ul5crU6ZMUe677z4lLS1NOXjwoHL99dcrxx9/vEuOuSO6o3++/vprZenSpcrnn3+uxMbGKklJSc2201u+k/uD7vgM9BUd7Ztdu3YpzzzzjPL9998rs2bNUj744AMXt9i1Oto///znP5UPP/xQ2b9/v5KSkqLce++9yuTJk5Xc3FwXt7z7dbRv/v77b+Wnn35SUlJSlPT0dOW///2vMnr0aGXDhg0ubnn362jfWOzdu1eZP3++csYZZyjPPPOMi1rrWh3tm6+++kqZOnWqkpeXZ/2Xn5/v4lb3LBKUEO1y3nnnKY899pj1Z5PJpMyePVt55513Wlz/tttuU66//nq7Zeeff77y6KOPKoqiKGazWZk1a5ayYsUK6+tlZWVKfHy88uOPPyqKoigpKSlKbGyssmfPHus6f/zxhzJq1Kge94frjv5pydtvv62cdNJJXTkUp3Nn33zxxRfKhRdeqGzcuLFHBiXc0Td1dXXKnDlzlM8//9zZh+NU7uib3bt3K7GxsXYX2tu3b1diY2PbvOhyNWf3j63MzMwWgxK96Tu5P+jOz0Bv19G+sTV//vw+H5ToSv8oiqIYjUZlwoQJyv/+97/uaqLbdLVvFEVRFi1apCxdurQ7mudWnembqqoq5dRTT1X+/PNP5dJLL+2zQYmO9o0lKCEayfAN0SaDwcC+ffuYNWuWdZlarWbmzJns3Lmzxffs3LnTbn2A2bNnW9fPysoiPz/fbh0/Pz/Gjx9vXWfHjh0EBgYSHx9vXWfmzJmoVKp2p4u5grv6pyXl5eUEBAR0+liczZ19k5GRwcsvv8xzzz2HWt3zvurc1Tf79+8nNzcXlUrFmWeeyezZs7nhhhscDn9xB3f1zbBhwwgMDOSLL76grq6O6upqvv76a8aNG0dwcLBTj7EruqN/2qO3fCf3B+76DPQGnemb/sQZ/VNdXY3RaOxR1xvO0NW+URSFTZs2cfjwYSZNmtSNLXW9zvbNM888w7Rp05gzZ44LWukene2biooKjjvuOObNm8dNN91ESkqKC1rbc/W8K3XR4xQXF2MymQgNDbVbHhISQn5+fovvKSgoICQkxOH6lv+2ts2WtqHVagkICKCgoKDzB+Rk7uqfpjIyMvjwww+58MILO3Uc3cFdfWM0Grnrrru47bbbiI6OdsqxOJu7+iYzMxOAN954gyVLlvDGG2+g0+m47LLLekxtAHf1ja+vL++//z6rVq1i/PjxTJgwgZ07d/LGG2845bicpTv6pz16y3dyf+Cuz0Bv0Jm+6U+c0T8vvvgikZGRTJ8+vTua6Dad7Zvy8nImTJhAfHw81113HQ899BAzZszo7ua6VGf6Zs2aNWzevJm7777bFU10m870TUxMDE8//TTLli3j+eefx2w2c9FFF5Gbm+uKJvdIEpQQnaYoCiqVyuHrLb3WdFnTn5tus6VttLXfnsIV/WORm5vLNddcw2mnncY555zTyRa7Tnf3zbJlywgKCuL88893Qmtdq7v7xmw2A3DjjTdy4oknkpCQwLPPPktZWRlr167tYuu7V3f3TU1NDQ888ADTp0/n888/5+OPPyYyMpKbb74Zo9HohCPoXs7on7b05u/k/sAVn4HeSj6nrWtv/7z99tv88MMPLF26FL1e74KWuV9bfePj48M333zDl19+yR133MFTTz3F1q1bXdhC93HUN0VFRTz44IM899xzeHl5uaFl7tfa5yYxMZEzzzyTUaNGMXXqVJYuXWrN1OyvtO5ugOj5goKC0Gg0zZ6EFRUVNYsKWoSGhjZbv7Cw0Lp+WFgYUP/00jYtuqioyJoa3NI2jEYjZWVlzZ72uJO7+sciNzeXyy67jMTERB555JGuHo5Tuatv/vrrL7Zu3cqYMWOA+hMDwJQpU7j11lu54YYbnHB0XePOvyuoH6pg4e3tzcCBAzl69GgXj8o53NU33333Hbm5uXzxxRfWC4n//Oc/TJkyhY0bNzJ37lznHGAXdUf/tEdv+U7uD9z1GegNOtM3/UlX+mfFihW89dZbrFy5ktjY2O5splt0tm/UajVDhgwBYPTo0aSmprJ8+XImT57cre11pY72TXJyMvn5+Vx00UXWZSaTiS1btvDhhx/2qdlbnPGdo9PpGD16dI8aSutqkikh2qTX6xk7diwbN260LjObzWzatInExMQW35OYmMiGDRvslm3cuNG6/qBBgwgLC7PbZkVFBbt27bKuM2HCBEpKSti3b591nc2bN6MoCgkJCc45OCdwV/9AY0Bi7NixPP300z2udoK7+uapp57i22+/5ZtvvuGbb77hiSeeAODTTz9l8eLFzjvALnBX34wbNw6dTmd34qupqSEnJ4eBAwc65+C6yF19U1NTg1qttnuyYfnZEtjqCbqjf9qjt3wn9wfu+gz0Bp3pm/6ks/3zzjvv8MYbb/DOO+/02akLnfXZURQFg8HQDS10n472zbhx4/juu++s12HffPMN8fHxnH322axatcqFLe9+zvjcmEwmkpOTrQ9Q+iWXldQUvZplqptVq1YpKSkpyoMPPmg31c1dd92lvPDCC9b1t23bpowePVpZsWKFkpKSorz66qstTs83efJk5ddff1UOHjyo3HjjjS1OCbpo0SJl165dytatW5WTTjpJ+de//uW6A28nd/RPTk6OcuKJJyqXXXaZkpOTYzetUE/irs+Orc2bN/fI2Tfc1TePPfaYMm/ePGXDhg1KSkqKcueddyrz5s1TKisrXXfwbXBH36SkpCjx8fHK448/rqSmpioHDx5UlixZosyYMUMpKSlxbQe0oTv6p7i4WNm/f7+ydu1aJTY2Vlm9erWyf/9+pbi42LpOb/lO7g+64zPQV3S0b2pra5X9+/cr+/fvV2bNmqW88MILyv79+5Xs7Gx3HUK36mj/LF++XBk7dqyyevVqu2uNnnZOdYaO9s1bb71lnZo9JSVFWblypTJmzBjlyy+/dNchdJuO9k1TfXn2jY72zdKlS62fm7179yp33HGHkpCQoKSmprrrENxOhm+Idlm4cCFFRUW8+uqr5OfnM3r0aN555x1rGvSxY8fsntJPnDiRF198kZdffpn//Oc/DB06lNdff53hw4db17n22muprq7moYceoqysjEmTJvH222/bjVF84YUXePzxx7n88stRq9WcfPLJPPDAA6478HZyR/9s2LCB9PR00tPTm6WVJyUlueCo28ddn53ewF19c88996DRaPjnP/9JXV0dEyZMYOXKlXh7e7vu4Nvgjr4ZPnw4y5YtY+nSpZx//vlotVri4+N55513elyV+e7on99//51///vf1p9vvfVWAJ5++mlrrZre8p3cH3THZ6Cv6Gjf5OXlsWjRIuvPy5cvZ/ny5Zx99tk888wzrm5+t+to/3zyySfU1dVZvxMsbrnlFpYsWeLStne3jvZNTU0Njz32GDk5OXh6ehITE8Pzzz/PwoUL3XUI3aajfdOfdLRvysrKePDBB8nPzycgIID4+Hg+++wzYmJi3HUIbqdSlB6UkyqEEEIIIYQQQoh+o3+Gs4QQQgghhBBCCOF2EpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hQQkhhBBCCCGEEEK4hQQlhBBCCCGEEEII4RYSlBBCCCGEEEIIIYRbSFBCCCGEEEIIIYQQbqF1dwOEEKI1S5cu5bXXXmu2fMaMGbz33nuub5AQQgjRR8k5VwjhDhKUEEL0eH5+frzzzjvNlgkhhBDCueScK4RwNQlKCCF6PI1GQ2JiYpvr1dTU4Onp2f0NEkIIIfooOecKIVxNakoIIXqlrKws4uLi+N///sfdd9/N5MmTueGGGwAoKSnhoYceYubMmYwbN44LL7yQXbt22b2/rKyMO++8k8TERGbPns2bb77Js88+y4IFC6zrLF26lGnTpjXbd1xcHB9++KHdsi+++ILTTjuN+Ph45s+fz9tvv233+r333ss555zDhg0bOOOMM0hMTOSiiy4iOTnZbj2TycRbb73FySefTHx8PHPnzuXee+8F4KOPPmLChAlUVlbavWfz5s3ExcVx8ODBDvaiEEII0TY55zaSc64QzieZEkKIXsFoNNr9rCgKAM899xwnnngir7zyCmq1GoPBwJVXXklZWRl33303wcHBfPLJJ1xxxRX8/PPPhIWFAfDvf/+bv//+m/vuu4/Q0FDeffddMjIy0Go7/rX4zjvv8NJLL3HNNdcwdepU9u3bxyuvvIKXlxeXXnqpdb1jx47x3HPPceONN+Lh4cFzzz3H7bffzvfff49KpQLgoYce4ttvv+Xqq69m6tSplJaWsnr1agDOOOMMnn32WX766SfOOecc63a//vprxo4dy6hRozrcdiGEEKIpOefKOVcIV5KghBCixyspKWHs2LF2y5544gkAxo8fz8MPP2xd/sUXX5CcnMz333/P0KFDAZg5cyannHIK7777Lvfccw/Jycn8+uuvvPTSSyxcuBCAadOmMX/+fHx9fTvUtoqKCl5//XVuvPFGbrnlFgBmzZpFdXU1b775JhdddBEajQaA0tJSPvnkE2u7FEXh5ptvJi0tjeHDh5OamsqXX37J/fffz2WXXWbdh6WN/v7+nHTSSaxatcp6gVRZWcnPP//MnXfe2aF2CyGEEC2Rc66cc4VwNQlKCCF6PD8/P1auXGm3TK/XA3DcccfZLd+0aRNjx45l0KBBdk96pkyZwt69ewHYs2cPgF3aqI+PDzNnzmT37t0datuOHTuoqqrilFNOsdvf9OnTeeONN8jJySEqKgqAqKgo68URwPDhwwHIzc1l+PDh/PXXXwB2T2SaOu+887jiiivIzMwkOjqaH3/8EaPRyOmnn96hdgshhBAtkXNuIznnCuEaEpQQQvR4Go2GcePG2S3LysoCICQkxG55cXExO3fubPaUB2Dw4MEAFBQU4OPj06xAV9NttUdxcTEAp512WouvHzt2zHqB1LR6uU6nA6C2thaofzrl7e3d6pOjadOmER0dzapVq7jttttYtWoVxx9/PIGBgR1uuxBCCNGUnHMbyTlXCNeQoIQQolezjAu1CAgIID4+nkceeaTZupYnPaGhoVRWVjarHF5YWGi3voeHB3V1dXbLSktLm+0P4K233mrxAmvYsGHtPpbAwECqqqqoqKhweJGkUqk499xz+fzzzznrrLPYtm1bswJfQgghRHeQc66cc4XoDhKUEEL0KTNmzGDDhg0MHDjQ4VMYyxOg33//3Tp2tLKyko0bN9pdmERERFBZWUlubi4REREAbNiwwW5bEyZMwNPTk7y8vGZprR01ffp0AL755hu7Yl1NnX322bz66qvcd999REREMGvWrC7tVwghhOgMOecKIZxBghJCiD5l0aJFfPrpp/zjH//gqquuIjo6mpKSEnbv3k1YWBhXXHEFI0eOZMGCBTzyyCNUVFQQFhbGihUrmqWWzpkzB09PT+677z6uvPJKsrKy+PTTT+3W8ff355ZbbuHJJ58kOzubKVOmYDabOXLkCH/99Revv/56u9seExPDBRdcwDPPPENhYSFTpkyhrKyMn376iZdeesm6XkREBHPmzGHt2rVcf/311qJeQgghhCvJOVcI4QwSlBBC9CkeHh7897//5ZVXXmHp0qUUFhYSHBxMQkKCXZGtZ555hkceeYSnnnoKb29vLr74YsaNG8dPP/1kXSc4OJhXX32V5557jptvvpmxY8fy4osvWp/0WFx77bWEh4fz/vvvs3LlSjw8PBg6dGiz9drj4YcfZuDAgXzxxRe8/fbbBAcHt/hU5oQTTmDt2rWtFugSQgghupOcc4UQzqBSLBMPCyFEP2eZj/z33393d1PadNttt5Gfn8/HH3/s7qYIIYQQHSbnXCGEhWRKCCFEL5KUlMTevXv55Zdf+M9//uPu5gghhBB9lpxzhXANCUoIIUQvcuONN1JcXMzFF1/MKaec4u7mCCGEEH2WnHOFcA0ZviGEEEIIIYQQQgi3ULu7AUIIIYQQQgghhOifJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxC6+4GiN7BbFYwmcxd3o5Wq8Zo7Pp2+iLpG3uZmRlERw+2/iz945j0jWPSN445o280GjVqtcpJLRIWcs7tftI3rZP+cUz6xjHpm9Z1tX/68jlXghKiXUwmMyUlVV3ahlqtIiTEl7KyasxmxUkt6xukb5r7xz8u45tvfgCkf1ojfeOY9I1jzuqbwEBv1GqNE1smQM653U36pnXSP45J3zgmfdM6Z/RPXz7nyvANIYQQQgghhBBCuIUEJYQQQgghhBBCCOEWEpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hhS6FEEI4jaIomM0mlB5Q40qtVmEwGDAajVJ0q4n29o1KBWq1BpWqb1b7FkL0Tu4618h5xTHpm9a1p3/68zlXghJCCCG6TFEUKipKqawsA3rOxUhBgRqzWaYna0l7+0at1hASEolG0zcrfgsheo+ecK6R84pj0jeta0//9NdzrgQlhBBCdJnlItHfPxi93gPoGVF+rVaF0dhzgiQ9Sfv6RqGkpICysiKCgsJc0i4hhHCkJ5xr5LzimPRN69run/57zpWghBBCiC5RFMV6kejt7evu5tjRatWAPLVpSXv7xs8vkOLiPBTFjEolpaiEEO7RU841cl5xTPqmde3pn/56zu0/RyqEEKJbmM0mQGl4aiX6Go2m/vmFpOQKIdxJzjWiP+iv51wJSgghhOiSxkJjPWPIhnC2+t9rTyheKoTov+RcI/qH/nnOleEbQvRRiqJQWmeg0FBDeZ0Bk6KgU6vRqlToNRrC9F746/T9ssKvEEIIIYQQomeQoIQQfYTBbGJPaSE7i/M5VF5MWmUZ1SZjq+/x0WiJ9PJhsLcf4wJCSQgMJcLT20UtFkIIIYQQPcGKFW+xceN6Vqz4wN1NEf2QBCWE6MUUReFAWRE/52awoeAo1SaT9TVPtYYYH3/CPLzx0+nQqtQYFTN1ZjO1ZhM5NVUcq64kpaKUlIpSfs/LAiDC05vpwQNYEBFNjI+/ZFKIPuvJJx/hxx+/b7b8++9/JTAw0PUNEkII0ec8+eQjVFdX8cQTz1mX/fDDdzz//FPcccfdnHnm2Z3edllZKZdffhH5+Xn8/POfeHt3/sHSRRf9g/POu6DT7++tzjvvDC666FLOPbf/HXtPIkEJIXqpbcV5fJKexMHyYgA81BpmhkQyKTicMf7BRHn5om4joKAoCkWGWlIqSthdUsDu0gIOV5bx7dE0vj2axhBvP46PiObkAUPw0epccVhCuNTMmXO455777ZYFBATY/Ww0GtFq5XQphBCi67744lPeeOMVHnjgUY4//qQubeu5554kJmYE+fl5XW5XfUBDsmVbYjQa0Wg08qCuG8lVVh+XlpbGfffdR0VFBXq9nvvuu4/Jkye7u1miC3KqK1mWuoetxfUnoMHefiyKimF2aBTeHbxxUqlUhHh4EuIxgGkhAwAoNtTwR342v+dmklZZxruH9/NZxiFOHxjDmVHDCNBJ1WvRd+j1OkJCQu2WnXfeGZx55tkcOXKYdev+4JRTTuPOO+9h164dLFu2lKSkJIKCgjj++BO55pob0ev1ABQWFvDss0+wdesWwsLCuPHGJTz//FPcfPPtLFx4Btu3b+XWW2+we5q1YcM67rnnDtav32rd/59/ruXdd5eTkXGEsLBwzjzzbC666B+o1fW1qWfPnsy99z7An3+uZdu2LQwcGMW//nUf48cnWrexc+d2li9/g6SkA+j1HsTHj+OJJ57j008/ZO3a31i58mO7Y77wwrM566xzueiiS7ujm4UQQgArV77Nhx++x1NPPc+MGbO7tK3vv/+WwsJCrrnmBv76a2Ob65eVlfH66y+zfv0fGI1Gxo4dx223/YshQ4YCzYdvGI1Gli79D6tX/x9arZZzzlnM4cOpeHl5c//9jwBQW1vL8uVv8OuvP1FVVcmIEbHcfPPtxMePA+ozQl5//WXuv/9RXn31PxQVFTJ16jTuvfchfH3rp3Vds+ZX3n13OdnZWXh5eREXN5oXXngVtVptzTIZNmw4q1Z9jslkYuHCM7j55tvRaDQO2jCSm2++w9oGcHxOvPPOJeTkHOOll57npZeeB2D9+q3Wdt9zz4MsW7aUrKxMvv32Jx588B5GjRrDLbfcbt321Vf/g5kzZ3P11dcD9efou+++n7Vrf2fXru1ERQ3igQceRa3W8PzzT5KamsK4ceN56KHHCQoK7vwHoI+RoEQf5+HhwVNPPUVMTAypqancdNNN/PTTT+5uVo9VYzKSVlFKdnUlJXW11JnNeGo0BOk9GOLtzxAfPzRumjNYURR+yc3g7bS9VJtMRHp6c+WwscwIGeDUyG2Q3pNFUcNZFDWcw5WlfHf0ML/nZvJZ5iG+zU7lzKgYFkePxFMjXx+i7/r44/9y1VXXWS8ysrOz+Ne/buP662/i/vsfpbCwgBdeeBqj0citt94J1KfolpQU89prbwHw0kvPU1VV1aH97tq1k6eeeoTbb7+LcePGk5GRznPPPYlOp2fx4ous661c+Q633HI7S5b8kxUr3uLRR+/n88+/RavVkpGRzh133MyiRedx5533ArBly2YURWHhwjN4993lJCcnMXr06IZ97uDYsaOcfPKpXe43IYQQzSmKwtKl/+H777/lxReXkpg40e71//73XT74YGWr2/jggy8YMKD+AVJ2dhZvv/0mb7zxDrm5Oe1qw0MP3YuXlxcvvvga3t5efPHFZ9xxx8189NGXeHl5NVv/o4/e57fffubBBx8jKiqaTz75gC1b/mLu3PnWdV5++XnS04/w+OPPEBISym+//cwdd9zMxx9/SVhYOABVVVV89dXnPP7409TU1PDgg/fy4YfvccMNt1BQUMAjj9zPTTfdyty586msrGT79i127fjrr814eHjy2mtvk5mZwdNPP0ZoaBgXX3xZi2345ZfVdm1o7Zz41FPPc8UVF3P22eexcOEZdvutqqri008/5P77H8XHxwcfH5929TPAe++9w5Ild3D77Xfy8ssv8NhjDxEcHMwtt9yGp6cPDz/8b5Yvf4N77nmg3dvs6+Suoo+Lioqy/n9MTAzl5eUoiuKW9KNtRXnsyTqIuk4h3MObEb4BDPHxR+PmVKgak5F1+UdZk5fF/rJCjK3MweOl0TA1eADHhQ9iUlB4m8MjnMVoNvNm6h5+yklHDVwQHcuFg0eiU2u6db/DfAK4dWQiF0bHsiorlZ9z0/k8M5k1eVlcGxPv9ICIEK62bt0fnHjiHOvPxx13PACTJ09j8eKLrcufeeZxTjnlNM4770IABg2K5uabb+eBB+5myZJ/kpmZzt9/b+bddz8kNnYUAHfeeQ/XXHNZh9rz7rvLueyyqzjllNMAiIoaxOWXX8WXX35mF5Q4/fSzmD//BACuuuo6Lr74XLKzsxgyZCgffvge48aN57bb7rSuP3z4CAA8PT2ZOnU6//d/31mDEj/88B0zZswiODikQ20VQgh3eylpB5sLj7l0nzPCIrl95IQOvWfjxvXU1dXx2mvLmwUkABYtOpcFC05sdRuhofVZfUajkccee5BrrrmBqKhB7QpK7Nq1k6Skg/zvfz+h09UPx73jjrv48881bNy4nuOPb77vr776nMsuu4rZs+cBcNdd97Fp0wbr6zk5Ofzww3d8/fUP1vPHVVddw/r1f/Lzzz9yySWXA1BXV8ddd91nDaiceurpbNtWH3goLCzAZDIxb94CBgyIBGDEiJF27fDw8OCeex5Ar9czbFgMWVmZfPbZR1x88WUttuGKK65h48b11ja0dU5Uq9V4e3s3y5qsq6vjX//6NzExw9vs36Zsz9EXXfQP7rjjZq677iYmTJiE0Wjm9NMX8e23X3V4u32ZBCV6uC1btrBixQr27t1Lfn4+y5YtY/78+XbrfPTRR6xYsYL8/HxGjx7NAw88QEJCQrNt/fbbb4wePdptN5FfZCazu6TAblmgzoOZoZGcMXAY0d5+Lm2PwWzi+6OH+TwzmQpjHQD+Wj3xASFEe/sSrPdEp1ZTbTJSWFtDSkUpSeXF/JGfzR/52Qzx9uPiIXHMDIns1j6tMRl5cv8WdpTkE6Tz4L4xUxjt79p0r3BPb24YMY5zo0fwTtpeNhQc46kDW5gcFM7NI8cT5tE8wi5EbzB58jTuuOMu68/e3t5cd90VjBo12m69lJRkUlOTWb26sTCm2WymtraWwsJC0tOPoNPpGDkyzvp6XNxo68Vfe6WmHmLPnl2sXPm2dZnJZEZRzHbrxcSMsP6/5UK1uLiIIUOGkpKSzNy5xzncx2mnnckLLzzNbbfdQW1tHWvW/MYDDzzaoXYKIYRovxEjYikqKuSdd5bxwguv4unpafe6v38A/v4BDt5t77//fZfAwEDOOGNRu/efknKIysoKFi5cYLe8traWo0ezmq1fUVFBUVEho0ePtS7T6XR2AYO0tBRMJhMXXGDfDoPBYLeej4+PNSABEBISQnFxfT20ESNGMmHCJC677EKmT5/J1KnTmT//eHx8fK3rjxwZax0mCRAfP4433iigoqKiXW1o65zoiIeHR6cCEgDDhzcevyVYMmxYjM2yYGsfiHoSlOjhqqqqiIuL45xzzmHJkiXNXv/hhx94+umnefTRRxk/fjzvv/8+11xzDatXryY4uPHGNTs7m+eff57ly5e7svl27hszhQxzJceKy8msLCepvJh9pUX8cOwIPx47wszQSK4eNpZwF0xJebCsiBeTtnOspgo1KuaFRXFq5FDG+Ae3mv1QYzKypSiX/x1N40BZMU8f2Mq04AHcNCKBEA9Ph+/rLIPZZA1IDPXx5+Gx09waAAjz8OLfo6ewrTiPZSn1dS1u3b6W22MnWGtSCNGbeHl5MmhQdAvL7f/OqqurOOec8zn77PObrRsYGIii0GZw0lITAhqzsYxG+2l7q6qqufbaG5kzZ16r27IvvFm/X7PZ3PLKTcyePY8XXniG9ev/pLKyCr1ez8yZXRvbLERfkZ2dxZdffoYh0B/t9EncGpvotmGbom13xE0AOpa10FVarRqjsX3ftxYRERE8+uhTLFlyPXfddRvPP/+KXWCiI8M3tm/fyu7dO5k3bxpQPzQE4NRT53P11ddz2WVXNXtvdXUVYWHhvPLKm81e8/f3d7jPpuc1xSabuLq6Cq1Wy7vvfmRdT6NRYTIpdkMdmhaKVqlU1kC7RqPhlVfeZM+eXWzevJFPPvmAFSveYsWKD6w3847OrSpVy22w6Mhwi5Y0DRxB/XlcaZJR3fQ8DvbHbGmW/TJVs4cN/Z0EJXq4efPmMW+e44vTlStXcsEFF3DuuecC8Oijj7J27Vq+/vprrr76aqA+2nnTTTfx4IMPMmTIkE63Ra3uWjZAoNaDYUHBFHtVYjbX/0GX1tXyW04mq7JS2FBwjO3FeVwdE8+pkUO6JftAURS+zkrl3bT9mFGYEhzBNcPHtjtLw1utY17EIOaGR7GjOJ/Xk3fzV1EOh3YW8/DYacT6B3WqXZa+te1js6LwQtJ2dpTkM8zHn2fGz8JPp3e0CZeaEhLB+KBQ3kvbzzfZaTy+/28WRcVwZcwYpw4padovXf0M9kU9oW/6w+9l5Mg4Dh9OazGAATB06FAMBgPJyUnW4RtJSQepq6uzrhMYWP/9UFhYiLd3/cVSSsohu+3ExsaRmZnucD/tMWLESLZv38oVV1zT4utarZaTT17I99//j5qaGk4++dR2zS6iVqv6xe9a9G/fffcNBQX5fLPrL0JVNUwLGcDM0IHubpboAwYOjGLp0rdYsuR67r77dp577mXrjW9Hhm/cd9/D1NRUW5cfOLCfp59+jGXL3mXAgJY/q7GxoygoyEen0xER0fZDJF9fX4KDQ9i/fx/x8fXZ13V1daSmplhrRYwcGYvRaKS0tMS6TmcCNmq1mvHjJzB+/ASuuuo6zjjjRP76axOnnno6AIcOJWEwGKzZEvv27SUkJBQfH98W29BU2+dEHSZT+9ocGBhEUVGh9eeqqqoWM01Ex0lQohczGAzs27ePG2+80bpMrVYzc+ZMdu7cCYDJZOK2225j8eLFzJ7d+SdhWq2akBDftldsh6CgxshlCL7EDAjhH+PiWXlwLx8c2s9rybvINlbyr/FT0Kqd93RCURRe27uDD9MO4KHR8M+EyZw1dHingx8nhvoxZ9hg/rN7K98eSeWe3Rt4ZtocZg6IavvNDtj2zXsH97Kx4BjRvn68MfdEgluI2Lrbv8NmMPtYNI9t28Q32WkcqirluelzCfPqeraLTqdp9pmz7R9hz519YzAYKChQo9Wq0Gp73hNFR21SqVSoVC23Wa22X37ZZVdw7bVX8OqrL3LGGWfh4eFBamoKe/fuZsmSO4iJiWHKlGk899yT3H33fQC8/PJz6HQ667aGDh1MeHgE7733NldffT0pKYf44Yfv7Np41VXXcvfddzBgwADmz6+vb5GUdJBjx45y5ZWNF1QaTWP7LP/VaNRotWquuOIqLrlkMUuXvsiZZ56NWq3m7783c9ZZZ+PpWZ8BsmjR2Vx66YUoipk77vhXG783FWq1mqAgb7sUWiH6mqKiQrKzG28wKpNTqDaZrD+nVZRSUlfLxKDwTu/jt9wMhvoEMNy3fan6om+xBCZuvfUGu8BER4ZvDBxof51ZUlICwJAhw6wzOzU1efJUxowZy7//fSc33riEqKho8vPzWb/+D04//SzrDBy2zj13Mf/977tERQ0iKmoQn3zyAQZDrfW6efDgoRx//Ik89tiD3HLLHYwYMZKyshI2bdpIYuJEJkyY1Oax7Nu3l23b/mbq1OkEBgaxc+d2qqurGTy4sT21tbU8//xTXHLJ5WRmpvPBByu5+OJ/OGxDcXExf/+9ydqGSy+9gssvv5BXXqk/f6tUarZs+YszzzwbT09PIiMj2blzO/PnH49OpycwMNBheydMmMSbby7lr782ER4e0TDUUoL1ziBBiV6suLgYk8lkjZxahISEkJ6eDsCff/7J5s2bKSgo4PPPPwfggw8+aDVVqyVGo5mysuq2V2yFWq0iKMiH4uLGTAlbiweMIME7mMf3/s3Xh1M4WlbB/WOcF5h4O3UvX2el4qfV8di4GcT5B1FUVNnl7V43eCxhak/eSdvHvZvX8WTCTMYEdKzmQ9O+2Vmcz1v7d+Gh1nDfqMkolUYKKyu63NbuMEYfyNIJx/Hsga3sLy7kit9/5OH46V2+4KqrM1FYWH/MbX12+rOe0DdGoxGz2YzRqAA9Kx2xtac2iqKgKEqLr5vN9stjYkbyyivLePvtN7n22itQqzUMGjSIU0453bre/fc/yjPPPMYNN1xNSEgoN910Ky+88LTNtjQ89NDjvPDCM1x66QUkJk7kiiuu4dlnn7BuY+rUGTz99Iu89947vPfeu+j1OoYOjeGcc863a4/J1Ng+y39NJjNGo5mBA6N58cWlvPXW63z99Vd4enoxblwCp59+tnXd6OihxMWNwmQyMXTo8FafbBmNCmazmeLiKrRag91r/v5e6HTdW3C3t6murmbhwoWcdtpp/Otf/3J3c0QHZGTUXztNmzaT737IpuZoDlWVjdcJt+74A4AvZi7EqwMzUFVUlLNmze/4Rg3kpcr6oozfzznTiS0XvYltxsQ999zBs8++1OJQAWdSq9W88MKrLFv2Ok888QhlZaWEhIQyYcIkh/cEl1xyOYWFBTz66APodPVTgiYkJNoFpx944DFWrnybV199kYKCfIKCgomPT+CEE05uV7t8fHzYuXMHn3/+MVVV1QwcOJC7776fsWPjretMmzadsLBwbrrpGkwmI6eeegYXXtg4fXVbbRg8eIj1nPjtt43nxLPOOgeAq6++geeff4oLLliEwWCwm6K7qdNPP4tDh5J4+OH78PT05KqrrrMLZIrOUylNB8aIHisuLs6u0GVubi5z587liy++sCts+eyzz7Jz504++eQTp+27rs5ESUnHprZrSq1WERLiS2FhRas3T3k1VTy0dzNZ1RWcEBHNbSMTuzyUY/WxI7yWsht/rZ6nEmYy1KdjQZn2+CY7lXfS9uGr1fFi4hyivNqfWWLbN1V1ddy0bQ15tdX8K24ix4UPcnpbu0Od2cxrybv4LS8TL42Wh8dOIz6g89X8Fy1ayDff/AC0/7PTH/WEvjEajRQUZBMaGtWuYQCu1JlUUmc67bTjufnm25tNNeZuZrOZxYvP4uKLL+Occ5rXybDV2u83MNBbghJNvPTSSxw5coTo6OhOByVcec7tjxz1zf/+9zVbtvzF4sUXc/2Pn1N+8BA3XvgPbjrpDKpNRs7fWH9OWjn1xA7Vd3rvvRWkpiZTUmfg0OyJ6AL8e3RQoqd+dnrKucbd5xV3MRqNLF58FueffxEXXXRpi+s4u2+efPIRqqureOKJ55y2TXdqT//013Nuz8uzFe0WFBSERqOhoMB+RouioqJm2RO9SbinN4/FTydU78mvuZl8npncpe0dKCvizdQ9aFUq7hszpVsCEgCLooZzTtRwKox1vJi0HVMnC9h8lplMXm01M0Mie01AAkCnVnN7bCIXDY6l2mTkob2b2FqU6+5mCSGaKCoq5OOP/0tFRTmnnLLQ3c3pU44cOUJaWlqrtaBEz5WRkQHA4MGD8Rpcf/7NTE6pf62y3LpelbGu+ZsdKCoq5I89O/irMIejVRVUHa7Pxnj50A6+zkp1VtOFcLqjR7P5/vtvyMhIJzn5EM888zilpSXWqS6FcCYJSvRier2esWPHsnHjRusys9nMpk2bSExMdF/DnCDc05tH46fjodbwUXoSyeUlndqOwWzilUM7MSkKNwxP6NKT+/a4fNho4vyCOFRewucZHQ+mZFaV83VWCp5qDdcOj2/7DT2MSqXikiGjuC4mHoPZzJP7t7C9OM/dzRJC2DjzzJP57LOPue++h6wFN0X9FNw33HADs2fPJi4ujjVr1jRb56OPPmLBggWMGzeOxYsXs3v3brvXn332Wf75z3+6qsnCiWpra8nNzcHPz5+AgEA8BwxArdORfSQNg8HA4cpS67pVpubV9gGMZjPJ5SWYbZKQd+3ZzdbiPErCgjhUUUJ19lEAfs3NZMXhfd17UEJ0gVqt5vvv/8e1117GLbdcy7FjR1m69C276T2FcJaelWcrmqmsrLRG7gGysrI4cOAAoaGhhIWFceWVV3L33XczduxYEhISeP/996mpqeHss892Y6udY4iPP1fHjOWNlN28mLSdVybMw0PTsZSlzzKSyaquYFJQOCcPGNxNLW2kUan5Z9wEbt3+B59kHGJOWBSDvNs/jOPT9EMYFYVLh8S6derPrjozKgatSsUbqXt4Yv/fPBY/o9sDQkL0RP/3f7+5uwnNWMbL9tcUZEe6OgX3r7/+ytChQxk2bBg7duxwwxGIrsjOzqTSaCDbQ0WpoRaVRo3XoIGYiypJSUkmx6txGGnToERaRSkDvXz4IP0g32ancV1MPGdGxQCwdutmAAInJWLIL6Q2Lx9zXR1qnc51BydEJwwYEMmyZe+6tQ333/+IW/cvXEeCEj3c3r17ueyyy6w/P/HEEwDccsstLFmyhIULF1JUVMSrr75Kfn4+o0eP5p133iE4uGOFFnuqUwcM4a/CHLYV5/FtdiqLB8e2+73ZVRV8mZWMp1rDzSMSumWK0ZZEefly0eBY3jtygE8ykrhrVNvVhwGOVVXwR142flodpw8c1s2t7H4LBw6jTlF4O20vj+/7i2fHz+62oTOiZ3rwwXvZs2d32ys6ybhxCTz++DMu25/oW7o6BfeuXbv44Ycf+Omnn6isrMRoNOLv7891113XqfZ0dfrVnjBdcE/VUt9kZmaws7gA45BwnjqwBQCvwdEoxQc5eHA/NeNHWdetNhmt791TUsA9uzaQEBjK7pL64bQbCo+xKHo4ubm5JGWmow8KRB8UhEdEGFXpmRgKi/AcENGsDT1FT/3s9LT2CNGd+ts03BKU6OGmTZtGUlJSq+tceumlXHppywVnejuVSsX1w+O5YesaVmWnctrAYfho2/d04ausFEyKwiWDRxLu2fUpKjvi9IHD+CY7jT/zszk/emS7bsY/ST6IGYXTBw7DswNVvXuys6JiKK2r5fPMZB7eu5n/JM4lxKPnTW0quocECERf0Z4puO+8807uvPNOAFatWkVaWlqnAxLdNQ23sGfbN0VFuShq8AgLY19ZEQBegwaiPZBMZmYa2glx1nUVDxU/FGYwzM+fTFP97ByWgARAoJcHISG+/P33OqoUE97D6h806ENCmgUlnPV77g497bPTk6afdvf+ezLpm9a13T/9cxruvnHnI/q0gV6+nDAgmp9zMvgmO5VLhoxq8z0FtdX8npeJt0bLaW7IOvDUaFkcPZLlaXv5OD2J+8ZMaXX98joD/zuSil6t5vTI3p8lYesfQ0Y1/D6yeOrAFp5JmIlO3TcrB4ve46uvPuPtt9/khx9+R90w7XBhYQFnnXUKc+Ycx9NPv2Bd96effuCZZx5n9eo1eHQyqPbbb7/w8MP/5rjjFrRYRfzhh+9j2LAYrrjiGmbPnoxe78Gnn64iPDzCus4tt1zHqFFjuOWW2zvVBtF57ZmC25lcMQ13f9a0bxRF4cCBZHx1HphDghrX0+s5oFMTnJOHPjkVvOrPXc/urM+kCPPw4uIhcc22rzOrKSgoZ8OGzdTU1eE9bAgA+pD6LFZDQaF1XcvU1z1JT/3s9JTpp2Xom2PSN61r3+wb/XMabglliV7hwuhYtCoV32SnUdmOqtdfZ6diVJQOZVY42ymRQwjUebC58BjFhppW191UcIxqk5H54dEE6D1c1ELXUKlULBk5nji/IJLKi3kzZY+7myQEEyZMoqKigkOHGjPRdu7cTnh4BLt27cB2tuydO7czevTYTgckcnNzeP31l0lISGzxdaPRyF9/bWLWrLl2y1eufLtT+xOuoyhKi0MDzznnnE5PB2phNitd/ues7fTFf7sL88msKMdsVsjLy+e3zFSOeelQNald5R0zlF9zM0nf27woZX5tNXpV8xsET7WGI0eOUFBQgEdYKDp/PwD0oQ1BicIip/6eu+NfT22bEP1Ff/v8S1BC9Arhnt4cFz6IapORDQXHWl23xmTkp2Pp6NVqznRjbQa9WsO8sCjMwJ/5R1tdd2PDMc0JG+iClrmeTq3h/jFTCNZ78HNuBr/nZrq7SaKfGzZsOIGBQezYsc26bMeObZxyymnodDpSUpLtlk+cOLlT+zGbzTzxxMNcfvnVREW1PMXvzp3b8fX1ZeTIxpo55567mB9++I6MjCOd2q9wrr46BXd/VW0ycu0fP3PtlvpCtJmZ6eTVVuMR1vx36T1kCGqdjrzUVEy1tXavqVFhbGH679U56Xz2568A+Iwcbl2u8fRE6+NDXWkZ5rr2TysqhBB9nQQlRK+xIDwagLV5Wa2ut704nxqziWnBAwjSu7d+wXHh9TchrbW5ymhke3E+fjo9CYF99+I2WO/JXXGTUANvpOwmu6rnpayK/kOlUpGYONEuKLFz53YmTJhIYuIE6/KCgnyysjKZMKG+YO2lly7mxBPnOPx355232u3n44//i6enJ2eddY7Dtqxf/yezZs2xW5aYOJFJk6ayfPmbzjpk0QV9eQru/shgMtn9nJlZP8uZR3hYs3XVOi0+w4dRaail4qD9VN9qFdSZmwclzLUGPlr3O1qtDt2QaLvXGrMlirt0DEII0ZdITQnRa4wNCCFE78me0gIKa2scFkzcVFifdTAr1P1ZByN8Axjo5UNyRQnZ1RVEeTUvaLWtOBejYmZ2ZBRatbpPp2eNCwzlwsFxfJyRxAtJ23khcTYalcRGhXtMmDCJt99+A7PZTGlpCVlZmcTHjyczM5MtW/5i8eKL2L59G3q9nvj4cQC88MIrGI1Gh9v08GgcfpWUdJAvv/yMFSs+aLUdGzas4+67/91s+Q033Mw111zGwYP7GTVqTCePUrRXf56Cu79pmt1wOP0IAB7hLT8Y8Bs7mqMHD1G77wB+Y+Ks03kqQF0LmRLlB5MwG42MHTeenaqGFRs0FrssxHNAuDMORwinuvHGq7jwwkuZN28BAMnJh3jmmcdJS0thyJBhvPrqm1x66WJWrPiAsDD5DAvnkKCE6DU0KhVzw6L4OjuVdQXZLIoa3mydOrOZvwtz0KnUTAp2/xelSqViXlgUn2Qc4o+87BYLYlmGbswfGN3stb7ogsGxbC/O42B5MV9npXJe9Eh3N0n0UxMnTrbWlTh6NJu4uNF4eXmRmDiBd95ZhqIo7Ny5jTFj4q31JAYMiGzXtg0GA4899gC33/4vQkIcZ0ClpqZQVlbChAnNh4fExo5i/vzjWbbsNV5++Y3OHaRot/4+BXd/YpvdUFFRQXbOMbR+vmi8W56pS+fvh0/MUCrTjlC2ex+BkxIBMCkKBrN91oW51kD5voOoVCre9qxFp+jx0miobsjOsGZK5Bci+r7Zs1sf+nfllddy9dXXu6QtBw8e4J133uTgwf1UV1cTGhpGfHwC9977ILqGQNu6dWuprKxk7tz51ve9+eZSwsMjePLJ5/Hy8sTfP4BTTz2dFSve4t57H3RJ20XfJ0EJ0ascFz6Ir7NT+SOv5aDE7pICKk1GpgUPwKuHTKs5J7Q+KLGjJK9ZUMKkmNlanIeHWsO08EgqS1sviNkXaFQqbotN5Nbtf/BhehLTQgYQ7e3n7maJfmjYsBiCgoLZsWMbx45lk5g4sWH5cFQqSElJZufO7Rx//EnW91x66WJycx3XtUlImMCLL75KYWEB6elHePjh+6yvmRtuhObNm8aXX35HWFg469f/wbRpM9FqW/6+uvbam7jkkvPYtm2LMw5ZtKK/T8Hdn9hmSqQcSaPObMYzovUHGYGTJlCdkUXZnn14DxuCPrh+lo6qJsW3i7dux1Rbi+/I4ej86s9tnmqtTVAiBLCfgUP0Xd9+u9r6/z/88B1ff/0lb7/9vnWZl1djIExRFEwmk8PzQVcUFxdxxx03M3fucbz00ht4e3uTnZ3FmjW/YTabgPqgxJdffs6pp55hV8A3OzuT88+/kAEDBliXnXbaGVxxxSXcfPPt+PnJNZzoup5x1yZEO8X4+BPu4UVKRQlVxjq8m8yssbFh6MbM0AEtvd0tBnn74qPRklZRhkkx2w1XOFpdSbXJSEJAKJ5aLZVubKcrRXv7ccmQON47coA3U/bw5LgZLVawF6K7TZgwyRqUuOmm24D6DKeEhER+++1nMjLSrfUkoP3DN8LCwvnvfz+1e+3tt9+kpqaGJUvuICio/mnp+vV/cv75Fzrc3qBB0Zx++lksW7a007N/CCHs2WZKHEpNoU4x4xEZ0co7QOvrQ/jkCeRs3kL+b2sZcPopaLy8qLT5PqhISaPiUAoaTw8CJ0+wLi8zNk7rp/HwQOfvR11ZebPCmaLvsc2U8/b2Rq1WW5dt376VW2+9gRdeeJW33nqNtLRUli17l1WrvqC6uspu+ugHHrgbLy9v7r//EQBqa2tZvvwNfv31J6qqKhkxYiQ333yHdahhU3v27Ka2toa7774fTcMMM1FRg5g6dbp1neLiYrZv38Kdd95jXWbJ9Hj55Rd4+eUXrJkdgwcPJTy8PrB+6qmnO6ezRL8mg7lFr6JSqYj1C0IBUipKm72+p7S+MvqU4J4TlFCrVAz3DaTWbCKjqtzutcOVZQAM8/V3R9PcalHUcAZ7+7G7tKDNGVWE6C71QYmtZGSkk5Aw3rp8/PgJfPXV5w0FDhsv8gYMiGTQoGiH/yzja7VaLTExI+z++fr64ePjQ0zMCLRaLYWFBSQnJzF9+qxW23jlldeRlpbK/v3NpyQUQnScbVAiNS0Vo9mEZ0TrQQmA6MREfIYNwVhRSc53q6k5lkOF0YDZaKRszz6K1m9CpVIRMmcWGs/GIKLJZophNfV1JaA+W8J2+mHRP7311mvccssdfPTRlwwaNLhd73n55ec5cGAfjz/+DO+99wnTps3kjjtuJj8/r8X1g4ODMRgMrF//p8PP3O7dO/H29iY6urEN3367mvDwCK6//ma+/XY1F130D+trcXGj2bVrRweOVAjHJFNC9Doj/QJZX3CUQ+XFdrNV1JiMHKuuJMzDC3+d3o0tbC7WL5DdpQUkl5cwzCfAuvyIJSjh0/+CElq1muti4nlg7yZWHN7H5OBwPHvIkBvRf0ycOJnq6mpGjRqDj09jIdrExElUV1eRmDjRrnilM23YsI5x48bj79/6339oaCjnnXchH330fqvrCSHax1Kc0lRby7HcY5i8PNH6NS9E3ZS3RkvInJmAisrDR8hd/Su/bdpGdkUZismESq0mZM4MvAY5LrStVqk5O2ESHx4+gqGgEDMKGiRTsLO++upzDhzY79J9xsfHs2jReU7b3rXX3sSkSVPavX5OTk7DUJAfCA6uD3BdccU1bNy4np9//pFLLrm8hTYncPHFl/HQQ/fi5+fHmDHjmDJlGqeccpp1+EVu7jGCg0PsMldDQkJRq9V4e3s3q48UGhpKampKZw5ZiGbkDkD0OiN9AwFIriixW55RVY4CDO2BN/gj/QIBOFRewkkDhliXWzIlhvbDTAmAxKAwZoZEsrHwGN8dPcz5UvRSuNiQIUNZv35rs+WjRo1ucXlXWNJuLdav/5PZs+c2W6+l/d544xJuvHGJU9sjRH9lyZSozckjs6qcY/4htGdCbk+NFpVGQ8i8WXgNHkT5/oPUllehUqvxio4iIHEc+qCgZu97JmEW9+7eANTXVbowcRrf/N//MOQXYlYUNBKT6NdGjRrdofXT0lIwmUxccMEiu+UGg4ERIxxfR910061cdNGlbN36N/v27eGjj97no4/e5513/ktoaBi1tbXo9e0Pwuv1HtTW9v1aaMI1JCghep0RvoGogOTyErvlPTnrwBJISWkSSDlSWYYaGNyPCz1ePmw0mwtz+CorhVMjh+LbpE6IEH3V+PGJLFhworubIUS/YwlKVGdlk19RSmhUfLve56nRoFGpMAE+MUPxiRnKEG8/0psMzbR16oAhjPFvnKFFo1IRGTkQtUpFdX4BRrMZnVrTpePpz849d7HL96nVqjEam08F21menl52P6tUqmZDLGxrGVVXV6HVann33Y+a1ePy8fFpdV9BQcGceOIpnHjiKVxzzY1ceOHZfPPNV1xzzQ0EBARSXl7W7naXl5cRGNg8CCdEZ0hNCdHreGu1RHv7kVdbTamhsUjUkcr6i4Ih3j0vKBHm4UWATs+RyjLqGqYPqzDWkV9bzUAv3349bCHKy5cTIqKpMNbxbXaqu5sjhMtccsnlMse7EC6WUlHCw3s3oygK1ZnZAHhGOR5uMcqv8abLU6NF0+QmsMrkuPAtgLdWh9rmPRqVCr1ej1dwMKaaGkpKm9fHEv1bYGAQRUWNs7OYzWbS0hqvj0aOjMVoNFJaWtKsrpGliHJ7+Pr6EhISQnV1NQCxsXEUFORTWVnRrvcfOXKYkSObT3UvRGdIUEL0SpbMg0M2mQc9OVNCpVIx0jcQo6KQ1tBOS3t74nATV7twcCxalYpvslMprzO0/QYhhBCiE549sA2AuqIiTNXVeISHoXFQN+b48GgW2wwr9FRrmgUl8mur7X4e4RvA8eHR1p8t05OrG+pGWN7v2zAFaUbGkS4cjeiLJkyYxL59e/n115/IyEjn1VdfpLS0xPr64MFDOf74E3nssQf588+1HD2azb59e1m58m127NjW4jY3bFjH448/xKZNG8jKyuTw4TTefHMphw+nMWvWHABGjozD3z+APXt2t9nG2tpakpIO2M3eIURXSFBC9EqNNRqKgfq5nY9UlqFVqYnybj11zV0sbU5pGHZyWIISVuGe3pwQMZhqk4mfctLd3RwhhBB9VE1DZkN15lEAvKKj8NZoWzwXm1HQ2wyt8NXq7ab1bsn88Ghui020/mwJSliCEeqG9/s3ZGccPpzWySMRfdWMGbO45JLLefnlF7jxxqsIDAxiypRpdus88MBjnHDCybz66otcfPG5PPDA3aSlpRIaGtbiNocOHYZer+eVV17ksssu5Oabr2X37p088cRzTJxYP+2nRqNh4cLT+eWX1W22ccOGdYSHRxAfn9D1AxYCqSkheinLDX5aRf2NfXFdLWVGAzE+/m1eMLhLpGd9sKTIUF8UqCdndrjDoqjhrM5J57ujh1kUNdzdzRFCCNEHWabnrMrIBOqDEmEeXpw5MIZXk3farVteZ0Cvbrym8NE2H77RlE6tthuuYc2UUKlAaQxO+A+sD0qkHznSpeMRvce5517AuedeYP154sTJDgsqX3/9zVx//c0Ot6XT6bjuupu47rqb2rXvqKhB3HPPA22ut3jxJVx++QXk5+dZhxd++eV3zdb74otPuPzya9q1byHao2fevQnRhhB9/fzf5cb6VP/ekHVgqRtRbaqvKZHe0OYhPv23yKWtQd6+TAmOoNBQw/qCo+5ujuiAxuvvluc+F71d/e+1jXsxIXoFMwp1pWUYCovQBfijCwxEq1bbTcppuTguN9ah1zRmSvhodW0HJZo8GPFoyLSwvMvyfk8fH3T+fuTn51FR4bhQphCuFBoayt13P0Bubo7DdcrKSpk9ey4nnniyC1sm+jrJlBC9knfDDX6VsQ7oHfUZvK1BifrU0bKGgIolwCJgUVQMW4py+TZb0ll7E7Vag1qtoaSkAD+/QDQaLdBT7mBVGI0SLGlZe/pGoaKiFJVKjVpmCBB9gFlRqDpcP0zQe9hQVCoVOpUatc1Xlp9OT2mdgXKjwRpUAPDW6NrMxtSp7V9XGoJ6lr+0xmEcKjwGRKCUGjh8+DDjxkkavOgZ5s2b3+rr/v4BXHLJ5S5qjegvJCgheiVL1oGl6nVOdSUAg7x83damtng1CUpUG41oVSqZCsxGQkAog739SK4owdhGRXPRc6hUKkJCIikrK6K4OM/dzbGjVqsxm503dVtf0t6+UanUBAeHN5t6TojeIK+miu3FeZw4YEj9dJ5mM5VphwHwiRkC0JAp0fj59tM2BCXqDE1qSuiYEzaQVVmOZ4pqGpQwN5na0RLU0KhUeA6IQCnN4MiRNAlKCCH6NQlKiF5JrVLhpdFagxKVDf/11erc2axWNQtKmIx4a3pue91BpVKxIHwQ7x05QHFdbdtvED2GRqMhKCgMRTFjNptRekByglqtIijIm+LiKszmHtCgHqS9faNS1WfCSEBC9Fa37/iTMqMBL42WeeGDqCkspK60DH1QILqAAKB+yEWwTdbi1TFjeXTfX1w/fFyzmhL/GDKaiYHhrM3P4tfczGb7swzfSAgIZXdpAaP97adoVNtkSngOHICSlMGhQ0koiiJ/Z0KIfkuCEqLX8tZoKTbUoigKlQ3DOHx6cFDCs2FcarXJiElRqDGbCNC1PA1ZfzY/PJr/HjlAiaEWk2LusYVLRctUKjUaTc/4nanVKvR6PVqtQYISTUjfiP7CMlQyt6YKgNKDhwDwjR1hXUerVjM+MJSrho1hfGAYw30D+HrW6ejUauswUQBvrQ6dWk1iUJjDmaIsmRKPj5tOaZ3BGuywDOOwDt9AhcbLi/DISEryCygoKCAsrOWZE0Q9qV8k+of+WcepZ1w5CtEJ3hotZhRqzSaqTD0/KGFbU8IyJZmXRoZuNBXi4cn4wDCMipmdJQXubo4QQoheZktRLplV9sUjPTRaamtrqUg9jEqtxnv4MOtrOpUalUrFOYNGMNy3IXuiIbhgN3zDJrvxzKiYFvdtGZKpaZJ9Yckes5TUtAQnMv29SS4vITk5qVPH2p/U17VRYTBIJqXou0wN9wj9rY6TZEqIXsu7IQBRbTJSaaz/A+7JwyG8tI1BCcuwE+8eHERxp+MjovkYWJObyaSgcHc3RwghRC9RWFvDo/v+AuD7OWdal3uo1ezevROT0YjPiBg0Ho2Zik3rQNjS2rzmrW28bB7tH8x7U0/kir9/sVu/6ewbTVmeflqGcST76skpKyIp6SAzZ85u4+j6N5VKhY+PP2VlRQDo9R64p6iyFFB2TPqmdW31j0J5eQkeHt79bjiXBCVEr2XJPKg0Gqk01qGmZ2ceaFRq9Go11SYj1UZLpoT8CbZkWsgAVKjYWpyHSVFQ95iZHIQQQvRkBrOpxeU1JhPfr1sDgF/cSLvXtO0cJtg0GzOwhSGYjgIcltsQS0FNS1BCHxaKWq/ng63rOeXc84j0D2xXW/or34ZMlvrAhHtufqWAsmPSN61rT/+o1RqC+uEDObkjEr2Wl3UGjjqqTHV4a3U9PqroqdZSY2ocbuItQYkWeWm0+Gh1VBjrOFRezNjAEHc3SQghRC+gtrkOqLGZxendTWs5vHc7+pBg9GGhdu/RtpIpYUvfJJ26pfe1lnVh186G4IRKrcZ78CDyU9J4ee2PPHvmRe16f3+lUqnw8wvE1zcAs9nk8qLKUkDZMemb1rWnf/pzcWm5IxK9liWNstxYR7XJRIRHzy8a6aXVUlZjsA43kUwJx/wankhtKcqVoIQQQohWvZa8i4Laaq4bHm9dVmJTe+DYzp0A+I8b2+yCv60hF8+Pn02dg6ebK6eeiAqswzgcb6vp1KCNbfAeNoSKlDSykg612g7RSKVSoXHDNZQUCXZM+qZ10j+tk0KXotey1I8orK2u/1nb82/wLUGIQkON3c+iOT+dHoCtRblubokQQoiebnVOOluL8zDYBA+yayoBqM0voOZYLl4BAVwz94Rm79WqW38qOdo/mITA0BZfC/PwItTDy2ZbbQ3fqGeb0eEZGYlar6MgPYPK6ioe3LOJj9IPttomIYToSyQoIXoty9CH/IagRE+eecPCUvOiqCEo0RsCKe7iodYQ6elDWmUZBQ2/YyGEEKI1tlN4ZjXMwFG6aw8AE6ZN55Kho5u9p701Jdqj3cM3bIISKo0a78HRmM0m1u7Yyo6SfD7JkKwJIUT/IUEJ0WtZbugLautv8H168MwbFpbMiCLJlGiXycH1hX62FeW5uSVCCCF6gyqbOhLJ5SXU5ORRnZmN1teH+PGJLb6nvYGE9tCpWi643bT2gabJEBLvYUMwKwo79uxyWluEEKK3kKCE6LUsmRIFvXD4hjVTQoISrUoMDAPgQMP0X0IIIQRAaV0trybvJLMhG8LCNihxoKyIkm07AAiYMJ5AL28Awm2GW0DbNSU6QudwKEh9VKLplKAWnpGRaDw9STp0EFN1/XWNSZFZDIQQ/YMEJUSv5dWQGWEdvtGLMiUKayVToj1G+AYC9U+7hBBCCIv3jxzg55wMHtizCbNNGoJtLYbDhw5Rm5ePPigQn5ih1lpFy6Ys4OuTz7Ku197ZN1pzyeA4TowYjE7d+tTk1ilBm0x1rdKoCY4dQUWdgcqUNADK6+qavV8IIfoiCUqIXsuSGdG7akpIocuOCPHwJFjvQXplud3UbkIIIfq34oaZNQoNNXYZBdnV9cUtzXVGiv/aAkDg5Imo1GrrrE6eGi0DfXyt73FGpsRFQ+K4LTax3es3Hb4BEBQbS5XRSEVyKoqiUFZn6HK7hBCiN5CghOi1LEMfas0mAHx60fANyzRl3r0gkOJuI3wDMaOQXFri7qYIIYToIWxv6luarrN01x6MlVV4DxmM16CBAPhp9W1uy1WaDt8AyNSrKPT1pK60DEN+AWVGCUoIIfoHCUr0cbfeeitTpkzhjjvucHdTnK5pDQnvXjR8w9wwtlQyJdo2smEIx8Hiwnatn1dTxcGyIirkCZMQQvRZrQUlDMUllO/dj1qrJXbObOtyy/ANd2hS57LFoASAT+wIAMoPHqKsrrabWyWEED2D3BH1cZdccgmLFi3iu+++c3dTnK5pEMK3F2QdeDYJQlimCBWOjfALBOBAcRELAqMcrpdUXsx7h/ezp7QxeDHWP5gbRyQw1Me/u5sphBCiG5UaavmrKIf54YPQqTV203jW2QzfUExmCtdtRFEUAickEBEcQnF5MeA4U6JpwKA7WPZhCUVocBCUiBlGydbtVB1OJ6e4CEIHuqB1QgjhXpIp0cdNmzYNHx8fdzejWzSduaI3zL7h3SQI0RuyO9xthG8AAAdLHGdKHKks46E9m9hTWkiYhxfTQwYQ4eHNvrIibtvxB/939LCrmiuEEKIbPLb/b15N3sWqrFTAPtPAaJMpUbprD4bCIjzCw/AbM4pAvYf1NT9dy+dcVwQlLKyFLh1kSqh1WnxjR6KYzezY+rcLWyaEEO4jQQk32rJlCzfccAOzZ88mLi6ONWvWNFvno48+YsGCBYwbN47Fixeze/duN7S0Z2o69KE3zb7h6GfRXJDek1APTw6XlbVY7LLIUMMjezdTaTJy3qARrJhyAg+MmcryKQu4NiYejUrFm6l7WJOX6YbWCyGEcIakhmyH5IoSwH7IhiVTojYvn7Lde1FrtYTMnYlKrbbLonSUUenKoIRFa3Us/EbHoVKp2Lt9O0Zjy0Weiww1/GvnOnaXFHRXE4UQwmUkKOFGVVVVxMXF8dBDD7X4+g8//MDTTz/NzTffzNdff01cXBzXXHMNRUVF1nXOOuusFv+ZTCZXHYbbaNVqPGym3uoNmRK2QQiNSoXeCdOQ9QcjG4pdplWUNXvti8xkCgw1zA8fxOVDR1ufPmlUas6KiuHeUZNRo+KlpJ3sLW1fXQohhOiMtLQ0LrzwQk4//XTOOecctm7d6u4m9TmW2T+rbYLUv+VmYqquIX/NnyiKQtC0yej8/ID6BxaRnj4E6PRoHM2yobgwLNEQi3CUKQHg4++P1+BoispL2bVrR4vrrMpK4WB5Mfft2dgdrRRCCJfq+Xdxfdi8efOYN2+ew9dXrlzJBRdcwLnnngvAo48+ytq1a/n666+5+uqrAfj2229d0lYAtbpr1akt7+/qdmx5a7TW2Tf89Hqnbrs72M624aXRotHUXyB1R9/0BZb+iPL2hULIN1QzRh1sfb3GZOT33Ey0KjXXDY+39qet6WGRLIkdzyuHdvJ6yi5emzQfXR8KBslnxzHpG8ekb7qHh4cHTz31FDExMaSmpnLTTTfx008/ubtZfYrSkNdgmzn3RcYhCtauw1RVjc+IGHxGDre+5qPVsWzy/FbjDq4dvlFP7aCmBMAgL1+qxo0lLyOLdev+YMKESagbzlsHyopYn3/Ueu0jhBB9gQQleiiDwcC+ffu48cYbrcvUajUzZ85k586dLm+PVqsmJMS37RXbISjIeTUufD30FDdUp44OD2xWSLKnidQ2XkT56nTN+tSZfdPb6XQaa/9EFflDJtRozHZ99t2RVCpNRk6OHkpMZIjDbV0UPIZNJTn8nZfD6sIMrhgV36k2Gc1m/jiayY8Zh0kqLabGZCTU04vJYQM4Y0gMsYHBbW+km8hnxzHpG8ekb5wrKqqxGG9MTAzl5eUoioLKDVNO9lWWAEKNTUZoydYd1OTkog8OInjGVLv+9tHq6jMkWvkVuOPaodVpSFUQM2QoBQPCOZqXy+7dO0lMnEh5nYG7dq0H7AtlV9QZ8HXjzCJCCNFVPfsOrh8rLi7GZDIRGhpqtzwkJIT09PR2b+e6665j9+7dVFdXM3fuXJYvX86oUaM63B6j0UxZWXWH32dLrVYRFORDcXElZrNznkt4NIxA0qpUVBRXU9nDL/xqaxqnqfRQaygsrAC6p296u7o6k7V/PE31v+eskjLrMoDPkw8CsCA4ym55S64dMpYd+XmsOLiHmf4RhHh4dag9x6oreebAVpLLS4D661u9WkNaWSlpZaV8kZrE8RHRXDM8Hn8XXhzKZ8cx6RvHnNU3/v5e6HR9ZxahLVu2sGLFCvbu3Ut+fj7Lli1j/vz5dut89NFHrFixgvz8fEaPHs0DDzxAQkJCs2399ttvjB49WgISTqY0pDxUm+uD/OUHD1G27wBqvZ7QBXNRNxnK6dPK0M6nE2byW24m88MHdV+Dm1C1Fh2xUCDKy5eAxAR+/PFndn2yko9HjaLKJjui2iYok1FVzpgAx4F5IYTo6SQo0ct09InL8uXLnbZvZ13Um82K07Zlmb3CW6NDURovVnoqT1XjxbuXWtusH5zZN32BpS+CdPXV04tqa6zLMqvKOVReQrSXL2P8gtvst0hPH84YOIxV2an8cPQIlwxpf3AuqayYh/ZuotJkZJRfEOdHj2RSUDhatZr82mo2FRzjs8xD/JqbycGyYh6Nn06Ep3cnj7pz5LPjmPSNY9I39iy1ns455xyWLFnS7HVLradHH32U8ePH8/7773PNNdewevVqgoMbM6Wys7N5/vnnnXoO7q+yqirYXHjM+rPl01ptNFKVnknRpr9RqdWEHT/PWkfCls5RHQlgfFAY4wJCHb7enYytXK8oKER5++I5IBzPAREczcnl3v/7gttOOL3F9WtkKIcQopeToEQPFRQUhEajoaDAvqpyUVFRs+yJ/sxS3NLHQUXtnsY2RbQ3FObsKYIbpnQrMtRYl6VWlAIwKTi83YG6hQOH8nV2Kj/lpHNBdCzadtSWKDLU8OSBv6k0GTln0HAuGzLa7n1hHl6cGRXD8RHRvJi0nb+Lcrlr1zqeGz+bAZ7OS403KWYyqypIryxDo1Ljr9Mzyj8IT7V8joRwFmfUeqqoqOCmm27iwQcfZMiQIZ1uS0+s4+QOS7avtc6uYaFWqyjOzqJg7ToAQufNwnNARIvvV6lVzfrAnX2jUtXv19RGJYtB3vVDFQMSx1GzOpdtf/7JG4OjWlzXqJhRVPVDDD00Xc9c6iufne4gfeOY9E3rpH9aJ1ezPZRer2fs2LFs3LiRBQsWAGA2m9m0aROXX365m1vXc1hms2gtPbMn0anVaFVqjIpZpgPtgGC9JwDFhlrrsqyq+uEa0d7Nn4w5MsDTh8nBEWwpymVzYQ6zwwa2ur5JMfP0gS0UGWo5KWIwVw4d4zAA4qPVcf+YKbyWvJtfcjN4+sBWnh8/G726axeIlcY6vjt6mP9lp1FmNNi95qnWMC10AEsSJ+HdnpRgIUSntafWk8lk4rbbbmPx4sXMnj270/vqiXWcygy1bMnPZV7koHYFdJ2laUBCq9NQUHiUzNW/opjNBE+bjPdQx8GfAUF+DvvSHTVV9DotISG+6I85vgZQa9WMGRAGSeAZOYDL587n/T/XsHfbdvzHNs/y8/DRc/P2NWRUlLPx7IsczzLSQVJzxjHpG8ekb1on/dMyuStyo8rKSjIyMqw/Z2VlceDAAUJDQwkLC+PKK6/k7rvvZuzYsSQkJPD+++9TU1PD2Wef7cZW9yzeDTf2lmEcvYG3RkuZ0SBBiQ7w0mjx1GjsMiWyquuDEoO8OnbhflrkULYU5fL9scNtBiXW5mVxoKyYkb6B3DBiXJsZGRqVmltGJnCsupK9ZYW8lbqXJSPHd6h9tpLKi3ly/98UGWpRoyIhIJQYX39UqDhWU8nO4nz+yMtmwy/HOD96BBcNjmt1mjkhROe1p9bTn3/+yebNmykoKODzzz8H4IMPPsDf379D++qJdZz+tWMd+8uKuGHEOM6Miuny9praV1pItcnI5OCWMx4s8tKO8NInX2M2mRg0YxqaUSOtr431D2ZfWf206ROCwoj29mWk1r9ZzSF31pupqzNSWFhBeWWNw3WMRjN+dY0B7UtOXcRXG9dTunM3viNiUHvY1y0qKq0ko6IcgJz8si4X7pR6PI5J3zgmfdM6Z/RPX6vjZEvuitxo7969XHbZZdafn3jiCQBuueUWlixZwsKFCykqKuLVV1+1FtR655137Mat9neWKTZ9e8nwDQBPjYYyY+8KpLibSqUi1NOLrMoKDGYTerWGzKr6CzBLimt7TQwKJ8zDi72lhZQaagloGBrSlEkx82lGMgDXDY9vd8aDRqXm7tGTuG37H/yUk86C8EGM7UQBso0FR3n+4HbqFDNzw6K4bMgoBnjZR9drTEa+O3aYzzOS+STjEBlV5fwzdqJT0neb7mdLUS6pFaUUG2rx1GiI9PJhYmA4g33an6kiRF9kW+tp/vz57Nu3zynb7Wl1nPY33OwnlRVjjnRO2xRF4d7dGwj18OKP/GwAvpt9hrU/f83NsFu/6kgG+zdvY2JAKEFTJzF6yhT8tHq2FecB2H33TQoKZ1HUcFDA7KB+g7tqqpjNCnVmc7PlU4Mj+Lsol1i/QHw1OmaFRuKv1RMZEcmYxAn8vfVvSnfvJWjKRLv31doUvawzmdGretZnpy+SvnFM+qZ10j8tk6CEG02bNo2kpKRW17n00ku59NJLXdSi3sfHkinRS4ZvQOOQE8mU6JjghqBEsaGWUA8vsqsr8dfqCdC1HFRwRK1SMTEonJ9y0tlVWsDcsJbH6P6Rl82xmkoSA0MZ7d+xQGCw3pMrh43hP4d28O7h/bwwfnaHCtSmVJTwQtJ2TIqZa2PiOXPgsBbf76nRcsHgWE4fMYIl635jQ8ExakxbeGjstNanm2unapORT9KT+OHYEQeF1PYx0jeQK4aNZnxgWJf3J0RPJrWe6jkzFyu3tsqa2WBhVMzoVBrK6wy8fGindXnZvgMU/72NYL0nx51yCgdUlXiqtTwaP53T1/0PwC54rOnhQ9paKnR5e+wE1uZlcUJENAD/Hj3F+trc4xawded2yvcfxDd2BLqAxuwbg02Aw9TDC34LIURLXDcoUIhuYBm+4dOLsg68emEgpScI9ayfwrPIUENeTRVGxdzhLAmL8YH1NxC7SgpafF1RFD7PrM+SuHBwXKf2cVz4IIb5+JNUXswmm8rxbSmtq+XJ/VswmM1cOWwsZ0XFtBnQGOznz0sT5jLY249txXn898iBTrXZVlJZMTdtW8Oq7FQUYF5YFHfETuCJ+BncN3oKlwyJY5CXL8kVJdy/ZxP/SdpOjcnY5f06Umc2cbCsiDV5maw+ls6mgmPk1lR12/6EaMq21pOFpdZTYmKi+xrmYl0dIlZjMrI+/yi1JhNJZSXNXk8uL2FbcR4ZDdlwislM0V9bKP57Gyq1Gu+501ntWx98aC2439OHspmU5pkS/jo9Z0bFWLNAbUUEBeOfEI9iNlO06W+72cYMNkFjy3ZzaipZm5fV42clE0IIkEwJ0ctFNqSzD/TqPUVjJFOicyxBiWJDDRXGOqDjQzcsxgdYghL5Lb6eVV1BVnUFw30CiO/k3O9qlYorh43hob2b+Tg9iRkhke3Kllh5eD/5tdXMC4tiUQfGbQfoPXhgzBTu2LmOr7JSiPMLYmZoZKfavre0kEf3babaZGJWaCTXxYwjxMPTbp2ZRHJhdCwbCo6xPG0Pv+dlkVNTxUNjpuKr0zvYcscV1FbzVVYKa/OyKG/4vdsa6uPPGQOHcUJEtNOKu4n+S2o9tU3VxQyEt9P28VNOOmcMHGb9Lrd19+4NAFw5bAymqiry166nNjcPjYcHYScchyY8jMOVZUD9cEhHnJEt1h0s/WdsYfhGa/x0evzjx1CZmkbNsRyqDh/BJ2YYgN1QEEumxG3b/6DSZMRfp2diULiTWi+EEN1D7opEr5YYGMbbk48nwtPb3U1pNwlKdE6IZ/1NcZGh1vpUqKNFLi0C9B4M9fHnSGUZOTWVzabu3FpUPz55ShsF19oyMSic4T4BpFaWklpRygi/wFbXz6wq5/fcTPy0Om4akdChIR8AA718+VfcRB7d9xdvp+1lYlBYhwuepVSU8PDezdSaTVw2ZBSLB8c6XFelUjE7bCDjAkN4dN9f7C8r4v49m3h2/KwuF1pTFIWfctJ59/B+qkxGNCoVk4LCGerjj6dGQ7Ghlt0lBRypLGNp8i6+zU7jzriJDPcN6NJ+W1NprGNvaSHpVeXUmU14arQM8/FnlF+wZD71EVLrqW1dvdff0VD/4bujh1tdb9P+vRz79gdMNTXoQ4IJmz8XrZ/9d37T86ht7Qh1DwtSPhY/nbdS93Dd8Hig48Ms/LR6VBo1wTOnkfvjLxT/tQ2vqCjUHnq74XXGhkyJyobMtSOVZRKUEEL0eHIVJXo1lUplzZboLazDNyQo0SGNmRK1FDfMwtGR6UCbSgwM5UhlGbtKChgwwP4ztK04F4BJwV2/kFsQEU1qWim/5WW2GZT44MhBzMD50SPx6WTx1inBEcwMiWRj4TG+zkrloiHtH35SYzLywsHt7QpI2ArQefDkuJk8uvcv9pYV8nrKbv4ZO6HDQRULRVF4J20f3x5NQw2cHTWc8waNaLEoaVJ5MSsP72dvaSF371rPHbET2pxVpaOyqir4LPMQf+RlY6b5jYSXRsO8sEGcFz2iWYBL9C5S66ltageZEibFbJetZFsA1JZHG0WDFZOJkm07+ePgIUwmE76xIwiePgVVC1kRTYMStn+dPS1TYmJQOG9NPt7687zwKNYVHG33+/0bMtA8B0TgOyKGipQ0yrduJ2DWdCptMk6aBjtqTC3VAxJCiJ6lZ4WRhegHZocNZIx/MKP8g9zdlF7FdvhGZ6cDtWUpzNi0rkS1ycje0iL8tDpi/br+O5oXFoVGpeKPvOwWq61bHK4sZWPhMUL0npwWOaxL+7xq2Bh0KjVfZqVQWOt42rmmVh7eT1Z1BZOCwjk/emTbb7DhpdFy7+jJhOo9WZOXxeqc9I42G6i/kXkrdS/fHk3DX6vnufGzuTpmrMNZUuL8gnh63EyuGDoag9nEMwe3sq6hin9XKYrCqqwUbtq2hjV5WfhotcwPH8T1MfHcHpvIVcPGMCd0IGYFVuekc/O2tfwvO81hpX9nOFRezNupe7l39wau/vtXrtv6G/fu2sB/jxwgubyk2/Yr+rZak4mUipJ21R9oqVbD55nJnLX+e9IbhlXsLS3kos2r2d6QFWFSFL7KSmFp8i4yqyuavd/CUFhEznc/UrbvAAa1mtC5swiZNb3FgAQ0H76h2GVK9KygRFPTQyJ5b+qJXNzOukV+2sZhcYFTJqLx9MSQeoTqzGyqbOr5mJpU9a/uxlo/QgjhLPKoVggXmxIc0eVhAf1RiE2hy6yqCrQqNeFdGLYzqiHgcKThItpid0kBRsXMhKBIpzxpC9R7MCkonL+LctlWnMv0kJbrPKzNq7+RPisqpstTeg7w8uGMgcNYlZ3K6pwjXDJkVJvvOVxZyv8dO4K/Vs/tsYmdynII1Hvw79FTuGvXet47vJ+ZoZEdnh3lt7xMvj92mECdnifGzWSoj3+b71GpVJwXPZKBXj48c2Ar/0naQYjek/igzs+IYDSbeTFpO+sKjqJXq7lo8ChOHzisxWFXFXUGvs5O48usZJan7SW5ooTbYxOdWuMipbyEN1J3c6iFwMPR6kr2lhXyeWYyCQGhXDlsDCPbyMoR/U+d2URmVQXDfPyb/X0/dWAL24rzeGTsNCY3nJ/K6wzk1VY3GxLV0jeDpbjuz7kZXBsTz57SAiqMdSSVFzMxKJw/87NZeXh/i+0K0XuSX1FGyY5dlO+vz1LxjBxAyJwZaH1azzyy/D1ODxnA5sIcJgVHsLUhENLTMiVaEurh1e51/XWN2XMaT0+CZ03HtG4Thes3UTKy8Tve2KSAZkldbdcbKoQQ3UwyJYQQvUJIw8XbzpICyowGRvgGdOmi01erw1ujJa+myu7p2tai+qEbk504BndBeP30bhsKWp6FQ1EU1jek8c5xMEVpRy0cOBQV8EtORotV3pv6IjMFgIsGxxKk92xjbcfi/IM4NXIIlSYjn6Qf6tB7j1ZX8FbqHtTUT4XXnoCErZmhA7l2+DjqFDNPHdhCeZ2hQ++3UBSF11J2sa7gKBGe3rwwfg7nR490WAfGV6fnH0NH8VLiXMI8vFiTl8WzB7a1q9/b05ZPMpL45851HCovYYi3HzcOH8ebk+bz7ezTWTXrNF6feBzXxsQT6enD7tIC/rVrHV9mJndrxobofV5M2sGtO/7g74bvOFvbGm7kd9tkjv1z5zpu2/EHGZXlduu2VuhS1xCIs2RoVZuM5NVU8XlGy98FKgU8s45xdNV3lO9PQq3TETxjKuEnH99mQAIagxL3jJrEqxPmMcumuG9vCEp0hK7JsBfvwYMYMjYeU00NB9autS43K4rd335BbbWrmiiEEJ0mQQkhRK8Q6OGBRqWyPgW6bOjoLm1PpVIR7ulNjdlkN6tDSkUpAOMCO/+UvanEhm0dKCtq8fXUylJya6qI8wsirANPzlozwNOHCUFhFBhq2NZQuNORo9UVrM/PJkCn58QBg7u874sHx+Gt0fLDsSNkVTlO1balKAqvHtpFtcnE4uhYxnZy1hPLTBwldQbeTWv5yWxbPs08xK+5mYToPXkmYRYx7SyeGeMbwLMJsxjo5cPGwmN8cORgp/ZvoSgKy9P28lF6Enq1mptGJPDaxOM4beAwor390KjU6NUahvj4c1ZUDMsmL+DG4ePQqFS8d+QAS5N3SWBCWFkCn3tLCx2uYzvk4VhNZcP69kPcWrvX11qCEg11f2pMJpbs+KPZkA1FUajOPkr5j79w+Lc1mKqr8Rk+jIHnnonfqNh2Z2pZCurq1BpimgSq+1pQwpalLseUBfXBm9zkFCpSUoH6TAnbIRsFHRjCJ4QQ7iJBCSFEr6BWqQhsGAowJ3QgCU4IGkR41A//yKupsi7Lr61Cq1IR0oVsgaZ8dXqivXzJqamixNA8ldaSQTGrk1N4OnLKgCEAbdZ3+CorFTNwVtTwLs+aAfWzmyyOHomZ+poM7bG7tIC9ZYUM9vbjwnYW2HTk6mFjCdDp+SknnR0FrQdkmkqrKOWT9EN4aTQ8Gj+9w0GicE9vHhs7HR+Nli+zUvi7MKdD77e18vB+vjt6mACdnhcS57AwcmirN2salYrTBg7jP4lzCdZ78ktuBm+k7G5XnQDRf4R6OP5ua+lGPt9gf1Pb2sdJo65/f1HDjXCJodauCKOiKNTk5JL306/k/fw72pIyggYMIOLUEwmdOwuNV8f+3ryaDHXT2gyZclSQs6dRWiie64hvQwFkyxTNEf4BhMydiVFRKN60BUNxCSZFsevzalPzaVeFEKKnkaCEEKLXGOkXiK9Wx1UxY52yvfCGOhW5tfVBiVqTiZI6A6EeXk4vkhbXUNj0YLl9toSiKKzPr3+COSvUubNGTA0eQKDOg61FuZQ5GMpQZzbxZ34WHmoNp0UOddq+T40cil6tZl1BNjXtKLT2aUN69wXRI9Gqu3Zq8tPpuSamftq9V/dsb/dNuUlReD1lN2YULhs6psPDRywGePlwe+wEAF4+tJMKY8dvCv4uzGFVdir+Wj1PtbO2hsVQH3+eHjeTIJ0Hq3PS+eHYkQ7vX/Qttn8DrU1H3dL3XtP0f9uaBX/mZ/Povr+sP1uHbxjq37Ox8Jh1/1XpmeT+30/k/vgLNcdy0fn7sWDROcy84AI8B7SvztKJEfaZXJ5q+2Oxz5Toe5e47045kfemnkhAw0wcwXoPPAdE4DdhHGajkYK166iprbX7zqlTFGpMRv69ewNr8jLd1XQhhGhV3/vGFkL0Wf8eM5l3Jh/vtCEOEQ2FMnMbMiUKGi6knbV9W6P8ggE4WFZstzy/tppjNZXE+Phb2+MsWrWaycHhmHGcsr23tJBqk4kJQWGdnoa0JT5aHbNCB1JtMrGhjWnv9pUWsqe0kCgvH2Y7qabGcWFRDPXxZ39xIfsdDJtp6pecdJLKixnpG8jCLgZoZoRGcmLEYMqMBr7MTO7Qe4sNNbySvBOA22ITGdKJ4EiUty8PjZ2GRqVixeF9ZFaVt/0m0WeVGRuDksZWgnQtzRCU30pQ4rmD29hiU6NCrVKRXF5CSUMQ1FRTQ9m+Axz7+jvyf/+D2vwCdIEBhMyZQeTZZzB5/AQ82pmd9VzCLBIbZk2yaFoU2DYQ0VuGb7RWo6Mpb62WUA8vazDGktHnGT8Gr6hI6kpKWbv6BypsgtBGs5k1eVnsKS3kxaQdzm28EEI4iQQlhBC9hk6twVenb3vFdgq3Dt+ov+jOr+nGoIQ1U8I+KJHecLM4wjfQ6fsEGNdQm8FRUMJS9G5qN8wIY3mq+XNORqvrfX/0MADnR4902o2ESqViUVQMAN9mpbW5vllR+Cqrfkz2jSPGOaUdlwyJw0Ot4X9H05rd2LXm3cP7Ka0zsDByKNNCBnR6/yP9ArlkyCgMZjMvJG3HJMM4+q1Mm9ouxiaBB9u6I9UmIzuL8/kpJ936NL6oyfCNpu+39WH6QW7fvpaaYzkU/LGe7M9WUfz3NupKy/CICCf8hPlELjod3xHDUanVRHv7otc4vhSNb/j+GuUXxJiAECYFheFvMzVm0ywo27/bnj4lqEVHhm9YnB89ksXRI631blQqFSFzZqHx9uLgnt1s+XuzdV2jYrarmySEED2RTAkqhOi3rJkSDcM38hpuHC3BCmca7O2Ht0ZLcnkJJsVsfaKX3jAlabS3n9P3CRAfUF97o2mxOqi/oLcEJSZ3Q1AiPiCEAZ7e7CsrIru6gigv32br1JlNbC3OxUOtYU6oc7IkLI6LGMT76QfYWHCUvJqqVqeQ3V6cx7GaSuL9Q4htmC62q0I9vFgUFcNnmcl8kp7ErbGJbb4nu6qCP/Ky8NfquXLYmC634dxBI/irMIek8mLW5x9lXrhz+1j0Dl83BNyg+ZSRtsOryuoMPLB3E9BYr6HObLabScaSaWEbEFAUhdrcfIqOpFN1JANTdf13qVqnwzd2BL6xI9CHBNvt96yBMYzyC2J7seO6L9fFxJNeVc7EoPoMCV+dno9nnML5G/+PapOJsCZ/0+peGJTojITAUBICQ+0KWmq8PAmbPw/1lt2s/Wk11VPH4RU1sFmNCSGE6IkkU0II0W9FNGRE5DcM38hvCE6EeTo/U0KtUhHnF0St2cThhkAEND7BHOzTPUGJCE9vwjy8OFxZZpfSC5BVXUFuTRUjfAMIdmJhTwu1SsW8huEY24vzW1xnd0nj8JGmqdhdpVdrOGdYLGbgp3Zma5w+cJhT23DuoBF4aTT8kZ9NVTtuDD7PTMYMnD1oeKtj/9tLo1Jx2dBRAHySkSTZEv1QlbGOLUWNBVeLDbV8lnHIekNrW39gnc1Qq2qTCQCD2YTBbBuUqP//nNJiKtOOULhuI9mfrSL3x58pP5CEqboaz8gBhMyeQdQF5xI8Y2qzgATAedEjUKlU6NWO/+4HevkwP3wQAQ1Fji3emXwCr0yY12pWW28ZvtEV+ib1dzzCQ5l5yqkUG2ooWLuOutL6c42jmkJCCNFTSFBCCNFv+Wh1eGm05NZWoyiKNcU+vBuGbwDWJ/Ap5aXWZRkNwzeGdFOmBNRnLCjAvia1FSxZElO6IUvCwjK1p6PpUDc1FMKb3oVhCq05JXooAFuLcx2uc6y6km3FeYToPZ3eDm+tjtmhUdSaTdYpGVtrx5q8LPy0Ok6LdF5wJCEglPiAELKqK1iXn+207YreIbm8BNvciK+zU/kg/SAfptdPWdvW0KL6oIQJY2UVVUfSObRuPcuWvcZTzzxBwR/rqUhJqw9EDIggeMZUBl14HhGnnIDvyOGodY4Da7qGYERrQQlHswEF6D0Y3sZUvf0hKNFSMc+hY+LRjYnDbKijbM06TLW1EpQQQvR4MnxDCNFvqVQqIjy8OFJVToWxzlpbIqwbhm/Ub7c+2FFcVz9G26woZFSV463ROnUK0qbGBYSwJi+LvaWFdjUKLIGCiUHh3bbvUX5BqKkvZqkoit2UlmZF4e+iHNR0X2Ak2tePAZ7epFaUUmyoIaiFfl5XcBQFOGnA4C7P/NGS4yOi+SU3g19zMzmpYZrWlvyel4kZhTMHxuCtdd7pWaVSccngOP69ZyNfZ6VyXPggp21b9HxJDXVshvsEkFrZGBDNrqqgzmzint0b7NZXTGbqysqoKy6hrqSUguISXlm3g+yk3fUreHiRHRqJ2ssL39gReA6MxHPgADQe9tkMbbHM1OHh4G9uWCdnv7Hoi7NvtEeVqY66sbGEFxZiyMom/9e1FJ93rrubJYQQrZKghBCiXwv39OZIVTm5tVWNwze6KVPCv6FwnOWpVV5tFbVmE6P8guxu1p0t3kGxy6PVlUD31bOA+kyBYQ03Q/m11XZ1HZLLSygy1BLvH9IsPdtZVCoVk4LD+b+jR9henM/xEdHN1tldUj+0pLsCI2P8gxng6c3+siKOVlcwsIXaGgAbC+qzRuZ2Q92HcYGhDPb2I7WylOyqCqJ9u+93LnqOmpoakvNzMVZWEe0dxMHSUsy1dZgNtRzNLeK/WfmUHNyBsbwSY2UlpspKjJVVzbZTHAH6oED0YaEMGzaCWxecwY8VBaRmdWxmGVu6hmCErkmmRJiHFy9PmIu3pmuzAan7fqIEAOcMGs4qm5ohx6orQa1m2mmnsfObbynJymTv6p/RzZmOqhuCrkII4QwSlBBC9Gu204Lm19YQoNM7vbaBRUCToERGZf3QjcHdGBQAiPT0wUOt4VhNpXWZWVE4Vl2Jv1aPrxOnAm3JmIBgUitL2VdWZBeU2FtWHySZHNx9mRoAk4MiGoISec2CEnVmEwfKivHRaNtMB+8stUrF8eHRfJSRxB952Vw0JK7ZOtlVFaRXlTPE26/FgqDOMDt0IB9nJLGu4CgX+zZvg+hbfv55NR//8j3b8nMxA3/5BXHUZvafCo2WbA8vSqvKSQgIZXdDMVwvHx8Uf190QYHoAgPRBwVy+dxTST64FYBAvyAUPx92Zh/oUvsshSg9bIISJw0YzJVDx+DnhFmWNP1khPJVw8baBSVyGmokDfDzZ8xpC8n59BPyDh/GS6Mics4sdzVTCCFaJUEJIUS/ZplpI6m8GKNi7rYsCWieKWGpJ9FdRS4tVCoVwXpPjtVUUmsy4aHRUFBbTZ1iJsbLp1v3DfWZAt8dPcz+0kLm2wwdyGoo8jnMp3uCARYJQaFoVSp2FOdjUhS7seZJ5SXUmk0kBg/o1nTvaSED+CgjyRqIacpSW2NmaGS3tWFOWENQIj+bi4dKUKKv8wsOZpfJgDYkGJVGw6DwKNKLPVHpdGg8PFB76AkKCqXSbOCW6SfwyOHdaL19GBcU1uxzWmcTqE0qL+aqLb8CEKL3JNzTiwNl9lMdTwoKZ1srs2rYsi3WOD4g1CkBCeg9s2/MDYvik4xDnDUwxinbswSfwzy8yPf2Jvyk48n5v9VUJKdS4uWNMuu0bs3ME0KIzpCghBCiX4tquClfk5sFdM90oBbWoISxPiiRXuWaTAmAEI/6oESRoYZILx/rhetAFwQlRvvXV95vWuwyq7r++Ad5d09mgIWXRssY/xB2lxaQUlFCnM2Un7sahm4kBIZ0axuG+PjhqdZwqLy4WWAEYGNDUGJGSPcFJaK9/Rjq7ceRqnIyKssICenefhfuFTcugcizTrP+fGbcBJKTdtitU6fR4msyMmZ4LHOUanJrqgjxaF53pcLBzDERnt7WDDCLBeGD+GfcRC7dvJqSdhRYjLHJUDLjvNlhesttd7S3H6tmndZqwc+OsGRKhHt4c0hdgtbXh/CTFpD7w88U7t7LK6s+IXhiImdGDQfqv5dndGMwVAgh2qN/5LYJIYQDk4LDGe4bQHFdLdB99SQAfLV6VDRmSmS6MijRUOCx0FBfZPNYQz2JgZ7dH5QI9fAiwsOb9Kpy67SYiqKQWVWBXq3u1j63GBtQHxg5XFFqt3x3SX3KekJgaLfuX6NSE+sXRLXJREZVmd1rRYYaDpWXEOHp3eXifm2Z0zBF6/r8Y926H+F+NWaj3c8+LdRoqGyYFtRbq+OBMVNZOvE4a60HW0erK1rch5dGy7gA+78dy3CM1yfOJ7AdWQ+hHl7MCR0IODdrqjdNfuusgARgneo1zMPLWkxUHxRE+MkngE7Liv/7huXffcXX2ancuWsdTx7Ywrai5lktX6Ye4pq/f7UGboUQojtJUEII0a9pVGqWjByPuuG5Wrhn990ga1Qq/LR6a1DiWE0VHmpNt868YWENSjRM/2cpchnpgkwJqM/IUGgMipTVGagw1jHQy9cladaWjJCjNnU1akxGksqL8dfqGeLdvcEAgNH+9RkaTVPdUxsCJeMCQro9rXpSw0wrjqZoFX1Hjclk97Oj2jEeao1dIELbwjCmlCbBPAsvjZbTBg7luLDG4qz6hqEeAXoPRjVkSVmc0/B0vqm7R03ivaknMtSJQTmlV4UluuakAYObLQvz8LL7vXqEhhB+8vGodTpKd+7h/35ZTW5DVkVLQafVmYc5Wl3J/Xs2dV/DhRCigQQlhBD93gjfQC4YPBKAWJvU/u7gr9NTazZRYqil0lhHmIeXS8b3WlKyLUGBoy4cvgEQqK+fXaPYUJ+RktlwERzdTUUdm4psyAjJqW6cWSC9shyjojDaP9glgRHLDdrBJgGB9Mr6zAlXBEaG+PihUalIc3CTKfoOyxNzC09NyyN2fZoEK1oKSiSXl7T4Xi+NFo1KzRlRjfUQPG2e+jf9q3KUEaBSqQh1QcZUX3XziATOGWQf8PHV6pr9Lj3CQgk/6XjUWi1JmzdTvHUHiqJQ3sLwHINNUEtR+k+ARwjhHhKUEEII4JIho/h0+inW+gfdxVJXIq2y/qawpfHb3SFEX3/BX1jbEJRw4fANgKAmQQlLkcvuridhYQlK2GZKFBjqs0YiPLuvjogtSy2LppkSrip4CvXTL0Z7+1FcV0tBdXW370+4T22TTAnbG9RgfeMUvE0zKLQtzKVZ0jC8rSmvhkCHzmbberughP229C6YknJ26EA81RoGuOjvuifQqNTNhgF6arRoW+hvj/BQwk8+AbVeR9mefRRt/Iu86spm6xU1nCsA9pQWSmBCCNGtJCghhBANfJ1U9b011qBEw5PqUL1rng5agh9FhhrMikJOTcN0oC44ZoBAXf1NkOXmxlrk0kWZEv46Pd4aLTnVldaL64KGi+5QFwWG/HV6ohqKjJYaGm/yLEGJIS6oLQIwoqGwYFKpDOHoy5pmStgGG2yzEny09hkULWVKAPhrm39XWIIStoVbW5tSWefE2gmO3Dt6Mp/PXOiSffUktrMHaVUqdGo1Wpvfi21GjEd4KBELT0Lj6UnFoRQ2fv8dpiaZEcW1jd9R9+3ZyNZ2zqYihBCdIUEJIYRwIUtQ4nBDyr6rUpaDbQpdFhpqMJjNLqsnARDUsP/ihuEjjZkSrrkRV6lURHr5UGM2WQMjlvoaIS4KDEHjTCSHKkoAMDcU/PTWaF1SWwQgpqGY4KGS4jbWFL1ZTdOghM1Nq20wtGkBzJYKXULLwQavhmW2T+TtMiWaJF24IlMCes90oM5kGxiyDNWx/V3aBpU0KhX6oCAiTjsZrZ8vmYcO8cEH75FZUsTLh3ZwpLIMo2K2237TOjT1xYrLMTVZTwghOkOCEg4YDAbefPNNDh486O6mCCH6EMuFoaW4oaue0luDErU11pk3Il2Y3hzULFOiPigR5cLAiGUIh+X4CwyuzZSwbUN+Q0Akr6aKWrOJwd5+LqktAo1TMB4s6fmZEnIu7rwas/3wDdsb1DC7TIm2a0pAywEF74abX9v3eNgEJdRNhm/4uygzqz+yzYrwauH3Ytv3lt+/zt+PiFNPwuTvS0pKMne99AyrUw9y87a1zbYfoPOw+3lT4TFu3LaG11N2O/MwhBD9lAQlHNDr9SxbtoyysrK2VxZCiHayXBhmN9yUuypTQqdWE6DTU2iosQYEBrpo6ATYF7o0mE3k1VQR5uHlsPhed7BkhhxrqCtR0BAYcGWBvYCG339pQ3Am3TJ0o5unArUV07Cv3pApIefizms2fMPmBjXMs5WghINshpaKVHq2EZSYGhJht/6koHDOHBjDo2Ont9V80UG2wzcsxUZtA1EBLQQlALQ+3oSeciLRw2IoKcgn57sfqS0obLZ97ybf1b/nZQHwc06Gcw5ACNGvSVCiFQkJCezbt8/dzRBC9CGWC0NLyTBXPqUP0XtiVMyszz8KwEi/QJft2zZT4mh1JWZcV0/CwlrssmEGDkvRz2AXDZuAxqeNlmlhrUUuXTSMBcBbq2Oglw9HqyqoaKHqfk8j5+LOaTolqG2wwbbArblJAUPbAINtnoNerWF6yAC7G9rGJ/It15Q4LmwQzyXMsv6sU2u4bng8k4LDO3g0oi0tDd+w/V3aBp/CmgRi1R56Fl5wAf5xsZhqasj94Weq0jPt1mk6nKPKaB/0EkKIrujzQQmDwcCyZcs4duxYh99711138cknn/Dhhx+SmZlJVVUV1dXVdv+EEKIj/JukwLqq0CVASMOF6O7SAjzUGhICQl22bz+dHjUqig21Lp95w8Iy/WlOTSVmRaHQUE2gzsPhGPru0JgpYR+UcFWRS4vhDUM4esPUoHIu7pzWakp4arS8NvE4JgWFc2rkULv1dI6KI6o13D96CiumnGBdZg1K2NWUsAlqqFR2Mxpp+2GtB1fRtDB8w/a7zXaGFNsZhyzvqjCb8J42iaDJE1FMJvJ//4PKXXushYHrzPZBiUpTfUDTkpVxqLyYvwpznHdAQoh+xXV5s25SW1vLK6+8wuTJk4mMjOzQexcvXgzAE088wZNPPtniOgcOHOhyG4UQ/YftuF4PtabZdHzdybaQYkJgaKtV8p1NrVIRqNdTYqgls+FGPNrFmRKWKQKPVldSWleLUVFcmqkCjZkSluEbGZWumw7U1pTgCDYWHLNLte+p5FzcOdXNpgRtvGnVq9UM9fHn0fjmwyhsAww+Wp01m8ZDo0Glsp/k0/IdYjf7RpPPlG2tFFfVTemP7IZvWH8vjcuqbIJUXjZDMcI9vcmtqaKgtpoiQw3+48ag9fej8M8NqPcdIj+vgJC5M6lrkilR2fC58G6YveX15N0cqSrjsxmnunRYnhCib+gT3xozZsxw+JqiKCiKwo033oi24Ytz06ZN7druU089JSdQIYRTBdhUQA/x8HTpd4ztMIUpQa5Pnw7UeVBkqOVAeX2BRVfNvGERrPfEQ60hp6bSOnTDlTNvgE2mhKEWRVHIqq7AR6uzDm9xlRMGDOasuFgqS2swm5W23+BGci7unKaZEiq7oITjYJRtRoWvRkeu9T3NM4osW9Q5mH1DuE5LhS5tZ8awFPjVqtR2v6MIj/qgxKHyEixrew+JRnfGqcxMyuR/B3aT+91q/p+9+w5vqmz/AP49J6tN9y6lZUMplNKyZQooIqggKDgQUXAgICqKijhwC27UVxDEhfo6UF/9IShuBRRkll0KhQLdO02adX5/pEmTNmnTNm06vp/r8rI5OeM5T0JOzp37uZ/ckA5AbA/bdtbhG9bZW8pMBpgkCSUGPYMSRFRvbeJTo6ioCGFhYZg+fToUCsdfHXU6HdatW4dLLrkEHTt2rNd+p02b5slmEhE5ZEo059ANwBIEsRoUGlXLmk0jROkDaEpwuNgalGjeTAlREBDto0ZGeSnSNc07+4mVn1wBmSCg2KBHiVGPCrMJMb5+Xrnp9pHLoWn2o9Yfr8UNUz0oYa+2DBn7TIlgpQrWN4mzYIM10Gk/y4azDKxlCYNRVUmHmoKs2vAcADDa1Qsprxxu0Unt7/BaRvr4AsXAv4U5AIDeASE4WloIRXAQli66BsYN7+Drf/7Ezxs/xjCZGsnJAwDYDd+oPJZ1eEep0QBWDCGi+moTQYkvv/wSTz31FLZs2YKlS5di/PjxtudKS0uxbt06TJs2DYMHD27Q/tPS0pCamoqsrCxMnz4dERERyMjIQFhYGPz9m/dLdUNotVpMmjQJkydPxv333+/t5hC1a74yOeSC4JWhA9bhG53VAYhsxulArYIrswF0ZhPUMnmzZwcAQK+AEGSUl2JbtqWIW1gzzrwBWH6tDlIoUWzQI6/COiVp87ahtWoN1+Jt27Zh1apVAIDFixdj0qRJXmuL/Q3pgh5JDs8paxm6JXdRe8A+kLFu8Hhk68ptnyNCLcM3AGB4eP2Gz1L9yUT7QpeW18BoVwdica8UrDl5EA/0HuhQSyZKZXkNrfVtRkbE4GipZWYeP181Lpk2Db+aymA8dhpffvkZ0tJOYPiEy2Cy1pqozMawHqvUoMc5bRlePrYXt3Ttg8SgsKY6ZSJqQ9pEUKJPnz745JNP8PXXX+OJJ57ARx99hEceeQQ9evSoe+NaaDQaLFu2DFu3boVcLofJZMKoUaMQERGBl19+GTExMXjwwQc9dBZN5+2330ZSUlLdKxJRkxMEAYEKFQr0uma/Ge0TGIrEwDBM7NC5WY9rFaKsCkJ09PX3SnbA0LAo/Jh9BodLLNka4c0484ZVYOUwlgyNZZrL6pXwyVFruRYbjUasWrUKGzduhEwmw8yZM3HJJZdAqVTWvXETuDauJwZGR2NyeCcIkuO/tdoyJeyHYkS7CEpE+/gh2m4GD3f3TU3Hvq6HdfpO+zoQiUFhWD3gYgCwFRsGgN6BIQ77GRQShdhEf3SLDAVMlgyZoKREDE5Mgfyfffhm+2949o8fEDZmBFQR4aiorF1ikCz/LzXq8WbqAVzQabAuPRWvpoyx7bvMoIe/wvHfg9FsdjkNLRG1H23qU2Dq1KnYsmULevfujWuuuQZPPfUUioqKGry/559/Hnv37sV7772HPXv22CoQA8CYMWPwxx9/eKDVTev06dNIT0/HmDFj6l6ZiJqFdQhHcwcl1HIFnu8/AhdHxjbrca2C7YISzT10wyo5OMJhbLw3shSsdSVOVv5a6Y3ASGvSWq7F+/fvR3x8PMLDwxESEoKkpCT8+++/XmtPYnAYbumd6JDWb+WsPoSVfW0C+0yJ2rIrHPfNoIQ3KISqfrcGhozVZsywsn8tO/r644vhkzC5QxcMD+uAGF8/DAmLRnywZdYUa5AqICYGCxYsRnZYEAylpcj+v60oOXgIFZUFL63DN4oMelzQWcb8BNjVUPr+wmlct3MLfss5Z1u2MeMopv71Hc7ZBUmIqH1qU0EJAPDz88ODDz6ITZs2ISMjA1OmTGnwr3E//PAD7r//fgwbNgyyahfjmJgYnDt3zsWW7tm1axfuvPNOjBw5EvHx8fjll19qrLNx40aMGzcO/fr1w4wZM3DgwIF6HeOFF17Afffd16h2EpFnBVZ+UWtvN6P2wzWae+YNKx+ZHMnBEbbHYc08hAaomoHDFpRgpkStmvpabNXYa3JOTg6ioqpqtURFRSEnJ8cjbfMUawFEdwtdOgQl3Pw12931yLM6+vrZphaOqByS0aNy6t9ufoEO69pns6hEGXxkcszvkYRlfQZDrPad2fpeMZjNUKvVCBs7GqEXDQEEAYW79+Lkt5uRk5trGy6UrauqVGOyCyB+nHEMAPBhRtVMOZ+cOQ4A+D3XM/+Giaj1ahPDN5zp1q0b1q1bh99++w2nT59Gp06d6r2PiooKBAcHO31Oo9HU+HJUX+Xl5YiPj8e0adOwaNGiGs9v3rwZzz33HFasWIH+/fvj/fffx7x587BlyxaEhloi2FOmTHG6702bNuGXX35Bly5d0LVrV+zdu7dRbSUiz4lT+yO1OK/Zp4H0tpaQKQEAw8Ki8U+BZU6BMC8EhmyZEhoGJdzR1NdiK09ck1u6j4ZeBoNkrnHjac8+ld5+aFFdwzJmxPVEiUHPmVK8RBAEvJYyBqc0JeheGYwYFdERPjI5+gQ6vj/tA0d1ZcBYMyUMkhkHi/JQajIgoHcvqKIikf/Hdmiys/HGm6+iJDoIAX3iUaCvsG1bZKj6O0zlg0JDBXJ0WmzPu4DBoVXlMNXNODU2EbVMbTYoYTVmzJgGD13o168fvvnmG4wePbrGc1u3bkVKSkqTtm3Dhg2YOXMmpk+fDgBYsWIFfv31V3z11VeYO3cuAOCbb75xuf3+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1F5RbNwXDev2jd1PW8S+ca56v7SV/rm9Rz9c26mnR4pNtqa+sc9K6OQX0ORtdtU3Q8OjIZzYjwCFEmpF838ZDqoMzmgrZ0eI8lU3++vXmt43TX0ttmrsNTkyMhLZ2dm29bOzszFy5EiPtM1TVDIZVKjjJtR+SlC79Pu6hmXM7pLQuMZRo8lFET0Dgm2PRUHA0LDoGuvZv5Z1va7W94PBbMLDB7dXbRcSjOjJE1Fy8BAMOaUo/Gc3tBlncP7ySba5YovtghKWmVqKYYaEZ4/swgi74qd+8jZ/O0JEdeCnQC0WL16MW265BXPmzMHEiRMhCAJ+++03vPfee9i6dSs++uijJju2Xq/HoUOHMH/+fNsyURQxfPhw7Nu3z619LFmyBEuWLAFgyZxIT09vcEBCLhcRFuaZXzZDQpwXxyL2jT2FQlbjPdeW+icagXWvVA+toW/k/pYAgEwQ0LdjlNtj1Buret+EwR+PDboIfnKFxz7X6qNjseNr37NDuNNpFJtDa3jfePNabOXONTkpKQlHjx5FXl4eZDIZ9u/fj2eeeabBx/TWDwEKu/eiQub4i3prCGK5ozUF5ZqCr10QwP41trLvH6W8sj6FVHNKV0EmIii5H27slIgfVr8AXXYO/vnkU8j7JSCgTwJKoIckSJAJYo2hcn/lXajajyC0mteivb93asO+qR37p3YMStRi0KBBeO+99/DSSy/hqaeegiRJWL16Nfr3748NGzY06YwWhYWFMJlMCA8Pd1geFhaGjIyMJjuuK0ajGSUl2kbtQxQFhIT4obBQA7OZ85XbY9/UZDCYkJ9vKX7F/nGtNfWNJEno4OOHcJUPSosa93nijtr6ZqifJXXY+h5rTnJ9VVuCFEqUFWnR3K3w1PsmMNAXCkXTBlS8eS22cuearFAocP/99+OGG24AANxzzz1QqRo27a03fwjIlxlsf9u3wVet9EoQrym1hqBcUzBrqwIRtb2mISF+iFBYZtUoMRtcrtehexyir7gcxQcOQnPwMIy790Jz8hRCLxoCmb8CYT6+8PFxnZWm9PVOgLgx2ut7xx3sm9qxf5xjUKIOAwcOxMcffwydTofi4mIEBgbC19d7438lSWrQeM1p06Y1+tieuuExm6UWf/PkLewbR9X7gv3jWmvpm9dSxkAUPPd54o6W1jf2FenDVb5ebVtL6xtXWtq12Kr6NXnChAmYMGFCo/frzR8CikqrChXaB+2Ky7ReCeI1hdYUzG0KGoPe9rez19S+fzTlOgBARkmxy/19eDgVgkxEcEp/+HXrgoLt/0CXlY2szT9grdkXs66aBo1W73L7wtLyVvPeau/vndqwb2rnif5pjh8CvIVBiVrs2LEDycnJ8PX1hY+PD3x8mq8gWkhICGQyGfLy8hyWFxQU1PilhoiotVBz7LCt0CXgWEiQnPPmtdjKG9dkb/0Q0EUdiInRndE/ONxhO4PJ3OZuNFpLUM7T7OuG1Hb+ZrMEWWWBCJ3Z5HK9bdlnq/YdFITIiZdAczIdRf/swe7d/yAvPR05vbpACguA4GR2Fr3J1Opeh/b63nEH+6Z27B/n+O2wFrfeeitkMhkSEhIwaNAgDBw4EAMHDkRISEiTH1upVKJv377Yvn07xo0bBwAwm83YsWMHbr755iY/PhERNY0gu6lRvTH7R2vjzWuxVXu6JguCgIU9+9se+8kV0BgNiPZAYV5qGZSiDHO6JLg184+iWiHMjr5+OKfVuFjbQhAE+PfoDt/YjuiWVYrS4ydw+KefkeurRMjQQfCJjnJY32A2AwCydeX4KOMobuwcj2gfxxT3YkMF/OVKyDi7C1Gb1CaDEpIk4c0338TMmTMRHh5u+zsiIqLuje1s374du3fvxr///ot//vkHH3zwAcxmM7p164aBAwdi0KBBuOqqqxrcTo1GgzNnztgeZ2Zm4siRIwgPD0dERARuueUWLF26FH379kVSUhLef/996HQ6XH311Q0+JhEReZe/XAERAsyQmCnhhqa+Flvxmuzc6pQxOFicj2FOZnGg1uuauJ5urWefVQEA46M64YPTR9zaVubjg+RLhyG1RxfkfbMJ+pxcZH//I9SdOyF4cAoUAZZpsfWSJSjx+ol92F+Uh/NaDV5KHmXbT5ZOg3m7fsLwsA5Y1mdwncf9JecswpS+SApmZjFRa9EmgxJmsxlvvvkmxo4di9DQUNvf9Q1KhISE4NJLL8Wll14KwDKH+c6dO7FhwwZ89tln+Pzzzxv1RSg1NRWzZ8+2PX766acBAAsXLsSiRYswadIkFBQU4PXXX0dubi4SEhKwbt26VjMfOhER1SQKAgIVShQZKtz6pbK9a+prsRWvyc5F+qgxnlkS7Zai2nCLCJV72V1yQYBRkqAxGvCzUYOoSRNQfuo0inbvRXnGGWjPZiKgT28EJvWFvnJoSKHeMoXoOa2lvoS1Zss/+ZapdrfnX3B+sEpakxHbss9izcmDAIDvRjX+c4GImkebDEoAlg8yZ3/Xl0ajwd69e22/0hw4cAAqlQoXX3wxBg4c2Kg2Dh06FMeOHat1nVmzZmHWrFmNOg4REbUsQQxK1EtTXouteE0mqkkUBMgEAabK79LhyqrPLB9R5rLWRIjSB7kVWpQZLbN2CIIAv25d4RsXh5LUwyhNPYyS1MMoO3YCxy4ugT62F1SVQ0UqTJZ9Lju4HaIgoFeAe0O11pw86FDfwiRJHO5B1Eq02aCEJ0ybNg3Hjh1DWFgYBg0ahIkTJ+KRRx5BfHx8g2bAICIiAoBoHz+cLS9FjC+nBqsLr8VE3qUQRJgkS6DAfshZnDoAJ8qKnG4TolQht0KLQoPOYbmokCM4JQmrrr4BW3/6EZv++BlH/9qOlzMuoCguElLHSBgqy1gcLM6vccza/JXnmElRoNdxiBxRK8GgRC2OHTsGuVyO5ORkpKSkYMCAAfwSREREjbawZxKydD0QykKXdeK1mMi7FKJoy4gIsxu+0dmvlqCEwrJejq7c6fNDYrsi8OprsCPcD2FpZ6DJL8HZP08gXylDUHI/mEeYbeuer6OwppXWZHR4nK0rZ1CCqJVgUKIWu3fvtqWL/vDDD3jppZegUCgwYMAADBo0CIMHD0ZycrK3m0lERK1MiNIHIQxIuIXXYiLvstaVUMvkDrNxxPr6O6wnALAOmA5RWmYZytZpne5TJghQiCIUQYGIn3ApbgnpiGPvv43s40eR/8cOvFpoQFmQHH7du+FkWTEAQOlkOtHa5OjKgaCwem1DRN7BoEQtfH19MXz4cAwfPhwAYDAYsGPHDrzzzjt46aWXIAgCjhxxrwIxERER1R+vxUTeFa7yRYG+AuXVMhH85Ap08wtEuqYEAOAjk9uyFaqCEs4zJQDL1KQAYJDM6NAhBj0mTURB904o2X8QOzJOIr+0EMX7DiIwqS/8e3aHSRBsxS+rc1Y/rrZjE1HLwqBEHQoKCrB7927bf8eOHYPZbEbPnj09VlyLiIiIXOO1mMh7uvsF4XhpUY3lClHEayljcOWf3wKwFL60BSUUlqCEGa6LzVszMAyVQ0O0JiN8oiPhEz0eRTl58D1wENqz51Cw4x8U7z+IwMQ+KBs4HgG+NWeDKa0sqGmv+nAOV1KL87E+/RDu7z0AHatlfzSV33PPQSXKMJRT7RIBYFCiVpdddhnOnDkDmUyGhIQEDB06FAsWLMDAgQMRHBzs7eYRERG1ebwWE3nX+Kg4fJ+VgYEhkQ7LFYLokLXgI5MDBsu0noEKFUQItQclBEtQYl9RHr7MTHMIIqgiwxF5yVjo8wtQvP8gyjPOovCff7Ey51mMGjYCw4YNR2BgkG39UqO+xv7P6zTI0ZUjso4pbR868BcA4P1TR7Csz+Ba1/UESZKw8ui/ADhtKZFVmwxKCIKAmJgYKJVKh7/ra/Lkybaxqr6+LJRDRETU3HgtJvKu3oGheHPAxTWmMJYJjjUefGVV9SYUogh/uQIlToIF1uCG0q4+xYZThxGssHxXjw8IwbHSQss6YaGIGDcG+sJClKYegbZcjz/++A3/98s2GOJicOvEKzGoWy/onUxNujM/Czvzs9y+8W+u6UM1bmZwELUnbTIoIYoifv75Z9tj+7/r4+677/ZUk4iIiKgBeC0m8r7OfoF1ruMjq7qtUIoi/JwEJb4aMRnyymBG9cKVRQY91DI5etsFJWz7CwlB2KjhmNNjAM4dTMXSTR/CnH0W544cwdQBw9ChXz9IZjMEJ8UwXdWhqM5PrqhzHU8oqcwmIaIqbTIo4Ulnz57FunXrsGfPHhQVFSE4OBgDBw7E3LlzERcX5+3mERERtXm8FhO1XBdHdMSvuecwNjIWh0sKAAAKUQZ/Jzf59rN3KJwEEHQmE2J8/VweS+anxkVjx6GjXAPNiZOQZ5xHenoa/j5yEOd1JfCP7wn/nj0g862a3UhnNsFXVvctj9qNdTyh1FCz/oW7TmtK8HjqTtzVI4n1KKhNqd/cOu1MamoqpkyZgh9++AGJiYmYOnUqEhMT8cMPP2Dq1Kk4dOiQt5tIRETUpvFaTNSyLe6VjJeSR+Gy6M7wqQw6WIdv1EZuN/zDOnTDDAn+ctdDrrUmI4oNFRAVCgT06Y0BN1yP666bhQ6dO8NYpkHRv/tw7rNNyPv9L1Tk5EGSJGicFMF0RmU3/KQpORvS4q5PzxxHvl6Hpw7/48EWEXkfMyVq8cILL6BPnz545513HMaxarVa3H777XjhhRfwwQcfeLGFREREbRuvxUQtm0KUIT4gBAAQoFBCV6G1Dd+ojf2QikGhUdiWfRZA7bUddCYjig1VN/W7inIwoc8QXDrzOmzvHIHSo8ehOZEOzclT0Jw8BWVoCH40+mDUgMGIDQ6tsT/7qUSNTqYVrcsLR3ajzGjAU/0ucnubUrv2mySpXrUs3Mn4IGqNmClRi4MHD2LevHk1Cmv5+vri1ltvxYEDB7zUMiIiovaB12KilsnZ8IvAyiwHheB8+IYrF0fE2v4Wa7lHt2ZKWBklCSsO/Y0ifQUUQUEIHToYHWdOR+jwoVCGBENfUIhnP1qPSfffhU8/+wS7jqRCYxcUsJ/xw2BXLPPP3PN4+vA/0NVRlPKPvPPYW5TrENyoi32mhNFsdns7AAhoproXRM2N4bZaqFQqFBUVOX2uuLgYKpWqeRtERETUzvBaTNSyPNR7EP7KO19jilAAiFX746y2FMFKlVuFI+MDQlCkr0BySAQeThiEON8AnNeVuVy/wmzGeW1xjeW7CnNsf4sKOQLie8K/Vw/oc/NRdiIN5emn8e++PXhmy1fwDQjA81OuQ0rKQGh9qoaKGCoDBGfLS/H80d0AgMMlBRjg5DwBAMzzhgABAABJREFUS5aDlVEyQyG4N/zDMVPCDMD9YSMGqSqIYTSbIXcSGGqI7XnnkVZWjFmde0NspllIiOy1iaDE9u3bMXz48DrXMxgMePDBB/Hyyy+7td+LL74YL774ImJjYzFo0CDb8t27d+Oll17C2LFjG9xmIiIiqhuvxUQty8iIGIyMiHH63D29kjHP2Bf+cgX83BhqsLL/SFhvgUeEW/aZXVHucv09hTnYmZ9VY/muguwaywRBgCoyHKrIcIQMGYRRqjD8+n9fQJuVjV9++Qm//PIT1B2iUao0Qd2lk+2GP62syLYPawDhtKYEG04dxvye/VChAXbmZCI5KMK2nsFsdijiCViyLSRIGBXR0WF5iV1Qwj7IAFiGkzx9eBeifdW4rVtijXMqs6uPkVehRXQtRUHr49kjliDM0NBoxAeGeGSfRPXRJoIS8+fPx+uvv44xY8a4XKe8vBwLFizArl273N7vQw89hLvuuguzZs1CWFgYwsLCUFBQgPz8fKSkpODBBx/0RPOJiIjIBV6LiVoPhShDiNJyc+7OgAZn9RREuP6l3llAwt68bn3RRR2I5ak7HPepkKNbYiKizMUwlJTiYp8I7NnzL9JPn0ZB3nkU7tyF3Ql9cXCCgLIgtW07awDhsdQdKNBXYN3JQ/i3MAcGsxkLe/S3rWdwMgzDmm1RPShhH1gwVRv2YZTM+LvAco7OghLlxqrhJIWGCo8EJeyHsBwqyWdQgryiTQQlLrnkEixcuBCvvPIKLrnkkhrPFxQU4LbbbsPJkyfxxhtv1Lk/nU6H3377DefOncP111+PWbNm4fTp08jNzUVERAT69++PkSNHNsWpEBEREXgtJmrt9PWsl2DlrKaEUhShN5vhJ1fUOpuGWiZHuMrX6XPW7RSBAbh45CUYN+5SbD6wG/u+/wrlp8/g4OFUvJtXhFyjHnlBvvDr1hVFHbsDAAr0ljoWAqoCECfsMir01TIeTHaPJUmCIAiQJAlrTqbij7zztueq15SoHqSocQ6mqnOvMJlqWdN9pzUltr8PFudjWmwPj+yXqD7aRFDixRdfxCOPPIJ77rkHK1euxKRJk2zPZWZmYu7cuSgqKsKGDRuQkpJS677Onj2LOXPm4Ny5c7Zl/v7+eOWVVzBq1KgmOwciIiKy4LWYqPWLVTfsV3xnNQ2Uogx6s7nO6T2VogxyFzUR7DMUygwGBClViIiNQ9iIYQgdNgTac+exI/00uhZL0KSfhib9NL769yDkQ0ehXF8An5gO2GGXqWHfFvsimYBjRoO13sQ5rQbfXTjlsJ6xWjCjrhlAyu2OmVuhtQU8GuOUXVCiQK9r1L6IGqpNzL4hCAKeffZZXHvttXjggQfw9ddfAwCOHj2K66+/HhUVFdi4cWOdAQkAWLVqFURRxMaNG7F//3783//9HxISEvDEE0807UkQERERAF6LidqC0RGxuLtnMm7sHF+v7WRCzduT6rNbPNF3qNNtlaLMZaFG+yBCaeXfuspggiAToe4Ui/CLR6J40jiEjxkBdVwsdAY91v78PXJ//g2Zn3yO3J9/g+bkKZgr9Cizm0Wj+vAN+wCINaMhx0mtjOqZESa7/aw5eRBvpTnOLqSxG2rx2ol9WJ223+m51kehXSDCYDZjXXoqNmWm1brNybJinNLULDhK1FBtIlPC6vHHH4dKpcKyZctw7NgxfP7554iMjMS7776L6Ohot/axd+9ePPTQQxg4cCAAoHv37njyyScxadIk5OTkIDLSeQVeIiIi8gxei4laP5kgYEJ0J/yUfaZe2zn7xbT6QBC1iyKaKlFWI6jRNzAUh0oK8E9BVZZDqVGPz84cxwcZR2seXyGHX7eu8OvWFYnqQPx96CD8Ms5Ae/YcyjPOojzjLARRhNClC8qiwuEb27FGwUr7AIjObII/LJkN1VUPZthnSnx73pJVcVePJNuy8mqZIj9kncHdPZMdlunNJnx25gR8ZDJcHdvdaZDHXoVdlofebMLX59IBwOkwjk2ZaYjyUeO5ysKY/xt5JWfrII9oU0EJwFIQS6VSYe3atejfvz/WrFmDoKAgt7fPzc1FXFycw7JOnTpBkiTk5eXxixAREVET47WYqO0YEhoNP5kcV8Z0c2t9Zze51TMl1C6mG1WKokPxzMGhUYhQ+eJQSQH2FeXZlpcY9E4DEtWVQIJf187w69oZkskE3fkslGecgfZMJnJOZ0CXbrmBf//QKYxKSkGvXr3RqVNnp5kSWTo3MiWkmnU4rEM0jpcW2jI8arMj7wI+PXscANA7MBSJQWG1rq83VR3TftiJZUaRqoBGmUGPd08ddtg2W1eODpXFNjVGA/zsMjnOactgNJvR2S+wzjYTtYmgxLBhw2qMp5IkCSdPnsTEiRNrrL9jx44ay4iIiIiIyLMCFEp8etHlbtc+cBqUqPbY1y5TQiGItkwFpUzmEJSQCwKUYs1MgVK7oRe1OVNeavtbkMngG9cRvnEdIZnNqMjOgfLsOWgzzyE3Jxt//PEb/vjjNxTADERFoMxPAd+OMbZMhCytpsb+q9eUcFbo0ihJUAgC/pN2sM72/pOfhVXH9tge11WDA3DMlLCfiaPIUIEIu6KhOnPNwpony4rRwdcPOpMR127fjJ5BIXgteTQA4I7dPwMAvht1VZ1taE1ydOX4tzAHE6I7O509hhqmTQQlbrzxxkYXebE3b948yGSyGsvnzJlTYzkDHERERJ7HazFR21Gf7+nOghIdfP0cZomwH77RwdfPFjyoPnxDLohQiTU/R149vs/t9gBVs39YCaIInw7R8OkQjZAhAzGzYzx8c/Jx+OhhfPPnNkjnTtvWfT81HX4xHfCXzABzWChERVXbSwx6FBsqEKRQAagZpACAs+WlMEhmZGot55gSHIG9RblO2/nk4X8cHuvcmKHDPihhPwyloELnEJRwNtvH8bJCnNeWIaxyvRPFhTBJksOkriZJarab90K9DsEKFQRBwG85mdAYDZgU0xUA8Hd+Fv7Oz8L8HkkOGSD1tXDPryg3GeErk+PiyFhPNb3daxNBiUWLFnlsXwsXLvTYvoiIiKj+eC0mar/sb2C7+wdhVHgMQpQ+eOX4Xtty+0yJWF9/W1Ci+vANURCgdBKUqK9wlS/OO8l0sLUnKBDDusWjZ8oAfNEpFLoLWdBlnoP2/AUcPXMah1Mt2QuCKEIVGQGfmGj4dOiAJ807IYgiXksZg+7+QU4zJe7e+5vt746+frg4MtZlUKI6vZPshupcTS1afSYOrdlYY51NmSdrLLug1SDGp2rmFYPZBJmLGiAbTh3GweI8JAWF4+rY7rbgTENsvnAab6UdwN09+2NCdGdbxsjlHbpAEAQ8VRmwiQ8MwWXRnRt8nPLKbJL8esxUklehxYbTh7Gg/wD4t415JjyuTQQlPIlfhIiIiLyL12Ki9ku0+5092keNa+J64q+887ZlKlEGuSjiod6D8N+zx3Fb90Rsz78AwDL7huPwDbHBQQl/ucJWGyKijqCEtWBlmVEPUSGHulMs1J0sv6InqQKQdWAPdOcvoOJCNnRZlv+A/RAVCqiiI/HymSw8NHoiKgJrn0Y12sfPaeaHVXxACI6VFtoeV9QSlEgvK8b/zqej2FDh9PkaQQljzaCEMyfLihGlUle1wWSCj0wOrcmIAr0OHX39bc99WTnLx/HSImTryvFgwiC3jlFdjq7cNlPJ9rwLmGAXdDBDgszuPXWspLBRQQkrP7tAiyRJeOX4XnT1C8LVsd1rrLsj7wJ+yzmH5KwoXBYaV+N5YlCCiIiIiIhaCPvhG9YAhX2gwZolMTIiBiMjYhy2VQiOmRIyQYCqWqp+sEKFIhc34tXXsw9K1MYalHBWiFLy90NAfE8ExPeEJEkwFBRCd/4CdOezoMvKhvbsORzJLsBbh0/imLYE2b5yqKKi4BMVCWVEuMNwjygfNVROhrVZWQtlXt+pFz45c9whKLHh1GHsLsjGKymjoRRl+Pb8KWzLPmt7Xi4IDrN/FOgrbPt8+djeWgMc9jLLS2EIqSpGbN3uzRP78Ufeebw/ZAKClTUzImoL+tRlbXqq7e8QpQ8M9kNSzGbIZFXvgZOVU5nuKsjG2pMHsSJxGGLsAiXuss/WKTHq8XNOJoBMW1CiWF8BvWRGhMoXBZXvt2BVwzNB2joGJYiIiIiIqEUQqw2/AByzJ9TymrcvM+N6Ia2sCAEKpUP9CpkgQFntJj7KR+1WUCJQoQQqZ/EMU9YRlKgMBjgrLGm/TBAEKMNCoQwLRWC/vpBMJujz8hFeUo7cwhKcPJ4Jc5EBugvZKLauHx4GVWQElBHh8A+LhaJafQaj2YxSox7FBr0tOOJfOTuJdWhGmdFgy0r437l0HCopQKnBsdinn1yBYrtl/z17HOe1ZZge1wO/5Z6rq7tsyk1GhwCG9e88vQ4mSUJehRbBSlWNGVUaM7WofUBDYzRAY5fVYTSbARnQRR2A0+WlttokKw79DQB4J/0QHu871OW+z2nLkFehRf/gCJftdTLqBjf+vRWAZdrUwsqsk3Cf2t9H7RmDEkRERERE1CLYp9pbb/zsi1f6ijVvX27q0tv5vpwM34jyUTsMcXDYT+fe+LByqlAfu2BGsEJZa5t1JhPKjUans3qU1zLsQZDJoIqKRGkUUAogdlAiDIVF0GXloCI7BxXZ2ajIzUNFrmU605/3H8OBoGDkmsqhjAiHKjIcB/Ky8Nix3QCAoMp2WoMS1poSf9oFFd47fcRpW6oHJQDgj7zzGB3RsdZzr05rMjoUBbUGJaxZHBqTobJtjkU9rRkuH54+CrVcjumxPWznYJIkh8yE6krs2q0xGWzHAKoCRtb3kEmSHAIydc1QYp1F5IOhExxqXthnlRicFCi1PWc2o7Ay6yRM5Qu4Nwqm3WFQgoiIiIiIWgSxWqaDZVnV8/J6zJwgE4UaNRgiaxmK0dkvwPa3j13wI7COAozvpKfinfRU3NS5ZnCk3FT3tJxWgijaMinQtzckSYKxpAQVuXnQ5+YjTuaPkrxclGdnovxsJgDg5i3boAwJhjI8DKVhoVCGhkDR3XLDbA0I/JRz1uUxrfxkCqfLT9nNeuIOrdEIvV3xTOvfRrOlTdYsBvvpRwHL6240m/Hfs8cBAFfFdINCFHHP3t9xprwUX42YDEW119IkmfHq8X0OmS/lRqNDIMgaPLAPHJzWlECEADOkGu1wJb9C5zA0yFy5v90F2XiiMusCsARR7ANhFWaTQ6aEscz990N7wqAEERERERG1CPZBCQE1MyXk9UjzlwlCjSBGlI/axdpw+CXcvnZDUB2ZElYZlbOA2NO4WSDSGUEQoAgKgiIoCOjRHbcPHAuT3oBDP26CvjKDQp+XB31hEfSFRcCJkxAh4ON/DuK8QYNdXXsiJvEC9uSegjI0BDIfH6fHUYkyl9NkplfWYHCXq+Eb1qCANUhTPVgjEwSHTJPTmhJ08w+yzaxSZjQgROkYlDhYlI9fcizBmWgfNbJ05ZZMCbvsB2NlRobJLiiRrimBKABmyVIkU5Ikh2E/zqYxLTcZUGqounW2Bjuss3xYPXZwJ1YkDnM4/wJ9BeSCgEClEgVgUMIZBiWIiIiIiKhFqD6lp/3/Lc+7nykhF0SYqw3495croBBEpyn3UT5qXBzREbHqAORVaG3Lg5TuBSWczWThbEhHQ4UofaCVyeETHQmf6KpikkZNOfT5BdDnFwCFRQiS+cGQfgHnjh3DN2cykVOQDQCQ+/lBERoMRXAwFMFBUIYEQx4UCIWPAnIX/ZpeVv+ghMFuaIZ1mIY1OFCVKeFYOFMUBIfhI8dLCx0yIAxmM85oSuErl+OTM8cACbgovIPt+TClD/IqdCg3GhwCHsbK19l+uMWewhzbY43JiL8LsjAoJApyUcSx0kI8cmA7bunaB5Njutq2KTboHTIgTGbndURSS/IdanBojUaUGCoQpvJ1CHyQIwYliIiIiDwgPT0dy5YtQ1lZGZRKJZYtW4ZBgxo2xR1Re2Vf1NJ6m+wwzadYv0wJY7XaBQpRhEomg8FYtXxet77wEWUIVfrg/t4DAQDr7GZ0sM+gmNKlB/4v46TDTa6VfSDDykkNxAbzk8lrBFkAQO6nhtxPDXWnWATKlbi930U4sGMr+pjlCNJokXpoP/QFBTAUl8Co0UB71rFwpTIwEOaOsShSiFCEBEMREgRFYCAEmQw5Ts6pNtpqmRI66/ANa6ZE5U189WETMkFwqA2xuzAHuyqDKYAl2LFwz68O2yQGhdn+VssV8JPLoTEaHbJTDNWCIgDwb2GOw36ePrwLF4VFI11TgmxdOQBgY8YxTOrQxbZOsb7CYSiQs9e/qq1VgYrcCi3McD/bpr1iUIKIiIjIA1QqFZ599ll069YNJ0+exF133YWtW7d6u1lErUpds2/UJ1NCJojoZFcnAgAUgqzyF++qG8eBIZGIUzuuZ19TQm1XZLFXUAh+kslt04Xau6Atd7ttDSEIApR11NRQiCJUogwyHx+ogyMgl8kRHhGAnv7BOFaYB0NxMQyFRTAUFcFQWAxDURH0JSUo0p9Gsc6x/fIAfygCA+AbFAwE+EEeGAh5UADkfn4QqrUjPiAEx0oLLTUl7IIS1r9tmRIm50EJEY5BifPaMofnnQV8LuiqZt2oMJmgllmKddpnrFgzYkxOMmOCFUoUVR5zR36Ww3N9gkKhszuP/cV5GCjaZafUUtzSvohnocFST8JP7rxmB1kwKEFERETkAR07VlWp79atG0pLS2uMVSai2jkbvuGQKVGPf08igI6+/nhrwFjctecXAFU37fYUTgId9jUl7AssKmWiy/oLZo/mRThnP4QgztcfZ6vdvCtE0Ra4sNQzsNwUd/cPwomyIqjCw6AKt2QYBMgVKDUaYNbrkSL64K/04zBU1qcwlpTAWFoGY2kZfHIKUGh3oy+IYmXAIhDREZEYGNcVUyO6Y1lmBjQQHYIS1qwJa2ZBucmIvAotMssd2727MMfhxr16LQ5nQYlPzhy3/a0zG+FXOV2sfXaHNRhSPbMhTOmDPoGh+CPvfI39ApYgiX3gZGd+Fk7aDWUx1ZIpkW93/KLKmTdqmz2EGJRo0w4ePIjly5fbHp84cQJffvklEhISvNgqIiIi79i1axfWr1+P1NRU5Obm4u2338bYsWMd1tm4cSPWr1+P3NxcJCQkYPny5UhKSqr3sX766SckJCQwIEFUTw6ZEmhcTQlUbmefLWEdvmHP2Ywe9hkJ9kERhSirMc2ovQiVL+IDQtA/OBxvph2os4lKUawxPaYzSyuHlTgUAnXy+aIQqs6vwmyyBQWcDR/oGRCMPYW5EJVKhEbGwF/u2A6zwQhjWSkGy/zw++njMBaXwFBSCmNJCQzFlv80OfkwZBfh8937kHXhNDIlMz6I+R1ZFaWQ+fth95lcRPToi+IzZ6D3UaLYPxQ3//2D07bb12KoXggzr0JXa/8IEGwZLbn2QQmp5vANwNLv6lqyFwySGdpqgRH7/ZokySH44qqt1mAOgxK1Y++0Yf369cM333wDADh37hxuuukmBiSIiKjdKi8vR3x8PKZNm4ZFixbVeH7z5s147rnnsGLFCvTv3x/vv/8+5s2bhy1btiA0NBQAMGXKFKf73rRpE2SVNwLnzp3DqlWrsHbt2qY7GaI2yunwDSfThDaUs0wJZ0EGs4sfwpV2mQjOpIRE4O6eyTjt5lSackGEHrUHJW7oFI/REVWZWKsHjIFcEPHCkd011rU/vwqTCQazGSIAlZOb4p7+lqAE4DxbRFTIoQwJwZBufXHDyLF45OB2W8aBuUIPQ0kJ+ogqXBISg+LiIuzcZ0J+QT7KteWoKMgH8vJxKL8UpqMnkHn+FIyShF9Vvsg16iFXqyFT+0Jm/b+fGjK1GvLKZWZfH4jyqjbn6WuvbTG/ez98dvYEAOCCtmpYh3Uq0uqZEgpRBr9aAgVGsxlas+uZU0yS2ZYFUZ19W63rqOW87a4Ne6ed2LJlCy677DJvN4OIiMhrxowZgzFjxrh8fsOGDZg5cyamT58OAFixYgV+/fVXfPXVV5g7dy4A2IL9rpSVleGuu+7Co48+is6dOze4rWI9ivnVtn1j99MWsW9q5+3+kcMuQ0EUIIqO03oqRNHttglCzfNwFpRQyWU11rMfimH/XF2ZEp39AiGKQo1sDFdqGwZgpZbLHdrQPSC4sl01AwkKUQafyhtgvdkEg2SubHPNdcdExeK/Z08gPiAECpnrQMvgsCjEqgMwq0tvvHfqiOXYKiVUEeGIiYjB2D6DIYoCfu4ShrTiIgyK6oSc9KMwlZUh2T8Mo/1C8MtfP0Cv0UBhAoSCfBhKS2EorTmFqj1RLofo6wOZjw8+9lFB5uMD0ccHMh+V5f+Vz60ZfhlilD4IUVoKkmbaDWkxwQxBqFkDQiWTQa2oPVOiwkUmBACcLS+DxkXQIt8uU8Ja38KalcHPHecYlPCi5kwj3bJlCx599FFPNZ2IiKhN0ev1OHToEObPn29bJooihg8fjn379rm1D5PJhMWLF2PGjBkYOXJkg9sil4sIC/Nv8Pb2QkL8PLKftoh9Uztv9Y/97BJqXyXCwvyhUVXdUPpVLnOHWl1z3cAgX6iUjrdA0eGBNYZw+ORW3bDa70Mpk8FX6fpmtnNYEMLC/KH3dauJbgUlwgLVTs9ZIa8Z+FCrFIgID7DMMAIzjJIZKpkMwQGODbolPhEDO8Xg0+ArEK32w9uH9zs99g09eqN/nGXqzZBCdY3nVSqFrW3W4Q4/ZJ+xzQgS1z0eVycNxAuwZI50CQiEvLQEkskEY3k5TBotTOXllv805TBptTCWa2HWamHS6Wx1LWqz8dBJiIKAw4X5OFtaBFGptP33S/p5FMV0ROGBf6Hy8YFRJkKQy1EeHgGdwQTt+QsQ5QoIChkEudzyt1wOsyBBrra8T4KUKhRXy4r4M+889hfnOW2P/VSmpWbLMJRQf0v/83PHOQYlvKg500gLCgoaFMwgIiJqDwoLC2EymRAeHu6wPCwsDBkZGW7t4/fff8fOnTuRl5eHzz77DADw4YcfIjAwsF5tMRrNKCmp3zR81YmigJAQPxQWamB2lYfeTrFvateS+qdCZ0R+fhlKtHY1AvQm5OfXfpNqpS3X11i3qFgLs9HxV/OiAk2NGgeioerc7fehFEWItYy2UFRY1i+rowaC1dioWPyYdabWdYw65+dsNtVsiGQ0Iz+/DCpBhnKDESZJgkohg0Hr+Kv+lRGdkZ9fhkDIUF6sg6mi5q/+Uzt2w6yO8bZjG7U11zFUWF4jURSQp635uVVSrkN2XlVGRJHOcsMuyGRQBARAEVBV70MuiHhz0MW4Y9fPVedjMsOk08FcUQGTVlv5fx3MOh1MugrM6dAdCpMJWq0WgQYDUFwIY5kGgGUIx9EKCcUnTqHk/CmH+h0nVL7Qqf2RUzl8xUoEYAZQqlShICgMZ4tyUaTyQZnZCEEmgyCKlplHRBFZ1scyERBEDAyNtAyHEYTK/4A8QQAg4FB2CaT4RBQVlTf431VgoC8UCvcycFobBiW8qDnSSAFg69atHhm6wVTSpsO+ca56v7B/amLfuMa+cY194776zJ4xduxYHDp0yCPH9dTNoNksef3GsqVi39SuJfSPWNkOQbJfJrjfLqnq39LCHknYX5SHzr4BsP8XPSo8BpJk+bdu75LIOJwuK8HYyFiH48lEwWn9BasguQpmswQZan5uRKh8MTG6M0aEx+C/Z49jUocu6OYXhGiVGh9mHHW5zwilr9NzdvbJZKx83QIVStswBoUg1pi1RJAc+1FmN2ymb2AojpYWYnKHrg7rODtvCVV9vHzgMDy66y+H53VGI/SmqmEQJXZZBFM6dkOkyhfvpFs+N2/q0hsxKsdMAqVcDoOfGvBTAwhxeM5HlOGOEZNtj/8tzMGZ1J2QzGaY9XqY9QZc1rEH+voGYsff2xACEXnlZZAMRnT29UeiXxCOnzoKs9EIyWCEZDRibGgHbDt/CjJBBsjlgADITCaYdboa75HqCkq00JcW1qhfAQDHSrTQ33pri/h31RIxKNFCeSKN1MoTQzeYSto82DdVFApZjfcc+8c19o1r7BvX2DdVQkJCIJPJkJfnmI5bUFBQI3uCiJqHs9k35PWZfcPOxA5dMLFDFwCOM3g8mDDI6foKUYb5PWpmGQsQXE4JCsBW18DZjB6+MjlmduoFAFgSP8C2fHREx1qDEj38g5wuF5yEJQyVtRNClKqqoIQoQiE4/sJevWCo/TlNj+2BQaFRDv1ubX/NNlSZENcFHxw9hBOlRbZlR0sLYbCb+cL6V4TKF/O69oUgCLaghL9cAUEQHDIa1HI5ig162/Z3du+HXQXZSAmJwEVhHRzaElrZ94IoQuZjqTcRFBWFTuEd4JfTGR39AqGvLEAaHx6Di6M64ZdDoQ77uD5xGA6n7gQAxIVGIasgGynBEdhblAvJbIZkNgNmMySTGZLZZHlsMkOSzLgsrhdii/JxsDgXkgRYol0AJDOuHzgSKpUKZWWOs4qQBYMSLZQn0kgB4Pz58ygoKEC/fv0a1R6mkjYt9k1NBkNVqiL7xzX2jWvsG9c81TdtKZVUqVSib9++2L59O8aNGwcAMJvN2LFjB26++WYvt46ofbLeFMs8OPuGZb8N31YAatys27NOS1mf4EkHXz/c2ysZrxzfBwAYGBKJfwtzbM/7uJglwtl5WKe+DFH62JYpBNEh6ODsHGoUE3VyjgFOphWtsU61aTazdOX4pyDL6XrVs9D8ZJZtlaKsKighU9iCEnf1SMKkDl1wRUxXp8cOtTtnK6PZbKvbYV+gVCGKkFDz+ucjk0OAJZawqyAbABBYed62oRsuRERFY3RkJI6l1xxWEx4S6mQLsmJQopWpTxopAMTExGDbtm0eOTZTSZse+8ZR9b5g/7jGvnGNfeNae+sbjUaDM2eqxm5nZmbiyJEjCA8PR0REBG655RYsXboUffv2RVJSEt5//33odDpcffXVXmw1UfslOJ0StGGZEvZqCyq4tb3TgRMW1jZXHy5Rl/FRnWxBiXGRsVjYsz9u+edHTIjuVK922DIlFCrbMoUocwhKOAvs2A/NULiYXSRQ7k5Qomqd6+J64dOzx/F15ska6zl7Ha0zlliCB5aMAvupNHsHhNTYpq72GSSzLVBj/5ooRZnTIIaysq/0dtkd4Sr3qpYqBAHdA8KcPucsy4SqsHdaKKaREhEReVZqaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26b9WrdunW24tJE1Lyst632N7D1vdl3pjGBjUhfNdxpgiAIkAtijako3SETRESofPHl8MlOh4HYH6M6o93wDSvL8A37oISzqUTtghIu+ieglik0rfzt1rkypiu2ZGXgdHnNqT+dBUas05aq7NpifzNf1429IAhY2KM/3krbj3CVL3IqtDCazbY+sT9vpSiim38QlsSn4NXj++yyKSx9pUf9gxJyUURHX+fDItUMStSKvdNCMY2UiIjIs4YOHYpjx47Vus6sWbMwa9asZmoREdXGmtFgnxEgq+Um3e39NmCbDUMuRZ5eiyi1n0Omhb9cgTKj5Vf9l5JHOWyjEAUYq2o81lko0UpeOS7DmjngirNMiarhG45BCfuhC84yRfoFhTus74y/k0yE6vuyz5QIVCjRwVftMEWmlbOgRFBldod9W9X1CEoAwMQOnTEyvAO252fh9RP7KjMlLP1uf17WY4yNjMP3FzJwuKTAtk71YE+kXVBCLghOC1kClmCOWu48cFNbHRJiUMKrmEZKREREROSczElNCU9kSjRk+EaEyhdRvmrL9nbBgGf6DcdHGUcxv3s/RPqoG902wP1MDmenYc0KCK6lpoSzgECs2h8P9R6Efwqy0NkvoMbzgHs31vZ9KwgC1DLnN+n25/hsv+FIKytCFz/L9Mn2wRj7oIT9UI7a+CuUtrYaJckuU8J5bRJ/u0CCQpDZsiasgu2GwihFGYymmlOjAjWLmyYFhSNfr8U5rcbtbIv2ikEJL2IaKRERERGRc4KT2TfqM/TC1dCHxtalsL+n7+4fhMf7DnW6XlOX7HGeKWE5aJBdxoJCrDsoAQAjI2IwMiKmUW0qNzresLvKbpDbVelMCg5HUnBVpoZDpoRDwMD91826rn2hS/vio/Y9YJ/doRRFmKoNubF/H6lEGcpdBSUq9+8rk0FrMmFoWBSujOkGvdnkslgpWbB3vIhppEREREREzjmbfcOdTImHEwbhu/OnMCGqs9PnGzuDR22FLu2Z3RyuUZ27wzzsTyNKpUZ2Rbkty8HXLqtA6Uahy/oaGBKJ46WFmBnXy2F5Jz/LdO6xvpb/uwpK1BYYUtkFJey3r0+x/6pMiaqaEo5BKrtMCbs6GApRtAV2qtpqVyBTJrPW4HR5zFeTx+DnnExcFt0ZoiAwIOEG9hAREREREbU41lvB+mZKjAiPwYhw17/4DwqNxJasDAwLi25Yu9y8OXY25aR727nHPjhyZ49+OF5aiMs7dAFQNb0mYC10WXWj74kZTIaGRmFF4rAayy+N7gRJAgaFRAFwXeCxtsCI0i544FNHXQ1XrFkLf+Sex5nKQpv2x7Q/usPwDVEGs90r0Ccw1GE7lYuZSeyP2VHtj5u69G5Qu9srBiWIiIiIiKjFcXZzbp/231BDQ6PxesoYxKn9G7S9+5kSDdq92xkW9sGRQLkSN3auuhH2s8uUkFerKdGYKVGjfdTI0pUjVu287oRMEHFZdFWGiuPsGZZhDdY2uWI/fEPmZl9XZ32fFBkqUFRUUesx7Ydv2AcgIlW+eCrxIuTptbZltQUlGv/ObL8YlCAiIiIiolbBE7/yC4KAbv5BDd7e3Zv6hmdKuLedfXCkepMUdjfPltk3PDN84+Xk0UgvK3aoAVEb++KUapnCFpSorQ0qFzUl6sNZAEIuOO+vABfHiFX7QyWTOWZK1JK50cQlRNo0BiWIiIiIiKhV8EQ9hMZyN1mj+k2quzet7q5n3xW1ZW9Yako0PvsAsEzzmRwS4fb6vi6m9KztdbRfr7t/EGZ37o1eASH1aqezIqeuCp86m+rU0kbR4f9A7ZkS1HAMShARERERUYvjdPhGCwhK2NdnqI9OLoY8WN3VvR9+ysm01WOoi2OmhOt+EVBtOkw3pvb0FF8XU3rWlvHiuJ6AGZ16uVzX5XHFmre5roZv+LvIlJA7KbSqrKXvGpoZQwxKEBERERFRK+GJ4RuNNbNTTxwvLcS1cT3dWr+zOgDDwzvgipiuta43KaYrJtWxjj37OERtoRqD2XGKy+bMNlE3IFPCzy5IUFvtidoEKWtmP8gEAUlB4ThQnIekoKrhJy6nLbVlSrhX6LKuoBO5xqAEERERERG1PE4KPjb0JtWTgpQqrOw/0u31Q5U+DkUoPcU+U6K2Ohd6s8nhcXMGJRwyJWSOxTddUVebOaQhApwMyZAJIh7vOxQXdBp08QusWlfhPFOiakpau+EbTgIYK/oOQzf/QIQofRrUVmJQgoiIiIiIWomWUFOivpqqyfaBiNpqShgkS6aETBBgkiS3Zw/xBN9qhS6tansd/eXuBS9q4yxIk1ZWBJVM5hCQAIAQpQ/u7pmMaB+1w3JnmRLOhm/4yGQMSDSS90ONREREREREbnBVrLAla6oggP1eawt8WIdvWG+yTW5OOeoJ9tkRPexmPJHVUi3U3eBFfY2O6OjyuQnRnWrMKGJto0M9DiftaY3vyZaGPUhERERERC2Os1vn1pkp0URBCXczJSqDEtbsAXMzBiWiffxwSVQc7uiWiOHhMbbltdUGsa8p0dDhG/YGh0Zh7aBxuDgy1q31H04YhI6+frguzlJg0/495yxzQ9EChhS1dhy+QURERERELU5bmcugqTIlHGffqPn8rM698VHGUVzWoTOAqtkkjJK55spNRBQE3NMrBQBQYtDbltc2i4raA8M37BnNZsT4+ru9/ojwGIywC6DY97OzYIonAiftHYMSRERERETUKrS+PImmqylhv19ngY/rOvXClTFdbZkHMi8M37BnX4+htkwJf7vhG54YGtHYIIxQx/ANZko0HnuQiIiIiIhaBaEVhiWaasYQd2bfsB8KIfNCpoQ9hUNQorZMCfspQRv+et/VIwkAcI2bU7e6Qy4I+M/AsXhjwMVVy5gp0WjMlCAiIiIiolahNZWUWJE4DBtOHcacLglNsn/7QIQ7dSu8UejSnn12RG1BCYWbGRV1mdShC8ZFxsLHyTSeDSUTRcSpAxyWMVOi8RiUICIiIiKiFqjmzXNrypQYGBKJgSGRTbZ/wcXfrlhnkzB5KVPCnrvBBlcZIO7yZEACcJG50Xreki0WgxJERERERNTiOPs9vzVlSjQ1+xt2d27eZZV3z0az90uI1jUsY1X/kdCZjM3UGvfZB1MGhkTieGkh/O2Gm1DDMChBREREREQt2vCwDtiZfwGx9ZhFoa2zzxpxL1OicvhGC5jXpK5MiYTA0GZqSf3YDzt5ou9QmNE6p6ltaRiUICIiIiKiFiNArkCp0YA436qx+8v6DIZJkngDaKeu2Teqs/adyez94RtiK30Z7YMpgiBA5sW2tCUMShARERERUYvxxoCxOFZagAEhEQ7LGZBw5M7sG/aqZt/wfqZECxhB0iAyvgWbBIMSRERERETUYoSpfDBcFePtZrR4DZ19w9wCCl2aW8AQkoZhVKIpcP4SIiIiIiKiVsZx+EbdrJkS3g9JAOYWkK3REAxJNA0GJYiIiIiIiFoZ++Eb7mRKtKThL602KNFyurBNYVCCiIiIiIiolbEPRLhzr+wrk7u9blNrvcM3qCmwpgQREREREVErY//rsjtZELd1S0SxQY/ZXRKarlFuaq2ZEi0jpNP2MChBRERERETUygj2wzfcuFmO9FFjZf+RTdkkt7XWoARDEk2DwzeIiIiIiIhamfrOvtESDAqJBAD0D46oY82WqXX0cuvDTAkiIiIiIqJWpr6zb7QEj/YdggJ9BSJUvt5uCrUgreX9S0RERNTiabVajB07Fi+++KK3m0JEbVx9Z99oCWSCyIAE1cCgBBEREZGHvP3220hKSvJ2M4ioHWgtgYi2JFip8nYT2iQGJYiIiIg84PTp00hPT8eYMWO83RQiagd4I9d8XksZg9u69UVSULi3m9Im8b1MREREbd6uXbtw5513YuTIkYiPj8cvv/xSY52NGzdi3Lhx6NevH2bMmIEDBw7U6xgvvPAC7rvvPk81mYioVsyUaD7d/YMwpWN39nkTYaFLIiIiavPKy8sRHx+PadOmYdGiRTWe37x5M5577jmsWLEC/fv3x/vvv4958+Zhy5YtCA0NBQBMmTLF6b43bdqEX375BV26dEHXrl2xd+/eJj0XIiLAsaYEUWvGoEQbcffdd2PHjh0YOXIkXnnlFdvybdu2YdWqVQCAxYsXY9KkSd5qIhERkdeMGTOm1mEVGzZswMyZMzF9+nQAwIoVK/Drr7/iq6++wty5cwEA33zzjcvt9+/fj82bN2Pr1q3QaDQwGo0IDAzE7bff3qD2imLjbjas2zd2P20R+6Z27B/XWlrfyOza4e02tbS+aWnYP7VjUKKNuPHGGzF16lR8++23tmVGoxGrVq3Cxo0bIZPJMHPmTFxyySVQKpVebCkREVHLotfrcejQIcyfP9+2TBRFDB8+HPv27XNrH0uWLMGSJUsAWDIn0tPTGxyQkMtFhIX5N2jb6kJC/Dyyn7aIfVM79o9rLaVv/Aurii566jOjsVpK37RU7B/nGJRoI4YOHYq///7bYdn+/fsRHx+P8HBLQZakpCT8+++/uOiii7zRRCIiohapsLAQJpPJdr20CgsLQ0ZGRrO3x2g0o6RE26h9iKKAkBA/FBZqYDZLHmpZ28C+qR37x7WW1jfacr3t7/z8Mi+2pOX1TUvjif4JDPSFQiHzcMtaBgYlmsGuXbuwfv16pKamIjc3F2+//TbGjh3rsM7GjRuxfv165ObmIiEhAcuXL2/0lGI5OTmIioqyPY6KikJOTk6j9klERNReSJLUoKJm06ZNa/SxPfWl3myWeIPgAvumduwf11pM39g1oUW0By2ob1oo9o9zDEo0g6YuriWTtc2IGRERUXMICQmBTCZDXl6ew/KCgoIa2RNERC0FZ4KgtoJBiWbQ1MW1XImMjER2drbtcXZ2NkaOHFnv/RAREbVlSqUSffv2xfbt2zFu3DgAgNlsxo4dO3DzzTd7uXVERM5x9g1qKxiU8DJPFNdyJSkpCUePHkVeXh5kMhn279+PZ555psH7YyXwpsO+ca56v7B/amLfuMa+ca099o1Go8GZM2dsjzMzM3HkyBGEh4cjIiICt9xyC5YuXYq+ffsiKSkJ77//PnQ6Ha6++movtpqIyLV29BFObRyDEl7mqeJat99+Ow4cOACtVovRo0dj7dq16N27N+6//37ccMMNAIB77rkHKpWqjj05x0rgzYN9U0WhkNV4z7F/XGPfuMa+ca099U1qaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26r77Ru3TrbMEoiopZGYKYEtREMSrRQ9S2utXbtWqfLJ0yYgAkTJjS6PawE3rTYNzUZDCZbJWn2j2vsG9fYN655qm9aUyXwoUOH4tixY7WuM2vWLMyaNauZWkRE1DjMlKC2gkEJL2tNxbVYCbzpsW8cVe8L9o9r7BvX2DeusW+IiFozRiWobRC93YD2zr64lpW1uFZycrL3GkZERERERC0WQxLUVjBTohmwuBYRERERERFRTQxKNAMW1yIiIiIiIk+qR/k5ohaNQYlmwOJaRERERETkSRJLAlEbwZoSREREREREROQVDEoQERERERERkVcwKEFEREREREREXsGgBBERERERERF5BYMSRERERERErQxn36C2gkEJIiIiIiKiVoazb1BbwaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShAREREREbUyMoG3ctQ2yL3dACIiIiIiIqqf4eHRGJwbhYsjYr3dFKJGYVCCiIiIiIiolVGIMjzed6i3m0HUaMz5ISIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxCkCRJ8nYjqOUzmyWYTOZG70ehkMFgMHmgRW0P+8bR8eNH0atXb9tj9o9r7BvX2DeueaJvZDIRoih4qEVkxWtu02Pf1I794xr7xjX2Te0a2z9t+ZrLoAQREREREREReQWHbxARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxLkto0bN2LcuHHo168fZsyYgQMHDtS6/vfff4+JEyeiX79+uPLKK/H77787PC9JEl577TWMHDkSSUlJmDNnDjIyMhzWKSoqwpIlSzBgwAAMHjwYjzzyCMrLyz1+bp7Q3P2TmZmJZcuWYdy4cUhKSsIll1yCN954AwaDoUnOrzG88d6xKioqwujRoxEfHw+NRuOxc/IUb/XNzz//jOnTpyMpKQkXXXQRHnzwQY+elyd4o2/279+Pm266CQMHDsSQIUNwxx134OTJkx4/N0/wdP/88MMPmDt3LoYOHYr4+HgcP368xj5a02dye+Dp90BbUp++OXHiBBYtWoRx48YhPj4eH330UTO21Dvq0z+fffYZbrjhBgwePBhDhgzBrbfeioMHDzZja5tXffpm27ZtmD59OgYNGoTk5GRMmTIFX3/9dfM1tpnV9zPHau3atYiPj8cLL7zQxC30nvr0zaZNmxAfH+/wX79+/ZqxtS2QROSG//u//5P69u0rffHFF9KJEyek5cuXS4MHD5by8/Odrr9nzx4pISFBeuedd6S0tDTp1Vdflfr27SulpaXZ1lmzZo00cOBA6ccff5SOHDki3XnnndIll1wiVVRU2NaZO3eudNVVV0n79u2Tdu3aJV166aXSAw880OTnW1/e6J/ffvtNeuihh6Q//vhDOnPmjLRt2zbpoosuklatWtUs5+wub713rBYtWiTNnTtX6tWrl1RWVtZk59kQ3uqbLVu2SIMHD5Y+/fRTKT09XTp+/Li0devWJj/f+vBG35SWlkqDBw+Wli1bJqWnp0tHjx6V7rjjDmn8+PHNcs710RT989VXX0mrV6+WPvvsM6lXr17SsWPHauyntXwmtwdN8R5oK+rbN/v375eef/556bvvvpNGjBghffjhh83c4uZV3/657777pI8++kg6fPiwlJaWJj300EPSoEGDpOzs7GZuedOrb9/8888/0tatW6W0tDQpIyND+uCDD6SEhATpr7/+auaWN7369o1VamqqNHbsWOnKK6+Unn/++WZqbfOqb998+eWX0pAhQ6ScnBzbf7m5uc3c6paFQQlyyzXXXCM9+eSTtscmk0kaOXKktG7dOqfrL168WLrjjjscll177bXSihUrJEmSJLPZLI0YMUJav3697fmSkhIpMTFR+v777yVJkqS0tDSpV69e0sGDB23r/Pbbb1Lv3r1b3D9cb/SPM++88440YcKExpyKx3mzbz7//HPpuuuuk7Zv394igxLe6BuDwSCNGjVK+uyzzzx9Oh7ljb45cOCA1KtXL4cv2nv27JF69epV55eu5ubp/rF39uxZp0GJ1vSZ3B405Xugtatv39gbO3Zsmw9KNKZ/JEmSjEajlJKSIv3vf/9rqiZ6TWP7RpIkaerUqdLq1aubonle1ZC+KS8vly6//HLp999/l2bNmtVmgxL17RtrUIKqcPgG1Umv1+PQoUMYMWKEbZkoihg+fDj27dvndJt9+/Y5rA8AI0eOtK2fmZmJ3Nxch3UCAgLQv39/2zp79+5FcHAwEhMTbesMHz4cgiC4nS7WHLzVP86UlpYiKCiowefiad7smzNnzuDVV1/FypUrIYot76POW31z+PBhZGdnQxAEXHXVVRg5ciTuvPNOl8NfvMFbfdO1a1cEBwfj888/h8FggFarxVdffYV+/fohNDTUo+fYGE3RP+5oLZ/J7YG33gOtQUP6pj3xRP9otVoYjcYW9X3DExrbN5IkYceOHTh16hQGDhzYhC1tfg3tm+effx5Dhw7FqFGjmqGV3tHQvikrK8PFF1+MMWPG4K677kJaWloztLblannf1KnFKSwshMlkQnh4uMPysLAw5ObmOt0mLy8PYWFhLte3/r+2fTrbh1wuR1BQEPLy8hp+Qh7mrf6p7syZM/joo49w3XXXNeg8moK3+sZoNOKBBx7A4sWLERcX55Fz8TRv9c3Zs2cBAG+99RYWLVqEt956CwqFArNnz24xtQG81Tf+/v54//33sWnTJvTv3x8pKSnYt28f3nrrLY+cl6c0Rf+4o7V8JrcH3noPtAYN6Zv2xBP989JLL6FDhw4YNmxYUzTRaxraN6WlpUhJSUFiYiJuv/12PPbYY7jooouaurnNqiF988svv2Dnzp1YunRpczTRaxrSN926dcNzzz2Ht99+G6tWrYLZbMb111+P7Ozs5mhyi8SgBDWYJEkQBMHl886eq76s+uPq+3S2j7qO21I0R/9YZWdnY968eZg8eTKmTZvWwBY3n6bum7fffhshISG49tprPdDa5tXUfWM2mwEA8+fPx6WXXoqkpCS88MILKCkpwa+//trI1jetpu4bnU6H5cuXY9iwYfjss8/w8ccfo0OHDliwYAGMRqMHzqBpeaJ/6tKaP5Pbg+Z4D7RWfJ/Wzt3+eeedd7B582asXr0aSqWyGVrmfXX1jZ+fH77++mt88cUXuPfee/Hss89i9+7dzdhC73HVNwUFBXj00UexcuVK+Pr6eqFl3lfb+yY5ORlXXXUVevfujSFDhmD16tW2TM32Su7tBlDLFxISAplMVuOXsIKCghpRQavw8PAa6+fn59vWj4iIAGD59dI+LbqgoMCWGuxsH0ajESUlJTV+7fEmb/WPVXZ2NmbPno3k5GQ88cQTjT0dj/JW3/z999/YvXs3+vTpA8ByYQCAwYMH4+6778add97pgbNrHG/+uwIsQxWs1Go1YmJicP78+UaelWd4q2++/fZbZGdn4/PPP7d9kXj55ZcxePBgbN++HaNHj/bMCTZSU/SPO1rLZ3J74K33QGvQkL5pTxrTP+vXr8eaNWuwYcMG9OrVqymb6RUN7RtRFNG5c2cAQEJCAk6ePIm1a9di0KBBTdre5lTfvjlx4gRyc3Nx/fXX25aZTCbs2rULH330UZuavcUTnzkKhQIJCQktaihtc2OmBNVJqVSib9++2L59u22Z2WzGjh07kJyc7HSb5ORk/PXXXw7Ltm/fbls/NjYWERERDvssKyvD/v37beukpKSgqKgIhw4dsq2zc+dOSJKEpKQkz5ycB3irf4CqgETfvn3x3HPPtbjaCd7qm2effRbffPMNvv76a3z99dd4+umnAQCffvopZsyY4bkTbARv9U2/fv2gUCgcLnw6nQ5ZWVmIiYnxzMk1krf6RqfTQRRFh182rI+tga2WoCn6xx2t5TO5PfDWe6A1aEjftCcN7Z9169bhrbfewrp169rs1IWeeu9IkgS9Xt8ELfSe+vZNv3798O2339q+h3399ddITEzE1VdfjU2bNjVjy5ueJ943JpMJJ06csP2A0i41W0lNatWsU91s2rRJSktLkx599FGHqW4eeOAB6cUXX7St/++//0oJCQnS+vXrpbS0NOn11193Oj3foEGDpG3btklHjx6V5s+f73RK0KlTp0r79++Xdu/eLU2YMEG6//77m+/E3eSN/snKypIuvfRSafbs2VJWVpbDtEItibfeO/Z27tzZImff8FbfPPnkk9KYMWOkv/76S0pLS5OWLFkijRkzRtJoNM138nXwRt+kpaVJiYmJ0lNPPSWdPHlSOnr0qLRo0SLpoosukoqKipq3A+rQFP1TWFgoHT58WPr111+lXr16SVu2bJEOHz4sFRYW2tZpLZ/J7UFTvAfaivr2TUVFhXT48GHp8OHD0ogRI6QXX3xROnz4sHTu3DlvnUKTqm//rF27Vurbt6+0ZcsWh+8aLe2a6gn17Zs1a9bYpmZPS0uTNmzYIPXp00f64osvvHUKTaa+fVNdW559o759s3r1atv7JjU1Vbr33nulpKQk6eTJk946Ba/j8A1yy6RJk1BQUIDXX38dubm5SEhIwLp162xp0BcuXHD4lX7AgAF46aWX8Oqrr+Lll19Gly5d8Oabb6J79+62dW677TZotVo89thjKCkpwcCBA/HOO+84jFF88cUX8dRTT+Hmm2+GKIq47LLLsHz58uY7cTd5o3/++usvZGRkICMjo0Za+bFjx5rhrN3jrfdOa+CtvnnwwQchk8lw3333wWAwICUlBRs2bIBarW6+k6+DN/qme/fuePvtt7F69Wpce+21kMvlSExMxLp161pclfmm6J+ff/4ZDz/8sO3x3XffDQB47rnnbLVqWstncnvQFO+BtqK+fZOTk4OpU6faHq9duxZr167F1Vdfjeeff765m9/k6ts/n3zyCQwGg+0zwWrhwoVYtGhRs7a9qdW3b3Q6HZ588klkZWXBx8cH3bp1w6pVqzBp0iRvnUKTqW/ftCf17ZuSkhI8+uijyM3NRVBQEBITE/Hf//4X3bp189YpeJ0gSS0oJ5WIiIiIiIiI2o32Gc4iIiIiIiIiIq9jUIKIiIiIiIiIvIJBCSIiIiIiIiLyCgYliIiIiIiIiMgrGJQgIiIiIiIiIq9gUIKIiIiIiIiIvIJBCSIiIiIiIiLyCrm3G0BEVJvVq1fjjTfeqLH8oosuwnvvvdf8DSIiImqjeM0lIm9gUIKIWryAgACsW7euxjIiIiLyLF5ziai5MShBRC2eTCZDcnJynevpdDr4+Pg0fYOIiIjaKF5ziai5saYEEbVKmZmZiI+Px//+9z8sXboUgwYNwp133gkAKCoqwmOPPYbhw4ejX79+uO6667B//36H7UtKSrBkyRIkJydj5MiR+M9//oMXXngB48aNs62zevVqDB06tMax4+Pj8dFHHzks+/zzzzF58mQkJiZi7NixeOeddxyef+ihhzBt2jT89ddfuPLKK5GcnIzrr78eJ06ccFjPZDJhzZo1uOyyy5CYmIjRo0fjoYceAgBs3LgRKSkp0Gg0Dtvs3LkT8fHxOHr0aD17kYiIqG685lbhNZfI85gpQUStgtFodHgsSRIAYOXKlbj00kvx2muvQRRF6PV63HLLLSgpKcHSpUsRGhqKTz75BHPmzMEPP/yAiIgIAMDDDz+Mf/75B8uWLUN4eDjeffddnDlzBnJ5/T8W161bh1deeQXz5s3DkCFDcOjQIbz22mvw9fXFrFmzbOtduHABK1euxPz586FSqbBy5Urcc889+O677yAIAgDgsccewzfffIO5c+diyJAhKC4uxpYtWwAAV155JV544QVs3boV06ZNs+33q6++Qt++fdG7d+96t52IiKg6XnN5zSVqTgxKEFGLV1RUhL59+zose/rppwEA/fv3x+OPP25b/vnnn+PEiRP47rvv0KVLFwDA8OHDMXHiRLz77rt48MEHceLECWzbtg2vvPIKJk2aBAAYOnQoxo4dC39//3q1raysDG+++Sbmz5+PhQsXAgBGjBgBrVaL//znP7j++ushk8kAAMXFxfjkk09s7ZIkCQsWLEB6ejq6d++OkydP4osvvsAjjzyC2bNn245hbWNgYCAmTJiATZs22b4gaTQa/PDDD1iyZEm92k1EROQMr7m85hI1NwYliKjFCwgIwIYNGxyWKZVKAMDFF1/ssHzHjh3o27cvYmNjHX7pGTx4MFJTUwEABw8eBACHtFE/Pz8MHz4cBw4cqFfb9u7di/LyckycONHheMOGDcNbb72FrKwsdOzYEQDQsWNH25cjAOjevTsAIDs7G927d8fff/8NAA6/yFR3zTXXYM6cOTh79izi4uLw/fffw2g04oorrqhXu4mIiJzhNbcKr7lEzYNBCSJq8WQyGfr16+ewLDMzEwAQFhbmsLywsBD79u2r8SsPAHTq1AkAkJeXBz8/vxoFuqrvyx2FhYUAgMmTJzt9/sKFC7YvSNWrlysUCgBARUUFAMuvU2q1utZfjoYOHYq4uDhs2rQJixcvxqZNmzB+/HgEBwfXu+1ERETV8ZpbhddcoubBoAQRtWrWcaFWQUFBSExMxBNPPFFjXesvPeHh4dBoNDUqh+fn5zusr1KpYDAYHJYVFxfXOB4ArFmzxukXrK5du7p9LsHBwSgvL0dZWZnLL0mCIGD69On47LPPMGXKFPz77781CnwRERE1BV5zec0lagoMShBRm3LRRRfhr7/+QkxMjMtfYay/AP3888+2saMajQbbt293+GISFRUFjUaD7OxsREVFAQD++usvh32lpKTAx8cHOTk5NdJa62vYsGEAgK+//tqhWFd1V199NV5//XUsW7YMUVFRGDFiRKOOS0RE1BC85hKRJzAoQURtytSpU/Hpp5/ipptuwq233oq4uDgUFRXhwIEDiIiIwJw5c9CzZ0+MGzcOTzzxBMrKyhAREYH169fXSC0dNWoUfHx8sGzZMtxyyy3IzMzEp59+6rBOYGAgFi5ciGeeeQbnzp3D4MGDYTabcfr0afz9999488033W57t27dMHPmTDz//PPIz8/H4MGDUVJSgq1bt+KVV16xrRcVFYVRo0bh119/xR133GEr6kVERNSceM0lIk9gUIKI2hSVSoUPPvgAr732GlavXo38/HyEhoYiKSnJocjW888/jyeeeALPPvss1Go1brjhBvTr1w9bt261rRMaGorXX38dK1euxIIFC9C3b1+89NJLtl96rG677TZERkbi/fffx4YNG6BSqdClS5ca67nj8ccfR0xMDD7//HO88847CA0NdfqrzCWXXIJff/211gJdRERETYnXXCLyBEGyTjxMRNTOWecj//nnn73dlDotXrwYubm5+Pjjj73dFCIionrjNZeIrJgpQUTUihw7dgypqan48ccf8fLLL3u7OURERG0Wr7lEzYNBCSKiVmT+/PkoLCzEDTfcgIkTJ3q7OURERG0Wr7lEzYPDN4iIiIiIiIjIK0RvN4CIiIiIiIiI2icGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxC7u0GUOtgNkswmcyN3o9cLsJobPx+2iL2jaOzZ88gLq6T7TH7xzX2jWvsG9c80TcymQhRFDzUIrLiNbfpsW9qx/5xjX3jGvumdo3tn7Z8zWVQgtxiMplRVFTeqH2IooCwMH+UlGhhNksealnbwL6p6aabZuPrrzcDYP/Uhn3jGvvGNU/1TXCwGqIo82DLCOA1t6mxb2rH/nGNfeMa+6Z2nuiftnzN5fANIiIiIiIiIvIKBiWIiIiIiIiIyCsYlCAiIiIiIiIir2BQgoiIiIiIiIi8goUuiYjIYyTJDLPZDKkF1LgSRQF6vR5Go5FFt6pxt28EARBFGQShbVb7JqLWyVvXGl5XXGPf1M6d/mnP11wGJYiIqNFMJhNKSgpQUdG4GQM8LS9PhNnM6cmccbdvBEFEaGgkFApVM7SKiMi1lnCt4XXFNfZN7dzpn/Z6zWVQgoiIGkWSJOTnX4AoyhASEgmZTA6gZUT55XIBRiN/sXHGvb6RUFZWjIKCHERGxrbLX2+IqGVoKdcaXldcY9/Uru7+ab/XXAYliIioUcxmE8xmE0JDoyCXK7zdHAdyuQiAv9o4427f+PsHQafTwGw2Vd4EEBE1v5ZyreF1xTX2Te3c6Z/2es1loUsiImqUqjG97Sei375YXteWUCeEiNovXmuofWif19z2E34hojpJkoQivQl5FUYU6U3QmyRIAHxkIgIUIqJ85AhSts8CPERERERE5HkMShC1c5kaPXblleNAoRYnSipQaqg9rcxPLqJbgBIJQT5IDvVF7yAfyEQGKYiIiIhaq/Xr12D79j+xfv2H3m4KtUMMShC1QwazhN+yyvB9ZgnSSitsy+UC0NVfiWhfOYKVcihlAgQAWpMZxXoTcnRGZGoMOFiow8FCHT47XYQghYjhkf6Y0DEA3QLaV6Vgat2eeeYJfP/9dzWWf/fdNgQHBzd/g4iIqM155pknoNWW4+mnV9qWbd78LVatehb33rsUV111db33ec01VyIr64LDsjvuWIibbprT4HZef/1NuOaamQ3evrW65porcf31szB9evs795aEQQmidsQsSfj5Qhk+Ti9AfoUJABCrVmBklB9SwtToEaCCvI6sB5NZwlmNHgcLdfg335Jh8f25Enx/rgTxgSpM7xKMIeFqDvGgVmH48FF48MFHHJYFBQU5PDYajZDLebkkIqLG+/zzT/HWW69h+fIVGD9+QoP3c8cdCzBp0pW2x2q1X6PapVarAagbtY+2ymg0Qibj8OWmxEKXRO1EpkaPB3efx+ojucivMGFouBrPD4zBG8NicX23UPQO8qkzIAEAMlFAlwAVruwUhCdSOuC9UZ1xW68wxKoVOFZSgWcPZGPJrnNILdQ2w1kRNY5SqUBYWLjDf9deexU++OBdPPnko7j00tF47bWXAAD79+/F/Pm3Yty4EZg+/Qq89dZr0Ov1tn3l5+dh6dJ7MG7cCMycORW//voTJk8ej82bvwUA7NmzGyNHDkJ5ebltm7/++gMjRw5yaNPvv/+KOXNuwLhxwzFz5lRs3Pi+w7zmI0cOwnfffY2lS+/B+PEjcNNNM7B//z6Hfezbtwd33TUP48ePwOWXj8MDDyxGRUUF3n9/PW655YYa/XDddVfjk08+anR/EhGRaxs2vIO3316NZ59d1aiABGAJIthfu3x9fWtdv6SkBM899yQmTx6Pyy4bg/vuW4iMjNO259evX4O5c2+yPTYajXjllZW47LIxmDx5PNavX4Ply5fimWeesK1TUVGB1atfwZQpE3HppaNw2223IDX1oO35zZu/xeTJ47F9+5+47rppmDBhDJYvX4qysjLbOr/8sg033TQD48YNx+TJ43HffQtt17xnnnkCy5cvxfr1azB58nhMnHgxXn/9JZhMJpdtmD//Voc2AK6viQsX3o6srAt45ZVVGDlykO16bG3377//ihtumI5x44ajqKgICxfejjfeeNVh33Pn3oT169fYHo8cOQj/+99XuO++RRg/fgRmz56J48ePIi3tBObOnY1LLhmJe+9dgMLCglpfr/aGP/20cenp6Vi2bBnKysqgVCqxbNkyDBo0qO4NqU35+UIp3j6ahwqzhB4BKtweH4b4IB+P7DtQIcMVcUGYHBuIXXnl+O+pIqSVVuCRPRcwMtIPt/UKQ7CKHzXUunz88Qe49dbbMXfuHQCAc+cycf/9i3HHHXfhkUdWID8/Dy+++ByMRiPuvnsJAMuXp6KiQrzxhuXLySuvrHIIQLhj//59ePbZJ3DPPQ+gX7/+OHMmAytXPgOFQokZM663rbdhwzosXHgPFi26D+vXr8GKFY/gs8++gVwux5kzGbj33gWYOvUaLFnyEABg166dkCQJkyZdiXffXYsTJ44hISGh8ph7ceHCeVx22eWN7jciIqpJkiSsXv0yvvvuG7z00mokJw9weP6DD97Fhx9uqHUfH374OaKjox22effdtYiMjMKECZNw7bXX1ZrV99hjD8HX1xcvvfQG1GpffP75f3HvvQuwceMXTgMaGze+j59++gGPPvokOnaMwyeffIhdu/7G6NFjbeu8+uoqZGScxlNPPY+wsHD89NMPuPfeBfj44y8QEREJACgvL8eXX36Gp556DjqdDo8++hA++ug93HnnQuTl5eGJJx7BXXfdjdGjx0Kj0WDPnl0O7fj7751QqXzwxhvv4OzZM3juuScRHh6BG26Y7bQNP/64xaENtV0Tn312FebMuQFXX32NQ9aJtd2ffvoRHnlkBfz8/ODn534mynvvrcOiRffinnuW4NVXX8STTz6G0NBQLFy4GD4+fnj88Yexdu1bePDB5W7vs63jnUIbp1Kp8Oyzz6Jbt244efIk7rrrLmzdutXbzWrT8iuMOFqkw7lyA4r0JkgA1DIRHdQK9AhQopO/EmIzpX9JkoSP0wvx2ekiiAJwQ7cQXNMlGLImOL4gCBgS4YdB4Wr8ma3Be2n5+DNHg30FWtzVOxwjovw9fkyixvrjj99w6aWjbI8vvng8AGDQoKGYMaMqo+D555/CxImTcc011wEAYmPjsGDBPVi+fCkWLboPZ89m4J9/duLddz9Cr169AQBLljyIefNm16s97767FrNn34qJEycDADp2jMXNN9+KL774r0NQ4oorpmDs2EsAALfeejtuuGE6zp3LROfOXfDRR++hX7/+WLx4iW397t17AAB8fHwwZMgw/N//fWsLSmze/C0uumgEQkPD6tVWIiJve+1wDv7OrV/wt7GGRfrh7oSIem2zffufMBgMeOONtTUCEgAwdep0jBt3aa37CA8Pt/09Y8b16NWrN/z9A3Dw4H6sWfMmCgvzcdddi51uu3//Phw7dhT/+99WKBQKAMC99z6A33//Bdu3/4nx42se+8svP8Ps2bdi5MgxAIAHHliGHTv+sj2flZWFzZu/xVdfbbZdP269dR7+/PN3/PDD97jxxpsBAAaDAQ88sMwWULn88ivw77+WwEN+fh5MJhPGjBmH6OgOAIAePXo6tEOlUuHBB5dDqVSia9duyMw8i//+dyNuuGG20zbMmTMP27f/aWtDXddEURRtWSf2DAYD7r//YXTr1t31i+KC/TX6+utvwr33LsDtt9+FlJSBMBrNuOKKqfjmmy/rvd+2jEGJNq5jx462v7t164bS0lJIktTqx0RJkgSN0ZLa5SMT3Rp20JQqTGb8fKEMP10oxYmSilrXjfCRY3SUP66IC0RoE2YQSJKENcfy8f25EqhlAh5OikZSaO2pfZ4gCgJGR/tjULgaH54swObMEqxMzcFlhVrc1iscCs7UQS3IoEFDce+9D9geq9Vq3H77HPTuneCwXlraCZw8eQJbtlQVxjSbzaioqEB+fj4yMk5DoVCgZ8942/Px8Qm2L3/uOnnyOA4e3I8NG96xLTOZzJAkx1lxunXrYfvb+kW1sLAAnTt3QVraCYwefbHLY0yefBVefPE5LF58LyoqDPjll5+wfPmKerWTiIjc16NHLxQU5GPdurfx4ouvw8fHMVs1MDAIgYFBLrauyT5o3qNHTygUCrz44nO4/fYFTrMl0tKOQ6Mpw6RJ4xyWV1RU4Pz5zBrrl5WVoaAgHwkJfW3LFAqFQ8AgPT0NJpMJM2dOddhWr9c7rOfn5+eQ4REWFobCwkJb21NSBmL27OswbNhwDBkyDGPHjoefX9UPWT179oJSqbQ9Tkzsh7feykNZWZlbbajrmuiKSqVqUEACALp3rzp/a7Cka9dudstCbX1AFgxKtHC7du3C+vXrkZqaitzcXLz99tsYO3aswzobN27E+vXrkZubi4SEBCxfvhxJSUk19vXTTz8hISGh1QYkjhfrsD1HgwOFWpzVGKA3S7bnon3l6BmowkWVv9SrZM1TLkWSJPySVYaPTlYVjuzgK0dSiC+6BqgQrJRBJgBlRjMyNQYcLtLiSHEFvswowrdni3FlXBCu6xoMH1Hm8bZ9nF6I78+VIEQpwxMpHdDFX1n3Rh6klou4Iz4cQ8LVePVwLraeK8XpMj0e7heFEA7noBbC19cHsbFxTpY7BvC02nJMm3Ytrr762hrrBgcHQ5JQ52erKFo/l6o+u4xGo8M65eVa3HbbfIwaNabWfTl+6bQc177uRG1GjhyDF198Hn/++Ts0mnIolUoMHz7SrW2J2jq9Xo+//96BmJgYhxsLapkW94ls9mPK5SKMRvc+b62ioqKwYsWzWLToDjzwwGKsWvWaQ2CiIcM37PXpkwij0Yjs7Cx07Bhb43mtthwREZF47bX/1HguMDDQ5TGrX9ckqer6pdWWQy6X4913N9rWk8kEmEySw1CH6kESQRBsgXaZTIbXXvsPDh7cj507t+OTTz7E+vVrsH79h7abeVfXVkFw3gar+gy3cKZ64AiwXMft+wCoeR0HHM/Z2izHZUKNHxvaO94ZtHDl5eWIj4/HtGnTsGjRohrPb968Gc899xxWrFiB/v374/3338e8efOwZcsWhIaG2tY7d+4cVq1ahbVr1zZn8z1iX345PkovdMhA8JOLiPaVQxQEaIxmZGmNyNIa8Ue2BgFyEdO7BGNSbGCTBidK9Ca8fiQXu/IsaYMXRahxdedg9ApU1Xpzkqsz4ruzxdicWYIvM4qwO78cD/SLRFiY54Y3/Hi+BJ+dLoJaJuCJ5OhmD0jYSwlT49UhHfHsgWwcK67AA7vPY0VKNDqqvdcmovrq2TMep06lOw1gAECXLl2g1+tx4sQx2/CNY8eOwmAw2NYJDg4BAOTn59uqpKelHXfYT69e8Th7NsPlcdzRo0dP7NmzG3PmzHP6vFwux2WXTcJ33/0POp0Ol112OWcXIar0/fffYffufyAIIhYsWIyoqKg6t9mdV44PTxZgef9oRPg4/lvSmczwaaYfSqhli4npiNWr12DRojuwdOk9WLnyVduNb32Hb1SXlnYcMpnM5XTWvXr1Rl5eLhQKBaKinAc27Pn7+yM0NAyHDx9CYqLlh06DwYCTJ9NstSJ69uwFo9GI4uIi2zoNCdiIooj+/VPQv38Kbr31dlx55aX4++8duPzyKwAAx48fg16vt2VLHDqUirCwcPj5+TttQ3V1XxMVMJnca3NwcAgKCvJtj8vLy51mmlD98VtICzdmzBiMGeP6F7MNGzZg5syZmD59OgBgxYoV+PXXX/HVV19h7ty5ACwpWHfddRceffRRdO7cucFtERuZdm/d3t39lBpM+M+RPPyRbanQG+enwOWxQRgYrkYHX7nDjb/GYMLBQh1+zSrFjmwN3ksrwNZzJXigXxR6eqigo73z5QY8+u955OiMiFErcG/fSPQOdu84UWoF5saHY0rnYLx6KAf7C7R44J9zeMlXhc6KxmexnCnTY+2xfIgCsDy5A7o1wfnXV5ivAs8NisFrh3Pxe1YZlv17ASsGdEC3AFWt21V/zzT2PdgWtYS+aQ+vy403zsYdd9yKV199EZMnXwWVSoVTp04iNfUgFixYjE6dumDQoCF44YVncP/9lkJar776osPwjdjYOERGRmHDhndwyy23IS3tOP7v//7ncJybb56Lhx9egsjIKIwZY0mzPXHiGC5cOI+bb57rVltnzZqDm2++Dq+99hKuvHIKBEHErl1/46qrrrZ9Ab7iiimYM+cGSJLZVqizLqIotIvXmtovnU6HvXv3AAAkyYx//tmBK6+cWud2T+3PAgB8kl6Au+1+uT9erMMDu89jRpdg3Ng91NXm1I5YAxN3332nQ2CiPsM3UlMP4PDhVKSkDIJarcahQwfx+usvY+LEyQ7DHuwNGjQEffr0xcMPL8H8+YvQsWMccnNz8eefv+GKK6agc+cuNbaZPn0GPvjgXXTsGIuOHWPxyScfQq+vsH3/7tSpC8aPvxRPPvkoFi68Fz169ERJSRF27NiO5OQBSEkZWOe5HDqUin///QdDhgxDcHAI9u3bA61Wi06dqtpTUVGBVauexY033oyzZzPw4YcbcMMNN7lsQ2FhIf75Z4etDXVdEzt06IB9+/Zg7NjxUCiULgM7AJCSMhD/+c9q/P33Dtv13JqtSI3DoEQrptfrcejQIcyfP9+2TBRFDB8+HPv27QMAmEwmLF68GDNmzMDIkQ1Pz5XLRY/9kh8SUnc61eliHZbuOIvMMj0ifRVYPCAGF8cGucxACAPQKToIkxOicLpEhzf3XcBf50uwdPd5LBnYEVO6e66AW3qxDsv+zUC+zojxnYLx8OBYqBX1H34RBuDNmCC8m5qNdw9l497f0rFqdFcMigpocNsqTGa8/M856M0S7kyKxsU961eIqak9GxGAV/acw5cn8vHYngt4c3wPl0EThUJW4z3nznunvfJm3+j1euTliZDLBcjlLe8XQVdtEgQBguC8zaLouDwhIQFvvbUGb7/9FubPvxWiKENsbBwmT77Ctt4TTzyFZ555EgsW3IawsHAsWnQPXnjhWdu+5HIlVqx4GitXPoc5c65HSsoAzJ17O5577inbPkaNGoWVK1/Bu++uxYcfboBCoUDXrt0wffoMh/bIZFXts/5fJhMhl4vo1q0rXn31TfznP6vxzTdfwsfHF0lJ/TF9+jW2dXv27IH4+N4wm02Ij+9VRw8KEEURISFqh3G95JxWq8WkSZMwefJk3H///d5uDrnp2zPFOHr8GEwmI7p374n09JNITT2ASZOuhExWdY3P1Rnx0ckCzOoeWiMrQqq2zx/OlwIA/nuqEBf7lCMsLNxpSji1L/YZEw8+eC9eeOGVer0vFAoltm37Ae++uxYGgwEdOnTEddfdiJkzb3S5jSiKePHF1/H222/i6aefQElJMcLCwpGSMtDl8I0bb7wZ+fl5WLFiORQKOaZNm4GkpGSH68Dy5U9iw4Z38PrrLyEvLxchIaFITEzCJZdc5ta5+Pn5Yd++vfjss49RXq5FTEwMli59BH37JtrWGTp0GCIiInHXXfNgMhlx+eVX4rrrZrndhk6dOuOll1ZjzZo3bdfEfv2SMGXKNADA3Ll3YtWqZzFz5lTo9Xr8+edul+294oopOH78GB5/fBl8fHxw662349w5Zkp4giBVHxhDLVZ8fLxDTYns7GyMHj0an3/+uUMNiZUrV2LPnj349NNP8csvv2DhwoXo0aOqKNqHH35Y6/gxZwwGE0pKtI1qvygKCAnxQ2GhBmaz67fdqdIKPLz7PDRGMy6K9MM9fSOhrueNjiRJ2JxZgnXH8mCUgDviw3FFJ/cLCLlSpDfi3r/PIU9nxGUdA3FXQrhHZtL45kwx1h3Lg59cxCtDY9FBXb/ieFb/TS/ERycLkBTqi6cGdGi2WT7qQ5IkvHs8H1+fKUaoUobnB3d0er5XXXU5/ve/7wG4/95pj1pC3xiNRuTkZCI8vGOLGwbQkFRST5o8eTwWLLinxlRj3mY2mzFjxhTccMNsTJtWs06GPaPRiLy8c4iMjK3x+gYG+kLRgKBsW/bKK6/g9OnTiIuLa3BQwmAwoaiocTMKiKKAsDB/5OeX8XOzGmd9M+WndBTu+wsjClIx5UrLjceJE8cwZ85ch9oSt/91Btk6I0ZH+WNJYqRtWwAYG+2Pe/pWZUq8cSQXP54vRdGBHRhdcBChoWFYuPCeehfAbW4t9b1j/Szy9rXG29cVbzEajZgxYwquvfZ6XH/9LKfreLpvnnnmCWi15Xj66ZUe26c3udM/tb3Pg4PVbfaa27K+PZJH2M+uMXbsWBw6dMgj+/XUhclsllzuK0trwGN7LkBjNGNqpyDc3CMUoiA06NiXdwxElI8czx7IxppjeVCKAi6JaXgWgsEs4bn92cjTGXFxtD/mx4cBEmD2QFxvSqcgaAUBG4/m4pn9WVg5KKbeY1ALK4z44nQh5AJwV3y4x9rWFOb0CIXWaMbW86VYsfcCVg6Kgb+TD9nqr3tt7532zpt9w9ekdSkoyMfmzd+irKwUEydOcns7/vur2+nTp5Geno6xY8ciPT3d282heqrIPQ8dzIiL6wS5XI4TJ47hyJEjDkGJbJ2lqJ1SVjPo7+xfh9loQHHq30CMGgUF+Th4cD+SUwa2yB8NiOydP38Oe/bsQlJSCioqKvDf/25EcXGRbapLIk9qeXm25LaQkBDIZDLk5eU5LC8oKKi1GE5LVWEy46l9WSjSm3BZxwDMqQxINMaAMDWWJ0VBFIA1x/JwqrT26Tpr8+mpQhwu0qF7gBJ39Q73+CwmdyR1QP9QX2SU6fFxev2nCdqYXgidScIVcUENzrRoLoIg4I7e4Rgcrsa5cgNWpubAyJsdomZx1VWX4b///RjLlj1mK7hJltmu7rzzTowcORLx8fH45ZdfaqyzceNGjBs3Dv369cOMGTNw4MABh+dfeOEF3Hfffc3VZPIgyWxGRd4FGEUFoqM7VE4LLODIkUO2avv5uqoq+75OghLOaM+ehGQ0wMfHMqPP1n8P4uqfT2FvfuMyYYiamiiK+O67/+G222Zj4cLbcOHCeaxevcblDCBEjcGgRCumVCrRt29fbN++3bbMbDZjx44dSE5O9l7DGuj9tAJklhswIMwXd8R77qY/OUyN2d1DoTdLeOFgNsobkFaWqdHj64wiqEQBD/WLapJZPeSigCWJkfCVCfjubDEyNXq3t71QbsC286UIUIi4tkuwx9vWFGSCgPv6RqKLvxL7C7QNCsQQtXT/938/tbihG3/+uRvffvsDxo3jr132rLNdPfbYY06ft852tWDBAnz11VeIj4/HvHnzUFBQAADYtm0bunTpgq5duzZns8kDJEmCoTgfkqECfhHRkMlkUPr6IbhDR6Rl5yP9rGXMeLHBZNtGZ3IvkK45fRQAcNVVUyGKMny26wAksxkfnizw/IkQeVB0dAe8/fa72Lr1N2zd+hvefPMd9OmTWPeGHvTII0+0maEbVDsO32jhNBoNzpw5Y3ucmZmJI0eOIDw8HBEREbjllluwdOlS9O3bF0lJSXj//feh0+lw9dVXe7HV9be/QIv/yyxBgFzEooQIyDychTC1UxAOF+nwT145vswowk31qIItSRLWVNamuLF7CCJ9my4LIUQlx4yuIXg/rQDrjufj8eRot4IzW86VQAJwZVyQ02EQLZVaLmJZUhTu/eccvswoQr8QH6SEqb3dLCJqhxo729X+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1J7mnvGqPaneNwazZegGAKgjYyCKAh7bnYWdhnAU5h7CM1u34707roPWLhChM0lO+9Z+mU6nRfm5dIhKFRIT+2HXrr9hPr0XhpICxMZ0abGvTUt977S09hA1pfY24xWDEi1camoqZs+ebXv89NNPAwAWLlyIRYsWYdKkSSgoKMDrr7+O3NxcJCQkYN26dQgNbT1TT5klCeuOW4ag3NE7HKEqz78tBUHA7fHh2FdwFv87U4yJHQNrVM12ZVdeOQ4U6hDnp8BVcY0vllmXK+OC8OP5Uuwt0OJQkQ6JIb61rl9hMuOn86WQCcCERtTM8JYoXwUW9A7HytQcvHIoF6uHxSJI2XoCK+Tao48+hIMHD9S9oof065eEp556vtmOR+2HO7NdLVmyBEuWWKZX3bRpE9LT0xsckGjuGa/aK2vflOlNVUGJjp0RFuaPI8U6qDv1QOGe33Dg0CGEhflD1FZlShgri0HaU6rkCA31w+t7zyMhVI0Lp04AZhPUnfsiMjIIcd27Ar/thT4/Cz6qnthZrMeIjoEIboLvPZ7Q0t47LWmmJ28fvyVj39Su7v5pnzNetcxPQbIZOnQojh07Vus6s2bNwqxZzqvgtgbbczQ4ozGgT5APRkY23QUwwkeOqZ2C8NnpInx4sgD32VXIrs03Z4oBADd1D4W8GSKWClHAtV2C8drhXGzOLKkzKPFXjgalRjNGRvohpIV+sanLiCh/XFqgxY/nS/HuiXzc6+ZrQy0bAwTUVhQWFsJkMtWo1xQWFoaMjAyPH89oNDfbjFftUfW+Kaww2oISv2p88fepfACAIjAUisBQGApzceJEBrJ0VZmSJVoD8vPLHPZbUWFEamYR/lv5Q4vxwF4AgF+X3sjOLYXJJ9iyXkEOtmYUYmtGISZ0DMCiPi3rmtdS3ztGoxFmsxlGowTAe7NftNfZN9zBvqmde7NvSDCbzSgsLIdc7jiUuy3PeMVQFnmVWZLw6SlLLYHruoV4vHhkddM6ByNYKcNvWWXI0hrqXD+9tAKpRTp08JVjcHjzDSsYEekHf7mInbkaFFUYa113S2YJAGBSbP2meW1pbukZhhClDL9mlWEPC4BRE/vyy/9i4sSLYTZXfTnIz8/DyJGD8PDDjtM4bt26GWPHXoSKCl2Dj/fTTz9i5MhBWL58qdPnH398Gd57bx0AYOTIQRg3bgRycrId1lm48Ha88carDW4DeZ79bFf2pk2b1uDpQK2ss5005j9P7act/mffNwUlpTCUFEAeEAyZjxrfnSmyvQ7qzr0AAHv27EGZvurzQmsyw2yW8GdWqcP7QV95w2EsL0Pm6VMQff3gExWHz9IL8fo5y3tFn59l2yZTY/B6X7Sm9w5Re9He3v8MSpBX7czV4GxllkRSiE+TH89XLuLyjpab923nS+tYuypL4sq4oGadvkslEzE+JgAmCfjxgut2FlUYcaykAlE+cvQJbvr+a0p+chF39rb8Cvn20Ty00NlMqY1ISRmIsrIyHD9elYm2b98eREZGYf/+vbZq+9blCQl9oVI17N9YdnYW3nzzVSQlJTt93mg04u+/d2DEiNEOyzdseKdBxyPPa2uzXZGjjDNnAQCqiBgAwE8XqjIg/LtbCvvt2bMbpfqqHwm0lcGHFw7mOOzLWPnZoUk/DEhm+HdNgCCK+ORUIeSBIRAUSugLciBVBkSj3BxKSkTUljEoQV71c+WFf1qXoCbPkrAaHxMAAcBPF0phqiXqWGow4c/sMvjJRYzr0Py1Gqz1IX44V+pwg2RvX4ElvXdAmLrZ+q8pDYvww+BwNbJ1RuTXkSFC1Bhdu3ZHcHAI9u7917Zs795/MXHiZCgUCqSlnXBYPmDAoAYdx2w24+mnH8fNN89Fx46xTtfZt28P/P390bNnL9uy6dNnYPPmb3HmzOkGHZc8q63NdtWe7c4rR1a5Y6bkmbOWIThdOnWusb4iMAQ+0Z2QU1CIU2lVQUytSapxbZZgCVZIkoSytIMAAP8e/WzPC4IAZWgUJKMBhhLL7BvuzuJBRNSWMShBXlNmMGFvfjkC5CJSQptvaESEjxzJob4oqDBhT4HrYQJ78rUwSsDwSD/4eqFoT6yfEvFBKuTojDijcT7UZG9lUCI5rPa6E63J7O6hEAHk6owos5t+jciTBEFAcvIAh6DEvn17kJIyAMnJKbbleXm5yMw8i5SUgQCAWbNm4NJLR7n8b8mSux2O8/HHH8DHxwdTpkxz2ZY///wdI0aMcliWnDwAAwcOwdq1//HUKVMdNBoNjhw5giNHjgComu0qNzcXAHDLLbfg008/xVdffYWTJ0/iiSeeaJWzXbVnF8oNeGp/Fm77q2pWs4wyPQ6ePAUA6N6li9PtAnoPgM5kxuG//7AFInQmM6rHEyTJEqzQZp6EoaQAqogYKIMdM2lUYVEAAH1+tm0/RC3J/Pm34rfffrY9PnHiOObOvQljx16EOXNuQElJMa666jLk5ubUshei+mHOGHnNztxyGCVgWKRfsxSQtHdpTAD2Fmjx47lSDA53Xlzz38q6BoOasZZEdf1DfHGsuAKphVp09neswCtJEvYVaCEKQL86imG2Jp38lbgkJgAHJQlfZhTh5h5h3m4StVEpKQPxzjtvwWw2o7i4CJmZZ5GY2B9nz57Frl1/Y8aM67Fnz79QKpVITLT82vnii6/BaHSdxaNSqWx/Hzt2FF988V+sX/9hre34668/sHTpwzWW33nnAsybNxtHjx5G7959GniW5K72MNtVe1dRLQAgSRIW7cjAmdQTEBRKREREAdmaGtup43rAP3c/jqVnwnz+FNQdu0FnklBerWCdSQK0RhOKD+4EAAQlDkWQQgaVTMCk2EC8l1YAZVi0pS0F2fDv3hcVzJRo00aOrD3L7pZbbsPcuXc0S1uOHj2Cdev+g6NHD0Or1SI8PAKJiUl46KFHoVBYirj+8cev0Gg0GD16rG27//xnNSIjo/DMM6vg6+uDwMAgXH75FVi/fg0eeujRZmk7tX0MSpDX/JltGboxMqr5p5waEuEHH5mAfQVaGM1SjaCISZKwJ78ccgFI8uINf2KILz47XYSDhVpMrjYdaUaZHkV6ExKCVPBrY9MvXdctBK8KAjZnlmB652AEttJZRahlGzBgkK2uxPnz5xAfnwBfX18kJ6dg3bq3LYG/ff+iT59EWz2J6OgObu1br9fjySeX45577kdYmOuaAydPpqGkpAgpKTW/uPbq1Rtjx47H22+/gVdffathJ0luaw+zXbV39rf/JXojCipM0OdnQzIa4BvTFSqFDFM7BeHrynpSVoIgYMCo8dh58j0U//0TfK6KgyhXYNme8w7rGSUJR1L3oyLvAhQhEfCN7Y4PRluGhKQWWjIbVZVBCX3lbB86MzMl2rJvvtli+3vz5m/x1Vdf4J133rct8/Wt+uFLkiSYTCbI5Z7/zlNYWIB7712A0aMvxiuvvAW1Wo1z5zLxyy8/wWw2AbAEJb744jNcfvmVDkOCz507i2uvvQ7R0dG2ZZMnX4k5c27EggX3ICCg9U1HTy0Pv+mTV5ToTdhfqEWQQkS/4Oa/6VeIAnoH+WBfgRbppRXoFeRYwO54cQVKDWb0D/WF2os3/L2DVJALQGqRDmZJcii2aR26kRLmvUyOphKmkiNYKYPOJOGH86W4pmuIt5tEbVDXrt0QEhKKvXv/xYUL55CcPKByeXcIApCWdgL79u3B+PETbNvMmjUD2dkXXO4zKSkFL730OvLz85CRcRqPP77M9px1po8xY4biiy++RUREJP788zcMHTrc5ZfQ2267CzfeeA3+/XeXJ06ZqF0z2kUlMkoqkF9ugC7bUuTSJzoOSlHALT3D8MuFUhQbHIMFcT16wz+uB/JPHEX+zh8QPmISzlYbWllWXIST274HAIQNucThxs76XUIeEAxR5YOKwhxIZhNrSrRx9kFptVoNURRty/bs2Y27774TL774OtaseQPp6Sfx9tvvYtOmz6HVluPpp1fatl2+fCl8fdV45JEnAAAVFRVYu/YtbNu2FeXlGvTo0RMLFtxry+qr7uDBA6io0GHp0kcgk1mmlOzYMRZDhgyzrVNYWIg9e3ZhyZIHbcusmR6vvvoiXn31RVtmR6dOXRAZabmGXX75FZ7pLGrXGJQgrzhYqIVZAoZG+EHWzEM3rPoEW4ISh4t0NYIS1qEbA71cq0ElE9EryAeHi3Q4U6ZHl4Cq1PBDRZbpCb2ZydGUwlWWi+a3Z4sxpXOwdxtDbVZKykBbUOKuuxYDsPwqmpSUjJ9++gFnzmTY6kkA7g/fiIiIxAcffOrw3Dvv/Ac6nQ6LFt2LkBBLyv+ff/6Oa6+9zuX+YmPjcMUVU/D226sbPPsHEVmY7ApTZpToUFJugC6rMigRZQlKAIBSJgIGM8JUMoyK8sfXZ4phNEsIHHIpFOfPISwnDQX/bEPo4HEQRMu1ylBahAPbv0GArhwBCQPhE+VY2NYalBAEAYN7dEVJ5imUFOWhwjemOU6dWrA1a97AwoX3IioqGkFBwW5t8+qrq5CRcRpPPfU8wsLC8eOPW3DvvQvw8cdfICIissb6oaGh0Ov1+PPP3zF69MVOi6MfOLAParUacXGdbMu++WYLbrvtZlx99TWYNOlKh8yO+PgE7N+/l0EJ8ggGJcgr0kv1AIBeQao61mw6fSun0DxcpMPUagW397SAehJW/UIsQYmDhTqHoMT5yurh1WtNtBUqmYjB4Wr8k1eOP7LKcG0E0wPJ81JSBuKtt16DXq9HUlJ/2/L+/VOwfv3aylkXqn55cnf4hlwuR7duPRyW+fsHQCaT2Zbn5+fhxIljGDZsRK37uuWW2zFz5hRIElhbgqgRjHYzbhVWmJBVpoMu9xwEuQLKsCioZJYbNZnd/Zqs8uZNa5JQKvNBwuUz0Cf1e2w6vh/nzp+GOq4nzIYKaE4fRZBgQteEPtD2u7jGse2zLgf26ILM0vPYXZAFXaR7nynk3JdffoYjRw436zETExMxdeo1HtvfbbfdhYEDB7u9flZWVuVQkM0IDbXU3ZozZx62b/8TP/zwPW688WYnbU7CDTfMxmOPPYSAgAD06dMPgwcPxcSJk23DL7KzLyA0NMwhYBEWFg5RFKFWq2sMRQwPD8fJk2kNOWWiGtrWQHRqNU6WVgAAugd4LyjRM9AyNOJwsWVohJVJkpBRpkeAQkSMr8Jr7bNKrBzecrByPCpgaWO21oBAhejV4SVN7crKOhrbzpd4uSXUVg0YMAharRY9e8bDz8/ftjw5eSC02vLKehJN8zn1119/oF+//ggMDKx1vfDwcFxzzXXQ6yuapB1E7YXR7lqvMZiQduYsJIMeqoiOEEQZlGJlNkPlOhKqAhTZWssPAZ1iYnDnnQsQ1bkbjKVFKDm8C2UnDkAymxDZ/yL0u/waCGLN67JaVrUsNjYOAGAqzKlRfJPan969E+q1fnp6GkwmE2bOnOow+9OxY0dw7lymy+3uuutufP3191i8+H7ExMRg48b3cdNNM5CXZ5lhqKKiAkql+9c7pVKFigpdvdpO5AozJajZSZKE9NIKyAUgzs97v/KrZCJ6BKpwtLgCmRoDOlVmHOTqjDBKQEe1wml6W3OLr8wmydDobcsKKkwwSkB0CwiaNKXEEB+Eq2Q4WKhDlkaPtn225A2dO3fBn3/urrG8d+8Ep8sbwzoW2OrPP3/HyJGja6zn7Ljz5y/C/PmLPNoeovbGfrKMHedLcKKysKlvB0u6pHX4hlAZlpAkSw0qAMiqDEqE+8gREhKKlKtuhOnUWejzsyHIFfCJikNkaCAqXJSIsC+o3TmuE3YCMORdgFGC04Lb5J7p02c0+zHlchFGo+eCST4+jsNwBUGwTT1rZT9sUKsth1wux7vvbqzxPdXPr/bi8SEhobj00om49NKJmDdvPq677mp8/fWXmDfvTgQFBaO01P0fgUpLSxAczJpf5Blt9ydWarEKKkwoNpgR56e0Xey9pY/dEA4r67CIjuqWcQuskonwl4soqDDZLlIXKtvY1oMSoiDg4mhLWuEPGYVebg2RZ/Xvn4xx4y71djOI2g37mhIninQ4n34cAOAb2w0AoKxMi7De51kyJSwPLmgtN4URPpbf8/wVIpTB4fDv3hd+nXtB5uMLoyRBa1dN09U3nIjgQAQEBMJYnA+z0QAdsyXITnBwCAoK8m2PzWYz0tNP2h737NkLRqMRxcVFiI2Nc/jPWq/IHf7+/ggLC4NWa8nE7dUrHnl5udBoytza/vTpU+jZM97t4xHVhkEJanYtYeiGlTUocbykKihxrvKGP0bdcmo1hKlk0JslaCoj89ZfbKJ9236y08UdLCn1358urPHLAVFrduONNzstSEZETcO+poRJq4E+Lwsyv0Aogizj8qsyJSwkSYJ1hOSJEst3F1tQwsnQySytETtyNbbHrpIt5YKAuLhOkAkSKvIuoIIzcJCdlJSBOHQoFdu2bcWZMxl4/fWXUFxcZHu+U6cuGD/+Ujz55KP4/fdfcf78uf9n777j26jv/4G/7k572bK87ezhOE6cnZABGWU1tMwCLaRQyigrpS2F9keh39JSRoEOKDSsUgp0QBugtDRhQyEBsnecOE484ynL2vPu94d00kmWZNnWsJ338/HgQSydTh99LOt073t/3m8cOLAfzz//DHbt2hF3n59++j/84hc/xdatn6KlpRnHjzfgD394HMePN2D58tMBANOmVcFgyMO+fXsHHKPH40Fd3aGo7h2EDMfYP6MhI86x0IF9sj73J/0lqmCmgdkTCN820jIlAMColKHR4YPZE4BOzqE9dMWmbASNMVPGaRWYqlei3urBMZsXk8doYU9CCCGZJW0J6mxtAABoKieHU+BVXHSgQZopIRILYOvkA1/Xq47p7HXLjEKcsHtRoOQwYcJEcMzn8HS0wEWZEkRi6dLluPLKq/Hb3z4CQeBx6aXfwKJFS6K2ufvun+P555/BY489iu7uLhiNBZg1qxZnnnlO3H1OnDgJCoUCv/vdo+js7IBKpcKECRNx332/wvz5wbafHMdh7dqv4J13NuG005YlHeOnn/4PxcUlmDWrNj0vmpzyKChBsk7svDF5BGRK5CuCrbws3v5BifIRdMJvCrXHNHv8GK9TSDIlRs4YM2l5iRb1Ng92dDspKEEIIWRIpMs3XC3BdHh15ZTwbcbQdwJxZakgBLMaRGvKdDApg1+dtTIu6XOtm2LEmWXRXaPOrogUtZ00aTJkDAN7RxNlSpwiLrnkclxyyeXhn+fPX5iwdtF3vnMLvvOdWxLuSy6X44YbbsYNN9yc0nNXVFTiRz+6e8DtLrvsSlx99eXo6uoMZ/L94x9v9tvu1Vf/iquvvi6l5yYkFbR8g2TdMZsHDICJI+DkUidnwTL9gxIMRtbSCPFLUE8oo+NUWr4BAHNNwStTe8zOHI+ExBP5zk5frMem4O91BNT9JWRYxOUbvM8LZ2sDGLkC6tLx4fvzQxcAxMwJAYB0lYa0Dla85Rvh/Sg4XDrRCKMy8TG6pKQUapUK7q42dDiogwEZGQoLC3HnnXejo6M94TZWax9WrDgDZ50VPyuDkKGgoATJKqcvgC63H2VqOdQjoJUlyzDIV3Do8wXACwI8AR5dbj+KVDIoudyPT1QQ+mJj9vohCALaXX4oWSZ8VWesm6xXIE/B4ZDFTQXBRiCW5QAw1LJyjAoEgsvFgr9nQkaH7d1OPHGoKyo7QmwJ6myuBwIBaMZPA8NFAgd58lBQIvRz7PINueTf+iTLN74+aeCOBCzLYva0KUAggPcP1afykgjJipUrVyddlmEw5OHKK68eER3qyNhxalxmJSOGK1SoUZvCWsxsyVdwMHsCsPl4WLwBCBhZSzcAoCB09abHHYDNz8Ph5zFBOzJalmYDyzBYWKLDe819OGhxY34oc2IgPR4/3mqxotnhhdUbwHidArPy1VherAVH7dfShmEYaLUGWK1mAAj1OR8p88vA76cMjvhSmRsBNpsFSqXmlPm8IWPDL/YEr/QuKtRgcVGwTaIY03acOAwA0E6cEfUYWUyhS14QooISYncOANDL+wfptDIWP59Xhikp1sxaMbMK//piN7YfOgKsWZDSYwghZCyioATJKl8odVI+gr7cGiV1JUZiPQkgOlOi/RRpBxprYake7zX3YbfZNWBQQhAE/KPRglePW+CRVFs/1OfB5lYb/nZcjm9PM4ULlpHh0+nyACAUmBg5QQCWZcHzlF0TT6pzw7IcjEbqEkJGJ3eoXsNBixu93gACbhdcbSfAKlVQl02I+xhpS1BpUqe0vkRenEzFF0+fMKiA9+yqaZCzDLqaGlJ+DCGEjEUUlCBZJQYlZCPoKrX4xaLX60erM1iEcyR13gCkhS4D4c4bpSNsjJm2uCRYMGy32TXgtn893ou/H7dAzjK4eEIelhVroZNxaLB5sKnVir29bvxiTzu+NbUAF47PoyvAacAwDPT6fOh0eeD5AEZC91aWZWA0atDb6wTPj4ABjSCpzg3DBIMS9DdCRgtBECANtTEMsKvHiZ/tDmZO2Bv2A3wA2omzwSRYkiR9t0sDEdKaEoY4GZ+DzcArKyuHXK2Fs7MNLpcLarV6UI8nhJCxgoISJKu8odzJEbR6I6oDR+sIzZTIU3BgmWD3jWZHMHBSdoplSpTpFChTy9Bo98LmC8RNnQWAd9qs+PtxCzQcg/sXlGOSpMtLmUaOZcVabO1y4LcHuvCnejPsPh7fnFqQrZcx5jEMA44bGYcWlmWgUCggk3kpKBGD5oaMVb/a34kvuhzhnwUB2NbtDP1bgP3IXgCAftqchPtQh2pKKVk26iKKNCghPQYVKjncM6d00GNlGAZ54ybDeXgv6uuPYPbsxGMiVFSZnCpOzeLSI+ObIzlljMRMCaMi+GfQ5w2g1REMSoy0TAmOCRa17PUGsKc3mCkwIy/3LVWzbbJeiZMuP5odPszM7x+UsPkCePZIDzgG+H+1pVEBCRHDMFhWrEOhUoaf727HPxotmKBT4IxSXTZeAiGEkAza0unod1uXO5hh6Olsgc9qxsTx44GC4JKkr44zQM4yWFkSOQbcUl2Exw914dvTCuCU1F2RBiWk32O+Pc2EiUNsc54/bgpOHt6Lw0coKDEQluXAshwslm7o9fmhAHguvk9SraLEaG6SG2h+BNjtfWAY9pQrLk1BCZJVI7GmhJgp0esJoMXpg4JlUKQaeX8aBUoZejwB1PV5kCdnMWEEtFTNtnE6BdDpQLPDi5n5qn73/7u5D+6AgC9XGFBbkDwNdnqeCj+cVYx7d7fj94e6MEGnSNuc2n0BHLcHi2tq5SzGaxXhuiCEEEKyx8cLOGYLdgayHdkDALhw1em48+tzcKilFyZF/+VJ5Ro5HlhQDgA40BtZMijPwAWV/HETAYbFkSOHIQgCLZVKgmEYmExlsFrN6O3tzNk4qFZRYjQ3yaUyPwzDoqCg+JT7LKBvySSrvKGCU5k4sA+VGJQ4bvfC4ecxSacAOwI/CMQOHAAw26gekWPMtPHaYNBAXMIi5fTz+HezFRwDXDQhL6X9zTVpcOUUI1481osNh7tx/4KyYR0EDve58crxXuzo6V/3osqgxHnj8nBGifaUO9AQQkg2eOK0jLb7A+jxBOC3W+E4UQdWqcK06hoAQLFaPuDypUTLN6RcgaFfGVapNFCVVMBq60Nj4wlMnDhpyPs6FXAcB6OxCILAg+f5rNcvolpFidHcJJfK/JzKdZwoKEGyyseLNSVGzh+bGJQ4ZHEDAMZpR9bSDVGBIvLnOmeALICxSvzdNIeW2UhtbrXC7uexpkyHkkHU27hoQj7+1+HAwT43tnY5sKx48Ms4AryA5+t78GazFUAwgFSdp0KBkoPDz2N/rxt1Vg/qDnTirRYlvjezGGUjbIkQIYSMZt1uP679tKnf7SedwaUb1kPbAYGHvmoeVMrUl1pIW4LKEpwo+IZxAiZjGWgmVIFv/hwHDuynoESKGIYFx2W/QBnV40mM5iY5mp/kKChBsiq8fGMkBSVCGQhi68hK7chcFmFSRTIlBlqaMFZVaBVgET9TYmuosNn541LLkhBxDINrphXg/3a144V6MxYVagf1/vQGeDy4rwM7elzQy1l8a6oJq0p1UVfXBEHAvl43nq/vweE+D+7c3oq7aktRHWcJCiGEkMHb2eOMe3uL04uA2wXb0b1gOBkMM+YnDC7EI5NsGnts+N7MIrzZ3IfTS7RDGrO4T+346RBavsCBA/uwdu1XTsmrpISQUxsFJUhW+Ubg8g2djIWMAcS6M5Uj9Aq2KVSToFglQ+kp1nlDJGcZlKrlaHP54PTz0IQayHsCPI5ZPTDIWUwcQl2IuQUaLDCpsaPHhQ/bbTir3JDyY5850oMdPS5UauS4Z25p3N8NwzCoLVDjkUUVeP5oMKPip7tO4hfzyzAjL32BCV4QcNDixmddDrS7/LD7AshXcKjUKrCsWItJOgV92SWEjEneBFceWxw+WA/vBBPwQzt9LjiVZlDFtrkkyzdWl+mxukw/tAGHyBgGnFqLivETYW5tRFNTIyZMmDisfRJCyGgzghozklOB+KVhMFcpMo1lGOQpIlkIIzVTQly6sKhQk+OR5FZkCUckW+KI1QO/AFTnq4Z80n3JhHwAwDuttpQf8/5JG95usyFfweEX88sGDBZxDIPrphfi6qkF8PICHtzbge5QVfjh2tnjxC1bW/CTnSfxZrMV27qdONTnwdYuJ149YcH3v2jF7dtaw8uUCCFkLEkUlOi22mA9tB15SjkMNYsAANwgDhPS7yuZuKAitkifMmMWAGD//n1pfw5CCBnpKChBssoXGHk1JYBIXQkWwarbI9E0gwoPLyzH1VMLcj2UnBoXLnYZqStxMHSiXTOM5RAz81Uo18hRZ/Wgyd5/eUgsizeAp+q6wTLAHbOKB9Vd46LxeTinQo9ebwAP7utAYBhrCwO8gF9ta8H/7TyJNpcP1XlK3DyjEL9eVIFnlo3DrxaW45qpBZikU+CYzYsf72jD03Xdw3rOVHkCPNwBPivPRQg5tXkTFJu07PsMgs+LmvmLINcFl/cN5jtIKoUuh0MMekyqmgmGYbFv324EAoG0Pw8hhIxktHyDZFU4U2KEBiVK1fIRFzCRmp7GVP/RKl6mhBiUiNcmNFUMw+Cscj1eqDfjnTYbrp1uSrr9640WuAMCvjrOgFnGwdX4YBgG108vxAm7F3V9HmxqteK8QdbCAIIBid8e7MLHHXbkKzjcWFWIpcXRa5uL1XJU5alw/vg8fNxuxx+P9uA/LVa0u3y4Y1YJ1LL0xqYP97nx3xYrDlnc6AhlgXAMMFmvxLwCNb5caaD2qISQtItXbNJn74OtbjcYuQKLl69CS0fwuMENIqOOi6opMexh9iN+H1JotJg+vQp1dYdQV3cYM2fWpP/JCCFkhKJMCZJVkUKXOR5IDDEoUTFCO2+QCDFToiWUKRHgBRzuc0PFMZisS72iejxrSnXgGOCDdlvSauoWbwBvtVihYBlcHFr2MVhylsFNVYVgAfyloRdW7+CvjP2hrhsfd9hRplXg0cUV/QISUizDYFWZHg8vqkClRo4dPS48eqATgTT1U+ty+3HPzjb8aHsbPmy3o8PtR6lahnFaOXQyFketHrxywoLrP23Cs0e647buI4SQVO3oduK4zRP+Od7yDfO29wE+gLyZi1BqjNQKGkwsNmr5RgaWnooXQvy8AN2UWfjgpA3vbP0Mn3bYcf+ednjps5IQcgqgy1Ukq7wjdPmGMdRuc6S2AyURYuCozRUMShy3e+EOCJhToI4qSDYU+UoZ5hVosL3Hibo+d8IMiDeaLPDwwSyJ4Vz1n6RX4pwKA/7basXLDWbcNKMo5cd+1uXAO202FCg4/H7NFCjcqbWYKlHL8eDCcty5vQ3bup146ZgZV09NnhUykC+6HPjtwS44/DwqNXJcMD4Py0t00Ia++QuCgFanD++22bCp1Yo3m63YY3bhztkl4SBTOgV4AXt6XdjS6UCb5yQ6HF6oWAYmlQxzjGosLdaO2GVahJCBeQI8fr6nHQDw+ppJ8PEC9vW6orZxNtfD1VwPmS4fhppF4YsPwODqWkkzOzOR5SmOxR0Q8Ee7AQ5OhY/37Mc7JYvBqbX4pNOBVqcPDh+PG2cUpv35CSFkJBhh16tJun33u9/FokWL8P3vfz/XQwEQvBIAjLygRI1RBRbAAtOpXURyNFBxwW4pLn8wwHXUGrxSVp03vCwJUW1BcAnI/t74BSF5QcD7J+1gGQw5S0LqyilGqDkG7520w+pLLVuizxvAk4e6AADfrSlG2SBP7PVyDvfMKYVOxmJjY1/CVnqp2NHtxEP7OuDw87hofB5+u6QSZ1cYwgEJILhcpVKrwLemmfDk0nGYW6BGk8OHu3a0pVS/YzC2dztx82fNuHd3O95ps+FAjxPdbj9anD7sMbvw52Nm3Ly1Gb8+0IkOl2/gHaaJIAhwB3gIacpMIeRU5pEEYI/ZvHhgXweOSz5LeL8vmCUBoGDJl8DK5ChQRoISgwlgRy/fyEBQIvRRecLuBcNy0E2eCZ7nYasPFrx0+Hj844QF/221gqfPD0LIGEWZEmPclVdeiQsvvBBvvvlmrocCIJJemYkUyOGYb9Jg45pJ1C5xlFBxLFyhrBtb6ETelKY6BTX5weyIAxYXAGO/+49aPbB4A5iVr0pLbQS9nMPqMj3earHivTYbLkoh0PGXBjP6fDzOKddjwRC7sZRr5Fg/swgP7O3AU3XdeHxJJRTc4OLUdX1uPLivA34BWF9diDNTaKVaoJTh/+aW4tkjwdoW9+w6iQcWlA87c8HPC3jycBfeO2kHANQaVTizwoAVk0xgXR64fTxanD5s63ZgU4sNH7Xb8UWXA7fNLE667GU4WhxefNhuxxfdTpx0+uDlBciYYJ2P+QVqnFGqQxXViSFk0KRJYbvMTuzsic6SsOz6H/z2PmjGTYOmYjIAIF8R+bweVKZExrtvBPcpBqX10+fAfWIPbHW7kFezCA5/ZPmGOyBAI6PvKYSQsYcyJca4JUuWQKvNzBfuofAFRmamBAAKSIwiKo6BJyCErj4LodvS83E2Sa+AhmNwuM8Tt67Etu5gVsHiovRl1Xy5IngyvymFK2EWbwDvnbRDxTG4apidWJYUarDApEa7y4/Xm/oG9VhPgMdvDnTCywv49rSClAISIpZhcP10E75cYYDFG8Aj+zuS1vAYiDvA4/697XjvpB0mJYef1JbgF/PLsbpMj1KtAhzDQC1jMc2gxBWTC/DUsnH42oR8uAICHtzXgX+csAz5ueMRM1nWf9aCV09Y0Gj3QskyqNDIoZWxaHP68O8WK+7c3oZf7G6PKtqaKbwgoK7PjQ9O2vBGkwXvtlmxv9tBmRtkVJLWwoltc+xqb4L10A6wCiUKFq8J3y7N3hpMTQk205kSoe8e4mew3FAAVfkkBJx2OBuPolHy+eCi+hKEkDGKMiVyaNu2bXjuueewf/9+dHV1YcOGDVi9enXUNi+//DKee+45dHV1obq6GnfffTdqa2tzNOLh8/HBA+pI675BRhcVx0JAAF4+mBIfvC097ymOYVCdr8KOHhfqrR5Ux3T0EIMSiwrTF+wbr1OgJl+FAxY3dptdmJ9kGdF/mvvg4wV8eVwedHIu4XapELuA7P08ePJ8bqUBhhT3+ZeGXpx0+bGoUIPzh9A5hGEYXF9lQqPdi4N9bvylYWi1LQRBwG8PdGJHjwvjtHL8bG4ZClXJD21qGYtvTi3AjHwlHt3fiRePmaGXszinIvXASiINNg/u29OOHk8AehmLCybkYUWxDmWSTBCzx4/Puhx4o6kP23uc2NvrwvrqIpxRqhv288ey+gL45wkLPmy3wxJbTPVAF365oByzhtG1hpBckMYw213+yO1eD7o/eQsAYFpyNmTayN+0QlobYhAXIZgMZ0rE+z6krJoP1B+B9dB2NMycFb7d5ecBZTAQc6jPjYvG59EFFULImECZEjnkdDpRVVWFn/70p3Hvf+utt/DAAw/glltuwWuvvYaqqipcd911MJvN4W0uuOCCuP+N1B7X3hGcKUFGDzErwhUQwleO0pUpASBc4DK4hCOi0+XDCbsXFRp52gslnhs6If6o3Z5wG3eAx39brGAZ4Kvjhn8CDQBlGjnOKtfDywt4t82W0mOO2zz4V1MfNFywg8hQvxRzDIPv1RRBwzF4rbEPR63x63gk86/mPmztcqJULcP9C8oHDEhILSrU4q7aUsgYYMPh7mHV1gCAfb0u/L8dbejxBLCqVIcNy8bh0onGqIAEEFzCsrYyD78/bRzWTTHCzwt49EAnXj3RO6znj/Vumw03bmnG6019sPoCqDWqcMmEfHx7WgEun2TEuuoiTDWkpxYLCWpoaMDXv/51fOUrX8HFF1+M7du353pII16AF/Cf5j50uf0DbxwizSgTjwGCIKB76yYEnDaUTpuJJy5dA3GlA8tEn/wPpiWoVCa7b0g5Cyohzy+Ep/skGpuawre7AgLsvgB+vKMNL9Sb0WDLfJYVIYRkA2VK5NDKlSuxcuXKhPc///zzuPzyy3HJJZcAAO699158+OGHeO2113DttdcCAN54442sjDVdxBTtwVylICSWmBXhDvDh5RvqNK6zrcmPFLv82sTI7ZEsifQXRJ1vUoMFsLfXBUEQ4p7ob+10wObncUaJFsXq9AVF1lYa8FaLFf9tseKC8XkDfmF/rakPPIArphTANIggQDwlajmunmrCH+q68deGXvx0blnKj22wefCnejPkLIMfzS5JOctDqrZAjdtmFuPRA514/FAXHl9SOaQMlJNOHx7c2wF3QMCVk424dGL+gMEaOcvg0olGTNUr8at9HXjpWC/yFRzOGsRSmHgCgoDnj/bgzeZgAOvLFQZcPikfRkkNFJZlYDLp0NNjT6lrC0mNUqnE/fffj8mTJ+PYsWO4+eabsXnz5lwPa0R7u82Gp4/04J+NFvxxxYSUHhOQvGWdoZoL1gPb4Gw8ApkuH+OXn4OqPBX0cg693kA4S+JXC8vR4/FDPZj1GxLD7fAUT7zvQwzDwDBjPno+ext9+79A8eoLAQA/2t4a9dobHV5MMSjhC9WroawJQshoRUGJEcrr9eLAgQO46aabwrexLItly5Zh9+7dORkTO8yDMcsy4UKXShk77P2NJeJc0JxEi50X8f/iF0rp8g2NjEvb/E3LU0HBMjhq9UTt86gt2OljXqEm7b8rg1KGqQYljlg9aHP747bK3GkOZm6sLNMnnJuhmKBXYk6BGnvMLuwyu7C4KPHSlB63H5902KGTsTin0pCWeTi70oCNTRbs6HHhiNWDGSkuJ3ih3gxeAK6bbsLUOAUjU52bVeV67DQ78cFJO/5Ub8Z3a4oHNX6nn8d9e9th9/O4eEI+vj5lcLU+FhRpcdfcUvxs50k8ebgbpWo55gyxE5AgCHjqcDc2t9qgl7O4a05p3Na29JmTGRUVFeF/T548GTabLWGQkQS1hGom9HhSz/CUZkq4AwJcJxvRu+tjMJwMxasugEIVfM+rZSx6vQGIsz8SC8smio/optTAsncLnM1H4e3tgsJYFBWQAIBGuxfNDi9u/awFX5+Uj29MHl6dIUIIyRUKSoxQvb29CAQCKCyM7kltMpnQ2NiY8n5uuOEG7N27Fy6XC2eccQaefvppzJgxY9DjkclYmEzDX+/s54NtDAuNGpgKqP1mLKNx5BQlzTW5nOv3nhPnx6BRAHBCoVPBH/qyX1aog2mQrTGTKdUq0GTzQG1QQxO6ct7tOwkAmFWeD5Mufc8lOq0iD0esnTjm4TF3fPRr5wUBe3tdkLEMVk4pDI9JNNz3ztdnlmDPJyfwbocDX55RknC7V/ecREAALpxmQkVxepaQAMB1s8vwyy+a8UpTH343pXDA7be127Db7MI4vQLr5pQnrVOTytz86DQV9vy3Du+02fC1mSWYPYiaIX/d3YYWhw9Ly/T4/pLxQ7qausakg0cmwy8+b8bvD3fjpS9X9fsdpzSWw13Y3GqDSSXDH740FZX65Msz6DMnWjprPb333nuorq6mgMQABpunIwgCmh2Rdr6+PjO6Pv4XIAgwLT0HioLicBtPdegfsSfzg/W7xRXwZSihKFHmKMPJkFezGOZt78OydyuKV57fb5smhxf/abYCAP523EJBCULIqEVBiVFmsFdcnn766bQ8r9/Pw2p1DbxhEizLwBu6qu20udAjUBVpEcsyMBq16O11UCp1iM8XQE9PsL5C7Pyw/uAVtQ6zA7bQOmS3zYUed/rW1+bLWTQBOHqyD5WhYEez1QMZA3BuD3o86V/LO10dPAnd0mzBqoLoK3pH+9yweAKYbVTBZXVB/GtM13unWslCL2exrd2G1k5r3Bod3gCP1+q7wTHAlwo14d9POizSy1GmlmFbhx17m8yoSBJgEgQBj+9sBQBcMcmIvl5H3O0GOzffnGLE7w504dndbfjpvNSWkbQ6vHilrgtqjsGN0wpgSTCWVCw2KLC8WItPOx14bFszrq8aODgjddDiwu93t0HBMvhJbQnUXh96enxxt03X+8ZgUEM+zIKrI4lY6+niiy/G+vXr+90v1nq69957MWfOHLzwwgu47rrrsGnTJhQURE4IW1tb8fDDD6ftGDyWDfbd99KxXvyj0QIA8Dvt6HjvH+A9bsxbsgy9k2cCCHb4ASIn/IFhdpmZOEBwbzhia0poZWy4DahuWi0s+z+Hs+kIvJZuKPKjPxNaHL4R12KdEEKGgoISI5TRaATHceju7o663Ww298ueyJZ0nCyLNSU4MHTyHQfPCzQvErFzIc6PWFPC6ePDRc7kTHrfUyZFKDvC5Ue5Wg6nn4fFG0C5Rg5GwICtO4eiyqCEgmWw1+yCL8BH1XbYEapnMa9AE/d1Dve9wwCYbVRjS6cDB8wuzIuzfGCf2QWbj8eSQg0KFFxa55sBsKpUj78e78XH7XZcPsmYcNvDfW7UWz2YrFdgaWH8+ZBKdW5OL9bhpXoztnU7cdzqwYQUsmGeqeuGXwCumGhEvnz4c3L9dBN2m114s6kPq0t1mJziyVCAF/CHQ90QANxYVYgpemVKY6HPnGjpqPVkt9tx880345577sGECanVSIgnHUsm07GfTJOeUw801v29rnBAgvd60Pn+P+G390E7cQYuO/98PFXXAyBYyJJlmXAGVUCI3vdImhtFTAC4QMmFgxKsTI68msXo3f4BLHs+RfHKC6K27Xb7o1qdpuv1jKT5GWlobhKjuUmO5ic5CkqMUAqFAjU1NdiyZQvWrAn22eZ5Hlu3bsXVV1+d49ENnS8gFrrM8UDIqCZexfeECl3KmPR3dDGFigJ2e4KZGO2u4BXnMnXmPjYVHIsZeSrs7XWhwebFNElnhF09wdyIeab+9QHSZW5BMCixO0FQYneopkWylqXDsaJEGw5KXJakUOTHoQ4lZ5Xr05oaL2cZXDg+H88d7cFrjRZ8b4DaEg02D3b0uFCqluH88YNvixqPUSnDFZONeOZID15r7MPts1Krb/HfVitO2L2Yma/CmrL0txYlqdV6CgQCuO2223DZZZdhxYoVQ36udC2ZBEb+Eh2l0hL+90Cv+ekvghlSvNeDjndfhdfcCVXpOBQu/zKMhshnoyK0/E+liHxex9v3SJgbnTU6665Up4xanqKfPgfWg9vhbDwCd1crVEWRuiU8gOP24OO18vS9Z0QjYX5GKpqbxGhukqP5iY+CEjnkcDjQJGn11NLSgkOHDqGwsBBFRUW45pprcOedd6Kmpga1tbV44YUX4Ha7cdFFF+Vw1MPj5UNXtSlKSIZBzJRwBYKFLtVpbAcqMqmCmRLmmKBEaRq7XsRTkx8MStRbPeGghNPP47DVjXwFh4kZqGUhmlsQ/FK/xxx/qZZ4+9wMBUYqtQpM1ivQYPOi0eGL+1oDvIBPOhxgGWB5cfpPvs8q1+OV4734uMOOb08zwaBIvDThnVAL1fMq89L6mXZWuR5/a+jFJ512XOUuQNEAHU6cfh5/aegFywDfmW6iGgYZkkqtp48//hifffYZuru78corrwAAXnzxRRgMg6u/kq4lk5leFsgLQnipxFC53JET8IGWhPW6fOGAhKf7JJRF5ShedREYTgaPM3JyLwT4YGcZSXt06b5H0pJJc0wrZL3ks8So4NALwDhvBbo//S96t3+I0nOvAMMw0MtZ2HyRZbAOH4+OLlvS+jqpGknzM9LQ3CRGc5NcOuZnrC2ZlKKgRA7t378fV111Vfjn++67DwBw6623Yv369Vi7di3MZjMee+yxcEGtZ599Nmrd6mgjLt+goAQZDjFTwhXKlNCr0v8BHc6UcAe/1La7gsGJsgwHJUpCmRhdoVoZQLA6PS8AVXnKYZ8AJH9uOUrVMhy3e2Hx+JEvaSFp8fhx3O5FqVqW0cDM6SU6NNjM+F+HHRN1/T/r9va60OcLYL5JjbwkAYOhUstYLC/RYlOrDdt7nFhTpo+7nSfA46N2O2QMsKo0vcERJcfiy5UGvHLCgn839+Gaaaak23/cbofDz2N1qS6ja99JfNJaT6tXr8aBAwfSst90fanP1BKdgxY3/t+ONtxeU4wzhvE3EJCMbaBxBtxOtL/7Crzd7VAWV6DkS18DKw8GL6UZmAwT3BeHyI2ZWPaWDm5/dH2tAmXkc61YJUOvNwDt5BpYD+2Ap6sNzqYj0E6oQqVGjkN9nqjH9nn8Ua1/h2skzM9IRXOTGM1NcjQ/8aX/8iJJ2ZIlS1BXV9fvP2lxrXXr1uGDDz7A/v378eqrr8at8D2aUFCCpIMYlOjzBgMGYoX1dBKDEmKmxElnKFNCk9lYbrFKDEpErh6KAYriAa6Yp8McMVuiN/rqnfizeH+mrCgOpjV+3hW/YOTHHcGrnWeUZG6JwuJQ540vEowBALZ2OuDw8zitSJs0m2Ko1lYaIGOAza3WcNvbeARBwKbWYPX9L1emrxsK6W8k1nrKpRePmQEAjx7oHNZ+3Cm2xujp6cGxN18MBSQqowISQPT3CvHLbQaS6NLOw8cEJSSfJ+JnC8MwMC5YBQDo3fExhIAfFZr+mWR9PiogTggZnUbBxzUZS8I1JSgoQYZBDEL0hoIS8TpFDJcpdLWqf02JzGZKiKn6nZJMiY7Qv0tUmX1uAJhjDAYdDliiU8d3m4OFNudmOChRrJajWCVDi8PX72RcEARs73ZCxgBLijK3JnO2UQUVx2CX2RXuGBTr3ZPBpRtnVcTPpBguo1KGJUVauAIC9iZYTgMAR60eHLd7MUmnwHQDZUlkkrTWk0is9TR37tzcDSxXBnmh76jVg1/t6wgHk0Ueyd/Yzh4nrvr4BI5aIxkAJ50+/PHz/XjqqSfgsVqgGTcNJWdGBySA6KCEmFCWqN3mSLJE0n744gl5yJcEJVSSgLu6bALUlVPgt1vQt/+LuJli1pi5JYSQ0YKCEiSrvDwPlkFUVwFCBksZCkL0ejIXlMhTcOAYwOyJLN9gEFzikEkmpQwsE718Q/x3UQaLbIrGhVpxistVRPt73WAA1BozG5QAgMl6BQQAx23RBeC6PQFYfTwm6BTQyDJ3+FJwLOYVqOEOCNgXkzECBE+iDlrcyJOzGZ2PRYXBgqLbQ51X4hGzJM6pMFAtiTRwOBw4dOgQDh06BCBS66mrqwsAcM011+Bvf/sbXnvtNRw7dgw/+9nPRn2tp+FK9V139842fNrpwEuhDAuRW5LG/LuDXejz8XhkfweAYCDyyhf+jd9t2ICGnj7oZsxH0crzwcr6fw7Hy8DMQBJd2o3XKfDXlRPx+ppJuHqqCWrJZ5sytjPHojUAx8Gy/zP4bebYXcHmo6AEIWR0oqAEySpfQKCe2mTYxEwJi9cf9XM6sQyDAqUMFm8ALj+PLrcfJiWX8aVHHMvApJTB7AmElzt1urK3fEOsadHpiiwf8fECutx+FKpk0GWhwNKUUF2EY7bo9dINoZ+nZKFuwuJQJsbn3f2XcBy1ehAQgBn5qozW+Fhg0oABsL3HCSFOC1peEPBFVzBzZGWa61qcqvbv348LL7wQF154IYBgracLL7wQf/vb3wAAa9euxY9//GM89thjuOCCC3Do0KFRX+tpMARBCNeAEEKpEqn+BYjLNMRAb/h2SU0FMdjY6fLD5/Phb/94FT2fvQ0IAmpXnQvjojVg2PhfXaWfzeKfy4w8Vej/IzuLSCNjw0FFacB1figzTcygk+vzkV+7DAgEcOCD//b7XPDQOnVCyChFhS5JVvl4gZZukGETMyPCyzcydNXcpOTQ5fajrs8NAUCZJvPLJ4DgF9Autx/dbj/KNHJ0hupLZCMooeRY5MmDr1usrG/2+CEAKEpjAbVkBgpKTM5CUGJhqO1pvE4kh/qC2RPVoROeTDEoOEzPU6Kuz4MTdi8mxbzuJocPNj+PmnxVRjNHTiViradk1q1bh3Xr1mVpRCPLj3a04YTNi7+tmjjY1Rth23uc+LzLEV6CJc2U0IXexy5zB+79zT/R3tEOTq1F0coLUDCzBjhhSbjfeBc8zq00IE/BoTbDy87SSdpNalmxFj+fV4Z8BYfvft4CAMirWQRHw0F0txyHQ3cQuik14e29KdbnIISQkYa+xZCs8vICFbkkw6YKlVkX26GpMpSjKxa73G8JnoRmuh2oKFLs0g9BENDp9kPDMVnJUgCC2RJ+IXJFU1w+UpiFoAgATNEHl5Aci1m+If48WZ+5tqgig4JDsUqGDpc/as07ABwKvR+q8zMblAAiwZHtPf2XcBzoDQZMarIwDkIAoK7PAw8vwCM9+R3Cx+/9ezvQaA/+PUszJfo8Plj2fYaTb72MNw804IiyGOVfuRqq4gp0SLK34om/fIPBihIdDKOohZ40vsgwDOYUqGGQR25kWA6m086CjGFg3v4+/E5b+D4fZUoQQkYpCkqQrOEFAX4KSpA0UMWk76ozVGJdDEq80xb80peNZQNAdLFLmz/Y9rQ4SwERIBIUEYtthmtaZCkoka+UwaTk0OzwRgUEGmwesAwwUZf5oAQAjNPKIQBodUZOhnhBwOE+D+Qsk5X3w8IkdSUOhIIjNUYKSpD+NrVY8f0PGzJyouqXLBuId0R3+Xn4Y55XEXPs/+7nLfj57pPhQr4ecwf2vv4iLLv+BzDB+gn5a74GTh3MqIitcxNrrHy3MCqCn7PS1qCxGaaqknGYt3gpeI8bPVs2h5dx0PINQshoRUEJkjXihZWx8sWB5E7sco3MZUoEvxRavAFoZWzW1u1L24J2ubIbEAAixTzFK5PZDkoAwSUavACcCF1NtXgD6PEEUKmR9yv+limVoaKfTY5IxkaLwweHn8c0vTIrn2WTdApoZSyO27zgJSeCgiDggMUNjomsmydEaluXA5+329Di8A688SB5A0LC5RtWbwBf/+gEfh3TKjTe38uOHhd4rwc9X7yHk/95Ea6uNigKS1HxlW/BUL0gqnjrUDIlRiONjMWfVozHhqXjwrfF6yKy+kvnQG4ogKvtOOxH9wIIFhMnhJDRiIISJGvEqzVj5YsDyR1V7FWjTGVKSE7Cz6nQZ23dvjRTQcxWyEY9iXjPD+QmKBFZwhGsI5HNehKiylANkRZH5GRIrCcxIz8742AYBuUaOTy8EFUgsNXpg8UbwFS9MmPvfzK65YeCqr2e1DoyeAI8XqjvweE+N5x+Hq81WuD0xz/J9fJCuCVo7BF9b2hZ0aed0UVipZkSlRo5hIAf1kM70PL6s7Ad3glWroDptLNQdu6VkOf1LxzaF1qup0zwHWIsfbcwKmVRwdd4tbgMaiUKV6wFGBbm7R/AZ+2lmhKEkFGLvsmQrAkHJaj7BhkmjmWivuBmLCgRWr7BMcB5lXkZeY54xNafXW5/uMhlSRbagYrE58p1pgQAnAjVkchm5w2R2B5VeqX5SF9wHJkucilVEQqOtEmWkRykpRtkAOIygF5v4mUPfd5IwGJDXTc2Nvbh94e68LfjvfhTvRn37WkHEMzM+bwrEmRItiRErBUBAEetkZa64om1wPNY6WtB17//BPO298F7XFi0YCEqLrwO+ulzE3bXECX6vB9LQYlYsjgvTckyUBaWIW/2aRD8PnR9/C+4vImzSY5ZPbhnZ9uAGSeEEJILFJQgWUOZEiSdlJIlG5loCQoAE3QKmJQcvjouL2tFHoFIl4tOlz/cDjSbAYFide4zJcT11LbQlVrxRGdSFopcisZpg8GAZkmmRI8nOBfZKnoKAOWhoIS0tkVdKDgyk4pckgSMA2RKfNphx1X/a8Q/T1jg8PN4/6QdQLCdZm/ofS7WLdnY2If793aEH+vlEy/fOGqNdM354ba2SEFLrw+2I3vQ+q8/YstbGyE4+qCumIzy867CjVd8A5xKk/C1SJfoJVquF9USNOGeRicmzsUc8fXm1y5FXtl4eM2d2Pfx2wn38VRdN/b2unHv7vaMjZMQQoaKWoKSrBGDEtS5jqSDmmMj3Tcy9KbSylg8t3x8RvadjIJjka/g0O3xh4vAFauyWehSrCkR7P7R5fZDK2Oz2nZSLF4qpo9bQ79royJ7VfR1cg5GBYeTLh/8oXbGfb7gCV5eFscRCUpErkB3h04aS7L4viCjS37oPdrrDSAgCNjV48L0PCV0MhYsw+BfzX0AgJeOmaNO6E0qWdTnjSfA48/HzFH7/l+HHUes0S17RWIQU7TxSBsc9ftx+IMP4XMGsy1m1M6FfWktunQlAID5JjVYBkiUgDFVrwx3QUoUlIiXTTCWiZknDMti8przseeff8SJfduxb98czJ49p9/24vtBGtwkhJCRgoISJGsoU4KkkyoqUyJzJ8vxrlBlQ5FKBos3gL3m4PrsbNaUkLMMCpTBoEifNwAPL6BMk92TXzEAIgYlxP9nMzACAJVaOfb1BnDS5cM4rQJ93gAYADp59sYRb/lGbyjtXlqhnxApo6RQ7892ncTeXrG1sSyqiCIA7A/VgQCCx2qPpGBip7v/8o/Xm/rC/xY/Ix872Il9vW50hloZu9ubYDuyB39qrgf4AMAw0EyYju9f+GVcNn8G/t+ONnSFAg0sw2B9dRF+d7Ar7muZYpAGJeL/7eXqszpXpMUv8/PyULTiPPBbXsfrr29EcXEpSkpKorYvliwBdPl5qOkKESFkBKGgBMkaCkqQdJJ+Mc1U941cOr1EiwabBx5eQJ6chT6LJ8EAUKKSwewJ4FBomUA2l24AwSwVoH9QQpvtoIRGgX29bjQ7vKjUyGH18dDLWXBZPAEqU8cJSnj8kLNM1ueDjB75oZoSTXZvuIsNEGyt6ZIWRGSAZsl7y8cL8Ejudw9QPFH8S3i3zQavuRPOxjo4TtTBb7cAAFiFEtopc2GomotJpSW4bH4wIBL7sb2mTI8ytRxtTh8eOxQdnJDWkslW952RTlr8Ui1joS6fiMIFK+Bt3ImXX34B3/nOLdBqteFtpDVLXQEKShBCRhYKSpCsEfuax6siTchgZStTIlcuGJ+Ps8oN2N/rQqFKlvWrgMVqOQ71eXDAEryCmu2ghIJlwDKAMxD8Ju3w8+CY6Ar+2SDWlWhx+OAqEODjBZRmsegoEDzhMCk5dLj98PECGASXsxTn4H1BRg9xqZM0ICFySM5QeQFod/mgZBl4eAF+XogKRCTqwAEAAh+Aq6sd77xTh9Y3PoLfZgnfpyyuhH5aLTQTpoOVBf+OpLWA4r1zq/NVUa1vRZWSTK1UagiNtZoS8UiXq2hCx8DSectRo/PhwIF9+NvfXsaqr30TD+3vwtcnG+GTzGuyQqWEEJILFJQgWUOZEiSdxnqmBBBcqrC4SDvwhhkgnniLbf2yHZRgGAYajo3KlNBwbNZPwsMdOJw+WMV6EvLsL5ko18jR4wmgw+ULv/ezWV+DjD5qGQu1jIUrTlDB4YsufskLwCSDAof7PP2Wb9gl2wqCAF9fDzydLXC1noCrvQmM34uPxxngt/VBUVgK7cQZGDetGhdXj8c5FQZsbrXiT/XBmhSpBJBjL1yoOSaqhku8TIm8UCYZg1MjIAFEL1cRl7X5eODiiy9FT08Pjh9vwN//8CJUC7+EPx7twQJTpJAoBSUIISMNBSVI1lBLUJJOUUEJSkNNuzPL9Hir2QpzqHJ/oTL7hwuNjEVnKDvAwwvhQm3ZJAZjutz+cPtEQw7GUa6RY1+vG61OX7iOhJHqSZABFKhkaB0gU0I0UScJSgQECIIAv70Phw73wLKnDp6uNri72iD4IgUuGU4GbcUkrF27DPu7NOC1wdbJxXolLpqQDyB6yZUyhQBy7N+5Rha9fC1eELo4i91wRiJNKG3CywtQKBRYffE3cOW9D4Fv3gWj2gDZ7MVRv3M/L6AzFODMxecZIYTEoqAEyRrKlCDppB7jyzdyrVgtx52zS/Cz3ScREKKLpGWLePVPbMOZ7SKXAMKtYLslQYlcZErEK3ZpVNAhnCRnShCUsPt5BHgBvNeDgNsJv8MKpxvoq2uBy21Dm6MXLe0dEPw+vJungqUvWGQSHAdlcSVUxRVQlU2AqrgCSrkcS5dOguyD4/CGjvNqWf+r+EDiIpVSJWo5flBTjF8f6AQQDGooueT7yHYm10gjzrE4/40BJUpWX4T2t/+O3p0fgVNrsE2YFd7ewwu4bUszAOCNL03O/oAJISTGqf0pTrIq0hKUghJk+MQvqRxz6rWCy5baAjVurynGzh4XpkkKzWWLuE66O1T9PxdFHeUsg3wFB7PHD0s4UyL746jQBJeRtDp94RMQypQgydTXH0XL+++ho9sGIRAAhACEQAC814MbX3WD87nh80eWZhwwaWA1u8AyoUAvI4OyqBylU8ejI6CFsqgcCmMRGDb6fSfWi5LWgpAGDqRBCenfsHiBIt7n9xklWvz6QPDfOln088W7sNGvO9EYX53ww1nFUT+LgXkxKOHwB6AsLMOCtV+D+ot/439bNoNVaaCpmBy6P3GdEEIIyQUKSpCsoUwJkk5iCq8qB3UGTiXLS3RYXqLLyXOLJzNiUCIXmRJAcOmKxRtAkyN4xTmXmRLNDm94KQ3VlCDJ7Nu3F+aGw3BZ3f3vZDkwShXkOjVYpRoynQFnzJ2Ejg4/WK0BxYVF6GLVYBgGU8r0OH7SlvB5eAEICAISNemQBiIKJcGDa6eb0Lu/E9dOM/V7jPQzXRvTecgfpxDmPJM6+DiM+XgElhRpcHrMZ7KMZaBgGXhDhYHtvuD/r14+H4YpOux4/Dl0ffQvlJx1KVRFFUmLlxJCSC5QUIJkjZ+CEiSNxHZmY7XIJYmsk+7O4fINAChUcai3AcdsoaBEDoIBJWoZVByDJrsXE0LFNylTgiRz/vkXYl/RDHjbbMHsBo4Dw7JgFSowXP/OLV9dMR4fftEKqy8AXsGBCdWTsfkD8XYfxccLUcEAadxA+ncrrU1ToVHgN4srB9y3Lubv3iuJftww3YQKrRxzCzRR2whjODQRJyYDIPjdSsyUsIeCDjo5i7lz52P8acdx+JN30fHuP1F69mVw+gvj7FfAX4/3YrZRjTkmTb/7CSEkk2ghNskasR0VBSVIOojBCKonMXapw5kSwZOiXGZKAECDLVjgz5CDTAmWYTBOq4AzIOCINTgOqilBkuE4DgXFZVAYiyDPK4BclweZRg9WJo+bXWZUcJCzDAICojp2iFfdk/HEpElIgwKaBJkSqdLFZEpIO4PkK7h+AYmxLl5MQhCC7ZLDQYnQ70wM6IyfexryapdC8HnQ8c4raG5tDT9WXHZzwOLG349bcPfOk5l9AYQQEgd9mydZQ903SDqJa5ZTKZxGRiexpkRXrpdvhE6k3KETr1xkSgDABF0wQ+J4qHAhZUqQgdw0pxTTDErcN78s6XZ6OQuWYcIXDVySIIPdN3CmhCcQHbiQxiiil28M/j0r/t0bQsEJ6fIpji5yhCm5YEDJxwtwhLJbdKG5UrAM8ucsR96sJeC9Hrz36p/hMXcAAN5qseLtVmu4kC8hhOQCfZsnWUPLN0g6RWpK0PtprArXlPDkrtAl0P/qbp48N+OYGApKAMG18/k5yNggo0uxRoFfL6nEbKM6YS2U04o0eHhhBYD4x2dbCvUH/t1ijfpZejVfKdnnUFoLK9jg39sDC8rxlUoDvjYxP3xfv7/EU+BwEG/5hgCgNNQW9YTdE1m+EfrMVHIMGIZB/rzTYahZDIfTiY53XoWnpx3PHOnBE4e7w9mshBCSCxSUIFkjZoBSUIKkg5ghoc7RiSrJvHBL0FCmRK6W6sSeSOlzFAwQa0kAwSUkdJWYDMb9C8pwwfg8LCmKLHc4r9KA/1dbirJQIdV4x+dUlm+80dQX9bM0ACJdKqIcwt+wGNSo1CpwfVVh+Oo/AHAJMi/H8ul1onoZNfkqAMBBizv8OxMDuYrQHDIMA+P8M1AxZwl4jwvtb/8drvYmANG1OgghJNvo2zzJmkhL0BwPhIwJ4pfeXHRCINkhBiXEK7UjIVNCL2NzFgyQZkoU0NINMkiVWgW+Pc2E/ze7JHybeHVdJF1eKbbqFOsUxNqwdFy/2xQsg5WlOnx7WkHU7S+fMQF/WTlxSONWJMmGi/1TPHXDdAKqQ0GJQxYPHH4eao4Jf1ZJg0EMw6Bs8Wrkz10BwedFx3v/gLO5Hm1OX05GTgghAAUlSBZRS1CSTpP1CvxwVjGumGzM9VBIhsTWkMhVTYkCBRc+WOaqngQAGBRcuA1oPrUDJUMkzVwoUUdnAckkx2fDAO+xMo08KlAGBOue/KCmGMaY7CKdnBtyUFGR5DtDbKbEsmItAGBOgXpIzzUaxIsRCQAqQ9kuHW4fHH4+KqMkdg6dAQH5tUtRsPhMIBBA54dv4MUPtvTb78YTFvw3ZmkOIYRkAgUlSNb4qfsGSSOGYXB6iQ6mIVRzJ6ODJibVO1eZEhzLhItKDnSilmlisUsqcknSITa4JS2XkigLTcky4SyJu+eU4rxKQ/i+TJT4EZeWxBP7fLdWF+EntSW4dOLYDVYnWmRhCAVPm0KFcKWtVPsFJULZZ4YZ81C44jwAQPenb8GydwuE0He1AC/ghfoe/LXBnPLYetx+PF3XjZ5QHSBCCEkVBSUS8Hq9+MMf/oDDhw/neihjBnXfIIQMRmy9kFxlSgCRJRy5KnIpEoMSBadIO1A6FmfGbTOLcHa5HtMMyqjbpRcNEtVOWVqsDQcKilSycHYCEGxdmy5PnFaJ788swow8VcJtYp9PxbFYXKQ95S5+CEIwa8Sg4OAPRS3KJcGc2FoeTknxUt3kmShecxEYuQKW3Z+i+9O34PP5YPUGwAuAI4VCp6LfHuzEf1qseOJQ1/BeECHklENBiQQUCgU2bNgAq5XS1tKFlm8QQgYjNjMip0GJUDp6rjMlFhdqwDHALGPiE7WxhI7FmbGmTI9bqov6ndRLj8/5itT+3qRLKNKZKVGpVWBVmT59OxwjpMs3poeCSmI9CaPk86lSGwlKxGZKxAYaNBWTUXbON8Bp9HA0HMRzzz+HVnOweKlfiHx/4wUBj+7vxNut8f8emx3BuhRUn4IQMlgUlEiitrYWBw4cyPUwxoxIoUsKShBCBqaJOcPJZVCiKJwpkdugxCyjGv9cPQnzTJqBNx4j6FicPdKgRJ6CwwJT/9oMsUs+pH+WibphkOETPw6l8/2L+WX49aIKzDYGf0/S302lJlLvI/Z7lzNO9oOioBhla9dBYSpFw/EGbPj9Y/BaugEArtD2jXYvPu6w44nD3XHHKAZMmFO45CghZGjGfFBCEITw+rjBuuOOO/DXv/4VL730Epqbm+F0OuFyuaL+I6mjTAlCyGBIl28wANSZWLCeovGhdpzlSda3Zwtzip340bE4e6THZyXH4ns1xeGfvz4pH1+uMOCySdH1GqSBiGwf3k+lJpa/mFeGaQYlbpheGL5NxbGYIlmCI601I82UiP29JJo3mUaH0nO+jilVM3Gyswsn33oJjsY6OAPBoESCRiyS/QY3OMU+ogghaTAmFqV+8sknmDt3LnQ6Xfi2d999F0888QTq6urAMAyqqqrw3e9+F6tWrUp5v5dddhkA4L777sMvf/nLuNscOnRoWGM/lVBQghAyGAqWAccAASEYkEjnevXBWlWmwwSdApP0ioE3JmlFx+LskdZ8UnEM9JLA4GS9EkuKtP0eI4tavkHH90ypMarxyKKKpNu4A5GowTht5LNqMPFcViZH3unnY6axBFv/+S90ffQvbC7w4Zvnf2XAYIMQzpQghJDBGRNBieuvvx5///vfUVtbCwB45513sH79esydOxe33357+Labb74ZTz/9NFasWJHSfu+///5T7opUJtHyDULIYDAMA42Mhc3H53TpBhA82ZoaUxSQZAcdi7MnKlOCZaPmPVHBQ2kNxaxnSgwxE3asWlGsxZZOB75TZYr6XbKDDBO83NCLFdMWoniNDN2f/Aeff/ox3N0nsfwrX0v6OPG3QX+uhJDBGhNBidiD0pNPPolVq1Zhw4YN4duuvfZaXH/99diwYUPKQYmLL744rePMFZfLhbVr1+K8887DD3/4w5yNg1qCEkIGS8ONjKAEyZ2xciweDRRcdKaE+H93QIAhQT0VaabEYE9+SXotK9bixdMn9CvIm2qQYFkoqAEAuzvtwQKYa78J7H8HT/5vN14/cAKBBWdDXTah32NtvkA4KOHjBRzodWGqQdmv8wchhMQzJj8pjh49issvv7zf7ZdffvmQimXV19fj9ddfx4YNG9DVFWxz1NjYCLvdPuyxZsOGDRvCWSS5RC1BCSGDJQYjKChBRsOx+N1338U555yDc845B2+99VauhzNo0sCDeDL5+9PG4Xszi+IWvQQy130jFZQnEY0JtQWNleq1IGmXDrsvmBkj1+fDtuwS6KbORpvZgo53X0Xvzo8RCATC2758zIx1HzeGs2naXX7ctfMkHjuYWmvQFocXfzjchf29LtyxrRVNdm9qAyaEjBljIlMilk6ng0bTvzK5Wq0eVKqfw+HAXXfdhc2bN0MmkyEQCOD0009HUVERfv3rX6O8vBw/+tGP0jn0tDtx4gQaGhqwevVqNDQ05HQsVFOCEDJYYjAitj0oOXWMlmOx3+/Hww8/jJdffhkcx+Hyyy/HmWeeCYVi9NQhkXZvEDMlilQyrE7SmlMmOaRzWTq+XzYxH592OsItMUlyqWaw+BJUsrQKLAqXnQt12UR0f/Y2+vZ/jmeesePSS78Bk8mEV05Y4j7uk04H7kjhee/c3gaHn8emVhsA4IV6M+6ZW5rSmAkhY8OY+ZZ33XXXYenSpVi6dCnsdnvcolcNDQ0oKipKeZ8PPvggdu3ahT/96U/YuXNnVEBj5cqV+N///jesMW/btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/GBY40wXCkoQQgaLMiVIpo/F6bJnzx5UVVWhsLAQRqMRtbW12LFjR66HNSh5CmmmRGrHai6qdkF2XDmlAE8uHQcFLQ1IibQrRzKJ6oaItJNmoPwrV0FZWIaWlhY8+eRj2L79i0HX9jhq9WBjoyX8uNjnNaU4XkLI2DEmMiVuvfXWfreZTKZ+t7399ttYsmRJyvt9++238ZOf/ASnnXZaVJoaAJSXl6O1tXXwg5VwOp2oqqrCxRdfjPXr1/e7/6233sIDDzyAe++9F3PmzMELL7yA6667Dps2bUJBQQEA4IILLoi7740bN+KDDz7AxIkTMWnSJOzatWtYY00HjYyFTs5GpQcSQkgy6tBJh4ZOPk5ZmT4Wi7Zt24bnnnsO+/fvR1dXFzZs2IDVq1dHbfPyyy/jueeeQ1dXF6qrq3H33XeHl0d2dnaipKQkvG1JSQk6OzvTMrZskWZKKNnU/uY46r4x4i0q1OCKyUZM0inwy70dcbe5ZUYh3m6zDbgvuT4fped+AzsOfIaq9n14442N6PQXwLT0bMi0hpTG88Ntwb/ZSToF5pn6ZzbHW4JCCBnbxmxQIp4XX3xxUPv1eDzIz8+Pe5/D4QDHDe9Dc+XKlVi5cmXC+59//nlcfvnluOSSSwAA9957Lz788EO89tpruPbaawEAb7zxRsLH79mzB2+99RY2b94Mh8MBv98Pg8GAG264YUjjZYcZTPjJ3DLItErIAwHwAzW7PsWIczvcOR5rYueF5qe/sT43Wnlo+YacG/RrHOtzMxyjaW4yfSwWpeNCwWiXF2f5xkCilm+M/LfTKYllGFw+yQg/L4AFEJsPcd00E86uMOC1xr6U9sewHBSzl+Pk+KmY1LwFrp31aP3Xn1CwaDV0U2ZFdW0RBCFh95xebyBulkWiZSSEkLFrTAQlMmX27Nl44403cMYZZ/S7b/PmzZg3b17Gntvr9eLAgQO46aabwrexLItly5Zh9+7dKe3j9ttvD7dE3bhxIxoaGoYckJDJWJhMuiE9VtQ/d4XEMhr794A/VcnlXL/3HM1PYmN1bkx6KwCg0KAa8mfQWJ2bdBgNc5OtY/FwLxQUFxejoyNyFbqjoyPlbl/xDDdgNJTAk/QKtTrFQKCciWRUsCwzKgJdoykol04KlkG+koPZEwAL4NoqE/553IIVpTqwLIMVpVq8ctyS8v7ceSVYf+H38I9H/gzrwW3o2bIJzsY6FCw5C3JdHgDAFuBh8/Ko1MoREIBf7Yv8jQgA7IE4QQlBGLG/m1P1vZMKmpvkaH6So6BEErfddhuuueYafOtb38K5554LhmHw0Ucf4U9/+hM2b96Ml156KWPP3dvbi0AggMLCwqjbTSYTGhsbM/a8ifj9PKxW17D2wbIMjEYtensdlCkRg+amP58vgJ6eYFV9mp/ExvrcyPzBdH2Zzx9+P6RqrM/NcKRrbgwGNeQJWkWmSy6PxaJULhTU1tbi8OHD6O7uBsdx2LNnD375y18O6fnScSFANNTAU2mhDia1fFCP0aoVaRt3NoyGoFy6mdRymD0ByFgG18yrxLfmVoQzGW41arFmciEe3dGCoxZ3avsrykPBgpXQjJ+K7k//C1frcbT963nk1y6DYeYCfPOj4HfWp8+cih6PH1tDLUcB4Km6bhj0qn77ZOWyEf8+OhXfO6miuUmO5ic+CkoksXDhQvzpT3/Co48+il/84hcQBAGPP/445syZg+effz4nbTaTpcElk44+7+n6Us/zAp0gJEBzEy12Lmh+Ehurc7OqRAenj8fSYu2QX99YnZt0GA1zMxKOxalcKJDL5fjhD3+IK664AgDwve99D0rl0LpDjIQLAR6rCz1Oz6Ae4/P4Bh08zIVTOWDpkxSVjPe7qmAHd3Jwoj245ENVVIGKr34Lln2foW//F+jd+RHsDQdgOu1sqIorcLzThkMxgQ5PQMB9nzf326fN5R2x76NT+b0zEJqb5NIxP9m4EJArFJQYwIIFC/CXv/wFbrcbfX19MBgMUKvj9+pOJ6PRCI7j0N3dHXW72Wzu96WIEELGKqNShiunjI31+mTocnUsHkjshYKzzz4bZ599dlr2nasLAc+vGA+rj4eSZQY9BgbpG3c2jIagXLqJNRxYJvHvarxWjkMWN/RyFjZf8o4cvZ5I8VmGk8E4dwV0k2ai+7O34eloRvumv0A3rRZHys7Hfzq8KY3RGxj5v5dT8b2TKpqb5Gh+4qNy5kls3boVLlfwSoVKpUJJSUnWvgQpFArU1NRgy5Yt4dt4nsfWrVsxd+7crIyBEEIIybVcHotFp9KFggKlDBN1iiE9lrpvjHz60FVWY5IOF9+aZsLl0wvxywXlA+6vzxvod5s8rwClZ1+OwuVfBqtUw350L/7w2KPo3r8NAt9/+1hDLXQpCAJ6Pf4hPZYQkluUKZHEt7/9bXAch+rqaixcuBALFizAggULYDQa07J/h8OBpqam8M8tLS04dOgQCgsLUVRUhGuuuQZ33nknampqUFtbixdeeAFutxsXXXRRWp6fEEIIGekyfSxOhfRCwZo1awBELhRcffXVWRvHSEfdN0a+784swhOHu3HdtMTlx3VyDrfNr0B398AtQjfUdce9nWEY6KbMgrpiCix7PoHtyB44t38A+5E9MC5aDU3F5IT79MYEJZ470oMejx93zCpOuoT5i24n7t/bgeunm/CVcXkDjp0QMnKMyaCEIAh44okncPnll6OwsDD876KiokHtZ8uWLdi+fTt27NiBL774An/+85/B8zwmT56MBQsWYOHChTj//POHPM79+/fjqquuCv983333AQi2OF2/fj3Wrl0Ls9mMxx57LNwT/dlnnx0zrccIIYSQgWT6WCyiCwXDR0XlR74StRw/n1eW0rap1DBrc/oS3ndmuR7tThX2q86CfvpcmLd/CM/JE+h8759Ql0+CceEqKPL7Zxr5JB05eEHA5lYrPLyA9QEBalniMb3VEuzW9MyRHgpKEDLKjMmgBM/zeOKJJ7B69WoUFBSE/z3YoITRaMRZZ52Fs846C0Cwh/lnn32G559/Hq+88gpeffXVYX0RWrJkCerq6pJus27dOqxbt27Iz0EIIYSMZpk+FovoQsHwMaCoBIlYXKhBs8OH/RY3FMYizFh7OZwtx9Cw9T242o7D9eYJ6CbXIH/Ocsh0hvDjpJkSPZ4APKGfrb4A1LLEK8/HaeXYbQ4u9XL6eWiSbEsIGVnGZFACiBTyif33YDkcDuzatSt8lWbv3r1QKpVYtWoVFixYkI6hEkIIISSJbByL6UIBIcOn5hi4QpkOHMNELemp1CrQM3EaPEXjYT28C337PoP92H7Yjx+Cvmou8mefBk6lgU/yvb3FESmOafXxKElSTsYp6Sxy0OLGwkINAODzLgcs3gDOqTAkeighJMfGbFAiHS6++GLU1dXBZDJh4cKFOPfcc/GTn/wEVVVVQ2rLSQghhJDBoWPx6CGAKsqf6tQyFq5AsJglxwAyyd+oTs6i18uAYTnkzVwI/dTZ4I7tQuuez2E7tAP2+n0wVC9EyYKl4ce0SJaH2HzJi2TaJUGJQ5KgxP17OwAAS4u08AkCTMqhnf4EeAHOAI/E1TgIIUNFeU1J1NXVQSaTYe7cuZg3bx7mz59PX4IIIYSQLKJj8ehBXe6IhoucWnAME1VnRMZEL/BhFUo8d91l+MP/3QND9QIIgQD69m7B/r//Ae+//y6cTidaHZGghDVOpw8ph6R96cE+d7/779zeim9/0gTLAPtJ5HeHunDtJ01wDBAcIYQMHmVKJLF9+/Zwuujbb7+NRx99FHK5HPPnz8fChQuxaNEias9JCCGEZBAdiwkZPaQ1H2QsA5kkKiGLUwlVLWOh1+tQsGgNDNULYdm7Bb4TB/HBB+9iy5ZPcMQ0HYHxc8Cp1LD6eHS4fNDKWOy3uKHhWNQWqNHi8MKklMEmyZRodwWDGZ5A5LaTrmC70CN9biwu0g76tbU4vHD6eTRaPSgZ9KMJIclQUCIJtVqNZcuWYdmyZQAAn8+HrVu34plnnsGjjz4KhmFw6NChHI+SEEIIGbvoWDx6UKIEUUdlSgSzJUQyhkFsgpOKY8JLPGQ6AwqXnQvZvGVYxB/Hjh3bUbftE3i2fwb99LloLFiD5472QMEy4WKYv15UgR9sa0VNvgp2XwAMgHwFhz5vALwgwCrJnhAds3mGFJTwhGpldDi9KNHQKRQh6UR/UQMwm83Yvn17+L+6ujrwPI9p06ZRoUtCCCEkC+hYPDoMo644GaGumGzEXxp6cWaZHu+etA24vbRlZ2yhS45Fv/4sLMOAi82g0Bhw/pqLsGj5Srz39D/hProH1oPb8K/GvXCWVyFv5iLI84Jdb/b1BrttHLC4oeIYaGUsjEoOvd4A7D4efXGWanzS4UCFRoEzSnXh2/b1unDS6cPZcYphegI8frLzZLi+RbvDh1oKShCSVvQXlcQ555yDpqYmcByH6upqLFmyBLfccgsWLFiA/Pz8XA+PEEIIGfPoWDx68JQrMeZcPsmIi8bn4YN2e2pBiYEyJeI8RhZzo18AeEGAXa6BafGXMHHBcjTu2grviQOwH90L+9G9UFdMhqFmEXrHRYII7oCAUjWHfAUHALB4A7DGqf/Q4vTh0QOdMCo5zDYG23ncvfMkAOC0Ii1+tb8D47UK3FBVCADY2ePCUasn/PgOpxdApA2IxePHh+12nFNhSNqylBCS2JgMSjAMg/LycigUiqh/D9Z5550XXquqVifpQUQIIYSQjKBj8ehBmRJjk4Jjo7poJKORRRe6lGZKxNaU+PHskvB2sXy8ALMnGFCYUmSEbeFq6BesAHNgF6yHd8DV2gBXawNeP/gp7JPmQjthOhiWg1bGRgclkhS17HT5AWP0bX2+APb1urGv1x0OSvAxb+x2SZtSAHhwXwcO9XnQ7fHjuumFCZ9vpNrf68Ljh7pwV20pJugGf75ESDqMyaAEy7J4//33wz9L/z0Y3/3ud9M1JEIIIYQMAR2LRw+KSYxdXJIEgEsm5OOfjRYAMZkSbHQgIlhTIvizVsZiaXGwrkO8Apg+Xgi3AC1QBoMMLlaOvFmLYZi5AI4TdbAe3IbWtlb4WlrQu10L3bQ5kC1ejPyCYPCy1xuIW1NCJD6tIAk62CTb/+ZAJ26eUdjvfd0uaVMKAIf6glkUJ+xeDEaP249POu34yri8uIGZqOewuPHI/g7cMbsEM/JUg3qegfwklCWysdGC79cUp3XfhKRqTAYl0qm5uRnPPvssdu7cCYvFgvz8fCxYsADXXnstxo0bl+vhEUIIIWMeHYsJyS15kpNmpSQdQlpTQsYw0cs3JDUlpIGA2OUbAODlI0UqTcrg6Yo/9BCG5aCbPBPaSdVwtzfBeiiYOdG3dwv21G8HZs2CK38aeqcaYfMnDpWJQ3MGIttIa1B82G7HdIOy35KMDkf84MNgmxTftLUZHl5AnoLDqlJ90m3/UNeNbk8AD+3rwPMrJgzymRILSH4Phaqhnxa2OLzo8gRwtkk38MaExEFBiST279+Pq666CkqlEqtWrUJhYSG6u7vx9ttv480338Sf//xn1NTU5HqYhBBCyJhFx+LRg6dUiTGrXzFKCenqBoVkOzZ2+YYkQCF9q8TbtycQyZQQgxKxGIaBumwC1GUT4LNZYD+6F8q2Q+g6dhgdPTux8fD/UD5rAQKGieAUweyCYpUMne5ga1Dx/Spd4hFbg8Lh5xGba9HnDcAd4KHoF6hJPSzh5wV4QgNwJwmciMQgjrikxe4L4NEDnVhVqsfK0qEHAt6X1AmJXaYyGLd81gIAmF2RD1oAQoaCghJJPPTQQ5g5cyaeeeaZqHWsLpcLN9xwAx566CH8+c9/zuEICSGEkLGNjsWjh0ALOMas2JoSDCKBBR4CzizX45jVg7xQPYfgY2IKXbLxgxLSfas5Bq6AAIs3EF5KIS7fSEauz4dx/hlYec7ZmGprxoHX3kZ7VxfMH21Cs5uHdvx06KbOhm7aVHSGHiO2+LRJAhGx3ToEAE5//yUgnS4/KjXyqNuky0G+6HZillENrYyFIAj46/FezMpXo7ZADU+Ax6edjvDjAnGCAUKonWmegoMgCOiVjMviDeCQxY2dPS7s7HFhkk6B8SnUgmiweVBv9UR1GNnY2Bf+d7zXOVjtTi/GD/zrIqQfKhGbxL59+3Ddddf1K6ylVqvx7W9/G3v37s3RyAghhJBTAx2LCcm92CUWDICvhjpfLC/WYX11EX67pDJqmQfHxrQEZSIn7lLSbUrUwRP9Ho8fdklNidiHxQYERGqFHGctWYSyL1+J0vO+ieLqeWBYDo7jh9Dxzis49PcN6N39KXz2PrgCPLrdftyxvS38+NhMCR8vwBHnZL0rlG0Rz2tNfbh/bwc2HO4CAOzrdePvxy24Z1ewdsM9O0/idwe7wtvH7t/PC3jicDeu+l8jjlo96JUEaIBgEKXHE3n+Zslykh6PP2ppjNT3v2jFE4e7cdwW6STSK9mPM4WMjXg8gcjYumLqbRCSKsqUSEKpVMJiscS9r6+vD0qlMrsDIoQQQk4xdCwe+UpUMnS4/RivpcTtsapfMUoGuHaaCVdOLoiquSDdjmOYfoUuRdLzZuntJSoZTti96PH4wyfiejkHOcvAG1rucFqRBt+eZsINW5r7jVPBslDLWBQqOZhhwqzl56Br+jI4G4/AfmwfPL0n0bd3C/r2bsG7dTOwdUoNeG0lWHnwvRtbGNPqCyAQ51y90+2DtC0oEAy4tDi8eKHeDAD4rMsZ3odUnaS9KBAdlAjwAq746ER4acf/OuxYFioIKnIHhKighLjt510O3L+3A9dPN+Er4/L6DzqkLzQePy/AJXlxrsDQMiWkAZp2pxfQxw8YEZLMmMiU2LJlS0rb+Xw+/OAHP0h5v6tWrcIjjzyC7du3R92+fft2PProo1i9evWgxkkIIYSQwaFj8cj34MJy3DazCF8qT16sj4xesUEJBqGaDjFFIKOWazDBuhIiOctgXChwNUkfCWBJd12sDl4v/eNRMxpDGQB6OQelZKOZ+aqoZSJSYtHNSq0CPIB6qwesTI5VixfhD3d+D3O/cSPyapeC0+jR3nQcH/9nI5pe+T06P/oXHE1H0euKDhjs7HHh3TZbv+cRazvEzsmzR3rCP4tBOumSkHhZDNJlE40ObzjIAAAuP4+emKwMb4BHtzuyT3EZyj9PWAAAz0jGkIw99LwGOdtvHIPRKQ1KODKTKbHX7EKHa2RnYXgDPP7bYoUlSRtaktiYyJS46aab8Nhjj2HlypUJt3E6nbjllluwbdu2lPf74x//GDfffDPWrVsHk8kEk8kEs9mMnp4ezJs3Dz/60Y/SMXxCCCGEJEDH4pGvQCnDmjIKSIxlsS0rE5V0lC7zYBkm6meOYXD9dBNK1DKcI6lrwERlSkSustt8PFgG0HAM5BwDhM59FSwbFaTgGISzGcRCmzX5Kuw2u8KdNb47swh5Cg6v6o0wzl2B/NplmC+YYfliGzwnjsDZWAdnYx3+t20zfOXToJ04A6qScQmXabgTnMAfkWRBiC+rW5LV4IqTdiHNlKiPyaJwBfioxwNxMiVCGQ6xAaKEQkMQl8cUq+Sw+jwpByX+09yH15v68Mv5ZShWy9Hpioylw5l6W1Snn8dBixsLTOqo90CsDpcvvPTljS9NjrwMQQDDMOj1+KGVsVAk61ubBa+esOCVExZ83GHHAwvKczqW0WhMBCXOPPNM3HrrrfjNb36DM888s9/9ZrMZ119/PY4dO4bf//73A+7P7Xbjo48+QmtrK77xjW9g3bp1OHHiBLq6ulBUVIQ5c+ZgxYoVmXgphBBCCAEdiwkZSeSxqzcSnERyMcGC2EKXOjmHKyYXJHyeEnX0qUmJSgaGYaK6eig5Jur5i1QytIdOjMVMidVlevyloTdcUFMVul0sxsqwLHSlE2FaXoTSpWdD09OEA/v2wH3yOFxH98J+dC84tRaaCVXQjJ8GVXElGDZy0uuOE1zw8QLK1HLUh2o2iF09pIENs6d/kMPp5yEIAny8EBXUEO/r8YhdSDj0eIKdP2KXbwR4AScl9Rys3gAMCbJJdppd+LjDHg4kFqlkqLd5Ul6+8XQoE+PpIz24e04p9vS6wvd1DqKmxG8PduLzLidumG7CeUmWm/TEyUrp9fhx+7ZWzDaq8VG7HavLdLhtZnHKzw0Efy9bOu34coUhLQEN8Xd30OIe9r5ORWMiKPHII4/gJz/5Cb73ve/hV7/6FdauXRu+r6WlBddeey0sFguef/55zJs3L+m+mpub8a1vfQutra3h23Q6HX7zm9/g9NNPz9hrIIQQQkgQHYsJGVli23YmzpSIaQnKSu8b+HlK1HIUq2RQcwy+NtGI6vxgK8+ooETMWLSSDAFFKHBQpJIhX8GFu1Yo4lTYdAeCgQCDUoHT589Fl2kSOL8HlhNH4Dh+GO72RtgO74Tt8E6wSjU046ZCM34a1GUT4Ob7n8B7AgK8odtZRGpJSIMSvXFS+x1+Hj/ZeRIHLG5M1UfXyHH5BRy3BbMPKjQK9HhccIYKdEqf99EDneiQ3Nbt8cOg4BAQBDTavZgs2e8bTcGOG+LSmnwFBwXLRGVK7DW78FZLH26aUdRvqUy+goPFG8BeswtOP49t3U5oOAbOgIC+OEGXRD4P1dzY2uVIGpSI16r0/ZN29HgC+LDdHv5ZDEps7XRAyTGYb9Ik3Kc7wOO6T5sABFvOriiJtFVtc/rAMZGiq/E4/Tx+ta8D51QYsDSm5gcZmjERlGAYBvfffz+USiXuuOMOeL1eXHjhhTh8+DCuv/56cByHl19+GVOnTh1wXw8//DBYlsXLL7+MWbNmoaWlBT/72c/ws5/9DO+9914WXg0hhBByaqNjMSEjS2xL0ERiz/0TtQRNRMkx2LB0HISY7eWSfyu46P2oJZEPpeQ+g5wNBwHiZXY4/DyE0L7F/QdkSuinzoZ+6mwE3E44m47C2XQUrvYm2Ov3wV6/D4xcgV3V1dgXWIbJU6eF9+fhhXAxzkKVDJ1uP3y8EFV/ojfOVX+nn0dLKMPguD06U+JgX+Sqe4VGjr29Lhzt80DaKCO2xSiA8Dg2HO7G22023DOntN/z+kPb6OUsNDI2vJwDAH53sBPdngB4dOG8yjx0u/3hmjGRrBOEX2OtSY1jNi8s3kDC7h+xlCwDDy/0Ky4ai4+zO3mc99InHXYsL9biwX0dAKKXekh1uHx4/mik7kbsEp2btjYnfTwAvN5kwS6zC7vMrvB28cZ50unDyw1mXDfNhIIkQQ4yRoISov/7v/+DUqnEXXfdhbq6Orz66qsoLi7GH//4R5SW9v9jjGfXrl348Y9/jAULFgAApkyZgp///OdYu3YtOjs7UVw8uNQgQgghhAwOHYsJGVliAwqJ4guxwQtpUCK2LkWix8dmZQDRmQ4KNjrVXlpLQZpFoZdzAKKXE1Tnq3CoL3jib/NFsihix/3k0kr83652dKnmQD99Di4tV+OFT3dgofck/rt9L9qOHMArlhPgwaLdq4e6cjL6pkyHoDOCZQCjgkOn2w+rNxDVfaPPFz9TQhSv04eoTBM8bdsXWh4wzaDEUasHbl5AqTq4hGWCToFGuxfegABBEPB2qEjn512OfvsTx6KTs9BwLCzeAHy8EHXC/3mXM5zRcFqxFloZG16WwiAS2FCwDAzy4D5cAQGq0D4+73Jgsl6JIpUMO7qd2NnjxLXTTWAZBgYFh67QHCXDo/+kcHHeSg/v78SUpeMijxOEqEKroju2taJPEgiR/n4CksiCWLMinpa4BT37j/Pnu9vR5vLBzwu4a25Z3H2RoDEVlACCBbGUSiWefvppzJkzB0899RTy8hKnBMXq6urCuHHjom4bP348BEFAd3c3fREihBBCMoyOxYSMLKksvQD6L/OQPi6VOoyJgh3SNf9igGJ1qQ4ftNuxslSHbd3O0HaRHWjjPOHXJxmhl3N4od4cDkrIJJkSIg3HRgVCVo034coZ56HHG8D+KcfgajsBj6cV+w4dhtvSBHd7E5y7PgKny4emcjL81dUQlEXo9vij6k9440Qd4i3piPXDWcXhgpZtoayKWfkqHLV64A3w8PICWAaozlMGgxK8gGbJibM7Tr0IMWtDL+egDv2inH4eeQoubnDE7gsEl3mE7gwIAvyhrAgZywSXeTh86PMGoFLJsLXTgQf3daBcLccflo3Dz/e0AwCWFmsxSa8ML8uw+QJJAwDx5ixewVAAUR06utx+qDi23/KTvpjMjI2NfeAYBuumFETV1XAFBGhkDAK8gN8f7kJNvgpnlhtCz9N/mYo0U6LT5UOxWo620HioI8fAxkRQ4rTTTuv3RhYEAceOHcO5557bb/utW7dma2iEEEIIIYSMarHBhmkGZdztYoMX0uwIeQqZEom2iC10CQDrZxbhyikFUHPxsyhil3kEH8vivEpDKCjBh/cdmwmikbFRS0EUbLC4popjwcrk0I6fhjpMg3zKGSjraYeztQGBtgY4ezrhP7QTR07sRYsHePFoDaxCAVRlEyDPM8ETpxZFKrQyFrGrIiaG2qp6AgI8AQFKlgm/fi/Po11ygt4c58q+WHRTJ2OhCgV93AEeGp6NGyix+3jcub0p/HNAiGRKyBgGBnnw5N/qC6BEJcMX3cHsjLaYVp5eXsA3Pz4RDnz4hWBxyBqjOu5r98ZZF+HwR8YnFgAFooti3rAluAzj9TWTknb3AIKdM9ZNKYgKINl8AWhkLD7vduD9k3a8f9KOxYVaPH6oK1zM1CgJeEiHef2W5qjlH6lkCZ3qxkRQ4sorrxzwzTYY1113HTiuf8Xab33rW/1upwAHIYQQkn50LCZk5JAub5hvUuO26qK428WefEV140ihpoQqQReEqJoSoX9zDIMilQw+ydmgNJAQr+6A+HgGwRoQ4nbyqAKdwW0UcZ5TFRPoYFgWyqJyKIvKwc5bAa/DBlVXEwotzWg5WIcjdYdhDtWF4NRafFIzA3ZlCVRl4yHT6MMFIgciY5h+z10cap8q1rKQZnd4eQFWybKQZkf/Vp1ixoBRKQvPmycgRBXRlOp0+6Ou+AuIBAxkLANVKDNFXI7RaA8+Z+xvwccL/TIxNrVaEwYlPAO0UZ2sV6LWyOKDdntUVxKRmPEARC/PiEeaKWH1BVCilmOvOVLX44V6M74IZeXEbu9I0r2k1xuA08/DlPTZT21jIiixfv36tO3r1ltvTdu+CCGEEDJ4dCwmZGSRZkBcNtGIfGX8U4jYjAPpeXSyYplPLRuHPm8gqj6EVHSmRPQ28QIWsbdLiS1GpUEJ6bi1HBvaJvI88tBzxttniUqGDrcfvADINHqUVs/FaUXLcXJ2D2bCgva9hyB0NMLaeRInDu5Fd2j5hTy/EOMnTYEjrwyq4gpwqsTdIoLPG/26TcpgcNbl5+HjBSgVTDg7xBsQ0OuNnKD7k5yLFyi4cC0OD8+j1xt/43gn/GLAQJopIdaqOBEKSozXKaIeE6/YZ5szcdcOb5w6Dw7JEgwFy4SDWfHGKGY8AIA5yTIKQRCilrmImTRiVgQAtDqjgzvugAA/L0DGMlGFQgFEBctanT78bOdJPPdlQ8LnP9WNiaBEOtEXIUIIISS36FhMyMgSlfGQJOEh9q6o7htJHleqlqM0SXcCabAhXq0IUeySi2T7i8qUkGwrBkbi7SteZvYTS8fh9i9a0BhaIqHgGKhkDBiWgze/Asa5JkzSrcExsw2T3J2wHj4Cd9sJ+CzdsB/uQ1doeYM8zwRVSSWUxZVQlVRCpo2cwMpYRBVt1MvY8Im2WKhRyTFRmRLmOCf/sRgEW3yKgR5PQIhaGiEV74RfPImXsYBBEdxHnzcAqzcQzoaI/b13uKOXc7BAVABF5PTzePmYGZ2SzI3PupwwKrmoTImrpxbgrRZraIz9xy5mPAD9O21I/bvFignaSABFnNfwa2T616MAALufR74iekzBsUQ/1yFJJxXSHwUlCCGEEEIIIQlxUcsbUl8yHZUpkcLyjUSkj9QkCUpEZTckC0pwDOCPbCc9cRb3Lw1qJAuoyCVLF8THiW1KxcKLhSoZjiuUUBROhckQLOLrd1gxn+/B+/vq4O5sga+vB76+HtiO7AEAcFoDVCWVUBVXom+SDKaikvBzGBRcODtAWhtDGpQQ60LIWSbqqr1UnoIDxzJRyzfi1XAAIssxAKBIJUOX2x/OlJCzDMaFTugP9LoxXhM5uY997pMxWRF5Cg4Wb6Bft4z/23USR6zRLVLFdp9iTZM/rhgPk1IWXtpijhM4+X87TuLZZeOQr5ShN3R/VZ4S10w1Yb/FhZeO9QIAnj3Sg+umRRZY2LzBefWGC3si7tIWuy8AnYyNqkcBRLq7kNRQUIIQQgghhBCSkmSxhdjiktKTzOEEJTqTXOGOej7Jv8+pMGBjYx+unlrQb7vYZR7SAIYmTqbEQLXrtFFBiUjhyO7QlfvC0HIX6YmqTGvAvKkTsVc/CQDgd9rh6WyBu7MV7o5m+CzdcDQchKPhIF5q3AKVUol2jw5KUylKJ02E25EHFsEr9cHxslHLN8QT9FK1LG6hSyBSqFHJRgpdikEEo4KLKni5o8cFINj1pMnhRZcb4cKdMobBbKMaegWHXT1OlGsiWS9eXkBAUqVTWoCTZQCjMvg8zx7pgcPP45IJ+SjTyPsFJKSaQgESXWjew/Pt7h8I8PECXjhmxm0zi8M1IOYVqFGdr0J1vgr1Vg8+C7U9ldbMEDMlxCCNtIaGlMPPR9WWCN8ek1VRoOhfI4lEUFCCEEIIIYQQkpJknQQMcg43VRWiVN3/FGM4HQjEFox6efwsiTPL9ThscSNfGTnxK1XL8dqaSXEzO5IGJUInuEo2cUZGLI2kzoWSY6I6ggDAOG3wJN2e5ERVptFBNnEGtBNnAAACHhc8na1wd7ZivN6F7vY2uE82wn2yESeO7cSv9mxCWy/AmcqgKCyDe+pEMEVTAASDBZ1uP2RMMCCSKChREJovMdPAwwvhzABlgnU6Ko4N1wcRswNkoboc84q0+LjViu2SYpA+XogqVim2NJ2oU+D7M4vw52NmAMB/Qksw9vW6sD5BIVWRhxcgY6QFSENLRxJkJzTZfbB4A+FWomrJ70u65EMalBAzUBJljoh2m124L9TuVMoWChatLNXho3Y7tAneuySIghKEEEIIIYSQlAyU8HBuZfxifvJhNMpbWarDX4/34uIJ+XHvX19dFC6CKJVoqYmCi15uIYvKlGBC26Q+YG3s8g3JzywDzMxXAYhkNYhUSZaicEo1NOOmQjNuKr65fDz0HLDr9e3wdLehyN2DIs4OvrUeblsfHCcO4+ABOWzvKdDqUeKV0jI4dIWonTQOnLY84XPki5kScZZvqBN0QlFxTDjAFKm3EPxZH9pfhyQbwstHF5AUa3n8eHYJyjRyGBXRp6M9ngAe2d+ZcMwiZaggqXT8idTbPLj+0yZcOjE/9Boir22yToGjoawMaW0LccyJghJiJslfGnrDt80tUKPT7Ueb0xcOQOWFCoCm0GTllEZBCUIIIYQQQkhKhprxkEpL0EQunZiPhYUaTNYrEm4z0BILKXmSTAkxoJCsW4hIPOHUJKgpAQATtAro5P1T9/MVXNyUfhnTv1uGnAFUchnWzJiETzqLcd6kfHxjcgGOf9qAA8cb4elqQ6nfAoPLDN+xNrRYg9kH1kY1jrn9OCmooDCVQGEshsJYBIWxEDJdfvjkXMwK8UiWb3ypTI/tPU5M1iuwsbEvPBYVx0J8eeHuG6GftaHXKR2/zcfjmk+aol7P0iINykJLPKTZLaeXaLG109EveBOP9HcW2y41Hi8vhItRSoNG35pmwuY2G4DoTAkvL0AQhH41MSbpFPhSmR4ylsGGuu6o+1SSLJkPTgb3KQaseIGiEslQUIIQQgghJA0aGhpw1113wW63Q6FQ4K677sLChQtzPSxC0mqosYVUTvIT4VgGU0PFDdMhdvmGdGziSeRAw63OU+K2mcUAYoISHBN1kjxFrwy33BR9pdKAa6aZIGMZ/KS2BB+027Gl0xEejz/msrqYyfGDmmIsK3ZgrinYPvSbM0pxrxtQl03AwnI9VpXqcGRrA7zmTnjNnViQ58WWoyfQ0nISrmYbXM31kZ1yHLZOrICxehKaWT2cNjnMpqmQ6/IABJfK3DuvDN1uf0xQIpIpIXazEOdPGxN8yQ8VsYw1WR/5XZZLuq7U5KuxqFCLJw93YVmxFv/rcCQs0iktPirNfJhvUmNnqP5FLLEDhvT3o5GxuGh8Hl5r6usXlIiXJTFJr8BXx+dhh2SJikgpWdpSF8q+iAQl4g6JhFBQghBCCCEkDZRKJe6//35MnjwZx44dw80334zNmzfneliEpNVQL/gOp9BluimTZUqETnATjfava6vwyXEzzirThbMzki3fKNXI+i0FmahXhOdjcZE2ql3kGaU6bG61RW0vbsuxDJaX6MK3z8hTRb0mBcuAU6qhLpsAddkEfG3pOGharLAf74a3txOnyZ3gbD3494Hj8PV1w9Hdib17+9Di8KGzx4nffQCU6tUwK/Kw5cQkCJMrUFhYiGuLNHimLQBWroCSY8NdVb4InZiL8yetm6CTsQkzGKTzIy5tAYJdPRYWarCiRAuOYbCjuxF9fPw6EbKoTInI/r46Lg9XTC7AWy19sPl4bJMED+r6goGC2KUp4uOl9SUSBSXExxap+p9Gq1imX0aQWsaABaKKfZL+KChBCCGEEJIGFRUV4X9PnjwZNpst7jp3QkazoZ5aDaJEQ8ZJgxDBmhKR+8Sr+ImGO8Gggq7SAF5ywirNlFBKum8AQIlKHvV8ZWoZ1pTqo/YpXRKzvFiHC8bn4e/HLfio3Q4gcZZJ1PNyTFQGiHi/gmPAyuRQFVVgbW0J5CyDHePaIQgCLi5XYpHShQ+ONOLIjqPwWbrRYemBYGvHiUM2uE4cBBAsVtnUYgWn1uKj6eNxUqZDn6CBPK8AMn0+EMgLPV8kU8Kg4BK2UpUWBpUWRS0MLeUQ50MtY9AXv0Zn1JxIgx9FKhnGaRW4bWYxTti9UUEJkTpmYPFqUvgStEcVAyrxghLSTInI2FiwDGVKDISCEmPYvn37cPfdd4d/Pnr0KP75z3+iuro6h6MihBBCcmPbtm147rnnsH//fnR1dWHDhg1YvXp11DYvv/wynnvuOXR1daG6uhp33303amtrB/1c7733HqqrqykgQcacwa6N//HsElh9gYRFJ3NBmrkgYxhoJSfT803qQe8vdvmGtPtGiVoWFXSo0Cj6XU2XnsjKWQYVGkVUNkcqAR0fL/TLyNDI2Kj9SDMEGIZBnsGAKZWVsOVX4E3FZACAIAgIOG24oEKGQr8dPT3d6OrqxDvWevhtfehqbUSHw4deSTHLv36qwa4SIxwaAzq7eMj1+TCWFILRGOBjNeC0erAyedS4pOO4qaoQB/vcGKeLrhmiSlBsU5wnkTImKBF5vYk7iAz0PB6eD3cikRLnUC1joZWx4ToVwf1EB7jEfbMMQ5kSA6CgxBg2e/ZsvPHGGwCA1tZWfPOb36SABCGEkFOW0+lEVVUVLr74Yqxfv77f/W+99RYeeOAB3HvvvZgzZw5eeOEFXHfdddi0aRMKCgoAABdccEHcfW/cuBEcFzyxaW1txcMPP4ynn346cy+GkCxjEMySyItTnDGZpcXajIxnOGJrSuQrONw9pwQVGkU4eDKY1SbS5RsGORe1/xJJzQQg0vFCSnpOLF7Ely5PSCW4afXxULDSjI3gshTpCbtWxkZd/RfvU8YEK2RaAyZPKUe1ZGnFxsoGCHwA35yoxKa6JriPt8FvNcNnsyBfG4DL5URvnx3O1mD9iZPH5LD7AuGilaxaC5lGD06jw7aOSngrimEwGGAwGDBPZ8CqKXmIDQ0kK2ApnR9p+1ZpgEGdoLtJ7PIN6RzdWFWIDXXd8PL9i1wGHxvZtlglw3G7N2o/sZkSao4BR5kSA6KgxCli06ZNOOecc3I9DEIIISRnVq5ciZUrVya8//nnn8fll1+OSy65BABw77334sMPP8Rrr72Ga6+9FgDCwf5E7HY7br75Ztxzzz2YMGFC+gZPSI79+YwJsHoD0MfpJDHaSE/exQDCosLo4AmTcAFHf9Ir/7ONqqggQp48+gQ4blBCsr14sj3YwqBWbyAqGCKOSXrCrpGx4P2RugmqcFCi/3PJ40RlGJZDYWERSrwq5KkjrUa/UVuCxUUa1PXZcOQ/u+G396Fa5cPR9i74zb3w2/vgd9jgdTmAHuCItx1dh/rPg1yugMFggF5vgE6nQ1unDxY/B06lAavSglOqwak1YFUayBAplqkLzXHs8pVkbU0T/VwQWkLi44Vw+1Ip6e/6x7Ul+P7nLXCGMiqC9TbiLd+gTImBUFAih7KZRrpp0ybcc8896Ro6IYQQMqZ4vV4cOHAAN910U/g2lmWxbNky7N69O6V9BAIB3HbbbbjsssuwYsWKYY2HHWZRQPHxw93PWERzk1yi+clXypCvHBunDkpJTQGFjI37XpBeZY+dk9jtpV0nxukUYBgG9y8InrRzMSfG+Uqu3+OjalxwwfFIl2Ike69eMjEf/zxhwRmlOqgkY9bJg/uJuk3BwSs5OVaFXnu8jAJVgnnh0b9oqYJjIZNxKCssgKqkEiipxOlTC2BrsUIW6tCh4wCLzY6Ay45Lp+ug8TlhtVrD/9lsfejr60NPTw96enoAAC0ddlg8/riv261R4uEPS6DRaKDRaLCWlcOg1WDTpgNQqdRQq9VQqdRwNneBVajAKlVgFUqwMgXUHBP12qRzVKCSgWOAXk8AP9zW2u95NfLI769cq8ALKyfi0vePAwi+Z2KDORp5sDCo2CaVPnfiGxufLKNUNtNIzWbzkIIZhBBCyKmgt7cXgUAAhYWFUbebTCY0NjamtI+PP/4Yn332Gbq7u/HKK68AAF588UUYDIZBjUUmY2Ey6QbeMAVG48hLnR8paG6SG8vzk3/SEf63KU8d9+/tCoMaR50+XDTV1O/+2LkpKBBw5QwXqk0aFBYGi1iuSvA3XJKv6be/PHOk+0ZRgRYmvRKGNntkjEk+D75n1OJrM0swXq+MWiKQp5LDZNKh0Bk5qR9XrAfriCw3KDZqYTLp4FJ4+u232KSFSRfJRshXcrB4Aqguz8M2S/T2BfkaGI1auCX7nlVmwL9brACA8XolfrFsAq7efAQyjQ4rl89EkSZ6WYvI6/Wir68Pdrsdzf/dB6bbgoDbgYDHDd7lQMDjQsDlgFoeQCDgQV+fC319wSBGD4DjMfvrrOsCEFl+BAAP7SqCTCaDQqGAQqFAjw9oa7SBkcnxSdc4mOvM8DEyMDIZGJZDiV6FTjcPhmXRLBsHfaceMpkMHMeB4zg4TjQADAub0Q57txPONivAsmDAwNnLwd3eBK8q+L4Yy39Xw0FBiRzKRhopAGzevDktSzfoqk3m0NzEN9CVCUJzkwzNTWI0N6kbTPeM1atX48CBA8N+Tr+fh9XqGtY+WJaB0ahFb68jqksAobkZyKkwP35PpEijz+lFT4897nZ3ziwCgPD9yebm6+MMUdsmwrv7P5/bGTmZt/U50eP1weuOjHGgfeoAmM3RGQVuXwA9PXZ4nZEAgtXihMMZ2a/H7kYPBygEAfNNauzsiXzuOPpc6JHM0xOnjUO3xw+lxwe/N/q5XHY3ehUMtNpIEMMo8PCI9SQEAU5bZN9umws9rv6BEBHLqmEwqMGUToa+IH5L0CVFGvy/OaVwuVxwu11wuVyhf7tDP7vhcjnxFk6A93owXsGjwWwD7/NCrdbD6/XAZnPC6+1Dn9cPb2iO6/b1wXnSBo+kyGWBToG+UO2I90/qsCcmY6iryQIAeOugFu0uHzoldSaePZKHpjYrPAILz7olcDr9Q/67MhjUkI+B5VPxUFBihEpHGqkoHUs36KpNdtDcRMjl3IBXJkgEzU1iNDeJ0dxEGI1GcByH7u7uqNvNZnO/7IlsSNfJIM8LY/bEcrhobpIby/Mjl8QZi5XcoF/ncOZGxTH9HsvF/JvnhaiKFoN5rlK1DO0uP046feB5AXJJUJXnhajnkjNM+Ln+b24Zbv2sGc2OYCBCxkQ/r07GQidTgOeFfgUp2dC+9ZIuJoUKDv7Q4zkm+qRTwaT2mmySzhbifsRYAccwEARApQou08jPj7+Px5kGAMAdc0rx8z3tAIDvf2ly+H5BEHDC4kDDlhPgfV7cdloZmrY2otvhghDwQ+B5LCpWY6bHh709dlw60wQlA/j9fvj9fvB8AB/uaAUEHnMnGVFncaG3xwlAAAQBi2uKsLuuGy6VAQqFAna7b8z+XQ0HBSVGqHSkkQJAW1sbzGYzZs+ePazx0FWbzKK56c8XivADND/J0NwkRnOTWLrmZixdtVEoFKipqcGWLVuwZs0aAADP89i6dSuuvvrqHI+OEJJO0noNJlV2ToeumGzEZ10O1OT3bzka1X1jmBlsk3RKtLv84cKKsQEE6f5jCz4Gi5gGgxKxRSMT7QOIBHlkLIMrJhuhkUUXd5SxTNT+Um0Pe1NVIR471IWrpxbg/ZM2XDfdhP/bFQwspFoIdH11EeqtHsw3qXHHrGIYYo5ZDMNAp1aBU2nAqTQoKy1Dfqk/KqOkfHwevjW1AALQr5AlEAl8rJxfBkWnA42hZSu/nF+GWUY1/vtpEzrcfurAkQQFJUaZwaSRAkB5eTnefffdtDw3XbXJPJqbaLFzQfOTGM1NYjQ3iZ1qc+NwONDU1BT+uaWlBYcOHUJhYSGKiopwzTXX4M4770RNTQ1qa2vxwgsvwO1246KLLsrhqAkh6Sa9AB/vJDMTLp9kxOWTjHHvk55gD7brRqzvVJlg9wdw2cTgcwViPuKjWmnGFOE0SjqDxOu+IYqdM+k+vzGlIHxcEYs7yhlmSMGWL5XrcUapDnKWwcUT8hGQHK8SdPvs58xyPc4sD9ZzWFESP+s79rXGBmQcPj6lQIqA6LmoCbVUFeeLpw4cCVFQYoQaaWmkhBBCyGi3f/9+XHXVVeGf77vvPgDArbfeivXr12Pt2rUwm8147LHHwl2vnn322XBxaULI2NCToKNDrsRrCTrU0IRRKcN98yPtOkvUwdM9DSe2Go1sG5spUamNFJ9MdhIe20E0UcBhTZkO75+047QiLVShAEi8lqjJyKMyLOLfPlz5Cg6XT8rHOK0CQJyghD9+XYtYehkbFVQSLySLu4sNEJEICkqMUJRGSgghhKTXkiVLUFdXl3SbdevWYd26dVkaESEkFxaYNHj1hAVnlulzPRQA0Vf9ZWlO3ChRy/HoogoUhZapSAMIsSf24kn5QPplSiQIYNxUVYgzy/SYka8CxzB4+YwJ/bIzBoNJY0ZJrCsmR4LPfMx9Dn/yaMIjiypwzOrBRL0SW7oc/e7nwkEJikokQkGJHKI0UkIIIYQQQrKrOl+FP64YH7VcIZe4OFfX02mqIdIVQ/pcsdkQKQclYuIKiTIlFByLGmOkhoYujTWI0pkpEcvmi2RG5Mk5XD01ebbcNIMS00JzHC9YIs4zBSUSo6BEDlEaKSGEEEIIIdlnUo6c06B4J7JZKnURpUIjH3gjxMuUyMRokkt3poSUzRfMlZigleN3SyoHFSiKV6NEjJ+cQiWcBm3k/DWegiiNlBBCCCGEkFNbbI2GTHtkUXnck2c5y+D++WVQD1BFMna8mcxaSCTVQpdD4QhVQtXLuUFnrgjoH3kIZ0pQVCIhCkoQQgghhBBCSI4Mtw3oYE0zqBLeJ11ukUhsQCNbHUyy/Zz6ISw3iRd34CSZEhmMpYxqNC+EEEIIIYQQkiPxTrDL1MGlFLGdIEYC6Xn3lZONWQ+qZNqKYi0A4PQSbVr2J2ZK+KmmREKUKUEIIYQQQgghORLvlP60Ig1umVGIOQUDZy5km/Tc+rJJxtwNJENum1mECyfkYapeOfDGMZJnSlBQIhEKShBCCCGEEEJIjsQ7VWUYBmdXGLI+llSM9ZNrBccmXeKSTPKaEsMa1phGyzcIIYQQQgghJEdG2yk+nVsnFi9Tgg3fN9p+09lDQQlCCCGEEEIIyZnRdbJKJ9eJxQvYiDVDAjRvCVFQghBCCCGEEEJypEgVLGqpynZv0CGizpZJxMuUCP1aAzRvCVFNCUIIIYQQQgjJkXwFhyeXViJvCC0oc4GCEomVaYIBJoM8cu2fCl0OjIIShBBCCCGEEJJDFRpFroeQsnjFHEnQ6jIdfLyAhYWa8G0sLd8YEAUlCCGEEEIIIYSkRCsbHRkducAxDL5caYi5Lfh/XkD8/q+EghKEEEIIIYQQQlJzToUeTQ4vzizXZ/25qwxK1Fk9qM4fWsvOXBAzJfy8AFA8Jy4KShBCCCGEEEIISYmSY3FrdVFOnvvn88vQ4vBhqkGZk+cfClaaKUHiou4bhBBCCCGEEEJGPBXHjqqABEA1JVJBQQlCCCGEEEIIISQDqPvGwCgoQQghhBBCCCGEZAAbqm4Z4HM8kBGMghKEEEIIIYQQQkgGiDUlaPlGYhSUIIQQQgghhBBCMoCjmhIDoqAEIYQQQgghhBCSAdR9Y2AUlCCEEEIIIYQQQjKAMiUGRkEJQgghhBBCCCEkA8I1JShVIiEKShBCCCGEEEIIIRnA0fKNAVFQghBCCCGEEEIIyQCWlm8MiIIShBBCCCGEEEJIBlCmxMAoKEEIIYQQQgghhGQAZUoMjIIShBBCCCGEEEJIBoiZEhSUSIyCEoQQQgghhBBCSAawCGVK8DkeyAhGQQlCCCGEEEIIISQD2HBNCcqUSISCEoQQQgghaeJyubB69Wo88sgjuR4KIYSQEYBqSgyMghKEEEIIIWmyYcMG1NbW5noYhBBCRgiDPHjKrZVzOR7JyEVBCUIIIYSQNDhx4gQaGhqwcuXKXA+FEELICHFakRb3zS/DVyYX5HooIxYFJQghhBAy5m3btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/CBdQyaEEDIGcCyDOSYNlBydeiciy/UACCGEEEIyzel0oqqqChdffDHWr1/f7/633noLDzzwAO69917MmTMHL7zwAq677jps2rQJBQXBq1sXXHBB3H1v3LgRH3zwASZOnIhJkyZh165dGX0thBBCyFhCQQlCCCGEjHkrV65Muqzi+eefx+WXX45LLrkEAHDvvffiww8/xGuvvYZrr70WAPDGG28kfPyePXvw1ltvYfPmzXA4HPD7/TAYDLjhhhuGNF5WLNc+ROLjh7ufsYjmJjman8RobhKjuUmO5ic5CkqMEd/97nexdetWrFixAr/5zW/Ct7/77rt4+OGHAQC33XYb1q5dm6shEkIIISOS1+vFgQMHcNNNN4VvY1kWy5Ytw+7du1Pax+23347bb78dQDBzoqGhYcgBCZmMhcmkG9JjYxmN2rTsZyyiuUmO5icxmpvEaG6So/mJj4ISY8SVV16JCy+8EG+++Wb4Nr/fj4cffhgvv/wyOI7D5ZdfjjPPPBMKhSKHIyWEEEJGlt7eXgQCARQWFkbdbjKZ0NjYmPXx+P08rFbXsPbBsgyMRi16ex3geWpDJ0VzkxzNT2I0N4nR3CSXjvkxGNSQj9EOHhSUGCOWLFmCzz//POq2PXv2oKqqKvwlq7a2Fjt27MDSpUtzMURCCCFkVBEEAQwz+FTbiy++eNjPna4v9Twv0AlCAjQ3ydH8JEZzkxjNTXI0P/FRCdAsyEbF73g6OztRUlIS/rmkpASdnZ3D3i8hhBAylhiNRnAch+7u7qjbzWZzv+wJQgghhKQXZUpkQaYrfnPc2EzjIYQQQrJBoVCgpqYGW7ZswZo1awAAPM9j69atuPrqq3M8OkIIIWRso6BEFmS64ncixcXF6OjoCP/c0dGBFStWDHo/IqoEnjk0N/HFzgvNT380N4nR3CR2Ks6Nw+FAU1NT+OeWlhYcOnQIhYWFKCoqwjXXXIM777wTNTU1qK2txQsvvAC3242LLrooh6MmhBBCxj4KSuRYOip+J1JbW4vDhw+ju7sbHMdhz549+OUvfzmkfVEl8OyguYmQy7l+7zman8RobhKjuUnsVJqb/fv346qrrgr/fN999wEAbr31Vqxfvx5r166F2WzGY489hq6uLlRXV+PZZ58NZywSQgghJDMoKJFj6ar4fcMNN2Dv3r1wuVw444wz8PTTT2PGjBn44Q9/iCuuuAIA8L3vfQ9KpXJI46RK4JlFc9OfzxdAT48dAM1PMjQ3idHcJJauuRlNlcCXLFmCurq6pNusW7cO69aty9KICCGEEAJQUGLEGmzF76effjru7WeffTbOPvvstIyJKoFnHs1NtNi5oPlJjOYmMZqbxGhuCCGEEJJr1H0jx6jiNyGEEEIIIYSQUxUFJXJMWvFbJFb8njt3bu4GRgghhBBCCCGEZBgt38gCqvhNCCGEEEIIIYT0R0GJLKCK34QQQgghhBBCSH8UlMgCqvhNCCGEEEIIIYT0RzUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEIwiCkOtBkJGP5wUEAvyw9yOXc/D5AmkY0dhDcxPtyJHDmD59Rvhnmp/EaG4So7lJLB1zw3EsWJZJ04iIiI65mUdzkxzNT2I0N4nR3CQ33PkZy8dcCkoQQgghhBBCCCEkJ2j5BiGEEEIIIYQQQnKCghKEEEIIIYQQQgjJCQpKEEIIIYQQQgghJCcoKEEIIYQQQgghhJCcoKAEIYQQQgghhBBCcoKCEoQQQgghhBBCCMkJCkoQQgghhBBCCCEkJygoQQghhBBCCCGEkJygoAQhhBBCCCGEEEJygoIShBBCCCGEEEIIyQkKShBCCCGEEEIIISQnKChBCCGEEEIIIYSQnKCgBEnZyy+/jDVr1mD27Nm47LLLsHfv3qTb//e//8W5556L2bNn46tf/So+/vjjqPsFQcDvfvc7rFixArW1tfjWt76FxsbGqG0sFgtuv/12zJ8/H4sWLcJPfvITOJ3OtL+2dMj2/LS0tOCuu+7CmjVrUFtbizPPPBO///3v4fP5MvL6hiMX7x2RxWLBGWecgaqqKjgcjrS9pnTJ1dy8//77uOSSS1BbW4ulS5fiRz/6UVpfVzrkYm727NmDb37zm1iwYAEWL16M73znOzh27FjaX1s6pHt+3n77bVx77bVYsmQJqqqqcOTIkX77GE2fyaeCdL8HxpLBzM3Ro0exfv16rFmzBlVVVXjppZeyONLcGMz8vPLKK7jiiiuwaNEiLF68GN/+9rexb9++LI42uwYzN++++y4uueQSLFy4EHPnzsUFF1yA119/PXuDzbLBfuaInn76aVRVVeGhhx7K8AhzZzBzs3HjRlRVVUX9N3v27CyOdgQSCEnBf/7zH6Gmpkb4xz/+IRw9elS4++67hUWLFgk9PT1xt9BTcM0AAQAASURBVN+5c6dQXV0tPPPMM0J9fb3w29/+VqipqRHq6+vD2zz11FPCggULhHfeeUc4dOiQcOONNwpnnnmm4PF4wttce+21wvnnny/s3r1b2LZtm3DWWWcJd9xxR8Zf72DlYn4++ugj4cc//rHwv//9T2hqahLeffddYenSpcLDDz+cldecqly9d0Tr168Xrr32WmH69OmC3W7P2OscilzNzaZNm4RFixYJf/vb34SGhgbhyJEjwubNmzP+egcjF3Njs9mERYsWCXfddZfQ0NAgHD58WPjOd74jfOlLX8rKax6MTMzPa6+9Jjz++OPCK6+8IkyfPl2oq6vrt5/R8pl8KsjEe2CsGOzc7NmzR3jwwQeFf//738Ly5cuFF198Mcsjzq7Bzs8PfvAD4aWXXhIOHjwo1NfXCz/+8Y+FhQsXCh0dHVkeeeYNdm6++OILYfPmzUJ9fb3Q2Ngo/PnPfxaqq6uFTz/9NMsjz7zBzo1o//79wurVq4WvfvWrwoMPPpil0WbXYOfmn//8p7B48WKhs7Mz/F9XV1eWRz2yUFCCpORrX/ua8POf/zz8cyAQEFasWCE8++yzcbe/7bbbhO985ztRt1166aXCvffeKwiCIPA8Lyxfvlx47rnnwvdbrVZh1qxZwn//+19BEAShvr5emD59urBv377wNh999JEwY8aMEfeHm4v5ieeZZ54Rzj777OG8lLTL5dy8+uqrwte//nVhy5YtIzIokYu58fl8wumnny688sor6X45aZWLudm7d68wffr0qC/aO3fuFKZPnz7gl65sS/f8SDU3N8cNSoymz+RTQSbfA6PdYOdGavXq1WM+KDGc+REEQfD7/cK8efOEf/3rX5kaYs4Md24EQRAuvPBC4fHHH8/E8HJqKHPjdDqFL3/5y8LHH38srFu3bswGJQY7N2JQgkTQ8g0yIK/XiwMHDmD58uXh21iWxbJly7B79+64j9m9e3fU9gCwYsWK8PYtLS3o6uqK2kav12POnDnhbXbt2oX8/HzMmjUrvM2yZcvAMEzK6WLZkKv5icdmsyEvL2/IryXdcjk3TU1N+O1vf4tf/epXYNmR91GXq7k5ePAgOjo6wDAMzj//fKxYsQI33nhjwuUvuZCruZk0aRLy8/Px6quvwufzweVy4bXXXsPs2bNRUFCQ1tc4HJmYn1SMls/kU0Gu3gOjwVDm5lSSjvlxuVzw+/0j6vtGOgx3bgRBwNatW3H8+HEsWLAggyPNvqHOzYMPPoglS5bg9NNPz8Ioc2Ooc2O327Fq1SqsXLkSN998M+rr67Mw2pFr5H1TJyNOb28vAoEACgsLo243mUzo6uqK+5ju7m6YTKaE24v/T7bPePuQyWTIy8tDd3f30F9QmuVqfmI1NTXhpZdewte//vUhvY5MyNXc+P1+3HHHHbjtttswbty4tLyWdMvV3DQ3NwMAnnzySaxfvx5PPvkk5HI5rrrqqhFTGyBXc6PT6fDCCy9g48aNmDNnDubNm4fdu3fjySefTMvrSpdMzE8qRstn8qkgV++B0WAoc3MqScf8PProoygrK8Npp52WiSHmzFDnxmazYd68eZg1axZuuOEG/PSnP8XSpUszPdysGsrcfPDBB/jss89w5513ZmOIOTOUuZk8eTIeeOABbNiwAQ8//DB4nsc3vvENdHR0ZGPIIxIFJciQCYIAhmES3h/vvtjbYn+O3We8fQz0vCNFNuZH1NHRgeuuuw7nnXceLr744iGOOHsyPTcbNmyA0WjEpZdemobRZlem54bneQDATTfdhLPOOgu1tbV46KGHYLVa8eGHHw5z9JmV6blxu924++67cdppp+GVV17BX/7yF5SVleGWW26B3+9PwyvIrHTMz0BG82fyqSAb74HRit6nyaU6P8888wzeeustPP7441AoFFkYWe4NNDdarRavv/46/vGPf+D73/8+7r//fmzfvj2LI8ydRHNjNptxzz334Fe/+hXUanUORpZ7yd43c+fOxfnnn48ZM2Zg8eLFePzxx8OZmqcqWa4HQEY+o9EIjuP6XQkzm839ooKiwsLCftv39PSEty8qKgIQvHopTYs2m83h1OB4+/D7/bBarf2u9uRSruZH1NHRgauuugpz587Fz372s+G+nLTK1dx8/vnn2L59O2bOnAkgeGAAgEWLFuG73/0ubrzxxjS8uuHJ5d8VEFyqINJoNCgvL0dbW9swX1V65Gpu3nzzTXR0dODVV18Nf5H49a9/jUWLFmHLli0444wz0vMChykT85OK0fKZfCrI1XtgNBjK3JxKhjM/zz33HJ566ik8//zzmD59eiaHmRNDnRuWZTFhwgQAQHV1NY4dO4ann34aCxcuzOh4s2mwc3P06FF0dXXhG9/4Rvi2QCCAbdu24aWXXhpT3VvS8Zkjl8tRXV09opbSZhtlSpABKRQK1NTUYMuWLeHbeJ7H1q1bMXfu3LiPmTt3Lj799NOo27Zs2RLevrKyEkVFRVH7tNvt2LNnT3ibefPmwWKx4MCBA+FtPvvsMwiCgNra2vS8uDTI1fwAkYBETU0NHnjggRFXOyFXc3P//ffjjTfewOuvv47XX38d9913HwDgb3/7Gy677LL0vcBhyNXczJ49G3K5POrA53a70d7ejvLy8vS8uGHK1dy43W6wLBt1ZUP8WQxsjQSZmJ9UjJbP5FNBrt4Do8FQ5uZUMtT5efbZZ/Hkk0/i2WefHbOtC9P13hEEAV6vNwMjzJ3Bzs3s2bPx5ptvhr+Hvf7665g1axYuuugibNy4MYsjz7x0vG8CgQCOHj0avoBySspaSU0yqomtbjZu3CjU19cL99xzT1SrmzvuuEN45JFHwtvv2LFDqK6uFp577jmhvr5eeOyxx+K251u4cKHw7rvvCocPHxZuuummuC1BL7zwQmHPnj3C9u3bhbPPPlv44Q9/mL0XnqJczE97e7tw1llnCVdddZXQ3t4e1VZoJMnVe0fqs88+G5HdN3I1Nz//+c+FlStXCp9++qlQX18v3H777cLKlSsFh8ORvRc/gFzMTX19vTBr1izhF7/4hXDs2DHh8OHDwvr164WlS5cKFosluxMwgEzMT29vr3Dw4EHhww8/FKZPny5s2rRJOHjwoNDb2xveZrR8Jp8KMvEeGCsGOzcej0c4ePCgcPDgQWH58uXCI488Ihw8eFBobW3N1UvIqMHOz9NPPy3U1NQImzZtivquMdKOqekw2Ll56qmnwq3Z6+vrheeff16YOXOm8I9//CNXLyFjBjs3scZy943Bzs3jjz8eft/s379f+P73vy/U1tYKx44dy9VLyDlavkFSsnbtWpjNZjz22GPo6upCdXU1nn322XAa9MmTJ6Ou0s+fPx+PPvoofvvb3+LXv/41Jk6ciCeeeAJTpkwJb3P99dfD5XLhpz/9KaxWKxYsWIBnnnkmao3iI488gl/84he4+uqrwbIszjnnHNx9993Ze+EpysX8fPrpp2hsbERjY2O/tPK6urosvOrU5Oq9Mxrkam5+9KMfgeM4/OAHP4DP58O8efPw/PP/n737Do+ruhY+/NszI416GxVb7nKRi9wrxtiYjumQC4EQSiAJNYSPBAghCeRCEiCkQAqhhJCEkAsJhJDQe7Ex7r1KLpJs9S6Nyszs74+tadJIlqwyKut9Hj+WppyzZ2ukM2edtdd6lpiYmP578ccQjrmZOHEiTzzxBI8//jj/8z//g81mIycnh6effnrAVZnvi/l5//33+d73vuf7/lvf+hYAP/3pT321agbL3+ThoC/eA0NFd+empKSECy+80Pf9k08+yZNPPslFF13Ez372s/4efp/r7vy88MILtLS0+P4meN1yyy3ceuut/Tr2vtbduWlsbOTHP/4xRUVFREVFkZWVxSOPPMKqVavC9RL6THfnZjjp7tzU1NTwgx/8gNLSUhITE8nJyeH//u//yMrKCtdLCDul9QDKSRVCCCGEEEIIIcSwMTzDWUIIIYQQQgghhAg7CUoIIYQQQgghhBAiLCQoIYQQQgghhBBCiLCQoIQQQgghhBBCCCHCQoISQgghhBBCCCGECAsJSgghhBBCCCGEECIsJCghhBBCCCGEEEKIsLCFewBCCNGZxx9/nN/85jftbj/hhBP405/+1P8DEkIIIYYoOeYKIcJBghJCiAEvPj6ep59+ut1tQgghhOhdcswVQvQ3CUoIIQY8q9XKnDlzjvm4xsZGoqKi+n5AQgghxBAlx1whRH+TmhJCiEGpoKCA7Oxs/v3vf3PnnXeyYMECbrjhBgCqqqr44Q9/yNKlS5k5cyZf/vKX2bJlS9Dza2pquOOOO5gzZw7Lli3j97//PQ899BCnnHKK7zGPP/44ixcvbrfv7Oxs/vrXvwbd9tJLL3HOOeeQk5PDypUreeqpp4Luv/vuu7n44ov57LPPOO+885gzZw6XX345+/btC3qc2+3mD3/4A2eeeSY5OTksX76cu+++G4Dnn3+euXPnUl9fH/Sczz//nOzsbHbv3t3NWRRCCCGOTY65fnLMFaL3SaaEEGJQcLlcQd9rrQF4+OGHOf300/n1r3+NxWKhubmZa6+9lpqaGu68805SUlJ44YUXuOaaa3j77bdJS0sD4Hvf+x5ffPEF99xzD6mpqfzxj3/k8OHD2Gzd/7P49NNP88tf/pLrr7+eRYsWsWPHDn79618THR3NlVde6Xvc0aNHefjhh7nxxhux2+08/PDDfPvb3+Y///kPSikAfvjDH/Lqq69y3XXXsWjRIqqrq3nzzTcBOO+883jooYd46623uPjii33bfeWVV5gxYwZTp07t9tiFEEKItuSYK8dcIfqTBCWEEANeVVUVM2bMCLrtgQceAGD27Nn86Ec/8t3+0ksvsW/fPv7zn/8wfvx4AJYuXcpZZ53FH//4R+666y727dvHu+++yy9/+UtWrVoFwOLFi1m5ciVxcXHdGltdXR2//e1vufHGG7nlllsAOPHEE3E6nfz+97/n8ssvx2q1AlBdXc0LL7zgG5fWmptvvpm8vDwmTpxIbm4u//jHP/j+97/PVVdd5duHd4wJCQmcccYZvPzyy74PSPX19bz99tvccccd3Rq3EEIIEYocc+WYK0R/k6CEEGLAi4+P59lnnw26LTIyEoCTTz456PY1a9YwY8YMRo8eHXSlZ+HChWzfvh2Abdu2AQSljcbGxrJ06VK2bt3arbFt2rSJhoYGzjrrrKD9LVmyhN/97ncUFRUxatQoAEaNGuX7cAQwceJEAIqLi5k4cSJr164FCLoi09aXvvQlrrnmGvLz8xkzZgxvvPEGLpeLc889t1vjFkIIIUKRY66fHHOF6B8SlBBCDHhWq5WZM2cG3VZQUACAw+EIur2yspLNmze3u8oDMHbsWADKysqIjY1tV6Cr7ba6orKyEoBzzjkn5P1Hjx71fUBqW708IiICgKamJsBcnYqJien0ytHixYsZM2YML7/8Mrfddhsvv/wyp556KklJSd0euxBCCNGWHHP95JgrRP+QoIQQYlDzrgv1SkxMJCcnh/vuu6/dY71XelJTU6mvr29XOby8vDzo8Xa7nZaWlqDbqqur2+0P4A9/+EPID1gTJkzo8mtJSkqioaGBurq6Dj8kKaW45JJLePHFF7ngggvYsGFDuwJfQgghRF+QY64cc4XoCxKUEEIMKSeccAKfffYZmZmZHV6F8V4Bev/9931rR+vr61m9enXQB5OMjAzq6+spLi4mIyMDgM8++yxoW3PnziUqKoqSkpJ2aa3dtWTJEgD+9a9/BRXrauuiiy7iscce45577iEjI4MTTzyxR/sVQgghjoccc4UQvUGCEkKIIeXCCy/k73//O1/96lf52te+xpgxY6iqqmLr1q2kpaVxzTXXMHnyZE455RTuu+8+6urqSEtL45lnnmmXWnrSSScRFRXFPffcw7XXXktBQQF///vfgx6TkJDALbfcwoMPPkhhYSELFy7E4/Fw8OBB1q5dy29/+9sujz0rK4vLLruMn/3sZ5SXl7Nw4UJqamp46623+OUvf+l7XEZGBieddBIffvgh3/zmN31FvYQQQoj+JMdcIURvkKCEEGJIsdvt/PnPf+bXv/41jz/+OOXl5aSkpDBr1qygIls/+9nPuO+++/jJT35CTEwMV1xxBTNnzuStt97yPSYlJYXHHnuMhx9+mJtvvpkZM2bw6KOP+q70eH39618nPT2d5557jmeffRa73c748ePbPa4rfvSjH5GZmclLL73EU089RUpKSsirMqeddhoffvhhpwW6hBBCiL4kx1whRG9Q2tt4WAghhjlvP/L3338/3EM5pttuu43S0lL+9re/hXsoQgghRLfJMVcI4SWZEkIIMYjs2bOH7du388477/CLX/wi3MMRQgghhiw55grRPyQoIYQQg8iNN95IZWUlV1xxBWeddVa4hyOEEEIMWXLMFaJ/yPINIYQQQgghhBBChIUl3AMQQgghhBBCCCHE8CRBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIUEIIIYQQQgghhBBhIUEJIYQQQgghhBBChIUEJYQQQgghhBBCCBEWEpQQQgghhBBCCCFEWEhQQgghhBBCCCGEEGEhQQkhhBBCCCGEEEKEhQQlhBBCCCGEEEIIERYSlBBCCCGEEEIIIURYSFBCCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFrZwD0AMDh6Pxu329Hg7NpsFl6vn2xmKZG6C5ecfZsyYsb7vZX46JnPTMZmbjvXG3FitFiwW1UsjEl5yzO17Mjedk/npmMxNx2RuOtfT+RnKx1wJSogucbs9VFU19GgbFovC4YijpsaJx6N7aWRDg8xNe1/96lX861+vAzI/nZG56ZjMTcd6a26SkmKwWKy9ODIBcsztazI3nZP56ZjMTcdkbjrXG/MzlI+5snxDCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIoUshhBBCCCHEoKG1xuNxo/u5nqLFomhubsblckkxxzZkbjrXlflRCiwWK0oNzQ4bnZGghBBCCCGEEGLA01pTV1dNfX0NEJ4T37IyCx6PtL0MReamc12ZH4vFisMxEqt1aHbZ6IgEJYQQQgghhBADnjcgkZCQQmSkHej/K8o2m8LlkkyAUGRuOnfs+dFUVZVRU1NBcnJav41rIJCghBBCCCGEEGJA01r7AhIxMXFhG4fNZgEkGyAUmZvOdWV+4uOTqKwsQWsPSg2f8o/D55UKIYQQQgghBiWPxw3o1gwJIYYmq9XkDAy3ZTCSKSGEOG5ag7MO6mug2Qlul7ndFgGRURCTANFxpnCPEEIIIcTx8he1lA8VYigz7+/+LuIabhKUEEJ0S3MjFB+C0kJFZTG4Wzr/cGC1aZLSwTFSkzHOBCmEEEIIIcTA8cwzf2D16k955pm/hHsoYhiSoIQQokvqqiBvm6L4EGiPCURYbZqkNE1sItijwRphwrquFkWzE+qrobYSyo8oyo8o9m6A5AzN2Kma9DEwjJbKCSGEEGIYevDB+3A6G3jggYd9t73++ms88shPuP32Ozn//IuOa7uffvoxf/rT0+Tl5RITE8OSJUu59977j3ucl1/+Vb70pcuO+/mD1Ze+dB6XX34ll1wy/F77QCJBCSFEp5obYe8GxZFcAIUtQjNysiZjnCYpDSwhOxb5c848Hqgp05QWKI4ehMpiRWWxIiZBM3muJn2sLO8QQgghxPDw0kt/53e/+zX33ns/p556xnFt48MP3+Ohhx7khhtuYe7c+bhcLvLzD/VoXDExMUBMj7YxVLlcLqxWK0o+sPYZCUoIITpUchh2rFG0NCkiozQTcjyMngLWbvzlsFggKR2S0jWT5kJZoebgDhOY2PKRInmEZvoSTWxC370OIYQQQohwe/bZp/jrX//ET37yCCecsOy4tuFyufj1rx/l5pu/xbnnXui7PStrYqfPq6mp4be//RWffvoRLpeLGTNmcttt32HcuPFA++UbLpeLxx//BW+++V9sNhsXX3wpBw7kEh0dw/e/fx8ATU1NPPnk73j33bdoaKhn0qQp3Hzzt8nJmQmYjJDf/vZXfP/79/PYY7+goqKcRYsWc/fdPyQuzqzn/eCDd/njH5+ksLCA6OhosrOn8fOfP4bFYvFlmUyYMJGXX34Rt9vNqlXncfPN38ZqtXYwhsncfPPtvjEAbN68kSef/B179uwiMtJOTs5MHnjgYe6441aKio7yy18+wi9/+QgAn3663jfuu+76AU888TgFBfm8+upb/OAHdzF16nRuueXbvm1fd91XWbp0Gddd900Ali1bwJ13fp8PP3yfLVs2MmrUaO69934sFiuPPPIgubn7mTlzNj/84f+SnJxyXO+BoUiCEkNcXl4e99xzD3V1dURGRnLPPfewYMGCcA9LDHDaA/u3KA5sMxHh0VM0k+dpIiJ7tl2lIG00pI7SVBzV7FmvqCxSrHkNshdoRk+RrAkhhBBCDC1aax5//Bf85z+v8uijjzNnzryg+//85z/yl7882+k2/vKXlxgxYgR79+6mtLQEUFx99eVUVVUydeo0br31/zF69JgOn//DH95NdHQ0jz76G2Jionnppf/j9ttv5vnn/0F0dHS7xz///HO8997b/OAHP2bUqDG88MJfWLduLcuXr/Q95le/eoRDhw7yv//7MxyOVN57721uv/1m/va3f5CWlg5AQ0MD//zni/zv//6UxsZGfvCDu/nrX//EDTfcQllZGffd931uuulbLF++kvr6ejZuXBc0jrVrP8duj+I3v3mK/PzD/PSnPyY1NY0rrrgq5BjeeefNoDEcPnyI22+/mQsv/BJ33HE3AOvWfY7Wmp/85BGuueYKLrroS6xadV7QfhsaGvj73//K979/P7GxscTGxnb68wn0pz89za233s63v30Hv/rVz/nxj39ISkoKt9xyG1FRsfzoR9/jySd/x1133dvlbQ51EpQY4ux2Oz/5yU/IysoiNzeXm266ibfeeivcwxIDmMcDOz5THD1glmrMPEmTNrp396EUODJhyTmagzs0uVsUu9ZaqCzWzFiqu5WJIYQQQggxkK1e/SktLS385jdPtgtIAFx44SWccsrpnW4jNTUVgCNHCgHvie//Iz09nb/+9U9861s3dBhg2LJlM3v27Obf/36LiIgIAG6//bt8/PEHrF79Kaee2n7f//zni1x11ddYtmwFAN/97j2sWfOZ7/6ioiJef/01XnnldVJSHAB87WvX8+mnH/P222/wla9cDUBLSwvf/e49jBgxAoCzzz6XDRtM4KG8vAy3282KFacwYsRIACZNmhw0Drvdzl133UtkZCQTJmRRUJDP//3f81xxxVUhx3DNNdezevWnvjH89a9/YubM2dx22x2+bU6cOAmAqKgoLBYLMTExOBypQfttaWnhO9/53jEzUEI599wLWLnyNMDU6rj99pv5xjdual1q4+Hccy/k1Vf/2e3tDmXy0X+IGzVqlO/rrKwsamtr0VrLmqgBrKXZFIhsrDff2yIgNhGiYvs+i0B7YPuniqKDiqhYzfzT+3ZZhcUKWbMgZaRm68dQdFDhrIe5K4dZHyQhhBBCdNv2zxQlh/t3nxnjYMbS7j1n0qQpVFSU8/TTT/Dznz9GVFRU0P0JCYkkJCR2aVsej/mMdPXV17FihclauPfeH3P++WeyevUnIetU7N+/l/r6OlatOiXo9qamJo4cKWj3+Lq6Oioqypk2bYbvtoiIiKCAQV7eftxuN5dddmHQc5ubm4MeFxsb6wtIADgcDiorKwETgJg7dz5XXfVllixZyqJFS1i58lRiY/2t2iZPnkJkpD9VNydnJr/7XRl1dXVdGsP+/ftYvvzkdq/xWOx2+3EFJAAmTvS/fm+wZMKErIDbUnxzIAwJSgxw69at45lnnmH79u2UlpbyxBNPsHLlyqDHPP/88zzzzDOUlpYybdo07r33XmbNmtVuW++99x7Tpk2TgMQA5GqB3RtbyN0BVSWhW1LYYzQZY2FMtul20Rf2bWoNSMRpFp6h+619Z1KayZrY9D5Ulyq+eNNkbAghhBD9ra6ulqioaGw2+ZgsekdGRgb33/8Tbr31m3z3u7fxyCO/DgpMdGf5hsNhTnLHjh3vuy86OpqMjBEUFxeFfK7T2UBaWjq//vXv292XkNDx1ae25wxa+y8aOZ0N2Gw2/vjH532Ps1oVbrcOWurQ9vdIKYXWntbHW/n1r3/Ptm1b+Pzz1bzwwl945pk/8Mwzf/GdzHd03qJU6DF4dWe5RShtA0cAFoslaA7A1N5oK/A1e4cVfJt/DoQhf20HuIaGBrKzs7n44ou59dZb293/+uuv89Of/pT777+f2bNn89xzz3H99dfz5ptvkpLiL55SWFjII488wpNPPtmfwx/QmhqgoRaam8BqhchoiEsyhRn7i/bAod1wYBu0NDUDCnuMJtEB0XGmZWZzo2nHWVMOh3crDu+BzCyYMl8T2f7v5XE7mgcHdyhskZoFp/VfQMIrMgoWnKHZ8jGUFShqK8xr783XKIQQQnRm69bNvPTS/5GWls4NN9zsu0LbWG8+J/TnZwRxbDknajixf/dpsylCnIceU2bmKB5//A/ceus3ufPOb/Pww7/ynfh2Z/nG1KnTiIiIoKDgMLNnzwGgqamR0tJiMjJGhHzulClTKSsrJSIiosPHBIqLiyMlxcHOnTvIyTEXOltaWsjN3e+rFTF58hRcLhfV1VW+x9hsFlyu7p1sWywWZs+ey+zZc/na177Beeedztq1azj77HMB2Lt3D83Nzb7fxR07tuNwpBIbGxdyDG1NmjSZjRvXc80114e832aLwO3u2piTkpKpqCj3fd/Q0BAy00R0nwQlBrgVK1awYsWKDu9/9tlnueyyy7jkkksAuP/++/nwww955ZVXuO666wCTgnXTTTfxgx/8gHHjxh33WCyWnmVYHN6t2FjgxGJTxCaamgLJaebEu780NkD+big6BPXV7V+P1aZJGQFjsk1Bxr5MKmmoha2fQFWJAgUTptsYOdFFfEro/TY1QGGu5sB2OJKrKD8Ks5dDyrGPLV0ay441gNLMORniksKTTWOJhHkrYeP7GrcLNr2vWHQWWGxmPD19Dw5F3jmRuWlP5qZjMjdCtKe15u233wQ0paXFrF//BUuXLqO2Eta8ZiF1lGbeqT1bXlhTDps+UMxarklO751xi8HDG5j41rduCApMdGf5RmxsHOeffxHPPPMH0tMzSE/P4LnnniE2No6lS08K+ZwFCxYxffoMvve9O7jxxlsZNWoMpaWlfPrpR5x77gW+DhyBLrnkUv785z8yatRoRo0azQsv/IXm5iZfRsLYseM59dTT+fGPf8Att9zOpEmTqampYs2a1cyZM4+5c+cf87Xs2LGdDRu+YNGiJSQlJbN580acTmdQFkhTUxOPPPITvvKVq8nPP8Rf/vIsV1zx1Q7HUFlZyRdfrPGN4corr+Hqq7/Mr3/9KOeddwFKWVi3bi3nn38RUVFRjBw5ks2bN7Jy5alERESSlJTU4Xjnzp3P73//OGvXriE9PYNnn30KkONob5CgxCDW3NzMjh07uPHGG323WSwWli5dyubNmwFwu93cdtttXHrppSxbdnyth8BEPh2Onl0631nRSEmBu/U7Re4WiEtUZM+LYPIsG1Zb3/1Su1o0W1e3sGdTC57WISQkK5LTLUTFmIh3fY2HsiMeSgugtAASUxVLTreTmmnt9fFUlLhZ+3ojTU5IybCw9Gw7iQ4LYO/4SQ7IHANzTtCs/6CZvB0u1r0Fy861M3bK8f8qa63Z/H4jHreHmSdEkD2zhy02esGpl2gifqyoLlPs22Bl6dlmXpKTe5aKN5TJ3HRM5qZjMjdC+BUVHaW6uorISDvNzU1s3ryJpUuXUXHU3F9WqICuByWanCYAMXGWv2D03g2KpgbFujcVZ1wl6dvDUWDGxF133c5DD/0y5FKBztxyy+1YrVbuv//7tLS0kJMzm1/96nchi1yCOT/4+c8f44knfssDD9xHTU01Dkcqc+fO73D5xle+cjXl5WXcf/+9RESYlqCzZs0Jqu9w770/5tlnn+Kxxx6lrKyU5OQUcnJmcdppZ3bpdcTGxrJ58yZefPFvNDQ4yczM5M47v8+MGTm+xyxevIS0tHRuuul63G4XZ599Hl/+8pVdHsPYseN49NHH+cMffsurr/6TqKhoZs6cxQUXXAzAddfdwCOP/ITLLruQ5uZmPv10fYfjPffcC9i7dw8/+tE9REVF8bWvfYPCQsmU6A1Kt10YIwas7OzsoJoSxcXFLF++nJdeeimohsTDDz/Mxo0b+fvf/84HH3zALbfcwqRJk3z3/+Uvf+l0/VgoLS1uamqcPRq/UooISzSlxU4qizUl+VBRZAIRcUmamcsgMfUYGzkONRWw+QNoqFVYIzRjs00mREx8+8d6PFCaDwd2tGYwoJk4CybN7b2siapSWP82uFoUY6dqpi4EW4QiOTmWysp6XwGjY8nfCztWm3HNPQXSO+4C1anC/bDtU0Vckmbpeab45EBw3rlnc8fVb9BYr5i2COad1L35GS4slu6/d4YLmZuO9dbcJCREExExQP5oDBBOp5NVq1Zxzjnn8J3vfOe4ttHS4qaqqqFH47BYFA5HHOXldfL+b6Ojufn88zX897+vcvLJp7B9+zbKykq57bbvUF+ayp51Jq2zO4GEfRsVB7YryioOU2H7J1OmTCEzdhVHclW3t9WfBup7x+VyUVZWSGrqqLDW+zieJQpDgcvl4tJLL+B//udyLr/8ypCP6e25efDB+3A6G3jggYd7bZvh1JX56ex9npQUM2SPuZIpMQQFdtdYuXIlO3bs6JXt9vTAZLFAfJKFZrcmPkUzdhrUVmj2rFdUFCk+/69pB5l5fIVuQ6oogs0fKFwtitTRmulLNFEx5r6OCimmjYHU0XBkvxlb7laFs14z/QTd47WkjfWw8T0zngkzNZPmaFD+sXg8usvzPKo1zrRjtYXNH2pOOLf7BTDdbnPVBmD6kuCxhJuywJyTNWvfgN3rYcJUDx5L1+dnuOnOe2e4kbnpmMxN73viiSdCFpsWA19+/iEAxowxS10//PB9du3awbjUjpfRlhaYiwOpo9rfZ7FptIbVm14keWwJxcVHOWXxNMBU4fd4pEaFGLiOHClk48Z1zJo1l6amJv7v/56nurrK1+pSiN4kfwoHseTkZKxWK2VlZUG3V1RU+IrhDHTxKTD/dM3UReZMePtnFg7t6p1tVxbDhndNACBrlmbuSn9A4liUglGTYdHZGnuM5kiuYsdqRU/yitxu2PyhorlRMXqKZvJc3ePsi1GTYNIcDx63Yusnyrc0pasK90GTU5E+VpM0ANe2Jjhg8lyN9ihWv97Y7dcnhBD96eDBg+Tl5XVaC0qEX20lHNjVvlJhfr7pLTl69BimTp0OwO7dO3F3cOzRGja9b2Hje6E/TlssUF5VQE1dqe/zw/7c7b77G+t68CKE6GMWi4X//OfffP3rV3HLLV/n6NEjPP74H4LaewrRWyQoMYhFRkYyY8YMVq9e7bvN4/GwZs0a5syZE76BdZNSMHYqzFmpsVg1e9ZZKD7Us20660wAQHsU2Qs9TJpzfAGAuCRY3BqYOJqnONyDgEneVkVNuSIpTTN1Ye9dmZyQA0npmtoKk9XRVR636bYBkDVz4F4pHTcdUkZoqso0B3on6UcIIdpZt24dN9xwA8uWLSM7O5sPPvig3WOef/55TjnlFGbOnMmll17K1q1bg+5/6KGH+H//7//115DFcfrsVcXq15uorfTfVldXS2VlBWlp6cTExJCZOYqEhER2bj3M1tX1vscFXpxwNbffdkuzyZ5ocoKrWXGocAsAixaaAoSH8vf5n38cHRyE6C8jRozkiSf+yFtvfcRbb33Eb3/7FNOn5xz7ib3o+9+/b8gs3RCdk6DEAFdfX8+uXbvYtcucDRcUFLBr1y5KS0sBuPbaa/n73//OK6+8Qm5uLvfddx+NjY1cdNFF4Rz2cUkbDbOWm6P99s8UdVXHtx2P2yzZaGkyNRvGTevZuKJiYW5rwGTvBkVlSfe3UV8DB3eYVM6ZJ+lerdugLDBzmcZi0xzaabp0dMXRA9BYr0gdpUlw9N54eptSMGOpueKUt9V0UBFCiN7mbcH9wx/+MOT93hbcN998M6+88grZ2dlcf/31VFRUAPDuu+8yfvx4JkyY0J/DFj3Q3Oj/+vBhkyUxZsxYwNTBGj1iOuVHoLDYf0UiMBDRFFBqyxus2PqRYtP7FrZ+rGhu0hws3AJKMTfnJFJT0yirKMHZWAuAR4ISQggBSE2JAW/79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899hilpaVMmzaNp59+mpSUlHANuUfSx8DEOR5yN1vY+jEsObf7dRwO7YLaSkVyhmbKgt7JAEhwwLRFmh1rLOxeC0vO0V1uZao17F5rsjYmzfEQ3bMmJiFFx8HYbJP5cGA7TF107NdduM9kSUzIGbhZEl6xCTB1fgQ717Wwb6MJwgghRG/qaQvuLVu28Prrr/PWW29RX1+Py+UiISGBb3zjG8c1np62a5W2r8dmsSjfZ4yCgsOAYty4cVgsZjlkc0kO8Dn5RTuZNG4RAPs3KSbMNMWyWwKCGmiFxWouQoBptV1efQBnYw0ZqVno5kTGjBnLzk1lVFQXMipqKh6PGpA1JQbqe2egjUeIvmT+Pg2f97wEJQa4xYsXs2fPnk4fc+WVV3LllaGr4A5GWTOh4qimslhRsFczdmrXn9tYD7lbFcpiilr25sE+cxIU7tdUlSoK9mnGZHfteZXFUH5UEZPQ86yNzoyfocnfAwV7YXwOndbPcNZBVakiKnZg1pIIJWdJBLnbmzmapxg/QxOfHO4RCSGGi6604L7jjju44447AHj55ZfJy8s77oBEb7Th9pK2r6GY5Rjx8VE4HCZ1saKiGLvdRkrMFJKTY6mv0WQ4soiIiOJoyT5crmZstkjy9ypczVaWn2/no3848bYITYiPNS3GW8y2PW7F/gPbABg/ag4N1TamTZvEO69toqKqkFEZU4mNjsLhGLgfxQfae6e5uZmyMgs2m8JmC280J9z7H8hkbjp37PlRWCwWkpNjgtqvDnUD9y+hGLaUgqkLNWv+C/s3K0aM10R2sX3z3g0Kj8t0tuhuJ4oujWuR5vP/mislIyZoIrrwt+LQLhPlnDird5dttBUZZVqdHtxhal9Mmd9xNoG3ZseI8b3X6rSvRUQqJuTA7nXmNUq2hBCiv1RWVuJ2u9sVkXY4HBw61MMiSCG4XJ4et+GWlridMQe+6upGbDGaumo3X3y2H3dzBHvWJuFqrMcxEiwWK6MypnKwYDP5RTuZMHoOADUVLjZ+4sJZ5z+AlpXWExll6kgANDnd7N67BaUsjBmZQ3GBi6xRKbhcmvKqAgAO5zZiTxg4rbi9Bup7x+Vy4fF4cLk0EL5WYcO1JWhXyNx0rmstQTUej4fKygZstuDCNUO5DbcEJcSAFJ8CY6ZA/h6zHCG7C8swnHVQdAgio3SfFW5McEDmRDiSqziad+wsjoZaKM2HyGhNxrg+GVKQsVM1B3coig7B5HkdBxyKDpo7RkwYOB82umL0FMjdoik6AJPm0CdLYYQQoqsCW3AHuvjii3u87d46GZS2r6GYn5mrxczNG38/QtkRNyPTJ6KUoqxQExOvAUXWmHkcLNhM7uF1vqBEkxOaGoO3aLbl33Zh8S5q6xoYlTGdhMQYmhoUaWkj0RoqqgsBOLBd0eTU5Jw4MH8+A+29M5DGIkRfG2i/f31N8mvEgJU1S6MsmsL94O5CMajDuxVoxegpYO3DcNvYqeYPRP7eY7cIzd+jAMWYKX2bJeEVFQuJaZrGOkVNeejH1NdATblZTjLYlkDYImDsNI3Wytc5RAgh+tpQaMEt2vO2mS4sMEUu01LM1QOlzHJQgBGpk4mNTqKodD8jppQSFadxtSjf/V5uV3DhzP2H16PdMHn8AuzR5jYLkSTGpdPgrKaxyfQDPZIrxzIhhJCghBiw7NGQMdakQhYd7PyxrhYo3A/KohmT3bdRxQQHJDg09VWKqk46cXg8/jGNntKnQwqSMc68/uJDoT/olBd6Hzd4lm4EGpMNFqvmSF7XglVCCNFTQ6UFt6A1m8HwHkNKK01QIjXZ23kDnPXmADn/dDhp5QISHHCw5GOiW8ssVJcGb9ft9gclauvLOVK8B7s9lnFjs7HZze2uZkhJHA3gW8IhhBBCghJigBs9xZxgF+zt/Oz56AETvBgxHt8Vib40Zoo/W6IjVaVmTI6R/TMmrwzzmYriQ4TM5KguN2NOTh+cKWGRUaZLi7tFUZIf7tEIIYaK4dSCezgLbMPpzZQoqzgESvmCEi4XNLR20YiOhQsvP4GMMZFs2LCeZncVAE1OhVKazInat93m1jIgO/d/hNYepk44kehYq6/+VN42RXy0CUpUVBX26esU4njdeOPX+Oij933f79u3l+uu+yorV57ANddcQU1NNeeffyalpZ1cmROim6SmhBjQkjMgNlFTXaaoKdckOEI/rqQ1K2D05P450R4xAfas15QcAvdSsIZYmlFeaMbkyOzfk//oOEhI1dSUKWor2s9ZdWv2cUdzORiMzNIUHVQczVOMPI66GFqbeSg+qGiohZbm1nlL0Saw1UnnEiHE0DTcWnAPV2538NeVlRXUO6tITswkMsJU1W6sNzWhrBGa2ARQlhhOOGEpH330AV9s+S8zRpmOZ1GxZlkhtC7faIKaulIOFK4jIiKK7KylRMfiC0ocyVWkJo0BoKzKRNUt1sF5gUB0zbJlCzq9/9prv851132zX8aye/cunn769+zevROn00lqaho5ObO4++4fEBFh3siffPIh9fX1LF++0ve83//+cdLTM3jwwUeIjo4iISGRs88+l2ee+QN33/2Dfhm7GPokKCEGNKUgc6Jm30ZFaUHoE2m3y7TdtEVqEtP6Z1xWGySPgNJ8RXWpJmVE+8eUHTH/p47qnzEFShttghKVJcFz1tIMDTWK6LiudzQZiByZEBGlKT9i0mW781oaamDbp4rqsuAsl6oSOJqn2LvRBCamzNf9muEihAiv4diCezgKXPbnccGBA3kAZKRm+W73dtBIGalRrTnFJ510Mps3b+JA7lbi2Mq4UbOIivV3znC7oblJ8/nmf2KxeZg+/mQiI6KJivVvAyA5MROlLJRX5qN1/9SbEuHz6qtv+r5+/fXXeOWVf/DUU8/5bouO9l8F0Vrjdrux2Xr/9KyysoLbb7+Z5ctP5pe//B0xMTEUFhbwwQfv4fG4AROU+Mc/XuTss88LKuBbWJjP//zPlxkxwv9h95xzzuOaa77CzTd/m/j4+F4frxh+ZPmGGPAcI83/FUWhl0pUFoPHo1rbd/XfuFIytG//bTU5obbCnPzHhOFvtbeAZV1l8Jx5i18O5iwJMD/nkeNBa0XRga4/r+QwrPmPCUjEJWumLvKw5BwPyy7yMP80D+Oma6w2E5xY85oJhAkhhBg6PG0yJQ4eNAeRDMeEdo/1HucB7HY7F1xwMbYIxepNL1JSfgB7NFht5jGuFs2Hn7xGSfkBRo4cwfRJywGIitVERPq3Y7XaSEoYQWNTHQ2N1RKUGOIcjlTfv5iYGCwWi+/7Q4cOcsYZy/n889Vce+0VnHzyEvbt28ODD97HvffeGbSde++9kwcfvM/3fVNTE48//ksuuOAsTj/9JG688Wts376tw3Fs27aVpqZG7rzz+0yePIVRo0azaNES7rrr+9jt5spOZWUlGzeu48QTT/I9b9myBRQWFvCrX/2cZcsW8MwzfwBg7NjxpKen8+mnH/XibInhTDIlxIAXn2KyIKpLzRWOtp01yo6EZ5lEcmvAuKJIMXF28L7LA7IkwlFM0heUqAq+vaZ16UZi6uBPFx0xQXN4t6KkQDF22rFfT3UZbP1Y4dGms0vWLB0UxIqJN++hibNh7wZTx2TTB5BzoiYzq+PtCiGEGDzcbWpKHDiQB0qR7jB/6DMnakZN1jjrTP2iQJMnT+H0M87mhWff4N3VT+GJWcn06TmUlDex+98fsHvXbuyRMVxx5ZXkbzHRhqjY4K4cAKnJY6isPkJZZT6O1MS+fLlD3j//+SK7du3s133m5ORw4YVf6rXt/eEPv+GWW24nI2MEiYlJXXrOr371CIcOHeR///dnOBypvPPOm9x++8387W//IC0tvd3jU1JSaG5u5tNPP2b58pNDtjLeunUzMTExjBkz1nfbq6++yde/fjUXXfQlVq06LyizIzt7Glu2bOLss8/t/osWog0JSogBTylIGQElhxVVpdqXOeHlCwBk9u+44pMDgiXu4LoSZWGqJ+EVFWvWwtZVmfoJ3mOPt8hlwhDoYJfgMK+xqtRUU+8sS6axATZ9oPB4FNkLPYyb1vFjbREwfYkmJUOz7VPF9k8VIIEJIYQYCgKDEpUVlZSVVpIUn4k90pxsRdghOd38C2XlKcvJ3WBn/fbX2LDlHTZsfYfKIkVSuiYhLpW5c77KiBEO8reYx0dGgfYEb8ORNJp9rKWiqgCLNacPXqUYTL7+9ZuYP39hlx9fVFTUuhTkdVJSTOrrNddcz+rVn/L222/wla9c3e45OTmzuOKKq/jhD+8mPj6e6dNnsnDhYs466xzf8ovi4qOkpDiCAhYORyoWi4WYmBgcjuAPj6mpqeTm7j+elyxEOxKUEINCSoam5LCiskjhGOk/0W+sh/pqRWyiJiq2f8eklCnEGaquRG2l+b+jDzX9Mba4JKguVTjr/EtIasoApUkYAnXZLBYzv2WFpghqUif1RPZuUDQ7FaMma8ZO7dr2R0wAZdVs/Uixc40iPln7MlB6g9bmfVJXCS1NYI0w2RqJaaELpwohhOi5wEKXGz7fT+E+RXaWP+psi+z8YoI9GqZMOIGR6VNojlnD0aICYrSd+SdMZmzGAqqKorDazNLAiiLzOaGsTaONJStH8/lmKKvM79dlp0PRJZdc2u/7tNksuFyeYz+wi6ZO7eRKSQh5eftxu91cdtmFQbc3NzczadLkDp93003f4vLLr2T9+i/YsWMbzz//HM8//xxPP/1nUlPTaGpqIjLS3uVxREbaaWpqPPYDhegCCUqIQcG/VCL49orWeg5tsyf6S0qGpjRfUVmMLyihNThrIcKuiej63/ZeF59k+qjXVZqT3SYnNDYo4pK0r1r4YJecoSkrVFQU0WFQoq4Kig6YwpjZC3S3ltNkjIXJ8zR7N1jY8hEsOafnc+fxQP5uOLxb4axrPxhbhCZjPGTN1ETH9WxfQgghggW2BC0s3g3AqIxs323H+hvvPYbExzqYd9oqXE2w9RML46draivMfVYbxCb66zcFfhaIT9FMnZOOzRpJRXUhbvfgX04peiYqKriqtlIK3aanu8vlf+M6nQ3YbDb++Mfn2y3DiI3t/ApdcnIKp59+FqeffhbXX38jX/7yRfzrX//k+utvIDExidrami6Pu7a2hqSkXrxaI4Y1ic+KQSEuyZxUVpeBq8V/e0ON+WMclxyeg3pyhvm/qsR/UGhqMIU3w1HgMpB3TmqrzPdNDeb/cI+rN3nnv7K440hD3lYFKCbkHF9AYdx0SB2taahR7N/UswIhtZWm0Oae9RacdYqEVM2EHE32Ag9ZszTpYzQeNxTuU3z2qiJvW/u0XyGEEMfPmynhdrs4WrofmzWSDMdE3/1dOU5Ex5nja2wCWFov7zXU+rMk29a+8rYE9d4XEWEhJSmTlpZGKipLjveliCEqKSmZiopy3/cej4e8vFzf95MnT8HlclFdXcXo0WOC/iUndz0VNi4uDofDgdPpBGDKlGzKykqpr6/r0vMPHjzA5MnZx36gEF0gQQkxKCgFiQ7TbaGh1n+7s/XvZriuKMckmP8bG/y3eccX7pP/uDYdOFqazfe2yA6eMAglOEzl86oSk4HQVn01FB2EyGjNmCnHtw+lYMYJGmuEJn+PaSl6PCpLYN2bivoqRfIIzQnneViySjN5nmbcdJg0RzNnpWbFpaYIJxr2b7Kw5WMVtAZaCCHE8fNmSpRUHMDlaiIjbSLWgChCV4ISS87RnHiBh+g4fwCi5LCiudEcb9sGJWxtghLWCEhLGQ9AUUk3WkiJYWHu3Pns2LGdd999i8OHD/HYY49SXV3lu3/s2PGceurp/PjHP+Djjz/kyJFCduzYzrPPPsWmTRtCbvOzzz7hf//3h6xZ8xkFBfkcOJDH73//OAcO5Pm6bUyenE1CQiLbtm095hibmprYs2cXixYt6ZXXLIQs3xCDhrdmRFMD0BoIdoY5AGCLMMUWmwKDEq0nrdFhDkrEJ5n/vR04XK1BiYghFJSwWCApHcqPhK4rUXwYQDEm29PuQ2J32KNhwgzN/s0W9m2C2Su6l5lTUw4b3lF43IoJMzWT5nS8jCQi0gQoRk6ATe+bD7ob3oX5p+terTWhtVnnXHRQUVVq6rOgwR5jgj0Z4zQZY5F2dUKIIcWbBe9fuhFcaKgrQYkIu39JRlRM+/uPlSlhscD5V49n5w/haMkBYHEXRy+GgxNOOJGvfOVqfvWrn6O1h//5n8tZuDD4PXLvvT/m2Wef4rHHHqWsrJTk5BRycmZx2mlnhtzm+PETiIyM5Ne/fpSSkmKioqIYN248DzzwMPPmLQDAarWyatW5vPPOmyxZsrTTMX722Sekp2eQkzOrd160GPYkKCEGjagYDShz8tSqoQ6U0thDfCjoL/Zos4zE1WKWBzTUmrPNmPjwrhONsIM9RlNfY6qN+zMlhtb61eQMTfkRRXVp+7oS3i4oaaN6vp9x0yF/j6b4kAmAeNcKH4urpbUVqVsxaY6HrC4ev2MTYdHZmo3vmeVBO1bDzGXdq4nRkaoS2LlW+bJoACKjzLYb66GxXlFyWLEnWjNlnmZkVnha2wohRG9rrDfr9fOPbAfaByWs3VzmF+rzh2qThxwY3PUGlydMGIfFYjIltNYhWzSKoeWSSy7jkksu830/b94CPv10fcjHfvObN/PNb97c4bYiIiL4xjdu4hvfuKlL+x41ajR33XXvMR936aVf4eqrL6O0tMTXWvQf/3it3eNeeukFrr76+i7tW4iukKCEGDTsrZkSjQ2mRaPbBc1ORUy8Dmv1anuMyY5octIalDC3e5d2hFNsAjQ1mA4criG4fAPMawRvMMgfcGlpNoU+I6M18b3QbcRqgwk5mt3rFAX7FNMdXQvu7P5C0VCrSButmTCze/uMjIK5p2jWvg5FB0wHkAk96B6nNRzcAfs3KbQ2NS3GT9M4Mv1X/VwtUFWiyd+rKM2H7Z9ZKD6kyVmm+zTLprnRZJQ0maWtRMWY1rVDKbNHCBEegW27G+ugtOIQ9c4q0h3jiY1OCnpsd2sPhXp8Z/EFbw2KqKgoUlNGUVxSSFlZOWlpQ6BXtxj0UlNTufPOeykuLvIFJdqqqalm2bLlnH566KwMIY6HBCXEoOFNkfQulQh3PQkvb9HkpgZzguxdUhLucYE5qQXTcrKl2XxKGmoned55drapy1R+xNQgSc3snewCgJFZsHeDpugAZC9on6LbVnUZHMlV2KM1M5Ye3zjs0f7ARO5mRfpY7QvEdNf+zYoD2xQWq2baIg+jJrX/8GyLgNRRkDpKU1kMO1ZDaYFiwzsw71Tte0/1Bq2htAAO7TLtfkNxjNSMnaZJHSXZGkKI7juw3QRiJ+TApLkaZx0cOrKF0ZOszJrcPnWtzwP3AfHskRlZFJcU8q8/HWDVRamMmtTH+xaiC1asWNnp/QkJiXzlK1f302jEcCGFLsWg4Q1KeItKejMSwl27wZu62eQ0J1kNtabORG+evB0v79XvliaGbKaE9+ffNijhXbqROqr3lqtE2CF9LLhaFMWHjv140/kDJs7u2fshPhmyZmk8HsXuLxT6OF7S4V1wYJvCFqFZdJZm9ORjn+QnZ5iCbskZmppyxfq3VVD3m55obICN7yk2f2ChskgRFaMZOcEU+cyapRkxXmOP1pQfVWx638LGd1W7n3Ff0Brqa0xQq6wQairA4+77/Qoh+kZthckMy9umWn+/PeQf3UpcooVZc9qnr/V1y+zAosyjRpquH4fzc9mxWj6SCyGGL8mUEIOGvW2mhC8jIbw1EuyttS6aGkwKutuliE/pvavzPREqKDHUMiUiIk2dDGe9OaFUyvxffgRQGsfI3t3fqMmaooOKwv2KzIkdv/dqK0yGgT1Gkzmxw4d12fjpcCTX1M8oOazJGNf159aUw+71JkNi7ildr4cBJog171TNpg+g4qhi5xqYeVLP3t815bDhXUVLkyI20XQgSRvVfh22xwOlBZr9mxTlRxVrXoM5KzUpI45/3x2pr4HDuxRFB6GlKfjFKYsZ3+hs834aCL/bQoiuCQwCtDRBfuFeWjx1ZGfnEB/f/qrG8RRFTs7QnbamDhTY5nnUiAlYLFaOlu7FE6qFlBBCDBMSlhWDhi0CbBGaxtaTT2edt6BkeMdl9y7fcKoB0w7UK9JuTpqbm4ZmS1Cv6DjwuBTNjeb7Jqf5eSSk+AMzvSVlBETFmQ+gga1g2zqw3bw/J+ToXulgYbHC1IXat+2uZkt4PLBjjQKtyF6gSc7o/r6tNpi9XBMVawIy+Xu6vw2v2grTiaSlSTF6imbJOZr0Me0DEmAq1GeMhSXnasbP0LhaFBvfU5QWHP/+2/K4Ye8GxWf/UuTvMZkgiamazImaUZM0jpEaqw1K8hUb37Ww4d3gtsR9paUJSg63pp5vVhzaaTI3eitTRYjhIrClcmM97Dv0BVYbLFmyJOjvji3StPk8nqDjnJXmb0VXBMYe7FF20h0TaG52Ul6V3/0dDzP+n83QKtgtRDDz/h5uF0AkU0IMKvZYqK8ynS4aBkjthsAMjnC3KG3LnymhhmymBJj3QG2FWcJhj8bXocXbRrY3KQWpmVCwFyqLYeSE9o9xu6Ak3wTRenONsCMT4pLMUorqsvYtUEM5vNukLyelaUZPOf59R9hhzsmatW/Avo2KjHHaF5DrqiZna4ZEs2L8DJMh0ZWDrtUKU+ZromI0u9dZ2PKh6UzSnYyPjsaz8T1FbYVZ1jI+x8OYKe0DWR43FB/W5G1VVBxVrH7NBGnSRvds/6HUlEPeNkVJPqADJ8d8bbGaLJkJOZq4pN7fvxBDTeDyq/KyKgqKd5HiiGXmzJlsX+f03RcTb7oeHY+ISMicZJabdWc8FitkpmdTVLqfI8V7gDHHN4BhwmKxAorm5iZsfb3ORogwcbdGUi3DrCe7BCXEoBIVA/VVrQEAb6HLAZIp0dhgWoMCRIe5HahX4PKNoZ4pAeY9kZTmX+LTF0EJgJQMTcFeRWWxYuSE9j/r8qPgcSvSx+jjSgXuiFIwdppm5xrF4V0m0NAZtwsObFUopZl+Qs+XFCU4YOxUOLRTsX8zzDih6+9zrWHXWkVzo1n20tWARKCx08Dj8bB3g4UtH5l6F8ebCdPcCOvfVtRXK5IzNDkn6g4DnBarCT5ljNXkbTO1QjZ/ADNO1GRmHd/+2/JmbBzebSYlMkrjyNQkODQ2m8l2qq0wWSJH8xRFB0yb2klzeicTR4ihKjBTYuPG9aA107IXYLVag353etrFK30MJKVrMrNC/10cN11zaGfwMcNiNS1JN+74L4XFu4HTejaIIU4pRWxsAjU1FQBERtrxBmz7eSS4XAPjc97AI3PTuWPNj6a2tgq7PWbYtQmWoIQYVLzFLp315gQ0wt63bQq7IrDQZVWZ+To+OXzjCdS2poRSvXuSPFCYuiL+QojeZRVRMX1zYExqXQJRWRz6/tICcyBJG937+x85AfZt0BQfMhkhnWXlFB00XVcyxvXeVfWsmZoj+6FwvwlQdPW9fjQPSg4rouM0Uxcdf4Bk3HSoLtMUH1Ls/Bxmr+j+HLvdJmOjvlqROkoz5+SundhbrCYIEBOv2bFasf0zhT3KtFTtieZGk7FRU66IsGsmzdFkTvK3MPTTuFqgYK8md4vi4A5FdZnJYOntZUpCDBXezAS328WmHV8AMCN7IUDQ732oJWTdYbXBorM6/ns0Zb5mTHZw8NNqhYS4NOJiU6ioLmTv1iqmzErq2UCGuLg4k85iAhPhOfm1WCxSA6QDMjed68r8WCxWkpNDt2Mdyobg6YkYyrwBgJoycyU6Lin80VirFSIiNU0N5gq9NUITnxLuURneE5XmJmhpMVkSQzHw6uvAUasATWO9eZHe90tvi4qBmHhNfbWiuTG4s4bWUFaAKbLZw5PVUKw2yJxkshWKD2smzAj9OK3xXXUfO7V3O5BkzdbsWWfhwDaYtfzY23a7Ye9G87PJOVH3qLq9UiZDo7oUig8pKou7Xycjd7NZspGUrpndxYBEoMyJgNJs/9TC1k9MxsbxLiNrafYHJJLSNLOW604zfGwRMH4GjBhvio9WFiu+eNOcDElgQoj23K1BiQMFm6ipqWH0iBkkJ6cCwdkRfZ1xpFT7ILLFaq7+jx05k537P+KNf+5gQvaJ8rvcCaUU8fFJxMUl4vG4j6sbVU9YLIrk5BgqKxvweML/GXQgkbnpXFfmRykTlBhuWRIgQQkxyETFmiviBXvNL2tianjH42WPgbqq1haUI3SP00B7i/dkudlpCkHao4fmQSImYPkGBCzf6KOgBJh2mQ21JlsisBNGbYUpspmU3ndtYdPHmDTg8iOqw6BEValJ949P1iT1csB99GTI3awpPmyu8h/rdR7JhWanIn3s8RXabMsWCZPnabZ9qtizXrF4VdczLyqK4eAOU+9j1kk6RDZC12RmQU255vAuxdZPTFCgu58htAe2fGgCEskZmnmndj2TKSoWFp6p2fIhlB9VbPkI5p02cP72CDFQeFygtWbn/o/ArpiRfbLv96Q3l28cD+/+x2aaoMShI1uprTyxTzoMDTVKKaxhSP20WBSRkZHYbM1y4t2GzE3nZH46Jx9fxKAS5VsqYT79j5o0MH6pA6/IJ2cMjDGBuaquLKZdJgzNIpcAUW2CEn1Z6NLL+3OuLAk+E/V2huiLpRteiWnmpLqiKHi9dKAj+824xkzt/fa0VhuMmADaozh6oPPHejxwMKATSW8ZMQESHKboZ9HBrj3HW9cCFFMXd56R0BVT5mviUzTVpabGQ3cd3g0VRSZwNHdl95dW2SJg9smauGRNRZFi7/rhd2VFDF+5W8wSNbc7uHhkW243FBTtoKaulBHpE0hLGecLBvRnpkQo3n06kkYTG5NMWcVhjh6u6v+BCCFEmElQQgwqgSf/CY6eV9/vLYFdCHrjSnBvUcqk22uPOVkZikUuwSyhsUebdrEej7emRPe7Q3RHcgd1JWrKzVz35ZUuiwVSRpolTB3VtagoAjDtNvvC6MkmwFC4r/P2pCWHTPvelJG6VzOblDLZEuBfpnIspfmme09img7ZNaW7LBZ/m9a9G1W32nXW18C+TQpl0eQs08f9u2mLgLkrNRF2zeHdiqrS49uOEINJkxNyt1jY+rGF95638OFLHf8NcLdotux+F4BZ01YA/mBAb9aUOB7eoIhSirGZMwHYvHmHtP4VQgw7EpQQg0pgOv6oyQMnI8EbLLHaBk6gxCtwbepQzZQA04FDa0VjvVm+ERndt1e+omJNtoK3Na2X9/uYhL7bN0Bqpnn/lxa2v89ZZwIB8cnHXlpxvBIcEJ+iqatS1JR3/LgjeeZkYfz03v99TRlhantUlyrqqjp/rNaQ15qxkTWz97JHkjMgY5ymqUFxeFfXn7f7C4XHrZg4S/e4MG50nMnaANj1uUJqjImhrm1mhKs59C+01pCXv4WqmqOkpYxjZGo24A8GBGVKhHH5BsC4zFkArP9iC++/YKG5sf/HI4QQ4SJBCTGo2CJNxw2rTTNyfLhH4+et1ZCUHp4PNp2JDAhKDOW23t5ilxVFJjjRl/UkwFypt8eAu8V/hVxrcNb2T1cYbxHNshBBCZMlAcl9vC7Z29qu7Ejo+90uMxZbhCZlZO/vXyn/Eq7C/Z1HGSqKoKZMEZesSR3Vu+PwZmzk7+1aQKCmHMqPmE4k43N6ZwyZEyEpTVNbqSjY2zvbFGKgOlZxw5ZmU9+nucnNlt1vAzB3+tm4WszfiVCZEuEI2lut/hfiSBpNQlwa5ZX5VNUU8+GLFnas7jwTTQghhooBdvokROeUgnmnahaeefzpzn0hOQMs1o77k4dTYKbEQJqz3pacbub+6AHzobOvgxLgX7bjLazZ1AAej+q0TWdviY6D2ETTAcRZH3wmXFHkXULSt+9H7xKVyuLQAYHyo2aJSeqovgvWZU40rW6P5NFpQKBwX2tdixm9X2MjJh4cI022RKggUVsHd5gBjJvee4UplYKpi83P++BOhZZsCTGEhaohUZIPrhbT/vrDFxVr/mPh3y99Sl19BaMyppLumEBLs3lsqJoSkVH9f/wOWj6iFBPHLgAg9/A6wARbj5UFJoQQQ4EEJcSgk5jKgFsiEZ8Mp16hGZkV7pG0F7R8wz7wgia9xZsVUNmaJdBX7UADeffR2BqU8C3d6IegBOBL+6+p9P9ctW7NlFC90+miM3HJpgVuVWnogEBZQWtHmj4s+mmPgdRR0NLYcUDA4zYZJRarJq2vamxMMa+xYF/nEQ9nHRQfMr+Loyb17hgSUkwgqrFOhVzWI8RQESoosfkDC++/YOHjfyq0R1HvrOKTT9/DYrEyb8Y5ALiazGNViO4bfbXUrTNtlxhOGDMPpSzkFWzE0/oiW5r6f1xCCNHfJCghRC8ZqC2Fh8vyjZh47zKa1kyJ2L4PwPi6wXiDEjXm/+h+Ckp4gx91lf6IQEMtNDUoElL6Ph3ZYoGkNNNutm1dCa1bO5EoTWpm344jfWxrJ5Si0L+ElcXgalGkjOy734G0MeZKa1mhv/tLKAV7FVorxmTT7W4bXTF2aveKfwoxGLk76bbhXaKxfttrNDW2MG3ichLj04PuC7V8I7IPCyN3pG1QIiYqgcyMbJqa6iksNkVqpOilEGI4kKDEEPetb32LhQsXcvvtt4d7KCJMArMjhnKhS6WCO170y/KNGDO3vqBErfnAG5PQPxkp0a37qa3y76+qxPzfX11gfK1R23QBqa0wrXuTUvv+CqSvE0pJ6PtL8s3/6X2YsWGxmKUkaEXxoY4f520Zmzmxb8aSNhqi4jQVRyXtWwxdnbUABSgo2kn+0e1E25OYOeWUdvf7ul4EfAoOzCrsL6GKMU8auxCA3XmrAXB3EpRwu+DAdijc3xejE0KI/iNBiSHuK1/5Cg899FC4hyHCaLjUlABIDqih0B/LN6J8yzdMMKK/l2/ExJn/a6v8mRLeq/Sx/RQY8QcEgq/Me1tTOjL7fhzRcRAZramtaH9VUWvtC0qkje7bcaSOMq+1ooMaG846qKtSxCbqPnuPKAuMae1MVHSw42yJqhJ47yUnzrq+GYcQfamzoERjUz2fb/4nAAtnXoDNFoktIvjvUOiaEr09ymOzhghKjMqYRlxsCsVluVRWH+00U2L/ZsW+jRZ2rZXMKCHE4CZBiSFu8eLFxMbGhnsYIoyCa0qEbxz9ISUgOyCqH9723sBHk9P87+zvoERr29G6gEyJJqcKGltfS3SAxaKpKiaouGJDjRlHbGLfj0EpSE43XVeqy4Lvqy7XOOsUCQ7d53OSmGbmorI4dHcAb82L3u7+0VZqa/Cl/GjHjzm4C4oOe6iv6duxCNEXOlq+obXmi62v0NhUx6RxC8lImQa0X5oRcvnGAKgpkeDQ2CIUUyecCMCeA591GpTwZsZ53OqY2SNCCDGQSVAijNatW8cNN9zAsmXLyM7O5oMPPmj3mOeff55TTjmFmTNncumll7J169YwjFQMZhHDpKYEmFoO0XEai63vT0AhuNCl1iZTwhah+y34ExkFVpumtsrjOwn2Ft3sr6CExQoJqWatdkPAVXdf1khC/4wjqbX7SlWbJRwlheaTel/XtQBz1TMxDVzNirrK9veXFbYW/hzVt9kjcUmmvkpNGb5uA4G0hoqjJqsiKa1PhzLs5OXl8eUvf5lzzz2Xiy++mPXr14d7SENSRyfgefkbOHxkG5ljU5ifcx4et7cTUfDvnW/5RkCCQTiOj22DEpFRkL1AkzV2ATabnbz8TdTUhC5Ss2e9orrM/wKkIKYQYjDrgzJboqsaGhrIzs7m4osv5tZbb213/+uvv85Pf/pT7r//fmbPns1zzz3H9ddfz5tvvklKSgoAF1xwQchtv/zyy1hD5QWKYSew0OVQrikB/paxLc2h02J7W2QUoDRNDdDcCG6XIj6l91tOdkQpk5VRW2k+kNoi/fUt7P1YtC06Fqow+45tDUJ4i372V9ZIsqlj17qMxH/yUVNh0jfikvtvOUtlMVQUQ3yK/3a3G8qLTLcS71j7ilKQMhKO5ikqijQZY4Pvr6uE5kZF2igLtgh3p61URffY7XZ+8pOfkJWVRW5uLjfddBNvvfVWuIc16GkdHEDwuNo/pryqkLVbXiE6TnHdDV/iwFr/wS8uUZM6yh8YDAwGjJyg+6TobFeEqilhtUFkRBQTxy5gT95nbNnyOTOXnBq01MTjhkM7gw80Lc39F4wWQojeJkGJMFqxYgUrVqzo8P5nn32Wyy67jEsuuQSA+++/nw8//JBXXnmF6667DoBXX321X8YKYLH07EzL+/yebmco6su5CTw5jYxSQR9sBrq289KV+fG2yewPFouZ32YnOFuLXMYm9O97PDZRUVsJzjpFYqoZi1KaqBjVb8ER7wfhlkbz/vJ4TP0Ee7Qm0t4/g0hwmKyR6lIAMw6LRVFTYYIR8Un98953jIS8rVBVopgww397RZHpUpIxzqRn97W0UXA0DyqOKkaOD76vorVt7shxViwWiUj0plGj/GtzsrKyqK2tRWuNGqjtmQaBA9th30YLyy7y+IKcbTMlGpvq+fiLP+PxuDjzzHPImjSBA2vNfbZITeYkgjoEBQYDZp4UvlbZbYMSSoG1NWNjataJ7D2who8//ozUqGWc/CW7//WH+LWVTAkhxGAmQYkBqrm5mR07dnDjjTf6brNYLCxdupTNmzf3+3hsNgsOR1yvbCs5WWpcdKQv5sbj0UADFiukpccOmg/HERHWdu+5gfjeiUtwUt7gobE2AmjBkR6Jw9F/KSkpac0UHWxBue0kJ1tpcjYQE69ITe2/S2YpaS0cpBmrsuNwRFBT6UFrJ4kOCw5H/6VspGY6KT7sIdISTaLDRCBqKkzqyOjxsf0SDEhM0Gx4p4GqEkVKSozv9630UAvQTOa4/nl/xER52PqJk6piCw5H8HthS1kj4GbEWCvJyUM8faqb1q1bxzPPPMP27dspLS3liSeeYOXKlUGPef7553nmmWcoLS1l2rRp3HvvvcyaNavdtt577z2mTZs2aP7mDlT7Nprf5cL9islzTQAhsKaEx+Pmsw0vUO+sYtyo2SyYf2JQADIu0SzNCFyeMVCC8+0y+hTYWj+Zx8c6mDBmLnmHN7A793NmHllBTHb7bdhjNE0NSoISQohBTYISA1RlZSVut5vU1NSg2x0OB4cOddJvro1vfOMbbN26FafTyfLly3nyySeZOnVqt8fjcnmoqXF2+3mBLBZFcnIslZX1rSfKwquv5ybBYT6EVVSEXps6ELW0uCkvN0UKBvJ7xxoJoNi7uRlQ2OObKS8PsZC/j1gizQlPydEmIuM0oIiI8vjmrj+4PQCKirImysubWrtdKCKj3f06DnOFUVF8tAEXoD2K+hrTnaO6g3XZfSEh1WRKHD5QT1xroc/So2ZsWPvv/RGfbJb25B+sC7rCXFIAtgiFY4Slx79TCQnRREQMnaWCvbGsEqCwsJBHHnmEJ598sj+HP6Qd2Gb+1k2ao32ZElprPt/8T46W7iMpYQRL5lyCzRacJebN5ArsPhVq2UQ4dJYpATBzyikcyN/EztyPaG5ZApglKd4aQnHJmoyxmtwtEpQQQgxuEpQYZLqbBtqbH4h662TQ49ED7sRyoOiruVl0tnf7vb7pPtV2Lgbie8cebX4fG+sVEZGalBG6X+c5Og5AUV+jcdaboIQ9uvd+X7siIsqMobHB7Le+2nwfHd+/cxEZ5f1ZmP2aYpOmBWd/zkdMvKKqBBpq/a0/61u7kUTF9d+cJDjM0p7aKu3rRlNZAm6XhbQxGotVDcjfqXDqjWWVdXV13HTTTfzgBz9g3Lhx/TLu4eLANkVCivYVsNy6+x3y8jcQE53IyiXXEmGzY7UF/4L5ghIDMFOio5oSXvGxqUwYPZe8/A1s2LCGiTknA/5OR0r5i1k3S1BCCDGISVBigEpOTsZqtVJWFtzfrqKiol32hBDHMlA+gA1F9hgTCADIGNf/V+BiAgpLhqPIJbRvjdrQWl+jvzpv+MYRbX4WzY3m+7pq839cUv+OI8o7Hw3+27ztYqN7ZxVcl0S3Zs549w3+AqQJKSGfIjrRlWWVbreb2267jUsvvZRly5b1aH9Sxym06jKF1rBz/8ds2/seERFRrFzyNWKjkwCTBRR4zIu0mzkIbPnpXcoV7rmxtfkUrhTYbMFjypmykgMFm/h83Yecd+kiYmNjfZkgSvmDsa6W3qubM1TfO71B5qZjMjedk/npnAQlBqjIyEhmzJjB6tWrOeWUUwDweDysWbOGq6++OsyjE0J4BVY7HzGh/684R8WYK2v11dBY7x1T/47DGwRp9gYl+rnzhpf3pKPJaTpw1LcGJWIT+3cc3kCVN0gTWPizP9sOegMgjfX+jiTOevNhKHrglWcZ8LqyrPLjjz/m888/p6ysjBdffBGAv/zlLyQkdC9CJ3WcAgUvvXLWWNl76CM27vgvNmskJy+6muSEEb77k1OicTisvuclJJlaN4HbSk4xf7TCPTeuFlPzyctut5GWHgn4l8smxKUxefxi9h1cw6cffcoVX70EZ70HcBIRacWRGgE0YSUCh6N3+1GHe34GMpmbjsncdE7mJzQJSoRRfX09hw8f9n1fUFDArl27SE1NJS0tjWuvvZY777yTGTNmMGvWLJ577jkaGxu56KKLwjhqIUSgqNYTcnuMJjmj//evFDhGWCgp8FB+tHVM/dwWzhZhWl16MwPqawF0/wclvMGR1kyJ8AUlzP9NDSYY0FgPWitiEvo3WBTdOv/OgLIe3sBVVD9mbAx1gcsqV65cyY4dO3q8TanjFCj4quKHH73H7vw3sVkjWbnkWjJSs4Lur6t3Yiv3P6+p2dS6CdxWba2TmLjwz42pDeF/fS0tLhqaXOScaDo5NdZDfQ00Np1GXv5Gnv/jh8xfNI+46DRA4Xa5aWh0A4q6uhbKy1t6ZVxD573T+2RuOiZz07nemJ+hVscpkAQlwmj79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899pivyvfTTz8dVExLCBFeiamQmKoZNUn3WwvOttJGWSkp8FB2xHzf38s3vPtsqFG0NGka6yAqNnhtdH+NAfzLSLxBibj+Dkp4x9EapAlX5og3GyJkUEIu1HRbfy+rlDpOXuYPq9aajTv+y67cT4iJiwgZkABQFlO3JWWkaYmbnBFYx8X7R9rMx8CYG/+BQ2PGlDnRfJ+YBg21sH9zHDmTV7J515u88fqbXHzhleZ5CiwWk5nlbun9WkIDY34GJpmbjsncdE7mJzQJSoTR4sWL2bNnT6ePufLKK7nyyiv7aURCiO6yRcLiVeE9uKSPtrBjrek2AcFLSvqLCUpARTGAIia+/+fEu3yj2WkKwdXXmNsi7P5q9f3Bm6nS6A1KeOtJ9POcREaDxapDBiVk+Ub3DcZlleH+4NvkNHV2InrYedbtdvHZxv+jqHIr9sgYls25mnTHeN/9I7M0R/PM3z9vMHTeqZqWRh3093DeqR6cdWCLHJhrusdNa//z8haynDpxGXsPruGtV3YQUb+fpOgpKAWW1tcb2CZVCCEGGwlKCCHEIJc20gpKgw5vUAKg5LAZQ2IY6vFG2EEpTXMjOOvB41YkZlhQyt2vQYnIKDOOdoU/+zlTQimTEdFQo3C1aKw2E5SIsOt+z2IZLIbSsso96+HoASfLLgxPC0ztgY9esqAsmkVnmV/Ajv4u1FXBkVzFxNnt35sNzmo+Xv9XyioOM3ZiMnPGX0dCXFrQY6zW9l9bLO3/FqaO6sEL6iOnXmHSOJQldFFqbx0amzWC+Tnn8cm6v/LR6lc59+TbUcrqmy+Pq58GLIQQfUA+lgghxCAXYVfEJ0NtBVhs/VtM0cv74b803/yfmNb/V2hNJXpTU8K7dCMhxQL07yVEZTFZCt6MjXAt3wBT7LKhxizhiIwCj0cRGytpox0ZSssq66pNe9yG2v7vQAPgaj1J1h7F2tdNYO6Mq0L3w/38PwqPR2GL1GTN9N+el5fL6x+/QGNjPanJY7nxpq+y4+P2RUNVwMm8ZZB9sj1WgDBwWeDYkTlkZmRzpHgPO/Z/yMmjT/UFYdwSlBBCDGKD7E+3EEKIUJLTTVAiKpqw1LbwtuN0tZidJ6V1/vi+Ehltum9UlZjvTVCi/9mjTaHL5kbtW74RrqAEmKCEpzU2I0s3OjaUllV6l0y4mrv3PFezWQrQ09o0nhCxQO0JDiD4Htu69KzogOJILsxe4Wbj1o947713aGzUTBm/hPk555GSGvr3OXCb1iFYAy5nmYftn1pQSrFw5gW8VvoLtu/9gLnzZ2G1mfQTWb4hhBjMwvNpTQghRK/ydv4Ix9INCD6BiUnQvvoO4RqHqW0BCSnhWTseWFfCZClobD1cV388ouNaW4HWSZHL4cb7fmtp6vxxba19Q/HRSxZcPWzkEOrKfeA2tYbcrfDFG/7f0boqRfHRch558EneffctLMrKCXMvZdHsizjhXEvIgAaYQKwt0rzXO3rMYJaZBfHJ5vXFxzqYlX0aHo+Lj9f8E40HlJZMCSHEoCaZEkIIMQSkZpoPreljw5OaHxgMCVeWBPiLXda0NkhITLHQHDpjvE9556OiyKSvh6PwJwRmSihftc+oWJPVIoY2b6ZESzczJeqrVev/Xa8N42oxy4QSHK3bqIEN77R/j7U0+ws3VhyF3M3+CILH42H/obVs3PE6tqhm5p4wmgvOu4zt72cQn6JJSvO3+21LKVjxPxrtCV8XpL4WGNScPmk5h49so6jkIGvWfIrVukJqSgghBrUhGE8WQojhJ8IOJ5ynGTctPPsPzJRICkM9ibbj0FqhLJrYxPCcodhjzBwcyTX792ay9LfA5RuN9WYskikxPBzP8o3AAIa3Lovvviaz/CKUnWsUn//XQvEh8/22T5Tv/dZ2G3nboKrUn7kDUF5VwJuf/JYvtv4Lt8fFjEmnMTX1JjxOE+H0LsnoMFPCYh4Tjno6/SWwg4nFYmXpvMuw2qy8885b1DYUy/INIcSgJkEJIYQQPRYUlEgP3zgio/wBkdgEsFjCFJRonQ/vVWdHZngzJRrrTEcSkKDEcGE7jkyJwPaxdVX+352GWvjwJUXuVoXHA5XFwW12iw6axx5pbctZVxl6+2WFsH+ThS/esODR4GysZe2Wl3nj499QUVWAI3kMZy2/hWnjT6fFaWPnGvMx1RLQUSOUoZodEajt8q+khAwWzT0Tj8fNpxv+D1eLp1+7DAkhRG+S5RtCCCF6zBrhDwjEJoZvHJEBwZFwjiMqYDmL1abDtqQlwm7231ALntYTFglKDA/HkykRFJQIyJSoqzTLkIoPmZad+zZayJqpmTTXW8dBoz2KxtbnewtXtuVtj9vc0sinqz/knXc/w+VuJjIymrnTzmbSuEWoEBEGb0eNjjIlLJahfzYeEaImzewZy3BF7WBN7iE27XqT091nd9rNw+06drcPIYQIB/nTJIQQoseUgvmnm/Xc4bxqGZixERfGoERgjY2UEf4rvf1NKUgdBcWHFPVV5uSxp10VxODQ00yJZmfA163FMuurFfl7zdd525QvKBEda7IpApdkhFJX28C2vWvZnfsJMcn1eLSNaRNPYsbklUTZO46W+ZZvdPC3ZThkSkREta8FY7Va+NKXLmPjZ4+xa//H7NwxnpmzQ6/hO7AN9m1WLDpThzWbTQghQpGghBBCiF4RnxzuERDU9SOcmRKBQYlwLd3wmr5EU1MBzlqFPWZ4nMCJ4yt02dTgf3MEdu0I+jqg2KT3yntklAlKtDQrXC3t3+/1zip25X5Cfula6mtaQCkWTJ1P+qwziI059h8O79V9pfxZGYGGYseNtkJmOClISkrm5BMv5T9v/JmXX3mJMeNuJSnJzKnWZs6cdbBvk5mkyhIJSgghBh4JSgghhBgyArMAYpPCNgxsEWCxajxuReqo8I0DzBKOuSs1694Mb2cU0b+8XS68yzeaG/23dRSYClzqERjMaGnyP8Ht8n/d1AAxCQQVWXTWmv+11hwt3cu+g19QULQTrT1YLDYmj1/M9EnLmbcsxXeifCyBmUYWC7jbFNwcDoG2UEEJ7+ueOH460yaeRHXDx/z9789z/fU3kL/bxqGdiqXna3Z+7p8gWb4hhBiI5E+TEEKIIcMW6b+SGpsQvnEoBWOyoaVJExMfvnF4xSXB8i/psC0jEf3Pt3yjCWoq4PP/mABAXJJmynyNI7P9yXxgIMLVrEyLTUvHrTi9j3cHtKP88N9l7N23jf2H11HfYCpe2iNjmDRuMVOzTiQ6yvxCeDpq5RGCNeB9GyorYjhkSkR3EpSw2mDu9LPZW3mQwsLD/PvfrxBbeylKKYoPa6pL/c/xSJcOIcQAJEEJIYQQQ4ZSkJkFHo8Oe3vA7AUDq/ieXCEdXmwR5mfe2GC6XnjVVSk2vmfOZuee4iFttP8+7zINa4TG3aJwtZjsCt/yDaVB+yMZ3syKyqoy9u3fzqEjW6msPuK7PyM1i8njlzBmxAysbd6AbZdgdMYa8LscqgPHcAhKBC4J8/IFJaymTehF51/JC//8DZs2bcChRjJ90nI8bnC1+Ofa0/VYkBBC9Bv5iCKEEGJImbHUGwwYBjndQnRAKYhNUNRUAIQOkG1638JJF3vY8I5i0hztCzLExEFtpQlGRNj9hS6TM6CyCFpcTRSX5VL81h7KqvayeU0FuvUKfEJ8OuNHzWb8qNkkxHW8XqijRImYeO3r0uFli/CP33si7l0eFXjbUBayHap3Llo/zUdHJ/CVr1zF00//gY3bXicxPp2sxuygp5g5G1gBUyGEkKCEEEIIIcQQFJtgoabCHVQToq28rYqGWsXWTxRRMRrQRMe3BiWaTW2IqspqDhfmc7TxAJu/yKey+ggej5uUkRqLBRJjMxkzcgbjMmeRlJARcj9Wmw6qR6F958XBXSWi40zRzEChsp5sEdDcGggZDpkSAKMnawr2+ecqcPkGmMyVUeNHc/HFX+KRrX/n0w0vMGn6DcBI33O6sWpGCCH6jQQlhBBCCCGGoNgEc9Ya2OozUHScpqH1Po/HQ0VlFQ2NlVTmlbB/Vwm7y45S31TEnk1OtIbMLE1FlSIyMpaRaZNZtGwSrspsYqKOXcAlwh5ce8Jb28BiDa5zkDJCU1EEOmCZSKighCXgE6xlGGRKAEw/QZM6SrP5QxOF8QYlElJMYGfrxxYa6z3MnDmbmdllbNvzLi//5xlOmn0TCfHJeNxKakoIIQYkCUoIIYQQQgwxTU1NFJXncvhII8U1Luqq3Hg8LppbnDS3OGlqbsBDA/X1ddTVV9HQWIPWHmwRpqNGTTmkNmnik60kxY1kRMY4zrpsDOmOcbjqU9j9hZWRIzRHnV2LCETYobHe/319jfm/bVAiMhpO+4qm6JBm2yfm5NsaKigRsNvhsHzDKzArxPu6R4yHPes1LU2KvK2KcdM1s7JPw9lYzeGSdby35hkuPPtGcMcds6aExxPchUUIIfqDBCWEEEIIIYaY1157lbWfbeHoQbdZHdFZGQGliLbHExeTjCMtkfGTUqkvyWThinRmzHfwwd9txCZq5swxGynJN0+rq+r6eNpmO5QfMWfUbWslWG3mxDuwLuaxitYOl+Ub0CYA46uvAYtXaT59ReFqUThrNUopFs26GPe2Og4c3MUHnz/LslnfxOPufDLXvaWoLlVccqPUnRBC9B8JSgghhBBCDDFLlpyAxRPPTqsbq8WGRVmxWKxERERhj4whMiIae2Qs9sgY4mMT8X4kdIzUjJig2bHagqtWU1thTk4DsxW87UY7CkqMm6Y5tCs4faGjdrRtb/cGI4KCEpGdv9ZhlSnRQYZITDyMn6E5uENRWWJus1gsLJl1BXU1T1NRfYgPv3iOy7OuJvDj/7ZPFUpBzonm51xdajZaXuSmttYEfFJG9PWrEkIMdxKUEEIIIYQYYkaPHsPI86YQ09B4zMemjtK+tqG2SFNsEqCiSFFRZE5SbQGfGCNagwSBdR8AFq/yEJNg7i/YD+6AVpQdtaRtG5Twft+dTInh1Ggn1PINL3uMqS0RuPzCqiI5efE1rN//Bw7s289/3/kzM5ddhc1mo8kJR/PMRrxBCa+WJtjwrgIUZ1wl1TGFEH1rGCW8CSGEEEIMHxHHyDDwiozyf221+YMSgQKzFToKEiSm+ve57ELNwjP9J7MhW1qGuD1UpkRHAQ2v4dRRoqNMCfDPpbtNMUt7ZAyXfek6khJGkF+4j7/97S+4XC4qizveT3OTLN8QQvQfCUoIIYQQQgxBtsjgs1arLfSJZmDAwWqDqJgQjwkIRNijwRbR+UmrPRqSA7qDdjVTwheUCLj9WJkSxyreOJQE1c9oG5RonTOPu33qSEpaHKct/TpJCens27eHF174K2VHO27F0eT0/3zbBjmEEKK3SVBCCCGEEGIIimgTlOjo5D4i0n8C6i002VZgUMFihSnzzXNSRmgS0zRzT+k8MtBRTYm2Y/IGIyxt9tcZyZQwvPPkbmn/vOhYiLLHcc6pXyctLZ29e3fzymvP0uJqAkC3iTHV1/pv6KwbR3UZVJWar+uqYON7ivrqLr4YIYRoJUEJIYQQQoghqO3yjY4KRgZnSujW5+oOHwMwegosv8TD/NM1i8/WpI0Ove2xU812RmaFzqyYMFOTnOG/zxJi+caxDKtMiaCgRPCceoMSLW2CCMqifUt0oiLj+drXvsGIEZnkF+Ty7uqnaGyqbxeUaKg5dlDC44G1r1v44g1zOrH5A0VZoWLX2mFU5EMI0SskKCGEEEIIMQRZbQqLxX9yGZiVYLH6b49os3wD4ITz2gQlQizXiIo9dueLqYs0p17hIcER+n57NCw8MzhTI/D/ruioXsVQ1FmhS29QwtUmU8Ie5b+vqlSRvyOe6677BumO8ZRX5vPOZ3+guio4veHoIf+ajbZBDq1N69A1r/kH0FADDbXm++EUJBJC9I5h9GdcCCGEEGJ46ahAZUctN723R8VCgqN9sOB4WG0dBw7aLhXxLd+wwKKzPZx4QcdnuPNO9TBigmbE+OMf22ATFIhoE5Twzl3J4eA7IqODl8Dk71FERUVx2rKvkZmRTXVtMU89/XuKikJXvmybKeF2QWWxor7av59P/+X/QQYWThVCiK6QoEQHmpub+f3vf8/u3bvDPRQhhBBiWJJjcc9ZI479dUfBio4CF72p7dX+wCBFUhrEJnb83NRRMOskfcyaE0NJp5kSHXyqj4wOfZ/yRHLyoqsZP3ouVZVVPPnk7zlSsrfd4wIzJZobOebyDAlKCCG6S4ISHYiMjOSJJ56gpqYm3EMRQgghhiU5FvecrZvBh7YFLUM9tzd5T5aXnu9h8SrPMZeD+AzTsgVdKXTZVlRM6PtcLWCxWDlx3mUsX34qjc5GPvj8WfYdXBv8uICgxO4vFEfzhunkCyH6jAQlOjFr1ix27NgR7mEIIYQQw5Yci3smKCgRuJSjC0GJoEyJPgpKeE+s45IgMbVv9jGUdDcoER2nGT9Dt3usxwNul2rdjuLkFadzwXn/g1KKtVteZsP2/+BpLQ4RWKOiofbYY/R0o4VowT44LIlQQgx7PVghOPDl5+eTm5uLUors7GxGjBjRred/97vf5Tvf+Q4RERGsWLECh8OBavNXPTo6ujeHLIQQQogAcizuma5kSgSezHYUlIiw93wsC87w0OSExnrYt9FcFwvVflR0LGi+jhGUSErXLDyzfUAC2rcN1R6YmTOfU09w8PH6P7Mr9xOqaoo4cf7luJpjAN1+/x3oTlBi5xqzwTHZ3ciSEUIMOUMiKPHMM88AcN111wFQV1fHD37wA9588010a48jq9XKJZdcwr333ktkZNcWRl566aUAPPDAAzz44IMhH7Nr166eDl8IIYQQHZBjcc8EBhNMBw1z5teVQETg171RJyCl9drQoZ3+2447KBG6w+iQ151MCber4+4obTt0aA1uN2SkZnHeaTfz7id/5WjpPt746DESRn6VyfMyzT668PNydzEoEdiG1O3qu2wcIcTANySCEi+88AI33nij7/sHH3yQ1atX89Of/pQTTjgBrTWrV6/mZz/7GTExMdx9991d2u5PfvKTdldjhBBCCNF/5FjcMykj4Eiu+bqjmgPWwABFB9kUvZEp4RU4DvnRdk+nQYk2AYO2XTM6u097/BkOjpRUzjrpZtZs/geHCrfwj1d/R0Lmhcybt6BLPy+P69iPgeCMipYmCUoIMZwNiaBESUkJY8eO9X3/zjvv8L3vfY8LL7zQd9vFF19MS0sLjz/+eJeDEhdffHFvD1UIIYQQ3SDH4p5JzfR/3dFVbksXCl125Qp5VwVmR/TmdoeDTrtvtAk6tc2G6Ow+b6YEgM0ONlsky+ZfTmryGHbn/5dXXvkH+fmHyYg8DwiOUC0808O6t/wD87Tp4trSDF+8oWioNR1V5p+usViCx9DSBNFxHY9XCDG0DYlDgcPhoKioyPd9S0sLmZmZ7R43cuRI6urqur39/fv3869//YsnnniC0tJSAA4dOnRc2woHp9PJypUr+fnPfx7uoQghhBDHZTAci999913OPPNMzjzzTF5//fVwDweAqFgYN12TNVMHndAGps4HBgYCgxJ9tUSiJ5kSMQnB/w83QfN1jKCE7uTn56wP/r74EFSXmK8jIrz7UkybeBLnnPZ1YmPjWL/+C15543Eqq48GPTc5I3hb7jaZEqX5UF+t0B5FZbGisa7941qaOh5rdxzeDeveVl1eQiKEGBiGRKbEqlWr+P3vf8+yZctITk7m9NNP5/nnn2fRokVYW3MSXS4Xf/vb38jJyenyduvr67nnnnt46623sNlsuN1uTjrpJNLS0vjFL35BZmYmd911V1+9rF7zxBNPMGvWrHAPQwghhOi2wXIsdrlcPPLIIzz//PNYrVYuu+wyTjvttC7XsepL2QvM2enRvGM/NjAo0fbksrcEBkG6W1Ni5kmagztgQs7wLCrRaaZEm7mcc3LHc7R3Q/CTc7f4n2xr85bNcGRx8vm38c9/vsSn7+3jjY9/w7wZq8iesDTk0iqPGyqKoOigYuQEzfbPggfmzZAILLbZ0uwfV9EhWHqubjeOtvs4tAsyxkFMvP/23V+YfZUf0aSP6fj5QoiBZUhkStx66604HA7OOussfvSjHzFx4kRWr17N6aefzh133MEdd9zB6aefzsaNG/ne977X5e3+7Gc/Y9OmTfzpT39i48aNvqKZACtWrOCTTz7pi5fTqw4ePEheXh4rVqwI91CEEEKIbhssx+ItW7aQnZ1NamoqycnJzJo1iw0bNoR7WEGCAgAdnK8Gntj2R1Ciu6JiYOpCjX2YNlzprKZEoOlLPL7Col4pI/0/9GanIipOM2J8+zdC2/ohbjfExcVz1VXXsmj2OYBm/bZ/8+EXz+FsND1Cx07VJKZq3+PXv22hYK8KWtbh5Q1AtF2+AVBRDI11ipqKjl8bmIyIfRstfPFm6Elo6aSehhBi4BkSQYmoqCiee+45vv3tb7Nz505++9vf0tDQwJEjR/jvf//Lpk2bOOWUU/jXv/7FjBkzurzdt99+m+985zssWbLEl3HhlZmZSWFhYY/GvW7dOm644QaWLVtGdnY2H3zwQbvHPP/885xyyinMnDmTSy+9lK1bt3ZrHw899BD/7//9vx6NUwghhAiXvj4We/X0mFxSUkJGhj+PPSMjg5KSkl4ZW68JOH9reyq6eJWHhWcGFwPoq3adqoOCm+LYuhqUsIbIhZ5/miYq1v+Tj7SH3kbbDAVv4UqlFNMnncSZJ91EfFwqhUW7+M8Hv2Dbtq1MXaRZdLYGpY9Z6NIXlHCFuK31/4aazrfhrDMDb3aGnoRmp/9rrSFvK1QOsF9HIYTfkFi+AWCxWLj88su5/PLLaWlpoaqqCo/HQ2JiIlFRx9fHqqmpiaSkpJD31dfXt/tw1F0NDQ1kZ2dz8cUXc+utt7a7//XXX+enP/0p999/P7Nnz+a5557j+uuv58033yQlJQWACy64IOS2X375ZT744APGjx/PhAkT2LRpU4/GKoQQQoRDXx+LvXrjmDzg6Q6+BhJT2z984ixNYz1kzerdpRJS3PL4dVZTIlCooIRS7QuZhgo8te2CEVifwd0CjqTRrFrxLTbtfIO9B9bw4ot/Y8eObZx77gVYrfFBXTWU0mitiIzWREZBXaXC1eTflldLkwK0LzhRX22+BygtgOYmGDUxYLshxh1YQ6Ox3v/8ymLYv9k84YyrPO2fKIQIuyETlAgUERFBWlpaj7czc+ZMXn31VZYvX97uvrfeeou5c+f2aPsrVqzodFnFs88+y2WXXcYll1wCwP3338+HH37IK6+8wnXXXQfAq6++2uHzt2zZwuuvv85bb71FfX09LpeLhIQEvvGNbxzXeC2WnvXt8j6/p9sZimRuQms7LzI/7cncdEzmpmODaW76+ljs1dNjcnp6OsXFxb7HFxcXs2zZsuMeT18cczvsvtHBvqLjYMHp0OnZ73GwBZ4Yh+E9OJje/52xWlWHP1NrROj7AothWm2h3xPaEzwvHpd/rrxLeiJsdhbNupCxI3Mo5SV27NjOoUMHSLddyOiMHNq+Z2adBPXVsGstuFrM2DxtCl0qpfyZErX+fW563/w/aqL2jTeoLolSNDmDW9s21vufrwPiEPJZtu/I3HRO5qdzQzIo0Vtuu+02rr32Wq655hrOOusslFJ89NFH/OlPf+Ktt97ir3/9a5/tu7m5mR07dnDjjTf6brNYLCxdupTNmzd3aRveehpgMify8vKOOyBhs1lwOHqnV1NycmyvbGcokrnxi4iwtnvPyfx0TOamYzI3HRsMcxPOY7FXV47Js2bNYvfu3ZSVlWG1WtmyZQsPPvjgce2vr465dWUuwFymjoiwAuZsrbf21WUtbqAxPPsOMBje/6GZ1hnxCVE4HG0/ypv7khKjcTjaZxFFRjrx/tyjo21ExyjARAdmL4vg4G4Xk3Ps7N/c6HuOx6NwOMxcuV31RMVA6kgrBbluRqRN4pZbfsC///1vVq9ezSebnycjZRqLZl5AbEwyWpsTsMTEaOw2DTRhs0TicERSGtkCtEYhPDaSEu1oTwMAzloLDkdM8GtKiEVZTEAiJqYFMKkWVUfsrH2nmemLIny3NdZbcDXYUQrsEWa/AMoVzfoPmpm3IpLUkcefZTV43zt9T+amczI/oUlQohMLFizgT3/6E48++ij/+7//i9aaxx9/nNmzZ/Pss8/2aUeLyspK3G43qanB+ZQOh4NDhw712X474nJ5qKlxHvuBnbBYFMnJsVRW1uPxDM+q2R2RuWmvpcVNebnpGybz0zGZm47J3HSst+YmISG69eS274TzWOzVlWNyREQE3/nOd7jiiisA+Pa3v43dbm+3ra7oq2Ou6Z5qThJbWty+r71/a/tLTa1/HP29bxgKfxvM3NXVNlJeHvq+2jonEe3uA7fH/xiXx0VTk//7uJRmTjgXlKUx6DmuFk15eR1Hck2AQlk0Hlz+cdS1cMopZzN27CR+feBfFBbt4rXSXGZmn8q0iSdhsViprXW2ZlkoaqqbKS9vpro64LVUuyg+GrDNGg8lxXWty03MbUeP1PPJywrHSE1Smv/2PZubAMXOL/zrQWorPbz7onkdUxdq32Pf+Ku57ZPXnCy/pPNZbjA1PIO6ewz+907fkbnpXG/MT38cc8NFghLHMH/+fP72t7/R2NhIdXU1CQkJREeHr+Sz1jpk+6Vjufjii3u87976A+PxaPlj1QGZm2Bt50Lmp2MyNx2TuenYYJmbgXYs9mp7TD7jjDM444wzemXbfXHM9QSckAauvw/Pe0CFcd/49j0Y3v/ttf4M0a0/0/b3oULdB6rtcp6gGhWBz/HfoT2K2ioPWz8xayacdYqkdP+8eecwK2sSZy69nR17P2DH/g/ZtPMNDhRsYtGsi9CMbS2gqSjYq8ia6cHV7N9HoxOam/zBA7SirtpDfLJ/LFWl5v7yo4qkdI/v9rgkqCrtYB6A+hBFM7Xu/L2nNax9Q9HUoDjhPO84/Abve6fvydx0TuYnNCk11Ik1a9bgdJorFVFRUWRkZPTbh6Dk5GSsVitlZWVBt1dUVLS7UiOEEEIMVeE8FnsNlWNyZEDdbx3Gz8THcW1FhBBqHnNO9DAyS4csXArBtRistjbdPDo5K/jsX/47R03WxCaaN1B0XPAbyWaNYPa0Mzjn5G+T7phAVU0Rb3/6e/7z3xdpaKr2PS5/rwpqCdrcaIpZBmrbgcObudDWsVrX1oTIGIk8xp+QJic0NZjJObBN3rBC9DXJlOjE1772NaxWK9OmTWPBggXMnz+f+fPnk5ycfOwn91BkZCQzZsxg9erVnHLKKQB4PB7WrFnD1Vdf3ef7F0IIIQaCcB6LvYbKMTk5A7IXekhOh93r/FfU+52c4/WKUEGJzImQObHjn2lg4MFiDQ5SWLqQFW6P0UxfYjIqLBYPGeOC709M1VSXKRLj0zn9xG+Sl7+RjTv/y7YdG8k7tJ24lpVMm7Qct8sWHEzQioYa3TpGjfYo6qsJyvaoq/S/4JaALIu2QYm00ZrSAv/9NRXm/3HTNYd2mtsjj7Gyqr7K/7X3+UKIvjMkgxJaa377299y2WWXkZqa6vu6ux05Vq9ezfr169mwYQNffPEFf/7zn/F4PGRlZTF//nwWLFjA+eeff9zjrK+v5/Dhw77vCwoK2LVrF6mpqaSlpXHttddy5513MmPGDGbNmsVzzz1HY2MjF1100XHvUwghhBhM+vpY7DUcjslKwbhp5mvvCagtDJ8EJVOidxzPPLbNlOjovo5Ex7a2FrXC+Bnt7597iuajl0BrhVKKiWPnM2bkDFoS32Pztk8prHuL/e99wVmRZzNu1CzAtAttdqrWNqAQn2yyG+prFB63P8BS50+0oLHe/7U3KDFruYlgJKfDR/8IXn4C4BjpD0oEti0NJXBfDTXgamnfKrUrTDtSxcyTNFExHT/O4zbLRZx1kJACk+ZqEhzSPlcMH0MyKOHxePjtb3/LypUrSUlJ8X3d3aBEcnIyp59+Oqeffjpgeph//vnnPPvss7z44ou89NJLPfogtH37dq666irf9w888AAAt9xyC7feeiurVq2ioqKCxx57jNLSUqZNm8bTTz89ePqhCyGEED3U18dir+F2TJ6+WLN9NWQv6P9MiahYiE3SJKf3+66HveDMCN3aLrO1VWEXMiWOtewhMgpGT4H8PQG3RUSx4pSzWb5yES+/+DqfvLuTN997gTTHaiaPPIvsaRNodpqWoQBJaa1Biergdp71VQE1KBr8t7c0+58X1UFjA4tVkzICMsZpig8FLx0BE9gIDNL4szJMHYv9m70FM7tn/TsK7VHs2wg5J2r2blDEJWtGTTS1LqJjzbzXVUFthdlnRRF88YYiOUOz8EypPSCGhyEZlACTLRHq6+6qr69n06ZNvqs0W7duxW63c/LJJzN//vwejXHx4sXs2bOn08dceeWVXHnllT3ajxBCCDGY9eWx2Gu4HZNjEmDRWeE54bFY4MTz5WQrHAKXb1itEJgw0KXlG10o55K9QON2wZHcwIIV4EhxcNmlX8XuPMD6ba9xMO8QB/P+QH7lFLLSzyYqdiQA8ckaq81kKHSU0RCYKdHc2qgmMKiQvcDDnvX+Fzv3FI3FCjOWtg9KHMmF7asVWTNh0hxNYz0Utza6mzhHk7tZcXgXTJrTftlHSxN8/l/FmGwdMnPEm6VhalTQmqmhiI71sP5tCyOzNDOX6ZB1MSqLFTXlJmMCzPPLjpjgS2wirUtoQuyz9VdLMpLEYDJkgxK94eKLL2bPnj04HA4WLFjAWWedxfe//32ys7OPqwOGEEIIIbpHjsVChHY8YZ2gTAlbcM2Grvw62aOPvVeLFSbP1UFBCe+2rTYYkTqRc06+jYOFm9my+22OFO9l9869jBs1m9lTTycy2kFMgskccNaH3l+z07/tpkb/tr3GTYexUz0c2gVpYyA2Ifgx7oCgRGmBAq3I2wqjp2g+/qeZpNgkzcRZUJqvqSlXOOs0kXaorfJQmAsjxsPRA6Ybyd4NivEzgtudBGZ5NDkJCoSUHG5tc5qnmLlM0xzchdWnvhpfUGLH54qyguAf0tRFHsZO9X/v8cCa18xSmIRUzbxTdFCB26Gu/KiZ2+wFuktBNjFwSFCiE3v27MFmszFnzhzmzp3LvHnz5EOQEEII0Y/kWCxEB44jKtE2U8IT8H3gr9Syc+3s2thI+ZHg37OuZEpA+3oV3v1aI7z7UkwYPZdxmbNojlnLf/71HocKt3D4yDaa4+cxLnUlkErB3uD9O0Zqyo8G36Y9CqV0u+4hytK+7oVSYLVpXC6zZONoHhQf8m+vstj/2JETzAQnpprlJPs3KeauhP/+1YnbZbIn7J3UiWio839dX20CE74xt/nZdRSUcAZkhDTWtb//0E7F2Kn+jVWX4qvNUVOmOJIbOoOjrZJ8qClXTJytB22GhasZNrxj3gSOkZr0sWEekOgWCUp0Yv369b500bfffptHH32UiIgI5s2bx4IFC1i4cCFz5swJ9zCFEEKIIUuOxUL0nrbdNjo6AR2XbSMuFY4e8LDlI/+T4rtYQqVdUEKFvt1isbJo8RJsdQvYfeAzduz7kG071rGNDdib5jKjdiWJ8f7iI/Ep5mp4qP119WTaFmGCAPs3K1/hS6/KYvN9ykjNhNaT+eh4U1eitECxe71/qUV1Wcc7LD8KWz4KuF+bTAuvuqrAfbZvh+q1f5OFjLEeYhNDPyY2Kfj7ssLgMTnrFKDRGmorTRHRUPO0+QPzMx4xXhPXuk3tMUtbYhLpdv2Xgn2Qt0Wx4ExNTHz3nns8tAd2rPG/sIoiRfpYWSI2mEhQohPR0dEsXbqUpUuXAtDS0sKaNWt46qmnePTRR1FKsWvXrjCPUgghhBi65FgsRGjHc8ql2nTfaJtd0FbGOJh7iodN75sHek9Yu7Ifi1XjcZsTRe+JcKhuL/YosNkiyZm8kinjlxAz/lM+X/sZ+7ZuJC9/E+MyZzFzyqkkJWSQ4DABgrbaBjs6Y40A7VRUl7WfQW+mhGOkP/MiOs5//+HdHW83sEOH94p9IBMgMKrL/beve8vC6Ckd/zQ3vKM46RJNSxNERmnmn66xWOCzVy142tSiKC0I/j5/j6K50Z8NMnqKJjldkzYabJHt99XYYH7Gh3fD7i/8r2HhmR6SMzocYhCtYeca89zCfTB5Xt8HB/ZuVBQfUr52suVFXXuex23G2533Tyh1VaZwaYZkZxw3CUocQ0VFBevXr/f927NnDx6Ph8mTJ/dacS0hhBBCdEyOxUKEcBznel3NlOjw+d1Yp68s+CppevcTKggSEVA8MiY2ilNOPZUTly3j2V99zoYtn3CocAuHCrcwZmQO4xYuAya020Z3Tiq9gYPaCvP/vFM91FbCvo0W39KH6ICr+zEBQQl0xxPW5Oy8bWjg8guPK3g73s4jk+Z62L8peJIaGxRulznZjrBr4pP9S0EC61Q466CuShGbqFl6vubjfyianCpoeUrBXkXBXsWkOR6yZpnbvN1LAIoPKlJG6KCABEDRQdMN5Fi01uxa6/8+MPgS+vGmeGd8UsedU9qqrzbLZgLnuuig+X/p+Zq1r5tOLfs3Q9Ys3a4YqKvFBBGS0kyR0voaOPWK9o/rjtX/Nk8+4VxPyGwitwuUnHV3SqanE2eeeSaHDx/GarUybdo0Fi9ezM0338z8+fNJSkoK9/CEEEKIIU+OxUL0nraZEiGSDtpxjDStNDPGdS8KEhTw6GQ/EQFX7L1FGe12OwvmnszYtBPZd2gtO/Z9SP7R7fzl+W04S8YxLWsFo0dMx9J6JtndTAkAt0thj9akjmofnAkMRMSnwIylHvK2qqBsh7aaGvwFNUNxtqkJkTxCU1nUWv+hNUCSNgr2bwp+nMXmL4TpnR9fwc7WTAlXCxTuM9vyvp75p2s2vg+NIcbc2GCWdUBwJ5PC/SaoEROvaagNXA4R+jUd3m2Kjk6aq6mvgQ/+r4Emp8Jq07hdiqri9u1WA+VuVuRt845bM2elPzjgDbjYIkwGR95WExjZ9okFi01zwrma2ARvZxMz7tgEM0euZvN4i1WTNTN4n9s/U5QcVsw91UNda5vZliaNPdrUDik7AuOnmyyKL95UjJjQfhsdqatuv8SppQk+fEkxYjycclHXtjMcDcmghFKKzMxMIiMjg77urnPOOce3VjU6uouVfYQQQgjRa+RYLETvsVj9yx8s1vYFF0M/B2av6H5aRmAApLOMDFtApkRgIc0Iu1nWMW3iSUwZfwIHCjbiSvyYzbmH+XjdX4iPdZCddSKTxi7E2lmKQhtRAcUpvWMMLFhpi9TEJQc/Z9Qks7SjbWAhkDd7wRPchAN7tKbJqdo9N2ep5uAOs8TC3WJO5GMSYMp8j5kHBds+seBx+wtherNKTEBJ+07ct31ial4ApI0xP6u4JDjhXJO5UHQg+AfQElCfIjAoAaYjiDcjZmSWprrMFM9sbgzu5OFq8S/xGDddcyTXPwfzTtUc2mU6YVSVaByZ7efL44aDASvvygoVH/wdFpyhSUyFta8rXM2w/Euaz/+raHYqX+FTj0uxf5N5X3oDOt4uJZF2aGjdZn2VP/gCJivE2/lk03v+N2hLk3nv7VitqK1UVJdqRk/R1FUp9m9SpI/xdLh0KTBbpfigqR0yIce857WGokOmGOvRvNDPF8aQDEpYLBbef/993/eBX3fHt771rd4akhBCCCGOgxyLhQitKwGFtgKDA5F2jq8wRRdZAvbVWVDCGrAkxHtiCcHLOqxWG5PGLeL0r87nlfi9rPn8E4rLclm/7d9s3fMOc+csZNLiRaSkBGygA5PnaYoPgcetfEsGYgIyHJLSCJnKH6oGw/IveTiaC/s2WXyBg7rK4MdEx7VezXeqdrfbY/xBosnzNFZbcMeQw7s01WWKuiodNCdKmfoc3tampQGtQpPS/M+PiIQZS01xziYnaDfUVpqTfa+2wRJ7jMkYUBZNzomarR8rGmrMsonAoERg9sTeDWYZBMD80zTJGVBXpSk5rNizXjFqsmbsVDPefZtMx5CmxvbLWNwuxZaPYeEZ2reUpqpEB7WA9SrJN4GNvC2q9XW3zlFU4PaCn3M0t91mAH8RUe8ymtICFTSnxYdMJsr4HN2uA03g/JXkK0ryFbEJHtLHwpE82PW5/82kj+eXdpgYkkGJ3pSfn8/TTz/Nxo0bqaqqIikpifnz53PdddcxZsyYcA9PCCGEGPLkWCyEX3yyprZSkdDFThiBnAEp+VGxxxfY6CrVxaBEoMC6BYFBCf92FFOmTCXOOo2K6iPs3P8xhwq3sHXXxxT98mOmTMlm8eITmDx5Sodtg6Ni4ORLNQe2mUwAMEGIxas87FmnmDQn9KRERLYvsmmPhsjWLIuWRoX2aD7/b3BEIzoOqkqDtzVjqUmnCMzQCFUkMSoWqsugtsLsNzIwUBNhAg1HAk60sxd42gVUrFaYu9K8piYnfPSS8tWR2Pm5P/tg9BRNwV7l6+BhjzbtQWMTzWPrqwkqdhnYLrZwv/naFgmpmSbWlTLC3FdXpdizTpGc4eHwLsWRXEVlCWS0dsfw7tfL1QQVAa1ZA2tieCllamwUHzJBm7hkTeZE2s2R93U2OU12ycFdZlszT/Kw7ZOATIlG2LVW4fGY+2MT/UERgNwt5rHlRbD0vOD3h7O23fDY8pGFKQs8VBQFj72jLitCghKd2r59O1dddRV2u52TTz6Z1NRUysrKePvtt3nttdf485//zIwZXWj+K4QQQojjIsdiIYItPkf71sB3V2KapmCfInOiObHq06BEF5dvgDnhb2lWba7yBwcBFp1lTuS92Q0piZksm/9l5k0/m5bYteQVrmXv3t3s3bub5OQUFi5czLx5C4iNbV9B0RbRvitEYiosOrvjCYkIkSmhlP8kuLkJ3O72jwns3pE+VjN7hQ7ZjSQwQOHlXWriXaIQYfePz2oDtGL7Z2ZjjkzNuOkdDj/oNXgzJYoOmP+zZmkmzg4ODngzDmITzc+hrtq/FEJ7TLCkLccIC8riRnto1wq06IDytXNtavB3I8kYq8mcqPniDfOGsdigutQ/jpL8EPvJhLJCk5kAJhDirVsRGMxy1pmlL5+8ooiJM/U14pI1IyeAUh62fmz2WVmiyN9jthWfrBk3Q7P90/Zv2rpKRcE+TVWJoskJc07WVJWGfnPvXW9pzYQJHI/uUh2X4UiCEp146KGHmD59Ok899VTQOlan08k3vvENHnroIf785z+HcYRCCCHE0CbHYiGCWSwcV0ACIDMLYuI9JKW33tBPmRKBJ2I5J3rY/lnw5fwTzte4W4JrFgSeXE6a6x9zVMCSh9krPLQ0xzN68mm43SvZtWsna9eu4eDBPN5++w3ee+8dpk+fwfz5C8jKmtRh9kRXBNa+cGRqZiw1k+cdc3Nj++UCAFFx/vGOnaqD5iU5wwQaRk8Ovc+oWPNc70l64DKTtmU0IkNklrRlsZq6Ii3NphaCq8UUiAyVHeJqvarvzZQ4vEuRmaUpPwq5W1W7pRcASQ5/y5W2nVaKDpiClOZ1+etkREYHB26anQpnrX88jfVt9qM0KSM0ZYWKksPeMYZ+IzfWK4oOajwuRV2VuS26NUY1Yjy0NHnYtdYSFPhocgYvgWnL2+4UYPMHJgtGWUyQsO1YmxoU8cmaBIfJJnHWeYiMb7tFAdCD5idD37Zt27j++uvbFdaKjo7ma1/7Glu3bg3TyIQQQojhQY7FQvQeZTEnwt4T437LlAj4OnMijBgfvOOoGP/Jr1dgUCJwSUJg68iMcfhO6K1WKzk5M7nuum9wyy23s3jxUmw2G9u2beFPf3qGRx99iPfff4fKyorjej2BmRIJDn8Wg3ecLU2mxgFAUroO+bzAk28wAY2TL9VMmhv6B9E2eyKw5oa1TVCi7fcdiYg0mRLeApdRITI0wNuhw9uu04yv/IhpD+oNSLTNBEh0BJ9aep8XuD0wtSUCO4rYIuDkSz2+5TvlR1v3ndJ+XuzR+IpOau1dbuG/X7cpNNq2vWng+8f7swvsUOIY2f7n1JHyowq3SzEmG+aeEvpnmJjm/zk21ElNiY5IUKITdrudqqqqkPdVV1djt3chJCmEEEKI4ybHYiH6TthqSnQhYSHwZNkSUAwzqv1qjHYyMjI499zzufPOe7jkkksZPz6L6uoqPvjgPX7xi4f54x+fYsuWTTQ3Nx97Y60CgyRxASfBvkyJgKCE1Qor/sfDii95gjIaQi3RUKrj5S2BrzUyWgfNia1NvvvE2V37Ydrs5mT+izf9WQtei872EB1ntjNygvlfWfBlUtRWKV+3ifgUTc5SzfzT/FGA+OTgU8u5p5hWshNygsfWUKuoKTfLQbzzGhkF2QuCHzd+evvXFJ/Svu1mYFAiIbXzeQgMlATXLdFkL/QwdbHJZll2kYel53uwRXa+vcgoTfYCTXwyrPyyp939SWma6NZ9urr+dht2hsTyjdWrV7N06dJjPq6lpYW77rqLX/ziF13a7sknn8zPf/5zRo8ezYIFC3y3r1+/nkcffZSVK1ce95iFEEIIcWxyLBai71j78Eygs5oSXVlFEbhUoaNMiWOJjIxkzpx5zJkzj4qKcjZt2sDGjRs4cCCXAwdyiYy0M336DGbNmsPEiZOwhGq70Sow4yGw4KPVZtL3Wxr9NSUsVv8Sm4aAQoidbD6kwCBEYpvGIoHBjuyFni4v6fFmSLiavUEJ/0l3UhqcdLGmolgHFVL17iuwtejis7UvWJQxTlNaAI4MCzUB3Sjik03bzuLDECoSZYsMnpMEhwl2eAt7hmolmugIrqcSHaeDfjYjxoPV6iExDQ7tNK1WYxPx1Y8ICvQEBCXSxsC4af7vvTUxomKgrjWYkL3Qw5517QuZ+mqEhMhWSUo37wWtNeOn2ahrkGqXoQyJoMSNN97IY489xooVKzp8TENDAzfffDPr1q3r8nbvvvtubrrpJq688kocDgcOh4OKigrKy8uZO3cud911V28MXwghhBAdkGOxEH1n1CSoLNaMntz7KROdZUp0JSgR6gTPe/voKRp7dPfGnJLi4NRTz2DlytPIy8tlw4Z17N69i82bN7J580ZiY2OZMWMms2bNYezYce3qTwReVY+O82eZeItdNjeCp7WmRGCwp6vLKkIJPPlOGRn8egO3G6pdaUfcLcGvK9TyjZSM4O/bvgZbhA7KXpl1kkYpRYRdQZsWowD2qPa3gTcwEvy67NHgjeNERvk7YYwYryk6qBiZZe5TSqO1CgpemdshvbWTyZT5/m1v/dj8HxjAiE00S23qqmDctNDvJ8dIfPUokjPa3x84D0rByss8oCB3s6KxwR+0GDsV7NGKuobQczHcDYmgxGmnncYtt9zCL3/5S0477bR291dUVPD1r3+d3NxcfvOb3xxze42NjXz00UcUFhZy+eWXc+WVV3Lw4EFKS0tJS0tj9uzZLFu2rC9eihBCCCGQY7EQ/cFqM1ey+0LbQoeBRk/WHMlVZM3q2r6d9cEnr9OXHP+YLRYLkyZNZtKkyTQ1NbFr1w62bt3C/v37+OKLz/nii89JTExi1qzZ5OTMYuTITJRSREbB1EWaEaOjUKoxaOlLZDQ0OZXprkDwiWpCCkw/wUNiavfHGjiH3habXvaAgp+hOoN0ZPoSDzs/92+47Ul9KG0DRG1/tsrSeRZIZDcKs7bN3lm8SuNxa2wRMG2xf7nH7JM1e9ebn0lXTJ7noeiA8hd5xfycFp3V+fPHzdAU7If0MeZnGR2ncdYpRk3SFO5XTG5TD8Q7vq6OSxhDIijx85//nO9///t8+9vf5uGHH2bVqlW++woKCrjuuuuoqqri2WefZe7cuZ1uKz8/n2uuuYbCwkLfbXFxcfzyl7/kpJNO6rPXIIQQQghDjsVCDH6dZUMkpcMpl3s6zIbwShutKS1QJB6jTsDxstvtvuUd9fX17Nixna1bN3Ho0EE++eQjPvnkIxITk5g+PYfp02cwfup40tJslJcHbychBWor/AUaA4MSQIfdNbpi2mIPDTXKV9zRKzpgGUJ3MiVGT4HmRg/7N5soQleCJW1/TqG6jHQmsKtK1ixNVQlUFIV+g7QNStgigNb9B85r+hhIH9P198WEHNrVtuiKqBhY8SXtG9cJ52qqyzQpI2HqYo3V2vnzRdcMiaCEUoqf/OQn2O12vvvd79Lc3MyFF17I7t27+frXv47VauX5559n0qRJx9zWI488gsVi4fnnnycnJ4eCggLuu+8+7rvvPt57771+eDVCCCHE8CbHYiEGv2PVTzhWQAJg1nJNXZUO6jrRV2JjY1m0aDGLFi2mqqqS7du3sXPndvLzD7NmzaesWfMpcXHxLF48nzFjJjJ+fBbW1jPS5BHmqnn5EbOt3jxRHZMNoXq3BnaI6E6mBATPfdsASihtl2943O2XXXR1f3FJmqyZsGc9jMxqv40JOZqjeQMr08DWZqmMt9aFBCR6z5AISnj96Ec/wm63c88997Bnzx5eeukl0tPT+eMf/8iIESOOvQFg06ZN3H333cyfPx+AiRMn8uMf/5hVq1ZRUlJCenr6MbYghBBCiJ6QY7EQg19X6kYci9XWtSv5vS0pKZlly5azbNlyamqq2bVrFzt3bufgwTxWr16N0/kRUVFRTJ48hezsqYweOQWIp8nZminRD2dYPQlKZE6CqlLN6Cld7NjRi6/HajOBkGmLQ+87NhFO/+rACUiI/jGkghJgCmLZ7XaefPJJZs+ezR/+8AcSExOP/cRWpaWljBkzJui2sWPHorWmrKxMPggJIYQQfUyOxUIMfp3VlBhMEhISWbx4CYsXL8HpbKCo6BCrV3/Bvn372LZtC9u2bQEUzuJxZKZPY1TGVLIs6XSp72kPBBbB7M7yDTBX/mct7/qJf9tMiRH/n737jo+iTv8A/pmZLemk0nuHQAClSBEExYIFlRMbZwMLKnr8vFNP0VPPXs7CnQVBDhX1UFFPD8VeaIrSpJMEAqGm120z8/39sSXZZDekbHY2yef9evEimZ3d/e6TbfPM832+PZvS06PRV6VWrFUkJU477bRaHXKFEMjKysK5555ba//169eHa2hERERERG1OKColIo17isdo9OkzGDabHdnZWdi7dzf27NmNw5k5OFGQgy27vsDWg/EYc2Ag+vUbgF69eiM6ugGdHutJkt2rYKguqVmXdgX8/5btuwsMHtvwpMTQCTpOHJKQVL/idWpjWkVS4uqrr66VlGiKOXPm+OaIVXfdddfV2s4EBxERUejxs5ioZWstlRLBWK1WDBo0GIMGDYYQAl99cAy/b92DI8d3o9KWg19//QW//voLAAldu3ZFnz590bt3X3Tv3gOmEM2HmPgHAaGLsCaAOvQQ9eoHUlOn3oF7SBABrSQpMW/evJDd1u233x6y2yIiIqKG42cxUcvXGislgpEkCd26dwZsXTC0/xT0Hl6GCrEXmZn7kJWVidzcQ8jNPYQffvgOJpMZPXv2Qp8+fdGnT1907Nip0SdXG5McaCo2d6Tm0CqSEqHEL0JERETG4mcxUcvX2islaoqOE/D2kYiNi0Xf3iMwbNgICCGQl5eH7OxMZGVlIjs7C5mZe5GZudd9vegYdO/eAz169ETPnr3QuXOXgFVikaKt/V0pPJiUICIiIiKikGpLlRKA/2oY1VffkCQJ7du3R/v27XHaaeOg6zpycw95EhSZOHToEPbs2YU9e3YBAMxmC7p16+5LUnTt2g0WSwM7WTYja+jbYxAxKUFERERERNQU0fFVP9dV6CDLMrp374Hu3Xtg8uQzoaoqcnMPISfnAA4c2I+DB3OQne1OWLj3V9CpUyd07dodXbt2RbduPZCcnBzSfnr1MfZCHWWFQEJKWO+W2ggmJYiIiIiIKKTadKVEA2ZfmEwm9OzZCz179sKkSZOh6zqOHTuKAwf248CB/cjJ2Y/Dh3Nx+HAufv7ZfZ2YmBh06dINXbt2Q7du3dGlS1fExMSE9gHVEJ/k/kfUHJiUICIiIiIiagJztRkWDUlK1CTLMjp37oLOnbtg3LgJEEKgsLAQhw8fwqFDh5CbexBHjhzBvn17sG/fHt/1UlJS0bFjJ991O3bshLi4uDruiShyMClBREREREQUIpoautuSJAkpKSlISUlBRsZwAICqqjh69Ahycw/h0KGDyM09hIKCfBQU5GPHjt99101IaIdOnTqjc+fO6NjR/X+7dolhn/pBdDJMShARERERUUi1xePe/qfqOJIlITGtee/HZDKhW7fu6NatO8aOHQ8AqKysxLFjR3D06FEcOXIYR48eRV7eCZSWlviaaAJAVFS0p/FmB7Rv3wEdOrj/j42NY7KCDMOkBBEREVEIZGdn47777kN5eTksFgvuu+8+jBw50uhhEVGY9EwHeqYLQ+47JiYGvXv3Re/efX3bnE4njh8/hiNHjuDYsSM4cuQITpw4joMHc3DwYE6t63sTFe3bd0RaWhpSU1MRH5/AZAU1OyYliIiIiELAarXi8ccfR+/evZGVlYVbb70Vq1evNnpYRMbgcazhLBaLr6LCS9d1FBUV4cSJ4zhx4jiOHz+GEydOIC/vhK+5ZnVmswUpKalISUlBamqq52f3v9jY2HA/JGqlmJRoxX7//XcsWLDA9/u+ffvw4YcfYtCgQQaOioiIqHXq0qWL7+fevXujrKwMQgieZaQ2ic/6yCTLsq9HxaBBg33bdV1HQUGBJ0lxHPn5eSgoKEBBQT6OHXNXWtQUHR2DlJQUJCYmITk5GT17doEsW9GuXTISExNhMvFQk+qHz5RWbOjQofjkk08AAIcPH8Yf//hHJiSIiKjN2rhxI5YsWYLt27cjLy8Pr776KiZPnuy3z/Lly7FkyRLk5eVh0KBBWLBgATIyMhp8X9988w0GDRrEhAS1XXzqtyiyLCMtLQ1paWkAhvq2CyFQUVHhSVLke/4VID/f/XNu7iHk5h4CIGHjRjNsNhcA9xSWuLh4JCUlITExCUlJSUhISERCQgISEhLQrl07xMTEQpZlQx4vRRYmJdqIL774Auecc47RwyAiIjJMZWUlBgwYgEsvvRTz5s2rdfmqVavwxBNP4OGHH8awYcOwbNkyzJkzB1988QWSk5MBANOnTw942ytXroSiuNcBPHz4MJ555hksWrSo+R4MEVEYSJKEuLg4xMXFoWfPXn6XCSFQWlqCoqIilJQUQ9ftyMk5gsLCQhQXF6G4uBjl5WU4dOhgkNuWER8f70lUtEN8fIIvaREXF4/Y2FjPvzjf+yu1TkxKGCicZ2y++OILPPDAA6EaOhERUYszadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwA8FUgBlNeXo5bb70VDzzwAHr06NHoscpy004ze6/f1NtpjRibuoUqPtWLhFpLrPncqUlCUpK7CkKWJSQlxaKoqAK67q6U0HXdl7QoKipCaWkJSktLq/1firIy9/9Abp33FBVlRVxcHGJj43yJiri4OMTExCA6OgbR0dGIiopCVFQ0oqOjEB0dA7PZHDHVanzu1I1JCQOF84xNYWFho5IZREREbYHT6cSOHTswd+5c3zZZljFu3Dhs2bKlXrehaRruvPNOzJw5ExMmTGj0WEwmGSkpcY2+fnVJSWxEFwxjU7emxicqygFABYCQPZ8jBZ87wdWMTVpaAoBuQffXdR1lZWUoKSnx+1deXo6ysjKUl5f7/lVUlKKiorTeY1EUBdHR0X7/rFYrLBaL7/+6fjabzTCZTFAUBYqiwGQy+X73/t/QpAefO4ExKWGgcJyxAYDVq1dz6gYREVEdioqKoGkaUlNT/banpKQgJycnyLX8/fjjj9iwYQPy8/OxYsUKAMBbb72FhISEBo1FVXWUltoadJ2aAp21JDfGpm6hio/DAXgbSxQUlIdmcAbjcye4psVGQWxsMmJjk9G5c/C9XC4XKirKUVFRgYqKcpSXV6CiogJ2uw02m63a/3bY7TZUVtpQVFSKvLyiJj22OkeuyFAUBbIsQ5ZlX5LC/b/k29a+fRrmz78DJSW2Rj93EhKiYTa3zmksTEpEqFCcsfEK1dQNlpI2H8YmsJpxYXxqY2yCY2yCY2zqryGrZ0yePBk7duwIyf2G6oBH1wUPnoJgbOrW1PgIUfW6aW1x5nMnuOaMjaKYPM0yExt0PVVVPQkLO5xOB5xOp++fy+Ws9rsDTqcLLpcTDocDmqZB0zSoqgpNUz0/a57tqme7+3dd16GqGoQQAf9ZLGbous7nThBMSkSoUJyxAYAjR9zNZoYOHXrynevAUtLwYGyqmM1Krecc4xMcYxMcYxMcY1MlKSkJiqIgPz/fb3thYWGtz2IiOrkImcpPBJPJhLi4eMTFxRs2BlmWuERqHRiZFqah65137twZX3/9dZPvl6WkzYuxqc3l0nzlnoxPcIxNcIxNcKGKTWsqJbVYLEhPT8e6deswZcoUAO65zuvXr8e1115r8OiIiIhaLyYlIlQknrFhKWnzY2z81YwF4xMcYxMcYxNcW4tNRUUFDh6sWpouNzcXu3btQmpqKtLS0nD99dfj7rvvRnp6OjIyMrBs2TLY7XZccsklBo6aqIVipQQR1ROTEhGKZ2yIiIhCa/v27bjmmmt8vz/66KMAgNtvvx3z5s3DtGnTUFhYiJdeesm3FPfixYt9K14RERFR6DEpYSCesSEiIgqfMWPGYM+ePXXuM2vWLMyaNStMIyJqvVgoQUT1xaSEgXjGhoiIiIhaJWYliKiemJQwEM/YEBERERERUVsmGz0AIiIiIiIiImqbmJQgIiIiIqKQ6tjTvbJP5z5tZ4UfImocTt8gIiIiIqKQapcKnDFTh9lq9EiIKNIxKUFERERERCFniTJ6BETUEnD6BhEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQTEoQERERERERkSGYlCAiIiIiIiIiQzApQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIYwGT0Aaj2EENB1DUIEvlyWJTidTqiqCl0PslMbFYmxkSRAlhVIkmT0UIiIiIiIqJViUoKaTAiB8vISVFSUAqj7gDo/X4au6+EZWAsTmbGREBubgLi4dkxOEBHVg81mw7Rp03D++efjz3/+s9HDISIiinhMSlCTeRMSCQnJsFisAIIfvJpMElQ1MioBIk3kxUbA6XSgtLQQABAfn2jscIiIWoBXX30VGRkZRg+DiIioxWBSgppECOFLSMTExJ10f5NJBhBp1QCRIRJjYzKZAQClpYWsliAiOokDBw4gOzsbkydPRnZ2ttHDISIiahHY6JKaRNc1AMJTIUGtkftvKzx/ayKilmnjxo245ZZbMGHCBAwYMADfffddrX2WL1+OKVOmYOjQoZg5cya2bdvWoPt46qmn8H//93+hGjIREVGbwEoJapKqppY8g956uf+2wRqYEhG1BJWVlRgwYAAuvfRSzJs3r9blq1atwhNPPIGHH34Yw4YNw7JlyzBnzhx88cUXSE5OBgBMnz494G2vXLkS3333HXr27IlevXph8+bNzfpYiIiIWhMmJVqJO+64A+vXr8eECRPw/PPP+7Z//fXXeOaZZwAAd955J6ZNm2bUEImIiAwzadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBL0+lu3bsWqVauwevVqVFRUQFVVJCQk4KabbmrUeGW5acl+7/WbejutEWNTN8YnOMYmOMamboxP3ZiUaCWuvvpqXHzxxfj0009921RVxTPPPIPly5dDURRcfvnlOOuss2CxWAwcKRERUWRxOp3YsWMH5s6d69smyzLGjRuHLVu21Os27rrrLtx1110A3JUT2dnZjU5ImEwyUlJO3qepPpKSYkNyO60RY1M3xic4xiY4xqZujE9gTEq0EmPGjMHPP//st23r1q0YMGAAUlNTAQAZGRn47bffMHbsWCOGGHEee+whfP75Z7W2f/bZ10hMTAz/gIiIyBBFRUXQNM33eemVkpKCnJycsI9HVXWUltqadBuyLCEpKRZFRRXQdc6/q46xqRvjExxjExxjU7dQxCchIRpmsxLikUUGJiXCYOPGjViyZAm2b9+OvLw8vPrqq5g8ebLfPsuXL8eSJUuQl5eHQYMGYcGCBU1eUuzEiRPo0KGD7/cOHTrgxIkTTbrN1mbcuNNxzz33+21r166d3++qqsJk4kuFiKitEUI0atWhSy+9tMn3Haov9boueIAQBGNTN8YnOMYmOMamboxPYFx9Iwy8zbUefPDBgJd7m2vddttt+OijjzBgwADMmTMHhYWFvn2mT58e8J+mcUWEprBYzEhJSfX7d9llF+HNN9/AI488gKlTJ+LFF58DAGzduhlz596AKVPGY8aMC/Dyyy/C6XT6bqugIB933/0nTJkyHpdffjG+//4bnH/+mVi1yj2lZtOmXzFhwkhUVlb6rrN27U+YMGGk35h+/PF7XHfdVZgyZRwuv/xiLF++DLpetVTohAkj8dlnH+Puu/+EM88cjz/+cSa2bt3idxtbtmzCrbfOwZlnjsd5503BX/5yJxwOB5YtW4Lrr7+qVhyuuOISvPvu202OJxFRS5SUlARFUZCfn++3vbCwsFb1BBEREYUWT/+GQXM31wqmffv2OH78uO/348ePY8KECQ2+Ha9AjVlaa7OWd955EzfccBNmz74ZAHD4cC7+/Oc7cfPNt+L++x9GQUE+nn32CaiqijvucM8hfuyxh1BcXIR//vM1AMDzzz/jl4Coj61bt+Dxxx/Cn/70FwwdOgwHD+bg6acfg9lswcyZV/r2W7p0MW6//U+YN+//sGTJa3j44fuxYsUnMJlMOHgwB/Pn34aLL/4D7rrrXgDAxo0bIITAtGkX4o03FmHfvj3o12+A5z434+jRIzjnnPPqHJssS2H/e9dsCtRan29NwdgEx9gEx9j4s1gsSE9Px7p16zBlyhQAgK7rWL9+Pa699lqDR0dERNS6MSlhsFA01womIyMDu3fvRn5+PhRFwdatW/HYY4816raCNd1yOp3Iz5dhMkkwmepXeFPf/ZqbJEn46acfMHXq6b5tkyefBQAYPfo0XHXVLN/2xx57BNOmnY8rrnBXGfTs2QN33DEff/3rXzB//p9x8GAOfvllA5YtewcDBgwEANx9919x/fWzIMvu2CiK+3GbTLIvBooi+bYBwNKli3DddbNxwQUXAgB69OiOvLw5WLHiXVx11dW+8Vx00cWYOvVsAMBNN92CmTMvwbFjh9GzZy8sX/5vZGQMw113/cW3/4AB/QEAcXExGDNmLD7//DMMGjQIAPDFF59h3LgJaN8+LVikIMsykpJiwtok1WxWaj3n2BwoOMYmOMYmuLYUm4qKChw8eND3e25uLnbt2oXU1FSkpaXh+uuvx91334309HRkZGRg2bJlsNvtuOSSSwwcNRERUevHpITBQtVc66abbsK2bdtgs9kwceJELFq0CAMHDsSf//xnXHWV+0D6T3/6E6xWa6PGGazplqqq0HUdqioA6LWvWIPJJENVT75fOAghMHLkGMyfX3XwHhMTg5tuug79+w/0G+e+fXuRlbUPq1ZVNcbUdR0OhwPHj+chOzsbZrMZvXv3812vb98BMJvN0HUBVdWhae7tqqr79tE04dtmMsnIzNyLbdu2YsmSRb770TQdQuh+4+nZs4/v98TEZABAfn4BunbtgX379mHixDOCxnnatAvx7LNPYO7cO6BpGr755mssWPBw0P1VVUDXdRQVVcJkcgbcpzm4XBoKCsoBsHlSXRib4Bib4EIVm5bUdGv79u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJ199p8eLFSE5ONmrIREREbQKTEhGqoc21Fi1aFHD72WefjbPPPjskYwr0xbWlf9GPjo5C167dAmyP9vvdZqvEpZdehksuuazWvomJiRACJ/17ybK3QqQqZqqq+u1TWWnDjTfOxemnB5/uA6BG4033/VbvO1GXCRMm4dlnn8S6dT/BZrPBYrFg3LiTT+sxojFPzftjc6DgGJvgGJvg2lJsxowZgz179tS5z6xZszBr1qw69yEiIqLQYlLCYGyu1TL06zcA+/dnB0xgAEDPnj3hdDqxb98e9O/vnr6xZ89uuFwu3z6JiUkAgIKCAsTEuEumMzP3+t1O//4DcOhQTtD7qY++ffth06Zfcd11cwJebjKZcM450/C//30Kh8OOc845j6uLEBERERGRISJjcn8bVr25lpe3udbw4cONGxj5ufrqa7Bly2a88MKz2LdvLw4ezMEPP3yLf/3rRQBA9+49MXLkaDz11GPYtWsHdu3ageeffxpms9l3G127dkP79h2wdOnrOHToIL777mv873//9bufa6+djVWrPsW//70Y+/dnY//+bHz55edYtmxJvcc6a9Z1+P33rXjxxeeQnZ2J/fuzsWLFu7Db7b59LrhgOn7+eR02b/4N06Zd1MToEBERERERNQ6TEmFQUVGBXbt2YdeuXQCqmmvl5eUBAK6//nq89957+Oijj5CVlYWHHnqIzbUiTL9+A/DSS69i//5szJ17A+bMuQbLli1BWlp73z4LFjyCpKQk3HbbjXjwwb/iiiuuRkxMjO9yk8mEBx/8O/bu3YNrr70Sn376Ca6//ka/+xk7djyeeOI5rF+/FrNn/xFz596AlSvfR6dOnes91u7de+C55xZi587tmDPnGtx224347bdf/KaX9OrVG/37D0S/fgPQp0/fJkSGiIiIiIio8SQhRNuYTGqgn3/+2a+5lpe3uRYAvP3221iyZImvudYDDzyAjIyMcA81KJdLQ3Fx7eUtVVVFfv5hpKZ2qdcUgEhqdBkO559/Jm677U+YNu3Ck+4bztjouo6ZM6fjqquuwaWX1u6TUV1D/8ahcvHF0/Dxx6sAuJvypaTEoaCgvM3Mf68vxiY4xia4UMUmMTGmxTS6bEmCfeY2BJ//wTE2dWN8gmNsgmNs6haK+LTmz1xOJA8DNteiSFJYWIBVqz5FeXkZzj13mtHDISIiIiKiNoxJCaI25qKLzkFSUjLuuWeBr+EmERERERGREZiUIGpG//vfN0YPoZY1a341eghEREREREQA2OiSiIiIiIiIiAzCSglqNg88cC9+/32b3zZJApqjterQoRn4+9+fDP0NExERERERUbNhUoKaTaAkQaSsvvHhh//B66+/glWrvoUsuwuGCgryMX36uTj99DPwxBPP+vZdvXoVnnzy7/jii+9gtUY16v6++eYr/O1vf8UZZ0zBo48+Xevyv/3tPvTp0xfXXHMDJkwYCYvFivfeW4n27Tv49rn99pswcOBg3H77nxo1BiIiIiIiokjD6RvUJo0YcSrKy8uxd2/VqihbtmxC+/YdsHXrZlRfKXfLlk0YNCi90QmJ48eP4V//egEZGcMDXq6qKn7+eT1OP32i3/alS19v1P0RERERERG1FExKUJvUq1cfJCYmYfPm33zbNm/+Deeeez7MZjMyM/f5bT/llJGNuh9d1/Hoo3/DtdfORpcuXQPus2XLJsTFxaFfv/6+bTNmzMSqVZ/i4MEDjbpfIiIiIiKiloDTN6hNkiQJw4efgs2bf8OVV84C4E4O3HnnXTh8+BA2b/4N/fr1R35+HnJzD2HEiFMBALNmzcTx40eD3m5Gxgg899xLvt/feedNREVFYfr0S7F9+7aA11mz5keMH3+637bhw09BVlYmFi16BY8++lRTHy4REREREVFEYlKC2qwRI07F66+/DF3XUVJSjNzcQxgyZBgOHTqEjRt/xsyZV2LTpt9gsVgwZMhQAMCzz74IVVWD3qbVavX9vGfPbnzwwX+wZMlbdY5j7dqfcPfdf621/ZZbbsOcOddg9+6dGDhwcCMfJRERERERUeRiUoLarFNOGenrK3HkyGEMGDAI0dHRGD58BBYvfhVCCGzZ8hsGDx7i6yfRsWOnet220+nEI48swJ/+9GekpKQG3S8rKxOlpcUYMaL29JD+/Qdi8uQz8eqr/8QLL7zcuAdJREREREQUwZiUoDarV6/eSEpKxubNv+Ho0cMYPvwUz/Y+kCQgM3MftmzZhDPPPNt3nfpO3ygoyEdOzgH87W/3+S7TdfeqI5MmjcEHH3yKtLT2WLPmB4wZMw4mU+CX4o033oqrr/4DfvttYygeMhERERERUURhUoLatBEjTvUlJW699U4A7n4TGRnD8c03X+LgwRxfPwmg/tM30tLa48033/O77PXXX4Hdbse8efORlJQMwN1P4rLLrgh6e127dsMFF0zHq68ubPTqH0RERERERJGKSQlq00aMOBUvv/winE4nMjKG+bYPGzYCS5YsgsViQXr6UN/2+k7fMJlM6N27r9+2uLh4KIri215QkI99+/bgtNPG13lb119/Ey6/fDqEAHtLEBERERFRq8IlQalNO+WUkbDZbOjXbwBiY+N824cPPxU2W6Wnn4S1jltovLVrf8LQocOQkJBQ536pqan4wx+ugNPpaJZxEBERERERGYWVEtSm9ejRE2vW/Fpr+8CBgwJub4r773/I7/c1a37EhAkTa+0X6H7nzp2HuXPnhXQ8RERERERERmOlBJFBhg0bjilTpho9DCIiIiIiIsOwUoLIIFdffa3RQyAiIiIiIjIUKyWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBTSJJ3p+EkcOgZuX+21b9rYmIiIiIiEKDjS6pSWRZgSwrKC7OR3x8IhTFBKCuo1cJqsoERmCRFhsBTVNRVlbs+zsTERERERGFEpMS1CSSJCElpRNKSwtRVHTipPvLsgxd18MwspYnUmNjtcYgKak9JJZKEBERERFRiDEpQU2mKAqSktIghA5d1yGCnOyXZQlJSTEoKqqErkdSRYDxIjE2kuROlEgSZ3kREREREVHzYFKCQkaSZChK8ANYWZZgsVhgMjkj5sA7UjA2RERERETUFvEUKBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAhJiGBtCYmq6LqApjV9ZQizWYHLpYVgRK0PY+Nv797d6N9/oO93xic4xiY4xia4UMRGUWTIMlfmCTV+5jY/xqZujE9wjE1wjE3dmhqf1vyZy6QEERERERERERmC0zeIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgupt+fLlmDJlCoYOHYqZM2di27Ztde7/+eef49xzz8XQoUNx4YUX4scff/S7XAiBF198ERMmTEBGRgauu+465OTk+O1TXFyMu+66C6eccgpGjRqF+++/H5WVlSF/bKEQ7vjk5ubivvvuw5QpU5CRkYGzzjoL//znP+FyuZrl8TWFEc8dr+LiYkycOBEDBgxARUVFyB5TqBgVm2+//RYzZsxARkYGxo4di3vuuSekjysUjIjN1q1b8cc//hGnnnoqRo8ejZtvvhlZWVkhf2yhEOr4fPnll5g9ezbGjBmDAQMGYO/evbVuoyW9J7cFoX4OtCYNic2+ffswb948TJkyBQMGDMDbb78dxpEaoyHxWbFiBa666iqMGjUKo0ePxg033IDff/89jKMNr4bE5uuvv8aMGTMwcuRIDB8+HNOnT8fHH38cvsGGWUPfc7wWLVqEAQMG4KmnnmrmERqnIbFZuXIlBgwY4Pdv6NChYRxtBBJE9fC///1PpKeniw8++EDs27dPLFiwQIwaNUoUFBQE3H/Tpk1i0KBB4vXXXxeZmZnihRdeEOnp6SIzM9O3z2uvvSZOPfVU8dVXX4ldu3aJW265RZx11lnC4XD49pk9e7a46KKLxJYtW8TGjRvF1KlTxV/+8pdmf7wNZUR8fvjhB3HvvfeKn376SRw8eFB8/fXXYuzYseKZZ54Jy2OuL6OeO17z5s0Ts2fPFv379xfl5eXN9jgbw6jYfPHFF2LUqFHivffeE9nZ2WLv3r1i9erVzf54G8KI2JSVlYlRo0aJ++67T2RnZ4vdu3eLm2++WZx55plhecwN0Rzx+eijj8TChQvFihUrRP/+/cWePXtq3U5LeU9uC5rjOdBaNDQ2W7duFU8++aT47LPPxPjx48Vbb70V5hGHV0Pj83//93/i7bffFjt37hSZmZni3nvvFSNHjhTHjx8P88ibX0Nj88svv4jVq1eLzMxMkZOTI958800xaNAgsXbt2jCPvPk1NDZe27dvF5MnTxYXXnihePLJJ8M02vBqaGw+/PBDMXr0aHHixAnfv7y8vDCPOrIwKUH18oc//EE88sgjvt81TRMTJkwQixcvDrj/nXfeKW6++Wa/bZdddpl4+OGHhRBC6Louxo8fL5YsWeK7vLS0VAwZMkR8/vnnQgghMjMzRf/+/cXvv//u2+eHH34QAwcOjLgXrhHxCeT1118XZ599dlMeSsgZGZv3339fXHHFFWLdunURmZQwIjYul0ucfvrpYsWKFaF+OCFlRGy2bdsm+vfv7/dFe9OmTaJ///4n/dIVbqGOT3WHDh0KmJRoSe/JbUFzPgdauobGprrJkye3+qREU+IjhBCqqooRI0aI//73v801RMM0NTZCCHHxxReLhQsXNsfwDNWY2FRWVorzzjtP/Pjjj2LWrFmtNinR0Nh4kxJUhdM36KScTid27NiB8ePH+7bJsoxx48Zhy5YtAa+zZcsWv/0BYMKECb79c3NzkZeX57dPfHw8hg0b5ttn8+bNSExMxJAhQ3z7jBs3DpIk1btcLByMik8gZWVlaNeuXaMfS6gZGZuDBw/ihRdewNNPPw1Zjry3OqNis3PnThw/fhySJOGiiy7ChAkTcMsttwSd/mIEo2LTq1cvJCYm4v3334fL5YLNZsNHH32EoUOHIjk5OaSPsSmaIz710VLek9sCo54DLUFjYtOWhCI+NpsNqqpG1PeNUGhqbIQQWL9+Pfbv349TTz21GUcafo2NzZNPPokxY8bg9NNPD8MojdHY2JSXl+OMM87ApEmTcOuttyIzMzMMo41ckfdNnSJOUVERNE1Damqq3/aUlBTk5eUFvE5+fj5SUlKC7u/9v67bDHQbJpMJ7dq1Q35+fuMfUIgZFZ+aDh48iLfffhtXXHFFox5HczAqNqqq4i9/+QvuvPNOdOvWLSSPJdSMis2hQ4cAAC+//DLmzZuHl19+GWazGddcc03E9AYwKjZxcXFYtmwZVq5ciWHDhmHEiBHYsmULXn755ZA8rlBpjvjUR0t5T24LjHoOtASNiU1bEor4PPfcc+jUqRNOO+205hiiYRobm7KyMowYMQJDhgzBTTfdhAcffBBjx45t7uGGVWNi891332HDhg24++67wzFEwzQmNr1798YTTzyBV199Fc888wx0XceVV16J48ePh2PIEYlJCWo0IQQkSQp6eaDLam6r+XvN2wx0Gye730gRjvh4HT9+HHPmzMH555+PSy+9tJEjDp/mjs2rr76KpKQkXHbZZSEYbXg1d2x0XQcAzJ07F1OnTkVGRgaeeuoplJaW4vvvv2/i6JtXc8fGbrdjwYIFOO2007BixQq888476NSpE2677TaoqhqCR9C8QhGfk2nJ78ltQTieAy0Vn6d1q298Xn/9daxatQoLFy6ExWIJw8iMd7LYxMbG4uOPP8YHH3yA+fPn4/HHH8evv/4axhEaJ1hsCgsL8cADD+Dpp59GdHS0ASMzXl3Pm+HDh+Oiiy7CwIEDMXr0aCxcuNBXqdlWmYweAEW+pKQkKIpS60xYYWFhraygV2pqaq39CwoKfPunpaUBcJ+9rF4WXVhY6CsNDnQbqqqitLS01tkeIxkVH6/jx4/jmmuuwfDhw/HQQw819eGElFGx+fnnn/Hrr79i8ODBANwfDAAwatQo3HHHHbjllltC8OiaxsjXFeCequAVExODzp0748iRI018VKFhVGw+/fRTHD9+HO+//77vi8Q//vEPjBo1CuvWrcPEiRND8wCbqDniUx8t5T25LTDqOdASNCY2bUlT4rNkyRK89tprWLp0Kfr379+cwzREY2MjyzJ69OgBABg0aBCysrKwaNEijBw5slnHG04Njc2+ffuQl5eHK6+80rdN0zRs3LgRb7/9dqtavSUU7zlmsxmDBg2KqKm04cZKCTopi8WC9PR0rFu3zrdN13WsX78ew4cPD3id4cOHY+3atX7b1q1b59u/a9euSEtL87vN8vJybN261bfPiBEjUFxcjB07dvj22bBhA4QQyMjICM2DCwGj4gNUJSTS09PxxBNPRFzvBKNi8/jjj+OTTz7Bxx9/jI8//hiPPvooAOC9997DzJkzQ/cAm8Co2AwdOhRms9nvg89ut+PYsWPo3LlzaB5cExkVG7vdDlmW/c5seH/3JrYiQXPEpz5ayntyW2DUc6AlaExs2pLGxmfx4sV4+eWXsXjx4la7dGGonjtCCDidzmYYoXEaGpuhQ4fi008/9X0P+/jjjzFkyBBccsklWLlyZRhH3vxC8bzRNA379u3znUBpk8LWUpNaNO9SNytXrhSZmZnigQce8Fvq5i9/+Yt49tlnffv/9ttvYtCgQWLJkiUiMzNTvPTSSwGX5xs5cqT4+uuvxe7du8XcuXMDLgl68cUXi61bt4pff/1VnH322eLPf/5z+B54PRkRn2PHjompU6eKa665Rhw7dsxvWaFIYtRzp7oNGzZE5OobRsXmkUceEZMmTRJr164VmZmZ4q677hKTJk0SFRUV4XvwJ2FEbDIzM8WQIUPE3//+d5GVlSV2794t5s2bJ8aOHSuKi4vDG4CTaI74FBUViZ07d4rvv/9e9O/fX3zxxRdi586doqioyLdPS3lPbgua4znQWjQ0Ng6HQ+zcuVPs3LlTjB8/Xjz77LNi586d4vDhw0Y9hGbV0PgsWrRIpKeniy+++MLvu0akfaaGQkNj89prr/mWZs/MzBRLly4VgwcPFh988IFRD6HZNDQ2NbXm1TcaGpuFCxf6njfbt28X8+fPFxkZGSIrK8uoh2A4Tt+gepk2bRoKCwvx0ksvIS8vD4MGDcLixYt9ZdBHjx71O0t/yimn4LnnnsMLL7yAf/zjH+jZsyf+9a9/oU+fPr59brzxRthsNjz44IMoLS3Fqaeeitdff91vjuKzzz6Lv//977j22mshyzLOOeccLFiwIHwPvJ6MiM/atWuRk5ODnJycWmXle/bsCcOjrh+jnjstgVGxueeee6AoCv7v//4PLpcLI0aMwNKlSxETExO+B38SRsSmT58+ePXVV7Fw4UJcdtllMJlMGDJkCBYvXhxxXeabIz7ffvst/vrXv/p+v+OOOwAATzzxhK9XTUt5T24LmuM50Fo0NDYnTpzAxRdf7Pt90aJFWLRoES655BI8+eST4R5+s2tofN599124XC7fe4LX7bffjnnz5oV17M2tobGx2+145JFHcOzYMURFRaF379545plnMG3aNKMeQrNpaGzakobGprS0FA888ADy8vLQrl07DBkyBP/5z3/Qu3dvox6C4SQhIqgmlYiIiIiIiIjajLaZziIiIiIiIiIiwzEpQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBAmowdARFSXhQsX4p///Get7WPHjsW///3v8A+IiIioleJnLhEZgUkJIop48fHxWLx4ca1tREREFFr8zCWicGNSgoginqIoGD58+En3s9vtiIqKav4BERERtVL8zCWicGNPCSJqkXJzczFgwAD897//xd13342RI0filltuAQAUFxfjwQcfxLhx4zB06FBcccUV2Lp1q9/1S0tLcdddd2H48OGYMGECXnnlFTz11FOYMmWKb5+FCxdizJgxte57wIABePvtt/22vf/++zj//PMxZMgQTJ48Ga+//rrf5ffeey8uvfRSrF27FhdeeCGGDx+OK6+8Evv27fPbT9M0vPbaazjnnHMwZMgQTJw4Effeey8AYPny5RgxYgQqKir8rrNhwwYMGDAAu3fvbmAUiYiITo6fuVX4mUsUeqyUIKIWQVVVv9+FEACAp59+GlOnTsWLL74IWZbhdDpx/fXXo7S0FHfffTeSk5Px7rvv4rrrrsOXX36JtLQ0AMBf//pX/PLLL7jvvvuQmpqKN954AwcPHoTJ1PC3xcWLF+P555/HnDlzMHr0aOzYsQMvvvgioqOjMWvWLN9+R48exdNPP425c+fCarXi6aefxp/+9Cd89tlnkCQJAPDggw/ik08+wezZszF69GiUlJTgiy++AABceOGFeOqpp7B69Wpceumlvtv96KOPkJ6ejoEDBzZ47ERERDXxM5efuUThxKQEEUW84uJipKen+2179NFHAQDDhg3D3/72N9/2999/H/v27cNnn32Gnj17AgDGjRuHc889F2+88Qbuuece7Nu3D19//TWef/55TJs2DQAwZswYTJ48GXFxcQ0aW3l5Of71r39h7ty5uP322wEA48ePh81mwyuvvIIrr7wSiqIAAEpKSvDuu+/6xiWEwG233Ybs7Gz06dMHWVlZ+OCDD3D//ffjmmuu8d2Hd4wJCQk4++yzsXLlSt8XpIqKCnz55Ze46667GjRuIiKiQPiZy89conBjUoKIIl58fDyWLl3qt81isQAAzjjjDL/t69evR3p6Orp27ep3pmfUqFHYvn07AOD3338HAL+y0djYWIwbNw7btm1r0Ng2b96MyspKnHvuuX73d9ppp+Hll1/GsWPH0KVLFwBAly5dfF+OAKBPnz4AgOPHj6NPnz74+eefAcDvjExNf/jDH3Ddddfh0KFD6NatGz7//HOoqooLLrigQeMmIiIKhJ+5VfiZSxQeTEoQUcRTFAVDhw7125abmwsASElJ8dteVFSELVu21DrLAwDdu3cHAOTn5yM2NrZWg66at1UfRUVFAIDzzz8/4OVHjx71fUGq2b3cbDYDABwOBwD32amYmJg6zxyNGTMG3bp1w8qVK3HnnXdi5cqVOPPMM5GYmNjgsRMREdXEz9wq/MwlCg8mJYioRfPOC/Vq164dhgwZgoceeqjWvt4zPampqaioqKjVObygoMBvf6vVCpfL5betpKSk1v0BwGuvvRbwC1avXr3q/VgSExNRWVmJ8vLyoF+SJEnCjBkzsGLFCkyfPh2//fZbrQZfREREzYGfufzMJWoOTEoQUasyduxYrF27Fp07dw56FsZ7Bujbb7/1zR2tqKjAunXr/L6YdOjQARUVFTh+/Dg6dOgAAFi7dq3fbY0YMQJRUVE4ceJErbLWhjrttNMAAB9//LFfs66aLrnkErz00ku477770KFDB4wfP75J90tERNQY/MwlolBgUoKIWpWLL74Y7733Hv74xz/ihhtuQLdu3VBcXIxt27YhLS0N1113Hfr164cpU6bgoYceQnl5OdLS0rBkyZJapaWnn346oqKicN999+H6669Hbm4u3nvvPb99EhIScPvtt+Oxxx7D4cOHMWrUKOi6jgMHDuDnn3/Gv/71r3qPvXfv3rj88svx5JNPoqCgAKNGjUJpaSlWr16N559/3rdfhw4dcPrpp+P777/HzTff7GvqRUREFE78zCWiUGBSgohaFavVijfffBMvvvgiFi5ciIKCAiQnJyMjI8OvydaTTz6Jhx56CI8//jhiYmJw1VVXYejQoVi9erVvn+TkZLz00kt4+umncdtttyE9PR3PPfec70yP14033oj27dtj2bJlWLp0KaxWK3r27Flrv/r429/+hs6dO+P999/H66+/juTk5IBnZc466yx8//33dTboIiIiak78zCWiUJCEd+FhIqI2zrse+bfffmv0UE7qzjvvRF5eHt555x2jh0JERNRg/MwlIi9WShARtSB79uzB9u3b8dVXX+Ef//iH0cMhIiJqtfiZSxQeTEoQEbUgc+fORVFREa666iqce+65Rg+HiIio1eJnLlF4cPoGERERERERERlCNnoARERERERERNQ2MSlBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQJqMHQC2Drgtomt7k2zGZZKhq02+nNWJs/B06dBDdunX3/c74BMfYBMfYBBeK2CiKDFmWQjQi8uJnbvNjbOrG+ATH2ATH2NStqfFpzZ+5TEpQvWiajuLiyibdhixLSEmJQ2mpDbouQjSy1oGxqe2Pf7wGH3+8CgDjUxfGJjjGJrhQxSYxMQayrIRwZATwM7e5MTZ1Y3yCY2yCY2zqFor4tObPXE7fICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgo0uiYiIiIioxRBCQNc1iDD3U5RlCU6nE6qqspljDYxN3eoTH0kCZFmBJLXOFTbqwqQEERERERFFPCEEystLUFFRCsCYA9/8fBm6zmUvA2Fs6laf+MiygpSUTlCU1rnKRjBMShARERERUcTzJiQSEpJhsVgBhP+MsskkQVVZCRAIY1O3k8dHoLg4H6WlhUhKSgvbuCIBkxJERERERBTRhBC+hERMTJxh4zCZZACsBgiEsalbfeITH5+IoqITEEKHJLWd9o9t55ESEREREVGLpOsaAOGpkCBqnRTFXTPQ1qbBsFKCiMJLF5BKdUjlOuAQ7tSoVYaeKAMxzJMSERFRbVVNLdteE0BqS9zP73A3cTUakxJE1OzkIyqUHQ4omU7IR1RIzsD7iVgJWncztL5mgHMSiYiIiIhaPSYliKh5aALKVgfMP9mgHFF9m4VVgtZNgUiQIaIkSDoAu4BcpEHK02Da5YRplxPKQRVRrxfDNSEaYjBLNYmIiIiay5Ilr2HdujVYsuQto4dCbRCTEkQUcspeJyyflEPO1wAAekcF6ogoqAMsEB0UQA5SeukSkHNdUHY6Ib4ElEwXlEwX9G4maFeZgNQwPggiIiKiJnrssYdgs1Xi0Uef9m1btepTPPPM45g//25cdNElDbq9TZt+xR133BLwstdfX4ZBg9IbNc4rr/wj/vCHyxt13ZbsD3+4EFdeOQszZrS9xx5JmJQgotBxCFg+LoN5kwMAoPUxw3lWDPReZkCqxxxQswS9l8X9b5EZ9j8mwPxtJZRDKhxPHYV5TBQc58cCVvaeICIiopbn/fffw8svv4gFCx7GmWee3eDrDx06DJ988oXftsWLX8Wvv/6CgQMHN3pcMTExAGIaff3WTFVVKIoCqT7fZalRmJRo5bKzs3HfffehvLwcFosF9913H0aOHGn0sKgVkvJVRL1ZCvm4Bj1BhnN6HLQhTZh2IQHaECu0wRaYtzlh+V8FTD/bIe9zwn5NO4hOfPsiIiKilmPp0tfx9tv/xuOPP4OxYyc06jbMZjNSUqpKR1VVxZo1P2LGjJl1HjSXlpbiX/96AWvW/ABVVZGePhR33vln9OjRE0Dt6RuqqmLhwn/giy/+B5PJhEsvnYn9+7MQHR2D++9/CADgcDiwaNHL+Prr1aisrEDfvv1x221/wpAhQwG4K0L+9a8XcP/9D+Oll/6BwsICjB49Bvfe+yDi4tzLun733dd4441FOHw4F9HR0RgwYBCeffYlyLLsqzLp1asPVq5cAU3TMG3ahbjttj9BUZQgY+iH226b7xsDAGzZsgmLFr2MPXt2wWKxYsiQoXj00adx113zcOzYUTz//DN4/vlnAABr1vzqG/c99zyAV19diNzcQ/jkk9V44IF7MHDgYNx++598tz179h8xbtwEzJ59MwBgwoSRuPvu+/H9999i69ZN6NKlKxYseBiyrOCZZx5DVlYmhg4dhgcf/DuSkpIb9RxojfitvpWzWq14/PHH0bt3b2RlZeHWW2/F6tWrjR4WtTLyERVRi4shVQio/c1wXJkQupU0ZAnaKVGIHpOE8tePQtnhRPTLxXBcFQ9tEHtNEBERUWQTQmDhwn/gs88+wXPPLcTw4af4Xf7mm2/grbeW1nkbb731Pjp27Fhr+5o1P6CkpBjnnXdBndd/8MF7ER0djeee+ydiYqLx/vv/wfz5t2H58g8QHR1da//ly5fhm2++xAMPPIIuXbrh3XffwsaNP2PixMm+fV544Rnk5BzA3//+JFJSUvHNN19i/vzb8M47HyAtrT0AoLKyEh9+uAJ///sTsNvteOCBe/H22//GLbfcjvz8fDz00P249dY7MHHiZFRUVGDTpo1+4/j55w2wWqPwz3++jkOHDuKJJx5BamoarrrqmoBj+OqrL/zGcPBgDubPvw0XX/wH3HXXvQCAjRs3QAiBxx9/BtdddxUuueQPmDbtQr/7raysxHvvvY37738YsbGxiI2NrTO+1f3734sxb958/OlPd+GFF57FI488iOTkZNx++52IiorF3/72Vyxa9DLuuWdBvW+ztWNSopXr0qWL7+fevXujrKwMQgiWH1HIyEfcDSmlSgHX+Gg4L4gN3jOiCaQEBc5r20H5ugKWLythfbMUjqsSoA1lYoKIiKgtsqwohWlHkCW9mok+xAr1svgGXWfdujVwuVz45z8X1UpIAMDFF8/AlClT67yN1NTAjbU+++wTjB59Gjp0qJ2w8Nq6dQv27NmN//53NcxmMwBg/vy/4Mcfv8O6dWtw5pm17/vDD1fgmmtuwIQJkwAAf/nLfVi/fq3v8mPHjmHVqk/x0UerkJycAgC44YY5WLPmR3z55ee4+uprAQAulwt/+ct9voTKeeddgN9+cyceCgryoWkaJk2ago4dOwEA+vbt5zcOq9WKe+5ZAIvFgl69eiM39xD+85/luOqqawKO4brr5mDdujW+Mbz99r8xdOgw3HnnXb7b7NOnLwAgKioKsiwjJibGr/rEO+4///mv6N27T9C4BnPBBdMxefJZANy9OubPvw033XQrRow4Faqq44ILLsYnn3zY4NttzZiUiHAbN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkKGSkUg3WN0ogVQo4J0XDdV5s/XpHNPoOJbjOjIVIUmBZUQbrO6VwXJ3QtGkiRERERM2ob9/+KCwswOLFr+LZZ19CVFSU3+UJCe2QkNCuwbd74sRx/PLLBjzyyBN17peZuRcVFeWYNm2K33aHw4EjR3Jr7V9eXo7CwgK/pplms9kvYZCdnQlN03D55Rf7XdfpdPrtFxsb61fhkZKSgqKiIgDuBMSIEafimmuuwGmnjcPo0adh8uQzERsb59u/X7/+sFgsvt+HDBmKl1/OR3l5eb3GkJm5DxMnnlFnfAKxWq2NSkgAQJ8+VY/fmyzp1at3tW3JvhiQG5MSEa6yshIDBgzApZdeinnz5tW6fNWqVXjiiSfw8MMPY9iwYVi2bBnmzJmDL774AsnJVfOUDh8+jGeeeQaLFi0K5/CpNXMJWN8shVymwzUqqvkTEtWop0RBALCuKIP1vVLYb0mE3tUclvsmIqLWq7CwAKtWfYauXbth0qTJPJET4ZwzExDeOgnAZJIBVW/QdTp06ICHH34c8+bdjL/85U4888yLfomJxk7fWLXqUyQktPNVMwRjs1UiLa09XnzxlVqXJSQkBL1ezee/EMLvNk0mE954Y7lvP0WRoGnCb6qDyeR/uClJEoTQPfsrePHFV/D771uxYcM6vPvuW1iy5DUsWfKW72A+2GtQkgKPwash0y0CqZk4AgBZlv1iALh7b9RU/TF7h+W/rSoG5MakRISbNGkSJk0K/kazdOlSXH755ZgxYwYA4OGHH8b333+Pjz76CLNnzwbgznbeeuuteOCBB9CjR4+wjJvCSBeQD6lQdjogH9MgF2sQEoBoGVo3E/Q+Fmj9zCGfUmH5ogLKIRVaDxOcF8eFLSHhpZ0SBVeZDsuqCliXlcI+LxEiQQnrGIiIqHX5738/RlbWPuzZswtdu3arVUreUFKpBmWfC+oIa7NMbaSWo3PnLli48DXMm3cz7r77T3j66Rd8B76Nmb4hhMD//vcpzj33/FoH/jX17z8Q+fl5MJvNdU7z8IqLi0Nycgp27tyBIUPc1dculwtZWZm+XhH9+vWHqqooKSn27WMyyVAbmLCRZRnDho3AsGEjcMMNN+HCC6fi55/X+3pk7N27B06n01ctsWPHdqSkpCI2Ni7gGGrq27cfNm36FdddNyfg5SaTGZpWvzEnJiahsLDA93tlZWXAShNqOCYlWjCn04kdO3Zg7ty5vm2yLGPcuHHYsmULAEDTNNx5552YOXMmJkxoXJffqttu2oep9/pNvZ3WqFGx0QWUbQ6YvqyAnKcF2EGDku0CfrBBT1GgTomBNioqJMkDKccF01obRLQE5x/bQbY0zxKdNeNSMz7aGTFQj2sw/WaH9cNyOG9oF/bkiNH4ugqOsQmOsSGqraysFFlZ+3y///rrL01OSkQtKnF/RusC6qjazQSpbfEmJu644xa/xERjpm/89ttGHD16GBdcMP2k+44cORqDB6fjr3+9C3PnzkOXLt2Ql5eHNWt+wAUXTPetwFHdjBkz8eabb6BLl67o0qUr3n33LTidDl9FQvfuPXHmmVPxyCMP4Pbb56Nv334oLS3G+vXrMHz4KRgx4tSTjmvHju347bdfMHr0aUhMTMKWLZtgs9nQvXvVeBwOB5555nFcffW1OHQoB2+9tRRXXfXHoGMoKirCL7+s941h1qzrcO21V+DFF5/DhRdOhyTJ2LjxZ1x00SWIiopCp06dsGXLJkyefCbMZgsSExODjnfEiFPxyisL8fPP69G+fQcsXfo6AH6OhgKTEi1YUVERNE2rlTlNSUlBTk4OAODHH3/Ehg0bkJ+fjxUrVgAA3nrrrTpLtQIxmWSkpMSdfMd6SEpqWjlVpBAuAVGoQpRpkMwSpCQTpCaeqa9vbPRCFc4lJ6DvtQMA5L5WKKPioPSPgpTqflmLYg16lh3qhnJgtx2W98sg71RhuSENclLjX/rCJWBfmQshAMsVqYjt3bBmT/VlNiu1nnOB4iNujIX98GEou51ot1PANLF5xhPpWsvrqjkwNsExNqFns9kwbdo0nH/++fjzn/9s9HCoAQ4cOAAAGD78FOzatRO7d++C3W6vKuPWBcyfV0DvZYY2+CS9jHQB2AXkPA1OzYl1X/+ELp0Ho0uXrs37ICjiVa+YuOee+XjqqecDThU4mc8++wRDh2agZ89eJ91XlmU8++xLePXVf+HRRx9CaWkJUlJSMWLEqUGPCa6++loUFOTj4YcXwGx2LwmakTHcr7/DggWPYOnS1/HSS88hPz8PSUnJGDIkA2eddU69HkNsbCy2bNmMFSveQWWlDZ07d8bdd9+P9PQhvn3GjDkNaWntceutc6BpKs4770JcccWseo+he/ceeO65hXjttX/hk08+RFRUNIYOzcD06ZcCAGbPvgXPPPM4Lr/8YjidTqxZ82vQ8V5wwXTs3bsHf/vbfYiKisINN9yEw4dZKREKkqg5MYYi1oABA/waXR4/fhwTJ07E+++/79fY8qmnnsKWLVvw7rvvhuy+XS4NpaW2Jt2GLEtISopFUVEFdL0RTztdQCrWgXJ3iZVIkIEEObzlkJ7qBOU3O+QsJyRXjYtTFWiDLdDGx0Ak1z9B0ZDYyNlOWJa5m0vqnUxwXRQHva+lzutIOS5YVpRCPqFBT5ThvCUJIqVxCRRlbSUsH5dD62uG86bEZqtMuOii8/Df/34O4OTxkQ66YP1nEWCRYP9zMpDYdqZxNPl11YoxNsGFKjYJCdEwm9vO660+nn/+eRw4cADdunVrdFLC5dJQXFzZpHHIsoSUlDgUFJTz+V9DsNisWvUZ1q9fg0svvQxZWZnYunUzLh/7B5xa0A+Oy+Ih56qIfr0EAFDx91SYf6yEemoURFLt14D17RKYfnd3O3gn8yNslndDHhqH+fP/jPj4hp0YCrdIfe6oqor8/MNITe1y0ukKzakxUxRaA1VVMXPmdFx22ZW48spZAfcJdWwee+wh2GyVePTRp0N2m0aqT3zqep4nJsa02s9cVkq0YElJSVAUBfn5+X7bCwsLgy4b1BSh+mDSddGg25KznTD/bIey1wmp0v96erwMbaAF6tgo6F2at9GhsscJy3/LIee7p0oIqwSttwkiTgZcAnKhBvm4BvlHG0xrbFDHRMF5Xhxgrf9B+8liI2c7YXmjBJILcI2LhvP8WMAkuc/I1KWbCbY7kmD9sAymzQ5YXimC/ebEhicmVAHrt+4vys7z49x324x5zZqxCBqfria4JkbD8oMNptUVcDZwqa7WoKGvq7aEsQmOsQmtAwcOIDs7G5MnT0Z2drbRw6EGOnTIXWXarVsPWK1R2Lp1M7KWbMKYvj2gd7JBVEt4Wz4rd3832e2E/fakWrflTUiUucqxtXAnkCTB5XJi27atGD/+9PA8IKImOHLkMDZt2oiMjBFwOBz4z3+Wo6Sk2LfUJVEoMSnRglksFqSnp2PdunWYMsW9xI+u61i/fj2uvfZag0fXdNIJFdaV5VD2u8sRhAJo3U0Q7WRAAFKxDvmICvNGO8wb7VDTLXBOj4NoF+IMoiZgWVUB8xp3pYjWxwzXpBhofczuhED1MRdrMG20w/yTDeb1dihZLthnJUB0aPpLTT6iImqpOyHhPC8WrjNiGnYDZgmOmfEQMmD+zQHr8lLYb02s9RjqYtpoh1yqQx1sgd45st4+XJNjYN5oh+k3O1ynR0N0jKzxEVFkC8US3E899RTuvvtubN68OdzDpyZSVRVHjhxBTEwMUlJSkJCQAEUxYXdxJjRdg1Su+00dN//smT55rHbn/eq2FeyCEAJd47siB/nYt28vkxLUIsiyjM8++y8WLnwegHtZ04ULX6u1AghRKPBbe4SrqKjAwYMHfb/n5uZi165dSE1NRVpaGq6//nrcfffdSE9PR0ZGBpYtWwa73Y5LLrnEwFE3nWmjHZZPyiC5AL29AufkGGjp1tpVB5U6TFsdMH9XCdMOJ5QDRXBcngBtQN3TGepNFbC+WwrTdidEtATHjHhoQ4PPIxWJClxTY+EaGw3rf0ph2utC9CvFsN2cCNGpCS83h4B1eSkkJ+CcGtPwhISXLME5Ix5ygQblgArzVxVwnVfPXiGagPk7d5WE66xG3n9zipbhnBID62cVsHxeAcf1DV/vOxApX4V8RINcpEGYJYg4GVpvMxDXPM09icgYTV2C++uvv0bPnj3Rq1cvJiVaoMOHc6HrGrp16wFJkmCxWDCwshv2aDuRVZaDXq7BkPJrN5UWCXV/Fmwt3AEAuKD3VCwxfYwDB/bD5XLBbOYy1hTZOnbshFdffcPQMdx//0OG3j+FD5MSEW779u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJd+Zm8eLFSE5ONmrITWb6sRLW/1VAyIDzHM8BeLC+ETEy1LHRUEdGwbKqHOZ1dliXlsBxdUKdyYN60QWs75TCtMMJPUWB/cZ2AeeNBhQnw3F9O4hVFTD/ZEPU4mLY5yZBpDauisPycRnkfA3qIAtcZzYxIaBIcFyegOgXimD+wQYt3Qq9+8m/HCn7nJBLdKj9zM0+Vaax1LHRMK+1wbTbCecxtfHVEkJA2eKAea0NyqHAZ8G07iZ3xcxgC5d5I2oFmroE99atW7Fq1SqsXr0aFRUVUFUVCQkJuOmmmxo1Hq541XwCxcbdrE5Cjx493Ns1gaF5vbAHO7GzaC96uwb5pm/63VaBDvN6G7TxtT+bixwlOFCWi2RrO/SM7ooenXtgz549OHHiGLp1695sj6+pIvW5E2njIWpOsiy1qec8kxIRbsyYMdizZ0+d+8yaNQuzZgVuONPSmNbZ3AkJM2C/vh30PvWseDBLcE6Ph97VDMv7ZbC+WwqHpV2TKibM37qrL/RUBfab2jV8WogsuXs+uATMG+yIeqsEtnlJDZouAQByphPmTQ7oCTIcl8WHpLGkSFbgPD8W1pXlMH9VAcfsxJNex7TZAQBQT214h+iwMUlwjYuG9X8VMG+wwXlxw3tLSKUaLB+Ww7TbPR9YT1Og9bNAT5YhaYBUoEHJdEI5qEJ5qxRaNxMcVyQ0OuFERJGvPktw33XXXbjrrrsAACtXrkR2dnajExJc8So8qsemsPAYoqPNyMgYhJSUOIhKHYOT+kM6sAo7i/Zi+nY7JC3w56/l43JET0uDVO3zvRInsLXAXSUxLCUdSrGOfomdkKPuQ0VFEVJSBjfvgwuBSHvuOJ1O5OfLMJkkmEzGVisaff+RjLGp28njI0GWZSQlxfitdNLaMSlBEUM+4ILlv+UQJsB+XQMSEtWop0YBmoD1w3JYl5fCNj+p/tUN1ceS7YT560oIC2C/NqHxfSokCc7pcZDzNChZLpi/qYTrnAZ8yOvufhYA4LwgFogN3Ru9OjIK5u8rYdrrguuQC3q3OqofHALKDgeEBe5pNBFMHRkFy+oKmH5zwHleLGCtf8ykYg1RrxZDLtKhpypwXBoHvbe5diJICCh7nDB/VQnlkIroFwvhuCwBWkZkx4aIGqc+S3CHkqrqxq941YrVis0xF3Z//DscnVTExiajoKAcKNUQZ45Fj7guOFCWi9ySo+gW1znobRbtLvGbphlllbDFk5QYnpIOaECHX2Oh7i3HzpF7MXDgsGZ/nI0Vqc8dVVWh6zpUVQAwbvWLtrr6Rn0wNnWr3+obArquo6ioEiaT0++y1rziFZMSFBlsOqzvlUISgOPi+JMucVkXdXQ0pHwNlh9ssL5fBvucdg0rr3cJWFeUucdySTxE+ya+TGQJjj/EI/r5Ipi/r4SWboHetX7TH5RtDiiHVWhdTaE/4FUkuCbHwPphOczfVMJxXfAeDMoOh3vFj1OsgCXCS8liZKjDo2D+1Q7TJgfUsdH1u16ZjqjXSyAX6VAzrO6qlGCPVZKgDbRC62eB+dtKmL+phPWdUji0eGgjIriShIhCSggBKUD12qWXXtrk2zZqxatWTQj3sazZnaz2xsbxXA4qMovRLb8TzHkS9E4Ckt0ds2HJ6ThQlotf87eiW1xnCAsgOQPc9mEX9A5VBwtHtTwcqTyODtFp6BjdHgDQNdad1Mg9mNsi/iaR9tyJpLEQNbdIe/01N9bXUESw/K/CfTA41Ap1ZNMPvl1nx0LvqEDJcsG0wd6g65rW29xjGWyBekpoDjBFsgLntFhIOmD+qp5rzwsBy1fe5TdjQzJtoyb1lCjoiTJMu5yQCmrPlfUybXbHsKUccKtj3eM0bazn314IWN/39O1It8BxRR0JieoUCa6psXBclQBIgPU/ZVC2O5ow8uCkUg3KdgfMX1XAvLoC5m8roOxyABU8I0HU3MK9BDc1j6jXShDzcAGg+X/Rz8l3NxTvYe2CmBeKIBVoiHqlCAAwInUITLKCzfnb4dScQSsn5aP+/Yc2Ht0CABiZluFLXCWY4xBvjkXB74ehHXcANr5/ExEBTEpQBJDyVJh+tUPESHBcGheag2+Tu5mjkADLNxWAs56ZRpsOy3eVEBLgPDe0cynV0Z4EwG4npKN1LyEGAPJ+F+R8DVp3E/TezTSnzCRB9SQalB1BDqY1AWW/C8IquZdBbQH0rmboKQqUwyqkkuDJFi9lqwOmPe7+IY4rEwClYc9BLcPqvh7grrIJ0AytseQcF6xvliD68UJEvVUKy9eVsHxbCcvqSkT9uxRRj+TD8epxSLmukN0nEfmrvgS3l3cJ7uHDhxs3MGoQZb8LkkMADv/vBAfLDwMAesR1AQBYV5ZBLnfvE2OKxpCkgbBrDvyWv803a0DU+JiQynXAJaDsckB1uLDl2O+QJRmnpA6FHifBdkciRJoJXWM7AdlOlDyyGzFPFEI+xPduIiImJchwlq8rIQnANSkGiAndU1Lv7J7yIJULmH6p39xc8082SJUC6qlREB1CPLtJkeCa6O7Obfn+5NUSpl/dZ/nVUc1bnaCluxMepp2B6lHdZ38kl3u1iYYerBtJG+h+XMqewI/Lp1KH9b/lAADHjDjA3LjHqGVY4ZocA8khYH27BHA1seROFTCvKkfUK8Uw7XBCxEpwjY6C45I4OC6Ph+OiOPd0GqsE7ZcKWF8qguXT8von4IjIT0VFBXbt2oVdu3YBqFqCOy8vDwBw/fXX47333sNHH32ErKwsPPTQQ61iCe42o3oZdI3355zyXABA97iu7g3VKtCECRj12DnQOyv4qssmOEa6k/Ouif5TAyUVsKyqQNS/S7H11Z9Q4ahAelJ/xJvjIOmA3sUMES2hS2wnAEBuxRFIDgHTzw2r5iRqbnPn3oAffvjW9/u+fXsxe/YfMXnyWFx33VUoLS3BRRedg7y8EwaOklob9pQgQ0nHVChbHe4DrnH1nPvfAM7JMTBtdcD8gw3qadF1r3yhCZh+sUNIgOusJi67GYQ6KgqWbyqgbHVAOkeDSA7SrMahw7TNAWEG1GHN2zxR72KCniBDPuACynUgzj8xJOe4qzr0Hi2jSsJLHWhxL+m52wl1dPDnlnmDDVKFgGtUVJMrUlxTY6AccEHJdsG8xgbX5EY+j5wCUW+UuCtUoiQ4psW6m7jWev5GQ1WBhN0Czg8KYF5jg5zlhGN2IkR8M+acNQH5uAZU6pBUAT1JgUhRGryyDFEkaYtLcLclUnlVokGqlpRwOBw4Unkc8eZYJFsT3ZdXK3ZTR0Wh88A09Dl3KPbt24O11q0Yf+dp0NsrsPxQ7YSHKqDscUDVVaz56ntAAGd2nuC+zHt/EtyVEgAOVRzBWADy8ZNXTlLLNWHCyDovv/76GzF79s1hGcvu3buwePEr2L17J2w2G1JT0zBkSAbuvfcBmM3u73g//fQ9KioqMHHiZN/1XnllIdq374DHHnsG0dFRSEhoh/POuwBLlryGe+99ICxjp9aPSQkylHmDzd1QclJMszRQFJ1MUNMtMO1wwrTJXufBqZLpglymQ+1nbtSKHfVikeAaHQ3Ld5VQfndAnRT4oNW01dNY8lRrg1aPaBRZgpZugXm9HaZdDqij/GOk5LhLS1taUkLvbYawAMo+J6CKwAfMetVZKtekECTFZAmOGXGIfq4I5m8r4RoZBTQ0OeASiFrmTkhoXUxw/DGh7uejRYJ5cjxKewpY3imFkuVC1MtFsN+YGDzp1UhyrgvmH2xQ9jjdJdDVCLN7ZRbX6KhGrZxDZLS2tgR3WyOVVevfUC0PcPBgDnSho3dCD1/vB6l6pYTnu8nZZ5+LzMx9+PrbrzD4jiFoZ0r0vwNVQCQo+GbrGhSXlyA9qT86x3Z0X+ZNckjwreCR06kAwgJ3gleIZukbRcb75JMvfD+vWvUpPvroA7z++jLftujoqu+BQghomgaTKfSHZ0VFhZg//zZMnHgGnn/+ZcTExODw4Vx899030HUNgPs73gcfrMB5513o18D38OFDuOyyK9CxY0fftvPPvxDXXXc1brvtT4iPb/jy60Q1cfoGGUcT7moA2b2MY3NxjXcfbCrb6m5AaNrkmS5xapimS+wKPq1A2eEMy1i81MFWv/utTs5xQUiA1q2F5TBNErS+FkhOd3+OQJQ9TsjFOrS+Zoi00Dw+kWqCOi4aklPA8mVFg69v+W85lEwXtE4K7HPa1T9BlqDAfkM7qEOtkAt1RC0rqTVvutFsOqzLSxG9sBimbQ5AE9D6muEaGQXXqChfrxHTFgeiF5XAuqwEUmHo+moQETWVX1KiWqXE/v1ZAIA+8T2q9q2o9t7pmdLXsWMnjB9/OpxOB9555204nf6fl3KpjswT2fjuyDpYZDMu7HF21e1571oC4s1xSLQk4HhlHmzJGiSHgFTChpetVUpKqu9fTEwMZFn2/Z6TcwBnnz0RGzasw/XXX4UzzjgN+/btwWOPPYQFC+72u50FC+7GY4895Pvd4XBg4cLnMX36uZg69XTMnXsDtm//Peg4fv99GxwOO+6++37069cfXbp0xejRp+Gee+6H1er+rllUVIRNmzZi/PjTfdebMGEkDh/OxQsvPIsJE0ZiyZLXAADdu/dE+/btsWbNDyGMFrVlLewog1oTOcsFqUJA7W8GYpsvP6b3NEPESFCyXO5O19EB7suuQ9nhgLBI0NLDMF0iXoac4wIq9dp9NHQB5YALwhy+6gS9txnC7G4CVv2MjVSiQS7WoXdUAsctwmkDLTDtdMK0xwlnv9pn731VEqeFduqQ88wYmDbZYdpoh2tKTL0TC8oeJ8y/2CHiJNjnJDa8x4pJguOqeOANHaZ9LlhXlMIxK6FJZ+Ckoyqi3iyBXKhDbyfDNSXGnSyr2XvDKWD63b06iGmnE8r+IthnJTRped86qQLKXieUXU7I+Rqkch0iWoJIVKD1NUMdZAWCdMknorZHKg08fWP//mwAQK+EHrWuA8CvivOss85Gbu5BHDiwH2+8sQjX2c9GSlQShBDYuXMn/pP9CXShY3qvab6pIP6DcN9W17jOKEAWci0n0B+dIB9ToSXy/aqteu21f+L22+ejQ4eOaNcusV7XeeGFZ5CTcwB///uTSElJxVdffYH582/DO+98gLS09rX2T05OhtPpxJo1P2LixDMCLmW8bdsWxMTEoFu37r5tn3zyBW688VpccskfMG3ahX6VHQMGDMLWrZtx3nkXNPxBE9XApAQZxrTVXbmgDW/magBFgjrYCvOvdii7nQGXtTTtcLqnS4y0Nss0Ej+yBG2gBeaNdih7ao9HOq5Bsgtovc3hm6NvkqCnmaAcUYFyAcS779fbT0JrYVM3vLzjlo8EmLNbpkPZ7YQeL0MbHOID5xgZrjHuaTqmjXa4zq7HSi42HZYPywAAjkvia/X2qDdZguOqBMgLi2Da7oS2se5pS3WR8lREv17sTh4OscDxh/jgySmLBPXUKKgZVlhWV8D8kw1RS0rguDw+tK9x3d37xfJlhf/ZTK8cFaatDlhM5dDGREPMaBnL2BJR8wpUKeFwOHD48GG0M8egfVRKwOuJaglYRVFwxRWz8M47b+LgwRw8s+0VdI3tBJtqQ569EABwbrfJGJU2PPAgPG+f3WI7YSuycBDH0B+dIB3XgIFNfoht0ocfrsCuXTvDep9DhgzBxRf/IWS3d+ONt+LUU0fVe/9jx455poKsQnKy+3l73XVzsG7dGnz55ee4+uprA4w5A1dddQ0efPBexMfHY/DgoRg1agzOPfd83/SL48ePIjk5xS9hkZKSClmWERMTg5QU/+WPU1NTkZWV2ZiHTFQLkxJkDFXAtMMBoQBqqA8IA9CGWGD+1Q7TdkfApISc5S7D9E6taPbxDHYnJUw7aycllAPuqQZaz/AmAkSaAhxRIeep0OM9K1ccbJn9JLxEqgIhA1KARmJKjguScDfEbI5VRdTRUTB/70lKnBlz0vswr7dBLtGhDrdCG9LEap0YGY6rEhD9z2JYvqiAOsTa4KoLqVRD1JISdxPQ8dFwXhhbv4oLswTnBXHQO5pg+bAM1hVlsMfLIekzIZXpsC4rgXJIhZDc7x3qMCv0LiaIeBmSXUA+pkLZ7YTpNwdMa22wbc2FPDMe+oBmfG1X6DBtdUA+5IKcpwECgFVyrwDU1wytvwWQOV+cyEjVKyXgmdF38OABCKGjd3zPgGeOAdSqCouNjcX119+In376Ab+t/8q3nGjnmA44p9sZGJTYr45BuP/rFtsZ0IBDzqMARsC6qgKigwJtYPNWalJkGjhwUIP2z87OhKZpuPzyi/22O51O9O0b/Pl366134MorZ+HXX3/Bjh2/Y/nyZVi+fBkWL34TqalpcDgcsFjq/xy0WKxwOLh6DIUGkxJkCHm/C5JNuBMSYZgWoPW1QFgk9/KQLlHrS4Zy0FMR0D08B99aXwuECVD2OgFN+B2wKJ7+B3qv8CYC9DR36ah8QoPe273N2xdAb99Cy0pNEkSqAvmE5l7irdo0IbmZG3iKZAVaPzNMe13uipjBdXzQuwRMa20QEuCcWo+qinrQu7l7Pph/tcPyVSWc0+Pqf2UhYPmwHHKRO0nivKCeCYlq1JFRgCZgXVmOqDdLYZuXBJHa+OeRdExF1NISdw+QbiY4L46D3tX/byeiAC3R/cXeOTUW1q8rYVpng/WNEkjTYt3LDodShQ7L5xUwbbZDClCMo2S5YP7JBj1JhuuMGKijo8KXnNAFYBOQdEDESkyKUJsnFVebvqG6KyX27t0D6EC/dr18l6kjrDBtrupBJQLkM00mEyZPPhPnfz4URc4SWGQzYk0xwRMbvjt2/9c1tjOkMgm5tmO+iywfl8N2L5MSDTVjxsyw36fJJENVQ9cHJCqqxvKykgQh/CsBVbXqQ8Zmq4TJZMIbbyyv9ZyLja37O0RSUjKmTj0XU6eeizlz5uKKKy7Bxx9/iDlzbkG7dokoKyut97jLykqRmJhU7/2J6sKkBBlCyfUkAXqH6cDbLEEbYIbpdyfk/S7o/at9y6jUIedp0JPlxpfMN5RFgt7dDCXb5T7w7+C5XyEg7/c0luwe3penN/Eg51U1KPQuoSbCFZdmoHcwQT6hQT6hQu9V9Xf3riqi9Wi+OKtjomHa64LpZ3udSQnTZjvkcvcUiaYcuNfkPC8Wpu0OmDbY4JoYXf/eFtscMO12Qk9R3FM2GnlAq46JhlSowfK9DdYPy2C/qV2j+ltIZTqilpRALtWhjrC6x3SyqU2xMlyXxCPm1AQ4XjsBy6oKd1Pd00OTmFB2OmD9oAxShYCwSnCNtkIbaIXeQYEwSZAqdCiHVJg226FkumD9qBymLQ44ZsaHfFUUnwod5p/dy+DKh1Rfcz1hAvROJqhDrdBOiWre5WKJIpRUUq35rktACOFebUUXGFitukHrZPJLStT1XiNJUuDeEUEIz01FmaxITUzFicoilLsqEGeOhWiBfZuoeSQmJuHQoRzf77quIzs7C8OGjQAA9OvXH6qqoqSkGEOGZDT6fuLi4pCSkgKbzb20bf/+A5Cfn4eKinLExp78RMaBA/txyil1L3lKVF98ByRDyIfdSQm9S/gOvL1nVWuuCa4c8owlTFUSvvGkBUgCFOmQS3XonUxAVHhfnt7VJ6QTVfFpHUkJT5yPV194XkA+rELESCFNAtSkDbJAREtQMp1+3d79Byhg/sn9hcA1McRn8uNkuMZHQ9IB0wZb/a5j02H9bzkAwDEjrnZDywZyTY2F3lGBku2C6ZdGlHm6BKxvuhMSrlOscFxej4RENaYRsXDe0A7CDFg/qzjpKjz1us2NdljfLHVPbRkdhcq/JsM5PR7aAAtEogLEyRAdTFBHRsF+YyJs8xKhdTZB2e9C1MvFkI4GKKtoClXA/GUFYp4sgGV1JZQcFYiWoHU2QetiAiwSlEMqrKsqEP1UAcxfVQDOEK3MQtRCyMX+PSXy8vJQUFCATqmd0M5StaShNsACdVC1ExdNOCGut1eg9TbDNrude0O1pGy3Dt0ACdh7kefMtOBrktxGjDgVO3Zsx9dfr8bBgzl46aXnUFJS7Lu8e/eeOPPMqXjkkQfw44/f48iRw9ixYzuWLn0dmzf/FvA21679CX//+4NYv34tcnMPYf/+bLzyykLs35/tW22jX78BSEhoh99/33bSMTocDuzZswujR58WksdMxEoJMoR8xFM63ymMSYlAB6cA5IPeM+ZhTkp4DoalPA3eryLyAWOmbnjHI6SalRLus8BNPTA1kt7B/RyrnoySD6uQVEDta27esnZFgtbLDNNOJ+SDroB9FeSjKuQTGrRupmaZSqKOiYL5u0qYN9rhOiv2pH9L8wY7pHIB16nWkPSBgEmC4w/xiPpXMSyrKqAObVh/C/PXFVAOqtC6m+C8NL5RlRZ6HwscsxIQtbQU1pVlsHU3uZMHjWD61Q7rB2UQMmC/Mh7asJM30tS7mmG/PRGWj8th/sWO6FeLYb85EXrnpr//ScUarMtLoRxUIUzuJZBdo6IgOipVsRIC8lENpt/sMG2wwfJ1JfQdTujzo3zl5EStmfW9Uki2qoN+yQXs3Olujjig1wDgRLWdoyU4rmsH0z157t/1xicLRJQE+82JVRuqvd56du6J34q3IasiByOkToEb91KbNHbseFx99bV44YVnIYSOyy67EqNGjfHbZ8GCR7B06et46aXnkJ+fh6SkZAwZkoGzzjon4G327NkLFosFL774HE6cOI6oqCj06NETjz76tK/aQVEUTJt2Ab766gucdtq4Ose4du1PaN++Q5MqNYiqY1KCws+mQy7QoaeEd5nJQAenQFVSQg/zdAlRrVLCt4R5gaeHQwcDejhYJIhE2T3v1ikACZAcwpc8aakCJaOq+kk0/99c6+tOSihZgZMSyh5Pk9Vmavgq2inQ0q0w/e6AaZvDvZxn0MEKmNZ7qjYmh65qQ+9mdidHNthh3mCDa0r9+mZI+RrMP9kgzIDj6oQmJce0gVa4To+G+ScbrP8pg/3Gdg1OSMlHVFg+cickHNckQBvUgPnfigTnpXEQMZJ7OsubJbDNS2rScshSkYaoV4ohl7j7bDiuSgg8NURyN910do6Da3w0rB+UQclywf7IYUh3JAHtWm4lFNFJCeE/HQMAXALbt2+HVKBi2PrOfnXDwrMCl95OhlyiQ2/f8M8JIQGSAFCzKKraW06vLj2BncCBnANAzFhIlbrfktzU+syYcTlmzLjc9/spp4zEmjW/Btz35ptvw8033xb0tsxmM2666VbcdNOt9brvLl264p57Fpx0v5kzr8a1116OvLwTvqVFP/jg01r7vf/+u7j22jn1um+i+uA3EQo77/KMoThL2BAiUYYwew5OvWWSunB38jcBescw93DwJiXyq1UmeJYsEwnGvDT1NAWScI/JN5a4lv0FSaQqEIp/MkoJY3WM5klEKJ4VXmpS9nrG0oyrQ7jGuRMRJ5vCoexwulcAGWDxTecJ2RgmxkBIgHmtLfhUlhos/yuHpAGuKTGNrmyoznluLLRO7qkkyvbAf4+gHALW5aWQVHevjgYlJLwkCa5zY6FmWCEX6bC+W9r4s7DlOqIWl7j/XiOssN+SWK9eFSJZgX12O6inR7vL0itD16yNKCJVm6qkJ7k/W0tKS5CdnY2UzCh0lzr57291f+bZ/pQE2+2JEHVUdHo/x2uJct+Gt6GmT7WP9qSEJCQktMPRo0dQaXa6m+W66veQiJpLamoq7r57AY4fPxZ0n9LSEkyYMBFTpwauyiBqDCYlKOwkA/pJAABkCXoHEySH8HXhlvI1SDYBvaupQfPUQ0EkeZarDJSUMKgRnfCcEZLyVEgVLb+fBABAkSDSFEjlwr0CBwA5172kZM3VG5qD6KBAxEqQD6qAo8YXVLsOOccFESs161QmvZcZepIM+ZDqi0Eg5rWVAAB1fHTQfRpLpCjQhlohlQuYfjt5bwk5xwXTTqd75YoQNaeESYLzfHfzLstXFQ1KCJi/rYCcr0EdaIE6oQnxkdzTWfQOCkz7XDBtakSPCyEQ9V6pezyDLXBc1rA+G1AkuC6KR/RLPSC6tMzlfonqSyp3v861LiY4p7lf/79nbYcQAhnJg3yrF+gdFNivS6iqoIqRoXer+/VhuzUPMMtVAAEAAElEQVQRtpva1drurbZAzaREtZeppMjo2bMXAIH9zkPubXW8PxOFy6RJk+uclpGQ0A5XX33tyVebIWqAFn60QS2RfNhTOh/upASql/K7EyOyb8lLA2YyKRJEigK5TAfsni8iZcYmAqovCyoZPJZQ8v59vX93qVwHoiXfGbFmJUnQ+lgg6YBywP80mJLlgqQDWn9L8/a2kCRofS2QBNxNNwPtUqhBOaBCT3EvZdocXJPcB/PmtSdvumn6udo0khD2NNH7mqH1MkM+oUHZWr+EgFSmw7zWBmECnJfGNf1vZZXgmOFurGf+ogJwNOxAxPSrHco+F/T2ChxXJQBK48YjcZlQagMkTzWQSJIBz1vb7/u3AwCGp6T79tP6WRpeARUjB+69400S1qx8kPx/7tXLvf52Vrl7pQXvMtxERG1Nyz/aoBbHu/KGFubpG0BVXwnJ21+g0n0WQ8Qa8+W8erNLAJDK3P8blpSotixoa1h5w8v3uPI1QBOQXO4GZOGi9fWs/FJjCoey1/272r/5pm74xuC5D2Vf4Ppgb7JCG9x8CRK9qxlaZ/cSrVJeHStQ2HSYtjkgLIA6vBHTJOoiSXCe7a68sHxTWa+O9+bvKiG5AHVsNES70PRY0XuYoY6wQi7TYf62st7Xk0o1WD6rgJDgrpBowU1oicKh+meZMEvIsxfgUN4hpKSkoEts1dQNX3VDKHiSH5JWs1KieqkE0KdPXwDA3uJsAED0opImNdYkImqpWv7RBrUowqVDOqFBbycDBhzsihqVEr4zKA1YDSCUqi8LKoSAVKZDxEhhn0pSNR7v9I3WlZQQnmaCkk0Adk8iKoxLrupdPZUaJ/zPgimZnn4S4UhK9DFDSJ5ESIADcW+ywptAabZxeJbaM+0M3tPBtNXhTgIMiwKsof876b0t0LqZIOdpviRpMFKpBtMGG4QFcJ4R2iVbnefGQpg9lSO2+lVLmL+rhGQXUMdHh30ZY6KWyLuqhYiVAZOEjSe2QCrVMerUUf7l5yFMSgjl5NM3IAFJSclITU3DMZGPIkeJe7uNSYlgqv5cjBG1Zu7nd1ubHdPyjzaoZanUIQkDGzn6VuDwVCZ4KiXCuQpIdcJXKaECds8ZfCOTAHESRLQEOU81vL9FKIlozzu7TUDyJCUQxkoJ3dOkUSqulpTQBaRCDXp8mBJ0sTL0LibIJbpfHxPvWJQsJ4QMaL2aN0HiXWVE2Rl86oRpo7vnhDrq5MttNpa3AqNWV/4alC0OSBqgjo4O+d9JJCpQR0RBcp18HACACh2mjXYIM+CcEtoECVFr5euPFCtDlVRszNsC2S5hpHmI334ihNP5XKe7p6q5zqyx0lD1u/C8nfTvPxCikwm7Yg/4jZdqk2UFgASnsxG9eIhaCE3zTDGXW/bqdw3FJUEprIT3gDCUZZINuf9EGcIquSsldFFVKWHU9I20qukbotQzdcPIJIAkQU9ToBxUIee63xRFE5YsjBjeTuh2HZKnf0c4p28gRnKv/FJc9WVTKtUh6VXd4MNB62eBkqtC2euCWm11DfmYBqlCQOtlbvY+G3oXE/QEGXKOCpTrtQ70pWINSq4KPVVp1mV6tQwrxGcVULY5gPNjg05ZMXn6TqinhHgaiYc6JgrmX+ww/2yDOjaqzlMj5g02SC7ANTaqSUuJErVauoB0QnNXRXpfSxVVn/M7cnaiQrUhPWkAov9bYypbCKdCaSOiUNHPUjuR6Vcp4f6lf//+WLfuJ+wuy8K46GGQKnTWAQQhSRJiYxNQWloIALBYrPAPathGArVmFQx5MDZ1O1l8BMrKimG1xrS5RqJMSlB4eRq6hfKMRINIEvRUBcphFagU7nJ+AMKoSgnPgaGcp0GUREBSAqidlIhv+W+K3r+v//SNMD4uSYJIVCDnae6mplEypCLP3zspfJlwra8Z+M7dcLP6Chuyt59EM0/dAOBuujnYAvMGO0x7nFBP9a+GkHOqTSNpxg9kkaBA72OGkumCvN8VsFmdVOBJkKQozbaEsd7VDK2LCcphFXKOCr1nkL+BS8C8zgYhIXSrkRC1MpZVFTD/ZINjehy0wRbIxzVfRaSIkfHLr78CAE5rf4o7KVqNCHWRWIDKKlF9k+ftrUePXjCbLcgs3g+X1eWbbkKBxcW5VztxJyaMiZUsy9B1VrQEwtjUrT7xkWUFSUntwzSiyMGkBIWVcBhbKQFUTY+QyvSqMygxBlVueKZLSCdUiGLVb3xGcS8L6oDkec80ejyh4EtA2I2ZvgG4KyLkPA1SsQ7RUYZUpPu2h4vwNPys2eHd19uib/P3tgDcfSXMG+xQAiQllBxPI9wezZ8gUYdZoWS6YNrqgDNAUsK0zeHbrzkTJOqYKCgry2HaaIczSFJC2eeEVC6gplsgUtpWSSdRfZnWu1ftMW2yw/K/ckhqVaPj3PxcHMjJRurIjugv96595XB8L6n2PiI8P5pMJvTvPwC7sjZhT3E2+lUkNf84WjBJkhAfn4i4uHbQda0+vYpDSpYlJCXFoKioEjqbkvphbOpWn/hIkjsp0daqJAAmJSjcvJUSBnaMF3GeUv4yvapSwqBGl5Ak6B1NUPa7oO9zz6OPhEoJL2FCeJbNbG7e6Rs23ZeUCGejS8DdPwBwQS7WoHU0QTagUkLEyRAm+O7bSz6iQsiA3i08HwlaN89qJMdrN5mUPcumBq0YCCF1kBVWlNdaqtVL8SYlMppn6oZvHBlWWD4qr2pCGuDLiLLbU80ypHnHQtSied/WdUDyvL14V7f6adNPAIDTT5kAaWvt11hIV98IJkBPCQBITx+KnV9vxrbCnehfMaL5x9EKSJIERQn/YYwsS7BYLDCZnDzwroGxqRvjU7eWfwqUWhRfpYSBB7reg36pXPf1lIBBlRIAoHtWBNF2us/wGJ6UaF8tKREnt4r2v/7TNwzoKQFAeCoivBUS3v/DmZSALEEkKe7yYE+CEKqAVK5DtJMBJUwxiZUhYiX3wUL1JfMcAvJRFXq87ItXs4qXobeTIZ3QAGeNLwgVOpQj7t4WomMz/42iPU1IS3VIBQHKOoWAsscJIYVn+ViiSCcVar5pZ368vWGqfeGXBJBnL8COrJ2IjY3DiPRTAt9oiJISjotig18oBf55wICBMEdZsKt4H7TSwElSIqLWjEkJCi9vpUQkTN8o1yFVCnd/i3AdjAWgd3Rn+sVR9xcRo5MSIlnxzXttDVM3AAAWz1xee1UfkXBP3xA1VuDwViuEc/oGAOjJ3ikcnuRIqWdFnHZhHkd7EyTNfyqJnOtyN//saQpbMkzvaoIk3NUi1clHVd/l4RiL1ttdGaJk1z7Qko5rkIt191hay2uSqAlinipE9Osltaaieb/VSjU2f3dkLQQExo2bAJMl8Nn1UHwvcZ1ihTq+jp4vQZISFosF/fsPgENzYl/23iaPg4iopeG3GwqriOgp4Tnol0vcpfxG9ZPw0muchTU8EaBIvjnrho8lVCQJiJJqTN8Ic0+JRM/zrrhGpURiePsDiGTPODxf5iVvg9V24R2Ht0JIPlF19OCdRhGOfhK+cXT1NJvN9T876U1SNFeDy1rj8CUlap8lVfZ4pm4MYJUEUXW+HkEeotr0Da9jlXn4Lf93xMTEYvTo04KfhGjC9xLXOHdvHG34SZYxDrD6hld6RgYAYFv29kaPg4iopWolRxzUYkRSpYRnnqlh/SQ89A7+Bz26wZUSQNUUjlaTlADcDUVdALxTdgzpKeGplNAFpGLN3d8kzK+FqkoJT1LCkyTxJk3CNo72tZMSsqfJZTj6SfjG0dWTDMj1r5RQvEmJTmHqs9HTDCEBcpYLNTu3mbxJiYFMShBVJ2q+bQWYvrE69zsIITBp3BmIioqCCJJ/bcr3EudFcai8P/nkicMAq294DRg4EFbFgh2Hd8Futzd6LERELVHrOeKglsFXKWHcEHyVEic8ByEGV0ogRvaVzgsJQKzxPRy8zS5bw3KgXt7GlnKRQT0l2skQkrtCQirXIWmAHs5+Et5xeJISsmf6hlziiUe4KyU8y+FKJ6qSAXJeeBMBAKB18VZKBJ6+oYVrLMH6SmgC8gEXRIwEvQt7UxP5+uEAkNQavWC8b2OeXfaXHcSOor1IsrbDmJGnefYJfaUEJAkioR7vodWrI2p8AzfHWTEseTBUVcXO19ZD2cLEBBG1HUxKUFiJCKqU8B2cRhv/MvD2lUCcXHWmx0DaQCuECdB7t6Izs9GeFTg8PR3CnZSAIkEkyO4eDvmeMYR56gZQveFmzekbYa4cCTB9Q6oQ7r+LKYx/m1gZerLs/pvYqzX/PKG5q5bCWLkUqK+EVORJYHUwRcR7A5HRpNLqSbsaF1abvqELHR8d+BwAcE7XSVW9JILl9sKR8wvSUwIAYJYwKm04pEodW776BVHvloVhQEREkcH4ozFqWyKgpwSiJb+STxEJlQneZpcRMHUDAPReZlQ+lgatFXX69yYhvNMVvEmKsI4hSYYkAMU7TSE5/H9v7/QNucB/+oYI8/QNkSBDWCV3xZIu3IkAhzDk9ah38W92KR9X3Q03O4W5esTb3+J4tSktnr+TnhL+BBZRJJLKqiUlalZKeBJ3kiaw9vhGHKvMQ+/47hiRMtT3jVcEq5QIR3PdOpMSQPe4LkizpOBQ+REcq8xr/vEQEUWIyDgComZzxx13YNSoUZg/f77RQwEQGZUSkCW/XgmRUCnhXXKwNfVwiDS+ZUE932dFmHtKAFWVEbLnTHhYlwP1ipbd/TWKNEAISAZN34AkQW+vQHICUknV8rxG9Hjx9pWQD3uSEkc8iYAwNbn08v4Nqp8JljxJCZHC9wYioMbro3qlhBC+6Rsl5aX4MvcHyJKMi3ueB0mSqpIRAV7WWpgSkKKORpeQJXe1ROowAMDPJzaFZUxERJGA33JauauvvhpPPfWU0cOo4q2UsBpbnVC9IsHo1TcAQO9jASxSWBv8tTnVpmsIGYABofY2k1QyPcu/hrk6wTeOZMXd9LNcQC7RIBRjKob8ml1WeFZFiTUgKZHgSVh5xuBbDjSMvS0Ad/UIAEilASolklkpQQTUnL7hfs0qm+yIfqwQUpEOIQQ+3PMpHJoTEzuOQceYNPe+3reWGpUSQgHsdySFYeTwq44Qgd5yPVM4TLKCjXlbYKusDM+4iIgMxqREKzdmzBjExsYaPQwfX6WE2eCkRPWKBINX3wDcZ8yjX+oB9cw61jenJhHVp2tESeEp1a1BG2iFiJMg6e7xeM/Qh5u3r4R8QoVULtz9JAzoVyDaVzW7rKqUMOC9wZMklRwRkpQoqXYm2LNKikhlUoIIqOoHBQDw9KeN+k8Z5DIdkkNgw4nfsKckG2nRKZjadWLVvkqN//1uNEzvO3VN34D7u1GsOQanpmbAqbuwaeOv4RkXEZHBjD8aa8M2btyIW265BRMmTMCAAQPw3Xff1dpn+fLlmDJlCoYOHYqZM2di27ZtBow0hCKhpwTgXorR+3MEVEoAgGSJjCaXrVX1aTphb3Lpofcyo/KBVFQ8lorKBSmG9RDx9idQDngqNsI9dcM7Dm9ypET3VSnAgEoJ4a3c8iRNvXPWRbirE0wSRKzkPhPsWRaUlRJE/ryJOgAw/WKrWuYZQJ69AP87+A1kScaVvafDLFdL/Ho+X0U4G+nWVP0zPtAwPN+NxncYDQDYsG4ddF0PsCMRUevC9cUMVFlZiQEDBuDSSy/FvHnzal2+atUqPPHEE3j44YcxbNgwLFu2DHPmzMEXX3yB5ORkAMD06dMD3vbKlSuhKJH3JdZXKRFR0zeYm2sLqicijOgn4cfIL8UAhKexqmmje8m5cK+84RuHtzKgTI+MSgmnJzFiF+4pPgZ8QurtFCgVqns6S4z7AExESxFR0UUnl52djfvuuw/l5eWwWCy47777MHLkSKOH1arI1ZMSe12QlpcCAJyaE2/t+wBO3YWpXSeia1znGlf0/G/kV6Pqb28BXtLCk0PpGJOGfu16YVfBUezatRPpvQcj+uVi6J1MkAo1aOlWuCazspKIWg8mJQw0adIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBKWsQKA3MSz+LIs+Sol5CiDqwKqrScuxclNfmxN5b1/o8cRaWrGpSnxkaof1EVJrSbWjYmNPiwK4rPyqmVxkxRD4iF5GzuW6ZBtnoRAXOjGUt/YSJ4kleRw7ys5hfs5ohiQCGgnA0cApUyHEDIkF6B3CP3fh+85zcNqteLxxx9H7969kZWVhVtvvRWrV682elithxB+lRKAu0ePEAIf7P8fjlXmoV+7Xjiz84Ta1w3SUyKsTjJ9A9Wmtp7ecQx2aR/hxx+/x5DY/pBPaL4llJVDKpMSRNSqMCkRoZxOJ3bs2IG5c+f6tsmyjHHjxmHLli1hH4/JJCMlJa7Jt2Nz5AMykNw+DpIBc/q91I6AE+UAgKQu8ZDiI6OqJCkpcvp/GM1sVmo955oSH62DCQ6UAAAs7cyID8HzOZI0NDaus1S4PikCAMR0jobZgHiIOB02FMJUDiiaAhVAXMcYmFJC+zo4WWx0SYUdhTDrEuKSYmFznICUYgrJe15DOTvYoO5yop2wAi4JDgDmzlbENdNY+J4TWl26dPH93Lt3b5SVlUEIYejnXWsilemQ1Nrb1x7fiC0FO5BkbYer+lwCWfJPKAoZVX2Ean7c11hVtFnVtfoG4De1dUC7PugU1xFHjuRiX9ZeDEOH5h8fEZFBmJSIUEVFRdA0DampqX7bU1JSkJOTU+/buemmm7Bt2zbYbDZMnDgRixYtwsCBAxs8HlXVUVpqa/D1qpNlCVaHDmGRUFhY0aTbaipZcsIKd/frQnsl4DS+UiIpKRZFRRXQ9XB+Q4pcLpeGggJ34igU8ZFcKqI8PztkHeWe227pGh2b4Qqi/gdIKlBuUqEbFI+oKAmiWIWrwAkTgDLNAb0gNK+BesfGpiMagFquouJIGaIBaGbhe/6Fk8miwwygLLcCUAALAHucCPnzNVTvOQkJ0TCbIyOpGwobN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkQsC00Q75kCtg89mdRXvx6cGvYJIV/LHvDMSaA1QQVM9RGFkdVI9Gl76LJQnnHRqNN1I/w3drv0GGuNL/uaQLyAdV6F1MfhUWREQtEZMSLUxDz7gsWrQoZPfd5INlIdzTN+Jkww+8ffPWoyToABAhiQBdF4bHJpLUjEVT4iNZqn4WVqnVxbnBsYmR4Do9Bua1ldC6KBAGxUMkyJBPaJAK3ac/tWgp5GM5aWy8vfCcAsJW1ffGiOeInuB5byrWfGdw9eTme8/ke46/UPR6AoDDhw/jmWeeCelncIvjcDewDUXDWMtn5ZDsVc9Tvb0C+YSGg+WHsTxzJYQQuKz3hbX7SHjVlYgwrFIiwOU1kgvpSf3RyZKGQ0dzsVfPxoDEPr7LTL/ZYf2gHOpQKxyzEppnvEREYcKkRIRKSkqCoijIz8/3215YWFireqLF0ADogDB45Q2gqtFlpKy8Qc0vElbfiDSuc2Lgmhpj6BxrkSADJzTIxzxLXxqw+gZkCcLsWRLU0/fGqGa8wtPvRirRIbncY/GulkLNLxS9nsrLy3HrrbfigQceQI8ePRo9lpD0cQrB7TSWZUkplBwX7H9NaVpiQgi/hAQA6D3NyMs5jqV73oNLV3FB97MwInVI8NtQ6o5DuGIkVXuvlRQJUs37rfH9SJIkTBk3Be9+9A5W536P/u16+05MmXY63f//7oCLPWfChrEJjrGpG+NTNyYlIpTFYkF6ejrWrVuHKVOmAAB0Xcf69etx7bXXGjy6RvIuB2rwyhsAgFgZzonREGn8st9mWNzziiWdSQkfSTK2Ez2qEoS+gw6jEoVWCbBXO/gxaIUW3bMSilSqQS7xVG2k8n0qEtSn15Omabjzzjsxc+ZMTJgQoNliPYWqjxNgXN+QypwTAICEIgWmfg1/LHqhCilJAVwCNuRVXWCVUNq+Aq/tehMVqg2ndxyNiZ1Oq/O2JJPkF89KnKi6DAhb/xhXrAoX3NNXk1NiISX6fw13xtuhwu637bRew7EB3yGnIgdbCnb4ki9mVYZ3sdDmGj97zgTH2ATH2NSN8QmMSQkDVVRU4ODBg77fc3NzsWvXLqSmpiItLQ3XX3897r77bqSnpyMjIwPLli2D3W7HJZdcYuCoG8+73F4kVEoAgOv81tXokE5CkoAoCah0r6xAkUFPqFHBYlDVhrBKkMsFJJuxyxZ7l0lVDqmQbAJ6e8VXPUHGqk+vpx9//BEbNmxAfn4+VqxYAQB46623kJDQsPL6UPVxMqxXkS4Q7fmx/EgltIJq4/rdDtHJBJEa/Cuo8osNlvfL4DovFuroaEQD0Lua4LiuHY4fOoo3Fr8Ou6sSYzucigu6Tz3pcIQEvx4x0dUvA8LWP8Zkc/pmixUWVwKaf/LTpKu+y71cS/IxTZ6EV/Am/he9BuldhsByGFBLXL5WGQUF5UC5jqgXCqGOioJ6TtO+37DPVXCMTXCMTd1CEZ/W1sepOiYlDLR9+3Zcc801vt8fffRRAMDtt9+OefPmYdq0aSgsLMRLL73ka6i1ePFiv3mrLYonKcGGTGQUES1BqhSslIggonpSwsDpVMIqA9AhlXrOPRpV0RXtmUriWSJVHWo1ZhxUb9V7PU2ePBk7duwIye2G6kt9KPuGSHkqJLuA3q3moXON/Yqqlu2UTqi++5cPu2B9sxQAUPFUWtDrW9a6EzKmbyrgynC/BoRFwsGSw3jrk6Ww2SswscMoXNTj7Hr12RJy8HhKInSxPhm9WgMLXYha/axEtW/lepLsW7a5V3x3pCcNwDZbNtYc/gVTMBpSuSeB6nls5p9tkEp0mL+uhHNqaM7EsudMcIxNcIxN3RifwJiUMNCYMWOwZ8+eOveZNWsWZs2aFaYRNTNnBE3foDZJRLkPPI0qzafaqlcBGNJPwsvTCNWblDCqUgKSBJGgQCpwH9QxKRE5WmWvpwaKeda9jHDFY6mAKfhrxPv8BQA5r1qCokQPtHttnrcFyQmYv3JPd9hRuAdvL/kMqurC+BHjcdG+cfVv/B0pb/kna3RZ7X1HRMtAUVW8pnWfgu22A/j2wBqM6jIYcZWeagjPN3k51xX68RIRhUmkvE1TGxBp0zeoDYp2P/dYKRE5vD0lAGOTEu5KiaqDJiOfI8LTV0JPVSA6ts4yzZaoeq8nL2+vp+HDhxs3MCO46j7LJxdWS0TkV/0c8EA8kGpPe9Nvdqw9thFvb1oBVXXh3HPPx3mTz2vYUquR0liu+pgDvN35vQdG+485LSoFYzNOg0M48NnBryF5/wQmCbDpUDLdSQl+vhFRS8SkBIWPt9ElkxJkEK23GXq8DJ0NTiNGpEzf8J6hNHz6Bqpiog61+h/EULOrqKjArl27sGvXLgBVvZ7y8tyNFq+//nq89957+Oijj5CVlYWHHnqoRfd6ajSt7oulyqqkhVyiV1VK1jsp4d7RqTmxIvtTfJKzGrJZwcyZV2H8+NMhmRr49TVS3vJPUikhYqtVSgR4P5xy2pmIj0vA5vzt2Fey372fIsG8xuZr0is4RZaIWiBO36CwYaUEGc11ZixcU2J4oBdBqiclEGNkpYR/UsKw6RsA1HQr5MMq1FFRho2hrWpzvZ4aSXIKmP9bDr2LCeqpAZ6nDv9KCjlfg97ZVO/3XqEA+fZCvLXvAxytPIFESwIun3o1Og4d6N6hgd9eRaScgqs+jgCxEHHVkrTRtQcdFRuF80efh/9kv4OPD3yO+UNvgmy2QD6sVt2sk3PViajlYVKCwsfJSgmKAExIRBaz5G5AahN+ZwnDzuJNSnhOARtYAq1lWGHLYC8JI7TFXk/yYRf0jiYgwEFwMMrvDpg9zSgDJSW8Z+31ZBlyoQ4pTwU6myDq8bISQuCX3E1Y9fsqOHUX+ib0xFV9L4GlUxq8XRNEQ1fpqTF9Q09T/HpdhM3JKiXi6q4cEyYJQ/qkY2tiH+wuzsLXh3/C2R3OgnzcnZQQ0e6ljSEEP+uIqEWJlNwxtQVMShBRAN5qCREJlRIVwu93otbM8mk5ol8tQfSrxQ26nnmTve4dHO6KI72Le5UO2dNXQjrJSfyyslK89da/8dG2T6EKDWd1OR1zBl6FOHOs/5SqANMxRF2n2Wrs75ifDKlD3SuINIuTTt84SeWYWQKiZUzvcS4sshnfH12PQ8W5kAt16MkyRLzsjjF7XhJRC8OkBIWNb/oGv+wTUTXeZpeGrr7hTUp4D5qs/Hik1s+bLJCPae6z69UvO+yCab0t8PWOVVUZmNbZai1t6auU6OrOFPiqErTAWQld17Fhw3q8+OI/sG/fHqREp+C2wdfh7K6TIEue94fqJzQCrfxR1wmPmi9nswQp2YBGE9WHGOgtptpjENEBHo8JEIkKUqKScGGPqdCFjhW/fQyX7oLe3lQVIwencBBRy8LpGxQ+vkaXxg6DiCKLnqpAyXRBJBlfKRHsd6LWRNnrdC8haau2RKdNANFwl/9Hy4h+qRgAoHcyQe8ZvKrA+kk5oAuoE2J82yTP573WzZOUyHEh6sUiiOQar3EhkLv/ID5d/SmOHMkFIGHs2Am4oMNoRB+q8RqsnnQItHKFWYKEIAfjDZ3u0VyqT6k4yZACvQcJkwThadQ8Om0EdhTtwe7iLHx+6FucN+oiSC5PctUhIOJDNmoiombHpASFTVWjS56BJKIqzrNjoQ22Qu9i4EdSzaQEl9WjVixqSUmtbVKZDmWLC9ZPymGf3a5qe6EG1JGUAADzWpsvKSEfcFUtT5mmQJgBuVAHoANHqq6Tn5+PHx77BNs3b4M6Ogrd+vbAhRdejE6dOsOysAiA6ncffgfpgV6eDamUCHojzewk0zeqCzidzSxBJHqWL5YkzOh1AZ7//TWsObYRffPS0T+ut/sypwiWniEiikhMSlD4OFkpQUQBxMrQBhj7xlDrrCQrJagVUjbbIZfqAS+TynR31QMA87eVVdvrMRXAnXQAYNMR/Uqxb7uIlt2VUEerpnsUOUrw3ZG1WPfsbsibK9HOEo9Jp5yH4ZeNheUnOzTNFXgFiWpvESKq9gF7oKUwhRmQXICQI+P1LE6y+gYA2OYlQj6qQXQIML3EDL+qj3aWeFzScxqWZ67Ef35diTsm3owUWH09PYiIWgomJSh82OiSiCJU9aSEUBB4zjpRCxf1XlnQy8y/VmteWa33g3xchbLZDm3YSVaEEQLmH2v0oDABIs0EHNVwtPIEfji6HlsKdkAXOmILo3BGt8kY32EUtJFpkH91wPJ5BYSpqs+M381X/+5glVA5Pwnm9TaYN3jGHSivaZUAlwjYGNOIQon63Kfe1Qy9q9l/ao2H8LwvOc+MgWmLHXKBjmEpg5FdloO1zq14b9NKzI2+vF6JJCKiSMKkBIUNG10SUcSq/r7EqRvUSgghIB1XgWT5pH0VTJsdVb9UWy3TvN4O83o7bEl1N4aUD6sw/1Dpt00XAjtM2fhtz4/YXZwFAIgxRWFsh5E4veMYxJiiAQB2DVB2OwEAkgrAJSBMgN7FBCXHM42jxgkN0dEEUW1MIsAJD2Hx9JkINH0jQpMSPoFO4HiqQVxnx8J1dixiHs6HVClwYfepyLYfx/7CHHwpfsC5Syej4qEUQAdQVwNhuw75mFZnzxAionBgUoLCh5USRBShqh/QMHFKrYX2awWiXimEa3QUnDPq3/lQKq99ll4KMu3Dy/JBGSQN0JNklB4rxsb8LVj73F6U5hXDVGxHoiUBp3cag9Fpw2FValRdaALyIXfyQcRKgBPu7wrVX5dBpmf4BLrc+1qOkOkbwaZsBORJIgkFkLxJohp5IWFyJ11MsglXTbwc//r4FXx7ZC26xnbG4IWDIRVrcMxKgDY4cJVL1L9Loex3wT67HbT+nFtLRMZhUoLCxltOGOhsBhGRoaxMSlDro21xVy6Yf7HDeUlcwH3U/u4je9Nel29boASEZK87KVGeU4xtJbuwKTobh7dkum+7VzT6DO6PsT2HYNj+HlDkINUWKiB5pisIkwSpUoeIliGqV3cESDr4TbMK9N3Cu82A1T8DauBbS8VDKYAiIfaBfPeGmsmVat/iUxJTMOOKy/HeP/6N97I+xm1RiegU0wHW98tQ+bfASQllv/tvLmc6mZQgIkMxKUHhw0oJIopQfomIAE30iFoiqfoKDmrgfUSSAuel8dB+scH6obvRpRSgJYFk898ohMCRymPYU5KNPcWZOFCeC2ESUJOtSLO2w4iUIUiffyaSk1Pc13+8ACgJnNhQ9rvc0zbgrtKQhOcERrVvqQFPaFRLSgSbvgHUaDBppIZ+/Yl2D7zy/uTAf7/qSRsF6H/hcEx2nI9v//kZ/r13Beal34BYLc79/auO714BG4sSEYURkxIUNnpnExSzwqQEEUUeTt+g1qh6P4FgB56eqQHqqVGQ8jWYf/x/9u47vKmqjwP492Z1l07KFMpIKaWl7FX2UnABDkBApoKAoCgqL25EFHEAInuKCwQRGUVkKHuvsjctUDopnVnn/aMkbUjSmTalfD/Pw0Nzx7nnnntzxy9nZFgNShjSdLiVHotr96JxJfUGLty9jFRtTh8SXipPNHisPtTj2qBGWgCEvwLCJ1cVhTy+V8o9OR1kGpsqCKVkXhPCWvOMXE+xBmujVeTVfKOs9ymRi/C0XtUj9/4bAxQRvTsj8ecrOJYQhRUXVmNEvZfg+kE8sobm0URDa30yEVFpYVCCSo22nyc8fNyRnpQGGBiVJ6IyRC6Zhg/kcKBUXkiqnKDEg7+Ga1s7Q3ZLD10L5+wJcgnaHu6Qx+hgOJ+OOxnxuJ0eh9iMOMSk38bVm7HQ3sgJQsjkMtTyeAxqr9pQewaiqltliAAFMqr7wFp9CFHYDmSV90fCyfXZcpmcNPV1VMjsJ4PiaBYU9zvNFGWt+Ya9a2zkqilhrA0iyWR4+vUXkTB9Lq7cu4FfLq1D/zq94LzoLjJeqQBDbcvAhJRpgBSng+KUBsrt6dAMqQD42jmvRER5YFCCSo8kQSornU0RET1IlT18IGtKULmhywlESJkCBmFAhi4T92rokByajozgTKTG30PyxSQkJycjKSkJaf/eRnJ0IoQwD2IoXJxR27MGarhXQw2PaqhZMxAuyeaPkYY8akJa+14JFSBp8lg+d/MEa88PuecrJOjDnSG/nqudg6mmhM1slS57X1pyF3+uWiVS+wp4sfIILJo0Cyfiz8D9mhueqdEdyl0ZyLISlFCc0kBxKudAqJbeBZr72DmzRES2MShBRESE7JcgKU2wpgSVC/v27cHu5VugOZ8GvdBD85kCUlQmhK8MejcnYIn19eQZGvioPBHg4odKLhVRydUflVwqwq9hVagu5owVqvdRAskP1PvPq3mmlZoSwkUGSWOjA00nWb5PqWajbxhrQ+QKQBiqKCCcJBiqWalm4ZDmG3beqFnQxnyWm9oHw1oPxNxNC7An9hA8lO7oUKtjzgJ51FiVMlmblYhKF4MSREREyPklt9DVzInKII1GA40m+9dvJ7kKTpILnJycofR1g6qWD1xcXODq6gpXV1dUqOAFb28fVKjghYp/y+B63DJQoM8y/14IK00i8hpdSzhZVlcQrhJw19byD9SUsCZ3R5fGITRzByUCFEj/yNdqLQuZrwIGAIYKpViNws6XFrNjYKWsfLx9MSyoH+aeWYHI6B1w3++K8NC20LVxBfIJPAgrQQvprh5SkgGy2zrowpwA17JSBYWIHnYMShAREQGmGhJsvkHlQbt2HdAztSV021MAAJr2LlDtzIC2pTM0vTxsrqd0vgcg02L6g6NvWP2WWOv3wchasM9VBlNPmw8qyPcwd0eYxhf03KvJYL3ZBwBlHx9k6nXQtHTOfzt2IuzefCN3UMbKfJWEqm6VMaju81h87mesuboJ8kVyNHCPMNUeMXjIILtnGYQSSZbHxXVqoulveVQWRAU5tG1cICoX/3VCuqWD7J6BQ5MSPaIY4iQiIkKuX3kZlKByQmhzXjaNQYW8ajMAMH/Rz0XKyElL28YFsPJDe941Jaw13zCfpquf80IqnCSr2zBbP3cQxJjv3EGIPJ5yJTc5tE97QPiV4u9zJRiUsFZTwljmdSsEYkD95yCDhFVX/kLUd7uh+jN7+FdDdRv7n/lAoOLBPkbOa6E8mAmXWUlFz38urt8mwXnRXSDDRnMeIirXGJQgIiICstuwgzUlqBzR5uro0ljTIZ+ghLBV2+F+dX9dfRU0T7tbDxjkFZSw1qdErur/WS94QF8n18adJVgdxiO3/GpK2LsPh+Kyd/MNsyFBrSyQ63gEV6mHAXX7QIKE366sx4ldh7LTcLGeKfFgUCLNeoRIslHRpaikdPZnQfQoYlCCiIgI99u3AxBuvDVSOZE7KGF8yVTm82ZsY77p5dP48lvImhLWaiAZv3NA9stx7u+ecJLyHT5cKKzUisj19RVl7atckjUlrOzrgwGmEO8gvFSnNyRI+PXyehy4cxRwsVFIWeZlL4vPI/qgs3GcsgyApgBBhlzHWUplTQmiR1FZu1wTERE5hLadKzQ93GAIzKthPNHDQ+QKSqCYzTdM8hraO4+Ah9UOZHO9EAulBOH+YFAi76yY9YxmrBWR+8m2jFWUsLvcx9Jap6C5Dr90/8U/1KceXqrTGzJIWH1lA3bG7rWatMgyL3xZgu2ghCw2ZxhW+eksqNanAgYBl5nJcJ2aAPmxTEi3dTbXR67aEVIagxJEjyIGJYiIiAAIPzm07V3z7/Gf6GGhK0rzjfyCEtn/6WtkB+909XJ1TJhXQCOfmhJQmteUQEGCEtbyKuVde6A8yX2srHV0KeUuv1wxhVCfehgS1BcqmRIbo/7G5hvbIR7oM8JUU0IjILuhhXTHdlBBSsrZkPOyFCh3ZUAepYEsXg8pQ8D553twmZ1ks+ZL7toRDEoQPZrK+eWaiIiI6BFlpfmGzT4jjPLp99HYJELb2RVZL3ogq2+ukTz0tqvqC2crQ4LmnqYE8GBNiQdflB9krR+F3JvJq1ZHeZD7WOZTUyL3sckc4gl1hVoYUe8lOPu4YtvN3VhzdSMMwgCD3/1CvX++OP2YApfZyVDtyLCZDemuZSBBflFjvowWpto6Fuun5Q5KsE8JokcRgxI2aDQa/PDDDzh79qyjs0JERPRI4r24eMyabxiryOfTkWv+NSXuz1dK0DV2Nu+TII8a+rmbb2g6uULb3BmGijlRBaGUzGtOOEnmv/RbY6UjS7NhN8t5TMLsWFkL0JgFJe7/V00BvVoFfU0FqnSojWEjXoVrrQrYf+coFnj/iXtN7q96v/mG4px5cMEaKcWyaYfsmhYAoG3iBOGenU9b/UWY1ZSI10OKy+NEIqJyiUEJG1QqFebOnYuUlBRHZ4WIiOiRxHtxMeWuKXH/z3xHl8ndJMBaU4+8nhzzqCmROxiia+YMTR8P8+YXSsns137hJEHbwhkAoOniajPZ9Pd8kDbZN2dC7pfz8v6Uq8q7qYq+Wna1F31leU5TGBkAmYTMUd7QvOCJSpUqY/j0cfB5/DGcS7+E+ZsXISnrrkVHl9YIt+zty+4aACGg/DvNNE9+KztQIXzk0Kmzm/jYCkrk7q9CeTATrl8lQUq287AeRFSmlffLdbGEhYUhKirK0dkgIiJ6ZPFeXAxaKy+WTvk8+uVqviE8ChaU0FfOjgQYqthu+2HW0aUxjVwBBIsaGnIJhkAV0j7xg7arm+10veSAR65MPUJ9SpgFkKw039CHOyFzoCcyR3hB2z27DLURLhbLefv6Yvi411C7dl3cvnsHs6MW4+r6s3D6NtE8vZrmx1d//3hLKQbIrmqh2ppukbbwkgP3+wqx1jRDStZDFWm5nuwma0sQPUryaTn4aHv77bfx1ltvQalUon379vD19YX0QFVBFxfLizsRERHZB+/FxWAlKJFfTQmzzhPdZEDCA79uW+mnIXOEF+RXtNDXV1nMM8m1XeNQnmZDet7/1T+rhxvk17QQXjKL9Qok95CgVpp3lCf5Nt+QSdA3cAIAaDu4QNvM2azfjtxcXFwwcOBgbExbjSPn9mDOviV4LrAnGvmFmpYx+MqhecodLrOSsz9XVQAXtJDuGiAlW68FYfCSQUq9H5SwUlNCdst68EHKawhSIip3ykVQIj4+Hn5+fnZP94UXXgAATJkyBZ999pnVZc6cOWP37RIREVE23ouLThQhKJF7BA3hYuUF1to7rZvM9PJrk0yCUAGSJlcauZ9C7/+ta++aV9cU+cu9e+W+pkSuv/MbNUiSAPe8l5HL5Xi6+7Oost8VG278g58vrcONtJvoWb0L5DI5oJRgqJazUeEug3CVICXrId2zHpQQbjLTqCpO61JheExhloaUkr2epqsrZNe0UJzP7otCdsc8KCGl6KHYkwltexfzfkyIqFwoF0GJtm3bIjg4GD179kSPHj1QuXJlu6Q7depUi19jiIiIqPTwXlwMVptv5NenRK6/rbz7WRt6sqCEkwySxpDzAp27poS9RsrInedyftqY1ZSw03u65CxDu8otUdk1AD9dXINdtw8iJu02BtTtAyfVAzWSVBL0dVVQHM+C4liW9QSdJVNHlwDgvPAu0j/0NTWzMQYlhKcMWf09ITakQXkwE/JLGqhW3YNwl6B9wh3O3ydDlmwAJJiaohSGPCoLwl0GQ3UF5FEa6INU+Q6Pa8YgIIvWATXyG76GiIqiXAQlhBDQarX4+uuvMWPGDISHh6Nnz5544okn4OPjU+R0e/fubcdcEhERUWHxXlxEQlgEJYQM+T/55de/YTGCB8JLBpElcvJQjACHTTL7v6iXWUrLJjHFZQx01K0QiNcbDMeKC6tx5d4NfHdqIV5o/BKqon7Osu4y6MKcoDieBXmM9fotwlkyq3EjZQhIdw0QXnLIz2lM/VAITxngIoOmtzvkV7SQxeshS8wEAOhauGQHJADIEq0069AIyC/dDzQYj79eQEozQHjKId3WwXm5eWe52rYu0DzpXuByUf6dDtW2dGiecQee8ch/BSIqlHJzuf7ss8+wc+dOvPvuuzAYDJgyZQratWuHYcOGYe3atUhNTS1y2hcvXsQff/yBuXPnIi4uDgBw7dq1YqVZmjIyMtCxY0d89dVXjs4KERFRkTwM9+KtW7eie/fu6N69OzZu3OjYzBhgGWBQSVaH0czNrENKa4rx5Jj1kicyXvPKqSlRAjVgzIYEtVftizJK5DP6RpHkqknj7VQBr9V/Gc39w5GiScWCf5Zg27atSH/ZHdqWztAHqyC889mwkwTDYwpoWzpnB8UASPeHp3VaejdnXzzvR6hkEjIHeJpGDgEA+amcWhiKY1lQHMwEsnKaiyj/SYPz0hS4vRcPZWT2CCCq3+/B9bNESPE6yK10mik/baNmhw3K7dnBE9W6VOj23CvUukSUv3JRU8LIz88PgwYNwqBBg3Dz5k389ddf2LRpE9577z18+OGHaNeunakGRUGkpaVh0qRJiIyMhEKhgF6vR9u2beHv74+vv/4aVapUwTvvvFPCe1V8c+fORVhYmKOzQUREVGgPy71Yp9Nh+vTpWLlyJeRyOV588UV06dIFKlUenT+WpKL0JwFA+CmQ2c8DhgAFVJFplgsU4+VXeFtWjUh/2zv//hAK4xFqvlGoPiUKSLhIEFLOELIKmQLP1XoSNT2q43flNmzfvhVXal7Cc8+9iAoyyfqwsbndDwxpenkAOkB5KBNIux9QkME0VKnBM+fAicoKZI71htOiZCjOa6H8N8MsSafV9yDdc4W2U3YzDsWJnACDals6tF1doTycPU1+TgvpbnbtCm1zZygPZNe+KGxATMr1ddIsjIO8lzsMLdnBLpG9lJuaEg+qUqUKXnnlFaxduxabNm3CiBEjcPnyZbz55psFTmPatGk4evQoli5diiNHjkCInCtS+/bt8d9//5VE1u3q6tWruHz5Mtq3b+/orBARERXaw3IvPn78OIKCguDn5wdvb2+EhYXh8OHDjsuQtcELCjiShT7cGaKywvpLvZ1rHwg/hdVgRZE9Uh1d5jP6RlE4yaAZXAGqURWR8Zk/MkZUAAA09W+IMc+/hkqVquDq1Sv4/vuZiIo6Zd4vSD6E2/1+JNKzIxGGSrl+G3W1TMdYe0J2vxNNffWc5WVXdVDuSIeUqLcIMMjPakx/Syl60wgfupbOSJ/oA6EEpAQ9lJtSId3WQbX6HuRnrdSc0Amo/rgHpx9TLGYpI9OAdOude9qNEJAfz4SUzJFIqPwr75drAEBgYCDGjh2LjRs3Yu3atQVeb8uWLXjrrbfQsmVLyOXmV/sqVaogJiamWPk6ePAgRo4ciYiICAQFBWH79u0Wy6xcuRKdOnVCaGgoXnjhBZw4caJQ2/jiiy8KFYghIiIqS0r6XmxU3HvynTt3EBAQYPocEBCAO3fu2CVvRaIrWk2JfJX1J8fcQZMyVlNC+GWfv4Z8RsEocHol0NElABjqO0HRzD27uY9LzjZ8/f3w6quvoXXrtsjISMcvv/yI1ZtWI12XkUdqubjeHxo0LfvclO6fo1kveFgNdolctSc0HVyQOaIC0t/0BgAozmmg2pQG5yV3ISXqYaggg75WdtUR52U5QQTVjgwozmshZIChogLCVw59HRUkkT3PZU4ylAcz4bwkBfJzGjj/kATZVS2Uf6dBcSATyr2ZUJx8IGAhz26C4rQ21er3zF7kZzRw/ukenOcl50zMEiW6TSJHKeu3lgKpUqVKgatH1qtXr8DpZmVlwcvLy+q8tLQ0i4ejwkpPT0dQUBA++OADq/M3btyIzz//HKNHj8batWsRFBSE4cOHIzEx0bTMM888Y/WfXq/H1q1bUbNmTQQGBhYrn0RERI5S0vdiI3vck8sS6f6Pq2Z9LNghKCHK+pNj7vyVsT4lhKcc6RN9kDHR1z4JmvUpUTL7ahb4UElQKBR44omeGDRoKDw8PHHs1FF8c3I+ziZfzD+t+7UhFMcyofrjHpAmICRA18j6cLLCPedgaru7AU4yiACF2Qgwsjt6SAIwBMhh8M+ZkftvADBUU5hqlmiedENWTzcY/OSQsnJe8J0X34X8qg4uPyRDtTUdTuuy+6sRLhK0bXKaajiNrQThLEFxIguqzfebOBkElJtTIT+emW85WNALwGAeaJAS9JBfvD88aqIhexmNgMuXCXBekJyzvEFAdlED1Z+pgI1hWQFkN5nR52xDtfoeXL5KhDyqcH1rEJWUctGnxLZt20ok3dDQUKxbtw7t2rWzmBcZGYlGjRoVK/327dvn2axiyZIlePHFF9GnTx8AwMcff4wdO3Zg7dq1GDZsGABg3bp1Ntc/fvw4Nm7ciMjISKSlpUGn08HT0xOvvPJKkfIrK+YNz7h+cdMpj1g21j1YLiwfSywb21g2tj1MZVPS92Kj4t6TK1asiNjYWNPysbGxiIiIsEveisT4a6qTBGRm/13omhKl0HzD7sp49oSvHZuqlMToJQ/KPcJHrr/r1lVjzJjx2LTxL5zasxuLz/2Cpv5hePqx7nBW2AgyuGUHGeTXdJBfy25SIZwk2+eUjU5L9WFOUBzNgnCSTEEFQ6DSLH/6xxQweMmguJD9Yp+7qYjwU0DXTgG4yeD0W/6dVmYO9IShtgq6hk6Qx+rhGuaKrFe84DwzCYpDmdlpGwRU27NrjGS6yKBXq0xNQvT1rJcHAEjJerh8kwRtc2fo1SoIbzlkd3RmtT0AwPXDeOjCnCBLFUCqDopDmdA1d4HT8hQozmQ3V5HSDcjq6wmkGyBlCVOzKClFD5fpiTBUVCBzWAVIOgHlwezgifPyFBg8ZdB2cYWuRTH7yMgyQPtnEhAmB9zK+BeRypxyEZQoKePGjcOQIUMwePBgPP7445AkCTt37sTSpUsRGRmJH3/8scS2rdFoEBUVhVGjRpmmyWQytG7dGseOHStQGhMmTMCECRMAAGvWrMHly5eLHJBQKGTw9S340El58fYu/PjSjwqWTQ6lUm5xzrF8bGPZ2Mayse1hKBtH3ouNCnJPDgsLw9mzZxEfHw+5XI7jx4/js88+K/I2i/1DgPFHUVVOUAJOskKlK1npDFCSl+1glpSrw0db+XyYgnJ5y39fiyJ3+Riccg3n6Wx+/ri7u+H5F15E47+rYO3ljTgUdwIX7l7B0zW6o4F3ECRJMltecresZiNcJJt5NzR1hv68Bro2LmbLaHt5QNfBFVBIcJ6eXVPJEOxkVusB/gpo+7rBsC8DynX3oG/jarEdQ2NnGHamQ4rXm2oWWVVZmb1uoAqi9v1+MWqooK+ngvysBk6rzAMbikOZEDWVcF6SHVjI+MQPcLFexUgepYGUKaD6NwP413YzGEkLU+edAOD0eyoUR7Mgv6zN2e7RLOgbZEG1LhVSigHanu7QdXCF/LQGkgaQR+vg9nGCRdqyFAOUO9JhaOWaRyHkT7krHdrNaVBFO0Pzomex0ioUvYDskhaG2srCd/iaaQCcS6H6lxCQ39JBeItycN0pGQxK5KFp06ZYunQpZsyYgU8//RRCCMyaNQsNGzbEkiVLSnREi6SkJOj1evj5+ZlN9/X1xbVr10psu7bodAakpBSwzaANMpkEb283JCWlwWBge7jcWDaWtFo9EhKyq06yfGxj2djGsrHNXmXj6ekCpbJkf6515L3YqCD3ZKVSibfeegv9+/cHAIwfPx5OTrZ/Ic2LPX4I0KdkIQuAzEUOkZJdrdvZWwXPQqSbpUq16C/T3dMZCjv9SFES9F4yZCF7qMn8yvBhCMrlR/t8do0D1xI4Jt7ebhAuBmQgHgDg5e8Gma9lc2kX7yAEhlbHumuROJYQhRUXVqO+d108U+NxVPWtZVrOoNEgE8lm68rdFXkfp7dtvNxWy/4vMyQDyDLAO9QL0Ahk3E/fLdAt+zzt6Q7Rww9uNkbbEB+6AQLIGH01Oz8t3aHfl2uYYU85fGtY5sHb2w2G/kpkzboNEWc+5KjieBYUuYYxrRAtg6Jlzj7qjqZB92cSZKGuMFzSIa/uMuWNXSEPd4NmcVzOtPt5NAYk5M3cIG/pDs2sWDityNWfxu4MeD7jj6yz96xuQznID5JCgmZxHGRpAu5/pENWyxnKjtn7K7QC2vVJkDd0hby2M/RR6TBcyoLiKS9IkgRDtAa6HSlQ9PSC5CVH5vEkCADyY1nwGeQCyd32vUFoBfRR6ZDXcobhRhZk1VSQKhTstVR3NA26HSlwGlERcJVB80Ms9IfToRzkB2UHjwKlIYSAdk0SdJuSoXzRF8quFQq0XkEJrQAUOYFd3aFUaOYkQj9EBu+2pRiweYgwKJGPJk2a4KeffkJmZibu3r0LT09PuLg4bgggIYTVXy7y07t372Jv214P9QaD4AuCDSwbcw+WBcvHNpaNbSwb2x6Wsilr92KjB+/J3bp1Q7du3Yqdrj1+CJAnaaECoFcKUzcLGZIO9xJS81rNjEqjt2ghkJqRBX0h0ihtslQNjKGgBBv5LFcBy+b3H+XteEzMykdngPGblpyeAZGgsVjeRQBuSlf0r9MLTf0bYu2VjTiddAEXMq+h3dqn0KZNRHbfL1k5aRnphcHmcSqQwdkvoWmJ2X07GNNPkWshCpGuoqcbpBgdsurJ4bQvV/4qyszyZ1Y2LgJ42xvOH8RDyhQwVJTDUFkBxfEss9FvNPPvIP1ECrS9PQBJguqvJMivaWG4pskefvWBvBiqKSCLzg50ZLkJaIMl4CM/KHZnwFBZDkOoM2RqOZyWZwffMisI6B4TcMq1HgCIZD3u/hUH1ZmM7BFHcipVQCiAe1UFhI8MTpUVkN3SQb87FfrdqUgJlQBJgmJbGpSb0qDdehdZb/jAeUZ2LYt7NQBRVQGn2YmQ3dFDt+2B0Ul0AilbEqBrb73mhWL9PYthXg1VFch63dtqUx4pXgdkCsji9NCHOsFlVnaAJv3t62a1YzJ338W96gLSDR0MDVSAHlD+mQp9iAqGICcg1QDl5lQYAhSQn8yC/Ep2gWh/TkBKPcnUEWuRaEV2J6TuMkh3dHD6JhG6zm7QdckOfCpP3st+6VbKinXdKY0fAhyFQYk87N27F+Hh4XBxcYGzszOcnZ1Lbdve3t6Qy+WIj483m56YmGjxSw0REVF55ch7sZEj7snFfVmWae/3I5GrM0SDk1SodAWsjOChKeuBrJy85ZfPhyUo5ygGgzD7hd2gAEQ+5aWuUAtvtBqJrdIBbE/dh8jIjTh69Ah69nwKtarWslwhxWDXY5AxogLkV7TQV5NbdB6ZF0277Bdo6YFaD4YAhdX85T53sl70gNPqe8h6wQOGAAV0YU5QHMuEvrYKym3pkKUYoNiXCW1zZzj9eg+y2JyIhSQAXX0VFKezgz0Zr3nBUEMJxZ4MKP9Jg6aNS3aZu0jQdLn/km8QMISoIAZ6Qrk1DdpmzhAGAW2YE5zuByU0HVyg2pGR3QEmAG2ES06fF4M8oa+jBJxk2Wn5ySC7lbNv4rYOIkAB+YHs5aVMAfn2tJw8R2shtAKyO5ZtXuSt3aHfkwr53gxo2jhDflaT3cloloBqSzpkt3VW15PF6OD8QTyyXvKEoaIc0AsojmRBOEtw2pCzbW3TnOu/MSAhnKXsPF7SQjYtAZIeyHrGHcJNgmJvBhR7M5D2hT+c1t2D4ph5x55Cyj4Giq1pMPjKoa+pzB4O2QrF/gzIz2igr62EPFoHTRfX7D5iZBKcfroL+VkNNL08oFp7D5Iue9hY2cms7D5Q/ssuS1lVJQwGLa87VjAokYehQ4dCLpcjODgYTZs2RZMmTdCkSRN4e3uX+LZVKhVCQkKwZ88edOrUCQBgMBiwd+9evPzyyyW+fSIiorLAkfdio4fynmzsaT/3CA022rUXhpSaV2XzMqCsjw7yEBMFG+gOCncntH/rGQTfaYX169fi6tUrWLJkAerXC0GvzBbwdc757sryGjGiCAx1VDDUKWBGrTB2DmlKr1L+v0rr6zsh/YOcplr6Bk7QN8j+bKiigMucZACwCEgY6Zo6A04SZFe1MFTJfjXTtXaBrnXetcFyb8e4DpQShJsEfX0nKPdnQsoQ0NVVQtfaBcJTDvk5DfRqlVkHpoaKCgA5NWBcZiUhY6w3ZAk5x0a5L2dUEVmMzlQTxOAhMx1DIQOUvX2guZVdC0H5dzpU29JhqCi3CERoI1wgj8qCLMkAXQMVFKc0kLIEnBffNQUKrFEeshzdJP0j3+wOP09rTH2DGEdOMeX5mhayq1qzaZqO2WXitC4VyvtBA4OHDBnv+gAK8xobsmgtnNZkp2nsWNQY4DAGRQBY9C8iv6mD/GZOoEuqpAJSzPNB2RiUyMOePXtw6NAhHD58GAcOHMDy5cthMBhQq1YtNGnSBE2bNsXTTz9d5PTT0tJw/fp10+fo6GicOXMGfn5+8Pf3x5AhQzBx4kSEhIQgLCwMy5YtQ2ZmJnr16mWP3SMiIirzSvpebFTu7sn3n4Nzj7ghXArX/FNfJ/tlQResyunhv6wHJYrQxJUKSFHAsr3/QlmxYkUMHfoKTp06gc2bN+L02ShcOnUE7QJaolOVNnCSO1kM3elwCglpn/pBtSUNit0Z0NdQFis5Qw0lMgd7wnlpitWABADo1Sro698PpBTn/FVKZoGMzFe8AK2A4f4+2Ap0aCNcAEV2cMLppxRIWsBpffYLuMFbBlmS+Xdefkmb3VwBgPYJNyiOZEJfWwlDQ2e4+Sigb+0C+RUtVNvSAcBqQELzlDvQzRXyy1ro66mgSRVw/jYRkh6QMvKvRaAPVEJK1kPb1hWQJGT194TYkArl3szsoWf1MGvaYQwMmaUR4mTWdkZfTQF5tA6KvRkw1FZByADhJYPiRJbZPuhrKAAdII/JvsgaAxIPMlSQQXbXvOwkJa9PtpTLoIQQAt9//z1efPFF+Pn5mf729/cvVDre3t7o2rUrunbtCiB7DPN9+/ZhyZIl+O2337Bq1apiPQidOnUKgwYNMn2eMmUKAGDMmDEYO3YsevTogcTERMycORNxcXEIDg7GwoUL4ePjU+RtEhERPUxK+l5sVO7uyVZqShQ2KKFr4QyDnxyGGkoY/kmDakcGdA2L1nlnqWFNCbvTtnWBdM9Q8JENRM5LmiRJCA1tiKCgYOze/R/2HdiE7Tf34GDicXR+5nE0fK5V2RvFVSVB87gbtBEuEF7FD5roa+UENoQC0DVzhqG6Ek6/3YMu2LzWgj0Za13ky1UGbafsvg8yX/GCyw/JkN8fSlXb3hWqDamQtIBOrYSkEZBf1UEWl/2Srn9MAV0TLwA5o7bow5ygPesE5eEsCBkgPRDHNOXLSQZ9cPb1RHhIyHjHF1AA8gtaOP14F3p1dlA0NyED9A2doOniBuGX69goJWiecYeuiTMMVRSQ4vVw/jEFUpLerC8NXagTNN1dAT0gKikAIZD1lBsM1ZWAAnD+PhlOf6UBSIM1GeO8s/MvRHbNC4UE2W0dpGQDFMezTOWSMbwCRIAcLl8lAVqRHXiKcEHxxjcp38plUMJgMOD7779Hx44d4ePjY/q7sEEJIPuXk6NHj5p+pTlx4gScnJzQoUMHNGnSpFj5bNGiBc6dO5fnMgMGDMCAAQOKtR0iIqKHWUnei43K2z1ZMtYYdipG8w2ZBEPd7F9wtY+7QdvB1S5NQEpUGc/ew0jzZOFG9tDXtKxdoFKp0LFjZ7TeXgtbTv+DIykn8fvNjdj500F07twNISENitSRe4lRSHYJSAAAnGTQNnaC8kgWtO1coe2eHQAwVJLfbzpRdhhqKGDwlEF2f8QefS0lsvp4QH5NC21HVwi5BJc5yZAl6CHkgPCxUkYyCZrnPbJrIiglQABSoh6KE9lDmOoDbdQ+uR9A1QepkP6xHyCToI3RApIEl++SIJwkpL/vazuII0nZwQUAIkCBjDe8AZHddMNlXnanoIaqCgh/hdk6uoicUIGuhTOUeyybiACAUAKGAHnOtgKzr43GbUpJesji9DB4y0zXzfT3fbOXV9oe+payla1vgh2JXFHa3H8XRu/evXHu3Dn4+vqiadOmePzxx/G///0PQUFBZevCSUREVE7xXlxEesuOLgtbU8KMJAHFWb+0PARZLK/0NRXQNXHOszaNl5sn+tZ+Bq3QHH8G7seVK5fw668rUaVKNXTt2h21a9cpl99rTW8PGOqozMrGULV4TUNKhCRlj/5xv+NNUVEOfYAC+kY5HUxmvloBil0ZEP5y27VnJCk7KJGLrrETpDRhPZDxoPsv8MYyyhjrBeEpK1ytEmMaNZXQdHQFIKBtmXdHyYZqSgDZQYmsp90gi9dDflEL2R19dl8cedQW0vR0h6TH/W3dx+YaBVZugxL2cO7cOSgUCoSHh6NRo0Zo3LgxH4KIiIhKEe/FRWSsKZE7KOHMMqOSI5xl0DXPZ6je+6dgdY+qGDp0BC5duoAtWyJx82Y0li1bhJo1a6Fr1+547LEaJZ/h0qSUoGtS+iMHFYXhMSVwWgODr9xqHxeighzanoWrPQMAcJJBFLH1V3awoIhkErSPuxVsO7lG3tCHOEF3v7aMlKyHcMunGpabDFn9PIuczUcdgxJ5OHTokKm66JYtWzBjxgwolUo0btwYTZs2RbNmzRAeHu7obBIREZVbvBcXkbFPidydEzoxKEElqCCn1wMvubVr18XIkXUQFXUK//yzBVevXsaCBT+gVq066NChEwIDrQwjSiVK29YFEAK68IcjiGJPhoo5tThEhZwghN2a8pBNDErkwcXFBa1bt0br1q0BAFqtFnv37sWCBQswY8YMSJKEM2fOODiXRERE5RfvxUUj6e4338j9pMc2zVQC9FUUkN/Umf3KbJPxFHygM8wGDUJRv34Ijh07gp07t+Py5Yu4fPkiatYMRIcOnVCrVvls1lEmKSRTx5ePHIWEjFcrZDfT4PlWqhiUyEdiYiIOHTpk+nfu3DkYDAbUrVvXbp1rERERkW28FxeBcQQ7hYSMVyqwA0gqMVlDPCE/ngVdy3yabuQiWenuTSaToXHjpggPb4yTJ49j587tuHr1CpYuXYRq1aqjQ4fOUKvZdItKlqGWytFZeCQxKJGH7t274/r165DL5QgODkaLFi0wevRoNGnSBF5eXo7OHhERUbnHe3ER3a8pATlgqM2HbCo5wlMOXdsCDnZoqilhexGZTIaGDRshNLQhoqJOYceObYiOvoEff1wKf/+KaN06AuHhjaFQ8DWGqLzgtzkPPXv2NLVVdXEpePSXiIiI7IP34iLKVVOCqMwozOAJMhlCQ8PQoEEozp49g127duL69WtYt24Ntm6NRIsWrdG8eUu4uT2iTQ2IypFyGZSQJAlVqlSBSqUy+7uwXn/99RLIHRERERUU78VFY+pTgv2zUVlSgJoSFqtIEoKD6yM4uD5u3LiO3bv/Q1TUKWzb9jf+/XcHGjVqjFatIuDv718iWSaiklcugxIymQzbtm0zfc79d2HduHEDCxcuxJEjR5CcnAwvLy80adIEw4YNQ/Xq1e2RXSIiIsoD78VFYBwS9BGrKWG430u+KMYIglQKChGUyK169cfQt+9LSExMwJ49u3HkyCEcPLgfBw/uR2BgbbRo0QrBwfUhk7ETFaKHSbkMStjLqVOnMGjQIDg5OaFDhw7w8/NDfHw8tmzZgvXr12P58uUICQlxdDaJiIjKLd6Li8g4JKj80QpKwE2G9Ik+EK6P2H4/JEQRakpY4+PjiyeffBqdOnXBoUMHcODAPly5cglXrlyCh4cnmjZtjmbNmsPDw7PYeSaiksegRB6++OIL1K9fHwsWLDBrx5qRkYFXXnkFX3zxBZYvX+7AHBIREZVvvBcXkammhENz4RDCl21WyizjyBnFDEoYubq6ol27DoiIaIcLF85j//69uHDhPLZv34odO7ahfv0QNGvWnEOKEpVxj+CtquBOnjyJb7/91qJjLRcXFwwdOhRvvPGGg3JGRET0aOC9uIj0xj4l+CJGZZGdohL3yWQyBAXVQ1BQPSQmJuDgwQM4cuQgoqJOIirqJCpU8ELjxk3QqFETeHv72HXbRFR8DErkwcnJCcnJyVbn3b17F05OTqWbISIiokcM78VFY+zokk96VJYYHlNAflMHfa2SG6bWx8cX3bs/gc6du+LUqRM4fPgQrl69jO3b/8H27f8gMLA2mjRpivr1G0CpZOcjRGUBb1V56NChA7766itUq1YNTZs2NU0/dOgQZsyYgY4dOzowd0REROUf78VFZBwSlDUlqAzR9HCHIUABXcOSDyYqFAqEhzdGeHhjJCYm4OjRwzhy5LCp7wknp3UIDQ1DWFg4atYMZPMOIgcqF0GJPXv2oHXr1vkup9Vq8c477+Drr78uULrvvvsuXnvtNQwYMAC+vr7w9fVFYmIiEhIS0KhRI7zzzjvFzToRERHlgffiIro/+IBw5osWlSFOEnStXfJfzs58fHzRuXM3dOzYBZcvX8Lhwwdx5sxpHDp0AIcOHYCHhydCQxsiLKwhqlSpygAFUSkrF0GJUaNGYebMmWjfvr3NZdLT0zF69GgcPHgw3/QyMzOxc+dOxMTEoF+/fhgwYACuXr2KuLg4+Pv7o2HDhoiIiLDnLhAREVEuvBcXj7anO1zaKpDhBcBg3/b7RA8rmUyGOnXqok6dukhPT8fp06dw/PgxXL16BXv2/Ic9e/6Dr68fwsLCERYWDj8/P0dnmeiRUC6CEl26dMGYMWPwzTffoEuXLhbzExMTMWLECFy6dAmzZ8/OM60bN25g8ODBiImJMU1zd3fHN998g7Zt29o970RERGSO9+LiExUVUAS7Awmpjs4KUZnk6uqKpk2bo2nT5khJuYtTp07ixIljiImJxvbtW7F9+1YEBFRG/fohCAlpgIoVAwCwBgVRSZA5OgP28NVXX+Gpp57C+PHjsXHjRrN50dHR6NevH6Kjo7FkyRJ06NAhz7SmT58OmUyGlStX4vjx49iwYQOCg4Px0UcfldwOEBERkQnvxURUmjw9K6B16wiMHDkG48a9hY4du8DfvyJiY29h+/atmD37W3z33QxERm7C9evXIQRrHxHZU7moKSFJEqZOnQonJye8/fbb0Gg0ePbZZ3H27FmMGDECcrkcK1euRJ06dfJN6+jRo3j33XfRpEkTAEDt2rXxySefoEePHrhz5w4qVqxY0rtDRET0SOO9mIgcxc/PD506dUGnTl1w584dnDkThdOno3DzZjT+/XcnDh7cA5XKFfXq1UdwcDBq1qwFuVzu6GwTPdTKRVDC6MMPP4STkxMmTZqEc+fOYdWqVahYsSIWL16MSpUqFSiNuLg4VK9e3WzaY489BiEE4uPj+SBERERUwngvJqKyoGLFiqhYsSLat++IpKREnD17BteuXcDp0+ewf/8e7N+/ByqVE2rXrgO1OghqdRA8PSs4OttED51yFZQAsnvpdnJywvz589GwYUPMmzcPFSrw4kBEREREREXj7e2DNm0i8PTTj+Pq1Vs4fToK58+fw6VLF3HmTBTOnIkCAFSqVAX16tWDWl0PVatWg0xWLlrLE5WochGUaNmypcXQPUIIXLp0CY8//rjF8nv37s0zveHDh1uthjV48GCL6fmlRURERIXHezERlVUeHh5o1qwFmjVrAZ1OhytXLuPcubM4f/4sbt++idu3b2LHjm1wcXFFrVq1UatWHdSuXQe+vr6OzjpRmVQughIvvfSS3cYTHjNmjF3SISIioqLhvZiIHhYKhQJ166pRt64aQjyF+Ph4nD9/FufOncW1a1cRFXUSUVEnAWTXtqhduw5q1aqDWrVqw83NzcG5JyobykVQYuzYsXZLiw9CREREjsV7MRE9jCRJgr+/P/z9/dGmTVtoNBpcv34Nly5dxMWLF3D79k0cOnQAhw4dAJDd1CMwsBZq1gxEjRo1GaSgR1a5CEoQERERERGVJSqVCnXq1EWdOnXRvfsTSE1NxZUrl3H5ck6Q4vbtm9i7dxcAwN8/ADVr1jQFKSpU8HLsDhCVEgYliIiIiIiISpi7uztCQ8MQGhoGAEhMTMDVq1dw7dpVXL16BXFxsYiLi8XBg/sBAF5e3qhRoyYee6wmqlevjoCASuw4k8olBiWIiIiIiIhKmY+PL3x8fNG4cVMAwL17Kbh69aopUBEbexvJyUdx/PhRAIBCoUTVqlVRrdpjqFatOqpXr87aFFQuMChBRERERETkYB4enmY1KdLT03H9+jVER1/HjRs3EBMTjWvXruLatatm61SrVh3VqlVH5cpVULlyFbi7uztoD4iKhkEJIiIiIiKiMsbV1RX16gWjXr1gAIAQAnfu3EFMzA1ER9/AjRs3EBt7G2fOROHMmSjTeh4enqhSpSoqV66MypWz//fy8rbbaIVE9sagBBERERERURknSRICAgIQEBBgavKh0WgQExONW7du4ubNGNy8eRNxcXdw7twZnDt3xrSui4srKlWqjEqVKqNixYoICKgEf/+KcHZ2dtTuEJkwKEFERERkB5cvX8akSZOQmpoKlUqFSZMmoWnTpo7OFhGVYyqVCoGBtRAYWMs0TaPRIDb2Nm7duoVbt2Jw69ZN3L59G1euXMKVK5fM1q9QwQsVKwYgIKASKlasiIoVA+DvXxEqlaq0d4UeYQxKEBEREdmBk5MTpk6dilq1auHSpUt47bXXEBkZ6ehsEdEjRqVSoXr1x1C9+mOmaXq9HvHxcYiNvY3Y2Nu4c+cO7tyJRWJiIu7eTcaFC+dypSDBy8sLvr5+8PPzh6+vL/z8/OHj4wtvb2+OAEJ2x6AEERERkR1UrVrV9HetWrVw7949CCHYjpuIHE4ulyMgoBICAiqZTddoNIiPj8OdO7GIjY29//9tJCcnITk5CZcuXTBbXiaTw8fHB76+fqZ/Pj4+8PHxRoUKbApCRcOgRDl28uRJTJ482fT5woUL+P333xEcHOzAXBERETnGwYMHsWjRIpw6dQpxcXGYO3cuOnbsaLbMypUrsWjRIsTFxSE4OBiTJ09GWFhYobf1zz//IDg4mAEJIirTVCoVqlSpiipVqppN12q1SExMQHx8PBIScv7Fx8eZ/pmT4OKihELhDG9vb1So4AVvb294eXnD29sHXl7e8PLygkLB10+yxLOiHAsNDcW6desAADExMRg4cCADEkRE9MhKT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YN5HI5gOx77vTp0zF//vyS2xkiohKkVCqt1qwAgMzMzFxBingkJyfh7t1kZGWl4datO7h3LwXANavpuri4wsPDE56enqhQoQI8PT3h7p7z2cPDE25ubgzoPmIYlHhEbN68Gd27d3d0NoiIiBymffv2aN++vc35S5YswYsvvog+ffoAAD7++GPs2LEDa9euxbBhwwDAFOy3JTU1Fa+99href/991KhRo8h5lcmK90BuXL+46ZRHLJu8sXxsY9lkc3V1gatrdVSvXt00TSaT4O3thoSEe0hOTkZSUhKSkrKbgGT/nYiUlBTcvZuMO3eym4nYIpfL4ObmDjc3N9P/7u5uZtPc3XP+VqlUZT6IwXMnbwxKOFBpViPdvHkz3n//fXtlnYiIqFzRaDSIiorCqFGjTNNkMhlat26NY8eOFSgNvV6PcePG4YUXXkBERESR86JQyODr617k9XPz9nazSzrlEcsmbywf21g2tvn6esDX1wNAdavzhRDIyMjA3bt38/yXmpqK5OQMJCfH57tNmUwGFxcXs3+urq5WP6tUKjg5OZn9b/xbLpeXeHCD5451DEo4UGlWI01MTCxSMIOIiOhRkJSUBL1eDz8/P7Ppvr6+uHbNejXkB/3777/Yt28f4uPj8dtvvwEAVqxYAU9Pz0LlRaczICUlo1DrPMj4q2VSUhoMBlGstMoblk3eWD62sWxsK2zZqFQe8Pf3gL9/NavzhRBIT09HWloa0tJSzf5PTU1FenrO/xkZmbh7NxXx8cnF3ofsIIUTVCol5HIFFIrsf3K5HDKZHAqF/IHPCigU8vsjkkiQJPN/MpkMkiShYsWK6NChTbHOHU9PFyiV8mLtY1nFoIQDlUY1UgCIjIy0S9MNViUtOSwb6x4sF5aPJZaNbSwb21g2BVeY0TM6duyIqKgou2zXXi88BoPgy5MNLJu8sXxsY9nYZs+ycXFxhYuLK/z8/Au0vE6nQ2ZmBjIyMpGZmYHMzExkZKSbfdZosqDRaKDVapGVlQWtVoOsLA20Wg00mux/2SMnGeyyD0aSJKFVq6Y8d2xgUKKMskc1UiN7NN1gVdLSwbLJoVTKLc45lo9tLBvbWDa2sWxyeHt7Qy6XIz7evKpwYmKiRe0JIiIqexQKBdzdPeDu7lGsdIQQ0Ov10Ol00Ov10Ot19/82QK/XPTAv+28hBAwGA4QQAASEMP/n6+sLJycnpKZq7bOz5QyDEmWUPaqRAsDNmzeRmJiI0NDQYuWHVUlLFsvGklarR0JCKgCWT15YNraxbGyzV9mUp6qkKpUKISEh2LNnDzp16gQAMBgM2Lt3L15++WUH546IiEqLJEmmZhv2wpqJeWNQ4iFTmGqkAFClShVs3brVLttmVdKSx7Ix92BZsHxsY9nYxrKx7VErm7S0NFy/ft30OTo6GmfOnIGfnx/8/f0xZMgQTJw4ESEhIQgLC8OyZcuQmZmJXr16OTDXRERE5RuDEmUUq5ESERHZ16lTpzBo0CDT5ylTpgAAxowZg7Fjx6JHjx5ITEzEzJkzTaNeLVy40NS5NBEREdkfgxJlFKuREhER2VeLFi1w7ty5PJcZMGAABgwYUEo5IiIiIgYlHIjVSImIiIiIiOhRxqCEA7EaKRERERERET3KGJRwIFYjJSIiIiIiokeZzNEZICIiIiIiIqJHE4MSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMoHJ0BKj+EMMBgMEAI6/NlMgkajQY6nQ4Gg42FHlFlsWwkCZDJZJAkxi6JiAoqIyMDPXr0QM+ePfHWW285OjtERERlHoMSVGx6vR4pKYnIykrPd9n4eBkMBkMp5OrhU1bLxsnJFZ6ePpDL5Y7OChFRmTd37lyEhYU5OhtEREQPDQYlqFiEEEhIuAWZTA5v74qQyxUAJJvLKxQSdLqyUROgrCl7ZSOg1+tw714yEhJuwd+/KiTJ9rElInrUXb16FZcvX0bHjh1x+fJlR2eHiIjoocCgBBWLwaCHwaCHj08AFAplvssrFDIAZa82QFlQFstGoVBCLlcgPv4mDAb9/aATEdHD5+DBg1i0aBFOnTqFuLg4zJ07Fx07djRbZuXKlVi0aBHi4uIQHByMyZMnF6rWwxdffIGJEyfi6NGj9s4+ERFRucU3DCqWnP4j+At6+ZV9bG31FUJE9DBIT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YNtm/fjpo1ayIwMJBBCSIiokJgUIKIiIjKvfbt26N9+/Y25y9ZsgQvvvgi+vTpAwD4+OOPsWPHDqxduxbDhg0DAKxbt87m+sePH8fGjRsRGRmJtLQ06HQ6eHp64pVXXilSfmWy4gX7jesXN53yiGWTN5aPbSwb21g2eWP55I1BiXLi9ddfx969exEREYFvvvnGNH3r1q2YPn06AGDcuHHo0aOHo7JIRERUJmk0GkRFRWHUqFGmaTKZDK1bt8axY8cKlMaECRMwYcIEANk1Jy5fvlzkgIRCIYOvr3uR1n2Qt7ebXdIpj1g2eWP52MaysY1lkzeWj3UMSpQTL730Ep599lmsX7/eNE2n02H69OlYuXIl5HI5XnzxRXTp0gUqlcqBOS07PvvsI2za9JfF9L/+2govL6/SzxARETlEUlIS9Ho9/Pz8zKb7+vri2rVrpZ4fnc6AlJSMYqUhk0nw9nZDUlJamRlquqxg2eSN5WMby8Y2lk3e7FE+np4uUCrL52h4DEqUEy1atMD+/fvNph0/fhxBQUGmh6ywsDAcPnwYrVq1ckQWy6TWrdvinXf+ZzatQoUKZp91Oh0UCn5ViIgeNUKIIo061Lt372Jv214P9QaD4AuCDSybvLF8bGPZ2MayyRvLxzqZozPwKDh48CBGjhyJiIgIBAUFYfv27RbLrFy5Ep06dUJoaCheeOEFnDhxotjbvXPnDgICAkyfAwICcOfOnWKnW56oVEr4+vqZ/Xv++aexfPlifPLJ++jatR2++24GAOD48aMYNWooOnVqgz59nsScOd9Bo9GY0kpIiMfEiePRqVMbvPjis9ix4x/07NkZGzdm1145cuQQIiKaIj093bTO7t3/ISKiqVme/v13BwYP7o9OnVrjxRefxcqVy2Aw5IzKERHRFH/99QcmThyPzp3bYODAF3D8+DGzNI4dO4LXXhuOzp3b4IknOuHtt8chKysLy5YtwpAh/S3KoW/fXvj55x+LXZ5ERA8jb29vyOVyxMfHm01PTEy0qD1BRERE9sWgRCkw9vj9wQcfWJ1v7PF79OjRWLt2LYKCgjB8+HAkJiaalnnmmWes/tPr9aW1G4+Un35ajnr1grF06U/o2/clxMRE4623xqFz525YvvwXfPDBp9i7dzfmzp1lWuezzz5CfHwcZs+ehw8/nIKVK5ebBSAK4vjxY5g69SP07fsSVqz4DePHv43Vq3/F6tW/mi23ZMlCPPHEk1i69GfUrl0XH3/8P+h0OgDA9evX8MYboxEUFIz585dh9uz5aNKkGYQQ6NHjKVy+fAkXLpzLtc2juHXrJrp3f6IYJUZE9PBSqVQICQnBnj17TNMMBgP27t2L8PBwx2WMiIjoEcA66aWgpHv8tqVixYqIjY01fY6NjUVERESh0zGy1lvsw96D7H//7UTXrm1Nnzt06AwAaNq0BV54IadGwbRpn+Lxx3viuef6AgCqVauO0aPHY/LkiRg79k3cuHENBw7sw+LFP0KtrgcAmDDhHQwfPqhQ+Vm8eD4GDRqKxx/vCQCoWrUaXn55KFav/hUvvNDPtNyTTz6Djh27AACGDn0F/fv3QUxMNGrUqIkff1yK0NCGGDdugmn52rXrAACcnZ3RvHlLbNiwHuPHBwEANm5cj1at2sDHxzfPvMlkUqkf7wd7Kn7Yz7eSwLKxjWVj26NYNmlpabh+/brpc3R0NM6cOQM/Pz/4+/tjyJAhmDhxIkJCQhAWFoZly5YhMzMTvXr1cmCuiYiIyj8GJRzMHj1+2xIWFoazZ88iPj4ecrkcx48fx2effVaktGz1BK7RaBAfL4NCIUGhKFjFm4IuV9IkSUKzZi0wYcJE0zRXVzcMGzYI9euHmOXz0qULuHjxAjZvzukY02AQyMrKxN27iYiOvg6lUong4GBT++OQkBAolUrIZNllI5dnp6dQyExpy+WSaVr2ds7j1KnjWLJkQa7tGGAwGMzyU7duXdPngICKAICUlCQoFLVw6dIFtG/f0WY5P/XUs/jyy88wbtwb0Ot12L79H3z44Sd5HBcJMpkM3t6updpJqlIptzjn2GOxbSwb21g2tj1KZXPq1CkMGpQTKJ4yZQoAYMyYMRg7dix69OiBxMREzJw5E3FxcQgODsbChQvh4+PjqCwTERE9EhiUcDB79fj9yiuv4MSJE8jIyEC7du0wf/581KtXD2+99Rb698/+xX/8+PFwcnIqUj5t9QSu0+lgMBig0wkABssVH6BQyKDT5b9caRBCwNnZGZUrV7OY5+TkZJbP9PR09O79PHr1et5iWXf3CtDpDJAkyfS/MX0gO3ih0xlw/yN0Or0p7aws7f1p2UGH9PQMjBgxCm3bWtasyZ0fSZKbPuv12QlrtXrTdozbtKZ167YAJPz7705kZGRApVKhRYs2NpfX6QQMBgOSktKhUGisLlMStFo9EhJSAbBH57ywbGxj2dhmr7J5mHoCb9GiBc6dO5fnMgMGDMCAAQNKKUdEREQEMChRZhW2x+/58+dbnd6tWzd069bNLnmy9uD6qDzo160bhCtXLqNatepW59esWRMajQYXLpwzNd84d+4stFqtaRkvL28AQEJCAlxds3+dvHjxvFk6anUQbty4ZnM7BVGnTl0cOXIIgwcPtzpfoVCge/ce2LBhPbKyMtG9+xMFGl3EEb0FP7g99lhsG8vGNpaNbSwbIiIicrSyUY/+EcYevx8OL700CMeOHcW3336FCxfO4/r1a9i5cxu+//47AMBjj9VE06bN8cUXn+HMmSicOROFb775Ekql0pRGtWrVUbFiAJYsWYAbN65j+/at2LDhT7PtvPzyMGzcuB5Lly7ElSuXceXKZWzZsgnLli0qcF4HDBiMkyeP47vvZuDy5Yu4cuUyfvvtZ2RmZpqWefLJZ7B//x4cPXoYPXo8XczSISIiIiIiKhoGJRyMPX4/HOrWDcLMmXNx5cpljBo1FMOHD8KyZYvg71/RtMzkyZ/A29sbo0ePwAcfvIe+fV+Cq6urab5CocAHH3yK8+fP4eWX+2H9+nUYMmSE2XZatWqDzz+fgb17d2PYsIEYNWoo1qxZhcqVqxQ4r489VgMzZszC6dOnMHz4IIwePQKHDx8wq3kTGFgLanU91K0bZOoEk4iIiIiIqLSx+UYpYI/fZdP//veR1emrV6+3Or1Bg1B8990cm+n5+fnhq69mmk376qvPzT6HhzfGjz/+ZjbtqaeeNfvcqlUbtGrVxuZ2du06ZPbZ1dXVYlrjxk0xb94Sm2lk9xGRiP79Czc6CBERERERkT0xKFEK2OM3lSWJiQnYuHE9UlPv4fHHezg6O0RERERE9AhjUKIUsMdvKkuefro7vL198M47k00dbhIRERERETkCgxJEJWjDhn8cnQULDzb1ICIiIiIichR2dElEREREREREDsGaElRi3n//XZw8ecJsmiQBQth/W6GhYfj002n2T5iIiIiIiIhKDIMSVGKsBQkUChl0OoMDckNERERERERlDZtv0CPp999/xeOPd4DBkBMgSUiIR0REU7z33ltmy0ZGbkTHjq2QlZVZ5O3988/fiIhoismTJ1qd/+GHk7B48UIAQEREU3Tq1AZ37sSaLTNmzCuYPfvbIueBiIiIiIiorGFQgh5JjRo1QWpqKs6fzxkV5dixI6hYMQDHjx+FyNXG5NixIwgODoGTk3ORthUbexvff/8twsLCrc7X6XTYv38v2rZtZzZ9yZIFRdoeERERERHRw4JBCXokBQbWhpeXN44ePWyadvToYTz+eE8olUpcvHjBbHrjxk2LtB2DwYApUz7Eyy8PQ9Wq1awuc+zYEbi7u6NuXbVpWp8+L2DjxvW4fv1qkbZLRERERET0MGCfEvRIkiQJ4eGNcfToYfTrNwBAdnBg3LgJiIm5gaNHD6NuXTXi4+MQHX0DjRo1AQAMGPACYmNv2Uw3LKwRZsyYafr800/L4ezsjGee6Y1Tp05YXWfXrn/Rpk1bs2nh4Y1x6dJFzJ//A6ZM+aK4u0tERERERFQmMShBj6xGjZpgwYI5MBgMuHs3GdHRN9CgQUPcuHEDBw/uxwsv9MORI4ehUqnQoEEoAOCrr76DTqezmaaTk5Pp73PnzmL16l+xaNGKPPOxe/d/mDjxPYvpI0eOxvDhg3D27GnUq1e/iHtJRERERERUdjEoQY+sxo2bmvqVuHkzBkFBwXBxcUF4eCMsXDgXQggcO3YY9es3MPUnUalS5QKlrdFo8MknkzF+/Fvw9fWzudylSxeRkpKMRo0sm4eo1fXQsWNnzJ07G99+O6doO0lERERERFSGMShBj6zAwFrw9vbB0aOHcetWDMLDG9+fXhuSBFy8eAHHjh1B587dTOsUtPlGQkI8rl27ig8/nGSaZxzpo337Fli9ej38/Sti166daNGiNRQK61/FESNew0svPYfDhw/aY5eJiIiIiIjKFAYl6JHWqFETU1DitdfGAcjubyIsLBz//LMF169fM/UnARS8+Ya/f0UsX/6L2bwFC35AZmYmxo59A97ePgCy+5N4/vm+NtOrVq06nnzyGcydO6vIo38QERERERGVVQxK0COtUaMmmDPnO2g0GoSFNTRNb9iwERYtmg+VSoWQkFDT9II231AoFKhVq47ZNHd3D8jlctP0hIR4XLhwDi1btskzrSFDXsGLLz4DIcC+JYiIiIiIqFzhkKD0SGvcuCkyMjJQt24Q3NzcTdPDw5sgIyP9fn8STnmkUHS7d/+H0NCG8PT0zHM5Pz8/PPdcX2g0WSWSDyIiIiIiIkdhTQl6pNWoURO7dh2ymF6vXrDV6cXxv/99ZPZ5165/ERHRzmI5a9sdNWosRo0aa9f8EBERERERORprShA5SMOG4ejUqaujs0FEREREROQwrClB5CAvvfSyo7NARERERETkUKwpQUREREREREQOwaAEERERERERETkEgxJULJJk/Es4MhtUorKPbc6xJiIiIiIisg8GJahYZDI5AInDVZZj2cdWun+siYiIiIiI7IcdXVKxSJIENzdPpKQkAgBUKicAef2kLkGnY60K68pa2QhoNFlISUmEm5snJFaVICIiIiIiO2NQgorN3b0CANwPTOT9Ui2TyWAwGEohVw+fslk22UEn4zEmIiIiIiKyJwYlqNgkSYKHhxfc3SvAYNBD2IhLyGQSvL1dkZSUDoOhLNUIcLyyWDaSlN08hzUkiIiIiIiopDAoQXYjSRLkctunlEwmQaVSQaHQlJkX77KCZUNERERERI8idnRJRERERERERA7BoAQREREREREROQSDEkRERERERETkEJIQtrolJMphMAjo9cUfGUKplEOr1dshR+UPy8bc+fNnoVbXM31m+djGsrGNZWObPcpGLpdBJmNnuPbGe27JY9nkjeVjG8vGNpZN3opbPuX5nsugBBERERERERE5BJtvEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKUIGtXLkSnTp1QmhoKF544QWcOHEiz+U3bdqExx9/HKGhoXjqqafw77//ms0XQuC7775DREQEwsLCMHjwYFy7ds1smeTkZEyYMAGNGzdGs2bN8L///Q/p6el23zd7KO3yiY6OxqRJk9CpUyeEhYWhS5cumD17NrRabYnsX3E44twxSk5ORrt27RAUFIS0tDS77ZO9OKpstm3bhj59+iAsLAytWrXCO++8Y9f9sgdHlM3x48cxcOBANGnSBM2bN8err76KS5cu2X3f7MHe5bNlyxYMGzYMLVq0QFBQEM6fP2+RxsN0TX4U2PscKE8KUzYXLlzA2LFj0alTJwQFBeHHH38sxZw6RmHK57fffkP//v3RrFkzNG/eHEOHDsXJkydLMbelqzBls3XrVvTp0wdNmzZFeHg4nnnmGfzxxx+ll9lSVthrjtH8+fMRFBSEL774ooRz6DiFKZs1a9YgKCjI7F9oaGgp5rYMEkQFsGHDBhESEiJWr14tLly4ICZPniyaNWsmEhISrC5/5MgRERwcLBYsWCAuXrwovv32WxESEiIuXrxoWmbevHmiSZMm4u+//xZnzpwRI0eOFF26dBFZWVmmZYYNGyaefvppcezYMXHw4EHRtWtX8fbbb5f4/haWI8pn586d4t133xX//fefuH79uti6dato1aqVmD59eqnsc0E56twxGjt2rBg2bJhQq9UiNTW1xPazKBxVNps3bxbNmjUTv/zyi7h8+bI4f/68iIyMLPH9LQxHlM29e/dEs2bNxKRJk8Tly5fF2bNnxauvvio6d+5cKvtcGCVRPmvXrhWzZs0Sv/32m1Cr1eLcuXMW6Tws1+RHQUmcA+VFYcvm+PHjYtq0aeKvv/4Sbdq0EStWrCjlHJeuwpbPm2++KX788Udx+vRpcfHiRfHuu++Kpk2bitjY2FLOeckrbNkcOHBAREZGiosXL4pr166J5cuXi+DgYLF79+5SznnJK2zZGJ06dUp07NhRPPXUU2LatGmllNvSVdiy+f3330Xz5s3FnTt3TP/i4uJKOddlC4MSVCDPPfec+OSTT0yf9Xq9iIiIEAsXLrS6/Lhx48Srr75qNu35558XH3/8sRBCCIPBINq0aSMWLVpkmp+SkiIaNGggNm3aJIQQ4uLFi0KtVouTJ0+altm5c6eoV69emfviOqJ8rFmwYIHo1q1bcXbF7hxZNqtWrRJ9+/YVe/bsKZNBCUeUjVarFW3bthW//fabvXfHrhxRNidOnBBqtdrsQfvIkSNCrVbn+9BV2uxdPrnduHHDalDiYbomPwpK8hx42BW2bHLr2LFjuQ9KFKd8hBBCp9OJRo0aiT///LOksugwxS0bIYR49tlnxaxZs0oiew5VlLJJT08XTzzxhPj333/FgAEDym1QorBlYwxKUA4236B8aTQaREVFoU2bNqZpMpkMrVu3xrFjx6yuc+zYMbPlASAiIsK0fHR0NOLi4syW8fDwQMOGDU3LHD16FF5eXmjQoIFpmdatW0OSpAJXFysNjiofa+7du4cKFSoUeV/szZFlc/36dXz77bf48ssvIZOVvUudo8rm9OnTiI2NhSRJePrppxEREYGRI0fabP7iCI4qm8DAQHh5eWHVqlXQarXIyMjA2rVrERoaCh8fH7vuY3GURPkUxMNyTX4UOOoceBgUpWweJfYon4yMDOh0ujL1vGEPxS0bIQT27t2LK1euoEmTJiWY09JX1LKZNm0aWrRogbZt25ZCLh2jqGWTmpqKDh06oH379njttddw8eLFUsht2VX2ntSpzElKSoJer4efn5/ZdF9fX8TFxVldJz4+Hr6+vjaXN/6fV5rW0lAoFKhQoQLi4+OLvkN25qjyedD169fx448/om/fvkXaj5LgqLLR6XR4++23MW7cOFSvXt0u+2JvjiqbGzduAADmzJmDsWPHYs6cOVAqlRg0aFCZ6RvAUWXj7u6OZcuWYc2aNWjYsCEaNWqEY8eOYc6cOXbZL3spifIpiIflmvwocNQ58DAoStk8SuxRPjNmzEDlypXRsmXLksiiwxS1bO7du4dGjRqhQYMGeOWVV/DBBx+gVatWJZ3dUlWUstm+fTv27duHiRMnlkYWHaYoZVOrVi18/vnnmDt3LqZPnw6DwYB+/fohNja2NLJcJjEoQUUmhIAkSTbnW5v34LQHPz+YprU08ttuWVEa5WMUGxuL4cOHo2fPnujdu3cRc1x6Srps5s6dC29vbzz//PN2yG3pKumyMRgMAIBRo0aha9euCAsLwxdffIGUlBTs2LGjmLkvWSVdNpmZmZg8eTJatmyJ3377DT/99BMqV66M0aNHQ6fT2WEPSpY9yic/D/M1+VFQGufAw4rnad4KWj4LFizAxo0bMWvWLKhUqlLImePlVzZubm74448/sHr1arzxxhuYOnUqDh06VIo5dBxbZZOYmIj3338fX375JVxcXByQM8fL67wJDw/H008/jXr16qF58+aYNWuWqabmo0rh6AxQ2eft7Q25XG7xS1hiYqJFVNDIz8/PYvmEhATT8v7+/gCyf73MXS06MTHRVDXYWho6nQ4pKSkWv/Y4kqPKxyg2NhaDBg1CeHg4Pvroo+Lujl05qmz279+PQ4cOoX79+gCybwwA0KxZM7z++usYOXKkHfaueBz5vQKymyoYubq6okqVKrh582Yx98o+HFU269evR2xsLFatWmV6kPj666/RrFkz7NmzB+3atbPPDhZTSZRPQTws1+RHgaPOgYdBUcrmUVKc8lm0aBHmzZuHJUuWQK1Wl2Q2HaKoZSOTyVCjRg0AQHBwMC5duoT58+ejadOmJZrf0lTYsrlw4QLi4uLQr18/0zS9Xo+DBw/ixx9/LFejt9jjmqNUKhEcHFymmtKWNtaUoHypVCqEhIRgz549pmkGgwF79+5FeHi41XXCw8Oxe/dus2l79uwxLV+tWjX4+/ubpZmamorjx4+blmnUqBGSk5MRFRVlWmbfvn0QQiAsLMw+O2cHjiofICcgERISgs8//7zM9Z3gqLKZOnUq1q1bhz/++AN//PEHpkyZAgD45Zdf8MILL9hvB4vBUWUTGhoKpVJpduPLzMzE7du3UaVKFfvsXDE5qmwyMzMhk8nMftkwfjYGtsqCkiifgnhYrsmPAkedAw+DopTNo6So5bNw4ULMmTMHCxcuLLdDF9rr3BFCQKPRlEAOHaewZRMaGor169ebnsP++OMPNGjQAL169cKaNWtKMeclzx7njV6vx4ULF0w/oDySSq1LTXqoGYe6WbNmjbh48aJ4//33zYa6efvtt8VXX31lWv7w4cMiODhYLFq0SFy8eFHMnDnT6vB8TZs2FVu3bhVnz54Vo0aNsjok6LPPPiuOHz8uDh06JLp16ybeeuut0tvxAnJE+dy+fVt07dpVDBo0SNy+fdtsWKGyxFHnTm779u0rk6NvOKpsPvnkE9G+fXuxe/ducfHiRTFhwgTRvn17kZaWVno7nw9HlM3FixdFgwYNxKeffiouXbokzp49K8aOHStatWolkpOTS7cA8lES5ZOUlCROnz4tduzYIdRqtdi8ebM4ffq0SEpKMi3zsFyTHwUlcQ6UF4Utm6ysLHH69Glx+vRp0aZNG/HVV1+J06dPi5iYGEftQokqbPnMnz9fhISEiM2bN5s9a5S1e6o9FLZs5s2bZxqa/eLFi2LJkiWifv36YvXq1Y7ahRJT2LJ5UHkefaOwZTNr1izTeXPq1CnxxhtviLCwMHHp0iVH7YLDsfkGFUiPHj2QmJiImTNnIi4uDsHBwVi4cKGpGvStW7fMfqVv3LgxZsyYgW+//RZff/01atasie+//x61a9c2LTNixAhkZGTggw8+QEpKCpo0aYIFCxaYtVH86quv8Omnn+Lll1+GTCZD9+7dMXny5NLb8QJyRPns3r0b165dw7Vr1yyqlZ87d64U9rpgHHXuPAwcVTbvvPMO5HI53nzzTWi1WjRq1AhLliyBq6tr6e18PhxRNrVr18bcuXMxa9YsPP/881AoFGjQoAEWLlxY5nqZL4ny2bZtG9577z3T59dffx0A8Pnnn5v6qnlYrsmPgpI4B8qLwpbNnTt38Oyzz5o+z58/H/Pnz0evXr0wbdq00s5+iSts+fz888/QarWma4LRmDFjMHbs2FLNe0krbNlkZmbik08+we3bt+Hs7IxatWph+vTp6NGjh6N2ocQUtmweJYUtm5SUFLz//vuIi4tDhQoV0KBBA/z666+oVauWo3bB4SQhylCdVCIiIiIiIiJ6ZDya4SwiIiIiIiIicjgGJYiIiIiIiIjIIRiUICIiIiIiIiKHYFCCiIiIiIiIiByCQQkiIiIiIiIicggGJYiIiIiIiIjIIRiUICIiIiIiIiKHUDg6A0REeZk1axZmz55tMb1Vq1ZYunRp6WeIiIionOI9l4gcgUEJIirzPDw8sHDhQotpREREZF+85xJRaWNQgojKPLlcjvDw8HyXy8zMhLOzc8lniIiIqJziPZeIShv7lCCih1J0dDSCgoLw559/YuLEiWjatClGjhwJAEhOTsYHH3yA1q1bIzQ0FH379sXx48fN1k9JScGECRMQHh6OiIgI/PDDD/jiiy/QqVMn0zKzZs1CixYtLLYdFBSEH3/80WzaqlWr0LNnTzRo0AAdO3bEggULzOa/++676N27N3bv3o2nnnoK4eHh6NevHy5cuGC2nF6vx7x589C9e3c0aNAA7dq1w7vvvgsAWLlyJRo1aoS0tDSzdfbt24egoCCcPXu2kKVIRESUP95zc/CeS2R/rClBRA8FnU5n9lkIAQD48ssv0bVrV3z33XeQyWTQaDQYMmQIUlJSMHHiRPj4+ODnn3/G4MGDsWXLFvj7+wMA3nvvPRw4cACTJk2Cn58fFi9ejOvXr0OhKPxlceHChfjmm28wfPhwNG/eHFFRUfjuu+/g4uKCAQMGmJa7desWvvzyS4waNQpOTk748ssvMX78ePz111+QJAkA8MEHH2DdunUYNmwYmjdvjrt372Lz5s0AgKeeegpffPEFIiMj0bt3b1O6a9euRUhICOrVq1fovBMRET2I91zec4lKE4MSRFTmJScnIyQkxGzalClTAAANGzbEhx9+aJq+atUqXLhwAX/99Rdq1qwJAGjdujUef/xxLF68GO+88w4uXLiArVu34ptvvkGPHj0AAC1atEDHjh3h7u5eqLylpqbi+++/x6hRozBmzBgAQJs2bZCRkYEffvgB/fr1g1wuBwDcvXsXP//8sylfQgiMHj0aly9fRu3atXHp0iWsXr0a//vf/zBo0CDTNox59PT0RLdu3bBmzRrTA1JaWhq2bNmCCRMmFCrfRERE1vCey3suUWljUIKIyjwPDw8sWbLEbJpKpQIAdOjQwWz63r17ERISgmrVqpn90tOsWTOcOnUKAHDy5EkAMKs26ubmhtatW+PEiROFytvRo0eRnp6Oxx9/3Gx7LVu2xJw5c3D79m1UrVoVAFC1alXTwxEA1K5dGwAQGxuL2rVrY//+/QBg9ovMg5577jkMHjwYN27cQPXq1bFp0ybodDo8+eSThco3ERGRNbzn5uA9l6h0MChBRGWeXC5HaGio2bTo6GgAgK+vr9n0pKQkHDt2zOJXHgB47LHHAADx8fFwc3Oz6KDrwbQKIikpCQDQs2dPq/Nv3bplekB6sPdypVIJAMjKygKQ/euUq6trnr8ctWjRAtWrV8eaNWswbtw4rFmzBp07d4aXl1eh805ERPQg3nNz8J5LVDoYlCCih5qxXahRhQoV0KBBA3z00UcWyxp/6fHz80NaWppFz+EJCQlmyzs5OUGr1ZpNu3v3rsX2AGDevHlWH7ACAwMLvC9eXl5IT09HamqqzYckSZLQp08f/Pbbb3jmmWdw+PBhiw6+iIiISgLvubznEpUEBiWIqFxp1aoVdu/ejSpVqtj8Fcb4C9C2bdtMbUfT0tKwZ88esweTgIAApKWlITY2FgEBAQCA3bt3m6XVqFEjODs7486dOxbVWgurZcuWAIA//vjDrLOuB/Xq1QszZ87EpEmTEBAQgDZt2hRru0REREXBey4R2QODEkRUrjz77LP45ZdfMHDgQAwdOhTVq1dHcnIyTpw4AX9/fwwePBh169ZFp06d8NFHHyE1NRX+/v5YtGiRRdXStm3bwtnZGZMmTcKQIUMQHR2NX375xWwZT09PjBkzBp999hliYmLQrFkzGAwGXL16Ffv378f3339f4LzXqlULL774IqZNm4aEhAQ0a9YMKSkpiIyMxDfffGNaLiAgAG3btsWOHTvw6quvmjr1IiIiKk285xKRPTAoQUTlipOTE5YvX47vvvsOs2bNQkJCAnx8fBAWFmbWyda0adPw0UcfYerUqXB1dUX//v0RGhqKyMhI0zI+Pj6YOXMmvvzyS4wePRohISGYMWOG6ZceoxEjRqBixYpYtmwZlixZAicnJ9SsWdNiuYL48MMPUaVKFaxatQoLFiyAj4+P1V9lunTpgh07duTZQRcREVFJ4j2XiOxBEsaBh4mIHnHG8ci3bdvm6Kzka9y4cYiLi8NPP/3k6KwQEREVGu+5RGTEmhJERA+Rc+fO4dSpU/j777/x9ddfOzo7RERE5RbvuUSlg0EJIqKHyKhRo5CUlIT+/fvj8ccfd3R2iIiIyi3ec4lKB5tvEBEREREREZFDyBydASIiIiIiIiJ6NDEoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJEdtapUycEBQUhOjra0Vl5KJWV8ps1axaCgoIwa9asAq+zf/9+BAUFYeDAgSWYMyqsNWvWICgoCO+++26pbC8oKAhBQUGFXu/dd99FUFAQ1qxZUwK5Kp6BAwciKCgI+/fvd3RWAJTtsiqoolxjiMob3jeJCGBQgorJ+KAaFBSEefPm2VzO+PBlr5eC6OhozJo1q9QfSPfv349Zs2aVmQdzIqLyxlHXd6I1a9Zg1qxZDg+Kl0XR0dGm5z1b5XPt2jV06NABQUFB6Nu3L1JTU0s5l0T0sGJQguxm8eLFpXYDiomJwezZs7F27dpS2Z7RgQMHMHv2bBw4cKBUt0sPBxcXFwQGBqJy5cqOzgrl4uHhgcDAQPj7+zs6K3ny9/dHYGAgPDw8HJ0VC5UrV0ZgYCBcXFxKfFuOur6XNm9vbwQGBsLb29vRWaH71q5di9mzZyMmJsbRWXnoXL58GQMGDMCtW7fQvHlzLFq0CO7u7vmux/smEQGAwtEZoPJBLpcjOTkZS5cuxZgxYxydHSKHCAsLw+bNmx2dDXpA165d0bVrV0dnI18TJkzAhAkTHJ0Nq7788ktHZ6HcGTBgAAYMGODobBAV24ULFzB48GDEx8ejdevWmDNnToEDmLxvEhHAmhJkJ08++SQAYOnSpbh7966Dc0NEREREJe3s2bMYNGgQ4uPj0a5dO8ydO7dUalQRUfnCmhJkFy1btsTt27exf/9+LF68GG+88Uah1o+NjcW8efPw77//IjY2Fi4uLggODsaLL76IHj16mC07cOBAU/OJAwcOmHUoV7VqVWzbts1s+VOnTmHJkiU4dOgQEhIS4ObmhkaNGmH48OFo2rRpgfOYezuzZ8/G7NmzTZ979eqFadOmWaxz4sQJzJkzB0eOHEFWVhbq1q2LV199Nc9fbffu3Ysff/wRx44dw927d+Hl5YXmzZvj1VdfLXTnecayWr58OXx8fDBr1iwcOHAAWVlZCA4Oxrhx49CiRQsAwMWLF/H999/jwIEDuHfvHoKCgvD666+jbdu2FuneuHEDmzdvxn///Yfr168jPj4erq6uNo8ZkN0etXPnzqZjtGrVKvz222+4dOkS0tLScPDgQXh6eua5P6tWrcIHH3wAFxcX/PDDD6a8A0U7zllZWZg/fz7+/PNP3L59G97e3ujQoQPGjx9fiFLOsX//fgwaNAjNmzfHihUrbO77hg0bsHTpUly8eBFyuRxNmjTBG2+8gXr16llNV6/X488//8Sff/6J06dPIy0tDf7+/qhbty6eeOIJ9OrVy7Tsu+++i7Vr1+Lzzz9H8+bN8f3332P37t2Ij4/HSy+9hP/973+mZTdv3oxVq1YhKioKqamp8PPzQ9u2bfHqq6+iWrVqFvk4f/48IiMjsXv3bsTExCApKQkeHh4ICwvDoEGD0KZNG6v5P3r0KJYsWYIjR44gKSkJrq6u8PHxQYMGDfD000+jffv2FutcvXoVixYtwp49e3Dnzh04OzsjJCQEAwcOROfOnQt8TIDsduLvvfeexfc09/Favnw5fvrpJ/z666+4evUqXF1d0bp1a0yYMAFVq1Yt1PZy27hxI5YtW4bz589DLpcjPDwcY8eORcOGDS2WzX3sevfubZqemZmJrVu3Yvv27Th9+jRu374NIQSqVauGzp07Y+jQoahQoYJFehkZGVi6dCkiIyNx7do1aLVaeHt7o2rVqmjVqhUGDx5sdT1rcl9Lcn/vcue5bdu2mDlzJnbs2IGkpCRUrVoVvXv3xvDhwyGXywu1HaBg13cAiIuLK/R27Xl+FTXNWbNmYfbs2RgzZgzGjh1rMX/r1q1YvHgxzpw5A4VCgQYNGmDkyJGoWrWq2fXkQZmZmfjpp5+wceNGXLlyBVqtFtWrV8cTTzyBIUOGwM3NzWz54nwPLl68iPnz5+PgwYOIi4uDSqWCj48P6tWrh+7du+Opp54yLZv7e/jBBx9g9uzZiIyMxJ07d+Dr64tu3bphzJgxNu8Dhd0vo3v37mHFihXYunUrrl27Bp1Oh0qVKqFhw4Z47rnn0Lx5c1MZGOX+G4DpO1nQ+1hR7pH5Kc3rb0FFRUVh6NChSE5ORqdOnfDdd99BpVIVKg3eNx1339TpdPjll1+wfv16XLx4EVlZWahQoQICAgLQokULDBw4EFWqVLF98IjsiEEJsptx48ahf//+WL58OV5++WX4+PgUaL2TJ09i+PDhSE5OhpOTE+rWrYvk5GTs27cP+/btw65duzB16lTT8mq1GsnJyTh//jzc3d2hVqtN8x5sM75ixQpMnToVBoMBHh4eqFOnDu7cuYPt27djx44d+Oijj9C3b98C5bNx48a4desWbt26hcqVK5u1f6xZs6bF8jt37sTnn38OFxcXVK9eHTExMTh58iTGjBmDr7/+Gj179rRY54svvsDixYsBZLc3rlu3LmJiYrBhwwb8/fffmDlzJjp27Fig/OZ28uRJzJ49G3K5HDVq1EBMTAwOHz6MYcOGYfHixZDL5RgxYgQkSUKNGjWg0+lw4sQJjBw5EosWLULLli3N0ps7dy5Wr14NV1dXVKxYEUFBQUhISDAds2PHjmHSpEk28/PRRx/h559/RkBAAGrVqoUbN27kuw8LFy7E9OnT4eXlhYULFyI0NNQ0ryjHOTMzE0OHDsXhw4cBALVr14ZCocCqVauwa9cudOrUqTBFXGDffPMN5s6di0qVKqFmzZq4cuUKduzYgUOHDmH16tUIDAw0Wz41NRWvvfaaqXPVSpUqoVq1aoiNjcW///6LnTt3mj1cGV25cgWff/45MjIyULduXXh4eEAmy64cp9PpMHHiRGzYsAEATA9q165dw2+//YbNmzdj0aJFCAsLM0tz6tSp2Lt3Lzw8PODv7w9/f3/cuXMHO3bswI4dO/Dee+9h8ODBZuts27YNY8aMgV6vh7u7O+rUqQODwYDbt2/jr7/+QmpqqsXDVWRkJN566y1oNBq4uroiMDAQycnJ2Lt3L/bu3YuRI0cWOvCZn7fffhvr16/HY489hpo1a+Ly5cvYsGEDDh06hHXr1hWp3f/ixYvxxRdfwNfXF7Vq1cL169fx33//Ye/evfjuu+/QpUuXAqVz6tQpTJgwAXK5HH5+fggMDER6ejquXbuGuXPnYtOmTfjll1/Mrrk6nQ5DhgzB0aNHAQCPPfYYKlSogISEBJw8eRJHjx5Fp06dzL5HxXHz5k306tULycnJqFu3LhQKBa5evYqvv/4aMTEx+OSTTwqUTmGu70XdbkmcX/ZOc9GiRaYmM35+fqhcuTKioqIwZMgQvP322zbXu3PnDoYNG2YKglWuXBmurq64cuUKZs2ahcjISCxfvtzm+VyY78HJkycxcOBAZGRkmPoFkMvluHXrFv7++29cvXrVLChhpNFoMHDgQJw6dQq1a9dGYGAgLly4gGXLluG///7DypUrLZ4firpfFy9exIgRI3Dz5k1IkoSaNWvC1dUV0dHRWLduHW7duoUVK1bAw8MDjRs3xvnz55Gamgq1Wm3WH4Kvr6/FfuR1HyvuPdKa0rr+FtSJEycwbNgwpKSkoHv37pgxYwaUSmWR0soP75slc9+cMGGCqelMlSpV4Ovra7r+RkVFoWHDhgxKUOkRRMUwYMAAoVarxe+//y6EEGLo0KFCrVaLadOmmS03c+ZMoVarxTvvvGM2PT09XXTs2FGo1WoxatQokZycbJq3bds20bBhQ6FWq8Uvv/xitt6+ffuEWq0WAwYMsJm3Xbt2iaCgINGkSRPx559/CoPBYJq3ZcsW0ahRIxESEiLOnTtX4P017sfMmTNtLmPcn5CQEDF79myh0WiEEELo9Xoxbdo0oVarRbt27YRerzdb77fffjPN27lzp9m8n3/+WQQHB4smTZqI+Pj4AufXeHxCQkLEp59+KjIzM4UQQuh0OjF58mShVqtFr169RMeOHS3mT5o0SajVavH8889bpLtjxw5x9OhRszIVQojTp0+Lxx9/XKjVanHo0CGzeTdu3BBqtVoEBweLsLAwERkZaZqXlZVlKg9j+d24ccM0/6uvvhJqtVq0bdtWXLx40Szdoh7nL7/8UqjVatGmTRtx6tQp0/SrV6+KJ554QoSEhOR7rB9k67w07ntISIgIDw8XW7duNc1LSUkxHac333zTIs2xY8cKtVotOnToIA4ePGg27/bt2xb5e+edd0zl/Morr4iEhATTvIyMDCGEEF9//bVQq9WiZ8+e4tixY6b5Wq1WzJo1S6jVatGxY0eRlZVllvamTZvEmTNnLPK4f/9+0aZNG1G/fn2z4yaEEE8++aRQq9Xi66+/tkjv5MmT4o8//jCbdu7cOREaGipCQkLEihUrhFarNc07cOCAaNOmjVCr1eLff/+1yIctv//+u9Xrj/F4hYSEiDZt2ojDhw+b5t2+fduU9xkzZhR4W0IIoVarTekuXLjQdG5nZWWJTz/9VKjVatGkSRNx584ds/WMx854PTWKjo4WGzZsEPfu3TObnpSUJD788EOhVqvF//73P7N5kZGRQq1Wi/bt21t8Z+7duydWrVoloqOjC7xPxnN03759VvMcEhIiXnvtNZGYmGiat2XLFlGvXj2hVqvFpUuXCrytglzfi7rdkji/ipqmrfvJqVOnRHBwsFCr1WLJkiWm80ej0Yhp06aZrk0dO3Y0W89gMIj+/fsLtVotXnvtNXHr1i3TvMTERDFq1CihVqvFG2+8YbZeUb8Hr776qul7lZqaajbv0qVL4ueffzabZvwehoSEiLZt24qoqCjTvGvXrokePXoItVotxo8fb5f9Sk1NFZ06dRJqtVoMGjRIXL9+3Wx+VFSUWLlypdk0W+e5UUHvY0W5R+anNK6/eTHuu1qtFn/++ado3Lix6b6l0+kKtS+58b7pmPvmqVOnTPeiB8/FzMxMsWHDBnH69GmLfBOVFAYlqFgeDEocP35cqNVqERYWZvbAbSsosWrVKqFWq0Xz5s1FWlqaRfpz5841Xehz39wL8tDaq1cvoVarxcaNG63OX7ZsmVCr1WLy5MkF3t/CBCVGjBhhMS8rK0u0bt1aqNVqs4u9RqMRbdq0EUFBQWY3u9ymTp0q1Gq1+OGHHwqcX+Pxefrppy2CIHfv3hWhoaE25ycnJ5vm5w4W5WfPnj1CrVaL999/32x67geahQsX2lw/d1BCr9eL999/X6jVatG1a1erL1FFOc6pqakiPDxcqNVqsWnTJot1jOexvYMSarVaLFiwwGK9M2fOmB4OcjM+NISEhFi8WNpifLhq3bq1xYuCEEIkJCSI0NBQER4ebvGQbjR69GjTg2dBGYNq8+bNM5veoEEDoVarLV6obTE+TForJyGE2Lp1q1Cr1WLIkCEFzlt+QQlb58/ff/9t+n4UhjHNkSNHWswzGAymB05bD8YPBiXy065dOxEeHm72IDpv3jyhVqvF1KlTC5WWLfkFJWydb6+99prp5bqgChOUKOx2S+L8Kmqatu4nEyZMEGq1Wrz99ttW0zO+oD8YlNi2bZtQq9XimWeesXiREUKItLQ00a5dO1GvXj1x8+ZN0/Sifg+6d+8u1Gq11Rcua4zfQ7VaLbZs2WIx33jdDQoKMrs2FXW/Fi9eLNRqtejWrZvpxTI/BQ1K5Hcfy4ute2Rx2Ov6m5fc+16/fn2hVqvFxIkTLZ4dCov3TcfcN//66y+hVqvF6NGjC5xfopLEji7JrsLCwtCpUydkZmZi3rx5+S7/33//AQCef/55uLq6Wszv378/lEolYmJicPny5QLn49atW4iKioKXlxe6d+9udRlj1Wlj9T57e+GFFyymqVQqU/vH69evm6YfO3YMcXFxqFevntW25kDx8tunTx9TFUQjT09PU/tHa/MrVKhgakNsrXlFcnIyVq5cibfffhtDhgxB//790a9fP3z11VcAsju/ssVatckH6XQ6vPnmm/j1118RFBSEn376yaJNc1GP86FDh5Ceno6KFSuiW7duFuuEhYXZPA7F9eKLL1pMq1evHpycnHDv3j0kJSWZpv/9998AgE6dOqF27dqF2k737t2ttrH+999/kZWVhdatW6N69epW183rXIuNjcWiRYvwxhtv4OWXX0a/fv3Qr18/LF++HABw5swZs+WNzZw2bdqUb541Gg127NgBmUyG559/3uoy7du3h1KpxKFDh6DT6fJNsyAqVKiAJ554wmK68RzI/V0tjJdeeslimiRJ6N+/PwBg165dBU5LCIGdO3diypQpeOWVV/DSSy+Zyj41NdXUnMOoUqVKALL7qElOTi5S/gujZ8+eVs83YxkWpIlWSW+3JM6vkkhz9+7dAIDnnnvO6vw+ffpYnb5lyxYA2ddXa+36jf1DGAwGHDx40GJ+Yb8Hxu92ZGQkhBC2dsdCQECA1fbtxuuuEMJUBsXZL+P1c+DAgXB2di5w/goqv/tYce6RtpTk9bco4uLi7HYdzgvvm7YV9RpkvEccP34cN2/ezHc7RCWNfUqQ3Y0bNw7bt2/Hr7/+iuHDh5sufNZcvXoVAFCnTh2r8z08PFCxYkXExMTg6tWrBb7BnDt3DgCg1WqtvhgAMD1E3b59u0BpFlaNGjWsTje2TU1PTzdNO3/+vCkv/fr1s7peVlaWaZnCeuyxx6xO9/HxwaVLl2zO9/X1xeXLl83yCmS/6IwfPz7Plx1b87y9vQvU38ibb76JqKgoNGrUCPPnz7fa+VlRj/OVK1cAALVq1bIIxhjVrl0bx48fzzefheHt7Q0PDw+r83x8fHDr1i2kp6eb2kVfunQJABAeHl7obdn6rhjL7NSpUzbPtXv37gGwPNf++usvTJ48GRkZGTa3++BxHzJkCD766CNMnjwZixcvRkREBBo3bowWLVpYnAfXrl1DVlYWlEolRo4cmef+ZWVlITk5GX5+fnkuVxC2HjKtfVcLw9YxMF7vjOdhflJTUzFq1ChTB5C25C77rl27onr16jh37hw6dOiA1q1bo2nTpmjWrBkaNGgASZIKthMFZOt6ZzzGRS1De263JM4ve6eZkpKCxMREALDZgZ+t6cb7yKpVq2wOsWh8+bB2Hyns92Dw4MHYu3cv5syZg3Xr1iEiIgJNmjRBy5YtERAQYDUtAAgMDMz3upv7u1HU/SrO9TM/+d3HinOPtKWkr7+F8emnn+Ljjz/G7t278frrr2PWrFkl1p8E75slc99s1KgRGjVqhKNHj6Jbt25o0aIFmjVrhqZNmyI8PBwKBV8RqXTxjCO7M/a6vXnzZsyZMyfPDs6MDznWOpEy8vPzQ0xMDNLS0gqch5SUFABAWloajhw5kueyxpd9e7M1JJbxYSz3L0vG/CYlJZlF/K0pSn5t5cX4YpLf/Nx5TU1NNT1sPfXUU3jppZdQq1YtuLu7Qy6X48aNG+jSpYvNX0+s1Yixxvirb40aNWw+kBT1OBf0vLO3vPbd2nmRmpoKADb3Py+2jmnuB6f8Aly5y+zGjRt49913odVq8fLLL+OZZ57BY489Bjc3N8hkMuzduxeDBw+2OO79+vWDh4cHFi9ejKioKFy+fBnLly+HQqFA586dMWnSJFPg0ng8tVptvscTyO6s1B5sHRdbL04FZev8Mk4v6DVt2rRpOHDgAGrWrIk33ngD4eHh8PHxMf1q/NJLL1n8Cu/i4oKffvoJM2fOxObNm/HPP//gn3/+AZD9K9zo0aNt/qpWFIW53tlTUa6z9jy/7J1m7hd/W6NJ5DXKBABcuHAh33xYu48U9nvQvn17LFy4ED/88AOOHDmCX3/9Fb/++iskSUKrVq0wadIk1K1b12K9glx3c383irpfxutnfqM6FUVe1/Li3iOtKY3rb2E0b94cs2fPxqhRo7B9+3a8/fbbmDFjRoFH2SkM3jdL5r4pk8mwYMECU1Bx165dptp73t7eGDp0KIYPH17s+yBRQTEoQSXi9ddfx5YtW7BmzRq88sorNpcz3mwSEhJsLhMfHw/A9oNYXuk2bNgQv/32W4HXcxRjfnv06IFvvvnGwbnJ286dO5GcnIzw8HBMnz7d4hdXe1UVnzlzJt555x388ccfUCqV+PTTTy22VdTjXJjzzpGMvb8bH4jswbjvI0aMwFtvvVXg9TZt2gStVosnnnjCaq/xd+/etbnuk08+iSeffBKJiYk4ePAg9u/fjw0bNiAyMhJXr17F6tWroVKpTN9xPz8/s+rbD6vExESrD/zG864g1zSdTmfq7X3OnDlWf8mzVfYVK1bElClT8PHHH+P06dM4fPgwtm7dioMHD2Ly5MlwdXW1OgpQeVUS55e908z9ApaWlmb1hdpWMMu47oIFC9CuXbti56UgIiIiEBERgXv37uHw4cOm7/aePXswZMgQbNiwwWLYWWNNEGus3e+Lul/u7u5ITk42vbSVlpK4R5bG9bew2rZti2+//Rbjxo3Dpk2b4OTkhGnTptm9FlZh8b5ZcB4eHnjnnXcwceJEXLhwAYcOHcLOnTuxc+dOzJgxAwDyfIYnsieGv6hE1K5dG08++SS0Wi2+//57m8sZh9K09QvIvXv3cOfOHbNlAeR70zP+OnP58mW7tncsqZutMb8F+SXI0aKjowEAjRo1sloeJ06csMt2atSogeXLl8Pf3x+rVq3CRx99ZLFMUY+zcfiwK1euwGAwWF2mMH2YlBRjNf9jx47ZLc2inmvG496kSROr8wvS1MXHxwfdu3fHBx98gPXr18PDwwPnzp0znTM1atSAUqlEQkJCngGjh4WxGrGt6daGEn5QYmIi0tPT4eXlZTUgkZKSkm8zELlcjtDQUAwePBg//vgjhg0bBgBlNmBbUtfZkji/7J2mp6enqSaBscr4g2xNN14vHHEf8fDwQIcOHfDOO+9g06ZNqF69OuLi4rB9+3aLZQty3c393SjqfpXE9bMgSuIeWRrX36Lo0qULpk+fDrlcjj/++AMffvhhkdOyF943C0+SJKjVavTv3x/z5s3D+++/D6Ds3iOofGJQgkrMmDFjoFAosG7dOlPfEQ9q27YtAGD16tVW2xz//PPP0Gq1qFatGmrVqmWabuy0ylZV2Bo1aiAoKAj37t3D77//Xsw9yeHk5JTndouqSZMm8PX1xYULFwrV+Z0jGMsgLi7OYp5Wq8XKlSvttq1atWph2bJl8PX1xS+//IJPP/3UbH5Rj3OTJk3g6uqK2NhYbN261WL+qVOnSv1B1hpjJ5zbtm2z+YJbWB06dIBKpcKuXbtw8eLFAq9nPO7WapDcvXsXa9euLVQ+KlasaOpo1Rh4dHFxQdu2bSGEwLJlywqVXln0008/WZ1u/I4Yr395MV7rUlNTrbZJ/vHHHwsdeG3cuDGAnHIva/K7vhdVSZxfJZFmmzZtAMDmNW3NmjVWpxs7+/3111/zbL9e0tzc3BAUFATA+jl2+/ZtbNu2zWK68borSRIiIiJM04u6X127dgUArFixosDNHu1x7pXEPbI0rr9F1aNHD3z22WeQJAm//vorPv/882KlV1y8bxafMYhSVu8RVD4xKEElpkaNGnjmmWeg1+tt9iD85JNPomrVqkhOTsbbb79tVs1y586d+OGHHwBkVx/L/YuD8aJ88eJFm1VB3377bchkMnz22WdYuXIlNBqN2fzY2FgsW7YMP//8c4H3ydgR2NGjR+1aA8PJyQlvvPEGgOwOHjds2GDxS9L169cxZ84cU0/kjtK0aVMA2T2uG0dPAbKrpL7xxhumXwbspXbt2li2bBl8fHzw448/WjzwFOU4u7u7o2/fvgCAKVOm4PTp06Z5xjagJdVpV2EEBwfjiSeegFarxYgRI3D48GGz+bGxsZg9e3ah0vT398fQoUOh0+kwfPhwq0Gwc+fOYfr06WbbMx73n376CVFRUabpt27dwqhRo6wGFY1tq/fu3Qu9Xm+aLoTAxo0bcf78eUiShPr165vmjRs3Ds7OzliwYAFmz55tUVU9KSkJq1atwpw5cwq1346wc+dOLF261PRd1mg0mDp1Ks6fPw93d3erPco/yNPTE2q1GjqdDp999pnp/BZCYNWqVfj+++9ND765LVmyBEuWLEFsbKzZ9MTERFOP7yEhIcXdxRJRkOt7UZXE+WXvNIcMGWL65XnFihWm9vJarRbTp0/H0aNHra7XpUsXNGnSBNeuXcOIESMsXsh0Oh327duHCRMmWFwni2L8+PH4559/LNLat28f9uzZAwBo0KCBxXpKpRJTpkwxG33ixo0beO+99wBkByFyd7pZ1P16/vnnUb16dVy9ehWjRo1CTEyM2XpnzpyxCBwat2ttdJKCKol7ZGldf4uqV69eploSS5cudWgzVN43C3YN+vPPPzF79myLUXVSU1OxYMECAJb3iKVLl6JTp042O/skKg72KUElavTo0fjzzz+h1Wqtznd2dsa3336L4cOHY+vWrdi1axfq1KmD5ORk0427T58+Fg/vPj4+aNmyJfbt24cuXbqgTp06cHJygp+fn+lm2LZtW3zyySf4+OOP8cknn+Crr75CzZo1IZfLcefOHdPD+ogRIwq8PxEREahQoQIOHz6MDh06oHr16lAoFGjbtm2x2909//zzppvlm2++iY8++giPPfYYhBC4ffu2qVqetWYMpalBgwbo0aMHNm7ciOHDh6N69erw9PTEhQsXIITA5MmT7V6Fs27duliyZAlefvllLF26FHK5HBMnTgRQ9OP8+uuv4+jRozh69Ch69eqFOnXqQKFQ4MKFC6hUqRL69u2LFStW2HU/imLKlClISEjAgQMH0L9/f1SuXBl+fn6IjY1FXFwchBAYM2ZModIcN24cEhISsGrVKgwbNgw+Pj6oVq0adDodYmJiTO1cW7RoYVqnS5cupp66n3vuOdSsWRMqlQoXLlyAi4sL3nrrLXz22Wdm2zEYDNi0aRM2bdoEZ2dn1KhRAyqVCrdv3zb9ijhy5Eizqtr16tXDd999hzfffBOzZs3CvHnzEBgYCCcnJyQkJODmzZsQQqBHjx5FLNHS8+abb+Lzzz/HggULULlyZVy/fh13796FXC7H1KlTUbFixQKlM2HCBIwaNQqrVq3Cli1bUL16ddy+fRvx8fHo1asXYmJiLEbmuHnzJpYvX45p06ahSpUq8PPzMw0bqtVqERAQgPHjx5fAXhdfQa7vRVUS55e906xfvz7efPNNTJ8+HVOmTMG8efNM509KSgreeustfPnllxYd0EmShFmzZmHUqFE4ePAgevTogWrVqpkde2ONgalTpxa80GzYtWsXNm3aBKVSiZo1a8LFxQVxcXG4desWAOCpp55C69atLdbr1q0brl27hmeffRa1a9c2XXf1ej1q1qyJDz74wC775ebmhh9++AHDhw/H7t270blzZ9SqVQvOzs6IiYlBcnIymjdvbhqiF8j+1X/lypVYsGAB/v77b/j7+0OSJIwYMaLA/VmUxD2ytK6/xdGvXz9kZWXh888/x9y5c+Hs7IxRo0bZJe3C4n0z/2tQYmIiZs2ahVmzZsHf3x+VKlVCVlYWrl+/jszMTHh4eOB///ufWd7u3btnEdwjshcGJahEVa1aFc8991yetRHCwsLw559/Yv78+di5cyfOnTsHFxcXNG/eHP369bP5IDdjxgzMmDEDu3fvRlRUFHQ6HapWrWq2zPPPP48mTZpg2bJl2LdvHy5fvgy5XI6AgAB069YNnTt3RqdOnQq8P+7u7li0aBFmzpyJEydO4NixYzAYDBbbLaoxY8agXbt2WLlyJQ4ePIjz58/D2dkZlSpVQqtWrdCtW7dS68AsL19++SVq166NP/74A7dv30Z6ejratWuHkSNHmoblsrd69eph6dKlGDx4MBYtWgSlUmmqXVKU4+zi4oKlS5di3rx5WL9+Pa5duwYfHx8899xzGD9+vF2boRSHu7s7lixZgrVr12LdunU4d+4cEhIS4O/vj/bt2+OJJ54odJoymQxTpkxBjx498Msvv+Do0aM4c+YM3NzcULlyZXTr1g1du3ZFq1atTOvI5XLTub9582bcuHEDXl5e6NGjB8aOHWu1R3I3NzdMnz4de/bswYkTJ3D79m2kpaXBy8sLHTt2RN++fdGhQweL9Tp06ICNGzdi2bJl+O+//3Djxg0IIRAQEIB27dqhY8eOpqrZZdnQoUNRqVIlLFu2zPTrVkREBMaMGYNGjRoVOJ0OHTpg0aJF+P777009sQcGBmL06NHo168fBg0aZLFO37594eXlhX379uH69es4c+YMFAoFAgMD0aFDBwwdOrTEvqv2UJDre1GVxPll7zSHDx+OmjVrYuHChTh79iyuXLmCkJAQjBw5En5+fvjyyy9NHfrl5uvri5UrV+KPP/7Ahg0bcObMGcTGxsLb2xvBwcFo3rw5unXrZrV2TWFNmzYN//33H44ePYo7d+7g3r17cHd3R6tWrdCrVy88/fTTVtdTqVRYsWIFZs2ahcjISNy5cwf+/v7o2rUrxo4da9ExZnH2q27duli/fj2WLl2KrVu34saNGwCyq8F36tQJffr0MVu+adOmmDFjBpYtW4aLFy+amp726tWrUGVj73tkaV5/i2Pw4MHIyMjAt99+i2+//RYuLi4YPHiwXbdRELxv5n8N6t69O3Q6Hfbu3YsrV67g/PnzEEKgSpUqiIiIwLBhw1ClSpVClxNRUUmipMbpIiIiIiK7ioyMxOuvv44uXbrk2ZF0WbNmzRq899576NWrF6ZNm+bo7BARURnCPiWIiIiIHhLGji5t9ehPRET0sGFQgoiIiKgM+f3337Fv3z7krsyanp6OL774Ajt27ICbm5vN5hFEREQPG/YpQURERFSGHDlyBJMmTYKLi4upQ+VLly4hKysLCoUCn376Kfz8/BydTSIiIrtgUIKIiIioDHn22Weh0Whw7NgxxMTEQKPRwNfXF02bNsXQoUPL7HCuRERERcGOLomIiIiIiIjIIdinBBERERERERE5BIMSREREREREROQQDEoQERERERERkUOUeFAiOjoaQUFB6NSpU0lvqkA6deqEoKAgREdH2y3NxMRETJo0CREREQgODkZQUBCWLl1ql7RnzZqFoKAgzJo1yy7pOcr+/fsRFBSEgQMHlsr2Bg4ciKCgIOzfv79UtudI5eUcKaw1a9YgKCgI7777rqOzUuauc4WRnp6Ozz//HJ06dUJISAiCgoLw2WefOTpb9Agrift0WXLjxg2MGzcOLVu2RL169RAUFIStW7cWO93Svs9S6QoKCkJQUJBDtu2Ic+tReo7T6XTo3r07OnbsCI1GY7d09+7di4EDB6JRo0am8yclJcVu6dOjbfz48QgJCcGVK1fskl6BRt8oykWwatWq2LZtW6HXexiNGjUKx44dg6enJ0JDQyGXyxEQEIDo6GisXbsWVatWRe/evR2dTSqGNWvWICYmBr169UK1atUcnZ1HgjHIMnbsWAfnpHybPHkyNmzYAFdXV9SrVw8qlQrVq1d3dLaonNq6dSvOnDmDLl26IDg42NHZKXUajQYvv/wyYmJi4Ovri/DwcEiSBC8vr3zXXbp0Ke7du4eXX34Znp6eJZ9ZMsPnACopv/zyC65evYqPPvoIKpXKLmmeO3cOI0aMgFarRfXq1VGvXj0AgFwuz3fdB9/7JEmCm5sbPD09UatWLTRs2BBPP/00atasaTONd999F2vXrjWbJpPJ4OnpiaCgIDz11FPo06cPZDLL38dPnjyJlStX4tChQ7hz5w5kMhl8fHxQuXJlNGnSBG3atEGLFi0s1rt79y5WrFiBHTt24MqVK8jKyoKXlxd8fHwQEhKCFi1aoGvXrnBzc8u3DADwPS4fo0ePRmRkJGbMmIHZs2cXO70CBSUaN25sMS01NRXnz5+3Od/f37+YWXs4nD17FseOHUPlypXx119/wd3d3TRv//79mD17Npo3b86T+SG3du1aHDhwAM2bN+fDSCkxXuAYlCg5d+/exaZNm+Dq6orNmzcjICDA0Vmicm7r1q2mhzxbQYnq1atDpVJBqVSWcu5K3r///ouYmBiEhYVh5cqVhXoBWb58uemlmEGJ0vcoPwe4uLggMDAQlStXdnRWyp309HR8//33qFixIvr06WO3dH///XdotVoMGjQI//vf/4qUhlqtNr3XZGZmIiEhAbt27cKuXbswZ84c9OzZEx9++GGe1yNfX1/UqFEDQHZQ9vr169i/fz/279+PzZs344cffjC7Di5atAhfffUVDAYDVCoVKleujAoVKiAhIQGHDh3CoUOHsGnTJvz9999m27lw4QKGDBmCuLg4AEBAQABq1qyJrKwsXLlyBefOncOaNWtQrVo1NG3atED7HxMTw/e4PNStWxddu3ZFZGQkjh8/joYNGxYrvQIFJX7++WeLafv378egQYNszn9UXL58GQAQHh5uFpAgIirrrl27BoPBgDp16jAgQWXGsmXLHJ2FEmOs5tq8eXO7/SJKVNLCwsKwefNmR2ejXNqwYQMSExMxdOhQu14TjNeaiIiIIqcxefJkixoJsbGx+P333zF//nz89ddfOH/+PH7++Web70Dt2rXDtGnTTJ/1ej2WLFmC6dOnY9euXVi2bBlGjBgBADh27BimT58OIQSGDh2KUaNGmQU8EhIS8Pfff2PPnj1m2zAYDBg/fjzi4uIQEhKCzz77zCzordFocODAAaxZs6ZcBrsdqVevXoiMjMSKFSuKHZRgR5fFlJWVBQBwdnZ2cE6IiAonM/P/7J13WFTH18e/CyxNUAQpBkEQuStNQMQKFuxYIkYU7IpdVGxRYyMxdsGoBDuKiopdEZWiYgNEFFQQKUoTaaJIhwXu+wfvvb9ddhd2FxCT7Od5eBLv3Zl77tyZM2dmzpypACDRXxIkfC8kNoMECRI48ff3BwCMGzeuWfNtqf5dU1MTixcvxrlz56CoqIikpCTs2LFD6PTS0tKYO3cuBg8eDAC4desWfe/q1asgSRJ9+vTB2rVreTww1NTU4OTkhAMHDnBdf/36NVJSUgDUednW98KTlZWFjY0NPD09mzxwlsCNjY0NVFRUEBwcjG/fvjUpr+8+KREYGAhHR0dYWlqiZ8+eWLBgAd69eyfw9zU1Nbh06RKmTZsGa2trmJmZYdiwYdixYwe+fPnS7PJFRERgyZIl6N+/P0xNTWFjY4OVK1ciMTGR63f1g+xdu3aNDiJjZ2eH6dOn054kUVFR9L2mBMMrKSnBrl27YGdnB1NTUwwePBi7d+9GeXk5z29ramoQGhqK3377DWPGjIG1tTW6d++O4cOHY+vWrcjNzeX7jHXr1oHFYuHq1avIz8/Hpk2bYGtrC1NTU4wYMQJHjhxBTU2NQBmvX7+OX375Bebm5ujduzcWLVqEt2/fivW+9YMHnjt3Dj///DOd97Jly/D+/XuR8yVJErdu3cKMGTPoOjV06FC+5UIFd4qKigIAzJgxg+tbXr16lf5tSkoKfv31VwwePBimpqbo0aMHhg4dCldXVwQEBIgkY0xMDJYtWwYbGxuYmJjA2toaI0aMwKpVq/Dw4UOB6USpIxSvX7+mn0XV+eXLl+PNmzc8v925cydYLBaOHj3Kc2/WrFlgsVgYOHAgz73Q0FCwWCwsXLiw0XenAndScJa3oOB3VVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FficoqIiHDhwAOPGjYOlpSUsLCwwYcIEnDp1Cmw2u1E5ReHbt2/w9PSEvb09unfvDisrKzg5OeHChQs87SkxMREsFgujRo3iyefGjRt0OURERHDdI0kSvXr1Qrdu3RrVjfWDltXXURScAQejoqIwf/58OjgfZ2C+iooK+Pj4YOLEibCyskL37t0xevRoeHl5obS0VKAcsbGxmDt3Lnr27AlLS0s4OTnRq3H8groJE1C0sSCJd+/ehYuLC/r06QNTU1MMGjQImzZtEvh7TjmePHmC6dOnw8rKCpaWlpg+fTqeP38uUBagru4vXLiQ7lNsbW0xY8YM+Pn50QHNli1bJrBdUcTExIDFYsHGxqZBHSxI9tu3b2Py5Ml03zt37ly8evVKYNrq6mqcO3cOkydPpr+pvb099u3bJzBQGufzQkJCMH36dPTq1QssFgsJCQlgsVj0HuP169dz1TnOQL0NfcOmyiXON2yOMqofkNjLy4uWq7HggZS9kZWVBQAYMmQIV9nxCwRIkiT8/Pwwbtw4dO/eHX369MHKlSvpPPghbjsWhCh9IqdNVVZWht27d2PIkCEwMzPDoEGDsH379gYD9Ikre3FxMby9vTFhwgRYWVnB3NwcI0aMwK+//kr3+8LaAfX106VLl+Do6IgePXpwBRjMzMzEsWPHMGPGDAwaNAimpqbo1asXZs6cidu3b4tczoJYunQpWCwW3zyHDRsGFouFKVOm8Nw7deoUWCwWtm7dSl8TFOiy/juLauPn5uZi/fr16N+/P7p3745Ro0bhyJEjqK6ubvDdRGl71CCXxWLh8+fPXPdycnLo7/jXX3/xPGfx4sVgsVgICgrievbZs2fpZ5uamqJ///6YMGECdu3ahU+fPjUoOyeZmZl48+YNtLS0GoyxI4oNQQUI5VdfmzMgurGxMZYvXw6gzjYRNK4QRK9evQAAaWlp9DVK5xsbG4uUV2ZmJgCgffv2+Omnn0RKKwhhx3FFRUW4fPkylixZguHDh8Pc3ByWlpaYMGECjh49Sk9E14ezn4uIiMCsWbNgbW0NS0tLTJ06tUFbHwDi4uKwatUqDBw4EKampujduzcWLlyI6Ohoge9D9Rfv3r3D8uXL0b9/fxgZGXEdznDz5k267zYxMUHfvn0xduxY/PHHH0hOTubJl8lkwtbWFpWVlTxbakRFqO0bzcW+fftw+PBhaGlpQU9PD6mpqQgLC0N0dDQuX74MfX19rt+XlJRg8eLFePbsGRgMBrS0tNCxY0ekp6fj1KlTtLtIcwVl27VrF3x8fADUVWxDQ0NkZWUhMDAQISEhOHDgAD2zp6amhh49euDLly9IS0vj2jOlrq4OdXV1FBYWIikpCUpKSiAIgn6OOPE2iouLMXnyZKSmpsLAwADa2tpIT0/HiRMnkJSUhOPHj3P9Pj8/H0uWLIGUlBTU1NTQqVMnVFVVISsrC2fPnsWdO3dw7tw5gUFqPn36BAcHBxQWFsLQ0BAyMjJIS0uDp6cnsrKy8Mcff/Ck2blzJ06ePAkA0NLSgpqaGiIjI/H06VMsXrxY5HfmZOvWrTh79iy0tLRgYGCA1NRUBAUF4fHjxzh58iQsLCyEyockSaxbtw7Xr18HUBeQVUdHB+/fv8fZs2cRGBiIEydOwMTEBACgrKyMHj16ICkpCSUlJVz764C6egDUBeWZPn06ysvL6b2X0tLSyM7ORkhICNLS0jB27FihZLx//z5cXV1RU1MDJSUldO3aFbW1tcjJycGtW7dQUlLCd+Avah0B6oymzZs3o7a2FioqKrThe/fuXYSEhGDr1q1cexx79eqFkydP0gNUCjabjdjYWAB1nXxGRgZ0dXXp+5TRbG1t3ej7d+zYET169MDLly8B8MaskZOT4/o3m82Gi4sLnj9/Dn19fejq6iI1NRX+/v6IjY3F5cuXeVwi379/DxcXF2RnZ4PJZEJbWxsMBgPv3r1DfHw8Hjx4gGPHjjWLK2VmZiYd2E5GRgaGhoYoLy9HTEwMYmJiEBoaCm9vb/pZBEGgffv2+PDhAz5//owOHTrQeVFGBlBXpn379qX//e7dO3z79g2GhoZQVVVtUCaqXlOxgerrqPrcvn0b+/btg5KSEnR1daGgoEDfy8vLg4uLC5KSkiAtLY2OHTtCUVERqampOHjwIIKCgnD69Gm0b9+eK8+QkBAsX74cNTU1dPCsjIwMLF++vEVOVKmursavv/6KwMBAAHV62NDQEOnp6bh48SLu3r2LEydOoHv37nzT+/v7Y8uWLVBVVUXnzp2Rnp6OqKgozJ49G6dOneLZo8pms/Hrr7/SAwI1NTV069YNBQUFeP78OZ49e4aBAweiU6dOcHR0RFBQEK5du8bVrjihBvPjxo0TKlAZJz4+Pti1axfU1NTocn78+DEiIiKwf/9+DB06lOv3lZWVWLRoEZ4+fQoA0NPTg6KiIpKTk3H48GHcunULvr6+AvfVHzt2DHv37oWqqip0dXWRk5ODyspK9OjRA+np6SgoKICenh5XPRVmr3pT5RL1GzanLJRey87ORnZ2Njp27Ei/c0NtD/ifvREXF4eqqiqYmppy6SZlZWWeNGvWrEFAQAB0dXWhp6eHDx8+IDAwENHR0bhx4wZPexS3HQtC3D6xqqoK06dPR1xcHAwMDKCvr4/k5GT4+vri8ePH8PPz49Fv4sqekpKCefPm4dOnT2AwGPQ3/PjxI27cuIHs7GycOXNGaDuAE3d3d5w/fx6ampro0qULPWgCgMOHD+Py5ctQVFSEhoYGWCwWCgoKEBkZicjISMTGxuK3334TqpwbolevXggODsazZ89gb29PX8/NzUVGRgaAukWJiooKrtV0qp8Rpr/mRFQbPz09HVOmTMHnz5/BZDJBEASKiorg6emJV69egSRJvs8Rte0xGAxYW1sjODgYUVFRXGXBOaHH2b8CdfbiixcveMpi1apV9OT5Tz/9BDU1Ndrej4+Ph7m5udADY+qZgvodQDwborq6mm99be6YIBMnTsTevXvBZrPx5MkTkWJiUN+XwWDQ1yg5X79+LZIcVLqvX78iPT2dHo81BYIghBrHPXjwABs2bACTyYSGhgYMDQ1RVFSExMRExMfH4969ezhz5oxAe/Lu3bvw8PCg7avs7Gw6dsbGjRv5TlqfOXMG27dvR21tLZSVldG1a1fk5eXhwYMHCAsLg7u7O5ycnPg+7/nz5zhy5AikpaXRpUsXtGnThv4Gu3fvxokTJ+h31NHRQUlJCTIyMpCUlARtbW0YGhry5Nm9e3cEBAQgOjoaEydOFL6Q60OKSWRkJEkQBEkQRIO/y8zMJAmCIE1MTEgLCwsyNDSUvldUVEROmzaNJAiCXLlyJU/aVatWkQRBkM7OzmRKSgp9vaysjNy0aRNJEAQ5adIkkeQePHgwSRAEmZmZyXX94sWLJEEQ5IABA8iHDx9y3Tt//jxpZGREWllZkZ8/f+a6d+XKFZIgCHLt2rU8z6LKaNq0aSLJyMmBAwfo8ps8eTL56dMn+t7z589JCwsLkiAI8vHjx1zpioqKyCtXrpAFBQVc10tLS0kvLy+SIAhy1qxZPM9bu3Yt/bzFixeTX758oe8FBweT3bp1IwmCIN+/f8+VLiwsjCQIgjQ2NiavXbtGXy8uLiaXLl1KmpiYiFwWVN0xNjYmTUxMyJs3b/LkSxAEOXjwYLK8vJwrLVWvIiMjua6fPXuWJAiCNDc3J+/fv09f//btG7lgwQKSIAhyyJAhZEVFhVD5UVBp165dS5aUlHDde//+PXn+/Hmh33vMmDEkQRCkp6cnWVlZyXXvzZs35PXr17muiVtHEhIS6O/i5eVFstlskiRJsrq6mjx48CCdZ2JiIp3m27dvZLdu3UgLCwv69yRJktHR0SRBEKStrS1JEAR58eJFrmf9/PPPJEEQ5KtXr4Quh8b0C9X2TExMyBEjRpDJycn0veTkZNLGxoYkCIK8cOECV7qysjJy+PDhJEEQ5KZNm8ivX7/S9z5+/EhOnjyZJAiC3Lt3r9CyUnV18ODBXNdra2vJiRMnkgRBkJMnTyZzcnLoezExMWSfPn1IgiBIDw8PrnRLliwhCYIgAwMDua4PGzaM7N27N2liYkI6Oztz3Tt16hRJEATp7u4utNyN6ShKXxoZGZH79u0jq6qq6HsVFRVkbW0tOWXKFJIgCHLx4sVkdnY2ff/Lly/kokWLSIIgyBUrVnDlm5eXR1pZWZEEQZBbt26l63lNTQ155MgRul7W//6CypmfzPV1vKenJ0kQBDl69GgyNjaWvs5ms+n6PnjwYJ42R8nRvXt30t/fn6ytrSVJkiQrKyvJFStW0N+2Pjt37iQJgiCtra3JkJAQOh1JkuTXr1/JEydO0Pq5pqaGHDRoEEkQBBkTE8OTV0VFBV1enPW8MSjZTUxMyOPHj5M1NTW07Fu3biUJgiCtrKzIvLw8rnS7du0iCYIg+/btyyVPTk4OOWnSJIHvzPm8s2fP0s+rqamhy5XqY65cuSJQbkHfsKlyifoNG0JcWSh9feDAAZGeR5KCy4WCas8mJiZk//79yRcvXnDJRfUt9fWNuO24IUTtEzn1ua2tLRkfH0/fS09PJ+3t7UmCIEg3N7dmkb2kpIS0s7MjCYIgZ8yYQWZkZHDdj4+PJ/38/LiuNWYHUPrJyMiI7N69OxkUFETfq6yspNtDWFgYGRMTw6UTSJIk3759S44cOZIkCIKMjo7myV8Ym5uThIQEkiAIcuTIkVzXb9y4wdVfh4eH0/dqa2vJXr16kQRBcNm7gvoKcW382tpa0tHRkSQIgpw6dSqZn59P33v8+DFpYWFB9wP1y1uctufr60sSBEFu3ryZ6/qGDRvosjAxMeGyJanys7e3p6/FxcXRerP+N6qoqCADAwPJt2/fksKyfv16kiAI8vDhw3zvi2tDkGTj9bUhqLomTFoHBwfanuKE0vX8xkck+T8dMW7cOPoaNRYjCIJ0dXUlw8PDeex7fhQVFdG27pAhQ8iLFy+Subm5jaZrDGHGcQkJCeT9+/d5xg05OTmkq6srSRAE6e3tzZOO0ucmJibktm3buOygo0eP0uOfd+/ecaV78uQJyWKxSCsrK/LmzZtceiQ4OJi0tLTksd1J8n/1wcjIiFy/fj1ZWlpK3ysvLycLCgpIIyMj0tjYmAwJCeFKW11dTYaFhQmsDy9fviQJgiCHDh0qsJyE4btt32Cz2ViyZAmGDBlCX1NWVqYjwtZ3U0lKSkJAQAA0NTVx6NAhGBgY0PcUFBTg7u4OU1NTxMbG0iuqTZFt//79YDAYOHDgAAYMGMB138nJCdOnT0dxcTEuXbrUpGeJi5SUFDw9PblmOXv27AlHR0cAvOWnrKyMCRMm8KwoKCoqYsmSJbCyskJ4eDjy8vL4Pq9du3bYvXs318rCsGHDaJelR48ecf2eWoWfPHkyxo8fT19XUlLC7t27mxQEtLq6Gk5OTlyrKlS+7du3R1ZWllAujyRJ0jOAixcvpr1eAKBt27bw8PCAiooKMjMz6dVUYaHcz2bNmsVz1FCXLl0Ezlg2lNe8efN4ZlZNTU3x888/800nah3x8fEBm82Gra0tlixZAhmZOscpaWlpuLq6wsbGBmw2m/YeAurKqVu3bigrK0N8fDx9nZrtp4IVca44UDPGbdq0oT1QmpPq6mrs3r0bXbt2pa917doVc+fOBcD73leuXEFaWhoGDhyIP/74g+soPm1tbezfvx+Kiorw8/MT6HYnLJGRkXj9+jWYTCb27dvHFUzSwsKC1n9nzpxBSUkJfY9ya+RcxcnNzUV6ejp69+6N7t270ytcFFSZU2mbE1tbW7i5uXEFiJKTk6NXwYyMjLBv3z5oaWnR99u3b4+9e/dCS0sLd+7cQXZ2Nn3vwoULKC4uBkEQ2LBhA13PpaSkMH/+fPTv379Z5f/y5QtOnjwJRUVFHDp0iGtPqYyMDFxdXTFs2DBkZWVxuelyMmHCBEyaNIleUZCVlaVXR2JiYrj2Uubl5eHMmTMAgL/++gtDhw7lWg1SUVHBnDlzaP0sJSUFBwcHAODaEkYREhKC4uJimJubc9VzYbG1tYWLiwt99BolO0EQKC4uxoULF+jflpSU0MGrN27cyOWFpqmpiX379kFGRgYxMTF8tw0AwKRJkzB16lT6eVJSUk32OmoOuUT5hi0tS0vCZrOxYcMGLi8zTU1N2tW6vk4Utx03hLh9IpvNxqZNm7jct3V1dek963fu3OHyOhBX9osXL+Ljx4/Q09PDkSNHeDxujY2N+W5tEIaamhosW7YMw4cPp6/JysrS7WHgwIH0UbCcGBkZYfPmzQDq3OGbCovFgoqKCu11R1G/v+aso4mJiSgsLETXrl35eoAIQlQbPyoqCq9evQKTyYSHhweXR6CNjQ1cXV35bqMUt+1R/WJ9b4ioqCioqalhwoQJYLPZiImJoe9R6Tn7VKpe9+nTB1ZWVlx5ycnJwd7eXqSjjqmtHhoaGnzvi2tDfE8om1PYLfU1NTU4fvw4Hjx4AAAYPXo0fc/BwYG2zYODgzFr1ixYWVnh559/xubNmxEaGsq3XigrK+P333+HjIwMMjMzsXHjRtja2mLgwIFYsmQJTp8+TZ/K0dx069YNgwcP5vHi1dTUxJ49e8BkMhtszwYGBvjtt9+47KB58+Zh0KBBqK6upj3QKTw8PECSJLZu3YqxY8dy6ZFhw4bBzc0NbDabtkHq07VrV2zduhWKior0NXl5eWRkZKCmpgYEQfB4T0pLS2PgwIF8j2EF/uc5Imz/IIjvGlNi8uTJPNe6desGOTk5FBcXc+3/Dg4OBgCMHDkS7dq140knJSVFV9ymdvqxsbHIz89Ht27dBAZAoT5QaxgYQJ1Ryc8djJKXs5PmJDo6Grt27cLChQsxbdo0ODs7w9nZmVasgvb6jR49mu85vvyeV1ZWRru4TZs2jSeNvLx809x5AEydOrXBfJ88edJoHu/fv0dWVhaYTCZfY6NNmza069njx49Fko9SykFBQQJdDkXN686dOyKlE7WOUGVG7ZmrD3W9fllQboycbeH58+eQlpaGg4MDOnbsyNXxP3/+HLW1tbCyshLZ7VwYunXrxtf1UdB7U7pl0qRJfPPT1NSEmZkZSktLERcX1yTZqLIbNmwYX7fJUaNGQV1dHWVlZVyTq/wMKM5Jh169enEZUCRJ0vsIRXW5FQZqwFwfqiwdHBz4DjoVFRXRr18/1NbWcu3bpyY1p06dymOYU9ebk0ePHqGyshL9+vUTuN2vMR3Pr/+itsYB3PXs4cOHYLPZMDExQb9+/YSSccKECWAwGLh9+zbPZBg1USHukWT8ypPBYNB6kFN/vnjxAmVlZdDQ0MCIESN40v300090WQnSk4LqS1NoDrlE+YYtLUtL0q5dO74xaSidSLnuU4jbjhtC3D5RU1OTa2BL0b17d5ibm4MkSdptvymyU3ufp0+f3iJBRxtrA4WFhfDz88OaNWswe/ZsTJkyBc7Ozti7dy8AwbaZKDAYDHpLUv0+WU1NDRMnTgSTyeTbz4jTj4hi41N9wPDhw/me/DR58mS+pySI2/b4TdBQE/3W1tb0YKu+XQNwlwU16fXq1SuRYkcIghrI8xvncL6DqDbE94TazikodsujR4/oscfEiRPRp08f7NmzBwDQt29fzJo1i/6tjIwMvL29sWvXLlhYWEBKSgrV1dV49+4d/P39sWTJEtjb2/N913HjxuHKlSsYO3YsPeDOyclBaGgotm3bhiFDhsDb27vJNjo/2Gw2bt++jc2bN8PFxYVuz7NnzwaDwUBaWhrXIhIngiY/qX6bs3/Ozs5GfHw8VFRU+NZ/oHFb5ueff+Zri1P1Ky0tTWT9Qy3usdnsBmP/NMZ3iynRvn17vvseAUBVVRXZ2dkoKyujV+aTkpIA1O3V4RdwD6g7Ggaoq3RNgXpWTk4OnJ2d+f6GMhKb+ixx4dyfzwm10lZfGbDZbKxZs6bRgW1hYSHf64L2Y1HPKysro6+lp6ejpqYGTCZTYIwKcVb3KJhMpkB5qHypo48agpqI0dTUFOi5Qe2V4gy8IwyzZs1CREQEvL29cePGDdjY2MDKygp9+vQR+ajF2bNnw93dHRs3boSPjw9sbGzQo0cP9O7du8FYAaLUkaKiIrr9CPo21PXPnz+jpKSELrNevXrB19eXjitBDY6NjY2hpKQEa2tr3Lx5k44r0RQjRxgEvTe1ylO/bVDt3dvbm/acqQ/1/UUN3CQoH05PL06kpaWhr6+P/Px8pKWl0V5a9Q2oDh060OXYu3dv5Ofn49ChQ3RcCWp1q0uXLlwrTs2FIPmpsrx06ZLA4+Iow41Td1LttbG611xQgYrj4uIE6vji4mIAgnV8Q/UsNTWVSydSAXgtLS2FlrFTp07o168fnj59ipCQEIwZM4aWJyIiAnJyclwrSqIg6Pvx05/U/1MxAPhhaGiIu3fvCtSTgp7XFJpDLlG+YUvL0pIImnijdGL99xS3HTeEuH2ivr4+7VFQHwMDA7x69YqrvoorO9VGhY1HJQrt27dvsK+OiIiAm5ubQPsLEGybiYq1tTVCQ0PpuBJ5eXlIS0vDyJEjoaCgwOV1Jy8vL7bHnag2PvUNBekKJSUlaGpq8gS7FbftMRgMWFlZ4d69e3RcCc53tbS05JqgIUmSnpTgLAtLS0tYWloiJiYGw4cPR+/evWFtbY2ePXvCwsKC9jgVFmpsUX+VnUJcG+J7QukTQXZ1QUEBbW9KSUlBWVkZvXr1wujRo+Ho6MjzHaWkpDB+/HiMHz8e3759w+vXr/Hq1Ss8ePAAcXFxyMjIgIuLC65du8Yz5ujWrRv27t1LT2S8efMG4eHhePToESoqKrB//35IS0tjwYIFzfb+ubm5mDt3Lq2LBPHt2ze+E6CN9c/5+fm0DU7ZMmw2W+DiDTXpIkhXC3qepqYm7O3tcfv2bTg4ONDjDisrK1hZWTU4ectZfysqKnhOTRGW7zYpwekmUh+qA+KcvaIMxIyMDJ5Z/fo01cWamtX5+vVrg9H6m+NZnFy+fBlXrlzhub5w4UKeQIaCyk9Q5338+HHcuXMHHTp0wOrVq9GzZ09oaGjQFefXX3/FjRs3BEY45gxkx+95nN+KGvSpqKgIlEcUN8D6CJOvMJHBqd80NGgTJT9OBg4ciOPHj+PQoUN4+fIl/P394e/vDwaDgb59++K3337jGxyGH87OzlBWVoaPjw/i4+Px4cMHnD59GjIyMhgyZAh+++03LhdVClHqCKdRKqg8OK+XlpbSHU7Pnj3BYDDw8uVLVFdXIy4uDmVlZXTH3atXL9y8eRPPnj2Drq4u3bELcvtqKoLem98KPPA/3cK5/UQQgma2hYUq54bqHHWPs84JMqDU1NTQtWtXdOrUicuA4mc8NSeC9AFVlvwiMteHU3dS5SLIcG/uiRXOCYfGBlWCdHxj7YtTJ1JutIKMdEFMnDgRT58+xbVr1+hJievXr6O2thbDhg0TOT8KQfqXn74Tps42picb6u/FpSXl4vcNW1qWlkRUe0HcdtwQ4vaJDdkK/HSluLJTbVRc47khGqr/JSUl9ITE2LFjMXXqVHTp0gVKSkqQlpZGZmYmhg4d2ujpE8JC9btUX1F/0qFXr1548eIFYmJi0KdPH7E97kS18ak21Nj3rj8p0ZS216tXL9y7d4+eoOG0TeTl5bkmaNLT0/lO9EtJSeHYsWP0ZNuTJ0/olez27dtjzpw5mDt3rsC2Vp/27dsjLS1N4NYxcW2I7wnlsi+oP3dwcMDOnTvFyrtdu3awtbWFra0tXF1dcfv2baxatQplZWU4ceIE1wkxnMjIyMDU1BSmpqZwdnbGx48fsXDhQiQnJ+PIkSOYPXt2swQyB+pOLUxKSoKZmRmWLl0KY2NjqKio0J4+gwYNQnZ2tsBT3YSxgygbnBqvlpaWNuoZI0hXC7LngLoDH7p27YrLly/TwTaBOk9yJycnLF++nO8EGmf95dwSLSrf9fQNUaAUnLu7u8CVreZ+FnWc0PciOzubb6WiZhSbArV/afv27XxPamjqWbKcUNs8CgsLUVtby1cZN+WdhMmX31YTQXLWPxJK3PzqY2NjAxsbGxQXF+PFixd49uwZAgMDER4ejtmzZyMwMFCgi159xowZgzFjxuDLly90pP7AwEAEBQUhLS2N74kSosBpQHz+/Jnvtg/OcuIsDxUVFRAEQUcW5lzB5/xvVFQURo4ciYSEBCgqKrZIPAlxUFRURFFREW7fvt0iK7r1nwU0XOeoe/XrHKcB1bNnT3p1CwCPAdWS8SQagnq/Y8eOibRCo6ioiOLiYnz58gVdunThuS+ovKiJpoYGj/xWuyk5582bh9WrVwstp7hQE3jUgElYhg4dChUVFYSHhyMnJwdaWlr0qRvibt0A6lyE+U1k8tN3wtTZpuhJcfmR5PqRZGkOxG3HjSFOn9jQvnR+ulJc2ZWUlFBYWNgkV2NxePjwIQoLC2FhYYE9e/bwTJ43l4cEBYvFQrt27WivO379NeV1p6qqiq9fv0JfX1+sU+JEgfpuDdmG/NpXU9pe/W2R1DtTK9KcEzQpKSkA+E/OKCsrY+3atfj111+RnJyM6OhoPHz4EA8fPoSHhwcACDxFqT7UgFSQTd4UG+J7UFxcTHsICNr+3pzY29vj7t27CAoKavBI6/p06tQJq1evxoIFC1BaWoqUlBSRjx3lR15eHsLDwyEvL49jx47xPZ2osfGWMHYQ9W2p+mBubo6LFy82RXS+yMrKYsmSJViyZAnS0tLw4sULPH78GKGhoThx4gRKSkr4nr5IvaOysnKTxibfNaaEKFBKQpjZ76ZCzdY397MErdRSLF26FImJiTx/TTE+KajZ5fqBeIC6IDNN3SvPia6uLqSlpcFmswW6qlKukuLAZrMFestQ+QraNsIJ9Zvc3FyBAYGoOiBMfoJQVlbGoEGDsHbtWty5cwc6OjrIz8+ng/qIgqqqKkaMGIHNmzcjICAAysrKSExMFPm4pPq0bduWXk0QVO+pTrlDhw48bnmcgRijoqIgLS1N1zVdXV1oaWnh+fPniI6ORm1tLXr06CGyW2NL8T11C1WPqLKsT01NDe2OWr/OcRpQ/DwhrK2twWaz8fLlS757X78H4pYldTScoHIRpC+oGX5Bhmz9fcsULaXjBUGVC2fQNGGQlZXF2LFjUVtbi+vXr+PFixdIS0tDx44duY5/FRVB5clPf1Lf5sOHD6ipqeGbril6srF+URAtLdc/VZbmoKV1oih9YmpqKmpra/nm8+HDBwDcZSqu7FQ66ijr7wVlm1laWvJtC03t2+sjJSVF981RUVGIioriGohzbltoaY87Tqg2JEg3lZSU8N0+2ZS2161bN7Rt2xYfPnxAQkIC0tLSuPpMTrtGGA9PBoMBgiAwZcoUHDlyBJs2bQIAkQaL1MBYUDk0xYb4Hly+fBnV1dVgMpnNHqBaENQ2PEGeB4Lg3NYmbNrG+qusrCwAdVsi+E1IJCcnN7otkNJr9aHqhLq6Om2DU7bMhw8fms2bShB6enr45Zdf8Ndff+Hvv/8GUBffit9zqfrZ1ImeH3ZSggrgERAQ0CyeAw1hZWUFNTU1JCcnCxUwUVio/TdNdQFvyrP5za7eunWrwVlXUWnTpg0d5fvcuXM89ysrK3H58uUmPaOxfG1tbRvNw8DAANra2mCz2XzzKysro7fT1M9P3G/Zpk0bsFgsABB40omwaGho0AHZmpoXULeKBUBghN7Tp08D4F+2VOcdERGBly9fwsjIiGviwtraGtnZ2fT3EcfIaan2Q+mW06dPCzR+mwuq7EJDQ/lGJb579y7y8/OhqKjIFSkf4DagqNNlOMuRMpb8/Pzw9etX6OnpCYzg3VJQZenv74/y8nKh01Hl4ufnx/e+oOvUvuXKykp6byUnnKdIcDJo0CDIysriyZMnAo275oR6Xnx8PCIiIkRKS52Wc+3aNdpLYvz48UK7A/ODn74D/lfOnG3cysoKioqKyM/P53sSSXZ2Nu7du8eTTlgo109R23VLy/VPkIXSic25jRQQvx2LQ2N9Yk5ODu7fv89zPS4uDrGxsWAwGHTfBYgv+7BhwwDU9X/Clmdz9ElU/ed3EgCbzRao+5oC1W8EBgYiNTWVayAuLy8PMzMzvH79mg4++T0mJah2ERwczLceXLx4ke/AsSltj3OCxsvLCwD3pEOPHj3AZDK5JiVEmein8hbFPqPSCJqMaooN0dK8ffsWBw4cAFC3RUPU+Gn8EGa8R032c07CfPv2rdFBOpVOSkpKYNyd+jTW5jnHWvw8OE+dOtXoMxrrnzn1XefOncFisVBcXMx3+39LQdUtNpvN15uLqr9UYF1x+WEnJYyNjTF27FgUFRVh1qxZPA2WJEm8evUKW7ZsETpitiDk5OSwYsUKAMDKlSsRGBjIM1jJyMiAt7c3HelZGKgBZEpKitBH5TQXVMXYuXMnl1fA/fv34e7uLjCojrhQxy9euHABAQEB9PWSkhKsXbtWZDdmTmRkZHDu3DmuYzpLS0uxdu1afPnyBdra2rC3t280HwaDQct56NAhhIWF0feKi4uxZs0aFBYWQkdHhyegHKXABEUed3Nzw71791BVVcV1PTIyEuHh4QDqjvNsDGq/aUREBNcqAEmSuH37NpKSksBgMJrF7WzOnDlgMpl4/PgxvL296efV1NTg0KFDePLkCZhMJubMmcOTloorERERwRVPgoLq6CnjQJwVfKrM6x/h1VQmT54MPT09vHjxAm5ubjwdfVVVFcLCwrB+/fomP6tPnz4wNzcHm83GihUruFZ+Xr9+je3btwOoiwBf3xuF04C6d+8eVFVVufZgUytcVBl/760bQN12AysrK6Snp2PevHk8qz3V1dWIjIzEqlWruNqGk5MTlJSUkJSUhO3bt9P3amtrceLECYGTwwwGg3bR3rFjB49u8/b25uuRo66ujjlz5qC6uhpz587lm39iYiL27NlDnyTUFDp06ECfXuPm5sYzyCosLMTJkyf59gssFgtmZmZIS0trlq0bQJ3L+KlTp+h+raqqCtu3b0dSUhKUlJS4ouYrKSnR0cC3bdvG5SKbm5uLFStWgM1mw9LSUqw4MVS7jo6OFikKekvLJQqtJUtL6URx23FDiNsnMplM/Pnnn1zR3zMzM2l9PGLECK4BhbiyOzo6QkdHB2lpaVi0aBG94kmRkJDAM1hozA4QBso2CwoK4jodorCwECtWrOCJodAcUP0v1VfUr5PUaU7UpMT38Ljr3bs3zMzMwGazsWrVKq7BaHh4OLy8vPievtHUtkf1k/z6TWqCJiYmBl++fOE70X/z5k14eXnxeO+WlJTg2LFjACDSVlVLS0soKSkhISGBb0yIptgQLUVubi68vb0xZcoUlJWVgSAIrF27tlny3rx5M+bPn4/Q0FCeScbc3Fxs3ryZjnNAnZYH1LXJESNGwMfHh8emY7PZuH79Oh3Xws7OrsFAtJw0No7r2rUrVFRUkJubi7///pvuY9lsNry9vXH16lW+9ZiTlJQU7Nq1i8sO8vHxwYMHDyAjI8N1OgkArFmzBlJSUti2bRv8/Px4dGxubi58fX3po3OFJSIiAjt37uRZ8KmsrIS3tzeAuhM6+MWBoewmzgkUcfgx/KkFsHXrVhQXFyMsLAyOjo7Q1NSElpYWKisrkZGRQbvECDrSUBQcHR2Rm5sLLy8vrFy5Eu7u7tDV1QVJksjJyaEVpru7u9B5qqqqok+fPoiMjMTQoUPRtWtXyMnJoUOHDi0eu2LZsmUIDw/HgwcPYGtrC319fXz58gXZ2dno06cPNDQ0cPPmzWZ73qBBgzBjxgycPn0aq1evhoeHB9TU1GgXO1dXV7HfWVNTE4MHD8bKlSuxZ88eOt+ysjIoKChgz549Qh/p5ezsjFevXuH69etYsGABOnXqBBUVFbx//x7l5eVQUVHB/v37eSZt7O3t4efnh2PHjiEkJATq6upgMBiYN28eBgwYgCdPnuDOnTv0CSQKCgrIz8+nlePYsWOFOhqwtrYWd+7cwZ07dyAvL4/OnTtDVlYWOTk59MrKwoULm8VNr1u3bti8eTO2bNmC/fv34/Tp0+jUqROysrLw5csXSElJwd3dHQRB8KSlBsjUXkJ+Rg5QN5mioKAAMzMzkeUbNWoUkpOTsXDhQrBYLLrD9fT0bNJ+VwUFBRw9ehTz589HUFAQgoOD0blzZ6ioqKC4uBgZGRlgs9nNEmyRwWDAw8MDM2fORExMDIYMGQJDQ0NUVFTQLnvUmez86NWrFx48eACSJHkMRapcqbg0rTEpwWAwcPDgQSxatAjPnz+Hvb09OnXqhA4dOqCsrAzp6en0KiRlPAF1Xj/btm3DypUr4evri+vXr0NXVxefPn1CQUEB1q1bJzAw1tKlSxEWFoaIiAjY2NigS5cutG5buHAhAgICeAYYALB8+XIUFBTg0qVLcHFxgaqqKjp16oTq6mpkZWXReyKbaxDp5uaGrKws3LlzB4sWLUKHDh3QsWNHWlYqeCU/42jixIl48+YNqqurYW1tLfDUCGFZuXIlduzYgWPHjqFjx47IyMjAt2/fIC0tje3bt/MY3suWLcPbt28RHh6OSZMmQV9fHwoKCkhOTgabzUanTp3oowtFZdiwYdi3bx8CAwMRGxuLjh07QkpKCg4ODo1OvrSkXKLSGrKMGjUKYWFhcHd3x7lz5+iAYr/99huMjIzEzlfcdtwQ4vaJw4cPR3p6OsaPHw8DAwPIyMggOTkZNTU10NPTw+bNm5tF9jZt2uDQoUOYO3cunj59iiFDhqBLly6Ql5dHVlYWCgsL0atXL67j+hqzA4TB1NSUjnA/d+5c6OjooG3btkhOTgZJkti4cSO2bNkiVF7CYmxsDGVlZXpxiN8iwuHDh0GSJPT09JplxbsxGAwGdu/ejWnTpiEqKgqDBg2CoaEhSkpKkJ6eDjs7OxQXF/OdAGpK2+O0TTi3sXDeb6hP/fLlCw4ePIiDBw9CXV2da0xSUVEBZWVlbNiwQehykJeXx5gxY3DhwgWEhIRg/PjxPOXUFBuiqfz555+07VVZWYnPnz/TEyMMBgNjxozBli1bmnVChIrPISMjAx0dHSgrK6OgoAA5OTmoqakBg8HA/Pnz6aMvKT5+/Ihdu3Zh165d0NDQgIaGBiorK5GVlUWPF42NjfnGRBBEY+M4JpMJNzc3uLu74+DBgzh37hw6duyIzMxMfPv2Da6urrh27Rpfm4TCzc0NHh4euHLlCnR1dZGdnU17s69ZswbdunXj+r2trS3++OMP/P777/jjjz+wd+9e6OnpQVpaGnl5efT3mTdvntDvCdQt9p48eRInT56EiooKtLW1UVtbi8zMTJSUlIDJZMLd3Z1nS8unT58QGxsLAwODJnvr/NCTEgoKCjh8+DCCgoJw7do1vHnzBm/fvkW7du2gr6+PHj16YMSIEfQes6bi6uqKAQMGwM/PD8+fP0dSUhLk5eWhpaWFvn37Yvjw4SIHgfLw8ICHhweePn2K+Ph4VFdXQ1tbu1nkbQhjY2OcO3cO+/fvx4sXL/D+/Xvo6OhgxYoVcHFxofe+NScbNmyAsbExzpw5g5SUFJSXl6NPnz5YunRpkzwlAGDTpk0wMDCAv78/UlJSICcnh+HDh2P58uUiHR/IYDCwc+dO2Nrawt/fHwkJCcjNzYWmpiYGDRqE+fPn8+2Qe/bsCQ8PD/j6+iIlJYWOnUGdRb5z5048fvwYMTExyMvLQ3FxMZSUlNC3b184ODhg3LhxQsnXpk0b7NmzB+Hh4Xj9+jVycnJQWloKFRUVDB48GE5OThg0aJDQ79sYkyZNAovFwokTJxAdHY2EhAT6/OO5c+eie/fuAtNaW1sjKSkJ0tLSPC5bnTt3hpaWFnJycugVfVGZP38+amtrERgYiJSUFHo2uDlclzt37ozr16/D398fd+/exfv375GVlQV1dXWYm5ujX79+dFDJpqKjo4OrV6/ixIkTCAkJQUpKCmRkZGBubg4HBwc4OjoKjLfBOREhaNWnNSclgLpI535+frh+/ToCAwPpNtW+fXsYGRmhV69eGD58OM9E38iRI6GhoYG///4bMTExeP/+PVgsFjZv3oyRI0cKnJTQ19fHuXPn8Ndff+H58+f48OEDDAwMsGLFCvz8889cnlqcSElJ4c8//4S9vT0uXLiAmJgYJCQkoE2bNujYsSOGDx+OYcOGNSl2AydMJhP79u3DyJEjcenSJcTHx+Pdu3dQVVVF7969MWLECIHbbcaMGYPt27ejsrKS1jFNYc6cOdDS0oKvry/tbUUZsvyOLZWTk8OxY8fg7++PGzdu0INCHR0dDBs2DC4uLkIH7a2Prq4uDh8+jCNHjuDt27f49OkTSJIUqv62pFyi0hqyjB8/HkVFRbh8+TLS09PpSeHmCNYobjsWhLh9oqysLM6cOYODBw8iKCgIeXl5UFdXx7Bhw7B06VK+ZSqu7IaGhggICMCpU6cQGhpKe91qaGjAzs6OayUWaNwOEJbdu3fDwMAA169fR05ODsrKyjBgwAAsXLiQ7770pkJ53YWFhfEdiFN9NJvN/q5xibp06YIrV65g//79ePToEZKTk9GpUyesXLkSLi4umD17Nt90TWl7RkZG9ASNtbU1zwCLmqAB+HuMjBgxAtXV1YiIiEBqaiqSkpJAkiR++ukn2NjYwMXFhW/g8IZwcnKivYzrT0oATbMhmgqlYxgMBhQVFdG2bVvY2NjA3Nwc48aNa/Y4Frt27UJERAQeP36M+Ph45ObmIjMzE7KystDT00OPHj3g6OjIE1TTzs4OFy9exOPHjxEVFYXs7Gy8f/8eNTU1UFFRgbW1NYYPH46ff/5ZZHu0sXGcs7Mz2rVrh+PHjyM5ORlVVVUgCALTpk2Dvb097fEoiJEjR8LExASHDx9GfHw8ampqYGVlhfnz5wu09x0dHWFlZQVfX19ERkbiw4cPkJaWhqamJoYPH44hQ4bAzs5OpPe0srLCpk2b8PTpUyQnJyM1NRVsNhsaGhoYPnw45syZw/fEpFu3boEkSUyaNEmk5/GDQYriPylBwnfk48ePGDJkCLS1tfnuMZUgQcK/F2rfOb/YEf92Pn78iKFDh0JBQQFPnjwRO6r6f7kMJfyzuHr1KtavX9+k4wMlSPinsnDhQjx8+BABAQEiLbRJ+OdiZ2eHrKws3Lt3j94m8k+jqqoKI0aMQFVVFYKDg5t8AswPG1NCggQJEiRI+C9y9epVkCSJUaNG/SOOlJQgQYIECeKzZs0aMBgM+pQDCRL+CVy5cgWfPn2Cq6trs9gqP/T2DQkSJEiQIOG/RHZ2Nh11e+rUqa0sjQQJEiRIaGkMDAywfft2ZGVloaqqCrKysq0tkgQJjSIjIwM3Nzf61LAm59csuUiQIEGCBAkSxGbbtm148+YNEhMTUVZWRu8zlSBBggQJ/374xZOQIOFHprkmIygkkxISJEiQIEFCK/Pu3TvExMRATU0NY8eOxa+//traIkmQIEGCBAkSJHwXJIEuJUiQIEGCBAkSJEiQIEGCBAmtgiTQpQQJEiRIkCBBggQJEiRIkCChVZBMSkiQIEGCBAkSJEiQIEGCBAkSWgXJpIQECUJw9epVsFgsrFu3rrVFEYqDBw+CxWLh4MGDIqV79uwZWCwWpk+f3kKS/fMRt2ybi48fP4LFYsHOzk6kdNOnTweLxcKzZ8+4rrf2+wiDuO/8b0XQt2wNfrRv0xo6TND3WLduHVgsFq5evfrdZPk38qPVMTs7O7BYLHz8+LG1RWl2WCwWWCxWa4vRYrx9+xbz5s2DtbU1/a4JCQlNzvdHtBEjIiIwffp0WFpa0u9aVFTU2mJJkCCQ/2Sgy+nTpyMqKgqurq5YunQpz/2amhqsXbsWAQEBUFRUxOHDh9G7d+9WkLRhnjx5gpMnTyIuLg4VFRXQ1dXFmDFjMHv2bJGPE0pISEBoaCiMjIwwdOjQFpKYF2E7v6VLl8LV1VXs5zx79gwzZswQOZ2DgwN27twp9nNbgqKiIvj6+kJZWRmzZs1qbXH+VXz8+BHXrl2DtrY2JkyY0NriSJDwn0Oi35qPf4o+u3r1KrKysuDg4IBOnTq1tjj/Wv7r5fz582fMnDkTRUVF0NLSgoGBARgMBhQVFRtNS03a8xsz/IgkJiZi3rx5YLPZ0NHRQbdu3QAA0tLSrSyZBAmC+U9OSjREdXU1Vq9ejTt37kBJSQlHjx6FlZVVa4vFg4+PD3bt2gUA0NbWRseOHZGcnAxPT088ePAAp06dgry8vND5JSQkwMvLCw4ODt91UqJHjx4C75WXl9Mz2BYWFk16jrKyMt9nZWdnIzs7G0pKSiAIgue+np5ek57bEhQVFcHLywva2trNbrQrKChAX18fHTt2bNZ8/ylkZWXBy8sLvXr1EmjEt2/fHvr6+mjfvv13lq5l+Ce8D5PJhL6+PjQ1NVtbFAktTFP124+kw9TV1aGvrw9lZeVWeb4w+uxH4Nq1a4iKikKvXr3+k4Pl74Uw5ayvr/+dpfp+BAYGoqioCMOGDcOBAwcgJSW8s7iXlxeAf86kxJUrV8BmszFjxgxs2LChtcWRIEEoJJMSHLDZbKxcuRLBwcFo27YtTpw4ge7du7e2WDy8fv0au3fvBoPBwPbt22ljIyMjA3PnzkVMTAw8PDz+EYro/PnzAu+dOXMGf/75JzQ0NNCvX78mPcfY2Jjvsw4ePAgvLy8YGxvjzJkzTXrGv4Hu3bvj7t27rS3GD820adMwbdq01haj2fgnvI+mpqakXkoQih9Jh61atQqrVq1qbTEkSBCaH6XttASpqakAgH79+ok0IfFPhHpXGxubVpZEggTh+Xe3ShGoqqrC0qVLERwcDBUVFZw6deqHnJAAAG9vb5AkiQkTJnCtfujq6mLbtm0A6gb7BQUFrSVis3D9+nUAwNixY//1HYgECRIkSJAgQYKElqGyshIARPIi/qdSUVEB4L/xrhL+PUhGeqhTVIsXL8aDBw+gqqoKX19fmJiYtLZYfCkpKcGTJ08AAJMmTeK5b21tDT09PbDZbNy/f1+oPO3s7LB+/XoAde59VEAcfsHCqqurce7cOUyePBlWVlbo3r077O3tsW/fvmYNoPP+/XvExcUBAMaPH99s+TYHVVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FZimqKgIBw4cwLhx42BpaQkLCwtMmDABp06dApvNFvrZ69atw5AhQwDUueZyfitB8TlKSkqwa9cu2NnZwdTUFIMHD8bu3btRXl7O81tBQeLqBxoLDAyEo6MjLC0t0bNnTyxYsADv3r0T+j2Ki4vRvXt3dOvWDZ8+fRL4ux07doDFYsHd3Z3nXlpaGjZt2oQhQ4bAzMwM1tbWmDVrFu7du8c3L86gcx8/fsT69esxYMAAGBsbY9u2bZg+fToddyQqKoqrXDkDrDUWGDI/Px979uzB2LFjYWlpCUtLS9jb22PLli14+/Yt12+TkpJw8OBBODk5wdbWFqampujbty8WLFiAp0+fNlaMzYKg9+EM3NWadR5oONAdZ91/8uQJpk+fDisrK1haWmL69Ol4/vy5SM/iJCIiAkuWLEH//v1hamoKGxsbrFy5EomJiXx/n5mZiWPHjmHGjBkYNGgQTE1N0atXL8ycORO3b99u8FmVlZU4ffo0nJ2d0atXL5iZmWHIkCFYtmwZQkNDBaZLS0vDypUr0bdvX5iZmWHs2LHw9/cX+V0560FBQQE2b96MAQMGwMzMDMOHD8fBgwdpo14Uvn37Bk9PT9jb26N79+6wsrKCk5MTLly4gJqaGq7fiqPf6tNSOiw3Nxfr169H//790b17d4waNQpHjhxBdXW1wDSNBbrMyMjA77//jhEjRsDc3Bw9e/bE2LFjsWvXLqSlpXH99tWrV9izZw9++eUXuj7a2tpi+fLleP36NU/ewuoziri4OKxatQoDBw6EqakpevfujYULFyI6Opqv7OXl5Th06BDGjx8PS0tLWh4nJyfs378f3759E1guFNS3ioqKAgDMmDGDS05B5Sbqt6upqcGlS5cwbdo0WFtbw8zMDMOGDcOOHTvw5cuXRuUUBXFtpJqaGly7dg2zZ89G79696b56/vz5uHbtGtdvi4qKcPnyZSxZsgTDhw+Hubk5LC0tMWHCBBw9epSnnYpSzg21tYqKChw9epT+5paWlhg/fjyOHj1KD4I5aW67QVxZ6rfD9evX0+/ZWGBKSi9S1NdJ/IKdtmZ/SQXd5fetqT6es28vLy/Hvn37MHLkSHTv3h0///wzV36i6gWgri87ePAghg0bBjMzMwwYMACbN2/Gly9fBNobjenKxgKJ5uXlYceOHRg5ciTMzc3Ro0cPODk54erVqyBJkuf3nHKIYiNTCGPnJScng8ViwdrausG+08XFBSwWC35+fgJ/81/hP799o7y8HIsXL0Z4eDjU1dXh6+sLAwOD1hZLIAkJCWCz2ZCVlYWpqSnf31hZWSEtLQ2xsbFwdHRsNE9TU1MwmUykpaVBTU0NnTt3pu9xxlmorKzEokWL6MGSnp4eFBUVkZycjMOHD+PWrVvw9fVtlj2hN27cAFC37YJfrIfWgs1mw8XFBc+fP4e+vj50dXWRmpoKf39/xMbG4vLlyzxBRt+/fw8XFxdkZ2eDyWRCW1sbDAYD7969Q3x8PB48eIBjx44JFZxUT08PpqamiIuLa7AOUBQXF2Py5MlITU2FgYEBtLW1kZ6ejhMnTiApKQnHjx8XuQz27duHw4cPQ0tLC3p6ekhNTUVYWBiio6Nx+fJlofakKisrY9CgQQgKCsKtW7cwf/58nt/U1tbSA7mxY8dy3QsKCsLq1atRVVUFRUVF6Ovro7CwEBEREYiIiMDChQuxYsUKvs9OTU3Fjh07UF5eDkNDQygrK0NKSgoEQaCwsBBJSUk8MUbU1dWFKpvnz59jyZIl+PbtG6SlpWFgYAApKSl8/PgRFy5cQGVlJVfg1O3btyMiIgLKyspQV1eHuro68vLyEBYWhrCwMKxfv77Vg/21dp0XFn9/f2zZsgWqqqro3Lkz0tPTERUVhdmzZ+PUqVPo2bOnSPnt2rULPj4+AOribhgaGiIrKwuBgYEICQnBgQMHMHjwYK40hw8fxuXLl6GoqAgNDQ2wWCwUFBQgMjISkZGRiI2NxW+//cbzrNzcXMydOxdJSUkAAB0dHXTq1AnZ2dkICgpCXFwc31g/b9++xaJFi0CSJPT19ZGXl4ekpCRs3rwZ375949uuGqOwsBCOjo7IyclB165doaSkhPfv38PLywsRERHw8fERevUtMzMTM2fORFZWFmRkZGBoaIjy8nLExMQgJiYGoaGh8Pb2puuBqPpNXETVYenp6ZgyZQo+f/4MJpMJgiBQVFQET09PvHr1iq/R2xh37tzB2rVrUVlZCVlZWRgYGKC6uhqZmZnw8fGBoqIi1/711atXIyMjAyoqKlBXV4eGhgY+ffqEu3fvIjQ0FJ6enhgxYgT9e1H02ZkzZ7B9+3bU1tZCWVkZXbt2RV5eHh48eICwsDC4u7vDycmJ/n11dTVmz56NmJgYAHVemu3atUNBQQHevHmDmJgY2NnZwczMrMEyoGI9JSUloaSkBARBQElJib6vpqbGk0bUb1dSUoLFixfj2bNnYDAY0NLSQseOHZGeno5Tp04hKCgIZ86cgY6OToOyCoO4NhKnjACgpaWFTp06ITc3F48ePcLDhw/h4OBA//7BgwfYsGEDmEwmNDQ0YGhoiKKiIiQmJiI+Ph737t3DmTNn6HYlTjnX5+vXr5g9ezYSEhLAYDDQtWtXMBgMJCYmIiEhAXfv3sXJkyfRrl07vumbw24QVxY9PT306NED6enpKCgogJ6eHlRVVel7DdGxY0f06NEDL1++BMAbB01OTo7r363dXxIEgerqar7fun6cnYqKCkydOhXx8fHQ19dH165dwWQy6fui6gUqzzlz5uDFixcAAAMDA8jIyODSpUt48uRJi5ygEx0djcWLF+Pbt2+Qk5ODrq4uysvLERsbi5iYGISHh2PPnj1gMBg8acWxkYW18wwNDWFhYYHY2FiEhoZi9OjRPHnl5uYiPDwcsrKyfO//5yD/g0ybNo0kCILcuXMn/f8DBgwgP3z40KR8Dx06RDo5OYn8d+nSJaGfcfHiRZIgCHL48OENykEQBDllyhSh871y5QpJEAS5du1agb/ZtWsXSRAE2bdvXzImJoa+npOTQ06aNIkkCIKcPHmy0M8URG1tLTlo0CCSIAjy5MmTTc6vIQ4cOEASBEFOmzatwd9R5WNiYkKOGDGCTE5Opu8lJyeTNjY2JEEQ5IULF7jSlZWVkcOHDycJgiA3bdpEfv36lb738eNHcvLkySRBEOTevXuFljkzM5MkCIIcPHhwo+9lYmJCTp48mfz06RN97/nz56SFhQVJEAT5+PFjrnSRkZF8y4N6pomJCWlhYUGGhobS94qKiuh2tHLlSqHfIzg4mCQIghw7dizf++Hh4fR71tbW0tcTExNJMzMz0sTEhDxz5gzJZrPpe1FRUWT//v1JgiDIR48eceW3du1akiAI0sjIiJw/fz5ZUFBA3ysvL2/w/TmhyvbAgQNc17Ozs0lra2uSIAjSzc2N/Pz5M9f9qKgo8vr161zX7ty5QyYkJPA849mzZ2T//v1JY2NjMjMzk+ueMN+fH9Q3ioyMFOp9/il1niAIkiAIsnv37qS/vz9dVyorK8kVK1aIpZcoPTtgwADy4cOHXPfOnz9PGhkZkVZWVjzfOCwsjIyJieGqryRJkm/fviVHjhxJEgRBRkdHc92rqakhHR0dSYIgyHHjxvHUh9TUVPLYsWNc16hvaWJiQm7evJksKyuj7506dYouj6KiIqHfmVNnjBkzhszIyKDvxcXF0e1qz549XOkEfZva2lpy4sSJdPnn5OTQ92JiYsg+ffqQBEGQHh4eQuUnLM2tw2pra+nvM3XqVDI/P5++9/jxY9LCwoI0MTHh27YonXPlyhWu6/Hx8XSarVu3ksXFxfS9mpoa8sGDB+S9e/e40ly7do1MS0vjulZTU0MGBweTFhYWZM+ePcmSkhKhyoKTJ0+ekCwWi7SysiJv3rzJVXeDg4NJS0tL0sTEhExMTKSvBwUFkQRBkAMHDiRTUlK48isuLiYvXbpEfvz4UeAz6yNIN1E0pf9ZtWoVSRAE6ezszCVrWVkZuWnTJpIgCHLSpElCy0qSJDl48GCSIAge3SyujbR06VKSIAhy0KBB5PPnz7nu5eTk8OjmhIQE8v79+2RFRQXPb11dXUmCIEhvb2+e5zRWziT5P31an2XLltG2J2c5pqSk0Pq+fvm3hN0griwkKbg9CoOgcqH4kfpLkmz4W1OyGhkZkUOHDuVq25QtJI5eIEmS3L17N0kQBNm/f38yLi6Ovp6WlkaOGjWK1nv163Rj30bQGCUvL4/s3bs3SRAE+ddff3H1he/evaP73fPnz3OlE9dGFtXOo2yJOXPm8H2vw4cPkwRBkMuXL+d7/7/Gf3r7xunTpxEVFYWOHTvi7NmzTY46nJaWhpcvX4r8l52dLfQzKJdIQbPRANC2bVsAaNbtFCUlJXSgyI0bN3KdhqGpqYl9+/ZBRkYGMTExPGe1i0pkZCQ+ffoEGRkZnhXy1qa6uhq7d+9G165d6Wtdu3bF3LlzAQAPHz7k+v2VK1eQlpaGgQMH4o8//oCKigp9T1tbG/v374eioiL8/PzEco1uDCkpKXh6enLNkPfs2ZP2oKkvb2Ow2WwsWbKEdrEG6lZhqKCqouQ3cOBAtG3bFomJiUhOTua5f+vWLQB1XhKcM9xeXl6orKyEm5sbpk2bBhmZ/zl8WVtb4/fffwcAnDx5ku9z27dvD09PT3qlBGiefZfHjx/Ht2/f0LNnT3h4ePCsPllbW/O4Ro4cOZI+qouTXr16Yfny5aiurm7U7b+l+afU+QkTJmDSpEl0XZGVlaVXE2NiYoRyJwfq6vj+/fvBYDBw4MABDBgwgOu+k5MTpk+fjuLiYly6dInr3sCBA2FhYcGzImNkZITNmzcD+J8XGEVoaChevXoFFRUVnDhxgqc+6Onp0WVdH319fWzZsgUKCgr0tZkzZ8LY2BgVFRVi6WI2m42dO3dyrRybmJhg48aNAAA/Pz+UlpY2mk9kZCRev34NJpOJffv2cZ2cYmFhQeuMM2fOoKSkRGQ5xUVUHRYVFYVXr16ByWTCw8MDHTp0oO/Z2NjA1dVV5O1IBw4cAJvNxtixY7Fx40auVWspKSkMGjSIZ0Vx/PjxXF6M1G+HDRtGH3MYFhYmkhwA4OHhAZIksXXrVh5dO2zYMLi5uYHNZnMFgqa2lowYMYLHs1RJSQkTJ06Etra2yLI0hqjfLikpCQEBAdDU1MShQ4e4ZFVQUIC7uztMTU0RGxtLr4SLi7g2Unx8PIKCgsBkMnH8+HEejy5NTU2eEx+6deuGwYMH86zSa2pqYs+ePWAymTx6pimkp6cjKCgIALB7926ucjQwMKC9/wIDA5GZmcmTvjnthqbK0tL8U/pLoG7LkKenJ5cXFWULiaMXSktLce7cOQB1bYBzG3znzp2xc+dOkXVlY/j4+ODr16+YMmUKli9fztUXslgseHp6gsFgCLQHRbWRRbXz7O3toaioiPDwcOTm5vI8n9qa9SOfjvQ9+U9PSlCUlpaiuLi4yfns3LkTiYmJIv+JcsQQpZQ4XazqQ7l48dvjJy4vXrxAWVkZNDQ0uFxEKX766Sfavfjx48dNehbVmdra2grlVvg96datG98AqObm5gDA0wkGBwcD4B//A6gzIszMzFBaWkrH0GhObG1t8dNPP/FcFySvMEyePJnnWrdu3SAnJ4fi4uIG901yIisri+HDhwP43wQERVVVFV12Y8aM4boeFhYGKSkpgVuTBg4cCCaTiejoaL77vUeMGIE2bdoIJaMoUPv+586dK1Jg1tzcXJw4cQIrVqzAzJkz4ezsDGdnZ5w+fRoA6GNxW4t/Sp3nVy/V1NRoV2lh63psbCzy8/PRrVs3+h3rQ+k6foP+wsJC+Pn5Yc2aNZg9ezamTJkCZ2dn7N27FwB49lCHhIQAqDNKOAe8wjBx4kS+dY1ym8/IyBApPwCwtLTkG1Np+PDh0NDQQFlZmVADOKofGDZsGN/jOUeNGgV1dXWh82tORNFhjx49AlD3/vyOpJ08eXKD/XF9Kioq6LhQom6vSU9Px99//41ly5Zh+vTptK64c+cOANF1RXZ2NuLj46GiosK3Xwf413UtLS0AdTFXCgsLRXpmUxHl21G6aOTIkXwXcqSkpOgtWE1dTBHXRqLav52dnUhbh9lsNm7fvo3NmzfDxcWF1jOzZ88Gg8FAWlpas9mAT548AUmSMDc356sTLS0tYWZmBpIk6bpdn+ayG5pDlpbkn9JfAoChoSHfLVbi6oXo6Gi6DVC2HSfdu3cX2KeKC1V+/OoXULcgoK2tjbS0NL6TAqLayKLaeW3atMHIkSNRW1tLB++nePnyJVJTU6GpqYn+/fs3mtd/gf90TInp06fjxYsXeP36NebMmYMzZ87A0NCwtcVqEGpmvKHZxqqqKgDNG3WXOl5IX18f0tLSfH9jaGiIu3fv8gToEoXy8nJaydRfVf4R0NXV5Xudmjypv4JI7RH39vbGiRMn+KalyoufwmwqguSlvASEWfHkpH379lBWVhaYZ3Z2NsrKytC+fXuh8hs7diwuX76MgIAArhgQDx8+RFFREbp168bVJtPT01FZWQkmk4mFCxc2mHdlZSUKCwt5BnotETOmpKSE9njiXCFrjFu3bmHjxo0NBlT63kZ/ff4pdb4hOVNTU1FWViZUPpT8OTk5cHZ25vsbanI4JyeH63pERATc3Nwa/Gb1771//x6AaPWGov7KOQX1bYR9Z066dOnC97qUlBQdtyI1NRW2trYN5kN9Y0HtTVpaGvr6+sjPz0daWhqPR0pLIaoOo/o+Qe+hpKQETU1NvgHv+JGeng42mw1FRUWR4iX5+PjAw8OjwcCaouoKKmArm83G1KlT+f6G/P94GZx1fdiwYdDR0UFiYiIGDRqEfv36oWfPnrC2toapqSnfvdvNgajfjmrLDx48wJs3b/imo04pq9+WRUVcG0mc9l8/Bo0gvn371ix2YGNtGah7tzdv3vC1/5rTbmiqLC3NP6W/BATrenH1AtUGunTpInDAbmBggFevXoktMydlZWW03nV3dxeod6gJr5ycHJ6JZVFsZHHtPEdHR1y9ehXXrl3DggUL6OuUl8T48eMF6oz/Gv/pSYk2bdrg+PHjmDlzJhISEjB79mycPXu20cA3rQk129+QKzK1bYPaxtEcUMZtQyt5gpSuKISEhKC0tBRt27blcvX7UVBUVOR7XZAypDxw4uPjG827OT1bKATJK+4Rq4Ly48yTFCHoW69evaCpqYmsrCy8fPmSDiIVEBAAgDfAJVW32Wy2UKur/MqU072vueCsf/JqHwAAqVdJREFU88K2u8zMTKxbtw5sNhszZ87Ezz//DF1dXbRp0wZSUlKIiIjArFmzGhyEfA/+KXW+sboubL2k6tjXr18bXb3jdKctKSmhJyTGjh2LqVOnokuXLlBSUoK0tDQyMzMxdOhQnu9JbV0QR18LqsvitEWKhrzTKP0vjI4Xps8QJb/mQlQdRr1HY+Ui7KSEON/7xYsX2LVrF6SlpeHm5oYhQ4ZAW1sbioqKYDAYuHz5MjZs2CCyrqDqemlpaaP6lLOuKygo4Ny5czhw4ADu3r2Le/fu0acedezYEUuWLBEqyLaoiPrtKF2UkZHRqNdQU13jxbWRqPogaNDOj3Xr1iEpKQlmZmZYunQpjI2NoaKiQnvsDBo0CNnZ2c3mKt9U+6857YbvZYuKyz+lvwQEyyquXhBWVzYXnB7uVNDdhuBXfqLYyOLYeUBdcNQuXbrgw4cPiImJgaWlJSoqKmgPN84gtv91/tOTEkDdIN/HxwfTp09HSkoKZs2ahbNnz4p1gsThw4dF3qMPAL/88gsmTpwo1G+pCZNPnz6hurqaaz89BdX5NufkCtVwP3/+LPA31IpDU1zjqa0bo0aNatbI/K2FoqIiioqKcPv27R/6VJfWQkpKCqNHj4aPjw9u3bqFHj16oKSkBGFhYWAwGFxbN4D/1a0OHTp8tyMzhYGzzhcVFQm14nPnzh2w2WyMGjWK74kMwsZA+NH4p9d5StdRx/gJy8OHD1FYWAgLCwu+kb4FrWJT8QSaMwZQU2joiERK/wuj44XpM0TJr7Wg3oPq3/jR0DvWh/reomwZpfrF2bNnY9GiRTz3xdUV1LuZm5vj4sWLIqXV0NDAn3/+id9//x1v377FixcvEBoaiufPn2Pjxo1QVFRs9Wjy1Pu5u7sL9Hpq7meJaiOJWh/y8vIQHh4OeXl5HDt2jG9f09x9x/ey//5psjQHP2J/Ka5eaIqupPpLQZNT/LxJOScUXr161aze4fwQx86jmDhxInbv3o2rV6/C0tISwcHBKC4uhqWlZZPjGf6bkMSUQJ2bzsmTJ9G5c2dkZ2dj1qxZYrlJfY9Al0ZGRmAymaiqqhK4v4w6ikeUvVuNuVtSjebDhw88Z8tTUMEKxZ0MycvLQ0REBIAfc+uGOFDBjvgFchSXlnKNbS0ob4g7d+6guroaISEhqKyshLW1Nb13maJz585gMpkoKChosOMTF3HLVklJid6XGBsbK1QaamXVysqK7/3mcnH83rREnf+eUNuFRJWf+p6WlpZ869Hr16/5pqPKS9h609JQ7uT1qa2tpd1zhdHx1G9SUlL43q+pqeGb34+m36i+T1C5lJSUiGQv6OnpgclkorS0tFH3e4qsrCwAouuKxsqSqusfPnwQ2yNLWloaZmZm9IKOi4sLAIg8ydESfE9dJK6NJGr7p+qCgYEB30FRcnKyWNu2GqKxtkw9l/O3LcWPJEtz8CP2l+LqBaoNpKamora2lu9vPnz4wPc65fUnyK5LT0/nuaasrExvx/ge5SeOnUcxfvx4MJlM3LlzBxUVFfTWjV9++aW5xfxHI5mU+H80NDTg6+sLbW1t+mx1UQc93yPQpZKSEh0QhV+n//z5c6SlpYHJZIq0/YGKVSHIPczKygqKiorIz8+nIx9zkp2dTbtvNrbXWBABAQGoqamBrq6uQOPrnwYVJOj06dMClbSoULPBLbHdozUwNjaGgYEBvnz5gqdPnwrcugHUdVy2trYgSRK+vr7NLktTypYK/OTj4yOUKyrV5vitHHz79o3utP5ptESd/55YWVlBTU0NycnJIgVKo75nfn4+zz02mw0/Pz++6aiAYFevXm3QS+F7ERMTwzdgYkhICPLy8qCoqCiUfqb6gdDQUL4T73fv3kV+fj4UFRXpbVvAj6ffqPcIDg5GXl4ez/2LFy+K5CYvJydHx88QtIecXxqAv67IyMjAgwcP+KZrrCw7d+4MFouF4uJiXLlyRShZGoP6lvzKShAt9c0pXRQQENAik9iciGsjUe3//v37Aie+OKHK6vPnz3z7mVOnTjWaVtRytrW1BYPBwOvXr/lOgMXGxuLNmzdgMBiwsbERKW9RaS1ZWrqO/kj9pbh6gWoDubm5dEBITuLi4gQO5qnYDvxiv5SUlCAwMJBvOqr9NFTvmxNR7TwKNTU1DB48GMXFxTh9+jQiIyOhoKCAUaNGtZSo/0gkkxIcdOzYEb6+vtDQ0EBqaipmzZrV6kHm+LFo0SIwGAw6cApFRkYGfcSSk5OTSCdXUMe/vXnzhq+blJKSEqZMmQIA2LZtG1dnkJubixUrVoDNZsPS0hK9e/cW670oF1VhvCRycnJgZ2cHOzu7H2aFkR+TJ0+Gnp4eXrx4ATc3Nx7jnDpNYv369ULnqaqqijZt2qCgoEAoI+afADUBQSlrJpMpMOrz8uXLaddVLy8vnn2jX79+xaVLl+Dt7S2yHNS2rZSUFJEHiHPnzkW7du0QFRWF1atX86SPjo7GzZs36X9TR7+dO3eOaz9pdnY2Fi1a1OyrXd+Llqjz3xM5OTk66OrKlSsRGBjIYyxmZGTA29ubDsoL/O97BgUFcUXXLywsxIoVKwTGHLCzs4OFhQUKCwvh4uLCs3qelpaG48ePN8u7CQOTycTatWu5oo4nJCTgzz//BAA4OzsL5Rbdp08fmJubg81mY8WKFVzeBK9fv8b27dsB1AWc5jwS80fTb71794aZmRnYbDZWrVrFNbgNDw+Hl5eXSKdvAMDSpUvBZDJx/fp17Ny5k+tI1NraWjx8+JBrooGqW0eOHOGKjZCSkoKFCxcK9IgQRp+tWbMGUlJS2LZtG/z8/OhA2RS5ubnw9fWlj7sE6o5bPnnyJI+HyJcvX+hTg/id4CIIyv54/vy50GmEwdjYGGPHjkVRURFmzZrF461EkiRevXqFLVu2NPn4SHFtJCMjI4waNQpsNhvz5s2jPV0503p5edH/7tq1K1RUVJCbm4u///6b1k1sNhve3t64evWqwPoobjnr6upi5MiRAIC1a9dyrXanpqZi3bp1AIDRo0dzHSXcErSWLFReUVFRzZYn8OP2l+LoBSUlJTg5OQEA/vzzT7x9+5a+R8XQElQ3qYm6e/fucU1oFBYWYu3atQK3JM2fPx+qqqq4desWfv/9d544UCUlJbh9+zZ27NghwtsLRlQ7jxNqm/7+/ftRW1uL4cOHc/V9EiQxJXjQ0dHBqVOnMH36dCQlJcHFxQW+vr4/VMWxsLDAqlWrsHfvXqxbtw4HDx5E27ZtkZycjOrqapibm2PVqlUi5WliYgI9PT2kpaVh0KBB0NfXB5PJRLdu3eiJjmXLluHt27cIDw/HpEmToK+vDwUFBSQnJ4PNZqNTp070sXeikpCQgMTERDAYDKEmJaqrq2k3xuY+u7k5UVBQwNGjRzF//nwEBQUhODgYnTt3hoqKCoqLi5GRkQE2my1S8B8Gg4GRI0fiypUrcHBwgKGhIb23jvPM6H8SY8aMwV9//UWvTA8ePJjvEW5A3ZFb+/fvx8qVK3Hw4EEcOXIE+vr6kJOTQ0FBAT59+gSSJGFvby+yHKqqqujTpw8iIyMxdOhQdO3aFXJycujQoUOj8QU0NTXh5eWFJUuW4NatW7h79y4dhfrjx48oKSmBg4MDxo0bB6Buxt3S0hIxMTGYOHEi9PT0ICsri+TkZCgoKGD16tXYtm2byO/Q2rREnf/eODo60oOBlStXwt3dHbq6uiBJEjk5OfTA1N3dnU5jamoKe3t73L59G3PnzoWOjg6tl0mSxMaNG7FlyxaeZ0lJSeHAgQOYO3cu3r59i7Fjx0JXVxdt27ZFdnY2CgoKoK2tTZ9z39JMnjwZDx48wIgRI2BoaIjq6mraVdrS0lJozz4GgwEPDw/MnDkTMTExGDJkCAwNDVFRUUEPJGxsbODq6sqT7kfSbwwGA7t378a0adMQFRWFQYMGwdDQECUlJUhPT4ednR2Ki4tFGugZGRlh9+7dWLt2LU6ePAk/Pz907doV1dXVyMzMRHl5OVxdXenjKidNmoQLFy4gPT0d9vb20NfXR21tLd6/fw91dXUsWrQIf/31F89zhNFntra2+OOPP/D777/jjz/+wN69e6GnpwdpaWnk5eXREw/z5s2j8/306RNOnz6NnTt34qeffkKHDh1QVlZGnyyiqakJNzc3ocvD3t4efn5+OHbsGEJCQqCurg4Gg4F58+Y1+VSWrVu3ori4GGFhYXB0dISmpia0tLRQWVmJjIwMevJ3xowZTXoOIL6N9Oeff6KgoABRUVGYMmUKOnbsiA4dOiA3Nxf5+fkgSZJuJ0wmE25ubnB3d8fBgwdx7tw5dOzYEZmZmfj27RtcXV1x7do12j7ipCnlvGXLFqSlpSEhIQGjR4+mtx2kpKSgtrYWJiYm2Lx5c5PLUBhaQ5ZRo0YhOTkZCxcuBIvFoscEnp6eUFdXFzvfH7W/FEcvAHVtICYmBjExMXBwcEDXrl0hIyOD5ORkaGlpwcnJia8eNzAwwOTJk+Hv748lS5ZAW1sbKioqSE5ORrt27bBw4UIcPHiQJ52GhgaOHDmCxYsX49y5c/D390eXLl2gqKiIb9++ISMjA7W1tc12FKmodh4nNjY20NTUpMtuwoQJzSLTvwnJpAQfDAwM4OPjg5kzZyIuLg5z586Fj49PgxGEvzfz5s1Dt27dcPLkSbx58wafP3+Gnp4exo4dizlz5ogcJFJKSgpHjhyBp6cnoqOj8fr1a559kXJycjh27Bj8/f1x48YNJCcno6amBjo6Ohg2bBhcXFwEDiQbg/KS6NGjR4vPtH9vOnfujOvXr8Pf3x93797F+/fvkZWVBXV1dZibm6Nfv370zL+wbNiwAW3atMG9e/eQmJjYbFG2WwsdHR16gA6AJ8BlfQYNGoTbt2/D19cXjx8/RmZmJkiShKamJgYMGIDBgwdj2LBhYsni4eEBDw8PPH36FPHx8aiuroa2trZQaXv16oVbt27Bx8cHDx8+RHp6OphMJrS0tNC7d2+us8ilpaVx4sQJOoJ9ZmYmVFRUYG9vj6VLlzb5iLrWpCXq/PfG1dUVAwYMgJ+fH54/f46kpCTIy8tDS0sLffv2xfDhw3kM+d27d8PAwADXr19HTk4OysrKMGDAACxcuLDBoFiampq4dOkSzp07hzt37uD9+/fIzc2FhoYGrK2tMX78+BZ+2/+hoqKCS5cuYf/+/QgLC8OXL1+go6ODcePGYf78+SIFE9PR0cHVq1dx4sQJhISEICUlBTIyMjA3N4eDgwMcHR35Bmv+0fRbly5dcOXKFezfvx+PHj1CcnIyOnXqhJUrV8LFxQWzZ88WOU97e3sYGRnBx8cH4eHhSElJgYKCAnR1dWFra8s1Oa+kpIRz587B09MTYWFhSE1Nhbq6OiZPnoylS5fi0aNHAp8jjD5zdHSElZUVfH19ERkZiQ8fPkBaWhqampoYPnw4hgwZAjs7O/r3Tk5OUFFRQWRkJDIyMpCQkAAZGRno6+tj0KBBmDNnjkhB4Hr27AkPDw/4+voiJSWFPgKxOaLSKygo4PDhwwgKCsK1a9fw5s0bvH37Fu3atYO+vj569OiBESNGNEuwOXFtJCUlJZw8eRLXrl3DjRs3kJiYiIKCAqirq2PgwIE8Lt7Ozs5o164djh8/juTkZFRVVYEgCEybNg329vYCt/41pZzbt2+P8+fP4/Tp07h9+za9x58gCIwePRozZsxo8UCDrSnL/PnzUVtbi8DAQKSkpNCeA82xKPaj9pei6gWgrr2dOnUKR44cQUBAANLT06GqqoqJEyfCzc1N4DZGoG6ySVtbG1evXkVWVhaqqqowZswYrFixosGtlN27d8etW7dw9uxZ3L9/H2lpaWCz2dDQ0EDv3r0xcOBAeptHcyCKnceJtLQ0HBwccPjwYWhra4vtVf5vhkGKc2aYBAkSJEiQIOFfw8GDB+Hl5QVXV1eR4hxJkCBBggQJwvBf72fWr1+Pq1ev/mffvzEkMSUkSJAgQYIECRIkSJAgQYKEFqCkpAR3796FlJRUs3iB/RuRTEpIkCBBggQJEiRIkCBBggQJLYC3tzfKysowcOBAOgixBG4kMSUkSJAgQYIECRIkSJAgQYKEZiIhIQHbt29HXl4e0tLS6EC1EvgjmZSQIEGCBAkSJEiQIEGCBAkSmomioiJERUVBVlYWJiYmcHNzQ7du3VpbrB8WSaBLCRIkSJAgQYIECRIkSJAgQUKrIIkpIUGCBAkSJEiQIEGCBAkSJEhoFSSTEhIkSJAgQYIECRIkSJAgQYKEVkEyKSFBggQJEiRIkCBBggQJEiRIaBUkkxISJEiQIEFCM/Hs2TOwWCxMnz69tUWR0AAHDx4Ei8XCwYMHW1sUCa0Ii8UCi8VqbTEAANOnTweLxcKzZ89aWxSRuXr1KlgsFtatW/fdnnnnzh1MnDgRFhYWYLFY6NmzZ7Pku27dOrBYLFy9erVZ8vueiCt7c/dbzZ1fa9SvH4Hq6mp4e3tj+PDhMDU1BYvFwuLFi1tbrBbjX3X6RmZmJoYOHQoAePToETQ1NXl+ExUVRTeSpUuXwtXVlW9ew4cPR3p6Ov788084Ojq2nNAiUlFRgcePH+P169d4/fo14uLiUFJSAm1tbdy/f1/ofJYsWYLQ0FDcvHkTLBYLOTk5CA4ORnh4ON69e4fPnz9DVlYWenp6GDp0KGbMmAElJSW+ednZ2SErK0vgs8zNzXHx4sUG5YmKisK5c+fw8uVLfPnyBW3btoWuri569+6NpUuXQkbmx6yqVVVVOHnyJAICApCZmQl5eXmYmppizpw56N+/v9j5vn79GseOHcOLFy9QXFyMn376CcOGDcPChQsFfgcAKCkpweHDhxEcHIzs7GwoKyvDysoK8+fPh5mZGd80/v7+ePnyJd6+fYvPnz+jqKgIbdq0QdeuXTFq1ChMnjwZsrKyAt///PnzCAgIwPv37wEAurq6GDt2LGbMmCEwHZW2KWUXGhqKy5cvIy4uDoWFhVBRUYG+vj4GDhyIuXPnNpr+R6CyshJjxoxBRkYGAODevXuNnl+9fft2+Pr64tChQ7Czs8OzZ88wY8YMAED79u0RGhoqsI5QxrcwzxGGjx8/YsiQIQAAJpOJoKAgaGtr8/0tpSdOnz6N3r17N/nZoaGhSEhIwNChQ2FkZNTk/ITl1KlTKC4uxsyZM9G2bdvv9lxBfPz4EdeuXYO2tjYmTJjQ2uI0O1evXsX69esb7OPu3buH5cuXg81mY9q0adi4cSMYDMZ3llTCj0Zr6QgJLc/jx4/poxUNDAzQrl07tGnTptF0/3Z9KeHfxf79+3H06FHIysrC0NAQ8vLy6Nq1a2uL1WL8mCM9MdHR0YGWlhZycnLw4sUL2Nvb8/wmOjqa/v8XL17wzSc/Px/p6ekA0Gwzr81FamqqwIkUYamqqkJ4eDi0tbXpQcrkyZORk5MDoG5gQxAEvn79irdv3yI+Ph5XrlyBr69vgwMZU1NTvoNQQ0NDgWlIksT27dtx+vRpAICGhga6deuGb9++IT4+HjExMZg/f/4POSlRXl6OmTNn4tWrV5CRkYGhoSGKiorw5MkTPH36FOvWrcOsWbNEzvf27dtYs2YNqquroa6uDkNDQ6SkpODYsWMICQnB+fPnoaqqypOuoKAAzs7OSE9Ph5ycHAwNDZGXl4fg4GDcv38fnp6eGDFiBE+6PXv2oLi4GIqKitDQ0EDHjh3pNvTixQtcu3YNJ0+eRLt27bjSlZaWwsXFBTExMWAwGOjSpQtkZWWRnJyMPXv2ICQkBKdOnYKCgkKzll1VVRVWr16NoKAgAIC2tja6deuGL1++4OXLl0hKSvrHTEr8/fff9ISEsISFhUFeXh79+vXjuff161ecPn26VWbS2Ww2vL29sW3btu/yvNDQUNq4/J4DjtOnTyMrKwsODg4/xKREVlYWvLy80KtXr/+kkR0cHIyVK1eCzWZjzpw5WLt2rVDp2rdvD319fbRv376FJZTQWrSWjpDQ8ly4cAEAsH79epHsrH+7vlRXV4e+vj6UlZVbWxQJTYQkSfj7+4PBYMDf3x/GxsatLVKL8+ON9JpIz549cevWLTx//pzvpAQ1EdGpUyfExsaiurqaZ8BLTVx06NAB+vr6LS+0CMjIyMDCwgJmZmYwMzNDdXU1fvvtN5HyiIiIQFlZGZdClpOTw9SpU+Ho6MjVeb9+/RqrVq1CRkYGVqxYgUuXLgnMd//+/SKvvh44cACnT5+Gvr4+tm3bBisrK/peRUUFnj592uBqe2uyZ88evHr1Cp07d8bx48ehq6sLoG5l77fffsOuXbvQs2dPmJqaCp1ndnY21q9fj+rqari5uWHBggWQkpJCQUEBFi1ahFevXmHjxo3w9vbmSfvbb78hPT0d5ubmOHToENTU1FBbW4vDhw9j//79WLt2LSwsLHg8iFxdXWFlZQVTU1Ou1cWHDx9i5cqViI+Ph4eHB/744w+udNu3b0dMTAw0NDRw9OhRut7k5ORg8eLFiI2NxY4dO3jSNbXsNm7ciKCgIFhaWuKPP/4AQRD0vZKSEkRFRQld3q1JUlISfHx8MGTIENy7d0+oNO/fv0d6ejoGDx4MeXl5rnvS0tKoqanByZMnMW3atO8+YJaWlsb169exYMEC+ntKkNCScE7gLly4ECtWrBA67bRp0zBt2rQWlE6CBAktRWpqKgDA1ta2lSX5sVi1ahVWrVrV2mJIaAa+fPmCb9++QU1N7T8xIQH8C2NKUJ4NnB4RFDU1NYiJiUGXLl0wePBglJWV4e3btzy/oyYufjQvCaDO68Df3x8bN27Ezz//LJYL9oMHDwAAgwcPpq/5+/tj8+bNPKsJ3bt3x549ewDUTVAkJCQ0QXpukpOTcfToUbRr1w6+vr5cExIAIC8vjyFDhoDJZDbbM5uL/Px8ekvK9u3buQZhEyZMgIODA2pra3Ho0CGR8j1+/DgqKirQp08fLFq0CFJSdU1UTU0NHh4ekJaWxr1793i+Q1xcHMLCwiAtLQ0PDw+oqakBAKSkpLB48WL07t0b5eXlOHHiBM8zZ82aBTMzMx5354EDB9Ir7qGhoVz3vn79iuvXrwOoW6ngrDdaWlrYuXMnpKSkcPnyZZ6tPU0puydPnuDGjRvQ0dGBj48P14QEACgpKcHOzo4n3Y9GbW0tNm3aBBkZGWzYsEHodJT7OmfbpdDS0oK1tTWKiopw8uTJZpNVWMaMGYPq6mp4eXl992dL+O9x48YNrF69GtXV1Vi6dKlIExISJEj4Z1NRUQGgbkFNgoR/I1Qdr78A9W/mX+cpYW1tDaBuwEvtM6d4+/YtSktL0bNnT1hZWeHMmTN4/vw5unfvzpXH8+fPufL6txEWFgZFRUX06tWLvtaQC6uFhQWUlZVRXFyM1NTUZnODPHv2LKqrqzFlyhS+8T9+ZO7fvw82mw19fX2+k1eTJk3C1atX8ejRI5SWlgq115EkSQQHB9Pp66Ojo4O+ffviyZMnuHv3Ltd3oNL17dsXOjo6fOV59uwZgoKCRPKsoTyFysvLua6/fv0a1dXVkJKSouO4cEIQBLp06YKUlBQEBwdj9uzZ9L2mlN2pU6cAAAsWLICioqLQ7/Gjcf78ecTGxmL16tUCYzDw48GDB2AwGBg0aBDf+8uXL8e0adPg6+uLGTNmfFfXdFdXVwQGBiIgIAALFiyAgYGBSOkfP36MM2fO4PXr1ygpKUGHDh3Qt29fzJ8/n8tjjTOOBVA3KbZ+/XouOZYuXUr/u6amBlevXsWNGzeQmJiIiooKaGlpwc7ODgsWLOC7FYofVGwDCk4ZAPCNlUGSJM6dOwd/f3+kpaVBUVER/fr1w6pVq/h+91evXiE4OBiRkZHIycnBt2/f0L59e/To0QMuLi48fdX06dNpz6CoqCiugH2ixhkSRHh4OO7du4cXL14gOzsbpaWlUFdXR58+fTBv3jx06dKFb7qbN2/i0qVLSExMRGlpKdq2bYsOHTrA2toazs7ODW7ra4wrV65g48aNqK2txapVqzB//nyR8zh48CC8vLx46gv1nR0cHPDHH3/g+PHjuHHjBj59+oR27drBzs4OK1asENi2iouLcebMGYSGhiI9PR3V1dXQ0tKCubk5Jk6cyNXvUnFW7t27h0+fPuH48eN4/fo1CgsL4eXlRevWiooKnDt3Drdv30ZqairYbDZ0dHQwatQozJ49m2//8j2/W0REBM6ePYvY2Fh8+/YNKioq6NWrFxYsWMA3iGRhYSGOHTuGBw8e4OPHjwAAVVVV6OjowMbGBrNnz26Sh6SoOoLiyZMnOHLkCN6+fYva2lqYmppi2bJlDdqCd+/exaVLlxAfH0/rLVtbWyxYsKBZ4vZwEhcXh5MnTyI6OhoFBQVo06YNLC0tMXfuXK6+tLa2FoMGDUJubi78/PwELrCdPn0a27Ztw4ABA3Ds2DGue3l5eThx4gQePnyI7OxsSEtLgyAITJo0CQ4ODs0asyU3NxdHjhzBo0ePkJubCwUFBRgZGWHy5Mk8Hs/1Y5hxfucdO3Y0uCVDHH2Zn5+PAwcOICwsDF+/fqVjUcydOxfS0tJ8n5OWloYTJ04gPDwceXl5kJeXh4mJCaZPn87TbwiDKG1y3bp1uHbtmsCyuH79Os6cOYOUlBTIy8ujR48efNtCfYqKinDq1CmEhoYiMzMTJEmiS5cuGDduHKZOnSry4qEo37w+ZWVl8PLyQlBQEPLy8qCmpobhw4fD1dVVoIeoODo0JiYGJ0+exMuXL/H161coKipCVVUVpqamGDduHAYOHCjSO79+/RrHjx/Hy5cv6fGplZUV5s6dyxXzrb7+ysrK4qqrzRUT7EfkXzcp0bVrV6iqqtL7yzlXTSkPCCsrKy6PChcXF/o3xcXFSEpKAvBjeko0lYSEBGRnZ2PEiBFCd/o1NTWorq4G0PCMnbe3N/Ly8lBTU4OOHTvCxsYGI0aMEKi4OT02EhMTcenSJXz48AGysrIwNjbGL7/8ItKA7XsSGxsLADzeHRRmZmaQlZVFVVUVEhIShKpL2dnZyMvLazDfHj164MmTJ3j16pVI8lDXc3JykJOTAy0trUblAYCXL18CAExMTLiuf/v2DUCdISmoHmlpaSElJQUxMTFckxLill1FRQUiIiIA1NWZly9f4tq1a8jMzISioiIsLCwwceJEoQeZrUVubi48PT1haGgo0l7Yr1+/IjY2FsbGxgIn8aytrdGvXz+Eh4fjxIkTWL16dTNJ3Ti6urpwcHDApUuX4OXlhX379gmddv/+/fSWJHV1dbBYLKSlpeHq1au4ffs2Dh48iAEDBgCoWxnr0aMH0tPTUVBQAD09Pa5v3rFjR/r/S0pKsHjxYjx79gwMBgNaWlro2LEj0tPTcerUKQQFBeHMmTN8J/Lqo6amhh49eiAuLg5VVVU8MXT47eFds2YNAgICoKurCz09PXz48AGBgYGIjo7GjRs3eAa2q1evRkZGBlRUVKCurg4NDQ18+vQJd+/eRWhoKE9cGIIgUFhYiKSkJCgpKXF5Dqmrqzf6TsIwd+5c1NTUQFVVla53WVlZuHr1Ku7evYvjx4/ztOXdu3fTXlnq6urQ0dFBSUkJMjIykJSUBG1tbbEnJS5cuAB3d3eQJCnyfnJRYLPZcHFxwfPnz6Gvrw9dXV2kpqbC398fsbGxuHz5Mo/uS0lJwbx58/Dp0ycwGAzo6elBUVERHz9+xI0bN5CdnY0zZ87wPOv27dvYt28flJSUoKuryxWHJy8vDy4uLkhKSoK0tDQ6duwIRUVFpKam4uDBgwgKCsLp06d56tL3+m67du2Cj48PgLrFDUNDQ2RlZSEwMBAhISE4cOAAl2dXSUkJJk2ahPT0dEhJSaFz585o06YN8vLyEB0djaioKDg6OjZJj4uiIyj8/f2xZcsWqKqqonPnzkhPT0dUVBRmz56NU6dO8fTh1dXV+PXXXxEYGEiXl6GhIdLT03Hx4kXcvXsXJ06c4JlIFJczZ85g+/btqK2thbKyMrp27Yq8vDw8ePAAYWFhcHd3h5OTE4A6D8nRo0fDx8cHAQEBAu2PW7duAQDGjh3LdT06OhqLFy/Gt2/fICcnB11dXZSXlyM2NhYxMTEIDw/Hnj17mmVi4s2bN5g7dy4KCwvpWFiFhYWIjIxEZGQknjx5gu3bt9O/NzU1haamJl89THmICkJUffnp0yc4ODigsLAQhoaGkJGRQVpaGjw9PZGVlcV3a2pQUBBWr16NqqoqKCoqQl9fH4WFhYiIiEBERITI28yaU5fu3LmT9qLU0tKCmpoaIiMj8fTp0wbjUL1//x4uLi7Izs4Gk8mEtrY2GAwG3r17h/j4eDx48ADHjh0Tekwh6jfnpKqqCtOnT0dcXBwMDAygr6+P5ORk+Pr64vHjx/Dz8+PRHeLo0Pv378PV1RU1NTVQUlJC165dUVtbi5ycHNy6dQslJSUiTUpcunQJmzdvRm1tLVRUVMBisZCVlYW7d+8iJCQEW7duxS+//ALgf/qrqqoKcXFxkJWV5drK/K/2DiL/hSxZsoQkCILcuXMn3+sZGRkkSZLkkCFDyF69epG1tbX0b8LCwkiCIEhra2uu640RHx9POjk5ify3dOnSJr1rZGQkSRAEOXjwYKF+7+XlRRIEQV65ckXoZ4SEhJAEQZDGxsZkQUEBz/3BgweTBEHw/RszZgyZnp7OkyYvL4/+zalTp0gTExOetKampmRAQIDQclKI8x2cnJzIvLw8kZ5BEAR5+PBhgb8ZPnw4SRAEeenSJaHyfPr0Kf3egurezZs3SYIgyIEDB3Jdt7W1JQmCEFhetbW1dBmHh4c3KEdVVRWZkZFB/v3336SRkRFpYWFBvnz5kus39+/fJwmCII2MjMjKykq++djb29N1gBNxyy4mJoYkCILs1asXefDgQZLFYvHUmZ49e5IRERENvl998vLyxK4z4uDq6koSBEFGRUXR1yj5MzMzBaa7du0aSRAEeeDAAa7r9XUAVU4WFhbk58+fuX4rzHNEITMzk86TJEkyKyuLNDExIVksFvnu3Tuu31J6IjIykus6pXONjIzIixcv0nW/oqKC3LRpE62P8/PzudKtXbu2UV22atUqkiAI0tnZmUxJSaGvl5WV0XlPmjRJpHem3kNQGVLfw8TEhOzfvz/54sUL+l5OTg45ZswYkiAI0sPDgyfttWvXyLS0NK5rNTU1ZHBwMGlhYUH27NmTLCkp4fu8adOmifQewnL+/HkyOzub61pVVRV54cIF0tjYmBw+fDiXviooKCCNjIxIY2NjMiQkhCtddXU1GRYWxlMHGuLKlSt0/T5z5gzJYrFIFotFnj17tknvdeDAAb7tiXqeiYkJOWLECDI5OZm+l5ycTNrY2JAEQZAXLlzgSldSUkLa2dmRBEGQM2bMoO0Mivj4eNLPz4/rGlWXjIyMyH379pFVVVX0vYqKCrK2tpacMmUKSRAEuXjxYq7v8OXLF3LRokUkQRDkihUreN7ve3y3ixcvkgRBkAMGDCAfPnzI83wjIyPSysqKSw/5+PiQBEGQ48aN45GvoKCA9PX15anj4iKMjqD0V/fu3Ul/f3+6TCorK8kVK1aQBEGQkydP5knn6elJEgRBjh49moyNjaWvs9ls8uDBg3SdFdQ/8mPatGl8deSTJ09IFotFWllZkTdv3uT6bsHBwaSlpSVpYmJCJiYm0tfj4+Pp/pKzXlFkZGSQBEGQ5ubmZGlpKX09Ly+P7N27N0kQBPnXX3+RZWVl9L13796RI0eOJAmCIM+fP8+VH9Vu1q5dK/T7lpWV0W1g0aJFZGFhIX3v/v37pLm5Od+2RpKN62FBCKMvqXpjYmJCLl68mPzy5Qt9Lzg4mOzWrRtJEAT5/v17rnSJiYmkmZkZaWJiQp45c4Zks9n0vaioKLJ///4kQRDko0ePhJJVnDYpqM5T/ayxsTF57do1+npxcTG5dOlS2j6sXy5lZWW0PbZp0yby69ev9L2PHz+SkydPJgmCIPfu3cuVTlA5i/vNOfWyra0tGR8fT99LT0+n7U03NzeudOLqUKqf9vT05GnDb968Ia9fv04KS0JCAl2+Xl5edL2orq6mdUX99kuS/7OvhB3f/Rv418WUAP7n4VD/dI0XL15AU1OTXhXr2bMnCgsLkZycTP+GikXRo0cPkWaBi4uL8fLlS5H/4uLimvq6IvHgwQNISUkJdP+uT0lJCXbt2gUA+OWXX/iuXlhaWmL79u24e/cuXr9+jYiICOzatQsaGhpISkrCnDlzUFxczJUmPz8fAMBgMLB79246VsabN28QEhKCMWPGoKqqCuvWreMb96MhxPkOL1++RGVlpdDPKCoqAoAGgwlS96jfNgblfdC2bVuBdY/Kk/qtsPIwGIxG5dmwYQNYLBZMTU0xdOhQ7N+/H0OGDMGFCxdgaWnJ9VsqKGZNTQ3fII3Jycl0IKr6zxO37Kg6U1JSgoMHD6Jv374ICAjAmzdvEBAQgH79+qGoqAhLly6lT5IRhsrKSrHrjKjcu3cPwcHBmDBhgsjbw/jFguGHhYUFBg0ahLKyMhw9elRkGZvCTz/9hEmTJoEkSRw8eFCoNJSMjo6OcHR0pOu+nJwc3N3d0aVLF3z79g3nz58XSZakpCQEBARAU1MThw4d4tpOoqCgAHd3d5iamiI2Nlasb9kYbDYbGzZsQI8ePehrmpqaWL58OYC6QLL1GT9+PDp37sx1TUpKCsOGDcPMmTNRVFSEsLCwZpe1IZycnHg8q5hMJu1mm5aWxuW5lZGRgZqaGhAEwbO1S1paGgMHDhTrSNjc3Fxs3boVJEnijz/+wNSpU8V7ISGprq7G7t27uY5f69q1K32yT/3vd/HiRXz8+BF6eno4cuQIj/eNsbExpkyZwvdZtra2cHNz43KBlpOTQ1hYGKKjo2FkZIR9+/ZxfYf27dtj79690NLSwp07d5Cdnc2VZ0t/Nzabjf3794PBYODAgQO0JxPn86dPn47i4mKuANlUv/DLL7/wyKeqqooZM2YItd2xuZkwYQImTZpE6x9ZWVls2LABTCYTMTExXH3uly9fcPLkSSgqKuLQoUMwNzen78nIyMDV1RXDhg1DVlYWfUpUU/Dw8ABJkti6dSvGjh3LZR8MGzYMbm5uYLPZXF44xsbGMDAwQGFhIZ4+fcqTZ0BAAIC67Q+cWyF9fHzw9etXTJkyBcuXL+fy2mGxWPD09ASDwWiWuEWBgYHIysqCiooK9u7dy3XC1+DBg7Fo0SIAwJEjR0CSZJOfJyrt2rXD7t27uVbQhw0bRntgP3r0iOv3Xl5eqKyshJubG6ZNm8YVRN/a2hq///47AAhdds2pS48fPw6g7qS98ePH09eVlJSwe/dugceIX7lyBWlpaRg4cCD++OMPri3x2tra2L9/PxQVFeHn5yeUDd3Ub85ms7Fp0yauwI+6urrYsWMHAODOnTvIzMyk74mrQ9PS0gAA8+bN4/EAMTU1xc8//9zou1L4+PiAzWbD1tYWS5YsoeuFtLQ0XF1dYWNjAzabTXuc/Zf5V05KUMZ+fHw8ysrKANS5H3358oXLjY1yXaRiSAD/m5Tg3PcpDL1790ZiYqLIf82x51dY8vPzERcXB3Nzc6FcI0mSxNq1a5GRkYGffvpJoCu4h4cHfvnlF+jr60NOTg6qqqoYP348zp8/j7Zt2yIzM5M+8pOC+i4kSYLJZOLo0aOwsLCArKwsdHV1sXfvXpiYmIDNZuPw4cMivac43yExMVGkPVqU8m1oHx2lyKhgNc2ZZ33l3xzydO7cGT169ICJiQnd8URGRuL27duora3l+q26ujqGDx8O4H+ncFBkZmZizZo1qKmp4fs8cWWl6kx1dTU0NDRw+PBhEAQBWVlZEASBQ4cOQUNDA0VFRfD19RWYd306deokdp0RhdLSUrpTX7NmjUhp2Ww2njx5Ag0NDZ6tNPxYtmwZGAwGzp8/j9zcXJGe1VQWLFgAOTk5hISEID4+vsHflpaW0hMCM2bM4LkvJSVFn5Dw+PFjkeSg4qyMHDmS5zhbKm9qgufZs2ci5S0M7dq1w6hRo3iuUwMYQUfBpqen4++//8ayZcswffp0ODs7w9nZGXfu3AGAZg02LCwJCQnYt28fFi9ezCUT1XdyykS5xqelpeHdu3fNJgOngVp/AN4SdOvWja/rPfX9OA1fAAgJCQFQt29d1MBkDg4OfK9TddjBwYGvazQVo6S2tpbLjqFoye8WGxuL/Px8dOvWjWtQzgk1kOJsX9RzHj58yBOrqDWZPHkyzzU1NTXaLuD83o8ePUJlZSX69esncOsXv3cXh+zsbMTHx0NFRYXvkd4NPWvMmDEA/jcBwQm17aT+1g2qzvErDwAwMjKCtrY20tLSmty3UDrd0dGRb4yoKVOmgMlkIisrCx8+fGjSs8Rh9OjRfCfI+OmAqqoqhIWFQUpKCo6OjnzzGzhwIJhMJqKjo+kt0Q3RXLq0rKyMXqTld+KQvLw8Jk6cyDdtQ3HOgLqJdjMzM5SWlgq1yNrUb66pqck3Lkf37t1hbm4OkiS5JuHE1aFU2VP9blN48uQJAP42Dud1UW2cfyP/upgSQJ0xoaSkhJKSErx69Qp9+/alJxs491BSK1gvXrzA1KlTUVlZiTdv3gD4d8aTCAsLA0mSja60Uvz5558IDQ1F27ZtcejQIZGPGOzUqROcnZ1x5MgRhISEYMmSJfQ9zj1Ro0eP5tnPx2AwMGPGDKxduxZPnjxBbW0tfRLFjwAlP5vNFvibqqoqAMJHzhUlz/p7yuTk5FBeXt4keebPn88VMO7hw4dwd3fH4cOHUVhYSM/yU2zZsgVJSUlITU2Fk5MTtLW1IScnh7S0NDAYDIwdOxYBAQE8nbq4Zcf5zs7OzjxlIC8vDycnJxw4cACPHz/G2rVrBebfGuzbtw85OTnYunWryPulnz9/jpKSEowePVooDy4TExMMHToUISEhOHLkCDZv3iyu2CKjqakJZ2dnnDp1CgcOHMCRI0cE/jYjIwO1tbWQkZERePwytV+WWrkQFio20IMHD2i9Xp+CggIAEMmzRlgEDVaofc/UJBsnPj4+8PDwaNBgLSwsbBb5hGX79u2NTvJxyqSpqQl7e3vcvn0bDg4O6NGjB3r37g0rKytYWVmJHUlcS0sLTk5O8PDwgLe3NxQUFMQKcCksgo61pb5faWkp1/X3798DqPNUEhVBQWGpOnzp0iXcvXuX728+ffoEgLcOt/R3o2TLycmBs7Mz3/ypCWhO2X755RecPHkST548ga2tLWxtbdGzZ09YW1vznKb0PWnoe6empnK1V2pCOi4uTuC7U96hTdUt1LPYbLZA7yBqwq7+s8aOHYv9+/fj/v37KCsroweBb9++RUpKCtq3b4/+/fvTvy8rK6MDj7q7uwvsa75+/Uo/rylByimdzumNxImysjI0NDSQlZWFtLQ0kYMnN5X6XmsUVP/NWSfS09NRWVkJJpOJhQsXNphvZWUlCgsL0aFDhwZ/11y6ND09HTU1NWAymdDT0+P7G0HfgGrn3t7efE9vA/73HYWZpGrqN9fX1xc4FjAwMMCrV69obyxO+UXVobNnz4a7uzs2btwIHx8f2NjY0OUviv1WVFRE2xmC3pm6/vnzZ5SUlAj0Wvkv8K+clJCWloalpSUeP36M58+fC5yUMDAwQPv27enZsVevXoHNZkNRUfFfeSZsQ8cJ1mffvn04e/YsFBUVceTIEXTr1k2sZ1IGWnp6Otd1zpVLQR0Ndb20tBSFhYU/VABDYbZmCLNNgROqTIqKikCSJF+DgMqz/spv27ZtUV5eLlAekiRFlmfgwIH466+/MGnSJFy8eBHz58/nCjyqpqaGy5cvw8fHB0FBQcjMzISsrCztovby5UsEBARAQ0ODR1bOd+EHP1lFqTOUYfWj8PbtW/j5+cHCwkLgKkpDiNJ2KZYtW4Z79+7h4sWLmDt3Ln766SeRnysuCxYswMWLFxEWFobY2FiBAzVqYNe+fXuBhoagQWBjUIOCjIwMgV4JFKJs3RIWQafDCHrPFy9eYNeuXZCWloabmxuGDBkCbW1tKCoqgsFg4PLly9iwYYNQK2zNxc2bN+Hr6wsFBQWsXr0a/fv3h5aWFuTl5cFgMOgApfVl2rVrF7p27YrLly8jOjqa7n/btGkDJycnLF++XKxgXfPnz0dFRQX+/vtveHh4QEFBAdOnT2+Wd62PoO8naKBWUlICQHj9ygmnizwnVB3m3GIqCM46/D2+G6Wjv379Sg9ShZFNQ0MD/v7+2L9/Px48eIDbt2/j9u3bAOr096pVq8Q6oaCpNNZeOT11OCccGpt0aKpuocqZ06tM2Gfp6OjA0tISMTExuHfvHu0VQXlOjBo1istjkXObLaf3oyCE9QIVBDWobyhAZYcOHZCVlSWy/m8OBLVLfnWC+k5sNluo7YDCll1z6FKq7FRUVBrtZ+tD1YnGvB4B4d6pqd+8sXQAt60grg51dnaGsrIyfHx8EB8fjw8fPuD06dOQkZHBkCFD8NtvvwkVMJ5z4krQJBTn9dLSUsmkxL8Ra2trPH78mG7AL168QNu2bXlm4nv06IF79+4hMzOTK54E514wYXj79i22bt0qspzq6uo4cOCAyOlEpbKyEhEREdDW1m50NeLo0aM4fPgwZGVl8ffff3PtiRYVqhwpV34KalWdmlnmB6erVf30DSFo5aIxDhw4IHTEej09Pbx8+VLgYIfNZtOzr4JmpvnlCdR5CeTm5vJVeNTz6uepp6eH3NxcgfLk5OTQngmCVqT5YW5uDhUVFRQWFiIhIYHnNBQlJSUsW7YMy5Yt40lLrdLV324gbtlxHmHXWJ0Rpb7k5+fzlV8YhI1z8O7dO9TW1iI5ORk2NjYCfzdx4kRIS0tj0qRJdOwBoG61X15eHn379hVaNoIgMGrUKAQGBsLb2xt//vmn0GmbiqqqKqZNm4ajR49i//79AvfQUl40X79+FegNRa0yiLrPnBpkuLu7i60Tvic3btwAULdCQ+2r5aR+HJnvASXTr7/+yjcegiCZZGVlsWTJEixZsgRpaWl48eIFHj9+jNDQUJw4cQIlJSV8I9cLw7Jly1BRUYETJ05g27ZtkJeXF2uir7lRUlJCYWGh0DGEhIGqw8eOHeOJ2dAQ3+O7UbLZ29uLdNIOUNcH/fXXX6iqqsLr168RHR2NoKAgvH37Fq6urvDz82uS3dHSUO8+b968Fj/hiHqWubk5Ll68KHL6sWPHIiYmBrdu3cLYsWNBkiQ9CVR/6wbnxMyrV6/E9moSFup5lI7nx+fPnwGIrv+/N5R8HTp04BvDQ1yaQ5dSshUWFjbaz9ZHUVERRUVFuH37drN4qjT1m3/58kWkdOLqUKBu+9OYMWPw5csXPH/+HM+ePUNgYCCCgoKQlpbG9wSm+nC2qc+fP/NdHKLkri/7f5Efxx++maG2X7x69QoZGRnIyspCjx49eBoj9bvnz5/Te67E2brxowe6jIiIQHl5eaMrrWfOnIGHhwdkZGTw119/oV+/fk16bkpKCgDwDLClpaXp/br19+ZSUNdlZWUFngnPj+8R6JLaU1g/mCoFdVyVrKwsjIyMhMqzY8eO9KSIoHypGfj6e3gbk4e6rqmpKfRxoBRUPIn6cSUaory8nA4Ex3ksrzCyCio7TU1NWqE3VmdEecfvGeiytLQUnz9/5vmj+Pr1K+3CR5GcnIyPHz+ib9++IhuJS5cuhbS0NK5du9aot0Bz4+LiAiUlJYSHh/Pd7w7UuUxLSUmhurqay+WSE2qFo/5EXGPbWCiXSGFWSH4EsrKyAAg+Krf+McAUzXEsnyAojyNRZeJET08Pv/zyC/766y/8/fffAICrV682yePj119/xbRp00CSJDZv3oybN2+KnVdzQdU36sjj5sxT1Dr8Pb4bta2qKe1LVlYWPXv2xMKFC3Ht2jWMGjUKtbW1uHz5sth5ctJSbaM53l3UZ3348EGsNjNq1CjIyMjg6dOn+Pr1K54/f46cnBxoa2vzBLBWVlamt2N8j3ejdLqgZxUXF9PHpAu7uNMYLVUnOnfuDCaTiYKCggYH3E1BXF2qq6sLaWlpsNlsgdsgqe1n9WnufrSp3zw1NVWgLUrFoOBM1xzyq6qqYsSIEdi8eTMCAgKgrKyMxMREvH79utG0bdu2pb07BMlAjZM6dOjwn/aSAP7FkxJmZmaQl5dHRUUFTp06BYB/B01de/bsGe2uJmpUfODHD3QpjPv3lStXsG3bNkhJSWH37t1NdqEsLy/HhQsXAIDvCi8VBO727dt8JwSuXr0KoO57iOK58j0CXdrZ2UFGRgapqam0hw0n1IqGra2t0DOfDAaDDh7Jb0UkMzMTERERAMAT8IpKFxkZyXfATkU/FxQoSxCRkZH0yp+wkysAcPjwYZSUlIAgCJ6JraaU3ciRIwEA169f5/tc6nqfPn2ElvV7BLqcMGGCUPncu3cPiYmJ2LBhA31N2FM3+KGvr49x48ahurqaNmK+FyoqKpg1axYAYP/+/Xx/06ZNG3pFtH4wXKDOPdbPzw9AXX3ghHJZFeQyStX1gICAZjUSqYmh5t7yQb0P5yQVRUZGBl0PBMnTVFfqhvLmJ1N0dLTIk+rUt2az2U2OjbFx40ZMnDgRtbW1WLduHR3QrLUYNmwYgLqJ/eaqG1Qd9vf3Fyko5Pf4blZWVlBTU0NycjIdyK2pUINkalDSVBrTEeIyaNAgyMrK4smTJ/SAoqXo3LkzWCwWiouLceXKFZHTq6qqol+/fmCz2bhz5w69daP+KR4UlC1B2c0tCaXTL1++zDfGzvnz58Fms9GpUycuT8mm0FL6UkFBAba2tiBJUqRA2+Iiii7l7GfPnTvHc7+yslLgRCClg06fPi3SwpQgmvrNc3Jy+I6b4uLiEBsbCwaDweWNKq4OFYSGhgY9VhBWT1HycJ6Owwll+9S3cf6L/GsnJWRlZemVeKqx8ZuUMDY2hoKCAu7cuYPS0lLIycnxjbj9TycsLAxt2rQReKpIUFAQNm3aBKAuwOXo0aOFytfHxwfnzp3jcVnNzMzE/PnzkZ6eDgUFBbi4uPCknThxIrS1tZGfn48tW7bQnQQ1ELl37x4YDAbmzZsnyqt+FzQ0NOhoxb/99hvXKvTVq1dx7do1MBgMvm7Yu3btgp2dHVasWMFzz8XFBXJycoiMjMShQ4foTqCgoACrVq1CTU0NBg8ezBPzxMzMDLa2tqiursbq1avpQVhtbS28vb0RGRkJeXl5nu9w584dnD17lmfQVltbi3v37mHlypUA6gbE9QP3JSYmIjQ0lCtgZXl5Of7++28cOXIETCYTW7du5TF8mlJ2c+fOhZKSEt6+fQtPT096haC6uhqenp54+/YtZGVl6cHwv4H79++DwWAIfYxvfZYsWQImk8k3AjtFbGws7OzsYGdn16xBH2fNmgUVFRV6dY4fVLDCS5cu4fLly/Q+3crKSri7u+P9+/do164dzxYMqj5GR0fzPTrM2NgYY8eORVFREWbNmsWzqkGSJF69eoUtW7YI9LzhB/XcqKgoodMIA+Whd+TIEa42kZKSgoULFwpc4aMMpJSUlAZdW1ksFlgsFj3ZK4pM+/bt4xrgvnz5Em5ubnz3MkdERGDnzp08k3aVlZXw9vYGUOcV1tDeYGFgMBjYunUrxowZg5qaGqxcufK7H5fKiaOjI3R0dJCWloZFixbRni8UCQkJfAcEDTF06FBYWVkhPT0d8+bN41nNrK6uRmRkJFatWkUHBwa+z3eTk5Oj+7CVK1ciMDCQZ9CSkZEBb29vrgkjT09P+Pv78wykPn78SE+e19/yd/DgQbBYLB6vu8ZoTEeIi7q6OubMmYPq6mrMnTuX76RMYmIi9uzZI9AjUBTWrFkDKSkpbNu2DX5+flzfGqgLMOjr6ytwOyG1TeP69ev0t6i/dYNi/vz5UFVVxa1bt/D777/zxAspKSnB7du36SMYm8KYMWOgra2NwsJCrFmzhsuOfPjwIQ4dOkTL1FweDsLqS3FYvnw55OXlcezYMXh5efHERPj69SsuXbpEt6fGaE5dSh1lfOHCBS5boKSkBGvXruWKJ8LJ5MmToaenhxcvXsDNzY3n5CPq1JH169cL9U5N/eZMJhN//vkn12kkmZmZ9PNHjBjBZauKo0NLSkrg5uaGiIgIrq3A1NanpKQkMBgMoWMPzpkzB0wmE48fP4a3tzedZ01NDQ4dOoQnT56AyWRizpw5QuX3b+ZfG1MCqFthj4qKQmVlJeTk5GBmZsbzGyaTCTMzM9rA7N69e6N7hFobBwcHes89NSjLzs7mOq94zJgx9CRDfHw8cnNzMWLECIHvRg1427Rpg8uXLwucNV24cCEGDhxI/zs7OxunT5/G1q1boaOjAxUVFRQVFSEtLQ0kSUJRURGenp58I1vLycnBy8sLM2fOxLVr1xASEoIuXbogJyeHnoFcuXKlSPvovydr165FfHw83rx5g1GjRsHQ0BBFRUW0Mbp27Vq+de7r16/Iysriic8A1MXa2L59O3799Vf89ddf8PPzg4aGBlJSUlBZWQldXV1s27aNrzw7duyAs7MzPcA0MDBAXl4e8vPzISMjgx07dvBsa8jNzcWOHTuwdetWaGtrQ01NDTU1NcjMzKQ7C0tLS+zatYvneZmZmViyZAnk5eXpGCGpqakoLy+HoqIi9uzZIzDAobhlp6amBk9PT7i6uuLIkSO4ePEidHR0kJmZia9fv0JGRgZ//vnnd4/S3VJ8+fIFr169grGxsdhRznV0dDBhwgT4+/sL/E1lZSVd9s0ZSFFZWRlz5syBp6enwDgfAwcOxKJFi3Do0CFs2LAB+/fvh6amJtLS0lBcXAx5eXns3buXJ0jUsGHDsG/fPgQGBiI2NhYdO3aElJQUHBwcMGHCBADA1q1bUVxcjLCwMDg6OtLblyorK5GRkUGv1Ag6qosfo0aNQlhYGNzd3XHu3Dn6+NzffvtNJG+i+kyaNAkXLlxAeno67O3toa+vj9raWrx//x7q6upYtGgR/vrrL550qqqq6NOnDyIjIzF06FB07doVcnJy6NChg8h7/eszd+5cBAYG4s2bN7Czs4O+vv7/tXfeYVEd3/9/LwgIgiAoJXSFu1QVEIhGVIyiYokl9hIrxm40+dqVmKKxRkEsxAKIhmBXUKzYACmiiCC9iRQFaSJ17+8Pfvdml92FZUHRfOb1PD7qnZ07c6fPmXPO4P3798jKyoKpqSlGjx4tdLf6u3fvcPz4cRw/fhxqamrQ1dUFj8dDTk4OKioqICcn16Rn/5YgIyODP/74AzU1Nbh+/TqWL1+Ow4cPt8uc0alTJxw8eBDz58/Hw4cP8fXXX6N79+7o2LEjcnNzUVJSAgcHB5E+HsTB4XDg4eGBRYsWISoqCq6urtDT00PXrl1RWVnJevwHGm7bYPhY9TZx4kQUFBTA09MTq1atgru7OwwMDEDTNPLz81lht7u7OxsnNTUVhw8fxpYtW6Cnpwd1dXWUlZUhKysLPB4PpqamIg8xpEGSMUJaVqxYgaKiIgQGBmLevHlQV1eHnp4e6urqkJuby/rt4F+XSYuTkxO2bt2Kn3/+GVu3bsWuXbtgZGQEWVlZFBYWsrceiDvAGTJkCJSUlFizHXNzc7E3AWhqauLw4cNYvHgxTp06hYCAAHTv3h1KSkooLS1lb0wSdw1sS+jYsSP+/PNPzJ8/Hzdv3sSDBw9gYmKCkpIS1gRpwoQJYq8nlYYPOV6amZlh3759WLVqFTw8PHD48GEYGxtDQUEBRUVFePXqFWiahqurq0Tva8uxdNCgQZg1axZ8fX3x448/Yvfu3dDQ0EB6ejrq6+uxdOlSkd+vqKiII0eOwM3NDSEhIbh+/ToMDQ2hpqaG8vJyZGdno7a2ttmbRBhaW+cuLi7IysrC2LFj0aNHD3To0AEpKSmor6+HkZGR0E1j0oyhPB4PV69exdWrV9GxY0cYGhpCXl4e+fn5eP36NYCGvZCkJkVmZmbYvHkztmzZgn379sHX1xd6enrIzc1FcXExZGRk4O7u3q63D30q/OeFEgzW1tZiN+R9+vRhhRKfw1WgpaWlQqcMPB5P4Bm/hFYS9W/mtLs5D8+NT9RHjhzJnjjm5eXh1atXkJOTg6mpKfr374+ZM2c26fXfwsICV65cgZeXF+7du4fExER06tQJgwYNwuzZsz9ZgQTQ4MDm1KlTOHr0KK5cuYL09HR07NgRX331FebOndukQ8OmGDVqFAwMDHD48GE8fvwYKSkp0NbWhouLCxYtWiTW5qxbt244f/48Dh48iBs3biAlJQXKysoYMmQIFi5cKFIDaMiQIaiurkZkZCQyMjLYwV1dXR12dnYYOXIkRo4cKdIxEpfLxZQpUxATE4O8vDzU1dVBW1sbTk5OmDt3bpP13pqyGzhwIC5cuIBDhw4hPDwciYmJUFVVxYgRI7BgwQKhU7bPmbt374LH47X4hLAxixYtwvnz54VO2D4GM2fOxIkTJ5o8lVq5ciVsbW3h5+eHuLg4vHjxAhoaGhgyZAjc3NxEqnEaGBjg0KFDOHz4MBISEtgFH782mKKiIg4dOoSQkBCcP38ez549Q0JCAlRVVWFsbAxbW1sMGzasRc5fx44di7KyMpw5cwZZWVnslWOtdXCorKyMU6dOYc+ePQgNDUVGRga6deuGyZMnY9myZbh3757YuLt378bu3bvx8OFDPH/+HHV1dQJCT2YhBaBFN0vp6OggICAAe/bsQUREBNLT06Gjo4P58+dj0aJFIh2Y2tnZYdOmTXj48CFSUlKQkZGB2tpaaGpqwsXFBXPnzmXt5NuCDh06YPfu3Vi6dCnu3r2LxYsXw9vbu13mclNTU1y+fBknTpzAzZs3WQ0cTU1NDB48GBMmTGjxOzU0NODv748LFy4gKCgIiYmJKCgoQJcuXWBubg4HBwe4uLgIaD98zHpbunQpBgwYAH9/f0RFRSE5ORkdO3aEtrY2+vbtCxcXFwEHc4sWLYKJiQkiIyPx8uVLVrvN3Nwcw4YNw8yZM4VuwmDab0tvRZNkjJAWGRkZ/Prrr3B1dcXff/+N2NhYdv2io6MDFxcXDB06tM3WMBMnToSdnR18fHzYOpWVlYWWlhZcXFzw9ddfi50nlJSUMHjwYFy5cgVAwxqjKXr27IkrV67g5MmTuH37NjIzM9m24OjoiIEDB7JmHq2lZ8+euHTpEo4cOYK7d+8iKSkJioqKcHBwwNSpUyXewLeE5sbL1jBo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2fW1Ks52nos3bBhAywsLODn54fU1FS8f/8eX375JZYtWyZWUwJoMCG6cOECAgICcO3aNaSlpSE3NxfdunVDr1690K9fP9a0VhJaU+fy8vLw8/ODh4cHQkJCUFhYiG7dumHo0KFYtmyZ0M10QMvH0E6dOmHnzp0ICwtDXFwc8vPz8e7dO6ipqcHZ2RlTpkxpsebqpEmTwOVycfToUURHRyMxMRFqamoYNmwY5s+f/5/U0JcGDt2WOm2ET5Lx48cjMTERDx8+/KSu1SQQCE2zfPlyhISE4Ny5c/8pYQvh43Lt2jWsWLECAwcOxJEjR9o7OwRCixg1ahRSUlIQGBhIFu8EAoHwH+U/61OC0EBBQQESEhLQq1cvIpAgED4jampq8ODBA2hqarb4hJBA4IfRfmP8dxAInwtlZWVITU1F3759iUCCQCAQ/sP8p803CA3XKPI7hCEQCJ8H8vLyUl07SiA05vHjx7C1tf0szBMJBH5iY2NB0zQRqBEIBMJ/HGK+QSAQCAQCgUAgEAgEAqFdIOYbBAKBQCAQCAQCgUAgENoFIpQgEAgEAoFAIBAIBAKB0C4QoQSBQCAQCAQCgUAgEAiEdoEIJQgEAoFAIBAIBAKBQCC0C0Qo8T/K4MGDweVy8fLly4+e9suXL8HlcjF48OCPlubatWvB5XJx7ty5j5ZmezJr1izY2NiguLi4zd6ZkJCABQsWwN7eHlwuF1wuF4mJiW32fsL/Njt37gSXy0VERMRHTXfmzJngcrl49OjRR01XEtpznCb8d3n06BG4XC5mzpwpFMaM7YT/LmRcEc+n3P6lnavOnTsHLpeLtWvXtkk+2vp9Hh4e4HK58PDwaJP3tYb22J+0JZ/yekYSyJWg7cTNmzeRmJiIIUOGwNzcvL2zQ/gPcefOHTx69AgLFiyAurp6m7zzzZs3+O6771BWVgZtbW306NEDHA4HSkpKzcYdPHgwcnNzBZ4pKSlBRUUFhoaG6NmzJ0aOHAkLCwux7/Dw8ICnp6fAMw6HAxUVFfTo0QMuLi6YPn06FBQUhOKmp6fDz88PERERyMvLA4/Hg7q6OrS0tNC7d284OjqKnICqqqrw999/4/r160hNTcW7d+/QuXNnaGhogMvlwsHBAUOHDpW4jMvKyuDj4wMVFRXMnj1bojj/S8ybNw+nTp3Cjh07cPbsWXA4nPbOEoHwWcIs7pctW9bOOWmaEydOoLy8HN999x06d+7c4vjM3LJt2zaMHz9eKPz9+/dYtGgRwsPD0bVrV5w4cQKmpqZtkfVW8+jRI8yaNUui3/r5+cHBwUHi90ZGRsLBwQGOjo6tySKBQCB8VIhQop24efMmzp8/D11d3f85oYScnByMjY2hpaXV3ln5z0HTNHbt2gUFBQXMnTu3zd4bFBSEsrIyDB06FPv374eMTMuVrIyMjNgNfHV1NUpKShAZGYnIyEj89ddf6N+/P37//fcm24WysjIoigIA1NfXIycnB7GxsYiNjcWlS5fg6+srsLi9cuUK1q1bh5qaGnTo0AHa2tpQV1dHaWkpnj59iidPnsDPzw8JCQkC6RQUFGD27NlIT08HAFYQUVdXh+zsbKSkpODKlSvo2LEjvvnmG4m+v6ysDJ6entDV1SVCCRGoq6tjypQpOHbsGK5evQpXV9f2zlK7o6+vD3l5ecjJybV3VgifEYwAV5xQQlFREcbGxtDR0fmY2RLC19cXubm5GDdunFRCiaZ49+4dFi5ciKioKGhqasLHxwfdu3dv0zRag4qKCmxtbcWGFxYW4uXLl1BQUGjRGjEyMhKenp5YunQpEUpIgbGxcXtnQSw6OjowNjaGoqJie2eFQPggEKEE4aOjpaWFa9eutXc2/pOEh4cjNTUVw4YNazMtCQDIyMgAAPTr108qgQQALFy4UOg06+3bt7h8+TK8vLzw4MEDfPvttzhz5oxYwYSFhQX8/PwEnl28eBHr169HYmIi9uzZA3d3dwBAbm4u1q9fj5qaGnzzzTf48ccfoampycYrLy/H7du3cfbsWaF01q9fj/T0dOjp6WH79u2wt7dnw+rr61khCFkctC3jx4/HsWPH4OfnR4QSAHx8fNo7C4T/ID179vxPz8EVFRWYP38+YmNjoaOjAx8fHxgaGrZ3tgSwsLDA6dOnxYYvW7YML1++xNdffw0VFZWPmLP/bT7lfrFjx472zgKB8EEhPiUIhP8QAQEBAIAxY8a06Xurq6sBAB07dmzT93bp0gWzZs3C2bNn0a1bNxQWFmLNmjUtesc333yDqVOnAgCCg4PB4/EANGh3VFdXw8jICNu2bRMQSAANJ1XffPMNfH19BZ4XFhbiwYMHAIA//vhDQCABALKysujTpw+2bt0KFxeXFuWV0DSmpqbgcrl4/PgxUlNT2zs7BALhM6OsrAxz5sxBbGws9PT0cPLkyU9OINEcpaWlCA0NBQCMHTu2XfNCIBAIH4vPRlMiLy8Phw8fxsOHD5Gfnw9ZWVmoq6uje/fuGDRoEGbMmMH+lrHVc3BwwPHjx/HXX3/h4sWLyM3NhYqKCgYMGICVK1eKPY2tr6/HuXPncPHiRSQlJaGqqgra2toYPHgwFi5cKPYEurq6GgEBAbh69SrS0tLw/v17aGpqwtLSEmPGjMGQIUNYyTfDunXrsG7dOvb/S5cuZVUuGWc7SUlJuHHjBnx9fZGUlITS0lJcuHAB5ubmeP36NUJCQhAaGoqMjAwUFhZCQUEBJiYm+OabbzB58mSpT7b52b59O44fP47Vq1fDzc1NIGz27NkIDw+HtrY27t69KxB28+ZNLFmyBM7Ozjh06BAAsGWgq6uL27dvC/ye/5sfPHiAw4cPIyEhATweD1ZWVli+fLnQJpGhrKwMHh4euHHjBoqKiqCpqYnhw4dj6dKlTX4bTdMICgrCP//8g8TERFRVVUFLSwsDBw6Em5ubUDsZP348nj9/jn/++Qe9evVin9fU1MDe3h5VVVUYM2YMdu7cKRDvt99+g6+vL9asWSNgWnHp0iUEBgYiKSmJ9VvQtWtX2NvbY+rUqRLbwFZVVeHWrVuQk5ND//79m/ydr68vgoODkZWVBQAwNDSEq6srZs2aJSB4WLt2Lc6fP8/+n7+9jhs3Dtu3b5cob82hq6sLd3d3LFmyBOHh4YiLi0PPnj0ljm9vbw8/Pz+Ulpbi7du30NDQQE5ODoCGNiUrKyvxu/idfzXl56Il8Jdjbm6ukCOtpKQkAA11c/PmTdy5cwcJCQnIz88HTdPQ09PD119/jblz50JVVVXo/TNnzkRkZCR8fX2hrKwMT09PPH78GFVVVTAxMcHMmTObXNxmZmbi6NGjCAsLQ2FhITp27AhLS0vMnDlTYLxq/D3btm2Dg4MDDhw4gIcPH+LNmzeYPn06NmzYAAC4e/cuTp48ifj4eJSVlUFZWRkaGhqwsbHBhAkTRKovOzs7IykpCUFBQVixYoXEZVxWVobr16/jzp07SElJQUFBAWRkZGBsbIzhw4fju+++E+lzRBx1dXX4+++/cfnyZaSmpqK6uhqqqqrQ0tKCo6MjZs6ciS+++EIgTkv6liQwNvO3bt2Cnp4e+5y/vrW0tLB//36Eh4ejoqICRkZGmDFjBiZPniz2vYmJifDx8UFkZCRev34NJSUl6OrqYtCgQZgyZQorwGs8l/r4+ODixYvIzs5Ghw4dEB0dzb6zpW1I2voqKSmBt7c37ty5w/ZVdXV16Ovro3///pgzZw7k5eUF4lRVVeHUqVMIDg5GRkYGamtroa+vjxEjRmDOnDno1KmTUDqxsbE4fvw4Hj9+jLdv30JJSQnq6uqwsrLCmDFjMHDgwGZqrwHGHw7/3M4Pfxnza4HxP/f19cWpU6cQEBCAzMxMKCkpoV+/fli9ejV0dXWF0mJoPM4w7UhcmtLS0nXIuXPnBNY9jduHr6+vVKYHJSUlmDt3Lp4/fw5DQ0P4+Pi0u4mKNAQFBaGmpgZdu3Ztci5vDH99e3p6CrQFcfN1XFwcvLy88PjxY1RXV8PU1BQLFy7E0KFDxaYTHh6OkydP4smTJygtLYWamhocHBywcOHCFjuJ5B/L1NXV4eHhgcjISFRXV8Pc3BwrVqxg20JqaioOHDiAyMhIlJeXg8vlYvny5XBychJ6b05ODq5du4b79+8jOzsbb968gZKSEszNzTF58mSxmnj8a1B++Mfi4uLiFpeZKFo6x/CXVeP+UV9fj5MnTyIwMBDZ2dlQUVFB3759JZpDCwsLcfToUdy9exd5eXmQlZUFRVGYNGkSxo0b12L/TmlpafD29kZERATevHkDZWVl9OrVC7NmzcJXX33VZNyioiLs27cPoaGhePv2LXR0dDB69Gi4ubmJnb/Lyspw4sQJ3Lx5Ezk5OaBpGt27d8eYMWMwffr0NjV/bMn+8P79+5g/fz4MDAxw48YNse8cN24cEhISsHfvXqF22ZZ97XPgsxBK5Obm4ttvv0VxcTHk5ORgYGCAjh07oqCgAA8ePEBMTIyAUIKBpmksW7YMt2/fhoGBAUxMTJCcnIxz587h/v378Pf3F5KgV1RUYPHixXj06BE4HA60tbWho6ODrKwsnDhxAiEhIfDz84O+vr5AvIKCAsyfPx/JyckAGmyB9fT0kJeXh5CQEMTHx2PIkCFQUFCAra0tsrKyUFRUJGBnD0DkBOrt7Y1du3ZBXV0dBgYGyM/PZ8MCAwOxb98+KCgoQFNTE1wuF2/fvsWTJ08QGxuLsLAw7N+/v9VO45hFaWRkpIBQora2Fk+ePAEA5OfnIzs7GwYGBmw44wFWnCBBHAEBAdiyZQvU1dVhaGiIrKwsREZGYs6cOThx4gT69Okj8Pvi4mJMmzYNGRkZkJGRgampKerq6vDXX3/h0aNHAnnih6ZprF27FhcuXADQsDnW19dHWloaTp48iaCgIBw9ehSWlpYCZfH8+XM8evRIQCgRFxeHqqoqAA12nY1hnvGXxY4dO3D06FEAQLdu3aCvr4+KigpkZ2cjOTkZurq6Egslnjx5gtraWlhaWord/Lx9+xZz5sxBYmIiOBwOTExMwOFwkJSUhMTERFy7dg3Hjx9nN75GRkZi26uRkZFE+ZKUwYMHQ1NTE4WFhQgNDW2RUIKmafbfTFtXVlYG0LABq6mpEdqoiIOJBwBPnz5F3759Jc6HOIyMjGBlZYX4+HjIy8vDyspK5O/i4+OxevVqyMrKomvXrjA2NkZlZSWysrJw6NAhXL16FX///bdYwejjx49x8OBByMrKonv37njz5g3i4+OxZs0aJCUlidRCCQkJwY8//oiamhooKSnB2NgYJSUlCA8PR3h4OL7//nv88MMPItPLyMjAtm3b8P79e5iamkJFRYXdfPj7+2Pr1q0AADU1NXC5XFRVVSEvLw9paWnsWNgYpt75N7yScOfOHWzYsAFycnLQ1NSEqakpysrKkJSUhOfPn+PWrVvw8/OTuB2sXr2aVeX94osvoKGhgZKSEiQnJ+P58+fo1auXwIKxpX2rLUhISMCiRYtA0zSMjY1RWFiI5ORkbN68GaWlpUICZKDBJGT79u3g8XhQUlKCqakp3r17h5SUFDx//hx6enpCZlY0TWPJkiUIDQ2Fnp4eevTogaKiIjZcmjYkTX1VVFRg0qRJyMrKgoyMDAwNDdGpUycUFhYiOjoakZGRmDhxokD/KCwsxLx585CcnAxZWVno6OhASUkJGRkZ8PDwQEhICHx9fdGlSxc2zu3bt7F06VLU19dDWVkZJiYm4PF4yM/Px5UrV1BRUSGxUKIt+Omnn3D58mUYGBjAyMgI6enpCAoKQnR0NC5evMjmXUdHB7a2tnj8+DEACPWvlgjlWkJL1yEaGhqwtbVFfHw8ampqYGVlJVDP0pgrFBcXY86cOXjx4gW6d+8OHx8fIe24z4VLly4BAEaNGtUigbqtrS3y8vKQl5cHHR0dgfWkqPn67t272LZtGxQVFaGvr4/c3Fw8e/YMS5cuxZ49ezBy5EihOH/88QeOHTsGoEHT0dTUFLm5uQgKCsKNGzewf/9+ODs7t/CLgWfPnsHT0xOysrIwNDREbm4uYmJiMG/ePBw7dgyysrJYsGABOBwODA0NUVdXh7i4OHz//fc4evQovvzyS4H3HTp0CGfOnIGSkhLbJouKihAREYGIiAg8efIE69evb3E+pSkzcbR0jhEHTdP44YcfEBISAqBh/9G5c2dcu3YN9+7dw7Rp08TGjY6OxuLFi1FaWgoFBQUYGBjg/fv3An13586dEu8hQkNDsXz5clRXV0NZWRlcLpdd04WGhmLZsmViDwpLSkowceJE5Ofnw8TEBMrKykhLS4OnpyfCw8Nx7NgxobVtWloa5s2bh7y8PMjJyUFXVxccDgcvXrzA8+fPcefOHXh7e0s87zdFS/eH/fr1Q9euXZGdnY2nT58K7BcY0tPTkZCQgE6dOgk5XP9Qfe2Thv4M+OWXX2iKoui5c+fSb9++FQh79eoVffz4cYFnERERNEVRtKWlJW1jY0M/fPiQDXv9+jU9bdo0mqIoetKkSUJprV69mqYoip46dSqdmprKPq+srKQ3bdokMl59fT09ceJEmqIoesyYMXRiYqJAeEZGBu3t7S3wbM2aNTRFUfTZs2fFfjdFUex3nDx5kq6vr2fTq66upmmapqOiouiwsDC6trZWIG5mZiY9depUmqIo+uLFi0LvdnZ2pimKonNycsSmz09paSltZmZG9+7dWyCt6OhomqIo2snJiaYoiv7nn38E4n3zzTc0RVH006dP2Wc5OTk0RVG0s7Oz2G/u2bMnHRAQQPN4PJqmabq6upr+4YcfaIqi6MmTJwvFW7FiBU1RFO3q6kpnZWWxz589e0Z/9dVXtKWlpcjyPnnyJE1RFN2rVy/69u3bAt+7cOFCmqIo+uuvv6arqqrYsJs3b9IURdHz5s0TeJeXl5dAWfDno6SkhDYzM6NtbW3puro6mqZpuqioiDY3N6ctLCzoGzduCLyrrq6ODg0NpSMiIoS+VRyenp40RVH0pk2bxP5m+fLlNEVRtIuLi0D7Tk1NpV1cXGiKouhVq1YJxZOkvYqDaWuSxF22bBnb1/nZv38/TVEUPWPGDJHxtm7dSlMURdvb27P9JCwsjG1PM2bMoG/dukWXl5c3m4f6+no2z3379qVPnDhBZ2dnS/ClTdNUu2d4+fIlHRQUJJTPt2/f0lu2bKEpiqI3bNggFG/GjBnsWLFixQqB+BcuXKAtLCxoiqLou3fvCsRLSkqira2taUtLS9rPz0+gb0dGRtJfffUVTVEUfe/ePYF4THswNzen3dzc6KKiIjbs/fv3dG1tLW1vb09TFEX7+/uzbZ6maZrH49GPHj0SavMMBQUFNEVRtLW1NV1TUyO2rBqTmJhI3759W6Cv0jRN5+fn00uXLqUpiqK9vLyE4jFlx9/X4uPjaYqiaDs7Ozo6Olrg91VVVXRQUBCdkJAg8FzavtUU4sZp/vrevHkzXVlZyYadOHGCHUPLysoE4t25c4emKIo2MzOjDx06xM4jNN0wxl6+fJmOiopinzFzqbm5Oe3o6CgQ9v79e5qmpW9D0tTXsWPH2Hk2Ly9PIKyoqIj28fGhKyoq2Gc8Ho+d7xcvXiwQp7i4mF60aBFNURT9ww8/CLxr1KhRNEVR9J49ewTKiKYb5pQLFy7QksKMXfv37xcZzpRx47GNfx3z1Vdf0TExMWxYfn4+m8fdu3cLvZMZ98QhLk1J4oriY61DxMU/fPgwPXLkSJqiKHrUqFH0mzdvpHofw9atW+kpU6a0+E9oaGir0qXphjJj6qDxGCMJzbU3mv633CwtLWlPT092nK2vr6e3b99OUxRFDxgwgJ1LGf755x82rPFccvr0adrc3Jy2s7NrUfnzj2W//PILOx7U1dXRGzdupCmKoseNG0c7OzsLha9fv56mKIqeOHGi0HtDQ0Pp2NhYdg3JkJCQQA8fPpymKEpobKdp8e1f2jIThzRzjKi5iqZp2t/fn6Yoiu7duzd9//599jmz32HWv2vWrBGIV1hYSDs6OtIURdF//vmnwDzy4sULtpxOnz4tEO/s2bMi31dQUEDb2dmx61BmjuDxePQ///xDm5mZiZwLmDZraWlJjxo1SmC9FR8fz84hO3fuFIhXWVnJzq2bNm0S2B++fPmSnjx5Mk1RFL1r1y5aUppap0mzP2T2r7/88ovI9P7880+RZSltXxPXRj4XPgufEoyTvWnTpkFNTU0gTEdHR6wn+9raWixfvhz9+vVjn3Xt2hV79uyBnJwcnjx5InCXa3JyMi5fvgwtLS0cPHgQPXr0YMMUFRXh7u4OKysrPHnyhD2JABpMFJ4+fQo1NTUcPXoUZmZmAvkwMjLC/Pnzpf18TJo0CdOnT2dPIGVkZFipX58+fdC3b1906CCo9GJoaMiq6l28eFHqtBk6d+4MMzMzVFZW4vnz5+xz5vR/wYIFAv8HwJ56derUSUDTQBLGjx+PSZMmsdJZeXl59lQtNjYWpaWl7G8ZNT0A2LZtm4BWhJWVFTZu3Ija2lqhNGiaZrUUFi9eLCBx7Ny5M3bv3g01NTXk5OQgKCiIDbO3t4eMjAxiYmJQV1cnUBaysrKsaQZ/24qKigKPx4OdnR178pGdnY36+npQFIUhQ4YI5E1WVhYDBw5skQrrq1evAEDs6VBWVhYrSd+xY4dA++7RowfbXoKCgljTh4+NtrY2gIZTL0m5ePEi/v77bwDAiBEj2H7St29f1tdEZGQkFi1aBHt7e4wYMQJr167F5cuX8f79e6H3ycjI4LfffoOSkhKKiorw+++/Y8iQIejbty8WLFiAI0eOfLDy0dXVhaurq4C2BtCgaeDu7g5tbW0EBQUJtDt+OnfujD/++EMgPqM+DTRoXfHj6emJ6upqrFy5EjNmzBAYR+zt7fHzzz8DAI4fPy4yvS5dumDPnj0CJ9MdO3bE27dvUVpaClVVVUybNk3gtI/D4cDBwUGozTN07doVMjIyqK6ublE7MDMzg7Ozs9BpsJaWFnbu3Ak5OTmJx8LMzEwAwJdffgk7OzuBMAUFBbi6ugp4xG+vvmVsbIwtW7YIOFz97rvvYGFhgaqqKqG7ynfv3g0AcHNzw8KFCwVOj+Tl5TFq1CghLTSgQWXV3d1dIIw5sZK2DUlTX8xaYMKECexYwaCuro5Zs2YJmGKEhoYiOjoa5ubm2Lt3r0CcLl26YNeuXdDW1sbVq1eRl5fHhjH1v2DBAqETNisrK4lv3GkLamtrsWHDBgGtBy0tLVYtu7HJZHvwsdYh4ti3bx9SUlJgZmYGX19faGhotOp9ycnJePz4cYv/8GsPSQujtcnlcj/4zWz9+vXDkiVLWPV2GRkZ/PDDD+jatSvy8/MFTBhqa2uxb98+cDgc7N+/HwMGDBB415QpUzBz5kyUl5cjMDCwxXnp0aMH1q9fz44HsrKy+Omnn6CgoIDnz59DRUVFKPz//u//oKCggKdPnwqsCQFg4MCB6N27t9AJv7m5OTZv3gxAujbZkjJripbOMeKgaRp//fUXgAbzb35zH2a/I45jx47h7du3mDZtGlasWCEwj3C5XOzZswccDkfs/N+Y06dPo7y8HCYmJvj555/ZOYLD4WDixImYOHEiAODIkSMi49fW1mL79u0CmuiWlpbYuHEjgAbty3fv3rFhZ8+eRWZmJgYOHIitW7cK7A91dXWxb98+KCkpwd/fn/WLJi3S7g8Z/25Xr15FfX290HuZvcXo0aMFyuFD9rVPmc/CfINRQbt58yYGDhwoNPGJQ05ODt9++63Qcy0tLQwdOhTBwcF48OABu/G7fv06AGD48OEiVWxlZGTg7OyM+Ph4PHr0iF0kMLZC48ePR9euXVv+gc0wbty4JsMrKytx9epVREdHo7CwEO/fvxdQZ3/x4kWb5MPe3h4JCQkCZgtRUVGQlZXFuHHjcPToUQGhhKiNuKSIsofW0NCAnp4eMjIykJOTw9bR/fv3QdM0evfuLVLl38XFhTUL4CctLQ25ubmQk5MTqd7WqVMnTJgwAUePHsX9+/dZlebOnTuDy+UiMTGRVbFjzFgsLCwwePBgbNu2jVUlZsqCKUMGpl1nZmbixYsXQsKslsJs4MSphz948AA0TaNXr14i1chsbGxgbW2NZ8+e4cGDB+yG/mPCTIr8Ew8/CQkJbL6YK0GZ76YoCqtWrRL4vbu7OwYMGABfX19ERUWhrq4O6enpSE9Px/nz59GtWzf8/PPPQjbNffv2xaVLl/DXX3/h2rVrKCkpQXFxMe7du4d79+7hzz//xNSpU7FmzZo2UQvkh6Zp3Lt3j7WFfffuHeu8s6KigjXn4J8UGb799luRKtrTp0+Hv78/YmJiUFlZCSUlJdTU1CA0NBQyMjJsO23MwIEDIScnh+joaNTV1QmNvcOGDRNpj6+urg4FBQWUlZXh4cOHzdqR8iMjIwMVFRWUlpaiuLi4RVcH19bW4saNG4iIiEBubq7AWMjhcJCZmYmqqqpmfTswm9enT5/i1atXzarQtlff+vbbb0X6DLK2tkZCQgKys7PZZ4xJWIcOHTBv3rwWpaOsrCzSXrq1bail9cWMmXfv3sXEiRObvf2GmdPHjRsnsp8yvhnOnTuHqKgodgHJqORevXpV7Hd9LFRVVTFixAih50w746/j9uRjrUOaorS0FJWVlQKmONLQFn42pIGmadZ042M4uJw0aZLQM3l5eZiZmeHBgwfIzs5mN8ZPnjzB69evYW5uLnKMA4AhQ4bgxIkTePToEb7//vsW5WXChAlCY1nnzp2hp6eHtLQ0keGqqqrQ1dVFenq6wJqQoaSkBEFBQXjy5AnevHmD6upq0DSNmpoaANK1yZaUWVO0dI4RR3p6OruOFbVu5t/vNIYZH8X5HzI3N4euri4yMzNRUFDQ7Fx8//59AMCMGTNEmnvMmjULAQEBAusQfmxsbEQeYPKv4R8/fsz6EGHyL6pOgIZvt7a2xqNHjxAfHy8k/GkJ0u4Pe/bsyZqgR0RECKyF4uLikJWVha5duwqYH33ovvYp81kIJWbMmIELFy7g3LlzuHfvHpycnGBnZwdHR0exvgKAhk7f+MSRgVnQMycvAFh/EHfu3MGzZ89ExmMk4fx+HdLS0gAAvXv3lvyjWoCozQdDUlISFi5cKHDK05iSkpI2yYeDgwPrHM3NzQ21tbWIjY2FhYUFlJWVYW9vj0uXLrF+JUT5UJAUcfWqoaGBjIwMVFZWss+YOhRXTozztMZCCUZSraWlJbadMP4cmN8y2NvbIzExkRXQPHv2DJWVlXBwcICBgQF0dHQEBDTMvx0cHNhnWlpacHV1RXBwMMaNGwdbW1s4OjrCzs4OdnZ2LXaKx0y04uyGmW9oqj2Zmpri2bNnQt/7sWDqVVx9VFRUsFJoDofDOlBycXHBjBkzRJbZ4MGDMXjwYLx79w7x8fF4+vQp7t+/zzr5W7ZsGXx9fYVOiPX19fHzzz/D3d0dKSkpiI+PR1hYGEJDQ1FeXo6TJ0+itraW9ZvQFlRUVGDRokUifZLwI65Pd+/eXeRzY2NjdOjQAXV1dcjOzoaZmRmysrJQXV0NOTm5Zie16upqlJSUCAldxbUlWVlZzJo1C97e3pg7dy4sLS3Rr18/2NrawsHBQWz9MjBtmPHRIgmN/fqIo7S0tNm+ZWNjAxsbG8TGxsLFxQWOjo6wt7dHnz590Lt3byHhTHv1LXG3CjAnxfzjJHObSffu3dG5c+cWpWNkZCRSsNyaNiRNfU2YMAHHjx/HgwcP4OTkBCcnJ/Tp0wf29vagKEooLvPuwMBAsVf9MRpm/HP6nDlz4O7ujo0bN+LYsWPo378/Oz635VXLktDYfxWDqDpuLz7mOkQUy5Ytw9mzZ5GdnY3Zs2fj5MmTLRJmfirExMTg5cuXkJWVFTg5/VC0ZPxg+lJ+fr5YoSpzGs3flyRF3JpPXV0daWlpTa4J09PThfpBeHg4Vq5c2WS7k6ZNtqTMmqKlc4w4mPWvJPsdfiorK1lHwe7u7mJ9Rrx9+xZAQ50216eYuc3ExERkuKh1CD/i1i/8a/iMjAxWKMG0SS8vL1brWVyeCgoKmsx7c0i7PwQafMMcOHAAly9fFhBKMAJIV1dXgfn1Q/e1T5nPQihhZmaGU6dOwdPTE2FhYTh//jzryb5nz55Yu3atSAlYUyp8zMKI/0S2vLwcQMPJQ3OnD/yqQBUVFQDQ4oWepDSWJjLU19djxYoVyMvLQ//+/bFgwQJQFIXOnTujQ4cO4PF4MDc3F6vq3VL69OkDDoeDx48fo66uDvHx8exGHGjYcF+6dIl1LMloB0jjRVvcNzOScv4TGGYSkKS++WHqvintFuadjU/uHR0d4evrywpoGn8rv4CmS5cuePHiBZSUlISkwH/88QdMTExw5swZREdHs879OnXqhClTpmDFihUSOydjVNcaqzEyMOUkzfd+LJhFrbiFf2u8xXfq1AmOjo5wdHSEm5sbW3fv37+Hl5cX61CoMRwOBxRFgaIojB8/HsXFxVixYgUiIyMRGBiIxYsXC6mSS8v27dsRGRkJIyMj/PDDD+jduzfU1dXZU97p06ezJ86iENcHZGRk0KVLF7x+/Zqt27KyMgANp9X86obiECUgaOqketWqVdDW1oa/vz+eP3/Omn0pKChg9OjRWLNmjdgxk2nDLTnxXLt2LZKTk2FtbY1ly5bBwsICampqrJrtoEGDkJeXJ9KUqzEyMjLw9vaGl5cXLl68iAcPHrDXxHbp0gVz587F/Pnz2fGovfqWuPIXNU4y85Q0TgTFjcetaUPS1JempiYCAgKwb98+3LlzB8HBwewJYI8ePbB69WoBrSdmTk9JSWk2b/xz+tSpU6GiooJjx47h+fPnSE9Ph6+vLzp06ICvv/4a69evb7M+3xzNzYXtzcdeh4hCU1MTJ06cwIwZMwQEE6014/jYMKYb/fr1Q7du3T54ei0ZP5i+/vbtW3ajKg5pVOXF5YXZLDcX3nisYwQSo0ePxvTp09G9e3coKytDVlYWOTk5GDJkiFRtsiVl1hQtnWPEwcwnLV3/MmMj0HDTUHNIckDQ3FpcVlYWampqePPmjch5UNo9G79JuThacsAhCmn3h0CDacaBAwdw48YN/Pzzz1BQUEB9fT0rKG8sgPzQfe1T5rMQSgANwocjR46wXmEjIyMRHByMuLg4zJ8/HxcvXhSSpDZlj/zmzRsAEFA9ZiZ/d3f3FqnXMtJJpiF9LJ49e4aMjAx88cUX8PLyEtq8tvXJhJqaGiiKYr2jM6e5zEac+TsyMhLDhw9HYmKiyI14W8PUW1P2nEx988PUvagwBuadjVXUGwtoGH8SjHCMX0CjoaEBHo8HW1tbIem3vLw8lixZgiVLliAzMxMxMTG4f/8+bt68iaNHj6KiokLik3hmIy9OKMGUkzTf+zHg8XjsTS7iVNbaEgcHB0ydOhXHjh3D06dPJY6nrq6OzZs3Y9SoUeDxeHj27FmbbFDq6upY+0IvLy+Rpxvi6pZB3JjH4/HYyY2pW+bvrl274uHDh1LnWxwyMjKYMWMGZsyYgby8PERHRyMsLAzXrl3DmTNnUFBQwNrC8lNdXc1OtJKeShcWFiIsLAwdO3aEt7e3SGFGc2XXGBUVFaxZswb/93//h5SUFERHR+Pu3bu4e/eugG8G4NPvW8C/8xT/YrS1SNuGWlNfxsbG+PPPP1FTU4O4uDhER0cjJCQECQkJWLp0Kfz9/VnVWaZevL29hexym2PUqFEYNWoUiouLERUVhUePHiEoKAghISHIzMzEmTNnJDLdErVp4keUX5vPiY+9DhGHrq4uTpw4genTpyM9PR1z5syBn5+fVLfd/PLLL0hISGhxvO+//17qW1mqq6vZTcrHMN1oKUxfcnV1xd69e9s5N01z9+5dlJSUoHfv3iJvjvhYbbI5WjLHiIMZg1u6/uUXdj59+rTFmrmiUFJSQnl5OYqKikRqPdTX17NlL2oelGbPVlZWhuDg4Ca1FNsCafeHQMOcxdy+dufOHQwfPhwRERF4/fo1jIyMhMzOP6e+1tZ8GqL2FqCoqMjevRsUFAQbGxtUVlbi8uXLQr/Ny8sTeyqVnp4OQPCaJEblSJJTFX6YeMyGShJae0UnAFb1ysrKSuRpelxcXKvTaAyjFfHo0SOhjbiBgQG0tbURFRWF6OhosRvxtsbY2BjAv2Y0jeHxeAJmOgxM3RcUFLCniI1h2kLj67QYAc27d+/w9OlTPH78GObm5uzCnymnyMhIiTVGjIyMMGHCBPz55584cOAAgIb73CWV5ltYWAD4V01b1PubCgfEf+/H4ObNm3j9+jUAfLTr9hhBpiSn56LitSRuc32+uLgYlZWVUFNTEznBlpWViWzH/DDjWmMyMzNRV1cHWVlZNu+GhoaQk5NDUVFRmzhoawrmrvFt27bhn3/+AYfDwf3790WqezNtUE9PT2Lts9zcXAANp+WiNrgpKSlSq7kzmjLTpk3D4cOHsWnTJgDAP//8w/7mU+9bwL+maOnp6W0mQJe2DbVFfcnLy6NPnz74/vvvcf78eYwYMQI8Hg9nzpxhfyPtnM6Puro6hg0bhs2bN+Py5ctQUVFBUlKSxPMrc7IqrnyysrKkztunQHusQ8RhaGgIHx8fqKurIykpCfPmzRM7tzdFezi6vHXrFsrLy6GsrCzWCbAktMXaUhTM+NGavvSxYNqkjY2NyPL4mG1SEiSZY8TBrH/z8/PFtnVR6wIVFRXWHKOt6pSZ28S9LyMjQ2gdwo8ka/i22LNJQ2vTYrQhrly5IvD3qFGjhH77OfW1tuazE0rw06FDB1bC1NhfANCwWeBfoDAUFhayTksY2ySgwWkbAFy+fLlFk4uLiwuAhg2kpN7ipbGZbgwj2WQ2co05ceKE1O8WB7PZDg8PF9qIAw1mC3l5eWy58/tQ+FA4OTmBw+HgyZMniI+PFwq/ceOGyPbRo0cP6Orqora2FqdOnRIKr6ysxNmzZ9k0GsN827FjxwTMWICGxREjoGE84LfEtwZz0ldbWyuxVJ/xiSCqDJhv4HA4iIuLE6kZ8OTJEzx79gwcDkfAg/PHIDc3l9UI+eqrr0Q6LG0pkvRhRm2Rf6KrrKxs9vSSX1Vd0k0m01/F9XkmvKKiQmT6J0+ebFZAdebMGda3CD/+/v4AADs7O1YKr6ioCCcnJ9A0DR8fH4m+oS0wNTVlTQhE9UtmwSjqFghxMGX35s0bkSfSbTkWMkJY/rx/yn2LQV9fH2ZmZqirq2uz8pC2DX2I+rKxsQEgWC/MnB4QENAmGgmamprQ09MTSqcpmMW3KDvk+vp6kWuU1tLcWPMh0pJmHcLEbUsV5B49euD48eNQVVXFs2fP4Obm1mKBpJ+fH5KSklr8h3GGLQ3MTRDDhg1r1al1W6wtRWFnZwcNDQ2kpKSwZgafKkwZiGqTtbW17Hz4qSJqjhFH9+7d2XWsqJsY+Pc7jWH2Lm01HzDrZH9/f5Hjuq+vLwDBdQg/sbGxSExMFHrOrOGVlJQETPWZ8d3X15d1Bv6hkHZ/yODq6goZGRncvXsXr1+/ZutElFDic+prbc1nIZTYvHkzrly5IqT18OLFC1y9ehVAg5S+MXJycvDw8EB4eDj7rKioCKtXr0ZtbS169uwpsJG0sLDA6NGjUVZWhtmzZwtJU2maxtOnT7FlyxaBa90GDx6M3r17o6SkBPPmzRNy3JWZmSmkpsw4r4qOjpbYBq0xjDOc2NhYgYXN+/fv4e7uLpGNb0thzBbCw8OFNuLAv9oAt27dAiCdk8uWoq+vzw6u69atE6ibhIQE/Prrr6ydMj8cDoe9qvXgwYMIDQ1lw8rLy/HTTz+hpKQE+vr6GDlypFB85tuYb22sCcEIaBISEqCkpCTURsPDw7F9+3ahK6Sqq6vh5eUFoOGEWVK7WH19fRgZGeH169ciT98MDAwwfPhwAMCaNWsEpOcZGRlYu3YtAGDkyJFinau1NW/fvoWfnx8mTJiA169fQ1NTE9u2bWuTdx86dAhTp07FpUuXhFTWS0tLsW/fPtbR0IQJE9iwrKwsDBkyBJ6enkKaCTRN4/bt22xZWVhYsBoqzaGuro5OnTqhqKhI5IlA586dQVEU6urq8Ntvv7HCBZqmERgYiAMHDjTrX6S0tBTr1q0TGCsvX77MXpna+GriFStWsCr0np6eQmPs27dvERgYyLZHSUlNTcXGjRvx5MkTgfGtvr4eJ06cQFlZGTp27ChSIyQmJgYAWrR5NzExgZqaGgoKCnDgwAF2gVJbWwsvLy+cO3dO5BggjkuXLsHT01PIdrSiooK9VpXfLO1T7FuiYG6nOXjwILy9vQUEWDU1NQgODmb92kiKNG1I2vras2cPAgIChAS1L1++ZBfk/PUyZMgQ2NnZISsrCwsWLBDqd3V1dYiIiMDq1avZsmDs0cPDwwWucKNpGsHBwUhOTgaHw5G43zs6OrLXGvJvht6/f4+tW7c2q/0kDUwba85hblvQmnXIh8qnmZkZ/vrrL3Tq1AkxMTFYvHjxJ217XVRUxG4+Wmu6wZRpbGxsm/rxUFBQwA8//ACgYRwJCgoS2ghmZ2fDy8tL7Cb4Y8EItENCQtgbIYAGs40ffviB1aRoT1o6x4iDw+Gwtyl5eHggLCyMDWP2O+Jwc3ODuro6rly5gp9//lnIf0FFRQWCg4MlXpMxvnhSU1Ph7u4u0OfOnj3Ljg/iTFLk5OSwZs0agTV8YmIifv31V/b9/OYbkydPhpGREWJiYrBy5UohzUvmdqh169ZJlP+mkHZ/yKCpqYkvv/wSNTU1WL9+PSoqKmBtbc1quvDzOfW1tuaz8Cnx9OlTBAQEsCo/nTt3xtu3b9nO7ODgIHIg7927N1RUVDB79mwYGhpCWVkZKSkpqKmpgYaGBnbs2CGk2vXLL7+gvLwcoaGhmDhxIrS0tKCtrY3q6mpkZ2ezEvdZs2axcWRkZLB//37Mnz8fCQkJGD16NJvPvLw8FBUVQVdXV2BDMHToUOzdu5e9rkhHRwcyMjIYN26cxNL2rl27Ys6cOfD29saGDRvg4eGBrl27Ij09He/fv8evv/6KDRs2tLS4m0RdXR2mpqas4KXxRpwRUtA0DUVFRVhbW7dp+uLYsmULkpKSkJycjGHDhsHU1BR1dXVITU2FtbU17O3tWXt9fqZOnYqnT5/iwoULWLhwIfT09KCmpoa0tDS8f/8eampq2Ldvn8jNoL29PTgcDmiahqysrNDJrqOjIy5fvgyapmFjYyO0yH737h2OHz+O48ePQ01NDbq6uuDxeMjJyUFFRQXk5OSa9IosigkTJmD37t24cuUKlixZIrKcMjMzkZiYiJEjR7IqaampqeDxeLC0tGTv8G5rDh8+zG4campq8PbtW1aNG2jQkNi2bVubeU1nfH48fvwYHA4H+vr6UFNTQ2lpKV69esWaXYwdOxYzZswQiPfmzRt4eHjAw8MDXbp0wRdffIG6ujrk5eWxqu+6urotsvfjcDgYPnw4zp49i3HjxsHU1JQ9LWCcd65evRqLFi1CYGAgrl+/Dn19feTn5+PNmzcYN24ccnNzm1zAL1myBF5eXrh9+za6d++OoqIidqKeNWuWkFmMmZkZ9u3bh1WrVsHDwwOHDx+GsbExFBQUUFRUhFevXoGmabi6ukr8nQDYU5vAwEAoKyvDwMAAHA4Hubm5KCkpAYfDwfr164W8hVdVVeH27dtQVVVlBY2SICcnh5UrV8Ld3R0eHh44deoUdHR0kJOTg9LSUixduhTnz58XaG9NUVxczNZ/t27dBOaAqqoqqKioCI2t7dm3JGXgwIFYt24d/vjjD+zatQteXl4wNjZGZWUlcnNzUVNTg23btrVIS0WaNiRtfaWmpuLw4cPYsmUL9PT0oK6ujrKyMmRlZYHH48HU1FTgulMOhwMPDw8sWrQIUVFRcHV1hZ6eHrp27cpercssnH///XcADarCV69exdWrV9GxY0cYGhpCXl4e+fn57Mnr999/L7GGVOfOnbF06VLs3r0bW7duxcGDB6GlpYX09HRwOBz8+OOPbSaIZRgxYgRSUlLw/fffg8vlsv1sz549be5AsTXrkBEjRiA0NBTu7u44deoU66x5/fr1El2r2BSMH7L58+cjPDwcy5Ytw4EDB1oknPxYXL58GXV1ddDV1W31QU7//v2hqqqKmJgYDBo0CPr6+ujQoQOcnJya9U/QHBMnTkRBQQE8PT2xatUquLu7w8DAADRNIz8/nz1Bdnd3b1U6rcXKyoq92Wz+/PnQ19dH586dkZKSApqmsXHjRmzZsqVd8yjNHCOOqVOnIjw8HDdu3MCcOXPY/U5ycjKUlJQwb948HDp0SCiepqYmDh8+jMWLF+PUqVMICAhA9+7doaSkhNLSUmRnZ4PH40ns40tTUxO7du3C8uXL8ffff+PKlSvsrRnM7RfLli0TqXkMNAgZ7ty5I7SGBxo04ZYtWybwe0VFRRw5cgRubm4ICQnB9evXYWhoCDU1NZSXlyM7Oxu1tbVNOqBuCdLsD/kZPXo0wsLCcO/ePfb/4vhc+lpb81kIJdatW4c7d+4gKioK+fn5yMnJgaKiImxtbTFq1ChMmjRJ7Em4h4cHvL29cfHiRaSkpEBFRQUDBgzAypUrRTqnU1RUxKFDhxASEoLz58/j2bNnSEhIgKqqKoyNjWFra4thw4YJSbe0tLQQGBiIU6dO4erVq0hLS0NBQQE0NTVhb28vJDQxMDDAoUOHcPjwYSQkJLALt5aaO/z444/Q0dHBqVOnkJWVhaqqKtjY2GDevHn46quv2lwoATRsxpOTk0VuxBmzhfz8fJEb8Q+FhoYGAgIC4OnpiRs3biAtLQ1aWlqYP38+lixZItZZJIfDwfbt2+Hk5ISAgAAkJiay9zEPGjQIbm5uYjfJ6urqMDExQUpKipAZCyBouiJqoWFnZ4dNmzbh4cOHSElJQUZGBmpra6GpqQkXFxfMnTuXtS2TlAkTJmD//v24fPmySKFEly5dcPr0afj6+iI4OJjVqKAoCiNHjsSsWbPaxOGRKDIzM9nrmZSUlKCiogIHBwf07NkTI0eOlPjkUVJWrVqFr776Cg8ePMDTp09RWFiIxMREdOjQAV988QWsra0xbtw4oRN5MzMz1ht2eHg4Xr58iczMTNTU1KBz58748ssvMXjwYEycOFGsZ3xxbNiwAZ06dcKtW7eQlJQk5I9i0KBBOHr0KA4cOMB6/Tc2NsaSJUswdepUsZMdg62tLf7++294eHggNjYW79+/h6WlJWbOnIlx48aJjDNo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2cMHTq0Rd9pZGSEX3/9FWFhYUhISEB2djaqq6uhrq6OESNGYNasWayJEj+3bt1CZWUlZs6cKfGtMwxTp06Fqqoq/vrrL1b4TFEUZsyYAVdXV/bGJkkYNmwY6urqEB4ejoyMDCQnJ4OmaXzxxRfo378/5s2bJ3SvfHv2rZYwe/Zs9OnTB8ePH0d0dDSSk5OhoqICiqLg7OwsdsHYFNK0IWnqa9GiRTAxMUFkZCRevnyJhIQEyMvLw9zcHMOGDcPMmTOF+qSGhgb8/f1x4cIFBAUFsWN8ly5dYG5uDgcHB7i4uLDtrVOnTti5cyfCwsIQFxeH/Px8vHv3DmpqanB2dsaUKVMwaNCgFpWPm5sbVFVVcfLkSXacd3JywsqVK8WaPbQGNzc38Hg8BAUFITU1ldUC+VDaAtKuQ8aOHYuysjKcOXMGWVlZ7GFHW/k86dOnDw4ePIiFCxfi7t27WL16Nfbu3Svyetv2hNHYGzNmTKt9QigrK+Po0aPYv38/4uLi8OTJE/B4POjq6rZFVrF06VIMGDAA/v7+iIqKQnJyMjp27AhtbW307dsXLi4uLXYq+yHYsWMHevTogQsXLiA/Px+VlZUYMGAAvv/++xbd6vShkGaOEYeMjAz27dsHPz8/BAYGIjs7G507d8awYcOwcuVK1q+ZKHr27IkrV67g5MmTuH37NjIzM9l1qKOjIwYOHNiiA4JBgwbh/Pnz8Pb2RlhYGF68eIFOnTph4MCBmDVrVpMakGpqaggMDMS+ffsQGhqK4uJi6OvrY8yYMXBzcxM5fxoaGuLChQsICAjAtWvXkJaWhtzcXHTr1g29evVCv379WC3G1iLt/pDBxcWF1SCRlZVt9rDnc+lrbQmHltZ24BPm0aNHmDVrVquuDyQQPld++eUXnDx5UiqP84TPk5kzZyIyMhK+vr5SXcH7qTB58mQkJiYiJCQEOjo67Z0dAoFAIBAIBMJH4LPwKUEgECRnyZIlUFZWZm/wIBA+B+7du4cnT55g1qxZRCBBIBAIBAKB8D/EZ2G+QSAQJEddXR07d+7E8+fPUVxcDHV19fbOEoHQLJWVlVi2bBm+++679s4KgUAgEAgEAuEjQoQSBMJ/kMGDB2Pw4MHtnQ0CQWLayu6TQCAQCAQCgfB5Qcw3CAQCgUAgEAgEAoFAILQL/0lHlwQCgUAgEAgEAoFAIBA+fYimBIFAIBAIBAKBQCAQCIR2gQglCAQCgUAgEAgEAoFAILQLRChBIBAIBAKBQCAQCAQCoV0gQgkCgdBiBg8eDC6Xi5cvX36wNGbOnAkul4tHjx59sDQ+JB+jjD4GL1++BJfL/Si3uXh4eIDL5cLDw+ODpwUAjx49ApfLxcyZMz9Keh+Lj1lnkvBf6QvtBZfLBZfLbZN3fWpt42OO88z4wv8nMTHxg6f7OXLu3Dmhsvpc52ICgfB5QIQSBAKBIIKbN2/Cw8ODLFoJnxznzp2Dh4cH2eR/Jpw4cQIeHh4oKytr76wQAOjo6MDW1ha2trZQUlKSKM6+ffvA5XIxd+5csb9Zt24du4F/9eqVyN/ExMSAy+XCysoK79+/lyr/DM7OzuByubh8+bLI8JqaGvTs2RNcLhezZs0S+56NGzeCy+Xixx9/ZJ9paGiwZaSsrNyqfBIIBIIkEKEEgUBoMfr6+jA2NoacnNwHS0NHRwfGxsZQVFT8YGk0xc2bN+Hp6UmEEoRPjvPnz8PT0xO5ubntnRWCBPj6+sLT05MIJUTQHuP8hAkTcPr0aZw+fRqGhoYSxbG3twcAxMbGoq6uTuRvoqOjRf6bn5iYGACAlZVVq7/Zzs6uybTi4uJQXV0NAHj69Clqa2tF/o6Jz3wjAAwcOJAtIwsLi1blk0AgECShQ3tngEAgfH74+Ph88DR27NjxwdMgEAgEQvvxuYzzNjY2kJOTQ2VlJRISEtCzZ0+B8MLCQmRnZ0NfXx85OTmIjo7GmDFjhN7DCAD69OnT6jzZ29vj8uXLzQpAmDzFx8fDxsZG4DfFxcXIyMhoszwRCASCtBBNCQKBQCAQCAQCQQyKioqsxgCz2eeHEQxMnDgRnTt3Fiko4PF4ePz4MQBBrQRpYYQIaWlpePv2rdg8MSYnovLEPNPQ0ECPHj1anScCgUCQFiKUIBAILUac47r379/j4MGDGDt2LGxsbGBlZQUnJydMmTIF+/btQ2lpqcRpiHOA1pxjtKacJV66dAkzZ86Eg4MDLC0t0bdvX4wePRpbt25FSkoKgH8dwZ0/fx6AoJ2wtE4Yw8PDMXv2bNjb28PGxgbTp0/H3bt3Rf62rKwMZ86cwZIlS+Di4oJevXrBxsYG48ePx5EjR1h13Mbw10lkZCTc3Nzw5ZdfwszMDDdv3mR/V1VVhWPHjuHbb7+FnZ0devbsiZEjR8LT0xPv3r2T6HtSUlLA5XJhb28vNj8AMG/ePHC5XPj7+0v0Xn6KioqwefNmDBgwANbW1nBxcYGHh0eT6ZWVlWH//v0YM2YMbGxs0Lt3b4wfPx4nTpwQq7rcFAUFBdi6dSuGDBkCa2trODg44LvvvkNwcLDQb2/fvg0ul4v58+cLhXl5ebHtJzs7WyCstLQUZmZm6NOnD+rr65vMD+OYMzIyEgAwa9YsgbZ57tw5kfGCgoIwceJE2NjYoE+fPli4cCFevHghNp36+noEBgZixowZsLe3h7W1NYYOHYpt27ahuLi4yTy2lLq6Opw6dQqTJ09m26Orqyv27t0rZO5A0zS+/PJLcLlcvHnzRiAsPz+fLYc///xTKJ3FixeDy+UiJCREKCw+Ph6rV6/GwIEDYWVlBUdHR3z//fdiT6AlHecYZ4GMmc3XX3/d5o4Dq6qqcOTIETYvNjY2GDt2LI4cOYKqqqpm4586dQrffPMNevXqBUdHRyxfvhxpaWlNxrl27RrmzZuHL7/8ElZWVhg0aBA2bdoklY8TceP52rVr2Tb9+vVrbNq0CU5OTrCyssKwYcNw+PDhZvtLW8MIAaKiooTC+E0gbGxskJaWJtRXkpKSUF5eDhkZGdja2rY6Pz169ICGhgZomhYSlPB4PMTGxsLIyAjDhw8XyCM/zLcQLQkCgdDeEPMNAoHQJtTV1WHOnDmIjY0FABgYGEBVVRVFRUV49uwZYmNjMXjwYFhbW7dL/nbs2IGjR48CALp16wZ9fX1UVFQgOzsbycnJ0NXVhampKRQUFGBra4usrCwUFRXByMgI6urq7Ht0dHRalO61a9ewe/duKCsrw8DAAHl5eYiOjkZ0dDQ2btwodPPDnTt3sGHDBsjJyUFTUxOmpqYoKytDUlISnj9/jlu3bsHPzw/y8vIi0wsODsbevXvZ9PjtlgsLCzFv3jwkJydDVlYWOjo6UFJSQkZGBjw8PBASEgJfX1906dKlyW8yNTVF79698eTJE9y8eRMjR44U+k1BQQHCwsIgLy8vMrwpSkpKMHHiROTn58PExATKyspIS0uDp6cnwsPDcezYMXTs2FEgTlpaGubNm4e8vDzIyclBV1cXHA4HL168wPPnz3Hnzh14e3uLLbfGPHv2DPPnz0dJSQkUFBRgamqKkpISREREICIiAg8ePMDvv//O/t7e3h4yMjKIiYlBXV0dOnT4d3plhAhAg2DBwMCA/X9UVBRomoadnR1kZWWbzJOKigpsbW2RnJyMiooKUBQl4IROQ0NDKM7evXtx6NAhaGtrw8jICBkZGQgNDUV0dDTOnDkDY2Njgd9XVFRg8eLFePToETgcDrS1taGjo4OsrCycOHECISEh8PPzg76+vkTl2BTV1dVYtGgRHj58CAAwMjKCkpISUlJScOjQIVy5cgU+Pj7Q09MDAHA4HNjb2+P69euIjIyEq6sr+y7+TS1/eQMQ2LQ1PqH28/PD77//Dh6PBxUVFZiYmKCwsBB37txBaGgo3N3dMWXKFPb3LRnnGGeB8fHxqKmpgZWVlUD7U1FRaVX5vX37FnPmzEFiYiI4HA5MTEzA4XCQlJSExMREXLt2DcePH4eqqqrI+L/88gtOnjwJbW1t9OjRAxkZGQgJCcH9+/dx/Phx9O7dW+D3dXV1+L//+z8EBQUBaBhHTU1NkZWVhX/++QfXrl3D0aNHhUwbWsOrV68wbtw4lJSUwNTUFB06dEBmZib27NmD3NxcbN26tc3Sag57e3scPXoUMTExoGkaHA6HDYuOjoaCggKsrKxgZ2eHu3fvIiYmBkOHDhX4DQCYmZm1uu4Z+vTpg5CQEERHR2PIkCHs8xcvXqC8vBxDhw6Furo6jIyM8PjxY/B4PMjI/HseyfQLIpQgEAjtDk0gEAgtxNnZmaYois7JyWGfhYSE0BRF0QMHDqRTU1MFfl9eXk4HBgbSL1++lDiNGTNm0BRF0RERERI9Z9i/fz9NURS9f/9+9llRURFtbm5OW1hY0Ddu3BD4fV1dHR0aGir0vjVr1tAURdFnz56VOM/8MGVkaWlJ//bbb3R1dTVN0zRdX19PHzlyhKYoirawsKBfvHghEC8xMZG+ffs2XVVVJfA8Pz+fXrp0KU1RFO3l5SU2PXNzc3rv3r10TU0NG1ZVVUXzeDx62rRpNEVR9OLFi+m8vDw2vLi4mF60aBFNURT9ww8/CLw3JyeHpiiKdnZ2Fnj+zz//0BRF0XPnzhX5/YcOHaIpiqJXrFjRfGH9f5i6s7S0pEeNGkVnZ2ezYfHx8fRXX31FUxRF79y5UyBeZWUl7eLiQlMURW/atIl++/YtG/by5Ut68uTJNEVR9K5duwTiRURE0BRF0TNmzBB6H1OeixYtoktKStiw27dv07169aIpiqL//vtvgXhjx46lKYqinzx5wj6rqamhe/XqRTs5OdEURdE//vijQJzffvuNpiiK9vb2lricmusDTJ1ZWlrSvXv3pm/evMmGlZWVsfFXrVolFHf16tU0RVH01KlTBfpxZWUlvWnTJpqiKHrSpEkS55WmRY8XNE3Tf/zxB01RFN23b186NjaWfZ6fn09PmjSJpiiKnjx5skAcHx8fmqIoevPmzQLPN2zYQFMURTs5OdGWlpb0+/fv2bDExESaoija1dVVIM6DBw9oLpdL29nZ0ZcuXaJ5PB4bdv36ddrGxoa2tLSkk5KS2OfSjHPivl9SKIqiKYoSer58+XKaoijaxcVFIC+pqalsf2hcx0zbsLCwoC0tLelLly4J5H/ZsmVsf+cvQ5qm6T179tAURdEjR44UaOO1tbW0h4cHG48Z6yRBXFtmxl9LS0t68eLFdHFxMRt2/fp12szMjKYoik5LS5M4LVFzQ0soLS1l001OThZ6Pn36dJqmaToqKoqmKIr+7bffBOIz9fXrr79Klb4omP4wfvx4kc/PnDlD0zRNr1u3jqYoik5MTGR/U15eTpubm9MURdEJCQli02huvCEQCIS2gJhvEAiENiEzMxMAMGzYMCHbVGVlZXz77bfQ1dVth5wB2dnZqK+vB0VRAqdJACArK4uBAwfC0dHxg6Tdo0cPrF+/nj0hlZGRwYIFCzBo0CDU1dXh+PHjAr83MzODs7MzFBQUBJ5raWlh586dkJOTw8WLF8Wm5+TkhJUrVwrcjKKgoMCejpubm2Pv3r3Q1tZmw7t06YJdu3ZBW1sbV69eRV5eXrPf5erqCiUlJYSFhaGgoEAonDF/GT9+fLPvakxtbS22b98ucBpvaWmJjRs3AgD8/f0FTE3Onj2LzMxMDBw4EFu3boWamhobpquri3379kFJSQn+/v5Nmn8wBAUFITc3F2pqati1a5fASbOzszMWLVoEADh8+DBommbDHBwcAAie2sfFxeH9+/cYNWoUdHR0hE7xmf8zcduS2tpaLFmyBF9//TX7TEVFBRs2bAAAIROi5ORkXL58GVpaWjh48KBAP1ZUVIS7uzusrKzw5MkT1jZeWioqKnD69GkADVcS8p/Ka2lpYe/evejQoQNiY2MFypMpJ1HlqKGhgfHjx6O2tpbVZAD+rY/GZbx7927QNI1ffvkFo0ePFjj5Hjp0KFauXIna2lr4+fmxzz+VcS4rK4s1RdmxY4dAXnr06IHt27cDaGjLOTk5QvHr6uowZcoUjB49mn2mrKyMHTt2oEuXLsjNzRUwUyouLsbx48ehpKSEgwcPolevXmxYhw4dsHTpUgwdOhS5ubkiTWSkRVVVlc0Tw9ChQzF48GAAwL1799osrebo3LkzKIoCIGgKwWggMLdh9OzZE/Ly8kLmEuK0dVoD867ExESBMbGxQ03mb/48xcbGor6+Hp07dwaXy22zPBEIBII0EKEEgUBoE5hNbnh4OEpKSto3M41gTC4yMzObtKX/EEybNk3k8+nTpwMAHjx4IBRWW1uL4OBgbN68GfPmzcO0adMwdepUzJkzBxwOB5mZmWLtxceNGyfy+fXr19lwUSYMSkpK6NevH3g8nkib6cZ06tQJw4cPB4/Hw4ULFwTCHj9+jIyMDGhpaeGrr75q9l2NsbGxgaWlpdBzFxcXaGpqorKyUmBTzHzbpEmTRL5PS0sL1tbWePfuHeLj45tN//79+wAanNYpKSkJhU+bNg1ycnLIzc1Feno6+5zZIPBvmJmydHR0hL29PfLz81m/EoxZTqdOnUR+b1swefJkoWdmZmZQUFBAeXm5gIM8phyHDx8uUuVfRkYGzs7OANBqfwgxMTGorKyEpqYmhg0bJhT+xRdfsAJEpj4AgMvlQk1NDenp6axfiYKCAmRlZcHe3p4VLvLnj6kD/s1gXl4enj9/DjU1NZHpA2DT53/XpzLOPXjwADRNo1evXgICAgYbGxtYW1uDpmmRYwzw7xjET8eOHfHtt9+yaTDcu3cP1dXV6Nevn1jTHVHl1VpGjhyJTp06CT1nvlmUwOVDwrQhUdd/Mht/eXl5WFlZ4cWLF6ioqADQIER6/fo1OBxOm5pKcLlcqKiooL6+XkAQFxMTg27durFXnjICE/6xncm3nZ2dgEkHgUAgtAfEpwSBQGgThg4dCn19fSQlJWHQoEHo168f+vTpA3t7e1hZWQmcQn5stLS04OrqiuDgYIwbNw62trZwdHSEnZ0d7OzshPwTtCXiPJqbmJgAAF6/fo2KigrWN0BBQQHmz5+P5OTkJt9bWloqMt/i0mPeFxgYiGvXron8zatXrwA0OA2UhIkTJ+LcuXM4f/48Fi5cyD5ntCTGjh3brJ8EUXTv3l3kcxkZGRgbG6OwsBAZGRlwcnIC8O+3eXl5sX5DGsOccIvS6hD3W6aOGqOiogJNTU3k5uYiMzOTLXPGr8Tjx49ZvxKRkZGQlZWFnZ0dCgsLcenSJdavRFRUFHg8HmxtbaUqp+bo0qWLWNt1dXV15OXlobKykj2FZsrxzp07ePbsmch4RUVFACRvI+JgriE0NjYW++2mpqa4du0aWx9Ag18JOzs73Lp1i/Urwa9twlzdyDyjaZrdiPFrSiQlJQFoEACK2pwzcQHBb/1UxjmmTJq6McHU1BTPnj0TKD8GOTk5dsPaGKbdM3UE/Fte8fHxmDp1qsh45eXlAFrfNvgRl0fGz09lZWWbpSUJdnZ28PPzExJKyMjICFy3aWdnh8ePHyM2NhZOTk5sG+zRo4eAj6LWwjjNvHv3LqKjo9G/f39kZGTgzZs3AsI2Q0NDdOvWTcAhZlteT0ogEAithQglCARCm6CoqIhTp05h//79uHbtGm7duoVbt24BaNBUWLJkCSZOnNhu+fvjjz9gYmKCM2fOsI4mgYYT/ylTpmDFihVCJhNtgbgFaNeuXdl/v3v3jhVKrF27FsnJybC2tsayZctgYWEBNTU11hxj0KBByMvLE3ubBL9jS36YDQNzy0hTSGLiAAC2trbo3r070tPTERsbCxsbG1RVVeHq1asAxGttNIcoh40MTLnxqyoz3/b8+fNm3y3JjQTMRqe5fOTm5grkQ1VVFRRFsc41LS0tERsbCwsLCygrK7On+JGRkZg4caLIzXJbIkrLg4E5GeU3P2HKMTs7W+iWkMZI2kbEwZQxfz9oDFP+jW+FcXBwwK1bt/Do0SO4uroKaKN07NgRPXv2RFxcHKqqqpCVlYWSkhJ0795dIC3mZo937941a4rC/62fyjjXmvIDADU1NbGn46Li8QscmhM6tLZt8CNuPBPVflvLmTNncPbsWaHn33//PQYOHAjgX02J/Px85OTkoFu3boiPj4eZmZmA01k7Ozt4e3sjOjoaTk5OH9ShZJ8+fVihBCBe2GBra4uQkBBkZmbiiy++YAWPbWlOQiAQCNJChBIEAqHN0NTUxK+//oqff/4ZCQkJiImJwc2bNxEVFYWNGzdCSUmpxTcxiEPcYlTcyZm8vDyWLFmCJUuWIDMzEzExMbh//z5u3ryJo0ePoqKi4oN4ci8uLhZ58s9/pSGjnlxYWIiwsDB07NgR3t7eIm/BaMm1qvwwG1Rvb28MGDBAqneI4ttvv8WOHTtw7tw52NjY4Pr16ygvL4eNjY3QzQ6S0tS1k0y58at0KykpoaysDMHBwU2eHEsKU1aMVoCk+QAaFvgvXrzAo0ePwOPxUFlZyQodDAwMoK2tzW6iP6Q/CWlgvtvd3V3saXhbp9X4ak9+mPJvXMaN/Uo8evQI6urq7Am/g4MDYmJiEBsbi9TUVADCGy8m/V69euGff/5pUd4/5jgnjtaUH9Bww03jmxiaisekt2DBAvz444/SZ/wTJi8vT6SAin8c6Nq1K4yMjNg5REdHB7W1tax5BIOtrS04HI6QoOBDCACYd8bFxaGmpkasAIQRSkRHR8PIyAjV1dVQUlL6YKZjBAKB0BKIERmBQGhzZGVlYW1tjdmzZ+PkyZOYN28eALR48S8KZnEsbuPa3Akv0HD14IQJE/Dnn3/iwIEDAIBz586hrq6O/U1bqWHz+xzgJy0tDUDDtXrMCVtubi6ABhVfUQKJlJQUqdWVmQ2bJJoSLWHs2LGQk5PD1atXUVVVxZpuTJgwQep3MmXTGB6Px6qUGxkZsc/b+tuYd4t7X3l5OQoLC4XyAUBAG0KUJoS9vT3rz+DFixdQUlKClZVVm+S7tXyoNiIKRmCVnp6O+vp6kb9h8tG4jM3MzNC5c2ekp6cjMTERmZmZAps9foej/FoU/JiamrLp8/f7lvAhx7nmYMqEEbqIQlz5AQ1mK+LGSqb/8cdjyutjtI32YtmyZUhKShL609hZL9PWoqKixGolqKqqwtTUFHFxccjJyWHL+kMIJaysrKCoqIjq6mrExcUhOjoaysrKQs4r+Z1dMoKL3r17C1xfTCAQCO0FEUoQCIQPjq2tLQCwG7nWwDhZi4uLEwp79eqVgFO8luSttrZWwHEdY8ohibp/U5w6dUrkc39/fwBA//792WeMj4g3b96I1AQ5ceKE1Plg7IsDAgLw/v17qd/TGA0NDTg7O6O8vBy+vr6IiIiAoqIiRowYIfU7Y2NjkZiYKPT8xo0bKCwshJKSksDJJPNtvr6+4PF4UqfLwPiqOHPmjEgh0OnTp1FbWws9PT0hLZg+ffqAw+Hg8ePHCAsLg6ysrMCGhdkce3l5ob6+Hra2ti3eFDDtpLVtszFMOV6+fLlJLZG2wM7ODkpKSnj9+rXI2xry8vJYswimPhhkZGTY+vf09AQgKHSwtbWFnJycgFCi8WbQ0NAQXC4X5eXlIlX2pUHcOMfUV1uaNTg5OYHD4SAuLg5Pnz4VCn/y5AmePXsGDocjMMbwI2psqq6uxpkzZ9g0GAYNGgR5eXk8ePCgSUHI/wL8m3t+Z5GNsbW1RU1NDXvDkr6+PrS0tNo8P3Jycqzjz+DgYOTk5KB3795CvlrMzc2hpKSE6Ohotl8QfxIEAuFTgQglCARCm3D8+HEcP35cyJFgcXExfH19AaBN1EQZ297AwEABb+P5+flYtWqVyE1peHg4tm/fzjprY6iuroaXlxeABntwfh8CjPAjOjq6VXbLqamp+OOPP1BTUwOg4bT/2LFjuHPnDjp06IDZs2ezvzUxMYGamhoKCgpw4MAB9ltqa2vh5eWFc+fOCVz12RKGDBkCOzs7ZGVlYcGCBULaCHV1dYiIiMDq1avZvEoK461/37594PF4cHFxEbCvbilycnJYs2aNgGf9xMRE/PrrrwCAqVOnCqiWT548GUZGRoiJicHKlSuFrjStqalBaGgo1q1bJ1H6o0aNgq6uLkpKSvDTTz+x/geAhms0Dx48CABwc3MT0qjp0qULTE1N8e7dO0RERMDc3FygLJhTfGbDLc3JKdM2JbklpSVYWFhg9OjRKCsrw+zZs4UEfzRN4+nTp9iyZUurbz1QVlZmb6b57bffBDbWBQUF+OGHH1BbWwsbGxuR1/U2Lkd+bZSOHTvC2toasbGxKC4uhpGRETQ1NYXe8dNPP0FGRga//fYb/P39hdp9QUEBfHx82KtLAenGOaa+Gl9j2hoMDAwwfPhwAMCaNWsENLIyMjKwdu1aAA23V4i6LaNDhw44deoUgoKC2Gfv3r3DmjVrUFxcDF1dXbi6urJh3bp1w9y5c1FXV4f58+eLvNEjKSkJO3fuFHCm+F+E6bOMCQfjRLIxjKCCEfI01dc9PDzA5XLZq06lzROTlihhg6ysLHr37o2cnBy2LbZGc+PEiRMYPHjwBzf1IhAI/xsQnS0CgdAmvHr1Cr6+vti+fTu++OILdO3aFZWVlcjKykJtbS20tLSwcuXKVqfj5OQEJycn3L9/H1OnToWhoSEUFBSQmpoKY2NjTJs2DT4+PgJx3r17x24m1NTUoKurCx6Ph5ycHFRUVEBOTg7u7u4CG8yhQ4di7969CAoKwpMnT6CjowMZGRmMGzdOSJ23KVauXIndu3fj7NmzMDAwQF5eHmsH/tNPP8HMzIz9rZycHFauXAl3d3d4eHjg1KlT0NHRQU5ODkpLS7F06VKcP3+eNfNoCRwOBx4eHli0aBGioqLg6uoKPT09gXpiTnJ///33Fr27f//+0NLSYjdqLSkfUUyePBl37tzBsGHDYGpqirq6OvZ01sbGBsuWLRP4vaKiIo4cOQI3NzeEhITg+vXrMDQ0hJqaGsrLy5GdnY3a2tomnQLy07FjR/z555+YP38+bt68iQcPHsDExAQlJSV4+fIlgAbzFFHXbQING+Tk5GTQNC3kL8LQ0BDa2tqss0Bp/Em4urrC398f3t7euHHjBrp16wYOh4MFCxa02l/IL7/8gvLycoSGhmLixInQ0tKCtrY2qqurkZ2dzWqOzJo1q1XpAMDy5cuRkJCAsLAwTJo0CcbGxlBUVERKSgqribJr1y6RcZlyo2lawJ8EfzjjH0BcGTs5OWHr1q34+eefsXXrVuzatQtGRkaQlZVFYWEh254XLFjAxpFmnBsxYgRCQ0Ph7u6OU6dOQU1NDQCwfv16mJubt7jcGLZs2YLMzEwkJiZi5MiRbBmkpqaCx+PB0tISmzdvFhlXS0sLzs7OWLVqFXbu3AkNDQ2kp6ejsrISioqK2Llzp9DtPitWrEBRURECAwMxb948qKurQ09PD3V1dcjNzWX93YgSIv2X0NXVxRdffIFXr16hurpapJYE8K9QghlXP6RWAvPu5tKys7NDWFgYqqurIS8vL/I6WUkpLy+Xai4iEAgEURChBIFAaBOmTJkCNTU1REREIDs7G4mJiejQoQOMjY0xaNAgzJ07V6SfBGnw8PCAp6cngoODkZubi65du2LGjBlYvnw5qyrLj52dHTZt2oSHDx8iJSUFGRkZqK2thaamJlxcXDB37lzWZprBwMAAhw4dwuHDh5GQkIBXr16J3GQ2x/Dhw2FpaYlDhw7h+fPnqK+vh52dHdzc3DBo0CCh30+dOhWqqqr466+/kJKSgpqaGlAUhRkzZsDV1ZX12SANGhoa8Pf3x4ULFxAUFITExEQUFBSgS5cuMDc3h4ODA1xcXFp8C4msrCzGjRuHQ4cOQVdXt9WbEjU1NQQGBmLfvn0IDQ1FcXEx9PX1MWbMGLi5uYm8CtXQ0BAXLlxAQEAArl27hrS0NOTm5qJbt27o1asX+vXrx54sS0LPnj1x6dIlHDlyBHfv3kVSUhIUFRXh4OCAqVOnCpwiN8be3h4nT54EIHqDZm9vj8uXL0NRURHW1tYS54mhT58+2L17N3x8fJCamspe+SjtbSf8KCoq4tChQwgJCcH58+fx7NkzJCQkQFVVFcbGxrC1tcWwYcOkdmLKj4KCAry9vREQEICLFy8iJSUF9fX10NfXx9ChQzFv3jyoqqqKjGtubg4VFRWUl5fD3t5eSGPF0dERhw4dAtD0afDEiRNhZ2cHHx8fREREID09HbKystDS0oKLiwu+/vprgdNraca5sWPHoqysDGfOnEFWVhZ79Sq/Bo40dOnSBadPn4avry+Cg4ORlZUFAKAoCiNHjsSsWbOavO5406ZN6NGjBwICApCamgoFBQW4uLhgxYoVIq/DlZGRwa+//gpXV1f8/fffrJlVp06doKOjAxcXFwwdOhR9+/Zt1Xd9DvTp0weXLl0CINp0A2gQXujo6LCaW021w9evXwNo0FaSht69e0NOTg61tbWQk5NDz549Rf6OP6/W1tYf5MYpAoFAkAYO3Zb3KREIBEIbMX36dERHR8Pf35/YvX4GrFu3DufOncPSpUuFNBkIBAKhvWGE2Z/iGDVq1CikpKQgMDBQrEChvZg5cyYiIyPh6+v7n9eCIRAI7QfRlCAQCJ8kzCmiuJNSwqdDRUUFrl27xpq3EAgEwqfK2bNnERYWBgDYvn07DA0N2zU/ZWVlSE1NRd++fT8ZgcTdu3dZTSNGs4dAIBA+JEQoQSAQPjnS0tKQnp4ORUXFdl8wEprHy8sLlZWVcHZ2hp6eXntnh0AgEMSSl5fHmlRIe8VyWxIbGwuapuHm5tbeWWEpKipifbIQCATCx4CYbxAIhE+GhIQEbNy4Eampqaiursa0adOwZcuW9s4WQQSJiYn4/fffUVhYiMzMTMjJyeHMmTMCjjsJBAKBQCAQCITmIJoSBALhk6G8vByJiYno2rUrXF1dsXr16vbOEkEMZWVliIyMhLy8PCwtLbFy5UoikCAQCAQCgUAgtBiiKUEgEAgEAoFAIBAIBAKhXZBp7wwQCAQCgUAgEAgEAoFA+N+ECCUIBAKBQCAQCAQCgUAgtAtEKEEgEAgEAoFAIBAIBAKhXSBCCQKBQCAQCAQCgUAgEAjtAhFKEAgEAoFAIBAIBAKBQGgXiFCCQCAQCAQCgUAgEAgEQrtAhBIEAoFAIBAIBAKBQCAQ2gUilCAQCAQCgUAgEAgEAoHQLvw/eJh9b9OJAqgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "fig, axes = plt.subplots(8, 2, figsize=(11, 28), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "\n", + "freq = scipy.fft.rfftfreq(lc_ar4.n, d=lc_ar4.dt)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + "\n", + " w, h = signal.freqz(taper, fs=1, worN=np.linspace(0, 0.01, 200))\n", + " h = np.multiply(h, np.conj(h))\n", + " axes_rows[0].plot(w, h, color=palette[idx])\n", + " axes_rows[0].axvline(x=NW/N, color=\"black\", linewidth=0.6, label=\"Frequency\\nW=4/N\")\n", + " axes_rows[0].set(\n", + " ylabel=f\"K = {idx} \\nPower\",\n", + " xlabel=\"Frequency\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[0].legend()\n", + " \n", + " fft_tapered_data = scipy.fft.rfft(tapered_data)\n", + " psd_tapered_data = np.multiply(fft_tapered_data, np.conj(fft_tapered_data))\n", + " axes_rows[1].plot(freq, psd_tapered_data, color=palette[idx], label=f\"K={idx} eigenspectrum\")\n", + " axes_rows[1].plot(freq_analytical, psd_analytical, color=\"black\", alpha=0.56, label=\"True S(f)\")\n", + " axes_rows[1].set(\n", + " xlabel=\"Frequency\",\n", + " ylabel=\"Power\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[1].legend()\n", + " \n", + " idx += 1\n", + "# fig.suptitle(\"Left: DPSS taper spectral windows \\n Right: Eigenspectra for AR(4) time series with given K\", y=1)\n", + "axes[0][0].set_title(\"DPSS taper spectral windows\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Eigenspectra for AR(4) tapered time series\", fontsize=18, pad=15)\n", + "\n", + "text=\"Note the marked increase in bias in the eigenspectra as K increases.\\n\\\n", + "The left-hand plots show the low frequency portion of the spectral windows (of DPSS tapers)\\n\\\n", + "K = 0 to 7. The thin vertical line in each plot indicates the location of the frequency\\n\\\n", + "W = 1/256 = 0.003906 = 4/N. Note that, as K increases, the level of the sidelobes of\\n\\\n", + "spectral windows (of DPSS tapers) also increases until at K = 7 the main sidelobe level\\n\\\n", + "is just barely below the lowest lobe in [-W, W].\"\n", + "fig.text(0.5, -0.06, text, ha=\"center\", fontsize=18)\n", + "fig.tight_layout()\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "1948275f", + "metadata": {}, + "source": [ + "### Summary of Multitaper Spectral Estimation\n", + "We assume that $ X_1, X_2, ..., X_N $ is a sample of length $N$ from a zero\n", + "mean real-valued stationary process $ \\{X_t\\} $ with unknown sdf $ S(\\cdot) $ defined over the interval $[-f_{(N)}, f_{(N)}]$, where $f_{(N)} \\equiv 1/(2\\Delta t)$ is the Nyquist frequency and $\\Delta t$ is the sampling interval between observations. (If $\\{X_t\\}$ has an unknown mean, we need to replace $X_t$ with $X_t' \\equiv X_t - \\bar{X_t}$\n", + "in all computational formulae, where $\\bar{X_t} = \\sum^N_{t=1}X_t/N$ is the sample mean.) \n", + "\n", + "- __Simple multitaper spectral estimator__ $\\hat{S}^{mt}(\\cdot)$ \n", + "\n", + "This estimator is defined as the average of K\n", + "eigenspectra $\\hat{S}^{mt}_k(\\cdot),k = 0, ..., K - 1$, the $k^{th}$ of which is a direct spectral estimator employing a dpss data taper $\\{h_{t,k}\\}$ with\n", + "parameter $W$. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in\n", + "distribution to $S(f)_{\\chi^2_{2K}}/2K$ \n", + "\n", + "- __Adaptive multitaper spectral estimator__ $\\hat{S}^{amt}(\\cdot)$ \n", + "\n", + "This estimator uses the same eigenspectra as $\\hat{S}^{mt}(\\cdot)$, but it now adaptively weights the $\\hat{S}^{mt}(\\cdot)$ terms. The weight for\n", + "the $k^{th}$ eigenspectrum is proportional to $b^2_k(f)\\lambda_k$, where $\\lambda_k$ is the eigenvalue corresponding to the eigenvector with elements $\\{h_{t,k}\\}$, while $b_k(f)$ is given by \n", + "\n", + "\n", + "
\n", + " $\\large{b_k(f) = \\frac {S(f)} {\\lambda_k S(f) + (1-\\lambda_k)\\sigma^2\\Delta t}}$\n", + "
\n", + " \n", + "The $b_k(f)$ term depends on the unknown sdf $S(f)$, but it is estimated using an iterative scheme. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in distribution to $S(f)_{\\chi^2_\\nu}/\\nu$." + ] + }, + { + "cell_type": "markdown", + "id": "83e9db1b", + "metadata": {}, + "source": [ + "This summary, by no means, is an exhaustive explanation of the multitapering concept. Further exploration of the topic is highly encouraged. Use the references as the starting point." + ] + }, + { + "cell_type": "markdown", + "id": "be873c7c-f961-435d-a490-9311a917eb4b", + "metadata": {}, + "source": [ + "## Creating a `Multitaper` object" + ] + }, + { + "cell_type": "markdown", + "id": "be421421", + "metadata": {}, + "source": [ + "Pass the `Lightcurve` object to the `Multitaper` constructor\n", + "### Other (optional) parameters that can be set at instantiation are:\n", + "(Given here for completness, feel free to skip as they are later showcased)\n", + "\n", + "`norm`: {`leahy` | `frac` | `abs` | `none` }, optional, default ``frac`` \n", + " The normaliation of the power spectrum to be used. Options are\n", + " ``leahy``, ``frac``, ``abs`` and ``none``, default is ``frac``. \n", + " \n", + "`NW`: float, optional, default ``4`` \n", + " The normalized half-bandwidth of the data tapers, indicating a\n", + " multiple of the fundamental frequency of the DFT (Fs/N).\n", + " Common choices are n/2, for n >= 4.\n", + " \n", + "`adaptive`: boolean, optional, default ``False`` \n", + " Use an adaptive weighting routine to combine the PSD estimates of\n", + " different tapers. \n", + " \n", + "`jackknife`: boolean, optional, default ``True`` \n", + " Use the jackknife method to make an estimate of the PSD variance\n", + " at each point. \n", + " \n", + "`low_bias`: boolean, optional, default ``True`` \n", + " Rather than use 2NW tapers, only use the tapers that have better than\n", + " 90% spectral concentration within the bandwidth (still using\n", + " a maximum of 2NW tapers) \n", + " \n", + "`lombscargle`: boolean, optional, default ``False`` \n", + " Whether to use the Lomb (1976) Scargle (1982) periodogram when\n", + " calculating the Multitaper spectral estimate. Highly recommended for\n", + " unevenly sampled time-series. Adaptive weighting and jack-knife\n", + " estimated variance are yet not supported. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bf507678", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "print(mtp)" + ] + }, + { + "cell_type": "markdown", + "id": "7e7342a5", + "metadata": {}, + "source": [ + "### The results" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "041fb778", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3hUZdrH8e+cKZlMekLvPfQiTQFFUSxgBRuKFdeOrmUtu+6+uvZ1Lauuupa194K6gtgLKioIiPTeQkvv08/7xyQDMYWUmTR+n+vyksyc85x7wsmQe+7nuR+LaZomIiIiIiIiIg1gNHUAIiIiIiIi0vIpuRQREREREZEGU3IpIiIiIiIiDabkUkRERERERBpMyaWIiIiIiIg0mJJLERERERERaTAllyIiIiIiItJgSi5FRERERESkwZRciohIq2CaJpMmTSI9PZ2tW7dWev6nn34iPT09/N+oUaM444wz+Pzzz6scb8WKFYwePZqioqIqn7/yyitJT0/nlVdeqfD4pZdeyr///e9axZyRkcGf/vQnjjzySIYMGcLEiRO54oorWLRoUa3Oj7TvvvuOF154oUmuLSIiLZ+SSxERaRWWLl1KRkYGAHPnzq32uH/+85+8+eabPPjggyQnJ3P11VdXmcw98sgjnH322cTHx1d67rvvvuPXX3+tcvxLL72UF154gYKCghrjzc/P56yzzmLDhg1cf/31PPPMM1xzzTUYhsHSpUtrPDdavv/+e1566aUmubaIiLR8tqYOQEREJBLmzp2Ly+Wib9++zJ07lyuvvLLK49LT0+nXrx8AY8aM4cgjj+TDDz9k9OjR4WO2bNnCggULuO222yqd7/P5uPvuu/njH/9Y5fOjRo0iOTmZDz74gPPOO6/aeD/55BOysrL44IMPSEtLCz8+ffp0TNOs9etuCoFAgEAggMPhaOpQRESkGVHlUkREWrxAIMD8+fOZNGkS06dPZ8OGDaxZs+aA58XGxtKtWzd27dpV4fE5c+aQnp5Ojx49Kp3z0ksv4XQ6mT59erXjHnvssbz//vs1XrugoAC73U5SUlKl5ywWS/jPt9xyC9OmTePzzz/n+OOPZ8iQIcyYMYMNGzZUOCcYDPL0008zefJkBg8ezHHHHcecOXMqjf3ZZ59x+umnM3ToUMaOHcsf/vAHMjIyeOyxx/jvf/9LRkZGeOrwLbfcUimGqVOnMnToUJYvX85jjz3G2LFjK13j99OFJ02axP3338/TTz/NhAkTGDlyJPfddx+mafLNN98wdepURowYwZVXXkl+fn6N3zcREWm+VLkUEZEW78cffyQrK4spU6YwcuRI7rzzTubOnUv//v1rPC8YDLJ7924GDRpUabwRI0ZUOj4zM5MnnniCp556CsOo/vPZESNG8Nxzz5Gfn19l8ggwaNAgvF4vN910ExdffDEDBw6sdsydO3dy7733cu211+J0OnnssceYNWsWn376KTExMQDceeedvP/++1x55ZUMGjSI77//nj//+c8kJydz1FFHAfD+++9z8803M3XqVK688kpM0+THH38kJyeHM844gy1btvDTTz/x+OOPA5CamhqOISMjgwceeIArr7ySNm3a0KVLlxq+s5XNnTuXoUOHcs8997By5UoeeeQRgsEgixcv5tprr8XtdnPnnXfy4IMP8ve//71OY4uISPOg5FJERFq8jz76iMTERA4//HAcDgfjxo1j7ty5XH/99RWqgBBKKP1+PwUFBTzzzDOUlpZy/vnnh583TZNVq1Zx8sknV7rOAw88wIQJEypMoa1K//79MU2TFStWMH78+CqPOeyww7jwwgt58cUXmTt3LnFxcYwfP54ZM2Ywbty4Csfm5ubyxBNPcMghhwChxHTy5Mm89957zJgxg61bt/L6669z7733ctpppwEwbtw4MjMzefzxxznqqKMIBoM8+OCDTJ48mYceeig89tFHHx3+c7t27XA4HAwfPrxSvHl5ebzwwgsMGDCgxtdenZiYGP71r39htVo54ogj+OKLL3jllVf45JNP6Nq1KwBr1qzh/fffV3IpItJCaVqsiIi0aF6vl88//5xjjjkmvAZw6tSpZGRksGzZskrHn3LKKQwaNIjDDjuMF154gfvuu49evXqFn8/Pz8fr9ZKSklLhvKVLl/LJJ59w0003HTCm8nMzMzNrPO7WW28NjzlmzBgWLFjAxRdfzOuvv17huLS0tHBiCdC5c2cGDRrE8uXLAVi4cCGGYTB58mT8fn/4v8MOO4w1a9YQCATYvHkze/fuZdq0aQeMvyrt27evd2IJofWtVqs1/HX37t3p3LlzOLEsfywnJwev11vv64iISNNR5VJERFq0b7/9loKCAiZOnBju0Dp27FgcDgdz586tNL314YcfpmvXruzatYtHHnmEW2+9lSFDhtC+fXsAPB4PQKVmNffccw9nnXUWCQkJFTrBut1uCgsLSUhICD9Wfm5tkqTu3bsza9YsZs2aRU5ODrNmzeLhhx/m7LPPDldd92/4Uy4tLS2cvObm5hIIBBg5cmSV18jMzCQ3NxeAtm3bHjCmqrRp06Ze55VLTEys8LXdbq/wPSt/zDRNfD6fmgWJiLRASi5FRKRF++ijjwC49tprKz338ccfc+utt1aomPXp04d+/foxZMgQ+vfvz5QpU3jiiSe44447gH1Vx99vJbJ582aWL1/Oiy++WOHxBx54gIceeohVq1aFHyssLASodr1ldVJTU5k2bRp33XUX2dnZ4YQuOzu70rHZ2dn06dMnfB2bzcbrr79eaRpw+bjFxcXAgaupdRETE4PP56vwmBryiIgcvJRciohIi1VcXMzXX3/NiSeeyJlnnlnhudWrV3Pvvffy008/VVrDWK5bt26cccYZvPvuu1xzzTWkpaXhcDjo1KkTO3bsqHDsU089RSAQqPDY+eefz3nnncexxx5b4fHyc6vqNlsuJyenQsOcclu3bsXhcFSo6mVnZ7NkyZLw1NidO3eyatWq8BTXQw89lEAgQGFhYbVrPHv27En79u15//33mTRpUpXH2O32cOW2Ntq3b09xcTF79uwJV36///77Wp8vIiKti5JLERFpsb744otwQ55hw4ZVeO6QQw7hySef5KOPPqo2uQS45JJLePvtt3n55Zf54x//GD535cqVFY4bNWpUlef36NGDMWPGVHhsxYoVJCQk0Ldv32qvO2fOHP73v/9x6qmnkp6ejt/vZ+HChbz22mvMmDEj3AUWQtXUm266Kdwt9tFHHw1XOQF69erF2WefzfXXX8+sWbMYMmQIHo+H9evXs2XLFu6++24Mw+BPf/oTN954IzfccAMnnngiFouFH3/8kalTpzJkyBB69epFVlYW7733Hn379iUlJaXGrrCHH344TqeTP//5z1x00UXs2LGDN954o9rjRUSkdVNyKSIiLdbcuXPp0aNHpcQSQlW4E044gblz53L77bdXO0bnzp056aSTeP3117n00ktxuVxMnjyZW2+9FbfbjdPprHNcCxYsYPLkyTVuVzJx4kR27NjBW2+9xa5du7BarXTr1o3bbrutUhW2U6dOXH755Tz44INkZGQwePBgHnzwwQoJ6P/93//Ro0cP3n77bR599FHi4+Pp06cPp59+eviYk046iZiYGJ566imuueYaXC4Xw4YNC1dQTzjhBH766SceeOABcnJyOO2007jvvvuqfQ2pqak8+uij/OMf/+Cqq65i0KBBPPjgg0yZMqXO3zMREWn5LKZpmk0dhIiISHPi9XqZOHEif/vb3zjhhBPqdG5hYSHjxo3j+eefr7baWRe33HIL69at47333mvwWCIiItGkrUhERER+x+FwMGvWLF566aU6n/v6668zfPjwiCSWIiIiLYmmxYqIiFRh5syZVW4zciDx8fH85S9/iWJkIiIizZOmxYqIiIiIiEiDaVqsiIiIiIiINJiSSxEREREREWkwJZciIiIiIiLSYGroU0vBoEkgEGzqMCqx2Qz8/uYXl7QOur8kmnR/SbTpHpNo0v0l0dQc7y+r1cAwLDUeo+SylgKBIHl5JU0dRgWGYSEtLZ6CglKCQfVlksjS/SXRpPtLok33mEST7i+JpuZ6fyUnuzAMa43HaFqsiIiIiIiINJiSSxEREREREWmwVj8tdtCgQfTp0weAwYMHc/fddzdxRCIiIiIiIq1Pq08uk5OT+eCDD5o6DBERERFpJUzTxOfz4ff7m9WaOGkdDMOC1+tt1PvLYgHDsGKx1Nyw50BafXIpIiIiIhIJpmlSVJRPcXEBe/ZYCAabVzdPaT2ysowmuL8sxMUlEh+fVO8ks1knl4sWLeK5555jxYoVZGZm8tRTT3HUUUdVOObVV1/lueeeIzMzkwEDBnDbbbcxdOjQ8PP5+fmcdtppOJ1OrrvuOsaMGdPYL0NEREREWoHyxDIxMRWXKxa/X1VLiQ6bzdLI95eJ1+uhoCAHgISE5HqN0qyTy5KSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NRWAL774gvbt27NhwwYuvfRSPvzwQ+Lj4+sVz4H2dWls5fE0t7ikddD9JdGk+0uiTfeYRJppmvsllvHYbAagyqVER1PcXzabHYCCghwSE5PrVb1s1snlxIkTmThxYrXPP//885x11llMnz4dgDvuuIOvv/6aOXPmMGvWLADat28PQJ8+fejXrx+bN29myJAhdY7FZjNIS6tfUhptKSlxTR2CtGK6vySadH9JtOkek0jx+Xzs2WPB5Yot+8Wf8P9FoqEp7i+XK5aiIgtJSU7sdnudz2/WyWVNvF4vK1eu5Iorrgg/ZhgG48aNY9myZUBoSmxsbCwOh4M9e/awbt06unbtWq/r+f1BCgpKIxF6xBiGhZSUOHJzi7WYXCJO95dEk+4viTbdYxJpoeYqwbKpikFsNgO/X5VLiY6mur/8fpNgMEhOTjE2W8VUMTExFrvdWuP5LTa5zM3NJRAI0KZNmwqPp6WlsXXrVgA2btzI3/72NwzDwDAM/vznP5OcnFzvazbXf5yCQbPZxiYtn+4viSbdXxJtusckUnQfycGkvu+dLTa5rI5pmuH5wYcccggfffRRE0ckIiIiIiLS+rXYieIpKSlYrVaysrIqPJ6Tk1OpmikiIiIiIg23ZMliJkwYRUlJSY3HnX76Sbz77puNFFXz9dxz/2HWrPOaOoxG02KTS4fDwaBBg/jhhx/CjwWDQRYuXMjw4cObLjARERERkWbi7rtvZ8KEUTz88D8qPXfHHbcxYcIoHn/8kXqPP2/e/5g69ehKjz/zzEtMnXpK+OsJE0bx/fcL6n2dlqCq1zhjxnk89NBjUb/21Vdf2qC/x0hp1sllcXExq1evZvXq1QDs2LGD1atXk5mZCcBFF13EG2+8wZw5c9i4cSO33347breb0047rSnDFhERERFpNtq1a89nn32C1+sNP1ZcXMSCBV/Trl37qFwzJSUFp9MZlbEbyufzNdq1XC4XSUnJjXa9ptas11yuWLGC888/P/z1XXfdBcDVV1/N7NmzmTJlCjk5OTz66KNkZmYyYMAAnn322fAelyIiIiIiB7uBAwexefMmvvvuWyZNOgaAzz//lH79+mMYFWtNEyaM4v77H2b8+MOB0L7zxx57BI8++hSHHDKqwrFLlizmnnvuCJ8HcNFFf2DWrMs4/fSTmDFjJtOnn8Xpp58EwM03XwdAhw4deeed/7F9+zYef/xhVq1aidvtplev3lx55bUMGza8Qjw33ngr33zzJb/+uox27dpx7bU3cNhhE8LHbNq0gccf/xfLly8lLi6Oww6bwNVXXxfe2/7qqy+lT59+gMmnn85n0KDBPPDAv6r8Xn344Rxef/1l9uzZTadOnZkx4zymTj0ZCCWljz76EN988yVFRYWkpbXlrLNmcPrpZ1f7Gp977j/88MN3PPfcy0CoklxaWkLv3n159903CQSCnHfeRZx++ln861//5LPPPiEpKYkbbriJQw8NvUa/388//nE3S5YsJicnh44dO3LWWedy8smnhcdctmwJy5Yt4Y03XgHg7bc/pGPHTgf83kRas04ux44dy9q1a2s8ZubMmcycObORIhIRERER2WfOq7tZ81txo12v/5A4Tju3Q53PmzLlJObN+zCcXM6b9z9OOulU5s+fW+9YhgwZxjXX3MALLzzLyy+H1lfGxroqHffMMy9x0kmT+etf/86oUWMwjNB2FiUlJYwbdziXXXYVNpudDz54j5tuupY33/ygwg4Pzz77FFdeeQ3XXfcnPvzwff7yl5t4/fX3aN++A4WFhVxzzRWceup0/vjHGygpKeWxxx7i7rtv5957/xkeY+7cDzn99LN46qn/Vvt6Pv30Y55//hmuu+4m+vTpy+rVq7j//rtITEzk8MOP5O233+D777/lzjvvp3379uzcmUFBQX6Nr7EqP//8E23atOOJJ55l0aKfefjhf7B48c+MHz+B5557mXfffZM77vgr7747F5fLRSAQoH37Dtx11/0kJiaxdOkvPPjgfXTo0JExYw7l2mtvZPv2bfTp04+LLroEgOTklFp/byKpWSeXIiIiIiLScMcfP5XnnvsPWVmZFBcXs2nTBiZNOqZByaXdbic+Ph6LBdLSqm+omZKSAkB8fEKF49LT+5Oe3j/89ezZ1/HNN1/y008/cNxxU8KPH3PMcUyZEqoMXn31H/n554W8//67XHbZVbz77psMGDCQSy65PHz8TTf9hXPPPZ3c3BxSUkIzGrt378Fll11V4+t57rn/MHv29RxxxJEAdOrUmXXr1vDBB+9x+OFHsnfvbrp27cbQocOwWCx06NDxgK+xKsnJyVxzzfUYhkG3bj149dUXiYlxMH36WQBceOEfeOedN1m/fh3Dhg0nJiaGWbMuC5/fqVNnli1bwpdffsaYMYcSHx+PzWbD6XRWuHZtvzeRpORSRERERKSe6lNFbAppaW0YNWosH388l8LCAiZOnITLFdekMZWUlPDcc/9h4cLvyMnJJhAI4PF42LNnd4XjBg4cXOHrQYOGsGXLZgA2bFjPokU/MXny4ZXGz8jYEU6g+vcfUGMspaWlZGTs4O67/497770j/Ljf7w8nkccfP5U//vEqzjlnOoceOp4JE45g5MjRdX7dvXr1rjAdOTk5hR49eu33dTJWq5W8vJzwY++++xZz537Inj278Hq9+Hw+RowYWeN1avu9iSQllyIiIiIiB4GpU0/iqacep6SkhP/7v7uqPMZisWCaZvhrv98ftXj+/e9H+OWXRVx55bV07tyFmJgYbrzx2koNd8q2sK8UJ4SSwsMPP7LKqmTbtm3Df3Y6Y2uMpbQ0tLXKn//8f6SnV0xEbbZQytS//0DefvtDfvzxexYt+olbbrmBY445lptvvu3AL7aK8fZ/Lb9/DEI7YQB8/vknPPHEv5g9+3oGDhyEyxXH888/zZ49ew7wmmr3vYkkJZciIiIiIgeB8eOP4IEH7iU21lVt1Ss5OYWcnOzw1xs2rKtxTJvNTiAQPOC1bTYbwWCgwmO//fYrU6eeHJ6GWlBQQGZm5YRp5coVTJ58fPjrVatWMG5cqBrXr186CxZ8Q8eOnbBaq1/neCCpqWm0adOWnTszOProY6s9LiEhgcmTj2fy5OMZO/Yw/v73v/KnP/0ZwzCqfI2R8NtvvzJs2AhOPXV6+LHt27fjcDjCX9vt9krXjtT3pi6a9VYkIiIiIiISGTabjTffnMOLL74Wrvz93ogRI3n33bfYsGE9v/32K88880SNY3bs2JHi4iKWLFlMXl4ebre7yuM6dOjE4sU/k52dRUFBAQBdunTj66+/ZP36daxbt4bbb/9LlY1wvvjiUz7++CO2bdvKE0/8i23btnLKKaFEa9q0M8jNzebvf7+NNWtWkZGxg4ULv+P++++uy7cGgAsvnMVLL/2Xd999k23btrJhw3o++OA95sx5B4A333yVL774lG3btrB16xa+/fZrunbtFp7iWtVrjIQuXbqxatUKFi36kW3btvLvf/8rPC24XIcOnVi5cgW7d+8iLy+PYDAY0e9NbalyKSJSZtcON78tKSIny4sZBNOE7r1jGT8ppalDExERiYi4uJq3oLj66j9y9913cPnlF9GpU2dmz76O6667utrjhwwZximnTOOvf72Z/Pz88FYkVY37+OMP8/7779K2bTveeed/zJ59HffcE7pWSkoqF1wwi/z8vErnzpp1KfPnz+OBB+6hbdt23Hnn/XToEFrr2rZtO5544jmeeuox/vjHK/H5fHTs2JnDD59Yt28McOqpp+N0xvL666/w+OOP4HK56NOnH+ecE9oa0emM5eWXXyAjYztWq5WBA4dw113/qPE1RsIpp0xj3bo1/PWvt2AYVo499gSmTj2Z9ev37aoxY8ZM7r77ds4993Q8Hk94K5JIfW9qy2LuP6laquXzBcjLK2nqMCowDAtpafFkZxcRDOqvUSLrYLu/Vi8v4s3/7qryuatu7U7b9o4qn5P6OdjuL2l8usck0vx+P1lZGbRp0xmbzYbNZuD3H3g6qDTM7/fdPFg01f31+/t8f8nJLuz2mqfXqnIpIgc90zT5en5ofcmRx6fSd2AchmFh5dJCvvsil58X5DH19HZNHKWIiIhI86Y1lyJy0Nu0roQ9O7107BrDxONS6dzNSccuMYyblILNbmHZzwWUlkR+gb6IiIhIa6LkUkQOej98lQfA+EkpFRocuOKsDB2VgM9rsurXoiaKTkRE5OD13XeLD7opsS2ZkksROai53QE2rSshLt7KgKGVmxz06B3aFysny1fpORERERHZR8mliESd2x1otk0Ptm4sxQxCr3QXVmvltuyJyaGl6QV50dtEWkRERKQ1UHIpIlGVnenlX3du4dWndzZ1KFXatLYUgF79Yqt8XsmliIiISO0ouRSRqPF5g7z1/C5Ki4NsXl/aLJvibFoX2mKoZz9Xlc8nJIaSy8J8JZciIiIiNVFyKSJRUVoS4LVndrJnpxcsgAlbNpQ2dVgVFOb7ydztJa2tneQUe5XH2B0GsXEGBfl+tC2wiIiISPWUXIpIxG3dVMrTD21n8/pS2ndycOzJbQDYvL6kiSOrqDyeXulVVy3LJSbZ8PtMSkua57pRERERkeZAyaWIRIzXE2Teu3t5/rEd5Gb5GDA0jouv7cqgEaEurJvXN6/KZfmU2F7VTIktp3WXIiIijeOKKy7mm2++DH+9fv06Zs06j6OOOowLLzyHgoJ8Tj75ODIz9zZhlFIdW1MHICKtg2mavPREBju2unG6DE6Y1pahIxOwWCzExBiktbWTudtLYYE/vI6xqePdtK4UiwV69Km6mU+5xKSy5DLfT4fOMY0RnoiISINNmDCqxucvuugPzJp1WaPEsmbNap599knWrFlFaWkpbdq0ZfDgodxyy1+x20NLUxYs+Jri4mKOOOKo8HlPPvkY7dq15+67HyA21kliYhInnHAizz33H2655a+NErvUXtP/hicirUJpSZAdW90kpdi45LqulRLIXukusjPzmfvOXk4/vyM2W+VtPxpT9l4fBXl+OnWLIdZlrfFYVS5FRKQl+uCD+eE/z5v3P+bMeYdnnnkx/Fhs7L6ZO6ZpEggEsNkinx7k5uZw3XVXccQRR/Lww0/gcrnIyNjBV199QTAYAELJ5TvvvMUJJ5yExbLvd4SMjO2cccbZdOjQIfzY1KknceGF53LVVX8kISEh4vFK/WlarIhERG62D4AOnWOqrEwePjmV1DZ21iwv5uN3m34qS22nxIKSSxERaZnS0tqE/3O5XBiGEf5669YtHHvsEfz44w9cdNE5HHnkoaxfv5a7776d2267qcI4t912E3fffXv4a4/Hw2OPPcwppxzP5MmHc8UVF7NixW/VxvHbb8vxeNzcdNNf6Nu3H507d2HMmEO5+ea/EBPjBCA3N5clSxYxfvzh4fMmTBhFRsYOHnnkn0yYMIrnnvsPAN269aBdu3Z89903EfxuSSSocikiEVGeXKakVd11NTHJxoVXd+HRu7ewclkRJ57ZrsInk41t0/raJ5cJSUouRUSkagmzL8fx8dxGu573hKkUPvZUxMb7z38e5+qrr6N9+w4kJSXX6pxHHnmArVu3cOed95GW1obPPpvPddddxWuvvUPbtu0qHZ+amorX6+W7777liCOOrPLf/+XLl+FyuejatVv4sQ8+mM8f/nABp512OlOmnFSh0pqePoBff13KCSecWPcXLVGj5FJEIuJAySWEKoAdOsWwY6ubnCwfaW0djRVeJbszPAB07eE84LHllUvtdSkiIq3NH/5wJSNHjq718bt37y6bYjuP1NQ0AC688BJ++OE7Pv30Y84994JK5wwePJRzzjmfv/3tFhISEhg4cAijR4/l+OOnhqe17tmzi9TUtAqJZ1paGwzDwOVykZbWpsKYbdq0YePGDfV5yRJFSi5FJCLyapFcAnTqFkoud27zhJPLYNDEMBq3iukuDeKIsWB3HHh1QHharJJLERH5nUhWEZtC//4D6nT8pk0bCAQCnHXWqRUe93q99OnTt9rzrrzyGmbMmMnixT+zcuVvvPrqi7z66os8++xLtGnTFo/Hg8NR+6Z5DkcMHo+7TrFL9Cm5FJGIKK9cJqfV/LbSuZsTyCdjm5shIxP46ds8vpyXzUWzuzRaJ9Zg0MRTGgxPdz0Qp9OKI8aiabEiItLqOJ0VO6ZbLBZM06zwmN+/79+/0tISbDYb//3vq5Wmt8bFxdV4rZSUVCZPPp7Jk4/nkkuu4OyzT+P999/lkksuJykpmcLCglrHXVhYQHJySq2Pl8ahhj4iEhG5OaF/eJJTD1S5DE1D3bk99GnjupXFeNxBFnyWE90A9+P1BjFNiHHW/i3QFW/F4w7i95sHPlhERKSFSk5OIScnO/x1MBhk06aN4a/79u2H3+8nPz+PLl26VvgvJSW11teJj48nLS2N0tLQHtj9+qWTlZVJcXFRrc7fsmUzffum1/p60jiUXIpIgwWDJvk5PuITrTgOMM00ra2dGKfBrh0eAgGTzD1eAFb9WsR3X+Qw7929eL3BBscUCJgs/DqX7ExvpefcpaHxnbG1fwuMiwttV1JSHGhwbCIiIs3ViBEjWblyBZ9//gnbtm3l0UcfJD8/L/x8t249OProyfz973/l22+/ZufODFauXMHzzz/D0qW/VDnm998v4M47/8bChd+zY8d2Nm/exJNPPsbmzZvC3WH79k0nMTGJ335bfsAYPR4Pa9euZsyYQyPymiVyNC1WRBqsIM9PMHjg9ZYAhmGhY9cYtqwvJWOrOzzV1DTh8/+FPilt1zGGUeOSGhTTiqWFfPJ+Fgs+y+W8KzrTscu+Kbf1SS5d8WXJZVGAxFpOpxUREWlpDjtsPOeeewGPPPJPTDPIGWfMYPTosRWOue22v/P888/w6KMPkpWVSUpKKoMHD+WYY46rcswePXricDj4178eZO/ePTidTrp378Fdd/2DQw4ZBYDVamXKlBP57LP5HHrouBpj/P77BbRr157Bg4dG5kVLxOg3JBFpsPB6ywNMiS3XpZuTLetL+WVhPgDdejkpyPNjtVrIzvSxYmlhg5PLNctD02pKigO88lQGf/y/HtjtoWTSE04urbUeL64suSwuUuVSRERanunTz2L69LPCXx9yyCi++25xlcdedtlVXHbZVdWOZbfbufTSK7n00itrde3Onbtw8823HfC4M888lwsuOIvMzL3hLU3eeed/lY57++3XueCCS2p1bWlcmhYrIg2WVTa1tTaVS4Ce/ULNA1YsCSWA3XvHcu1fe3DVrd1JSLKyZUNpg7b98HmDbFhTgiPGQuduMRQXBcjL2TeeuzSUINatchn6LK5EyaWIiEhUtGnThptuuo09e3ZXe0xBQT4TJhzB5MlVV0mlaSm5FJEGWb64gPnvZwHQuVvtur127RmL1WohEAg1x2nb3oHFYsEwLAwangBmaA1mfW1cV4LPa9J3QBxtO4Riys/1hZ+v15pLVS5FRESibuLEo2qc7pqYmMS5515QqVOtNA9KLkWk3kzT5KO3MwkGTY47tQ39BtXcgrycw2HQtZcz/HV5Aggw+JDQZsqLf8gPJ591VT4ltv+QeJJSQhXH/Nz9K5d1nxbrUkMfERERkRopuRSRevN6TLyeIG3aOTjsyJQ6fYrYq68LAIsF2rTbN522c7cYuveOJXO3l2U/136/q3Ied5BVvxZhs1voO9AVTi7336OyPtNi4/Zr6CMiIiIilSm5FJF6K6/ilVf16qJ83WVKmh37ftuXWCwWjj2lDQBfzsvG66l5WxKPJ8irT2eEp9EuX1yA12MyeEQ8zljrfpXLhk2LLe8WW6zKpYjIQWnf56fa71has9D9Xd9Zx+oWKyL1Fk4u4+ueXHbu5mT0hCQ6d3NW+dyAYfGs/rWITetK6D8kvtpxtm4sZf2qEtavKuH6O3qy6PtQB9pR45MBSEoOVUUrTIt11yO5jFPlUkTkYGYYVgzDSl5eFgkJyYADv1+JpkSLpZHvL5NAwE9hYV74Xq8PJZciUm/liZYrrnKSZmzfhhkXh5maVuW5hmFh6untqh27T38Xq38tYvsWd43J5f7J3jMPbacw30/HLjHh5kKJ5ZXLvIatuVRDHxGRg5vFYiEtrSMFBTnk5u7FMAyCwZpn14jUV1PdXzExLlJS2tW7YZKSSxGpt+qmxboeuJe4B+4l0LUbuV8swExOqfPYXXuEKprbN5fWeNz+yV5hvp/EZBsnTGsbflN0OAxi4wwK8vyYponFYqnXmktHjAWrzaLKpYjIQcxqtZKS0haLxSQpKZacnGKCQVUvJbIMw0JKiovc3JJGu78sllBCa7E0bNWkkksRqbeqkktLVhauRx8CwLp9G65/3EPxPQ/Ueew27R3EOA12bvcQCJhYrVV/glZUGKpIHnVCKqltHQwYGofNVvGNMSnFzu4dHkqKA8TF2+q15tJisRAXb6Ug308waGIYaoEuInKwslgM7HY7NptNyaVEnGFYcDgc2GzeFnd/qaGPiNRbVWsunW+/gcXjwT3tDEybDeecd8Dvr26IahmGhS49nPh9JrszPNUeV1wYiqFbr1iGHJJQKbEESEquuB1JeXIZ46zbegJXvBVMKC1R9VJERETk95Rciki97VtzuS9Js3/7FQCll1yGd+JRGNnZ2L/7tl7j75sa6672mKKy5DI+ofqJGL/f69JdGsBmt2Cz1a36GBendZciIiIi1VFyKSL1VmlarN+P/acfMV0u/MNG4D1+KgCOb7+u1/hde4aSy28+zeaT9zMJBCpPDSkumxYbl1B9FTIpZV/HWNM08ZQG6zQltpxLe12KiIiIVEvJpYjUW0lxaHppeXJpW7UCo6gQ36ixYLfjm3A4APYfFtRr/O69Y+k70IW7JMjCr/PYvqVyBbOoMIBhhVhX9W9n5dNi83J8+LwmwWDdOsWWU8dYERERkeopuRSRevv9mkvryhUA+EccAkCgVx8C7Ttg+3UZlqLCOo9vsxmce2lnjjw+FYA9OyuuvQwGTUqKQk16amqZ3b5zaFuSjG3uejXzKafKpYiIiEj1lFyKSL2VFAWw2iw4HKHEzrZ6FQD+9P6hAywW/KPHYgkEsC3/td7XadcxlBzu3VUxuSwtCWCaEF/DlFiAtLZ2nK5Q59niotA02vokl6pcioiIiFRPyaWI1EswaFJSEsAVZw1XDW1rVwPgTx8QPs43PFTFtC1bWu9rte/kAGDvLi8Apmmy5Mf8cKOfmtZbQlnn2e5OAn6TLRtC+2bWq3JZNv23vGIrIiIiIvton0sRqRePO4gZBFfcviTNunYNpmEQ6Nsv/Jh/+AgAbMt+qfe1klPt2B0W9u7yYpomO7a4+fCNvcQ4Q9eOiz/w+smuPZxsWF3C+tUlgNZcioiIiESaKpciUi+/X29pKcjHujODQI+e4HSGj/MPGw6AvQGVS8Ow0LaDA487SH6en8w9oQqmxx1aP1nTNiTluvSIBWDT2lBymZJmr/C8ddMG4m+5AeuqldWOoTWXIiIiItVTciki9fL7PS6ta9cAENhvSiyAmZSMv1dvrFs2Y8nNqff12nUoW3e500v2Xl+F5w40LRagc/cYKOv506a9g9ETksLPWXKySZ5yDLH/fYbk06Zg2bOnyjFUuRQRERGpnpJLEamX3+9xaStLLv39+1c61l++7vLXZfW+3r51lx6yM70VnjtQQx8Ap9NKl25OrFYL089rj8Ox7+3P+fqrGDmhxNfIzcX53ttVjxFrYDG05lJERESkKkouRaRefp9cWteEOsUG+g+sdGz5ukv7siX1vl55x9jdOz1kZ/6+clm75eNnX9KRK2/pRscuzgqPO19/GYCCx54CIOaDd6s832Kx4IqzUlIUwDTNOsUvIiIi0topuRSReikpDq13LF+HGK5c9quhctmAdZedusZgscDWjaXkZPpwxVtp2yFUzUxIrF1znvgEG2ltHRUes2RmYlu3Fn/vPnjOnEGgS1fsS37Bkp9X5Rhx8VaCQcL7ZYqIiIhIiJJLEamXSmsuN28GINCrd6VjfYOHYlos2H6tf3IZ67LSqWsMhfkBAgGTtLZ2pkxvy1FT0sJJZn3YF/8cinHMoWCx4Bs9Bqg+EQ439dHUWBEREZEKlFyKSL1UmBbr9WLs2EagU2eIja18cHw8gX7pWDN2YMnMrPc1e6W7wn9Oa+ugZ18XE49NDe+zWR/2RT8B4B89NvT/ESMBsFUzhTcuTk19RERERKqi5FJE6mX/5NK6fSuWYDC0DUk1/EOHA2BfXv/qZa9++yWX7ew1HFl75cmlryy59I0YFXp8SdX7cmo7EhEREZGqKbkUkXrZt8+lgXVL2ZTYnr2qPb68qU9DOsZ27enE7ghVKX+/drJePB5sy5YQTE4m0LcfAIFBgwCwrl1d5SnajkRERESkakouRaRewmsuXVaMzZuAmpNL37CGN/Wx2Qx6p7uwWKBD54Ynl7bffsXi8eAbNQaM0NuhGZ9AoHOXUMLsdlc6R5VLERERkarVrn+/iMjvlBQHsDss2B0G1lokl/7BQzANo0FNfQBOPrs9udk+Uts0PLm0Lwo18ylfb1mufH2odeMGAoMGV3hOlUsRERGRqqlyKSJ1FgiYlJYG9+sUW5Zc9qg+ucTlIpDeH+uunVj27Kn3tV1xVjp3cx74wFqw//wjsG+9Zbny7VRs69ZUeX1Qt1gRERGR3zsoksvS0lKOOuoo/vnPfzZ1KCKtgrs0AOa+KaLlyWWwZ/UNfQD8w0LrLhvS1CdiTBPbop8wrVZ8ZR1iywX6pQNgXb+u0mmqXIqIiIhU7aBILp966imGDh3a1GGItBolRUGgrIoXCGDdtpVgm7aY8Qk1nucbNhxo2LrLSDG2bcW6dw/+wUMhLq7Cc+Vdb8sbFe1Pay5FREREqtbqk8stW7awadMmJk6c2NShiLQa+29DYmTswOLz1bjeslx55dK2fFk0w6uVfVNix1R6rsbkMs4KFlUuRURERH6vWSeXixYt4vLLL2fChAmkp6fz1VdfVTrm1VdfZdKkSQwZMoQzzzyT5cuXV3j+/vvv5/rrr2+skEVahdxsH888tI1N64uqfL7CHpe1aOZTzj9oCKbV2iwql+X7W/rHHFrpuWCnzph2e5XJpWFYcDgseL3BqMcoIiIi0pI0626xJSUlpKenM23aNGbPnl3p+Xnz5nHvvfdyxx13MGzYMF588UUuueQS5s+fT2pqKp9//jk9evSgZ8+eLF3a8F9mDcPS4DEiqTye5haXtHzrVxWzfYubzz/awxkXdqj0fGlJKLmMS7BiK0vAgr16H/hejHMR6D8A28oVWPfsxuzYMeKx15Z9cahTbGDsoZXjNmwEu3XHunEDRnERJFSc7mu3G3jcQf3sNYDevyTadI9JNOn+kmhqyfdXs04uJ06cWON01ueff56zzjqL6dOnA3DHHXfw9ddfM2fOHGbNmsWvv/7KvHnz+OSTTyguLsbv95OYmMill15a51hsNoO0tPh6v5ZoSkmJO/BBInXg9+YDsPq3QuLiemI1LLz76g7Wry4kJsZKatvQNiDt2rmIX7oDANfQgbhq8zMydgysXEHq5jUwuG/UXkONCgpg1Uro0oWUof2rPqZfX9i4gbT8vdCjYhIc47RSXBQgJSWuRb7xNyd6/5Jo0z0m0aT7S6KpJd5fzTq5rInX62XlypVcccUV4ccMw2DcuHEsW7YMgBtuuIEbbrgBgPfee49NmzbVK7EE8PuDFBSUNjjuSDIMCykpceTmFhMMmk0djrQie/eE7nWvJ8jP3+9l2c8FrF6+b4rs5g3FAJj48a5agwPIb9MRf3bV02j3F9N/CPFAyTffUzruqGiEf0D2r78mMRjEM2osRdXE7OrcjVigcNkKvF16V3jOGurpw57dhThimvXqgmZL718SbbrHJJp0f0k0Ndf7KzExFrvdWuMxLTa5zM3NJRAI0KZNmwqPp6WlsXXr1qhcszn95e4vGDSbbWzSMhXk+8N/fvuFXfj9Jqlt7Uw7twPPPrI9/JzTZWCUrbn0de+JWYv70HdIaNsP26Kfm+y+tf60r5lPdTEEunUHwLJpc6VjbI5QtdLjCWCzq3LZEHr/kmjTPSbRpPtLoqkl3l8tNrmsjmmaWCyVf9mbNm1aE0Qj0jIVliWXFgv4/SYdu8Qw4w+dSEyy0aFzDLszPAC4XBasWzYTTErGTEmt1dj+gYMJxsWH1jz6/WBr/LehfZ1ix1Z7TKBHqEFRVU197GUJpc/bst7wRURERKKpxc7nSklJwWq1kpWVVeHxnJycStVMEambogI/doeFk8/qxJgJSVw0uwuJSaEksHd/V/i4hKK9WEpLCfQ6cKfYMJsN/8jRWEqKsa38LdKhH1gggO2XxZguF/5BQ6o/rIbtSOz20Funz6fkUkRERKRci00uHQ4HgwYN4ocffgg/FgwGWbhwIcOHD2+6wERaOJ8vSGlJkIREG8ee1IETz2xfYV1hn/2Tyz1bAAj07P37YWq+xtjQ9h/lFcTGZF2zGqOoEN+IkWC3V3tcoHuP0PFVJZeO8sqltiMRERERKdesk8vi4mJWr17N6tWrAdixYwerV68mMzMTgIsuuog33niDOXPmsHHjRm6//XbcbjennXZaU4Yt0qIVFYS2GUlIqnq6ateesThjDRKSbNi3hhKvQK+6JpeHAWD7qfGTS/tPC0Mx1DAlFoDYWAIdOmJkbA9N391/DIcqlyIiIiK/16zXXK5YsYLzzz8//PVdd90FwNVXX83s2bOZMmUKOTk5PProo2RmZjJgwACeffZZUlNrt/ZLRCorLAglUgmJVXcDs9ksXHh1F7CA9ZmNQD2Sy0NGYVqtoUTPNEOLOxuJfeH3oRgOG3/AY4PdumPdvQsjYwfBskomEG7io8qliIiIyD7NOrkcO3Ysa9eurfGYmTNnMnPmzEaKSKT1KypPLqupXAJ06BwDgHVT/ZJL4uPxDxmKfdlSrJs2EOjdSPtdmib2hd9jWq34R4854OGB7j2w//wj1q1bKiSX5Q19/KpcioiIiIQ162mxItL4CvND02LjEw/82ZN1c1ly2bMODX3K+I4I7XFp/+brOp9bX9bNG7Hu3YN/2HDM+IQDHl++HYl1W8XtjcLTYtUtVkRERCRMyaWIVFA+LTaxhsolAMFgaBuSlJRab0OyP+8RRwLg+OarOp9bX/YfyqbEHnrgKbGwX1OfrVsqjlM+LdanabEiIiIi5ZRcikgF5Xtc1jQtFsDYtROL2133KbFlfGMOxXQ6sX+/oFLDnGgJr7ccV7vksnwqrLFtS8VxVLkUERERqUTJpYhUEO4WW01Dn3Lh9ZZ13IYkzOnEN/YwjIJ8bL8urd8YdWGa2L/7FtMw8I05tFanqHIpIiIiUntKLkUkLBg0yc32AQeuXNa7mc9+vBMnAeD4+st6j1Fb1jWrse7aiX/ESMzklFqdE+zQEdPhqGLNZXm3WFUuRURERMopuRSRsMXf55OT5aN9JwcxzprfHiKSXB49GQDHJ/PqPUZtOb78PHTNScfU/iTDINC1G0ZWFhQVhR+227XPpYiIiMjvKbkUEQDycnx89r8sDANOPac9lgPsPdmQTrHlAv0HEOjRE/uypRg7M+o9Tm3UK7kktNclVOwYu69yqWmxIiIiIuWUXIoIAJvXl+Lzmowcl0THLs4DHm/dvAloWOUSiwXP8VMBcMyPYvWyqAj7Tz8QTE3FP/yQOp1a1bpLW1nlUvtcioiIiOyj5FJEAPC4Q1W45FT7gQ8u34YkLQ0zKblB1/VOORGAmI8/atA4NXEs+AaL14t34lFgrblR0e8FuvUAwLpfx1hVLkVEREQqU3IpIgB4PaFE6UBrLQGMjB1YPJ76d4rdj2/0WIJpadi/X4AlJ7vB41Ul5n/vA+A94cQ6nxvoHpoWa+w/LVZrLkVEREQqUXIpIsC+ymVtkkvrhvUABHr3afiFrVY8J5+Gxe8n5v33Gj7e77ndOObPw3Q68RxzXJ1PD1YxLTZcuVRyKSIiIhKm5FJEgP2Sy5gDvy3Y1q8FwN83PSLXdp85AwDn269HZLz9Ob7+EqOoEO8xx0F8fJ3PD1TV0MeuabEiIiIiv6fkUkQA8NRhWqx1bSi5DPSLTHLpP2QU/l69sf+yGOvG9REZs1zMB6FqqOfkU+t1vpmcQjApOZRcmqFKpd2habEiIiIiv6fkUkSAfZVLRy0ql9b15cllv8hc3GLBU169fP3VyIwJWPLziJn3P0xXXL2mxJYLdOuOpaQES2YmoMqliIiISFWUXIoIULeGPrb1azEdjnAn1Uhwz5iJabPhfOUFKCmJyJgx77yJpbQU9/Qz6jUltty+dZebAbCVJZfaikRERERkHyWXIgLUvqGPJTsbIzs71MzHZovY9YMdO+E56RSMnByc777V8AFNk9iXngfAff5FDRrq9+suLRYLNrsFn1fJpYiIiEg5JZciAuyfXFpqPC7SzXz2V3rplQDEPvMkBBs25dT+00Jsq1fhGzYC/7ARDRorUE3HWJ9P02JFREREyim5FBEg1NDHarVgs9X8tmBdF9lmPvvzjxyNb/RYbGtWE/PhnAaN5XroHwCUXnJZg+Oqbq9Ln9fENFW9FBEREQEllyJSxuMO1q5T7ProJZcAxbf+FQDXfXeB31+vMWyLf8bx9ZcEuvfAM/3MBsdU016Xfr+SSxERERFQcikiQCBg4veZOA4wJRbAtnYNEJ1psQC+CUfgPeIobJs24nz5hboPYJrE3Xc3ACXX/Ski60IDXbphWiy/2+uybDsSrbsUERERAZRcigj7dYqt1TYk6zANI9TQJ0qK/3YHpmEQd9ftGLt21uncmPffxfHtV/j79MV9xtmRCSgmhmDHThgZO8DnA/ZVLrXuUkRERCREyaWI1LpTLEVFWDN2EOzWHZzOqMXjHzqc0suvxigsIP7Ga2vd3MeSm0P8bbeEQn3gEbDbIxZToFt3LMEgxo7twL69LrUdiYiIiEiIkksRqXVyaduwDgB/lNZb7q/4pj/j79WbmM8+wfXAvQc+we8n8Q8XYWTuxX32ufjGHx7ReILl25GUrbu0OzQtVkRERGR/Si5FBE8tp8WGO8VGab1lBS4XBS++TjAhkbgH78f53NPVHxsIEH/z9aHpsAMGUXjPAxEPJ7wdSdm6S1tZ5dLn1bRYEREREVByKSLsq1w6DlS5XL0KAH96/6jHBBBI70/BMy9gOhwk3Hoj8bfeiKWwoMIxxp7dJF54DrEvv0CwTVvyX3od4uMjH8vvK5flDX00LVZEREQEgIa3URSRFq/W02JXrQDAP2hI1GMq55t0DPlvf0DiBTOIfe5pYt5/F89xUwj06oN180acc97BUlKCv09f8l97J7xtSKQFuvcEwAhPi1VDHxEREZH9KbkUkVp3i7WuXIFps0Vtj8vq+A4bT+43PxJ3z9+Jeet1Yl97OfycGRNDyVXXUvLHGzCTkqMWQ6BXbwCsmzYCWnMpIiIi8ntKLkUOIsGgScBvhhOjcrWpXFoyM7Hu3YN/wECIiYlqnFUJduxE4WNPUXT73dgXfo+xZxfB9h3xjZ+AmZIa9eubbdsSjE/AtmkjmGa4W6zWXIqIiIiEKLkUOYi8/9oeViwpZNCIBI4+MY3klNBWHbVJLsNTYgcOjn6gNTDT0vCeeHLjX9hiIdC7D/Zfl4bWeSa7AMjN9jd+LCIiIiLNkJJLkYPI9i1ugkH47ZdC9uz0cOKZ7fj+i1xKigMAOGqYFmtb2TySy6YU6N0b+69LsW7cQNtOowDYu9vTxFGJiIiINA9KLkUOIkUFfmKcBp27O9m0toT//mtHhedrVbkcdBAnl736AGDduIF2h4wDIHOXtylDEhEREWk2tBWJyEHC4wni85okJFqZfl57EpNtYAGr1RI+psbkcmXjd4ptbgK99yWXzlgrick2crJ8WncpIiIigpJLkYNGcWFobWB8oo24eBuX3diVq27pTvrguPAx1XaL9XqxrltDsE0bzHbtGiPcZimcXG4OdYxt18GBaULWXlUvRURERJRcihwkigpD6yrjEqyh/8fbaNveQb9B+yWX1VQurRvWY/H58A8cAhZLlcccDMLbkWzcAEC7jg4A9u5WcikiIiKi5FLkIFFUEEou4xMqLrXuO/DAyaVt5W/Awb3eEsBMTCLYpi3WLZvB76ddx9CWLHu17lJEREREyaXIwaKofFpsWeWyXFy8lWGjE+ja01lDclneKXZQdINsAQK9+2Dx+TC2b9tXudyljrEiIiIi6hYrcpAoLpsWG59orfTcaed2qPFc22/LgYO7mU85f+8+2H9aiG3TBtoc3gMskLlHlUsRERERVS5FDhJFBaHKZVxCHT9TCgax/boUMzaWQP8BUYisZQlvR7JpIw6HQXyClYJcP8Gg2cSRiYiIiDQtJZciB4nyhj6/nxZ7IMbmTRgF+fgHDwWbJjvsvx0JQFKKnWBw35pWERERkYOVkkuRg8S+5LJuCaJt6RIAfMNHRDymlqhychn6fubn+posJhEREZHmQMmlyEGifJ/LuDpWLsuTS//wQyIeU0sU6NET02KpIrn0N2VYIiIiIk1OyaXIQcA0TYoKA8TGGVitddun0vZrWXI5YmQ0Qmt5nE6C3bpj3bEdiopISrYDkKfKpYiIiBzklFyKHAQ8niB+n1nnKbH4/diW/0owIZFAr97RCa4F8pc1NrKtX6vKpYiIiEgZJZciB4HyZjN1bebD6tVYSkrwDxsOht4uygX69QfAunYNyalKLkVERERAyaVIq2eaJhtWFwN1X2/J4sWA1lv+nj89lFza1q4hKSU0LVYNfURERORgp30FRFqxbZtL+erjbDavKwWg/+D4ug2waBEAvhFKLvcXKEsurevWEOsysDss5OepcikiIiIHNyWXIq1U5m4vLzy2g2AQ0traOemsdvTo46rbIGXJpX+YtiHZn79vOqbFgm3tGiwWC0nJNrL2+vC4g8Q4NSFEREREDk5KLkVaqa0bSwkG4ZDDEpl6ers6d4mlpASWLSPYpg3Brt2iE2RL5XIR7Nod67YtoY6xKXay9vrIz/XRrmNMU0cnIiIi0iT0EbtIK7VnlweA3umuuieWlO1v6ffjH3MoWOp+fmvn71+27nLDOnWMFREREUGVS5EWyeMJ8sOXuezd7SXWZTD19Hb4/SbrVxazd7eXIYcksHeXF4D29ayk2X9eCIBvzKERi7s1CaQPgE/nY12zmsTk7gBadykiIiIHNSWXIi1MTpaP15/dSeZub/ixEWMT+enbPFYsKQJgx1Y3e3d5sNospLSx1+s6tp9+BMB/6GEND7oV8vdLB8C2bi2Jx54IQGG+kksRERE5eGlarEgL8+Gbe8jc7aV3uovBI0LdX/Nz/ezZGUo2HTEGm9eVUFoSpG17R72mxBIMYlv0Mzid+IcOj2D0rUeg/wAArGtXk5AU+pxOyaWIiIgczJRcirQge3d52LK+lJQ0O+de1okuPZxAKLnMz/XhiDHoPyQO0wwd366jo17Xsa5bi5GfB6NHg6N+Y7R2/j79gNBel4llyWWBkksRERE5iCm5FGlBFn2fD8Co8UkYhoWklNCU1z07PXg9JsmpNtIHx4WPr29yaf85NCWW8eMbFnBrFhdHoFsPrNu2kmgPNU9S5VJEREQOZkouRVqIrD1efl1UiM1uYcTYRAASk0MVs22bSgFISrHRu78Lwxo6p77bYii5rJ3yjrHxW9ditVkozA80cUQiIiIiTUfJpUgLsG1zKc88vB2vJ8jIw5JwxYWyx/ItMPJyQhWz5FQ7TqeV9MHx2B0WOnVtYHI5blzDg2/F/IOHAGBftYLEJBslxQH8/mATRyUiIiLSNFp1t1iPx8O5556L1+slGAxywQUXcMYZZzR1WCJ19u0nOXjcQcYfncLRU9PCj8fFW7HaLAT8oUWWSWWVzNPOaY/bHSQ+oe4/4pY9e7Bu2Yy/Xzq21FTILorMi2iF/IOGAmBb+RsJnY8hN9tHYX6AlDR9biciIiIHn1adXDocDl588UXi4uIoKSnhpJNO4rjjjiMxMbGpQxOptWDQZPsWN3aHhUlT0jCMfd1fLRYLSck2crJ8ACSlhtZgOmIMHDH1S3AcPywAwD9uQut+g4gA/6DBANhW/EbCwH1NfVLS6rf9i4iIiEhL1qo/XrdYLMTFhZqbeL1eTNMkGNSUNWlZ9u7y4nEH6dzdWeW2IuVTYwGSUxqeDtq/+xYA34QjGjxWaxfs0ZNgXDzWVStJTAi9naqpj4iIiBysmnVyuWjRIi6//HImTJhAeno6X331VaVjXn31VSZNmsSQIUM488wzWb58eYXn3W43J598MkceeSSzZs0iOTm5kaIXiYzyZj3desZW+Xx5Ux/YV7lsiHByOf7wBo/V6hkGgYGDMIqL6ODZCSi5FBERkYNXs04uS0pKSE9P529/+1uVz8+bN497772Xq666ijlz5pCens4ll1xCTk5O+Bin08mHH37Il19+ybx588jKymqs8EUiYtvm8uTSWeXz5duRGFaIT7A26FrGju3YNm/CP2AgZtu2DRrrYFHe1Kf93jWA9roUERGRg1ezXlI1ceJEJk6cWO3zzz//PGeddRbTp08H4I477uDrr79mzpw5zJo1q8Kxqamp9O/fn0WLFnHCCSfUK57917o1B+XxNLe4JLK2b3ZjsUC3XrFV/l2nlFUrk5Lt2GwN+7wopmy9pe/wibq/aikwJNTUp83ONcAoigoC+p7Vgu4viTbdYxJNur8kmlry/dWsk8uaeL1eVq5cyRVXXBF+zDAMxo0bx7JlywDIycnBZrORmJhIUVERP//8c727xdpsBmlp8ZEIPeJSUuKaOgSJkq/m7yU/10/nbrF07pJU5TFdugeBPbRtH9Pwe3TRQgBiTziW2LL7SvfXAYwfC0DajrXQFgpyAyQkuHA4mvXEkGZD95dEm+4xiSbdXxJNLfH+arHJZW5uLoFAgDZt2lR4PC0tja1btwKQnZ3NTTfdRCAQwDRNZsyYQf+yTc/ryu8PUlBQ2uC4I8kwLKSkxJGbW0wwaDZ1OBJhi7/P48M392KzWzjqhBSyq9kSJDHFpGOXGNKHuKo9plZMk+TPv8CwWMgdMhJLbrHur9ro2INUw8C6cjnWo2HrphJuuXw5J89oz5BDEpo6umZL718SbbrHJJp0f0k0Ndf7KzExFru95iVYLTa5rI5pmlgsoRJy3759mTNnTsTGbk5/ufsLBs1mG5vU37pVxQCccUEH+gyIq/bvOMZpcNmN3YCG3aPGpo1YM3bgGzqcQGIyRtlYur8OwBlLoHcfbOvXcd6Zsfy8ysrq5UW8/cIuigr9jD08uakjbNZ0f0m06R6TaNL9JdHUEu+vFjtvKyUlBavVWqlBT05OTqVqpkhLVJAXagzTqVvVjXwizbHgG0BdYuujvKlPX+9GzryoIzP+0AmLAQs+yznAmSIiIiKtR4tNLh0OB4MGDeKHH34IPxYMBlm4cCHDhw9vusBEIqQg349hQFx8wzrA1pbjy88B8E46plGu15r4Bw8DwLb8VwD6DYyjXQcHRQUBbU0iIiIiB41mPS22uLiYbdu2hb/esWMHq1evpk2bNrRt25aLLrqIm266iUGDBjF06FBefPFF3G43p512WhNGLdJwgYBJUWGApGRb43QK83qxL/gG0+XCN/aw6F+vlfEPHwGAbdmS8GMdu8SwZ6eXXTs8JCSF3moDAZM3nttJh84xHD1VMyxERESkdWnWyeWKFSs4//zzw1/fddddAFx99dXMnj2bKVOmkJOTw6OPPkpmZiYDBgzg2WefJTU1talCFomIwgI/mJCY3Dg/ovZFP2EUFeKZfBw4G2cabmviHzYcAHuF5NLJsp8L2bXDTb9BoW5vu3Z4WL+qhPWrSkhKtjNqfNUdgEVERERaomadXI4dO5a1a9fWeMzMmTOZOXNmI0Uk0jjK11smJjXOj6imxDaMmZiEv3cfbBs3YMnJxkxNo2OXGCCUUG5aV0JCko1d293hc+a9t5de6S5S29ibKmwRERGRiGqxay5FWrNwctlIlctwcnmUksv68g8/BADbsqUAdOgcAxbYuLaEl57I4K3nd7FzuweA1DZ2ggHYuc1d7XgiIiIiLY2SS5FmqLwJTEIjVC6N3buwrfwNf89eBHv1jvr1Wiv/iFByaf81lFw6YgzatHPg84ZaiGfu9rJ2ZWh7mYHD4gHIz1OzHxEREWk9lFyKNEONWbm0f/0lAD5NiW0Q3/CRANiWVmzqA2Czh5oylRQFiE+00qVHaF1rXo6vkaMUERERiR4llyLNUGMmlzGffQJovWVD+QcPwbRaK3SMPXRiMkNHJXD6+R3Cj3Xq6iQpJfT3mp+ryqWIiIi0HkouRZqhgvxGaujj8WD/8nNMlwvvhInRvVZr53IRSB+AdfcujN27AOjczcm0mR3oNyiO+MTQfqWdusaQlBJq4pOfq8qliIiItB5KLkWaoYI8P1ggPjG6yaXju28wiovwTpwEsbFRvdbBwDeiYlOfcoZhYcDQ0DrLbr1iiXUZ2B0WVS5FRESkVVFyKdLMBIMmhfl+4hOs2GyWqF7L8fE8ADwnTI3qdQ4W/mEjALAt+6XSc5NPasOFV3emVz8XFouFpBQ77tIgbnegscMUERERiQollyLNTElxgGAQEqJctSQYxPHJPEzDwDv5+Ohe6yDhHzkKAPvixZWec8QY9OjjCn+drHWXIiIi0soouRRpZryeIADO2Oj+eNqWLcG6Zze+MYdipqVF9VoHC/+AQZiuOGy/LIJAzRXJcFOfHCWXIiIi0joouRRpZsr3RSzfviJaHJ+EpsR6j9eU2Iix2fCNHIVRXIR19aoaD01KVVMfERERaV2UXIo0Mz5fKLm0O6L74xkz7yMAPMdPiep1Dja+0WMAsC/6qcbjyiuXeZoWKyIiIq2EkkuRZsbnDU2LtUexcmldsxrb2jX4Bw4m2Kt31K5zMPKPqm1yqcqliIiItC5KLkWamXDl0h69H8+YD+cA4DnltKhd42DlGzkaOHBymZoWSi53bvdgmmbU4xIRERGJNiWXIs2M31dWuXREr3IZ87/3AfCcfGrUrnGwMlNS8fdLx7p1C5Y9e6o9LjHZRufuTnIyfWzb7G7ECEVERESiQ8mlSDMT7YY+4Smxg4YQ6N03Ktc42PlGjwXAvvjnGo8beVgiAEsW5pO5x8ubz+/iyX9spahQ6zBFRESk5VFyKdLMRLuhT8wH7wGqWkaTvzy5PMDU2EEjEnDEWPh1cSH/vncrq38tYs9OLyuXFjVGmCIiIiIRpeRSpJmJakMf09SU2EYQrlz+/GONx8XEGBxyaBKYkNrWHq5krlmh5FJERERaHltTByAiFUWzoY91xW/Y1q3FN3iopsRGUaBPX4Jpadh+XQolJeByVXvs5JPbMG5SCgmJVkwTVv9WzNYNpZSWBIh1WRsxahEREZGGUeVSpJnx+6K35tL51usAeM44O+Jjy34sFnxjx2Hx+Q647tJqtZCYZMNisWAYFvoNjCMYhPWrixspWBEREZHIUHIp0syEp8VGulus34/zvbcxDQPPtNMjO7ZU4hs/AQD7D9/V6bz+Q+IAWLdSyaWIiIi0LEouRZqZ8m6xkW7o4/jmS4zMvfiOnESwfYeIji2VeQ8rSy4Xfl+n83r0jQULbNf2JCIiItLCKLkUaWZ8vug09IkpmxLrPnNGRMeVqgUGDiKYnIx9yWJw1z5RdDqttG3vID/Xry1JREREpEVRcinSzESjoY+lsICYj+cSjE/Ac/zUiI0rNTAMfIeOw+LxhBLMOujczQlAxlZVL0VERKTlUHIp0syEG/pEcM1lzP8+wOJ24znplBo7l0pk+eo5NbZz9xgAMrZ5Kjy+bmUxhQWqZoqIiEjzpORSpJmJxj6XMW+/AYBHU2IblW/ceADsP9QtuezSPVS53LFf5XLHVjevPbOTZx/eztaNpfz4TS652b7IBSsiIiLSQNrnUqSZiXRDH2PzJhzfLyDQpSu+w8ZHZEypHf/goQQTErEv/gm8XnA4anVeu44x2OwWdm5zEwyaGIaFbZtKAcjP9fP8YzuAUNOfMy7sGLX4RUREROpClUuRZibSDX1iX3kRAPc554GhH/lGZbXiO2wcltLSA+53WfE0Cx27xOAuDfLykxns3e1h57ZQFbNLdyeJyTawVKxsioiIiDQ1/aYp0syEG/pEYs2l14vz9VcwrVbc557f8PGkznwTjwLA/s2XdTrv6BPbkJRiY/P6Uj58fW94/eW5l3Xi+tt7qqOsiIiINDtKLkWaGb/PBEuoetVQMR9/hJGViXfy8QQ7dopAdFJX3omTAHB881WdzuvRO5Zr/9qDlDZ2dmx1k5vtI62tnViXFYBOXUNNf3b+rumPiIiISFNRcinSzPi8Qex2CxZLw5NL50vPA+A+/8IGjyX1E+jbj0CHjtiWLcWSl1uncw3DwuAR8eGvO5c1+tn/zxnbNDVWREREmgcllyLNjM9nRqSZj3XTBhwLviHQpSveo46JQGRSLxYLvolHYQkGsX+3oM6nDzkkIfznTl33Sy67KbkUERGR5kXJpUgT83iCrF9VTCBgEgya+H1mRJr5OF8ua+Qz8wKwWhs8ntSft2zdZV2nxkKoc2y7jqEus132q1y27+TAsIamxZqmGZlARURERBpAW5GINCHTNHnr+V1sXFNC/6FxnHJ2eyACnWLdbpxvlDXyOee8CEQqDeE9ojy5rFtTn3KnntOe7ZvddO4eE37MZjPo0DmGnds8ZO/10aZ97bY5EREREYkWJZciTei3JYVsXFMCwJrlxWDuAcDWwGmxMXPewcjOxnPiKQQ7aB/Epma2a4d/4GBsq1ZgbN1CsHuPOp3fqauzwpTYcr3TXezc5mHdqmIllyIiItLkNC1WpImsXFbIvHcyATjjwg4ArF8dSjQbVLk0TVz/eQKAksuualiQEjHhqbHffh2xMdMHhZr9rFtZHLExRUREROpLyaVIE/j+y1zefmE37tIgRxybyqDhCbjirQT85Xtc1v9H0/7dt9hWrcA3fAT+MWMjFbI0kHfikQDY67HusjqdusUQl2Bl66ZSSksCERtXREREpD6UXIo0gsICPyXFoV/+c7N9fPVxNlabhfOu6MSkKWkAJCbvm6XekMpl7NOhqmXpZVdBBLYzkcjwHToe0+HAseBrCEQmETQMC/0GxmEGYUNZ1VtERESkqSi5FImwHVvcPPvwdvbsDG1u7/ebPPWPbTz7yHb8/iDz52Ti95lMODqF3ulx4fOSIpBcWjdtwPHpfAIdOuI56dQGvQ6JMJcL39hxGLm52JYsjtiw/QaF7qFVvxZGbEwRERGR+lByKRJhX36czY6tbr6anw1A5m4vxUUBcjJ9vPb0TtauKCY51caEo1MqnLd/5dJmr9+PpvPZ/2AxTdwX/wEcavDS3HgnHwuA4/NPIjZm34EuYl0Ga1cUU1Toj9i4IiIiInWl5FKkgYoK/eH1bll7vWxaW9b99bdicrJ87Nqxb5P7TetKsVjgtHM7VFpXmZi0X+XSUffKpSU3h9jXXsF0Oik9/6L6vBSJMu+xxwPg+OzTiI1psxkMG51IMAi/LlL1UkRERJqOkkuResrP9fHfR7fzz79u5ukHtxMMmiz+Ph+ApBQbmPDzgjx27QhNj01JswNw+ORUuveOrTRehTWX9WjoE/vsf7CUFOOeMRMzNa0+L0miLNCrD/5evbGvWI6xMyNi4444NBGAJT/mY5pmxMYVERERqQsllyL19M0nOWzb5MZiCTXp2bimhGWLCjCscM6lnbDaLCz9qYCtG0sBmPGHjpx/ZWeOPD61yvEa0tDHUlRI7DNPYlqtlFx1bf1flESdd/JxADg+j1z1sn3HGDp0iSF7r4+8HE2NFRERkaah5FKkHjyeICuWFmKzWzh6aqhK+L+39uIuCTJwWDztO8YwcFg8HneQvbu8OGMN2rZ30KufC8OoOnFsSHLpfOkFjLw8PNPPJNite/1fmESdd3L51Nj5ER23fcfQGtucLF9ExxURERGpLSWXIvWwcmkhXo/JoOHxDB+biMUCBXmhitHoCckAjDwsMXx8xy4xWA6wLcj+ay7r1NDH7Sb2yccwLRZKrrm+9udJk/AdOo5gfAKOBd+A233gE2optU1o2nWukksRERFpIkouReph6U8FABxyaBLxCbbwGsp2HR106+kEoHvvWNLahn7h79jVecAx7Q6D2Dij7M+1r1w633wN657deKecRKBfep1ehzQBhwPfxKOwlJRg/2FBxIZNbVNeufRGbEwRERGRulByKVJHhfl+tm92k5xqo1uvUNI4YmyoSjl+Ukq4QmmxWBhftt1I3wGuWo1dXr2s9bRYnw/XY48AUHKtqpYthaesa2zMp5GbGptSVrnUtFgRERFpKrYDHyIi+1u/uhgIbV5fnkgOG51Iz76uCusmIVTZHDQ8gRhn7T7HSUy2sWent9bdYp1vvIp12xa8Rx2Nf/ghdXgV0pS8kyYDZU19TBMOMGW6NlKVXIqIiEgTU+VSpI7WrdqXXO7v94lludomlgBt2oemNsYnWA98sMeD66F/AFB8y221voY0PbN9e3yHjMS6bSvWlSsiMqYrzorTZZCT5dN2JCIiItIklFyKHEBRoZ/5czLJyfLh9wfZuKYEu8NCjz6V96psqInHpXLBVZ3p0uPAazSdr7yANWMHnuOn4B8xMuKxSHR5ppwEQMy8/0VszNQ0O36fSWFBIGJjioiIiNSWkksRIBg08XiClR43TZOnH9zOj9/kseCzHLZsKMXnNemd7sJmi/yPj9NppWdf1wE7y1JSguvhfwJQfNNfIh6HRJ93allyOTeCyaU6xoqIiEgTUnIpB72svV6euG8rD9+xmV07Km4NsXxxYXiLkeKiALt3eADC3WGbSuwLz2Hduwf3KdMIDB7SpLFI/QR698XffwC21SuxbtoQkTFT26pjrIiIiDQdNfSRg1pBnp9nH96OuzRUtXz5qZ244qwUF/pxxVvJ3ruvAlRcFCA3J/R1eYWoKVgK8nE99hCmYVDyp1ubLA5pOM+Uk7CtWY1j7keUzv5jg8dLSVNTHxEREWk6qlzKQW3z+hLcpUEGDY9n1PgkSooCZO3x4vWaZO/10aadnVPPaY9hQH6uj7zsUBUzObXpkkvXow9jZGfjOXOG9rVs4TxTTwYgZt6HERmvvKlUkdZcioiISBNQ5VIOanlllciefV0cclgi6YPiSGvnIDnVRnFRgPgEKxaLha/nZ5OX48dqDU03TE5rmuTS2LGd2P/8GzM2luJb/9okMUjkBAYPIdCtB/ZfFmPszCDYqXODxot1hT4vLC1VcikiIiKNT5VLOajl5ZRXIm0YhoW+A+NIbWPHMCwkJNrCjXWSUkLJZH6uH1eclZiYpvnRibvn71g8HkqumE2wY6cmiUEiyGLBM+VEABwff9Tg4ZyxoS1s3CWVm1OJiIiIRJuSSzmolVcuDzTNNTl1X5E/Oa1pCv62X5fifOdNgm3aUnr1tU0Sg0ReeGpsBLrGhiuXJapcioiISONTcikHtfLKZVJKzQljeeUSIKUp1luaJnG33wZA8c1/wYxPaPwYJCr8o8cQaNce+w/fYdm7t0FjxTgNsECpKpciIiLSBFp1crlp0ybOPvtsTjzxRKZNm8bixYubOiRpRoJBk/w8H3EJVuyOmn8UKlYuGz+5jPngPRzfL8Cf3h/3uec3+vUligwDz8mnYgkGifnogwYOZcHpNHBrzaWIiIg0gVadXMbExHDPPffw0Ucf8cADD/CXv2iz+YNddqaXFUsK8biDFBb4CQZq1/m1KSuXlqJC4v72ZwCK7nsQbOrD1dp4Tj0dAOecdxo8ltNl4PWYBAJmg8cSERERqYtW/Vtq5877Oi/26tWLwsJCTNMMN2mRxuMuDWAxLE3WCAfANE3een4Xe3Z6sTssjB6fBFSsSlZn/2mzjb3m0vXgP7Du3oX7tOn4xh/eqNeWxuEfPYZA127Yf1qIkbGDYOcu9R4rNtZKHn7cpQHi4lv1W7yIiIg0M826crlo0SIuv/xyJkyYQHp6Ol999VWlY1599VUmTZrEkCFDOPPMM1m+fHmVY33xxRcMGDBAiWUTCARM/vPP7bz07x1NGsfuDA97dnqJdRn4vCY/fJUHQHJKbSqX+35JT2nEabHWdWuJ/c+/CcbFU3z73Y12XWlkFgueU6YBEPPBnAYN5Qw39dG6SxEREWlczfpj7ZKSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NTV8XEZGBg888ABPP/10g+IxjOaVmJbH09zi+r2MbW5ys33kZoPfb+KoZn3jymWFJCTZ6NYzNipxLF9cCMDE49JYvriAnds9QChZPND3MCbGSlKKjaKCACmpBz4+IkyT+D//CYvfT8lfbobOnRv106CWcn+1Ft5pp+N6/BGc77+L5+pr6j2OyxXajsTjDjbrvzvdXxJtusckmnR/STS15PurWSeXEydOZOLEidU+//zzz3PWWWcxffp0AO644w6+/vpr5syZw6xZswAoKiriyiuv5K9//Svdu3evdyw2m0FaWny9z4+mlJS4pg6hRosWFIb/7PfY6NjRFf46Y1sJMU4rFgu8+d9dpLV18PdHBkc8hkDAZMWSIgwDjjimA4mJTt56cTsA3Xok1Orv9uKre+FxB2jfITHi8VXp7bfh26+hf3/i/nwTcQ5H41z3d5r7/dVqHDkO+vXDtmwJaTm7oG/feg2TnBIDFGG3OZrte9b+dH9JtOkek2jS/SXR1BLvr2adXNbE6/WycuVKrrjiivBjhmEwbtw4li1bBkAgEODaa6/lzDPPZMKECQ26nt8fpKCgtEFjRJphWEhJiSM3t5hgsPk27/htaV74zxvW5eFKCE3XK8jz8cjft5CQZGP8pBQg1HBn04bcCg10ImHj2hIKC/z0HejCH/DQq78Dq9VCIGBitfvJzi464BgpbQGstTq2oSx5uSRffTUGkH/PA/gLvYA36tfdX0u5v1qT2FOm43rgXkqef5nSG26q1xgWI/TztXdPMR2yrZEML6J0f0m06R6TaNL9JdHUXO+vxMRY7Paaf7doscllbm4ugUCANm3aVHg8LS2NrVu3AvDtt9/y448/kpWVxVtvvQXAyy+/TGJi/SpPzekvd3/BoNlsY/N6gmzbvC8pz9ztDcf64zd5+P0mudk+vvk0O3zMlo2lDDkksrfm+lWhhDB9UDzBoIkz1mDCMSls31xKcpq92X3/Em67FWPvXtxnn4t3wkRowvia8/3V2rhPmYbrgXtxvPc2xX+8EeqxRjwmNjR5uqQ40CL+3nR/SbTpHpNo0v0l0dQS768Wm1xWZ/9usEcddRQrV65s4ogObls3lhIMQGKyjYI8P1l7QtU3ryfI4oX54eMK8/fty7d9cylDDkmIaBwb1pQA0Lv/vim5R52QFtFrRIr9qy9wvvEqwbbtKLpDTXwOJoF+6fgGD8W+Yjm2FcvxDxlW5zFiY0OfKO7e4eGxu7cw+ZQ29B/c/KfHioiISMvXrLvF1iQlJQWr1UpWVlaFx3NycipVM6XprFtVDMDoCaFtP7L2hpLL5b8U4i4J0n9IHHZH6MOAjl1iANi22R2x62/fUkrmbi97d3lJbWtv1E6v9VJURMKN1wJQeP9DmCmpBzhBWhvPmWcDEPPma/U6v7xb7PJfCsnO9LH61+hP4xYRERGBFpxcOhwOBg0axA8//BB+LBgMsnDhQoYPH950gUlYMGiy5rdisMCIsYnEugyyM31lj4d+4T10YjKDhoeqKqPGJ5GQZGNPhgePu+HbKGzfXMpzj+zgPw9uA6DPflXL5irunjuwbt+G58RT8J54clOHI03APe1MTKsV53tvg89X5/Njy5JLvy80jSY/1x/R+ERERESq06yTy+LiYlavXs3q1asB2LFjB6tXryYzMxOAiy66iDfeeIM5c+awceNGbr/9dtxuN6eddlpThi1ldm7zUJjvp3uvWOITbLRp78DvM8ne62PLhlIcMQZde8Zy7CltOfHMdgwfk0i3nk5MEzauLW7w9Zf/EupSW/5Ldu/05p1c2n/8gdjnniaYnEzhvf9s6nCkiZjt2uGddAxGVhaOrz6v8/nO2IoL7fNy656gioiIiNRHs04uV6xYwamnnsqpp54KwF133cWpp57KG2+8AcCUKVO45ZZbePTRRznllFNYvXo1zz77bIU9LqXprC6rTvYfEmqj3KZ9aCuNxT/k4/eZ9EqPxWq14IqzMmpcElarhaGjQmstv5ibjd9f/wXMwaDJql+LsBgw5vAkevaLpVe/5ptcWgrySbjqUiymSdFd92O2b9/UIUkTcp91DgDON1+v87mxrorJZUGuv8U1AxAREZGWqVk39Bk7dixr166t8ZiZM2cyc+bMRopI6mLN8lByOWBoaNprl+5Olv5YwE8L8gDok155755+g+Lo1S+WTetK+e7zHCYelxpu0FQXWzaUUlwYoFe6iynT29X/RTSS+Fv/hHX7Ntwnn4bnjLObOhxpYt5jTyCYmITjk3lY8nIxk1NqfW75tNhywSAU5vsjvr2PiIiIyO8168qltFyF+X6yM3207eAgOTX0S+3wMYl06+WEsiJK7yrWQFosFo6f1hbDgK/n5/DSkxnk12Na36plocR28Ijm3yUz5v13cb79BoEOHSl64OF6bT8hrYzTieeUaVi8XmLef69Op8Y4DfjdLZSndZciIiLSCJRcSlRs3xLq+Nq1pzP8mNVqYfp5HYiLt9K5u7Pazq3tOsRwwVVdaNvBweZ1pTz1wDa2bCip0/U3rw8dnz64cnW0OTF2ZhD/p+sAKHzsKXWHlbB9U2Pr1jXWMCw4naG39vLOsfk5WncpIiIi0afkUqJi+5ZSALr2iK3weFKKndl/6c6FV3Wu8fzuvWO57MZuHDoxmdKSIB+/l1nraxcXhaqmaW3txMU345nfgQAJsy/HyM+j5PKr8U08qqkjkmbEP3oM/l69sf+yCOua1XU6tzyp7Dsg9OGKKpciIiLSGJRcSkQU5Pl575XdZGeG9rHcvrly5bKcM9aK3XHgW89ms3D8aW1JSrGxZ5cXd2mgVrHsq5rGHuDIpuV6+AEcC77BP2AQxX/+W1OHI82NxYL73AsAcL76Yp1ObdvegdNl0G9QKLlU5VJEREQag5LLVqao0M9LT+xg8ff5jXrdn7/LY/niQua+k4nPF2TXdg+xcQZpbRveRKRrj9A6zR1b3bU6vqbEtrmwf/MVrgfuJRgXT8GzL4Kz+cYqTcd91jmYNhvOt14Hd+3uf4BpMztwxU3daNcx1KG5qsrl7gwPX32czf/e2qPtSkRERCQilFy2IsGgybsv7WbTulK++TQH04zM9gM5WV5efiqDrZtKqz1m09qS8P+//yKXQMCka4/YenV6/b3yCuSOLW62biw9YIOf7ZvLpuQ20+TS2L2LxCtmhbYdefBfBPr2a+qQpJky27XDe8KJGLm5xMz9sNbnxbqsJCXbSS7rEPv7yqXfb/Lykxl880kOv/xQwC8/NO6HUSIiItI6KblsRRZ8nsvm9aHEqjDfz87tngaPGQyavP/aHjauKeGnb/KqPKakOMDOHR4sZXfT1/NzAEKdYSOgS4/QOEt+LOD5x3bw5n93VXus32+Ssc2D02XQpp0jItePKL+fhEsvwsjKovTCWXimndHUEUkzVzqzbGrsK3WbGguhzrFOl0FOto/3X9tN1p7QtPUNq4spLgqQkBTaEzN7ryqXIiIi0nBKLluJkuIA33+Ri9VqYdT4JADW/FZU7/FM02TrxlLmz8lk26bQdLzNG0qq3Ix98/oSMGHoyAS6944lPtHK+KNTwnE0VIfOMdjsFgryQlP7dm73sGtH1VME9+7yEPCbdOnmxDCa35YecXffgePHH/ANG0HRnfc1dTjSAvgmHkWgW3cc3y/AunF9nc/v0t1JMADLfi5k3rt7AVi2qACAIyaHuhPnZCm5FBERkYZTctlKLPw6F68nyCGHJTLuqGQA1vxWXO/xtmwo5fnHdvDzgnwMA5LTbJQWB9m7y1vp2I1lU2L79I/jotlduPHvvZh8UhucTmu9r78/q9VC526h6qUjJpQwLv2poMpjy39JbtO++VUtY959C9e//0UwKTm0zjImpqlDkpbAMHCfez4AzldeqvPpZ8/qxOV/6kZqGzub1pWyenkR61YWE+syGHFoIo4Yg+xMb8Sm0YuIiMjBS8llC7dyWT6P3r0lXLWccHQKqW0ctOvoIHO3lz076zc1tnxK7cDh8Vx6QzeGj04E9u0fub8tZVNxe/aLXnfWQw5NpG0HBzMv74xhheW/FOLzBisdl5sdSi6r20OzqdiWLSHhuqsxDYOCp58n2L1HU4ckLYh7xkxMqxXnm6+Ct/IHPDWx2Sx06BzD4ZNTAHjzv7sIBmDIyARstlDTLZ/XpKiwdt2YRURERKqj5LKFy9rrJXuvF7vDYOJxqSSVNfAYPiaUDH7/ZW69xs3eG/oFdtjoBDp0jqFnXxcAm9ZVTC6DQZO8HB/xiVbiE6K3p+Sw0YlcdUt3uvWMZcCQeNwlQd55aTfffJLNnFd34/WEEs28ZphcGnt2k3jBOVjcbopvvwvfUUc3dUjSwgQ7dMQ7+XiMrCwc8+fWa4yhoxJD3ZstMHRUApOmpAGQWtbROSdTU2NFRESkYZrxDvNSGxOPbcuA4U5+35R15LgkFnyWw29LCjnqhLQ6J1vZZb9oljfF6dzdid1hYevGUgIBE6s1dMHSkgDBICQkNt6tdPxpbdm908PaFcWsXRGa+tujTywjxiY1v8qlx0Pihedi3bUT99nnUnrZVU0dkbRQ7vMuIGb+XGJf/C/ek0+r8/lWq4WLr+2KzxskOXXfz0dqm9CfszO9dO/dvPeGFRERkeZNlctWoDzR219MjMHYI5Ixg/BjNV1ea5K11xtaa1n2S6jNZqFbr1i8HpOd2/c10ynMD02lS0hqvOQyIcnGhVd1oU9/F30GhCqqK5eFmhflZoea/iSnNoPPTYJBEq69Evsvi/CNHE3hA49Q6VMAkVryTpocauyz4Busa9fUa4y4eGuFxBIgrW3oAyQ19REREZGGUnLZig0rWye5fzJYG+7SAMWFAVLa2Cskrj37hqoa5dudQGjLE4CExMg076mthCQbMy/vzIxLOhEbZ7BpbQnFRX7ycn0kJFmxO5r+1o675+8433ubQJeuFLzwqhr4SMNYrZRe9AcAYp/7T8SG1bRYERERiZSm/w1coiYx2YbFgLycuv3SmLW34pTYcuXrLjfvt+6ysKAsuWzEyuX+rFYLA4fGEwzCT9/mYwabx5RY5/PP4nr0IYJJyeS/8R7B9h2aOiRpBdznzMSMjcX51htYCvIjMub+02JFREREGkLJZStmtVpISrZRmB/A76/cWbU65b9kpv0uuezYJQZnrMG2zW58vtB44cplEyWXAINGJADw84I8gErT/hqbY/484m+9EdPhoOCl1wn0S2/SeKT1MFNScZ9+FpaSYpyvvxKRMePirThjDbL2+sJrlkVERETqQ8llK5dcVsXLy/HX+pzsssplWtuKSZphWOjRJ5aA32THltBU2/Cay0Zs6PN7PfrEktbWjrs0lPA2ZeXS9vNPJF52EZZgkMLHnsJ32Pgmi0Vap9KLLwXA+d9nIFj7D42qY7FYGHN4MgG/yXuv7CYQ0H6XIiIiUj9KLlu55JTy5LL2FYmssm1Ifj8tFvZNjd2yIbTuct+02MZdc7k/w7Aw/uiU8NdNlVzafvuVpHNOx1JaStHtd+M57fQmiUNat8CgwXgPG49t8yYcX30ekTEnHpdKp64xbN/sZv6cTExTCaaIiIjUnZLLVq68a2ptK5eBwL6qZJv2lZO0zt2cAOza4QH2TYuNb8LKJYT27SufmpvSpvGTS+v6dSSddRpGQT7F1/+J0itnN3oMcvAoveQyAJzPRqaxj9VqYfr5HXDFW1n0XT4fvbWXkuJARMYWERGRg0cz2K9Boqm8ipdXy7VUq5cXUZDnp3d/F3HxlW+Pdp0cWCywO6MsuSzwYzFC67aaks1mcNq57Vm7opiuPZyNem1j21aSTj8ZIyuLkksuo+Tm2xr1+nLw8Z5wIoFOnYn54jOsmzYQ6NWnwWOmtXVw/pWdefHxHfyysIBfFxeSnGJj8CEJHHl8WgSiFhERkdZOlctWrry5TW2mxZqmycKvcgE47MjkKo9xOAzS2topyPNTXOSnqCBAfIINw2j6/Rt79XNxwrS2jRqLsWM7ydNPwrprJ+6zz6X4rvu1l6VEn81G6UWXABD79JMRG7ZDpxguv6kbYw5Pwmq1kLXXx3df5GqarIiIiNSKkstWLjktVH3MrcW02F07PGRs89C2g4Pe6a5qj+vQObRf48a1JZhm0663bErGtq0knzoF69YtuE+ZRuFDj4GhHylpHO7zL8J0uXC+/gqW7OyIjZuUbGfK9Hbcel9vOnaJwe8zKSrUFFkRERE5sDr9Juz1ennyySdZs2ZNtOKRCEtItGFYa1e5LG/SM3RkApYaqm/lyeX6VSXhaxxsjM2bQonltq24p51O4ZPPgu3g+z5I0zFTUik95zwspaXEvvBsVK6xr9u0tigRERGRA6tTculwOHjqqacoKCiIVjwSYYZhITnFTnFhAJ+35m0LMraGGvl07l7zmsXy5HLD6mKgafe4bArWTRtCieWO7bjPOJvCfz+jxFKaROmlV2IaBrHP/Qfc7oiPn1LeECy79lsZiYiIyMGrznP4hg4dysqVK6MRi0RJeffUd1/ZTVFh9b8kZmxzgwU6dYupcbwOXULPl5aEktWqtixpraxr15B0ypTwGsvCR58E68E5LViaXrBHTzwnnoKRlYXzrdcjPn5d1myLiIiI1Dm5/NOf/sTrr7/OK6+8wvbt2ykpKaG0tLTCf9K8TJqSRlKKjTXLi5k/J7PKY4oK/eTl+Gnb3oHTWXOyFJ9gIzE5VNEYOiqBkeMSIx5zc2T7+SeSTzoW657dlJ53IYWP/FuJpTS50quuASD2yccgWPPshLpScikiIiJ1Uee5fGeeeSYAd911F3fffXeVx6xevbphUUlEde7m5IqbuvGPv2xi8/pSTNOstKYyY1vZlNgDVC3LnXFBB4oKA/QfElfj+szWwvHJxyReeiGW0lJKZl9H8W23qyusNAv+ESPxHjYex8LvcXzyMd4TpkZs7PJ9cmvTEExERESkzsnlPffcc1AkE62NM9ZKh84x7NzuITfbR2qbilNZM7aG9q3s3K12e0R27Rkb8RibK+drLxN/wzVYAgGK7ryX0suuauqQRCoovfIaHAu/x/XEoxFOLlW5FBERkdqrc3I5bdq0aMQhjaBrz1h2bvewfbO7UnK5fUtoOvOBmvkcVEwT18MPEHffXZh2OwX/fhrPtDOaOiqRSryTj8Pftx/2nxZi++lH/GMPjci4jhgDV7yV/Bw/waDZLPazFRERkear3pvybdiwgffff5+nnnqKzMzQOr6tW7dSVFQUseAksrr1CiWO2zZXXBdbkO9ny/pS4hKstO9Uu2mxrZ7bTcKVfyDuvrsIxsWT/+rbSiyl+TIMSmZfB4DrkQciOnRyqo1AwKSoQHtdioiISM3qXLksLi7mz3/+M5988gk2m41AIMDhhx9O27Zteeihh+jUqRM333xzNGKVBiqfyrp9c8UtC5YvKsA0YdioBKxWVSYse/aQdOE52H9ZRKBLV/JfeoPA4CFNHZZIjTzTzyTwwL3EfPEZtl+X4h82IiLjpqTa2bnNQ16OL9zIS0RERKQqda5c3nfffSxdupQXXniBJUuWYJpm+LmJEyeyYMGCiAYokZOYZCM51cbe3V5KS0JVCNM0WfpzaN/S4WMPjq6vNbH+tpyU44/C/ssifKPGkDv/KyWW0jLY7fuqlw//M2LDlq+7zNW6SxERETmAOieXn376KTfeeCOHHnoo1t9tw9CpUycyMjIiFpxEXpfuTjBh145QA59dOzxk7/XRuVsM7Toc3FNiY+a8Q8pJx2LN2IH7jLPJe+8jzHbtmjoskVpzn30ugQ4diZn3P6xrItO1OyWtLLnMUnIpIiIiNatzcunxeEhOTq7yueLi4koJpzQvHbqEEsjdGaHksnwLkj4D4pospibn8RB/640kXnYxlJZSdNvtFD7+H3CquZG0ME4npVfOBsD1SGSql2ntQslldqaSSxEREalZnZPLIUOG8MEHH1T53CeffMKIEZFZ5yPR0bEsuSyvXO7Z6QWgQ+eDs2ppbN9G8inHE/vc0wTT0sh/cw6l11yvPSylxSo97yKCaWnEvP8u1k0bGjxeatvy5NLb4LFERESkdatzcnnttdfy6aefcuGFF/L2229jsVj45ptv+NOf/sT8+fOZPXt2NOKUCOnQOVSNK69c7tkZ+n/7To5qz2mtHF98Ssoxh2Nf8ktofeUX3+E7clJThyXSMHFxlFx+NZZgkNh/PdTg4RISbdgdFrL3+iqssRcRERH5vTonl6NGjeKFF17A6/Vy5513Ypomjz32GNu3b+f5559n6NCh0YhTIiQu3kpiso2sPV68niB7dnqxOyzhph0HhdJS4m+9kaQZp2Pk5lJy6RXkvT+PYKfOTR2ZSES4L/4DwaRknG+9jrFpY4PGMgwLqW3seNxBSoq1HYmIiIhUr1595UeOHMlrr72G2+0mPz+fxMREYmNjIx2bREmHzjEU5PlZt7IYrydIl+7Og2ZzdOtvy0m88hJsa9cQTEmh8KHH8U49qanDEokoMyGR0quuIe6evxP34P0U/vvpBo2X1tbBnp1esvf6iIvXdiQiIiJStTpXLhcuXEhpaSkATqeT9u3bK7FsYcrXXS5bFNqC5KCYEhsIEPvEY6ScMAnb2jV4Jx5F7jc/KrGUVqvkkstDay/feRPrurUNGmvfuks19REREZHq1Tm5vPjiixk9ejRnnHEG999/P59//jm5ubnRiE2ipLx5z8Y1JQC079S6m/lY160l+eTjib/9L2CxUHTnveS/OYdgh45NHZpI9MTHUzL7eiymieuBexs0VFrb0AdQauojIiIiNanz/KYffviBxYsX88svv/Dzzz/z0ksvEQwG6dWrFyNHjmTUqFGcfPLJ0YhVIqR3fxcdOseEm/q02uTS58P173/h+ud9WLxefMNGUPivJwgMHNTUkYk0itILZxH7xKM4P3iPkmtvIDB4SL3GSSurXOaocikiIiI1qHPlMiUlhcmTJ3PLLbfw7rvvsmjRIv7973+TmprKW2+9xc033xyNOCWCHA6Di2Z3YcCweFLb2sPTZFsT269LST7uKOLu+TsYBkV//Tt5H3+hxFIOLi4XJdfdCEDcP+6p9zDle11uXl/Cl/Oy8XiCEQlPREREWpd6dWYoLi5m6dKl4Qrm8uXLiYmJ4cgjj2TkyJGRjlGiIMZpcNZFHTFNE0sr2tPRkptD3D134nzpv1hME++h4yh6+DECvfs2dWgiTcI980Jcj/+LmPlzsS39Bf+Iur9Hu+KsdOoWw85tHr79NIe8HB/TZnao8zgeT5APXttDnwEuRo1LrvP5IiIi0rzVObmcNm0aa9euJS0tjVGjRnH88cfzl7/8hfT09FaVpBwsWs3fWTCI89WXiLv7doycHIIpKRT9+f9wn3chGHUu0Iu0HjExlFx/Ewk3XEPc/XeT/8Z7dR7CYrFwyR+7krnbyyv/yWD54kIGDY8nfXB8ncb5/H9ZrPq1iF07PEouRUREWqE6/9a9du1abDYbw4cPZ8SIERxyyCFKLKVJ2X/8geQTJpFwwzVYcnMpPf9ichYuwX3BxUosRQD32ecS6N4Dx5efY//xh3qNYRgW2neK4aSz2gMw951MfL7aT4/dvL6ERd/lA5Cb7aMg31+vOERERKT5qvNv3osXL+bJJ5+kT58+fPrpp8yYMYMxY8Zw2WWX8cwzz7Bs2bIohClSmXX9OhLPP5vkk4/HvnQJvhGHkPfJVxT98xHM1LSmDk+k+bDbKb75LwDE3XEbmGa9h+o3MI4BQ+MoyPOz+Pv8Wp/3yw+hY5NSQhNmtm4srXcMIiIi0jzVObmMjY1l3LhxXHPNNbz88sssWrSIBx98kJKSEh588EFmzJgRjThFwow9u4m/8Y+kHDGWmPnzCHTtRsETz5D38Zf4hx/S1OGJNEueaWfgGzIM+y+LcXz0QYPGOmpKGlhgwWe5eNy1q15m7Q11mj10YjIAWzeUVHje769/wisiIiLNQ70a+uTk5LB48eLwf2vXriUYDNK3b1819JGoMXbtJPaxh4l9+QUsHg/BpGSKr/sTpRf/AZzOpg5PpHkzDIr/706STz+Z+Dv/j5zjpoDDUa+h2nWIYcghCfz2SyFrVxYxdGRijccHgyZZe704Yw0GDovnk/ez2LppX+UyO9PLMw9v55BDkzj25Db1iklERESaXp2Ty+OOO45t27ZhtVoZMGAAY8eO5aqrrmLkyJEkJydHIUQ52Bm7duJ69CGcr7yIxePBdMVRcvUVlMz+I2ZKalOHJ9Ji+I44Eu+kY3B8+TnOl/6L+5LL6z1Wl+5OfvulkIK8A6+dLMj34/eZtO8UQ1KKnaQUG3t3eSkpDp379fwc3CVBNqwuVnIpIiLSgtU5uZw6dSqjR49m+PDhxMbGRiMmEQCsG9YT+9S/cb7xChavN5RUzr6SkitmY7bRL6Ai9VH0tztJ+eoL4h68H8+ZMzATk+o1TkKSFYDC/MABj83a4wWgTdl+mT37xrLs50KW/pRHajsLvy0pDB/n95vYbGoQJyIi0hLVObm85pprohGHSIhpYv9+AbFPPU7Mp/MBCMbFU3rFbEouvxozTY16RBoiMHAQ7rPPJfb1V3A99gjFf/m/eo0Tnxj656Oo4MCVy+yy9ZZt2oWm4Y4al8yynwv58uO9xMZbwAw1dg4GISfTS7uOMfWKSURERJpWvdZcbt++nWeffZYlS5aQl5dHcnIyI0eOZNasWXTt2jXSMcrBoKSEmA/nEPv0k9hXLAcg0KEjpZdcjvu8CzT9VSSCSm7+C8733yX2P/+m9KJLCHbqXOcxEsqSy8JaJJdZe8sql+1DyWWXHk669nSyfbMbgHYdHXTt4eSXhQXs3aXkUkREpKWqc7fYFStWcMopp/Dpp58yePBgTj31VAYPHsynn37KqaeeysqVK6MRp7RS1hW/EX/LDaQNTSfxmiuwr1iOb+hwCp54hpzFv1F6zXVKLEUiLNipMyWXXYXF7Sbu3jvrNUZ8Ytm02IJaTIstSy7TyqbFAow7KgUAR4yFMy/qSKduoaZce3d76xWPiIiINL06Vy7vv/9+Bg4cyDPPPFNhzWVpaSmXXnop999/Py+99FJEg5TWxZKfR8z/PsD5ygvYl/wCgOlw4D5tOu4LZuE7bDxYtOZKJJpKr76W2FdewPnma5Re/Af8I+rW6dtuN3C6DIoK/JimiaWGn9msPT4sBqS22ZdcDhgazylndSKtvUGbdg5Ki0NJ6t5dnvq9IBEREWlyda5c/vbbb1xyySWVmvnExsZy8cUXs3z58ogFJ61ISQkxH7xH4gXnkDaoDwnXz8a+5Bf8fftRdMc9ZP+6lsL/PI9v3AQlliKNwExMovjPofWW8X++KbTgsY4SEm34vCYeT/Xnut0BCvP9pKTasdn2/ZNjGBaOPbkDPfq4AGjbMTRlVpVLERGRlqvOlcuYmBjy8vKqfC4/P5+YGK2VkTJFRTi++YqYuR/i+HguRnERAMGkZNxnnI3nrHPwjT1MyaRIE3HPmInzheew/7KImHfexHPmjDqdH59oJXN3qGOs02mt8pi1vxUDoXWWNXE6rSSl2MjJ8uHzBrE76vzZp4iIiDSxOieXRx55JP/85z/p0qULo0aNCj++ePFiHnzwQY466qiIBigti7EzA8en83F8Mg/Hd99i8YSmuJmxsbhPm47ntDPwHnU06EMIkaZntVJ01/2knHwccXf+H54pJ0F8fK1PT9ivY2zbsmY9y34u4Iu5WYyflMKYw5NZ9nMBAMNGJx5wvHYdHeTn+tm900PXHtrqSkREpKWpc3J5yy23cOWVVzJz5kzS0tJIS0sjJyeH7OxsRowYwc033xyNOOvtmmuuYeHChUyYMIGHH364qcNpdSwF+dgX/oB9wdc4FnyLbfW+hk7BpGQ8J56C97gT8BxzXJ1+aRWRxuE/9DDc007H+d47xP3rwTptTfL7jrGBgMmX87IpzA8wf04WK5YUsWOrm8RkGz37HjhZ7NozlvWrSti2ya3kUkREpAWqdXLpdrv55ptvyMjIYMaMGcycOZMtW7aQmZlJ27ZtGTZsGBMmTIhmrPVy7rnncuqpp/K///2vqUNpFYzdu7D9shj7L4uwL/wO29IlWPZbq+Xv1Rvv5OPxHj8F35hDwW6vYTQRaQ6K/3YnMfPnEfvkY5Secx7Bnr1qdV64Y2x+qBnPmt+KKMjz07m7k4DfZMfW0FYjw8ckYhgHnv7eo3coodyyoYTxk1Lq81JERESkCdUqudy+fTsXXnghGRkZ4cfi4+N5+OGHOfzww6MWXCSMHTuWn376qanDaHlME2PvHqwrV2BbvQrb0l+w/7IIa8aOCocF2nfAd/hEvEcciW/CEQS7aJ9TkZYm2KkzJbOvI+7+u4m//TYKXnytVuclJO2bFrs7w8N3n+cCcOTxqfTs6+K7z3PYsrGU0eOTajVep25ObHYL2za52b65lB1b3Rw6MbnGTrQiIiLSfNQquXzggQcwDINXX32VwYMHs2PHDm6//XZuv/12vvjii6gFt2jRIp577jlWrFhBZmYmTz31VKU1na+++irPPfccmZmZDBgwgNtuu42hQ4dGLaZWx+3Gum0r1i2bsG7ZjHXzJqxrVmNbvRIjJ6fCoabFgn/AIHyjRuMfORrf6LEE+vRVQx6RVqDkymtwvv4KMR9/hP3Lz/FNOuaA55RPi134dR4Lv84DQusme6e7MAwLRx6fVqcYbDYLXXs42by+lBf+nUHAb9Klh1NTZEVERFqIWiWXS5cu5ZZbbmHkyNA+aL179+bvf/87U6ZMYe/evbRr1y4qwZWUlJCens60adOYPXt2pefnzZvHvffeyx133MGwYcN48cUXueSSS5g/fz6pqakRj6c207oaU3k8hmGBQAB8PvD5sLjdWArysRQUYCkswCjIx5Kbi7FnD8ae3Rh7dmPZsxtj1y6MXTuxmGalsU2HA/+QoQQGDMI/cBD+ocNC++AlJFSMoVFeqTSFCveXtH5xLorvupfE888h4dYbyfv2R4itOalLTN73T4grzsq4o1I45NDECluOVKe6+6tHHxeb15cS8Ifel7ZtctO9l6uur0ZE72ESVbq/JJpa8v1Vq+QyMzOTrl0rTnfs1q0bpmmSlZUVteRy4sSJTJw4sdrnn3/+ec466yymT58OwB133MHXX3/NnDlzmDVrVkRjsdkM0tKaUUManw/GjYPffiPF56vXHnUYBnTrBr17V/xv4EAsfftis9uxAerrenBLSYlr6hCkscw8G956DetHH5H2zONwxx01Hp4Qv+9956qb+9Cjd93vld/fX8NHw1cfZ+N0GrjdQXZt9zav915pcfQeJtGk+0uiqSXeX3XuFttceL1eVq5cyRVXXBF+zDAMxo0bx7JlyyJ+Pb8/SEFBacTHrTe/n0RHDPakJIJWG6bdDray/ztjMRMTCSYmYiYmYiYmYSYlE2zfnmD7DgTbd8Ds0IFgm7bVN9wp8ACeRn1J0rwYhoWUlDhyc4sJBitXt6V1Mv5+H8lffAH33UfelFMJ9ulb4/EXXt0FV5yVhGST7Oyi2l+nmvsrOc1k+nkd6NTNyZP3b2Xj2iIyMwtb5Ke30rT0HibRpPtLoqm53l+JibHY7VXva12u1snlJZdcgtVaebALL7yw0uMLFy6s7bD1lpubSyAQoE2bNhUeT0tLY+vWreGvL730UpYvX05paSlHHHEETz/9NP3796/XNZvTXy6GlYIP55OWFk9udlH9Y2tOr0mapWDQbF73vkRVsEs3im+4mfi7bifuT9eT/84HNa6r7tEnNHW2vvdIVffXkJGh6feduzvZurGUPTs9tO+kORRSP3oPk2jS/SXR1BLvr1oll1dffXW044gY0zQrdBZ8+umnmzAaEZGWp/Tyq3G+/QaOBV8TM+cdPNPOaJI4uvUKJZdbN5VGJLn8/stcSooCHHNSmjrQioiIREGLTS5TUlKwWq1kZWVVeDwnJ6dSNVNEROrA4aDo/odIPnUKcX/7M96jJ2MmJTd6GD36xLLgs1y+mZ9DfIKVTt2cJCXb6pUYlpYE+PyjLMwgpA+Jo1tPdaAVERGJtBbb7NPhcDBo0CB++OGH8GPBYJCFCxcyfPjwpgtMRKQV8I2bgPusc7Du3UPc3TU39omWXv1cjBqfRHFRgLee380jd2zhq49zDnxiFdatKsYs6z9Uvm2KiIiIRFazTi6Li4tZvXo1q1evBmDHjh2sXr2azMxMAC666CLeeOMN5syZw8aNG7n99ttxu92cdtppTRm2iEirUPR/dxFMSSH2heew//jDgU+IMIvFwolntOOsizsyaHg8hhV++jYPr6f23bGXLy5gwWc5rFleVDYmrFleRE6WL1phi4iIHLSadXK5YsUKTj31VE499VQA7rrrLv6/vbsOk6s82wB+nzMuO+u7ycbdDQghQUJSnFLcg9OiKW1pgQ9KkeIUtzZYcU8CheAQNEAgriQhns26jMs55/vjzBnZnd0dXeP+XVcuktmRd3cPydz7PO/znnDCCXj11VcBAMcccwyuu+46PPzwwzj++OOxfv16PPXUUzk545KI6NdGKSmB67a7AQD2P10BeLtmYvaYiXacen5fjJucB79PxprlzqQeFwzK+N/r1fj0vTqsX+WGwShgxuxCKAqwflXyk22JiIgoOd36KJJp06Zh48aN7d5nzpw5mDNnTietiIjo18V/yunwz38Dpk8/hu2+u+H++81dtpapB+Zj9U9O/PB1E6ZMc3S493LrJi+CgeiUvRFjbKgYoA4GcjlDOV0rERHRr1G3rlwSEVEXEwS4/vUQZJsdlscegn7Vii5byoAhZpT2MWLvLj+aGjsOhxtXq9XJaYcUYNAwCw44tAAWq3p0ltct5XStREREv0YMl0RE1C65X3+4/3ErBEmC/U9XAsGu2a8oCAL69FMrj4317YdLWVawca0bggjMPLIIF8ztj4FDLJFw6XEnv2+TiIiIksNwSUREHfKddyEC0w+EYc0qWB97qMvWkV+o7uZoqm8/4O7c6oOrWcLAIRZYbbrI7Vab+s+e18PKJRERUbYxXBIRUcdEEa77H4ZiNsP6r7ug2/RzlyxDC5eNDW1XLv0+Ge+8VgUAmLhfXtzHLDa2xRIREeUKwyURESVFGjYC7r9dDyEQQN5VlwNS5we0gkIDgPYrlx++XYO66iBGjrNhyjRH3McMBgE6vQCPh22xRERE2cZwSURESfNediWCk6fA8OMPsHRBe2x+UceVy5/XuiGKwAlnlUMU4yfKCoIAq02E1yNBUZQ2noGIiIjSwXBJRETJ0+vhfHQeFLMZtrtvh27N6k59+Y4ql8GgDFezBEehPm6vZSyLVQdFVttniYiIKHsYLomIKCXSyFFw//1mCMEgHFf8AfD7O+21jSYRFpuIpsZQwspjc/iIEi2EJqKFTk6MJSIiyi6GSyIiSpn34ksROOgQ6Nevhe2eOzr1tQsKDQgFFbhdrfd8akeUaIN/ErFYOTGWiIgoFxguiYgodaII58NPQM5zwPLog9B/t6TTXjqy7zLBWZdNDWq7bEFR25VLS6RyyXBJRESUTQyXRESUFrn/ALhuvxuCosAx9xLA5eqU143su2xove8ymcql1crjSIiIiHKB4ZKIiNLmP/0s+I/+LXTbt8F+0w2d8pqRsy4zrFx6eRwJERFRVjFcEhFR+gQBzn89BLmkBJYXnoXx/fdy/pL5GVYutT2XbIslIiLKLoZLIiLKiFJaCudDjwMA8v50OcQ9u3P6era8tiuPWuBsty02UrlkuCQiIsomhksiIspY4PCj4Pn9pRAbGpB3xR8AKXfBzWxR/+nyeeNfQ5YVNDeGYHfooNe3/c8bB/oQERHlBsMlERFlhfvGWxEaNwHGb76C9eH7c/Y60XAZX7l0NoUgy+2fcQnEDPThnksiIqKsYrgkIqLsMJvRPO9ZKFYrrPfcAf3S73PzMhY1HLYMl40N4f2WRW23xAKAxRY+55KVSyIioqxiuCQioqyRRoyE6/Z7IEgSHJdeBKGpMeuvYTQKEMXWeyadTWq4dBR0EC7DlUsP91wSERFlFcMlERFlle+sc+A7/iTodu6A/W9/AhQlq88vCALMFl2rymXAr/7ZbG7/nzadToDJLMLjkqFkeW1ERES/ZgyXRESUXYIA178ehDRgIMwL58P8wn+z/hJmi4hQUEEoFA2YWrg0mjr+p62gSI+AX4bbxeolERFRtjBcEhFR1in5BWj+99NQ9HrYb7gG+lUrsvr8iYb6+P1qFTKZcFlabgQA1FYFsrouIiKiXzOGSyIiyonQ1Glw3/RPCH4/HBeem9X9l4nCZSqVy5JwuKzZG0AgIEceS0REROljuCQiopzx/uFy+H97PHQ7tiFv7mVZ23+ZaGJsNFwKHT6+tE84XFYF8OT9OzHvvh2QpMzXtnm9Gy/+ezfcrlDGz0VERNTTMFwSEVHuCAKcDz6K0JChMH3wHiyPP5KVp41WLqN7JiPh0ph8W+y6lS7U7A2gtjqIdStdGa/rpyVN2LzBg+XfN2f8XERERD0NwyUREeWU4shH89MvQDGbYbvtJui/W5Lxc0bCpSe9ttiiUiMEEXA1R8Ppd180ZryuupogAGDdisyDKhERUU/DcElERDknjZ8A1133qedf/uF8CDU1GT2f2ZqoLVZtazUlES71egFFJYbIny02Ebu3+/DzOnfaa5JlJRIu9+z0o6EumPZzERER9UQMl0RE1Cl8Z50D3xlnQ7e3EnkXnQsE0w9fCdtiA8lXLoFoa6wtT4ejTiwFALz69B6s+jG9ltamhhCkUHTfZjbabImIiHoShksiIuo0zrvvR3DiZBi+/Rq4+uq0nyfhUSS+5Af6ANGhPsNHWzFpPwd+e2oZFAVY8HIVdvziTXlNddXqsSZ9+psAAN9+1oDaah51QkREvx4Ml0RE1HksFjT/9yXIJSXAI4/A9PILaT1NwmmxKVYux03OQ1lfI/Y/uAAAsN+B+TjutDIoMvDGc3vhcUvtP0ELWkvsuEl2TD0oH26XhOcf3w2vJ7XnISIi6qkYLomIqFPJ/QfA+fQLgE4H21//BP1PS1N+jsTTYhXoDQJEMbnKZZ9+Jlx+7SD0G2iO3DZlmgMT9s2DsymEVT86U1pTXY1apSwuM+Dok0oxcpwNzY0hbN3kSel5iIiIeiqGSyIi6nShAw8CHnwQQiAAxwVzIFRVpfT4RG2xAb+cdNWyLYIgYMI+eQCAvbv9KT22tlqtXBaXGSGKAkaMtQIAqivZGktERL8ODJdERNQ1rrgCvrPmQLe3EvkXzgECyYcwrS3WGw6XkqQgFFSSmhTbkfJ+6l7MqsrUwmVddQAQgKJidQptWV917yXDJRER/VowXBIRUdcQBLjveQDBffaFYen3sF9/TdIPbdkWGwykNsynPY58PcxWEdWVAUiS0vEDoA4TamoMIb9AD4NRXVtZeGBQdYohlYiIqKdiuCQioq5jNqP52Zcgl5bB8vwzMD/zZFIPMxgE6HRCpC3W709tmE97BEFAnwoTpJCC+prkjktZsrgBUIDBwy2R2yxWHRwFetTVBhEMyu08moiIqHdguCQioi4l961A07MvQTEaYb/hGhg+/7TDxwiCALNFjITLgF+tMGYjXAJAeYXa0rp3T8dVR2dzCN981gCdTsChRxXHfaysjxGKDNRWpX+mJxERUU/BcElERF0utP80OB94FIIkwXHxedBt3NDhY8wWEVJIQTAoI5DFyiUAlFeE910mMdTno7drEQwo2P+QfBSG91tqyvqGW2P3sjWWiIh6P4ZLIiLqFvynngH3X/4G0dmM/LNPg1Bb2+797Q49AKBqTyAaLo2Z77kE1GNKgPihPrKswOUMxd1vzXInVv/khKNAj0MOL2r1PJGhPns41IeIiHo/hksiIuo2PNfcAN/xJ0G3YxvyzzsT8PnavO/YSXYAwMqlzZFwaTJn55+10j5GiDpg22Yvqir9WPFDMx67czv+deNWbNusnlsZDMp4741qAMAJZ5XDYtW1eh6tcrlpvTsydIiIiKi3YrgkIqLuQxThfPgJBPfdD4al3yPvT1cASuKJreP3yYOoA1Yvc8Lj1iqX2flnzWAQccjhRQgGFPznXzuw8OUq1IWH+6xb6QIA1OwNwOuRMWyUFUNHWhM+T59+JgwcakZ1ZQALX66C0sbnQkRE1BswXBIRUfdisaDpuVch9R8A8/w3YL3v7oR3s9l1GDnOBp9HxpplTgDZ23MJAIccUYQxk+yQJTUknnp+HwDA1k1eAGo7LgD07W9q8zlEUcDpF/ZFQbEea1e4sGt725VYIiKino7hkoiIuh2lrAxNL74O2Z4H2z13wPTmawnvN3FfBwBgy0a1VTWb4VIUBZxybh9c+Mf++P1fBmDc5DwUlRpQszcAlzOEqvAkWW2ybFtsdj0m7aeus4p7L4mIqBdjuCQiom5JGjsOziefhaLTIe+qy2H44vNW9+k/2Bz3Z6MpOwN9NDqdgIFDLdDp1OcdEj7Hctsmb2TYjzZZtj2lfdT71OxluCQiot6L4ZKIiLqtwG+OgOtfD0EIBuG4YA50q1fFfTzPoYPVHh2kk83KZSJDRqh7K7du8qBqdwA6nYDiso7DZVkkXPJIEiIi6r0YLomIqFvznX0u3NdcD9HlRP6ZJ0PcsT3yMUEQIseGALkPl4NHqJXLtStc8LgllPYxRqqa7SkqNUIQgepOqFxyaBAREXUVhksiIur2PFdfC+8550NXXYX8M06CUF8X+VhsuDTlOFza8/SYuF8efF51Om0yLbEAoNcLKC4xwNUsweuRcrY+WVbwwhO78e97d0CSGDKJiKhzMVwSEVH3Jwhw3X0//EccBf3mTcg/5wzAq05t7dMvGvCyvecykcN+WwKDUX2djob5xCrtq943l/suf/y2Cb/87MXe3X78vNads9chIiJKhOGSiIh6Br0ezf95NnIGpuPSiwBJQt9+0aE+uW6LBQBHgT4SMIeNTny+ZSKl5eF9l1W5CZcuZwifvhut6P60pCknr0NERNQWhksiIuo5bDY0vfA6QkOHwfT+u7D/9SoUl+qhN6iVxM4IlwAw7ZAC/N9dw1DeN4XKZXioT3VlbsLl+pUu+H0y9jnAAbtDh80bPGhsCObktYiIiBJhuCQioh5FKSlB02sLIJX3geWl55H3z39g+GgLHAV6WKy6jp8gS0QxtRZcLVzW5qhyqQ0LGj7GhinTHIACrFvhyslrERERJcJwSUREPY48aDCa3ngbcmEhrI8/jPOaXsbcGwZBr8/9nst0FZUYAAD1tbmpJmoV0bK+RvQbqLYKN9azcklERJ2H4ZKIiHokafQYNL06H7LNDsdd/0Te80919ZLaZTSKyMvXo7E+iFAou5NcFUVBVaUfeoOAohID7Hl6AICrOXeTaYmIiFpiuCQioh4rNGVfNL/wKhSTCXn/91eY3nytq5fUrqISAxQl+xVFZ7MEn0dGabkRoijA7lDbg13OUFZfh4iIqD0Ml0RE1KMFDzoEzU8+B0WnQ97cS2H88P2uXlKbiktz0xpbXekHoLbEAoAtLxwuWbkkIqJOxHBJREQ9XuCoY+B8+AkIkgTHxefC8OXirl5SQpF9lzXZDpfafkt1eq3BIMJsEVm5JCKiTsVwSUREvYL/1DPgvOs+CH4/8s85HYZvvurqJbVSFKlcZndibCRchifSAoA9T4eAX4HfL2f1tYiIiNrCcElERL2G78Lfw3XrHRC8XuSffRr03y3p6iXFKSpVw18222JrqwP45WcPgGhbLADYHepQHzerl0RE1EkYLomIqFfxXnolXDfeCsHjRv6ZJ0O/9PuuXlJEUXF222J3bvXiP//agebGEIaPscJRoI98zM59l0RE1Ml6fbj85JNPcOSRR+LII4/EokWLuno5RETUCbxz/wT39f+A6HYh//SToF/2Y1cvCQBgNImwO3RorA9CkjI7jsTnlfDm83sRDCg45IginHlxBQQhes6nVrnkvksiIuosvTpchkIh3HvvvXjppZfw6quv4sEHH0QgkN19LkRE1D15/vRXuP/2fxBdTuSfdiL0K5d39ZIAqEN9ZBmoq8ns36OP3qlFU0MI4ybbMevoIuh0QtzHteNInKxcEhFRJ+nV4XLlypUYNWoUSkpKUFhYiIkTJ+Knn37q6mUREVEn8fz1Orj//FeIzU3IP/V46Fav6uolYcgIKwDgiw/qM3qerZu8AIBjTy2Lq1hq7HnhymVzCIqSWZWUiIgoGd06XC5duhSXXnopDjroIIwaNQqff/55q/u89NJLmD17NiZMmIDTTjsNq1ZF3zhUV1ejvLw88ufy8nJUV1d3ytqJiKgbEAR4rrsRnrl/htjYiIJTjoN+1YouXdKM2YVwFOixdoULWza6034en0eCwSjAatMl/LhWuVy51Il//nUz1q5wpv1aREREydB3fJeu4/F4MGrUKJx00kmYO3duq48vWrQId955J2655RZMmjQJzz33HC6++GJ88MEHKCoqyvp6RLH1T4a7krae7rYu6h14fVEude71JcD7j1sgyBIsjz2M/JN/B+fr8xHad2onvHZrFosOR51Qitf/W4mfvm3GiDH2hPdTFCVhRRIAZFmBzysjL1/f5tfQka8OD2puVPdcfvpuHcZOymvVPttb8e8wyiVeX5RLPfn66tbhcubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CGVlZaiqqorcv6qqCgcddFBaa9HrRRQXJ34D0NUKC21dvQTqxXh9US516vX1yINAQR7E229H/inHA4sWAWn+m5Cp8ZMNeB2V8PvQ6t8WRVHw4rzt2LTehb/fPRZGU+smI487BEVRW1/b+rfJqDfF/bm+Nohtm4LY/8Ds//C1O+PfYZRLvL4ol3ri9dWtw2V7AoEA1q5di8suuyxymyiKmDFjBlasWAEAmDhxIjZs2IDa2lrodDqsXLkSt99+e1qvFwrJaG72ZmPpWSOKAgoLbWhocEOWuZ+GsovXF+VSl11ff74OFlmE9c5/QjnySDS/+DpCh7T9Q8xc8QdkAICzOYC6Olfcx378phHffanux/x5Qz369je3enxDnXqUicEotHq8JvbrOmaiHetXufDBwj0YNtqY8P69Df8Oo1zi9UW51F2vL4fDAoMh8VYMTY8Nlw0NDZAkCSUlJXG3FxcXY/v27QAAg8GAv/71rzjrrLMAAH/6059gMplaPVeyutM3N5YsK912bdTz8fqiXOqK68v9579BNhhhv/VGOM46BU3/fRnB2Yd16hr0BkAQAa9Hivv8mxqCWDS/JvLn5sYQyitaf33cLrXV1WIV2/36GU0iAn4ZvzujDLu2+1BVGUAoJPfIVqt08e8wyiVeX5RLPfH66rHhsi0t96gcccQROOKII7pwRURE1N14r7wKitmEvOuvQf65Z6D56RcQOPLoTnt9QRBgserg9chxt69Z7kIoGH0j4WxOfEalz6s+zmxp/yfIl/5tICRJgcWqg92hg7MpBI9bikySJSIiyqZuPS22PYWFhdDpdKitrY27vb6+vlU1k4iIqCXfxZfC+a+HgGAQjgvOhvF/Czv19S0WEaGggmAgGjDXrVRbXPed7gDQ9hmVXo96u8Xa/j/jRSUGlJarbbA2uxpE3S6ee0lERLnRY8Ol0WjEuHHj8O2330Zuk2UZS5YsweTJk7tuYURE1GP4zr0AzoceB2QZjt+fD/ML/+2017ZY1bDnDVchmxqD2L3dh4IiPUaMVYc4uNqoXGoVT+05khEJl06GSyIiyo1u3RfjdruxY8eOyJ937dqF9evXo6SkBKWlpbjgggtwzTXXYNy4cZg4cSKee+45+Hw+nHjiiV24aiIi6kn8Z5wNxWaD47KLkXf1HyE0NMD7xz/n/HXN4aqjzyPBka/HhlXqmZdjJtlhd6j/PLfZFhuuXJo7qFzGsoVbYVm5JCKiXOnW4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp57KyRmXRETUewWOOwFNjnzkn3cW7LfdBLGhHu5/3Aq0cc5kNkQql+Eq5OYN4XA5wY48h/oxV1NbbbHhymUHey5jsXJJRES51q3D5bRp07Bx48Z27zNnzhzMmTOnk1ZERES9VXDmLDS+9Q7yzzoF1scegtDYANe9DwL63PxTqe2X1PZPNtSqx4uUV5ig06uhtq3Kpdeb3J7LWNE9l4mfk4iIKFM9ds8lERFRtoX2nYrGtz+A1KcvLC89D8fvzwd8vpy8VmzlUlEUNDWGYLaIMJlF6PUCrDYdXM0SFKX1GHpfuHJpTmXPZR4H+hARUW4xXBIREcWQRo9B47sfITR0GEzvvYP8s0+F4HJm/XXMlmjl0uuREQwoyC+MVkntDh0kSWl1XIn2GCDNyiXbYomIKEcYLomIiFqQBw5C4zsfIjh+IoxffYH83x0NcW9lVl9Dq1z6vDKaGtRWVUdBNFzmhYf6JJoY603ynMtYrFwSEVGuMVwSEREloJSVoWnhewgcPBOGNatQcMxh0G3ckLXnj91z2dSo7rfMLzREPm4PD/VJdNZlZFqsJZ09lwyXRESUGwyXREREbVAc+Wh65S34Tjkdul07UfDbI2D49uusPHd0z6WE5nDlMj/ZyqVHhsksQqdLfpqtXi/CbBHZFktERDnDcElERNQeoxHOx+bB/ae/QmxqRP5pJ8C04M2Mn9YcqVxG22Jj91zm5UfPuty41oWnH9qJTevckGUFfp+cUtVSY7PrEPDLCAZa7+MkIiLKVLc+ioSIiKhbEAR4rv8H5H79Yb/2L3BcciFcu3fDe8Uf0z4LM7LnsoO22C8/qkfAr06MXbvCiX6DzOrjbcnvt9TY8nSoqwnC7ZZQYOTPl4mIKLv4LwsREVGSfOddiObnX4FitcJ+642wX/83QEqvzdSSoHIZO9Cn3yAzTGYxEiwB9aUik2LTrFwCmU2MdTlDCLDySURECbBySURElILAEUejccF7yD/7VFiengdx9y40P/4UYLen9Dx6vQiDUYDXKyEUUgAhPlwWFBpw7R1DAQBVe/z4z792IuCXI0eTpHLGpcZmV58/maE+2vmaQkxldvUyJxa+VIUhIyyYc2m/lF+fiIh6N1YuiYiIUhSasi8a3vsEoWHDYfpgEQqPOxLi7l0pP4/ZooPXLcPZFEKeQ9dqQI8oChBFAYZwC2swqEQmxaZyxqUmchyJU0IwKGPTOjeCwdZVSFlW8NhdO/DaM9HjV9avcuGt5/dCkhTs3OaLhE8iIiINwyUREVEa5CFD0fj+pwgcPBP6tatReMSh0P+0NKXn0AKiogD5BYY272cwqqEzGJDh96th0GROP1w6m0NYtqQZL83bg3/fswM+b3wls742iNqqAH5e6460wP681h35uN8no7mx9RRbIiL6dWO4JCIiSpNSUIimV+fDe+6FEGuqUXDCMSlNko0NiEWlbYdLo1a5DCgIaOHSlPo/4do02qaGIKoq/QCAupog3vjv3rj7VVcGAACyDFTuUu/ncqphsu8AU9x9iIiINAyXREREmTAY4Lr3AbhuuwsIBuG45EJY775dLUd2YPBwC0QdMOUABw7/XUnbLxEOl4GAHBnwY0wjXBaEp9E21YfiKo/bNnshy9H1VoeDJwDs2uYDADib1erm0BFW9T57GS6JiCgeB/oQERFlShDg/cPlkIYNR97vL4Dtvruh27wJzoefACyWNh/2m2NLMPuY4rihOYnodIAgxlcujWkcJZJfpP6z39gQDZbFpQb1eBKnBFueDooSHxx3b1fDpas5BFEEBg234JvPGlCz1w8iIqJYDJdERERZEvjNEWhc9Any55wO89vzoduxDc3/fRly34o2H9NRsNTuYzSKCAbkyB5Igyn18zXNZh3MFhFNDeq5mmaLiLIKE+pqgmisD+L5J3bDlqeDK1ylhADs2u6DLCtwOyXYHXqU9zUCYOWSiIhaY1ssERFRFkmjx6Dhg88QnDYdhuXLUHD4TOi//y7j5zUYhXDlMtwWm0blElD3XQYDCoIBBQVFBhSE92Hu2OpDzd4Atm3yorYqALtDh/K+RjQ3hrB3tx+KAtgdOjgK9DCZRdTsDcS10uaSoihYu8KJmioGWiKi7ozhkoiIKMuUkhI0vvU/eM+9ELrqKhSceAzMzz6V1D7MthiMIiRJiUx2TWfPJQAUFEUHB+UX6iNDfrZscMfdr6yPEf0GmQEAG9eoH8tz6CEIAkrLjQgGFDQ1dM7E2HUrXXjjv3vx2J3b8dqzlZAkHoNCRNQdMVwSERHlgtEI178ehPO+hwFBQN61f4H9L3MBf3p7FQ0GtQ3W5dTCZeptsUB0YiygBs388JCf7Vt8cfcr62tCnwp1MuwvP3sAAPbwUSZlFca423Ptl43q6xiMAtavdGHp140AgG2bPbjr+i1Yt9LVKesgIqL2MVwSERHlkO+c89G4cBGk8j6wvPQ8Ck44GmLlnpSfR2uDdbsyq1xqYRIACor0KAgP+dGqgVr47NPPhNI+aojUhvrYHerHpkxzAAC+/KgeoZCc1jpSsW2LFwBwxkV9IYjA5+/Xo7kxhEVv1cDnkbH8+6acr4GIiDrGcElERJRjoanT0PjJlwhOnQbDTz+i8LBDoP9uSUrPYTCqlUp3+LzJdPdcamFS/b0hLmwCwKnn98Vxp5dhwr55KAsP75HD+dHuUCuXAwZbMHKcDU0NIXzxYT38/twFTGdzCHXVQRSXGjBslA3TDi6A3yfjsbu2R87a3LrJi2Aw9yGXiIjax3BJRETUCeTyPmhc8B68514IsaYaBScdC/PT85Leh2nIQeUyv1APi1WMtNiKItC3vwn7Ts+HTifAZtfDatNF7m/PiwZT9QgV4KuPG/DQP7ehoS6Y1no6sj1ctRw83BJ53bGT7PD71DBZXGZAKKhgxy/enLw+ERElj+GSiIios7Tch/l/f0XepRdCcDk7fKhWuZQl7anS23PZsnIpCEIkcBaVGKDTxT+v1hoLAHmOaNDs08+E86/sj6EjLfC4JKz4oTmt9XREC5eDwuHSaBJx6vl9cPqFfXHKuX0w/dBCAMDmDZ2z/zMdjQ1BbF7v7viOREQ9HMMlERFRJ/Odcz4a//chpP4DYF7wFgqOOBS6DevbfUxsG6wgAHpDeuHSZtfBZBZhsaq/gOg+y5JyY6v7a62xQHTPpWbQMAuOPbUMALB2RW6G6mgVyUHDLJHbBEHAmIl2jN8nD8NHWwEAm9d333D5zitVePE/e1Bfy6NUiKh3Y7gkIiLqAqF99kPDJ1/Cf9gR0G/ehMKjZsH0+itt3t8QU6k0mkQIQnrhUhAEnH5hX5x2Qd/IcxSEK5eJwmVs5VKbFhuruNSI8gojaqsCqK5MbxJuWyRJQU1VAFa7DvkFhoT3UfeN6lGzN9Apw4VSFQzK2P6LOhCptjo3rcNERN0FwyUREVEXUYqK0fzi63DdcBPg88Fx5SWwX30V4PO1uq8hpnKZ7jEkmqEjrRgywhr5c//B6nmWg2Oqg5rScOA0mcW4NcQaNzkPABIeCeJyhvDh2zV447lKBAOphb/a6gBkCSjv2zr0xtIqqh5X9wmXWzd58NmiOuzc6oMUUvfVNtYzXBJR78ZwSURE1JVEEd6rrkbTW/+DXFoGywvPouDYwyFu/SXubrF7LNOdFNuWifvl4U83DcbwMbZWHyvra4IgxO/VbGn0BPVxWzfFD9VxuyQ8esd2LPm8EWuXu/DLptRaV6v3BCJraI/Nrou8XndQVenHy0/uwZcf1eODBTWR25vqQ124KiKi3GO4JCIi6gaCBx6Mhs++RmDGQTCsXonCww6B6e35kY/HVy6z+8+3KAqR1tiWbHYdTr+oL353Rnmbj88vUh/rcceHu5qqAHxeGWJ4ubu2ta7Itqcq3GZbXtF+5VKbaOtxd314CwZlvPp0JYIBtVqpHZcCqIN9iIh6M4ZLIiKibkIu74OmN9+B549/gehshuP358P+l7mA291qz2VnGj3ejn4DzW1+3GgUIOpah8vmRjVMDR2ltuDuTDFcasGsJ1Uud+/wo6E2iMHDLeg3UF23EP52NbJySUS9HMMlERFRd6LXw/33m9H4+kK1TfbF51B4xEwU7twQuYshzWNIckUQBFhtOng9EpSYczudTWrYGzbKCqNJxO7tPkhScud6AkDVHj8gAGV9OqhchsOlpxuEy7pqNRAPGmbBjNnqMSlDR1ohikATK5dE1MsxXBIREXVDwUNno37xEgRmHwb9pp8x7erjMHPja4CidHrlMhkWqw6yBAT80fDY3KhW6vIL9eg3yIRgQIlrE22PzyehqSGEwmJDh59vd6pc1tWoAbKo1ICxk+w48exyHHtKKRyFeriaJQSD3WfoEBFRtnW/f52IiIgIAKCUlqLp5TfhuuUOQJFx2k/34JIvr0ZesKmrl9aKdmam1xMNeM1Narh05BswYLA6iXbXNm/rBydQuTO837KDSbFA96pc1teo4bm41AhBEDBpqgNFJUYUhPelNjWwNZaIei+GSyIiou5MFOG97Eqsf/I9VNsHYOLuL3DyvcfB8M1XXb2yONGhOtGA5wxXLvMKdJHjTtaudEGWE7fGupwhzLt/B775rAGfvlsHABg+uvUE25YilUt314dLrXJZXBo/IKmgUJ22y9ZYIurNGC6JiIh6gOCEybjr6Jfw/eBjYWusQv5Jv4XttpuBQHJtprlmsaoBr2XlUhAAe54eQ4ZbUFxmwLZNXnz8Tm3C59j6sxd7dvjx8Tu12LXdh4oBJuwz3dHha0eCbRdXLmVZQX1NEFa7LvL10GiVSw71IaLejOGSiIioBzAaRfgNNjw/41b8cNkDUGx2WB++H4VHzoJu/bquXh4s4YDndat7CmVZgbM5BLtDB51OgMEo4uw/VMBiE7FkcSPqa1uH4vq6aFVP1AHHnV4GUex4eFF32XPZ1BCCJCmtqpYAkF+ohUtWLomo92K4JCIi6gFiJ8RWzT4JDYu/RWD6gdCvXY3CI2bC8sSjgNx1w2Ks4T2XnnDl0u2UoMhAXr4+cp+iEiPGTrQDAGqrWoeshnDgPOXcPrjy/wajb/+2jz+JZTSJ0BuELq9capNiE4XLgiKtLZaVSyLqvRguiYiIegCDMfpPttEkQh44CE3z34XrptsARYH9puuRf8rvIO7a2SXri1Yu1YAXHeajj7tftD20dbisr1VvqxhoQlFJ64DWHptdB69HTumok2yrq9X2W7YeQmR3qF8Hl7Pr94USEeUKwyUREVEPYIypXBq1oKnTwXvFH9Hw0RcIjR0P49dfonDmdJhefwVQOjdkRfdcqtVTpxYuC1ILl4IYbSFNhTYxNnbPZ2eLVC7LWq/fnhdu3XWycklEvRfDJRERUQ+gNwhAOF+2PPdRGjsODR9+Ds/cP0NwOeG48hI4Lj4PQl1dp61PO4pEmxarnXGZ17JyWaz+uaHFYJtAQIarWUJBoQE6Xcf7LFuy2bp+32X1Xi1ctq5cmi0iRF3X7wslIsolhksiIqIeQBAEGAxq6DKaEoQvkwnuG29B09vvQxo4CKb/LUTRwfvD+L+FnbI+bWKrVjlMtS22ITzMJ9V22Mjrd/FZl4qioHKnH3qDgJIE4VIQBNjserhdUptHsSSjqtKPR+7YhvWrXJksl4goJxguiYiIeght32XLymWs4AEz0PD5N/Cecz7E2hrkX3Qu8i4+D0JNTU7X1nJarNYW27Jyac/TQW8QWoXL+vD5kIVphsuunhhbXxuE3yejTz9Tm5VXW54OihxtHU7HmmVO1FUHsfDlKk6eJaJuh+GSiIioh9D2XRqN7f/zreQ54LrvYTS+8TakAQNhfmcBig7ZH6aFb+VsL6alxbRYZ7P635bhUhAEFBTq4XXL8PuiIaunVy737PQDACoGmNq8jz28xvraAF6atxs/r3Wn/Dq7tvkAAH6fjLdfqUpjpUREucNwSURE1ENolUtDorbYBIIzZ6HhiyXwnn8RxLo6OP5wARwXngOhujr7azOIMBiFSFusqzlcuXToWt03UWusNim2sDi9cGnPU0Oss7lrBuZU7lRDX8WAto9PsYWH+qz+yYlN6zxYNL86pRZZWVawe4cPBqOA/EI9tm7yRva4dmTFD81Yt5KttESUWwyXREREPURpHyOsdl2kBTQZij0PrnseQOP8dyENHAzTe++g6OCpML31etarmBarDj6PDFlW4GqWoDcIMJlbv9XQwmVDTLhsCIfLogRnRCYjv7Brz5Hcs0utXPZtp3JpCwfgHVvVINpYF8LGNclXL6v3BhDwK+g3yIz+g9UQW7XH3+HjAn61yjn/xb3weiR881kDXntmD956YW/S4ZSIKBkMl0RERD3EKef2wVU3DoZen/o/38GDDkH94m/hufgSiA0NcFx2MRznnJ7VczEtVhGKok6M9bgl2PN0EITWVVZtYmxjXTQIZlq5LCjqunApy+owH4Mx8TAfjfZDgard0UD43ReNSb/OrnAo7T/IjPIKNcRW7Ql0+Lja6gAUBQgFFbz3RjU+fqcW61e5sfonJzavT701l4ioLQyXREREPYQoCjC1M8ynQ3Y73Hfci8a330doyFCYPvoARQftD8t/HgOkzCtY2sTY2io18Ngd+oT3a9kWK0kKGhuCsDt0He4nbYujwAAIic/PzLXKXf4Oh/kA0bMutYKx2SJi+xYv6mraD4h7d/vx6J3b8eXH9QCAAYPNKK9QQ2xVZceVy5q90edfs1xtjdUeH/B37nmoRNS7MVwSERH9ygSnH4iGxUvg/tNfgYAf9hv/DwVHz4Z+9cqMntdiDVfmKrVwmbh911EQ3h8Znijb1BCEIqc/zAcA9HoBeQ4dmptCkKTODUxffKiGvon75bV7v9h2ZkEEpkxzAAC2bPBEbnc2h+L2YSqKgvfn16C2KhA5O7T/YDP6aJXL3amFS0Btr568v/ragUD6k2uJiFpiuCQiIvo1sljguf4faPj0awT3nQrDiuUoOOJQ2G66AXCn1yqp7XvUJppqQ3Za0vZhasFGO4Ykk3Cpvr4Bity5Q3127/Dh57VuOAr0mDItv9372mK+HgWFBowcZwMAbA6Hy+2/eHH/TVuxZHFj5H4/r3Vj+xYvSvsYccTxJTju9DLY7Ho4CvQwW0RU7w10OBSoJlxJnnpQPgQROOJ3JZHjbIIMl0SURQyXREREv2LSmLFofO9jOO+6D4rVBusTj6DokGkwfvpRys9VHN5vuG2zGpa0NtCWtNZXrSWzvk4747Lt/YrJKNCG+tR3XrjUqpaHHF4Evb79Kb62mK9HUakBA4aYYTAK2LbZg1BIwYrvm6EowPYt3sj9vvqkAQBw+HElmDGrEPtOVwOsIAgorzAhFFQi4bwtWuXysN+W4IZ7hmPEWFv0exBgWywRZQ/DJRER0a+dKMJ34e/R8PUP8B/7O+h27kD+macg75ILIFQlf5ZiSbkaDp1Nic+41GhVs4BfrZpFJsVmWrnU9nI2dM6+S61qmV+ox+Rwi2t7Yttii0sN0OtFDB5uQcCvYPsWD9avVvdDanswFUVB1R4/TGYRI8ZaWz2ftm9ybzsTY4MBGQ11QeQX6mEyi5EArB1nw8olEWUTwyUREREBAOS+FWh+9kU0PfcKpL4VMC94C0Uz9oXlySeAUMfVwJKy+HDYduVSDTaRttgshcvOrlwu/qAOAHBwElVLANDpBFis6lsv7XMdPlptjX1/fi18nmjYliQFbpeEYEBBYYkh4dTdvv3V40g2r/e0+pimriYIRQFKy+Orwi2rx0RE2cBwSURERHECRx+Lhm+WwnPJ5RA8bthvuBaFhx0C/XdL2n2cza6D2RJ9a9HWtFi9QYAgxLTFZngMiaajyqUsK6iq9Gdl4E9jQxCb1nnUquX+HVctNdq+y6JSNeyNm2KHo0AfmbAriIAsq1NvGzr4uoyZZIPRJGDNcmeb51VqLbGlfeLDpcHYvSqXWzd5sGRxA5qbuuacUiLKDoZLIiIiakWx58H9z7vQ8OnXCBwwA/p1a1D4uyORN/dSCNXVCR8jCPHnPLY1LVYQBBhNIgJ+GYqioKEuCLNVjBxlkq72KpeSpGD+i3vxxN078MAtW/HjN00pPfeenT6892Y1vB41xNWGQ9uQEZakqpaawmI9BAEoC4c9e54eF/9pAPr0N8Fq12HsRDsAoK46iIa69sOl2azDpKkOhIIKln/fnPA+WottcVnLcBk/VKkruV0SXnmqEh8urMUDt2zFpnU8e5Oop2K4JCIiojZJY8eh6e330fzYPMilZTC/9jKKZuwL81P/TtgqW1IeDUI2e+LKJaBWzoIBGc4mCaGggqIMq5ZA+5XL996oxpplLpgtIlxOCR+9UwtFSb6CuWRxI5Z+3YRP3q0FANRprbylqQ0hOubkMpxzWb/IWZ+AejTLH/4yAH/+x2BUDFRbXetqApFw2d7XZupB6oCfLz6sw4KX9raalOtqVsOwo8X+V2Okctn1bbFffVyPgF9GSbkRigz89F1qwZ+Iug+GSyIiImqfIMB/6hmoX/ITPH+4DILLibzrr0Hh4TOh//67uLtqFTKLTWy3omc0iZBloLZaraxl2hILACaTCItNRGN9CKFQNDTJsoIVPzTDZBZx6d8GomKACQG/jKbG5FswtQrgT0uasXuHLzKhtbg0tXUXFhswdGTr4TyiKMBgFFEc3rcaV7ksaTukl/Ux4cDZhZBCwMqlTiz9Oj6YuZzq59iyiqxVLru6LbapIYilXzfBaBJw9h8qIIjqUTapBH8i6j4YLomIiCgpiiMf7tvuVs/GnDYd+rWrUXjcEci7/PcQK/cAQKQtNq+N/ZYabWJsU7jKaGtj+E+q+g8yQwop2LPDF7nN55Uhy0BBkR4FRYZIS2pNZSCp51QUBXXV4WqoAny2qA71tepjizI8PqWlknAltLYmkPRe1MN/V4KL/zwAQPwxJkC0ctnyzNHuchTJLz97IUkKpkzLR2GxAX0qTHA1S2jsxONkiCh7GC6JiIgoJdK48Wh85wM0P/oftVX2zddQNH0fWP91F/oWSRAE9RzH9mhtmc3hY0tM5uy8JRk0zAIA2LY5GrI8LvU1tKNAyvqaAADVe5MLlx63BL9PRllfI0xmEdu3eFFdqYXLzCuusQqKDRBErXIZgiAC+YUdv0Z5hRFmq4hd230IhaLVSK1y2TK8d5eBPlpI79NPDdUDhqhtwbu2+dp8DBF1XwyXRERElDpBgP+0M1H//XJ4/vgXIBSC7Z47MPS46fjLqB9wzEml7T5cq5w5w62pZkt2KpeDh6stp1s3R4/ncIcnqVrD4VKbnFpd2fb5kLG0qmVJuREDh5oRCipoagjB7tBlLRRr9HoBhcUGOJtCcDaFkF+oh07X8cAgURQwcIgFUkjB7h3q56UoClxOCVabrtVziKIAvUHo8splXU383tX+g9VwuXObt83HEFH31evD5R//+EdMnToVf/7zn7t6KURERL2OYs+D++83o/6bH+H/7fHQ7d6Fof+4DAPPOhr6ZT+2+TitLVY7eiL2CJNM9O1vgtEkYOcvXkjhfZda5VKbRhtpi02yclkXs79Sq4wC2a9aavabkR/5fSp7UbW1aa2xfp+MUFBpc2qvNlSpK7XcuzpgsPo5sHJJ1DP1+nB59tln4+677+7qZRAREfVq8qDBaH7mBTQuXITg+Ikw/PgDCo+ajbwr/hDZjxnLaNLaYrMbLnU6tYIXCCjYsVWtXrpbtMU6CvQwmUXUVAUgyx1X7iLHeZQa48JlcYqTYpN1wMyCyOukFC6Hqo/ZEQ6X0f2WicOl0SgiGFCS+hrkgqIoqKsJwGgSI9+bgiI97A4d9u72w+/PbfBVFAWL3qrG689W4oevG7Ny/inRr12vD5fTpk2DzWbr6mUQERH9KgRnHITGj7+A84FHIZeUwvzGq+p+zLtvh+ByRu5naNUWm723JINHqCHr3Tf3IBiUo5XLcIARBAGlfYwIBpSkBsdEWzcN6NvfHNmv2NG+0nSJooCT5pRj3BQ79p2e3/EDwvoOMMFgFLAzPG1VO5bE3sZwJYNB/TxCwa4JVa5mCcGAguJSAwRBXYsgCBg8zAJZbj2cKNuaGkP44asmrFvpwqI3a7B5A8/XJMpUl4bLpUuX4tJLL8VBBx2EUaNG4fPPP291n5deegmzZ8/GhAkTcNppp2HVqlVdsFIiIiJKmk4H39nnqvsx5/5Z3Y95390o2n8yzM88CQSDkbZYraqYrT2XALDv9HyUVxixYY0TC16qalW5BICyvmrVMXaqbFvqYyqXer2A/oPM4T/nJlwC6hCfU8/ri37hcy+TodMJKC03wu+T0dwUgsvZfuXSYNImxnZNa6x2VmjLr+PQUeq+2V82elo9JpucLY6i2bMjuT24RNS29ueE55jH48GoUaNw0kknYe7cua0+vmjRItx555245ZZbMGnSJDz33HO4+OKL8cEHH6CoqAgAcPzxxyd87vnz50Ony94/VID6k8TuRFtPd1sX9Q68viiXeH39SuTnw3vTrfBfcBGsd94G45uvIe+6q2Gd9ziGHPdXfKNMBcIVK4tVl7XrwWbX44K5A/DI7duwdrkTYyfZAajHcWivMWKMDcuWNOPDhTUYMsKKvPzEb4lkWUF9TRBmiwh7ng6CIOCQI4pgsTZhxBh7t7uGS/sYsWenH3XVQbjD4TIv35BwndpQJSnUNf8vNmjhsswY9/rDR6sdZ7/87MnpupzhtuEBQ8zYudWHyl3+pF+vq/8OW7akCSaziHFT8lJ6nKIokSoxdV9dfX1lokvD5cyZMzFz5sw2P/7ss8/i9NNPx8knnwwAuOWWW7B48WIsWLAAF110EQDg7bff7pS16vUiiovtnfJaqSosZNsv5Q6vL8olXl+/EsXjgNdfAVZcC1x7LXQffYTpD12G8uIJWDjlKmwpm4KKijzk5WevElhcDPQbaMHP61zYu1utPPbrn4fiYrVl9pDf2LHzlwC+XVyH9+fX4rK/Dk/4PA11AQSDCioGWlBSor6RL55hx/4zyrO21mwaPDQPK5c64XEKkEJqeOxbYUv4HsZmNwDwwmoxR74unaWxIYDmBrUdd9CQvLj1FRcDZX32oLrSD71oSuoolnRIQbUyOmnfQuzeXomqPYGU3+t1xd9hH72zF2+/VgWjScSBs/okNU0YAL7/qg7zX96NC68cglHjUgul1DV64r+RXRou2xMIBLB27VpcdtllkdtEUcSMGTOwYsWKTl9PKCSjubl7jcUWRQGFhTY0NLi7bDM+9V68viiXeH39Sg0YDrz8FgyLPwP+dj2Gbl2Nv3xyMVb1mwn/ynsRGDcmay8ligJKy034eZ0rMpAnEPSjrk6K3Oc3xxVi6Tf12LLRhbo6V8Ln+eVnNYDkF+ravE93YnOo/922xYlQeFouxFDCtQuC2g5bU+OCySq1+niuVO3x4/G7t0MJL89kkVutb/BwM6r3+vHjdzWYvL8jJ+vYu0fdY2mxKSjtY0TVngC2bW1EXht7VGN11d9ha5Y78fZrlQCAgF/GhrX16NPPlNRjf/quDq7mEJ58cAsu+etAFJVkdyCV26m2YpdXJLcealt3/TfS4bDAYGi/M7TbhsuGhgZIkoSSkpK424uLi7F9+/akn+cPf/gDVq1aBa/Xi0MOOQTz5s3D6NGj01pTd/rmxpLlrpv0Rr0fry/KJV5fv07+Q2Zh9aMfYMdt/8Vxqx7HxN1fQJl1AHxnnQPP1ddC7tc/K69T2idmv6IAmCxi3PWm0wmw5+vRUBuE3y/BYGg9iqK2Sg2mRSWGHnGtFpepVb7qvf7I0CSrXUy4dn14oI/fJ3fq51a5yxcJlnqDgKLS1l/bAUMt+OHrJuzZ6cPE/XJTZWtqVNty7Q49+vQzoWpPAGtXOCEKAvaZ7kiqJbEz/w4LBGR8sKAGADBwqBk7fvFh5zZvZP9wR2qr1WvZ65Hx7uvVmHNpv6ytTZIUPPvoLtTsDeCCuf0xcGjnVsJ7q574b2S3DZdtSbVXfN68eTlcDREREaXDaNFh6ZBjsHzgb3D4jrdwzPqnYXnxOZhffwXe8y6E549XQynPrPW0rE+0gmJtY09nnkOHhtogXM0SCotbh8vYY0h6goIiA3R6ATV7A3AUqG/z7HmJ3+4Zu2igjzZgaZ/pDkw7uAAWa+tKSGGRGpIbG4I5W0dzeKCPo0CPvv3NWLnUiUVvquHNbBUxPsX9jLn27WcNaG4MYewkO8bvk4cdv1Rizw5fUhOFFUVBfa06SEtRlMhE4Wztv1z+fTOqK9X/Vxa+UoXL/jYw8sMN+nXptt/1wsJC6HQ61NbWxt1eX1/fqppJREREPYv2xjOkM2HptPNQv3QV3H/5GxSDEdYn/43iaZNg++dNEOrr0n6N0thwaU/cyqW1QLqaEx9Joh1DolUEuzudTkBJmQFej4zaqiBEHWCxJn67p30Pgv72KyPfft6An9dl75gOj1sNlwOHWNpsocwvUr8vTUkcFZMuZ5M28EiHvgPi17F+ZfdqgVYUBd992QhRBxz+uxL0G6iud/fO5CbcOmOOfSnto04UbmrMztfW75fx+SL1/9O+/U2orwliyeLGrDx3b7T9Fy8evm0bfl7bO4++6bbh0mg0Yty4cfj2228jt8myjCVLlmDy5MldtzAiIiLKmFY1AwCTRQclvwCe625E/dJV8Fw2F5BlWB95AEVTJ8F6750QnM0pv0ZpmUkbRht3DEks7QxIbXJoS1rlMldnWuZCSblaZZUkBX37m9usTmnnXLZXuWyoC+Kjt2vx8rw9+PbzhqysTwuXbQV+QP1+6fRCziqXiqKguSkEq00HvV5E3/4mFBYbMHKcDQajgJ/XuRHsoiNaEmlqCMHnkdGnn7pOR4Eetjwdqvf4k1pn9DgdQ6Sir1UaA34ZO37xIhRK7/Pd8YsXbpeEMRNtOO70MgC5P6O0p/J6JLz1/F7U1wbxv9er4Pd1n2ssW7o0XLrdbqxfvx7r168HAOzatQvr169HTY3aknDBBRfg1VdfxYIFC7BlyxbcfPPN8Pl8OPHEE7ty2URERJQhoykaeMyW6NsRpaQE7ltuR/0PK+G94GIIPi9s996Jov0mwPLwA4A7+Z/2G4xipDW07cqlenuiyqUkKWioDcKWp4PZnN3jzXKprK8aHgpLDDj1/D5t3k8L+MFA25XLpphw99Hbtdi6KfOzJz3htlirre2vqSgKyC/Uw+uWEfBn/w24xy1DCimR68NoFDH3hkE48+K+GDHGhmBAwZYcn7OZiqpKtUJZHv7eCoKAfgPNkGVg7+6Oq5daBb6o1IjyCvWHD9V71Me992Y1nnl4F/5141Ys+64p5bU5m9T/d8r6mlDW1whBjK43m3Zt82HPzo7Ppe3OPlxYg+bGEAxGAc4mCYveqsaenWqLcm/RpeFyzZo1OOGEE3DCCScAAG677TaccMIJePXVVwEAxxxzDK677jo8/PDDOP7447F+/Xo89dRTkTMuiYiIqGcyxuzHig2XGrlPX7juvh/1S5bBe9Y5EJqaYL/tJhTvPwmW/zwGeJJ746/tlbTaEr/liVYuW4fLpoYgZFmt9vQk+0534NCjinDB3P4oaOcYD4Ox48plczg4aEFw+fepV5Bb8rjV12urmqwpKAy3xjZkvzVWC0R5+dE1iKIAQRAwJnwu6rpu1BpbvUetMsYO76kIt/ImEy7rtfbuUkPkhw9VlQG4XRLWLHNBpxfg88r47ovGlNemVf3zHHro9SJKyoxwNUtwu7L3ffP5JPz3sV147ZnKrD1nZ/P7Zaz6yQmzVcTv/zwARpOAlUudmHffTiz7LvP/r7qLLg2X06ZNw8aNG1v9mjt3buQ+c+bMweeff441a9bgjTfewMSJE7twxURERJQNsW2xZnPbb0fkgYPgevAxNHyzFL6TToFQWwP7jf+H4v0mwPLYw4Cr/QCgBUObPfFQm7z8cLhsim+LlSQFddXaG/KeMcxHY8/T49CjiuHIb39uoxbw26tcal+XAw4tgNEkYN1KF3y+zI4tibTFtlO5BBA53zJRa2xzUygykCcdWmhO9DUaMdYKQQS2bPR0m4pS9V41XMbuUS0qCX99ktiXWlcbbe+OVC4r/Vi5tBmSpGDf6Q7Y8nSorQpEj7BJklb1t4eDenk4AG/b7MVbL+zF7h2ZVxs3rnEjFFTQ1BCCJHWP70mqtv7sgSwBI8bYUNbXhAuvGoCpB6nDmFYvc3bx6rKn2+65JCIiot4rvi2245ZTadgIOP/9DBoWL4HvhJMg1NXCfsvfUTx1AiwP3w/BlfjNWcUA9TiStqqPidpi9+7x48Fbt+LVcJWkp1UukxWpXLbTdqoFuOJSA8ZOykMoqGDdiswqem6XBJ1eiLsGEskvTDzUR5YVPP3gTjzzyM601xA7KbYls1mHfgPMcDsl1FblblptR2RZweIP6rD4gzpUhVtYYyuX+SlM1I1WLo2w5+lhtetQUxXAj9+obbD7zshHeYUJshw9siRZkSpwuAtAC8Bv/HcvVv/kxIKXqlo9RvsBQ7LWLo9ecy5n7oY85dKm8FCsEWOsAIA+FSYcfVIpbHk6bN/iTflr0l0xXBIREVGn0+kEiOF3IYnaYtsijRkL57z/ouGrH+A75XQIDQ2w33YzivYZB+t9d0Noaoy7/5QDHDjvin6YsG/iYyVatsXu3ePHfx/dBWeTBClcwSnrpYfCRyuXbYdL7eviyNdj8jQHAOCrTxrg86b3RliWFXjdEqw2XYfHYBS0EZ52b/ehqSGExrpQ2seoRNtiE1d3h4xUz2nU9ph+90UDHr97O7yezgkAkqTgrRf2YvEH9Vj8QT2qKwOw2XVxx8oUtBG+W5Jl9RgSs1WMVIvL+hohS0B9bRCDh1tQ3tcUqThqezGTFdsWCwBlFW1X+r0eCQte2ot7bvgFi96qTqoy7PNK2LIh2gbvamP4VnemKAo2rfcAAjBstC1yuygKGD3eBkVGr5key3BJREREnU4QhMhRGKYUwqVGGjkKzsefRMO3P8J3xtkQnE7Y7r4dRftOgPWu2yA01ANQ37wNGWFNeMYloB7TodMLkTfIHy6ogc8jY8bsQlx27UCccl6fSKWhtzFoA32C7bXFhkNYgR6DhpoxarwNDbVBLHylKq2WUZ9XhqK0vQc2Vn4bey43rY8GDbczvaDRWB+Me42WhoxQv+dbN3lQszeADxbUoroy0Ob+RkVR0FgfjEwXztSa5U6sXe6CKaZlvGVoy8vXQxQ7rlxuXu9BKKigb7/oD0mGj1Y/v0lT83DaBX0BRCuOVXvSqFwKgC1Pa4uN/2FM7A+PFrxUhZVL1S6DH75qwgcLarF6mTPhDwkURcEbz1Xivpu2xrXCtnVsUHdWvTeA5sYQ+g00t9prPGqCusd3w5rus8c3EwyXRERE1CW0fZepVC5bkoYOh/PhJ9TBP+ecD8Hjhu3+e1A4eRxwzTUQKtsfACIIAux5OnhcEnZu9WLrJi+KSgw47LfFKO9rwvgpeVk7aL67MSYz0Kcx2vIoCAJOOKscBcV6bFjlxt7dqQcpbVJsR8N8gGjlsqlFeIo9czPdoNFQpz5nYXHiKtuAwWbodAK2bvbindeibZ3+BC3EHreER+7Yjgdv3YZH79iO9asyDwmV4fMrjz2lFH3CobBlaBNFAY4CPVzNUrvHiHz9qfqDlv0PLojcNmNWIa69YyhOPLtPXDUTSG3Sq6IocDlD6tExOvV6yi/Ux4Vi7XsOAHt2+iCKwJxLKqA3CPj+y0a89fxeLP269ZTa7b/4sHa5C4qirm3MRLXi50rzBwpdaU943+mQEZZWHxsywgKjScDm9Z6E11dPw3BJREREXULbc5fMnsuOyIOHwHXfw6j/fgW8518EBAPAvfeicN/xsP9lLnRbNrX5WK018sOFtQDUN95tVTp7E4MhXLn0J65AyrICZ3N8cLBYdZGqnsederBLdpgPoO6HFIT4gTXNTSHs3RUNP+kGjfraIESx7cqlwSii/2AzfB4ZO7dGB9L4va3f/O/c6kV9TRB5+TooAN58fi92bs3snMfaKjW4l/ZR9+UVlRgwNjzFNpY29Kitibo7t3qx4xcfissMGDU+vh3TYo3/HpT2MUIQUqtcetwyZCm+vVgQBAwdaYElXJ12h8OloijwuCVY7ToMH2PDxX8egP0OVAfaVCcItEvC56r+9tQyXH7tIAwfo65fq6b3JNrXIFEbtsEgYtR4O0JBBRt7QfWS4ZKIiIi6hLbnr71psamSBwyE654H0LBsLXDNNVCMJlhefA6FM/aD48JzoF/+U6vHaEN9dm33wZanw6T9E+/P7G0MpvYrlx63pAaHFkNvtO9boI1Q2h7tTXZb547G0unUylxzUyjS+rl5vTvyMSC9ymUgIMPVLCG/yBB5nkRmHlmEMRNtOOy3xZgxuxAA4Etw6L12huQBMwtx5PElkEIKlixuTHldsWqrA4AAlJQZMGiYBX/8+2AMHNq66lVQ1P5xLSt/VFtQpx/a8Q9MDAYRxaUGOJtCSQ+X0fbkav8PaU4+tw/+eMNgFJYY4PfJCIVk+P1qENV+sNCnwoQZs9Sva8uJt3U1AWxc64bdocP4fdT/H+3a8K0WP1DwuKW09wAn4nFLuO+mrfjyo/osPqd63bT1QxVtT/iaZQyXRERERGnR2mLT2XPZEaVPH+Duu9G4ch1cf78ZSkkpTO++jcIjZyH/5N/BsPgzILxnMPZYlJPm9IlU9Hq7jo4icbZxXIdWcW5vymxbUqlcAsCkqQ5AAb75VK1ibdusVgRHjlOrp+lULhsjLbHtTwEeOtKK0y+swEGHFUWO/UhUuayvjZ4hOWmqOvSopir9vZeBgIzGhhAKivSRfcltiRzXUp9436VWQU1233B5uAV3z87kjg9xtZgUq9HrRVisukj7s9slweNqHbDyC9XqtNamrNm0zgMowD4H5EOvV683bZhR7A8UJEnBv+/dgftv3oovP67PysTV3dt9cDaFsHlD9gbsaK3BbV33w0ZZYbGJ2Lze3eOnxv46/vYkIiKibmfy/nkYNd6GkrLcnSOp5BfA+8e/oO6nNXDe+yCkwUNg/GoxCk47AQWHz4Rp4VsYO8EMR4EeZ17cF8NG9c7hPYloIbGtfV7aGZd5+fFviLUwns6k1ki4TKJyCQAHzFTP11z2XTOam0LYuskLQQDGTlIrPelULuvDQaaog3AZS6uuJ6pc1oeH+BSVGGC16WB36FBXHUj7PMa66gCgIKn/L9qrXPp9MqorA8jL10dCaEcGD1ero79s9HRwT5VWubQ7ErcXR8KlU0r4g4XY6nTsvlGtEql9fkA0wMZOi22sD6K5MYSAX8Fn79Xhvn9sxfvzazI6C1O7Ppqz2H6rTRluK1zqdALGTcqD3AumxjJcEhERUZeYMi0fZ15c0W5rYtaYzfCddyHqlyxD85P/RXDiZBhWrYDjDxdg+gUH4Yby9zB6YM+uGKRKr1cn5foTBCYg+ua6deUy/bbYVAb6AOqb8akHFkAKKXjvjWo4m0Lo09+EknI1LKVTuWwIVxoLS5IPl1p13Z+g/bKuJggI0ecrLTdClqNnS6ZKq3qWlnccLturXO7e4YOiAAOGmJN+7eHhYzI2b0g2XCb+AYQmrnIZDpeWFpOCC0sMgBLfGqv9wCN2MJAtTwcI0UALRFuSh4+xYt8ZjsiQoFef3oNQKL2AqV0fzkYprYnIiUR/qNJ29NIGKrldPfvvIYZLIiIi+vXQ6eA//iQ0fvwFGl9fiMCs30C3cwfsN12PosljYbvxOojbt3X1KjuN2SwmbPUE2j4LMrrnMvdtsQAwfVYB9AYBG9eoFZ0hwy0JWySTpbWxFqUQLtuqXIaCMpoaQ3Dk6yPt1KV91JBQU5XaeZGa2ip1fSVJhMv2Kpc7t6mtrQMGJx8uC4sNKCo1oLoykFTlztlGW6xGO57E45LgbeN7X6idZxrTGqv9wMMU07Ku0wmw2nRwOaOhr65aDeKDh1tw3GnluOzagSgpM2DTOk/Sw3H27vHjy4/qIcvqc2otupKkZK1FNdIWa237uteF23+lNENxd8FwSURERL8+goDgobPR9NoC1H/5PbxzzoMQDMD6n8dRNG2yOvzn++8i+zJ7K5NFhCQpCAbb3kvYcqKqsYNBQO1JJ1za8/TYb0Z+5M+Dh1vVtlqhKyqX8Z9zQ10QUNT9lhqt4lhdmd6+y9oUKpeO8LClRJXLXdvU/Zb9UwiXACKt4VuSqF5q4T7RFFQg+n2OrVy2Cpfh9uTYfZeBcLg0thj2Zc/TQQop8IW/D1rlsrhU/VoVFBow7ZACAEBtdXKV40VvVuOzRXWRVmDtugeA5sYshUu3BINRaHcPrdbBkW7FtbtguCQiIqJfNWn0GLjufwR1y9bBfc31UIqK1eE/xx2BgqNnw7TgTSCYXotjd6e1HbZsjVUUBVs3eSCIQL9B8eEk2habTrhUH2NJIVwC6vEwOp0AUQQGDlPPoLTZdHA1p966qO2p0ypmyTCb1fW2rFxq4Sa2ChqtXLYOl36/HDk7tC3Ve9XHJVO5NBhE2B06NDeGIpU3QP3+7drmg04noG9/UzvP0Nrw0Wq4TGagTVs/gNBolcu4PZctWqILitXHNnTQFgu03nep7XctLot+/YvCQV/7WHucTSHsCB81s2enH4qixIXcbBx7IkkKvF65wx+oaOEyk/2i3QHDJREREREApbQUnr9eh7pla9H80OMIjRkHw7Kf4LjkQhTtPwmWh++HUFvb1cvMqki7Z4uKXPXeAFzNEvoPMkeClSaTPZdaiE31+BlHgR6nX9QXp57fN7Ieu0MHSVJarb09kqSgsT4Im13XKri0J1K5bCtclkaDoBYu9+zw4+N3alG1R22PbWoM4v6btuKxu7a3WfWtrvSjtiqA4jJD0tXd/EIDZDk+CHncErweGSXlBuj1qX2th4ywQm8QsHm9p90qWjAoo3pvAHaHLtKm3JLNrt6uTotNvnIZaYttWbkMH0ei7buM7HeNGc5UVKJ+/WMrkG1Zv9oFhD/FPbt8cDVLCAWjn3M2hvr4vBKgdFytZ1ssERERUW9kNsN/5hw0LP4WjW+8Df9hR0C3exfst92M4iljkHflJdAv+7GrV5kVbYUmrUVw6MjW03ONxvSPIvH7ZAgCYDCmPsRp5Fgbxky0R/4c3XeZfOvizm0+yBLQp19q1TyjUYAgtg7h9bXhyllMW6zNrofVpkNDXRDffNaAbz5rgM8n4fnHd8Pvk+H3tV29XP5DMwBgyv6OpNdWEK4aNsbsu9Qm/ToKEoe+9hhNIoaNssLvk7FtU9utsdWVASgy2q2MRgf6hDpsi+1ozyUQnUrrag4hGFD3uxYU6uOOD8ov1EOnEyLBvz3rVkb3Ze7Z4Y9UtYXw5dlRlTkZiY5gSUQX/laxcklERETUGwkCgjNnofnlN1H/7U/w/OEyKEYTzK+/gsKjZqPgiJkwvfoS4EvuTMDuyNxGW+wvP7cTLjM4isTvk2EyixCEzCcEa1UslzP5ALA+HCZGT7Sl9FqCIMBkFuH3xQfZmnALa1FpfIttxcBo4KqrDmDTWg/qYvYAthxEtG6lEx8urMGqpU4IIiLnZSYjP9ze2xSz77KtSb/JGj1BDfE/fN2E5x7bhRXh0Burcqdake3bv+09nfHTYhOHLJtdB4NRSKpyGft89ZH9rvHtw6IooLBYD49LihxpkkhNVQDbN3thd+hQUmZAc2MIu7er/y9rP3zYvcOHB27Ziu++aGjzeTri8SR3/A7bYomIiIh+JaThI+C+7W7UrdwA570PIjRmLAwrlsPxx8tQPHk0bP+8CeKO7V29zJSZtL2EMRW5UEjB9i1eGIxCq/2WQOy02NTeBMuygoBfTqkdtT2pVi4VRcH6VS5AiIanVJjNIgJ+JbK3UZYV7Nnhg9EktDqT8sSz++APVw+A3iCgvjaI2vBUU3O4UuxsseaP/1eHJYsb4XZJGDHG1uaAnEQSVy7bH7TTkVHjbRBE9czFrZu8+PrT1uGqcpcaxNqrXGqBytPOQB9BUKfA+rxyZP+s3y/DYBQgivE/hNAe6/XIkbDeMtirt7XfGhsMyHjjv5VQFGDaIQWoGKhe52tXqD98GDRMPe9zywYPmhpC+GBB+u3wbbUDtxQJl2yLJSIiIvqVsNvhO+9CNCxegsa334fvdydCaGqC9ZEHUDR1IhznnA7DZx8DcupVva5gjrTFRsPOhtUuBPwKho2yQq9vXWFMd6BPMKDEPT5TqVYu9+z0o7kxhIFDzG0endGelsOPKnd5EQgoqBhobhWCbHYdKgaYUVhsgNcjY+dWdXLr4OFqaGlZuXSHp96OGm/DrKOLU1pXvnYcSX3rQTTphkurTYch4bUC0QnBsSp3hSuXA9oOlzqdALNVjEyL1emEhM+lN0QnpSqKEqlwt2Sxqrd5PVJ0mE+icBkesJSoNVaSFCx8uQrVlQEMGWnBgbMLURH+HLTK5cChlrjHZHIWbzRUt3/dc88lERER0a+VICA4/UA4n3oO9cvWwn31tZBLy2D68H0UnHEyivafBOv990DcW9nVK22XKcFAnx+/aQIA7Ds9P+FjDGnuuWyr1TFdqVYuN61Tp5+mU7UEWn+ttm1WW4f7D2y7LVQLOdu2aOFSbTNuWbkEFJitIs68uCLl6a4FheE9izGVy+YMwyUAHHtqGY48oQRA9AcDGklSULUnAItNRH4H+zptdh2CAQVupwSrPXFLtLZnMhRUEAopkKXW+y2B6JRhj1uKfA3zC1uHSy1wtqxcKoqCBS/txdoVLhQU6XHSnD4QRQEVA6LfwwFDzBg5zhq3L7ikPPnJwi0le/yO9oMctsUSERER/YrJfSvgufYG1C9bi+b/PIPAQYdAt2M7bHfdhqIpY+E490wYP/4AkLJzZl42tazG1VQFsG2zFwXFegwb3Xq/JaDuaTMYhZT3XGY9XLZTuYw9lkOj7elLdZiPxmxRX0/7PLZuVsNqe+dIaiFHltSqW3mF2q4ZW7lUFAXBgBI3lCYV7VUu091zCah7GQ+YWQAIrffk1lQFIEkK+vYzdbh/NrYK2FbA0oJVKKi0e51YreG2WLcEt0v9HBPtZWzrOJLtW7xYs8yF/EI9zr+yf6SC3X+wGYceVYTfnVGGC+b2h14vxgXzQCD9wNfWESwtRfdcpv1S3QLDJREREVE2GI3wn3gKmua/i/rvlsFz5Z+gFBbC9MF7yD/7NBTtNwHWe++EuHtXV680wtxiWuzK8OCW/abnt2r1jGU0iq2qWR3JdrjUzlBsWblct9KFO67dEjcJFIhO/kxngioQU7kMfx7btqjhMtG+VI12LAagnluphRlnTLiUJAWKkt4EXUA9g9NsFdHYEIrsWdSmxWZSuQTCg4xMYqtwqX0tY48AacuEffIiv28zXMa0xWqvZUzUFqtVLj0y3OG9jLZE4bKN40iWf69e3zOPLEJBzDmnoijg0KOKsc8B0es+9jpp+fmngnsuiYiIiCgj0tDhcP/jVtSt2ICmp55DYOYs6Hbvgu3eO1G073g4zj4VxvffA4IdH5eQSy0D057wPrrhY9ufpmo0iQgFlbgWvpVLm/HCv3dj947E03P9/sTHS6Qr0hbbonK5boUToaCCd16tQlNj9iaoRoK4V51Cune3DwVF+nb3b8YOmykpM8Ke3zoQayHdYEh/X19BoQGhoBKpkjU3haDTCR3u80uGySzC75fjqsGRwNRBNQ6I7jMF2m75TFi5THCdaN8Dr1uK7FNNFC6127yeaCj0+SSsW+mCwShg3OS8Vo9pacasQuw7wxGeEpxBuEyyLVbbc9ne2aI9AcMlERERUa4YjQj87kQ0vfE26n5YCc9VV0MuKYXp4w+Rf96ZKJ40GrZ/XA/durVdsjxzeFqsP7yPsLrSD0EESsrar0hpQ1mC4dZYSVLw0Tu12LLBg6cf3IkNq12tHpPtyqXFKkLUta5c7tymhlufV8Z7b9QAUFtPmxtDMJnFtAcKxQbxmqoAFKX9YziAFuGy3AiTSYTBKMRVLiPh0pj+1yVfmxhbH0IopMDjkpCXr8vKkS8mswgo8fsukw1MgFoVjLYDJ+75jFYu5che3kTXiU4nwGwR4fWoA4JEXTRwJnq+YEzr9trlLgQDCsZNzkvqGhw51objTiuHza6DFFLSDn3aESyWZCuX3HNJRERERB2RBw+B+4abUL98HZqefQn+w46AUF8H678fRdGh01Fw2CEwP/VvCHV1nbYmkyUamDxuCa5mCcWlRuj17b9FjE6MVd8Ib97ghtspwZangyxH2w9jZTtcCoIAe54ebrcUeUPe3BhCU0MIxWUGWGwiNm9wIxSS4ffJCAaUtFtigZgzQb1ypGqW52g/MDjy9ZGKVEmZQV2zQw+fR0YwqH49tP+m2xYLINLi2dQQjOznzLQlVtNyXy6Q/D5CzekX9kXfASYcc0ppwo8nu+cSUENawK8OCLLZEwdoURSgNwgIBqNBbVd4EuyYSamdcaqtI5kBVoqiYMtGT2Q/cjAgo646AFFMvnLJcElEREREyTMYEDj2ODS//CbqV26A66bbEBo1GoZVK5B3/TUonjgSjgvPgfGj93PeNhsJDl4J1XvV4SdlfY3tPQRA7FmX6pvoFT84AaithED89FlNtsMlEB7qo0TbNHduix750W+gGbIEVO0JZNwSC8QH8ch+v7z2n08UhcjE2JJy9etqb7FXVAvoxgwql9pwI7dTyvgYkpbMicJlkvsINUUlRlxy9UAMH5042Om1abGhJMJl+DgSRQFs9rY/R4NBiKtchsJBU6vWJytRuG7Lts1evPDEbiz+oB4AsHqZEz6vjDGT7AmP9YmlC38q3HNJRERERGmRy/vAe8Uf0fDl92j4aDG8F/4eis0G07tvI3/O6SiePAa2m27IWdusOabVs7pS3W9Z1ieJcBluiw0E1IrnxjUumK0iJk1V97J5Pa3bH7Ugmq1zLoHW+y53blWrUwMGq+ESAHbv8GUlcMW2ELe336+lw44rxuxjiiMhU9ujqVUYI5XLDPZcxgagyDEkaZzl2d5z+2LOQtUql8l8/smItLF2sOcSiE6M7ej19QYRwaASGXKkhTZdByGvpVTCpTaReOsmDxRFwQ9fqcf6TDu4oMPHcqAPEREREWWHICA0eR+47roPdas3oenp5+E//EgIdbWwPvEIig6djsJZB8LyyINZnTZrMAoQRPWNc3WlVrns+KiOaFusuv9QloBhI62w2nQQhE6uXEKtAoZCcuQ8yQFDzKgYqH4ee3b4Mp4UC8RWLqPHYGgTa9szapwdhxxRFGnf1NasndOYjT2XsT8kiBxDksHnGqvdttgkK5cdSbUtVtPe199gFAAl2maq7ZnsqILYUqLP3+UM4T/37cDqn5xx99UGCFXt9uOXn73Yu9uPPv1NGDCk/b25QO/Zc5mdq46IiIiIssNkQuC4ExA47gSIVXthevN1mF97Cfq1q2Ffuxr2f/4DgekHwn/yafAfdzyUwqK0X0oQBJjD0zBrUmmLjdlzGQqpQcPu0EMUBZjCA1daykm4DFcut2z0YOHLVXC7JDgK9CgqMUReZ/cOPwrDR1Nk0hYbu+cyGG5lTSZcthSpXDpbVC4z2HMZF4DC2cTewX7QtJ47LNW22I7EDvTxtzPQB4i2xXb0+obIUB8Fen00XGajcrl5vQeVO/1Y/EEdxu9jj/zgQAvdsgx89LY6TGrf6Y6kBiuJogBR7PnhkpVLIiIiom4qtm22/vNv4Zn7Z0j9+sO45Bvk/fUqFI8fAcc5p8O08C3A40nrNUwW9czKvbv90OmjewTbY4jZc6m1iGp7CS0WHYIBpdWb5I5CQzq0APX9l41wuyQMH23FWX+oiAz7cRToUVsVQF21GpzzCtIPQ5ZwO6bHLUX2XNrb2fPX9prDZ12GK4zRo0jS/7qYLOGWXZ8Mr1eKW2+mElcuZegNQtZanFOpXFqTrlyqj9e+vlK6lUtT68+/KtxCXlcTxJ6d/sjtsT9UqdqjDvJJ5tgTjU4vQAp1fL/ujOGSiIiIqAeQxo2H+8ZbUP/TGjS+8wG8510ExW6H6cP34fjDBSgeNxx5V/wBhs8+BkLJv0ON7CX0ySjra4wcIt8eozG659Kl7T8Mv9E3hytLLauXHe2lS4dWuVQUQBCAk87pgz4V0bbefgNNUBRgw2o3AMCR33FwbkvscR/RgT5pVC7DZ106m7S22CxULmMCkC/cmmlJcERHWs/dIlzKsgKPR8pa1RKIrVym2Bbbzp5L7eupVYaz2RZbtScQ+f3KpdHJyF53/DU/bLQ1pa+TTiewcklEREREnUgUETxgBlz3PqDuz3zxNfhOOgWCLMH8xqsoOONkFI8fDvtf5sLw+acdTpyNfRM/alxyxzTE7rl0twiXWqjxeeL3XeZyzyUA9BtkbvVGfsgIa2SdAODIoHJpNImw5enQWB+EsznU5hmLHdH2QkYql8Es7LnUvuZeObLf1WzJTeXS61Fbb5M9hiQZ2tE3oaASqXC3VRWNG+jTXuXSkLhymXZbrD82XPohioAgAmuWuSJ7cL0trvnxU5KvWgJquEz3PM3uguGSiIiIqKcyGhE44mg4//0MatduQfPjT6rnZzqdsLz4HApOP1ENmn++EobPPkkYNGPD3tjJ9uReVguXASXyxlqrIprDb/619kxNTtpiY44CGT7a2urj+0x3oLgsWq3MtNpWWGyALKtHfuQ5DEntpWtJC5fNkbbYLE6L9UfbYs3WLFcuw9+/bA/zAaJVxqQG+sR8XjZb+0eRANGvb7Yqly5nCG6nhNI+RoydZIfHLeGpB3ehsT4Y+dr0H2yGLU+HURNSO1NTp1crl9qE256IA32IiIiIegO7Hf5TTof/lNMhNDbA+MEimN5ZAOMXn8Py0vOwvPQ85MJC+I/+Lfy/OxHBg2cCBkNksAwAlPXpeFIsEHMUib91W2xHlcvsHkUSDTiJzlDU60X89tQyPPfYbuh0QlphMFZhsQG7tqnHnaR71IfZrIPRJEYm2GZjWmxsANI+w3Sqqgmfu8Wew2wfQwLE7LkMKQhkc1osopXhbB1FUrVH3WNZXmHCcaeVQZIUbFjlxjefNcDrkSGIwHmX94MkKymfqanTqxNu5Y5PPem2GC6JiIiIehmloBD+M86G/4yzo0HzfwthXPwZLC+/AMvLL0SC5mDPAag27YOBY/KTfv6EbbF2bc9lG5VLnwydXki5ctTROvIL9VAURI4eaWnICCtOu6BvVqanFhZHq6CxVdNUOfJ1qK0Owu+Ts7LnUqcToDcI8IdbYvUGIaMBQbFMMVNygexPigVi9lwG5dQG+rS75zLcFhvZcylDEKJHfiQrGi7Vz1vbb1leYYLBKGLW0cXYsMqN+togvB4JFqsOBqOIdHb39objSBguiYiIiHqxuKDZ1NgqaJ6NF3Cq0YqA8wjI5b9F4LAjoOQXtPucxsi0WAVulwSTWYyEmbYqlwG/nNWWWM0Fc/sDAtodRDR2UnLtvh0pLI6+dc7L4FgTR4EetdVBNDeFYvZcZha6TebwETBZ3g/ZsnIXbYvN3vcytnLp96shsK02Ya0t1mBsf1pt7FEk2nPr02g9brtyqR5vow16qqsOIBRUkF+Y/tdFF/62ST143yXDJREREdGvhJJfAP/pZ8F/+lkQmpvUoLnoXRg//wTGRQuBRQuh6PUIHngw/Ef/FoGjj4Xct6LV82hv6j1uCX6fjKLSaJ0mWrmMhstQSEEoqCAvP/vhsqAo/QmwmbxWniP9143su2wMxey5zOxrYzaLkSpyto4hARLsudQql9lsizXE77k0mcU2W5hNZnWwUkfhPtFRJKm2xGqvB6jhUpYVbN3kBQSgTz+1Um4262Ayi2isV9ucM6noautjuCQiIiKiHkVx5MN/2pnwn3Ym4PHA+OViGN9/F6YPF8H4xecwfvE5cN3VCO6zbzho/hbSiJGAIMAcfsNdvVet4sTufdQqS76Yo0gCORjm0xUKS2LDZSaVS/V51HCZvcqlJlv7LQH1HFQgUeUy+9Nig0EFAb+C/MK2n1sQBFxy9cAOg2KkchlzFIk1jf2+seFy5zYfmhtDGDTMEtcWXVCkj7TLZhLs2RZLRERERD2f1YrAUccgcNQxcIVCMCz9HsZF78L0/nswLPsJhmU/AbffgtCQoQgcfiT0vzkCFn0FGuvUh8fufdOOwIg9liEXZ1x2BUe+HqIOkCXAnkm4zI9OjM3GUSRANAQC2Q2XWgu09j1053DPpVYV7eiHEFrlt/3njB5vIssKZCn1/ZZA/ECjNcucAIDx+8S3WecXGmLCZfpfez0rl0RERETUq+j1CE4/EMHpB8J96x3QrVsL0/vvwvj+ezCsXgn9vCdgnfcE7jBasa5sf6ytOAj6cUcBUNtnI5XL8EAfWVbQWK8egdLTK5eiKKCg0ID62mBGbbF54fM2nXFtsdmsXGYv+ImiurdRC5f1Ner3sr1JranSwqU2uTgb10lkWmxAjlQC0xkmpTcIEEX1hyXrVrggiMDYSfHnV2r7LgFWLhkuiYiIiCgxQYA0bjw848bD89frIO7ZDeOnH8P48YfQff45Ju9ajMm7FgM/3IbgKxMROPwIFEw9DIJcFKlcLny5Cqt+VCs+PT1cAmprbH1tMFw9Sy8EOPLDbbFNoawcRQIg0qoMZFY9S8RkFuFqDmHvbj92bfehqMSAkjJj1p5fC31aVTQbx9VEw6WS9jEkgNqGazKLkbUNH21tNaU2P6aSmpU9l1IHd+zGGC6JiIiIKClyRT/4zjkfvnPOx7a1Dfju1v9h/O6vsX/zEtjWrIJhzSrY8C/caSrA1mEHQd/nBOz4YQgEfQEMBhFDRli6+lPI2OxjijFomAUDh1hRX+9O6zliB/rIcjhcZly5bN2anC0mswhnE/D1p/UAgP0Pzm93Om+qUm2LTYY2ICkYVBAKh8t0psVq69F+WDLlAEerj+cXRqvYmQR7rXIZCvXcgy4ZLomIiIgoZRUj8vFz/+nY0Hc6xPP7YELeXhg//hCGjz+E5ZtvMHHdu8AV7+J2ANUVY2E/+UgEgrMR9B8AmBKfSdkT9BtoxoDBljanmSbDahOh0wtobgxF9kpmWq3L1UCf2Odes8wFo0nA5P1bB6xMaAN9ZDn+9TIR2xYbCZdpnrHqcUfPIh09ofWxNnFtsVmZFpv2U3Q5hksiIiIiSpnRKKKivxm7tvtgd+ghDR0B77AR8F56Je7/y0qM2P0dDpaXofDHL1C2Zx3wyDpYH3kAisWC4PQDETh0NgKH/gbSqNFABkGtJxIEAY4CPRpqg5AVBaKY3rCZWKYctsWKMU837ZCCrFdGW1YUszH4KXIUSTCztlggOu14/D55Cb9P3HMZxXBJRERERGmZdUwR1q10od8gc9ztYoEDP8mzsbPvUaiuuBp/OUdG2aqvYFz8GQxffwnjZ5/A+NknAACpT18EZ85Sw+bBh0IpK+uKT6XTFRSp4dLnkbNSqTNbcjPQBwDGTLTD2RTC7GOKMWHfvI4fkKKWFcXstMVGjyLJtHJ54G8KseL7Zhx6VFHCj+fl6yGIgCKrVel06cLJjNNiiYiIiOhXZ9goG4aNsrW63WzVAfUhVFcGUFBiQN6+g+HbbzR8F/4eCAahX/YTjIs/hXHxZ9Av/wnm116G+bWXAQChkaMQPPBgBA46BMEZB0MpLu7sT6tTFBYbsBVeAJmfcQnEV/uy3RY7Y1YhZswqzOpzxtLp1ImsWW2L1fZcZjjQBwAOP64Evzm2uM19pqIowJGvR1NDiJXLrl4AEREREfUu9phjKsZOtMfvTzQYEJp2AELTDoDn2hsgNDbA8NWXalXzmy+h/3kj9D9vhOXZpwAAoTHjEDjoYAQPPATBGQdCKchdyOlMhcXRITBaEMpE7DmXmQScrqI3CAj41VCVsz2XGbQedzTAaNR4G7Zu8iIvP/14pYXfECuXRERERESqw48rwZARHvQfbMaAweZ276sUFCJw3PEIHHc8AEDcsxuGb76C4ZuvYPz6K+jXr4V+/VrgyX9DEQSExk9E8MCDETzoYASnTYeSX9AJn1H2xYXLbFQuYwf6ZHnPZWfQ60UE/OFpsdk8iiRmz2W602KTcczJZVAUJaNBT5HKJcMlEREREZGqvMKE8or0JsLKFf3gP/UM+E89AwAg7tyhBs1w4DSsXgnD6pXAvx+FIgiQxoxDcNoBCE6bjuC06ZD79c/mp5Iz8ZXLzEOPOYfTYjtDbPDLdltsKJhZW2yyMgmWQHRPKNtiiYiIiIhyQB4wEP4zzob/jLMBRYG4fZsaNL/+EoYfvoN+3Rro162JtNFKAwYiuH80bEqjRsePO+0m4iuXWWiLDQcyQcxO5a+zxQ7bMWYhXGphNRQ30Kd7f12455KIiIiIqLMIAuTBQ+AbPAS+s88FAIi7d8Hww3cwfPctDN9/B936tTDv3AHzW68DAOT8AgT3n4bgtOkI7bc/gpOmALbWQ4g6m8UqwmQW4ffJ2WmLDVcrzRYx4wpaV8h25VIUBegNQlYG+nSW6DmXDJdERERERJ1O7tcf/hNPgf/EUwAAQlMjDD/+AMN3S6D/fgkMy3+C6eMPYfr4QwCAotNBGj0WwX2nIrjvfgjtOxXS8BGdXt0UBAGFJQbs3eXPSuXSaBRhteviKqI9SVy4zFLlVW8QsnIUSWfRKpcc6ENERERE1A0o+QUI/OYIBH5zhHqD3w/9yhUwfL8Ehp+WQv/TUujXroZ+7WpYnn8GACA78hGasg+C+05FaN/9ENxnaqccgVJYHA6XWdhzKYoCLvvbwJwOrcml2OCXjcoloO67dHlDkTbTbl+5ZFssEREREVE3ZjIhtP80hPafpp4qqSgQ9+yGftmPMPy4FIZlP0K/cjmMX3wO4xefRx4mDR6C4D77ITRpCkKTJiM0YSKUPEdWl6ZVGbNRuQSQ0TEYXU0fcxxL1sKlUYCiAH6feoBmt69csi2WiIiIiKgHEQTI/foj0K8/AsedoN4WDKpHnvz0o1rdXPYj9Js3QbdtKzD/jchDQ8OGIzRxEqRJU4BDZkAYPBKwpx84C4vVt+LZ2HPZ02nBT28QIhW8TGkVYZ+3p4RL9b+S1LXryATDJRERERH9uhkMCE2cjNDEyfBdcDEAQGhsgH75MuhXr4Rh5QroV66Afstm6LdsBha8BQAoQrjCOWmK+nitwllYlNTLjhxrw7oRLoyZaM/VZ9ZjaO282Zx0q1WEvR41rfWYtlhWLomIiIiIeg+loBDBWb9BcNZv1HZahAPnqpUwrFoB24Y1kJb+BN3WLWqF8+35kcdKfSsQGjsO0tjxCI0dh9DY8erQIEP8sJ38QgPOu6JnnMuZa1pVMVstsUC0IqyFy+5fueSeSyIiIiKiXwWloBDBQw6FdOgs2IrtaKxzQWlogH71KuhXrYR+1XLo166BbvMmmCr3AJ9+HH2s0YjQyNGQwmFTC51KWVkXfkbdh9bCmtVwGd7H6fOobbGsXOZerw6Xv/zyC66//nq4XC4YjUZcf/312G+//bp6WURERETUSyj5BQgedAiCBx0SvdHng37TRujWroF+7Rro162Fft1qGNasgmHNqrjHyyWlCI0eA2nESDV8jhqN0IhRaujsgedVpksb6JPdcNmz9lzqWbns3kwmE+644w4MHToUW7ZsweWXX44PP/ywq5dFRERERL2Z2YzQhEkITZgEv3abokCoroZ+nRY21eCp27QRxq+/BL7+Mu4p5IICSCNHIzRyFKSRo9TgOXIU5H79e2Xo1IKVMat7LsNtsd4e0hbLymX31q9fv8jvhw4dCqfTCUVRIPTC/yGJiIiIqBsTBCjl5QiWlyM46zfR24NB6LZthW7jBuh/3gDdzxuh+3kj9Jt/huGH72D44bu4p5FtdkgjRkAaOgzSkGGQhg1Xfz90GJSCwk7+pLJHn4u2WG2gj7uHtMWG1xdiuEzP0qVL8fTTT2PNmjWoqanBv//9b8yaNSvuPi+99BKefvpp1NTUYMyYMfj73/+OiRMnpvxan376KcaMGcNgSURERETdh8EAacRISCNGIoDfRW+XJIg7tqvttRs3qsEz/HvDiuUwrFje6qnk4mI1cIbDphY8Q0OGAfbuPZE2FwN9rDYdAMDj7mGVS7bFpsfj8WDUqFE46aSTMHfu3FYfX7RoEe68807ccsstmDRpEp577jlcfPHF+OCDD1BUpI54Pv744xM+9/z586HTqRfU7t27ce+992LevHm5+2SIiIiIiLJFp4M8ZCgCQ4YCRxwdvV1RIO6thO6XLeqvLZvV/4an1hp+/AGGH39o9XRySSmkQYMgDRwEeeBgSAMHQRowUP1z/wGA0diJn1xruahc2vJ0cX/u9pVLtsVmZubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CADw9ttvt/saLpcLl19+OW688UYMGjQoo/WKYve6ILX1dLd1Ue/A64tyidcX5RqvMcqlrr2+BKBfP0j9+kE6+JD4D0kSxN27oPtlC8RftkC3ZQt0v2yGbstmiDt3wPBTDQw//djqGRVRhNy3AvLAQZAGDoQ8cDDkQYMgDRgEuV8/yH0rAJMpp5+VxaoGQZtdl7Wva54jPuoYjWK3/jtB2yMqqV283Xqtbem2ey4DgQDWrl2Lyy67LHKbKIqYMWMGVqxYkdRzSJKEq666CqeddhoOOuigjNaj14soLu6e7QSFhbauXgL1Yry+KJd4fVGu8RqjXOqW11dZPjBlXOvbZRnYswfYujX+17ZtELZuhW7XLuh274JhyTdtPG8Z0L+/+mvAgNa/79cPMJvTXvbBsy0wGAyYOqMINnt2IkpFPwCojPy5uMSG4uL015hrIgIAAAFqqOyW11cHum24bGhogCRJKCkpibu9uLgY27dvT+o5vvzyS3z33Xeora3F66+/DgB44YUX4HA4Ul5PKCSjudnb8R07kSgKKCy0oaHBDVnuueVz6p54fVEu8fqiXOM1RrnUY68vSwEwdor6q6VAQK167tgOMfxLt2MHxD27IVbugbhnN4TqamDZsjafXi4pgdy3H+TycvVXWTmUMvW/cllZ+L/l6v7PBHNQJuxrhc/vg8+f4MnTICmBuD+7XF7o60LZefIccDnVtfl96h7R7nZ9ORwWGAy6du/TbcNlW1KZ9jpr1iysXbs2a6/dnb65sWRZ6bZro56P1xflEq8vyjVeY5RLver60hsgDxqC0KAhiT+uKBBqa6Gr3A1x926Ie3ZDV7kH4u5dECv3QBcOofralcDq9l9KsVohl0bDplxaqv65qAhKUTHkwiIoxcWQw7+H1ZrWp2Sxxu/fFHXd9/08EM3boZDaF9sTr69uGy4LCwuh0+lQW1sbd3t9fX2raiYREREREeWQIEApLUWotBSYODnxfRQFQl0dxOqqmF/V0d/XRH+v274Nuu3bknppxWKBXFgEuahYDZ9FhdEQmp8PxZEPOc8R/r0DisMB2VEAc14edDohMn1VG5jTXWnTbCWpixeSgW4bLo1GI8aNG4dvv/0Ws2fPBgDIsowlS5bgvPPO6+LVERERERFRHEGAUlICqaQE0tgE+z5jBQIQa2vUsFlVBbGuVg2mDfUQ6usg1tdBrI/5fbg6mqr7dCZ4DXZ4jHYUrSsB8h1Q7HlQrFYoVlv4vzG/t6n/RdzHbVAsFihGE2A0qP81mQB9dqOUNs2W02LT5Ha7sWPHjsifd+3ahfXr16OkpASlpaW44IILcM0112DcuHGYOHEinnvuOfh8Ppx44olduGoiIiIiIsqI0Qi5oh9kdepOxyQJQlOjGj7r6iHW10FoqIfY3AShuRlC+L9izO+F5iYEqhph9TXB4asDViQ3tyVZiigCJhMUgxEwGqGYTFCMxrjboNer99PpAEEEdCIUnQ6Iu00Xvk3Aecs9EM0G4McbgSGjs7reztCl4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp56KnHFJRERERES/AjodlKJiSEXFwLDkH/bSvN3YtNYNk+LH9TeUqWHU7YLg8UDwuAGPR/292x25TdBu80Rvg9cLIeCH4A8AwQAEvx8IBCAE/IA/AMHZDLE280lE+2u/eWU4cP0tGT9fZ+vScDlt2jRs3Lix3fvMmTMHc+bM6aQVERERERFRb2Gz69V2XbMFSnk5pPLy3L2YogDBYDRwBvzqETCSBMgyBFlSD7FsdZsUvk3Glx9UQ9TpcNydJwLOQMev2c102z2XREREREREmbDlqUdnaPsZc0oQ1PZYoxGwA+nsnJyxv3rUDYxGAD0vXIod34WIiIiIiKjnsYfDpb4zwiUxXBIRERERUe9ks3di5ZIYLomIiIiIqHey5am7APXd/IzL3oLhkoiIiIiIeiV7Z+65JIZLIiIiIiLqnRwFeog6wJ7HOaadgV9lIiIiIiLqlSxWHS7+0wDkORh7OgO/ykRERERE1GtVDDB39RJ+NdgWS0RERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZYzhkoiIiIiIiDLGcElEREREREQZY7gkIiIiIiKijDFcEhERERERUcYYLomIiIiIiChjDJdERERERESUMYZLIiIiIiIiyhjDJREREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDFBURSlqxfRE8iyAkmSu3oZrRgMOgSDUlcvg3opXl+US7y+KNd4jVEu8fqiXOqO15dOJ0IUhXbvw3BJREREREREGWNbLBEREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBljuCQiIiIiIqKMMVwSERERERFRxhguu7mXXnoJs2fPxoQJE3Daaadh1apV7d7//fffx1FHHYUJEybguOOOw5dfftlJK6WeKJXra9OmTZg7dy5mz56NUaNG4cUXX+zElVJPlMr19frrr+Oss87C1KlTsf/+++PCCy/E6tWrO3G11BOlco198sknOPnkk7Hffvth8uTJOP7447Fw4cLOWyz1OKm+B9PMmzcPo0aNwt13353jFVJPlsr1NX/+fIwaNSru14QJEzpxtcljuOzGFi1ahDvvvBNXXHEFFixYgFGjRuHiiy9GfX19wvsvX74cV199NU455RQsXLgQhx12GC6//HJs2bKlk1dOPUGq15fX60X//v1x9dVXo7S0tJNXSz1NqtfX999/j2OPPRbPP/88XnnlFZSXl+PCCy9EdXV1J6+ceopUr7H8/HxccskleO211/DOO+/glFNOwfXXX49vv/22k1dOPUGq15dm7dq1ePXVVzFq1KhOWin1ROlcXwUFBfj6668jvz7//PNOXHEKFOq2TjnlFOXWW2+N/FmSJOWggw5SnnrqqYT3v+qqq5RLLrkk7rZTTz1VueWWW3K6TuqZUr2+Ys2aNUt54YUXcrk86uEyub4URVFCoZAyZcoU5Z133snVEqmHy/QaUxRFOeGEE5RHHnkkF8ujHi6d68vj8ShHH3208uWXXypz5sxR7rrrrs5YKvVAqV5fb731lrL//vt31vIywsplNxUIBLB27VoceOCBkdtEUcSMGTOwYsWKhI9ZsWJF3P0B4KCDDmrz/vTrlc71RZSsbFxfXq8XoVAI+fn5OVol9WSZXmOKomDJkiXYunUr9t133xyulHqidK+vu+66C9OmTcPBBx/cCauknird68vlcuHQQw/FzJkzcfnll2Pz5s2dsNrU6bt6AZRYQ0MDJElCSUlJ3O3FxcXYvn17wsfU1taiuLi41f1rampytk7qmdK5voiSlY3r67777kPfvn1xwAEH5GKJ1MOle405nU4ccsghCAQCEEURt9xyC6ZPn57r5VIPk8719fnnn+O7777jPl7qUDrX19ChQ3HnnXdi5MiRaG5uxjPPPIMzzzwT7777LsrLyztj2UljuOxhFEWBIAhtfjzRx9q7P1Gsjq4vokwke309+eSTWLRoEV544QUYjcZOWBn1Fh1dYzabDQsXLoTH48GSJUtwxx13YODAgdhvv/06cZXUU7V1fdXX1+PGG2/EY489BovF0gUro96gvb+/Jk+ejMmTJ0f+PGXKFBxzzDF44403cOWVV3bSCpPDcNlNFRYWQqfToba2Nu72+vr6Vj/p0JSUlLS6f11dXZv3p1+vdK4vomRlcn09/fTT+M9//oNnn30WI0eOzOUyqQdL9xoTRRGDBg0CAIwZMwZbtmzBvHnzGC4pTqrX16ZNm1BTU4MzzzwzcpskSVi6dClefPFFTr6mONl4D2YwGDBmzJhu2W3GPZfdlNFoxLhx4+Km2MmyjCVLlsT95CLW5MmT8c0338Td9u2337Z5f/r1Suf6IkpWutfXU089hccffxxPPfVUtx2xTt1Dtv4OUxQFgUAgByuknizV62vChAn43//+h4ULF0Z+jR8/HieeeCLmz5/fiSunniAbf39JkoRNmzZ1y+n9rFx2YxdccAGuueYajBs3DhMnTsRzzz0Hn8+HE088EQBwzTXXoLy8HFdffTUA4Nxzz8WcOXPwzDPPYObMmVi0aBHWrFmD22+/vSs/DeqmUr2+AoFA5FibQCCAqqoqrF+/Hvn5+aioqOiyz4O6p1SvryeffBIPPfQQyXhSuQAACHJJREFU7rvvPvTr1y+yV9xqtcJms3XZ50HdV6rX2Lx58zB27FgMGjQIgUAAX331Fd5++23ceuutXflpUDeVyvVltVpbdVpYrVYUFBRgxIgRXbF86uZS/fvr0UcfxeTJkzFo0CA0Nzfj6aefxp49e3DKKad05aeREMNlN3bMMcegvr4eDz/8MGpqajBmzBg89dRTKCoqAgBUVlZCFKPF53322Qf33XcfHnzwQdx///0YPHgwHnvsMQwbNqyrPgXqxlK9vqqrq3HCCSdE/jxv3jzMmzcPJ554Iu66667OXj51c6leX6+88gqCwSD++Mc/xj3PlVdeiblz53bq2qlnSPUa8/l8uPXWW7F3716YzWYMHToU9957L4455piu+hSoG0v1+iJKRarXV3NzM2688UbU1NQgPz8f48ePx2uvvYahQ4d21afQJkFRFKWrF0FEREREREQ9G3/kQkRERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZUzf1QsgIiLqbh555BE8+uijrW6fPn06/vvf/3b+goiIiHoAhksiIqIE8vLy8NRTT7W6jYiIiBJjuCQiIkpAp9Nh8uTJHd7P5/PBbDbnfkFERETdHPdcEhERJWnXrl0YNWoU3nnnHVxzzTXYb7/9cOmllwIAGhsb8Y9//AMzZszAhAkTcMYZZ2DlypVxj29ubsbVV1+NyZMn46CDDsITTzyBu+++G7Nnz47c55FHHsG0adNavfaoUaPw4osvxt32xhtv4Nhjj8X48eMxa9YsPPnkk3Efv+6663DSSSfhm2++wXHHHYfJkyfjzDPPxKZNm+LuJ0kS/vOf/+DII4/E+PHjccghh+C6664DALz00kuYMmUK3G533GO+++47jBo1Chs2bEjxq0hERL0VK5dERERtCIVCcX9WFAUAcM899+Dwww/HQw89BFEUEQgEcMEFF6C5uRnXXHMNioqK8Morr+D888/HRx99hNLSUgDA//3f/+GHH37A9ddfj5KSEjzzzDPYsWMH9PrU/zl+6qmn8MADD+Diiy/G/vvvj7Vr1+Khhx6CxWLBnDlzIverrKzEPffcg8suuwwmkwn33HMP/vSnP+Hdd9+FIAgAgH/84x94++23cdFFF2H//fdHU1MTPvjgAwDAcccdh7vvvhsffvghTjrppMjzLliwAOPGjcPo0aNTXjsREfVODJdEREQJNDY2Yty4cXG33XbbbQCASZMm4aabborc/sYbb2DTpk149913MXjwYADAjBkzcNRRR+GZZ57Btddei02bNuGTTz7BAw88gGOOOQYAMG3aNMyaNQt2uz2ltblcLjz22GO47LLLcOWVVwIADjzwQHi9XjzxxBM488wzodPpAABNTU145ZVXIutSFAVXXHEFfvnlFwwbNgxbtmzBm2++iRtuuAHnnntu5DW0NTocDhxxxBGYP39+JFy63W589NFHuPrqq1NaNxER9W4Ml0RERAnk5eXh2WefjbvNaDQCAA499NC425csWYJx48ahf//+cdXOqVOnYs2aNQCA1atXA0BcC6zNZsOMGTOwatWqlNa2fPlyeDweHHXUUXGvd8ABB+Dxxx/H3r170a9fPwBAv379IsESAIYNGwYAqKqqwrBhw/D9998DQFxVsqVTTjkF559/Pnbu3IkBAwbg/fffRygUwm9/+9uU1k1ERL0bwyUREVECOp0OEyZMiLtt165dAIDi4uK42xsaGrBixYpWlU4AGDhwIACgtrYWNput1fCfls+VjIaGBgDAsccem/DjlZWVkXDZcsKtwWAAAPj9fgBqhdZqtbZbPZ02bRoGDBiA+fPn46qrrsL8+fPxm9/8BgUFBSmvnYiIei+GSyIiohRpexU1+fn5GD9+PG6++eZW99WqnSUlJXC73a2my9bV1cXd32QyIRgMxt3W1NTU6vUA4D//+U/CcDpkyJCkP5eCggJ4PB64XK42A6YgCDj55JPx+uuv4/jjj8dPP/3UangQERERwyUREVGGpk+fjm+++QYVFRVtViK1Kuhnn30W2c/odrvx7bffxoW68vJyuN1uVFVVoby8HADwzTffxD3XlClTYDabUV1d3apFN1UHHHAAAGDhwoVxg4BaOvHEE/Hwww/j+uuvR3l5OQ488MCMXpeIiHofhksiIqIMnXDCCXj11Vdxzjnn4MILL8SAAQPQ2NiIVatWobS0FOeffz5GjBiB2bNn4+abb4bL5UJpaSmefvrpVm2yBx98MMxmM66//npccMEF2LVrF1599dW4+zgcDlx55ZW4/fbbsXv3bkydOhWyLGPbtm34/vvv8dhjjyW99qFDh+L000/HXXfdhbq6OkydOhXNzc348MMP8cADD0TuV15ejoMPPhiLFy/GJZdcEhkYREREpGG4JCIiypDJZMLzzz+Phx56CI888gjq6upQVFSEiRMnxg3wueuuu3DzzTfjjjvugNVqxVlnnYUJEybgww8/jNynqKgIDz/8MO655x5cccUVGDduHO67775ItVPz+9//HmVlZXjuuefw7LPPwmQyYfDgwa3ul4ybbroJFRUVeOONN/Dkk0+iqKgoYWXysMMOw+LFi9sd/kNERL9egqId2kVERESdTjtD8rPPPuvqpXToqquuQk1NDV5++eWuXgoREXVDrFwSERFRuzZu3Ig1a9bg448/xv3339/VyyEiom6K4ZKIiIjaddlll6GhoQFnnXUWjjrqqK5eDhERdVNsiyUiIiIiIqKMiV29ACIiIiIiIur5GC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBn7f5iPJ8tskQoMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "0c42f301", + "metadata": {}, + "source": [ + "### While it seems decent, lets compare with `Powerspectrum`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d754bfc9", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "ps = Powerspectrum(lc_ar4, norm=\"abs\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e44b8444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'AR(4) Spectrum')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc5dX38e/MbFOv7r3KnWJjwBgMBtNMCb0TwITQIZDQk4deQkgIJIS8QCgJAULAQDC9N2MbcO9VtmVLVm+rLVPeP2ZndlfNtixbkn0+z/VckXZnZ2eltdBP59znVizLshBCCCGEEEIIIXaB2tEXIIQQQgghhBCi65NwKYQQQgghhBBil0m4FEIIIYQQQgixyyRcCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mYRLIYQQQgghhBC7TMKlEEIIIYQQQohdJuFSCCHEXsGyLKZOnUpBQQGFhYVN7p8zZw4FBQXu/0+YMIGzzjqLTz75pNnzLVmyhIMOOoi6urpm77/66qspKCjgX//6V9LtV1xxBX/961936JqLior4zW9+w5FHHsnYsWOZMmUKV111FfPmzduhx7e3b775hhdeeKFDnlsIIUTXJ+FSCCHEXmH+/PkUFRUBMGvWrBaP+8Mf/sBrr73GY489RnZ2Ntdee22zYe7xxx/n3HPPJT09vcl933zzDQsXLmz2/FdccQUvvPACNTU1rV5vdXU155xzDmvWrOGmm27imWee4frrr0dVVebPn9/qY3eXb7/9lpdeeqlDnlsIIUTX5+noCxBCCCHaw6xZs0hNTWXYsGHMmjWLq6++utnjCgoKGD58OAATJ07kyCOP5J133uGggw5yj9mwYQNff/01d911V5PHR6NRHnjgAW688cZm758wYQLZ2dm8/fbbXHTRRS1e74cffkhZWRlvv/02eXl57u1nnHEGlmXt8OvuCIZhYBgGPp+voy9FCCFEJyKVSyGEEF2eYRh88MEHTJ06lTPOOIM1a9awYsWK7T4uJSWF/v37s3Xr1qTbZ86cSUFBAQMHDmzymJdeeolAIMAZZ5zR4nmPPfZY3nrrrVafu6amBq/XS1ZWVpP7FEVxP77ttts4/fTT+eSTTzj++OMZO3Ys5513HmvWrEl6jGma/L//9/+YNm0aY8aM4bjjjmPmzJlNzv3xxx9z5plnMm7cOA4++GB+8YtfUFRUxJNPPsk//vEPioqK3Nbh2267rck1TJ8+nXHjxrFo0SKefPJJDj744CbP0bhdeOrUqTzyyCP8v//3/5g8eTLjx4/n4YcfxrIsvvzyS6ZPn84BBxzA1VdfTXV1datfNyGEEJ2XVC6FEEJ0ed9//z1lZWWceOKJjB8/nvvuu49Zs2YxYsSIVh9nmibFxcWMHj26yfkOOOCAJseXlpby1FNP8fTTT6OqLf999oADDuC5556jurq62fAIMHr0aCKRCLfccguXXXYZo0aNavGcW7Zs4aGHHuKGG24gEAjw5JNPMmPGDD766CP8fj8A9913H2+99RZXX301o0eP5ttvv+WOO+4gOzubo446CoC33nqLW2+9lenTp3P11VdjWRbff/89FRUVnHXWWWzYsIE5c+bwl7/8BYDc3Fz3GoqKinj00Ue5+uqryc/Pp2/fvq18ZZuaNWsW48aN48EHH2Tp0qU8/vjjmKbJDz/8wA033EAoFOK+++7jscce4957792pcwshhOgcJFwKIYTo8t59910yMzM5/PDD8fl8TJo0iVmzZnHTTTclVQHBDpS6rlNTU8MzzzxDQ0MDF198sXu/ZVksW7aMU045pcnzPProo0yePDmphbY5I0aMwLIslixZwmGHHdbsMYceeiiXXHIJL774IrNmzSItLY3DDjuM8847j0mTJiUdW1lZyVNPPcWBBx4I2MF02rRpvPnmm5x33nkUFhbyyiuv8NBDD3HaaacBMGnSJEpLS/nLX/7CUUcdhWmaPPbYY0ybNo0//vGP7rmPPvpo9+Pu3bvj8/nYf//9m1xvVVUVL7zwAiNHjmz1tbfE7/fz5z//GU3TOOKII/j000/517/+xYcffki/fv0AWLFiBW+99ZaESyGE6KKkLVYIIUSXFolE+OSTTzjmmGPcNYDTp0+nqKiIBQsWNDn+1FNPZfTo0Rx66KG88MILPPzwwwwePNi9v7q6mkgkQk5OTtLj5s+fz4cffsgtt9yy3WtyHltaWtrqcbfffrt7zokTJ/L1119z2WWX8corryQdl5eX5wZLgD59+jB69GgWLVoEwOzZs1FVlWnTpqHruvv/hx56KCtWrMAwDNavX8+2bds4/fTTt3v9zenRo0ebgyXY61s1TXM/HzBgAH369HGDpXNbRUUFkUikzc8jhBCi40jlUgghRJf21VdfUVNTw5QpU9wJrQcffDA+n49Zs2Y1aW/905/+RL9+/di6dSuPP/44t99+O2PHjqVHjx4AhMNhgCbDah588EHOOeccMjIykibBhkIhamtrycjIcG9zHrsjIWnAgAHMmDGDGTNmUFFRwYwZM/jTn/7Eueee61ZdEwf+OPLy8tzwWllZiWEYjB8/vtnnKC0tpbKyEoBu3bpt95qak5+f36bHOTIzM5M+93q9SV8z5zbLsohGozIsSAghuiAJl0IIIbq0d999F4AbbrihyX3vv/8+t99+e1LFbOjQoQwfPpyxY8cyYsQITjzxRJ566inuueceIF51bLyVyPr161m0aBEvvvhi0u2PPvoof/zjH1m2bJl7W21tLUCL6y1bkpuby+mnn879999PeXm5G+jKy8ubHFteXs7QoUPd5/F4PLzyyitN2oCd89bX1wPbr6buDL/fTzQaTbpNBvIIIcS+S8KlEEKILqu+vp4vvviCk046ibPPPjvpvuXLl/PQQw8xZ86cJmsYHf379+ess87ijTfe4PrrrycvLw+fz0fv3r3ZvHlz0rFPP/00hmEk3XbxxRdz0UUXceyxxybd7jy2uWmzjoqKiqSBOY7CwkJ8Pl9SVa+8vJyffvrJbY3dsmULy5Ytc1tcDznkEAzDoLa2tsU1noMGDaJHjx689dZbTJ06tdljvF6vW7ndET169KC+vp6SkhK38vvtt9/u8OOFEELsXSRcCiGE6LI+/fRTdyDPfvvtl3TfgQceyN/+9jfefffdFsMlwOWXX87rr7/OP//5T2688Ub3sUuXLk06bsKECc0+fuDAgUycODHptiVLlpCRkcGwYcNafN6ZM2fyv//9j5/97GcUFBSg6zqzZ8/m3//+N+edd547BRbsauott9ziTot94okn3ConwODBgzn33HO56aabmDFjBmPHjiUcDrN69Wo2bNjAAw88gKqq/OY3v+HXv/41N998MyeddBKKovD9998zffp0xo4dy+DBgykrK+PNN99k2LBh5OTktDoV9vDDDycQCHDHHXdw6aWXsnnzZl599dUWjxdCCLF3k3AphBCiy5o1axYDBw5sEizBrsKdcMIJzJo1i7vvvrvFc/Tp04eTTz6ZV155hSuuuILU1FSmTZvG7bffTigUIhAI7PR1ff3110ybNq3V7UqmTJnC5s2b+c9//sPWrVvRNI3+/ftz1113NanC9u7dmyuvvJLHHnuMoqIixowZw2OPPZYUQP/v//6PgQMH8vrrr/PEE0+Qnp7O0KFDOfPMM91jTj75ZPx+P08//TTXX389qamp7Lfffm4F9YQTTmDOnDk8+uijVFRUcNppp/Hwww+3+Bpyc3N54okn+P3vf88111zD6NGjeeyxxzjxxBN3+msmhBCi61Msy7I6+iKEEEKIziQSiTBlyhR+97vfccIJJ+zUY2tra5k0aRLPP/98i9XOnXHbbbexatUq3nzzzV0+lxBCCLE7yVYkQgghRCM+n48ZM2bw0ksv7fRjX3nlFfbff/92CZZCCCFEVyJtsUIIIUQzLrzwwma3Gdme9PR07rzzzt14ZUIIIUTnJG2xQgghhBBCCCF2mbTFCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mQz02UGmaWEYZkdfRhMej4qud77rEnsHeX+J3UneX2J3k/eY2J3k/SV2p874/tI0FVVVWj1GwuUOMgyTqqpgR19GElVVyMtLp6amAdOUuUyifcn7S+xO8v4Su5u8x8TuJO8vsTt11vdXdnYqqqq1eoy0xQohhBBCCCGE2GUSLoUQQgghhBBC7DIJl0IIIYQQQgghdpmsuRRCCCGEEPsMy7IwTQNrF5ayqapCJBJB1/VOtSZO7B064v2lKKCqGorS+sCe7dnrw+Xo0aMZOnQoAGPGjOGBBx7o4CsSQgghhBB7mmVZ1NVVU19fA+z6L+xlZSqm2bmmeYq9R8e8vxTS0jJJT89qc8jc68NldnY2b7/9dkdfhhBCCCGE6EBOsMzMzMXn8wO7WKHxKOi6VC3F7rHn318WkUiYmpoKADIystt0lr0+XAohhBBCiH2bZVlusExNTW+Xc3o8KiCVS7F7dMT7y+PxAlBTU9Hm6mWnHugzb948rrzySiZPnkxBQQGff/55k2Nefvllpk6dytixYzn77LNZtGhR0v3V1dWcdtppnHfeecydO3dPXboQQgghhOgkTNMArFjFUgjREvvfiBX7N7PzOnXlMhgMUlBQwOmnn851113X5P733nuPhx56iHvuuYf99tuPF198kcsvv5wPPviA3NxcAD799FN69OjBmjVruOKKK3jnnXdIT2/bX6xUddfaJ9qbcz2d7brE3kHeX2J3kveX2N3kPSYSmabzPpD3gxCts/+NKIrSpp+fnTpcTpkyhSlTprR4//PPP88555zDGWecAcA999zDF198wcyZM5kxYwYAPXr0AGDo0KEMHz6c9evXM3bs2J2+Fo9HJS+vfdoo2ltOTlpHX4LYi8n7S+xO8v4Su5u8xwRAJBKhrEzF41Fi7Ybtoz3PJURjHfP+UlBVlZycVHw+304/ulOHy9ZEIhGWLl3KVVdd5d6mqiqTJk1iwYIFgN0Sm5KSgs/no6SkhFWrVtGvX782PZ+um9TUNLTHpbcbVVXIyUmjsrJexmCLdifvL7E7yftL7G7yHhOJ7C0dzNiAlPZZx+bxqOi6rLkUu0dHvb903cI0TSorg3g8kaT7MjNT8Hq1Vh/fZcNlZWUlhmGQn5+fdHteXh6FhYUArF27lt/97neoqoqqqtxxxx1kZ2e3+Tk763+cTNPqtNcmuj55f4ndSd5fYneT95iAzvs73J72008/cP31V/LRR1+Rmpra4nFnnnky5513IWeccc4evLrO57nn/s53333Dc8/9s6MvZY9r68/Ova6Wb1mWO9nowAMP5N133+Wdd97hrbfe4phjjungqxNCCCGEEGLHPPDA3UyePIE//en3Te675567mDx5An/5y+NtPv977/2P6dOPbnL7M8+8xPTpp7qfT548gW+//brNz9MVNPcazzvvIv74xyd3+3Nfe+0Vu/R97Ey6bLjMyclB0zTKysqSbq+oqGhSzRRCCCGEEKIr6t69Bx9//CGRSLxFsb6+jq+//oLu3XvslufMyckhEAjslnPvqmg0useeKzU1lays7D32fHuDLhsufT4fo0eP5rvvvnNvM02T2bNns//++3fchQkhhBBCCNFORo0aTU5ODt9885V72yeffMTw4SPo3btP0rGNq2/BYJDJkyfw008/NDnvTz/9wIMP3kN1dTWTJ09g8uQJPPfc3wG7LfaNN15zPwa49dZfMXnyBPfzTZs2cuutv+Lkk49l2rQj+OUvL2XhwgVNruett97gV7+6hqlTD+Pcc09j9uxvko5Zt24NN910HcccM5lTTz2Ohx++j7q6Ovf+a6+9gscf/wOPP/4oJ554NHfc8esWv1bvvDOT8847nalTJ3HhhWcxa9Y77n3RaJTHHnuEU045jqlTJ3HWWafy3/++2uprfO65vzNjxkXuOR544G7uuusWnn/+GU466RhOOGEq//73P4lEIjz66IMce+wUzjrrlKTvga7rPPjgPZx55slMnXoYF1xwJu+8MzPpnAsW/MSrr/7L/T5s3bplh742nVGnXnNZX1/Pxo0b3c83b97M8uXLyc/Pp1u3blx66aXccsstjB49mnHjxvHiiy8SCoU47bTTOvCqhRBCCCFEVzDz5WJWLK5v02MVBaydXJI2Ymwap13Qc6ef68QTT+a9995h6lR7idd77/2Pk0/+GR98MGunz+UYO3Y/rr/+Zl544Vn++U87SKakNF2H+cwzL3HyydP47W/vZcKEiaiqPdAlGAwyadLh/PKX1+DxeHn77Te55ZYbeO21t5NmnDz77NNcffX1/OpXv+Gdd97izjtv4ZVX3qRHj57U1tZy/fVX8bOfncGNN95MMNjAk0/+kQceuJuHHvqDe45Zs97hzDPP4emn/9Hi6/noo/d5/vln+NWvbmHo0GEsX76MRx65n8zMTA4//Ehef/1Vvv32K+677xF69OjBli1F1NRUt/oamzN37hzy87vz1FPPMm/eXP70p9/zww9zOeywyTz33D95443XuO++3/Hmm7NITU3FMAx69OjJ/fc/QmZmFvPn/8hjjz1Mz569mDjxEG644dds2rSRoUOHc+mllwOQnZ2zw1+bzqZTh8slS5Zw8cUXu5/ff//9AFx77bVcd911nHjiiVRUVPDEE09QWlrKyJEjefbZZ909LoUQQgghhOjqjj9+Os8993fKykqpr69n3bo1TJ16zC6FS6/XS3p6OooCeXktLynLyckBID09I+m4goIRFBSMcD+/7rpf8eWXnzFnznccd9yJ7u3HHHMcJ55oVwKvvfZG5s6dzVtvvcEvf3kNb7zxGiNHjuLyy690j7/llju54IIzqaysICfH/p1+wICB/PKX17T6ep577u9cd91NHHHEkQD07t2HVatW8Pbbb3L44UeybVsx/fr1Z9y4/VAUhZ49e233NTYnOzub66+/CVVV6d9/IC+//CJ+v88dfnTJJb/gv/99jdWrV7Hffvvj9/uZMeOX7uN79+7DggU/8dlnHzNx4iGkp6fj8XgIBAJJz/366zv2telsOnW4PPjgg1m5cmWrx1x44YVceOGFe+iKhBBCCCHE3qItVUTHntwqIi8vnwkTDub992dRW1vDlClTSU3t2D1cg8Egzz33d2bP/oaKinIMwyAcDlNSUpx03KhRY5I+Hz16LBs2rAdgzZrVzJs3h2nTDm9y/qKizW6AGjFiZKvX0tDQQFHRZh544P946KF73Nt1XXdD5PHHT+fGG6/h/PPP4JBDDmPy5CMYP/6gnX7dgwcPQVXjKwuzs3MYOHBwwufZaJpGVVWFe9sbb/yHWbPeoaRkK5FIhGg0ygEHjG/1edasWbVDX5vOplOHSyGEEEIIIQRMn34yTz/9F4LBIP/3f/c3e4yiKFgJvbq6ru+26/nrXx/nxx/ncfXVN9CnT1/8fj+//vUNTQbuxDZxaHKdYIfCww8/stmqZLdu3dyPA4GUVq+loSEIwB13/B8FBclB1OOx486IEaN4/fV3+P77b5k3bw633XYzxxxzLLfeetf2X2wz50t8LY1vA3sWDMAnn3zIU0/9meuuu4lRo0aTmprG88//P0pKSlp9nmAwuENfm85GwqUQQgghhBCd3GGHHcGjjz5ESkpqi1Wv7OwcKirK3c/XrFnV6jk9Hi+Gsf3qq8fjwTSNpNsWL17I9OmnuG2oNTU1lJY2DUxLly5h2rTj3c+XLVvCpEl2NW748AK+/vpLevXqjaa1vM5xe3Jz88jP78aWLUUcffSxLR6XkZHBtGnHM23a8Rx88KHce+9v+c1v7kBV1WZfY3tYvHgh++13AD/72RnubZs2bcLn87mfe73eJs9dUFDAl1/u+tdmT+uy02KFEEIIIYTYV3g8Hl57bSYvvvhvt/LX2AEHjOeNN/7DmjWrWbx4Ic8881Sr5+zVqxf19XX89NMPVFVVEQqFmj2uZ8/e/PDDXMrLy6ipqQGgb9/+fPHFZ6xevYpVq1Zw9913NjsI59NPP+L9999l48ZCnnrqz2zcWMipp9pB6/TTz6Kyspx7772LFSuWUVS0mdmzv+GRRx7YmS8NAJdcMoOXXvoHb7zxGhs3FrJmzWrefvtNZs78LwCvvfYyn376ERs3bqCwcANfffUF/fr1d1tcm3uN7aFv3/4sW7aEefO+Z+PGQv761z+7bcGOnj17s3TpEoqLt1JVVYVpmpxxxjnt9rXZkyRcCiHaVU24mtlbvqVBb+joSxFCCCH2Kmlp6a2utbz22hvJzs7hyisv5dFHH+Syy65o9Xxjx+7Hqaeezm9/eysnnXQML7/8YovnnTNnNqefPp3LLrsAsAf4pKamcuWVl3LHHb/hqKOOpn//AU0eO2PGFXzwwXtccsl5fPnl59x33yP07Gmvde3WrTtPPfUckUiEG2+8mosvPoe//vWJpGmzO+pnPzuTm2++jXfeeYuf//xcbrjhSj777GN3u5ZAIIV//vMFZsy4iF/+8hJqa2u5//7ft/oa28Opp57O4YcfyW9/extXXnkZ0WiU6dNPSTrmvPPs+TEXXHAmJ510DCUlxXTv3n5fmz1JsaydHaK8b4pGDaqqgh19GUlUVSEvL53y8jpMU76Non219f21cNt8FpYu4LA+kxmSPWw3XqHoyuTnl9jd5D0mEum6TllZEfn5fZpdH9cWe3KgT1c1efIEHnnkTxx2WNOhNKJ1HfX+au3fSnZ2Kl5v6y26suZSCNGudMseHmBaFiXBEhZu+4lJfQ4n3ZvewVe2fRvXNbD4p1oqSqOYloVlwcAhKRx5fF5HX5oQQgghRKcn4VII0a6M2HQ0y7LYXLuR4vpittUXk549tIOvrHWLf6rljZeKm9y+YXUDI/dLp0cvfwdclRBCCCFE1yHhUgjRrkzLnnZmYbnj0M1O3n1vmhZffVRBg1rJKScNZdioNDRNYfGPtXzxQQVzvqrilHN6dPRlCiGEEF3KN9/80NGXIPYwGegjhGhXRixcmpbphkrT6txrUlYvr2dt2XqqBn6NOmI53Xv6yevm4+AjsvH6FBb9UEuwvv3HkwshhBBC7E0kXAoh2pWRWLkkFi7p3OFy9hdV1HvKGDwijdWV8T3BUlI19p+YiR61WLqgtgOvUAghhBCi85NwKYRoV0ZsE2DLSgiXnbhy2RA0KFzTQE5qJj172xsa14Sr3fv7D0oBoLJc75DrE0IIIYToKiRcCiHalbPm0sTEioXKuroooYbO2Va6YU0DlgW9B3rdTakLawvd9aKZ2fbS9JqqaIddoxBCCCFEVyDhUgjRrpy2WCx7oE9Ntc7Lz2zi5f+3pWMvrAXrVtn71/YZEJ8Gu3DbfF5e/hKbaze54bK2unOGYyGEEEKIzkLCpRCiXTlDfCwswhGDH76tJho12bQ+RH1d52stdcJlz35e9zZ7GJHJ5rrNZGTZmwXXVHW+axdCCCGE6EwkXAoh2pVTuaytjfLBW6XU1xkoqt0eu2FNQ0deWhPVlVHKt0Xp1tNHSprdEntYn8mcOPhkAKpClXg8KqnpGjVVutsqK4QQQnRlDzxwN3fddcsuneONN17jzDNPbqcr2nu9997/mD796I6+jD1G9rkUQrQr0zLYWhRmwfdbqWkIk9vbwyEFWax9z64Sjt4/o6Mv0eVULQcPT3WHDnlUL3mBPDyqh6pwJWCvuyyuCxOsN0hLlx+bQggh9owHHrib999/FwCPx0OPHj054YSTuPDCS/B42v7foxtu+LX8wXQ3OPPMkznvvAs544xz3NuOPnoahx562G5/7gceuJuGhiD33//73f5crZHfkoQQ7aa+TufbL8pZu7Ga/HAPho1Oocf+OfRP9bMWWL+qc1Uu18WuZ3BBClWxcKkqKoqikOXPpryhjLpoHZlZHoo3h6mp0iVcCiGE2KMmTTqcW2+9k2hUZ+HCn3jkkQfQNI2LLrp0p8+l6zqappGenr4brrT9RaNRvF7v9g/sxPz+AH5/oKMvY4+RtlghRLuwLIsX/lLExg31pKSoHP+zfA4+MhtVVfCnqnTv5aOiLEpVZeeYumpZFutWBlFUGDgk1Z1sqyn2Gsscfw5gt8bGJ8bKukshhBB7ls/nJS8vn549e3LccSdy3HEn8M03XwEQDod58sk/ceqpxzNt2uFcddVlLFmy2H2s05L51VdfcP75ZzB16iSqqqqatMWGwyH++MdHOOmkY5g6dRLXXfdL1q5dk3Qd7777FqefPp1jjpnM7353O3V1dUn3m6bJc8/9nZ/97ASOOupQZsy4iPnzf0w65uuvv+Ccc37G1KmHcdNN1/L2228yefIE9/7nnvs7M2ZcxFtvvcGZZ57MiSdOBeC7777hqqsu4/jjj2T69KO5/fZfU1JS7D7up59+YPLkCcyZM5uf//xcpk49jJtvvp6amho+/fRjzj77VI4//kj+8IeHMYzWB/R99dUXXHLJ+UydOolzzvkZL7/8IqYZ31Ltuef+zumnT+eoow7ltNNO5O9//ysA1157BcXFW/nTnx5l8uQJ7utq3Bab+BpPO+1Epk07gief/COGYfDMM39j+vSj+dnPTuCtt95Muq6//OVxzj33NKZOPYyzzz6VF198zr2u5577O++//y5ffPGZ+9w//fQDACUlxdx1160cd9wUpk8/mrvuuoWystJWvwa7Qv4EL4RoF/V1BqXFEVJ7Kxx6bC69e/qoi0QAsCyTIQWpbNsaYea/Srjgit74/Lvvb1shPUTYCJHlz27xmG1bI9TXGfQbFMAfUN21oqpiX1d2wA6XleFKMrP7AhIuhRBib/Nt0ddsqt3YpseqqoJp7lxrab+M/hzW5/A2PZ/D7/cTjdp/qH388UcpLNzAffc9TF5ePh9//AG/+tU1/Pvf/6Vbt+4ABINBXn31X9x55z2kpaWRlpbW5JxPPfUE33zzFb/73f3k5+fzwgvPcfPN1/HqqzMJBAIsXryQ3//+Qa666noOO+xwvvnmK1588VkyMjLdc7z22r95/fVXuOWWuxgyZCgzZ/6X3/zmBl555U26devO1q1b+O1vb+Pccy/kxBNPYunSJfztb082uZaNGzfw3Xdf89BDj6Gq9n+TQ6EQ5557EUOGDKW+vp6nn36Su+++g7/97R9Jj33hhWf4zW/uQNM07rzzFn7721tJTU3l4Ycfo6SkhDvvvIVx4/bj2GNPaPZru3DhAh588G5uvPE3jB27Hxs3FvL73z+A1+vj7LPP4/PPP+E///k3d9/9IIMGDaGsbBubNtnvnwcffJRLLjmf0047kxNPbH0t6saNhcyf/wN//ONfKCxcz//93x2sW7eWUaPG8PTTz/PFF5/x6KMPM378RHr16g1Aeno6d911D3l5+axatYJHHnmA7OwcTj31dM477yIKCzcQCoW49dY7AcjMzELXdW6++TrGjdufv/3tOUDhueee5tZbb+KZZ150v77tSSqXQoh2UVlu/4cuI0fF61WxLLCw/6JmWAaHT8ulV18/hWsbeOfVkt16LW+s+g9vr5lJSA+1eEziekvAXXOpxMJlUuUyK1a5rJZwKYQQouMsXbqEDz98n/HjD6K4uJj33vsf99//COPG7U+fPn255JLLGTRoMB999L77mGg0yq9/fTujR49h4MBB+Hy+pHMGg0HefvtNrrnmRiZOPITBg4dyxx3/RzQacc/z3/++xqRJkznvvAvp338A559/Efvtd0DSeV599V9cdNGlTJ16DAMGDOSGG26mZ8/evPnm6wC89dYbDBw4mCuvvJb+/QdywgkncfTRxzZ5jYZhcNdd9zBs2HCGDBkKwNSpxzBlylH07duPgoIR3HLLnSxevIht25J/n7jiimsYM2YcI0eO5vjjpzN//o/cdttvGTx4KIceehgTJhzkVvSa849//D8uvvgyjj9+On369OXQQw/j5z+/jHfesauIJSXF5ObmcdBBB9OzZ0/GjBnHCSecBNhhTlVVUlNTycvLJy8vv9Xv5W23/Y5BgwZz5JFHM2rUGCorK/nFL66iX7/+XHDBxQQCARYtWuAef8kllzNmzDh69erNlClTOeOMs/nss08ASE1Nxe/3u1XuvLx8vF4vn376EYqicMstdzJ48FAGDx7CnXfew5o1q1ixYlmr19dWUrkUQrQLJ1ymxJZxWFjusADTMklN07j46j788e71rFpWj2laqKqyW67FqUJGzQgBml/n4IbLguRw6bTFOpXLqnAlfaQtVggh9kq7UkX0eFR03dz+gbvo66+/ZNq0wzEMA8MwOOaY47jssiuYP/9HDMPgnHN+lnR8JBJh6NBh7ud+v5/Bg4e0eP6ios3ous64cfu5twUCAYYNK6CwcD1gVxOPOuqYpMeNHj2WdevWAlBfX0d5eRljx8bPoSgKY8eOo7BwQ+wchYwcOTrpHI0/B+jVqzeZmVlJt23atJFnn/0by5YtpaqqCrB/vygpKaZ79x7ucUOGxF93bm4uubl5ZGVlu7fl5ORSWVnR4tdi7dpVLF68kOeff8a9zTBMd+nMkUcew2uv/Zuzzz6VQw6ZxKRJk5k06fCdrgD27t2HlJSUpGv1+eL7bauqSnZ2dtK1fvrpR7z++qsUFW0mFGpA13V69OjV6vOsWbOajRsLmTYt+X1uGAZFRZsZNWrMTl33jpBwKYRoF1XldvAK2FnNDpfEwyVASqpG734BCtc2ULYtQvee/mbPtSds22q37Pbpb4fPeFusHXhTPCn4NB+1kVoyc6VyKYQQomNMmHAwv/rVb/B4vOTn57tTYhsagng8Hv7xj5dRlOQ/1ia2vgYCOzZMpvE57L8PK+7Hje9vemxz57CI35T4cfy2xgKBlCa33Xrrr+jduw+33/478vLyCQbr+cUvfu62BzsSJ+gqitJkoq6iKK1OyQ0GG/jFL67i8MOnNHt/z549eeWVN5k793vmzZvDww/fx/DhI3jssSdb/fo01tx1Nb0Nt+16yZJF3Hvvb7n88qs46KCDSUtL49133+bTTz9q9XkaGoKMGjWaO++8p8l9ubm5O3y9O0PCpRCiXVSWR7EwSU23K3+WZbqh0vlfgN797dbYLRvDdO/pxzQtGoLtt8VHxIi4Hyc+b2OhBhOfX8Xjcf7DmVy5BPBpPuoidaRn2bdJ5VIIIcSelpISoG/ffk1uHzZsOLquU11dxZgx49p8/j59+uLxeFi4cAFHHz0NsAf8rFmzkmOOsdtWBwwYyNKli5Met3TpEvfj9PR08vLyWbRogVu9tCyLJUsWc8QRRwLQv/9A5s6dnXSOHWnNrK6uYuPGQu644//c1/n999+17cVux/DhBWzaVNjs19sRCAQ44ogjOeKIIzn++On88peXUFJSQs+ePfF4vBhG+1ezFy9eRO/efbjookvc24qLtyQd09xzDxtWwBdffEpubi6pqU3X2u4OsuZSCNEuKsujmBikpjnh0nL/Hmla8clsffrZf0Et2mivh/z6k0oe+916Nq5rn21KgtF69+OWwqVpWoTDJoGU+I/AxgN9ALyqPf5c9Rr4Ayq11a1PmBNCCCH2lP79B3L00dO4997f8tVXX7BlSxFLly7h+eefaTKltTWpqamceurp/PWvjzN37vesW7eWBx64B4/Hy7RpxwNwxhln89133/Daay+zcWMhr776LxYu/CnpPOeeeyH//OfzfP75J2zcuIE///kxiou3cPrpZwFw6qmns379Ov7+97+ycWMhH3743nYrbwAZGZlkZWXx9ttvUlS0mXnzvufpp/+yE1+pHffzn8/gvff+xwsvPMv69etYv34dH330Pi+++BwA77//LrNmvcO6dWspKtrMp59+SHp6hlsF7NWrFwsW/ERp6bZY+2776NevH1u3buHTTz+mqGgz//73P5kzJzmo9+rVy22DraqqQtd1jj32BNLS0rn99t+wcOECtmwp4scf5/GHPzxEbW1tu11fIgmXQoh2UVkexVLNeLhstObS0TvWhrolFi43rA5imvDVxy2vgdgZDXo8pJottL6EQyZYJIVL51glIVx6YuEyakZJS9eIhM09sr5GCCGE2BF33XUvxxxzHE888Rjnn38Gd911C+vWrSU/v9tOnefqq69n8uQjuPfeu7j88ouoqCjnsceedFtqx43bn1//+nZeeeVfXHrp+SxZsojzz7846RznnHM+Z511Ho8//gd+/vPzWLx4IY8++mf3Wnr37sO99z7MZ599zCWXnMeHH77HBRdckrTWsDmqqnL33Q+yfPlSLrrobP72tye55prrd+r17ahDDz2Mhx56jNmzv2XGjIu46qrLePPN192JrWlp6bz11htceeVlXHLJ+axYsZxHH33cHZI0Y8aVFBVt5pxzfsZJJx3T2lPtlMmTp3D22efxxz8+zKWXXsDatau44IKfJx1z8smn0bdvX2bMuIiTTjqGRYsWkJKSwl//+gz5+XncccfNXHjhWTz66IMoitpksFN7UazWGo+FKxo1qKoKdvRlJFFVhby8dMrL63Z6FLYQ27Mz7y9dt3jgN2vwZ0XofdZcAAZlDaY2UktZQyndU3tw/KATAbui+fu71hEJWdz+yBD+dM966mvtiuBBk7OortT52fk93JC6s9ZVreGboq/RdYv01Ydy6PiB9BuUvH6jsjzKn+/bQP/BAS673m59eW/du5Q1lHJWwbmkeOzjPyn8kC11Wzh16Gm8/rdaNm8I8au7B5KV3bU3dO4M5OeX2N3kPSYS6bpOWVkR+fl9mqxta6s9NdBnb/b003/hu+++5qWXXuvoS+l0Our91dq/lezsVLze1n8/k8qlEGKXVVdGsSzIyov/wGluoA/Yi9Z79wtgGBYb1gTdYAkw75tqVi2tZ+G8mjZfSzBWuSwqDPHD7CpefKqINSvqk44Jh+zrCaTEr7e5tth45VInLbaWNFgnrbFCCCFEW7zxxmusWLGMoqLNvPvuW7zxxmscf/xJHX1Zoh3JQB8hxC6rqrCntWXlqDgjbyyr+bZYgH4DA6xdEeSH76oBGDoyFT1qoWoK61YGWfJTLYcemdOma2nQ7Q6DrUVh0rDQoxb/eX4rv753MD5/bDPmBjsgJrbFNjfQx1lzqZtRd1BRvYRLIYQQok02bdrISy89T21tDT179uLSS6/g3HMv6OjLEu1IwqUQYpcVbQwDkJGjUhm7zbRMLOzA5vyvY9DwVL74oIKVi+2KYp/+AY46IQ/LsnjywUKKNoapKIuSm7/z7acNegPRqElZSYTcVBjUM4X1qxuorIjSo5e9riPU4FQuWx/ok7TmMs3eY0Uql0IIIUTb3Hjjb7jxxt909GWI3UjaYoUQu+SbTyr4bFY5AH0GxsNgSwN9APoOCODzK+7t3XvZi8oVRWHMARkALJnftilmDXoDJVvDWBYMKkghJxZQqyvj24jEw2W8SulcS/K0WPvvb1GpXAohhBBCbJeESyFEm1mWxefvV+DxKpx7eS/6DEyc+BZfc2lYyYFM0xT6DfaxOuNDtqTMp1tPH8vLl1ESLGHsgXa4/OHbaqKRnV/I3hANUrzZ3uty8IgAWTlOuIxvtNxcW6xpmUnBEhLaYo2ENZf1Ei6FEEIIIZoj4VII0WahBhPDsMjr5mXEmPSkEGlZllsNbG6/yT7DVKJqAyFPBYGsKPOK57Bw20906+lj5H7p1FTpfP9l1U5fU2VdHcVFYbxehX4D/WRl29XH5iuXyW2xiestIbktViqXQgghhBCtk3AphGgzp4rnbBuSFC5bmBbr6DvYDm7pWQqWage/qGn/7zEn5aGq8PUnldutFNbX6TzxwAZmf1FJ1Iiybm0tlgX9BgVQvRZZOXa4rKlqvS3WsiwURUk6d+JAH5kWK4QQQgjROgmXQog2axIuzXjwMi2zxTWXADndVUbvn87YiWnosceZsXCa183HuAmZRMIm61a2vr/s5g0hKkqjfPhWGYWbqyhca29FMmBwCpZlJrTFJobLpm2xzVcuZc2lEEIIIcSOknAphGgzp4rnBC8nHCqGSc/ZC8hatzl2e9NwaVg6g4enkttdRbfs4JcYTgcNTwFg04ZQq9eQGPae+etqGoIm+d29pGd6MC2LzGz72pLXXDZti21uzaVPswcN6aZOWpqESyGEEEKI1ki4FEK0WdO2WDu0HfvoKxx9w0OcftXDZG4tbzZc6rEWWMMyMBI+dvQbGAuX6xtavYb62vhjdFMnr5uXcRPsoUCmZeLxqKRnatRU65imXUltHC7NZva4BNASKpden4rXp0hbrBBCCNGCq666jC+//Mz9fPXqVcyYcRFHHXUol1xyPjU11ZxyynGUlm7rwKsUu5PscymEaLNgvR3KnHBpWiZZW8oY/dE8APz1IQ77xyzev/PiJo+NmnYl0bAMN1QmhsucPA9pGRrFRWEiEROfr/m/hdXFwuXJ53THyjNZGs1GQXGvByAr20NdjUFdrUFmlqfJmkunYtqkcpkw0AcgLV2jqkLHMCw0LXl9phBCCNGeJk+e0Or9l176C2bM+OUeuZYVK5bz7LN/Y8WKZTQ0NJCf340xY8Zx222/xeu1/1v59ddfUF9fzxFHHOU+7m9/e5Lu3XvwwAOPkpISIDMzixNOOInnnvs7t9322z1y7WLPknAphGgzty02YaDPqI/moVgWiy+Yzog3PmboN4vxhCJN2k6dyqVlWUQNe+uQxAqnoij0GxRgxaJ6tmwKM3BISrPXUF9rnye/hw8jV0MpUvBpPiJGJB4uc7wUbQxTXRm1w2XIvm5/IFa5xNnjsvk1l3osXKbGwmWwziAjS358CiGE2H3efvsD9+P33vsfM2f+l2eeedG9LSUl1f3YsiwMw8Djaf//NlVWVvCrX13DEUccyZ/+9BSpqakUFW3m888/xTQNwA6X//3vfzjhhJOThuMVFW3irLPOpWfPnu5t06efzCWXXMA119xIRkZGu1+v6FjSFiuEaDO3LTY9Hi77zV8NwNrjD2PdpHH4QhEGzl3epDXWCZcAISMMNF2b6bTGblzXcmtsXSzgpmdo7mAgZ8qrExozG21HEmow8fkVt/rYUuXSq9prLiNGvHIJUC97XQohhNjN8vLy3f9PTU1FVVX388LCDRx77BF8//13XHrp+Rx55CGsXr2SBx64m7vuuiXpPHfddQsPPHC3+3k4HObJJ//Eqacez7Rph3PVVZexZMniFq9j8eJFhMMhbrnlToYNG06fPn2ZOPEQbr31Tvz+AACVlZX89NM8DjvscPdxkydPoKhoM48//gcmT57Ac8/9HYD+/QfSvXt3vvnmy3b8aonOQv70LoRos8ZrLmkI0mt5IQ2ZqVQM7s36SaMp+OwH+s9f7QbHxWWLyPJludVAgEgsXCa2xYK9nQjAZ++Vs2F1kHNn9MbnTw6AzprLtAyNkno7PDrh0nIrl/HtSEzTItxgJlUe45XLxuHSG7suPel1yrpLIYTYO2RcdyW+92ftseeLnDCd2iefbrfz/f3vf+Haa39Fjx49ycrK3qHHPP74oxQWbuC++x4mLy+fjz/+gF/96hr+/e//0q1b9ybH5+bmEolE+OabrzjiiCObbNsFsGjRAlJTU+nXr79729tvf8AvfvFzTjvtTE488eSkSmtBwUgWLpzPCSectPMvWnRqEi6FEG0Wr1zaoSxtyXI8UZ0NE0diKQqbxw0FoN+C1TRYJhEjwvySH8kJ5NA3vZ97nnCsLdayrKT22b4DAkw+Jof539ewblUDG9c1MHRkWtI11NXqeLwKfr+KEQt93tiUVyfQZufaIbG8NEIkYmJZyZNiLXegT3K41FQNRVGIxK4vTbYjEUII0Yn84hdXM378QTt8fHFxcazF9j1yc/MAuOSSy/nuu2/46KP3ueCCnzd5zJgx4zj//Iv53e9uIyMjg1GjxnLQQQdz/PHT3bbWkpKt5ObmJQXPvLx8VFUlNTWVvLz8pHPm5+ezdu2atrxk0clJuBRCtJm75jLVDl1pq9YCUDKsLxYWNd2zqOyTT/6GYjaVl6LH/kMWNsJEE9pincol2O2y32/9jj7pfRiSPYxjTsonJVXj43fKKNkaSQqXhmHRUG+SleNBURR36qwziMcJl736+QEoLKyjstauhibtcdlCWyzY1Uunhddp/5XKpRBC7B12pYro8ajoetNp6HvSiBEjd+r4devWYBgG55zzs6TbI5EIQ4cOa/FxV199PeeddyE//DCXpUsX8/LLL/Lyyy/y7LMvkZ/fjXA4jM/n3+Hr8Pn8hMOtbzUmuiYJl0KINgvWG3h9Ct7YJNe0NesBKB/YE8uysCyLLaMGkVNUhnfBfBqmTgUgakTdVlOAsBH/D0x5QxkbqtezoXo9Q7Lt/9B172VXIrdtjYdQiFcQ0zPs0OeEQE+jcJmV7SEjS+PrujfQl2ViMsWdFAstD/Sxz+UhGA3ar08ql0IIITqRQCB52J2iKFiWlXSbrsf/e9vQEMTj8fCPf7zcpL01LS25M6ixnJxcpk07nmnTjufyy6/i3HNP46233uDyy68kKyub2tqaHb7u2toasrNzdvh40XXIQB8hRJsYhkVDgxlfbwlkrNkAQPmgXm5gKxlhr7/wLZjvtp9GzajbagoQ0uOhMXHdpRMWe/Sy/xpasjXiPves/25j6fxaANIyPLHH2uf3xdpinc8VRaHfwBRMTMpKIliK0ahy2fyaS4ivu9RNXSqXQgghOrXs7BwqKsrdz03TZN26te7nw4YNR9d1qqur6Nu3X9L/5+Tk7vDzpKenk5eXR0ODPXBv+PACyspKqa+v26HHb9iwnmHDCnb4+UTXIeFSCNEmoQYDrHirKJZFxtoN6F6Nyj75bqtpcYG9ttK3cGHSNNigHnQ/jpjhhI/jobMqXAVARpZGIFWltDiCaVpsWBNk3jfVfPxOGRCvXDptsY0H+gD0HWi3wxYXRbCwksJlSwN97HPZQTVqRklLs0OsTIsVQgjRGR1wwHiWLl3CJ598yMaNhTzxxGNUV1e59/fvP5Cjj57Gvff+lq+++oItW4pYunQJzz//DPPn/9jsOb/99mvuu+93zJ79LZs3b2L9+nX87W9Psn79Onc67LBhBWRmZrF48aLtXmM4HGblyuVMnHhIu7xm0blIW6wQok2CdXYgcyqXSmkp/qpatg3ujaVpbpAsHdoHQ1MJLFwY2w8r9vhovftxYhUzasSnyFaGKshPyUdRFHr08lO4toGK0ijl2+xjYgVH0jLiW6FAvHKZGGZ7D7ADZ3WVTg9MevUNuPdZlsnAOcs48uWn0H71WyInneLe51Gdltsoqekpsdcu4VIIIUTnc+ihh3HBBT/n8cf/gGWZnHXWeRx00MFJx9x11708//wzPPHEY5SVlZKTk8uYMeM45pjjmj3nwIGD8Pl8/PnPj7FtWwmBQIABAwZy//2/58ADJwCgaRonnngSH3/8AYccMqnVa/z226/p3r0HY8aMa58XLToVCZdCiDZpvA2JZ+VywF5vCfFgp/t9lA/qRfc1RShbt7iPb9Dje1cmhsvEymVFqAKAzbWbKMv7EXPtCEq2hikvjQdQgPRYW2yTNZfEw2Vub1AVMC0YOCzAfgfFN27WCgs57Y5nUE0TLruQim9/wBg2HEje6zI9PR2QNZdCCCH2rDPOOIczzjjH/fzAAyfwzTc/NHvsL395Db/85TUtnsvr9XLFFVdzxRVX79Bz9+nTl1tvvWu7x5199gX8/OfnUFq6zd3S5L///V+T415//RV+/vPLd+i5RdcjbbFCiBYFo0FqI80v0HcClhMuNSdcDuoFJFcNiwvsdZf+BQvd2xLvT5Q4ObYyFi5XV64ilL6FkFbJtq0RyrdFkh4Tr1w602KbVi5NovTo7SMlReXEs/NR1fggg9x/v2oHyxj/f191P/aoseBq6fj8CppHkcqlEEII0Uh+fj633HIXJSXFLR5TU1PN5MlHMG1a81VS0fVJuBRCtOi91e/x/rrmN5eO73EZq1wut8Nl2UA7XCYO5nHCZcqihWxP47ZYy7IwLJ2MLA1dibB1c7xy6Qy6i0+LtZ/TCYSJ4TJsRhh/WBZTp+eRnpHwo8+yyH37XUxVYfaLjwPgf3ume7ezZ2bUiKAoCmnpGsGggWkmT+MTQggh9nVTphzVartrZmYWF1zw8yaTasXeQ8KlEKJFwWgwqX016T63Ldb+MaKtXglA+cAeTY51JsYGFi/Z7nOGEyqXUTNKXbQW0zLJyvGCL0Lh2gaqKqJk5XjoPzgFFOz7aH3NZVgPoaCgqkrS7eqmjfhKtrFtaF9qDhyHPnIUnnVrUYu3AuBVk1tuU9M1sKAhKNVLIYQQQohEEi6FEC1yJr4218IabNwWu34dpqZR3SuvybFlA3ti+rykLF4CVusVv6iZ3PIa1BswLBNNU+jWVyEcMrEsyOvm5bQLenDhFb3JyYuFS3darB0uE6fFJq7rtIhfg3fu9wBsGT0ITdGIjj8IAM/8n2Ln8sauy66WpqXJXpdCCNHVxAtl0nUiROvsfyNtLS5LuBRCtMipBDYbLmOVy7R0Derr0UqKqe2Vj6VpbiBzmF4PDSMK8FRVk1lc0epzRozkYT2mabght8eA+E+6vO4+snO9DB0Z3/TZuV5vc22xCRVR02omXI4ZhKqo6AeMB8ATG8nuaRQuZa9LIYToelRVAxQikfB2jxViX2b/G1Fi/2Z2nkyLFUI0y7IsN5wZloGn0Y+LxGmx2obVAFT37QaApmpuGHPUjxlF2qIl9Fy5kZpmqpsOZ6CPR/WgmzqGZWDGQmN+H9gYOy6vm7fJY3VTR1XU+JrLhL9QR5LCZTx0eufNBexwOVzRiMbCpTcWLp2grDuVy3SpXAohRFejKAppaZnU1Nh/4PT5/MCurvtT0HWphIrdZU+/vywikTA1NRWkpWW2eV2shEshRLMSB/K0VrlMTdfQflwHQFXvbiiKgqo0bYqoGzOS7kCPVZtYdeQBLT6vsxWJV/Wim7obMAHSckxS0zWCdQZ53XzNXrOmaCix52880MfhtMsqtTVoy5cS6tmD2u45qIqKMWwIlqahrVrpXgfE22qlcimEEF1TenoWQCxg7vov7aqqYprNTz4XYld1zPvL/iOM82+lLSRcCiGataPhMiVVQ1sfC5d98tEUrcVwCdBj5Sb3NlVRm5zbCXF+zU+D3oCJ6V5LxIwwbnwG8+fU0Lu/v+k1mwZezes+f+OBPg5nzaXnxx9QTJPqA8a414PfjzFoMJ41q1Fqqt3hQM5AH6lcCiFE16QoChkZ2aSnZ2GaxvZGALRKVRVyclKprAzK9HDR7jri/aUodvv4rk7ylXAphGiWs84RkgfjOIJ1JoEUFU1T0DY4lct8VEVFaabVqHbwAAy/3w6XlgWK4gbIRE4g9Gl+9zqcawnrIU45NZ9pp+SjacnPYW9ZYhBQAk3CpWVZzbbFOustq2LhUlNi+2UOH4FnzWq0VSvxjBoIxCuqzgAjJ1wLIYToWhRFQdN27VdgVVXw+Xx4PBEJl6LddeX31z4x0KehoYGjjjqKP/zhDx19KUJ0GYalux83ri7qukkkbMYnxW5YD0BF71y7LbWZcGl6VOpGDidQ30D2ljIAAp5Ai8/v0+LbizjPHzJCqKrSJFg6x4G9VlON/WizLJNvi77mlRX/oj5a3+T1eOfOsa97nF1VVWN/rdMLCuxzrVyBT9ZcCiGEEELskH0iXD799NOMG9fyhq5CiKYSA2XjcBmstz9P3IbEUhSqeubiUT3NtlSYlkntaDu0Oa2xfq1pa6sjqXLptMUakWZbdCHetqopnqTK5dqqNeimTk2kJvn1GAaeH+dhpaZRUzAYANWpXA4dbp9r7Ro8mrPmUqbFCiGEEEK0Zq8Plxs2bGDdunVMmTKloy9FiC7FCWsARpNwGR/mQyiEWrQZo08fDJ8HvxZods2laZnUxMJlz5X2zFe/1krlUvXHHme0uKVI0vXGKq2aGl/zadJ8EDUtE23ZUtT6OqLjJ6Crdhh2HmcMHGSfa8N6fLE9M539N6VyKYQQQgjRvE4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6/5FHHuGmm27aU5csxF4jFG65Ldap2qWmqWgbC1Esi/CAAQAEPM2Pdzctg5rRdkWw+6pNsWNTWnx+py02kjDlFZIH8ySdP7Yu06PYi9EVRWmxymli4p1nt8RGD5rohlB3zeXAWCVzw3p3WqyztUogRUVRZc2lEEIIIURjnTpcBoNBCgoK+N3vftfs/e+99x4PPfQQ11xzDTNnzqSgoIDLL7+cigp7D6NPPvmEgQMHMmjQoD152UJ0eRvXNfDHe9ayfnUd0LQCGA+X8UmxoQF9Absa2eyaS8ukdmBfogEfPVZtAtMksANtsVEjeb/M7Vcu7SENKk0n0bosyx3mE514iDuwyKlcWvn5mGnpaBvWo2Cv43Sm2CqKgs+nEo10rQX2QgghhBC7W6eeFjtlypRW21mff/55zjnnHM444wwA7rnnHr744gtmzpzJjBkzWLhwIe+99x4ffvgh9fX16LpOZmYmV1xxRZuuR1V3dbPd9uVcT2e7LtH1bS4MYSoGa1bW071PNs5+YME6A49XoSFoh7G0dA+eNXa4bOjfB0WBFG+A2qhKk2WXioWlKZQM60vfxevILSol0DfgHudVvW51EOwKqKKAbkWTzhWxwknvecuyWFGxHJ/mQ1HAq3nsoT+qClioqoLVaN68pVh4583BUhTMgyZi1i5CUcATeywomIMG4VmyGK2yHJ/HR1gPuc/r9Sk01Bvyb28XyM8vsbvJe0zsTvL+ErtTV35/depw2ZpIJMLSpUu56qqr3NtUVWXSpEksWLAAgJtvvpmbb74ZgDfffJN169a1OVh6PCp5eem7fN27Q05OWkdfgtjL6JEqLEzKSsJoigfQePrRTRQXhVAU6DvAbmft3jOVtK/tFldrxEDS0/10z80hpNXSoNrrKT2qB93UycgMYFkWlWMG0XfxOgYUFtPthCyy69PRTZ10Xzp1kTr3Gnrk55BeHSCQppFuxNdmpqRrSf8W11euZ1ntAgDS0wPkZmeQl5dOZkYquqnjtZr+YM4L1qBt2ghjxpA7uC8Z61aSrgfIz8sgLy127uHDYMlicitLyMvKpCpkkp2TgqZqBAIadTUG2VlpaJ6u94O/M5GfX2J3k/eY2J3k/SV2p674/uqy4bKyshLDMMjPz0+6PS8vj8LCwnZ/Pl03qalp2P6Be5C9wWoalZX1XW4PHNG5lZY0YCkGFrB0YRWr/7sGszSfzCwPNdU6mzbY/xYsdCLLV+IDtuRkUVdXRajOoLYuRF29vTbSr/kJG2Eq/XVYWFQO7s1YIHvBGupqIoSCOiE9hDeQSl0ovp6yrjpKXV2IcqvGPRdAcXkF3dV4CC2uKKeuLn5/vS9CeXkdwfpIkz00HcaC2QCEDjyI+vI6KqvrqKsLUVUZRAvZ507t3Y8UoHbBUkIHplDXEGJraQUpnhRULfbcxTUEUrRd/Grvm+Tnl9jd5D0mdid5f4ndqbO+vzIzU/B6W/+9p8uGy5ZYltXsNginn376Lp+7M31zE5mm1WmvTXRNNdU6Vmyd5cql9fSrj3DIfumccm53Hv3tegzdfr8FUlW0dWsBqOyZixWswqv6USwFpxNVVTQsC3TTxLJMto0aCEDvxesp11JRULEs8Che9zGaoqFiPy6iR0jsam2INiS9372qP+l+BTV2f/wacgI5dEvtgWkarKlaTfpP9uCvyEEHY5oWhmlgWaBYqntufYC9Vltdvw7P+P3da/GrATxe+2dMOGzi83fqpeudnvz8ErubvMfE7iTvL7E7dcX3V5f9rSgnJwdN0ygrK0u6vaKiokk1Uwixc2qrdUzFxOezQ9R+E9M54+KeBFI0BgyOt6im+kzUzZswevWmIXasX/MnDfRxJrBalolpmVT3yiPavRs91m6hu5mKR7H/xuXTfPHHJGwn4gzSce53Pm+Jc77E7VACWoBDeh1KTiAXgMz5CwGIHnQwEJ+Gm/gYdzuS9evwqMl7XXq99nF6tGv9wBdCCCGE2J26bLj0+XyMHj2a7777zr3NNE1mz57N/vvv33EXJkQXZ1kWtTU6/oDFEdO6MXFyFocfl42mKRimQeaQKkzsabGZFZtRDANj8BB3ixC/5k/qHvDEprcazn6VikLwoAkohoH3px/QYj2m/oTJsZqi4Ynd7oTJdG8GALWR2qTrbTwR1pMwLdY9nxoPnJ5QhPTlqzDzu2EOGhy7tli4VOOtHkl7XWrJe116Y0E6GmlhGq0QQgghxD6oU4fL+vp6li9fzvLlywHYvHkzy5cvp7S0FIBLL72UV199lZkzZ7J27VruvvtuQqEQp512WkdethBdWjhsEo1YBDKge88APfv4MU07RK2vXsfmjNlU+QpRFEjdsh7ADpexENh4KxI1Vrk0Y5VLgIaDDgLAO2d2bGAQeNV45dKjetyKpzNBNieQg1f1UhmqSJr+alrJ+006z5dYhfQkhMueKzai6oZdtYyFYLdymfAj0ezTF8vjQduw3r0251q8Pvu4qFQuhRBCCCFcnXrN5ZIlS7j44ovdz++//34Arr32Wq677jpOPPFEKioqeOKJJygtLWXkyJE8++yz5ObmdtQlC9Hl1VbbYS0lLR4QnfAV1OvJyNLI6BmmjxLAu8Feb2kMGkLYsCuXAU8ApZlglxguQ264/B7PWfsD4NO8SY9xQqJDUzRyArlsC5ZQE6kmy58dO29ywHOeL+ka3FZZhb6L7GuOHnyoe79hGrH7E/7e5vFg9OuPZ/06AiE7VEZjAdrrlcqlEEIIIURjnTpcHnzwwaxcubLVYy688EIuvPDCPXRFQuz96mp0AFISdt4xY8N9IkYEBYWjT0/nyP590W6PhcvBQwgb1XhVL6qiNlpzaQc207IH+gBER47CTEvH+8NcPMYvAfAltMWqiua2yybelhvIY1uwhPJQuRsujUaVS6edNjEoagmBs++iNfY1TDrMvd8ZXqQ1CrRm/wGwfh3pxWWQCVHT/tq44VIql0IIIYQQrk7dFiuE2PNqq+0AFUjYWsmpOOqxcBW2GlBVxZ0UGx00iIgRcdcmJq65dNperYTKpebzox98CEqwnm7L7NZav9Z8W6x7HlUlPyUPgIqGcvd2p+roaL4t1r5Nixr0XroBPS0Vfcy4Jq8vqXIJGLGJsRlFdit+xF1zGWuLjUi4FEIIIYRwSLgUQiSprbHDWnPh0glXwWg9YE9StRSFYL/egL3eEkiuXMaCnWEZ7uAcRVGJHHEUAL3mLQaS11xqito0XMYqlwAVoXi4dKqqjsT1le5tsYCbtnQ53lCEiv1Hg8e+bXn5MuoidU0eA2AMGAhA6pZiIKEt1hnoE5W2WCGEEEIIh4RLIUQSt3KZGg+IbjtrLFw16A1YoRDq5k2YffoSibWJBjx2a2tzwc60rKTBOZEpdrjsOcfeczLVm+Y+TlM8KIqS3NqqaGT5s/GoHioShvqYjSqXTihVkwKufQ2Z834CoHz8WACKajczr3gOJibjuu3XZI9cY8AA+9o2b7Vfv9sWK5VLIYQQQojGOvWaSyHEnlcbW3PpS43f5qxrjMSmpZqWSXTdChTTxBg0hJARBhIqlwkhzdneI3Ggj6qoGKNGY3brTvai5ZyYfwT5KfloioZpmW610/ncfoyGoijkBHIpDW6jLlpLhi+zyVYkWnOVy9htGXN+AKB8/BjygepINQD7dz+QsfnjaMyMVS4Dm7YAsLFmA5tqC8lQJwAy0EcIIYQQIpFULoUQSeqcttiEcGk2qlwCWGtWAGAMGuzucekM5Ulsi/UkbEXiDM5RFRUUhcgRR6IYBr0XrIrfTuJ01/iPKOfjVI99YSHdDrRNBvooLUyLDYdJm/cjkRQ/laOGxs7RAECaJ5XmGP3tyqVvcxFgV2yD0SCbDHvQmC4DfYQQQgghXBIuhRCuhqDBtuIwKOBLid/uhstY5RLAWmMHQntSrB30AlrTtlinTdUiYaBP7DanNdb36UdJj3OqnYkTY53qo1f1xq4lEru2xluRNDctVrP31AwG2XjgcAyPfUy4UcW1MSs7BzMzC9/GjZDwPDn+HPsaJFwKIYQQQrgkXAohXO+9UUpDvcm48RkoWrzl0wlwieHSsz5xG5JYSPM0Hejjie1fqZu6W2V0gl/kmOOwVBXfh++DGW+HdaqdiUN91FirrVdzwqXToptcufQ1E3A9qgffZ58AsH7iCDfkNsQqlwFPCs1SFIwBA1EbGkipqnNvjq+5lLZYIYQQQgiHhEshBACF6xpY/GMtGVkeTji9W1K7qYmJZVlEEtpifRs2AE64dNpiYxNfk7Yi0VAVFd3UMS0TRVHcNZlWfj7RiYegbd2CZ+F8N0w6VcrkcGl/7FQu9Vi4dK7zsD6TmTbgOFJiQbHxUCHfZx8DsGHiSDdcxkNxfI/NxsxYa2z21viEWi22Wl0G+gghhBBCxEm4FEIAUFZiB8fxh2aSkqolTWG1LDOpagmQUrgZS1UxBgwkrDttsXblUk340aKg4FE9brhUG/3YiZxwEgC+92e5AdKd+JoQLuPB0w6XESM+XAgg3ZdJr/Te7vGJz+Mv3oZnxXLCQ4ZQ0zPPfYyz5jJFa6FySXw7kqwtZfFrccKlbEUihBBCCOGScCmEACAcsoNSIMX+sWBYiW2x8XDp1/x4whFSi0sx+/YDv7/J2sXEHT1URcWreoma0aRJsO7zHn+i/dj3/tckVCYe69zni+2H2bhy2XhfzMTKZfannwMQPOpIAHewUNgI41W9Ta4pkTPUZ1i1x63Mah5nn0upXAohhBBCOCRcCiGAeLj0B+wfC3psT0eIhctYS2x2IMet4hmDBtuPbdRemrjm0qlcAkSMSNJ9AOagweijxuBZtZLctZuBxLbY5KE8AJ5Y2TBqJlcuE4+F5GmxmbPeB6B++nQArNiemxEjQsDT/DAfhzFwIAD9KnQO6jnRfi5PbA2qrLkUQgghhHBJuBRCAPFw6fM7lct4W6xhGe4elymeFLpvstcf6sOG24+Nrbn0q7FwmVC6VBTFbWWF5IqiI3TmOQAM/eAbID7xtbk1l07lMtJooE/j8zoDgNLKqwnMmYPRuw/hA8fHHmO6w3xamhTrMPsPtK9lY6EbWFUnXErlUgghhBDCJeFSCAFAJJxcuUycwppYufSqXvIKSwAwhhUAENJDaIrmTnJNXO+oKgreWCXS/rzpj53wmWdjqSoD3/8axTDdINncmsvGA30ab2/S+HmGfbUQxbIIn3wqaqzqaWK5gTjQyjAfAKNvPyxFQSvc4FZdZaCPEEIIIURTEi6FEEDTtlijhYE+XtVLrhMuC0YAEDEj8UmxNKpcsv3KpdmzF9EjjiSlrJL+P65022I9CaHUaXt1zhU1nDWXZuw5G1UuYz/eRnz6k/36TjnNPca0TEJ6LFy2MszHPiCA2as3atFmND1WJY3lWF0G+gghhBBCuCRcCiGAhHDZTFts4kAfn+Yjt3ArAJEhQ4kYESzLSlq7mLSuUlHcaiM0rTA6QuecD8B+736XMNin6ZpLn7vPpV1JdUJwc5XLvPVb6bN0PcbAQejjD3LPZ1kWIaeVdzuVS7CH+iimiW+LHapVqVwKIYQQQjQh4VIIAUA4oS3WGXjjMInvcem1NLI2FtOQmUo0Lye+3lKLh7TEyqWKmhQuG1cY3ec/6VQi+bkM+XYx+SU1AGgJlUulceUyNnDImfzadM2lyrh3vwOg4eLLQFXd0GtaZsL2KdupXAJmbDuSlM1F9rWoJooqW5EIIYQQQiSScCmEAJLbYp2qpRMK7cqlHS4zikvxRKJU9O+BgUlIT96GBJIDpD3Qp/U1l/YJ/EQv/SWqaZHz4j+BRtNiW1hz2VLl0hPWGfXRPAyvh9C5FyQ9t4Xp7nG5vTWXEN+OxL+pyL3N61WlcimEEEIIkUDCpRACSJ4W64RLZx2lYRpEYmscM9bZ24WUD+iJYRnNVy5b2IoEWm6LBWj4+Qwsn4/Av15EqaxIOtb52KN6UBTFraQaLUyL7fXWewTqGlh3xIFY+flJx5iW6W6fsiOVSyNWuXTCpYWF16fItFghhBBCiAQSLoUQgD0t1utTUFXFrQY6018t4pXLtHWFAJQP6IFpGkScPS5bCJeqojYa6JO8z2Uiq3t3QudfhFpXS+pf/txsuAS7eunsw2laJqqiJrXiEg7T75mXAFhy4YlJ1+I8xt2KZDv7XAIYAwYB4Nu0yX2816tg6BamKQFTCCGEEAIkXAohsAfchENmk21IEttinUphytp1AFTEKpchJ1wmhLTEKqJC8kCfFttiY4I33YKVkkLKs08TKK90b3cG+jjXFTWj7trQxucMvPoyga0lrJ00hqoRQ5s8d1LlcgfCpTnAbov1xdZcmpaJ12efS6qXQgghhBA2CZdCCPSohWk2nRTrVC5Ny3TXOAbW2OGyvH8PDMskrDttsS1sRbID+1wmMnv2omHGL1EaGhj26FPNPsZp142a0SbhUqmpJvUPDwMw++Ljklpyneuxw6WzFckOhMvuPbACAXwb7cqlhYXXa7/GaESG+gghhBBCgIRLIQTJk2KBZgf6RMwoWBa+NWvQUwLUds+211zG2mWTBvq00har7MCPneCNN2P06k2Pdz9i8OwlTYf1uBNjoxiWkXR/2oP3opUUU3raSZQU9MejNtqiBBULi6gZbTJsqEWqitGvP56qKnx1DViW5VYudalcCiGEEEIAEi6FECRPigUwTPtzTdVQFdWeFmtESC+rRq2tpW5gX1BVTNNIqFy23BabNNBHbXmgj8PKzKLu0T8BMO0Pr5FRVp10v1MJjRqRpMql9+svCTz/LGZODptvvdl+PiU5PDqvRzd1PMoOBMsYZ6hPVnG5u+YSZK9LIYQQQgiHhEshRNKkWIivufSoHjeMRcwI+Ru3AVA32F6DmDgtNnFLj8TKJYqCV423zG6vLdYROfYEtp19GukVNUy/42mor3fvc87nVE01RUNdv47Myy9GsSzqHnwUMzYhtrm2WMuyMExjh4Kuw9nrMmtLORYWHl8sXMpel0IIIYQQgIRLIfZplmVRUl9MfTDW2tqoLVZT7MqlhYVu6nTbWApAfVK4tAfj+BKnxSZkSxU1qTVV3YkfO5vuvovN44bQfWUh2WedilJWBsTbdZ2qae6GrWSfeQpqZSXBq64jfMbZbohtEi5RMCwDwzJ2rCU2xug/ELArl5Zl4vXGBvpI5VIIIYQQApBwKcQ+bW3VGj7c8D6zS74E4uHS2ebDaYvVTR3d1Om+bisA9QVDgHi4VBQFX0J1MmmfS6XRtNidqBaq/gBv3zuDbaOH4P1hLjlHT8b/6sv4wnb4jdZWMeHVTzn5ivvQNm0kdMbZ1P/uXgC6pXanb0ZfBmUNTj5nrBILJF3X9jhtsdmxyqXXJwN9hBBCCCES7fif7YUQe53ioB0WN9dtAka402Kd8KUpGkpCGMtbuxmA4IjhwBZM096ixKf6Gk2IbbzmMiFc7sTftDyqh1BWGh/85U7OfuojAq+/Sub1V3Gcx8Ok/EwyymtRo1FMVaH+plsI3nqnWzb1a36m9p/W5JyJbbmN12O2xg2XRWWxNZeyFYkQQgghRCKpXAqxD3OmrDoTT+NtsQmVy9iPCcUwyFm3GTMrm0ivnvbjLLui6WxZ4kieFtt4n0uFHeWG1NQUav/6/6h892PCJ/8MPTOdrOIKoulpLJ12EO+++hjB2+5K7sdtQWK4bDxJtjXGILsCml1UigXxyqWsuRRCCCGEAKRyKcQ+pWhjiM0bQow+IJ30DA+qEy51C5V4uIwY9p6WPs3nhrGczaV4wlEi48e4lchIbL1l46mrSVVMFDRVcwfp7OhAn8TzarHH6BMPpmbiwawsX87com8ZnFfA2qo19E7vvcPnTA6XO/EjMDUVvXdvsrZuhXDYrfKGghIuhRBCCCFAwqUQ+5T3/ruNoo1hPnq7jOlndcMzSCMSMdGjFj7i02LjE2AD7kTVbmu3AKCPHuNWPEN6LFyqLVcunaDpVb1EjEiTPStb41QWG4dAr8eHpWnude5MYE28tp1piwWIDh6CZ8sW0jcXk9Pdfs2lJZGdOocQQgghxN5KwqUQ+5DqKh1FAQuLd1/fRvrYKmavtyewjiZeuQzFKpIBT8Bti+22tggAY/RYNDVW4TSdcJkcGBvvc2kf4yFiRHYqCGb5s9m/+wH0TEuuTDpttk64VXcisCptrVwCxpAh8M3XZBRuofsYezrutq0SLoUQQgghQNZcCrHPME2L+jqD9EwPx5/WDdOAtctDScc44dLZ4iPgCbhrJBMrl06Yc45rbrsPhxMmnUCo7ES4BBjXbX+6p3ZPus3diqQNlcukgT47GS71wfaU3MxNW8nJ96JpCtuKw1iWDPURQgghhJBwKcQ+oiFoYJmQnqFx0GFZHHpUNv0GpJGaFv8x4IbLhLZYJwx2W1uEparoBSPd1tawYVftmrTFJg7WiX2suesnd7zK2BKfZm97EoqF2505Z2K49O505XIYAJkbt6JpCvk9vDTUm9TVGjt1HiGEEEKIvZGESyH2EXU1dgBKz7SH6xx3ajd+dm4vevUNuMf43TWXCW2xikqgup6MsmoaBg2AQCAhXMYql43WLjbXFuuLTZTdmSpjS3ya3ZIaNaM7fc6kgT47uebSGDIUgMyNxQB072VfR2mxtMYKIYQQQki4FGIfUVdrby+Slh4PVJqi0aOPz/3cqVw26A2oiupOi3XWW9r7W+IO+XFCaOP20qSBPglrLqF9wmVACyR9vlNrLhM+3tm2WKv/QAxNJWuTEy7tr922reGdOo8QQgghxN5IwqUQ+windTM9Mx7ELMsiNy/e0upPiVcu/R47wGmKRrd19nrLyKiRQDzMRWJtsU3aS5Wmay6d1tmd2eeyJR7Vk7TOU2tr5XInw6Xi8VLdO5/UihqU2pqEcCmVSyGEEEIICZdC7CPcttiMeKCysFAUhUOPzOaMi3ri86lEjAiWZbnVwcTKZWTUGKDpGsfGIU1N+NGSuBWJ/Xn7/Njxx1pjnWvcUbvSFqsoCpX97OFC2rq1dO8pE2OFEEIIIRwSLoXYRzhtsekZTVtI87v7GDs+A4ivo3TCm6qo9Fi5CQB93DigaaWw8X6RiQN9nLZY53w+1Ud78Ce0xu7MQB+FtlcuASr7xsLl2jVk5XjweBXKSyVcCiGEEELIPpdC7CPqm2uLJb6Fhm7qeFQPDQnbkAB4QhHyCoup6Z6N1qMPEF9z6fA2nhbbzFYkI3JHkeZNp1ejPSvbKuBph8plG8JlVb94uFRVhaxsD+WlUSJhE59f/l4nhBBCiH2X/CYkxD6iriY20CexLTZhf0bDssNn48plzvJ1qKZFcUF/vLEtQBoP0PE0CptJO5HEgmaqN5WC3BFNgmlb+ZLaYtu2FUlbwmV1v56AHS4BsnLsc1RX6jt9LiGEEEKIvYmESyH2Ee5An2baYsGuXAKEdXvyqdN2mrt0NQAlBf3dCmXTNZfJlcvm1ly2t8S22J2pXCZeT+N23h1R3b+H/dh1sXCZa7/26sroTp9LCCGEEGJvIuFSiH1EXa2BpikEUuL/7BPbYo1YuAzFKpcpnhQAsmPhsnTkIDfEbW+gj9LMtNj2FkioXO7Mmks1ac3lzldRg3nZRFL8aKtXg2WRlR2rXFZJ5VIIIYQQ+zYJl0LsAwzDIlhvkJ6pJQW/xLZY3YpVLp222NiaxuylqwCoGDnEPbZxa2tL+1zurqqlfX0JA33UPbfmUlFVygf2RK2vQy3aTFaOXbmsqpDKpRBCCCH2bRIuhdgHBOsMsCCcuZX5JT82e4xuGoSNsNsWG9ACUFFB2qYtVPTtBtnZ7rGqoiYFx8b7XDr3JQ72aW+JW5HszPYmice2pS1WVVTKB9jrLj0rl8uaSyGEEEKIGAmXQnQRpmXyaeFHrKlcvdOPdbYhqUpdzeKyRQSjQSC5Lba4fguvrfg3a6rs8/s1P/zwA+Cst0zeQiSxFbXxfpFOgNud4TLQ5q1I4tfUpsolCuUDY0N9VqwgO1fCpRBCCCEESLgUosuoCldSVFfE+uq1O/W4TRsaePuVbQAE0k0Aoqa9L2NiuCypL056nN8TgHnzACge0R+f1mhoT1J7afNbkezOtlhfW9dcKrsWLlVFpcwJl6tWkOmsuZSBPkIIIYTYx8k+l0J0ERHDDoSGZe7Q8dGoyV9f+I7SZRl4rVT6Dw7gH5OKQZBw7FyJnEE+joCWEC4L+jcJkEmVyxbWXO6uYT4QXxO6s8/jHKsqapuuL7Fy6Vm5HI9HJT1To6ZKxzQtVHX3BWohhBBCiM5MKpdCdBFhw14L6exHuT1zFxby7eZvCeav4ZRzu3PJtX3xBmKVSydcJgz0qY/WA9Avoz8H9zoUTVFh7lwsTWPbsL74GrfFqi2Hy90ZKh2BNm5F4hzblqql8/ja7jmYaWloK1faE2NzvJgm1NXs2PdGCCGEEGJvJOFSiC7CqVyaOxgutxbXAlBwgJcDD8lCVRXMWNUz0kxbrHP+kXmjKMgdgbqxELZupa5gKHrAh1drvnLZXAVwTwz08ageNyCqO9UWu2vhUlEUUBT04QX2xNjNmxKG+khrrBBCCCH2XRIuhegi3LZY0w6X4bDJtq1hqhoFGsOwA+O2bXaba1pOwnYjsb0snXMlbkXicKaweuZ8D0Dd+P0BmlQunUDXXEjbE22xEL/WnRro44TLNkyKBVBiPzYjwwvs86xa4YbLKhnqI4QQQoh9mKy5FKKLiCS0xS6YW8Os/24jGrFQVbjhdwPZvCHE5++VU1Ya5agT8iiLhcvULLtaaVlWk8plc5xBOd65drhUJh1BXko2vdP7Jh2ntRIunVC5Owf6APi1APXR+qQhPdvjBN/Ge3Pu8ONjzxUtsMOltmIFmaMPAqC2WsKlEEIIIfZdEi6F6CLCsUC4Ymkti78sQVEhI0ujttqgdGuE77+somybXcX84dtqKkJhAjkKitcOPIlrNZ01l4ltsQ5nLaNnzmwA/JOPYXqPXk2Oc9ZcNlcBdKfF7sa2WIA0bxoVofKkybHb0x5rLgEiw4bZ51m5nMChBlXeQqoqM9p0TiGEEEKIvYG0xQrRRUSMMIZhsWJpDaoKP7+6D+MPzQKgukqnulJHUaBXPz+11TqmZZKR5XVbYJ2WWICIaYfQxm2xHtWDpmoo1VVoK5bDgAGYvXo3ez2aG9K8Te5zqns7067aFgf1Opij+08jzZu2w49xwqG3rZXLWGAOF9jhUlu5nDJ1PUWpP1JYtbFN5xRCCCGE2BtI5VKILiJihNmyMUQkYjByv3QGDk2lstwOjBVlUWqrdTKyPIwcl87WTWFMDDKyNKKxILkjlUtnDaP3h7kolgWTJ7d4Pa2tuVQVlQN6jCfNk7oLr3j70r3ppHvTd+oxauxvalob11w6Lbh6r16Yael4Vq7El2J/batqG9p0TiGEEEKIvYFULoXoIsJGhPVrGjAVg4MmZwO4g2Q2rW/AsiA710PBaLuKZykGmVkeLMsiakSTpsw66zcbc9pLPbH1lhx2WIvXE19z2Xx1cmz+OAZnD93xF7iHOFXVNk+LjVUuLcAoKEAJ1pNXUwZAXb1MixVCCCHEvkvCpRBdgK6bzP66lOpKnYwsjX6D7MmtTrgs2hiOfe6ley8f2bkeLEwysuz7I2ak+bbYJpVL+7ze2KTY1iqX7prLZtpiOzN1V8Ol4oRLC330WACy1qzB51eor9WbncArhBBCCLEvkHApRBfw6axy1qypxh9Q2H9ipjv1NTPbDkiGbgearBwPiqJwwhndGDshjazY/VEjgm420xZrNQ6XAYhG8c7/ETMzC0aPbvGaWpsW25k5W5G0vS3WfrxpmW64zFixhpQUDd0wCdab7XOhQgghhBBdzF4dLsPhMGeeeSannHIKJ510Eq+//npHX5IQbbJ6aT2mGuGwqblk53jd9ZNer0paerwtNTvHriIWjE5n/OQMt8oWMRu1xbawFYnfE8Cz4CeUhgb0iQeD2vKPiPiay65Vucz2Z+NRPeSn5LXp8c4+l6YVr1xmrFqLP0UFxZTtSIQQQgixz+paJYed5PP5ePHFF0lLSyMYDHLyySdz3HHHkZmZ2dGXJsQOq6/TKdkWJLWP5gbJxOE8WTke6uvsz7Ny4/+kzUYDfBL3nIy0NNBH9eH75jP7MZOPwNfKdbnTYnfzRNj2lhvI49wRF7gVyJ3lfB2Dej0Le5gcCWSuWEvgeJUQJjXVOj377PjWKEIIIYQQe4u9unKpKAppafZwk0gkYm8ib0rLmuhaNq0PYSpRcvObD47OukuIVy4hOYA2XnOpm/ZWJY2XB/o0P95vvgIgeviUVq+rq7bFAm0OlhAf6LO6chU/1q+kYUA/UouKybXCmEjlUgghhBD7rk4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6PxQKccopp3DkkUcyY8YMsrOz99DVC9E+Nq5rwFAi5HaL1xGNhPWTmdnxQJkYNJMG+BgRdCs59DjVy0QpBnjnfo+ZlY0xZmyr1+UM9NG6YLjcFU4wdb5+9SOGAzCobJu0xQohhBBin9apfysMBoMUFBRw+umnc9111zW5/7333uOhhx7innvuYb/99uPFF1/k8ssv54MPPiA3NxeAQCDAO++8Q0VFBddddx3HHXcc+fn5bboeVVW2f9Ae5FxPZ7su0b42rQ9hKFHyuvlwOlstxXS/79m5drhMTdMIpMRbVC1M93jdiuJBI6EzFoMoimol3Za3eCVKOEz06GmoXvvHQ0vvrzRfKooCad7Ufeo9qKn219FER1GgftRw8j/8lIElJXylWdTWGPvU16Ot5OeX2N3kPSZ2J3l/id2pK7+/OnW4nDJlClOmtNya9/zzz3POOedwxhlnAHDPPffwxRdfMHPmTGbMmJF0bG5uLiNGjGDevHmccMIJO30tHo9KXt7Obda+p+TkpHX0JYjdpKoywpZNYQIZJj16prrr/bKyU8hLt9+PfftHgVLyu/uT3qNpFT7SrQAAqRke0n0B0qsD7v3pWT4yoymkh+O39VxoV/59xx+LL/a+aun9lZ2zP32796B3Ru9dajPtarJrU0nXAwT8HtK1ABxoT9QdVFyC1cckFLQ67c+Kzkh+fondTd5jYneS95fYnbri+6tTh8vWRCIRli5dylVXXeXepqoqkyZNYsGCBQBUVFTg8XjIzMykrq6OuXPnctZZZ7Xp+XTdpKamoT0uvd2oqkJOThqVlfWYpuytt7cpK4nwwl83YxgW/Yd7qK8Pu/eVltfgCds/cAKp9jrinHyN8vI695jK6jrq6kP28RVVhHwmdXUh9/7i0kqqa4JJt3k++waAqgMPwaqs3+77K4VsKiuC7fSKu4aamgbq6kIYYZWGaIiS/oMYAHRfuxmrr8maFXW88vx6jpiWm1RJFsnk55fY3eQ9JnYneX+J3amzvr8yM1Pwelv/3abLhsvKykoMw2jS4pqXl0dhYSEA5eXl3HLLLRiGgWVZnHfeeYwYMaLNz9mZvrmJTNPqtNcm2u6rjyuoqdIZOz6DYUc3sKAsfp9hGu73vFtPHxdf3YfuvXxJ7wPdMNyBPWE9QoqmY1n2AB7d1AnrYUzTco/xNoTxz5+Pmd+N6LAC1Ni55P3VmIplgW7YX8+G7vmEszPJL9xKv74q4dUm33xSycol9Zx3eW9y87vWVi17mry/xO4m7zGxO8n7S+xOXfH91WXDZUssy3JbB4cNG8bMmTM7+IqEaJuqiigARx6fyyZrCwA+zWcP5zGTh8YMHp7a5PFGwgCfaMK02BRPCrWRWiJGxN2KJMOXweAFW1B0nfDhR5C0EFMkUWNz0KKm/f2xgOrhg+g+dyGnjG5gwHkDeff1baxZHmTmy8XMuKFfB16tEEIIIcSe02UXSuXk5KBpGmVlZUm3V1RUtHlgjxCdSU2VHQYzszyEY5NJUzwpAJiW3Qq7pa6I77d8536eKPG2iBF1tyYJxM4RMePTYg/pNYlJy2sAiB5+ZDu/kr2LO1QpVvK1sKgqGARA5vLVZOd6Of8XvUnL0CgqDBGO6Ly79h1eXfEynxZ+RNgIt3RqIYQQQogurcuGS5/Px+jRo/nuu+/c20zTZPbs2ey///4dd2FCtAPLsqip1klJVfH6VCKxQBJww6UdFD8p/IhVlSsprt/a5ByJ1c2oGUGPPcYJqFEj4gYkRVHwffYJAJGpx+ymV7V3cPa5dFhYVI4cAkDOsjWAvVaidz8/pglFRXVUhMqJGBGK6or4fsF6SoubbgMjhBBCCNHVdepwWV9fz/Lly1m+fDkAmzdvZvny5ZSWlgJw6aWX8uqrrzJz5kzWrl3L3XffTSgU4rTTTuvIyxZilzUETfSoRWa23bnuBEWfau91aTSqVDa316RhGUl7MpqmEy7tFtqIGW+L9W7ahGfNavSRozB799kNr2jv0WQyrmVRMWoYADnLVrs39+prT+Et2hwfBNYQNJj52maee2ITFWXR3X+xQgghhBB7UKdec7lkyRIuvvhi9/P7778fgGuvvZbrrruOE088kYqKCp544glKS0sZOXIkzz77rLvHpRBdVU11rCU2Fi6dSqVf8wN2cGy87rIx0zLxxEJnxIigx9ZgelXnnJYbLjO/tKfERqZOa8+XsVdqrnJZ17cHofQUsletpzIaBa+XXn3t79XWogaI/UiqqohiECUUNHn1uS384qZ+eL2d+m98QgghhBA7rFOHy4MPPpiVK1e2esyFF17IhRdeuIeuSIg9I3G9JeC2tHo1e/KoYRrURmrc461m1lwapoFX86IpGvXRejeMelX7HE6wBEj/8itAWmJ3ROPKpWXZX8mSgn4M+HEVnhXL0MfuR69+drjcuLaBpZvLyevuxetVMZUoHq/Ctq0RNqxuYNiorreHlRBCCCFEc+RP5kJ0Qm64jFUuDTO5cmlaBrWRWvf45gb6GJaBpmj4NLuVNqTb+1m6LbSWhWVZaBGdtO++x0pNIzrxkN3zgvYiitK0cmlhUVzQHwDP/J8AyMr2kJKmUl4epq7WYNO6EOXbIhiKzvDRdqB0JgILIYQQQuwNJFwK0Qk1CZduS6uz5rL1cOmEUTtc2oE0qNcD4FHsczqhqM/itWjBIJEjpoDfv7te0l5DaaZyCRbFI2LhcuH82HEKvWPrLu3joLJCB0+UYSPtda/Vla23NgshhBBCdCUSLoXohGpjay4zspIrlz6nLdZKbos1LZNVFSv5YP17GKbhbjuiqZo7HTYYDQLg0eLd8JZlMWiuPTArcpS0xO6I5tZcWpZF8YgBQLxyCTBkRCqoJn0H+NFMO7hn5Svk5Nt/JKiqlMqlEEIIIfYenXrNpRD7qsaVS71x5dI0qYlUu8eblsnG2g1sC5ZQE6nGr9kVM03xENBSks7tVC5NywTLYvB3SwCIHHPsbnxFe48may5j/1eXn0UwL4uU5UuhoQFSUjj0yGwG7NefDzZmULYhhE6YrG6QnWN/D6RyKYQQQoi9iVQuheiEGk+LNUwDj+pBUzSgmTWXmO72JKZludNlNVUjxdsoXCZsW5K+YRO5m0sJjR6N2a//7ntBe5EmlcvY2lUUhdIRg1AMA8+SRfaxioIvoOD1qvTumQFAVr5FRpYHRZFwKYQQQoi9i4RLITqhmiodn18lELDDpDOcR1PtzyNmhPpovXu8ZZnuukvDSmiLVVRSPcnh0hnoY2HR+4s5ANQeK1uQ7KiWKpcAJSPt1ljvgp+S7gcYP6Ebffr76d5PQ9MUMrI81FbrFNeW8P3W2W7rsxBCCCFEVyXhUohOJhwyCYdMt2oJsXCpaqixymV1uDrpMaZlueHEskw3XKqKltQW61E9buXNsiz6fDEXgHoJlzusaeUy/nHJiIEAeH78IeF+O/T37pPGhENzQLOrldm5HiwLftq0mFUVKygLle3eCxdCCCGE2M0kXArRyTQE7WCYmmb/8zQt094yRNHcttj6aF3SY0zLxCKhcmnaH2tKclusqqhuOPKXlpO3ZBXVPXIJjxq5e1/UXqS5yqUZS5hbRtqtxd4f5ibdD6Ci4lW9RE17iE9Wjj2cqaLarkAbprTICiGEEKJrk3ApRCcTjdhhxOuz/3nqsdBhr7m0b4sYkaTHmI3aYhPXXDauXDp6fmUHoLWTxjTZXkO0rNE2l254BAinp6CPGIm2sRC1eCsQ3yZGURR8mg/d1DEtk6zYUJ/KmmDScTtjcdki3lv3bpseK4QQQgjR3uQ3SiE6mWjUDgpen51inHCpKR53zaUj4LGnwiaGSzOhLVZT7K1IlFgi0hTN/dhZb7lm8tgmrZ6iZU2CuGUlfe2jBx0MgGfeXPc253HOtN+IEXHDZXVdKOm4nbGpZiNlDaUEE9bfCiGEEEJ0FAmXQnQy0Wiscul12mLjVcjGwSbFk2ofQ3LlMjGQKoqCX7P3WHTWXPrrgnSfs5BwVjpF44a4gVNsX3P7XDpM4uHSO29O0v0qqrtPadSMkB1ri62ps4NhW8KlEduixvljghBCCCFER5JwKUQnE43EKpdeO8Q4wcGjaO4elQ5nEmziEJ/EjzXV/ifuhFBV0VAUGPLNEjRdZ9ORB2N6kquhonVN1lwmVC4ty2oSLuOVSxIql1GycjyYGNTURmLH7XxAdP6IIG2xQgghhOgMJFwK0ck0XXMZn/zaONi4lcvENZemGa92xgYApcTaZ53KZcEX8wHYNO1QoGk1TrSstcolQHTgQMy8PDyLFkBDg70HJnYo9Wl2uIyaEfK6+/BnGlSURgk1GO5QoJ3hDAdqy2OFEEIIIdqbhEshOhndbYuNrbm0Egf6JFcZU2KVy8YDfRKnxdrHpcY+V9GqahjwwwrCWRkUHzgaQNpid0Jr+1wCGLHWWCUaxbNwAWZsiq89LTa+5lLTFEYd6McCNq4PYVgGKxbX8e1nlZjmjoVFZ/sZaYsVQgghRGfg2f4hQog9yRno44mFS9OMVyEbD/RJ8TatXCa2SKpuuEyJncND+kcfoRkm66cegulRIbwbX8xeqOk+lxYkrru0TKITDsb/wXt4583BGjHdfpyiJK25BBhxoBfmw4Y1Qf6zqQhjo/39ys33MnJc+navxfnDgyVtsUIIIYToBKRyKUQn07gtNr5+0v5bUGL1MqA502ITJ5YaSdVOgIATLlWN9HffBWDjMYe655G22B3XuMprYbmtr2CHS31ifN2lmdAWm7jmEiAlyySvm5dwyKKkOExahv29XbkkeR/T5him4T6vVC6FEEII0RlIuBSik3G3IvE23orE/ufqVC99mg+valfCnKmh9seGW8nSGlUuU6rqSP3mG4LZ6ZQcMDJeb5O22B3W3ECfJhNj9zsAy+vFO3c2lmEHP6XRmkuw22P3OyiDkePSOO3Cblx7+wBUDVYurccwWm+N1RO+5zLQRwghhBCdgYRLITqZeOXSmRabXIV0wo1f87sfOwEUYpWz2OdqbFpsXiAPTdEY/tmPKLrOiqMOxPSoSRU3sWMabwfTuHJpWSakpKAfMB61ooLAmrX241DcPwZEDDtcho0Qaekeho5Io1svLympGoOGptJQb7JpQ6jV60j8nkvlUgghhBCdgYRLITqZxvtcNh7O4/yvXwu44dKZGgqxgT6NpsVm+rM4d8QFDJj1OQDLjjsIe6Wg/VzSFrvjmltzmTTQJ7ZGNnLYZACy5v4IJE+LjYfLcJPHFYxNA2Dl4tZbYw1TKpdCCCGE6FwkXArRyejOQB9f8rRYrVHlMuDxu1U0PSFcmpaF0agtFsC3Zg3e+T8RGTqUkuH9kqptEi53XHNbkTRuiwWIHmqHy8y5P7mPc9dcmk3DpfO44aPscLlhTUOr15HcFiuVSyGEEEJ0PAmXQnSADdXr+c/KV6gOVzW5z22L9TYa6BMLik57bGLl0tkLE+ygkThh1hF4/VUA6s88y11jKW2xO6/xmkuaDPSxP44edDCWx0P2jwvAsmKVy9i02IS22Pjj7HCZleMhPVOjZEuYaKTlimQ0qXIp30chhBBCdDwJl0J0gG3BbYT0EBWhiib3uQN9nDWXprPm0g6KColrLpPXZYIdUpxAqjpbl5gm/tdfxVIU6k8/A0iuuMk+lztObTwttvFAH6dFNS0Nff8D8ZVXkruxJGlarBMMw7GQCbjVZkVR6NM/gGnC1s0t7xMjbbFCCCGE6GwkXArRAZw2xubaGeOVSyc4OlXI2FYkscDo9wRQaTrQx7AM93NP7DHeb79G21JEdPIRmH37AbFQZMmay53VbFtsUuUy/j2NTrJbY/stWIOC4lY9nTAY1uOVy8S9KvsMsLeY2VyYPNQncYKsDPQRQgghRGcj4VKIDuCsl2uunbHxQB+n5dUJlc6WJIGkttiEoGEabsBxj33t3wCEzjrXDUeJ1Tax45rsc9lS5RKITDoMgL4L16Aq8XBpxdZXJq25THhc31i4LNoYD5fVlVEeuWMtb/yzGMOwqKoOYZqyz6UQQgghOg9PR1+AEPsiZzJoc+2MeqO2WLPRmsv4tNjmtyKxiLfFaqqGUleL/913sFJTiZx0Svw4S9pi26LJPpdNKpfx76k+8RBMTaXvwrVUJzzWqRo7g30aP653Pz8oUJRQuVy3KkgkbLH4x1rWrw6yqaGQ1APrGTkuPanqKYQQQgjRUaRyKUQHcNZINldxctpiPd7k4BifFhsPl+60WCu5culWOxUP/jdeRwnWEz7lNKz0DDdIWrHNSEDaYndG07ZYWqxcWukZ1IwaTnpFDalrC93HmpZJxIy0GEoDKRr53X1UVejM+aqKaMSkaKNd5dQ8CnU1BqZisG1ruMljhRBCCCE6ioRLITpAa5VLZ0KoO9AnFkCd9ZPDcobTP3MA+Sndkiph7rkt0w2vHkUj8NLzADRcfCmQGI5kK5K2UBpXLhu1NtdH61lZscL9HpceciAAWd/Nia+5xHQnxjp7Xzb+Q8P+EzMAeP/NUt59fZvbInv5jX35xU39SMmwqK0x0A1L2mKFEEII0SlIuBSiAziTQZsd6BNbc+nxJE+LddZP9s3ox5H9pqKpWjPbYtiB1al2BhYtxrt4IfqoMejjDwKSg6RsRbLztjfQZ3nFUuZsnU1R3WYgIVx+O9utGpuW6f5hwWlzbtzaetjUHH5xUz/8AZWlC+ooKQqTlq7Rs4+fPv0D5PXQsCyoqYxK5VIIIYQQnYKESyE6gBP+mq1cRi08XgVVbTQtVtWaHJu4j6XDmRarKiqp/3wBiFUtY8EmMeDImsud12TNZaOBPsFoEIgP66kYV0Ak4CN9zjyIRlEVNSlcelV778vG7wVnS5IRY9PQoxamCb37+93vVW5P+zqqKnT3jxVCCCGEEB1JwqUQHSC+FUnzbbHONiRA0vrJxpqrXFqxfS5Tg1ECM/+LlZpG+Kxz3Puba4GVttgd12RabAsDfaJm1P7c62HzfkPR6oN4f5yHqqhYloUZmxjrrKVtKSCOPTDD/bhP/4D7cW53J1xGZaCPEEIIIToFCZdCdAC90UAfXbfDiWVZ6FHLHeZjHxNbP6nuWLh0KpcjP56HEgwSOv1MrIxM9353oE/iPpdSudxhKq1XLh1GQnW6cEIBAN4vPrPDJZa7DY3zfW2ptXXQ8FRS0+0KtbP/JUB2N/s2u3Ipay6FEEII0fEkXArRAeIDfSy+/LCch25byw/fVmMYFpYVH+aTeGxzLbDQNBhGzSimaTD6na8BCMUG+TRm0XwoEq1rtnLZzNfRrVxaJoXj7XDp+/IzFJSktlhP7PvaUrjUNIWpJ+QxpCCVAUNS4rf7TNLSNerrDIJBvdnHCiGEEELsSbLPpRAdwKk0lW5r4McPK7BMePf1bTQE7dsT22JbW3MJdiXNIF65ihgR+i5cQ97azUT3OwB9/wOTj3cmzGK57bDSFrvjmlaLrWYHI0VjlUsLi/KBPYn26IFn/k+k1DVQk+pxW1mdtliLlltbJxyWxYTDspJuM0ydvO5e6usMNm2sh2G78KKEEEIIIdqBVC6F6ACGadDQYPDVJ+VYJuw/0W5b/fazSgC8CW2xuqk32xLraBx2TMtk/OtfANBwxVUtPi6xnVPaYndc4yDeUsVRT6hcoijUHz4ZxTTpO39VswN9nAr1jk7wjZo6PXv7Adi0IbjzL0QIIYQQop1JuBSiA5SUNPDF+xVUlIXpPzjAKed2x+dXCTUk73EJduWyubWVjsbBMLuolCGzlxLMzyF86uktPqbxIBqxY5yvt7tnZYvhMla5jH2Ng4dPBqDfvOVAwv6lzppLTBaVLuCfy16gNlKz3evQTZ28Hj40DbZsanDX7QohhBBCdBQJl0I0sqpiJfOK5+y28wdDERbMrUHXLUbsn8pFV/ZBVRUys+PVyaCnjLpoHWCHkNYql43XYh7wxlcolsWas08An6/ZxygoEix3gUf1tLiFiMOpXDrtrg2T7XDZZ96y2P12+FQVDUWx12Eu2DYfgOXly7d7DYal49EU8nv4iEQNvl2yjDlbv9+FVyWEEEIIsWskXArRyPKKpSwvX0bUiLbp8XW1Op+9V+6un7Qsi5f+VsR/X9qKZVl89UkpDUGTXn39HHhoBl6f/c8wKxYuDSXCCu1L5mz5zt6L0rJaHOYDyW2x/rogY97/nqjPS+EZJ273Wi0saYltg4N6HsxBvQ4GWg6X0UZ7mVrde6CPHktW0Tayi0rdKcCqotjrZs34utnqcGXSudZXr+PLTZ8nPZcTTnv08mNh8sWSn1hZsdzdZ1MIIYQQYk+TcClEI84v8GYrA1Za88n/yvnqowq++KACgMpynXUrgyz5qY6vPqrg2y/K0TQYvX+6u98l4FYudSWMqlk06CE3QOzomsuxs77HF4qw7NiDMHNzW3yMQrwtVob57LxhOcMZnDUE2H5brHO/qqiEpx0HwKDZSzHM+O2aqmFhkeZNA6CyUbhcWbGCwpoNVCXc7py/Z18faCYb1tfZ04ZlArAQQgghOoiESyEaccNlGzamD9YbLJlfC8D8OdWEGgy2bg6593/+fgWGaTByv3RSUrWk58h0K5dRNE3FtIz4pFhl++FS1Q0OmPkVAD+dOQVPrG2zOYqiuAN9JFzumpbCXLwt1qYoKpFj7HA55Pul7l6nKqq7PYlfs/exDOmhpEpmfaxFOrGa7qzF9fs1evf3EY5E2FoUcqfQCiGEEELsaRIuhWhkR8Olrlt88UE5Tz1SyH9e2Apgr6WMWmgehUjY4qfva9iyKQyAJ7a9yOARAQYOTYk9RzyYOOHSVHQ0zQ4PRqw61dI2JBAPlyM++ZHMkkrWHTyKigE98bTyGKdyCTIpdlc4Ib05iftcgv0118dPIJSVTt+Fa6Gm2j2HqqiYlum2ygJUhOzKt2VZBPVg0jkty0I3dXyavaZ2wDA/pmKwcV1IKpdCCCGE6DASLoVoJB4ujVaP+/pju/V129YIyxbUsW1rmB++tQPDaef3AGDu11Vs2WhXLs+8uCeTj8nh+DPy3Gphc5VLEx3No6CbekLlspVpsagohsnB//4YgDkXTANab6V1AqUM9dk1TsWxOc73zvkaq4oKmkbRpAPQdIOsb793b3fCpdPqClDWUApAUA+654iYkaRz+zV7K5JuPb340yzKt0Wpq4ufQwghhBBiT5JwKUQjTuWntcqlaVrMn2NvFzFuQgYAs/5bSkVZlP6DA4w5MINBw1KoqtBZv7oBzaMwbFQax5yUjzclHuiMZtZcmkoUTVMwLAPd3LG22KHfLCJ30zY27TeULWMHb/cxgLTFtgMFpcW1uc1VLgG2Tj4QgLyvZtu3K6o7sMl5DMTDZX20Pn7OWFusE0I1xYOqqBjoZOXZ5ygvDbfDKxNCCCGE2HkSLoVoZEfaYteuCFJTpTN4eAqHT7MH5xSubQBg4uRsAMYfmuUe37O3D02LVSsT1tIlro/LSmqLVWJtksl7ITZHReHgl5Orltt7jLTFto/EttjGX0enddXZisRpXy4+9ABMVaX7V3PANFFR3fsiRsR9fEOsFdZZbwnxyqWzXtOj2uEyYkRIS7fDZUV5/BxCCCGEEHuShEshGomHy5ZbRn/63m5/PfDQLLr18NG9l732LS1DY8S4dABGjEsjJc3+J9arX8B9rJ6wri6xcukPqPj8ihsudVOPr7lsZSuSvt8vpMfqzRQX9GPLxDHu7a2uuWxlraDYcYlV3+a+R7qpJ7fFAkZmBpvHDcZfUUXPlZtQFRUloe3Z2T8zHAuaiZVL3alcxv7XGwuXpmVKuBRCCCFEh5NwKUQj26tchsMmq5YGCaSqjBhrbx0x+gC7NXbCpCw8HjtweDwqBx5sVy/7D4qHy8QpoInPoSgKmVme2LRY+zanUqW2FBQtizHPzwTsqqVHi0+Iba0tNnErEtF2idXKxC1hnNt1M9qkLVZBZf0howEY/P1SeyuShGCa4rGHPUUMu701MVxGYm2zurMWNxYuATdcVlZIuBRCCCFEx2h9UZYQ+5jEsNfSWrp1K4MYhsWokel4PPYv9odNzSY3z8vI/dKTjj3qxDwGDE1h6IhU97bEiaCNA2xmjhezxh7oA/E2SU8LlUvvl5+TvXAlZQN6suawsWSqXhqw23Nba4t1WFio8jemdpEYEFM9qdRH64maUbf92N0yRlFZd+hopjz9NoNnL2WtoiYFU4/qxaf53PWXiW2xUWegj5ncFgsJ4VIql0IIIYToIPJbpRAJEsNeS/sFrlpqV5KGj05zb/N4VMaOz3CrlvHbFYaPSkNV47cbZvy8RqOJtNk5Hkwl6m5bEo5Vr5oNipZF2kP3AvDdpSeAqibtbend3j6XsmXFLktsi038HqV67feGbhrxymWsmqkqKhX9ulPbtwc9Vm8msLUYVUk+j1f1EjEiWJbV7ECf+BRhzQ21/oCKpkGVVC6FEEII0UEkXAqRIKlyGfvYMCyWLqglFDIwTYtVy+pRVJKqkTsjMVA2bkudNDWHsRNTyOtmr+GMxiqXza3n8334Pt75P1FZMJjVR+wHgDexLXZ7A30suy1WBvq0XeLXrnHlEuJtsU1aZhWFjVMOAiD3ky8bVS41fLEtRiJmpNnKZTywxqueiqKQmq7R0GAQrG99Gx0hhBBCiN1BwqUQCZoLl2+8VMzrLxTz/RdVbN0cpr7WoP+gFFJSWx6Y05qWBvoA5Hf3MeKAgFvpDMfCRJOgaJqkPXw/AMuuuQhiIcebcFxLrbSQsM+lbEWySxK/dmrs660oCimxcBmNhcuk42I/dtcdOR6A3I8+TwqXmuLBp9l/XAhG64kYEffzSJPKpeo+LyS2xsa3NBFCCCGE2FMkXIp9Xjhs8ua/inn+yc3U1sZbCk3LpGhjiGUL7cpR4boGNq231zMOKWhb1RKStyJpbmhQ1IyHT2eoS+PKpf9/b+FZtoTohImUTj7IvT1xiM/2tiJp6fnFjkuqXMaGLvlUnzupV7d0e11rQnh0tyQZ0Z/a/CwyfviJlMpa936P6sGn2mGyMlwJQLY/B2haudQULencaekalmJSUSrhUgghhBB7ngz0EXu9iBEhGK0nO5DT5L5w2OQff95EyRb7l/Z/P1dHYV414bBFKK2E8qUJw3cMqCy3P8/r3vJ6xu1JrFwCTdomdTMeDCLumsuEcBmNkvrIAwDU3/7bpEmyiesst9cW634sbbFtlrTmMrb+MdWb6n4fdENv0nrsbDuiKyZrJo/jgLe+ps9XP7B66jD7PAlDeqpDVQBk+DIobyhzh/yYscpl40mzqeka1VhUlLW87rLx+00IIYQQor3Ibxhirzd7y7f8b93bhPRQk/tWL6unZEuEvgMDDBiSQsmWBjZtCLNta4Tli+qIRk3GH5oJQFVFlKoK+5f77Ny2h8vEgT4Qr0J9v3U2a6tWuxNiIb7XYWLrY+BfL+JZs5rI4UcSPXxK0h6JOzPQx/1Y2mLbrHHl8pgBxzK5zxHu98GZFpvcPutsU6Kz+vBxAPT9dHb8PAltsVXhKsDensSred2BPmbC3pmJw4BSUzXAoroq+Q8Yji82fca7a9/elZcshBBCCNEiqVyKvV5dtA7LsmjQgwQ8gaT7qmJr08YckMH+EzP45NMoGVomaRkaI7x5TBo1iPQMD6uW1VNTraP6DMp8q0nJ6tXm6zEaVS4NyyAUDbGqYgWrSA6FzkAfp8VVqa0h7dEHsRSFurvtNZeJW4kkrrlsbgiQaF/JwVyhR1pPAMoayoD4QJ/E72liS/Lm/Yag52TTbe5C/HVBwumpeFTN/X5Xu+EyFZ/qI6SHMEzDXXOpNmqL9fpULCxCwebbnStC5dRF6jBMw23jFUIIIYRoL1K5FHs9J6DpZtMJmlWVdtDLzvMQSNGYfEw2ffoHyM7xMmh4CukZ9i/5WTleLBPWV2ygPGMJm8Kr3XOU1BeztW4LYAeG7a1jbDzEp/Hx0YS22HCjNZepT/wJtayM8NnnYYy1q15J21jEpsVqitZqu6u0xbaPpK9jM9uS6JbepA3V+Vg3dSxNo3baMai6zqDZy9zHemNrLmuj9lrMFE9KUjXUMONbkSRWtX1+BbBoaGh+Wqw7AdmSabJCCCGEaH8SLkW7Kw2W8ubq19kW3NbRlwLEA1rjiiHQpM3VpOm0WLD3nwQwlCipaSpBPeje98Wmz/i48EN+KJ7LG6v+wwfr30t6jsbtuE4wcEKGYRkYZvNtjJGEabHq5k2k/P2vWCkp1N/+W/eYxAqlUyFrbZgPSFtse2kpmDvfB6eNNfG4xusda48/HoBhXy8E7LZYf6wt1tmqJsWbik9zwmXEfZ82XnPp8apYSsuVS+c9LYOchBBCCLE7SLgU7W5bsIS6SB0lweKOvhQgXgnUmwlwVRWxymUsPJoJ+04m/gKeFQufFiap6RrBhI3tnfC6rHwpDXoDZQ2l7rrJNZWr+c/KV1hXvdY93gm5TgCxWql2OuFCUzTSHroPJRQieNW1mL37uMck7ZEYmxa7vXBJCxU3sXOS11Imtifb31vnjwOJrcuNw2XD5MnoaakMmrscb0PYnhYb2+fSkepJcauZESOK1cK0WK93xyqXEi6FEEIIsTvs1eFy3bp1nHvuuZx00kmcfvrp/PDDDx19SfsECzsQ6UbHb4egm7r7i3TjcGlZFlUVUQKpKoEUu/qT+Et3YuugEz4txSA1TUuqXDpBrntqD7L8WQBUhioAWFK2CIDvt3wXP2+scukMbTEts9mW3UTpPy0g8PqrmN2603DtjUn3OeFCVVRUVU26ppZIoGwfLVUunUm9zrTf5qbFup8HAmw76jC84ShDvluCR9Xwxt4bjhRPqvt+0RPaYlVF+f/snXecJGWd/z9PpY7Tk3c2R5ZlWdhdYEkLSA4CpwQFRUQQ9czhTn96ZzhzOPTEdIcBwYAiqCQBQZKkJe4usMuyOYfJMz2dKzy/P6qfSt090z07w/bsft++fNHTVfXUU9XVvfWpzzf4Q24lBkVDRedSPKzwOvQEQRAEQRBjxUEtLkOhEL797W/jb3/7G2644QZ88YtfPNBTOiQQropeIdTzzcRbedXkBnI5Ez2dBXDOkU6ZMHTuq/zKPeKSl3EuLViIxmSkPc4lAITkEC6YcyHmNs4DAPQVxWV7dBIAv7A1i+MKJ8rk5rA3+8y0MOnLXwEApL7ydfB4g395UVzITHYcMm+/y7JjMsq5HBsqOZdCXOoly6TAz67EJHReeA4A4IjHVtphsZIrLjVZgyIpTs5lwSr4CvqU9ECNMORyFiyLI4h4eMLJuSQIgiAIYhw4qKvFTpvmhg7OnTsXQ0NDJT3niLHHcsSlv9ce5xwD+X40h1vetLkI58iej4E7b9mHzeszmDRFw/Gn2i5jU4v7NfA6l+VyLjmzxWXBLMCwDCiSAotbjlMojk04l97qtDkjh7ASdoSmyKGzOK+YcwkAi//2LEJr1kA//kTk3/mukuVCuDDGnAqgtTiX5GKOnkrnzi2+UyiuVzksVmISBpafgGwiitkvrEN6KA21+FACsIv5AIDm5HEWfK1Igk6oFgIsDuSy9rXqRTzEoLBYgiAIgiDGg7p2Ll988UV8+MMfxqmnnooFCxbg8ccfL1nntttuw1lnnYWjjz4aV1xxBV599dWyYz366KNYuHAhCcs3AREWK3IdOef4zc924ae3PIP7Nt+DnUM73rS5FDyVV/v7cti8PgPGgK69BTz4124AQFOz61xWEpduzqXp3LBnPaGxQmQIcSmcS+8YXZlOAG7OpRAgJjdLqneKEMjIYAqn3Hw/uCQh9d3vA1LpV9YbFitcLGWENhPkXI4Nlc6jyLnMlw2L9Z9vxiQwLYQNb1kK2TDR8vBjCHlyLoW4FKGyumXA4m61WDkgLkMR++9cIO+Sc+6GxZK4JAiCIAhiHKhrcZnJZLBgwQJ85StfKbv8gQcewHe+8x187GMfw1133YUFCxbgAx/4APr6+nzr7d69GzfccEPFcYixxc1xtIVd974Ctm7M4o2NvbAsXhJSKti3J4+B/rHN09Q9YbHrXh8EAJx2bguaW1WINEefc+mtFut5HQpJiMQkcGYhUhSX4jgsbjmCIabGoMkaBvMDxbYkbmiiKHAkhKTmVAS1nBw6QVi2Hc9Tf/k3RIYyyFxzHYyjl5Q9RjcU1i3uMmJYLLmVY8JIrUj0asJiIUFiEtafdSwAoOm+B6BIirNNRIkC8BcJEt8xWZJLnFAtbM8jG8i79OcTk7gkCIIgCGLsqeuw2NNPPx2nn356xeW33HILrrzySlx++eUAgK997Wt44okncNddd+H6668HAKRSKXz0ox/Fl7/8ZcyaNWu/5iNJ9XVDLuZTb/MC42DM7vEnSQxbNmQB2De32bQJDsuZczZjQpYZ9IKFX/1wJ9o7NHzk/+3f5+RF5wUIo2j960lEMA3HnJCAojA89kAvAKC5VXPPYXHuNtx3bi+4pB3PdzdAVW3HMmdmIUkMjIliOva6rZFW7EvvRUpPgnnG6852QpIYLFiQJQmKJNvLGAdnFryGVlgNI/HSSiy+fwUyjTHkv/iVip+zLEtgzBYaMS0KxoCGUHzY64JJcPbnnbuXur2+6gjx+duv3fMoQYYiyzAt074+JOYsE5+XQJHtdXcvmYdUawKxFc+h0N2FsBJC1sgirsUgSQwhRQNjgMl1WMXrRZZkKLLiv3bCDIMA8jnL99mZ3HNtM37AP1e6vojxhq4xYjyh64sYTyby9VXX4nI4CoUC1q5di4985CPOe5IkYfny5Vi9ejUAwDRNfOpTn8IVV1yBU089db/2pygSWlvj+zXGeNHcHDvQU/CRyEQQz4URiShobY1j11bbsePg0AsM8YSG1tY4shkTN3xpLVrbNZx+XjsMnWPvrjxCWhjxhrG5NDstFfF4GD3deQwM5HHk/BgOX9iCtvY4Hn+wF5wDs+cm0Npqu0MDLIJ43HYNGxJh32d+zoVxYEsrtvTbDqga42hpiSEeD6NBizjrzslMR6qrHzySR0MijHihmHcpG2htjSMSVRBBHC1NDYjrYSQaw1ANjviAm585JRLHsh/cAQB44XNX4YzDZlY8xj40ID4YRmM4irlTp+N9Te9BY7hx2LzLxp4oMszeXyIaGfbarrfrq55o7IkiK9nnsakx6juPzYkGp8dpU0PMWSY+L0F7WwJDchyxZBRbz1uGo//4GFoefQAtZ07CYJ5jSlsbWlvjSCvNiA+EEYkrYEYIcSOMttYG5NU44hl3PNaoohOAImu++eSNvHNtNzVF0NpQH79ndH0R4w1dY8R4QtcXMZ5MxOtrworL/v5+mKaJtrY23/utra3Yvn07AODJJ5/Ec889h56eHtxxh32j/rvf/Q6JRKLm/RmGhWQyu/8TH0MkiaG5OYb+/nTZypAHiv7BFFKpHHg+ic7OIWx4fQiAna/Y3ZVDb/8QerUUnnmsD0NJA0NJA5m79zrbv/JyD444emxufLt6B5BK5bB9SxoWC+PwRRH09qYABhx9bAO2bcpC1gz7PQC9A0NIpWxB0K+lnPedYxtIOcv39vRgmmKvzzTNWbeQAVKpHDp7+tGfTTvrp5BDd08Sg0NpaJKGISWHVMo+H1k966wHALNuug1NOzqx9cSFWPuWY3F0YB5eBgftbVWjUJxDCIPZXMX1AWBoKIdU2l4nZGZLjhOo3+urnvCex6TmP4/5jIVUQXz2eWeZ+LwE/X0ZJJP2tfDaaUtw9B8fg/6736Nw0qeRyuSQT3P09qaQSutIpXLoVgZhmPbrwf4shtJ533iQ7BDr7q40envdfOKs4e63t28IWsFfdfjNhq4vYryha4wYT+j6IsaTer2+EokIVHX4uh4TVlxWwlsN9swzz8TatWvHbOx6+nC9WBZ/U+bGOQcHL8nxCmKaFji324Ds2JpFocARjkrgnCOVNKCbOnTdwoonBpxtuva6uZHbN2dx+KKxeVKTM3LgHOjak4fFDMxdEHXO1SXv6QBgf4HFe2Lu4nXwvBqW4SxPFdLu+txzfXAGzgHTsnMpPWmXyBSyMEwTIUkCgwTOAd00oJvuuO2bdmPerXeiENbwj09fAUlShv98i/tjkKq/Djic/XHOht3uzbq+JiTDnEeZKc4yBncZt+C7JsCZ8xnuPWIWjFmzob74App296KrCQhLEVgWhwTZvl4MHRY3nc9cbCvQil1MersKuO0Xu3HaOS2YPjsMw3SvRcM06+YzpeuLGG/oGiPGE7q+iPFkIl5fdV3QZziam5shyzJ6enp87/f19ZW4mcTY8MTOx3DvprucipOVENViDcvAptftojfHnpgAh4VU0oTJLax7NYXkgIHps8MQhU1FYZ0dW8fOIU6mcigULAz0GQjHgEmT3f6B3jw4ga9abJnek95CKBk94xyrtwKoEN8Wt5zlovrnkG67uN6CLZxbTvXP2fGZuPiHf4FkmHj6AxdjaHJLSR/DIN5qsdXiq15KxX1GzXAtXUQBHrFUEPycGJj7HmPIvfNKAMDSR15Fa6QNLeFWAHCqwlqe6sISk8oU9LH/XvlcEuvXpLHyOTuMm/sK+vgLSBEEQRAEQYwFE1ZcapqGRYsW4dlnn3XesywLK1aswNKlSw/cxA5i+nK9SBaSI96YCoFmchNrX7VvbI8/tQmKZiE1ZMAwdTy7ajM2xx/B0jMkHH6k7VKecFoTIjEJe3bkoev7X82ya18ef/j1dvzzoV5wAB3T5RHbbngFZbCCa/C9jJF2hHY5kWHBcs5FVLVzOkX/y6gS9YhQ7pzTZX9+Ai2vb0bu2GOx+pLTAIzcs1KIz5rEJQnKMWE4ka56PjdftVjPa8aY3Z+0+BkyxpC/4ioAwNT7HsZFsy+CWuyHKq4Dg5uePpdyycOHULGLSS5rX3sD/Xbrm0ptdgiCIAiCIMaKuhaX6XQa69atw7p16wAAu3btwrp169DdbfcnvO6663D77bfjrrvuwubNm/HVr34VuVwOl1566YGc9kGLYZXepJZDLE8lTXT3ZDF5egjNrSoammQYBpBMFrB2+3YU1CRiU1M4921tOPmMJhx3ciNmzI7ANDl2bh0+Z7AaXn1xCAZ05LL2jXj7tJGjwEe6Afc6RnkjP6xzaTuSRXFZbCfRl7Ur1EbVGKSiKBB9Llu37sGM//lfcE1Dz/d/AC4LR7I65zLY73A4qM/l2OB7qBA4jYrHuWQVnEvRlkS8pzAF1uw50E88GfKO7VCfX+HZrni9WEHnMiBqQ/6/B/qK/WbhRhyUc+UJgiAIgiD2l7rOuVyzZg2uueYa5+9vfvObAICPf/zj+MQnPoELL7wQfX19+PGPf4zu7m4sXLgQv/rVr9DS0nKgpnxQI4SS9yZ1uPX27srDgoGFi+3iPIlmGRgANryRRC5vonWmBknhaG3RcP4l7QCAhYvj2LA2jcce6MWc+ZFRCx/OOdasHoIJHe2TNaQGDbRPHV6keeduH2fpDbgIX1Ukxc6/dM6FVzwwz1j2ctGrsDdXFJc+59ICz+Vw4bd+D0nXkfrqt8CPWASsf9XZ13CwUYTF+rYnF3PUDO9cuuKyknMZDGmWizHiuSuvgvr8CoT+9AfoJ58CwL0OTG5AXG92b1P/da2FfX9isN+wcza81zY5lwRBEARBjAN1LS5PPPFErF+/fth1rr76alx99dVv0owObQxenXMpBNe+XXm0MQMLF9thr02tMrAVWLM6CcbCmDJFc9xQwZLjG/D8UwPYtS2H1S8M4ZgTa6/sCwB7duYx0GugaS6w7C1N4OCQ1ZFvqHmVzqXMZBR4oXxYrEc0BsNiB/MDxb/dgkUWt3DY//4GkzbvxtCJJyD34Y9B9oQej+RICveL1RSIQIJyLPCe8+CDEKWCuGSsdBvxnhCQ+bddgvh/fg6he+9G6ts3ANGoGxZrGT5RGnyooIb8f5sGRzplwlI9zuUIedMEQRAEQRCjoa7DYon6weKWI6RGKuhjcQuFgoXBAQPxFo72DruIzrwjwog3yHZlVJhon6wVXRgXSWJ462W2i3nP7Z24745O5HO1uyxrVtmFc6bMsnPSZCaXCNlKcy/3WmBapu+GvmxYLErFpXAuvWJTjJF4aSUOu/VO5GNh7P7+dwFJchwswK46OhyJUAJRNYpJ0Y4Rj0/gF8MkNMeCoHOpyRXCYlHqXIq8SaX4WfNEI/IXXgwpNYTQA/c56zLGYFiGcx3JnpxLIT5Vt2aVw2CfQTmXBEEQBEGMOyQuiarwCrOR87U4+nvsPK8psxRHvEgqcNzyRkiKhXgTEE/IZYvmzJobwaXv6UAkKuHlZ5P4+Q92oGtvvqb5bn4jAwBomyZBlVUoklJVhUz/Dbhb9XZj/wbkjBxMbjo3+d71y+XUWZw7YwjnUhBVYpAYg5bO4cj/+BYY53j0U++AOWOmM4bYh1doliMkh/COw6/EorajRjw+gT+ckxgtPkcS1TqXpdeK5HzW7oOE3BXvBgCE//QHd0ymODm6ohhQU7gZUTWKybEp9vgSh1Z0L1XNHnegX/d9b0lcEgRBEAQxHpC4JKrCKy5HyteyuIX+XltcTpom+95PNCo45+3NOPPiZjAwJ9Q2yJLjE/j4f8zG4Yti6OvWce+fuqqeay5romtfAQ3NDKGILb6qdi7L3IDvGtqJFXuewcb+9bC4BZnJjpAQ56JsQZ/i/wDXuRTE1BgkSDj3B7cjsnsfdp59Mtads8xX+TPoZo0llGc59gQdYF8rElaak2u/LopL+MNiAUA//SyYk6dAffIJSDt3OOublgnTMp3rI6bG8I7Dr8RhTfMB2D00I1F7vHkL7OtuoE+nViQEQRAEQYw7JC6JqvCGr5ZzPbIZE4890IuhpB1+11d0Lts94lK4lNEGBjUi2pVUFqqxuIx3f2AK4gkZe3bY/SqrYde2HMCBKbOL7o2kQZEUX5hqJcqFDuqWfSw503UuvcV4gPLOJfeFxUZ8y8NKGB1//DOOeHwVMlMn44X//FeAMShSqbiURnAuRwP1uRwbhnMufa1IvKGwKN0mqsagyRqaQ55iZLKM3FVXg3GO8G2/BQDHgefgJbmWzjUJC00tKhSVYcFRdm7vYL8/LJYK+hAEQRAEMR6QuDzIyOct3HN7J9a9mhrTcb3hq+VyLl94agBPPtyHB//aDcO0MNCnQ1EYGlrddUT1VcMyHLFqjuAmMsYwY3YYlmUX6amGndvsNiaTZ9miTCuGxYp9lyOlp9CX6/UVOhHzdUSmqYNz7nOXrDLOpdPn0pOnqkgKNNlOhoupMSivvYIZ3/pvmIqMlf/9n8g12OLTKxhEOKwyQiuS0UA5l2PP8AV9KrQiKb7WZA3vPPxdOGHKib4xclddA84Ywn/4HWAYzrVXMAslYtb5m3NcclUH3v/J6Zg8zS4dO9Cnlzw4SQ4YWPV8Ek/9ow+ZNDmZBEEQBEHsP3VdLZaoDc457r29E2tXpbB9UxZHHB0bE+GQGjJw/9/2IjnLQKJRKZtzuXm9neP4+uoU2jrSME2gvUOFyXVnHXFza3LTEXnVhOdNnx3BulfT2Lk1i4aEjEHsw87cZpwy7bSybTp2bM0CACbNkLArZzuXBWbPw7AMR+R5+euGOwEAcxrnlp0vAORNW9z6nEsI59LFu4zDdTYjSgQFs4BEDkhcfw2kgo7HPnYpUkfNh1msIust3hMs1DKWkHM5NgznXHqvs3Jh08HX5XJrrZmzoJ9xFrTHH4X2yMOQ5ssV1xf74OBoblXR3Koim7GvXdu5dNc1LBO3/GSXE75umhxnXGA/CUrmBwEAiVDjcIdOEARBEARRAjmXBxEvPTOItatsx7KvR0fXvsJ+j2kL1i6sfmkAm99IF9/zr5PPWXYoapEXnukHALS0KU5IKeCKNYtbjrisJg9yxhzbfXnlhSR+9p3tuOXOF7A9uQ092e6SdU2TY/f2HLQQQ0u7LcpkSXZCFIPVaQG/K1swXXfUO1/AFZe2ABTuZHWtSOxQ2AjAOU797s2Qt23F4HnnYNXlp8PiljMHr9gQolIeZ+eSGCOGcy69P7U+YT/yT3D2vdcBAMK/v9X3oCF4XQRDtQEgHJEQCkvo69HxzON9yGXt62z3ziz6e3WEi7mZPV3ub8Xdm/6Kuzf9dcSq0ARBEARBEEFIXB4k5PMWHn+wD4wBRy6JAwDeeC29X2P29RTw9KP92LA2Dc4sdHcWwMFL8ha3bcrAsuz9tk/WwGRg2swQZs2LQPeIR+EA2mGx9mvL41ym9TRyRg5BpkwPQZYZerp0WBawe1cGqSGjbP5kT2cBhTzHtJlhCGNHguRU4RRid196LwqmfUM9UHQNAaBQRgxzR1zac5OY5At9BSoU9OHcLy7lMI6//TFM/8czMGfOwp4bvgcwZovLouj1igdJ5FyOg7j0QmGxo6fqnEtWPucymDdZjsL5b4XVPgnaIw+joauv4rZOkSm4opAxho6pGgyd44Wn+/HaSrtFz/q19n9POasZANDXrSPIQL5/xLkRBEEQBEF4IXF5kPDi0wPozu1DeMkbeMv5TQCAN/Yj73LXthx+/M3tePRvvQCAcJwjn+NIJc2SsFgREjv/yBg+9G8z8PZ3T8KxJzUiFJZhlBFrABxhZxQdO9My8bfN9+DJXY+XzEVVJUyZHgIASDLAmYmdW3NlQ2p7izfJ7ZM1n7Bzcy5N7B7ahYe3/R3/2P4QAKAv1+tsr5uugxN0LoXwVSTZ04rEnoO/oI8n5xKusznjuddw2i/vgxkOYfCW24Am+8be5KZvroJxDYv1CSESl2PBcK1IqgmLrYiqInfVe8EsC/Pve9KzbTAs1n2o4eVd10/Fuz84BdEGhn27C+jrKWDrpjS0EMMJpzVB1Rh6u/WS7bozpZEBBEEQBEEQw0HicoKzZUMKt/50F/75UB/6wpvQcMQ+IDGAljYVe3fl0dczutDYndvsvMW5h0dw9b9OxRFL7IIzvV2FkkqTWzfa685bEIWqSZAV9yZVN8uLS4EIi82ZOeTNPLoz3WXD8Y46No5wRMIV104BZxZ2bstCN0pDXEUOWXOr6nEVJaedh2kZjlPZm+2x/+sRlwWrsrgUy7zOpZhruRxGDjssljEGZcsmHPeF74Jxjr0/+D7Moxf7RKhhGWCMBcSlaE9B1WLrFeZ1LodpRcIqCEqpStc4+55rAABz73kUzCx9EAH4C0n1ZnuxPbkNABCNyViwKI5jTmoAADz7+AAM08KRS+IIhSS0tKnI5yxk0qbvu9edrb79D0EQBEEQBEDicsKzcV0KWzZkoBc4Zh8pI96gIGfmsOR490ZyNPR22SLthNOacNjCGKbOtm+UezoL4JxjQ996vNq9Gpxz9HXriMZkJJpsAecVkXoZseZFOH/CMTS5ibRe6riedHoz/t+35uKIo+OYPF1BPsfx6AM9eHnFIB65rweGYd8UO+KyTfW4gcwJizW4gYga8Y3dl/U6l64YFq6jcEjFjbfEvM6lOKZSZ0rkXIbSOSSueTeUoRTSn/w3hN75PgCuM2kVnctgDp0o2DIeYbEkKMee0rDY8jmXNTuXAKzZc1B4y5mIdvZg9ovrAJTmXHoL+jy/dwWe3PWE73peuCSKcISBc2DydBVnX9QGAGhptwsP9Xb7K8p2Z0hcEgRBEARRG1QtdoJz3ts6cPhRIWghCfdtX4W0XkDezOP4U5vwzGP9WPV8Eqef14KGxto+6p5uW+y1TrJvPNunyJAkoKdbh2GZeK3nFaT1NOZFjoJpcjQ0uje63pwvb85lOXEphJs313EwP4i41lCyriTZN8+LT4xh90MMa1YPYveL9g1wx7QQjj62wedcZj2hpsVNYViG70bf4pYvt6x8ASK/kyoz2RESZtmwWE9hFd3Ahd/8LZSNG5A/93xk/uPLZdcT/TP9+xm/gj6+ojKUczlqfD0rA+eRMQZFUhxX2tlmFOISALLXXAvtycex5N5nsPWkRSWup/ibcw7dsh8CmdyEClvkSgqw/MwWFPIWjpnj/ia0ttnL+7p1TJ7pXmvJQhI5I4ewEq56jgRBEARBHNqQcznBYYwh0aRCC0nIGnZ4as7IIhqTseyUJpgGx/NPDtQ8bm9XAUyyRRoAMIWjuU2FXuDo2pt3hNfgoC1CveLVKyIr5Vy6y23x6c11HCwMDju3SBxYfmYzWibJmDrDzsVcu3oIOSOHnX17AQDNLaqnTQjzhMX6c0b3pfdWrFjrFB0K5JjKUqlz6QszFaLRsnDaj/+EOSvWwJh/OIb+71eALJeuVxQBlZzL8c65JBdzbCh3HsVnV0lQVlMtVlB468XItbdg7nOvo3FPT6lzGQjHtl+7D0YsbiEWl9Hcqvreb2kvisseveQ7SqGxBEEQBEHUAonLg4SckXMLzxRbZhx7UgIAsHNbaQXW4cjnLQwNmmhuUaEoRYfOMtBWdDF3bM04+0oOlBeXEpPAGHOcwHLCEvA6l664FH32erO9WLHnGV9on9gmFldwxfsn4/2fmo5QWMLG1zN4dvvzWF14FEoiCy0kObmhdkEf+wba4IYvZ1TkpZVDhMEGc0xt57J4rB4BKxBu1sLf34vFdz+JTHMDBv/4F/BEY8k4gC2wOeclfQtnJ+Zganwq2iLtFec4WkhQjg0j5UyK0Njg+RYPI2pxLqGq2PXOt4FxjqV3P1Va0MeTBxzMFwb8D0m877thsYWS7+lQYaj6+REEQRAEcchD4vIgIWtknNeiZUZTiwpTyqOvt7aiPr1dIiTWzRkzuIH24t87tmYc52MwWRSXCVdccs4hMQmqpDquYEVxaYmcS09YbNG53Ni/Hhv7N2B3alfZbUxuYlNyPZILHkfezOHV13rAORBv8YezeqvF6pYO0yoVly3hVt8+3HxIq2TukicslpdxLiUm4fAnVmHZT/8IPazh/u99HNbMWSXHLoSFyEsNOlHTG2bgnFnnQ5O1km3HEgqLHRvKCUVV0souEw8gahKXAPZe8XaYioyjHnweas7/vQ7m+gJ+59L7kMTbAsgbFmsFKjB7Iw8IgiAIgiBGgsTlQYIIiQXssFgAKPAsdkx6CBvyK52CN9UgivkIpxIATMtCY4sKRQF27cxAN+yb0OSgLR6DOZcSkyAzeWRxye0KlXkr77w3WKzmmi86sEP6UMk29pgm9qX3omWGgbyUxOtr7O0Szf5m8oxJTsVV0zJ8Do5oiTI5Ntm3D+EilhOXctGVtZe7rUYE4RdewFu//XtYEsP9X34feo6cW/bYhaslWpyMdz9LL149SS7m6BlJHKpyMd+xJD9ydOLSnNSB9Wceg3Aqi9kP/NO3zFvQx7lmuT8sttzreEKGFmLo7ixgYNAvWCuFjBMEQRAEQZSDxOVBgt+5tEVZWk8jEmfQWRrJgeodiJ4ufzEfADC5AUliaGnXoOscfb32PpJJ+7/BsFgGu5iJEGflelK6Y5u+nMucYbclEY7eUD7pW98rWC1uor1DQ7yJIZuzj7EhIC4lSE5xHMMySsRiSA6hKdTse084neXm7i3oE8y5VF57Ba3vfTcU3cBzn34PNi8/qqKAkJiEkBxyQofHpXBPBUhQjg3l+pt6UYvX0ZiExcJ+6LHq0rcAAOb96X6feHT6XMJ1LIM5l85reLdjOObERhg6x/137vO1IxF9aAmCIAiCIKqBxOVBQkZ3xaVwwixuIhKTwJmF/t7qHQgnLLZdxYo9z+C+zXc7AqhtkgYOC91d9j6SSfv9RJmcSyHQTMus6FwCtuAT1WLFNoP5QRSKobJe59L03Oya3LSrv0oMS5dHYcFe1tAUEJeeuRi8dC7t0Ukl+Y5OAaAy65ct6AMGedNGNF55KaShIax47/l47fIznWWViChuW5Tx6GdZCUbVYseEkc6dyPVlAREprong+yOhMAX7Fs7C3iNmIbF5O9SnnywZ0+KW8z2p5FYGr+lzLm5F+2QNWzalsX5N2nHVTU7OJUEQBEEQ1UPi8iAh4wmLFc6lyU1EozI4LAz0VedcWhbHrh22cGzr0NCV6UR/rh+pgt17srlVAWcWBvvtm86hcjmX4GCMuW5hoIhOEK9zKRzElD7kOpeFpG9d57VlwSyOu2BxBGrEft3QVLzJRqm4NK3SubRH2ksqssoe5zK4vp1z6Rew0b3daHzn2yH19CBz/b/i2eve6tzgD+dOhTxtHmp1sfYHqhY7Nox0HisV9HHCYmv8CRYPQVZeZruXkV/9vGT/nHPn2ue+sFj3tRlwJFVNwjuumQw1DGxcl8H6V/IwDE5hsQRBEARB1ASJy4MEb1isxS3kzbwtLuO1icsNa9MY6DUwa14EDQnFEXNp3RaXiUYVFjORFOJyyABjQKzBvunlnDsFfbx5jsOFxVrcdIRkQ7G/pW7qTj5kRs84N7nem10LrkPDZAuLT4hi+qwQJk1Ti3Px9rmsnEPZFml3nEqBEJu8bM6l6zBasBDrHcTyj3wR8u5dyF3xbqS/9T2AMeeYhxONYdkVlzJ789rOkqAcG3zOZRkXsynUDMYYGrSE730357K2z0FcexvOWIp8azO0hx6AtGO7b0z7gUiZsFhPrjFH6cOejqkhXHZNOxQF2LymgEfu68Hf/rwXK57oL1mXIAiCIAiiHCQuDxJEQZ9E8SY2b+RgWiaiMRmcWRjoq86BWPHEAABg+ZlNAFyHQ4yvqAwNzUAmY6FQsDA0VEA8IUOS3GIigO3IOKGoZfIcvRiW4YTAxtW4PX8z54hLwHUvvdUsLct0/tYtHZOmKTjmxEYwiRfXFeKSOTfeJjcd0ccYQ0SJoC3S7jiVAsUjRs0y4lKMp3Z24YrP/BTx7buRv+AiDN34M0CSIDHJEcLD9TIMe8Ji31TnkpFzORaM5FwubD0SVy64Cq0RfzXi0Rb0cXKBVQW7rngbmGUh8sub7P0XP1NvKKvXreTDhMUKJk/XcNq5LZg3rxGGwdHVncWj9/f6HFCCIAiCIIhK1HRnUygU8H//93944403xms+xCgRzmVjqAmA3evSzrmUwcHR3zuyc7lvdx7bN2fR2q5i/pExACjrODa328KrZ18BFue+kFhvgRs3LNb03eQGMSzXuYwXncuskfPtW/Tb8zqXXqFYMPPOvt1qsm61WNlxddwcylOmnYZL578Dqqz68h1tp7O0rYNAluxqsfHuARx77SfRsrML+844Cclf3gooijNGsNhPOSKesNhgaO6bBeVc7gdViPRyrWRGKy69D0H2vOtS8FAI4d//BmxwwNm/93tTsaBPBXFpcQvxBgWnn92BCy9vR6IFMHSOdIoK+xAEQRAEMTI13dlomoabbroJyWRy5JWJN5WsnkVIDiGq2qIwZ2RhcguRiARIZlVhsVs32gJ18bIGx4ksdxPa0m5fNp378gCskkqxgH3TLHvbf5QZx63IajoupXAu04H2I0JcmoEbZCE2RZ6pvY5fXEoIikX7hlthijMHb1isxCSn0IqF8n0uo529uOIzP0Fs+y5sOuVovPz9LwOhkG+Mcq+DhOQDk3Pp3Rc5l6PH51zWINJHLS49Idl6extyV1wFKZ1C+De/dt15Tz4lr6IViRfx3dFkDZLEEClG8w7UUBCMIAiCIIhDl5rvZhcvXoy1a9eOx1yIUeLkV6pRxwkT7zHGEIlJSCVN6IXKoakAsHu7Xchn+mxX8JRzLhvb7Muma08BFrNKivkAdiio4mv/UZp/GJJDznLd0qHJGkKK/Z4QkwJRMdbg5Z1LUSHXO2chIkXPTfs9y1foR+B1hPzOJS/JTwvv7cZpH/pPNO/uwb6zT8V9/3UtoPrdqWoL5oSVA5NzSYwNoy+MNNpqsa64lJmM7Ec/Ds4YIr+8CSxvP6DZX+cScN3WiP2sp+qcbYIgCIIgDm1qFpef+9zn8Mc//hG///3vsXPnTmQyGWSzWd//iTeXjJ4GAESVqOOE5cyc42BEG+wb2Xv/1IVMunJ42+4dtvs3dYY9hijOE6Sx1b5sCgVbeLW0q84yX1hs0bk0uOtciuqZAKAJcckNFMwCVEl13hPVaRtDjcW/izmXHlfGG+KaM11xKXLLvCKSOTmXlq/Qj8AbksrAKobFNu/oxBHvugbxnXux4S1LsPJ7X4SllopCv3M5nLh0cy5l6cBUiy1XiIaojtG2dNnfarFiDHPefBQuuAhy5z5E7vozAH/oeO3i0v5+qZIKxhjCdiAE+klcEgRBEARRBTVbJVdccQUA4Jvf/Ca+9a1vlV1n3bp1+zcroiaEyxfTGhw3MGdknUqkCxbHkNor47WXh8AYcNnVk0vGSKcM9PfqaJ2kIhIthrNWqPAaigKhMEM+xzF/YQTLljc6y7jHLXR6RVoGrOJrTdacENawM9ecs0zMWey7QWvAYH4Q+WLYrOErVmJ5nEv3oYYQ1V4RKZxLb89Nn7hk5Z1Lb7XYjje247Iv/BzaYBo7LzwT93/mX3CYWr7qZ7VhseIcAP6Qx3GHCvqMCaN1LkcfFqt4XtvXS+Zjn0Lowb8h9n8/Bf73X2F5hvQW8eG+arHlc6CtwPdXi+WRxfg5l+lCGqZlDlv0iiAIgiCIiUPN4vLb3/42FQCpM4TL16A2OGGWeTPvuIQtbTLe94VZuOHLW7BlQwac85LPULiW02cNHxJrv2/g2JMakcuZuGB5K7SQe2NYrrekYZlQJHssxeNcih6PQhiqkgZFUnzFcMKy7ewJR8WbT6ZbhiNmy4XFeoWuIxY9OZTMFxYrgzHmtFGR4HcuZ730Bt725Zuh5Qroff+1WPXxd8Ia3FSxf6f3/A4rLr3O5ZsoLqnP5dgw2qq7+1st1t7W3p9xwonQjz8R6ovPY87z67D15EXOOpVyLoN9Lp33nfB1GYqkIBS1v1fjkXOZM3K4a83dmKRMx8lTThnz8QmCIAiCePOpWVxedtll4zEPYj9IFfMR41rccS7zRg4RRQgzC9GYjMlTQ9i7K4+BPgPNrapvDJFvOW2mR1xWuAE1LANtk+ycrKADIsQWg5vH6A2L9VbOFCGwos2JJttzCskh5z0hlsVcvG0WdE+rEt1ynRUzEBbLgjmXnkI/XhSmQOe6T4ya3MScR57DOd+8BbJh4qkPXoz2L34FbGCDMx5QKhL8Y1cWHZqkOWJaOkDikhg9oy7oU9xu/8Sle71kPvpJNF73Hhz/p8f84rJSWGyZPpfedeSiuAxHpZr65NZC1sjA4hZSgfxqgiAIgiAmLqOORdq0aRPuvvtu3HTTTeju7gYAbN++HalUaswmR1SHCIuNqw2OW2lwE6ZVFFnFG8YZc2yhtmNraV7szm1FcelxLivdgPortvoFqFds+cJiUZpzKUJCM8U2KqpkC8+QJ1RU5JCK7cUxAUDBcsWlfw6Vq8WanjzNYI6jyGdzcjQ5R/v//QLnf/VXYJaFhz77Lrxw1bn2eqxyNV0xRrnXQRhjzvF68+nGG3+u4Ju224OO0TrA4vwPl49bDvvatLfxOt2FCy6EMXceZryyCVNe3+a878+z5M6+K+VTm57CW4qkQFHsvMuBfgOWNba9LsX+K/3OEARBEAQx8ahZXKbTaXzqU5/CxRdfjC996Uv40Y9+hK6uLgDA//zP/+BnP/vZmE+SGJ6UXgyL1Rpct9BToVXcvM2cYzuZO7fmfNsPJQ1s3ZhBNC5j8jRX2JlW+VA4b8GQYP9KX86l5OZu8jLOpVN8qBjSqhaXaT5xGbILlxSdS2/OpVFhfuKG2it0GWNgjBVzLos30EHnUnJ7VKq6gQu+exumf/9H0MMa7v369Vhz0ckAiiG0YCX78MKqFJeAGxpLYbETj/0t6DOacy+uE991JcvIfvLfAAAn/v5h5+1yzqV46FPuwYg/T9ler6EFMA2O1NDY9roUv0uVQssJgiAIgph41Cwuv/vd72LVqlW49dZbsXLlSt/T79NPPx1PPfXUmE6QGJmhQhKarEGTNZ9b6M095JxjxlxbzO0MOJevvjQEbgFLljVAlt2b3Yq98Cyj4jquC8F8Qlc4jr6cy6KYzBadS01yw2IFqqza4lLkXHqc0kriMtjnUtzzy0z2h8Wy0rBYAAgPpHHChz6PRQ+/iPzkDtzxk89g66lLnPUkVioug9TSR1I4uPKb2OeSGBtG7VwWf3prbUUCuOIy+DAi944rkexowbwVazFp4y4A5XMu3f6ypdeueIgjex4ONbTYcxzr0FjxYMobjUAQBEEQxMSm5jubhx9+GJ/97Gdx0kknQZb9NzdTp07F7t27x2xyxMhk9AxMy0RcbQAAX/sPrxAzuYnGJhWNzQo69xaQy7rCc9XzdpuPpSfaHdN3De3Eaz2v+sJfAdeZCVZs9RKsNmmvbzqiUwhIRVIc8enmXNoiyysuvTmJQGU31UtJtVi4xVPs5inuHL3IkoLWrXvxLx/4LzSvfA17j5iJNX/+DfYdNtXnuMpMdgQrL9MzE/ALjWqdyzc153KUjhvhx3fqRtOKZBTi0uuw+9A0rLzqPACue+l1LsW16ojLMuGobkEu2Vmvodk+roHesRaXxe90hcJhBEEQBEFMPGq+s8nn82hqaiq7LJ1OlwhOYnwZytv5lg2aLS5FMRrTMn0FecSN3PTZYYADe3fZ1WH37sqjp7OAqTND6Jhii7pXuldjVefLTv9MgciXLDeuwB8W68m5FH0uiyJNZnJJeJ4mibBYf9Ef4TgC1d2IluRcem7kva1Igq7RYf94Hu/56P+gYXcXOi84E3fc+Ank2loBwKliK+YuxGOlokfV5lwCbi/PiBod8djGCgqLHRve7FYkgDcstvS39o2LTkWqJYHDn3wFrVv3lu1tObxzWRoWm2iyj6uvZ2zFJQ+ErxMEQRAEMfGp+c7m6KOPxj333FN22UMPPYRjjjlmvydFVE8yb7uOcS3uvKdISrFwTakInFLMqRTicvcOO99x/sKYs65RrLxaMP0Fcxxx6R034H44FVrBnJtfwxOiq0qqXYVSCZcUsBGi0udcyipkyRaXnHMYFcScFycsNuBQivDakrDYQgHx//gsTv3yjyEXdKz+yLuw9vtfgxHSHJdW9jg5siQ724p9BIWF5HMGh/+aLWo9GhfPexs6oh0jHttYQYJyjNjfViSjqKkmV3IuAVghDS9deRYA4IQ//KNszqUQjeUe1HhbCYnve6LVPq7ebnIuCYIgCIIYnppbkXzqU5/Cddddh2uvvRYXXHABGGP45z//iVtvvRUPPfQQfv/734/HPIkKiEqxDWrCeU9mMvJm3i8Cizdyk6fbwm3fbltcdu6xBWTH1FDJunkz79uXU4nWE5oaLMbhLQjiFvQxnPdlJuOsmedAlbQSx6I1YruE3oI+qqQF2ohU41xy33Ewj+MIuKG1MpMh7dmNxPXXQH35ReSbErj3S1fDOP1MTPG4ruJ4okrUee3uq3gMLCguq8+5lCUZLeHWEY9rLBltf0bCz2hbkYhrKToKt9rNuSwVl4wxvPIvy3HCH/6BIx5biVe3bQeWzAPgdS7t7csV0rGcnEvZEbHxFntZb3f56syjRcyHCvoQBEEQxMFDzY/Nly1bhltvvRWFQgHf+MY3wDnHT37yE+zcuRO33HILFi9ePB7zJCogKq0mQq64VCQFFregewvvFB2JKdP9zmXnHvu/k6e5oahClOrFVh9CKHmL8TjrBpzEcmGxhicsVmIMk2NT0Bpp9bUCCSthNGj2MfidS83XRqRSER/fnIYJi7WPy3ZgIv94GM1nnwr15RehH7cMj//xR9hx3AJfn0uxLoOEM2achfNmX+AbyxGwJc6lNyy2/sTbaEUR4We0YbFLJh2DSw67DM3hlpr3KfrBenteCiQmwYiE8PI7z4RkcUz9+S3OMruXqlRy7XpxnEtJdkRoOMqhagy9XXrZ9iWjRbiq5FwSBEEQxMFDzc4lABx33HH4wx/+gFwuh8HBQSQSCUQikbGeG1EFR006ClZWQUd0svOeuOkseJxH4UjE4goSTQp6Ogso5C107ilA1RiaWlzhKARjvhgW26A1YDA/iIhS+hmXhMV63EIRfmdUyHMUOZcA0B6Z5LwW4lLkOYrwWpOb+5lzWQzDzWRw9k/vQMu9zwAAstd/CKmvfRt6z0tAfxLM0xdThOFKTEKimBsJuEKikrhkqN65PBCQnhwbRtsvNHg91cLSScdhWnwG4sU8a998itfa6ktOw/G3P4r2u/6Gvs9uhjV3HixuFcPVK4tL8d2X4BbksmChpU1D554CMmkTsfio/tkoIdgyiCAIgiCIiU/NzuWKFSuQzdrVPcPhMDo6OkhYHkASoQQWth7pu8kVos4b1uq9gZs8LQTOgQ1r0yjkLXRMCUGSSluQCHE6o2Em3jL9DBzZdlTJ/iu1ImFgbkEfT+Vab/sEyZNzOcmTbyjCYkUYruwVl0Xncji3bbhqse2bduOdH/w2lt77DKzWVgz+/k9Ifef7gKY5OaCMMY9b6obFehH7545oHs65rO8WI/UoficKB6IwUlukDQtbjyy7TFxrhVgYL155FphpIvb97wKwnUKJSc6Dj2CPWvs9T0EfEXnADbROsiMbervGLu+Sci4JgiAI4uCj5kfQ73//+yHLMhYuXIhly5bhuOOOw3HHHYfm5ubxmB8xCkQ4mwjpBPwO45TpIWxYm8bqF+xiQB1TNd/24mZPiEtVUjG7cQ4G8wMl+wreoLphsSwQFlva/sPnXEY9zqVii0tR4EfyCDlvYaBgwaHg/H3OpWHg6N/fjyU//xMU3cS24xci/ut7wTtcUSvmY7ulzJm7dw6CEZ1Lz/r1KC69DjKFxY6eestd9c5h1eWn48S7nkXoL3cg86l/d8JixUOUsmGxzkMgt6CPbulobbdf93YXMHPu2DxMdHMu7T68dB0SBEEQxMSnZnH57LPP4qWXXsLLL7+MF154Ab/97W9hWRbmzp2L4447DsuWLcPb3va28ZgrUSVC1Hnzo7yNykXe5eb1GQD+Yj6At6CPyLkUrQ/KVKcMuA5esSXyuwzLX9AnOE8AaPUUtIkqUTRoDY6b6RbiMZ0w1ZAcqigunZvWYk6Xum4dEp/5GNpXr4KhKnj8Y5fi1Xechas6/NVZvf0DhfgSAr3k2Is3wo5TO4GdS2L01FvuqncOeiSEnR+8BvO+9yPE/vvbsP79bF9LnbJ9LsX31JNzaVoGWtuLzmWZirE5IwdFUsrmgA4H9+zf4pbvt4EgCIIgiIlJzeKyubkZ5557Ls4991wAQCaTwXPPPYdbbrkFd9xxB+68804SlwcYmZV+rN4byXkLopgyI4S9O21n0isuvQV6REEfN1y0nLgsHxbrFgFSfLmSPudSUjAtPg0xrcHXlkRiEi457HLnRtnNubScMFVV0nzre+fhhNnpBZz0m7+j5bbPguk6uo8+HH/798vRN2syNLn0HDktHuC6NoWAwBaM5FxK9Z5zSX0ux4R6O48skOmw512XYPZv7kDovrvR9i/zkTrycOfatMq09THL5kwb6HCcS7+45Jzj3s13oTnUjHOLxa6qxRv1YHITMkhcEgRBEMREZ1SVGdLpNFatWuU4mK+++ipCoRDOOOMMHHfccWM9R6JGyjkI3nL/qibhuo9Px723d6JzbwFTZnjEpceJFDmbwlEod/McFJc8UERHtEUpV9AHAM6edV7ZYygXVmpxyxG/omImYLuYWcPOA1YlFRa3oDy3Apd/+hto3bIbPBJB6itfx+PnHYa+zJ6Kx+INi3VDAv0Vc535jSQufWGn9edc+uZbB47bRMVf0OfAn8fgHMxQCJnPfA4Nn/83LL/lATzy/SOGrxbryVN2wtq56eRcbt2YwcP39uAt5zYjHJGhWzpyRg4pKVXzXL37p6I+BEEQBHFwULO4vOyyy7B+/Xq0trZi2bJluOCCC/DFL34RCxYsqIubK8J14LwEb960kIR3vG+K83dXpguD+QHMaJjpvOe6dsJBLO9cenMbhRnhdS6zRtbNXRxV03iRI2Z6ci5d51KIS8YYGgYyOOF/70DzQy8AAHYtnY/ITXfAmjsP0s7HnW3KHYvicWiDRZEqFfRxRXMw57K+w2LrLVdwolJv5y44Hw6O3HuuQfQnP8S8FWuxZs1WSCfZ3/FyYbFO4S1JdgtyWQaiMRkz5oSxc2sOzz7Wj2S/jne8b0rNRXlyORN3/b4T8xfGEFtYJtpgnLC4hV1DOzElNhWqXNpSiSAIgiCIsaHmu97169dDURQsXboUxxxzDI499lgSlnWGUiZ3aSRn4OXOF7FizzNI6+mSbYbPubTwyPaHcP+We33biJtccYNayQGsBm+1WMMyIDPZN05ICYOZJo69+xlc9Z4vY9FDL8Bsn4SHv3Qt7vrRZ2DNnVey73LzCMnh4n81qE47l+GdS5HXWtqKpL7FWz3OaSLidy4P/EOE4HXKwQFNQ/LfPwcAWPbLvzoPi8r9Jnhzo71hsQDw/k9Ox8f/YxYSTQrWrErh9VeGHFEY7HdbiYfv6cH6NWk8/WhfwLkcX3G5I7kdT+x8DBv614/rfgiCIAjiUKdm5/Kll15yQmIffvhh/OAHP4Cqqjj22GOxbNkyHH/88Vi6dOk4TJWolnKFMUZyBnLFsNK8mas4XjlBwmGhL9eHglmwqz4Wi+iIG20hTAumXhyr9htw5g2L5SZkSXZzNDnHrGdfxQU33oy2bftgSQwrL3sLpn7nN1i37wHf/kYSl1PiU/GW6WdgSnyqU8hH3FgHz2mpc+kfS6r7arH1LX4nCvV27oIP+YRYTL/jneA/+AamvfQ69jy/GjhMLd/n0pMb7RT04W77n7YODW971yT8/qY9eOAv3bhuXou9H5S2NfGyqX8jBnZpWLnCflgz0GcgmSxApFmOd1isiEDIGplx3Q9BEARBHOrULC4jkQiWL1+O5cuXAwB0XceKFSvwy1/+Ej/4wQ/AGMO6devGfKJE9ZTLuRzp5k04dOUqsMojOJfCtTC5OU7Opeg5aYfFqpIKmcmYtH4nTv/5PZi5aiMAYM/Sw/HCZ96LzTMTuDIRh7XXcnInvcdRaR4SkzC7cQ4Af6VdoNSVcnIuMXLOZV2Kyzqrcjph8T5EGEXI91gT/CTFdWzJEp55/0X4l6/figU//AWe/MlHyrqF3hB3N+/Y8K1z2BExLFoax9rVKbz0TD8wfXjncjA/gGf3PI2Xnx9EMy5Cc5uK/h4de3ZmIc3273e8EOMbgWMhCIIgCGJsGVVBn76+Prz00kvO/9evXw/LsjB//nwq6FMHlMu55J6bq5yZQ1yN+5YXrGHEpVRZXBqWmwdp97MMVIt1nMuiuJRqrwgpRKFh6eCco3lvH479zu2Y/sBjAIDUnJn4xwfOR/+Zp0KSFCDbA9Mynb5+AsknLoefh1eUAqXCQYzriNBhW5HUt3irN/dtIlFv565sWCxscbXhjKXo/ss8tK/dgCMeXQnrfaeVbG9y0y3GJfnDYr2ceWErXn81hWef6sPMyy1AK1nFQRTbSiUNNAM46fQmPPiXbuzZlcP02WK/FvI5C6rGIEljf07F75K39y9BEARBEGNPzeLy/PPPx44dOyDLMhYuXIgTTzwRH/vYx3DcccehqalpHKZI1IpSphWJaDHw/N4V2DywCcunnorDmucDgBPSCrgi04s0TFis7lnf4EZJKxLZcS6L/SJHU9BHOKdbtuD8G/+AI//xIiTTQrq5Ac9e+1ao130MW3pXo13WnDmKUL5KIm8kN1GWZDDGnPMykkActlpsnQkQoD7nNBGpNwc4+Lk6PV+5BTCGlZ98L87/16/itJv/hteu/FDJ9t5+k+J3RDcL6M50oy3S5hxj2yQNi49rwIqVfejcm8f0WZGShzkC0zLBOUc6ZSISlbBwcdwWl7uzmF5cp6szi1/83xYcc2Ij3npZ+1idDs9x2Q/ASFwSBEEQxPhSs7i86KKLnLzKSCQyHnMi9hOljDsobjJ3p3YBAJ7d8zRiagxT4lN9glIfJiyWMeYTXIDf6TQtA3DEmFst1rv/0YSIxnbsxgU3/h4LH10JyTSRT8Sw471X4MGLFkKPhLA8ZLuw3kJGTnXaGnIug6iSWrGgT1BslhT0qfdWJHXWQmOiUm+5qyU5lx7nEgB6jzkSPWedhrbHnsKU3/0J/Z+cgSd3PYGTpixHR2yyX1wWv7vJQhIPbv0bOmKTceq0tyCmxgAA02aGgZUWchnL2UdZcclNZDMWTBNonaQh0aiguU3Fut4Ccjlb9D39WC8K+Ri2bBifnEg3uoLEJUEQBEGMJzXf9X7yk5/EySefTMKyjhmuFUlcbXDeW9e3FgBQKBa7AIB8Weey8g201wkom3MZcFFrEZfK6pVo+PD7cdLFV2PRwy/CiEfx1PUX4a67foJtH3kf9IjdnzMRaoQqqWgKNzshvHoZcTlSzmWQ4dYvFZMB5xITKOeyDkTRRKX+nMtAWCz3i0uJSdj22Y/DkiTM/Pmt6Nu9AYP5Qeehk1cgMsac15qsoTO9D0/t+qczdjyhwGIWcrnh25EY3EBqyP4+thX7Zc6ZHwGHhR1bMhjsN7D+9SEAQG9XAYYx9vmXblgs5VwSBEEQxHgyqpzLnTt34le/+hVWrlyJgYEBNDU14bjjjsP111+PGTNmjPUciRopFxZbrh9df64fgN99HM65BOybU2/xDe+2hmV6bmLtG2054KKOKLRME9rfH0D0pp9CfX6FPafmJjz3jlMx+L73Yb2+B9PiCd+comoU71zwLiiSgsd3PFqciy16vTfb3nxPqQpBpUoqssiWn/cIzmXdh8XWgRA6GPCexnr4nCs6l6LwFJOQnzsLr158Mpbe+wym3/Rr4NqTkTfz4JyXuI/Lp50Ky7Iwu3EO7lj/Rwzk+51lDQkZHKYrLi3Tqf7qxbIspJL2705bh53LfPwpjfjbao431gxB04A4OGSFwTQ4ert0dEwNjd1JgbegDzmXBEEQBDGe1Cwu16xZg2uuuQahUAhnnHEG2tra0NPTg4cffhj33Xcffvvb32LRokXjMVeiSspWi4UIXbNv8qJqFGk9jYJZ8IvLcs6lVJ3jZ1qG25KAlXcuy7VJAQDW34fwHX9E5Fc/h7x9GwDAOGw+sh/6KNaedzxe6H8Z08MSoAOKpPoK8sjMbfjuOpd6yXy9bmJQ9JZD8RT1CRYAGsm5ZDXkdx4IyLkcG+rtPJbmXHLffyUmQWISVrzvAhz1yEpMve3PaDxvPrINMxwB5v2Ozm2c57xWJMX3W9HQqICDI5+xf1PEb0wQk5tIDRXFZdG5nDI9jMnTVazrsp3EudNkHDUjgRefHkTX3sKYi0uTCvoQBEEQxJtCzeLye9/7Ho488kj88pe/9IXGZrNZfOhDH8L3vvc9/Pa3vx3TSRK14Q2LFTmSlqddCAC0htuQ0XegP9/vu2EU/Sh943luNoe7gTa4p1os/DmXYi4+EcY51GefRvh3tyJ0/71geTs8t3DaGch++KMonH0eIEnAwEagH8gX56lKasVwV29lWaBynmUwfLAc3rmPGBYbdC7rPCwWlHM5JtRbWOxw1WLFckmSkGlJYNt178JhP7sFp/3iPjz3vYWuuKzw4EWRFOSMnONuxhMyODORyxX3UaEdiclNpJL+sFgAOHJpDOseBjSN4YLL2mDutQVl5948jkZD2bFGi+WpaE0QBEEQxPhRs7h87bXXcOONN5bkXEYiEbz//e/HZz7zmTGbHDE6ZM8NpihK44TFWnargZZwC3YO7cBArt93w+XNv3TH84jLYW6g7fYf/oI+zeEWZ7kQXNLuXQj95U6E//BbKFs2AwCshgRy774a2fddD3PRUb5xhWuYN3IAbEfROyevCHTFpWgGz0qWeec3HOpw4rKGsNi6FJfEmFDvBX1EgS3uFZfF7+GW916G6XfehwX/XI31L62GOfMce4wKD15Eex7DMqDJGhRFghYF8jkTHLxizqXtXBpgDGhuc6MBps8O4fhTmhGNMcQSEsKwxWXX3tLoif2FWpEQBEEQxJtDzeIyFAphYGCg7LLBwUGEQmMbzkTUjldsiVA2EbJmchOKpDiirz/fj5DkugnlW5FUJ5RM7obFivWmxaejQWuA0bUXhz+xCk2fv83JpQQA/YSTkL36fcj/yyVALFZ2XCEK80Xhq0oKZKlSFVh/WKz3hr/SNpXwhcViBOeypM9lfYmOIN7jqcf5TRTqzbkMfpYlziUkx5ksREJ4498+hKVf+DZOvvEPyLztU/Y6Fb4bMnPbCmmy/ZsRjTOYKcAocOfBUpB0uoB8jiPeIEOW3flxcMw/ogGplO2GTppsj9m1r/QB1/4ihC/nHKZlVhUWTxAEQRBE7dQsLs844wx8//vfx/Tp07Fs2TLn/Zdeegk/+MEPcOaZZ47pBInakT15jpqkIYMMTMttFyAzGc3hZgDAQK4fTcXXAKDvT1isZToOCQODtG8vtIf/jnfc/Qc0PfsipOIczBkzkb/kcuSueDfMBUeMeDziZlcIX0VWnfYewfxSIerKhcWyGt1EnyMq1eZc1nsrEi91oIkmLPXmXAavayEqvWGx4vtscRO7LzgDbbfdjumvbUHX724FlscrCi/h5JueSIdIjAEpIJezfM6lZXFIkn0+Nm9MAQBaPK6ld06ALf60kITmVhX9vTryeQuh0Nh9b7z70i2dxCVBEARBjBM1i8svfOEL+OhHP4qrr74ara2taG1tRV9fH3p7e3HMMcfg85///HjMk6gBv3Np39AJ59KwDITUEOJqAxRJwUC+3+lbB5SGjUlMqro4jWHqiL+xESf9/e84/OVfIvraGmdZujmOzWcuw4z3fxHGsuPtXMoqETfDoq2CwhTnveB83LBY+wbYJyhrzIP0OpdBgThiQZ86K/QSpB5ctoOBCeNceqrFuuLSAmMMj3/iclz9r99Hyw3/jfBvPg85XsG5lIRz6RGXcQCdQD5rOXmNzz81gIfv7sHys5pw+vkteGNtEgAwfU7YN55X8InXk6Zo6O/VsW9XHrPmjV27K8sjfO0HT+HKKxMEQRAEMWqqFpe5XA7//Oc/sXv3brz73e/G1VdfjW3btqG7uxvt7e1YsmQJTj311PGc66j45Cc/iRUrVuDUU0/FD3/4wwM9nTcFr7gUbgPnlq8aJGMMTaFm9GS70Z/rqzhWsLqr3wlkaNjTg1krN2DGyg2Y+8rXEOp1xzJnzUb+/LeicN5b0bdsMRpUDYYar/l4pIDLoHpyLoPzE46EUa7PpeTNHa0x53KksNgJlnNZ7+J3wlAUlPUgLAGU2NClfS6ZEzpuWAYgAV3zp+O1C0/C4vtXYPmtD2LDFxeUHdrJueQB5xJALme3ITIMC08+1AfT5HjqH/14fXUKnakcYi3ysM6lEH8z50awfk0a2zdnx1hc+p1LgiAIgiDGh6rE5c6dO3Httddi9+7dznvxeBw//OEPcdppp43b5MaC97znPbjkkktw3333HeipvGmIdgMWt1znklt2Hzq4Iqs5bIvLgfzAsGM56DraN+zA7NWvYfK67ZjxymY07ut1FluyhN4lC/H6CfMw+YqPomnxKc7N7v7UfgwKO0VyncvSPprVtSIJjlmOYavFBsVESc6lV1zWifDw4JtSHc5voiCEeb0I9OB1XS4sVlyblueB09MfuBgLn3wNS+55Bp1XXg7MLB1bKRMWGy4+K8pl7bDYNStTSKdMzDk8AnBg68YseMTAjNnhMm1SLIi3LG6hN9uLaXPt36ttm7N4y36chyCmT1xSxViCIAiCGC+qEpc33HADJEnCbbfdhqOOOgq7du3CV7/6VXz1q1/Fo48+Ot5z3C9OPPFEPP/88wd6Gm86opCPKLxhcTcnSgiwplBz5e3zBbRs68TU7T2I/WENlNUrob6yCm/PZn3rdR02DTuOPRw7jpmP2BkXYUgDtie34a1zFoyZaAnmO3pbkZQ4l8OIS9nXr3Pkufn7XJJzSZRSb+eupFgsAtViITnVpC1uwuT2BtmmON748Htw9A0/x7E/+DVw5nUlgymSW9BHEI4Wncushc0bUnjtEXs/p5/fiplzwnh5xSD+vl7DlMNKXUhvX8xkIYn7t9yLOYl50ELTsHNrFuvXpLBjSw5nX9zq5G+OFq9zaZBzSRAEQRDjRlXictWqVfjCF76A4447DgAwb948fP3rX8eFF16Irq4uTJo0aVwm9+KLL+Lmm2/GmjVr0N3djZtuuqmkYNBtt92Gm2++Gd3d3Vi4cCG+9KUvYfHixeMyn4mEEFlCIJncdMLZxLIWtRGJfb1o2t2Dxj29aNrTg6bd3Wjbtg9Nu7shWf7qj1aiEXuOnocdC6Zi78LZGFp6FHoi7jqHR0KwDFt8jqWgCgpIRVbdtiYVwnaFu+KrilqhN2Yl1OHEZQ2tSOpNgAD1OaeJiLgO6uUBQknOZTEsVjh3siQ7D1lMboJxd/11l5+FKXfcg0kvvorkPX9F/pLLfWMprIxzGbX/u3VjFve8sg+N+gzMmBPGrLlhMMZw/ClNSE5PYHdqqGSu3ONcDhXs5QUrh5lzwtj0Rga337wXnAPzj4xi9mHR0Z6S4pzdnEsKiyUIgiCI8aMqcdnd3Y0ZM2b43ps5cyY45+jp6Rk3cZnJZLBgwQJcdtll+MQnPlGy/IEHHsB3vvMdfO1rX8OSJUvwm9/8Bh/4wAfw97//HS0tLWVG3D/29+n5WCOZBtDTA7l7EFKhAOg6YOhg2Rxmvr4Z5kAvZkt7Ed23ER15FW2ZP+PtW1ajaSCH5oHPoq2rE0fp5W+0htqb0DN3CpKHz8Xc5ZfCXLwE5vzD8di2+9Gd6QZgh9UyT76mCROM2YaHLLExO1+KrPhMFE1WwMDAGKDKsm8/iiyDMcCE3VdPliVnuVpcBgByYLtyqJ79ypJ/fVmSfXOSZVZxeTX7erORZclzbFLZ+Yn36m3u9YQsSc41Xw/nSZH916UzL8aL30vZ+T5ZsMDBnfXTKODxT78D7/zMTxH/8n/AOOdc8ESjM5amaMXvlukca6TBFdXxJoZLz+vAkUsaIMvu++J3AfCfI+GqMomhYOWdOc2eH8WmNzKiRSd2bM1h7uHl2xRVDXOP0+RGXXxWxPhDv2HEeELXFzGeTOTrq+ZqsW8mp59+Ok4//fSKy2+55RZceeWVuPxy+wn71772NTzxxBO46667cP3114/pXBRFQmtr7cVoxo18Hph/JLBzJ5rKLL64wmZO7iNjwKRJ6J6cwMDUFqRmdGBgWiuS09vRP2cy5JY2ZI0sWiOtWHKk62A09sWQlWyXoSkag65knGWxuArDYojzMNpaE2iOjM35ChcY4nG3uuPk9haYlol4ZxjNDQ2+z6WfJRAfDCMcVhCXwmhujLvLM3nEO+1xWpriI36eKbkJ8QF7/fbWBFrj7vp6KIV4tzun1pYGtEbd5WY44yxvb00gpu3nzfEYI+cM55y2NMfR2lz5XDQ319fc64m8oSIeD0OTtbr4fWjKxRDPutdlQyKM1tY4EmYY8WQYrc0NmNTaiPjuMGJRDaqkIl6snCrJJvpPOxpdl52PSX99CC0//B7w4x87Y7WZCcTTYcQT7rFOmhyBojAYBsdVH5yBtyyaVjKnSJeCOLP34T1H0U4NuSwQi4agykBcCyMeD2HpiW145L4eJJoUJAcM7N1R2O9zG92rQlfsOXjnTxwa0G8YMZ7Q9UWMJxPx+qpaXH7gAx+ALJeGEl577bUl769YsWL/ZzYChUIBa9euxUc+8hHnPUmSsHz5cqxevXrM92cYFpLJ7MgrvllYFuInnoxQezsMJoOrCqCo4KoKhMPYyZJIhhnaOg7DVt6DUOsUTJt/PJ7Iv4Hm2UfipCWXAoqCx7Y/jN1Du9CgJTBUSDrDN2Y5UvkcIlYBvb0p5/3UUB6pdA4Sk5Cy8khlcs6yfpaCxS2kUjkM9GdgZfzVIUdLzsghlXL3M9ifgyZrkPUwYlazb37JpL0uzw8hrecwFMo5ywfzWWecZDKHXi2F4RhKFZz1BwYyUPLu+gOZrG9O/X1pMM9NfX827Szv60sjp5ZvMH+gSObTvmPrtUrPhSQxNDfH0N+fhmXV1/zrhYJpXyOabPmuwwPF4KD/uhxAGr29KfT2DyGVyiE5mEM/yyCVykE1MlAk2fkOp2D/d80nP4AzHn0e7Gc/w+Db3wlz6TH28qR9rN19g+hV7GNNpjI49ZxmqCqDpOplz0H/YAqpfA6KpPi/q0MZQAHSmTxSVvFaNFOIzbNw7cenY9JkDTd+fSs2b0ihq2sIsjz6p7eDQxmkCvY+uvsG0Ssf+M+KGH/oN4wYT+j6IsaTer2+EokIVHX41LKqxOXHP/7xMZnQWNLf3w/TNNHW1uZ7v7W1Fdu3b3f+/tCHPoRXX30V2WwWb3nLW/CLX/wCRxxxxKj2WU8fLsCQuulmhFrjGOxNlcxtxbYH0Zneh1OmnYoXdz+NSdEOxDqOQ+fWNKKN7bAkGbA4GrUm7OK7EJYjSHJXXCpMtcPSuOQbm4GBczt/kUFyQtcAQDftEFvO7f+P1fli3L8fGQokyHjbvEsB+Pcj1tVNvbgNc5dz5o7D2YjzkyBXXF8co/dv33g17uvNxjt/y+LDzm+k5Ycy3Cqexzr5jMX3U2BZFiyLwzRN+3trl/QB54BhGv7rtIje1or0l76Khs99GrHPfgoDDz4GyLKznW7qzrEapoGGRLHQj2lgdecqxLUGzG2c545X/C4y+H9LrOKOucWdORjF+c4uFgCaPieCLesz2LMzh2kzR9+b0jANZx8Fo1AXnxXx5kG/YcR4QtcXMZ5MxOtrworLSnDOfcVWfvGLXxzA2Rw4lEBBH4tbsEQrEk8xm+awnZsaUfzVHEPFKrNyhSqpEpMgBYqHGJbpFDappo9ktQTbjXhbhAQR+zfKFPTxFv+ppgDLfvW5xASqFkutSEZNvZ27koI+EAV9RKVo5ha94iYkXnptSkxC7r3XInz7bVBffhHhW29G7voPOQWuvK08vFVYc0YWr/euBQDMTswp+S4G8W7rvmf6/p41N4wt6zPYtim7X+JS7GvNyiHs1fdh6XW87j47giAIgjgYqL+73ippbm6GLMvo6enxvd/X11fiZh6KxDQ7uzKu2v/1tSLxiLVp8emYGp+Kw5rm+262NDkEoFTYCdHIwEqWmdxw++mN4aXlFWeKpAx7UyiEszhW77pSjdViFdkN6y09Dwj8PbFakXgPgCrHjh6nz2WdCBUWaNEj3EHxvfQuN7npfE9iqpvTITEJkCQM3XAjuCwj9u2vQ+rcV7bPpVcM5s2887on6/4ui33wgEVaXlz635tzuF0l9vEHe/Hs4/3YtikDw6j9Ca7FLeSyJrZuymLTxiFseiMz8kYEQRAEQdRMHd71VoemaVi0aBGeffZZ5z3LsrBixQosXbr0wE2sTljWcTwuOewyNBRFJocrLr1uZEgO4ZxZ52Naw3Sn1QAAqEXnMtjqw+tcssDlY1iG45SMtaAS4w3nWtrrlW9NAvgFZVV9Lj3nI+jE1tLnsh7FWz3OaSIiRGW9nE8xD/EwJOhciu+ALMl2NENRzJ02/QxnDFWyv/vmUUcj+8GPQBpKIvbFz0NmpX0uTZ+4dHM996R2Oa+FcynmIuBlxKUZcC5nzongnItbYZocD9/Tg1t/uht//2v38CehDBa30LmnYL9mBlY83l/zGARBEARBjExdi8t0Oo1169Zh3bp1AIBdu3Zh3bp16O62by6uu+463H777bjrrruwefNmfPWrX0Uul8Oll156IKddFyiSgkSo0XXyLLPkBjOIVxCFJK3sumIdiUl+AcUYDMvwOCRje7Mt5uHtPVkOTfYvZxUcxGrCdn19LkcKiy21Msvut17whcXWiTCaiNSfc1kUl8XvC3ecS+57n4E5vwkykzEpOgnvOPxKHNdxPOY0znXGS/+//4Q5fQbC996Fpn88CiDoXLqCsWC6onN3ajeAyiGx9rYjO5cAcOo5Lbj+UzNwylnNUDWG1S8mkc2YJetV4ulH+rDyhX7s2WWLX6aY2LIhi3278yNsSRAEQRBErdR1K5I1a9bgmmuucf7+5je/CcDOAf3EJz6BCy+8EH19ffjxj3+M7u5uLFy4EL/61a/GpcflREUIGwsWLMu+cavk/imS4oS2OWGxVYhLmcmQmFQUr0XncoyfW7jO5fDiMhzIHfXOw+dcVjE/u1clA+e8RCAGxcRwOZf1IjwqUe/zq2cYYwjJIYTlyMgrvwk438mAc2k5OZfu8ryZh8xlZ92oGsWitqP8A8bjGPr+j9D0rssw6YtfQuhXn4EedQVjJeeyN9uDnJHzDRUUjvbf8rDrCKbPCmP6rDDyOQsvPTuIVc8nsfzM5sonokguZ+LRB7uxI54D4wxaiGHhkWEM/RPY8Hoak6eFRhyDIAiCIIjqqWtxeeKJJ2L9+vXDrnP11Vfj6quvfpNmNPFgjIEx5su5rOTaecWXJsJipSrEpWSLS93Ux8+5lGTAHNm5DMkhSExycz8D7molsVgJVVJRMAul4jLo9lXIuaxH1xKo33lNRC6ce7ETMnqgccJiS5xL//dBLDcsY8TvlH7WOchdeRXCf/oDzvjfu/Hif33CWVYp5xIAurNdTsGwclioXlwKjj+1ES89O4iXnhnESac3jdhcetO6DEzTHlPmIUyayhFNcAwByKSqdz8JgiAIgqgOusM8BJAgwbRMJ0RNqXAjLHscTVHgIyz7n+z7qsV68iCDBULGK+dSHSHnEvBXvg3OQziK1c5P3ITX7FzWubj0QmGx+0eDlkBUjR7oaQDwikv7e8JhCyv3e1nMuXQK/lglxarKkfr6t2G2T8JRf38ek59b7bzvFYMFs+DbRrd0Xwhtac4lLxG2wZzLIB1TQ5g6M4S+Hh39vfqw6wLA+jVpcGbhyCVxHHZYIw47IgZJs+ecSZO4JAiCIIixpv7vfIn9RmISOHjRKaicc+kVUlNiU3HWzHNwZKs/TM5pNQLJcUAVpjihtqLX5ViLKjnQWmU4wsOIS3EjXe38EqFGRJRIyTmrtqBPvQo3rzimsNiDh2Dhq0rOpbfwVTWVk3lzC1Lf+x8AwCnfuwUsNQTALwaD+zBMA4blLi9XLTYYos85961nWiae2PkYdg3tdN5r77CjKgb7K+dzAoBpcmx8PQ1J4Zg1L4KTT2tDU2MIsmrPqZa8TYIgCIIgqoPE5SGACBMVLoIslf/YFY/wYoxhesMMJzxWwDyOnOzcyKqOU2JYxriIFckRl9U4l24/vGBVWK/zWg1nzzwXbzvs0mEL9th/VhCXdSrc6lX0EvuHuNzEdzOYcymXcdSr/S4ULn4bNp5+DBL7ehH75lcB2OIviIgc0C0dBh++x2W577PXDe3KdGJHcjse2/GIs6/GZvsB00Df8M7lxtfTyGUtzDpMg6LY/T0VSQHTiuIyPXwILkEQBEEQtUPi8hDAEZeB0LgglUJAvVQKi3V64HFzzIv5eOdWjXMZUdwQxWB+qXAuq6kWa+9PQUguLfpRrXNZr2GxVC324MTpYym5Ya/e/wYL/tjvjexcCp7+t/cgm4gi8utfQn3u2bI5kiHZfrhjcsMXFguUOqkiX9tLOTcUALYMbgYANLXYvzXDOZdDgwbu+1MXAGDJCXY7JonZvXklpRgWS84lQRAEQYw59XnnS4wprnM5QlhsUSAOFyYnnECJMUdEKpLsuJ5if2PNqHMuA5d4sKDJaKlGkHlFd73hc1Tr1F0laqc05zIg5pycy/JVlEdCb2vB4x+7DAAQ/9RHIWWyJetEVY9zGRSXKA3TDf5eeAWl1/lc0/MqOOdVOZf3/7kL6ZSJZac0Yt5CW+yKqtayzKBoQJZyLgmCIAhizCFxeQjg5EAVm5+PlHM5XIGP8q1IFF+1zAYtsf+TLpmbEJf7mXPpuLP7J6hKCgWVEdTLp56Kk6Ys36/9jBfkVh6cOOJStCIpOoWmU8W5NOeylodBiqRg3bnLkD33PChbt2D5TX8tWUe0ZTEssyQstlwO6HDOpdf5HCoMoSvbVZVzuX1LFrLCcNQ5WeStQnFfsvOwKRxlyGYtWBavOAZBEARBELVD4vIQQAiqQvEmq5J4VKpwLitWi/WM2TJM+4HRIsavqqCP7M25LC8CxyN0N8jsxjmYGp827vsZDb6CPiQ0Dxq817doQQS4uZFyoFqs/boWcakCjKHnv2+A1dKCpXc/hbkvbfCtEy7mPBuWDsMc2bkM/t5wr3NZnLcYc8/QLiSa7N+pgf7yzmUhbyGbtpBt24An9zyGF/c+7+xLnJ9IjAEcyGUp75IgCIIgxhISl4cALOBcVsqxkqrIufRWi/UW2fG2N2kKj9zcvFYYqncuI562EKXisrZqsZWoxrmcKJC4PHgQDw0kSQYDc8ScaElSLueymlYkAkU8qGprweB//xAAcO73bkM4mXbWEZEDhmVUdi7hdS79+/c6l2L7mYnZAIDdqd1QVQnxhIxkv1HWeRSiM5nYBADoy/U6+xK/heEYQ4+2AS/tfrnqYycIgiAIYmQm7h0xUTXihlIX1WIriEu3WuwowmI9uYXNobEXl65zWUXO5TDOpRMWW8MNdTkmuiDzFfShnMuDhkatEZqsoTXcarcgqtCKxPsbwGr4Z0BEDuiWgcxFF2Htuccj3jOAs3/0Z2cdr3NZUtBH9LoszouBDZtzKbZvCbWgQWtAX64XGT2DxmYVlgUMJUtDYwf7DHBwhKL2PkTFa5nJznUfiUjoCW3A6s5XAACv9byKNT2vVX0eqiWZH8TrvWtL2rAQBEEQxMEKictDAHEjqRebnFcKgysXMlcCKxcW6y/o0zweYbE1tCLx5lwGq8Ie3nw45jUdhpgS26/5VGo9MlEgQXlwkgg14soFV2F+8+E+59Lk/rBY7/eiJuey+P0zuAGLW3jsk5cj1dGKIx5biQWPrQQARIvVmg1ulhT0EQxf0McVYmJ7RVYwpRhivje9G03NxbzLvtLxB/p15KVBRGOybwzJU5k2FGUAs5DPmdBNHas6X8bKzpeqPg/VsqbnNby07wV0Z7vHfGyCIAiCqEcm1h0xMSpE8RpdFPSpcDPpVosdJiwWrnOpyraLockhnxMW9vSZHCumxqehKdSE1kjbiOt6e3MGcyvnNh2GU6adtt/iaqI7l4ArMA+GYyFcnM/Vc41b3AJjzHlvtNViRVi6YeowuYlCPIJnv/JhAMDZN96JePeAk/Osm6V9LqvJuSwXFqswBVNjUwEAXZkuNLYUK8aWybsc7DOQUroQiUn+fcEVsuGoPZdCwULGSJeMMVbkzTwA98EeQRAEQRzskLg8BHDDYkW12PLun8ibrLZa7MyGWThpynLMbz4caX38btAAYE7jXLztsEt9bUYOJBPduQRcUUkm5sGLt6CPv4jP6KrFit8G27m0RWD38Yux6p1nIjKUwXk3/BFhye4La3KjtBVJmZxLWQo6l95qsfZrRVIQcsJtDce5HCjnXPbpSKtdiET9v2MSY86DtnCUgcOCXuBIFVJVH3+tiDx3r2AmCIIgiIOZiXdHTNSMyKHUnYI+w4fFDpeD5RT0YRIUScHhLQsQkkPOzZPXNawHCkXnYKw5mNy+g+lYCBcG5og5Du773vvF5SicS0v3uY8rPnQJemd1YM6Lb6Dp5l8DsH9v8oHvHweHYRlO6Ku3yI6gXJ9LWVKcOZvcRGOxHUmyTDuS3v4s0nI3GuIh3/uizyUAhCIMnHEU8haG9KGqj79WRJ47iUuCIAjiUIHE5SFAVLXzC8WNZqW8ReEgDOdcOq1IApfOssknYGp8Kt4656L9nu9YMKNhJgCgJdI6LuP7WnlMUOuPROXBjcQkN+fSMn2ft7egVc2tSGCLJiGYJCYD4Qju/9L7YKgK4t/8L0zdtBeGZTgPd0KyLfQKZh5/WPc7PLL9IWeO4rdEPJjyiUvLDYsV87S4iWjRlcxmS0Xb7sHdgMQxf9Jsv1vry7m03ysUOIYKSWedsS68I5xLi8QlQRAEcYhA4vIQIKZEfX9Xdi5H7nPptjLwjxFX4zhn1vloDDXtx0zHjjNnno2rFr53XMNoJ3rO4kSfPzE83j6XFizfQyPvw6FawmJVR1zqMC17bOEIdh82Dc9+9HIwXcdbv/ZrsFQK+WKuocjD7s/1AwAKxfftsFh7XkKAmr6w2KK49AhD0zIRjtjbBPtUGgbHvtwehCMSZjTO8D1Isx1S+1pXw/Z2esHCUMF1Lp1qtmOEiBYR54ogCIIgDnZIXB4CRD19HxkrLf0vEDeO8jAVWSWnIMj+tfJ4M6imsuz+4OQsTlBx5uZcTsz5E8MjPl+LW+Ccl7h4zutawmKLRbx0s+DPmyyO8cY7z0P+/LeiaVcXzrzxDuSMLAC76BdQ+p1kjDnbhoqFgPwFfYpVbj1hsRY4wlH7NyyX8TuCg/0FDCn7EI0pmBafXlLcS/z2qcVnToWChbTu5lx6XdOxQKecS4IgCOIQg8TlIUDU03ZjuBvJjthkLGo7Ckc0H1Fxnanx6ZjffDjmNM4d0zlORCa6OJuo8yaqw+v0ef8GAjmXNbQi0SRbrOmWActy25s4fWhlFUM3/i/Sbc1Y9PCLmP3gk9Bkzc3VRmkhrISWgMQkNBWjHniFsFiRG2o7l0VxGXAut+zbC0PKYXK8AyE5BFVyxaU3LFYL2w6lnud+53LMw2Ip55IgCII4tCBxeQjgdS6HE5eKpOC4juPRFG6uuE5YCePkqafUTfjrgeRgCSud6PMnyiM+V1EUxy8uPWGxNfwz4IbFFtycS0l2ioApkgre2oqnv/5xcMZwzg/vRPveAecKE26ns28m4bjJx+OdC96FuBa31/EIPDcsVnEErMlNqKoEWWE+cZkzcnh2z1MAgDmJeQAArei02sfsikslZG9XyFu+irbB+VVi88BG7E3tGXYd0zLdsGQSlwRBEMQhAonLQwCfc1mDS0EMz4R3Lif4/InhEZ+rEGhShQqxtfwmOAV9TN3XP9JxLovj9h2/GM9dfS60bB7n/NcvIOu2uAqGnToFduSQ60yW6XMpM9kNiy0uD0ck5LKW4zY+v3cFkvkhJPRpmBOfDwA+51JizBHSFkxoGkOhYPncymqcy7yZxzO7n8Y/ikWJKiFCYgHXPSYIgiCIgx0Sl4cAqqw6uUcTIVdyokCijKhnhHAzrFLnslKI7EgIJ9DrXMqSm8soxKfMFKx43wXYvWgO2t7YimN+/DsAlcWldx7BarEyk3254mJ5OCLBNDkM3W5vsnNoB5ipYmrmWGihYm6lx7lkTHK+s4ZlIhqXYZpANuPur5qcS5FHOhKGV1ySc0kQBEEcIpC4PESIFivGkrgceyZqWGmlPDjiYKHoXHJR1bW8oKylFYnqzbnknpxLR1zaBXtUWQWXZdz/lfch39SABX96EIc/vsqXTwmUF7z+arGm44pKRXFochOGZWBvdBWycj+yWQtdmU5Y3EKCT4IMFVqI+eYr5sk8grshYc81NVRbWKyogDsSPudyjAsFEQRBEES9QuLyEEHkXdbSMJ0YnoMmrHSiz58oy7A5l55QWFaTuPRUiy2GkNq5jLJvuVJsazQ0qRmrvv0FcMZw/g1/hLZ5q2+8cuLSV9CHG74KsxIkmJaJzvQ+DIa2oV/bhlzWxJ7UbgBAwuoAANe59GwrM9kJizW5gYbG4hwHTSQHDQwNGkCZsNihQhLP7V2BnJEDUJ1zyTmH7s3lJOeSIAiCOEQgcXmIIPIuKedy7JjoBX0mvCgmhqXqnMsaHjiJiqu6pTsOI2PesFjF918ASJ62HGs/8E5o2TwO/+TnoGTznnmUFhkS+YmmZYJz7ghVsX8ODoMbUFUGDhO5rIW9abu4Tty0xWXICYv15lxKTisl0zIRb7CPOzmoY8Xj/Xj60X5ksq7bKNg8sAkb+t7A7tROAHbO5XC88NQAvvsfW9C5L+O8R2GxBEEQxKECictDBOFc1hICRwzPRHcuJ3qfTmJ4mBMWO3wrklpD5VVJtcWltxVJcYxy4lKTQ3j9A+/EtmVHILZxC8794R2OQ+h3LkUfS9u5dIr5eJ1LZjuXJjehaBI4LAykUujP9dstTXS7gaVwLjUpKC4lZ2zhXO7dmUehwGEYHKtfTJYcb8G0BadRPN6RnMsNr6eRz1l4ZXWf8x4V9CEIgiAOFUhpHCLEVLvMP+Vcjh0TPWdxojuvxPAEC/pUyrOUanzgpMoqDMuA6ankGizoI/4L2JVgISt44IvvRW7yJBz5j5dw9N9WlOzb7ctp+eatBEJbTW7CtEzbuWQcnUPdAOw+vfmcva2Tc+kp6CN55mlyC5GoBFkGTI/ue+nZAZimPzRWFOYRIj1n5oY9P73d9vpvvD4IDu7bliAIgiAOdkhcHiJEFPuJPuVcjj0T3rmcoPMnhod5QkCByjmXUo2h8iKvMmfki2NJjnB1ci59zqUGxhiyTXGs/Z9vwJQlnPWTP6PjjR1lxaVwLp0el75wXnudglkohsVayBZDWVVJRaEgxGWpcykz2XVzLQOMMcQb3HkmGmUMDhTw1D/6fC1J9KC4NCqLS8OwMNBrrz+YzGGwzz4GyrkkCIIgDhVIXB4itEbaoMka2qLtB3oqBw0T3rmcoPMmqkN8uuUK+rAKIbLVICqwZo1McXvFeWilSEJkuqItJIeca21wyZH454ffDkU38S9fuRlKtxs66rQiKYrhcmGxYh3dKkDVJAAc2awrngs5v7hUJa9zyUrc3HjCHi/eIGPxsgbIKsMTf+/DA3/pdgSmcC5FoaH8MM5lf4/h1ASymIHdO3LFMUhcEgRBEIcGJC4PESJKBFcuuApHty0+0FM5aJjoOYsUFntwIwUK5FQq4lNrHrbodZksDAIAImrUyemOqw3FMf3OpcDiFlZdfjpeP3cZEl0DmPHBfwd03TdfJ+eyOG9ftdjivAumDlVj4MxCLueK50LBVnbl+lzarUzcarEAnLzLSVM0NLdqePcHOxBPyHjx6UGsfM7OvxRVX8V5zHqcy2BfzJ4uu03JgqNigGxg68Ys9u3OV9U/kyAIgiAOBkhcHkJQ+OPY4oizCX5eJ/r8ifK4BX1EbmR5t7LWnEuRTzmYt8VlTIniyNZFePthl6IjNhmA3zHU5JBzjVncAhjDP/79Suw7fAZiK15C7IufL87DnpNbLVaExfoL+gC2c6kUw2JzeY+4zFsAA1RV9Ll05+HNDRXO5cy5Ycw5LIJ5R9jieNLUEK68bgokCXjgL93o3ldw1nXDYt2CPkHR2Ntti8s58yM45dwEOAdefnYQg8nhK8wSBEEQxMECiUuCGCUT3rmc4PMnhkcIOsMq0+dyP6vFAq6wiihRSExCY6jJWUeR/QV9xDXmuJIhDfd+83oY7a0I//qXCP/+N65zyStXixW5ogXTDovl4Mjm3JYo+bwFTWOQJCEuvdVi/QV9ACAUknHUsQ0Ih+1xObcwY04Ep53bAtPgWPdqCrpV8G3jbUVicQsFs+DMubfLdmFb2zXMOlzD7MMisDjQtW/4IkAEQRAEcbBA4pIgRslEdy5VWfO1ZyAONiq3IinXAqRa1EAl2HK9c4XbKDMZiqT4ncsiqUnN6Lzlp+CKgvjn/w2xlauK6xRzLp1qsaUhvLpVKLqTHHnhXMJ2LkVILOAPyZWY5IjcchV0vfObM98ugLZvT95Z1+KmT0iKce7a+Gf8c+fjAFznsnWSBt3S0dxin4f+fhKXBEEQxKEB3VUSxKhhgf9OLE6eshxnzzzXl9NGHDy4lVHdfpTOMk9xm1ofLngFm8i1DCIK+oh1HeeS+9t8FJafiPR3vg+m65jyrx9GrGfQEW9i3v6w2Mo5l9xisEz4xKXE3Eq23gcpIuR2TuNcHNm6CNMbZthjFOfXMTUEAOjcnfeFxQZ7XObMLPJmHil9CADQ06VDlhmaWhQYlo6GRluIDwwUyp6nIBv61uPhbQ9OiL6YBbOAXUM7fZV1CYIgCILEJUGMkokeVtoUbsaU+NQDPQ1inHDyC4vhpSwgIoXoqjUs1tvDMqqUF5cilDUk2yJNfEd4IEdRYhLy174f2fdeC6WrC2/7ys3guZxv3hWrxap2WGwuX8zRtCNSfeIScIv62DmXzDd2TI1h2eQTnD7AImw3EpXR2Kygp6eAbKEYFmuZyAYqxYqiQ5xz9PfqyKRMtLSrkCQG3TIQT8hgDBgYqC7ncsvgZuxL73OKJdUzr/W8gsd2PIKubNeBngpBEARRR5C4JIhRMtHDYomDm2DOZVBECvFZLqx1OLxhsVE1VnadqBLF5NhkzErM9s0lWACHMQYwhtR3vo/csuMxdd12nPTtXwCce8JiSwv6FMwCJIlBVtywWKMoLkMBcdkcakZci0OWZLdabKD3pxCdXheuY2oIFjcwlBRhsRbyRlBcFtuUgOOxB3oBAIuWxp1lsswQjyvIZHVkMyO7kSK/s2BW53QeSDK63YomeE4IgiCIQxsSlwQxSia6c0kc3LihqKU5l4At2kaTc+sVlxElUn7fjOG82W/FkknH+N7n8IdQOvvWNPTdfAuSHc2Y9/enEf2f/y5bLVYI5EJRhCkakM+b4OAwCvbxaiH/9/HsWefhbfMutfcHUdDHLQIEeM+VK347pmqwmIHkgJtzmQsIKb0oLnu683jt5SHEEzJOPrPZt6ylMQbOLHTtG1kwClEpjq+eEccnziVBEARBACQuCWLUkGNJ1DPBthtB53LZ5BNw4pSTax7X51wq5Z3LIOXEm3eOAIBJU3DXtz+EQjSM2Pe+hfb7H7bn7XFWJUlUdbVFqqLZYxo6d8NiNf8/axKTHPczeE7EvII9NgFg8rSQT1ya3EQ+EBZrWgYsi+PlFQMAgDPf2uo4p7qpQ5EUNDeHAQD7dvvzNcshBFvBHF3rEotb2JHcDl2cjBowLANbB7dU3ZNTzNUicUkQBEF4IHFJEKMkeGNKEPWEWxlVOJf+hyGzErMxv/nwmsdVqyjoUzqZ8uLS63zKkoyeuVPx6Nc/DC5JOOrL/42pa7b6w2ID/2TFGu28y54uHYZedC7Dlb+Pwe9qSVGjYFgsDCT7hUNnobM7jZ3bso641S0D619LY6Bfx+zDIjjmxISzvWEZkJnsist9w4tLzrnrXI5CHALArqGdeGLnY3ijfx0sbmHX0E5HSI/E671r8NSuf2JbcmtV6wsBa1rViVGCIAji0IDuiglilJBzSdQz4vo0uehzWVtuZSVUj9iLVCjoUzKXQFuUI1sX4YI5F6E50uysIwTe9pOOQupb/w25oOPtX/4VIrv2OevIkv+frBlzQuCwsGtrFkYxkjToXJabR3Cf5arZtrSpCMeBvl4DWzZk8PSjPbjzd7uw+oUh7N1uH0c6k8fm9RkoKnDJezqc/poWt2ByE5qsobXNFuNrVg06rUrKIZxAYPTOpRCnWT2LHcnteGzHI9jYv6GqbTvT9nlOFYZQMAvYMrh52Eqwbv9Pci4JgiAIFxKXBDFKxG1q0BEiiHqgUvGa/WU0zmWwWmxIDqEj1lGynsQkWNxC7voPYdO7LkZ0IIU51/8r2OAAgNLQ3klTVWgRoHNvAUMD9nGG9sO59OaEShLDeZc1gQFYuzqF7dvSkFR7/n2d9n/3dWbAi/NoanbDhYVQVCQVjYkw5i6IIJM18Idf7EGhUN7p8+ZZ5j0FfXYO7SjJ9ayEEHq6VUBaTxfHGnlbzjl6c3ZBooyRxRt9r+PpXU9iy+CmitsIIUvikiAIgvBC4pIgRgmFwxL1jBMW6ziXYyQuizmXEpMQlsPVzaX4/MURbxUeyMhMdsTKyk+/D1tOPBLhTZuRuP59gK6XiEvGOOYuiIBzYM3LKQCAplV+2FMqLplvPha3kNEzyBb7WU6bo+KoY+NQFIbDj47gkqvbwRjQt88CB0d3ly3cEs3+XrFCXKqSCokxHLk4jpmHaejt1rF9U/nwWN0jKIUr2J3pxuM7HsWr3a9UPCYvIuy4YBacMarJoRzMD3hczwyShSQAoCtTuc2ICLelnEuCIAjCC90dE8R+QiKTqEfcnMvyBX1GiyqpkJmMmBqrOjQ8WNCnUoVlxpizji5Z+NtX3of8EUdAe/JxxD/36ZLtLG5h5jy7l+ZAj71dsM+lf3yp7N8il9PiFv684U+4c/3tAOxzN/uwKC64rA2LjolBDXM0NSsopGWkkia6e+x2HI1NfnHpVLqVZCiSAsYYZi+w59ndWT40tuALixW5l/nisurCZJ1zZxWcvM1ghd5y9GR7nNdZI4tM0fX0vu/FtEznIUC1BYAIgiCIQwO6KyaIUUKikqhnhO4TN/9Sjf0sKyExCWfOPBunTju95m1FTmMlcSkz2eO+6dCjYfT+7o8wp0xF5A+/w9yf3OwfDxaaWmXfmMOKy2DOJSqHxZqW6TiQDAwmN2FaBto6NMhQ0dtVQE+P7UI2NNnbd6b3IVUYgu6IS9XJdW1ps//btbe8uPQ6lyJEVsynWgEnqt0WTL0m57In2+28zhoZJ6R2IN9ftiCQNz+02oJBBEEQxKEB3R0TxKiharFE/RJ0LoOVVveHqfFpaI+2Vz+XQLXYSt8ZkXMJuG6dPHMOBv/4F1iJRsy66RYsvvdpZ33OOWSVIxaXIf45G05cVsq5dIsfuSGeaT0FwyOiLG7B4CbaJmmQuIrufQX09eWgqgyhCEPBLODh7X/Hs3uedrYTLi8ANE2y99W9r7wL6S3iI16LczGSQBQ5mSKn1bB0x/20hinKI+guikuZyUXnMlMcz83F9KJ78kOrGZ8gCII4dKC7YoIYJZXcF4KoByoJqQNBpT6XQZx+k9xCwSwUcxYlmEcuQvI3f4Clqjj7R3/GYU+/6mxjcROJJgWMC+dyuJzL8tVihfA2PS5cSk/5HDrTMmFYBprbVIRVDfv2FKBbOhLFkFjd0sE5R9bIuqHIkuKIy3hCghriWDnwDLYPbiuZW7mwWFdcVs5r3Dm0A3es/yNe63nVWb9/MOuE7PIqcy5DcgiJUKNT6VbQWyY0VveJbsq5JAiCIFxIXBLEKHHzzUhkEvVH8OGHXAfikmN451IIMcMyoFs6VNlTgfWU07D5B98C48CF3/gtpr62xVm3sVkBK/5zFtoP59Ib4pnW0054KwAnLFaWGY47oRUAYMFEolEBL/4PsIWXW9BHccKRTW4i3pFHD9uBlTvXlszNX9BHL44/snP5Stfq4n9X2aK8YOGxhzrx4L12ZdqRci5Ny4TFLYTkECKKW6BJK1YF9obMunP1iG4SlwRBEIQHEpcEMUrEDTM5mEQ9Eiy2c0CdS1ZdQR+Rn1gw8+CcIySHfMsHL7wAj3/sUqgFHZd88Zdo2bYPhlV0LvcjLFY4moZHKA0Vkr6wWMAVfUuPbUYsoeNQpgAAxOxJREFULsNiBhqaFFjc8oSkGo5ItcNiXTe2aZI9Tm9fpmRu3lYkBbMAzrkz5nDicqhY2TWhJWBxC+teSSFXMJA389i1LTeiWyyOSZYUX9/SafHp9lxHcC5JXBIEQRBeSFwSxCgRN8zVVswkiDeTEiE1RgV9RkNJtdgK3xkx52wxh1CVNN9ymclYdfnpeOFdZyMylMHln/8/hDq70NikVFfQp0K1WLcnaNC59IvLvJmHIilQVQXHnpTA9HkKpk63BTDnrnPpVuh1w2INbqCp3X7d11/ajqRg+gv9FKwCRDrjcHmNYo4NWgKdnVns2JqDojAYUhbbN2edPqeVEK1qVElFRIk47zeFmhBTYxgqDJUU7fEK4ZHGJwiCIA4tSFwSxCgh55KoZypVRj0QVO9c2nPMmbb40jxhsd7lT33wYqw993gkugZw/ie/h6Z8BrGYve6wzmXgHIi/g8WPADvnUjiXiqQ485eZDAkSmlpUHLs8DlUrCtOig8c5R94U4tgt6GNZFhJt9ti9w4hL2ePejlTQx/u+JmvYtd0ed/7CKBpbFKSGTOzbm6t4PgB/2xSvcxlVo2gKNQEABvODvm28YbGUczmx0E0dO5LbqYUMQRDjBolLghgl5FwSdU3gupQPoHMpcJ3L8stFCKmofqoFwmKdXp2ShIf/37ux+eRFaN6+F+/4fzfhjJM1LDulEdHYcM5lhYI+wrnkHnHpaSniDc9VJMWzviusvO5i1sgW15V9OZeNrfb+B5Ol4lJUYI1rcQB2O5GRci6THtFncQt9vfYYjS0qZsy28yd37yzdl3+/btsUr3MZU+NodMRlv28bn3NJ4nJCsaF/PZ7Y+Rh2JLcf6KkQBHGQQuKSIEYJOZdEPVNXzmUwLLZSn8uiEMsVxZkm+cWlyMkEAEuR8bf/uha7jjkcHRt34a3/+zFcfFF82Ic9pTmX/u+w17nMGlnky4hcr7islHvoikvXuTS5iVDcAmNAKlUoEYyFohsYV4W4zI9YLXYgP+Dbf3+f3cIk0SgjGrf3m00P34fS685GVI9zqUTRFGou2Q8AGD7n0hbVaT2NTf0bMRhYl6gvRFSAyNUlCIIYa0hcEsQoccQlOZdEHeIVcJqs+SqvvvmTEdViue/vIIpkzzGlpwCUhsXKkv+fLCOk4e5vfRB7j5iJ0AvPo/H9VwMFf+6il5Kw2IBzaQTyB5PFG/CwR1zKzBWX3ONWWmXFpeITlxZMxOIy8nmOZNrvKArnMibEpVVwxq/kXA54HEXDNDHQX4CmMWhhCeGwvd9MdiRx6TqXUY9zGVVjjnMZFJfetimGZWBj/wb8ZcMdeHbP03h2zzPD7o84sIhrPG2UFpUiCIIYC0hcEsQoYYycS6J+8bp0cbXhAM6k1Lms5KJGizl/QsyUK+gTJB/R8Nfvfhj64QugPfYIGj76QcAs7/RVrhZbGhbr3acQvYDtrgb7ZXqPDQCyxRt3xZdzaUI3C4g12H93dflv7gtmARKTEC26hwWz4IbFory47M+54nJwoADDMtFQLG4UCttzzGbcY3q1ezXu23w3/rLhDnRn7BYjwn1VmJtzqckaFEnx5FwO+PbrraLLYaEzs8/5uzfbU1IAaCwwLAPP7V2BgVz/yCsTFREPQbI6iUuCIMYHEpcEMUooLJaoZ7yOeiKUOIAzKRWXlYiqMQBwBESwFUmldiq5xhgG77wH5szZCN97F+Kf/RRQpsJqMMrAqRZbJiy20n4VJpdUnQX8YbE5p9qtAkly8zMNy3YuAaC7239zr1s6VEl1BLXdjsQ+X5Uqsqb0Ied1X18eAEciYRcf0kISGFzncjA/gNVdq9Cf60daT6Mr0+kbW5VUKJKCxe1LsKT9GPs9WS1bMdZb2da0TKfAT0yNweJW2d6Y+8uWgc3Y0PcG7t1895iPfSghPscMOZcEQYwTJC4JYrRQQR+ijvE+9Gg40M5loFpsJZEonEvhpgVDeaUyzqWAT5mKgT/fA7NjMiK3/Rbx//xcicAscS4RDIu1b7xnJmbhiJYjoUgKpsSn+oohyZJS1nn1CkBxnMGwWN0quOKyN+Nb37AMaLKGkCzE5cjVYr0ir7+vAM4sNDTa4pIxBi3MkM0asCyOdX3rAAANmn0tCDfUcS6L7uzSScdiYeuRzrjCvUwW3OJBeqCgj3B8RW9MIVzHEsPjKndlusZ8/EMFR1zq6QM8E4IgDlZIXBLEKAm2MSCIesIrpOrFuXT+rvBARjiXgqBzWS4sFnCP1Zo9B4N/vhdWWxsiN/8CsS9/YViB6bwuzke4j2ElghOmnIh3H3E1zpp5jm+/3oI+XsqFrvoL+tgCUhTa6el1b+6FSFQlDaoQl5buiEonVzWA103s78+Dw0Ki0Z1rOCzD4hYGhjLYMrAJiqTg8OYj7PkWxbAQbaLdSpBEqBEAkMy7BWB0z36FIwsAU+JTAQDdRfGX0lPYNri17Li1Ioo8AcDantfGZMxDEfEgIGfmqB0JQRDjAolLgthfyLkk6hCvoItrB1ZcBqn0QCbqqVYKlOZcVnI8ve+bC47AwF/+Bqu1FdFf/B9i//VFn8D0ritErnhQJMSaaIniLPeKS1ZBXFqlN+pqMOfSKiAWt0VcT58rlgqmXeVVk1VoxWPWrYIjKiuJAMMywMCwcV0au3dmwRhHvNEViaGwBA5gQ+c2GJaBuY3zEFHCvjFF5VelQqsatehoevNRdU9PTotbjvs5KdoBRVLQne0G5xyvdK3Ck7uecPI79wcRagwAO4d2+FxbonpM8cCCc6fwFEEQxFhy0IvLRx55BOeffz7OP/98PPDAAwd6OsRBRLCNAUHUE95nHokDLC6DYqyiuFSiPlezpFrsCM6lwFx4JAbuvBdWczOiN/0UsW/8lyMwfc5lICy2Utiu7PlbruRclhGAMvP3uTQsE5GoBMaAvgH3xj5rui1PhJA1LXPYsFjOOUxuYtsbBt54LQ1IFo47tQGq6s4tFJYAWEgO2eMnQo3O+MJpdZ3L8tWE5aKj6a2kq1s6JCZBkRSYlgmzKMo1SUNbpA0Fs4CBfL8Tetmf6/ONaVhGza0wRAsN8QDCm286Gh7a9iD+ufPx/RpjIuJ1uzNU1IcgiHHgoBaXhmHghhtuwG233Ybbb78dN954IwrDlKkniFqgarFEPeO9LiOeFhP1QKWwWIlJCMth528tGBbrcdd8DmSZ76B51NF2iGxTE6I/vRHR73yjYohscDpBEev9W2ZSWXFpBnpRKpICxlhJzqUkMcRiMtKZHPI5W+DtTe0GALRF2n1C1xqmFYlu6ejv1bH+lTxkGTjzrS2YPd//OYciEjgspNK6c7xOZdyi0yrEhlpJXHrm7923KqmQJbl4XLp9rJKMhGaH0Wb0jNOyJNjK5JHtD+OujX+pqSdmtuhctkcmAQCGCqMXlxa30Jneh73pPaMeY6Lib5lD4pIgiLHnoBaXr7zyChYsWIC2tjY0Nzdj8eLFePnllw/0tIiDBLfP5QGeCEGUIV9HYYMlOZfDPJDx5l2WEzxCHHlzBCuFyxpHL8HgnffASjQiduP3Eb3hO2VzLiv1vxR4Ra0tGkd2LsX8ZEcsmo6QiyVkmMzA1k32zf2O5HYAwKzELCcigsPy5VoGxzcsA+teTUEyVSxa2oBEs+QTDgAQCkngjCOd0p3jdMQr/OJSrpBzqTD7feFOpoqVYzVZc4SnEJuA3cYEAPJW3gn3TRYGfGOKgj9703vL7rMcIueyLdJenEeq6m2DiJBa3dNS5VDB51ySuCQIYhyoa3H54osv4sMf/jBOPfVULFiwAI8/XhrCctttt+Gss87C0UcfjSuuuAKvvvqqs6yrqwsdHR3O3x0dHejqoipzxNhArUiIemZ/wwbHktIWIMOIy2LFWFVSy4pGIWi8wrOSuAQAY8kxGLzjLlgNCcS+/10cf+v9zhxYhYrPQfHIgmGxZf7pDAo7MT/FCSs1HFEzc04EFjPw0N096En1YSA/gOZwMxq0hM+55B5BWSoudWRSJiQomDMvBpObJeuEi87lUFLHru1ZWCZzxhdjO5V5K4hL2dNKZWP/Bvx1458B2K6y+CwMy3BeC7e5YBac4w06l4JaKpbmjBxCcsgpTjW0H9e36NPJOXfaqNTKloFNuGfTX0eVt7ixfwOe2PnYASmo4w+LpYqxBEGMPXUtLjOZDBYsWICvfOUrZZc/8MAD+M53voOPfexjuOuuu7BgwQJ84AMfQF9fX9n1CWIsqXRjShD1wKzEHADAUW1HH+CZlKsWW/mfHuFcCgcsiBBH3uXDiUsAMI5dhsE//RVWvAEn3Hwvlv/6fkjcnVNpjmXlsNhKBX3KhcUCQKgY5pszcs46HdM0TJ0to79Hx/2PrwEAzGyY5ZuLHRbrio/g+AY3oOsWwpodnmpxq6RirV3Qh+O11YNY9fwQVjw2UJJfKoSWcCiDyMwVx725XgDA9IbpWDb5BH+hI+d4hbjMo1BsWZLRM2UL8IwkzDjnWNuzBgO5fpjcRESJOG11UjXmbHopeFqpeF/Xwu7UbgzmB9Gb7al52xV7nsGO5PaawoLHCtMXFksFfQiCGHvK/2tSJ5x++uk4/fTTKy6/5ZZbcOWVV+Lyyy8HAHzta1/DE088gbvuugvXX389Jk2ahM5Ot99WZ2cnTj311FHPR5LqS0SI+dTbvA4VJMkuzCFL0kH5GdD1NbGZHO/AVUdeXVGkvZlIEvOFj0uMVby+4loMjAEhJVT22pNlGcyye2CKMWVJHvE6tU44EUN/vhvhd1yMk3/3MEIFE9JP3wcUcwW981MC46my4izXFAWKLJWGwzPue0+VVUgSQ1gKQZUVZM0MTG6AMVtsLzo+jLXrgA27duOIecCMxhmQJAaluK9UysBgOgvW4I7vnZNuGjAMIBLWoMh2mxMOex2FKdAtHZGI7AuvfX1VBmeeZYfyc1iQJAYLJhgDNEUrew7FsXNmwbLsdRe1HY0p8clQZPe8abK9fVgNgTEgY6QBuOdkSE+iXbVDWsV7OTMLSWJI62ls6t+IWYlZaAo3O/ve2L8BK7texMquF8EYEFEjSIQT9vnRUyN+5pWuMZObzhxMro/qN87gOhgDdF6oafuckXP2zVj1v6/J/CAe3vYQTpp6MqY3zKh5vgLxeQNA1szQ7/t+QP9GEuPJRL6+6lpcDkehUMDatWvxkY98xHlPkiQsX74cq1evBgAsXrwYb7zxBnp6eiDLMl555RV861vfGtX+FEVCa2t8LKY+5jQ3x0ZeiRhzmgsxxDNhNDXG6vbaGAvo+iL2l17EEB90C/W0tTagOWZfV8HraxrasSEdRlu8sez3qqkhBrlgoTWRQFay3avGSLS67+D5Z+HhX38Fb/ngN3Hsnx4F2v4D+PGPETYY4nF3fq0tDb7xWnkD4kl7eVtLI9qjjYjvC/uGjjeEEM96xkgknDEmNbcgmU9CQxghOYS8mUc8bofN5o0C4vEwpk+ahJgWQ1SXoSgq7v7NXqg8irOuURCNKmhujiKmueeqO2u7hrFYCIkGVgwb1aCaQFgJI62nEQ0zgCVtIckA02BY81IW8UVhxBtCaG2NI9KpIi6F0dHeVPZBRE5tRLwvjFhcg24xxI0wJrU1ojUWR3Nv3PkMmmNxtLbGkddaEO8Lg4UN3zllkYJzPloaEyiYBSgRjgHWiUd3PwoAkCIG5k07w9lmrxnyXTeTW1rR0d6ESc0tyBk5NLdEkdEzeGbHMzhu6nFoi7aV/diD11ha6XPmFm/U0Bqv/fc72qsizsOINig1/f7vHOx39t3YHEFrrLptu3t2gYUMdFu7saR1Yc3zFUSiKkJyHHkzDzlsHdT/dr1Z0L+RxHgyEa+vCSsu+/v7YZom2tr8/5i0trZi+3a7OIKqqvjsZz+Lq666CgDw6U9/GqFQqGSsajAMC8lkfYWQSBJDc3MM/f1pWFb5JtvE+DE4mEUqlcPgYBa94dEXl6hX6PoixorBAfu7IujvT0MtpMteX/kUkErlkGMmentLv1eZtI5UPoesZDhjhs1C2XXLsXvmdNzxw4/jHf/+v4j+7GfIDQyh/7+/55vf4EAWvcwdLzmYc5YPDeah5DO+9QGgTxvyvZeRdGdORo4hlbaXqeEoUrkcmGIvS2VzSKUspAZ15KQUckYOK57oAWcRgHP0dGXR0qaiuzeJnOaep117BwAAIUVBOpVFWs9Ak+18uqMmH4ucmcNr3a8UXUsLS45vwMA/Zbz0TD/mzcphgKXR25tC3+AQUoUckv15MFYaIjqYto+9T0lBNwtIpXJIDuQg51JIDeWdY07AQG9vCumsjlQqhz2FbqQK7vnY1rkbbWwaAEDPAqlCDkauD08kn0Eqb6/XyfrQ2+Ce93RS953TQojb57SgIpnuw459nXi9dw3e6F2PoaEczpx5NgCgJ9sN07IwpWFy2Wusc6DfGbezpx9Kvvabt96BQaSyOXT29mOK7M55MD+Afel9OLx5QdmUiQ1d25x9d/UMQs5FS9YpR1fvAFKpHLYUdqK3sfRaX9/3BkzLxJFtiyqOYVj2d0YOhZEpFGDmk1V/b4hS6N9IPwWzUBeRMgcL9Xp9JRIRqGr5tmCCCSsuK8E59/2gn3feeTjvvPPGZOx6+nC9WBav27kdzHBe7GzA6/faGAvo+iL2F4tzXxcQbjHnmgpeX23hdsxsmI25TfPKXncMEjgHFKZ6xpSqv0Y5Q/ecqbj7J5/FlZ+9CeHbfovmbBr46CngsvgHk/nGE/u09yQDnAW7msC0LN97MlOcMcJSxFkWlsPgHDCgQ9UYsoU8GMKQIMOyOLZvzGHv7jxC0MBhIZc1wbkKwzR8cxoqCpRIWIOEPDi3Q2VVScXcxsMAAK91vYqZ80KI51RMmxUGb1KR6mHQDQ7DsscrGAVIkIu/Z6XnUCzTDR26pYNzOHMNnhfL4lAkDZzb1Vw5BxpDjRjMD2IgN+B+5tw+V1k9h6yeg8QkWNxCwdB9x6ibhu+canIYlsURU+LgvBP92X5s7t8MzoGdyZ3I6nbRnyd2PI6CWcBVR15t7y9wjeWNgjNuzsiP6vetYNjnIqf7t39q51PoyXYjq2exuH1pyXY9mW5n38HPdDjyhv0ZD+WHkClkEVbCeGT7QyiYOi6cezFW7nsZhmXgiJYjK44hzieDBJkp0APnmxgd9G8kMFRI4u5Nf8WS9qVlr3ti9EzE66uuC/oMR3NzM2RZRk+PP5m+r6+vxM0kiPHAbUUy8eLhCeLNpLSgT+V1ZUnG6TPOxIyGmeWXF4vIKFVWiw0i1k3OnoaBex6EOX0GYn/9Cy76xm8h6YZvH8F9itfVFfRx5xdRor73NVmDbuqIRGXk9DwU5q677hW7PUQsYRfjyRV7YQYri6aztssYDWu+Ij3BViuLj4/j7ItbwRhDPK6CgaGQc4sFmdz0tXUJ4m+lYhbfE21WSgv6aJLtXAih2hhqAmCLOEHwWKbGi45moLhO8JxGZLuPpyjq83rvGqdQkMUtp6VL3sijYBbKimV7P26F2NFWixVjFKy87/1kYRAAsLprVdlqsN2Zbue1wY2S5ZXwthbqyXaDc449qT3Oa5ObZSsGexGVYhVJgSqpxYcFE+umlahPBvID4JyjP9d/oKdC1AETVlxqmoZFixbh2Wefdd6zLAsrVqzA0qVLD9zEiEMGakVCENVRS5/LkWiPtiOuxRHz9MOUahjP6W3JJFhz5mLgngdhzJ6DBf9cjbd/+WYouUKJeJSCrUiq6XPpEV4RNeK8ViXVubHXonaFV8myxaVlcaxfkwFjwNwFYYBx5LJCXPpFgF9cuvsKikvOOcyiKIzFVDAuoZC3im6y7WAOKy6LPT5t8eKKE+8ycVyAXdjH+8CtQbOFYM5000rEfATT4tMBoKSirGn5xVdYsXMVG4rtSPal9wEAFrUdBQDYOrgZgCvaguJUoJv7Xy1WCDXRy1PQEm5xXm8e2ORbNlRIIu9ZPzi/wfwA9qR2l5+zZ5692R6kdTec1bAMZz6GVVmwivMpM8nXIocg9hfxPQh+H4hDk7oWl+l0GuvWrcO6desAALt27cK6devQ3W0/+bvuuutw++2346677sLmzZvx1a9+FblcDpdeeumBnDZxiMC8Jf8IgqhISR/J/RCXx08+EZce9o6q+1wGkYpzcdy+GTPRd9ff0DurA3Offx3v+Nz/Qh3y9//ztyKRy/a5DAom7/yiiisuhXMJAFKkeCNm2Df6O7flkE5aaGvX0NBk96jMZ+1xg+I1K8RlRCsRlMHXQhTGYioAhnzRufQ6WZVwW5GYJev7HF2P0BTuJQCE5Qg0WUPe41yK6rWCSdFJtptr+V3EoPgKF8/jzIZZWNK+FM3hZkyOTcYxk45DSA6hM9MJ0zIdN66ScNI97+tlWqRUg5hrPrC94bkOdg7t8C3rzvj7bAevmXs23YVHtj+MdJn+k4WAczlUcPt8egXysOKyeD5t51LzHQdB7A/ie1Cg64lAnedcrlmzBtdcc43z9ze/+U0AwMc//nF84hOfwIUXXoi+vj78+Mc/Rnd3NxYuXIhf/epXaGlpqTQkQYwZ4saNnEuCGJ7SsNj9+84wxnwiari+mZXm4hOkU6fj9h99Cpd94eeYtmYrWt51DTJ33gerY3JxXX/4Z3nn0i8UZI9giyquy6p6buxZ1M6b5LotRNe9YrtRU2dEoIVZMSy2mKeI8mGxsejI4lIIjnhchQSz6FxajsPnDeENIoSkyW13TGKSx/0tdS4BOBVxxeuQHMJQYQimZTo9Ob3bNYWaoUoq0nraVzchKJSEc6lICpZMOgZLJh3jW5bP533OYGVx6XUua78Z9o4bdGq8gjh4TXRm7NZobZF2u+hQBWd1qJD0OfP2nN159mR7kPT0+Sz4jrny8XjDmhXJGHF9gqgW8ZCGnEsCqHNxeeKJJ2L9+vXDrnP11Vfj6quvfpNmRBAuU2NTMS0+DdOLIV0EQZQnKCZrcRorIXnGHE3OJYNXnDLkGmO4838+hrd95WbMfmk9tIvPw8Cd98CaPQeyNHJYbFAoqL6cS39YrCbby1jIFpeWbv9TvGu7/XfHlDBUDT7nkhcF2Qt7n0dXphPpnC3sohENxoji0h4jHlcBnkcuZxVzKPXinIZzLothsZZZkp8pB8KFBZrsVmVXZRVhJYKhwhByZg4xKeY7V22RNjDGoMka0nraDhcuOrtGcb2mUBPCShgxpXJVV+Gw5k23uqxZIafR6wIG8zyrwbt9PnAzbfnEpf+BQFdRXE6JTUFPtrui+M0ZOQwVksgZebRH2337TGgJJAtJX/isdz7D5XF6w5otLpzL2sJiTcvE37c9gJmJWTi6bXFN2xIHL45zOcpIAOLgoq7DYgminkmEGnH2rPN8Tb8JgihlPNx9VkFQVbtdubxKPRLC3d/6EJIXXQh5+zY0XXwe5LVrAmGxChhjJYI5mBOpSN6cS39Bn5BsO3BWyA5/tAr2uskBA4wB8bgGReVgslvQR4RQ7hzajr5cLwaKhTPi0ZDfxUXpayEq4g0qGCTXuawmLNaTc2lYhu9cePerMHeMkKcdgXAuAVs08WKuZ0yNYXH7EhzbcTwAOG6uN8TTKh7z8ZNPxHmz3zqs4y2OoWbnchQ3w163L7i9d5/eKyJn5DCYH0RCSyBezEO1uIlkfhC7hnb6xsibeTy160k8vO1Bp+CQcISmFh9m7k7t8q3v7r+8Gwq415DMZKjFBxy1OpdDhSR6sz3YNrilpu2IgxtR2IrCrAmAxCVBEATxJlNLGGslKoWCVrtdcBshgE1Nwd6f/hjZa94PuasTTW9/K6IvvuysJ8RWMO+ypKBPIExUiDJVUh0nU1ftvDmeV2GaHEODBhoaFSiSXSk2HJFQyNtl6C3YgjBj2NVkk3l7W1tcls99DIaX2tViJTvnEpbjWg0XFmsvV6BbOixu+caXK4TF+pxLSUO4KKbzZs45T4qkYOmkY9EaaS1uY2+vl3Hh5GHErztHey45w3UuKwktX87lKG6Gvdt7RToQDIt1rwnhWk6Kdjjn0LAMPL93BR7b8Yhv3lkjg4F8P0xuImOknXmqkoqOWEfJ2Plqw2Kd8yk7n3mtxy/c5MH8IFWaJRzEw4/g94E4NCFxSRAEQYwrY1ktVuATlzX8U+bmXFYO1ZUVDakbfoj0v30OUnIQk696N+Y981og39C/TyEqhMgSgkogKsYqkuK0JtEVO8fSKsgYGrR7EDY2K07fx3DUnqMowJMp5iQCQCZvi8x4rPqcy4YGzW5FkrcryAoh4nUdyyExyXHovOtKUoWCPh5xGZI1J1cyZ+ac8xQ8f2IbrxPoddpGwg2L9VZjreBcmmPnXAL2cQm8os/7ujNjV7btiHW4ocbcdLb1uql9uT7nM8voGXDOUTALUGUV7ZFJJfPxhcVWUdBHZrITCl2ruBQVZy1uYSDfj0e2P4QNfcOnLxEHPwVPS59gqDhx6EHikiAIghhXxrJarMArKMfEuQzmcDKGzBe+jNQ3vgMpl8PbvnIzjrn76bLrA26u3VHti3HKtFMxKdrhWy4Epde5NGTblTJzMgb77Zv2xiY3p1OL2kIyl7NgchMpT/sJXbeXxWOhgNAuzUUVoiIeL7pVORYIix3eufRXhVXKvu8v6OOGxaqy5oQB5428I7hY4PajXFismyM4srh0w2I9OZcVnUvdOTejybkMCjI9IO7EefGKy/5cHwC7mI8Q6KanAq93XW9V2ayRcfanSRqiahRxLe7bv6+gz3A5l5a3WqwIi63NZfIe+/r+9diT2oN1fWthcQsv7nse+9J7axqPqB2LW+hM7xu2p+mbjfcapKI+BIlLgiAIYlwZ62qxgF8c1hJmO1JYbHC87L9+DH0/vxmWLOGMG/+E2Ne/AlhWyfbiRi+mxjCvaX7JMUaL4lKTQ04Ophoqhq3mFQwO2Dftjc2qKy4jtoDMZy1wbvl6GxYKFhgDImG1Yh6kEJpCEESjCiQJKOQ5OLinWuzw4s2bk6lUEJdKhYI+mqQhrIicy6xznuTAPjWpTFiscC6rCIsVYilnjCy0RIipIimjci6D4lI4NZxzWNxyzgX33PyL9iJxtcGXxyrG8obTep2fjJF1BLc4r0H3Mu9tRWJWFotCSNrVYkcZFusRoyLvcjA/iK2Dm7Gu93Ws7XmtpvEORsY7LHTLwGY8tO1Bp69rPeC9ZqkdCUHikiAIghhXxsW59IV/Vj9euWqxwfGCYZj6JZfjrz/4OHINMUR/eiMaPvx+qAW/KybEQaVjO7p9MZa0L0VbpM3pe6lqxbBVr3PZ7HEuw8K5NGFaFrbs6Idp2sJQL3Boml1ltZLQFuddhNIqsoxoXIaeK/atLAoRtQbnUmHlcy7lMgV9NFkDY8x1Ls284/AGxbkqC+fSvTH1hnGOhBBsXuey3E2+cGw1WYMqqaPKuQyOKwSqmK+odiuENOccaT2NsBKGLMme3qGGx7nkZR34rJFxBLfIS50cm+JbJ+/NMx22WqwQ67LHuawxLNYzvleYv9b9KgBbDNcTb3Ze6HN7V+DPG/40rlVTRR6ut9fpgcb7PRpt71ji4IHEJUEQBDGujIdzOdbVYkvCYj1ITMKct74fO+66E+bMWQjf/Vdc/O83Ipx0m92LkMNK4rIl3Iolk44BY8wNkVWLoZkZV1wmmhVH+CpFcdnTpeP2X+/BHX/cgo2vp2GagGUBmiYX80ArOJdljiMWl8EtCYW865qN5Az6QmElb86lO763nYkIcRUCRojLnKegjxyYm1bcRvflXAqnrYqw2HKtSMqExYpjViQVmqyBc+5UZK0WJ0y1KCKFaxMMMxa9SbNFx1b0OxWtbUTvUPu1WTbMMaNnHMEtzuu8psNw6vS3YFHbUQD8YYjmcDmXYn5McdzVWsV1pdYlou9mbhTiknOOPandFT+HgVw/ujPdAOwen6JfaDU8sPVveGLnYzXPabT0Zf8/e+cdJUd1pv2nYufp6cka5ZyQECAhFAgiB2OiCWuc2TUO2Gt7l/U6Ll6vbfCHc8QEYxuDjU02JuckRBDKKMfJuXOoqu+P6ltdVR2me7pbE3h/5+jMTHd11a2qO5r71POGXiSUhKUPaaVhc8ZcBGo0MYd3AxQWS5C4JAiCIKpNtZ3LEv6UsW1zCS9GLjEzwz8TgaVr0f/YM0guOw6tG3fiqut/ipqOXgCAlm48UYzQFXkRsiBDltNhsVEBg/3psNjaTFisM93BpP1QHN1dMST5CKIRBamELkIckpQ+ZuZ6msdudmfZ6x6fCB48orGU4UKV5FyaxaVp/+bXHekCPiyM08UK+qQKFfTRhVNMiWFLz2YEE0PGtoVapdiPHx+m52PGBZRz5nkWA3P7PJIuFu3OJRsLE4uswi/bnglhSwhvHmEVTUWNMTN3l+d4zPLPhlPQHfC4pW/n8NVieZ437nkxfS5VTcVT+x/H1p4tWa4tOydGTImV7BZ2Rjrw9IEnsaVnU873H97zIP6571Gk1BSePfgUnjv4dFH7TSpJ9EZ70BnuKGk85cCEVTR9z6sBu2fmQlKjib2AD4XFEiQuCYIgiKNKKU5j/n3kdxqL+VyhnMtC+9OamjDwwGM4uPpY1B/sxL989sdoeu9Qxrks0pV1i26IUjonMiJgaCATFstCPOsbZcxb5MaseS7MX+JCko9AUYFEQl+8uxwZsZFr7Lm+9/oEQNN7XTJRZHcR7VhyMhUez/yjB9s3hSx5k5bWK2nRxsJjHZZWJPrY7WHJTFzuG9yLtzvfNIQMx3FF3V+hyII+ScMFFI3xvXDoOWzq3jjsMez7YMKKHTPjDApGxV8ARq6sR9IL8fA5QnjzicJoKpLJubQ9BGDXn/UYBIbrc5luA8OJJYXFDsT70R5ux/6hfVnO6JzauZaHE5qm5awWun9wH95oX5/znkTS+ajhVDjrPTMHhvYhloohoSSKymuMKbqLmlATRQveN9rXY//gvqK2zQU792q6iuyejRXn0l4Ui5xLgsQlQRAEUVUq4VTaGWm1WC6PuCypb6bHg2dv+jLevXA1PP1BXPXFn2LW83ovzGLP1SW6wHEcZJlDIh0WK8kcXG7eKMTD8xzmH+PF4mU+LF7uRpKLgE9JEBRdrDllXRzlLeiTI//S4xXAgUM8pg4bFrt9UwgH9kaNsNtEQsWTD/bjpaf68dTDPXkdTb+jFvPqFmBRvR62KQl60aFYKpa3oA9zEdmCmbUtGa5NinF8FhabKtyKxBxiypzAnmg3tvZsKeo4QMY5cqfFYsJWlEfg7eJSF01257JQ2xS35IYsyIimosZDAMlUhde8H0v7loI5lyxs11TQp4iQ4FBCF8cpNWkKK9aP3eKZhEZ3oz4+o6iSNTS2L9aLl4+8iB192/B215tZ+2fXMz6MWNreu934vph2F8wZ1jStqPDfcDKMHX3bsLW3+Llghz0IqKZzyYR1fMw4l/o5s/9vqplvSowPSFwSBEEQVcUuuCrjXI6wWmz6z579M/mqyOaDkyQ8/aUr8MKnPwgxkcIH/+dOrPzTk5ZWIIVgFWNlSYSS4BGLqvDXinmduhQXg8ZpEFMecCldZDgdLCw297XIFeqri0sBibiKjs4QXn2uH4f3ZS8GoxEFf/19O/52V4fx2b3vRdB9RBdQfb1JqKnMuZrFJcdxOGnSKkzxTTVec4gOxJW4IXCyw2KtrlxSSUBRlaLvB3NXzSIipabQG+lFX7TXsl9AF2osz5N9LpIsThCwfRjOZVoUGdVtOdEy7ohNXLLrmbD027SKH6/kg1t0I6WmjM87eIdlG5bzmig2LNaUw8pyZItxLlkLnISSQCotoE9oXoFTppyGZk8LljefiJWTVmFqzTQA1nBNRVXwypGXoGp6heXtvdvQFjqSc1yxHILRnIfaF8u+j4Uwi69ihBjbZzLtjN6/6z681blh2M8xEkrGIa1mYaNynMu9g3vw1/fuQTBPTuibHW/gUPBgSftkTiWb38UIeU3T0BFur3plXWJ0IHFJEARBVJXqV4sdQSuSrD9/+piKKR5j7Ifj8OZVZ+Ch//0UEk4Za2//B6Z96QYgNvyij/W6dEgZgeMP6AIrl1iOaHplSD7lhKjoIoM5l5aCPnkcXfa9r1YEp3GIRlTs3hlEb3cSD/6hB1s3WitPdnckoKlAcDCFWDpaMRxSwEOAw8kDGjDQW3xOJMsPZPmH9uss8VZXLqEmdeeyiH3rY8jOG02pKTy++3E8uf9xQ6QwZ0niRYSS1nMeSgwWdSy2IPYy5zK9uFZNziUHLsu5dDPnMsc52fNDfbLPmCMD8QF9zDYBnsvVNS/WmfiIK3Fs7dlihC8KZueyiMV9xrlMGWGxfocfM/wzAQC1zgDm1y0wxhs1Cau9g3vQH+tHi6cFq1vXAAD2DOy27J+NK5cAzCc+CuX1HRjajyPBwxbxFS9CjLJrkVSTCCdDCCVC6DL1HB0Oc+7uSAobFQsT+Hr15dJ6XbaH2hBLxXDEJvABvXDStt6teLdrY0n7ZOfNfh+iqSje6XwLA7H+vJ85EjqMJ/c/jh192/NuQ4xfSFwSBEEQVaUa1WIx4pxL5lzme724sbHcTY7jsGfNEtzzi3/HUHMAgYcfRe0l54PrLFzRklWM9bqcxmsLlngsYzGTgL5Y5ZMu8OmwWFkSs7Y356LmyiOtDUjgwCMaVhAMx9LbCXj8gW7L8braMwvlvk59ARuPqeA1AbPm6SKivyudw1eMuEz3uowm9fOwC2jZFvLJFufFi8vcQiucDCOuxNGfXuiy9isyL2NO7TxwHIc6Zz0AYCheXIVPJob8Dj+AjLNnbp1SKCw2lzvNCvrUOesxrWY65gUWGGJ0KD5ojHn4c9b3s6NvO/763j04OHQAr7e9irc6N+Bw8LD+Oa60ViRMhCfVpClPN/vY7AGCWdRt790KADiuaTka3Xp/zogtZNQI80xlO5f5XLB8eX2KquClwy/g5SMvWhzUYvIA2X3VzzNp7K9YzMeoZj6kOZS5mPBgM+z3ajCe/SCF3Zd8rmY+2Jzwyj4AwOHgIWzu2YQ3Ol7P+xlWTbea4cPjBUVVcHDowIRycUlcEgRBEFXFrNcqIixhc+hK+VM2TEGfkpxL0/Y9syfj7l99GZHjj4P01psInLsOwubc1S8BvaAPACw7vg6nnF2Hz39tOlasrc07hhTS+WNJATxzLqXCBX1yhcj660Rw4BCJKBgK6QtggecRHFSQSGRckK6OzKK1pyO9+I+q4CBi1jx97L1dxTuXzJlk7pT9nom8NZSUuV98kfcjV96oWcR0pdtXMJdF5CXM8M/Evyz4iNHSYzAxUNSxmMPlFFxwiS6EkiGjfyaQCYs1F/ThOM645+x8c+3TJTpx2tTT0ehuNJxAthC351zmnCdpMfRGu76w39G3LcuRFXihpFYkrCARkAl5lXJcb1YVmAmGttARDMQH0OBqTJ+Pfv4szDcz5oxjaHfi8onffBV+hxKDUDUVcSVuiH7zuAvBrkVKTRlCsVAOa9aYTO6oXTTtGdiFN9rXF72vQpjHVKpDGk2L3qG0G259Tx+z7tzq92hLz2b89b17LG60HXatmLhkdIQ7jAcjdti4lRKcV03T0BXpKln8jnX2D+3F84eexe6BXaM9lIpB4pIgCIKoKmYHrVLFfUYcFstakdj+/JWac2kXlwAQqavB/j//CbHLr4Rw5DACF54N+bFHc36e5Vy2NHtw+vn1aGjKCIdcY0iqCQgCoCZE8OmcS4csZY3BWtzH7Fzqr/tqRHAcj2hEwVA4Co4Dpk7Tw9kG+1PY8k4Qu7aHLc4lE5exmAqnLKJ1mi4iejtYcZzCrUyAjJhKGEWEss/RvJ9MP8zixGWuEFFzDiUTl0yssBxPgRdQI+sOZLGL1sw+ZNQ4/NA0DaFE0FTQhzfuYUpNIZqKwi26C/ZSZfs0PxBwmcQokKtabPY528VQjaMWPrnG+jlOz+2VeKkoccnCYoGMAMn1QMEpWp3LXf07AQAL6xcZn3EIjqzcVvMY7I6fvfotc7jzFSIyO3LmXNtiisyYhSx7MMHuaTGYXUSzGFM1Fa8ceRk7+rYZoq1UUmoKu/t3IaEkLNerZOcyXUF3IIe4NOeJst+FrkgHYqmY8fuTi7gt59LMzv73cn6GXZ9CfVnNdEe6cd/Oe/H4vn/g8X2PDRsOHFfiODC0v6gqwW93vom20BFomoa3OjegI9xueV/TNGzq3ohe03yqJOy6R4vM+R4PkLgkCIIgjhpVEZc5hMpwn8uuFpvb0cwHa6VhX2RzLheCv7wVoa9/G1wkAv/H/wXu//cDQLUuhuqd9Wj1tmJW7Zy8Y7QjCBzUJA8ume4fyVqR8LmFdq7vBYGD1y0hFtUQjiXgdPGor9f319OZwN//2IG/3tmOjiNx8ALgdPPo61SRTKhIpTR4PTIam/Xj9nfqCzfWz7IQTAgxlyOX22wPjQVsbVAKkGu7aA7n0uwuMlh4a65QwVyYK6bWpIXbUGLICKEUTQV97G1IGHbRbFTuNb3uszlB9uucq4VMSk1ZwuskXswbTivyomVbVVPx2N5H8cCuv+HNjjeQUlOIpWIWMcPCmnMJW+a0MgHTG+sBAEz1TTO2cUtuKJpiEZFWsWQXl/p7M/2zsHbKKVjScCyAws4loz/WZ3xfTFisuagSc1dLC4s19VhVU4YANhcwKlZM2dk3uBevtr2MPQO7c+bVFgvb3lyFmMHuLZD5XWC5qkMFHryw/bgElzG3WDXsPQO7cwrBjHNZ3PXdM7gbsVQMIi8imooOW3To3a6NeOHQc9jQ8UbB7Ybig9jSsxmbut9Ff7wPW3u2ZPVb7Yp2YWPXOyW1KxqOlJrCrv6diCtxIyR+IvUHJXFJEARBVBWLc1mpsFizcCrhTxlbvPM2MVJuWKxlPxyH6Be/gsHf/xmqxwvPzd9Dzcc/DC6YWaCJvIgzp5+DWf7ZWfvOV/1WF5civKlmBBIzMcc/Tx+L6fzNnzVfd/M4vT5dbKhIwe0REKjVncg9OyLQVCCZ0BCLqmhsljFlmhNaikdXRzqvyitDdvAI1EsI9Qk4selkLG8+cdjrJaaPn7S1LTDDxJN5jrDFan9vEr+++QD+/scOtB/OXlDnEjvmRXg0FUUwMWS8ZnZJRV6EW3IjlAwVJSZSasr4PAsFHEoMGQtlPt2KBMi4p07RadmH/aEEE1Hm6zLZOwXz6xYaP9vFdy73MKkmjfxS/edUVrEgNhckXoKqqcbiP5qKoifajWAiiG29W9EWOmIJLQUyYiCXW+00CvrEkFSSCCVC8Mk+yziZuxVOhrGpeyOG4oMWx5C5YG2hI9gzsCvTl1SQMcs/G+60459PLJofEJiFSzEO30icy2A8aMwZ+zE6Iu3YO7gH+4cyfTPt96JY2IOSaCpiFZcltCNJKAmL0LM/TImY+owykc5+X/OFt7L9AvrvL5ujU3xTMdk7GXEljs5wR47zYRWWi3Uu9YdDJzSvAKCHGdsJJUPY1L0RSSVpPNjY0bet4DGYeI6loobwtlduNvqwluA67x/cV3DOHRjah9faXsHO/vcMUVlM/vN4gcQlQRAEUVW4PEVmymGkYbFTa6Zhft1CzKyZmXN/xbY1McSl3bk0nV7i/A9g4PFnkZo1G47H/4Hac9ZB2LVz+H3n+dMsiBx4VUIiIqI1ehwavPWWsRT+PjMwny8zZpeHR329Lnx2v2ddPDVNcqB1mhM8BHS16wsln1dfPDa26F89ocmod9UPe072sFi7uAeAKd4pqHc1oN7ZYBq3vt2Wt4PobEtg81tB3Pbjw+jpTBdfSahY/9IAEtHh51VXpDOrTyPDL+vhrcHEkPE1H0k1aXze7FyyRazIiYazne949oI4LOfS3pt05aSTcNrU07Fm8tph9wHoTpu5ZYdiczKBTI9RVjGWiQO7YAslQwglrBV1M8fOvn9OwQmO4xBLRY2wy1pHwLINC/Xd0bcNG7vewba+bZaKtWyB/2bHG3i17RXDyWQPJ5gLW0xYrJliwmLNbmgu5zKUDFlETTAxhL9s/QteOfJS+hj69WP/371w6Dm8fPhF7B3YY3zGHuZbLGz89gqxpeRc2rcdsuUYm0N5mZhk16SQq8+2kQXJuD/NnhZM9uqtiA6HDmWPJe1uq0U4lwklgf5YPzySB3MD8+AUnTgSOpIVXr2r7z1s7HoHh0OHjMq1QCY8OxesiFNMiRnXxy7y2HGKLT50OHgILx5+vqDTyYRqLBU1jjeR+oOSuCQIgiCqStWdyxLEpUt0YeWkk7KKT7Bxlepc2hf8dmGozF+AgSeeQ/zscyHu3oXac9blzcPM7Dt3bp4gcBA0CeFguuKpnD3mYoSmz5dxwNxuAYGA7hgO9FpFSFOLjKZJMjiNR3dazPl9+rYz5ugu1RsvFxdKWkxY7LFNx+GCWRca4ZVA5vru36Mv/OYf44GiaHjs713QNA3PPtaLf/69G68+lV8MsvzWSCqaEYA2582XDo0dSgxhW+9WPLDr7+jMkWeWUlPQNM1waJi4DCWGMq1IuIxzyZwq+/kKNnFt7kFpZ1rNdMyunZv1un0fgC5mzeJSD5PNLcRYaxP2PnNa2DUPJUKGc2me5yIv5vw95jgODsGBaCqKgbjuntY6ai3bsKJGh4O64DAvroHMAjupJqFpmrEIZ04pc7dzuUKapuVtJ1NUn0uTyM3lXD5/8Fm8cuRldEf0ysrdkW6omop9g3sRTAwZY2dzIlc4KAuLDSfDeGTPQzg4dGDYcQGZ+RG2OcnRVBQHhw4U1ZIkyopppeemPe/SXGiJhcEyEV+oTQ8TZS7RDa/sg8AJaHa3YLJvCgBk9TXVP2PtDVuI7nQ7mCZ3M3iOx0z/LGiahiOhw5bt4ip7SGLNSzUXykkoCUtOZebBSgJhU0EjMxnXOFrUdWbXrlCOJnNuk0rSNOdJXBIEQRBEUVRKUNoptQhPIZjTVGpBH9EeFpvjXDV/LYb+cC/C//FV8KGgnof5g+9m5WHa9w1YF/WCCPCaiHBQX5DJjuwx5wuRtYjLmoyw8nglBOqt4Zar19XCWyNg3mIPmlpk8BARj+n5lb60uDxhtR8er4DNbwfR2T58yCEruJMoEBbLMId/CpwARdFwaF8Ukszhso+2oKFJwt6dUTz1SC/eeElf9O7bkX8M3nQoZkpJGgVv7Dma7rSgjStxBNOtN8KJICLJCHb2vWcsKjO5kfr5+Mw5l7kK+qRbn9idWnu+ZK6CPsNhL2LErpu5+IqipfIu4FnF16RNXAacdQCQ7vWoXwu/SSQWegDjEl1QNdUYQ63T6lyy9irsWAklnjPnkl1v5hqJhrhk/TmzF+LhZAgpNQWHKTeV/f4U0+fSLHLNIZCKquBI8LAh2gfToowJaADY1rvNOCdWIAoAljYei5WTVmFazXT9GOn5dyR4GP2xPjx/6NmiQrGZO8iuB5tfu/p34vlDz2b1Ds0FE4H1rob0eVgFYzQVhVN0GiHiKTVl3JuEkshbMTaaikLiJYi8iFWta3D+rA/AI3nglbwIOAMYjA9aIgHM7msxOZedET2sttndAiBzfe0hwez+JdWk7V5mBPk7XW/jyf2P40i6LY957rG+nNniMnPe9jY6uWAFsMzzww67Fwk1YXIuKSyWIAiCIIqiGtVigcqKy8y+ihsfZ4TFWhfaecfC84jc8DUM/uFeqF4fPD+6GTUfuRLc4EDesQDWhbwo8hA0CSG7uDSNwVyF1dKuxVwoxpcRlz6vjJpaEebbsvbMOvzHd2ahudWBukbZIoRqavSFu8PBY+2ZAUAD/nxrG15+pq9gZUZ764tCAsXsKgqciPbDcSTiGqbNdEGWeXzgiibwPPDqs/1QFP2Yvd1JxMOZkzALVFZMJ6mmDHfK7lyyn5Nq0sgzUzQV2/u24vX2V9EeagMAtKXdklpnrXFebsmNcDJsLA5ZNVYgv3OZ3YqEfbaE/GHb3GOiyiwakmoqbzuNzDnr7zPhnxGXYQymHSsmSHKN3QxznZlblc+5ZMSVeM4cQiY6mDBgziVraWNfiD994An8Y+8jAIBW72TjdSZEiivok8j5fUpLYVPPu8bPzMUz57buGdhluLysQBQAzAnMw/y6BUZxJnau5odQuwaywzZfb3sVzx58yviZzUkmbuyVWQsJGQZzCxvS99IcVhpLxaBqKlyiGzVyDTRNQ5+pIJJ+3tnRAYqqIKEkjJxil+gy5g+g5w0DMHqs6seKmj4/fM5ll+Fc6n1SmeOetD0wYC5rSk0ac9ohOJBQEobwZw89DgztB2C9z+wa5nMuAWvRo3ywOZtQEnnzNNk8TyqJnDmXewf3WMKpxxskLgmCIIjqUqAFQzmUmidZiJLDYsEK+thyLocRz4lzz8fAE88hNXceHE89gcCZp0Dc/K5lG4ugNDuXAsBrEuIx/am/7OAsY9HPY/iw2JqajPDyeR0QBA6+Gv04bo8At8csaDnU1WfCVGv9mc8uX+PH7PluDPan8PQjvdi60RqyZzmntBBK5cgttCNbiu0I2L9bX9xNT4fizpjjxr9+eSpaJjvQ2CJjxVp9Md/byYSjaLmGbCGeMjka9oI07Gd9YWrud6gvPpl7wRyi2f5MlV+2GB9ML04FXgCfngfsePbWK/Z5U8x1yYV5fjiETNEgJurM1WMvnH0RLp17ec5zBjJuol/2Q+AEhJMhDMT6wXM86hx1WZ/LxZR0ZdhoKgqe4y2OJwCjIA8jnuVc6mMwnEvW+kTQz9NoRWJyLpNKEm2hNuOzdc56Q+x4JA8ETkAsFYOiKgXDGvOFDw/Fh9Ad6TKuNRNZTFxOq5mOlJpCb1QvIsOufYOr0cj9Yy4zcynNomZLz6asBzP7h/bhcPCwIQATJgcRgCWnECjuoR1zhZnbbj7fqCFa3cb7g7aw2VxFfaJKJiQ2F5N9et7lEVPepbnCbTHOZV+sF7IgG3PJwesPUew5irmcy0DaOQ8ldCeWCchDwYPQNM0yj9hDGU3TLA88zCLcXPQoH2ZBORDLLfozzmVmrMyd1jQNrx15BW93vjXsscYqJC4JgiCIo0YlQ2TZgqqUarH5KFWoTvHpxWea3M22QQ1/fsrceRh4/FnEL/gghAP7UXv+mXD+4U4gvcDk8obFcuCR+VmWhwuLzS3qmbjkAHg8+ve1dfp+G5qzhUNDYybM0F+TETCSxOMjn5mMyz+qh6sVEpf2EM5C7WMkW1jsgXS+JcvzBIBJU5y47j+n4TM3TMPCpfpCu7stXa2V420VSplzmTTlXFrHI5mK27DFnqIpxvZxJY5gYggd4Q54JA9aPJOMz3qlTMVYdq7mPpcAsOWtMH7340NIxNP9O22uIxNYpYrLzLzljJBRIOM0ptLnzHM8As46S66x3U1m7p5DdMAtuRFX4ogrcfgdfmuocgHncl5gvuHc1cg1WefjtjlusVTMIqziKWtYLFuos/kj8vq1NedcBpP6dQ84A1jccAzmBuYZ99wpOiELMuJKHA/u/rvFDbSTLyyRCa86p164iuVXhpMh+B1+i1MKANNqZmBe3QKsaFlpvMauGXOyLZVpkxGEkpnCSbro0d833DSbkHLZRHoxxWBYnp9H8oDjOEvl2qgpb5I54PaiVnaxCWScPHs1ZEajqxGyIKMj3GE4i+Yw03yVXGOpmPEvpaaMMQP5826ZW2l+oOJPF5QKJ0Poj/Ubcy2uxNEV7bLcc/ODB0v7HXNYbJ5elKqmoiPcjpSasoTh5uonys4P0H/n2L0z8mpTYSiakvUgZjxB4pIgCIKoKuMhLLbUViSt3sm4YNaF8MpWB6FYoav5ajB0xx8R+t/vA4oC3398Eb7P/RsQDtvCYk1iUpSMcYoSB55nY87jVsK8n8x5yZKAllYZLZNlOER9//4AE5fZvSabmzOizu/PXkTOX+KB7OCxa1sY8XhuZ2i4wkdmzH0ZeV5A26E4eB5onZrdT5PnOUyb5YQkc+jtUKBBg8iLOdtfJFW90AfP8VlzJuPiZUJnVU0xnJWEEse+wb0AgDm1cy3CnS2smcvG84LxgIDlO257J4IjB2LoOKIviPPNs5E6lwInWEJ9M+JSX2jnCmVlopgVTGGLXAfvsDhjNbJVXEoFxCXP8Ua7iMZ0GKMZh+CwjIUt6NlCOq4koGma8Tobk9ktlXjJUi12KK6LoGb3JJzQvAKyIBv33Ck4jfsTTobRFmrL2xsyn3PJRIxH8kAWZAzFh9CfFn0BV8AIMwVgzL2TJq1Co7vR8rp+DH1uMfHCris7B/YeE0FMnNj7eoqciHNmnGcI2GJarTC3zCm4IHJiTnfOJboMB5w9LGEPC3rSzqxlnwoTl66s9wB9Pkz2ToGqqWgP66HlZrGWy7nUNA1P7H8M/9z3qOEUmsOA2UOUhBLH4eAh3PfeveiL9Vqcy6SahMRLxjwOJUNGexK2r0NDB/IW0TH2pSQtQjOXc9kRbsfDux/Ak/sfx5sdb1juxUC8H4PxAbxy5CW80b4egD7nMznHCeM+pNQUVE1FMD0XmIM8HiFxSRAEQVSValSLBUrPkyxuX6X9WbSL5ZLOj+MQ/fTnMPDQP6G0Tobzb39B4Nx18O7Zb2xiLjzjEDPiirmW9jHn+94eLrtibS2Wr6k1cjFr6/QFW0NTtrhsbHKmP8fB48kWFpLEY/4xHqSSGnZtzR02Fg1pGOzPLNIKXWfJ5MAlIkA4qKChWYYo5v6MKOp9N5WkgFRCg8iJFlGeEZcpKKqSU2iJQibnMmUKi2U5YXE1YYTNmV1LILOwZoKAOZeapiEUiSMSVhAe0sXSQL+1IJAdvsiHGwwmUnVxmdlnraMWIq8LiJSWyluFFsjkn7EFryw4DOeP7UsyCf5COZeA3uPwA7M/aIhMOyzv0jwH2PHiSixn6KpZODsEBxRN0XtIDu4zCjD5TK4su+cO0Wk4XQxztVAz9lw7BsuPE3kRNbIfiqagLZ1DWOeqQ8BZZ1xfey9SBhPkiklIAEBdOj9x0FSN1ZwfytxCe+sVkRfR7GnBlHRFVrv4LHQeLtFpzA0Gc2ddohuutBgPpos5Nbtb4JN96Ip0ZrmXTKi784hLAEbVWFbd1ZpzmRGXm3s2YUPHevTGetNFgILoT+d9uk3zMeNcJtAebkM0FUV3pNsUzp40HqiweRBKhIyw5cUNSwDouZz5HF/maDIxyeZ8Lufyna63DSHOHkCx0OiDQwfw8J4HsWdgN3b0bUPU1E8TyAhh88/suvtsFc3HEyQuCYIgiKpSjT6XQIWdyxHuy779SM4vtWIl+p95GYnTz4T43g4s+9AnsOCpNwFYF/JOKbNwZfmWgLWgT77elpbiPnx2Tufy1X4cv6oGy07Mflre3KyLAZdTNtxSO4uX6Yu/7ZusobGqquHJh3tw+4/a8dJT/QgO5W+5YZybScgM9uqCrbk127U04/EKEDQR8bgKgRctopwJl5TJ0bBjrpyaNIXFMmclnsr0wbOHANp/FjgeUDm88dIg/vL7Qzi4NwpOS7d/6MtdrZYxUudSd8wy51XrCEDgBCRU3QnMdc4eyYMmdzPCyTC6Il1GTp5TdFicIr+j1uJW5hPGZuqc9XmF1mTfFPgdfouz6RBkSLyEuBLP6WaZrxcLm3758It4+ciLhgCpMTk9rZ7JcIkuNLmbLfMJKF1cMrEn8iJqHPoxDgb1FiJ1rjrwHG84xQ4h9zxl14yForJjsVDbIUs1VXORmQFLmCyD3XfmMuYqWDQYH8Bjex81HLPM/HVB5EWommoIeVaMyC25jX2ysFhZkDE3MB8A8F7fe5ZjMFHqFPKLy1bPZHAclxGXSnbOZUpN4d2ud7C9dxve7XrbeL8jrFeK9ZhyOtk1TqqJTHipmmk/Ekvp1WglXjLCwMPJjLicms4LjinRvG41e525rOw+5aoWy0KWHYLDGENDOhw4qSYhcIIhFEOJkOH2AtntapJKwgjzJnFJEARBEHmYiGGx9s/Zx1QqWn09Bv/8N4T/+5vg4wlc8L0/4sxb/gIpnlloOyziMl9VWNPxLTmXuYUmW7TX1kn44JXNlmI+jMYmJ+rqRUyZkj8HaMoMfUHa12tdrHW1J/Dqs/1QUzw0AL1dw7ciMedc9nfp5980KbdQYbi9AjhNQCKuWsJiRV40FqNsoZjLeTMXt2GOjqKpRlhrUk0gxnISBauYtFdAFXgB76wPoqsjgaSSwu7tEaPVzWBf4Wq5pc4/3uxcpr93CA440+4Uc1Pz5UnO8M8EAOwf3GeIGllwWMK9/Q6/5Z4M51wOx4qWlbhozqWW6ybyEhyiwxImaEayOJeZsaiaavTMZMIP0AXsh+ZfhQZXQ1bIKAvPTKkpQ2jai7iYiafS4pITDQE7GB8Ex3Fo8ugCmYXG2l3SzPmxsFg2n/R5wETpkMkRtBaZGcgpekWjeq7+1X6O3ZFu/GPvI+iJdmNH3zYA+vxnvxvmMN2EksCBof164SZnveHEs+shCTLm1M4Fz/HYO7jb5niyBxK5cy7Zew2uRkSSEfTFerNamiiqgq5IpyG0jpj6YrI2JOb8Q5ZTHVfimcI4pqrDTPCKprDYgXg/BhOD8EgeI7w5looZhZLssGseseXbRnJUf2UPDMy5t17Zi3mB+WhyN+OCWRcaUQLB5FDesGxAF8kZ55LCYgmCIAgiJxbnsgphsZWoFsvEV6n7sp9PWeKZ5xH50n9ix12/QTjgw7GPvoozP/qfqN+nL4YtzmXesFiTi5kn5zJfTmc+ZFHCmjPqcMLKurzbuNz6/qNhq+vEQmEDAX3R3Z8Wn/a+j5bjmYREf5e+4GyeNLxzyUNAPK5B4HjjvByCAxzHQeRFY1GX65xFo6CPybk0tfGIpfSFLMdxWe6U0yY2B3tVbHsnAknmwMsqNCDLucx3/iPOuTQJBtZbUrJU3c19n6fXzACgt1hh7pfMy4bby3EcamS/bV/5q8WWglmISbxkajOS7cKJlpxL64OGlJoCx3GWUF4zzB1rcDUi4AwgmAgilAhia89mPLn/cbSH2ox7nus6mcNizQv+hXWLDBHe4NLzK+0uaWb89rBY5lzWgeM4m3OZOf+EkshZFIbdD72Qk5wV3rmjb5tFBCaUhKVlCPsdSKpJvNe/AwklgVn+2fBIHkv4PTsnp+jEFN9UJJQEeqLdhhiPmQoBFWJKuiXJkeBh4/eQ/R6ltFReN5n1jLTfW3bO7N6wViqA9SESe8gSTAShaZohAF2iCyk1lVMsAtl9RX2yD7Ig5+z1mVR0d5L14dTH68Hxzctx7szz4XfUGvnNoUTQEhactS81RWGxBEEQBDEc1XIumRtUiWqxGefyKOZc5iF00kr84bYbsH/5fNTsOYAPX/cjHPvQy3CImQW2OSw2n3As5nt71dJcSLwEgRPyFu0AAEHg4HDyiIStYV5Dg/oCd9ESvShIX2/uvo+W45mcqb7utHPZOoxz6RHAm5xLdl5soWwWDeacTuO19GI9pkQNt0/RlEzrCFWvnMrEqhn7denpUMCBx+RpTsxcoI/b59f3z3IuzdVPzZSaP8zmq8AJhjvJWjaY3cp8RXhcogtuyY1gMohYKgZZkNNCTQ+L9Uk+CLxgE5eluav5cNjcUDaPc7lJ5uuUK9zWK3nzCvNVrasxxTcVp05dh2a3ni/bE+0xKtEOmNxBuwsNZIoKibxk5NJ5JA+WNR1vbDPZOwXTa2ZgbmBezjHYw2JZTp9DcMIreRFJRoy8SrtQZAWXzFhysQWHUQwG0F3YttAR8BxvhB6z/o5uUb+vRhi4ksD23q0AgGPSuYj2hyXs94W5rL3RXrzRsR5/2/kXIyTZVcC5BDJ5l3sH9xitRVjIqqIqaE+Ly1ZvKwBrr1B93Nb7kqloqwsxc4VWdh3YOZqLU80LLEiPV/+dZS1z7L/TKcXqgrolNzySByk1leUSK5qex91kCvO2i2EmFIOJoOH25iKpJBBKBCHxkjHG8QiJS4IgCOKoUUnnssHVAK/sLRiSVSwjDrHlKhMWa99HpK4Gf7/pOmz98rXgFQVn/uQ+fOhnP4Un7WJYwmLz5VmaX8+Tl2lvEZILgRdw9ozzcPLkUwpu5/bo4k5RMq0lhgb0RdqkFje8PgGRkIJ4TCkcFpsWMpqmoa9LhcPJw19beJwerwAOIhJxFQInGufFhIi12mgu51IEx3GWkLWUmjJcr0gykm4yn73gswvOgR4VnMbB6xMwe5EDvhoBJ6wMwOXhMdifgqZpppw5q0tUekEfJlIFBNJtF1o9rcY52bfLBevTqWiKMR6fXIPFDcfg2KbjAOi/t+waFjNnisEcXizxkqkXqlVcMufZvC2gnx+7v4VcnjpnPU6fdiY8kscQQQklk6MXSgaNY9pbfACZ/pAiLyLgrMPq1rU4Y9pZlocUkiDh1KnrMCXd19GOaOvzau63yoQUcy/N1WkBoDuaS1yaHjSZWofs6t+J7mg34kocje4mQwy3hfToBxbWyx48DCYGEUvF0ORuRk16HPZqy8yNrU+HhvbH+3BgaB8SSsIYc6EHT4B+D9ySG4PxQaiaigV1C43fw2gqir5YL9ySG2snn4pF9Ytx0qTVls/bW9iwc2bXM1ehHXaN2HVscDWi3lWfNV5ZkI15z/6WGGGxRhVdN2pk/fps69lifJY5uCIvwu+oNeajxzZeI+cymcm5zJUHHUwEkVSTlpZB4xESlwRBEERVsTqXlfuzc1Lralw857KKCTrz16I/ZzufSjizxhh4Hvs/diXu++V/oL+1AXM2vIH/fuxqzOl8K7+4zJN/aQ2RzS06C9Hobhx2wePy6PuNRjKhscG0c1lb60SgXl9M9femCjrEbNEVCStQkzyaW+VhH0q4vXmcy/Si0RxKmU9oSbxkKbChmvpcstdzFWzhOM7i9gx0qwA4eHwCJKeK086txwkrA6gNSEglNYRDinH+9hy9clqRTPFNxYfmX2Xkd5lFdKE8yZq0ALGP54TmFZjpn2X8zMRUpcJirc6lZFwTu3NnF7PsHjSY+sz6ZKvTlQ/miuuFm/TjhBIhw0l0Cs6se2CEU6fn1JzAXCP0uFjsYbFJNQmO4yDwgiFahtIVY1lYMAu17Yv1Zu/PdE3YddzU/S5ea3sFzx18GoD+kIG5du1hPY/Rl85LZb9jLMzTPq/NP7NrFkhXtj0cPGR5CCPxUlF5uFO8U41rsaBukfGZtvARaJqGFs8kOEUnlreciEZ3k/E7b29fA2SHH4dzhLeyc2RO/vy6+cZ75gJEZpeQ3Qs2N9i9cAoOHN98AmRBxuaeTWgPZfJ22T44jsMxDUsxvWaGEQbL8EhecByHYCKTc5krp5Ld6/EcEguQuCQIgiCqTLVyLoHKOIVAGQV97DmXFWyLon/PoXvRTPzxd/+JPaefiUC0C1985tNY+eTPgFTKOGYucVxMWxKxxPMtBMu7jJjyLocG9e/9AQkNjemiPz3JvPdN0zRs3RiCEhdweH8MvMajZXLhfEsg7VxqAuKxdLVYlnOZDou1uEx5xJH99ZSqZFUutRfzYWRy2QT0difAgYfXl2n3wHM8auv0MQ30pgyH0mEL8Sx1/hmtSNKLb7OzahbRhRb/fpMws4/HjNkxrAT2nEt2TfJVRmWw/L4WzyRMTufysZYew5GpCpww+pmGkiGLk2g/Hsu/K8exzYTFZqqjsuvJBM2g0dMynY+ZdtlY3qH53opCtnPJHE7mfLZ4WuFJ54SyNjrsXrNzjKadOXuouMXZS4/TJbrgEl1Z4r/YyBFWPGph3SI4Radxv1lfR7/pIQfP8Yb7Z3ct9XO2ztPcFYb1cS9pPBbrpp2B2bVzjffMYbwSL5sce13UsTnI7oUkyPDJNThx0kkAgO19Wy3bsWMd07AEp05dl/V3gOd4uEU3IsmIEcJrLkDFjk/ikiAIgiCKoFo5l5VkpMWBzOdTKaFrF4U8xyPpduKtr38Dv1/1v0iILix7/Beoveg88Pv3WT5TqLdlru8rJRQAGJVmo5GM+8fCYmv8Ippb9AXr/t0RdBzOXaVx/+4o/nZXB1785xB2bY9AkkSsOm14l8jjFSFARCKuQTT1fMyExZqFVnHi0tyKhJEv/I8t/AVeQG93EgLPw+Xmjc/zHA9/IJN3mRlfec6lYHIu7YjFOpeyeZGbXygw97dSOZdWcZnJubSLS/t9memfhZMmrcai+mMwLzAfZ00/B7Nr5xR1zEzRoKTRQiKcDBnHlATJOB4bD8vBzfdQohgy1Vn145hb4jBHkAkL5paxMFSGOY/PLHTZdWQiVH9NRoOrISv3zwiL5TIhqfq5WcWaM4dzCcAIKwUyonK4Yj6MFs8kXDr3ciNXlV1fltfo4K2/C760+2cPMWXnNxyiKXqBtR/JjN0cFisZLiK7F+yhEJsjzCmd7psBnuPRHekGAKPgVzG/E0ww9qRboph/75iAZsWbaop04scqJC4JgiCIqlJN57JicCN1Lk3fV0g420UhG5NTdmDDzPPxg/P+jN6ZSyFtWI/AujVw3v0H8Oljm3P2zOMxn1e+78vF5U6HxYatYbGyg4fDyaPGJ2PxMi8UBfj7XZ2Ix9WsfXR16Iu5VFSApgGnntVohNMWwt6KhOesYbFmQZlvIWgXnSk1aQgLhjNHWCyQWawqSQ6RkILaWj2Uly1SBU5AbV1aXPYlje1dojuv8C8GFkqaSzyaC/oUct3MxVPytdLQ36tyWGyenEv78QRewLy6+Uae7CRva9HXjYkS1vMU0MNwWVilxEvGNln9S8t4EGNu/cEK9zBxWeesswiWhCnn0iyizO1hzA9LHJaQbwFrJq/FKVNOA8dxlmI2HMcZIop9PpLSz1vmCzmXmf0HHBmHeGnjMgAoqfCMV/YZfwNEYwxpgWtzT9lYczmX+fqJmin0MMA8ZomXcXzzcpwz4zw0uvSiPMydTagJ/f9gnkUICKhz1iOuxDEUH8xyLgvBzielpiALssWd9KRzfdn/N4EinfixColLgiAIoqqMB+ey0dUIl+gyKiIWizmXsVLCWbAJRLZw9jj0RV63bype/t+/I/zl/wQXjcD3pc/jA1/7Ddx9QwXCYnM7rOUsmO3Yw2LjMRXxmIqa2kxl1JnzXGhqkREOaug4kt1yor9HX6wtmjEVi+c34tTTJhV5bB6y5kI8rsIlutHg1puYN3v1nLxi2nLYC/3Yq0IC+Z1LlnMZC+nX2V9rXWzynIDa+nRYbF8KDa4GrJt2Bo5tXJa3lUwxZHIuc/XuLM659EheY84VCotlC+iqFfRh1WLtOZcVnKNGyxk1YXFIB+L9xvtsG/u9LsexZRVJU2oqS5AIvICAsw5xJY5QImjtN2rK3TMLxVwFfQBdgM6unWu03HCbHl54Ja8hkoywWEPYWe+7wxayzGCiJ+AMYG7tPCyqX4xF9ceUfkFgdk8jWccEMmLMm6PFTKGHIIxCgi9XQZ9mT4vxO2M4zEoyS6SyqrDd0S4jtLoYV9tc8XZFy4mWc3DbzrHWFCI8HqncbyxBEARB5GA8OJctnkn40PyrSv4cl0e0lYNdCLL9uhwOALrgkTwORL76TSTOPAe+z/0bZr6yCR/bsgfRH02DeuElWfvJFyJbSefSHhbL2pDU+DMLWg4campFcBqPgd4kps+yLuD70uLyY+eciUlTstt+5IPnOTQ5psLR68Gc2rkQeAFXL7wG9TVe9PaGiurTaH/dLnKA/I4JW6yGg2nnoS473LXGry+5WJEjFqpXlnNp9LnM/pxoybnMv/jlOA41jhr0x/oLLtpZvl6l8sFkm3OZL+cyXxuVER0zfR2SilVc9sf60+/LxvHs7TXKCYsF9PuhaIopvzNzXg2uRvRGe9Ad7TacS4fggE/2GeGylrBYs3Npumf2e8PaygQTQUsYJpsPrBqq/dwc6XNnrWkYk7yturAMzIfAC1jecmKpl8GAzVlW4MYemjs3MA9JNZGzvUsxYbGF7pfTlnPJYLmsyXRrF0VT4BasYb+s0FJ3pNsICS7mAQgrPjW7dg5m185FZ7jDeM9jEp41ck1FH6iMBuRcEgRBEEeNsSktR041nFirG5oRl25nZhHJqsWmlp+I/mdfwdZL1sE9GEb9pz4G3/XXgRsatFWIFSz7ZFQqfw4wVYtNO5dMRDHnkjkVbo8ADjwG+rLzLpm4rGuQSn4Q4fWKkJO1SGZrQlsrktyLTvuC1Vw5lpGveAkTIpEhJi6t++I5Dl6ffv7hoGJ7L3cl32IwCvrkzLkc3q1lsByvQs7lsqbjcfm8K42WFeXCc7wlJ5ade3ZBn8qE4Zr3FVNilpBnw7kURENs2PNPC7VzKe7YYtq5ZHl6mfNqTEdM9KTbiOih3bwlFNace5iv76dXyq5Aypw/c0Vd9nnmzttDUl3paqpZolNw4MLZF2NB3cJhz3c47HNWto1BFmQsazo+5wMdc6juSPLJXYI159K+36SaMB4u2UVvo8W5ZC708HNjkrcVl877ENZMPlnfr+m4blMLnPEeEguQuCQIgiCOAkwojNWw2JFicWUrdG6Wojx6YCwAwOXILHJk2fTn2+PBnm/fgKd+/F9Qmlvg/MufEThtNdyvv55zn9acyyqExaZbkbBiPj5/phcjoItQDjz6e1OWz6uqhv7eJNweAU5X6aKXOaeRUP7KkUCmpUShbfJhbzCfeT3tXA7kFpcCJ8Dt1Y8bto3PfD9KdS6ZcLAXbgFsfS6HeYgwxTcFPMcbrkwuOI6zLIIrARNGopAJi01WMSyWHc/euoLlxjp4h3GONbZWEeWOQ+RFqJpqtLkwiwuzG5ZUk8Y4zWGxLD9X4ATLPCnkXAKZuWHOrbXPB3trD1ZluRiHcKTYQ/LtIq4Qcp5ztlTULXC/BF4wPdjIHJeJaXOrGrvo9UgeeCQP+mP9hutabKi4OcTXfM3dYubBQaDENjdjERKXBEEQRNVhwmushsWOlHzhpuVgfxLvEvXee16HB4KgXz9zn0sAWNW6Bss+/HX0v/AaYhddCuHwIbReeRVO+8X9EKPxvPmXw4mOUsgbFmvKuQQAr1cCBw4D/VaHKjiYgpLSEGgYmVPlySPegOKcy2LCLx15nEsWFjvQq597Q5MtLJYXIIocnG4eoaBVVJcaFptMqnjjpQGEQwqm1UzHB2dfjDmmNgsMsys93OJ3du1cXLPoY5Z2EEcDr+QFz/Fw8A5jLmacPTZvKulc6kWAMq5UZt9+hx/NnhYc23gczpx+Npo8LVmfLffYABBJ5xiaz6vG4YcsyOiJdkPTNEMwWsSIIGGSZxKaPc2W/ZoFYC5xOdM/C3XOekz2TcmMxTYf7DmXTsO5rJ64zNe/tBgclnPOPAQwV661n5Md9qDIfP04joPIi0gqSaP3aa5rwHIiWXVXUSh9jprHR84lQRAEQZQIZ1QznVh/dizFiioknO2CdVXrWpw78wLIggzJwcRl7mNpdfUI3nonhn59G9SaGpzw9xfwsWtvQs36NzP7NP3pr1RxFiDjXLKwWHMbEiDjkno8rN+jVVyaQ2JHAnMGczqXQuY8i+1zyTCHwuZzLgPOAFqdMyD2TEVdgwS3y1bQJ33NPV4ByYSGhKlSbr6Q5XxsXD+Ex/7ejb/e2Q5V1VDrDOSce2ZXutx8wWqxZvIpOHfmBZAEc86lLvzYda9k6DaQu0ANAJw29XSIvAhZkNHqnZzlKJf7fxe7H5kcQ+vv3iRPq2mMuvAwi0WJl3HG9LNx5vRzLJ/L5+IZ+/W24gOzP2gRqvb5YK8WW+OogSzIqLO1Q6kk9utbyoMus+CztvTIiLTh/m9jD4Ts10LkRYtzaQ8ZBjLXnPWsHMn/o2bn0iE4jfkVcJBzSRAEQRDDkln8TjDnsgp9Lu2LLrfkRkM6J0uS9GPYnUvroDjEL7sC7c+9iN1rlqC2rRczr/4IvP/1ZXChoGURx1cy5zLdiiRiy7nMhMXqXyVRhM8vYHAgBUXJ5L2VKy4LOZeypV1D7oVgPoeMhaw5hPwFhniOxyxlJfzJKZg01WFxh4GMQ2zkXYYU7NoWRjSiWARlMQWWDu7TxcmBPVG88kx/3u0kSyjw2CwQ4pE8xty297mc7J2KFk8LpvqmV/SY5uvik304berpOH/WhVmurWi6F5UIzWUiOWb0lrTOt+k1M4zvmZvmsTiXuZ04s+NnDqMtRFZIao5qsZfPuxInTlpZ1P5GgrkIVanht+ycZUG2VH61OJfD3DMWQms/tszLUDU1b6Eh/fj6gw8mLkfy8IbjOONzrDWJR/LAW6GCWaPJ2PzfhiAIgpiQUM7l8OQLYQUAWU47l/LwQlZrmYSH/vdTWPDs2zjnl4/AdedtkJ9+EsmbbwbSEX+VdC6dLh4cnwmLDaUL13hrWEVT/SvP8aitkxAcVDA0kDL6WLI2JMX0tcyFIS6DhcNi8zlh5twqnuONgj5uyY2+WG/eYj6MtkP6YrR1qhMcF7G8ZziXPv3YOzaH8MSDPZh/jAf+00vLuTy8P53nJXF44ck+rD49YIRLmzELIpEXdCHLA05nZZ3ASmFvRVIj12DlpJMqfhxZkI2cS5GXMK0mt3g1P4SpjLi0O5dW0TLFNzVrW71NSQAJJZF3boi8CK/shWwKLR4Ou/Cy51yax1AtzA95ch2/4Gd5ATP9s+ASXbbcRXPOZeH/R2bVzkZCiWflGRuVdNPhy3ZXFwCcInMu2Twa2bXSW9DEwHM8zpx+DjRow39oHEDikiAIgqg6Ezbnsgo9PO0Ffcw4Xbzl67D74TjsOOMELLj0C5j8P/8H58MPYNLVV+GsC1bhhesuqmjIIcdxcLl1EQMAoaEUwGVEH3OCmLg8tC+Ggb6kISYN57JxZOKS5XYODqSy3hOLyLk0b+MUnUabBp/swxTfFDS6m3N+jtF+SK+82TrVYRRhYrBFP7sWe97T9/3e1jAWr1CM1dhwzmUomEJ/bxINzTJq/AL27oyipzOB5tbsfDWzOyVAxG9+eBBOF49P/8c0BIdS6OlMQJR4TJ3hBM+P/u8lc7JYcZ1KtskxYxZ1uYQDw9xztBIPYYywWCW3c2kWKL3RHuP7s2ecZ6lsm4vzZn6gpP9/7GJoNMKmzUK4mL6Vdk6ecioAYP/gPuM1q3NZ+Jym+qYZ7YDMsDDYSFo45srdZM4lexAyUnF5lklQmqsBj3dIXBIEQRBVZ6JWiy2nR2Ex+7Tn4J1zcSN6uxNGfmOx+9EamxC87S7EH7kU3v/6Epb+4zXMfGM7wv9vEnDeJRUZN6CHxkZCChJxFaEhBR6PYLhqhhvDCaipS+ddmtqR9PWWFxbrD+ifG+zPbnEiWVy84XMunYLL0gPw9GlnDXv8trS4nDTFga6k9b4ZjezTzuWhdGgrNGDXlhimLLNulw/mWk6d4YTTzWPvzig62+I5xaX5nEMDwGB/CoP9wLaNITzy1y7EY7oz+5HPtGL2/NFf2DIxxxzjauVnmx3qQoVYLFWVK+hcRlmF0Rz7PGXKaXjx8PNY2nis8VoxhW7MVVKLwZ6POxoP/cyC3V6RtRTMYa3FVostBPt/gLmSuUSq/Z6MVJxXsqDaWIJyLgmCIIijxoR2Lit0boUE67RZLhy3srg+g7nyQRMXXoSu51/B9jNOgK97AC0f+xh8134MfGdHvt2UBKsY29ebhKJo8NZkL9B5jjfcyoE+3aXSNA193UnIDs5w90ql1hCshZ3LfItOq3OZWTwW46CFQwr6e5Ooa5TgdAl576HHm+4vGMsU9Nm3M4ZUUsva1kwyoeL1F/qx6a0gAGDKDCeaJ+lj7GzL0dgTVkHU350JFX7wnk7EYyqkdIj1YH/29RoN7NeZ56uzRDXf50LhmOZ5UglnTzDCYnM7lwAwwz8TV8y/GrNzVP+tJFIRvw/VxpzvXU5VWrPr6ZJ0ccmqAo8EJlCHEoP62HIIX7u4HKs5zaMFiUuCIAii6hhhsRPMubTmXFbuTyoTGeVcr3wOKNfQhMe+8VHc/71/Q2ryFDgffgCBNSvg/P3tgKrm2lXRMEe1u10XPCzfEsg4FSwsFsg4l5Gw7nYG6kfuojhdPGQHj8H+ZFYYodndyLeYZk4fx3GWBStfhLjc8PIAAGDWXD0sz3zfzKKJ5Vwy5i5yQ0ly6OnKn1MHAM893ofHH+jBto16AZGpM5yGW9nRFs/5GbMz1NeZua+ppAZJ5rBibS0AIBEfG3leWeKySktU2dLXsEAvREtBn/IdJhYWbvRGzOPWDZfbWwnMvwPV7GVZcAxcZcbAQpv1Sr8O4/uRwsJTB+OD6f3nCIsV7c4liUszJC4JgiCIqmOExU4w59Iq4Cp3bmy/5YQGmsdjr0ALAPtWLUbfS68jct3nwYWC8N3wJdR+4GwI27eN+JhMPLUd1hfQXp95gc7EpWCI0FhUFz193eWFxAL6+dbWiUjENaOokPnY5uqMuZCMpuqSTVgUXjhGIwpee34APA+sOUNvI5BvXpjFpdsr4JjjfODAo6sjAYETEA6lcO/tbTiwN2psN9CfxPoXByDJHOoaJUye5kBDs4zGFgk8D3TmE5cmp7i3U3cn69P5rCtPqUWgXn8/mSjvgUKlsIcIVitk0OJIFhA1HMcZ9zFfheGRHFfRdBd5NAUJx3HGHK9mL8tCCKbfkbLEpUlQMsFajtPMWraw8OxCOZcMci6tkLgkCIIgqs6EdS6rUNAHqIy4zLcfjuMy/7w1CH/nexh48nkkjz0O0ptvIHDGWnj+70YgGs2327w0NOkLsf279c/6TM4lEws8xxt9OhNpYZPJtyxvocsc0Vx5l42uJjS6G7NeZ7AFqcRLlsXicK7V6y8MIB5TsWxljRHua77eZqFqFtt1DRJmL3CD13h0dyTAcRzeenUIOzaH8darg8Z2z/+zF0pKw6rTAvjC12fgX788DTzPQRR5NDTLCA0pCIdyhQJnWsB0d+hO8hWfnIQPfKgJp55TZ1QcTowRcWl3iKvmXApm57KwCDFfw3LJav8xyr1H2e9jOfmO5WBxT8sKi5UhcAKcghMOwYEGVyMmeSePeH/m9i/62KqXczlRIXFJEARBHDWqVaRjtDC7UpU8NyZUKyYubX/uefCWsLTU0mUY+OczCP3v9wHZAfdPb0HdqSdBeuG5ko7X0KQvsjoO626aOeeSHU/g+IywSYdkGm1IynAuAcAfyJ93ec6M87Ia0JuReRluyY1aR63FVSkUFhuNKHj9hQHwAnDKWXXG61y+nEtf5prXN0rw+kTUNzgRCSuIhjRs3ajnVPZ0ZfIod++I6K7o6dnN1VlobL68y+k1MzDFOw3dnQnIDh5NLTKWr/FDknhI6XuQTIzNsNhqOZeSJSy2sKhh964S4sFecXa4VhnVJvMwZXScS/PvVSEHefj98Dh92plYM/kUcByH82d9ACdNWjXi/Xlkq7jMNTaRFyuekzuRmFh/5QmCIIgxyUStFgtUJ+TXyLmskLi0L9QneSehxTPJurEoIvrpz6Hv5TcQP+c8CPv3ofZDF8F33SfBd7QXdbz6tHPJUh4tOZemME3ZwcRl2rnsKT8sFijsXA53fziOw0WzL8W6aWcWHRb72vO6a3n8Sr9xbCC/cynLHERJH0ddo36tpkzXC4js3hY1RGJvl543mkjoVXf9dRIczuy50Nyq74NVkbVz6tR1OMZ9EpIJDY0tsuUasII+Y8W5FGxzvdy5nw+zEBguNJXdu0oIXfM88jv8JVd4rTRsPKOWc1nBvM9J3lbUu+rLHRIAwC26Lb8n+VxV5l7yHD/hHpqWC10NgiAIouoYonKC5VwC5pDfylGJgj7mz9sXP6dPOwvrpp2R8zPqlKkY+sO9GLz9j1BaJsF5/98QWHUCXL/6OZDMFm1mAvUSzOtwryUsNiMumbBh+X6VEpeFnMtikAQJPMdbFr75qsXG4ypef2EAgsDh5LOsriJvznc1XRCO44zQWHauM+foTsn+XZncyXhMNSrQAkBdfe7rMm+xXnzknfVDUNXcDiQLiW1qsS6S5THmXKopziJ0q9bn0tyKZBjHiY2hIn0uTfNgScPSsvdXLkIF8hPLO77pocsouae54Dke7iL6ZVaieNBEhcQlQRAEUXUmtHNZoRBWM2zhVe4+JUEa2eKR45C48CL0v/omIp/7Irh4DN7/+ToCp6+B9PKLeT8mCJwlb9KcY+hML8YcglPPGZQ4Iyy2rycJXgBqastbqBVyLgHgvS0h/PaWg3jy4R5DuOWCz9HjMBFXceRgxiHsaosjEVcxZ6Hb6LFpfN60vLJXEWatVlhxnZZJTixb4TMEactk/Tr1diWNMQbyiMumFgdmznWhvzeJ3dsjObfp7tTFZUOzdQFvOJfx0XcuVVXDPb/rxBMP9mD9SwOIxZQsJ7NSmH8fhnPM2L0v1A+zaEwVjGf4Z5W/vzJhInvUxCVfmbDYauCVfQAK9wB1krjMC4lLgiAIoupM1II+QOVcxlz75Mt0ete0noyTp5w64s9rXh/C3/5f9D//GhInnwbxvR2ovfQD8P3bx8G3t+X8TENzZrFqLujjd9TijGln4bimEwAAsoNHIqEiFlMQCSm668mXd76Fel1u3xTCX+5oR/uhOF59th9//M2RvPvJ5Vy+8EQffvejQ9j4xhAAoDdd4dYu2oDCvUpXnlKLY1f4jHxJgRMwdaYLZ3+gCdd8utVwI3u7E0Xlop54ci0A4LnHe7F3ZySrDcvQgH4t2LVhGM5lcvSdy81vB9F+UD/XrvYEdm4NVy3UkOUYchw3rDCopHM52TcVLZ4WnDn97DERRslao4ymsDNCc8dYziJrR1JofjjSLWMo3zKb0Z/dBEEQxITHEJcTT1tWJeeSq5Bgbfa0YIpvatnjUebNx+DfHsLgbXdBmdQK54P3o27VCXD9/CdAwlpMhlWMlWTOqArLmOybArekh5zJDg6ppIbersqExAK6KyhKHAb6sntdPvKXLqgacN6ljfAHRPR1JxGLKjn3Y8m55KztVZ58uAfRiGKE8jIH0owl59KWr7d0eQ0u+XALBMHqeNc1ODFnoQf16aJIPUU4l4AeGtvQLKP9UBx/+NURvLN+yPJ+KKiLS3OIMgBIDmto8miRSql49h+94DQeJ6yqAZB2sqskwOQSHDt27yrhTjkEB86ecR5ay6hkWklYSPBohqSy3zPZVn11tGHtSAo522zMlWhTM9EgcUkQBEFUnYkcFsuwhz+WQ6VakVQUjkPig5eg75U3Ebn+S0AyAe//fguBdashPfeMsRkTl94asaDgZs4ZE1A+f/mLNI7j0NgiIxpRLWGvibiKSFhBfaOElafUYtIUfWHY1ZG7yqqQQxwyERwJKXjhiT70duufZYV5rOMwF/QpfA9ZCC5baNen99fblcjkXBYQ3oLA4VNfnILTztWr1e7eYQ2PDQV1AW0OUQZgqtg7uuJy9/YIBvtTmLfQh9apTrjcPIKDCpK523eWDXMuixGXYgUL+ow1mGCWRqkVCWBqhzKGci6BTDuSQpV0WVjsaF6/scoY+qtFEARBTHQq6e6NFTKu7Njrc1kVvF6Ev3mjHip7yjqIu3ai9spLUPPhD0HYtdMIE7WLGTtM3LCwTZerMgv4GXP0Kpz7d2X6dIZDusBi+Y5Nk/SFYXc+cWkJixWRSKgYGkjB4xPA8cCWd4LoS4fF1ucQfuaHKMPdQ3sINHNCe7uThjtayLkEAJdbwOp1AfA8cGBP1OLahobS4tLuXI6Rgj4sJ3TuAh84jjPOteNQ4eJRI0UWZIi8CHc69LEQTPhPxNDHGocfAOCX/aM2hgZXIwLOujEn0FhYbKEeoA5BD4sVq1R4ajwzBv9qEQRBEBONauQljhWqIQRrHbWQBRlOYXTbFRRCmTsPg/c9iME774YyYyYcTz2BwKknYd6t38ba4zWsOSO7L6MZFjIbHNTFpcNVmes3Y7Z+zfbtzjh4kbAusNxMXKYrp3a153Mura1IWO5jy2QHJk1xIDSkoONIHLKDs/TyZJjnwnCOtr14k8stwOMV0NeTwEBvCm6vkLMNiR3ZwWPSVCfCQcXIBwX0sFjZwcHhsO5DFDnw/Oi3IjFEeqMEgRMMcdl2IPe9KReRF3HOjPOLykU2wmInYOjjkoaluHLBv6DWWfj3tJqcNvV0fGDWB0ft+PmodzXAJbrQbG/XZMIhsoI+Y0sYjwUmvLj8whe+gBUrVuBLX/rSaA+FIAjifc+YdOLKpBohv6ta1+DyeVeOuSf6WXAcEhdciL6X3kDo29+F5nLD87tf48r/OwvLXv9TwdYlrNflUFpcOiskLqfNcgEcsH93xsGLMOfSo4uFxklpcdmRO/bSXtCHhcDWN0qYnhavmgbUNcg5HetCOZf5tjVXqJ05zwVVARRFG9a1NMPGdmCP7tomkypiERVeX25xJMn8qDuXmfBivQ0MCwFu218d5xIA6l31Rl5dIab6pqHe1YC6CvVQHGs4xkCu41iMZnEIDnxo/lUFW8a40g/+RqtP6Fhm4v2Vt/HhD38YN91002gPgyAI4n3OxM25rEZYLDDOStw7HIh+7gvoe/0dRD/6SXCDg/B97QYETlsF+Zknc37EEJcDlRWXLreASZMdGOxPGcKFhcW6vZm8Rp7PHxZrbUUiGPmW9U2yIeAAXRDl/rw557KwuBRyON/nXtIIt8faD7MYps/WQ/WYuAyzfMsc7iqgu8eJhJpV/Oho0teTBM/rbWQETkBNrQhBAA4fSOTt3VlJ9u2KYNu7IQSHsisMz/TPwgWzLhwTIowYWzR7WnBc8wlYVL94tIcy5pjw4nLlypXweIaPqycIgiCqR7UE2FiAnRM/8f+kDovW2IjQ//sJ+p95WW9dsmsn/FdfDv9Vl0LYttWyLeuzmBGXlctdYnmX61/qA5AJi2U5l6LIob5JRmhIMd4zY7SgSAt8w7lskDBtZkZc5qoUCxRuRZK9rbWgDwB4fSIuuroJgsBZxOxwTJupu7ZMXBr5lgWcS03VHdLRIBZTEBrS29AIAgeBF8DzHAJ1MhIxDR1HqlTVJ000ouCPvz6Cv97Zjh//zz50tFX3eMTEged4LGlYCr+jdrSHMuYY1b+EGzZswHXXXYe1a9di/vz5eO6557K2ufvuu3H66adjyZIluOKKK7Bp06ZRGClBEARRDhO5WiwTlRNROI8UZfExeuuSP9yL1MxZkJ99GoF1q+H7wmfAHzkMIONcMsfIWUReYbEsXV4DUeLw2P3tePPVgSznEjDnXWYLCpG35kGyHMb6Jhluj4CmdFhtfY5KsebP6d8XGxZrPf/5x3jx1e/PwvLVxRdccbkF1DdIGOxP6cLNaEOSx7k0KsaOjrhk+ZbMAWYCu6lFF9R734vk/mCFGOhLQU2nnKoqsG9ndY9HEO8HRjXmJhKJYP78+bj00ktx/fXXZ73/2GOP4fvf/z5uvPFGHHvssbjrrrtw7bXX4vHHH0ddnV5y+6KLLsq57/vvvx+CUNkKTuU2d640bDxjbVzExIDmF1FJBJ4DxwE8z4PnuQk1v3ieB8cBQvrcCAaH1PkXYPDMs+C88za4brkJznvvhuPBvyP2r9fBu+jjAAA1bRy6PULFrt/kaU58+F8n40+/PYInHuzBomP1/DqvTzSO0TrNia0bQ3jp6X7MmOO2HFsURHCc3maA5zn0dSchCHolU57ncMzxPrzweB+mz3blHbPA81A1FeIw80JKH0sUss/f4Sx9HdM0SUZvdxK9XUlDVPtqxJxjYO6xktJGZe729+rit6FJBs9zEHn9WrS0OtEJYO/OKE45u3rjYuK7tk7EQF8KHYfjRV+H0f4/bGgwBY7T7y0x8Rjt+VUOozojTz31VJx6av5qXXfeeSeuvPJKXHbZZQCAG2+8Ec8//zweeOABfOpTnwIAPPTQQ0dlrKLIo75++OTv0SAQoLBfonrQ/CIqga/bhSjvRKDWY/m/dCLMr5oOFxQphlq/Z8z+nRh1vnYD8LlPAz/8Ibgf/Qiun/8EF3h/D3Xux/HCvCuQEhyY1OpDbV3limPUr/Hiucf7cHBvBL1duohonexDfb0bAHDuRS5seTuEPTsiWP9CEB+4vNX4rCvJw9vmRI3DA5fTiXBIQUurE42NPgDAJVd58IFLpxQUfzU+N1JqCnUBX8F54Q/MwSDXjQUNC1DvKX/+TJ3hxfZNYURDPJSkPr6W1txz0+ORAMTgdrtQX+8s+9ilEg0FAQDTZujXqLbbg4QYRr3fiaBHwMF9Ufh8bsNhrTRKUg8fPnZ5AC882Y3O9mTJv8Oj8X/Y/j1h/Px7+1Hjl/DtWxYVHTVx5GAELz3TgwsunQSff4wXCyMAjM+/kWP2cUcikcDWrVvxmc98xniN53msXr0aGzduPOrjSaVUDA1Fh9/wKMLzHAIBD/r7w0cl6Z14f0Hzi6gkoVAcoXAMg4NR9EqhCTW/QqE4QrEYhhxR9PaGRns4YxgB+NJXwV31Mbhv/h4cd/8Bl77zE5z23r14ZOlnEAnPhKJVrv0Ez3Noanbg4N4IDh/Qwx2TqTh6ezOtN674eAt+/r39eOXZHqxaV2O8nlJTiIQTcKkadr83AACorRey7m8onP/4kXACCSWBocEYep2F58Ui73FADOiNlT9/fH5daOzbPYREXD9Xjk/lnJscr7/f3RmC5MguaFMtImEFf/5dGwb69LBYp0dFb28I4VACoXAMmiRixhwXtr0bwjtvdGPOwuossNuP6Dcw0MDDHxDR2RZDe9uQEbJdiNH6P6ynM4Hf/fgg4jEV3bE49u0ZgD9QnFD854MdeGf9EA7sDeHjn58KURx/rtj7hbH6N7KmxgVJKhxRMWbFZX9/PxRFQUNDg+X1+vp6HDhwoOj9/Nu//Rs2bdqEaDSKU045BbfeeisWLFgwojGNpZtrRlW1MTs2YvxD84uoBJqqt27QNOv/pRNifmkcNE3/Ou7P5WjQ3ILgLT/D26s/Bvf/3Yhlh5/Hx17/NpLn3ofwt25Ect2ZQIXyVxtb9CqfLK/O5eEt9yjQIMHjExEMppBKqZlQNAhYN/VMuEQXDm3RczLrGuXS7m96XvDgj+q8qG/ShUZXRybE0+0Vco5BlHQRFYurR3WMe94L4+DezAP7QL0EVdXAg4em6bnZM+fq4nL/nihmzXdXZRyD/Zmc1JZ0heG2QzEE6iX4/MUtkY/m/2GapuHhv3YiGlHh8vCIhlUc2h8reqw9XfrDm4N7Y3jyoW6ce0ljRcf3j791Yd+uKD7++cl5i0gRpTEe/0aOu9J2mqaVVDTh1ltvxeuvv453330XL7744oiFJUEQBDFyJnJBH+PcqKBPSaTmzsfvTrkFt5x1O/Y1Hwtp2xbUXnUZaj94LqRXX67IMZpaMi0kZAcPUcxe9vhqBGhqpl0Jo9U7GQFnXaaYT57KsPlgBXq4o9zbtaFZBji9zUrIaEWSe6Evp3Muk3E15/vVgvUddTh5nPXBBtTW6deWFT/iOV4/DwD9vdXrdxlM91itqRUxaYo+V/5yRzt+9D/70HYoVrXjjpQdm8PYvyuKhmYZp5+v9948crD4cfZ1621fOA7Y9m5loywO7Ytiw8uD6OlM4LG/dVd038T4YsyKy0AgAEEQ0NPTY3m9r68vy80kCIIgxjZMdg3XlmE8wk3gHp7VRHbo12tv4zLcfsUfMPj7PyO1YCGk9a+h9uLz4b/sgxDffKOsYzS2ZPIIPd7coVzM9Qnl6HMImNqQlCgu2cOG4fpcVhpZ5o0CNf09SYDLf+4SqxabKCwuuzriOVu2jBQm5M++qAFrTg8YrwuGuBSMUM/B/uqJyyEmLv0iJk11GGPTNGDTm8GqHXekPPtYLwDgnIsbMDXdEqetSHEZiykIhxQEGiTUNUgYGkghGqnMPdU0DY8/qK/XJZnDtndDFRevE4lQMIUnH+o2wsInGmP2r7wsy1i8eDFeffVV4zVVVfHaa69h2bJlozcwgiAIomQmsgAz+lxOQOFcTSRTkRanS0Di/A+g/7lXMfSb25GaNRvyS88jcP6ZqPnwhyBufndExzA7l+48Aou16QgO5V5oZ5zL0ooN5WsxcjRoTLt+kbCCGr8IQcj9e8dyC5OJ/GF3kbCC3/zwIH74zb1oP1wZN48JVbfHek8EPtPzs6ZWBDi9XUi1GBpIQXZwcDh5TJ7mBC+khTgHbN8UgqaNnXDEaERBd0cCdY0S5i70oLFZhiRzaDsULypsss80j5ta9d+Lro7K5Dgf3h/DkQMxtExx4NJrWgAAm98ee+J8LKCqGu7/UydefW4AD9zdOabmWKUY1b+E4XAY27dvx/bt2wEAhw8fxvbt29Hdrdvpn/jEJ3DvvffigQcewJ49e/A///M/iMViuOSSS0Zz2ARBEESJTOTQ0YksnKuJuWiK05X+XhAQv/RD6H95A4Z+9mso06bD8dQTCJxxMmo++REIO7aXdAyPV4Tbw6e/z+NcpkNGWYikGU3T0NuVhOzg8vaKzAfrf3q0nUsgk2vKC8D5l+XPq2OtSAo5l33dSaiKnjd9588PVyRM1RCXtnsimMJiRZGDr0ZEcDAFRan8AjweVxGPqfD5RXAcB69PxKe+OBXX/ec0TJ3hTOdfZvdAHS0623Uh2JIWhoLAYdIUB+Ix1XgAUgi2TV2DhOZ0n9auNv381r80gJu+vgd/u6sdHW2ln3N/2oGbPc+NGXNcln1XkmRCrcpcOJq88dKg0b/1wJ7omHTIy2VUxeWWLVtw8cUX4+KLLwYAfPe738XFF1+Me++9FwBw/vnn46tf/Sp+9rOf4aKLLsL27dtx2223GT0uCYIgiPHBRBZg/AQWztVElnOIS4YoIn7Vh9H36lsI3vxjKJNa4Xj0IQROPQm+6z4FYc+uoo9Tl3Yc7S4Zo1BYbCioIBFXUdcol3x/M87l0Z8Xi5d5MWmqA1d9shULluRvrcHuQSHncsgkuhNxDW+9Nlj2+FjOpcd2T1jOpZC+drV1IjRNdxgrTXAgk2/JmDzNCZ9fxMKl+jUbS6GdTKw1Tco46JOn6WHfxYTG9pnCu5sm6QK1sz0BRdHw4pN9iIZVbHknhMf+1lXy2IKD6X6qfgEut+469/Ukhw23LgVF0fDbWw7h9784XLF9Hm1UVcMLT/aC54HzLtUf+jxwdydu+fZeHNg7tjpSlMOolnJauXIl3nvvvYLbXHPNNbjmmmuO0ogIgiCIapBxLkd5IFXAEM4UFlsSLOcS0MNic28kI/bxTyF21Yfh+sMdcP/kFjjvvw+OB/+O+MWXIfKl/4Qyv3ChvvpGCYf3x/I6l4XCYvtGWMwHyMwHfhScy8nTnPj0V6YNux1zLpMFRABzdFes9WPDK4N4d0MQp59fX1Zz90hYP162c2kNJfYHRBzap+ddBuor25fRnG9pZ+FSL558qAc7t4Zx1oVjo85HZ7suLptbM6HerOhRX0/xzmV9kwx/QD/nrvY4dmwOIRxUMGeBGwf2RtFxJFFy8Uz2YIYVjmpulTE0kEJ3RwL9PUnMnOeCx1ue5DiwJ4qezgR4Xhdp5cy/0eLIgRiiYRWz5rmw8pRaqKqGN18ZRG93EhteHsD0Wa7RHmJFoL+EBEEQxFFjIjqXE7kSbjUxO5cO5zDLEacT0X/7LHo3bELom9+BVlcH5/33IXDKStR86qMQtmzO+9GGJn0B7vEVHxYbj6t48M+deOoRvUhJqfmWwOjmXBaLbBT0Gd65nDLDiVnz3AgOpoywvpESDinguGzH2lzQBwBq00V9cuVd3nt7G+69vW3EYzBXirUTqNeL3ugVd49e/89cHN4fw6F9UXSlw2LNzmVtnT72YooeGWGxjRIC9RJEiUNnWwJvvqo70SeeXIumSQ4k4mrJea7sWrIogOa0M3rf79vxtz90VKR67NaNevioqgLRyNGtblwpdm3Xf2/mLtL7tq46LYBP/8c0iBKHXdsiSKXGd8gvY+z+j0cQBEFMINLCawJal+NBRIxFRIkzpkVWWGw+PB5Er/939G7YjNCN34Pa2ATHIw+i7vQ1qPnoVRA3vp31keVrarHqtFosO7Em5y6ZuGTuSyyq4I+/PoKNbwzh8H493HAkziWbD6ORc1kskqN457LGL2LZiT4AwGsvDIy4EImmaYiEFbg8Qpb7xAr6GM5lHvHU15PAjs1h7NgSHnEOHgu1zdcjcuZc3UXat0sPVzy0L4qnHuk5qj0H3359ELf/9BDu/MVhtB+OQ5I5i4PLKuoO9A8vBvu6ExAlDjV+ETzPoalFRjymYt/OKPwBEXMWutHcqgtX5pIWC3P9fYZzqYtLJlLZNWRs3RjEbT8+hO2bigs7VhQN298NGz/nq+w81tm1TT+HuQs9xmuyg8fs+W7EYyr27y7voc1Ygf4SEgRBEFVnIudcYkKfW/Xgec7os5g3LDYfHg+in/k8+jZsQvB7N+s5mY8/hsDZp6Hm6ssgblif2dQr4JyLG/PmXHp8Ajgus0B+6uEeHN4fw5TpTpz5gXocu8JXMG8x7/mNg4cOkpR2Lgv0uRwyuVILl3hR1yBhz44IXnm2f0THTMQ1KCkt5/0wci55m3NpE087t6YX4RoQDo6sncZgjpxLMzPnuQEA+3ZFEIsquP2nh/HKM/04fODo9L/cvyeKh+/tgqYBqgKkkhoaW2SLIGfhrYPDOI1d7XFEIyrqGyXj861TncY+Lr2mBTzPGY5jZ1tpVWSDabHnS4eYN7Vanf6G5owgfvaxXtz3+w4cPhDD3/7QgV3bwwVborz9+iDu+V2bpRVOcByKy+BgCu2H4wjUS6hvsj6sWrBEF5s7NodzfXTcMXb/xyMIgiAmDBM5dDSTcznxzq3asIqxRTuXdlwuxK69Dn1vvIvgD38CZeo0OJ55CoELzoLv0guBZ58FhnHYeJ6DxycgNJTC0EAKG98IwuHk8eFPt2LtmXW45MMtw4ft5tpvel7w/Nh1Losp6GMUvvGLkGQeV3xyEkSJwzOP9o6ociwTCblyYI2wWNicS1s/QOYAARhx2Gp/Ok8xXy4nq3q6b2cUTz/aa7wei2YLcUXR8Njfu/CL7x/Az7+3H3095bf4YKHHp51bZwhxc74loD8c8PgEDA4kCzqq7EHAsSsy7v268+tx6Uea8dmvTsf02a70/q1VZIslOJiC08Ub7YUammSYp705jPXdDUMAB6w8pRZKSsPdv23DTV/fiy05Wpf09STxyF+6sHuHfi0aW/TxhfK0DRrLHNiju7ezF7iz/lbMW+wBxwE7NoeOqjNeLUhcEgRBEFWHCbCx7OKMFKPPJf1JLRm2GB2xuGQ4HIh97JPoe/0dBH/ySygzZkJ+8XngjDPgP3sd5EceApT8C1JfjQhV1V0VRdGwfI0fLnd5otBwLsfwvGBhsYWqegaHUnA4eeNBQEurA4uXeaFpGFET+EyPy+zrYojLAs5lPK5i/+5MmOVIhUZfb2Fx6fWJaJoko783iTdfyVTIjecQlwf2RPHGS4Po6UygtyuJP/66rWx3radTF6gz57lx2nl6l4RcBV9qAyJUJb+bN9ifxOa3gnC6eJywym+87vEKWHpCDRymlkBGFdkSxGU8piKZ0CzhxYLAGS1TAKu7HAkrcLl5nHdpI867tBEtkx2ABss9Zax/cQCaBpx0ai3+/dszsHyNPv7xGBbL7k9dQ/Z883hFzJjjQmhIMUToeGbs/o9HEARBTBjeF30uJ+C5VZtMWGyFliOShNi/fERvYfKb24GlSyG+8xb8n/oIAmuWw/nH3wOx7LBGVjF24xtDEAQOJ51SW/ZQBF5fbEv8qBbmL8hwzmUspiAR17JCR5mTWyicNh/hUO4elwAg8FZBLjt4uDw8BvtSxrH27YpY8ixH4lwqiobBviS8NYKlsJSd41bWQJI5zJjjwuz5ephsLJYtZnvTbT5OPiuARcd60d+bxPOP92ZtVwrdaXHZ2CzjxLW1+MI3pmPpcl/Wdv46XazkC41967UhqKpe7Xc4B97t0duI9HYnC+bhmmE5ufY+sJd8uAXXXNeKmloRkYgCVdWQTOhC1J1+cLPylFpcck0zgEyvTEY0ouCd9YMQJQ4nnxVAbUAywm5DIwyFLpZUSsODf+7Ezq2VC1PNPFTJ/dBqyQn6vd2cw8Edb5C4JAiCIKrORM65HM1+huOdTFhshUNHRRGJy68ANm7E0F/uR2LNyRD37oHvK19A3fIlcP3sx+CGMm6U2b059dy6vEVeSuHYxmVY0bIStc5A2fuqFqwVST7nMjjA+hdar4dRZTZeeggf63GZa5HtFHRnzilmXK85CzxQFM2oasrCRadM13MGR+JcDvanoKq5XSQzq04L4Os3z8HHPz8F89N5cbmcS9ayprFFxjkX661L2g+XFlpqRlE09HYn4PYKxnWqa5Bztt+orWPubm4XmTlhxxyfLUxz0TRJhqbpPTCLIZNvaZ0jjS0y5izw6FWaNV1cRSLZDxYC6fHbQ6y3bwohEdewdLnPaGPi9YmWYwJ6gah7b2/DXb86XLF82EP7otj4xhBee2FkecW5MMRlnpZIC5d6IQgctr0bGvdVY0lcEgRBEEeNiSguJ3I+abWZNMUBp5s3WipUHI5D8oyzMPjAP9D/z2cQv+CD4Lu74P3ut1F33GJ4vvMt8J0dmDJDFyrHr6rByWdWRgwGnHVYWL+oIvuqFkzc53MgM70grQti43NFultmCuVctnon4/RpZ2Jh3WLjtZPPCgCcnjeYTGRCYplYGolz2d+rC6dSemc6065fLJZDXPawfqgyampFyA4e3R2JEVfU7e9NQlV013I4agsU9VEUDUcOxuBw8kXtCwCmzWRVcourXJpPXDLYfQ6HFERC6f6mpgcLsoOHxytgsC9lyTdk7mTrFKfxmteo7Gwq7jOoYMfmMPbtjOK2Hx/CbT85hB2bi6tCmw8mdFm+cSUwervmcS5dbgFzF7kRi6jY8974LuxD4pIgCIKoOu+HsNiJ2Gal2px3aSO+cuPMyjuXOUidsAJDd/4J/a+8ieg1HwMXj8H9i5+g7oRjcOZ9/42vXBrEhVc0Tcg5mg9J4sDxet5cLuz9Cxkyy9UcQVhsIeeS4zhM8U2FJGREX1OLA4uO9SIcVPDyM/3oak8gUC+V5VwyMTicc2nGkQ7dznWtjB6SDRI4jkNji4xkQjMq0pYKy7c0V1nNByt6lMu57GyLI5XUMHm6M6frmYvZC/Tw3z07ihSXg8zdzlONmYnLoJI3NDRQL0FRNGuv2fR1NofystBbc84lC0lubJFR1yDh8P4Y7r29Ha8821+WuAeAocHKhd8WmvcMVkSqp7P0XOaxBIlLgiAIouq8L8Ji6U9qyXAcZ7TDOFooc+Yi9KOfo+/NzYh8/t+hOV1w/fXPmHX5aai97ELIT/xT79T+PoDjODidfF5xOWTqcWlmOMezEOFhwgNzccrZekGbF57sAwDMmOvKCI2ROJesUmwJ4tLp1I9nrxarqhr6e5JwewSjCBRzCbuLDC21Y863HA5W9CiXc3lonx4mOnWGM+u9fEya4oDbI+DgvmjeeWGGCb18oeQW5zKfuGzIDo3NJS5lmYfDyRttg4CMsF90rBfXf306rvzkJEgyh6ce7im6OE40ouDgvsy27OFDIq7mzLEdCZmw2Pz/34mi/t5Ie7eOFegvIUEQBFF1Jnkmwe/wj+n8s5FCBX3GJ2rLJIS/9R30bdym98qcMRPyyy/C/5ErEVh9Apy33wqEyguvGw84XDySCS3ngpa1APHVHp2cy3y0tDr0XoDpw82c49Jz+TBC53KYSrG5yOdcDg2koCiaxQVlLTOYSCyVjHM5vLjMOJc5xOV+XTCVIi55nsOs+S6oCrBv9/DuZaagTx5xmc6TjJjFpe3BAguL7+8t7FzqxxGQiKvGgw3mXNY36a7xwqVenHqO/jCi7VBxea//uK8Ld/z0MNoO6WKcPXwAMnnH5RIJK+AFa363HUHU/4YolHNJEARBEIWZVTsHF825FC4xu5T+uIdyLsc1mten98p87W0M3nUPEqvX6sV//vs/UH/cIj0v88jh0R5m1WCOXC6X6sBefbFtznsDKpNzWYpzCWTcSwCYMccNSeLhdPFlOZelhMUaOZdRq9hg4qauMYe47Ki+c+l0CnC6eAz0JbPCQA/v1+/f5OnFi0tAL6IEFBcay0St3d1mWHMuc7ehYSJ/OOcSyOR2svve25XJd2UwUc7uTSHicRU7tug5jgfT873PNI6hwfLzLjVNQySswO0RCj6EFNKXkJxLgiAIgngfU++sh8iL8Dv8w29MjF0EAYnzLsDgg4+h/+kXEfvQVeAiYT0vc/kS+D79CYgb1gMjzOMaqzgM0ZTtyPV0JtDQLGe1Iikn55KJhlLbz7ROdeKUs+uw6rRaYzxen4BEXEO8hHFomoa+niRkB1+Se5rvOmXEjUlcpsVNZ3scO7eFEU1XSU2lVPz1znb89paDeQVEcCiF9sNxuL1C1nXPR22dhFRSM4Q7oLdMGehLob5RKrln6+wFboAD3tsSLpi3qKoaOtvicDh5+AO5x+o2ci5TBXMuAWvf1LzOZdqxZqGxfcy5NF3/+gb9+vf1DJ+7uGtbGKmkfo7th2OIRhTEIpl7HKyAuIxFVWjq8G69IJBzSRAEQRDve+YG5uGqBR+G31E72kMhKkRq6TIEf3kr+t7agvC//we0mho4H/g7AhechdozT4HzT3cBkeIKnox12OI9bsst27tTP79Z87KjDcrJuWSioVB/yXycfn49zrm40fiZhWKGS3AvuzsSSCY0NDZLJYWyZ66T9ZwzxYEyzpk/IEKSObQdjOPPt7bhuX/2QlU1/O2uDmx7N4T2Q3EM5Sn2s+nNIDQVWHqCr+jxMWE3YMq7ZOGc+URfIXw1IqbOcGJoIFUwtLS3K4lkQkPLZEfegkFF5VzmcC7Z3JId9rBYVjFWD0fu603C4xMsRcFq60WAy7SIKcS2dzOh722H4lktUfLdp1Io1q03wmLJuSQIgiCI9zesqA8xsVBbJiHytW+h953tCN7yM6QWL4G0+V34vnw96o9dAM83/xv83j2jPcyyYA6i3ZEzxOV8d9Znysm5jMdUyA6+6OqlhfCOIO9y+yZdTMw/xlvSsXieg+zgs65TT1d2WCzPc2hqyYjNrvYEdu+IYMfmTIsJc8VTAOjqiGP7phDeWT8EADjupJqix8Z6XQ72Z4dzjrRn68Kl+vXZ/FYQz/2z1wixNdN+WH9t0hRH1nsMlhsbLpBzWVMrgufzhcVa5wm75+GggsF+vWWL2bUEAEni4a8VMTiQQjKZ/wFINKJg17YwJJmDt0ZAT2cCnW26mGZFhnq7E7j/Tx3YvX3k7UHyiWo7IjmXBEEQBEEQ7wPcbsQ+8nH0P/sy+h95ErFLL9dDZn/7S9SfdBz8V12qV5lVKte64GiRy5HTNA17d0bA8Zn2CGYkFhZbYs6lpukhrHbBMFKYixUcKt5d2r5JFwlMPJWC08UjHleNfoyapveR5HlYxCQAnHdpE865uAEcr1c07WqzOoBBmyC+/4+d+Msd7ejpTKB1mgPNk/ILNjs5nUtW6bfI0Fo7C5bo1+f1FwbwwhN9ePofPVnbtB/Wz2nS1ALi0pMr59Iqsnieg7dGRCioGGG48ZgKQeSMCqoMV/qzkbCSM9+SUd8oARqynEiGpml4+N5OJBMalhzvw5QZTmhaxsmcPkuf9+9uCGLTm0H86bdtec9xOIoVl+RcEgRBEARBvJ/gOKRWnoTgb+5A7zvbEf7qN6C0Tob87NPwf+RK1K1cBtfPfgyut3e0R1o0zhxVUA/ujSE0pGDqDKdR8MdMxrksTVwmkxo0tXDFzFIwnMtgcaK+ryeJjiNxNDTLRtGdUnA4eUDLiOre7gTCQQUtkx2QbGG+U2Y4seq0AGoDEoKDKbSlhRgT63bnkokgp5vHyWfWoRRYtdXB/mxx6ctTxXU46hokNLdmrlEoR+6hIS4LOJeSzEN2cOk+lyo4PjuPEtB7rkLLCCv9IUT2dkygRSOq0YbE7lzq40/nXeYJjX3lmX5s3xRGoF7C2Rc1GEWrWBGj6bMrV3wuElItY8+HkXM5/p5RWSBxSRAEQRAEUSJaUxMiX74BfW9uxuCddyNx8mkQDh6A97vfRv2x8+H79CcgvfTCmO+ZaRSqMYnLDa8MAACOW5k7NDOTc1maw5KvSMtIMeffFcOOzbortXCpZ0THM4R4OjR2/27dBZ1SoNUHC5dlomXmXF205HJbHU4eX/3e7JJdVX8guyBOuWGxAHDmhQ2Yf4x+rZirxlBVDe2H4xAlDg1NhYW6xysiHlMRHEzB5RZyhkSLkv5aKqkhldKQSmo554nZuRwc0M+XhQWbYde9N4e4fPW5fjz9aC9EicOHPt4Cp0tAa9p9VVU9T3TeYg94kxZsmlT6wwgGK+hUrHOZorBYgiAIgiCI9ymiiMQFF2Lw7w+j75U3Ebn209CcLjgf+DtqL7sQgVXH625mV9dojzQnRiuStGAKBVPY9m4IThePxcf5cn5GEDgIIleyc1lxcVmic8n6R06bOTJXyi7E9+/RxWWhVh+s3Uk8pkKSOUyepm9rzxNNJlSjCm+pMOfSLC6ZeB1pWCwAzF3owZWfnAQgOye3vzeJeEwtWMyHYRZm+QSWaBJWbF7ldC7d+mvRcCbMluV1mmFuZl+PtR1Jd0cCTz7UA1Hi8C//2orWqfr9mDbbhdkL3DjupBpcd8M0eLyCxfUtJ1TVCAf2Fp73VC2WIAiCIAiCMFDmzkP4ez9E76b3MPTz3yC5chXEfXt1N3PZAtR84hpIzz49ptxMh8sqmDa+MQRVAZadWFOwoqvs4ErOuTxazuWRgzHc+fPDRtgmg7l5NSOooApkel0yIb5vV9q5LCAuLS0ymmTDSTQ7l4qiQVX1QjQjwe0RIMmcNSx2oHznEmCFjLisdi9MyA7nWgLAkuMzDynsPS4ZYvrcU0ktM09yhE+ztiqRiIJw+qGCJ0cV1nxhse+sHwQAnHp2HWbNyxSrkmUeH7luMi66qtkQlWZhnqsPbLFQziVBEARBEAQxctxuxK/8Fww88gT6Xt6AyKc/B62mBo5/PIzaqy5F3YqlcN9yE/j2kRcJqRQZwaQvgA/t0yuALl5WODRTlnkkE5pR3AYADu+P4bl/9lr6LZrJ115ipHhrcjuXb702iAN7ovjbXe0Wd5W1lagZoeAyC/FUUsXhA1G4PbzhTuaizlRspqFJMgnizJiTaZEuySNzLjmOgz8gIRZVEUu3lBkaVMBxuYVXqTicPOIx1dLzkuURFrP/ecdkwpDFPALacC6Tmb6lhcJioxEV4QLOpa82e24oioZ3NwTB8frDk+FYuNSr551yR0lcCiQuCYIgCIIgiAIo8+Yj/L/fR++772Hot3cgsfYUCIcOwnPT/6HuuEWoufoyOB78OxDLbvVwNLA7l10dehhh0zDVSplATCYylVMf+HMHXniiD7+66YDRpsJMpZ1Lt0cAx2WHmDKB3NudxNOPZqqcBgdTkGTOyJ0sFXMIcXdHAqmUhtZpzoL9KM3Cs6FJhtvDgxesziW7hiN1LgGgNu3GDvaloKoaQsEUvDWCIVjKweHgoal6QSZGOJS7rUguZJk3RGjH4dx9M42cy5RWcJ6Iou6kRsMKwiFdQDM30wy7luZWJLu2hREOKZi70FOUo7t6XQCfuWE6autEJBPaiEVf8X0u9a8UFksQBEEQBEEUxuFA/JLLMXj/o+h7/W1Erv8StPoGOJ55CjX/9gnUL5kH739+CeKbbwDa0VtcOkyhnom4iv7eJGrrxGEFYKaoj754P3wght6uJESJQ2hIwcvP9Gd9ptLikuc5eHwCwsGU4aBGIwq6OxLw+fVQ0XfWD0FVNSQTKqIRFT6/WFAMFiIjxBUE045YbSC/awnoxWZYG9yGZhkcx8HrExEOKYZYYQJopM4lAPhZ3mV/EuGgAk0tPySWkatdTbFuHOOyj7YAAM74QH3O95m4TCbVgmGxgC4mY1EV4aACtyd3gSBB4CAInCHcAWD3dr2o0pITcucS58Nhm+vDEQkrxnxUVQ39vfqDhKKdSxKXBEEQBEEQRLEos+Yg/M0b0fvuDgze/VfEPngJuGgErrtuR+D8MxFYsxyun94Cvu1I1cfiNBWp6e5MANrwriUAo/gMy7vcuH4IALBirR9AxtkyU2lxCQBenwhV1cMkAV3kAsCMOW60TnUimdDQ05nI5FuWIbjMOZfhoL6/XCGZZkSRMwRoY7MeIuurEQANRs6g4VwWyHEdjppa/RjBQSVTKXaEbUjsOFxpxzaXuBymSA1j1jw3vn7zbJywyp/zfUtY7DDzhIXGKopW8PpLslVcsrnqqyktVDiXuM5HR1scN39jL9a/OAAA2LU9jOBgCjPmuArmMAOZa0BhsQRBEARBEETpiCISZ52L4G13oXfzTgRv+hGSx58AcfcueP/vRtQdtwj+Ky6G4+9/BSKRqgzBYepz2dWuhyw2FdED0tzrMplQseWdEASRw4o1uniIRbIX4tURlyy3ThdULCR26kwnJk/TRfKRg/FMvmUZ1VPNIcRGvl8RYaEr1vqxYIkHDWlxyfIuWWgsEz2SNHLn0mkSQKzHZTnnaianc8nO31P8MQqJ52LDYoFMxVigcKipKHGWsFjW4kMUS5t/JYnLw3FAA3Zs1os9vfGiXkDoxJNrh/0sOZcEQRAEQRBERdACdYh94loMPP6cXgTo+i9BbW6B/PyzqPnMtXrY7Bc/C+mF5yraZV2WeYDTW010tafzLVuLEJemXpedbQnEYypmz3cbPQdZbz8zw4U7jgR7gZxD+6MAgKkzXGhNt/1oOxQzBFc5oaJmAZcpJlNc7t5Vn2o1xIPPVuW2Es6lWQBVoselZd+OAmGxRTqXw8EEn9m5zFf4yWUKLy0k7iVZzxVlTiATbfaencORS1wmEyoe/ksnDu2LWrZl8/7IwRi62uPY814E/oBo9AsthNHnkpxLgiAIgiAIolIo8+Yj/M0b0ffONgzcez9il1wGLpmA654/ofZDF6Hu2AXwfOO/IL79Ztn5mTzPweHg085lccV8AFNYbFxFKKSLGX9A1Pfn5LP6IgIoWAV0pLCKsR1H4vj9Lw9j384oZAePpkmy0VPyyMFYhZxL/Vgs3w8YWTVWNuZgWhBXIufSLICY0C41/LOYfTNKzbkcjpKcy2LFJcvjTDvDGeeyfHG5c1sYb782hCce7LFsy65LKqnhyYf0905Y7S+qsBLPc+A4QEkNu+mYhsQlQRAEQRDEWEQQkDz9TAR/eyd6t+7G0M9+jcRpp4Pv6Yb71l8jcO7pqFu5DO4ffBfCrp0jPozTxSMRV9HRFgfH6y0zhsNwLhMZocVCVJ0uXaya25QA1cu5BIDn/tmL/buiqK0XccmHmyEIHGrrRLg8PDqPJNCf7stYVs5lOiw2GlEQTgtq7zA5l7lgjmIlnUs2tlhUMdyzSgm/XOIqHFLAC5W7l0wIppKqUTgnb86lqTpsIeeYXU92fUfuXGbnnHa26Q9iDh+Iobc7YbweDWe22b0jXUDo+OILCAkiRzmXBEEQBEEQRHXRfDWIX/VhDP71QfRu2ong925G8oTlEPbvg+dHN6NuzXLUnnEyXL/6ecmFgNgiPhxUUN8oF5WTlsm51Ixegh6vvtBni3+7e1kVcZl251LpNhmfuH4KFi7Ve3RyHIfJU51QFM2oFFqOc+lPf3awP1WWc8nCYlmobqYVSQWcy7hqiEtnjhYdZe07ff80TUMkrKRbwZTf6gQosaCPKeeycFhspgIt27f5WMVivraMjiOZliqb3gwa39vDwafMcCJQP/zDGoYgcJRzSRAEQRAEQRw9tKYmxK69DgP/fBa96zci/NVvIDV3HqTN78L7P1/XCwF98Fw4b/sN+I72Yfdn7vs4Z4G7qDFYnUtr5VSnO+PwmalOWGxGLDZNkuGvtS7kp85yAdAFIVBeHqLLLcDp5tHfm0QomO6xOAJ3kAlclhtZ0bDYqGqI+pH288y3b9YLNRZVoamVc0aBaofF6mKN5TKKJYr4XDmnnW1WcclCbiO2OV+KawmQc0kQBEEQBEGMIurMWYh8+Qb0v7wBfc+8jMjnvgh1Uivk11+F72s3oO7YBaj9wNlw3fqrvI6meRG/+DhvUcc151zaw2JdRohmbucyX6GWkWAOS80ljFes8Vsqio4kjNVMoF5CKqlhaCAFr0/M2WNxOAxxOVCdgj6sUq/LVRnx57Q5lyyvcCSubT5yFfQZrhUJULgVTOXCYq3nH40oGOxPob5RwvTZLvT3JnH3b4+kQ5L1bQL1EkSJw6Jlxf0+Mci5JAiCIAiCIEYfjoOyZCnC3/5f9L29Ff3/eAqRT38OautkSG+8Du83vor6ZQtRe8FZcP32l+CPHDY+mohnFrNTpjuLOpxsaixvhMWm899YOKbduUxUMSwWAOYszK7I6fYIOOfiBuPnkYhBM4G6jDM60j6SLjcPUeIyzmUlWpGY2qREoywstrLOZTym75e1IRk159JdonOZrGxBH1b4qrnVgcs+0oLmVhn7dkXx8tP9iIYVgAM+9rnJ+NcvTy15jgiiXqPLnq88nqhMjWKCIAiCIAhibMDzSK1YidSKlQh/53sQ334TjocfhOPRhyBtWA9pw3p4v/nfSJ6wAvEPXgJt/3EAmtDQLBedQ2fOuWRhsVnOpa3XZTyughdKX9wXwuHg4XTzUBVg2qzcwnjpCT709yRR11h87ls+zPlzXv/I9sdxHGr8Ivp6kkgm1Io4l6LIQxA4xKMqwAG8UJ5YNWMXV5k2JFUQl0ktEz6dtxVJkTmXUtq5TJqcSw7gS7zM9vNnIbHNrTJqakVcdHUzbr3lELo6EoiEFThdvNGSp1TECdDrksQlQRAEQRDERIXjkDphBVInrED4f74L8Z234HjkITgeeRDSWxsgvbUB/wWgvXEBxA99EMLmD0I5ZgkwjMg051yGQgokmTNeM5zLqC3nMqbC4eQrVgRGPz0OV1/bCo5D3kJEHMfhtHPrK3I8s7gcqXMJ6KGxfT1JDA2mDGdNLiPnEgAcLl7Pi9T0kNhKXWe7uApX0blMJlX9OFz+HFRWMEoQuIIuuFHQx9SKRBS5kq8Lc4XZ+XcwcTlZb9nDhGRvdwLJhFbWvGAhu+M575LEJUEQBEEQxPsBjkPq+OVIHb8c4W99B+K778DxyEOQH3sEk/bsAH61A/jVzVCmTkP83POROO8DSJ60GhCzl4ss5zIaURCLqKitz2yTy7lUFA3JhFYwR26kTE8X7TkaBBoy51muuAT0vMtKOJeAnhvJQlYrFRILHCXnUrSGxTocfN4QZqeLh+zg4K0RCwpFe85lKqmNyDU3F/TRNA0H98YAAC1pcely85BkDr3derubkRR5YrB+mClyLgmCIAiCIIhxA8chtex4pJYdj/A3b4Swayfkfz4Kxz//AemtDXD/7jdw/+43UAMBJM48B/HzPoDEujMAj57XyBbcvV36gtrrzSwpM85lRlwmhgl1HC/UViDnEsj02wwOpiqScwlYcxSdFSrmY95vRlzqXz0VdS5NBX3iasF+pDzP4SPXTYY0zFyy51wqKQ3SCES3+fw72xPo6UygZbIDtQF9LnAcB39AQk+nnovpKkPYG84liUuCIAiCIAhivKLMnYfo3C8j+oUvg+/sgPz4Y5Af/wfkl16A87574bzvXmgOBxKnnIbEmeegcd2ZEEQO3R36gtrsSGacy0xYbDXakIwG/oAEjtOLrvhqRp7D6TM5l4kKOZcOU+sRV4XakACZEGhDXIb0HNtqOJeRsAJow8+TqTOHd6szYbEaNE2DoozQuTT1udzylt7T8pjjrVVg/QHREJflhAtTWCxBEARBEAQxoVCbWxD72CcR+9gnwQWHID/7NOR//gPy00/C8dQTcDz1BHwAvtk4BxsbVmNL61r4TlxrfD6XczlcBdDxgihyqKkVMdifsvTYLBXmzJlzLsvpcwlYXeFKhsUKAgdJ5ox7yHqGViPnkuVzVsLhNsJik5oh1kptQ6LvhwPH6a11trzDxKW1f6U/YAoLd5cfFqsow2w4hiFxSRAEQRAEQeRE89UgftGliF90KZBIQHrjdchPPQH5mSfRuPM9nNW9G2dt/wMSr/qgPnsmEmeeDe+xpwLIOJdPP9KD9S8NABj/YbEAEGiQMNifqnzOpVRmzqXZuSxD4OTCkc7n7O9NYv/uKDw+AQ3NcsX2z0JYWc9UuQIPIYyw2IQ64jYkgB726nDyCKZbx0yd6TRCYhl+089lhcVStViCIAiCIAjifYEsI7n2FCTXnoLwjf+Hg89ux+7/dz+OOfIyFvS+CfnhB+B8+AHUAPjPusU4sP8U8Csvx1sv+5FM6IvmplbH6J5DBVh1Wi1qAxKmz/JgYDA8on2YxSVz1cp2Li05l5UV8Q4nj9CQglef64emASvW+CvaUobti4nLSjjczLlMJTWkkiN3Ltl4YmknftmJNVnv15qcy4qExZK4JAiCIAiCIN5PNK2ahzvmX4EX512BK6/y49jg25CffhLyU09ixuGtmPHqVuD8X+NGuQZHZp+Eug+fC8w9AxrqRnvoZTF/sRcLl/hGLFQAvT8jz+thsSynseycyyoV9DHve8PLg+AF4ITV/orun4XFMqFdCYdbNDmXShnOJZDplcnxwJITfFnvVyos1qiaSzmXBEEQBEEQxPsJp0tAS6sDHUficDX6kDjpXCTOOhf4gYbbr3sKiw+/jBMjG1C3fQPmbX8S+MaTwDeA1MxZSJ66DonTzkBy7cnQaiorVMYDPM/B5xcxOJCCW9VFi1CmHjSLy3JCM3NhbguybEVNWSHBubD3KK2kc5lMamWFxQIwWrwsWuqFnOMhgCUs1lNOWKz+lZxLgiAIgiAI4n3H6nW12LghiNappnBXjsNQ61w87pqJLdP/FZ2L+/HF09rQvPklyM8/C3H7Voj79sL1+9uhCQJSxy9HIi02U8efkLOv5kSktk7P3YyEFMgOvmDPxmJwOjPqtNJhsdNmudB+OI61ZwRw8lmVd55FWxuWiojLHM7lSN3m406qwTuvD+HUc3Kfe02tCHAAtEoV9CFxSRAEQRAEQbzPWLq8BkuXZ+egOV08BvuBwwdi8NZ54bnsHIQvPxdhAHxnB6QXnoP8wnOQn38W0ob1kDash+f//QCqx4vkSauQXHMKkmtPRmrJseVbemOUQL2IA3v078vNtwSqGxZ71oX1WHduXdmhu/kQBA4cD2jpAsOVcS4zrUjKdS4vuLwRZ1xQD68vt3QSBA6+GhHBwRTlXI72AAiCIAiCIIiJhbkH4rzFHosrpza3IH7F1YhfcTWgaRC2b4P8/LOQX3gW0vrX4HjmKTieeUrf1leD5KrVuthcsxapxUsmjNgMNGSqrVZEXLqqFxbLcVxFxlgIUeSMyrkVaUUimVqRlOlciiIPr2+Y3psznDiwJwpvTQWcSxKXBEEQBEEQBKFz6jn1aGgKYuoMJxYs9ebfkOOgLFqM6KLFiH72eiCRgLjxHcivvAjp5ZcgbXgdjicfh+PJxwEAqr8WyVVrkFyzFok1p0BZtBjgx2d7k0B9ZhlebhsSoLrO5dFAlEzisqLOZXmtSIrl8o+1IJXUyrqXhnNJYbEEQRAEQRAEoTNjtgszZrtK/6AsI3XiSqROXAl86T+BeBzSO29BevlFSK++DGnDejge/wccj/8DQFpsnrgSyZWrkDxxFVLLjgOczgqfTXUI1GeKwFTCFXRWsRXJ0UAv6qPHxY61gj7FwPMcZEd5+6ecS4IgCIIgCIKoFg4HkietRvKk1frPsRikt9/MiM2334TjqSfgeOoJAIAmy0gtO14XmytPQnLFSmiBsdn6xCIuK+FcMkHJVUacHW3MRX0qWtAnWX5Bn6MFG1+KwmIJgiAIgiAIoso4nUiuXovk6rX6z4kExE0bIa1/HdL6VyG98brxDz/XN0ktWIjkiWmxecIKqDNnAWVWZq0EHq8ASdZDQct1vIBMnqLTxVtah4wXpAqLS57nIAhcRQr6HC0o55IgCIIgCIIgRgtZRmr5iUgtPxHRz30BUFUIu3fpAnP9a5DWvwZxx3aIO7bD9Yc7AABqXR2Sxy9H6vjl6a8nQKsNHPWhcxyHQL2ErvZExXIuHU4e/trxubw3C79KOa9MvI8X51KknEuCIAiCIAiCGCPwPJR586HMm4/YNR/TX+rsgMjE5lsbIG7eBMfTT8Lx9JPGx1Kz5yB1wgpdbJ6wHKlFxwCSlO8oFcMQlxXIueR5Dp/8whTIFai0OhpUOiwW0MVlKKhknMsKiPhqknEuR3kgZUDikiAIgiAIgpiwqM0tSFx4MRIXXqy/EI9D3LoZ4ttvQnpzA6S334S4ZzfEPbvh/Os9AADN6URqybG62Dx2GVLHHgdl1uyKt0FheZeVcC4BoLnVUZH9jAZm57JSAlmSeGiqgkRczTrGWERIK7NUSh3dgZQBiUuCIAiCIAji/YPDgVQ6LDZ27XUAAK63F9I7b0JkYvOdtyFtWA9pw3rjY5rbg9SSpUguPRbKsuOAU1YDjVMAfuSCs64hLS6r3ENyPMBcRUHkKiYC2XWNRnSxxpzBsUqmWuwoD6QMSFwSBEEQBEEQ72u0+nokzjwHiTPP0V9QVQh790B8+02Im9+F+O5GiJs3GXmcjDqXC6lFx+ju5tJlSC5dBmX+gqJDamcvcKOxRcbs+e5qnNa4goXFVrLSLXOEY1FdrY1955JyLgmCIAiCIAhiYsHzUObMhTJnLuJXXK2/xgTnpo2QNm2Ea/sWaG+9DemtDZDe2mB8VJMkKPMWILVosS4801+1pqasKrX1jTI+99XpR/PMxixM+FVUXNqdy/EiLqlaLEEQBEEQBEFMYEyCM3n5FXDVe9HfPQTs2wdp00aIm9IO59ZNek7n1s2Wj6sNDUgtTIvNxcdAWbQYqXkLAKdzlE5obFEV51K2OZfSGBeXAjmXY5q9e/fia1/7GkKhEGRZxte+9jUsX758tIdFEARBEARBTAR4HurMWYjPnIX4RZfqr2kauK4uiNu2QNy21fgq7NwB+aXnIb/0vPFxTRCgzJ6jO53pKrepeQugzJ4DuFyjcUajhuFcVrDaLeudGQ2Pk4I+1OdybONwOPC9730Ps2bNwp49e/DZz34WTzzxxGgPiyAIgiAIgpiocBy05mYkm5uRXHdG5vVkEsLuXRmxycTnzvcg7nwP5jqvGsdBnT4jLTgzwlOZNx+a13fUT+lowAr6VNK5ZE5lNO1cUlhs9ZnQ4nLy5MnG97NmzUIwGISmaeC4sT2xCIIgCIIgiAmGJEFZuAjKwkWIX5Z5mevvg7BzJ8Rd70F4b4f+ded7EPbvg7B/H/Dk45bdKK2TocydB2XWbOu/aTOOSm/OalGdnEt9Xyzncqw7lyIV9CmPDRs24Pbbb8eWLVvQ3d2N3/zmN1i3bp1lm7vvvhu33347uru7sXDhQnzjG9/A0qVLSz7WM888g4ULF5KwJAiCIAiCIMYMWqAOqZUnIbXyJOsboRDE3TshpJ1NYed7EHbu0EVn2xHghees+xEEqFOnQZk1Gymz6Jw5G+rUaYA4tj0lFsJaybBYt0dvExMJjRPnksJiyyMSiWD+/Pm49NJLcf3112e9/9hjj+H73/8+brzxRhx77LG46667cO211+Lxxx9HXV0dAOCiiy7Kue/7778fQrrR7ZEjR/DDH/4Qt956a/VOhiAIgiAIgiAqhdeL1LLjkVp2POLm1+NxCPv2Qti7R/+3bw+EPbv179Nup/zs05ZdaZIEZcpUqNOmQ5k2A8r06boQTf+sNTRkVbI92lSjoI/XZ+1BOtadSyYuUyQuR8app56KU089Ne/7d955J6688kpcdpkeO3DjjTfi+eefxwMPPIBPfepTAICHHnqo4DFCoRA++9nP4pvf/CamTy+v1DPPj60JycYz1sZFTAxofhHVhOYXUW1ojhHVZFTnl8sJbdEipBYtQsr+XjhsCE9+7+6MAN2zG+K+vcC+vTl3qbndUKZO08Xn9BlQp06DOn06lKnToU6eDK2++uLT6dKFoNsjVOy6emusUkeW+TH9fwJzbxU9indMjzUfY9YfTyQS2Lp1Kz7zmc8Yr/E8j9WrV2Pjxo1F7UNRFHzxi1/EFVdcgbVr15Y1HlHkUV/vLWsf1SIQ8Iz2EIgJDM0voprQ/CKqDc0xopqMuflV7wWmNQOnrsp+LxwG9u8H9u3LfE1/z+3bB/G9HcB7O3Lv1+EAJk8Gpk4Fpkyx/mOvNTYC/Mhdx7XrnFAVAatPq0eNvzK5o62TrQ5gfYMH9fVjt/ULjwQAgIMuKsfc/CqCMSsu+/v7oSgKGhoaLK/X19fjwIEDRe3jxRdfxOuvv46enh789a9/BQD88Y9/RE1NTcnjSaVUDA1FS/5cNeF5DoGAB/39Yajq+LXPibEJzS+imtD8IqoNzTGimozb+dUyXf+XQ3tygwPgDx6EcHA/+AMHwB86COHgAfBtbeDbj4DfuxfYm9v5BPTQW3VSK9TWVqjNLVCbmqE1NUFtajb+aU1NUBsa8xYeWrHWi2Qqjt7eeM73S0XVkpafQ6EoxN4sv3fMEArqY4vH9RzRsTa/ampckCSh4DZjVlzmo5Rqr+vWrcPWrVsrduyxdHPNqKo2ZsdGjH9ofhHVhOYXUW1ojhHVZELNL58fyuIlSC5ekvv9WAx8RzuEtiPg246Ab2uD0HY4LT7bILQdgXDwAISDw5tAan29Ljgbm6EyAdrQCK2uDmpdPdRAHbT69NfaWkAoLGjy4fJYnVSOH7vreSATeZxK6nGx43F+jVlxGQgEIAgCenp6LK/39fVluZkEQRAEQRAEQVQRpxPqjJlQZ8zMv008Dr6jHXxXJ/iurvTXTvDd3emvmdfF3l5g+7ZhD6txHLTaWqh19dACdVDr01/r6qHW1UHz1UDz+6HV1ED16V/Zz063B4LAGa09xnxBH6MVySgPpAzGrLiUZRmLFy/Gq6++itNPPx0AoKoqXnvtNXzsYx8b5dERBEEQBEEQBGHB4YA6fQbU6TMKb6dp4IYGLQKU6+0B39sLvr8PXF8v+L5+/Wt/H/j+Poh7dpc8HI3ncZPkQVj0ISZ50binAaj1Q/N4oXk80Nzu9D8PkP6qWb6avne5AYcMTZL1HNQRuqmFoFYkZRIOh3Hw4EHj58OHD2P79u1oaGhAY2MjPvGJT+CGG27A4sWLsXTpUtx1112IxWK45JJLRnHUBEEQBEEQBEGMGI6D5q+F4q+FMndecZ+JRnXhmRagfF8vuL4+cMEh8END4AYHwQUHwQ2lfw7qr/G9A2gIt+n7WL+zYqegCQLgcECTZUCSobHvHQ5osgOQJGgOB8ALgMDr2/O8Lko5/avG84DAGz+D5/HhN8MQHBKw8evA1DkVG+/RYlTF5ZYtW/DRj37U+Pm73/0uAODzn/88rr/+epx//vno6+vDz372M3R3d2PhwoW47bbbjB6XBEEQBEEQBEG8D3C5oLomA62TUUrU6J9+ewR7tgbhVsL4r/9q0EVoOAwuEgYXiZi+RrJeg/m1aARcPAEk4uASyfTXOBBPgAuHwSeTww+mCFazb+6aAnzjfyuyz6PJqIrLlStX4r333iu4zTXXXINrrrnmKI2IIAiCIAiCIIiJgtcnQOMFJJx+qNPK63lfEE0DEomM4EzEgXgcnKbqjStVVU+mVFVwqmL5GYqa3k7Bi//sBifyuPD7VwDhsVvZNh9jNueSIAiCIAiCIAiiHDw+Xe6IUpWL+XCcHhLrcAA+YKRZk6vW6q1u4HQC4VBFh3g0GHmnU4IgCIIgCIIgiDGMx6sX3hnrlWInCiQuCYIgCIIgCIKYkHh9urgUSFweFUhcEgRBEARBEAQxITHCYgUSl0cDEpcEQRAEQRAEQUxIPORcHlVIXBIEQRAEQRAEMSHx14rgBcDrozqmRwO6ygRBEARBEARBTEhcbgHX/vtU+GpI9hwN6CoTBEEQBEEQBDFhaZ3qHO0hvG+gsFiCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpcEQRAEQRAEQRBE2ZC4JAiCIAiCIAiCIMqGxCVBEARBEARBEARRNiQuCYIgCIIgCIIgiLIhcUkQBEEQBEEQBEGUDYlLgiAIgiAIgiAIomxIXBIEQRAEQRAEQRBlQ+KSIAiCIAiCIAiCKBsSlwRBEARBEARBEETZkLgkCIIgCIIgCIIgyobTNE0b7UGMB1RVg6Kooz2MLCRJQDKpjPYwiAkKzS+imtD8IqoNzTGimtD8IqrJWJxfgsCD57mC25C4JAiCIAiCIAiCIMqGwmIJgiAIgiAIgiCIsiFxSRAEQRAEQRAEQZQNiUuCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpdjnLvvvhunn346lixZgiuuuAKbNm0quP0///lPnHvuuViyZAkuvPBCvPjii0dppMR4pJT5tWvXLlx//fU4/fTTMX/+fPzpT386iiMlxiOlzK+//vWv+Jd/+ResWLECJ554Ij75yU9i8+bNR3G0xHiklDn29NNP47LLLsPy5cuxbNkyXHTRRXjwwQeP3mCJcUepazDGrbfeivnz5+Omm26q8giJ8Uwp8+v+++/H/PnzLf+WLFlyFEdbPCQuxzCPPfYYvv/97+Nzn/scHnjgAcyfPx/XXnst+vr6cm7/zjvv4Ctf+Qouv/xyPPjggzjzzDPx2c9+Fnv27DnKIyfGA6XOr2g0iilTpuArX/kKGhsbj/JoifFGqfNr/fr1uOCCC/CHP/wB99xzD5qbm/HJT34SXV1dR3nkxHih1Dnm9/vx6U9/Gn/5y1/w8MMP4/LLL8fXvvY1vPrqq0d55MR4oNT5xdi6dSvuvfdezJ8//yiNlBiPjGR+1dbW4uWXXzb+Pffcc0dxxCWgEWOWyy+/XPvOd75j/KwoirZ27Vrttttuy7n9F7/4Re3Tn/605bUPfehD2o033ljVcRLjk1Lnl5l169Zpf/zjH6s5PGKcU8780jRNS6VS2nHHHac9/PDD1RoiMc4pd45pmqZdfPHF2s9//vNqDI8Y54xkfkUiEe28887TXnzxRe2aa67RfvCDHxyNoRLjkFLn19///nftxBNPPFrDKwtyLscoiUQCW7duxZo1a4zXeJ7H6tWrsXHjxpyf2bhxo2V7AFi7dm3e7Yn3LyOZXwRRLJWYX9FoFKlUCn6/v0qjJMYz5c4xTdPw2muvYd++fTjhhBOqOFJiPDLS+fWDH/wAK1euxMknn3wURkmMV0Y6v0KhEE477TSceuqp+OxnP4vdu3cfhdGWjjjaAyBy09/fD0VR0NDQYHm9vr4eBw4cyPmZnp4e1NfXZ23f3d1dtXES45ORzC+CKJZKzK9bbrkFkyZNwkknnVSNIRLjnJHOsWAwiFNOOQWJRAI8z+PGG2/EqlWrqj1cYpwxkvn13HPP4fXXX6c8XmJYRjK/Zs2ahe9///uYN28ehoaGcMcdd+Dqq6/Go48+iubm5qMx7KIhcTnO0DQNHMflfT/Xe4W2Jwgzw80vgiiHYufX7373Ozz22GP44x//CFmWj8LIiInCcHPM4/HgwQcfRCQSwWuvvYbvfe97mDZtGpYvX34UR0mMV/LNr76+Pnzzm9/EL3/5S7hcrlEYGTERKPT/17Jly7Bs2TLj5+OOOw7nn38+7rvvPnz+858/SiMsDhKXY5RAIABBENDT02N5va+vL+tJB6OhoSFr+97e3rzbE+9fRjK/CKJYyplft99+O37729/izjvvxLx586o5TGIcM9I5xvM8pk+fDgBYuHAh9uzZg1tvvZXEJWGh1Pm1a9cudHd34+qrrzZeUxQFGzZswJ/+9CeqfE1YqMQaTJIkLFy4cExGm1HO5RhFlmUsXrzYUsVOVVW89tprlicXZpYtW4ZXXnnF8tqrr76ad3vi/ctI5hdBFMtI59dtt92GX/3qV7jtttvGbIl1YmxQqf/DNE1DIpGowgiJ8Uyp82vJkiV45JFH8OCDDxr/jjnmGFxyySW4//77j+LIifFAJf7/UhQFu3btGpPV+8m5HMN84hOfwA033IDFixdj6dKluOuuuxCLxXDJJZcAAG644QY0NzfjK1/5CgDgox/9KK655hrccccdOPXUU/HYY49hy5Yt+L//+7/RPA1ijFLq/EokEkZbm0Qigc7OTmzfvh1+vx+tra2jdh7E2KTU+fW73/0OP/3pT3HLLbdg8uTJRq642+2Gx+MZtfMgxi6lzrFbb70VixYtwvTp05FIJPDSSy/hoYcewne+853RPA1ijFLK/HK73VmRFm63G7W1tZg7d+5oDJ8Y45T6/9cvfvELLFu2DNOnT8fQ0BBuv/12tLW14fLLLx/N08gJicsxzPnnn4++vj787Gc/Q3d3NxYuXIjbbrsNdXV1AID29nbwfMZ8Pv7443HLLbfgJz/5CX70ox9hxowZ+OUvf4nZs2eP1ikQY5hS51dXVxcuvvhi4+dbb70Vt956Ky655BL84Ac/ONrDJ8Y4pc6ve+65B8lkEl/4whcs+/n85z+P66+//qiOnRgflDrHYrEYvvOd76CjowNOpxOzZs3CD3/4Q5x//vmjdQrEGKbU+UUQpVDq/BoaGsI3v/lNdHd3w+/345hjjsFf/vIXzJo1a7ROIS+cpmnaaA+CIAiCIAiCIAiCGN/QIxeCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyEUd7AARBEAQx1vj5z3+OX/ziF1mvr1q1Cr///e+P/oAIgiAIYhxA4pIgCIIgcuDz+XDbbbdlvUYQBEEQRG5IXBIEQRBEDgRBwLJly4bdLhaLwel0Vn9ABEEQBDHGoZxLgiAIgiiSw4cPY/78+Xj44Ydxww03YPny5bjuuusAAAMDA/jWt76F1atXY8mSJbjqqqvw7rvvWj4/NDSEr3zlK1i2bBnWrl2LX//617jppptw+umnG9v8/Oc/x8qVK7OOPX/+fPzpT3+yvHbffffhggsuwDHHHIN169bhd7/7neX9r371q7j00kvxyiuv4MILL8SyZctw9dVXY9euXZbtFEXBb3/7W5xzzjk45phjcMopp+CrX/0qAODuu+/Gcccdh3A4bPnM66+/jvnz52PHjh0lXkWCIAhiokLOJUEQBEHkIZVKWX7WNA0AcPPNN+Oss87CT3/6U/A8j0QigU984hMYGhrCDTfcgLq6Otxzzz34+Mc/jieffBKNjY0AgP/+7//GG2+8ga997WtoaGjAHXfcgYMHD0IUS/9zfNttt+HHP/4xrr32Wpx44onYunUrfvrTn8LlcuGaa64xtmtvb8fNN9+Mz3zmM3A4HLj55pvx7//+73j00UfBcRwA4Fvf+hYeeughfOpTn8KJJ56IwcFBPP744wCACy+8EDfddBOeeOIJXHrppcZ+H3jgASxevBgLFiwoeewEQRDExITEJUEQBEHkYGBgAIsXL7a89t3vfhcAcOyxx+Lb3/628fp9992HXbt24dFHH8WMGTMAAKtXr8a5556LO+64A//1X/+FXbt24emnn8aPf/xjnH/++QCAlStXYt26dfB6vSWNLRQK4Ze//CU+85nP4POf/zwAYM2aNYhGo/j1r3+Nq6++GoIgAAAGBwdxzz33GOPSNA2f+9znsHfvXsyePRt79uzB3/72N3z961/HRz/6UeMYbIw1NTU4++yzcf/99xviMhwO48knn8RXvvKVksZNEARBTGxIXBIEQRBEDnw+H+68807La7IsAwBOO+00y+uvvfYaFi9ejClTpljczhUrVmDLli0A8P/bu5tQeNcwjuM/RxpRaPyZmmnkJSsvZSFvzQYLRSFKTamhJFH2NmZDUsiIkiQWmijZSUo2lIUIGzuFGEyDjBI5Z3GaqTH+Dk0djvP9LO+5e+5rlr+u+7keHRwcSFLIFdj4+HiVlpZqf3//U7Xt7u7q4eFBVVVVIecVFxdrYmJCFxcXslgskiSLxRIMlpKUlZUlSfJ4PMrKytL29rYkhXQlX2tsbJTD4dDJyYmsVqtWVlb0/PysmpqaT9UNAPjZCJcAALwhOjpaeXl5IWunp6eSpOTk5JB1n8+nvb29sE6nJKWlpUmSrq+vFR8fHzb85/WzPsLn80mSqqur3/z9/Pw8GC5fT7iNiYmRJD0+Pkr6u0MbFxf3bve0qKhIVqtVS0tL6u7u1tLSkioqKpSUlPTp2gEAPxfhEgCATwq8qxiQmJio3NxcOZ3OsL2BbuevX7/k9/vDpst6vd6Q/QaDQU9PTyFrt7e3YedJ0uTk5JvhNCMj48P/JSkpSQ8PD7q/v/9twIyKilJDQ4MWFhZUW1urnZ2dsOFBAAAQLgEAiFBJSYk2NzdlNpt/24kMdEHX19eD7zP6/X5tbW2FhDqTySS/3y+PxyOTySRJ2tzcDHlWQUGBYmNjdXl5GXZF97OKi4slScvLyyGDgF6rr6+Xy+VST0+PTCaTysrKIjoXAPDzEC4BAIhQXV2d3G63mpub1draKqvVqpubG+3v7yslJUUOh0PZ2dkqLy+X0+nU/f29UlJSND09HXZN1mazKTY2Vj09PWppadHp6ancbnfInoSEBHV1damvr09nZ2cqLCzUy8uLjo+Ptb29rfHx8Q/XnpmZqaamJg0MDMjr9aqwsFB3d3daXV3VyMhIcJ/JZJLNZtPGxoba29uDA4MAAAggXAIAECGDwaC5uTmNjo5qbGxMXq9XRqNR+fn5IQN8BgYG5HQ61d/fr7i4ONntduXl5Wl1dTW4x2g0yuVyaXBwUJ2dncrJydHQ0FCw2xnQ1tam1NRUzc7OamZmRgaDQenp6WH7PqK3t1dms1mLi4uampqS0Wh8szNZWVmpjY2Nd4f/AAD+v6L+DHy0CwAA/OsC35BcX1//6lL+UXd3t66urjQ/P//VpQAAviE6lwAA4F1HR0c6PDzU2tqahoeHv7ocAMA3RbgEAADv6ujokM/nk91uV1VV1VeXAwD4prgWCwAAAACI2B9fXQAAAAAA4L+PcAkAAAAAiBjhEgAAAAAQMcIlAAAAACBihEsAAAAAQMQIlwAAAACAiBEuAQAAAAAR+wu14s+YjPwwEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")" + ] + }, + { + "cell_type": "markdown", + "id": "082abc72", + "metadata": {}, + "source": [ + "##### As can be seen, there is improvement in both the variance and the bias." + ] + }, + { + "cell_type": "markdown", + "id": "8d01ad42", + "metadata": {}, + "source": [ + "### Attributes of the Multitaper object\n", + "``norm``: {``leahy`` | ``frac`` | ``abs`` | ``none`` }\n", + " the normalization of the power spectrun\n", + "\n", + "``freq``: The array of mid-bin frequencies that the Fourier transform samples\n", + "\n", + "``power``: The array of normalized squared absolute values of Fourier\n", + "amplitudes\n", + "\n", + "``unnorm_power``: The array of unnormalized values of Fourier amplitudes\n", + "\n", + "``multitaper_norm_power``:The array of normalized values of Fourier amplitudes, normalized\n", + " according to the scheme followed in nitime, that is, by the length and\n", + " the sampling frequency.\n", + "\n", + "``power_err``: The uncertainties of ``power``.\n", + " An approximation for each bin given by ``power_err = power/sqrt(m)``.\n", + " Where ``m`` is the number of power averaged in each bin (by frequency\n", + " binning, or averaging power spectrum). Note that for a single\n", + " realization (``m=1``) the error is equal to the power.\n", + "\n", + "``df``: The frequency resolution\n", + "\n", + "``m``: The number of averaged powers in each bin\n", + "\n", + "``n``: The number of data points in the light curve\n", + "\n", + "``nphots``: The total number of photons in the light curve\n", + "\n", + "``jk_var_deg_freedom``: Array differs depending on whether\n", + "the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a chi2 model of how the estimated\n", + " PSD is distributed about the true log-PSD (this is either\n", + " 2\\*floor(2\\*NW), or calculated from adaptive weights)" + ] + }, + { + "cell_type": "markdown", + "id": "88ba3894", + "metadata": {}, + "source": [ + "### A look at the values contained in these attributes." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e4acf993", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "norm: abs \n", + "power.shape: (511,) \n", + "unnorm_power.shape: (511,) \n", + "multitaper_norm_power.shape: (511,) \n", + "power_err.shape: (511,) \n", + "df: 0.0009765625 \n", + "m: 1 \n", + "n: 1024 \n", + "nphots: -73.38213649959974 \n", + "jk_var_deg_freedom.shape: (511,) \n" + ] + } + ], + "source": [ + "print(mtp)\n", + "print(\"norm: \", mtp.norm, type(mtp.norm))\n", + "print(\"power.shape: \", mtp.power.shape, type(mtp.power))\n", + "print(\"unnorm_power.shape: \", mtp.unnorm_power.shape, type(mtp.unnorm_power))\n", + "print(\"multitaper_norm_power.shape: \", mtp.multitaper_norm_power.shape, type(mtp.multitaper_norm_power))\n", + "print(\"power_err.shape: \", mtp.power_err.shape, type(mtp.power_err))\n", + "print(\"df: \", mtp.df, type(mtp.df))\n", + "print(\"m: \", mtp.m, type(mtp.m))\n", + "print(\"n: \", mtp.n, type(mtp.n)) # Notice the length of PSDs is half that of the number of data points in the light curve, as the imaginary (complex) part is discarded.\n", + "print(\"nphots: \", mtp.nphots, type(mtp.nphots))\n", + "print(\"jk_var_deg_freedom.shape: \", mtp.jk_var_deg_freedom.shape, type(mtp.jk_var_deg_freedom))" + ] + }, + { + "cell_type": "markdown", + "id": "f5b3a490", + "metadata": {}, + "source": [ + "### A look at the different normalizations\n", + "The normalized S(f) estimates are stored in the `power` attribute can be accessed like `mtp.power` if the object name is `mtp`" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f305d250", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc1dXA4d/MVq16sSVXjJswrtgGUwwGgyk2vdcEML2ThBZIvkBCaCEQAwkECJCEEEIPvYVmeje2ce9qVq/bpnx/zM7s7GolSy64cN48PJFmp9xdjeQ9e849VzFN00QIIYQQQgghhNgE6tYegBBCCCGEEEKI7Z8El0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIsR0wTZPp06dTXl7O6tWrOz3+6aefUl5e7vw3efJkTjjhBN56662M55s/fz677747bW1tGR+/6KKLKC8v55///GfK9vPOO4/77ruvR2OuqKjgqquuYv/992fs2LFMmzaNCy+8kM8//7xHx29uc+fO5dFHH90q194U1157Lccee+wWv866desoLy/nnXfe2SLnP+OMMygvL+eBBx7o9NiUKVO45557tsh1N7d77rmHKVOmON/bv3tLlizZ4tf+5z//SXl5+Ra/jhBCbCwJLoUQYjvw9ddfU1FRAcDLL7/c5X5/+MMfePLJJ7nzzjspKCjgkksuyRjM3X333Zx88snk5OR0emzu3Ll8++23Gc9/3nnn8eijj9LS0tLteJubmznppJNYtmwZP/vZz3jwwQe57LLLUFWVr7/+uttjt5QPP/yQv//971vl2iLp0UcfJRwOb+1hbDajR4/mySefZPDgwVt7KEIIsdVJcCmEENuBl19+mVAoxPjx47sNLsvLy5kwYQLTpk1jzpw55Ofn89///jdln1WrVvHBBx9w3HHHdTo+Ho9z8803c8UVV2Q8/+TJkykoKOCFF17odryvv/46dXV1PPTQQxx55JHsueeeHHfccdx3332ce+65G37CW5Gu68Risa09jB3SbrvtRltbG08++eQWOX80Gt0i5+1OTk4OEyZMIBgM/uDXFkKIbY0El0IIsY3TdZ3XXnuN6dOnc9xxx7Fs2TIWLVq0weOysrIYPHgwVVVVKdufe+45ysvLGTJkSKdj/v73vxMMBjMGnraDDz6Y559/vttrt7S04PP5yM/P7/SYoijO13bJ51tvvcWhhx7K2LFjOeWUU1i2bFnKMYZh8Ne//pUZM2YwZswYDjnkEJ577rlO537zzTc5/vjjGTduHFOmTOHcc8+loqKCe+65h7/97W9UVFQ4pcPXXnttpzHMmjWLcePGMW/evE7lj7b0cuHp06dz22238de//pWpU6cyadIkbr31VkzT5L333mPWrFnstttuXHTRRTQ3N3f7um2sL774gtNPP53x48czZcoUbrjhhpSS5/Xr13Pddddx4IEHMm7cOA455BDuuuuujEF0OBzm17/+NZMmTWK//fZjzpw5GIYBwNKlSykvL+ezzz5LOaa9vZ3ddtttg5nhvn37cuyxx/K3v/1tgwH8K6+8whFHHMGYMWOYNm0ad911F5qmOY8/++yzlJeXM2/ePM444wzGjRvHQw895GxfsGABZ5xxBuPHj+eoo45iwYIFdHR0cN111zFp0iQOPPBAXnrppZRrvvvuu5x11lnstddeTJw4kRNPPJG5c+d2O870sth77rknpUTd/m/69OnOMdFolNtvv51p06YxZswYjjzySN57772U88ZiMW666SYmT57MHnvswe9///uU5y+EENsi79YegBBCiO598skn1NXVMXPmTCZNmsRvf/tbXn75ZXbZZZdujzMMg+rqakaPHt3pfLvttlun/Wtra/nzn//M/fffj6p2/dnjbrvtxsMPP0xzc3PG4BGsUsFYLMbVV1/N2Wefza677trlOSsrK7nlllu4/PLLCQaD3HPPPcyePZs33niDQCAAwG9/+1uef/55LrroIkaPHs2HH37IL3/5SwoKCjjggAMAeP7557nmmmuYNWsWF110EaZp8sknn9DQ0MAJJ5zAqlWr+PTTT7n33nsBKCoqcsZQUVHBHXfcwUUXXURJSQkDBw7s5pXt7OWXX2bcuHH8/ve/Z8GCBdx9990YhsEXX3zB5ZdfTiQS4be//S133nknN910U6/OvSFffvklZ555JgcddBBz5syhsbGRO++8k5aWFubMmQNAY2MjBQUFXHfddeTl5bFq1SruueceGhsbO43nD3/4AwcffDBz5szh448/5r777mP48OHMnDmTESNGMGHCBJ599ln22GMP55jXXnuNeDzO4YcfvsHxnnvuuTz99NM888wznHLKKRn3mTt3LldeeSVHH300V111FYsXL+ZPf/pTxvH+7Gc/45RTTuHiiy8mLy/P+eDl2muv5bTTTuOcc87hzjvv5LLLLmPcuHEMHjyYOXPm8Mwzz3DNNdcwefJkysrKAGve6QEHHMDZZ5+Nqqq8//77nHvuufzzn/9k0qRJPfp5nHDCCey7777O9+FwmCuvvDLlw5zLLruMefPmcemllzJ48GBeffVVLrzwQp555hlGjRrl/ByeeuoprrzySoYNG8ZTTz3Fa6+91qMxCCHEVmMKIYTYpl177bXm5MmTzWg0apqmaZ577rnmAQccYBqG4ezzySefmCNHjjS///57Mx6Pm/X19eatt95qTpo0yVy+fLmzn2EY5pgxY8x//vOfna5z1VVXmZdddpnz/ciRI81//OMfnfZbu3atOXLkSHPu3Lndjvv3v/+9WV5ebo4cOdLcbbfdzEsuucT88MMPU/a55pprzJEjR5pffvmls23dunXmqFGjzH/961+maZrmqlWrzPLycvPZZ5/tNN5jjz3WNE3T1HXdnDp1qnnxxRd3OZ5bb73VPOCAAzptt8ewcOHClO1z5swx99hjj077p78uBxxwgHnQQQeZmqY524477jhz1KhR5po1a5xtt912m7nXXnt1Ob6uXHPNNeYxxxzT5eOnnHKKefrpp6ds++ijj8yRI0eaixcvznhMPB43//vf/5pjxoxx7iv753rVVVel7HvkkUeaV1xxhfP9f/7zH3PChAlmW1ubs+3UU081L7300m6fx+mnn+7sc80115gHHHCAGY/HTdM0zT322MOcM2eOs+8JJ5zQ6Tn99a9/NXfZZRezqqrKNE3TfOaZZ8yRI0eajz76aMp+9nb3/fLuu++aI0eONK+99lpnW0tLi7nrrruajz/+eMbx6rpuxuNx8+yzz045Lv2+sH/3unqtL7/8cnOfffYxa2pqTNNM/mw+/fTTlP3cr2FDQ4M5duxY84EHHkgZzyGHHGKOHDky43WEEGJbIGWxQgixDYvFYrz11lscdNBB+P1+AGbNmkVFRQXffPNNp/2POuooRo8ezV577cWjjz7KrbfeytChQ53Hm5ubicViFBYWphz39ddf8/rrr3P11VdvcEz2sbW1td3ud9111znn3GOPPfjggw84++yzeeKJJ1L2Ky4uZuLEic73AwYMYPTo0cybNw+Ajz/+GFVVmTFjBpqmOf/ttddeLFq0CF3XWblyJevXr9/orqqlpaVOxmhj7LHHHng8Huf7nXbaiQEDBjBo0KCUbQ0NDZt1Pmc4HOabb77hsMMOS3ltJk2ahM/nY8GCBYDVbfjRRx9l5syZjBs3jtGjR/OLX/yCWCzWqWx6n332Sfl++PDhVFdXO9/PnDkTwMmirVmzhi+//LJXr/35559PVVUVL774YqfHdF1n4cKFHHrooSnbZ86ciWEYnRpC7b///hmvsddeezlf28129txzT2dbbm4uhYWF1NTUONuqq6u55ppr2Hfffdl1110ZPXo0c+fOZdWqVT1+bm5//etfeeutt5gzZw59+/YF4KOPPqJPnz5MnDix0/08f/58AJYsWUI0GuXAAw90zqWqasr3QgixLZKyWCGE2Ia9//77tLS0MG3aNKdD65QpU/D7/bz88sudylvvuusuBg0aRFVVFXfffTfXXXcdY8eOpbS0FEg2PLEDVdvvf/97TjrpJHJzc1M6wUYiEVpbW8nNzXW22cf2JEjaaaedmD17NrNnz6ahoYHZs2dz1113cfLJJztzL4uLizsdV1xc7ASvjY2N6LreZVlibW0tjY2NAPTp02eDY8qkpKRko46z5eXlpXzv8/lSXjN7m2maxOPxTq//xmppaUHXdW688UZuvPHGTo/bgeNjjz3Gbbfdxnnnncfuu+9OXl4e3333HTfddFOnJjiZnot7n+zsbA499FCeffZZjjvuOJ599llKSkpSSkE3ZOedd+aQQw7hgQce4Kijjkp5rLGxkXg83ulnYn+fPm810/0DpLz+Pp8v43Pz+/3OfWwYBhdeeCHt7e1cdtll7LTTTmRlZTFnzhzq6+t7/Nxsc+fO5a677uKGG25I+fCksbGR2traTuXqgPMBRV1dXcbn1tVzFUKIbYUEl0IIsQ2zG45cfvnlnR579dVXue6661IyZsOHD2fkyJGMHTuWXXbZhZkzZ/LnP//ZCTzsrGP6UiIrV65k3rx5PPbYYynb77jjDv74xz+ycOFCZ1traytAl/Mtu1JUVMSxxx7L7373O+rr651gIdMb9/r6eoYPH+5cx+v18sQTT6Q0A3Kft729HdhwNrU3AoEA8Xg8ZduWasizsXJzc1EUhUsuuYRp06Z1etzOlr322msceuihXHnllc5jy5cv3+jrnnDCCZxyyimsWrWKF154gaOPPjrlPuyJCy64gKOPPrrTPMLCwkJ8Pl+n+8IOuNLvu0z3xMZYvXo1Cxcu5MEHH2S//fZztkcikV6fa+3atfz85z/nyCOP5LTTTkt5LD8/n9LS0m7Xi3X/bhQUFDjbNybIFUKIH5IEl0IIsY1qb2/n3Xff5fDDD+fEE09Meez777/nlltu4dNPP2XvvffOePzgwYM54YQTeOaZZ7jssssoLi7G7/fTv39/1q1bl7Lv/fffj67rKdt+8pOfcMYZZ3DwwQenbLePzdRt1tbQ0JDSMMe2evVq/H5/Slapvr6er776ysnuVFZWsnDhQqfMcs8990TXdVpbWzuVbNp23nlnSktLef7551O6crqlZ+A2pLS0lPb2dmpqapzM74cfftjj438IoVCICRMmsHLlSi655JIu94tEIp2ypZlKUntq4sSJDB06lF/+8pdUVlZyzDHH9Pocu+yyCwcccAAPPPBAynaPx8Po0aN57bXXOPXUU53tr776KqqqZmxGtTlkyupXVFTw9ddfM3LkyB6fp6Ojg4svvpj+/ftnzCbvtddePPLII4RCIYYNG5bxHCNHjiQQCPD22287+xiGwdtvv92bpySEED84CS6FEGIb9fbbbxMOh/nJT37C+PHjUx6bOHEif/nLX3jppZe6DC4BzjnnHJ566in+8Y9/OGtXTpw40ZmLZ5s8eXLG44cMGZLSFRRg/vz55ObmMmLEiC6v+9xzz/Hiiy9y9NFHU15ejqZpfPzxx/zrX//ilFNOcbrAgpWpuvrqq51usXPmzHGynABDhw7l5JNP5mc/+xmzZ89m7NixRKNRli5dyqpVq7j55ptRVZWrrrqKX/ziF/z85z/n8MMPR1EUPvnkE2bNmsXYsWMZOnQodXV1PPvss4wYMYLCwsJuu8Luu+++BINBfvnLX3LWWWexbt06/v3vf3e5/8aYPn06e+yxB7feemu3+7W0tGTsFDpt2jR+8YtfcOaZZ6KqKocccgjZ2dlUVVXx7rvvcuWVV7Lzzjuz9957849//MPplvriiy+yevXqTRr78ccfz+23385uu+3WZZC0IRdeeCEnnHBCp+2XXnops2fP5rrrrmPmzJksWbKEP/3pT5xwwglOZ9fNbejQoZSVlXHbbbdx+eWX097enjJXsqduueUWli9fzu23356yZJDf72fXXXdln332YerUqZx99tmce+65DB8+nLa2NhYtWkQ0GuXnP/85hYWFnHjiidxzzz14vV6GDx/OU089RUdHx+Z+2kIIsVlJcCmEENuol19+mSFDhnQKLMHKwh122GG8/PLL/OY3v+nyHAMGDOCII47giSee4LzzziMUCjFjxgyuu+46IpHIRi38/sEHHzBjxoxulyuZNm0a69at4z//+Q9VVVV4PB4GDx7MDTfc0CkL279/fy644ALuvPNOKioqGDNmDHfeeWdKAPp///d/DBkyhKeeeoo5c+aQk5PD8OHDOf744519jjjiCAKBAPfffz+XXXYZoVCI8ePHOxnUww47jE8//ZQ77riDhoYGjjnmmG6DuqKiIubMmcPtt9/OxRdfzOjRo7nzzjudhjabQzgczpjhTbd27dqMpdFvv/02kydP5vHHH2fOnDlcffXVGIZB//792XfffZ3yyosvvpjGxkb+9Kc/ATBjxgxuuOEGLrjggo0e+0EHHcTtt9/e7ZqoGzJu3Dj22WefThnhqVOnctddd/GXv/yFF198kaKiIs4++2wuvfTSjb7Whvj9fu655x5uuukmLrvsMsrKyrjgggv47LPPnDUse2LVqlVomsbPfvazlO0DBgzgf//7H4qicO+993L//ffz2GOPUVVVRX5+PrvssgtnnHGGs//VV1+Npmncd999qKrKkUceyVlnnbXBDyKEEGJrUkzTNLf2IIQQQvxwYrEY06ZN49e//jWHHXZYr45tbW1l77335pFHHuky29kb1157LUuWLOHZZ5/d5HNtb9auXcvBBx/MG2+8kdJVdnvx+OOP84c//IEPPviAnJycrT0cIYQQ2wBZikQIIX5k/H4/s2fP5u9//3uvj33iiSeYMGHCZgksf+y+/vprDjrooO0usFy3bh1z587lgQce4JhjjpHAUgghhEPKYoUQ4kfo9NNPz7jMyIbk5ORw/fXXb8GR/XgceeSRHHnkkVt7GL1277338tJLL7H77rtnLNUVQgjx4yVlsUIIIYQQQgghNpmUxQohhBBCCCGE2GQSXAohhBBCCCGE2GQSXAohhBBCCCGE2GTS0KeHDMNE142tPYxOvF4VTdv2xiV2DHJ/iS1J7i+xpck9JrYkub/ElrQt3l8ej4qqKt3uI8FlD+m6QVNTx9YeRgpVVSguzqGlJYxhSF8msXnJ/SW2JLm/xJYm95jYkuT+ElvStnp/FRSEUFVPt/tIWawQQgghhBBCiE0mwaUQQgghhBBCiE0mwaUQQgghhBBCiE0mcy6FEEIIIcSPhmmaGIaOuQlT2VRVIRaLoWnaNjUnTuwYtsb9pSigqh4UpfuGPRsiwaUQQgghhNjhmaZJW1sz7e0twKa/Ya+rUzGMbaubp9hxbJ37SyE7O4+cnPyNDjIluBRCCCGEEDs8O7DMyyvC7w8Am5ih8SpommQtxZbxw99fJrFYlJaWBgBycws26iwSXAohhBBCiB2aaZpOYBkK5WyWc3q9KiCZS7FlbI37y+v1AdDS0rDR2Utp6COEEEIIIXZohqEDZiJjKYToivU7YiZ+Z3pPgkshhBBCCLFDSzbv2bRSWCF2fNbvyMY2vJLgUgghhBBCCCHEJpPgUgghhBBCCCHEJpPgUgghhBBCiB+Br776gqlTJ9PR0dHtfscffwTPPPPkDzSqbdfDDz/A7NlnbO1hbFckuBRCCCGEEGIbdPPNv2Hq1MncddftnR678cYbmDp1Mvfee/dGn/+VV15k1qwDO21/8MG/M2vWUc73U6dO5sMPP9jo62wPMj3HU045gz/+8Z4tfu1LLjlvk36O2xIJLoUQQgghhNhG9e1byptvvk4sFnO2tbe38cEH79K3b+kWuWZhYSHBYHCLnHtTxePxH+xaoVCI/PyCH+x6OwJZ51IIIYQQQoht1K67jmblyhXMnfs+06cfBMBbb73ByJG7oKqpeaKpUydz2213sc8++wLQ0dHBwQfvx5w59zNx4uSUfb/66gt+//sbneMAzjrrXGbPPp/jjz+CU045neOOO4njjz8CgGuuuRKAsrJ+PP30i6xdu4Z7772LhQsXEIlEGDp0GBdddDnjx09IGc8vfnEd7733P7799hv69u3L5Zf/nL32murss2LFMu6990/Mm/c12dnZ7LXXVC655Epycqz1SC+55DyGDx8JmLzxxmuMHj2GO+74U8bX6r//fY4nnvgHNTXV9O8/gFNOOYNZs44ErKB0zpw/8t57/6OtrZXi4j6cdNIpHH/8yV0+x4cffoCPPprLww//A7AyyeFwB8OGjeCZZ55E1w3OOOMsjj/+JP70pz/w5puvk5+fzxVXXOX8DDRN4/bbb+arr76goaGBfv36cdJJp3Hkkcc45/zmm6/45puv+Pe//wnAU0/9l0GDBm7wtdkWSXAphBBCCCF+lJ57vJpF37Vv1LGK0vvlGnYZm80xp5X1+lozZx7BK6/81wkuX3nlRY444mhee+3lXp/LNnbseC677Oc8+uhD/OMf1vzKrKxQp/0efPDvHHHEDH71q5uYPHkPVNUDWIHr3nvvy/nnX4zX6+OFF57l6qsv58knX6CgoMA5/qGH7ueiiy7jyiuv4r//fZ7rr7+aJ554ltLSMlpbW7nssgs5+ujjuOKKn9PREeaee/7IzTf/hltu+YNzjpdf/i/HH38S99//ty6fzxtvvMojjzzIlVdezfDhI/j++4XcdtvvyMvLY9999+epp/7Nhx++z29/exulpaVUVlbQ0tLc7XPM5LPPPqWkpC9//vNDfP75Z9x11+188cVn7LPPVB5++B8888yT/Pa3v+bZZ18mFAqh6zqlpWX87ne3kZeXz9dff8mdd95KWVk/9thjTy6//BesXbuG4cNHctZZ5wBQUFDY49dmWyPBpRBCCCGEENuwQw+dxcMPP0BdXS3t7e2sWLGM6dMP2qTg0ufzkZOTg6JAcXFJl/sVFhYCkJOTm7JfefkulJfv4nx/6aVX8t57/+PTTz/ikENmOtsPOugQZs60MoOXXHIFn332Mc8//wznn38xzzzzJKNG7co551zg7H/11ddz2mnH09jYQGFhEQA77TSE88+/uNvn8/DDD3DppT9jv/32B6B//wEsWbKIF154ln333Z/166sZNGgw48aNR1EUysr6bfA5ZlJQUMBll/0MVVUZPHgIjz/+GIGAn+OOOwmAM888l6effpKlS5cwfvwEAoEAs2ef7xzfv/8AvvnmK/73vzfZY489ycnJwev1EgwGU6791FM9e222NRJcCiGEEEKIH6WNySLavF4VTTM242i6VlxcwuTJU3j11ZdpbW1h2rTphELZP8i1u9LR0cHDDz/Axx/PpaGhHl3XiUaj1NRUp+y3665jUr4fPXosq1atBGDZsqV8/vmnzJixb6fzV1SscwKoXXYZ1e1YwuEwFRXruPnm/+OWW250tmua5gSRhx46iyuuuJhTTz2OPffch6lT92PSpN17/byHDh2WUo5cUFDIkCFDXd8X4PF4aGpqcLY988x/ePnl/1JTU0UsFiMej7PbbpO6vc6yZUt69NpsayS4FEIIIYQQYhs3a9YR3H//vXR0dPB///e7jPsoioLpqtXVNG2Ljee+++7myy8/56KLLmfAgIEEAgF+8YvLOzXcUZTM4wQrKNx33/0zZiX79OnjfB0MZnU7lnDYWlrll7/8P8rLUwNRr9cKd3bZZVeeeuq/fPLJh3z++adce+3POeigg7nmmhs2/GQznM/9XNK3ARiG9cHDW2+9zp///CcuvfRn7LrraEKhbB555K/U1NR0e52Ojo4evTbbGgkuhRBCCCGE2Mbts89+3HHHLWRlhbrMehUUFNLQUO98v2zZkm7P6fX60PUNZ1+9Xi+Goads++67b5k160inDLWlpYXa2s4B04IF85kx41Dn+4UL57P33lY2buTIcj744D369euPx9P1PMcNKSoqpqSkD5WVFRx44MFd7pebm8uMGYcyY8ahTJmyFzfd9CuuuuqXqKqa8TluDt999y3jx+/G0Ucf52xbu3Ytfr/f+d7n83W6dnl5Oe+9t+mvzQ9NliIRQgghhBBiG+f1ennyyed47LF/OZm/dLvtNolnnvkPy5Yt5bvvvuXBB//c7Tn79etHe3sbX331BU1NTUQikYz7lZX154svPqO+vo6WlhYABg4czLvv/o+lS5ewZMkifvOb6zM2wnn77Td49dWXWLNmNX/+859Ys2Y1Rx1lBVrHHnsCjY313HTTDSxatJCKinV8/PFcbrvt5t68NACceeZs/v73v/HMM0+yZs1qli1bygsvPMtzzz0NwJNPPs7bb7/BmjWrWL16Fe+//y6DBg12SlwzPcfNYeDAwSxcOJ/PP/+ENWtWc999f3LKgm1lZf1ZsGA+1dVVNDU1YRgGxx130mZ7bX5IElwKITarlmgzH1d+SFgLb+2hCCGEEDuU7OycbudaXnLJFRQUFHLBBWdxxx2/5+yzz+v2fGPHjueoo47lV7+6hsMPP4jHH3+sy/N++unHHHvsLM4++zTAauATCoW44IKz+OUvr+KAAw5k8OCdOh07e/Z5vPbaK5x55im89947/Pa3t1FWZs117dOnL3/+88PEYjGuuOIifvKTk7jvvjkp3WZ76uijj+fnP7+W//73eX7605O5/PIL+N//3qR//wGAVVr7j388yuzZZ3D++WfS2trK7353e7fPcXM46qhj2Xff/fnVr67lggvOJh6PO8uj2E455XQATjvteA4//CBqaqrp23fzvTY/JMU0e9tE+ccpHtdpaurY2sNIoaoKxcU51Ne3YRjyYxSb18beX9+s/4p5td+yz4Cp9MsewMrmFZQX7YJX3bar8OMxg08/aGLl0jBtLRqqqqCoMGR4iIOP7L5znOg9+fsltjS5x4SbpmnU1VVQUjIg4/y4jfFDNvTZXqWvuyl6bmvdX939rhQUhPD5ui/R3bbf7Qkhtjsx3ZrIrxsGSxoXMa/2W7J92QzJ33krj6x7rzxby9efdC6DqVwTZcjwLEbuunW78gkhhBBCbOskuBRCbFa6aXWmMzCIG1agaf//tmrx/DY+/mwt6/t+ygXHHMzYnYZimrBiSQdPP1bN68/XMqw8hMeTeY6LEEIIIYSQOZdCiM3MDiQN08BIVN3r5ubvvra5GIbJK8/U0uKrZNTuHhYZcwlkKYSyPYyekMPQ8hD16+N892Xr1h6qEEIIsV2ZO/cLKYn9kdnhg8uHHnqIww8/nMMPP5y33357aw9HiB2e5gouTdNA100+/7iexfPbtvLIMlv2fQfNjRqDd8qhtH8AgG/Xf01F6zpMTCbvnQfAutWZO+gJIYQQQgjLDl0Wu3jxYl5//XWeffZZYrEYZ511Fvvttx8+n29rD02IHZZmWGWxpmlQVx/hw7cbCVQ3sJYafn5TiEBg2/pM68uPmwHYZXwQe8bld3XzAJhUujul/UYCsL4qujWGJ4QQQgix3di23uVtZsuXL2fChAn4/X5ycnIYMGAAX3311dYelhA7tLgep7E+xluv1PLCE9U0N2koXoNY1GD+V9tWaWlLk8aSBe1k53gYsLO1mHFRsJj+Of0BWNu6hqISH16fQk1lDGmuLYQQQgjRtW06uPz888+54IILmDp1KuXl5bzzzjud9nn88ceZPn06Y8eO5cQTT2TevHnOYyNGjODTTz+lra2N+vp6vvrqK6qrq3/IpyDEj0rFmghvvlrD3LebWLKwDX9QYfSEHA4+pghIZgm3FV9/2oxpwoQpeZiKNS90XJ/xHDj4YILeILXh9WhmnD5lfqIRg5ZmbSuPWAghhBBi27VNl8V2dHRQXl7Osccey6WXXtrp8VdeeYVbbrmFG2+8kfHjx/PYY49xzjnn8Nprr1FUVMSIESM46aSTOP300ykqKmLChAmbtLaRqm5bnSLt8Wxr4xI7ht7eX1rc4J/3V7DeEyY338M+++bTb2gulZEIfQu99CnzU7kmykfvNLLntEK83i133xqmgWZo+D3+rvcxTL7+1CqEnbx3PotjGooCfq8Pj0dlYO4gljctpSZcRWm/IFVro9RWxyks6vqcoufk75fY0uQeE25yHwjRO6qqbNTvzTYdXE6bNo1p06Z1+fgjjzzCSSedxHHHHQfAjTfeyLvvvstzzz3H7NmzATjttNM47bTTALjooosYPHjwRo3F61UpLs7ZqGO3tMJCWX9PbDk9vb9WL28n3GHQp9zLfjNLGFdaQku0hZbmILl5AY44vj+P3LeKN16oo7Za45zLhm6xMT+/6HnWt6/nrAln4fNknmO94Ntmmho0ykfnMnKXItat9JMTD9KnOJ/inBzGKCOp0dbSpjaw8/ByvvmshbYmc5v9O7C9kr9fYkuTe0wAxGIx6upUvF4Fr3fzFe5tznMJkW7r3F8KqqpSWBjC7+/9B+rbdHDZnVgsxoIFC7jwwgudbaqqsvfee/PNN9842xoaGigqKmLhwoXU1tYyduzYjbqephm0tIQ3ddiblaoqFBZm09jYjmHIXDCxefX2/lowrxGAvGKTjvYojU1ttMbaaWuL0OBpZexIPxddsxOP3ruObz5rYu2aZkLZni0y9hU1awBYV7OevEB+xn3efb0GgPG751Bf30ZjUxttbRGam8L4om0EtXza26N8H13GhPxyAFYua6W+XoLLzUH+foktTe4x4aZpGoZhoGkmYGyWc3q9Kpq2ec71Q7v55t8QDnfwu9/dvtHneOaZJ3niiX/y9NMvbsaR7XheeeVF7rvvbl5+uXerVmyt+0vTTAzDoLGxA683lvJYXl4WPl/379222+CysbERXdcpKSlJ2V5cXMzq1aud7y+88EJaW1vJzc3l1ltv3aRrbqv/OBmGuc2OTWz/enp/rV0VwcQgv8iDaYJuGOiGjmlCXNcwDJM+ZX52GZfNlx+18P28NnabkodpmsSiJoHg5vl0LqbHsPvu6IbR5djXrgqjqDByTAjDMInrcUwTVNODYZj41QBZnhBtsTaKB1h/Kqsro/K7tpnJ3y+xpck9JmDbfQ+3ITff/BteffUlALxeL6WlZRx22OGcfvqZmzTV6/LLfyFN6raA448/glNOOZ3jjjvJ2XbggTPYa699tvi1N8cHBm4b+7dzuw0uu2KaJoqSrA9+8sknt+JohPjxqFgdwUCnoNgqQzVMAyPxD5duJBvh7DI2hy8/amHRd1Zw+f4bDbz3egNHnlzKuMm56JqJz7/xgWZzNNk0SDf1jPsYhklbi05uvtcpOdES+3rV5J/FgCdIe7wdX7ZGMKRStz6OYZgyd0cIIcQPZu+99+Waa64nHtf49tuvuO22m/F4PJxxxlm9PpemaXg8HnJyto8qnHg8vt0vIRgIBAkEglt7GD+Y7bZQvLCwEI/HQ11dXcr2hoaGTtlMIcSWFe7Qqa+Nk1cC/kRgaAWXVjmHbibLOnYeESIQVFm+uINY1GDeF60YBjz/RA133biS265fQeXayEaPpTnaBEB7m8Yj967h9edriUVTy0raWq2Mam5esrTDXp/T4woug94AADE9SnGJD10zaZWOsUIIIX5Afr+P4uISysrKOOSQmRxyyGHMnfs+ANFolHvuuYujjjqUGTP25cILz2b+/O+cY1955UVmzTqQ999/l1NPPY7p0/emqamJm2/+DTfccLWzXzQa4Y9/vI3DDz+I6dP35tJLz2f58mUp43jppec59thZHHTQVH796+toa2tLedwwDB5++AGOPvowDjhgL2bPPoOvv/4yZZ8PPniXk046munT9+FnP7uEF154lqlTJzuPP/zwA8yefQbPP/8Mxx9/BDNnTgfgo4/mcuGFZ3Poofsza9aBXHfdL6ipSa4A8dVXXzB16mQ+/fRjfvrTk5k+fR9+/vPLaGlp4e233+TEE4/i0EP35w9/uBVdz/zBs+3999/lzDNPZfr0vTnppKN5/PHHMIzk+4iHH36AY4+dxQEH7MUxx8zkgQfuA+CSS86jurqKu+66g6lTJzvPy/4ZZHqOxxwzkxkz9uOee/6Irus8+OBfmDXrQI4++jCef/7ZlHHde+/dnHzyMUyfvg8nnngUjz32sDOuhx9+gFdffYl33/2fc+2vvvoCgJqaam644RoOOWQas2YdyA03XE1dXW23r8Gm2G4zl36/n9GjR/PRRx8xfbp14xmGwccff8xPf/rTrTw6IX5c1q60gsGywV7sAgp3cKm5Mpder8KIXUPM/6qND//XSH1tnFCOh0iHTmuz9Qf/rRfr+MlFAzdqLM2xJgAWftNGsCpM67omli/u4PxfDMbjsTKOdoCYm5/8E2hnV71KauYSIKpHKerjp2JNlIa6OPmF2/enqEIIISwfVnzA2tY1G3Wsqiq9LhsclDuYfQbsu1HXswUCAeLxOAB3330Hq1ev4re/vZXi4hLefPM1rrzyYv71r6fp06cvYK2+8O9//5Prr7+R7OxssrM7N7n685/nMHfu+/z617+jpKSERx99mJ///FL+/e/nCAaDfPfdt9x++++58MLL2GeffZk7930ee+whcnPznHM8+eS/eOqpJ7j66hsYNmw4zz33NFdddTlPPPEsffr0paqqkl/96lpOPvl0Zs48nAUL5vOXv9zTaSxr1qzio48+4JZb7kRVrQ+sI5EIJ598BsOGDae9vZ3777+H3/zml/zlL39LOfbRRx/kqqt+icfj4frrr+ZXv7qGUCjErbfeSU1NDddffzXjxo3n4IMPy/jafvvtN/z+97/hiiuuYuzY8axZs5rbb78Zn8/PiSeewjvvvMV//vMvfvOb37PzzsOoq1vP2rXW/fP739/BmWeeyjHHHM/MmUd0+zNcs2Y1X3/9BX/8472sXr2S//u/X7JixXJ23XUM99//CO+++z/uuONWJk3ag379rLW3c3JyuOGGGykuLmHJkkXcdtvNFBQUctRRx3LKKWewevUqIpEI11xzPQB5eflomsbPf34p48ZN4C9/eRhQePjh+7nmmp/x4IOPOa/v5rRNB5ft7e2sWZP8hV+3bh3ff/89JSUl9OnTh7POOourr76a0aNHM27cOB577DEikQjHHHPMVhy1ED8urz9fy6fvNwFWcFmV2G6YBmaiaYKRVp46aa985n/VxttvVqHiZdJehUzcMx+PV+HRe9exYkmY5Ys7GFYe6vV4mqPN1NfGqK6MMaZAoY/fz/qqGDWVUfoPsoLF1pbOwaVm2pnLZDYz6LX2j+gRikpyAWioi7PziF4PSwghhNhkCxbM5/XXX+Xww4+iurqaV155keeee4WiomIAzjzzHD76aC5vvPEqp51mJVvi8Ti/+MV1DB06LOM5Ozo6eOGFZ/nVr37LHnvsCcAvf/l/HHfcLN5441WOPPIYnn76SfbeeyqnnHI6AKeeegbffPMlK1Ysd87z73//kzPOOIvp0w8C4PLLf84XX3zGs88+xfnnX8zzzz/DkCFDueCCSwAYPHgIS5Ys5qmnnkgZj67r3HDDjeTlJRvy2ee0XX319ZxwwpGsX19D376lzvbzzruYMWPGAXDoobP45z8f5cUX3yA/v4ChQ4czefLufPXVF10Gl3/721/5yU/O5tBDZwEwYMBAfvrTs3n66Sc58cRTqKmppqiomN13n4LX66WsrMy5Xl5ePqqqEgqFKC7ecBXltdf+mqysLHbeeSi77jqGxsZGzj3XalR62mk/4Z//fJR5875xgsszzzzHObZfv/4sW7aU//3vLY466lhCoRCBQADD0FOu/frrr6AoCldffb2z7frrb+Swww5g0aKF7LrrmA2Os7e26eBy/vz5/OQnP3G+/93vfgfAJZdcwqWXXsrMmTNpaGhgzpw51NbWMmrUKB566CGKioq21pCF+FHRNIOP32vC61XYc/8CRk+MU7XWeszElbk0U0tJhwzPou8gD+83v0621pdho47li9a3GZA7iANnDeapR6t54YkazrxkAEUlG26Dreumk5Vs6Gjku69aAdj7wHyUhmzWV8WornAFl3bmMs8VXBoaqqKiKslP8YJ25lKLUlRi/V1pqI33+nUSQgixbdqULOIP1c3zgw/eY8aMfdF1HV3XOeigQzj77PP4+usv0XWdk046OmX/WCzG8OHJT0EDgUCXgSVARcU6NE1j3LjxzrZgMMiIEeWsXr0SsLKJBxyQGuCNHj3WCS7b29uor69j7NjkORRFYezYcaxevSpxjtWMGjU65Rzp34MVOLkDS4C1a9fw0EN/YeHCBTQ1NUGiTqqmpjoluBw2LPm8i4qKKCoqJj+/wNlWWFhEY2NDl6/F8uVL+O67b3nkkQedbbpuYCbez+y//0E8+eS/OPHEo9hzz73Ze++p7L33vr3OAPbvP4CsrKyUsfr9Aed7VVUpKChIGevbb7/BU0/9m4qKdUQiYTRNo7S0X7fXWbZsKWvWrGbGjNT7XNd1KirW/fiCyylTprB48eJu9zn99NM5/fTTf6ARCSHcmhs1MGHA4CAHH1nCuta1zmMpcy6N1Myloijstm+Ad17WMLPaKegXp2pFFXFD47DxuzJ+91y+/byVR+6p4MKrB3e7ZElTY5w/37qa8jE5HHFyCZ99XkVrs05JXx9DR/mJrLb+WFetizrH2OW3ufnJ8xqmkdLMB5JlsRE9TFGJVQrbUC/BpRBCiB/O5MlTuPLKq/B6fZSUlDhdYsPhDrxeL3/72+MpzSyBlNLXYLBnzWTSz2H15FOcr9Mf77xvpnOYJDe5v05uSxcMZnXads01V9K//wCuu+7XFBeX0NHRzrnn/tQpD7a5O+gqitKpo66iKN12ye3oCHPuuRey777TMj5eVlbGE088y2effcLnn3/Krbf+lpEjd+HOO+/p9vVJl2lcnbcluxzPnz+Pm276FeeccyG77z6F7OxsXnrpBd5++41urxMOd7DrrqO5/vobOz22pZJx23RwKYTYtjU1WH/UC4utPyXuuZWpDX06T54fuquPnRYFKSsJoqEljo+jKApHnVJKPGay8Ns2vvmshb0PKOxyDGtXRohFTb77spX5i6tY6Qnj9yvWMieY9BuYCC7XuoLLTGWxhkbAE0g5dyDR0CeiRSnqkwgua1PXfBJCCCG2pKysIAMHDuq0fcSIkWiaRnNzk1OauTEGDBiI1+vl22+/4cADZwBWg59lyxZz0EEHA7DTTkNYsOC7lOMWLJjvfJ2Tk0NxcQnz5n3jZC9N02T+/O/Yb7/9AasM9rPPPk45x6JFCzc4vubmJtasWc0vf/l/zvP85JOPNu7JbsDIkeWsXbs64+ttCwaD7Lff/uy33/4ceugszj//TGpqaigrK8Pr9aHrmz+b/d138+jffwBnnHGms626ujJln0zXHjGinHfffZuioiJCoc5zbbeE7bZbrBBi62ust4K0giIr8EoNLs0uM5cAcTPKuEl5DNjZS1y3Aja7fFZVFfY7xPpE7ZvPWrr9lNEO9lQPtERaycv3MHmffIJZHnRTp7DYRyCopqxRmd7Qxw6E0zOXTlmsHiGU7SEQVGmoi8vaYEIIIba6wYOHcOCBM7jppl/x/vvvUllZwYIF83nkkQc7dWntTigU4qijjuW+++7ms88+YcWK5dx88414vT5mzDgUgOOOO5GPPprLk08+zpo1q/n3v//Jt99+lXKek08+nX/84xHeeect1qxZxZ/+dCfV1ZUce+wJABx11LGsXLmCBx64jzVrVvP6669sMPMGkJubR35+Pi+88CwVFev4/PNPuP/+e3vxSvXcT386m1deeZFHH32IlStXsHLlCt5441Uee+xhAF599SVefvm/rFixnIqKdbz99uvk5OQ6WcB+/frxzTdfUVu7PlG+u3kMGjSIqqpK3n77TSoq1vGvf/2DTz9NDdT79evnlME2NTWhaRoHH3wY2dk5XHfdVXz77TdUVlbw5Zef84c/3EJra+tmG5+bZC6FEBvNzlzawWXcSJanGKbhZCx1U++0Bm1MjzrHRO2v9eTxZf0DlA0MUL0uSuXaKAMGZy7rqU/MgTzxzH5Ecg3mtRejKqpzfUVR6DcwwKplYerWx+hbFug059IOijuXxVqZy6geQVEUikp8VK2L0taqp8zXFEIIIbaGG264iUceeZA5c+6krq6WwsIixowZx0EHHdKr81x00WWYpslNN91AR0cHu+46hjvvvMcpqR03bgK/+MV1/O1vf+Wvf/0ze+21D6ee+hNefPF55xwnnXQqHR3t3H33H2hpaWbo0OHcccefKCnpA1jzDG+66Vbuu+9unnzycSZMmMhpp525wUBRVVV+85vf86c//YEzzjiRIUN25uKLL+PKKy/p3YvVA3vttQ+33HInjz76EH//+yP4/T6GDBnqBMjZ2Tn84x+P8Kc/3YlpmowYMZI77rgbv9/qDzF79gXcccfvOemko4nFYsyd+8VmGdfUqdM48cRT+OMfbyUe19h33/047bSf8sILyeVKjjjiGL7++ktmzz6DcLiDOXPuZ+LEydx334P85S9z+OUvf044HKZv31J2331PZ8ybm2LKR/A9Eo/rNDV1bO1hpFBVheLiHOrr23rdCluIDenJ/fX036uY/1UbZ146kCHDsviubh5f11iflhYFi2mNtTgB56mjzsCreqkL1xH0BlnbsobPqz8FYHLZHnxR/Rle1cupo85wzv/p+028+mwtpf397LFvARP3zOs0p+Ghu9aybnWEK349hPWs4JOqj8j2ZdMeb2e30kmMLRnHa8/V8sl7TRx7einjJudx+w0riEYMbrhjGIqi0BHv4OklT1KS1YeZQw93zh3RIvxn8RMUBYs5fNiRPPVoFQu+aeOsyway09DOc0JEz8nfL7GlyT0m3DRNo66ugpKSAZ3mtm2sH6qhz47s/vvv5aOPPuDvf39yaw9lm7O17q/uflcKCkL4fF33wQApixVCbIImpyw2kQF0ZR7d3WLByg5qhsbrK19h7rr3ieoR57H2eJuzj2madMQ70AyNcZNz6VPmp6YyxotPrmftquQxtvq6GB6vQl6Bl5hhlcgGvVbgZ69d2W+QlYFcuyqCphl0tOnk5nucQFU37cxl6h9Mv8f6VM8ea3LepTT1EUIIIXrrmWeeZNGihVRUrOOll57nmWee5NBDD9/wgWK7IXVdQoiN1tQYR1UhLzF3MZ7e0IdkcKmbOoZulaq2xJopDCa7lLXH211ft/Hs0qcpDBZyxLCjufDqwbz7WgPvv9HAisUdDN45mTEMd+iE2w36lPlRVcWZu5mVWJ/SLssdVh5CUeGd+V/AKD+wU6dlSKBzWayqqPg9fqds1y7/tcuBhRBCCNFza9eu4e9/f4TW1hbKyvpx1lnncfLJp23tYYnNSIJLIcRGiccM2lqshjmqmpoBtL7WUxrfGK6OsREtQkQLO9+7g8umaBMAjZFG4nocn8fHrhNyrOBySQf7H2otFB0J69Svt4I8e5mQWKIEN+ixM5dWcJuT62VYeYgXKr/jo/khFKWM3Pwc11it/TxK5z+JWd4smqPNaIbmZGibGyW4FEIIIXrriiuu4oorrtrawxBbkJTFCiE2SlNjoiS2OBmQuRv6uDvH2t+7tzUngkhIlsWCFXjaKtsrAOhb5ieYA+tWRYhGDRrq4tzxq5U89VgVAMV97IZCdlmsnblMXm/sRCuYXL64AzDJL0iOW+8icwnutS4j5Bf6Up67EEIIIYRIkuBSCNElzdBSOri6pXeKtfZP7pu+/Ihm6E6GEKAl1uJ87Q4oO7RkFnNd61oA5tV9Te2Q14maYdYsD7NkQTu6ZtKcCPKK+lhzI2NOWWzIGoMrW7rTKBWPB3Qd8gpVdp+an/I8ATxK50nqTsdYLUp+YSJz2SDBpRBCCCFEOimLFUJ06eUlL1PT2MAxw4/v9FhTvRVIFqYEl8mgSzNTAzDD1MF0f5+5A1qHq1x2XetaTNOkPlxHQalK06ImVizpoKEuNeC1M5d2cBvwWgGhO8CNqWHGTsqluVHjp4f3o6gg2YLbHqtH7Rxc2lnQqB7Bl6WSneuhuSmOYZhOObAQQgghhJDMpRCiG02RJtpirWRasaipIbVTLKQ29Ek/Rjf1lExiV8Lx5JI/UT1KQ6QBzdTpW+ZH84SZ92Urq5aF8foUxkzMIZTjoWyAFUzGElnWUIbMZUe8nUFDshizWy7+tCUznbLYDHMu7cxlJNExtqDQi6FDW8uGn4sQQgghxI+JZC6FEF2y51Dqpt4p8GrspizWq3ozzrnsibArcwkQ06PE9ThZIQ/9Rhi0z7eCuqEjszjujDIMAzweJTHexJzLxDxJdxMhd9MgPS1rqiUynN3OuUyU7uYX+ahYE6WpMU5egfwJFUIIIYSwSeZSCJGRbuhO6WqmwNCZc1ncuSzWp/o67a+ZWqdS2UzCmpW5tDOGcSPuBK1DxyXLUHceEUJRFCewBGvOpVf14vXYZbJdBZdp80GdsthM3WLt4NIKemXepRBCCCFEZhJcCiEycnd+zVTO2lSv4fEq5OR6Uo7xqt6McxcNw+jU5CdTAx07cxnyWaWtmhF3gr/s4hj9BllB57BdQhnH7FW9TpbVHrdpmimNgoy0cdj7ZSqLDXqtZU3szGWB0zFWliMRQggh3C688Gzee+9/zvdLly5h9uwzOOCAvTjzzFNpaWnmyCMPobZ2/VYcpdiSpKZLCJFRSnCZlrmMRg062nWK+/hSmtpohobf40fN8LmVbuqYpM7DzPHn0BxtTtlmZ0tD3hCNNBJ3LWHSFm/jpLP6UV0Zpf+g1ImTmqFhmAZ+1e8ErYap81HFXNa1rXUyofZYUsbmLEXSdUOfiJ7IXBZJ5lIIIcSWN3Xq5G4fP+usc5k9+/wfZCyLFn3PQw/9hUWLFhIOhykp6cOYMeO49tpf4fNZH7p+8MG7tLe3s99+BzjH/eUv99C3byk333wHWVlB8vLyOeyww3n44Qe49tpf/SBjFz8sCS6FEBlp3WQumzPMt4zqUQzTIMublbEBkGZonYNLX+fg0hbyZQNWkGsHulE9SnY+7FKU02l/exkSn8fvZE41Q2NZ01IgdbmTTmWxRtdlsUGPnbmMWs9ZMpdCCCF+AC+88Jrz9SuvvMhzzz3Ngw8+5mzLykpW8Jimia7reL2b/619Y2MDV155Mfvttz933fVnQqEQFRXreOedtxOVQNa/i08//R8OO+wIFCX5oXNFxVpOOOFkysrKnG2zZh3BmWeexsUXX0Fubu5mH6/YuqQsVgiRkbvzq5ZWRuo08ylO/iPWFmsDINuXjaJkylxqKQ12ALL9Xf+jkpUoR43qkZRgtT3elnF/Oxj2qz5URUVRlC6703aec2l9n6lM185c2nNBnTmXjZK5FEIIseUUF5c4/4VCIVRVdb5fvXoVBx+8H5988hFnnXUq+++/J0uXLubmm3/DDTdcnXKeG264mptv/o3zfTQa5Z577uKoow5lxox9ufDCs5k//7sux/Hdd/OIRiNcffX1jBgxkgEDBrLHHntyzTXXEwhY/0Y2Njby1Vefs88++zrHTZ06mYqKddx99x+YOnUyDz/8AACDBw+hb9++zJ373mZ8tcS2QjKXQohOdN1k4fxG4oVWiaph6tStj7FicQfNjdZcS0jNXNpBX8iXQ9iVJXTOaWQoi/UlM5CqoqasfRnyWpnLSNq52uJtFAQLne9N0+Tb2q/J8VmBqs9jrV/pUTyd5ngmj0ntFpssi+38J1FVVAKeAFHdylxmhTz4/AptLRJcCiHE9i730gvwv/ryD3a92GGzaL3n/s12vgceuJdLLrmS0tIy8vMLenTM3XffwerVq/jtb2+luLiEN998jSuvvJh//etp+vTp22n/oqIiYrEYc+e+z3777Z+SmbTNm/cNoVCIQYMGO9teeOE1zj33pxxzzPHMnHlESqa1vHwU3377NYcddnjvn7TYpklwKYToZP5XrTz/ZCWRoesZvVsOLz1TzdqvW7FjQ/vfldTg0mqYk+PLoTHS4Gz3qT6r46upYTrHK5imSZY36Dwe8oWc7CdAls/KXNoZQ1tbWuZydcsq5tV+63zvV63gUlXUlHmjbrqRvhRJoiw2Q0MfsLKXzdFm4nocn8dHMMtDW4uGaZoZ/5EVQgghfgjnnnsRkybt3uP9q6urEyW2r1BUVAzAmWeew0cfzeWNN17ltNN+2umYMWPGceqpP+HXv76W3Nxcdt11LLvvPoVDD53llLXW1FRRVFSc8m9icXEJqqoSCoUoLi5JOWdJSQnLly/bmKcstnESXAohOlm3OoKhaNTWxHj3tQYGtTdTlp3HpL3y+PT9ZmJRKzgrdAWXbfFWwCqLVV1lsV7VS9yIo5uGkzHM9+fTFG0i5M12Hg95s53g0qN4nPUl09e9bIu1djt2X2IZEq/qdeZhqoqKqqjk+HJoijZ1buhjdt3QB6yOsc3RZiJ6OBFcqrQ2QyxqEghKcCmEENurTckier0qmmZseMctaJddRvVq/xUrlqHrOieddHTK9lgsxvDhI7o87qKLLuOUU07niy8+Y8GC73j88cd4/PHHeOihv1NS0odoNIrfH+jy+HR+f4BotHOVk9j+SXAphOikpjKKoWiEsj3EYwZTDsjl6IOG4PNDRXgVy+fmoqCmzLlMZi5zUUkGXH6Pn7AWRnc19BnfdzdM06Qsu5/zuD3HEqwA0ZcoUe2IW5nLbF827fF2WmKZGwA5xybW2HTPnyzLLuPAwQezuHERn1V90mVDn0xlsQBBJ9CNkOvPI5hlBc+RsE4gKFPXhRBCbB3BYFbK93ZlkJumJadxhMMdeL1e/va3xztV3mRnZ3d7rcLCImbMOJQZMw7lnHMu5OSTj+H555/hnHMuID+/gNbWlh6Pu7W1hYKCwg3vKLY7ElwKIVKYpklNZQzVr3PECf1ob48xaUAugYDK0sYldOz0DY1f9KfMHEl2TjKAczf0ca9z6U0Ee7qpO3Mqs305lGRZJTK+RBlrljc5F8On+pwg0Z7r2CfUl1jrOqrbq9EMzQkE7axj8tjknEub3xNAUZSUJUrc7IZFXZfF2h1jrSxqMrg0yJd/G4UQQmwjCgoKWbt2tfO9YRisWLGc8eN3A2DEiJFomkZzcxNjxozb6Ovk5ORQXFxMOGz9uzhyZDl1dbW0t7eRnd25o3u6VatWMnFi90utiO2TfOQuhEjR1KARjRgUlCh4PCqqmuyu2hprIRTyMGWmh+N+UpbyqWd7vA1VUcnyZqG4/rT4E0GitQ6lHcS5Hk+UsYZ87uDS7wSltoAnyIDcgWiGRmVbhbM9vZOt32PPuXQFl07AaV03vdFPsiw2c3CZZa91mWgulBWyzh0Ob91yKCGEEMJtt90msWDBfN5663XWrFnNnDl30tzc5Dw+ePAQDjxwBjfd9Cvef/9dKisrWLBgPo888iBff/1lxnN++OEH/Pa3v+bjjz9k3bq1rFy5gr/85R5WrlzhdIcdMaKcvLx8vvtu3gbHGI1GWbz4e/bYY8/N8pzFtkUyl0KIFNUVifUc+yQDQLts1A6u8gZEKB+Wk/J4VI+S689FUZSUOZd291bDlbl0B3F2pjHkKov1e5KZy+R+XkpDO7GqeSVrWlczOG+nlLEl90vOuUyeLzXgtINl0zRZ3bLKKentuiw2kbnU0zOXmbvRCiGEEFvDXnvtw2mn/ZS77/4DpmlwwgmnsPvuU1L2ueGGm3jkkQeZM+dO6upqKSwsYsyYcRx00CEZzzlkyM74/X7+9Kc7Wb++hmAwyE47DeF3v7vdyT56PB5mzjycN998jT333LvbMX744Qf07Vu6SZlTse2S4FIIkaKm0gou812N3eyMo925tTnahGEaThBpL0NiLy2SElw6mctkcOkuP7XLYbP9uc5yJD7Vj0f1pMwd8apeBuQMxKN4WNe61rl+elms35OapQTX8iSqHVxa41jbuob3170LQFGwOGXcbvZal22xNpY2LsEXzAcg0iGZSyGEEFveccedxHHHneR8P3HiZObO/SLjvueffzHnn39xl+fy+Xycd95FnHfeRT269oABA7nmmhs2uN+JJ57GT396ErW1650lTZ5++sVO+z311BP89Kfn9OjaYvsjZbFCiBTVieAytzhZ8mpnB+31Kw3ToDWWnLhvz7fM8VstyVODSyuw003dyRi652SO6zOe/QdNpzRU6mQO7Y6v7uylV/Xh8/gozS4lpsdojDSmjC39eu5rBFSrg136nMumqHWOsSXjmDm067W27DmXy5qW8nHlh9SpKwFrzqUQQgghrOVFrr76Bmpqqrvcp6WlmalT92PGjMxZUrH9k8ylEMKxeEEbyxd1oCiQUwD2IiB6WuYSoDHSSH6gAEh2is32WZ3m1AxzKnVDS5bFujKXQW/QKXG1lw+xA0T3ciJ2oJmdyI5GdSvQjRvpmUu7W6yr9NaT2kE2OYfUWtakNLusy6wlJOdc2hS/NSYpixVCCCGSpk07oNvH8/LyM66lKXYckrkUQgBQtS7Cvx+qIh4zmXFkCYovGThppo5pmk7nVkhm/SB1jUsAJS1zqSgKUT2Klihh9XSxnqQddNpNgNyZS/uYgMfKQtqdW/VEcNk/pz9l2WXk+vM6XcM+xplzmWjo05Yo581NZFy7Ys+5tIWyrOBXMpdCCCGEEEmSuRRCALBuVQTThH2mF7L3AYW8vEJz/kIYhk5Uj2KYhjMP0i5LhdQ1LgFU1+dWHtWDX/UT02N4VW+XTXMguWyJ1+NL+R6SgaZdomqX6NoB67g+u9E31Dd5XVe3WDsTamcn7Qxqa6wFRVGcbGhX7MynM07rdJK5FEKI7USyubnZ3W5CiMTvSNoyqD0mmUshBABtrVagVNzXCqTiRtx5TDd1J1NYktUHSM9cJte4BFBdf5FUVILeILqpEzNiKUFfOjvwtJcO8aV0lbWDS6tE1S6Ltedc+tKC1pSlSJyy2MRSJKaGbuh0xDvI9mV3WxJrO3TnWYws2sW6lpUIlcylEEJsJ1TVAyjEYtEN7ivEj5n1O6Ikfmd6TzKXQggA2tus4DI71/pjohlx7D8rmqERSQRzef48WqLNhLVw8th4G4qiEMow51JVVAKeINCMaZpdlsRCMkD0Zchc2nMog57UNSe1RBCcnhFNXUsz0dBHtRv6GE4pb84Gspa2vqG+tMfbWNKwCJ+TuZTgUgghtgeKopCdnUdLSwMAfn8A2MjUTPKsaJpkQsWW8kPfXyaxWJSWlgays/NS1jLvDQkuhRBAMrjMybX+LMSNOJ7Enwjd1OhINPPJ8mbh8/iIxqKYpomJ2SkDmBpcKs6cR0ht5pPODiaTmUt3WWwiuExkLu01J7XE/ElP2nlT1rlU09e5NJxmPvYczZ6wn5fHb/2xD3dIWawQQmwvcnKsZaSsAHPT37SrqophyIeMYsvYOveX9SGM/buyMSS4FEIA0N5qlZdm53gwTTNRbmoHl4aTKQx6s1xrV2pOkOeet5gaXHqcgBC6buZjnSM75f9TliJJZDPt5joRLZoYmzXuzplLj7PdvqbH1dDHLuXN2UAzn4znlMylEEJsdxRFITe3gJycfAxDx9yE+FJVFQoLQzQ2dmAYkr0Um9fWuL8UxSof39iMpU2CSyEEAO2JOZehHI8zjzHoDdJGBN3QnWVIgt6gkyWMG/FOy5BAardYqyw2mblMzzC67dZ3EsMKhlMYLAJSA0Y749k5c5k5uLSzlCkdZ13rXNrrdOb6eh5cOkGzYuAPqBJcCiHEdkhRFDyeTXsLrKoKfr8frzcmwaXY7Lbn+0sa+gghAKss1h9Q8PtVp5mPHcjppuZkLkPekNMgRzPitNsZQHfmktTg0u8ui+0mc+lRPU5gCellsT7X+fyuOZcaqqJ2asrjNAfy+FPObz0fnbZY7zOX7m6zWSGVaNTY7v7oCyGEEEJsKRJcCiHQNJNI2CA7Md9SSw8u3ZlLjztzqWUM0tIb+thNeIBuu8Wm87oCSnc5bZY3C83Q0AwN3dQzLm9iX8cd2KpOt1i91w19rOOTDYGCWSqYEI1I9lIIIYQQAiS4FEIAHXan2BwreIq7ymLBWksy7J5zmZK57FwW26lbrNdVFtvNOpfp7GxlevAYsDvG6hE0Q8sYsKqqNQa/mrpGpUfxoBs6ES1iBb6u+aAb4g5Og1nWNaU0VgghhBDCInMuhfiRM0yDNlczH0hmLn2qD6/qtYIxM+zMn7QzinEj7mQA3cGlO9hTnKVILJmyjF3xJubEpB9jB4Qd8Q4M08h4TnuOpjtzCVZprGEaaIaWUnbbE/b6nU7mEoiEdaB35xFCCCGE2BFJcCnEj1hduI5XVrxIacc4IM9Z49Kec+nz+PAoHjRDJ2bEyPJmoSiKsyxIakMfd7fYZKcxFdWZowm9K4u1g7/0IDDotTrG2oFtpuDS3scd9FpjU501O7M92Z2O6467IVAyuJTMpRBCCCEESFmsED9qixu+B+CL9Z8CqWtcghXUqarVPdY0TWcZEPdSJB3xjkQ2Mxngde4W655z2fuy2PRjgolsZHtivqc3Qwayb6gvBw85lLEl41O2u4Pb9Kzmhrgb+khZrBBCCCFEKslcCvEjsnpFmJVLOhg8NIudhmU58x9jUROFZFlsVLfWkPR7/E55KUDIZwWXdjAX0cLopk6ON7UpTuqcS4WAJ4CiKJim2W232HR2UOnzdJW5TASXXWRDy7L7ZTinO7jsXTmr4gSXJlkh6+u2Fq1X5xBCCCGE2FFJcCnEj8grT6+npjIGQL9BAfRB7Xy8og4FGEoyuGyLWeWmuYHclC6t6ZlLuyQ2PQOY3tBHURT8qp+oHu1VWWzIF7L+3xtK2W53n7WXQelNkyD38+lt5tIeu27q9B9sjWHVsjC7Ty3o1XmEEEIIIXZEElwK8SNhGCZ16+P4Ayp9Sn1UrIlSuz5MJJgs67TnXNoZwVx/bkpW0G6kY5fA2sFdwLWWJHRe59I+NqpHexUIZvuyOWznw8lNW4vSHkdrrOs5l11RN1NZ7JBhWXi8CsuXdKDrJh6PsoGjhRBCCCF2bDLnUogfieZGDV0zKe3vZ/YVg5h1fB8m7VFEn7JkYOgEl4m5jLmBXNSU9SWtDGLvMpep6032JnMJ0CfUp9NyIXYmM1kW24vMpev6AdXfzZ5dH2uYOv6Ayk7Dsoh0GFSuifTqPEIIIYQQOyIJLoX4kahbb5XDFvfxo6oKu08tYOoBJYwam+yYmp1jBWlt8VY8qoeQL5QSuHXOXCaCS7X7sliAQCK47E2WsSt2Z1rTNBPn7PncSY9rbJuSuQQYvosV5C5b1NGr8wghhBBC7IgkuBTiR6J+vdUBtrhvMhAzMckv9DF0ZBajxucQylaJ6TFieowcn1WK6s70ZXntOZdWxs/uKpteFpveLRaS8yQ9vWjo0xWP6nHGAvSuSVDKnMveZS7Tg8sRo6zAfNn37b06jxBCCCHEjkjmXArxI1Ffa2UuS/omAyoTK/M3ekIuJ+xaiqIozjzKHL+VHXRnGu2ALj2Y67YsNvEZVl4g3zqvL3X+5MbK9uUQ1sKdxrghCu7MZe+CS7Cem27qAJSU+gjleKiqiKJpJl6vzLsUQgghxI+XZC6F+JFwymLdmctEWSlATLcet5vk5CRKT9WUhj6pS5HYOjX0URTX19afmdHFYzh2xPH0DfXdtCeSYAe/0Lu1M92Zy0Avy2Kta3mczKWiKPQbEMDQobY61utzCSGEEELsSCS4FOJHon59HEWBopLUslhb3LCCozYnc2llGO0spaqoTjDmSwsu0zOX7lJaO7hUFMU55+ZgB7/WGDeuoY+vlw19wHoednAJUDbAeu7VFdFen0sIIYQQYkciwaUQPwKxqEFLk4a/uI217auc7amZyzgd8Q6nU6wdvNnBmLtj64aCS3dAqShbplQ0OyW47MWcS3e32I0oi3VnLkGCSyGEEEIIm8y5FGI7EdfjvLzivwwrGM7YPuN7fJymGXzzeQsAzSXf8cE6nX7Z/Ql6gymZy7Wtq5lX+63zvV12apeR2suQgBU0elUvmqEBXTf0Ubfg51fuzGVvymI3ZZ1L63g1NbgcKMGlEEIIIQRIcCnEdqMx2khLrIWq9soeBZfRqM5DT35E3ff5mGFrrmR+HyuYbI+3dwouq9qrUo5Pdou1/kxkpa016VE8aNjBZepjdlDpbuyzubnnXPaqLFZNjik9A9sT7o6xqqJS3MeH16dQXRHFNM0tlqkVQgghhNjWSVmsENuJjsSakvFEtnBDPv5yJe8u/4gq7/eMGpfN6ef3Z+hoK8MY1hLrMrrKYpujTYAVNA7O28kpg82UuYTUTqvpXVfdZbFbirsstjdBol0W6/f4N2p89vG6YXWMVVWF0v4BohGDpoae/WyEEEIIIXZEkrkUYjthL7uhGXE0zWTx/DaaGjRC2R4m7JGLrpusXRmhpVljWHmIJcuaANjjwAAn7d8fgM++11LO5c5c2t1iD9l5JiVZJc52byJzGUzLTtrZQp/q65ShtL/fkplLr+ol6A0S0SJ4NqKhz8Z0ioVkya+Be96ln4rVEarWRSks7n02VAghhBBiRyDBpRDbCXv9yXXr2pnzz1W0NCWzZKX9/XzyXhPzvrCWEdl5RBYr17eiKJBXamXYDNNw5kjamUv33EGbey4jQGl2KUXBYgbkDkrZbi9HkmmtSDuodDfP2RKyfTlEtAjeXlzHnnO5MZ1iIS1zmbhscT+VFm8lNVUF7Do+p5ujhRBCCCF2XFIWK8R2IqyFiYR1PvmgjpYmjfIx2YzY1SpVrVoXZdWysBVMFnhZuTRMezhGUYkPTYkAEDfizrk67MylqywWrMApmDa3sjBYxOHDjuy0PqUvkS3M1BRHVVQURdniweXIwnIG5g4kL5Df42PsMt+N6RQLrjmXrsxla/Yq1mZ/wuKqVRt1TiGEEEKIHYEEl0JsJ5rDrcz7spVoPM6U/Qo45Zz+7DYlD4DliztoadIoKfVzwGHFABhKnD5lfmJ6DN3QiSfKXgHCcStz6S6LBcj2Zfd4PHbmMlOQpioqu5dNYbfSSb17kr00onAk0wfP6FX5bXLO5caVxaqJeZqmK+ubU2R9XVPXtlHnFEIIIYTYEUhwKcR2YOnCdp7592pqKmNk5agcMLMQgNL+VoC0+Dur2U+/gQHGTc6loMiLgU5pP+vxsB5OyVxmmnMJvQsufU5ZbOYgbZeiUeyUN6TH5/uh2MHhxs65TG/oAxDMUvEHFBoboui62dWhQgghhBA7NAkuhdgOvPliHe3xDgYMDrDntHwUnxXYFBb78AcUJ6ApGxDA41E45dz+7Dczl7wCq3Q1HA8TSwkuE5nLtLLYHH9uj8eUzFxuXJC2tdhdb3sTSLu5G/rYTZAM0yA3z1r3s7Eu3t3hQgghhBA7LAkuhdjGVVdGqaxuJa9QZeKe+WTneJ0spL0Mhq3fQOvr0n4BBg9PlquGtY7UstjNkrm051xu3NzFraVfdn8OHnIoo4pHb9TxduZyedMy/r3ocarbqzBNyM23ssXrq2MbOIMQQgghxI5JgkshtnHzvmhFU8IM2CnZaEd3rXVZNiCQ8ev0Mlj394ZpENEipCUuN2tZ7LZKURTKsvs5S6n0lj2/sz5cD0BLtAUDg9w8D6aiU1sjwaUQQgghfpwkuBRiG9barPHdl63EPWEGDHYHjp2Dy8JiH1mhZHdWLa0MNq6nlmuGtY6UjqdgLe3RUyVZfQh4AvQNlfb4mB2BHVzG9ChgZX9N0yAnz8pcrlrawdKF7TL3UgghhBA/OrLOpRDbqCUL2vnPo1VocZP+u0AwK3PgOGhIEBQYPDR1CRF3ABrWwp3WdQxrYdJTl73JXPbL6c9Ju5za4/13FHZZbES3lngxTAPTNMnN92AqBiuXhlm5NEyfMj9Hn1rKgMHB7k4nhBBCCLHDkMylENuoT99vQoubTNmvgKkzrSY0dimnXeKqGRqh4hjn/WwQhx7TJ+X4zmWxVrmmHUCGtY6UOZd+j5+Qd+Oa3PyYKE7mMtnMx8AgEPAwfko2YyflstOwLGqrYzz1WBWmaVLZVsHSxiXUdNRszaELIYQQQmxRkrkUYhtkmiaVayN4vAoHH1XCp9WLAcjz59MQqXcCx9dWvkJDpJ5jR55Ali81Q6alBZexRFlsnj+P9ng7HVrY6Ra738D9KQn1waN6EN3z2N1iE+tcGhjO6zh6Uoj9B5VhmiYP3b2OitUR1q5t5/22t6wMJyaFq/dhQGEZE/fMQ0ksiyKEEEIIsSOQzKUQ26DGeo1wh+EsLRJNzO+zs472GosNEaupTFustdM54kYcVVFRFIWw1uEEm7mBfAAiWtjJXAa9QXJ6Md/yx8yec+kwTSfQtBstKYrCqLHWz2rhd000NsSIhHWa6uP87521vPjkep54qErmZQohhBBihyLBpRDboMo11ny+/oOsZj12SWsoEVzGjTitsRZnf4XOGTDN0PCpPoKeIBEt4gSoWR4rw6knMmldHS8ySw8uDdNIBpem7mzfZawVrH/xcSPvv9nAJ+83UVMZQ1MjeDwKSxa0s3Rh+w83cCGEEEKILUyCSyG2QRVrreDSbgZjN+cJebMAq+R1vWv+njuoAausVjM0fB4fWd4QhmnQFreym87SIabplHMi5Zk9Zjf0sZmJ/wFoRvLnUFLqp6Svj/YOK2Pc2qyzcmmYuBJh96lW9ri6IvoDjVoIIYQQYsuT4FKIbVDlGivocDKXup25tBr7aIZGbUets79maHyz/iueXvIkcT3uzMn0qT5y/FYGrTnaDEDAY3WNNUmWc6ryp6DHlAyZSxLBpW5qKY+N2z0PE4O+/fx4DD+aZhIq0th1vPUzqamU4FIIIYQQOw5p6CPENsYwTKrWRfD5FUpKrUAwZsRQFdXJOsYNjdrweucY3dRZ31FDR7yD1ngLgUTpq1f1kefPs86bCCTtcxjusljJXPZYeuYypSzWSM0gTz2wkMHjB/JOdT4fPq/RrMfoO9ikb3/r51pdaX1oYJqm/AyEEEIIsd2TdIUQ25jWZo1Y1KRvvwCqagUc9vxJn+oDoCPeTmOk0TnGMHWnJFMzdKd5j0/1kp9o4ANWEOlzZS7tsliZc9lz6XMu3RlgLS1zqaoKWTkKHo/CuLF9UBQoG6IQDHooKPbSWBfnm8p5PLn4X7THZf6lEEIIIbZvkrkUYhsTCVuBSig7ueSFZmhk+bPwJoLLunBtyjGaoTvzLnVDI54IgLyqj1x/Mrj0qT4nkEzNXG7BJ7SD6dzQJ7laaHrmEsBMBJ4Tdy+mcFh/vD4rAC3rH6CpXmPRujXEsmO0RJudbsA9FdbCtMfbKckq6f0TEUIIIYTYzCRzKcQ2JhKxgpFgllV+ac+f9Ko+fKr1eVBYCwPJQEc3dWcZDM3UXJlLX0rm0qf6nGOsrKVkLnvL003mMr2xEiQDTq/qJS+UTdyIE9fjlPa3ypMra60MdHrWsyc+rpzLqytfIqJFen2sEEIIIcTmJsGlENuYaCJzGQhav552Mx+/x+9kLm124KibuhOcxI04scQxXtVHwBMgkJhn6ff4UzOXUhbba+kNfUzX66gZnQNEg0TTJMVDVqLbb0QPO8FlTb21pEymrOeGtMfbMU2TqC7BpRBCCCG2vh06uPzuu+846qijnP923XVXvv/++609LCG6FYlYQUYwEVzGEmtc+lQvXjW1kj0vUfJqGLoTnOhGMtC0M515iSDUp/pREzWw7iU0pJlMz3XX0Mf+3s3+uaiKQpbX6vbboYXpNzCApkSpqGgnHjM6dZrtCXvtUm0jAlMhhBBCiM1th55zOXbsWF544QUAKioqOOOMMxg1atRWHpUQ3euUuTTsQNHvNPSx2ZlLzdSckkzN0JwAx27ek+/Pp7ZjPT7V68pSupYiUXboz5k2q0wNfUySAaVmaPgTrztYzZbACkqDXquLbzjeQWlxKeUTVRYvM/ny4xbavq4m1BTAH1A54cx+hLJTg9hM7Az1xpTUCiGEEEJsbj+ad5SvvfYahxxyyNYehhAbZM+5DGSllsX6PH5URU0JbuyMpG4YTkmmZmop61wC5AbynHPYWUp3hk3KYnuuc0OfZFksdC6NNRKPqYrqZC7tObNTDs4imKVQWxNj6aJWKtZEWbk0zIf/a2RD7EZPgDPfVgghhBBia9qmg8vPP/+cCy64gKlTp1JeXs4777zTaZ/HH3+c6dOnM3bsWE488UTmzZuX8VyvvfYahx122JYeshCbzM5cppfF+hOBol0aG/QGCSbWs4wn9gEr0HAvRQJQECiwzuEJpDT0sQMfaRfbc+llsdbr6C6LTS1RtTPKquohZM+5TASXujfM7vsUMHRkFoceW8SFVw/G61P47IMm2lq7DxjtrKX7GkIIIYQQW9M2XRbb0dFBeXk5xx57LJdeemmnx1955RVuueUWbrzxRsaPH89jjz3GOeecw2uvvUZRUZGzX0VFBQ0NDYwbN26TxmOvObitsMezrY1LbJpo1ApUskIeVFXBMDUUBfxeP6qq4Pf4iRsx8gK5eD1eFMUKLu340J675z5mcN5gdu+3B4PzdnIeMxWrW6yigEdVO91Hcn9l5vF4UmNxxQQlGZ8b6KmvmWK9xj7VS8gfQlEgYkRQVYUOrY3CYh+FxT4G9vHTrzTI7vvk8/G7TXzybhMHH9Wny3FoZqzra24H5P4SW5rcY2JLkvtLbEnb8/21TQeX06ZNY9q0aV0+/sgjj3DSSSdx3HHHAXDjjTfy7rvv8txzzzF79mxnv9dff32TS2K9XpXi4pxNOseWUljYu7XxxNa3pnkNH6/9mMNGHEZeomTVZhrWGpZ9S3MoLs4hFPeRkxOkb1EBxcU5FOXnokQ0+hf2pU9xHjm1QQLZKjmmlcXMzvVjYpITDdK3uIDiPOu+3a9kTwDaYm3k5ATJzQlimAZhNUhJcS4hXyjjWOX+SmVmRchZH3S+z8kNEPP6MWPWtvzCLIpDyb8VufEAOa1Bigpz6Jfbh5y6IL4sk+LiHDxNBjk51nG5eQGKi3M4/Hg/n7zXxPyv2zj5rCFdNlvS2zs6Hbs9kvtLbGlyj4ktSe4vsSVtj/fXNh1cdicWi7FgwQIuvPBCZ5uqquy999588803Kfu+9tpr/OpXv9qk62maQUtLeJPOsbmpqkJhYTaNje0YhrnhA8Q2Y37VYirqa1ictZKhBcNSHmtptsodo7Eo9fWwvqGJtrYI7a1x6j1tRDo02joiGFkeWpoitLVFqNOaaYtYy1HUe1sxTYO2tgitzTHq420p5++Id9DWFqHZsJaxaAtHaGhoJ+xN7XIq91dmTRHr9bM1Kx20RMJ0xK1t6+uaUbKTwWd9Y6v1s2iJkGdotLVFqNUbqa9vo7J+PW3hxM/N30J9lvWzGjgkyNqVERZ8W0+/QUHSxeMGL725guqCNnLyvNQ1tFCitHXab1sm95fY0uQeE1uS3F9iS9pW76+8vCx8vu4bDm63wWVjYyO6rlNSUpKyvbi4mNWrVzvfV1ZW0tDQwNixYzf5mtvSD9fNMMxtdmwis5gWxzQhrmudfnaRsDV/zh9QMAzT2deDF8MwUfFgmpDlyUYxVUwTIvEI9vTJuB7HMPXEMZ5O5zdN6z/dMDFN0/re6Pr+lvsrjang6t+DrlvLwKS8/q7Xy3nMVJyfnWboGIZJa7TNdVzyXhg5Opu1KyN8/10bpQOs9TA1zeCdVxsYNCTIyqVh3v24hsiQVvbav5BY2jW3J3J/iS1N7jGxJcn9Jbak7fH+2m6Dy66YpplSRta/f3/eeuutrTgiITpzlpDI0OUz0mkpkkRDn8TyFt5EY58cXw6q6kk5n3XOuLPuYfrSJUBKQx97nUtZiqTnOq1ziZnSLTa9uY7T0EfxOK+z3enVXqcSUu+F8jHZvP1SPYsXtLP/ocUAzP+qjQ/fTnaR1f1x6tbHiYR16RYrhBBCiG3CdvuOsrCwEI/HQ11dXcr2hoaGTtlMIbY1dsCYaX3CaCQ1uLQDR59qBZf9cwaQ68+lOKsEr2J9PuQOaDRDdwWkgU7nt5cdsdZmNFO2iQ1T0te5dAXpAGtb1vDi8udpjbUA1jIxYAWldmCqm7rTMdb+0MD9M+xT6qew2EfV2ih/vm01389rY94X1vk8XutnVdzP2rdiTVTWuRRCCCHENmG7DS79fj+jR4/mo48+crYZhsHHH3/MhAkTtt7AhOiBeCLTZBidl5CIhA38gWT31mSgaGUhdykaxTEjjifoDXbKogFORkxRlA1mLu0lNLpqGiM665S5NI2UpUhWNq+gMdJITXuN9TjWY6qioigKqqKiG7oTTAYSHwC4s4+KojD1oEKyslXWV8V45h/VrFgaJifPw6XX78Tsywey50FWA591q8JougSXQgghhNj6tumy2Pb2dtasWeN8v27dOr7//ntKSkro06cPZ511FldffTWjR49m3LhxPPbYY0QiEY455pitOGohNsxeh9LOOBmGaS07YphEowZ5+clfTTsQ9WYIFD1q5+BSNzViegyf6ssYNNpZSndAJJnLnksvITZMI2NZrF3yan+AYAelHsWDbuqu0mU7c5naUGnSXvlM2iufd16t573XGwAYOymXgkIfBYU+1laY5OZ7aGnWeePlGsaeqhPK7n6SvRBCCCHElrRNB5fz58/nJz/5ifP97373OwAuueQSLr30UmbOnElDQwNz5syhtraWUaNG8dBDD6WscSnEtiimxzBNk8bGKE++XMnyxR0ce0YZQ4ZngZksiQWIJ8pi/YkgxM3OhrmDm5geQzM0cv25Ga9tB5zuUk7JXPZcenBpYjrZSbeobnWBdeZcJj4IUBUV3XRnLq2fa6b5twD7zihi8fx2qiujjN89uWxNzIgxcUo+n3/UzOoV7fzl9tUcc1oZQ0dmXlJGCCGEEGJL26aDyylTprB48eJu9zn99NM5/fTTf6ARCdF7pmny3yfXk5Pr4cBZJRiGybxvGlm6uIXccIgB4VIAnnq0mqNO6QtAMMsVXBpxVEXNmKUEKxPmnnMXTszl82UIRoGUpjJ2UCmZy55LL4s10zKXNidzmchIqolZCB7VQ0yLYSSCS3terJ1xbou3UhQsds7j9Sr85KIBNNbHKeufnEMb06PkFXiZNqOIqm/9tH6t868HK/nZb3aWDKYQQgghtortds6lEFtKXbiONS2rN7xjDzU3aXz9SQsfvNVIY32cfz9cyaKFVnOWgj4qUw8qZMaRJeiayUv/qQXADHQQ163S2bgRzzh30pZp3iUkM2KZKIqC6epyKpnLnrNfK3dznkzs4NJ+3KOqznGmaRJPlEb7XZnLjys/5KXl/6WidV3KuULZHgYMTl3vMpa4P7w+hT2m5bLTOI0Gcx1V66IIIYQQQmwNElwKkeaTyo94f927XZYp9lbV2sSbfROe/FsV3y9oJjvHw34HFzHz+GIOOryEfaYXkpPnIRY10ImzwPs6cyved5as8HcTKHaV0czUKdamoDhdTiWw7L3irBL6hqws84aCSztD6Z5zCclyZ4/ideZhrm5ZBcDC+vkp51rauIS3Vr+O7moAFTNcy5iYOo3F81ib/Slr17Zs6tMTQgghhNgoElwKkSZmRJ2gbmPM/6qVP/x6BSuXdgBQuTbiPFZdEcVQ4ozfI5ecXC+6q5y1/yArMxVXO/D4TdribU52K1MzH1vXmcuug0tVUZ1GNFIS23uH7TyLg3Y6BCAl4HOLpZfFJsqR1cTPK+b8bD14VA+6oZPjtzrAVrVXpZTaLmr4nsq2ShoiDa7zu9c21cgqsO6lyqr2TX+CQgghhBAbQYJLIdLYwUJXGSlbXU2Mfz5QwZv/raNuvfVGv6YqyvNP1NDWovPKM7XouknlGivIKCiypjiPGBuguMQuhUxeY8BgKxjU1Cg+r0rciCWb+XSTufSqmadO+zxdB6QKVlmsYRoSXG4E97Iihtm5mQ9ARLMb+tjBZSJzqaZnLj1O5tL9QUFNRzVgBafN0SbrnLo1n9Y0TWJ6jKDX+kBCNzRC+dZ1qiuTH2YIIYQQQvyQJLgUIo0dVOobyFy++WIdy77v4MP/NfLQ3WvpaNd5+rFqtLhJMKRSWx3jm89aqFwbweNVOOHMfoydlMt+hyU7frqzo3bmUleieP0KcT3uZC59XQSQkAxa0nVbFuvqGCtlsRtPQdnwnMtOS5FYf3ZjifVLVdWDV/VimIbTjAlgVaJEtjHS6ASwdsBqH5vlzQKsebmKTyMQVKivjRKPZw54hRBCCCG2JAkuhUhjv5HvLnNZXRFl8fx28gq8lI/JJtJh8K8HK6mtjrHTsCzOuGAAAK8/X0u4w6Csv58Bg4Mcd0YZwVz3mojJ4LLfoETmUoni8ylohuaUTnbV+RVSy2Ldy2QE1O7nXKaXa4rec2cuM61/GdfjmKQ+npxzGXe+t7PP7lLXpkgjAI2uUtiw1pE41s5oB/CqXiKJZU/yC3zohkFtdfI8QgghhBA/FHlXKUQaO5uYvqi92wdvWm/49zmwkIMOLwFg3SrrDf6Bs4oZMDjI3gcUEItagWR/V6fP9LlytpxcL/mFXjQlitdnZcSiiUyVr9uy2GRw6S6f7a6UVlEUZ86l2HjurK+7PNneHjWinTKXyTmXybJYd/Y525cNQIdmzZ1sSAkurfsh6lr71O4+C5BX4MXEoKZSOsYKIYQQ4ocnwaUQLu75c12VxbY0aSz8to1QjoeJU/LoU+Zn5GgrIBhWHmLwUKtU8aAjSigfY23fKbENUgPK9KZB/QcF0NUoPp/1q9mRyFT5u2no4w5Mgp5kENtdcKkqqrUUCdLQZ1O4Xzv3cjF5fqv0OapFMdIzl4kPA+yGP+7MJUCWN0TAEyAct0pkG6PJ4DKSKJuNG8m5uO5j8wq8mIpBTaVkLoUQQgjxw+t6IpcQP0LuYM8ui21p1vj0/SYm751PYbGPrz9rwTRhtz3y8PmtgOGgI4oxTZODj+zjHK+qCiee1Y+K1REGDnFlLo1Yp2vY9ju4iBU+DyWlVmDYEbeyVz1d5zLgDUIiadXjpUhUCS43lrsU1v0zKggU0hxtJqpH0A3daQAEyZ+XvU6lqqrOPEwAv8dHyBeiMdJIRIuklMXa5a/2fepRvSnBZSik0oBBa/PmWUZHCCGEEKI3JLgUwkU3dUzTpLVFZ/H3LbRk5fPac7U01WtEwwYzj+/D1580AzBxr2Rjnr5lAU47b0Cn83k8ipPJtGmJeZT29dz6DQwyYWoWtR2tQDJz2X1ZbPLX2L38SGADmUv7+n663k90L7Us1gou/R6/s6RIVI+im3pKEGp/bWcfvYoXj5L8GfpUP4pXoZFGasPriekxCoOFiWDTylzawaVX8aQcG8jyYComba3ddzoWQgghhNgSJLgUO7zv6xeyumUVM3Y6xClJdNN1k88+aKKtVWe3/Xx89L9GGuo1lndUkR9P/oosX9zBiiUdNDVoDBmeRXGfjQvK3HMuTdNEN3Q8qocVTcvI9ec7AQQkM5fdlcV6uiiL7a4JkLucU7rFbjw1LeMY8ATIC+Q7WeOoHsU0zZT97GAw5lqKJP0DArukubKtEoCSrD60xlqdbrJ2Iyif6ks51h9UMTFoa8mcuVzU8D1tsVYml+2xaU9cCCGEECIDCS7FDm9l8wrqwrW0xJopDBalPBbu0Pn7nyuoWmfVkn78STsNXo2cXA+jd8mmD3mUlPqZ90ULNZUxXnt5LatDnzBj9+nOOeyun92tK+kWd2UuwcoexrQYcys+AFLnSnbErcylt4dzLt2Zyw019HG+ljmXG8392qmKyuHDjsKrelnTshqw5lXqpp7SuVdNvPb2feBRU4NLn8fnfGBQ3W4Fl3n+fLK8WbTGWtEN3Vkf1SqLTf78vR4FX4AuM5cL6+fTFmtjt76TMn7QIoQQQgixKSS4FJtdU6SRT6s/YY+yKZ2Cua3B7roZSwvqAOZ90UrVuij9BwfQ4iZraprJKlXZ+4AC9t05n/KiUusc7To1lTGW1Kwilr8eZUAFMBiA11a9QlO0kdHFY6jpqCHfn8/eA6YC1hqHdeFaSrPLnGumB5eaoaUsSeLObDoNfXrcLdYKYnyqr9slRjKVaYrec792CqrT6dUO8iNaFMM0UvazA0m7tFVN6xbr9wScYLQ5apVgFwQKCCaCy7AeTpbFqqkltQChXIVotUEsZuD3p/5s7c61mqnhQYJLIYQQQmxe8q5SbHYVbRXUtFezrnXt1h4KpmkmF57XOy/PsHiBFXgecnQfzrxkIHsfmMue0woIBD0p8yGHlYcAMBSNgUOCtGvNzmONkQZM02R+3XfUdqxnWdNS2hPlrAsbFvD6qlf5ovozZ397zmXQa5Ww6qbWKeBM7muXP/ZsnUs7qOkuGLVI5nJz6CpIt38O9rqUXa1Faj+W8gGB6ifkC6Xskx/Id0qeI1rEuYe8SmpDH4CsbOvn2Z4he2nf03aQKYQQQgixOUlwKTY7I/EG1u5suTVF9IizvEhMj1JbE+P7eW3WYxGdVcs6yMpWGTQkSCjbw5T988nJtd6su4PLwUOD+PwKBjqDh2bRGG10HrPf3I/rM56BuYMAnMC6pr0KgIX1C5z97S6hWV6r0Y9maMS7WPbE5lO7LjJQE4GJ19U5dEPBpcy53Fwyv47J4NKaI+kuQXVnKQE8ipoSfPo8PrK8yeDSq3rJ9uU490tEC6OZdrdYT+fgMscaR6Z5l/bvgjtTLoQQQgixuUhwKTY7+w2snTEEK5Bb21jJC8ueTVlaYUuzM0fWeGI88WAlT/6tim8+a2H5og4MHUaMykZNLMfhDijd61x6vSqHn9iX3adlk5vnJaJFnOdnmAZZ3iwm9J3IrsWjAahos4LLgkChc466cB2Q7BKaDC51ND01c5me3eq2W2yiLNLdGKa7ZUjSzy+Zy43XVebSfv3tkmwFd0OftOBS9eBxN/RRAymZy1x/HoqiOJluK3Np3aeZymKzsq1rZZp3aWfCJXMphBBCiC1B5lyKzc4O0KKJzGVrs8YDd66hKW8RIw5roqajJuNczIa6GP6A6mQONwe7IQ7A4kVNNNRZQdrLT6+nqMRqkjNydHansad/DTB+ch4dlVksTSQtm6KNlHn7WWtFJrJWfUOl+D1+qtqqEnMpDef4ZY1LKMkqcUpgA56uy2Kzfdm0xlqd7/09KIt1Z7G62x/SGvpI5nKjdRWk24FgON45c9kpuFS8zgcEYH2QEPQEURUVwzQoCBQAONnMsB52PviwymJTz2eXxbamZS4N172omRJcCiGEEGLzk8yl2OzsoCyiRTEMk+cer6atRaeuLkJrs+4EUppm8OqztXw2t4mOdp3771jDEw9WbtaxhLUw0ahBTWWULz+zMofDR4WIx0xqKmOEcjwMH5XMErkzOrphdDqfOwhsijZhmmbKUhOqotI/ZwC6qVPdXuWUCAOsS2Qz43ocr+p1spGaoTkZJVuuP9f5WlXUbjt7elTr2l7FS0GgkBx/Dv1zOq+56ZaaGZXgcmOld4t1f+33+J3fhZSlSNS0OZdq+lIkfhRFcTLb+YF8IDVgTZbFdj3nsq0lNYB032PpH5wIIYQQQmwOkrkUPWaaJoZpbHAJAztbF9HDfPt5CyuWhFEUMNGprogSHxYjHjN48m9VLFvUgceroGsmsahJxZooLc0aefmb59YMax188WETDXUaBbF8Jvb3c+q5/fl+XhtZIQ8DBgcJBJNv9o2UzGXneWmaO7iMNGJiAqlBRlGwmFXNK2mLt6VkizriHYn5lXECngDeRAbL3uaW488DrEDb180yJJBcN9Gjegl6gxw74oRu97fG6/5agsuNpaZkgFODxoAn4FrL0h14pmcuPSmP282bQr5s2uPt5Pnt4NIKNqN6xNXoqXNZbCCRiG9rTb1/uyr5FkIIIYTYXCRzKXrsnbVv89/lz2GaZrf7mYmAKqpF+fZzq7TzsOP6YCg6NRVRYkac99+u5etlKzAVA10z+d8r9c7xyxd1ZDzvxli1xgoss7JUhozyceTJpaiqwugJuQwdGUoJLIGUMtZM2R139qcx2ugEjymZqUTwoBu6cw47QGyMWMf4VJ+TcTJM3clE5fnzUBWV0lCpc74NNeexg/30csvuyFIkm0d3c1ftYDB9v85lsalzLu2fd3GwBI/ioSTUx9qeuIdiejRZFpshcxkMJTOXlWsjxON2E5+uS76FEEIIITYHyVyKHqsP1xHWrDX2fJ6us2n2G9f2jhhrl7dQkJ/F5L3z+ddcqGjUaG4J8+H8b1mT/TVnHTCLz54PEI8lA9bli9vZbUreRo9z8YI2li/qIB43+bSuBoCRY7KZNDrEgMHBbo9NKR3M0PTE3dW1OVEWC5mDB8PUnXPkBwqoC9eyrnUNAHmBPGc/d0OfcX3GMyh3JyJ62Dmfd4OZS7tbbM+DS8lWbh6pZbGpr2nA1VTJna1MX5ZEURRnm6qoTrA4qXQyY0rGOs197DLquKE5GXNPhjmXdnC5ZEE7Sxa0M+2QIg44rBjDdT+nl2ELIYQQQmwOkrIQPWaXbhp0novoZgdUVRVRdCXK6Ak5qKrCwJ2tN8dffNpATX0zObkehoxRKSi23kyPGpeN6oEVi8MYRjLYrFwboaW5Z2+G11dFeeLBKj77oJmvP2lhXXUTgYDCwJ2CTpfWbsfew7JYv8ePZmiu1yIZWNhz6nRTx0w8bjdlWZsILgsChU62SjOTS5F4VR8+jy8loNxw5tKbOLbnnxW5m/hI5nLjKd1kLrNcmUt3QJmpuU+mJWQ8qiela6zdpCluxJLrXGYqi81K+ZZVy6wPKtz3tiGZSyGEEEJsAfKuUvSIYRo9XsbALhWtXBNBU2KM3i0HgKGjAigKLF3cjK7EKBsQQEdjj6kFAOw+tYDBO2fR0a7z2QdNGIZJ5doID/5xLf9+qGeNfurWWwHkLuOyOfzEvuSXGozZLQ+PRyWqR3vwPN3z0jJlLq039T7Vh2EaGcti7SyVnpa5BKsJEEBBsNDpEKobmhMs2OWz7m6v3a1xCRBMZMjs7rM94V4aQ7rFbryuGvpAeuYy85xLe7sdIHbX5dfnlMXGnN9Fd1mscw0ltWy9ap3VWEtLyVxKcCmEEEKIzU/KYkWPuBvObCjrYZg68ZhBQ51GWZ7OwJ2soCeUqzBoSJD1yzRURaNsgJ+4HmOv/QsYNzmXnFwv7W06q5aFee25Or6f157oxgqVa6PUVEYp7d/9+o2N9dab7p2GZjFprzy+L8gi6Amim7rTXKU7Kd1iE4Fjfbiet1a/zt4DplolwarPeSNvZ4PcQUZyzqXhnMPOXNoKA4XOep/uhj52xtKjepylKHwbWFYkP1DAQTsdnHF5l66kLEXS46NEuu7mXLqDfU8XZbF2FtMube1ufVJFUfB7/MSNOB7Fuj9URaUgWEiWN4virBLWta5FNwxKSv3U1cTIyfPQ1qLTUBvHyJE5l0IIIYTYsiRzKXok7grMNvTGVDd1GuqsYKl0SDKQ0U2dEbtmg0fDn6NTUOQjZsRRFMVZ23LsxFzO/dkgygYGWL08zJoVEew4aN4XrZkul6KpwbpuQZGPiB7BNE1CvmwCnoBVxmpmLum15066n5udHWqI1BPVo9S0V6MZGl7V6wQS9jy2LudcmnbmMt95XFVU8gMFTjmrbuquzGXy8x47I+XbQFksQP+cASllmBvSXVAkeq67xkhZ3qDrMXdw2fleCXqzrN8Df0631/OqXmJ6DN3Unfsjx5fDCeUnM7KwHLDK1k87rz/nXDGI0ROsJW0q10UydottbdF49dlamhrjCCGEEEJsKgkuRY/UNXY4TUS6CtCiESPxuOmUp/YdlAxcdEMjlO1h30Ny2eeQHBRFSQlabQMGBznr0oEM2yWEqsIRJ/UFBeZ92YphmNR01PBx5Yfoho5pmk43TEgGl4XFPjriVtfZLG+Wk/3rKnv53rp3eH7pMxkztHaQ2aF1OJ1e0zOX7mYudjZKN3XnHD6P35k/lx/It9autBv6mHpyzqWrUVKyRLb7hj4bwx1QSlnsxkvJAHdq6OMOLjvfH5D8ACHLm8XhQ49kSr+9ur2e33Ufp3edte9J0zQoLPYxcEiQ/oOsTGjV2mjGbrGvPVfLp+838fkHzc5jdeE6ajtqux2HEEIIIUQmUha7gzEMk+++bKWlWaOg0MeYiTkbHTyYpomiKMz7ooV/PLEcbXQLE6bkpSzXYfvuy1ae+Wc1R57UF72vTv16K0grGpCc/2Uvt5FdAD6PTkRLLbfVDA0FBY/qIRBQOf38/nS0G2TnePjuq1ZWLglz7y2rKd53EXpxFTvnD+WbN7x88l4Tfcr8TJ9Z7JTFFhR5aXY137EzNTE9StAbJKyFCXgCqIo1F3NNy2qAlMyR/Qbc6X4bbwes0lU70LbnrqXOvXMHl9Zr5VE85Pnz6Ih3UBAoTJwnOecynjbn0h53e7x9g+tcbgzJXG4easrc1bQ5l97MZbFqF1/3pKzZncVOb+Bk/0zdH/70SwSXlWujlKd1i123OsKCr9sAqKlMzkd+ZcWLAJy8y2kbbCYlhBBCCOEmweV27sN36njl2UpOOLMfWl4t/3j2c2LzRqEmfrTZuQMYOjK0gbN0tr4qyiP3rGPMxFwWfNOGrsRZtzqKrrfQ+t46jjk8x1nWIxLRee35WjDhf6/UM/iEGM1N1tqS/uzOS3vopo6pW8GZ04HWNHh+2TMUBYuYPngGYGWCsnOsN98zj+3Li/+pYc2KCN+8XsPwfcLU5YT57AMdFKitjvHe6w00NcQJhlSCWR4a2qzreRSPM5ctqsdojDTw4vIXGFYwnH0G7EtF61pnjGEtuQRIsoGR9f9tMass16t6nccMs+uyWPc6lx7FQ64/j+r2agqChYltXuc66Q19rOtYX/ekLLa3JHO5eaR03U0rBAm6g8sMHWLTv+4Jf8r9kfrnW0kLLk3TpKSvH59foWJNhPnftmEWWR8Y6YbOGy8ks5PVlZ2bXa1tXc2wghG9Gp8QQgghftykLHY75/UqNDVo/PvhSuY88h7frl6Kp7iJSXtb60T2ZJ5iJt9+3kq4w+Dzuc10tOkMGOpBVa3Ok6uXd/Dqu9+zonk5AB+80Uh7q47Ho9DWojP3f/UAFJf6iBnJN62pSyFYb4DtMtWOeDsd8Q4q2ioylq72KfNz9mWDOP6nZRhKnK8/beXpxyswDDjgsGLyCrxUV0TR4iaFRb6U66mKx8nAxI0Y1e3VACxvWgbAmsTyIJAaXKZnLu3HfKq3c0Mfd9mj8ybf6harKAqKojAodzAhX4hBOYOAZBMX3bQyl3aDFps9/3KLlMWmNPSRPwMbK2UpkrQgPegqi1UyfPhgfd271979QUP6EiR2cGuYBh9Xfsjzy54BxWS3KXlocZM3XlrP4gVW9n3l8jbWrIjQt5+fkr4+2lp02ttS5ySvaFreq7EJIYQQQsi7yu3cHlOL2G1KHq3NOlUNDRQWeTn8J7nMOLIEr09h4bdtxGPdr0uZyaL5VrlcnzI/+YVeDjgijz2nFTB6Qg6mqvPxuo/5cN0HaJrB5x824/UpnHpeP1Cgvs4KKAcMDhLWIs45My3cbmfsOhKBm2marO+o6XJcY3bLZc/pOfh8Co2NEbKyVfbcr4Ahw61mNgYaBcWJ4NKws4aqE1xG9WhK45uYHqOyrcL5PuIar/1GO33ZBm/GbrGu4EFNLYu1g4mBuYM4fuRJTubSzjxZmUutUybKzlx6t0hwKUuRbA7ubGV6Qx/3MiFdrnOp9jZz6S6LzTzn0jANajvW0xprJabHOOzYPvz04gGoHoOVS8LEYgaffWx1Kp5xRAllA62sfk1lLKVbclV7lVMKLoQQQgjRExJcbucUReGIE/sy5YAcRu3hZZ8DCzEDHQSDHsrHZBOLGk62oqfqamLUr49T2t/PRdcM5tLrh+ANGhT38TN0ZIi+/b10hGO0tsRZs7qdWNRgyLAshpVnc+RJfRkxJosDDi2mb1mAiCtozNQIyM5ShrUOZ1t1exUAjZEGPq36pFNQ2megyv6HFTF+SohjzuhDVGllyPAsaoLzWZz3MqHC1JJVr+p1ymKtTpvJ831fvyBj0At0Kn21WQ19lJR9Mq9zaa2DmR502JJlsbqzxIlbti878f/ddxDdGCllsTLncqOpSvevo73WpSfD2pbW170LLn2ersti3Rlze36zYRooisLOI0IMHx1E00w+eLORpqYoO4/MYviokLO8T01l1DnOVtG6rlfjE0IIIcSPmwSXOwCvT2X3g33sNNRazqAtbmUdx0zMpiLrC15/f6Gz1EZP2MFo+RirGZDXq6SUqg4YEsBUdOrWx1i+xCq7HVpuzeucuGc+u4zPorAgiN/jd47rKoCz51y6M4Z22eqihu9Z3PA9q5pXdjomGPSw+/65NOYv5Pllz1I8WCPsacRQdPx51rl0VzMdp8umEUM3kkHugvr5ABRnlaRcI9lsR+/0htur+pJLkWQsi02dc9lVcGlfww6s04PLCX0mcsjOMynOKs54/KaQOZebR8qcyww/52AiS57+mH2P9HbOpfse6VQW68pc2hlIg+S9Pm6y9WFFR7tOdp7C4Sf0RVEUyvonM5d2JYFhmNRURqmua+nV3w4hhBBC/LhJcLmDaIk2OV+3JhrPFO0cxehTwYKaRcz7smdzL03TZP7X1r67jM2mOdpEdXtVSlfXAUN8GOjUrY+zYpkVyO48Itk0yM6W2Au+G6bR5dqY9hthd+ayIVJPTI/RkSjJqw2vTznGHotuaLTHE012csP4s61r5BSmZxWTcy5jerTTWpZe1cvQ/GEp17DfxOuJeZNuXtWTLItNBKruYM29zqW7LDad3+PHp/pSutCmjMHjozRUmvHYTbWhjJvomZRusRlex6CTuUwLLhMlrenZxw3xqT3oFovp3OOmq1ogp1ChfHSIAYMDHHRUIcV9rHOlZC4TvzMLv2njs7nN/Otva/jrnWtZX9W54Y8QQgghRDoJLncQzdHkOnXticylqWiMmZSLoei88UIdseiG514uX9RB1doopf399BsY4MOKuby1+g0n0APo098LqkltdYy1q9sJZXso7Z9802sHVPYb4bgR75T9c4sZMadZjj0fcn1HjTMPsy6c7GqpGZqTSdEMzVkfMmpE6T9ExeuFotLU+ZAe1eOUJ8b0WKexDModnDIPE3CCUc3QUspowQo87TmL9rlSusUmAgc7CO4uO5Xjz3Wd94dr3tzd+oyi51IzlxnKYhMdY9PLX+37pbdlsX5XWaynm26xyZLu5O+8buqMHJ3DxD3z8QWSx+Xme8jJ81C1Lso7b6xnfVWUNUt1vF6F3BKTqnVRHrhzLdUVEmAKIYQQonsSXO4gmhKZS0WxSlijepS4Eae4xE//nXy0t+qsWRHu9hymafLu61ajj2mHFKEoCmGtA8M0aIg0JHf06AwZloWmmWiGzs4jslBVxTmHYRqJgM6VLeyiLBYgrseczGVpdhkAbfE2Z1tjpNEpr3WX52qGRlyPO9tHTggw46g+BLKt4NNwLQNiZwXjRhwjLRO5c/5QJ/i02XM0jYyZy2RZrJ5hKRL7aye47KZpS64ruNwSjXu6sqGMm+iZlHLXDMFlfqAAgFBi/qwtWRbby26x7sxlWmDqLse2g8rU4NL9dfL3UVEUjj6llEBQ5eP3Gvj0g2Z8RpDRu+Vw6An57D41H10zWdLLudtCCCGE+PGR4HIH0RKzMpd9E2WUbbE2J7jp09/KcKxbHcl8cMKaFRHWrbKWJ9hlrNVExs6AuJfoiBsxRk/MYezEHPJLFHafmu88ZrjmOdpvhGN6vFPHVbe4odERt85fktUnMf7WlHmYdvYybriCSzO5PmRUi6CZcbweBU2316dMdou1O2tqhuZkG0uy+jA4byf65wxwgkmw3mzbWUTd1NEyNvRJZIkMu1tsamDhUTxOINzdUh/u4NLdrGVL29BcQdEz7q676etcAowuHsNRw4+hb6hvyvaNnXPpdy1Fkj5HN/mhRvJ3xHDNl3R/qJL+gcnwUdmce+UgyscHKSj0Uj6ymEE7B4kbcUbuagXGjQ1xhBBCCCG688PV4YktxjANWmOtZHmzKAwUUdNeTWusxXkDWVCi0gysW9V9cDnvyxYApuxX4GQiMzXiielxFBSGDA9xyEEDKM1Ozrd0Z/Lca0tmKv+zG/7EDStzqSoqRcEiwJp36VbbsZ7+OQOcMlh7bHYAbTcxgmSpqnudS69iN+jRnHmSY0rGMjhvp8RY3I1SPCmdXDtnLjOtc9l5Tp2uJ8tyu5LnTwbmP2jmUpHM5ebgfu0yBemqojrZSzf7nujtUiTuzGV6Wax9fXd2P70s1papTL2k1M9BRxXiX1fEiMIBLG1cQtyIOUv7NNVLcCmEEEKI7knKYgfQHG3CMA3yA/lOJqwt3ua8ycwuUPD6FNatjrB4fhtvvFCLYaR2gNR1k++/bUdVYdQ4K2tpmmbGRjwp2cO04NMd0CUzlzGnLNadebGX2ojqUSJ6hKA3SE5i2Y36sBVchnxW4OpkLlPKYuNOcGk3MbK3W2Ox3lh7Va/zRlwzdack0N0QJeVNu+JJWasy05xL+4281kXmMmUOZjeZwZSy2F5msTZFynhlzuVGSwnSe/E62h+2bMqcy64a+rh/J93dYt3b0z8wcbYn7vWgx5orGtWjFBRZ15HMpRBCCCE2RILLHUBduA6wltPI8VvBWVus1XmjaKLRb2CASNjgP49U89E7Taxenjr/cuXSDjradYbtEiKUnSwhzcSdGUkPPt1lsck5lzFnP3fjHDu4bI21YpomQU+WMzfNKenNssoJw4kSWXfX2rihOWNsjbU429PXp7TmXHqdx3TXdps76PWonpSOr+mvg9fjKot1gunOZbG27spOUxv6/HCZS6Rb7GaRkrnsxZ/TjV+KxD3nMnNw6f6ddHeLda/X2lX3ZvvDEq/H51QW+HwqOXkemhs1dH3zLUuiGRpPL3ya+XXfbbZzCiGEEGLrkuByB2Bn9YqDJU7mrz2enHNpmAYDh1iZCPvN4YolyaU/TNPky4+t4Gz0hGSw4w7k3NLnPbq5gy2fJ7m2pB2gpQaX1rXswDDky0JV1JR97MyenY10XzvimgeaOidUSxyT6OSqppbFupcosamK6gR3VuayczBq8yrebhv62OdInrvrACLbm+0cKw19tj8bm7n0OD/z3s1MSP8QpLvxQNdlsV0Hl4msvuIl4AmgGRqGaVBY7MM0oKWp68ZcvdUaa6Eh3EBF67rNdk4hhBBCbF0SXO4A6hOZy5JQHwJOOVssGWSZGgN3srZ7vNYb4BWLreBS102e/1cN33/bRijHwy5jk10t08tBbTE9GXQaRuryJskmOmndYu1yO1fgaAfC9jIqWV6rBDY7sd3aJxdFUZwg1n1td8Of1DGkLsNgl7na57EDYG/am3P7jbs15zKZBXK/QQdryRAlrQSxU0Mf17m7y04piuK8Dj9k5jJ1KZIf7LI7nExdgnvCmXPZy2ZKqqI691OmwLT74DJZJm53dU7nLhm3s6RWaWxi3uVmLI21A9yu/s4IIYQQYvsjweV2TjM0GiINZHmzyPHlpDTRsbN9pmkytDyL4buEOOqUvuTme6lcG6WlSePfD1fy7eet5BV4OfOSAQSzPNSF61jZvGKjMpf2G1i1i26xQY8VXCqKQpbP+ro5sYyKnbG051kCZPmy8CpeJ4hzX7vr8dlzLq1jnCxR4jxOdibtzbn92qlKsixWT5TFuvf1qj6nDLarzKU7W7mhpi12dtbr+eH6a0lDn83D/dr15nXc2DmXkOwqnF4Wa52vm+Ay8TvoXsM1nb0tfSmhwkRTn8bN2NTHbqzVXSdpIYQQQmxfJLjcztV31GOaJsVZJUCyk2lMjzlrQAJ4/AanXzCAcZPyGDoyC9OE+/+whqULOygp9TP78oH0LbOW4/is6hM+WPceHfGOlGv5XXMobemNQQwnuEztFpucc2llUH2qD78rM2I9Zmcuk9nTLG8Ir+oOLjf85tYOKt1ZVEh0cDX0lADYzQ6Gvao3OUdTt8oCg96g88bd51rn0nC6xXY953JD8+oKgoUAhLyhbvfbnDbU5VT0jJqSAd6IOZe97BYLOL836d1ioXOAa2RY29I+PlNprDPnUvE6y/PE9LjT1KepYfNlGe3fna7mdgshhBBi+yPvKrdz69vXA9AnsT4kWMFP3IinlJu530gOLbeCmI42nSEjsjj7soHkFyZLMmOJYM+9vAdAIPFm0x3gpZe0OU10VI8TXEb1qFOqGvAEyfPnURwsduZk2vL8eQCEvMngMugN4lW9GKaBYRopAXNX7HJgJ4hUk2WEuqtBT3rQlyyLVZ3AM2pEnX3t5+9eisTpFttpzqV7Ll73v2ZjS8YzffBBlIbKNvjcNhfJXG4mG9kYyf7wYmNKoe3fG1+G4DI9WHV3i7X/BthBo54hqHOXxQac4HILZS7t4FLKYoUQQogdhqxzuZ1rj7cD0DdU6mzze/y0xlqJaFFnm/uN5KhxOazeK0z/gUEm7pXnrGlps4PHjsS5PYoH3dQJerNojbVmLLVzvnd1YrUzJHEj7ipF9XDEsKNRFMUphwWrJLY02wqu3JnLUCJzCanrWnbHDkDTu8LaZYR28NxVWay7W6y99IlH8bJb37FE9SiKonTqzJneKTR1zmX3waXf42dg7qANPq/NKaWcUyZdbjT3z703GeBRRbuS5c1K+b3tKTv7bweJKeNJL4s1Un9XVUV15hpnzlzaZbFep/w2akQp3JJzLiVzKYQQQuwwJLjczk0om0AwnucEZmC/6WylQ2t3trnfSPr9Kkee1PWbWntfuwPrwNxB1EfqGJgzkNqO9Sn7du4Wa72ZVRQ12S3WtRSJ6lpD0p253Dl/qPPG2G7oE/AEEg1MrNs0bsSdOZeKomCamZdFsLMvhpleFmudxy7D7ZS5VAPOGO3A0y4B9qpehheOcPZNX4okPUBTe1EWuzW4hyuZy42X2tCn569jQbCQCYly6N7ao2xPRhY2pXwI44yB7rvFWs2q7A9rug4u3WWxcT1OXoGX/2fvP8Mjue4zb/iu3Dkg58k5cBLDDEkxU8wSqWxrbclB9jqs/Oxrr9dhvfbK9nqfx3K2pbVkK1tZYhJzTkNyIidjIoBBDt3o3JXfD1WnuqoD0MBgZjDD87suXsQ0qqtOVVc1zn3uf+A4BhOjCnTdBMdd+D1DFqZoWCyFQqFQKFcPNCz2CsfH+9Ad6fG8Jtqhdu5qqnMpmlHuXDb4G/HIqo9hSWRpxbZ6WcXJklvIOs6losvQnAqtpfUMd0jg8tgK52fSq5P0vCThf7qhOdViSZP3apDJKpm8kmO6HVCWYSsEIWlQ764WWxKi3keFCLJSW5OZWpEsvseM8YTtUnE5Xy5HeHFIDNd0uiucS7j7XBq2c2k/T1Wcy1JYLAeJLYXFchyD5Wv8KBYMTxsjwOqpW6ty80yQ45OQdwqFQqFQKFc+i2/WS7lgqoXL1ZvXpBu64wjmNWsSScJJ2SrFR8pD2tyhqAzDQOREK/+zSoVWkRUREAKIiBE0+Bqd1/28Hzd13ozr2m+w9sUS51JznEu/q/hN+YS6VC3WW8mVdwm+am0cyHXjGM7pOUnc2/JcNqYsLLaiFclidy7nWeWU4mWxFUYqL1LlFm2aoXlCvquFo5JFKI7lPTnTALBxm1XV+Mj+jGf/T559HK+cf2nOYy0fG4VCoVAolCufyz8boiw4YlmhHAAwZnEuh7NDODx5yCNCSbVY4jCWh9wBlrhKyykkiwkAgOnqLUneq+iKy+ErTX4ZhsGHV34ED674cMV+l8dWotXORyPH18xSziXJOwO8OZqk8TuAihYi7uqa1YQAcVpZloNk75+EFnNlbR+cnEujRisS1u1cLm5xSRtdzh92kTnAtVqRuHu+snXkXFphsd7q0Gs3hsALDI4fykFVDed3iq4gV1b8qx7c+doXW1yquoqjk0ecxSIKhUKhUCgXByour0KqVaCczbncP7YPB8b2IS2nndeIkCMCrVrbBM3Q8PL5F/Fc3zMASr3ryCSXTFDJpI4v2wfP8rO2Y+A9YbGK1eDdJaCJuBQ5ESInOmF2JAywfD/lPxNIOG6QD8Bnu5gFtVB1eyLOSu5ouXNZOu582k1cbDy5gvRrYN4w82xFcrEoF5dkscfd25U4+NUEnbtaLHHyiXMp+VisXh+EIhs4fdxaeCLfK7OJw7H8mKf69NGDGTz+wxEoiuE57sXifKYf+8b24FSy96Ieh0KhUCiU9zu0oM9VSDXncrbJH3Ho3EWACI64rOLAGaaOnJqDZmjQDM1TuMcaiy3SykJs54K7oI9maJA4ybMfUgBI5ERPXqVu6k7eWPmxq51LW7Ad9y1/EHEpDsUOvy2vOEsorxY7U1jsYhRvi8FluxpgLkPO5UyUL3IQx9L9XJJnxJipWizDQXL1qSVs3BbCsfeyOLw/g3WbQ05orfv7RVEMDPUXsWyVFbqeVbN49txTGD5fRHPvA7jzgSY8/r1xnDdz4Fbm0dLOX3TnUiF55NS5pFAoFArlorL4Zr2UC6ZaziWZSB6ePIRHT/0YA+l+53e6oTsFOUgorBsnLLaKM6PopTYj7qqwTkXYstzFanmbs0EK+siaDMM0bBFZcmcd55KVHCGqGAoM0/C2BPG0B6kucpv8TeDYUk/Lau8FSteC5KdW9rl0H3fxPWbzbaFB8bLYrmOtsFj3IgnnOJfWayTs1XrNCiW38qWtZyCtpDGYOQ9FV7BqXRCixOLk0RzkouHsQzdLudov/WwK3/jnIZw7ZX2XZOxoiIGzRZw/V8TX/mkQctGAyegYGSp6xpLP6eg/s/ACkHxHyfMoPEShUCgUCqV+Lv9siLLgiNXCYu3JW1/qHNJKGq+cfwnHpo4CKLmK5T8TeJe4LHe83NurhlKRc0lcVHcu11whTovjfrKCJ7w2JFiFRiROdISoUqXdiMe5nEXksgzrcYArnUvvdSh3rRZ9ziVD+1wuBJ7ruCicy+rVYknONcewzv2omzpGssP43onv4Oz0aec159m1c5Dzah4vDbyAH5/8AU5nTmDtpiA01UTvkSw0V99Z8oz3HrWiH0aHrGdQNVSYMDGdtLc1AV+ABVgDY0NFmKYVFmuaJv7jX4fxtX8cxORYSfAuBGScsk7FJYVCoVAoFxMqLq9CqlaLtSd+7gkwyT/KecRlpWvgFnLlIZ7u7RVdrchBFFnvWKrlOs4GEbekeq3kCn8FgOZAM7rCXVgRX+VsS9wYtkaF2PLWItVwi8taOZeEmVqRLMZqsZejhcbViHuRYTE4l0yNPpfuiAIndNzUMC1PAwDGCxPWa64iWAzDoNHfBJ7l0RXugmqoODz5HjbZVWMPvJN2WgOR/SUmFSQnrdcS9v9VQ0E+a0BVTLR3S7jzgUZ86lc60NzOo1g0kE5pUDQVJw7nMNhvib/RYXlBr4vjXOoLu18KhUKhUCheaM7lVYhQrVqsSRqWWxO+sBhGSk4hq2RQUOtzLgFrcqrrpVwtdzsB1VCq5Fx6XdT5CC0y2SUVKSXO5wlrlTgfbu+5CwAwlBkEUOrx6Q1PnbmgTzmWMLaOWe4+lofBlrt/i77PJW1FsiAstlYk5Y68YYeqOi1GGN5ZLNINzVlezCppT9Efwn3LHoAJEyzD4oe934Osy1i+JoBonMe5UwU8/VgSw6E8GpoF6IaGM70l8VYSlxpStmvZvdSHm+5sAAC09wg4PgnsfjmJc4+eQRNbEqpTE6WfFwLSZ3c+/TgpFAqFQqHUz+WfDVEWHHdYrNPGw544qoYKlmHRHe4BAAxlh5BTS0V8qjuXM7fwICi64lSLJeIqIkac3zMMM68QTDJhJuMUOclTEdf9MxkrcSjck213WGw9oao+3lUMqEyMVrQewZXlXIKGxS4Ii80BrlUt1nA5l2RhRjM0aLbzmFEyrmI+pXudYRhnnz7eB8M0oEPFf/r1ToQiHI4dSuPowSz2vpmCois421tanCqJSxXTCWvfHd2lFkLtPXaUgWICnAG5aCAQsp6VqfGFDYvVqXNJoVAoFMolgTqXVyFu59LH+6AqpXBVEvbWFe7GsamjGMqeR0SMOtvPVNAHmFkoqYbq5HiRCemy6AqcTJ7EeH7MKfgx5/Oxj0/EpY+THPeFZVivgKzIuXS3IqkeIlsLiStNhMvPu1xIlAs01lXEZz5FjC42bjG8GETRlYqnpcsicC7LFzmqFfQphcXqMGE9k1k161SFrfVskHB7RZfR1BrGL/2XLjzx+hiSp1jkcwbGxgo4e1IGLzAQRRbTCRW6bkLVFSffsqO7tGATb+aw85ZGADru2dyBUKYLko/Fl/7PACYXWFwS4WyYBhRdqVpRm0KhUCgUyoVz+WdDlAXH3X6DCCTNruaoGioEVkBLoBUCK2A0N4qMknG2L1/ZZxm27gm0oiuuwiGWoGIYBjd23gQAiPvi8zof3uW0AIDE+5xQ3fKJMBGiRZ2ExbqL+MzciqQcd+5qrWqxNf/triK6CB8zb0GfyziQKxxPePEiuJC1Cvq4w9VL0QwqdPt5NU0TKTkFoLIXLYEU+JHtfOaGJhE7bg6jo8v6jnn1+QnIRQPLVvnR1CrANIBUUsX4ZB6phAaOA5paS6LOMA0sWxlEc5sIAxp6lvnR0iZCEBlMjavzXoyqhruPJi3qQ6FQKBTKxWPxzXopF4zACc5E18dbEz/d7kMJWAKMZVi0BduhGRqGs0M191Uu3rgaBXIAy9FwJrGuCWpYjOCR1R/DHT13z+t8+LLqtxInOccWyn7H1RkWW6sVifc4M1WLLc+59P7bUzxoMbYi8YjLxTe+KwVy7RaDsAQqw70d59JVLZY8T6quQnVVe03KSXub6s+G5HIuCZqhorHV2t+pXmuRavP2CBqarGfn6Z9M4MffHoKmmYg3CmBZxvXekuDTDQ3Hpo4iKSfQ2CxCLhrIZSv7cM4X97GKGg2NpVAoFArlYkFnlVcpRHT5bOdSN3VnIkkml13hbud3tajMNSxNXstDyxRDdSaz5W5dSAghIATmfB7WGLwTZomTHBFZLi4Fp1pslVYkcxR87rDY8hYqFeJyhuqxizHnkhb0WRjItVss7nR5i5xSWGypWI9T0MfUPKJruph0tqkGed7d0Q2aqaGhSQTDAAajQRAZrNkYREOTLTiP5WFwCtZsDGDr9RHP/oirCgCThQnsHX0X740fRGOL9d7J8YUr6kMKGlnjp84lhUKhUCgXi8UxI6IsOMRlIM6lZmhOpVjSC7Ij1Fnz/UQclYs3t2giYXIEd7XYhXTryie7EudzxF65q0leJ+5EzWqx9TiXfO2w2HK3r6IVyRxDcC81i60QzZUKu+icy+o5l061WJYvOZeG5gkXnZZnFpeS/V3iFpeqoYHnGTQ0CTCgY93mEESJdcQlAHQs5bF6fQg+v/c50F3CNq2k7f0paGy2vlcWsqgPDYulUCgUCuXSQMXlVYpgCz/ivhmmDtVpNWBN/IJC0MmDJCKUQFzG8hA5zlVIp1zYKbpSqkq5gIKqIiyWl5zx+nl/2bbegj6ePpfu9iB1FNlx566WX4eKgj7lzqU753IRisvFlit4pULE3GIo5gPUrhbrtBlh+FJBH0PzOHrJ4ixhsWxlWCwRiB09EsDp2L4rAsM0EHeJy2Xrhapj011tjEixLs3Q0WQ7lwspLmlYLIVCoVAol4bFMSOiLDikv6TfcS51aPbqveDqPdkZ6gIARKWY5/0BPlixLVCqvmpVnfSKJtUdFruAk+1yl9HH+RAUgrij5y5c2369d1t74uwU9HE5qPycnUtXtVh2ZqeyPBzRfW0Wi/Bw4ynoQ53LeeM4l4vkGtZyLt1hse6CPu6cS0LNgj7VwmJt0bZkhR+/+F9asU//GV4aeB5NLSJ8fhY9y32INJL9ep853ajsl6ubGlo7LBG7/500RgYXRgi6xSV1LikUCoVCuXgsvlkvZUHw85bzGBRCAKzJlaqTVgMlwbgksswq7hNo87yfOJdCjf6OLMNWuJOKrjhuxEK6dR5RyJacl85wF0L2+RFKOZfWudYKi63HWXUX9CkXozPlWJb/ezGGxbrDeqlzOX/IfbBYriFT5qQadqsRp4clyzkVoDVDc5xHd/50zbBYp6BPyVEkopUBg6KZQ1bJYjg7jLQxhd/6wyX4+V/rdFqclFd/rZbrrRmWuLzx9jiKeQPf/NIgMmmtYru5kkwW8frzCYyPyrTXJYVCoVAoFxEqLq9StrZuxwe6bkWDz7IN3MU73IKx0d+IR1Z9DJuar/FMMEm4aXmIHBGN1iS1XFzKrqqUCyeoGIZxJryz9acrD6H1FPRh5l/QpzyMttypLBebXlG7CMUlLeizICy6sFj7K508L+U5l6VcZd5acDJUMAyDXR03OeIxKASr7pu05inPuSTktZzz89GpwwiFeQgiHHeU9NQkGDXEJQDc+WAjtt0QQSFn4LXnEnWdezmpaRXf//dhnO8r4OihFKaTGg6+k8apU0l879+H8fRPJjDYT11MCoVCoVAWktljAylXJCEhhFA05LgF7mqx5UV6Si6l4LgSTlhsDbHmzt3iGMsNUQ3VEX8L7dZxDAcNmkfwVSMkep1MtobIq6cViciJYBgGpmnOWi228t+LPCzWJSgX4/iuFBiGgciJs96Xlwpyj4ucaOdAV4bFkv/n1by1cMPw6IksQVe4Gyl5GnFfQ9V9kwJX1cJigVLeJAAMpPuRUdJO7jdQEroE3dDBo6zIjy04GYbBnQ824ejBLPa9lcLOW+OeIkH18NLPpnD8UA795/IYZotgTAaybOLF50awLGeN9dDeNH7/L1fMab8UCoVCoVBqQ2eVVzkMwzghcE5oXA1h5XYFiXtR7gQSIcKxnMdNFDgBqqE6x1howUKO5eOkGbeTOMlxYNzvI2Nyj78eSEXcypYsZedX5mSS/S/GkFiAVotdSO5Zeh9u6779cg8DQMm5JItCxB0shcV6W/gouuLc2yzD1hSWQPWCPporZ9MtLgFgsjDp2bbcudRNveL5cIvVQJDDrtvjUMwivvr3A3jzpWRFaG0tpiYUHNpn9d3MZKwFs40bmhEIcoCg4IGPtyAa51HIG1BkY6ZdUSgUCoVCmQNUXL4P4Fkehmk4uU+1QkuJkGQZFl3hbmxo2og1DWs825DJIMuUwmJFToTIijBN03E1FjoUlEyAJX52hygiRSvGW76fegr6AFbYcEgMVeynohVJ2aPEucKHFyOegj6LJF/wSiXmiyMkhi/3MAC4WwhZz7hRpVos4F1gqpVjWY7ACWAZtqZz6RzDqdisQHGJT7cwNE0Thml42v2Q8bodzk27OGQ3vIRj5it47vEJvP58sq6xvv58AqYB3Hh7HOE4IAgMNm1uxO33NOPOR6LYsSuKaNwaZy5bu88vhUKhUCiUuUHDYt8HcAwHWZc9RT2qIdrikhTN2d56bcU2Ts4lwzmVY0WXU6joykUJsyTCV5zFuQSAiBjBRH4cAMCy1UVfPa1IAOD2nrtgmEaFAJutoA85zmJ1Bd1ieLGOkTJ3SC4wqRZdGRZr3ZfuKtD1iktrv6KnoI9bXBLCYgTJYgKKLnucS8ASlQzDOOGv7tBzgm7oYDnr/iyYGWzbGcH0WhVnnzmFl55i0NwmYt1mb/h7OSeP5cFywAfubsCmmzjEzjYg6Begcz7k1TwAIBguict449xCbikUCoVCoVSHOpfvAziWg2EazqRQZGd2LsvzLL37IgVDXGGxrOAIUwCesNSFot6wWMASl4QLdS6tfp6V25aLyQrxyTAICsFF42iV4xkvdS6vGoijzrNecUkK+pTCYt3OZf3CSuIk6KbuiMpq4pI8f7JeWZm1JHZLhb/Kn0XSMgkAFDvaIhYX0HnLIGQug598e3TGFiW5rIZ8VkdDC4+h4lkwkgyf3/q+It8HhmkgGOSc7SkUCoVCoSwMVFy+DyCTN9L7sZZTQcJlZ3IyiOPFMpwzURM5CYIr1LYj1Hnhgy6DTIbrKZwSrkNcchforlYU8KnyKN2//CHcteSDF3SciwXNubw6cRfcYhimvrDYOeQFk+dP1mWYpgnd1Cu+L8L2goqsy1B1bx9NknfpVJV2LVIRdJdgJQtiAiugtUPEklvGoCom/uMrwzh7Ml91jBOj1nsyzUfwxtDr2Du2xzlncn10Q4cWSCLPTSJPw2IpFAqFQlkwqLh8H0BCWYuaJS6FGs6l4ITFzuRcusJiiQvCiZ5w1YshLslkuDxHqxrRGXIuyX4uNBeyXJBVy1v08b5ZW6dcLmgrkqsTkpPs431gwdasFuuOTuDmGBYLWEV9iGD1leVBR0Tr+ZN1GbJR3bk0XM5l+fHdbihxLjc2b4bACgitHMeG60VkUhq++S9DOPhuumKM46MKTBjIhfoAAFOFSQDWuZPvQt3UcdLcjYHgW8hldewf24v9Y3vrvg71MpGfwNsjux0xTaFQKBTK1Q4Vl+8DyIRSdpzLGjmX9TiXrkI1RLhJrOgJs7sY4pKE2gb4wKzbup3L8tzKlbFV6A73ICRcWLjqbK1IFjtuMXyljZ1SmxZ/C+7ouQsbmzaDZVjHKSxViibPb+l5nSkMvhzJ1euShK+WRxOEJev5U3SlMucSpdZI1ji4iuNrrv6Xqu1cBoUgVsVXwzANrL4jgYc+2QIAeG9vpbicGFWQ4UcQjlrnSO51juWdRSXd1MGIGnRGQzKTx5HJwzgyebju61AvJxLHcDJxAhOF8QXfN4VCoVAoi5GrvqDPhg0bsHLlSgDAxo0b8Rd/8ReXeUSXHiImC1rB/nf1yWQp57L2bcG5Cvq0BloR9zWgI9yFE1PHnG0uRs7lhqaNCIsRtARaZ93WLY7LXbnVDWuwuqwC7nyoyLm8At0/UkiFplxePTAMg85wl/OzOyyWYzhHaHlzLufuXFoFwkjfXKsAGBGwpZzLoqf4DwBP313AzrksWwCqFhYrsRK6I0twbOoo0koau66N4KkfT2B4QIZhmGDZ0k08MapgSjqNFRHec0zeVYTMMHUIovX6eGYCF6ucT9H+zi2/DhQKhUKhXK1c9eIyFovhscceu9zDuKwQZ8Gdv1QNUuinVh9MwNXnkuER88Xx4IoPAQBSxWn0p/uwOn7hwq0aYTGCDU0b5/y+i+XKecJKGeaKbOfBgoUO/YoUxpTZIf1tAbunpEvEuQXlTM97OY5zqcme1iMcw0GDBpZh4ef9TsuSvN37kohPzdTws7NPOBEIVgQEyQPlPMWCADgFgUROcp5l1VDBcQw6uiUMnC1iakJFc6uIM705TIyqODc+jIIwhfaGFchqGc85k31ohgbBXgMbz05g4WMtLIr2+N39QCkUCoVCuZq56sUlBYhJMc+/a4nLavlY5ZTC6ryibVV8NaJStC5n8VLw4IoPYSI/gSZ/00XZPxGUpmleseKMYRjAvDJdV8rssAzrcS4DQimk3B29MFOkQjk+zg8AKOqFUgVaxnIuZV12xKfESZB1GTlbXAaFIFJyClOFSes/WEWKLefSOn5IDCElpzzVYku9eQXnPiXOZmePDwNnixjqL6K5VcTTP57A5LiKgcAxhJo4XNN6DfaN7XVyzTmWd4SsYqgQfdb+Jovjjrg0TGNBF6RIKoJapaouhUKhUChXI4s62WrPnj349V//ddx0001Ys2YNXn755YptvvOd7+D222/Hpk2b8PGPfxyHDh3y/D6VSuHhhx/Gpz71Kbz77ruXauiLipgv7vzMs3xNly3ui4NjODT4G2vuKyJFwTBMhWBlGAatwbZF4+DFfQ0LEv46E6XKuYv6MaoJGfdi+cwoC4vbpQO87XfcC0hzCYslxXuKWikslmd5Z39ucWmYBtJKGjzLO9ET5W1HOJZzfkcKAXnDYknorejkiRKh1rnEet/QQBG6biIxpSIlnEdWGENzNIpl0RXw8/7SeTIl51LVFYii9fOUPOlsQ8T4bGiGVte2skacSyouKRQKhfL+YFE7l/l8HmvWrMEjjzyC3/7t3674/VNPPYX//b//N/7sz/4M11xzDb7xjW/gV37lV/DMM8+goaEBAPDiiy+itbUVp0+fxuc+9zk8/vjjCIVmbsBdC3dez2KAjGe2cTX4G5y8OpETam4f98fxc+s/PWMl1bZQK35u3ac9Tdjfr7AsA8OwGtcvtnujHliGsdwjlq06/nrvL8rihGM5MAygmSoYBhBcz77A8aXvBF6s+zMOiAEwDKAYRRjQwTCAyAvO/iRBAssykAQJjAKYMBASI+BYFgwDmIzhHJdhGXAMhx3tO7A0uhTJYhKD2QEY0J3xqKYChgH8gs8qwsPA+X33Uks4Dg0UkU3rGOd7MR09BtFkcPu6G8BzHAJCANNy0j5PAbw9Ts1UrXFKDIqK7IzJZIxZr4Vu6PjuiW+hOdCC+5Y/UHM7VVeda0SOR7m00O8wysWE3l+Ui8mVfH8tanF5yy234JZbbqn5+6997Wv4xCc+gY985CMAgD/7sz/DK6+8gp/+9Kf45V/+ZQBAa6sVprly5UqsXr0a586dw6ZNm+Y8Fp5n0dg4P1F6sYnHgzP+vsEMIj4ahmqoiEjhRXseVxqRcACKrkDipCvymobDfggag8bGMCJS7fHPdn9RFifR0QAMQUYoKiAU8iEeDDn3aZaLITRtOX9NDZG6718hZCA07oMQAMJRCaGQD42xCHShiCKXRUssjsbGEFqm48gzKQBAW9iKhMgyPkSiPoRCpeqyHMuhs6UZnWjGkfEjCOV8CEVKz5M0yCIqBtHSHIVhGgid98Ev8WhsDKEoDCEQMTE2pCCZKmJcOoYVPWH8yWc/iZ5YDwCgNd2ANKYAAM0NUShCFuOaD8GIdU18fg6paQ2SKMIE8N6eDHbuCiMWr91CKFlIIhTyoYD0jNctI2eccw1FxCvyO+JqgX6HUS4m9P6iXEyuxPtrUYvLmVAUBUePHsV//s//2XmNZVns2rULBw8eBGCFxPr9foiiiLGxMZw8eRLd3d3zOp6mGUinCwsx9AWDZRnE40EkkzkYhjnjtrzmQzKfgagFMTWVvUQjvLrJ5xQUtSI0HlfkNc3lFBTUIpKJPFSxMrR3LvcXZfGRzynIFooYm5xGNltEGKpzn2ayMrJZKx8wk5IxxdR3/6q6jmy2iHEtiSbW2m8uoKJQ0JDNFlEUDExNZVHMGc7+NZ5FUS8gmy1iMpF2XifOJbm/smlrTJPJNKZ4azxTqRQkTnLGnc8p0IsZHD9/Fk+ffRJaZxv04yvx2GvvwGRMrIisQlBvcLZX8qbnPLM56xjjU9bYecFaEU4kCjh9Io9DBwbx0mPT+OgvtGPlOusPekqexuGJw9jetgN+3o+hzJizz5me+8nCpLPdpJjClP/K+4640qHfYZSLCb2/KBeTxXp/RSJ+CMLMveKvWHGZTCah6zqamrwFWxobG9Hf3w8AOHPmDP7kT/4ELMuCZVn84R/+IWKx2LyPuZg+XDeGYc46tqgYx3huAhzDL9rzuOIwGZim9f8r8pqagGkChjnz/VPP/UVZhJgsTNPK+zNNgAXnfI4seNgdOjyvzwbH8GDBIa/koWias18WHEzTqjhtGCYERnD2H+ADKGoFmCag6brzOgwTHMs59xdj70PVVBiGCc3QoBsGBEF0xscxPFRdQ1bOwjSBWKuB0eM69vYdAQNgU/sGz7mIrM9znkzZNRF91qJKalrD+bMFrOR15HMGfvTNUfzuF5aBZRmcSpzC6eQptPhbsTK+Cik57exzpuuWVwrOdop9TpTLA/0Oo1xM6P1FuZhciffXFSsua2H17bNWo7dt24Ynn3zyMo9ocRCTrKI+c6kMSZkZcp9d6QV92MVd14syT8jnS1oQ8Z7elqVVx5mqQ1fDx/uQU3NOJVfe7nMJWC1DAEDiS6GvAT6IJKy8R9LfkkCqTwOlYj+kWmypdVIpRJVneeTVPFS7mFBDC4ez/CSKehFhtR1draXiZQDg590huLxzPMV+vyRZ16j3SBaGCWy/MYJkv4Tz54pITKhoahWddijkmFklg3oglWI13cTrL02gYXMGG7aE63ovhUKhUChXKlfsrDIej4PjOExOTnpeTyQSFW4mBU4FWPekj3JhXOnVVklrhyt1/JSZYe3PlYiiWtViuTkuOPnsCqxZJWvvi3f24bMrv0qs5GwfFILOPeZuM2Idu7L3pm63OFFsUSdxLnFpn0PRFm7xZg46YwtFI4SGJq9Q9vPu9iucczzVFq6SZI0rk9LBMsC2nWF02VVoB/utY5BWJqQ6bqZOcVm0K8UeO5jFyd4UXnhiCqZ5Za0+UygUCoUyV65YcSmKIjZs2IC33nrLec0wDOzevRtbtmy5fANbpLQGWrGr4yZc07zlcg/lqsFpRXKFPkaOOKZ9Lq9Kyp1LzuNczq/PJVByAycK4wCAoBhGULDyE8Oi5cyJLkEYEALOPWYYtZ1LMj7HubTFnOAWl/a4C6qV/86JBqIN1r59Eg9/wJsH4nMtplmtSGxxabuu0QZrf+EIhx03RhEIM+haaovLPktUEueStBPJqiVxWa0dSS6r4cSRLApqEYMDBfSfKcBgNCSnVEyNqxXbUygUCoVyNbGoYyRzuRwGBgacfw8ODuL48eNoampCc3MzPvvZz+K//bf/hg0bNmDz5s34xje+gWKxiIcffvgyjnrxsjK+6nIP4aqCuDFXqvNHncurG6enoxO+WukSlv9cD6QvZUq2qsHGpBia/c3oCHai0Y6QcIu6oBByxlIRFstWCYs1SFisJepIqK17rAUtb+/PQHMHD5wFYrHSdgQfV+pz6QmLtftntrSLuPuhRogSC4ZhYJqG0z9zcMASl6lsDqd6c1h5nYLklIq3dg9DMzWkkyrGfngad/8nEUu7YohKMYwOyfiPrwwjPa0h39mPvqwlRBvaWOA0cOp4Dk2ttSvRUigUCoVypbOoxeWRI0fwC7/wC86///zP/xwA8Fu/9Vv47d/+bdx3331IJBL4h3/4B0xMTGDdunX46le/6vS4pFAuJk7O4hWacxkQAsipuYrG9pSrAwbEuawMi3ULSm6On79bOPp5PyRb/BFhCZScS57lIXKis4BRLi55lgcM8rMl/HQiLm1RLLpcVrJNQSvY2+pobhcscRmvIi7dzqVLXBLBHeADYHylKuC6qSMa4xGKcBgblqEoBg4fSqD3ZA5tbBLnUudxuq/kXCYzOXz1+adw/wdX46amu/G1fxyEXDQQinAYSObAiMC2GyJoCPsxfBo4dSyHnbd680LdjOVGMZobwTUtW2tus1hQdRUJOYHWQOvlHgqFQqFQFhGLelZ5/fXXo7e3d8ZtPv3pT+PTn/70JRoRhVKCTN6ZKzQs9gNdt0ExFI97RLl6KHcuy3MrBVaAaqhzdi7dbmBMilXdhriNJFyWuOR6WRipe2GmFBZLci7tgj7VwmId51LHklUiGk7wWLcxUjEOlmEhcRJkXQbP8OBYb6jwqvhqNPtbcD4zgJPJXhimAYZh0LXEhxOHcxgeKGJ8MgcAOH40hWBmDEKUwZbrIvD5WaRf1nFqRMbIaBZvH52GXDSw9YYIHvhYC/71xf1QA3HE4gJ4BvAHWPSfKUIuGpB81b8z3ps4gNHcKJZEliLmqy1CFwOHJ9/DkcnDuGfZ/WgJtFzu4VAoFAplkXBlzooplEXAlV7QR+REhATa2P1qZaZqse5/z1VcuiuwRqXqAigkhLA8tgJrG9Z7xkJcyfIxAJVhsU7RHVdxIMERl5bbaJg6fEHgxjsasHxF9UqsS6PL0RXuAsdyrpxLy83lWB6d4a5SMSFb2HYvswT00WNJTCetbfMFBbKZR9cSH9o6JMTiAnbcYhUM2vNWEnveSIHlgNvuaQTHMehYziIWFyByIgzoWL0hCF038eLPvEXo3ORVSzTnbfG8mEkraQBAXs1d5pFQKBQKZTFBxSWFMk+u9FYklKubipzLsvDXVfHVWBVfPef7l1SLBYD4DO7aTZ0fwJqGtQDczqU3LNZ97FK1WEtckkI6AldZ2ZYIUN3UnX2ybPXzuL79Btzec5f1fifnUvH8uzwndM0Gy3F9581xmCYgiAwMRoPC5rBkeen8l28Q0NgsIDWtQC4a2HJdBJEYyQstgGd5+DgfDNPALffG4A+yePf1FI4fylYdKxHNRGTOlYySxlNnn8RYbhQAkLbzYuthLD+GJ888Xvd7SBVdvawCMIVCoVDe39BZMYUyT2i1VcpihtyfslMt1hv+vKVlG3Z23Djn/ZKCPgAQrREWWw7jOJeWeAuLYTT4Gj15mkTokWqxxF2U3AV9GO856EZJXNaTO8yVvb9cXJp22G5Tq4imVtFpJ7J8tR+xJgbdq1iEo6XcTQ0Kdt4aw/qtQSxb5cctd1v5/oZpQNEVSJzkhPIGIsBDn7DyE/e+WSngNENzzjmvzc8NHMuNYbIwgYFMPwYz5/Ho6Z/gVPJkXe89OnkIieIU+jP9yCoZ7Bl9xxHh1SjaQlg1qLikUCgUSgkqLimUecKCOJdUXFIWH0xFtdiFSbF3F8mplXNZMRbSisQWgivjq/Hgyg9B4kvCkWEYcAznqhZr51yypZxLd39OwHYubcFaLhyrUS6wyXvI/3XDQE7NIa/msW5zEDpjjaGxWcRtD8Zw871WXie5Booug2EYrNrgxy/+ZheiccEzdonzOdddM1QsWWH3CM1UCrKCKxQ2bwu3nJrDD3q/W7dAJEK7qBWRlJP2Pqq7pG6KWhHD2WEAltt5bOoYjk8dw/Gpo7XfY/caJYKYQqFQKBSAiksKZd7QsFjKYoZFWc7lAlUF9vN+8CyPkBjy9LOccSxl1WJruf0cyzliUbbFi+Q6RnlRIrdzWU9hKqbsWSWhtCQXUzd1/PjkD/Cjk9/Hus0haIwMhrH6YWqG5lxLP2/lWhbt0F3S71LVVZim6Yzdx0sQ7bBe1VDh87NgWCCX9YYHAyVBCQAFOyx2uphEUStiLD8667kBpXDhgpZ3eoGWhyJXYyDd75xDSk5hWk4AAPrS56purxu6cy3K82gpFAqF8v5mUVeLpVAWMzQslrKYIYLOXbxmYfbL4o6eu5xwz3ogCzGaLRxrLcjwLO/kHZL/EyEHVHcuiaCqp6VKucCulXMJANFWHUvW8pBEP3iOgWqoLnFpOZCkF6dpmtANHT859UO0hzqwpmEdAMu5JKJNM3SwLANfyEA+Z72HYRicO5XH2ZN5LL+xFAqbd1XDBUrhxLUYyQ6jyd/sOMNFrYgCZ+/DMGZ6KwDgXPqs83NaKYXspuQUksUE4j5ve6+CXhLC1LmkUCgUihsqLimUeeK0IqHOJWURUsojNAGUekQuBK3BtjltX17Qp6a4ZHhHqOXVPERO9BT0qXYOmiOeZ38Oy0PYy8NiVVeOYUKewi0PhHB00qpCqxu6E2JcLi4N00BRL0LWZSQKU87rIic5zp5mqChqRZyKPg1O6USxsBySj8Vj3x3DdEKD1pIGbB1NKrASYTpT0Zwjk4exf2wvVjeshWSHEBe0AiQ7dNeYxbk0TRPj+TFInISAEESymPD8vi91rkJckmI+1nlR55JCoVAoJeismEKZJ9S5pCxmygXcQoXFzgcyFiJ02Bp/eoi7WtALUA3VEXHO76ucg1xW+XUmyrch+ZBO/0uXCzdVmIRsF/QBLGFMRBXJuSQFfwwYTjGgol503idxouPwqoaKtJKG4DNQ4JLIZXWcOp7DdMISZ6fOlERdUS/CNE3nes0k4I5MHgIADGXOO+Jd1mUn13K2sFjVsEJ5A0LAk0NLFhAGMv0V7ym6QnipuKRQKBSKGyouKZR5QibMNOeSshgpvy8XKix2PpQ7l7V6wxKxl1UyAFAhLsvDYoFSwaJ6zo8tcz5JriXj9AQticlEccopWkPGW9SLEDnROZZiuMJi7XNTdMUJG5U4HwRXQR9ZL0KSWOisjHxWx543SiGoZ84lYcJ09lfQCtAd57J6aKtpmk6obpO/GZpLSGYVS1z2nc3i6MFMzWtSym2VEBEjOLQvg94jWXSHexCTYkjJKWTLigK5nUsaFntloRkaBtL9TkQDhUKhLDR0VkyhzBNa0IeymCkP116oarHzgTwrupNzWUNc2mIv44jLgPf3Vc6hvGflTNRqReKExRqlsNjJwqTTazNgj8M0TQis4LjA7lYdmuEWdtb4JU4E7xT00SBrMkSJhcoUMTIk4/SJPMJRDq0dIqazOWTTOiKiVZE2r+UdwVrLHUy4QlgZhoFRlpspF3W88uwkfvytUeh6dTFBnF+Rk4B8CP1nCjh1LA9RC6M91AEAGM2OeN7jzrkkYcmGaSBZTEDVqdhczPQmTuCV8y958mwpFAplIaGzYgplnrBOziUNi6UsPtyhpyzDVnX9LhVMWcGcWnnKJIQ0WbTaaASEcnFZeQ4XJi690QeKSxgVtaKTfxgUQs7rIic6+/GIS1deZEq2HEnLuSyFxRb1IkQfC5MxcPLENGACq9YFsWZjCBpTxPiIgkZ/EwCr4isR47XyJodzQ87PQ+fzeO9AErJc2rb/TAGaocPQgVRSg2ZomMhPYDw/7jhXxK2VOAnTg9ZYTQAjJ0S0By1xOZIb9hzXGxar42zqDL57/Nt44sxjeG3w5apjXQhoCO6Fk7PzeacKk5d5JBQK5WqFFvShUOYJEZU055KyGHE76g2+xsvqsDthscbMOZdRKYrzGWDUFjOVzmWlgHRakcxHXLJe59IdFgtYYoZneUhcqR+nwIpViwe5W3Kk5GkAlhso2C6fZqjQTR2SZL33XP80gCAaW0QsXemHuruIwbMmwjdGAQB5NT9rzuVI1hKXJky89uIE5DyDnDSFcIRHJMZjfEQGz1jXcGwii1eTLzqu8E1dH8Dy6Aon9FfiJAydE8CYLHhTRO8BFTfc1AaWYTGcHXKq2wLlBX1UDGUGnc9hKDuErJJBSAxXHfN8mSpM4alzT2BD40Zsa92xoPt+P0HceXKPUigUykJDnUsKZZ4wNOeSsohx35ctgZbLOJLKVh+1npmYLw4AmLYnvoEycTlTXmU9fS7Lt2HLWpGQMNiQGHIcx4gY9VSsFTmhamEhd+4h2Y+PlzwFfWRNhuizjpUpWK1CGpoEtHUJiLWaKKYEDPZa+yjUCIvNpDVMjFoCgeRCZtM68gUVot8EyzJITWs431eELJswGStf882BN5FRMk5vUuJgEfdVZEUMnFGwJL8La7kbMdhXRHbayuWUdRlJ2VVwSPO2IiGivCeyBABwNnUGgBVGvFBu43h+DKZp4sjkYZzPDCzIPt+PkM97mopLCoVykaCzYgplnrC0FQllEeMWcM2XWVyWu/u1QsnjUtzzb39ZWGyt0N655JO6r0upzyXJubQEYmeoG59Y+3O4b/mDuL3nTk+lXZGTqgpZvYqIEjnJGbNmaFZYrGT3/GQtQdbYIqCgF7B2UxC84cP+14swDNN2Li1haLgK+vzk26P4178ZQD6nO0IhMaHCYHQsW+PDPY804a6HGrH1ujCWLPdh3ZYAsvwYziTPISgEcU3zVs94iTAsZjikpzWsbO/Grh1LAQC9R7JoDjQDAKbtUGUAjttJzovkba5r3AAAODN9GgDw3sQB/KD3u8go6YprM1fSrn28NfTGrL0/Z6OoFT1hze8XSI5sXs2/L8+fQqFcfOismEKZJywNi6UsYtxFc5r9i8O5dP5dMyw25tk2UFYttlY7lblED7iFqNOKxBaXxGXjWQ4sw6LJ34SAEPC8R2DFqiG4WpnYYRgGIluqLGuJMNkJi9WYIsAA8UYBicIUGppELOmOIZtgMHDOasXiOJeufM7RQRmqYmKw3xIHPt6HqQkFJjQ0tXFgwMDn49C11I/NOyJobhcgs2kUsjrWNqx3KvCSfZN2KuPnrRzMpSv9WLkuCAA405u3Cv3AKkhEyKt5sAwLiZPs87LEZpOvCS2BVmSUDKYKUxjPj0EzNJzPnPdcm6HMIN4deccjmmcja4vLoBC0+omW9eOcK0+efQzP9T1zQfu4EnG326HuJYVCuRhQcUmhzJNSKxIqLimLD7fYKS+Mc6kpX4CpJQZZhnWqpQKVOZccyzmup9vFrCffstpYaj3D5SLWLS5FVqganusWgNZ2IhiGcVqRWGGxxZK4ZIuIxnjwPINDE+8BAB66bQtYk8WpYzkoqua0ILF6XhooFnUU8tZr/QNW7mSAD2BqQoXJ6og1V15XX9AKjc3ldPAs77iu5P4g7VT6TliiY8XqALqW+CCIDPpOF8CZgr2dAlmXcSJxHLIuw8/7IXACdFOHrMvOvpvsgkQZJY2CHT47WlYQ6MWB53EicQzn7PDZeiDO5dLoMgDAZGGi7veWo+gK8moe03Jy9o1roOoqxvPj8z7+Qri580F1uZVuN5pCoVAWCiouKZR5Qiap1LmkLEYWU2XN8jDYmZxGkncpcmLVcFciKn28z3mtnnzL8m1ZhnXGUVnop1xcloSswNVyLr0tOEgRIOL8FbUiinoRvMiAYQCNkdHYLGAg049EcQpN/mbsWLMKazdGUSyYOHE05Wktohs6UonSZ3p+0BInhRQHJc8g3MCA5SudQMnPAJyBQk4Hz3KOcHaHxSqKgcFTOvxBFstWB8DzjFVkSDExOWLtU9NVHJ08jHdH3gYAhMWw81kouuLkcgYEy/XMqTnkVSuvdCw3VtWlnCrM7j6enT6NglZAVs3Cz/udCrYXIi5JzqhhGk5+7Fw5OLEfz5z7GSbnUXX18TM/xU9P/dhTGKkeLjQUGLAWCQjUuaRQKBcDKi4plHnC0oI+M2PUH/JGWXjWNKzFusb1eHjVRy73UCrd/Rnc/pgUA1BZzIdAhJ3ElcRlrXDZmd7vfm7Ln+FyUet2SSVOclqYuCkX80RUBvkgOIZDWklB0RUwYCBKDHRGRkOziDPTpwAA1zRvAQDcencjAODo4TQUrbRPzdSQTJQE7OBwBiePZfHcj1NgwKKpjYNu6mAYxjN+AzoCEROybEJXObC2uHaHxY4OyWB0EeuvCYHjrM9mxRrr+o/02SLUUB0n8prmLbi561awDIezJ/OYHFccMU0+t7SScnJYVUOtKsLSyjSKWhEHxvbhmXNPVRTq6U/34Y2h1/HD3u/BNE1EpKjTqoWIS9M0rWq1cxBeBVfOaMEWwHOFVN1Nz1Gg5dW8I7rzWq7u900VpvCd49/E6eSpOR2vHHcf0tQFOLcUCoVSCzorplDmCRWXtQn87f+HpqVtiN19C9ihwcs9nPclPMvj2rbrEXaFmV4uKsJiZ/jTE7OL+tQK5a3mXLJzCIsl4tLtPpa/v9yZdLdAEVihqqNannPp4y2xxTAMIlLUKZ4SFIKQJBYqW0Rjs4CcLTSa7MI5bW1BtHWIyOVVnDlZEh+6qWN6ytXuJF1A75E8JE7C2g0RrFjvg2Zo4BgOETEKyS4mZJgGghHr+ufTpiPENZdzOTxQBGcK2Li11D5kuS0uh85q9vaqcw5d4R74eT/GBnQcPZjF/rdT4OF1LsvFpDs0lnx20/I0Xht8GYcnD2E8P+YUAiKUO3sRMQKJkxCVosgoGRS1Ig5NHMSLA8/j3dG3ne2Gs0MzVpR1C0p3caK5QBzPnOYVp4niFA5PvFdT7Pan+5yf1TlEF4znxwAAJxLHndcKWsERqr2JEzg+dWzGfRimAd3UEbQ/o/RlCs2lXJ1MFiZpkSgKACouKZT5Qwv6VEV44zUE//cXwBSLEA4eQPi3fx2wG7ZT3qfMISy2LdiO5kALlkaWV/09CVn1cfMLiyVC0v2e8vGU788dFityYlUxWx4WK7p6Y0alqOdnycdBY4poaBaQV3PgGM5x/jiGw/K1AZjQceRgCoZhPTu6oWHadi59fhY6Y03irt/VjC3b4uA4BqqhgmM43Lnkbjyw4kPgWA66oSNgry/kpk1HKOt2jujQSBZTowYiEQlLVpQKKDW3ivD5WUyNGDBNE4quOCGVIidA100c3mM5mXLRxOSQFalAFgVIPiNxook4IucIWC7eaG7UCaktuFqcVIP0zmzyW0L89PQpHJ48BAA4lTyJRHEKAPDm0Ot4ffDVmvtxC8q8Nj/nUraFL2npQtg3ugcHxvfjpYHnq76vL33O+Vmdw0S8YI8zUZxCWk4BAF7ofxZPn3sSAHBgfB/2je2ZcR9k4i9xPoicOO+QYAqlnKnCFJ46+wQOTRy83EOhLAKouKRQ5glxX6hz6SXwT38HAEj/w5egrV4D8Y3XILz84uUdFOWyUu5UzlQES+RE3LvsfqyMr6r6+6AQAMuwCIkh57VqYaq1IMLR7U5WOJVM7bDYmtViywr6SC5xSQQWAPh4P7o7I/BFVHT0WBN8v1ASdRzLoaFJQLyFxfS0jPf2pu1+kTqmk5a4XLMxCI1R4A+w2LKtwRHcpmmCYzn4eB+CghWOq5slcXloTw5Kwbr2r70wia/87QDefXsCnCng7oeawLKlz4VhGDS3iTBVHvmcjrffnMTxo5ZgFDkJB95JI5MwIIrWe3oPqvj+10bQu08DwzAw7QWl1mA7ACCrZJ19k5Bcwpr4WgAlAUVw5wcCcIo9EXG5f2wvDNNwQmX3jVriStZlaIZWM+/Y3aezoM4saGtBBGq+TFwSgTySG8Gp5EnP77JKBhOuIkDl5zecHcLRySNVj+cW3n3pc8ipOSSLSeTUHDRDg2qoMEzDE/ZajupaHPBxvhmvEYUyF0iI9YUUyaJcPdBZMYUyTxxRSavFOrDnByC8/CL0tnbIH/0E8r/3BwAA/9e+cplHRrmczKWgz2zs7LgJ9y57wFNJdi59LrkqRXwqnUrv/twFfkSuVlhsbXEZEaOe1zdtbMZt9zVC4UnF16Dze5ZhwTEctt8Yhi8IDPbJOH0i74TFGtBx7a0htC1lcM21YQRFv7e9iksYk3PsXinAH2DRf1LBd748ikxKQ9+5LAb6s8jndHR2hrFpeykkltDSJoI1eYwOKTh+dBr79yZgGCYmhnQ889MJcBCw46YoJInB1LCJ4+9l8eozSY+rHBEj8PE+ZNWsIzjLQ0ZXxldB4qQKoVfu7BFxuSy6HKvjaxD3NaAr3IUPLr0XPt6HkdwIFF1xigfVCtFzh9uWC9p6MEzD2Xe+LGfT7XKfz/R7fne2rDqupnvvmRf6n8O+sT2OA+vGPc7+dJ9HpBa0vHNtZaO2G6nYwlNgRUh2aPJ8woIN03COR6EApfDw2aIPKO8PqLikUOZJg68BAiug0dd4uYeyaJCe+RkY04T8sU8CPA/53gdgNLdAfP5ZsGOjl3t4lMtEva1I6sHP+9Hob/S4lfPJuWSZmcJiy51Lt7iUqjqXeoW4LAksd1isj/MhYDuVU3Zeor+snyfHcPAFgZs/GAMAnD9XhKarmE6oGI3sxVuZJ3Dbh0JobpUgchL4GkKZ/Mz7dNzywQZ0dgUwNarj8IEMDOhYvUXAyrUB3HRLa8UCAAA0t0lgTQH9ZwrQoUHRZSTGDfzwa2PQVBM33NyIxiYRK9YGIXIS/EEW6WkNRqF07gEhgJAQhmEayNkFbNwub3OgBWExgoAQgG7qHkFIejIyDAM/70dYjGCwr4jzp1Xc0LELD674EG7vuQs8yzsCPaeWHFLVqC4u3RPg+YgrtzgtL8rjPqZbRJumidN28aZ1jevt81OgG3pFbmlKTuFkohfvjrxTMeagEESymMTJ5Annd+7QXGWGUNeScyk6CwCyNrfQWEVX8MPe7+EdV44rheIUqZpngSzK1QUVlxTKPGkNtuGTa38eHaHOyz2URYP4nNWUXL77XvsFEcWHPwLGMCA++fhlHBnlclIu3hYiT5mdIay1nveVu5XuMc4UFkv6V5afU3lxFpJHCFjOJRFvEudDULBcwrG8teBSrZ+nbugIx1hE4zxyWR3nB/IoFHQY0UkU9aKTwyhxPo8Y5lxjZ+w/8YouQxBYXH9TI1hwmBpXYTIGtt8SwLrNIURDXnFLaGkXwYJDPmPAYFTojIaj78pIJTWs2RjElu0xAFZl2f/8X1dg2/WWiE6Nlq6tnw8gbOdK5pSs43qFxTB2tF2HXR032ttZY3A7dMS5vLPnbnx45Ufw+rMpfPXvz+NbXxrG+IhXFImc9RllXeJSqREiWrzAarGy6/1FregRkW5xrLvar4zmRpBVsmgNtjkLkpqh4o2h1/CTUz/0hLNmlQwOjO/DicQxZO2qtAWtAJZhsaZhnb2/0mJd3iMua+dxkt8JrOgUVZLnKK4zSgayLqMvdRamaTphuZT3N+QelHV5QVrmUK5sqLikUC6Aaqv971sKBQi734QRj0Pbca3zsvzQIwAA6fGfXq6R1QXbdw6Bv/trcKcvrNQ/pZJyMcksQJ6yJxR0LmGxTs5lmVvpEqh8mfAkgo1juKo5m0CpQA4Jhw0JpTBTjuUQEqwcUYmXHCdzxK6gWl4Zl+RKGqaO9i5rf+++lYDMZiAFrXBE0gpDKuu7Wc25JLl96zZG4PfzYEwG/hAQbTI9Yy6npd0SyKwpQGMtMafkrOt2ywcbILgEtI+XsGyVJRCTQ6VrazmX1rln1YwjRHiWx/rGDYja+ahEYLtdRdLKROIl9L5XxKvPlvpivvmSN7eLFFBy53bWcvE8OZfzCOMrL4Tjdi/dQsv9MwmJXRVb5YTOKrqKlDwNzdBQ1EvjGMoOOceYlqdhmAaKWhF+3o/l0RUVf3fcFWtnKtJDnEuB5Z3PfK7OLdmHoivoT/fh0VM/xptDrzvnmKEVaC86pmliuri4chsLnmeKupfvd6i4pFAoC4JwcD8YRYF6w40AV5rgajuuhd7eAeHttxZtaCx3shcNt+5C8C//F+J33ATu+Mwl/Slzo9zlW4giWDO1EqnnfeWC1D2myrBYSwwInODaxntMIiS2tmzHvcseQLPdWoRARJSP9zsFfkg4ZKAsLJaMTdEVtHdaIuDMyQyK3DQiUe/YRE4qy7l0O7qssx8A8PtEbNoeBgsOrd2ck5/ndlndBEMc/EEWHHgEghwiUQ6sKWDZKj86un0V/T97lvvBssBYH4PXn0/g3Kk8AnzAqfKaUUrikitzh4lz6a7eSsSlyIo4+K4lWj7y6Tb4/CwO78sgNV1y+4hYyqoZ57XygjmEglaAaIvy+YjL8jBWEgpomiZUQ3Wup+EqXERyJLvCPc7vVUNxxKBbiLor66bklDNGPx9AQAigI9jhOX6uTueSuOsCJzph23MNi3Wf+57Rd6CbOs5nBnAqeRJvDL6GPaPvzml/VxspeRp9qXOzb3gB9KXP4fEzj17048wF9wJLnuZdvu+h4pJCoSwI/LtWDo563Q3eX7As5Ac/BMY0F2dorGki9LufB5PPwQiGwBQKCP6v/3G5R3VVsZAFfZx9sJUiqh6q5VyWj6k8LJZnefh4n6cwT7lzScSByIkVwhIAtrRsxZaWrWjxt3j2A5R6Q5bGYu1bNVSEIjwiUQ4GY6BtjYxV67zbSpzkEcPVwoVJgRuO4XDLBxuwel0EK9b5PK0pqsEwDFrsvMuGJh5dS/3gGQEfuLvBvi6lY4mcBFFi0bXUB7Pow3RSw9AZAyzDOmGxWTXrOLzl7rDjXLqK+pDxyXkWZ3rzCIY4rN8SwrU3RWEYwCvPlJxMInTdQqtaqw9SIdXP++EX/JB12bk+9UIEIblnSC4pEcNEKJOquKquIq2kERJDEDkRAis650f2pRpa1UiYlDztEpfWfkloLKmY7A6LndG5tK+HyIpOH9Z6w2J1Q3fEM4GMyzANvDOy2xnvXDFNE32pcxWinTBVmMKYHQY8nh/HaG6k7n2/O/KO067mUrBn9B28NviK0y7mYkCu8WRh4qIdYy6YpulZpCmvoEx5/0HFJYVCWRAER1xeX/E7+cGHAQDSk49d0jHVg/DObohvvwVt7TpMHTsDvbsH0ovPg+3vu9xDu2ooD4NdiJxLbxhr/WGxTs5lmTh0O5Hl+2MYBg+u+DDu6Lmr5jZESNQSzg2+Rmxu3gKGYRAQAh63sFpBH6AkWHfcGMP9H2vEljsAXihdO5Gz8j/5GteiXGgyDINQmMeWHTHwYilsVGSrO5eAnXdp8og3Cli+2o9PfWYJlq0K2MdyO5fWPm75YAPWrW0EzzOQUyJ03SyFxSpZT1isG3INpoqTeOLMoziXOuv0Du09WIRpAhu3hcFxDHbeGkcgxOHA22nsfiWJn/1oHNkk4xyDoBiVOZckJNbH+x1Bezp5ChP5+ifqRJCR8GbiXDpOKyeBYRjnnkja7RnikiXKSYGoglZwhK2qK1UrsKaUlBNm6LfDp7vC3fj4mk9hTdwSmfUW9CFOrsAJzoJCsY5el4qu4MenfoC3R96qCKMN2gsj5DyyaraqWM8oaQxlBqvufzg7hNcGX8GRGiLwZ2cfx7N9TyOrZvHSwPN4aeCFuqrVyrqME4ljODp5eNZtCSPZ4QsK7SXh6tPzENn1Qj4zcqzLTUEreD4PWjGWQsUlhUK5cAwDwrvvwJQkaJu3VPxau/Y66G3tEHa/CWZicay2Enz/9q8AgPxv/BfA70fxox8HAEiPLe4c0SuJhawWS3C7lXMp6MOxla1IAG8vzmr78/N+T1hsufNJhEW95xZ19b4sL+hT7uoFQxw6lglIFhPgWd5x6UgoKM9Wth8Bqudfurch4Wvu8ypn121xbN4SR9cyPxiGQThYcjk9hY7ssaxYE8Qv/OIaNMT9kNQ4kpMqAkIQDMMgo6Sh2cU+aoXF9qXOIVlM4nxmAIquIJc28dZLlgt0zbWWAxoIcrj3EcsdfvbRSex5I4Wnvz+NbEbzhsVWcS4Ltjvm43zOMd8eeQuvnK+/Fy/ZR4NdmMcRl44zKFh5s/a5JouWwxr3xa3rZgtxt4gpdxBFTgTP8pZzabu57vBpH+9zFijqLehDigaJrDssdnbnciI/jqJWxER+vMIN3tKy1RHZpL9ptkz0jGSH8eSZx/HiwPN4e/itCvFJQqHTs4i6t4ffhKIrdo7q7OMmCw2KrszY/5NQ1Ip4YeA57B5+EwAwkZ+Yc/VTsn1KuXjOJVlAcN/r9aLqquMCV9+3MueCPOTzI847zbmkUHFJoVAuGO5kL9jUNNSt2wGpSnEQloVy/4NgDAPS009e+gHWgMmkIT37FIxQGPKHrMJDTgGiZ352OYd2VXFxxOWF5Vyy5UV7XIV66inUVS5Aycp93eLSDo3lWb4i57GaEztdTEI1VMR9DYjYk3ki6DxhsVVEZOXP1vbExZvJuYw3CrhuZxN4jlS7LW1LjsswjOccfLwPd7U8jLbCZkyMKWAZFkEhiIJWcCbGtZxLQkErIJUpYvfzWWTTOrbtjDjFjQBg49YQtu+KoGupD+uuCUHJcXj39ZQnh1DRZbxw9gW82P+8a795e4x+z2dV0Ap1h3QSIRj3WU4kaX+iOq6sAJZhHRFFxCURo+R6u0NYyx3ERl8jwmIEiq4gISfsa1S+CMFX7Mf9M6mcq+oqzqXOOr8TuFJYbD0ibapotcyxPj9LXG5p2YqNTZuwNLIc17Zdj9UNa7E0sgyAVyRO5Cfw4sDzTi7qyWQvDk+859k/GYO7jQzBLXSGs8POzzMJmLH8GKYKUx7xXt4yphp5LedUwC1oBTzT9zO8PfLmrO8jFLWi41Zn5ItX2MgRl0rl9ZqNI5OH8Gzf0xjMnK/4nazL+MmpH+LtkbfmtE+yuEG+03JqDqeSJz2OejkpeRqPnvpxTTebcmVDxSWFQrlgSEisVp5v6UJ+4EMAAOmJRy/FkOpC/NkTYIpFKA88BPjtPKn1G2A0NYM/uB/I0dyRheBiFPRhZwhjrWcs5XmapG1HeaGeWhB3cb75pMS5DJQJBmsflWNIFKcAWIImIkYAAD7iXDK1CvpUv0a8KywTgKfqazXcDqXgEqIkvLOaOG1vD4EFh4lRS4yE7eq5JFyQCNN3Xp/G1/9pEJkp7znn1CxGhwvQFQ5brovgwY+3eK41wzB48OOt+JXf6cbHfrENXV0h5LI6pqdKDpWiKziXPIfBzHkn7JXk9fl5H1oCrQBKn9noDI6OG+L2Nftb7HOywl7dfSRJxV8AOD04ClUxHOeSY7mK+0R2xmWJ3p7IUqfw05idY1guwKtddyI8jkwexk9O/hAD6X68N3EArw++iv50HwBSLbZ+53LS7scq67Jzz7QHO7GtdQc4lkNHqBM3tO9EzD4/Eq6p6ireGHoVhmlgR9t1uGvJPdb55L3XmYyhmhipJX7dubluNEPDi/3P4aWB5z1taWYSOs6x7HEUtSKyShamaSJf4zjVcAvYche2oBWcZ/hCKWokT1etmadaCzKGoexQ5e8KU1B0BQPpfmdhJKOkcWZ65grqxLls9DcBAPrTfdg9/CZeHnixZj7zUHYIaSXtVMyuF9LK6Goiq2bx+uCrFzVP91JDxSWFQrlghHesYg7V8i0J6g27YDQ1QXjjNTCJhfkje6H4fvQDAEDxIx8vvcgwUHfeCEbTIOx9f1c+XCjc+muh2ve4BdWcwmJdbUU8r9doMVJ7P9Z2buEF1N9mhYQS+oVKcVltDMSlCPB+571ilbDYWjmX3m2s10vOZe2wWMAbNut2KMlnUK2VSUubtd34qDUR9jnVYK0JOMewUBQDLz45hb7TBXzzH8aQSZQmjVkli1RSAwce6zYHZ7xvWJbBho2WsBkdLoVtppUUTFj7JBNk0vLDx/mxOr4G9y9/CLd132GN1VWldSaIyxiRIohKUWSUDPJq3tVHUgDHcjBMA6PDBTzxs7M4fkD2tKcRWAFTkwpU1Zp8E1ex0d+In1/3C1jTsNb5nFP2pLPcuay2KCDbY9g/thcAcHr6lCMO3e8TOREsw1aIt7yaR0qe9kzgp1zvJ6GYUpVjk0UPIqwOjO9HRsmgO9yD9Y0bEPfFwTIskmVtNMi5K7pSEdZbK4c0X8O5HM+PQTM0FLQCxl0iti5xaV8L1VBdbnTtMOOKMblCaN0uuGEa+GHv9/DkmcdnDFueCUVXcHTyCIpaEYpRuiZzzbsk249VKYpEFn5UQ3U+owPj+/Hm0BszFlEizmWT3wpVJ4IyUZzC8anqldfJPaJWyYuuRrKYwJNnHsd/HP8Wfnb2iVmLcOXVPHoTJ+rqwXp48pATKnx44j2M25WdCaZp4tDEQUwVLs68ZSDdj3Ops+hLL57qvxcKFZcUCuWCcYr5XFtbXILjIN/7IBhdh/js05doZLVhx0YhvPEq9NY2qDd9wPM7ZZfV2F3Y/cblGNpVhzssll2gPzuesFi2/n0Sx6jc7eRqvF57P9XFZb3itCXQirgvjp7wkorfVRsDccH8fAAxKW7/bAm2avmU1uvuPNJK0Tkf59ItLiXe5xQoKqfZFpfEuRSc/EBrAs4zPI6/l4UiGwhFOMhFA/0nvBPGVFIDawpo765ezdbN2nXWNRkblpHLasimNU9Rlb70OWiG5ggZiZfAMiwa/Y1oCbSCYZi6q5DKetEKBWZFx/2cKIw7E1nBzrkEgGOnx2BAx/R5CYbr9MaHdLz10jSOHrBEDBE2HMM7Qpo4o4A1we0/rkNRrJ3kczqSowbkojc/TjFkj5sVESNOtV4CcTwlToKsy46Q1AwNj5/5KR47/VN8v/c/kFHSTogoIW2He4pVFhSIuMwoKZimiXOpM2AZFjs7rO9TlmERlWKQdRl5NY+R7LBdMbc0XiJes0oGU4Up5/NqC7ZhaXQZ1jasB1A7LNb9GbrDaKuF3Jbjvm4lN3pm8SNrpevnFpeyLiMtpzBZmMSp5Enn9fnmI55LncW+sT04M33aI1Azav3ht4ZpOG7utDxdkU/qzhMl7jJZ1JpRXNrnFJWizncFceDfmzhQNW81Yy+Y1Cu2D08eclzXRHEKR6eOVGyjGRqGs0MwTRPHpo7gnZHdeLZv5rlGSp7GgbF92D++D1OFKRwY349DEwc824zlR3Fw/AAOju+ra6yAJYZnEsBpOYUnzjyGifyEs8h3NbVwoeKSQqFcEMzYGLj+Pmhr1sKMN8y4rfzg4gmNlX76IzCGAfnhj3r6cgKAuvMmAIDwVv35NpTauEMAFyIkFqgtqGYjJsXAMIynoI57XPWKS7Jdeb4kW6czK3IiHlzxYaxrXF/xu/JiN258vA/d4R7s7LgRG5o2WWOpIhyt/VQv6EPG7hZDM+EOhXWHYkqchLuWfNARD26CIQ7+AIvJcRWGYUKy30eECs/yOPCONTG+7yOW4yEnAmAZFiExBF03kU5pCPhEhCOzf76tLUGEoxwyaR2vPJ3Amy8loekl4aXoCgYz513tV0riSOAENPgaUdAKyChp5NU8jk8dq1nYpKgVIdkVYVsCLcjndLy175yT7ylwovM59A/Z7VKKPoyct35vmiZOHbLGMToswzDMqrmo7aEO3Nh5E8JiGLnRIB775jRe+tkUzvTm8P/98Vl88x/H8NrzCY/LqOgKzmcGPP/O5Io4eTSLdKr0eRfyOjhIME3TqSKbVTLO9VF0BUPZIY9rCZQWOar1Rg27nMtEMQFZl9Hkb4aPLy0OkNDgI5OH8Xz/szg8+Z4T5mmNwRIzrw6+gmf7nnKES9zXgA903Yr2UDuA2hNxd2ize3JfT2GeomufxLlzO18j2WG8M/K2K2Q0g28f+jZePf+yPSavO/rUuSfx1Nkn8O7o285riquw0Fh+rO7iOUQcZ5S0R5CVF0+aibya81yT0bxXMLrdVuLkETE8NoOrT5xLP+93FrzWNq7H2oZ10AwNxxNHK96TsRcRtDqcS1mXcT49AJETcd/yB8AyLA5PvOcJewaA41NH8UL/cxjMnnfOZaowiWNTlccnkO+jtJxC2hbX5dVuyb1QbwXgsdwonjjzGA5NHKy5TX+mH8liAgOZPlc49tUjLutPVKFQKJQqCLX6W1ZBvfFmGPE4xFdfBpNOwYxEZ33PxUKyQ2Llj3684nf62nUw4nEI+/cChYKTj0mZH27ncqHCYlmGdapTlvelnIn2UAc+tfbTFSKy1KKkvn2VwmLLxOUCrNl6HcdS7h5ghXMyDINV8dUVYwFqV46tlYsJzC4uRU9YrNexagu2V30PwzBobhMxcLaIyXEFAl+qbNp7JIvDx0YRTAUQjfNYuymESIyHPrYZ9/R04GjyPQyOJmGaQGvzzCGxBImT0NYhIZPKwzABRTFRLOgIhy3Rk5bTSCspxyUrD+VtCbRgqjCJicIEpotJHJk8jKAQREugFcO5ISyLLAfDMFB0BYZpwGfnLLYEWnHsYAbTAydhyBzQ7XUuR0etCTALHqdP5DA+KiM9rSE1aQI8oComklMqGgOWwOLK7ssVsVVYEVuFpw6NYxwpHDmQQWJShWkCoiCiWDCRy+oIhXmwDAtFV9DvCq+TdRmHDyXQezSP3qN5NLcK8O0ZxYnDWUy0pLH5Th2yLZbzTrEjH4paEYnCFAp83rlexEUkIbXl8CyPgBBATs1h0Ba4naFOzzZkUedUsheAJWjcziUJXy1oeWiGhml7Yk8+r1I/VK9YJBVkSfGhcupxLt3FkIhzqRkaDNNAWk7h5fMvQjM0dIQ60B3uwfn0AHRTR3+mD72JE46AbfA1IlG08hfdhZ2AUpjtaG4Ez/U9g7AYxodWPlJxPU3ThGEazqIQETzlAufg+AEcnzqG23ruREugBTNBQlFFToSiKxjLjWJ5dEXpnItJZxxj+VGYpukIn8n8BHRDr5qTnlEyVpsjIYzmQAtkXcbK2CqYpokTieM4mejFxqbNzmeoG7rzOVdrF1ROX+ocdFPHishKNPgasbZhHY5NHcX59IBncY6IzfJCR8enjmJ94wYAwKnkSbw3cQB3LfkgolLMuedlXXYWUsrzWImjm1NzUHSl6sKKG+Ly9qf7sKVlW9VtyKKAu8jZXPNnFzNz+iuoKAq+9KUv4cSJExdrPBQK5QpDeNfOt5wpJNbZWIB8z/1gVPWyhsZyvScgHDoIbfUaaJuuqdyAZaHecCMYRYFwcP+lH+BVhnvitBA9LglkAl9vER5CNXeS7Ku8DUgtSEEhsayNx1zHUg23+CufyPiFyoWOWoKSrfGzW8CQXpkzwXvCYmcWom6Wr7aEwCvPJCBxEkyY2PPuBE4ey0OVGcQaedxxfyNY1hKinCFBnQ7Cx/uRSlqOUUtLsK5jsQyLVWvCWLLCj1gDD87kkc1YorzBrupa1GQnJ7FcJAftXpwFteCZcB6dOow3Bl/DsF0AhYQ4koq9QT6M6XEORW4ab701hmJBh8AK4FkOhmFibCIHBgBjcnjt+QQe/944XnkmAc4U0NRqXcvR4VIoK18m/MdHZOi6ieEBu0JoWsfJozn4Ayy27rBcwPS0Zp+Dda1GXCGMiqFgMmFN5HkemBhTcexgFqYJ5FMc3nxpGl/5xzN49bmEM+HvDvcAABLFhONYkdeAmRcjomLUERUA0F4mLuN2SDdZMMmpubIKt8TRss6JiDxSgIgUwCp3l546+wR+cvKHME0TXeHu0vFsp7RWjqYb9z7duYyKruDVwZedMZHc3KFsqdLp3tF3MVmYsM+5tODywaX34f7lDznhvORcSR5tRslg39ieirG80P8snjz7mCNMi464tK5HSAw528q6jGHXWGpBzmlpdDkAeHIIi1oRsi4jKkXR5G+GoisYL4w7n5Nu6pgojFfsUzM05NQcgkIQHMthZ8eNeGTVx+Dn/QgIAayMrYJqqDiZKOmGrJpxhWLPLi7PTJ8GYC20AECD324BVOYUk2dI1otOXrTIicipOed3x6aOIK/mcWDc+rvuLgxFigsV9aInGsDt6NbjXibs6tApOVXTWSZCv6DmndZGbufyraE3nJY4VyJzEpeiKOLLX/4y0umLV2KZQqFcWczFuQQA5aEPAwB8P/7BxRrSrPh++D0AQPFjn/RWm3Gh7rgOAMDv23vJxnXV4rrGCxUW697XXFqRzLavesNiSc/BgBDyvF5vQZ+ZKBd/bvxcpbh0b+8Wt+5r7Sno47pes7mWgDcUttypnYldt8URifE4djCL4XMapsZVnD6VgSgx+NQvdeF3/scybN5hhVK2ODmaMgK8H9NJa9LZ1lqfuASAUMCHzdvD6OoMgTUFZNOWGCAtQ4p6ySVwO5eTYwqUnHVNZL3oTPIUXXEmpWkljayaxXsTB8AyLLY0bwUAjA0rEPKWgEkZ4zhxOAvBbkWSzehQdAUNzQICPgGGboUL77wthq07GnCNfe7jQ4ojOtyLA2d68/iX/zOAl5+awuiwt7DNxm1hdC3xgzN5pMrEpWmaaLcdZUWXkUgWwAD469/8LL7wi5/BJ3+lHb/3heXo6ggjl9UxNJrB/t0px91r8jdD4iRMy0lMFibg431ocwkmIvSqsb5xIxiGgazLkDgJjXb7FQKpKEvIKtmyME9rDCRclEzUyedFQmzduYtpOeWZ9K+IrXTyP2NS3BEYT519Em8MvVZz7LWco8nCBFJyyrm+43krv3YsPwqRE7GucT10U3fG0BNeCgBYFl2O5kAzGv2N8NvjLoUdlz7P41PHKsTyeH4cKTnlCEAiQMj745I3BaW8lU01SGuWFrvwjtsxJgIqIkadljnlRX+q9cck+yTXm2VYTwGwDU3W/XBs6qgjzt2VdGvlXE4VpjCRn4Cqq5gsTCAgBNAcsMZNFhjyah6maTruNnmGirrsnFuHvbiRKE5huph0RP1Auh+J4pRT4Asohb+6Q8UBOPt3X6dyksUEjk8dQ07NeaoCk7zf8l6r5LoVtILzfUPyrgtaAaenT2EsV1+BscXInP8Kbt68GUeP1o5fplAo7yPyefCHD8FoboGxbHldb1FuuR16SyuEV14COzK3MuQLgmFAsoWt/JHKkFiCtuNaALBCYykXhDtUdCHFpeNcLoC45OYYFru+cSPuXnoPOoIdntcXJCzWI/5c+Y6cWNUZnUv7kfKfZwvxsravXtBnNkSJxb2PWBPCt17I4HyfNYlavzmE1lavSG52qssqkDgfEhPWRKyjo35xSQRILOoHZ4qOc9loOx2yVkRRK4JjOOca5HM6/vVvBvDEt6wKqbIuOzmAmqE6k9+8lsNxe4K8vnGDI5L6Tuch6REsX+OHymcxNqyAZwRwDI90UoXOKIjGeaxZH4E/wOLnPteBD36oGdfubEIgyCEa45HN6piarMy5PHXMcmZ2vzoNTTXR3i2BRExvuS6Ctk4JrMkjndQgsIJH9PVElgIAcsUi0rkCQkEfOhtasHZ5K9ZuDCEQ5PCxj63CdTdHUYgMIJsuhSoGhSAa/Y0wTAOGaaAt2O5Z1JjJve4Md2Fn+432GJZUuOIhIeRZ0CAFc4hwy6lWr0nimJFQU/LZsgwLH+9DQStgqjBliRDbUVvbsB6PrPoolkSWOgsKYTGMoBCEZmiYLEzg7PQZp+9oOXKNtifkurQEWiFxEqYKkxjODkE3dHRFurDSdtSsayOiOdCMh1d9BDd23ux63Ro/ES3FsvBst3CTddk5/5Gc5ZiXFwLyCwFsa92BJfbnnK+jGi5xLiNSzAmNJRBhHJNiTgEo4sSSa3lq+mSFGEw74jJW9ZhhMYIlkaWQddlx/dOuHqDugknD2SH0pc5B1mU81/c0Xhx4zunx2uBapCD3Sl7L42SyF4+feRTD2SHn85O1ohO+SirYThWnMJDpB1Cq1H1k8nCFqCc4gs92dAnllY4B4N2Rd/DEmcewZ/QdvDH0GnJqzrnvTyZ78XzfM/hB73fx2JmfwDANaIbm3Nd5Le+plqwbunPdydivROb8V/D3fu/38N3vfhff/va3cf78eeTzeRQKBc9/FArl/YFwYB8YTbNcy3pz6Xge8sc+CcYwINkO4qVEeOsNcEODUG68GUZXd83t1M1bYHIc+H2VIUuUucFcJOeSCK16Q1lnYj4FfdqC7RXCdiHOz51D6m754KvhGNVuRVK67lyN1i18Pc6lLSaIIzcX1m4KonOJD8kxYLBPBscB7V2+iuvc0m5NssdHFOQSVkhrNMYjHq0/35lM4BtifnCmgGzamqDHfQ3QVBNFvQjFsCadqmJA00wc3peBIpvITrGYTmj2ZNJ2iQzFyZEjLToAy5Ei9J0uQDSCaO2Q0NAsQFFMTI4YgMlifFRxxOXNtzfjd7+wHJ09PvtaWue/dJV1fqeO2y1aXNdl4Jw1n9I1K0RvxeoAbr+/Edd/IIaObgnNbSJ4CEhNqxA4wSP8O0IdEDkRk8kcDEZHQ7Syou+65jVY3tMAJTSGNMaRzFriIygEPZP59mCHpyjPTM4lAKyMr8LDqz6Ca9uqp0o0B5rBMZwzyQcsUcOzPLJqpmr7CA4SzvTmoKoGAnwQhmng2b6n8GzfU07PxpZAC0K2MCK5wI3+JkeMEHpdIZpuajmXxNGVOKs3qmEaeM+uKNod6UaDv9E5F+KqhcWI51khbp5qizNyLCIO3QVz3EJxODts5T6WCV+JFbGxaROub99pv8crPg3TwLGpo/jpqR854ZXELQuLYesZMFQn7JaE+kalmBNyS1pydIQ6sCy6HHk177S4IaRd+6zFRrvw2LGpIzBMwxkHUBKXiq7glfMv4bXBV/Dm0GtQ7YWdc9NnAJRC24FS3m1ezTkLC4liwhGKec1qC+R2zqcKk06f1xs7P+C8VquITtEJX54GUAqvnpYrFybG7MJIPMs7iwTd4R7wLI9EcQojuREYpoG8mkeimPCcv6Irnvu9oBcwYV/3lsD7SFx+/OMfx8DAAP78z/8cd999N7Zv345t27Z5/qNQKO8PSv0t6wuJJRQ/9WkAgO+73wYucUNkImjlj31y5g2DQWjrNoAbGQY7XNlwmlI/nlYki9S5dAr61CkuS+9jZ/z3fHAX9HG3CanWE9PafvacS7cA94Td1iEuiXsqzCHfksAwDD5wVxycab23rVMCLzAV4tLduuTsEWuy1bnEN6djEhHcEPODBY9sRoPIiRg4buCZn07gdN8UTNOEVhDwD3/Rj3/5q37seWMaAMCbEkYGiyjqJadCMzSo9sQvp+ackE1GCUBVDRiGif4zBQTYMGINgnMOx/YX8Nh3JjA0IAOCioYmETzLg+NKzwEJNe5a4oPfz2JsWEF6WnMWFhTZwMigN9Sxo0fCTXc04N5HmsEwDASBRSzmh1w0YSic44KFxBDCYgQSJyE1bffPjFfpp8py2Nq6HZKPw4TvOJIZ0ku1XFy2O31Kres8u3sdFiM1F2pu6rwFD6x4yOPMSLwPQSFY0ZoEAKYTKr7zT+P41peG8e7rKQTsvGPN0KAZGvpSVgEj0hYGAFbH1+DBFR9Cd7jHCV1v8jeDZ3mcTZ2BrMvoS53Dj05+H2k5Bd3Qa7YdIc6lyAloDbYBsBwskRPRE7VyUcmCQ7W2PAAgsbZzaYtLco49EasVUa2enJOFCU+Oovt6AVaYMMdwFQWLDo7vx97Rd5FRMjg7fcZpQyJyIiROgugaT1/qHM6lzlpFsYLtCNv9WMlY/XwA17ZdD4mTcDLZi5Q8DVVXkVHSSNthpu6FgnIafI3oCnchp+ZwLnXGqcrKMixM04SqqzgzfdoRWYOZUv7oudRZAHDaLwGWiBM5EQWt4LigpNgOUBKEEudz7uPh7BCSxSRiUgxN/ib4eT+yarZm/9NiWQGl7nAPWIatmnNZ1KzWRCtcDnaTvxmbmq9BZ6gTt/Xcgc3NVm2HycLEjL1Ji1rRcS6bZynQtJiZc7XYv/zLv1ywan8UCuXKppRvWUcxHxf66jVQd1wHYe+7EF5/FeoHbr0Io6tCLgfpicdg+nxOW5SZ0LbtgHDkEPh9e6F0dM66PaU6F6+gD2/vfyHEpTWu8oIqs7/vIohLl8voDiGs6Vy6XckaQrPWz7P1uATscFyGQ4CvP0TVzeoNQbS3BXE6B3Qt9dlj8E4/JIlFNM4jmVCRO2BNMtu7JU++5+zjtCuKShIiIR+G8gYkxo+Tx/LgDAkjwzlEGoPY90IW8VTJLYg18EgkRAyel5HdnnUmuVaelDVhzalZFLQCTFnAl/5yCCvWBnDLBxtQLBhYuqIJHMeguVXCceRw6O0C8j6guVvEzu1hmMF0hbtOHGORF7BibQBHDmTRf7YAboN1/wz2F2EawPI1AQycLUBTTXT0VH7+TQ0BjKSBTBIQbHHbbodqi5zktB9paqguepZFliPsC2CSn0Qia6I15IfACU4ocUgMISSGYZqmU52Z0QUMnC1A100sW1V9vzPh433w2WKSIHGSs4jhbjNiGCbefX0ay8ctN2RksIjOtZXHDIkhj7BjGMYJ5+wIdqA/dQ472q7DmelTOJU8ieHsEEayw8ireZzPnMeS6FIAlgNXPvnPljmXgPVM3LX0g/ALfuSRxfLYSpxM9qIj1FX1nMm96eQF2qHXDb5GhMQQksWkk6fqDtU0TMMRz27cEQ0BIYCMkrGL62QR4IM4mey1+4pGkSwmMZDuh2ZojmAh78+pObw98hYA4OauW+DjK6MKyOe1rnE9Do4fwEC6H5OFSQxlB50FjZmcSwDY0LQZg5lB7B/bh6JehMAKCIsRq6quoeBk0nKTm/zNmCxMOJ8DEfzxslzdoBBEsph0Chyl5FK4aqndkAiBExCVok6u5bbWHQCsglyFXAEpOWWJXJgeAU+cZfK+mBR3ruVEfsLJ/yTHE1kRK2Or0GsXsmr0NaI91AE0bQZQSpeYLEx4hHI5eTWHycIkBFaYcbvFzpzF5SOPPHIxxkGhUK40DAP83j0w/f7qFVdnofDLn4Ow9134v/KlSyYufT/5IdhsBsWPfBxmODLr9uqOa+H/5r9D2LcHSh1ilFIdbyuShXMuV8fXYKIwXtMtmAvzdUHLz2dB8j89PTx58CwPzdA87lHt7b1tTErbuENnXdVo6xBvPMvj7qX3wsdLs25bDYZh8MnP9CC7J+y4e9VCmTduC+PNF5OQUzwaVvAIBDjwc3EubTdGYEU0xgIYGgXUrICRwSJ4U0I6VUD/6QIyiQi2rwnANEycO1XArtvjOLQng94kg5GJFGJx65iaoTo5csThGD4pQC4aONubx9qNljjq6YpgmhMRiZmQJAasySMWFbHupihCfhMZpVJME5c1KATR0l4EDgCppOpsN3DWEhir1wew/poQUkkV0VjllK25OQD0AVPDBnqus9pjrGlYC8CaXGfs0ODmplDFewHrs2kNteEsppEvqAgKTQAs5/H69p2OI8UwDCROwmQiix/9cBKhactd+sQvtaO9S8LQQBEbtswsMMoJuoph+TifEyrsDlUcHixCKTJYsiyE8+eKmBxTsdJ+DsJiGDzLI1lMotlf2+XpiSxxHEIScljQCk4xl6nipBNGG5WiFeKSuIKiLbpv7roFjb5GxPwxZ5uQEMJHV3+i5hjI503CrN0tcVoDbcgqpzGWG0VPZIlzvJZAK8bzY+hLV4pLd7XjgBBERslg/9g+nEgcQ0yKQdEVrIithI/3IVlM4njimL3PFs/7ScuUjlCHU/yGZ3mnHQ1QCvXtDvfg4PgBnJ4+5VyjglawetPabmdySsWBd9IY7Ctg521xrFpnPSOtgVbnfADg+s6dOGtXgR3KDCIlp9AcaMEdPXehN3kCS8JL8OjpnzjjiYheZzTAB5BE0lkISlTJoyXubqO/CSk5hRWxlU4l4YgYcUJY/bwfLMMio2QQ98VtoW+de0YpObNLI8uQLCbxfP8zuLX7dnSEOqEZGnRTR4gPodHfiAZfI9JKyqloS2j0W8/VZH7C+V4OiaGKtikjuRFohob2YPsVbeTN+6/86dOn8eijj+LLX/4yJiYsC7e/vx/Z7Oy9hCgUypUPd+I42HQK6tbtgFi/u0CQH/ww9NY2iM89A/bc2YswwjJME/6v/l8AQOFXfq2ut2jb7aI+NO/ygrhYOZerG9Z4imZcCKX8zQsLi12ICYHbiWQZxpmMBGqIS5Zhq+aMukWnt12JyxmtU7w1B5oRFmdfkKlFS4sfS5eHnYWGatf5zgca8elf78A1O6LYstWajNUTtktwckM5EY22U5dPChgbUsCZIjIpDVOTKnhTwm33NuBTv9qBT/1qO3bsimLF2gB4U3JaoACAaoddEjTVxMBxa/zFgoGTRy3B2dohISSEwTAMunqC4DkOt9xtuZnEqSo/X+LSBYUgAkEOHAdkUjo4hoNpmjjTa+XQ9Sz3Y8euKO64v6nqvbVqdRQcB5w+ooIthnDf8gecUECRk5BJaWAYoLmx9gJMZ8QK9ZSLhsdNXNOw1tPHVIAP+3anoOR5dC6xJu7PPzGJf/+HQfzw66NOwaZ68TqXPsfNdec+9p8qgDdF3HpPI3x+FpPjCqJ28ZhV8TVOi4/OcHXHsBzSyqeoFZwKrInClCNo/XygogcqyWckgmxZdLnTiqZeyOet2BVDiUvJMAza7FDbYbsVBnEuiSAmRWTKrxeBiL+zKUuskdDNtQ3r0eizniMiqlsDbfb7rXMhIaQkj5Hgftb99vdO3NeAkBiqEN9h0br3x0Zk/OvfDOC15xI4e7KAJ74/DlUt9fi8pnkLGIbBusb1WB5d4VyTsXwpT1HkRGxq2oyIFHUq0EalWMW9HyjLo61WdZac48bGTdjQtNGTA+w9v4DjvJJFCnJv5F33xabma7CtdQc0Q3NamZR6v1rHumPJXbh/+YMV95CP9yEshpFW0pi0+2mSz8J9jc/bRYeu5JBYYB7iMpfL4fOf/zweeOAB/PEf/zH+/u//HuPj1k37N3/zN/jnf/7nBR8khUJZfMw339JBFFH87K+AMU0EvvxPCziy6ghvvwX++FGoW7ZC27ajrvfoK1bCiETBHzoIqLP346JUxy3AFlJcLiTEgZx7zqW7aM6Fu5ZAqYcm2ScRibWcS6AkXmr2tqxRRbaeViQLhftY1aryMgyDlWuDeOTTbehssyZ/9YTtEsgET2JFtDRbk8+TBxTougnOlKAoJqbGFQiMiPYuCaLIYs2GEFiWQTjKgzNFyMXSZFjWi464NAwTxw9nwRQDIEb8iSNEXIqISNZ4t25vxH/9s2Xo7LIm62TSWy4uiasSFEJgWRbhKA9NM5HPAPveSuP8uSIamgW0dszsFsciPixbGQA0Hq8+53Vv9AKPYsFAKMzBL9beT1fMEpBy0Zgx9PnMYQ3plI4lS8L45c93YekqPxITqtNns+/U3MRlwCVoJF5yFjqKegH9Zwp486UEElMaomE/lq3yo6lVhKaaiGpduHfZA9jQuBGr4qvx8KqPYHl0RV3HJKHlRa3UciatpJ3CND7O50z0/WXPW3lv1LlAxIaiy06uKCmS1BnqBsMwGEj3wTANx7lsD7Z7nhl3Hqw7LJaITkVXwDIsWgKtWBFbiUZ/oxPeTHCH9QJucek915DLVXYLz65Qqd/p6vga64diEM89NoGv/9MgCjkD23dGsGJtAOlpDXvfTDnbt4c68PE1n3JEXmkM1jblEShEYLmL+RAC/OzRKuSzjvni2N56rSdXOFImntc0rENXuNsR9MS5LNrOrCNUmzYhKkUxVZhESp52tTYSnX1FpVjV8ZAc42QxAZ7lPW6704/VXshwL+pcicz5r/xf/dVf4cCBA/j617+O/fv3e2KUb7nlFrz++usLOkAKhbI4EXa/AQBQb9g5730UPvPLMEJh+L7zTbBDszeBvhD8//z31jF/6XP1V7ZlWWjbtoMpFMAfpy2Y5osnLHYBcy4Xko5gJ5oDLRWtRWbjYrRZ8eZQcs6/3RU7yyHika+Vc8lWF5pz6Vt5obgnd9VaqrhZHluJzlAngnPI82zyN0NgBTQFmnHD5hUIGDFMn4oBAHjDOrauA22tIfC897MKhTnwhg+KS1ySiZ5pWnl/facLCPIhXH+ztU9NNcGwVjEiMlmVeAHBEFex0FAuplv8LdjZcSM2NV8DnuERiVq/P3dCwTOPToBlgY/8pzZPEaBqiJyIFesCkAQB+3enkJouLYIl7Z738UZhRmHU3tAEzhAhF/WKyqoEwzAxcMIAA+CBD3eCZRnc9WATGBYI22PvO1O/uDRNE4lhDppdCdfnci7zSgHH3ssiMWmJ1s3XNIJlGSekenJMRXOg2XGz5uKoExFV1AueFhOk5YeP9zvPWbk7Kc3hWSkWdc/8mGOte0LWZVcbklJRnvZgO4paEWO5Uce5DAohjzhsskMr3e8FvC5eg68R9yy7z4noCIsR57mL+xqcn8n9kLLDPssXroiTxzGc57ntiVjisjXYhh1t12FD00YMvNyGt16eRiFn4IZbYnjg4y24+0NNAAO8/nzS+YytcZfuQ/JdRQr8lAtGEqZLiii5KXcuqzHTPe/OEfXzfnSHe3B7z53O60Wt4FTp9fE+j3NKFjLOTp9x7qHZKigDJbHMszx2ddzkedbiLgEtsIKnONWVyJz/Ej733HP43d/9Xdxwww3gOO+XZ0dHB4aGaFVFCuWqxzQhvvkGTI6Det38xaXZ0IjCr/4aGEVB4O+/uIAD9MK/dwDSc89A7+qG/MjH5vRe1XY5+X203+V88YbFLk5x2ehvxL3L7q9o8j4bnmJFC3RunMfpLTmX5aFrbshEzVu4p7SfWkV/ZupZuNC4J3v8LP1ENzZtwh1L7p7TNW0JtOCTa38e3eEedDU14+7uB+DXrc+ztaU0mezqqMwNDIUt57LoEpekmEg+Z2BiTIU/wOKXfm0VNm4ruTpNLSIEgXUmpUQglReZKs8xZRgGq+KrERJC4FneEWi7X0pDU03ceEfcaVsyEwIrQhRZbN4Sh2EAb7867fwuMWJN6uNNQkWYnvfcOQT1ZshFs2b+ct/pAgKJFdjSugWrOqwQ1M4eH37rD5bgN/97DwSRwflzVpGfWqiqgbdfTWJkUMbrcih2PQAAcPFJREFULyTxzX8Yw5mjZHIuOcW0RsYz0DQTDU087vlwE9avtybeza12ReGxyhBIADh3Ko+/+dNzTkhxNYiIIgVwCKN2/p3ES45QiJSJ1nqdy9EhGX/9P87hG/8yhEJed73fav9Bwn7dnwmpNtuXPoecmnMqoja6BKXbuXQLPrcoq9YbkbTjcIdhkmOTnL9y55Lcz+ULWm3Bdnyg61bc2HkzeJbHhug2JM4FEAxx+J3/uRT3PGyJ/tZ2CUuW+5HP6Zieqh71Q/K9yedQPoZl0eX48MpHqrrS7nOuFZUx0z3vXpCo1maHLAKYpgkfVzkuADiXPut8lvVUUF4eXYGNTZtwz7L7sDS6zAnRBoC4q3hPe6hj0Ub41MucRy/LMmKxWNXf5XK5CsFJoVCuPrjTp8BOjEPbsg0IVS8UUS+FX/8tGOEIfN/5JrgzpxZohF4CX/w/AID8f/mvc84P1XbQvMuFgPyxvNL/aJbD1iigcyGUu4zEXZwpFGxT0zXY3HxNnTmXl8m5tIUXwzCzOpfzxS1Gr9lRmkBu3FhyBrq7K8VlMMyBMyXIRb3id8WC9VpDk4Ce9ka0tktOaGxrh3X9wnbBESLWK3Msa4t4ni05l2qBARhgx4315fS1B9vR6G/CXTetBccz2PdWyhE0U8O2uGwUZpz8hiI8muTV8Ofb0RXu8fwuMang1Wen8M5r0/AZUdy7fafnnm9sFuHzc+he5ocimxgdkqsKTF038aNvjOKZn07iK38zgJd+NgUASI9Y18XH+51rNDhkOVnNrT4IYikksamVOJfVxWXvkRzS0xqe+MEYVMXA2ZN5fOvLQ3jmpxPONiRUkoTBknPRDA0Mw6DJ14TucDfCYrgiNHEmseJmzxvT0FQTfacK+No/DkLTrAULkRM9Ya9uUdMdXgKWYXFm+jQUXXGedZIzOZ1U8dN/S+PgGwomzzOez8Dt4jVX6Y1IzqPLlZcqciJM03Tu98qw2LD9euV3ztLoMidstv9MwalqTAphEeKN1j3tdtPdlPfYrXasiBRFYlJFYtLOVZUNqIrhWQRxn3Mt0Vh5bN5xDt3HFTkRLMNaBZ9sBzkglF0bMYwmfzOyStZpG1LPvSFyIra17nAWCdzHjbrEZVeodv/tK4U5/5XftGkTHnvssaq/e/bZZ7F169YLHhSFQlncCG9a4e/qjRdeTMWMNyD/+f8fGFVF6I9+f8H7XvJv74b0zFPQOzqd/ppzQd1KnEsqLi8EEg57tYlL5iLkk3Kegj4strdei50dN85YFXdlfBW2tHj7TNfOuXRVi51DTuOFQpyfhRLhs7F2Uwg+Pwt/gMW69SVxuXRJpXCzwmIlyMUq3z9Fa5IaCAgI8AGIEoumZmtiTHIim/xN6A73YKXd664iLHaGXF6e5RGOWdszJoflqwOIxupzlGO+OO5f/iCWtrRjy3VhKLKJvW+loOsmpkYAnmcQCnMzTn59fhZBM4621HUV2732XBIvP51A75EcOJ7Bus3VwxGXrrAm4N/68hD+3z86i0N703j9+QSe/skEdN3ES09NofdIDpEYD463vgsEkYF/ZAO2N+60W2BY5zw0agm/JW2WsCL3PXEuRwZlDA0UYRjez4qIzukpDX/3hT5881+GcOZEHm+/Ou0UXyJVb0nIaluwDTzLQ85yUPZsxaP/nkXmVAseXvVRT4VSnuXRe7iA7/zrEE4dz1X0nSQosoHD+7PgeAYdPRLGRxScs3NRyUKOO7+TIHIilkWXwzANzzk3BZqhqSb27U5jrA+Qeq/F+HObPCHI7kWnaoVgNjRtwgMrHnLCTAFLDJ06nsfzT0xhYkyuEJcNvkZEpahHkFbjbK81juWrqwhD+x52F8ly4/7uIU5tOYpi4Kt/ex7/968HcL6vgH/8iz7881/1w5QlFAs6VMXr1sZc+Y6zCT7izpafu4/3QdZlJzy53LkESn09E8Up+1izRxmU4+N8rtDusLMg5f6crlTm3Irk85//PD772c/iM5/5DO655x4wDINXX30VX//61/Hss8/i29/+9sUYJ4VCWUQIb1niUtl104Lsr/BrvwHff3wT4ksvQHzqSSj3P7gg+4WuI/wHvwsAyP3R/wSkuRdkMBsboS1bDv7MaTDJBMx4ZXEByuwwDAOYADP/IuWLkotRrKjcZWwONFd1JGajVisSzlPQ59KJS1Kc51KJS1Fi8Tt/vBqp6TyM6BTCUQ4cx6AxXjkRFkQWftGHKTsslmVYZ6LPyWEAo2gIRZzJYEePD5PjKjq6JWf723rucPbHst57YaYwYI7hIUmc1cYEHLZcO7eWHoRdt8Wxb3cab786jSXL/TAVHvFuAQzDzLiIwLIMgmEe2YwGwzDBsiX3N2mHNAZCHDZvD8Pnr/7ZLV1l5zLmrWv2k2+POb9btzmIw/syYBjgs7/dBZYDchkdb7yYxLGDJvzpTqDNcndNmBgdt7bdsXItQn4rHw4AonEevMBgdEjGV/7mPB78RAu27ywJwMkJu3iSwCCX0dHWKWHl2gDeeDGJp386gWWr/RAEFgEh4OTKhcUorm/fiae+n8TxAwqAPCbHFGzeEfaEjHPg8dSPx5FN6zh1LI9wlENLu4Qly0JYvkZy+rceOZCBIhvYtD2M5av9eGxgHCeP5rBqXdAp+pKRLXEplTlr1zRvwRm7PYfTrkII4exhE0pawPqNMaxYG8BTP5rAE98bw/otIbR1Slh/TQgSJ0HkRE8hHufzZVhPSC1gCbvEhALTBI4ezEK8uTSWvtN5HN6fwb0f+jBEaebvtLMnrRDk5aurCLC47VwmrcI+o0My7vtos3N/ud38coFHOHYwi3zOclf//R8GYT+S+P7/ncTurIrGqISbPls656grT3Y2wdcZ6sZkYbKibYjE+ZBX806hoWoOKLnOpAXKfBbpGIZBRIxA1mWInIhrmrdCN7UFaa11uZmzuNyxYwe+/vWv44tf/CK+8IUvwDRN/OM//iOuueYafO1rX8PmzZsvxjgpFMpiwZNvOc9KseVIErJ/+f8h9slHEP69zyNx7fUwWy68FLf/3/4v+KOHoV6/E/JHa/cgmw1t+7Xgz50Ff2Af1NvvuuBxvR95P4TFLpxz6ar4ys5/n6wn59LlXDKXKeeSrR4yejHpXhpAYMrAVN6Hm++0FoZqTTqjgQD6ZBO6biLiDzkOE5MPo0lejS0tq5xt73igEctXB6o6NkA157K2oCZOcvdSP7p8AazdPL9Ug8ZmEes2h3D8vSx++p0xcKbohCbOli8YinDIpDTkczpC4dLnM51QAQb4r3+6DDxfO/+1e6kPD/98K8JRHrpm4skfjoNlGSSnVBw9mEV6WkNrh4h4o3UPRGMCupf6cOxgFuf7ili+OgCe45HP6sjJMmJxHiG/H6viq51jsCyD2+9rxOH9GYyclzHYV3TEpaoYmE5oiMZ5/PznOqCqJjq6JadFxqljeRw9kMWW6yIex9DP+xAWI5gcstp9ROM8UkkN0wkNvqiA5JSCoX4ZjUEBhbSOzh4JhmHlVWZSeZw5kcdLTwPt3RIM3cTYsCVwt14fcQoQnTpmOZ3kM8ioVisPX9lnEhLD6Ah1YDg7jKDtqpmmCf7oDqwyTTz0yVYEgixOHsnh9Ik8Xn8+CY5jsGJNAPcsu29O3z8iJzk9ULPTBk7sV7D1euu6vPTUFAbOFtHcKuKGW2rnoJ87lcfEqILGFgHReOX3COnLmp7WsP/tFDIpHWs3B7FyreV+u8VlrQI9+3bbxX5CHPJZHS3tInTNus7LcDuQAUSzdB3dbvNszuWGpo3Y0LSx4nU/70MSVlVX69+Vz3hItJ5RUg3aNw/nEgDuXPJBmLZi9ieWw9BNmE0mvvkvQ/D5WfzW76+Z134vN/P6ht++fTv+4z/+A8ViEalUCpFIBH5/7RLpFArl6oHkW6rbr73gfEs36u13ovCLvwz/N/4N4d/5DaS//QPgAibW3PFjCH7hf8IUBGT+91/XXyG22ti274DvR9+HsHcPFZcXyJXcGLoaF6NabK3KrnOlVv6lN0T2ErYisVf3L6W4JPh4v1N5tZbLEAn5AdlqyRGOhh1xWcywaC1uxPqOUi5UNCZgy3W1r51ngcDVh7Qa5HqsuyaEX/i5ZfWfVBVuuiOO4+9lkZxS0dgYQMQOVxVncahDYWu8uUxJXOq6iXRKQzjCzygsAeu5vubaUr7b//M/l+H8uQL+7e8HceAd6zoSd4/QvdTu7XeOhI0KmBy3nNKGZqGqIN91WxzrNofw91/o8xT2SUyqgGkVWGpp94qKHbuiOHUsjzO9eUtculwyifNBVQxMjisIRzms2xzC269Oo/9MAWu3+LF/dxr5vIExrYhlAD74cDN6lvmhqgaSkxoS4waefXwUI+ctJzTWwOO6m2NYtsoPhrFCY4cHZEyMKs79n3Ycscp58y1dt+NkshfLY1YRm0LeAIoBtLWLCIas6/Hhn2/F269M43xfEf1nCjhxOIct18VqfjaGYSKX0Z2iUQBgqlabGp4HGEXCu29MY+v1EchFA4N9VpGad99I4bqbYx4nm7D7lSSefdTq17h5e3WnnQjO0WEZmZQlZPfvTpfEpes5rOZcjo/KVkueJgGf+tUO7H4liRtvtwpX7X4liaH+IsaGFRSmS/shzqXAlu6fQl5HYlKtq0AWUMo3Jf03qzmXwTKH2L14k81oeOL749h5awxLV1rC1DBMmCYqqj87bWRkA9/96jB0zcSHf64V504VsGTFlaur5vwNv3v3bmzZsgV+vx8+nw8+3/zUOoVCuTJZyHzLcrJ/+ucQ3nwN0gvPIfjnf4rcn/yvee2HyaQR+bXPgpFlZP/nn0PfuOmCxqVtt4v67KcVY+fL1Zpz6akWu4AhvzzLQzO0CxKX3mJDpT/3bnE3m+hYSCSW5FxeenFJXAye5WuK22g4CEwBusx6QhYLWevejcTqH3etCpbVt+Xr2q4eOnt8uPmuOAp5A7feF8VP+t6ZNSwWgCMosxkNrbCuVXpag2lYgmk+tHdL4HgGmmrlJxIxSWjrsn4/2G/lTwqsgIkRS6Q1t4k1Q4mjcR6CyGBiVIFpmmAYBpPjltBsbKkU/EtW+sGwltNmmqZHLPh4H8ZHFZgG0NYpYckKvyMuFdlAIW9A8jHgMgKWrPCjZ5l1DoLAoq1TwobNIazZ7MN0QrXyWyOcZwFt9foghgdknDyaQ3CT9RmQXL5qDrrACR43LZW0xHasoXReoTCPOx9swpneHL71pQIO78/ANE0EQzxWb6h0AN96OYkXnpjCXQ814cbbLScyNQ4wJoOmFgHFiSDGhmSoioG+03kYduhpYkLFmy8m0dwmYs3GoOe89tj9Kx/+dGtNcRmxw2KJ8AaAE0eyyGY0hMI8BNf9Xk1c7t9tLUpsuyGC5lYRD32i1J7joU+04pmfTmBsWEFuigeC1qIREezkfj/4bhrPPjqBQt7Axz/bhvXXeMeqaWbFwgkJIc4omZpjK2/ZI/ElcXngnTR6j+QwOiTjN/9gCVTFwLe+PIxiQcdv/cHSqgs1p47noCrWc/L498ed875SmfM3xi/90i+B4zisW7cOO3bswPbt27F9+3bE43Mr306hUK5MiLhUdt248DsPBpH+5vcQu/cOBP7p72C0tqLwa785t33IMiKf+TT4E8eh3HYHCv/5ty54WNr6jTAlCfz+vVbBoavMfbsUOGGxV3HO5UJWQF2oMGKO4aCbuke4MIxVbZLBxavaWg2hRiXVSwHLsOiJLJlRrMfDdvibInpyUYspBn6OQSBY/7Via1TqrUa1NjIXwh33l9pXCKxQ1/UORaxjZ9OlarnTiUphMxd4nkVnj4SBs5YT1r3MV/Z7BkuW+3D2pCWQWtdwmBhTwXFWiG+tcbMsg6YWESODMhKTKs6ezCM5ZRWNIRVl3fh8HDq6fRjqL2JyTHUEyOSYgsdfTmL9MsuFauuU0LPc+t3pE3mcPJYDywi44QNhLA13485V1RvbcxzjhPuWs2JNAK88k8DAuSI2b/GOzS1IajGdsM6L5C+6WboygECIw5kTVniuL8Di9/9ieUV0yOF9lkh6/vFJSD4WO3ZFMTGmgDNFhCIc4kwYxqRVKIm0cVm5LoDTx/N40a7qe/9Hm3HtTTEAQC6rIzGhoqFZ8FRkLkeSWPgCrJOHK4gMVMXEob0Z7LotXuZcekNPVdXAe3vTYFlgy/XVj0HCjtMTLHxRHyJiFH7ej85QJ+K+BqSnNTz63THArr30+gtJrNsccq7P6y8k8MozCdzywQbceHvccRXLczCri0uvc0kWzgCg97BVPCqV1PD4d8cwNqJgYtRa/Og/U8CKNZVhtscOZp2fNdWE5GOxYcv8cq8XA3P+q/XWW2/hb//2b7F9+3a8++67+PznP49du3bh/vvvx5/8yZ/g8ccfvxjjpFAoiwFdh/jqSzBFEer1uy7OIVauQvrr34Hp8yH0P/4Agb/+KzhLqbPAZDOI/sInIb7+CtSNm5H+6jcuKLTWQRShbd4Cdnoa3NnTF76/9yHkD/rV5lwyDHNRzo0IjQsVHEQ8lk/Uo1IUUVdlxUtByT28PC3Lbu2+HTd33VLz97GIH22FzVjKbnFcFcMwIec4hGNc1fDAWnA1clyrbssunHNZzge6bp3xnAnBEHEuS+KSVPmcr3MJlNzKQJBDQ1OlALvlHmsi/9LPpjB4VoWmmWhqFcFxzIwVdomwePQ/xvCzH07grZesnMmmluoOLSk4c+5UHn67+ufRgxkMnzXx+vPWe9s6JQRDHJrbRGRSGnIZHctXhBGJ8WhtCdYsZjQTrZ0SGMbK0XTnAAaEwIythQjVnEsCxzHYsKUkcop5wynARJhOqBgbVhAIWcWsnn10AumUhskxBZwpIBTh0NFmibfB/iLO2uLygY+1YNdtMWzbGQHLAs88OomxYdneznJeu5fOHrkYdbn9pL1O32nr/e6oiUCZgDtxKIdCzsCaTSFPDrAbspAwNaHioRUP444eK2XljiV3Y1vrDvSdyQOmddy2Tgkj52Xn2ABw+ngeumbipZ9N4ckfjDuvx6W457u8Wvgyy7BO4R2WYZ2Fs0xKw2B/EcEwB15gcORAFhOjirN403skW7EvRTFw8lgOgshgw1br89y0LTxrMaXFzJxHHo/Hcdddd+G///f/jh//+MfYs2cP/vmf/xkNDQ34wQ9+gN///d+/GOOkUCiLAH7/XrDT01BvuBEIVk/AXwjUG29G6rs/hhEMIfj//iUin/442JHhmcd2cD9i990J8eUXoa1dh/R3fwQzvHBhJaodGsvvpS1J5oPzx/oqdH2JG8ti4c6NCA32QsUlw1XN+bt32QO4Z9l9F7TvuVJqRXLpnct6CIY5NCorEZTbHVelkDfAmqU+lPXCeRztWZxLpvoCwELQGe6q6NdYDce5zJTaRhDnslqxlnrpWW4JkK6lvqr51kuW+7F2UxCppIanf2AVUGlpt3NzZ7hPSFuS8+eKntdrictlqywh0Hs0B9F2mXiBAW+UBFJbp/X6qvXW37Zdt8dx3S5L/Nbb47IcUWTR2CIiPa0hO23iwDspJCYV3Nx1a8UzOXy+6FRfJczkXALAbfc24vb7GrHWbhEz7ApBBeC0YLnm2jBuuDUGVTHx8tNTjnMZjvDoarf+Tr63J43JcRVNrSJiDQLu/lAzHvpEK+54oAm6ZjouJsnJLA9zrob73rnm2gg4jsFgXxGmac5Y0Gf/21bY7fYZQkPJZz05psDH+xyBR+i327UsXenHrttiAKwQYcAqlDQ2IoPjGfiDLN7bk0Y6ZV3rsSEVI708TNNELmPg+D7Z03pmsK+Ik0dz0LPWveMOOe+1r/fGrWF89BfasOv2OD7xS+341f/HytfuPZLD849P4ltfGsJLT01Blg2cPp6HqphYvSGIex5uxs5bY7jlniu7Kv28vslyuRwOHDiAvXv3Yt++fTh06BAkScKtt96K7du3L/QYKRTKIkF86QUAgHLHxS9qo954M6affA6RX/1FSC88B/H6LSj8p89AfuRj0DZuttqK5PMQ9u2B7zvfhPToj8EYBpRbb0f6q9+AGamvCXm9aNutfpfCvj2QP/FzC7rv9wNOzuVVFhYLWMJZN/UFDTF1nMsLdN43N2+BYlQ2nb8coamNvkZsbNqELru1xGKDFLXJZnS02RPfYkEHa/JzFlhzyblcqIWECyEUsZ3LqmGx879XVq0P4q6HmrB6fe3FyLs/1IzRYRlTCRaIAC1tszvcxLkErFzYTEqD5GMRjlZ/T/cyHwJBK4Q0/70ipF0mDI0BB+tzFaVSaOsd9zfi2hujiDcKePqcBCizV9udifYuCZNjCg4+x2HyvITQ6Go03uithq5pBr795WHIRQP/7S+XQ7JdK8e5rHH/BYIcPnB3A/a/ncKJQzmMDMrYuLUUTknEzpoNQbR1Stj/dgoH30lD8rHgGBGhsI7u1gj2MnAq3e7Y5RV0138ghleemULf6Tx03XQEfdeyOpxLWxRzHIPmVhFtXRKG+otITKpobBatPNvJPP7th2P4yEfCWLspBE0z0X+mgECQw/IqIaSEYIhDIMhhalyFrptOWOv4iAx/gEP/GWucS5b7EQhxeOHJKZw6lsf4iAxfgEMxb6CtS8KK1QG8+VIS+3encPNdDfjRN0ZxMscBYQUDx0yMnR2DP8BizcYQBvuK+OrfnQcADIeyuPZhHbFo6TqcOGw5k2s3BbFsVQBrN5Wc5c4lVmj2m7bLfqY3j0zacsgBS5CGIzw++OG5t51abMz5G+ORRx5Bb28vGhsbsWPHDtxzzz34oz/6I6xZs+aqqwJIoVC8iC/b4vL2Oy/J8fQNG5F87lUE/+6v4f/KlxD4ypcR+MqXYbIszEAQTC4Lxl5RNGIxZP/oT1H8T59ZmFDYMhzncv++Bd/3+4FSDuHV93eC/O1byII+3ALl4a1pWLsQw1kQGIbBttYdl3sYNSECK5fRnLYphbwODsKcnUtPzuUsn+HFDIutl5KwdjmXTljs/J1LlmWcIjK1aGgS8Nt/uBTHDqXx1ETUyW2tJywWAG64JYbmVhEcz9SchwoCi1/8zU784GsjGDiRR6hHhlawzisY4rBkhd8Je3bnUJLw6Pn0MSS0dUo4vC+D/uMmVuBOIAvsfXPa0+aj90jO6ec4OaY4lU3JZxCdReB3dFvbj5wvObmaZqDvVAG+AIvuZVa15A9+qBmPfncMxYKBcLMPvJBHNBBCcyuLiVEFDc0CdtwY8+zbyo314/SJPAb7ihgaKEKUWLS0zX5NSFhsU6sAjmPQvdQSWIN9RSev9uzJPMLTIp57fBKrNwSRmFBgGEBrpzhrKHpTq4CBs0VMJyyxuv/tFJ74/jj8AQ75nI6GZsGpknvDLTE899gk3no56Qjw1nYRO26M4s2Xk9j7VgrBMIfEpAq/GMP5c6NIjfvRCODtV6exZmMIx96z8lc5ngGnBZBJZdHdYC08yEUD505a15vk7rpZszGIof4i/EEWH/65Vvz4m2M4tCcDwzARDHNVizFdqcz5m6y3txc8z2PLli3YunUrtm3bRoUlhfI+gJmcBH9gP/TOLuirL2HvpVAIuT/+U+Q/9xvwPfojiM8/C+7USTC5HIzOLmibt0C54y4UP/JxIHDxmg8bnV3QW1rBHz0M5PMX9VhXI1drtVjg4vTwFBzBcelahbzfCbqcS3Ldi3kDrCk4lS/rxR3SOXtYrP1ZX07n0tWKpPdoFq8+m8DwgBViWSskcyHhOAabtkbx3jE/DLvvnzDDvR9rEMDxDHTNxIatIURjsz8nrR0Sdt4axxM/lKHnJHC5ECIxHr/1h0tqtloh94G7YMtcae8qvdcXYCEXDLz6bAJbr49C8lnfGQfeTjvbTIwqGBuWkc/qSCU0cDzjtCGpRXObJa6HB+VSBd0xy9Fb2lNqw7PluggamgU889MJrFqxAj7hLJoCzVixpoCJUQUf/FBT1WuxbHUAp0/k8eqzU1AVE8tW++rKQSaOP2kP07XUB7xq9a98940UQltaketXEYOAxISKY+9lnQI8xMGe8bxbRQycLWL4vNW25PHvWbmTRKgvdbXz2L4zilefTeDQvgz8Ac4ZV7xRwOr1QZw8msPPfjgBAPDrDTg7KCNiWGHR504VMDokO07wlmvDmNgXRDajOSHTp0/koOsmNqwPVbQcAayWOOmk5uSAbt9ZwO5XpgEAW6+LVH3PlcqcvzH27t3rhMQ+99xz+OIXvwhBELBt2zbs2LED1157LbZs2XIRhkqhUC4n4qsvgTFNKLffdVny5syWFhQ+9xsofO43LvmxAQAMA237tZCefhL8ofeg3bDz8ozjCuVqLegDXBxxubVlByYLExUl7ykXj1CYA8NYeW6i3SYinzcQmFfO5TyqxV5G51LyseAFBtm0jkN7M46wBCzX71LBs7zTmH6mnEuOY3DvI83QVLMuYUmINfBgwGLJ1J1Qc0WEejiIYu3za/a3YDQ3gphv/h0RSC4nYBVqkYsGDu3N4OCeNK6/OYZUUsXp3lKu5eiQjH27U05rioZmYVYhx3EMWjtEDA/ImE5oiDcKGLfbupAcVkLPMj8+9197APQAsCIJbr8/gG07IzUF3bJVlkg7e9LKY9x2fX1pJ6s3BLF5Rxg33BIDUOp1SioIo78LnehCc5uIiVEFb7yQxKr1garjrsbKdUHs2221GykWDDAs8LFfbMdrzyUwOiRj6UpXT1Mfa7mULybxzmvTnmM89MkWPPXjCRw7mMXyNQEosg/K0LXw63Gncu4T3x/D1LiK1g4Ry9cEIL0bQjatw28X9jlhV4ldu6n6d3YgyOGBj5fCoa+/JYa3X5uGaQBbr+C2I9WY8zeZ3+/Hrl27sGuXVSlSVVXs3r0bX/nKV/DFL34RDMPg+PHjCz5QCoVyeRFffB7ApQuJXYyo23dAevpJCPv2UHE5R0jIKBWX9dEcaEZz4MrPvbmS4HkWTa3WJFcpWJ9lPmsgBK5q/8SZ4DxhsfWJy8sZFsswDEJhDtMJzWmbAJSqrF4qBFZwxOVsOcw7ds09r56E+A71q2DAIByZ+ZpvaNqI9Y0bLig6LxDkEI3zSCU1rNscgj/A4tDeDN55dRrX3hjFwT0ZwARWrA3gzIk8Du/POMLSPebZ6OjyYXhAxlf/7jyuuykK1e4vWo8DKIrsjNu1dUrw+VkUCwY6eyRs3Baqua0bycfikU+3Of+OxniEo1aObEeP5Cxi3PtIM5756QRGh2RoqmGPe3ZxuW5zCNdcG8Z7e6xw1TseaMT6a0LoXubDicNZbNjqbedx/Qdi2P1KEoadWkzEZSjM4+OfacfEmIJIjMc7r01jsK8bgsjgkU+34d/+7jyG7LGu3hBEU4uIgN6ESGYbNjVthq6bOHUsB45nsGJtfQuCsbiAhz7RClU10Nh86foNXwrm9U2WSCSwd+9e57/e3l4YhoFVq1bRgj4UytWIrkN85UWYPA/1A7OXtb9a0ey8S2HfHhRm2ZbipZSXePWE/hDYq1g4v99o65QwMaogOWZNzAspFgyDqm00ZoKdS7XYBe5zOV+CYR7TCQ3jowpEicEv/063Ey57qSChsBdLaJMQX9J7kVTJnYmFSPv6wN0NOH+ugCUrrBDVJSv86D9TQO+RHA68Y1VGvevBJpzpHXAKvBBidYYlb7k+gv6zBUyOKXjtuaRTqbceB3A2WJbBqvVBHNmfwd0fbp73NWEYBg//fCuSUyq2Xh/BT78zhnxOx9KVfqy/JoTxkQQmx60iRs11jvu+j7Ygm9YRjvJOfm84wuPastxRAIhEeWzeHsHBd9Pw+dmKiARShXjd5v9/e/cdHlWZsHH4OVPTK0jvYuhFRKq0FUWKCoIVEYS1grrrrqvuuoqfih2FtVFFRVlZaSJ2ERUQUTqCIlaqkN6nne+PgWAEhJBMzkzyu69rrmTOnGSegTflyXvOe+L08TvpatkuTjGxdl15XV1Nn/yLigoCSmsTp5QazuD1gg/UU6wzVms+zVJRYUDNW8WULMZ0Mjoe5xqeka7MX73nn3++fv75Z9ntdrVs2VJdunTRzTffrE6dOikpKSkEEQFYzfnF57IdPChP774VenmPSONt31GmzSbHui+tjhJxDpdKowoWsCMzl9aWA5Tf4cVX0vcG5KthylNgU3KqUw5H2cetw+aQL+A74XU9k93JctldOi2m1qnGrhAlRdKUUmu6VKvOqZ9neKocIS6XTpdNcQn2klVxTzRzWVE6dUtUp25HZlq7903STzsLtXDuPnmKTTVsGqXa9dxKTnGWXKuyeasY7fi6oOR6jidSv1GUbr6zkebP2aut6/P0w47gn0BrnuTHn8jgEaep93kpJ53neJqecWS9gkuuPjKrGSx0wcvRJCY7FBV1ct9P3W6brr6x3kk/f/e+Sdr0ZY7qNzr25XGk4L/Z+Lsal/zxIbWmS2PG19e+PcWq3yhY2pOSHcrK9GnL+ly9s+CA7HZD5/SP7EuIVJQyf1UNGjSo5LzK6OjKPVwCgDVcSxdLkooHXWhxEovFxcnfopUcX2+Rbc9uBeqe/A+06i4Uh46GC6MKr4Rb3dSud+jC7Hskf6xLUX5nmQ+JPezwWD/RYbFxrnhdlnal5Qsj/nYWL7WmNQtJOSvhEOGkZOeRclnGc2kryhmtY9Xh7Hht+CJ4OOeZXYPFs2ZtlzLTvXI4DY0YXUffbcvX6Sd5mOVhp7eI1db1wUtiJKc65SrDTNofcUfZ5I4K3eGbp9VxKbmGU5kHvRUy23r853Hr+r83POEiSb8/WqFWXbdq1T3yB5fU01zKyvBp4dz9Mk1p6MhaatiEXiSp7Oum33LLLerWrRvFEqguTFPut96UaRjyXDDI6jSW8x4619K58lOLk0SWKn1YbBUuztXN4V8ef93j1VnOgapf0OWUZ2oOH+Z6Miv+Wl0speB5Z4elWHQOWMnM5QkKeXn89rqdJ3NYbCgYhqFBw09TvYZuxSc61Kp98BzGw+cZ1m8cJZfLplbt48tcDk9vcWRmsOZJnLcYLgzDUMtDi+HUPInzRMujVh13qfF+KmqcFvy39ftMteoQV+r6otXdKf3L/vLLL5oxY4bWrVunrKwsJSUlqVOnTho7dqwaNGhQ0RkBWMi+fp3se3bLe3ZXBWrVPvEHVHGenr0VPWu6nJ99ouIRl1sdJ2Ic/tW5KhawknJZgde5hDXi4h2KT7Tr4K8eHdgTkCGj5JfIsjq8II2VC/WUxW/PrzzV2dryqoyVc3+7QE5lHRZ7LE6XTdfe2kCmaZYcdt2gaZT0oXRGq1NfJTo+0aFadV3av8cT0hnAUOjaJ1n5eX517lH2xZoq22+/Rnqdx+Gwv1Xmr6otW7Zo1KhRcrvd6tOnj2rUqKGDBw/qvffe05tvvqmXXnpJrVu3DkVWABZwv7VEEofEHubt3kOmYcj16QrJNC25LEskqsqze4df04lWt0RkqF3PrR1fF2jbxuChhadcLktmLiNjXMT9pmil1rCmlIR6QR9JSko9UgriLCyXkg5d2/DIz5AzWsXq+r81KHX45alo2S5O+/dkqMGhS39EioREh4ZeFRl/xK5bP/hv27J9nGqX8/+rqinzV9UjjzyiVq1aafr06aUOjS0sLNR1112nRx55RC+99FKFhgRgEdOU681D51sOHGxxmPBgpqTK16adnJs3yvbjDwo0aWp1pIhw+HDYqnheoq0KL1ZUHTVsGq0dXxeULKxy6udcBkulPYSHeFak385cplh0zmXJZVlCuDhWyWGxhk543l1lMwxDdeqXvxCe0z9FTc+IUYMmkVUuI0n9xlEaM6G+6tSnWP5emX8Sbt68WePGjTvqnMvo6Ghde+212rRpU4WFA2CxzZtl/36nvG3aKdCosdVpwob3nODlWFyffWJxkshxuHhVxQLGYbFVS9feSarTIPgLY1S07ZQLyJGZy8gol7GHzkGLibUrJtaa0nV45rIyDouNjbMfmjmseux2Qw2bRofFubxVWaNm0RW2YFJVUuZ/EbfbraysrGM+lp2dLbebBg9UGXPnSpKKhw63OEh48Z7TS5Lk/GyFxUkiR8nMZRUsYEYVPuS3OnI6bbp0dB3FJ9rVLC3mlH9Bj7RzLhOSHEpKdajZbxaEqWyhvhSJFJy5TEhyRNwho0CkKPNXb58+ffT444+rfv36Ouuss0q2f/nll3riiSfUt2/fCg0IwCKBgDR3rkzDUPElI6xOE1Y8XbrLdDjk+vQTzrs8SbaSmcuq929Vlc8nra6SU5269Z4mspdjAs9++FzcCDks1uEwdMs/G1uawVkJq8U6HDbdfFejcv3fAji+Mn/13nnnnbrppps0cuRIpaamKjU1VRkZGUpPT1fHjh31j3/8IxQ5AVQyx8rPpN275TunN9dz/L24OPnOPEvOLz6Xffs2+Vu2sjpR2DtcKqtiAStZ0CeE54mh8jkc5ftDSKwzToZhKMZp3UxgWdls1v7xx2EP/XUuJcnNoYxAyJz0V29RUZFWrFih3bt364orrtDIkSP1448/6sCBA6pZs6bat2+vnj17hjIrgErknv+aJKl4xGUWJwlPnp695Pzic7lWfKRCyuUJVeXDYo/MXFa9WVmcurNrd1WbGm0V6zz1y0pUN3Vi66pRQmM1SWxmdRQAp+ikyuUvv/yi0aNHa/fu3SXb4uLiNHnyZJ1zzjkhCwfAIoWFci1ZLEVFyTOYS5Aci+dP/RX75KNyffC+Cm8Yb3WcsFeVDx09XJir4mJFOHV2m13xrgSrY0SUaEe0ejfg9Cogkp3UT8LHHntMNptNc+fO1caNG/XWW2+pZcuWuu+++0Icr3yKi4s1fPhwXXjhhRo8eLDmz59vdSQgIrjfeUu2vFzpwgtlJoT/xYyt4DvzLAWSk+Vc/ZmUl2d1nLBXO7a24l3xSnQnWR2lwlXl4gwAQFmc1E/C9evX67bbblOnTp3kdrvVrFkz3X///dqzZ49+/fXXUGc8ZS6XS3PmzNGSJUv0+uuv6/nnn1dOTo7VsYCwF/XKnOA7o0dbmiOs2e3y9D1Xhtcr1ycfW50m7DVLaq6hzYdH1PlnJ+vwa4pxcPgjAKB6O6lyeeDAATVo0KDUtoYNG8o0TR08eDAkwSqCYRiKjQ3+sPd4PDJNU4FAwOJUQHizf/+dXJ+ukL9BQ+m886yOE9Y8/c+XJLk+fM/iJLBS69S2GtzsQtWMqWl1FAAALBXWx/CsXbtWN9xwg3r27Km0tDQtX778qH3mzp2rfv36qW3btrr00ku1adOmUo8XFRXpwgsvVJ8+fTR27FglJSVVUnogMkW9HJy1LL56tFir/Y95+v5Jps0m1wfvBS9JgmrJbrMrJSrV6hgAAFjupFeLHTdunOzH+EVz9OjRR21fvXp1+ZNJKigoUFpamoYNG6YJEyYc9fiyZcs0adIkTZw4Ue3bt9ecOXM0btw4vfPOO0pJSZEkRUVFacmSJcrIyNCECRN0/vnnq0aNGhWSD6hyiosVNe8VmXa7iq4Yqap3AGPFMlNS5evUWc61a2TfukX+Nm2tjgQAAGCZkyqX48dbsxJi79691bt37+M+Pnv2bF122WW65JJLJEkTJ07Uxx9/rIULF2rs2LGl9k1JSVGLFi20du1aXXDBBaeUx+rrP/3e4TzhlguRy/X2UtnS01U8aIiMenUlMb5OxNv/fDnXrlHUh++qsF07q+NEDL5/IdQYYwglxhdCKZLHV1iXyz/i8Xi0detW3XjjjSXbbDabunfvrg0bNkiSMjIy5HA4lJCQoLy8PH3xxRcaMWLEKT2fw2FTampcRUSvcMnJLCKBCjJnhiTJPeFmuQ+NK8bXCVw6THrofsW8/45iHphodZqIw/hCqDHGEEqML4RSJI6vkz4sNtxkZmbK7/cfdYhramqqfvrpJ0lSenq67rjjDvn9fpmmqSuuuEItWrQ4pefz+QLKySksd+6KZLMZSk6OVWZmvgIBzvdC+djXfaWklSvla36Gss/sJltmPuPrZNRrqqTGTWT/4gtlbtquQL36VieKCHz/QqgxxhBKjC+EUriOr4SEaDmdf7weR8SWy+MxTVOGEZxCbt68uRYuXFhhnzuc/nN/KxAwwzYbIkfs8/+RJBVed5MCMqRDY4rxdWLFA4co5tkpcr65WIXX3WR1nIjC+EKoMcYQSowvhFIkjq+wXi32jyQnJ8tutx91KZSMjAwW7AHKyLZ7l9yLFyqQnKyiEZdbHSfiFA++UJLkeutNi5MAAABYJ2LLpcvlUuvWrbVq1aqSbYFAQKtXr1aHDh2sCwZEoOiZ02T4/Sq8ZqwUwxqxZeU78yz569SV8/NVMn791eo4AAAAlgjrcpmfn69t27Zp27ZtkqRdu3Zp27ZtOnDggCRpzJgxmjdvnhYuXKidO3fqvvvuU1FRkYYOHWplbCCiGNlZipozS6bTqaJr/2x1nMhks8kzcLAM05T77aVWpwEAALBEWJ9zuWXLFo0aNark/gMPPCApuHrthAkTNHDgQGVkZGjKlCk6cOCAWrZsqRkzZpRc4xLAiUXPnCZbbo4Krx6tQO06VseJWMWDL1L0zGlyL12somuutToOAABApTNM04yss0Qt4vX6lZVVYHWMUmw2Q6mpcUpPz4u4k30RJvLylNqptYycHGWsXqdA4yYlDzG+ysjnU2q7NBmZGUrf9K3MmjWtThTWGF8INcYYQonxhVAK1/GVlBRzwtViw/qwWAChFT1nlmyZmSoeNqJUscQpcDhUNPQSGX6/3IvfsDoNAABApaNcAtVVQYFinp0i0zBUcOvtVqepEoovuVSSFPXG6xYnAQAAqHyUS6Caip7xvGwHflXxRUPlPyPN6jhVgq9jJ/maNJXzqy9l+36n1XEAAAAqFeUSqIaMzAzFTJks0+FQwZ3/sjpO1WEYR2YvF8y3OAwAAEDlolwC1VDMlMmy5WSr6Kpr5G96utVxqpTi4cFy6X7jdYn10gAAQDVCuQSqGdue3Yqe+YLM6GgV/O0fVsepcvxNT5f3zE5y7PxOjq/WWh0HAACg0lAugWom5rFJMoqKVHjdTQrUqm11nCqp6PKRkqSoV1+2OAkAAEDloVwC1Yh96xZFvfaKAklJKhh/q9VxqqziYcNlRkfLvfANKS/P6jgAAACVgnIJVBemqbi7/iYjEFD+HXfLTEyyOlGVZSYkqnjwRbLl5ylqyUKr4wAAAFQKyiVQTbgX/k+uz1fJ17K1ikaPszpOlVd01ShJUtTclyxOAgAAUDkol0A1YOTlKva+4CVH8h5+XHI4LE5U9Xm79Qhe83LtGtm//cbqOAAAACFHuQSqgZgnH5N9314VDRsub7ceVsepHgxDRVddI0mKnj3d4jAAAAChR7kEqjj7tq8V/cIzMmNilX/vA1bHqVaKrhol0+2We96rMnJzrI4DAAAQUpRLoCrz+RR/200yvF7l3/lPBerUtTpRtWKmpqpo2AjZ8vPkfv01q+MAAACEFOUSqMKiX3hWzvXr5O3UWYV/vtHqONVS0djrJEnRM6dJgYDFaQAAAEKHcglUUbbvdyr2kQdkulzKfeoZyW63OlK15GvXQd7OXeT4boecK5ZbHQcAACBkKJdAVRQIKP6vE2QUFangL3+XP62F1YmqtcJx10uSome+YHESAACA0KFcAlVQ9HP/kWvVZ/K1aqOCCX+xOk61Vzz4Ivlr1Zbr/Xdl++F7q+MAAACEBOUSqGIcmzcq9qGJMt1u5Tw3Q3K5rI4Ep1NFo8fKME3FPP8fq9MAAACEBOUSqEoKChR/w1gZXq/y7v0/+Vu2sjoRDikcM05mTIyiXntFxoEDVscBAACocJRLoAqJu/efcuz4Vp5+56po7PVWx8FvmCmpKrx6tIyiIkXPeM7qOAAAABWOcglUEe6F/1P0nJkKpKYq5+nnJMOwOhJ+p/CG8TIdDkXPmiEjL9fqOAAAABWKcglUAfZvtiv+LxNkGoZynpsps1YtqyPhGAL16qv4kktly85S1EsvWh0HAACgQlEugQhn5OUq4dqRMgryVXDH3fL26Wd1JPyBgvG3SZKiX3hG8nisDQMAAFCBKJdAJDNNxf11ghw7vlXxn/qr4C9/tzoRTsCf1kLFAwbKvnePol57xeo4AAAAFYZyCUSwmCcfVdSiBfI3aKjcZ6dLNr6kI0HBX++QJMU89bhUXGxxGgAAgIrBb6JAhHIvXqDYRx5UIDZO2S//V2ZyitWRcJJ8Hc4Mzl7u3qWouS9ZHQcAAKBCUC6BCORY/5XiJ9wg0zCU+8JM+Vu1tjoSyij/73dLOjR7WVRkcRoAAIDyo1wCEca2Z7cSRl0ho6hI+fc9KM95F1gdCafA37adigdfJPu+vYp+ebbVcQAAAMqNcglEECMrU4lXDJd9/z4VjrxGhTfcbHUklEP+3++SaRiKfvpJqaDA6jgAAADlQrkEIkVBgRKvulSObVvl6d1XeQ8/IRmG1alQDv6WrVR80VDZf92v6BnPWx0HAACgXCiXQCTwepUw9mo5166Rt9NZyp49V3K5rE6FClBw579kOhyKefpJGQcPWh0HAADglFEugXAXCCj+lhvl/vB9+dJaKHvufCkuzupUqCD+pqercPRY2XJzFDP5UavjAAAAnDLKJRDOAgHF/f02Rb3xuvwNGir79UUyU1KtToUKVvDXfygQF6/o2TNk+36n1XEAAABOCeUSCFeBgOL+dquiX35R/lq1lf36QgXq1LU6FULArFFDhbf8RYbPp9hJ/2d1HAAAgFNCuQTC0eFi+cqcYLFc9Jb8zZpbnQohVHDdTfLXqauoxQvk+GKN1XEAAADKjHIJhBu//0ixrF2HYlldxMQo/+5/S5Li7vqb5PdbHAgAAKBsKJdAOPF4FH/D2CPFcuFSimU1Ujzicnk7d5Fz80ZFvfyi1XEAAADKhHIJhIu8PCVeNUJRixfI36ixsha/TbGsbmw25U16TKZhKHbS/TIy0q1OBAAAcNIol0AYMDLSlTR8iFwrlsvXqo2ylr6nQJOmVseCBXztOqho1LWyZWYqdtIDVscBAAA4aZRLwGK273cqafB5cq77St4u3ZS1eJkCtWpbHQsWyr/rXwokJyvqpVlybNpgdRwAAICTQrkELOT8fJWSB/5Jju92qHjAQGX9d6HMxCSrY8FiZkqq8u/6twzTVNw/bpcCAasjAQAAnBDlErCI+/XXlDj8QtkyMlRww3jlzJ4rxcRYHQthoujq0fK27yjnV2sVNXuG1XEAAABOiHIJVDafT7H/d68Sxl8v+f3KfXSy8u9/SLLbrU6GcGK3K+/JKTLtdsU+cJ9su3dZnQgAAOAPUS6BSmQcPKjEy4YqZupkBRISlf3q/1Q0eqzVsRCmfG3bq/CmW2TLz1PcP/4qmabVkQAAAI6LcglUEse6L5Xcv5dcn66Qr1UbZb73sbx9/2R1LIS5/L/dKV+TpnK/947cixdYHQcAAOC4KJdAqJmmoubMUtKFA2TfvUtFl1yqzGUfKNC0mdXJEAmio5X3xBRJUtzdf+falwAAIGxRLoEQMjIzlDB2lOL/fpsUCCh30mPKfXY6C/egTLw9e6lw5DWyHTyouHvusjoOAADAMVEugRBxrvxUyX17yL10sfwNGylr8dsqGnu9ZBhWR0MEyv/3/fLXqauo+fPkWrrE6jgAAABHoVwCFc3rVcxD9ytx2GDZ9+wOHgb70Wfyde5idTJEMDMpWblPPSNJiv/bLTL277c4EQAAQGmUS6ACOTZvVNL5fRX71OMyY+OU88w05T43Q2ZCotXRUAV4+/5JhWPGyZaRofi/3cLqsQAAIKxQLoGKUFysmIf/T0nn95VzyyZ5unZX5kefqXjE5VYnQxWT9+//k69pM7nffVtRr75sdRwAAIASlEugnBzrv1Jy/16KffIxyeVW7qTHlL1omQKNm1gdDVVRbKxy//OCTJtNsf+6U7Yff7A6EQAAgCTKJXDKjMwMxf39L0oa0E+O7dvkOae3MlasDi7aY+NLC6HjO+tsFdz6V9ny85Rww7WS12t1JAAAAMolUGaBgKLmvqSUbmcqes5MmUlJyn1iirL/t0SBRo2tTodqouBvd8nbqbOc675S7EP3Wx0HAACAcgmUhWPTBiUN6q/4v4yXkZmpwqvHKGP1OhVdPZpLjKByOZ3KeWGWAolJinnmaTk/et/qRAAAoJqjXAInwbZ7l+In3KCk/r3l/GqtvB06KuvtD5X3xNMyU1KtjodqKtCwkXKfnCpJShh/vWz79lqcCAAAVGeUS+APGNlZiv2/e5XStaOi/vuqzNRU5T46WVlvfyTfmWdZHQ+QZ8hFKhw9VraDBxV/058lv9/qSAAAoJqiXALHUlSk6BeeUcrZ7RUzdbJksyn/r39XxpoNKho9VrLbrU4IlMi7f5J8rdrI9dknin34AavjAACAasphdQAgrBQWKvqVFxU99SnZ9+2VabOpcOQ1KrjjbgVq17E6HXBsUVHKmfWSks7rq5inn5C3Yyd5Bg62OhUAAKhmmLkEpGCpnPasUs5ur7h//kP2fXtVPOhCZX68WnlPTqVYIuz5m56u3GenSZLix18v+3c7LE4EAACqG8olqjUjO0vRU59SSud2ivvXnbLv36fiIRcrY/kq5cx+Rf4WLa2OCJw0z3kXKP+vd8iWl6uE0VfKyMu1OhIAAKhGOCwW1ZLtl58VPe05Rb0yR7b8PElS0YVDVfDXO+Rv1dridMCpK/j7XXJsXC/3h+8r/tablTNjDpfJAQAAlYKZS1QfpinHV2sVf/2Y4EI9Lzwjw+dV4dWjlbHyS+XOmEOxROSz25X77HT5GzaW+81Fip462epEAACgmmDmElVfXp6iFsxX1JxZcm7eKEkKpKSoYMyfVXjtdTJr1rQ4IFCxzOQUZb84V8mD+yv2wYnyn34GC/wAAICQo1yiyrJv3aLoOTPl/t/rsh0698zXqo0KR49V0aVXSDExFicEQsffpq1ynpmuxDFXKeGmccp681352ra3OhYAAKjCKJeoUoz0dLkX/U9R8+fJue4rSZLpdqvo0itUOHqsfJ06c/4Zqg3PoCHK+9dExT1wrxJGXqasd5ez8jEAAAgZyiUiX1GRXO+9raj58+T68H0ZPp8kyXd6cxWNGqOiy66UmZxicUjAGoUTbpNjxzeK+u+rShh1ubIWvc2sPQAACAnKJSJTcbFcKz6Se+kSuZYtlS0nW1LwXMqiocNVNOJy+Tp2YpYSMAzlPv60bD/9KNfnq5Qw4QblTH9RsrGeGwAAqFiUS0SO/Hy5Pnpf7qWL5Xr/vZLzKE2XS8VDLlbRiMvl6Xeu5HJZHBQIM263cmbPVfKAvnK/uUix996t/Psn8ccXAABQoSiXCGu2n36U68P35frofbk+XSGjsFCSZEZHq3jQhSoefKE8/c+XmZBocVIgvJmpqcqe94aSBp+nmBeeVaB2XRXefIvVsQAAQBVCuUR4KSyUc83qkkLp2PFtyUOBuHgVDxuu4kEXBWcoY2MtDApEHn+z5sp+5XUlXTJEcRP/pcBpp6l4xOVWxwIAAFUE5RLWKiiQ88sv5Fz1WfC27ksZHk/Jw76WreTp11+eP/WX9+yuHPIKlJOvU2flzJijhKsvV/ytNylQ8zR5+/SzOhYAAKgCKJeoVMavv8q5/is5vlor1+qVcqz7UobXW/J4ICVFnm495el3rjz9zlWgXn0L0wJVk+fc85X75FQl3HqTEsaMVPbCpfJ1ONPqWAAAIMJV+XJ5yy23aPXq1erZs6cmT55sdZxqxcjLlWPTRjnWfRUslOu/kn3XL6X2CaSkyNP9HHm695C3+znyt2jJKpZAJSi+YqTy9+1V7KT/U+JlQ5W16G35W7ayOhYAAIhgVb5cXnXVVbr44ov15ptvWh2l6vJ6Zd/5nRzbtsq+7Ws5tm2VY9vXsv/8U6ndTMOQr0VLeTt2kq/DmfJ27S5/WgvKJGCRgtv+JiMrSzHPTVXS8AuV9eY78jc93epYAAAgQlX5ctmlSxetWbPG6hiRz++Xbfcu2X/4Xvbvdwbf/nDo7Y8/lDpPsuRDGjWWr007ec88S74zO8nXvoPMuHgLwgM4JsNQ/n0PyCgoUPScmUq85EJlLXlHgQYNrU4GAAAiUFiXy7Vr12rmzJnasmWLDhw4oOeff159+/Yttc/cuXM1c+ZMHThwQC1bttS//vUvtWvXzqLEESgQkJGVKVtmhoz0DNn275V97x7Z9uyRbe9u2ffskW1v8PbbcyNLfYoaNeRt2Vq+Fi3lb9lavpat5EtrKcXFVfKLAVBmhqG8R56QUZCvqPnzlHTJEGW9+a4CtWpbnQwAAESYsC6XBQUFSktL07BhwzRhwoSjHl+2bJkmTZqkiRMnqn379pozZ47GjRund955RykpKRWex2YLrwuOO7/eIu39We7sfJlerwyfT/L5JL9fhtcroyBfKiiQkZ8vIz9PRt6ht7k5MjIyZMtIl5GZKSMQOOFzBU47Tb7GTeRv0lSBpqfL36Sp/E2bKdCkiczEpKP250DXyHd4vIfbuEcI2OzKn/qcjKJCud9crMThFypn8TKZNWqG7ikZXwgxxhhCifGFUIrk8WWYpmlaHeJkpKWlHTVzOWLECLVr10733HOPJCkQCKh3794aPXq0xo4dW7LfmjVrNG/evHIt6GOapgwjjP6Di4qkhATpOLOJJyUqSqpR48gtNVWqU0eqXz94q1cv+LZuXS4BAlQHHo80dKi0bJnUrp30wQdSzdAVTAAAULWE9czlH/F4PNq6datuvPHGkm02m03du3fXhg0bKvz5fL6AcnIKK/zzlkfU408pdtePKvSZMm12yeGQHHaZdrtkd8iMjZMZGyszNlY69NaMjZMZH69ASqoUE3NyT5TrkXT0OZWo2mw2Q8nJscrMzFcgEBF/g0JFeOFFxY+8TK4Vy+Xr1Vs5C5bKPO20Cn8axhdCjTGGUGJ8IZTCdXwlJETL6bT/4T4RWy4zMzPl9/tVo0aNUttTU1P1009HVim97rrrtGnTJhUWFqpXr16aNm2aWrRocUrPGU7/uZJUdNUoxabGqSA979SyhdnrQXgKBMywG/sIIXeUsl+ap8QxV8n10QdKuHigst5YKrNWrZA8HeMLocYYQygxvhBKkTi+IrZcHs/vD1+dNm2ahWkAIAJFRyv7xVeVMPZqud9/V0lDByp7wVIFatexOhkAAAhjEbvuSnJysux2uw4ePFhqe0ZGxlGzmQCAMoqKUs6sV1Q8YKAc3+1Q4kUXyLZnt9WpAABAGIvYculyudS6dWutWrWqZFsgENDq1avVoUMH64IBQFXhditnxksqHjhEjh++V9KFF8j2w/dWpwIAAGEqrMtlfn6+tm3bpm3btkmSdu3apW3btunAgQOSpDFjxmjevHlauHChdu7cqfvuu09FRUUaOnSolbEBoOpwuZQz/UUVXTxM9p9/VNKQ82XfusXqVAAAIAyF9TmXW7Zs0ahRo0ruP/DAA5Kk8ePHa8KECRo4cKAyMjI0ZcoUHThwQC1bttSMGTNCco1LAKi2nE7lPjdTZkKSol+apaSLByp77nz5zu5idTIAABBGIuY6l1bzev3KyiqwOkYpNpuh1NQ4pZ/qarHAH2B84SimqZhJ/6fYpx6XGR2t7NmvyNuv/yl9KsYXQo0xhlBifCGUwnV8JSXFnPBSJGF9WCwAIIwYhgru/rfy7ntQRmGhEq++XO5Fb1idCgAAhAnKJQCgTApvmqDcp56R/H7FX3+tol94xupIAAAgDFAuAQBlVnTl1cqZ9YrkdivunrsU+887JL/f6lgAAMBClEsAwCnxDBysrAVLFUhNVcz055Vw7dVSQXidmw4AACoP5RIAcMp8Z52tzLc+kK9pM7nfXqqkSwbLOHS5KAAAUL1QLgEA5RJo2kxZb30gb+cucn71pZIH/kn2nTusjgUAACoZ5RIAUG5maqqy/rdExUMulv2nH5U08Fw5P11hdSwAAFCJKJcAgIoRHa2c6S+q4OZbZcvMVOKlFytq1nSrUwEAgEpCuQQAVBybTfn3/p9ypjwn2e2Kv/N2xf39L5LXa3UyAAAQYpRLAECFK778KmUtfEuBmqcpes5MJY64SEZ6utWxAABACFEuAQAh4evcRZnvfSxv2/ZyrfpMyef3lX3b11bHAgAAIUK5BACETKBefWUteUdFFw6V/ecflXzBn+RevMDqWAAAIAQolwCA0IqNVe70F5V/57+kwgIl/Hm0Yv55J+dhAgBQxVAuAQChZxgq+Osdyn7tDQWSkxX9wjNSv34y9u2zOhkAAKgglEsAQKXx9jtXmR98Kl+HM6XPPlNSvx5yrl5pdSwAAFABKJcAgEoVaNBQ2Uvfla67TrZff1XisMGKfmaKFAhYHQ0AAJQD5RIAUPmioqQXXlDelGclp1NxE/+lhJGXyjh40OpkAADgFFEuAQCWKb7yamUu+1C+05vL/cF7Su7XQ86Vn1odCwAAnALKJQDAUv42bZX53goVXX6V7Pv2KvGSIYp59CHJ77c6GgAAKAPKJQDAenFxyp3ynHKemSZFRSv28YeVOGywbHt2W50MAACcJMolACBsFI+4XJkffiJv2/ZyrV6p5H495HpnmdWxAADASaBcAgDCir9Zc2Ut+0AFf75BtowMJY66XHF/GS8jL9fqaAAA4A9QLgEA4cftVv6Djyp77usK1DxN0XNfUnLfHnKs+dzqZAAA4DgolwCAsOXpP0AZKz5X8cAhsv/0o5IuGqCYh+6XPB6rowEAgN+hXAIAwppZo4ZyZr+inCnPyYyJVexTjyvpgj/Jvn2b1dEAAMBvUC4BAOHPMFR8+VXKXL5Snq7d5dy8Ucn9eyl66lOSz2d1OgAAIMolACCCBBo1VvbCt5R3z/2SaSru//6tpEHnyr7ta6ujAQBQ7VEuAQCRxW5X4YTblPnRSnk7dZZz/Toln3uOYp54RPJ6rU4HAEC1RbkEAEQk/xlpylr6nvImPiTZ7Yp95EEln9dHjs0brY4GAEC1RLkEAEQuu12FN45X5ser5OnWQ46tm5V0Xh/FTLpfKi62Oh0AANUK5RIAEPH8TU9X9sK3lPvwE5I7SrGTH1dyvx5yrvzU6mgAAFQblEsAQNVgs6no2j8r45PP5enTT44d3ypp6CDFT7hBxsGDVqcDAKDKo1wCAKqUQMNGyv7vQuW8MEuBmqcp6r+vKqVHJ0XNfUkKBKyOBwBAlUW5BABUPYah4qHDlbHqSxWOHisjK0vxfxmvxIsHyr59m9XpAACokiiXAIAqy0xMUt6jk5W17AP5WreV6/NVSu7XQ7EPTpTy862OBwBAlUK5BABUeb5OnZX5/orgZUtcbsU8/YRSepwl96I3JNO0Oh4AAFUC5RIAUD04HCq8cbwyVq5V0UXDZN+zWwnXjQkeKrtls9XpAACIeJRLAEC1EqhXX7nTX1TWwrfka9lartUrlXzuOYr7x19lZKRbHQ8AgIhFuQQAVEveHuco88NPlTvpcZkJCYqePUMp3c5U1OwZkt9vdTwAACIO5RIAUH05HCoae50yVq9X4TWHVpX9x1+VfG4vOT9dYXU6AAAiCuUSAFDtmampyntssrI++ETeLt3k2LpZSZcMUcJVI2T/ZrvV8QAAiAiUSwAADvG1ba+sJe8oe8Yc+Rs2lvv9d5Xcu6vi/nabjP37rY4HAEBYo1wCAPBbhiHPhUOVsXKt8u5/KHg+5kuzlNqlg2KeeITrYwIAcByUSwAAjsXtVuEN45XxxUYV3DhB8nkV+8iDwUV/Xn2ZRX8AAPgdyiUAAH/ATEpW/sQHlfHZWhVdPEz2fXsVf9vNSu7TTa633pRM0+qIAACEBcolAAAnIdC4iXKnvajMtz+Up2t3Ob7ZrsQxVylpQF85VyynZAIAqj3KJQAAZeDr1FnZi99W1rwF8rbrIOf6dUoacZESLxkix9o1VscDAMAylEsAAMrKMOTtd66y3l+h7Jkvydf8DLk++0TJg/or4erLZN+6xeqEAABUOsolAACnyjDkGXKxMld8rpwpz8nfoKHc776t5H49FH/daNm3b7M6IQAAlYZyCQBAeTkcKr78KmWs+kq5kx6TWaOmohYtUHLvroofd43s2762OiEAACFHuQQAoKK43Soae73S125S3v0PKVDzNEUtWaiU3l2VcO3VHC4LAKjSKJcAAFS0mJjgNTLXblLeAw/LX6u23EsXK6VvdyWMGSn7ls1WJwQAoMJRLgEACJXoaBVed5Myvtio3Icelb92HbnfWqKUfj2UcM2Vcmxcb3VCAAAqDOUSAIBQi45W0bgbgiVz0uPy16kr99tLldy/txJHXCTnpyu4TiYAIOJRLgEAqCxRUSoae12wZD46Wf5GjeVasVxJlwxR0oC+ci1dIgUCVqcEAOCUUC4BAKhsbreKRo9Vxup1ynlhlnyt28q5fp0Srx2p5J6dFfXqy5LHY3VKAADKhHIJAIBVHA4VDx2uzI8+U9a8N+Tp1kOO73Yo/rabldK5naKf+4+MvFyrUwIAcFIolwAAWM0w5O3XX9mL31bm0vdVPGCg7Hv3KO7eu5XSoZVi7/uXbLt+sTolAAB/iHIJAEAY8Z3dRTkvzVPGJ2tUdNmVMgoLFPPsFKV0bqf468fIse5LqyMCAHBMlEsAAMKQv0VL5U59Xhnrtir/L3+TmZioqIVvKHlAPyUNPi+4+I/fb3VMAABKUC4BAAhjgVq1VXDXv5W+7mvlPvaUfKc3l/OLz5V47UildOmo6GnPcl4mACAsUC4BAIgEMTEquuZaZX62VtmvzpfnnD6y//yj4v51p1Lat1TsP++Q/bsdVqcEAFRjlEsAACKJzSbPuecr+40lyvhoZfC8zOIixUx/XindOylxxEVyvbOMQ2YBAJWOcgkAQITyt2mr3KnPK339NuX981756zeQa8VyJY66XClnt1f0lCdlHDxodUwAQDVBuQQAIMKZNWuq8NbblfHFRmW/+Ko8vfrK/svPinvgPqV2bKn48dezyiwAIOQolwAAVBUOhzwDByv7f4uVsfJLFYy7XqbTpajXXwuuMtu/t6Jems0CQACAkKBcAgBQBfmbn6H8hx5Txqbtyn3kSflatJRz43rF/+1WpbY5Q3F/nSDH+q8k07Q6KgCgiqBcAgBQhZlx8SoaM06ZKz5X5tL3VXT5VZIZUPQrc5R8fl8l9+upqFnTZeRkWx0VABDhKJcAAFQHhiHf2V2UO+U5pW/6RrkPPyFf67ZybN2s+DtvV2rbMxR/y41yfLGG2UwAwCmhXAIAUM2YiUkquvbPyvzoM2W+u1yFI6+RDJui5s1V8uD+Su7dVdHPTpWxf7/VUQEAEYRyCQBAdWUY8nXspLwnpyp9y7fKffxpeTt0lGP7NsXd90+ldmihhKtGyPXmIqm42Oq0AIAwR7kEAADBczNHjVHWeyuU8dFKFVx/s8zkFLnff1eJY0cptW1zxf3jrywCBAA4LsolAAAoxd+mrfL/b5LSN25X9sv/VfGgC2Xk5yt69ozgIkC9uij6P0/Ltn+f1VEBAGGkypfLW265RZ07d9Zf/vIXq6MAABBZnE55zr9AObNfUfrmb5U76TF523eU45vtirv/HqW0b6HEy4bK/d9XuXYmAKDql8urrrpKjzzyiNUxAACIaGZKqorGXq+s91coY8XnKrjpFpmpNeRa/qESJtyg1FbNFP/n0XK9/RbnZwJANVXly2WXLl0UGxtrdQwAAKoMf8tWyr/vAaVv3K6s1xep6LIrZTqcilq8QInXXBE8P/P2W+Rc+akUCFgdFwBQSSwtl2vXrtUNN9ygnj17Ki0tTcuXLz9qn7lz56pfv35q27atLr30Um3atMmCpAAA4CgOh7x9+il36vNK3/qdsme+pOILBssoKFD0yy8qaeggpXRspdh7/ynHpg0sBAQAVZzDyicvKChQWlqahg0bpgkTJhz1+LJlyzRp0iRNnDhR7du315w5czRu3Di98847SklJkSRddNFFx/zcCxYskN1uD2l+AABwSHS0PEMulmfIxTKyMuV+6025F8yX87NPFPPcVMU8N1W+Zqer+MKLVXzhMPlbtZYMw+rUAIAKZGm57N27t3r37n3cx2fPnq3LLrtMl1xyiSRp4sSJ+vjjj7Vw4UKNHTtWkrR48eJKySpJNlt4/RA8nCfccqFqYHwhlBhfVVxKijxXXyPP1dfItnePXAvfkPt/r8uxaYMckx9X7OTH5W92uoovGirPhUPlb92mwosmYwyhxPhCKEXy+LK0XP4Rj8ejrVu36sYbbyzZZrPZ1L17d23YsKHS8zgcNqWmxlX6856M5GTOKUXoML4QSoyvaiD1DKnNXdI9d0k7d0rz50vz58u+bp1innxMMU8+JjVvLo0YEby1b1+hRZMxhlBifCGUInF8hW25zMzMlN/vV40aNUptT01N1U8//XTSn+e6667Tpk2bVFhYqF69emnatGlq0aJFmfP4fAHl5BSW+eNCyWYzlJwcq8zMfAUCnMeCisX4QigxvqqppFrSn8dLfx4v248/yLVkkdxLFsmxYZ300EPSQw/J36SZii8KHl7rb3fqRZMxhlBifCGUwnV8JSREy+n849MOw7ZcHo9pmjLK8INm2rRpFfbc4fSf+1uBgBm22RD5GF8IJcZX9RVo2Fi+8bepYPxtsv30o9xvLpb7zYVyrl+nmKeeUMxTT8hfv4GKLxgkzwWD5e3aXXKU/dcWxhhCifGFUIrE8RW2lyJJTk6W3W7XwYMHS23PyMg4ajYTAABErkCjxiocf6uy3v1Y6V9uVt69D8jbuYtsu3cpZvrzSho2WKmtmyl+/PVyvfWmlJ9vdWQAwDGEbbl0uVxq3bq1Vq1aVbItEAho9erV6tChg3XBAABAyAQaNlLhzbco6633lb7pW+U+MUXF554nIz9fUa+/psQxV6lGyyZKGHW53K+9IuN3f4QGAFjH0sNi8/Pz9fPPP5fc37Vrl7Zt26YaNWqoZs2aGjNmjO644w61bt1a7dq105w5c1RUVKShQ4damBoAAFQGs1YtFV09WkVXj5aRlyvnRx/IvWypXO+/K/c7y+R+Z5lMm03es7vKM2CQPP3Pl//05lziBAAsYpimdVc0XrNmjUaNGnXU9vHjx5dc9/KVV17RzJkzdeDAAbVs2VL33HOP2rVrV9lR5fX6lZVVUOnP+0dsNkOpqXFKT8+LuOOxEf4YXwglxhfKxeORc+Wncr+9VK53lsm+b2/JQ/5GjVXc/3z5zr9ACUMGKD3PyxhDheN7GEIpXMdXUlLMCRf0sbRcRhLKJaobxhdCifGFChMIyLFhnVzvvS3X++/JuXnjkcdiY+Xp1UfF554vz7nnKVCnrnU5UaXwPQyhFK7ji3JZgSiXqG4YXwglxhdCxbZvr1wfvCf3B+/KtWJ5qcV/vG3aydP/PHnOPV++M8+S7H/8SxJwPHwPQyiF6/iiXFYgyiWqG8YXQonxhVCz2QylxjmV8+Y7crz3jtzvvyv7jz+UPB5ISZGnVx95+/xJnj79FKhbz8K0iDR8D0Mohev4olxWIMolqhvGF0KJ8YVQO2qMmabsO7+T6/135frgXTk/XyXD6y3Z35fWQp4+f5Knbz95u/aQYmIsTI9wx/cwhFK4jq+TKZeWrhYLAABQKQxD/tObq/D05iq8cbyUlyfX6s/k/PgjuZZ/KMc32+X4ZrtiXnhGptstb5fu8vQNzmr6W7VmBVoAOAmUSwAAUP3ExcnTf4A8/QcoX5Ltl5/lWrFcruUfyvnJx3J9slyuT5ZLEyX/abXk7dMveBhtz14cQgsAx8FhsSeJw2JR3TC+EEqML4RaucaY3y/H+q/kOjyrue5LGX5/ycO+ZqfL27O3POf0krf7OTJr1Kjg9Ah3fA9DKIXr+OKwWAAAgLKy2+U762z5zjpbBX+7U0Z2lpyffSrXZyvk/OyT4CG0O79T9JyZkiRfqzbBotmzt7zdustMSLT4BQCANSiXAAAAf8BMTJJn0BB5Bg2RJBn798u16lM5P/tErk9XyPH1Fjm+3iK98KxMm02+9h2CM5s9zpHv7C4y4+ItfgUAUDk4LPYkcVgsqhvGF0KJ8YVQq8wxZvvlZzlXfirXp8GZTfvePSWPmXa7fG3bydu1h7xdu8vbpZvM1NSQ5kHo8T0MoRSu44tLkVQgyiWqG8YXQonxhVCzbIyZpuzffyfnZ5/KufITOT9fLfu+vaV28aW1OFQ2u8nbrQcLBEUgvochlMJ1fHHOJQAAQGUyDPmbNZe/WXMVXXOtZJqy/fiDnGtWy7l6pVyrV5Zc9uTwOZv+ho2Cs5pdu8vbrbv8TU/n0icAIhLlEgAAIFQMQ4EmTVXcpKmKL79KkmTbt1fOz1fJuXqlnJ+vlmPbVtl//klRr78mSQqkpsp71tnyHlpUyNvhTCk21spXAQAnhXIJAABQiQK166j44ktUfPElkiQjM0POL9YcKpsr5di8Se5335b73bclHTpvs3Vb+c7qHCydnbso0LARs5sAwg7lEgAAwEJmcoo8518gz/kXBDcUFcmxcYOcX34h59o1cnz5hZybNsi5aYOiZ02XJAVqnlYyu+nt3EW+9h2k6GjrXgQAiHIJAAAQXqKi5OvSVb4uXVUoBc/b/OVnOdeukfPLL+T4cq0cWzbJ/fZSud9eKkkyHQ75WrSSr+OZ8nXsJG+HM+Vv0VJy8KsegMrDdxwAAIBwZhgKNGyk4oaNVHzJpcFt+flyblwfnNVcu0bOdV/JuWWTnFs2SS+/KEkyo6Pla9NO3kOF09fxTPmbNONwWgAhQ7kEAACINLGx8nbvKW/3nkdmN/fslmP9Ojk3rJNj/VdybFgfLJ5r15R8WCAxSb72HeXreKa8Hc6Ur+OZCtSpS+EEUCEolwAAAJHOMBSoV1+eevXlGXxhcFsgIPv3Ow8VzXVyrl8nx5ZNcn2yXK5Plpd8aCA1Vb427eRr10G+tu3ka9suOMNps1n0YgBEKsolAABAVWSzyX96c/lPb67iEZcHt3m9cmz/Wo716+TYsE6OjRvk2P61XCuWy7XiN4UzNk7+Nm3lbdtOvrbt5WvTTv60FpLLZdGLARAJKJcAAADVhdMZLItt20ujxgS3eTyyf7Ndzs0b5di8UY7Nm+TYslnONavlXLO65ENNlyu4aFDbdsGy2aq1fC1byUxKtujFAAg3lEsAAIDqzOWSv207+du2k3R1cFsgIPsPO+XYdKhsbt4ox5ZNJZdE+S1/3XrytWwlf8tg2fS1aiN/8zOY5QSqIcolAAAASrPZ5G/WXP5mzVU8dHhwm2nKtndPsHBu3Sz7tq/l+HqL7N/vlHvPbunD90s+3HQ45D+9+ZHS2aq1fC1bK1C/AYsHAVUY5RIAAAAnZhgK1K0nT9168gwYeGR7YaEcO76R/eutchwunNu+lmP7Njm2b5MWvlGyayA+Qf4WLeU7I03+5mnyp6XJ1zwtWDpZQAiIeJRLAAAAnLro6OBKs+06qPg3m430dDm2bZVj29ZDxXOrHNu3HXV5FEkyY2LkO/0M+ZufIX9aC/map8l/Rpr8jZtITmflvh4Ap4xyCQAAgApnpqbK27OXvD17HdkYCMj280/Bmc5vv5X92+1yfPuN7Du+Peb5nKbTKX/TZvKf0UK+5ofKZ7PT5W/aTGZCYuW+IAAnRLkEAABA5bDZFGjcRJ7GTaT+A45sN03Z9u+T/dtvjhTOb7+R49tv5PhmuxzfbJf7d58qUKOm/M1Ol69ps0OFM1g6/U2aStHRlfqyAARRLgEAAGAtw1Cgdh0FateRt1ef0g9lpMv+7bdyfLtd9p3fyf79d8G3P/141OVSDvPXqx8sm82aBQvnodlOf4NGrGILhBDlEgAAAGHLTEmVr2s3+bp2K/2AzyfbLz8HL5my81Dh/H6n7N/vDG7fvUv69OPSn8tmU6BeffkbNpK/UWMFGjWWv+TWRGZqKqvZAuVAuQQAAEDkcTgUaNJUgSZN5e3Xv/RjRUWy//TjbwrnofL580+y7fpF9l9+llZ+etSnDMTGHSmcDRvJ3/hwAW0if4OGUlRUJb04IDJRLgEAAFC1REXJn9ZC/rQWRz9WXCz7rp9l++lH2X/8MVhCD91sP/0ox9db5Ph6yzE/baDmafLXr69Ag4bS6U0VlVpLvnoNFKhfX/56DWSmpDDziWqNcgkAAIDqw+2Wv1lz+Zs1l/f3j5mmjIwM2X8+UjaPlM+fZNuzS84Dv0rr10mSYn//4TEx8terr0D9BvLXbxA8BLd+g+D9OnUVqFOX2U9UaZRLAAAAQJIMQ2ZqqnypqfJ17HT0436/bL/ul2PPLiVmH1T+19/KtusX2Xbvkv2X4FvHjm+lHd8e9ykCyckK1K6rQO3awcJZu44CJW/ryF+7rswaNSSbLYQvFAgNyiUAAABwMux2BerUla9ePSk1TkXpeQoEzFK7GLk5su3eHTz0dtcu2Xfvku2Xn2Xbu0e2fXtl37dXjm1bpW1bj/s0psOhQK3aJcXTX/vQ+6fVklmzpgI1T1PgtFoKpNaQnM5Qv2rgpFEuAQAAgApixifI3yJB/hYtj7ODKSM7S7a9e4OFc/8+2ffuCd7ft0e2ffuC2/fsDq54ewKBlJQjZfNw8Tx0M0878n6gRk2KKEKOcgkAAABUFsOQmZQsf1Ky/C1bHX8/r1e2A78Gi+bevbLt3xu8f+BA8O2v+0ved3yzXfpm+wmfOpCYpEBKisyUVAVSU2Umpyhw+P2U1OD7KakyU4LbzeRkyW6vwBePqo5yCQAAAIQbp1OBuvUUqFvvj/czTRl5uSVl0zjwq2y//irbgf1HFVEjI0OOH76Xfvj+pCKYhiEzKelQ0UwJFtOERAWSkmQmJMpMTDryflKSAofemomJMuPiOW+0GqJcAgAAAJHKMIKH4sYnyN+s+Yn3LyqSLTNDRnq6bBnppd43Mg5ty8iQkZFx6P10OXZ+V+ZYps0mMyFBZsKhApqYGCyhcXGHbvEK/Ob94O239w+9HxsnOagskYL/KQAAAKC6iIoKXhKlTl35T/ZjCguD5TMrS7bsLBnZ2cHzRku9H3xrZGeXet/+84+y/1y+yGZ0tMzYYNkMxMVL0dEyo2NkRkcFH4uOCW6Liv7N/ahD+xzaNypKijl0PypapssluVwyXW7J5ZTpDN6nyJYP/3oAAAAAji86WoF69aV69U++kB7m9crIyZEtOzNYRPPyDt1yj7yf/5v38/Jky8uVkXtoW/6hfXOyZTt4QKE+A9S02YKl0+kKlk6XW3K6ZLqcwbdu16H7Lslml+w2mXZ78NxUW/Bt8L7td/ftx97/8KHDhhG8SZLLKV0/TkqpE+JXW/EolwAAAABCw+mUmZoqf2pq+T+XxxMsmkVFMgoLpMLgW6OwUEZRoYzCQqkw+Lb0tgIZv9lXRYUyPB4ZHo/k9cgoPvTW4wk+h8cTLMUFBTKysmT4y1ypy89bJP37wcp/3nKiXAIAAAAIfy6XzJRUmSfes2L5/cGy6SmWPF4ZXo9UXCwj4Jf8geDjfv+h+4dvgd/d/+3jhz4m4JdhmtLhmxRcoMnhUPywIVKgsl9o+VEuAQAAAOB4Dh3GakZFSVLIy63NZkjJcVJ6XoifqeKxPjAAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwM0zRNq0NEgkDAlN8fsDrGUZxOu7xev9UxUEUxvhBKjC+EGmMMocT4QiiF4/iy222y2Yw/3IdyCQAAAAAoNw6LBQAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+UyzM2dO1f9+vVT27Ztdemll2rTpk1/uP/bb7+tAQMGqG3bthoyZIg++eSTSkqKSFSW8bVjxw5NmDBB/fr1U1paml555ZVKTIpIVJbx9frrr+vKK69U586ddfbZZ+vaa6/V5s2bKzEtIlFZxtgHH3ygSy65RGeddZY6dOigiy66SIsWLaq8sIg4Zf0d7LBp06YpLS1NjzzySIgTIpKVZXwtWLBAaWlppW5t27atxLQnj3IZxpYtW6ZJkybp5ptv1sKFC5WWlqZx48YpIyPjmPuvX79et99+u4YPH65Fixbp3HPP1U033aSdO3dWcnJEgrKOr8LCQtWvX1+33367atasWclpEWnKOr7WrFmjQYMG6aWXXtJrr72mWrVq6dprr9Wvv/5ayckRKco6xhITE3X99dfrv//9r5YsWaLhw4fr7rvv1qpVqyo5OSJBWcfXYVu3btW8efOUlpZWSUkRiU5lfCUlJemzzz4ruS1fvrwSE5eBibA1fPhw8/777y+57/f7zZ49e5ozZsw45v633nqref3115faNmLECHPixIkhzYnIVNbx9Vt9+/Y1X3755VDGQ4Qrz/gyTdP0+Xxmx44dzSVLloQqIiJceceYaZrmxRdfbE6dOjUU8RDhTmV8FRQUmBdccIH5ySefmCNHjjQffvjhyoiKCFTW8fXGG2+YZ599dmXFKxdmLsOUx+PR1q1b1aNHj5JtNptN3bt314YNG475MRs2bCi1vyT17NnzuPuj+jqV8QWcrIoYX4WFhfL5fEpMTAxRSkSy8o4x0zS1evVq/fDDD+rUqVMIkyISner4evjhh9WlSxedc845lZASkepUx1deXp769Omj3r1766abbtJ3331XCWnLzmF1ABxbZmam/H6/atSoUWp7amqqfvrpp2N+zMGDB5WamnrU/gcOHAhZTkSmUxlfwMmqiPH1xBNPqE6dOuratWsoIiLCneoYy83NVa9eveTxeGSz2TRx4kR169Yt1HERYU5lfC1fvlyff/455/HihE5lfDVt2lSTJk3SGWecoZycHM2aNUtXXHGFli5dqlq1alVG7JNGuYwwpmnKMIzjPn6sx/5of+C3TjS+gPI42fE1ffp0LVu2TC+//LJcLlclJENVcaIxFhsbq0WLFqmgoECrV6/WQw89pIYNG+qss86qxJSIVMcbXxkZGbrnnnv0zDPPKDo62oJkqAr+6PtXhw4d1KFDh5L7HTt21MCBAzV//nyNHz++khKeHMplmEpOTpbdbtfBgwdLbc/IyDjqLx2H1ahR46j909PTj7s/qq9TGV/AySrP+Jo5c6ZeeOEFzZ49W2eccUYoYyKCneoYs9lsatSokSSpZcuW2rlzp6ZNm0a5RCllHV87duzQgQMHdMUVV5Rs8/v9Wrt2rV555RVWvkYpFfE7mNPpVMuWLcPyaDPOuQxTLpdLrVu3LrWKXSAQ0OrVq0v95eK3OnTooJUrV5batmrVquPuj+rrVMYXcLJOdXzNmDFDzz77rGbMmBG2S6wjPFTU9zDTNOXxeEKQEJGsrOOrbdu2evPNN7Vo0aKSW5s2bTR06FAtWLCgEpMjElTE9y+/368dO3aE5er9zFyGsTFjxuiOO+5Q69at1a5dO82ZM0dFRUUaOnSoJOmOO+5QrVq1dPvtt0uSRo0apZEjR2rWrFnq3bu3li1bpi1btujBBx+08mUgTJV1fHk8npLL2ng8Hu3fv1/btm1TYmKi6tata9nrQHgq6/iaPn26nn76aT3xxBOqV69eybniMTExio2Ntex1IHyVdYxNmzZNrVq1UqNGjeTxePTpp59q8eLFuv/++618GQhTZRlfMTExRx1pERMTo6SkJDVv3tyK+AhzZf3+9Z///EcdOnRQo0aNlJOTo5kzZ2rPnj0aPny4lS/jmCiXYWzgwIHKyMjQlClTdODAAbVs2VIzZsxQSkqKJGnv3r2y2Y5MPp955pl64okn9NRTT+nJJ59U48aN9cwzz6hZs2ZWvQSEsbKOr19//VUXX3xxyf1p06Zp2rRpGjp0qB5++OHKjo8wV9bx9dprr8nr9eqWW24p9XnGjx+vCRMmVGp2RIayjrGioiLdf//92rdvn6KiotS0aVM99thjGjhwoFUvAWGsrOMLKIuyjq+cnBzdc889OnDggBITE9WmTRv997//VdOmTa16CcdlmKZpWh0CAAAAABDZ+JMLAAAAAKDcKJcAAAAAgHKjXAIAAAAAyo1yCQAAAAAoN8olAAAAAKDcKJcAAAAAgHKjXAIAAAAAys1hdQAAAMLN1KlT9Z///Oeo7d26ddOLL75Y+YEAAIgAlEsAAI4hPj5eM2bMOGobAAA4NsolAADHYLfb1aFDhxPuV1RUpKioqNAHAgAgzHHOJQAAJ2nXrl1KS0vTkiVLdMcdd+iss87SDTfcIEnKysrSv//9b3Xv3l1t27bV5Zdfro0bN5b6+JycHN1+++3q0KGDevbsqeeee06PPPKI+vXrV7LP1KlT1aVLl6OeOy0tTa+88kqpbfPnz9egQYPUpk0b9e3bV9OnTy/1+J133qlhw4Zp5cqVGjJkiDp06KArrrhCO3bsKLWf3+/XCy+8oPPPP19t2rRRr169dOedd0qS5s6dq44dOyo/P7/Ux3z++edKS0vT9u3by/ivCACoqpi5BADgOHw+X6n7pmlKkh599FH1799fTz/9tGw2mzwej8aMGaOcnBzdcccdSklJ0WuvvabRo0frvffeU82aNSVJd911l7744gvdfffdqlGjhmbNmqWff/5ZDkfZfxzPmDFDkydP1rhx43T22Wdr69atevrppxUdHa2RI0eW7Ld37149+uijuvHGG+V2u/Xoo4/qtttu09KlS2UYhiTp3//+txYvXqyxY8fq7LPPVnZ2tt555x1J0pAhQ/TII4/o3Xff1bBhw0o+78KFC9W6dWu1aNGizNkBAFUT5RIAgGPIyspS69atS2174IEHJEnt27fXvffeW7J9/vz52rFjh5YuXarGjRtLkrp3764BAwZo1qxZ+sc//qEdO3bogw8+0OTJkzVw4EBJUpcuXdS3b1/FxcWVKVteXp6eeeYZ3XjjjRo/frwkqUePHiosLNRzzz2nK664Qna7XZKUnZ2t1157rSSXaZq6+eab9f3336tZs2bauXOn/ve//+mf//ynRo0aVfIchzMmJCTovPPO04IFC0rKZX5+vt577z3dfvvtZcoNAKjaKJcAABxDfHy8Zs+eXWqby+WSJPXp06fU9tWrV6t169aqX79+qdnOzp07a8uWLZKkzZs3S1KpQ2BjY2PVvXt3bdq0qUzZ1q9fr4KCAg0YMKDU83Xt2lXPPvus9u3bp3r16kmS6tWrV1IsJalZs2aSpP3796tZs2Zas2aNJJWalfy94cOHa/To0frll1/UoEEDvf322/L5fBo8eHCZcgMAqjbKJQAAx2C329W2bdtS23bt2iVJSk1NLbU9MzNTGzZsOGqmU5IaNmwoSTp48KBiY2OPWvzn95/rZGRmZkqSBg0adMzH9+7dW1Iuf7/CrdPplCQVFxdLCs7QxsTE/OHsaZcuXdSgQQMtWLBAt956qxYsWKA//elPSkpKKnN2AEDVRbkEAKCMDp+reFhiYqLatGmj++6776h9D8921qhRQ/n5+UetLpuenl5qf7fbLa/XW2pbdnb2Uc8nSS+88MIxy2mTJk1O+rUkJSWpoKBAeXl5xy2YhmHokksu0euvv66LLrpIX3311VGLBwEAQLkEAKCcunXrppUrV6pu3brHnYk8PAv60UcflZzPmJ+fr1WrVpUqdbVq1VJ+fr7279+vWrVqSZJWrlxZ6nN17NhRUVFR+vXXX486RLesunbtKklatGhRqYWAfm/o0KGaMmWK7r77btWqVUs9evQo1/MCAKoeyiUAAOV08cUXa968ebr66qt17bXXqkGDBsrKytKmTZtUs2ZNjR49Ws2bN1e/fv103333KS8vTzVr1tTMmTOPOkz2nHPOUVRUlO6++26NGTNGu3bt0rx580rtk5CQoPHjx+vBBx/U7t271blzZwUCAf34449as2aNnnnmmZPO3rRpU1122WV6+OGHlZ6ers6dOysnJ0fvvvuuJk+eXLJfrVq1dM455+jjjz/W9ddfX7JgEAAAh1EuAQAoJ7fbrZdeeklPP/20pk6dqvT0dKWkpKhdu3alFvB5+OGHdd999+mhhx5STEyMrrzySrVt21bvvvtuyT4pKSmaMmWKHn30Ud18881q3bq1nnjiiZLZzsP+/Oc/67TTTtOcOXM0e/Zsud1uNW7c+Kj9Tsa9996runXrav78+Zo+fbpSUlKOOTN57rnn6uOPP/7DxX8AANWXYR6+aBcAAKh0h68h+dFHH1kd5YRuvfVWHThwQK+++qrVUQAAYYiZSwAA8Ie++eYbbdmyRe+//76efPJJq+MAAMIU5RIAAPyhG2+8UZmZmbryyis1YMAAq+MAAMIUh8UCAAAAAMrNZnUAAAAAAEDko1wCAAAAAMqNcgkAAAAAKDfKJQAAAACg3CiXAAAAAIByo1wCAAAAAMqNcgkAAAAAKLf/Bwz5f80svhilAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wb9f3H8dfdSbIs75m9ExLIYIUVwmggrDDKKoRRZtlltGVDC20ppfxoKbtll1KglE3Ye4UZsglkO8uO99a48fvjdKfTsGMnTuKEz7OPPrCl0+ksK4nf/ny+n69iWZaFEEIIIYQQQgixCdStfQFCCCGEEEIIIbZ9Ei6FEEIIIYQQQmwyCZdCCCGEEEIIITaZhEshhBBCCCGEEJtMwqUQQgghhBBCiE0m4VIIIYQQQgghxCaTcCmEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohxDbOsiymTJnC6NGjWblyZdr9X3zxBaNHj3b/P3HiRE488UTeeeedjOebP38+e+yxBy0tLRnvv+iiixg9ejT//ve/k24/77zzuPfee7t0zWvWrOHKK6/kwAMPZPz48RxwwAFceOGFfPXVV116fE/75JNPeOyxx7bKc2+Ka665Jul76/z/+uuv36rX89vf/jbtvuOOO45rrrlmK1xV9z3//POMHj2a1tZWAFavXs3o0aN5//33N/tzv//++4wePZrVq1dv9ucSQoieJuFSCCG2cd9++y1r1qwBYMaMGR0e93//938888wz3HHHHRQWFnLJJZdkDHN33nknJ598Mrm5uWn3ffLJJ8yZMyfj+c877zwee+wxmpqaOr3exsZGTjrpJJYsWcKvfvUrHnzwQS699FJUVeXbb7/t9LGby6effsq//vWvrfLcm2r48OE888wzSf+/4IILtuo1Pf/881RVVW3Va+hJ5eXlPPPMM+y+++5b+1KEEKJX823tCxBCCLFpZsyYQSgUYtSoUcyYMYOLLroo43GjR49mhx12AGDPPffkwAMP5OWXX2aPPfZwj1mxYgUff/wxN9xwQ9rjY7EYt9xyC5dffnnG+ydOnEhhYSEvvfQSp59+eofX++abb1JTU8NLL71ESUmJe/vxxx+PZVld/rq3BsMwMAyDQCCwtS/FlZ2dzS677NKlY8PhMMFgcLNez8iRI6mvr+ehhx7aLBXULfE1pAoEAl1+jYUQ4sdMKpdCCLENMwyDN954gylTpnD88cezZMkSFi1atMHHZWdnM3jwYNatW5d0+wsvvMDo0aMZOnRo2mP+9a9/EQwGOf744zs87yGHHMKLL77Y6XM3NTXh9/spKChIu09RFPfja665huOOO4533nmHww47jPHjxzN9+nSWLFmS9BjTNPnnP//J1KlTGTduHIceeigvvPBC2rnffvttTjjhBCZMmMBee+3FL37xC9asWcPdd9/NI488wpo1a9y2Uqd903sN06ZNY8KECcydO5e7776bvfbaK+05UtuFp0yZwm233cY///lPJk+ezO67786f//xnLMviww8/ZNq0aey6665cdNFFNDY2dvq6dZfTDv3xxx9zwQUXsOuuu/L73/8egEceeYTjjz+e3XffnUmTJnHBBRdkbKnu6DXrTFZWFmeeeSb//e9/qa2t7fTYmTNncuKJJzJ+/HgmTZrETTfd5LaidvY1OLfPnDmTCy+8kF122YVDDjmETz75BMMwuO2229hrr73Yb7/9ePTRR5Oe89tvv+WCCy5g8uTJ7LLLLhxzzDG8/PLLnV5nalus0zab6f+OrrwvLcvi7rvvZp999mHXXXflqquu6rAdXQghtgVSuRRCiG3Y559/Tk1NDUcccQS77747f/jDH5gxYwZjxozp9HGmaVJZWcnYsWPTzrfrrrumHV9dXc19993HAw88gKp2/HvJXXfdlYcffpjGxsaM4RFg7NixRKNRrrrqKs4++2x22mmnDs+5du1abr31Vi677DKCwSB3330355xzDm+99RZZWVkA/OEPf+DFF1/koosuYuzYsXz66adcd911FBYW8pOf/ASAF198kauvvppp06Zx0UUXYVkWn3/+OXV1dZx44omsWLGCL774gnvuuQeA4uJi9xrWrFnD7bffzkUXXURpaSkDBw7s5JVNN2PGDCZMmMCf/vQnFixYwJ133olpmnz99ddcdtllhMNh/vCHP3DHHXe44a+7dF1P+tznS/zzfv3113PcccdxxhlnuK9ZZWUlp512Gv3796elpYWnn36a6dOn8+abb5KXl7fB12zAgAGdXs8pp5zCQw89xKOPPspvfvObjMcsWbKEX/ziF0yaNIm7776bdevWcccdd7Bq1SoefvjhpGNTv4ZYLAbAb3/7W0466SROPfVUHnroIS699FKOOuooLMvijjvu4IMPPuDPf/4zu+66q1t5XLt2LbvtthvTp08nEAgwa9YsrrvuOlRV5cgjj+zS633ggQfyzDPPuJ8bhsF1112XdExX3pf/+te/uPfeezn//POZOHEib7/9NrfffnuXrkEIIXojCZdCCLENe/XVV8nPz2e//fYjEAgwadIkZsyYwa9+9aukKiDYgVLXdZqamnjwwQdpb2/n5z//uXu/ZVksXLiQo48+Ou15br/9diZPnpzUQpvJmDFjsCyL+fPns++++2Y8Zp999uHMM8/k8ccfZ8aMGeTk5LDvvvsyffp0Jk2alHRsfX099913H7vtthtgB9OpU6fy/PPPM336dFauXMlTTz3FrbfeyrHHHgvApEmTqK6u5p577uEnP/kJpmlyxx13MHXqVP7617+65z7ooIPcj8vLyztsfWxoaOCxxx5jxx137PRr70hWVhZ///vf0TSN/fffn3fffZd///vfvPnmmwwaNAiARYsW8eKLL25UuFywYEHaLwneeust9+PDDjuMyy+/POl+bxAyDIN9992XffbZh3fffZef/vSnXXrNOpObm8vpp5/Oo48+yi9+8YuMv2i499576d+/P/fffz+apgFQUFDAFVdcwbfffpv0S47Ur+GLL74A4JhjjuHcc88FoG/fvkybNo3ly5e762cnTZrE66+/zttvv+1+b6dNm+aex7Is9thjD6qqqvjvf//b5XBZXFyc9AuIv/zlL6xfv57//ve/AF16XxqGwYMPPshJJ53EFVdcAcB+++3HWWedtV2tVxVC/LhIuBRCiG1UNBrlnXfe4eCDD3bXAE6bNo2rrrqK2bNnp1UgjznmGPdjVVW5++67GT58uHtbY2Mj0WiUoqKipMd9++23vPnmm7z22msbvCbnsdXV1Z0ed+2113LKKafwzjvv8NVXX/Hxxx/z9ttv87vf/Y7p06e7x5WUlLjBEmDAgAGMHTuWuXPnMn36dGbOnImqqkydOjWperfPPvswY8YMDMNgxYoVrF+/nuOOO26D159Jnz59NjpYgr2+1QlPAEOGDKGxsdENls5tdXV1RKPRbq/nHDFiBLfddlvSbf369aOyshKwq2ypZs+ezd///ncWLlxIQ0ODe/vy5cvd/27Kawbw85//nEcffZQnnniCSy65JO3+uXPncuihhya9Noceeig+n49vvvkm6f2b6WsA2Hvvvd2PBw8enHabqqoMGjQoKaw1NjZy99138+6771JVVYVhGID9fd4Yr732Go888gh//etfGTVqFECX3pfr1q2juro6LbBPnTqVzz77bKOuRQghtjYJl0IIsY366KOPaGpq4oADDnAntO61114EAgFmzJiRFi7/9re/MWjQINatW8edd97Jtddey/jx490fqiORCEBauPnTn/7ESSedRF5eXtIk2HA4THNzs9tG6X1sNBrd4PUPGTKEc845h3POOYe6ujrOOecc/va3v3HyySe7VVfvwB9HSUmJG17r6+sxDKPDKZ7V1dXU19cDUFZWtsFryqS0tHSjHufIz89P+tzv9ye9Zs5tlmURi8W6HS6DwSDjx4/v8P7U13Dt2rWcffbZTJgwgZtvvpny8nL8fj/nn3+++33b1NcM7Crk9OnTeeKJJzjrrLPS7q+urk57bTVNo7CwMG39aab3ASS/ts7rlun19r4fr7nmGubMmcNFF13EiBEjyM3N5amnnuLdd9/t3heIXXG+7rrrOOusszjiiCPc27vyvqypqcn4tXX0tQohxLZAwqUQQmyjXn31VQAuu+yytPtef/11rr322qSq0MiRI9lhhx0YP348Y8aM4YgjjuC+++7j5ptvBhJVx9StRJYvX87cuXN5/PHHk26//fbb+etf/8rChQvd25qbmwE6XG/ZkeLiYo477jj++Mc/Ultb64aOTANhamtrGTlypPs8Pp+Pp556Kq0N2DmvMyBmQ9XU7vCu+3P09ECenpL6unz88ceEw2Huu+8+QqEQYK/Z9F5/VyvQG3L22Wfz73//m//85z9p95WVlaV9fw3DoKGhIe39k+l7uzEikQgffvghN954Y1KFPNP1bUhDQwOXXHIJO++8c9q60q68L52KZuprsKEhSEII0ZtJuBRCiG1Qa2srH3zwAUceeSQ/+9nPku777rvvuPXWW/niiy/S1jA6Bg8ezIknnshzzz3HpZdeSklJCYFAgP79+6dt3v7AAw+4rYOOn//855x++ukccsghSbc7j800bdZRV1eXtF7NsXLlSgKBQFJVr7a2llmzZrmtsWvXrmXhwoVuu+bee++NYRg0Nzd3uMZz2LBh9OnThxdffJEpU6ZkPMbv97uV267o06cPra2tVFVVuZXfTz/9tMuP35rC4TCqqiYN/Xn99deT2je78pp1RUlJCSeeeCKPPfYYhYWFSfftvPPOvPPOO/zqV79yfwny1ltvoev6ZttPMhqNpm0l09LSwnvvvdet8xiGwa9+9SsMw+Bvf/tb0i9xoGvvy379+lFWVsa7777L/vvv797+9ttvd+tahBCiN5FwKYQQ26B3333XHciz8847J9232267cf/99/Pqq692GC4Bzj33XJ599lmeeOIJd1jKbrvtxoIFC5KOmzhxYsbHDx06lD333DPptvnz55OXl+euPcvkhRde4JVXXuGnP/0po0ePRtd1Zs6cyX/+8x+mT5/uTjQFu4J21VVXudNi77rrLrfKCTB8+HBOPvlkfvWrX3HOOecwfvx4IpEIixcvZsWKFdxyyy2oqsqVV17Jb37zG379619z5JFHoigKn3/+OdOmTWP8+PEMHz6cmpoann/+eUaNGkVRUVGnU2H3228/gsGg2xK5evVqnn766Q6P3xhTpkxhzz335M9//nOPntcJPtdeey0nnHACixcv5pFHHklqJ+3Ka9ZV5557Lk8//TQ1NTVJj7vwwgs59thjufjii5k+fTqVlZX83//9H5MnT844sbgn5OXlMX78eO69915yc3NRVZV//vOf5ObmdmsLkAcffJBPP/2UG2+8kYqKCioqKtz7dtllly69LzVN49xzz+W2226jqKiIiRMn8tZbb7F06dLN8aULIcQWIeFSCCG2QTNmzGDo0KFpwRLsKtzhhx/OjBkzuOmmmzo8x4ABAzjqqKN46qmnOO+88wiFQkydOpVrr712ozeq//jjj5k6dWqn25UccMABrF69mv/+97+sW7cOTdMYPHgwN9xwQ1oVtn///lxwwQXccccdrFmzhnHjxnHHHXckBdDf/e53DB06lGeffZa77rqL3NxcRo4cyQknnOAec9RRR5GVlcUDDzzApZdeSigUYuedd3YrqIcffjhffPEFt99+O3V1dRx77LGdhrri4mLuuusu/vKXv3DxxRczduxY7rjjjqR1d5uqvb09Y4V3U40ePZpbb72Ve+65h7fffpsxY8bw97//3Z1Y6tjQa9ZVffv25dhjj3UnqTpGjRrFgw8+yF//+lcuueQScnNzmTZtGldeeeUmf42dueOOO7jxxhu5+uqrKSws5NRTTyUcDiftT7ohK1asAOztRlJ9//33QNfel2eccQYNDQ08/fTTPP7440yZMsUN9UIIsS1SLMuytvZFCCGE6B2i0SgHHHAAv/3tbzn88MO79djm5mYmTZrEo48+2mG1szuuueYafvjhB55//vlNPte2ZtWqVRxyyCG89dZbSVNlhRBCiN6s418tCyGE+NEJBAKcc8457j6B3fHUU0+xyy679Eiw/LH79ttvOfjggyVYCiGE2KZIW6wQQogkp512WsZtRjYkNzeX66+/fjNe2Y/H0UcfzdFHH721L0MIIYToFmmLFUIIIYQQQgixyaQtVgghhBBCCCHEJpNwKYQQQgghhBBik0m4FEIIIYQQQgixyWSgTxeZpoVhmFv7MtL4fCq63vuuS2wf5P0lNid5f4nNTd5jYnOS95fYnHrj+0vTVFRV6fQYCZddZBgmDQ1tW/sykqiqQklJLk1N7ZimzGUSPUveX2JzkveX2NzkPSY2J3l/ic2pt76/CgtDqKrW6THSFiuEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohhBBCCCGE2GSy5lIIIYQQQvxoWJaFaRpYm7CUTVUVotEouq73qjVxYvuwNd5figKqqqEonQ/s2RAJl0IIIYQQYrtnWRYtLY20tjYBm/4De02Nimn2rmmeYvuxdd5fCjk5+eTmFmx0yJRwKYQQQgghtntOsMzPLyYQyAI2sULjU9B1qVqKzWPLv78sotEITU11AOTlFW7UWSRcCiGEEEKI7ZplWW6wDIVye+ScPp8KSOVSbB5b4/3l8/kBaGqq2+jqpQz0EUIIIYQQ2zXTNAArXrEUQnTE/jNixf/MdJ+ESyGEEEIIsV1LDO/ZtFZYIbZ/9p+RjR14JeFSCCGEEEIIIcQmk3AphBBCCCGEEGKTSbgUQgghhBDiR2DWrK+ZPHkibW1tnR53wglH8dxzz2yhq+q9Hn74H5xzzulb+zK2KRIuhRBCCCGE6IVuueUmJk+eyN/+9pe0+26++QYmT57IPffcudHnf+21V5g27aC02x988F9Mm3aM+/nkyRP59NOPN/p5tgWZvsbp00/nr3+9e7M/9yWXnLdJ38feRMKlEEIIIYQQvVR5eR/efvtNotGoe1trawsff/wB5eV9NstzFhUVEQwGN8u5N1UsFttizxUKhSgoKNxiz7c9kH0uhRBCCCGE6KV22mksy5cv45NPPmLKlIMBeOedt9hhhzGoanKdaPLkidx229/Yd9/9AGhra+OQQ/bnrrseYLfdJiYdO2vW1/zpTze7jwM466xfcM4553PCCUcxffppHH/8SZxwwlEAXH31FQD07duP//3vFVatquCee/7GwoULCIfDDB8+gosuuoydd94l6Xp+85tr+fDD95gzZzbl5eVcdtmv2Wefye4xy5Yt4Z57/s7cud+Sk5PDPvtM5pJLriA3196P9JJLzmPkyB0Ai7feeoOxY8dx++1/z/havfzyCzz11BNUVVXSv/8Apk8/nWnTjgbsUHrXXX/lww/fo6WlmZKSMk46aTonnHByh1/jww//g88++4SHH34CsCvJ7e1tjBgxiueeewbDMDn99LM44YST+Pvf/4+3336TgoICLr/8Svd7oOs6f/nLLcya9TV1dXX069ePk046laOPPtY95+zZs5g9exZPP/1vAJ599mUGDRq4wdemN5JwKYQQQgghfpReeLKSRfNaN+qxitL97RrGjM/h2FP7dvu5jjjiKF577WU3XL722iscddRPeeONGd0+l2P8+J259NJf89hjD/HEE/b6yuzsUNpxDz74L446aio33vh7Jk7cE1XVADu4Tpq0H+effzE+n5+XXnqeq666jGeeeYnCwkL38Q899AAXXXQpV1xxJS+//CLXX38VTz31PH369KW5uZlLL72Qn/70eC6//Ne0tbVz991/5ZZbbuLWW//PPceMGS9zwgkn8cADj3T49bz11us8+uiDXHHFVYwcOYrvvlvIbbf9kfz8fPbb70CeffZpPv30I/7wh9vo06cPa9euoampsdOvMZMvv/yC0tJy7rvvIb766kv+9re/8PXXX7LvvpN5+OEneO65Z/jDH37L88/PIBQKYRgGffr05Y9/vI38/AK+/fYb7rjjz/Tt248999ybyy77DatWVTBy5A6cdda5ABQWFnX5teltJFwKIYQQQgjRix122DQefvgf1NRU09rayrJlS5gy5eBNCpd+v5/c3FwUBUpKSjs8rqioCIDc3Lyk40aPHsPo0WPcz3/5yyv48MP3+OKLzzj00CPc2w8++FCOOMKuDF5yyeV8+eVMXnzxOc4//2Kee+4ZdtxxJ8499wL3+Kuuup5TTz2B+vo6ioqKARgyZCjnn39xp1/Pww//g1/+8lfsv/+BAPTvP4AffljESy89z377Hcj69ZUMGjSYCRN2RlEU+vbtt8GvMZPCwkIuvfRXqKrK4MFDefLJx8nKCnD88ScBcOaZv+B//3uGxYt/YOeddyErK4tzzjnffXz//gOYPXsW7733NnvuuTe5ubn4fD6CwWDScz/7bNdem95GwqUQQgghhPhR2pgqosPnU9F1swevpmMlJaVMnLgXr78+g+bmJg44YAqhUM4Wee6OtLW18fDD/2DmzE+oq6vFMAwikQhVVZVJx+2007ikz8eOHc+KFcsBWLJkMV999QVTp+6Xdv41a1a7AWrMmB07vZb29nbWrFnNLbf8jltvvdm9Xdd1N0Qedtg0Lr/8Yk455Xj23ntfJk/en91336PbX/fw4SOS2pELC4sYOnS45/NCNE2joaHOve255/7LjBkvU1W1jmg0SiwWY9ddd+/0eZYs+aFLr01vI+FSCCGEEEKIXm7atKN44IF7aGtr43e/+2PGYxRFwfL06uq6vtmu59577+Sbb77ioosuY8CAgWRlZfGb31yWNnBHUTJfJ9ihcL/9DsxYlSwrK3M/DgazO72W9nZ7a5Xrrvsdo0cnB1Gfz447Y8bsxLPPvsznn3/KV199wTXX/JqDDz6Eq6++YcNfbIbzeb+W1NsATNP+xcM777zJfff9nV/+8lfstNNYQqEcHn30n1RVVXX6PG1tbV16bXobCZdCCCGEEEL0cvvuuz+3334r2dmhDqtehYVF1NXVup8vWfJDp+f0+fwYxoarrz6fD9M0km6bN28O06Yd7bahNjU1UV2dHpgWLJjP1KmHuZ8vXDifSZPsatwOO4zm448/pF+//mhax+scN6S4uITS0jLWrl3DQQcd0uFxeXl5TJ16GFOnHsZee+3D739/I1deeR2qqmb8GnvCvHlz2HnnXfnpT493b1u1ahWBQMD93O/3pz336NGj+fDDTX9ttjTZikQIIYQQQohezufz8cwzL/D44/9xK3+pdt11d5577r8sWbKYefPm8OCD93V6zn79+tHa2sKsWV/T0NBAOBzOeFzfvv35+usvqa2toampCYCBAwfzwQfvsXjxD/zwwyJuuun6jINw3n33LV5//VUqKlZy331/p6JiJcccYwet4447kfr6Wn7/+xtYtGgha9asZubMT7jttlu689IAcOaZ5/Cvfz3Cc889Q0XFSpYsWcxLLz3PCy/8D4BnnnmSd999i4qKFaxcuYKPPvqAQYMGuy2umb7GnjBw4GAWLpzPV199TkXFSu699+9uW7Cjb9/+LFgwn8rKdTQ0NGCaJscff1KPvTZbkoRLIUSPaoo0MnPtp7Tr7Vv7UoQQQojtSk5ObqdrLS+55HIKC4u44IKzuP32P3H22ed1er7x43fmmGOO48Ybr+bIIw/myScf7/C8X3wxk+OOm8bZZ58K2AN8QqEQF1xwFtdddyU/+clBDB48JO2x55xzHm+88RpnnjmdDz98nz/84Tb69rXXupaVlXPffQ8TjUa5/PKL+PnPT+Lee+9KmjbbVT/96Qn8+tfX8PLLL3LGGSdz2WUX8N57b9O//wDAbq194onHOOec0zn//DNpbm7mj3/8S6dfY0845pjj2G+/A7nxxmu44IKzicVi7vYojunTTwPg1FNP4MgjD6aqqpLy8p57bbYkxbK6O0R52zFv3jxuuCHRR7148WKee+45dtyx80XBmcRiBg0NbT15eZtMVRVKSnKprW3BNLfbb6PYSjb2/TV7/SzmVs9h3wGTGVYwgvpwPSXZJZvxSnvO2lVhfljQSmO9jqrZr8GQEdmM2zVva1/adkf+/hKbm7zHhJeu69TUrKG0dEDG9XEbY0sO9NlWpe67Kbpua72/OvuzUlgYwu/vvEV3u15zOX78eF566SUA1qxZw+mnn75RwVII0XW6aQ8PMC2L72oX8k3VV0wdcij9cvtv5Svr3Jyvm3jh3+lrRb7+rJEBg4MUlfi3wlUJIYQQQmw7tutw6fXGG29w6KGHbu3LEGK7p1v2gnTTMmnX7Wp/m75xG1RvKZGIyVsvV9OqVXPkIaMZMCSIZcKieS18M7OJmR/Uc8Tx5Vv7MoUQQggherVevebyq6++4oILLmDy5MmMHj2a999/P+2YJ598kilTpjB+/Hh+9rOfMXfu3IzneuONNzj88MM39yUL8aNnuJVLEzPedW+Yvbtt6LP36lnbXkFspy8xd5zNyDE5jNoph4OOLMUfUJj1eROtLZtvnLsQQgixPfrkk6+lJfZHpleHy7a2NkaPHs1vf/vbjPe/9tpr3HrrrVx88cW88MILjB49mnPPPZe6urqk49asWUNdXR0TJkzYEpctxI+a7gmXFvFwafX8aO+eousWX3zUQMzfxJjxuaxqrnC/hlCOxq575aPHLOZ/27KVr1QIIYQQonfr1W2xBxxwAAcccECH9z/66KOcdNJJHH+8Pc745ptv5oMPPuCFF17gnHPOcY978803e6QlVlUzj33eWpzr6W3XJbYPG/v+MjFQFFBUQDFRFFj6QzOFgyIMGBzcDFe6aVYubSPcbjJ0p3xycu1fTK1sXsbQ/OH4NT8jRufw5ceN1FZF5c9aD5K/v8TmJu8x4SXvAyG6R1WVjfpz06vDZWei0SgLFizgwgsvdG9TVZVJkyYxe/bspGPfeOMNbrzxxk16Pp9PpaQkd5POsbkUFXU8klqITdXd91dObYBcK0h+fhArHGHJJ+3UfFXFktA6/nDXuF73D/ybi+zNpnfaJY9Irh1+5zZ+w9zGbzh4+MEMH9kPWEtzo9lr/w7YlsnfX2Jzk/eYAPvnxpoaFZ9Pwefruca9njyXEKm2zvtLQVVViopCBAKBbj96mw2X9fX1GIZBaWlp0u0lJSWsXLnS/Xzt2rXU1dUxfvz4TXo+XTdpaupd+/apqkJRUQ719a0yZl30uI19f9U1NtPSFmbN6ibeequChWuaKcOioT7GnFk1DB6WvRmvuntM02L2Vw2oKpT2V/i+yd482qf60E2dORXfsU+5/XdM5dowtbXSGttT5O8vsbnJe0x46bqOaZrougX0zBwA2YpEbE5bbysSC9M0qa9vw+eLJt2Xn5/949uKxLIsFCVRGenfvz/vvPNOj5y7t/7jZJpWr702se3r7vurtS3Kd3Nb+HrBalr1NkLFGmPGZFP3BSyY3czAIb2nNXb54jZaWwxGjA6h+uqxLNh/4IH0zx3A04uepKqlEq2/Qn6hj4a6GNGoic/Xuyqv2zr5+0tsbvIeE9B7f4YTorfa2L87t9laflFREZqmUVNTk3R7XV1dWjVTCLFlLF7YymsvVrL4uzZ0w2THXXI44NBiJky029IWzm7BsnrPP/DfzbUrkTtOyMWw7N8OaqpGQAtQFCyiNdZKa6yV4lI/lgUNtbGteblCCCGEEL3aNhsuA4EAY8eO5bPPPnNvM02TmTNnsssuu2y9CxPiR0rXTf772Dra22MMHJLFiWeXs9s+efg0hWCOwsChQRrrdWZ/2by1LxWwfyP33dwWUGDMhBzM+ERbTbHbPcpCfQCobltPcZkfgLoaCZdCCCG2fbfcchM33HDVJp3jueee4YQTjuqhK9p+vfbaK0ybdtDWvowtple3xba2tlJRUeF+vnr1ar777jtKS0spKyvjrLPO4qqrrmLs2LFMmDCBxx9/nHA4zLHHHrsVr1qIH6ea9TFiUYvSoRq77pVHTq5GczSxFcle+xWyekUlLz1VRV1NlIOmbb4Og9nrZ7G6eTVHDD8SVcn8O7Q1K8M0NxoMGZFNbp4Poyk5XJZnl/EDi1jftp7i0lEA1FZHARkOIoQQYsu45ZabeP31VwHw+Xz06dOXww8/ktNOOxOfb+N/jL/sst/0qk6i7cUJJxzF9OmncfzxJ7m3HXTQVPbZZ9/N/ty33HIT7e1t/PGPf9nsz9WZXh0u58+fz89//nP38z/+8Y8AXHLJJfzyl7/kiCOOoK6ujrvuuovq6mp23HFHHnroIYqLi7fWJQvxo7V+bQSA3EJ7TaJpWVjxVlPDMhi/ex45eRr/eXAtX37cyIGHlaBpm2f94tzqOQC0RJvJzyrIeMxCT0ssgGHa4VJ1wmW8crm+rYoRZWMBqVwKIYTY8iZN2o+rr76eWExnzpxZ3HbbLWiaxumnn9Xtc+m6jqZp5OZuG9PPY7EYfr9/a1/GJsnKCpKV1XvmTWxuvTpc7rXXXnz//fedHnPaaadx2mmnbaErEkJ0ZP06e6JYTr79uRX/HySC2/AdQgwens2y79uoXLN59r30/ibWO9wr1dJFbQDsOMGuRBrxtlifaofL3EAeAS1AY6SB4lJpixVCCLF1BAJ+Skrsbp++fY9g9uxZfPLJR5x++llEIhH++c/7eOedN2lra2XkyFFcfPEVjBtn75Lw2muvcO+9d3L11TfywAN3s3r1Kl566U3uu+/vSVWuSCTMvff+nffee5u2tjbGjh3P5ZdfyYgRI93rePXVF3nkkQdpampk0qT9ku4De3nao48+yCuvvEhjYwPDh4/kkksuZ9ddd3eP+fjjD7jnnjuprq5ml1125YADpnD77X/ik0++BuDhh//BZ599wlFH/ZR///sxGhsbePvtj/nss0944olHWL58GZqmMWHCrlx++W/o06cvALNmfc2ll17AHXfczX33/Z1Vq1ax666787vf/ZGvvvqCf/zjHpqaGjn44MO44oor0bSOJ55+9NEHPPLIP6moWEFZWTlHH30s06efjqqq7jXOmPEy9fV1FBYWcdhh0zj//Iu55JLzqKxcx9/+djt/+9vtAHzyydfu92DGjHfTvsbHH3+YlpYWjj76p1x00WU88sg/efHF/+H3Bzj33PM58sifutd1zz138sknH7J+/XpKS0uZNu1oTj/9LFRV5eGH/+FWuCdPngjAXXc9wG67TaSqqpK77/4bX331OT6fj1133Z3LL7+S0tKyrr8Ju6FXh0shxLajal0EE4O8AvuvFcsyMeOVS8sz9n3YSDtcLv+hjQGDg+i6SWO9TklZ9/dSyqRVb3U/dkJtJk2NOv6AQkGRHRxT11wCBLUgTUYT+cX2Pyh11RIuhRBie/Lpmo9Z1Vyx4QMzUFWl29M0B+UNZt8B+23U8zmysrKIxex/j+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWTkAbW1tPP30v7n++pvJyckhJyd9ecd9993FJ598xG9/+0dKS0t57LGH+fWvf8nTT79AMBhk3rw5/OUvf+LCCy9l333345NPPuLxxx8iLy/fPcczz/yHZ599iquuuoERI0bywgv/48orL+Opp56nrKycdevWcuON13DyyadxxBFHsmDBfO6//+60a6moWMFnn33Mrbfe4Qa6cDjMySefzogRI2ltbeWBB+7mppuu4/77H0l67GOPPciVV16Hpmlcf/1V3Hjj1YRCIf785zuoqqri+uuvYsKEnTnkkMMzvrZz5szmT3+6icsvv5Lx43emomIlf/nLLfj9AX72s+m8//47/Pe//+Gmm/7EsGEjqKlZz6pV9vvnT3+6nTPPPIVjjz2BI47ofC1qRcVKvv32a/7613tYuXI5v/vddSxbtpSddhrHAw88ygcfvMftt/+Z3Xffk379+gOQm5vLDTfcTElJKT/8sIjbbruFwsIijjnmOKZPP52VK1cQDoe5+urrAcjPL0DXdX79618yYcIu3H//w4DCww8/wNVX/4oHH3zcfX170jY70EcI0busXxfFUg1y4+HStExMK7lyCTBsVAiA5UvsfWPff62Ou29ZyTczG3vkOlqjib0onQmwqQzDItxmkpObCJK60xarJm4LaFkAWFqM3HyNxvqYjLMXQgix1SxYMJ8333yd3Xffg8rKSl577RX++MfbmDBhFwYMGMiZZ57LsGHDeeut193HxGIxfvObaxk7dhxDhw4jEEj+ZW5bWxsvvfQ8F198OXvuuTfDh4/kuut+RywWdc/zv/89w6RJk5k+/TQGDx7CKaeczs4775p0nqef/jenn34WU6YczJAhQ7nssl/Tt29/nn/+WQBefPE5hg4dzgUXXMLgwUM5/PAjOeigQ9K+RsMwuOGGmxk1age3OjplysEccMBPGDhwEKNHj+Gqq65n3ry5rF9flfTY8867mHHjJrDjjmM57LBpfPvtN1xzzY0MHz6SffbZl4kT92DWrK87fH0feeSf/PznZ3PYYdMYMGAg++yzL2eccTYvv/w8AFVVlRQXl7DHHnvRt29fxo2bwOGHHwnYYU5VVUKhECUlpW61uSPXXPNbhg0bzoEHHsROO42jvr6eX/ziQgYNGsypp/6cYDDI3Lmz3ePPPPNcxo2bQL9+/TnggCkcf/zPeO89e7vFUChEVlaWW+UuKSnF7/fz7rtvoSgKV111PcOHj2T48BFcf/3NLFnyA4sWLez0+jaWVC6FEJssHDZorNcpKFXwac6ay0Tl0hvy+g3KIpClUrGsHV23WPydXWmc8b/1zP26mcaGGGdcNJCiko1bY9ESs6fRRqMmr/6vkt3HBRi3a17SMW2tdpAMecKlkaFyGdDsa4iZUQoKfbQ0GbQ0G+QXyF+dQgixPdiUKuKW2uT+448/ZOrU/TAMA8MwOPjgQzn77PP49ttvMAyDk076adLx0WiUkSNHuZ9nZWUxfPiIDs+/Zs1qdF1nwoSd3duCwSCjRo1m5crlgF1N/MlPDk563Nix41m2bCkAra0t1NbWMH584hyKojB+/ARWrlwRP8dKdtxxbNI5Uj8H6NevP/n5yfMSVq2q4KGH7mfhwgU0NDRAfNlNVVUl5eV93ONGjEh83cXFxRQXl1BQUOjeVlRUTH19XYevxdKlPzBv3hweffRB9zbDMN0ZEgceeDDPPPMffvazY9h770lMmjSZSZP263YFsH//AWRnZyddayCQ5X6uqiqFhYVJ1/ruu2/x7LNPs2bNasLhdnRdp0+ffp0+z5Ili6moWMnUqcnvc8MwWLNmNTvtNK5b190V8hOSEGKTVcfXW5b0TQQzC8sTLhOVS01TGDIiyOKFbSxe2Mr6dVE0TcEwLFYutauZMz+o54jjyzfqWlrilcul37ehz25k+TeVrFsdYepRid8gtrbY1+OtXGZqi3UqlxEjSn6RnzUVERrrYxIuhRBCbDETJ+7FFVdcic/np7S01J0S297ehs/n45FHnkybMeBtfQ0GuzbfIPUcdvOR4n7c2RwDZ9xB+jksEjd5P07clioYzE677eqrr6B//wFce+1vKSkppa2tlV/84gy3PdjhnaCrKEraRF1FUTqdktvW1s4vfnEh++13QMb7+/bty1NPPc+XX37OV199wZ///Ad22GEMd9xxd6evT6pM15V+G2631Pz5c/n972/k3HMvZI899iInJ4dXX32Jd999q9PnaW9vY6edxnL99Ten3be5BqDKT0hCiE3S3mbwzcwmAEr6+GiI325apjvQx7SS1z6OHpvL4oVtvPVSDQDjdstl9Dh7ct3z/65k9pdNTDmihGB2xwvuO9ISa0HXLVYuaWegahIMqHz6bj177ldAQaFdiWzLEC6d1t1M4TJqRCgotP9xbmrQu31NQgghxMbKzg4ycOCgtNtHjdoBXddpbGxg3LgJG33+AQMG4vP5mDNnNgcdNBWwB/wsWfI9Bx9st60OGTKUBQvmJT1uwYL57se5ubmUlJQyd+5st3ppWRbz589j//0PBGDw4KF8+eXMpHN0pTWzsbGBioqVXHfd79yv8/PPP9vAozbODjuMZtWqlRlfb0cwGGT//Q9k//0PjA/zOZOqqir69u2Lz+fHMHq+mj1v3lz69x/A6aef6d5WWbk26ZhMzz1q1Gg++OBdiouLCYW2zFZqsuZSCLFJHr5zFbO/bELTFIbvlFjHYXm3IkkZrDN211w0TWF1w1qiagtDRmSz44Qcdto5lwm75xGNWMz6vGmjrqc52kzFsnZiMYsdxofYYaz9l2lNVdQ9xqlchnITv19z22K9ay5VO4xGzSgFRfaxjfUSLoUQQmx9gwcP5aCDpvL739/IRx99wNq1a1iwYD6PPvog3377TZfPEwqFOOaY47j33jv58svPWbZsKbfccjM+n5+pUw8D4Pjjf8Znn33CM888SUXFSp5++t/MmTMr6Twnn3waTzzxKO+//w4VFSv4+9/voLJyLccddyIAxxxzHMuXL+Mf/7iXioqVvPnmaxusvAHk5eVTUFDASy89z5o1q/nqq8954IF7uvFKdd0ZZ5zDa6+9wmOPPcTy5ctYvnwZb731Oo8//jAAr7/+KjNmvMyyZUtZs2Y17777Jrm5eW4VsF+/fsyePYvq6vXx9t2eMWjQINatW8u7777NmjWr+c9/nuCLL5KDer9+/dw22IaGBnRd55BDDicnJ5drr72SOXNms3btGr755iv+7/9upbm5uceuz0vCpRBio0UiJjXrY+QV+Pjl9UMo7ZsIaxaJyqWRUrnMDmmMGOtnZe7HrM2exYBhfl5Y8j++qvyCvQ4oBAU+eKOWqvjemRvibXFpaGti6ff2Os6d98qlrI8deGuqEq0zrc3plUvd1JOqluCtXEbJL5RwKYQQone54Ybfc/DBh3LXXXdwyinHc8MNV7Fs2dJubzNx0UWXMnny/vz+9zdw7rmnU1dXyx133O221E6YsAu/+c21PPXUvznrrFOYP38up5zy86RznHTSKZx44nTuvPP/OOOM6cybN4fbb/+7ey39+w/g97//M++99zZnnjmdN998jVNPPTNprWEmqqpy001/4rvvFnD66T/j/vvv5uKLL+3W19dV++yzL7feegczZ37KOeeczoUXns3zzz/rTmzNycnlxRef44ILzubMM09h0aLvuP32O90hSeeccwFr1qzmpJN+ypFHHtzZU3XL5MkH8LOfTeevf/0zZ511KkuX/sCpp56RdMxRRx3LwIEDOeec0znyyIOZO3c22dnZ3Hvvg5SWlnDddb/mtNNO5Pbb/4SiqGmDnXqKYnXWeCxcsZhBQ0Pb1r6MJKqqUFKSS21ti0ywFD2uK++vmvVR7vnTSoaNyuaMiweyunkV71XYk8v65/anOdpMc7SZbF82J44+Oemx38xZy5+ff4KCQAF3/PpkXlr6AqXZZRwx/Eg+fLOW91+vo7DYxwVXDSYY7Lg9tqlR54G/VLDzHnkcdFQRN/73fpYsamPA4CwuPeEoIiv78Mwj65i4bwFHnmiv43zvtVo+equOY6b3Yde97DHqT333bxRF4eQxp7rnXlz/AzPXfsou5btS3DqGh+5cxY4Tcjjp7P6b9NoK+ftLbH7yHhNeuq5TU7OG0tIBaWvbNtaWGuizPXvggXv47LOP+de/ntnal9LrbK33V2d/VgoLQ/j9nS9ZkjWXQoiN1txoV/GcvS11M1HVS54Wm77f5MARfgYNzaJfWRA9fr9h2Y/f/5Bi1lRE+GFBK4vmtrLLnvlpj3esXhGmrdVg5gcNVNbVs6yiDU2DHXfOxbJMSsvjlcv13rZY+3ly8pKnxWapyb899TttsYanLVbWXAohhBAb5bnnnmHs2PHk5eXz7bdf89xzz3DWWedt7csSPUjCpRBiozU3JYdLJxyCPf/NCZdmhv0mTWLssmcBAc2Pbtotq044VRSFifsW8MOCVr6f39JpuGxqSLS7zl9Qg5ULY3fJJTtbwzBNisv8qGrymsvUgT6WZU+29a63BMjytMXm5GmomrTFCiGEEBtr1aoK/vWvR2lubqJv336cddZ5nHzyqRt+oNhmSLgUQmy05kY7pOXlx8OlmQiRG6pcRk077OmmTiwlXAIMG5WNP6CwZFEbsZiJ3595ibgT9naflE841MaI8hJCOZr7vJqmUFTqp3Z9jHC7QTBbSwz08RwHpK259Gt21TNiRFBVhfwCHw11Orpu4vPJknUhhBCiOy6//Eouv/zKrX0ZYjOSn46EEBst0RZrhzLdSm6LdQb6OJVBr5gRc4+LGvbgHm8I9ftVRo4JEYtaLF/c3uE1OOFylz3z2X1yDqEcjUA8FDrP6bbGxof6pO5z6TyvqqRWLu3HxeJBuKDIbpNtakgPy0IIIYQQP3YSLoUQG60pHi7znbZYT+XR3ookMUTDCXqtsVZiRsytXAK06+H441P2w4zvffnejFoWzWvJeA0N9XZgLCjyo8cfnwiX9ufuxNj4usu2FgN/QCGQpSY9b1rlUnUql/bjEhNjkzdtFkIIIYQQEi6FEJugs4E+3q1IwK4OGqbBy0te4MPV7xEzvOGyzT3GG0jHjM+hrG+AyjURnn54HZVr0rcmaazXUTXIzdPc9tpAfDCPU5EsjYfL9esiGIZFe5vptsRCIoT61NStSFIql/Fw2SRDfYQQQggh0ki4FEJsNGegT66z5tLT1updcwl2dTBqRomZMRojjUmVy7ARdj/WTZ0PV73P4vofCGZrXHDlYPaYXABAxbLk9thYzKS12SC/0IeqKu5goKAvy70GgEHD7H26Fv5QTUXNOiB5j8uO1lyqiopf9RNNqVw6FVshhBBCCJEg4VIIsVEsy6K50SCUq+HzKQDuliKQHi5Ny3BDXMSIuGsuAdpjiT1ka9qrWdm0gplrPwVA0xRG7ZQDwJqKRAiFRAWxoNBeC+lWLrXkymVJWYDiUj+ftrzCc/NfxkRP2obEaadNXXNpnytA1IhiWZYboluaZM2lEEIIIUQqCZdCiI3S3mZi6BZ5+Z4KYMo+l16GZWDGQ5xu6m4rLEC7nqhIOgERoCVmr7McMNiuPK5emQiXVesi7hpKZw9KJ9wmwmXiGpyAunpFGFMxktpi3cqlmjlcgj3d1vlanYqtEEIIIYRIkHAphNgo7jCfwsSORt41l96PwQ6b3rbZ5miz+3GbJ2iG9USAXN9aCdgtrEUl9nYi7W0G6ysj3P+XCp5/ogrwhEunLTYeLi1PuByxox1Q166KYGG6k1/ta8vcFguJoBozop7KpYRLIYQQItWFF57Nhx++536+ePEPnHPO6fzkJ/tw5pmn0NTUyNFHH0p19fqteJVic5J9LoUQG8Ud5pOf+GvEsDqrXCZ/7lQlAXdNI0DEs/6yqq2K4YUjWVi7gLX9PyVQty9rV4WprY6BBZGwfU4nKDqttqltsQB9h4KmgWFAaV8/e+5XkLi2DqbFAgQ8E2Pz8+3qZ7O0xQohhNjMJk+e2On9Z531C8455/wtci2LFn3HQw/dz6JFC2lvb6e0tIxx4yZwzTU34vfb/wZ//PEHtLa2sv/+P3Efd//9d1Ne3odbbrmd7Owg+fkFHH74kTz88D+45pobt8i1iy1LwqUQokNfrvmSqto69u63b9p9qZNiIXkrEW+wy/R5avh0tHsql1XxymVl61qyi2O0aA2sXhmhrjqa9JjCDiqX3uuJEWXUTjk01sU45cS+5OZ5Q3Hnay4BokYEf7ZKdkilpUnHsiwURcn4NQghhBCb6qWX3nA/fu21V3jhhf/x4IOPu7dlZ4fcjy3LwjAMfL6e/9G+vr6OK664mP33P5C//e0+QqEQa9as5v33340vd7HD5f/+918OP/yopH8b16xZxYknnkzfvn3d26ZNO4ozzzyViy++nLy8vB6/XrF1SVusEKJD39d8z+L6HzLelylcpg708TLNxJrLzngrl03RJtpibeimTlGJD10Js2JxG2sq7C1JnJbc4jJnoI99TU7l0nsN7Xobo3bMYeK+hWRlJz+nHq+4pm5FYp8rseYS7Mm4sahFJJI5HAshhBA9oaSk1P1/KBRCVVX385UrV3DIIfvz+eefcdZZp3DggXuzePH33HLLTdxww1VJ57nhhqu45Zab3M8jkQh33/03jjnmMKZO3Y8LLzyb+fPndXgd8+bNJRIJc9VV1zNq1A4MGDCQPffcm6uvvp6sLHvJSX19PbNmfcW+++7nPm7y5ImsWbOaO+/8PyZPnsjDD/8DgMGDh1JeXs4nn3zYg6+W6C2kcimE6JCzbtK0TFQl+XdRzY12UMwr0NKOVxQlab9KSK9cdsQbLgGaY80YlklhsR9/XoQVS9qxgMJiH6dfOICqtVGKSwPx57CfP0sLxq878ZzetZwmycHQWZuZqS02Kx5UndbdvHyN6kpoaTQIBtOPF0IIse3I++UFBF6fscWeL3r4NJrvfqDHzvePf9zDJZdcQZ8+fSkoKOzSY+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWXna8cXFxUSjUT755CP23//AjF07c+fOJhQKMWjQYPe2l156g1/84gyOPfYEjjjiqKRK6+jROzJnzrccfviR3f+iRa8m4VII0SFncqthGqhaSrhsyrDmMh4uvXtDuvd1MVx622Kdc+qmjqIoDB6jUvuZffuAwUFKygKUlAXSrjcrXm1MrVwmzpkcLt2tSDJULv3umku7WuoM9Wlu0intE0g7XgghhNhSfvGLi9h99z26fHxlZWW8xfY1iotLADjzzHP57LNPeOut1zn11DPSHjNu3AROOeXn/Pa315CXl8dOO41njz324rDDprltrVVV6yguLkkKniUlpaiqSigUoqSkNOmcpaWlLF26ZGO+ZNHLSbgUQmSUun7Sjz/p/kzTYp0A6VN9Gx0uncpllpZFxIigm7obWgeMVBLhckgw7bExI4ZP9bkh0UgKlx1XLo1OpsVm+ZzKpR0u8zzhUgghxLZtU6qIPp+Krm/dJRJjxuzYreOXLVuCYRicdNJPk26PRqOMHDmqw8dddNGlTJ9+Gl9//SULFszjyScf58knH+ehh/5FaWkZkUiEQCCry9cRCGQRiYQ3fKDY5ki4FEJkpHsmv2YKhs2NOqpK0n6Ruqnb4U5JX85tWSYpnbKoipq2NjOi2yEu25dth0tLd68lWBijrG+A6sqou/dl0jWbOn7N74ZE73V7K5dWhj04oYNwqSa3xebG97pskYmxQgghtrJgMHmIQKZlKbqe+Pe8vb0Nn8/HI488mdbempOT0+lzFRUVM3XqYUydehjnnnshJ598LC+++BznnnsBBQWFNDc3dfm6m5ubKCws6vLxYtsh4VIIkZF3n0ozdfKrYdHabJBX4ENVE/84GZaBpmgopK/HMEwTi+R/8LJ92bTGWpOPiz9X0BeEiF1Bdaqo7XobR59czorF7QwenhwunX00Q2rIDYmmZVLZuo7GSCNhz1pOI2WwkDNoKPNAHztcRqRyKYQQopcrLCxi1aqV7uemabJs2VJ23nlXAEaN2gFd12lsbGDcuAkb/Ty5ubmUlJTQ3t4OwA47jKampprW1hZycnI3+PgVK5az226db7Uitk0yLVYIkZFhdrxnZWuzgWUlT4o1LbPTyqVhGWkV0GxfKO04hzOURzd193HtejuDhmaz39TitN+4OmHY+/ymZfDWijf4Yt1Md1sT6LgtNtNWJEGfEy7tcOp8zVK5FEII0dvsuuvuLFgwn3feeZOKipXcddcdNDY2uPcPHjyUgw6ayu9/fyMfffQBa9euYcGC+Tz66IN8++03Gc/56acf84c//JaZMz9l9epVLF++jPvvv5vly5e502FHjRpNfn4B8+bN3eA1RiIRvv/+O/bcc+8e+ZpF7yKVSyFERt7KZWoodIf5eCbFOtNYs30hd2qrl2EZaZXLkD8E7ZmfP+jLjl9HLGlqbVgP21XNFM4wH5+auS026VpSKpfOQJ9MbbGJymVyW6xULoUQQvQ2++yzL6eeegZ33vl/WJbJiSdOZ4899ko65oYbfs+jjz7IXXfdQU1NNUVFxYwbN4GDDz404zmHDh1GIBDg73+/g/XrqwgGgwwZMpQ//vEvbvVR0zSOOOJI3n77Dfbee1Kn1/jppx9TXt5nkyqnoveScCmEyMi7Z2XqdNWmhvgwH0/lsl23U2KmVlewq4ip60BCvo7Xd2THA6TTjupo01szhks9Hi79qg9FUVAUJa3i6l5LSuXS7GTNZSA+LTZ1oE9Lo4RLIYQQW8bxx5/E8cef5H6+224T+eSTrzMee/75F3P++Rd3eC6/3895513Eeedd1KXnHjBgIFdffcMGj/vZz07ljDNOorp6vbulyf/+90racc8++xRnnHFul55bbHukLVYIkVEklpj26oSvpgad5Yvb3HDp3YakTbcDZbY/lHEPLMNMb4sN+RNtsamttE5bbGq4bI+llzrXtqxxA61Ptafaaopmb6HSwXChpGtzwmWGNZeKohDQAu51BLJU/AGF1lZpixVCCCEcpaWlXHXVDVRVVXZ4TFNTI5Mn78/UqZmrpGLbJ5VLIUSaiuXt3P3AEooPaGLg0ADr1rXzyiurWL3Sbn3NybVDmHfNpRP6Qr5s6j2BTlM0d71laltslpbl3p+lZbnVT8CtTkaM5FHlbZ6prwCVret4Z+Vb7uf+eLhUFRXDMjJWL82UCmpnay6d62yONmOYBpqqEchSCbdt3fHzQgghRG9zwAE/6fT+/PyCjHtpiu2HhEshRJrlP7ShmwbfftlAzfogcxauIjfaj6JSP/U1MVpb7DCWFC7joS/bF0qaFutTfRiGgWlZbjuqs4elX/W79wd92UnhMiu+1jGsp1QuU8Jlc7Q56XNNta9JVdS0vTYdqRVUo5M1l/a1BGmmmYgRIaSGyMpSaW020HULny+9SiuEEEII8WMkbbFCiDQ162OY6FgWVCwPo/nhiOPL+OV1Q+g3MLFJsnegj3fNpaokh0uwW2udLT8G5Q0mx59DaXYpfs2uNAa1xHnt0Gnf7qx1dNpb2/TkttgsLXnTZn/8+bxBsSxUzl799mFs6bj4taS2xTqTZjsKl8nrLgNB+1qiEaleCiHEtiDxz5LV2WFCiPifkQwrnLpEKpdCiDS11VFMxWDEDjlEowanHtyHCYMKMS2Tsgm1rFmdjYqWNNCnzVO59K5zdNpUvS2qI4pGMWnA5KT7nemwYAdSXzwcOvtT5gXyaIw00hxpTLrW1Cqkty3WkaUFGF08hu/rFmV8jHNdHVUu3Ymxpl0Jzcqyzx0Jm4RyMj9GCCFE76GqGqAQjUbw+fxb+3KE6LWi0QigxP/MdJ+ESyFEEsuyqF0fQwuY7DG5mLbWCKFcO0wtbVhCbck3NAQH0NfagaxgIsAlVy49ay7jlURvuPSGOKdC6QzwsW/zuRVPp7W1JLuUdr2d6vZqd+0jJIYNpZ4v03M415U60MfZiqTjNZfx9Z/x7VYCWfav86RyKYQQ2wZFUcjJyaepqQ6AQCAL2NRlDQq6LpVQsbls6feXRTQaoampjpyc/IzDGbtCwqUQIklri0EkbJI3SHHbW51KX2ushaygxt6H+9mlsE/SXzztehuKopDty8b7D7bTpmqYBhZOuFTT7s/2ecOl3w2l3tvKQ31Y3byKmvZq+uT0BRLBMHE+J0hqabc5z5veFtvxtFjwtsXGK5fBROVSCCHEtiE3twAgHjA3/Yd2VVUxTfl3QGweW+f9Zf8SxvmzsjEkXAohktSut/eLzC9KBEQnjIXjaw5Lh8TYaWiue79lWbTr7QS1IIqiJFUunaqh6ZkW660qaor915C3Ldav+vEpKeFS0eiX05/VzatY17rWDZepLa5OQEy+BvtcSvy29LbYzgf6uG2x8a/fbYuVyqUQQmwzFEUhL6+Q3NwCTNPA2oR8qaoKRUUh6uvbME2pXoqetTXeX4pit49vbMXSIeFSCJGkttquzuV6wqUTxpy20NQJrWEjjGVZZPvsfSszBTu7Ldb+C9Lbx+8M9PEO5vGpmvs473n6xgNlZWtiD62O1lx6q5ABNZB0XU5YjhpRPl/3GU3RJhRF6XharM8Jl/G2WBnoI4QQ2yxFUdC0TfsRWFUVAoEAPl9UwqXocdvy+0umxQohktTEK5c5Bd7KpR3gnGmprbFWdFN373e2Bwn57eqjktQW61QurYxrLouDJWiKRmFWoXu7T/WnhT1N9VGYVUSWlkVNezUxw75Ow3Md3ufTMlRPnfMZ8euoaFrJisblBNQAe/Tdq8Pf1mWpdrhsjjYzr3oOWsB+TmmLFUIIIYRIkMqlECJJ7fp45bIwcZuzD6TTFgvQEm2mMFgEQHvMGeaTXrl02l7tymV6++lOJWMZXTQGTdXQVA3DMJKqj4ZhP8an+FAUhbJQOaubV9EUbaIkuyStcpk6vAfSJ8g6A31aYy0A7NZnIqOKdujwNXHaYlc2rWBl0woUawTQTyqXQgghhBAeUrkUQriaGnVWr7BbP0P56W2xUU+4bI4lWmOdbUhCGcKl37vPZTzUee+HRAurEzqdYT7e1ljnvmB8cqtzLUbKYnfn+bwDfXyac1tyW2zqdXck6EveS9P5VCqXQgghhBAJEi6FEACE2w3+dd8aWlsMJkzMQ/MngpOzVjLiCZdNkSb343bPHpeQ0hYbn7QaM2NuK21HaxudMOkERO9QH188gAbi53OuxbB093ZN0dxr8D5HYs2ls31JPFzGWgEI+TsPlwEtOVyGAvFriGxb6yCEEEIIITYnaYsVQgDw/YJWaqqiDNshm6NP7sM7q3V3RxHTMjBMI2mdZXLlMt4W66y5TGqL1fCrfqJGFE3RUBW1w7WNiXDptMV6Kpfxj53BP862IE5Vdf+BB1KYVeSGz87aYp3HuJVLf06nr40TTt3rDMT3uZTKpRBCCCGESyqXQggA2lrswLXDTjn4fErS/pGGZRB2JqXGw1tzpNG9vz2WXLlUPeFRVVT8mp+YGcOwjA6rlpBYn+n819sW61Qx3W1BTKct1nBv91Ygvc/j62Cfy9ZYKz7VlzSpNhNFUSgP9UmcL541ZSsSIYQQQogECZdCCADa2+yglB2yQ5m3SmlYhrvGsThYDEBT1NsW6wz0SZ8WqyoqATWAZVlEjWjaeksvZ+2lU2n0JU2LTW6Ljaa0xWop5/WuuQxoyZVL07KrsFEjusH1lo7Dhh3BvgMm289ln04G+gghhBBCeEi4FEIA0N5mVwCzQ/ZfC7rlCZem4a5xzPHnEtACSesvE2su7XDpDZAKStKaRe/+k6mcMOkM4Elqi1U6aIuNVy5T98X0Vk9TJ8ialtnl9ZZeTruvzx9fgyptsUIIIYQQLgmXQggA2lvj4TInvhekp3JpWgZhPdEW61f9KftcthP0Bd3w5g2XqqK4lUPoeJiPfWw8XGZqi3Url3a4dK5Hj6+fVFPO632exJpLZ6CP1eX1lknXF/8rU3PCpVQuhRBCCCFcEi6FEEBX2mLtSmFQC7qhzzDt0GlaprveElIql4qK3zMQp7Nw6Y+H0ERbrDdcOpVLZ/pscuUy9bxOhVRRFPex3oE+buWyi22x3se7bbFSuRRCCCGEcMm0WCEEkNwWa1ompmV62kgtIu5Anyy3RVW3dLclNhRviYXkNZepbbGpFUavkYWjMC2TslA50FFbrL3PZepWJKltsU4LqxNU7XMktiJpjV93jj+3w+tJ5VZmNQtVlcqlEEIIIYSXhEshBJBcudTNGOCsb2xLmhabpWW5QU43dc8wn0QFUElqi1UJeANeJ2su++b0o29OP/dzn+qd+Jq8TUkiXHZQuXRabD2h0zvQp3Uj1lw6j7ewCARVWXMphBBCCOEhbbFCCMCuXAayVDRNcVtis3x2xdH0tsX6gm7oM0w9bZgPZJgW6x3o08m02FTetlgnLCqKQkALJA30ybR3pnO8t3KZcaCPrxtrLj2Pz8pSiUUtTNPq8uOFEEIIIbZnEi6FEJimRbjddCfFOq2mzmRWe1psYqCPty22zalc+jOvubTDZdfWXKZy2mIVRUmqeGZpWeimjmmZHe6dqbptsYG02+xw6Qz06f60WNMyCWTZH0ejUr0UQgghhAAJl0IIINweb4nNSR7m41QuDcsgrNttqFmegT66adAes8NlqKOBPigp1cOuh0vneVLDo1MJjRgRDNPI2GqrueEydYsSFcNKhOVgfA1nVzjTYp3KJUA0LJVLIYQQQgiQcCmEIMMel569I1XFHvATNZxwmeWZFutti+1i5bKTNZepnLbY1HDpTIyN6OFOKpfOmkt/0u2aomFaJjEzhl/1p7XTdsZb+QwE7Y9lqI8QQgghhE0G+gjxI2daJm3xPS5D8W1InLZYv+p3K32GYeBTffhUX0pbbDxc+juYFquoBNT0tZNd4QTR1EmwzsRYZ5hQ6v2QCILeYGtfj+K203anammf0/66LEyynHApQ32EEEIIIQAJl0L8qFW3VfP68lcpaR0LFKXtcWkHSY2YoWNYBjn+nPjtiePcyqWWCJeqkrIVSYbtQLrCCY2p4dEfD4zOc2dqtXW2GMkL5CXdrimaOwwoNXhuSPJAH/trjErlUgghhBACkHApxI/a9/XfATCn5mtgKtk5TltsIlyqqoYRX2/prHVMtMUahPWwPeTH0+6athVJF/e5TJVoi03+qyoYP5+zV2WmwFqSXcJxo04g5E+eButt2U1tmd0QNcNAH6lcCiGEEELYZM2lED9iTniLRuyhNB1VLh1OqHPCXsSIoJu6O1XWkbwViZKy5rLrf+1oHVUu4xNgnWFCvg7WceYG8pLCpH09ic8D3QyXiWmxlrTFCiGEEEKkkMqlED8irz9fzZyvmxg5JsT+hxSjotFYrxONmgRIDPRp96yj9IbL1Mpl2LDDnXe7D0gf6KMqKj7Vh27q3WyLtY9N3RszGJ9i295J5bIj3mO7Xbn0TIvNL7Rfg9rqaLfOIYQQQgixvZJwKcSPyKJ5LYTbTObPauH7+a1E+9WwsKEOgLEkKpdOu2mOPycpKGb57AE4TuhzBur4teSQlroVCdjDgXRTT6skdqYgUEhZqJzB+UOTbndCblsnay474m3Z3ZQ1l4OG2mtMVy0Pd+scQgghhBDbK2mLFeJHwjAsmhp1cvM1fnJ4MbGYRW1l8h6NTrhsj8XDZSAnqWqY2hYbdsKl2nG4TJ3amrp+sjOaqnH4sGmMLh6TdLsbLmOtQOZpsR2ec1Mql/GvxcKkvF+ArKDKmoowhiF7XQohhBBCSLgU4keiuVHHMqGoxM8Bh5ZwxkUDmHJYGf0GJKp3TlusUxEM+UOoasdtsU7lMm27j5StSLyP7U7lsiPZ8S1E2jaiLdb7/P5uhFLvY03LRFUVBg4JEotaVK6JdOs8QgghhBDbIwmXQvxINNTFACgosgPVsFEhxu1cyNCRIfeY7Bw7pLXFWlEUhWxfdsaBPk64bItXOFMrgJnaYp3hOd2pMnYk22dfs2XZFUO1g4E+mXi3SfFvQlsswKBhdshdtby9W+cRQgghhNgeSbgU4keioc6eAFtYnBwES8oTn2eHNCzLImyEyfaFUBQl40Af77RYyDB1VfFOi02tXCpsKr/mT2rF9W1k5TKgdi9cOkE5ES5l3aUQQgghhEMG+gjxI9FYb1cuC4sSoczCQlEUDjmmhBOGDMXnU2iLtWFZFjl+uzqYNNBHSx7o40itAKqkr7l0junO8J3OZPuyiUXtr6l7bbGJY7vbFqsoCoqiuOFy4JAgKLB6pYRLIYQQQgipXArxI+FULguKE4HKwm4rzcrSyC9KXm/ptJ4mtcX6kttiHakVwEwDfQblDqIoWExZqHzTvxjs9aCO7rTaeq+tuwN9wA7OTrjMCqoUFvvs7Vwist+lEEIIIX7cpHIpxI9Eg1O59LTFOmsWAWJmDE3V3AmsIbdymQiXTuUydeJr+lYknoE+8VbSAXkDGZA3cJO/DocTflOvcUOS23y71xZrP5fqhnKA0vIADbU6tdUx+g3M6vb5hBBCCCG2F1K5FOJHwq1cFmX+nZJu2uHTmQAb8uUAoKn2XxOKorhhLLVSmLoViXdabE9Mh80k25ftfrwlK5eKoiSF8tJy+zWpXR/t9rmEEEIIIbYnEi6F+BEwTYvG+hg5uRqBQOKPvdPeCXblEhJ7Rzrhzan0eVtfu9MWq/TAAJ9MQv4c9+ON3YokbRBRFx/vfd2cgUg1Ei6FEEII8SMn4VKIbUhLrAXDNLr/uCYD04C2kiW8V/F2UuXNETEiLKlfTH2kDoCceHhzwljQF3SPVRU1KTSmt8WqSf/dHLyVS1Xt+vN4W2g3as2lomKSCJdO5VLCpRBCCCF+7GTNpRDbiHa9nRcXP8ewguHsO2C/Lj8uEjH58pMGAMJ5a1ndbNGqt5Lrz01aO7i8cRmL639wP3fCmxPGnPWWDp/iI2bZ1c7UtlhnK5LNGS5DnjWXPqU7bbGJULzRay4tC8uyJ+0m2mJj3T6XEEIIIcT2RMKlENuIpmgTpmXSEmvp0vGxmMkT//uGVXOCWOEgigLlAzVAJ6yH08JlXbgu6fFO26nbFpsSxDRVc1tp/altsWz+yqV3Wmx32mKdYxVF6dZaTYd3r0tN0cjN1whkqdSsj7qBUwghhBDix0jaYoXYRoTjg3a62hb75ewKXl/0HlW+Rey8Rx4XXzOEgcPsCmNEj+/L6GmPbY42AXaIHFYw3A2TWnxPy2Bq5dITzFKD5+YMlQ7vtFhN7f6ay7Rqazcf76y7tKuXfmJRi6ZGfaPOKYQQQgixPZDKpRDbiHA8EBpW1wLMiooGAHbZ38+xh/QFQI9PjI0Y9rm8lcuoYa8Z/Mngg+kT6uPe3lHl0mlF1RQtLUwqW6At1qf6CGgBokY0bWuUzvRYuPSuu+wTYO2qCLXrYxQUbtx5hRBCCCG2dRIuhdhGOIFQN3WWL27j/ddrqauJEcrROPuygVRXRvniwwYa6nT2+Ukhqyvsqa/5ZYlzOG2sYSMCkHGwT8gzKAcSg3zyAvlJt2vxymXqMB9ItMV6tyTZHLJ92Xa47MZAH2UTw6US/9q8r11JmX2u2vVRhu8Qyvg4IYQQQojtnYRLIbYR7fHK5YK5jcz5eI17e0uTwZqVYT5+u54VS+zW2bdeqqGyvY1AnkIgxw6UupmoeDottt7KpcPbbgowJH8ohw49nNLssqTbnbbY1G1IYMtMiwXI9efSGGnMeA0dcSqx/o0Y5gPpbbEAwaIo67MWUl0zESjcqPMKIYQQQmzrZM2lENuIsN5Oe5vBwnmN+AMKJ/y8L1OOKAGgZn2M6sooqgaDhgVprNcxTIPiUj9R02539YbLSAeVS7/qTxtyoyoqfXL6pq1r9MVDWqbtPFRFRVO0jZrG2h2799mDfQdMJjeQ1+XHJNpiN+53a5naYpuyVlEdXMTSmoqNOqcQQgghxPZAKpdCbCPCRpjv57eimzp7H1DIuN3yWDinGYDVK8K0thiU9Q2wx+QCVi0PY2JQXOInakQxLRPdTGyV4azfTK1cZqe0xHbGaYsNZGiLVRSFAwdNIcsXTLuvJxUGiygMFnXrMW7lshvVTi9nKxPLU7kMFdivY319eKPOKYQQQgixPZBwKcQ2oLXF4KP317FqRZhAlsI+PykAoCS+x+Lihfb6ytI+AXackEt2qBrTMCiKrwUM6+HMlcvUcOnv+npBp8LZUUgbkDewy+fakpxw2FPTYgGygio+n0JDY0S2IxFCCCHEj5a0xQqxDXjjhWqWLm8gkKWwy575+LPs24tL/aBAuN0OOqXlfvx+lcOPK2PU+ABFxfGtR4wwsaRwGa9cWhtfuXSmxW7u1tee5gz0ydTO2xWZwiVY5ORqRKMmba1d2ypGCCGEEGJ7I+FSiF7OMCy+X9AMvhhTDi+hT/8s9Ph2JH6/SmFxogGhtI8d9CZMzGefgwpQVbuCFjEiSVuYOG2xqYJad9piO15z2Zv1DfVjQO4AhhYM26jHO9Nio2aMdS1rMS0T07II5WpYikFdTWwDZxBCCCGE2D5JuBSil1u1vJ3WSDsl5QH8AfuPrOGpQpaUJSqHZX0SHxtmcpiMedZcRgy7fdNMrVz6N6JyuY2Fy5A/xEFDDqE8VL5Rj3cqlz/ULeLtlW9S0bQSC4tQjoaFSb2ESyGEEEL8SEm4FKKXW7ywDUOJ0KdfIjh610+WliduLynPfEzEiCSFS+e2VKl7XHbGXXO5jbXFbionXLbG7HWuUSOKFW+LtRSD+loJl0IIIYT4cZKBPkL0cou/a0VXI5T3y3Jv063Eur6ScrtymF/oIysr8fsibxtsxAin7TkZMcIZpsV2faBPUbAYVVEpDhZ3+THbA+d1jMW3eLGwsCyTUK6GiSltsUIIIYT40ZJwKUQvFQ4bvPVSDevXRcnrZxLKSewzaWSoXJb2Sa4g6kltsZG0tZFhPVO47HrlcmDeIKaPOS1t/8vtnRMuo4YdLk3LxLLibbGKyYLZLaxasYIDDytmwu75W/NShRBCCCG2KGmLFaKX+uD1OmbNbCKUo7H3QckVRcNTuRwyIpu99i9k/0OSK4i6mTgmYoTdQOq0s4aNMKRNi+165RL40QVLSEybddqMrfj/skMq2bmgxyzqqmM8/0QV779euzUvVQghhBBii5LKpRC91KoV9kTXsy8dyEpqqaqBoC+YtGdlWA/THG3m8OPK0h6f2hbrhKEcfw6NkUYiesStXPbN6UvIn0PQF9zcX9Y2TyW5cmlZdrhUVYVjTiljz9JhVFdGefKfa5n5QQP7H1LM0sYfaIk1UxgsYlj+cNkHUwghhBDbJQmXQvRClmVRXRnFH1AoLvPz/To7aOb4c+1wGQ+OLy15nogR4ZiRx1KQVZh0jtS2WKeSmevPtcOlEXb3uRxfujP9cvtvga9s26emBEMT093zUtFMcvN85Ob5GDw8m2Xft1FR0cznbZ8BdpXz22URdug/iPG7523xaxdCCCGE2JykLVaIXqixQScaMSnrG0BVFbdKFoq3rRrxoOhMfM20b2XMjLnrAyNGGN2pXAbsUBP2DPSRSlrXpQ5GwrLckG5hujcPG2mvX122uNm9rbnB4OOP1vLcE5W891qt+zghhBBCiO2BVC6F6IWq19lhsryvPaTHaXF12lZ1U08OlBnCoWEa+FQfCgoRI+JWO7NU55xmIlwi4bKrUsOls+YSkqvFQ0fZ4fK7+c3MmldLcVmAvHwNXbG/tx+9VceoHUMMGtb1IUpCCCGEEL2ZVC6F6IWqq+wAUtbX3n4kFg8tQS0eLi2dhki9e7zpGd7j0C0dn+oj6AvGw2g7kLwvpVs5k8pll6WGS2darP1xohLZf1CQQJbC2tXtNDcZVCxrp3JtBEONMGSEHSgr16TvNSqEEEIIsa2ScClEL7R+nRMu7SDoVMSy4pVLw9SpbU9MIjUsA8uy3DZZw7Q/9yk+suKBtDlqt2cG4pVLSyqXG0VJrVxaltsO653iq2kKg4dnu6+xZUFNVQxTjbLLnnZrcm217IkphBBCiO2HhEsheqHqSjsklrvh0g4h3rbYpMqlZfLFupn87/tnkgb+aKqPHH8OAK2xVgB8mt0Nb3nWCkq47DqVDG2xbuUyuYK8x+QC+gzwMXaXXHym/b0rLLfoO8D+uLY6ugWuWAghhBBiy5A1l0L0MpZlUV0VJZClUFBk/xHVTR1VUd2qo24Z1IWTK5dN0UYMy6BNb3WrlT7VR64/N+n8buWSRAunDPTputTXyvRUgI2U9uTRY3MpGd6fV5dks3q+QaMepri/PQEYoHa9VC6FEEIIsf3Y7sPl2LFjGTlyJADjxo3jlltu2cpXJETnWpoMohGLfoOy3CCjm/b6SZ9q/5GNGVEaI43uY0zLwIhvh2GYJoZiVy59ikZOSrj0q3awsbASW2hI5bLLMg30cV5Hw0pf+2paJqqqMGpkEV8vqqOkv0VWlkpegY/6uhhrmtaxonkJe/Xbx/3+CiGEEEJsi7b7n2QKCwt56aWXtvZlCNFl4bAdVEIhzb0tZsbI8eegKvZt9eE6N9CAPUjGqZoZlo5u2QFIU33kBhLh0qf63DWD3m0wpHDZdWltsRZuDThTuLTi36e9JpWSO7iR/FL76JJyP82NOt+smE+DtpqRhaPok9N3s167EEIIIcTmJGsuhehlohE7jASyElVLIF65tMOlM5zHYViGu97PMA30eND0q353zaVzDqdKacpAn42SNi0W77RYM+1457Ysv5/y0hwiRgTLsiiJt8aur7Mr0N5tTLqqsnUd82rmdvtxQgghhBCbQ68Ol1999RUXXHABkydPZvTo0bz//vtpxzz55JNMmTKF8ePH87Of/Yy5c5N/0GpsbOTYY49l+vTpfPnll1vq0oXYaIlwaf/xjMWH+fhUPz7FbjZwKmSB+LYihmm4t+mW7g4A8qm+pLZYu3JpB0k7WCaql6Jr1NQyr2V1uOYSEuFSUVSCviCWZRE1o5SU2d+7moYW+7EZqp4bMnv9t3xb9Y07rEkIIYQQYmvq1W2xbW1tjB49muOOO45f/vKXafe/9tpr3Hrrrdx8883svPPOPP7445x77rm88cYbFBcXA/Duu+/Sp08flixZwnnnncfLL79Mbm5u2rm6QlV7V3XHuZ7edl1i0+gxO6hkBVVUVcHEQFHAr/nw+/xJLaz5WXn2liSKhYmJooD9UeIxAZ+fkD+bdr2dgBZAUxUUJdEKqyjg07S095G8vzLTNC25jVixIP7amxhpr5el2Pf5VDtcKgrEzAhlfexwWdfUwgAlB0sxu/1ax6xo/Hn1be77JO8vsbnJe0xsTvL+EpvTtvz+6tXh8oADDuCAAw7o8P5HH32Uk046ieOPPx6Am2++mQ8++IAXXniBc845B4A+ffoAMHLkSHbYYQeWL1/O+PHju30tPp9KScnGhdLNragoZ8MHiW1GIGBvT1FQGKSkJBelPUpubpCSgnz6lBaSuyboHtu/sJxIQyt5+VmEIn5UPUheQZY9JTY3SElRPiUlufQrKWN963qKcnIpKc4jtypIXl4QwzLItYIUF+dSGMz8/pb3V7ImNY/c+sT3IC8/SMwfJByf0FtUHEpqnW1Us8mtC1JUmIs/Ci1KPaF8HyNHF2CwkrraCKGcYvILgt3+Oya4ViPXF6SgMJuSUO/8+2lD5P0lNjd5j4nNSd5fYnPaFt9fvTpcdiYajbJgwQIuvPBC9zZVVZk0aRKzZ88G7JbY7OxsAoEAVVVV/PDDDwwaNGijnk/XTZqa2nvi0nuMqioUFeVQX9+KaUp74/aitqYNAMPUqa1tobqtkZaWMG1ajMb6MC0tYfdYM6jR0hKmrqGZxqZWYmaM2rpmNFWlpSVMS1OU2mALZtg+Lg+d+vpWWlrCNCptGJZBS0uY+rpWjKzkvw7k/ZVZY1N70vegwddGU7idlrB92/rqRvya372/tqGZlpYwzdlhooZJS0uYypo6BuSG6DPUYlG9zvcLGhlGHY0/rMfvVxg0LLtL11LX2ETUiFJd2wTtWT37hW5m8v4Sm5u8x8TmJO8vsTn11vdXfn42fr/W6THbbLisr6/HMAxKS0uTbi8pKWHlypUALF26lN/+9reoqoqqqlx33XUUFhZu9HP2pm+ul2lavfbaRPdF4tNi/X4F07SI6lEsCzR8KKh4hrwS8uViWaAb9hAfy4KYoWOY9nEqGqZpEfLluOfAUrAsME3THupjEf8883tI3l8p4q+fw/s6gv36a0rir1Yj/n3BUgioWVgWtMfasSzY+5AQHz4Dc79uYt0HFZRE7VbZsy4dyJDhGw6YUSMW/57Httnvkby/xOYm7zGxOcn7S2xO2+L7a5sNlx2xLMsdWLLbbrvx6quvbuUrEqJ7OhvoY//Xh27qKIpCyBcCQLcMz16LOmZ8Vpezb2KuP8/93JkMmxhDI9NiuyNtWqxlJk2JTR3MY8ZTp6qo+FU7PIb1CADFA0z6Dcxi3eoIeQUqw4tDLPu+jS8/bthguNRN3Z1Sm2mQkBBCCCHEltarp8V2pqioCE3TqKmpSbq9rq4urZopxLYkGrEDgxMudcvZisRuQ9Die11m+7Ld8OhMh4X45Fgz+TH5gXwAsrSg+8sXu9oWj5ey0WWXpYZLCytpz1AzLVwmpsVm+ezW1Yhht9C2x9rZda989ptaxM/OLWf6Of0IhlS+m9tCc1PnW5NEjaj78cZMmhVCCCGE6GnbbLgMBAKMHTuWzz77zL3NNE1mzpzJLrvssvUuTIhNFI2m7HNp2CHD76lcAmT7Qm7QTA0aib0x7cf0zenH5IH7M75sgqdyiexzuRGU1HBpeWvA6XtdOp+rqATjQ38ihl25bNfb0DSFwiI/KBb+gMque+VjGvDt502dXkfSLxQkXAohhBCiF+jV4bK1tZXvvvuO7777DoDVq1fz3XffUV1dDcBZZ53F008/zQsvvMDSpUu56aabCIfDHHvssVvzsoXYoNZYKwtq5rsh0Mtpi83qpC0WIOQLuUHHGzR0b7iMr/1TFIXhBSPI9mW7VUrLSlTcJFx2XXrlMrktVjczVy41VSMrHi7Derxyqbd7Hmd/z3bfuwCA7+a2dHodMc97J7VaKoQQQgixNfTqNZfz58/n5z//ufv5H//4RwAuueQSfvnLX3LEEUdQV1fHXXfdRXV1NTvuuCMPPfSQu8elEL3V93XfMb9mHnmBPAbnD0m6L3XNpeG2xdp/XJ1hMdl+b+UyES5N08DETHqMl3fNpXubtMV2mZryWm24cmkHPxVvW2yicpk4zj5HSbmf/EIflWsihNsNgtmZp7LFzES1OjXQCiGEEEJsDb06XO611158//33nR5z2mmncdppp22hKxKiZzhtrN6KoyPirLkMpFYu4+Eyvo4yxxdCU5xjPEHD0j3Vsk7CpScUSeWy61Q2bs2lqqhuJdmpUnorl84vERRFYciIbOZ900zFsjA7jE3f46q5UeepJyuIDA/Tf1BQ2mKFEEII0Sv06rZYIbZXTmA0UqpckGlabMqaS3egT8gNmrGOBvoo6VUvp63TG4qkctl1qa+VaZlJlcv0abFOuFQ8r719mzdceiueQ0fak2JXLE3cH42YPPvYOuZ+08RbL9ewcnkLSxe1ZXxOIYQQQoitoVdXLoXYXjmVq87WXDoDfRKTX53KZXzNpT+x5jJmeIe76G6bpE/zp51fUaRyuSnS11zS+VYkJKbFOm3MpmWim3rSICbve8ENl0sSbbPfzWthwWz7/wBmQKehXicSNjClLVYIIYQQvYBULoXYCpwWyEwVJ2darD+tLdYOiqXZpfhVP4VZRW5Y8Z7HsEz3MU610yux5tIEtq2NeXuDTNNivZoiTcxZ/60b+L1tsU4wNSyDcHw7Eud75A2oxaV+cvM11q2O8NHbdbS2GCxe2Jr0PDmF9vHrK6NSuRRCCCFEryCVSyG2AqfVNdOUz2jEwudX0LTkyqU/XrGcULYL40onoCpqUuXLYZiGu5az03DpCUWp1TjRsdQ1l0n7hQILa+fTrrdTkFXI0IJhbuuzpmgoioKiKJiWmfi+an5iZsz9hQPY1eUdxuYwa2YT782oZdHcFupqY2g+hVN+0Z/62hirlSqWvAHr10VloI8QQgghegUJl0JsBU74MzKEgmjEdNdbQiKIeofzOGEwUyg0LLvd0qf6Mt7vtsVK1XKjpLfFJk+LddZROhNhLU/lEuyQaZiGW6kMqAHaaEubMjvthHIm7J7HGy/UsHaVfa4RY0KMGB2yz1+homl2uGwPp/+SQQghhBBiS5NyhRBbgbO+zmlnNE3L/a8es9z1lt5jM1UhtQwDewzTIGbGMm5DAinTYmWfy25LC5eWlRYMAaLxCb5mSrhUFRULy61oOu3OqdVHTVMYOjLEIceUureN2tEzOVYz6NM/C123ePV/VTTUp08eFkIIIYTYkiRcCrEVOIExEtV5/t+V/PnaZSz9vs1db+lsQ2IfG19zqWTYViTeZukVNaOYlklADWR8bm/l0h3oI9Niu2xDlUtHzEgOl85aTQW7LdatXGrpay69hu8QYvS4HHx+hTHjE+EyakTZeWI+5X0D1NdFePjOVaxbHdnEr04IIYQQYuNJuBRiC5j7dRM/eAayrFvXymcf1PPMY2uY+3Uz0YjJc09UUrveDpLJbbExVEV1tx1JlVq9dNoxfRkqnZAIR94tNKRy2XXplUszbagPJPYydSuX8b9uNVXDsAx3va0//ksA75rLVCee2ZfLbhxKYXHie6qbMXx+hT0mFzB8pyyaGw3+df9qd9qwEEIIIcSWJuFSiM0sHDZ4/skq/vd4JbGYyeLvWvn0wxpq18doC0fZYWwOO++RR1uLwUtPVQHJ4dKwjA5bXCFzmyYkKmKdkX0uu895vZ3XrKOKY6dtsZblrrf1TotdUr+YV5e+TFgPJ53L51PJy09+DzhrcVVVYY/98hi2QzbtrSbVVbL+UgghhBBbh4RLIVLMqvqad1a+2WPnq6mMgWUP6pn3TTNPP7oK04Sxu+Qy/by+nPKL/hx5YjlqfDgLQLV/Eeta1gJ0un4SMq+7hI4rl2AHnI5Ckdgwn+pz24472gbEaYu1cMKlHUad75ezXYym+lAUBcMy+GztJ9SFa5lTPTvpXKZluhVp9/xmIkSamETKlrAi5yNqqqQ1VgghhBBbh4RLIVJUNK1kbcvajNt8dJUzoAdgfWXih/3Xn68mEtMZNjKb4TuEUNTEnpal5XZYiSltrNbmMbv6WwzTwLKsjMN8HB1tI9LZYxQULOxBNLINSfft039f9um/L9BZ5TJ9n0vvf511t6qiuBNkHevbqpLO9VXllzz/w7NJFU3v+9MwDdpz19Hqq2FtVfMmfW1CCCGEEBtLfqoUIoU7wXUjK3uzv2ziliuXsuQ7e42lt00xFrWwVIPhY+ztJLyBoqyPHS51JYLPp6KbsUR1K8MwH0dHlUu/lnmgD9gtnZnWCYquGVYwnMH5Q4COK5fReKXR9OxzCaDE/9pNfG81t5JcFCwCoD5cl/T+q2xdS8yM0RRtcm/TTd1tzTUsg2CefXxNdXJLrRBCCCHEliLhUogUzg/1HYUGR3ubwXuv1fL9ghYMww5qzU06rz9fjWFYvP9GHZZlUV1ph8uCIjsgjt45SCikxZ8jESDK+sbbLNUYPk1BN3X0+JAXfyfrJzsa9OPvpJXWqVxaWDLMZxMoitJx5TJeWTRSpsU63y9nCrCqqHbl0jKSzlXTXgPY78fmaHP8nM7emRYxM0aWlhU/xiCYaz+2tkbWXAohhBBi65BwKUSKROWy83D50Vt1fPRWHU89uI7H712NZVm89VINkbAJCqxZGWbV8rAdLhU4+uQ+DBmRzd4/yU17LoDyfvFwqUTR/HZlSzecbUgyB0hIVMJSdbQVCXi2I7EsGeazCVQ6Xrsa20BbrLdyqakapmUmtbqua1kDQEu02T1HxLCrkk5LbVALup+rfgOfT6GuNpLUli2EEEIIsaVIuBQihdMuapgdh0tdN5n9VROqCkWlfiqWhZnzVTPzvmkmN1/jsJ/aG9+//0YtjfU6RSV+RowOcdYvB5JfnPhj5w2wZX3sKpShxPD5VAzTcCeCdjacp6PKZWePsZ/blMrlJuqscqmbetJ+lk6o1Nxw6ay51NyWWe/Qnpr2aoCkVtiwbt/vTKL1awE0RSNqRLGwyM3XiEYNmps63tZECCGEEGJzkXApRAqnmmh0suZy0dxW2ltNRo/LYd8p9jq5V59dD8DESQVM3LeA/EIfy39oBxLrKSFRdUr9uLjMj6qBqUTRfIpduYxXtzqfFpv4Y+w9rrOtSBQU2YakB3iDeabvUdSIYqXsc5kY6JNoi1Xj4dK0TDdotseH9zRGGj3niyQ91q/60FTNrYLm5mmA5e6XKoQQQgixJUm4FCKFU2nqbKDPN5/bP/Dvtk8BY3fJRfMp6DELVbVv8/lUjj6p3D3eWU8JiXZISG6L1TSFkrIAhhLF57NDi1PJ2tC2Io6AZ4jPhh5jYclQn03kDebewUqJ7UaiaZXLTAN9vI/NDeSiKAphw/7FRFM0ES4j8Ypl1HDCZSDp+5+T58NSLGrWy7pLIYQQQmx5Ei6F8PAGyo7WXLY06yxf3E5egY8Ro0NkhzR2HJ8DwJgJueQX2BWskTvmsNf+hQAMGhZ0H++tVqa23pb3DcTbYu3QEo6vsetsOI/qCSbedZadbkWiyECfntBR5TIvkAfYIdD5BYLa2UAfT2uzXw2QpWURibfAettiI/FqpmE57dK+5GCap2FhUlctlUshhBBCbHkd/8QqxI+QN+x5q4o166MUl/pRVYVF81rBgh0n5KCqdrjY75BiWlsMDjy0OOl8hx1bysRJBZT2SQQ9b7hMrY5OmlLEYsVHabyNNqzb1avO22I94TI+PRTskNIRpy3WwkJRJVxuLG/lMjlc5tMQaXArl4qiuMeqqWsuVTWptdmv+ghqQcJ6mKgRpTHS4N6XOtBHU31Jz5sVVAGL1pbOh1EJIYQQQmwOUrkUwsMbKJ3g9/7rtdzzp5V8+XEDAN/NaQFgxwmJqa99+mVxxsUDKe+XCHdgh4+yvoGkEOJsL5L6fAADBgeZeEAITYtXLuOVqq63xfozfpzKnRYrlctN4n3tnL1IVUUlx2+/N6KGHS5Vz1+1zi8D3MolalL12af6CfrsSndztJmwHnY/j7jbmxjxcyU/NpBltzu3SbgUQgghxFYglUux3bMsC93UO90r0mFaJm2tBmsqwoS/qaRE8TPvG3uPwaXft7HzHvksX9xGKEdj8PDsjboeZ3sR5/lStwOJeLajaI9XLjtrcfVWLr3Vys4CqROKnKqa2DhqhmFKWVqWG+ydKa7etlcldSsSVUupPgfc49e3VQFQml3K6ubV7kCfRLhMeWyWgqWYtLVJuBRCCCHElifhUmz3vlg3k+WNyzh+h58lDbxxRKMmb79cQ2O9zn5HBfnknToiEYuWtmYKYs2oKqDA6hVhvp/fimnCmPE5bnWxu2Jm8jYRhmXgU3x8VfkFJdmlboCAxJrLjrYbAVDVjtpiNxwuUz8W3eMN5n7Vx/DCEeQH8t1gH423xXoDoFPFjBnJ+1w6fKofH/bjne1I8gL5BLSAO+DJad/2qT583vWafhULs8PK5efrZtIUaeCQoYdv2hcuhBBCCJGBhEux3atpryFmxmiNtRDQktdEhsMGj92zhsrV9g/ti5ZWEcmy6DsgwNF7lNHf34+S8gAvPVXFquVh3ntvFStDX3Hkjgdt9PUYVnq4jMQifFe7EEheuxfuUuXS0xbrOW5DA33EpksK6YrK5AH7A7CkfjEAsXhbrPd7oanOViTOPpdqSvU5sY7SCZe5/jyCWpCmaBOGaXiGBCVXLlVVIZCt0NaaOVyubVlNS7QF3dQ7XccrhBBCCLExZM2l6HHtejuz189yWzq3NmcIStRMn6C5cHYLlasjDBwapKxvgGjUIDtbZZc98xkwJMDocbmUlgcYONRe87aibjXh7PUYpWvdc7xf8S6vLn2ZqrYqZlV9zeL6Hzq9Hj21cmkaSZNpvfc7ay47C4rJay6z3OM7C5Dex3g/Ft3jfe28QdNpwY44ay69r3f8r11vQFSTwqWfLC2x5hLs6bPO9zZiRNzKpZbyWIBgtkIsahGLpW+l4zyus212hBBCCCE2lvxUKXrcyqYVzK2ew/LGZVv7UoDEXpHetY6OFUvsALzfwUWcen5/xu4WYvdJBfj9atKwnUHxcGli0Kd/gDajxb1vVXMFdeFa3lz+GvNr5vHFupluQFzbsoZnv3+a6rZq93hnrZ3TomtaRlrgTD3WGRaTSep6Peh8uqxt81Yu/Z9/RsEJx5Bzw9Vgbr9BJrlymfjY2RLG+cWGN1ymtjjblUvv2s3EQB9Hrj+XoM8Jl+HkrUjU9HAJ0N6a/ro7oTJ1kJQQQgghRE+QcCl6nBOUnD35tibd1N3riZrpG8uvXNoOCgwenk1hkZ9DjyulqMSuOnl/AB841B7eYyk6/QYGaYk1u/d5B7lk+7IxLdNtZ5y9/lva9XbeXPGae7wRv56seCXKsAx0s/Mf9jvb59IJl979EjOtLfXanGsulcYG8s88hcBH7xP65/2E/vqXHj1/b+INlN7XMVFlTA+XSkqlWEtpiw1ofoK+5GFRuR1WLpMfCxDMsa8jU2ushEshhBBCbE4SLkWPc1o8IxnC3JYW9rTm6qbODwtaee+1WkzToqEuRmO9Tp9+AbJD9g/oZtJWJImP8wt8lPUN4A9alPUN0BxtxrIswJ5Gm6VlcdKYUxhXOgGAqtZKAIqDxfFzme7xMTdcBuPXZaStw0zl62TSrdMW6VN9btDobFIspISiHl5/mf3wP1Hr6ohN2AVL08j+x33Q0rLhB26DFDK3FzvTYsN6JO0+NeWvXe8vBSBeufQMZgr6gvhUn/vLiIgRSV5zmfKLh0C86JkpXDqPMzfwywwhhBBCiI0h4VL0OKc64p16ahgWFY0VPL3oyaQW0c0t7J28Govw8jNVfPRWHV9/2mhXLYEhIxJVIu9atNR1aT+/cABHn1qKz6egmzptehtg7xXphIc+OX0AqGqzw6W3PdXZVsIJklnx6qKRoS02tRrl66Qt1nluBcV9XGeVTufYTB/3hKyXXwSg+f6HiBx3ImpjA8EXn+vR5+gtOgrpzpYwYcN+j3lDaGoba+q6Sb+aXLnM9ecBiUp31IiiW4lpsVpKJTQYsj+XyqUQQgghtjQJl6LHpYbLaMTk/r9U8Pi/FhI1otSGa7bYtXhbc5cvb6alyf6h+t0Ztcz+sgmAoSMTP8h7f+hO/QE8r8BHdm7i85b4sBXvXpFFWcUEtAA17TWYlonhCagrm1YCiXWUWfF1dZnWXIb8oaTPu7LPpaZqbpj17neZyeaqXKrLl+FbOB999BiMUTsQPvlUALJeebHHnqM36SikO23JkXjl0hso0yuXyRNffaqfLC3L/aVBXsAJl/b7JWyE3cpj6j6XAFnumsvk96/3lyWGDPQRQgghxGYg4VL0uES4tEPUx+/UUVMVZe2aNsLtyUGqujJKY0MMw7D4518reOWZqh69FqdyBPDd/EYAyvoGiIRNli9uR9OUpMql4WkXNDIMovFee1O0yf3YCRaKolAeKkc3dWraa7A8P8SvbVntnkNTNLcaaWRoi83x5yTOrSid7nPpbG2hKRq5gTxURaUoWNTh8d7rdT7rKYHPPgEgetAhAMT22ReztBT/xx+iNNT32PP0Fh1N3VUVFb/q97SveiuXGdpiU7YigUSlMtdv/0YjEVjDifOqmcKl/d/UymXSe1sql0IIIYTYDCRcih5nxtcWRowwdTVRPnuvwb4dk5rqKHq8crdiSRv3376SJ+5fy+oVYdZWRJjzdTOGYfXYtYT1CBXL2/n4nTqWLWsiK6hy5iUD2HO/AqYcUcJ5vxlETm6ihdTEzPixwxsum6NNbpD2hofS7DIA6sN1SdWillgLlmXZ4VJNtEJmGugT8oTLzqqWkBgQoykauf5cfjZ6OruU79bpY9QOBtFsKt/XXwIQ22Ov+A0+ogcdgqLr+D/5uMeep7foaKAPJA9VUlP2w/TSFC0pcPrjj3NaY3PjlctgvHIZNaLu+9Cn+FDVzJXLtpRpsd5AaUnlUgghhBCbgYRL0WWtsVYaIw0bPM4JZVEjyjefNWEYFv0GZWEpJrXrY+imTl1NjGceWYdpQE1VlC8/sc+rxywq10Q6OXv3tMfCfDenhYY6HcPU2W3vfHJyfRxxfDn7H1JMn35ZScebnmplpqEn3gqjd6iPN1g4w3RMy0wOq5ZJu96Obur4Vb8bKDKtuQz5Em2xqZWpVIlpsV2bFJt6vT3ZFut3wuXEPd3bogf8xL6uD9/vsefpLZJeOaWTcLmBgT6pay4BsuNt005brBM6o2bUHTalKWraetxAMPO02KS2WBnoI4QQQojNQMKl6LIPV73P68tnbHADdieURc0oS7+3h94ccVwZFoYbLj/9cD2VsQpyC+wfhBd869k3cnnPbWGyZGk90ag94fWoU0qYenRp59eetC4t/Qdwb4WxKdqERTxceoKFEyQMy3B/iM+OV6EaInZraEALuKHQtBJtsSMKRzI4fwgD8wa759tQ5dK75rKrOqu4bSylsQHf94swBg/B6tPHvT26vxMu3+uR59lcAm+/QcEJxxB45aUuPyZpi5G0ymXiFxfKBve5TA+XwwtH0j+3v1sJd9pldTPmvje1DbTFVixvJxq139NmJ+uJhRBCCCF6goRL0WWtsRaiRnSDVQ+nWhdu11mzpoWiUj+DhmWTX6zS2mLQ2BTmy2XzWR36kt2mpW9XsnpFe9pt3VFbHWXmB/V8+FYd8+fXATB4WJCsXBNV7TxIGUlbkXTeFtsaa8nYFuv8sG9Zpnu/09pY2brO/tyf524hoZuJymW/3P4cOGiKW7WCDW8rorptsV3/47w5Kpe+b74GIDZxj6TbrfJy9LHj0VYsR12xvEeeq6f5Zs8i/7STCHz0PgXnnO62925IZ1N3A+qGK5eqotprap1fECiae+zwghEcPORQd0iT8z6Imbr7Sw5N8aWt4XQql0sXtfHI31fz6bv2LzQ6G1YlhBBCCNETJFyKLnP3yMuwFtHLCVTVVVFMJcaI0XaLZ3l/+4fkxT80sb62mVCORr/hCrn59g/WI3cMgQKrVmx85bKhLsY9t67kzRdreP+1WipWNeLzKfTpn+VOae3KtUPmH8Cd6k9AC6Cbulu59DZIOusZDcvAir9WeW64rHQ/1zKsuXRaHL2B0reBbUW8waSrNkfl0v/NV0ByS6yjt7fG5txyM4plYQwcBEDovru79LjkinXHbbHe703S5FjnFwNqYq/SjjgVzdTKpZryfQ8kd3qzZqX95yl5mx0Jl0IIIYToeRIuRZc54WxDbbFOZbO6MoqhRN1wOXC4/cP2t1/XYyoxSsv9mBiMHmsPr9lp51zK+wZorNdparQredGIyaN3r+b912u7dI3VlVEsEwYPD7LnfgWYWpShI7PRNIWYmV4lTWUmVS4ztMXG21c1RcO0zIxrLp0WSNNTucyL71XobMOSHyhICpdOW6xbpfKso9vQnpVqyprLrunZvS0hES713fdIu683h0t1xXICH76PMWgwdR9/iVlaSuD1V1EaGzb4WO/+lakV4I7WXCoZJsw63zu/1nGV2udWunXPmsv0ttjUAnZ1lf2+N5LCZc8NzRJCCCGEcEi4FF2im7obpDYULi1MLCy7cqnFGLaDvQistK+PvHwN3dAxFZ2Scj+6GWPKtFKOOKGMnffIZ/Aw+9j/PrKOupoYs79sYuXSdmZ+0ICub/gH4uYmO6QNGxXiiOPLOfykQsbtXIhP9REzNly5TG4dTHydte21mJbpbiPiVJqc18IbLBJrKT3hMl65dF7D/Kz8xHGetljNbYFMBEptA+GyOFjM0IJhjCraYYNfn0PJUGndVNr8eVg+H/pO49Lui+09CSsrC/+nH4HRu6pmwf89A0D4xJMhJ8eebmsY+D/6cIOP7awCnOVZc9lRW2xq1bmz9bXO2syYGUtMi1V97vM4/03989lYrxOJmEm3pw6QEkIIIYToCRIuRZd4W0o31FJnWibtbSaRsEVxPwgG4yEKk6EjszGVeLgsCxAzY+Tkauw5uRBNU9j/0GL6D85i9cowj9y1ik/fs9eLRSMmFcs2vBazqcH+oTmvwIdpmRjECPmz7XDZzbZY5+PVzauYsexlvq9bhGEaaKrmBgkzwz6GiYE+phtQcwP5Sc+TG8hDzTAt1qlYetfhbXCgj6qx/8ADGZg3aINfX+o19hRl/Xq09VUYo3aArKz0A7Kzie25N2p9Pb75c3v0uTdV4I3XAIgcdyIA0Z8cZN/+wbsbfGxySE9Z+9jhQJ/094qzXtavdj7p16f60E0dwzLc90dZqJw9++3NhLJdALsqudf+hfTpH2DYKPuXNTVV0ZSqvGxFIoQQQoieJ+FSdImeFC43vOaysc4OS8V9E7cbpsGAIUH8QYv8EsgOaegpQTW/wMc5lw1ilz3zaWkyaKzX8fntH+B/WNC6wet0Kpf5BT7Cur3WLEsL4lf9dtjcwDCipMpl/Nh23Q61LbFmdEvHp/rcUOBWLkmvXHoH+uR49q3UFI0cX04HbbGJFkenermhyuXG6Ok1l74F8wDQx47v8Jjo/gcC4P/wg01+vp6iVlXinzsbY8hQOxgD0f0OBMD/+Wcbfnyn02K9+1x2XrkM+XPwq34Kg0WdPp8bLuO/5HCuYUzxjm513MTk8OPKuPCqIfQfZA+Gqq6MZlxz2dZq8M4rNW4buhBCCCHEppBwKbok1q1wadFQbx9f3Ff13G7g96sceGQBkw+1K3l6hmqipikcdVI5o8fZgezIE8sB+GGhHS5bY60sa1ya8bmbG+0fmvMKNMKGHQqDviy3ItRR9XJu9Wzer3g3ZV2afS4ncIb1MJZloSmJyqVzX0dbkTivlU/1uduR5AXykiqThmUmpn96gqQTLje05nJj9PS0WN+C+UDn4TIWD5eBjz7Y5OfrKYF33wYgMvVQd59Kq6wMY/AQfIt/2OC6y6SQnrrmMmlarOeXDxkG+gS0ACfscBJ799un0+fzuxNjY2lrLZ1zWZ73cFlf+xqqq6IZp8V++GYdn7xbz1fxfWaBLv0SRgghhBAik57/qVVsd2qrozz+xEqM8RH69M/KOAykoS7GO6/WcOBhJUmVy/yyxLHOD7S+LBNF0yFGh+sgNU3hpLP70VCnU1zq5/MPG6hcE2HmB/UYI+azrGkJ+YECWtaEmP1lM0NGBNlplzy3ApNX4KM13mrqVwP4NftjO8wGk57LtExmr/8WgIF5A9OuN1HBtPfs9K6HNN2BPgnJA30Sg1dy/Lm06+3kxVtk3XBp6mltsd7n2VBb7MbYfJXL9PWWDn3CLpgFhfi/+Aza2yE7e5Ofd1MF3nkLgOjBhyTdHtt9IlrFSnzfziJ24JQOH59pkJN77g7WXCYP9PHsb9nJMB+Hd4pwpv0yIbGuFxLhsqYqeQshwzIIhw2+/aIJgNr1iT+Hry17lZZYMyePOXWD1yOEEEII4SWVy21cW6uetBaxpjrMA7dX8Odrl/LA/1XQ3rZxFQjLsli8sJVw2OC912pZu7aN2V82EYkYxPT0Frp3Xqlh/qwW3ptRi2HqNNTHUFXILUoPl7qpu6HSaQcFWNm0gvVt693PVVWhuNT+YXqv/QsAePPFGma8uBbTtIjoYV7573pmf9nES0+t55Wnq2hu1FE1COVobgVHUzQ3oEVN+4fs2etn0RC213PWticm0UaMxERZp+roBESnPVZTfO6UUCPDmstMA31URXVbY532RdUzFCh1WqzzPN7/9qQer1wu3HDlEk0jNnl/lEgE/1dfbPJzbrJYDP8H72FlZxPbZ3LSXfpuEwHwz57V6Sk6a4vN6mBabOo+l93hT3p/pEyJddYBe7YKKi2PVy4ro0m3G6bJnC+biUbs22qrE+/7unAtUSOa9OdCCCGEEKIrJFxu495+tYqH7lzFrM8b+WLlN1z16P2sWttANGJSuTrConkbXqeYyfcLWnnyn2t56K+rWDC7BUOJEY1afPB6HX+9aRlzvmpyj62ribJgdgsA381rYf36CLGoRX6hD53ED63eyonTnhqLV+yiRpSPVn/Ap2s+yng9u+5VwAVXDabvwCzWVbYyb1Yzy5e2ULs+Rp/+ARQFVixtp7XFIC/fh6oq7vOpquZpJ9RZ0bSMudVzeHnpiwBUtq1znyeiJ/bYNFLaYp1w6VM1N5A5wTPT9FVvW6w3XOYH7KDsVCmdAS2QHBicStZmqVwm11o37WThMNoP32OU98EqK+v00Ggvao31f/k5aksz0cn7p1VR9XETANDiobkjSSE9bc1lonLZ0T6XqdXHDUmqXKb80sFbMTdMg7AeJiuoUlDko64mxjsz1hOL2e9HwzT44qMGAFQV6mpimGZyR8KallXdujYhhBBCCAmX27gJuxeiKPDGCzX86+l5NLdGGTguwknn9ANg8cKNC5dLF9ktoDXrY2DBxP1yyc5WiUYtTMXks7nfs6R+MQCfvlePZUFuvoZlwlef2hXBwmI/USPinjPTWk1nzWXEsNczNkeb3UE8qfr2z+KUc/uTFbKoWBbmlefsULjvQUWU9Q3Q0mSAZbfEgqeqiIo/XkWKGdG0tt71rZXux2Ej8dzO9Trnicarmj7V55kW2/FWJM5AH6c6NaZ4R8YU78SwguHx45wwYLhbnHjP44ufx6f17oE+vh8WoRgGxrhOqpZxsf0PAMD/0dbf7zLw9psARA8+NO0+fcedAPAtXND5STpZc5nV0bRYb9DsZuUyeYuazG2xpmXy4er3eHHJcximwaE/LSMYUpk/u8n9ZdOyJS3U1cQYOiqbvgOziEUtmpv0pD+jq5tXd+vahBBCCCEkXG7jho3MYd8pRUQjJvUtTfQdEGD/I3MYPiqEz6+w9Ps2DKP7G6avWGJX6YbFf/icsGeIyQcXMXlKISgm36z/ipnrPsUwTObPasHnVzj1vP6gQHNTDEWB/oOzktpMjQxbmDhrDcN6IoTWttd0eF35hT72nZpPdrZKOKyTk6ux08659BuY+EHeCZeJqqHithPGzFhSJdAwDaraqtzPoxnaYg0zORRrii9paA/gtsnaz5c80Mf5PDeQx5799nIrkk44MCwjafqnw6lS+TZHW2zSGsBNC5daF4b5OIzhIzEGDMQ3ZzZKfd0mPe+mCrwbX2950NS0+6ziEox+/dGWLIZw5l92QHKLa2pIVxXVDYOZtqpJ/bgr/EmVy+THOhVz55c0USNKzIyx0865XHLtEFTNYvWKMIZhMXdWIwCTDyqipMz+xUtddSypu6Cmvdqt1gshhBBCdIWEy+3AT44oYfd989hxoo+J+xYQpR1/QGXYqGwi4a7tD+nV0qxTXRmluNTPGRcP5PxfDwKfQTBbo6g0QHGZj9a2KO1tOlWV7UTCJgMGB+k3MMjhx5UxYqcgPzm8hJLSgFu5tCwrY+Uy5qlcOmrDdrjUTZ36cHoAyStS2G9qEWN3D3H0yeX4fCr9Bwdp8q2hIjST3PzkllXvmkvd1JP2+1vRtKzDDeWd4OhdqwbxyqXT+mqmT4tNtCdaWFgdBghnmItuGu4WJ17OVhbeClhP6ayds7u6Mswn8WQK0f0PRLEs/J98vEnPuynUlSvwfb8IfcyOmIOHZDxG32ksimni+2FRh+fx5vJM32fne9hxuOxuW2z6wCf3WuLfRwvTs144vs9qno/Bo7LQdYvZXzZRUx2m78AsRowOUVJm/9moXR9L+wXQupY13bo+IYQQQvy4SbjcDvj9KgceE2LIyGwUFNriU01H7ZSDQczdwqOrVi61w+jQkfY6NEVR0D1TXcv7+7EUk4Z6nVUr7ecaMMSewLrXfoWM3TWHgvwsfKrPrQR2tH2JE+y84bImXrlcUDOPV5a+lDTkB+xAmhXU2PfgAvKGNvLx6g/pM8BHQ2Alzf51kNMcf067YqupmrsVSdSIJm03srDWbnv07knofM1OIDZSwqem+lDpeM2ld6CPYRodhjfNDZcxLMtKq1COKx3PxL57Uh7qk/Hxm6InB/p0ZRsSL3dLkvff2aTn3RSBd+ItsVMP6/AYYyc7LGudtMZuKKQ725GopFYZ1aT/dpU3UKYGU29brBMSLRJdCzuMtf88r10VwVJMDjqiBEVR3MplbU0U3Up+r7fG/y4RQgghhOgKCZfbieZos/txW8wOk0PGqPxQMIPXvv2ESLjzvSm9UsMlJAbvAJT192Fh0lAXY/Uq+4fPgUMS1TWnWudTfW5lMlNLLNjh0rKsjG2xDZEGAKraKtMeY59T54f671neuAxfcTOmaj9Xtr3Th2cPStVTuYwlBd36+MTYofnDkp7DOd478dXhU7wDfewf3jNVpgzLwMTscGiLE2idXwZoKZWovEA+O5WM7ZFprqm8p9ykyqVl4VswDysrC2PEyC49JDrlYCxNI+vN18Hs+vuyJ2W99YZ9LVPT11s69J3GAonwnIm6gfZiZ6hPaoh0frGQOvF1Q5IH+nQSLuMVde+el/2G+Alm28fsdUA+o3ayB0yVlCcql6az7U67wbxZzcybXU9bq+x5KYQQQoiukXC5nWiJtrgfO2FFDUXoP9RPc7SJrz5t6NJ5TNNyK51DRmZT015DRdNKd/AOQHk/P5Zi0FCrs7rCDqIDBif2jjQtEwUFv+p3w1lH4RLsEOatXLbr7bTGWt3bnC1DwG6vdcOlaSSqippOTnzbk1Bu8rAdTdHcik/UjKZdS8gfoiyUPOXUCZeGZaQd71MzrLnMMNDHtAwsq7O2WJWgL5g0KGhL6Ym9LQHU1atQGxrsIObr2vVbRcXE9p6EWr0e36yve+Q6uqWlBf+nH2MWFhKbuGeHh+nxymVnQ30yTQn2ctti1eT3gPN+2ZQ1l2ltsZ52bOe9761cKorF3gcUsu+UQoaMSvwyqNhpi61O/NlYMKuZFUva+fCd9dz9pxVULJe1l0IIIYTYMAmX24mWmLdyaYdLw9IZOSYHU9X57P0GYtENV4mW/dBGQ63OkBHZFBT6+XztZ3y4+n3a9ERrbWGZhqJCfW2Mqqo2cvM18gsTP+g6Q2ySW1E7DpcxM0YkvjbT2a6jPlzn3uZdd+k9j2EZ6M4kVzPKoBF+cvM0ivtoSceqiur+kO/d9sMxIHdgUkUIPOHSNJLWaIJTYUxsNwKpIUN1vy5Ib4n0Cvly3I993axibQpvGO5uwPHyzY+vt4xv3dFV0cOOACDrjdc2+rk3VuDjD1GiUaJTpnYaiI2Ro7ACAXwL53V4zIam7jrrZVPfA84vILq75tLfWVts/DksrMR6YU/l0rDsbXqKSwNJtweDGgVFPmrXx/j8k1oa6mOsXwXBbIWhYwK0t5o8fu8aKtdEEEIIIYTojITL7URLLFG5jJkxokYU3dTJy/fRf1AWbS0Gayo6nnrp+OYze4rkxEn2XoxRM4JlWTRGGt1jTHQGDg2i6xamaTJwSDDph2w3XGqeVlSz43CpmzF3KmVJdilgB2RnS5LGaKPb5hfzVFB1yyAWXwsaM2IMHePnJ4eX4As6w0wSA32cllPd1NOupX/ugLS9JJ2waWImTdAEe3qrkhIuM7XFOhXWzsKbE6YhvS12c+qpyqVv3hyg++EycqgdLgNvzOiR6+iOwNsbbokFwO/HGLkDam0tSnV1xkOSvrcZKpfO9zfoCybd7jyu+1uRdDwt1jtkKnWgD5C01jj1FyzHTO+Dz6/w3uvVfPZePT4rix12ymXvKbnsfUAhhm6xZNHGbWskhBBCiB8PCZfbCWfNZUGWHQrb9TY33BSW2d/mqnXRzA92ztGo/z977x0myVmee98VO4fJs7M5J+XVapUTCAWQEIroIGMM2BhjDD4mHfuzwRgbY4x9bB/bOGCCCbKEQAEJaUE5rKRN2iBt3p3dndnJoXN3xe+Pqvet0GG6Z2d2Zlbv77p0qWemuurp6ure9677Cdi/N4dwRMDa861FMRFWOdVZWOqmhvM2xLBoaRAmDCxbFaZ/c6eiusd/1HIuNUOjLmVToInGX3J1miX1l+70XN3QoNsNSBRD8aTLumPhOY42y3E7lxzHISyFMS/SRV1WAondMHTPohzwpsWSmrZKYygccVndnYpIUc9+zxSeWsHTEJqOc1lfMx+CsWQptLXrIR48AGH/vkkfv2FME/KvnobJ81Cuf/eEm2tr1gIAxH2VU2MnauizvuVc3LD4RnSEOz2/n4qGPv7rxUnVduqj3TNd3fWXfjd+2aowPvQ7XWhuF6DrQEsyioVLg9AMFYuWWcI4k2K1lwwGg8FgMGrDxOVZQlbJQOAEtIas2sG8mqeLzHiTLS5P1U5r278nC9MAzrs4BlH01hS6UQ0VHMfhvI0x/NZnu3DxFQn6NyLsrIY+kr29VibQvPvTULJdykQgCQDIqBmP6zJeslJj3WNDdFN3zcksOHMpTb+4FKjLY7hqKK+afw3uWHk3ZEH2pBtaTqdrBmVZWqxQNorE71oJnOA6fo20WMkR5tMxz7IaU9UtVnxrD0yOo/WJjVC84y4AQODnD036+I0ibnsDwkA/1EsuhdnUPOH22tp11vP2v115gwnSiyVBwrxoV9k5npaGPvA65oC35tKfUu5n6cowPvTJTtx8Zxtuv3sBeJ6DYqh0bmw6VXlkD4PBYDAYDAaBicuzAFW3ahYjUgRh0RIreS0HzRY+sSQRl7Wdy8P7rVrNVeudVM1KMyBJ51gOHJItAnjelRJrz4T0d2it1PgmJIbo34t6ESIvIirHADhdXAmjdt2lu2utZmg0PlJn6o7ZnbLqFYu2u8oLVBCIgmvRzgvgQMS1UebyVEqL9btW9dY0usXlGU2LnaBWsK59jI1COHnC6hIbiUz8BB+l2+8EAAQf/ingctimk8AjD1vHfv8ddW2vr7HEZTV31V1L2ch55CbpXNaquSTvqTt13JMW60rv9qd609+bOkSBQ1i2rkvNUBG3xWVmnIlLBoPBYDAYtWHi8iwgrVj1kDE5hrBd45VXnbTYQBiQAzwG+0o4+HYOv3p8GIbhXczruoljhwqQZI6mwVUawwH4U1O9i1S3W0c7tOoKrXOUXemnIVsIK7oCRVcQEAJUcKbtGk+S5ks6xmqehbPjKrrTdokY1F0pumQhrpsGTQ90Oz/umksOHBWjlc6BtT+nMyd5jn8bQqUuogRvWuwZbOjjjneSziWdb3luY/WWBGPxEqgbN0E40Q1x+9ZJ7aMhdB2BR38Ok+dRuvX2up5Cnct9lZ1Lj0hv4DxOvqFP9W6x/lpfwOtc+pv7VIJ8dgKCDI7joOgKonER4JhzyWAwGAwGY2KYuDwLIPWIyWATdcJympMWa0BHR5cMVTHx0Pf68MozY+jp9jb36ekuQikZWLIi5KTEVnE3SBMdoHyR6q25JOM8nDpHd2OTsGQJSSIMA0KQikuyPUmTLdnjOjSPc+mkxeZcDY3I70yX0CWLed1wBGk1cene3qiQFivyjnNpUHe0vOay0mM/EXFm0mIxBc6luGc3AEBbPzlxCQDFO+8BAAQf+PGk91Ev0pZXIAwOQL3yGpjt7XU9x1iwEEYkajmXFdzViWouqzH5msv65lwSqtVZVrppBAC6QVx9ERIvQTM0CAKHaExANq2V3ZQ6HQzTwLPHnkV36tiU7ZPBYDAYDMbMwsTlWQBx9ZKBJB1tkVdzVGQZpoH2eZZjqCrW4rDnuFdckk6Qy1e7UmLNyk6Fx7ksE5eO2HJGkThpsWSoPOA4l0RcBsWAZ2wI4IzqIELZfWxFd2pIi645mSQd2C0iicujm5qrLtTtLjpOq8ALXjHqE9nCBHMuyTGdfVd3p8Iz1C12sumcbsS9tricpHMJAKU77oIZCiHw8IPgspmJn3AaBB56wDrmB+6s/0k8D33NGvC5LPiek+V/rvMmQvnzrHPeeM2lKy2WLz+ePwbDIy4rP3ZDPvPk5pBqqDBNE7G4CMMA8rmpa+qTUdI4PHoYB8cOTNk+GQwGg8FgzCxMXJ4FUOcy0IyALcxUQ3VElqGjoyvgeU6vS1yODqvYsSUNAFixxnHSqqXOuese/fWI7rTYSjWXAY+4tFxKMqMzIFiuZtjl5pFRDkQoay6h5xaUpuluXOKIaisWl1h0OZH+hTgVl5xAa+IqNfQROYE6f0aNbrGVHvvhOZ6ehzPZLdbNZPv5UHHZ4BgSN2ayCcXb7wSfyyLw0P9Mej8TwaXGEXzkYZjhCEq33d7Qc7U11Zv6TNa5pA19KgjEWoi8SG9kVHK6/TFUGkXCcRwM0/B8ZpxtnBsysuu7hDb1mcK6S913E4jBYDAYDMbch4nLswDS/CYRSDgdWnWViizd1NG10BJu8xYEAM5xLnNZDT/8t17ksjo2XplAa4fjGuoVmvlY+6s86sD62VVzKTijSAw73S5Q0bnM2n+zYnSnzobEIHiOpwtQ1eNcVm5QRLZ1d67lOM7aj6G75l96L38ihq20WCfF0O/yiLxInb9qQtXvitaCuJdnMi32tEeRFIsQDh6A3jkPZlvbacVS/M2PAgBC3/vOtDX2Cfz0f8AVCijecRfMWLyh5+r2OBJhX3lTn8nWXJKbF1yDabGAc51Wcj3911qlmksnXb1c1JHaaMvtJ92eXU19prDukojdWjNwGQwGg8FgzC2YuJzjKLqCnJpFXI5DtOukAEB1zX0EgK5FMu75rU7c99tdaO+UkRrTMDqs4Mf/fgqjQyrWnBfBzXdYImEwP4gj44c8LqEbtWZaLGlww7ti0cqcS57j6WOSFhuyRWXI5VwGhCBEXnSNGXEL2yqpfaTmEqT+kwysF6CbzoB5wddAR6TiUiiruXSn6gq8SN0+IlRrOZcTpT4Sp9Yfz3QyWVFEEPe9BU7XG55vWQntwg1QL7gQ4r63ID33zGnvrwzTROj7/wXAEbKNUMu55D3nsf6v08mOIvE8t8L14n8vKzXxIZ/LSp8ferOE5yHTG1UKYsmpH0dCjq8x55LBYDAYjLMGJi7nOGMF4lomATjjNdxjOgBLcK07P4Z4QsT8xZaI+97/60XviRIWLg3izvs76UiRbf1v4JXel1HQ8p5j0TQ5vb5usbXSYiVe8nSTtf5GxGWI7i8gBiFwAn0tbmFbDaOCc0n+bzX0cdJl3bgdIbJw1wwdpmlCFmRnbAnnbujjpBq6aaQWj3TEdb/u6Way6ZwEcecOAIB2wUVTEAyH/Kf/NwAg8vffPP39+ZCeewbi/n1QL7gQ2vkXNvx8Ki4rdIw90w19APd1Wu50lzmXptu5JHXP1ue4knNJbiiJnOiZUxtPWJ+HTGrqhKD/c8pgMBgMBmPuw8TlHGe0YM1/bAo20d+JvAjVUKu6fAtscZke19C5IID7Pt4FSXYuBdWwxJ57diTgLEq1WjWXcFxBp6GP4mnoExSDiMoxT4dWwJn5GHSJrKAQgMALtEZMrZKq64Y2MrJTAnlbKIq8aNVQulL/vK+POJccdaGImHV3v3XPx3Tq2LwfJXfK7USO1jmt5+Hdi9+DjnDnhK9tqphsEx+CtHM7AEC7aMNUhAPlvbdCW7Ua0utbIL368pTsk0AEKxGwjWK2t8NoboZw6ACg+a6/SXbd5V1ueqOI9Dosv67Kai5R3sRHrJUWW7HmUpmWmksnG4GJSwaDwWAwzhaYuJzjjBfHAQDJgCMuyQgBd1qru/PrijVhBMM8zt0Qw0c/vQDhiHeBS8RZUS94fi/zluvoXgyWpcUStxA8HfiuGaqnluu9y27Duxbd4BmrwHM8FVchV81lQAjSWkTN0KrWgXrj9zmX8C7kiXgub+jjci7LthWwKL4Y86PzrRpOexFPjlGzoc8EHzNZkNEVnT+p9NTJ4j7WZNwz0RaX6gVTIy7B88h/9nMAgMhf/BlgVE55bhRpyyuQXt8CbdVqKO+9dXI74Thoa9eDUxQIx456/uTputvA+7covhjt4Q60hFobDkcSGqi59KXFchxnNaRC5VpH2tCHdzosT1/NJfmcsvmZDAaDwWCcLcxMe0rGlNEV60JnZB66ovPp74jDVtQcceheZCaaJHzha8toGqwfKi41a9RHVI4iq2QRlkIY9U4wqTrn0hrtUV5zyfM87QBbcnV77Yx00kUzqbkUOAGSINH0Vd3U60qL9XeLJSmu5P8kDde/OCfnjXPNuVR0x7m8rOsKuq1/pmC5uHQ39DlzorFeTicmLp2CcOgg9EVLYLY2Lo6qUbrjbqjf/mdI27ch8PCDKN39wdPboWEg8tU/BQDkP/NHQIOdWd3oa9YCr7wEYf/b0Feuor/nJulcLowtwsLYoknFsiS+FDw4xOTyxkTl4tJ5rBs6ePD0c1A5LZaMIhEh8yRTwdUtdhpqLplzyWAwGAzG2QNzLuc4i5OLcePSmz0NZ4ioc4/q8Nc1VROWgLPoI87lkvhSbOzchLXN68u21X0OE0nD46rUXLoFndu5nB9dSB+T2sOAGLC3s51LU6NzLmu5beS10pmb1Ll0nBigvCGKu+aS7L/a8Tg6iqRat9jJzT+cCRpNkRXf3AnONKFeNAX1lm54Hrmv/TUAIPIXXwaXGj+t3QUeegDS9m1Qz78QpTvuPq19Vau7dJ+7M3UTYXXzGtyw5KaK11WtOZcmTDulm4jL6g19BN65OaToKoIhHqEwj9EhFUppalxl6lwycclgMBgMxlnD7F71MiYFqR10j+qotJCsBkmhJc6nJMhY27KOOo5u3DVdgMst5HhPWp1Of+8IOnfN5YLYAvqYOJfk/yJxWlypvu6RJtXid6f4uf9vmEbFhXmlUSSKQVxOv7j0jiKp1dBnMnV10w3HTS6dE3BSYrWLLp7SmABAvfRyFO+6F0J/H6Jf+tyk98ONjCD61T8DAGT/8m8A4fTeA6djrHccyWmPdJliysSl6/OpGzo4cJ6Zr36q1VxyHIdlq8PQdRPdh73p8rrd9KpRyHeFaZpVOz8zGAwGg8GYWzBxeRYi+hrlAPW7A+7h6kXNcj5JzWMlQeav23LPfeQ4DhIv2XMuy51LIuZEXvSk+AXFIK5ccDUu6bzU3ld5Wqy76Y9fHDnOpZOiax27tuBz11w6ro2VGux3OWnNZZVRJIInLXb2fcxOp1ustMOut7xw6sUlAGT/6m+gz+tC8OEHEXjogcZ3YJqIffb3wA8NovChD0O7ZNNpx6SvWQMAEPZXdy7PZM1sdbwxeLrFwvA0ozIrOpcklVz03BwCgBVrrJtLh/fnPPt/9MjP8PzJZxuO1C0oNVZ3yWAwGAzGWQGruTwL8XdhBcq7ulbCGtPhbFewnUuyyPSP7gDKRavpE3QiL6Kkl1w1l84+OI7DPavvqyi+liWW08dEqGmGTpt/BF3OZVAI0lhlQfak23nTU2sLPuLU8Lzj2hCB7X/tZaNIajT0aWT+4ZnCE+8knEtTEKCde94UR2VhJpuQ+advI3HP7Yj9709DX7y0IYEY+qe/R+DpX0JbthzZv/jrqYkpkYTeNR/C0SNAsQgEraZTp9sYaaqplhZLbhpZY3asz3OlESBOzaVAay5Jh+YVa6xMgsP7nC7SqqEiq2QnFWulGZwMBoPBYDDmNjO/GmJMORWdywlmyb3a+zIePvQgdeoAoORz7SotnnVTx9sjb2HX4E4AgGE7JWRbiZdgmAbtuup3DINi0FMvWvn1iPa+LeeS4zhIrue4GwCJvOiMIjENz/E8jysMoKciGjwdo0JEqz/usoY+ZWmxlY87W5hsIxq+7xSE/j5oa9cD4fB0hAYAUK++Ftm//BtwpRIS998NcevrdT0v+IPvIvq1r8AMh5H59+8C0eiUxaSvWQvOMCAcOkh/d7rzQqeaammxbhef1CBPlBYr2un1qp1eH0uI6OiSMTqsYnTY+h35rDU6q9I0Tah69a7TU81ocQQPH3wQp7K903ocBoPBYDDe6TBxeRZCRoC4mWjxNlQYRFErIqNkyv5GxFHFtFhTx56hXdg9vMv+2Tv3kTYXsjvP+msX60HgnVEkmqFB4iWPYAtLVoqsJEg0hVc39LLaStF1XioJvvZwB9rDHVgUX0TrVqnA9juXnNe59Ddz4WeZo+VnsqJI3L4NAKBdOEUjSGpQ/NjvIPfZz4EfH0fyrtsQ+MkPve1P3WgaIn/xZcQ+9xmYkoTU934M7bwLpjQep+7SSY31vLezIC227L20z5eTri7Q+ZiVvhPcM2Bl2u3Zqd1esZakxlrupVFnU55DYwcxlB+iPz/zxAj+4/92I5uxUm4rjUWZSkYKI8ipOfTlTk3rcRgMBoPBeKcz+1a9jNNGquAETrT4I+mf7g6zhFo1l7phuYmmaUIzNEds2ZcWEWmk8+xkXDwiSDVDg2Zq1KEkEOdS4iVHiJpambicqA4yIkVw09Jb0BmZR51Lun2DNZezvVusN223flEk2Q6itmF66i395P/4z5D9yl8CxSLin/k9JO54H+RfPgEukwYAcGOjCDz0AJquvQzhf/p7GPEEUv/9ANRrr5/yWLS1FTrGum8izIKvU/9NDndarPV3Z8xOpVR5dxMsyTVKiOBPja3kXGqaif5eJwMiVRrHllOv4D+efwj/+jfHcexQHlueH4eq6ujrtb5v3HN4pwMSp6pPPMqIwWAwGAzG5GE1l2chRAy6IQvJo6kjOJ7qxsbOSxCVY/bfDOrQlVxpsXR/fHVxqboEpeoeOWKLMeJclmzn0i/SGnk9RMRazqVbXNrOJS+7RohYcbnTX72pqrUvfX+qrl84OE1RbCeNq9XQZ+YdLT+TdS6l114BACiXXj7lMVWj8HufhnrxJYj94acgv/IS5FdeAgCYgQC4knO9Kpdficzf/ROMZcur7eq00Im4fHsv/d1sa+hTrebSPQqIdos1yhv6aIZGP+/kJpWqq9ANHQIvYOHSEOQAh2OH8tA0gzYA0k2rYyzHcXhx8yhe3DyKj35mARYtDSGvWkK093gJyikF//2vvTAMwBQNjAyWMG+BRGMxTROmWXtU0mQgr7/S9xuDwWAwGIypY+ZvtTOmHOIWuiGLt7eG9+Bk5gR+duinGC4MA3BcS+txoey5fI202JLL6dQM1WnoA6fmEnDNlpyMc2kLxCJtMCTR1D7AcS5lQaJjS0idmFsUinxt59IN7xql4n8uUMGprCI+gVna0IebhCjKZiHu3gW9vQPG0mXTFFlltEs2YeyF15D63o9RvO0D0JcshRmLQVu+AoUPfRjjDz2K1M+fmDZhCQDa6rUwRRHi7l003XS2jyIxYcVputK33d2XM0oazxzfjNHiCADvmB7y2R0tjuBH+36Al3peQNHMYenKMFTFxImjRY/jSAQc6SY7YLuXZJtM2q6FNgCet2IbHlTs41rPffqRYfzN/3cUuezUpsmS/btTfBkMBoPBYEw9zLk8C6k1ioRziaDdQztx/aIbaMoqABQrOpdeUebu8uh2AlRDLRv/4e9cO7m0WNGOzR6Nwoue/SSDTeA5HnE5gbxmLWwVImb5yo11KjX08SPxEk2n8y/a/W5krYY+syFd0s9knEtp2xvgdB3qZVfMTH2hKEK55X1QbnnfmT82AAQC0Nasg7R3N/iBfhid82adc8mhinPpqqV0N6M6lT2F3mwvmoLNaA62QDd1BHirEzPP8XSUEMdxOJY6ivHSGFasvRYH9uZweH8e53Z5m/KYCo/+Hus7ITVufXY0Q4OmmijkDUTjAmIJEavWRfDkLg7dKQ2KYqXUZzMatr6cgq6b6O8tYvnq8rm6k4V8jks6E5cMBoPBYEwns2/VyzhtKo0iIeLSdA1VH8wPwjRNj3NZ0irUXLocPL/IUlyLNXeKLBFfoq+50GTEJdkHiVMWZFpbCQBRKYo7V92DS+ZdSkUdcS7di23eIzQnvvTdqbFlcfvFZY2ay3qE7JlmMkJIeu1VAIB66WVTHc6cQTvvfACAuPtNAN7LYDY6lwZt6EM+l4Kn+zIRXTk1B8M0ylLJL59/JS7vuhL3rL4PEi8hq2TpvMu3dmaQKzo3lzRDw6meEki2bdolLjMZ6/H8RUF84o8W4bqbW9DaacUxPKBgeKiI7a9awhIAxkentgaTfP8pLC2WwWAwGIxphYnLs5BKziVJCyOLybZwOxRdwXhpzNPEp1ShoY+7PrFWOqmmq56ulEB57eJkhBYRdgUtT/fprisVeREhMeRJZS0Z3jEqgLcWtdLMTj/upj7+7Wulwfp/nu3OZb0NhxxxecW0xDQX0M4l4tLqjux+b2dD4yb/TQOSFusZRcI5zajI90Jey9Nt3DdSFseXYEXTSgSEAGRBhmqoSDaLWH1OBKkxDb94aACH9uUwOqzAMHX0dDvfH6kxR1xmU/b3TqfzmWrttL6ntr2awvf+9QSee2qU/m18dGob7xBxrTDnksFgMBiMaWXmV0OMKcc9ioSIO5IWpxkaeI5HZ7gTgOVeepzLGg19gNoLaCst1luLFpcTdT23FkQgkpmTEi97FsAeoUma/9hdIat1i63HQXXXrvpFsX8R73etJupMO+M06lyWSpB2bIORSNLGNu9EHOfSEpeTnRc6XZTVXNJusU6jLXKziIz2AYC8mqOPqzW7It8lqqHiAx/qQEu7hO6jWezfk8OO19LQDA093U6KPXUuTY3WW7rFZXuXc5x4Mw+YQKLJ+h0RplOFTrrFGqxbLIPBYDAY0wmruTwLcY8ikXgJiq5QR1E3dYi8iPZwBwBgMD+AiOTUNhUqNPSpVyhphkaHtpPtFseXoCnYjLHiqKdWsxEc59KKLSDItKEPx3EVO8IqduMOwZOe2pjL5HYuy+ZcYqKaS5czOAvTYt2OWz2iSHxzJ7hiEcrV11rdWN6haOvOgclxEPfuBjALu8X67hcS59LdLVak43qcesmcmqONd6plF5DPg2IoiIaiuP8T8/HI830YPcSjkDeQSik42V0ExwOyzCM9rsEwTOiGhkzaOlZbh/OZSjQLuPL6FoAzcOP6DrQZi6FrJv7lGyemwbm0jm+YBlRdhVSh6RmDwWAwGIzT5527SjyLcddcBoQgACctTDOsOZFt4XYAlricyLkU6uyyqrq7xXKO+Lu4Y+NkXwoAxzklKW2Wc2n9zj92paxbrGfeZGPOZUAIuJ5bvaay8s+zvKGPp1vsxNtLr9spsZvO3AiSWUkkAn3lKgg9J8GNjMy6eaZ+geufc8m5UscNQ6cC0zAN5FSrGVa1emSSEUE+W00tEjZdG6du5J5d48imdXR2BdDUKkHXTeRz1hxckhbb6hKXhmlg0dIImlslGDDQ0iajpV0Gx01DzaVrDqfCOsYyGAwGgzFtzPxqiDHluMUlSe00TJ027BB5EbIgoynYhJyaw4g9hgBwzW20qdWQx7+Q1Sp0iwWAedEubOjYiCvmXzmp1+MXgrIg07j88VEhapC02MqCsh430e1u+FMFy5zLGg19ZoPo8NNot1j55RcBAOpl73BxCVfd5Z5dM9M1twb+sTflcy55+pnQTA2GS3RllTSA8s8UgWREKK7UUt3UkWy2PidbXx4DAKxYG0Yiae1jZEjFzjfGkM8bCEd4yDLvea7/sSBwiCVEZFIabe4zFeiukSmsqQ+DwWAwGNPH7Fv1Mk4bq2mH9dbKtvtmmAatqSKLxzY7NXasOFphLxZ+YecWSv6utO5RJP5F7vrWc7A8ubLh1wLA0xkWsLvF2nH5F8L+brGe2kzXtnV1i/U09PFuX5YCWcPZ9LueswFPSBPFVyxCeu1VGLE4tAsumta45gLaeRcAsOouiTCfLTcQ/C6537m0ml7Z4tLQPHMq06W0vU3lGy/k86DpLnFpaFRcZvPWZ27l2gjitrj8+Q/78cYW6+ZV18JgxdjIPl879SpOZXuRbBZhmk7N5lSgu46lsLpLBoPBYDCmjdmxImJMOUT4kdROd/MO4sK126mxtfCLN/doD//fVEPz1HZNFX4hKPMydR6rOpe2O3E6DX2kGqNIysTmHGvo04hzKb7xGrhiEeqVVwMiK9OmTX32OOJyNjTzAcpvZDjdYl01l5wzisSdLppRM3SbShAn351WqhkaYgkBggCYnI5QmMeCJUHqXI6PaoCo45obm7H2vKhnf27ncqgwiINjB7B/9G0kmiT7uVMnAj1pscy5ZDAYDAZj2ph9q17GlEAWgqTDo2EaNDWMOBekqU8liCAqdwadS8bt7AH+tNipW2z7Y5CFAF0g+9NVye+JO+EVeY0JPpmv0S32HZQWKz//LABAufb6aY1prqCdcy4AQNq101NbPBson3NJaq1Jt1iR3pjRDN2TLkqcy2ppseTzrrqdS9MAz3NIJEWYMLB8TRg8zyHe5Oxj3mIR8UT5Pk2Xm0iademGjmSzS5hOESwtlsFgMBiMM8PsW/UypgTiXDppsXpZWmxUitJOsf4UV+J4ls13dC2m/emqnoY+U3hp+QWkLEhUIIs+0cfbnUxJWqw7Pde9baPOpf88+NN+azb0mUIXd6rwNvSpLYyk52xxec110xrTXMFMJKEtWw6h+xiEMavOcLbcQCi/UVChW6xrFIk7XTSj1E6LdWouHeeSjPhobpNhcDrWnGO5k4mk830yf1llseo+dl7N09+RNNvU2HQ5lywtlsFgMBiM6WJ2rIgYU45I0mJ5SyTqpu64Fy6xRtzLqOxNWQuKIXs/fufSrjEDXybQqjX0OV38rqHEy4jLCaxIrsTq5rWevznOZYVRJA0KPrmhUSTe585259IdU03ncmgI4p5d0BctgbF02RmIbG6gbbA6IMs7d8xwJF6qOZeVRpHoppMqDzgzIOvtFuve78p1EdxydzNaVmUwXhyjNZeBII/WLt5+vvcGlrvmkhxbMzQ663Kgb+q6urpTcJlzyWAwGAzG9DH7Vr2MKYEsBElarO5Ji60gLqWY5/kh0Wq+IfpEFRFZ1jB27+WjupyQqZzt6B83IgsyOI7D5fOvxOL4Eu+2vrElHpHndi7riE/21FzWdirLay5nt7isez7jr38NwHYtZ0nq52xAtcVlYPt2ALOp5rJKQx/7xpLIC/QzrBkarcV0U7Xmki/vFkuzIUQO7Ys4/Or403jsyCNINAm4/Pom3HJnGwzO2t5/nekVjm2YOuYvCiIY5rFvVxa7t6cnftF14BbRbBQJg8FgMBjTx+xb9TKmhKgcBwDE7P/rhpMW605nXRhbhKZgExYnlngWf8S5LKs1JGmx4Mr+5nEupzIt1nUckRdrijX3wtn9c63H1fA09Ck7D95ta829nMrmRlMGV2fN5a9+BQBQrmUpsW60jZcAAOQdtricJcKbfD7J9WeY3rRYnhOslHZOsLMZrM9JTHZuLlWtubQ/D5pLXLrFKambBICBfD/ec1srzt8Yp8fwjzlyO5cE3dQRCgu4+zc7wXHAYw8MIjV++mmso6MlPPPECAZOleiNJwaDwWAwGFMPE5dnKRd3bMTtK+5A3BaXnppLl9gJS2Hcuvx2LEss96StkZpLf70jWbQKvODpHAt4R5FMtVsn+pzY6tt5U+/ccbgd0HoaDrnTYv01lhM29OHdKbiz72NWl9NmmsDmzTB53uoUy6Boa9fDDIUg7dgOGMascS5JHOTzQrrFOinxTuYBueHEcRyuXXg9/a4IS+GK+6bOpUucaR5xmaePj6QOA/COQCKxECq5pmTb5asjuOy6Jmiqia0vpSZ+4RVQSgaef2oEqTEVh/ZnkM/p2LM9g5GxAn79+DD27MigVCwXuAwGg8FgMCYPmytwliLyIuKBhKfmqlJarBu3w1a95pKn2xI3j8zVVHWVCtSpFlR0bidfW1yG7Lid51VOha2n5tItticcReKfc4m5kxZbLT5h9y6gtxfapkthNjWfqdDmBqII9YKLIG95Ba0nh1BamZjpiAA476XES1B0xTXn0icuOQFFowjOtFzMpmAz3r/iDqSVFBKBZMV9y3YHatXT0Keyc3kifRxKp9chrOxceq89d6rspVcnseX5MWzfksI1NzZDkhv7HG15fgzPPzWKwwdyOJUqgANQKBh45MGTWJReCgBo65TxqS8tbmi/DAaDwWAwqjP7Vr2MKYXneHAc523oU0VcusVUSAhV3JYsTnnOaegj8iJEXrRruKbHuSTHIt1vqxESQ1Wb6ZBz4d5fLTiOo07pxA19KqfFzkZhCdSXxik/9SQAQLnxlukOZ05CmvpcdUrCJZ2XznA0Fv4RQqYvLVZwzYc1TROaodFrm+O4qsIScDuX7lEkTi2jW1xqhobB/ICnvtHvXFauuXScxHhSxLrzoyjkDbz63BgMwyzbvhq6bmL7Fqte88SxHHQd6GiLgeMscbz2vAhCYR5D/Qp0vf79MhgMBoPBqM3sXPkyphSBEzw1l/4GOQR3SmlT0HKqSKocwRFNTmMQiZcg8ZKnhmv60mKlmttxHEfHqwDlotDt3NQDEdxl4pKrnRbrFuGzkXrmXFJxeTMTl5UgTX3m7TuO+bEFMxyNhSMurevWhL9brGj/3fq/YRpVMxn8kBst1ZzLolb0bF/Si9B0d32mNwXVMI2yNHe/4Lz8uiZkpD786qk+fPefeupOYz28L4f0uIZ4UoTBWfu84IJWXHRpHOdsCuHuj8yjI0+KBZYay2AwGAzGVMHSYt8B8BwPw9Ut1j8SgEAWmSIvoiXUgntW34eg3TWWwLnSYnnqJjoLxJLd5n+6xKU0QVosAESkCDJKxoqTr+wo1tMtFgDWtZyDrJqp2tiI/uyvuZzlzqVnFEkFF5Pv7YG4ZxewciWMFasAZu6UoW24GAAgbds6w5E4kFpiySUeAUcEks8D32BzK+s5VraCt+ZSK9suIARQ0ktQdNXTWdaNaZowTbNMXJqmCcM06PUZas9hwXv34a2dWQjHbsWvHhvG++5pnzBW4lre9IE2vLUPGE/JmDcvjIhqxcPzHIJh6xjFgo5IdBY23WIwGAwGYw4yO1e+jCnF3xmymrAiC1KysPMLS8CpJbTqLEnzEImKPs3QpkVQ8XWmxQLesSp+EeikANYX49qWddjYuans99XEpP/n2dLoxc9EzqX89C+tB7fdxkaQVMHonAd9wUII+98Gl5makRmni7+hj1Nz7e2e7HYrq6XJV0ISJDqTEvA6l4SIZM3MVQ3F01nWGw8ZjSKW3dxwjw3Jq3m0tMnYdHUC+UQ3tr2awpEDuQnj7OkuQhA4rD4ngpvuaMElVyYhCtaMTyKOQ2HrXBRyzLlkMBgMBmOqOKvFZalUwl133YXbbrsN73vf+/DQQw/NdEgzgsALMEyDugjV0uBIKl2tNDme1izyrrRYEaJLsFZzRk8HmhZbx77dabH+kShkP6c7HmSihj4cxyEgBMoaDM0WPPFWEI+Bp62UWNx66xmKaG6ibrwEnGlC3Pr6TIcCwJ1Z4O0WS+bPUnE5CecSsBpqGaZBRWWlukny+VN0perYD3dttv/47n0SoRkICui4/AQ0roRHfzKIYrH8uIRiUUc+pyPZIoLnXbM4eZEeyzANhELWuSoUqu+LwWAwGAxGY5zV4lKWZXz/+9/HY489hgcffBDf/va3kU7PDofhTEIWVKq90Kteczmx8HKnlRIHVOJlT7pqW7jt9IP2IZBusfU4l3LUeR5freby9C79iUaRAMBNS2/B9YvefVrHmS5qOZdcJg3plZdgJJuAK64406HNKdRLrfMjb3l1hiOx8Df08afF8rQW2D07tn5xSWa/kkY9ZJSJG8e5VD0upCceV/da/80st7h0u6TtCwS0nzeK9LiGp38+XNZ9ljA2bLu0LWP4yf4f4si4NRaF5wTX/E8DQeJc5pm4ZDAYDAZjqjirxSXHcYhE7LvoimLV8xjvvBQospBU7HrIamlw9TiXNK0UPN2vxEue57SFO04/6LLj1jfnEnAWt9bz/CNEGmvoU40y57KCuEwEkoi6htPPJtyCwB+7/PQvwSkKlBtvAkRWll0L9fIrAQDSqy/PcCQWvKcmmnd1i/WOIfKkxTbkXNrjSFxjTvzjgdzOpepLiyXxuJ1L/1ggwygXl0sS1uiQBZvGEIkJ2Pl6Go/8eACqUv59PjZiCd8TkVehGRreHnmLvk63uOzl96I/uAfFvOGJjcFgMBgMxuSZ1eJy69at+N3f/V1ceeWVWL16NZ577rmybX70ox/h+uuvx7nnnot77rkHu3fv9vy9WCzitttuw7XXXouPfexjSCaTZyj62QNZPJaIczlBzaVQxdkEfM4lrd+SPM5le2jihhuN4jT0aTAt1icCSbdZ8TRTdyequZzteJxLn/MUeOznAADl/Xec0ZjmIvqq1TBaWiC+uQPI52c6HDQFmhASQ2gPt9NGXoCroc9p1lySz43iciUDvmwC8vlTDcXTWRZw0nQN12iU2mmxlricF+lCIpBA1hzFe38zjFhCwK6tGbz4q9GyGMdGNBjQEIyQmB1BTYSsburoNw9jNHAI+ZyGx488gl8ee6Lu81Av3aljePLoL2ijMwaDwWAwznZm9Yo4n89j9erV+LM/+7OKf3/yySfx9a9/HZ/61Kfw85//HKtXr8bHP/5xjI46C45gMIjHHnsMzz77LJ588kkMDw+fqfBnDUT4EOdyorTYWmly7m6x1WouW0Ktpx+0j4BgNRcKSeEJt3U7l35X5ML2i7Fp3mUI17GfWlSqsZxLVHMuuXQK8rO/hpFIQr32+pkIbW7BcVAvvQKcqkLa9sZMR4OoHMPdqz+IZckVlnOJynMu3TeQGnIuyTgSXaHi0p+qTj5/iq6WO5cody79mRJaBedS5EUsS64AAJRivfjQJ+YDAE4e844/AYDRYQUZqY92gHXGI3mdS1G2oknl8xgrjmG4MFT3eaiX4+luDBeGMFJ45/27w2AwGIx3JrM65+2aa67BNddcU/Xv3/3ud3HvvffizjvvBAD8+Z//OZ5//nn8/Oc/x8c+9jHPts3NzVizZg22bt2Km2++eVLx8PzsEhAknonikgTRGh5uKuA4QBKlis+RBRkcB4iCWHWfIi+A46yRBl2xeWhPt2NRYjEOjO6nfWFkceob+pzfcT46ou2YF+2ccFseAo1F4HnPa+mItqMjevrOqsgJnj44As/POYHJ8xxM04TAc/QcyZutlNjSXfeADwbodozqaFdcicATj0F+7VXo11430+FQeI6zxnrwHEwYEAWBvpeS4Fy/Uo3Pu5+AaH1H6NBgcob9fSFAEkQq4mKBKDgO0EwVmqnC3zuK5zmAM8HxnFVzKXg/SyZn0Hh0UwPHWceNyp3gOCCn59AxLwBR5DDYVwLHeW+WjI1oSEknsTLq3a8kCPT7C5wB0U62GM2PQbS3m+prnbx+Ewb7HM0A9f4byWBMBnZ9MaaTuXx9zWpxWQtFUfDWW2/hk5/8JP0dz/O4/PLL8eabbwIARkdHIYoi4vE4stks3njjDdx9992TOp4o8mhpiU684QzQ1BSp+ffm8RjSCIIDBxFBdLQmERDLG+O0mQlEs0E0J2JVX2uLEbO2ScawtGs+lnZ9EAAwbPZiQAuiKdg0TecpigWov1FQNGo5ndGEhJb41MdjmiY9BgC0ts7O2spaxKIhGKaBlpYYmkP2OXriUQBA8MP3I2hfVxNdX+94bnkP8MdfQHjrFoRn0XdEPBaGoitoaYkiFJEQgkQ/my2lOKJF6/ptTlb/vPtpKyVxshREJC4hEQ4iGg2iOR6DJhZo6ueCjjbEekMISDzkMIeoYn33mDDR3BxBT7oHRsBAJBwAz/FIxCIocBl6jEQySD+zobSIqBJER2sTRF5EdCiISFRCe3sMnfOD6DlegCQGkUhKME0Tum5iZCyDrNSP+V3LYHBOQ6GWpjh0uYgsF0SyKYxYwlKXGTWNhfZneaq/uwKDPKIIIpYIoKV59lwb7zTYdxhjOmHXF2M6mYvX15wVl2NjY9B1Ha2t3hTMlpYWHD9+HAAwMjKCL3zhC9B1HaZp4r777sOaNWsmdTxNM5BOF0477qmE5zk0NUUwNpaDYVRvRmEWRWSzTvpYaqwIgS8fbp5JlZDNFpEVFYyMZCvuK50qWNsES55tlgfXIR9Usb713KrPPZOcl9iAY6ljkEuxaYuHnFOO42bFa26UfM5KbRwdzcIMyuDGx9C0eTPM5maMnX8J+LFcXdfXO56upWhKJMG99hpGe4eBYPl82JkgmyuhqBUwMpLFeDqLgBik12k2o9DrNxes/nn3U8joyGaLGBgeAyIystkicryCfEFFQS1CFmSMjuagFAwU8mmYJRHZfBFhKYK8msORUz3Y3G3NUOV4DkKzgGJeQzZbREgKo6DmMTSSQkhNAgBGxtLIZovIjJfAcyqy2SLGuCxGRrJoaRPRcxw48PYolq+O4KHv9aH7SB7HiocRaOKwMLQEB0cP0NTaTLqEbL5E49d16/eDmWE02edieDgzpRkIw+MpZJUihkZTSJpz7ztirlPvv5EMxmRg1xdjOpmt11c8HoIk1S6nmbPishqmadLFwcqVK/Hzn/98yvY9m95cN4Zh1owtIsbgboTIga+4vcCJME1AgFB9fyZn7cvkPNuInIQL2y+m8cw0yxOrsDyxCsD0xcPBapjCVzmfsx7fexl8/DFwqoriLbfCEETAfk0TXV8MDuqllyHw9C8hbN8G9bLZMb6Fs99XXTegG97rlDN5+p1Q7fugEhIvwTSBolaEomswTSsNXYAA07S+BwzDhMCJKGol5JQcTBMICiHklBwUXXG+iwwTPMfTWIJ8CHkzD1XXaDxke4ETLffTBP17W6flPPb3lrB0ZRh7dlju51isG9GIgOWJlTg2fgyKLSI5kwcH61iKpkIUrfrLcWUUpmk91nS9bHzR6VDSSp6YGTMD+w5jTCfs+mJMJ3Px+prVDX1q0dTUBEEQyhr0jI6OlrmZ73Ticpw+rtVttT3cgYWxRViWWF51m47IPHRGOrEwtnhKY5yLkEY4c63WklDWJfZ/fgwAKN1170yEM6dRr7gKACC99MIMR+JAmteQWkjBM9tyct1iSWOtol6iI0PcsypJwx/y/5yagyzI9O+8758cgRMQD8TBczyag80AnE6yAKgwlHjZ6fRqH7d9npXaP9ivQNOsf3jHpG4ofA6dsQ4kAkkar/U6nYY+qqFCkKwa0LSaotuQRkMTUe/YEvc8UAaDwWAw3gnMWXEpyzLWr1+PV191hpcbhoEtW7bgggsumLnAZiGxgCMua92VDwgBXLfoXeiIVG+aE5WieM+Sm9EWrr/+8WyFiLNKMy7nEhw48N3HrIY0ixZDvfTymQ5pzqFcY3XWlZ9/doYjcXALKetn57Pv/h6o1j26EqQzrKKXoNmzMwXXiA8yksg9migkhugnxD1mhMS4oWMj7lp1L/2e0l2ziMkoEvcsXTKzs73LOsbgqRIyKQ3j0nEMxHYgnhDx7nMvAQAEXbXlIidSga0aKjhwkGQOiuqUCBiYWFwapoEHD/wEz5+s/V6ruurMGWXiksFgMBjvEGZ1Wmwul8OJEyfozz09Pdi3bx9aW1vR1taG3/qt38IXvvAFrF+/Hueddx6+//3vo1gs4gMf+MAMRj37iIgROvPO3/afMXnI4n3OOpcu5zX44E8AAMW7Pwjwc/ae04yhr1kLvaMT4s7t4FLjMBPJmQ6Jvr9EoHmcy0mOIgnYjqSil1yzM3m6DzJHlvwfAIJiiMbidwYFXrCuPzFI9+EWoKqhgud4azuTvB5LqCWSIuQAj8F+BWOjJfSHdqNzfhD/++7bsSi+2I7DEZc8zzturm6PUZF4ZEs6dN2EIHBQNR2BCU5HTs2ipJdwIn285nYlw5ltSYQ4g8FgMBhnO7Naaezduxcf/vCH6c9f+9rXAAC///u/j09/+tO45ZZbMDo6in/8x3/E0NAQ1q5di//8z/9Ec3PzTIU8K+E4DjE5hlQp1ZBLwaiPuepcUufVMBF88AEAQPGe+2YypLkLx0G95joEH/wJpJdfgvLeW2c6IjqTVrXFmHsWreBxMeu/mUDEWklXqIMouubcVnIug0IQqp0ealRwLv0xuYWYZmhOSi1njfvRTR1FrYjnTj4DeV4rst3N2HHwKHROxcLYEios3fGS/ZNzQo4hytZnQFUMDI1q+Ob3j+Caa7tw3c3NnptGhmnQWAta+WzNSqi64nodeo0tGQwGg8E4e2hIaSiKgu985zu47rrrJt11tRE2bdqEAwcO1Nzm/vvvx/333z/tscx1YnIcqVKqofoqRm3mfM2lHX9w61YIJ7qhXHo5jKXLZjiquYtii0v5hWdnh7is5Vy6ay4buOEUcKfFEufSnRZrO5vk/wAQEsPQFCsG3edcVhKXpJbTNE2ohoqIFPFsoxkahgqDGMoPAq0G0N2MbYf3AwBWtHjrxYM+cSnQOlQrHlm2flYUE0f259CiaXhx8yiUkoGbPmCl/h9LHcUrvS/hPUtuRnu4HXk1V9e5UlzikqXFMhgMBuOdQkP5b7Is49vf/jbS6fR0xcOYJkhTH5YWO3XQtNg56lyS+GMPWK5l6d7/NZPhzHmUq68DMHvqLmvXXDrfA418J/AcD4mXUNJLNH3V09DHbhgmuxqHhcQgvQFTlhbriom3HVSyX9VVb+ne3jANJzW2WYAOFcdGj0MwRSxv8zYaczf0EXmx7JxItnM5NqJidERDNMFDDnDY+nIKum7VS44UhmGYBsaLYwCsJkX1QOZ+AiwtlsFgMBjvHBourjrvvPPw1ltvTUcsjGkkRsRlA/VVjNqQBbPbfZlLcByHQCaP8OOPwYhEUXo/q1U+HcyODmjrzoHQfQx897GZDqdMSAmetNhyx7BeZEGGoiseR1So4VxaNZde4UiPXaGxEHFEqQB07UvkRWiGRsVlvJlHXhyGAQNRtRPNTd4ZowHXc3lXnCRVmDiXRw/kAQDnb4qha2EQum5iZEjxxEEEYl6rT1zSVGDDxLbXRnHkQH3PYzAYDAZjLtPwqvjzn/88fvKTn+CHP/whTp48iXw+j0Kh4PmPMfsgziVLi506zoaGPuuefgN8sYjSXffCjMZmOqQ5j3Kt3TX2hedmOBKA57wNcNz11pMdRQI4bmBeK9j7Eug+ZLvWUnbXXLqcy0rdYmkcJC3W3sbpFFvefIi4gvFmHgZnbS+aISSavK/FX3PJ+9JiSc1lNqODA7DugjDa55EutIrnWCT2vJqvem7clOy02O7DBezeOY7Njw5P8AwGg8FgMOY+DSuNe+65B4DVXOcv//IvK26zb9++04uKMeV0RDqxsmkVliZYTd1UQWsu52haLGcC5z9ujfIp/OZHZziaswPl2usR/pd/hPzMr1Cc4XPq1Fxa4pL3OJeT6xYLOG4gSRMNCiEqAElNpuTuFis43WLNWjWXvLdbrNOIyJUWax+npFtNdQJBDqEIABOQBAHhiPe1eNNinYY+qj0/Mxh0jr/mvAiicQEd9oiTgb4SzkEMChGXdjzutFjTNKveXFJ1BaWijgN7c5AhY6BPQSGvIxRm2SMMBoPBOHtpWFz+1V/91Zx1at7J8ByPy7qumOkwzirIwniupsXO23UQLScGUNpwMfRzzp3pcM4K1MuugBmOQH7xeaBYBILBCZ8zXfhdOncqrOipuWw0LdYSkKPFEQBATI4hJsdgmibmRxdY27jnXEqhumouieDVy5xLqWz7kkYEn46m9iAwAERjUtm/Te45l+70XbLv+YuDMAygoyuASFSAAcNxLvss51GxhSgR6SQtVlNN9PXl0dXlNBwCgP17sti1LYPkRuv/mmZCEnTABHq6i1i5zrs9g8FgMBhnEw2LyzvuuGM64mAw5hxz3blc9zMrdTP/4Y/MbCBnE4EAlGuvR+DJxyG9+hLU62+YsVCI0FIrdIut9rgeiDupGRo4jkNUjoHneFzceQndxtMt1uVcVqy5NMljuy7Trrkk3VbdY02IEC7azqVuGmhqFYABIBZzRCjBM+fSlRZLXFFJ4rFsVZhuY5oG2udZzxnoswTs8GgeO3alsOAaBcfzOfz66V4Yhol0SsOxsW5c8cESzl/fiXnRLuzbncWD3+uDaQC9h05iXFIQjQlYvTyE4gvAiWMFJi4ZDAaDcVYzacvl8OHDeOSRR/Dtb38bQ0NDAIDjx48jm81OWXAMxmyGzomcg04+39uDJS9sQzEegfL+O2c6nLOK0o03AwACm5+a0ThIEx0nvdRdZynQ67bRmkvZJRwjUqSic0+7xgqy51i6MfEoEjI/s56aS8M0kGy19hGPOXE5ccj02CIvljmXMTlG/0b2FwjwaGqRMD6ioVQ0cGD/OPpOlrD3zRSee6YPI8MqxkbtGLkSHt32PLYPbEMmreHh/+6HaVoptjpUBEMcNl2dRNt8a//Hj9TuSTCQH8DuoTdrbjNbMEwD6VJqpsNgMBgMxiyjYecyl8vhj//4j/H0009DFEXouo6rrroKbW1t+Lu/+zt0dXXhi1/84nTEymDMKjh6b2buicvQf/4beE2H/tFPgg8zJ2UqUd71HgCA/Kunga//LTBDNx/8abG8z6EUOAGaqU3CuXRSfWNS5SZQxLkM2tsS59JAPeLS2oaKYqFCzaVGnEsdi1cE0X5Axrrz4mVxcBwHmZdR0kt2Qx+vm7s0sQwrkiuxd2QvDo7up2m77fNkjI2oGOwrYWzcauBz5FAG4fFRiDEO19zYjECQx6lHDRweVDE+XsKuY2loqolNVydx8x1t0N9IIC+oCAQFSDwQDPHoPVGCphkQxcr3dXcP7kRfrg+L40uQCCQrbjNb2DO0C7uG3sQty25Fa6h1psNhMBgMxiyhYefyr//6r7Fz505873vfw44dO2CaJv3bNddcg5deemlKA2QwZitzdRQJl80g+N/fgylJKH7sd2Y6nLMOs70d6kUbIJw8AWH/zDU3q5UW6/650dm3AVeqKRlx5CcshtEaasOiuDV3knxGDMOXFuuec0nEJUmLNUhabHnNJUmLNU0DgRCw6eokFi6ufJOkJdSCmByzHVTfeBZOQFSO0XpUIi47uqzXePJkFqlxS+RmsiUUzRw658sIRwQIAof1F4cAAAffzmLn69b85w2XW+ck3gIEgoI9m1PHomUh6JqJA3urjyQhr6ugzf6u62nFer05lWUrMRgMBsOh4VXx5s2b8bnPfQ6XXnopBMG7WOnq6kJvb++UBcdgzGbmas1l8Cc/BJ9OoXTH3TA6Omc6nLMS5T1Waqy8+ZczFkN5Qx/v93VUjiEkhhq+OeJOi43KlZ1LnuNxy7L34aKOiwHU51wSkUvTYu1GOrJLXJJtSD2mbupUjApVXsf1i27Abcs/YG9D0mLtDrr2zyQOUhO6aJnluG7fOgJNs26gmpwBjSugc4Hj3K48X4YgAEcO5jAypGLBkiDaOy1hWtJL4DgOQTEI3dRxyVWW6Hz6kWEoJe95IBRtR5b8fzJk1aznpm8jNJLmWtId95jBYDAYDELD4rJUKiGZTFb8Wy6XKxOcDMbZypycc6nrCP3bvwIA8p/41AwHc/ZSuuEmAEDg6RkUlyDi0hZfvPfr/t2L34P3Lrut4f16ncs6Z6PSmkuvEHGPLBF8zmXFUSSc12U1TIMKVn/aL4HneDrmhPc5lLTjs32uyKiURUtD4AWgt9dy5VraJRjQAVlBW6cjrqWggU3XJCHbp+SiSx0nV9EVSLxEndclq4JYd0EU6XENLz8zVjFWUktKHMxG6c/14WcHH8KBsf3QDR3HUkfp2JWJODC6H48c/hl6Mifr2p7M8fS/pwwGg8F4Z9OwuDz33HPx6KOPVvzb008/jQsvvPC0g2Iw5gK0oc8cci7lJ38B4UQ3lKuvY+NHphH9nHOhL1wEadsb4PtOzUgMTlqsJQL8wiwgBBCWwmXPmwi3c1mvuKTOpS3eliaW4eLOS9AWbqPb+OdcVhxF4hPIlnPpFYq14H3/5AmcX3Rajp8c4LFwSQg6Z527rgUBnHdJGJe+OwpR4GhMqqGipVXGdbc04c4Pd+KCS+L0dWqGhoAQoHWimqHhmhubAQAnjpanvSq6Qs9PcZJpsRklAwBIlVI4nunGSz0v4ODYgbqeeyx1FAAwUhhGqjSOV3pfqumgEueSuMAMBoPBYACTEJef+cxnsHnzZnzkIx/BQw89BI7j8MILL+Dzn/88nnrqKXz605+ejjgZjFkHD1JzOUfEpWki/C//AAAofJK5ltMKx6H0XssVlJ94bIZCIM6ltfgXGpxnWQ1vQ5/KNZdlsVBxaQnHZLAJ61vPKXP9BU6g4pLUXLqdS7GSc2nq9LkT4T8H/lm1hmnQlNKlK0MwOOvcxZIiVqwPYvFKS1gH7PmZRLgHIzzOvSgGnrdej3uMCknl1UwNsbj1uJAvd/tKLreyaDuYBa2Ax488gqOpIxO+NhK/dfwScmrOE2MtFF3BUGEQgJVWe2D0AI6MH8bBsf01nwNYr4vBYDAYDELD4vLiiy/G9773PSiKgr/4i7+AaZr4p3/6J5w8eRLf/e53cd55501HnAzGrGOuOZfSC89B2r4N2tr1UK5790yHc9ZTuvX9AIDA45UzPaYbHuXNa6YCkhYbEAKetNZaEA1JhGO1z4zAC1QgEedSdh2D94lDwzToPusRz5zP3eR53vN7AwZ+eewJPHH0cSxdFabOZTwhQjM0mmIq89Y5UOyfScwExRaHsiBBpOm+GoIhHuCAYqG85rKolVyPLedyrDiKseIY+rL1ud/kXJT0oqej7kT05U5RUZ1Vs8goVu3lqSrHNUzDqXtlziWDwWAwXDQ8igQANmzYgB//+McoFotIpVKIx+MIhUJTHRuDMauZUzWXponI3/41ACD3uS8CfMP3lRgNom3YCL1rPqTXXgU3MACzo+OMHp9clo5zOamv+zIEXsDGzk3UvasrFupcmp6fy/bNCU7doS223E6p37nUTZ0KO79wrIQ/LZb87HYuhwvW3OaOlSICMQOJmAhJ4qGbOhW8QZ9zSdgzvBstwRbItgCXXfWpmqGD5zkEg3xF57KoO6mw7jme5HXWA9muqJVQEr37qMWprNOIL6tk6PkYKgxC0RVPKjTguJbW62LiksFgMBgODa8wt2zZgkLB+kcwGAyio6ODCUvGO5S5M4pEevlFSG+8Bm3NWijvbbyJC2MS8DxK77sNnGki8OTjZ/7w/rTYKXIuAWBtyzosSyxvOBYifqp9ZohzaZominoBHMd5Ggj5x6aYptnQ6/PXbBK3U3C5i4ScnsYHPtyCS69N2n/TaZMhInjdIrCoFbFzYDt2Du6Aaosv2ZcWCwBqdBg5JQ9dt4T2M08M41tfPoqxdJ4emziX5HzVapqj6ipe73sNqdI4HfWiGCWaZmvU0Tm2N9tjzQQVZOS1PLL2eBHTNNGf6yvb3p3Cq9chXhkMBoPxzqHhVfFHP/pRbNy4EXfffTe+8Y1v4Ne//jXGxip3vmMwzmYc92X2O5fhb30DAJD/319gruUZpPS+2wEAgV+c+dTY8uY1M/++k/rIam4/FXmmjpJWgszLnm0rvQZn1MrpO5ckhRgAUso4hKAGWbZFuqnRYxFxSX42TIOKx5JedGZ0ChJ1W3VDQ1bN4njkZfSHdqGQ16FpBt54KYVMSsfRI+P02KSRDnEdjRrO5Za+V3BgdB9e6nnRSYvVStT5rfVccoy8mkdEiiAZaIJpmjBNk573U7ny1NiSy7lkabEMBoPBcNNwntSrr76Kbdu2Yfv27XjjjTfwgx/8AIZhYNmyZdiwYQMuvvhi3HYbc0YYZz80LXaWi0vp1Zchv/oytJWrULr19pkO5x2Fdskm6B2dkF55CdzwMMzW1jN27ErNcmaKshEgVe5rko62Ra0A3dQRE73daCul9qp0ZuXE4tJfl+mMKLEb8bjFZXHck/5pmiZ1KgN2miipuTRh0jEmiq64ajNlKLAb3xga8moesswjy+dRzBvoPV5EqWg970RvGskW61glvQTTNKkwrJUW25vpsfev0vOrGioKmuWETpQWq9KuvDJicgyD+QEAwILoQpzMnEBftnx2NakpBVhDHwaDwWB4afhWdlNTE2644QZ86UtfwsMPP4ytW7fin//5n9Hc3IwHH3wQX/ziF6cjTgZj1kEW77M6LdY0Ef7m1wEA+T/8PMDm0J5ZeB7Ke28FZxgI/PIXZ/bQZc1rZu69Jzdg9ImcSzvGnC2MAmLQ+/cKAllroGGRvy6To3XTJIXYEZfjJa+4BCzRJ/ESPZek5tISgo64JCJUEmTqXGqmBkUvQZI56JyKQkHHW29m6b57etOeYxX1Ik1prZV6SsRhU7DZsx3pFpvPq8ikqwtAmsIryIhIEZw6WcRgfwlt4XbE5TgySqZsJIknLZbNuZxzmHWkSjMYDMZkmVSHh1wuh507d1IHc/fu3QgEArj22muxYcOGqY6RwZiVzIWGPvKzv4L8ykvQVq1G6QN3zXQ470hKt96O0H/9BwKP/hzF3/jIGTuuX0j5m+GcSchnhAiRauN7SGprzq75CwpecemvuQSckSV8HeKy6pxL0llXdzmXpXE6BzQgBFDSSzBMw5pdaT/PLT7d7mJes4SdzMvQeUvY6YYOBQokmYfOlZBJ6di/JwdR4hAK8zgxloOqGIiHIyhoBRS1gtPQp4qAy6tOnSbP8WUpsKZp4omfDWBP4ST+8MtLKn5X0RReXoJsRrBjSxqCyOGuDTG0hduRVtIYLgxhQWwhfY4nLZY5l3OK7tQxvHrqZdyw+CbPnFkGg8GYKhpebdxxxx04cOAAWlpacPHFF+Omm27Cn/zJn2D16tWzepHNYEw1xI2ZtWmxuo7IV78MAMj9f3/OXMsZQr30cis19uUXwA/0w+joPCPH9V+XM5kW63SLNTw/+yExEtet3Lks/ydLO520WM5fc+mIpoyaof+mhaWw40byUsUaTd1wXMOsYoljSZCgGCKNUzd127nUcPRQFkrJwKr1EQRDPHbvUzA6rGPhygQKWoGKWQAwUdm5JLMpAe9YFsLIoIp0SkA6r6GQNxCOlF8DNIVXkJEdlGAC0DQTmf4AWtvbcGT8cLm4dDmZmmF17O3N9mAoP4j5sYXoCJ/ZzsiM+hkpDkMzNPTn+5i4ZDAY00LD+XwHDhyAKIq44IILcOGFF+Kiiy5iwpLxjmS2O5eBhx6AuO8tqJdcCuXGm2c6nHcugoDSB+6yUmMffuiMHdYtthqZSTkt2J8RE/YokipCkIjJ8aLVJC4oeMed+Lu9Ao3N8Sxr6FMmLh0XzjRNpErWvMeQ6HREF3mJHstdz+h28Ei3VZmX6bYkLZY0COrpzQAAWtolLFoWgsYpGB1SkQg0AbCa+hCxWG3cx1DeEZdv7Unh+c1DSKecbXtPFGFyVoyZlIaCVsCx1FEcGT9E9+k4lzLSA87Ikf7DPFpDlvgg41kIJcM7imTX4E48d+IZ7B3egy29L1eMdSrIKGmW0nmakGs8q2RmOBIGg3G20rBzuW3bNpoSu3nzZnzrW9+CJEm46KKLcPHFF2Pjxo244IILpiFUBmN2QdyXas1JZpRiEZFv/CUAIPtnf+EMPWTMCMW7P4jwt/8fgg89gMLvffqMHNPtDjYHm8/IMatBay7t9M5qzmVMshr4EDETFL1jriql9hKx4XclK1HuXJKGPuU1lwRZkCHyjjCXBKlK11rXGBOVOJcyRN4Zc6IZGiTZ7sLanwWPKBJJCctWhaA/VUL/CQ5hwUrFLepF2iSoWlOe4cIwAOsc7HxjHLrCIdM9imhMQFOLhL6eEgK26zk8lsOLmc0o2GNODNPEyqZVrrEpEkZOchAMGZIZxJH9JbzrvW0QeRHDhWFPB1m3c6mbGjJqhp7HtJJGqjSORCBZMebJMpgfxFPHnsCSxFJcveDaKd33OwnS3TejpCfYksFgMCZHw+IyFArh8ssvx+WXXw4AUFUVW7ZswX/8x3/gW9/6FjiOw759+6Y8UAZj1mEvtGajcxn6zr9D6O1B6ZZboV2yaabDecejn3MutLXrIL61B8Lbb0Fft37aj+l2Lptmi7icYM5lLBAHAGRsV8Vfc1mrKVE9abH+bbgy59ISl4lAAiW9hKJWRFSKeWo9JV6sWN/pTklVXIKNpPJqhgZFVyBJ1rEKSgERRJFoEpFsEdHcySHVJ6LvmAFErY65/vPmh9R25nM6FNVAOCxBk3hkMzqyGes5su0W7+x7E8a8AmRBhqIrKNpNeUiHXFGQ0NejYFnuWsTiEvp7SshlDDQHWzCYH0CqNI5ksMl+fa5usYZGBeqC2EKcSB9HT6ZnGsSl1cW2O3UM61rOQWvozHVePpsg13iGOZcMBmOamJTlMjo6is2bN+Ov/uqvcO+99+KTn/wktm3bhpUrV+Lee++d6hgZjFkJcSxnW80lNziI8N/9DUxBQO5PvjzT4TAAgONQvOuDAIDgT//njBzSLaRm2rksF3XVnMu45+egr+ayWlOiRupJ3bGQ5zndYi1XpyMyD3ev+iBuWXYrrlv0Ls/+RVfNpZtKAtByLkm3WB2KoVDnUudsIdskoqSXsGRlCIIpY992S6gV9RLdp9u5fPLhQfzr3xyHphlUxKZGNZicjoXLAnj3+1px0+2tOHdDFJ1dMlasC6LEZ3BgdB9kQcb61nOtfdouMhGGRknA+IiGeS1NOO+cdgDA0YN5tISs+ShjJWeedcnXyIgI1GWJ5QCAk5kTAKwxKS/1vFA1rbcR3B1qX+/bctr7e6dC3PmcmmOdfhkMxrTQsHN544034sSJExAEAWvXrsWmTZvwqU99Chs2bEAymZyGEBmM2QldH88y5zLyl18Bn0kj/zufhL5y1UyHw7Ap3Xk3Il/7MgIPP2iJ/mlusOTuyDrjzqXvM1Lthkw84BWXAV/NZaVusUBj44CsrqqG53m0Wyxx8TgBHMdRd8zdSEhy1Vy6qbRQl3lHXOqGt+ZS5yz3L9ksoail0DFPxomIhN4jOsQLNagJBSInlO374Ns5jI9oGOpXoRoqJF7C+FgWJkQkWqztJZnHkuVhLFkeRnFIwt5dg5ALGlY1rUZEilj7tIUrqbkcG7Aczq5FQSxeHsLWl1Po6S5i4WLrPXALRCL0JF6CbuhUsHRG5iEkhjBUGERRK+LA2H70ZE5icXwJFsUXl52velKZCaTJEwCMFIaRVbOIStG6n+9n38jbkAUJy5MrJ72PuYjmupayambKHWYGg8FoWFy+973vpXWVoVBo4icwGGcps7HmUty+FaGf/BBGayvyn/8/Mx0Ow4XRNR/qlVdDfukFSK+8BPXqa6f1eG4BN9MLSL+YrCYGA0KApm0C5TWX1RzKRsWlf3/kd7R+03cckXc7l2JFUeR3LgVOgMALvrRY1XEuecvFDIV5HB3pBcdxuPDcThx8TsDxwwWsX6C75lzqNL5Mynrc35+DGTIRlIJIjakwOA7JFh5+iSuHAAMGCgUDITFMXxvZJ+kWO3zKEtxdCwNYsMRyjHuOF7HEFT9B0RXIgtWsqKgX6fsl8RLmRbtwdPwIRosjdD7mcGHIIy7f6Hsd+0ffxl2r7qXjXiaCiMt5kXnoy/VhvDg2aXFpmia2DbyBgBB4x4lLd4fjjMLEJYPBmHoaXhX/wR/8AS677DImLBnveJxusTMcCMEwEP3jzwOwRo+YieTMxsMoo3i3nRr74E+m/VgFV9OVRsTXdOAXl7VSyWOy4176nUuO4+hrkQWns2kjDpj7XJDH/gY9/v15ay6lit1u/amfpDsvbehjalCMEiTbudQ4BYmktd+DY/sBALdcsQGSKOBkdwHFkgrDNYLEMA0U8gZ0zRKcfX32LE0hgNSYBk4wEImXn9dgGDA5HaWCYQleKi6tfRPnsveoFf+SFWEkkiKicQEDvSVAt7vdGiqKWhF7h/dANVQEhABEXoRpmijpJciCDI7jEBbthkRagTqc/m6z+0ffBgAcT3eXxVuNnJoFx3GYF50PwJum2yglvUTjnmz3WUVXMGDXgU7muTPVrVXziUsGg8GYaia14jh58iS+/OUv49Zbb8VVV12FW2+9FV/5yldw8uTJqY6PwZi1zLY5l8Gf/BDSzh1QL9qA4gc/NNPhMCqgvO82mOEwAr94FFw6Na3HMqrMRpwJ/GmxtcRu3BaXsiBX3I4IPbfwbEQ8u91KEpf/+f6GPe6fJdd4ETeGz7mUeUv8SrYILukKFF2BIFo3pHSuhESThJ7sSWSVLOZF5mFeUzPWnZeApgFHDmRpXSRgpZFmXGNG+gcscankeOgKj3gTT8eOuBFlDpxgolDQIfC8M0bFIGNOVKiqgf4TBiIxAR1dlkhcsDgIwwBGB619qoaKt0f2YsfANgBATHYaHWmGBsnuqEvc5oJWpM7lSGGkooirR9yMFUehGdYYlZAYQkvQqgEl42omA2lIZJomFdeNsmtoJ54+9iRGCiMNP/fxI4/gZ4d+Ss/PmcTvXDIYDMZU07C43Lt3L97//vdj8+bNOOecc3D77bfjnHPOwebNm3H77bfjrbfemo44GYxZh39G3kzCDQ0h8tU/hclxyP7VN4EK8wAZM48ZjaF4+53g8vlpn3m5umkNVjWtxq3L3z+tx6mHshswNez+mGyNIwmJlbNjiDiSXeJyMg19KjmY1fbndi5FXpxwFAngiMqIGAHP8cgoaSi6Ag4cZJmDzilINIk4On4EALC6eS0AYONlSQDAoQNZzw0C3fSKy4HBHEaHFbz8VAYceCRanFpSd/wGdISiJpSSCRgC7bhLay51FcODKnhdwvLVYfC89d4sWGylxg73EhGqUzF0YccGXLPgegiciGJRh6aZLnFpPS+n5qiQUQ0V4xWcxqw9wiSjpLFv5O0yN28gP4DHjzyKp449CdM0EZGitGNtpf3Vi7shUWmSAi+rWONm0kpjN4lUXaUpvgUtX/fz8moem7t/iaH80MQb18B9nWZVNo6EwWBMPQ2vQL/xjW9g3bp1ePbZZ/H1r38df/RHf4Svf/3reOaZZ7Bu3Tp84xvfmI44GYxZB3E9ZoNzGf3TL4IfG0Pxo78N7aKLZzocRg2Kv/ERAEDwh9+f1uPIgoxLuy6f8WY+QLmWrFWnTJzLgG8MCYGkrAZcabGVRoNUo5K49Ke5lolLd0Mfob5usbIttjiOQ0SKUGEmCzIkmbfEZbNEhUaL3Tyoa0EIsYSA0ZEShgeLnv2nXeJydKyAba+kkBnl0NYWxLK1QeimDoETEBAD4DgOAifAMA2EotYbkM+a5TWXhoKh/hJ4U8KKNU79I6m7HDjlcjhJ457wPEiChFIBeO7JEWx/NUXFNEmLHS+Nes4HmckJgArRrJLBW8N78fNDD2Nr/+vYPbTL+xxbSI0WLXcwIkUQEkMIikGkSikYpoGRwggePfwz9GZ6yt6Targ7zxZdY1UaQbUdz0bdx4F8P32sNdCttTfbg/5cP94a2VPx74ZpVJ2HSjBNE5qh0ZRy5lwyGIzpoGFxuWfPHnz84x8vq7kMhUL46Ec/it27d09ZcAzGbIajNZczKy7lXz2F4M9+Cr1rPhs9MgfQLroY2tr1kPbsgrhr50yHc0bwi7dan5lEwHKmSFdTP0ToyZNMi+V9TXwqPV/wOf+86+eq3WJ9C3vJJX7djWdichySzNGaSyJ0yExPSZCwcEkIJmfg0IEsfZ5h6sikHTGiQUWpZGLpshiuvbENgSBHO7Be3HEJLum8FAJvi8uIdb6LWae+lKTxljQFg30KeIhYttoRl10LgwDnci5NjdbrSbaTe+TtIjQNGOxXoJes/ZJ05fHSuHUu7XPlrrsk7mZWzWLvsLNmIHM7Cf6aW3JNNAWaYJgGUqVx7BjYilQphe0DW+l2r/Vtwcu9L6IabnHpftwIxP30u4/7R/fh54d+inSpsqPZm+2lj931jxNB5pL25/qoiDyV7aV1q5u7n8KTR39Rcx/EtQzbjZ1KkxTWDIYf3dDxet9rnptIjHcuDYvLQCCA8fHxin9LpVIIBAIV/8ZgnG3QbrEzmBbLZTOIfuF/AwCyf/N3MKOxGYuFUScch8KHPwIACP7gezMaypmivFtsdXHZEmrBtQuvx4UdGyr+nZ+itFj3c8rTYr2N1EXfKJJKTqnuS4slNZcAEJWdz2VIDCEoSzQtljTDIY4sz/FYsDgAk9dx9FAOum53jHXVXDa3STBgCZMLL26hTYNUQwXP8ViSWIrVzWuocxm0dXouYzjOpe2aHTuahpKzRpdEY87rlAM84gkRuXHAMEzbubSOLwoSVMXAkX2OOOk/rtuvjzT0scRQe9iamZlWnBRMIo40Q0NJL6HJTnUtal6xo/rEV8QW6SQ1dv/oPvTl+gBYYrYnY/V96E4dpenGlfCmxU5OYJG6Tb9A2zW4ExklgyeP/aJinemprOOwamb98z9J+q6iK3QB/+vjm/HCyecAWLWpo8XKta0EOmqHlzxdmRmM02Ug348Do/uwb4SVxjEmIS6vvfZa/O3f/i22bdvm+f22bdvwrW99C9ddd92UBcdgzGZmQ0OfyNe+AqG3B8Xb74DynptnLA5GY5TuvAdmMIjAzx4CstmJnzDHaaRbLAAsii+uOmYiHohD4iWPs1mpBrIa/vEjQHmabq1usSIvVexO66+5dHezdYvLgBDAihVJtC/k0LlQhKIrHodO4AQEggLmLZRRLGrYsz0DEyZ006DicvnqMHROQyIpYtHCqEcM+0WzYRoI2qfy0J4iDN069y89O4zv/OMJ7Nk9Bt6UcP0tLWWvqblVAmcKyOd0bH99FAcPjFuvjZexe3sGWoFDOGIdr/uAiv/5r1N4a2vR40yTtOy8a06l/1wtTSwHUO4i+sUXec+b7X0eGjsIAFgcXwIAeGtkLwBHRPmPQ1BcgnCy7h05ht+5JKM9FF3BwbEDnr9llLQnFdUvnvuyp/B2lcW5O86+bK+nPlUzNE99azV0+3yKvABZkGGYRtVzxGA0AvkcTDYTgHF20bC4/NKXvoSFCxfi/vvvxxVXXIHbbrsNV155JX7jN34DCxcuxBe/+MXpiJPBmHXQxekMpcVKzz+L0H/9B4ymJmS/9jczEgNjcpjJJpRu+wD4XBbBRx6e6XCmnUa6xU7ElfOvxgdW3kXTSBvdH3FN3SLMLxb9TqjgGUUiVkmL9dVcVkmLlXgZS5cmcPEVCRRh3Vhwz/Mk41bOvySCQBg42V1Eb3fR09Bn45UJLFguYP2FUQREuWqKL3m8YJmIUJjH4bcL+Nn3h5DP6+g+kkf30SwKeQPz50exeHl5A6WmVgm8KWJ4UMGeXePYsXXUGuGRB575xQg4CLhwUwySzGH4lIl9u3N45dlxz3sTliIICAHkVUeE+WsDF8UWQRbkMqGn6V6hFBYtcbk4vhTntJ6L1lAbFsYW4aoF1yAoBjGQ64eqq9S9q+bMFT3isvHFsGmadN8FX82l+7X1Zr0d9E9mvD/rvprLXx1/Gtv630DKTil2447zVO4URotOTWtRK9DHtcSl17kM2PtlqbGM04dkHfg/D4x3JuLEm1gUi0W88MIL6O3txX333Yf7778f3d3dGBoaQltbG84//3xceeWV0xkrgzGrIHVDIeHMz3zlxscQ+8zvAQAyf/sPMNvbz3gMjNOjcP9HEHzwJwh+/79Q/NCHZ9HA1KmnUeeyFjzHIygGPam1k2nowzXSLZbzOpeVxKx/FInkTouV3M6ljKC9sE/ZdXn+2kKe48EHTGy6JoEnfzWIE8eKMK7VkUlrSAWOo9sYxfW3JbF/VIbEyzQt1h87eSyFTFz57iaM/TKIYwdK0JoKMDkRXct4pEIBXHJJuWsJAM0tlnPZ31OCAUBRVBQywFM/G0E+p2PdxgSaW/OYNz+A4j4R4IDRIRXz9QAAS/AExSDCUgRjxVEUtSKCYtAjxONyHPFAAkEhiLSShmZo1ClWXa4az/G0k7DIi7iow9u4LCSGUNSKKOqO0NKrpJ2ernPpHl/iFnb+Y/pF9MnMCQDAksRSdKeOVRWCaSUNWQhAM1Q695Us3iVewnBhCP05pzGQe0Gv6gpQpV6ZnE+roZI54fbV2DmwHR2RTnTZM0cZDPK5Y84lA6hTXJ48eRIf+chH0NvrFKJHo1H8/d//Pa666qppC47BmM0siS9FbFmcpmidSaJf+hyEvlMo3nUvlFtvP+PHZ5w+2qZLoa07B9KunRC3vQFt46aZDmna8DuXU9EEi6/hPNbzPL+A5DiOOl5+sepOu5WqiEt/509ZkOjjqBx1/T5Ancox233yj10h6axt80TIMoexYRXFooZsWkem/SD2j4XQHu6w9yf7UmGdx0RAq4aCYFDAuRcm8NqvCjh6IA8JUWy4MoJIIIGWWBiVaGqVwEPE8KAKkRNhcBpOHlHRvzOLeFLEpVe34GC6D+suiGLJ+fMxtieKvTuyyI0KgFUWiaAQREQKY6w4ioKWR0AIwDANyIKMqBTD6uY1AICAGASUNIp6EVE+ap9TS3xtmncZksEmcIaIh3/cj2xGw/2fmA9BcK4jIubdDmk159I9fmQysybd4tT/fLdgdDd5KmpFDOYHEBJD6AzPQ3fqGDRDxWB+EGPFUXoeyGt4ceR5jBVHcefKeyAJEl28L4ovxpHxwzg8ftDZt0tQKzWcS+IEk269AFBqcM5nupTCnuHd6Mn2MHHJoJDPwUzMbmXMPurKJfrmN78Jnufxox/9CLt27cITTzyBtWvX4itf+co0h8dgzF44jkNrqPWMN/QJPPIwgj97CHrXfGS//s0zemzGFMJxKPz27wIAQv/57RkOZnopcy6n4DNTqyFPLarNp3XXXYo1ai7JwtwvTv1psW7nMiSG6D5kQaJpsqSDqt+5JI14TBhoaZdhmMC+t9LQTQ1c2BISZM6jxMtVhTaJkQieNetj4MDDMACT19GxSLBfnyM23DS3SuDAgTME6JwKkzNw/IC1r0uuSiActJ4nSTwWL4nT2ZjZYedcBsUgbfKTV/P0PIXEEN63/DasbFplbWen0rob7JCay+ZgC5qlNvzo309hz/YMjh0s4Mh+b60j6WCbd9VAVhv14WnoMxnnUncLSN0jYlX331zH782ehGmaWBhfDFEQ7fg07BjYhtf7tnhEcVbNYCg/CEVX6CzQkmY1floUX0yfSyiojris1YGWnE+BF2harNpgUx9y7sZLY9AMDQP5AU/sjHcmxME3TIM1imLUJy537tyJz372s9iwYQMCgQCWL1+Or371qzh16hQGBwenO0YGg2HDdx9D9I8+AwDI/OO/wkwkZzYgxmlRvONuGE1NCDz+KPi+UzMdzrRRS8hNxT4b6RYrUOeyehOf8tEklhgQeZG6rn63lKTFNgWbIXAC7YBKIIJS4mXa4GfEnt/on+lJRojoho7WDkvA7duThsJnEQxZsZEFnCxIPkFZnu5LBE/XgjCSTRI4k0OiWYAQsGJ2d7Z109Riz+o0BRicZj8WwXHAeRfHPY2EJEHC/EXW60gNusSlEKKzL/OaIy797jApM3Cn1Wm0RlDAnu0ZdB8q0AZCb76R9jyfCGS30FGruHKnO4pE8QlSd2qs+yaDOy22x57DuTC6kN6gUA2NHt8tCk9le+lzM0oGuqFDNVQEhADmRbrKrnePc1ljYe+MkpHoHFb/a5kIck5N08TR8SN4+tiTePXUSwCAY6mjyCjpWk9nTBFZdXY1gnOnZrPUWEZd/8IPDQ1h4cKFnt8tWrQIpmlieJjNtGEwzgilEuK//RHwmTTyn/kjqFdfO9MRMU6XUAjF+z8CTtMQ/P53ZjqaaaPcuZyKtFi3iJrEKBKfOHTH6G7gAziC1O1g+gUocZLWt6zHB9d8iNbKEYigDAgBWjtIhEBI9IlLl+PY1mEJvxPdeZSEjGdcCGCJ1WouLqlLdRq5iFhzbhQcBDR3CLR2UBIqO5ehsIBQmIcAEeGIgERSBG+KWLYqjHhC9JxDmZfROT8AngdGejlsezWFnhMFWnMJWB1jiZvnF0jEvS26FqbuGsGDb1ndZt9/XzuCIR4H9uaQzzlCjjRQKnicy2o1lwpNJ55MGp/f7SzYMZumCc3QaCwmHHFJnOa2cDsVl5qh0mvALUrHimP0cVbN0uMFhCBEXsS86Dzv8d01lzUb+pBuse6GPo25TO797x5+EwDQn+vH8XQ3Xup5AdsHtlV55jsDRVc8nXyng2Opo/jZwYfQnTo2rcdpBLegZE19GDM3oI/BYDRE5Kt/CmnXTqibLkPui38y0+EwpojCb30cJs8j9IPvAsWz8x/lsprLKRjf4xVU9e+PNvTx/fNXywkVeREiL3pqI/3ikogDjuMr1oCua1mPFcmVaA21lY1ZCVaouQQscRSOWgLPhI7kwhJWrPHWR1ozMt2itzwtlrhgPMfjiuubsHR5BEtXBaHpltio5lwCTsfYRFJAW4cMwZRw0WWWcPbM/xRkSDKP9q4AtLyEvp4SThzUwHO8x7kkDq//HAUqpcUScWgIOHIgD0nmsHxNGOduiEHXTeza6rhkRPgXPJ1Ty4WTYRrUBQyIASiGUnM2ZCX8Aq5gu6UkXiKUiZA2TAMZJYOQGLJFrZMWS8SlZugVb7pklAxduAdFa79k9Aq5TtyCupZzqbqdS1sAV3N3q+7DlfZLXGLDNPBG32t2vLPLuezP9dG5oGeCN/pfw2NHHvFch1MNOcdjro7BM02ROZcMF3V3i/34xz8OQSj/B/MjH/lI2e+3bNly+pExGAyK/IvHEP6Pb8Nobkb63/4LEOv+6DJmOcaChVBuuRWBXzyKwCMPo/TBD810SFOOX0xORZ1yJRHVyPP84qaWuOQ5Hu9adINnvIh/GyIsqr22zsg8dEYsxyksRTwNhPxpsbzLueTAYd35UbSkIli2sYTegrs2VATP8Z5UWKFCQx/rsTXiJJ7kcfFlTcireZdzWV1cNrdK4EYExJMilq2O4MIVHVh3viWO3eeQ1DyuXBvGkYEgOABKRrJfL6m5zFER7k9LJsKppBcxmB9EMpCkaZw9R1Woiok150Ygijw2XJ7A1pdTeOXZMWy4PAFZ5qlAdtdcqnq5c0kWwbLdWCiv5lHSSzQttx6IkxiWwsireeq2kppGyxXM0NeaVTIwTAPxQMJzrhS9RLfRTa2iyM2pGRozuU6WJ1ciLEYwmB/ArqE3PQv7WjWXuuHMuSRpxPXWnB4ZP4REoKmqM0rEVM41z7ReskoGvz6+GRd2bKDC2c2WU68go6Rxw+Kb8PzJZ6EZKm5YctOE+zVMA8+e+DVCYggfWHlXw3FNhrHiKDRDQ6o0Xtaoa6ogNxDy2uyodVV0xeO8s6Y+jLpWqL//+78/3XEwGIwq8N3HEPvspwAAmX/+dxhdrEPf2Ubht38XgV88ivC//QtK9/6vs28syTQ4l5OtuSQuZ1kd6AT764h0en72b+N2ByeOgUdUiiJjp88FxPKGPm66Fgax4eIEjowf8vy+UnOhSg19qj0m9XYSX30psGRFGPwBEW2dJkSRw8K2mFN3yrnFpSXurr+lBWsvX4U/+c5r0MdEFIu6kxbrqrl012sCjnA6kT6O3UO7sL71HCpkju23FtMr11n76ewKYP0FUbz1ZhY//vdTGBpQsOz6EtBuCVhCJSFEXnPQFpcA8HLvC5gXmY/1redUPQ+V9pGQE5a4tIWVU9Mo0o6/gDVaBLDGrgCAaKch5+twHDNKhopXd+OnedEujNvzMD3OZQ0n0j3nkuyrnuYr6VIKr/S+jI5IJ+ZFvCm5y5MrcCx1lL5WRVdo2rGb7tQxDBeGcEH7RZ70cgAYLAwiraTRm+mpKC4PjVmdcXuzPXSci27oE3aJzmt5aIbWkODdMbANraE22jipUYiwyk1jTSR5H6fzGI3gdyqLzLl8x8PEJYMxi+GyGSR+8z7w6RTyn/5DKO96z0yHxJgG1Esvh3rBhZDe3AnpuWegXv/umQ5pSpkO57JS45r6nld5FIlHXNYx2sRf50mcy3qFs1tc+mfl+l09wHK20koaASEAnuNR0Ap0AV9NRFYTzOQxca2qdYsFgA2XxfHBtgUYVHrtbd0zP53HJBaO49CZbMX86HxkBlowNqxh3oIARF60usUalgiplhZLBFNGyUAzNKRHTJzYkgLHOeISAK67uQVv78qi+7Al7F5+OoOl71MhttTunEpGb8hCAKY96/FU9hQG84NY17K+rnpgMu4jHkiiL9dHBYVGnUFLXBIhTeaZxmXLuSTpxLXGpoSlMDRDQ1Zxai796dPk5kLRM+eyRrdYVw0ruRlQj7gcs+tFi1qBbi/xElRDxfLkCuTVHPpyfZAFGYquIKdmIQvOiK7u1DG82PO8fS7Gcd2id3uuTRJzXqstArcPbKWPi3oREb72fE532m5JL5V1ZfaTVbPYO7wHzcEWLIovRn+uD1E5VpbGXg3TNKmwyirTJ/zIezCZ1FtFVzCUH8T82IKqfyfXb72QGktyQ6XEnMt3PKzmksGYrRgGYr//uxD3vQ3lmuuQ+z9/OtMRMaYLjkP+9z8LAAj/8z/MbCzTwHQ09PF2d228oY9/HApt9FPnvqotvupdlJEGPxIvlQmtSuJ2vDQOwzSQDDYh4uo8CwB8lXPBVxHgZBsiSqQa4pLjOERCzqLcvS2p9eQ5vqzZ0eVt70KTuhRjI5ZwCIkhlPQSdf385znoc29LegmZbAlvPJ+Fppq44bZWxBPOMVo7ZNxyZxs2XpnANTc2A7qAnVvSHrdSNVS8ePxFvNjzgrNfV4qpu5urZmhIK6mq58ENdS7tNFeyyHc3zOE5nqa5khq5eMByLp1usU6sfsexKdCEqBSDbuoYtxv8BH3p0+Sc+1+zH8M0MFYc9TmXcsXjViJlC/6iVqT7uGTeJly/6N3ojMzDpV2X48oFV1PX0e0UjhVH8XLvi9Z1JEXQm+3FnqFdnv2TGCqJJfc4FyLSgdp1fVk1i7ya97jYhTrGpZD3VTFKKGgFbO5+Cm/01V/mVdJL9D2fzm6upE52MinIe4d345kTv0JP5mTZ30p6CT879BBeO/VqQ/skzj35PBT1IgbyA1UbagHWZ+KJo4+jP9fX0LEYcwMmLhmMWUr4b/8agScfh7Z0GdL/8T1WZ3mWo7z3NuhLlkJ+6QWIb+6Y6XCmFL/gmoq0WK5Bp9Efi98dJA1+6t1Xte0aFZeVav38zYYAZ4Efl+OIypa4lIUKabFV3Eq3+COxE0fM3x3Xj9etdMQlceD8aY6AM8aEiEuSGpux5zaS2I4fLeClX41ChFdcFtQ8BvuL0FUeF1wSx+XXeUe7AMDGK5N4713tuPamZsybF0E2qyObcsSIamg4OHIQx8aPIG0LE+L6BAQZLcEWz/5G6mz8QkRIU8CKicyipDWNnAiBE6hzSUQrSYsVeKHsBgvZJ3GAOyNdtKswaUjjT5+udN6J8BjI9eOnB/8Hw4Vh7Bt5G48feZR2F5V4kdbZ1uVc2uJWMRS6fUxOYEFsof04jmWJ5dThc4uerf2vwzANXNR+Ma5d+C4AwFDBO8KOvPZK8zKr1YRWq+szTAO/PPoL/Pr4056043pSNclrU3SFxpJX63cH3SNppjNllcxZdTeEqhci0AfzA2V/Gy+NQ9EV9GQd4Uk6INeCvBdJ+/PQkzlpj6h5uepzTmVPYaQwXFHkvtPQDR0nMycmPM9zCSYuGYxZiPz4o4j87V/DiMaQ/sEDMJPlCyvGWYYgIP97fwAACP2/s8+9JHAcNzWjSFz/fDUyN5O4dtVqLut1LomI8y/w/Y5oNchC3N/MB6gsXMmCPSSGELGFGnEuq6XCclWcSxJ7PTWXgPc1up1L0Y7TX18HWF1mAWBs2FoIE9eNuEnkffjFg4N45okRPP7jUcB0roucmkMmrYM3RSxdVbsxCsdxWL7CEm4jQ85iO6/mqDt50l7ElqiIC2B181pcteAaXDH/SgDAcGGk5nEIZHEfk+MIikGkSik6ixJwnEvDNFAs6nj88WM4eazoGU/jd4vJPttCbbh79QexrmU9vYkwWmUeaiXHmezn6e5fIq/msXtoZ1mtrsiLtAFSPXMuyY0N0zSpYJMrHJtcl0RYHU93oz/Xj2QgibUt66izlfGN6iACqaSXPE4lUL2bbTWxmCqNo6AVMF4apzcUgPqa35BrQ9EVKhR1s/4Fvzsmv6v45uAO/Pr40x63fLK4z0mjIpbENVwYKvtb1nbYi1qRbvfm4A48dOCBmk4smbOaDCQBOO9nd+oYRqp8pkjcmqlX/Lsf0zTRn+vDrsGdOJ7urus59eJ+T6bi/WmU7vRRPHfiGRz2fU7nMkxcMhizDPHNHYh/+hMwOQ6ZZzDmAQAAioZJREFUf/1P6KvXzHRIjDNE8d7/BaO1DYFfPAr+6JGZDmfKcI8KmQrXEvA1ruEbEZeVRST5fb3OI9nOv8CvV+iShTZZkLupJHDJgk0WAohKMfuxJRDEqk183IJSLNuGLIZrpcUC/pEjrrRYez9ShVEmzT7nUvJ1JxV4HsODCob6rdf19ptZHD/gLDR1U0cmrYE3RTrrsxZLllpCbGTISQt1ixjSCEahMyNlyIKMpYllaA21AXBE3EQ4+wigJdgCwzQwXhqn3WJFXqDXx6FD4+gfzqDvMO+5tkydx54dGXp+FMPaJ88JCIkhcBxH32dCUPA7l+Xvm1+MRaU4moLNnt+JvASO4yALclka7dHxw9g7vIe6pYZp0IZEAOgMR7HCbNSIz7ncN/I2AODizkto6nRIDCGrZj2LeLf7VtC9TiERy+TcEffXPbLGjXvsiDvlsp4Opu44iMPeiJtU8DiXOZoim1Nz2D20C6eypybd4XWkMIJHD/8Mg/lBT5yV3N5aEFE3Uhgp607s/rwQF3+kOAzVUDFQI321aL8XpBuym11DlbNwyDVSq7uxm4NjB7C5+ynsGnoTL/W8MOEs0VPZXjxx9HGaUl4NRVfw0IEH8Ebf6yjpJTx44Cee2l7Ael8fPPAT7BneXVes9UKuSfIezpYGTVMBE5cMxiyC7z6GxP+6G1w+j9yffAXKjTfPdEiMM0kohMJv/y44w0D4X/5ppqOZMtyCciqa+QB+t67+tFihqnNpxVgp1bAS5Jj+7et9fc3BFly54Gpc1LGhaoyVCAoBtIRaAQAJ2ynw1FnylV3MSjWXZJFaq6EP4BUSbiEaEsOIyTF0hDvLnpP0iUvR13xG4AQc2GstMFeus0aVjA94bzxk0zp4CGhtn1hcLl4SA8cBI4MKxkYUjA4rnsXaUGEQRa1Im/G4x6/E5QQkXsJosXzBXYmSXoLACRB4gQq30eIInRsq8RJ9D0/0W4v0wnAQquIIqp4jKroPF3DwLesckPfCfdNkfmwBvYFgGCZ2vFRALmsdY2xExYlDJWQzXvGjGqrHsQPKa5zJe0ga8JDXXNSKeLn3JewY2IYnjz6OgfwA0qWURwgSAVVpNqrjXFqO8UhhGLIgY16ki24TDyRgmiaySgaHxg4ir+Y9gpgstIftlEnyt+XJFbhj5V04t+08+z2oLBbdqc1uUVxowLkEgHTJeu5E4jKrOELZLWAN08BgYRAnMyewf/Rt+nutRsOlWvTlTiFVSqEv2+u5IdCIWNUMjb5G1VDLaozd7iS50UKEYy1XnziXITFMmyZ1RjoRk2PoyfRUnMdJxGWtBlRujqeP0f0aplFR6BW1Ig6OHoBu6Hh7ZC9GCsN47MgjNd1Ia45sCQP5PowXx+yGR15Xd7gwhKJWRG+mp65YAUvc1nptp7K9ePDAT3Bk/JDHMT9bYOKSwZglcCMjSNx3J/jhIRQ+8jEUPv3ZmQ6JMQMUfuvjMKIxBB/4Ifje+v8xm81w0+BcVhNOE9EebkdTsAmdrgWvex/1ClWBikuvMGsk43dZYrknVdKJpXoMshBAa6gV96y+D+ta1nti8T92nxePu2k/JouuhpxLT0MfAbevuBOXzNtUHqfMIxoXMD6qQtdNWh9K3FKBF7F/j7WYvfLdlkAzU3EEhACagk3QdRP5nI5YJAA5MPH7Gw0FkWwSUSqZePmZcbz2wjjcOtE0TZzK9lCx4hZHHMehOdRC5xMWtSKOjB+quihVDZWKvuZgC0pFHXv2O4t+gRfpezgwaL1GThfR11OisZw4ZMUxOqzAMEznua73LypFcdvyD2Bl0ypgoAvP/yKD554cxaG3c/iHv+jGT787jFeeGfMIYlVX0edymVRDQTpbwOF9ORTyljNMbohInPWeOA11vEJlpDBMu/f6qXTNhF1psSOFEeimjrZQm+fzH7Pd2LdG9mLLqVewZ3g3Sm7n0o5hy6mX8fzJZ+nPEi8hKsdoanA1J3K4St1sfc6lIy6zarm4HMgPYPvAVnpdZJQ0Htj7AJ4/8awndvJ6nzm+Gc+deAZvDe91juESho00/SFimoxXIeQbaOrj39afGut2Lom4JMet5eqTGw4hMUhryJfEl2FVk5V1VSndk9z4qSft2BJ/AwiJIVyz8HrIgowj44fL3Mv9o2/jtb5XcTJzwp41a/H2yFs19k1Gx+RoTP5UcXJeMq6bFbU4le3Fr49vxq6hnVW3ITdBxopjVFyeTfNBmbhkMGYD+TwSv3EvxCOHUbrpvch+/W/PvlmHjLowk00o/PYnwCkKwv/4dzMdzpTgFpRTUW8JTH7OZVOwGbcuvx3t4Xbf/iqPKJno+JNNi62FO83XHw9ZXLsbAU12FEm1n/146yz9Yrr6+9nUIsEwgPS4Rp9X0ooY7C/hlz8dwcnuIuJJEYuWBhFLCIgPnYv3L7sLMTmOXMYSQk1N9Q2il3gJLS6HU9eBUtESAe50TTpKw5fW2Ww7kGOlMewbeQuv9L6MU1lr/IrbgVB1FYZpuMRlM97encWjvziCg/vTNBZy7odHrIU3DxE9x4vIZjQcP1pE2jZzNM06P9W66IalMC7rugKdGcvhPrw/hz077NRUToSimCjkrdfJcRxUQ0Vf7pQTr6Fi394U9u3J4fmnRnHwrSzeeGkc//erx/Dqr7IwDJMeu0g76VoL83QpRest3XW1kp1W64fneISlMPJanjaMafN9zmJ2x9xjqaP2e5KF6hGX1vkq6SUrJdd2EMnxqbis4Fzqho7xUuU0yMk6l7qpWyNGtCKet4UiSbc9lT0FwzRwMnMCPZmT9PmksY1maGU3vkga6FB+CD87+BBeOPnchHEBjquV9gmcE5nj+FX3U3UJn7xLqAPlbmRWyYDnrPRtUitJXtNYcbTqzRYiysJiBC2hVsiCjIXxRViWXA6e43F0/EhZXSOJRa0j7bg3cxKmaWJBbCECQgArm1bBMA302p9PArl+i3rRk2572J6TCljC79kTv/ZsC1jnlzQ78jeRIuKyoBXqSpMmwrGvRioxcW5LeslxLuvo3DxXYOKSwZhpVBXx3/0opG1vQN2wEelvfwcQ6l8sM84+Cp/4FIxIFMEf/QD8qd6JnzDLmQ7nEqg+s3Iy0FrMervF0nrDyaXF1rNvoDzt1j+yA/CPZSlPf/U/9u9/IsHvbehTf9fqji4r1rd3ZemCtncgja0vpdBzVAFM4OIrEuA4zuoua/DIpSxxk0lbi7iW5vKGR5UQeAGLloTR1CKC4wDO5JG3nTpS31rSS9Qh9Kd1hsQw3YYInKJWxL6Rt/HAgR9R54b8P2TPnIzJcaSGgKKQwhtbrLRagRfoezI0YrtZJo/tr6bwd18+hu/9Uw94CAhHrG1GhlQqHqq51kMD1t/HRzW8vSsLQeCw9hzrdWXtc0ViOuVadKu6grGU9Xo0zcSBt/J48uEhjI9qGDhpYN/uLHbvHMNQv0IFWEfESnNOKSmM2K+3PdxB91krdTwiRWGaJhWPbSGfuLSdS7JIL2pFz2KeuGuksQ8RU6SuN2TfVPELgN1Db+K5k7+GYRq0htaKx3JTCw3WXLpdRc3QsH1gKz0mOSeDeafr7db+16nIarXT1gHg6gXX4salt2BVs+XikeuPpIoeT3ejL+vcDCAcGjvoGdlCxBBJeSY3AMaKY+jL9eHI+OEJXx+Jj8y4dLuRmqGhoBUQkSJIBJIoaAVklDR9n4ir78c0TeTVPEJiCAIv4PKuK/GBlXchJIYQEkOYH12Akl6iNc+AJXKJ216PWDthP3dhbBEAICEnAZTfMHDSS0seNzyjZuj1tHd4N3oyJ2mqsvs9J12M/empOdVxSOsR8Sk73Xi8NFY1NZa8FyW96DS0cl2jA/kBDOTKO/rOFZi4ZDBmEl1H7NOfQOCpJ6EtW47Uf/8PEA7PdFSMGcZsbrFqL88S93I6ai4BR1RNxT6rjSipvn3ltNipjAUod9jkCoPgvc16qnSIrTILs54aU6+4nLj+kbDp6iTAAa88OwZTE6AqBra8OATDBK68rgVf+voyXH2D5Rg2u7rLesRlS33OJQA0N4Vw5buasWJVFIIpo5DziktFV1zOpfd1kMW64nISNFPDeMlKOyViYPfQmwCAFcmVAIBC3oCeisLgNPSPD6PvZMlyLsGhVDKQL5YQjvDgOQEjQyoMA4jGBSRiQZxzIWlCpLjqX533plQy8MRPBzE04DQ+AgBNNbFkRQgLFofAmTyytstLBLJmaLTTrGpoSKUtcflbt16Duy69HhdfnsDdH+lESArg6MECfv5QD372o34qwNpC7eA5HqnSOIYLQ+A4zlM3Wak7MKHDFqGjxRFwHOcRegDK0sALWt5TQ0iEvZN6mrGPKdnvE0mLdZrnaIaGNwd34pQt0ha4alWbgk3gOR4FLY9UabxmKqq7jtPttKWVNI6MH6afp1Hb1RuyxWVbuA0ZJYP+XD8A0Ncck2NYGFuEjnAHbcZEHDXNlQ66pe+VslrfHQPbsHNwh8fJdZ+fZNDbQV6vo+sqcctIfJ40YPs8x+QYdfH94qZS59e8lodhGjQ7gOd4+lkCgBVN1ufE3bHY3Um3noY+/bk+iLxIr0GStVH03WBQXLWLxA1vC7fDNE2klRQ0Q6M3BA6NHYRhGh5BR1KqdVP3iF53urC/03EliANqmmbFrryA4yIXtRK97sh7bJomnjvxa7zS+9KEx5qtMHHJYMwUhoHo5z6D4M9+Cn3hIqQefhxma+vEz2O8Iyj8ru1e/vD74PvK72zPKbipT4sFHNHaSEOfajjisj5nbkFsAVpDbR5HxwpqCsasuF6POyWV47iKjVTcabTVHErPY9f2E9Vb+repZ3tCW4eMcy+KIZ/VsW9nAf2nSiiVTHQtDODiy5IIhpyYmlqt1zU6oiIgBJFNW4vl1gbEJRHisWgAvCkin7UEAml8ZDmXStnr2L83i8EevWwb1VDpIjOvFTCQH0Bfrg9xOY4liWUAgL6eIgJGDOGIgCKfQveRgjXnkheQzWgwOBWJZgktLdaC+IJL4vjcV5fh7t9YgLZOGYIAjAy6nUvnvdm7I4OtL6fw9CNDSI9rcN+3WHVOBK3tMnhTRDajg+d4TzfZrsh8+zUoSGdLEHgBN120CffevBHvu6cd6y+I4V03diKRFKELRaTGNOoEhSWrUVNRK6KoFdEUaEZYcm561rrBcF7bBWiyhU8y0FR2cyTuE5dEnJDXTWIg4os0nSE3VSTBapbkrk8jcziTgSRWJFdiZdNqxGXrhkJYjCAkhlDSS3ji6OP4dffTVWNXqrhMxK0iqfRjxVHk1TwyShrJYNKqiYUjSJfEl2J5cgUu67qCft9JdPSL3R3YI+yyHlfQMA0qNIiA9TcwikgRj4irp16PNEuKy3HwHF/RqY1KMYTtmxSj9g0VmuJdLK9nJUKxUtdrAJgfXYCQGEJvtpdum/O5wpU4Mn4Ih8cOIa/moegK4nKC3iAL2g59USugpJdweOwQdEOn9ayKrqCkl8BxHFqC1ppqvDSOwfwAfY8KWgEnMyc8AtUdCzk3VvMpJ95K4tIwDRxNHcGLPc9jMD/ocTdJevhYcdTzHjtpsY5zT/6fVlJQdMXzmZtrMHHJYMwEponIn34JoR/9AHrnPIw//DiM+QtmOirGLMJsbkHxY79zVriX7jrEKU2LtRcbjYwiqQaJsd602K7ofNyy7H100L1/P6eD4BGXzkJe5uWK4twrHBuruZyoU6y1T0dw19tNl0Ccyb1b8xjotRZPC5YEPfsEXKNLbOdyfNRaKLa3NyAu7dcSjwXBQ6RpsUTQqIblEIq8SM9NJq3hf77Th6ceHIdpmvbC1FpY6oZGXbWiVsCxcWs80Dmt59Hn954oQTJCWLIiBMgKxkdV8BDBgUc2rcOAhmhMwMbLmnD+xhhuvtNyjQReBM9zaG6VoWkmhgedZkCEvpPW+Tq8zxIFK9aEIQes93/1+gha2mXwsESsyIseN7Yj0gme45EtFFFQFMSjAfC899rZeO5SXP2eZhTjJ1HI667GLCEqzgArzTPomrEpVxhDQhB5EVcvuBZxOU7dXc97JEieemHi2JH3qKAVYJhGWdqk+6ZKQAxAMRSMFkcwWhyhrvKi+GJcPv9KhMQQdavDUhhBMQTTNKEZGtJK2pPO6qZaB1pyXiJSFDE5hrSSRl/OSj3ujHaiK+r82x0QApAECVfMvwqdkXnO67avTY0KIDIr1fr+GHEJN3fKL3G+/OJR4mXcvPS9uG7Ru+y/e0e4VIKIuogUgcRLHseYiKaoHKONmcZL1nntjHSC4zh0p46WpSNn7ZTRauKS53gsT66AaZo4aqfuep1LR9CdyvaiO3UMeTWPV0+9gi19r9Aa2njAuSlBnUutiAOj+/DqqZdxPNNNBTtJf5d4ic7eTJXGaS3yAjst+Mj4oapzXsnv81re4wpXSot9pfclvNzzIrpTx/B636v0OwYAutPH8Isjj+HxI4/il8eegGZongyKouakxRqmAVVX6c2SJp87PZdg4pLBONOYJiJ//qcI/8e3YbS2IvXw4zCWLJ3pqBizkPwnPw0zHJnz7qVbEE1lWizt8DoF/5RVm385EX6xPNU1l+4aR/eivNr23oY+7vNeeZv6nEsrhnrqM/20dcpYsiKEzBiHvl4FggC0tstl57m5zYpjdFhFbkxAIW8g2SwiEipPA64epyVAErEABFOkabFxWnOp0EUn4cDeHEwTUHICUuNk4eeMa9CouCzSxXlLqIU+/9TJIiQjjGSLiKYWCboOjA7olnOZ1qBzKqJxAStWx/CBD3UiECCNoKxzumCJ9fpOHLXEgfu89PV6F76d8wN4/30duOXONiSbJTS1SBAgImeLS7cAawu1QeRFjKbyMDkDiWj5tbMguhAxOYZSaBh5jCGdt0SsW5wBVhqlOxV2ohsSiUASt6+8E2tb1lX8e2uoFSIvehbPESkCkReRU3O0Ps6NJEjQNMt1CgqWWHzq2JPY3P0UrZVzz/MkGQUtwVZai0roTh2rGFe1URBOx1qZHmP/6H4AlriMSBH6WvzHIoiC9X4TQUfmms6LWg7zSMEZ1+EWikOFIeumh6/Zi8xLiAcStKa1Uk3pQH4Am7t/iTcHrVmTeepMR6zzaWjUySN1glEpSh0z4lw2BZuxMrkKiq7greE9nmMQoRj13WRzszy5AoDTNdYtLsn50AwNL5x8Di/2PI/tA1thmiZM08TJzEkAXsc76EqNJqKYOJyAJS41Q0NACCARTFqvr5RCX9ZqsHNh+wb6u2o3FEr2+SaOLnnfK4lLIoBFXqTCcH50AUReRKqUwmhxhDrFqVLK49yqhupJwS4ZJbq/Zt982rkEE5cMxpnEMBD9488j/C//CKOpCeMPPgp95aqZjooxSzFbWlD4+CfAlUoI/903ZzqcSePpFjsdDX3qdBtrwU1SXJbPy5zabrHuhXylekvrmBM39KmWOivWce6Im9ZISqybCy+NQzCt57Z1yBAErswBbWpxxGXvEcvNaOuU6aK8HoijFo8HrbTYnG4JlmEBrz43hsHRNEzThMhJeOx/BrD50SHs220t9ARTxvCAAsVwXAXd0KHZQqeg5eninNSXAcCpEyXIZhiJpISmFivWU90a3ngxhWMHCzA4DYmkVPZ6ybmctyAISeLQ11NCqWTQ688wTAyc8orLtg4Z6y+I4ZKrkgAAUeQQjwVRLJiAJtJjBMUgonIMsiAjl7EW74l4uejhOA5rW9ZDDvAYDRxGKpezn+8Xl6201hGoPOOyEa6YfzVuXf5+jxiUhQBCYsgS9z4hZRgmXn46g7/6whHs3ZGhTa2IC0SaB7kX4yuSK3H7ijswP7aACr64HAfHcTiePgbTNJEqjWNr/+tUZKlV6v+IcynxIlqC1o2FkcIweI5HV8yqA+yyRWK1G0DknDmpm9Z722nPiHU313G7lCOFYZT0UllNpkS75wbAcRydNUk4mjqCp489if5cP/aP7gNgiTqRFy131Y5HNVRklDSOjB2CwAloC7cjLEbsGBX7GEGc13YBRF7EvpG3PfFNlBYLWDcb2sMdyCgZDOT6kffVvWqGht5sDz3/5P0EgBPpbgBecSnyIiReQlF3bvgUtQK9bjKuJlAJ24EfzA9gtDhi3whoRkAIIK/mqzZ6Iu9P1t7XPNuFzria+zjbWsddFF9Mf9cUbMLq5jVoDrbgukXvojdaxkujND25EiWtREV9MsDEJYPBmAjDQPTzn0XoO/8Oo7UV4z9/Evo55850VIxZTv5TfwAjnkDwh9+DcHTijoCzkWl3Lqek5nJy9Zt+J28qXh/nbujjEnSBKuLSLa7dNaNV02L5xtJiSQyTFZfrzosiFLAWs+12B1n/eQ5HBARDPMZGVJw8ZAm6jk65oWOS1xIOyAgGJRTyOoJiELu2ZTE+aOLo0XEAwNG3FezYksarz43jyP48OJ6ISxVFrUAXueXOZQ48J+DVX2Vw6O0cshkN6XENna0JiCKHJrsp0ZZn0ji4pwhJ5nDRVWHE4mKF8S+2GyzyWLA4CNMEeo8X6XbDgwo01USyxXk/2zrLRV0yYZ3PQtak7iJp2CLxMnJZu6lRovK1syK5EkFZREbqRzqXow1Z4nZHTomXkAgkG3IuJyIgBBCT455UW0mQqeDxp4C++UYaW5/PwTCAY4fzHqELWOmEEi8hKjnuGcdx1LEmTYTWtqzHvMg8FLQCBvL92D+6H/tG3sbx9DGXkCo/T9S5FGSPIN4071LaOGmB3cm00txaoDwtlqRet4bbIPESRosjVEAWdG+zov4KIy2IWOU4DkEhWHbO9o1Y3VBlQbYds3EoukJFIIlH1RW83rcFuqnjvLbzEZEiZbV+QSGIsBTGssRy6KaOU7leHE93Y8upV5Cxm9fUEpeA0wDrwNh+Kp5ISrBmaNRNJte/U4NbsLdNePYXFINQdIV2E84oGef82c+R7RTsoBikvyP1sREpCt3Uq3Z/JeKSOKOJQBIRKYKcmisbyUKyIUg3WwCIywls6NiI9y2/DQtji9Bkj6cZK455nNtKxx2jjjFLi2UwGLXQNMT+4JMI/ff3oHd0YvyRX0Jft36mo2LMAcymZuT/4A/B6TrCX//aTIczKaZjziVgpaDxHH/aTgrgdkEb+2eRmw7n0u1E8gLdZ1Vx2eBsy0bTYgNCAMuTK7CyaXUd0ZcjyTyuur4V0ZiAzvmBshgILW0SNNVEz2EDkswh2SJBrLPBEuC8FpGXkIgFoeuAqViOpGBaQiuT0vDW9iJEiQPR2OdeFEM4JGN0WEG66DgTmqvmMqtmoegKcsMinn9qFL/+xTCG7fEgCzqthW9Ts3V8Jc+DMzlsuiaJxaus3/G+64rEGhACmLfQOiejwyrdrr/HWtyuOSeKzgUBBMM8WtsriMukJbTyKY46Th22GybxEnJZywVuSlRJ17TTU3VORaZYoC5fU7AJYSmMhfFF4DjLaSbOaHrExPNPjeBXjw3TVNXJQLrbAkCAl+n+3XVwxYKO3hMl8LbznRrTqDvIcRy93puCzVW/W9Y0r8W7Ft2A1c1raBppRsnQlMhUKUWPWUkcOs6lhI5wJ5qCzTi39Tw6XgSwuuTesPhGXNB+UcUYRCrmvM5lgA+gOdRi14NaQo0IRSLoe7M9ZftzN0oKiiF7JmgK+0f3YaQwgpHCMOJyHPPtelDiBpIZnMTlT5VSOJU9hZgcw/pW62Z3UAh6vkdIHGREzWBuANsHtuLQ2EE6y9Ht5ldicXwJRF6kNZULYgtobWdRK6A32wOJl3DVgmsg8RLOazvf83x3zSV5zYDTpChbwVEkNytI3WVQDGJdyzl2vNaxNUODLMj0NZL/E/FP0mJjcgyJQAKmaeKtkb30GKROWxIkdEXm0+81t/MPON19x0tj1G2t9G9FVs0ip+YQl+MN17fPJuZu5AzGXCGfR/wTv4XA07+EPn+B1bxn2fKZjooxhyh8/HcR+s9/Q/DRn6HwqT+AdkHlBcxsxZsWO3X3NC/ruhIFrVDWkXIyTLbm0l/vORVpvx6xCB4CJ8AwjbrEZbVRJHyVbfyNdapxxfyr6tquGte+uwMnu5xaxUojX959ayt++oN+ZDMS2jsDtqip/711O6yJWBAYB7SchOEBBbwpI5fNoud4EZzehKvf04xQiMfTjw5jw+UJqIqBXd0ShgaLaO2wFpi6qXnm/AFA/1Hr/R0ZUjE8YAmFto4QhsUQgAJicQFcSsCylVEkm3LOiBGfSCbpyCExjGjMcjLyWZ2+l6TesnN+AFe+uwmqYkKSy89Za4sl0IZO6ViaWAae57EkbtXwy4JEncvmZPXGSK3hVgCnoJYMumgXeRF3rLzbcz3LgoyhwTy2PjmKFrvZS7JFxJLlYXQfztOZpfUSEr3OJTkn7qYxp06WwJsiNlyWwI4taYyNqNTxbA93QOJF9GR6ykZzuBF5kc52DLjmZBKBN14ap2IiIkUwWhzxuFNEwEiCBEmQcOvy91c8zrxoV8XfA46YI52IFV0Bx3GQBAnNwWYM5PoxUhhGIpCkNZfzIl3WHMxceb29+4ZaSAxiDMDOwR04nu6mn4OliWX0O+BoympG1WzXCxPhRZy/ZKCJbstxHMJSmHZJJeeM3LTodjm91r4k+t002FfCq8+N49ihPK67uQUXXBKn525JfCkOjx+CyIu4pPNSvNH/GgDgROY4NEPD0sQyLIovxqL4YuiGjt1Du+j3nv+7L+hzr9OlcgeSPKc52IL+XD/Ob7uQCja3GA4KQQi8AEVXkAw0YTA/4DT0sV3GsBjGeW0XYjA/iJ0D2xEWQ1ieXOmZmysJElY3r8Gw/T66SchJcByHseIY/YwlA02edGgA1KWudT3PBZhzyWBMI9zICJJ33orA07+EtmIlxh/9JROWjMYJh5H//P8BAET+4suAr/5mtsNN0yiSiBTxDCw/Hai4bPBusVvAcRw3Ja/PPzaEOpdV6rncDk7VbrFV5lxKZ+juOHG/KsVDWLoyjE//yWLcfl8HLtpAFsGTdC7j1sKymOIxOqxAMEXksjrS4xoEU8KKNWFsvDKJP/7GcixeFkLngiB1NwmqoXm6WWq6ScWlppo4etASHS1tEl2sLlwcRTQmYuMVTfY+7C6wvpsWRDSHxCDkIA9R5JDNaPRmRe9xy72atyCAaEykNal+lq2IQhQ5HD+sopg3sSyxnL7vJC2W44BkFecSANqj1mdIUUyP4OM53nM9S5yMPTuy4A0R52+0Uhq3PD+OH/5bL5746RBOHpt4HIYbj3MpBGiqsFtc9p0sQjAlXLQpgXBEwPiIhoRsndvliRVY1WS5hwujC+s6JnGmrHmmlkCyUkZLNA7/HE8Sz+lkSFDn0r6eFF2h+2uxv8MGfZ1hSbdZIm7dnandnYGJWCEilFxzy5LLqcghQpHUjJLnE8fPL96ICw6AjrgJS2EkAomyxkckNXh8VMV3/18P3nwjjdSYhmefHIGuO/9WrW1Zh6AYxMbOTYjKMfp+j9sjOlpc3+UCL9A6y7jPBQTKGydVmvNJbjqe13YB3r34PVjtcppJzIBV70vGrxBRV3I1BwKs7972cDuuXXg9AGDfiFXHSuo8yfm8uPMS3LT0ljJXkryeglagaa/uxmDESSXici438wGYuGQwpg3+xHEk33cDpO1boW7YiPFfbIaxaPHET2QwKlC8735oK1ZCfukFSM8/O9PhNIRHgE1hQ5+pZLINfdxacqpeG8/7nEv75wBfvXMqEW7e5j7V5lw2lhY7VbjFZbXa1mBQwIWbEkhErcWe2IArLVLnUkST7dT1HNah61ZNpaqYGB1WIUCi9YtkPEc4zIM3JSiK41ipuuJZtPadLAKK8x4c3m+Ly3aZLg7Xn5vA5766FM3N1nZUXPrENBEwQTu1OxIVoOtAKcfh2KE8ThwtIp4UqYtajUgwgIVLg4AmYPurXvfGUHmUiiYiUQFBqfp+OmJWqqhSMjyCz0/PYR2pcQ3zF0Tw/vs6sHBpEKNDKlJjlmDqPdGYuHQ3v5F4yZMWm0lpOLwvh9ERDbFwEPMXB5BsEaHrJpJmF+5cdQ9WNK3EgthC3L/uN6kzOeExhXLnMqtmabMmWZCp0PILLkmYvLh011zqhg7d1On+O8OWiOzLWuNNSHOe1lCb53PrTrWUXZ9b8pqIG5oIJLAwtggxOV6Wntlsi0vyfMed9IlLyS38nfepwzVeZak96zUsRnDqZBEP/FcfCjkDGy6LY9mqENLjGvbvcZr3NAWbcc/q+2jdo+SLIeg730To+WejAtUbJ7kh51cWZNpwieCuEQ2KAaxsWo0FsQVYZNdNuseauOcLd0XnIybHMFocQV7NQ7VFqFzH92jSVXfJcZynfpfcOCAp2KRueq7CxCWDMQ2Ie3Yhecu7IR45jNKNN2P84cdhNrdM/EQGoxqiiNwffxkAEPnaVwBj8rVOZxq36JrKhj5TSTJgpS0lfelME+FOi52q1+bfJ1lg+heAnudUEMfe+svKtZin25ylEdxCdiIRTzo6+tPfakEWjGEpgrUrrBS+E7vtWlrTWhxqmomWphAkyftehSICBFOCUnI+VwXXSIi+nhL2bM9AMsJYttpaeJNtm1slemwyroWce9JkxC+m20LtWNuyDmub10PgBERi1t/HR3T88meWg3XDba0QhNo3LERexNKVIfAQsfWVcY9TlBm1nhtLijVvIrTHm8GZPBTFrHm+TxywhPb17+kEz3O47NokAOcGS19P5ZmB1fA7l0RclvQStr2awr49Vkri0uVWl1fi3o6NqB5x0MjnjnRcLukl6kqZpknnScpCgG7jryM8HZefXBfWHNWSJ5awFEZTsBkZJYOMkqYdTK2RMEm6D/fjSs4lYAmx96+4g86/jMlxen4iUoSKMirsbOfS34k67HtvCB32iJe4HMfGzk3ojHSi941m/Pu3TqK/p4TFy0O45a52XHadJaRef3G86jkhWSKOe+q99oj4quRcBquMfHEj1XCa3e9tQAhiUXwxrl90A33dVFxqpbL5wvNtl7w320O7/9Zz48HdoOeclnM959g9V5bjOCYuGQyGF/nxR5G89UYIgwMo/MZHkP7uj4Bw9bvBDEa9KO+9FeqGjZD27ELgoQdmOpy68XaLnZ3O5cLYIty35v6yO9wTMR2dcD1jQ+po6AOUd1m0flet5nJmnEv3Ym+iZhVXzb8Gd6y8u6GmFovii/GeJTdhZXIVzlu6FJcKH0BUsd5PtzBvbyv/Pg5HBAim7HEuiQjQVBM7X09B14F3vbsLl1zpLATDUQGhsEAXq+R8+sWkf+SLwAvY2LkJLaEWS1xGrb/veDWHwT4Fi5YFcc6FtZukWPuVEImKWLQogkxKx9EDzpiDtF3OFU+INRe/0aiEoJ6wnEup8r9VuayOQl8C0VAIa5ZbAmPNuVHccFsr7v2Y7bw1IC7zOR3PPJJCetxyPSVBpmmSmXwR2YyOYIjDhZtiuHCDJTJIw6SxkcojQwzDxGBf+dgONwHB6UjrTu8czA/Yfw/QbfwdUOtNizUMEzteS5XFKfGS3STKdrtcrvx8+3unN9tLay6DYhBJe04jAM+NL3/NpbONt1aP53jq/BHXEnClxVLX0CvsSLMdMuqEsCC6EPOj83Fe+wUIikG8Z8nNGNrbDI4DbvpAGz70O10QBA7LV4fR1CLhxNEishkNlSBinaQB+wXjmqa1uLD9IqxuWlP23HpuOsk1sh7c7637e9W5+aBAMzTopl7mki6wXfLebI/LuZz42uiKLoDESzi/7QJc2LHBU+bgbiTVFGguS82eazBxyWBMFYaB8De/jsTHfgMoFJD9ky8j+7f/AIisbxZjiuA4ZL/6VwBs9zKbrb39LGS2psUCEwueSkxHym95Qx8rrlriMiAEPR09/bFVq7mcihmh9eJuvDSRECfNThqB53h0RuZB4AVrhuP6JP3b0iXO4q2jo3xsAhGXqlIuTAoFK7W2rUPGlVd1ebq2trRZMZLFKnmvymquaji1Au84l0f3WwvtTVcn66rfJYvadeckAVhjOwipIeu1xJNiTdctFOER1lugKAaiVbp+HjmQQ3NpOT6w9F5ar8bzHK64vglrzokinhStOaGl6hkV+ZyOx/5nAPv3ZvHkTwex9eU0ju+33NCAq6FP/6D1vdbcKmPB4hDCAeu6J6NeqonLXVsz+JdvnMDWl1NVYyDumH8ERcoeqWGlxVrbuOvygPpd/oNv5fDYA4P4zj+cxOiwE6vES1ANFUWfcwmAdnU9le1BUSsiIATAc7zHrSTjOPyfDbcDXGl8BdmHuz6dXA8kbbu85tLap19YSYKEdy1+D5YlrN4R6XENmZSG9nkyLr0mCTlgj4fiOZp6nkmV10MC5d+3/swMSZBwbtv5FYWWOy73Y/frqOVcBoWgKyOk/PmKXkJRJ117vXF1hDsh8iL6sqdox+F6vqtaQ6344JoP4fz2C+0YnP2662nbbXd4LsPEJYMxFeRyiH/8NxH55tdhRKJI/+ABFD7zR96CLAZjCtA2bkLxjrshDPQj/I9/N9Ph1I27E+HZBMdNfVqsP7U1IFhpWbXq4a5acDXevfhGX4fYanMuK8/RnG7IgtadNjqdrFrniMgVKxy3sbOjXECFInxZWiyhVLR+FwhZXTSbWiWQU9jSRlwu4lxar7F8ruX/3959h0dR538Af8/M9k2y2VQIaYQSMJTQOwhYEGwIds9D8ayg3nk/705PTz0rp6JiBdTz1FMPBVTELooiICq9SYdAgJCezfaZ3x+T3WQhIXWzJe/X8+Qh2Z3sfmb3y2bf+22nCZd1ei5FiBAloFuvpo12ybJko19yf0wc1Bd6g4gdm22wV6tv5svUkZ5qz+Vp3mibzBKSHb2RXj3YH3J8iotc+O6LEmz5VQ18PXrXv59hWoYeigIcPVx/76UsK1jy9lH8uroC7y4sxJb16u05StWeMd+HIwBwrCZcxlvVN9++Xrb4mp7LspL6w2VhgfpGf+WXJXC7ZRw55MCbLx3G8g+O+4/R1fxf8g15rhtw9JIeKaZU5Cb0Rs+EXqc8Fk3tTdq+Sa2/qsKLt14+7N+uxfd/zbcCad3QkmxKgVbUoqCyAF7FW7slTE1PZHmpG+++fAJbVymoLDxp5dQ64chaz0Iw6bHpEAUxYF6qrz34enlPCZf+nsvT9xAW1Cw8lZ516nExNR+YNNRzeXJYb6g3strm9S+0JcsKZDlw+Hbd0Fy3B/B0H8b5VsQ9+X4lUYJG1ATMyT35diRRQrIxGW7ZjWK7ujhPU3u16/79O3k4s0+KKaVJtxXOGC6JWknctxfxF5wL/bIP4c3KRtmnX8N17nmhLouimO3+h6CYTDC9NA/igf2hLqdJfL164TrnsqWCMZ9UPClcDk8biYmZZ592EQuLPv6UNyUNLugTomGxvjeTzV00qaW69jBBpxehN4jomlP75i2tcz09lyZ1zqXbeWrPpehS3wQaDFq1x0MS/L1oiSnqv1aDFd3jeyA3obf6O6fsf9rwOWtEjT9cCoqErt1NMBia9hjpJT3yUwYizhSDvgNj4fUq2PxrJWRZQdlxBRqNAKNZPG0w0htEaAQtjFXpp3z488PXpVixvBi/bbVBlICcnvWH3s4Zattctug4Fjx9ECeOu3Bonx2/rlF7BNeuLMOubdWIT9BAq1PvQ6MVEHu0P8Z2nghdnWGxx0+o4atLshqsfD08dedc1qesRA0xVRVevPH8YSx4+hD27KzGT9+X+0MQEBgEUkwp0IgaSLIOqUUjsfarajiLYjC884iAYCUJEk4cdWPllyWottXfEwcAXq/if6zSswwoOeH2r6Lra/82X7gUA3vys+Ky/T/7/q/H6+OhKAo2/lyJooOAftsIHF3W37/Hqvr41IYUq/7Unstu8T1wde9rA4bF6iQd9u+uxmdLTqC81HNKgLLqrYjRxaBznQV86uN7XLvUFy7jauZUVtT/eNV97Tl51IWPLCuY/9RBvPyvg6iq9OClOQex8JlD0Aq1e53WHQpct7e5sd5E32iDk/9vaEUtXLILTk/94RKoDd8VrrKa+2r+MNa6czlNWrP/dZE9l0QdnG7ZR7CeNRbaLZvgGjMOpZ+vgLdX71CXRVFOTuuC6ll3QnA6EfPgfaEup0lq37RGV8/lyVuRtPVtSoKEWF1cs+eCnnw7DQfN9hu2r23ncKnVibjt7u64+sY0JMQbodcLMBpF/0qyJx+rkwLnXPqILjVQxRlN/ufYNzTWNyxWFESM7DIamXHqiuAn7+N5uiHXoiD5tyMRIKJnn/p7Bxvj21Nww0/qfpBel4Q4iwQBp98vVBQFGM0Sqm3yKfMVy+oEudw8M/SG+t82dk737XPowuGDTiycewivPleAj949jmOFTqxfqw5DvWJmGm79SxZm3pGO7O5G6Dyx0Fapi5f4HqPiUjV89c/qgQEpA9HDmgsAsFg1EASgYL8Dz/xzHw7uswfUULdHs+CAAwajiLx8NWx8/2WJ/7q6H9LEaGMxuev5iPltLL79wI1vPyvBx+8dr6mnzocwkhYfvnMM33xSjBefOICVX5Zgz04bqm2BvXIH99phr5aR08OEvJo5swf2qHX65gDa6um5BIBeibXvHXzB1qyNQeEBLypKZGRmxuDMc1IgKlqs+LQYbpes9uJpDBAFtf3G1BleWdfJr01aUYeioy54PAp277AFDA11u2RUlCi4pMel/iGcDfFtmZOeffqey/IyN44VBvZq1x2S31Av48G9dpSVqENvX32mAEVHXThy0IkfP6/Cuu9s2LNeCRjRUXdY98mP78ni9Wovb+xJj5lBY4CiKKhyVzVYm69n2T+cugUf0gmC4B+eqxW16G7tiW7x3QNW6o1UnAxG1BIuF8wP3QfT/JcAANV33AXbX+7l/EpqN9W33g7D2/+BftmH0K76Hu5RrdvkPtg6RM9lG31eGzgstuWBtaGhsKHY51K9r5pw2Y7zPLv3ikFxMXDcZsOI8VYIAPSa+nsZYgxGFLgUKIoCk9bkHzopOs3QyHp0iq3tURg6xgJBALrl1h8ET+6pbGxYrAABcfESpFIRuXktC5ddsvRIStHiyEF1ZVtJ0SI2Xn3MG3vzazKJqK7ywu1SoNPXtjnfcMTZ92Yh1tJwW+na3Ygz8mNgTdDC4fAGbItSsN+BE8dciImT0KlLbS9kpzQ9dm+vxtHDTqRlGKARJXi8CsoqqmE0ioiPNQfsTShJAtKzDTi0z4GyYg92brYhs6v6Jl9RFJSVuKE3iDj7wiQ4HTIGjYyDRiPg0H4Hdm6x4dgRJ1LT9AGhQyfpEG+worRQDXwQgGOFTrhdckAgd1SKOHzQCa1OQFWFF998UrNaEg7jjP4xOOuCRMgy8OOKUgBAr34xSMtQ7+fgXt8Q3MBhsSeHlro9i75gIwgCXJvOQBe7E5OuT0anND1+XVOOrRuqsH1TFTqn6/GHP2ViRNrIZq38rJO0sNX0wBYWOGGvEGGsGVH75ccnsO6Hctzwxwx0yWx4tITXq+DIIQf0BjFgHrJPTFxNuKzw4oP/HMWRQ07ccV82Ymt6NOv2XDY0/Hbbxtp1BUqL3ZA0AhRZwapvymAWh8EJCfoptfddd1hsY0NVB6QMRLala8DjrtZVM1e0Zl5uffsL+wKt74OClm5TMzJtNNyyG4IgYFjn4f7Ljx1xQpIEJCY2vqhXOOI7YaJmEg8eQNyNM6D99RfICQmofGE+XBPPCXVZ1NGYTLDd/xDibroeMffcjdKvvw/rDzd8n5yH84I+LdHQHMfWqBu+hFbcZsNzLutsRdLMRXNaQ9PAfMT2oJd0dd7U1v9G0GzUQ6kC3G4FJpPZHy491Vr0qDwXY7pk+o/tlmtuMFgC9Szoc5pA7evlHDDMgvPOz/LPLWwuQRCQPzQOXy0rxreflUAUNYhLVM+5seBhNEsA3Kiu9voXZQGAygoPNFoBCUna0/bMa3UiLpuhDqFUFAW9+sTg2BEnvlpWXDNMF0jtfNLCKDVB89gRdYinJGhQWeaGDAVxVu0pK+wCwIxZ6dizoxr/XXAkYHisvVqGy6kgNU2LwSMDt64YMsqCrz8pxq5tNqSm1a4GC9T2bp047oIgAjk9TNizsxrHCl1ITtdg/55q7N1pR0osYAIw5uwEdO9lwv7ddhQecuLAXju2bawKCEEms4Refc0wmiTo9Gq49XqVOtt/qMfWNyR9QuZZWHHoa5yRmAdAHRaqHE9BepwGGdlqkJ44JREfvnMcsgwcPuhEcZEL3ZJ7NPjc1EcSNLDXhEtR1uDn7ytwzkVqD/LuHdVQFGDjuooGw6UsK/jhqxK4XQq69jT494utq3ZYrAeFBU543Ap2brZh8CjLKedvrCfAybKC7ZtsgAAMHBaHX9dUYPREK7weBT98XQqDHK8e56x9Puv2XDY25F8raeud3+gL/b5eyfrmgp7cu9jUOZcnqzsPduUXJfB4FIw5y4rXnitAbJyEB+dG5hZ20fURMlEwKQr07/0X1jNHQvvrL3APGYbSr39gsKSQcV48Da4Ro6DZvhXGBS+Hupwmibaey8BhsW0151L0v5FvTRBrMFyGeCuSUITLk3ur6hNrUt+8u12yf9gbALjsAkRo/OG0Keo+9o2tQuzb788co0FW15b1Wvr0GxLnX0duwJAEfzhobDEak1l9TqqraufHeTwy7DYZsXGaZg35FgQBPc4wo2dND+z+XWpI94VJn9Q0taZjR9ThkhpRg9JidZhpvFVT7zxVSRKQlqneTt1w6fu+vmCemaM+lwUH1SGcdXvJ9JIeDocXVRVeWBO1/uGdhYccgEfCzs022Kq8OH5IBgSg/+BYpGUYMHK8FZfO6IwHnsrD6LOsSE3TIT3bgLHnJODmuzMRE6uBJAnI6GqE26Wg8JDT3/5tpxlumR6bgat6/Q5dLTnqsVVeKAoQG1f7WAwYZsH/PZyDURPVuYa7d1Sfcjt1KYoChz1w3qPHLsHjAQxGAZKiw2/b1NuotnlRUqQ+lts2VkGW69/W5etPirHi0xJotAJGjj91nicAxMSq7froEad/FWbfYkdA4JD8+noHjxx0orLcg8yuBpx/WQqum52OcecmYOL5ibjlL5no1VdtX47y2oXCfKHPt3ATADidMo4eafo2Ob55m0X24/7bOtnJi6vVnd9ZUebBwrmH8NtWm/8yRVFOu0WOvdqLFZ8WY+UXJVi3qhxOh4zUtNMP6w1n0fVXnihIhOJixM28FnGzb4ZQbUP1HXehbOlyyF3SG/9lomARBFQ98TQUjQamOY9CPHI41BU1yNdjGW2rxQZjKxKg/n0rm6spcy7bN1zWvwdke/D1LGhETYOPqdmkvsGVXVLAG3+nrWYT+tim133yir9NObYtQnecRYOpV6fi/MtSMPWyLhBFAYIgNBpwfeHSt9IsULuFRKylZXUlpuggaWr/T3RKC3yTnpisXn/0iLo3pUbU+LfuSEjSNfh4mGMkaHVCQLj0zbesL1x2TtdDEIHDB3xbgNTWoZf0KD6u/m5Sis4/d7SwwImt621wO9X7ExUtuvcywWINvH29QcI5FybjlruzcMOdGZgwORFxdYYPZ9UE2wN77f4h6L79NRuaE1i3l7uqQg3bMSd9sGGOkdCjtxpwdm+34cghB4qOulCfn74vxxP37sWmX2qHKleUKhAUAfEJWsQYjSgucsHjkVGwv3bho6oKL3ZusaGi/NTVXnduVkPiDXdmNLiCsG/Ope/xBYB9u6r9bUx70kq9J/MF0d79YiCKArK6Gf3tObWz3r+olr0mXOrE2m1kfK81+/fY8eLjB/DynIP4bZvtlPuoj2+BIP/+m/X1XJ60J2fdnsvNv1ai4IADny4ugterwOOR8dbLR/DKk4fg9dYfMPftssOXPb+uGXJ9Rv/IHBILMFwSNUr31eewjhteuxrsh5/Bdu8/AG37vSkjaoi3V2/Yb5kN0VaFmL//NdTlNMi/FUmUDYsNxmqxdW+rtbfp+/3AobbqViC+r/aikTSn1NJeBEFAsikFycbkBo+JM6tvIhW3xt+bCACOKnVXKV8AawpRrD/M18f3eLTVc9FvcBwGj7RAK2khCmKTPkAw+noubbULGvmCTXN6bOuSJAGpnWvfdJ/cEyNJAjp30cNRrYYaERJKTrggCEB8orbBQCwIAqyJWjjsMuzV3pr5ljU9ngmn/o5OLyKlkw6V5R5UlNWujOpweLFjvdMfypJStOhcM0/yyCEnfvq+HCIk5A+NxSVXdsH0azs1+zHI6Kq2qSMHHacMQdc3YZ5eZc1Kq3V7Ln3Ss43Q6QXs3WnHgrmH8PaC+j9c3L6pCooMdXGlmh68smI3REULk1lCotUERQaKjrr9q7/65ou+91ohnnlwHw7tr108ye2SUVzkRly8xj+Htj46vRgwxFoQAFkGdm5RQ17d5/fkAKcoCrb5wmUDIcta80GCrVRt4yatGXpJjwRDIjqb0+Cwe/H2K4dRXqq2jV9+DNz/dPcOG9599QhOHA8M5XH6wGHVTeu5rD1m/261F7i02I0tv1bik/eLsGenOre4oa169v5W2/vs9SiQJLX3P1IxXBI1QCguRuxtN8Jy1aWQjh+D/Zrfo3TFKniGDW/8l4nake1Pd8ObkQn9sg+h+/qLUJdTL1+PZbQNi63bExuO4bKhXjGNqGnyvn1tpXa12NC0gUnZk3FW1rkNXm+JMSHW3RnJQjY0NY+XAgVOmwBTjFTvvLKG1F3cqbEwrRGCNxe1f3I++ieffsVPQF3QB0DANhuVvnB5moV8GuMLH5IkICn11PY2cIS6AMvqb8tQVabA6VBgsWqg0QinfTx825KsW1WOR+7e49/ypKH5qr6tMg4fdPh7t7b8WoVvPqzA0v8eA6D2tMZZ1G1hfEHAajXAmqRFcpIZBmPzn5/kTuo5nzjuCgj5vr09G1NZ3vBzoNEI6NrDBK9XgSIDZcWegJ5nQB3a7AuMHreCJf89BkVR1MVxoIUpRkJyohpijhc6UVATIs++MAmd0vWIT9BAloHlHxT5h8geP+qCotQOaz6dmDqh2DdM2rd6bt15wIaTegKPFbpQesKNtAw94q31P6fxNW2gosSLc7LPw5kZ4yEIAs7vdiFGdhmNwgJ1OG6PM0wwmkTs2maDraq2F3bdD+XYsdmGhXMP+WsCAIsuMFzW9zxJohTw+unrufR6FRzY4/APTV/y9jGsX1PbY1z3furyhUtfe8nJNbaovYWL6PorT9QWFAX6D/6HhNGDYVj0LrypnVD+n3dR9fQ8KDH1L/NNFFJmM6oemQMAiPnrnwF7/X/AQql2WGz0/dmpDYLBGBbbujcYDc3dHNVlDEamjW7VbTeX7811Y0M0g0UQhNMOyzaaRGRWj0AG+vprdbsUKF7JP8SvqQLmXDay3YvvOQ7G49I3uT96J57R6HGmmn027bZTh8XG1NNr1lS+eZbJnXSQpFMf+76DYmGOkbB9UxW2rVdftxKSGh8+7QuXq74uhcet+IdeNhQu033h8oCjdsGWMg8kpTYgJKWo8/R8vZfmWAnDRidCgNDiVZXNMRIMRhHFRW5IddbQ7JXQu9F9GIGGh8X69BscC1GqHbJdd/9LQF3wx+NW0DPPjLQMPY4WOLH3NztKS9wQFQ1MJgkpSer7mqNHnCg4oK6Im5ljxM1/zsTtf89GlywDCg/Vbifj6/08Xa+lT93/N75tYXxbkmhOMyx2+8bT91oCtT2XpSVuJBoTA1aKBdTeZwDI6mZEn4GxkGX1AwUf3xBsh13GskXH/ZcbNIaAehraX9hU03upFWsXuyo85ITLKSOnpwndck0QRaBrDyPOu0QdMbF/96l/m8tK3CgpciOlsw7jz1OX7B043HLKcZEk+v7KE7WCePAA4q6ajrhbboBYXAz7tdej9Ief4Jo0OdSlEZ2Wa9JkOCdNgXRgP8xPzwl1OaeI1tVigbbrZayrLeZcAuqbtrqLW/hkxGYiPTajVbfdXL43Y03psQmFuvMOfcNinQ4ZkqLxL07SVFID813rPbZmm5hQLHTkYzT5hsW2bc9lVo4REIDMnPqfc61WxJDRFigKsPobNbwkJPvmxzYeLp2OwH1J6xsWC8C/sNG+XdXQCOrtm80iJKU24CWmqN8PGWVBdg8jfn9bFyQmqD1qLd1qQhAEJKXo4HErKDriwcovSlBY4ER+8sBTjt29wxYwLxI4/bBYAMjLj8W9c7pj4HA1WBWdFC4P1ISZ7O5GjKhZeGf1ilK151JRey47pag9ipvWVcLllNEly+D/IEAUBUy6OAmAun8qAP/QzqYsOFM3FGd3N8FgFHG80AVZVgLD5UkBbsfm2vmWDfE912XFp84JBWoWZQKQlmGo3QN2nXoOsqz23hpNIlLT1D0/j9eE3t07bPhtnXpMZYmCH74sC1jYaPd2Gzb+XAFbSc3q03U+JNhXMyQ2u4cRV9+Uhr893g2/vy1d3RZHK+DgXjveWXgETz+wD4vfOgpblQd7dqq/k9PThDP6x+JvT3Q77XlHgvBdt56oPVVXwzRvLkwvPAvB4YAnpxuqnp4H98j2/WSfqDWqHp0D7fffwfj8M3BeeDE8ffuHuiQ/f89lFIbLYOzh6RtK2dohpKO7jIOseBs/sB3E6S04J3sSLPr4UJdSr9p5h15/z6XTIUNUNM1azAcIHArb1GGxoVjoyMdkridclrduziWg9m7dcnemv5epPiPOtKKwwIltW9wQBCAhsfFhwr5wCai9oiUn3DAYRX9IPllyJx2siVocPujEZ/9zQTNMgduprgIMAAaTCHNN721unxjk9lHf3Gv21S4W01JJqVoUHHBg50oTxOPp8FR1g3hW4GPq9Sp4/42jcDpk9Mwzw2Dw7RF5+p5LIHDI8ck9l/trhmFmdTOiUxc9vrJq/KvLiiYNTGYvUpNjIIi1e5oOGhHYa9YlywC9QURhgRNer+LfOqZJ4bLm/41GKyDWIiE1TY8De+woOeFGUooOWlGLE8XVePX9o5h+aQx6nmGGx6PgeKELsRap3v0zfbQ6ETFxEspL3fB6FX8gdjpkSBp1USZAbYNGk4ikVB0KDzlxvNAJvUGEx60gNU2P3D5mHDtSjK0bqpCUqsMni4pwqFoDQycXDm4DivYVIyVNh159YnBwrx1vvXIEAHDYXIkhl3gRr68z37JmZeSu3U0QRQGiTq1JoxGRnm3A/l12/5zTTT9XQpIEVFWqz7Fv2LBeH/n9fpF/BkStoSjQfbwUCaOHwPzUEwAA211/Qem3qxksKeLI6Rmw3fcgBK8XsbffCrjdjf9SO6kNYFEYLv29sm33J9V3W60NrMmmZKSam78QSbB0MncO2OYjnJhMvqGhsr/XzOWQIaD5w2LrDv9u7AMC3+I/oVjoyMffa1tnQZ/aXrPW9UOkdtYHLOxyMr1BxJU3pGHm7VkYcWY89DXBSmxCzyUA9B8Si+tmp+PqG9MaPF4UBVx7axckJGmxb6sHxwpd8Dpqg2VWjrHeIdO+4bBNGcLaEF9AOvCbC2n2gXAXW/w9cz77d9vhsMtQlMCeuKY+B8k14bJuz6UsKzi0zw6dXkSnLnpIkoAzJyX4rxcVdbsUk8GAxJqhyPEJmlNWKRVFdfsXj1sNfceOOKHRCkhMbvwx8YVi3z6p9W0/c3CfA/YyDVZ+UQIAKC91Q1HUFYMbY03UQpbV7T8AtVd17oP7sODpQyguciM+UQOTWVL3gB2iDv/dsK6yzqrEWv9w3S3rK7F3ZzVKi93Qe2NwrNCF8hNqm9j0cyUA+HsZAUDjNcJW6fX3anu9Cg7us0Onrx1aXVd2N/V1T28QMfPOdGi0ArZuqMLenXYYTSKyuoXn62JLMFxShyVt2wrL9AthmXktpIJDcE65ECU/rEP1X+4FDOE5bIuoMY4ZM9W9L7duhmne3FCX4+cPYNEYLoOwzUpbryBKjTOaaxa1qfb69+Bz+HsumzsstjYYNbrPpdA2vdStUffc7dVe/LbN5n/D3tKtSJorO8eMpJTaN+Wnm6tad/hr915mpGcZkJZx+r/b1kQthoy2QFJ0cNgUyHYDzDESbr83G9N/X/8HML520JotewIWMqp5ifjxm9KAfQ/rhs2SE264XHLN/pseQGh8GxxfgD1xrPYDxfJSD9wuBalptfNdBwyzYNrvOkHSCOiZo84DtOji/XNjh4+z1js31jeseNvGSjjsMlI665q0wJXvQxnfhwG+3s7CAid2bbfBLMWhpEDd6qVgvwPHjzr9+2z65t6ejm+ObVmJGxXlHrw9/wgcdtnfu9o5vbZN9Bus7gG76ecKfw9vQpIWicnqFjTFx934+H/q3Eu9HIeC/XZIsvq4/rbVBofdiwN71Z7J7r1N0MgGVNu80NW0jcMHHXC7FGTmGOt9DPsNjkN6tgHTr+2EjGwjevUxw+WU4fUqyO1jrvd3IhWHxVKHIx48APMTj0D//nsQFAWe3F6oevgJuMeND3VpRK0niqiaOw/WM0fC9PQcOCdfAG+v3qGuqnZeYhR+phmMOZddYrrAI7th0kTucvSRxj80tKrOsFinDI2iadWCPo0Ndw3marFNZfT32nrx/Zcl+HFFGQB1OKPe0I7b1QgauBU1XJzu8dDq1GGGbpfcpFVLfWItGojQIMcxFs4qF0wp0mm3mPGtCNrQnpRNUXdoZ/dcE8rLPDh80IljR1zo1EUPWVawY3PtHoylxW68+dJhVJR5UFnhgTlGajR46PQiLFYNSkvccLtkaHViQO9cXX0HxarhSNcVDtmGWF0cxp3rRGpnPQaPiqvv5v3hcvW3ZQCAzK5N62VLyzAAAvy9cqmd1cfxx29K8cNXpUjN6I20Y9n+D+jWr6nwB8amhEtf7+lv22wo/rYMleUe9MwzY/cOG2QvkJZe+7zFxWuQ09OEPTur8XPNtiQJNb8/cUoi3nu9EOWlHhjNIoxiCoqdKbC4MqE3iHA6ZGz5tQoF+x3QG0Tk5pnxy24D7Lbankv/kNgegduU+CQkaXHDnbXz3PsPicOW9Y3PLY1E0fdXnqgBQlERzPfejYQRA2FY9C6UxERUPfIESr9ZxWBJUcWb0x22v94HweVC7J23At5wmHMXvT2XwQiX/ZLzcUG3i0M6VLKjMRhF6PQCykrc/t5Gh90LEZpmL2pTNxg1vs+lr/2E7rmWJDVEVtu8OLDX4b/c41ba9f9sc+aqXjc7HX/4U2az6vM9j46jcdDJMY3uXdonqS8Gpg5GijGlyfdxMmuSFjVPMbr2NPkXl9n0izrUsrDAicpyjz9AFhY4cGifA+WlHsjepg9LTk7VAQpQXNPzV3KipncuuZ59Gk0StBrJv8JqSic9xp6TAI2m/tcwX7hU2wMwdEx8k2rq1EWP//tnVwwfpx6f3FkH1Ox3CQDHDnkgQYuhYywQRGDjz5UoLvLV3Xi4HDjcAp1ewOpvy/DbVhusSVpcOqMTxk9KhCCqPYx19R+qDo319Wz6Amz33mb84U8ZyO1jxqSLk5HTLRZZttGId2di4pREAMCXH5+Ax60gM0fdnsbojYfDJiCpZu9c/2I+3ZsWvHNyTbBYNTCaReT0rD+QRiqGS4p6QmkJTE88goSh/WFa8DIUnR62//sbSn7aCPsfbgG0LR/uQhSu7DfdCvfAQdD++guMr7wY6nKCsuhNuIjmXtmORBAEJKbo4HIqsFfVLA5iEyBAaHCLi4YEbEXSyLBYX6gM9QcJphgJLqcCh73mwyhBnc/YnnyPlSAIjb5WSJIAjaZ5wdcX1Hwrg/q2YGmIRR+PPkl9WxWwJUnwh5iuPYzoOzAWEIDNv1TW9FqqvVf9BquP9W9bqwN+v6lbwfj2SHztuQJ8/cmJ2p7LxNa/x4mL1/iHR/fuH9OkXkUfc4zGP4RWrxfVECzAHzgBNSRmdTOiusrr78Vtyn3ExWtw5qREoGaE8eRLkqHVihhzdgLundMtYFgsAPTqGxMw/zexTvBO6aTHlTekof+QOH9Pq8ksYfAoC3rmmf0rE2d3NyE+QQudHIO86gtxRmIePB4Zh/apvZpN2aIFUNvFzDsycOOfMqHVRdffDg6LpaglHD8O0ysvwPDaAoi2Kig6HapvvAXVd/4flKSkUJdHFFyShMpnXoR14miYH/8nXGedA2/P3JCVE81bkQRjziWFRlKKuqJkRbH6RtJRJUAQ1DexzdGcYbG1cy5DHC5NIkqh9nxpdQL+8mhOu88DC/YQYd+WHm6XmkZM5vZ5Uz9hShIKCxzo1EUPURTQtbsR+3bZcWCP3R+mRpwZj/VrK+ByBm6v0tRe8wHD41B42ImDe+xY/W0ZuvZQA1JTegCbomsPEzb/UolRE6ytup3LZnRGtc3rD3C2Ki9S03To2sOE/bvs/rm+1iYG2GFj43Fonx1x8Vr0OKN2GkF9vbA6nYi8ATFYv6aiZnXh+p//br1MECWgZ5666usFl6fgxccPwF4tI7u7ERar+pxUlKjP1a5t1fC4FeT0NDXr/0xzX1ciRXSeFXVo4pHDML7wLIxv/huCwwFFr4d9xkxUz/4j5IzMUJdH1G68vXrDdvc9iHnkQcTe+geULf8K0LV8Sf3WqA1g0fUJLVAbJKLx3Doa3xyu8hMKZKsCp01ArEXT7B4yQA1IXsXb6EI9sTq1xypGG9p5V76tWKCoC6U0NEQymHz7iwYrXGp1IgwmEY5qNRSYY9rnbfAZ/WMCVmHtNzgW+3bZ8fnSEyg66kJKZx1SOusRa5FQWa72HKd01qlbcjRxWGxKJz1m3JaOt145jN3bq7F3pzoH0NoGPZcAMHl6MsacleDvIW2pur8/aWqy//uu3Y1YUfO9KUbyb8fSGEkScPn1Da8UfLL8IXFYv6YCicnaBj8QTEzWYdbfsv1zrWPjNLj6pi44fNCBtAw9BEHwb4NSUe7BspqFgAaOqH/OakfDv4QUNTQb1yP21j8gYUg/mBa8DIgiqm+ehZJ1m1A1Zy6DJXVI9ll3wj1sBLSbNsD05OMhqyOqey5rzo3DYiOfb/GV8hOAwy5DVHQBK5M2h+9Dh8aGxVoNCbik56Xol5zfovtpK3XnH/p6Ztqb77EK5hDhuDo9ge3Vc3myvoNikZSixdHD6vDcXn3V4Fk3CE6/thMGjYjDgGHNCyy+xXa8XgUGk9jovNKmMhikVgfL00nLNEBbsy9kc4bdNldmjgHnX5qCSZckn/a4hCRtwBDa9CwDho2J97/ex1vVbVD+91ohbFVeDBoRh159omthnpbiX0KKbB4PdB9/iPgLzoX17HEwvP8eFLMZtjv/jOJftsL20KOQO3UOdZVEoSNJqHj+FcgxsTA99zQ0a9eEpIxonnNZuydl9AXnjiaxJlyWFSnorRuGTva+zZ5v6eNr603phYvRxoR8WHVYhMt2GCJctyewsTmXwaLRiLjgilT/z736qsM5feHSYtUgpbMeF1ye2uyex4yutfMM22K+ZXvRaARk5dQM5Q1iuBQEAYNHWZCR3bp9JS01HzoVHHDAHCvh3KmnD6sdCYfFUkQSjxbC8M5bMLz1BqRDBwEAnu49YP/DLXBcdiVg5vL9RD5yVjaqHp2DuNtvQdxtN6J0xQ9QYtt3+I4YxftcBmO1WAoN37DYE8ddyHNmwuw93upwGcpVYJvDWCdcxltDE0p8w2Ib6+1tjbr7drZVr15LZOUYcc5FSSgrcaNzzZYZvlDVOaPlW590yTJAFNUVWYMZ0oIhJ9eE3TuqA/cGDVN1XxcGDIuDLsoW5WkNhkuKHF4vdF9/AcNbb0D35ecQarZXcI0bD/vNt8E1/iz41/smogDOy6+C8/NPof/kI5j//ldUPRuaFWSjelgsw2XE0+lFxMVrUFbi8W9I39Jhsb6hncEMSm3JVGdxk1D1XPp6LIMZyGMDhsWGNviPHB+4OE5GzZDW7rkt/4BcpxPRKV2PIwedTV4UJ1wMGW2BJAntvkpxS9R9XRg43BLCSsJPZLziUYcmbd8Gw+JF0C96F9KRwwAAOSkJ9suvhuOaa+Ht1iPEFRJFAEFA5ZPPQvPzTzC+8xZcZ50L1wUXtdvdR3Pvnn9BnygMzh1RUooWFWUe7P1N3RKipT2X4bIKbFPVHSJqaeE5t5YmyAv6AIHDYs0hGhbbkJyeJtxxX3aLP9DwyepmxJGDzqDOkQwGrVbEsLHxoS6jSXzbmHTLNUVcD3GwMVxSWBIPHoB+6QcwfLAImu1b/Ze7xo2H/drr4Dp3cshWvSSKVEpiIiqffRHxV1yC2D/OQmm//pCzstvlvv2rxUZhAPOdUTQG544oKVWHvb/ZUVigLrbS6mGxETKixmiqOyw2VD2XvmGxHaPnsj5tsbrr2LMTkJisQ15++PcARqrs7kZMmZ6MnnmchnUyhksKG+L+fdB/9gn0yz6C9qfaRUc8Z/SB45JL4Zw6jSu+ErWSe8JZqJ51J0zPP4O4m65D2Ueft8sHNbVDR6MvXHIrkugycIQF61aVQ5HRoj0ufXwLPfn2bgx3vqAliEBME7e/aGu+UBnUYbE156bVCVG3eb2P0SRh8EgO1QwmURQwZHR8qMsIS5HxikfRSZah2bgeus8+gf6z5dBs3+a/ypuZVRMop8Pb+4wQFkkUfWx/uw/aNT9C+/NPMD/yIGwPPtIO91oTKqM4XLLnMjp0StNj5HgrVn1d2uI9LoHaOZeRMizWWLMtR5xF06yN4NtSuwyLrVnQJxx7LYmiAcMltSuhqAi6lSugXfktdCu+hnS00H+dJ7cXXJOmwDlpMjwDB0flm1CisKDVouKV12CdOBqml+bBPWo0XOecF9S79G9FEpU7YEXvkN+O6sxzE3DsiBPpWYbGD26A5NuKJIhDPNtSbJwGObmmVp1za9UOiw3marEadE7Xo0tm6M6TKJoxXFJQCZUV0KxbC91330L33Qpotm3xX6eIIlzDR/oDpZzTLYSVEnUsckYmKp99CZbfX4nY2Tej9JtVkLukB+3+BG5FQhFEqxNxzU1dWnUbtftcRsZbLVEUcO0trTvn1mqPnktRFHDjXRlR+VpEFA4i4xWvFW6//XasXr0ao0ePxty5c0NdTnRTFIgH9kO7bq369dNaSNu3QlAU/yHe7K5wjZsA19gz4R49Boo1IYQFE3VsrvOmoPrGW2Ca/xLibrwOZUuXA9rgrHrn77mMwgDGcEn10Yjq/yVthGxFEg7aY84lEJ0fchGFi6h/xbv66qtx8cUX4+OPPw51KdFFUSDu3wfNls3QbNkIzeZN0G7cALHoeMBh3i7pcA8ZCveYM+Eae2a7rUxJRE1ju+8haH9aA+26tTA/cC9sj8wJyv1E83YdtcE5+s6NWq5/cj46mTsj3mBt/GACAMTq1EVo4vRxIa6EiFoq6sPlsGHDsHbt2lCXEbm8XoiHDkKzZxekXb9B2r0b0m87oNm6BWJlRcChiiTBnT8A7iHD4Bk6HO7BQ4M6zI6I2oBej4pX34T17LEwLXgZngGD4Jx+eZvfTe1qsdHXu8fVYqk+VkMCrAaOzmmOFFMKLs29AkaNMdSlEFELhXW4XLduHV599VVs2bIFRUVFePnllzF+/PiAY95++228+uqrKCoqQu/evfH3v/8d/fr1C1HFEcjhgHiiCOLhw5AOH4JYUACp4CDEwwWQDh2EtG8vBKfzlF9TTCa4Bw2Bp28/ePr2V//N7Q0Y+QeBKNLIGZmoeOV1WC6fiti7boen1xnw9unbpvcRzftc+ofFRuViRUTti8GSKLKFdbisrq5Gbm4uLrnkEsyePfuU65cvX47HHnsMDz74IPr374833ngDN9xwAz777DMkJLT9p4WiGF5viqTjx4DtG6ArrYTi9gBuN+DxQPC4gepqCFU2CFWVEGxVEKqqIFRVQiwuhlB8AuKJExCKiiBWVZ72PuTERHjyB8DbvSe83XvA20P9V+6aA0iBcyL4tiq6+Np7uLV7Cg7v+Amo/vsDMD90PyzXX4Pyr76DEt92w/kyLZmodJcj0ZQIURSiqn2JogBBACRJjIrziRbR1MYo/LB9UTBFcvsK63A5btw4jBs3rsHrX3/9dVx++eWYNm0aAODBBx/Et99+iyVLlmDmzJltWotGIyIxMaZNb7NVHA5gcD+guhqxLb0NiwXo0QNITgYyMoDMTPUrK8v/vWi1QgQQnCU+KBJYreZQl0Dt5YG/A1s3QvrgAyTcfjPw8ceA2DYfGyUm9sHArn1OuTwa2leS3YIjLgNSEuORGBdGfycIQHS0MQpfbF8UTJHYvsI6XJ6Oy+XC1q1bccstt/gvE0URI0eOxIYNG9r8/jweGRUV9ja/3dYw3fEnGA/shVMRoIgSoNFA0WoBSQPFZIQSEwMlJhZKTAxgNkOJiYWckAglORlyQiKg15/+DmQAxVXtci4UfkRRgNVqRmmpDbKsNP4LFB2enAfLps3QLF+O6j//BfZ7/xGUu4mm9pWm6Qo5TgO9Kw7FfM0MG9HUxij8sH1RMIVr+4qLM0KrPf1qzhEbLktLS+H1epGUlBRweWJiIg4cOOD/+cYbb8SmTZtgt9sxduxYzJ8/H7169WrRfYbTkwsA1Xf9BcbEGFQVV7WstjA7HwpPsqyEXdunIDLHoOKNdxA/aQJMc5+Ep0duUBb48YmG9mWUTOgRnwsogKxE9rlEo2hoYxS+2L4omCKxfUVsuGyIoigB+xfNnz8/hNUQEUUeb/ceqFjwb1iumo7YP86CN7srPIOHhrosIiIiCnMRuwaL1WqFJEk4ceJEwOUlJSWn9GYSEVHzuMdPRNXDj0NwOmH5/VUQCw6FuiQiIiIKcxEbLnU6HfLy8vDjjz/6L5NlGatXr0Z+fn7oCiMiihKO62+E/fczIRYdh+V3VwBVnE9IREREDQvrYbE2mw0HDx70/1xQUIDt27cjKSkJycnJuO6663D33XcjLy8P/fr1wxtvvAGHw4GpU6eGsGoioighCKh6dA6kvbuh+/47xN12Iypef6vNVpAlIiKi6BLW4XLLli249tpr/T8//PDDAIBZs2Zh9uzZmDx5MkpKSvDcc8+hqKgIvXv3xsKFC4OyxyURUYek1aJi4RuInzQB+k+XwfzwA7Dd/1CoqyIiIqIwJCgKl7ZrCrfbi7Ky6lCXEUAUBSQmxqC4pavFEp0G2xfVJe3ehfjJEyGWlaHysSfhmHljq26P7YuCjW2Mgonti4IpXNtXfLyp0a1IOLaJiIga5e3eAxX/eReKXo+Ye/4PuuXLQl0SERERhRmGSyIiahL38JGoeHEBACDu5uuhWbc2xBURERFROGG4JCKiJnNdcDFsDz0KweGA5XeXQ9qzK9QlERERUZhguCQiomax33Qbqm+eBbGkBJbLp0E4fjzUJREREVEYYLgkIqJmsz3wMBwXXQLp4H5YrpoOoaI81CURERFRiDFcEhFR84kiKue9DNeoMdBu2oC4310B2O2hroqIiIhCiOGSiIhaxmBAxX/egTt/AHSrVyHuhmsBtzvUVREREVGIMFwSEVGLKbFxKH9nMTw9c6H/8nPEzr4J8HpDXRYRERGFAMMlERG1ipKYiPJFH8KbmQXD4vcR89c/A0r4bPpMRERE7YPhkoiIWk3unIay/y2FnJwC4xuvwvzwAwyYREREHQzDJRERtQk5pxvKFn0IOT4epnlzYfrXY6EuiYiIiNoRwyUREbUZ7xl5KH9vCeTYOJiffBymp54IdUlERETUThguiYioTXkGDEL5e4shx8TC/MQjMD3zZKhLIiIionbAcElERG3OM3goyt9dDNkcA/OjD8H43NOhLomIiIiCjOGSiIiCwjN0GMrf+QCKyYyYhx+A8flnQ10SERERBRHDJRERBY1n+AiUv/M+FJMJMQ/dB+OL80JdEhEREQUJwyUREQWVe8QolL+9CIrRiJgH7uUcTCIioijFcElEREHnHjUG5f99H4rJrM7BfORB7oNJREQUZRguiYioXbhHjUHZ+x9CjrPANPdJ4I9/ZMAkIiKKIgyXRETUbjyDh6J8yTLIiYnAs8/C/KfbAa831GURERFRG2C4JCKiduXp2x8VH30GdO4Mw5v/RuysmwCPJ9RlERERUSsxXBIRUbvz5vYCVq6ENz0Dhg/+h7gbfg84HKEui4iIiFqB4ZKIiEKje3dULPscnq450C//GJYrp0GoKA91VURERNRCDJdERBQycnoGyj7+Au5++dCt+h7xF02GeOxoqMsiIiKiFmC4JCKikFJSUlC+ZBlcY86EZutmxE85B+LePaEui4iIiJqJ4ZKIiEJOiY1D+X8XwXHRJZAO7of1/LOh2bg+1GURERFRMzBcEhFReNDrUfnKa6i+4SaIJ07AcvEUaL9bEeqqiIiIqIkYLomIKHyIImyPzIHtnvsh2qpguXIa9O+8FeqqiIiIqAkYLomIKLwIAqrv/DMqnn0RABB3x60wPfYQIMshLoyIiIhOh+GSiIjCkvPKa1D+7mLIcRaY5z6J2Ftmci9MIiKiMMZwSUREYcs99kyUffIlvJlZMCz5APHTLoBQXBzqsoiIiKgeDJdERBTWvLm9ULr8a7gHDoJ23VpYz5sAac+uUJdFREREJ2G4JCKisKekpKBs8Sdwnn8RpP37EH/eRGhXfR/qsoiIiKgOhksiIooMJhMqFr6B6ll3Qiwrg+XSi2B4bQGgKKGujIiIiMBwSUREkUQUYbv/IXUlWVFE7F/vQsyf7wBcrlBXRkRE1OExXBIRUcRxXnkNypZ8Am9KKoxv/hvxl5wP4fjxUJdFRETUoTFcEhFRRPIMGYayL7+De8BAaH9aA+s546DZuD7UZREREXVYDJdERBSx5M5pKPvwMzguvQLSkcOIv+Bc6BcvCnVZREREHRLDJRERRTaDAZXPv4KqBx4BXC7E3TwT5vv+Brjdoa6MiIioQ2G4JCKiyCcIsN86G+X/fR+y1QrTKy8gfuoUiEcLQ10ZERFRh8FwSUREUcM94SyUfvU93PkD1HmYE0ZzP0wiIqJ2wnBJRERRRc7IRNnHX8D++5kQTxTBMv1CGJ9/lvthEhERBRnDJRERRR+9HlX/mouKeS8DOh1iHroPcTOuhlBRHurKiIiIohbDJRERRS3n5VehdPnX8HTNgf7TZbCeNRaaDb+GuiwiIqKoxHBJRERRzZvXB2Vffgfn5Asg7d+H+Clnw/jy8xwmS0RE1MYYLomIKOopcRZUvP4WKh97EhAExNx/D+KuuQxCcXGoSyMiIooaDJdERNQxCAIcM29E6affwNO9B/Rffg7r+JFcTZaIiKiNMFwSEVGH4u3bD6VffAfHFVdDOloIyyXnw/TEI4DHE+rSiIiIIhrDJRERdTwxMah87iVUvDAfiskM81NPwHLJ+RALDoW6MiIioojFcElERB2W89IrUPb1Srj75UO35kdYzxwJ/fvvcbEfIiKiFmC4JCKiDs2b0x1ln3yJ6ll3QqisQNytf0DsjddBKC0JdWlEREQRheGSiIhIr4ft/odQvuQTeNMzYPhwMazjRkD77TehroyIiChiMFwSERHVcI8cjdJvf4Tj8qsgHS1E/GUXw3zP/wHV1aEujYiIKOwxXBIREdWhxFlQOe9llL/6JuSEBJgWvgLr2WOh2bg+1KURERGFNYZLIiKierguuAil362Bc+LZ0Oz6DfGTJsD02EOA0xnq0oiIiMISwyUREVED5NROqPjv+6icMxeKwQjz3CfVXsz1v4S6NCIiorDDcElERHQ6ggDHjJkoXbkGrrHjodmxHfHnTYT5n/8AHI5QV0dERBQ2GC6JiIiaQM7IRPmipah86jkoJjNM8+bCOnE0ND//FOrSiIiIwgLDJRERUVMJAhy/m6H2Yo6fqM7FPP8cmP9xL1eUJSKiDo/hkoiIqJnk9AyUv7sYlc+8AMUcA9NL85Awdji033wV6tKIiIhChuGSiIioJQQBjqt+h9Lv18J53vmQDu5H/BWXIPbm6yEcPx7q6oiIiNodwyUREVEryGldUPHGf1H++tvwdk6DYfH7SBg9GIa33gBkOdTlERERtRuGSyIiojbgmnIBSn/4CfaZN0IoL0fsn2bDcvFkSL/tDHVpRERE7YLhkoiIqI0osXGoeuxJlH36NTx5faFb8yOs40fC9MQj3LaEiIiiHsMlERFRG/MMHIzSL75F1f3/BDQamJ96Agljh0H35WehLo2IiChoGC6JiIiCQauFfdYdKFm5Fs6zz4W0fx8sV1+GuN9dDnH/vlBXR0RE1OYYLomIiIJIzspGxduLUP7We/BmZUP/+adIGDMUpjmPAnZ7qMsjIiJqMwyXRERE7cB1znko+f4n2O6+BxAEmJ98HAljhkH32XJAUUJdHhERUasxXBIREbUXgwHVf/4rSr7/Cc5JUyAd3A/LtVcg7upLIe3dHerqiIiIWoXhkoiIqJ3JWdmo+M87KH/nfXi65kD/1RewjhkG8/33QCgvC3V5RERELcJwSUREFCKuieeg9Ls1qLr3H1B0ephefh4Jw/JheHU+4PGEujwiIqJmYbgkIiIKJYMB9jvuQsma9bBf83sIpaWI/dufYT1zBHRffxHq6oiIiJqM4ZKIiCgMKKmpqHp6Hkq//gGuMeOg+W0nLFdOh+XyqZB2bA91eURERI1iuCQiIgoj3j59Uf7+Ryj/z7vw5HSDbsXXsJ45AjH/90cIRUWhLo+IiKhBDJdEREThRhDgmjQZpSvXouqfj0GJjYPxjVeRMLQ/TP96DEJVZagrJCIiOgXDJRERUbjS6WC/6TaUrF2P6htvgeBywvyvx5AwNB+GV18BXK5QV0hEROTHcElERBTmlIRE2B5+AiWrf4Xj0isgFJ9A7N/+DwmjBkO/5H1AlkNdIhEREcMlERFRpJAzs1D5wnyUfrMKzrPOgXRgP+Juuh7xZ4+D9ttvQl0eERF1cAyXREREEcab1wcV/30fZUs+gXvgIGg3b0T8ZRfDMu1CaH79OdTlERFRB8VwSUREFKHco8ag7NNvUP7aW/B06w7d99/COmkC4q65DJpNG0JdHhERdTAMl0RERJFMEOA6/0KUfv8TKuc+D29GJvRffAbrWWMRN+NqSFu3hLpCIiLqIBguiYiIooFGA8fV16Jk9a+onDMX3s5p0C//GAnjRyL2DzMg/bYz1BUSEVGUY7gkIiKKJjodHDNmomTtBlQ+OgfelFQYPlwM69hhiL31D5D27g51hUREFKUYLomIiKKRwQDHDTej5KeNqHrgESgJCTC8/x6so4Yg9rYb2ZNJRERtjuGSiIgomplMsN86G8U/bULV3x+EYrHAsOhdWMcMRewNv4e0eVOoKyQioijBcElERNQRxMTAfvsfUfzzFlQ98Ajk5BQYPlqChImj1dVlf1kX6gqJiCjCMVwSERF1JDExsN86GyXrNqHysSfh7ZKuri573kRYpl8E7Y8/AIoS6iqJiCgCMVwSERF1REYjHDNvVBf+eeYFeLO7QrdyBeIvnoz4CydB+82XDJlERNQsDJdEREQdmU4Hx1W/Q8mPv6DipYXw5PaCdu1qxF8xDdbxo6Bf9C7gdoe6SiIiigAMl0RERARoNHBOuwyl361B+WtvwT1gIDTbtiDuthuRMLQ/jC8/D6GqMtRVEhFRGGO4JCIiolqiCNf5F6LssxUoW7oczrPOgXS4ADH334OEAXkwP/wAxGNHQ10lERGFIYZLIiIiOpUgwD1yNCr++z5KVq6F44qrIVTbYHruaSQM6oOYP86CtOu3UFdJRERhhOGSiIiITsvbqzcqn3sJJT9vRvVtd0DR6WF8+z9IGDUYcddcBu13K7j4DxERRX+4vP322zFkyBD88Y9/DHUpREREEU3unAbbP/6Jkg3bUHXfQ/B26gz9F58h/tKLYB03HIY3/w1UV4e6TCIiCpGoD5dXX301nnjiiVCXQUREFDWUOAvss+9Eyc+bUfHSQrgHDoJmx3bE3nU7Egf0VudlHjkc6jKJiKidRX24HDZsGMxmc6jLICIiij46HZzTLkPZZytQuvwrOKZOg1BR4Z+XGfuHGdCsW8shs0REHURIw+W6detw8803Y/To0cjNzcWKFStOOebtt9/GhAkT0LdvX1x22WXYtGlTCColIiKi0/EMHorKV15HyS9bUH3HXVAsFhg+XAzrlLMRP2m8ul+m0xnqMomIKIhCGi6rq6uRm5uL+++/v97rly9fjsceewy33XYblixZgtzcXNxwww0oKSnxH3PRRRfV++X1etvrNIiIiKiGnNYFtnv/geL121H59Dx4ep8B7fpfEXfbjeqQ2X/+A+KB/aEuk4iIgkATyjsfN24cxo0b1+D1r7/+Oi6//HJMmzYNAPDggw/i22+/xZIlSzBz5kwAwIcfftgutQKAKArtdl9N4asn3Oqi6MD2RcHE9tUBmE1wXTsDrt/9HprvV8Lw2nzoPv0EpnlzYXz+Gbgnng3HjJlwn30uIEltfvdsYxRMbF8UTJHcvkIaLk/H5XJh69atuOWWW/yXiaKIkSNHYsOGDe1ej0YjIjExpt3vtymsVs4ppeBh+6JgYvvqIKZOUb8OHwYWLICwYAF0X30B3VdfAFlZwI03AjNnAqmpbX7XbGMUTGxfFEyR2L7CNlyWlpbC6/UiKSkp4PLExEQcOHCgybdz4403YtOmTbDb7Rg7dizmz5+PXr16Nbsej0dGRYW92b8XTKIowGo1o7TUBlnmYgnUtti+KJjYvjoogwWY/Wfg5jug+3w59K+/Ct13K4B774XywANwTbkQjutugGfkKEBo3Sf2bGMUTGxfFEzh2r7i4ozQak8/0iRsw2VDFEWB0Iw/OPPnz2+z+w6nJ7cuWVbCtjaKfGxfFExsXx2UpIFj8oVwTL4Q0p5dMPz7NRjeexv6pR9Av/QDeLr3gOOqa+G47EooKSmtuiu2MQomti8KpkhsX2G7FYnVaoUkSThx4kTA5SUlJaf0ZhIREVFk8nbrAds/H0Pxxp2oeO4luAcNhmb3LsQ8dB8S83shbsbV0H35GeDxhLpUIiJqRNiGS51Oh7y8PPz444/+y2RZxurVq5Gfnx+6woiIiKjtGY1wXnE1yj79BiXfrUH1TbdCiYuDfvnHsFx9GRIG9YHpsYcg7t8X6kqJiKgBIQ2XNpsN27dvx/bt2wEABQUF2L59O4qKigAA1113Hd59910sWbIEe/bswQMPPACHw4GpU6eGsmwiIiIKIm/vM2D75+Nqb+aCf8N15gSIRwthnvskEof2h2XaBdAvXgQ4HKEulYiI6gjpnMstW7bg2muv9f/88MMPAwBmzZqF2bNnY/LkySgpKcFzzz2HoqIi9O7dGwsXLkRCQkKoSiYiIqL2otfDedElcF50CcRDB2F45y0Y3n0buu+/g+777yBb4uG86BI4LrsSniFDW70IEBERtY6gKEpkzRINEbfbi7Ky6lCXEUAUBSQmxqC4uCriJvtS+GP7omBi+6IW83qh/W4FDP99E/rPPoHgcqkXZ3eF47Ir4Zh+OeTsrmxjFFRsXxRM4dq+4uNNja4WG7ZzLomIiIhOIUlwTzgLlQvfQPGWXaj81zNwDxkGaf8+mOc8qg6bvXAS9G/+GygvD3W1REQdCsMlERERRSQl3grH769H2SdfomTNr7Dd9Rd4M7OgW/MjYv44G0hNRcwNM6D76nOuNktE1A4YLomIiCjieXO6o/ov96Lkp40o++gzOK75PaDXQ7/0A1iuuhSJ/XIR89e7oFm7BpDlUJdLRBSVGC6JiIgoeogi3MNHwvbM88DRo6hc8G84J54NobQExtcWwHrBOUgY3BfmB++DZvNGgEtPEBG1GYZLIiIiik5GI1xTp6HinQ9QvHkXKp94Gq4RoyAVHILphWdhnTgG1lGDYZrzKKTdu0JdLRFRxONqsU3E1WKpo2H7omBi+6JgO10bE48chn7pYuiXvA/txvX+y919+8N58TQ4p06DnJ7R3iVTBOFrGAVTuLavpqwWy3DZRAyX1NGwfVEwsX1RsDW1jUl7d0O/5APol7wPzW87/Ze7Bw2Gc8pFcJ5/IeTsru1RMkUQvoZRMIVr+2K4bEMMl9TRsH1RMLF9UbA1u40pCqRtW2FY8j70SxdDOrjff5W7b3+4LrgIzvMvgrd7j+AVTRGDr2EUTOHavhgu2xDDJXU0bF8UTGxfFGytamOKAs2WTdAt+xD6jz+Eps58TE/vM+CcciGcF1wMb6/egCC0ceUUCfgaRsEUru2L4bINMVxSR8P2RcHE9kXB1mZtTFEg7dwB/cdLoV/2ETTbt/qv8nTrDtf56tBZT798Bs0OhK9hFEzh2r4YLtsQwyV1NGxfFExsXxRswWpj0p5d0C37CPplHwUsBuRN6wLXuefBee5kuEeNAfT6NrtPCj98DaNgCtf2xXDZhhguqaNh+6JgYvuiYGuPNiYe2A/9Jx9D/8lH0Pz8E4Sat1RyTCxcE86C69zz4DrrHCjWhKDcP4UOX8MomMK1fTFctiGGS+po2L4omNi+KNjau40JRUXQffU59J8th+67byBUq+8ZFEmCe/hItVdz0hSuPBsl+BpGwRSu7Yvhsg0xXFJHw/ZFwcT2RcEW0jZmt0P3/bfQff4p9J8th1h03H+Vp1dvuM45D86zzoVn8BBAo2nf2qhN8DWMgilc2xfDZRtiuKSOhu2Lgonti4ItbNqYLEOz/he1R/Pz5dDs2F57lSUerjMnwDXxbLgmnA0lJSV0dVKzhE37oqgUru2L4bINMVxSR8P2RcHE9kXBFq5tTNy3F/qvPofu6y+hXfU9BKfTf527/wA1aE48G56BgwHp9G/iKHTCtX1RdAjX9sVw2YYYLqmjYfuiYGL7omCLiDZWXQ3dqpXQffUFdF9/CengAf9VstUK1/iJcE08B67xZ0FJSgphoXSyiGhfFLHCtX01JVxyoD8RERFRKJhMcJ09Ca6zJ6n7ae7e5Q+a2tU/wLD4fRgWvw8AcPftD/fYM+EaNx7uYSMAozHExRMRnYrhkoiIiCjUBAHeHj1h79ET9ltmAVVV0P2wErovP4fuu2+g3bwR2s0bYXrhWSgGA9xDR6hB88zx8OT1BUQx1GdARMRwSURERBR2YmLgmjQZrkmTAUWBuG8vdN+tgO67FdD+sBK6lSugW7kC+CcgJyXBNWYc3OMmwDVuPOQu6aGunog6KIZLIiIionAmCJBzusGR0w2O624APB5oNq5Xg+Z3K6BdtxaGJR/AsOQDAICnW3e4x4yDe9QYuEaOgZKcHOITIKKOguGSiIiIKJJoNPAMGgLPoCHAn+5Wh9Cu/gHamp5Nzc4d0OzZDeO/XwUAeHJ7qUFz1Bi4R4zm4kBEFDQMl0RERESRLCbGvzCQDYB4tBDaVd9D++MP0K76Xg2bO3fA+NoCAICn9xlwjxwN18gxcI8cDSUxMbT1E1HUYLgkIiIiiiJyp85wTrsMzmmXAQDEI4fVoOkLm9u3QbN9G4yvzgcAeHrnwTVqNNzDR8IzdDjkTp1DWT4RRTCGSyIiIqIoJqd1gXP65XBOvxwAIB4u8IdN3Q8rodm+FZrtW4GFrwAAvJnZcA8bDvewEXAPGwFvj55cjZaImoThkoiIiKgDkbukw3npFXBeegUAQCw4BO3qVdCuXQPtujXQbN8G6eB+GBa9qx4fHw/30OFwD1XDpqd/PmAwhPAMiChcMVwSERERdWByekZA2BRKS6D9+Sc1bK5dDc36X6D/4jPov/gMAKDodPDkD1R7NgcPhXvgYCipqaE8BSIKEwyXREREROSnWBP8CwQBAJxOaDZugHbtamh/Wg3tT2v8Xz7ejEy4Bw6GZ9BguAcOgadff/ZuEnVADJdERERE1DC9Hp6hw+AZOgx23AnIMqRdv0H70xpoflkH7S/rIP22E4ZDB4EPFwMAFI0Gnj594Rk4GO5BQ+AZNBjert0AQQjtuRBRUDFcEhEREVHTiSK8ub3gze0F/G4GAECoKIdm/a/Q/vozNL/+DO0v66DdsB7aDev9W6DIVqvauzlgEDz5A+DpPwByaqcQnggRtTWGSyIiIiJqFSXOAve48XCPG19zgQLx4AE1bP6yDtpffoZm80bov/4S+q+/9P+eN7UTPP3z4emXD0//AfD0z+dWKEQRjOGSiIiIiNqWIEDOyoYzKxvOqdPVy5xOaLZuhmb9r9Bs2gDtxg2Qdm4PWCwIALwpqYGBM38AAydRhGC4JCIiIqLg0+vhGTgYnoGDay+z26HZtgWaDesDA+eXn0P/5ef+w7wpqfDm9YEnry88Nf96u/cANHwrSxRO+D+SiIiIiELDaIRn0BB4Bg2pvcwXODduqA2cO7ZBWvE1dCu+9h+m6PXw5PaGJ69PQPBU4q0hOBEiAhguiYiIiCic1Bc4HQ5oftsBaesWdWjttq3QbN0M7aYN0G7aEPDr3i7pNb2bNT2cvc6At2sOoNW273kQdUAMl0REREQU3gwGdQ5mv3w4fZcpCsTCI2rY3LpFDZ7btkDasxv6wwUB8zgVrRbe7j3g6amucuvJ7a2ueMvQSdSmGC6JiIiIKPIIAuS0LnCldYHr7Em1l1dXQ7NzOzQ1vZzSzh3Q7NwBzfZt0GzfFnAT/tCZ2wvenjWhs1dveLO7MnQStQDDJRERERFFD5NJ3UtzwKCAi4XiYnVo7Y7t0OzcDum3ndDs2F5/6NTp4O2aA2+3HvB26w5P9x7q9927Q0lIbM+zIYooDJdEREREFPWUxES4R4yCe8SogMuF4mI1bO7cEfCvpqbH82Sy1aquVJt3BgwZ2fB07Q5v9x7qEFu9vr1OhygsMVwSERERUYelJCbCPXI03CNHB1wulJZA2rMb0u5dkPbugWb3Lkh71O+1634C1v0Ec93bEUXIGZnw5nSDNysb3uwceLO7ql9Z2YDZDKJox3BJRERERHQSxZoAz+Ch8AweGniF1wtN4WFYjxfA9usmiLt3Qdq9Ww2eB/ZDOrC/3tuTk1P8QdMfOrNz4M3KhpKSAghC8E+KKMgYLomIiIiImkqSIGdmAQPy4Bg8CrKs1F5ns/kDprR/H6T9eyHt3wfxwH5Ihw5Cu+44tOvWnnKTismshs7MTMjpGfCmZ0JOT4e35nslORkQxXY8SaKWYbgkIiIiImoLZjO8Z+TBe0beqdd5vRAPF9QJnvtqg+f+fdBs3wrN9q313qyi18Ob1gVyeia86elqAM2oCaJd0iF3SQd0uiCfHFHjGC6JiIiIiIKtpsdTzsyCe8y4wOsURZ3jWXAI4qFDkAoOQiwoUH8uOATp8CFo9u0F9u2t96YVQYCSlAxv5zTInTpB7pQGuXNnyJ3T4O2k/it37gzFEs/htxRUDJdERERERKEkCFASEuFJSAT65dd/THU1pMMFatgsOASx4CCkgjo/Hy2Etug4sKnhu1GMRsipndQQ2rlzbQhNTgn4UqxWDsOlFmG4JCIiIiIKdyYTvD16wtujJ9z1XS/LEIqLIR09ArHwCMTCQvXfY0ch+X4+esQ/HPd0FI0GcmKSGjSTk08Kn4E/KwkJgIaRglRsCUREREREkU4UoSQnw5OcDPTt3/BxdjvEo4WQjhZCPFqohs6i4/4voahI/f5EEaRjR5t013KcBUpCAuSEBMjWBCjWBMiJieq/J32vJCZCtiYABkMbnTiFE4ZLIiIiIqKOwmiE3DUHctec0x8nyxBKSwOCp/pVBKHO92JpCYSSkib1iNalmExqKI2Lg1Lzr2yxQImLr/0+Ng6KxQLFYoEca6n9PiYWMJk4dDcMMVwSEREREVEgUYSSmAhvYiK8vXo3frzL5Q+aYmkJhOJi9d/SEognfS+UqseIRcchHC1scYmKyQzF7PuKgWIy1X5f93KzOfBYowmKQQ/oDVD0eih6A2Co+d5gBAw1l+l0XACpmRguiYiIiIiodXQ6yKmdgNRO8Db1dxQFsNkgVlZAKC+HUFEBsaIMQoXv53KIvu8ryyHWHCNUVkCw2SBU29Rjio4H7bQUgwFKTQiFwQhFrwM0WigaDaDVAJJG/V6jBTRSne81UDRS7bE1X4okqYHV/yUG/iyKgE4L3HQDkNA5aOcVLAyXRERERETU/gQBiImBHBMDdE5r+e243WrQtPm+qgL/ra6u/b6qCnA6IDicEJyOmu/VLzjVywSHU73c6fRfLpaVQnAda7tzb/ScHMD9j7Tf/bURhksiIiIiIopcWi0US7y6j2cwybIaQL0ewO0GPF4IHjfgUX8WvF7A46lzmUc91n+9B/B41R7bgC8ZQp2fBUlC7CUXAHJwTycYGC6JiIiIiIgaI4qA0QilzkVKgwe35m4EwBoDFFcF4daDi0ssERERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqwmKoiihLiISyLICr1cOdRmn0GoluN3eUJdBUYrti4KJ7YuCjW2Mgonti4IpHNuXJIkQReG0xzBcEhERERERUatxWCwRERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsNlmHv77bcxYcIE9O3bF5dddhk2bdp02uM//fRTTJo0CX379sUFF1yAlStXtlOlFIma07527dqF2bNnY8KECcjNzcVbb73VjpVSJGpO+/rf//6Hq666CkOGDMHQoUNx/fXXY/Pmze1YLUWi5rSxr776CtOmTcPgwYORn5+Piy66CEuXLm2/YiniNPc9mM/8+fORm5uLJ554IsgVUiRrTvtavHgxcnNzA7769u3bjtU2HcNlGFu+fDkee+wx3HbbbViyZAlyc3Nxww03oKSkpN7j169fj7vuugvTp0/H0qVLcdZZZ+HWW2/Fnj172rlyigTNbV92ux3p6em46667kJyc3M7VUqRpbvtau3YtpkyZgv/85z945513kJqaiuuvvx7Hjx9v58opUjS3jVksFtx0001477338NFHH2H69Om455578OOPP7Zz5RQJmtu+fLZu3Yp3330Xubm57VQpRaKWtK/4+Hj88MMP/q8VK1a0Y8XNoFDYmj59uvLQQw/5f/Z6vcro0aOVhQsX1nv8HXfcodx0000Bl1166aXKgw8+GNQ6KTI1t33VNX78eOXNN98MZnkU4VrTvhRFUTwejzJgwADlo48+ClaJFOFa28YURVEuvvhiZd68ecEojyJcS9pXdXW1ct555ykrV65UrrnmGuXxxx9vj1IpAjW3fX3wwQfK0KFD26u8VmHPZZhyuVzYunUrRo0a5b9MFEWMHDkSGzZsqPd3NmzYEHA8AIwePbrB46njakn7ImqqtmhfdrsdHo8HFoslSFVSJGttG1MUBatXr8a+ffswaNCgIFZKkail7evxxx/HsGHDMGbMmHaokiJVS9tXVVUVzjzzTIwbNw633nordu/e3Q7VNp8m1AVQ/UpLS+H1epGUlBRweWJiIg4cOFDv75w4cQKJiYmnHF9UVBS0OikytaR9ETVVW7Svp556Cp07d8bw4cODUSJFuJa2scrKSowdOxYulwuiKOLBBx/EiBEjgl0uRZiWtK8VK1ZgzZo1nMdLjWpJ+8rJycFjjz2Gnj17oqKiAq+99hquvPJKLFu2DKmpqe1RdpMxXEYYRVEgCEKD19d33emOJ6qrsfZF1BpNbV8LFizA8uXL8eabb0Kn07VDZRQtGmtjZrMZS5cuRXV1NVavXo1HH30UmZmZGDx4cDtWSZGqofZVUlKC++67Dy+88AKMRmMIKqNocLrXr/z8fOTn5/t/HjBgACZPnoxFixZh1qxZ7VRh0zBchimr1QpJknDixImAy0tKSk75pMMnKSnplOOLi4sbPJ46rpa0L6Kmak37evXVV/HKK6/g9ddfR8+ePYNZJkWwlrYxURSRlZUFAOjduzf27NmD+fPnM1xSgOa2r127dqGoqAhXXnml/zKv14t169bhrbfe4srXFKAt3oNptVr07t07LEebcc5lmNLpdMjLywtYxU6WZaxevTrgk4u68vPzsWrVqoDLfvzxxwaPp46rJe2LqKla2r4WLlyIF198EQsXLgzbJdYpPLTVa5iiKHC5XEGokCJZc9tX37598fHHH2Pp0qX+rz59+mDq1KlYvHhxO1ZOkaAtXr+8Xi927doVlqv3s+cyjF133XW4++67kZeXh379+uGNN96Aw+HA1KlTAQB33303UlNTcddddwEArr32WlxzzTV47bXXMG7cOCxfvhxbtmzBI488EsrToDDV3Pblcrn829q4XC4cO3YM27dvh8ViQVpaWsjOg8JTc9vXggUL8Oyzz+Kpp55Cly5d/HPFTSYTzGZzyM6Dwldz29j8+fNxxhlnICsrCy6XC99//z0+/PBDPPTQQ6E8DQpTzWlfJpPplJEWJpMJ8fHx6NGjRyjKpzDX3Nev559/Hvn5+cjKykJFRQVeffVVHDlyBNOnTw/ladSL4TKMTZ48GSUlJXjuuedQVFSE3r17Y+HChUhISAAAFBYWQhRrO58HDhyIp556Cs888wyefvppZGdn44UXXkC3bt1CdQoUxprbvo4fP46LL77Y//P8+fMxf/58TJ06FY8//nh7l09hrrnt65133oHb7cbtt98ecDuzZs3C7Nmz27V2igzNbWMOhwMPPfQQjh49CoPBgJycHPzrX//C5MmTQ3UKFMaa276ImqO57auiogL33XcfioqKYLFY0KdPH7z33nvIyckJ1Sk0SFAURQl1EURERERERBTZ+JELERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtZom1AUQERGFm3nz5uH5558/5fIRI0bg3//+d/sXREREFAEYLomIiOoRGxuLhQsXnnIZERER1Y/hkoiIqB6SJCE/P7/R4xwOBwwGQ/ALIiIiCnOcc0lERNREBQUFyM3NxUcffYS7774bgwcPxs033wwAKCsrw/3334+RI0eib9++uOKKK7Bx48aA36+oqMBdd92F/Px8jB49Gi+99BKeeOIJTJgwwX/MvHnzMGzYsFPuOzc3F2+99VbAZYsWLcKUKVPQp08fjB8/HgsWLAi4/q9//SsuueQSrFq1ChdccAHy8/Nx5ZVXYteuXQHHeb1evPLKKzj33HPRp08fjB07Fn/9618BAG+//TYGDBgAm80W8Dtr1qxBbm4uduzY0cxHkYiIohV7LomIiBrg8XgCflYUBQAwZ84cnH322Xj22WchiiJcLheuu+46VFRU4O6770ZCQgLeeecdzJgxA1988QWSk5MBAH/729/w008/4Z577kFSUhJee+01HDx4EBpN8/8cL1y4EHPnzsUNN9yAoUOHYuvWrXj22WdhNBpxzTXX+I8rLCzEnDlzcMstt0Cv12POnDm48847sWzZMgiCAAC4//778eGHH2LmzJkYOnQoysvL8dlnnwEALrjgAjzxxBP4/PPPcckll/hvd8mSJcjLy0OvXr2aXTsREUUnhksiIqJ6lJWVIS8vL+Cyhx9+GADQv39//OMf//BfvmjRIuzatQvLli1DdnY2AGDkyJGYNGkSXnvtNfzlL3/Brl278NVXX2Hu3LmYPHkyAGDYsGEYP348YmJimlVbVVUVXnjhBdxyyy2YNWsWAGDUqFGw2+146aWXcOWVV0KSJABAeXk53nnnHX9diqLgtttuw969e9GtWzfs2bMH77//Pu69915ce+21/vvw1RgXF4dzzjkHixcv9odLm82GL774AnfddVez6iYioujGcElERFSP2NhYvP766wGX6XQ6AMCZZ54ZcPnq1auRl5eH9PT0gN7OIUOGYMuWLQCAzZs3A0DAEFiz2YyRI0di06ZNzapt/fr1qK6uxqRJkwLub/jw4XjxxRdx9OhRdOnSBQDQpUsXf7AEgG7dugEAjh07hm7dumHt2rUAENArebLp06djxowZOHToEDIyMvDpp5/C4/Hg/PPPb1bdREQU3RguiYiI6iFJEvr27RtwWUFBAQAgMTEx4PLS0lJs2LDhlJ5OAMjMzAQAnDhxAmaz+ZTFf06+raYoLS0FAEyZMqXe6wsLC/3h8uQVbrVaLQDA6XQCUHtoTSbTaXtPhw0bhoyMDCxevBh33HEHFi9ejIkTJyI+Pr7ZtRMRUfRiuCQiImom31xFH4vFgj59+uCBBx445Vhfb2dSUhJsNtspq8sWFxcHHK/X6+F2uwMuKy8vP+X+AOCVV16pN5x27dq1yecSHx+P6upqVFVVNRgwBUHAtGnT8L///Q8XXXQRfvnll1MWDyIiImK4JCIiaqURI0Zg1apVSEtLa7An0tcL+s033/jnM9psNvz4448BoS41NRU2mw3Hjh1DamoqAGDVqlUBtzVgwAAYDAYcP378lCG6zTV8+HAAwNKlSwMWAjrZ1KlT8dxzz+Gee+5BamoqRo0a1ar7JSKi6MNwSURE1EoXX3wx3n33Xfzud7/D9ddfj4yMDJSVlWHTpk1ITk7GjBkz0KNHD0yYMAEPPPAAqqqqkJycjFdfffWUYbJjxoyBwWDAPffcg+uuuw4FBQV49913A46Ji4vDrFmz8Mgjj+Dw4cMYMmQIZFnG/v37sXbtWrzwwgtNrj0nJweXX345Hn/8cRQXF2PIkCGoqKjA559/jrlz5/qPS01NxZgxY/Dtt9/ipptu8i8YRERE5MNwSURE1Ep6vR7/+c9/8Oyzz2LevHkoLi5GQkIC+vXrF7CAz+OPP44HHngAjz76KEwmE6666ir07dsXn3/+uf+YhIQEPPfcc5gzZw5uu+025OXl4amnnvL3dvr84Q9/QEpKCt544w28/vrr0Ov1yM7OPuW4pvjHP/6BtLQ0LFq0CAsWLEBCQkK9PZNnnXUWvv3229Mu/kNERB2XoPg27SIiIqJ259tD8ptvvgl1KY264447UFRUhP/+97+hLoWIiMIQey6JiIjotHbu3IktW7bgyy+/xNNPPx3qcoiIKEwxXBIREdFp3XLLLSgtLcVVV12FSZMmhbocIiIKUxwWS0RERERERK0mhroAIiIiIiIiinwMl0RERERERNRqDJdERERERETUagyXRERERERE1GoMl0RERERERNRqDJdERERERETUagyXRERERERE1Gr/D7jJVSLCKlhjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wUdf7H8dfMbEtPSCD0DgHpChZAUQQLWEFFTj0L9np2z3I/eznPs53t1FM8PfUs2LCdXSyA0pv0FiCkt81md2fm98fszO5mk0CAkICf5z3uYbI7OzubLIF3Pp/v56uYpmkihBBCCCGEEELsBrWlL0AIIYQQQgghxL5PwqUQQgghhBBCiN0m4VIIIYQQQgghxG6TcCmEEEIIIYQQYrdJuBRCCCGEEEIIsdskXAohhBBCCCGE2G0SLoUQQgghhBBC7DYJl0IIIYQQQgghdpuESyGE2E+YpsnYsWPJy8tjw4YNCffPnj2bvLw85//Dhw/n9NNP54svvqj3fEuWLGHEiBFUVVXVe//ll19OXl4er776atztF198MU899dROXXN+fj433ngjRx55JIMGDWLMmDFcdtllzJ07d6cev6fNmjWLl19+uUWee0/w+/0MHTqUIUOG1Pt9e/LJJznkkEP2+PNu3ryZvLw8Bg4cyJYtW+Lu+/rrr8nLy2Pz5s17/Hmbw9ixY3nooYecz2+55RYmTZq0V5570qRJ3HLLLXvluYQQojlIuBRCiP3E/Pnzyc/PB2DmzJkNHve3v/2NN998k0ceeYTMzEyuvPLKesPcY489xplnnklqamrCfbNmzWLhwoX1nv/iiy/m5ZdfpqKiotHrLS8vZ8qUKaxevZrrrruO559/nquvvhpVVZk/f36jj20uP/zwA6+88kqLPPee8OWXX1JTU0MgEODLL7/c688fCoV4/vnn9/rzNqfLL7+cBx98sKUvQwgh9gkSLoUQYj8xc+ZMkpOTGTJkSKPhMi8vj6FDhzJmzBieeOIJMjIy+OCDD+KOWb9+Pd9//z2TJ09OeHwoFOK+++7jT3/6U73nHz58OJmZmbz//vuNXu9nn31GUVERL7zwAieddBKHHnookydP5qmnnuKiiy7a8QtuQbquEwwGW/oyEsycOZPOnTvTuXPnRt8DzeXggw/mnXfeobCwcI+fOxQKoev6Hj/vjnTt2pW+ffvu9ecVQoh9kYRLIYTYD+i6zqeffsrYsWOZPHkyq1evZsWKFTt8XFJSEl27dmXr1q1xt8+YMYO8vDy6d++e8JhXXnkFn89Xb/C0HXPMMbz33nuNPndFRQVut5uMjIyE+xRFcT622xK/+OILjjvuOAYNGsTUqVNZvXp13GMMw+Cf//wn48ePZ+DAgRx77LHMmDEj4dz/+9//OO200xg8eDCHHHIIF110Efn5+Tz55JP861//Ij8/32kdtlsUY69h4sSJDB48mEWLFjXYZlq3XdhutfznP//J6NGjOeigg3jwwQcxTZNvv/2WiRMnMmzYMC6//HLKy8sb/bo1pLy8nFmzZjFx4kQmTpzIDz/8QGlpab3H/vrrr5x66qkMGjSIk08+mV9++SXu/i+//JJJkyYxdOhQRowYwemnn86cOXN2eA1Tp04lOTmZf/3rX40eV1NTw7333suoUaMYNGgQkydPZtasWXHHnHPOOVx99dW8+eabjBs3jsGDB7N9+3bn9nfeeYexY8cybNgwbrzxRoLBIIsWLeK0005j2LBhnHPOOQktun/729848cQTGTZsGEcccQTXX3/9DoNw3bZYu/W87v+ffPJJ55iVK1dy8cUXM2zYMIYNG8bVV1+d8DwrV67kzDPPZNCgQRx//PEtUmkWQog9zdXSFyCEEGL3/fzzzxQVFTFhwgQOOugg7rnnHmbOnEm/fv0afZxhGGzbto0BAwYknG/YsGEJxxcWFvL000/z7LPPoqoN/35y2LBhvPjii5SXl9cbHgEGDBhAMBjkpptu4oILLuCAAw5o8JxbtmzhgQce4JprrsHn8/Hkk08ybdo0Pv/8c7xeLwD33HMP7733HpdffjkDBgzghx9+4NZbbyUzM5OjjjoKgPfee4+bb76ZiRMncvnll2OaJj///DMlJSWcfvrprF+/ntmzZ/OPf/wDgDZt2jjXkJ+fz8MPP8zll19OTk4OnTt3buQrm2jmzJkMHjyY+++/n6VLl/LYY49hGAa//PIL11xzDYFAgHvuuYdHHnmEu+++u0nnBqsSHAqFmDBhAoqi8Nxzz/HZZ59x5plnxh0XCAS48cYbueSSS2jbti0vvfQSF110EZ9//jlt27Zl48aNXHPNNZxzzjlOaFuyZMlOhd6kpCTOPfdc/vnPf3LxxReTlZVV73G33347X331Fddddx1du3blrbfe4pJLLmH69OkMHz7cOW7evHls3LiRG264gaSkJNLS0gBYsGABpaWl3HHHHc57w+fzsXDhQi688EKSk5O59957ueOOO3jxxRed8xUXF3PJJZfQrl07SkpKeOmllzj33HP58MMP0TRtp77O//jHP+Kq1rNnz+bvf/+784uYDRs2MHXqVAYOHMjDDz+Mrus8/vjjXHrppbz99tsoikIgEGDatGlkZWXxyCOPEAgEuP/++/H7/VIlFULs0yRcCiHEfuCjjz4iPT2dww8/HI/Hw8iRI5k5cybXXXddXBUQrEAZDoepqKjg+eefp6amhj/+8Y/O/aZpsmzZMk466aSE53n44YcZPXo0I0aMaPR6+vXrh2maLFmyhFGjRtV7zGGHHcZ5553H9OnTmTlzJikpKYwaNYqpU6cycuTIuGNLS0t5+umnOfDAAwErmI4fP553332XqVOnsmHDBl5//XUeeOABTj31VABGjhxJYWEh//jHPzjqqKMwDINHHnmE8ePH8/e//90599FHH+183K5dOzweD0OHDk243rKyMl5++WX69+/f6GtviNfr5fHHH0fTNI444gi+/PJLXn31VT777DO6dOkCwIoVK3jvvfd2KVx+9NFH9OrVy/mFQu/evZk5c2a94fLaa6/lxBNPBOCQQw7hqKOOYvr06dxwww0sW7aMlJQUbr75ZucxY8aM2enrOPvss3nxxReZPn16va3Ta9asYebMmXHfq8MPP5yTTjqJZ555Ji4MVlRUMGPGDNq2bRt3Dr/fz9NPP+2EzTlz5vDf//6XV1991XlvFhQUcPfdd1NTU0NSUhIADzzwgHMOXdedCua8efN2+J62HXDAAc7HW7Zs4aWXXmLSpEnO1/Mf//gHOTk5PP/883g8HsCqZB9//PF8++23HHnkkbzzzjuUlJTw1ltv0b59ewA6derEH/7wh526BiGEaK2kLVYIIfZxwWCQL774gnHjxjn/mJ04cSL5+fksWLAg4fiTTz6ZAQMGcNhhh/Hyyy/z4IMP0rNnT+f+8vJygsFgQtVp/vz5fPbZZ9x00007vCb7sTtqOfzzn//snPPggw/m+++/54ILLuD111+POy47O9sJlmD9Q3zAgAEsWrQIgJ9++glVVRk/fjzhcNj5/2GHHcaKFSvQdZ1169axffv2XZ78mZubu8vBEqz1iLHVsW7dutGpUycnWNq3lZSUNHk95/bt25k7dy4TJkxwbps4cSJz586loKAg4fjx48c7H6ekpDBy5Ejna9m3b18qKyu5+eabmTVrFn6/v0nXkpaWxllnncWrr75KZWVlwv2LFy/GNE2OO+445zZVVTnuuOP49ddf444dMGBAQrAEGDhwoBMswfq6ud1uDjrooLjbwPra2L799lvOPPNMDjroIA444ACOOOIIwFpj3FSBQIArr7ySjh07cueddzq3//TTT4wfPx5VVZ33YefOnenUqRNLlixxvgYDBgxwgiXAQQcdRHZ2dpOvQwghWhMJl0IIsY/77rvvqKioYMyYMVRUVFBRUcEhhxyCx+Opd6jLo48+yttvv82TTz5Jjx49+POf/xwXQGprawGcoGq7//77mTJlCmlpac7zgPWP7Lohwn7szoSkbt26MW3aNJ599lm++uor+vfvz6OPPoppms4x9f2jOzs72wmvpaWl6LrOQQcdxIABA5z/33LLLYTDYQoLC531h/WFlZ2Rk5OzS4+zpaenx33udrvjApJ9m2mahEKhJp37448/xjAMjjjiCOd7c8QRR2CaJh9//HHcscnJyfh8vrjbYr+WPXv25Omnn2bTpk1cfPHFHHrooVx//fWUlJTs9PWce+656LrOa6+9lnDf9u3bSU5OdqqJsddQU1MT955p6Gte39cyJSUlrq3a7XYD0ffzokWLuPzyy8nNzeWvf/0rb775Jv/973/jjmmKO+64w1mra7dmg/VefP755+PehwMGDGDTpk3O2ubCwsK4luvYr4EQQuzLpC1WCCH2cR999BEA11xzTcJ9n3zyCX/+85/jKma9e/emb9++DBo0iH79+jFhwgSefvpp7rrrLiBaday7lci6detYtGgR06dPj7v94Ycf5u9//zvLli1zbrPDZkPrLRvSpk0bJk2axL333ktxcbETLoqLixOOLS4upnfv3s7zuFwuXn/99YQ2YPu81dXVwI6rqU3h9XoTguCuDuTZHfYvEU4//fSE+z766CPOP/9853O/308gEIgLmMXFxXGh+8gjj+TII4+ksrKSb775hvvvv5977rmHRx99dKeup02bNkyZMoWXX36Zv/zlL3H3tWvXDr/fH9eual9DUlJS3C816vte7qovvviCrKwsHnvsMee89tY9TfXyyy8zc+ZMXnjhBTp16hR3X0ZGBuPGjav3e2H/2Wrbti1r165NuL++97kQQuxLJFwKIcQ+rLq6mm+++YYTTjiBM844I+6+5cuX88ADDzB79uyENYy2rl27cvrpp/POO+9w9dVXk52djcfjoWPHjgmb3j/77LMJW0H88Y9/5JxzzuGYY46Ju91+bH3TZm0lJSX1Vm82bNiAx+OJq+oVFxczb948pzV2y5YtLFu2zGlxPfTQQ9F1ncrKygbXePbo0YPc3Fzee+89xo4dW+8xbre7SVWs3NxcqqurKSgoIDc3F7D2ytybNm3axKJFizjvvPMSXtd3333HCy+8wPr16+O+F//73/+cNYLV1dX8+OOPCe8fsFpcTzzxRObOndvkvUcvuOACXnvtNd5444242wcNGoSiKHz22WeccsopgLXO97PPPotra93TAoEAbrc7LrB++OGHTT7Pzz//zMMPP8y1115b75+rww47jFWrVjFw4MAGw/GgQYP48MMP2bZtm9Ma++uvv0q4FELs8yRcCiHEPuzLL790BvIMGTIk7r4DDzyQZ555ho8++qjBcAlw4YUX8tZbb/Hvf//bGcBy4IEHsnTp0rjjYqd4xurevTsHH3xw3G1LliwhLS2NPn36NPi8M2bM4MMPP+SUU04hLy+PcDjMTz/9xH/+8x+mTp0a12qYlZXFTTfd5EyLfeKJJ5wqJ1itnGeeeSbXXXcd06ZNY9CgQdTW1rJq1SrWr1/Pfffdh6qq3Hjjjdxwww1cf/31nHDCCSiKws8//8zEiRMZNGgQPXv2pKioiHfffZc+ffqQlZXV6FTYww8/HJ/Px6233sr555/P5s2bE8LU7ho7diwHH3wwDz74YL33f/TRR6iqygUXXOAEXFvv3r2dKtsVV1wBgM/n49FHH8Xv99OuXTv+9a9/EQqFnKFOb7zxBgsWLODwww+nXbt2rF+/nk8//ZSTTz65Sdfdrl07Jk+enLB+tlevXkycOJG7776bqqoqZ1rs2rVr+b//+78mPUdTjBo1iunTp3PfffcxduxY5s2bl7C/645UVlbypz/9iT59+jBixIi4Nc3t27enffv2XHnllZx++ulcfPHFTJ48maysLAoKCvjxxx859dRTOeSQQ5g0aRLPPPMMF198MVdddRWBQIDHH3+8wem6Qgixr5BwKYQQ+7CZM2fSvXv3hGAJVhXu+OOPZ+bMmXEDR+rq1KkTJ554Iq+//joXX3wxycnJjB8/nj//+c8J7ZM76/vvv3eGmjRkzJgxbN68mf/+979s3boVTdPo2rUrt99+e0IVrWPHjlx66aU88sgj5OfnM3DgQB555JG4APp///d/dO/enbfeeosnnniC1NRUevfuzWmnneYcc+KJJ+L1enn22We5+uqrSU5OZsiQIU4F9fjjj2f27Nk8/PDDlJSUcOqppzYY6sBq/3ziiSf461//yhVXXMGAAQN45JFH4gbr7K6ampp6K7y2mTNncthhhyUES7DW8NmTg2PD5V//+lfuuece1qxZQ8+ePfnnP/9Ju3btAGuy6VdffcUDDzxAeXk5bdu25fTTT6+37XpHLrroIt5+++2E1uF7772Xv/3tbzz99NNUVFTQt29fnn322QZ/gbEnjBkzhhtuuIFXX32Vt956i6FDh/Lcc89x7LHH7vQ5ysvLKS0tpbS0lClTpsTdd+WVV3LVVVfRo0cP3nzzTR5//HH+8pe/EAgEyM3N5bDDDnOGDCUlJfHCCy9w5513cu2119KpUyduueUWnn766T36moUQYm9TzNiJCUIIIQTWIJ4xY8bwl7/8heOPP75Jj62srGTkyJG89NJLeyQs3HLLLaxcuZJ33313t8+1r9m0aRPHHHMMn3/+edxUWSGEEKI1kmmxQgghEng8HqZNm8Yrr7zS5Me+/vrrDB06tFmrUL8X8+fPZ9y4cRIshRBC7BOkLVYIIUS9zj77bGebkbpbZjQmNTWV2267rRmv7PfjpJNO4qSTTmrpyxBCCCF2irTFCiGEEEIIIYTYbdIWK4QQQgghhBBit0m4FEIIIYQQQgix2yRcCiGEEEIIIYTYbTLQZycZhomuGy19GQlcLpVwuPVdl9g/yPtLNCd5f4nmJu8x0Zzk/SWaU2t8f2maiqoqjR4j4XIn6bpBWZm/pS8jjqoqZGenUlFRg2HIXCaxZ8n7SzQneX+J5ibvMdGc5P0lmlNrfX9lZiajqlqjx0hbrBBCCCGEEEKI3SbhUgghhBBCCCHEbpNwKYQQQgghhBBit8maSyGEEEII8bthmiaGoWPuxlI2VVUIBoOEw+FWtSZO7B9a4v2lKKCqGorS+MCeHdnvw+WAAQPo3bs3AAMHDuS+++5r4SsSQgghhBB7m2maVFWVU11dAez+P9iLilQMo3VN8xT7j5Z5fymkpKSTmpqxyyFzvw+XmZmZvP/++y19GUIIIYQQogXZwTI9vQ0ejxfYzQqNSyEclqqlaB57//1lEgzWUlFRAkBaWuYunWW/D5dCCCGEEOL3zTRNJ1gmJ6fukXO6XCoglUvRPFri/eVyuQGoqCjZ5eplqx7oM3fuXC699FJGjx5NXl4eX3/9dcIxr732GmPHjmXQoEGcccYZLFq0KO7+8vJyTj31VKZOncqcOXP21qULIYQQQohWwjB0wIxULIUQDbH+jJiRPzNN16orl36/n7y8PCZNmsRVV12VcP/HH3/MAw88wF133cWQIUOYPn06F154IZ9++ilt2rQB4MsvvyQ3N5fVq1dz8cUX88EHH5Caumu/sVLV3Wuf2NPs62lt1yX2D/L+Es1J3l+iucl7TMQyDPt9IO8HIRpn/RlRFGWXfn626nA5ZswYxowZ0+D9L730ElOmTGHy5MkA3HXXXXzzzTfMmDGDadOmAZCbmwtA79696du3L+vWrWPQoEFNvhaXSyU7e8+0UexpWVkpLX0JYj8m7y/RnOT9JZqbvMcEQDAYpKhIxeVSIu2Ge8aePJcQdbXM+0tBVVWyspLxeDxNfnSrDpeNCQaDLF26lMsuu8y5TVVVRo4cyYIFCwCrJTYpKQmPx0NBQQErV66kS5cuu/R84bBBRUXNnrj0PUZVFbKyUigtrZYx2GKPk/eXaE7y/hLNTd5jIpa1pYMRGZCyZ9axuVwq4bCsuRTNo6XeX+GwiWEYlJb6cbmCcfelpyfhdmuNPn6fDZelpaXouk5OTk7c7dnZ2WzYsAGANWvW8Je//AVVVVFVlVtvvZXMzMxdfs7W+peTYZit9trEvk/eX6I5yftLNDd5jwlovf+G29vmzfuFq6++lM8//47k5OQGjzvttBOZOvVsJk+eshevrvV58cXn+PHHWbz44r9b+lL2ul392bnf1fJN03QmGx144IF89NFHfPDBB7z33nuMGzeuha9OCCGEEEKInXPffXcyevRwHn30rwn33XXX7YwePZx//OOxXT7/xx9/yMSJRyfc/vzzrzBx4snO56NHD+eHH77f5efZF9T3GqdOPYe///3JZn/uK6+8eLe+j63JPhsus7Ky0DSNoqKiuNtLSkoSqplCCCGEEELsi9q1y+V///uMYDDaolhdXcX3339Du3a5zfKcWVlZ+Hy+Zjn37gqFQnvtuZKTk8nIyNxrz7c/2GfDpcfjYcCAAfz444/ObYZh8NNPPzF06NCWuzAhhBBCCCH2kAMOGEBWVhazZn3n3PbFF5/Tt28/OnbsFHds3eqb3+9n9OjhzJv3S8J55837hfvvv4vy8nJGjx7O6NHDefHF5wCrLfadd950Pga4+eZrGT16uPP5pk0bufnmaznxxGMYP/4ILrnkfBYuXJBwPe+99w7XXnsFY8eO4swzT+Wnn2bFHbN27Wquu+4qxo0bzcknH8uDD95DVVWVc/+VV17MY4/9jccee5gJE47m1ltvaPBr9cEHM5g6dRJjx47k7LNPZ+bMD5z7QqEQjzzyECeddCxjx47k9NNP5u2332j0Nb744nNMm3aOc4777ruT22+/iZdeep4TThjH8ceP5T//+TfBYJCHH76fY44Zw+mnnxT3PQiHw9x//12cdtqJjB07irPOOo0PPpgRd84FC+bxxhuvOt+HrVu37NTXpjVq1Wsuq6ur2bhxo/P55s2bWb58OTk5ObRt25bzzz+fm266iQEDBjB48GCmT59OIBDg1FNPbcGrFkIIIYQQ+4IZr21jxeLqXXqsooDZxCVp/QalcOpZ7Zv8XBMmnMjHH3/A2LHWEq+PP/6QE088hU8/ndnkc9kGDRrC1Vdfz8svv8C//20FyaSkxHWYzz//CieeOJ477rib4cMPRlWtgS5+v5+RIw/nkkuuwOVy8/7773LTTdfw5pvvx804eeGFZ7n88qu59tob+eCD97jttpt4/fV3yc1tT2VlJVdffRmnnDKZP/3pevz+Gp588u/cd9+dPPDA35xzzJz5AaedNoVnn/1Xg6/n888/4aWXnufaa2+id+8+LF++jIceupf09HQOP/xI3nrrDX744TvuuechcnNz2bIln4qK8kZfY33mzJlNTk47nn76BebOncOjj/6VX36Zw6hRo3nxxX/zzjtvcs89f+Hdd2eSnJyMruvk5rbn3nsfIj09g/nzf+WRRx6kffsOHHzwoVxzzQ1s2rSR3r37cv75FwKQmZm101+b1qZVh8slS5bwxz/+0fn83nvvBeDKK6/kqquuYsKECZSUlPDEE09QWFhI//79eeGFF5w9LoUQQgghhNjXHXfcRF588TmKigqprq5m7drVjB07brfCpdvtJjU1FUWB7OyGl5RlZWUBkJqaFndcXl4/8vL6OZ9fddW1fPvtV8ye/SPHHjvBuX3cuGOZMMGqBF555Z+YM+cn3nvvHS655AreeedN+vc/gAsvvNQ5/qabbuOss06jtLSErCzr3/TdunXnkkuuaPT1vPjic1x11XUcccSRAHTs2ImVK1fw/vvvcvjhR7J9+za6dOnK4MFDUBSF9u077PA11iczM5Orr74OVVXp2rU7r702Ha/X4ww/Ou+8i3j77TdZtWolQ4YMxev1Mm3aJc7jO3bsxIIF8/jqq/9x8MGHkpqaisvlwufzxT33W2/t3NemtWnV4fKQQw7ht99+a/SYs88+m7PPPnsvXZEQQgghhNhf7EoV0bY3t4rIzs5h+PBD+OSTmVRWVjBmzFiSk1t2D1e/38+LLz7HTz/NoqSkGF3Xqa2tpaBgW9xxBxwwMO7zAQMGsX79OgBWr17F3LmzGT/+8ITz5+dvdgJUv379G72Wmpoa8vM3c999/8cDD9zl3B4Oh50QedxxE/nTn67gD3+YzKGHjmL06CM46KARTX7dPXv2QlWjKwszM7Po3r1nzOeZaJpGWVmJc9s77/yXmTM/oKBgK8FgkFAoxLBhBzX6PKtXr9ypr01r06rDpRBCCCGEEAImTjyRZ5/9B36/n//7v3vrPUZRFMyYXt1wONxs1/PUU4/x669zufzya+jUqTNer5cbbrgmYeBOZBOHhOsEKxQefviR9VYl27Zt63zs8yU1ei01NX4Abr31/8jLiw+iLpcVd/r1O4C33vqAn3/+gblzZ3PLLdczbtwx3Hzz7Tt+sfWcL/a11L0NrFkwAF988RlPP/04V111HQccMIDk5BReeumfFBQUNPo8fr9/p742rY2ESyGEEEIIIVq5UaOO4OGHHyApKbnBqldmZhYlJcXO56tXr2z0nC6XG13fcfXV5XJhGHrcbYsXL2TixJOcNtSKigoKCxMD09KlSxg//jjn82XLljBypFWN69s3j++//5YOHTqiaQ2vc9yRNm2yyclpy5Yt+Rx99DENHpeWlsb48ccxfvxxHHLIYdx99x3ceOOtqKpa72vcExYvXsiQIcM45ZTJzm2bNm3C4/E4n7vd7oTnzsvL49tvd/9rs7fts9NihRBCCCGE+L1wuVy8+eYMpk//j1P5q2vYsIN4553/snr1KhYvXsjzzz/d6Dk7dOhAdXUV8+b9QllZGYFAoN7j2rfvyC+/zKG4uIiKigoAOnfuyjfffMWqVStZuXIFd955W72DcL788nM++eQjNm7cwNNPP87GjRs4+WQraE2adDqlpcXcffftrFixjPz8zfz00yweeui+pnxpADjvvGm88sq/eOedN9m4cQOrV6/i/fffZcaMtwF4883X+PLLz9m4cT0bNqznu+++oUuXrk6La32vcU/o3Lkry5YtYe7cn9m4cQNPPfW40xZsa9++I0uXLmHbtq2UlZVhGAaTJ0/ZY1+bvUnCpRBij6qoLeenLT9QE65p6UsRQggh9ispKamNrrW88so/kZmZxaWXns/DD9/PBRdc3Oj5Bg0awsknT+KOO27mhBPG8dpr0xs87+zZPzFp0kQuuOAswBrgk5yczKWXns+tt97IUUcdTdeu3RIeO23axXz66cecd95Uvv32a+655yHat7fWurZt246nn36RYDDIn/50OX/84xSeeuqJuGmzO+uUU07j+utv4YMP3uPcc8/kmmsu5auv/uds1+LzJfHvf7/MtGnncMkl51FZWcm99/610de4J5x88iQOP/xI7rjjFi699AJCoRATJ54Ud8zUqdb8mLPOOo0TThhHQcE22rXbc1+bvUkxzaYOUf59CoV0ysr8LX0ZcVRVITs7leLiKgxDvo1iz9rV99fC7fNZWLiAUZ1G0yuzTzNeYfMoKw1RURbG51MxTMjMcuFL2nfaUfYV8vNLNDd5j4lY4XCYoqJ8cnI61bs+blfszYE++6rRo4fz0EOPMmpU4lAa0biWen819mclMzMZt7vxfxPJmkshxB4VNq3hAYZpUugvZGHhPA7rOJoUd8tOtduRqsowM14rYM2K+F8iZbZxcdVt3dG0+luQhBBCCCGERdpihRB7lB6ZjmaaJpsqN7ClagsF/m07eFTL++7zEtas8JOe6WLA0FR6908mPdNFWUmY9atbV9eCEEIIIURrJJVLIcQeZZjWtDMTE8O0g2brbhuqDRgsmFOJ7vZzyQ0DSUm1Wj4WzKngvf8UsPjXSnrlte7KqxBCCNHazJr1S0tfgtjLpHIphNij9Ei4NEwDI7Kk265mtlYLf6mgWN9C9QFfs6J6nnN7v8EpuNwKyxdVEwq17tcghBBCCNHSJFwKIfYoPaZyaWKFS4PWHczm/VRBlWsr3Xsns7RoiXO7z6fR94AUagMGq5dLa6wQQgghRGMkXAoh9ig9sgmwacaEy1bcFltdFWZbfi05GVlktnEDUBWqcu7v1S8ZgIIttS1yfUIIIYQQ+woJl0KIPcqMVCkNDIi0xW7e6KdwW7AlL6tBG9ZYG0Z37OxxbttUsdH5OD3TWppeURbeuxcmhBBCCLGPkXAphNij7Molkcrltvxa3n9jG2/8a0vLXlgDNqypASC3i9u5bWHhfGasepvt/u2kZ0TCZbmESyGEEEKIxki4FELsUbo9IRaTosJa5s8ux8SgeHuoVVb/NqyNhMtO0XAZ1INUBivZULHOqVxWSrgUQgghhGiUhEshxB5lD/TJ31TDJzO2Ew6DL7KLh10lbC0CNTrb8mtJz3SRnKYAMLz9wRzR+UgAygKl+JJUXG6lVQZjIYQQYlfcd9+d3H77Tbt1jnfeeZPTTjtxD13R/uvjjz9k4sSjW/oy9hrZ51IIsUeFwmFWLK5i9sLtBNHpMySZIR0yWD7DCpeDDkpr6Ut0bFwXABO69Upy1oomu5Lpmt4NVVEprS1FURTSM1yUFIUIBQ3cHvmdnBBCiL3jvvvu5JNPPgLA5XKRm9ue448/gbPPPg+Xa9f/GX/NNTdgRuYiiD3ntNNOZOrUs5k8eYpz29FHj+eww0Y1+3Pfd9+d1NT4uffevzb7czVGwqUQYo+prgrzzWdF5Bf56eAyOfTwDDydguR63SwH1reyyqVdSe3WK8nZk1NTNVRFJcObQWmglEA4QHqmFS4rysNkt/U0dkohhBBijxo58nBuvvk2QqEwCxfO46GH7kPTNM455/wmnyscDqNpGqmpqc1wpXteKBTC7Xbv+MBWzOv14fX6Wvoy9hr5FbwQYo8wTZN/P7OF7dtryMxyMemcXHr3t7bx8KWotGnrpqggSFVl62kv3bDaCpfdeyVhRNp51ciPxUxvFgBltaWkZci6SyGEEC3D43GTnZ1D+/btOfbYCRx77PHMmvUdALW1tTz55KOcfPJxjB9/OJdddgFLlix2Hmu3ZH733Tf84Q+TGTt2JGVlZQltsbW1Af7+94c44YRxjB07kquuuoQ1a1bHXcdHH73HpEkTGTduNH/5y5+pqqqKu98wDF588TlOOeV4jjrqMKZNO4f583+NO+b7779hypRTGDt2FNdddyXvv/8uo0cPd+5/8cXnmDbtHN577x1OO+1EJkwYC8CPP87isssu4LjjjmTixKP5859voKBgm/O4efN+YfTo4cye/RPnnnsmY8eO4vrrr6aiooIvv/wfZ5xxMscddyR/+9uD6Lre6Nf7u+++4bzz/sDYsSOZMuUUXnttOoYR3VLtxRefY9KkiRx11GGceuoEnnvuKQCuvPJitm3byqOPPszo0cOd11W3LTb2NZ566gTGjz+CJ5/8O7qu8/zzzzBx4tGccsrxvPfeu3HX9Y9/PMaZZ57K2LGjOOOMk5k+/UXnul588Tk++eQjvvnmK+e55837BYCCgm3cfvvNHHvsGCZOPJrbb7+JoqLCRr8Gu0Mql0KIPcJfbbAtv5bkDiqHjc0iNV2jMmhVA03ToHvvJEoKQ3z2XhGn/CEXTVOa9XoM00BVGv79WbDWYMumACmpGtnt3KzcYv2A1lQNgExvJgClgVLSM9sBsh2JEELsb37I/55NlRt3fGA9VFXBMJrWWtolrSujOh2+S89n83q9hEIhAB577GE2bFjPPfc8SHZ2Dv/736dce+0V/Oc/b9O2rfV3l9/v5403XuW22+4iJSWFlJSUhHM+/fQTzJr1HX/5y73k5OTw8ssvcv31V/HGGzPw+XwsXryQv/71fi677GpGjTqcWbO+Y/r0F0hLS3fO8eab/+Gtt17npptup1ev3syY8TY33ngNr7/+Lm3btmPr1i3cccctnHnm2UyYcAJLly7hmWeeTLiWjRvX8+OP3/PAA4+gqtbf44FAgDPPPIdevXpTXV3Ns88+yZ133sozz/wr7rEvv/w8N954K5qmcdttN3HHHTeTnJzMgw8+QkFBAbfddhODBw/hmGOOr/dru3DhAu6//07+9KcbGTRoCBs3buCvf70Pt9vDGWdM5euvv+C///0Pd955Pz169KKoaDubNlnvn/vvf5jzzvsDp556GhMmNL4WdePGDcyf/wt///s/2LBhHf/3f7eydu0aDjhgIM8++xLffPMVDz/8IAcddDAdOnQEIDU1ldtvv4vs7BxWrlzBQw/dR2ZmFiefPImpU89hw4b1BAIBbr75NgDS0zMIh8Ncf/1VDB48lGeeeRFQePHFZ7n55ut4/vnpztd3T5LKpRBijygrsf6iS8tUcGkKhmlG97w0DUYf3Yb0TBeLf63k47e3N+u1fL3xS15f/ipho+EwuHlDAMOwWmIVRXEGESmRQJrpsyqX5bVlsh2JEEKIVmHp0iV89tknHHTQCLZt28bHH3/Ivfc+xODBQ+nUqTPnnXchPXr05PPPP3EeEwqFuOGGPzNgwEC6d++BxxO/vMPv9/P+++9yxRV/4uCDD6Vnz97ceuv/EQoFnfO8/fabjBw5mqlTz6Zr12784Q/nMGTIsLjzvPHGq5xzzvmMHTuObt26c80119O+fUfeffctAN577x26d+/JpZdeSdeu3Tn++BM4+uhjEl6jruvcfvtd9OnTl169egMwduw4xow5is6du5CX14+bbrqNxYsXsX17QdxjL774CgYOHEz//gM47riJzJ//K7fccgc9e/bmsMNGMXz4CKeiV59//euf/PGPF3DccRPp1Kkzhx02inPPvYAPPrCqiAUF22jTJpsRIw6hffv2DBw4mOOPPwGwwpyqqiQnJ5OdnUN2dk6j38tbbvkLPXr05Mgjj+aAAwZSWlrKRRddRpcuXTnrrD/i8/lYtGiBc/x5513IwIGD6dChI2PGjGXy5DP46qsvAEhOTsbr9TpV7uzsHNxuN19++TmKonDTTbfRs2dvevbsxW233cXq1StZsWJZo9e3q6RyKYTYI0qLrHDpS7UqkiamMyzAMA3a5LiZdk1nnrhvA8sWVnHCGe1QlOapXtq/ha4OVZERqUDWFbve0r5GiLbFZkXaYktrS+nubEfSeCuNEEKIfcvuVBFdLpVw2Njxgbvp+++/Zfz4w9F1HV3XGTfuWC644GLmz/8VXdeZMuWUuOODwSC9e/dxPvd6vfTs2avB8+fnbyYcDjN48BDnNp/PR58+eWzYsA6wqolHHTUu7nEDBgxi7do1AFRXV1FcXMSgQdFzKIrCoEGD2bBhfeQcG+jff0DcOep+DtChQ0fS0zPibtu0aSMvvPAMy5YtpaysDLD+fVFQsI127XKd43r1ir7uNm3a0KZNNhkZmc5tWVltKC0tafBrsWbNShYvXshLLz3v3KbrBmbk3whHHjmON9/8D2eccTKHHjqSkSNHM3Lk4U2uAHbs2ImkpKS4a/V4vM7nqqqSmZkZd61ffvk5b731Bvn5mwkEagiHw+Tmdmj0eVavXsXGjRsYPz7+fa7rOvn5mznggIFNuu6dIeFSCLFHlEYql0mRbhsz8j+IBreMLDe5HTxs2VRLeVmYzKzmXaTfWFusEy57x4dLLfIXRIo7FZfqory2zFlzWVEWas7LFUIIIRIMH34I1157Iy6Xm5ycHGdKbE2NH5fLxb/+9VrCL2tjW199vp0bJlP3HNbvhxXn48Z+IWwPnk08h0n0ptiPo7fV5fMlJdx2883X0rFjJ/7857+QnZ2D31/NRRed67QH22In6CqKkjBRV1GURqfk+v01XHTRZRx++Jh672/fvj2vv/4uc+b8zNy5s3nwwXvo27cfjzzyZJN+YV7fdSXehtN2vWTJIu6++w4uvPAyRow4hJSUFD766H2+/PLzRp+npsbPAQcM4Lbb7kq4r02bNjt9vU0h4VIIsUeUFYcwMUlKscKZaRpOYLNbTgHad/ayZVMtWzfVNku4jG2FtZ+/PiVFIVCgXXtP5Nj4gT6KouDVvFSHqknPtNtipXIphBBi70pK8tG5c5eE2/v06Us4HKa8vIyBAwfv8vk7deqMy+Vi4cIFHH30eMAa8LN69W+MG2e1rXbr1p2lSxfHPW7p0iXOx6mpqWRn57Bo0QKnemmaJkuWLOaII44EoGvX7syZ81PcOXamNbO8vIyNGzdw663/57zOn3/+cdde7A707ZvHpk0b6v1623w+H0cccSRHHHEkxx03kUsuOY+CggLat2+Py+VG1/d8NXvx4kV07NiJc845z7lt27YtccfU99x9+uTxzTdf0qZNG5KTE9faNgdZcymE2CNKi0OY6CSnWgNxTNN0fh9pxoS8Dp2tto9t+bXOccHaPfeDuCbsdz5uLFwGagx8PhVVVeKOja12ulUr/PpSTBRVBvoIIYRoPbp27c7RR4/n7rvv4LvvvmHLlnyWLl3CSy89nzCltTHJycmcfPIknnrqMebM+Zm1a9dw33134XK5GT/+OAAmTz6DH3+cxZtvvsbGjRt4441XWbhwXtx5zjzzbP7975f4+usv2LhxPY8//gjbtm1h0qTTATj55EmsW7eW5557io0bN/DZZx/vsPIGkJaWTkZGBu+//y75+ZuZO/dnnn32H034Su28c8+dxscff8jLL7/AunVrWbduLZ9//gnTp78IwCeffMTMmR+wdu0a8vM38+WXn5GamuZUATt06MCCBfMoLNwead/dM7p06cLWrVv48sv/kZ+/mf/859/Mnh0f1Dt06OC0wZaVlREOhznmmONJSUnlz3++kYULF7BlSz6//jqXv/3tASorK/fY9cWSyqUQYo8oLQljKgZJKZFwWWfNpa1DJ6s9Z+tmK1z+8FUpX39SwjmXdaJ7r8RWmKbyh6N7aRoNtL7ouhVoM9tEfwQakSisRqbFArgi4VInTEqqRnVlONLi07yTboUQQoidcfvtd/PSS8/zxBOPUFRUSFZWGwYOHMy4ccc26TyXX341pmly99234/f7OeCAgTzyyJNOS+3gwUO54YY/869//ZN//vNpDjtsFH/4wx/58MP3nHNMmfIH/P5qHnvsb1RUlNOzZ28efvhxcnLaAtY6w7vvfpCnnnqMN998jaFDD+Sss87bYVBUVZU777yfxx//G+eccwbdu/fgiiuu5tprr2zaF2snHHbYKB544BFefvkFXnnlJTweN92793QCckpKKv/+90s8/vgjmKZJnz59efjhx5whSdOmXcrDD9/PlCmnEAwGmTWr4eFBTTF69BjOOGMqf//7g4RCYQ4//AjOOutc3n8/ul3JiSeeyvz5vzJt2jnU1Ph54olnOfDA4Tz11PM888wT3Hrr9dTU1NCuXS4jRhyaMNhpT1HMxhqPhSMU0ikr8+/4wL1IVRWys1MpLq5q8ihsIXakKe8vwzC594bVuFODdJoyB4Cemb2oDFZS6N9Obkp7ju1ujf0OBg0euHkNaRkurruzBy8/tZn1q2rIyfVw+rntKS0OkTcwZZcD3PrydXy3+RsAjmp/PJ3b5Cacy1+t89fb1tK+k5dLb+wKwMdrP6KoppDT+k4h2W3tz/n5+k/YVr2NU/tM5tXHSinYEuTm+3uSlKwhdo/8/BLNTd5jIlY4HKaoKJ+cnE4Ja9t21d4a6LM/e/bZf/Djj9/zyitvtvSltDot9f5q7M9KZmYybnfj/waStlghxG6rKAtjGJDeJvoDxzRNp2IZW7n0eFRycj1UlIWprgpTEGmPLSoI8sxfN/LGi1tZtXzXf5FTE6lclpWEePKBdbzz720J/7AM1FjX40uK/gisvy3W+q1eyAiRkmb9gK2ulHWXQgghxK545503WbFiGfn5m/noo/d45503Oe64E1r6ssQeJG2xQojdVlpsTWtLb6M66ywN03DaYnUjPpB16OylcFuQFYurqfEbpGW4CNToGAboYZOl8yvpe8CuLTy311xuWh8A02TJvCo8nu2cdGZ0VHmgxroery8aJO09OTUlti3W+hEZMqy2WIDqKp2c6KmEEEIIsZM2bdrIK6+8RGVlBe3bd+D88y/mzDPPaunLEnuQhEshxG4r3BYEICNLoyxyW+xWJHZws3XrlcSiXyr5+Vvr6J59kzjm5BxMEx69az2/LakmHDZxuZreGlsTrsEwTLZuCtBBNUhO0pj3cwVHTcgmLd36kVdf5dIOwHGVS82qXIb1ECmp1iCi6ioZ6iOEEELsij/96Ub+9KcbW/oyRDOStlghxG75+dsyPplRCEC7TtHfV1lVy8SBPgC9+llrGu1Q2r6Tl5RUF6lpLnr3SyZQY7Bu1a61xtaE/ZQUhqitNenSw0u3yJCgspLoXljRcBmtUhoktsW6IlVMqy02UrmUtlghhBBCiHpJuBRC7DLTNPnfh0WoisLE09rSI88bvQ+j3jWXAJlZbnLaudnuXUalayu5Hb0EwgEM06D/4FQAlszbtRHZNeEatmwKANB7QBKZWVbgLS+NVhzttti6lUtVUeOG/3jsymWdtlghhBBCCJFIwqUQYpcFagz0sElOrpsRozPjQqRp1r8Via1znkqhbwWF3hW0aa/w7qq3+CH/e/oNSsGXpLLol0onJDZFhb+a/I0BVBV65iWRUW+4rH+gT2zVEkBT7DWXMZVLCZdCCCGEEPWScCmE2GX+aito2Xtb6mY0eMWuuawvXHbrY+0h6Uk2UL1BwkaYymAlviSNcSdY6y8//O/2HW4hUBsweOXpzSz+tRLDNFi5qoxwGDp38+FJgows63nKSxtvizUxE8KlO7LPZdgIkZIi02KFEEIIIRoj4VIIsctqqq2QlhwJl3Urlw21xQJ07O4is42LLr08Tii1/3vgYel06upl66Za1q+uafQaNqytYe3KGt759zbyt5U7azV79E3GNI0GKpcNt8XGcmlSuRRCCCGE2FkSLoUQu8yuXNrhMmxGA1z8tNh6qo8ug8PHteGAYcmEI5NajUi4VFWFQQelAbBxbePh0h8T9p75+2pq/AZtcz2kZ7gwTDOmcrmDtlgS22LtymXcViSVMi1WCCGEEKI+Ei6FELusbrg0IxXKrr/+xoQ/3Mi4//snGEbCPpcAumGFNN3U0c3ox7YuPawpr5vWNb7uMraSGDRryW7nZvBwK5gapkFyiorLrTTaFmuvD43d4xLi22I9XhW3R5HKpRBCCNGAyy67gG+//cr5fNWqlUybdg5HHXUY5533ByoqyjnppGMpLNzeglcpmpPscymE2GV1w6VuGKihMMff/yqpJRVkrd7IkIHdWHTqEQmPDRlW2AsbYcJ20IwJoe07eXF7FDatD2AYJqpa/56XVZFK4nGntoVsg9+UTBSsYw3TQFEUMrJcFG8PUVtr4PWq1AbiK5d2qE1oi3Uql9a1pqRqlJWE0XUTTWv6HpxCCCHEzho9enij959//kVMm3bJXrmWFSuW88ILz7BixTJqamrIyWnLwIGDueWWO3C7rb8rv//+G6qrqzniiKOcxz3zzJO0a5fLffc9TFKSj/T0DI4//gRefPE5brnljr1y7WLvknAphNhldktqcko0pPWetZjUkgpqstJJKq1gyIc/sPCUwzFNM26bj3AksBmm4YTL2LWZmqbQqZuP9atq2L41SPtO0W1OYtkDdnI7ejDbuVi5WUFTNHRTd86XmeWmeHuI8tIQ7dp7E9Zc2scltsW64q7VDpf+ap20dPnxKYQQovm8//6nzscff/whM2a8zfPPT3duS0pKdj42TRNd13G59vzfTaWlJVx77RUcccSRPPro0yQnJ5Ofv5mvv/4Sw9ABK1y+/fZ/Of74E+P+rs/P38Tpp59J+/btndsmTjyR8847iyuu+BNpaWl7/HpFy5K2WCHELkuoXJo6PX9aCsCPN19AUc9OtF27lTbrtyUM9QnHVCmDehBIHPzTNdIau3Fdw+su7XCZmubCMKzHuzXrLzoD6/O6Q30CNQYo4PXVDZfxbbGumDWXAClpkYmx0horhBCimWVn5zj/T05ORlVV5/MNG9ZzzDFH8PPPP3L++X/gyCMPZdWq37jvvju5/fab4s5z++03cd99dzqf19bW8uSTj3LyyccxfvzhXHbZBSxZsrjB61i8eBG1tQFuuuk2+vTpS6dOnTn44EO5+ebb8Hp9AJSWljJv3lxGjTrcedzo0cPJz9/MY4/9jdGjh/Pii88B0LVrd9q1a8esWd/uwa+WaC3kV+9CiF3m90fCZao9LVan86I1mIrC1mH9SBkzjJy1+fSYswzjOAMNjZAewqW6nGolQK1RC8SvuQTo0sP6S2v2t2Vkt/XQKy+Zuuy22JQ0jeJa62O36iZAwFkDWl+49HpVp9W2obbY2DWXQMxQHwmXQgixP0i76lI8n8zca88XPH4ilU8+u8fO99xz/+DKK68lN7c9GRmZO/WYxx57mA0b1nPPPQ+SnZ3D//73KddeewX/+c/btG3bLuH4Nm3aEAwGmTXrO4444si4yqRt0aIFJCcn06VLV+e299//lIsuOpdTTz2NCRNOjKu05uX1Z+HC+Rx//AlNf9GiVZPKpRBil0XbYq3Q5dmylYyCEgp7diSYnszGYX0A6LJgNQYGhmkwY/XbfLv5ayewAQR1K1wapoFpRifL9uiTRLdeSRQXhnjtuXyKC4MJ11BdpaOqVourvWbTrXqc80F0r8uykhCGYVIbMOImxdohVGtwWmydcFklE2OFEEK0vIsuupyDDhpB585ddqrFdNu2bXz88Yfce+9DDB48lE6dOnPeeRfSo0dPPv/8k3ofM3DgYP7whz/yl7/cwoknjuemm67lrbfeoLKy0jmmoGArbdpkxwXP7OwcVFUlOTnZqb7acnJy2LZt6268ctFaSeVSCLHL/HX2uUxdshyALQO6Y5om2/p1IeRx02nRWraHQwQ1k0A4QGmghFR3qnMeuy0WrEDoD1Xj1Xx4XB7Ou7ITH7y5nfk/V7BlYy3ZbT3RYw2T6iqdlFQNVVWcqbMeuy02Ehrbtrcesy2/NmGYT+xxdSuXiqLgUl2EdCtcJkvlUggh9iu7U0V0uVTC4cR9nPemfv36N+n4tWtXo+s6U6acEnd7MBikd+8+DT7u8suvZurUs/nllzksXbqY116bzmuvTeeFF14hJ6cttbW1eDz1z0aoj8fjpba28WnwYt8k4VIIscv81TqaS8HtsX5TmbxqHQDF3TtYg3o8LrYe0I2uC1ajrfyNcOQvwaAeJBzTAhsIR/+CqQpV8v7qGSS5kjg970wURaFzNx/zf66gsCC+clnjNzANa70l4LTa2msl7dCY29GL5lJYunk13fO3AenONiTQcFusda6YcBkJ0TX+lv3HhBBCCAHg8yXFfa4oSlwHEEA4HO22qanx43K5+Ne/Xktob01JSWn0ubKy2jB+/HGMH38cF154GWeeeSrvvfcOF154KRkZmVRWVuz0dVdWVpCZmbXTx4t9h7TFCiF2iWGY1FTrJKdozl9QqWvXA1DUoz0m1t6RBXnW+gvPogUYkRAXMkLOPpcAQSMaGqtD1QDUhKNDfNrmWpXHojrh0m5PtdtV7ZDo0ey2WOsvWJdLoUNnL6vVn5m1Zg66EqxTubSOU+r5kehW3c7k2aTIVFx7kJEQQgjRmmRmZlFSUux8bhgGa9eucT7v06cv4XCY8vIyOnfuEvf/rKw2O/08qampZGdnU1Nj/V3dt28eRUWFVFdX7dTj169fR58+eTv9fGLfIeFSCLFLAjUGphndhgQgdc0GAIq7tXeqhgV9uwDgXrjQuc0wDWr1aLWyNqZyGTvoxx/yA5ATCZd1K5d2e2pKmr3PpvW5U7kkWmHs3M0aDrR9q3WO+tpiNTV+Wqx1rmhVNDnZrlxKuBRCCNH6DBt2EEuXLuGLLz5j48YNPPHEI5SXlzn3d+3anaOPHs/dd9/Bd999w5Yt+SxduoSXXnqe+fN/rfecP/zwPffc8xd++ukHNm/exLp1a3nmmSdZt26tMx22T5880tMzWLx40Q6vsba2lt9+W87BBx+6R16zaF2kLVYIsUtq6kyKJRwmdf1m/Bkp1GSl4YtUEbdFKpfeRQvjthqpjgRHgNrIQB+AUEwVszRQQrI7meQUjZRUjeLCILpuEg6ZvP7iFtzuSMU0rU7lMhIuzZjn69zdBwtg+9ZaumPEtcUapg6mScbaTdBBBy16nz0cKGSESEq2zlsjlUshhBCt0GGHjeKss87lscf+hmkanH76VEaMOCTumNtvv5uXXnqeJ554hKKiQrKy2jBw4GDGjTu23nN2794Dj8fD448/wvbtBfh8Prp168699/6VAw8cDoCmaUyYcAL/+9+nHHroyEav8Ycfvqddu1wGDhy8Z160aFUkXAohdkndSbHaurVooTDF3bsD0WpgecdsAqlJeJcuQw9GQ6Q/0v4K8QN9amM+LqktoVNaZ0zTJDMXqtdAaVGI4qIg61dF22ZT6qy5dGvx02IB2nWxKpW1tSYmJn0HRNeWGHqYCff9m/5f/krthE+pePEVJ2C6ItXMsBEiKcWqfvplzaUQQoi9aPLkKUyePMX5/MADhzNr1i/1HnvJJVdwySVXNHgut9vNxRdfzsUXX75Tz92pU2duvvn2HR53xhlnce65Uygs3O5safL22x8mHPfWW69z7rkX7tRzi32PtMUKIXaJve7QCZe/rQCguFsuEBPsFIWCvC6otbW4V650Hh9brYzd3zIUEy7LAqUA/Fowl1UZMwkpNRQWBCkqiG5jArFrLqP7XMZdA5CUpuP1WZXOUeMy4vbMTP7+e/p/abUDeT/+EM//PnPui1YuwyQlq6BI5VIIIYSoKycnh5tuup2Cgm0NHlNRUc7o0Ucwfnz9VVKx75NwKYRo0OqS1fxWsqLe++qGS9dv1jYkxd07APHBzm6N9e3MWozYymXAGkpQESwnOU0lqFZRVBBMGOxTd82lp55wGTRCDDownbwByYw6OjPu8dn/edO6zrGjAPB+MMO5L7rmMoSqKviSVBnoI4QQQtRjzJijGm13TU/P4Kyzzk2YVCv2HxIuhRANmr15NnO2/lzvfXX3uNQi4bKoR3sgPtjZQ318Cxfu8Dlj11xWBCsIG2EM0yAtQyOs1rJ9WzBhsI99Dfb2JnW3IgEI6rV06Oyl74BUUGLGtFdXk/HN9wRSk1h69w2YSUl4PvsEdOtcsWsuAZKTNUJBs8X3NhNCCCGEaG0kXAohGmQHu7p7ZkE9ay7XWKPOS7rmJhxbkGeFy6TFS3f4nLHrL03TpLy2HN00yMhyo6tBNq6toWh7EJdb4cQp7eg3OIX2nayNm53KZWTNpRkzLTa2DTc2dHp+/gE1FGLDQXnoGZmEDhyOWlmBtvI3ILrm0g6XSZHXa4drIYQQrV+0UJb495kQIlZke7ZdLC5LuBRCNMheCxkbxmx+Z1qsCqaJtm4toSQv/qw0VCX+R0tFbhvCmRn4fvsNNRROOFes2MolWO2ouqHj8ahk5ZqUl4YJ+A2y27o56LAMzrygI5qmRK7XXnMZCZcxoTg2tBoxt7u/+QqA9SP6oaka4aEHAuBaMC9yLqsKGtatc9tbr8i6SyGE2HeoqgYoBGMGywkhEll/RpTIn5mmk2mxQogG2ZVAwzTQiP8hY1cuk5I1lOJi1KpKSnt3AUXBpbriwhyKQvWAA8j44Sdy1m9je5/ODT5nUI8f1qObuhNyc7sqbN9o3d42svdlLGdabGSdZGworjXqr1y6584GYNPQPvRUVELDrHDpnvcrtVPPdlpsncplsl25lHAphBD7CkVRSElJp6KiBACPxwvs7ro/hXBYKqGiuezt95dJMFhLRUUJKSnpu7wuVsKlEKJehmlgRlojDOqpXFZH97nU1qwFoLxTWwA0JfG3XdUD+5Pxw0/krtzUeLiMhECP5iGoB9FN3dqHEsjprLA9clxOPeFSN3VURXV+22bEtD/VhgPOx/brIhDAtXgRwaxMyjtmo6ISHjIMANeSRZHrsMOlFZbtcGnv8ymEEGLfkJqaARAJmLv/j3ZVVTEMWSIhmkfLvL+sX8LYf1Z2hYRLIUS97KolNNAWGzMtVlsXCZcdc6xwpyR23FcP6AdAu5WbYOJhDT6vXfF0q24rXBrRymV6WwOXWyEcMusPl4aOS3WhRjr+Y6/brjwCmJHbXUsWoYRCVA4+ABQFTdUwunTFTE5GW7USTDNxoE+kLVbWXAohxL5FURTS0jJJTc3AMHTqGSew01RVISsrmdJSP4Yh1UuxZ7XE+0tRrPbx3Z3kK+FSCFGv2L0nYz+2+at1XG4Fj0dFW78OgNJOOWhK/T+YKg+wwmXuyk3ObS7V5bSy2uwQ59G8VIeqMUzdCbphgvTKS+a3pdV06Oyt95q9qtcJt7HhMhBTubRvd8+zNqAuH3wAgBVKVZVw7764Fy1ALdiGOzVSudTjB/rImkshhNg3KYqCpu3eP4FVVcHj8eByBSVcij1uX35/SbgUQtQrNlCadSqXhmES8BukZVg/QuzKZVnHbFRFRalnHUtNp/aEMtJpu2YLaljHcGl4NW9CuLSH8HgjE19103DCYNCo5aQz21FSGCK7bXzl0ogcp6laXLisCdcQ1GsJGsG4YwFcv861rnuQFXw11Xqc3jcP96IFaCt/wzV8ABC/FQlEBxoJIYQQQgjL72JabE1NDUcddRR/+9vfWvpShNhnGGbDbbGBGgPTjNmGJFK5LI6Ey/raYnUMqgb0wxUKk71+KwBezdfg89vtqPZ2KAC14VpSUl106ZGUeP5IddOluJznN02Dj9a8z/urZ1AWKHWOtddcun/9FVNRKBuYB4CiRMMlgLbqt8Q1l1K5FEIIIYSo1+8iXD777LMMHjy4pS9DiH1KY2suo3tcWj9CtPXrMN1uKnMy8GieeiuXhmlQcYAV2nJ/s1pjfa7E1labvVelYRpOFTUU2ZakPuHINiSqkli5hMR9LpXCQrSN69H79KU21Qqr9lrNcK/e1utatzZmWmydrUj8suZSCCGEECLWfh8u169fz9q1axkzZkxLX4oQ+xQ9rnIZ3+8fO8xHqapELSok1LUrpqbi1Xz1rrk0MKgY0BeIrrtsrHLpcdpiw/Fbiuj171FmX69LjVYu65tya70ew1lvGT5wuPP6NHvKbLfu1ufr1+GxB/ro8ZVL2YpECCGEECJeqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u5/6KGHuO666/bWJQux39BjAl1C5TJmGxJ1ndUSG+zaFQCvVv/eYaZpUN6/DwC5KzdHjm04XFrnIX6/TKBWD9R3OHqksuiKBERFUeqdcgtW6LTXW4YOGuGEULtyqXfvAYC2YT2uyJ6Zdfe5lLZYIYQQQoh4rXqgj9/vJy8vj0mTJnHVVVcl3P/xxx/zwAMPcNdddzFkyBCmT5/OhRdeyKeffkqbNm344osv6N69Oz169GD+/Pm7fT2qurub7e5Z9vW0tusS+wczErgUVQHFjHuf2S2hKaku3BuscBno1hlFAZ/bR0D3U7d4aWJS0zmXQFoybdfko+k6SW5fwnE2r8uLokDYDMUdEzSC9b7nTQwUJVK5VJXIcB4TTVXrCZmmU7nUh4/ApMJ6rGY9lsxMjKwstA3r0RTwujyEzRCqquDzqWiate5U/uztOvn5JZqbvMdEc5L3l2hO+/L7q1WHyzFjxjTazvrSSy8xZcoUJk+eDMBdd93FN998w4wZM5g2bRoLFy7k448/5rPPPqO6uppwOEx6ejoXX3xxk6/F5VLJzk7d5dfSnLKyUlr6EsR+xjRNftsSxjBNUpK9ZGYlkepOYunCCjati+65lNMuibT5+dZj+nYjNdVHbpssjKoAgUhVUkHBxCQ9w4dpmhT170bnOcvpUlBC7qAs0vxJmJh4NE9clbJddiaplT6SUl2khqIVzuR0jeys6J9F3dD5afNPpHvTSU310SYzjezsVNJTk1EVFU1PHOGdmebFM/9XSE4mc/TBpG36ntSQj5zsNLJTI+fu3RvmziU7VEVWehr+kN/5GeDxaoRDZqv9mbAvkZ9fornJe0w0J3l/iea0L76/WnW4bEwwGGTp0qVcdtllzm2qqjJy5EgWLFgAwPXXX8/1118PwLvvvsvatWt3KVgChMMGFRU1u33de5K1wWoKpaXV+9weOKJ1W7G4imdfWo06qJihh6SxckUxn08vorw0MjTHaagPE1i6Ah9QmJNNVVWAmhSdysoAVX6rfdXey7K0rMoapNO7E53nLCdtwWqqDg5S4w8RNsKkuF1Uh6Itr/6KMFVVAYoop6oqevu2ohIyjHbO56tLVzEnf57zeZUrSHFxFf7qICEjVG9rbM2vi6GyktBho6goD1BaXkVVVYCy0hrctVUApHbuhnfuXMrnLSaQo1NZW0NBYRku1YXLDdWVBkVFlbu92fDvlfz8Es1N3mOiOcn7SzSn1vr+Sk9Pwu3WGj1mnw2XpaWl6LpOTk5O3O3Z2dls2LChWZ6zNX1zYxmG2WqvTeyb1q70Yyo6G9b6ycrRWPbzZjyVuXTvncT61TUYkbzmS9ZQ7T0uO+RgmiV4VC+YCvYMIBUN0wwT1g0MDLb17QJA7oqNBNGc+92qh9i5QZriwjQhqIfibq8J1cS933XDiLtfVbTI/Qq6Uf+ay+QFiwEIHTgcwzAJ67p1DlNxzh3u1h0voKxbh6ttBqYJgVAtyW4Nt1vFMHRCIRPXPvtTtHWQn1+iucl7TDQneX+J5rQvvr9a9UCfXWGaZr2VhEmTJnHDDTe0wBUJse8JBQ1nzeWCOZUEanRGjc3ij5d3IjM7mqaSUzRrGxJFobx9G8AaxKPG/Bl0JrBiYJoGWw/oDkDHJetI96Y7A3Ps6bBgVTs1JTJIp85An0A4flqsPfjHeaxiPV/sXpvZSTkclDuC/tkHAJC6YIl17gOHA9H1pVrMYwx7qM/6dbgj1xiODPVxexTn6ySEEEIIISz7bLjMyspC0zSKioribi8pKUmoZgohmqaiPIyhWNNQNRXGnZTF+JNyUFWFXnnJznEp7iBq/maMzl2o0ayg5dW8cftcuiIh0TB0DNOgqm0mwc6dyFm/jexaDS0SBu0tP8AKhlqk9zZoBJ3zQuK0WJP43+hp9YRLj+pmQM5A0jzpAGTMt6ZKh0ccDET39Ix9jB6zHYk7EnyDdrh0W8eFQvvWbxOFEEIIIZrTPhsuPR4PAwYM4Mcff3RuMwyDn376iaFDh7bchQmxHygvDWOic8JpHRh3Yg79BluBMqSH8Hbbho4VstKKNqOYJnqPXk7o82reuO6B2Mqlvf7RP/wgFNPE/csctAYrl5rznIATDCuDlXHXGrsfp/1YiG4rYl2DdZuCgrfKT8rqdehdu2G07xC5Niskqmp0HUF0O5J1uFU3IJVLIYQQQojGtOpwWV1dzfLly1m+fDkAmzdvZvny5RQWFgJw/vnn88YbbzBjxgzWrFnDnXfeSSAQ4NRTT23JyxZin1dRFkbzmKSlu/D6VIzIosZ15WvZ5P2Fct8GPF4F7yZrGxK9R09qI+2rHs0bVwG021sNMxoua4Zb7aiuOT9HK5cx4VJTohVNe3/JDG8GHs1DWW0pZswiS7POwB61nsqlEzgVlQ7LrDXZoRGHOPc7lcuYH4lG+w6YHk+kLTZSuYy8RpfbCpdhqVwKIYQQQjha9SiKJUuW8Mc//tH5/N577wXgyiuv5KqrrmLChAmUlJTwxBNPUFhYSP/+/XnhhRdo06ZNS12yEPu82lqDQI1BcgfFqUDaoTCg1+B2qxw83sug9HZov3wKWOEyqFtrIX0uH1BP5TImXNaOsMKle85sXFNHAPFtsS7V5YRE5zyKRhtfG7ZVb6O8toxMX5b13HWG9thBUokNl4odLhU6LrEGEMWGS/u6YgMpmobepSuuNavxBayAG61cRtpigxIuhRBCCCFsrTpcHnLIIfz222+NHnP22Wdz9tln76UrEmL/VxHZbiQ5LRoQjcjAG7ty16WvwpAu6Wj/XQOA3rMXtXopbtWNqqhxay7tITmGaThVxlDffhhp6bjn/YInsg+lJ2Ywj6poTiiNva2NL5tt1dsoCRQ74dK+NptLTaxcajGBs8MSq9oaGy6jA33in9Po2g3WrCZtaxFkxK65jLTFhqQtVgghhBDC1qrbYoUQe195mRWg4sKlHQoj4cof9gOgRbYhCXXvTlAP4nVZATFuzaXTFqs759HcHkKHHoZSU0P2UuscHs3tPCZ2zaVzHlWlTVI2AMWBYud2u6XVVn9bbOS2sEGH5RsIJyeh9z8g4RxxlUtA79odgNQt2+Nev1QuhRBCCCESSbgUQsSpKLMql0mp0dsSwmWoGgBt/VpMRcHf2RqM41Ej4bKBtlg9ch5FUQkdPgaADnOtPSfdauyaSzUxXCoa2T4rXJYESqLXllC5jK6vdG6LBNzUZSvwBIKUDe6PvUHlsuKlVIWqEh4DoHftBkByfoH1+iOVW2egj1QuhRBCCCEcEi6FEHHqD5dWZc8OVzXhGsxAAHXzJoxOnQlG2kR9kcplfcHOMM3o2kZUgkccBUD7OVa4THanOI/TFBeKotQZDKSR7snApbooDZQ4Q32MOpVLZyuSuIBrXUP6z3MBKDx4KAD5lZv5ZdscAIa2G5awR67ezQ6XW63Xb1hfG2crEqlcCiGEEEI4WvWaSyHE3lduh8uUmMmpkVBorzk0TIPQut9QDAO9Ry8CkWE+Xs0HxLfFqvUM9FEVFb3/ARg5bclctJyJOWPITspBUzQM03Cqnfbn1mM0FEUhy9eGQv92qkKVpHnSnfttWn2Vy8htaT9ZQbJoxBBygPJgOQBD2g1jUM7ghK+FEalc+jZb4XJz5UY2V27Epx0IyFYkQgghhBCxpHIphIhjD/Spry3WnpYKYK5eAUS2IQlbe1zaQ3li22JdSjRc2oNzVEUFRSF4xJEouk6Hhb9Fbyd2umv0R5T9cbLL2nMzELYCbcI+l0oD02Jra0n9ZR61KT7K+veKnKMGgJTIOeuy22I9mzYDUB2qpjpUzeawdb0h2YpECCGEEMIh4VII4QiHDQoLrNZXb0r0dqdyGWmLBWDtKsDehsS63acltsXabaom0cqlfVtwjNUa6/n6y7jH2dXO2Imx9mPcqjX4J2QEI9cWH/Dqnxar4Z73C2ogwOYhvdE1K/zW1qm41mVmtcFIS8ezaRPEPE9WZFKtVC6FEEIIIaIkXAohHF/NLKaiLEz3Pklo7miYsgNcKKZyqa2NbkMS0BupXEZaUsNG2Kky2sEvOHY8pqLg+ewTME0nTNrVztihPpoaqWo64dJu0Y2vXNqDgeq2xbq/+waADcP6RPftjFRcfa6k+r8gioLRtRuq309SebVzs8eeFiuVSyGEEEIIh4RLIQQAWzYF+PHrMnxJKqf8ITeu3bTuPpcA7vUbALtyGakARgb6oMQP01EVlbARxjANFEVx1mSaubmEDxyOtnkT2pLFTpis+1+IbjFib1lit+ja13loh5Ec1fVokt3JkePjq6ee/30GwIbh/ZxwWVv3uutht8ZmbI1uf2IXVGWgjxBCCCFElIRLIQQA2/KtoDVidAaZWe64KaymaRDSQ3HHJ23chKko6N17OCHNF2kvVWN+tCgouFSXEy7VOj92ao+fCID3s4+dABndTiSxLTZaubTWhtpBMcOXSZe0rs7xsc/jLSjEvWgBwW7dKOmWG1O5rIm77vrUFy61yCg02YpECCGEECJKwqUQAoDagBWUklOsEKfHTGE1TINgZI2jR/OghsIkbd2O0bET+HxOe6nTFhuzo4eqqLhUFyEjZIXLOntJBo+dYD3204+j24goO7PmMjq5Nvb+2Oe1ZX71HQDV48eBomBiVRwDegCX6nLCbH3s7Uh6lEVvc0W2XpHKpRBCCCFElIRLIQQQDZden/VjIa4t1jScNtQMbyYZW4tRDRO9pzV11Q6evnrWXCoocYGwbrjU++YR7tkL96IFpOdvB6KVS63OUB4Ad6Qt1t5zM7qOM36PythpsWlffgVA9bhxgFWJNUyDoB7EqzXcEgvR7Uh6lqmM6jTaei5XZA2qVC6FEEIIIRwSLoUQANTWWkHJ442ESyM+XAYjbbHJrmTabi6yjunZ23psQuUyJlwqitPKappmQrhEUaiddDoAvT79Aah/zaUdFt0JbbF6wrEQDZtuf4CkH37AyMik9uBDnNezw2E+EXrX7tb5N653rkGTNZdCCCGEEAkkXAohgMTKpVGnchmKaYvN3mBVGPW+fa3H6rWoiopHsya1xlYuVUXBHdN2mhAugdrTzgCgx6ffx02NrW/NpR0uw3XaYuue1/6873cLUWtrCR43AdVjhV8Dk9rIhFvfDiqXehdrHae2Yb3zuuxJurIViRBCCCFElIRLIQQAwUbaYk0MZ1KsW3WTvbEAgHDvaLi0gyXEBz17oE9999n0nr0JHTSCtE3b6LB8Q7RyGbfmMn4rkqDTFmuHyzqVy8iPt/7/+wWAwOlnOpVH0zSjQ4h2ULkkJQUjpy1q/mYUPbK+0xnoI5VLIYQQQgibhEshBBBti/VG2mLDkbZTsFpk7c/dqpusjdsACPXpQ0i3BvXETlyNrVwS0xYL9YdLsMIfwKCZP8WsuUysXHoaqFzWN9AntbCMrvNXoXfoSGjU4c51xbbF7mjNJYDerTtKKIR3u9UObGfesIRLIYQQQgiHhEshBFBfW2zMtFhMZ2iPW3WTuX4rQZ+HUPv2TnupJyakxa65VFGdVlZoOFzWnnYG4SQf/b74lfQqKzjG7XOpNrQViT3QJ7Ettv8Xv6CYprWmU9OcYwzTIBC5bq+r4W1IbPbEWN/mfOvczppLaYsVQgghhLBJuBRCANFw6fGqzjAfu4JomIYznTW1qByPP0BJ11x0DGojt3vjwmVMW6xSty02vsJoM9MzCE49B3cwRNv/zkg4NnErkqBzbdaxdcKlbjD0/VkABKaeHXeMieEMIUrSdtAWS3Soj2/TlsiLMnG5FRnoI4QQQggRQ8KlEAKIaYv1qc56S3sdpTXQx6ompqzbBEBJt1x0U48OxnHV3xaroOBSGl9zaQtMuwSApJeeh2AQTY3ZikSpsxVJ5Hr0BqbFtv3ye9ILStl48AD0vnlxz22YBjVO5XLHbbH2diSeSOXSJBIuZSsSIYQQQgiHhEshBADBgBWYNE1xAptdJYwNl6nrNgJQ3DUXw9Sd9tLYgT5x4VJRcGk7bosF0Pv0pfaY49DyN+N77ZX4ttiYx3k0j7MG1DANFEWJa8UF6PzKfwFYeuZxCecwTdOpXPp2qnJphUtvJFwapoHbrRIKmpimVC+FEEIIIUDCpRAiojZgOMN8nHCp2ftTRqfFJq9ZD0Qql4bu3O6NHejTyJpLrZFwCVB98+3W8/z9r7gDoZjHRYOmS3VFK5eGnlC1dH/9JRnzF1HUrT3bDh0avS57oA9GTMV1Jwb62JXLTZsBq3Lp9iiYJui6hEshhBBCCJBwKYQAwmEDXTejw3yM+iqXVoj0rVkLYK25NKNrF2PXXKp11lzuaJ/LWPqgwQROOhWtYBvdItVHVVHjAqtbdWOaJmEjjIkZf05dJ/XuvwDww7QJcVVTu8JpmIazFUlsKG6I0akzpqpGw6Vp4nZb1yPrLoUQQgghLBIuhRDUBqyA5PHVX7nUTZ2gblUKPWvWYLg0yjq1jay5rGegT501l1rMmktlJ37s+G+9A9Prpduz08naWJBQmYzd61I39Lhw6XvjNVxLF1N54BBWjx6MS41/rIIVLmP37dwhtxujU2fcBQVoQWvrFbfHek4Jl0IIIYQQFgmXQojoNiROW6z1uUt1OZW+sBHCU1WDq6CA6i4dMFwaRsxAH29DA30UZae2Ioml9+xN9Q23oAaDHPvw67jqtJ7G7nWpm9G2WHXjBlLu+DOmorDxlutBURKm06qK6lQ97de3M+zW2PRtJZFwGalcylAfIYQQQghAwqUQAgjWxu9xGTuBVVVUq9JnBMneWABAVfeu1nFGTLhUYwb6KLHhUt3pgT6xai6/muoB/ei0ZB2H/+OtuPvsyqVdNVUVFQIB0i+/CLWqkpqrr6PmwKGRY11xj1UVFRMzLpTuDL1bdwAytpVYay7dkcplSCqXQgghhBAg4VIIQUzl0g6XkUmsmqqhYoWxkB6i3aYiAKp7RsJlbFtsTOVSVeLbYmPXXO50oHO7Wf3Uo1RnpTLo3W9IfvgBiExmtdt17WCr6QbpF5+Pe87PhIYMo/rGPzshNnYbFPt6rEpsOCF4NsbejiRjazFEBvoAhIJSuRRCCCGEAAmXQvyulQZKeHXZdFaVrgSibbFGpC1WUzQ0VUM3dEJGiLbrtgHg79UDIG6fy8bWXDa1Ldamd+nCB3dfSDDZR8rDD5B2xcUohYUxlcsA6duKmXj1w3g/nUm4V2/KX3sLPB7SPemoikqmLyvunKqiOtuYNCVc6jHh0t6KBGTNpRBCCCGEbef/ZSWE2O8sKVqMYRrMLfwRGOcM9AnHVC4VRXXaZHPWbgGgul8foBLDtLYi8Wie+NAYuxWJosYP9GlCuNQUjS0De/DxM7dz4s1P4Xv7TTyfzGTEyANp285Lr6L3GP7V97hCYUKDh1Ix/T+Y7doBkOHN5Mx+ZyUEyNiWXU1pSrjsbp13a7E1LVbWXAohhBBCxJHKpRC/Y3aLajiybtDZioRo5VKN+THRZvUmTLebQK+e1uMi+1wmrGskdisS6lQud26ATuz1lef1pPSbH/FffBlKKEj7/33Hoa/9j7affY3h0lh0wSTKPv4Co1PnuMfXV5mMDcFNqlz27AVA5uZCDEyZFiuEEEIIUYdULoX4HVMj23SEwyYK0bbYsB5tG7XDWHJJBUmlFYQHDEJxW8N7gkb923koddZcunZlzSU4k141VcNsk031vQ9R/ee/sPWrt8hfNZvM7gOY081N2+xudPB4dnC2yDmJDZc7fy1mdjZ6ejpZW4owDQOPW9ZcCiGEEELEknApxO/It58Vs3RBFUMPTmf4qAy0SHAMhwzcgNdnBSZ7HaXP5XPCZdtIS2z4gAFOWAzqtUBie2nsmktVUVEUK2CGjXCT1lza4U+LfUxKCv7DR7Gsp0nX9G6EKzY06ZyxxzalLRZFIdyzJ94FC/BtLyYt03psaXF4588hhBBCCLEfk3ApxO/Iol8rKd4e4vP3i1ixuIrUIQG+nG2tIexJtC02UE+4zHHC5UDntmBkUmxj6xrtoLkr4TLVnUaKO4V2yblxt9sDfexwW3cvy8bEXptbczdyZKJwDytcpm3aQrvhVqV0+9baJp1DCCGEEGJ/JeFSiN+Rqgodt0ehba6HjWsDFOaX4/fpzv2eSFtsbSS0WeHSCmNtV0crl1qkohgIWyG0bntp3LTYyOPdqpsAgSYN9HFrbib3PSPxdmdarB0ud/6cSmxbbFMql0TXXaZt3ErbE+1wGWzSOYQQQggh9lcy0EeI34lQyKA2YJCW7uKsSzrRroMHj9uFyxUNgnblsjbcWFvsQGfdor3m0lVnzWVs2IutXEL8msdd5VatYFcTrgFwwu7OiGuLbcLjAMKRcJm+cRs+n0ZGlouS4hBBWXcphBBCCCHhUojfi+pKq0KZmq6RkqpxyQ1dOe+KrnToHN2fMtoWG61cKoqKGtbJ3rCNYJsszHbtEtZcJrTFxlUu1cgxVgBtaqCrj1ezwqVTuWzCj7K4abFNrFwaPXsDkL7J2u+zXQcPmFBUINVLIYQQQggJl0L8TlRVWOEyJc0KVJqmkOR1k9spJlw6bbFW5dLr8qKikrWpAC2s48/rA4riBLRoW2zj02IB3Huwcul1+QAwTWsbELVJlcvotTVlKxIAPSFcWl87aY0VQgghhJBwKcTvRlWVNdU0NS0axBTFWn9pc9ZchmvxaB5URUVVVNqusVpiA/37AaA5lctIW2ydgTqx6yrtoGkH0Kasj2yIR/XEBdimBNbYqqrWxHCpZGbhz0wlfUsh6LpVuUSG+gghhBBCgIRLIX437Mplano0UJmmicul0G9gCgcemo4vSUU3dEJGCK9mVQc1RXPWW4b69weiYU43rXM22hZLdKAPxFcOd5WiKHjUaCjW1L3TFqsoCqWd26KFwqibN9GuvVQuhRBCCCFsEi6F+J2oqkisXJpYbaV9DkjhpDNzURQlZlKsFZxURaXdqnwAQv0HAIlhrm4FsO4+l7HHNGXbkMb4Iq2xYAXgnRVbVa075XZnlHZuZz3nmtXk5LpBgUJZcymEEEIIIeFSiN+L6qpI5TKt/kBlmNbEU2e9ZaRyqaKQu3IjYbcLo/8BQGKYc+/EtNjc5Fx8Lh9ZvqzdfSlx11f3+XYkrnKpNm2fS4DyLpFwuW4NbrdKWrpGRXkYwzCbfC4hhBBCiP2J7HMpxO+EXbm0B/pAtHIJoBs6qqY6lUs7vKVsLSSpws/Wft1w+1KBxHBZt700tvPVXhvZI6MnPTJ67qFXAx4t2hbblGpobFW1qQN9AMpiKpcAGZluKst1KivCZGQ2PawKIYQQQuwvpHIpxO9EVcxWJDZ72ipA2LTCZ8DZ49Jqi81atgaAgrwuTqCrG+bqbi9SX1vsnubbA5XLpg70Aajo0h4A11rr65KeZZ2jvDTc5HMJIYQQQuxPJFwK8TvhhMt61lwC6IYVjupWLrOWrQJgW79uTqWvbpis2xZb30CfPc3rim6h0pQ1l7sz0AegrFNb6zntymUkXFZIuBRCCCHE75yESyF+J6oqwviSVFyu+v/Yh51wGV+5zFy6EoDi/j2cYxPaYusO9Ind53IPTIetj0eLhstdX3PZ9IE+epKPitws1E0boabGaYUtL5NwKYQQQojfNwmXQvwO1NYahIImqWkauqE7t8e2xeqRgT6BcEzl0jDIWLaKkM9DVfcuzrF1w6VWpwJoB7jmCpYQ3xarNSFcKrvZFqsqKsXd2qMYBtqa1U7lsrw01ORzCSGEEELsTyRcCrEPqQpWOhXGpqiutB6zLW0e7656ywmYsW2xtXqAJUWLKQkUA5FwuXo17io/23t3wu1Nco5VFKXRCqDdCttcLbHW9UUrl0pTKpfsXlusoigUd8u1Hv/b8phwKZVLIYQQQvy+SbgUYh9RE67hvdXvMnvrT01+7Ob1VqurnlxOTbiGmrA/4Zi15WuYV/AL2/0FQKQt9pdfANiW1xW36ok7PrZ6WXfNpT0utrmG+QB4d3mfy+jHuzIt1q5cAmgrV5CeGQmX0hYrhBBCiN852YpEiH1EVbAKwzSoDlXt9GNKi0N8+1kJC+ZUAJDT3gWECRpBIL5yWRWMP69X8znh0poU2/BelnXbS+3qYHNWLn17ZM3lLlQuUSju0cF6/G+/kZKqobkUGegjhBBCiN89CZdC7CNCkUBor43cke2F1dz61JtkVPWmXUonJkxux28pXvzhMCE9sj4wZs1lbDXTq3mtttOYymVm3cqlqkFk+WbCtNhIebA511zGDvRp0rTYSPDdlWAJkcplV6stVlu5AkVRyMh0UVIUIhg08HikIUQIIYQQv08SLoXYR9hbhMQO5GnMghWbKDcL6ZqXyTVnj8KXpLFshVVdq69y6Q9Z4XJkx9G0T2mPEg7Dr78STk2htHNb2tYJkLGBrm6429trLtUmTH21A29TAmnc41EIpiahd+iAtm4t1NaSkWWFy4qyMDntPDs+iRBCCCHEfkh+xS7EPiKoW4HQMHcuXBZut9ZZduyp4UvSIo+1qp6hyLli6ZHzpnszSPWkoS1ZDH4/lUMHgqri1uoPly7VlVCh3BuVS1VR8WhWkFOb8KPMbovd1cqlPTwo1CcPRdfR1q6JrruU1lghhBBC/I5JuBRiHxF02mJ1TNNk5bJqZn1Rwi8/lGOaJqZpUlIUZMWSKvzVuhMuUzKj5wib9l6WkcplTFuszRsJbO65swGoOnAoEN+GCqBGwmV9FcC9seYSotXLpqy5VHY3XEZeU6hvX+s8vy0nI8sK3hVlsh2JEEIIIX6/pC1WiH1EMNIWWxvSeeeVbSyZHx3A07mHj0W/VPLjV6UADDwwlcLCAIoCSWlWtdIwDSdMhuppi7V5I/tHumb/DEDy6GMYlptL78w+ccdparRyWZeyF6bFgnWtlVQ2aZ9LO/jW3Ztzpx8fea5gH+vrof22grTRRwNQWbFzVWUhhBBCiP2RVC6F2EfYbbHzfi5hyfwqMrJcdO1pBcHSohDrVlprJhUVfltSTVVlkJRUDR2rmha7VjNYT1uszW41dc2dDaoKIw5jUM5gklxJccdpjVQAnTWXzdgWC5CdlINH85DsTtnpx+x+W6z1moJ9rXDpWvkbZnIlm5PmUFRWuUvnFEIIIYTYH0i4FGIfEdSD1AZ0Nm3040tSufj6rvQ9wApVFWVhykvDaC6FPv1TCAVNTMUgLcPlBEk9Zq1myLACZ922WI/mQVVU1M2b0Lbkw+DBkJZW7/VE11y6E+5TFRWX6krYG3NPO6TDoZzWd4oTiHeGHS7du9kW61QuV66gTMun3LOZzeWbd+mcQgghhBD7A2mLFWIfEdRr2bQ+gG4YDBmRTkqqRnqW9Ue4aHsQf7VOmxw3eQNTWLm0GgODzAyNkBHCNE1nvaV1rvrbYu01jPZ6S0aNavB6VKXxttijux2Dt5nDZUPP3xg7HNbdm3NnqZHKpZ6Zgd4uF23NapK9VnCvqpKBPkIIIYT4/ZLKpRD7iJpQLRvWBjAVg+EjMwCcQTKb1gUin7vo09+qZppKmLQMK0CFjBCGEVu5rL8t1h7a47LD5ciRDV6PveayoQpgbnIumb6snXpte9PutsXajzdNEz2vH0o4TM72LShAVaUM9BFCCCHE75eESyH2AWUlIT77aCv+Kp3stm7atLOCXUZkC4yCLdawn4wsN+mZLjp29WJiOltkBI1gncplpC02oXIZmRQ7Z8eVS82ZFrtvNUDYlUfXLl63Xfk0TIPwAQMASFu5Go9Pobo6hGEkDkkSQgghhPg9kHApxD7giw+LKC710ybHxbBD0531k2kZLlDAXjqZEWmTnXxOe8adkklKaqRyqQfRDcM5nzMt1qwbLn1QVYVr6WKM9h2ga9cGr0lrpC22VVPsttjELVR27uHW401MwgMGAZC+ci2+JA3dMPFXy8RYIYQQQvw+7dfhsra2ltNOO42TTjqJE044gbfeequlL0mIXbJhXQ2GEuKQw7NIStIwTCsoappCWno0JNnhMruth07do/tSBo0QekzlsjayrUldHs2Le87PKLpO6JDDnCBWH2efy30sXLZLziU3pT1d07rt0uOVyI9NwzTRBwwEIO23NfiSVExFp7JcwqUQQgghfp/2rX8VNpHH42H69OmkpKTg9/s58cQTOfbYY0lPT2/pSxNip5WXhSgrC5DWVcPljgyTiZn8mp7pdgJNZpvo5FYjdjqsHnTaOa3PG26L9fzwvXXM6CPw0jBN3b2pqy0l1Z3Ksd2P3+XH25XLstoSliUXcKrLRdrKtfgmqfgxqawI06HRr5wQQgghxP5pv65cKopCSoo13CQYDGKaJkZMa6AQ+4L8DQF0JUhWdv3B0V53CdHKJcQH0KARjPtcN3V0Q6dOVyxezYf7RztcHt7odTltsfvYmsvdZQ/0WV++jnWBfPw9u+ErKqFt2I+JQWW5TIwVQgghxO9Tqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u4PBAKcdNJJHHnkkUybNo3MzMy9dPVC7BmbN9QmhEs9ZvJrbKBMjwmasceE9FDcQB+wAmddSTUhXAvmo+e2x+jdp9Hr0vbRttjdZVeAQ4b19azu1xeAnoXbQZFwKYQQQojfr1b9r0K/309eXh6TJk3iqquuSrj/448/5oEHHuCuu+5iyJAhTJ8+nQsvvJBPP/2UNm3aAODz+fjggw8oKSnhqquu4thjjyUnJ2eXrkdVG15/1hLs62lt1yX2rPwNAQwlTJsct7ME0lQM5/tub0eSmqbh9UbXX5oYzvFhM4QLLW4JpW6GUFQz7racBUtRdJ3wqMNRNet3Tw29v9K8aSgKZPjSf1fvQU21vo66GUZRwN+/D3zwCd22bsPwGVRV6L+rr8eukp9fornJe0w0J3l/iea0L7+/WnW4HDNmDGPGjGnw/pdeeokpU6YwefJkAO666y6++eYbZsyYwbRp0+KObdOmDf369WPu3Lkcf3zT11u5XCrZ2alNftzekJWV0tKXIJpJMGiwZVMAd7JOuw4pzjYaGZlJZKda78fOXUNAIdltvXHv0ZQSD6mmD4DkNBcpbi+p5T7n/tQMD+nhJFJro7e1W7gQAO9x4/FG3lcNvb+ys4fQv0svUj2t889Fc8msTCY17MPn1Uh1+eAga6hP920F0N2gqsLA1N3ktJN1lztDfn6J5ibvMdGc5P0lmtO++P5q1eGyMcFgkKVLl3LZZZc5t6mqysiRI1mwYAEAJSUluFwu0tPTqaqqYs6cOZx++um79HzhsEFFRc2euPQ9RlUVsrJSKC2tlr319kNVlWH+888thIImuX0V/NXRCa+FxRW4aq0fOL5kax1xm7YuiournGNKyiupqg4AsL2klHSPQVVVwLm/oKiU8gp/3G2ur2cBUDr0YCit3qn3Vy1VDd63P6qsDFBVFUCvVakJBSjo3JfuQNu1+Zg9TFYsqeT/rl3KUcdnc9Tx2S19ua2W/PwSzU3eY6I5yftLNKfW+v5KT0/C7W58K7d9NlyWlpai63pCi2t2djYbNmwAoLi4mJtuugld1zFNk6lTp9KvX79dfs7W9M2NZRhmq702seu+/qSYzRsCdOnhY/AxaSyvjN4X1sPO9zwn18P5V3cmp50n7n0Q1qMDe2rDQUJaCNMEt+omZIQIhGsxDNM5xlvlx7NkCXrHToS79UCNnEveX/FMU8E0IRS2vp6BrEwCOVlkbyqgc3tILXURqNH5+pNiXG6FUWOzWvqSWzV5f4nmJu8x0Zzk/SWa0774/tpnw2VDTNN0tgro06cPM2bMaOErEmLXFBZYA3dOnprLJnM7VIJH8xDU4ye/AnTrmZTw+LpbkdgDfpJcSYSCIYJ60NmKJCepLb3mL0ExDEKjDm90f8vfOzUyB80ekGSaJuV9e5D74zxOGVDN4HE92Lw+wItPbOKnb0oZNTYL0zQxMZ1Js0IIIYQQ+6N99l86WVlZaJpGUVFR3O0lJSW7PLBHiNakrNjaizKzjYvayGTXZFcyEN1mZEPFer7d9DWGmbjFTuy02KARch7jc1lBNKhHp8UOa3cgBy3ebt1+eMPrnEU0d5uRkq+JSVnfHgCk/7YGgM7dfbTN9VBVoVNeHmTG6rf5z/J/8/Haj6gJt672eiGEEEKIPWWfDZcej4cBAwbw448/OrcZhsFPP/3E0KFDW+7ChNgDdN2kvCxMWoaGy6USigRBn8savmNXJb/d9DUbKtaztWpL4jnqVC7DZrRyCRAygk5AUhQFz9dfAhA8alwzvar9g70Vic3EpLR/LwAyl612bu/Q2Rros2lTJVXBKgzTYHv1dl6evoRvPy/ZexcshBBCCLGXtOq22OrqajZu3Oh8vnnzZpYvX05OTg5t27bl/PPP56abbmLAgAEMHjyY6dOnEwgEOPXUU1vwqoXYfZXlYUwDMttY24yEI3squlUPAIYZ33/v0tzUpZs6qqJiYhI0ghhG3cplyGmL9azfgLZ+HeEBgzBzc5vnRe0nElpbTZOS/r0BaLNsFXYNuX0nLwvnVrItPwCdrdsqy8OsWVFOweJikpNVRozO3GvXLYQQQgjR3Fp1uFyyZAl//OMfnc/vvfdeAK688kquuuoqJkyYQElJCU888QSFhYX079+fF154wdnjUoh9VVmJ3RJrhUa7UunVrGqYbupO4GyIYRq4VOuPeEgPOWsE3ZHbzMj/ANK+s6bEBsdK1XJH6qtcVndsS016MpmrNlASDILHQ/tO1vdq65Ya1vr9pKZr1NYY6Ir1vf343UJ69E0mp51nr78GIYQQQojm0KrD5SGHHMJvv/3W6DFnn302Z5999l66IiH2jrISKwhmtrH+iNotrR7NCiK6oVMZrHCONxtYc+nW3GiKRnWoOqb6aQVWO1gCpH4fCZdHHb2nX8p+p27l0hrWAwV9u9L9lxW4fltOeNAQJ1yuXFrNipQqkpJVOnT2YighUtM1qip0tm6ulXAphBBCiP3GPrvmUoj9Wd3KpT2cxw6XhqlTGYzuTVLvQB9TR1M05zGBsLWfpRapXGKamKaJGgqT8uPPmMkphA4+tHle0H5EURIrlyYm2/K6AOBaMB+ApGSNzGwX4cj3rsZvsC0/iK6E6XuAtUdpRVnj1WchhBBCiH2JhEshWqFouLSCoG7Gr7nUdxAu7TBqhUurguYPVwPgUuLbYjstWYfm9xM8/AjwSBVtR5R6KpdgUtCvKxANlwAdItVLAAXwV+ughejZ15r6K+FSCCGEEPsTCZdCtELRtti6lcvI56ZOZSg+XK4uXcUXGz7DMA1nUqymas50WHsLDJcW7YY3TZPuc5YDMiV2Z9W35tI0Tbbl2eFynnPf4OHpZLdz0X9QCqphBfe0bMjMtr6P5WWhvXTVQgghhBDNT8KlEK1QaXEIFMjIsiuXVlh0KpeGQWVtuXO8YRqsr1jLlqotlNeWRcOl4sKnWeHS3nbEqVxGPu/10xIAgkePb+6XtV9IWHMZ+V9VTgb+Num4li+FgNWC3H9wKudf04luvZJwEQmXbUzSM63vgVQuhRBCCLE/kXApRCuj6yYV5WHS0l24XNYf0bARxqW60BQNiKy5jK1cYqBHWmMN03TCpaqoJLmT4s7vipkWm7Ixn+wNBQT65WF0697cL22/kFC5tLeFURQK+3VHCYdxLVsSvR8Tt0clp00qAGltIDVNQ1UlXAohhBBi/yLhUohWprpSxzRwqlsQ3bNSU61wGTJCVIeqnftN03DWXRqmgR6ZDOtSNZK0+HCpxYTLDt/OAaBqvFQtd1Z9lUv7a1+Y1w2IX3dp39e7VwaKAm06KKiqQlqGi6pKne1VxSzYPq/eoUxCCCGEEPsSCZdCtDLBoBUyPN5ohUw3dVyqyxkmU15bHq2YYVUro+FSj6lcavhcPuc4l+pyKm+madLxu7kAVI2X9ZY7K7FyGf24IBIu3fN/jd4f2fJl8LAsjju1Lcnp1ufpmS4w4ZeNC1hUuJDCmsJmvnIhhBBCiOYl4VKIViYcssKH22398TRMA9M00RTNWS9ZHaqKe4xhGhiRQKmbOrphBU1N0UhyJTvHqYrqhCN3WTk5C5dTlZ1O7eBBzfui9iP1bUViRBLm1gO6A+D6ZU70/kjod6kayV4vIcMa4mNXpssq/QAYkaFNQgghhBD7KgmXQrQyoZAVRtxuK8SEnRZXF2ok2NTqtXGPMeq0xRox02JjK5f2mk2A3B9+RdUN1hw2EEXVEDtHrSdc2vwZyYR79sK1ZjVKcTEQbYtVFAWP5iFshDFMgww7XFZY4dKuNjfF6tJVfLvp67gqthBCCCFES5FwKUQrEwpGprpGwmVsi2tsOATwRvawjA2XekxbrFW5jK65tFprrfPa6y3XjByY0OopGlZ3n0tM0wmYhmkQHn4wAO5f5zi32Y+zp/0G9aBTuSyv8scd1xQrS39jQ8X6hEq2EEIIIURLkHApRCtTty3WDoou1YVap8KY7LZaXg3qD5eqoqEqqhNCNUVDQcFVG6T9D78SSvKx6cA+zf+i9iMN7XMJ1vchFAmXrl/mOvcDqKh4NCtcho0Q6ZnWXpcV1db+o7sSLnUzvMuPFUIIIYTY0yRcCtHK2G2xTuUy0harKWpC5dKuSsZOizVNA93QncfEHqepLhQFus9ejrsmwJbRBxL2ehLWEYqG1bcViR0gTdMkaFcuf6lbuQS3agXKoGFVLk0MqvxWi7NB0wOi3TK9Ky21QgghhBB7moRLIVoZp3LpiW+L1RRXQrj0RUKjYRrOcdY+l9F1mhATLiOVy7xvFwCw6ehDgcTAJBpW31YksWseQ3l5GKlpuOf9AuGwc5+qRCuXIT1Emxw3ulZLSWEIXTcxjF0Pl4asuRRCCCFEKyDhUohWJhSy11xafzzDRnQ4T0OVS3uiLFhh1A4b9vF2CHWpGmqglp4/LSXs85I/chiQOAFVNKy+abGxQ30MVSE87CAUvx/X8qVORVJBia65NIIkp2j0HuAhGDTZujlgrZs1TMLhnQ+K0V8oSFusEEIIIVqehEshWplwnWmxRsxwnrpVM3ubkbiBPobuVLTUSLi0Q6iqaKR8+x2emlqrJdbnaeZXs/9R6/zYtEJ9TLjEIDRiBACuuXOcrUhURcUTaYsN6UEABoywJvmuWubn9X9t5p4bVvPX29ZSVhLaqWuJVi6lLVYIIYQQLU/CpRCtTMgZ6BO/FYkWmfQaGzCjlUszWsUi2iKrqfGVS03RSJ05E4CNRx/mnEfaYndevZXLmLZU3dAJjzgEAPfc2dh3qYqKW7Mrl1Z4bNcVUtM0qip1irbX4nIpBGsNlsyv3OF11N1+RgghhBCipUm4FKKViW5FUmdabKQKabe6ulSXMyAmtnJlGHpctRMgKbLXpSeok/LFF4S8bvJHDo3W26QtdqclrLk067TFYhA6yKpcuufOjg70QcGj2msurcpl0Agy8MA0OnbxMnFKDudf1RmA35ZU7/A67F86gAz0EUIIIUTr4GrpCxBCxKvbFhudFmsFRTvceDWv83HIiLZR6qaOYiqRx1j3p3kyAOg6awFqVRWrxgwlnOSNq7iJndPYViRgTes1M7MI9x+Aa/lS3Fu3WY9TVNxadFosQK1eS9tcD21zPXRs56FDjpf0TBeb1geoqgyTmtbwj+jYcCmVSyGEEEK0BlK5FKKVcQb6ONNireBgt7ja//VqPidc1g0asftcArRLbsexPSbQ7/PZACw7ZkTcc0pb7M5TdlS5jHy/QoeNBCB97q/W4+Iql9YvA4J6bdzjFEUhb2AKmDuuXtoTgWOfUwghhBCiJUm4FKKVCTe05lJxRf5rr6P0OkEnPmiYCYEUoL1fw/v1l+hZWaw/uD/WGBrruSRc7rx6K5f1hstRAKTPnQ/UXXMZrVzWfVy/QSkArFreeLiM/4WCtMUKIYQQouVJuBSiBZQGSvgxf1ZcuLCFIm2xCWsu1fhw6dV8zuRSe7sSsIJG3TWXAN7330EJh6k++RQMl2ZV3KQttsnqrrmkTlusvQ1M8FArXGb8Eg2XdafFBsKBmMdZ3/cu3ZNAga2bEt8bseK/5/J9FEIIIUTLk3ApRAtYU7aa1WWr2Fq1JeG+upXLxDWX1n89jay5jJ0wa/O9/SYA1ZNPB4irtsk+lzuv7peqobZYMzeXcK/epKzbSHJJBQoKLmfNZaQtNlLBhGj7s8erkp3jprw0TI2/4YpkbLVaBvoIIYQQojWQcClECwjb24bUEwqiW5HEVy5V1frcDpQ+zYuqxAdQ65zRLSrsQKqtWYX7118I9+xFcNgwID4USVvsztvRQJ/Y72lo5GgAOi1ei6qozvfD/v7Errk0Y9ZN5nbyAlCwpf7qpWmaLFlUTqDGfh/JmkshhBBCtDwJl0K0ADsM1tfOGArabbH2mkt7K5JIW6w90McVM9CnThXLrmrZ02K9b1lVy9rTpqBEQmrdUCR2zg63IokJeqFDraE+XRauRlGij7WPqa8tFqB9JFxuy49WNu3nAlgyr4qZ725l2cIqQCqXQgghhGgdZCsSIVqAHQbqCwVOW2xkWmzd9ZNaPVuRJEyLNWIeY5r43v4vAIHTpjiVt7jKpbTF7rQdVy5jwmVkqE+nhWtYp6jOGlm7Shm75jb2vdC+ox0uo/dXlod59m8bGToinXWr/RiEKS0KxZ1PCCGEEKIlSbgUogXY4a++dkZnKxJ7zWWdgT72mkuf5nOmxdadHGqv31NVDfcP36NtXE/okMMwuvdAqWeIkLTF7ryEyiXx61cNot9To3MX/J3a03bdVjaXVqCmRavGIT0U9/2vr3IZ2xa7eoWf6kqdH74qtc7h0anxGwRqdKlcCiGEEKJVkLZYIVqA3bZaX7gM11lzaQdHO1RmeDNQFZV0b4ZTCasbUuzHuFU3vn+/BEDN2ecC0SBpRmKRaKI6Vd66rcW6oceF/eKDh6KYJhmz5zoVYsM0qDWs4Fh3HSZAWoZGUorK9q1BZ3rw5g01cc/jSbKet7QkLGsuhRBCCNEqSLgUogXYlcX6B/oYKCpoml25tIKKK7LW8qDcEZyedyYp7pR6tsWwzm0/xl1chnfmhxgZmdSedCoQW6WMtnNK5XLnqdStXMaHy1Wlv/H6ilcpqikCoOgQa4BS+o+z49Zc2q2s7sgEWTOm4qkoCu07edF1k7/etpYFcyrI32CF0cPHZzFgaCoHjrL2wywrDkm4FEIIIUSrIOFSiBbQWFtsOGQ6VcvYY+P2rNSstsl6w6WhO1uTpLz9X5RgkMDpUyApCYiur4ytuMmay51X92tlmmbc97GwphDTNCmvtdpXtx88BID0H34GrO9Z7ERfu9257nth7PHZ9O6fTDhk8vn7RRRsqSUtw8XRE3M4/bwOtOtkPa60OOT8skIIIYQQoiVJuBSiBTTWFhsKmc4el9axkW1F1MQl0rGB02ZitcW6FA3fqy8DEDj7vHqOMxOqbmLHEtdcxn8N7ZbYUOS/tW0y2N6zI96Nm1A3rE8Ml5EpwHUDYpceSZx9SSf6DkjBX61jmtC5u8+5PzVTweVSKCsJEdZlzaUQQgghWp6ESyFagF2NrDuIxTBM9LDpDPOBaFipL0g2VLnUDZ0ui9bhWr2K0PCD0Q8Y4NwfNy1W2mKbLGFabJ3Kpc3+vpmmycbheQB4vv8WBQUT09mGRmugcmkbMSrD+bhzt2i4NNDJbudG12HOrJLdeEVCCCGEEHuGhEshWkDYjO5z6a/W+W1pFYZhxgzziQYYo8602Fj1tbNa+1zqDProBwBq/nh+vY+JrVxKW+zO21Hl0haOtCYbGGw4yAqX7u++RlGUuEDaUFusrWdeMpnZ1jGxlcuwGWbgsDQ8HoWlCyuYP7t8N16VEEIIIcTuk3ApRAuwK5fV/hAvPr6J15/fyuzvyqLbkHiifzTtIFpf5RISw07ICJFUVkWPb37FSEun9sRT4u6XKuXuSfz61d9ebK97NU2TzYN6YrjdeL7/FtW0gqS9ZYnbCZf1t7aqqsKpZ7XnqAnZdIkNl0aI5BSNg0ZmoKgmH7y5nZVLq/fAKxRCCCGE2DUSLoXYC9at8rNlU8D5vLSsll9+LGfGf7ZQvN0KId9+XkJleWTKa+yaS0NHVdQGq4t1w2VQDzL4wx9wBUMEpp4FKSlx98duh+FULiVw7rT6BvrU3Y4E4oc2hZO81Bx4IGpxMW3XbsEgOi1WUxqvXAJ065nEmGPaoKqJ7dI57TwcclQ6pgFvv7KV2loZ7iOEEEKIliHhUohmFgoZvPbPLbz+whbMSBvsj98Us3VzLTX+MP0GpzD04HQCfoOvPi4G6oRLU6+3JdZWN1yqoTBD35+FqSjUTLuk0Wtz1lxKW+xO29m2WLtyaYdG/+hRAHSZu6LBttjSQAlLi5bUG1brChvRSmePPj569UsmWGtSWhxq4isSQgghhNgzJFwKUUdQD1Id2nPtheWlYcIhk8pynaLtId55dQs1NTqdung548JczrygI0dPzAZg5TLreV11tiKpb3CPrW7Vse+3C0gtrmDL6IMwevSs/zGKIpNid4OiKDtcK+kM9Il8nWsOHw1A51+Wxd0fO9Dnk3Uz+bVgLqtKV+7wGuyJw9bHOmlZEFJqqCgNN/IoIYQQQojmI+FSiDq+2fQlH655b49tTF9WEq0kzZ1VxsrllSSnaAwekY7Lbd2eluEiKUUF0wojq9RZrChZjmma6Kbe4HpLqFNJM00OfOdbAFb/4cQGH6NgDZUxMaVquQsyPBlkerOAxsKlvebSur928BCMtHQ6LFyFFgw5a2lVVGd7EjtwFvi3xZ0rpIcory2rc/5oiDRMk43euaxO+5yS0prdf4FCCCGEELtAwqUQdfhDfoJ6MO4f77ujPKaSNHdWOaZi0K2nD5dLwSQaTDLbWEkzpPgpU7ewtmyNs1XJzrbFdli2ng4rNlLYowMlhxzY4GPs7TBM05T1lrtgQs8TObb78UDD4TJUp3Kpuj2EjjgSV22QzgtWO2syVUVBVVR0M1qhLqstjTvX7G0/8cGa9/CH/M5t8eHSAJ8fQ9EpKvEjhBBCCNESJFwKUYc9xXNXK5fbt9Xy5r+2OBXL2MqlaYKJTseuvoTnsMOloYTRNNXZUgSiQ1/qExsu7arl/ElH4FLdDT7G3g5D7BqX6kJTrWpyQ+8T3dluxrpfURSC448FoOfPy5zvrapYlUvTNMnwWntaltWpUpYGSjBNM65dO3aPVN3U8SZbH1eUy5pLIYQQQrQMCZdC1GGHgV0Nl5+9V8TyRdX89E0ZAGUlkfbHSGdrh25uklOsT/TYcJkVWXunhNA00I1wzLq8HbfFpm8rpu+3C6lJT2b5uOGNPsapXCKVy92144E+9tAkleDR4wHoOXspYd263w6Xse830zTjqpR2qLRbba2Pw3g0T+R4A3ey9fiKMllzKYQQQoiWIeFSiDqccEnj4bKkKMhr/8zn529LCQatY7durmXNCisULF1QiWGYTuWy38BU679DkhOeC6KVS10Jo2kKuqk7ex9qjQz0scPl8P9+jWoYzD/1CMI+D+4dVC7BCjGy5nLX1Q2FsUKR8Oi0xaJi5LanOK8HmVuK8a5d55zDbouNbXUtqil0zhPUgwAEDeu/hmlgmIbzPdZNHY/Puo7y8uCefplCCCGEEDtFwqUQddhhwdxB5fLnb8tYtczPpzOKmP5UPqZp8sOXJQC43ApVFTob1wUoKwmhqDDx9HacdGY7Bo2Ihks9ZjuJzDZ25TIaLu2w0fiaS42k0koGzvyZkM/D/FOPAKJTSEXzargtVo+73w7xW0YNA6DNtz9at6M4vyAIxVQmi2uKAPCHo62wduXSfl/YlUvDNDBVA49HobI8jGFIy7MQQggh9j4Jl0LUYa9FbKwt1jRNZ9uQzDYu8jcE2Lw+wLKFVSQlq4w7wdpaZNHcCiordNIzXKSkahx4aAYoMe2P9Qz0MQihagqGaThtsztac3ngu9/hDoZYdMJhBDJSAHA18hj7NUhb7O5prHIZNsJx+1naAXLLKGvQUs73PwNWu6w9DdiudgKU1lq/qIhdZxnU48OlprhQFZWQEcI0TZKSNcK6gb86+ksLIYQQQoi9RcKlEHXszJrLooIQZcVhOnbxMnh4OgCfzijEMKDfoFQGHZSOqsLCuZVgRoPj/7P33nF21XX+//OUW+dOb+khPSEQSgIIAgEUUMCGCihYsOyqK7r+Vl33q7sra1t72XV1baiIi1gQ6Yj03gkJKZCQnkymz9x+T/n9ce7nlFumZYbcST7PxyOPmbnnc8753HPPuTmv83oXqFDls0hjwLl0xpljyLmMpLIcf+ODmLrGM5e8zn19JLdT5FwCMix2kqjUi9T5rL2wWICBlUtIN9bR8vQLhNJZNywWgkV6csVQWL+4LBTDYkWxIF3V0BTNDZuNxVXADlQolkgkEolEInm1kOJSIinBqxZbPbRQuJZLjq5j8XInzHXPzhwAy46toy6hsWpNA6bpbEOEvEJ5lU9BNKoRi6tuWKy/7+FIfS6X/uluoqkMG1+/huyMdvf1EQv6yGqxk4JfUFb6jApWoSwsFj3E9pNXoBoG85/ajKqoKL6v4qjuVBIuuOIy6S4TItIfLu1/OBCNa9hYsqiPRCKRSCSSQ4IUlxJJCWMJi92ywRGXS1fWMXt+lEjUuZT0kMLCpY7YXHt+i1sh1u9c+gVl6T6aWkJuQR/wCrhUDYvNZFj+f7diKwpPvOt1gSI+I4XF+vtcSiYHv9AUrrHhE5diuYLCttesBGDh4y+iogbWjWpRFEUhZzoPKyr1tjQsr0WNX9TGYiooSOdSIpFIJBLJIUGKS4nEh1/sVasWm89Z7HolQzyhMXNOBE1TWLjMEZSLlsUJh53Lqrk1xEmvbQKgY2bYXd9fxKdcXOpYioGqF8Vl0anS1MqXauyXPyfWO8CWtcfTP68zEAo7YlisIluRTAb+Y+c/3nUhJ+/VsA0v/Lg4VlVUdqxZhqWqLHj8RVS7VJiGCKtht7hPwLksC4vVg8K0TsXGZmhA9rqUSCQSiUTy6iPFpUTiI9hrsLK43L0ji2XBUYtiqKojGI47qR4UOPHUhsDY897Sxns/NpsVqxLuayM5l0uOriMctWhodIRKvuheVXQhUyni//UdbEXhkfe9AYCQ6onYkarFKsiw2MnGL/LiuvOwoWAZWLaFoihu+KqqqGQb6ug+bhmJ3iHq178YaDWjqRphLVzMuTUDOZeG2ztTFHrSAvuNRDTAIp2aWI9WiUQikUgkkoNBikuJxIdf7AmH0bJsXnkpTaHYy3LH1gwA8xbG3LHLj0nwhW8uYtnKBH40zQmTFSIUqhf0ATjxNY287f2txOucUEcRGqlWyJ+M/eKnqD097HrDmfQdNQNwCrwIRqsWK/YvC/pMnEqhsADxonNpFivG+h1Osc6OM1cD0PLX+4LbUTTCWgRwnMq04YXFimqx4gGFv9IsQCjkONK5rKwWK5FIJBKJ5NVHikuJxEelsNj77+zjVz/cw+MPDACwY5sjLucvigXW1fWxXU7WCM4lOKGUAhEaWSoUleQw8R9+D1tV2fz37/bm4M+5HKWgDyDDYicRtSjyNEVz+0+Kgj5+8Sh+37622O/yr/cEPgNN1QkXP8fh/DCGZbhhtm61WDfnUnX3C6AXw6lzWelcSiQSiUQiefWR4lIi8SHEnmna7N2V4eVNKR682+k3uGdXDsOw2b09SySq0jkrPNKmqlIaFlsanurvdSicy9JKpLGf/hi1r4/cOy8jPX+u+7q/oM9oYbHgFC+SzuXEqVQtNqyF3c/BsArY2IFxSvH3gc5mDiyeTfSVHTRt3+su11XddS4Hsv0ANEWaAO9hg3jw4W9jAqCHFWzFIivFpUQikUgkkkPA6HFzEsk0pzfTS0+mm2Uty6uOMU2bfM7CClls2ZDkpY1p1iX30Fjwbty79+XYuyuLUbBZsCQWCHUdD/6wWHAEpl88CncKfDmXPhdS6e8j9j//ha1ppP7pn1GVfe6y8VSLlUwuuqpRF6qjMdLoCnvDMssEvDj2hmXw0umr6Hh5D3PufZz17zzJ2Y6io2nO5z2QGwCcMNuQGnILPNlVci5DIaegTy5TWVwmC0kMs0BTtHkS37lEIpFIJBKJg3QuJYc9zx54isf3PUoyP1xxeXLY4Edf38H3v7SdLS8Os3lDGkWB+YsjHLU4xvEnN5Bo0OjtKbBts5P/VhoSOx7MklBYy7awbIubXv4Tj+592HWnwMux84c+xr/3bdTBAbJXvB/rqAWuEwbB3pajVYt1f5dCc8KUhru+edHbOGfeua7IrxwW6xxv0zZ5+YxVAMy69zF3uSjoAzCUHwAgpsfQVd19MGFannPpLwakaqBqdlXn8v5d93LH9ttkMSeJRCKRSCRTgnQuJYc9WcNx//I+R1CQz1lc+6M99BxwRNwffr0PErD82AQXndXB4uY5APz6f3azbUuGx57Yx874MzTNef2E5+PPuQRHZOQKWQZzgwzmBgOiMG8J59J5Td2xndjP/xc7XkfqM//ivOYTigHncgxhsYAMi500FEKac/xDvj6XpXmtQmialknPgpnk5s+jeePL1Hf1MdzZgq7o7mcnnMuYHieshckYGaeKbPEcUkucSwWFUESp6lxmjQx5M49pm2Mq+CSRSCQSiUQyHqRzKZkSskb2UE/BRQg0wyqvoLl5fYquvXnmL4rRPiOMZVtEIgrzFsUCxXbaZzg5cHuTe0hH95Gp93LkNvVt5IXu57Ftm6HcIMP5oRHnUyksttpyt89l0bms+9qXUPJ50h//JHZHB1DeI9H5ObJwkIJycigVdgKtKNwqOpfFr13TNkFRGDr/XAAWP/QCEMy5TBccpzymx9w2M2KbYv9qST5uJKJgFGxMs9ydFOtVKiQlkUgkEolEcrBIcSmZdHYO7eCGzf/HjqHth3oqgCfQzBJRB7B/jyM8jz+5nrdc1km8XmHFqgS6prhFUwA6Zjo39jYmza0h8nbGXfbEvsd49sAz3LXjDm7aeiN3bb/DXWZYBnuTewL7FK6TEIAWVqDIT6W5a6qO/vyzRP/0e8yOTtIf+bg7RvVdxsK5LC0ANBIyLHZyUCo4yOJBQbCgT/B4J88/H4DFD60DnM9aOKCCmB533dCCmXfPzdKcS4BQ1Nl+toJ7KcWlRCKRSCSSqUSKS8mkM1zMbRzKDR7imTiIHEZ/iw9B115HXHbOijDnqCgf/ed5zF3g5FMGncuiuFQsWttDpH2N7d1tpfZj2zapQsp1nJ7vfpa7d9zFM11PueNEWKwQILZdXVwKNFTqrv5XANKf/X+Q8PppCnGhKIpb+Gc05xJkzuVkUM251IviUDwcqBQWK8iduJpsWwtz1m0l1j+MpmhE1EhgTCwUI1TMw8xbBSzLdLdVur1wcdVKvS5tHDdTikuJRCKRSCRTwWEtLrdt28Zll13GRRddxMUXX8xTTz01+kqSg0a4Kv7CNIeKgllwi5eUhqMC7N+bQ1E98eh3KwPistNb3tIeDjS2F0JuecvRdNbNAGAg57SQ2Jd0Krmu73nBHS/mIcSlaZlugZZqNN5xJ+GHHsBYtpzsu98TWCbEhYrqFvcZNSxW5lxOOv7jKPIZRbXfSq1IBKqmceDctaiWzdIHnkdXNTcsVhDX44SLYbGGVfByLlW1zKUORar3unSdS6S4lEgkEolEMvkc1uIyEonw1a9+lVtuuYVvfvObfP7znz/UUzoyKIq5QgUx92qTK+ZbgiPishmTvh5H9KaSBskhk7aOMKGQcynYPkHp/z0W12hpD6GHLZpaQ64z6YyziWgRTp55CnMSTs/JvqzTG7Mt1lY2J1EtVjhRFlZZkR8/eiZH+398CYDkV74BelA4CrHiVA4VzmUwrLIUKSgnB4XKzqUIYc0XH7D4j7da8rWrKioHLnAKRC275xk0RSfsC4uNaBFURXU/07yZ93IuqeBchkcPi7WlcymRSCQSiWQKOKzF5ezZs1m4cCEACxcuZHh4WJbgfxUQN7BGiXNpWAY7h3a8qiF5BdOrEGvYBn+8dj8//M8d9BzIs3+Ps2zGbM8l8s+tdJ7v/tAsLrykHV1TKFgFCsU2ITa2e4PfEm0BoL8oLv0OYrKQBByRC54AMa2Rw2JP+e3d6Hv3knvTWymceVbZctUnLtWJOJcyLHbSEUKw4IbFBluW+FEVlaETjmW4vYk5L2wj2t3nFu8BiIfiAK7gLFh5rOL3mKZqZQV9QlHn50jOpVmhuJVEIpFIJBLJwVLT4vLJJ5/kIx/5CKeffjrLli3j3nvvLRtz3XXXcc4553DsscdyySWXsG7duorb+tvf/saKFSukY/MqIPK6/GGxuazFxgObuG/XPa9qoZ+8bw7pTI6tm9KYhs1j9w348i29G/mRxGVbZ5jGNu+SSRtO3qV4vwDNRXEpwmL9yw6kuwAwbREW6zmXpeJS9Dls2tPNmt/9DSsaI3n1Vyq+R7WSczlKQZ9An0t5TUyY0j6XAiHucxXCYkvFpaKoqKrO5rNPQLFtWu/4KxFfWGxMd3KAvWqxhut0O85l8PMLVwmL9T9Yk2GxEolEIpFIpoKabnSWTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0t7rg9e/bwzW9+k5/85CcHNR9Vra2bcDGfWpsXio2iOCJKVRUKeYsff3MnffW7WHye47y8WnM27QLi3nvnjhSWVQfAc08OMa9YuGfmnKg3n+Lcxe/l87Tc5VkzQ7PaDNioqoqqKsTDMeLhOEP5QWyswPZ6MgdY3LwYq7iNiB4pLrOxfdsFx60qWHnO+uGN6AWT1Kf/CebNq/g0SFdVFMVxsTRVQ1EgpIVGPMaqqrj7UxSl4tiaPb9qCFWl4nGMKGEUBYzi+aeq3jJdUwOfta5q6JrG5nNOYM0N99J06x1kPvEv6JqGaZnEQ3WoqkJED7nbFOeQrunomhbYXrhYLTafswKfnWlZo5zbry7y/JJMNfIck0wl8vySTCXT+fyqaXG5du1a1q5dW3X5Nddcw6WXXsrb3/52AK6++mruu+8+brzxRj74wQ8CkEwm+djHPsa//uu/Mn/+/AnPRddVWlsTow88BDQ31x3qKQSoz0RJZKJE6zRaWxM8fG8P/b0FDqSyHB0KkWgIlx1L27a59Y/76JgR4eTTWydtLv1KiETCiRPcu8HpvdnWEabnQJ5tW9IoCqw8toX6RifkcEiNk+hzxtc3RMvmmRiKkCg4y8MJaG1NkEhESYRj7tj57bPYPbQbrc6gvj5KIueMz2hDtLYmiMV11EiclqYEXUaUpuYYmQIk+qPuftoTTcy640kWPbqBodltNPzb56mLRqlEi11PYihKQyTO/BkzqO+JMbdjxojna0NPjLTibK8hFhtxbK2dX7VEY08dGdWpjtzcVBc4jk0NCbd4U1PCW9ZjJ0gM+j7rtgaGtQQvrl7qfNZPP0M82UtrYyPpQpqZba20tiboUJpJDEWpqw9hRyIkjChtrfXkQvUkMt72Io2Ow6kqemA+BbPgXgtNTXFaE7XxfSbPL8lUI88xyVQizy/JVDIdz6+aFpcjkc/n2bBhAx/96Efd11RV5bTTTuO5554DwDRNPvnJT3LJJZdw+umnH9T+DMNiaCgz+sBXEVVVaG6uo78/hWXVTi5p/0CSZDKLbgzT0zPM3bfuB8DGYu+eFL3Nw/SGkpimzc2/66K1I8wxJ9Rz+437qW/UWLQiMsoexk5Xbz/Dw1lyWYuXtwzQqMzjkitncvPvumhuDXHiqY3kjRy9vU74Yu/gMMmkI0L7I0l648ngextMusv3dvfQYs90/g6H6O11xur5GMlklq37djGQSrnj85keenuTDA474bTD4SzJZJae3iGyZsYdB2BlM5z2td8CcN9V7+C1KQNSwbkIBgeddbVClHxS4YI5byOiRdz5VGJ4OEsy5ewvYmYrjq3V86uWGBrOuMdxMJQOHMdc2iRjOMuGbe8Yi89L0N+XZmgoSzKVY+NZx3PKdXeTuuZacm+YRzKXJZ+C3t4kyeE8yWSW7r4BcmaOZDLL4ECGoWQ2sD29mAvc1xf8XMU6AD19w+i5Q/sfljy/JFONPMckU4k8vyRTSa2eXw0NMUKhkVOvpq247O/vxzRN2tqC1ThbW1vZsWMHAA888ACPPfYYPT093HDDDQBce+21NDQ0TGiftfTh+rEsu6bmZlo2tg15I8/Lm1Ic2OcUNbGxGOw3KJgFLMvmsfv7eeaxIUJhhcYm51QcHjRJJQ1i8ZFP3LGSM3I898Qgu7bnaMrHWT43QsfMMB/8x7nuGP+xM01TFLvFNK2y41owDXd5Mp/CtCznb9vbTkiNYNuQM/Lecpy/DdPEME1CWgjFVrFtMCyTgm+/AKt+dD2NXX1sXns8O087nlNH+nxtBdt2CvNYlk24uP8Ri1fZblFfLGvkc7vWzq9aQikeewBsJXCcNEV3l4nPRowLfDS24m5n81kncsp1dxO+8Y/ob/wstg0RNYpl2WhKyD2vClbxPLQV9zwS6G61WDMwH8N3jhmmUTOfqTy/JFONPMckU4k8vyRTyXQ8v6atuKyGbdtugZKzzz6bDRs2HOIZHT5YtoVpOcJoJESbg4JVYMuLTsuOlSck2LvJZnDA6dE30F/gntt6nXF5m+efGnLX796fZ97C2KTMOVvIs293HkWB+maF085qHnG85btLr1TB1d8yJF1IuQLOX3FVFGyxbKusKFDGyGDaJlEl6o4zbTNQvXPGi9tZ8NubyCZi3POJt6OpIwttUcSntGroSMg+l1NAyXH0t4MZqaCPqnj9SbsXzaKwZCmhdc/RtqubnjaIFavFit6Zhq+gj6ZoZdvTi8Z/rqQVyUjFqiQSiUQikUgmg5quFjsSzc3NaJpGT09P4PW+vr4yN1MyOdy7825u2vqnUdu5iAqphmWwd5cThnfS6U3YWAz1G5i2xVMPD1LI28TrHEH00kavb+SB/fnyjU6Q3XuGMQyb9hlhLrqslWNOrB9x/Gg34KbvtbSRdt9roI+hInpm2u5yUf0zmXfy80JqyDfO63O5pO4oLvrun1Bsm/s/+lbSLQ2ueKyGv1rsWAlUi5WtSCaM/5iXHsdQoNdo9ePtr/KLopB9x6UAHH/POmYlZtEadXKQ9eJDBtM2vD6X/nXFfovFj7Nl1WKluJRIJBKJRDK1TFtxGQ6HWblyJY888oj7mmVZPProoxx//PGHbmKHMQO5AdKF9Ig9GcHX59I02bM7TSSqMm9BlEgchodM8oU8G3fu4KX6OznmjOKNtk+vdk+iuNy50xFz7Z1ht7jKiHNnFHFpjcG5LF5WFp5zGQ85+W19xf6XMT3mczht95ie8JvbaHx5B+nTT2f9G08BRu9ZOSFxKQXlpFMuLr3PrZpzKUS+eE1RFPLvvAyAGTffxevnnut+/kJEmrblOuxqBecyXAyL7TmQ59of7WHHVidXXDqXEolEIpFIppqaDotNpVLs3LnT/Xv37t1s3LiRtrY22tvbufLKK/nsZz/LypUrWbVqFb/61a/IZrO87W1vO4SzPnwR4my0G1OxPDlkkjcKzD/KaaXQ0qbRtR96e3Js6x6goKWYvTILdzinYSSqkstaHNifO6h5bt2c5pnHBkkOmWxNO+G27TPCGGNoHD+6c1nsL6io5MxcRedS/G77wmLjeox+oC/rhALHQ3VuGKtpm5i2Sesr+5j9o19gx2L0fv0bkH+yuK+xOZfaRJ1LGRY7YYJCMbjMHxZbKWwavAcR4jVd0bHmzCX/2jMIP/wgoUcfpvDaMwDQVC8s1r8tVQ1+7qJF5kCvwUCvQUOzzvxFseC5LftcSiQSiUQimQJqWlyuX7+e9773ve7fX/7ylwH4+Mc/zlVXXcUFF1xAX18fP/jBD+ju7mbFihX87Gc/C/S4lEwe4ubUZuSwWDFuoL+AhcGsecX2B2067IftryRJZ0zqOzSidQptHSF6DhRYfmwdLzw9fFDOpXBrBAN1GWL1KokGDdMeg3PpuwG3K9yAi/BVXdUxLMN3LPziQfFty1nuOZdFcanHg7mZuRwXfPVa1EKB5Oe/CAsWw+Yn3X2NhDIB5zKwvnQxJ4XS4xjWwu7v1ZzLUtdZ5Nfm3nkZ4YcfJHLD/3nisviQwTkHFfc1tSQARdeLi4un5kCfUz3Wf93a0rmUSCQSiUQyBdS0uDzllFPYvHnziGOuuOIKrrjiildpRkc2hj0251LcxA70FdAVg9nzHCtlxpwQrIeNLwxhK1Eamx2BNndBjJ4DBeYcFWXPzhw9XXnSKZN4nYZt2zxy7wAzZodZtGz01gmD/c6N9LJj6phzVJStDxSYuyCKgjKmsNjR8tJMXyGVvJ2vGBar+EVjcRsx3SlQNJgbBDyxKcYt+Z9f0fHyHpInryHz9x9D8wnb0RxJIS6UcUW5S0E5GfiPeakDrCmVw2KVCmGx4jXxICH3preQ+Nw/Ebn5JpJf+xbE4+4ywzICorT0oYLiE5YAg33iuvVetEbJm5ZIJBKJRCKZCNM251Ly6mLZliukRivo4zqXvQaWUnCdy9ZOnVBYIVcwsDFpaAph2gZnnNvMKWc2sWpNAx0zHLdH5Int2p7lr3/p4dY/dI9pnumks++2zjBnvL6FCy5r5uhjGlAVdWw5l6OJS8sM3NBXLOhDJXEZD2wzHvKcy/qnnmXxL39PLh5h97e/AZoWqBDrFymVaIg0ENNjdMQ7R31/AlktdvIpdy6rhMVS7lwKV1JUhLXrG8i98ULU5DCRO251xyqKUqwWa7nruesWxWfpeTvY77QdkTmXEolEIpFIphopLiVjwi/MRs/XcnryDA0ahOtst4clqk3nrDC2YmIpBo3NOqZl0tIW5o0XtxOJqCw7xnH0/vSb/WzdnGbDs04T+L7uAunU6DmTYoyoQmthENbD6Ko+aiEiKBWXjnA0LZNtg1vJm3lM23Rv8v3jK+XU2b5AxHixnYQgrtehKgrhVJaV//JlFMvink+8A3PuPHcbYh+jtSKJaBHeuewyVrYdM+r7EwSrxUomykjVYqu1IqlUWVh1P2vvQULukncBEL3h/7xtKrqbo6soCoqi0BhtIqpHmVE3AwiGv+ohBdO0SQ6boxarkkgkEolEIjlYpLiUjAm/uBwtX8uyLTJpp2F7YxsBITZjdhQbC0sxaWgsF3zHndTAuW9uo5C3+f0v97H+mWF32e7t2VHn6ReXpuXchIfVMJqiTbha7O7kLh7a/QCb+zdh2ZYj/PCK9kBlwWDZdplzKYiH4iiKytn//Sdie/az65xTefG8kwJtJUrdrMlE5llOPqUOcKAViVKekwve5yDcTH9+bX7tOVjtHYTuuwd1397iuiqmZWLZlnt+JEIJLln2LhY3LQXAtuHdH57FuW9uY+nRzsOawb5C4Lody4MWiUQikUgkkvEixaVkTFi+m9GxhMUmh5zxja1K4PX2zjBaxKKhRSEUVjEq3OS+9pxmXrO2iWzGIpU0EabPru2ZUefpisuESt5yCgOFtQi6qgfCVEeae+nvedPZTs7IYtpmoHF9JefSLzxLcy7BEQhRLUr7zXdwzB2Pk21r4cl/+TtQlEB+petqjeJcTgTZ53JyGLnPpS/n0h8KWyEsNh6qQ1d1GsON3gZ0nexll6NYFtH/+43zUtGBFw85Ks3FwmLpyjpee04zTS3OHAb6jcC57ReafT15LEvmYEokEolEIjl4pLiUjIlAWOyoAs0JwwNItPjFpYmuK5x9QTNnnOfcRJtV3MRzLmylpd1xflaf6owdk3OZ9JzLvOm0NAlroUAxlErkzBzJQjJQ6ERUixXvt2AVsG07EKZqjehcenmquqq71UNjegx968vM/9cvYSsKz371n8k0Os6mf9tizvoorUgmgsy5nHxKj2MwLLZKK5Li72EtzDuWXsopM08NbCN7+XsAiP72WrAs95zIm/kyMev+7TuHG1ucOQz0FSo+ONnw3DA/+PIOnn/SixCQSCQSiUQimShSXErGhN9hHC3n0sYmOeyIuPpmf4VKZ71InY0edX6vFp4XDqu860OzWHt+C+e9pY1QWGHPziyWZdOd7uaJfY9XFLn+sNi86VSODalhtyhONXH5h82/409bfo9hFcrmK35mDUfcBpxLhHPp4V9m4zmbwr1sMMM0fPC9aKk0j77vfLpPXoVZ3IdaISxWmwJx6Uc6lxNnJAfYHxZbra+oX2iGtXCZQDUXLiZ/2uloO3cQevD+4PlR4mi7/VV9OZdNzc55P9hnVBSXzz3h9IHdt9t7cJM1smSM0aMEJBKJRCKRSEqR4lIyKr3dea754U669jpOYKWo2KEBgxuv209fj+OQpIrOZV1TMCxW/BQiz7Sq5361d4Y5+42thMMqs+dHyedsnntiiM39G9nU9yLdmW52b89y+5+62bYljWXZAXEphJ+maujFG/FKvS4t23JFbs7MBl531hHLnPfvv8G3RmhFYvtyLlVFJaI5VXNf873foG/cQPK1p/LYFec7+7e8FieC0iqgk4l0KyeHgKAcybkMtCzxh9KO/hWcvdzp9Ru97lcVzw93HyWh2gBNwrnsL3EuschmTLZuTgPO9Sv4/Zbr+f3m60edl0QikUgkEkkpUlweZhiGzR03dvOHX+/jntt6JyWX6vEHBujan2b9c8mylgaCh/7Wx/NPDvPwPX3Ytk1yyEBRIJood0sMy3AFm1/sjZQTecIpDQD85foDPPZQj7OuZXDHjd08/sAAv/6fPdx1Uw/plJOjGYmqbl6ZiloWFpvMD7v7GswNuPsRbqd/vmI7IsxWUzRXFIw1LFZVVKJ6lOV/fYqFN96F2dHJru99B1tTi++7XFwKEavKsNiapVKurcCfc1mpVQ1QljdZidxFb8FqbCJy2y3UDaWqruvm+uIPiy3mXPYZZcWqtryYQjzbGRzwF+xy1vdfFxKJRCKRSCRjQYrLac6zT/Tz8+/vYnjQYCDbz7W3PMSj9/ez/pkkD9zVx/aXJxbeNtBf4Eff2MFzTwzxwjPDWJikkyZbN6V5/KE+UknvZtQ0bbdlyOb1KbI5g1zOpi6hYSm+cb4QWFEkxyje3Vq2xZ9f/iMP7L6v4nyOW9PA+/5hNrG4yobnh+jvyTM0mGf3jiyxuHMav/JSmnTKIh7XUFUlIPy8sFiT7nQ3f3rpDzy4+34A+rK97n4KxSJAYk7+n9miq6mpmheCOEJBH8u2fGGzCh0v7eG8b1+PraoM//jn0NHpjhPHpmLO5VQ4lwEhJMXlRBkpLFbXKrciqfZ7VWIxcu+4BCWfZ9HtD1df1z0nPXEZjWpE4yqD/QWyWf+1aLHx+aT7t9+5FPRkxtZbViKRSCQSiUQgxeU0p3t/jh1bMzzw1z7uffFJbn/uEQrRfk481XH6xlIEpxJb1qfo2pvnz7/tIpOyqC8W5tm0PsX9d/byyL0D7thXtqRJFQvpJIdMtr/suCuJeo1CBSfQjxBVWSNLMp9kX3Jv1TktWBLnvLe0Yysm654eZvMmpwjJqjUNRGMq3V15TMMmntAC+1MUz7k0bYP96X0A7BjaDkBfts/dhxC9/vVLq8ZqvlYklZ1L4SB5Tqza28sp/9+XCOUK7P/sP1E4/Ux3nL9voV8wiMqxU5FzKd3KyWGkfNWwGvbGVRWXY/scMpe/D4CFN/3NjUsvdbRVn5ueLqTdhyZzj4pSyNv89md73FzoXM7gpY1pwhGVRINGatjEMIJRDt1pKS4lEolEIpGMDykupzmvPaeNSETlmUeHuOP2Xdg2vOa8GCecXBSXOyYmLvfvyQX+PvXsBmbMDhMOK9iKzZa9O3hlcBsALxR7Uc6e7+QUblrvOCKJej1QIKdSCxMRDiocw4JVIF1IV53X8SfX0zpDY2jQ5P67nPDY5cfW0doeckP84nVBcamius3pDcugrqTnZL9PXBb88y2GF1olVWNVRQv07nSoHharmzYNH3ov0b37Sb71reif+oI7L+e4ODmXpSJSuJiqOvmX6UjhnJJxUKU4DwQdZ6XC+VFpnWqYxxxL4fgTaNy2i1kbtgPlDx38BX0e2nM/t2+7FcMyeNvlM1ixqo6hwQIvbXQe/OzYmsIo2KxYVUdLm+OwDg8Gi/50S+dSIpFIJBLJOJHicppTl9B5zVlNmKZNMptm3oIoS48LM2NOBFVznMvR+lJWQojLBUtizJwTYe6iECe9tonXXdSGjcW6wSd5eM+D2LbNlhdTaJrCWy7rACCTcfItO2eHKYzSwkTkQPpzHYfyg1XnpSgKJ62tJxZ3msnH6lTmLYzR2uG5RPG6YD6kqihuOw/DMgKOj23bY3YuBU7OZVFcUh4W6xeXlm1x1g//RPiRhygcexyZ7/3YFSSaW2SoWt/CYkEfZfLDYqlSvVQyPkYS5qqiugLwoMJii2SveD8Ax97ySHHdyq1IbNsmW+zJalgG8TqNN1/WCapF9748tm2zdYsjMo9dXU9Do3N+DQ0YgQJbA7n+QOSBRCKRSCQSyWhIcXkYcNrZzcxbGGXuMpVVa+opWDlCIZWZsyOkUyb9veO7QTRNm659eWJxlfd+bDZ//+l5oBb7NeoKiQaN4WSOgmEyPFwgk7Jo6wzRMTPCmtMa6ZgV4szzWmhpCwecy0ptR4S49Oc6Duaqi0uAaAxOPauJtk6d085qRtMU2jrC2NiYFDznEq9Sqz8s1l/YpCfTExCUfrxqsSXiUi13LoOtJoqOJHD0Xx7guBsfwGprY+hXv4V4vGycZduYdgXncgqrxfqRzuXEqeZICsRnV80pHku1WEHu4ndQqIuz/J5niA6mKjyMKA/HFu57LK7ROStELmfTcyDPnt0Z6hIaC5bEaWjyiUvfNWrbNr3ZnjHPTyKRSCQSiUSKy8OAWFzjin/o5OgT4iiK4haemXOU01dxvHmXvQec3MUZsyOuaPJXdW1u0512I0mTrn3Otts6Hefwoks6OO2cJpqanL9FmGm1KrDiZtYv8IS4TBfSvNS/pcx5NW2TuoTOO67s5IxzWwBo7QjRFX2BzQ23osWdbbnVYhXVbQthWKb7OsDO4e1Vj0NptViB41wGxwRERvGymvHwM5z13esxdY2hn1+LNWduYDtinHAuS/sWdsQ7iWgRGiNNVec4UVR56U8Ko5m+Yc25DvxCUFEU97oaj3NpJ+rZ++bz0AsGx972WFnOpd+5FNeV/9qZszACwLOPD2HZFitPSKBpCg1NzrUxVBIWC9Cf7R/z/CQSiUQikUjkHeZhQsbw8hSzhhCXTg7krnGKSxESO2N2xH3N8IW3NrWqoFgkhwy6u5xqtO2dXliqCPEMqaFRxaV43Z/rOJQfAGB9zws8uvdh9ib3BNYRc7Fsi73JPTy4+36a2jVy2hC2YqHEssXlXhsQfysSy3fDLYr6NIQbAvsoDW0NLtN8N/Ll70tRFNpf3s3az38f1bS453PvpXDqa8vGCTFZcAsFBcXCspblXLr83dSF6srWnUxkWOzEGS13VTzUqNY2ZDziEmDPuy4G4LibHkIrOfX8OZduSLfPpZ8z37mec1mbSFTh9Nc7D2b8zqV/PIBRoS+sRCKRSCQSSTWkuDxMyBhey5Fc0bmcdZTO1sTfeHjjunH1u6wsLr1wueY2HRub5LDJgQPO2PYZnri0sZ18M1Vzc7iqiUsv57LcucyaznsaLMnB9HIhTV7q38Irg9tQ6oawcPYVjZeGrKpu3qJhBZvJJ/NO8aHOuhmBfQgxWklcaorqC4v1BKwgtHcfb/uXnxBKZ3n4Axfy0vmnVnzvoaLwEE7zVPSzrIZfT8qw2ImjjJK7Kj7j0mMszpfxisvc4kXsOHEpjV19zHr42YrbDJyzvgcpze0akagzj9ec1ejmWnrisoBVvF5tbAb6CmTzlUPGJRKJRCKRSCohxeVhQjrgXDqCz46lqJuZZn9mDzu2jr3f5b7d5eLS8uViNbbq2BSdywPBsFhwQvEUFHRVx7RNbNuuKi4BTMsM5FymCikMy3AdvaH8UGC8cFOcFh5FZ0U3iSWcG+lITMzZXy1Wc9ctnYuu6rRG2wKvCRexsnNZ3opEoAwO0Paed1PfM8jmN53JY1ecW1VAqIpKWAv7Wpy8iuJSCspJYTTnMlR8SFFafGei4lJTNJ572xkALLrh1opzsfFyLcVPZ4DNSa9t4uTTG5k5z+vBKcTl4IB3bWx/KcODd/fzm5/s5KG7+yZUFEwikUgkEsmRhxSXhwmZQrlzadomc+dHsRWL558cqrZqgHzOYucrWaIxlbbOMC/1b+HJ/Y8HwuOaWzVsxSY5ZNJ9II+iQGu7d7Nq2RaKorhuocgprIZpm261WOH+DOUHyRdDZZM+cSnae4jfhTNqWAZ1Tc66kbg3FkrDYsvn0hprQ9eCRXNGci51VfecS1/RINJpGi+/hNDGF9m+ZjkPfPoKKOldWUpE8wR8ac7lVDKa4yYZGwFxWeEwirDY0oViPWWc4lJXdbaeupKhzmY6H30G7eWXfBv1ci69fGFPFFq2RXNriM5ZkUCRqkS9hqrCYJ/h5CRjs+Nl5wFTLm9w9y29PHb/wLjmKZFIJBKJ5MhkXHc2+XyeH/3oR2zatGmq5iOZIP6cy5zp3BhalllsSWLz4vNJ8vnqAk+wdXMa07BZvCKOpils7N3Axt4XSRVS7phI3KkaOzxkMDyUp6UthK57p5KFVQyL9ec5lleKFRiW4TqXjeFGAIbzw65zOZwfdsf6WyU4zqVV3EaBo0+IcfRxCVpnOCJNuDaqLyzWrDCXtlhbWbsPv7i0S/LQHEGgBOajFAo0Xnk5oSceo3DCav5y9ZUUiodkJHEZ1WPu79o4hcbBIPtcTg4BkV7RuSzmXJZ81YpzYrzHXlM1bE3j+Tc7ObzRa37qbZPysFj/gxGrRGi666kKM+ZESCVNHn+on/6eAplBjaYWnfPe3oweUrjzph52bR979INEIpFIJJIjk3HdzYbDYX784x8zNDQ2F0zy6uHPuTQsA8Ny2gqEQiqdc8Lkczb7i+GuI7F5vSMilx2TALxqrmmfuLSwmHNUFMtyBJw/JBa8sFgR5lkpFNWPaRtuaGh9sbBO3syTLwrOVCHlru93UE3bcudnWCaJJoVFy+Kum+ivFquW9JT00xptK2v3oRXFpoUVELTOMl9BH2wU02LN579F+N6/YSxfweD1f6QQj7pzG0lARLWo+/urmnMpBeWkEDiOFazLqO58vqJqrMALix2nuCyeIy9ccCpmOET0+t9CMlncfXlBH39YrL9YT+k18ObLOtFDCvf/tZt1Tw2j2TrzFsZo6dA489wWsGHXK+MrDCaRSCQSieTIY9xWyapVq9iwYcNUzEVyEAjnUtzMZs2sK27qG52Pub9v5H6XlmWz5cUUqgqLlzuxpWIbfufStAxWHp+gpVXHxqRjZrBSLIhQVM0dP9acy0TYEbU5M+c2cLdsyxW3wT58lutCFqyCWxzILnFtVEWp6OpAsbJrvMN1WQVi7rZtYRHMN9MUr8+lbRqc+53fMfuvD2HOP4rBG/6M3dyCqqieqzmic+mJy1c153IUx00yNkY7jke3HsMZc9Yyo25mxfXGm3MpHPZMU4L9bzgHdXiI6O9+G9i/35n3i0t/ZePSKsczZkW46J0d2NgMD5lE9Aiz50YxLYOmVmef6WT16AOJRCKRSCQSgHF3Z//MZz7Dpz/9aUKhEGvXrqW1tbUsZysWi1VZWzJVCOeyOdLMPmMfWcMTl/GESg7o7xlZXO7dmSOdNFmwJEYsLoRhebVX0zZRVYU1pzfSvrCRk05vcpfZvuqpmuLlOY6EaVtuzmUiVA9A1sgE2pMM54dJhOsxLb9zafpyLgvu+zWtoLhUUNBUX0/JooNzfMcJdMQ7qQvVue1bwLnxH6kVietcWhbLvvgNZt/2GNn2FlK/vwlrxkz3/QuxO2JYbMC5PDQp0DLncuKMFl4c1aMsaFxY9rp42DHefqP+vNzd73kHs/9yJ/H//SHZ93/QPX/8bYP8dXiCIbLlD3uOP7mB2NzZ/HldAwvbZpEJdVGwDOJ1zj7TKSkuJRKJRCKRjMy4xeUll1wCwJe//GW+8pWvVByzcePGg5uVZNxkjAwhNUQiXA+pfeSMLFZRZMXqoR/o7x1ZXIqcqgVL4+5rlW5Cxc1rJKJx6jlNNMT1svGBIjq2UfEmWlVULNvCsI0y59LvlIIjLmcSdC5Ny3T/zppeyK94TYhIRVHd/ds+sdgYaXIdJd13066ijtznUlVRbTjvW9cz+/bHSbY28MTPvsGxRy1wx4w1pzHicy5LQ3OnEulWThITLIw08Wqx3jmSWrmC/OlnEn7oAcJ33EbhDW8AguLSf+5WC5H1E6tTmDknyozGOl4ZdLYlxaVEIpFIJJKxMu672a9+9avS6agxDMvJWWwIN7hOWM4MOpcwurjcs9Nx72bP8wSPWaEQj1ESmurHu4FVXLFkWgZUEE5hLew4rMX566pOVHNcb38RH4DhwlBxW0H3RdxIZ305p6XFTETPTfF+KvWm9IfFOq1GhLgsb6OiWbD66h8w//bHyXa0csO3PkLHUfMCY/zXyMgFfbxjPd7KoQeDDIudHCZaGEmZoLgsfQiS+ejHCT/0APEf/RfpN74RKAkdp3IRn9I84tIx4WIVY9M2iCekuJRIJBKJRDI2xi0uL7744qmYh+QgEPmWsVDcdcL8Tl60TkFRxyIunXVmzfX3tyx3OCzfjWnp8oCgU7xqseIm2t/XMaJF3PDdglUgokWI6s6+U4WkOyZn5lyxadp+V8YrziPar4jXnZ+eiFQUTyy6hX58bqq/WmxpWKxfQCumxYJ/+SKtN/+N4bZGnvrZt+ivH6KzRFj4RcNIRVv8YbH6oSroIx8WTZhgK5JxiMsJtiLx5+Wqikr+dedhLFlK6InHCD/zDMRGcCtHCYt1XneunZCv0rNwLlMy51IikUgkEskoTNgqefnll/nzn//Mj3/8Y7q7uwHYsWMHyWLlQsmrRzLvHPO6UB3RouOQNTKug2Fj0tQcYnjQ5I4bu/nBV7aTzQZvFNMpk/6eAi3tobJ8y1IMu3LYnf9vBcV1WfzVYkVrBoBIUVjlzRyWbRHWwq5jItqpNEebnfkVHAFtlOZcirBYX86k+759IlLclPvDXP35a3qJc+mKS7yKtFre4MIv/YrWP91EurONG753Fcn5s5z3W6Ir/OJyxGqx+iHKuZSCclKYqAM84bBY33mqKRqoKpmPfByAuh//NxC8RqjSfsQuKVIlEK19dFVHV3UMyyAcVgmFFelcSiQSiUQiGZVx382mUik++clPctFFF/GFL3yB73//+xw4cACA73znO/zwhz+c9ElKRiZZcFy9RCjhCracmXMdRqd5unNT+tgDA/R1F9i7M9iWZO8YQ2IhKDrLxCXlOZeW5Qm0oLh0hGS6GNIaUsOE1WDLhpgerFobyLn0CcWsWS4u/S6quIn3C1K/a1TqCInxIkczlM7ytn/5X5bd/xz5eXN55GdfZ2B2uytgS4VF0LkcqaCPV/zqUOVcyrDYiTPR4zjxnEvvPBVFqrLvvAyrrY3ILX+hYV9vYHy1arHVnUsvT1lTNC+0vk4jk7awrMqidCJYtsVdW+9i68DLk7ZNiUQikUgkh5Zxi8v//M//5Nlnn+WXv/wlzzzzjFsdFGDt2rU8+OCDkzpByegMF53L+nA9Ud0RK/5qsTY2za1FUVf8uHq68oFt7NnliM3Z87yQ2KricgTnEjcUVfHCYv3Opa/fX8TnsgKEtRCKogR6AgqxbFUQl4avmmzOX9DHCvb4UxW/c+mF0vrDYhXF68sZcC5ti0jfAJd86r+Z/8wWDiyazY4//J7M3NmB918aEhkMl6zBnEspLicFZcIFfYqtSMb5Fex/AOGeL9EomSs/jGJZrP7j/YHx1UJhRxOXKqrrXIIjLrEhk67eUmi8DOeH2D6wnW0DWydtmxKJRCKRSA4t476bveuuu/j0pz/Na17zGjQtmCM2a9Ys9uzZM2mTk4yNZDE/MRGqJ6w5ItLfmsOyLZrbQoF1ukvE5c6tjsCbNQbn0gg4l8ExwfYfxbBYyx8W690cR3QhLrPFZY6oFKITIKYLcems73dNRe4mEHjIIdxTvwtTqfprqWsk5qvi5Whqu3byto99gxlbdrFr1SJ+972rsGfMcMNKrTE4lyOJN1VRXTHtz/uUTA8OpXPpF6aZKz+MHY1yzK2PEhlOu68Hr4vKIbJ+3BBwVfOqPU9RxVj3mq7yPSORSCQSiWT6MW5xmcvlaGpqqrgslUqVCU7J1JPMO5VU68IJVEXkOZpu/pQTFuuIS2GudO/3hNmm9Um2bk5T36gxc44n7EorwQqCrQ6CYXJ+t1CIJdMyfIVCPFdS5FeKgkRCZIV94jKsRVAUpWJYrL8Pph/Lqh4Wa9kWthu6GxQD4mZaLbYumbFxB0vfcTlNuw/w0unH8sdvfpR8Iub1uWRs4nI0ASGK+ryaOZdBx+1V2+1hx0QL+ojPerzH3u+w+3OG7bY2spdeTjib54QbveiRSgV93HD1Cte3uOY1RQsU5HIrxk5iUR+vqrMUlxKJRCKRHC6M+2722GOP5aabbqq47M477+SEE0446ElJxkcyn0RVVOr0uoDbYPvE5ay5UVQNTjilAVXznMt0yuSWG5yc2Tdd0kko5J0S1dsVjF4tVvG1/3DCYp2bXH/IqxBVGTfn0hHAEd+YkBZCRXXn4he2fufST2nOpRAAIoesmnMpxLCiqMy+6wEu+cf/ItzdwwtvPp2bv3glZtiZn6pWEJdlYbHjEJfFUGZ/m4mpRobFTg4Tbcskzo+JhEKL60orqS6c/vgnsTSVE/94H6GMEyZeKRTWX9yqFHHtqIoS6FM7Nc6lXXUeEolEIpFIpifjvrP55Cc/yV133cX73/9+fv/736MoCvfffz+f+cxnuOOOO7jqqqumYp6SKhiWQcbIUBeqQ1GUgFvoF2KNLRqf+rcFXPCODlrbw6SGTdIpk9v/1E1yyOT4kxtYurIOcG72cmbOdT7L9unPuaRUXDo3jIqvz6VheYJOCEhVUd3fM27OpQiL9UJzw2oYTdVcB2YsLofYV6lDqSrqKGGxOtg2x19zE8d/5ktohsGO//dP3P2pSwiFvcI7mqK5jpPYx4hhsaMIEBEGfMj6XErrcsKMNbe2bL0J5lwCgdxgP9b8o9jy+pOIDaVZdfMjwPidS//DIfGww7Smptel51xOXpEgiUQikUgkh5Zx39msWbOGX/7yl+Tzeb70pS9h2zb/9V//xa5du7jmmmtYtWrVVMxTUoXhnFMptj5cD1DiFgabptc36ui6QnunI+Ie/GsfLzw9TEOTzvlvbXPHPrD7Pm586Q8UrKAzKG5KR6wW6xNuQuj6i+gIQamrujtX4UCKkNlQwLkMoyqVnctqVKoWK3464rIogEtuziN5iwu+ci0n/uQPGPEYf/7yh9n7vndjYQeq3FYMi1VGCIsd5TKLCefyVcy5lG7l5DBRXT7RnEvwrsNKYvbpy88HYM0N96DljUDOpT0GcenmXAbCYk3idc6+piIsVuZcSiQSiURy+DChu9nVq1fz29/+lmw2y+DgIA0NDcRisdFXlEw6w3nRhqTefU1XdUzLDFZ19TmMbUVx+eh9AwC8+dIOt7els80h8maetOEVBhHbNSwjcDNYeoMaqNDqC9EtrRbr3LwGw/pEMaKoL+cyohbFZYWcy2pYI4jLglWoWC1W3f4Kb/zwv9OyZTvJmW1s+J9v8UrTIO3FYyic1oJVQFVUV0xWy7n0i83RBMSipiXkzByddTNGfW+ThQyLnRz8x248LuTBiEs351IpD6MeWDCbLWesYumD61h5x+PYH3udu8wLix3JufSu35AoDmYbxOuc63YynUvh+lcLv5dIJBKJRDL9GPedzaOPPkom44QxRqNROjs7pbA8hAzlvGI+gtLcQgjeSLbP8JzBs9/YwuIVdYFtipu9ghksmCPcu2BBn+CNoe1z8sTNr+Er6KMrOnPq5zC3YX6gITxAXch5D/6CPiEtHMgRqxaqG5h/SbidUuJcenllzuvhu26n+dy1tGzZzs7jF3PnL75CetmSwHv19+0MOpdFZ6jUufQLtlHsrfZ4O2vnnh2okjvVBMJipbicOBO0LoUQnZC4dM/D8nVVReXxy88D4KTr/4ZteNeweMDkOZflos7yOZf+EHuRc5maioI+jH5NSyQSiUQimR6M27n8wAc+gKZprFixgjVr1rB69WpWr15Nc3PzVMxPMgoiLDYR8sSlrurkCrmSliHeDdxRi2M0Nuscu7qeM89rKdumEF95X+9I8MJWR+qX5zqX+HK2fCG6qqJyzrxzAejNeA3fFUWhLdYOBAv6hNUScTmWsNjSarHFG3mxHbEN1bKJf+0/qPvutwDY/P63c+sVr2VmY4t70y96aaqKxsKmRWSNLIqijK9a7ATy6l5NZM7lxJlotdhFzUswbIP2WMe491kt51LM58Cyubxy0nIWPLmJllvvgPcuA/zOpRr424//OhVh6wWrMKU5l9WqUkskEolEIpl+jFtcPvLIIzz11FM8/fTTPPHEE/z617/GsiwWLlzI6tWrWbNmDW9+85unYq6SCtRH6gmpIdrj3k2qcCb8OZN+l6K+QedT/76g6jbFTV+uKC7DWpi8mXfD5CqNLf1bURRfWKy/Qqt3A+53XpojLe68w26BG8WpFitEoW2OKefSKxRSHhYLzs1yonuAtn99J5GHHsCqb2D4v37MpuOasAdeCrQu8TuXqztPcvcxelisv1ps7Yk36VZODhMNL+6Md9IZ75zQPluirQzk+onrdWXLxHn5+OXnsuDJTcz+0S9IXf5x0DQs2ypry1OKd80Encu6KRSXMixWIpFIJJLDh3GLy+bmZs4991zOPddxn9LpNI899hjXXHMNN9xwA7///e+luHwVOabjGGao8/EXXBQ5VTmf8ziecv/CuRR9JGfWzaI328PMupl0pfYHxo7UikT39cnzQlG9PDF/nz6/OBbi0l9ZFijmkY4959KrFivEpbO/+fc/zTnfuJbIUBrj6GMY+sWvMRcuRtv3mDN3VNdtNEpCaAVCSLjVYstakdR2NVb/lKTQnDiHol/oyTNPYXXnmsD1IxDn7Z5Vi9h13GLmPv8yxp//SO7tl7jiUjz4qBSO6g8Z91d7jtUXw2KHJzPn0q46D4lEIpFIJNOTCRX0SaVSPPvss66DuW7dOiKRCGeddRarV6+e7DlKRkFRlEBVSHFT6O8DOR5xWepcNkebWTv3bAay/Tx34NmSsXbFdZ2w2KLz4etz6Rdpmq86anu83f09WiIuxU20U3XWdN9jNRezWrXYcDbPud+6nlW3PgpA+u8+SuoLV0M0WpyP53B6gtYIbEMwmnNZ62GxtS5+pwuHqjBSJWEJvs9SUXjk/W/k0k/9F/Fv/Se5t1yMbdtOuKsbZl7eAsTLufQV5LINNE2hqVVnoM8gmzGJxg6+J6t0LiUSiUQiOfwYt7i8+OKL2bx5M62traxZs4Y3vOENfP7zn2fZsmXyJrVGELmOwcI7Y+8lV5pzqSjVi4+Uug5etdiSgj4lLqIzT5+4jHniUvS5FD/9OWIijzSkhsYlLvWnnuCij36Bxh17STXXc+fnruCMK78eWE/MxxGXijt3KCnQA+U5lyO1InkV+1eOGXmtTgq1VhjJP4fdxy+m/9STaH70SSJ/+B32cbbjyY8x59IfFgswe16Ugd4ke3flWLg0ftBzLc3drsnrRCKRSCQSybgY9//mmzdvRtd1jj/+eE444QROPPFEKSxrDLVCi4KxOpe2bbsuaL5YLXakAiKlxTj8YktUjDUswx1XTVzWhxvc36N6lNWdJ3FCx4mBdUzbC4sN+4r+lCKcEBsbPZun/ov/StNF59G4Yy/bTjmaX/38n9n9mmPL1tMC4lIUM8kXl5Uc03E4l7V4bchWJJNDrTnApb0vd1z1YQDqvv11KBRKci4rVYv1icuSh1Sz5zkPe/bsyAbWeal/C3uGd497rnaJuJRIJBKJRDL9Gbdz+dRTT7khsXfddRff/va3CYVCnHjiiaxZs4aTTjqJ448/fgqmKhkrulr+sY41r8mf05i3HOfS7adX4eZ5pGqx4Igyf1sUf28+VVE5c85ZxPTyVjYr247xjRMFfbxqsaJyrfN7yM0PVRTFnUPns5tY+7VfEt/TjdXQyJP/eAUPnrUEFIVwhfcinBrR0xI8ga2UPIcR729s4rL2HJnAfGtAFE1Xak2kl85h8IRjyZ/zesL33M3yOx7jlbe+fkTn0vQX9CleAwUhLucXxeVOT1yalsmjex+mKdLE7Po545qrP5rCtE30iWVpSCQSiUQiqSHG/b95LBbjtNNO47TTTgOgUCjw6KOP8tOf/pRvf/vbKIrCxo0bJ32ikrGjKxXE5RjzmgLispiz6TqXFYzu0gI7dkmYqK7qZIyMO65UaB3VWL1qrSDY51I4l17l2rAWdsVlWA2jDQyS+MyneOuvfg5A7rw3kPzm99he2AjDO533UkHwCVGu+IqZiNDgaiF71cJilRrPuZRMDsGCPjUgLkvmYNs2qc/+P8L33M1rrr2LXRed4xX0GSEsVlO0QM40wMzZERQ1KC6N4jJx/Y2HkVoaSSQSiUQimZ5M6FFxX18fTz31lPtv8+bNWJbFkiVLZEGfGkCr5FyOcvP2Qvfz7E3t5fTZZ7qvCXGpqiPkXNoW3eluTNtgRt3MssI9uqJj27avX+T4hZY/jM+wDBRFcV0VcHIzU4UUmq1w9O2P8Zr/+T2xwRSZhjoe+MQ7OfGq74OioO7aXLZNPyL01SlG5Gw/V0Vcir+FS1o2Z2o8LLbGcgWnK7XmXJaepxYWxolryJ57Po1/vZPltz7E4BXOA53K4tKrFuu1EnIEZDii0jEjTNfePEMDBg1Nelnbn/Hgv3bGUgX6YEgVUjy1/wlWtR9Hc7S8t69EIpFIJJLJYdzi8vzzz2fnzp1omsaKFSs45ZRT+Id/+AdWr15NU1PTFExRMl70CpUkRwuL3T60nf5sH8lCsmyZEEqVRJJlWzy45z7yZp7Lll8eaEUCntAV4aUT6fkonEvRikRX9EB4bVSP0P7ybl7//T8ya/02ANKXv5ffXHIMueZ6Tizu0583WUlcNkea0VWd1liLewwLVURxabXY0vfl/7MWC5XUmiiargSuiRp4iFD2WRYf9gx9+rNE/3onJ/zyZh665DJg7AV9/IWzZs+P0rU3z56dWRqaEq4oHK847N6f5+ln+4kdbRenObXO5d7kHnYMbacx0ijFpUQikUgkU8i4xeWFF17o5lXGYuW5cpJDT6Ww2NHK/Yvwz4KvfYnA7+iVYtsWeTNP3sxj2VZZzqUIrXML41QoNjQaXs6liWmZ6KruCra6nkFe8/1bmP+Xu1Etm56l87nrkxdz1sVfIL35/whVCU+t9F6aoy1ctvxyVEUlVUgB5e1MBKXVYsvnXNthsbXopk5Hak2kl4XFFq/H3LHH8tIZq1jy4Drm33Az6y9YPmKfSycsVlx3PnE5L8ozjw6xZ0eWFasSbri9PUI1atu2uXfX3cysm83ylhUoisLNN3Tx9J4+jmnKkmhUprwdibhOxUMuiUQikUgkU8O4xeUnPvGJqZiHZBJRJ+BcCocub1UQlyNUi3Xagzg3n6ZlluUgijYibojthMJiPSFn2iZRNUo4k+fUX97OSb+7h1A2T6YhzjMfvpiX3nYevYV+p4gQwfYG6ijOpf/1kC/s1nk/I4vL0uU1HxZbY1VOpy01Fl5c2jLHH7b60AcuZNHDL7DwJ9cRPvP/VXQLLdvyKj27YbGe8Cst6uP2qvQ5l5Zlk06ZJOqd9bsz3ewe3s1Dz24h9mSUt7yrk53bstgRm4H+AonG8JgLjk0Uz2Gt3L5IIpFIJBLJ5DChnMtdu3bxs5/9jGeeeYaBgQGamppYvXo1H/zgB5k7d+5kz1EyTio5l+JGsi/bS3e6m6XNXvsY27Zd8Zev5FwWxWUlEWL4KsEatuE6GG7Opetcimqu4xeXmuKFqGp5g2NuuZ81v7qVaE8fRkhj+5WXccvFx1HXNtfZb8G5mbRtO3DDHxR8I8+jtOJuqfs4miAL9rk89KKjlFpz3KYrtSbSKxX0AefhUt9RM9h60Vks+cu9nPx/d2P+++vL1jct073eKoXFtneGCYUV9uzMYVm2W13W7+A/dv8Ad/2lh498eh4zZkfcCs9d+/K0J01u+OU+Z26KxdBAAQhjWlMrLsX8JlJ4SCKRSCQSydgZ953++vXrectb3sJdd93FMcccw1vf+laOOeYY7rrrLt761reyYcOGqZinZBxUbEVSvMl8ev+TPL7vUe7bdY+7TBStgcphseoIzmXet65pGa4DIW66NUXkXBadywmEiGqqhpY3aLvuej54xZc4/dvXEu3pY+PrVnPNrz/Pzs/+I7lEHF3V3RBecUPrn7Om+n4fJTzX3w+wdF3/+3PHjyA+a7IVSQ0IocOBWhPppXMQYbHi4dILH34nZiTMiX+8H33/foBAnrWNXfZgqC/by/MHniVZSKJpCjPnRMjnLHoPFAKOpQht3bYlDTbs2+18N4gxmbTz0yjY7r4G+x2xJ7439u/N8fgDAyOG2U4EUajIkOJSIpFIJJIpZdzO5de//nWOPvpofvrTnwZyLjOZDH/3d3/H17/+dX79619P6iQl40OrFBZbvLkczA8CsGt4Jy/2buDo1pVuPiRUDosN9mxUAjd+fifAcQuDOYqlQrfS3EYkn2f27/7CST/+GQ0HBgDYeeZq9nz873mkPQNARAsX9+Vtu1BBXAZyLscg+HRVryqKR9Nm06kViRSaE6f2WpEEzzUhLsX1n5vRzp73Xsq8n17L3B/8L7u/sYB7dt7NabNOZ3HzEizb8pxL37X7fPdzbOx7kbVzzmb2/Cg7t2XZszPLzJXBdiIaGt37nWsmlSyGy9smNjaZlCdE22eE6U7aDAwUxWVRmP7l+i727swxf1GMGbMjk3ZcPOdShsVKJBKJRDKVjPuu94UXXuBDH/pQWTGfWCzGBz7wAdatWzdpk5NMjIp9Los3VzE97r62u9jzMedzKwsVCl5oIwgl/3jDMn1hsaJC68jhpdVQBgeI/df3aDlpFcv/41s0HBhg/1mncu3/fpoHv/VZUkcvc8e2RFuZnZjNwsZFrmgU/feC7qM/53J0IeDPu6xW0Mf9W6nuZNaC6Cil1hy36UqtHccy59IOiktVUdn94feRaYgz48ZbsTY639cDuX7AEYL+6ySmO9/zc+rnkDfzPLbvEWbP8/IuA86lbZLLWgz2O9deOulVki3kbQwDOmaGecd7Z/DO982gsUUjn7fJZiws22Kgv8DenY7bOTQwuSJQzLPS95tEIpFIJJLJY9zOZSQSYWBgoOKywcFBIpHJe9osmRiVwmLFzZXluxnszzo3lP5QWH+IrMB/s6koCv7Wjn7n0rANr8BN8SZXLwk/Hc0xVHfuIPaT/yF63bWoKSdcr/ecM7ntkpOpO3ktBwa3MUfVA8V5QlqY180/D4CdRcFsFG8ilSp5lmN1LquOL209UhomO859vdrUouCdjtTaYSz9XC1XXDo/FVTshkYeu+I8zv6fPzP/2z+Ef3snWTOLbdvYth04X9+w4AIA6sMNXL/pOnJmzhWXO7ZmWGUpvn1Z9HV53yUpIS4tk3TRtWxuDXHMifUANLVoMAjDQwambbJpnReemxyeXHHp5oXLsFiJRCKRSKaUcYvLs846i29961vMmTOHNWvWuK8/9dRTfPvb3+bss8+e1AlKxk+pWwhezpXIi2qMNDKYGyRdSAdzLiuGxY5eZdXZti/nskpYbMX1LYvQQw8Q+9UvCN/6FxTLwo5EyLznSjIf+Qc2t8GBvQ8zy8wWtxkKOIP+/El/8Z/S/Y0/LNZzLqtVi/WWVxeXteBolVJrjtt0JVAwqgYeIpTOoTQsVlVUNFXl+becwWv+/Bht9z7E7LedSO7U2YE2JIL6cIP7u6ZoZM0sTS06nbPCdO3Ns+GFHDRR3IdJ935PvKWGPecyk3L239jsfR80turwCmxen+IPL+4lPOTNOzk8ua1JTFnQRyKRSCSSV4Vxi8vPfe5zfOxjH+OKK66gtbWV1tZW+vr66O3t5YQTTuCf//mfp2KeknHgD4tVFRXLtspaBrREWxnMDTKQ6w9UiK3UB85/szmSEDGs8mqxfqErWhy4f3d3E73+OqK/+SX6K9sAsFpbSV/5YTJXfhi7vd3ZxsDLgBe+G1JDATe1krg0RwmLVcYQnusXxqUFgMrE5TRzLqmxXMHpSq0J82oFfcRDH1VRURQVM6zz0sevZNX/+xpn/ugm7ly9pmpPV4Gu6tiGjWVbXPCODq75wW7uu7Ob/rY+OmdFMBebHPCLy1S5c9nU4j2waWx2rqm+ngI702maCt73UHJocp1L23UuZc6lRCKRSCRTyZjFZTab5f7772fPnj28613v4oorrmD79u10d3fT3t7Occcdx+mnnz6Vc5WMEX+OpChK4/V5c1oNNEdbeGVwG/3ZfvcGFKo5l2MTSqZt+sLvnJvcmXWzeJannXVRIZ8nfO/fiPz+eiK334JScG5GC6ecSua9V5K76C1Qks8rnFNRmVZX9aCg9OdSqsK5FOLSu9nWxujACkIjhMWWCrKRxGYtistaE0XTlcDDkho4puWtSKzAT1VR3etg9wVnMf83f2TWi1uYd8f9WB99Q3FM5aJbwsk3bIP5C2Mcf3I99z1r0tdrkBw2sS6y6N7nC4sd9kLxMxXEZXO7hqJALKZy5hlN9L0Qpa0zzHNPDLnrThZuzqV0LiUSiUQimVLGJC537drF+9//fvbs2eO+lkgk+O53v8sZZ5wxZZOTTAy/4xZSQ+TNfKCZuqZqNEeaAaeQhyjaASP3uYSRXS7TMgMOCUBbrI22SCvRxx9n+d+epvWhL6AWc3atpiYyl76b7BXvx1y2vOp2xbZE+G5IDbmiUVGUiqGvFcNilfEJPk0ZQVyOGhZb461IZFjspFBrfS5LC2aJSALb99DHdfcV2PjZj/Ka93+KU370B3rf8y/ONkZwLsG5tiJahAvf2UF8SSv/d59GMmkynCzQ3ZUHBSIRlVTSKfBl2ibptBCX3jUVq1O56B0zMS2DlXPqWPb6ufT3FnjuiaFJD4v19+E0LKNiXrpEIpFIJJKDZ0z/w37zm99EVVWuu+46jjnmGHbv3s0Xv/hFvvjFL/K3v/1tqucoGSf+UNSwFiZVSLmOommZhLQQTVFHXPZn+9Hi3viK4lIdm+Nn2AaIsFjDJHT/vYTvvI3Lbvkzkf1dANihELk3XEju7e8kd94by1zKiu/HdS7z7vsT7kppuKroR1mpz+V4C/oEq8WOLCbLxWZt51z6qQFNNG2peeeyQs6lOPdt26LnhJVsOvsElt/7LLn//j68bXEg8sGPcPLFtRUKqcxdGKH+eZ1k0mTPrjSD/QbNbSF0XaF7f558zsawjIphsZZtUd8QIpk03fnV1TvX82QX9BG55uCIYykuJRKJRCKZGsb0P+yzzz7L5z73OVavXg3AokWL+I//+A8uuOACDhw4QEdHx5ROUjI+/DmXIpRNOIqmbRJVotSF6ghrYQZzA9SH693x/tYCMLpjF1jW18/M++9lyV//ypInv4A2PAyArSjsOmEpu994Fkve/3nspuZxvZ/S3pghNeSKytL5lRb0UaoU/nk1C/rUZFhsjYmi6UqtOZej5VwqvrBY0zZRUHjg79/MoofX0/y/P6H+1M+hLp5VcdvCyTd8Qs2yLerrNfYB658dBOqYNTdCatikG6fXpWk5BX10HWJx71rwh+OL751wWCUcUUkOTa5zaeN3LgvA6A+1JBKJRCKRjJ8xicvu7m7mzp0beG3evHnYtk1PT09Ni8tPfOITPProo5x++ul897vfPdTTeVXwizHhNti25T69FzeXTZFmDqS76M32VN/WCK1EwjmDmS+8zLyntzDvmS10vrQbRbQ+iETInfcG8udfQO68N6K3t7JQUbEnILRKhV1I1b2CQVXmZ1RwLqu5mNXQ/Y4to4jLEQr61KJ4q8U5TUt84dm1QOl5Xd7nUnFdf9MyUVSF4c4WnrrsHE799Z2s/d+/8Ny3VlXctnD7/O08LNsk0eC8/tKmJHHqmDM/yu7tTmXnoQGD514cwDBs6hu1wHHyh6ravt8T9Rp9PQUKBYtQaHIezPj3JfMuJRKJRCKZOg772KDLL7+ct771rdx8882HeiqvGiL0zbItz7m0La/VQFE0NUUdcZnMJ0fclvt7134W3P80Dc9tYOaL25m5aSdawQtfy8zooOvkVTx/0nwWv/0TdLQtcJcdzIlWKiB1n3NZ6mqKG2chLpUqBX2qhf75CYbFjlzQZ6S+l6UhtbVAYEo1OL/pgvica0Wsl87Dn2sNXisSKDqXtjP+ictexwl3Ps2y+55l73ObYN65ZdsW14O/4qppmyTqg47mnPlR+nocAXfbH7t5ZqAPJQILlsTL56Z429k5tIOWWCuJBkdcpoZNmlomR1yaAXEpK8ZKJBKJRDJVjPme/0Mf+hCaVl5F8P3vf3/Z648++ujBz2ySOOWUU3j88ccP9TRedUSVWHFDaNqmKy6FABNFfcqwLBq6+mnfupdZO7pp6LoD/dmn0Xbv4nW+Ydn6OFtPXcnOE5eyY/VSZhy7loyZYcfQdpbEE5P2XkqFYEgNuVVhy3IuR+pzOc5QVX0EcTlauHDNh8XKgj6TQs2Jy5JpiNBT4QxqiuZeI5ZtYtlFpz8WYcMnrmT157/J8d/6OcaFHwOtNJ85eG0527Coa3BetxULVYMZcyJs3ZwG4MC+PFbc5IzXtwR6XIIXqgswkBtgXffzHNW4gLr6ZQAkh8xAjubB4M+5NCq0W5JIJBKJRDI5jElcfvzjH5/qeVTkySef5Oc//znr16+nu7ubH//4x5x99tmBMddddx0///nP6e7uZsWKFXzhC19g1arKYV1HEuIGMqSGgRLnUtHAtmlNWcx8cTuNe3po3ttN455emvd007p9H5F0LrA9W1EwVhzN1qWdbF86g71HH0Vh8SKGjZQ7ph1z1F55E6Esr1LV3TBVf0VX//sWoXv+cFZ/i4XSMNdKjNTnshQpLo9MlBoLiy0910RYrFmhoI/T/9YTXVvOPYmZvz2KWRu2MfybX5F93wcC2/IeVAWdS11TiMdV7LTFzNkRQiHVLcwDUN+slAlLZ26ec5kqON8jeTNHQhT1SU6ewyjDYiUSiUQieXWoaXGZTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0tkz4fVa2NG0iBmkpC92703kHsXAGlkIdCASWTYdnmZ7EG+5jPRlq7ttGWUelI/oh379hEQ3+KeN8Q7fk8KypsNx+LsG/lUXQvnEVy6SJWnnU55jHHYtc38MS2W+hOHwCgORRBMT1xaWGhKI57omvqpB0vXdMDjkxEc25ynf1ogf3omtM7z7QNFAU03zx0TXW3o5WsV4mwHqo6XlO1wJw0Tam6XFUn71hMFprvWKiqUnF+4rVam3stoanOcVSVysfwUM1HoCjFz0+xnetB1dzrycLCxnbHZ6ws93ziHVz+0e9Q95WrKbzpzdht7e62QlrIXU+8V7t4zScadOwei7kLYqiq4obKAnTM1lGUYg607xgJV1VRFfJWDkVxXqsv5nCmh83JO6aK9z5NjJr4rCRTj/wOk0wl8vySTCXT+fyq6ZzLtWvXsnbt2qrLr7nmGi699FLe/va3A3D11Vdz3333ceONN/LBD35wUuei6yqtrZMX6nnQZLOwdCX09dFYYfHrKrwGUCd+6eiAmTPZ2Ramf1YzyXkz6J/dwtCcdpIzWohHEqQLaVpjrZx29Pnu+o09cTJqFICmeB0FPe1tOxHCsBQSdpTWlnqaY5NzvGIFlcTeqPt3Z3szlm2R6IrSXJ8IfC79Sj2JwSixaIiEFqW50VuuZPIkupzttDQlRv08k1ojiX5nfFtLPa0Jb7wRSZHo9ubU2lJPqy8U2Iym3eXtrQ3Uhd0jXxNoWYNEongsmhO0Nlc/Fs3NtTX3WiJnhEgkooS1cE18PzRl60hkvPOyviFKa2uCeiNCYihKa3M9Ha2NJPZEqYuHCakhEjjjVc0kvXoJ+694KzN//Sdavv4l+MUv3G21mQ0kUlHq6kPue61PRknko7R3Rul7xeKY45tpbU0wazbAPgDmLYohLh3/MYp3hclmoC4eIaRCIhwlkYjQOrMO6MUytUk7pvF9IQq68z4TDbXxWUlePeR3mGQqkeeXZCqZjudXTYvLkcjn82zYsIGPfvSj7muqqnLaaafx3HPPTfr+DMNiaCgz6dudMLZN3TsuJbp9K3lU0HXsUAj0EHYsxla7h4GIzcyZK9hi7ifWNpujlp3KnZl1tM0/hrWLzgPgsR1/ZffwLurDDQznh5xtp/NopkUylyVm5ent9Qr+JIdzJFNZVEUlaeVIprPusj5lGNu2SSazDPSnsdKTky+VNbIkk95+hgZyhNUwcbuRZjoD8xsacsbauWFShSzDkay7fDCXdrczNJSlN1y9kBHAcDLvjh8YSKPnvPH96XRgTv19KRTfTf1Axlve15ciG/LaLtQCQ7lU4L31WuXHQlUVmpvr6O9PYVm1Nf9aIW8650hYswLn4aFCnP+CAVL09ibpG0iSTGYZGswyoGRIJrPoRoqQqvuuYefnhr9/L523P4h6zTUMvuNdGKecCkByyHmvPf1D9Iac9yq2O39xhFPntDF3oU5vbxLDcnrSqirEG0xnf6oevFaH06BDKp3DtornopmkVXVczgP705N2TAeH0yTzzj66+wbp1Q79ZyWZeuR3mGQqkeeXZCqp1fOroSFGKDRyqti0FZf9/f2YpklbW1vg9dbWVnbs2OH+/Xd/93esW7eOTCbDmWeeyU9+8hOWL18+oX3W0ocLkPrqN4i2JhjuTZbN7bntt7M/tZ/Xzj6dDXseoiPeSWvnMQy/spO2UNgd3xhuYpe9i6gWY8gectcPqWFsGxS0wLYVFOd1RUVBxfbt1jCdm0Lbdv5N1vFS7OB+NHQUVM6ffwEQ3I8YWzALxXUUb7mteNuxlVHnp6JVHS/eo//vqsvHsK9XG//8LMsecX6jLT+Ssa3icayVz7jkvLQsC8uyMUyjeD17161hGmXXFoDZ0EDy379Mw8f/nrpPf4r+vz0Iuu5eD3kj775XsV1NU5i9MMxT+5+kIdzI/IbFxOIqc46KgmZiF5x9+4+RaTl5kLZlu3MwLIv6Ruc/re1bMxiGNSkhQWKeEJy/5MhAfodJphJ5fkmmkul4fk1bcVkN27YDxTV+8pOfHMLZHDoqFfSxSvpcgtOOBCCmB5uKR7RwcWzlqqiqopYtMyzTLRYylj6SY6W03chIxXW0klYk1Qr6jFagB7weoaXbgTH0uWQaFfSpkWI005FaO3al56HIawz2uaxc0EegKiq5d15G/rpfE370YWI/+zGZj3zca0XiW8dfKCdjpNnY+yIAi45ezMf/33z0kMqfX6lcmEfMzY9lm3TOijB3QZRdr2R56uFBTj6jaaxvvyr+eRpW+XuWSCQSiUQyOdTeXe8YaW5uRtM0enp6Aq/39fWVuZlHInXhegASYSe3yF8tVvWJtTmJucytn8fS5mWBG2UhSsv7OxbFI0rZMtM2vJvYSTy1/PvRVX3EG3ox1mu7chCtSDQvrLdU4Ja3uZxe1WL9b0BWi504biuSGhGZ4vr02o2UikuvhY+/PZH4nnDGqKAoJL/+HWxdJ/71r6Lu2+tWTzZ9fSL94jRv5t3fuzPd1CV0IhHV3YddYpH6BZ//NVVVuPAdHSgK/O3WXjLpgxeDqXSBpx4ZZGjQoGDlR19BIpFIJBLJhKjBu96xEQ6HWblyJY888oj7mmVZPProoxx//PGHbmI1wskzTuHiJe8gEXJEpo2/FYn3sYe1MGfPex0zE7PQfW09wloECLp9zt+q+1Oh1Lk0XDdisgWV2J6/PUjlcaUi0FfB1d+KZAxiwH88Sp3YUZ1L3/haFG+1OKfpiNuKpEaOp5iHeBgirsfShy2aqhWdS0fgnTH7LHcb4sGSuXwFmb//B9RUksQXPue2/fG38jB94jJnerme+5J73N9FFEGpU2lXEJdiezNmRzjupAZyWYtNL6TKxo2XbS+l2Lc7x8Z1SXc+EolEIpFIJp+aFpepVIqNGzeyceNGAHbv3s3GjRvp7u4G4Morr+T666/nxhtvZOvWrXzxi18km83ytre97VBOuyZQFZVEuN4VVKZlBvtcVllHEC6GwJWO9YfFBgSUomBYnnM52U6OF+Y7cpGgsBZcrlRxEMcStuvf16hhseVWZsX91gqyz+XkUHvOpXd9gucWCgdTXEcKivudoCka7fF23rH0UtbMOJmFTYvc7aX+6Z8x58wlcvOfabr7HqDUufQEY970ROeeorgcSchVcy4Fx5zguKkb102s+E53V57//up2tmxI0bXfKcZ2YF+eF9cP8L3/eIU//WY/+/fkRtmKRCKRSCSS8VDTOZfr16/nve99r/v3l7/8ZcDpu3nVVVdxwQUX0NfXxw9+8AO6u7tZsWIFP/vZz6akx+V0xc2vwsIqFtCo5v7pqk7OdG62hHNZKi79zqXqC8FTFRH+VnQuJ/m5hedcjiwuoyW5o/55BJzLMczP6VWpYNt2hfDgsedc1orwqEatz6+WURSFiBYhqsVGH/wqUOrwezmX5c5lzsyh2ZrrcsZDcY5uXRncYCJB8pvfpfFd76DjC/9K+Kf/SCHuCcZqzmVvpoeskQ1sqlRMOn9rVccctSRONKaydVOabNYkGh09T9rPM48O0nOgwO1/7mIgb6DYCrZi89hDvSxIGQz0DfPypjSf/fLCcW1XIpFIJBJJdWpaXJ5yyils3rx5xDFXXHEFV1xxxas0o+mHoigoihLIuazm2vnFV7hY0EdVxyAuVQ2FKXYuVQ3M0Z3LiBZBVVRfjllQ5FUTi9UIqSHyZr5cXJa6fVVyLmvRtYTandd05I0LLkQbJVz71cINiy1ey3ZZzmUwJ9OwjFGvqfzrziP79kuI/vEGzvzJX3jm/33MXWYFxGXQBezJdLsFwyphMbK41HWFZcfU8fyTw7y0Ic2xq+tHnKcf27bZtN4Jp+3tzkEjzJpZz96uISzF4LWva2bdU0MMD5qYpo2myQcsEolEIpFMBvIO8whARQ2ExfpzCf34b5DjehyASDH/SlApLFZXdXRVDxQImbqcy9Hdi6ju9ZssnYdwFMc6P3ETPm7nssbFpR8ZFntwNEQaqQvVRpNjT1wK59IRa5UK+ojXS4tVVSL55a9jtrRy3M2P0P7MBvd1vxj0F/QByFv5QAhtec6lXSZsS93No493QmNvv7GblzaOPfeyp6tAf08BVQNbcba5ZEkjRx+XYMmxEV53YSuxuPO+87ny8FyJRCKRSCQTo/bvfCUHjaqo2NijCj+/kJqZmMUZc9ayoiRMzm01guo6oLqiu2F4hWLe1WQLFjG30cJigUCIYul7FTfSYxV9iXA9ES1SNfe02t/ecapN4eYXxzIs9vDBH00AnnNZeu2Pty2P3dpK6sv/CcDp//kLyGYD24Vyd9QwjUDbj0rVYktD9C3bCoxbtDxG4ymb6c7s57c/3UvX3rHlSG5e7+RpnnpWM9E6BVWBWbPrWLKsnuXHR1FVhUjUmacUlxKJRCKRTB5SXB4BiDBR4SJUc/90n/BSFZUFjQsDLiDghn+qiuq6gJqqu06JYRlu+OnkvoexFfQBiIf84rKyCByruDxn3uu5aNFbRizYUwmv32dtCrdaFb2Sg0OcbqIidGmfS62Coz7WayH39kvYfspKmnZ1Ef/ONwCnUFgp4jvDsA0Mu3JBHzGfSvnffveyO9NF66puoqc+g2VZ3Hdn35jmuuVFx+U85oQE7/q7Tk49u4lYNISu6m6RoXDEed85KS4lEolEIpk0pLg8AhDisjQ0rpRqIaCBbfnCSoVwE2Gx4DgZk13Mxz+n8TqXpfmlnugb2xwjWqRiyONIrUf8y2tVxMlqsYcn4rMU16O45isV9BFU+z4o37jC/Z+5gnw0TPy/v4e2/oWKFV/F9WdYhUBYLJTngIqiWX4quaELl8Yxmvex8fnkmCq89h4ooGkKM2ZHaJ8RoqUtjKooaKrmistIUVzms/ZIm5JIJBKJRDIOpLg8AhDiUoSoVW9Foo243BmjuD/dUFVFC/TOnAq3zmtFMnrhlEDOJVXCYg/y1B9NkCmKgqqoY8pnOxQEPqMadVcl40cpCXstdS69gj7jdy4BcjM7eejDb0IxDOr/8R+gUCgbExPOpWWUtSKpNJ/S7xu/YBXOp6YptK522pvcd2fviHM0TZtU0qS+0RGupu97z9+iRTqXEolEIpFMPlJcHgGIGypT3KhVEY/C7RhJEFWuFqsHigHVh8de1XGsaK5zObq4jBWLEUGFnMsxuLNjoVRAV9remhknc2LH6oPaj0QyHqpVizVLohbGm3Mp0FWd595yOrmTTiG07jlO/M3tZWNEO6CCVR4WK+YjRGZpv1wIiku/i9k8L4fWNMymdSn27a7uXiaHnH3WN+oM5gYwfFWyxUMly7ZkzqVEIpFIJFOAFJdHAOLmTVRzrCYeXXE5ws3mSNViBU2R6u0HJsq4wmJHqhZbwbmZCGMJJV3esoKFTYsPaj9TRaBFiwyLPWxQfDnRiqKM4Fz6xeXYrwVN0bE1le7vfhc7HueUX9/BjJf2BsaI68+0jLKczNL5KCgVnEtvHbF+SA2haQqLX5sG4L47qruXw4POOqnEDm56+UbWdT9XnLsXgmtjE444v+eyUlxKJBKJRDJZSHF5BOBWb7QKxb9HDosdMeeySrVY/w3iSL3tJsp4CvrE9OrVYpVxtiKpPp9R+l5OI6bz3CVB/OJRQfHlOAZD4idS0Ae8sPTc/LkM/9t/oJkWb/jatWh5z6EUOZcFq1AeFluh72Zp/nMgLLa4/ryG+QA0LBigoUln8/oUjz84UHGOw0XnsivqtEzZPbzL3Zd4r5Zt0a/uZiC0UzqXEolEIpFMIlJcHgEIYVawRg6L9SpJjuBcKuXOZWlYbPMUOJfCbR1bWOzktSIZK7VaFbYaUlAensR1p/hUXagOBcVX0Ke6cznmgj54vXALlkHyPe9jx+qltL6yl9Ouuc0dI3IuzQrVYoVzaY+Qc+kPhRXrt8XaiepR+vI9XPSuZvSQwu1/7GbjumTZHIcHi99zEedhmvjOUBXVfbhk2RZbjWfYF3uWXM5ix9B2dgxtH/NxGCs5M8e+5N7RB0okEolEcpggxeURgLihLFjFsNgqwmpMYbEVci51VUOfcufS2ddYnMuoT1yWiqg5iTm0xtqIH2TT++nuXMo+l4cnrbFWLl76To5pW1UxLNZ1Ln2h8eMpOiWuP8M2MBWbOz/zLvJ1MU763T3MWv8K4F1/hmWUVYsV+MVuec6lV71VrB9SdWYn5mDbNtGZg7z50g4A1j87XLbtoUGDvJokGivPt/Y7l4puYSkm6Uye+3fdy/277h3zcRgrzx14lr/uuJPezMhFiCQSiUQiOVyQ4vIIwBOXzpP8ajeTXshcdbHhb0Wi+UJV/YI0EUoc/KRLaIo0oyoqjZHGUcdGtIj7e2nI3bHtx3HhwjcdfEGfEjE5nQXadBPGkpFJhBJutWKBaZuB/rP+asnjuRbclkOWgWVbDHe28MSn3oti27zhP3+Dnsm5OZeFMVaLHamgj1hfU3VmJmYBsC+1j/mLHQE70FterXZ40CCpdxONaYFtqH5xiYWmO3NJZtNjfv/jJWM4286Z2Snbh0QikUgktYQUl0cAwqksmCPnXGpjcC791WLn1M9lafMyFjQuJGNkJnPKZRzTdiyXLb+c+nDDuNabKuFUKiano0AT72Ea62LJKPjDYv2CUlN9v48nLFYRYbEFN49z+5vOZutrj6V5Tw9n/uTmQJ/LajmX/mqxpZEUViAs1vldV3Tqig+t8maO+gYdTVPo7yt3RoeHTFL6ASIlzqWqKO6DM9u2EBH2Q9ly93OyEHnu/lBfiUQikUgOZ6S4PAIocy6r5lyWtykoxRMkKjE9xmtmnUZ9uIFkYepu0ARjybcsRYQCTzaHg3M5HQWxZOwEC/pYgYgF/3dAqbs/EiGfcykEk6Zq3Pfpy8k01HHCnx+k4YGHAMcxzJdcf55zaRf3rQRCdCEoxERYrK7qgTYiqqrQ1KKTTpplfSqHBvOk9ANlYbFOzqXiHY+iczmUm7rvLpHnXlo1VyKRSCSSwxUpLo8AhJNQmndVil68yRuxz6UIiy05dU7oWIOmaJw973UHPd/JIKyFAaewyVRwOOQsihttKTIPT1RFDYSh+j/nibYi0TUn57JQDIsV+8m2NXPXpy8FoPGqj9IwkHbEpen0oxTXo2Vb3L3jTjb1veiuK75LxMOjamGxwm0V4rOp1ZmLCI1NDhv0HMjTlTwAeoF5TXMCIbelOZea7hyP4fzUO5eWdC4lEolEcoQgxeURQDwUD/xdTTwKx3Lkgj6iWmxQkLTH27n86Pcyt37ewUx10njr4rfzhgUX0hhpmvJ9TVdx5rrQ03T+kpEpLegTbD9S2cUcDVHQp2AVMF1xqaEpGi+fcRzr33QGak835/7nbzDMArlib12RB92dPsDe5F62DrxcXNfLuRRj/OLStEWFay/HWwi15hZnLv19joD73S/28d9f3UGPsZdoTGNuw7xAtIO/7YlhmYRCznmfzHsVZ/37ngwKblisbHcikUgkkiMDKS6PAER7AkG1Ah7+kv3VUH2tSGqZqB6lI94xpfvwen5OT3HmOpfT1HmVjIwIi7Vtuyws9mD7XBbMvBcW63MEH/vEZRhLlnLU4xtY9cd73UI2Ec0p8lP6YMtfGEyMCbQi8YXFinFCqDW1OnMRzuWuV5x9JfX9RGMqcxJzXMfU2Zc3T9M20HXn96ThOZe2r1LtZCDy3GXOpUQikUiOFGpbIUgmBb9zOVLeYmu0jeZoC7MTc0YcUxeqoyPeOalznM5MV3E2XectGRvi8xXCJlDQZ8LOpSPWCpZRsVelUpdg+Mc/xwzpnPm/NxHf9JIjDEV/WcrzIMNFx1KEsNuBsFghYHXXdRTuYnMxLLa/13BFYUFJk9WG0PJ1JML1gdZF/pxLwzLQil+FaWPqnEtD5lxKJBKJ5AhDissjAL+4HMmliIfivGnRW5jXML/qmKZoM29feglz6udO6hynI9PduRRM9/lLKuMXUhB0Df3VYkcq4FWKFxabdwWTpmiu8NNUHePY43jmY5ehF0ze+B+/JF6w3TNMhOl6+1Y5ofNEzpp7Dq2xViAYQirCYgPOZXG/nrgskM1Y2Njsiz0HwIpZi4rz9ZxLLeBcOq1ZdB2yvjYhpfOrRrKQJFfMJ62GZVuusJc5lxKJRCI5UpDi8gjAHxY7HpdCMjKHS1jpdJ+/pDJCSBlFgaZQWVCOKyxWE85lwXNEizmX4IXNbnnXhWxfs5y2Hfs5/X/+5K5f6gyqikpdqI55DfPLnEmoHBYrhFpTMedyoK9AatikN7KFyOxezjpzDu+58LUAhLWgc+mKSyG4dQWjYJf13xwJwzL405bf8/vN1484TuRbggyLlUgkEsmRgxSXRwBRPereVI1UCVYyPqa7KJOO5eGN+HyFkCqtnFrp99EQ4tGwCr5qsYq7bRF2r+sRbv+Xy0k3JVjxp3uYe+8TQGVxWTqPUnEpRKH47hJCLRZXiURV+nsLDA8b9IRfIhrVufy1F9BYHyvOxycuVU9cinDbkK5i2yCiVsciLjNGekxjpbiUSCQSyZGIFJdHCCI0VjqXk890FWmyWuzhTWnOZbWCPv4Q2dEQYaZ5s+A6iJqiue1MhJjTVZ10SwO3f+5yAF7zpR/RuKcHi+ri0h+yKjBts6zQmBB1+1P7SLTYFPI2W/fsx1TzdMQ7aIo2u+uHfWGxKl61WPeYFCvGGgWLTMbkzpsO0N/ricJKiAq4o2GYPnFpyWqxEolEIjkykOLyCEGExo4nv0oyMtNdlLnzn+YOrKQyIgxWuHRqlT6XyriqxYaK2/RakWiq5gpXsVz83H7K0Wy58p2Ek2nedPU1kM2UzLF8TlZJtVitJITXtE260938dcedpFpeAmDjzh0AzErMCs7XFxarqZpbUEiECuvFXpeGYbNtc5qnHh7kup/sJZP25mDZFt3pbrdoUM7wcjRHolB0jEvfk0QikUgkhzNSXB4hSOdy8lGmSVuWakz3sF7JyIjP16rkXKoTC4sVLmLBFxarKKorZDVFD/wE2HbVhzhwwgo6X9rNvK99N7C9oHMp5mu5Py3bClS41hQNy7bc0NRovfPeXt63G4C5TbMD2w9Ui0V1n6OIUOGQ61zCgX15bMWipyvPX67vctfb3LeJ21+5hd3JXQBue5XREMWInN+luJRIJBLJkcH0vCuWjJu4XhSXMudy0jhcnMvp/j4klSmtFqtMQisSRVEIa+FAQR9N8ZxLveQnQDgS59Gv/hPppgQzf/t7lt3zjLvMLy5LC/qIqrB+cakqaqAKa12DioXJvuR+NFtnZlN7YL6BarGq5su59Ar6AAwPFkgOmzS3aURjKls2pLEsx6lMFZxWJZmC47pmxuhc5n3hs1JcSiQSieRIQYrLI4R4sYecNk1dtlpkujuXAikuD0/E+VmxFUmFXMexoqt6ubhUKofFAoS1CLn2Vm77/HuwFYXzvnU9zbsOlO3bbTVS3K4IXfW7oCIsVrixdfUqGa0PW7GIG+0k6r39Ovv2/lYU1Q2LFSG9esj5e+9up63I4qPraO0IY5o2w0PO/t1elcV9jtW5NHzOZcEwRhgpkUgkEsnhw/S+K5aMGeFcypzLyWO6i7LpLoolIyPOT8ttGVJZUI43VD6khrBtm0LRmfO3+PAK+vjFpeMe7liznB0fvZJwJsdFX7wGPZevUi3WcQxNtw2Jvz+n5uy7uCxer2AqzjzCVh11CU+Ils5DpbwVici57NrrbGPBkgjNrc42+nudMaLqq3BUR+tvKSgUC/pkMyZ/uHYvt/3xwJjWk0gkEolkOiPvLo8Q6sMNAES0yCGeyeGDW211mucuTvf5Syqjus6l5zAKgkVyxisuHbGYLYaHaorqbsNtReILZY1oEfcc2/bR97HjxKV0bNvL677z+8DjGa8abNG59PW4LJ23ELbxehVbKeZ+olBXH3wv4UBYrOq5uaKgj8/o1HWFmfOjNLc6L/b3FALzEPPKGMGiRNUQ673yUoZMtsCWF1NjWk8ikUgkkumMFJdHCK2xVk6fcybHdZxwqKdy2DDdcxan+/wlI+P2uSyKIiXgXFZuSzIWRK/L4cIwAFE95mtFUizo48+51CLuXGxV4bbPv4fhtkZW3vkErdf8rmwewiE03LBbf1iss9285YhLTbOJJZxt65pGOBw8l/3OpaZoXiuSouAOh733vvq0BlTV9sRlrxCXzk8vLNZzLkUF2UoUrDyGYbNjWwYbi4Feg1xWtiSRSCQSyeGNFJdHEAsbF5EIJQ71NA4bprs4k47l4U2pS6f6C/pUyb8cC0KwDWT7AYjpMRY3LWFp8zJmJ+YAwZzLiBb2Va61SLc08JerP4AR0pjxr19Hf+wRZ35uWKwo6FPuXAoBKkJObWzqG531YnG97Jz251yqgZxLZ9uz50dZeXyCc9/USseMCBZWmbgslORcZn3OpZirH8uyGewvYFgGu7ZnKORtrKK7emDf2EJqJRKJRCKZrkhxKZFMkOkeFuuK42k6f8nIlOYXamqVarHjrCAtciiFgxcP1dEUbeY1s05zl5UW9PHyPx2Rtf/oo7jnH9+JYhjUf+A9qPv2evMtCYutFM4rnEvLtqhvctaLx4P5ls48vLBYxZcbKkKFQyGVhUvjRGPFfdg2zW1VnEvLy7m0sentzvPI/b2Ypude2rbNH369n+9evZ3HH+lh0zonFHbmXGebXfu8CrISiUQikRyOlP9vLJFIxsTh4lxO1/lLRiNYLdbvXFZqATJWSkNNK+Vx+0NZ/XmPfqdv/YWnckq3QuMv/4+GD7yHvut/UxxTUi22gssqci4t2ybROJK4DM61tBVJKZZt0dCoo2qeuNzfleLJp/qYcV6OjX1D3HrzXizLJp+z6RvqZq/5EqeePId5DfN5+tEhXnzOaV3y7JP9GGGbhctizG4P07dROpcSiUQiOfyRzqVEMkGmu3M5t34esxKzAjfgksMHt8+lyF1Ug3mW4rwdb7XYsO98iYViFceICq/hYkisl08ZzFHs/c9/o3DSyYSefpKOL15dHFMSFusTquI95H0VXEd0LkvDYkuKBjVHmwGI6lHACbNVVYWmlhCpYZN8zuKVbUkG+gy2bBzmyccOkM1YFPI28ToNQ8nxwEtPsK77eTJpkzv/3I2qwpnntWCpBvUNGsuPSVDfGKxKW410IU1XumvEMRKJRCKR1DJSXEokE8RrSj89xeXxHSfy+vnnT1txLBkZN8/RKi/oA56oHK+41H2CLa7XVRwjHliIMFmBRTBHUY1EikhcwgAAwMpJREFUGf7FbzA7Omm87rcce8sjXkGf4rz9OZfimssXQ3It22L2URHqGzUWLamcTy7moCmaT3A7wnVu/TzetfwK5jUc5W4P8PIu+woMJ52quHv3pHll+xCKAm+4uJ2z39hCKG7S05Unlzd4eVOaQt5m1ZoGzrmglQsuaeH017WgaQrRegVNVziwLzdiEaAn9j/Gna/cRqpQ+5Vldw/v4rZtt4y5eq5EIpFIjgykuJRIDhIZViqpRUqFlFrydS9cvPFWi/WHucb0ys5luNh+RIhPt1psSQEcVVGxZ85k6OfXYodCnPODP9C8blNg3ppa7lyK3pM2FnUJlbPOb2XR0sriUghdx7ksVtC1vN6fIS3kHptScdnbkyOZdObRtS/LcCZNU4uOrimoqsJRS8NYNuzbk+GlYquRZcc47zlWD3pIfDdYtHeGyaQthofMivMEx7n0/6xldg3vpCfTTU+m+1BPRSKRSCQ1hBSXEskEETfl0vmT1CJqSduN0sI9Yvl4ncuQT+zFQ/GKY8JamHPmvp5TZ50GEKgWW2kOximvof9LX0EvmJz9mW+j7tpZOSzW7XPphcWKbVYTySd2rmHNjJOLocDBokGKK7CL4hfHVWwpFvXZtzdFOmUWl1mYSp7Wdk9cL1ju5JvufCXLyxvTqBosXOocE1EIKKyFMW2TWfOcsZvWJSvOE5z2Jf6ftUy+mPcqzi+JRCKRSECKS4nkoJHOpaQWEYLOrOJcNoQbSYQT43444i/oUy0sFmB2/RwaI03OXKgsLv3XTuZ9H+C5t5xOrH+IxisuxR4eKu6vvCdnwaokLiu/jwWNCzm6dWVg/dIiR6Xid+YcRwhufHEQEcVqKxaGkqW13Xv/sxaECIUV9uzMkE6ZzF8UIxL15qgoCiE1hGVbrD61AYBH7x/AsiqHxooKvEK41TIFt2KvFJcSiUQi8ZDiUiKZINK5lNQyblis61wGv+7PnX8+b1r41nFv159HWa2gT/lkgs6gwO82qorKPVddzO6TVqJv3MCxn/0SimkFwmLVEpfVsi03j3MsVW9LRa4bGlz8r1DMb8ZsR1zu3uWEutY3aI5zqebdViUAmm6x5rRGUJ3tLVnhiW3DMgipITdntHNOiAVLYvT3FNj0QmX3UjiyExWXyUKSu7bfTnd6/KGqPZkebn/lVobzQ2Ma7/X/LO/1KZFIJJIjFykuJZIJIlt5SGqZUpeurKCPqgWqqY6VoHNZOSy2GkLUNYQbaI210hJr8eajaNiaxt1f+ijG4iV0PPAYZ/z05pKwWLVse6OFxfopHVNa8VnkhMbiGs2tISzFOXYz5kSob1GYuzhEKORV2i1YBdo6wpxyZhOLV8RZtabe3XbBKqCruiuITdvk1LOc6rTrnhqueGxEuG5+gmGxXal97E/tZ+fwdpL5Ye7Z+Vf6sr1jWvel/s10pw+wa3jXmMZ77WCkuJRIJBKJhxSXEskEEZJSOpeSWsRz6YrO5ThzK6sRyLkco7gsdQwXNi3iokVvIaJ7PTIVRUFRFDKJCIO/uYF8Yz0n/e4e2n9/ozumVBw64tKuuKwSpWOEY1mpVcqMORFsnGOXqNc4762tnH2BIw5FkSBRdGjmnDBX/P1sEvXOsTEsA9u2Cakh97iblknHLMf1FXmcfvxupaiGO17E/AtmgT3JPewe3s3uMYpFUZgna2ToTndz5/bbSRZGyg91XFZThsVKJBKJxIcUlxLJBBE3zFJaSmoSpaRa7DirwlYjFKgWO15xWbktikBFxbRMrIWLePQb/4ypqcz6wr8TeuQhoFwg29iu21iaU1px+6XiUoS2u9VsPXE5c07EdS7r6jQs23SPpQgNFkWHSsN9hfDS1ZBbSMnCIhJx9pfLlrt9/iI+oo9n3sxzz8672ZfcO+p7A0+8F6yC636OxVksmAUGcgMAZIwMrwxuoyu1n1cGtlZfR4pLiUQikVRAikuJZILIsFhJLSPOS7da7KQ5l14Py7GG1Qpzf6Qej+CE6gqhtn/1Cu7+1CUohkHDlZejbXsZVa2QczmOsNhSUau6YbFezuVL/VvYNrg1IC7jCQ3TNt0QYyGw3ZYoJe/LcMWl7obympZBuCgu87ny45DzOZci5LQn083u4V1sG6wu8vx44jI/rrDVvmyv+x4yRpq0kSruv6fqOsJptWS1WIlEIpH4kOJSIpkgrnMpw2IlNYgrLm2vp+NkENJCNIQbaI+1j3suVlE4VnMZFRRXDOXNAusvPJXBv/t71P5+Gi97O5G+wcB4f0GfMYnLkgdBSolzadkWj+59mId2P8DMORFMxUDXIRx1HFXTFZfFsNgqzqUnQr2cS8u20DQFPaSQy1VwLiuExYpjMda8Rv+xy/sq6o5Gt69XZcbIuH02e7OVxaUoPATSuZRIJBJJECkuJZIJIp1LSS0jXLlqBX0OhjcteivnzDt3zONLW31UeyCjKqorVkSYaPLf/oPchW9G2/4Kx37ss+hZT4T5ncuxvL9qYbFezqUnxMJxi2NPirF4RZ0resXcwlqJuCy6fk/se5xtg1vdSqqaoruOsajaG46o5CuIy3yFsFghWscuLr1j5zmXI7vF4OVbgiMuU8Vcy3Qh7QpNP8KxHc/cJBKJRHJkIMWlRDJhpHMpqV1KBd1khcWCE746nvO+tKBPtQcymqph2za2bZMzc06fyFCUof/5KYWTTqFh3QYu/NKvUExP0Iiw37EV9FFK/i4Vl54LlywMc/LahNtexLItVyCWhcVikzEybOp7kRd7NgQcTn/OJUA4AkbBxjQd0ffoff3877d3ksxk3X2Px7m0bIstfZvJGJlAzqXbh5LRxV9vpgdFUYhoEbJGlqzpzaWSe+nPD5WtSCQSiUTiR4pLiWSCeDfIUlxKao9SAVcqrA4FozmXmi+EtGAWCKkhZ2wsxuC115NZMJ/Fj6znnB/8AYqOnOkWLBr9/ZWG44q/vZ6ghrssmU8GHDrTNt19hUoK+vgdVMMqBAv6uNViDfJmno11t7A/+oJb1OfxBwfYtyvHrp1eZdZ8Sb6kPYJAfP7Aszy27xEe3vOALyw2T16Ero7iXNq2TaqQIqbHqA83uK8JeivkXRZ8x8mSYbESiUQi8SHFpUQyQWRYrKSWKT0vJ9O5HC9eNdaRnUu3N6dtULAKblVWALullc0//x9SzQmO/8vDnHT935yxwrkcw39npaK21LkU1WABUoUUhk84Oc5lsVpsMeey4Mu5tH2uodiOrmqBnMvh/DCECmS1fvI5i4G+AgO9ztiuAyl3X4VxhMXuGNoOOMV3hEsZcC5HcRZFqG9IDRHTY+7r9eH64na7y9bx54fKnEuJRCKR+JHiUiKZILKgj6SWqZZfeCgoy7msIi6V4n9JWSMDQFiNBJab8+Zx49f+nkI0zJk/uZnldz81roJFpWPcB0TF6ZhWMCzW8DmXgBuqqxd7fQon07ZtVwgaloFh+sJihXC1DAyrgB5SMZUCuZzFKy9l3G13d3u5jYZlYFqmK1hHCj0dyg8BUB9u8JxO23ZzJUcLixVCVlN0YiGvtcysxBxURaUv21d1HQgeM4lEIpFIpLiUSCaIdC4ltUzpQ4/JLOgzXrxqsaOExRbzE7PFnMNwSasTTdHoWjaPm//9/Viqyhu+/ls6H38emFgrErdabAXnMplPBqqigiOqdEX3xgfCQ/2uYVGwqV5BHwvLWV9XsBSDfNZi+8ueoOzu8ZxLcAr8iGI8YymaUx+uDxTvyZXkbVbDzQ/VQsS0KKmkQSZtkgglaAg3ODmYRjawTjDnUopLiUQikXhIcSmRTBDpXEpqmZoKix2jcykEonAuReGc0uWvvGYld/9/l6AZJq//3PeZsXHH2KrFVsm5FD/9YjFVSLnOpQjPtW0bTdXc8dWqpuaKBXH8BX1My3TFpYnPuVQgElXpHchgWba7r4KZH7Wgj1/8qopaMf/x8Qf6+fNv91c9JuI9hFSdsBrjobv7efyBAepCdTRGmgAYzAdbwORN//uW4nI6MZwf4ol9j7sPHyQSiWSykeJSIpkg0rmU1DRV8gsPBWXVYqtcMporLh1x5s+5BFBVTyC/cOGpPPihiwhlclz8uR8TfumlUedRLVRYXMumv6BPYdjNqYxoXniurupejqZvvD90NVMUx1pJzqVhGeghBUspcGBfnqEBg5mzI8yaF8Gw8ySHTepCCQByZn7UnMuB3ID7u7+okCCft9i4YZjnnhh2q9OWInJWNUUnPxQin7cZHjKxcxGahLjMDpSsI1uRTFe2DWxlU9+L7BzacainIpFIDlOkuJRIJogUlZJaptSlO5TOJWV9Liv/11PqXJaKy9L38MS7X88zl76O2FCajnddirpr54jTKBeXSuB1fwGfvJknY6SL8/DEpaZoVcSlt65YL+SrFmtYhutc2orN3j1OGGzHzDCdMyOYisHQYIFEUVwWrLwvh7KygBv0iUvTMsuEXk9X3q0Wm05VdhgNt7KtTnrAO74D+zTXufSLWAj25DSLonbH0HYe3fswu4d3VdyPpDYQTnW6kBplpEQikUwMKS4lkglSWmlSIqkl/OHaUT3qFqE5lIgWF9UezES0KOAVqQmrpeKy5FpTFO77yJtZ/4ZT0Pfto/Gdb0HpLq9u6g4va89SvRUJOKGxzry8eWiKXvGatwPOpS8s1pdzKQr6AHT3OgK0LqHROSuMpRQYHvCcy7wvLLZaXuNArt/9ffu2FM8/NRhwKLu78tiKs4100nTfoz+H0qtsGyLV550jPbsUGiONAAzlBwL79bciMS2Tdd3Pcf+ue3mpfwtPdz1Zca6S2kA8QEkb6VFGSiQSycQ49HcbEolEIpl0/EJK9C88VLitSBhZXIpWGMIp8zuGUPlBjg3c9elLWay0Eb39Vhovu5jBG2/BbmgsG1stLFb8NEvEJTiOnqbogb8r9dT0V00VzqWm6Giqt23LttB1Z93e3gwQp65eZ8bsKCYFBnoUYrojsPNjCIv1O5dPPjxANgXqK/0sWBqjrTNMT1cepVhEKZ0yuXfn39g17Li7Z897HXPr5/l6cmoMd2sotoJuR9m3q0BDuBVFUcqcS38rEss2nRYr7pwGyRpZosX3MVmkC2nu23UPx7Ufz+z6OZO67SMJq3ieZqS4lEgkU4S0XCSSCaJI51JSw/idy4YaEZdeWGxlcRkP1QEwlHMKyFSqFlsJW9MY+vEvyJ9+JqEXnqfhPZdBJlM2rrwVSfU+l4H9+nI9dVWrGNbrb/khiqWEVD2Qc5m3Cugh570Pp5wxiXqNGbPDROosBrrByDrj81bedUOrictkIenM27BJpwuAzeCAwXNPDPO3W3pJpyxXoO7u3+cKS3BEIHiiOKSG6DtgMDtzErMyq9mzI4uCSn2onnQhTd4nKAOtSGzTdXybo81A5d6YB8uOoe30ZLr5286/ug64ZPyIczxVkOJSIpFMDfKuWCKZIDLnUlLLBJ3L+kM4k7FXi43rTp9FEQZaXi22et6oEosx9KvfUjjuBMKPPkzj+98NuWBFzFJRK/JSS8NiFzct4bWzT6cj3snylhUBUaspelk+KwSdSyF+dF8rEtM2MS3DdS5NxRFodfUapm3SOTuEaoXYvdWZQ97MjV4ttijyUsMGNhYz5oZYc1ojCxbH0IpT1ov6fGPviwC0xdqLc7QC71lTdHoPFGix5rJ89jxyWYu+7oJXMTbnVYwtrZIr8jZn1s0C4EC6q+J8Dwb/MdidlHmdE0WcpzLnUiKRTBVSXEokE8RtRSJFpqQG8bt0iUMtLkuukdGcS0FkDGGx4Dmadn0Dg9f/CWPF0YTv/RsNH3ov5POBsf5teNViReiqc+OtqhqLmpbwhgUXcGLnmsA6/mqxfvzOpTc25IXc2sU+lyHR87MoLhM6eTPPjNkRNHS2b3Jez1sFr6APnlN31196+Ol3dmKatisMU8MmtmJR36Qxc06EY06s5+wLWlm1up6VJ9ZRUNLsHN5BRIuwqGmxs39XXDr7M3Mq6ZRJS3uIuQuckNY9u7Lug4lkwQt99bdAMSzDzeOblZgNQHfRuezL9vJC9/OT4jRmTc+J3tCz/qC3d6RiFp3LnJkLPBCRSCSSyUKKS4lkgrj3x7LPpaQGCTiXoUMcFltyjYzmXApCYwyL9Ys9u7WVgd//BWPxEiJ33k7DRz4IhlFxbGlBH+GYlhYOUgPOpVZZXFqVxKXuFlKyLBPDKqAVnUtLceaUqNcoWHla2kPEwhF2bzMoFKyqfS43v5Bkz84c/b0FDMtAUzSSSce5TDT6ijhFNeYvihGvVxkOdZHPWSxqWuweU/FehQs53O8IwLaOEB0zHVHfvT9PSC2O9wmRQrFarK7q2NiuQG2JthLWwvSku7Fsixe61/HsgWfoSlfvszlW/EWIDqS7An9PBMMyjkhxZfhzg83y0HGJRCI5WA57cXn33Xdz/vnnc/7553Pbbbcd6ulIDiOkcympZfx6riFSGzmX1f4WxPRYQIiWVYtVK4vLUvFqd3Qw+MebMY9aQOSWm6j/+N+BWXQlK4hL8VOIuFLx6BebWhXnslJFV13VPVfUNilYBqGQLyxWgXhCI2NkUFWF+fPrsU2VA/scYVmpoE867eynr9cJmw1rYce5xKKuoXxe4YiCjUE+ZxEP1bkhvZ5z6WxvqM8Z39oRpn2Gc9y79+fd3qJmSZsWTdHQVR3T8nIuw1qY9lg7pm3Sn+0nZzoCsLQgUMbI0JUan+AU7Wk8JzU5rvVLuWXrTfx1x50HtY3piP9zTMu8S4lEMgUc1uLSMAy++c1vct1113H99dfzve99j3xJiJREMlHEDa0Ul5JaxH9eloaXHmqqhcUqiuJWjIWRq8VW+11gzZzFwJ9uwZw7j+if/kD9pz4OlhU4Ll5YbHDdUofU/7euVnEuS/IiheOnFyvNOoVv/M5lgXhcQ9MUtzfkCcuPQrEV9u1xhKNlB8WlZdlk0s7vvb2OcItoEZLDJrZiU9dQflxDESesNp+3UBXVJ6Tt4rwcYTjQ7YiO9s4w7Z1FcdmVd+fvb9NiWAYhzWmzIgr6iG3XFcVfxkiTL4bPlorL27bdzJ3bb6c301s232qI9i7t8Q4Akr4KtePFtEyG8kOBVi5HCv6KyDLvUiKRTAWHtbh8/vnnWbZsGW1tbTQ3N7Nq1SqefvrpQz0tyWGC61xKbSmpQTIHGTY4mYzVuQSI617epRBofoTQ8/ftrJaLac2Zy8Afb8acNZvo9deR+MynAnsW8ygt0FPmXPqrxSp6xWqxpc6lmJ/qFjMynZxLvehkKgZ19c52dw7vAOC0Y5YSDmt078tRMMxA70zLthxhWUxf7O3LFPcTIjVkoeoWkVgVcalY5HN2IKRX5IiKsNgDe4p5k3OjRKIqDU06/T0FbNObP0B3uhvTNgn58kkLVsF9v5Gi25w3c2747FCJuBT9Q8dT+CdrZlAUhdZoGwDDhYmLS/Ge82b+iKs86z9PM4YMi5VIJJNPTYvLJ598ko985COcfvrpLFu2jHvvvbdszHXXXcc555zDscceyyWXXMK6devcZQcOHKCzs9P9u7OzkwMHDrwqc5cc/siwWEktc7Bhg5NJWc7lCE9k4iEn7zKshSuOE4LGLzxHagdkHbWAwT/djNnRSezaazjjBzeAbaMoihd9UDa/yi1LwCn2U6larFVFXIqfBcugYBbQdFBwnMu6eo2+bC/JfJLWWBuNdfUsXJrAMGDv7kygkI9pmaRT3j76+52HB0ZOxShAXb0KlAslPQQoFrmchaoo7rHyV4u1LJvuvSbhiEprh3Nc22eEsW0YHhAOp8mGnvXc/sotAET1mCv0Re4neG5zzsy7LVlKnUvBeHotZo0sES3ihcUehHMpRK/ze2GEkdXZ3LeJ6zddN6Hr7IWeddzxym1VqwBPJX4HOm1I51IikUw+NS0u0+k0y5Yt49/+7d8qLr/tttv42te+xj/8wz9w4403smzZMj70oQ/R19f3Ks9UciRS7cZUIqkFljUvQ1EUTppxyqGeSoVqsdX/6xHOZSXXEjwhGda8fMxKYs+PuXAxg3+8GautjVV/uIfXff8PqL77+vIcyxHCYhUdTR09LFYvzj+qOWG+WSODYRkoKGi6gqkUSCQ0dg05vSfnNcwHYMVKRzzt3J4ObNPCIuMTl31FcTncZ6OiEm9QKlastbEIxyCfc0KCNV/fTXCqxSaHTay8xqx5EVTV+axEaOxAjydChVu4oHEhr5l5aqDQkfi8xOfiOJeF4nvPukLTz2jOmWVbPHfgGXoyPVi2RUyPTZK49ARl3ppYqkxXej95M09/dvz3G892Pc2BdNchCcuVzqVEIplq9NGHHDrWrl3L2rVrqy6/5ppruPTSS3n7298OwNVXX819993HjTfeyAc/+EE6Ojro6vLCbrq6ujj99NMnPB/xn26tIOZTa/M6UlBVFUUBTVUPy89Anl/Tm5Z4C+9d+f6aePihqkogfNx/zZSeX4lIHYoCUT1a8dzTNZ28lSOkhdxtapo26nlqr1jB0I23EnnzuRx/00Polo368/eBqqKpWmB+uhrcXkjT3eVhXUcvGQ+AYgdeC2k6qqoQUcOEtRAZI42FiaJAKKRgZQskGnR6cz0oCsypn42qKixdUY9yG+zbncXG8lWl9vItAQYGs+T35tj20BDYKs1tTuVWVVXQFd0TUIpNNK5gJcEyVbSoM3cbC1VVsDAZ7Cug2Bpz5nnHvLNYMXao10JpAgsTy3bmv6x1Oa3xVnRNI5+30HWFkBZCVRWioQiKAmkzDXjHZCg/SGedE0kkXsuaTiGj4fwQm/s2saBxIa2xNvc9vtT3Ei/0PM8LPc+jKBALxWiINKAokDSSo37m1c4xwzbcOZh2YULfcWZxGwUrP671M0bG3beqKGNedyDbz23bbuG1c85gfsNR456vQJyDzlzS8vv9IJD/R0qmkul8ftW0uByJfD7Phg0b+OhHP+q+pqoqp512Gs899xwAq1atYtOmTfT09KBpGs8//zxf+cpXJrQ/XVdpbU1MxtQnnebmutEHSSad5nwdiXSUpsa6mj03JgN5fkkOlj4SJAaj7t+tLQma65zzqvT8mq20szkZpTXRUPG6amqoQ82ZtDY0kFGHAGiMxcd2DZ5+Mrf/8t9Z+4GrOebmh+Gf/xF++lOipkIi4Z9ffWB7rXY9iSFneVtLI23xBhL7o4FNJ+ojJDK+bTR4829vbmYoN0QEjageJRzuo4BBe2ecbFwlYUeZ09lBPBQn3qDR2hEmtbdALuvNq7k5zk7Fc5qGhnO89OQwdfkWjjulmeUnRImGQoTMOLFQjFQ+haqo6KpOPKFBEqKhGG0t9SQOREnUR2htTRDdr5McttFtnWUrm9w5L14G0EVyQKEp4YwvWAUSRpT21gZa6xJEdka559ZeOmdGeedbj6K1NUEu3EKiL4oaNQLHVI0X3G23NDY4FWejFr3s5b699wEQjissnXOUu06DGXWPO0BnSwsd7Y10NLeQKWRobomTzCd5cMeDnDT7JDrqOip+7KXnWEoPu3Orb4zQmhj/93esRydhR4nX6+P6/t852Ofuu7E5Rmvd2Nbt7tlNJK7Ra+3jxNZjxj1fANu2icVDRPV6skYWPWof1v93vVrI/yMlU8l0PL+mrbjs7+/HNE3a2toCr7e2trJjh1McIRQK8elPf5p3v/vdAPzjP/4jkcjEqiYahsXQUG2FkKiqQnNzHf39KSzryCpKUAsMDmZIJrMMDmbojdZOfttkIc8vyWQxMJAmmfQKDPX3pwjlUxXPr1wKksksWcWkt7f8ukol8yRzWbKa6W4zauYqjq3E/s4Orv/eVVzy//2QxDXXkEtl6f/udwLzGxzI0Kt42xsazLrLhwdz6Lng+wHoCw8HXkurBXdORlYhmXKWhaJxFM1pRaJqJr0DQyRzWYYH8mRUi5yZo7UjRHKfxeYXB6hf5KzX3TvIgS4vX87GJJezWDY3zrKVCslUkrzmhDweP+tkspEszx14BsvOo4WckNXu/Rnqo1GSySwDSore3iT9Q0m692eZjU5jC+6cwzFnWwf25tGTWfr0JAUzTzKZZWggi5ZNsmn9EIWCzb7dGZJDzvtNZQokk1n25A6QKnjHY/v+PbQrcwAoZCCZz1LI9PHg8GMkc864A0o/vQ3ecU8NFQLHNB+xnfnlQwyn+ti5fz8betazuW8r6WSBc+a/3tlO+gCmZTK7YVbFc6xroN/dbldPP3pu/DdvfYNDJDNZunr7maV7cx7I9rMvtY9lLcsr5gJv6dru7vtAzyBaNl42phIHegdIJrNsy+2it8nbn13MH97Y+yKGZXBs+6qq2zAsg2QyixaJks7nMXNDY75uJOXI/yODZI0sUT06+kDJmKjV86uhIUYoVLktmGDaistqiC9awXnnncd55503KduupQ/Xj2XZNTu3wxnbdv5h1+65MRnI80tysFi2jb8op20p7jlVen61RtpY0LiIBQ0LK553Ciq2DRq6b5vq2M9RW6F/Tgd//q9P865P/y+RG/6P5lwWrjoDWxP/YSqB7Yl9OnvSwFYoLTJqWlbgNU3R3W1E1Zi7LKpF0UOK04okoZIzciioqGjOeEuhfUaY7c8b7N6VZvlCZz3DNEklHcEXCitYxRYii5Y0oJLDtqFgGoTUEPPqjwLguQPPYloW4aiz80zKcucuCvkMJ7MMD1jUN+jUN2runCNRlXBEJTXofHYFo0DBKmDbuHPdvS1ffO8w0G1hLbDRVacQUKqQwrahKdLEQG6Awdyg95nbzrHKGjmyRg5VUbFsi7xRCBz3gmkEjmlYi2JZNgm9ni67i/7MANsGtmHbsHt4N5mCU/Tn/p33UrAKvPvoK5z9lZxjOSPvbjdr5Cb0/ZY3nGORM/KB9R/Y9QB92V4yhQzHd5xYtl5Putvdt2EaY953tpDFtiGZT5LKp4npMe545TYMy+CiRW/mua5nMSyDla3HjjpnBRVN0SmUHG/JxJD/R8JQbpCbtt7IqrbjOK7jhEM9ncOK6Xh+1XRBn5Fobm5G0zR6enoCr/f19ZW5mRLJVOC1Ipl+8fASyatJeUGf6mM1VeP02Wcyu35O5eVuK5KxVYstRYxNzpnBwJ9vw5w3n7qbbuTCL/0a1TAD+yjdp/i90v7KW5F484vp8cDrsXAEUzFoaNTJm/myyrdNzTqhCHTty1HIF3tc2hbporicOSeCpTi/L176/7N33nGSlHX+/1TsnCaHzTknYMksUYISliQIohjO0wM9zzv19FDx9NCf4U7UUxFUDAcoSZIgOe2SWZbNOc9OTh2rK/z+qH6qqzrMdM9MT9rv+/Xa1/Z0V1c/VfX0zPOpzzcEbL0rdcfYOJhFfuRMi5JUAo5tAWDv7ig4XcTSVYG832XBkAAlyUFVDeiGBlVn50dEPKah7XC2ME7HUfM1F29GB7EWH0FXCIAp4hi5xY+a/M0AnFVcC51TT6Y4kl8yQzm3dG6CoinWPg/0mVFLiqYM2GbEXtAnrQ2tWqzVzkR3FiqKZarHbmx/r2A12I5Eds2iGmre68VQbGPuTHTAMAy0xVvRleyEYRjQDA2aoQ1YgZadT5EXIfFS5mbBxFq0EuOTXqUXhmEUrQxNHFtMWHEpyzIWL16MdevWWc/puo7169djxYoVYzcw4piBWpEQRGmU0+dyMGq9tfDLfvikbCgjX8b+mLjiOR76tOnoefgJqDNmYv6LG3DxN38DQUnniUf7zwIvFhSXedVibYLUI3msxxIvYdnyCJYc70FNowDN0OASsukaPMeD4zg0z5Ch6zp2bIll9m9YrUgap7ihQ0V1rYRgwO2o2mofG8/xMAwDciZS7ch+xarU+/rL3fjzb49gz+4oeAhYdVIo75gCIRE8eCQTGnZuj+LIYXMsIi9i+6YYoPMIhszPbjuk4tnHO7B/h+IQqay6a1LLppVoulM0MnHJhGJ2O6f4YiF3AVcQAHA0dhQAsLjGzEHc17sHQFa05YpTRtr2OUOtFstaeig5VXAj7oj1eHfPLsdr/Uqfo2pu7vj6lT4cjbUUHrNtnJ2JDkvEsrGw8ah6ccHKzqeQycUtNAaCGArse5D7fSCOTca1uIzFYti6dSu2bt0KADh06BC2bt2K9vZ2AMCNN96Ie++9Fw899BB2796Nb33rW0gmk1i7du1YDps4RrAWUORcEsSA5PWRHIa4PKHhRKydc2XJfS5z4TNjsRy8KVPR9dBj6JpahznrNuHyr/4KYtSZX+9sRVK4z2WuYGKLdwDwih7b8xKqq7yYPttj9XmUbG1VWP/NBct8ECRg784E+vtU6IaORNz8jOUnBNAwTcS8RT6InJgnKHMfN06XIMkcNr4Zxdvr+pFO69i5LYr33+tBPKahrs6D2obsGBiBkAjOENDXo2Ldix14fV2ndT7efKUHHAQsWOaHIABHD2h4+eluPPt4J2Q+uy+34IEsyEjZnEsjpx9nnbcOsiDn9ZzMFT7uzHmcFpiOZbXLEXaFUe9rwMq64+ASXDgaPwpN1yw3rpjQStueT2tDE5dsrKlcQWy7yXCo/6DjtfZEu3PbnDnz0M4H8Pd9TyKWzu8/aRfenckO9NtasdgF8oDi0uFcspYxQzt+grCjaMzJH1okADG5GNfictOmTbjssstw2WWXAQC+853v4LLLLsO9994LALjooovw1a9+FbfffjsuvfRSbN26FXfeeSeqqqrGcNTEsQI5lwRRGvlhscP7znAc5wz/LENcsrE4BGnTFNx7+xfQOncKpr27E3M++glwXZ3Wy3ZnUCziXBoo3OcScIbFSraFfTTjPrkEp7DjwUN2A4tX+mAYwJ4dcejIhsXW1Mu44MoIaurlvPEUeuzxGzjhtBBEQcALj3ejpysNgzMguQ1wABYtDRc8V6ZzKaCzPQ2D0xGNpqGmDezZlsSRgylU17pQ1ygjXCWBM8xz1NGmWMcHmH0vXYJZaZaJKbvLK/Iiwq4IJF7KC2XNFUrMuRR5ESvqVuGSOWtx/owLwXM83KIbhmE4nMHi4tLuXJa/GLbvN9epsb+m54jjtngbAFjtVoq5hv1KX95zduHdHm93ikuHG1pcXNrDmkVeGHR7gigVci4JO+O6oM+JJ56I7du3D7jN9ddfj+uvv36URkQQWZr8Taj3NaDJ3zTWQyGICUU5TmPxfXC2x+XnXHKwi1MOibAff/7xTVj79V9jysb3IV96IXr//DD0xiYI/OBhsbkulOQQl86wWCnjajKHyi7G2Bh1Q8e02V6sewfo6UzDMHTEYxo6/VvwwpFdCMhmaKjIixAGEZeqrqG6RkZgjhf7txo4sCcJAzJOPNOPqU21aA4WbkcRCJrOZWe7Ah0CDE5DrA948e0uAMCq1WEk0I0ZczxIKV6EoiJ6ulRoKdG6dW2KSzf60Y+kloSP9zlEVY2nBjzHQxZkxNIxpPU05IzYVjPbBeQAXIIbXrF4ZVWBM89pSstWly0mnOxuXW6eZynYhV4qZzFtF5S5odLtcbPvdqOvEZ2Jjrw5w0iqSfNcaArCmTBbNuaAHEC/0o8jscNFjqe4WGZjE3gBkiEPun3hfeh4dv/fMTU4HQuqFpb1XmLywhx8csIJYJw7lwQxngm5wjh/xoWocleP9VAIYlwzEmIyF66IoCr1fYXyKhW/Bw98/x/Rf+YaiNu3IXzx+eD37skr6MNCV+1ouTmXvC3nMqegjyvjwDGHSs5xLjmOg27ocHt5uNwc+vs0JFNpJBI6Ev5DOBo7it5ULwBTrDqL+NiPi8uMzRRZ02b6wIFHy6EUDBioaRIgCJwjhNdOMCyAh4D+Xg0Gp0GHhqMH0ji0P4naBhkzZ5uitGmqG1d/bAqmzzZFdKI3OwaZl+EWzZzSlJaEYRgwDANeyYsFVYuwPFNR1QrTtIk9PSO+Tmo8BRfN+hA4cHjuiU489KejedUT2THYF7fFnEvVJqiGshge6P0O59IW/pvSUuhOdsMv+60bA5qhIpaOWY6mfduXD72Iv+193NofE8GNmfxUe8it060tnkPJ9iVyonW+0gOE0RaiX+lDS6wFO7sHvvFPHFuw+VnuzQpickLikiAIghhVygljLUaxUNBBP7tQWKztedUt48iddyB52eUQDuxH+OLz4dqWXUizRXlu3mVeQR+bc+kW3dbnSbxkOZl2gWhH4ATohg7d0BGKSDAM4OC+OAxDB1ymkGDC1HRSixf0AbKiYtoMb7atCqejqoHPfF5hcRkIms9zBg+dU2FwOg7uNhePC5f5IQnOcOHaelMgJnqzwlsWXHBnqrym1JR1nkROxOrGE1Hvrc9sZ54Dew4kczj5jFB/85VevPT3Lrz3Zj9ajzgdQybmkzbnspjQsofCDmUxbH+PbugOQakVcS7bMwKyzlsPITNWVVfx2pFX8dS+JxwCMakm0J3sQlpPW4V7FE2ByIvW+bLv2y5wc4sg2bHOJydYc04ts1ouE6P9Sj9VmiUs2PzN/T4QxyYkLgmCIIiKMpLVYhkOEVXGn7JstViu4PMAwMtu9P/iLiQ+eiOEtlY0XXUVmjbtBc/xjmqzdtjCnbmcck6oKxOUIi9aTmZvpmy/vVos27fZC1JHKGIKvH2741C5JGSXOe6EahYdkkrIuWSLveZpHoiiWVvX5QXcGUM1V9wyAmEmpAXonClC9LS5zzkLvJboY8dVkxGXsZ7s87IgwZVxLpNaMnueeGe7l6xzmRU7dqetrSWFJx/KFsTZuTXueL8VFutoeVJYXA7Xucx1++zC0C767I/bMiGxdZ56a45ohoa4moBhGI5cte5UtyVg2XVm4cK13rq88dg/fyCxzKroirxgcy7LE5earSptv9KHdYdfwf6+fWXtg5h82L9HFBpLkLgkCIIgKspIVotl2AXlUHIu85xL2xgFXgAEAdEf/g/iN38RQk8PrvzSzzH31c0FtweyQmZxzRKsqj8e9b4Gx+tMUNqdy/60WZRFyi3okxmbZmgIRUzht3dPHGk+bonL7Fid4rJQ/iUTdC5JQvM0FzhDQLBKsISFUCQs1h9gzqUAjgMEwRSaLjeP5uluZxVdXkRNXaZQUZfTuXQJZhhwUk1agovLWX6wc+B0LrNiaMfmGHQdWLDUbEGza6uzoioTSymHc1k855JdP3UoBX1y3D4lp4hQbi9RwGwfApitdLLiUrc+v5DLCQBxNY60ZvajlHkZfskPr+TMPXV8/gAFeliOJ+tzycZbDvbtd3Rvx66endjYvgEAsLVzC7qSnUXeSYwkUVsrmvGAo0gWFfU55iFxSRAEQVSUka4WCzjFYTlhtkXFpW2M1v44DrFbbkXvt74DSUnjolt+Bffdvyn4fiYOgnIQS2qW5r1uOZeCZBWmYWGFuTmXdscxnHEuuzpSSPMJ+AO5jp/kEHnO/EtY+2GvTZvpAQcOwbBgCRGpiLgURQ4+v5l36fULZvVYQ8Ss+V4IApfTokVEpEYCLwD9HRy2vh/NVI6V4M6Iy5SWFZe550fOiB17ziXLYxU4AQf3maLxpDMj8AXMn1lrFiArLh1hsUWEVlpPQ+IliLw4ROcyV1ya+zAMA7qhW8LNsAlGVrwpIAezPSZ11dqXXVwytxIAEumEdU6YAK/1ON3LlP2cDZBzaQ+LZWHb5TqX9u339O4GAPSkenCgbz/ePPo63mvbUNb+iPLZ27sHD+74C/b17h3roVjY3XNqR0KQuCQIgiAqSiWcS85RLbb0/RWqFpu3v5zXkp+9CY/d8jEYgoDAv/0zvN/7DnjkFvTRMvsp/Gd1YfUizA7PQY27xlE9FsgPobU7jm4vD1nmYEBDoF7BrPk+x7a5fS4LFTqyC7oTzwhjxmwfZsx1OZysYpi9Lnl4/QJCEREceMxZ4HXs39yHBEHgUFUjQ4kL2LU1jm0bkuA53hYWm4KeadmSFxZrOZfZhSkbHwceh/YnwfNA81QX5izwwtCBvTuzobEsLNaZf5gvtAzDgKqrkAUZEi8NKecy1+1jC2s2B6RM/qhdMMbVOGSBtY7JhsWyMWqGXtCBT6hxy81lAjw3NDbXOR1s3E7nssywWJtgT6qmkDcMAxvb3wNgHuexzMb2DXhk10MVzTuMZtrQsLD68YAzLJacy2MdEpcEQRDEqDISzmUlqsUycoUPz/HwX/sZ7PjN/0IPBOH78f/DWd//PXg1v3hLMeHc4GvEqc2nQ+AFR/VYID8slglfVVfBgUPTNDd8QR6nf8gLUbQ7rBwEXih6LgodYyAk4riTwpDdnCWsxCI5lwAQCAngIMDnFzB3oQ/Hn1SF5SeY1U4Fh7g0z1ltgwwh0+ZCiZrPZQv6JK0KsLniXC5QLZYJmWgPEOvX0NDsgiTzmLvIFNib382GBrLPd7YiyReX7JglXoIsyEMqQJI9b05Ba4lL5lxmqsUm1SRUXYVP8jnGqtqcS83Q8opCAaaLyZwgNk/mReZjRd1KzKtakPl8u7gsoRUJJ0AUhpZzWaxIEguHTdpc13KIpWNFCwQl1STi6bi1XTkhoS8fehFvt745pDENhcPRw+hJ9VjFuiqBlY9rm+tjSe53SBlCex9ickHikiAIgqgoFSnoY8+5LONPGfvsgdzUQvtbXLMENedfg55Hn4LW0IgFj72CS//jToiJbJVEoDShKwmSo4iOq4hzyfa5dFUA1322EbzHuZhk+yjW55IrkpfKCgZptoI5xTBDYU1x6fEKWLYybAlcPifnEgDWfKAKp5xRC44DoIkwDMPRioQdU75zma0We7j/kCXIAODoAfP/KTPM8Nr5i31wuXlsez+GWNTpvibVgV08K8SUl7NFhMoMjWUCjolF5lyyz2MuKjvWuBpzbM/CiUup8up0Ls3xiryIZbUr4Jf8mc8fvP2KY3x8tlpsqa1I3jz6Og707c/bf25IN3Mzy6Ej0YEHdvwZmzs3FXz9r7sexP077oNu6Hhm/1N4cu/jJe1X1VXs7d2D3T27yh7TUGFCf6giuxSYwE8N4VxXgtzvT7rMCsTE5IPEJUEQBFFZKlHQZ4jOJQuhLce5tKMtWoyeJ55B98wmzHp9C67+l5/B29WXdS5LdGXtobHFCvo4MfIcGyZSBqsWa9/W/jwTWgJf/PzNX+KD3y+hrjErbKx9OqrFmmKlodmFsz9QD39AgJEWkUrpVkGflJay8ihzw5KZcDrYfwDPHngamzo2QjM0cByHw/vNBTsTl5LMY9nxAWiagb/e04r//f5+HNqbznzGwAV9LKEmSFb7k40d75WVv5bOEZesmAlzBkVesAQ8kM239GbEoFCg+FAxB9F0LlnOZX7LGqD0gj5MlIhceWGxvakebO3cgs2dmxxhsQAwOzzHMc80Qyso1ruSndjds7Pg/vuUXutzCsHE++HoIfSmehFPxwfMLWWw/Ntybh7s6t6J9nj74BsWgY01UVFxmT/Xx5LcMFhyLgkSlwRBEERFqUxBH3vO5RAK+qC4uBxsf/qUqXj8F7fg0NJZaNx2ANd97scI7zab2pcqnD22ip/5rUjy96FDRywdgyzI1vZMIAwmIoGcariZbdI5Tlsh5i/244rrmuDzi3nb5hb0YYTkMGo99Qimm9Hfq0EWZPAc76gWm3uOmcBm4YSxdAyqrsLQOOzYYoqzKdOzgvy4k0MAgB2bY2hrUfDyk71QVcNRWCRXCNmPWeQly7nc0bUNbxx9reg5yEWxxKXTObTnNNrFJQvp9GXCodl5swuQXJHnElyQeMkUlznOJSNbIbe0nEtHWGwZBX2iinlTI60peds3+BpR7akBkL2mua5dPB3H3/c9iVcPv4JtXVvz9q9qauY4BhZLO7q2WY9TJeT1MRdVN/SS3LSEmsC6I68MK4yWXauEVkFxmZnXQ3GJK0EqR7xTziVB4pIgCIKoKLmCqxwxWIwhV4vFwNViSx2bGg7i/h9+DlvPOQ7B1m5cc9N/Y8YbW0t+P3MueY7PK6hTsLBLOmHl7bH3MgfMLvK4IoKy0PliLt5ABX3M/WdfF/nC4jXX0TwpdB6qlTno7zUXwi7BhZSWsgROsWqxjLSuQDd0bNuQRE+nirmLvKiqyW7T0OzCvMU+BMMips1yI9EP7N4Wc7hUqq4iraUdz7FjZjmXjKSaLEmwANkQVuZcKlZBHyacTeeS5VzGMo4zayFSKCw2N5cxIAfhET1QNMUSa7kON3OOc4+5GNk+l6JVIbgU55I55oquWONcVrscS2qWotk/BctqlmNuZB6a/VMA5OcCvtbyqjXGt4++iZ5kt+N1JljtIc0Mex7m4ehh23sGd8fsYaMpffBry65jSkvCMAy8dOgF7Oou7LYWQtVV64ZCIl155zI5BOeyNd6K5w48U1SY7uvdm3d9BoNdCza/Sw2LrWTRI2JsIXFJEARBVJSRcCpzGWpYLBtLriAtVuhnoM/XZAlPfP2jWPfxC+CKp7D233+Fmj/cU9L7mUCUChTTsecyMqLpPgCmoHGLbsd7HQV9iuSiFnI02aJQKPB5dpzhr1kRycYpcELeNQ4Eze36+8wFpFt0Qzd0a0Gc+5m5wknR0ujsTGDfjiS8PgGXXFOfN65rPtmIL35zBtZe1wBRkLB7exy6nhUjmqHh0R2P4ok9j1nP2Qv6xHLCjPtSfQOdBtvYzPOWLy6zziAHLi8sljmdhcR8riPol/2Wu92bCRvNzW8sdN0KLdh1Q0d7vN0KJXW2Ihl8gR/N9GNVddUS1vXeBqyqPx48x6M5MAUnN50Kv2wen925PNR/EIf6DyEoB7Gsdjk0Q8PWri2O/TOHuZDjVbxXaXEB05fqRVTpdzihpbhp7Fyk9TT6lT7s692LXUVCeQthvzmRrKRzqTOnN1W0CFIx9vTsylyTg3mvRZV+vHTohbJcfDYOAPBLAevnw/2HBgxHbo+3455tfywaKk1MbEhcEgRBEBWlEs7lUKvFZvtcFs4DLUdcZgaC9R+7EI9/7aPQBR7N3/w2fP/xFUAbOCeMVYzNFQzFxsBCE72S33ovcxGdwrGwW1kodJYt0IVBnEvREQqbHxZbSCwFQuZz0T7zPLBQXhYiysbT05XGrm2xvJDPlJZEb48KzhBx3ClBS6za4XkOHMchUi1h6jQvNA2I9mfPe1pX0RnvRG+qB32ZcFsm4mRBRqOv2bG/PqVnwPPAYGIoIJuhuaz9hlYsLDbzOhOjPMfniXHmRvllPzyiB1MCU60bECxUOC8stkA4MxtbR6IDf931ILqTXXi//T38be9j2N+3LzM+oaycSzb3FFtYbKEKw+7MeO2u2LaMkFxZfxxmBGcCQJ6oTw/gxBUL2y3mXBqGgb/tfRzPHngaCdUuLgd3OtO28GYW+lyOu2YXsJUs6MNEsGEYZec3slDs3gJznd0E6S7TuWTnlt1cOBI9jGcPPI3XW9YXfU9nsgOGYZT9WZOVofTbHc+QuCQIgiAmHEOuFjtIK5KSxWVGjDKBte284/GXH90EtSoC7x2/QPBj14KL9hd9vzezEJdz8i2LjYEtvGVespxLsUDOpeO9RYWm+XypzmWhqrDm+/i85xiBkPkeFhbLjpO5SWyff72nFX/85RFseSfhEFxJNYl4TAMPHpHq4q1SGA31puDu68mKkZSatEJT2+JtALKLOJGXsKBqIc6fcSFObjrVfG/JzmW2oI8syOhX+mEYhuVcsrBYJi63be9APKbBK2Z7lOaecyaignIQV82/BrNCs23isgdA8bBY537M8/23vY+hN9WLt1vfxN7ePc73cYJ1zUrKubSJQXb9xAKf7RGYuDQFTE+yG0eiR+CTfJgWmA5vRlyzGwy5Y1Y0Jc+JK5Q3y7YtRCwdRUpLoTfVi4St52Yp+YnsXCiaYglNvUA7m2LYx5Rb0Kcr2WmJ++Firyxcrohl56FQqxR2EySlpSw38lD/Qbx06IUBRTYTuKx6MTuP+/v2FT3vbNxqGecXQNlO7UTgcP8h3LvtT2UVFRvvkLgkCIIgKordpBkJ1zJ3P2U5lyznskhBn3KdS/sC/8jSWdjz0P1Q586D6+9PInzxBeAPHyr4fsu5LBgWmz8GttiTBNnmXIp52zseD9CKBLALrYHFpegIi80+ZsdeUFyysNhe1bENE2Y8x0FVdRzYay4+n7i/HalYdqKk9TQScQ2cISAUKUFcNjJxmV0E2xf47QlTXDKxIvESBF5Ava8BQZfpQPYppYlL+z4CchCqriKuZiuYCjZn8tCBOF59tQU73lMccyVXXLLFu13Is+vMRGruXClUiEm1uVpsH0FX0Pm+jLMq8mJJ+XFRJXuThJ3TQtec3fRgOZfbus0CPAuqFoHjOMiCDJEXLRGTHbPthkBO+Gqu+GXntZi4tIum7mSX9bgUZ8g+DiZMC/VKLYZ97Lni8rHdj+DFg88PqwgPE+X2c5Iss3gOuznQV0hc2kQ/u9Gyo3s79vXuRVu8teg+lZywWIZu6NjTu7vge6xiSyVU/WVje/nQi7h325/w5N4nSnpPqW7g0ViLdQOlJXrEcnDttMXbSs7JLpeezM2jntTkcXFJXBIEQRAVZSRaj+RSyIkr5315BX04pxM5GMwBzRMJ02eg5/GnoZy+BuLm9xE5bw3E1/LDw8LuCEReRMRdlT/GAn+amViQeRmeHOeyWJ9L+3kp1POSLVIHzbnk7KIoP+eyUIgkC4tlOZcshFPJFFbhOR5HDqagqQZEiYOSMrB3q3MxmIjp4CEgXDVw2C4ANDbli8u4bZHIFsfZsE57dVsmLktrfK/YigIFZVO49St9lugUedG6hi2tfTA4A4kup+uoKTxefa4LLYfMRXZWXGavk9dWURgo5FzmzxNNVx3ujkf0WCLVep8tVzZXPG1s34DXW17D0VgLALM4SyHRVEjYsrDYREaktGfO+azw7OwxiV4omuJwwuwCN7diLHM1m/xNmB2egwVVCwEUb3fRa7uGncnO7H5LKOhjzz+NZcRlOWGx9lBdRVOsmw2dic6C25TDgb79uH/Hfdjbu8cxpnJ7XTJR15/uz2vnYnd6+xVnGHkhp5PBvg8e0ZO96ZaZY7u6dxR8D5tHpYr3Hd3bsLd3D9J6Gm3x1kHbxWzv2oZ7t/0JB/r2D7gdq2T8RstriCr9eHr/U3jr6BuObXpTPXhy7+N4p/WtksZaKtmbBUrm/8nTH5TEJUEQBFFR7OKyEs5lWdViM9vm5rzxQ8y5LFTp1QhH0Hvvg0jc+CnwHe0IX/EhuP/wO8d2HtGDq+dfi+MbVhfddyEkXkSdtx4+yYcGb0PmWAqfi2K9O5nQtMTlIDmXfAG3EjDDQmeFZ2NeZH7ee/xBFharOd7HFqICJ+DAHnOBuWRlphBM1HnciZjpXAbDg4vLujoPeA7o7VGRTutIK7pDFPWmepFUk7ZWJNl9ukW3I7x1MFRdhciL4DgOAdl0a/qVfmi6bh0bO/dHu3sAAKk+CWlFt/ZxZL+Crg4V+3ebi322wLRfsyn+qYi4IwAAAwaO7FGhqtl9cLpghf0y0nraIZJVXcsTSOzYJUFyVDhNqklsaHsX27u24u/7nkRrvDUvP1IZoMIwcy7NqsA6elO9cItuR09XJpjj6Ri6kp1QddXhGDInLqkmEU1HbZV5/Ti1+XRUu6vN4yziStkdObtzVUpBH7tgZdVey3MunWOKq2b14gO2cNihVkjttfUCVR1hsaWLS1VXre+8YRjoz3Hq7W4rc/HZOewd4MaL1SpHcFk55M2BKahyV6Mn1eNwkK1xa86bKoPBbg6x3zWFCgHphm591o6Ma/7CwecG3C875lg6armXua4zE9YDCexcBjuuI9HDuH/Hfdjds9O6JqVW2Z0IkLgkCIIgKgrncNBGxsUcalhsjacWPsmHOq+z+igb43DFpXWokoTo93+M/h/+BAAQ+NLn4f/KvwDp7AKiWAuQQtViGZIgIyAHccW8qzEjZBZIcRT0GSQUFsgKPSakBnMu7YVjcovInNZ8BuZG5uW/R+Th8fHo7zOdtNz2GzzH48Aec4G5eKUp0IyoDyIvIigHYRgGEgkdXq8ISRr8mrhkCYGQCCVl4O8Pd+Clp/NDzNoTbZZYya3SG5RDUHUVMTU/JC6XtJ62rh1zLvuUXkfOJRP53T3mQpXXRXS0Za/90UPmOFiOKFuM2q+FLMi4cOaHMDcyD2J3I/7vF+149dludLYr+NUPD+BH39iPV57pdghMzdAcjp1mqGa/UNs27DOyRX0K95nsTfY48i3tFJq7LOcyocbRl+qFbugIu8KObVje5f6+fXhs9yPY3PG+wzFkIvCFg8/hsd1/zROzzL1Virg8xURQSWGxtsU9E9VMeAPm98V+w0LRFDy09SFs69zqGDvj2f1P48/b78H27mx/ztyWM6XCxHRKUxyCd7DeoHZyCyblniu7c9lrFcAyP7d/QOfSPG5ZkKyiU/XeBkwLTgPgbCFjjSUj4ErJadUNHR2JDsiCjBV1q8BzPPb17c0TcFs7t+DR3X9FS/QIwq6I9fyRAp/PYMeXUBOWUM91EJnYjJfwuwEww7Hv2fZHbLf1Zc2lKyOCe1I9lqgk55IgCIIgSsQuKEeqLclQxWW1pxpXzLsaDb7GgvsbSNgV2j43PDBXPCdvuBE9DzwGvaYWnt/eidCVl4BrHzikyxHOmnO+ciuG2scy4OMB3OPB+1zancvBXURGIChCTRtIJnRbAZnMIt/gcHBvAoLIYeZcD2QXh0jXclw8+1IEXUEkEzoMAwj48wseFULkRATC5jh1A4jHNKhqJpQ4I0j6Un02Eec8jhDLu0z14kj0MB7d/VdHriFDN3Tohm4Js4AcQuuRFB55eB9i8awQYue4t9dceHPg0d5qPlZSOjpazEV1KmUgmdQsgVXo2pzcdCqmJk4EAOzblcD7b/ej5VAK0AT0dKlQlaxwVHUVXY4wzDQO7I/h7w93YO8uUzxwHIeONgVKwulg5zpvdjfHDs/xBb9zAi9AFmQk1aSVRxZ2OcO+vZkQXVZkqFfpdRTtSWV6XTLXj+W/sfPN5n8xJ5IVP8qltII++fm6diH3est6/GX7vdY5aY0dRXu8He+2vZ0JH86GhwKm+6cbukPYsmPVdA3vt79XVLznwsR0PCcfMKEmSy5yk3sOcvMuB3IuB8pHZqLVLXqswl113no0ZfqeHo7m552zsZRS0KczYTrctZ5auEU3pgamQdGUvP2yuRJNRx3Cc0vnpqL7VizRnrKOPzd0mYnuUnuXtsfbYRgGDkfz270wmLhOa+mscznEkOnxCIlLgiAIoqJUos+lfb/lVIstui9W6KdEoZptw+EUo4Xer550MrqffhHpZSsgr38VkfPPhPj+e0X3XahtCKNQfmOx7e1C1x7Oaj9fHMcNeszFCvoMBsu77OtVLTGnaAr2707gD/97FIm4juZpLogij0BIhJYU4TL8kHgZ8bi56AwG8sV04TGKCIWd5yaVNF0n1l9S1dNWCKaUI5JZm5CEGseh/kPoTnahLeGsMAvYczaZuAxg764E9hzswJb3zQW4PSy2p8dcRHPg0X5UQX+fih1bYoCWPed9PdnQ0GIh3j1d5utHDqZwMFMEyec1x5BI6NY5YC4PQ9VVHDoYg6IY2PROFO+81ounHm7Hz27bj+ce6YGqGtZnM8HGhHY0HbUENnNo2ecUwy24kdbT6EyaYyjmXDLxqWgph2PDnEGWD8jcInZTg90oKLQQT2kpJNVkTsh8pgBQCQt3+z7Z5xqGAd3Q0a/0YWfPDvP8ZvL9ssegYFfPzrzzB5i5og2+Bmt+MdGzv38f3m17Bw/u+Mug4zLflxGXOcWQtndvxT3b/ojWAQruMJigYaHc+c5lAhIvZULE+2AYhnVtYulY0VDPhJoAz/FwCS6sqFuJlfXHodpTjWp3NdyiG23xVsd3yB6em5v3WQhWjKvWW+f4n7XIye436wDab1jY253s6NqO+7b9n601kTkuwzCs85EbnspyIzVDK+kmBXO9e4rc6ACy81zRFWsMA/VunWiQuCQIgiBGjZEs7sOXKQgHIlvQp7R9FSvoU+z49OYp6HnkSSQvvwrCoYMIf+gDcD10f8FtBxKXsjCwuCyWi1qooA9QuFdi/v5t4rKE7Rn1jaYQ2L0tbgmSzu443n+nH6mEgdoGGaecZYav2QsASbyERCwjLoOlOZccx2HmbB8WLPWhulYCbwg2cWku7NN6umDOpfmzeV4VLW0t9nRdx9bOLbhv+/+hKxNqyhaMrKiSW3Qj2cdB4WPYurkXBgwIfFZc9vZnnEuDx+YNUfz3t/bi/ruPmlVwM7mkprhkjmoxcZkJXU3q2LMzDlHisGCRKWLYuWK9RDtt4lLTVcQT2YX94QMprH+hBzCAZJTDnh1xdPcmoaR0SxyxIlOxdMxyrOyFpwYUlxnXriVqFgQKucOO1705xYVSmlKwoI/VIzSzsGfOpRUWm7MQ39W90yrEUpcRH0C2PUYpOZd2kWt38TRdw+aOTZZDyHIVu23VPbd1bbE+I2gT1EtrV+ADMy7E9OAMAFlxaRdVrbGjeWM51H8Qe3p2WT8zccacS+aOGoYBVVexv3ffoMfHzi1LCbC33lF1FYqmwCN6rBDxPqXX4YoWKnjFQoVZvm2TvxlLa5YBML+Tzf4pMAwDLbEj1nvs7VOKtZqxw/It2bhdRW4wsOun2r7nPMcjoSas872vbw9SWsqqYmufR8z1zhXR9nDhUkJjWWh9VIkWzaNk+0xrijVWNWf+5eZ+TiRIXBIEQRAVpRJhsUD57UNGcl9M2OaGiQ54fF4v+n9xJ6Lf+E8gmUTwM5+A75avOvIwc8eQu5CXCobF2lzJor0t+SLbD368jt6WZYTFLjvedLs2vNEHgRNgGAbefqMThgGcelYV/umr07Fgqbn4t7cukQQJibgpLoLB0pxLwMy7nLvQh3BEBm+ISOaIS7N4DBOXTpGezT/MhqlphobeVA8Mw7BEJVvwTwvMAACkFR1qvwc6p6Gtuxe9XSoETgAHmCHBqTRcbg4cBHS1p6HrgCRz8LhFzFmQrXDLPjP3evT1qtB1w3IuAcDQgeZpblTVyuAMDokEE5dua9xssZ/WVUTjpuj57FVn44azz8ep50Tw0c82QeBE7NgUw8+/vwd//l2LFdYZyeSrxdJRa8Fd46m1Pn+gGwzhTAEiJsYjttw3AHmVaxUt5ax+mhFoTFxmw2IzziWfLyx0Q8drLeuwO3Ntaj111pwNyAFwHFdSGwn74t4uqhJqHLtsBWSY4O7JOGJhdwT9Sr/lHjK31iN6UOcxhS4bDxNT9mN+r/3dvLG83rIerx55JS8fjwkO5sYzcp34QiQyrhtrvVOo9YpX8lrOZldOIZ5CfWCTmhmW6xY8ea8BptgEzF6OueMASnQu423gOM6ag9meuU5xaXcu2eOwbS4bhmEd08H+g5lts/tgxYA0Q3Pk2sZtIq+U0Fh7K5Ni7mVSZc5ldqx2d/1vex/D0/ueGvSzxiskLgmCIIjKUoGCPuZuucz/IxEWW15BH49kLqaYcMmOaZD3cxwSN30Bvfc8AD0SgfdX/4vw2g+CP9pScB+54lIWBs65LFYttliLksHyLQGne1rK9oyGZhfqm2S0tSjobtPQ05lGV4eKYEjAytVO0RG0hdDKvGy5caFQac6lfWwetwQeApScsFh7uFyeaM84wvaFqaqrVs5dSjVF0L7evRA4wSqm1NmRhqz5wQFI8b04uC9p5VwmEhp0aAiGJPh85jmsa5Tx1dtm48Mfn4LqevMz7c6lPWT54L4EfvzNvXjtxR70djvdlCkz3AiFRfAQLCFud7VrPDUATDETj5vHc/r843DxmhU47+IazJ7vw7IVERgAdE7FkYMpy9nyiF54RA/iahzRdBReyWvNd/PcFe87uqRmqXVuvZI3b77mtldJqklHXqPV/5A5lywsNiNoJcthzi7EY+molQfrFt2YGpxufS/dogcyL0PRFGxoewc7urYXHXu6SNgny51k4a79Sn+mGm4P3KI7z5Vs9DVC4iUsqF6UjYjInBNW0Mcu7I7GjuaFWyYzuZQsVDO3IFHu751UCWG/zDH0274PDOYQe0SvdWMiN+e4kHPJ9smc/Fya/M3gOM6RH5nU7M7lwOJS0zUk1AT8kt+aV8Xybtn1S9vCbsMZ5zyajqJf6bPOY3eyC1Gl33EOCoW/A84819yw5ELYz1ux3pXsHKQ1xfrcbGGtVF7I70SDxCVBEARRUSaSc8mV+GdxcfUSXDL7MtRn2oEwShXP6bPPRfczLyO9YiWkN15D5OzTIL36sjkW2xjshWfsuXx2ivW5dORcFnErSxGLjlYkJRY8YqxYbbqX2zem0NWZ6Vk4zQ1RcB5HIJRtXSIJsiWYQmU4l8xR83lkcAaPZMbRy4bFKgX7XL7+Ug/2bGG95lRrkaob2TYeaV3Bgf79SOtpTAtOt0RTZ5sC0XCjYaoLaT6BrnbFuk6JuAadU+Hx8qipMxff515cA0HgIAkiXC4Bbg+HaL+GtOps2QLAqqb7zmt90FQDXl/2takz3QhFRHCGgGRcg8AJDtFX7TbFZVpLI55U4JakvKq7p5xeizMvqALcCWiqYYUIyoIMn+SHYRgwDANhV9hRSGqgOeOX/FhUvRhAfr4lYLp59t8B7Hqw82nlXGZEB3PqmKjkOA6yIDsW//2Zxfy04HRcPf9a1HhqrGvuElxwCS6ouoqN7e/h7dY3Ha6UnWLtTZjoDrnC4DkefUov+jOCs8pThVqbq8tzPEKuMK5ZcJ0VHgpk52Z2PjmjFewFczRds46/NyNO1JztZUHG/KqFVrhyKWG/SevmgQciLzrcUyaaPKIH7owDzs4ruzaFXDgmit1iYefSJbhQ66lDQk1Y/T7tQrpYHuc7rW/hraNvWDcXvDYxbc+7jaVjeK/tXSia4gyL1dIQOMES0rF0zKqizH7/Hew/WDRsle1LN5wtjXILKrFj2NTxPh7e+QD29u5xCFCW79keb3fkQrNzoNh+JymakmkRY5535iBPREhcEgRBEBXFIS5HMufSEpfD3ycbl1BiwRqe4xF2R/LEXjnHp0+dhp5H/47EDZ8A39GO0JWXwPOznzgqu9oX8lKBfEs2lqE/Hvx4Ha1IynAuAWDpcQGAA/ZsS6K7w1y8V9VIeSLVyrnsVSHzEvp7VXAAIpHCjkghmDvk88rgICKVMkMbvZa4NB1CexuS/j4Vf3uwHc8/1gMDhqPoj2ZkF/lJNWXlxjGnCgA62tIQDRdqaiWILh3Rfg1mbV4eiZgOndPg8fFYc24NrvtME+Yt8jnGGq6SYBhAV+bc2J1n9lxHq/n/9DkeeHzm61NnuBG0OZcCLziOK+KuMgVuMo20psLryRfpzcEpCARFJLwtSKV0y4VyCS6HMxaUw1auIzB4UaclNcswv2ohltjEFYPneEu82GGfp2R6ZDJYeKpom/sSL0HJOD5pLV1wMc7cansFU8AUDfZFvp1irSBY+KXMywjIASTVJNriZpGZiDuCGm9WXNpFsJ3csFh2A4P1Me23uYJ2MWMvGmRH4ESc2HgSzpiyJvN6CeIyc33dghsCJzhcw4TlQHqt8GomeBt9TRA4AYf7D+WJsYTG3ldYXAJmz0sAOJJxL+05l/Zr3ZfqRXeyCwk1gU0d72NL52YrFNeeq2sPi93ZvR3vtW/Awf792bBYLQ3N0CDyIvySOSdi6aiVizwnPNcaT7FCT+xGQ65TWci5XHfkFbzT+hb6lD5sbN8AwzAsAdwaP4qn9z2Jv+19DH/f9zcrt5Udd1pLOwS2qqtWTi+JS4IgCIIoAlckD3C4WOJyBP6UDdUFzRWTZR+fy4XoD/8Hfbf/ApAk+L99CxZ//quQo+YCzL6Qz+3NWOgznX0u7Y5xkYI+JYXFFu7pWQr+gIjmqS5Ee4DWFgUcB4QiUt55sovLZIxHIqHDHxLgdhUPwczFCsf0Zgr65DqXmYWc/TgO7DHPs5oUEI9qmaI/trBYm3PJFuB+OZvv1tmmQNBd8AdEBEIidB3o7zayziXS8HgFhEIuzF2YFWzsnNY1mgvl1iOZ/p+269fV7lzIR6pEXHZtPS69tg4+v4hgWARnmJ9jOpfZ4wq5QhB5Ef2xJAxOh8+bLy7rPHXwiB4kXZ1II4F4kvUrlB3iMuQKOXL6ctu45CLypvDJbffDCLpC4DjOsXj2iB7wHI+klizoLNpvcLCF++N7HsETex+1wjUDtoq27LFP8lkFYBhHbcVl7BQTl0y4Cbxojflg/34AQJWnCi7BZT3vEgqHcbObVmpO8ZYqdzWAbF9J++eZz/cUHBv7vcBysHPzDxl7endbQpjl+bltziUT7yzn0iN5rLBYJnJ8kg/TQzOQ1tPY17fXsX+Wg1jMuQSA5kze5aGMuLTnXKq2gj5P738Kf9v7OPb07LaeY8V87PPRHhbLvpNJNVt1OK0r5k0kQbK+q9F01MoDnhWeYz1XzK1m4p8dH7u+iQLikl07juOsx/XeBvAcj+5kF1piZsqDqquIKv2OfaT1tGO+K7pihdUyYTwRIXFJEARBVJSRdCvtjGS1WFjVYssL+8x1KIYa9pu65jp0P/EstBkzUf3Mi7j+H3+I2l2HHQv5QsV8AKf7aHde7YJSKOJWllIdl+2z3HPDmLvIB94QoOtmbqUo5rc/sQr69KnoPGIutiJVUlmtT8TM+HxeGTwEJJM6OHCW66Hopism8iI0zYCmGVboKW+I6O1SrZA6ANAMHVpm4ZfSklYom8vmvHW0KhANF3xBAf7MMXS3aTB0oLszbTqX3vxwZiYEWUXd1hbFqjTL6MwRl+EqCfOX+LHyRDP3T5J4eNxmCLHACdZc4TkeATkIgRMQzfTe9Pny5w7HcZgenAlJAvqlFkSTzLl0OwrGhF1hx42NYg56qZzUeDLOmXZeTgVaCS7BBUVTCufh6Tw2b+hHKqlbzlW/0o/eVK9VLMYuLudHFmDN1LMwIzgzz50/GmtBIYqFaCYzYk/kBeszjkRNgRrxmM5jbrGZXLJhseaxpXPEpT0sVrEJyZ5UD1RdzRPc7HowMZvrXKq6ihcPPo9XDr2E9UdeyRxHAhzHwSW4bE6qOZ7WmCniAlIQroy4ZMJNFmTMjcwHAOzoduasstxBd5GcS3aMHtGDjkQ7kmrSkXPJWr30JLutdif2AkesSJI9LFYSzJtTiqY4elOy68eeEznREqVRJYquZBdEXkSNpwYCJyCpJh3n2nn+WAElUwiy6xtL54tLtm2tJ1ulOCAHrPm9pGap5ZZG01FrPhX7XAqLJQiCIIgyqIhzORI5l5k/h+UWB8oVzsMR0tqSpeh++kV0nbMGkcMd+Mjnfox59z8FZNyFQm1IgAEK+hRpP1K+cymWvG0h5i32gYe5wK+qkfLGAGRzLvt6VbRnxGW4WiopbNcaZ2Z8/oy4TCV1uEQX9u5I4rH72nHwUMYd0gX8/Hv7cddPDmLfLnOxyBsierpVK3QWcOZcKlrayr1jYZ2GYaCjLQ236IHbwyOYOYbWQ2k8+VAnOtrScHkNhCJi3vEyoe72mC1J4lENsT7NumZpRUdfj1PshKvyr7/PJ8MwgHSKs4R4UA6C53hIvIRkpgdmwFtY9MwIzYQo8eiTDiGWMo8v17kMukKOGxvltKMpRMgVRpO/2eHySRlxqRt6nlDSdQO//8lR/OV3R/HWut48B7+vQBihJEiYHpwBnuMtx0rkRciCjLZ4G1RdxZHoYTy+51FE01FoulY0F5ONR+REBGVT2OuGjoi7CnU+U1Aw8ZHrkjLyq8VmxKXHFJf9dnFpO/6oEi3olrH8WoE3HevcsNnNHe9jf98+AKazZhgGkmoSLsEFjuOs96f1NFpjR9GRaEfEHUGttxbuHIEs8TLqvfUIu8LoTHRYbiqQzR30FKkWy5gSmArDMHAkdtgKi2XfAU3XHH067SK/I2H2FM1tYcNCo9nnJ21Vhy1xyUvWTZKORDsUTUG1p8YMzRbdSGmpouHE7HyyfYVdYQicUDTnkuM4NPiy+fc+yY81U8/CRbMuxqr64xFwmTcl+pV+R1hw/uem0Z8mcUkQBEEQA8JVrFrs0ARhIVgIabkhtrlO5XCFrhEKY9cv/gcvfPYycIaBFd/7JS7+1m/hisaLOpeOYj2wC83y2pIUY7jOZUOzC/6AOfZwDXPXnPsSRR5en4D+Xg3th+zOZelChm0rCgI8LhmphFlBdM+OOHiIaG0zF3X7tivoak/jyIEUWo8oEAQuIy7TULSU5eaYjlGmWqyWREpLQeIlbH4nhiMHk4j2a1BSOupqAuDAWc7l269G0dWqIVwl4tzLwpAkPu/csePnOA51TVn3kl2brk5TfNQ3Za95uCr/XAT8pkhIxTnr+EOZQjoCL2aLGhVwLgGg1lMLWRKRFHoQT6as8Fq2KJcFGR7R4xB0peYlD4bsyOPM3kjI7WH53lt96Gozb7C0taQKVkyWBbloSOr8qoUAgBMaTkSDrxG6oaM93oYD/QfQmejA0WiLlXtXKHfQEpe8hKDNHT2p6RTrejX4GsBxnNXmI5dstVhnzqVf8kMWZPSl+qwQ1VzBUyhH1JGLzUtQdMXRPoWFoLLr1pPqhm7o1vFZYldXsaljIwBgcc1SAE5nHsje1Gr0NwEAOpOdaI23YmP7Bkv4DuRcAs6WJMyZYyGrqqFabjK7tuz7wgR/busVl+CCZmiIpc2qqnbRx4ShlKna7JW81n5mh8yQWNYSpz+nIi4jK1SzLVo8kgepnJxgwHR/JV6y+nCa4/XBL/mtqs2BTIhrNN2fVxnY+blp9Ct94DgOfhKXBEEQBFGYSlWLtcTEEB01O9mWAeWKy6EX9CkGzwt4++qzcO/tX0CsuQHzXnoPH/30D1C3ZU/h7css4lNuaxGX4MLM0CzMicwr6zisz+Y5nHBSBG4Ph9o6OW88jEBIgKYaOLJXgyAA/qBQlqBljprAifB5RegGwGkSertV8IaIVEKHqhrY/l4S9ss0f4kPsiSht0u1WjIA5qKR5YQl1AQUTUEqKuLBP7biiQfa0dtlvlZb5bPGDwBqigNncFi8wg85o1Vyi07Z2yrU1JrnpLc7DT4z/1i+5bRZHrMAksghVMC59PszOXexbNg0q9Iq8mLWufQXFpccxyEoB6FxKmKphLW4D8pByIJsVUMW+Gxor8iJUFUd8djgPQoHQnY4l6IlWu29B1XVwOH9Kcv5Tib0gjdZ7CGxuSyqXoxL56zF3Mg869zE1ZiVbxdLRy0nMbcPJ5DNVRR5EdWeGgTlIJbULEWdNxsGGXFX4ZLZl2Fl3XEFx5BbLZZ9nsRLCLnCplDKVEZl+ZNs7rfH2/P2Zxf4LsEFwzCsUNuUlkJnogM+yWeJOpb3x/L4WAh5NB3F4ehh+CQfZgRnWvvjHO2KzHlXlQnz7Ep04s2W17Gh7V0czRS5KnTe7DT6msBzPPb27kEsHUODryHbl1U3xSXP8Tip8RQAwILqhY7357awYXOHOYvxAuGqbNz2GyWshZBbNN+vGzpkQba+j+ycs3Npb9HiFc3vOat6y0jrZmXaGk+tdd5yxTATilElOqBzmdASiKfj8IreEY3yGW0m7sgJgiCICYFTcI2cuDy+fjVObT6tqGNRDlb+ZrnOZW5Y7AiIZ7aoOLpwOl6+7xfYceZKhI524YxPfBmen98O6HrB7c3HNrcShR1K+zalirfTp6zBkoyzMRTOPr8e511cC5ebuaD553nJSnMBZqiCGUrKc5bjUwqC7WaDLxMGqiUFU7QZIhJxHYf2J6AkOCw7LoAlq8wF4Kx5XjQ2u6GnefT02StZalaTd+aGdGXS9bo70+jrNRegkbDbDOt0CXC5OPAQEKl2IVIjWQWBcp1adt5dgsuqAJtM6NY162zPVtb98Ccacf1nmuBy5Z+zYCCzyI4CM0OzsKBqEeZVLQBgCrbBxCUAq3+jmjYsB0oSJFw653Kc1nyGtZ3ES9B1A+uf68f/+/oe/Ogbe9F+dPD+isVw8c6wWDYn7MVrujsVQOcxbWbGaepTrdBTe15bcABxydqDmJ/DisFkCzdF01HrsVfKdy5ZOLTIC5AFGZfNvQKr6o/P2y7kChe9WcNClpkTnnXXsm5oX6YYDBPX1RnXi4WG2rE7yUxo7evdi/t33Id3294BYAo6Ft7MihgFM+GZTHgx5y+cabMCZNq92AQ8e8zyQ9vibehOdWWOR7fyOBmGYaCjVYGmZZ1UWZAdYnxpzXLrnHQmO5HSUqjx1GJGaCY+svCjjkrDhSoM56YIsJYldti1YO1IZoZmZ3vh2sQw648K2NzUzHxI2qrhMmG67sjL2bxsXYNhGJB4CbIgo9pt5nPmhrSyMUTT/Uhk5lNur1IA6Mm0LpnIIbEAiUuCIAiiwlQqLLbWW4vZmUIJwyXrXJZZ0Ge41WILYBeFetCPp279NJ7+4tUwBAH+W/8DweuuAteRDZUr17l0FvoZvutbCgIvDFo1+LRzI7j4w3VwySKap3oz4yvDucxcO5EX4c+EgabjguVcJhMa+no08IaARcv9+NDVdbjkmjqsODGIpqkus6hPt7MtQG5xmc5ML/hYv2a5i8GwaC1OAyEZHHgsXGqGyjLRkpdzmRmrLLjg9mRdOSssNrPvqloJ9U0uzJxb2BmqqzfFUOuhNNyiG6sbT7RCHwVORDLOxGXxGzBhtyku02nD4Qp6RI+jeI8syDhyMImt7yagKGZBpI1v92HvzjiefKjdISZKITcsNtc1AsxWL7whYvEKs6VNtE+zxljnrbdCEUtdjDNRZm85E0tHrTBViZfzBKJiOYlD/65YYbG2kGuRFy3nGMjmjrJWJEzM9WR6XeaGwjLYedzduwvxdBw7urYBABr8jZZjxhxGljPK9hW35SfasYcHszY0rM9nR6LdEYLrFtzWd3vvzjh++YMD+Nlt+/Hc406Hr8lvtiSp9tSg0d9k3XBhxYSY+BR5ES7BZR2XT/Ll3bTLLZxUKNSUnaMZoZmocldjcab/Khtzdl8y3JmcUTaPsr0n09Y5WFC1EFMCU9Cb6sXGjg2O7dj1PWPqmbhg5gfzQrfdohuyIDtyLu03RKzvfSY/eCAnfiJA4pIgCIKoKJUKix1Jsnfty/uz6BRtI3NsuaKQ43hsvORUvHXfr6HOnQfXs08jcvapkF55ydqOLcyLjadYu5JyqrEOF0duaIHzzHEcjjs5hH//3mwsWBgGkA3fKwV7WCwTl6kYj74eFTxM5zIe1cBDQqRGgtstYNVJIYgih0BQBA8RaSW7aNYM3XIuAUDTDHTaCo0e2m8uaENh0WrFMHeBH0tW+TF/cSCzDy3v2O0/u0UXBIGDLHNIJjTrvLBKsdU1xR1HAGhs8sDl4tB6WMsLUxUzOZcch4KtSBhhTxiA6VwOFAUgciL2bE+ANwRceo0pBDa9G8WDf2zFay/2WG1dSsWepyfyoiU27L0UO9sU8BAwa74HPr+AaJ+KWk89XIILs8NzMC8yz3S8MiGdg8HEsqIrlnCwt6SQBDmvYBATEMMJv88Ni03raWt/LE+TuVZMzFZ7qhzvsTtddqHLrll3ssvxmY2+JssxY/tggoaJIdZqI1cMuWzXRuazRbjCrkjesbG5H4tquO+3LVZbnffe6oOuZ79PcyPzMCs82wp9ZcdvtUHJCa1lIbzeAg5fsaq8dtj+pwam4UOzL3HkMNpbp4h251Iyz49ia2sCZN3b1Q0nAchWC2Zh82zO+CU/qjNFmnLxSX6oumoVRArY8nNZ2C8LuZ3I+ZYAiUuCIAiiwlTKuRxJmKgsv6CP7fEIHZtDICLbtiO9YCG6//4iktdcB+FoC0JXXAzfrbcAqVRBcex0KAsLu6EW6RkKzjEU/1yez4blleMkZyto8vBlCt10thgwDLMarKoa6Os1nbBItVNAuNw8eENEOp0NOc51Lrs6FHDp7CL84F5TXAbDouWENDd7ceUNjXDJzhDPYq1ImAvn8vDQNEBJmLmXB/Ym4PHxiNQM3PZDEkQ0NLvA6Ty2b4o6X9R4pFIGPB4eslh8PxFv2DzetD6guOxqBXp7VNQ3eLFidRCNU13o7kijv9dcYOe2ThkMp3OZzblkxXVU1UBPlwqvW0ZtvWz1EfUZEXx4wUfQ4GtExF2Fi2Z9CGF3vugpBBMBZlXgbF4d+0yJF61tcgVXsT6zpWAvoKMbOnRDt/aXDX81oxGYuAy5Io55YxeX9ptCbJx2Edroa4RH9OSFXjJHjN20YcIu99gclXxt56HK1j5mSsB0Ij0ZYfbsYx1IxnUcd0oQM+Z4EO3TcGhf1lF0CS6c1nyGJb4EawxM4DrHwFzE3EqxQFbwDsRA18udI55nhGai1luHRr/Zm1W1nMts+DJgij6P6EFPqtvRB7eUm3RM6LNemHbnkuVzMtea5QZPVEhcEgRBEKPGeHUumbNQ7gLSLihHqgADnyME2X4lQQJ8PvTf/gv0/eo3MAJBeH/+E0QuOBs1+8ywN0eepSPnsnCeZTk5jcPF7vwMdq6YM5EbrlfK/kVORH2tuSDduyUT0mhkqqomDfi8EmTZ+flMXKrprNNir9ppwOyJKegu+ALm+YtFTeEZDIt5VTjZ8bHwQT5n8RlxVyHkCqHZ3wyBE+DJhMbGozreeKUXhg4cf0oIgjDw90XgBDRMcYE3BGx5zykuE1Hzvd6AMGD7kCpfNiy2UCVWxv4d5rk84aQqcByHxcudRUtYnmipyEJuzmWmIJKWxrZNUTz7WAcMA2hoMMMiA0Hz9f6+oRcSYkIprSmWoNQN3cp3lHjJmnO5lWOH812xjs1QbU5o1u2yCxY2LrfgchSysReJsf+esgtBt+jG2rlX4tzp5xd8D9sfe7+9l6Udu7Nnz79kOa4SL2F57SozH1IL4ZF7W/HO633w+Hic88EaLMzMja0bc2542M9J5nyyMNHcQk0s/zG3mI853lKcy+K/O3LDfmeFZuPCmR+0RB5zz9N6GhIvOf5u1XrrzLzSRLsVTl3K7yl76Hadt94xhtybAJECDvFEgsQlQRAEUVEcYbHj1LmcGZqFVfXHY3poRlnvq8Sx5YbFsoWpfZGXWnslul9YB+XU0yFufh9Xf/q/sPKBFyEUEbtczj4Zo+lc2sXlYJ97XP3xWN14UsHWEMVo9DWizluP5sBUHD9vPupTC8F3mE4Eb2Q/OxLOX5i6PDwEQ3KIS3vu384tMRw5mELQ78WJp4ezb+SAQCibc1koPBnId8Q9ogeXzrkcs8JzzAW6x3y9t1PH2+t7wfPACaeFMRgiL6KmTobLbYasplJZ5zWeaZ3o8wkDCqOAzw1Rdw0aFtt91Dw3c+aZi+QlqwIQJQ61Dea87Gwrz7nML+jDci5V7N9l5nV6PDzmLTA/j7V6YU7pUJAt51Jx9FPsyYQqSrxsOWjunLlXToh2LhzHQeAEqHpWXNoFYrWnBrqhoyvZZd3UkAWX5XYBcDy2ixm70PJLgUwoPZd5TbaEoz2PT8gJSc0VR6zXJc/xjugB1pezzluHak81Lpt7BQ4814x3XuuDy8Xj0mvq4fUJWLjUHOuW96KO/Ew7rIBTMYHLKhXbW3wwSiniNlAYsyPn0l68SMjOD/P/tCPvGABqPWZIeHui3VH1dzDs4b2nTTnD8bkOsctLFBZLEARBEAPhzP0bn+LSLbqxpGZp2ZVnHSG/I5Zzad+nzbnMWcDoU6ai9/5HEL3l2+B0A2f/7EHUXHct+Najeftxupj2nMvRcy7teWKDOZf1vgYsqFo44Da5BF0hXDDzItR4ahAO+LAoshyiYS4i3S6b+xLOF6wuVyYsVs2KMxYSl1Z07NgchyAAV107DQ1TbIv5gABB4Cwhwhbiubm7A7W44TkeHq/5+sY3Y0jGdSxa4UcwNPi14TkBPM9h6jQfNM3Avl3Zlgwx04yD1ycMuPh1uXm49ADUtF7UEYpFVYgdUzHFNx1Tq03BHq6S8MVvzsDHbzLDI8txLlVVx5svRZGMmcLD3ueyP56EohgIBAWce3ENpkw1hUogIy6jfUMXl+w8KFraKS4z+Y525zK3Qmk535UjB5NIK86qzgIvQNM1qKxIjG1/rB9iZ6LDCo2UeMnKOwRyw2Kz77WLskKFjZh7ySrF2t9vCbsc15C1CcmdN/XeepzcdCpOaDgRgCl4jxxIg+eBL9wyAwsyojIYFlHfJKO3W0W0iNOcW8Ap17mcEpiKDy/4CKYGpuW9txQxJw0kLh3OZXZfonXzQYWqq1YlWDs13loAQHu8zZpDpbjaM4IzMTUwDefPvAh+ye8IN7Y7zKWGeI9nSFwSBEEQo8Z4dS6HSm5+5EjvkwdvCZXcO+gAAEFA4uZ/xiO//gY6p9fD/cJziKw5CfLjjzodSpv7wBV5vtKUExY7EkyZnhUHTU3Z0LpIOL/hu8vNg4czLJaRSuowDCBSI2FKcxChSPY4gmHzMRMiTEAP5lw6XuN4uDJhsQf2mDlq8xblFzEpBDun02eai9NdWwuIS78wYE6Yy81D1gNQ1eLO5eH9Kfi0WpzRfKbjOvr8Inx+Af6ggO6O9KAVYzvbzRYV65/vwd//2oG927JCiwnwri7zGFj4sdVSYpCw2L074/jhN/Zg/+7ihYXYgj63dQWr1Craci7tRW3M10oL0T58IIk7fnQQ//frI46CNiIvZsJi80MpazymYOlItEPRFMiCDI7jrNBQwClAHOKSH1hcMsfTnuPHhBcTR7m/W1yZPpCFwqTnRuZZRYgScQ3RPg1VNRK8PuccC2RujsTjha9XrljPzbkEijuU9uftY8ytQFwMey9Pu3i0VxPO5ls6z0G1u9qqmmuFOJfganslL86adg7qM06sSyjsXE70kFiAxCVBEAQxCrA/5OM153KoVKISbm7FV/ZzrrtgZ+YZV2HnIw8g/qnPgO/qQujG61D3L1+CHDUX2nZx48i5HNWw2IGrxY40U2dmF2zNTdmFeVVVvrh0e/JzLhmsyI8k83CLLoe4DIVZ3zync1ms9UghBF6wnEvofN7YB4KFAp+4aA4AYNe2wuJyoDYaLjeP6tQcVKVmYUpgasFtWGXc5un55w4Aqmtl6DrQ01U8NHbbpih++t39+N3PDmHd86ZTmOgzj9feiqS7J9MH0O/Mgx7Mudy9PY5on2btGzBdZ8XmILJ9xdPxvPcDZuhok78Jftnv6MtojrE053L3dnPfe3cm8NqLPdn3cyIMw7D6ZuaGxQJAe8J0w5h4coRHqrLVT9GO3W0uJC6ZYxmyFYnJnQ+57pwn05ojV1jl0t5qCjAWGu3YhzdTsCeu570G5Bf1KiWPstC2rL0K4BRpA10vjuOsG0L2Y2TtYRRNyVaKzRG9Ii8i7IogqSbRn7kpMZRiT/bPtd84iNiKJk1USFwSBEEQFYeJsMnmXKIClXBz8yOb/c2oclcXLMnPaA5MwezGZYj91w/Qe8/90OrqEfzLX/DxT3wP09/YmpPHWbi4T6Up5upViqkzskKoeUr23FVVF3EuDRHpAuJSS2fEvcTBLXjgdgtwuc3ngmFzUclCFpkoyHUqB2pxw4O3el1yBg9/UEC4qjQhE3KFccHMizC9vh4NzWb1Vhae2t9tHovPLwycf5YJi61PrMjb7sCeBO7/fQt2bDGdvilFxWWmOm+RirGqauDvD5vVUA/uTVqCQ+ypQ7WnBm7RnScuw0FnkSQmLos5lyz8cufWGGJRDds3R/GDW/bi7p8fzhZW4niIvAjdMD/fHmo6r2oBqj3VmB2ei8vnXuUISQVK/64csDmnzz7eabWIyRawSWaOy1mUJ+QKIaqYBXCY8GCio+VwCrd/6xDev7cZ2D3f8Xl2B8xfoD/i4uqlOLHxZEe7FnZO2XnJFZHMuXQNUOAJANqPMnGZLwzZDZNErDTnsphA6+1Jo7fHnFe6bkDXDYfgs4f7enJajAwEC43NFY8SL5mFlbTC4bpAdt70K/0lfVYh7DcJPFJ23BQWSxAEQRAlYInLSexcjli12JyKryvqVuFDsy8pef/KOR9A90uvIbp2LQLtPbjyK7/ElK9/E1y0P2+co5lzyT5rtARtTaZ9RSAkoL4+GxZbW10g57JAtVgGr2YW2rJohQ8y95KFxfrlAM6bfr6Vi5Y7zwc6ZoEX4MkU9OHAY+oM95C+J3MWmMe4a2scum4g2mNAljlIEj/gdRYlDjxvhv/m8vpLPdj0ThRHD6UgShzqmwq7S9V15kL5hSc78YdfHka0X0W0X8XBvabQevOVHnR1pDFjjgfVtRIkmYPby8PfsQgfmPLBTFVk8xz19JnOX13EFA3MYfKHMmGxRQr6RPvN53UNuO83R3DPnS1QUjoO70/i8IFs5V/7uYi4q+AW3aj21GCKugxbN0bR15PJo7NdM5EX0dej4v13+h2hrrnouoGD+5IQJQ6LVvihqQaOHk45Pjehseqozmtid42ZqAtIARgwsHNLDLwhwtU3BdueDqGjLZvf6nAupXzn0i26Mb9qgWNOibyIfbviePKhdvT3qnkCK+KqwrzIfCyoXlT0WAGgI+Nc1tTni6usczlwziVgCrpCv9903cBd/3MIv/7xQaSSOn75gwO46yeHIHLm+eE53lHoyN4rc6CcS3PbfOcSMM9NWk/bnMt8ccluIsXSUes95cJcUsAsbsX2QWGxBEEQBFEC2YXN5BWXlQqLHQpGVTW6fv5L/PXWTyAe9qPqnvsQWXMypJdeyKkWO/ricrRuMPA8h3/++lx8/J+mIOh3QxAASeYQ8Oe7b6LIQxIkqOl8gcWr5vZed1aU5opLAGj0N1mORm7hqoFuDHDgIcocBCEjLksMic1lTiZPc9e2GKL9GvQ0D6/fXMAPdJ05joPLwxcUl/bnps5wF22NwpzLIwdS2L0tjnvvbDGFwO2H0NOdxqZ3zBsb519Wi89+ZRo+//UZaMoURurOhNKy0OGeftPZW9g0Byc3nYq5EdOp8wfMY+hsV/DiU51WKxhGtD/784E9ScgyZ7XE2PhWn/Wa3SHziB7Tpdx1Mu780RHc95sWPPQnsyCWPYxb4AQ88UA7Hvj9Ufzldy15xXoYbS0KUkkdU2a40TTVPD5LXGbEFGu9IeYIummBGdZjJhg9oge9nTp6u1U0Nnlx5oVmtdZ3X88eDxM6AieUXF1Z5CV0tKehqsCBvYk8gcVxHE5qOqVgMR07lnNZX8i5HDgs1h4qXjCfHEDbUQV9PWZRoPt/34K2FgWH9yexf3saRw8p6O8QHOI6t+rqQDBXOLcqcLZNC6ukm//dYc5uLB3LbDO0G2Ys1UHkRcwMzcLM0KwB2wFNFEbvrwpBEARxzDJZw2IrXtBnGEKMA4ddZyzH4WWzcf1d6xB87HGEr7wE/Mc+BunDi5H2uAasYjrSMIEzmqG4Dc0eSG4NR6Myjjs5BI4HJKHw0scty1BVFiYoWcU6eMVcfAbcWVdk+iwP9uxIoHlaYScvr1rsIM4lBw5ujwCui3eE85bD1BluuNw89u5MoP1oCrwhwJcpsjKYi+Ny80jEVGia4RCQiYQpDK6+sXHAcTVOdUEQzLYkhmFYOZoA0N6ioKsjDUHkUN8kg+c5BEI8IjUSsCOB7o406hpcEDgBBgz096cgCEA46MbcyDxrP6LIwR8UEO3T8PzfuiAIHE47N5ufFu1TwfHAkpUBKCkdF6ythezisP39KDa9E8X5l9VCELi8HDuRF3H0UNYJZGLQfs04CNizwxQbWzfG8MNv7MWseR4sP64KM+fLVpj0gT2mcJw202O5vK1HMvvLCYvNq0KaybsEAM0whTLHcUjsbERY8eGkCyOYs8CHF/7WiQ1v9KGhyYVItYQpM9yYHpwBl1i64y1yAlIJ8zNaDqYcYzl8IInNG6I4+6JqiOLA+2tvVQAOqKkr4Fz6MmGxcQ1vr+9F65EULlhbC54392k/v8Xyye3FmXZuyebJPv6XdhyNzUe3JMO1zF4YJ/sdHSxUdWntctR4alGbKabEYPOD5eUWGpss5IrL8sNiAWBR9WKktBQ4jsPJTacOaR/jERKXBEEQRMWZtAV9uAqExRbpTznU/STCfhz9358Dl14F/1f+BcG778YNf6/GU1++FuKcUWxFkhGyo5VzaUfiRWuxX6xtgNslQUuZoXhu2Y20YopLTnGjKb4Kq2pmW9uecnYEq08PQ3YVPpbcnMuBjpm9NnWGG7P9PjROHZq4FAQOs+Z5sHVjDO+s7wNviJZzOVjYntstAFCRSuqOqp8sX27uIi8kqfgxhMISvvTtmXB7ePR0qXjgD0ehpnW0HlFw5KCZY1lTL1vCAgCqasxFe1dHxrnkeChJHSk1jWCocJ7oZdfW4903+rD53Sh6e7LhsbpuIBbV4A8IuOKjDY73zFnow47NMezZHsfcRT5HCCgTVb3d5r68PgHxmIZ4TAMvZ89DT7uOtGJg+mwPvD4eO7fGsXVjDFs3xhCuEnHVx832LG+vN6soTZ/ttvIQW1tM4Spa4rJwWCzHcQjKQfQpfZYABQDsXoDpqoGlqwKQZB5zF5nH88AfjsLj5fFv35mFNVPPKnptCiHyIpJJ80ZKMqHj6EEVU2eY5+LFp7qwY3MMzdNcWLyieL/FVMp0VCPVEiQ5f254bWGxmzdE0d2RxnEnh7LfQ7u4LFLMh4lLUeKgpg3UNcpQ0wa6OtIIohlQAQE2J1oqraAPYFbRtd+8YLDrEss4l1IBJ5GFarPc3aEU9AFMgVuI3dtj4DgO1af6C74+3qGwWIIgCGLUmGzOpSMstkKtSEZkPxyP1KWXo+ulN5C48IMIt3Tiw1/8GWq/+u/genuGM9ySEUe5oI+dQu0GcvG6zAWu2ZIjK/DSKQ6R9Aw0hbKihee5osISKNCKZIBjZs3k5y7y4WP/OG1Qt2gg5iw0Q2M3b4iCg4BItXmsg/XhY85bbmhsPKZByuRtDobXZ/bcrKqR8OkvTsUZHzBdRVbBtqrGed7Zz92dGYeYE6xQV19ALOjaz1nowylnmTlp/baqsfGYBkMH/MH845ydyUU9cojlPtrngikcentU8AIwbbZ53TvbFCsv8dnHO7FniykQl6z048OfaMJX/msWPvZPzVh+fAg9XSp+/eOD+PWPD6L1iILGqS5Mm+VBICjA4+PR3mK2X2HzP6nlF/RhnDP9PNT7GqzcXV03kEjo8PkFS8CdcV4VahtkeH0CEnG9aBGlgRA40XIueUPElg1R6zUW6rpvV/GWLgDw/ttmqHOhfEvAFhYb0608WbsT6ezVmb8PwzBwYE8CHA9ccJnpLp7xgSqsOb8K9q+TmsiKVG/GueQ4bsj55Fa7mjQrrjR4i5RS+lwOxluv9uL1l3qQTuu4584WPPaXtmHvc6wgcUkQBEGMGpPNuRyJ/MhK7dOZW2kuwIy6OnTfdTceu+VjiId8CP7pj4icthry448OfcAlwhZgYyEuxRLEpcdlLirTigG3mF08KknzGrDFcikUOveDbctx3LDnECvqAwCrVkdQ15TJ6Rokt7aQuNQ0A8mEnte/sFSYM8lCZJnQZUQy4rKrPZtzyfIm/QGhqGtvVY3tzeZYskqx/kD+WGvrzXGw4jP2nDaJl6CqOmL9GoJhETWZwkSd7Wnw4LF7RwLxmIajB0xxNHuBKd4licfs+T58+p9n4byLa9A41YXpsz24YG0tPvXPUyFJPDjOLICkaQY62xVr/ics5zJ/HgbkIM6fcSFqvaaYSsR1wAA8tmswZYYb//TV6Vh+gukqHraFIJeKluahaYAsc+ANCXszQlJRdCsHdu+Owu1aAGDzhn489pc28Dxw4unhgtuwsNiuzrRVKGv/nqy4tOcBF6rI2tWRRrRPQ9MUF44/NYSv/NcsLFkZwPITgvj6/5uNeYvNa5GKZecJy7kcqpMIAF7R3G9PqqfovvJ6oNqORdcNvL2+Ny8neCBUVccTD7bhbw+1Y9fWuOnS1k/c3EsSlwRBEETFmaw5l07ncuT+pDLBMRwh5iw2ZHMxeQHbz16F3939NcSvugZC61GEbrwOwRuvB3+0ZeiDHgTREpejl3PJYAtEsypp4XPKxKWuOvPyVEtcln4tcl3jgbfN9MYcgfkTikhYfkIAC5f78cG1TdYcGMzFKSQukxlna+ji0jznmcjBPOeSic2uThYWK1iVWoMhsago9wUEgHP2u2SPCzmXNTni0nGjQZCszwyFJVTXMnGpoKNVQzwjEDhDQFWtlHcMHMfh9POq8JkvTcONN0/BSWvCjpzV+kaWd6lYRV+yOZeDiwdWadVbYO41TzMFzpGDA4vL/j4Vb7zSY/VrBYBkvznGYESELMjoyVyDjlYFyBTD7WhLo69IZd7XX+oBDOCKGxostzwXdjOGOaGA6Vyy9if2fO9CoafM5Zw+2+PYH2AW4AoEzZ/TsWw/VHZt7XNnx5YY7r+7pWjV2lxYUS7WFqZgtdica2cPcd72fhSP3teGJx9qt57r7kxbubyFaD2iQNcAGGbFZQCYNntohb3GAyQuCYIgiIrDHJmxcK0qid1pGklX1hKXw/gzbXfCComdRMiP6M9+hZ77HoI2bTpcjz+CyGmr4f79bwG9cIXH4TCWYbECL1g9DovhdWcWjJpT2DDn0l0xcTmyuahrr2vAh29shFvOLrQHm5vuTCuUZDK7AI9HzTngGaK4dLl5UwhmiOQIM5fLfL2nK20WEuIES8wEwsXFpSBw8PkF9PepllCxO565BIJmX9KONsXskZjjYrN8y1BERHWmME1nWxpb34uCM3jMXeTFvIUBnPuhmrx9D0Z9xjluPZzKc49LqTDKcl4LXYOmjLg8vD+J7Zuj2Le7cBjrK89044n72/Hik13Wc/19KnhDgNvNI+h3I5nQkYhrZoEewCrqvfndfqtvqp2ujjR4HliwtHhOIJtTmppt3RLt06wwaGdBn3x3MFdc5sJuJCSi2Rso7CYS+/+d13pxz6+PYNO7UWzMhPEOhi+nn3ChmwB5zqWjIJIpIre9H0UqZZ7XO//7IO76yUEoqcK/V1sOZoVn6xHzfBc77onA5PorTxAEQYxLjg3ncuTF5XAFKxOnjsqXHGc5eBzHIX3WOeh68TXEP3szuGg/Av/6BYTWfhDCrp3D+uxcWOuB0awWa2dx9RIsql5c9HVLXKo8eNvCX0kAHG+KoVLhyhCX7HyMtOhm17iU3DN2bHbnMj6Aa1YqdqevqjpfQNQ1ytA1UyBx4NHfo4LnAJ9fGPB8BEIidA2Ix8zxMucyUMC55DgONXUS0oqBvl7VEh6qaqDtkG6Jy2BYdDiXWzdGwYPHlOlunHF2HRYtL7+4CnNNuzrTeXl5hdy6XKxrUEBcRqpFeHw8jhxK4Z5ft+B3PztUcB8th0xnc/0LPZZQ7O9TwRkC3G4BoYApYro702jPFB+au9AMr37q4Q787L/24/CBrDuqpHRE+zSEq6SirWkAMy+ZCUzzZ/N/Jhrt56Ooc8kB02YVFlnsWqf6ebhFNwJyELIgY0nNUiypWYZEXMNjf2lD5v4Ddm9zhvke2JvAo/e15oWv+iTndS5UaTk359L+HTuaye1NKwa2vR/Fs4+bbXPSioG2lnyhDgBHDjndZ0nm0DTEwl7jARKXBEEQRMWharHlMVJuVjHHOE90+HyI3fpd9Dz5HNRFSyCvfxWRs06B98f/D0gVD+cqh2xY7NjMgZX1x2FZ7Yqir/s8bgTSDajlp1k9CQEgneTg8Qzu/tmxO87CIA7VSDuXdlbVH4+VdccNup0rIwJSiay4ZK4Zqzg7FCxxyQHh6vxF+sJl5kJ+84YoknFAUQwEQiJ4nhtYXGZCIg/tS+D+u1twYK+5OPcHC4/VCo09qlhCZst7Ufz512147gkzDDEUEeHzC/B4ebS1KGhrURAKueAPiEMu2BKOZKvR5or8Yu037CQy4rlQvi/HcWie5rbCjmEgr/+mYRiWE6ZpBp55tAOA6SAKEOHy8AgFM/1GO9OWc3nSmgjqm2QEQiIMA1j3XLe1T+Y85jrRhbCPe+bcTGGlg/mtXly8U6z1dKfR06WivlEumuvsD5nPR/t1XDJ7Lc6Zdh4Ac87Picw1nWrNrHQsuzjs3RmHqmbPzwt/68Tb6/vw89v2OxxFv5wjLgsIX57jHeGy7NoahoEWW/jrs4914q11vdbPxUJjmXPJ+udOGaCn7ESAxCVBEARRcSarcwlURjhnncvh/ZkuJlwWVy/B4uoledurK1ah++kXEf36NwEAvu99B5EzT4b00gvDGgcwtmGxpeB285gWPwUzxeXWwlfTDOhpvqx8S6C8ir98hZxLwOyjN69q/qDbFcq5jLOQzDIKGeVSlXECQ2ERoph/fIuW+8FxZoGYjpaM+xhi56P45zLX6oUnu7Dp3Sh2bDb7DfoDhUUgK+rT3qpYTtShfQnwEB05lwBQXStbbtfSlSEAcNxsKAd/UADPA73daUdYbKOvsWAuXy7Za1B4bkyd6XT1mAvL6Oky28s0NLvg9QnYvimGeEzLOpceHpGQzbnM5EdOme7GZ788HZ//+nR4fQK2bIyiJ1Poh7WOyc0/LYR93DPmZD4n8377+ZByqsUeGCQkFsjOgWifCrfozttHZ5v5OXWNLsyc60VaMXBgT9YhjMfNuR6PaY78SLfgLqkHJ7t+Apd12fv7zDzdukYZ/qCZQyzwHJasMgVrIXGpqjpaW1Lw+gWsWB0EAMyYwCGxAIlLgiAIYjSZZM4lkBXMfAXCYodb5MUaW45wWV63smiPNUgSEl/4ErpefA3KWedA3L0L4SsvQeAfPwG+9eiQx8JCTceioE8pMIGVTOqW25hWdHAQ4C5TYNnd2cGdy/ym8qON/dgZTNgMtaAPkBUgxYSIPyBixhwPon0a3nvdLKASDOcXZcl7X0ZYtBxK5TxfxLlsyDiXbYqVQxeulsAb2XEx16i20Xz95DPDmDrNzL8balsLnucQDIuI9mkw9OycWFKzrKT3JwYIiwWAE88I4ZJr6rB4pSleerqdbUmYmGme5sLC5T7oupkLGO3TwMPMRY1ETCHTflRBV2cawbBozQdJ5nHCaSEYOvDGK6YDZzmXBcKcc7HfmGAFaqwCTnxxATdYviWQvdb9fYUL9bAQ4OpayWpHYw+NZc48AGx9PwpdN+8ocBznyLssdu1ZuyL7cbCQ2KapblzzySZ86Oo6fOnbM3H2RdXm60fyxSUr5tM01YVTzorgA5fW4KQ1kaLHPREgcUkQBEFUHMvdm4TO5UjlRzr2iZEJlfRKXqs8f7nos2aj994H0XvX76E1NsH94P2InHwcPL/+BaAWriI5EH7Jn1m4jc/G4Hb3jrVJUBQDvMHD4ynvOpRTRbhSOZfl4C7gXLKQzOGIy6kz3ZBkDrPme4tus3il2VJj1xbTVco6l8W/T2ybXIo5l6zFSFuLYjlOHMwej4xg2Hx85vlVuOSaOpx7cY11I2Q4fQxDmdDYjqNpvPpsF1pbUmj0N+Vtd/RwKq8oT3yAgj4A4HYLWHVSyHJmc53L1oyYqW92YUnmPG96N5op6CPC7eFRFTZF0rb3Y4ABNE5xhqguP8F005jgG6pzWV0rWQWcdN2wcr6B/NDT/RmHsVi+JZC51jlVg+2w/p/VdbLVomfXNtPh1nUD/b0qfAEB02d7kIjpaMu4tof2JbF7ow7DMJCK8nmFgKL9KjraFPCas3gQkBXzDc0uTJnuxvGnhOD1CQhXSZBdPFqPpPDn37XgJ/+5D0893I54TLOq/TZNdcPl5nHKWRHrd9FEZWKPniAIgpgQTOqw2AocW1awDm8/Z007FxfMvGjoO+A4KBdfhu5X3zQL/iTi8H/9Kwh/4EyIb71R1q58kg+Xz70KJzSsHvp4KoiVd5jrXBpC2RVTHX0uS8y5HG4I9HAYMCzWN/RxhSMSvnrbbJx2TnEnZsXqABYs84GHeZ6CocHDp+2Fe+y5f3KRokuRagn+oICDe5PY8o4pklQF1mfKLt4qPhOKSFh1UgiCwFmu1XD6JjJH9OCbAXBHZsL1/ml52xiGgXvuPII//vKwIy/QEviDOOdMwLLQVQZzyhqazD6cPr+AvTvjOHo4Bd4Q4XILqIqYwotde5YHywhXiZBkDh2tCgzDsMJaS3IuM98bXjBvUkSqJegarFBkkRORTut49al+9PaY+9V1A13tCnwBoWCBJoYgcPD6BNMVNoy81zvbss5lVY2MSI2E1iMK+ntVxGMadN2cayxcd99O09V84sE2bHtLQ2d7GlveSeKhP7biwF5zznS0KfjRN/fiZ/+1H4/+XzfSad3hbLJ8y1yBzvMc6ptkpBUDWzZE0d2ZxvoXevDqc91WqO7UGRO3gE8uJC4JgiCIimMJsMmnLW05lyP3J5UbobBYv+RHQA4OezyGP4DYrd9F97OvIL36JEibNiJy0bnwf+nz4Lo6S96PT/KN25xLl9tcCJvOZUZcpg3wEB1VL0uhnFYk7LPGNiw2e+yMkQiLBUwRMJCrL4o8PnxjIy65ugGLlvvh9gx+PgKh7IJ+/mIf1l5fj6s+3jDgGK68oQE8Dzz7SA/6+1To6ez+w1ViwTEKmWuX20akHJi43L0thYbkUnTtd1mhpYyeLhW93SrUtIH+Xls7mHhpAj9cZX5GnnN52BRY9U0u8DyHJasCMHQgGdch8CJEkYPP7bJCTAWRw4KlzlYcPM+huk5GKqkj2q9ZYa3lhMUGgmaRJuZ2MveT53gc2JPEWy/F8NJTZqsUu/AbjEBQgKYZSMSz8/bt9b3YuTWGro602Q4nU5CKuZe7t8ctcRsIiZg51xSXe3cm0N+r4siBFGTdi74eFb0dpmhl4bT7dyesAkpaQkI8qjnakLCw2Prm/DzNhuas4LxgrdnWZtfWGPbvToDjTJd/sjA+f8MTBEEQk4rJHBbLGMljYwvr8VZdV1u0GD2PPIm+238Bvboanj/8DlUnr4L7rjuGFCo7nrC347Ccy5QOzuDLLmpjv9EgDCIuuQpWiy0VK+fSXi12kHy/kYTjOBx3UgSzbeGzA+Xm2nMrm6e7sfz4IBavCAz4GTPmeHHiGWFAFdHTmYauiBAlDhddWYsL1tYWfI8l/EvoSVkMFm5rF+5b3os6tjmwJxsO228L80yUKPALOZdpRUd3Zxrh6mwO5ZkXVKEm08sTWiavkpctoTh3kdcS93bYe9paUujtSsMfFIq6xHZYWCw7B+xzmLgWeRHdHQoEQ8LOrXEYhhmuCjhvIBTDbyvqA5jn9dH72nDvXS1IKwaq6yTrd6g9NJZ9RjAkYsoMN0SJw75dCWzPFIaSdC/aWhRoSfNc7NlhiksWZuz28BANU3Az5zKZMHt4RmokuN0F+pJONcXlvMU+nLQmYjmpfT0q6ptdBc/7RIXEJUEQBFFxihWWmQxU4tgq2Z5i2PA8Utdch651byPxsU+C6+1F4N//FZFzToP08otjPboh47aHxdqcSw7DrBZbcp/LsbuRYB17Soeum/0g49GB8/1GGnsOHvu5GCzfDjCL1ZRKuFqCaLigpyVwSQ/cHh6rTwtj1rzCOaFM4A61oA+QFX5AttfjpnedeXwOcdmbFZfxmA6Ow6A5eMGweT7szmVfZj9h2+d7vAI+dtMUTJvlxlknz4ZLcKHKXWX192R5mbmwnM7d2+LQ9dJcS/Z5QDaM2RKXHWl0daQxLTADWlutVbW3tUWxxl0sr9ZOwFbUJxHX8MQDbQAATTUdR3ZcADBjrhe8YDqX9t6moshj6gw3UkkdLzxpRmFIuhcdrYpV8OnQ/iSSCc3KqZy9wAshIy5Z9eGjmZYvjc2F5+PS4wK48IpaXHptPYCs2AWA6QPklk5Ehv5tIQiCIIgSGW8O3EhSiYI+Db4GpLQkvKJv8I3HCCNShegP/huJG26E/z++Ann9qwhfcTFSH7wE0W99B/r0GWM9xLKwV0wVrYI+OgRDLNtVcIrL0nIux0O12FRCx7rnuvHMY+YiWxA4yPLofXcFToBqmAv/gcSlIHBobHZBUfSShQ5g5i5y4LFE+wCUaAzuuoFF20jmXAJm9dO+HhUtB1Po7U5bwpP16QSA/l4NTz3cjr5eFYm4Bo9XAM8PfA1EkUMgKKKvV4WmGRAErqgDGAiK+MTnpwKYCsDMfz7zQjemz/Zg0fLCxbZYn9ANb5iiuKGIgMqF5cPWZqr1sp/feb0PrzzbjZUnTkdtRzYfd+fmmCVISwqLzWzT0apg19YYon0aZs33mk6jkXVcATMyYdosD/btzDqU7P2nn1eFA3uOINqnQXbxkIQqtKlVCKabwAuArgH7diXQekSBKHGYNssDYZNsVpbO/K44esi8hg1TCp8bUeRx4ulh6+fZ8714M1OBd/rsyRMSCxwDzuXnP/95nHDCCfjiF7841kMhCII45hmXTtwwqUTI74q6Vbh0zuXDCscbLbSly9D78BPovfNuaFOmwvX4I6g67QR4b/s2EIuN9fBKxuXmwXFAPKrZCvoY4CGUXdTGnitbqnM5lgV9BIGDKHFIJXVstoVsapoxqjeGHIWQBhHbH79pCj79xalljc/rN/cf7xIhQIJrkJsGs8NzMDUwDTWewmGzpWAXl41TXJiz0LxhxEIt4zHN6i8JmI7jm6/2YvO7Uahpo+S5F64SYehZ57PPFvo56HsjElaeGCwqYlm1XZaHW0yE5jJtphv/8KWpOO1cU0BWZW4EMFf83df7AGTzDXdujdmcy8HHPX+xOY7XX+rB2+t7IYgcLr++3sobZaKWMWd+Nu8SAIJh8/rPmufFhz/ZCFHisHilH81NfsyMnYlIeiaWHWfmrL/5ai9SSR31jTICQRGS7kEqqcMlmmO3V4othRlzPZaTPVBV3InI5Psrn8N1112H73//+2M9DIIgiGOcyZtzOZlDfkuG46BcshZdr7yJ2Je/BvA8fP/9Q1Sdchxc998HFKjmON4QBA7+oGjmvOnMydPAgS/a4qIYdsEzmEhi4bBjPX9cbt5cLI9hGwT7uRrsfLjcfNmOMnPFWEEZ9yDH2uRvxlnTzhlWWKzbLVjntHGK28orZQLnYKYSKROhh/cnoaaz35dSc17Z+3syIZ+sMFAp4aWDUVUrWcXY/EFhwP6TdjiOQ9NUNySJt94rSpm+rkL2O3L8qSH4AgIO7kuiq8MU2qWI4ikz3Jg2y42ujjSUlIHlJwTgD4i4+Op6fOiqOixY6hTBsxdkIkEyp9cuYOct8uFf/3MmLr66DvVNWYF4+nkRiBJnFfWpbzYLIHm0akxLH4+lmZ6lrOdqsbDYXNxuAedeXIM151eV/ftlvDPp/xKeeOKJ8PnGb1gRQRDEsUC2WuzkE5dWWOwkFM5l4/Ui/q9fRde6t5FcewWEliMIfu7TCF90DsTXXxvr0Q1KKGy6P8mM4ZpOZhfF5VBOziU/DqrFAqbQ0jTDykebs9CLD141dMduKDDHODf/cqTwZiqH9nSax+gqswrwUGHVXBunmC1BeB7YsyMBXTesVhSs3+ehfUnHe0stJhWuMl3B/7vjCF58qrOswjiDIUk8whnXcdFy/6BhusUwxaYLsovHNZ9qtJ6fNtOD5mluGHpWdAfCpY37lLOyYbUnn2k+9vkFHH9qKG+cDc2y47sczPkMt9sMQW7IVHsNRURU18pYbQtnbWhywR8QwYGDLzoNPskHVdXRfjTTPqWM833KWRGcdWF1ydtPFMZUXL755pv4x3/8R5x22mmYP38+nn/++bxt/vSnP+Hss8/G0qVLcfXVV2Pjxo1jMFKCIAhiOEzmarGTWTgPFb15Cvp/9Vv0PPIk0stWQHr7LUQu/gCCN14PYc+usR5eUZj7E+szrQ0lYV5Tf6DyOZfjwbkEgJ7ONESJw3X/0IQTTg2P6hiyxY0qcy6YC6hp5vUtt8XMUDnvkhp84NIaVNdJcLl5TJnhRjyqoa1FsXooLl7hd4yNUWoxqVUnBTF3kdfsG/lcj9VuoxQHsBSYI7d01cBVeQfj2k814aZ/n465C3047dwIVqwOIlwlWr0hWW/PUsc9b7EPS1b5ceo5EavwUDE4jrOcY9nFFazqCpgViMFle0+eenYEssv8XVDf7LJ+H0T7zXPc1qJA10sPiZ3sjKkPG4/HMX/+fFx++eW4+eab815/4okncNttt+HWW2/F8uXLcffdd+NTn/oUnnzySVRVVQEALr300oL7fvDBByEII3sXcKh3aioFG894GxcxOaD5RYwkAs+B4wCe58Hz3KSaXzxv5uoJmWMjsminnIq+Z16EfP+f4f3urXA9/gjkp55A8hOfRuJLX4ZRXVOxzx7KHAtl3J94nwHOCyhJc3Evy+WvJwSeh27oEAeZF7JohhxKgjim84eFmBqGKaYFYfTFrsiLFf0uud1mWCYLO/V4Bi+WU4xy5te8RX7MW5T9efZ8Hw7sSWL7phiOHEjC6+MxZbrbCk0GAFnmoCgGfP7S5kVNnQsf/ccp+NWPDuDw/iQO7Tcd0FBEGpFzedGVdTjhtBCmzy5cWbdUfP6s9PjAJVlnvGlqtqiNKHHw+oSSbtjxPIerP95U8ufPXejDe2/2Ixgqfl4bmtz41BemorrWPHeBoIhLPlyP3dvjmDbTA0Hg4HLxiPVr4HkOr7/YAwCYOdc7YvN2Iv+NHFNxuWbNGqxZs6bo67/97W/x4Q9/GFdccQUA4NZbb8ULL7yAhx56CJ/85CcBAH/9619HZayiyKO6urQE5tEmEqGwX6Jy0PwiRoJguxcJ3o1I2Of4XToZ5lfwqAealEQ45Bu3fyfGnM9+Cvj4dcBPfgLuttvgueMX8Nz3f8DXvgZ8/vOAu3LVEsuZY03NcQDd0NMyXLIMXeURCstDuq7BgBeqrqIqEhjw/aHIbET5EzC/Zj6qPGM3fwLBbGXNUGRoxzxcwu0+KGIMHtFTsc/3B0SrH2Skyj3szxnK77CTz+Dx/N868cozXdA0YM6CAGpqAghXSVYvxTUfqMPTj7VixqyB508u02b4cHh/0nIup88MQRSHf6OguhqYOWvYuynKwiUSgCMAgHCVjJqa4TmkxTjhFDeeergDcxcGBzyvua+ddb4fZ52f/TkYltDemkJfF4eNb/cjEBRx4aXNI96vciL+jRy3GaSKomDz5s347Gc/az3H8zxOOeUUbNiwYdTHo6o6+voSg284ivA8h0jEh+7uGHR9/BdLICYWNL+IkaQ/mkQ0lkRvbwKdUnRSza9oNIVoMok+VwKdndHB33As8+mbwK39MDw//D7cv7sL3Fe+Au2nP0P869+EcsVV2UaAI8BQ5pgom0VQ2o8o6BFSEHQZHh83pOsajylQNAV9vUl0ugd+/zzvUhhxoDM+dvOHF7LnyO0Z2jEPl1hUQTSWhCGJFft8eyisAXXInzOc32FuHzB3kRc7t5j5hY1TJXR2Rq1qtgCwek0Acxa5UNfoKmuMoarsPnwBAb298bLGNlYYnAGPl0cirsPn5ys6//75GzMgiMOb46yK7x9/vQ+GAaw5vwqxeAKxETrd4/VvZDDogSQNLKDHrbjs7u6GpmmoqXGGzFRXV2P//v0l7+cf/uEfsHHjRiQSCZxxxhm44447sGDBgiGNaTxdXDu6bozbsRETH5pfxEhg6Ga4nWE4f5dOivllcGYxVIOb+McyGlTVIPpfP0Dik/8A339+C64nHkXgs59C+n9/ivjXboFy9nnACOavljPHWDGO/m4DKxeciT2JbvgCwtCua2Ze8OAnxLyQXTZR4h/iMQ8THjwMw8xjrtTn21t7yK7hX5uh/g477ZwqS1xOneGBrhsIBM35FwgJkCTOqlpazv5rG7IOdCAkToi5x2hodmHvzgQCocrOP0E0f78M5zNY3uXRwym4vTxWnhSsyJgn4t/IcSsui2EY5fVcuuOOOyo4GoIgCKIUJnVBH3ZsVNCnLLTZc9H3uz9Bem0dfLf+B6S330Lo2iuhnHQKYl//FtQTTxr1MbGCPn09KrzpWrh1bchtAqwqwhOkRY29BYmvzAJGIwVf4YI+gLO1x2hViy3E9NkezF/iQ2ebgoZMMRsmLqtrBy5MMxB1jdmiMoEyqxyPNY1TTHE5UkWIKom96uzchT5Ha5VjnXH7Gy8SiUAQBHR0dDie7+rqynMzCYIgiPEN+7M71hUxKwE3iXt4jgbpk05BzxPPovfue6AuWAj5tXVmZdmPXAnh/dGtEO/zCxBEDr3dKqJ9ZohsuW1IGOxmw1i3GCkVu7gcq7572WqxlTtndnE50vlx5XLNJxvxT/8+HWLGSWM9KatrpYHeNiD+gGC5sxNBpNlZuMwPSeYwa97wigaNBvbvyLzFEy8vspKM27/ysixj8eLFWLdunfWcrutYv349VqxYMXYDIwiCIMpmMgsvJiImo3AeNTgOyoUfRPfz69D3s19BmzYDrmf+jqpzTkPgMzeOWvsSjuMQCouIxzR0d5pFX4brXE6UeTEenEvW57KSgtwhLt1je204jnNEPMye70MoImLRiqEXGeI4DnUNGSd0gonLqTM9+Pr/m4M5C8e/WGM3nXgemLNg/Ivh0WRMv1WxWAxbt27F1q1bAQCHDh3C1q1b0d7eDgC48cYbce+99+Khhx7C7t278a1vfQvJZBJr164dy2ETBEEQZTKZBRg5lyOIICB19bXoWvcW+r/3I2h19XA/9AAip54A/5e+AP7I4YoPIZgJjT1y0GzlMFTnks8ssSaKc+l2OJdjJC5HOyx2jMVlLrUNMr74zZmYPX944qqu0QyrDYYnlricSPgzIczTZnvg8U6M7/hoMaazbtOmTbjhhhusn7/zne8AAG666SbcfPPNuOiii9DV1YXbb78d7e3tWLhwIe68806rxyVBEAQxsZiMAoynnMuRR5aR/MSnkfzwR+C561fw/vR/4PnDb+H+8/8h8bFPIHHzF6HXN1Tko0OZBfnh/WZLCJYHVy5Z53JizAunczk2y8NszmXlzpm9oI97DHMuK8kpZ0UAAItXVKadBwHMmufBcacEsXJ1aKyHMu4YU3F54oknYvv27QNuc/311+P6668fpRERBEEQlSBb3GSMB1IBLOdyErqyY47Ph8Tn/wXJG26E9+e3w/PrX8J7xy/g+f1vkbjhxoqITLNCZz80zazQOPScSyYuJ4arYS9uM3bOZeXd3vHsXI4UkWoJH7yybqyHMakRRR4XX10/1sMYl0zObxVBEAQxLpmMzuVkroQ7XjDCEcS+/k10vvU+4jf9M8Dz8N7xC1SdsAy+//gK+NajI/ZZK08MOtpyDDXkbaLmXAoCN2aO3mgW9JFdPHievrMEMdJMjN94BEEQxAQns4ibhNal5cqSuKw4Rk0NYt/4Njrf2lQxkenxCjj+1Gyo21AFyEQTlyzn0hcQxizEmxX0GY2cy8kaEksQYw19swiCIIiKM7mL3kzeYkXjlUqLzJPXhAEAcxcNvQokm+sTpaCP1y/A5eZRWz/0HovDZTT6XPr8AiSZs3qaEgQxstA3iyAIgqg4kzl0NJtzOfmObbzDRGb8c5+H939vh+c3d5g5mXf/BqmPfBS45WtAsLbs/QZCIr783VmQpKFfU1aUhucnhriUJB7/9O/T4XKN3U0SJsQrKcglmccnvzAVHi/dDCKISkDfLIIgCKLiTGYBNpmF80Qh18k0RAnu394JzJ0L/2c/DWHb1rL36fUJkOShL5OssNgJtNQKhsQxLXJj5VxWWJA3NLsQikgV/QyCOFaZOL/xCIIgiAnPZBRgHIXFjhuYyOx6ZxPiX/k6EArB9Zd7UXXGiQh+7CMQ33lr1MbCQjwFnuZFqbBzNZEEOUEQTujbSxAEQVQc5u5NRgFGBX3GH0akCol/+yqwfz9i/3kbtIZGuP72GCIXnI3QlZdCeuUlwDAqOoYFVQsxNzIPYVekop8zmRB5002UeMraIoiJyuT7K08QBEGMOyZzQZ+scJ58xzbh8fuR/OxN6HpzI/p//FNoM2ZCful5hC//EMIXnQP58UcBTavIRzf5m3Fy06mT8oZKpWj2T8HKulWYWzV/rIdCEMQQod94BEEQRMWx8hInoQDjJnGblUmDy4Xk9R9D17q30fer30BduBjS228hdON1iJxynJmfGY+P9SiPeURexNLa5fBL/rEeCkEQQ4TEJUEQBFFxJrVzOYmPbdIhikitvRLdL6xD75/+DOW0MyDu3YPAV/4F1asWwfu9/wTX1jbWoyQIgpiwkLgkCIIgKg5zInySb4xHMvJM5nzSSQvHQTnvAvQ++Bi6n3kJycuvAtfbC9+Pf4Dq4xbD/8WbIGzfNtajJAiCmHDQX0KCIAii4iyrXYGr5l+DoCs01kMZcTgq6DOhUZetQP8v70LXmxsR/+zNMCQZnj/9HlWnr0bwI1eOSvEfgiCIyQKJS4IgCKLicBwHj+gZ62FUBLfgAgC4RPcYj4QYDvqUqYjd+l10bdiC6Le+C615ClzP/N0s/nPuGXDd80cgmRzrYRIEQYxrSFwSBEEQxDBYUrMM58+8CPXe+rEeCjECGMEQEp+7GV1vvIe+X9yJ9LIVkN5/D8EvfA7VKxfC991bwR8+NNbDJAiCGJeQuCQIgiCIYSDyIgnLyYgkIXXF1eh5+kV0P/IUkpesBdfTA+9PfoSq45ci+MkbIL22jkJmCYIgbJC4JAiCIAiCKAbHQT3pZPTfeTe63t6E2D//K4xwGK5HH0b4kgsQOfs0uP/0eyCRGOuREgRBjDkkLgmCIAiCIEpAb2pG/GvfQOe7W9F3+y+QXrYC4ub3EfjiTahesQC+//wm+P37xnqYBEEQYwaJS4IgCIIgiHJwu5G65jozZPaxp5G87HJw/f3w/vS/UbV6OULXXA75b48DqjrWIyUIghhVxLEeAEEQBEEQxISE46CuPhH9q09E7GgL3Hf/Bu4//R7yc89Afu4ZaI1NSF53A5LXfwx6U/NYj5YgCKLikHNJEARBEAQxTPSGRsS/8nV0vbMZvXffA+Xsc8EfbYHvh99D1arFCN5wDeRnngI0bayHShAEUTFIXBIEQRAEQYwUogjlwg+i994H0fXGe4h/4UswqqrhevIJhD5yFapWL4f3v38AvvXoWI+UIAhixCFxSRAEQRAEUQH06TMQ+/o30blhK3rvvBvK6WsgHDwA323/iaoVCxH86IchP/EYkE6P9VAJgiBGBBKXBEEQBEEQlUSWoVyyFr0PPIqu9W8j/tmbYUQicD31N4Q+/hFUL58P3ze+BmHb1rEeKUEQxLAgcUkQBEEQBDFKaLPnInbrd9H53nb0/u7/kDr/QnDd3fD+8meoOuNEhC84C+67fwOur3esh0oQBFE2JC4JgiAIgiBGG0mCctGH0PeH+9C5YRui3/hPqHPnQXrnbQT+7Z9RvWQuAp/9FKSXXwR0faxHSxAEURIkLgmCIAiCIMYQo74eiZu+gO5X3kT3408jcf3HYAgi3A/8GeErLkbVCcvgve3bEHbuGOuhEgRBDAiJS4IgCIIgiPEAx0E94UREf/xTdG7aib7bfwHl5FPNIkD//UNUnXo8wuetgedXPwfX2jrWoyUIgsiDxCVBEARBEMR4w+dD6prr0PvXv6HzrfcR+9o3zLDZ996F/5Z/R/Xy+Qh9eC1c998HxGJjPVqCIAgAJC4JgiAIgiDGNfq06Yj/87+aYbPPvIT4Z/4JRnUN5OefRfBzn0bN4jkIfO7TkJ57BlDVsR4uQRDHMCQuCYIgCIIgJgIcB3XZCsT+8zZ0vrcNPfc9hORV1wAA3Pffh/A1l6N62Xz4v/IvkNa/SoWACIIYdUhcEgRBEARBTDREEemzzkH/z+9Ax+Zd6PvFnVDOPhdcdxc8v70T4UsvRNWKhfD9x1cgvvE6CU2CIEYFEpcEQRAEQRATGZ8PqSuuRu+9D6Lz/Z3o/8H/QDl9Dfi2Vnjv+AUiHzoPVcctge+bX4f47tuAYYz1iAmCmKRwhkG/YUohndbQ0xMf62E44HkO1dV+dHZGoet0GYmRheYXUUlofhGVhuYYwLW2wvXYX+H664OQXl8PLrPk06bNQOrStUhddjnUJcsAjhvjkU48aH4RlWS8zq9w2AtJEgbchsRliZC4JI41aH4RlYTmF1FpaI454VuOwPXow3A9/CCkt96wntemTUfqoouRuuhiqCesBoSBF46ECc0vopKM1/lF4nIEIXFJHGvQ/CIqCc0votLQHCsOf+ggXI88DNcjD0J6523reb22DqkLPojUBy9G+rQzAFkew1GOb2h+EZVkvM4vEpcjCIlL4liD5hdRSWh+EZWG5lhp8C1HID/xGFxPPAZp3cvgNA0AoAdDUM47H6mLLoZy9rmAzzfGIx1f0PwiKsl4nV8kLkcQEpfEsQbNL6KS0PwiKg3NsfLhujoh//1JuJ54FPILz4FLJgEAhtsN5cxzoFxwEVLnng+jrm6MRzr20PwiKsl4nV+liEtxlMZCEARBEARBjGOMqmqkrrkOqWuuA6JRyM8/C9fjj0B++im4nnwcricfRwBAetVxUM67AMoHLqCCQARBOCBxSRAEQRAEQTjx+6FcfCmUiy8FFAXSKy/B9fSTkP/+JKR33ob0ztvwff+70BqbMkLzfCinrQG83rEeOUEQYwiFxZYIhcUSxxo0v4hKQvOLqDQ0xyqEYUDYthXy00/C9fcnIb71BjhdN19yu6GcvgbKBy6Ect750Juax3iwlYPmF1FJxuv8orBYgiAIgiAIYuTgOGgLFyGxcBESn/8XcJ2dkJ/9O+Snn4L83DNwPf0UXE8/BQBQFy4yczXPPhfpE08G3O4xHjxBEJWGxCVBEARBEAQxJIzqaqSuvhapq681w2dfXw/5709CfvpJiFu3QNy6Bd5f/BSGxwPllNOQPuscKGedC23OXMrVJIhJCIXFlgiFxRLHGjS/iEpC84uoNDTHxh5+/z7Izz8L+flnIb38Ivhov/WaNmUqlLPOhXLWOUifsQZGMDSGIy0fml9EJRmv84takYwgJC6JYw2aX0QloflFVBqaY+OMdBrS229Ceu4ZU2y+9671kiEIUI87Acrpa5A+fQ3Sx50AuFxjONjBoflFVJLxOr9IXI4gJC6JYw2aX0QloflFVBqaY+MbrqMD8ovPWc4m395mvWZ4PEivPskUm6edAXXZCkAcX5lcNL+ISjJe5xcV9CEIgiAIgiDGHUZNDVJXXI3UFVebFWi3bIb86kuQXn4R0rpXIb/4POQXnwcA6MEQ0qecivRpZ0A5bQ20hYsoX5MgxikkLgmCIAiCIIixg+OgLV6CxOIlSPzD5wBVhbhxA6RXXoL80ouQ3lgP15NPwPXkEwAAvaYGyqlnIH3SKUifdIopNnl+jA+CIAiAwmJLhsJiiWMNml9EJaH5RVQammOTiFTKzNd8+UXIL78I8Z23wKmq9bIeDiO9+iSkTzoV6ZNOhrp8JSBJFR0SzS+ikozX+UU5lyMIiUviWIPmF1FJaH4RlYbm2CQmGoX05uuQXl8Haf06SO+8BS6Vsl42PB6kj1+N9IknI33yqWaBIK93RIdA84uoJON1flHOJUEQBEEQBDG58PuRPuscpM86x/w5lYL47juQXl8Hef2rEN94HXLG5QQAQxShLluO9PGroR6/GunjV0NvnkJ5mwRRAci5LBFyLoljDZpfRCWh+UVUGppjxzCaBnHLJkjrX4X02npIr70KvqPDuUl9gyU008edAHX5CsDjKfkjaH4RlWS8zi9yLgmCIAiCIIhjC0GAunQ51KXLzQJBhgF+7x5Ib70B6a03IL79FsQtm+B6/BG4Hn8EQMbdXLI0624edwL0adPJ3SSIMiFxSRAEQRAEQUxeOA76rNlIzZqN1NXXms/FYpA2vAPx7Tct0SlteBfShneBO38FwKxKm16+Eir7t2Il9IZGEpwEMQAkLgmCIAiCIIhjC58P6VNPR/rU05EATHdz/z5TZL79JsS33jTdzWefhuvZp623aXX1UFeshLZiFXDGKeBmLQRqasfsMAhivEE5lyVCOZfEsQbNL6KS0PwiKg3NMWLYpFIQt26GuOFdiO+9C/G9DRC3bganaY7NtKZmqMtWQF2+AurSZVAXL4Xe1EwOJzFkxuvvL8q5JAiCIAiCIIih4HJBXbEK6opV2ecSCbNY0MYN8G99H+rrb0DYvg2uI4fhevJxazM9HIa6eCnUxUugLl4KbfESqPMXAi7XGBwIQYweJC4JgiAIgiAIohQ8HqjHnQD9hNXwV/vR2xmF3h+FuHkTxI3vmv9veh/iti2QX30Z8qsvW281RBHa3HlQFy3JCs9FS2DU1ZHLSUwaJrW43LNnD772ta8hGo1ClmV87Wtfw/HHHz/WwyIIgiAIgiAmCz4f1NUnQl19YvY5VYWwexfEze+bgnPz+xA2vQ9x6xaIW7cAD/zZ2lSPRKDNWwB1/kKoCxZYj0l0EhORSZ1zefjwYaRSKcyaNQu7d+/G5z73OTz11FND2hflXBLHGjS/iEpC84uoNDTHiEoy1PnFtbc7BKe4dQuEXTvApVJ529pFpzZ/fub/BdDr6kl0TnLG6++vYz7nsrm52Xo8a9Ys9Pf3wzAMcPSFJAiCIAiCIEYZo7YW6TPPRvrMs7NPahqE/XshbNsGccc2CNu2Qty+DcKuHZBeXw/p9fWOfejBELTZs6HNmgNtdvafOmsO4PeP8hERhJMxFZdvvvkm7rrrLmzatAnt7e345S9/ibPOOsuxzZ/+9CfcddddaG9vx8KFC/Ef//EfWLZsWdmf9eyzz2LhwoUkLAmCIAiCIIjxgyCYQnHWHCgXfSj7PBOd27dD3L41Kzr37IL07juQ3n0nb1daQ6MpNnOEpzZ1GhUTIkaFMRWX8Xgc8+fPx+WXX46bb7457/UnnngCt912G2699VYsX74cd999Nz71qU/hySefRFVVFQDg0ksvLbjvBx98EIJg2raHDx/GD37wA9xxxx2VOxiCIAiCIAiCGCnsovPCD2af13XwR1sg7N6V/bdnF4RdOyEc2A/haAtgKyQEAAbHQW9sgjZ9BvTpM6BNnwFt2nRo02dCmz6D8juJEWPc5FzOnz8/z7m86qqrsGzZMtxyyy0AAF3XsWbNGnz84x/HJz/5yZL2G41Gcd111+Hf/u3fcNpppw15fOm0hr6+xJDfXwl4nkMk4kN3d2xcxWMTkwOaX0QloflFVBqaY0QlGbfzS1HA79/nFJ67d4E/sB/84UPgdL3g2wyPxxSe06ZDmzET+tRp0KdMhd7cDK15KozaWoDnR/lgjl3G6/wKBj0TN+dSURRs3rwZn/3sZ63neJ7HKaecgg0bNpS0D03T8IUvfAFXX331sIQlAIgij+rq8RnHHon4xnoIxCSG5hdRSWh+EZWG5hhRScbl/GqsAk5alf+8ogAHDgB79pj/9u61HnO7d0PcthXYtrXwPmUZmDIFmDoVmDat8P+hUGWP6xhkXM6vQRi34rK7uxuapqGmpsbxfHV1Nfbv31/SPl566SW89tpr6OjowJ//bJZ8/sMf/oBgMFj2eFRVJ+eSOKag+UVUEppfRKWhOUZUkgk7vyINwHENwHGn5L3E9XSD378fwr694A8eAH/kMPjDhyAcOgT+yCHwTJQWQfcHYNTXQ69vyPyzPW5ogJF5zgiFKQR3EMbr/JrQzmUxyqn2etZZZ2Hz5s0j9tnj6eLa0XVj3I6NmPjQ/CIqCc0votLQHCMqyaSaX8EwtKVhpJcuL/x6Mgn+yGEIRw6DP3TQ/P/wIQiHD2WE6GErDHcgDJcLel29+a++AXptHfTqKhjVNdCrqqFX18CoNv/Xq6oBt7sCBzsxmIjza9yKy0gkAkEQ0NHR4Xi+q6srz80kCIIgCIIgCKKCuN3QZ82GPmt28W1iMfBtreBbW8G3HYXQetR83Ho0868VfHsrhIMHIBw8UNLH6j6/KTyrq0zhWVUNvaoaRigEPRSCEQqbj4Pm/+bjEODzkUM6BoxbcSnLMhYvXox169bh7LPNXkC6rmP9+vX42Mc+NsajIwiCIAiCIAjCgc8HfeYs6DNnDbxdOg2+vc0UnJ0d4Do6wHd2gu/qBNfZAb6rE3xHB7iuTvCdnRAO7INwYF9ZQzFE0RKaRigEIxiG4ffD8PlgeH3m/z4fDJ+/8GO2jccLuGQYLreZe0qCdUDGVFzGYjEcOJC9a3Ho0CFs3boVNTU1qK2txY033ogvf/nLWLx4MZYtW4a7774byWQSa9euHcNREwRBEARBEAQxZCQJelMz9Kbm0rZPp8F1dZmis7MDXHcX+N5ecL294Pp6so97M4/7zJ/5vl6InZ0jOnTD5bKEpuF2w5BlwOWG4WL/Zx4LAsALgCDAEO2PRdtrvPlz5jWrIq8sAZ/5FFDVOKJjHw3GVFxu2rQJN9xwg/Xzd77zHQDATTfdhJtvvhkXXXQRurq6cPvtt6O9vR0LFy7EnXfeafW4JAiCIAiCIAhikiNJMOrrodXXQyv3vakUuL4+8H094GKxzL8ouFgMiMetx/bnuVgMXDwGLhoFl0yAS6YAJQUuZf5DKgWuvw98R3sljtYknQS+8d3K7b9CjJs+l+OddFpDT098rIfhgOc5VFf70dkZnXDJvsT4h+YXUUlofhGVhuYYUUlofhEAAMMAFAWckgKSKXCppPUYmgZO1wDN/Mdp2cdQ1cxreuY51XzdMADDACeKCFx+MTp1aVzNr3DYO/mqxRIEQRAEQRAEQYw5HAe4XDBcLiAAjJQM5HkOiPiBzugI7XH04Md6AARBEARBEARBEMTEh8QlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhjMMwxjrQUwEdN2ApuljPYw8JElAOq2N9TCISQrNL6KS0PwiKg3NMaKS0PwiKsl4nF+CwIPnuQG3IXFJEARBEARBEARBDBsKiyUIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYnLcc6f/vQnnH322Vi6dCmuvvpqbNy4ccDt//a3v+GCCy7A0qVLcfHFF+Oll14apZESE5Fy5tfOnTtx88034+yzz8b8+fPxxz/+cRRHSkxEyplff/7zn/GRj3wEJ5xwAlavXo1PfOITeP/990dxtMREpJw59swzz+CKK67A8ccfjxUrVuDSSy/Fww8/PHqDJSYc5a7BGHfccQfmz5+P73//+xUeITGRKWd+Pfjgg5g/f77j39KlS0dxtKVD4nIc88QTT+C2227DP/3TP+Ghhx7C/Pnz8alPfQpdXV0Ft3/33XfxpS99CVdeeSUefvhhnHvuufjc5z6H3bt3j/LIiYlAufMrkUhgypQp+NKXvoTa2tpRHi0x0Sh3fr3++uv44Ac/iN///ve45557UF9fj0984hNoa2sb5ZETE4Vy51goFMJnPvMZ3HfffXjkkUdw5ZVX4mtf+xrWrVs3yiMnJgLlzi/G5s2bce+992L+/PmjNFJiIjKU+RUOh/HKK69Y/55//vlRHHEZGMS45corrzS+/e1vWz9rmmacdtppxp133llw+y984QvGZz7zGcdzV111lXHrrbdWdJzExKTc+WXnrLPOMv7whz9UcnjEBGc488swDENVVWPlypXGI488UqkhEhOc4c4xwzCMyy67zPjpT39aieERE5yhzK94PG5ceOGFxksvvWRcf/31xve+973RGCoxASl3fj3wwAPG6tWrR2t4w4Kcy3GKoijYvHkzTj31VOs5nudxyimnYMOGDQXfs2HDBsf2AHDaaacV3Z44dhnK/CKIUhmJ+ZVIJKCqKkKhUIVGSUxkhjvHDMPA+vXrsXfvXhx33HEVHCkxERnq/Pre976HE088EaeffvoojJKYqAx1fkWjUZx55plYs2YNPve5z2HXrl2jMNryEcd6AERhuru7oWkaampqHM9XV1dj//79Bd/T0dGB6urqvO3b29srNk5iYjKU+UUQpTIS8+tHP/oRGhsbcdJJJ1ViiMQEZ6hzrL+/H2eccQYURQHP87j11ltx8sknV3q4xARjKPPr+eefx2uvvUZ5vMSgDGV+zZo1C7fddhvmzZuHvr4+/OY3v8G1116Lxx57DPX19aMx7JIhcTnBMAwDHMcVfb3QawNtTxB2BptfBDEcSp1fv/71r/HEE0/gD3/4A2RZHoWREZOFweaYz+fDww8/jHg8jvXr1+O//uu/MG3aNBx//PGjOEpiolJsfnV1deGWW27Bz3/+c3g8njEYGTEZGOj314oVK7BixQrr55UrV+Kiiy7CX/7yF9x0002jNMLSIHE5TolEIhAEAR0dHY7nu7q68u50MGpqavK27+zsLLo9cewylPlFEKUynPl111134Ve/+hV++9vfYt68eZUcJjGBGeoc43ke06dPBwAsXLgQu3fvxh133EHiknBQ7vzauXMn2tvbce2111rPaZqGN998E3/84x+p8jXhYCTWYJIkYeHCheMy2oxyLscpsixj8eLFjip2uq5j/fr1jjsXdlasWIFXX33V8dy6deuKbk8cuwxlfhFEqQx1ft1555343//9X9x5553jtsQ6MT4Yqd9hhmFAUZQKjJCYyJQ7v5YuXYpHH30UDz/8sPVvyZIlWLt2LR588MFRHDkxERiJ31+apmHnzp3jsno/OZfjmBtvvBFf/vKXsXjxYixbtgx33303kskk1q5dCwD48pe/jPr6enzpS18CANxwww24/vrr8Zvf/AZr1qzBE088gU2bNuG73/3uWB4GMU4pd34pimK1tVEUBa2trdi6dStCoRCamprG7DiI8Um58+vXv/41fvKTn+BHP/oRmpubrVxxr9cLn883ZsdBjF/KnWN33HEHFi1ahOnTp0NRFLz88sv461//im9/+9tjeRjEOKWc+eX1evMiLbxeL8LhMObOnTsWwyfGOeX+/vrZz36GFStWYPr06ejr68Ndd92FI0eO4MorrxzLwygIictxzEUXXYSuri7cfvvtaG9vx8KFC3HnnXeiqqoKANDS0gKez5rPq1atwo9+9CP8z//8D3784x9jxowZ+PnPf47Zs2eP1SEQ45hy51dbWxsuu+wy6+c77rgDd9xxB9auXYvvfe97oz18YpxT7vy65557kE6n8fnPf96xn5tuugk333zzqI6dmBiUO8eSySS+/e1v4+jRo3C73Zg1axZ+8IMf4KKLLhqrQyDGMeXOL4Ioh3LnV19fH2655Ra0t7cjFAphyZIluO+++/D/27u3kCjbNYzjl1lpmiamCZphShiopZD7jLSdZNIWSqnQNpQoGAhmBupBhQolaiaiaUWlZNiGoLSITqwMojKDQooow6zEDY7tLNfBwoFJ60uG9Vmu/+/Me555n3s8kcv7fZ/x9PQcq4/wUxaDg4ODY90EAAAAAODvxr9cAAAAAABmI1wCAAAAAMxGuAQAAAAAmI1wCQAAAAAwG+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2SaOdQMAAPxpiouLdfTo0WH10NBQnThx4t9vCACAvwDhEgCAEdjZ2amiomJYDQAAjIxwCQDACCwtLeXv7/+P6z59+iRra+v/fUMAAPzheOYSAIDf1NbWJm9vb12+fFnp6elasGCBdu/eLUnq7u5WVlaWwsLC5Ofnp02bNunRo0cm7+/t7VVaWpr8/f21cOFClZaWKi8vT1FRUcY1xcXFCg4OHra3t7e3Tp8+bVKrra1VTEyMfH19FRkZqfLycpPXMzIytG7dOjU2Nio2Nlb+/v6Ki4tTa2urybpv376prKxMK1askK+vrxYtWqSMjAxJ0pkzZxQQECCDwWDynrt378rb21tPnz4d5W8RADBeMbkEAOAnBgYGTH4eHByUJOXn52vZsmUqLCzUhAkT9OXLFyUmJqq3t1fp6elydHRUdXW1EhIS1NDQIGdnZ0nSvn37dO/ePWVmZsrJyUmVlZV69eqVJk4c/Z/jiooKFRQUaMeOHQoKCtKTJ09UWFioKVOmaPPmzcZ17e3tys/PV1JSkqysrJSfn689e/boypUrsrCwkCRlZWXp0qVL2r59u4KCgtTT06Nr165JkmJjY5WXl6f6+nqtW7fOeN0LFy7Ix8dHc+fOHXXvAIDxiXAJAMAIuru75ePjY1I7cOCAJGn+/PnKzs421mtra9Xa2qorV67Iw8NDkhQWFqbo6GhVVlZq7969am1t1Y0bN1RQUKCVK1dKkoKDgxUZGampU6eOqre+vj6VlJQoKSlJKSkpkqTw8HB9/PhRpaWliouLk6WlpSSpp6dH1dXVxr4GBweVnJysFy9eyMvLS8+fP9f58+e1f/9+bd261bjHUI/29vZavny56urqjOHSYDCooaFBaWlpo+obADC+ES4BABiBnZ2dqqqqTGqTJ0+WJC1evNikfufOHfn4+GjmzJkm087AwEC1tLRIkh4/fixJJrfA2traKiwsTM3NzaPq7cGDB+rv71d0dLTJfiEhITp27Jjevn0rNzc3SZKbm5sxWEqSl5eXJKmjo0NeXl5qamqSJJOp5I82bNighIQEvX79Wu7u7rp69aoGBga0atWqUfUNABjfCJcAAIzA0tJSfn5+JrW2tjZJ0vTp003qXV1devjw4bBJpyTNmjVLkvThwwfZ2toOO/znx2v9jq6uLklSTEzMiK+3t7cbw+WPJ9xOmjRJkvT582dJ/53Q2tjY/HJ6GhwcLHd3d9XV1Sk1NVV1dXVasmSJHBwcRt07AGD8IlwCADBKQ88qDpk2bZp8fX2Vk5MzbO3QtNPJyUkGg2HY6bKdnZ0m662srPT161eTWk9Pz7D9JKmsrGzEcDp79uzf/iwODg7q7+9XX1/fTwOmhYWF1q9fr3Pnzmn16tW6f//+sMODAAAgXAIAYKbQ0FA1NjbK1dX1p5PIoSnozZs3jc8zGgwG3b592yTUubi4yGAwqKOjQy4uLpKkxsZGk2sFBATI2tpa7969G3aL7miFhIRIki5evGhyENCP1q5dq6KiImVmZsrFxUXh4eFm7QsAGH8IlwAAmGnNmjWqqanRli1btG3bNrm7u6u7u1vNzc1ydnZWQkKC5syZo6ioKOXk5Kivr0/Ozs46fvz4sNtkIyIiZG1trczMTCUmJqqtrU01NTUma+zt7ZWSkqKDBw/qzZs3CgwM1Pfv3/Xy5Us1NTWppKTkt3v39PTUxo0blZubq87OTgUGBqq3t1f19fUqKCgwrnNxcVFERIRu3bqlXbt2GQ8MAgBgCOESAAAzWVlZ6dSpUyosLFRxcbE6Ozvl6OioefPmmRzgk5ubq5ycHB06dEg2NjaKj4+Xn5+f6uvrjWscHR1VVFSk/Px8JScny8fHR4cPHzZOO4fs3LlTM2bM0MmTJ1VVVSUrKyt5eHgMW/c7srOz5erqqtraWpWXl8vR0XHEyeTSpUt169atXx7+AwD4/2UxOPSlXQAA4F839B2SN2/eHOtW/lFqaqrev3+vs2fPjnUrAIA/EJNLAADwS8+ePVNLS4uuX7+uI0eOjHU7AIA/FOESAAD8UlJSkrq6uhQfH6/o6OixbgcA8IfitlgAAAAAgNkmjHUDAAAAAIC/H+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2QiXAAAAAACzES4BAAAAAGYjXAIAAAAAzPYfEC0zLr/JWK8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wU9fnA8c/M1tvrhTu6gBSl2guiKIoNe8cSUdTYjSYx1iQajSaGaDRGE/VnSYyx994VK1aKINLh4I7rbeuU3x+zMzt7u3fcwSEHPu+88vJ2dmb2u7tzxz77PN/nq5imaSKEEEIIIYQQQmwCdUsPQAghhBBCCCHE1k+CSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGE2MqYpsmUKVMYNWoUK1euzLj/s88+Y9SoUc7/d9ttN0488UTeeuutrOebP38+u+++O62trVnvv/DCCxk1ahT/+c9/0rafd9553H333V0ac2VlJb/+9a/Zf//9GTduHJMnT+aCCy5gzpw5XTq+p82ePZuHHnpoizz2prjqqqsYNWoUv/3tbzPuO+6447jqqqu2wKg6dtdddzFq1ChmzpyZcd+ll17KGWecsQVG1X3279TixYudbdl+JzaHxYsXM2rUKD777LPN/lhCCLGpJLgUQoitzNdff01lZSUAL7/8cof7/eUvf+Hxxx9n1qxZFBUVcfHFF2cN5u644w5OOeUU8vLyMu6bPXs23377bdbzn3feeTz00EM0Nzd3Ot6mpiZOPvlklixZwhVXXMF9993HpZdeiqqqfP31150eu7l89NFHPPLII1vksXvCM888Q3V19ZYeRpfNnj2buXPnbulh9KjHH3+cQw89dEsPQwghehUJLoUQYivz8ssvEwqFmDBhQqfB5ahRo9hpp52YPHkyd955J4WFhbzwwgtp+6xYsYIPP/yQ448/PuP4RCLBzTffzC9+8Yus599tt90oKiri+eef73S8r7/+OrW1tdx///0cddRR7LXXXhx//PHcfffdnHvuuRt+wluQruvE4/EtPYw0w4cPp6CggPvvv39LD6VLioqKGDVqFPfee+9mOX80Gt0s592QnXbaibKysi3y2EII0VtJcCmEEFsRXdd57bXXmDJlCscffzxLlixh0aJFGzwuJyeHwYMHs27durTtzz77LKNGjWLIkCEZxzzyyCMEg8Gsgaft4IMP5rnnnuv0sZubm/H5fBQWFmbcpyiK8/NVV13Fcccdx1tvvcWhhx7KuHHjmD59OkuWLEk7xjAM/vWvfzF16lTGjh3LIYccwrPPPptx7jfffJMTTjiB8ePHs+eee3LuuedSWVnJXXfdxf/93/9RWVnplA7b5aTuMUybNo3x48czd+5c7rrrLvbcc8+Mx2hfGjllyhT+9Kc/8a9//YtJkyax6667cuutt2KaJu+//z7Tpk1j55135sILL6SpqanT160jgUCAGTNm8MQTT1BXV9fpvp988gknnngi48aNY+LEifz+97+nra3Nud8u9/zss8+49NJL2XnnnTnwwAN59NFHM871xRdfcPrppzNhwgT23HNPrrvuug5Lqds7//zzeeedd/j+++873W/hwoWceeaZTJgwgd13351f/vKX1NbWOvevWbOGUaNG8cILL3DllVey2267cf755zvbX375Za6++mp22WUX9ttvP+eLj/vuu49Jkyax1157cdttt2EYhnPOpUuXcvnllzN58mQmTJjAtGnTeOihh9L2ycb93rcvRXf/f82aNc4xTz75JNOmTWPs2LEccMAB3HfffRnnffTRR5k8eTI77bQT559/PjU1NRt+gYUQopfwbukBCCGE6LpPP/2U2tpaDj/8cHbddVf+8Ic/8PLLL7PDDjt0epxhGFRVVTFmzJiM8+28884Z+9fU1PCPf/yDe++9F1Xt+HvInXfemQceeICmpqaswSPAmDFjiMfjXHnllZx99tmMHj26w3OuXbuWW265hcsuu4xgMMhdd93FzJkzeeONNwgEAgD84Q9/4LnnnuPCCy9kzJgxfPTRR1xzzTUUFRVxwAEHAPDcc8/xm9/8hmnTpnHhhRdimiaffvop9fX1nHjiiaxYsYLPPvuMv//97wCUlJQ4Y6isrOS2227jwgsvpKysjIEDB3byymZ6+eWXGT9+PH/84x9ZsGABd9xxB4Zh8MUXX3DZZZcRjUb5wx/+wKxZs7jxxhu7dW7bqaeeyv3338+DDz7Ir371q6z7LFmyhHPPPZeJEydy1113sW7dOmbNmsXq1at54IEH0va9/vrrOeaYYzj55JN56aWXuPHGGxk3bhzjx48H4Msvv2TGjBkcdNBB3HnnnTQ0NDBr1iyam5u58847NzjeQw89lDvvvJN7772X22+/Pes+9fX1nHHGGWy//fbMmjWLtrY2Zs2axVlnncXTTz+N3+939v3zn//M1KlT+dvf/pZ2Lf3lL3/hyCOP5K677uLpp5/mqquuYuHChaxduzbt/Rg9ejTTpk0DYP369QwdOpQjjzyS3NxcFi5cyF133UUsFuPnP//5Bp8bWNf4448/nrbtT3/6E8uXL3d+L+6//35uv/12zjnnHPbYYw8WLFjA3/72N3Jycjj99NMBeOutt7jxxhs55ZRTOOigg5gzZw7XXHNNl8YghBC9gQSXQgixFXnppZcoKChg3333xe/3M3HiRF5++WWuuOKKtCwgWAGlpmk0Nzdz3333EYlE+NnPfubcb5om3333HUcddVTG49x2221MmjSJ3XffvdPx7LDDDpimyfz589lnn32y7rP33nszY8YMHn74YV5++WVyc3PZZ599mD59OhMnTkzbt6GhgX/84x/ssssugPWhferUqTzzzDNMnz6dlStX8thjj3HLLbdw7LHHAjBx4kRqamr4+9//zgEHHIBhGMyaNYupU6fy17/+1Tn3gQce6PxcXl6O3+9np512yhhvY2MjDz30EDvuuGOnz70jgUCAv/3tb3g8Hvbbbz/efvtt/vOf//D6668zaNAgABYtWsRzzz230cFlXl4eZ5xxBg8++CDnnntu1sD+7rvvpn///txzzz14PB4ACgsLufzyy/n666/TvlSwg3CAPfbYg3fffZc33njDCS5nzZrFzjvvzB133OEcU1FRwYwZM1i8eDEjR47sdLyqqnLeeedx7bXXcumllzJ06NCMff7v//4PgAceeMCZ/zt06FBOPPFE3njjDY444ghn3wkTJvC73/3OuW1nB/faay+uuOIKZ5/XX3+dd955h1dffTXt/XjzzTed4HLvvfdm7733BqzfiV133ZVoNMoTTzzR5eAyLy8v7Vp69NFH+fbbb3nggQfIz8+ntbWVu+++mwsuuICLL74YgH322YdIJMI999zD9OnT8Xg83Hvvvey7777ccMMNAOy7777U19fz5JNPdmkcQgixpUlZrBBCbCXi8ThvvfUWBx10kJPFmTZtGpWVlXzzzTcZ+x999NGMGTOGvffem4ceeohbb72VYcOGOfc3NTURj8cpLi5OO+7rr7/m9ddf58orr9zgmOxjN1S6d/XVVzvn3GOPPfjwww85++yzeeyxx9L2Ky0tdQJLgAEDBjBmzBinGcwnn3yCqqpMnToVTdOc/++9994sWrQIXddZvnw569ev57jjjtvg+LOpqKjY6MASrODMDuYAtttuOwYMGOAElva2+vr6TZrPaX9R8O9//zvr/XPnzuWggw5KG8shhxyC1+vlyy+/TNvX/cWAz+djyJAhVFVVARCJRPjmm2847LDD0l7zXXfdFZ/Px4IFC7o03qOOOop+/frxr3/9q8Px7rPPPmmNpcaPH8+AAQMyxrv//vtnPcdee+3l/JyXl0dxcTG77757xvvhboYUi8W48847mTp1KuPGjWPMmDHcfvvtrFmzBk3TuvTc3L744gtuueUWrrjiCido/frrrwmHwxx66KFpr+Fee+1FbW0tVVVV6LrOwoUL074EAZg6dWq3xyCEEFuKZC6FEGIr8cEHH9Dc3MzkyZOdDq177rknfr+fl19+OaO89fbbb2fQoEGsW7eOO+64g6uvvppx48ZRUVEBWB+qgbRyQ4A//vGPnHzyyeTn56d1go1Go7S0tJCfn+9ss4/tSpC03XbbMXPmTGbOnEl9fT0zZ87k9ttv55RTTnGyrqWlpRnHlZaWOsFrQ0MDuq6z6667Zn2MmpoaGhoaAOjTp88Gx5TNpjZpKSgoSLvt8/nSXjN7m2maJBKJjNe/qwoLC5k+fTr//ve/OeusszLur6mpyXguHo+HoqKijPme2cZsv6fNzc3ous4NN9zgZNTc2s/j7YjX6+Wcc87h5ptvdrJ37cc7YsSIjO1lZWUZ4812nWR7Hn6/P+tzs699sLL0Tz31FBdddBFjxowhPz+ft99+m3vuuYdYLIbX2/WPStXV1Vx22WUceOCBnHPOOc52+5q0s6XtrVu3Dr/fj6ZpGc+to+cqhBC9kQSXQgixlXjppZcAuOyyyzLue/XVV7n66qvTMjTDhw9n5MiRjBs3jh122IHDDz+cf/zjH06AYGcd2y8lsnz5cubOncvDDz+ctv22227jr3/9K999952zraWlBaDD+ZYdKSkp4bjjjuOmm26irq7OCYKyNaipq6tj+PDhzuN4vV4ee+yxjDJg+7x2w5qebIQSCARIJBJp2za2IU9POvvss/nPf/7Df//734z7+vTpk/F66rpOY2Njt96v/Px8FEXh4osvZvLkyRn3l5eXd/lcJ5xwAvfcc0/WRjbZxgtQW1ubMVc423u/sV577TVOP/30tM7F77//frfPE4/HueSSSygqKuKPf/xj2n326/3Pf/4za7A4dOhQcnJy8Hq9Ga/Bhpo2CSFEbyLBpRBCbAXa2tp47733OOKIIzjppJPS7lu4cCG33HILn332WcYcRtvgwYM58cQTefrpp7n00kspLS3F7/fTv3//tG6WAPfeey+6rqdt+9nPfsYZZ5zBwQcfnLbdPjZbt1lbfX19WsMc28qVK/H7/WlZvbq6Or766iunNHbt2rV89913TonrXnvtha7rtLS0dDjHc+jQoVRUVPDcc88xZcqUrPu0z15tSEVFBW1tbVRXVzuZ348++qjLx28upaWlnHjiiTz00EMUFRWl3TdhwgTeeustrrjiCudLhzfeeMMpae2qUCjETjvtxPLly7NmHLvD7/czc+ZMZs2axZgxY/D5fGnjfeyxx2htbXVKY+fOnUtlZWW3xttdsVgsLXus63qnS/x05Pe//z3Lli3jySefJDc3N+2+nXfemWAwyPr16zss6QVrDvPbb7/N9OnTnW1vvvlmt8cihBBbigSXQgixFXj77bedhjwTJkxIu2+XXXbhnnvu4aWXXuowuAQ455xzePLJJ/n3v//trF25yy67ZMyZ22233bIeP2TIEPbYY4+0bfPnzyc/Pz9rOaPt2Wef5cUXX+SYY45h1KhRaJrGJ598wn//+1+mT5/udIEFK5t65ZVXOt1i77zzTifLCTBs2DBOOeUUrrjiCmbOnMm4ceOIxWL88MMPrFixgptvvhlVVfn1r3/Nr371K375y19yxBFHoCgKn376KdOmTWPcuHEMGzaM2tpannnmGUaMGEFxcXGnXWH33XdfgsEg11xzDWeddRZr1qzhf//7X4f7b4wpU6awxx57cOutt3bruHPOOYf//e9/1NbWMm7cOGf7BRdcwLHHHstFF13E9OnTqaqq4i9/+QuTJk3K2iG4M7/61a+YMWMGqqpyyCGHkJuby7p163jvvfe4/PLLszbo6cjJJ5/Mvffey9dff512PZ111lk89thjnHPOOZxzzjmEw2FmzZrFyJEjM77U6EkTJ07k0UcfZfDgwRQVFfHoo492ey7siy++yNNPP835559PU1NT2hzo0aNHU1BQwMUXX8zNN99MZWUlu+++O4ZhOF2L7777bsBasuXiiy/md7/7HVOnTmXOnDl8+OGHPfl0hRBis5LgUgghtgIvv/wyQ4YMyQgswcrCHXbYYbz88sv8/ve/7/AcAwYM4Mgjj+Sxxx7jvPPOIxQKMXXqVK6++mqi0SjBYLDb4/rwww+ZOnVqp8uVTJ48mTVr1vDEE0+wbt06PB4PgwcP5rrrrsvIwvbv35/zzz+fWbNmUVlZydixY5k1a1ZaAPq73/2OIUOG8OSTT3LnnXeSl5fH8OHDOeGEE5x9jjzySAKBAPfeey+XXnopoVCICRMmOBnUww47jM8++4zbbruN+vp6jj322E6DupKSEu68807+/Oc/O3PzZs2axeGHH97t16wjkUgka4Z3Q/r27cuxxx7LE088kbZ9xIgR3Hffffz1r3/l4osvJi8vj2nTpvHrX/+624+x22678eijj3LnnXdy5ZVXYhgG/fv3Z9999+32HNWcnBxmzJiRsSRJSUkJjzzyCLfeeiu//OUv8fl8TJ48mauvvnqj56V2xfXXX8/vfvc7brzxRoLBIMcccwxTp07l+uuv7/I5VqxYAVhZ/3vvvTftvrfffpuBAwdy7rnnUl5ezsMPP8yDDz5IIBBgyJAhadeQ/bj/+te/eO6559hjjz24+eabmTlzZo88VyGE2NwU0zTNLT0IIYQQW0Y8Hmfy5Mn89re/5bDDDuvWsS0tLUycOJEHH3yww2xnd1x11VUsXryYZ555ZpPPtbVZvXo1Bx98MG+88UZaV1khhBBiayJLkQghxE+YPQfukUce6faxjz32GDvttFOPBJY/dV9//TUHHXSQBJZCCCG2alIWK4QQP3Gnn3561mVGNiQvL49rr712M47sp+Ooo47iqKOO2tLDEEIIITaJlMUKIYQQQgghhNhkUhYrhBBCCCGEEGKTSXAphBBCCCGEEGKTSXAphBBCCCGEEGKTSUOfLjIME103tvQwMni9KprW+8Yltg1yfYnNSa4vsbnJNSY2J7m+xObUG68vj0dFVZVO95Hgsot03aCxMbylh5FGVRVKS/Nobo5gGNKXSfQsub7E5iTXl9jc5BoTm5NcX2Jz6q3XV1FRCFX1dLqPlMUKIYQQQgghhNhkElwKIYQQQgghhNhkElwKIYQQQgghhNhkMudSCCGEEEL8ZJimiWHomJswlU1VFeLxOJqm9ao5cWLbsCWuL0UBVfWgKJ037NkQCS6FEEIIIcQ2zzRNWlubaGtrBjb9A3ttrYph9K5unmLbsWWuL4Xc3ALy8go3OsiU4FIIIYQQQmzz7MCyoKAEvz8AbGKGxqugaZK1FJvHj399mcTjMZqb6wHIzy/aqLNIcCmEEEIIIbZppmk6gWUolNcj5/R6VUAyl2Lz2BLXl9frA6C5uX6js5fS0EcIIYQQQmzTDEMHzGTGUgjREet3xEz+znSfBJdCCCGEEGKblmres2mlsEJs+6zfkY1teCXBpRBCCCGEEEKITSbBpRBCCCGEEEKITSbBpRBCCCGEED8BX331BZMm7UY4HO50vxNOOJKnn378RxpV7/XAA/9k5swztvQwtioSXAohhBBCCNEL3Xzz75k0aTduv/3PGffdcMN1TJq0G3//+x0bff5XXnmRadMOzNh+332PMG3a0c7tSZN246OPPtzox9kaZHuO06efwV//etdmf+yLLz5vk97H3kSCSyGEEEIIIXqp8vIK3nzzdeLxuLOtra2VDz98j/Lyis3ymMXFxQSDwc1y7k2VSCR+tMcKhUIUFhb9aI+3LZB1LoUQQgghhOilRo8ew/Lly5g9+wOmTDkIgLfeeoORI3dAVdPzRJMm7caf/nQ7++yzLwDhcJiDD96PO++8l1122S1t36+++oI//vEG5ziAs846l5kzf84JJxzJ9Omnc/zxJ3PCCUcC8JvfXA5A3779eOqpF1m9ehV///vtfPfdAqLRKMOGbc+FF17GhAk7pY3nV7+6mvfff4dvv/2G8vJyLrvsl+y99yRnn2XLlvD3v/+NuXO/Jjc3l733nsTFF19OXp61HunFF5/H8OEjAZM33niNMWPGctttf8v6Wr3wwrM89ti/qa6uon//AUyffgbTph0FWEHpnXf+lffff4fW1hZKS/tw8snTOeGEUzp8jg888E8+/ng2Dzzwb8DKJEciYbbffgRPP/04um5wxhlnccIJJ/O3v/2FN998ncLCQn7xi18774Gmafz5zzfz1VdfUF9fT79+/Tj55NM46qhjnXN+881XfPPNV/zvf/8B4MknX2DQoIEbfG16IwkuhRBCCCHET9Kzj1axaF7bRh2rKN1frmGHcbkce1rfbj/W4YcfySuvvOAEl6+88iJHHnkMr732crfPZRs3bgKXXvpLHnrofv79b2t+ZU5OKGO/++57hCOPnMr119/Ibrvtgap6ACtwnThxX37+84vwen08//wzXHnlZTz++PMUFRU5x99//71ceOGlXH75r3nhhee49toreeyxZ6io6EtLSwuXXnoBxxxzPL/4xS8JhyPcdddfufnm33PLLX9xzvHyyy9wwgknc++9/9fh83njjVd58MH7uPzyKxk+fAQLF37Hn/50EwUFBey77/48+eT/+OijD/jDH/5ERUUFa9dW0tzc1OlzzObzzz+jrKycf/zjfubM+Zzbb/8zX3zxOfvsM4kHHvg3Tz/9OH/4w2955pmXCYVC6LpORUVfbrrpTxQUFPL1118ya9at9O3bjz322IvLLvsVq1evYvjwkZx11jkAFBUVd/m16W0kuBRCCCGEEKIXO/TQaTzwwD+pra2hra2NZcuWMGXKQZsUXPp8PvLy8lAUKC0t63C/4uJiAPLy8tP2GzVqB0aN2sG5fckll/P+++/w2Wcfc8ghhzvbDzroEA4/3MoMXnzxL/j880947rmn+fnPL+Lppx9nxx1Hc8455zv7X3nltZx22gk0NNRTXFwCwHbbDeHnP7+o0+fzwAP/5JJLrmC//fYHoH//ASxevIjnn3+Gfffdn/Xrqxg0aDDjx09AURT69u23weeYTVFREZdeegWqqjJ48BAeffRhAgE/xx9/MgAzZpzLU089zg8/LGbChJ0IBALMnPlz5/j+/QfwzTdf8c47b7LHHnuRl5eH1+slGAymPfaTT3btteltJLgUQgghhBA/SRuTRbR5vSqaZvTgaDpWWlrGbrvtyauvvkxLSzOTJ08hFMr9UR67I+FwmAce+CeffDKb+vo6dF0nFotRXV2Vtt/o0WPTbo8ZM44VK5YDsGTJD8yZ8xlTp+6bcf7KyjVOALXDDjt2OpZIJEJl5Rpuvvl33HLLDc52TdOcIPLQQ6fxi19cxKmnHs9ee+3DpEn7seuuu3f7eQ8btn1aOXJRUTFDhgxz3S7C4/HQ2FjvbHv66Sd4+eUXqK5eRzweJ5FIsPPOu3b6OEuWLO7Sa9PbSHAphBBCCCFELzdt2pHce+/fCYfD/O53N2XdR1EUTFetrqZpm208d999B19+OYcLL7yMAQMGEggE+NWvLstouKMo2ccJVlC47777Z81K9unTx/k5GMzpdCyRiLW0yjXX/I5Ro9IDUa/XCnd22GE0Tz75Ap9++hFz5nzGVVf9koMOOpjf/Oa6DT/ZLOdzP5f22wAMw/ri4a23Xucf//gbl1xyBaNHjyEUyuXBB/9FdXV1p48TDoe79Nr0NhJcCiGEEEII0cvts89+3HbbLeTkhDrMehUVFVNfX+fcXrJkcafn9Hp96PqGs69erxfD0NO2zZv3LdOmHeWUoTY3N1NTkxkwLVgwn6lTD3Vuf/fdfCZOtLJxI0eO4sMP36dfv/54PB3Pc9yQkpJSysr6sHZtJQceeHCH++Xn5zN16qFMnXooe+65NzfeeD2//vU1qKqa9Tn2hHnzvmXChJ055pjjnW2rV6/G7/c7t30+X8Zjjxo1ivff3/TX5scmS5EIIYQQQgjRy3m9Xh5//Fkefvi/TuavvZ133pWnn36CJUt+YN68b7nvvn90es5+/frR1tbKV199QWNjI9FoNOt+ffv254svPqeurpbm5mYABg4czHvvvcMPPyxm8eJF/P7312ZthPP222/w6qsvsWrVSv7xj7+xatVKjj7aCrSOO+5EGhrquPHG61i06DsqK9fwySez+dOfbu7OSwPAjBkzeeSR/+Pppx9n1aqVLFnyA88//wzPPvsUAI8//ihvv/0Gq1atYOXKFXzwwXsMGjTYKXHN9hx7wsCBg/nuu/nMmfMpq1at5O67/+aUBdv69u3PggXzqapaR2NjI4ZhcPzxJ/fYa/NjkuBSCNGjmmNNfLL2IyJaZEsPRQghhNim5ObmdTrX8uKLf0FRUTHnn38Wt932R84++7xOzzdu3ASOPvo4rr/+NxxxxEE8+ujDHZ73s88+4bjjpnH22acBVgOfUCjE+eefxTXX/JoDDjiQwYO3yzh25szzeO21V5gxYzrvv/8uf/jDn+jb15rr2qdPOf/4xwPE43F+8YsL+dnPTubuu+9M6zbbVccccwK//OVVvPDCc5x55ilcdtn5vPPOm/TvPwCwSmv//e+HmDnzDH7+8xm0tLRw001/7vQ59oSjjz6Offfdn+uvv4rzzz+bRCLhLI9imz79dABOO+0EjjjiIKqrqygv77nX5sekmGZ3myj/NCUSOo2N4S09jDSqqlBamkddXSuGIW+j6Fkbe319s/4r5tZ8yz4DJrFdwVBqIzVUhPp2+C1rb7L8hzCLF7TR3KihehRUFbbbPodd9irc0kPb5sjfL7G5yTUm3DRNo7a2krKyAVnnx22MH7Ohz9aq/bqbouu21PXV2e9KUVEIn6/zEl2ZcymE6FGaYTUPMEyTRfUL+ar6Cw4cPJUB+QO38Mg69/nsRl55qiZj+7dftDBoaA59KvxZjhJCCCGEEDYJLoUQPUozrQnphmkQTZbGRvXeXSLb1qrx5kvrafSv4KQjdmbQoDwME76f18rH7zYy+636TWpXL4QQQgjxUyDBpRCiR+lO5tLASFbd60bvLht65+U6qo3lBMd9T23/NiYOPRaAvgMCfP15M3O/bGHyISWUlEn2UgghhOiq2bO/2NJDED8yaegjhOhRmju4xAoqdbPnW3v3lGhU55s5LaiBBCPH5tIYa3SaEQUCKntMKsI04LtvWrfwSIUQQgghejcJLoUQPUo3k8ElBpgmmmby7uvrmTO7ccsOrAPfz29D10y2H5mL32/9Sfxm/VesaFqOZmgMGhIEoHZ9orPTCCGEEEL85ElZrBCiR9mZS0yTltYEn7zbgH9dMw3f1DJh9wL8gd71ndaCr62M5NCRQeqT235oWMwPDYvZpWI3BpTvAEBdTXwLjVAIIYQQYuvQuz7lCSG2epqhYxgm875u4tlH19HYoIHHIBE3Wfxd25YeXppIWGfJojZyQip9B/sA6BMqZ2Cys21V21oKi714PAp1NZK5FEIIIYTojASXQogeYxgmSxY38/bLdXz4dj3xhM6wkTlMPqQIgAVft2zZAbazaF4bhg47js/DVKx5oaNLx7D/oAPxql5qwjWgmJT08RFu1YmEe+/cUSGEEEKILU2CSyFEj3ny4So++6ieaMRgyPAg004sY8xO+Qzc3k8gqPLDwjDRaO8J0Oxgd8zOeeim1XzIo3hQFZXyUDkJI0F9tJ7SPlZWU7KXQgghhBAdk+BSCNEjWls0Fn7bij/HZNKBRRx4ZAlFpda0bkU12WFcLlrC5KG7KllfFdusY2mMNrCqeWWn+4TbdJYtDhPK8zBkeAjDsIJer2qNuTxUAUB1WxWl5dYSJDLvUgghxLbg5pt/z3XXXblJ53j66cc54YQje2hE265XXnmRadMO3NLD+NFIQx8hRI+oXmsFjKV9PRSX+jFME9O1FMlBR5TRUJdg1bIoTz9SxQVXbrfZxvLC0ucAOGHkyYR8oaz7LJzbimHA6PF5eDwKWrLLrap4AKgI9QVgfbia0j6DAKiTjrFCCCF+RDff/HteffUlALxeLxUVfTnssCM4/fQZeL0b/zH+sst+hZlci1r0nBNOOJLp00/n+ONPdrYdeOBU9t57n83+2Dff/HsikTA33fTnzf5YnZHMpRCiR1SvtbJ6eUXWbQMDI1lqqhs6+YVeZlw8kJI+PqrXxmlu1Db7mOxlUbJZkFy3cszOec4YwSqLBSjL6YOqqFZwaWcu10vmUgghxI9r4sR9ef751/jf/57j7LPP45FHHuSxx/69UefSNA3TNMnLyyM/P7+HR9rzEomt/0vdQCBIcXHJlh7Gj0aCSyFEj6iqjGFikFdo/VkxTVdwaVqBm6oqbD/KyiQuWxzeLOOI66kA0H78bGqqYigqbLd9TnJfO7i0xu9RPeR4c4jpMUrKrG+HZc6lEEKIH5vf76O0tIy+fftyyCGHc8ghhzF79gcAxGIx7rrrdo4++lCmTt2XCy44m/nz5znH2iWZH3zwHqeeejxTpkyksbExoyw2Fovy17/+iSOOOIgpUyZyySU/Z+nSJWnjeOml5zjuuGkcdNAkfvvbq2ltbU273zAMHnjgnxxzzGEccMDezJx5Bl9//WXaPh9++B4nn3wMU6bswxVXXMzzzz/DpEm7Ofc/8MA/mTnzDJ577mlOOOFIDj98CgAffzybCy44m0MP3Z9p0w7k6qt/RXV1lXPcV199waRJu/HZZ59w5pmnMGXKPvzyl5fS3NzM22+/yUknHc2hh+7PX/5yK7reee+HDz54jxkzTmXKlImcfPIxPProwxhG6vPEAw/8k+OOm8YBB+zNsccezj//eTcAF198HlVV67j99tuYNGk353m1L4t1P8djjz2cqVP34667/oqu69x33z1Mm3YgxxxzGM8990zauP7+9zs45ZRjmTJlH0466WgefvgBZ1wPPPBPXn31Jd577x3nsb/66gsAqquruO6633DIIZOZNu1ArrvuSmprazp9DTaFlMUKIXpE9doYBjoFRdafFdM0MZIlN3bgBrD9qBBzZjexbHGYnfYoYN6XLcx+u55jT+tL3wGBTR5HSzzVkVY3s/8DYpombS06uXkeVFUBQDPT51wCBDxB2hJteHM0AkGV+to4pmmiKMomj1MIIcSW91Hlh6xuWbVRx6qqgmF0r7R0UP5g9hmw70Y9ni0QCDgZvTvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpUw5AOBzmf//7D9deewO5ubnk5uZmnPMf/7iT2bM/4Le/vYmysjIeeugBfvnLS/jf/54lGAwyb963/PnPf+SCCy5ln332ZfbsD3j44fvJzy9wzvH44//lyScf48orr2P77Yfz7LNP8etfX8Zjjz1Dnz7lrFu3luuvv4pTTjmdww8/ggUL5nPPPXdljGXVqhV8/PGH3HLLLFTV+sI3Go1yyilnsP32w2lra+Pee+/i97+/hnvu+b+0Yx966D5+/etr8Hg8XHvtlVx//W8IhULceussqqurufbaKxk/fgIHH3xY1tf222+/4Y9//D2/+MWvGTduAqtWreTPf74Zn8/PSSdN59133+KJJ/7L73//R4YO3Z7a2vWsXm1dP3/8423MmHEqxx57Aocf3vlc1FWrVvL111/w17/+nZUrl/O7313DsmVLGT16LPfe+yDvvfcOt912K7vuugf9+vUHIC8vj+uuu4HS0jIWL17En/50M0VFxRx99HFMn34GK1euIBqN8pvfXAtAQUEhmqbxy19ewvjxO3HPPQ8ACg88cC+/+c0V3Hffw87r25MkcymE2GSaZlJTHScn3yQYtMpKDQxMrH90dVcGccjwHBTVylyapsmcjxqpXhvnv/et5f3X63jx8Wpi0Y4zjhvSEm8GrADy2y+bsjbhiYQNDANy8zzONrss1p5zCeD3WF1iNTNBUYmXeMwkEt74sQkhhBCbYsGC+bz++qvsuuvuVFVV8corL3LTTX9i/PidGDBgIDNmnMPQocN4441XnWMSiQS/+tXVjBkzliFDhuL3+9POGQ6Hef75Z7jool+wxx57MWzYcK655nckEnHnPE899TgTJ05i+vTTGTx4O0499QwmTNg57Tz/+99/OOOMs5gy5SC2224Il132S/r27c8zzzwJwHPPPc2QIcM4//yLGTx4CIcddgQHHnhwxnPUdZ3rrruBESNGsv32wwGYMuUgJk8+gIEDBzFq1A5ceeW1zJs3l/Xrq9OOPe+8ixg7djw77jiGQw+dxtdff8lVV13PsGHD2Xvvfdhtt92djF42//d//+JnPzubQw+dxoABA9l7730488yzeeEFK4tYXV1FSUkpu+++J3379mXs2PEcdtgRgBXMqapKKBSitLSM0tKyTt/Lq676LUOHDmP//Q9k9OixNDQ0cO65FzBo0GBOO+1nBINB5s79xtl/xoxzGDt2PP369Wfy5Ckcf/xJvPPOWwCEQiECgYCT5S4tLcPn8/H222+gKApXXnktw4YNZ9iw7bn22htYsmQxixZ91+n4NpZkLoUQm6xufRxDh7J+qcDMMNPnXNqCOR4GDA6yZkWUylUxKldajYCaGzXefbUegKJSH/setHHzE1oSVuZy5dIICz6o5hOvwVGnVDB259TckrZWazy5+ak/gXaW06O6g0srkxrVYhQWW3NFmxo0QrmpfYQQQmy9NiWL6PWqaNrm/8Lxww/fZ+rUfdF1HV3XOeigQzj77PP4+usv0XWdk08+Jm3/eDzO8OEjnNuBQIBhw7bv8PyVlWvQNI3x4yc424LBICNGjGLlyuWAlU084ICD0o4bM2Ycy5YtBaCtrZW6ulrGjUudQ1EUxo0bz8qVK5LnWMmOO45JO0f72wD9+vWnoKAwbdvq1au4//57+O67BTQ2NkLyy+vq6irKyyuc/bbfPvW8S0pKKCkppbCwyNlWXFxCQ0N9h6/F0qWLmTfvWx588D5nm64bmMnPM/vvfxCPP/5fTjrpaPbaayITJ05i4sR9u50B7N9/ADk5OWlj9ftT1VuqqlJUVJQ21rfffoMnn/wflZVriEYjaJpGRUW/Th9nyZIfWLVqJVOnpl/nuq5TWbmG0aPHdmvcXSHBpRBikxiGycK51ryL0n4e2pLbrbLY9DmXtpGjc1mzIsrrz9Wg6yYjRocoKbO+Sf3sw0Y++6CRvfcvwuvtfnFFa7wFwzBZsihMuWIQj5s8858qho0MOUGhHVzm5buD4WRZrOIui7X+0CeMOIXFVhazqSFBv4GbXr4rhBBCdMVuu+3J5Zf/Gq/XR1lZmdMlNhIJ4/V6+b//ezRjuoa79DUYDHbpcdqfw5rZojg/dzYlxG48m3kOk9Qm98+pbe0FgzkZ237zm8vp338AV1/9W0pLywiH2zj33DMzGv64O+gqipLRUVdRlE675IbDEc499wL23Xdy1vv79u3LY489w+eff8qcOZ9x661/YOTIHZg1665uTZnJNq7MbThl1/Pnz+XGG6/nnHMuYPfd9yQ3N5eXXnqet99+o9PHiUTCjB49hmuvvSHjvpKSzdNkSIJLIcQmeeQflaxYEgFg8HA/C5PbDTP1TZ/RLrgcv3s+77xax5KVNXiVAMN36MOe+xUBVvC2aF4b875sYec907+57IrWeAtrV0WJhA22295PRU4e333TyvqqOEOSzXvaWqwusu6yWM2wtqVnLq2AN6bHKCy2jm2s3/xdboUQQghbTk6QgQMHZWwfMWIkmqbR1NTI2LHjN/r8AwYMxOv18u2333DggVMBq8HPkiXfc9BBVtnqdtsNYcGCeWnHLVgw3/k5Ly+P0tIy5s79xslemqbJ/Pnz2G+//QEYPHgIn3/+Sdo5ulKa2dTUyKpVK7nmmt85z/PTTz/euCe7ASNHjmL16pVZX29bMBhkv/32Z7/99ufQQ6fx85/PoLq6mr59++L1+tD1ns9mz5s3l/79B3DGGTOcbVVVa9P2yfbYI0aM4r333qakpIRQKHOu7eYgcy6FEBstkTBYsSRCTkjlZxcOYNCw1DwOM23OZXpwWVTsY+hIH0vz3mZNzhwGbx/glWUvMa/mWyYeUAzAmy/WUV/b/e6sjZFmFn9ndaLdZZ88yvtaY6qpijn7tLUky2Ldcy5N3VmGxGaXxcb1OEV25rJROsYKIYTY8gYPHsKBB07lxhuv54MP3mPt2koWLJjPgw/el9GltTOhUIijjz6Ou+++g88//5Rly5Zy88034PX6mDr1UACOP/4kPv54No8//iirVq3kf//7D99++1XaeU455XT+/e8Heffdt1i1agV/+9ssqqrWctxxJwJw9NHHsXz5Mv75z7tZtWolr7/+ygYzbwD5+QUUFhby/PPPUFm5hjlzPuXee//ejVeq6848cyavvPIiDz10P8uXL2P58mW88carPPzwAwC8+upLvPzyCyxbtpTKyjW8/fbr5OXlO1nAfv368c03X1FTsz5ZvtszBg0axLp1a3n77TeprFzDf//7bz77LD1Q79evn1MG29jYiKZpHHzwYeTm5nH11b/m22+/Ye3aSr78cg5/+csttLS0dPBom0aCSyHERmtpsrJ45f0CDBsZcrJ/0PGcS9sOu/swFQMlJ0pOSYzaSA2rW1YzeFgOe+xbSLhV59F/VRKPdf4NYGuLxh1/WM47r9RhmAbfzltPW6tOeT8//Qb76OMEl6nGPqk5l+lzRN1ZS4CAageXMQqLrUKPJslcCiGE6CWuu+5GDjroEO68cxannno81113JcuWLaWsrE+3znPhhZcyadJ+3HjjdZxzzhnU19cxa9ZdTknt+PE78atfXc1jj/2Hs846lfnz53LqqT9LO8fJJ5/KiSdO5447/sKZZ05n3rxvue22vzlj6d9/ADfeeCvvvPMmM2ZM5/XXX+G002akzTXMRlVVfv/7P7Jw4QLOOOMk7rnnLi666NJuPb+u2nvvfbjllll88slHzJx5BhdccDbPPPOk07E1NzeP5557mvPPP5sZM05l0aKF3HbbHU6TpJkzz6eycg0nn3wMRxxxUGcP1S2TJk3mpJOm89e/3spZZ53G0qWLOe20M9P2OfLIYxk4cCAzZ57BEUccxNy535CTk8Pdd99HWVkp11zzS04//URuu+2PKIqa0dippyhmZ4XHwpFI6DQ2bp51+TaWqiqUluZRV9fa7VbYQmxIV66vFUvCPPT3Ssbtms/xZ/RlRdNyPljzHgB9c/vSEm+hLdGG3+PnlB1OSzu2uqWGmx77D/3LizjvkKN4edkLFAeLOXL7YzAMk0f/uZal34c59rQKJuxekOXRLQvntvL4/60DYOh4eGXVMygq7H9oKVNHTiY/Oph/3LqKoSNyOPOigQC89MR6vvi4iVPP68/I0VaZyH++e5iAJ8CJo05JPb/k8xldOoaRObvw198tp//gAOddMXijX1dhkb9fYnOTa0y4aZpGbW0lZWUDMua2bawfq6HPtuzee//Oxx9/yCOPPL6lh9LrbKnrq7PflaKiED5f500Nt+nM5bx58zj66KOd/48ePZqFCxdu+EAhRJc0JzOXBYXWHx/dTGX1THAyl4aZ+cfRUBLsvk8RQ3fwoxlWqamd+VRVhb0mFwE4zYI60lifKlOdv6AG04TRE/II5XrQDYOSMj+qCjXVqcxla2v6nEu7+VBG5tJVFpuX70H1QFODZC6FEEKIjfH004+zaNF3VFau4aWXnuPppx/n0EOP2NLDEj1om27oM27cOJ5//nkAKisrOeOMM9hxxx238KiE2HY0NyaDyyLrT4nmKn9NK4s1M8tiY3oseYxGol1wCTB0ZA6BoMqSRWHiMQN/IPt3YXawt8e+hURywmzfp5RQyOM8rterUFrup6YqTrhNJ5TrSc25zE/tB3Q45zKmx1BVhcIiHw11CRIJA59vm/5uTgghhOhxq1ev4pFHHqSlpZm+fftx1lnnccopp234QLHV2KaDS7fXXnuNQw45ZEsPQ4htSkuTFZTlO5nL9ODSbuhjZwZVJRWQ2QGlYRrE9GjG8V6vysgxucz7soUfFrYxZqfUOpVuduZy/G4FxAubmV3pwe/xE9fjTnDbp8IKLmuq42w3LCc15zK3fXCZ/ifR77Ga+MQNK+tZWOKloS5BU4NGWfnmmasghBBCbKt+8Ytf84tf/HpLD0NsRr36q/c5c+Zw/vnnM2nSJEaNGsW7776bsc+jjz7KlClTGDduHCeddBJz587Neq7XXnuNww47bHMPWYiflOZk51Q7c6m3a+jjntJtN/VZ21pJU6yRuJ4qUw1r1lIm7swlwI7jrfmQrz5Tw3uv1WWdN9WYzFwWlXhJJI+3y1ntJVDaN/Vpa9HxB1R8fjXtcTPLYq1GBvFklrUw+TylNFYIIYQQIlOvzlyGw2FGjRrFcccdxyWXXJJx/yuvvMItt9zCDTfcwIQJE3j44Yc555xzeO2119IWBq2srKS+vp7x4zd+DSCw5oH1JvZ4etu4xLahK9dXczJzWVTsRVUVdHRngWRFweoGm7xtKga6qfHu6rcozSmlX+4A576YHrH2x0hbYHmHsXmMnpDHd9+28t5r9QwbGWLI8FDaGJrqE/h8CvkFXvQ6DUWBHF+Q1kQLBgaqqlDRzwo2qypj6LpJLGpQ0seXem7JcXpVT9rzDSh+FMXKXKqqQnGplclsbtTk924Tyd8vsbnJNSbc5DoQontUVdmo35teHVxOnjyZyZMnd3j/gw8+yMknn8zxxx8PwA033MB7773Hs88+y8yZM539Xn/99U0uifV6VUpL8zbpHJtLcfGPsyiq+Gnq7Ppqa9ZRVdhuaBGqqpAX9pMXsbJ9uUE/WtTvlMYWFeegKAqhXD+KTyeU73X29YUgL2b9HCr08MSCJxhUMIgDhx3IRVcW8OaLVTz3v7XUVRvsumfq9zAS1omEDSr6Bygryyc37iOvNUifwmIiagv5BQFKS/PYZY8ATz68ji8XL2ZoQx3gpajI7/xOq5EEeXlBigvyMn7PSwsL0U2d0tI8+g+IAvVo8d7792BrI3+/xOYm15gAiMfj1NaqeL0KXm/PFe715LmEaG/LXF8KqqpSXBzaqOVKenVw2Zl4PM6CBQu44IILnG2qqjJx4kS++eabtH1fe+01rr/++k16PE0zaG6ObNI5epqqKhQX59LQ0CZt1kWP29D1pesmTY0J8gu9NDS0AVDX2ExrqzV/UomHaYmnfmdq6poAhdbWKGElTp7Z6OxbZdbR2mb9vKRyFfVNzdQ3LWBCwR4oikJZX6tcddGCJnbdJxXUVa+1ylXzCzzU1bVSW99Ea2uUqNegtTVKfaCFuhyr2+zA7YK81vAR3k/z0dmfQA7U1Vn31UWs48Jqwtlmi0dMWuKt1NQ2o3itctjqqnDGfqJ75O+X2NzkGhNumqZhGAaaZgI9s7yDLEUiNqcttxSJiWEYNDSE8XrjafcVFORscCmSrTa4bGhoQNd1ysrK0raXlpaycuVK5/batWupr69n3Lhxm/yYvfUfJ8Mwe+3YxNavo+urpUnDNK1mPvb9Cd3aZv2cwL2KrqZbJbSmCbpp0BJrce4Px8POz1Et5vxcG66jNKeUigF+VA+sXh5F1w0MA955pQ41+YVeYYk1hnjyMf2qH9MEzTCcsY0cm8trH8LyJRH6KgahXI9zXzw5bgU147n6kueKJKLk5Vt/MpsbNfmd6yHy90tsbnKNCei9n+GE6K029m/nVhtcdsQ0TRTXpK3+/fvz1ltvbcERCbFtar8MCaQ35Gm//Ihm6GnzKZvjTc7PES2V4YxqUefnqrZ1lOaUEidCcGA94ZUl1NcmqKtJ8NHbDc5+RcXWXEi7A20w2YjHcC2NMmy0Hz60mvFUYDBgu6Bzn71f+6VIAAIeqyQkrsfIL7Sypi1N0tBHCCGEEKK9rbZQvLi4GI/HQ21tbdr2+vr6jGymEGLjNMeaaYw2ZL8vGWAVFKaCS3e3WN1IDy4N00A3UuUd7iDSHZRGXYFmVdtaAL5e/yV15Z8RVZtYvTzKmhWpYwGKSnzJ81jBpd3l1R3g5pVo5OVZweOkqYXsvGdBaqz2UiRq5vdtPtUKLmN6nFCuB9UDLc0SXAohhBDtXXDB2bz//jvO7R9+WMzMmWdwwAF7M2PGqTQ3N3HUUYdQU7N+C45SbE5bbebS7/czZswYPv74Y6ZMmQKAYRh88sknnHnmmVt4dEJsG15f8jo1jQ2cOHJ6xn1ZM5euYK595lI3uxaQRfVU4Lg+vB7DNIhqEYpLfaxX21i9IkJDbSLtmMISawz2UiT+ZLbRPYaoHmW3SYXEIgYT9ylMq3BwliJRMr9vC3hTy5GoqtWVtqlRQ9dNPB7pPiiEEGLzmDRpt07vP+usc5k58+c/ylgWLVrI/fffw6JF3xGJRCgr68PYseO56qrr8fmsL3g//PA92tra2G+/A5zj7rnnLsrLK7j55tvIyQlSUFDIYYcdwQMP/JOrrtq0fiiid+rVwWVbWxurVq1ybq9Zs4aFCxdSVlZGnz59OOuss7jyyisZM2YM48eP5+GHHyYajXLsscduwVELse1oS7QR1aIZ5eaQPXPZfp1KN8Ps2qR0d0YzYSRoiDagGTqlfXys9URYNK8NLWHi8yvssW8RP3zXRt/+1lIjCT1ZFpsMCA1XcBnWwuQXeMkvyByLvV+2sli/av2jaa91mV/gpalBo61FTwushRBCiJ70/POvOT+/8sqLPPvsU9x338POtpyc1NJcpmmi6zpeb8//u9TQUM/ll1/Efvvtz+23/4NQKERl5Rreffft5LQS69/Jp556gsMOOzLt80Jl5WpOPPEU+vbt62ybNu1IZsw4jYsu+gX5+fk9Pl6xZfXqT0bz58/nZz/7mXP7pptuAuDiiy/mkksu4fDDD6e+vp4777yTmpoadtxxR+6///60NS6FEBvPDhZ1U8erpP+5sOcd5hdllsV6VW9GoNlZ4OnmzlyCFdTppk4g6KHvMJO2hVYguN32OUw9soypR6bK4FNlsVaw6Q4i3fM6DTN9grqe3M+jZgkuk+eK6VbHtPxCa5/mJk2CSyGEEJtNaWnq37dQKISqqs62r776gksvPZ+//OVO/vnPv7Ns2VLuvff/eOaZJ4lEwtx005+dY6+77kpyckJce+3vAYjFYvzrX//grbdeJxxuY/jwEVx00eWMHZu9+eW8eXOJxaJceeW1eDzWv4EDBgxkjz32cvZpaGjgq6/m8Mtf/sbZZmde77jjL9xxx1+cTOvgwUMoLy9n9uz3OeywI3rmxRK9Rq/+ZLTnnnvy/fffd7rP6aefzumnn/4jjUiInw7DNJzgTDd1vO3+XDhlse7MpdlxcGmYhrPmZWfsOZc+1UfCSKCZmhO0Dt5BYclCa7+BQ4IZxyaMBKqi4ktmG3XTPcczFVxmNhuyy2Iz/yTazYGczGXy+UpTHyGE2PrlX3I+/ldf/tEeL37YNFruurfHzvfPf/6diy++nIqKvhQWFnXpmDvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpU56xf0lJCfF4nNmzP2C//fbPqGQCmDv3G0KhEIMGDXa2Pf/8a5x77pkce+wJHH74kWmZ1lGjduTbb7+W4HIb1KuDSyHElqO1b87TLqlnl8XamTz7GI/iyVpe2tU5l7FkEBf0BknEE2iG5gStJQMMgjkq0YjBoA6CS6/qRU0+vrupUHrmsv18ULuhT7bMpTV/M9o+uJSmPkIIIbawc8+9kF133b3L+1dVVSVLbF+hpKQUgBkzzuHjj2fzxhuvctppmX1Lxo4dz6mn/ozf/vYq8vPzGT16HLvvvieHHjrNKWutrl5HSUlpWuBZWlqGqqqEQqG0LCxAWVkZS5cu2ZinLHo5CS6FEFm5g8v2wZhpmjQ3aoRyPfh8qSY4uqHjUT2oWRrjGKaJ2a4cNeAJOMGkLZ4sPw16c2iJt6AbujOWuBlhv4NLmPdVC0NG5GSMSTM0cn25TpBomAZtiTZiepSIFnaNpetzLt0NfcCacwmSuRRCiG3BpmQRt9Qi92477LBjt/ZftmwJuq5z8snHpG2Px+MMHz6iw+MuvPBSpk8/nS+++JwFC+bx6KMP8+ijD3P//Y9QVtaHWCyG3x/o8jj8/gCxWHTDO4qtjgSXQois3JnG9mWk4TYDXTMpqEj/E6KZGjmenKzBZbY5l7m+vIzg0maXoyaMhJOBDGthJh5QzMQDijs8v0/1OUGiYeq8suxFIlrEyUBa242sx2bLXAadOZfWP4JSFiuEEKK3CAbTv2hVFCXji1xNS/17FYmE8Xq9/N//PZpR3pqbm9vpYxUXlzB16qFMnXoo55xzAaeccizPPfc055xzPoWFRbS0NHd53C0tzRQVZf5bLrZ+W+06l0KIzSutLLZdcNmSpSTW7iob9OSgkDkfwzCNjPOEfKGM/Ww5yfs0M1UWqxmak9lsL5Fs5uNVfU5wq5u6Uw7rPi5zmZROusUmg8uoZgXBBU5wqWfsK4QQQmxJRUXF1NfXObcNw2DZsqXO7REjRqJpGk1NjQwcOCjt/8XFXW+ImZeXR2lpKZGI9W/syJGjqK2toa2ttUvHr1ixnBEjRnX58cTWQ4JLIURWibQ5l+mZvmxrXIa1NgBCvhyULJlL3dQyymtDvo6/JbUzhnE9lvYtbDjRlnV/u1OsT/WiKiqKomQEkamxtA8uk91is5XFZmQurX1kzqUQQojeZuedd2XBgvm89dbrrFq1kjvvnEVTU6Nz/+DBQzjwwKnceOP1fPDBe6xdW8mCBfN58MH7+PrrL7Oe86OPPuQPf/gtn3zyEWvWrGb58mXcc89dLF++jH322ReAESNGUVBQyLx5czc4xlgsxvffL0zrNiu2HVIWK4TISkuuGQlgYAVfkbBOY33CFVz6nH3CCWtOY8ibS0TLnEdhmEZGqU6uK7hsX8qT47UylzEtvWw2rIUpIr2UpiZc45TxepOdYj2KB93Qs5YIme3KYt1LqLSnKip+j9/JfAaCKh6vQmuLZC6FEEL0LnvvvQ+nnXYmd9zxF0zT4MQTp7P77num7XPddTfy4IP3ceeds6itraG4uISxY8dz0EGHZD3nkCFD8fv9/O1vs1i/vppgMMh22w3hppv+zC67WMuNeDweDj/8CN588zX22mtip2P86KMPKS+vYOzY8T3zpEWvIsGlECLDmpVR7v7XUor3a6HfIB9VVWFee20Ny3+IgJnKWBa4ymLt8tMcb/qcS4/iQTf1rHMug56gc3/AEyDqCkrtjGH7dS/tINa2Prye15an2sj7PFZwqSoquqlnBJaQbZ1LPXlMZubSHktLvAXDNFAVlWBQJRbbsk0chBBC/HQcf/zJHH/8yc7tXXbZjdmzv8i6789/fhE///lFHZ7L5/Nx3nkXct55F3bpsQcMGMhvfnPdBvc76aTTOPPMk6mpWe8safLUUy9m7Pfkk49x5pnndOmxxdZHymKFEBmWfh8mGk/wxScNfPN5M/+5dzXLF0fIy7eCr6xlsQm7LDY3bc6lnQ00TBMtGcTZgaNP9Tn353jTmxIEk11a2zf8sctvbU2xxrTbduZSVdSsAS1kKYs1Op5zCe55l1agGwiqaAkTTdvwup1CCCHET0FZWRlXXnkd1dVVHe7T3NzEpEn7MXVq9iyp2PpJcCmEyFBbHcdAwzRh1fIoqs/kkGPKuPx3Q+k3MNVq3O6cCu0zl5nBpW5qGMkgblD+YHJ9uZTllDmZRndwaQWd1vZYMqCzs6HtM5d2oJo61no8d6DYJ1TO7n33ZHTpGCCzW2yqpDZ7cNm+Y2wgaI0lLtlLIYQQwjF58gGdlrsWFBRy2mlnZnSqFdsOKYsVQmSoXR/HUHRGjs4jFtM57YB+jB9UTEJPUDS+kjVrCvHg66ChTyitLNaXDBIN03CCuu2LRzBxwKS0+wPJpUfACki9yeDQLost8BfQGGukKd6UNtb2WUifK3NpC3j87Fg6mu/rF2U9prOGPuBe69Kad+kPWOeORQ1CudmPEUIIIYT4qZHgUgiRxjRNaqvjeP0mu+5VTFtbjFCe9Q3j0qYltPb5jubcfvRnFMFgKrAKJ6zMZcibmxbY2RlI3dSd4NIdxNn322WwkF4uawd0pTllRLQINeH1aIbmKrdNDxTdDX1S57PWuLTHldnQp/M5l341ff6nnbmMRSVzKYQQW4NUokymMwjROet3ZGOTy1IWK4RI09ykkYibFJTilK3Ymb5wog2fX2W/Y/ycMrN/2nFhrc1qduMNouDOXCbLYg3dCQQ9Sub9QVdZrNdVFuve1je3H4ZpUNW2ztmuGR1lLj0Z2+zH1Y32mcuOu8VaY7OXRUl1jAWkqY8QQmwlVNUDKMTjsQ3uK8RPmfU7oiR/Z7pPMpdCiDS11dYSJAWlqQDQDi7t4CpUFmO7oalg0DANolrUWVpESZtzaZfFdp65DLnnXHp8GYGeV/XQP28AK5tXsK5tLQPzB6WNLbVfcs6l6snYZgec9tIq9tgTyTUyOyyLTZbsSuZSCCG2ToqikJtbQHNzPQB+fwDY1Hl/ijR2E5vRj319mcTjMZqb68nNLdjoebESXAoh0tSutwLI/KLUHxU7gLODq+ZY+rzHsJZc4zIZXKaXxdoNfXRnCRD3t2F2VtHvaszjU70ZgZ5X8dIvz8qWrmtdmxpbu46w7bOU1rnTy2J1w3Cex+srXiWiRfCq3rSA1M0+3m4uFAhIcCmEEFubvLxCgGSAuekf2lVVxTDk3wGxeWyZ68v6Esb+XdkYElwKIdLUVlvBZV5xapvd5dVeFiSmx4jpMadTa8SZbxkCyNrQR3c19PEqqT89QwqGEk60UR6qwKt60QwNj+JFURTnNoBH9ZLny6MwUEhjrJFwIkzIF+pSQ5/2cy7tzOXatrVEtAh9QuXsVrFHh69JMJm5rGxdQ9XSKlTfOOt1kOBSCCG2GoqikJ9fRF5eIYahk2UZ5C5TVYXi4hANDWEMQ7KXomdtietLUawv/ze1k68El0KINE5wWQh22GYHcHbmDqA51kyfUB8g1Sk2JxlcZlvnUjd0TDLLYgfkD2RA/kBnu4bmyj5at93nKQoU0xRroi3RRsgXyljL0tvpnMtkWWwyWG5LtAIwqmQH57lkY2dVm5IZW0NZCmwnS5EIIcRWSFEUPJ5N+wisqgp+vx+vNy7BpehxW/P1JQ19hBCOb+c0s3xJBH9AIZif2t6+LBagxbUkiL3GZcjXWeZSc2Uhs5ef2gGkHSC6513a2U57WRB7zUktI3OZuc5las5leubSXjMz15ubdTy2gDd9Lc38YJ41BslcCiGEEEI4JHMphABg7eooz/63GlWBY07ty2p1sXOfbhqYpumUxQI0x5udn8OJ5BqXyaY8iju49PhRFIW4HndKLdzBp5sdBPqcIDP1J8oOSAPJEtd4cix2FnJY0fYYpkG+vyBtf3DPubS26U7m0hq33YioI0HXGpwA3mQjWwkuhRBCCCFSJLgUQgBQuSoKJkw8sJjRE/JYsVyDZHxmGDpxI47pmqDiDi5TmctkQx9XUYSqqPhVPwkjgUfxdLjcB4AnmZ30euzMZWo5Evs4u0Q1mgwuteQyIiOLd6A8VO46V8frXNpzP+2y2NAGgsv2Y/ZZp5PgUgghhBDCRcpihRAARNqsQKmw2Aqk3OtH6qbuzLcsChQB1pxLm525zElmLlXXZHAVFb/Hj2ZYZbEdZS3BnbnsuCw2teakFVzaWcj23WWVLGtp2h1kTaxMbESLkOPN6XRMtsmDDnCWP/FKcCmEEEIIkUGCSyEEAOE2K0gL5VpBmr32IyTXsUwGc4WBIryql9ZES+pYeykSb+Y6l4qiONlG3dQ7XEsSUsGfUxbr2tfTLnMZS665qZt2w5/087qXIrEzoamlSHQiWgTDNDaYtbRtVzCEIYVDrXPbwaU09BFCCCGEcEhwKYQAIBK2gsuckD0vMdWFVTc1p4FOwBvEp/rSurRGtAg+1YfPDuLSymIVAnY0RsfNfKz77AyjN+02pILHVHAZTY7NyNjXOodrzqVdFps8h24aXZ5v6WY/L6/PKg+WzKUQQgghRIoEl0IIACJhK1CyM5f2XEawMpcxzcpcBj0BvKoXI7luZUJPENfjTqdYSG/YoyiqM+cRMstX3dqXxfrccy7tslhPelms04FWaZ+5zFyKxA4ODdNIzbfcQKdYN/t5SUMfIYQQQohMElwKIYBUWWxOroppmuiG7qxXqZuGswxJwBN0gkDN0IgkS2Lt+ZaQHlyqqAQ8Add9HQeXpcEyfKqPwmARkJ6NbF8WG00Gu4aZfc6lnaX0ql6nTNfOmhqm4ZTyditzmXxeqtcERYJLIYQQQgg36RYrhAAgYs+5DHmcbGDAG6CFCLqhO5nCgDfglK1qhpaab+kO0twNfRTVKZeFzjOXY8rGsmPp6FSGMMtalXagGjfSM5ftO7raWUp39jOVudSdzOXGBJcoJoGASlzmXAohhBBCOCRzKYQAIBzW8foUfH7VaeYTcDXisde4DHqCzvxH3XQFl15XWWz7pUhcmcvO5lza+9uydYu1zucnnmzooxkaiqJkdHz1OHM0M+d76qZOOJElKN4A91ImgaBKLGqkLc8ihBBCCPFTJsGlEALDMImGDWe+pd2BNZBc9sMwdaKauyzWygZqhuYEaTneDuZcohBQXcFlF5b9cPZNK4t1NehJBpeGaaCbuhN4ph2r2GWxrsyl4p5z2f2GPorreH9AxTQhEZfgUgghhBACJLgUQgDRiIFpQk7I+pPglMVmyVwGvAEno5hwzbnsqKFPZlls16vx7aCxfcmrX7U7xsbQDT3rOpXtlzVxj8daWiUCpM8V3RB3Q6BA0PpZ5l0KIYQQQlgkuBRCpJYhsTvFGtZtn8eHqqjohu4s/RH0BJ2gT+9C5lJV0hv6bKgs1s2eL9l+nmbQm+oYq5t6RvAJqSyju1OtfS7d1InrcbyqN2tg2pH2ZbEgwaUQQgghhE0a+gjxE5fQE06n2FAovSzWDr70ZFmsV/XiVb1OuapmakQ0KwPozlzaXWYhuRSJKzjsrKFPex5Xx1c3ew6n/djZzmlvc8+5tMajOMuouIPerlCTjYpMXMGlNPURQgghhAAkuBTiJ626rYrXV7xKUctIoJycXCtgshv6+FQfXtVLXEugm7ozP9GnurvFWnMX0xr6uLrFKigEPF1b57I9O6jsKLi0O756smQu8/x5AOT789O2exSP0wyofeC5IWmZy4D1HCVzKYQQQghhkeBSiJ+wHxoXAzC/7ltgqtPQx728h5LMXILVzMfebu8XSUQIeALpTXyUjrvFdrbOZXupstj0P1XB5PnCnWQuS4KlHDfyRHK96Q173ONsXzK7IellsdZjSnAphBBCCGGROZdC/IQk4gbNjZpz2+6kGk92PM0JpQeXPo8vLXCz5zrawV5cj6ObekZ5qbssVlWUdsuBdKNbbEcNfezgMjnf09vBPM48Xx6KK4tqjccdXHbv+7VUt1hT5lwKIYQQQrQjmUshfkKe/k8Vi+a20aevnwMOK0ErVFi5LEJbq04uOJnLcHKZjpAvlBZcts9c2p1ife3KS9s39FEVFZ/qI2EkulkW60n7r83JXCbHma2hT0fcj99+3Bvi7hZbXGoF5tVrY906hxBCCCHEtkqCSyF+QtassDq+1lTFeeLBKhoK1rNWaQFgDDhzLsPJoDHXl9tBcOlJ28/vWksSMoNLsOY3dje4LAoUM7J4FAPzB6VtdzKXycfvTqmte1//JpTFbre99VqsXBrp1jmEEEIIIbZVUhYrxE9EIm7Q2qxTXOrjtJ/3JyekosdU3FWqdrdYOyOY689NK2NtXxZrd2vtLHNpl8japbHdCQQVRWGv/hMzgks7yHUa+nQruEyNzdsuKO7qsSZW5jKvwMO6ypiUxgohhBBCIMGlED8ZjQ3WPMqiUi8jdszl4muGcNo5gxkyIsfZx17n0p25VDsri03YmctOgksncxlIO3ZT5PisMUe1aLfP6R6b37NxwaVhGiiKwnbb52AasHqFZC+FEEIIISS4FOInorHOWl6kuMQKqHLzPJSVBRmyfSq4tOdctiXa8KpeAt5Au7JYK0C0u7imMpfpQVp6Qx817Rh3cLex3MueQGY32c54eqhbLMB2w6zXbtWyaLfOI4QQQgixLZI5l0L8RDTUW8FlUWkqEDRNk9w8L8NG5rBDNJeckIpmaMT1OIXBQoB23WKtzKW9rqS9Hmb7zGX7pUggFZh6Oujs2h2qohL0Bp3MZbc60Loef1PWuQQYnAzMZd6lEEIIIYQEl0L8ZNiZy6KS1K+9ibUEyZid8jl5dD8URSEcT3aKTWYH3cGYHSB6281x7MqcyxyvFYh1t4lOR0Le3FRZbDcylwruOZfd/xOoKqoTXJb39eMPKKxbE8M0zYxlT4QQQgghfkqkLFaIn4iGemvOpV0WC6ngElJrW9rzLUO+XIBO51zaMudcZpbFji4dyz4DJtE/b8CmPZGkkC9Vzqt2IxuaNudyIwJdd3Cpqgpl5X7iMYPmJm0DRwohhBBCbNskuBTiJ8LJXLYri7XZJa5Op1hfMnPpCsaczGW7LqtdmXMZ9AbZvmhEj8y5BCtzaetO5tKdie3uOpdgPR93UF5WYZ2jtjre7XMJIYQQQmxLJLgU4ieioT6B16eQl58KrtxBUsKwgqM2p1NsHpAKxnyqz/l5w5nLzDmXPS3kSzX16dZSJLgb+nS/LFZBcTKXAH2SwWVNVaLb5xJCCCGE2JZIcCnET0A0ohMNG/hKm1nWtMTZnp651IjpMcLJ5UWcOZfJwC2QXOPSvc3WPpNpB5Sbcw5iWuayO2WxPZC5dAeXkrkUQgghhLBIQx8hthKaofHGitcYWjiMHUtHd+vY1cutxjcNRfP5qFJnQN4ggt5gWuZybesavln/tXPbzgymur0GnfsURcGrep15mu3Xi7S7xaqb8fsrd+ZS3cjM5abOuQRX5lKCSyGEEEL8xElwKcRWojHWSG2kBq/q6VJwaZomc75Yz3dz4qxYbAWXucVWMBnRwhnBZVXburTj7YY+9hqSQU8g7X6P4kHDCi7brxdpB3CbqyQWUt1noXtdX93LlvjaZVy7wr0ciaqoFJf5UD2SuRRCCCGEkLJYIbYSUc1aS1Ez9C7tP29hFbe99BCfrfySwmIvhx3Xh1HjA8lzWcEmrrLY5niz83OeP49gMlPpZC69qcwlpAd07deLtMthN2tZrM9dFtv14NIOfH2qb6PG136tS49HobSPn7ZWnXBb194bIYQQQohtkWQuhdhKRJLBpW52bcmL75fWADByD5PLjh2CqiosX2QFPxHdOpc7c2nPtTxou4MpD1U4gZcz57Jd5tIO6FRFzQjunDmXbL7gMuAJOKW53SmLdRoUebqftYTM4BKseZc1VXFqquNsNyyno0OFEEIIIbZpElwKsZVIZS411q+LMfvtBuprEoTyPJx4Zl8aGzS+/qyZpvoEu+1TyKqV1pIiFYMVVNUK8uzlRmJaDEhv6GPL9eVmzUq6G+hAqlw2W2npj1EWC1ZpbEu8pVvdYu35oBtTEgugkBlc9qnwsxCrNFaCSyGEEEL8VElwKcRWIpIsZV28qJm576xyV7SyZmWU2W81sPR7K/tYtTbG2pYw3pBCsNDKdOqG7gSTdqDqzlza2geRQwqHouk62xUOSdtuB6DtS2IhVQ67uYPLXF8uLfGWjIZCnbED0fbzRLsqW+YyVKxR6/+B2pp8oHCjziuEEEIIsbWTOZdCbCUiWphoRGfu142oqsIhx5QxcUoxYHUqrV4XQ1Wh78AAdesTJPQEJWU+4oaVpbSzlgAxPXvm0qt6M8pFvaqXkSWjMspi7TUiswVpHsWDqqgbnR3sqp3Kd2Xnil3J9xd0+Rg7OOxOQJrteINUcNmcs4LqnHn8ULNyo84phBBCCLEtkOBSiK1EVI+yaF4bCU1jr8lF7L1/MQO3swK+1cujtDbrlJb72XtyEQAGOiV9fMT1OIZpoLmCy0gHmUt7bcuu8DiZy8wgTVEUJg3Yjz377d2t59hd5aFyxpWN79Yxm565tLKypitzmVtk/be+PrxR5xRCCCGE2BZIcCnEVqC5UePt19eyekUUXwD2OcgqvSwrtwKkxQus+ZV9KvyM3imPUK4HQ9Eo6WMFflEt6qxJCa7MZbvgMsfX9eDS20nmEqxy2orcvl0+34/FDg43NquarSw2EFTxehUaGmNZ57EKIYQQQvwUSHApxFbglafXs6qykZwclZ33KsAbsAKYkj4+FBViUSvQ6dPXj8+ncsRJ5ey4cw4lpVYAFdOjJFzBpTPn0tz4zKVX6XjOZW9md5btyW6xYJKb5yGRMGhtkeVIhBBCCPHTJMGlEL1cPG6weFELik9n/8NLKe8bcLKQXq9KcWkqSOpTYQV6oyfksfvkfKexjpW5TJXFRnWrOVBG5tLb9U6nzpIeG1leuqX0y+3P9kXDGV40YqOOt7vFRrQIC+u+I6EnMEyT3HwPpqJRX5vYwBmEEEIIIbZN0i1WiF5u+eIwMS1Kn35+vB4rWHSvddmnwk99jRXQ9OmbCvR0V6YyokecTCPgzMNsX8GZ043MpV1WurGNcbaUoDfIPgP23ejj7czl9/WLWN2yioDHj5nMXDZgUF8jy5EIIYQQ4qdJMpdC9HLfL2hDU2P07Z8KHN3zJ8uS2UpFgdLyVKCX1h1Wi6G5AlKwspmZcy67k7nsfM7ltsoOLu3sb8LQnODSVAzJXAohhBDiJ0uCSyF6sXjMYPGCNnQ1Snm/1FIgmpGa12c39Skp8+H1pn6l9bQGPlE0vV1wqUcygsvcdmtcdqZ/7gDKQxUMyBvQ5WO2BXZwGXc1RTJNg1C+BxOddWtirF8njX2EEEII8dMjZbFC9FLr1sR47P61tDbr9B0Jfr8rcHRlIfsNCqT915bewCeakWGMabGMx+zOnMvSnFIOHXp4l/ffVqSCyzhgNUUyTZO8ZOZyycIwSxauYodxuRx5cgW5eZ4tOVwhhBBCiB+NBJdC9FIfvllPc6PGDuNzGXJAHovDVmBjrVmZChz79g9wxgUDKO+XHjy694nqUXIMK3AMeALE9BgRPZK2VqOqqN2ac/lTpSSDS7vs2DANTEz8QZXtRwcprQvS0qSxaF4b0eg6Zlw0cEsOVwghhBDiRyPBpRC9VPVaK7N49CkVzGtaDWHI9eXSEm9xAsfVLatY1bySvUfu42TUbO7sZlSLkvBZwVC+v4BYpCYtc7lz+S4UBYs3enmOnxI1OZvAfg9MTAzTQEFhr/0LmDxoELGowd9vWcmKJRFaWxO8V/0qLfFmioLF7FNxAHnBHFRV2ZJPQwghhBCix8mcSyF6oUTcagxTUOQlJ+QhqlvrUub6rDmRduD47qq3Wdq4hOq2qoxzaO3nXJrWPM08fx5grXVpr9XYJ1TOoPzBm+8JbUNUJT0oNJP/A9CTr3EgqLL9qBCY8MPiBuqjdSSMBGubqrj11i+476+raWqUxj9CCCGE2LZIcClEL1RTHcc0cUpd7TUq7bJVzdCdwBBSnVvdEkYCr+rFo3jS1rkMJc8Rd3WTVZAsWle1zxCbpuE07zHMVKOlYaOsMuSlP7SxZmWEhroEdTUJWqMR1q2Jcf/tawi36QghhBBCbCukLFaIXmj9OqtZTEWyQ6ydhQx6g87tplijs787qLHpho5X9eL1eGlLtDkNaPweK2B1Z9xQJLjsKo+S3qDHNE0n0NddAf+wkVYQP/fLZhbmtJCTo9J3YABdiZGTq9LSpLHs+zBjd8n/8QYvhBBCCLEZSeZSiF6oep01H7I8ubZlwgkurWyYbmrUR+uc/d1ZTLACHt3U8Xl8BDxWQNqWaAVc61Imu5yK7snIXLrLYl1LxOTleynv5yehWdsiEYPVyyNoSpxd9yoEoHZ9/EcatRBCCCHE5ifBpRC9UGbmMlkW68lJ3taoj9Y7++umzrKmpby76u20brJexUvIZ2XQmmPNAPiTTXvcQZEqfwq6TGkXXFqBffqcS9uosbmYGJSUevGYXjQNgoUaw3e03hMJLoUQQgixLZGyWCF6ofXrYigqlFVYgWDCSKAoilPSqhk6DTFXcGnoLG34gXVt62iKNTrZSq/qI89nlV3agY+duTRccwVF12XLXNqZ4/blyZMPKaH/6DgfNRbxwbMxIrRQ2h/KKqz3oHa9NPURQgghxLZD0hVC9DKRsE5Lk05pHz9eb2rZC5/qw5ts3KMZCeoj7rJY3Znvpxm6003Wq3rI96fP6cs257J9wCQ6ltnQJ1Ve3D5z6fWqlFX48PtVBg0oAqCkn0lunodAUKVufZyWWAtLGn6QQF8IIYQQWz3JXArRy9gdRPMLU41jEkaCoCfodIVtjDWScHV71U3DCWwMU0+VxapeZ+kRsJrR2GWdpsy53CjtS4gNM/ucS+d+rKB/n0kVqAsb6DNIQVEUyir8VK6M8snyL6jSV1AYKKJPqM/mfwJCCCGEEJuJpCuE6GXiMSsY8futX0/d0DFN08pcKlZw6e4UC1aJq12SqRma0wDIKotNBZde1esER+mZS+kW21XZy2KzZy4BjGTAWVQUYNy4EhKm1ayprNwqeV5b2whAwuj+/MvGaAMrmpZ3+zghhBBCiM1BgksheplYzApUAkHr19POUHpVH17V026bFWzqpu5kzayfUw197DmXAD6PDyUZSFpZS8lcdlf7QNw0DSdIb9+1171NVVSCniCGaRDX45SVJ+ddNrQA2QPTDZlT9RkfrHmPiBbp9rFCCCGEED1Ngkshepl4NJm5DNjzLa1A0ufxOWWxNns+pW7qTnCimRpacs6lR/UmlyOxus76VB8KVnDkbuhjbxMb1r5brEnHcy4hVRarKh5nndKYHnWa+tQ0JoPLLCW1GxLVowDE9Vi3jxVCCCGE6GkSXArRy9hlsYFAeubSp3rxqb60fe2spGGk5lkahpF2DEBeMgj1KF7sxJu7LFaRstgua18Wa5UkW++ZaZoZ2Us7aFQVxeniG9VilJX70UlQWxNJrkuqdXsscd0qpd2YrKcQQgghRE+T4FKIXiZmz7kMWAGflgxOPIrXmXNpc2cu7aBGMzUnoLHLZu15lz7V68pSmpK53AjZ5lyarvLi9hnIVOZSJZDMXEb1CGUVPsoGGzQ36axZGaW2Js73C1pZtjjc5bHYXyLoRmY5rhBCCCHEj026xQrRyzgNfdqVxfo9fjyqJ21fOyNpuLrF6oaOqVjBjkexM5dWcOlVfU5wZJqSudwY7bvFtp+7qps6Pnyu+91zLq3y5JgWQ1EUJh2Wy+z/wbdzWqh6fxWlcatU9mcXDmDYyNAGx+IElxuR9RRCCCGE6GmSuRSil4kl51y2b+hjB4p2NlJVVHJ9uQBorsylbmqpeZrJMlq7fNbryly6822Suey6zspiIbNE1e4kqyoqQW8OkJorWdxPZ+CQAKYJxX08jBprvZ+fvt+4wXFohpaa67kR8zWFEEIIIXqaZC6F6GXicStgyGjokwwqPYoHDY0cbw4eJdk9Vk8tY6EZmhMs2t1li4MlAIR8ISdL6W7og2QuuyxrWaxrvVAjI7hMNfSxGytFk91d27QwE3YrYNQYg72H9GFsaT/uuHE5i79ro742TkmZv8NxxF3vucy5FEIIIURvIJlLIXqZ9t1inTUrPVYW0s5chny5qeDSSA803N1iAcpD5Rwy9HDGl+3kylySKouVzGWXZXSLNTufc2kHfqqikpPMXMaS3V0jiQiqqhDK9WCYBh6Pwm77FIEJn3/Y1Ok43O+5JmWxQgghhOgFJLgUYguoCdfwzqq3sq5PGGvXLdbuAmuXuDrBpTeEmgwu43rCOV53dY51d5etCFXg8/icLKVpSkOfjZGZuWxfFpveXMe9zqWduYwly2IjWth1nBWE7rJnAQCLF7R1Og73e25IQx8hhBBC9AISXAqxBSxvWsaaltVUta3LuK+jhj6pslg7cxnCo9rZzXaZSyM9c+lmN6SRpUg2jtrutcrIXLYrUXUa+qCmLUUCEE4LLq398gu9lPfzU1+boLEhQUeaWyMYRsfrawohhBBC/NgkuBRiC7C7e7afnwfu4NIKYjpq6BPypspi4+3mXNrBZfulSyAVSErmcuNkdIvdwJxLO/DzqKrT7dfOZrozl+7jho6wOsWu+CE9sx2N6JimyfIfwtwzaxnfz7Oym/b7LYQQQgixJUlwKcQWYAeMWpYun05ZbDB7WaxPTWUu7RJN+3zQvltsluASV0MfyVx22wa7xbZf5zJ5n6KoTmBqB5LhRCq4dAeIQ0daczOX/5C6v64mzm3XLec//1zLy0/VkDASrFkVwcTM+iWFEEIIIcSPTbrFCrEFaM76hFkylxkNfax9Uw19rP+GfLnOnMu04NLQU02AXHMubU7mktT6jJK57LrMOZdklMWappnWlResjKc7cxnVoh0uYbLdsBwUBZYtjjjnWvB1K7pusnSRFXAafo1oxKSpQUPvI8GlEEIIIbY8yVwKsQXYWaqswWXcRFHA50svi7WzkDuUjmbH0tH0yenjlMW6yzI1U3fmYPo9mUtZpAJJM8s2sSHtu8Ua7Rr4LGn8gf8tepT6aF3y/tQ6l3ZgqrveI7vJjzv7mBPy0G9QgJYmjVuvXsZXnzbx/fxWAPr09RPMURk53jquujImZbFCCCGE6BUkcynEFmBnFvUsQUEsauAPqE7mK1XiamUhK0IVVIQqAJzg0s3KXCZQFMWZn+lmBzjuRjRSFtt1GZlL00wLMNe1rkU3deoj9ZQESzEw0o5TFRXDNJzyWb/HT0yPZZTTHnBoKe+9VsfaNTFeeboGLWFSVOLlwt8MJhE3+XBpNR/8ANVr4xkdaoUQQgghtgTJXAqxBXRUFmuaJvGY4ZTEWvta+2QrcbXLLN10UyOhJ9KWIXFzz7lsv01sWLY5l+7Msf2e2mtZGsn3z/4iwKN40E3dCQh9qj95XHqAOGJ0LudeMZhJBxajJazzjxqbh6Io+AMqoSKT3DwPTY0a33xRnzYGIYQQQogtQYJLIbYApyzWMFj6fRuvPL2etlaNRMLENCEQUFz7pmcu3doHOva5E0YnwaVrzmWq2YwEl13VPlvsXtLFzS57bZ+5VBQlLdvpT86l7Wg5kUkHlpBXYD3myDG5rvMnGLtLHh4PzPm4gecfW4+mSYAphBBCiC1HymKF+BE0NSTweBXy8q1fuXA0zorlYaqbamj7ai0A66viHHd6X4C0zGVqKZLMLKW93R2YRLWodY4s8y0hlaU0MZ2fJXPZdZkBvZkx7xIgrlvvm7tbLFjvV8yIOXMs7Yx0Rx1fA0GVk87qx6qlEYaOyHG2J/Q45X0DTJxSzOL3Fb75vJnmxgSnnz8AVZX3UwghhBA/PslcCrGZ6brJP2et5qG/V2KaJs2NGu++Uc28r1pZvLCFQFClpI+PFT9EeOvFWgD8wfTg0qf6Oswuti+NtQNNu9yyvbR1LmXOZbdlK4vNJm5YZbF6u7JYZ86lmZpzae9XF6njm/VfZZxz8NAcJh1UkhY0xpNfOhQV+zjk2GKKy3wsWxyhbn0CIYQQQogtYZvPXI4ZM4bhw4cDMHbsWG6++eYtPCLR261oWk5LooVxZeN75Hx16+OEW3XCrTqrlkV57rF1tCQ0yvv62X1UAcfvuh2JhMGdN61k7hctAET9NbTGC8nz56MZmtNRNJtspbGQKrfMRlEUDNNw1l0U3aMoCl7FS8JIdFjOGtetsljTKYu1AkNPu+Vj7Mylbuq8seLV5JcJfsaUje10DJpr+ZlACIpHNPJ9yypq1/ejT9/sXywIIYQQQmxO23xwWVRUxPPPP7+lhyG2InNrvqEx1sgOxTvi6yRA66rqdXHn52f+U0V9Y4Q+I/zsPqmQwYUB8gutX8OiUi+NdRqaEuN79QM+XbeeKYOnYphG1q6vto7KZbM1ALIpKM5cQcladt/I4h3wqV7m187L6PJqs4NLZ51Luyw2mWnWnHJnFa/qdebKAqxuWZUWXC6onc/ypmUcOvRw51qwz2+dS6c+dxE1wZVUrtuNHcfn9eTTFUIIIYToEklbCNGOZna8BmVXLFsc5p4/r2Ttamvu4/p1Mee+pgYNA40dxueiqkraPLuKflZ2UlOieHwQ0aIZ2a1sOsxcdlAWax9jmiamacp8y42wZ7+92KViN6DjslinoU+74FJJ/tm1l6Ox1780TIMCfwEA68PVaeda1rSU+mgdDdEG1/lTmUvd1AnmW9fS+vWRTXtyQgghhBAbqVcHl3PmzOH8889n0qRJjBo1infffTdjn0cffZQpU6Ywbtw4TjrpJObOnZt2f1NTE8ceeyzTp0/n888//7GGLrZidiZqQ8FlPG4wZ3YjlauizjIQ0YjOs49WU702ztsv1wGwPpm5zMm1ft2GjPRTVGwFi5or61XeLzn3Tonj9SpoRsIJIDrq/AqdZS47znamZS4luNxodnlxNs5SJKY9rzW1ziWkN2qymzK5vyioj1rXj2matMSbAYjrqS8q4nrcKZc2TJ1gvjWO2prUPkIIIYQQP6ZeXRYbDocZNWoUxx13HJdccknG/a+88gq33HILN9xwAxMmTODhhx/mnHPO4bXXXqOkpASAt99+m4qKCpYsWcJ5553HCy+8QF7expWM9bYOjPZ4etu4tnqKiaIAitHpazv7rQY+eKMesJaIOO28/rz1Yh0tTVZGaumiMFWVMSe4nHZ8OW+9VMs+h4T40kpqYqI7j9G3vxUo6EqcgE9FR8cwNRQF/F5fh2Pxejxkq2wNeAMdHmNvVxTr52z7yfW1YaqiYKBnff01I4GqKpjJ+30eL6qqOO+XnnxvvR4vXo+XqB4hbsadc61rW0tZqIyWeKuzb9yMoaoKCT2BokCOL4e4EUM3dbw5Bl6PNcdXUXp/kya5vsTmJteY2Jzk+hKb09Z8ffXq4HLy5MlMnjy5w/sffPBBTj75ZI4//ngAbrjhBt577z2effZZZs6cCUBFRQUAw4cPZ+TIkSxfvpxx48Z1eyxer0ppae+cx1RcnLvhnUSX5YR8eA0oKg5RFMz+nmuawdefNqMoUFjkY/GCNlb8kODLT5rIzfNwwKHlvPTUOj54o5GGugSlffwccEh/DjikP2tb1vL94iAAoRy/c12N3NEDVKErcUIhH8EcD/lFAfLygpQWFXR4/RXV5BHztGVsLy8t6vCY/LwcdFPHo3gwTF+n17ZcXx0ryA85a5ZmU1wSIrc6QNQTpE9pAQFvgOL6PNqUILn5PvIiQUqL86nRcyGaQFXAE7Cujai3mdLSPNqa6snLs7bl5HkoLc0jnAhb10VuAWY4jldVUXQ/BUV+Yo06XjVAUcnW0dRHri+xuck1JjYnub7E5rQ1Xl+9OrjsTDweZ8GCBVxwwQXONlVVmThxIt988w1glcTm5OTg9/uprq5m8eLFDBo0aKMeT9MMmpt711wmVVUoLs6loaENw5DF03tKU0sbhmmwvrYRPSf7r8i8L5tpadbYYVwuI3bM5cUn1vOff67ENGH3SYXsvFcu77/p4btvrXLGsgofdXWtANS0NNHaaqUu1USbs93jN/F4QFfjGKZOY0sr62sbaW2NEvZpzn7ttbXGaW2zzmc3hgFoa05Q5+ngmLYYCSPhlNRmO7dcXxvW1hpzzYv1ZgSa69bX09QSpjUapaE+jM+ToLUlRmtrlBqvdR00N0UJtyZojVrvoUf1oBs61XoddXWtrKhd61wvVXX19Pe20hSzrosCdKIRjbgeBiCUpwAGixc1sv2o0I/3QmwEub7E5ibXmNic5PoSm1Nvvb4KCnLw+bJPx7JttcFlQ0MDuq5TVlaWtr20tJSVK1cCsHTpUn7729+iqiqqqnLNNddQVFS00Y/Zm95cN8Mwe+3Ytka6Yc1d03Sjw9f189lNAOy2TyEDtwvy6rM1JBImqgd23bsQj1fhmFP78u97K8GEPn39zrliWpzkNDwSesLZrqpQWu5nbUMcj0fBMEzCiQimCR68HY5FQXHO51P9JHQrwPEoHR+DaZ1fUaxusZ1dP3J9dSb12qt4MJPNoOxAM6bF0HUd07Qa+RiGCaZ1TFy3rgPFVFFQnfPkevNojjcTTkQwDJPGaKNzXzQRxTBMognrWK/iSzs2L99LXDGpqYoxdETOj/xabBy5vsTmJteY2Jzk+hKb09Z4fW21wWVHTDO1tMIuu+zCSy+9tIVHJLYm7mUljA4a+jQ2JFi5NEJhsZdhI0OoqsKYnfL4dk4LY3bKd5YW2X5UiP2mlvDBG/VpH/Td2a32y1hU9A/wTWMCn9+6hqOanZHs+Fsi1dXQJ+AJEE5YWazOusUqSqqhj6x1ufHczZC8qtdp4pPvz6ch2kBMjzuNoTpcikRVnW1gfUEQ8ASc974x1ujcZ59fczV6cjduys33EMOgribVSVYIIYQQ4sey1QaXxcXFeDweamtr07bX19dnZDOF6Cp3h1j7Z00zWLygje1H5RIIqnz3jVVCOnbnfGei9f6HlmIYMOXw0rTzTTm8lD32LSQvP/Wr5g4u23ca3e/gElYG/ZSUW4FhVLNKsbvaLdaf7B4K4PN0ElyiWEuRYKJshZPFewt3d1d3kFfgL6Qh2kBCj2OYRtp+9vtlL0WiKCoe1/1+j48cM4eoFiWmx2hKCy6tgNMJWFVP2vsfzFExMWht6XgeqBBCCCHE5rLVpiz8fj9jxozh448/drYZhsEnn3zCTjvttOUGJrZq7mBPN3UMw+TpR6p44sEqPnrHWmNwQTK4HLNzqglOcamP48/oS3FpZhDoDiwhlXWyH8OtT4WfMbsHnaA1kgwuO1vnMj3r5XP93MlSJMnsvoEhS5FsAndHVvs98qpeQj5rvmNMj2UEl85SJLrVRdhaisSbdp6gx2rg0xhtIK7HyfPnOeeD1BcU3nbH+gMqpmISbtu4NVqFEEIIITZFr85ctrW1sWrVKuf2mjVrWLhwIWVlZfTp04ezzjqLK6+8kjFjxjB+/HgefvhhotEoxx577BYctehtWhOttMSa6ZfXv8N9dN1E00x0VWddZYyVSyIsqV1JsanT1GB9kF+xJExDXQGVK6MUl/noNzDQ4fk6k3AFl4ZpZAQfsWQ5JEBU717mMuDOXHZWFpsMKN1l5KL73IG5HczneHOc9yFhJKzSY9f7q2Rb59L1BYFf9Tvv6fpwNQClwTLCibBTKmuXbLc/NhBQAZNwa/bgMq7H0QzNCX6FEEIIIXpSrw4u58+fz89+9jPn9k033QTAxRdfzCWXXMLhhx9OfX09d955JzU1Ney4447cf//9zhqXQgB8vu4T1rSs4fiRJ5Hry2zpvG5NlCceqiIS1pl0RIAvP27CNCEQTqAmNIpKvETCBpWrYsz9sgWdBGN2Kt7ooExrN8/Szpa+uPQ5ykMVTnYKIKKlusB2RE0ri/Vn/TnzGFewI5nLjda+LHbPfnuT482hLWEtDRNPlsW6vwDwtAsuVUVNu9+r+vAr1ntXE1kPQIG/AL/H78pc6s5juktqvT4FVKPDzOU7q96iKdbISaOmy5cKQgghhOhxvTq43HPPPfn+++873ef000/n9NNP/5FGJLZG9gf9qBbNCC5rq+M88Lc1aAmrE9fLT63HzIfRE/KYvt9AhuQNw+9X+d8D61i8oI033v+exYUfcMTwowBrbm9TrBHDNCgOdu1LDXdZrHVbQzM1mmJNNMWa0gKWiGY15+ksuHQHF3bGTFGUTo9xB5QSZGy89MBcYVTJDgAsa1wCQFyPoZt6WubZDiTt0larLNb9BYEPT/K9Wx+2gst8fwFBT5CoFiWhJ1xNgjxp77OiKARDCm0tetasdFuilVhyTF6lV//5F0IIIcRWSD5diB63PryeD9a8y74D96ciVLGlh+PMW0wY8Yz7vpvbipYw2WPfQnTN5KPPGulT4WfYqBwU1SAYtD70DxoaZPGCNpoTjeQWeTDy651zvL3qTVrjrWxfNJzK1jUUBYo4eMhhgBVAVLWtY0DeQOeDvjtjZZhGcm6nu0ttat6nXQbZWVmsOxi1S2E72x/SA0rJXG68jl5Hu5lSzIhjmmZa6ar9ftnvs6p40rLPXtVHjteacxlPzsvM8+cR8AYhZjX10VxLnriPBQjmKGiNEIsaBHPS77ODUt3U8cqffyGEEEL0MPl0IXpcTXg94USY9W1VWzy4NE3TKSVMGJnLM6z4wcoMTti9gH4DA/QdHWWeWYiCktZsZ/AwaykRU9HpPyhAS6LZua81bjX4WZrMVlVpVbQmWsnz5TG35hvm185jVMmO7NlvLyCVuQx4AkS0CIapO8FCe3YA0mlDn2RwoSgKfo+134aCS5Dgsidka9QDqa69drdf93IvnnbBoKqoeFT3FwQ+AsmGPrY8f76TlY7qMefLiPZZT4BgrkIrEG7TM4JL+3rSDR06XwNZCCGEEKLbttpusaL3MrA+wLrnDm4pMT2GmVxhPqHH0bTUfDRNM1i1PEogqNJvYABVVRi8fRCvxwq23MFl/0EBPB4FA53+g4M0x1PBpV2WOL7PBAblDwagum0dALWRGgC+r1/o7K8lzxtMZqc0Q3OWpehIZ51f1WRWzOPKgHU23xKkLLbnZH8d/cng3s48Z2voY/O0m3Pp8/jI8aYa7qiKSq431+kgG9NSmUuP6skofw7kWONoy9LUxw4uO1rDVQghhBBiU0hwKXqcmfwAa5f02SJahHm1czO2b0525gggbiR46uEq7rhxOTXVcdasjKElTIYMz3GW/kgrT3X97POp7HdICTvsFCS/0EM4EXbmzBmmQdAbZKfyXdi+aDgAVW1VAJQEU+tehhNWljShW5lLO7ulmwb6BoLLrmQuVUV1Ao3OOsXa+9okc7nxlA4ywPZ7a69LqaY19ElPGXpUjzPHEqxusfYXDwD5/vxkVtrvnFM3DOdcGWWxIWsc2Zr6uMtihRBCCCF6mgSXosfpyaDMnbn89P0GXpn9DV9Xf8nqlpU/2liiempZj/r6CIvmtRGPmbz0xHqWL7aCvSHDc5x93B+6238An3xwCXvsX+AEES3J7KWJ6WyryO0LQFUyc2kks6YAq5LP210Waz+O1i64dAcX0LWlSNwlknZ5bEfS5gpK5nKjdVgWmwzu7fm+He0HVibTXTbrc61zCVZwCTilsjE9ju6ac+lpdz47c9l+ORLDNJwsvgSXQgghhNgcJLgUPa59WewP37Xx2rO1vPNmNbpuEusgc/n57EYWf9fWo2OJutaMnD+vAQBFhZVLI7z/utWUZ+iIVAmiu5mO+2ebO8PYFGsCrHmddsAQ8AQoDpbQlmijNd7ivBYAK5tXANbcT0VRnABET3aLdcv15aXd7nwpEuuxParHyVj6PZ2vwdm+y6nYOB039PGhKqqTpXcHlBmZy3YdX72qD4/qcTKVeb4CAILeVDZUd61z2f7aSGUu069f9/VsZz6FEEIIIXqSBJeix9kfXON6jETc4OWnreUUdN2goTbhZO7aWjX+NWsVzz9WTV1NnFeequGF/1U72ZWeENWjtDRrLFnUxnfzG0GBE8/si8+vUFTiZeIBRVT0T5WQpmcuMz+AuzOMLYkWZ6zuIKNvMnu5PlztlAgDNETrncfwqanlJnRTd7K9NveSKV7V22l20c5ceRQPZTll7N53T8aVje9w//bjlbLYjZc+lzL9dXTPe1Vd96nt9su2FAlAjtfKqOf5rS8a7MxlVI8514uapaFPR3Mu3de2zLkUQgghxOYg3WJFt2RbO689d+byy0+aaazTCARVTDRq1sdJGAnicYP/3reOtatjrFsTo7DYuhRbm3Ua6hKUlHU+Z7CrIokwX37SREuTTlE8xq6jQoyekM8O4/KceZZpY9/AB3DdlWFsjjVhkgwuXQFayJubfP7xtA/0cT1OXLeef9ATdIJC3cgsi7XPAZ1nLSE1n09VPCiKwo6lozvd3xqv6Alp+d/25ameQNaGPu3nSKqKiurqFmvPr7WCyabMslgt6iqLzZxz2VFZrPsLDCmLFUIIIcTmIJlL0WUfrHmPF5c+t8HMoruhz/cLrGU6DjuuD4ZiUFsdJ2FofPJeIytWNaCoYJrw0TsNzvGrlkWznndjVK5roaVJJy/fw4S9Qxx5UjlA1sAS0ssFs30AT8tcxltcaxVmzqkzTMO5385iNcWaME0Tn+pzgkb3UiTFwWI8isfJfsKGlxXxuLrFdlVncwBF13XWGMldmuwOANu/3hmZy2Rpc1lOGV7VS2mwDEh1DNaMhHMdelVvxpcP/uQU4nCbTiKemmfpLtGW4FIIIYQQm4N8qhRdtj5cTWOscYMfTO2AKhbXWL60hZxclfG75ZOTC031GuFwnI8WfsviglfZ9VDrXIm4q/HN8kjW83ZVIm6wbHGYRfNbmTevDoAhI3IYOT5AUUnngVpaWayRLbhMbWuKNabKYl2BhR0oGKSCyzyflX2qCluNfvL8ec5+ummgJTvIji4dw2mjf0ZRoMg534Yyl/Z5vGrXg0sphe0ZHXWLBQiklcVmn3OpKAqKoqR1/LW/LNilYjdOGHkyIZ81J9ibLJdNGJpTsp2tLDaYzFwuXtDGLVcv5YuPrLnB7u7H2a5tIYQQQohNJWWxosvcS290xg7Q7BLYcTsUo6oKFQN9rFsOy5Y1s7o6TiBPYfudTea9oxKLGvQbGGDdmtgmZS7bWjX+fstKIslmJstzG1B9MGBwkHgygOtMWtOTrJlL6xxe1UvCSKTKYrNlLg3dKa0tCBRQH61jXWulddtf5GSzNFdDH7sk0r30SGfLkLgfrzuZSyVtDqB8x7SxlE7mUqZnLrNnit2dfiH9iwRVUdPmbdoZ7ISRcAJZj+JxglGbXRYLYOiwZFGY3ScVyZxLIYQQQmx28qlSdFkiGVh1NXO5fl0MXYkzYrSVeRkw1PqgPOeTOjQzQVmFH0PRnfvH75ZPcZmP2uq4s0afppk89cg6Pv+wsUtjrKqMEWkzKKvwM2R4DroSo/92Afx+lYSx4fU1NzTn0g4CfaoPE9N5ru6slT1/Tjd15/78ZOayJlwDWMGmHRS4G/p4FSu4cAcZvg1mLq3728+965xkLnuCQicNfdQOgks1s0TW3uYOJtuzg0vNSLRbiiT9fVfU9LL1mirruncvi5OtWZUQQgghxKaSzKXoEs3QUnO3NvDB1DANTExq1sWpUOMM38FqTtNvsI9QSCXanMCreCmr8KMZCaYcXkp+oZdd9i6kem2MhtoETz9SxVHTy1m6KMz8r1pZsijMrhML8Xg6D4qaG60P3aMn5HHAYSUk5uQTzDFRFcVZFqIz6dmd1PNsijVS4C9EMzSndNHUXMGlO4NF5pzLfH9B2vkL/AW0JdqS++muzKX1K+nrRuayKFBEWU4fBhcM3uDzs6WVc8o6lxuts6679tIhkJ5Vdq9paQeX9pcKnc2vVRUVVVFJGAnnOvEoHucYv8dPXI9n/H7W11kNtDpbw1UIIYQQoidI5lJ0iZ21BNKW18jGMHWiEYNIxKCkr0Io1/pgbWIwZEQIQ9EwlARl5X4ShtUZ9pCj+xAIqOx3cAll5T6Wfh/mgTvW8OGbVqOfaNhg1bINz8VsbkoGb4VeTEwCuTq5wRA+jy+jI2v2sbvLYq2f17ZW8vySZ/m+YRG6oVtLgyQDCbtJSlqpo5qaS2lni/IDBWmPUxAodPbTDM0Zm708iXse3oYa+vg8Pg4fdgTbF43Y4POzpTeiERsrLWPdrrzYXnMU0sumPWq2slg145hsvKrXuV5URUVRFCpy+zK+zwTGlI0DrAzlTnvkU1DkZdDQIJhQWx1Py8TLnEshhBBCbA4SXIou0VzBZVfKYhvrrP1L+6dK8TRDY/CwIN6gQX6JSSjXg9buXCVlfn7+q8GM2zWf5kaNhroEXp/1AX7RvLYNjrO50XrcgiKvswxE0JODT/VlXU+yvWwNfewMY3OsGc3U8KretHmVkL2hj2mmskV5vry0+3O9ua6GPrrz+rpLYO3s1IYylxtD1rnsGZ11iw24Mpdp2Uoyg8uQLxef6ktr5JSNT7W+JLG/5LDHsFP5LhQHigHrC49jTu3LL347hMFDrdax69elZzTtQLOtVeO1Z2toatjwfGQhhBBCiA2R4FJ0iTtzueGyWJPGOisTV9LX1VzE1PH5VA6YVsQ+h1iZPHfQavP5VY45tYIdJ+SheuDoUyoA+H5+K6Zp0hxrYmHdd1mXRLHLYvMLvUR1K9MZ9AadjFAiy+MBfFH1OW+seDUt+LQ/gNtZxZgexTRNvEoqc2kHj9ka5LjnXPpUn9P1syBQkJaZ1E3D6ULryRJcbmjO5caQstiekRakt3sdA2lzLl1fPmSZc+n3+Dl+5Ens2W/vTh/P3dSn/VxL+1x2ZYGqKvTpa13366viWcti33mljk/fb2ROsqMsWOvT2l/MCCGEEEJ0h8y53AYlEgbxmEEg6MHr3fTAYe3qKPf931K8u0YYNDQnrTGIrXptjJeeXM+hx/ZBN3Ua6q0grrgitY/9gdYbNPB4dEhAooMOrh6Pwkkz+hIJG4RyPXz6fgOVq2K89mwt/vHfURlbRmlOGbU/5DBndhODhuaw68QCJ7gsKPLSaqSa7/idZRziBAmmPZZu6HxXt8B6XNcHdnu8doAY1sLWPqoXkl1inSUh0oI195xL6xyqopLryyOcCDvzL511Lg09tW6hki1zuRmCS8lc9ggly/tu66hbbHpnYdf6lp0087G5s9jtu8S611e1lfezzllTFWOkkR5ctrVqfDunBYDa9an5yM8veYaoFuWM0TPkiwchhBBCdItkLrdytetjzPmoEV03SegJ5n2/jlm/Xc5t1y3nL9cvc4Kt7tI0g4/eaaCuJs6bL9bS3BJj3lctNDdpVK4Ko+vpAeYbz9eyenmUt1+qRTd0GusTeL2QU5S5tIdmaE5zHXfmcl7tXJY3LXNuK0pqvua+U0vw+hQ++6CRF5+uJB43iCZivPpMLct/iPDBG/W8/GQNzU0aHq9CKFd1SlY9isf5UB7XrQXoP1zzPuvD6wGoiax3HjPmavpjj9fuzBlOlsdacy7VtH3cH8Ld5a6GmZqTmeuzGhsVJINLZykSU0vr/mnLtixJT5HMZc/otCzWFSy6v7RI+7kba5NCehY7o0tsluCyrMIPClSvjadl5XXDYM7sJrSE9Xtctz71e2hnLde7fi+EEEIIIbpCgsut3Ox3annx8fW891odb87/hFue+A9NsSbyCz1EIwbffdu6Ueed/1Urb75Qy79mrWb54gh4NHQd3n+9nn//azWfvt/o7Lt6RYSl31tZvWWLI6xaHkbXobDEl7b8h/vDrZ2pSyT/G9WifF39JZ+v+zTreHYYl8dl1w9hxOgQjc1RvvioifnfNNLSpDFkeA4ej8LKpREibQYFRV4URXECP1X1OFkhzUiwtHEJy5uW8drylwFY17rWeZyYnioHtMdrf1iPaFaZrVfxZJQgps+5zOwWqyqqE1QWBYuT+3mcx3Ea+rgCBl+WzrE9Jb35jASXGystSG/3OnZtncvu/QlOy1wq6Rlt+/FNTJpijVS1rcPvV+lT4ae5UeO//7eGttZkiXc8weezm1AU8PkV6mriGV8YrW5e2a2xCSGEEEJIcLmVmzSljEBA5cO3Gnji6e9JaAbjJyucOKMfAN8v2LjgctliK1iMRa3gaP9phZSUeVEUMBWT9xd9zseVswGcjq4DBlsfpr/4xLpdXOIjrsecc2abq2lnLu2gLqbHaI23ZB1TfoGXE8/sR2GZQl1NgjdfstaM3HdqCX0HBpyxFhR60x5PRXXmXMaNON522aJ1beucn91zzcxk6asd+Lk7utrZPjsAVbIED0Yyc2nfHl06lon9JzG0YBiAMw7DtIJLr+u81v2bsSy2k6BIdF22993mLnNN6xarZM657Cqfx71ETfp14S6L/WTtx7y18g00Q+PY0yroPzhATXXM+bJp4fxmwq06Y3bOo9/AAIYOjfWJtC+A1rSs7tbYhBBCCCEkuNzKlZUHmHZiOZgQV1oZPSGP8fv4GLhdkFCeh5VLIkTC3Vt2wDRNli0Ooygw+ZAS9ti3kGE7+pl4QDGHHdcHj9dgUe1ifmhYTCymsWRhG6FcD6eeNwB/QCGe0MnN87Dd9jlZy0zd7AY77qCuJlLT4dj8AZV9phbQp68fA43yfn6GjcxxAludBAVF3rTH86iqkwVMGIm0eW7hRJi6aG3GeMCduUzP6LiXInHKYrN0izWS3WLt236Pn+HFI5wA0l0+694v9ThWILE5Mpd00ohGdF1n5cWqojoBZkcBpap0ryw2PXOZ/ufbbhpkmAYxPYphGmiGRv9BQc6+dCCBHKs8NtymM+9rq4HPflNLKCu3xli3PpH2O9ocb6Yp1tit8QkhhBDip00a+mwDJuyej+rTeK8tj4JCLxEtjKoqjBydyzefN7NkUZhxu+R3+Xy11Qlam3UGbBfkgMNKAZhbs9bqcOqBPv19rKzRaG3RWbM6gmHAoKFBcvM8zLh4IM8sKaSgjwFKKiPpLhF1s7OBUVc5am2khqGFw2iKNbK0cQkT+uycNjfN49fZc99CynYqYeLI/miGxoDBQaqCs2nwL2OvglOSj5mac2l3YU3oibTM5ff1C7N2nYXMOZc2r+J1PsjrroY9NsXpFmtgmmaHwZsz5zJZFhvwBdLut5cvcS9j0lMkc9kz1A00RvJ7/MT1eCdlsZsw57J9Qx9Spdrtm1F5vSojxgZZMR8+frcBb9jPvhPyKO8XsOZlYjX1GTgy/TlUtVVRuIHlUYQQQgghbJK53AYoikL/UYZTDmqvyzhqbC71/mV8/uWabp1v2Q9WSeywkTnONndGr+9APyjWWparlltldoOGWh1Y+w8K0qefD6/Hi9/jd47raPkSzTXn0lYbsTKJC+u+Y37tPFa2rEg7JmEkUBSF7UYEWKHN5YnvH6O4v07M04Sh6Hjz7YDWChpVRcXvKovVjdRYvm9YBEBxsCTtMdzZx/Zj96o+J5AwOmvoY1gZyY5KH+3gwA7A25c57lS+C8eOON6Zo9mTNndDH3XZUnKv+TXBhx7o8XP3JtmWoHHzJ5cjaX+ffY10uyy2kzmX7rJYJ+tO6todNdZaCicSNgjlKxx8dBkApeXWOWvXx53rGcAwzLQ5yEIIIYQQGyKZy21Ei2ueor1kRunQGA0l3/Lx8hoOXzOMfgMDHR2eZnlyvuXQESFnm914B6C8vw/jG4OGugSrE9a+g4akAlF7nqFX9RJO3q8Z2bvW2h1V3R9i6yN1GKbhPI+GaD0Ubu/cb59LNzQaYg3opo63IILq18GAUH7q3GBlCO2Mj6Yn0pb7iOtxFEVhSOFQ63GSfB4fuqY7AaKbV/W4PshbAaw7WHOa/WAFph1lp/yqH4/icb4MyBYs2MuW9LQNZdw2SSRC0YlH41m9ytkUnTGzZx+jl9hQBtjuGKu2C+A9qgddzyyF3hB3WWxHcy5NTOeaNV1fjBSUqPQbGKClSWPKIcUUlVjnsstia6vj6Kb1N2LtqihfftrM93mraNt9O/bcrwhVlQy3EEIIITonmctthDu4bEtY2UTTozFix1wMJcF7r9V16TytLRo/fBcmEFQZNDTI5+s+45VlL5FwzZ0sH+DFVAzq6xKsXhVGVaH/oFTgageXdrYwoSc6zFyClYmMalbjH1VR0U2d+mg9sWQzoPpIauzuTKJmauh211kzTlG5tU9uYXqzHY/iweexM5eJjGCxT065s0yIzc4Q6aae1uQESGu8Ywe62Uods93npigKIV/IeT7uZi2bm7IZ51zmPPQAntWrMEPWlxO5t90CkUiPPkZvkV4OnXm/3TG2/RqYdiCqdnspEnfmst2xzpxL07mm3CXfuqmz28RC9j+shJy81GCLSnyoHli/Lk5jUwxdN1n4rfXFTl19lNefq+WpR6rQtI5/h4UQQgghQILLbYa7w2pEiyRL4zQGD8shmAvfz2+jribeyRksX33ajK6b7LxnAT6fytrWNdRGamiKNTn7BHMhlOehpUmntTVB34EBfP7UpWQ3p7GzLAkjkTFv0S1hJIjqVvBRltMHgOZ4E9Hk0h/1roxiesMdw8moJvQEY3YLstPu+ZRUJLOKpJYBsT+Ua0YirfQPYED+QCcQttndZa3Mavr+HiW1zqWRZSkSO+Cwx9pZ6aM7qPV2M4u1KTbnnMvA008A0PDSm0SPOha1Zj2B55/p0cfoLdLLizPf50AyuFRp33xHzbp9Q9zZyvbNgFTXNdl+zqX1cyrL7v7CxONRGD0hj2jE4NH7VvPtnGYSbT76DfBz+ElFFJV6+e6bVuZ9uXGdp4UQQgjx0yHB5TaiNWEFl36PH9M0iWgRNENDVRUGDLECpbWrY52dAl03+eIjK4jcfVIhYGUHwQr2bAkjwS575uP3K5joaSWxpnueo8cOLuMZ2b+0xzU0Ysk5l/b8wkgi4mQuY3qM1mQ2Ni24NDUnaI0bcYJ5JoOG5jjbDFfm0i451QwtI4s6MG9gRkdWO4tomNnKYlOZy2xzLhVFQVEUV+ay46Ax19Wsx7MZlhzpyOYKLtXly/DN/QZtxEj0MWOJ/uwsAILPPtVjj9GbKBsoLx5SOJS+uX0pD1Wkbbfn23rUjZ9z2X5JHdVpJKU5v4fuOZdp8ynbXdPHnFrBDuNzqW+IUbkqho8gO4zLI78E9j/EaupVX7vhL6eEEEII8dMmcy63EXZZbHmonDUta2hLtDmBYUGJSj1QVRnrtGvs0u/DNDdqDN8hRGkfKyBtv8YjQEKPU1zqZ58Diylckcse+xY697m7p6Yyl9r/s/fe8ZHc9f3/a/p2adV1J+l6L77zueF6btjG2BiDAVMSWkLyDQn5/lJI8s03IQlJIAkkIeELCYSW0IuNwTY2rric7eu9V+nUtdJq2/T5/THzmZ2Z3ZVWutVJuvs8H497nLQ75TOzM6vPa17vMqGA0UzdrRbbINmFdXJaDqonFHdUTiEmxNwwWDImMi5Flz1jJVVenbGwrDuJN6ziOmsb1yEZSiIZakBKLobesgzrtnmwcy6DBX04z0S+tM8lYAvaycJigYBzeTHF5QyFxYovPAcAUO++F2AYaDfcBLO5BcKvXgCTGoHV0Fizfc0FvJ97uWu8LdqOtmh7yeskpHXq1WIrh8UGHXMA8BZC9j4kKXlgwrN41wfbsWB3Br88HcXy5gVgEkPQTN1t7TM+Vjn6gEKhUCgUCgWgzuUlgWmZyGpZhPmwWwAmr+WgG464TNofc//5iZ3LYwftwjIbthQFaDnHkYi3WJzHHfc1uEKUjAUoDUUt1+OS9ADUTQ2yLoNlWNRJtlAdU1K+ZUnepbewkGEZroAjxX/I676xgHWL+Bim4YYHtkRasax+BQD/pN0Wl6RXpllyDuyw2Mp9Lsk2yv0cxOtc8szFE5fsJKJougivvgwAUG+82X6B46DcdQ8Yw4D44vM1289coVw4dDW4YbFTrBbr63NZoaCPZhTFpdeln0hcAgDLMuhaLmLFmihWrrAjCDRTdatQU3FJoVAoFAplMqi4vATIaVlYloW4mECEjzqvFZ3LaB0DlgUGehWkRzWcPJov2YZlWTh+KAcwwLLVEfe1cpNQ3Rea6n+/KC45N29RNYotDoigBIAwb4fTaqYGxVAgcZL7GsmzJDlr5Hffvj3OJSliRF63x2aPhWM5t3CKYZm+/pcEwZNzyTKsr61DMISQZ/mic2mW5lySbRCCze69zJpz6R1vrZxLy4L4ykuweB7aNde5L6u33gEAEJ97pjb7mUNMt6UL67YiuYA+lxWcS+896Q+L9QjNCmHq5Fon951qqNS5pFAoFAqFUjVUXF4CjMqjAOx8RSJW8nquGELKmGhqFZEdN/CNfz+P//7SeQwN+POnhvpVpEd1LOyUEIsT1678BFSbQFx6w2Ld9h+m5k5myaQVACK8LWLzWh6mZSLEhxB2XiMhsc2RZud48iX71i3DFdCknYe9Pyfn0iMieU/OJRmjtwl9MNyQvFcx55L0uXSLBgVaTXgm/nMxLBYz0IqE7ekGOzwEfcNGIFo8Lu2WrbA4zhaX5hytOGpZiHzus2hcvRiRv/trfzzpBEzXASbrzUQrEm8Iu2VVyrks/zmQBzI8y0NgBWimBlFiEYqwGE/rvuqzteDg4EGMOH1tKRQKhUKhzH+ouLwEIK5eUkq6YZY5LVfsB2kZaFtoi7rREVucnT3pbw1x/LAt3lasLYqCSr0pNbMoTIMOiOUJi+W5Ys6l4ToiIXfZiCOsSDEiiZMgcIJP6EWc43FbjnjEpWqo7mTXJy5JQR/PWMgk3isWva4R58mj9C5vlBGXHOMp6GOWFvQh2yj3c5BLqaAPv3cPAEDfuNn3upWog3b1tWCHBsEf3F+TfdUa8eePIfrZvwWbSiH6L/8E8WePVrWe93OfSogrN82wWP9DkNJ1g9dhJbey0oMjcs9zDA+BE9z7LVHHQ1MtyIXaPRzIqON4pfsV7BncXbNtUigUCoVCmV2ouLwEGPM4lyGehLMpPpFFxCWh+3RRXOZzBnZus6vB+sRlhfYhuul1QMqHxXKePpeqqbrbksqExZJiRCHnd/I6UHT2yPreCbLiFAHy7te7jFdEcqxHLJqlYbFAceLOMZwrPMv3ueTcQi7V5FwyE9xmPMu7ocIXM+fSH85Zm23y+/cAAPSNV5S8p93mhMY++8va7KyWWBaif//XAID8Rz8GAIj8+79Utaq3lcjFcS49YbFlHkYEW5v4+1z6Q2TLuZBeV19k7crTmqHNSGgsyQ1VTVqFlkKhUCiUSwUqLi8BvM4lCZtTjWIoqm7qaO+wxWV9oz1J7D5jCzNFNvE//3EeqSENK9ZGsKCzKEKNapzLQHhd2bBYQ4PphENKfBnnUrXzJYmrGRYixWX4MFiGdY/F61wqevkCRWQMXhFJ8ijtViTkdf/lT9qPcCznqxYbDCHkWd6dxHuP10vQFZ0I4l5ezLDYmSjoI7jOZam4VB1xKTz/bE32VUuE114Ff+I4tKuuQe5v/wH6ylUQ9uwGe/rUpOtOt+qum3M5xVYkDMP4HoKUbte/vXI5l+RhRrnQWHLP8wzv61M7E+KSfHeYE7QpolAoFAqFMr+g4nKeoxkaMuo4YmIMIie6bqFuaj4h1rlUwp33N+HhjyxAY7OA1JCG9JiG7/5XL3rPKehaGsJDH2wHwzAYKYzgTPq0z6H07XPCgj6kUTsLgSPOpeYJi3WayjOs+zMJiw07wtPrXEpcCDzLu+tPVEyIQEL7rEA+JMdwvjDXoOgjRX1YphgiS8JovYWI7LBYuO/bxzu9nEug6M5OJkJrSS3bjwAALAv8vj2wBAH66rUlb+vrN8JsaoKw/XUwmfHa7vsCkX7wXQCA/P5fBxgG6l1vAQCIz03usrI+cTmNarHT+AomDyHKPYyYMCzWuVbJeuXuH2/7Hm+fWrdibLp24pKMLfiAikKhUCgUyvyFist5Dinmk3T6Q5LcQc3U/IU9YOKG25JoXSChc4kt4r7+bz04c7yAtg4J7/2NBRBF+3J4o/81/KrnBRR0f1VZ4ph4Wx0EQ0Yna0USctxJgS3mVpLiPa5zGRCX3p6RXmFbCSMQQsu5lTlZX9/KYKVOMh5/zqUJ0zIhcqIrCARWKBb0cbY1Uc7lZKGPCad9TJgLT7hcLZluC41KsP19YIeHbWEpSWUWYKHechsYXYfw8ksXvL+aYRiQnnoCFs9Dufc+AIB6510AqqtuO93cVbfP5TQeKBSv09J1g2Pwhr66FZudhyjlK0E7ApThPdWeZ8a5NK1iZAWFQqFQKJRLAyou5zkjebv/YzKUdF/jWR6aqbkiC/BPJDuX2CJmbERHS7uID/zWAoTCxYmqatjhpnnNLy4lJ5/TOxksyblEsf2HtxUJ2b/ISQjxIcTEuK84CVB08EjFWPvnEDiWc1qCmL4+l5XQA61ISBsS4oBWyrkkTg3HsO46RPhyDFcMR/QU/zFccem/lbwht5M5Whuar8DWztvQFm2f9NhqRS17WwLeYj6lIbEE9dbbAcytliT8rh1gh4ehvekGWHX1AADtyqtgSRKE7a9PXt12mlV3p5tzCRQrxvJlhGk1YbEkoqCcuPRWWCZuvWbOTDsSMp5Kud0UCoVCoVDmHxex9wFlJhiTxwAA9VJRXAqsgJyW8wkx7wRu+ZoIonEOy1dHcO87WyBK/gkpEWey4a8oK7ISgOyEzdhJ/hQLfysS0yPo7l16PziG81V45RgOrZE2AHaeJUHiQm6hG8M0KuaB+sdv78t1UeGfyJOc0dKCPqL7enBZluGwqG4JCloeLMO6QoII1YkK+kwW+ihxEroSiyY9rloy3SqnleD37QEA6Bs3VVxG3eqIy+eftVt91Do0dxpITz0JAFDvuqf4oihC33QlhNe3gTtxHMbKVRXX9xX0mcLxLEosRk7LojHcNOUxu7nBVeRcWoGwWIZhwJPKyWXC3r0h4yR8dqZ6XZJ90ZxLCoVCoVAuHai4nOd01XWhNzGEhbEO9zWRE5HTcpD1ojj0TjLr6gX84V8vqTgZJuKyoNtFfxJiAuPqOKJCFCl5xLdsac6lpxUJW9qKhGVZ16EkDikAtMfa3UkzcS45hoPACW5VTN3SpxYWG8it5IJuZEnOZTHckEzcVScEmGM4XNf+JnfZYMP6UnHpzbmcfREVpNZjKorLys6l1dICbf1GCAf2gTt9EsbS5TUdw3QQn7bFpfLme3yva1ddA+H1bRC2vz6huPSL9OrPaUe8Ex3xzimO1mZF/QqEuBASYl3JeyXOpbdarGmABeurnBzE24qkmL+tu+IyPQPOZaXcaQqFQqFQKPMPGhY7z1mYWIitXbe5wgwohs3JerFVRzCvaSKXhUz2SM7l4roluKnjFqxtWl+6rFmpWqw/rM6byxUcJwB0xovOHcm5DDkFfrw9J0lBn4nCCcmxekP87P95ZzyaM0b/5U+cGm/OpetyBoSo2+eyYrXY6nMuZ4Na97nk9+2FxXHQ15ZeI160OVQ1lj19CvyRw9BXr4G5eInvPe3KLQCKorkSM9EvdDKW1i/HLZ23lr2HS53Lori0YDkh3cV84iDFBzLeglwqQiEO8ToOI4Mq8rnaiEGD5lxSKBQKhXLJQcXlJYjoaSFAmEpFRjcs1hGnPCtgSd1SX7gqoVKfS5ZhwLM8GIaBZmolQg/wN4T3Oq8RIQqO4RAT487+ncmwqbuhviFPS5Mgbridx0UFigLRtMyygo+IYY7l3BYRxZxL/63CuNVkyxf08YrRWoSd1pxpttAou6mBAXD9fTBWrgbCExclcvMu54C4lJ4mIbFvKXlPX78RAMAf2D/hNmaipcuFMFHOpWEagWJVZcJiPa1IiHOpOffA8jVRWBZw8og/F3tUTiGrZac8Vu93R7AwGIVCoVAolPnJHJz1Ui4UPlAoB6g+9Mw7ySNhtcTRK1eYpiQsFn5BJ7ACdE9YrFd0CZyAlkirLVw9vS1FTsTdS+7FjQtvttdhSO5m0bkklWXt9/1CsVjQx+8q8p7lylXp9OZcEuGrOKG7wcqcbs5lpbBYz63FXsQWI9VSS8dN2L8HwMQhsQTt6mthRmMQX34JUNVJl59JxKd/AQBQ3nx3yXvmosUwY3HwBw9MWNSn1lV3LxQGwbBYf86lN5+4fM5lsQgWue/JQ6qVa+1w9mOHirnSpmXiF6efwK+6X5jyWH0huzQ0lkKhUCiUS4LZnw1Rao63JyNhsqIZGXUcfdleX+Ef2XCcS0fclStMY1gGLMtyJ7GWVSouvdVigyLt7iVvwU0dt5RstzHc6OZm8mVyLsMe5zIseAsASa5ANkwj0G9yYjeRCEqGYSE6PThJaHBQwLo5l2aFsFivczkHbzOfoLxA55LftxcAoF2xafKFRRHajTeByecgvPHaBe33QmDGRiG8+jLMpmboV15VugDLwli3Hkw+B+70ycrbqaEDXAsqhcV6XXy2ipxLnuE9Ye32Pbd0ZQQsB5w4nINpWu57mqmVtC2qBu+DrJkOjbUsC0P5IZ/YplAoFAqFUnvm3qyXcsGUa64+mTOwrfcVPHPuaeQ9FVyDhW/KCTLDNPDM2afw+KmfOb87rUgcMeY6gE6I7XTyD90wPlOHZmjgGM7nzkb4qLsvgRNcwUtyzAje81JuHKTVisgKbmgxCQ0uybkM9rmcyLmcA45WkFqGc7ptSDZsqmp5t2rss7+8oP1eCOIzT4MxDCh33QNw5a9Jff0GABOHxs61sNigwCWRBN72O1ygGJVveU/4ureVEABIIRaLl4VRyJvoOWPfF0QUTlUcjqd1HD007hG/M+tc9mS78eTpn+No6siM7odCoVAolMuduTfrpVwwwf6RwOTiMqtlYVmWrz0IgYiycoLMtAyMyCMYlVN2L0r4+z66xYUMIi6nfsmRarGGZcCwDPAs7xOKpACQwAm+fDLDNHwTfu/4yx3LguhCXNV2DVY1rHGLmWgVCgiVVIsN6AqOndvikplmf8Zy8Pv3wmIY6OsmLuZDUJ0wVPGJn9ktSWYB8RdP2GO5+96Ky1STd+kLL54Dn3OlViTeyIEJcy494euk7yspagUAK9f5Q2PNQH5zOUzLxBOnfo7t3btw9lQBlmXhh9/ow9M/G8Rgvx12PtPOJenZm9UyM7ofCoVCoVAud2Z/NkSpOcRx8EImjZqhIa2MlbxPHDrFkEvec8NiK+RcEmdDN3V3kkkmsGSCWskBrAZS0EczNeimDp7lfWKP5GsKrODJz9RhwvQX1vH8XG4cHMthbeM6RIUoJFbyvVcp57JY0CcQFuu5teZ8tdgLCOdkRkbA9XTDWLESiMWqWsfs7IK2aTP406fAHT407X1PG0WB+OwvYUUiUG/eWnExfYMtLrkD+youw8wx55INjIFcn96w2GLOZakg1E3dDp0NtBIirHDyLo874tJ1Lj3h9H09Mh75dj8Uxd7+UGEIw4Uh/OCFl/H1L/TgR9/qR/dpGRYsDPbZ4nIqBcemA/n+I99VFAqFQqFQZgYqLi9ByjmXZCL5Wt+r+OmJR/B632vuhFMztJLell7YCcJiFc9kTTXV0iI6Jc7l1FurksmwotsTUYEVfOKQ9MUUWNFThESFZVk+YcdXyL8sh8AJPtFVWi3WP4kPCgt/tdjZFx1BalXQx+1vuWHyYj5elHvvBwBIP//ptPc9XcSXXwSby9rhuRNUt9VXrobF8+D3TyAuayTSa0Vpn0siLouOpDfn0rIsDOYHfT0n3QdDzkOqofwg9g/txZg8isZmEY3NAgZ6VaRHNbfFkDfv+qVfjmLv9gyOHXAEqNMrdixl/39wt11Z1mIMDA044bWOOO3rUbDthVFfC5VaQKrgKp7euhQKhUKhUGoPFZeXIDxXOecyJY8AAI6mDmPP4C4AgGwU3OVIhVjf9hhSLZYpmUB7l9cNrWxBH6BYWGQ6ziUJiy1WrxV8/TKJcylxoutyqkZpL8vJwmKDeEV6aVjsxOLS62hNJmRng1oVouH328V89I2bprSeSsTl4z+b9r6ni/ikHRKr3F3agsRHKARjxUpwgwNghobKLuI9d3Mh/DnooFuw7zs33DXQiuTs+Bn84vTjODZ61H7NaVcCwNc7d/fgLjx28lHsGdzlupfHDuVgeBxL3dRhWRbOnbbv07FR+x7UTA2WZSGT1t3w8cZmAZxgYWRQhWXZBcdM08KPvtmHpx4dRl9PbUUgdS4pFAqFQrk4zP5siFJzxDJhscSZ9DqH3ZlzAIC8RyCWe7LPs5VFmXd5zRMWS8RXMER3OiGiREgS91Pk/M5lc7gZaxvXYV3TBvf4SJ6YV9j5C/pMfulLXDE0tqSgTzAMNvC7v0rt3LvNalWIRiDFfKqpFOvBWL4C+uo14A8fBHfk8LT3P2VME+JTT8BiWah3lrYgCaKvWQcA4A8fLPs+W8Pc1VoQHMNEYbGGZaDg3PtjTqg8yWkmtEbbEBfjWNu4DgzD4GjqiJt3eXR/zlfx1bAMjI7oyI7br6VHSUsgHfmcAcMAOhaH8PBvtOO9v7kATe08NN3CeNpuVXT8UA4jQ7YgTQ0Ve/TWAvL9p1LnkkKhUCiUGWXuzXopF0zZsFhSNdJxGqJCFGkljYJe8LmP5ZxLzjPZrBR2BwC6qXkmsaRarN9FnZa4dLZB2h0IrOgTyQIr4qq2a9AWbXeXJaK3UiuSahxUrzCulHPp/h5w/+a6uKxZWOze3QCKlVWngvzOdwMAQj/83rT3P1WEN14DN9AP7brrYTU2Trq8vtYuUsQfOlD2/Vr2C60FpfcncS6L96W3zyUJR81rWV9FWcJdi+/B21e8E1e1XQOJk6CZGrqWhhGNczhxJI9d21OOcLRgmDq6Txe/P9KOc6mbBjJpe9st7SJWrYuhsVlEc5t9r+7dPo7vfLUbT/902F2XhNDWCnL8NCyWQqFQKJSZZe7NeikXDF8mnJPkHJHqpwtiCwEAA7l+t9gOUD7n0huCOtEEWjO1kpzLEF/MaWMZdlohmMRlzDkVHyVO8rkr5X4m4W/eybZ3uWCz+XKIXOWw2BJxGWxF4guLnYO3WQ3CYpmREXDnzkJfvgJWom7K6yvvfDcshoH0w+8Bxsy2oiBIjpBV3vGuqpY31jnO5aFKzuXc+pxLqsWWhMVy7oMVu6Ky/b2Q03Ku0OTKtDIC7IgI0zIB1sBDH2wHywHPPjmEZx8fwesvjcGwDJw75RWXxe+cTNr+uaW9GA3Q1G7fX2MpHb29eYwMae5lOVpjcUlyTsn3H4VCoVAolJlh9mdDlJrjFUWkETqZXOqmDoEV0BppBQAM5gd9DdDLVoudwLn0opmq65SQ5ZbULXXHMN0G5lzAuRQ5sWL+JHE03R6dFXIuy/UCDSJ6w2IrtCKp/Hv5FihzhVo4bvxeO2dX33TltNY3FyyEdtNWcP19EF56cVrbmBKyDOmnj8ASRSj3P1DVKsS55CqIy7le0IfkQJseV5Jc+7ppuN8LOS1X1rn0Qu4H1VCxeFkYD7y3FbE6BhwHpAY15GUN507b3x8s6wmLNfWiuGwrRgO0LODRtTiMJSvCePDXm3HLXQ24/z0tAICxkdq2JvH24/SG8lIoFAqFQqktVFxegnidyxAfAgAYZrGZOsdyaIm2AQAG8n0+51Iu41xyVYaT2jmX/glqiA9hU8v0xAfBzbl0xiZwojsOnuX9VV2d/pIk59LfimRqLpM3d9XbtxKYvFqsN4x2LvQ/DOIXRdPbhrDHCYndtHna45Df/TAAIPzf35j2NqpFfOZpsONpqG++B1ZdfVXrmG3tMJNJ8EcPA3qp4Kllv9BaULlabDHnktxPhqW71V5VQ3XzL/kK93iw7+XGLQm877fb0NIuwQJw/Mg4hvpV1DfyaGwRocgm5IIBzdQw7jqXxXuKYS3ceHszNlwZR3O7gFvvacTaTXEAtXcuvX00aWgshUKhUCgzx9yb9VIuGK8oIm6D6bQdIAU7YkIMMTGGUXkUaTXtLh9srB4Ub+wEl4zmy7ksLrcyuQod8U6sbFg9reMJClqJLYbFBl0WMnEmLVK84a/e8N5q3ETiuAKlOZfB8zBRzuVcdC5rUdCHd8SltmnLtMeh3PcAzMZGiE/8DOz5nmlvpxpC3/4mgGKuZ1UwDPS168EoCrhTJ8u87TmPc8C5DD7I8LYYAezrmLQi0T0PgwBg3PkeqHS9khxkUokZsFuIJBtt0fny83bO5PLVUdTV2/faWErH6VNZZDMGJIlBNFa8B0keONkOAEgSi0iMQzqlwzRr147Ee5xEHFMoFAqFQqk9VFxegnAs54oHIjQNy3Cf3pOCP60R270czA9U3tYE4aDBwkGaobqTWSaQi3Zb1x24rv1N0zueQG9Mb1ist10CUAyhJVUhuQqVbqtpD+IVlyU5l0HncoIw2TnZ55Kp9Ev18Ht2wWLZaRXzcQmFUPjAh8AYBsLf+K/pb2cS2FMnIT37SxgLFkJ98+RVYr3oa0neZWlRHyLM50K+JVD60KMk55ItOpe6qfscvYw6bm+jYlisfT94xZlpGkg22tsbGbbvuVXro6hL2q/9/AeDePpn/bAsoLHFXznaV2nW1HFgeD9GCiNINvAwDAuZ8dqFxnofmim0HQmFQqFQKDPG3JgRUWoOcfZIOw3DMtxiFkSsEXE5UcPyoGtYqbUHEGhFUsNLKximJ3KiKyL5gPAkY3LDYiuE9AbDXMvhrRY7Wc7lfCvoc6E5l2x/H7j+Phir1gCRyAWNRf7gR2BxHEL//XUgl7ugbVUi/PWv2vv6tQ8B/OT5tl6MdbZ45g9WFpdzISQWKH2QUQyL9eZckoI+fnGZVmznslI+MnmY5O0VqVs66pICGAYwGR2CyGDx8jDqkvayPWdlmKyOK69LYPO1Cf/YPM7lSGEYuwZ2YN/QHtQ3Fgv91ArdI2RpOxIKhUKhUGaOuTfrpdQEMhF0C/qYhtuGhEwuW6OtFdcnzlxQvHmFktfZA+xWJF6HpFYEJ7siJ7nj4gPuKe8W9NFKxstNMSxW8jqXwT6Xk1SLvdRbkfBOf0tt84Xl0wJ2YR/lgXeATaVcEVhLmMw4Qt/7NixBQOH9H5zy+sS55Mo4l+SznQshsUDlnEuSc21Xi/UW9CkKuHHHuaxc0IeExXrEpWmA4xjUJXlYMLF8dQSCwKKuwdMrs5PFwq4QWDYgfD2CL6tlne1pqG9wxOVI7fIuvc4lFZcUCoVCocwcc2/WS6kJZCIoOQV9TE9YLBFrcTGBsNMqJCjgQpy9XrAtgb+1RyAs1tTc6pS1dC6DYbESJ7oCOehqkqI9ZALp721ZvnJsJYQJci4nCoMNLl9NCO7FhrnAViT87p0AAP2K6Rfz8ZL/g0/CYllEvvgvQDZbk20Swl/9D7DpMSjveBeslpYpr6+vXA2LZcu2IyHnbq48QCh9UGBHJXjbjHjDYg1PBWc3LLZCQR8359IbFuuItsZmASZjYPXGGAC4ziUAdCwv7bsLwLfvvNNmyLBMJB1xOVpLcekr6EPDYikUCoVCmSnmxoyIUnOI8JPYYlis7rYaKIq1tmg7ACAuxn3rhyqIThJ2x3masRN0T0GfiarKTpXgtgRWREKsw5K6pViZ9BcJKhb0cXIuvWLYc9zV5VxWbkVS4lwG5vRzPSz2Qgv68HudSrE1cC4BwFi+AsqDD4EdGUHkP75Yk20CADOeRvhL/waL45D73380vY1EIjCWLgN3vgfM2Kh/+3MkHJZQ0bm0SluRBMNiiSPJV3QunWqxPufSXn/F2ijufCCJ5MpRjBRG3II+UohFS0exsnO5sQHF/pO6qaPeyeHs66mdw0idSwqFQqFQLg5zb9ZLqQliMCzWMj1hsZ6QNSfvMib4xWXYcTyDE00isjiW8wk3wA5FNcoU9LlQgqG5IieCYRjc1HELFtct8S/r5lyWhsWybPn8y0qIHmc2eKyT5VxW6q85V7ig/oyWBWHPLliCAH3NupqNKfdHfwpLFBH5wufBdp+ryTbDX/p3sGNjkN/1MMwlS6e9HdLvkj98yPe6GxY7R0Rm5bDYYkg8uR6D1WIJlXIu3T6XpqdaLCkSJrBYuIzFC93P4fFTjyGRZHHTnUm89aEWmEzpvQiUVqa2x2tgYVcIkRiHowdy2P7y2KTHXA26qbu55dS5pFAoFApl5qDi8hIlIdWBZVjUSXUA7JxLIri84axdiUVoi7ZheXKFb/JHnMtgWCwRjSzDlgg0r3NZ07BYz34EVpjQCSzmkzlhgN4CRFPMuRQmyrmcwKkM/j4XnUtcQH9G7vRJsCMj0DdeAUjS5CtUiblkKfIf/wSYQgGx//unF7w99tRJRP79X2CFQsj/wScvaFtGhbzLuVYtltyf5Po2LX+1WJbhwDAMOIbzVYtNhpLuNirmXLKl1WK9OZs5rViM6Xy2B7ff24QNW+LQnPznYOGwcuJSt3SEIxze8+F2cByDJ34yhOGBCxeDgwMFPPGjIXSfLtBWJBQKhUKhzCBzY0ZEqTlXtV6Dd658N+KiXaHRGwLnzVMM8SG8efE96Ix3+RwLknMZdDFc55LhSkJLK/W5rAVkHMEiQkGEYBhvhVYkQSeyHCSkGCiTczlJQR/vfueK8PByIQV9+DdeBwBoV19X0zEBQP73/gBG1yJIT/wM0g++O/0NWRbif/IHYBQF+f/vj2F2LbqgcbnOZSDvcq4W9CH3S7mCPoD9sMS0TOimDpZhcWvXHeiMdwEA6qT6stsmbX+8BX28eZMFPe/+fGLsuLt/IiJJWxSC5VnX3Z4Tut+1NIytdzfAMoFtL46WLFcN42kdP/h6H86fk3HsSAamBRzcm8Xp02l8+z/P45mfD2Own4bIUigUCoVSS+berJdSExiGQYgPuZNJwzLciVswzJTg7VsZ5iNll2W9zqVHaPIs74jLYm5XLSHbm0xcRviof7yeS5zzCb5qnEvBFQ2TtiIJiAvvfue8uJyiMBJe3wYA0K6pvbhEJILMv/8HLJZF7JN/AO7UiWltJvzlL0J84TnoK1Yi/9u/e8HDqtTrkmEYiJzotvyZbcjnSoRgsc+lPySeZ3nolg7DMsAxHGJCDLd23Y73rvkAuhLlhThxLtUyOZcAIOuy+/P5bA/yWt63rBkQk94+l+5rHjfzqhvqIEoM9m7PIJedeluSl59J4dDeLH74zV4M9ClgLAaaauGXT/bj+KE8Xn5mFN/89/NT3i6FQqFQKJTKzL1ZL6WmMAwDlmF9YbHBUFeC16UkOZfBypGsJ+yOCC6e5SGwgpPDNdPO5cST+BAf8olkLuAguuOvsuAQ2dbk4tL/O9n+XBSWwIWNS3jjNQAzJC4BaNddj/z//iOwuSwSD78TzNDQlNYXtr2C6N/8BSxJwviXv1aT0F2zswtmLG7nXJp+kXTHortwc8fWC95HLSCfK7luyxX0AeyHRpZlQTM1371QKd8SKIaJ+8JiPeIy73EuLcvCUGEQuic/M+hcmjBL8zA9gjMc4XDldXXQNQuPfW8QY6nqq8cqsok9b2QAACMjMiwLWLYkCZ5nYDAqbntLI+J1HHJZA7pe6qBSKBQKhUKZHnNz5kupKRzD2dViHfdCYMu3BiC5mAzDoCXahmQoiY5Yh2+ZonPJucJT5EQIrADTMssW0qnVMQBF92QiYmKsZL3g79U6q2E+XDa/dNKwWPhz3+YaXrdyKp8VkxoBf/wYjMVLptXWo1ryf/gnUO69H/zpU6h7z4NgBgerWo/fuR2J970LjK4j+3f/CGPDxtoMiGFgrF0HJp8Hd+aU762mcFPFUNKLTfHhjy0SLTcstphzCRQfMFmWVfU1Ws659Fdh9ecyaobma1tSknNpGiWRCME8zGu3JpBq3I2dR07h/332bNVhrHu2j0NVTCxeHgbD2edgwxWNuOmOBtz8ljhufnMDEnX2OSjkqLikUCgUCqVWUHF5GcAyrJ37VCbn0gvJV+QZHjEhhvuWPYCOeGdgW0VHjnNdEtEVpoqhgGGYmuegcVXmXAJAVCiKSzYYruoJ662G6xfchFs6by1dvsJ2i+PlnMXmRi5ekOlWNxW2vwFg5lxLF47D+Je+CvWGmyDs34vkW24Hv2fXhKtIP/0J6t75NrDZDHJ//GeQP/DBmg6JhMZyB0v7Xc4VyPVO7uXSsNjStiATuZVeGIaBwAruAyTAHxZLiAp2aLpiKNAC7xOBSRzVcg+6vO6lIqZwxX0ZYOMu5NQ8fvI/A9B1q2SdIHvesHt2vvltTbjvPU3YcGUMDckQGpMRROvt9cMR+1wU8qXhuRQKhUKhUKYHFZeXARzrOJduBdVKYbH2RG8i4eX2ufS0NBA4wc3xMi2zppViCdXmXAL+tirB3Eoyka50DoI0R5rdQidegsdY4lxOUcRebPw5l9WPcaZDYn2EQkh/98eQH3gQ3LmzqL/7NsT+8PfBHToIEBfMMMBvfx2JX3sYid/4IJh8Drk/+4sLrg5bDn3dBgCleZdzCfJZ8sGwWDMYFustblXdvQDY97pqqK5ILFfxlTzc0UzV1xMT8Ihdkv/N8iX3iO6pQKuZGgSBxYYrYzCXHkZ/j4IXnhyZcIymaWGoX0U4wmJBZwgrN4aweHkEPGvnhpMxh6NEXFLnkkKhUCiUWlH9rIIyb+EYzs2vAio7FcRFmMjJKIbdFQv6BCu0EueilhDHpZrCKdWExV6o6As6kuUcys54F0JO7upcY7qO6kUVlwAQCiHz5a9Bu+FmRP/mLxH+1tcQ/tbXYNbXw2xoBDs8DHY8DQAwFixE5p//Hdqtt8/IUNyiPgf3z8j2awF56FFSLZbkQrP+sFjvstUgsiLyyEMzNYicWNa5jIkxDOYHoAbCYgHHuWTsfEvAvg95lofhy+M0AOe2Jd9ZDMNg0bUZnO8bw8vPAcvXRrF4WbjsGDPjOnTNQnM7jyOpw0g4FbNZT564aZkIR+xzRZ1LCoVCoVBqx9y0VSg1hUyoSDXHSpNJbyXJybblzbkUWBGCJxeyNdp24YOuMDahmpxLX1hs+XDValqRTERJX8syt9KtXbfjTQtuuKD9zBTe8VcdIqso4PfsgllfD2PlqhkaWRlYFvKvfxipN/Yg+5efhrZpMxhZBn/qJBhFhnrTLch89vNIvb5nxoQlYDuXFsuC37tnxvZxoXhbkTAM44pLtw0RQ5z7qbXlIZCCWqppu5emZZZ8X0Sdis22c+kvwhN0Lr0REARv70yyfkSIIBLlsPrOMcACfvLf/RjoK59/mRqy10kl9+KNvtfwet8295jJ+TFMA1YoD4XNIJ+j4pJCoVAolFpBxeVlAAkNJS4CX7Ggz+Qho95qsURQCU5BH0JrpPXCBx2AjEmaYs5lqXPpHGOV1WIrUVLQZ47mVlZiOn0u+d27wCgKtKuvBdiL/9VhNTSi8Du/h7GnX8Tw6T4MnRvE8LlBpH/8M8gf+mhNqsJOSCQCY9UacH29YAf6Z3Zf04TchwIrgAXrirlgiyCvIKxUPbocohP+rhmqG14ajCaIiXZYumqovvxMexy22PU6l8H9e3MuyfqrkqvBMRyYtn5suDqM8TEdX/l8N04dyyNIatheJxs5BwDIqBn3mMl3oWEZOGT8CmeiL6GQN3EmfRpn0qerPg/VktfyOJ0+NfmCFAqFQqFcIlBxeRlAhJRq2E/6+QrVIasJi2U8uYRFN5H3rdMyg87lZK1IACAuenIuAyKyNdqKmBgr6Yc5VUpakUyzQM5s4RXD1Qpj8aUXAADajbfMwIimCMcBoVBJYaWZRtu0GQDA7919UfdbLa3RNrxpwQ1Y27jeLeQFFPMYuQsMiyWRA6qpuW5o8J4kYfHqBDmXpicHtNS5LOZAkvWjQhSL6hZDN3VsuCePW+5qgK5Z2P5KumSMqSENBXYU0bi/MrTXuTQtExBU6KyMTE7Gr3pewK96Xqj6PFTLvqE9eKnnRQzlp9ZOh0KhUCiU+QoVl5cBJOxNIeKyYlgsEZeVXT1vi42IEAFgF9AxPW0GvGGptaIrsQgtkVY0hZsnXdZb9CcYrrql9Wo8uOKhmjuXc7Vwz0QQUVmtMBZeehEAoN40B8TlLKFf4YjLPXNTXLIMixXJlYgIETAMUyy8Yxq+Pq/+gj7V3wtur0tD9bU28l7/5P63ncvy1WLdvpssV/J94y/oQ6rcClicWAIAGCoM4E1b6wEAA+dLQ2NTwyrSYjeisaJLSfZF7nsTJjjRHksqO1b18U+VvJ4DACiGPGP7oFAoFAplLjH/ZsSUKUPEpKLbE7FKYXDEuZwoLJZMzliWQ0esE29ddj9WJFcip2VrOeQSOuNduHvJW6ZcIEc3q2+8PhVKnMt5FhYLFEVlVUPP5SDs3A6zsRGGU9jmckQnzuUkbVHmAgwYTysSwycipx0W63xHqKbqa23k3Z63WmxQVFmwkNfyrmi0Ba9fXJq+sFjbuRQ5ERJn3/u6qSMU5lCX5JEa0aAo/mqvQ0MyxoRziMT8x2WH8jPuPjjBPjcj+dGqj3+qKI7zWq7wEYVCoVAolyK0WuxlQMSZ7JEn+OV6y9mvT17Qp+hcsmAYBg2hRgDAFS2bMKqkcMPCm2s27guhNdqGgVw/ElLdjGx/OmGlcw1XXFbhXAqvbwOjaVBuvGVW8i3nCvra9bB4HsKe3XY7lDn82bMM6+YsGqZRUVBWCpMvh1vQx5Nz6a3CyrM8OJaDwNotSwq6nRMpcRIUQ4GsF/Czkz8FYJ86b1isyIm+7QLFnEuBFd02SKTgT9tCCelRHUN9KjoWh/D6S2M4f1bG2fQZMGENy5sWoTfb626PjM3erg5RsreXkkcwM98SxVQEb5EiCoVCoVAuZS7fWeJlBCnFT6gUBse7zmXlySbHlu/f2BBqxIMrHpqRYj7T4c5Fd+GhVe+ZkbYohKmGlc41pjJ+0QmJ1S7jkFgAQCgEfc06sMNDYHvPz/ZoJsSbc2lYfnHJM9PLuSTFexRdhm6WijYSkk76YRb0AgC4IfSkuA6B87ieEd5exuvykZxLb143eb91gT0WUjX2yR8PYd+ODAaZU4jFOaxqWOMPkWc4MM6fPN3UIIj2z2NK0bk0rdr2vFRd55JWpKVQKBTK5QEVl5cBXnFJWhSUIxlKQuIktEwgEOukJHiWdx3LuQrLsAjz5fvg1WwfKC+05wtk3NU4rzTfskgxNHZu5l0SyOdLxFjFsNgpOJeuuDRUXwVaIlZFp+AP+T+jZsCzvFsIKLgvlmHdcNe48z1l+pzLYs4lCdcnQq11gb3N/vMKTNMOcc1xQ8jzI2iM16E9usAXRu8t6KOZGgTBvu7H1JkTlyTPnYbFUigUCuVyYX7OiilTwisuJ5pIxsUE3r36vVieXFFxmaZwE96z+n1YUre0pmOcj8x355Iw2fiZ0RT4/XthdHbBXLzkIo1q7uIW9ZmjFWMJ5HMloaXeIlb+n6fgXDpiTTHkomj1tPggBX9I+KxpmQjzYTeklbQgcffNcNjSdhVu77oTTeEmAH6Xz5tzScZMwlxb2x3nsldBZlxHlh/AueirYBjgmsWbwDCMr02KPyxWA8MwEEQGBbWYF+oNya2EZVl47twvsXtg54TL6abu6TM6M7nfFAqFQqHMNai4vAyIiXFfc/ULZb46dbVmKs7fXKRY0Gfi8QsvvwTGsqDeePOczjG8WBDnUpjjRX2KzqUjLpnyYbFTci4dB9IrLnmmGNoqueKymNcd5iPutWYEwkNJhMHCeIevByWBiECe5d0xk0JCDc0CeIHBQK+KsREN58M70drF488+dg8evP0qZzwe55It5ne6bVREFoYB1/kMjq8cOS2LnkwP9g/vm3A54loC/gq4FAqFQqFcylCVcBnAMqzbHqAW4pLiZ746l9U6r8IzTwEAtK23zfiY5gP66rWwJAn87l2AWdswylpCetKqRqlz6cu/nEJbHtETFkuK1PAs726DhL+S/wEgzIfda80MOIPlxuRrRWJoxSrWzrK6pUMxFDzX/TSk9hQU2cTuY6egszIWxhdgU/tGd30pEBbLeMJiAUAQ7XGpionBfgWf/6vTePmZlNsyheANl807eaSToXrFJc25pFAoFMplAhWXlwkJyQ6NnajNCGVqVOv8zVVcUTnR+E0T4i+fhsVxUG+9/eIMbK4jitCv2Aw2PQbu+LHZHk1FyOdLnMtKvS2n8p1AchhVQ4HhCGs7l9EfFit4CumE+HDRuQzkNHqjIMiYSCsSy7Ls3EhPdWue5WGYBobyg+jN9gLNAwCA148fBgCsbFjpH68nLNZuReJ3c0WnqI+mWjh+MId8TsMzPx/BLx8bdtc7kz6N7x35NobyQwCAvJab/EShWMwHKLqtFAqFQqFc6lBxeZmQEO1i+wJXvg0JZeq4YbHz1Lmsavy7doEdHIB2zXWw6pMXaWRzH+3qawEAwvbXZ3kklWEDLp23n6SvFckUohlYhoXAClAMxXUYOU8lV9IHU/QIwojPuSzNuXS37VSiJmGxZNzeiq8cw8GwDPe9ukYOBjScGjkDzuKxonWxb/vesFg755K4uU4VWse5TA1rSI3oiNUzECUGr/8qDcOw3cvhwhB0U3eryuaqFJc0LJZCoVAolyNUXF4mEHE5lZ52lIkhk/f5moNaVVjs448DANQ7774YQ5o3aNdcBwAQ3nhtlkdSmaC45Cv0tpxKziUASLwE1VA9jijv6VUp+f4HSM6lXzi6+/aGxQaqwRbH7XcudVN3cybrG1nk+WGYMBHX2tHY4K8QLfHFcXj7cXpzLgHgxBFbMG5+UxwLu0IwDAvDg7YALbYTsdepVlySYkSGYeHl54ZwcE9mkjUoFAqFQpn/zM9ZMWXK1EmOuGSpc1krXHE2z8NiJxz/z38OAFDvvOtiDGneQJxLfk6LSxIWO0krkinmYYusLdiIyOJY1t1GsBUJYIfSkmssKC7LhsU6yxDxKpRxWWXDrvCaSHIwGaclihVCXdJ/LBLrrRbLlQhu4lzmcyYYBli3OYq2hU4V2vO28+i2E7GIuMxWPjkeZN1e7/jhHI4dHcdzT4xUtR6FQqFQKPMZKi4vE1oirbiieRPWN22cfGFKVbjibJ6GxU42fmZgANixA8aixTBWrrqYQ5vzWE1N0JctB3/qJJjh4clXmAWCrUjYCu1HplLQBwBCjhuYklMAgAgfdavIkpxMoUK1WGuCsFgiHIkAJYWIvMWBSGivotviUpAsRBP2tkWBQzji/5M2WUGfcLS4/01XxxGOsmhdYB9ff6/jXBIH0hHpeT3vrjNRX0zNVJEZ13HicB4mDIwMasiM0/BYCoVCoVza0OoulwkMw+CKls2zPYxLiksmLLaCcyk6VWLVO++iLUjKoF99LfiTJyBsfx3qPffO9nBKCLYi8YbCTrcVCVAMeR11xGVcSqA+lERMjKMj3gkAvv6S3mqx5VqRFH/2h6x6e1y64w44l4ZloKGFA3qBRFwsuZZ9BX1Y3hMWa5+TjkUhSCEWDU0CBIGFCdN1Lvsd5zIYFpuRMzAMC6MjGraPjeKq6xrAcUQ8W3j+yRT2vDGO5htT2Lk3DcsChJAJ5ICzJwtYvzk+2SmmUCgUCmXeQsUlhTJN5rtzOVlBH/EXTwAANBoSWxbtmusQ+t63Ibzx2pwUl0GXzlchtoKLWQ2kSI5pmeAYDlE+CoZhsCJZrNQqBMNiUT4slmM5wOn6QRzUYEGfcrmixLk0LQsNzba4jCeK+wyOFbCPn5wD4oqyLIPW9qIANU0Dza0iWK4YFnv2bBrbtg2h4d48dp4dxU+e6CZDRmq8D7vHXsWN1y7G+qYNeOZnI3jlObvwz6FnB5ARDbS0i1i+OIr0L6i4pFAoFMqlz/y0XCiUOQCZvM/XnMsVyVVYkVzpc4YITDYD4blngLo6aDfdMgujm/u4RX3maMXYYlgsqerqqczKsO7DBX6K7Ykkz/USE2Nlr3/RCYsN8SHfvsxA/8hyOZck/LSYc1kMsSXHUNA9zmWr/VoyWRSJBIET3H3YLVNIYSF7H23RNsTFOOqlemd8JnieQXOriFzWQGZcx5kzGaiqhQN703j1lT5YACIxDk0tAnRGxmuHjuLk6An09ch45blRhCMs7n57M/iwjuZWEVddX4fGVnu/Z09O3CPz0MhBPH7qZ65LOpfJqOPYP7S3xI2mUCgUyuUNdS4plGlSdC7n5zOa1Q1rKr4n/vIpMIoCvPvdgCgCplVx2csVY/kKmPX14PfuBhQFkErFzWziFq9xwjqD/Sx5lodqqFNqRQL43cC4mCi7DAmdjfBRAMV7xQw6l75WJMS5tPMYy+VckmNQDOJcGli8IoT1wzFs2VRfYbwSCnoBPMu7RY5IqGtrpA1XtGzG632vYUwZgwl7320LJQz0qujrKSA1ZgvC0yezSOTGEG3jcOtbGsCAwajJ4eSwgd4eGTsG0wCArXc34tqb6zG8sAEjigEGDEQRSDYKGOxTkcsaiMbKhyKfHT+DkcIw0koajeHGssvMFQ6OHMSx1BE0hpuwILZwtodDoVAolDnC/JwVV4miKHjnO9+J+++/H29961vxwx/+cLaHRLmEYOe5czkR0mOP2j+8852zOo45DctCu+Y6MIoCYffO2R5NCcHKqFygcA8RdlNuReJxLhMVxGWYD2NL69W4snULAFSsFlu+FcnkOZekgqtpmbBgYsnyCOoS5cX9uqYNWNu4znFQ/XmdRNByrrNqi8v2DltAHzs+juy4E6ar69DYPBZ0Sq5Y3nCN3fpk/65x7NuZAS8w2HiVHfaqW6otLDkRuqlj2eoIAOClX6bKjhMAZL3g+38uQ8ZIhDqFQqFQKMAUxaWqqvjSl76EI0eOzNR4aoooivjmN7+Jxx57DD/4wQ/w5S9/GePj47M9LMolQlV9Iucj2SzEZ5+GGYsDb37zbI9mTqPdcDMAQHjpxVkeSSnBgj5BEbkiuRIrkiun/HCkGucSANY1rXcdrUo5lxO1IimXc0nyQ4k4NCzD3SbLlv9ztrZxHa5qu8a3D7eCLvxFuci2lq60RePO14dgWQDHASbjiMuu4vF3ruDR2CwgPaZCUy1suDKOcMTJCzUUcAwHiZNgWiZuenM9pBCL1381hvPn5LJjJaJZNqYnLmVdxmt92zCupKe8blbNYFvvK5D18mMLQsZKQowpFAqFQgGmKC5FUZxXAo1hGESjdliWqqqwLAumWbl0PIUyFeZ7tdhKiM/9EowsQ7v7LXMu1HOuod7oiMtXXprlkZRSdC5Lcy4BYFPLlXjTghumvF3RU4G1knNZQqBaLMMw4FgOCam4PldS0Mcetzfnkg8IZMMsistqHNjgvUr2SV4nrVKa20TE6zjkFFtALVoWhhi2UN8GxOuK+zGg4bpb6rF4hYRYgsN1W+vd91RThciJrjgOx4A772+CZQEvPztaMjbDNFwXsFClwAvSm+3BsdQRnBg7jlE5hcdOPIKBXH9V6+4f3ofjo8dwOn0KlmVNKlBJUSWd5lxSKBQKxcOUZ8UbN27EwYMHZ2IsJWzfvh2/9Vu/hRtvvBGrVq3C888/X7LMt7/9bdx2223YsGED3vWud2Hfvn2+92VZxv3334+tW7fiIx/5COrr6y/K2CmXPsTvudTCYklIrHL/A7M6jvmAsW49zGQSwo43gMLcCmUkbmEl53K6kD6XgN2GpBqIQ2g5OY2bmjfjPavfh5gYKy7jFP5xw2IdoSVw3pxL/zGYlunmaE5LXDJ+cUkKDjEMg6UrIzAZ+9w1NAm48+1J3PlAPRgwbj9P1VDAsgw2XZvAH/zVErfyrGZosCwLEieBd8SxZmpYudZ+2JkZK3X7SHsVoBhyalkWToweR07LTXpsQFHoybqM/lw/xpQx9Of6Jl3Psiz0ZLrtsakZHB09gkdP/ATdmXMV1yHO5XwoPkShUCiUi8eUxeUf/dEf4bvf/S7+53/+B93d3cjn8ygUCr5/tSKfz2PVqlX4i7/4i7LvP/HEE/j7v/97/M7v/A4eeeQRrFq1Ch/96EeRShVzWkKhEB577DE899xzeOKJJzA8RxueU+YfxVYelw5MZhzSL38BMxqDduvtsz2cuQ/LQrv+JjCqOueqxgZbkUy1KmwlSFgsaUNS3Vjs/93KogxTtpAQx3Ae59IRl95WJIF1TMt03cZqIgiCApR1e70Wcy5PjZ3AmfRpLFsVgcHYY0jUC+BFCwxvjy3EEXGpuut5HzIppi28RE5y3VbD1BGO2PvJ50vdPsUrLp2fBwuDeLX3Zewf3leyfDnIuZMN2d1eMBS5HCPyCAqOoM1q4xjKDwIAzqRPV1yHhsVSKBQKpRxTnm28613vAgB8+tOfxt/+7d+WXebw4cMXNiqHW265BbfcUrkNwte//nW8+93vxjve8Q4AwF/91V/hhRdewCOPPIKPfOQjvmUbGhqwevVqbN++Hffcc8+0xsOyc0tGkPHMtXFdLrAsC4axQ+sulc9AevwxMIUClIffBzZqFyC5VI5tptBuvgXS449BfPUlGFtvne3huPDO9WlYOhgG4Dm+Jp9liJWQDCcRE2LguOqeT3LOWEzGtMfiuWe8Y+I5Drqpg2UZqKYKhgHCQthdRuAEeAMFTBgwYVZ9fDzH+9Yn6/AsZ7/OWHil1w5xfnDVB2AwGgSBQTTGwYABA/a5DAkhMCqgW5q7HssySCtjkLgQDOd1iRfBgLGPHQakEAdBYCDnjZKxqqbijk0xZLAs425Ht7SqPjvLOb+apUIxZd/YJqI31+PuO6fnwDEFMAzQn+8Fw5RGZ6iGCss57yZKj2WuQP9GUmYSen1RZpL5fH1NWVz+3d/93ZwIA1RVFQcPHsRv//Zvu6+xLIvrr78ee/bsAQCkUinwPI9EIoFsNos33ngDDz300LT2x/MsGhtjky84CyST1bkHlNpSNxpB2gqhLhGZs9fGlHnErqgc+o2PIORcV/T6moS33g188g8Q2fYyInPoOqgvRBFTQnbFUoTQ0lSHxmhtxvehhvcDqD4kvL4QRUwOIRaVkGdCaEjG3OvKe33VJ2LIqlk0NsYg9AExNoSFLU1ubmSjGUcsG/JtOxYXEdNDaG5MTHp8VlhGbLC4flNDAo31MTQa9nZjCRGxjP1+w0IOdz3YgJNqA+LxEESORzjMI2aF0FKfRI4ZQzjGI6aFwLM8EvUSHt37FBbEF2BT2ybEYiE0J+thWiZGrRAS9SE0xmIIxxhkxkwkk1GwLIMDe9I4uGccm97CIhaz9y2EgcbGGDJcGLGREGIxccLvmJ7xHrRGWxFXJcSyIYghBlKIRUwNIRaXJv1+Sg8OIRazrxWwGkwwiDnurBkuoCXa4ls+o2TcsUbjE49tLkC/wygzCb2+KDPJfLy+piwuH3zwwZkYx5QZHR2FYRhoamryvd7Y2IizZ88CAEZGRvDHf/zHMAwDlmXh4YcfxurVq6e1P103MT4+t3KqWJZBMhnF6GgOJu1DeNHJZhRkszIyjIyRkexsD+eCYXu6Uf/CCzAXdmBs/Rawozl6fVVDSyeSLS1gtm9H6kwfEI/P9ogAAJlxGdlsMdQyPVoAJ8/OdTo+XkA2K0PUc8jKMtJjBYwKpddXPqchq8gYHEpjaHQUDMNgbLT4vZtJK75jAoARZhzZrFzV8Y3Jef85GStgxMhiPG2PbyiVdt8/1duDBUsZpIY5ZLMyOFaDpfDIyjIU0UQ2K2MYaec9Dn1DKaQzOVjqINr5UWSzMgqSDt007G2PpGHkeRyJ/xxsoQO955chFGbxva+dw+iIBr1tHNmwE8qqjGJkJIuRdAbZrIxRJlvxO2b/0D7sGtiBFcmVCPFhZLMydHkMqmQhm5MxKlZel3B26DxCXAgRIYKR7IjvvX1nj2Bza8T32nBh2D1PI8I4RiJz8/uP/o2kzCT0+qLMJHP1+kokwhCEiWscTDsJ58SJEzhw4AD6+/vxjne8A83NzTh79iwaGxsRi83eU0zLstyn6StWrMAjjzxSs23PpQ/Xi2lac3ZslzQWA8uy/78Uzr/0w++DsSwo73gXTDCAc0z0+poc9YabEHrkx+C3vQL1jrtmezg25Pp0YMDO2udomYBl2TmXlmX/bJa5vliwsCygoMlQDQ0JMeEbMwvOd0wAoOgqLKu642Ms1n9OLGcd53VV19z3U4UUZF1xf9cNA4rzu8hIsCy47xum6TzEBGRNhqzLsCxAYERYsLep6CrGCmmwooECl0Iua2CwX8HoiJ0Te/r0GMJr7H3JmgzTtKAbOiwL0A294rEdGj4IywLOjZ/D0rpl7vkTGNFZ15jwvGiGBtO0IAoSonwcw5YtLhtCjUjJI+ge78YVzZt96xRU2T0v2gRjmyvQ7zDKTEKvL8pMMh+vrykX9MnlcvjEJz6Bt771rfjzP/9z/Ou//isGB+3k/89//vP44he/WPNBliOZTILjuJICPalUqsTNpFBmArfP5RwIE79gLAuhH34PACA/9J5ZHsz8Q7vZzrUUnn92lkdSpLTtRm0K+kwHco+4PSkrFN/hnKJDpDpqiA/73i9XBIhUw62moA8baMfCuq1I7PGRIkIAMKaMuUVrCLIug2d5dxykoq1lWTCdwkKqqUI17DEJrAje2Ydu6VANBaLIQGdUFPIG9u/MuNs+d77Y4su0TCiG4lavJRVxy0EK8TSFm3zLZTXbTZxMXHqLD8XFOMZGNWTGdXQluhDmwxhVUtCc4wmuA9BqsRQKhULxM2Vx+ZnPfAa7d+/GN77xDezatQuW5zHwLbfcgpdeujj93kRRxLp16/Dqq6+6r5mmiW3btmHTpk0XZQyUyxvS6uFS6HPJ79wO/thRaBs3wVg1vdDxyxn1tjsAAOJzz8zySIowgTrGtWpFMh3IPVIUl+UfyJDcypwjjCTO32e1nLgkFVvZalqRBP7kkd/JuqSyLgCMKaNQDSK8RHf8PMu7y3vFp+5UTbUsC3k9565HxmyYBhRTgSCyMFgFuYyBg7uzYFggFGYxMJiBrlvuvmS94J6vShVfvfsXOQmmZznTMmHBwi8eHcR//FPlliJEIIucgBCiePW5Ubz24hjiQgItkVZYloUR2f8QV9GL+6XVYucX/bk+PHbiEYzJpb1WKRQKpRZMeVb89NNP4w//8A9x3XXXgeP8f8wXLFiA8+fP12xwuVwOhw8fdqvP9vT04PDhwxgaGgIAfOhDH8L3vvc9PPLIIzh58iQ+9alPQZZlvP3tb6/ZGCiUShRbkcx/5zL0398AAMjv//XZHcg8xWxfAH3tevAnT4A9U7l9w8WEqdDTcTYg9whpRVLpniFtO4hzGQ44l+UEpDaFPp6lbi7re50ILQBIK2lXvEX4Ys6hwAquCPaKUcMsuoYZNVNc1nFjdVOHZmgQJRYGo+HksSxyWQNLloexdGUEGlSMjqiol5IAbJeUuKFmBXFJWobY+zfc5QljIxoG+gsY6FUhF8pvQzWLLmt+RIJhAHLBRH44hOaIXchnMD/gW8fbNkU37ZoGA/kBHBw+gJTsz9mkzC16s+cxpozhfLZ2czUKhULxMuU4KUVRUF9fX/a9XC5XIjgvhAMHDuDXfu3X3N8//elPAwA+/vGP43d/93fxlre8BalUCl/4whcwNDSENWvW4Ktf/SoaGhpqNgYKpRJkgjzfw2KZ8TRCj/4YViQK5R3Tq6ZMsd1L/tABiM/+EvJHfnO2h+MTUiInuo7YrODcIxYs3+9BRMepHFNsVyXE+yvD8uyFicvgMuR3V1x6QjxNy8So4+6E+TDGlDEAtggj63nFnNfBy6pF55UIVN3SAdOCINrH3t1jC9CWdgkNTQL0kwpGBk3Ur0liMD+Agl5wt+/2Bw0wkO93fz56KI3UoInEch2xhP2nvfuMAouxP/fxMR0QNAzmB2BYBrrii8CxnCuoBU7EWG9xStB3jMMVW21x6RWxACAb/rDY/cN7sWdwNwAgmU7ivmUPlB3vhZLVsogJc7sy7VyHXOMZdXySJSkUCmV6TFlcbtiwAT/96U9x8803l7z31FNPYfPmzWXWmh7XXnstjh49OuEy73//+/H+97+/ZvukUKqFTEiDoXbzDemH3wdTKKDw/l+HFU/M9nDmLertdyLy7/8C8bm5IS697mBDaHYfuAWdy0r3TEK0rz/ilJXkXDKlf7JIagZXRngGCS7j3sOuuFRL1hFYAYJHmAucAK5MKLxXAGY1x7nkijmXhqlDN3UIor3u+d4MGMRQ38Bj6aoIjF8q6DsLRDjbJZUN2XUsK4XFDuXtKB4LFna8NgZdYZE9kUI0zqG+kcfAeRUi7DL2w6kcXhx/2s3RvH7BjVieXAHVOWaRFTDSw4GzBPBmCCcPKbjtng5wDIehwpCvWJ5q+MNiifBmGRaj8ijGlTQSUl3ZMU+XofwQnjz9cyyrX44bFt5U021fTpAc5XE1PcsjoVAolypTnhV/4hOfwNNPP40PfvCD+OEPfwiGYfDiiy/ij/7oj/CLX/wCv/u7vzsT46RQ5h6XQkEfy0L4W18HAMi/9qFZHsz8Rrv6WpixOMRXXgJkefIVZhivc9kQapzFkXjE5SQFfeKSLS5JWGmI8zuXwYI8vveqKegTWIYtcS7tiXedVOe6pnEx4cv1FDw5l150j3NJ8kAlTvSFxaqGClGy95VXbZFXlxTQ0MyjoQ1QswJ6T9pupex1Lj3i0rIsGIbTusXJ7cxnDSiqDiliIRRmkc0Y6DmjQNMs1y3e0bcTBb3gOtgFo+Abq8hJ6DunYnHuFqzlb0Jfj4LsuImmSDNUQ0XaEZAAoOjesFjddT87410AgLOZsyXn50IhDxxOjp3AYMBJpVQPucbJPUahUCi1Zsri8qqrrsI3vvENqKqKv/mbv4FlWfi3f/s3dHd34+tf/zo2btw4E+OkUOYcxH2ZzzmX/M7t4A8fhLbhCuhX1C7q4LJEFKHddAuYfB7Ca69OvvwM4xOX4dkVl0FRV+mBTEL0u10lYbFlnEtgavmk3rGQ9Rg359KeeLdG2/HQyvfgLUvvw21dd/j2K7BiWSFrlKmaKrAiBFYAAOiWAcWpFgsABmMLsvoGAbIuY8nKCDhLxME37NdlXXZFpTf89pFvD+ALnz4DTTVdYTg6osFkDHQtDeGO+5pw9wNN2HhVHAs6JaxcH4LMpnF05AhETsT6JvtvtOk4rUQY6jKLsZSOjqYmbNrQCgA4eSTnut6jSrEAjOxzLg03b3NZ/XIAQPe4XUDoTPo0njn7lDvOC6Gg592fX+971VdMkFI9xLnMaTla6ZdCocwI06pNv2XLFnznO9+BLMtIp9NIJBIIh8OTr0ihXEKQ+XGwcMp8IvzVLwMA5A9+pGIeHKV61NvvhPTkzyE++zS0rbfN6li8FVkbZ9u5DFxbk4XFEoLOZblqsUB1IbHusgznijUiErlAtVie4cAwDJrCTc5yxe3bRXpK91euXYi3WqxuatBM1Q2L1VkiLnnk9Sxa2kQkEyIGzlkQUhrUOtVXaZZw9mQB6VEdg/0qNFODyIkYS2VgAahrts+zILJYtDSMRUvDkIcF9PNDEAsmVjesQUSIOOO1t0nCYlP9tljrWCRh8fII3ngpjXOnZSxZKjnj9zqzxSq6hmm4ArU10oaYGMNwYQg5LYdT6RPozfbifLYHS+qWuuvrpo6CnkdcrD4MnxR5AoBReRRZLTOl9YNs738dEidhY/OmaW9jPuLNK86qGdSHkrM4GgqFciky5Vnxtm3bUCjY4TShUAitra1UWFIuS+Z7tVi29zykxx6FmUxCfse7Zns4lwTqnXcBAKRfPAHMsrPivS6DjuDFJniPVHIuRU70uZXBnEuvqPNuYyr3oHe9YkGfidu2eAsJ8SxfVswGXSC7ZQnr9hfVTT3gXCqQQizCEQ5nx0+DYRhcu7kTjMXi1LG8U/2V9Ll0HEzTQiZt76e3NwvLshDmw0inNFiMiWRjqfiWIoAFE4WCiRAfdl1Ysk3i1g522+J4YVcInUvsz6D7tAzecV69lXEVQ3GFs27pUE0VDMNA4AS0RdoBAGPyKApO+CzJDSU8e+6XeOT4j32htpNB+naS0NuUnKp63SCmZeLwyCEcGjk47W3MV3TP5zhOi/pQKJQZYMri8sMf/jCuvvpqPPTQQ/jsZz+LZ555BqOjtF8S5fKjWC12lgcyTcJf/yoYXYf8ax8GIpHJV6BMitm+ANrmK8GdPQPu8KFZHYvX6ZntvOCg+JsoP5IIYYZhSvpcMgzjCj+RLRbZmapzGRxH0EkNbs+fcylMmnNJlgOK7VUMJ+eSOJcGo6K+gYdu6jg2ehQsw+LeG7YgEhbQ260gm9V8LUgM00Aua4B0PDl/3hZbAiMhPWaAEyyE46XHG44wsBgDct4Ax3Du8ROnlVSz7T5hj3/pqgjiCR7JRgHDAyp0xXFaTQ2jcgrPnXsGuqkjxIXAMzwsy4Ksy+7xEmdUNgqQneJBQwV/juRAzq5y253pLh1wBXJaFizDYkFsIQBg9ALEJTlm1VBL2rdUS1oZw/7hfdNaf0wexZn07LQs0qi4pFAoM8yUxeWrr76Kf/7nf8aWLVvwxhtv4BOf+ASuv/563HvvvfiLv/gLPPbYYzMxTgplzhGsNDmvyOcR+tbXYPE8Ch/66GyP5pJCveetAADpyZ/P6jiigl0lNDnLlWKBUnE7kdNIQmNDXKisKCbCz+twTifnkmVYd/sl/S8DuZ3e3wVOLLs/M9AuhAhjyRlnQZehGio4jgHH2c5lfYOAk2MnoBoqFiUWoy4Sw+Zr62FZwOED6UCrE8NuJ+LQP2A/PEgPWbB0FnVNDCyUCh2Gt8CJFgp5ExzDuufPzbk0VRTyBlJ9QGOzgMZmW7QT93K4115ON3UcHz2OHkcQtsUWuK6saZluoaCw0xM0rxcgO87lqJwqm9+XnaSojGVZODh8AONKGrIuIypE3euZtImZDt6CRIonf3QqHBw+gN0DO12hPBUeO/koftXzwqTHH4S4zBeCdxtT3T+FQqFUw5RnxclkEnfeeSf+5E/+BD/+8Y+xfft2fPGLX0RDQwN+8IMf4JOf/ORMjJNCmXO4zuU8DIsN/ej7YEdHodz/AMwFC2d7OJcUyt33AgDEXzwxq+NYWr8cN3dsxV2L75nVcQClYacT5SmTirHBYj4E4iKKHldzKuKSLOtzMANO5eTOZek9H2wXIrhiKwye5ZFRx13XSBBZ6KyCuiSPnoxd/GZlw2oAwDXXN4ABcPJYDpqh+7ZPQmIBoH8wh+OHc3jusTQYi0NjCw/DMuzwVMdFBADTMhCJAbpuQVMZ13V1cy4NDYN9KliLx4q1UXc9Ii4HeogI1d1WLbd13YHr2t8EjuHQfaaA0ZQGwXGSyeeWUcZ9BYlG5JGSc5ZRx6EZGg4OH8DTZ550hSvhVPoEdg5sx6MnfgLAfmCSlOwcwVGl6Fym5JEpFfjxCkqv0JwKslNtl1TsrRZvRIFapvVNJYbyQ/jukf/B8dFjU9pfEK/Ip+1IKBTKTDCtgj65XA67d+/Gjh07sHPnTuzbtw+SJGHr1q3YsmVLrcdIocxJKrkecx5dR+Tf/wUAUPjY78zuWC5BjFWroS9ZCmHvbrDne2Au7Ji1sSyuWzJr+/ZSknM5wQOZOicsNljMh0BEoeTpPVkuTLUSbq60RyCWhMVOknNZrrCQXuJcFscXF+Ou0xYVohDFEaiMivoGASlH3JDjrq+X0LJARLpbw7kzecCpxRR0LjNZGd0HcmjiWrHhyjp0rGBgmHboa0yMI6fZOZkWLITjDJAH5CwDLs4547W3pZkqBvsUJC3BJy67ltj5roPdBpIr7LBYUvWVuJOpQRN73sggEmWx6iH7Oid5ssGcyKH8IFojrc4yIci6jIyWwcvnf4VuR2BLXAgd8U53HcP0O7ExIQ6BE5AQExhXx6EaKs6On8G23lewoWkjNrfa84+cloMFCwmpTJww/OJSNqYnLlXHASwExKmsy0irafdYg/Rmz7s/a1Oo1joiDwOwW7GsSK4seX8gPwDLMtEWba+4DdMyYVgGIkIEeS3v5rFSKLXAtMz5Nx+izAhTvgoefPBBXHPNNfizP/sznDt3DnfffTe+//3v4/XXX8eXv/xl/MZv/MZMjJNCmXMw87Sgj/TYI+DOnIZ6863QN9OHQTWHYdzQWPEXj8/yYOYIwWqxE0xAmsLNEDkRrdG2su8TYSd5xOdUJjRsOecyGBYbdDIZv3NZznk1SnIui+IyJhRFTlyMQxBZNyxWNgq+/FKWYR1hZ+LYoeLk3zQNjDvOJcsBBqPBsoBNmxuwdn0CDGMLRpZhcVvXHXjLkreCZViYlolwzD7/+YwdGgvAzefM5GQM9euQRAGLlhXPaXObCF5gMDJAnEvNLQYjOJ/B0b2Oe5czkXW0ZMQRl6RYD8nBHC4Ui/oQZzWrZnE+2+MKfWUSoRcM9R7KD2LP4C4AwJHUYVc0PnP2KTx5qnJYuk9cTtO5JGP1tkgBgN2DO/HU6ScqFgvyurPl2tdU3B8pjlQYdMf/yvmX8Ny5ZwAAL/W8gBe6n5twG8Q5lzgJIifWpEUMhQLYIdbfO/JtHBw+MNtDocwBpiwujx49Cp7nsWnTJmzevBlXXnklVq1aNesFIyiUi43b53I+Xfumici/fg4AkP/9P5jlwVy6KCTv8gkqLoFy1WIrLxsRInj3qvdWbBFBhJ7ITa+gj9t+hJ1AXJY4l5PnXFYKiwVsQUmQuBAS0RAMRkVTq93jUuIk93uEZ3m0tIsQI8D57jxGR1R3+8S5XLQ0DJPRwDLApi2NxZYllu1cRoUoElIdOJaDYRkIOYZkZtRyj3toSMHZkwXs25sCdB5XXV8Hni+eB5ZlkGwUoOU5qKqJTE5BTlacMdrFfvrOFMVRzykDQ/0qLFX0nY8Wx8HLqkWh7A3NNC0TXfFFAEqFnrf4DADExBgAIOm0z3i9fxsKegEcw0EzNRwZsYto5bQcCnqhYrEdr1s53ZxLIsyCYz47fgYAsKP/jZKcRsM00JfrdX8PHp9lWb62M14Kzpgty0Jv9jx0U8fJsRPoyXTDtEwoujJpgSI3LNvpv6oaKu0XSqkJI/IIdFPHYH5gtodCmQNMWVzu2LEDX/rSl7B8+XI8/fTTePjhh3HNNdfgYx/7GL7yla9gz549MzBMCmXuQSaD86nPpfj0L8AfPgTtqmug3XDTbA/nkkW/6moYLa0QXvkVmKGhyVe4xCmpFjvJn56JHtisaVyLlQ2rfe1VuCncg0RceccwJXHJ8mXFZbBgjejJe/T2Y5Q4CVde1YRrt8YRazRsZ9HTcoVlWLAsg9VXhGHCxPZX0pALBgzLdHMu114Rg8Fo6FwSQn087AsLDopmy7JQ12ifzxd/MYaTh2WYpoVnHh/Af/3bWZw+mUNIEHHTnaWFnxqbBbAWh/ExHT/7YR9efGbQOQcCnn1iBAw4LF5uj/3EfgVf/MxZ/Ow7I76cz3qpHizDIucJwQwK8SV1S8ExHApOddniOfWLr6hgi8v26EKwDIusmgXDMLi163YwDIMjqcOwLMsT8lu+AI6/oM90nUtblAady3qp2Ddy39Be33sD+X7fdRI8vhd7nse3D3+rbOEe75h7s+d9BY1UQ/Xk0FZ2I3VnuzzLuTnLU8n7pFAqQR6yTPdhDeXSYso5l+FwGNdffz2uv/56AICmadi2bRu+8pWv4HOf+xwYhsHhw4drPlAKZa4x7/pcWhYi//KPABzXcj45rvMNjoNy/wOIfPU/IP3sUcgfvrzTBYLi7ULc/iV1S7GkbilOjB73bH8KzqVzv07kXAZzKoNhsWWdy6C49BQc8jqXIieiLhaFyubc0NFgfinHcFi0TEAhZWH/CQtHD+RgrLWdS40pYNFGE/dE6jEsxCEGnNRyP7cu4rBqfRT6NgY//fYwIneqUDQGJmuLjSs2NyISLT2mhmYRLHj09SgoKBYygwp0LY7Duws4vDeLRIuINRtiGEtpMHrtc3TmRAFrtkqusAvzEUSECLJq1s4JZTmfu8azPBbEFkLiJRT0AizLcq+PoDgkYbHNkWa8Y+W7MJQfhMSH0BppRUJMIK2kfQK1UnVV7wQ4mDNZDbqpu8dQKoiL10FQeBJXs16qx5gyVpJzeW78LAC7QFEwLNwrgnsy3WgKN5fdj2aqCKF8vjLZn8CKMDl7/KqhlLT8mYysmoHohNZSKADctkNy4H6gXJ5Mq6BPKpXCjh073H9Hjx6FaZpYsWIFLehDuWxYGFuIrsQidHoKUMxlhF+9AGHXTujrNkC98+7ZHs4lj/LAO21x+eiPL3txGRSTtSj6wLLFbUypWixxLifIuQyKVW9BH4EVy44/6MaJvpzLWHF9TnTF5Khiu08hj3NJxmjCxMar4jhwAhjsV2AYOsbTOobqd+KZ83uxsLkDqXEGIif6xlfuuAxLx8q1UTD5BI7vNnB4XxYWIth6bwLtkQasaK8vOR6AOJc8+rplWAwLEzqG+0w88ashgAFuvasFKSGNNRtjsCIJhEZEDPWrUDIiiL4J8SFEhRiyahZ5PYe4mPAJsIWxDvAsjxAXRl7LQzEUt+Ks7gmtDfNhxIQ4zp4sQC4YWLU+hq7EIs9nZLulXrEXdAYJinFhzqVfnFZ2W73XhGmZODd+FizDYkndUuwe3AXN1GBaJlRD9VVHzuk57Bvag5Scwi0dt4JhGNcZago3Y7gwhGOjR9zlvaG56gTtSsjYeJaHBck5FhXlyx6VR9Zl/PTEI+iId+KWzlunsCblUoaEbU+3QBbl0mLK4vKuu+7CuXPnwHEc1qxZg2uvvRa/8zu/gy1btqC+vn4GhkihzE3iYgJbO2+b7WFUh2Uh+plPA6Cu5cVCv+pqGB2dEF97FWzv+cu65UtpzmUNxOUEYa0Tj6V8f1pS/AaYLCxWAMMwvuWB0mqxXlcnJsbBMAwsy4LESm54JylyE2y7wjIsNEMDJ1mob+QxOqKj+1weqmrBbE1DN+uQclp72GK3vHNJXtecUMm1G+twYvcYMuMGRMZE5woBvRm+ogPV0CSAAQtVBlhoMBkdR3bL6CqYuOLqODo6M0gNAU0tIq67YiG6t0Ux1K8iO8RBcp65hbgwIqT3pZZ3jz0hJnDdguvd4jwh3hY7sl5wzwcZ9+bWLWiNtOL1l8bw5E+GAAv4+J8uQlNrcdwkDNnbGkStKC6LoaDTaUWiesSlaqiuIwv43VbTk884mB+AYihYEFvgOrCGqeOlnhdxPtuDh1a+x102p2ZxeOQQFENBVssgLibc3NIldUsxXBjyhcUGnctKeHMuyfWvTjGMMaflYFh27qjXZaZc3hQ0+xoM3g+Uy5Mp/4W/99578bWvfQ3bt2/HD3/4Q3zyk5/E7bffToUlhTKHEZ96EsLO7dDXbYBy3wOzPZzLA5aF8rYHAdgVei9nptKKpFq8k5fpOJfBPE3vNvgK1WJZhvWs71+GuFQk3zDsVEkl6xFBIXKiGyY7lLdzGEucS8YuxGNaBpodAbV/Vxoam4MYsQVLxikWI3L+MN1y4b5EVKxcFYcocmAsBlLEQjxpb8vrsnppaLaPhQUPg7VFi5q3t7nl+jpwvkJHAjoW2aIwPVj8fEO85B57Ts+5riXHcmiLtrshmeQceF1BsizP8Dh1LI8nf2wLSwDY9Zq/RyNxLvNa3rP+5DmX03FagnmNBaPoXnrdSu/PZ52Q10WJJe5YNVPDuJqGbupu30ygKEQB+3O2LAuqqULiJXQmukrGk/e4pxPmXDoVje2cS/szn2qOHBGvqqFisDCIHx79HnYObAeACYsoUS5tvPcRdS8pUxaXv/d7v4c3velNCIfDky9MoVBmH8NA9O//GgCQ+z9/AbDzpwDRfEd5+zsAANKjP57lkcwuQXejJuLS69BNp1psQBx6x1jJufQ6mEHnk+RcbmzehJs7tqIl3OJ7n4TGSpzkisucZrts5XIuAVtcNbfZIuDIoXEobAbhiH+/Aiv6xuUVzVxAXIYkwQ6PBYfmdsEt5lLJuYwnePACA9biIYoMwmEWnCWgqVVE5+IQeE8uqsiK6FhsH8fIeQZnTuQxPqY7OZdR93iJ4AqGHhORWS6sVeQEHNxti+lb72kAwwJ73shA14tChhxDXis6l5UK+siGDJ7lfeGmUyEoyAqaJ8/T1NwHDKZHXJIHCQtiC93PSzd1Vwx6q8T25frcnzNqBoqhwLIshLgwYkIMDaFG//6rdS4N4lwKxYI+U2xH4l1+18AOFPQCjo8ew6icwk+O/RA7+rdPaXuUqTOUH8JPT/wEQ/m5UyzOm2s53fY+lEuHac0yu7u78Zd/+Ze47777cNNNN+G+++7Dpz71KXR3d0++MoVCuahIP/6BXSH22jdBvf3Nsz2cywp9wxXQly6DsGsn2DOnZ3s4s0a5ENRabnNK1WIdURMMzfVurzTncvL2J0Q0hYUwFtctKRHUnfFFiAgR1IeSvgI/AHzVYr3b1kwN9Q0CeJ6BphtALIslKyK+ZSVOKhsK6z0mr1t47c31iEQEdCwVXPFVSVyyLIOGJrtibF1SQGOrABY8rrwuAYZhSlq0RGM8kk0C8ike+3dlcXhPHjzL+8JiyXkKCvhyziUpQMNYHI4ezIFhgatvrMeqdVHkcwaO7CsKSdJXNO8VWmXyDy3LgmqokDgJEidNq7plUJAR11E3dViW5Z5Pr4s3rqYhsAKiQtTnXJJt6ZbhXjPe9TLquJsXSkKHuwLuZfU5l8S5FCCxRFxOz7kEioJZNVS82vsKDMvAUGFwStubaQp64aJWMN0zuAuPHv9xxWJStaA/14u0kkZvtmfG9jFVvNcgLepDmfJf+AMHDuBtb3sbnn76aaxfvx4PPPAA1q9fj6effhoPPPAADh4s3ziYQqHMAqqK6D/8PQAg+38+RXMtLzYMA+UBx7386U9meTCzR0krkpqIy8oFeSYcSwXn0idW2dL3trRejU0tVxaXCaxPJu6V2qysaVyLd658t1uYxovEBXMui+KSZRksWRlGUzuP294pIVHnd085lps059I+bjtPtGtpGPc+2Ir6Js4VNkKFsFjAKeoDHnVJHqvWxXDlVQ24+ga7DYz3PJGcx6Urw+At+3jkcfs1kmeZ13KuwxsMPSburWLIbnglcS6HzpvIjhvoWhJGJMrhquvt/b/4dAqm6YT2coK7D0I555IIDYkLIcyH3YI6U6G4Dcdt1YrikmwbKD5wyGpZ6KaOOqkegN3OBrBzSskYDUeYBsmoGXfiTgT4moZ12Nh8BVY1rLH3X3XOJfm8hSmHxQ7kB5DVshXF60hhGAB8LWeqRdZlvNj9fEUn7uDwAWzvfx2ALd529L9R1XYty8Ljpx7Dc+eemfKYpktPpgfj6rhbrGsmIBEH+UA14tlCN3XfveYN8aZcnky5oM9nP/tZrF27Fl/5yld8obGFQgG/+Zu/ic9+9rP41re+VdNBUiiU6RH61tfAnTsD5Y43Q7/uTbM9nMsS5e3vRPTz/4DQj3+Awu/9f5enwJ/hsNgp5VwScVmSV+nJuWRK/zSua1rv+70kLNYN95xc6HIsh4gQcfMDw3z5sFgiNlavj2HL7c04nT4FeCLOiEDg2PLC2O/u+s+X7eDZwsLblzLIgs4Q2JM8GposRKIcll/TCEG0t+s9T4Izljff34xFV6j43E9fh5bmoakmIk7+aTVhsb3ZXuwb2osrmje5E9YTB+2DXr3BDq9dtjqCrqUhnDsl49HvDCA1rGHhDToQCTiXZcVl0QUkDuGuwZ1ojbRiSd3SiufBCzlvdVI9BvMDHufSCTvlBLAM64a6jitpZ3lbFAtu8aHiWCv1m8xqGTdUmJwjgROwqeVKHB45BMAfSjxhzqUr7ItFnKoR1jkth6fPPImFsYVoDoR7L4wtxPnsefd3WZehm3pJO5+B/ABShRGsalhdco/05/pwdvwMRE5Ec6QZQUhO56LEEuwf3gfLsnBl61WT3msFvWBXINardy6Ppo6gPpREa6S16nW8kGshq2XQgpZJlp4e5DObjpCfCYJO5XTa+1AuLab8+Hj//v346Ec/WpJzGQ6H8eEPfxj79u2r2eAoFMr0YVIjiP7D38FiWeT+z6dmeziXLcaq1dA2XAH+yGHwe3fP9nBmhdJqsRcuLtkJciQnXs+pFovKYbHVVDoMiqOpiEvArjZNCBb0YcucH8PSkVbGIHKiKzJIIR6vyKskussJTeJaBYWAl+u21uOet7WjdYHkLFsUot71yFikEIu1K9rRGKtHXG/D6IiGEBcCy7DI6zkYZvmKvOQcDOYHYFomUnIKmqkhPw7s3DYOAFi13haXDMPgzffbImTfjgx6zsh49tE0MuP6pAV9ZOeYRU5yHcZjqSN4vW9bWeewHIojBOsdJ5IU1ClWY+V91YTTjrhMOOKSnMOcx2UNhqdKTh9JknPpPUcEoUz7lUp5pv7xFXMuq3EuU/IILMtCRs24IphcTysbVqM5Yoso8pkGRU9v9jx+eeYX2N7/Ol7tfbnkPJMxeF3ncuzof8Ndt5q8PnJ+DcuoSkTntTxe79uGnU7e6EhhpKTVzERYluWOK6fOnPArisuJz1c5dFOfMFfTtMyq7wMCEZPkmqBhsZQpi0tJkjA2Nlb2vXQ6DUmaWjNeCoUyM0T/4e/Ajo1B/sCHYKxbP/kKlBlDfvh9AIDQd/9nlkcyO8xEWGyl8M9q1wsWAapU6Kea/QNFl7FqcemExvIsXyLuyom9tJKGYRmol5KIOTmbxC30Hgvjyx0t71yS80WqOk7kXAoCiwULou7vJPwUgFstlmEYCJxfdN7e8jY0K2uQGtbAMAyiQhSyLruhmcFjDHH+uYNiyMjmFLz2XBZy3sQNtyfR0FQM3+1YHMItdzVg9cYotlyfgKFy2Lkt7XMAVUPFq92vYlvvK57XimGxXlRDRUYdr3ge/Mva2yBikbRhIO1oOCYgLlXHuRSJuOTdfRaP1y9+GkINiAox6KaOMWXMOUf+MZfbTjkRZVkW0spY0bnkBEjOtTNRGC1hzGl7ohiKm0u4pfVqXNd+PTrjXbim7Tpsbt2CxXVLAABZj7BKK2N4ofs5mJYJiZNwauwkDozs922/GOZZKkq8hY5I6x5g4tDLvJa3XUtPW5pCFSGkZJuKIUPWZTxx+md4rffVSdcjKIbifubZGXQVyWfmfZBSLQeG9+HJ0z9HX7a35D3VUPHDo9/D6/2vTWmb5NwmnAdmiqFgKD/k++yCZLUsnj7zJAbzcytHl1IbpvwXfuvWrfinf/on7Nixw/f6jh078LnPfQ633kqb6lIosw136CBC3/gvmHX1yP3Jn8/2cC57lAcfgiWKkH7yI0C+/EKGZqJaLFsh/HPS9VwR6V+H9L+stj9bpeWqdy5tgRgs5uMdi5cxJ4erTqrzVJ51wmJ9Ib3lz4uvoiwbcC65yuIyuK7PuXQc03LitKHJfi01bIsRUjF23BFwZMxnThbw4tMp8PCLy7yWx0CfDE1msP7KGO54q79CKgDcek8j3vPhBbj3nS1obYsikzaQHS9OaDVTx6GhQziWOuoKRxIiGeIkJENJ3/aG5eEJzwOBiMsGp0dnVrMr2eoeZ5BlWNfNHnfEYZ1UFJfBeyIYotwWW1DSskYKCPByDyGI8BjID+BHx76P4cIwjqQO46cnHrHDqmE7q0XncnJxSfIHFUNxr5nGcBNWNqxyfm7EhqaN7ni9wur1vm3QTR2bWjbjtq47AQCDuf6yx17OuawULlwp1JXkWT5z9imfs1eNA0mEuWIoyGk5WJY1JXfQ69hV+6BiOpC8V29BqGoh/VH7cqXiclQZhWIoODd+xn2tmpxk4tbWO/dTd+Ycnjz9c7zS+1LFdc5netCf6/ft63LFMA2cSZ92H/5cCkxZXP7Jn/wJOjs78f73vx833HAD7r//ftx44434wAc+gM7OTnzyk5+ciXFSKJRqsSzE/vyTYEwT+T/+U1iNpZMyysXFamiEcve9YNNjkH7x+GwP56LjFZMMw9QmLBblXblJ1yPOZYVqsdU7l07eYWCCH6xCWwniPgYdtHLbBIohcGE+jJhoi0tSiKdS+GulQj9k7KTfozBBWGxwPIIvLNbeZrlqs664HHLaoDjHSQQE6+R9/uz7A3j+iRE88s0RWGbxushpOYyP62AtHivWRie8ZliWwYoVtmsyPFicCOe0rOskkT6TxK0VOQmrG9bihoU34voFN9rr5qsTl0SQJcQ6hPmw7Sqbhht2yrN271HTMlHIG3jkkVM4d1L2hUIHBTkRDC2RFjy48iGsa1zvirWUPGKfwwphseW289TpJ5DX8tg3tAfHR4+WrEfCmKupFkucS8uy3DzRctcMeehBwmJPp0+hP9ePeqke65s2umJ+PCC8vKIu6HZVGl+hgnM5poyioBcwKo8i7Yh6oLriN0QkqYbqCkXDqn7C7+3vGBSlOwe24xenn6hJH1Cv2zzVvEsyLq8LTMg6n4usy+4Dgj2Du/CjY99H1umrWw7i+Cadhy3k8zyTPl0xBJeMW7cqu5teTMvEmfRpbO9/HSfHjle1TrWohupGnpC2P0H0CgW3asGZ8VP4Vc8LOD56bEa2PxtULS5lWcZTTz2FRx55BA8//DA+97nP4b3vfS+uvPJKPPzww/jKV76C73znO0gmk5NvjEKhzBjizx+D+PKvoK9ajcIHPzrbw6E4KCQ09jv/Pcsjufh4cwhr4VoCfueQm0Lv1koi0n29SueSLB+c4FeqFhuE5OsF25J4t+2FTNgkLuRWmyWizlt5tVLPS6/QJMsQN2eisNjg+0KZsNhy1WZJCGtq2N9Ls5jnyWGwX8XIoC2Gjh/K4/Sh4kTesAxk0wZYi0dLW+VqtoSlyxxxOVCceHtFzDlHXGrueRQhciKW1a9Ai5MzODJF51LiJDSGG90cUd0RIgLLu9fXsROjGB7Lou8E6/tcDZXBjlfTGOy3t6Wa9v8swyEmxMAyLOJCwrvbktBhvsznFgxzjQlxd9LvXY9hGIicWOJKHRjejzf6Xse58bOwLAuGabhhvUDRkRPKPFCIBpzLI6nDAIBr2q8Dy7B2WxohgqyW9YlI7xiC4auqpzcnAFegVsq59IoZrzvn7UVaCe84yLUzFTfJK2CJ8wnY5+zg8AEM5gcmzSutxEB+AN8/8h30ZXt9ebJTzbskom64MFwidMeV4v1Cqv+OFIahmzr6A26zF5JzWSfWlTwE2jW4o9wq7jVSLi+6HEdSh/GrnhdweOQQXu19xffgoBxnx8/gx8d+MGkvUMVQ8KNj38e23ldQ0Av48bEflIQF57QcfnD0u9g7VNuaCaNyyueOe8O45ztVVYvt7u7GBz/4QZw/X6wIFovF8M///M+46aabZmxwFAplajCZccT+3I4eyP7NZwBh4kkj5eKhbr0dRls7hBefB3u+B+bCjtke0kXDKyhrkW8JXHjOZVBcclN0Lsk+gy5jtceXDDXg9q473VCycmMsh8RLSEpJcAyHpnCzbyzABDmXbOn5Ut38x4m/J7gKzmWEj6A50oIF0QUl69Q38gBTDIsNClqO4XBojz3BXL85hgO7s8gM+89dJq2DB4+mlsnF5eLFMbAsMDKooedsAWCAzkVATLId0+HCEHJazi3G4xVHCakOIiciVRiBaZmTfoaKoYBneXAsh4ZQI3oyPUjJI+51zjsFfQDgbK89SS+MhCDLBkIh+9yfO6Ghr0eBqphoaZNcweq9njrinYgM21WFNc3Es4+O46Zbw2hoEnDySB7n+rMYhoqm1uKxqIaKUTnl/m6h1G0hn6HIiciqWfeYC3oBuwZsMXAkdQh3LroLEi/5HBsi6sQyDxSiTuhzVrVbr4wUhhHiQ2iLthfPtZhAXstjTBnDmfFTWFa33OdO5vQ8YmIc58bPIq/n3Ty+xXVLsLllC3qzPXj5/Euu6x7E68h5cz+ryblUzOI4iLicqEASAJwfPw/oEkRW8glY0zJxevwU8lreJ4Qm214lBvMDUAwFA/l+Xw/NqeRd6qbuClM7l3cUDaFiZFNGK7qTI4VhLEosdgtgDReGsDy5oux2icsb5iOQOAmyLqMj3omsmsFArh+D+UH3AQ6BfDbV9gM9k7b7RHfGu9CdOYc9g7txS6c/DS+jjuNo6gg2Nm/C8dGjyGk5PHn653jvmg9ULFpGrtXhwpCbl0ycesJwYQi6qaMv14dNVYzVtEwcTR3BosRit1J2kJ5MN5479wzetOAGyE6I91SqGs91qvor+I//+I9gWRbf/va3sXfvXjz++ONYs2YNPvWpT83w8CgUylSI/t1fg+vrhfzgQ9C23jbbw6F44Tgo73oYjGUh9IPvzvZoLirMTDiX02xFsjC2EJ3xLnTG/Y3o3SqyUyzoE3TtylV67OTqVAAAiBJJREFUrTiWeIc7Ifdvo/IYQlwIyVADHl7zfqxIrvSNJfizv6BPaRgxEQ1TcS69ooJlWNyz5F5c0bK5dB2BRaKOR3pUh65b7jaIOGFZDof32RPMm+5sAMMA7GgzkqEkmsLN0DQThYKJRCLktj6ZiEgohIYmAZpmYffrGex+LQOnBaZ7/fVmz7vOpRhwAZvCTTAsww2n3N7/esXiOJqpuU5sQ6gR42kdz798GrJWFOvkM+wftI+RMwWcP2sfu2laOHvUXnZ0WINhWK5D5/38IkIEb1v2IDa1bEZocDn2bpPxq6dT2Lcjg2//Zy+e+1kab7w85vb6BGzx0usp1qKbGoZG8ti5Le26ujzLYzytA7r9mZDjDAqwEXmkZKJNKHfNRPkoWIZFTstiuDAE0zLREmjpkXCKGu0b2oODwwdwOHXIl/dJnL3dgzvxRt9rrqsjciJCfMgNDfaGoHoZKpQvEFNNzqVXsGYct9brXJ4cO45nzj7lCqKRwjAeP/44njn7lF0p1ig+OAGAV86/hF0DO3By7IS7Dc3ZnmVZODt+puqcSTI2bzsf+/ds1eGawRDaYBh4xhP6SkQ6EY5DZcJoCcSxDQthN4d8cd0SrG5YCwAlYdnesVQTdpzTchguDCEmxnBTxy0I82GcHT/jhosTjo0exaGRg+jJdvu+l3cP7qy4bdKaKKflXMGrBK4tcl5IS6HJODd+Ftv7X5/Q6STO8Kg86kYtVLqm5yNVicvdu3fj93//97FlyxZIkoRly5bhr//6r9Hb24vBQVrpiUKZC/A7tyP0ta/ArK+3XUvKnMOtGvvt/wbMC8+9mS8Ecy5rsk1P7uZU3NCYGMetXbeXOIZMhRzKSrjiMlAMpyaVcD1hvsHxkBzNisV6KuZZlv+ZYZhJj1moUNBnMhqaBVgWkBpS3cmebBRw7FAO3/hCLwb7VLS0i2hdIKGugUd0eDXu6rwfUSGK7Lg96WxsKM1JLT9GocThlPP2JJwImoKed8NGxcBxEAdnTEnh+OgxHB45hN7seaiGip5MtzuB10wNlmW5xXUaw004sj+LV944hz07R92xkM9naNieeDPgcO6UjMP7snjl2VHIWft907IFJnHvglWMBU7AxuZNqBtbAwA4fjiHA7vtyW5IFGEYQC5LqtRy0E0d57Pd7vqqoeLY0TR6uxVse3EMr704hh99sw///KnTePbRNFTVdCfTxHkjDzzSyphbzMfrwIicWPY+ZhgGESGCgl5wq5EGxSXJO+1xxpjXcu7k2v49746bjMHep32+yfVfTiyqhoq0ki47tmqcS6/QI+1jTMuEaZlIK2N4rXcberO96M3ZUXwkVHSkMIIjqcPug5OGsH0tWZZV4lyRhxt9uV682P08fnL8h1WJQ+I4pgMCZ//wPnzvyLcxkB+YdBvevG2gVIhn1HFwDAee5ZFyQjbJfseU0Yohwjkta3/2fAQdsU4kQw3ojHVhSd1SCKxQIqIN03A/P62KsGMS0t4VXwSe5bGqYTUAlITqKh4H0BseftZTNOho6gh+cPS77nUle9oIpRzHP9iexy0G5iloNRGk+Fp/rq/iMiQsWDFk98FBNdueL1T1V3BoaAidnZ2+17q6umBZFoaHq8tRoFAoM4imIf4HnwBjWcj95adhNZc2oqbMPsayFVBvvBncuTMQn39mtodz0ZgJ5xKoHOI6HSpVka24PEucy0BBnxocn6/6a1Bc8qXtvio7lxV+9giYyVxLewwe53KSyrJeFi21J7FvvJx293PoUApHD+RgqiyaWkXccpedD9jo5GiODmsI8WGMp23B1NRQWk23HCzDYunyGJasCKOungdr8cjn7G2QKq2yrhRz+AI5g0S0KIbqTvI0U8PB4f147twz7kSxO2NPdEnea4SPIDPMQWHT2LF9CJpmuiGzlmVheMQRlxaHV58fxfe/1odnHx8Ba/FobLbPyfBgcZ+Vrj+Sm1nImThxOA8pxOKKzfUA4ArxsGCfK6/Q0EwVY2l7DDwPDA2oOLDbntjKGQ7bXx7Doz84j/07M+6Ev90Jc04raddhafeEPk90zZCiPifTtlsXFJfksyCCKq8XyuZcupV2nYk9ccxDPPmc/BPxp888iR8f+wEAOzqBQHI0q3IuK+QyaqaGV86/7I4pVbAdswGPuNk7tNttGdMcLv793dp5O96z+n1Y27jO3RZQdMNUQ8Xh1KGSsbxy/iU8feZJz9hsATLuOKreiAfN1NCb6Zn0+IgzR6I2Rj2utGIoUA0VcTGOhlAjVEP15WValoWRgFMI2EIxr+URFWzXenPrFty37G0QOAECJ2BJ3VLopu5zb70OajU5l+ece64rsRhA8RoL9tMkn59iyO59LnIi8lrevcaOjx6DrMs4OHzA3obnMx907pugm+yt/OvNS60EuQ4yaqZi2HLOKy6d/XnDw/cP78OB4f1l150P1Cb5hUKhzCrh//cF8IcOQL3+Rsjv/cBsD4cyAYUP2UWWQl//6iyP5OJRKQ/wQnFDWasswjMRUxWqRFQGwytr3cMzmNsW7HVo79MrHMuf60qFfqo5Xn+F2OrF5bU310MKsdi1LY38OJDN6Ni3awwsCzz4vgX4+J8uwrpNtkhraC62LglxkiuYmprK5yyVIxqRsH5zHO0LIuAsHvmsX1xqpupO4ErOqyPaVUNxJ/K6qbuiJKNmYFom9g7tAQCsa9oAABhL6WBzCViMhTF1BKeP5W1xybAo5E0ouor6JA+R56CpFniBwYYtcaxaE8f6zfaxDw+q7oSWtHchr3/uL0/j4J4MBvv8E96V66JoXRgCa3Fu+5UIbwsOy7LQGG5yjkdDetw+5r/5jffi/773fXjHB9rwvz+1BA31EaSGdezbm8LzT464wq4x3ASBFZBWxjBcGIbACmiNtLn7LlcdmLCsfjkA24HkWd5t10IIFrDKaznfZJ6EWBJRQ0IRSYQAcd28wqKgF9Cf63eF28JYp+sYJsQ6CKyAgl7AweEDbjuWclRyjkblFIYLQ+5xj8jDsCwLg/kBcAyHJfXLoBqqK8Rbo/a5aou2oSncBNEpHgUUxaU393L3wM4SV7A7cw79uX6Pw+YUfnLOVbCNjl5VeKktaMi14XX3iNiNiwm32Fiwoiw5vnLbJIIvyIqk3a7GGxrrbVUzWQ6qaZkYyg9C4iRXtLuh0YG8W5JDrhrFSACS6zmmjKGgF9xQ2tPpU5B12RcKPaqk3H16c0G94cIZrbK4dPvaenJsBys4yuThRUGX3e8bcjy6qWPP4C4cS5WGE88Xqov/AfDRj34UHFf6R+iDH/xgyevbtm278JFRKJSq4A7sR/Qf/g5WKITsP/0rUKOwQ8rMoN59L4zWNoi/fArs2TMwFy2e7SHNODNR0Me7rVo6l9XmXK5KrobACoiLCZwaO+m+Xm0rkonH4nUuPdVZnZC1IN5qsZVzLssvM5FQcJevUNBnMiJRDtffWo/nn0xh1yt59EkKLAArVkfQ0eUXjaR1yciQiqaOEDJpe7Lc3FydcwnYglGGjLp4CKxlIuc6l/UAHEfDVMEwjHsclmXhR9/qhxbLAauJc2lPUnVTcye/BT2PE6PHkVWz6Ih3uJPWnrMyJDOOSNsohvvG0dtTDIvNjOswGQ2Jeh6NYgTqMeCeB5ux5U11ePV8C46PjUGSGIyldMiKBkFkfYWXjuzPIpPW8ezPRyAXTERinCuY12yMIhTmwFoCMuM6OIbzfZYLYwsxUhiGaigYz8qQBB7L2zqBokbEfW/vwC92nUd+/zhyWQN5tzBLGHVSvSsu2qJtrmMIlK8OTFhWvwL9uX6cHDuB5nBzyf0eFxNgGMbX+gGAW7mWOD1EbJEiMxJri3+WYSFyok9YECexI96BZfUrnKIvZ5HX8ogIEYT5MMbVcewc2A6e5dER6ywJZwcqtz0heaCtkTacz/ZgpDCCMacnZGe0HYukpTg1etIdX0esEzd3bHVFpvecqWVcKsMyMCKPoNVxeXVTd5cbyg+hTqovyQMM8xG0R9vRn++HZVlVObM5pxppXIyDZ3mfqCfuXFyMuyHfRIiRz6Y/1+s6sAQiFKMVxGVjuBGN4SaMFIYxkB9Aa6TV7wpXKOjz7NmnYcHCNW3XwbRM1IeSbgSM+4DBsMXiroEduH7BTe45td1ABRxTLLg1Jo+6rVZID9rjo0d9DxS84cmKIUPgBBim4RtvpoxzOZQfwt6hXejN9mJz6xafGB3IDyAuJnA6fRISH8KGpo2+CrGyXnAdcdW0W6KMyqOwLMsV+fORqsTlxz/+8ZkeB4VCmQ6KgsTHPwZG05D9y7+Bsbx8NTfKHEIQIH/gg4j+02cQ/tbXkfu/fzXbI5pxZiLnEvC6jbUQdFPLuYyJcWxs3oSeTLfv9drkXHrFX3ESXC4kFqgut5Kt2K5k8uMlLi1pJzEVrr2lHq88N4bj+2UMNNsT5PbOUMkDgcZmp3XJkIZWU0RqWAPPM2hqql5cklDXRFwCa2koZG2hQpxLxVChGRoEpxUHAJw/p+Dg7iwKQgErl5lQDcWdpGqm5obtFQzZbclBCpUAwPmzMgQzjPYuCdlMDpm0CV1hwTK2o2gwGmIJHltvakbT1gVYscYW1TwrgAGD1oUSzp2S0XNOxpLlEd+Dhd5uexyk4u6KNRH09SgYT+tYtjoKRTbBgkN23K5e6xWXrZE28OxBjGUK0EwVzfWlLW+u6FqJM+pB/OrMaST6liGvOoVZ+AjqpDpXXDaHW3z9WCcLjb62/U2IClF0BIpmAfY1FBNiyKgZsAzruj0J0d5fXs/52pS4Rac8xxbiQhhXx7Gj/w0AcMVQW3QBFjmhkwmxHr3oRVSI2WHWntYi3ZmzWOo4rF4qOZc5x00N8XYxrZHCME6lbTHZHmtHm9gOjuFgWAZCfAgMw2Bx3RLfNsjDDHI9EWHXGm3DQK4fw/khV1x6XdnB/ACWJ1eUjE1gBdy5+G5k1HE8cvzHJSGihFE5BZGTEBWirqCJClEIrODbZtbjXJKHVURcdsa70Js9j55MT0nlV7LNSs4lAKxMrsK2wjCOjx5Fa6TV1zPTW5zopZ4XUdDzuKJ5M85n7bxWEuKd8PSIJc5lXivg5NgJ9GZ70Z055xPumqlB4iTUS7bDO6aMuQL9ipbN2D2wE92Z7orVXBVDRQxA1nm4wbM8dFMv6dEK2D1MiUN5YGgfTMtEQkxgXB3H8dGjOOq05AGAZXX2dUeue8VQfKHHiqG41Z6DLYTmE1RcUijzmMjnPmuHw954Mwof/a3ZHg6lSuRf+xAi//yPCH3nW8j90Z8CoeqKlsxXZirnsug2XrigY6bpggb3XeuwWK9zKZUJiQX8wpGrECLrFeBed7WaHEoyMZ6qsASAUIjDxqvieHlbCplxA5Eoi3hdqQNLwmJHhjQMdlswDKC9Q0RImNxZLY7T3mZdXQgsZORzBhgwiPEJpIZVxNrz0EwNMTGG0RFbvB7aY08eGUPE8KCGxcli0Q7dNNyCIwUt777uneiePydDMKOobxTQ0CQgn1PQ162hIFro65FhMhriCQ7J+hBWNkZLxrpoWRjnTsk4e6KAxcvDvs+vr9svKFoXSLjz/iYYugVJYiGKDCReQDaTA88IrjvGMAyaws0QWAH96TQsAHWJ0munTqpHZ7wLTGgP0sI5jGXt/YWFsOv2AkBzpAWSR9xN5FwC9nWyqeXKiu+valiD/lwfLMt0RUSYD0Pi7HYe5UI81RyHX72SwuZrE65YPDRyEECxGFOjp63G8uRyjCkpdCUWYSjvL1xzKn0SS+uXl1T+rSQuSaEjgRXQGGrESGHYbXjfFmsDr/Noj7WjJ9ODEFf+YQhxSokTTva1ILoAA7l+X4/VgseVHSoMwrTMkjxAMmayv6BzKesyXu19GT2ZbjSGm3Dv0vvcENYIH4XIiSjoBeim7Xr3ZO2czYTjLAPF3MGoEMWVrVvwyvmXsXNgO+5Zcq+7HyIUY2Jlcbk4sQQ7+t/A2fQZXN12reugArbYtywLWS3jhiyPKc+7758dP+2Mq859LcTZAl42Cm4eqawX3HOa1/MwLRMiJ7ru35iSwqg8CpZhsSq5GnsHdyOrZSp+X5MHTMSFbIu2oSfTU1ZcEtFaJ9W5BZfaYwthZS1k1AxiYgwCK2JUTmFMGfV9pwd7jaqG4or6xnAj5is055JCmafw219H5AufhxmLI/MvXwSm0EieMruYbe1Q33If2JERSD97dLaHM+PMVFhsTQv6YHr5myXisgZ/Vr1C0BuGGuLKO5fePD3v+L1j8QlWz/LVCEbibk4lJNbLVdfXgXWeZbctlMCAKfnMko0CGBZIDavoOW67Ga3t4pQELRE9dbEQeIZHLmc7SYd2yHj12TSOHrcnbYVxBl/8zFl88TNnsX+XPXnkLAFD/Qpkp7AJYLtMJDyzoBfcybkpS1BVE4Zhoa9HQVyKIhrj0OC4rwd3FPDYd4cwOqIjFDeRbBJKjpd3xEZ9UkB9A4/MuIHUkFbsB5o3MDqi+bIcWtpExOI86pL2ugzDoL4+BMMANJl1K+DWS0kInGD3sczY40/WlRc965s2QpRYpKRTSOecaqJc2BeS1xRuhuQNi60ilHoi1jauw21dd/hCKSVOQkSIwLCMEhdueFDFN7/Qj+ceH8GOV9KuU0kgk3Gv09MQasSbF9+DmBBDmLfdqSV1SxHmw+jL9SGv5XF09Ai+f/Q7GCmMQDf1ij1OSS6qyImeXFYVjeFGLEzYxYMWxuyilxGhgrhk/eKSiJc2p1CSN5/RW9k2raR9OXzF7dmfgcAJbk6pl92DO92oipRsH19eyyPMh8GxnCtwVEPF0dEjGMoPIhlqQGu0DRHnfBHXWOJCWFq3HMlQA4bygxjKDzmVecfcsFhS4KrssXMCltQvg2EZODV20hWE3nPizYX1hjz3OYW0SPQBYF/3pJ8mcU7zer4YSu0IQpGTkJDqwDIs+nP9UAwFbdE2iJyIqBCFrMvIe4SuFyJUiZhsibSBZ3lfcR/vsizDYkndUve1eqkeN3VsxQ0Lb8Tblj2IpXXLnM8iVdISxotsKG7V2vnsXNLZKIUyD2HGRpH4rY+AMU3kPv0ZmF2LZntIlClCCvuEv/ploMo+ZfMV74SttjmXnO//C9uWPYvnp7itoBNbi+Pz51zyrpPgneB7qabPZaV2JdUU6JE4CTzLV8yrmoy2hRK6FtmTz7YOkjvnP88cx6C+QUAmbeDEAXuS2NIuTknQEjdH5AUkYmEosgUBErrPyuAsCaMpFaZpYfsLeeiaBblgIpM20NQigIOIwT4VeS3nugm+sFg9bxeb0SR88e+68eh3BjA8qELXLHQutPPBSN7oif0qDI3FoqUh3Pn2eggC62svAxQFvsAKWLzMFiTnzynugwUSErtqfRSCyDjno/ThQrLeviby6aLoIxVaBVZ025RUEpfNkWYkpBhkLo10PguRE8GxnNuqp06qQ4gPQWSL7UcElkcua4vfC4HkzgH2Z0ceYngreJqmhZ3b0lAy9vUyMqj61iPExXjF/OFFdYvRGG7CxuYr0JVYDMuy0J/vw0jBLszTn+tzewwGCw4BxSJDAiu6RWUiQgS3dt3h3mOLEovREmnFYo/A8BLMuSR5vXExjoSYQEbNuKIqWKimO3OuZHveiIMQH4JqqDBMA4ZpQDd1nEmfBsdwaAo3w7IsdGfOwbRMtxUMeRBR0AvYPbATDMPg+gU3gmVYRAK9d0moLxFP/blevHL+Jfzs5E/dKsrRCZxLAFjp9OQ9MLwPg/kBiJyIhFtoqyguSaVf8nCDCFyvuATs0G3SIgaAz1EkIlPiRLAM61v3imbbUSfVdrNqFhzDlXxvKwHnMi7GERcTUA21pPcrCbXvihfnYfVSPZrCTVhWvwIcy7kFmEbllK+gURBZL2BMGYXIiWWvxfkCFZcUynzDshD//Y+D6z4H+e3vgPzw+2d7RJRpoN1wE/Q16yDs3gX+9ddmezgzil+A1S4sdkVyJZbWL6uYNzMVpuuCBgv41CKn1JtzyTKcO6ZKYbGcLyy2vFvpFXNeoVONeONYDvcuvQ83d2ydfPAVeOh9Hbjqhjq35QhfxiFeudae8CnjHOobeEghznX4qoEIZYEVUZewhZiW4zHYp4CzBGQzBs6dKmB8BFi8PIyupfb5vPJNdVjYEYGSYzCU8uaD6a7TlNNydoXQ04Aimzh7soDhAVsgLGi1C6TEEhxEkQELDvGYgHWb4wBnT3SDua3kvIf5MJKOKM2O6+7n1NdtC4zOJWHc9UAzbroziXhd6TlrSNpCazwFdMQ60BBqxPL6Fc4+eGQzhm+5cjRGbDeuIGuuaxUTYrh+wY24bsENAOzrWmRFaKqJJ743in/881P4wqfPoOeMDNO0UMgbFbdfCeIoAra4JNeEt9jN0IAKTWawoMNeNjWiucWFIkLEFQ4NnpDYIK2RVty79D7USfWuqFD0YvjzmDLq7rOsuHTcMZETUB9K4rauO3D3knt97UBCfAh3L3mL61AFIWHQbs6lWSxkRNxQ4sDKhu1Cktd7yrQZ8VapJufxUOogvnvkf/CrnhegmRo6E11ojthi+JTTCoSEWpIHEWNKCpqpoS3S5r7Hs7zPHSYVqkk7mrPjZ3E+2wPTMlHQC26PS8B+GHD2VAEvPp1CargYytsQsgv7EIf16rZr3FDrwfwA0koajeEm3NJ5G65uuxa3dt3urssybMmDrbBzDZCczYncXRLivaRuqXs+vE6rxEvu3xByPZHrIacVxWVn3Hanf3n2KbeKsWEaMCzDzu8MJVEv1TuCtt43FuJCjimjrtta7u/WUGEQuqnPa9cSoOKSQpl3hL72n5Ce+BmMxUtoddj5DMMg/9t2PnvkS/82y4OZWWYq53JVw2rcuPDmmmzLrTx7oWGxNc655BjW3WalsFiWYd1z7Fu3YhXZyn00K1En1V+QiG9sCmFhR1HglBPxdz3QhPvf04KOzghWr7EnecE+ohMhuuJScHMM1SyPoX4VnGWHiKaGNXCWgJvuTOI9H1mAtz7UgmtuqsOSFRFwloDRVNGN00zd1yLCgoWeY/Z5zmUM9JyxBWBTq4iYEAMDBs0tITBgcc2NSXAc47ZHCF5X5LyHhQgiUQ4MY7dqIcv19jg5eZ0Srrq+Drff21T2wcWiJU5fyUMy4kI93rrsfp+AyDvisrGh8mfXEnVCPRXT5wouT65wi8wAtoA6vC+LofMmwhEWlgW89EwKP/pmP/7pL05jbHRqTmZY8DqXkntOFL0oLs+flcFZAq7fWg9eYDA6rLliqiu+2C3g0+TpLTkRIbefqewRl2OuoyhxoRIHlAgiIlY64p0TFrApBxFzqqegj+g4a2TspIASqdpLXDySj+kVfN5WOuQzOzl6HKZluuGwy+qWIynZIqU31wugKFjJ+sSZCwXcYF/IslNIrCHUAJETkZJHfLmCpMelYVj4zn/24utf6MHzT4zgse/7c11XN6wGUKzqSx64EPezI9YBnuWxpnEt4mLCPa6EmCj5Xg2ON+j2AkUBviq5Gh3xTlzZepX7njdHNMSF3eMloo5cG6QFTIgL44rmzViRXImCXsDOgR0Aiu1PyOd7a9ftePPie3zVlQH7MwrzYaSVNDKOMG0MNXnGaq/fl7XPRbCFz3yDiksKZR7B79uD2F/+H1iiiPGvfhNWPDH5SpQ5i/L2d8JoaYX4i8fBnTox+QrzlJnKuawlxbYmUytaMxPHFgxtdZ3LCmGx3nW8OZdMBRfT+/N08ying3df5XJbWZbBldfV4Tf/oAtLltSVrDPp9jniivJuuOjweUAumOAsAYW8idERDawloG1hCJEoh6tuqAPPs0jUceAsEapSDFHXDM3Xh290WENhtDiew/vt8LamFtGdrG66KomHf6MdK1bH3G0A/jxX73GFuBBYlkE0ykGRLRgqg/SYhuOHcmA5oL2j/AMFQktTFM1tIuQMg8N7/eF2nGXnnUohBtFQ5e20Jezqn6pqlkzavaSHgLOnZERDEn77k4sQS3A4eiCHQ3uzMHQLZ45P3g7DS6lzaZ8TxVBgmhbG0zr6zysQORGrN8SQbLQ/wzZhETa1bMYVLZuwvmkj3rTgBqxyhMtkEKGkGMWep2mnByJgCzgi4ojYJUKqmrY9lfBWiyUFeshrrVFbwJPiRiTntC3aDqAYGlrv6W0p+MJiHffaCQ1lGAYRIYL22ALXQSPbIGG9ZH0iLoNREd4HSeQ9hmF8/U5JYauYEINhWHjyx0M4cSSPxmYBiXoeZ44X0NdTFH3L6lfgtq47cHPHrYExjDv79IfjEoEVF0vnOeX6/QYhzmhrtM3J8S1u3+86S27bHOLOEnFJivWQ0OBr2q6DwAroy/U6LWNI31zBHau3mq6XZCgJ0zIx6BSYagoXxSU5RreYzwRO/Hxgbv6Vp1AoJTDjacR/44NgVBXZT30a+sZNsz0kyoUiSZA/+jEwloXwf/y/2R7NjOF1XOaquCQTqFCFdh+VYGfg2NiguHSE2EST23Jhvb6CPmx5oVlNzmWt8E6IJws/jgoxOxSzgltbDiIKJE5C18J6AMCRHba44yz73OVzJhKxEKIx//4jUSIui46Mt7dgLqtj7/YMBDOCuqQtOsZGbFezqUVExHE+4lEJq9bFXGFCwvaCYjoZakBUiGJBbCE4hkM0Yb8/njLx1CPD0FQL129NIhSe+DwJLI9lqyJgLR6vPu/PBcuNMbAsIFEvTHjttCVswaHKVtl8RsLxffa53HpnKxJ1PK67ud73/vlzpe7RRPhyLlnRFeCKIeONl8bw4lMpGAbQ1RWHKLFINgrucW1s3uTmAq9IrqzagSfXk2LIvqb1ZFIvcZK7TNCdnKxK7kQIngI6XpcUsENGI0IEw4UhyHpxXDEx7gvT9YZaeu+LiOc8hvkw3rLkPrx50d1gGdZXmMnO4yM5l0Hn0n+feYWeV8i1xxa427qx4xZwDIexMxF8/i9PY8eraURjHD7wvxbixjtsIfzq82O+7XbEO93Pinz3kBzEoNtHXMRgvqV9nJNHUUz0efnCYrkQNrVciXesfJfr+hfFpeI6zIAdgbAgthC6qaMv1wvVeXhUzfcUOR7DMtAabfOJ5uAxtnh6pM5H5uZfeQqF4scwEP+tj4A/fQrKW+6D/JGPzfaIKDWi8OsfhhWJIPS9b4NJjcz2cGYEr+iqZZ/LWrK0fhm2dt6GxYnyBTkqMRPFioJCkAixiZ7WEwHKVcitZCuEy86Wcxl08oJc1/4m3NZ5R0ll0InojHdhXdN6LKlfhuvXr8Ey41pIYx3O/jw9IFuiJetGohxYS/CJS+JmmaaFV58fQzZjYMWyBmy9u+gqiBKDeB3nOiHkGIO5uMHjjQgRvGPlu7AiuRIcy7li99CePA7tzaIuyePmuyYPjeM5AU2tAhobw+jtVtDbXRR4404B0rp6fsKHCHWJMCQjDlU1K07aVdVEqlsAzzO4crPttF11Qx2WrAzjWkdk9k5BXBqGhaO7NMgFW3yLnATOER05pYDhQQ08DyzskrDpSvs8kIJJpO9nOUxz4uJoJLRc0WU3pBEABnID7jiI4xUNOGnVtO0h9HbLUNXitcQwDARWgGZqRbfLs72FsQ5YloXe3Hm3WmyYC/ty75JS0bn0hsV63eaGUAMaw41usRyBE1xX3euGEZefuIZB55IcOynwROiId0JgBSyvX4GmcBPesfJdGHi1E7msgeVrIvjAby9EfVLApmsSCEdYHNydgSyXz8clIe8kBzHYxmVZ/XK0RFrL5rGGJ4jiIEz03eEtQCRxIbAMizAfdkWiaqiuwxzcTmfC7t/ak+mG5lxD1bjazWHb0WyNtuHWztt9Ytrb3igmxqYcdj3XoOKSQpkHRD/zaUjPPA195Spk/u1LNM/yEsJKNkB+z/vAFAoIf/Nrsz2cGYetYc5lLeFZHl2JRReUc1mrfFKvQGQY1hWGlQr6ALaoYRimsnPpC4vlPetNvXfldPE6CZOd5zqpHgvjHVPafogPYUvr1YgJMUiCgGtWrQYHewLf0VF0Ktpay4jLGAfeknyCgIRDFvIG5IKJ+gYe73nfErQtLE42G1vsKqpkMkhEXNCZ5SZ48MAxHGJx+3PY/4YtLG66owGiOPkUTWAFMGCwbmM9AGDXtmLVzLEh+3pM1PM+MRIkGuUQNpJQFatiXu3pY3k0Ztfgro770ByzRUoozOHX/1cH7n57E8JRFv3nVeh6ZXGnaSa2vTCK/l4Fzz0xgse+O4TTh4qVPUlBn4HBHCzLPrdXXleH5ib780pOIi6PHczhb//4JI4eqFyNk9xDWS3rhooC/rxGskw0UNynWpf/3OkC/vNz3fj6F3p8hY4EzhaXSsC5BGxxCQDnMz2QddkVdV5B6XW3vA9qvA5wuUIwxL1s9IRhkuuBOHRBAUXEZfD1mBDDu1Y9jC2tVwMATEXAyKCBZJOA939soXtviCKLhV0hmCYwPlrat9R7DORzCLqndVI97l7yFl84MCEUqDQc3Cbgj5QIEuEj7oNO7369ObnEQQ5+7y6MdYBhGHRnzrnnr5qHdF2JRXjL0vtw56K7IHKi72Gh18Vsi7RPuq25DhWXFMocR3r0x4j86+dgJuow/s3v0DzLS5D8x34HFssi/JUvAfn85CvMQ4gIm6vO5XSZiZxLNpAr6a0sWoktrVfjuvbr/UV8WG/4q6cVicfRvKhhsc4YGIa5KOHRqzcUn/6vWlHv/tzeVloRtJxzSZAL9mvRGIeYFENTi+AWPW5qIS4XEZflqw5PFLbJszyicXt5y2ABBli9sVQAl6Mj1oGOeCduu2YNOJ7Bvp0Z9xjGBu1Je6Ken3iiHePQrKxGvbwMnfEu33uZcR173hjHwT1ZsOCxef3CkvUZhsGCzhAMw8Jgn1LyPmALiCd+NISnHh3GVz7fjVees0N4syP2uCQu5Lq7fYN2qGYy6bSWcQROgxMWO1pBXJ46loehW3j6p8MwDAtjoxoe+/6Auy97P/a2SCgmuQ4tywLLsGgMN2JRYjGaIy1Y4OTfESYS6F7277TH39ej4Nv/0QvDsD8HgRVgWZbbW9EritqjC8AyLM6Nn4Vmaq7wIMIql9Xx1A8yOL7bQGGU932Pet3mclVzW5w8yQWx4mcXvB6CIalRnojL0gdaHMu5++8561Q1Xly6XCxhf56Z8fLOZTC/PehcEnTdhKb578twwK119yl6w10rO5csw7oVbr3HyLM8WIaFYiiefEv/diROQnO4BbIuu/1Jq83HbQo3udecN4fe++CA5ODOZ6i4pFDmMNz+fYh/4n/BYlmM/+fXYCxbMdtDoswA5pKlUB54EOzwMML/843ZHs6MQETYXM25nC7MDIT8eiddLMNic+sWXNv+pgmrtXbEO7HC6SVXbmxzoaBPJVdvpli+JgKOY8ALDJavKE7eFi4sHxbLBwr6uKj25DIU5hDhIxBEFskG+1iaWuz/G0INaIm0YlFiCYByVYQrH7PtXNrvMxaHriUh18mcjJgYx21dd6A92YS1V8SgKiYO7snAsiyk+i1wHBD7/9u77/Cm6v0P4O9zcrLbppOy2rILlFEQKHsJynCBuHBccaOo94o/9erVi3qd97pxIbgRFMWFDEFAlK2yRfYqs3Q3zc75/XGatKWDrvQk6fv1PH3apmnySfvteOfzHZGaaoORwShCL0cgvqB7hRC85sccfPPZaWz/rRCCAHTsWnnobZWs/KO8ZGEWPnvvBPJzXTh90oE/tylBa+umAmzZWACDSVSmrsqAIALGk13Qp1l/GCSDf3ycOaOEr+YJyvfMt1nK+TqXvnM3s7NcmD/nBGY+ewR/rC/A8u/P4nRJ6FXW8epKN7gxNVN+br0iWhf2x671XhiLW2Bs2/HldkzVCBoU5HqxeW0eHJU8AeHj9crYvb0IggAkNNch84jdvxbV17kvcirBtmz40Wq0aB2Z5F+jayz5WY/Rx0CGjG2bC7F/uwvuP3rj2Lfdyp0xWjYYVrbLaNe4NFzeYYJ/gyDla6pD5hEbVi7ORlGhu0IQs+ijoRW1iDVWv7HMsUPK1PGkthXDpe/onKKC6juXQMmTaJU8AeL1ypj10jG8+79jsNs9+OCNTHz67nHoxLKPubTGsmtUz7dG1hdEz33seo0eTo+zTFe3kuBcMq3WdwRKbdaG+5TtXJq1Ef7fGWU3TQpVjTcfhohqRTx1EpabroVgs6Ho8afgGjla7ZIogIrvfxCGhV/COPM12P52K6Cv/R+rYCYIAiADDXnOZTAIxJrLczuXiabEckdC1FSV51yqtKGP79n9xnqCwWDUYMq0NigstCMyNg9arQBRBOIrOZZDq1NCR24lwUHjVAKVxRjhfwIhPlGL3GwX4pqV7lA7pu240s85d81lNZ1LUdBAbxSh0QACxHId19q4YEAUdvxeiD82FKBNBxPcDg0imyldLm01nRVRFGA0aVBsrdhhys4qDTHtOinHplSmZbLy++rYISVIHT9ih63YA68XuOefemz4OQ8AcN2tLaGRBOTnuvD7+gIc3JOAGIfSLfV9jc5kK+ErPaUTJKPXf25ndKwWggBkHrbjrReO4LJrE9E6pfQf9LKBa9+fxdBIAtp2MuLQXht+XpqDq6co4cqgMfg31YnSRaFnQjrWL7dh9WoPgCy0TNbjjgeSy53FKokSvp57CkcP2vHrilz0GxKN1ikGmIzlu23HDttRVOBB245GdOhixvLvzuLwPhuS2xorrDE8N5B0jeuGowVH/DUCynTJU0fdyDnjRvfmZqS0S8Bva/Oxakk2Lr2mGTQaAUbJ6J8SX9nOqpWdu6jV6HAy0wFrkQf7/rRCf0Hp19Hl8qI4X4NJna4570ZJxw77OpcVu47+zmW+G4X5bthtXiQ0Lx2Hkqb0ts/tnPpkHrbjzEnlezXn1UxknVLe3vSTHluOWRETFYG+o0t/XiLLdS6rD5cWnQWnrafKdTuVz9PD5rZV+iSAj6/rmecLl3X4PSoIAgySMhZ1og5Jkclwe10V6glFDJdEQUgoLIDluknQHM+EfdI1sE27X+2SKMA8XbrCMfYS6JcsguHzz2C/aYraJTWosO1clp0W20CTgcqHwrqH8XIhtYrNfRpzzaXvH9XG6lwCQK9+McjOLsIZqx39h0UDAqCXKv7TKQgCIgxGZDplyLIMo9boX3Ml2iMgeQ1oYSntKPQZaIHbLaN9auXd5HM39KnuMUuiBAECLNESxFwRXXrULVymtDciNkGLY4fs2P5bATSy1r+z7fn++TWZRRRbPXA6vNDpS2v3dZ1u+3sS4ppVfRttO5rQobOyk67TKfunhgLA0YM2ZJ1ywhyhQXI75UiH1ikGnDjqwME9xTh13I4WrfWQRA3cHhl5hcUwGEXER0eVO2JEkgS0TNLj+FEHzpx0Yve2In+4lGUZeTku6PQihl0cC1uxBxlDomEwinjtP4fx57YinD7pQGILvTId0b+RjR7NzS1QcDwTgA2CAJzKdMDl8vqfeJEhw14k4uhBe0kwdmP5dyW7JSETXXpEYPjYWMhe4JflOQCArj0j0LKkm3t4fzGGXhTrD/hFrkL/fZdV9ggLXwAVBAH2rZ3RwmbH+L8lokUrPXZvL8L23wqx849CtGitx23/SELf5hnQilKNZ0/oRC2Ki5QnE44fdcBeqIGppOm5/Luz2Lw2H7f9PQmtkqv+nns8Mo4fsUOnF9CsRcWfqciSHZALCzxY8NFJnDjmwP2Pt0FkSegs27msaj35rq2l62ezTjmh0QjwyjJ+XpYLnaYfimUN9GNK7ztSWxquz9dNTG/WG60jk8odCVL28wqcynmUlR0B5ZuK7Ps+VffkTXX6Ne8Pt9cNQRAwLGmE//ITx+yQJBFxcaG5sQ/DJVGwcbkQdcuNkHbtgHPIcBS++iY38Gkiiv/xIPRLFsH0+suwX3cDoG28rlKg+f7paahNb4JFYHaLrbzjWOvbqaJbWW4tZi12wKwv39TMmh4b0ZD0Gh2iS6ayVjVdLsJkgFwIuFwy4k0RpUdVFEvoWHgRBrdK8l83tVsEUrtV/Y9fhQ19qtnAyNflTM+IwphxKf4jN2pLEAT07h+FFd9nY9WSHIiiBEvJbZ2vQ22K0ABnXCi2esqFy8J8NyStgFYp+mqDi14v4oa7lDV9Xq+Mrj0jcPa0Ez/9kI3tvxXC6wWaty5/G81LzvA8melArwxlOnhhrgteWUZ0jLZc59Dn5ntbY//uYnz+/knknC3d7VUJxjISW2oxaGT5DWAyhkTjpx+ysWenVQmXZYKAL0hknXZCFIG2nUw48FcxTh13oFmShIN7i7H/LyuaRyUgAsDwi2OR0sGIowdsOJnpwLHDduzeXoTd20tDkMmsQZeeETCaNNAbRBw9ZIfbLfvDVGnnsuI4vDB5NFYd+wld4roCUAIczrRAikVCm/ZKd3DUJfH4dt5peL1KMDx7xoXOiV2q/N5URhK1sJaES9ErYdPPBRgzQTmSZt/uYsheYMvGAv9053O53TJW/qAcmdO2kxGiWHFslK65dONkpgNulzJluN/gaADnbkpU8X68Xhm7tirTsXtlROGPDQUYPCoGbreMtT/lwuhRvs9eR5lwWW5abPVj3iAZ0DoyqcLlvtDv60pWtkv3uUsU6jItFgDaWNr6317x/Vm4XDIuvCQOH848jkiLBk+9EprnXYbXU8hEoU6WEfnAvdD9vAruLmko+OATQFf3s7UotLjTe8M5chQ0R49Av3CB2uUERLh1Lssfs9Jw02J9/4TX5+tVvnNZZkOfJrLmsqyynZGqNt+INCnXcdq9/mlvAOCwihAhISqq5l+r8lOPqw/Tvu9NRKQWbTvUbCOfqqT3i4KvSd1/UAJalXT2zrfhiKnkKJSyU2NdTi9sxV5EWWreEQOUabZdekT4O7BHDijr8lq0Kv8PeIuScHnquLK2TRIl5JScHRodq630iRWtVkRyO+UxlV17mVvyeb51mWWldFBCWebhirt/GjQG2Io9KCrwIDZe69+Y5sRRBzxOEXt2WuGwyzh7wgtBBHr2i0JyWyMGj4rFNbe0xJMvd8PwMbFo3caAth2NGDEuDlMfTkZEpASNRkByOwPcLhknjtr9T2pYXVVPt2wV2RqTu9yIthblSCRrkQeyXNoFBJSg9dAz7TBktBKu9v1prXA7ZbndFTdachVr4PEARpMIjaz330ZRodu/YdKurYVV7v677JssrFuVB71BxNDRlR+Z4+tQnjzmgMup3M6uLaUhvOzackMlm5UdPaRMMU7pYMQlVzfDrfe3xrCLYzHqkjjc80gKupRsemXLK90orOwRKr4xW5Dvxp5d5XcHrk6UXul+ZhWfAVDVtNhzjqkp83s0O8uJV586hO2/le7c7HZ7q12ray1y49eVudi4Jg9rf8qF0+FFy6TzH7cSrNi5JAoi5mefguHzz+Bp0RL5876EHFXx8GAKb9a//x90K1fA9PKLcEy8Kmy6l76OZbjtFhuIziWghBO37G64cBkEG/qUrrls/HDpe5xaUVvl19QXLmW3VC6MOazK9X2dmJqozbjwfT/Od/ZnTURESrj21pZwubzo1N2AeX8pO/OeL+D61lL6pkoCSscJACItdasrNkELnV7wb5LU/JxwGRuvfPzUcQe8XhmSKCE7S+lGxjbTVvkkhMmsdARzzrogyzIEQfCvt/RttFRWi9Z6iBolXMqyXC4s6DQ6nD2t3Gd8c52/U3f8qB1erwyPC7DESBCydehxQSSizvla6PQiRo6Lx/AxlQeXNh1M2PdnMQ7tt8GSrtTmW+9ZVeAvO14K8yv/HpjMGnRKM+OX5bnY96cVURYJRrOI9qkVn5xY+1MOVi3JwahL4zD4QiUI5ud4IcgiomO1cHmNyD7jgtPhxdGDpWeV2qxebFyTh1bJerTpUL5Tt2+3EkbvfDAJsfFVzAQoCcRl18IeOWhDYb4bkRap3JT8ygLcri3K9OFu6ZEQRQFJbUsDaEJzXcn9WmHL1wBmZWaEr4Po+9pu+60Ai7/MgsPuxcQbE9HjgvPvtu87usW/oU9l02K15cNw2WmxO/8oRF6OGz9+dxZdekTA7Zbx/uuZsNs8uP/xNpCkir8PDuwpLtmTQNlECwC69QrdtZfh9RQyUQgzvfo/5cgRSzTy530Fb8uKW75T+HP3HwDnsBGQDh2E4fPP1C6nwfj+YWqodYnBIhBHkZS9rfp2+XyfX/7sTCVw+F4aiy/gqDEtVhAEtLW0KzcN7VxREco/jLJLKjeN1G4FRI2yq2pNiWLlYb4yvq9HQ30vOqWZkZYeCa1GC0mUqj2SwccfLst0Lgvylbd9u37WligK5QKlbxps2Y+3SjHA6ZCx708rBGiQfcYFjUYJiVWNE0EQEBOvhcspo6jAg1PHHaXhspIpxVqtiBatDSi2epBz1uUPCwX5bvyyuMi/KU1Cos6/TvLYYTs2/JwHERqkZ0Th+tuScdm1td9UK7lkF9WTmfYKU5NrMpWyqnAJKDv0mswaHNpnw5cfn8JXH5+utDu3d5cSBFcsysbekg5l7lkXNLIW5ggNEuIiABk4c9Lp3/21QxclTC7/7iw+nHkcf24r7Tjaij3Iy3YjNl5bZbAElK+7wVTmCS5J2dTtz5IpxGWn5J/bufR6Zfy5Tdl1t0vPyrv5vi61NVsDg2SARR8Ng2RASlQbtLd0QFGhG998dhoOu9Ix/H1dQbnP/2NDPl59+hD27Cp/LqpFX35ataGaDX18yu7GfHCv8jUsKvDg5x9z8Pn7J5F1yonCfA8yj1R+VM/+3aVHkMkyoNML6NC56t3Bg114/ZUnClHGWW/B/OxT8JojkD/vS3i6pqldEqnI+s/HAQCml14AHJX/MQo1/jWXYda5FAQhIOtJfYGkvoGjqpBqlIz+KWSNReufFqvOvx5DWg/DgJaDqvx4VIQRCfbOSBa7+df7ybIMR5GIiEip0nVlVSn7JMp5p8X6ngCoZl1mXQ1sORj9Ww487/V84dJatnOZpwSbc7t1tdGitRKutDoBsZVMWc0YGg0A+GVFLnJPe+B2y4iO00IUhXJTuc/lu62ffsjGO/89irU/KWdZVrVe1bfxT+Zhu38N3fbfCrBjkx0/fqtszhOfqIM5QoPoWAm5Z13Iz3WjZUszoiwSTHoDNJra/3z7dkfNOuUsN0tAK2phrOJcx7KqC5eiKPhDIKA8MVBUWH7HX7vNgxPHHJC0SrD7/vPTcLu9yDnrgghJOeO0ZNOYUycc/t1+R18Wj559I9EpTfkdsWRhlj+knT6h/E0698mCykSW6fZ376104o4dtPm/Bj7nrms8csAGa6Gy6645ovJx4BsDudluXNr+ClyYrOyoPyxpBHo264XjR+2QvUCPPpGIjpVw5IDN3xkHgD+3FiEv2415753Eb2vz/ZdbdOVnjFW22ZAoiP4dbgVB8D8Wp8OLY4dt0OoEQAB+XZGLw/ttSrAGcGhvxXOsvV4ZB/YUK2t+OypjIrVbBLS60I1ooVs5UZgwfPoRIv71CGSDAQVzv4C7Tz+1SyKVuXv3gWPsJdAcz4Tx4/fVLqdBlE6LDb8/O6U74TZguBR94bJ+gcMfLs8JLqNSLvL/M9ZYfFPHAhGiGoLJrEEzR1fEelL8/yw6HF4IssY/xa+myu7Oe/41lxW7yw2ljaUtkiKTz3u9yjqX9Z0WC5Suq2zeSl9pOO/U1aycB3nYjvU/KdMg4xPOvzY3tiREbitZ1+YLPlWFS99aymOH7f4pk14PIMmlHaeEROVt39TYVikGDBii7CSqq+PGVwajBpEWjbI+1KtBcbEHsiyjV+IFNfo5KCwo6R5XMSW735BoJLU1+DvEvmM7fI4ctEGWld1rU7uZUZjvwfbfCpGb7YIoa2E2a9A8UQmQmYftOJFphylCg2bNdZhwfXNMvr0luvWOQGG+G2tKdsI9mamEy3PX0Fam7M9NWq+SEFuyxrZcuDxn6qlvbWZaNVNDfd/r3GwXjJKxwjmZJ44q99O6jQG9MpTpsFs2lHYvfcfsCCKwamm2snkSlDNHyz7xVtX0Zd+6S62o9T/BeOSgDV6PMq4HXxiDlsl6DB4Vg+vvaAkAOLSvGIX5bpw4Zvff3+kTDlgLPWjdxoBRl8YjsaVO2dk6hIXfX3miEKKfPxcR0++DrNUi/8O5cA0crHZJFCSsj/wLsiDA9Mr/AGv1GzaEAv8GNWH4Z8c/5beB11w2xG1G6qLK7aDoY9FHI0rfuGu6o3RRysHsZQ49DyalAav0GAqHTYYoS4iIrF3AquqM0equq8Z0YR9zJRv6FPg6l9F1r6tdqglR0VKV68dEUcCQUco0xAN/KmEgNqHkSYhqxn5sSQCVz9kjxRJbea2tS6an7tlZpKzRAyBpBWjKhEvfmaXDx8ZhxLg43DS1FYwG5bKqdhiuiYREHWQvcORPL35alI292+1Ijelc4XrLvs3Cgg9PlpvaWvo9qHwMtU4x4Nb7k5CWrgS3rFPlZ7ocKpmi2aaDEYNLvs5rf8pFdpYLGlnpXLZIVL43238rgNcDtOtkLDfDZPSlSsD2Ta/1hcNz19BWpmwobp1iQFS0hLNZyvpO37R8GTKyMmV/2AKAPbusEERUeyxPVLQEUSy/prOs40eVLmyrZAPS+0UBArB1cwE8Hhlutxd5OS5ERUto18kEa6EHh/YpXcWVi7Px0+cO2G0eHN3rxnsvZfp/LlxOL76bfxrzZp/Ant9dkCGXC58HSzqTbTuZMOqSeNzxQDJGXRKPNh2MMEVokHnEjnf+dxSzXjqGFx87iMMHbNizU/m6duhiRqtkA6Y+lFLlLr2hIvz+yhOFCMNH7yPqvqmARoOCWR/CNbJxuwgU3DxdusIxYRLEs1kwzn5H7XLqrbRzqXIhARCIcFl6m/X7gl3UZgwuaXd5Q5RUb0bJiKtTr0N6s95ql1Ip/46pRR7/5joOh0cJl7XsXFa1mVJlStdcqtfRLd0ttjStVTcls6aiLBIemNHWP/21Mt0viMRl1zZDVJQOJpPo70hVF7bLdihTuyndz9ZtDNBqK/8ZtERLSOsVgcJ8D76YlQ27zQO3XQOh5N/gqGgJ+pIjWBISdRh2USz0htKNkM632251EporIWz3z3okWftDt2VEuenHgLJb6IbVedi1tajc1FZ/9/g8m0kllJwzeeZU+c6lLzC17WhCUhsjUtobkZ3lwvEjdkiCFkaTiITYCOj0Arwl3/qBI8qvObTEaBEdKyHrtBN2m6c0XNZiWqzJrIHRpFECqVzaYZVECceP2LFgVg5+XqZ0Ru12DwrzlTWdvid8KqPRCIiO1aKoQDmfFVCmsW/dVIBD+4px4qgDogZIbKmDJUaLDp1NKCrwYP9uK3LPuiHLQFwzLXpcoITrHb8XwlbswfrVufBazThzyomje5VjVHw7v+7ZZcUfGwqwZ6cVe7YouwyXfeLBF+bbdSq/XlIUBbTtYITXA1gLPYiJ18Jh92L10mz/eta6nm8bjBguiVRgfO9tRP7f3yHrdCj4YC6c4y9VuyQKQtaHHoWs0cA08zUI+Xlql1Mvvn+2w+2cS6BMcG7AP6m+bfrrO1VSEqUK08XUFKxTYoHyU0MlTUm4tHnr1LkUyx1FUv1jFivZdKmxVbZbbEF+/ddc1oRyPqcF05/oiBHj4vxrG6sL277OJQB0TY/AnQ8m45b7Wld7H1fe2Bxd0yPgKBJx5pQTbrsGogbo2TeywtmYPr4dTeuzq3J8Yun0zSh3S8guCRvX5JW7zl87rPA1LMsesVLTgN+szNpOH4fDi9MnnbDESP4wPm5Sgr8TbYlUOpQGrR7NWihBsX1nU6VHYLROMQAycPSgHVmnnIiI0pw38AKl02J93y9ft7Ps1NjjRx2QZD1+X5cPt1tGTsl01biE8wd636Y+uTnK56xZnotvPjuNT945jmKrB4kt9f7dWXv3V6bG/rGhwL/2Mi5Bh87dIyBpBezebsWGn/PgcsoweKJw7KANjgLlMW7dpEzZ9oV1o0mE5DWguMjjPzfVWuTGqeMORMdJla4vbpdq8n8t7344GZYYCYf32XDmpBPNWuj807LDAcMlUSMzvvEqIh57GLLBgPyP58N58Vi1S6Ig5W3XHvbJN0LMz4Pp9VfULqdeStclht+fnYY4k/JcWv/OqsETDMNduXBZEu7tdi9E1L5zWZtpsb7umFobHQHlH/v+3VZ88Eamf3OX2hzBUh8ajQitpvS+qutcRkZJyiY1AtChsxmSJJx3wyVRFNA+1QRJNkBri4HemojIKAkTrm9eZWdVKnOETV35OpcAYI5UAu2mX/L93TYA5XZjzclyYtfWQvy2Nh+FBW5IWuG8OxVHx2ohaQWcOen0T6vNyXICMtCsRWloSWyhx50PJiG9XyQuHtgdLcwtkGhqjnadTBBFYNjFlZ9Z2bpkzeq61bnweoHmLc/ftQRKQ3HcOeFyxx+F+PDNTBiz2wPH2kKEBGuRB3/tKEL2GVe5z6mOLzSfPe3Ejt8LsWpxNgBlPS0AtCoTlDulRcAUocHeP63+s1fjErTQG0R07RkBp8Pr754avBbkZLuh9SqB8NRxB04dd+DQPuXzevaNgtZrQHFxaefS97F2HSvf5TW9XxQuu7YZJt/RElqt6F8HCsA/rTlc8JxLosbi9cI8418wvTMTssmE/E+/gGvwULWroiBX/OAjMHz1BYyz3oLtb7fAm5yidkl1EogAFiwCMS22d2Jf5NpzYNKG7nb0ocYUIQKC0i3Siso/wQ6bF4Y6dS6DY7fYmtLpBWg0AoqLPNiwJs//zzcASFLjzTbQiBp4PEoyqK6TK4oCxk9qBo9b9q8XrYlIiwQBApLzh8Fms8IcX/3nxhrjkFl4DBZDdI3v41xlO1Kdu5vhdMjY8Xshdm8vQs++USi2esrtIpp9xoXNa/NLNymK1553l21RFJCQqMPJTAcK8z2Iipb8G9ace1yIOULCFZObA2gOQFn7OexiPTKGWqrcmbV1irKL6eGSANX9gpqdwdipqxnp/SL94d23wZNvfB05EIUEbxqi4yTkZbvx29p8tOmg3FdsDcJlmw5G/LY2H6uX5qCoUOnyTr69JVYsOoszJ51olVIagiVJQM8+kVi/Og+bS3aH9XVHx05MgNst48+tRWjTwQinUw/XiQEweCxo09GIw/tsWLUkGzlZLmUKdooB2rWmks6lch++9ZbnTon10WiUDr1Per8orF6WA8hA1/TQPdOyMuH3V54oGDkciLz7NpjemQlvbCzyFnzLYEk14m3REsV33wfB4YD5mRlql1MPDX9cR7AIRFc2zhiHDjEdG+z26PwkSUR0jIT8PDdkjxI6bMVeiFCOp6iNssHofNNdS3eLVe/5fkEQYIoQUVzsgd1W2lGLb+SpemWD+PlCea+MKPQZVLtNqXxTQn3TMk3nCabd43vg2s7XI0Jb986SOULj7wy3TzUhvZ8SJLZuLlnHt9MKr7f02JJ9u63+YAnUfFqy7/NXLcnGqeMOf7iMa3b+kKbRCFUGSwBo3lrnn65siZHQrXfNwpBOL+KKyc39R9JEx0rQG5Tfk0aT6N+QadQl8YiKlnB4v81/7mhNpsWmpUegTUcjsk45YbN60WegBZ3SzLjmlhYYMjqmwkZSvUqmxrpdSnfX97UxmjS46m/NcevfW+PqKS3QpoMJke4W0AkmXHZNMxhMon/jnbYdjYiO08LsTkB8cRekxXcDUHYzn/MfMaN8LbQYfnEsBgyPDqspsQDDJVHACYUFsEyeBMPCL+FJSkbeouVw981QuywKIcX33A9PYnMYvv4K0m+b1C6nTko39Am/cBmIziWpIz5RB8hAQbbyX6+9SBmvVR1xUZVyG/qEQOcSUKbGyl7gzEkHIABjJiTgsmuaNWoNUgOtNa6KL6jl5ypdrpp0PRvi+9Kuk7JbaNuOJrTtaEKkRcKhfTbk57qwe7syJXbwhcq6z9Mnym/KE1nDKdm+jt+WjQWYN/uEMi0WNZteej6SJKJFktKhGzQypk5nfgLK7//+w6KR2s2MqQ+lICJKA71BRMcuZv+ZnQf2FNe4bkEQcMlVzSBpBUREaXDhJXEln6vDhePjK5wV2ay53j/FVxSVgFf2tpLaGGEya9C25GvZMsmA2HgdLr269OegbUcTYuIkCBARkdsJFn00srOcyMt2I7GlrtqQfq7hY+Jw8RUJNb5+qOC0WKIAEk+dhOW6SZB27YA7rTvy538Fb2JztcuiUGM2w/rYvxF131REPPEo8n5YHnLbrvo39AnDABbOj62piW+mw/7dxcg/C8hmGfYiZb2b0VS7gCEIAkRBhFf2nnctpW89n9rra31dPKdDhiVGUuWsPV8QD1TQNppEaCQBHrfSuarNlNr6uOL65vC4ZX/XrmffSPy6Ihe//pSLA38Vw2AS0a13JH748gycjpLzFnUCXE65xrv19sqIQsskA778+BTOnnbiYMnOpedOi62rEWPjsHeX1d/9q8/t+NwxPRkupxd6g4j2qSb8sb4AkJVjYmr6uOOb6XDXg8nQ6oUa/Zz27h+FzMN2xMRpqwzJ7VJNGHxhDDp2Vc6yTEuPROYIOw78VYy2nYzQ60VodQLyctzwemX8sOAMACC1W3itnawr/iUkChDpj98QPXoYpF074BwyHHnfLWGwpDpzXH0dXN16QPvbJui/+1rtcmqtSZxzGYaPranxTS3MPSPDafdCdmkQXcuupY9vXJyvC9fc3AI9E9LRJbZLne6noZQ99qFsR6cxlW5uFJjQJwhCuWmm55sW21AkSfAHSwDoM9ACrU7A5l/z4fHI6NwtAhqN4D/jE1A6x1qdgLZVbBBzLkEQ0LyVHu1LdiUtzHdDoxFgiWmYPlL7VBPGTkyo8riXuoiySP7pr207mnyrJxAbrz3vBk1lxSfqYImu2ZhN6xWJ5HYG9OxXdUjWaASMujQeKe1Lp7hefHkC7n44BQaDBoIgICZOOU5k+XdncXCvDc1a6PxniTZ1/EtIFAD6L+Yh+vKx0Jw+Bdv1NyF/3peQI+v3bB81caII65PPAADMTz0B2O0qF1Q74Twt1ncESRg+tCbHt8awIEtAtLc1LK7kWk+J9fGFy/OtHRQFET2b9YJFH12n+2ko5cOlOhPbtAHuXAKl6y6Bxutcnis6VosLx8f73+/aU+l4+Y6wMBhF9O4fhUdfaI9OaeZa3XbZQBRTy5CmJpNZ49/wpyGm8lZFrxdxy31JGDq68p1xa8r3e2H96jxoNAKuvrkFdDrGKoDhkqhheTwwP/k4oqbdCbjdKHz2RRS9/AagC6/F2qQO15BhcIwZD82xozDNfFXtcmolnHeLDefH1tT4NtbIOu1EqjgQCY7OiKlj0PKvpVRxo57aCIbOpe9rJQXwaxZpKX2ctVkf19D6DbGgY1cT4ptp0S61ZIfUknDZMkkPQRDq9GRccrvS4zcCGdICoX3JTquxNdjMR21lf0a69Y5o9M2vgllo/MYjCgFCdjai7rkdupUr4I2ORsF7H8E1bITaZVGYKXr6OehW/wTT6y/DPukaeNu0VbukGhH8r0PjWfTa4LTY8GEya2CK0CA7y+k/zL2+nUu1N+qpqbJTRNXqXPq6vOc7G7Q+1JgWWxlRFDD59pYASp+g8p0fmdS2ZjuOViYiUkJ8My3OnnGFXLjsO8SC3GwXetdzXWdjiIkrHUd9B0erV0gQ4l9CogYgbdyAmAsHQ7dyBdypnZG7dBWDJQWEN6UNiu97AILdjojHH1G7nBoL5x1VA3EUCaknIVEHr6f0aIG6rrks7VyGRrg0B0Hn0hcuzzeVuD7KbhSj1rRYn3O7k13TI3D1lOYYdGH91u75psbGNQutbpolWourbm5Ro2NI1OZ70qllsh6tUwznuXbTwr+ERPXh9cI48zVEXzEWmhPHYZ90DXKXrIS3XXu1K6MwVjzt7/CktIF+2RLoli1Ru5waEcL4nEuR02LDim9qrO+8vbp2Lv3nV4Zk51LdabHn22G3PoJhzWVVRFFA156R9V67N+SiWAwcEV3j8yip9tp3NqP/sOhyx5SQgn8JiepIyM5G1I3XIOKpxwGtFoWvzEThm7OACG5FTQFmMKDouf8CACIeexiw2VQu6PxK1yWGY7jkUSThpGffSECAcsC7UPcpor6NnkKlc+lbcykI5QNYY5L8gTxw9++bFitpBej04fkzGx2jxUWXJ0Afpo8vGEiSgDETEtCiNbuW5+KoI6oD3YpliB2aAf3yZXC374DcJSthv/4mbhdJjcY56mI4xl4CzdHDML3+strl1EDJz0YY/oyE85TfpiiprRH9h0YDUIKIJNXt++rrWAZyc5qG5AuXUdFSlef/BVqgjyIBgMiS4BxsXUuicMG/hES1UVSEiAf/DsvkqyBmnYFt8o3IW/4zPGnd1K6MmqCip5+DbDTC9MYr0Ozdo3Y51fKvSwzLPzvhO+W3qRo5Pg4du5rqtbGIJsQ29ImI0qBLzwhcMMCiWg3+3WID3LlsmaxHx661O+KDiGomNJ5OIwoC0uaNiJx2J6RDB+GNj0fhS2/AOXa82mVRE+ZNToH1occQ8eS/EPnAvcj7bikgBmd4K506Gn4BjJ3L8KPTibj+jlb1ug3/brEh0rkURQHXTGmhag2N0bkURQF3PJAcsNsnaur4l5DoPISiQpgf/T9EX3IRpEMH4RgzDjk/b2SwpKBgu/NuuHqkQ7tpAwwfzlG7nCqF81mQDJdUGb1GWYtlkPQqVxI6tL5wGSLdXiKqiH8JiaqhW74UMUMyYJr9LmSLBQWvvYWCj+ZBTkhQuzQihSSh8JWZkDUamJ/+N8TjmWpXVKlw3i229CiS8HtsVHe9E/tgZPIoROqC/8y+YBFjiIVOo0O8kX9jiUIVwyVRJcTTpxB51y2wXH81NMczYb9iInJ+/Q2O624Iyw1JKLR5uveA7Z77IVqLEPHwA4Asq11SBU2hc8ndYqkss9aM1pFJapcRUmIMsbi28/Voa2mndilEVEf8S0hUlsMB4xuvIqZ/bxgWfglPy1bI//RzFM76EHIznmVEwcs6/WG427aD/sel0H/9pdrlVBBqB8rXhn9aLP+kEhFRE8e/hEQldMuXImZoBiKefgKC04Hiu+9D7q+b4LxorNqlEZ2f0Yiil98AAET880GIp0+pXFB5nWO7oHt8DySYwu9JGoFrLomIiAAwXBJBs3cPoiZPguX6qyEdOgjnyFHI/XkDrDP+AzkiUu3yiGrMNWgIim+/C2JuLiL+MS2opsfGGGLRK/GCsAxgkVrl90SELkLlSoiIiNQVGvtjEwWAmHkMpv89D8P8uRC8XrjbtoP16efgHD2G6yopZFkfmwHdyhXQr/gRhrkfw37D39QuKeylxXdD++gOMEgGtUshIiJSVfg9hUx0HkJ2NsxPPIrYAb1h/OwTyBYLimY8g9w1G5UpsAyWFMpMJhTOfBeyKML8+D8hHjmsdkVNAoMlERERwyU1IUJuDkwvPovYvj1gemcmoJFgfeAh5GzeDtvd9wJ6nkVG4cF9QV8U3/8ARGsRIu+bCni9apdERERETQCnxVLYE86cgemdmTB8MBuitQiyVgvbrXfA+o+HuAMsha3i6Y9At/xH6NavhfHdt2CbOk3tkoiIiCjMMVxS2BKPZ8L45mswfvoRBLsdsl4P25TbUDzt7/AmJatdHlFg6XQofHMWYkYPhfnZJ+EcMgyebt3VroqIiIjCGKfFUtiRftuEyDtuRmyf7jDNfhcQNSieei9yftuBohdeZrCkJsPTpSusj82A4HAg6s4pgNWqdklEREQUxti5pPDgckG/6FsYZ70F7e+/AQC8sbEovvlW2G6/G3JcnMoFEqnDdufd0K5ZBf1PyxHxr4dR9MpMtUsiIiKiMMVwSSFNPHYUhrkfwzDvU2hOngAAuDt3ge2Ou2G/8mrAaFS5QiKViSIKX38H0oiBMM79GK6hw+GYMEntqoiIiCgMMVxS6HE6oVu2BMZPP4R29UoIsgxZEOAYfTFsd9wN19DhPE6EqAw5IQGFb70Hy1WXI2L6/XD1ugDeNm3VLouIiIjCDMMlhQZZhvTHb9AvXADD119BPJsFAPC0aAn7dTfAPvlGeJNTVC6SKHi5hg5H8f3TYX71f4i66xbkff8joNWqXRYRERGFEYZLCmqafXuh/+oLGBYugObwIQCALIpwXDwW9htuhvPC0YDEYUxUE8X/90/ofl0D7W+bYH7637A+9azaJREREVEY4X/lFFxkGZrdf0K/9Afofvge2h3b/B9yXdAX9iuvguOyiTyfkqgutFoUvPs+YkYNgemdmXD16QvnZRPUroqIiIjCBMMlqc/thnbTBuiW/AD90h+gOXK49EMdO8Fx5dWwT7yKa8SIGoA3KRkFb8+G5bpJiLz/HuR17gpPp1S1yyIiIqIwwHBJqhCPHYXu51XQ/rwKujWrIObm+j/mSu8F59hL4BgzHp7OXbg5D1EDc40cjeIHH4H5v88h6pYbkLt0FRARoXZZREREFOIYLqlRCGfPKt3JNaugXb0S0sED/o/JWi2cw0fCMWY8nGPGwduylYqVEjUNxdMfVjbJ+mk5Iv8xDYWzPuATOURERFQvYR8u77vvPqxfvx6DBw/GK6+8onY5TYMsQ3NgP7SbNkDatAHajeshHdhf7iruLl3hHDoCruEj4Ow/CDCbVSqWqIkSRRS+9R6k0cNg+HYh3H36wnbnPWpXRURERCEs7MPl9ddfjyuuuALff/+92qWEJ1mGePgQpB3boN2+DdL2rZC2b4WYk1Puau72HeDq1x+uQUPgGjYC3sTmKhVMRD5yTCwK3v8E0eNHwzzjX3B3SVPOiSUiIiKqg7APlxkZGdi4caPaZYQ+WYZ48gQ0e/dA2vsXNHv3QrNvD6RdOyEW5Je/qlYL1wV9lTCZMQCuvhmQExJUKpyIquPukY7Cl15H1LQ7EXXbTchbuhKedh3ULouIiIhCUFCHy82bN2POnDnYuXMnsrKy8M4772DEiBHlrjN37lzMmTMHWVlZ6NKlC/71r3+hR48eKlUcwmQZgrUI4vHj0Bw7AvHIEWiOHYXm2FGIR49Ac2A/xKLCip9mNMLVpx/cPXrC3SMdru494UntDOh0KjwIIqoLx9XXofiv3TDNfBVRN16LvCU/QY6yqF0WERERhZigDpfFxcVITU3FxIkTce+991b4+OLFi/Hcc8/hySefRM+ePfHRRx/htttuw9KlSxEbG9vg9YhicG12IYqC0lH0uAGnC4LbBbhcgNsDweWEUFQEobAAQmFhyUvJ23l5ELPOQDxzGkLWGYhZWRCzzkAoLq7yvmRzBNzpveHplAp3p07wdEqFp2MqvO3aAxpN+boC/cCpUfjGe7CNewoM2+MzIO3ZDd3yZYi68xYUfragws92Q+L4okDjGKNA4viiQArl8RXU4XLYsGEYNmxYlR//4IMPcM011+DKK68EADz55JNYvXo1vv76a9x6660NWoskiYiLC6Kt+p1O4IILgJ07EdMQtxcbC6SkAK1aAW3bKi9t2vhfhObNIQkCJAD6hrg/ChkxMdxsqcn48gtgwADoflqOuBeeAl56KeB3yfFFgcYxRoHE8UWBFIrjK6jDZXWcTid27dqFqVOn+i8TRREDBw7E1q1bG/z+3G4vCgpsDX67debxICq+GbTJyfBoJECjgazVApIWkCTIOi3kiEjlJdL3EqW8joqCt1kivAnNIDdrBm98wvmnseZYG+dxUdAQRQExMWbk5lrh9cpql0ONQoT48XxYLhoO8eWXUdSmAxyTbwzMPXF8UYBxjFEgcXxRIAXr+IqKMkKrrX5WU8iGy9zcXHg8HsTHx5e7PC4uDkeOHPG/f8cdd2D79u2w2WwYOnQoZs2ahc6dO9fpPoPpmwtBRMGX3yIuLgJ52UX1ry2YHhsFFa9XDq6xTwHlTW6DgjmfwHLV5TBPvx/upBS4Bg0J3P1xfFGAcYxRIHF8USCF4vgK2XBZFVmWIZQ5CHzWrFkqVkNEFHpcg4ag6IWXETn9PkT9bTLyFv0IT+cuapdFREREQS5k916JiYmBRqPB2bNny12ek5NToZtJRES1Y7/xZlj/8SDEgnxYrrsS4qmTapdEREREQS5kw6VOp0NaWhrWrVvnv8zr9WL9+vVIT09XrzAiojBR/MjjsF91LTTHM2G5bhKEwgK1SyIiIqIgFtTTYq1WK44ePep/PzMzE7t370Z8fDwSEhIwZcoUPPTQQ0hLS0OPHj3w0UcfwW63Y8KECSpWTUQUJgQBha/MhHjqFHS/rEbULTci/7MvAa1W7cqIiIgoCAV1uNy5cyduuukm//v/+c9/AADTpk3Dvffei3HjxiEnJwevv/46srKy0KVLF8yePTsgZ1wSETVJOh0KPvgE0ZeOge7nVYh84F4Uvv42IITe2VtEREQUWIIsy6G1BZFKXC4P8vKK1S6jHFEUEBcXgeyG2C2W6BwcX1SWeOI4osdeCM3JEyi+7wFY/zWjfrfH8UUBxjFGgcTxRYEUrOMrOtp03qNIQnbNJRERNR5vy1bIn78QXks0TK+/DOMbr6pdEhEREQUZhksiIqoRT5euyP9sAWSTCRFPPwHDJx+qXRIREREFEYZLIiKqMXffDOR/+BlkrRYRD94P/bcL1S6JiIiIggTDJRER1Ypr+EgUvPM+IAiIvPt2aFcuV7skIiIiCgIMl0REVGvOSy9H0ctvQHC5YJlyA6QN69UuiYiIiFTGcElERHVin3wjimY8A8Fmg+W6KyFt3qh2SURERKQihksiIqoz2933wvrwYxCtRbBceyWkP35TuyQiIiJSCcMlERHVS/H0h2F98BGIhQWwXD0B0rYtapdEREREKmC4JCKieiv+v3/C+o8HIRbkw3LV5ZB2bFO7JCIiImpkDJdERFR/goDiRx5H8b3/gJiXB8uky6DZuUPtqoiIiKgRMVwSEVHDEARY/zUDxVPvhZibi+grL+EUWSIioiaE4ZKIiBqOIMA64z/+gGmZeCmkTdxFloiIqClguCQiooZVEjCt0x+GWFiA6KuvgPbXNWpXRURERAHGcElERA1PEFD88GMo+tcMCMVWWCZPgnblcrWrIiIiogBiuCQiooCx3fcAip55AYLdDsuN10K3eJHaJREREVGAMFwSEVFA2W6fisKXXgfcbkTdeiP0X32hdklEREQUAAyXREQUcPYbb0bhzHcBAFFTb4Nh1tsqV0REREQNjeGSiIgaheOqa1HwwVzIBgPMjz4EPPYYIMtql0VEREQNhOGSiIgajXPMOOR/8Q28URbg2Wdh/vs0wO1WuywiIiJqAAyXRETUqFz9B6Jg0TKgRQsY5n6MqFtuBGw2tcsiIiKiemK4JCKiRufpmgasWwdP+w7QL/0BlmsmQMjPU7ssIiIiqgeGSyIiUkebNsj/4Ue4evWGbsM6RF9yEcRjR9WuioiIiOqI4ZKIiFQjxycg76tFcFw4GtKevxAzZiSkLb+rXRYRERHVAcMlERGpKyICBZ98DtvNt0LMOoPoK8ZBt3iR2lURERFRLTFcEhGR+iQJRS+8jKInnwXsdkRNuR7Gd2byqBIiIqIQwnBJRETBQRBgmzoNBXM+AQwGRDzxKCL++SCPKiEiIgoRDJdERBRUnJdchryvf4A3PgHG99+D5fqruJMsERFRCGC4JCKioOPu3Qe5S1fC3bkLdKt+QvSYkdDs36d2WURERFQNhksiIgpK3uQU5C1eAceYcZAO7Ef0xSOgW7FM7bKIiIioCgyXREQUtOSISBR8+BmsD/wfxMICRF1/NYxvvMqNfoiIiIIQwyUREQU3UUTxI4+j4L0PlY1+nn4CkXffDthsaldGREREZTBcEhFRSHBcPhF5i36Ep1VrGL76AtGXj4F4PFPtsoiIiKgEwyUREYUMd/eeyP3xZ7gyBkC7dQtiRg2B9udVapdFREREYLgkIqIQIyckIO+r71F8250Qs7NhufoKmF75L+D1ql0aERFRk8ZwSUREoUeng/XZ/6LgnTmA0Qjzc08j6sZrIOTlql0ZERFRk8VwSUREIcsx8SrkLl0Fd4eO0C9fhphRwyDt2KZ2WURERE0SwyUREYU0T+cuyPtxNRyXXgHN0cOIHjcKhrkf87gSIiKiRsZwSUREIU+OiETB7I9Q9PRzgMeDyH9MQ+TU2yAUFqhdGhERUZPBcElEROFBEGC78x7kfb1YOa5k4QLEXDgE0tY/1K6MiIioSWC4JCKisOLO6I/clb/CMfYSaA4fQvT40TC+PZO7yRIREQUYwyUREYUdOSYWBR/OReFz/wNEERH/fhRRN1wN4exZtUsjIiIKWwyXREQUngQB9lvvQO6Slcpusit+RMyIgdD+ukbtyoiIiMISwyUREYU1T7fuyF2+BrbrboDm9ClYrrwU5v/MAJxOtUsjIiIKKwyXREQU/sxmFL32Fgreng3ZHAHT6y8jesxIaHb/qXZlREREYYPhkoiImgzHlVcjd/U6OAcMgnbndsRcNIyb/RARETUQhksiImpSvMkpyF+4CEX//g8gy4j496OwTLoMYuYxtUsjIiIKaQyXRETU9Gg0sN1zH3KXrYa7azfofl2DmGEDoF8wH5BltasjIiIKSQyXRETUZHnSuiF32SoUT/s7hKJCRN1zB6JuvQlCVpbapREREYUchksiImra9HpYn3gK+d8shicpGfpF3yJ2SF/oFy5gF5OIiKgWGC6JiIgAuAYMQu7P62G7+VaIOTmIuutWRP1tMsTTp9QujYiIKCQwXBIREZWQIyJR9OIryPv6B3hS2kC/9AfEDO4H/fy57GISERGdB8MlERHROVyDhiBn9XoU3zEVQkE+ou6biqjrr4J44rjapREREQUthksiIqLKmM2w/ucF5H23DO72HaBf8SNihmTA8MFsnotJRERUCYZLIiKiargz+iN35VoU33M/BGsRIh9+ANHjR0Oza6fapREREQUVhksiIqLzMRph/ffTyPtxNVzpvaD9fTNiRg2B+aknAKtV7eqIiIiCAsMlERFRDbl7pCNvyUoUPvsiZIMRppmvInZYf+h++lHt0oiIiFTHcElERFQbGg3st92F3LWb4Rh3KTRHj8By3SRE3n4zjy0hIqImjeGSiIioDrwtW6Hgw7nI/2gePC1bwfDtQsQM7APDnHcBt1vt8oiIiBodwyUREVE9OMeOR+6vm1B85z3Khj///D/EjBoK7YZ1apdGRETUqBguiYiI6kmOiIT16eeQu+IXuDIGQPpzJ6IvG4PIu26FeOqk2uURERE1CoZLIiKiBuLp1h153y1Fwduz4UlsDsPCBYgZcAGMM18DnE61yyMiIgoohksiIqKGJAhwXHk1ctf/rpyN6bAj4qnHETN8ALSrflK7OiIiooBhuCQiIgoAOSIS1n8/jdyfN8A5bASk/fsQfc0ERN10HTQH9qldHhERUYNjuCQiIgogT8dOyP/iG+R/MBeepGTol/6AmCEZMD/+CITcHLXLIyIiajAMl0RERIEmCHCOvxQ5v25G0b9mQDYYYXr3LcRmpMM46y3A5VK7QiIionpjuCQiImosRiNs9z2AnA1bYLtxCoSCAkT86xHEDM2AbuliQJbVrpCIiKjOGC6JiIgamdysGYpeeg25K9cq6zEP7IflpmthufJSSDu2qV0eERFRnTBcEhERqcTTNU1ZjznvS7g7pUL36xrEXDgEkXfdAvHQQbXLIyIiqhWGSyIiIjUJApwXXoTc1etR+MLL8CY0g2Hhl4gd1AcRj0yHcPq02hUSERHVCMMlERFRMJAk2KfchuyNW2H95+OQjSYY338PcRnpMD3/NITCArUrJCIiqhbDJRERUTCJiEDxP/4POZu2ofiuaYDbBfPL/0Vs3x4wvjMTsNvVrpCIiKhSDJdERERBSI6Lg/WpZ5GzYQvs114PIS8PEU88itiBF0A/71PA7Va7RCIionIYLomIiIKYt3USCl9/G7mr18MxZjw0mccQdf/diBnUB/oF8wGPR+0SiYiIADBcEhERhQRP5y4o+Hgecn9Yrhxfcuggou65AzFD+kG/cAFDJhERqY7hkoiIKIS4+2Ygf8G3yPtuKZyDh0Lavw9Rd92KmOEDoPvua8DrVbtEIiJqohguiYiIQpCr/0DkL1yEvK9/gLP/QEh7/oLltr8hZsQg6H74HpBltUskIqImhuGSiIgohLkGDUH+t0uQ9+V3cPXNgLR7FyxTrkfMiEHQf/MVp8sSEVGjYbgkIiIKdYIA19DhyFv0I/LmL4Trgj6Q/tyJqDumIGZwX2V3WZdL7SqJiCjMMVwSERGFC0GAa+Qo5C3+CXlffqesyTywH1H3343YjHQY5swCbDa1qyQiojDFcElERBRuSjqZ+QsXIfeH5XCMvhiazGOI/OeDiOvTHcaZr0EoKlS7SiIiCjMMl0RERGHM3TcDBXMXIPenX2C/bAKEs1mIeOpxxPZOg+m/z0HIyVa7RCIiChMMl0RERE2Au3tPFM7+CLm/bob9mskQCgth/u9ziOudhoh/Pgjx8CG1SyQiohDHcElERNSEeDp2QuEb7yBn41bYbrkdkGUY58xCbP9eiLztb5D++E3tEomIKEQxXBIRETVB3uQUFD3/ErK3/Anrw49Bjo2F4buvETNmJCyXj4XuxyWA16t2mUREFEIYLomIiJowOTYOxdMfRvbvu1D4v9fgbt8BuvVrYbnhGsQMzYBh7seA3a52mUREFAIYLomIiAgwGmG/aQpy1/6G/I/mwdWvP6S9exD5j2mIu6AbTC8+C+H0abWrJCKiIMZwSURERKVEEc6x45G36EflGJPxl0HIPgvz/55HXO+uiJx6G6Qtv6tdJRERBSGGSyIiIqqUu28GCj74FDkbt6L47vsgm8wwfPUFYi4egeixF0K/cAHgdKpdJhERBQmGSyIiIqqWN6UNrDP+g+ytu1H44itwd0qF9vfNiLrrVsRe0A2ml1+EkJWldplERKSysA+X9913H/r27Yt//OMfapdCREQU2sxm2G++Fbm/bELegm/huHgsxDOnYX7+P4jr1QWR996lTJmVZbUrJSIiFYR9uLz++uvxwgsvqF0GERFR+BAEuIaNQMEnnyNnwxYU33kPZL0Bhs8/U6bMjh4GwycfAkVFaldKRESNKOzDZUZGBsxms9plEBERhSVv23awPv0ccrbtRuHzL8HdJQ3a7VsROf0+xPXsjIhHpkOz+0+1yyQiokagarjcvHkz7rrrLgwePBipqalYtWpVhevMnTsXI0eORPfu3XH11Vdj+/btKlRKRERE1ZEjImG/5Xbkrl6H3EXLYb/qWghOB4zvv4fYYf0RfclF0H/5Oc/MJCIKY5Kad15cXIzU1FRMnDgR9957b4WPL168GM899xyefPJJ9OzZEx999BFuu+02LF26FLGxsQCAyy+/vNLbXrhwITQaTYPWK4pCg95effnqCba6KDxwfFEgcXyFMwHe/v1h7d8fxc88D/38z2D4cA60mzZAu2kDvP96GI7rboD9pinwtu8QsCo4xiiQOL4okEJ5fAmyHByr7lNTU/HOO+9gxIgR/suuuuoq9OjRA48//jgAwOv1YtiwYbj55ptx66231vi2N27ciPnz5+OVV16pc32yLEMQQu8bTEREpDqvF1i1CnjnHeCbbwC3W7l86FDglluASZMALmEhIgp5qnYuq+N0OrFr1y5MnTrVf5koihg4cCC2bt3a6PW43V4UFNga/X6rI4oCYmLMyM21wusNiucIKIxwfFEgcXw1QekZwDsZEGY8B8Nnn0A/92No1qwB1qyBd9q9cE64Eo4bboK7dx+gAZ7M5RijQOL4okAK1vEVFWWEVlv9zNCgDZe5ubnweDyIj48vd3lcXByOHDlS49u54447sH37dthsNgwdOhSzZs1C586d61RTMH1zy/J65aCtjUIfxxcFEsdXE9QsEda/PwjrfQ9Au+5XGOZ+DP0P38HwyYcwfPIh3KmdYZ98E+yTroGckFDvu+MYo0Di+KJACsXxFbThsiq1nZ46a9asAFZDREREdSKKcA0eCtfgoSjKz4N+4ZcwfPYJtNu2IOLfj8L89BNwXjwO9sk3wDliFCCF3L8sRERNTtAeRRITEwONRoOzZ8+WuzwnJ6dCN5OIiIhCl2yJhn3Kbchb/jNyVq5F8e13QY6MhP6H72C5/mrE9UiF+fFHIG3fCgTHVhFERFSJoA2XOp0OaWlpWLdunf8yr9eL9evXIz09Xb3CiIiIKGA83brD+syLyN6+FwXvfQjHhaMh5ObA9O5biBk1FDFDM2B8/WWIxzPVLpWIiM6hari0Wq3YvXs3du/eDQDIzMzE7t27kZWVBQCYMmUK5s+fj6+//hoHDhzAjBkzYLfbMWHCBDXLJiIiokDT6+G4fCIK5n2F7G17UPT0c3D1SIe05y9E/GcGYnunwTLxEujnz4VQVKh2tUREBJWPItm4cSNuuummCpdPmzbNf+7lp59+ijlz5iArKwtdunTB448/jh49ejR2qXC5PMjLK270+62OKAqIi4tAdnZRyC32peDH8UWBxPFFdaX5azcMC+ZD/9UX0Jw4DgCQjUY4xo6H46pr4Rw6AtBqOcYooDi+KJCCdXxFR5vOu1ts0JxzGewYLqmp4fiiQOL4onrzeqFd+wsMC+ZD9/23EK1FysVxcXBccgWcEyfBMn40svNsHGPU4Pg7jAIpWMdXTcJl0K65JCIiIqqSKMI1ZBgKX38b2bv2o+CdOXCMughCfj6MH82B5fKxQFISTI89DOm3TdwIiIioEbBzWUPsXFJTw/FFgcTxRYEi5GRDv3gR9N98Bd2vawCvFwDgSU6B4/KJcFwxEe5uPYBaHGtGdC7+DqNACtbxxWmxDYjhkpoaji8KJI4vCjRRFBDntqLoo7nQL/wS2o3r/R9zt+8AxxVXwnHZBHg6d2HQpFrj7zAKpGAdXwyXDYjhkpoaji8KJI4vCrRzx5h4PBP6b7+G/psvod26xX89d/sOcI6/DI5LLoO7Zy8GTaoR/g6jQArW8cVw2YAYLqmp4fiiQOL4okCrboyJhw7C8O1C6H74HtptpUHT0zoJjvGXwjH+crj79gM01f8TRU0Xf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVdIyJR49A/8P30P/wHaTNGyGU/FvkaZYI59hL4LjkMrgGDga02sYqnUIAf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVZYyJp09B98P30P/wPbTrfoHg8QAAvDExcF48Do4x4+EcNgIwmwNZOoUA/g6jQArW8cVw2YAYLqmp4fiiQOL4okCr7xgTsrOhX7YYukXfQvfzKgguFwBA1uvhHDoczovGwnnxWHibt2jo0ikE8HcYBVKwji+GywbEcElNDccXBRLHFwVaQ44xoSAfuhU/QvfjEuhWLIdYkO//mCu9F5wXjYXj4nHwdOvODYGaCP4Oo0AK1vFVk3ApNVItRERERCFJjrLAMfEqOCZeBbhc0G5YB92yxdAvXQLt1i3Qbt0C84vPwtOqNZwXjYHj4nFwDRoC6PVql05E1KjYuawhdi6pqeH4okDi+KJAa5QxJsvQ7PlLCZrLlkD6fbN/QyCvOQKuocPhHDkKzgtHw9s6KTA1kCr4O4wCKVjHFzuXRERERIEiCPB07gJb5y6w3T8dwpkz0K9YBt2yJdD9vBL6JYugX7IIAOBO7QznyNFwXjgarowB7GoSUVhiuCQiIiJqAHKzZrBPvhH2yTcCdrsyffan5dCtWgFpz1+Q9vwF09tvQDaZ4Rwy1B82vckpapdORNQgGC6JiIiIGprBANfwkXANHwkrnoN49Ah0K1dAt3I5dGt+hn7ZEuiXLQEAuDt0hPPC0XCOGAVX/4GAyaRy8UREdcNwSURERBRg3uQU2G++FfabbwWcTmg3rle6miuXQ/prN6T9+2B69y3IOh1c/for6zWHDoe7Zy9AU/0aJyKiYMENfWqIG/pQU8PxRYHE8UWBFkpjTDyeqXQ1V6+E9tefIebm+j/mtUTDNWgInEOHwzV8BDxt2/O4kyAQSuOLQk+wji9u6ENEREQU5LytWsN+482w33gz4PFA2rkd2p9XQ7dmNbQb10G/+HvoF38PAPC0TlKC5tDhcA4eBrlZM3WLJyIqg53LGmLnkpoaji8KJI4vCrSwGWM2G7SbNypBc80qSNu2+o87AQB3l65wDRgE56AhcPUfBDkhQcVim46wGV8UlIJ1fLFzSURERBTKjEa4SjqVwAwIuTnQ/voLdD+vgm7NKki7/4S0+08Y338PgHLkiWvAILgGDoZzwGDIiYmqlk9ETQvDJREREVGIkGNi4bz0cjgvvRwAIJ44Du26X/0vviNPjB/OAaDsROsaOASugUrg9DZvoWb5RBTmGC6JiIiIQpS3ZSs4Jl0Dx6RrAADiqZNK0Fz7K7Trf4W0fx+k/ftg/Ph9AIC7XXu4MgbA3a8/XP36w9OhIzcIIqIGw3BJREREFCa8zVvAMfEqOCZeBQAQT5+Cdv3a0rC5dw+kgweAeZ8q14+Lg6tvBlx9lbDpTu8F6PVqPgQiCmEMl0RERERhypvYHI4rroTjiisBAEJWFrSbN0K7aQO0mzZA2rYF+qWLoV+6GAAg63Rw9+wFV8YA5bzNvhmQ4+LUfAhEFEIYLomIiIiaCDkhAc5xl8A57hLlArsd0tYt0G5arwTOzRv9Lz7uDh3h7tMPrt594L6gD9yduwJarUqPgIiCGcMlERERUVNlMMDdfwDc/QfABgBeLzT79ylBc+N6SJs2+NdtGubPBQDIRiPc3Xv6w6ardx94Wydx7SYRMVwSERERUQlRhKdTKjydUmG/4W8ASqbS/vEbpD82Q/v775C2/uGfVuvjTWgGV+8L4O6thE13r96QoyxqPQoiUgnDJRERERFVSU5IgPPisXBePFa5wOuF5sB+SL9vLgmdv0P6cyf0y5ZAv2yJ//PcHTvB3SNdeemZDnf3HpAjo1R6FETUGBguiYiIiKjmRBGejp3g6dgJjmuvVy6z2SDt2A7tH5shbfld6XDu2wtp317gqy/8n+pu174kaJYJnNExKj0QImpoDJdEREREVD9GI9z9MuDul+G/SMjOhrR9K6Qd26DdtlV5++AB5SiUr7/yX8+T0gaunr3g7tGzpNPZE3Isd6glCkUMl0RERETU4OS4OLhGXAjXiAuVzYIACHm5kLZvK3nZorw+eACaI4eB7772f66nRUu4u6bBk9Yd7q5pcHftBk+HjoDEf12Jghl/QomIiIioUcjRMXANHQ7X0OH+y4SCfEg7titBc9sWSDu3Q7N/H/QnTwA/LS/9XL0e7k6d4Unr5g+c7rTuPIeTKIgwXBIRERGRauQoC1yDhsA1aEjphTYbpL1/QfPnLki7dkAqea3dsQ3aHdvKfb4nsXlJ4OwGd2pneFI7w90xFTCbG/mREBHDJREREREFF6MR7p694O7ZCw7fZbIM8dRJSH/uhGbXLkh/KqFTs28vNCtXQLdyRbmb8CSnwN0pFZ5OneHu3MV/xIocEdnoD4eoqWC4JCIiIqLgJwjwtmgJZ4uWwIUXlV5ut0PatweaXTsh7d0Dzd6/IO35C+LRI9AfPQKs+LHczXhaJ8HTKVWZYpvaWel2dujIXWuJGgDDJRERERGFLoMB7u494e7es7TLCQDFxZD274Vmz19K6NyzG5o9f0Fz+BA0mccqdDq9cXHwtO8Id/sO8LTvAE/7jsrrNm0Bg6FRHxJRqGK4JCIiIqLwYzKVHG2SXj502mzQHNgPac/uki7nHmgO7ofm4AFoN22AdtOGcjcjCwK8SSnwtG9fEjw7Qu7YEeibDhijAQiN95iIghzDJRERERE1HUYjPN26w9Ote/nLPR6ImceU4HlgHzQH9pe+HD0MzdHD0K36qdynxBoM8KS08b9427RV3m7TDp6kZMBobMQHRqQ+hksiIiIiIo0G3pQ28Ka0gWvkqPIfKy6G5tBBaA7uh3RgPzQH9sFw5BDkPXsg7VHWeFbG07wFPG3awpvSBh5f8CwJn3J8PCCw60nhheGSiIiIiKg6JhM8ad3gSesGJwBRFGCIi0BudhHk3FxojhyGeOQwNIcPK2s6jxyG5sghpRN66iSwYV2Fm5RNZnhat4a3dRI8rZLgTUqCp1VreJOSldctWgIS/1Wn0MIRS0RERERUR7IlGu4e6UCP9IofdLkgHs8sEziV8CmWvC3t3QPs3VP57YoivC1aloTPMqEzKQmelq3hbdECsiWa3U8KKgyXRERERESBoNXC26YtvG3awlXJh4WCfIiZmdAcPwbx2DFojmdCzDwKTWYmxMxjEE8ch+Z4JrRV3LxsNMLTvAW8zVvA26IFvM1bwtuiBTwtWsKb6LusBaDTBfJREvkxXBIRERERqUCOssDT1QJP17TKr+ByQTx5AprMY8oU28xjSic08xjEUychnjoJ6dBB4NDBau/HGx8Pb2ILeErCpjchAd6EZpATmsHrf0lgJ5TqjeGSiIiIiCgYabXwJqfAm5xS9XVsNoinTkJz6iTEkycgnjpV8vokNCWvxVMnIZ09C2nXjmrvTtbp4I1P8IfN0gCaUBpCY+Mgx8XBGxML6PUN/IAp1DFcEhERERGFKqMR3rbt4G3brurryDKEnBwldJ45BfHMGYhZWRCzzpS8lHn71EloThyv0V3LJjO8sbHwxsRCjo2FNzYWcozyvjcuzv+2XOY6ckQku6NhjOGSiIiIiCicCQLkuDh44uLgQffqr+vxQMjOLhM8z0A8e9b/tpCTDTEnR3mdmwNNyXTdmpJFEXJUFOQoC7xRFv/bssUCr+9t3/uRUZAtZd6OjIJsNivnhzKgBiWGSyIiIiIiUmg0kJs1g6dZM3hqcn2PB0JeHsScbKU7mpsDITcHYnZ26dtlwqhQUAChoACao0egqWOJsiBANkdANpkgm82QzRGA2ex/WzabSz5W8rbvcoMBst4AGPSQ9QbIBmPp23o9YDRC1ivvQ68HRLGOFTZdDJdERERERFQ3Go2/K1orbjeEwgII+fkQS14rwTMfYkF+yfvKZaLvbWsRBKu15KVICbRnTgfmcQHlgqas1wOSBFmrVV5LWkArARrfZVpA0vjflks+Bq1WuUwQAVFQOq6iCLnkNQRB+VjZ93Va4K7bgdgWAXtsgcJwSUREREREjUuSIMeUrNGsz+04nRVCp1BcXPp2mddwOCDYbBAcduVthx2CzV76vt0OwW4HHHYIJe/DboeQnwfR6WyoR14zbgfwxDONe58NgOGSiIiIiIhCk04HWaeE1ICSZcDtBlwuCB7lNVxu/9uC2wW4PWXedkNw+67ngiB7ldvwegEZJa/l0teyF0LJ+4JGg8iJl6J+qVsdDJdERERERETVEQRAq1WmuZa5WK7yE+pOFAUgJgLILgrArQcWV6kSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9CbIsy2oXEQq8Xhkej1ftMirQajVwuTxql0FhiuOLAonjiwKNY4wCieOLAikYx5dGI0IUhWqvw3BJRERERERE9cZpsURERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdBbu7cuRg5ciS6d++Oq6++Gtu3b6/2+kuWLMGYMWPQvXt3XHrppVizZk0jVUqhqDbja9++fbj33nsxcuRIpKam4tNPP23ESikU1WZ8ffHFF5g8eTL69u2Lfv364ZZbbsGOHTsasVoKRbUZYytWrMCVV16JPn36ID09HZdffjm++eabxiuWQk5t/wfzmTVrFlJTU/HCCy8EuEIKZbUZXwsXLkRqamq5l+7duzditTXHcBnEFi9ejOeeew733HMPvv76a6SmpuK2225DTk5OpdffsmULpk+fjkmTJuGbb77BqFGjcPfdd+PAgQONXDmFgtqOL5vNhtatW2P69OlISEho5Gop1NR2fG3cuBHjx4/Hxx9/jHnz5iExMRG33HILzpw508iVU6io7RizWCy488478fnnn+O7777DpEmT8Oijj2LdunWNXDmFgtqOL59du3Zh/vz5SE1NbaRKKRTVZXxFR0fj119/9b+sWrWqESuuBZmC1qRJk+SnnnrK/77H45EHDx4sz549u9Lr33///fKdd95Z7rKrrrpKfvLJJwNaJ4Wm2o6vskaMGCF/8skngSyPQlx9xpcsy7Lb7ZZ79eolf/fdd4EqkUJcfceYLMvyFVdcIb/xxhuBKI9CXF3GV3FxsTx27Fh5zZo18g033CA///zzjVEqhaDajq+vvvpK7tevX2OVVy/sXAYpp9OJXbt2YdCgQf7LRFHEwIEDsXXr1ko/Z+vWreWuDwCDBw+u8vrUdNVlfBHVVEOML5vNBrfbDYvFEqAqKZTVd4zJsoz169fj0KFDuOCCCwJYKYWiuo6v559/HhkZGRgyZEgjVEmhqq7jq6ioCMOHD8ewYcNw9913Y//+/Y1Qbe1JahdAlcvNzYXH40F8fHy5y+Pi4nDkyJFKP+fs2bOIi4urcP2srKyA1UmhqS7ji6imGmJ8vfTSS2jRogX69+8fiBIpxNV1jBUWFmLo0KFwOp0QRRFPPvkkBgwYEOhyKcTUZXytWrUKGzZs4DpeOq+6jK927drhueeeQ6dOnVBQUID3338f1113HRYtWoTExMTGKLvGGC5DjCzLEAShyo9X9rHqrk9U1vnGF1F91HR8vffee1i8eDE++eQT6HS6RqiMwsX5xpjZbMY333yD4uJirF+/Hs8++yySk5PRp0+fRqySQlVV4ysnJwePP/443nzzTRiNRhUqo3BQ3e+v9PR0pKen+9/v1asXxo0bhwULFmDatGmNVGHNMFwGqZiYGGg0Gpw9e7bc5Tk5ORWe6fCJj4+vcP3s7Owqr09NV13GF1FN1Wd8zZkzB++++y4++OADdOrUKZBlUgir6xgTRREpKSkAgC5duuDAgQOYNWsWwyWVU9vxtW/fPmRlZeG6667zX+bxeLB582Z8+umn3PmaymmI/8G0Wi26dOkSlLPNuOYySOl0OqSlpZXbxc7r9WL9+vXlnrkoKz09HWvXri132bp166q8PjVddRlfRDVV1/E1e/ZsvPXWW5g9e3bQbrFOwaGhfofJsgyn0xmACimU1XZ8de/eHd9//z2++eYb/0u3bt0wYcIELFy4sBErp1DQEL+/PB4P9u3bF5S797NzGcSmTJmChx56CGlpaejRowc++ugj2O12TJgwAQDw0EMPITExEdOnTwcA3HTTTbjhhhvw/vvvY9iwYVi8eDF27tyJZ555Rs2HQUGqtuPL6XT6j7VxOp04ffo0du/eDYvFgpYtW6r2OCg41XZ8vffee3jttdfw0ksvoVWrVv614iaTCWazWbXHQcGrtmNs1qxZ6Nq1K1JSUuB0OvHLL7/g22+/xVNPPaXmw6AgVZvxZTKZKsy0MJlMiI6ORseOHdUon4JcbX9/zZw5E+np6UhJSUFBQQHmzJmDEydOYNKkSWo+jEoxXAaxcePGIScnB6+//jqysrLQpUsXzJ49G7GxsQCAkydPQhRLm8+9e/fGSy+9hFdffRUvv/wy2rRpgzfffBPt27dX6yFQEKvt+Dpz5gyuuOIK//uzZs3CrFmzMGHCBDz//PONXT4FudqOr3nz5sHlcuG+++4rdzvTpk3Dvffe26i1U2io7Riz2+146qmncOrUKRgMBrRr1w7//e9/MW7cOLUeAgWx2o4votqo7fgqKCjA448/jqysLFgsFnTr1g2ff/452rVrp9ZDqJIgy7KsdhFEREREREQU2viUCxEREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdWbpHYBREREweaNN97AzJkzK1w+YMAAfPjhh41fEBERUQhguCQiIqpEZGQkZs+eXeEyIiIiqhzDJRERUSU0Gg3S09PPez273Q6DwRD4goiIiIIc11wSERHVUGZmJlJTU/Hdd9/hoYceQp8+fXDXXXcBAPLy8vDEE09g4MCB6N69O6699lps27at3OcXFBRg+vTpSE9Px+DBg/H222/jhRdewMiRI/3XeeONN5CRkVHhvlNTU/Hpp5+Wu2zBggUYP348unXrhhEjRuC9994r9/FHHnkEEydOxNq1a3HppZciPT0d1113Hfbt21fueh6PB++++y4uvvhidOvWDUOHDsUjjzwCAJg7dy569eoFq9Va7nM2bNiA1NRU/PXXX7X8KhIRUbhi55KIiKgKbre73PuyLAMAXnzxRYwePRqvvfYaRFGE0+nElClTUFBQgIceegixsbGYN28ebr75Zvz4449ISEgAAPzzn//Epk2b8OijjyI+Ph7vv/8+jh49Ckmq/Z/j2bNn45VXXsFtt92Gfv36YdeuXXjttddgNBpxww03+K938uRJvPjii5g6dSr0ej1efPFF/P3vf8eiRYsgCAIA4IknnsC3336LW2+9Ff369UN+fj6WLl0KALj00kvxwgsvYNmyZZg4caL/dr/++mukpaWhc+fOta6diIjCE8MlERFRJfLy8pCWllbusv/85z8AgJ49e+Lf//63//IFCxZg3759WLRoEdq0aQMAGDhwIMaMGYP3338fDz/8MPbt24cVK1bglVdewbhx4wAAGRkZGDFiBCIiImpVW1FREd58801MnToV06ZNAwAMGjQINpsNb7/9Nq677jpoNBoAQH5+PubNm+evS5Zl3HPPPTh48CDat2+PAwcO4Msvv8Rjjz2Gm266yX8fvhqjoqJw0UUXYeHChf5wabVa8eOPP2L69Om1qpuIiMIbwyUREVElIiMj8cEHH5S7TKfTAQCGDx9e7vL169cjLS0NrVu3Ltft7Nu3L3bu3AkA2LFjBwCUmwJrNpsxcOBAbN++vVa1bdmyBcXFxRgzZky5++vfvz/eeustnDp1Cq1atQIAtGrVyh8sAaB9+/YAgNOnT6N9+/bYuHEjAJTrSp5r0qRJuPnmm3Hs2DEkJSVhyZIlcLvduOSSS2pVNxERhTeGSyIiokpoNBp079693GWZmZkAgLi4uHKX5+bmYuvWrRU6nQCQnJwMADh79izMZnOFzX/Ova2ayM3NBQCMHz++0o+fPHnSHy7P3eFWq9UCABwOBwClQ2symartnmZkZCApKQkLFy7E/fffj4ULF+LCCy9EdHR0rWsnIqLwxXBJRERUS761ij4WiwXdunXDjBkzKlzX1+2Mj4+H1WqtsLtsdnZ2uevr9Xq4XK5yl+Xn51e4PwB49913Kw2nbdu2rfFjiY6ORnFxMYqKiqoMmIIg4Morr8QXX3yByy+/HL///nuFzYOIiIgYLomIiOppwIABWLt2LVq2bFllJ9LXBV25cqV/PaPVasW6devKhbrExERYrVacPn0aiYmJAIC1a9eWu61evXrBYDDgzJkzFabo1lb//v0BAN988025jYDONWHCBLz++ut49NFHkZiYiEGDBtXrfomIKPwwXBIREdXTFVdcgfnz5+PGG2/ELbfcgqSkJOTl5WH79u1ISEjAzTffjI4dO2LkyJGYMWMGioqKkJCQgDlz5lSYJjtkyBAYDAY8+uijmDJlCjIzMzF//vxy14mKisK0adPwzDPP4Pjx4+jbty+8Xi8OHz6MjRs34s0336xx7e3atcM111yD559/HtnZ2ejbty8KCgqwbNkyvPLKK/7rJSYmYsiQIVi9ejXuvPNO/4ZBREREPgyXRERE9aTX6/Hxxx/jtddewxtvvIHs7GzExsaiR48e5Tbwef755zFjxgw8++yzMJlMmDx5Mrp3745ly5b5rxMbG4vXX38dL774Iu655x6kpaXhpZde8nc7fW6//XY0a9YMH330ET744APo9Xq0adOmwvVq4t///jdatmyJBQsW4L333kNsbGylnclRo0Zh9erV1W7+Q0RETZcg+w7tIiIiokbnO0Ny5cqVapdyXvfffz+ysrLw2WefqV0KEREFIXYuiYiIqFp79uzBzp07sXz5crz88stql0NEREGK4ZKIiIiqNXXqVOTm5mLy5MkYM2aM2uUQEVGQ4rRYIiIiIiIiqjdR7QKIiIiIiIgo9DFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvf0/E8krr8igmf4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "norms = [\"leahy\", \"frac\", \"abs\", \"none\"]\n", + "\n", + "for norm in norms:\n", + " ps = Powerspectrum(lc_ar4, norm=norm)\n", + " mtp = Multitaper(lc_ar4, norm=norm, adaptive=False) # adaptive=False does not calculate adaptive weights to reduce bias, helps see the normalization similarities better\n", + " \n", + " fig = plt.figure(figsize=(12, 8), dpi=90)\n", + " plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + " plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + " plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + " plt.legend()\n", + " plt.yscale(\"log\")\n", + " plt.ylabel(\"Power\")\n", + " plt.xlabel(\"Frequency\")\n", + " plt.title(\"AR(4) Spectrum, \" + (norm + \" normalized\").title())" + ] + }, + { + "cell_type": "markdown", + "id": "ddda379e", + "metadata": {}, + "source": [ + "### Other attributes with the S(f) estimates\n", + "If you look closely at the attributes of the `multitaper` object, there is a `multitaper_norm_power` attribute. This attributes contains the PSD normalized according to \n", + "\n", + "\n", + "Another attribute containing the PSD is the `unnorm_power`, and as the name suggests, contains the unnormalized PSD." + ] + }, + { + "cell_type": "markdown", + "id": "c6e7f041", + "metadata": {}, + "source": [ + "## A summary of the jackknife variance estimate\n", + "Assume that we have a sample of $K$ independent observations, $\\{x_i\\}, i = 1,...K$, drawn from some distribution characterized by a parameter $\\theta$, which is to be estimated. Here, $\\theta$ is usually a spectrum or coherence at a particular frequency or a simple parameter such as the frequency of a periodic component. Denote an estimate of $\\theta$ made using all $K$ observations by $\\hat{\\theta_{all}}$. Next, subdivide the data into $K$ groups of size $K − 1$ by deleting each entry in turn from the whole set, and let the estimate of $\\theta$ with the $i$th observation deleted be\n", + "
\n", + " $\\large{\\theta_{\\setminus i} = \\hat{\\theta}\\{x_1,..x_{i-1},x_{i+1},...x_K\\}}$\n", + "
\n", + "\n", + "for $i = 1, 2,..., K$, where the subscript $\\setminus$ is the set-theoretic\n", + "sense of without. Using $\\bullet$ in the statistical sense of averaged\n", + "over, define the average of the $K$ delete-one estimates as\n", + "
\n", + " $\\large{\\theta_{\\setminus \\bullet} = \\frac {1}{K} \\sum_{i=1}^{K} \\hat{ \\theta_{\\setminus i}}}$\n", + "
\n", + "\n", + "and the jackknife variance of $\\hat{\\theta_{all}}$ as\n", + "
\n", + " $\\large{\\widehat{Var}\\{{\\hat{\\theta_{all}}}\\} = \\frac {K - 1}{K} \\sum_{i=1}^{K} (\\hat{ \\theta_{\\setminus i}}} - \\hat{ \\theta_{\\setminus \\bullet}})^2$\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "9e982a2c", + "metadata": {}, + "source": [ + "This is just a summary of the jackknife variance estimate, kindly explore the references for further in-depth details." + ] + }, + { + "cell_type": "markdown", + "id": "1738b1ea", + "metadata": {}, + "source": [ + "### A look at `jk_var_deg_freedom`\n", + "This attribute differs depending on whether the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a $chi^2$ model of how the estimated PSD is distributed about the true log-PSD (this is either 2$*$floor(2$*$NW), or calculated from adaptive weights) \n", + "\n", + "We'll do a combination of the valid values for the `adaptive` and `jk_var_deg_freedom` and have a look at the results." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a03504ed", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAmACAYAAADckwLtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOz9eZhdVZnwf3/XHs5c8zxkIiEJSYAwQwgyCIKAI2pLi60tTq2A2tq2traK3WqjtkOD/uzHqbV9nre1pVsFBRVlUmZISICQQOaq1DyeeU/r/WNXVVKpMUkllVTdn+vKlZy91957nTr7VM597rXupbTWGiGEEEIIIYQQ854x2x0QQgghhBBCCHF8kABRCCGEEEIIIQQgAaIQQgghhBBCiCESIAohhBBCCCGEACRAFEIIIYQQQggxRAJEIYQQQgghhBCABIhCCCGEEEIIIYZIgCiEEEIIIYQQApAAUQghTjhaay677DJWrFjB7t27p3XMtm3bWLFiBY8//viM96enp4fbb7+dlpaWUdsff/xxVqxYwbZt22b8mtO1YsWKcf889dRT0zr+E5/4BG984xuPci+P7bUvu+wybrvttgn3t7S0sGLFCu6///4jvtbb3/52brnlllHbfvazn3HZZZexatUq3v72tx/xNQ52Ir/mQghxPLBmuwNCCCEOzYYNG2htbQXg17/+NR/4wAdmtT89PT3ccccdnHvuuTQ3N49sX716NT/96U9ZuHDhLPYO3vWud3HllVeO2rZs2bJZ6s388tnPfhbL2v9Ro6uri8997nO87W1v46qrrqKsrOyoXFdecyGEOHwSIAohxAnm17/+NYlEgpNPPvm4CBAnkkqlWLt27Wx3g6ampuOiH/PRwUHZ7t278X2f6667jpUrVx6168prLoQQh0+GmAohxAnE933uvfdeLrvsMq677jpefvllXnzxxTHt/u///b9cfPHFrF27lve///10dXWNafODH/yA6667jrPOOot169bx/ve/f8yQ1eEhgj/96U+57LLLOO2003jve99LR0cHEA5HfM1rXgPAX/3VX40M54OxQ0xvuOEGPvShD43px2233cYll1yC1hqAYrHIl7/8ZS6++GLWrFnDa1/7Wh588MEj+KmN7xe/+AXXX3895557Lueccw5vf/vb2bx586THDA4O8qlPfYr169dz6qmncskll/DpT396VJtt27bx3ve+lzPOOIMzzjiDW265Zdyf/6Hq7Ozkk5/8JK985Ss57bTTuPLKK/n617+O4zij2hUKBb785S9z6aWXsmbNGi677DL+9V//dcLzdnR0cOWVV/LOd76TfD4/bpvHH3+cM844g6997WsA/M///A8rVqxg69at/PVf/zVr167lqquu4ne/+92o4w4cYnr77bfztre9DYDXve51rFixgv/5n/8B5DUXQojjiWQQhRDiBPLYY4/R3d3N1VdfzVlnncU//dM/8etf/3pUNua+++7j85//PG9961u5/PLLefLJJ/mHf/iHMedqb2/nhhtuoLGxkUwmw3/9139x/fXX89vf/paSkpKRdhs2bGDnzp184hOfoFgs8tWvfpUPfOAD3HnnndTW1vLVr36Vj33sY3zmM59h9erVE/b96quv5rbbbiOXy5FIJIBwPuW9997Lq1/9apRSANxyyy1s2rSJm2++mYULF3LPPffwN3/zN9x5552ccsopQBhs3HHHHWzdunXKn1kQBHieN/JYKYVpmrS0tPD617+ehQsX4jgOd999NzfccAN33303CxYsGPdcX/rSl9iwYQP/8A//QHV1NW1tbaPmtu3evZvrr7+eNWvW8JWvfAXf9/nmN7/J+9//fn7+85+PPMfD0dfXR3l5OZ/85CcpLS1l165d3H777fT19fH5z39+5Of5gQ98gA0bNvCBD3yANWvW0NHRMeH8u5aWFt75zndy0kkncfvttxONRse0efjhh7npppt4z3vew0033TRq38c+9jHe8pa3cOONN/KTn/yEv/3bv+W+++6jvr5+zHne/OY3U1lZyec//3m++tWvsmDBgpHhx/KaCyHEcUQLIYQ4YXziE5/QZ599ti4Wi1prrd/znvfoSy+9VAdBMNLmuuuu0zfeeOOo4z71qU/p5cuX68cee2zc83qep/P5vF67dq3+3//935HtN9xwg161apVuaWkZ2fbUU0/p5cuX6wcffFBrrfXWrVvHPfdjjz2mly9frrdu3aq11rqnp0efcsop+u677x5p88wzz+jly5frTZs2aa21fuSRR/Ty5cv1448/Pupcf/mXf6lvvvnmkce33367PuWUUyb/YWmtly9fPubPW9/61jHtfN/XruvqK6+8Ut9+++0j2//+7/9ev+ENbxh5fM011+gf//jHE17vYx/7mH7Vq1418vporfXOnTv1ypUr9f333z9lfw908LUP5rqu/tWvfqXXrFkzcr2HHnpIL1++XN93330THnfppZfqf/mXf9G7du3SF198sb7ppptG9Xfv3r16+fLl+o9//KO+77779Jo1a/T3vve9Uee488479fLly/V///d/j2zr7e3Vp5xyiv5//+//jWy74YYbRr1uB98TWstrLoQQxxvJIAohxAnCcRzuu+8+Lr/8ciKRCADXXHMNH//4x9m4cSNnnHEGvu+zZcuWMUPgrrjiCv77v/971LaNGzfyzW9+kxdeeIH+/v6R7Tt37hzVbtWqVTQ1NY08Puuss6iqqmLTpk284hWvmHb/KysrOf/88/nNb37DNddcA8BvfvMbFi5cyKmnngrAI488Qk1NDWeeeeaoDNAFF1wwMhwR4KabbhqTzZrIjTfeyKtf/eqRx8lkEoDt27fzta99jQ0bNtDT0zOyf9euXROea+XKlXz/+9/HMAzWrVvHkiVLRu1/9NFHef3rX49hGCP9b25upqmpieeee45LLrlkWn0ej9aaH/3oR/zsZz+jpaWFYrE4sq+trY1Fixbx2GOPUV5ezitf+cpJz7Vz507e9ra3cd5553HbbbeNKiQz7He/+x133XUXn/zkJ0eGhh5s/fr1I/+uqKigsrKS9vb2Q3pe8poLIcTxRQJEIYQ4QTz00EMMDg5y8cUXMzg4CMB5551HJBLh17/+NWeccQa9vb14nkdVVdWoYw9+vG/fPt71rndx2mmnceutt1JbW4tt27zvfe8bM6ft4GOHtx3OHKurr76aW2+9lUwmQyKR4N577x21pEBfXx9dXV3jDlU1TfOQrwfQ2Ng4EoAOy2QyvOtd76KqqopPfOITNDY2Eo1G+fSnPz3m+R/oM5/5DP/2b//Gt7/9bT7/+c+zaNEiPvShD40EvH19fXz3u9/lu9/97phj29raDqv/w370ox9x22238d73vpdzzjmH0tJSNm/ezOc///mRYLG/v5+ampopz7Vhwwb6+/t505veNG5wCPDHP/6R8vJyLr/88gnPc+BQZIBIJDLpz2888poLIcTxRQJEIYQ4Qdx9990A4xZ6ueeee/jkJz9JZWUllmWNyo4AYx4//PDDFAoFvv3tb4/MB/Q8j4GBgTHnPvjY4W3TCUQOdsUVV/C5z32O++67j6amJjo7O0dlesrKyqirq+Nb3/rWIZ/7UGzcuJH29nZ+8IMfsHTp0pHt6XR60uNKS0v59Kc/zac//WlefPFFvve97/Gxj32MFStWsGzZMsrKyrj88st585vfPObYioqKI+rzvffey1VXXcVHPvKRkW3bt28f1aa8vHxagfsb3/hGMpkMH/zgB/mP//gPTjvttDFtPv3pT/PDH/6Qd73rXfzkJz854v5PRF5zIYQ4vkiAKIQQJ4BsNssDDzzAtddey1ve8pZR+7Zs2cKXvvQlHn/8cdatW8fKlSv5wx/+wPXXXz/S5ve///2oYwqFAoZhjMoe3XPPPaOG+A174YUX2LdvH42NjQA8/fTT9PT0jAQVtm0DjBryOJGysjLWr1/PPffcQ2NjI0uXLh1VYOeCCy7ghz/8IYlEYtSH+JlWKBQARobqAjzzzDO0trayZs2aaZ1j5cqVfPzjH+euu+5ix44dLFu2jAsuuICXXnqJNWvWzHhxkkKhMKq/AHfdddeoxxdccAHf+973uP/++7n00ksnPd+tt95KLpfjPe95Dz/+8Y9Hqs8OS6VSfP/73+ftb387N954Iz/+8Y9JpVIz82QO6rO85kIIcfyQAFEIIU4Af/jDH8jn8/zVX/0Vp59++qh9Z555Jv/f//f/cffdd48sV3HTTTfx2c9+liuuuIInn3yShx9+eNQx559/Pr7v88lPfpI3velNvPTSS/zgBz+gtLR0zLUrKyt53/vex8033zxSxXT16tUj8w8bGxuJxWL84he/oKSkBMuyxgzvO9CrX/1qPvWpT5FKpbjhhhtG7bvwwgtZv34973rXu3jPe97DsmXLyGQyvPjiixSLRT760Y8CcMcdd/Dtb3+bF1544bB+nmvXriWRSPCP//iPvPvd76a9vZ077riDurq6SY+7/vrrueKKKzj55JNRSvGzn/2MRCIxEizfdNNNvPnNb+a9730v1113HRUVFXR0dPDII4/whje8gfPOOw+Ayy67jHPPPZd/+Zd/mfR6BwYc69at4z//8z857bTTWLhwIXfdddeYZUmGf34f/ehH+eAHP8iqVavo6uriqaeeGql0OswwDG677TZuueWWkSqkixcvHtWmoqKCH/zgB7ztbW/jfe97H9/73veIx+OT9vlQzZfXXAghThSyDqIQQpwAfv3rX7N48eIxwSGEGbxXv/rV/P73v8dxHK644gr+8R//kfvvv58PfvCDvPDCC3zhC18YdcyKFSv40pe+xLPPPsv73vc+7r77br75zW+OmVMGcMYZZ/CXf/mXfPGLX+RTn/oUJ5988qjhgNFolH/6p3/i+eef5+1vfztvetObJn0ur3zlKzFNk76+Pq6++upR+5RS3HHHHVx33XX86Ec/4t3vfjef/exn2bBhA2edddZIO601vu9P62c3nurqar75zW/S3d3NBz7wAX70ox9x6623smjRokmPW7t2Lf/7v//LLbfcwoc//OGR+WfDyzosWbKEn/70p8TjcT7zmc/wnve8h9tvv51IJDLq3Pl8nsrKykmvVSgURrKzAB/84Ae59tpr+eY3v8lHP/pRbNseU4xIKcW3vvUt/uIv/oIf/ehHvOc97+Eb3/jGhEMdLcviG9/4BsuXL+ev//qvx50zV1tby3/8x3/Q2trKTTfddMhzDKcyX15zIYQ4USith1YmFkIIIQ7y9re/nYqKCv7t3/5ttrsyZ+zdu5dXvepV/O53v5tw7T0I5wkuXrx4ZHF6IYQQ4liQIaZCCCHEMbRhwwYuv/zyCYPDzZs38/DDD/P888/z7ne/+xj3TgghxHwnAaIQQghxDL32ta/lta997YT7h6uUfvzjHx8zBFcIIYQ42mSIqRBCCCGEEEIIQIrUCCGEEEIIIYQYIgGiEEIIIYQQQghAAkQhhBBCCCGEEEOkSM0EgkDj+8Fsd2MUyzLwvOOrT2JukHtLHA1yX4mjQe4rcTTIfSWOhuPtvjJNA8NQU7aTAHECvh/Q35+b7W6MMAxFVVWKwcE8QSB1hcTMkXtLHA1yX4mjQe4rcTTIfSWOhuPxviovT2AY5pTtZIipEEIIIYQQQghAAkQhhBBCCCGEEEMkQBRCCCGEEEIIAUiAKIQQQgghhBBiiBSpEUIIIYQQs0prTRD46Fmo5WEYCsdx8DzvuCkmIk58s3FfKQWGYaLU1JVKJyMBohBCCCGEmBVaazKZAbLZQWD2grPuboMgOH6WIxBzw2zcV4ZhUlXVgGlOXa10IhIgCiGEEEKIWTEcHJaWVhKJRIEjy3wcLstSeJ5kD8XMOvb3laa/v5vBwV4qKmoO+ywSIAohhBBCiGNOaz0SHCYSqVnti2UZgGQQxcyajfuqpKScvr5OtA5Q6vDKzUiRGiGEEEIIccwFgQ/oocyhEGImmGaY/zuSoa0SIAohhBBCiGNuf0Ga2RlWKsTcFL6fjqTgkwSIQgghhBBCCCEACRCFEEIIIYSYNc888xTr159NLpebtN2b3vQa7rzzp8eoV8fWL35xJ3//9x8Zeex5Hv/8z5/lqqsuZf36s3nppa3ceuun+a//+sms9O+mm97LHXd8Y1auPRskQBRCCCGEEGKavvCFz7F+/dl8/etfHrPv1ls/zfr1Zx9RMPGb39zFNde8csz27373x1xzzetGHq9ffzZ//vPDh32dYyGXy3HHHd/gzW9+LZddto7XvvZKPvKRD7Jp08aRNsVikR/+8P/wzne+e2TbAw/8gYcffoBvfOPb/PKX97JkyVLe+c538+Mf/5BsNjPpNd/0ptewfv3ZY/784hc/n7K/EwXrX/ziV3jXu95zKE/9sBwvr6lUMRVCCCGEEOIQ1NbW8fvf/5YPfvDDRCIRALLZDA8//AC1tXVH5ZoVFRVH5bwzwXVdbNses/0rX/ki27a9yEc/+gkWLVpMf38fTz/9JIODgyNtHnjgD5SVlXPKKatHtrW07KWpaQErV54ysm3RosUsWLCQ3//+Xl7/+jdN2p/3ve+DXH31a0ZtS6UOv1JuaWnZYR97IpIAUQghhBBCiEOwatVqdu7cwZ/+9BCXXXY5APfd9zuWL1+JYYweoLd+/dncdtvXufDCi4Awq/aqV72Cf/u373DmmWePavvMM0/xxS/eOnIcwF//9Xu48cb38aY3vYbrr7+B6677C970pjD4GR6WWV/fwM9/fhd79+7hjju+zgsvPE+hUOCkk5bygQ98iNNPXzuqPx/72Cd58ME/8uyzG6mtreVDH/ooF1ywfqTNjh0vc8cd32TTpg0kk0kuuGA9N930kZEg66ab3suyZcsBze9+dy+rV6/hK1/55pif06OP/om//du/5/zz1wHQ0NA4KhAE+MMffseFF75i5PEXvvA57rnn7pG+Dj83gHXr1vOHP/x+ygAxkUhQVVU97r729ja+9rUvs2nTRjzPpampmQ9/+O+or2/gllveD8CrXhX259WvvpZPfepz3HTTe1m5chU33fRhIMxSvu51b2T79pf5058epKKiio9//JMsWLCYf/mXz/Pcc5tYsmQpt976BRobmwGmfG0mek0BHnroAX7wg//Dnj27qKmp5bWvfQPXX//2MffaTJEhpkIIIYQQQhyiq69+Db/5za9GHv/mN3eNyVodqlNPPZ1bbvkopaVl/PKX9/LLX97L9de/fUy77373xwD84z9+nl/+8t6Rx7lcjnXrLuKb3/w23//+f7JmzWl8/OMfor+/f9Tx3/ved7jiiqv4j//4v6xffzGf+tTH6ehoByCdTnPLLX/DqlWr+cEPfsJtt32DvXv38IUvfG7UOX79618Rjyf4znd+wM03/+24z6eiopJHHvnTpPMrN23aOCpT+KEPfYy3vvUGli1bPuq5AaxcuYrnn38Oz/Mm/iFO4Wtfuw3XdfjWt77Lj370X9x44/uJRKLU1tbxhS+Ew4Z/+tNf8Mtf3suHPvSxCc/zX//1E8466xx++MP/x9q1Z3Drrf/Il7/8z7zlLX/J97//EyzL4itf+dJI+6lem4le02ef3cgXv/g53vrWt/Gf//kzPvzhv+PnP/8pP//50ZuPKhlEIYQQQghx3Hjuz4rOPcfuerULYe3Fh37cVVddw/e//+90d3eRzWbZseNlLrvscu6999eH3RfbtkmlUijFhBkw2D/cNJUqGdVuxYqVrFixcuTxzTd/hAcf/COPP/4IV1559cj2yy+/ciSYvemmD/PEE4/yi1/cyfve90HuvPOnnHLKKt797vePtP/4xz/F2972Jvr6eqmoqATCIZ/ve98HJ30+f/d3/8Ctt36aq6++jOXLV7J27ZlcfvmrWL487GM6nSaTyYx6DqlUing8jmmaY34GVVXVOE6Rvr5eampqJ7zuHXd8g+98545R2771re+yfPlKOjraufjiy1i6dBkATU3NI21KSkqBMLBNJBKTPrcLL3wFr3nN6wF4xztu5J577ub889exbl2YiX3LW67n1ls/TRAEGIYx5Wsz0Wv6gx/8H/7qr97FVVddM9Lfd7zjXfz85z/lLW+5ftI+Hi4JEIUQQgghhDhEVVXVnH32edxzz69Jpwe5+OLLSCSSs9qnXC7H97//7zz66J/o7e3B932KxeJIdnDYqlVrRj1evfpUdu3aCcDLL7/Ek08+zhVXXDTm/K2tLSMB4oFZv4mceebZ/Pznd7F587Ns2rSRxx9/lP/6r5/w8Y9/imuvfR3FYhFgZB7nVKLRKACFQmHSdjfc8M5RATEwMjf0jW98C1/72m08+eTjnHPOeVx22RUsXrxkWtc/0HCACVBZGf5Mliw56YBtVXieRyaTprS0bNqvzcG2b9/G5s3P8sMffndkm+8HaB0ccp+nSwJEIYQQQghx3FhzoYYLj/VV1WEddc01r+E737mDXC7HZz/7z+OfWSn0AauWH8nwyKl861vf4Omnn+QDH/gQTU3NRKNRPvaxD+G67kF9Gr+fAPl8nosuumTc7GBNTc3Iv2Ox+LT6ZNs2Z555NmeeeTbvfOe7ue22L/CDH/wfrr32dZSVlaGUIp1OT+tcw8VtyssnL9hTXl5Oc/OCcfe97nVv5LzzLuDPf36Yxx9/lB//+Af8/d9/mle/+tpp9WGYZR0YRoU/O9Mcuy0Iwtd+uq/NwXK5PO95z99w0UWHkeY+TDIHUQghhBBCiMNw4YWvIJ1OE4lEOeOMs8ZtU15eQW9vz8jjl1/eNuk5LcvG96fODlmWRRD4o7Zt3vws11zzWl7xiktYunQZpaVldHV1jDn2+eefG/X4hReeY9GixQAsX76CnTt30NDQSHPzglF/otHYlP2ayqJFi0YygLZts3jxEnbt2jGtY3ftCvtVUlJyRH2or2/guuvewpe//HWuvfZ1I0VxhiuxBsHMZ+em89qM95ouX76CvXt3j3ktJgqAZ4JkEIUQQgghhDgMlmXx05/+L0qpkQzcwc444yzuvPNnrFq1hnw+x3e/++1Jz9nQ0EA2m+GZZ57ipJOWEYvFiMXGBmb19Y089dQTrFq1BtuOUFpaSnPzQh544I+cf/6FaB3wne98C8Mwxxz7hz/8jhUrVrJ69ancffcv2LNnN7fd9g0A3vjGN/OrX/0Pn//8p7n++rdTUlLKnj27eOihB/n7v//UIf18br75fVx55atZvnwlqVQJW7du4f/9v/9k/fr9VUvPPfd8Nm3ayHXX/cWU59u0aSPnnHPelO1yuRw9Pd2jtsXjCRKJBN/85r9ywQUX0ty8gP7+PjZvfpZTT10LhIGjUopHHnmYc845n2g0OuVcxOmazmsz3mv6jnfcyCc/+VFqa+u4+OLLAHjppa20te3jHe+4cUb6djAJEIUQQgghhDhMyeTk6+vddNOH+cIXbuX97/9rGhubuPnmj/CRj9w0YftTTz2d173ujfzjP/49AwMDI8tcjHfeO+74Or/4xZ3U1NTy85/fxc03f4QvfjG8VkVFJe94x40MDPSPOfbGG9/Lvff+hq985YvU1NTyT/90G/X19QDU1NTy7W9/n+9853Y+/OEP4LouDQ1NhzXE8ZxzzuOuu37Jnj3/huMUqamp45prXjsqsLnmmtfx3ve+g1wuO+kcTtd1eeihB/jqV/9tyuv++79/i3//92+N2va2t72Dv/mbm/F9j69+9Ut0d3eRSpWwbt16PvCBm0ee+403vo9vfesb9Pb2ctVV1/CpT33ukJ/3eKbz2oz3ml5wwYV86Uv/yn/8x/f48Y9/SCRis3jxSbzxjW+ekX6NR+kDB0WLEa7r098/cUneY80wFFVVKXp6MiNjmYWYCXJviaNB7itxNMh9Nbd4nkd3dyvV1U0Hzec69izLwPOOXtGP48nB6zIeDz71qb9jzZrTuf76GyZs86tf/S/3338fX//6tyZsc7yZjftqsvdVeXkC2x6bUT6YzEEUQgghhBBCzJoPfvDD4w6jPZBhGHzkI393jHo0v8kQUyGEEEIIIcSsaWxs4g1veNOkba699nXHqDdCAkQhhBBCCCHmiT/96anZ7oI4zskQUyGEEEIIIYQQgASIQgghhBBCCCGGSIAohBBCCCGOuf3LBkpFWiFmTvh+mmBZzmmROYhCCCGEEOKYMwwTwzDp7++mpKQc07SAI/hUe0QUnieBqphpx/q+0mQyAyhlYBhTL2cxEQkQhRBCCCHEMaeUoqqqgcHBXvr6Ome1L4ZhEATzYx1EcezMxn2llEFlZS3qCFKIEiAKIYQQQohZYZomFRU1aB0QBAF6FpJ4hqGoqEjQ15cjCCSLKGbGbNxXSoWZ+SMJDkECRCGEEEIIMcuUMjDN2SmNYRiKSCSCZTkSIIoZcyLfV1KkRgghhBBCCCEEIAGiEEIIIYQQQoghMsRUCDHvFHyPgu9jDo3RT1gWppLvy4QQQgghJEAUQswbXhDw5+597M2ncfwAQyk0sDRVxitqmma7e0IIIYQQs06+MhdCzBtb031sTfeRNG3qYwmqIzEq7Agvp/vpKORmu3tCCCGEELNOAkQhxLzQ7xR5pq+TykiUuGlhKIVlGMRMC4ViU383wWzUVxdCCCGEOI5IgCiEmBe2Z/sp+j4pKzJmX3U0Rms+Q9pzZqFnQgghhBDHDwkQhRAzIuM6PN3bQcH3ZrsrYziBz8vpAcrsscEhgG0YeDog67nHuGdCCCGEEMcXKVIjhDhirfkMj3W301HMURaJsixVPttdGmVfPsug69AcT07YRqHISIAohBBCiHlOAkQhxGHRWtNZzLN1sJeXMwPYhkGJZfNyuv+4CxB3ZAaIGAZqaFmL8ShgwJEhpkIIIYSY3yRAFEIcsp5igWf7O9mVTQPhHL6IYeIGAW2FHH1OgYpIbJZ7GUq7DntzGcrt6KTtooZJj1M4Rr0SQgghhDg+yRxEIcQh0VrzUFcLO7KD1ETjNMaTRAwTGJrLFwRsGewjf5zMRdxXyOIEPlHTnLRd1DTpdwr4UslUCCGEEPOYBIhCiEOS9VwGXIfaaBzbGPsrpDYa57mBHu5t2z3rBWu01mxP9xOfIjiEMINYCHxyMg9RCCGEEPOYBIhCiEMy4Dl4OhjJGh4saposiCfpKebpKuaPce9G63eLdBRylE0xvBT2Zz+lkqkQQggh5jMJEIUQh2TQnbqQi1IKQyna8tlj0KOJDbgOAXrcTOf4pJKpEEIIIeY3CRCFEIekq5jHVlP/6khZNnty6ZE5fS+n+9mVHTza3RulGPiH1F4pSEuAKIQQQoh5TKqYCiGmTWtNZyFH3Jz6V0fSsmkv5Oh1ClRHYmwe6GHALXJBdQMFz6MpkaI6Gj/iPnUX8ygUVdGxVVOLnke4gMX02Eox4BaPuE9CCCGEECcqCRCFENOW9T2ynktFZOo5faZSaK3pyGeJKIN+t4ilFA91tuJqn+VOBa+sXTDp2oRTcQOfh7paSbsu51TWsaqsckx/zUM4f8QwJUAUQgghxLwmQ0yFENOScR22DPZSDCYuUHOwlGWzNd1PezGHHwTUROMsSKRYEC9hTzZNRyF3RH3amR2ku5gnahg8099J0R89pDTruViHFCAaZD0PXwdH1C8hhBBCiBOVBIhCiGl5pLuNDX2dVE0jezis1I7Q6xR4Kd2PZewP1GzDQKF4bqAHLzi8YKzge2zq76bEilBqRyj6PmlvdAGdrO9iTWO+5P5+mTiBT947PtZwFEIIIYQ41mSIqRBiSlpr+twilZEoScue9nGGUkQMg+5intRBx9VEY+zIDpDotTivqh5zikAu57m4OhhZsmJzfw+9ToEF8RRKKTSajOeOzGvUWpP3PKwDK5g6BrSnUANR0CqcnmgG6CX9EPewDQNfa3K+R8qOTPt5CiGEEELMFRIgCiGmVAx8nMCn1Dr0oKkyEqO9kCNhjg4QLcOgPpbg+YFe6mNJTkqVTXqel9L9bE33cUltMxnPZfNAN7XR+MgcRgUMOEVI7u+zqwPiaujXnK9QTzaicuM8h4KFPrN96EEYIAohhBBCzEcSIAohppT3PdwgOIT1BPezDYMFidS4+yKGScQw2JEdmDJAHHCLtBVy3Nu+GzfwiZsWsQOqqUYMkx4nP/K4GPh4Wo8MbVU7y1G5CLoiH2YMrQACUM/XonoS6N4YVBZGnq8QQgghxHwkcxCFEFMq+j6acMjoTCu3o7TmsqRdZ9J2/a5DXTROiWXTEEtSGRm9rEXMMOkuFgiG1l10ggA/CMKhq1kLdpWjzQC9uhOq8lBWhIoiemkvAGp7BQAGasq+CCGEEELMVSdMgPjkk0/y/ve/n/Xr17NixQruv//+UfuLxSK33nor5513HmeccQY333wzPT09s9RbIeaWfDCNjJqnwjl+hyhqhoVh2grZCdv4OiDjuUQMg7hpjRuoxkyLnO+RG1rovuj7I0sgqn2lKK3Qi/shPrrSKfVZdNSD/hj4CtswGJAAUQghhBDz1AkTIOZyOVasWMFnPvOZcfd/8Ytf5P777+cb3/gG//mf/0lnZye33HLLMe6lEHNTwfcBPXGD3hjqTwtRjzaHgeIhipsmz/R1sqGvEyfwx+zPex5O4GNPsrzGcIGZ9HCAGPgoVNjtthQaDY3psQcqoMQJ22ZtIobJoASIQgghhJinTpg5iBdffDEXX3zxuPvS6TR33nkn//qv/8oFF1wAhAHj1VdfzebNmzn11FOPZVeFmHMyrovB6MCvsrOPc/70HDgGj5ZdQ8YKgzfdmYTGzCGdvyoSY9BzeLK3g/JIlCXJ0fMRc76Hp6eeA6m1pqeYpyGeHAo0NfTGUUULXZmD2NjgE4CkA90JyEaIJA0yvosT+NNe71EIIYQQYq44YQLEyTz33HO4rsuFF144sm3p0qU0NjaycePGww4QDWPm51sdruG+HE99EnPDdO6ttO8QMc2RiqFmJuD8+zaTdMJhoeu83/C7s66FlnLUvhJomni46HiUUpRHYuQDj+5igaUl5aP25wMfQ6mR608kadnszA1yakU1hcBDKYVqKwl3NmYmPj4VZh1VNkLEMPFch6L2iRlz4lfkrJDfWeJokPtKHA1yX4mj4US+r+bEp5/u7m5isRip1OhKiVVVVXR3dx/WOS3LoKpq/MqLs6miIjnbXRBz1GT3lt+rKDVjJKNRvH0xmu7fR9LJsi++BDtSoGagjWWpLWyPnwN9cWJGAiMxQbZuElW2pk85VFYmRwVzLeSIDdokU9FJj48kbDpyWUhakDcpjSZQnQmwAhIn+Shr/OP9GigCViFKsjROX9olXhqlaoLqq2L65HeWOBrkvhJHg9xX4mg4Ee+rOREgAuNmBrSeZM7UFDwvYHAwP3XDY8QwFBUVSfr6sgTB4T8vIQ421b3l64DuwSwxwyTrFuH5KhZmtgGwdX0Dygq45J42mjft4KUVp6B2lpN/uAJWd0N58ZD6ooKANifHro4+Su0IOzIDtOWzGErh5D2yTH2+TN7hsT0t7M4OYu8rA99AN6bJFQqTXNhBUYM3YOJlihQLLu3dg0ROvN/pxw35nSWOBrmvxNEg95U4Go7H+6q0NI5tTz19Zk4EiNXV1eTzeTKZzKgsYm9vL9XV1Yd93uPlxTxQEOjjsl/ixDfRvZXzPBzfJ2XaaA9iAx7VThvZZJzuxlIA0qVJqrr6SZ3XQqYygupNoJ+pQ1+8+5BKYVnKwPUDugt5UqZNSzbNi+k+qiIxbGVM60ufhGGyqb+biDIp6ygHQDekYbJjLQ1RD/I22tdorcl6nrzXZoD8zhJHg9xX4miQ+0ocDSfifXXCVDGdzJo1a7Btm0ceeWRk286dO9m3bx9r166dvY4JMQfkfS9ccF4pyESoL7QA0LagBpQCpdi9tBGAptZ96DPb0dU5lGdCX/yQr2coRXcxj681+/JZHN+n33WITFGgZliFHaUmEqOOFKo/jo65UDFJ9nBY0kFpBTkbUOS8aSztIYQQQggxx5wwAWI2m2XLli1s2bIFgJaWFrZs2UJXVxclJSVcd911fOlLX+Kxxx7jueee45Of/CRnn322VDAV4ggVfB+NDodxD0aoLewBoKNxf3Z+34JaAJr2doICXRMWqVHdibBBAGTsSVfKGJa0LHZmB+kp5sl4LgsSJQQ6IGFNb8CDUoqYaQ0FeoTB4fAIdK1hom/xkmGhGjIRLKXIeLLUhRBCCCHmnxNmiOlzzz3HX/3VX408/ud//mcAbrrpJm6++Wb+4R/+AcMwuOWWW3Ach4suuojPfvazs9VdIeaMvO+NxFcqHaXaaUMDnfWVI20GKkrIpuJUdg8QyxUoVA+Nb++OwwpgdznGy5XoJX3ok/rAMyASjHu9UitCaz7LlsE+Ah2ub9gUP4xiMcWhPkTDYjkl/RnOe2gj8VyRR9atZndjZbj2IRAzTcykGz7K20QqDdISIAohhBBiHjphAsTzzjuPrVu3Trg/Go3y2c9+VoJCIWZY3nMZTsFFewOSfprB0hRexN7fSClaF9SyfMtuGvd2smPFQnSqiMpE0TkrrCQKqJ0VsLc0LBxzVtu4Qz+VUtiGQbeTx5yqMnRHErWtEr1oABYMMmqpRif89aYjHgSa8x5+loreNADrHt7M3tevo2CHbXqcAgtiYUUalbOwlEHGddFaT7m0hhBCCCHEXHLCDDEVQsyOQc8J5x/6isq+PgB6asrGtNu3sA6Axj2d4YbqHACqpRQGo2jbRxsBeAZKK9T2igmvWRGJsi+fIWnZE7bBV6itVaiCjbG1GrW1atRudUAGsXl3OxU9g7RVlbBrWTMx1+OtnUXeunA5b2heSpkdJW2H/aVgYxsGxcDHCcbPcgohhBBCzFUSIAohJjXoOSQGSlCPNFPpdADQW1M+pl13XQVOxKK2rQfT9dCNmXDH7rJwKGdNFr1+L/ri3eikg+qLQ29s3GtGDJPmeIqSyQLE1hJU0UJX5NFKQ3tq9BxHZyhAjPgs27IbgCfXLCGy/hwArBe3YyhF3LQ4vbyaAWsoQMxZ2IaBpzWFQArVCCGEEGJ+kQBRCDEhrTVp1yXRGmbqKnUbAL3jZBC1YdDWXIMZBNTt64aki67Mjczz09X5cD5gJEAvCTOR6sVqcMf/NRQ3rYmHdzoGakcFGo1e2Q0pB+Wa++cdwsi/k+4gNZ199KdilK5cSklDPX5lOWZHN6p/EIAlyTLiEZMg4kHRwtQGvg4o+P5h/dyEEEIIIU5UEiAKISYUDrP0MQs2aE1lsRPPNBioKBnTNu97bKoN10Vs3BsOM9ULwgBMo6Eyv79xfRZdlUNlI6gN9WGV08lkbNRjTdAxNJdxa3UYEDamIeVCyVBBmUzkgM6H8wub28JlObYtrGFRMgxs/ZMXAWDtbgUgapqUWhH82NBSFwULUOR9ySAKIYQQYn6RAFEIMaGC7+MGAapokdK92K5HX1UZ+oA1CbXW9DoFep0C2cWN+ErR0NIVLidRk0NX5cJAzj4gClSgT+9AlxVQAzHoTE7eka4kKh3F2FSP2liHak+hox56eU/Yh9RQgJg+IEB0TLQR0Ly3HYDepQuoioRDWv3mBgDMlvaR5pWRKG6sGD7IWyg0xUAyiEIIIYSYX06YKqZCiJkXaM3OzCClFeGC9lpr2gpZ2gs5nMBnQaIkLCrjmVQGw8NLy0fa9rsOac+lKhJjXXUjGk1LTRmLOvup6u6np7YCfWb7+Bc3NXpJH2pjA6otha7PTthPld//q0p1JdFmgF7TCfbQpMNUGNipTCSchhiAck3iVg+VPQP0peLULlw4MmTVb64HwBgVIMZoiw4FmnkbnQBXitQIIYQQYp6RAFGIeWzQdXi0u428HdBAjM193byUGRjZH2iNVQwLxVR6wwVqyki7Dn2uQ1Ukxvrqak5KlREzLQq+x7YFNSzq7KdxTyc9tRNXKgWgKo+2fehJgDPx2ogMBYjB8u6wTU0WrAMq0owMMY2Gfw8VqGnObwdgx8IamhP711LUiThBRRlmbz8ql0cn4qSsCF4sHBKr8hYKcCWDKIQQQoh5RoaYCjGPpT2HnOeyobuDX7Xu5KXMADXRGE3xJEpBT7GAURgKEPPhvMKeqjL6XYcLqup5bdMSVpVVETPDAC5mWgQnLwagfm/H1B0wgLpsOO+vpXTiuYj5oWqmzWloyIwODiEsfBPxIGuH5xief5jZCUD25MUkDqqIOpJFbA37mbRs/Nj+DKKplAwxFUIIIcS8IwGiEPNYxnPDGC2epNyO0BRPEjHC7FulHaXbKWA7EQztUZbvIx+P0he3iZkmJ5eUYxvmmHMuX7CYdEUJ5QNZIv3pKfugG8I2xvZK1J8XgHtQ5dIAKFjoqAemHnuCYSVDBWayEXBMEt4glblu+lMxKhc2j2k+HCAOz0NMWTZGcqgoTd7CQFGUKqZCCCGEmGckQBRiHutzCpiGQcyyRrKAw2Kmha8DYm6UCqcLQ2t6q8vIBwFldnRM+2EJyyJyyskA1OyeYP7hgcqLBKe3o1MOqmBDX3z0/oIVBn5xd/LzlA4VmOmJQ9GkaWh46c6FddTHU2OajwSIrWEfo6ZJPK7CNRULFqYyJEAUQgghxLwjAaIQ81h3sUDUmHgqcnM8RcyJUukMzz8sp+B71MXiEx4D4C1bDMCioeUuplSbQy/sB0D1xUbvGx5emph8yQldGxa5UR1JcEya8y8D0LNsAVFzbKYzqKpAR2zMjm4YKkZTFY3jR12UY2Fog4IMMRVCCCHEPCMBohDzlBv4DHoOsXGCp1EKFhXuUIBYXYavNZWRyQPEoLEWtzRFU/cgsXQOgM5inq5ifuKDKgrh38MZRA3sS8FgWHhGT5VBLHHQcRc1GCPV4VLpdjKQSOLXVo7fXin8umqU42L0hoV5KqMxvEg4D9F2bBwJEIUQQggxz0iAKMQ8lfFcir5PdJx5hKMULCqdDjRhgRqlFKV2ZPJjlMJfvQyA+u2taK1xfB9TGezLZ9mby5B2ndHHxL1wnmE6Ap6C9iTG87UYL1eO7B/PoOsw6DqggLoMAM1trQBsbaolZU3c16C+BgCjvSu8hGnhR8PrmEUbNwjQepJ5j0IIIYQQc4wEiELMU2nXRWuNodTEjQKI5hySfprB8hRZSxExDMqmChABf/VyABbvaiPv+8QsiwurG2iMJzmltJI+1xkdfCmgooBCQX8MdfBcxHEyiF4QMOg5ODqgrZBF14XDTJvzLwHw4pIKohPMlQTwG8IA0WwLh8LGTRNvaC1E07Hx0Xha1kIUQgghxPwhAaIQ85AbBOzODRJGZZNwTKqKYfDUVVVKVzFPRSQ2YYGaAwU1VRSryqnpz2J19dAYS7IoWcpVDYs5t6qOykiUgYOyiLo8HIKq+uJw8FzExNgAsdspsDBewqvqFqJQeKkCiZNfosLtZrAsSW95Ytz5h8P8+lpgfwYxYdoEkfA6ZtEmCDRuIBlEIYQQQswfEiAKMc9orflz9z62DPZSG4tN3rhgUemEVT53lidYU1bNRTWN075WcPopAKx4qZWmAxaqjxgma8qqGPRc/AMzdNV5NBpaS1C5CDrhoBcMoOsyYI/O5DmBj68D1pRXUR2NEzctCoHHwr4dAOxd3ABKTTqEVleWjSpUEzctVDycd2gULMkgCiGEEGLekQBRiHmmGPjszaWpjcZH1jycUN6iaihAbK8u4+SScsrs6LSv5Z26ksA0OHVvNzVqdNZxaaqcZakyWvNZ/OGhpnEPqvIod6hfFQX0yh70aZ0UAo+stz+L2FnIc3KqnIZYEkMpKiMxiq7HkpdaANi1tBENkz9HpfDra1Cuh9HTT9Q0seJhQGgUbQIdSIAohBBCiHlFAkQh5hknCPC0xjamfvurvEGF24lrWgyWJYlPY2jpKIkY7oqTiLo+NS/vHbXLNgzWVTfQHE/Rc0B1U908uP/fw5VNCYeTDrgO/U6RjkKOEjvCmZV1qKE5lDXROPX7ekjkCnQ0VDGQimMpY9IhpgDB0DxEY2geYio1NOy2aKEJ5zkKIYQQQswXEiAKMc84gU+gNcZU8w+B8t40lvboLq/Asqypl8QYh3/WGgCiT22GgyqCxkyL5aUVFA8Mwmpy6JgbDjUtP2BZDK1YmirHI6AiEmN9TSMpyx7ZXWpHWLOjDYAdyxfg6QDLMKas0uoPVTI127sBKEvYaBVAwUKhcCWDKIQQQoh55BDTAUKIE124tp8eybxNpqqvF4COqlISloWpDv07Jb+pHr+xDnNfB+b2PfjLFo3a3xhLEjNN8r4XZigV6LUdULAgfsA6hEpzckkZZ1fWEjetMdVXK7MFmvb1UIhF2LewFi/wiSpzykzpcKEasz3MIJZGInRHXexCFHwlGUQhhBBCzCuSQRRinnEOIeCpHAyzaq21KUoPyNYdEqVwLjgDgMijz4zZnbBsFiRKRlc0LXGgJjfy0B/KeCZMm6Rlj7s0R/WGFzE0vLhiAYFp4umAhDX1d2C6ohQdjWB09IwUqvGj4VxHy7HxZB1EIYQQQswjEiAKMc+4hxAgVuXD5R9aqhOUWNMvTnMw7+TF+FUVWC3tmDv2jtl/UrIMBbTkM+P2zw18IqYx4RxIlcsT27wVzzLYtCyssuppTXI6Qe1woRrPw+juI2Fa+ENLXRgFSzKIQgghhJhXJEAUYp5xAh89PP9QD/05UAAMRoj2+aS8QQYj5eSiFin7MDOIEGYRLz4XgOj9j8JBQdfCZAlXNy6hOZ6i3y2O0+eAmGFNWHAm8sgzKM+ndeVi+uzwuXlBQNKcXp/94UI17V3ETYsg6gFgurbMQRRCCCHEvCIBohDzTCHwRt746ukGeKwR7SgoGqgt1aj7F2M83kz1o2GbnmQNaHVYBWoO5C1fgtdcj9nZg7V565j9NdE4CxMlFAN/zD4n8CdcXkP1DWI//Rw6YlM4/wwCrdFa42umNcQUIBguVNPWRcy0UENrLpqeiTtOf4QQQggh5ioJEIWYZ3Keh6kUuArVF0eloxQeqoY/LUC1lIZFYmyfqlw4vLSnrAqlIG4cYU0rpShetg4NxP74KCqTG9OkMhIDQB8w709rjRMElE8QIEYfeBQVBDjnraW6qoqkaZP1PZRiyiUuhh1YqMY2DEw7vL7pm+MGrEIIIYQQc5UEiELMM3nfw1IGZCMj2/SgDYFCLxxAX7QHfXIv1cV9AHRVV6IIl6Q4UkFTHe5Zp6IKRaK/fWjMshflkSgx06QwFJR1FnLsyWUItKZknCGu1ovbsV/cQVCawjn3dCKGyeJkKZ3FPIZS0x5iqstL0LFoWKjG94lFwl+Nhm9S9CVAFEIIIcT8IQGiEPNM3vewDAWZMEDUTYPYqwbhwhb0ih6wA6yqfircTvJGgv7yGLZhHPEQ02HFS84jKCvB3rYT++nnRu2LmRY10QRZLywS4+iA8kiUYuCTOCjYU9kc0d8+DEDh6ksgEu5fkCihOhLj4pomGuLJ6XVquFCN72N09xGPhb8aJYMohBBCiPlGAkQh5hGtNXnfw1QGaihApKqAvTIDCW+kXXV3LwaarmgjTmmOiGFOueD8tEVs8q9/Fdo0iP7hEcxdLaN2N8aSFAKfQGsUipNSZVREYqPnE3o+8Tt/i5HL46xdhb9kwciupniSaxtP4qRU2SF1a7hQjdneRTIaPlfDMyn6UqRGCCGEEPOHBIhCzCOuDvC0DucgDg8xTTlj2tW09wDQeXqUYqxIiWWjxll78HAFjbUUrnwFKgiI//wezL1tI/tqYwkMFBnPJWFanF5ezZkVNfuL1Pg+sbv/gNnajt9QS/GKC0edWyk17eI0o/o0VKjGaOscySAavokjGUQhhBBCzCMSIAoxB7lBQGchN6YCpxMEeEEQzkHM2GilIeGOOb62vReAroYqnCCg1I6MaXOkvNNPoXjJ+SjXI/5fd2M9vw0Iq5nWxhK0FbLUxRJEDJOVpZXYhgGFIvE7f4u9ZTtBWQn5N10FhxEMjscfrmTa3k0sGgbDhhcOMZW1EIUQQggxX8zMJyshxHGlNZ/hgc4WoobJ2vIa6uMJdmfT1MTi+FpjuRbKsdApZ8zXRJbjUtEzQD4RJVOawM3nKLFmPkAEcC44Ixxq+sdHif/qD7jbdlG85HxWllTQksvsn0OoNda2nUTv+zPGYAa/qoL89deiU9OcYzgNuqyEIB7D6OwmOTTd0fBN8r5Hn1ukJhqfsWsJIYQQQhyvJEAUYg7K+x6uDkgoiz917yNimGQ9h5WllYBGDQ8vTY4dXlrd0YfS0FlfCUqhlCZhTa8a6OFwzz2doKaS2K/vx35xO/aL21ndXE+sNEbd3jTRgoO1qwWjPx22X7WMwqteAfHxl704bEoR1Ndg7dxL2eAgmhLwFBpNTzEvAaIQQggh5gUJEIWYgwbcIrZSlNoRkpaFF2jipklHIYfh2KitVQDo0iIHzywcGV5aXzW0Rc1YBdOJ+EsWkH3v9USeeBb72S1EWto55aA23oIGnAvOwF+66Oj1oyEMEBNdfWizAeUZRJTBvnx2KLgWQgghhJjbJEAUYg7qc4pEhqqOmsrANCFiGLTks9RtPQmViaIrc9A8OObY2rahAjX1lWit0WjiM7AG4pQiNs76s3EuPAujoxujuw98H+Ix/KY6dDJx1LswXKjG7ugGO0AVbFKmTVshixP4Iz9TIYQQQoi5SgJEIeaYQGsGXYeIMXpyoVKKcjtCJBtHGwH6jPah+Yf7c4jRXJGK3kEyqTjZkgSe1ljKIHYsAsT9HSWorxkJ1o6l/YVqOjHKwsI0cR2h10/TWyxQP911FYUQQgghTlBSxVSIOabgexT88bNdJWYEwzMh4o/77q/f1wVAe3MNKIU7lDWLH+UhpscLXZoiSMQwOnuxzLACrPJN0NDvFme5d0IIIYQQR58EiELMMTnfw9U+thrn7e0OBXqRMPgJtKa9kBtZxqG+JQwQn6tJsTefoRgEJCwLc7xzzUVKEdTXooKAcj8caotnYBmKXkcCRCGEEELMffPkU58Q80fO81Aw/sL27tBb3g4DwoLvAdCSTZMuFqht7cY3FE0rV1Jpx+hx8pQexQqmx6PhYaaVxf0BYtSw6C7mZ7FXQgghhBDHhsxBFGKOyfoueqKdzugMYjHwqYrGKEnGCFr3EHM9nMXNrKyuwx+waMlnKLVneDmJ41zQEAaIFfmu8DekZxAzTQY9RwrVCCGEEGLOkwyiEHNM2nUwxyxeMWR4iKkdBogF36cuGufqRUt4ZSbMKgZLFwKwKFFCTTROcr5lEJvqAKgYbA83eAZRw8TxfTKeO4s9E0IIIYQ4+iRAFGKOcAOfXdlBWvKZibNcQxlEPZRB9NGUR2IkLJvYzlYAvKEAMWVHWFNWRWUkdvQ7fxzRyQR+ZTnJ/CBRPwuegaEUGk3adWa7e0IIIYQQR5UMMRViDtgy2MPG/m6yrkvEMKiOxsdv6IyegwiQsmx0fxqzvYugvBRdWT6y77Ty6qPY6+OXv7ABs7efaqeNvV4lAFor0pJBFEIIIcQcJxlEIU5wvtY8P9BLEGia4klqYwmM8QrUAOqAKqZeEGAqg5Rt429+CQBv+RKY4Nj5xG9uAKC6uA/lhb8mI4aiRwrVCCGEEGKOkwBRiOPcgFtkV3aQXdlBtA7Lz6Rdh/Z8lrzvMeAWGXQdyiOR8SuXHuiAIjWFwCdmmKQsm2DTVgDcFScdzadywvAXNgJQ7bSh3fBnGjMtuouF2eyWEEIIIcRRJ0NMhThO+Vqzsa+T5wd7R6pnvq7xJFDwm7ZdZFyX08qrqIzE8bWe3lqFByxzUfTDCqZmrkiwo4UglSAYKtAy3+myEtxkkrJsN3bBwwUihkHacyn4HjFTfnUKIYQQYm6SDKIQx6ld2UGe6esiZdo0x1MjVTQHXYes51IVibEt3c/O7AARY5pv5aEMome5ZH2X2lgC66WdoDX+ipNkeOkBCg0NKKBysBuAiGHiBAFZz5vdjgkhhBBCHEUSIApxHMp5Lk/3dpCyLBLW/mxV2nPIeC4KSFgWhcCnu1ggaU0zo+WYaKXZ52U4uaScVaWVmC/uAMBbKcNLDzQ8D7Em3QEwNK9Tk5VCNUIIIYSYwyRAFOI481K6j9+07QrnFR6wSL1lKPqcIt3FPNbQcNJyK0J3MU/CPGCtQl+hNtahNtVCRxJ0uA3XCNdBtH2ipsE5FXXEXB9zZwsk4wRD8+7EkCXhz6Mm0xn+DIdkfQkQhRBCCDF3yUQaIY4jGdfh0e52bEPRFE+OKjoTNUy6inl8HRAzw6GiJXaEpGWPrlraH0N1JQFQHSl0RR4yEfAMlFYEto9pGERNE2vLS6ggwFy9DAwDAo0ImXUV5M04lcVOrAGNV64wVRikCyGEEELMVZJBFOI40l7I4QQ+FZHYmIqkMdNicGiIadQwR7aPWdIiF37vo2uz6ISD6oujXBOlw3aB7WEphaUM7Oe3hec4a9VRfFYnKKXoqKjDQFO7Iw2EQXq/I5VMhRBCCDF3SYAoxHFkV3ZwwoIzUcOk6PsUfX9UgHgwlQ+Hm+raDPr8VoKV3QRr20f2B0ZA3LQwMlnMXa0EJUmMpQtn9onMEZ3N1QDUte0vVNPvOvg6mM1uCSGEEEIcNRIgCnGcyHgu+/JZyg6Yd3ig4SIpSqnJ1zvMDc1HTHhgalgwCDU5dDSsvqlci7hpYb3wMgrw1ixHGVK9dDx9J1cCUNfXDjoM0p3Al0qmQgghhJizJEAU4jjQUyzweE8bhcAnak6cHQQ19UoUIwHi6GIq+qx96LICg4vaSZgW9nPh8FJvzfLD7/gcp8oT9EfLKfEGiHd6WIaBrzVP9XbwWE8bGdeZ7S4KIYQQQswoCRCFmGVaax7qamFndpCGWGLStvWxOHXR+CQnA/IW2vbBPmgYZNJDn7uPfHmG6oEsZmcPfm0VurbqyJ/EHBU1TVoragCo29UHQNw02ZtL89xAD79u20WfzEkUQgghxBwiAaIQsyzrewy4DrXROPYUC96bysBUk7QpmqjAgPjESzEEGpq37QXAXX3yYfV5vogYJrtrywGo7+wCoDISoy6WoDmeYtB1aM1lZrGHQgghhBAzSwJEIWbZoFvE0wGRSQrPTNsEw0sPZAU+NS/uQhsG3qkrjvyac5itDPY0pggwqO1vH7MMSMK02J1Lj9rmBgG/b9/DjszAseyqEEIIIcSMkABRiFk26DrMWImYoQqmxCcuorK0pQer6OAtX4JOTj6kdb6zDINCiU93tIGoX6Syu3/U/hLbprtYIO067MoO4gY+vU6B3dlB7u9s4cXB3tnpuBBCCCHEYZIAUYhZ1lMsYE5ZeWZ61FAGUU+SQTx1exsA7lpZ+3AqllJgQFtpMwCNu7pH7Y8YJq72eaavkwc6W9idS9NVyKEURAyD1rwMPxVCCCHEiUUCRCFmWWcxT8ywDv8EAdCeRG2sg11l4bYJAsRUf5oFXQO4ZSn8xU2Hf815whqaE7qvtgGAhr2dY9qYKF7ODFD0fV5K97MnlyFmWMQMk55iEa31mGOEEEIIIY5XR/CpVAhxpPK+R8ZzKLHswz6HerkStbscAB3xCBYOQllx3LZLtobFafKnrZx8LUUBhHMQQZOpjpG2yilP95PI5Mml9leSrYnGKQY+EcOkLZ/FUgZldgSloM9xyPkeySN4fYUQQgghjiXJIAoxi9KugxMERI+kQE13OI8wOK0DfdEeWNKPpwP6nSJO4I80s1yPk15uxTcUzmlSnGY6bMNAoQhSRdpii4GxWUTLMEhaNrZhEKApBh5R08RWBq72yXgTD/cVQgghhDjeSIAoxCzK+x4axs/mBcDeUtRjTagHF6KeC9fjY28J6pl61JMN0B9FZSPopAN12ZF3dL9bJAB6nCL7ClnSrkPZC9uJuB4vL6rDLik5Rs/wxFZqR0lZNrlYjrbYEgAaxxlmOqwmEqciEgPC11ShSHvOMemrEEIIIcRMkCGmQswiX+vxK5hqUE81ogZi+7e1laCX9aJerEYNH7WpLvy7Mj/qcDcIWFNWwZJUGU/2dtBTzHPOy+0AbF21iEYZXjotplI0x1Nsdfvoji3GMaLUtPdguh6+PfbXZ9Q0iTI6GzzoSoAohBBCiBOHZBCFmEWuDoBxipjsLUUNxNCpIsH5LejqbLi9I4VCoSvyaCtAFcMgRVeMDhB9rSmxI1RH41xRt5DrixFK0jlaasrI11Qc5Wc1t9THk/hodMqnPboIM9A0tHZN69ioYdBTLBzlHgohhBBCzBwJEIWYRV4QoPUB2TwN9MRQ2yvRSqPXdEGJE/4BVFsqbFaRh6bBoUM0VI4OQpRipDCKZRiknn4OgJZTl5E0pWDKoaiMxDANgyDh0BpfCkDzrvZpHRszTXqdAoFUMhVCCCHECUKGmAoxi7wgQKn9wYPaWoXaGy5VoRf1jwSGOumgAJWOhg1LHHRpEfaWQmkR7GDkHOGyCoq4Gb69jdZ2rN37CMpLqT9tDeXsbyumVmZHKLMjOPEC7bGFeKZFQ0sXpufjW5MXF4oaFl3FPF3FPHWxxDHqsRBCCCHE4ZMMohCzyAkCjOH5hK4BLaVoKyA4tQN9cu/+hiUHzWNLORDz0eta0Gs7Ru1ydYA9VFkTIPrIMwAU151JVTxBUzx11J7PXKSUojGeJB/NEyiLtvImLM+nfhrDTG3DwFCKp/s6yHkurfkMO7MDZGReohBCCCGOUxIgCjGLioGHMVwwpiuB0gpqM1CfZVT1moSLHso0ajOAuBduj3ujsocARd8napjEDBOjoxvr5d0EpSm8NcuPwTOamyrsGE48HMbbkjoJmP4w05ponNZchl+07uCetl38rn0Pz/RPbw6jEEIIIcSxJgGiELOoGPiYQwGi6kgCoOuyYxsaQGJoPb2Uw/ilT0NOEFBuR1FKERnKHjrnnwHmEay1OM+lbBs3XgSg3VyCZ5k07O3E8PwpjgwrodZGE0QNg6ZYkvpogh2ZAXodKV4jhBBCiOOPBIhCzCInCMIMYsGEngTa8scsWTEi5Yz+e8Jz+pRHIhjdfVgvbidIJnBPWznDPZ9fSqwIpqXQMRe/GKOtth7b86lv7Z7W8VHTJGnZKKWImia+1mxL9x3lXgshhBBCHDoJEIWYRU7gE+0qRT2yIBxeesBi9wfTZcVRf08kQFNqR4k88gwKcM47HcZZs09MX9KyiRomftxBoWgpnArAwi0dUxw5vgo7wsuZAQq+N5PdFEIIIYQ4YhIgCjGL3CAgsbsa5RvohQPo5T0TN14wQHB6OzSmJzxXVzEPKKr6MljPbyNIxHDPWH10Oj+PmEpRGYmRbexBV+Rpa6jFUVEa29uw+w59CYu4aVHwPbpljUQhhBBCHGckQBRilgRa43gaIxdFRzz0ih6wJgk2DKA2N+78w45Cjm6nQHU0zmV1zSx8fHOYPbzwbIjIuoczoToWY7BiAH12G/45XbTULsAkoHnLQcNMByPQHZ/0XEopFIqO4jjzTYe05jJskmI2QgghhDjGJEAUYpb4OsDI2uHQ0oOXsTgEgdZ4OuDyugW8umExy3qy2Nv3EJSX4J6xagZ7PL+V2dFRj3ctbwBgccue/Rs1qGfrMTY0oF6oZrIlJ5Omxe5smkDv/1Kgs5Djoa4Wuop5Hu1pY9NAjwxDFUIIIcQxJQGiELPEDTRmOhY+KJl4XmHWc+kq5uks5NBDwUTWc+lzCjiBT873SJg29bEkaE30/scAKF50rlQunUElVgTN/mCuZ0mSjFVCda6T1OMJ1CPNMBBFFcL5nqq1FFpKJzxfyrLpd4r0Oftf+13ZQTb0dfPHjr30OkUKvkd7IXf0npQQQgghxEEkQBRilvg6wMyEAaIeJ4MYaE1LLkM+8GiOp1BKkfd98r5Hv+sQM206CnmynktjPIVtGFjbdmLu68CvrcJbffKxfkpzWtKysZSBGwylBQ3FnpolACxs2YvKRlAvVgOgy8NKtGogOu65ACzDQKO5p30X93e0UPA9dmYHaYgl8IKA+lgcE8Xe3PhzToUQQgghjgYJEIWYJZ4OsLMTZxC7innq4wle17iUS+sWUG7HKAYeed+jIZbgsrpmIoZJ1nNpiCfA8/dnDy85H9QkiyWKQ5YwLeKmRTHYv/bh7qXhMNNF+RdBa1Q6DAj1ooGwQSYy6TkbYkmSpsVLmX6e6u0g7TmkLJuqaIyIYVJmR9idS5PzZJipEEIIIY4NCRCFmCWOH2BnYmgzgMToAKDge/hac1ZFHSV2GGTUxGIUfJ+C71MdjVNmRzm5pIy4ZVMViRN54lmMvgG8kxbin7RgNp7SnGYoRZkdoejvDxAzJxn0lFST8gapVC0A4VqWNTm07UM2Muk8REMp4qZFuR1hZ3YQhQrXxRwSNy1ynscDXXsZcCdf3kQIIYQQYiZIgCjEMdJdzHNv2y6eHwiXsshnwAjMMHt4QLKvvZCj1ymypqyKhnhyZHuFHcPXmgBNRSTMPK4oqaQ5nqKi4BJ55Gm0YVC4/ELJHh4llZEYzgEZRAzYtaYOgMXe5nBbVT58PZNOWIAoP3UV2dKhLwGqIqOHpCqlaI4nacvnuLdtN7uzgzPyPIQQQgghJiIBohAzyAsCNvZ1jcxTc4OAJ3s7uHPvy9y9byct+QyP97SzKztIcbj2SGx/9rDge5hKcXXDYs6prBt17pRlo4YCvxIrDDqqojGuqF9I4v7HUK6Hc+7p6Kryo/4856syO4qvRy9FsuekRlzLZEH3bqz6TvRJfeGO1NC80imGmQ6ricaJmdaY7YZSNMWTBDrgwc5W+h3JJAohhBDi6JEAUYgZ1O8W2ZLupS2fxQ0CHu5qZUNfJ572KbcjNMdTRA2Tp3s7cJyhQMPaPwZxwHVoiqeojydHgsFhKdvGUApbGaTs/UGHuWcf9paXCVJJnAvPOibPc75KWvaYdSg922LPSY1YfsBC8zlIuQDoob/JzMw6lBWRGK72SXuHvySKEEIIIcRUJEAUYgalPYfeYoGd2QF2ZAd4OdNPYyxJmR0dyQ6V2DZpzyVbHAoMrf0ZKVcHLEqOvzRCyrKJGSYJ0yY5nGnyPKL3PghA8bILIDIzwYgYX9KyUKhRaxcC7FgRzvk8adteGN43lEFU2ellEKdDA2lXAkQhhBBCHD0SIApxBDoLOfZk9y9DMOCEH9735NI829dNqRXBMka/zSKGiacDMoVwaKkeyiAWfI+IYVIfS4x7LVMZVESiVEVjI9nFyJ+fxuzpx1uyAG/Vshl/fmK0pGUTNc1RlUwB+qvK6K0uo6w/Q3Xn0BDT5KENMZ0OWxn0OIUZO58QQgghxMEkQBRiGpzAZ18+M6pASc5zebhrH3/u2TeyDEFnMU+ZHaHg+/S7Rcrs8YMDBXhDIxAxA9KuQ2exwKJESTiMcQJ1sQS10TgARmcPkcc2om2LwlWvkMI0x0DEMCmxbDqLefbmMqOWn9g+nEXcuneocYCOu2EGsTc2I9ePGibdxfyMnEsIIYQQYjxjKyIIIcbYOtjHYz3tlNoRXlm3gKpIjKf6Oukdyua8lOljTVkVPcU8MdOixIqgFGPmEQ4zlSJwVfgNjenT7zpcUFXPytKKSftxWnm4EDtBQOzX96OCgMJlF6DLxx+WKmbe2ZV1FIe+ANjY10WAJmXZ7F3cwNonXqR5Vxsbzz0FJxZBL+tFba5DvVATZhSHhpvq09uhxJ3iSmPFTJO051LwvXEL2gghhBBCHCnJIAoxBSfw2TLYS6ltk/EctqX76CrmeTndT10sTkUkwnMDPezLZykEPnHTJGqaRAxzwnPGDAt3KD5wTY+YaXJySTn2JMdAOMzUVAaRJ57FbO/Cb6zDPWvNTD5dMYWmeIqTUmWcWVHL6rIqBobmBPq2xa6lTZiBZsm2PWHjuiy6KofK26juZPh33kbtqDysa0cNEycIyHiHHlwKIYQQQkyHBIhCTGFPLs2AW6TUilAZibE9M8DmgW4gHHKYssIhpU/3duLrAFNN/baKmSb+0Gf8ovIotSPTzggZHd1EHnwCbZoUrrkEDHkbz5aGWBLN/oI1L5+yCA0seWEXXdksGo1e3YVe0kdwRhvBJTvREQ/VmTys6qZhRlpLgCiEEEKIo0Y+WQoxiUBrXhzsJW5aKKWImxZ532dPLkNVZP+8soZYgs5iHuPgNRAmEDVMtBe2LRoutdHxC9OM4XnEfnUfKggoXno+QfXhZaLEzKiOxokaJnnfo6uYp78kzp6makoKLqfu66WjmIeoj17WB9V5sDV60QAAanf5YV1TA4OurIUohBBCiKNDAkQhJtHrFOgs5Cm3oyPbqiJRLKWImvuHgxpK0RxPUheLT+u8SimiQZhBcg2fyuj0iphEH3gcs7sPb3Ez7tmnHsIzEUdDwrKojyXZm8tgDlUYfWp5IwBnbWvF8/2xBzUPoo0AOpMQjN09FVsZkkEUQgghxFEzZwLE22+/nRUrVoz6c9VVV812t8QJZl8+w5+6WkfWudubyxCgRy1VkbRsaqJjA0FDqWkNLx1m63BIaWD6lFpTL4Vg7thL5MlN6FiUwrWXSdXS48SCRIqGeJJVpZU4QcCemlLy1RUkuvpo6h5AH7RmIpaGigLKM2Bgki8G+qPgjX2NTaXIHlA9VQghhBBiJs2pMngrV67ke9/73shj05y84IcQOc+js5gj74cfuJ/u68TxfVaXVVFqR9ie6adkkmUnjogXBpOWDSUTLIcxTKUzxO66D4DCqy9GlySPTp/EIVuaKqcxniJqmGxJ9+IGAc45pxG/50HO3raPR5obRmWbAXR1DtWTQHXH0RUHrGvYHYeUA71xjOdr0Y1p9OquUcdayhi5X4UQQgghZtqcChBN06Smpma2uyGOY07g8/xADwpYWVrJHzv30pbPYgwlauKmRaA1vU6RvO/R7xZpjB2lYMwz0GgSEZPkZAVqfJ/YL36PkSvgnLUGb+XSo9MfcVhsw8A2wgB/WbKcXqeAcWozwcNPsqS1h6f701BVPvqgqlz4d08CTu4L/90fxdjQgLZ9RuredCThlK5RYz0sQ5HzXbTWEy6jIoQQQghxuOZUgLhjxw7Wr19PNBrlzDPP5KMf/Sj19fWz3S1xnPCCgPs69tKSy6CAtkKOffkMzfEUxgEftIt+lo58FqUUBmrUvpntkIG2AkrsyKQf9KMPPoHV0o5fX0PxsnVHpy9iRqwuq6QY+GCauGefSvSBx1n93E6ev/iM0Q0THjruotJR9O4yaEijOlIAKDfMNmojQPkGuicBNbmRQy1lUAhcXB0QUTJKQgghhBAza84EiKeffjpf/vKXWbRoEZ2dnXzrW9/ibW97G3fddReJxDQrRB7EMI6fb+eH+3I89elE0+cUaS9kaU6kcAKfvbk0DbEk5kHLRKTsCPuKWZwgoDwSPTpZGg3KNwiiDnHLnPB1NbfuIPL4RnQsSvG6KzEiM/+WlXtr5qQiEVJD//bOWoP5yDOs2NXBzrML5FMHzFtVQG0OdpdhbKtCt5SAH2aUObkP8haUFeH5GlRHEmrzI4dahonvObg6IGYcv7/C5b4SR4PcV+JokPtKHA0n8n11/H66OESveMUrRv69YsUKTj/9dC699FJ++9vf8oY3vOGQz2dZBlVVqakbHmMVFTL37HDt7c4Ri9mUloSFQarLxv9ZRgObtlyWQENtydG5B7SryAPYmuqy5Lj3WrCvE+dXfwAg8pdXE1/aeFT6MkzurZmWovO8NZQ+vIHVW3ez5eLTR+3Va7P4DR7eSymCnrBKrlFdJHZqOCdRu4r8Fo3qShIL8hil4bxDrTWDGZdkWYyq+OF9+XUsyX0ljga5r8TRIPeVOBpOxPtqzgSIBystLWXx4sXs3r37sI73vIDBwfzUDY8Rw1BUVCTp68sSBHrqAwRO4JP3PMoi4Yfv59o60U5ANjP1GnLpXJGkaU2r7bTlLOiPQX0GHBMFeIaHk3Pp6cmMbpvNE//hnRiOi3PxuWQbGuDgNjNE7q2jZ+DUlcQefZYFz+9i86olFOPR0Q1Ki3BKDh5pQgUGfnV69D3XlEbtLSX/x2pY3Q0NWQDyeZeOnjRG/DDWyThG5L4SR4PcV+JokPtKHA3H431VWhrHtqeenjJnA8RsNsvevXuPqGjN8fJiHigI9HHZr+PR5r4etmf6uaphMQbQUchRatljlx0Yx4JYEqXUtNqO4qmwwIg9dJyvoDuOykRhVxkqMNB9UfTCARQQGAEWxujX1PeJ33kvxkAa95RlFC84E47Bay731sxLlJTw4snNnLZlDyc/t4PNZ68c2yjuwooeaCtB12fgwHtuRTc64qG2V6A216LT/eiTewFN3vNOiNdL7itxNMh9JY4Gua/E0XAi3ldzJkC87bbbuPTSS2lsbKSzs5Pbb78d0zS5+uqrZ7tr8053Mc/Gvi4urm3CNib+lsLXwSGtG3goCr7Hi+leeosFnurtoCISxQl8Yub0F7I/ZBrUE02gQV/QAq6J2lCPSodZI6002vJRraUQhOcPLH/UGotoTfR3D2PtbcOvr6FwzaWy3uEJLGKY6PPPwNu6l6Uv7uGxFU1kbJNSO0L8wMq1zWl0c3rsCRRwUj+6rACb6lC7ytGL+tEonMA/Zs9DCCGEEPPHnAkQ29vb+du//Vv6+/uprKzk7LPP5mc/+xkVFRWz3bV5xQ0CHu9ppzWfYXWxiob4/nHXBd+j3ylSH0+yN5dme6afS2oXzHgfvCCgJZch47osTJSwNd2HiUGJfZTWMxxWNFHZcLkD3ZVAvVSFytvosgK6NgvVOfAM1JNNqLaSsJ0ZYB0QJEcefYbIxi0EqQT5N10F9px5i85bi+rq2bV8Icte3M15W1vZcs4qdmUHWJAomf5JqgpQlYeOFGQjqJjGCY7f4aVCCCGEOHHNmU+fX//612e7CwLYmu6jNZ9Boegs5EYCxILv8VBnK71ugdc3LaUll2FvLkPO80hYM3cb7smm+XP3PjwdEDdNbMNg0aF8ED9UrgFWEGZ60vsXu1cv1KA8E12VQ69t37+OnSYcMuiEz1mbAdZQltV6dgvRB59AR2zyb74afZQK5Ihjy1QGZZdeiH65hZUv7qX6onV0FXNkPIeUFZn6BEN0ykF1AJkIRkyR89yj12khhBBCzFtHZ3yfmJcCrdme6afEsklZFrtygyNz+J7q7WBXbpCM59Kaz7InlybrefQ6hRntw9Z0L3nfI2FaVEViM3ruMdqTqAcWwa6y8HF6fwES5ZloNHp5z+h3mQJKnJGHgeljKQPzpV3E7nkQbRjk33glQf3hz50Vx59YeRnumWtQnkfZE5s4pbSSfseZ+sADpcL2KmNjGQY53zsKPRVCCCHEfCcBopgx/W6RnmKBEitCyorQ5xQZdB2cwGd3Lk1VJIaJ4sXBXjKei6kU3cUjrxSb8zwGnCLdxTx7cxlqonGSlj1z6xe6BuqpBtSzddA9NIcxb6G2VKNQqJ0V4BiooQyiTg598G/IQGqcLE/J/iqVgeWTaush/ovfo7SmcO2l+EtmftitmH3OBWegIzb2xuc52TexDOPQ5hEO31eZCJYKM4gvDPSyIzNwdDoshBBCiHlpzgwxFbOvo5AjQI8UXXGDgPZijpRvk/c8KuNRFIpep4DWmqRl0ZLPsLbi8LNlT/Z2sGWwl0BrqqIxAg22McPfe+wpRfWFgaHqTBKc24LaXhlmCYeHi+4uH8kg6tM6woqUi/rHPZ0ucRgOXSuyvTT98hGU51F45Tq81ctntu/iuKETcZyzTyP6yNNUPbGZytMXkvUcIpGpy00DkPDQRgCZCCYGGd9lY38XTfEkJ6XKjm7nhRBCCDFvSAZRzJidmUFiB1QtTVoWLwz0si+fRSmFUoqEZZF2XUpsm6Rp01sskHH3D7VrzWXYOtg37Wu25bOYKCrsKN2FPNXR6NQHHQpfofaWhcNFF4SZGvViNaongY676HP3hR/a95SGBWniLqTccCmCyARFRIaGmJa53Vyz+RHMoktx3Zm4554+fnsxZzjnnY6ORbA3vcjKoibrTZxB7HUKtOaz+zcoIOmiPBPbtXGCgJ5inq5i/tCXYxFCCCGEmIAEiGJGZFyHrmKOUnt/0Y1yO0p3Mc/u7CCJA0r6n5QqpcyOEjVNioHPHzpbaM9nwwqove1sGujGm0aFRl9rMp5LzDSJmiYN8SQxc4aT4m0plGtCbRa9rBdtBajBcG6jXtwPcQ+9tA8VDL2VSqYxryzhUuJ3cVH3L4l5LulzTsV5xbkz229xfIpFKV5wJkprVjz5AkrpUcHdoOuwMzvIgFuk4PuY6qDlLIbmIdq5GL3FAhWRKFnPIy/zEYUQQggxQyRAFDOizy3i6oDIARlEQynipklnMUfKGn+JiaZ4kgGnwO879vBMXyc9xTwDbpGuacxNLPoebhDM/JDSA6iWUgD0ogGwNDSGa9XpiBfOMQRYNICuC/+tS6cuulMykOYVXb8iGhTYvHgxuYvPk7UO5xH37FMJykpI7WhhaXeG9AHVSNOew0nJMjKex6rSSmqjCQYPyLDroQDRysVYkEhRFYnhan9UGyGEEEKIIyEBopgRvcUC44U4lZEYtdHEhEGcoRS1sQSWUmzo6yJl2SigNZ+Z8pp538fTAbaawdu4Pwq5oSxkxkalo2HRmbKwsIxe2I9OFdHLe8Ecyvwo0Ku7CE7tgAWDk56+vHuAS+95nJhf4KWqFfzpvMVYprwN5xXLonjJ+QBcvHEHec9lTy6NE/goFGdW1nJV/SLWVtSwNFVG3j8ggxgPM4WqYBI3rZFCTIPe+AGi1po/de2j/cChqkIIIYQQk5BPpmIMJ/BpL0z+gdIJ/FHrsO0rZIkZY4d3GkpNmD08UEUkRlM8SUUkRokVYUdmYNTcRAg/7HYX8xSHPjAXfA/QR16tVA/92VuK8WQTalMdwP7F7BvSjES/cR99Qev+7OEwU0N9NswyTqC6o5dLfvsE0aLL1tWL+fNVzRimgTWTAa44IXinLMVvrKO0Z4AbBmFRopTduTQVkRhVkRhNiRQx06I+Fn65MnzPExn629mfqTdR9E2wXEx7Ice2dB99bnHc/UIIIYQQB5NPpicg94A5SYHWvDDQy9O9HUdc7n54rtPzA73c17Fn0qzDEz0dPNDVQqA1Bd+jx8kf8YL3w1nGlGUz6Dr8b+t2Nvd3j8zR2lfIck/bLu5seZm9uTT5wEPrQwwOA6A3Fv49GEE90Yj642LUH5ZgvFgNgEpHoWhCWwqNHhsMHoa61i4u+t2T2K7Hc2uXsenslQSArQwMGV46/yhF4ZXrACh9+GnOLqmg3I6yNFU66n4oi0RZXlJOZzFP1nPHDRBjpklnYWyAqLXm+cEe+t0ivcWZXW9UCCGEEHOXLHNxgulzCjzcuY+LqhtJ2RGe6e1kY38XoElZEZoTqVHzAKers5DjT937WF1axXMD3eR9j0d62qiOxrGVwQXVDSNtu4p5Xkr34aPDKqJKUfB9quyZWZjeUIrmRIqM5/J4bzumUpxSWskLA714gcbBZW8uExbEUYdQvTFjo56rDYeNVuYgG0EVLbTlgxGgDQ12gEpHUdsrwn2VOYgdwlp141j0citnPbIZM9Dcf/oSNq9spEEpAjQx89BfKzE3BM31uKcsxd6ynYYNW7nozBXURONj2p1f1UCJFeHpvk7yOkstjAoQ46ZFVzHHhr4uVpZWEB8q1NReyLEnm6YmGqdnggyjEEIIIcTBJEA8wfha01HI8UhPG1HD5OVMP7XROFHDpLWQpaOQY0Gi5JDP21nI0ZbPMuAU8bVmQTxFezFHb7FA3LI4q7J2JPDc3N+NVmBh8PxgTxjkaGZuYfohw0NTH+lpo6uYZ08uTW00Ts53actnCQ5l/qEG9WwdKhdBGwGqNxFubkijV3ftH0LalkQ9V4dqHSpOc4jZQ18HtOSyNMWTWEqxYuNLnPbsdgIFD5y3ktiZp5Ic7KWrmMdU6qgW2BHHv+Il52Nt20XksY0sOXUFOjl2OLahFKeWV1MdjXNf+x600gdlEC1K7YAnettwAp/zquoJtGZzf/fIEO9Bz8ENfOzD+PJICCGEEPOLfDo9AWk0e3MZdmQHaYyFSzsopTCUoiV3eMMhd+fSlNtRyiNR6mMJlFI0xJI0xZMUfJ9+J5zDlPVcWnIZquxwrtSOzCAvpQfGzXzMhJRlUxOJsy3Tj2WEAVXCtEl7Dl3FwvQDrKwdBoclRfT6vejSArqsgD6lm1HVdSr3Z1q0GUDtoRX3yPselmGQLhQ460+bOO3Z7bi2RecbrmDVxRexpryaC6obKPo+vtZE5QP7vKbLS3HOX4vyPKL3/XnStg3xJNWxOIHtgRt+KTMsZUWojsR5KdNH1nNpzWfYk09THYkRNUyKvk/mgDnDQgghhBATkQziCWphIjVmW6kVYVd2cFS2bzoyrkN3MU9FJDrmOKUUGk2vU6A2lqDXKeAEPtGhoZGLk4eerTxUUdNkQXz/87UNA08HOIE//Qxiz1AAW52DqI8+d1/4+OCkZ9RHJxxULhIGh5MUnRlPwfepx2TdA8+wsHOAXCKG+xfXkqyvGWlTE40TNU3yvicBosC54Ezs57dhv7QL9+Xd+MsWTdi2OhKnw/YwHRvtGhDZv15o0rLpzRV4bqCH3blBYoaJNfIFiibtulREZmYYuBBCCCHmLskgziFJ0yLjOew9xCxil5Mfs4bhgWxl0F7IAdBTLMz4UNLDVQz8iTOIRRP1VAN0JAFQPUNDSqvC54FibHA4rDaHRqObJ1+yAmDALdJ9QAGQZN8gr7nnCRZ2DtBVnqT9L6/FOCA4hOEhgRFynndY80XFHGNbFC5fD0Ds938Cd+JF78sjUXx7aL8z9t5JWRE29XeT9zyqD8jqayBz0FIYWc/FDQKEEEIIIQ4kAeIcopQiadls7OvaXxZ/GvbmMpgTRkthZqK9kMPXAa35DPGpCqt0x2EgOu3rH46EaZF2nQkDRLWnDNUXRz1fAxkb+mJhMZqyqcv966W96Av3Qvn+tm4QjGRPh4XD9jzcwKfo+zTtauOt920kOZilbWE9T7zmFVRXV497jZpoAm+SoFzML/7Ji/GWLcLoHyTy2IYJ26UsmyAycYBYEYlSE41RF0uM2m4rg94DCtVkXIfftO3i53tf4ome9lH3tRBCCCHmNwkQ55gKO0qPk+elTP+02vc5BXZkBqicZOhZwrTIei4vZwbodQokzElGJvfGMDY0oDbWjZojNYoG9pZAdur1ESdSakVIWTbmeENMfQWt4dBX5RuoJ5pQgRHOL5zOHW8AidFZnK5iHtsw6SoWGHQdtNZ0FHOsKatiWbKMFU9uYd0DG7G9gL4Lz8R4y7Wc29A8Yba1KhIjYppSpEaMKFyxHm2ZRB7dgOodf8maEstGT5JBhDBDfbCEabErmx6Zo7xpoJsBp4htGGzs7+K+jj0SJAohhBACkABxzlFDVQt3ZqYeHgnwcnoATwcjcwrHYyhFzDB5tLuNYuCP+wEUAE+hXgiHUyrHgsHI/n1ZG/VoM2wvh544xos1qK1V031aY1iGMSZLMhx4qi3VKNdE12bQZQWUb6DjLnrB4a0TOTwM7xU1TZxTWcuA55D2XMrsKGutBJfe9zTnvLiXom1xz8WnodefQ8K2J/45AaV2hKRpHzBHTMx3urwU54IzUb5P7N4HQY/9hiVh2RjRoe0TBIjjKbEjGAp+376bu/ft5MXBPmqicVKWTXM8xb5cdqQQlRBCCCHmNylSMwfFTYt+t0DB9yYNUnKey9ZMLxX21MNBq6IxMp6LryeZs7S3DJW30VaA8gzoTkCZA3kL9XQDqmhBoQxqh+YB9g0tWD9TMVJXAuPF/fP99KIBKC2ivdHFPA5Vr1OgOZ6iNhonYVps7OumxynwmpxB5f/eiZErkK0s5T/PXUpFXd20soIldoSEZWFNt8iOmBec88/A2vIy1u5W7E0v4p5+yqj9hlIkEmFWWjnmhEn68VRGYhR8j7RbJGXZI18KGUNZ7sIhDEsXQgghxNwln07noNhQWftB15m0XXshR973SVrTG+qZsmzKJgkm1VBBGH1KV/h4qDDMyKLzRoDyTNgXViRVgQEDM1dVUe0tC6+/qJ/g9PZwDqHBEQWHWmtcHbCytBKlFCV2hKXxFFc+t5dTfv0wRq6Ac8Yq3L9+C81NzdTHktM6b9K0KLUiWMdJwR9xnLBMCldfigaif3gElR67zEpZcuhLn6IVzvc9hNs7ZlpURGKU2pFR25WCfDBxcRwhhBBCzB8SIM5B4bw3xYDr4AXBhAVr9uTSRGYqg1UwUekoOu5CXRYd9cJCNU6YSdRKo1f2hP07sCBO7xEEiI4Bu8pQm2pRWytRvXF0zEWf3Ls/S3mEMp5LiRWhIR4Gu0ZPH5f95jFO37IHHYuQf8OrKF51MWbE5qKaJk6vGL8ozcGUUpxWXn3U1o8UJ66gqQ73nNNQRYfo7x4eM9R0JIO4rwRjQwPsm5mlZnKeBIhCCCGEkABxzjIV9Dp5NvZ38WRvx5j9Bd+jJZ+hxIqMc/Rh6BzKnNVmw+UjqnMoFGpbFco1oSIP9Rm0EaY7dF1YLEP1HRAgacKgcpoZEbW9AuOlKlRHCrWnPDzFgsGJl6+Yhl6nwM7sIHroQ/mg53JSsgwbhf34RhLf/28iHd14zfVk3/UWvJVLR441lBq/aM4EFiRKSEwzeyvml+IrziUoL8HethNr645R+2Lx0Te4moGKwbYyGHRlDqIQQgghJECcs2KmRWs+ywuDvbTmM2PmDnYUcuQ9b+olK6ZJdQ0NL60Nh8QNryGo2sLshq7Og6mhIRNmE5f2hctO9McgPRSk7ivBeKIJtaNiehfNhcFVsLoT3TQYrnHYlD6kfhd8j85CjtZ8hpZcBl9ryuwoOd/DHwoST3ICEj/5JbE/PgpoipecT/5tr0OXzUzmRogxIjaFV18CQPS3D6Ny+ZFd8YMCRNIzECAaJoOue8TnEUIIIcSJT4rUzFFx06TfdXACHy8I6HccqqLhcM6M67B5oAfbMGZm0XtfhesM2gesM1jqoKtyI/MQGVqgXq/shqV9EPWhIRPOG3y8Cb20F9USziGkLRW2maprhaHbty6LbsxMq6tuENBZDPtSE43TWSywNFVKZSSOG/g0JVJsHeyjJZfG9TwufLmNRc8+gvI8/PoaCtdeRlBTeSg/HSEOi7+4GWftKUQ2biF674MU3nAlKEXM2v+ljjaDcLmYIyz2ZBsGWc8h0HqkaI0QQggh5icJEOeoqGFSDHzqonG6i0V6nQJV0RiDrsMDnS10FnI0xqdXUGVKA1GUVuiKwqigTi/pR/Uk0DEXkkPZCYMwOAT0ih500kVtq8R4ef+SF6pgowejky9qr4GCFQal5vRqOfo6YF8+y8rSCtKey67sIKeVV7O+unHUh+K065DfvZdXPvUyNQNZtGFQfMW5OBecAbIshTiGipetw9rVgr11J95z2/BOXUHUMOk+bQdlZhRrdwWqN4HO2ZAaJwNYNMNh21PMyY0YBjnPo+D7JCz5b0EIIYSYz+STwByllGJRIhwCaRkOHYUsdbEE93e20F3M0xRPzkz2EMJhooAuL4zeXl4gWNUZBofjXUoBCwbRqSJsaAgzkU1pVGspqj2JnixAdA1UYKCT0583lfU8qqIx1tc0kvd9tg72sqqsanTGJF9g+UMbOGfzNgAKzfX4r76YoFqyhmIWRCMUrn0l8Z/8gtjv/0R2YSORVAK/PI9reVg9SehNhMNMDw4QNahn61ADMYJzWyf9wsVWBq72KQQeCflvQQghhJjX5JPAiU4TZgkUEPHHDcSSQ/MR9+WzpD2Xxlhi4uDQNVDP1ENVHr2sb/w2eQu1pRq9pA8qiqihAJGDA0QFNE1j6GdFEX1BS7jwd9SD1hJoKwkDy8Z0mHXUoLZVQtFCV+UhObSER2z6lRcznsvqskpMZZCyDM6qrNu/MwiwN75A5KEnMfIF8lGb5885hRXr14VrAAgxS/wFDTjnn0H0sQ3E7v4jwfWvwVIGntboEgcFqHQE3XDQgT1x1PAyMoORSQPE4crHec+DGapbJYQQQogTkwSIJ5jObRaxQgrigK/CDMHQPD+9uA998tigLmFZ7M1lKbVtmsYbVqqB3WUQ91D9MdRgDAZj4ZIVVgAVhVFrCaptVeE1HRN9XisMRMPqpCVHUAUx7oV/AJrTqJZS1JYadE8cfVon9MZHKpWqjtRIFdTJAkQ3CHCC/es8BlpTN846heaOPUT/8Ahmdx8acE4/hSdOX0J1eaUEh+K44Fx0DtaOPVh79hF5chPx5hKKvgclQ1+UDFf/HR4BrcMqv8NUNsJUA7G1lrUQhRBCCCEB4gklCDQtG21qgsVouwO1uxzVF0fHvDCL2FoaFnc5aJqcqQwWJyepuJmxMV4K5wBqdLigfWBgvFAbbqvLhEEahPMNh5a0UOkoelcZyjPRFflR19VaH/YQVn1KN7oxjdpci+pMwfMa8uGtqquzqO4kdA0FxZMEiB3FPBAW3TBQRAxz1LqDRncf0T88grVjDwDewkaKr1xHUF/DmYfVcyGOEsuk8JpXkviPnxN94HEarzmfl1JRSDpoy0f1x+HRZvSZ7eEXLV0J1GAMHfVQRQsyU6cFldIUJlgzVQghhBDzh1TcOIEYhqJprYvSBsbGhjA4LCmiz2uByny43mDfYSw8P1xplHARe31SP8HSXnTcRSsNvXGG0w/DWQldEy5nMVJc5oDhpYOuw/bsIF4w8YKGWusxS2+MUlZEn9kWfsBtK0H1x9EJB72yJ+xHMHTrxscPEN0gwABOTpXTVSzQUcxRHY2TtGxU/yCxu/9I4ns/xdqxh6CijPx1V5H/y9cS1NdM9pMSYtYEtVUUL1uHCgLOf3AjynHAAH1mO7o8j8pFUDvLR2UP9cru8D2cnXq9TVsZtOezR/lZCCGEEOJ4JwHiCab2ZI9sTTiMVDcPoM/eB5EAXRd+sFMdqUM+p+oOA8RgVSfBim5Y1A8n9aPX74XSYhh4Zu39y1lYPvq0DnRpIVzTsD6NXtwPgBcEDLgOtdE4GW900Qwn8OlzwkCy1ymyOzvF/MSEhz6vNVzfENBL+yDmoaMHBIUHZRC11rhBQI9TYEEixQXVDZxcUsaa0irOs5NE732Q5L///7A3bw0LgLxyHdn3/AXe8iUynFQc99yz1uAuX0JyMMclT24Lx4WWFdFrO8IlL9pSsKcUlYmiywpQk4OEi3IscCb/dV9qR9hXyJL1ZD1EIYQQYj6TIaYnGKWgZ/le4qsGRs0LpCaLVtXQmYSV3dMP/T0F/UNrGDZmxha5qSjAQCysVOq4YeXQqmyYuTi7LcwsWvtnN3U6eU5KlVJmR3m2v4tywkW8ncCno5DDUIpk4JMPPJKWjRP4RAyTCUV99BntaM8Ae+j5lhdgOBA+KEDscQo4QYBtGKwoqSRimFwWqyDy+EbsDS+gfB8djVA893Scc06DqFTkECcQpShcfSnBvg5W7Oki/VILO5cvCN8bDWlUSxlqWzUAellv+H5OOZCNhH8ihQlPHTMtup0CHYUcJ6XKjtETEkIIIcTxRgLEE5FidHDI0OOqHKo7id5XAs3p6Z2rNx6uYVidG7cCqi7PoyhH9cfQThjI6YqhD5kHrT+otUZrWFkSLgmxga6RuYgdhTyry6rod4p0FfMYKFKWTdZziUQmCRCHn6+9//nq8kJYqMYIwsqtB1w/7/tcVNNIYzxF2UCG6AP3Yz23DRUEaNuieN6ZOOeuhXh0ej8fIY438Si7r7qQZXf+nrWPv0BPTTmDFSXoBYOolrIwq7+6CyrD96lOhpVOydjhFz4AHUlUTzxcmqYuO/JetpTBnlxaAkQhhBBiHpMAcQ7RS/tQ3UnU9gp0fWZUZm8iqi3MxA0P4xyjvIhGQ18MVRwK5Cry4zbN+h4J06I2FifQEDct8r6PbRhYhsGq0io6Cjm2ZwZojKdYnCplY18nFeOebRLD8x2jPpqwsIavNVprUrbNsoECqd8/gbVtJwrCjOGZq3HPPR2diE96aiFOBF5THY+cupj1m3Zx9v3P8OBrLsRPQXDmvvDLlFJnf+Oh9RHVYBRNOlym5rkaVGCgWkvRuxz0aR2Qcim1IrTkMxR8j5h5+P899DkFCoFPVdWhD3kXQgghxOySAHEuKXXQDWlUWwl6bxks6Z+8fc6CziQ64kHtBAGiHUDKCec0Fa1wnlPKGbdp2nVZXlKOPTRktDmWZFdukKhhURmJUmZHUArK7CiLUyXURuPoqWPYsUrC56lLi7QWskQNEzuAup37uHh3N2UdvQAEqQTFc07DPWO1DCUVc0rUMHlyRTMLOgdY1N7H2Y88x+OvOB2qxhlCWhbOFVb7SsORBulIOFS8IQ1FE9WbgGca0Ov3EDdNet1wmOmiZOmE1x+vSnHWc+kpFmhOpHiqt5Oi9jltQf1MP3UhhBBCHGUSIM4xetFAWPWzN4ZeMnlbtbsMhSJYODhmuOiocy7vhWfrUL6BLs9POL/RJ6ApsT9jsLSknJezAziey8rSSpRSlNlRlpWU0RwvocSyiZgmed8jPpSt6CkW8HRAXSwx/kUAFOg1XQAkex3e0JGj8rmXMbNhZtOvLMc973TcNSvAmmL4qhAnoIhhYpkmz1x8BhV3/ZmFO9vorS7jpdXjvOljPnptO2yqQ+0qB0DHXPQp3WBoeLwpXLKmaKHiHiYGe3PpCQPE7mKeZ/u7eGXdwlHb9+bSPN7TwaqySnZlB4lZJhl3/C+ThBBCCHH8kgBxrkk64dy8wWhYQGaiwpyegn0lYUaweXDyc1bl0ee0wsuV6IXjty34HlHDHBXYNcVTNMSStOQy1MX2D+1cV9048u+TkqW8ONhH0rIosSLkAw8F+DrAVONHoioIqGvtZvHLLTTu6cTUGg24Jy/GPetU/MVNUpFUzGkx06QyEmNFRQ2/vWgNb/z9Bk57aiv9laV0NVSNPaA6jz6vFdpTkLfQzQd8KZRwIR2FggVxjxLbZk8uM2EBqa5inq5ifsz+nmKBtFfk2f4uooaB4wd05fOUsr/Nxr5O4pbNipJDHlguhBBCiGNEAsS5xgBKHNRADJ23IDHBQvLdif3DzOxJ1iMcVuKiz+iYcHfO96iMxEYygQCGUqwuq8IJfKqj48/9W1fdSFMixZ+729idS7MsVU7Wd0m7LuWR0YVkUgMZlrzUyqLtrcTzRQAKEYvC2lXos05Fl088JE6IuSRmWlxWt4CUZfNkbSV/OncFFz+2hfMf3Mh9r1lHPrn//TYyHDTphkvFHGx4LdFC+N5Nmhb9bpaOQo4FiZIxzVtzGfK+T97zRhWY6nLyVEfiRAyDuGnRVszRWchSaobvy4zn8txgD4sTpRIgCiGEEMexQw4QOzo6eOCBB2hvb6dYLI7ap5Ti7/7u72asc+IwlRbDpSm6E6icjV4wCMnRa5upziQAunZmFsbO+x6nlI7NXCxMlFBhRydcysJQiiXJMuKGxaM9bZxWXk1nIceTfR2UEyWaL9K8u52FO/ZR3dkf9hloa6rmxZMa2NlYyXVLTsGQjKGYZ1KWDUBtNM7mxbU09WdZ9uIe1t2/gfuvOo/g/8/efwdJlp3nmfhzrk9bWd60d+N9D9zAzAAiCDqBJCBRK9GIFBnSxlI+pBB3ZWJXbqnYlWJDil3yF9QGKWopR5GgAUkQIIGBncF419M97burqsunN9ef3x8nK8tluZ7useeJ6JiezJs3z72VXXnf+33f+1omUkqutOsM2d6WGy6rSC9SjQYd9XUghMASBi9Xlxh2PLLd9wEVVzMftAnThE4SM9CNsfGTmEYUUrDsnrlNxrS4Vq+TcQ38JGYl8FkJfAYs7/adFI1Go9FoNG+afQnEr3zlK/zdv/t3SdOUoaEhbNve8LwWiO8MZDFAAOLCECI1IDGU7f0qKbCcVa2ow1sdSeM0pRFHDG5zQQkQpSmJTHsXgxIYdrZe+BlCMLDDflaZyOT4oanj2IaB7Qf4l+a5d2aFiYUyotsJ1yhkeeP4BNMnDxIXclRCn4LlanGoeV8z7GY416jw0gfuprRSZ2SpyiNPn+G5j95PNQoZtD06SdzLJN1CN0tU+Bark8jjbobZTouvLEwjgAdKIxzNFSkHPn4SYyJoJ2vdCfUoJEgSRtb9DsibNnPtFpfLVdJU7blkuzTicMcWco1Go9FoNG8v+xKI/+bf/Bs++tGP8ou/+IuUSqXbtCTNfkilZCFok0qJbZiMuRlVQQQlDgEqm4TbclYZzoy2NpjTrM4UzQcdHGFQCYNtReKcryqPBzN5EimxhLGjoNwNUWuQvXgN6/wVjl6b5VjX3rTlOdw4OsH0sSkuljxiIJESO/BJZEpx000Kjeb9RtFyQII0DZ765MN8zxe/w7GLs9QHcvzpiXGO5opca++Qi7qpxRTUzb7JTI5qGNBKIkptl6O5IsvB6g0lQWe9QIxDEGxwNnVMk6JtUpQ2JhDJFIFgJfTpxDF5WzsLazQajUbzTmRfAnF+fp5//I//sRaHbyO2YWALk1YckTEtbnRaTGVzHM4WeWZlnjhNsXIR0kwRiRKIomMjfRO8BOoO4vVRAJWV2KUehZTDAMcwcITBQ4OjPFteoNWOkMgNs0j1KKRgO7iGSTUKMIWgaDu9lrc9kaYYNxaxLl3DunAVc6m89lQ2Q3TXcaonD/NlO2YlCZh0szQ6LR4fO0AqJd9evoFAULB14L3m/c2A45KzbGY6Tca8DN/61Gk++UdP88Dz51nOe4w9eJhr7R2MqLytAhHAFIJh18OJDOY6LRIpmek08QyTWKY04jWH0loYYPRxxCq5Lq0oQEqJI1SbeSxT2okWiBqNRqPRvFPZl0B8+OGHuXLlCo899tjtWo9mFwZsl9ODo3xnZQ4QHM7m+cToATKmxeVmjXocMuR4MNFEVj0oBoi5AlQykI0QL0wgYhN5pArja/OHzVhlGC4FHU4VSjxQGsE1DCIpeba8oISnoQRnNQr42MgUtmHy1cVpJPBQaWRLLtoGpERU6ljXZjCvzmJem8XorGW2JcMlkpNHiE8eJTk4AYZBBng8DPja4gxXWg1GPI+j2SLVKEAgkEiylvZZ0ry/yVs23zd5hDO1Fc7VKzgjAzz98Qf42JMv8cS3z7B85BimMDb8G96AJZFWomYQ+zgfZy2LBb/DdLvBvN9myHFpRBHVMCSRkuvtOtfbTTxzb5EyAmgl0a7baTQajUajeXvY19X1L/zCL/D3/t7fI5vN8thjj1EsbnWNzGT6u1Vqbh13DwxTj0PylsPdxSHs7kXf8VyRp1fmGXJA3rOsNl7IqVzE6SK0HERsII9VlJvhugvBREpOFUp8cGi8N1d4Z3GIVErO1cu0k5ii4RAkCZ5pcTRXxDIM7iyUGHEynCiUNi5SSkS1jjkzj3X9BubVGYz6WsVSGgbx0QPEJ5QolEMDfY+15Lh83+SRnmGGa5rKvMY0qYchGUMLRI1m0PG4f2CEi80afhLz2uQguYdO8vBLFxn9wp8w+D0PEVhJf4EI4MWIpouMDHA2uhqbwiBFcrFZJUpTHMPEMRLqUciVZo0nl2awhcHoNk7Fm5FS0I63cVfWaDQajUbztrOvq+vPfvazAPzP//P/vG216OzZs29+VZodMYXYkCW4ylQ2j1EWGysFg2pmSNTUHKI8XkEe3ygOO0mMZ5qMuJkNMRWgTGamvBxvNCoUbYdWEjG0ztnwibFDasMoxrwxhzk7jzG7gDkzj9FeM8CRQDIxSnz0AMmRAyQHJ8HZW0tqxrT48PBk7/9d02TY8ejE8Z6rFhrNe50Bx+VYrsiZehnPMLE+/kGi2MB+7Tw/8M3X+J1PPQjbtYFnYmh2sxCdreH2JoJqGPT+vTmGST0OOVNfwTPMbWNs+mEZgloU7L6hRqPRaDSat4V9CcR/+S//5c5thJq3lUHbZcLLshR01gLrnRQ51IaGi7xnCcbaW17XjCMmvNwWcbjKWCbL6w01I9hJYu538qoiuLCMubCMsbCMsVJFyDXDG2kYJJNjJAcnSA5NEh+egsyts7ef8nIs+R2y26xZo3k/ckdhkAW/zaND4xzND+B//xOIap3hmXk+9c3XeP7TH0B2bx51khhLGKoDYf0cYnGrQMxZNvN+m8PZPKBmocM0ZSXwlTHWPnAMg2qoBaJGo9FoNO9U9nV1/bnPfe52rUNzCxBC8GBplC/NXyNK017rqXx4XlUMt9H2fhJzqHvh10NKRKOFsVLl8OISn5y+zngrIF9pUOhsvYBMCzniiVHSgxMkB8ZJJsbAvn3ibcj1KNoOrhaIGk2PyW5cTG821zLp/Lnvx/oPv8WxuTI8dYbnHruPTpqwEvpY3dnEKbeovgw6/SuMBcvGEKKXZ2oI0Y2qENu3rW6DY5jUIx11odFoNBrNOxV9df0eYyqT41iuyLV2nUkvpx7scw0m0hS3EyLqDe5rtrlrIcRtnkHUmxi1BkalhohUVSELDHdflwqIhkswPkoyPkw6PkI6PoLMvrWzp+NelgdKIz0RrNFoFFuMmzIeS5//XoZ+4/c4dmGGTtblS3dN8dDACHcUBnm5tszVSp0JRhAVD3mktmWfQogtLsVFy7kpk6iMaTIb+rxYWeL04JjuStFoNBqN5h3Grt/un//85/f1Bf7f//t/f1ML0myP9ANothFxAmkKqUTIFJIU4hgRRogw4tFmg/zyAiPCxA5j3CDE9Tf9CXZ2EZSuQzI5RjpUIh0usZT3eAqftFTkB46ceouOeHscw+R4vr+xjUaj2cjg6ChLn/9enP/6R9zz8iXKrs2px+8ka9l8bGSKhdZFpJnASgZiAZbcdZ+lm8w9NYXBmJvhxeoSA7bLqc0GVzfBtVYdKSVH9e8EjUaj0WjeNLsKxFOnTuk7vO8AzFffIPj9PyW3+3UbB7p/tiM2DVo5j47nUMk6TIyNYw+WkAMF0mIeWcwjMx6s+7kPAB8OA8I0ebOHotFo3gZGDh2i+bnPUPrvX+Kjz76Bf+go8R3HMISg4NoEww28xRJyJbshAud24JkWedPi5eoSR3KFXuvqfiiHPmGaMOJkeL6yiJ/EDLsZKmFAkCaMuRkGblLEajQajUbzfmZXgfiLv/iLb8U6NLsgBwcQRw4QhxEIA2kIMA0QBhgG0jLBsZGOQ+pYvNapE1omlusSeg6+5xB0/yTd2cBFv81kJs/ExGH2kkp2sxUDjUbzzsA+foTgz/4ZvN/5Ct7vfoXOj/0gyZEDFG2H68M1vMUSYiGHfLMCsU+e4mZKtst0p8m1VmPfVUQpJc+uLFCNAh4ojbASqkzVry/NsuC3SaRkyHH50YMnMfUNTo1Go9Fo9oWeQXyXkB6cwP2bP05zpUma7l5GXFic5UqrxojrkUjZ9w59kKYczW3NstRoNO9d4rtPErQ6eF/5Fpnf/EPaf/HPUsy7tEvzDBopLGchEWDuoV1hPauisOoiXpiEO1fgru1vPQkhKFg2L1QWEdDLVt0LC36b2U6TWKa8Xi/jCINBx2Wu02LU9RAI6nFIlCaY2shKo9FoNJp9oR0+3qOMehkimTLnt1nwO1ueD9ME2zAY895acxmNRvP2Ez16P8HjH0JEMdn/9gcMluukBjDSRiQGlHf4vbCYheYmt9OOhXjyKOLcMOL8sNrHXL7/69dRsl0SmfK1xRmeLc8j5d5E6blGBSFQsT5+h0HHxTFMDmXzeKaFZQhiKQnTdE/702g0Go1Gs4YWiO9RBmynVzlUlvQbL7waUaRmdGzdNqrRvB8JH3uE4LFHEH7Iyd/9GkONNnJMtZaKxVz/FzVtjJcnEGdHNj5eziBiAzE9gKh1805rLnL9yHIi4EZe/beLEIIhx2Pcy3CmVuZSc6uD6mb8JGam06BkK1F4tM8Mo4EglVLPTGs0Go1GcxNogfgepWi75CybOwuD5C2bTrLW6tVJYtpJzIlb4B6o0WjevYSf+CDho/djdQI+/+QrZN1lpJCwlIV+xbfVymJ7YwVRNJwN/y+9GJEapOW1x8WFIYwzY3CjsGW3jmFStB2eWplnOdja8bCeVhwTJCnuDsY2QggkkkhXEDUajUaj2TdaIL5HyZkW9xWHuHdgmAkvRytWmYbtOGYl8Hl0aJxT+dLbu0iNRvP2IgTB93yUzv13kO+EPP7Vp8nklxCRqSIvNm9eUY+J0NpQCaQrENP7FknvW0AeqQKQLHU7FAITZpUwFK1N7aldirZDIlO+tXSDVrz97KJ6TmLsaj4jdAVRo9FoNJqbQAvE9yhCCB4aHCNv2UxkskQypR1HlEOfDw6P81BpZA8XWBqN5j2PEITf/wQXj4yRb/o8fu0PycZ1xJkxWMipmUOJ+lPx1l7X6Zq/SKDhIs0UJpow2YJB5SoaX87BV48gnjmASLtfN+3+AhFg3M2wHHb40tw1bnSafbdpJXvxXAahK4gajUaj0dwUt0wg/tRP/RR/5+/8HZ577rlbtUvNLWLIUa5+tSjkg8MT3D8worMtNRpND8M0efbjD3Hp8Bj5TotPVH+bXKeF8co4xssTMJ+DpqMqi6usCsSOpUxp8uFatEU+RNoJhAbEAuFbSKMr1nYQiEIIDng5mnHIU8v9TWtqUbCn6AopIZJaIGo0Go1Gs19umUCUUjIzM8PP/MzP8PnPf/5W7VZzCxi0Xe4qDPK9k0d4oKTFoUaj2UrBdfnjD9/F9WOT5IIWn6j+Fpn8AgCinIGyqh5Kq9u22ekKvUa3jbQQrO1MAPctYd9bhyeuk56+gfzgDaQTg2/1n29cfakQDDouzTiklcRbni8Hft/Ynq37AT/RLaYajUaj0eyXWxYQ9R//438EIAxDXnvttVu1W80twDIMPjo69XYvQ6PRvIMp2i6hkDzz8QeQQnDk8g2emP4i3yj8OZqVLMLvfl1MNmF6ANGxVPRhd/5QFsKNOxztYOdTwmYKQ6rllGyEqFpI34LsVvG3imOYRDKlFgXkrbWKYyJTqlG4o0HNKpYwNphzaTQajUaj2Rt7riCGYcgv/dIvce7cuR23cxyHRx555E0vTKPRaDRvHQO2o0YNDYNnPvYAV09MkW37fGLlCxQaLShnkE6MnOjOBrYcxMtjcKWk/n99BXE7VkXhDm2m66lHa6Lz+fICM+0mYZrsSSCaQtDpU4HUaDQajUazM3sWiI7j8Mu//MvU6/XbuR6NRqPRvA2MeVkcYRIkCRiCZz/6AFdPHCAbt3h86bcpRSsw1oKsqsqJlSxiMQ9OgjxWgWK4yzuA7L621566A7YwWPJV5EWUJrzRqPJcZZE4TbGM3b+6TGHQiXWLqUaj0Wg0+2VfM4gPPPAAZ86cuV1r0Wg0Gs3bxKrjcT3uCj1D8OzH7ufioRN4aYdPLH2BIes62Oma4QwgH1hAnqysGdTsRKYrLvdQQcyYFotBm1RK2klMkCasBB3kHkeoLSHwU11B1Gg0Go1mv+xLIP79v//3+c//+T/z//1//x/T09O02206nc6GPxqNRqN5d3I0V9xo7CIELz52F2cLp3FkyCee/hbjN5Ygo4SXzIVQ2kNr6SqrFcT27uPvGdOiGUe04ohOHJPIlIOZPJNudk9vZQqDME1JtJOpRqPRaDT7Yl8mNT/2Yz8GwD//5/+cf/Ev/kXfbc6ePfvmV6XRaDSat5xxL4ttGIRpsuYUmkl57bFjhDMBD555jY/96fN891CeG9yLPFjvWzlsxhGRTMnhbnyiKyxpupAIMLfGWKxiGwZxmlKPQoI0QSAwhNhzfqtlCOIkJUxTMqbBgt8ma1oUbGdPr9doNBqN5v3KvgTiv/yX/1JHJGg0Gs17lAHbZczNUA59RtzM2hOTLc5PHiIcgEefeo0PXXuSF475XJka6m3iJzHNOGLY8SiHfn8hZ6fIwQ6ikoFXxpEPzu/YxyIE1OOQVEr6RCIqJNCyIRdtEKumECRSEqYJAvj64gxCCD4+MsVEJref06LRaDQazfuKfQnEz33uc7drHRqNRqN5B3AsP8Dscqvvc1fvOETDhMe/dYZHrzyNWzrFuQdOgBBUwgDbNLnSqjOeydFOIvx44wyglBIeWIDnphDLWeR0EY5sb3xmCYOloIMtDKzNQlKiBOF0EeONEdKTK3Cs1nvcFAaJTInSlCW/Qy0KcQyDp1bm+ZEDx/XNTo1Go9FotmFfM4irXLx4kd/5nd/hl3/5l1laWgLg2rVrNJvNW7o4jUaj0by1THhZTARR2n9279WpIX7nE/cSWSb3v3iB00+dQaQpCZLjuQGG3QwPl0YZdjya0cYcwjm/zVzSRD6wAIC4WlKtptuQMa2uuAuwxbpoixUP8afHYLqAuD6g9nV5EPHaKOJPjyGeOghzeQQCP0k4Wy+TMU0GHZd6FNK+hfEXc52WjtPQaDQazXuKfVUQW60W/8v/8r/wx3/8x1iWRZIkfPzjH2d0dJR/82/+DVNTU/yDf/APbtdaNRqNRnObKdkuI26GRhwy5Hhbnk+RLB0Y5Uvfm+N7vvYSx89Pk2n7/PYH7+BYrsj9A8PkLZtmEvFau0JGqJm/ThJjCkEsU8hHyLEmYjGvqohHa33X4pkmlTAklinOumgLcWkIIQWcG0EgkEaKSA2YKyCFRDQduFyCR+Z5pbrMnN/iQCaHKQwimVCLAnLW3rIYd2I56PC1xRkeHhzl7uLQ7i/QaDQajeZdwL4qiL/4i7/Iiy++yK/92q/xwgsvqHahLo8//jjf/OY3b/kCNRqNRvPWIYTgzkKJVhypTMR1RGmKKQxsYbAwmOOrP/gR6gM5JmeW+PNfe5mBMKZgOwghGHE9JJJy4LPgt1kOfEa9TG+WUB6vAmBcGEa8MAHh1q8jxzCJZLLRNKfqImqeEoLdoUN57xJyqK3+fOw60kwhNHEMk4Wgpaqiort/CfVo98zG7Vj93ovSlGfK8ywFbWbauntGo9FoNO8d9iUQv/zlL/P3/t7f48Mf/jCmaW54bmpqitnZ2Vu6OI1Go9G89ZwqDPJQaYylsMNMp8lSoCKM2knEgO0w7HiEaUo7n+GrP/AR5sZKjFWajP7G7yNWKgAMOR5FxyFrWxzI5hmwHe4qDCGEIJUSCiHp/QvITIRYySJeHVPzg30I0xS7W0EUV0sAyLuWkYUAmQ9grIU8PY88PQ9eAnaCiE1G7QyTXm5NXKLcUVePB9gggttxRC0KmO+0eKNR2RKRcblZ4/duXOZqq85TyzeYaTc5mMmzELTwdZupRqPRaN4j7KvFNAgCSqVS3+dardYW0ajRaDSadx+GEDwyNMZkJsdy0OG5spoZbMUx9w4MYBmCa+0GAJFr8zuP389nn7vEgSs3yP36F+h87jNkjx3kh46cIG3GmIieEHO6MRqeacFECznahmcOIMpZuDyIPFHZsBYTQZCmyhVVAhUPaaQw1UAeUGvYErXhJODbEBvgbBR5GdNi0e8gpUQCX12Y5uHBUQYclz+Yu0ozjpQwlGqtx3JqxvFio8o3ltRN0D9dmCaRkkkvhyUElShgJfQ5kMnfuh+CRqPRaDRvE/uqIN5///387u/+bt/n/viP/5iHH374lixKo9FoNG8vphAczOY5mM33qn6JlIx7WfKmo6qAXXwB09/3UYIPP4TwAzL/5YtYL5xhLJPtVf5c08Q1TTKmRbjeAMeUyAcWVFvo5RIsZzaso+S45K3uvczIQMQmZCP17SXom8OI3d1/uPWmpWeaNOOQVhLTiEMWgjZXWnXmOi2qYcCY63HAy+GaJmdqKyRSEqUJL1WXyJgWU5kco67Hge6xKTdUwbLf2fJeGo1Go9G8G9mXQPxbf+tv8eUvf5mf/umf5jd/8zcRQvD1r3+dv//3/z5f+tKX+Bt/42/crnVqNBqN5m2gZLtkTYuV0CdjmYx7WTKmhRCQSMmi30YIKDou4Sc/QucHPwmA+0dfJ/rtP4FNbqgl2yVMN842kouQ9y4hEIjXxqC8Zo6TMa21TMaW09t+R+zu/qOtAlHNNaZUw4BaGNJJYq60apxvVHANA1Mo0TfkuMz7bWbaDabbTSphQMl2evvozTQCOdPkcqu2ZWZTo9FoNJp3I/sSiI8++ii/9mu/RhiG/LN/9s+QUvLv/t2/Y3p6ml/91V/lgQceuF3r1Gg0Gs3bgGUYTHhZloIOhzIFMqZFxrKQKBfPQcfjibFDTHXbK+MH7qLzlz6LzHok33oB97/+AfhBb3+DjruxgrjKeAt5pIqITMTzkzBb2LpNq+s8uptAXG0rjfp/xQkEC0GLauRjGyatOGbeb1Ny3N42pjDIGBZfX5rlleoynmlum504YLssBR1eqS7vvC6NRqPRaN4F7GsGEeD06dP8p//0n/B9n1qtRrFYJJPJ7P5CjUaj0bwrmczkON+scjinRFvGtLCFgZ8m3F8a4WiuuGH75NAknZ/5c+R+60tYl6fJ/offpvPnvx85VCJvO8ht3GjkqTIyH2KcGYOZwtqMYRfRFYgyu7MLqbQT1Xnap8UUIG9ZXG02KNg2XrcF1l/vlNpl2PVoRCGLQYcDmey272cIwZib4bXaMsfyxbWKp0aj0Wg070L2VUF86qmn6HTUnIXneYyPj2txqNFoNO9xhhyPCS/LhJcDugLRMBlyvG2NWWSpiPM3f5z41FHMcpXcf/gtzIvXyJrWdmalap5wsom0E2i4sLnQ2H7zLaYAecumFgUsB36vhfXgNsdRsB0OZ/MbWkr74ZkWKdCKd1mbRqPRaDTvcPZVQfwrf+WvYJomd999N48++iinT5/m9OnTDA4O3q71aTQajeZtZtTN8MToQTKm+sowhaBkuxzM5nomNP0Qnkvw576P5GvfxX36RTK/+YdMfuRhxKE8iZSY/Vo2BVAMECtZZMuBQqhaRSNjrcU0u7cWUxEafcWoKQxSJH4SM2BvXxncP5KoX/usRqPRaDTvIvYlEL/zne/w3HPP8fzzz/PMM8/w67/+66RpyvHjxzl9+jSPPvoon/3sZ2/XWjUajUbzNiCEYGDdfB7Ao0NjFLqmLTtiGISf/DDp5CjeH3yNwade5MemR/nCB04yWhzoP9dXCGAlC3UXCiHitTHEshJy0o3B2rYGqdilggiQMSwacdhfpN4kUoqtBjwajUaj0bzL2JdAHBwc5NOf/jSf/vSnAWi32zz99NP86q/+Kv/tv/03fvM3f1MLRI1Go3kfMObtr/IW33WC9sgQ3m99iamZJX6q1uT3P3oP9sTYlm1lMVQJFnUHeYCeOAQgt3X+cDnwQcCI03U/dXYXiEOOy9Am0ftmMYSaZVxlwW9TjwJOFXSXjUaj0WjePezbpKbVavHiiy/2KomvvPIKruvyxBNPcPr06duxRo1Go9G8B0hHBmn/9OfxvvhVCuev8Oe/8iLPPnYfsycObNyw2HU9bbiQbKrw5ZVAbMYhUSop2jZBGmMKg3Yc004ikiRgEiDcof31FlYOVzGFoBPHvf9/vbZCJQo4kS9h3Ib302g0Go3mdrAvgfi5z32ON954g+HhYR599FG+7/u+j3/4D/8hd9555235stVoNBrNewzXwf/cZ0ieehH3G9/lsW++woWlGq984E5Ss1vx82KklUDDgbb6mpKlDvJgHYY7SCmphAGWMGgnEaNulqlMjmfK80x6eYYHPXzYsYJ4OzCFoJMogViPQq63GyRSUosCBh1vl1drNBqNRvPOYF8upm+88QaWZfHQQw/x8MMP88gjj2hxqNFoNJr9IQTRY48w/aPfQ8e1OXXuGp/8g6fJ1Vvd51FGNakBq+2luQgmW+Ck1KKQQcfj7uIQUSq5uzjEfQPDfGx4iu+dOMzp4TFSM1mrIM4UEN85CMu313XbFAadRLWYzrQbhGlKimQl8G/L+023GyRyb6Y4rTjipcrSbVmHRqPRaN5b7EsgPvfcc/zSL/0SJ0+e5Mtf/jJ/8S/+RT74wQ/y1/7aX+NXfuVXeOmll27TMjUajUbzXmPwzlPc+MnPsjQ+yFC5zqd//9scvDKnniyqVlKxqKI1ZGatdbMeR9xTHOKhwVFOD41xKJvHMy0eGBwlZ9k4hkFqJ4jEhEggLg4hWg7ixQm40T/O4lZgCYHfrSBeaFbJWyov8obfuuXvVQ59ni0vUAmDPW2/4Lc5Wy9T2+P2Go1Go3n/sq8W00wmw2OPPcZjjz0GQBRFPPXUU/zKr/wK//pf/2uEEJw9e/a2LFSj0Wg07z3GRsfo/OTnePWPv8Z9r17mI19/iUtzK7x05FGghKh3WzMzKtoiSlMcw+BQtoBnWnxgaHzLPi1hgB2CD0wPICITmQ8QTRemi8ip5m05FlMY+GlCO45oxCF508Y2JLPtJlGa7hgJshOV0MczrV7MCMC1Vp2loNNrad2NpaDDUtBhPmhvcaTVaDQajWY9+zapKZfLPPfcc70/b7zxBmmacurUKW1So9FoNJp9k7Edcp/+BL8/XODTT7/OifPTDC/U+K77QzTtrgNot4IYpAmeYZK17G33J4RAdLMQjUtDAMi7l+GlCWV8k7LP/pltuFxCzBSRH5wFL8EyBHGiWmDDJMW2TRxgNmox12lxOFfY91ukUvLk4ix+GnNHfpAB26HkuLzRqBKmyZ4EopSSG50mhhBcada4U7uqajQajWYH9iUQP/OZz3D9+nVM0+Tuu+/mQx/6ED//8z/P6dOnKZVKt2mJGo1Go3mvM+pmOHTfPfzHgsefffYCk/Nl/oz4b7w88HGuZu/uVRDDNGHQ8XbNLzSdtdk8OeDDQKDmGleyyKbTa2G9aSou4tIgAoFcysGhOqYQJFJSjQJSZG+NrjB4rbbMwWx+326mjTikGgV4hslL1SVSKbENgzBNyBg27Xh3gdiKI+pRyISXZcFv04jCvWVYajQajeZ9yb4E4g/+4A/ygQ98gIceeohM5vYO+2s0Go3m/cWJ/AC1qQP85scdPnJuhtOvXuV09WtMBFd4LjlOiEuQJHvKL7THAvwVD2OijTxW6RnfsJKFuruzQJSo7Tc/tphTGYu5EHFmDNHdSKxkkIfqmMIgkSm1KAC5toNh1+OG3+JGp8XB7PYzkC9Wlhh2vA2VxkoYkKQpg16WQdRxh2mClFCNAurR7kK3EgVEMiVv2VTDgMWgowWiRqPRaLZlXwLxb/7Nv3m71qHRaDSa9zlCCE4PjTPguDxpQF3ewYfOPsWBzlWGf/cGz37sAWaGMgzYuwvEwqGIq4VzTGZyvcdkMUAAou4iaUDZg6YDh+qwmEMsZVXuYiUDmQj5gRuqFVWCOD+MuD6g9uPEiNBCjrSgnFHbd9tWBYJaGLK+UGgKA1sYnKmtcCCT29b5e67TJCXdIBDLob9le8dQ8R1OYlCPdxeI5cDviVlTCBb9NifyA7u+TqPRaDTvT/Y9gzg9Pc2///f/nhdeeIFqtUqpVOL06dP87M/+LIcOHboda9RoNBrN+4iDmTyuYbIwmeNPVv4CDwRPcrx8gY//yXMUTk7ifu+BXffhmRYpcuODxa6DZ10JTHFuBNFySHMR4swoIlk3mBiZyIWcita4NoC4PoC0EyUWu+JQPrCIeHlcta3WXSgFgCRIE6xNom7Y8ZjpNJn32xtE6ypSShpxhPA7Gx6f67TImP3zHG3DpBmFpFJu27oqpeRau9HbR86yme00d3yNRqPRaN7f7GtM/7XXXuOHf/iH+fKXv8x9993Hj/zIj3Dffffx5S9/mR/5kR/hzJkzt2udGo1Go3mf4JkWRduhVaoTj8Q8/+EH+PYnHyFwbR66OMfJ//JHGPM7Z/o5/RxD3USJvKYDoYFoqTZL8boSh3KkRfroDdKH5tXjV0uQgrg2gEQiT88hPzJDet8i8sEFMCVyqCvoyqtjF4IwTXpVvlUsw8BAcLa+0ne9QZoQpgmVMCBK1fykn8SUQ5+s2f9eri0MQpkSpMm256EaBayEPgVLHWvOsqhHoWqD1Wg0Go2mD/uqIP6rf/WvuOeee/iVX/mVDTOInU6Hv/pX/yr/6l/9K37913/9li9yP/zGb/wG/+//+/+ytLTE3XffzT/6R/+IBx544G1dk0aj0Wj2x4SX4/VghdJpJdaeamW5+P2P8snvvsHhuTLWf/htwo89Svjhh6BPhc0xTKTcVCETwICPWM4hp4trD/vqq1AeqsOgD1IZ24iaBy+Pq4rhaAsK3XbOyXUxGcNtuDCs3EwP1ZFAmKa4fQTqsOtyrdVgOegw4m6c4+8kMWGaAinNOMQ1TM42KvhJwojj9T1HtmEQpSmdJN4QgbGeBb9Nsi5iwxQGqYRyGDC4zX41Go1G8/5mXxXEV199lZ/7uZ/bYlCTyWT4K3/lr/DKK6/c0sXtlz/8wz/kf//f/3d+/ud/ni984Qvceeed/NzP/RzlcvltXZdGo9Fo9sew45F0O0TjNMUxTRZtkyf/zCP43/txMATuN54h++u/jbG4tSpnGwZCyC2Py2FV8evNE3a3kU4M3ecQIE+WkUIillU7qDxc67/QQoScbCACC3F2BANVDdxcQQQlWhPgUnPrvvwkQSIBSSUM+OriDM+XFxhy3G1nFldbRHeKurjaquNtEtCmgEW/ve1rAC40KrxaXd5xG41Go9G8N9mXQHRdl2q12ve5Wq2G67694bu/+qu/yl/4C3+Bz3/+85w8eZL/7X/733Bdly984Qtv67o0Go1Gsz+KtgNIpJREUlXA7hsYYszLEZ2+j9bP/hjxwQnM+WWyv/rfcb71HCRrrZaqgthnxyNKGIlYiSZ5rKLaRw/WNzqXDvnID8wi86Eyoxn0t12rvHMZ6caIhTyO7+Inca9it5lB2+FCs0I7jjY83kliFZmB4FKzxlynxcFMntwOeY/rX9uPahgw77e753KNrGUx57e23Z+fxLxYWeJMvUy0Q/uqRqPRaN6b7EsgPvHEE/yf/+f/yXPPPbfh8eeee45//a//NZ/85Cdv6eL2QxiGnDlzho9+9KO9xwzD4LHHHuOll15629al0Wg0mv1TtB08y8TvzublTIvHRqb44PAEAHKoROfHfxj/ez4KhoH7zWfJ/offxlhQVS9HGBhCkG5WidkYmVOtohIJR2rIj1+H49WtixgIkR+ZQT68sDX2Yj22hO4sohvtHB+Rs2w6ccKFxsb385MYKSWuYbAUdMiY5p5MZCQSP9ko4qI0QUrJK7VlEpluqWa6hkkrjvC3EZZXmnWqUUAzCpnfpdKo0Wg0mvce+5pB/IVf+AX+p//pf+Inf/InGRoaYnh4mHK5zMrKCg8//DD/4B/8g9u1zl2pVCokScLIyMiGx4eHh7l27dpN7dMw3jkOb6treSetSfPeQH+2NLeDN/u5yho2JcejGYXEUjLquFimsfFLyzBJPvQgnVNHcb/4VczpObK/9ltEHz2N+6H7sUyDBIkpDKphgGuYZCwLRtvQciAXIWzATtlZAe4BWxnLFKRHPlfcti0UVC7iC9Uliq7bi5topTGWYZC3bG74LY7lBnbcxypZ0+K12jIF2+FYvkgjCvnS3DXGvAwXm1XGvOyW/bimRTkK6KQxtTjkervBh7rCuxVHvFZfYcB28dOYy60a19p1ht0M9w4M3+zZuWXo31ea24H+XGluB+/mz9W+BOLg4CD/+T//Z77xjW/w6quvsrS0xOjoKA8++CAf+9jHbtca3xRSyj19yW7GsgyGh7cPNH67GBzcao+u0dwK9GdLczt4M5+rk+EQLy0vYgKHh0vb/04eziP/1k+QfPsF4j/4Bs43n2X04hWOfeAknQN5LGGQyBBfpAgrpXQ0IrgqsSdCnPytGY2I8oII8EwPq6DEYtoyEZkEsalXJ4eLE/i83Frhnqkx8rZN2hQU8x6jmSyj7P27J5d3WfE7PNtc5OjYIL4PbSNhJmozlM8yuMkzYJUKIVbeoe53mK23yZU8LGHwzPQ1QivlcL5IJ4mZ7rTw44Q7XfMd9Z2of19pbgf6c6W5HbwbP1d7Eoi+7/P1r3+d2dlZRkdH+chHPsInPvGJ2722fTE4OIhpmiwvbxyqL5fLW6qKeyGOU+r1zu4bvkUYhmBwMEel0iJN+w3WaDQ3h/5saW4Ht+JzZQWSVke1g6admJWV5s4vuOdOxOQE7he/hnn9Bt//e8ucu+Mg33jgKGPFAY7nB/jqwjRuRiAeC4gyMVHzFn3mpYMAgkZK0AxgxUM8P448UYET1S2b2wjmOy3emFviaK7IXKVBnCa0kv3HT3gYLLdbvDq7QDnsIMOUIc+DBFrN/vvr+BGzyzWm2w0WW00uzC3TjCNeXJhnysvRbqnznk8t8obFtXKV2XwVbxu31DfLgt/GM00G7J0Fu/59pbkd6M+V5nbwTvxcFYsZbLt/tu56dv1NPz09zU//9E8zOzvbeyyfz/N//V//1zuqaug4Dvfeey/f+c53+NSnPgVAmqY89dRT/OW//Jdvap/vlB/metJUviPXpXn3oz9bmtvBm/lcFUwHKSVI8IS1t/0MFGn/pc9ivXIO40++xd3nZzg0vUj5Ux/GG5nCNUyCJMHtziHyJj/yldAnZ9k4dqKaVENDda5c78ZoLGSRxyt9X2tKwUyzwZSbox3HeIapjvcmyJo2b9QrdNKYvGntuh8TWOy0WfI7+HHCXLvF9XaTrGFhCtF7/eqalpOYFd9nMnPr74SfrZX5bnmeI9kinxw/uKfX6N9XmtuB/lxpbgfvxs/VriY1/8f/8X9gGAa/8Ru/wcsvv8wf/MEfcPfdd/NP/sk/eSvWty9+5md+hv/yX/4LX/jCF7h06RL/6//6v+L7Pj/6oz/6di9No9FoNPukaDvKjVSgZgf3ihDED97NVz73OK8dHiHfCTn8B99g8AtfYSJMd4yF2A+NKCRIU1YCH+yuUUxkQmDCclYtpemq/+9Dwba43mnSiEPCNNnW+XQvFG2bahRsn4kYmBCvjVu4hslS2KGTxAw5LpeadZaCNiVnawVPCIEAyuH2Tq43y3LQ4bvleRzD4Fq7TuU2vIdGo9Fo9seu30Yvvvgif/tv/21Onz6N67qcOHGCf/pP/ylzc3MsLi6+FWvcMz/wAz/AL/zCL/Bv/+2/5Yd/+Ic5e/Ys//7f/3uGhobe7qVpNBqNZp9kTIuCZeMIg+xNtDYeHB3H/+z3UPvz309aKmBfuMpnf+873HH2GiJNb2pNq66ocZpSjQKOZAskSHC6AjE0YS6PkKKXsUi5/xxg1rRpxSHfXLpBlKZY+5iXF2eHES9M9CqgpjAQgCXE1rn70EB8+xDi1fHeQ063kiqlpGg7VCIfEwNzmzU4hslMu8mLlUVudHZp9d0Hc50WcZoy5HjEMuVKq37L9q3RaDSam2PXb9ylpSUOHTq04bHDhw+rlpPlZcbGxm7b4m6Gn/iJn+AnfuIn3u5laDQajeYWMOpm6CTJTc2+rTqEUhikdeQAzreex/nuSzz+4iWqVxd54cP3MDc60IuB6CQxqZSEaUInSRj3MpjrHGYW/A5+GpM1LTpJzB2FQR4qjXKt3SAyY1yAyEAsqjZMeayCuDyEWMkgJ7eKKkMILGGyFHSYyuT2bqjWthAz6thkYIKnxOmkl+2/fdVDJAZyOaMqiW6Ca5hUoxAhBI5h4gqjb/VwlZxpc73T4I1GhcdGJpnKvHnDmlRKLrdq5LrV4ZLtcLZe5o7CIPk95D9qNBqN5vZw8/0sGo1Go9HcZkbcDEOOu21la8/YNuEnP8z0j/8QsyNFSpUGn/qj73L/ky8Q1OqEacJy4BOmKVnLZtj1KIdrBi8LQYesZfHE2EEypsWdhUE+OjLJgO0w6Lg0RdfULDKhbSONFA7XVdbiSmbbWcdxL8OBTG7745vLqUrhQg66RU8xW1x73l8TzqJf9RAQFU/9FwFLSkRahkEniXqV2TEvuyUvcT1Zy2LY9hhy3FvWaloOfVYCn4KlsiPzlkMnjnmluoSfxCzqDEaNRqN5W9jTLdmf+7mfwzS3fnH89E//9JbHn3rqqVuzMo1Go9G87zmQyZO7hdWkzNQEv/k9D/PA9AqPPH+eB64vc+dchWfuO0rmgVN8z+RRhBBcbdX5yvx1UilJpSROEz42fpjJTI4j2QK2YfSqi4eyBV4MFhmyEvAt1V6aC1U24qCPqGSQi1kY37/gEVcHEU0HsZJVYjMXbZxp7FhQ2sX5tOat7W8xhzzYAOBItrivttasZZHIlEoY3HSE1CqJTDnfqJIisdbNXo66Gc7VK0y3m/hJwhNjBziSK+6wJ41Go9HcanYViH/9r//1t2IdGo1Go9FsoWA7FGznlu3PMy0GHI/Xj4zyxuQgHzlznbvOXePjL16ic30Z+X0uyeEpDmbyjLoZyqFPKiVTmTwT3RbOze2u4263tdNOEHFXvGUiAOTRKqKSQVwZRI61YTtNFRlQ9mD9NpGApo10YigG0HQQLXUupJAIKTZUEPuSCKi7yFUTnXJGvZed3pQpjmuaVMOQThKTvUnhLqXkuyvznKmtMOZubIt1TbPbcipxDME3l29QsB2GHK//zjQajUZzy9ECUaPRaDTvK45kCzxbXkCYgqXHH2XmjsPc+9SrHFiswm/8LtE9Jwk++RFOD43x9aVZOknM3cWhbStmk5kcp/IlamaES1fMZrpOqcMdZCFANFzkSgZG+ufriislxLUS6UNzMNrdpu4hEMghH3m/MoWTLVu1rBoScXYU4ds7J3XUXFXRHPTBShA3ishyBsZb+z9xgC0MwjShGUc7CkQ/ialFIeN95iIbccT5RpUxN4vbpztpfRbiTLvJdKuhBaJGo9G8hegZRI1Go9G8rxj3siCUScqQ4zF15DAXf/RTdH74e0jzOezXL5L7//0nTjx7lh8cPsCjg+Mc2MGUxRCC00PjCGfNGVVmVQURocxqQInAbWkpsSXWt4NW1d/lwLqZv1wEh+sw0G0r7exyn3d1HyUfOaT2szqTeDOoOUdo7xIVcqFR5UtzVzlXL2/JZGxEIbFM+4rDzeQsi2vtxk2v93ZxoVHheuudty6NRqO5FezfFk6j0Wg0mncxw26GvOXQiqOuyYzHkVyReGic+ORRnKdewHnmZdzvPM/Bl88y+vgHiUsjO+4zZ9k4brj2QGadgBprI3MhoppBVjwY7GPystoq2ljXTlvtVtJKfbb34o2v2wbRzWNksLMWxbFN7MZekVLQjKNtn0+l5GKzRixTnlqeY8jxGFtXSazH4bamPZvJWTbl0KcehRRvYavxm+VKq45jmBzOFTY8/kp1mclMjlH3zZ1jjUajeTvRFUSNRqPRvK+wDYPDmTxZ09oqOhyb8PEP0fqrf5HonlMYrTaZP3yS7K/9Fua12R33a7rrVE9mnYASII9V1V+3qyL2BGJXFKZAzVNuqPlw6/Z2irRS9brtxJZvImoe0ougEIKXIDORmmMMb/7r3zYE1R2cTJeCDuWww4SXJYUtYnIl6GwwptkJxzCJ05Q5v8Wr1WUaUZ9z8RaTSEk58HsZjqvUooCXq0tcb+8tyzGRKc+uzON341WutGq8Wl1mOejfhqzRaDRvFVogajQajeZ9x6FcgSO5woacw/XIgQL+D38PrZ/6HMmBccyFZbL/6ffw/vsfIVaqfV+zYUwus6kFc7ypxNlKFpqbZvdi0TO3EYEFS1nEUwcRiaGqh9t9U3uR2ibeZoNupMUG45uhrvio7FDhkqhYjaT/zKVjmBsiQFZJpaQc+lxt1ZAITGEgkTQ3ibrl0MfbIVJjM5YheLW6wlMrcyy9ReIp7Rrp9BOkrTjCTxPaSUw1WjsPl5t1KmHA9VaDVO5eIq1HIRebNeb9NktBhycXZ3lyaYZrrd0F5oLf5k8XppnrtEilxE9irrRqRGmyvwPVaDSaPugWU41Go9G87ziULXAoW9h1u/TAOO2f/FGss5dwn3wa+8JVrEvXiR66m/CjjyLza62TjifoANKNwZTUogA/TZTLqQHyUB1xfhhxfQB5z/Lam2xqExWvjCFSAznYQd61sv3ivBiarppDtLcKGbGYA0COrRnSyEEfMVtEVDzkdkY1VwcwLg4jD1eRd5a3PJ0xTaphQC0KeoYyqZQ8X17k1doyCZKh7uOOMCivE1F+EtOIQgr7cEAdtD1WQh8QtHZobb2VNKKQc/UKUZrysdGpLc8lUiKRrIQ+i0GHZhRyqVVj1M1Q6Z6bwV2MdepRSCXymWk3yFo2iZQM2d6eRHA59Hm9XuZqq07BcpBIqlHAfQPDfHh4kjjd24ynRqPR9ENXEDUajUaj2QkhiO85Seuv/g8ET3wIbAvnhTPkfvk3cL7+DARKnDmr5pvd9tJ6FBGl6ZpJy1RDtYzO5VXUxCpdgSi7vaI9cfjonDKl2Y7MDnOILQsqGRVvsX6GcfXvdXfra0BVM6+V1N/n86rVdROeaRGmCa9W18TrmdoKL1UXGXJcDq3LrnRNk/K6dtR6FBKkCe4+KoiuaTKVyeEaBrVol8zHW0QlCvDTmPONCvOdjUK6EYdIKbGFwYV6haeW53ittkIniSnZDimS5WD7FtzZdpNEptSjkDiVXG83udSsUbRsXNOkEgYkss+JX0c1DChYFuNuBpAYwKSX5fVamd+dvcTv37j8lolpjUbz3kMLRI1Go9Fo9oJlEX7kEZr/448TfvBBSFPc7zxP7pd+A/uZl8llYyXyigGdJMYzTbKmveb4aacw1USkBuL88Nrs4KrAW2deI49Xdl2O7BrViPVibyEH0wXEuREVb3GktjF70YuVSG3Z6v2XMxvnEWeKiKjb7hpasJCHmQLEG9tNx7yMEk9+iyhNOFMvM2C7WzIiXcNULZndc9CMIwRi28iQnXAMg0qf1tZ+pFIy3W5scVDdK8tBB0sYCATnm9UNz5XDAMsQ5C2ba+0GBctmKpNjysshhMAWBrPbOK92kpjvlue50WmxFHQo2Q7tJKIWBeQtG88w8bsxIjuxEvq4hollGBS7WaGOYTLmZgiThFqksio1Go3mZtACUaPRaDSa/ZD1CP7MY7T+2l8iuv9OhB/g/el3eOB3f5fBka8jj5epRAHHcgNMZXIbLvblsQrSjRE3CtA1rBGrFcSxFtJKkMNtGNq+AgUqbL6aq6nXXxlEXBiC0EC8MoZxbhRRziKzIRypAqq181qroQRsNlIzj4tZjBcnEee6Dq1tC3F5EInsCVTjtTGMs6MwXdzw/k63AniuXmHeb9OM+7eNOoZJmKa0YiVW5jotDPYvDlf3papuO1fXABb9Nt9dmadykxXH2U6TrGlSsK0tZjRLQRvXsMhZNoezhS1GR0Xb4Xq7Sb3P/GItDFgOOky3GywHHTKmhSUMLCEwhMAyDFIpaUbbC8TV6qPTpwrrmiYlx0UiCfU8okajuUm0QNRoNBqN5iaQAwX8H/oU7Z/9MaJTR7EbLf7My2f43j/4JkenlzmWLXAgkydK11WxvAT58DzSSJWjaSLWKoj5EPmxaeRD87u+dyuJqWTrtB6YRloJ4mpJVf8QSDdG2gny7uXet3wjjrAMQ1WVum2rYrYr+lYykAjEK+PK9OZYFXm0ijTXRJHoY2oz7HhcbdV5o1HBEP2rgoYQgKQVR4Rpoipu9t7nD9ejxGZCuyu4EymJNonFIFGi6Hq7wY1Oi0W/ve/3accRtTAka9pkTZtmHPWE5oLfphGHeN35PruPG2vGtAjShEvN2pbnqlFAkCRcbTVoJzGeaTHhZZnwcr1tpJQ04u3dWptxtGubrgDCPQjptwspJYt+e09mPhqN5q1HC0SNRqPRaN4E6egQ/p/7fhb/hx9kdrTIQLXJD3/7dY7/1y9xcHYJA7lxpqwQwmgbkRoqk3A17N6LVRvqpm/mZhz2hM8q1TBk1M3QGWzAIeV6uRqhIe9aRj5xbUMVMkgTRt0M9ThE5rriY0WJPhGbiLMjiIaLLHVU9dCUyEfmSB9UYpaqtyVOwzVNYpky77coWjtnFLaSiAW/TTuJyK1vQ5XA5RLiW4egvvM+bMMgTteqa1daNZ5ZWRPTC36b379xmYvNKpdaNRzD4OoeHEFBtaSuVtwqYUAoE1zTxBCCFBVr8XJ1iT+4cYUoTXd1YS3ZDuca5V5r7doaOxS7baWxTPsKTFOIDe6om2nFEYlMd4kKEe/YCqKfxHxr+QZ/sjCtIz00mncoWiBqNBqNRnMLkIem+MKnHuZLjz/A0mABZ2GZsS/8CT/+1VcoXJ2DddUSOaIqW2IpC76lWj+9rTNjUkrKYUAlCphpN5nrtKhHIYZQIfJRmiInm2pfqYEUci3KYt0+kDDqZohTuVZBXNfqKeaUo6u8Y2XtyqAUqIiMkq8qi42tAm7I9mhF8UbRtwlTCGY7Ta616lsqjeL1UYxLQ4iOjbg8uNPp7b6AnvlKOfCZ71YIW3HEt5ZusBx0eHplnlYUMeFlWfA7u87zAVxu1fjW0g0A6nG4oQnWFQaXWjVeqiwxYDtMdmcNdyJv2bTiiEV/7WeRSsmC3yJrWpg7NNp6psmSv32LcSuOd23SVS2me68gRmlKJfR3Nce5FZyrV3i9XqYZh2vzuRqN5h2FjrnQaDQajeYW4BgGpmlwfqLEyuGP8Lm2gfPNZxlZXOEHv/4Ky69f58zDp1icHIaRthKFS1mITHCSvrdsO0lC1rL59PhhyqFPOfC51m5wMJNnwssy22lCLkIWAkTDVeLQ2ljqC1JVDburOMjFZpXA67DaMCqtFNHNUZQDPgxsbW2UJR9RzqpqpwDyYc/4JmtZHLF2jgsZdjJcbdVJUsmwuy76oW0hbhSQTlckLGWhbUF2B9EgoRVFDAmb5aBDO4noJDGXmzVWwg5HsgWWw4CsZeGZFsuhz6LfJp8f2HaXqZScq5epR6oyt9I1qFklZ9mqHRLZc2fdjVUB2VzXKtqIQlpJzKjjkbfszQXZHhnTohL5NKOQvL1VlNejYIO474eJ6LXi7sZsu8k3l2fxk4SPDE9yZ3GQRhSSt+ybMhPaiShNudCsUrIdGlGsnVbfwTSjkDm/DUhOFfZw80bznkILRI1Go9FobgGWYWALg3oSUHJc4oMHiU8dhXOXiJ98ipGlKo9/+VmWxwY589BJlgbGETUl1eRYm+l2g6xpbxBR7SRi1M0y7qk/AKe7VZeZdrMnE+TBOuLsaN9sw3YSM+R4DDoeU5k8s3ETD6lExlgTuZRDRCby0DbtmF13VXFhCHFBkD44ryqLe8Q2DA5m8kTpppbKhe7c3YEGUkiMy0MwXeybvbiKZRhUAp8Jx6MahfhpQitW7asZ00IIwai7MX9wNxGy6LeZ77QxDYNmFPUcQlfJmhb1KGTM3TqHueNxC2NDxMdK6BOna62h21cQLZYCn/PNKo8Mjm15fiX0cXZsL1XnaS/VuXYc8/TKPGGS4BgGr9aWKdg2T63M8+HhCQ5k8rvuYz/M+y2qUcABL4efJFTCnc2YNG8PldDnT+anqUYBjmEy6mYpOdtE42jek+gWU41Go9FobhEZ08JPk16APELA3Se5+uM/xO9/5C5qpTwjixUe//KzPH7j9xj3ryMPV5B3LSOE2BJN4Kcpk5nshsc80+r96XGgQfrhGZjaGq/QSWKmuhf6BzI5QiPptbPKgQB5oowcb8J4s/9BDQTKVKcracR2GYq7sHneTiyoNcmJJhzsZkTOFNdmMvvgGSY3Wk3qUaDm+6SkFoUsdR1BN2MiaCXbC8Q4TTnfqKpZQ5myEvo04mhDyLwQgslMbpeZv604hkm5G8vRSWJerCyR2WN4/aDj8np9ZUt7rKpw+lviRDZjCUF7h+Ne5ZXaEuXQZ9TNMGi7VMKAp1bmmW43qOyQ5bhfOonKlHyjUcHCwBACxzCphNub8WjeesI04XqrwZOLszSTkEPZPJFMON/YPXZH895CC0SNRqPRaG4RnmliCWNLK+KRfJHlEwf5r9//AZ56/CHqAzlGq8t8bOX3+dT5LzJ1bQ4h2VJWklIy6GysiK2iBJFQM4YCZX7T5/USGOlW1YYcZTYji4FqcS35cKiBfGBx+ysCUyIfnic93q3stW/OhXQDbUuZ4uRCNRPpJnCkpjIiXxtFPD8Bl0pbjHEKts1K4HO11SBFIoTBjU6TThL3FV/KubW/WYufxDy5OMO5RpkR10OiKlxBsrND6F7xTJN6HBKlCS9XlyiHHYa3+VluJm/ZdJKEy5syGOvdfMPdhKYpDNrxzhVEP4m52Kwx5LiI7mxoyXaohAFDttub77wVzLSbfG1hhqutBsOuusHgGgaNOHxL5h41e+M7S3P88fw16lHIhKtuTA3ZHucaFRp9Yls07120QNRoNBqN5haRNS0cwyRjbazw2IbJfQPDNJKI6aMT/PGPfJzvPPEwlaEiQyt1PvrkS/zUl57nniuLpN0qYpgm2IbBoN2/YpfpitFohwvsdhKTNe1ee+qg45G1bNon55GPzkF+jzNgQ37PLZXWmxSIkYF4rds6Od7qiVp5rIr0IkQ1gyhnVcvp9Y35i6ZQOYHzfgsB2EJQCQNSJKbYekljie1n8ZaCDldadQ5kcjiGOpcrgQ/IbjzHm8MxTIIkYcHvcKFRZcTN7Gumr2jZnKtXiNa5kdaicNtjXY8lBGGa7ii+Fv0OnTgmu64aWbAdDmZyau4y6GyJEdlM3H2PREqeWr7B9dbWCjaoc+0YBge75xq65ydNehmZm4nSlDcalbc9CmPRb/NiZek9L2TDNGHWbzLsuIx7a5/VrGURpemOzrqa9x5aIGo0Go1Gc4vIWBaOYWy46F7laK5I0XZpxBEIwezRCf7kzz7GN77nURZGSwzV23zmmTf4gd/+Jodfv8Jyq8Ww421rjOKZ6r12uoivRyGHs/neRbltGEx4WZqm35st3DN2irQSVUF8E9fs4pUxRM1DDvjIw9W1J0yJvG8ROdYivWNZtbWeH4bmxuMvdKtcljDwTJNOEm9r2mIJY0vb7ip+kmAIemLL6wqWWyVHTCGQSC41qwRJ0rcFdieKlkMtDpnprLX+VsLdDWpAVU5jmfZ1MlWiTjLdbmAJo69ozZgWnSSmtoMoiNKEry3O8Cfz07xUWeLF6hJz/tY2ZSklc36L7KabJpahxP52Ar4S+rxQWWS63ejtZ77T2vbnebt4o1Hh28s3+Pby3C0TiSuBMk96J0WRVMIAf9vPqdwStaN5b6MFokaj0Wg0twjPULOBWXOrqPNMizsLg9TXt2oJwcLBUX7v04/wx5/5APMHRim0fD70zDn+xz98jh+4WkaE/S+gDSHIWfaOcQaxlBzMbnQZncrkCHe50F0IOtzobDK8EUAuUvmN/g5iJzARTx1AXBzcKiQTAeUM0omRj8yBvWmDwQD54AIcqSOPVZUYWsxt2GTAcVjpzhy6hkk9CrfNJTSFsW0lbbMYdE2TRhxh71KdIwWq7p5FciUMdjWV6YcQAlcYvFGvqDZiVDVrtwxGUMcdpylhn4v65yoL/NHcVa61GxTt/jcfDCGQEub9NucblZ6Ia3Y/u6mUPFte4EqrzkynyXOVBVzD7NuW2oojGlHYV3hICc1tZiXbSUw58HmpusRsu8mfLk7zxbkrvFxZ2vX4UympRcGOJjjtONqSU7l1m5irrTpjbobz9cotabtdCXz+aP4qv3/jCn+6MH1LRGctCnij/ubmBMuhj5Ry2yq3/ybFbDUMeLa8QCJVpMrZ2krvc61556FdTDUajUajuUU4hknOtDaYnKznWK7Iy9UlNee2bptIpvgHxjh/7Ai//8Y5PnN5iUPXFnC/8Szyuy8TPXQP4aP3I4sbXSWLtkN1m4vgVhyRsUzG3I0mN7u5EUZpStIVnetdNwHIRlDzVJtpZpuL6xt5RNOFpguBibx3ee25poNAIIvBljiOLYy24dIQYiWLPF7tPWwaBkdzRSwEEvDTeItz6SqWIYjjlCBJyVobRVozDrHWXQwrsRkwvul8bWF6AOP8MOn9CzCxTkQnQhnsrGvbtYRgJfS3Xd9uDDkes50WS0GHQcdjJfT3ZHRjCkEqJUGfi/py4Peqh4OZXJ9Xr+4DXqws0oojJjN5Rl2PmXaTz0wcIUVyrl5hwsvgGCaJTIlTST0KacfxhmphJQqIZdqrYq9HCJhuN1gJfB4ZHMVet007jnAMkwW/zZfmr2EgKNku5xoVThZKjOzgKnuhWeWp5Tkcw+T7J49smeOVUvKNpVnqcciDpVFG3Ay5eOvPaM5v4ScJo26GejfX8s04uyYy5bnyAmGaMOFlmWk3udSscSpfelORIkt+h+cri4x6GTVn3Hs/SSrlFoOoftxoN7f9vWUK0YtsacXRnuNe1nO5VeP58iI50+Jqq86s3yJr2d2bOAnHd4ii0bz1aIGo0Wg0Gs0tImtZjHnbC4yS43IsV+RCs8rBdReaUZpSsFwGbIfO+DC1+x9kuJPgPP0i1pkLON99CfvZV4jvOUn4wQdJx0cAJRA3zyCGaYItDFZCn0eHxre09uUtR80ubo6d6LIc+BzNFWglMbUwZNj1epUFmeuGyLdtoLPltUgQc6piKe0EcaOIPFZdyzZsdHP9CnswvMiHKiOx6kJogBTgqWN1DFOtCTiVL227C0ustlomZDdd8jSjaEPeoSEEBzP5XVtBRVUJbLGcRa4TiOLsCGKuQPrBWRhQrZl5y6YahX3FEYGpqpBeV8SlqGM014SzZRgI4EKjyslCiU4SU7J3EbC9BbGl/VhKSSOOGHU98tbWjMX1jLoZ/DRhxPFYCDosB21SqQTf6nJXj8sUBoahBGk9CjZ85qphoI6rDwO2w+VmDQkczw8wuk701aIQ2xCMOFnEulbgehzyanWFT44f3HbtK34HKSXtJKIaBT2BmEo1X7oYdJjttPAMk28uzSIQlKoe+dTivoFhBmyXZhTyRqOC2/03kjNNrrfrPFQauWkxd6PTYrrTYNLLYgpB0bZ5rrzAa7UVDmbyfHB44qb224gj5v0Wr9fKfGx0qvf4hUaFRb/NJ8a2P1eg2oUXgk7f1nhQ/44a3ZzQry3OcHpwjMkdbi5s3X/KxUYVSwheqC6pmwimyVPLc7SSmDE3+54TiKmULPsdhrm1UTFvFVogajQajUZziziQye9aYXhocJSloMOC32HcUxfEKZK8rTIQT+VLHMrmSXMG/g99CvHEh7Cffw3nhTPYr53Hfu088dGDhB96kNHxEpYwWPTbjHlZOknMot8hRTLqZrinOLTl/bOm1Zu3a8URlSjkWE6JOj+JQcA9xWGqUcCTi7O0khjbEEx6OeU4CojWNkHvTQfRcpD5QImk2SK0nJ5AFE0lSuReBKIARjqIGwX41mFIBXx8mv1cbxlCVRn7zXo1k2iLQO5VRkIDYmNN2G46RgAqyhEWAfgmzKuFicUssicQnW2FmHhhUlVYP34d8coYLCvhJx+d2zAfOui4XGrWmO00MYRQBjornqrg9lvf6v4RWyqIQZoQpgnFXcQhKHGa756fie5Nj9lOi0o3umOzRFoVTdUoYGKdeLjht/DM/hWsvGWTt2xmOk1acbRBIFYiX5kHbfoZDdous34DP4m3jftYDlUUSCeJWfZ9juWU+HiuvICfxBhCTXKuzxy1HIsb1QYz7SamEMQyxUD0/o3mLJtyGNCII4r27uevHyqbUvTE7oDtshL4NKKQS2mNhzdVUfdKJexQtBwuNqvcOzDUE8Qz7SaznRYPReG2a27HES9UlmhEIaVs/39ctmHQjENaccxy0OFau74vgTjvt6jHIQcyOZa7FXXPMFkKOhvcbHczX3qr2e+awjThmZUFHh0aoxIGPFdd5OTk8G1c4e1DC0SNRqPRaN5CBmyXT4we4A/nrq61mkoVizBguxsqAAAynyN8/EOEH3kE+5VzOM++jHV1BuvqDHeODjH00F387pBNM45oxREn8gOMeVmGHa/vBbQhBCVHXZj6aYLbNbpZraw8XBpjoutkOeS4DDkeV9tdB9Nst32yveliMxFq5nClK3ImmyC6IqJlw2h3u9UKYn5vlvlyuI24UUAk6iJNNhwY2f/M1uY5zURK2nHcqw5tRrw0AQ0H+ZGZjSIsEb2YD+HbyLYFqaHWuFolW8nCqV3mwUJjTSxfG0Asr7vYXskg1wnEjGlRi0LCNGHSy0LdwXhhCikkHKgjC6Gq2iZCzXU66lglcosw9pOEaHPb8D7wDLPnINtvFtIWBsvBWmXZT2KWgvbuLYlStS6ukkpJPexfefUMk5XQpxoGTGS2fr7DNKEeh+S6n/0bfhMYpxoGnK1X8NMIUxgbIkeEEHiWxbiXJU4TUqnaKte72TqGSSxTloPOTQvEThxvmV1drdDPdlosBju3sCYyZdHvbBFnlVAJwHocUg5VxTRMExaCNo04ZKbd4J6B/kLl+coiZ+tlJjPZbd17baHiYupRSJAkXG7Weag0umse5ypXW3VMlCHS+psAY16WOE1ZCn1acbzjea1FAQt+m5P50i1xGd6Neb/FS5UlPjV+qPc5rIQ+RdvF3Ob9F/w2F5pVxr0s5bBDMwp5t45ZaoGo0Wg0Gs1bzJiXZcLLshx0cE11wZQxdvlKdmyiR+8neuRerPNXcL77EuaNRSa+8h1+OuPy4vFxXjkxyZGRKU4VSjvuasjxmOu0kEjVThdHhGnCwWyehwaVmivYDj84dYxUSmY6TcI0wcmCNFNVPWtZkIshBfHyOGJVHFoJTDZ7YlC0HHVNLIGmizTSNaHZpRoG2MbW/EhG2siij6h3L+bbNrB/u/3NQilME2KZku93ziMDUeu+3/lh5EMLa891ZyhXEc9PIQK1Dykk2InKdwxMle24HY21C2FxeVC9fqyJWMyvVSjXMbG+bbnebXGVAmYGNlbyXp5ADrfV+S22tjhP+kmMhG0vcHcja1mshD4C+s5CZkyLeb/da19eCX38JGHY3nkG0zKMDYYy7SQmSJMt7dGgxJxAmapMbBJKqZQ0ooggSRiyXQwEtSikHUecb1SIZMKhTKGbJdn/35spDMxtTo+JYDFo33Q7ZCNWbbP9jskQghvtJs0owjUMjvZ5jxudFl9fmuUDg+PcWVSfGz+JaScRBcvGQFAOfE7kByiHPp0kZshRc5sSGHa8DecslZL5TpuS7fZvg+5iGQZRHLMSdjCFoBVHzPmtXmV2J9pxxNVWnZLTX/ytd7PdTiBea9X55vINgkRVvzcfQ/NNVHW3Y6HT5lKzxuFsgXsGhpluN/j28g0+PDzJ0Vyx72vmOi1qUcDr9TLtOOLdHIzyzqrlajQajUbzPuFIroifJiRSVe/2ejcewyC+6wTtn/oc7Z/8EaI7juF0Aj585jo/+8VnuPNPvosxO89Ot64HbJeo20I37Ho044hIptw/MLKh7TLXbQEcsB0VvG6ovEIhBeKCqkiIi10jmXxI+pFp5CeuK3HUbUft5Sb6FiI21PzhavahlNzwW6RAOewj/CyJ/NAN0gfm1f+3b+a+dr9KWqwqaf3ax6prJj5iKafaOVfpCjvZrYCKwFKOrNkQjlVhrDuTuNLfQEWcH0K8MNETeUCv8ihPdKuOfQTihn10z2d6xzLpPUvIw1XSB+aVkK56GJeGEK+NYQlBa5NLZyeNeTMZJZ5h4icxfpL0/bzmLZtKGHCtW3Fe9DuA2HVmzzUMKmFInKa8Ua9QjwIlMrdp73MMc4vL7vWWuoBvxCESVSl3TZMwTThbr3CmXmbY8Xruvzd1/KbVPaabQwnE7dttLzZrPLk4w+VWve82C36bWhjw1MocN7rxJ+0kVjdvDBPPNFkIlNNqOfBBQsl2KQc+31q+wdeWZjYE3jfjiFYS7Tp3awuDWCYsBR2EENiGwXR7a6RJP250jX52e4/Nn9X1XGhUSdIUIZQB0Xrm/RZ/NHeVV6vLJLeoXCel5FrXyOnl2jIvVBZ5cnGGJd9n3m/1fU0iU661G0y4WZaDdm9W992KFogajUaj0bwNjLlZDASdJMY2VKbfvhCC5OAk/ue/j8b/+Bd59e4jxJZJ7txlcr/+BbK/9ltYr74B8dZKVs6ySaQkZ9kczw2QSMmQ4zHVZ65ICMGBTL47PwUcrqlA+6UclD2YyyOFRD48pxw8V01WvFhVC1vd3MT61vbSVhKRMSyeGDtA1rJobpOJt9bauocLewnipXHEa6O9h/xNlbTVylq/VjVRVYJQlpQQWDXdgXUzlAdr6pjNFHl6DvnRGeSJCnK4+5rlPkYyEpgpIlayiBlVeZFW0n0vH/IR0ouUE2qyg6Bqdc/jkA8HGsg7yzDeRj60oNblxAgpsGOLzqYIic3nYb8IIUCqCIx+506JL4tXqstEacJ0u0FuD59rxzBpxCFzfounV+Z4vVZGCLYVljnTYiFoE60T/q0k4nKzzvVWY8v2r1SX8Axz31mUm/FMk3oc3nR+YTPaPkYlb9ldsWayHPikm8ROKiXX2w2GHQ8BvFRdIpWy25qrKpAZ06IaBYRpwo1OC9c0lflSNs+RbIFWFPF8ZbG371rXYXY3l1PRneVtdKubWdNi0W9vWWM/LjZqe/rd1oz6t51Hacpi0CFv2QzZLpeb9Q1RQY04ohz6fHdlnqvbCOv9srrPyUwWP455sbKIa5iMexmm282+0SQrgU89CijaDo5h7SmO5p2MFogajUaj0bwNDDouJcdl0fc5livivokLCjFYovHEB3npL38W//sfJxkdwpxfIvPFr5L7v38d5+vPIBprd/xzlsoQHHU9xrwsg47L3YWhbQ0ZRr0MsUyZ7TSpJJ1etUucGUWEFgx11tw4e4sCshEiNlXb5qoJS2mtlbAeRRzPF5nK5LkjP6gcL/uxOgfY2YNArLuIpZwSdh0TSxi0NwulNGHbStqqQDxZQSLXzGhgrbo36Cth+IHZDbEWDHeU6FvMKeOa9TSd3iyl6OZIrp5HeaB7YZsPVQvrTlXElq3WtalNFzdB3r3Sc4h1YodWvLEq046jDS2yN0PWMne84B+0XZYDnz9dmKYS+nuq1rld06RLzRrNOOKG39pxditjWvhJsqGK2ElUC+RK2MFZJyxHnQwlx2Vwl3iXveAaJkGS0IgiptsNLjWqfbeL0mSLUA2ShCBNthVjqy66JcelnURrN2S61KKAahiQt2xGXI8b7RYzbWXus5onuFrhnW43udFpkd907se9LJebNWrd6tZODrObEQjCNMHtCu3VmeedqIUB836LgV3aP20htq241aKg1xLsmRZhmnClVes9Xw9DXMPENU3ON9YyQyuh3xOM1TBgflPFecFvc6PT7JuFuRx0iFMVzTKZyXEgk6doO+Qsm3oUMt9p882lWZ5anmOhm42pWvbVz3HU9W7J5+3tRAtEjUaj0WjeBgwhuLs4xMdHp/jIyNSbykEDuL80wj0j40QP3UP7Z3+M9l/6LNGdxxCdAPc7z5P7f34D73e+jHltlrxpkTEtxtwsGdPig8PjHMv3n6sBNbNYsl2mMnklOiaaqlLlqwtQOd6/7arXZtp0YCmn5vRG1QWVlJIUycGMqtCdKAxgGQadfq1mpkS6MXQsZIqae7w4uLHldC4HMwXE3DqTj+UcphCqPXYdm2fzeqRA3VUir+RDIVTH2LIRFwah6q3NUA76UNh0gWxKOFhXLbjTm+azahsvGKUbw+E66cevwVRXvK9WV7cTiIkA31IOpuY2CspRx2bF1pZzqaIj3tyl35DjMbJDrqMQgikvy7zfJpZy62xbZKhIkFfGesJ7dQ5twW/3TExyfeYP17+Haxg8uTTTE2ntWLVKzvmtDe2vrvnmK4errLriNuKQs/Uyz1YW+35ep9tNnq0sbIgZ8dOYeA+ZhCpXUm5oBQUVP5NIiWUYmMLAMQxerC4y77d7M6Wrv0PO1cuEcmtbp909z6tOtIt+G3cbh9nNSCR+11TLNgziNKW2aY2vVJc4U1vp/X89Dkn6fQY24ZrmhhlU6M5WxjHVKEAiexXrAdtRZkPd874SdnANk5LtMtdp9VrVX60u83xZVUsvNKo8tTLfq/xVw4CvLFznizeu8EZ9q6HUjU4Tq8+sqCkEEskLVWXs81ptme8szxGmCRebNfLmzbUuvxPRJjUajUaj0bxN3N0nhuKWIATJkQMkRw4gag3sF87gvPQ69tlL2Gcv4Q0N8NiJKbxH1BzhbmYTA7bLD0weZTn0me201Czi4Tri4pASfWM7C0QxU0REpjJQsdVFWjOOKFhOLzdyyPG4pzjEy9Vlxr0M7TimtP4ufCZSM39tExZyiCuDEFjIe5dgMYvx2jjQNYtZPQ1LWaxxY0s1ppPEyNXKSQpcKcFYW7mxpgZyqKUqoEMdaLiIFyeUa6mQyJOVHW+vy0N1uFaCmQIcq4Cl1rNqfCOttDuL2a2YrKu8yrzKmRTNbWJEWjYCgcztULnpCkQzsolkuiHvshlv3+J4K7EMY6OxziqBiXhmau3GwqmyEruokdlmHDLp5SiK3Q1HRtwMy0GHM/UyJwol5YJpOZhCbKmc3WoW/DYLfptGHHGhUeWB0siG5y+3atTCgFYc9T7DfpLsOTZBosTVJGst3/N+C2eduBxxMywGHZY25RcaCBb8NiNOfxFvCMFS0OZIrsBi0NmzeDa6sSm9z49Q1b2D3dyZOE15o1EllZJThRKOYdKMI1Xt3gXHMGmtm6VsxhFfW5juZkU6mOuq3gXLZqbT4nq7wYl8iWoY9ERriuRqq44h4HKrTiol5dDnervBctBhrtPmYDbPcthRMSmGSXVT5VK1Rje3jafJmhaz7RYHMzkMIZjz27xcXaYS+Ux5e4/+eKejBaJGo9FoNO9h5ECB8JMfJvzYo1hnL+K89Drm7AL3lWvIF94gvvME0SP3kBychB2qmHnb6bVmSikRB+rI6SKsE31b3jvXFTwL6iJSdoVkIlMqUcBDpdENFZX7Boa52qqzHPg4psly0GFk1RY/G0E1g2xa0OxWJJo2dCzEmTG1fyERUighWnehnMFKzS1VnuZ6N8kbBYzLQ8iGq14HUFSVETnYQVwrKXFoJcgPz/YEzbZ4CYy2EYs5ZN1Vs4LQqyDK42XE+ZENrbZrJ3mXCuKq4U92+5gQ6SQIwIos4jTtzqM1ibtujxuiPSSwlFXtvxLkXSvbVyZvAWK62BPaQgp1PN3zqX4cYl8RBqutjomUtJMIyxAM2Le3tc8Rgnm/RZAmjDoeZ2ornCqUekKrEYXMtltEMqUVR3imybzf7kqcvR2bCVsqaiuhv6EN3RCCCS+Ln8QbKnQl26G9Q0ZkzrKY7bQ44ndoJzETdn9DJQAioW5wCHAMgzCOelVKp5u/mjFMEtQMZS0KkN1ZyZP5ErUo2CDutsMxTMphQC0KKVoOX1+cYd5vK5fl2N3gZiu6c66v18qMu1n8NGG4e0Ng0HZ5qbrEnN8k7lZvLzarah3C4FKzysFsntl2C1sYOIa5pbV1OfBpJREH7P5ib8jxGLTd3nkwhWCm3UDs87P7TkcLRI1Go9Fo3g/YFvEDdxE/cBfG4gr2i69jnzmP/foF7NcvkAwPEj18D9F9d0Km/0V21rRxDJMwTXEdgfz49Z2vecdayIkGYr6gWjPHWt3MtzZHcwPcv6nykrVsnhg7iBCCJE358sJ1mnFI3nKQ2RgBpC1zLSai5ahqYmwgD9WU6Do3gjxSQ8zlEXMF3Gqe6mBlQ7B6fdVNUqrqJgANB+F1q1mrQm3QXxOd66pduyELAWIxpwTQkK/aKlsOMhOpttJiAAN9Zq5yUTdGJKNmGDfNdYquQc1eKohGaJFI2Z3ZqnOxWcUWJvn1rZvzeYzXxtbWnY/AShFVF3nP8l71zN6QwI2u4c9UA2aLXdMhZezTt+K4CyrAPaaTxHSSZNtcy1uJZ1q04hgDQcF2mG43mWk3e9EyN/wWYZpgCoNmEhF0Ep4rL6hojD26bHqmucEtNUwTmnHUy3bcvJ71ZC2b7A4V1KxpsxL6vFhdwhCif0VzKYO4NKQiWw7WkHev9NrMV8l0jYKudcXRkWwBgcAzTc7WyhzPDVAO/D0Z1Jjd6JIXK0sM2A6znSYHM3mCNGHOb3EoU9iw/YDtMue3uNiqEa+rkOcsG9swmPfbjLge9ShkoWumM+pmuNKqc6rT5EanSd6yMbqRHeur7PN+m92cd9c/N+S4XG01ONDH4OvdjBaIGo1Go9G8z0jHhgk+83GCT35YVRVffB1zbhHzT76N++TTxHedIHro7i1VxYxpkjGUUYRrmtsKiDBNaMUxg46LvH8JeayqzDCcFD9R+XYfH53q2942tk4o3Fsc4qXqsmr36pqyyKa1lrGYGMoQhm51cshHTrS62zmIObB9h6B7ge2ZVi8rzzEMqLmIRjdX0LeRq3OCua5AtCQcqSJDCw5sdcfcltXW2tUMyKXuMQ0E6pwNbmPGYwCHaoirg3CthLxzZePzra1OsFvoCkQRmUgkQZpQiwIEEKQxtui2Hvom4twwEok8WVZxJZdLEBuqjfVAA0q30Kp/JaNahIfayOE2YraIaK+10t5M9cUWBpFUx5fIFEvc/stazzS52mow2f2cZk2Lc40yJ/Iqk/JSo0rGVDdRGt2g9Dm/Tc6ydyrQb3oPi3Lo8+zKAqcKJfVz7GY7vllW5wfnOq0NofU9VjKIlyfUTRGkEvJHahjZeMPPKGNaXG03GHJcgiTlcqtG0bLJWhYLfofloEM1CvdsvjXuZbjaqmMKwZib6bmyHu/T/m6uy43c/EvIMUwOZlTHQiqVu6hjGOr3VQTfWZ6nlUSU7BwpkmqU0k4iBgyXVKoW1X5CfDscw+R4roj1FtyceCvRAlGj0Wg0mvcrjk384N3ED96NsbCM/eIZ7DMXsF87j/3aedLBAaL77yS6/05kMY8QgpLjsuC3KOyw2+XAxzVN5vwWE24Wsc7p00/UrNheZp/GvRySJdXSmldiJZnzeuH0sDbb15vp6x3bmlBCKmORETfTy/EbTLOIN9QMpjRSRGog6p6aYVznECpPbTWxWAjamIi19tfNrArMlqPm7s533+fg7jb88kgNrg+oGcajVZUpuUrdURftexCIhKq5rx3HSqzb3sZWvUuDiNhEHqnCsRo0XcT8OoOfmndrBGJoIJ6d6kWUyKnGmnnRXmJLdkDFbkA9Coml7GsscqtxDJOpTJZc15Ck5DjM+20WgzaOYar5PzdDPQp7YfWeYVAO/T3PfyqX1phnywvEMuVgNr/BqOXN4pomIDYa5jRtxIUhWMkipCC9ewlCE+PSEFwtqYryOizD4HiuiCEEqZTUIuWwKoQgQeUIBmlCcY/zoKYwGHU94jTdUybsoO1SDoMdRXfGNFkKU4YdJebH3QwznZaqWAqBiVp7O44ZsF0W/DaV0Gdsu3/X2/BeE4egXUw1Go1Go9EA6fgIwfc9TvNv/GUVlXFgAqNSw/3GM+T+7/9I5r98Eev1i4yYFsEOOXBp1530kcExMqZFI96axTfm7e0CbMT18ExTzT7mYmQ+RLa3XjzKbAj2pva9dUIJoezwQQVyx7HEfe6QEoRFHw6tE265aNeroyhNu/OYG5npNFVGWzZSQrN70S0iE3moppxPd8NJ4VBdCdbpdc6yoaHMXXJRz/im/+vXHTf0cvHWG5yQAos5pJEij3ejNo5X1Jzlav5jdR/VqtBQLrL9lrWSRbQdsFLkUFuZAWViJXRbO4gHybZJJOsRQqgKYro3A5h903C25FLmLWfdDJqBIQSvVJa51mqQdJ1Kna4orIUh416WWhR2hdneGOy6xU63mxty/24Fo26G0U1OtOLSIGI5B1ZKeucyHGzAoZpy9L1RUD/jTawKVkMIBh2vd048w2Smmxe4H/GUMS0Ku0RirN/WT+MNBj2bEUK1vq6edyEEBzO5XvV3lXYS04hCvr18A0uI96Tg2y+6gqjRaDQajWYNxyZ66B6ih+5BrFSwX30D+9XzWFemsa5M85jrUDw0zNJdx6gOF7cY2zTjiAHb5VS+xFynxWynueH5BHXxuxc802LCzTHdbrCCz8RYHaep5hblgL9WPew3z7dOKLmGyUqohE8rjrBb3XbHUgd5eg6WcmuNarmdL8ZTKRHdNMH1rpTtOMIxTOpRRNFWLbGi5SDn80p4nSxvPA9SVVkOZnJYwmAp6BBJSdGyKR6qwbUBmCnC8a5rar0r2Iq7VPXWHbeUgmoYbL1QL2dU9XC0tSY2cxHyiWtKDD15VFUQJdvPIXYsxGwBOdlEvDaKqHukxgJsijwRq+Y8dy3D5LrnvFhFdiRiqzGOBPHUQXBj5CPzO85CSqQSULejeLjiYbwwhSz6ah3bmDGNuRmuthtUoqCX+6iiG0IimeCZmV61bT/kuu2aM53mnsxebhoJVDLKpfdj19c+E7aEoQ5iMY/s2ODsraJcsGwa8a0Vtf04kt2pj6E/m2cLJZJWFPJsq041DDmYfW/NEt4sWiJrNBqNRqPpixweJHziw7R+/ido//kfILrrOGYU89DFOT79xe/w6d/7NqfOXMHtBKRSXahXwoCTeZVpOOR4hOnGi2oBFLexkO/HoWyBUKaUbJfGcHVtbeNrwlP2E012VyhFJp5hshwoh8VOEmOG3fvjxUBdCa1r2ZT5ECklV1r1vhl3QXf+MmfZG/IVy1HIuJsBoVxeV4WmkEJVzTZV/fwkxjVM6lFIIw7JWBZ3FQaV2MkkMNZS7bGrbZ9dgSiLAbUo4GqrTjn0e0Y0i35b5e4ZqKpPaGIIlb/Xi/TomKpS1K1Mys3xJAK1znyo2nh9q38VLzQQz08irgwivnMQUVdCvW/VsdoV8ZvbVXORktmdPrUK30K0HEQ5q44/MBFnhxHPTEFnYxXOEoIgSbuS/dYiuqY6ou4hnp9Uldc+mMJgxPGohIG6OUB3PnJdlbknDq8OIJ4+oHIgmzu3X5rCIJXqpsuO1cfQ2FO1dVtatvqsDQRbq9OrRkn+3qufnqkyOI31P5OGs1aFjN7kem8hjjCY6bS41qoz5u3txtX7AV1B1Gg0Go1GszOGQXLyCMnJI7QaDS489TT3XJ5nuNLgoWfP8cBzb3BtvMS145NUjx/sGUuodrG1K8EwTbCE2HMbGcChbJ4nxg5Sj0Jei5cRpZC0asNYG3lRzQ72raqtryCaJpUwoJXE1KIAO+jOw63O92Wi3hwiuZBOkpC3bJYCn0OZ3Iaqg5/EDFgug47DxWZVtazKFAPBg6VRVsKAdhKTX+c0Kic2VlHVfhKGHJeV0MdPUk4PjTLsZDhXV5VGeaiOWMwjrg+oKt26CmI7jjlVKFENlUujIQSDXWfHA5kcpp1gdBys1CBO1+VCXishptXPRgoJo+3+J73kq/zH7x4AUyLvXVRCz0rhcB3x6hiiYyNzIbRspJkqw6D6JoGYCGg6SCdWFcP1ZCNYAcoZcOONLcLrZhPFuWFIVT4lABeHkfcv9p63hUksk7W8vVggLg9Cx0YWAjhe3Xp8NRdxtYQ8UIeRztbnu/thMadcZbORcvSsu9vOZWYti6PWWkVLCEEs043h6VVXtRwjoOFCw0F+ZGbHco1tCBpRSGG7Wb6Ohfj2IZhsqkzQm6HSbfke3HoupKvcgwn2JxkGbXdtxrFpq89SLkTesYJ4aQJG2sgHFlUrtJPcngrwHnAMk3ockHb/rlFogajRaDQajWbP5AoF0g88yK+dmOT+TsLRi7McuHKDY/MVjs1XkM+eJz51jOi+U+QmhzYUCoIkIWvaO84NbSZr2dxZGOR8o0Iqwf1Qhc5KqiInBn1k04FCn3a2dZU0xzCJZEozVsYhTtx1RnTj3rbkQ6h7UAhpJxHDboZGFFKLwl7YOShhdyzvMeJkeLG6zIFMjnuKQwBMZHJMZXJca9XJdTMgpZ1suPBeCXxKjnJWnXLyVKOQhJQDmTyWYSC6ph/GoI/MB0qY1Fyou0rUFUKSQHIwU+Dx0QHq3Va+rGnx1cVpZtstxq0IDwcnsfGTeM28pbNOZEw1ts+vLPmI6QFVVYpAPD/Vey4dbiPKWaQXIT80qyqAZgpPH1ICMWVN8NRd5Ya56t66/j2yEQIw3hhBXiup1sbVbbpzplJI1QprpspMZy6PmM8jD9d6bcW2YRCkydruF/KIayUAxGKO9GBdzXWuQ7wxjKh5KqsyH0AhJBpOoZRApivsl3KI1EBONpD5ULndrmT2ZdxzKFtY034piNdHEQjSO5cRS1lVIT0/jMxGMNHcsk5Q+YLT7ea2wffUuuf4Rh6OVGHVECoRiMsl5MHGrvEsoqL2LfvNyHb/jYjAQi5kVUbn8equgm79TSAxV1CV9KYLL06qvy/m4QVDfZaOV5AntppBvRW4psl0u8mhbH73jd9HaIGo0Wg0Go1mX9xdHOJCo8o1S7Lygbv40n2H+bHEY/j8Naw3LveyFY9nPD51cJj5Uwepjw7ipwkHMvmbcmPMmTYIMHIJyEAFuz+4oATJphm2VErKoc+okyDaDjIRKoav06IRReTCrlBa5xAq71pGthzIxgSdhMOZPFbO4FtLNzYIxBTJoO0x7HocyuR5bGRyQzTHwUyeC42qEq9WosRMVyWEaUI9Dumab3IkW6ARhcQyZdjNkMoU1zQJ0oSMaSEP15WoODeiLtDzAZgSIVTm22ob7yqfHDtEPQp59o0EGmBFNk2ntWZQ020TTB+/2leM9BhrkZ5aUcK74SAuDoGZImITMdMV14O+Ou+rgqQYIMoZZMuGQvex1fnDgT7CY7SFnM9Dy0H4FtI3VWstIFYdT+9aRlopDHeUmM1GiLOjiCsl5EMLgBKItSjE6s6Cim4EirQSRGyqyudYW4W+z+chEyNqHtKLwJCIpgtNl2gOEEXEeEv9cJbVz1RONJVIujCsxMyJ6vbnbRPm+s95zVUzqaUOHKojhzvwVEYJcVQsy2anUFA/5+P5HWIUuudKIODSIPLBbnV1tqDiUtqO+neyHbGASte9t9Tn57SuxVQsDCM6NulwZ+9CWQJzyoUVoVquZdFXNw/K3X83ZQ9O7G13t5qMaXE4m9+Tc+qurBpoZWKc18fBieDhN7/btwMtEDUajUaj0eyLjGnxwMAw31yeI0UynMmSnTqGf+dJ+MwnsC5cxT5zHvPyNA9emOXBC7M0CllePTxC/sF7b+o9s5alqi/rw8ZNCX26wupRSCuOGbJjLBwITYZtl1eqywgExVWBuL7tcSBUf1DXtIOOh2daGEJsMKORQMG2GXQ8fnDq2MaoAFTgu2eatM2A7BPXNjzXjmOGHU/lEgpB0Xa4szBIisQUAlOYFC2HVhyqGJCJJvLCUC+rUR6sk3RNcnLW1ku4jGmRMS0MV2U2WrFNJ4nJW90WQt9CGum2lcMeBnC0pv4+3FEid6aIeGMEbqhKy5a5z2Kg2kXrXk8giuoOJkKZBPnBG4jXRmGuAG0HMt1K62qLaTGA4rrq8FQD+cYwVNYMdGxh0OlGpwCqwtXdluslJQbH2og3RhBzhV4rqjxaU0ItMBFNF7udI7qY60V9SCNVzrPDak3SiZXgjcRWx9y94HePqdStpuYi5D1L6pzN51VW5jamQDu1PvbENFKZyfgr4CW9qiBLWQjMjXEpqzRtxAuTiFDlU24xC4K1Knvb7s2LihsF5F4FYnld/uV4C+bzqkV4MauqtCtZNeu6G6tLuw2tqFvEoQRmC+oGSb/Pbj9SVJyLFMj7F7HnB5ADrd1f9w5FC0SNRqPRaDT75khugBeqS1TCgAdLo2tzeo5NfO8p4ntPIVptzn/3WaYuzjCxUuexM9fhzHWSsWHiu04Q3X0COVTa0/tlTRvHMAgSdaGbStmLFFhFxTmYNJOIyUyOyIrUhU5oks3YNOOIehwysTpP1eeiOUjUPgYdF9e0yHfNaPKWTbVbqSp0xchmcQiQtx1OFUq8VitvyB0E6CQxB7J5mnGEY6r9bM5SHHUzlLuOq5hStd5dKSHvXIHxFmGS4Jgm+R3y5SxXCUA7sugkiQorj4Vq18zehOOnQe9CWcRdsbJJIMqij0C5lsoDDVXZrWSUIN10kS2lpB6HStR1W01p2z0x1muFzWyMSFldh6hkeq3FVrfF1Da6xidNR7lxTjUR10tQdVVlZ15VsQRCzRVOKhGNm4DXwcmnRBNl0qqjhFIh3CikhztKYFYyqiK5X7rVW+muuykx1VTrDCxVfV2d88yFW+cSUxAvTKoIlbuX17Xjds/VSEdVPWsuuO3eXGGv/fRQfYsBjbhWUuJtrKn22Y/VfyMNd80IaCEHd670F5SbEHNdwT3ZVMd7sHveDzWQhxrwzUPbu9lCrwIpLg5BPkQ+vLOr7S2h7mKcHUU6MfJj02pdVwcQVU+J237rrHqIVfOr10YBCEYbwPBtXuztQQtEjUaj0Wg0+yZrWdxVHOS1apmpTH9reJnLUnnwTr51dITRdsA90yvcN1vGXFzBXFzB/cYzJOMjxHefILrrBHJwYNv3c02TrGURJAk2sBx08NOEw12r+2oYUI9DHMPEQHAgm+eq3b0Y77onjnlZhtIUAkvNJ3Yv9KSUxF2x2U4iSrZLtivApjI5Ljar1OOIgm3zkcGJHcUZwMl8ibO1ck+wrpJIOJYbIEgTpKSvM+Wg424wluFQHbkupzFIEgqWjb1DVcnxIATM2OZUfkCJp9X2t81mMXulEKiZQCl6s5AbWBWBK1klDusuIjaQwxsrU2GaMO+3sQ0TQUSxa+YjWjYyBaSAtq1mN/tV6gZ9JX4qXm8Nx7NFnBslJR4jU7Xi5kP1M667iMuDKvz9RBmZiVTbZL8sSSeF0f6mNXJICURRySBvQiAKf/vzL8daiHIG8fI4IjJVSP2qkFql6iEqGXXsZoq8s6zEU8tW1c7RFmI5i6i7ar4zMpFehPBtjIvDcHGY9K4lOLRuv6vOuHetbN9ybEqknah51NVjiU3kcnZLpMkWYgELKm+TzY65q2TVGmXHWmtXXs9cHuPMmPp7YKl53NXqpQTx+ggyH8Hh2i0TjqLbXixCC66WkGaKcUEJPVn2+n5GxNLa70ARWkghCcbqW7Z7t6AFokaj0Wg0mpviVH4QJJTs7UPVBxyXQKbMeDZHP/Iw7dIIxnIZ6+wlrLOXMBeWMReWcZ/8LsnE6JpYLBW37Ktku1SSCBuTUKYYQiClJEgTWknMo0PjvFJdZszLcndhkGtOt00yXLu4tVITkRjKgbPLYtChncQcyxXxk4QT+bWZwolMjleqyxQdl8+MH2HA2f5YVxlxM4x7OSqhz7DbnfuTEoRk0HE5mSvRTvpcDAOFdSHs/QjShIPOzoYabkYQAiI016qcq1VTb2vVNEpT/CQma9kb5+bWYwCFQLWQ5sOtVRQvQY60EMs55Gyhd87l0MaL6aXA567iEJ04ZiloQ7b7c2jZiKcPQmIoEZrtf37kYAfBIKLiIQ+rC3BnpYBxbnRto3y3SjoQqBbGuYISi4dqN9ceCmsV0+beHXg3EOwg0EdbcG6kJ8JE1VurtHURK2ufSXG9hBzyYcBXYi0frK2v4a5V/SabyLatzHUSA3F+WL0uF3UdZm2kF/dvP12PG0O0+vNUJkViOaNaRndicc3op68gB7WWMqoS2kcgroo1OdZCLOYQ00VkqevWWncQN4pqhnM5o+ZS91DV3JVlVX2VSHVzYf16VrLIzQJRolp5AZkNEW2HZLilbnK8S9ECUaPRaDQazU1RtB1OD43vuM3RbJEPDY1zuVlnqusUmI4MEX58iPBjj/bEon32Iub8Eub8Eu7XniaZHCO66zjxncd7lcVBx2XB91kdPLSFcicthwF3F4d4ZHCMESeDKQRZy6aQNdXo0jqB2LtQ77b6pVISpSmOYZJISQIbROCw41FyPB4ojexJHK4y6maY99cuoP1EGc8M2A7DjrdtDNyA7WAbaq4u08c4I0pTBrdztOzieYIGbDzubSpY5dDHTxI802LR7zCZydKOIzKmtVWoDnQFYr9YEUCeqCCWc4grg2sxI8NrF9OJKhFyZ2GQmU6D2U4TsrGaC6xklLvlKtsIRAZUJZNKZm1mL9xYTZXdXEtZ8tUFvZUo8XCz4rC7HimkyvPrtrL2hOhe2KGCiJcoEdV01Lxpo48I7YqW9I4VjPPDiEuDyDuXe2sjH6r11V2E0a2MD3XgZNcd9HIJ49IQvD6C/MCc2g7RP0MU1Q5dDQMMIZjwYuVACsgDDWUusznSpA9iTlX35eTWmJdVVt1safWpykug6iGRyLuXlJnNQh7uKCtR2+oaEiGVgdBCDqa675UIMOT+q4qBiagrEyM51YDrA+ozN9XAeHVciW3fVOstdtuQW7aKfSn6yOMVeG2M6NDb48p6q9ACUaPRaDQazW3DNU0eHhzj/oGRrU6MQpCODhOODhN+/AMYS2Wssxexz17CnFvEnFuErz1NMjpEfMcxRg+NctZNSYTKHXRNNZOYIpnMqDv4h3NrWXTFnEkNVUnrSYOgKya6VZN6N8YiSJPufKPckDk3YLt8cGicI7mtFc2dGHCcDSKwGYeMZ3K91tDtrlvztsMdhRKvVVc42M96Xwhyu7S4eqtjjeuE02qLo1wnUIIkoZMk/JnxQziGwZfmrlEOfepRxEDXiGc9crypHCn75DoCUAyR403EQl61A9qJElFdalHIqJtl1M1QiwJ1fkwJXozwNx7TdhVETKkcU2se8toAHKltEYi99zzQQEaGmons1764HwwgFyKaLvLaAMaFYdKTZThW3bhdIhDPTSoX2zvKa4/7qu1w22iR+7pVsa8fVsJnfVxI10hHZlQrpZzPIeoeXC2p53NRr8Ir6h5ySYniDbOfR6vI2QKimkGGxprDbHGrc2kzDqlHEacKJa626kRORE+yDnWUYU/L2Tg3mKh2Uiaaai2RAWVPzVwO9W/bBXo3AkTb3nrTxDfVjGQhUC2wBxqIayXkTAFOVBGronKyCXMFxGwBOdVUlcVnp5DHqzDSRjw3qWZ4u+JRXBhUrdB2omYvs+tE+0r3H89IB05UN7jWyiuBcr19+qBq4RUSed8iYlWojrZhtIP85DXSJIZ3bwFRC0SNRqPRaDS3n21t+lcRgnRsmHBsmPATH8RYXME6dwnr/BXMpTLmUpm7gQN5j+lDY3gHRginxlkM2xgIBvq0ubpeV4ZF/SuIiUypxSEfHZ7kartBJfSxhEHeWqvgGEJwslDa9/HmLbvnmBmmCZGU3F0Y2tNr7ywMcq5ewU/iDQ6LysFUVW53wst0j3uXCuJS0OG+gWGO5opIKTmcK3CxUeNorsBsp8Xg5h0PBshPXtv86AbkPUvqon+2AAcaINTxrwQ+fpryyOAYhhAqtmSVXNRz+UxPrqgcw+HtRYU8XoGXx5VIQ90A2MCqQHQTNat3qyiE0HQRXWEmrpaQB+sbRd9SVom0wFKVLlCiMTKVwNutolUIVdWztS7fsyda2iBAnqwo99FlNffWE9NFleUpEKRHaxvbLQ2UULthq3nG1QrgugpilKZUo4AgTfjYyBR3FYfImBaXTR+HbqanrUyHxFIO2XB684Di8qA6Hx1bGSu1bFWhHPB3PubVtbfXfR7qDuJKaU24deM35ME6XBtAzBSRx6prFcSDdXVMVRWzIq4MIlID5vIQGcpY6fKgqmRGhor/6CIXcnCs1vv/XkvrSJ8505GO+vlHJrKgMkq5uO7f9HY3Tt6FaIGo0Wg0Go3mnYUQpOMjhOMjhI9/CLFSxT5/BfP8ZYo3Frn37HXuPXud0HN5fWKAuSMTFA9uNW3pV0lbdZOMnYjZTosTuQFOFEq0koirrRrDTmbXCt1eyFk2pjCI05QFv8O9A0N7DuMedDzuKJQ4W69wILN2qeZ3206L1s4CMesZSpyGpmrT61i9415trY3SFNMwuKuoLnCFEDxUGmXMzZC3HGY6N3mxa0nkycpaayP8/9m77zi56nr/469Tps/2mk2FQAIkgdBJCMUISrFSvBcBUVBBqV78cRVRypVqRcpVKYriVaygCFgQBAGxEek9hPTtdeopvz/O7OxOtmTTd7Pv5+ORR7Jnzsx8Z+aw7Hs/3+/nS0cuS2MswbRYklmFSmzCDmEQhF47noe2QjVrl65gC4rRQkVtGn/fdRj/bMJoixUDmj+zEz/sFvdT3Nr8ZC7o1Nq/VtAxYUVF8HoL+rt2Glkb3zGCtXf97/1YGgQlc0F1q2cgIPZvF+JXFUJzTRpv9zaM16uDabmF9bR+WTZYjxd2gvWWG46/KhOs2euIDkwRHbSNyLpMimnxJHPLqtg1GUzrnlNWxfJYW3BCIgi4fnkQEOkurHeMOrCu0KRlZTnM6hxYq5nYSOU26gSV1f6A2B3G+OeUgW65DNpHM+4EFcHWBH5zYmBaaiKH39SD8UY1xss1wdYhEOw76RT2x0yH8NtjA2tjCw18jPSgyqUHtMWC8QxT9fTr+4IQXJ0Kuqn+cwpGZ2xgjPHNbAA1DikgioiIyLjm11SSW7Qv5qH78WL7WlY9+QyHtKaoWtvCwreaWfhWM/5TL+HsOgNnt5m4s2fgx2NEY/071A+aalmoIKZDWZpiSd7RMA3LMKkMR3H9YJ3jiI1aNkHSDhExLbqdHBHTYkFF7ajNZza0WzIIiI7nFauvadehPhrfaDU2Yll4IQczZ8OqDRq4FEJKdz5HfSRG5aB1lbWRGLWRGB25DCal+z8Ox/E8DCPYpH1lqpeEbQ/ZtgMg73vskigvhlGAhG0TtixynotVXgg2/U1PjGC9YnMmTUM0jjnc+9Y/fTJjgxcEQn9a91b/Ib0rn6Unn2dKLI41aLqsX5kOAtLbFUEgsv2gW+6gZjJ0RTFerB1YjzmGgOiXFUJoz6Apyv1BaPA02Vld+DXpoKtnf8ir78NfU4Y/s2v4pjCFShxrywa6vRbCdf91trhmSsla2/JQmERF4bHKCu95oepovFGF8Uotfk2qOEXYyFv465LF6Z+Dm0ENyyToZNoXxm+LYTxfFzTeKQS4YNwDVU5/enewznVFBaRDwRTWkB9MJ367IlgfCcXOq0bWLnbfNVaVg+UNPM5rNRtULiPBc9eMsCdkRRZv8cpg+xWz8Bj9AbF/25SdhAKiiIiITBhNUxp5bK+ZTKlposPxePVfz3BgSy81K5sJvfwGoZffwAe8qY00zWxijbMbPanqgYYmhamWuVCOhlC4GIDKCoGuJjw04GwOyzCpDIV5rbeTBRW1lG1kWuiG6iIxpkTjtOUy1BVCV9ZzaYjEN3JPCJsmXsjFyoeCvfEGcUwXwzdIeQ77JeuHvX95KEKisP/jSON2PI81g5rw1EdjtGWHrmfz/eAH7coNGvyEzGAvx6zrEJvSixd1gi0sClKOg0fQRKc2EsPzfbryWRJ2KNg6pLD9Qskm6xvrxrkZevJ56qNxVqf7mJqwissC/ak9GDEn2BtxXTLYlmJ9orgNSBBIyoKQ0x90IgPh3PN9EnZo6F6ayUIY6o4G20TYQXXNN/yh+0KW5Uq3Gwl7+AetGfnFxBz8sFPcr8+fOVBl7HPzlNvhYT/vZI3PmvnLqawtHOgPiIUqX3+HVb+xB2NdGcbK8oFQvLEKIoWg9XItxr8ag2mpU3rw57TB01OLa1SLatJBp9DuQlU1MWg68aJV8GoNpG386V0YzxcaaE3tCaaSNseD68bwoakH//XqkoA46vTSfoNfT31fsKY3Z0LjRjq6TjAbWRAgIiIiMn40xhM0RhOUh8LEk0nW7D6dde99B70XfZTUyceR23cv/LIE1up11Dz5L969/qccu/pu9n3iJRpXtWD2BtWoTDRTstawzA5TFgpREd7MbQyGUROJYhtmcVrlpjAMgz3Kq8m4bjFk+f7QoDWcsGkF0wwh2PagwG/oZV0mxZpMHxYGjdHhw6ZlGDRGE3Tlc6xN95FxHXzfJ+U4hXH4rMn0MaesisU1U6iPxIPq4DCFvqznEjGtYbdCqQpFgsZABlBdulYt67lUhyNk3GD94qp0L5Zhsj4zaOpf1AnWmqVD+JZXrPp4vk+fk6cnP3L1KuM6haZEI8u6LiHTZHHtFBqicbrNDH7IDabv1qSDiiUElSl/oGsn/dWkQXvjQdAgqCefI+26xGybtZm+QmfXQRJ5fNPD6IxiPDoLmuNBoIvnR/ypPeXkWZMeQ0AxKIZwP5ELmrsUH8NhajwxbLW2LBSmr7JnoAts2MNPBF1T/ZmdwePh489px0/kgrV5hSY4/YGqz8mzoq8H1/fpdXKsyfQVr2umdQfbZ2AE3UP3aA2eY9Eq/INXl15XBiX7gpYEtoiLv6A5CMn1qSAIAn5dH/4erRgYGK4JFZmg6U3UCWYUuIUn6P9lyijrX0uY4B+wJhjjCM2HJipVEEVERGTCsE2TpQ3TCRkmnu8zJZagJhIDO4S720zc3WaS9X3M5jb8V98k/a+3qE21sdvrvez2+ls4xjKao9N4YYVNebKM/k4sCTtEZShC2UbW922KilCE6nCUxmhi4ycPY1o8SUUoTLeTI2mHMI3hm/FsyDZNjMLG50bWDn54X/pW0PY/A/tV1oPhj7p/ZWM0zopUN42ROG+nevDwMTCACD6QtMMcUtNI1LLZs6KGjOvwNyOYMho2B6b0plyH6nC0pNlOv6pQhOedPNlUL1M2mDqb8zzmxJKU2WF6nDwH1TRSF4nx4Nq36M7ngkY9UQd6IkHVLjxQZWrOpgibNlnPDRribLCm1Pd9mrMZQoZReC0hLMcaCCwFXfksU+NJaiMxZsTL+VdHM1ULmsExg2pl2MVPBs1K/LXJoLNqLNgewVhTXrptB+BF8nTkcxxWO4U55VX8Yd3brMukqC9UiE3DCELHvBZYWR5MX3yj/wIdOez2OHkMw6DXyZX80sP1fXzfL3lf/cZeaE7g795WErxc36d+hOp0zBroApx2HaKmBfutBdcMAm3IDa6tiBs00ukLF6eJ9of2jlyO2miMdZkUnu9TEQrTliuEVaBufgu8WRl0nO2fHjvS3olTgurfhvuZlrD84LyuaBCKLR+/qwvj7Qr8+kKFMJ6HdChYo9sXCj7HWH7kLVaGfXN2nnWHgykgioiIyIQSsSw8z8c0DA6rmzr0hEKTG7e+mgfMXah5tYz6ihdo6nubhtVtNKXfoukfwD9ex62twt11Bs4u01kypZ6yEapqm6MuEmdBRQ1xe/N+3AqbFnuWV/PXtnVAEGLLQmNroGNGBlU0ok7wA7IfhLyZibJh1woOtmuynMZYnHI7zKs9nfQ6eZqzKdqyQXWlLhovhj6rEMLKQiHSrlMSENOuy9zy4d/TGYlylloWz3W2knYdysyBcBOEiAj7VtVjGhSnAi+orOWp1rUDAbH4Zg1UAx3fZ1FVPStTPazN9BUDolfoAtvt5KgMhzm0ponlfV205DJ05bK0p9PETZuYZZP1HLKey66JoFlLfSQWBO3q1MBaUgP8GV0YL9ZjvFBY59nYW1LV8m03qI62xOmO9NEYjTOnvArLMNm3qp7frVvB2kwfvs/AtiaNfUFDmcdmBtsqwKhTNR3fY0oswapUX0lAbM6kyPseM+IDW79Qn8J/5/KScOh4HqZhUD3C/ppRy8YovH8rU73URWJURQ2K+zgM6gLq16aCLrSDxuz6wVrVPcqq+Ed7M9MSCXZPVvHH9W+TsEP0OnmIufh7to34GkuEfJjejf9WRcm05A3581pLv57TFmzV0t+5tX/K7vpE0HwGP9gOY8uXIE94CogiIiKyU7IMEyOZI2vFeTu5ByvmTsX2GqhJvk6Z/xLzWnsIt3ZgtXYQ/tu/idk27owpOLtMx509A6+6EragYU1NJEpNZPRN7Tdml0Q5yzpb6HMcDqmZMmrTmMFCUZ9iRCxUORzfxzKMYat5Q+5vWlQUgt7c8qCK9e+OlsJURp/GYapNjdEEr/a0l1Q5ffwR13VWhiNUhiOsTPXQnEkxKMZgGAZx2x6yRm9mvIx/mOvJex6hqDPws/wG6w+ToRBTYgneSg1MR1yT7iu8crLikQABAABJREFUJz6H1ExhajzJ1HgS0zSIVUR4fnUzy9pbSLsOcSvEPpV1xXBVE4kStSwynkts8PvX1IvfnBxYvzalN5geWWiSQkUWf34zpG2ydpbp4criZ9gQjfPO+ulkPZdHm1eVNCQi4gbTNfu3chi12YvBjHg5HbksvU6eZCEQu/jELJt0ofvtoNOLMq5DczbN1FhyxO1ToqYFGMG030iEPidP1UhTnSsz+LYXdHgtjDnY/zLGnuXVJOwQteEoyVCYpQ3TsQyDP6x7G7dwbY6Vv1s7zOjatHWnBqUNb+LB9WO8WRVsDbJbO9QF1UXf94MOuxvbnmeQvOexItXDjHiSrOsSt+1Nuv94ooAoIiIiO61weeEHyN4wpEJ4hsW6hjr+1ZSjZtpsqlM57OUrsd5cib1iNfabK7HfXAkPP4lXnsTZdXpQYZw5FaIbn965tSVDYQ6sbiBhh5g+uBK0EeEoFGsrhSlz+cL0z5g1dEuQsagKR4P1dyOshayNRHmxe2BaYN7zsA1zxMpUv5pwlFWpgfVwXmGqZ9waWi1N2iHKQ2H6nDyVJRXEQgguPOeGU4X7nDwRy2KXRDlr0n1D1oXG7RCzkxXMiJUBPiZGSdfZqGXTGEmwNtM3JGz585qDhirx/EClL5GHTgu/MpjeSDJPPu0NqQBPjSfxfJ+aSJQeJ0fV4PeqOl3c649EHrfQqKcqFCkZm49PXSRGUzTBylQPSTuE4wUdaBuicVale0vHPEhrNsPeFbUsrKobvlssQcXeIAiTUdMmb/pBQB8u/JhAdQqak/jF9YdOoRJslLzvsxLlwTVZ6GY70hiDx8jTnc/RGI0Hr91gy5sSFf676F/7SGE9JQRV5pZshpnxsuLr7MnnSBSmeg+nx8lRHY7SnsvieB7zK2tHPHe8U0AUERGRnVYsbpILORh94WI1xo3lCBkmEdPGr4yS33ce+X3ngetirVkfhMU3V2KuayG87CVY9hK+YeBObcCdORV31jTcpgawNy9obarB20OMVTRmFAOiX5hKl/c9YpY15irkhirCha6vBsOuhawMRTAGbY/R6+SoCkco28i+kslQmMEtPvKeR9g0SQwzNdcwDKbFkjzf1VYSEP2wi+f7ZDyXqGmRsEPYhkHYtMi6Lh25LPtW1bFvVT29Tn7EallQxRr+h/qp8SRv9XUPvSHs4R+6svRu5RnojJbsp2cAsWFCr2kY7JIo5+n29WQzKWzDpDYSxa9OY6wMpriSyNOVz5LzPNZn08UGQ/0hPGGHqI/GeaMvmO7Z35V0XnkNb6d6WJXuJWGFSip/vu+DAbsmK0atKketoBLW6+SZW15GwsnTmk0Xu+tuyJ/dEYTihl6yrkvYNJkaG34P0JBpkbDsUQNiazaD5/vE7RBd+VzJLyc83yftOpu3d+mgtYb+jK6SJkC9Tp5psSStuTRToglas2lynkfWc0ecnp1yHXZJlPNmbze2YQxMGZ6AFBBFRERkp5W0bdbHM0S6kvitwQ92+WgW2zSJbFhJsyzc6U2405vIHXEwRiqNtTwIi9byldir1mGvWgdP/BPftnGnT8GdNRVn5lS8hloYR9PJotFBaaWwN2De87ZoG48yO0zCCuHjD7sdQm0kxtRYgvWZFA3ROCnXYY/ymo3u/5i0QhgEa9XWZ9LErGAdYMQcPoDXRWN4XaXbH/SZGZpTPZTZIeqicSzDIG6HqAiFWZPuozIUYfeyKkzDGDEcbkx5KDzy+rQNPnp/dkfQEKZi8NRQg+gI1dvGaAILg6QdpitfmAZZlcE3veIa0nTOYY+yat5O99CRy1AVjha7xMYsm/JQuDi8PsdhXkWwjnRhZR0G8FxXW8l004znErXsjXbGjZgWIcOkw3WpDkdpiMZZPajiO0Qyjz+/BYDOTNDoZ7T3vDocZUVfN4yQ8TKew5H108g4Dk+1rSsZb1c+R8rN01moLm7SHqaxoGMsZrCPYj/f9/EJKpwdHUEH3ahlM7e8ipe62od9KLdQ9d6rvIaufI6oaY08DXcCUEAUERGRnVbcDpFNpol0JTFSwQ+p+WimUEkb/YdJPx7DmTcHZ94c8H3Mlnast1Zhr1iN9fYa7OUrsZevJAL40QjOjKagujhzKl5N5RatX9xSJb12+iuInrfZ4QiCSldDNF6oEA59baZhsKCillXpt3A8L+hOuZFmOABxO2iC0pnLEbYs1mdTzBslWFaFoliGiRPKEyrsOZgLBWvv2nNZ9qyoKZ7bFE2ScV2OqJ+6Ra8dgoBsG2bpWsGR2H5JOAxChz9ipa4mEuPA6gaSoRB/Wr8yaCgU8vD3Xwu2Vwwts5MVNMTiPLJ+FRUhn5znUhmOYBU63FqF8Xn41EfjWIbJAdXBfoCGYfCP9mamxxIYhkHadagKRUqaCg2nvxOsncuQtEPEC6/B9/1Rw7/v++Q8j9nJilEfvzIU4XV/+I6lru9hYlATjhKKWjzT2VIScrOeyy6JCtKuQ2s2TcOmNJkywd9vHVheScfUIDhb7FFeFXzOvk9jLIHn+7zU3Y7n+0OmjvY5eSpDEeqjMfarrA86CU/Q6aWggCgiIiI7sZBp0jN1PWXN1UHTECBnOVTam9it1DDw6mvw6mvIH7QPeB7m2mbst1ZjrViNtWodoVeXE3p1OQBeMhFMR53ZhDN9Cn5VxXYNjLHYoOeK9XeT9DdvKt4gs5MVwTrEEUyJJdglUc7rPV3EbZvaMTTpSdohwpZFRy7Lwso6fN8ftfpSHgpTZofodLLURRzIhMiH8tQW1vFVDAqC8ypq2LOiuti4ZUsk7BBRM2hUk8ln8aC4RcVgjufRmc+WTEV0fB/bMImNEMYsw2BBZS2ZQhfYbKG6199UJeU4JKxQ0PiIGHWRGB25LDnPLa7xDMJbiLZchohpUbdBtXh+RQ0vd3eQKkzJHK3D7Ib6P6OkHSJph4jaQxv29G8T0h+M+vd7nLKRbV6SowT3lBOMtTwUhODdkpW82N3O1FjwvI7v0RiNE7Nt/rhuZTG09jp50q5DXSRGn5Mn53nFa8r3fTrzOXx8khXukIDck88xNZYkatnMH/TLBtf3KLPDdOSy9LkOZuF9qQxH6HFy7F1Rh2WYzEpu+r6n440CooiIiOy0IqaFG3Lx57VgLGvEr0rj+H7JdgCbxTTxpjaSm9oIh+4PeQdr9TqsFaux31qFubaF0AuvEnrhVQC8ZLwwfXUK7owpeLXV2zQwxsIWTjiPZVLc4NwwjFEbgYzFxtZVmYbB4XXTmJWooM/Jj7ljatIOkXYc5pRVMiUaJz5KoDMNg4NrGnmsZTW5WJZwxsaL5GiIVJN13ZIGNZu7xchwLMOgOhKlOZMi47mYGEP2fQToyAfdRKvCkeJ6T8cPmrpENvJ+RC2bslCYjOOUvHe9Tp6ZiXJChefau7KWR5pXkvXc4npQ0zCoj8ZY1tHLYfVNQ4JX2LRoiMRYU9j6w/d9qkJj67JbZoeJFNZ2Ri2bCjtKr5MtuZ7WZlIYBsVAmPEcqsORjV4DCcsesgdlznPx/WBd38xEebFivVtZJS91txeb5BgEe3I2ROMkQyH63DxJO0xHLoNhGHi+T0c+C37wiwXLMEi5TrHy2pLNMDWW2OC5PaYN0xDKMkxmxMv4R8d69quqp9wO83T7OhJeCDCYPoHXHG5IAVFERER2WmHTDHJYXQrvoNUQcXB8b6ONUzZZyA6ml86aRu6IgyGTxVq5FnvlGqy312KuayH00uuEXnodAC8WDcLi9Cm405vwGmq26hrGsGnRtuAtqsNh+uNLMMVx2zfWCZnmRqcVbqg6FMXxPGoiUerHME1weryMJbVNPLLrKhr9CtyIS20kyvR4kpoxTGvdXLWRGG/0dhG3QkyNJXg71UPTBgEj4wahLet6xO3gM817HlFr6LYdw6kLx3gt11lyzPG9kueZlShnSe1U/t3ZUlIdrYvEaIzGmVs2fGOjpniS5X3dxWmSwzUbGk7CtoPKYSGgNkbjPNeVoqpwu+sXNhDxKYa3rOtSs5EOthBMA7fNgam7adehNZcBP2hC0zjoeqiLxJiRKGNVqrdQvQ2mv0Ysi92Tlfyro6X4mCYGfU5QPa8MR+jKZ6kOR4OwHS9jWqKMPzevLhlL/56Q9dHhr6EZ8TIc3+Og6kZMw+DNvi5WpXtoiCao24p7qO5oCogiIiKy0wqb1sCUyIpgup6RHttegFskGsHdfRbu7rOCr7M5rNXrsVauwXp7Ddba5pIpqX44hDutEXdGE+60KbiNdRDa/DGGzWAfOseGjmweFx+DLa8gbiu1kShlodAmdVgtD4VxY3m8aAo/4xOxrDGFyy1REYrg+B710RgLq+pYle4tqSKmXYeoFTSNybgOtmfQmctiGeZGm8H0q45Ecbq9DY4aJZVR0zCYW17F9Hiy5FqeFk9SZodHnFJbFYqAAd35HEk7XDIddzRxOzSwxURhjB4+zdk0PhApvL6kFWJtpq+wVtUfUwBN2EFDopTrEMOmJZvhgOp6OnNZ3uzrGvK+zS2r4q3ebjKuQ8Qyi691t2QlK1O9rEn3sqh2Cn1Onmc7W6kOR9mjvJonW9dSHQ4qhFPjZcWGS4P1V35HGnf/3pn99iivZk26j92SlZvWIGecG5/fJURERES2gqhlEzLMDaYCbp9KWolIGHfX6bi7Tg++zjtYa5uDsLhyDdaq9QN7MAK+aeI11uJObQyC49RG/LLR13INFjaD7SwcP2jNn7RD5GDbB+PNtGd59SgrG4fXX5HLeS4GxohdT7emMjtE0g4zK1FObSTG9HiSVaneYnOUrnyWXRIV2IbJ672dOHmPrO/huA672GOrqpbbpd1Sgz0NjWHXj244FbciNHK4gaCSFrUs2vNZ3lE3bcwbuc+IlzFt0FYV/cEyZJq4vk9rLsNhtU1UhaO8ne4J9rI0GNOaV8swmV9Rw1Nta+nKZ9mjrIqFlXX0OXnC5tB9NJtiieJU34ZovNiNuDIc4dgpM3mjt4uZiXLWZfr4d2cr0+JJdk2U8+/OFtpzGSzDoDYSxTQMLMMsbssC0Oc6zC2vHvP+hTPiZcyIl+1U00tBAVFERER2YvHClgnBfmxWYa3TOKikheygWjijKfjadTHXtWC/vRZz9TqsVeuw1jRjrWmGvz8LgFdRFuzFWAiNXv3I01JNwyBW2IDcx2fvyloyrrtdQtTmMAxjxB0kRhIxLcKGSdp1sQ1zo904t4ayUJiacLTYnXX3ZBVv9gZTNg2CZjQzE+X0OXnyngcGNEYSvN7bMeYuquWhMFHLZlW6t7C3ZBD4h9sXclNFLZvacIyoabPrJkwDNg2jJDRVhMJMiyVZUFlLn5Pnn+3NTI0nqQhFSNphep08BsaYmwPtWajE9Tg59q9uwDQMykJhltRNHXKuZZjsUVbFylTvkG1bopbNvEJjmbpwjJpwlKZYkrgd4uDqRh5ev5K6aIyKUATX9wu/YPCIWWbQKdb3aRhheulwYpbNMVNmbvbeouOVAqKIiIjstEzDoDocZV2mjzKC6WUh09zibp5bnWUNNL0B8H2Mjq4gKK5ej7V6HWZLO6GuHkIvBusY/ZCN21QfBMamBrymevzEwBTLmBWi18ljYtAUTVAxgfdlG06w/UKY1myKsGVtl/Abs2wOqwsqZRB0ba0KR+jO57BNk4QVYko0wdpMX6EJkc+0eIKOXGbMVeuyUJij6qfzdqqHZ7taiVs2laHIVgshc5KVmMPtA7oJQqbFuxtnFhvBlNtBcDYMg2mxBM91tVIWiow5INqmyaF1TeQ8d0z/bU6Pl1Edjmy02+3csiqmFKq7s5MVdOSyhC2zGHiTdoiME2yb0ZnPURYKj2lrlsF2tnAICogiIiKyk6uNxFiRCjbCznkuUdMuNtsYtwwDv7oSp7oSZ+89gmOZbFBVLFYY12OvWIO9Yk3xbl5FGe6UOtwp9UyLmawJe4Tjsa3azXM8KQ+FWJlyKAuFxzxdcktVDZryGDJN9iqv5onWNYDB3pU1RArbQYBP2LSYU1ZFVz5XsoZwYxpjCUzD4LmuVjKuS01ybN1Gx2LXssqt8jj96xFNw6BxUAOdqfEk/+5spcwOFbuujkXwno0tUJaFwuxZXk3NKNuoGIbBftX1JV8fWNNQ0jG1MhTh7VyWlOOQdh3e0TBtk8a8s9o5v1uIiIiIFJSHwvT/TJjzPOqisYm5iXU0UrqO0fMwWzuKYdFc24zZ2hFUGV9+k0XAIUBXRYLEjDVBtXFKfTA1dXuvwdxGykLhko3Td4S55VWsSffxVqqb6YXtERJ2iLBpUREKk7BDHFE3dZOvuepwlIQdpiWTGnO30fGgLhInaYeHrB3c2g6obtis+w3+HCpDEd4orKE8sLqBXRKb1n13Z6WAKCIiIju1slAYjGB9Uc5zx7z327hnmnj1NXj1NeT3mxccy+aw1rVgrW2m9+1VWGuaqezqg+deIfTcKwD4lolXXxsExsY6vMY6vNqqrbrNxvaSsILOpztyyrBlmBxU00hFOFJsVhM1LeKWTVM0aF6yOb+QsE2TplgwPXXcTYkeRdIOMSUa3+YBcWtIhkKkXYeaSJQ9y6s2fodJQgFRREREdmpldoiIaZHzPFzfpyw0cX7Y3mSRMO7Mqbgzp/L2vF14YO1bHJmoZt+UF3RNXRs0vun/dz/fsvDqa3AbaoPuqQ21eHU1W7TVxvYQtaxgTam1Yz/T8lCYAwdVtAzDoCmWGHE/vbGaEk3wdqp7zGv5xosDahrGbUOkweKWTdSy2LOsetx2+N0R9E6IiIjITi1q2STsEBnPwRhj6/2dQdi0iFoWkfIy3KlVA3sy+j5GZ3cQFNe3YK5rxVrfOjQ0GgZebRVeQyEwNtbhNtRCZOxr6ba1mGUTtixi43CN5SE1Uza5M+uGaiNRqkPRCRcQJ0L1ECBph2mIxJm9CR1dJ4Px91+TiIiIyFZWH4nxUndHYfuHyfHjT9gyids28Q1fr2HgV1XgVFXgzNs9OOb7GF09WOtbi4HRXN+C1dKO1dJO6PlXi3f3qipwG2rw6oLprW5dNX5leaFr5/YVLWxjMh6rVWPdS280VeEoSxumq3HKNlIeCnNU44xJ8z1hrPRuiIiIyE5vQWUtK9O9OJ43aSqIEdMiZoWIj2X6pWHgV5bjVJbD3F0HDvemgqA4ODh2dGF2dMHLbxbP80M2Xl01biE09v+b+LatJEUta9wGxK1FUx+3LYXDofSOiIiIyE6vIhRhUc0UXuxuH/9bXGwlUcsmYYW2aIN1PxnHTc7EnT1z4GAmi9XShtncjtnShtX/95pgfeNgXjKBV1eNVz8oPNZUwlaaEho2Lcrt0Jj3GBSRjVNAFBERkUlhVqKcabHkxNziYjPELJt3NkwntLW7k0YjuNObcKc3DRwrTFE1W9qxmtswW4LQaLZ1Yvf2wfKVA6caBn5FGV5tFW5tFV5NVbDWsaZqs9Y3HlY3daeuIIpsbwqIIiIiMmlsr83Ux4utHg5HUpii6laWDzTDAXAczLZOzOa2gapjWwdmZzdmZzf26ytKHsYrSwwExtqB4OjHR+4GqimYIluX/osSERERkW3DtvEaavEaanEGH8/lg6DY2lH822rtwOjsxu7pg7dWlTyMF4sGYbG6Ar+6Eq+qAq+6Eq+qfKtNVxWRgP6LEhEREZHtKxzCm1KPN6W+9LjjYLZ3DQmPZnsn9sq1sHJtyek+BNNVqyrwqisGgmN1BX5FGWhtosgmU0AUERERkfHBtoNGNvU1pcc9D6OzB7OjMwiQ7V2Y7Z2YHV0YXT3YXT1Dqo6+aeJXluFVBZVGrzL441eW41WWQWhydLMV2VQKiCIiIiIyvpkmfnUFbnUF7uwNbnMczI7uYPuN9k6MQeGxP0wOx0vE8SvL8avKyE+pxY7EcCvKghBZltgh+zqKjAcKiCIiIiIycdnBHoxeXfXQ27K5ICgWmuIYnd2YnT3Bv7t6MPtSsHod7vOvERl0N98yg6mrFUG10a8owytP4pcX/i5LwCRreCSThwKiiIiIiOycImG8xjq8xrqht3keRk8fVncPZfksqVUtGB1dmJ09QZAcpfroGwZ+WaIQGpN45WWFv5PFMEkkrCqkTEgKiCIiIiIy+ZiFKmFVOXZNkvxuvXieP3B7Ll+oNHZjdvdhdPdgdvVidvdidPdg9PRhd/eO+PB+OFSoNgYVRy8Zx08mCv9O4JfF8RNxVSJl3FFAFBERERHZUDgUNMupr8Ed7nbXxejpKwTGXszunuDvriBAmt29WK0d0Nox4lP4hoGfiAXBMRnHK0uUhshkECL9eFRBUrYbBUQRERERkU1lWfiV5biV5cPf7vvBGsiePozeviBM9vZh9KQwevsGjvemMHtToz6VD/ixaBAmE3H8eGzg34kYXnzg334ipr0hZYvo6hERERER2doMA6IRvGgEhmug08/zMNIZjJ7+EJkaFChTGKk0Rl8Koy+Nmc6MWpHs50fC+PEYXiKGH4tCLIofiwQhs+TPwDHtGSn9FBBFRERERHYU0yxU/+LQWDf8dFYIKpK5PEZfCrMvXRIcjb40RqoQIgu3mR1dmB3DN9kZ9uHDoYHQGB0UIKMR/EgYIhH8aDgIn5EwFI77kQjYlhry7EQUEEVERERExjvDgEI4c6srN35+3glCZDqDkc4W/h78Z4NjmQxmVw909Wzy0HzTxI8WQmQkPChIRiAcwg+Hgr9Dpf8mbA9zLKSwuYMpIIqIiIiI7GxCNn5FsIfjmHkeRmYgOJLOYGRyGNn+P1no/zqTHTiWzQXnpTJbZeh+yC6GRd+2wLaLf2Nb+CE7WAPa/3Xh78HnFc+3THzTBMsMGv30f13yb6t4+8C5RnCOaU66wLrTBMS5c+cOOfb1r3+d448/fgeMRkRERERkgjHNoAFOPLZ593ccjGyuECILATKXD6bG5vv/doJj+XzJbQP/doK/czmMVHrrvr4t4PeHRMMo/Bn874HbiufZFu6JR8PUph0y3i2x0wREgBtuuIHFixcXvy4vH6GrlIiIiIiIbF22HVTzEnH8jZ+9cZ4XTJV1Xcg74LjFf2/4N64bhMv+vx0Xw3HA9cBzg+qo6wWP6XngehiFv/uPDXu77w/6A1D6teH7hWPBeI3+81wXcvmt8S5sdztVQCwvL6eurm5HD0NERERERLaUaQbrLgcd2irBczswTYNYTRLaenf0UDbZTrXj5uWXX84hhxzCySefzK9+9asdPRwREREREZEJZaepIF500UUsWrSIcDjMX/7yF770pS+RSqU49dRTN/sxTXP8LEjtH8t4GpPsHHRtybag60q2BV1Xsi3oupJtYSJfV4bv++O2UnvTTTdx8803j3rOn//8ZxobG4ccv/HGG7nvvvv405/+tFnP7fs+xiTrWCQiIiIiIpPbuA6InZ2ddHWNvsHntGnTsCxryPFHH32Uc845h+effx7b3vRCaT7v0t09fjonmaZBVVWCjo4+PG/cfmQyAenakm1B15VsC7quZFvQdSXbwni8rsrLY4RCQ3PThsb1FNPKykoqKys3674vvfQSVVVVmxUO+42XD3Mwz/PH5bhk4tO1JduCrivZFnRdybag60q2hYl4XY3rgDhWf/rTn2hra2PhwoWEw2GeeOIJvvOd7/CJT3xiRw9NRERERERkwtgpAqJt2/zoRz/immuuAWDGjBlceumlnHzyyTt4ZCIiIiIiIhPHThEQDz/8cA4//PAdPQwREREREZEJbafaB1FEREREREQ2nwKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIABMkIH75y1/mhBNOYP78+ZxwwgnDnvP000/zwQ9+kPnz53P00Udz7733bt9BioiIiIiITHATIiACnHjiiRx33HHD3rZy5UrOPvtsDj74YO677z7OOOMMLr30Up588sntPEoREREREZGJy97RAxiLyy67DID29nZef/31Ibf/5Cc/Yfr06Xzuc58DYPbs2fzzn//krrvuYvHixdt1rCIiIiIiIhPVhAiIG7Ns2TIOPfTQkmNLlizhhhtu2KLHNU1ji+6/NfWPZTyNSXYOurZkW9B1JduCrivZFnRdybYwka+rnSIgtra2UlNTU3KstraWzs5O8vk8oVBokx/Ttk1qapJba4hbTVVVYkcPQXZSurZkW9B1JduCrivZFnRdybYwEa+rHRYQb7rpJm6++eZRz/nzn/9MY2PjmB7PMErTue/7mz02AMfx6O5Ob9FjbE2maVBVlaCjow/P27LXJjKYri3ZFnRdybag60q2BV1Xsi2Mx+uqvDxGKGRt9LwdFhBPP/103ve+9416Tl1d3Zgeq7a2ltbW1pJjbW1tVFZWblb1sN94+TAH8zx/XI5LJj5dW7It6LqSbUHXlWwLuq5kW5iI19UOC4iVlZVUVlZulcdauHAhjz32WMmxJ598koULF26VxxcREREREZkMJsQ2FytWrOCll16ipaWFbDbLSy+9xEsvvVS8/T//8z95++23ueGGG3jjjTf40Y9+xEMPPcQZZ5yxA0ctIiIiIiIysUyIJjWXXXYZf/vb34pff+ADHwDglVdeAWD69Ol85zvf4brrruMHP/gBjY2NfPnLX9YWFyIiIiIiIptgQgTEH/7whxs955BDDuHee+/d9oMRERERERHZSU2IKaYiIiIiIiKy7SkgioiIiIiICKCAKCIiIiIiIgUKiCIiIiIiIgIoIIqIiIiIiEiB4fu+v6MHMR55no/rejt6GCVCIYt83t3Rw5CdkK4t2RZ0Xcm2oOtKtgVdV7ItjLfryrJMTNPY6HkKiCIiIiIiIgJoiqmIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggjis/+tGPWLp0KQsWLOBDH/oQzz777KjnP/jggxxzzDEsWLCA9773vTz22GPbaaQy0WzKtfXaa69x/vnns3TpUubOncvdd9+9HUcqE8mmXFc//elP+fCHP8yBBx7IQQcdxJlnnslzzz23HUcrE8WmXFd//OMfOfHEEznggANYuHAh73//+7n33nu332BlwtjUn7H6ffe732Xu3Llcf/3123iEMhFtynX1y1/+krlz55b8WbBgwXYc7dgpII4TDzzwANdeey3nnnsuv/rVr5g7dy4f//jHaW9vH/b8Z555hosvvpiTTjqJe++9l6OOOopPf/rTvPHGG9t55DLebeq1lU6nmTZtGhdffDF1dXXbebQyUWzqdfX0009z/PHH84Mf/IAf//jHNDQ0cOaZZ9Lc3LydRy7j2aZeVxUVFZx99tncc889/PrXv+akk07i0ksv5cknn9zOI5fxbFOvq34vvPACP/nJT5g7d+52GqlMJJtzXVVWVvKXv/yl+OeRRx7ZjiPeBL6MCyeddJJ/1VVXFb92XddfsmSJf/vttw97/oUXXuifffbZJcdOPvlk/8orr9ym45SJZ1OvrcHe8Y53+D/84Q+35fBkgtqS68r3fd9xHH/ffff1f/3rX2+rIcoEtKXXle/7/gc+8AH/pptu2hbDkwlqc66rVCrlH3vssf5jjz3mn3baaf511123PYYqE8imXle/+MUv/IMOOmh7DW+LqII4DuRyOV544QUOPfTQ4jHTNFm8eDHLli0b9j7Lli0rOR9gyZIlI54vk9PmXFsiG7M1rqt0Oo3jOFRUVGyjUcpEs6XXle/7PPXUUyxfvpz9999/G45UJpLNva6uu+46Dj74YA477LDtMEqZaDb3uurt7eXII4/kiCOO4NOf/jSvv/76dhjtprN39AAEOjo6cF2X2trakuM1NTWsWLFi2Pu0trZSU1Mz5PyWlpZtNk6ZeDbn2hLZmK1xXX3ta19jypQpHHLIIdtiiDIBbe511dPTw+GHH04ul8M0Ta688koWLVq0rYcrE8TmXFePPPIIf/3rX7WeVUa0OdfVrrvuyrXXXsucOXPo7u7mzjvv5JRTTuH++++noaFhewx7zBQQxzHf9zEMY8Tbh7tttPNF+m3s2hLZHGO9rm677TYeeOABfvjDHxIOh7fDyGQi29h1lUgkuPfee0mlUjz11FNcc801zJgxgwMOOGA7jlImmpGuq/b2dr74xS9yyy23EIvFdsDIZCIb7fvVwoULWbhwYfHrfffdl+OOO46f/exnnHfeedtphGOjgDgOVFVVYVkWra2tJcfb29uH/GaiX21t7ZDz29raRjxfJqfNubZENmZLrqs77riD73znO3zve99jzpw523KYMsFs7nVlmiYzZ84EYM899+SNN97gu9/9rgKiAJt+Xb322mu0tLRwyimnFI+5rsvf//537r77bnVfFmDr/HwVCoXYc889x+WMLq1BHAfC4TDz5s0r6brmeR5PPfVUyW8aBlu4cCFPPPFEybEnn3xyxPNlctqca0tkYzb3urr99tu59dZbuf3228dta2/ZcbbW9yvf98nlcttghDIRbep1tWDBAn7zm99w7733Fv/Mnz+fD37wg/zyl7/cjiOX8WxrfL9yXZfXXnttXHaMVwVxnPjYxz7GJZdcwrx589h777256667yGQyfPCDHwTgkksuoaGhgYsvvhiAj3zkI5x22mnceeedHHHEETzwwAM8//zzXH311TvyZcg4tKnXVi6XK26XksvlWL9+PS+99BIVFRU0NTXtsNch48umXle33XYbN954I1/72teYOnVqcb10PB4nkUjssNch48umXlff/e532WuvvZg5cya5XI7HH3+c++67j6uuumpHvgwZZzbluorH40NmN8TjcSorK9l99913xPBlnNrU71c333wzCxcuZObMmXR3d3PHHXewZs0aTjrppB35MoalgDhOHHfccbS3t/Otb32LlpYW9txzT26//Xaqq6sBWLt2LaY5UPDdb7/9+NrXvsY3v/lNvv71rzNr1ixuueUWZs+evaNegoxTm3ptNTc384EPfKD49Xe/+12++93v8sEPfpDrrrtuew9fxqlNva5+/OMfk8/nueCCC0oe57zzzuP888/frmOX8WtTr6tMJsNVV13FunXriEaj7LrrrnzlK1/huOOO21EvQcahTb2uRMZiU6+r7u5uvvjFL9LS0kJFRQXz58/nnnvuYdddd91RL2FEhu/7/o4ehIiIiIiIiOx4+nWJiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICgL2jByAiIrK93HTTTdx8881Dji9atIjvf//7239AIiIi44wCooiITCplZWXcfvvtQ46JiIiIAqKIiEwylmWxcOHCjZ6XyWSIRqPbfkAiIiLjiNYgiojIpLdq1Srmzp3Lr3/9ay655BIOOOAAzjnnHAA6Ozv50pe+xOLFi1mwYAH/+Z//yb///e+S+3d3d3PxxRezcOFClixZwv/+7/9y/fXXs3Tp0uI5N910EwcffPCQ5547dy533313ybGf/exnHH/88cyfP593vOMd3HbbbSW3f+5zn+OEE07giSee4L3vfS8LFy7klFNO4bXXXis5z3VdvvOd7/Dud7+b+fPnc/jhh/O5z30OgB/96Efsu+++9PX1ldznr3/9K3PnzuXll1/exHdRRER2BqogiojIpOM4TsnXvu8DcMMNN3D00Udz4403YpomuVyOj33sY3R3d3PJJZdQXV3Nj3/8Yz760Y/y+9//nrq6OgA+//nP87e//Y1LL72U2tpa7rzzTt5++21se9P/N3v77bfzjW98g49//OMcdNBBvPDCC9x4443EYjFOO+204nlr167lhhtu4FOf+hSRSIQbbriBiy66iPvvvx/DMAD40pe+xH333cdZZ53FQQcdRFdXFw899BAA733ve7n++uv53e9+xwknnFB83F/96lfMmzePPfbYY5PHLiIiE58CooiITCqdnZ3Mmzev5NiXv/xlAPbZZx8uv/zy4vGf/exnvPbaa9x///3MmjULgMWLF3PMMcdw55138t///d+89tpr/PGPf+Qb3/gGxx13HAAHH3ww73jHO0gmk5s0tt7eXm655RY+9alPcd555wFw6KGHkk6n+d///V9OOeUULMsCoKurix//+MfFcfm+z7nnnsubb77J7NmzeeONN/j5z3/OF77wBT7ykY8Un6N/jOXl5bzrXe/il7/8ZTEg9vX18fvf/56LL754k8YtIiI7DwVEERGZVMrKyvje975XciwcDgNw5JFHlhx/6qmnmDdvHtOmTSupOh544IE8//zzADz33HMAJdNJE4kEixcv5tlnn92ksT3zzDOkUimOOeaYkuc75JBDuPXWW1m3bh1Tp04FYOrUqcVwCDB79mwA1q9fz+zZs3n66acBSqqDGzrppJP46Ec/ysqVK5k+fToPPvggjuPwnve8Z5PGLSIiOw8FRBERmVQsy2LBggUlx1atWgVATU1NyfGOjg6WLVs2pOIIMGPGDABaW1tJJBJDGtps+Fhj0dHRAcDxxx8/7O1r164tBsQNO6+GQiEAstksEFRK4/H4qFXMgw8+mOnTp/PLX/6SCy+8kF/+8pe8853vpLKycpPHLiIiOwcFRBERkYL+tXv9KioqmD9/PldcccWQc/urjrW1tfT19Q3petrW1lZyfiQSIZ/Plxzr6uoa8nwA3/nOd4YNmLvsssuYX0tlZSWpVIre3t4RQ6JhGJx44on89Kc/5f3vfz///Oc/hzTEERGRyUUBUUREZASLFi3iiSeeoKmpacSKYH818k9/+lNxfV9fXx9PPvlkSTBraGigr6+P9evX09DQAMATTzxR8lj77rsv0WiU5ubmIdNdN9UhhxwCwL333lvS3GZDH/zgB/nWt77FpZdeSkNDA4ceeugWPa+IiExsCogiIiIj+MAHPsBPfvITTj/9dM4880ymT59OZ2cnzz77LHV1dXz0ox9l9913Z+nSpVxxxRX09vZSV1fHHXfcMWTK6WGHHUY0GuXSSy/lYx/7GKtWreInP/lJyTnl5eWcd955XH311axevZoDDzwQz/N46623ePrpp7nlllvGPPZdd92V//iP/+C6666jra2NAw88kO7ubn73u9/xjW98o3heQ0MDhx12GI8++ihnn312sQmOiIhMTgqIIiIiI4hEIvzgBz/gxhtv5KabbqKtrY3q6mr23nvvkqY01113HVdccQXXXHMN8XicD3/4wyxYsIDf/e53xXOqq6v51re+xQ033MC5557LvHnz+NrXvlasOvb7xCc+QX19PXfddRff+973iEQizJo1a8h5Y3H55ZfT1NTEz372M2677Taqq6uHrRAeddRRPProo6M2tBERkcnB8Ps3fxIREZGtpn+PwT/96U87eigbdeGFF9LS0sL//d//7eihiIjIDqYKooiIyCT1yiuv8Pzzz/OHP/yBr3/96zt6OCIiMg4oIIqIiExSn/rUp+jo6ODDH/4wxxxzzI4ejoiIjAOaYioiIiIiIiIAmDt6ACIiIiIiIjI+KCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiExgvu+zdOlS5s6dy4oVK8Z0n1dffZW5c+fy9NNPb/XxtLW1cdNNN7Fq1aqS408//TRz587l1Vdf3erPOVZz584d9s8//vGPMd3/c5/7HCeccMI2HuX2fe6lS5dy/fXXj3j7qlWrmDt3Lo888sgWP9fpp5/OBRdcUHLspz/9KUuXLmWvvfbi9NNP3+Ln6HfTTTeN+Hn3/9mazycisjOxd/QARERk8z3zzDOsXr0agN/+9rd8+tOf3qHjaWtr4+abb+aggw5i2rRpxePz5s3jnnvuYcaMGTtwdHDmmWfy7ne/u+TYbrvttoNGM7lcfvnl2PbAjx0tLS1cccUVnHrqqRxzzDFUVFRstec6+eSTOeyww4pf//CHP+Tpp5/m5ptvLh5LJpNb7flERHYmCogiIhPYb3/7W+LxOLvvvvu4CIgjSSaTLFy4cEcPg6lTp46LcUxGGwbxFStW4LouJ554InvsscdWfa7GxkYaGxuLX//ud78jHA6P+tlnMhmi0ehWHYeIyESkKaYiIhOU67o89NBDLF26lBNPPJHXX3+dl19+ech5P/rRjzjiiCNYuHAh55xzDi0tLUPOufPOOznxxBPZf//9Wbx4Meecc86QKav9UwTvueceli5dyt57780nP/lJ1q9fDwTTEd/73vcC8JGPfKQ4lQ+GTjE97bTTuPDCC4eM4/rrr+fII4/E930AstksN9xwA0cccQTz58/nfe97H3/+85+34F0b3r333sspp5zCQQcdxIEHHsjpp5/Oc889N+p9uru7+cIXvsCSJUtYsGABRx55JJdddlnJOa+++iqf/OQn2Xfffdl333254IILhn3/N1VzczOf//zneec738nee+/Nu9/9br7xjW+Qy+VKzstkMtxwww284x3vYP78+SxdupSvfe1rIz7u+vXrefe7381HP/pR0un0sOc8/fTT7Lvvvnz9618H4Je//CVz587llVde4WMf+xgLFy7kmGOO4fe//33J/QZPMb3ppps49dRTAXj/+9/P3Llz+eUvfwlsn8+8f+rsr3/9ay655BIOOOAAzjnnHCCYinz33XeXnH/TTTdx8MEHlxxbs2YNn/nMZzjooIPYZ599OOuss3jzzTe36jhFRHYEBUQRkQnqr3/9K62trRx33HG8+93vJhQK8dvf/rbknD/+8Y9cddVVHHnkkdx0003MmTOHSy+9dMhjrVu3jtNOO41bb72V//mf/8F1XU455RR6enpKznvmmWe4++67+dznPsfVV1/NK6+8Uqxa1tfX89WvfhWAL33pS9xzzz3cc889w479uOOO49FHHyWVShWP+b7PQw89xLHHHothGABccMEF/OpXv+Lss8/m29/+NgsWLOBTn/oUL730UvF+/evNxsLzPBzHKf5xXRcIAsMHPvABbrzxRr761a/S2NjIaaedxsqVK0d8rGuvvZZ//vOfXHrppdxxxx185jOfKY4bggrZKaecQjab5Stf+QrXXXcdr7/+Ouecc04xAG+ujo4OKisr+fznP8/tt9/OWWedxS9/+Uu+/OUvF8/xfZ9Pf/rT/PjHP+bDH/4wt912GxdccAEdHR3DPuaqVas49dRTmTlzJt/5zneIxWJDznn88cf55Cc/yVlnncV//dd/ldz22c9+lqVLl3LzzTcza9Ys/uu//ot169YN+1wnn3wyX/rSlwD46le/yj333MORRx4JbP3PfDQ33HADiUSCG2+8kbPPPnvM9+vs7OTDH/4wy5cv54orruCb3/wmqVSKj33sY2QymS0el4jIjqQppiIiE9T9999PeXk5hx12GOFwmMWLF/Pb3/6W//qv/yoGlW9/+9scdthhXHnllQAcdthhtLe387Of/azksQaHRtd1OfTQQ1m0aBEPP/wwH/jAB4q3tbe385Of/ISpU6cC0NTUxIc//GEee+wxDj/88OIP7bvtttuo0/mOOeYYvvzlL/PII49w/PHHA7Bs2TLWrFnDcccdB8BTTz3Fo48+yg9/+EMOOuggAJYsWcJbb73F//7v//Ktb30LAMMwsCxrTO/Z1VdfzdVXX138er/99uPHP/4x5513XvGY53kceuihPPfcc9x3330ltw323HPPceqppxbHC0E1rN/NN99MbW0tt912G+FwGAiqU8ceeyx//vOfi4Foc8ydO5f//u//LnkdsViMSy+9lMsuu4xwOMxf/vIXnnjiCW699Vbe+c53Fs8d/Hn2W7FiBWeccQYLFizga1/7WnG8gz388MNcdNFFXHTRRZx11llDbj/jjDM46aSTgGDN6aGHHsojjzzCKaecMuTcxsbG4pTTuXPnMmfOHGDbfOaj2Weffbj88ss3+X7f//73SafT3HvvvVRWVgLBZ7B06VJ+8YtfFKujIiITkSqIIiITUC6X449//CNHHXVU8Yf5448/ntWrV7Ns2TIgCHovvfRSSTgAOProo4c83rJly/jYxz7GwQcfzF577cU+++xDKpVi+fLlJefttddexXAIsP/++1NTU8Ozzz67SeOvrq7mkEMO4YEHHigee+CBB5gxYwYLFiwA4Mknn6Suro799tuvpOq3aNEinn/++eL9zjvvPF588cUxPe9ZZ53Fz3/+8+Kf/rD4xhtvcO6557J48WL23HNP5s2bx/Lly3nrrbdGfKw99tiDO+64gx/96EdD3icIws7RRx+NaZrFsU+bNo2pU6eWjH9z+L7P97//fY477jj23ntv5s2bx2c/+1lyuRxr164FggpzZWXlkM9/Q8uXL+fUU09l//335xvf+Maw4fD3v/89F154IZ/73OeGDYcQBLl+VVVVVFdXj1hBHMm2+MxHs7kh/amnnmLx4sUkk8niGBOJBPPmzdviz1ZEZEdTBVFEZAJ67LHH6O7u5ogjjqC7uxuAgw8+mHA4zG9/+1v23Xdf2tvbcRyHmpqakvtu+PWaNWs488wz2Xvvvbnyyiupr68nFApx9tlnD1nTtuF9+49tzrq64447jiuvvJLe3l7i8TgPPfRQyVYOHR0dtLS0MG/evCH33dzqUVNTUzGA9uvt7eXMM8+kpqaGz33uczQ1NRGJRLjsssuGvP7BvvSlL/Gtb32LW2+9lauuuoqZM2dy4YUXFiuiHR0d3Hbbbdx2221D7tsf4jbXXXfdxfXXX88nP/lJDjzwQMrLy3nuuee46qqryGazQDANsq6ubqOP9cwzz9DZ2clJJ51U0mV0sD/96U9UVlZy1FFHjfg4ZWVlJV+Hw+FR37/hbIvPfDTDXc9j0dHRwbJly0p+wdFv0aJFWzosEZEdSgFRRGQCuv/++wGGbfTy4IMP8vnPf57q6mps26atra3k9g2/fvzxx8lkMtx6663E43EAHMehq6tryGNveN/+Y2MJIhs6+uijueKKK/jjH//I1KlTaW5u5thjjy3eXlFRQUNDA7fccssmP/amWLZsGevWrePOO+9k9uzZxeMbrr/cUHl5OZdddhmXXXYZL7/8Mrfffjuf/exnmTt3LrvtthsVFRUcddRRnHzyyUPuW1VVtUVjfuihhzjmmGP4zGc+Uzz2xhtvlJxTWVk5puB+wgkn0Nvby7nnnsv3v/999t577yHnXHbZZXzve9/jzDPP5O67797i8Y9ke33m/QavGe0XDofJ5/Mlxzb8b6GiooKlS5cO2zU4kUhs3UGKiGxnCogiIhNMX18fjz76KO95z3v40Ic+VHLbSy+9xLXXXsvTTz/N4sWL2WOPPXj44YdL1oH94Q9/KLlPJpPBNM2S6tGDDz6I4zhDnvvFF19kzZo1NDU1AfDPf/6Ttra2YqgIhUIAxSrWaCoqKliyZAkPPvggTU1NzJ49u2S7g0WLFvG9732PeDxeEty2tv6mIoOnVv7rX/9i9erVzJ8/f0yPsccee3DJJZfwm9/8hjfffJPddtuNRYsW8dprrzF//vxhg8iWjnnDqaC/+c1vSr5etGgRt99+O4888gjveMc7Rn28K6+8klQqxSc+8Ql+8IMfDGkAk0wmueOOOzj99NM566yz+MEPfrBN9hHcXp/5aBobG0vCtud5/PWvfy05Z9GiRTz44IPsvvvu2hpDRHY6CogiIhPMww8/TDqd5iMf+Qj77LNPyW377bcf//u//8v9999f3K7ivPPO4/LLL+foo4/m73//O48//njJfQ455BBc1+Xzn/88J510Eq+99hp33nkn5eXlQ567urqas88+m/PPP59sNstXv/pV5s2bx+GHHw4EUzij0Sj33nsvZWVl2LY9ZErnYMceeyxf+MIXSCaTnHbaaSW3HXrooSxZsoQzzzyTT3ziE+y222709vby8ssvk81mufjii4GgGcytt9662WvSFi5cSDwe54tf/CIf//jHWbduHTfffDMNDQ2j3u+UU07h6KOPZvfdd8cwDH76058Sj8eLYfm8887j5JNP5pOf/CQnnngiVVVVrF+/nieffJIPfvCDxW0Tli5dykEHHcR111036vMNDpmLFy/mhz/8IXvvvTczZszgN7/5zZBtSfrfv4svvphzzz2Xvfbai5aWFv7xj39w1VVXlZxrmibXX389F1xwAWeddRZ33303s2bNKjmnqqqKO++8k1NPPZWzzz6b22+/fdhOp1tie33moznqqKP4v//7P/bcc0+mT5/Oz3/+c3p7e0vO+ehHP8qvf/1rzjjjDE477TQaGhpobW3l73//O/vvvz/vec97tvq4RES2FzWpERGZYH77298ya9asIeEQggrescceyx/+8AdyuRxHH300X/ziF3nkkUc499xzefHFF0u6eELQRfLaa6/l3//+N2effTb3338/N95445A1ZQD77rsvH/7wh7nmmmv4whe+wO67714yHTASifA///M/vPDCC5x++unFrpYjeec734llWXR0dJR0A4UgEN18882ceOKJ3HXXXXz84x/n8ssv55lnnmH//fcvnuf7fnG7is1RW1vLjTfeSGtrK5/+9Ke56667uPLKK5k5c+ao91u4cCG/+tWvuOCCC7jooouKaw77N2jfZZdduOeee4jFYnzpS1/iE5/4BDfddBPhcLjksdPpNNXV1aM+VyaTKVZnAc4991ze8573cOONN3LxxRcTCoWG7MFoGAa33HIL//Ef/8Fdd93FJz7xCb75zW+OOD3Utm2++c1vMmfOHD72sY8Nu06yvr6e73//+6xevZrzzjtvk9cYbsz2+sxHc95553HMMcdw44038vnPf5499tiDE088seSc6upq7rnnHnbddVeuvfZazjzzTL761a/S09OzVbbfEBHZkQx/SzdjEhGRSeH000+nqqqquNWAbLmVK1fyrne9i9///vdMnz59xPNOOOEEZs2aVdycXkREZFvRFFMREZEd5JlnnuGoo44aMRw+99xzPP7447zwwgt8/OMf386jExGRyUgBUUREZAd53/vex/ve974Rb+/vUnrJJZcMmYIrIiKyLWiKqYiIiIiIiABqUiMiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgZrUjMDzfFzX29HDKGHbJo4zvsYkOwddW7It6LqSbUHXlWwLuq5kWxhv15VlmZimsdHzFBBH4LoenZ2pHT2MItM0qKlJ0t2dxvPUV0i2Hl1bsi3oupJtQdeVbAu6rmRbGI/XVWVlHNO0NnqeppiKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIGa1IiIiIjIDuX7Pp7n4u+AXh6maZDL5XAcZ9w0E5GJb0dcV4YBpmlhGBvvVDoaBUQRERER2SF836e3t4u+vm5gx4Wz1lYTzxs/2xHIzmFHXFemaVFTMwXL2ni30pEoIIqIiIjIDtEfDsvLqwmHI8CWVT42l20bOI6qh7J1bf/ryqezs5Xu7naqquo2+1EUEEVERERku/N9vxgO4/HkDh2LbZuAKoiyde2I66qsrJKOjmZ838MwNq/djJrUiIiIiMh253ku4BcqhyKyNVhWUP/bkqmtCogiIiIist0NNKTZMdNKRXZOwX9PW9LwSQFRREREREREAAVEEREREZEd5l//+gdLlhxAKpUa9byTTnovv/jFPdtpVNvXvff+gv/+788Uv3Ychy9/+XKOOeYdLFlyAK+99gpXXnkZP/nJ3TtkfOed90luvvmbO+S5dwQFRBERERGRMbr66itYsuQAvvGNG4bcduWVl7FkyQFbFCYeeOA3HH/8O4ccv+22H3D88e8vfr1kyQE88cTjm/0820MqleLmm7/JySe/j6VLF/O+972bz3zmXJ59dlnxnGw2y/e+910++tGPF489+ujDPP74o3zzm7dy330Pscsus/noRz/OD37wPfr6ekd9zpNOei9Llhww5M+99/58o+MdKaxfc81XOPPMT2zKS98s4+UzVRdTEREREZFNUF/fwB/+8DvOPfciwuEwAH19vTz++KPU1zdsk+esqqraJo+7NeTzeUKh0JDjX/nKNbz66stcfPHnmDlzFp2dHfzzn3+nu7u7eM6jjz5MRUUle+45r3hs1aqVTJ06nT322LN4bObMWUyfPoM//OEhPvCBk0Ydz9lnn8txx7235FgyufmdcsvLKzb7vhORAqKIiIiIyCbYa695LF/+Jn/5y2MsXXoUAH/84++ZM2cPTLN0gt6SJQdw/fXf4NBDDwOCqtq73nU43/rWt9lvvwNKzv3Xv/7BNddcWbwfwMc+9gnOOutsTjrpvZxyymmceOJ/cNJJQfjpn5bZ2DiFn//8N6xc+TY33/wNXnzxBTKZDLvuOptPf/pC9tlnYcl4PvvZz/PnP/+Jf/97GfX19Vx44cUsWrSkeM6bb77OzTffyLPPPkMikWDRoiWcd95niiHrvPM+yW67zQF8fv/7h5g3bz5f+cqNQ96np576C//1X//NIYcsBmDKlKaSIAjw8MO/59BDDy9+ffXVV/Dgg/cXx9r/2gAWL17Cww//YaMBMR6PU1NTO+xt69at5etfv4Fnn12G4+SZOnUaF130/2hsnMIFF5wDwLveFYzn2GPfwxe+cAXnnfdJ9thjL8477yIgqFK+//0n8MYbr/OXv/yZqqoaLrnk80yfPovrrruK559/ll12mc2VV15NU9M0gI1+NiN9pgCPPfYod975Xd5++y3q6up53/s+yCmnnD7kWttaNMVURERERGQTHXfce3nggV8Xv37ggd8MqVptqgUL9uGCCy6mvLyC++57iPvue4hTTjl9yHm33fYDAL74xau4776Hil+nUikWLz6MG2+8lTvu+CHz5+/NJZdcSGdnZ8n9b7/92xx99DF8//s/YsmSI/jCFy5h/fp1APT09HDBBZ9ir73mceedd3P99d9k5cq3ufrqK0oe47e//TWxWJxvf/tOzj//v4Z9PVVV1Tz55F9GXV/57LPLSiqFF174Wf7zP09jt93mlLw2gD322IsXXngex3FGfhM34utfv558Psctt9zGXXf9hLPOOodwOEJ9fQNXXx1MG77nnnu5776HuPDCz474OD/5yd3sv/+BfO97/8fChfty5ZVf5IYbvsyHPvRh7rjjbmzb5itfubZ4/sY+m5E+03//exnXXHMF//mfp/LDH/6Uiy76f/z85/fw859vu/WoqiCKiIiIyLjx/BMGzW9vv+ernwELj9j0+x1zzPHcccd3aG1toa+vjzfffJ2lS4/ioYd+u9ljCYVCJJNJDIMRK2AwMN00mSwrOW/u3D2YO3eP4tfnn/8Z/vznP/H000/y7ncfVzx+1FHvLobZ8867iL/97SnuvfcXnH32ufziF/ew55578fGPn1M8/5JLvsCpp55ER0c7VVXVQDDl8+yzzx319fy//3cpV155Gccdt5Q5c/Zg4cL9OOqodzFnTjDGnp4eent7S15DMpkkFothWdaQ96CmppZcLktHRzt1dfUjPu/NN3+Tb3/75pJjt9xyG3Pm7MH69es44oilzJ69GwBTp04rnlNWVg4EwTYej4/62g499HDe+94PAHDGGWfx4IP3c8ghi1m8OKjEfuhDp3DllZfheR6maW70sxnpM73zzu/ykY+cyTHHHF8c7xlnnMnPf34PH/rQKaOOcXMpIIqIiIiIbKKamloOOOBgHnzwt/T0dHPEEUuJxxM7dEypVIo77vgOTz31F9rb23Bdl2w2W6wO9ttrr/klX8+bt4C33loOwOuvv8bf//40Rx992JDHX716VTEgDq76jWS//Q7g5z//Dc8992+efXYZTz/9FD/5yd1ccskXeM973k82mwUoruPcmEgkAkAmkxn1vNNO+2hJIAaKa0NPOOFDfP3r1/P3vz/NgQcezNKlRzNr1i5jev7B+gMmQHV18J7sssuug47V4DgOvb09lJdXjPmz2dAbb7zKc8/9m+9977biMdf18H1vk8c8VgqIIiIiIjJuzD/Uh0O397Mam3Wv449/L9/+9s2kUikuv/zLwz+yYeAP2rV8S6ZHbswtt3yTf/7z73z60xcydeo0IpEIn/3sheTz+Q3GNPw4AdLpNIcdduSw1cG6urriv6PR2JjGFAqF2G+/A9hvvwP46Ec/zvXXX82dd36X97zn/VRUVGAYBj09PWN6rP7mNpWVozfsqaysZNq06cPe9v73n8DBBy/iiSce5+mnn+IHP7iT//7vyzj22PeMaQz9bHtwjAreO8saeszzgs9+rJ/NhlKpNJ/4xKc47LDNKHNvJq1BFBERERHZDIceejg9PT2EwxH23Xf/Yc+prKyivb2t+PXrr7866mPadgjX3Xh1yLZtPM8tOfbcc//m+OPfx+GHH8ns2btRXl5BS8v6Ifd94YXnS75+8cXnmTlzFgBz5sxl+fI3mTKliWnTppf8iUSiGx3XxsycObNYAQyFQsyatQtvvfXmmO771lvBuMrKyrZoDI2NUzjxxA9xww3f4D3veX+xKU5/J1bP2/rVubF8NsN9pnPmzGXlyhVDPouRAvDWoIAoIpNS3vN4um0dGXfb/SZXRER2brZtc889v+Kuu/6vWIHb0L777s8vfvFTXn/9NZ577t/cdtutoz7mlClT6Ovr5V//+gednZ0jTqdsbGziH//4G21trcXK2rRpM3j00T/x2muv8uqrL3PFFV/ANK0h93344d/z4IP38/bbK7j11ht5++0VvP/9JwJwwgkn09HRxlVXXcbLL7/I6tWreOqpv3D99VdvylsDwPnnn83999/Lq6++zJo1q3nkkT/yf//3Q5YsGehaetBBh5TsiziaZ59dxoEHHrzR81KpFG1trSV/+hvl3Hjj1/jb3/7KmjWrefHF53nuuX8zY8YsIAiOhmHw5JOP09HRMWpznU01ls9muM/0jDPO4oEHfsP3v387y5e/yfLlb/L73z/IXXfdsdXGtiFNMRWRSWlFqpvXejuZnawgaulboYiIbJ5EYvT99c477yKuvvpKzjnnYzQ1TeX88z/DZz5z3ojnL1iwD+9//wl88Yv/TVdXV3Gbi+Ee9+abv8G99/6Curp6fv7z33D++Z/hmmuC56qqquaMM86iq6tzyH3POuuTPPTQA3zlK9dQV1fP//zP9TQ2NgJQV1fPrbfewbe/fRMXXfRp8vk8U6ZM3awpjgceeDC/+c19vP32t8jlstTVNXD88e/jjDPOKp5z/PHv55OfPINUqm/UNZz5fJ7HHnuUr371Wxt93u985xa+851bSo6deuoZfOpT5+O6Dl/96rW0traQTJaxePESPv3p84uv/ayzzuaWW75Je3s7xxxzPF/4whWb/LqHM5bPZrjPdNGiQ7n22q/x/e/fzg9+8D3C4RCzZu3KCSecvFXGNRzDHzwpWoryeZfOzq33W4MtZZoGNTVJ2tp6i3OZRbaGyXht5T2P36x5k+ZMmvdN3YWm2OZvnivDm4zXlWx7uq52Lo7j0Nq6mtraqRus59r+bNvEcbZd04/xZMN9GceDL3zh/zF//j6ccsppI57z61//ikce+SPf+MYtI54z3uyI62q0/64qK+OEQkMryhvSFFMRmXRWp3tpy2WwTYPcNlhnICIiImN37rkXEY2Ovr7RNE0+85n/t51GNLlpXpWITDq9Th6DoL9YdoPF4CIiIrJ9NTVN5YMfPGnUc97znvdvp9GIAqKITDrd+Ry2YeL4HjlXAVFERCaPv/zlHzt6CDLOKSCKyKTTk88RMkx83yfljr7/kIiIiMhkooAoIpNOr5MnZJp4+KRUQRQREREpUpMaEZlU8p5H2nMImSa2YZByVEEUEdkRBrYNVEdaka0n+O9phG05x0QVRBGZVDKug+N5hGwTxzBJu86OHpKIyKRkmhamadHZ2UpZWSWWZRO0D9sRDBxHQVW2tu19Xfn09nZhGCamufHtLEaigCgik0q6EBBt08TyTDKei+t7WIYmVIiIbE+GYVBTM4Xu7nY6Opp36FhM08TTtkeyle2I68owTKqr6zG2oISogCgik0rWc4vTLmzTwHE8sq5H3FZAFBHZ3izLoqqqDt/38DwPfwcU8UzToKoqTkdHCs9TFVG2jh1xXRlGUJnfknAICogiMskEU0qDb5zFrS48l7i+HYqI7DCGYWJZO+YXdaZpEA6Hse2cAqJsNRP5utKvzEVkUsk4TvE31KZh4OGT89TJVERERAQUEEVkkul2coTMgakXBgY5rTsRERERARQQRWSSCQJi6bc+VRBFREREAgqIIjJp+L5Pb94hVNKx1CergCgiIiICKCCKyCSSdh3SrkPEKt0bKOMqIIqIiIiAAqKITCI9Tp6875ZUEEOGSXc+uwNHJSIiIjJ+KCCKyKTR4+TAN0r2B4pYFh0KiCIiIiKAAqLIpLc23bdF9+/O52jOpOhz8ltpRNtOVz7LhnvHhk2LXidPXusQRURERBQQRSazlOPwr45mevO5zbp/znP5/boV3Lf6Tf7Wtm4rj24o1/d4rrMV19+8bSlaMxmiZun6w7BpknNd+hxnawxRREREZEJTQBSZxDzfw/V9nM3cB7A5k6Yzn6UqHGFdJkV+lMfJuM6ot49FWzbDq72d9A6qVnbkMiVfj8T1PdpzmSENaizDxMOnzx3/FVARERGRbU0BUWQScwnCoev7m3X/NeleTAzilk3KzdORy7Ay1cPy3q4h5/6ro4U3hzm+KdpyGbpyWbKDuo6+2N3Oir7ujd6318mT8dwhFUQAg6CaKiIiIjLZKSCKTGKe7292BdHxPN7q66bMDmEaBj5BgPtXRzMrU71Dzm/Jpki5WxbCVqZ6yHhOyb6FPfn8mMJdTz6P63nY5nDf9oyggY2IiIjIJKeAKDKJub6P63s4m7GmrzWbpsfJkbBDAIQNk9d6OlmfSdG1wZrGnOfS4+Tp24IQlnEdmrMpPL9038K0m6d3DNND12X6SrqXDhY2TTpzmc0em4iIiMjOwt7RAxCRHcfzfRzfx/V8gomWY9eZz+L7YBZCV9wO0ZHLkPM8ep0cnu8Xb+t18mRdl94tmMbZls2QcV0illWsIHq+T9p1CeVHD4h5z+WN3i7KC2F2QxHToiOnCqKIiIiIKogik1gQEDevgtiRy2KbA6EybtmkPZfGaJyc55EZNJ20z8mT9ZwtagTTH0hDhkFvoRKZ81xc36PPzeOPso5yXSZFj5MjOUJADJsmKTdPegunwIqIiIhMdAqIIpOYS1A93Jw1iK3ZDJFBDV9Mw2BWvIyEZeP4Xsl6w14nj+v7ZF13s7eoSDkOtmFgGya9hYph1nNxfJ+c55Ib5jXkPZe3+rp5racTC3PEKaYR0yLtOry1hU10RERERCY6BUSRSaxYQfQ2rYtp3vPocrJEraGz1PtD2OBqXEcu2H8w73klHUg3RdrNYxUCYn8lMu95hQqoX9K4pt+6TIo/rV/J8r4uaiKRER/bMAwqQmGe7WorqXyKiIiITDYKiCKTmNvfxXQTq3q9To6s6xIeZssIAB9KKoht2SwJO4Tje8MGubHocx1s0yRkmqQcB68QCg0f3A2mtPbLex4+MDWWHHGs/crtMF35HCv6ejZrfCIiIiI7AwVEkUnMK3Qx3dRpn/0b01sjTNk08ItbT+Q9j24nS9QMqo2bW0FMuQ62YWIbJo7vFaaVuhiGgWEYwwZPxw8C4lgYhkHENFmfSW3W+ERERER2BgqIIpOYR1BBzG1iaOt18vijRK+QYdKVz5J2Hf7evo4+J0/EsgCfzGZUEPvXL1qGgW2a5D2PjOuScz3Ax/cZPiB6HozSvGZDMcumJZseteGNiIiIyM5M21yITGKuH8S8rOtt9LuB7/vF9YVt2TQhY+TfL4VNi658lsdb1vBWXxeN0Xih2hhU+l7ubqc6HKU+Gh/TOPOei+N7JAwbyzDwCaaXZl0H3zfAKN0bceB+G1RGcyasS2J0RaBwPywPf5dOiDlErWC7i7TrEB+h46mIiIjIzkwBUWQS83wfr9AFdGOeaF1DUyzJtHiS9dl0SQfTDYVMkx4nz/pMmqmxBNagMNmbz/F6bxe7JMqpj8Zpz2VI2qFR1whmPRfX9wdtq2GQdd3CusSgSJhyhm6hkfXcgWmwroHx9yaMVHjoE2Rs/P3WETJM8r5Lt5NTQBQREZFJSVNMRSYx1/fxC9M3N2ZdJsVf29byt7b1tGXTlIeGCVoFUcuiK5elLhItCYeWETxOZz7L26keMq7DX1rWsCbdN+pz5zwP1/OKj+UDGc8h5eaDdYmmWVwXOVjGdTELAdFYXomRCuNXpfH2W4t30Gq8A1bjx/IYbXFojxYrpD35zd+vUURERGQiU0AUmcS8whTTIVMxN5D3PDKeS2cux4vd7dRHYsXgNRzLMJmdrCC2wTYYtmGS8VxMoCuf4/muNtZm+kbcoN71PfKeS851Gfx0pgHt2Qx9joNlmISM4QNirr+C2GfDW5X4loc/rxlq0lCRhaos/ux2AIw3qoKxY9CeS4/6foiIiIjsrCZMQPz73//OOeecw5IlS5g7dy6PPPJIye3ZbJYrr7ySgw8+mH333Zfzzz+ftra2HTRakYkh73uYsNEmNVnXwfE8psUTNERiw+5/iGMEa/xGYRsmnbks5aEwvu+zKtVLbz5HTz437PnLe7v5R3szOd8lWDAYqLDDvN7XSdrNEzKDxjUpJ4+3QXOZ/immxppyDN/An9UJsQ1ea2MffsSBzii4BlHLojmTGfV1iIiIiOysJkxATKVSzJ07ly996UvD3n7NNdfwyCOP8M1vfpMf/vCHNDc3c8EFF2znUYpMLP3TNje2BjFTWAMYMsxCN9INtEcx/jID46lpQVAcQcSy6HXyJO0wMctmTaaP6nCUrhECYsrJszrdW2hAMxD+EnaIlOOS930swyRiWmQ8t2TvRQgqiCYGrE0GXVebhtnj0ADKchgY0BciZtm05dKs28i0VxEREZGd0YRpUnPEEUdwxBFHDHtbT08Pv/jFL/ja177GokWLgCAwHnfccTz33HMsWLBgew5VZMJwfA/LNDY6xTRbCGjGoHme1c0dHPiX5yFn8lTF8fTaQXD0mxPQ1Dvs48QsmznJCgzDoDIcIWya+ECPM3xA7HXz9Dp52rLpoFvpIEnbpiOXpSIeJmQGeyP2OjmSg5rLZD2XSGcCI2vjV6cgOkIQTuSgNQ59YaLlOWwnz8PNK3l340xqI7FR3xsRERGRncmECYijef7558nn8xx66KHFY7Nnz6apqYlly5ZtdkA0zZErIdtb/1jG05hk4nN9n5Bp4XgevjHy9ZXzXShsSA9g9Xoc8sfnSOSCKtti5wF+v/97YFUlxpoymDpy9a3/MWzDoDwcIe04pDwHF5+QWTqpIeU6ZFyXLidHyDRKAmpVOIppGIQLFU3DMEi5TvE1OJ6HB0TWVQZ3aOotuX+JZLB+0egLg2FQF42zMtVDWy5DfWxsW3FIKX3Pkm1B15VsC7quZFuYyNfVThEQW1tbiUajJJPJkuM1NTW0trZu1mPatklNTXLjJ25nVVWJHT0E2YlEe8PEnTAePmUVseGnjwIr/RSx7hCJZARnTZSpj6whketjTWwXQuEMdV1r2S35Em/EDoSOGFEzjhnfeGdUgIgXIptKESuP0JXPUh+LF9c4+u0mfsYgHAuRtHwS8UjJfcuIFv8d83MQH/jvNu04RNaEsVuTYHvEd3Ux7NL793PrIAvYmQiRZHBO3M+RLI+Oy+8DE4m+Z8m2oOtKtgVdV7ItTMTraqcIiMCwlQF/g4YVm8JxPLq7x08nQ9M0qKpK0NHRh+dt/usSGayrJ42bc/Esi7b23hH3Nlzb3k0u49BnZOGFGmb0vgrAK0umYNgeRz64lmnPvslrc/fEWF5J+vEqmNcKldkxjaM3lWV5czt/bV3HPpW1zCmvwvN92rr7MB2flu4+TAz6vJEfz8u5vNXSyW5WOQA9+Rzu2xFwTfymHlKjNZ4xchjU4XRZOL3Bc6TTOTq6UrQZw0+XldHpe5ZsC7quZFvQdSXbwni8rsrLY4RCI+873W+nCIi1tbWk02l6e3tLqojt7e3U1tZu9uOOlw9zMM/zx+W4ZGLKeS6WH2x3kXNdQiP0rerO5bAMA9+BaJdDbW4tfYkYrU2FMFaeoKalk+TBq+itDmO0x/H/1YB/xIoxtsLyWdHbQ2smzavdHcxOVJDxXPKeR5kdojuXoyYcGfWXPhHDpC2TwXU9DMMg57pEC9NL/Sk9MNovjGwfIg6kQ/iuD2bQuybruvrvbQvpe5ZsC7quZFvQdSXbwkS8riZMF9PRzJ8/n1AoxJNPPlk8tnz5ctasWcPChQt33MBExjnH87FME9f3cUcJUL1OnpBhQm+YxswqANZOrwPDAMNgxewmAKauXoO/3zr82hSGY0HH2Bu8dOaDCt/6TIqOfJas2x8Qw2Q8h/AI1c1+Ecsi7TrFPRVTfRDtTuJH81A1hm0rEjkM34BU0OTGIOjyKiIiIjKZTJiA2NfXx0svvcRLL70EwKpVq3jppZdoaWmhrKyME088kWuvvZa//vWvPP/883z+85/ngAMOUAdTkVG4vodlGHi+j+sPH4Y83yfl5LFNE7rD1GfeBmB900B1fs30egCmrmwGA/y6oEmN0Vpo8OIBvaHBO1WUMDDozueoCIVxC/sj5jwXr9C4Zm6ycsT1kf1Chkne9+h1goYzqe7CDVWZgS0UfR9G+i1eIrgfvWEATMPAGeE9EREREdlZTZgpps8//zwf+chHil9/+ctfBuC8887j/PPP59JLL8U0TS644AJyuRyHHXYYl19++Y4arsiE4Pp+sE8gPs4IFcSc55L3PWKGjdEToTa3Fh9obqwuntNVVUZfMkZ1axfRVIZMbSHMtcZgLrCiEvP1avxdOvB37QDHhPBA+AqbJh25LNNjSTx83urrpiocKea6EbuPDmIYBj4+nfks9dE42f4lxJGgWU5ZZy8HP7aMWCrL35fszbppdSX3z8YyRKmA9EAF0VEFUURERCaZCRMQDz74YF555ZURb49EIlx++eUKhSKbwPE9QqaFYYxcQeyf6mmbJpF2j4TbQ3d5Eic8sN8ghsHq6fXMeWkFTSubeXPuDPxkFqM3gp+yMZqDSqKxvApWlgeNY/ZfW5z6WWaH8QHbNElYIbryWTpyY2hwsz6B8Wo1/swumN5N3LJ5oaudXRIVxYDohx3wfA5+/N9UtfcAcPBjy/jtSUcWX0PKcWg3ephBA0bKxkcVRBEREZmcJswUUxHZujzfx/MLsy/9YD3icDKFqZ6WZ1Ld0QFAW13FkPPWzGgAoOnt5uBAbQoAY1U5dEfwQy6+6YFjYvgGxhtVxftGLIu6wob0YdMk67m0ZFMjzUgNuAbGKzUYmRDmK7UYr9RQGYrQmk2xMtVDPl2oOkZcpq1YR1VbN211lbw1eyrhnMNuL79dfKhuJ0usrPBsmf4KojHieyIiIiKys1JAFJmE2rIZXN/Hw8csNJoZqYLY5+SJdCQxnpxGdW49AO11lUPOa22oIhe2qV/bhpV38JsK20OsqMDAgLo+/CUr8Y9YgZ/IYXTEoD065HH6p5NmXBeLUaaWri7DyNr4VWl8w4d1SUwMYpbNC11t5DOF+4ZddntpBQBP7DWdlxfsAsC0t9YWH8rxfCLxQhhMBRMrTAMcVEEUERGRyUUBUWSSyXseT7evpSOXwff9QgVx5C6mKdehfE0tRiZEtR+EqpfKwsVuof180+Ttphosz6NhTSsk8vjVqSAcAn5tOlgPGPbwdwkqkcbLtZAf+m0oYlr09jfGGU7OxHizCh8ff49WSOYw8hZkLSpDEVqyaTLp4PUk8t3UNXfQmYyyvKGS9vIE3eUJqtp7iPekSLsOEcsiHrZww3nI2uCpgigiIiKTkwKiyCTj+h451yPlOsFaOwwwGHG9XWcug50Ng+9TnW3GsUzWlsfoyedKzst5Ls/WB/siNq0Mppn604NWoj4+VKcHTm7sw69JYfSFMZ5pZMNCXdyy6c7nsI3Ct6jeEMZfp8L6wlrGV2qDQNjUA8k8lBXG0hvGNk08fLxM0Chn2tpgW47XZtRTH0vQkcuwttB1tX5tG935HNNjSaojUZxoYauLjK01iCIiIjIpKSCKTDKO75PzXNKug+f7wZROf+RqWUcuh5UNkfTbCeUd2mvKiYXC5DcIT1nXZd3UOjzDYMqqFt7q7cat7cWvSQVBLjTofAP8fdbjV2QwuqLQnCh5rJhl0+fkCfdXEFsSGD0RzGcbMZY1YKxL4kcc/DltAPjJQkDsCbaoiJk2ftbENz2mrVwHQGrOLPYqrybrebTUVwJQ29xB3veojcZJWCGcSOFx0nZhH0RVEEVERGRyUUAUmWRc3yPnu4MqiBCyDFqzAxW+7nyOh9e/Tc5z6c04mK5FtRdML22uKSdkmkMayGQ8l0g8xur6CqKZHI2tXWQ8F3+/dfjzWocOxPIHppquTZbcZBoGu5dVkLALDWPSAw2XjZYEvuXhz2+GUGEUyaDjqVHYw7DcCmM6NjGjneq2LjqSMepmTGdqLEnCtllZUwZATXMnBhAyTSKWhRPtD4ghDFUQRUREZBJSQBSZZFzfJ+d6pB0nWINoGMTtEOuzKbzCOsTOXJb1mTSrUr246eDbRLUTNKhZV1NO2DQJGSY5zy0+bs5zSYbCvNFUA8Be67vIb2wfwZo0fsiFtjjkSr8dWcagrwsB0ZvTije/Gf/wFVCdGbi9OMU0AkDICYLltMybALw+o46qSIyIZVFuR+gJW/SUxynv7iOazRMxLSLmQEA00jYmBj6M2LxHREREZGekgCgyybiFhjS9Tq7YxTRhh+jL54vrCvvcPO25DCtTPRiZIJxVp4N1hWuqk1SHo5SFhjaqiZgmbzZVA7DrmvYh01CHMIGGvmDd36ryIWsRiwqb1zOtB6b0gr1B/TLsBfsd9oWCx8gGY57euxyA1TMbiVvBsfJQmLzn0VofbLMxpbWH8LAVRIK1jCM07xERERHZGSkgikwyrufh+T4Z16V/nqhtmrj4dOaDqZoduSw5z6U9l8HKhjF9h4p0B+lYhI5oiPJQmPpIrBgQfd8HDOoicbqTMVor4lR19RHv6tvoePwpweb15hvVGE9Mh/wGW1t4QMbGjzhgjRLWygoNZvrCkLOIO91Up1rpSkYxGuuC7TyAslCYnOfTVgiITa1dhAsVRDc6sAbRxMAfpburiIiIyM5IAVFkkunf/9DxfQZvM2gQBEOA9lyGqlCEHiePnQ1RlWvB9H3aayvwDUjYIeqi8WJjm6znErFM6gub3fdPM521um3jA6rM4u2zDj+Zw8iEoCNWenvGDoJfLD/645QHY6ctBlmLqek3AHhleh210YHHTNg2GNBaaFTT1NZTCIg2ZsQL9lTM2EEF0UcVRBEREZlUFBBFJhnHDyqIju8W9ygEiJoW6zJ9OJ5Hdz5HeShMn5MnlA1TnQvWH7bXVeL7ELUsGqNxQqZJxnXIuC5ldpjKcISwafLG1GCa6e6rS5vTuL5PRy7DEPUp/BmdABgd0dLb+qeXxkuns27Irw+qlcb6BOQspqVfB+DV6XWUhyLF82KWjYFPT0WSvG1R19FLGIhYJrZl4kfyGDkb0zPwUQVRREREJhcFRJFJxvV9fIbuexi3Q7Rk07Tm0kFF0AxCYCQXoSpfCIi1FRiGQcy0qQhF2DVZQVsuS4+ToyEaJ2JahE2LjtpKcuUJprZ2E+sd6I7a5+Rpz2VJOcOEvapCcOyvIPrAmiR0B+HO31gFsSyHH8tjdEdJrs9TnW+mJ56ktTJBmR0unha1bPzCw7dVlxF2XKKdvVhGsA7RiwRjM7IhPF9rEEVERGRyUUAUmWRc3ydkmjieX7JVRcyySbsuL3d34PoetmkG1basTXVuPT7QUlOBQRCyAHYvqwSgMZpg74o6DMOgIhQmaoXI7rkbANPeXFN8jrznUR+NF9c6log5wTrDnjA4BqxLYL5Qj/l6dfH20eR8Fxp6g+dcuxqA5TMaidg25aFQyeu0DRPH92mpDra7sNcHlc6EFcIJB0HUzAZB0h2yoYeIiIjIzksBUWSScX0PyzBwfZ8N2sFQZts0Z1IDxz2IpHIk3B66K5NkbJOQaRK1LAAaInEOrm7g8PqpxO3+LqERKsNhvHlzAJixfCAg5jyXpB0afvsIA6jKBNNeO6MYG65FHKWC2OvkebOvG6c+aHgzLf0aAK/sWkVVKELItAYexgqqnHnPZX1VEBCttUGH1qRt40QKW11kQ/jqYioiIiKTjAKiyCTjDAo8G2afilCEznx2YG1izqImG4Sn9toK8r5b7PgJYBgG8ytrqRi0xq86HKEuEsdsqKWjMkl1Ry8V7d0AuD5Mj5dRH4mxNpMaEhL9ymA6qtERgw3XIsZLA2Le81je14Pn++QLwTOTSBPf/TWq8q10VyRYnYzQFEuW3M8yTGKWRd73WFeVAMBc1wJAwg6TDxc6mWaswpgVEEVERGTyUEAUmWQczxuoEG5QQjQNg5pwlJpwIZxlbKpz6wBoq6sk47pUhMIYxoa1xwFzyqrYu7IWgFW7Twdg11dXBk9nQNyyWVLXxIx4OavTG2yDUZvGx4fVZRipMH48hz+9C7+hF0KlYTLl5gGfnOeS8zzK7WBfxhkdbwKwctYUfMOgNrJB0AQqQmFynkdbMooTsrHWt4LnEbMsnEgQRI2MjYG6mIqIiMjkooAoMsnkPS/Y44+hU0wh2MIiUphCStqmZlBATLsuuxXWHY7ENAysQoDs2HNXHNNg5htrsPLBGsK4ZVMVjnJo7RQipk3OcwfuHHOgJo2RLzx/VQZ/jzb8vZuHhNmM6xb2NPTIez7JUIic47DLa6sAeG3XRkKGRVV4aEAssyPkPQ8Pg766Koy8g9nWScSyimsQyQRTZlVBFBERkclEAVFkksn7LqYRTCL1N9KAxUibVOWbyVs2axIRykJhpsfKxvxc8fIyXpteSyjvMG352pIGNwk7RHkoNKSjqT+te+DfVcNsiVHg+B4JqxAwDYiYFjPWdRBPZVg/pYbmWIjKcJikHRpy32Qo6FBqGD6ZhmDPRnNtMxHTwo0WpphmbcBQBVFEREQmFQVEkZ1cxnVK9h7MFaaY1kVixY3tR1LZ3oPtO7RXVdPp5plbVjVQXRyDcjvMs7OnALD7i28RMgxihYAIMCWWIO06pF2HdZlUcLAuhR/NB+G1Mj3cwxYFzWY8DHzqInEWvBlUO9+cM52U6zItnhz2fnWRGHahk2uuIZgOa61rDbbAsF1804OMje+DizfsY4iIiIjsjBQQRXZyq9N9PNPRUvw673mYhkG4sGfhaGo62gFoq60EA6ZE45v03GWhMC11lbTUVlDV2ctu67pKAmZtJIaLT1sug+N7QdMaA/yF6/EXroeYO+zjOp6HaZjF+/s+TM047LqmjXQkxJoZ9fi+T214+ABcG4kxK1GOYYDb2B8QgwqibZoQcTDyFqZn4KmAKCIiIpOIAqLITi7nubTm0sWOoXnfLa4R3Jjq7mB/wObG8qD7p21v5B6lEpZNIhRm2V4zAdjvxRUlt1eGIhgYWIZJ0h403bQsB3WpER8347nELZu6SAzHC/ZsrHvmZUwfnp0zlZxhYJkmlYO6q25oz/JqaiIxjOpK/EgYc30bEQxs08SNBOOwcqGh23GIiIiI7MQUEEV2chnXJeU49BXCl+P5A9tYbERNOqg8rqtLEjJN4tamBUSj0BX11SmVtJfHqW3uwHpzZfH2ilCEmGUzM55kWixJn+uM8miDX5NDdThK0g5hGSZlOYf486/i2hb/nN1I2nWIWzZlofCIj1EfiXFgVQMV4ShuYx2G4xBu7yJq2niFTqZWNqQ1iCIiIjKpKCCK7OTSrkPGdel1guYrOS9oUgOAX/gzmAd0h4l0uCSdbrrDlfSGg3AY2siU1OHURmLkfPjL/KCKGHnkKfCCqlzINNk1Wc4e5dU0RBM4Y5zPmfU8aiMx4naIkGly0IsrMRyX7vlzyEZCpFyHhmh84HUOwzAMZiTKsAwDd0odEOyHmLDtYidTMxtSF1MRERGZVBQQRXZyGTdPznOLFcS87xWDk/HPKfDXJvycAVkT46VajEdmYT49jdqngvu3JerIex4Vo1TjRlMeCpP3XVbNqCfTVI/V3Ib93CvF2w+pmUJTLElVOBKsCRxTIPOJ2zYxy6ImlWOPV1fih0O4h+5H1LLodfIbbcAzmNcYBERrbQtJO4RjBe+V6ZqqIIqIiMikooAospNLuS6O79Gdz+L6Hr4PJgbkDYyOGEZPhMxjtfCX6RiryoMmMSGXmlQwvbStooac5426nm80FaEIdZE4S+qn4h61BB+I/ukpjN7SNYZV4QhJO0TazY/pcSOmhWWYHPrvNzE9n9zBC4mUl1MXiWMZJhWbMF63sR4IGtUk7HBJQHS0BlFEREQmEQVEkZ1cxnWIWTatuQyu7+PhYRpA30BF0O8OgWfgz+jCP+xt/N3bqc2uAaC1tgbP90kMs5/gWFSGI7y7cQa7JCrwpjaQ338BRiZL5HePwaDqnGWY1EWipN3hO5eWMoiaFvbLbzBzxXqyyTi5g/YBYGo0QTJkUxEee0D0K8vwoxHM9W3EMfDsIBRajj3maa8iIiIiOwMFRJGdmOt75LxgQ/nOXBbH8/A8gimmvUFA9Kd2E9qrGw5dhT+3DUIedk0nVflm0macnuoYhgFxa/MCIlDSLCZ75MF4FWWEXl1O6J/Pl5xXG44FG9+PwveDhZPRTI7I7x4HIHXsERAOxlcfjdMQSZDYlIY6hhE0qnFdyrt68cwgIJquRV4VRBEREZlEFBBFdmJ5L9hbMG6HSLsO3fkcHj4mBkYhIFKTIbRHL8QHOojWtrZj4tMSacKvyOLDJm9xMaJwiPQH3oVvmUQefhLrrVXFm8rDkSE9czbk+D5hDxp+/SfMVJrcwr2wd5tVvL0+GmdpwzSMMW7l0a+/UU15SwdeaGCKqba5EBERkclEAVFkJ5bzPBzfJ2paOJ5HZz6L5/tBBbF/imkyN+R+devaAGjeJ0I+liVkmMQ2cYuL0XhN9WTefTiG5xH7+YNYK9cCUGaHMTBGbQzjug7vevoVwmuacafUkz360CHnWMamf2vrb1STaOkAK6himo5F3lNAFBERkclDAVFkJ5bzXDzfxzIMMKA9l8XDD3ZB7A3hGz7EhzaFqV/XDkDLlBrynkfItLZqQARw9tmT7JGHYOQdYj+5H/uFVykPhYhYFtlhppm2ZtN09vRwxCPL2O3tZryKMtInHQNbqbLpFgJiZH07FGbTmq6lJjUiIiIyqWzdn/hEZFzJex4+PoZhYBsGbbk0AEbewsjZ+MnckF8T2bk8VW1dpOMResvj5PO5wob0mzZlcyxyi/YNppr+6Sliv34Y+9W3mLrXVNZFKQ2kvs/UFes5ctmblKeydFUksE7/AH4ysdXG4leU4cWihFrasM1giqnhqIupiIiITC4KiCI7ga5clqhlE7FKN7IPGr4EwS5m2aQdp1A9LEwvTQydXlq7vgPDh+bGajAMHN8jubXWHw4jf9A+eHXVRH/7CKGX3+B9/5+9/wySK0sPu8//OdelLe/ggUajvffd09Mzw6EZURT1cvhKerVSaCVF7Co2QlqFGJwgJYU+SWJQihDfDwoGuUvFiitppV2KfEWKdoYcb3raTHuHbjQatrxLf905Zz/cW1mV5VAFFBoF4Pw6EGhUZt68WXUz6z73ec7zfPAxl0f7aY4NkXoOxXbE6OQ81WYW3H54dIyzLzzKZ6qVvd0RIdATo7ifXGSk2coCa+WQ2vjQsizLsqzbiA0QLesW8GZtnoOFMndWB3q+nmiNyNu+FKRLLY2RsYc4PQyA6YtYnxfslpdODHe3UXF9rid14git/+vfxH/5TcTr73JorgZztZ77zI4N8vK9h3lvrI8ny3uXOezZjwNZgDi23GDG1chUkpqdjN2wLMuyLMu6NdgA0bJuAY0kJvQLG74ea9UdNehLSawVY6ePIpoBZqgNh+sbHjMyOQ/kGURAAaWrnIG4K75H/PwTxM8+widnP2bh0iQlBLJY5J2qx+NHTrBQXyBsNfZ8PeSKlUY144sNphyFE/kkSvP1mYucrPRzvNx3XZ7XsizLsixrv7ABomXdAjoqpZluLBcNtWJl6eDK2AevVcRIjXl0Ol9/uJpDDNoRw0sNauUCrWqJlVsL60pXryffcbn71N28PTrMDxemGPILJGnKeKHEdNjiUru5oZR2r6w0qhlZbGCGNUTQihTT0QLKaBsgWpZlWZZ1y7NdTC1rn6rFEd+fmyRU6bb3U8YQa00jSdZ8TVOLIzppirtm5INnJE7qgq82ffePXJoB4JOJQVjTlCaQn16AuOLO6gAVz2c26vDo4CgDfsBwUMSXznXbH9NXQZcKDCw1QGQBd9H4HCtVmey0qCXRdXley7Isy7Ks/cIGiJa1Dy3HEX8+c4H36ossx9sHJYlWKKN7MogX203+fOYCi3HY0310VOaNXfzN19WNXpoF4NzBwe7XjDE3JEAsOi4P9o9wqjLAfX1ZuWvF9Si77vXbHyHQE2NIbehLs1mQA6JI4GTzECc7revzvJZlWZZlWfuEDRAtax+63GmyEIUIBE21cU7hWqnWKGPoKIXKFxw204RL7SbzcdgzNF6meWDlbWzNKbTmyNQSWkqmx4eI88DTkZLCdVrzdyX39w3xhfEjuDJ7DVXXp+J61zVgXSkzHYzmsi+k2XOXXZePm7WtHmZZlmVZlnVLsAGiZe1DjTTGlxIhoJ5sXFu4VmI0ymhSrYnyctSlOGTQD/CEoLK2wUycB1abZBAHZpcpJCnhkQncICBSikRrXCFuSAYRsnWTazOgfZ7P4VL1ujbN0QeyAHGokzXrWQkQC9KlnsSk2s69sCzLsizr1mUDRMvah+pJnK+1kyxE4bb3jbXGkAWKkc4Cv8U4JJAOI0ERT655mycrGcSNAeLIxWz9objzGMN+gUgrUqPxpYMv98dHhSclTw6N976mPaYOjQMw3urNIHp5F9grrQm1LMuyLMu6me2Psz7LsnrUkxhPSgLpsBiH6JVZFZvIZh0KDIZQKWKtaKTJ5p0+8wyi2SSDePByFhCpk8cYDopEWpNoQ9nxuh1QbwemXCIcqNIfNglUqxsgukKQak3bBoiWZVmWZd3CbIBoWftMrBWhTrMA0XEIlaKzTVCSrAxyN4JQp7TShEgp/M3KQuP8Lb9uDWKh2WF0qUmnr4wZGqDP8wFDajRl71OYgbjPtA6NATAST3UDRCEEQkCoNm/wY1mWZVmWdSuwAaJl7TMdlZJogy8lnpAkRtFMt25UE2sNmG7w0kwTDKZn7d4KkWy+BnHs40kA6iePgBBUXQ8QhCrN///2EuZlpiPRJCLt/ZjsaJtBtCzLsizr1mUDRMvaZzoqzbqHCpllrYDpsMXpxlK3S2ltzeiLpNs0xdBWWQaRrSpSt2hSM5EHiMldJwAYDoqcrPTTUYrSDepgeiPFhyeAPIOY9H5MtrYJ1i3LsizLsm52t9+Zn2Xtcx2V9gR4AsHrS9n6wPGghMHw3blJfmz8CBXXI9IpAoErBK0kJtVq0+whsBrsrCkx9cOIocl5WkUf78hBABwheHp4grZKKbq34cfEQB+NQoH+cB4vTFnpI+sJSeMKXWUty7Isy7JuZjaDaFn7TKgUrInvxoIiQ36AMoZWmtBMExbikNmwDUAnTXGEwJOS2ajDR43a1nMLN8kgHrwwizBw8egYxTXlpEXH5cfHj3C01Lfnr3G/c4VkcngAAQzX57pf96RDzQaIlmVZlmXdwmyAaFn7TCOJcdZEiK6U+NLBAE2VBYjLccTFdgPIAkpHCMquRy2JCKRkwPM333jsYIQBdzWDeOjcNADLJ49s6FbqS2frbOQtzJWSydEBAEYas92v+1LSTJNuqa9lWZZlWdat5jasHbOs/a2Wj7hYTwL1OEahCaTkYqdJqNI8QMyCyEPFCiiBeHMMpMGMt2CsBVpkfxInm4EoIFIKJ44Zn5qnE3iYowc//Re7T7lCMD2RZU5HmzNgDoHIZiE205RIpZRuw+Y9lmVZlmXd+myAaFn7iDGGRhpvOqIikA6LSUiqNQN+QFulzEUdQp32ZvmWC4i5MgBipoIZ7EDTh1QijMD4WfZwPu5wz9kZpDacPzqCfxuOs9iKJyX1wTIdp8hgNItbM6QDAk9IUpPNQrQBomVZlmVZtyJbYmpZ+8hs1GEpjihusoYwcCTLcUQtiQny0s9PmjVirXsDxHb2WDPWwpRixFIRkTgIk9/HW11/eN+FrHzyozsmcIX9OFjhCIkrJdODY0gMY2ezcl4hBAaz7dgRy7Isy7Ksm5k9I7SsfeT9+iIiL2Vcz5cOoVJEWhFIhwEv4Hy7gTK6J7gTnSyzZcaamGcuo++ZRz8yvbohJ8sgltsxR2aWaZcKTE4M4tgAsYfvOFw6OAjA+NR89+uekLxXW0AZvenjtDGcbiytGT9iWZZlWZZ187BnhJa1DyijOdeqc65VZ8QvbHqflfJGZTSulBQdl1AplDHrMoh56WMpBcfAkTqMtjFBPuA972R694VZBHDxjoMgJK68/ZrRbMeXknPHs1Ld8aXp7uiRkaDI5U6L863Gpo+73GnyxtIctSTa9HbLsizLsqz9zAaIlnWDaWP4+sxF/mLmQrfZzGaEEBjTMwGDsutST+ItAsTeMkjz+CSmP8TcuQjAveez8tLzJ7PmNLbEtFdBOjTLHrVggGpaozibBdiOEBQdh/fqixseo43h7do8i3GYzbO0LMuyLMu6ydgzQsu6weajDhfbTSaCEqPB5tnDFVLSUwo66AUcLJZXx1MYoONiPAXeuhLHcop5ahKGQ6qLdUaXW8z1l6kP9QHGBojrBNJFGcPs8DgA4+eWureVXY/lJCLRqucxk50Wk50WjhA2QLQsy7Is66Zkzwgt6wa72GlgTDZ770oOFspMFErdfwshqKztphk5CC2huH0TleMfXQLg/eNjaGMQAhxbYtpjwA9IjWb6wAgAE7Nz3dsC6RAptaFZzXzUAUAiaaU2QLQsy7Is6+ZjA0TLuoESrTnTqNG3VyMmtigvXUumihMfT6Kk4PSJCVKtkULi2Qxij34vwBiYO9KPRjK2PA06W4go826mjWRjgFiQDr4UNJL4Ruy2ZVmWZVnWNbFnhJZ1A81FbZppQnWvZurlHUwpbp29OnRhhiBOOHd4lKjgk5hsTEbPOkaLfs/HlZKwopgPDhCoiKH55Z77NNPVIFAbw0IcEkgnm6NoA0TLsizLsm5CNkC0rBsoVNkaNrFHwZnIM4hmmwziHacvAvDRqUNIIfIMothRievtpOJ6VFyPjkmZ6jsMwMFzveMuFuOw++9WmtBRKQXHxZMOzTRGG/Op77dlWZZlWda1sGeElnUDRVphuMYgQgPTZcQb43CuP/vaFgFipdZkbGaRerlA/dA4jpDdDKJtUtNLCMF4oURHpUyOHQDgwMXZ7u2BdFhYEyA20pjUaDwp8aUkNrp7AcCyLMuyLOtmYc8ILesGCpXiWnOH4swQ8u1xxFwZfIW+cxH6o6zkMQpJ1wxsP5lnD989eYCK7+MIQaI1rpBIW2K6wWhQJDWa5kiBhjvAQKNOqZk1ogkch0YaE+VBYCNNWBlC4glJohWhto1qLMuyLMu6udgA0bJuoFYaX3vmbj7raqofmsF89gKcWCbSisudJhrT7bTpJinHP7qEkoJ3ToxTclx8mWUQfWfz2Yu3uwEvyPK7lZipwnFgNYuYdTLVNPJ1iMtxyMp3MSsZFnRsJ1PLsizLsm4yNkC0rBuordKtA0QNXOxD/PAQ4ttHEe+MZl+/WEW8NoF45QAsB4iWjynHMN7qvqMbacyxUh+jQRGVr4M7duYyfpJy8cRBmgW/u1Yu1ZqCDRA3VXY9XCFJyxFThRMAHMwDRCkExhg+bCyhjWEm7PR8H42Bjs0gWpZlWZZ1k3Fv9A5Y1u2srVLczeYPGhCvHkTUCqtfm6pi7lxEfDCCWClMfSsb4s5Qp+fhsdYMBwVaacqsaYMxnHrvHAAf3XcMgcGXDr6UpEbjSxsgbqbguLhSkrgx84XDxDJgdHoBJ0lRnstoUOSD+hKhUsyEbcYLxdUHC2MziJZlWZZl3XRsBtGybhBtsgDC2SyDeLEPUStgKhH6mUuYkVb29ZkKAoEZ7GBcjYiyazxmsDdA1BjKrkfRcVHGcODSHNVGm7nxQZaHs0Y2npQE0iHRtsR0K56UFB2XxGhMRTEdHMPRhgOX54BsHWIgHc40lxkvFHsCbV/IniY2lmVZlmVZNwMbIFrWDZJoTWo07trmMAZYKCA+HsIIg3lgDqpx9gcQU5XsboMdOFTPH2JgaH0gIig6LgXHQWG4691PAPjwvuPdp/GlxJcOhixTZm2u6nokWkMp4XLxJACHz013bx8OChwtVTdkYYuOy0zY7pb4WpZlWZZl3QxsgGhZN0isFcqYnjWI4vQw8rWDiFTC0Vo3MDTlPEBsBNkdqzHmaA0jNQyE4OnejRtD0XHxpGRivs7Y9CLNaonJI+OYPGDxpYPvZM8dOPajYCt9nk9iFKYcM104Suq4HLg0h5NuP8Ki6Li0VUojiTfclmjFmeYyyuhNHmlZlmVZlnXj2LNCy7pBIq1I8xmEACQSLvVhXI1+cAZzanH1ztV1QUYlhoLCPHcJ88hMz02p1rh5aaQvHZ5+Pxtt8f5Dd4AUhFoRSIei4xJIFwm2xHQbVdcnNUA5QQuXqYFDuKliIi8z3YorJUprakm04bYL7Sbfmr3E9+YmibWdlWhZlmVZ1v5hA0TLukFirRCIfCQCMFdCGAFjTZho0TMgsZRgRJb5M46GYt78pJhuyB7GOms6U3RcKgvL3DG5SLtc4PwdhwBYiEJOVQcoux6OELjSwbVNarZUdNzsR1HOxoVcqtwB9JaZbkUIWIp7A8SVzqcOgtONJS60G3u9y5ZlWZZlWVfNBoiWdYNEWrF2eZqYKQNgxlsb7yyBUhagUIl7g8d1EqMouVn3zbFX3gXggwfuwDiSjkpxpeTu6iCQDXT3pOxdB2n16I6uyL//084JUtfhwMVZ5BXKTAvSZTrs/XkuxhFTnRYjQREp7KxEy7Isy7L2FxsgWtYNEmuNyLOChA4slDCu2jCyoqsS9/69zXb7XB85v0Tlo/O0Cj6f3HmIehIzF4Xc2zfIoJ+Nz3CkwBUCV9qPgq2sNPDRUmMKCSoqMDU2gZcqJi7Pb/vYouOyEIc9ZaQX2g00Jg/MJY10+5/nWqGywaRlWZZlWdeXPSu0rDWaScz35ib3dJvTYYvleOM6tChNMUbATAnxgyNZeemaYffrmf6o5++tJFrT7/v4P3gNAbx2z2FiR1JLYj47epAnhia693XzDKJnA8QtFWTW7Cc1WSdTgeBS+CAAR9+f2faxRceho1Lmo9Wg/2K7QTkPOj0haSTJjvbjo8Yyfzx1btNjybIsy7Isa6/Ys0LLWqOlUpbiaE9HE3xYX+Jyp7nh622d4koQZwcRSmZdSe9a2HpDR2roh6fh4PZr1rQxjC61cd/9EF0q8P7Jg3RUSsFxOFHuW22Kw0qA6PR0UrV6FRwHT0hirTFH65jBDlMHxohFwMHpKbylrY8VIQQCmOxkZaYdlVJLIkqOB2RzFneSQTzXqvOducssRJ1dZRwty7Isy7J2y54VWtYaqclmE+7l+IFaktDc5KS+nSa4xoGWj/FTzN0L4G4TmEpgrL3l+kNjDPNRBykER196GwGEzz2OCrwsQJQuwbpmNG6+/tCWmG5NCkHF9bNZiKNtzBNTqCfnuDR2BAfN4ffXlZnWfZgvdv9ZdX3Oteooo1mKw7yJUPb99qQk1IpkXSfT781Nbsg6OkIghaCZ7izjaFmWZVmWdTXsWaFlrZHqlQBxbzKIxhhaKt60jLCVKvx2MSstXT/G4io00gRHSH4m9ameu4weqKIeux9PSDpK0e/7qx1Tc64QeNKxJaZX0Od5G4K4c3cdAOD4pQurXzQg3pxAvn4A8d4IaKi4HrUkYj4K846mpvtz8IQk1ZqOWt12O0250G4wlweIqdZMdlpUXBdXiA1dUS3LsizLsvaSPSu0rtnFdoNzrfqN3o09oYwh1Rql9yaDGGlFovWGssCVwDFoZ81iqF77SX+sFSN+geMvvp0992efAsehkK+DG/CCDY9xhcyziPajYDtVzydZl1VeOFGm6VYZac9SeamE+MFhqAWIMFtfKC73waU+ZB4MfthYYqrTwl+TxXVlFiCubT6zlITUk5jpvCx1KYlopgklxyOQDgtReL1frmVZlmVZtzF7Vmhds8UoZC7covPmTSbJS0zTPcogRioLEDtK9ZStrgSObjMLEM1VZBA7Ku3pjpkaw4lL8ziTM6ixYdL7TwEQSBdDFuSs50mJLyS+Y+cgbqfseGw4JKTgwugJAI5euoho+YgPRgAwA9n7QdSyoHw0KPJ+fYnpqE0pb1CzQggI12QQl6KQ2CimwzbKaBaiDgaDFIJAOjTSOCt3tSzLsizLug5sgGhds1jrnkDlZqa0JtF7V2IaakVqNIlWPUFApBWpMTiNq88gzkUdptcG5qninpffy7b/+WeyyIOsyYov5YbAJLvN5Qvjhym6G2+zVgWOs+naz/MnszLTY50PwBhEIwsIzbFadodmFpT70mEsKBCqlOK6n4NB0NGrGcTJsM2A69NRKctxzOVOq7t2NHAcQpXSsusQLcuyLMu6TmyAaF2zxCjiPWzqciOtBIdrs30f1BepXeW6r1ClSASpMb0BolJobRDNAONoKO1uvl2sFb50qLge9STLPj52+hLFepP0jqOoO45071twHHzHoex6m26rsEngaPVaH9StaN4hWaiOUEnrDIlLANksy9E2xlPQ8iE/lAqOy+FipVty2mWyhkXfm5vkneV55qI2FddHY/igscj5Vp1q/rNzhEQbYwNEy7Isy7KuGxsgWtcs1ppE3RoZxDgPENM1AeLZZo2F+OrWfYVa5Zk807POLNIKN/QQSmbZwy06k26lmSaMBEUeHhhhOYkotjo89d4FtJSEP/6ZbvYQoChdAuFsmkG0dqbgODhCbuxuK+HcA+MAHE+ztZ8Md7KfZznOGhB1Ng/MV3hScLnT4oPGIi8uTNNKU4qOg4PgTKNG0XF6gnghsJ1MLcuyLMu6bmyAaF2zRGviW2RNVKRTDKZbYqqMoZEmdNYEd3NRh/dq28wrXLu9NAUDrCsjjJRCxvlJf2H77KExBrOu5LWtUo6WqhwtVfGlwwOvfICnNMuP3YsZHui5r+84FF3XZgqvQdFx8aTY9Di/cMdBEtfhyPx53IlZzB1L2Q2VfF1pc+Paz7U8KVmMQgrSYSwoMuBl3WaHgwKBlAz6hZ77C0Q3a2xZlmVZlrXXbIBoXbPEKBJzq2QQVV5iarr/jrTqKelbjELeqS30ZAS30kgTPCkw9DYiCbVCqrwxjLt9cD0TtbkctpgKWxhj0Pm+jRWKlFyP43N1jp+bpln0aT376IbHe1Iy6AcbSxutHfOlQ0G6pJsEiKnncuGOg7hKc9R5ByrZsWLyv2lun0EsOS6hThnyCwSOQ5+3um5xwN/YedYRglDvriTZsizLsixrp2yAaF2zWyuDqNFrMoixUqTrxlS0VcpCHDIdtrfcTi2JCFVKM02yURICGknM9+Ymudhu0ExjnG6AuH1DHGUMDw+MEkiXtkrpqJSS4zHsF3GU4nOvfgjADx45iV8obnj8RKHMA33Du/1WWOtU3I2jLlacvTtb83nHhxfptjvNM4iitX0GseC4HC1VdxzAO0IQ3SIl3ZZlWZZl7T82QLSu2UpjF71HnT9vpERrzJo1iFHehbSxJoPYSGI6KhtmDlkA9/byPJFSRErx59MX+B+XPuaHC9M00wQvnzM4HbZ5r77AdKdNK01wdVbyaa6QQQTBRKHEkB8QKkVHpQwHhWxExfd/RF+txdnxAT45PpF121yn4npMFMt78w26jVVdb8N4iUYSo4xmebifxZF++pebjMzmJablnZWY7pYjZDcb3UwT27DGsizLsqw9ZQNE65oYY0i6WbebP4sYa4WBbrAb5SWn7TTtvr6miun3fM636rTThPmow+vLc5xr17nYaXCuVaPP9fi4WSPUKZ6U2TqzOEQZzaVOI8ssrmQQnd7v20zY7pYyruxHyfEYK5QI85LX8aCEnF3A/+EbKNfljx45TsF1cWwZ6XVT9byeDKI2humwQy1fD/jxShbx9MXsDr7GFJMsg7hY2LC9q+UIQZSPlTndWOSjxvKebduyLMuyLMsGiNY10ZhuQLVXw+VvFG0MsdYIRDdAWzkRT7RezdokKX2uT0cpPmnVudhusBRHvFdb5IP6IkXHpeR6uCJrJuIKScnxkMChYoVaEtNO0zUlpqtBR6RUlhVSSfd5fSkpuy4DXpA1rAEGXI/CH38ToTVzn3mEsK9MZYsxFtbeKDleT7PZUCkGfL97XFw8foDEczl8bgo/zIJGc+ciAOK9UcTr44jvHUF87wg0rv5n5QhBrBXaGDppSlvZDKJlWZZlWXvHBojWNUl1ljnUxqB2uA5xqtPaUYOXT5syWSbUE6I71zFSCldIUpMFiLFWxCbLCvZ7Hu/UFvi4WWOiUGQh7jAdthnMG4uM5h0pVzKIB4plfOmQGk1q9KYBYkslDPqF7prOWCsK0iWQWfMSIQQSweE3P8KZnkMdHCd+7H586VB2bIB4PRUcl7WXQDoqpeJ63a8pz+XcyUM42mRrEQHGW5jhNqLjIebL2d8dD3F26Kr3wxECRXYMtVVKO91/7yXLsizLsm5eNkC0rkkWHO4ug/jW8jxTYes679nupfk6SldKkjxz2FFpt2wzVCmhUiTa4ApJn+tTS2IaaUyf61N2PIrSwxHZ20oKsWFEAWRjCuItupi2laLf84nUSoCo6fezwLDf8wkch8P1DgPffw3jOIR/+fOU/YDAcWwG8Toruy4C0S01DnVKn+f3jCE5c+8xDHDn++dJk4RQp5j75zAnltCPTqE//wnGTxGz5St2N92KFAKlIc2z2u19eLHFsizLsqyblw0QrWuijMFg0PQOl9+KMYZaEtHah1mPVGeZUFfIbjOSVprgrgSIWhGqFKU1rpQIIRgNCvS5WQA36AcMBxvHEqxXclxaaYpQ+duvZw2ioex6CLE6ZmPQy4JMTzqMSJefePF9hNZEX3gGPTKUjUPwAjvn8Drr83xKjksnLyk1wOFSlcBxuhnfZn+ZqSNjFDsRg2cuMh+FECjMnUsw0gHPYI7VABDnB65qPxwhUUaTaE0n72q7fk6mZVmWZVnW1bIBonVNUpN1MDWG7miI7cRaE2nFchx+Cnu3OyuvxRViNUBUWRfSbI5hSqQVa/vAFB23O7dupwY8n2OlKqT52y8fcxGqlEA6HC5VIF/tpjBUvdVM07NvfkLfcpP0+GGSJx7sfv1UZYChYO8aoVgbOUIyGhTpqJRUa1whmSiUqLgeLZVwvt0gUooP7zsOwKMfXkawyXvicB0jNcyW4Sr6OjlCoDF0VEpiNElesmxZlmVZlrUXbpkA8d//+3/P3Xff3fPnS1/60o3erVveSgZRCrGjLqbZ2AjDUhxf8b6ftjQvFXSl7GaE2mmKIyQO0EjjnmH3V0sIkY2jWMkgulnmciGOGAmKDPsFBHkHU5M1RwFwzl7k8Ntn0IWA8Gd+jLWR6t19g4wGG2cgWntrvFAiyss6K65H1fUZDYrMhJ3uwPu5iSGWhqqMLzU5NFffmN1zDQyGiFRCbZugfjmAdPOutAJBW6UobUi1JrpF5pBalmVZlnXj3VI1affccw//4T/8h+6/nU1mwll7SxmT57rMDjOIK3MFs/lxK+v19gOlNQi6XUzTPNtZclw8KaknMWXH2ywndHXS1QBxMmwxUSjz1NAEZdfDd2SerRSUXBfRaFL4w78AIPpLn8NU7VzDG2HAD0BAPYl5dGgUKQQjQZGxQpGq69NIYhCCD+49xrPff4fHP7zMi0cm8EXvZ5EZaSMWSoj5ImZwTTZ9vgiVGBaLyHfHMAcbmPvnNtkTQytNUCbrIxxrBdg1qJZlWZZlXbtbKkB0HIfR0dEbvRu3lay0Taz5/ywI/KC+xAP9w8h1c/kipdDaEAtFO02p7rI8c6/Nhu3uSX5ishEXjhAkJutYmmqD4wqqrs9kp4Ux4O5VUJvKbP2myJ732eEDDOdlokXpsRCF9Hk+/dKl8Pt/hmyHxI8/QHrPyb15fmvXBrwAV0ikFNxZGQCy0SUlx8vHnWTB3kdHx3joNZ8Tlxd4bamBGR7o3dBwO/t7oQSnlrL/Xw6Qrx/AeIruVYiZMtw7t2mtR1ul+d0E8R5kti3LsizLsuAWKjEFOHv2LM8//zxf/OIX+cpXvsL09PSN3qVbntKG7GzW5P8PS3HE2WZt03LMSCtcKbst+m+0N5fneWM5y9CsrKWUYnWtZGqytWaB42CAxSTE28MAETdbQ+ZLScldvV4z4Ps004R7+oaofPdV3EvTqIlRoh97bm+e27oqZdejz/O5qzpAv5c1JKp6PkfLVcqu1+3kGwrDR/ccRwD3v3tu44ZKKaaYIBoBnO+HWCJmKgCIxEGkDkbqrJHRQmnTfWmlCeRzSFfmdVqWZVmWZV2rWyaD+PDDD/Nv/+2/5dixY8zOzvLrv/7r/K2/9bf4wz/8Q0qlzU+wrkTKzdf/3Agr+7Kf9gnACIPIs4RaGKQUtFU26D1GUZG9ZW8pGpGXcXZ0ekNfT0elzERtlDFZySsGKUEKSWIUkVEgwJFZQDgeFDnbqnOgUOq+5qtmQCiJKWSNRgLHyUpJ8+0OBQWGCwXunV7Ef+kNTCEg+vmfQvp7/5bdr8fWfiQRPDU8zqBf2PD9Knkuguz9EBvDwsN3krz7CXd9Ms3Zx0M6lTVrRAUw1obz/cgPhzGXqqCyjDKnlqDjQn8E744iZsow1lm3JyLLeAsBBhL0vvv52ePKuh7scWVdD/a4sq6Hm/m4umUCxBdeeKH7/3fffTcPP/wwX/jCF/jqV7/Kz/3cz+16e64rGR6u7OUu7onBwf219mxWRhRqWRBYqhYYHq7wsWqgPUGxGjBc6f0eeqpBoeEBArfs3tDv8Sf1GtLPgr+am1IOChTqHtVigEgSKLkUix7lyuroioerhWsPDgGTCDqA9A1uwWW4UGRkpNq9/bgTM9BuMfS7XwfA/z/9NMWTB6/5ebez346t/WqrY3bMTSg0A8qVANdEHDo4Rv3J+xj+/pvcf/o8777wEAthh5FCESEE5pEW6kBK+lEFvZAdY3IkovBgVqZqEkHnfYOYK1PQHWTfasa9REyx7FMwWYl2sRLsy88rsMeVdX3Y48q6HuxxZV0PN+NxdcsEiOv19fVx/Phxzp8/f1WPT1NNvb7+qv2NI6VgcLDM0lILrffPzLPFeouwkzXmWFhqsiBKfDK3RL0dMr1Qpxj1BlNTi3WSSCGAc3PLHBU37k1zemGOMEwoOS6vXJ7iRLmPTpjQ0S6tNOLC3BKdTkKLaG+esO3CcgEmmhA7WadSqai1OkzIAgsLze5dh1uKw7//fYgT4s89RevAAVhz+17ar8fWzabTjuh0YlpERGFC2kqZf+AU1Zfe5si75/jmHRMsBQ4iNhRXZlb2RXBvG35wCKElaqRBq7nmeDvUQFzso/ONEbh/Hg60AIjDlLoJ6YQxEsH0YoMFcXWVEteLPa6s68EeV9b1YI8r63rYj8dVX18Rz7tyE89bNkBstVpcvHjxmprW7Jcf5lpam321X4nSaASOyRrQKKVZjEISrWmn6YZ9bSYJLgIpBEtRdENey1SnxWTY5FyzQdlxqbo+lzotXATCZNV/qTbMhh18IXc3hDzNSv7w8scoAfNFRDOAc/0ILTFLAeZoLWvt42gSbai4/ur3QimKv/dnyFqD5N47iZ59DD6F79N+O7ZuNp6QYEBrjdaGonQQ5QpvnTzAE6cv8+AHF3jvyXtpJQkFuebDuZjA3QswVcVMNGHt8Xb3PMZPER8PIt4ewzSWMacWkWTvN2nAEdBK4n37s7PHlXU92OPKuh7scWVdDzfjcXXLNKn5N//m3/Dyyy9z6dIlXnvtNf7hP/yHOI7DT//0T9/oXbulpVqDyeYgxlrRyWfEBdLZtAlNK01wpcCTklYaZ7P+9tBSHPJubaHna8m6GXEf1Bf54fw0i3FIxfWQQjAeFJkMWzhCIPMYr50m+HIXbxED4uVDiJcPZQPQIwfxykHkWxOIs4NgBMZViMt9iHMD2WNcjQBKKxklYwi+9l3ci1OoiVHCv/yFnnmH1v4VSAdHZPMJA8eh6vmUHY8P7j9OKgWPnJnilFOgs1lDmcMNzJOT4K2bZyiAO5Yxj01lx865AYgljsg6lzpC4EpJax80fLIsy7Is69Zwy2QQp6en+YVf+AWWl5cZGhriiSee4Hd+53cYHBy80bt2S0uMzoMqQWIMzTQmVoqy49JM4p77amMIlcKXEk9K2mlKqFJK7t7Nb1uIQs40l7m/fxjIGtF8bfo8D/aPcEeln0gpJsMWBwqlnucNHIfxoIgjJBKBNprYKCrOLvYtchCtbE2YmSshPhpGdDxMf4gZa8FIG1KJeOUQYipfb+hkAcFKyaH/4mv4b7yPrpTo/K9fAu+WeYve8gLHwZWCZprQ5/ndn+lnT9xF88F5Bt48zam3z/LDk0O73/hwCMMdmKlAy8epdAiVxpMSV8h90RHYsizLsqxbwy1z9vm//+//+43ehdtSrBVSCCSCRClaKgHAk5JGmmy4b2o0JeHiCUliNB2lSLSmnsYcKVU3e4pdaaQJjTQmVCkFx+XjZo3L7RaNJKHq+SRa0UlThorBhscWnNW3gzEQKc3Qleq0k2xUBQJorM50FO+NZqMKhtuYR6ZXc/WGrGQwzp5L5xnEouPivvk+wbdfxvgenb/205jq/mw6Ym3OE1mwVktDTlb6u18f8guIzz6NefcMw29+wMDhp4gLCl9eeQ3AWqYSI2aApo9TzTL2BcfDESIr7zYGZ5Ns8ysL0xwt9zFe2F9rFC3LsizL2p9umRJT68ZIdBbgZCWmmkYSIwR5CWnSs34vmytocKXIO4EaQpVyudPk/frinuxPLYmIlKajsuzku7UFhoOA1Gi+NzfJhXYThLhiJ1IhBIasdHZL02XEt47BuTwYaKwGnSJ1MBjMXQu97zIBVFczq1oqfEfSf+4yhT/9NkZKOl/+KfTE1a+dtW4MIQQlxyPRmpGg2HObqZZJHnsAkSqePX05n2G4S5XsuBFND0dIYq1wRJaNT7Um2iKLOBt1aKTxprdZlmVZlmWtZwNE65okWiOFyNZEGcWFdoOCdHHzE9i1A7xjrVFa46wZNN9RKQtxyFIc7a4ZzBaWk6jbIGey06KexvS5PuNBkYWow9lmjbJz5cyNwWQLEQESiXj1AOLNcZjPT/w7LuL9EQQC8clgNug8zyCacn4yfqAJlU0Cgepql8rUSTmy0KT6B19HGEP4M19AnThyLd8C6wYqOS4Fx6XP8zfcFj/7KMb3uOvDS7j11u43vnJcNf3s/aYVrhDdbHxbpWhjWIzD7kO0MTTThEhtsu7RsizLsixrEzZAtK5JbFS3sUusFXNRSJ/nZ1kNY3oCxFrcOy5ipRHMfNTZEExejURrmmlCarIM4nzUwSHLFgohOFAsEap005P39bRhtVzvQh9iqYiYLSNfPwA1PwsOUycrF1UScX6gm0E0D81gji9n2cNNmDUZxL72Aj/5jTcQaUr4xedI77/rmr4H1o1V8TwKjkOfu/EYM6Ui8RMPIbXmyfcuXHFbKj+Ou0opRmpo+vjCYaJQIpBONxvfTrNj/vtzkyT5eynWilgrQm3XKFqWZVmWtTM2QLSuSaoNApE3dgGls8YZjpBoownXZC4utBt4a7qCekIyG3dopgmxXncyvENnmzW+OnWer89cpJ0mJFrjCUkzTZgO2xTXZAsdITlYLPdkMLcSSEnV80AJxMX+rFz0SA0A8cEIYqGEKSaYpyazk/YLfVlDmmIClQRzahF8vfnG8wCxP5nnJ9/8Hn6SEj33GMlTD+/69Vv7S0m6VFyP8haNl+KnH0YFPvd/Mk11efu5lotxxFTYXv2CAMoJInUgchj0C91SaQO0VUIzTailEfUky1yvlHW3EhsgWpZlWZa1MzZAtK5Jt0mNELTShEJP+aYgzIO+UKVMhi2qazIrvpTUkphIKzTmqgLEDxtLXGjXudBuMBm20MZQdBxmoza1JFodSL5L44USFdeHqQoicWCshblzEeNqRL0AgDm+DMUUc3IJofO3UnUHa71KCVU1x2fn/4BCknDmwZPELzx1Vftp7S9F12OiUN56jWshoP70Q0gDD776wYablcmy4JA1Sdowh7OyWma6loOgkSTUkphaHHfXHMZak2ptu5xalmVZlrVjNkC0rsnKGsSs1X7SU75pMDTyURdzUYcwTXsyep6UWSmcEUjoyTZu51K7yUKUrbNqqZR+L0BpzaV2EzD40qGexMRaE+yyU+R64lJf9lqO1cA1cLCR/dtPszWGAMdqmPHs/01fuOl21qrWGrww9z8JdMhbx49z5qn77azDW8Txch9PDI1te5/0iQeplwscujTH6FRvGfJyHHezhkIYPOmQmNVMtFkJEFu9AaInJUtJyELUIdKKel7OHamsc3BbXUVTHMuyLMuybks2QLSumjIaA0iyYd13Vwd7WveXHZcPm8soo7ncaSFlb/dQTzjESiMEGMSOsxzv1xeZDlsoY4hU1qgjcByaaYwBfOkQaw2YK3Yr3WA5gHaedWx6iEaQNZ3pz064zdFlTCXC3LUITp7ZEWDun0M/OANH6ttufmC+xhf+9CUKKuTM8D1864mjeDtommPdHDwpe8albKYQFHjt0VMAPPzKB9lMlVyssxmiidaAwJcyP5Zzxew9IsLeYyaQDrU4ZiEOKTou83Gnu700L/XWe9AEyrIsy7KsW58NEK0rUmbztXSdNM06KcrNg7B+L2AxDnm3tsgH9UUG3N7Zg9msxJhASlwB9SRmstPk3drmzV1W9mU+6tDOnzs1GldK+lyfhTjEExJfZtlMyQ6DQ5P/udiHfOUQ4q1xgO4we3OgQXdTRYV59vJq9nCFY2CilWUZtzAys8jnv/oyQZRw+v7jvP4zx9GO6VmXad0eaqeOMD3cx+BinUNnLjKTZw2VMRRdt1tu7TsO8drmTX7+/3FvgOhLh1CndFTKgOczF4XovEmUIwTK6N7tWJZlWZZlbcGemVrbutBq8L25yU1vW0oiUq23HPi9sjbxdGMJY6Dkuhtu96VDxfXwRFYW+m5tgR8uTOflohs1k4RQKxppnJXP5WMzAsdBGUPZdXGlpK3SDc8HgAYWC9nfdR/x8kHEN44jvn4C+cEIAKIRQOTAVCUbd7E+GLwK45fn+OzXXsFLUt555E7eeuIeEAIDuDtommPdWgaCIt9+5A4AHn7tI8IwJNUaIQQF6dBIY3wpGfYKOwoQvTzTmGpNxfXpqJRWmhAqhSc2dhS2LMuyLMvaij0ztbZ1prnMZKe1aRZxKQ7hClm6Ya/AchwxVihuevuRUoWC4+YNa6KsFBX44cJUt8HNWvU0JlRp3vlUYVgdR3GsVM0aywAnSn0bRw00PcTLh5A/Ooh4fQLxxgSiVgBpwFOYQoLJZxSKjwcRkQtDHShc24n1sTOXef7rP8JVmjeevIdXHjjOhU4edK4dp2HdNqquz9RIlYvHJyh3Yl44M9PNGlY9n2aaUnRcRgtFUr0mK71FgCjzURcI8hEzmkYa00pjfOmgtO4tVbUsy7Isy9qCDRBvctezbKyRxFxsN4m0opVuDNamwjYFZ/tDKHAcjpQqVwyCsgyIItGaiUKJ5SRiOYk23K+ZJiRa0VbJthkRT8re9YcGxJvj2ZpCqRGLJUTkYg40MJ8/j/ncBcxnL2KOLQMgLufNaa4le2gM977xEU997y0w8MpnHuDD+46zGIeINYH1TsZuWLeWLLsteOvxu0ml4LH3L2CW6/hSZl1QgT7Pp+S6vf2LXI0RZkOACNnszm5ZtYFaEtNWKa6QCAHxDptAWZZlWZZ1e7Nnpjexi+0G35y5tCfb0sZ0O4OuuNxpEmuFMoZW2tsFMdGKhSikdJVjJNbzpEMtiSk5bhbYGUEz2dh5cT7qUMibeKx0SN2Rlodo+5hqhHn+IqYvxPSHmHvne5OgQ6vfA+NoGGtd1esRSvPk997mgTfOkHgO3/riY3z30CCXOy0GvAApwBiDEDaDeDsqOx4CaFQKvHrvEVylef61MxQdlxG/QOA4DHoFyo5Hz6pWQZZFTBxYt9x1vFBkLMgy9YHjcKndpJUm+RphYUtMLcuyLMvaERsg3sTONGrMRu2e+YEXWg2iq8gUzEUd/mLmAmeaywCkWnO6sZQHgKY7m23FchLTVskVOzbulCMEI36BQT9rZCME1DbJIM5FHSquR2oMjTRhw1nyVhbyEteRNgQqG3D/5ORqJ9IVgcKU8sBzrLfpTKwVZ1t12ptkU9fyooTP/sWrHP/4Mu1SgW/+pWc4O97PoB9wpFTlvv5hpJBkPWBFXh5o3U7KrkfgOERK88o9h2lXS9w9tcTd08tUXI+y61L1PEqOiytk3tU05yuEEZD0fnz70sHNGx5VXI+ZqEWoFK6QGIxtUmNZlmVZ1o7YAPEmY4xhOY6oJREX2nVCpbqZtGaa8PLiDLNRe9fbbaYJC3HId2cvc7ZZ41yrzmzY6QZs9XQ1WKslER/Wl8Cwp8HNgB90t1eQDnNRp+f2lcYbZcdDGc1yHPWUavaIHMSrB2CmDIBYKAFghvPvjWDr5ZNjbQwGc3h1ZEWqNdNhmxG/QKS3DhBLi3Ve+MPvMT61wNJglf/PFx9iebBKojX9XsBPHTjGHeU+JFnHyrVrKK3bhyclfW5ApFNSx2Hqc08A8OjL71Mygj43oOR4FF03H9ty5UY1axVkFnymRmdNkMzWc0aVMby0MN1zocmyLMuyrNvX3qR/rE/NUhzx1enz9Hs+sclmCDbShDHgcrvJTNjatvRSG8PZVo07yv09wV09ifGFQ8l1+fbsJcquR8V1kUIQSKdbftpRKV+bvkAtiRgNNm88w3wRPN2dHXg1AsdhKY5QRnfX6C3FIZFS+H620mqlhf9mxIV+xFIR6vkcw6UCxlU72idzchEO1aG0esJcT2MOFssUpMt0uHnZ6aFzUzz5vbfxUsX5w6N8+7n7mNcJRZ2dqFc9D8jWHEoh8vF3xq5BvE0N+QEzYQtXSoJ7TnLh9fc4enke+dIbPPzY3YwVijhCMuD5LCcRZbLjpzdA3FiGDSDy4yvRGlcKvHz0y2ZqScS5Vp3DpQqHipXr8Eoty7Isy7qZ2DPTm4zGUE9jLnVaDLg+AsFyks08O91YIjWahTjc8vH1JOb92uKGofRLcYfAkfR7AWXXo5HGDHhZ9rCQB2vaGD5u1liKQw4XKwSbDXhfLCBfP4B4Y3zr6k8DXKxCy9tyPwvSIdSqp7R1LuwAott8Rq1kR9ZTAi5nMwyFkoiXDyG0zNYX7uSIl/QEh5BlEPvcrGmIWjNwfD7qMNlq8uCrp3nuW2/gpoqXHjrBnzx/Hw2ZdatMjCI1ptth1ZVZWenKdmwG8fY0FBTo6BRPSsqOx9znn0I7Dv6Lr3M8Mt3y7dGg1Jv920EGEaDkOrTSBEdIHCG2LI1ejEIW43B3a3oty7Isy7pl2QDxJiSAw8UyVc+nIB3mw5C5qMN81GHELzK/rjRzrY7Khmkna0rWjDEsxhFBPs+wz/M5VKx0AzFfOoQqZT7q8G5tgX7P33TbpALx3mi2j7EL9TX3a3mIFw/DxwOwUER+MIo4PbzlfrpSoo1hKY641G6ijeFip0nJzfbRsJodWX0hwMUq4v0RROJgxpqY/hChJKaYYI7Utny+K1HGUHQ8io5Lumbkh2x2+F++8zb3vHOW2HP54889yIcPnyIyhtgYKp6XjRcwgkIeUDtCIhH5GkQbIN6uyo6HI0S2zlBK7jp6jOS5xxBKUfizb5OnmBn0A9ZOujA7DBAHvICJQlZa7UuH5SS7yLPedNiinSbbfm5YlmVZlnX7sCWmN7nAcViMQ95ezrpxll2XRpoQqnTTBjJtldJRqqfpRUcp2iplYIvAz5cOHZXy1enzdJTiSLG8+c5c7Ed0PIyrEamE+RL0x9BxET86kM0VDPthLF8HuJQPrN/iMoUxhteXZllOYh4fHGMhChn08yycyLoy9nRRnSshPxhdffyxGvRFmFSCf20z4BSGguPkpaFZQDd+aY6//N03KUUJywMVfvBjj/GxBxP56A+BwReSptYgDAW5uq++dLqzJW2TmttTxfMIpEt1zbzO+JlHcd8/g3v+Mt5bH5A8fC9Vzwdh8q63optBFLGzbYsmKUT2WKDkuMxGHWpJxKBf6N5HGcNkp0W/FzC/TeWBZVmWZVm3D5tBvMmtlGKebzcY9YsE0iHWekPX0RWtfNB8siYL1kxjYqXwtlkLd6hYoc/1OVws984XXEPkDWHMvXPZv/PGMCtD543UiNSByWydk9ASaoVNtwVQ9TzqaYwvJO/VF0i0ws+znK6Q3Q6N3ee/2J89/7Fl9MPTMBBlR/g1BofZRrOgzpcOjtY89MoHvPAXr1KKEt658yB/8peeotVXRhtD1fUxJutQOuAH3e91YU1JriclymgEwmYQb1MV1yNwJH1rL8y4DuFPfwEDBF//AaLRour6eaOa/DheySBGbrbedweH90pGfn35+XIc0UwThvwCjST7bLAsy7Is6/ZmA8SbnCsloUrxhFgzHN7QSDdfT1RPYhKjezKIrbx5xVaBH2QBTZBn0DYVOtkQ+mIC4y1MkEItgDjLJBphMPcsZM+ztn3o4tYBYr8XMB6UGA4KNNOk28J/ZX+i0OBfGES8NYY4PYRYLGIKCebU4mqWcp2VtZS7JUT2nJXlBn/9629w97ufEPku33zhIV595n46K6WuQjAaFAkch8BxGAtKpDpbK7k2o+tLSWoMUgjbpOY25UuHfjeg4vauxdWHxkmefAgRxQRf+y4lx6HieoQr3XNXMoiTVeTrB2CyuqPnc6VgutPbYGkxDvPyaYdIKep2HaJlWZZl3fbsmekt4GipsqGjaCPe/ERvOYlRxvQEiI0k5pqTWLN52elYK1skOdJGIBAfDiMSBwY7MNHEyOx5zXgTIOs0usKQBZWbZEQOFyuMr3mNRcdl4vJBnDMjiJkK4sJAtokj9S3HVyRasxiHLMWbdzKNtSLVm6djhIbxNz7gzv/2J0wsNZkfG+S//tRjxHedYND31wwhNwz6BUqux4Ab5NmhLHgvyN4MYqo1ErsG8XZ2pFRlIB8ls1b0wlPogSreh5/gnj7LSFBcbVTj946rELWNj99M2fG43Gl1S5sBzrfqBPmFJSGybr2WZVmWZd3ebIB4C3CE7Mn++dJhepNZiMqYbqfCtU1q5qNw2/LSnRBzeXnpWJahWJkhKKay7IYZ6WRD6Q80s2ziyaVs7MRyARp5id1kFfnyIcTZwc2fY91rrMbZc+r7ZzGH6tmMw0ONLfcx1opBv0BbJXkJ6KpQpUyF7U07wFZqLf7aN95k4ruvIYDvPXSCb33pKZZLAcOFIgN+gVjrbqaw6LiM+AVGCwWKjosvs+zh2gyoLx1So/MMog0Qb1ePDI5ycLPREr5H+Jc+D0Dw1e8yoVi9qLMuQKSxswCx5Ho004T5fGRNO02YCltrSlwFteTqR9NsprbFxRjLsizLsvYvGyDegvpcn6lOe0Pb+lClxFpRkLKb8Uq0ZiZsU3a3HjlxRUpkcwa9NXMG++LVofQA+f+be+Yxn70A5QQONBFGIF46BJ/0rwaGU5WtR2T0vKC8ZHO8hblvHvPYdDZ/cQuJ1hQdlwG/0JMpSbVmNgo5VKz0jLAQWnPXO5/wE//zexxcqBONDzP9t3+WV+89gsqDun7Pp8/1AUNiNK7MAsS7qoOcKPdnAaIjqa77/np5iamwAaK1BXX8MPEj9yLbHe757ps4ZBc51n5qG0dn42J2sA7REQIp4EdLM9n7PmoTKtUtfQ6kZDHau4Au0YqvXzrPsg0SLcuyLOumYgPEW1DgOMRaMbluoHtbpSRaEzhZV1KA5SSirVKKm3Q83bFagDACBsOe8k5zYjn7u5BkASFkR1yQBafm7gX0PfMgDPLMMCIP+EToQf0KWREDhG4WlDo7W1OYGE2/53N/3xC1ZDWLWE9jDhRLHC1VMXlk2j+zyI//4Q94+NUPEMbw4oPHWfxbPwtjIzhCdBvkVPLZiCtjN4rSxZOSA8UyY4USgeNQkG53BuKKIO9iKhFIuwbR2kL0Y8+hB6qUz5znM1N1FvNgSz8xiX5sEvrDrNlTe4sLPJEDs6XuP8eDEpfaTV5ZmOaTZh1vzZiYQGbzTtdn169WO01pJsma8mvLsizLsm4G9sz0FlV0HD5uLPec7HXSFCFWO4BC1qTCYK5t1MJy1mjGDKwrzxwI0ffNYh6c3XxdoACO1DGPTWEcjcFgDuWlqdNbjNJYkcjsxLiw866Lic4CxJOVAYb8gOW8nK6tUk6W+wmkgx8mPPaDd/jJP32JgaUGc+OD/PFffobXHziO53r4UuJKQUelBNKh6Lj5PDtJR6VUvY0n6v1e0NupEvCkkzepsWsQrW0EPuHPfBEDPPLSexQb7azJ0mAIwyFU8kz4ZmWmBsSb48g3J7K1vWSjL8aDEu83FjnTrNHvrT4ucBxCnY3B2QttldJKE6IdbK+exDu6n2VZlmVZ158NEG92BgidLFOw5sJ/vxdwudPiazMXuNDKgq62SjCQZ8CywGombPeuP0wk4qWDiDObrwMEsrmGr03AUnZyKfIAkfUBogAONbNxE9sZjDDPXsI8NYm5YynL4k1V4VJ1tXTOkHUqfWsMLldXMya7CBANhpLrETgOjwyM0kxTQpUiERwIioy/+zF/989+xMkPL9IOPL797H387hceYrG/jCMknpS4QuKwEgz6OEJQdj1G8nWI/ZvMkjxe7mNoXSMSVwiMMT1jOixrM+rIAeJnHsWJE3761Y9orymPNtXs/0VjkxmmC0XEyhiZ+urtgeNwqFjhaKnSUzngCUmsVber8bVqpQntJCtrv5LXl2a52Nl6/bBlWZZlWZ+ea6grtG6E2Q9dCmEFioASiDfHu/MGzfElzKklIFvjNhIUuNRukGrN0XIfs1EHT8gs26UVymimOi3Kjgvn+qGYIpYLiHoB6oVsZIWrs2zFmlmC4sPh7DljB/P0ZagFWXfS6jWsNSqm2R+Aww3EpT7E+6OYhSLmoVlYLHY7lYqZSrcL6lYBYqo1QrBhhMTKCfHxch8nK/28V1/kmeWIQ1//nzjzSxjg7KnDfO3+w9w1fpDO0hye0T0jPnzHYT7qMJhnX1wp+dKB4yzGIaVNSnVPVQc2fM0REpkHnZZ1JfFnn8Q9e4GDMwvc/e55Lj9yV3ZDHiB2u/+uHE4mmz+6QrT8Ky7rFSIbQNNKkw1dka9GK01op1cuMdXGMBd1GCuUtr2fZVmWZVmfDhsg3kS0Nlx6w2NUH8d4M4jzA4ilIqaQZhnEy31wcql7klh0XIb9AotxSDNNmOq0KDkuUghipaglMa00YTztR340DGRZNiM1Qkvke2PZ18abWZAG2XrDfKSFaASYc/2I1MEMdvYsH23uncccbCDeHkPMVuBdA53sUDUjLcR8GebyoHiLAPFip0kgHYSAA4W8wyqrAaIrJZ8TJT7z0iuMXJwBoH1onP9x30G8g+OEYYtDxTIf1BfpqJSxNWsIi9LJ1jOuyQp6UjK+ixNcV2bNaWwG0doR1yH8K1+k+B9/l6ffOss3D4+zNNIP5RjjKsRyEV48nDVqKqYwV0LUC5ggRUQuNDfJMG7CmCyw2wu1JCY1enU8xxY6KqWdpj2jdyzLsizLunHs2elNRErBoUcShJHINw5kwWE1wjx9CYY62bzBpd7B8wXHJdKKc606rTSh5Lo4QqDIZgJqY3AWVtf7CQTmjmX0yUVMMcEIA4vFbvnqSlbCjGYNcOSZLLDcUF56rfqjbG1ikCKmqojlIqYUY+5ZyPZDr0TBGwPENO9W+szwBMoYjDEoo3GEpOA4iOU6hT/6Bv3/r//OyMUZ9GA/nZ//ElN/7aeYG6qijMERkqrr0+f5NNOkZ8h9wXHwpUPZvfrrKw4SAdc8XsS6feixYaY++yiONjzz7Tdw4wQkmMemMQMdRNtHfDLQkz0098xn7+HWzroUe1KytMmol6uxHId4UtK+QslqM00IdWrXIFqWZVnWPmHPTm8yY6dSWqNZGak5XMM8MQm+xoxnAZuY2WSmmoFL7QaaLPBxhCTVhsUoBARiPst86ftm0XfPw7FluGMZ8/xF6IuywLPlrY6zcBXmoRlMX5jNNJxoYI4v7/2LLaWYpy93x2WYk0tQSDHBmqBwkwxirBW+dDha7iOQDpFWJFozEEaM/MWLlP8f/w3v7dNZA5AvPkfr//I3SO86gedkg+xTo3FENtx+LCj1jAKALOj2paTkXP1okCyDKHtmI1rWlcSPPcCZQ8NUGm0ef/HdLOXXH2EemclGXkxV4EIfohlg+kMYbUMpQcQuxFc+1nzpdDulrkjycvTdUEbTSBPKrkc73X6dcCsvQ13prGxZlmVZ1o1lS0xvMkLAwl0XKd5X61kXyGgLI0Zgtgz3zPeE/gXHoZ7EOHkrUUcIlDHMhm0C7cByPsPwYHNjt9HBEGqFrFNpnCC0xAy3sszFE1NZZtG9clv8RhLjS4cgD8J2LFCYR6cxqVydcTgQwkogvGmAqCm7LhXXo8/zkfUmD79/gbs/msTVGhP4RE89TPzkQxCslt65QuIIQax1tynNUFDAy7uVrsgCRGfT9YY7la1BxJaYWrvS5wf8/rP3MvGnr3L0kylmDwzzyV1HsvfGgQbiUj/iwxEAzJ2L2fu5EkPLz/7422cHAylppgmp1t2LF28sz9HvBdxV3aZx1TqdNCXWmqoX0I63zyA2kphY6x01s7Esy7Is6/qzZ6c3I0FvcEj+7+F2lu2brPbcVHY95qIO5XxY+0qzlbZKqdT7shmGI+1NR1GYgU72lMuF1XEWg/lJpmN2FBwCLCcxs1Gb9GrWGQlWg0NWx2kYqcHfeFIZa8WgFyAXlvjCDz/gb/zPF7n/9CWQgui5x2j+3/428fNP9ASHkJXXSSFItO428+l3fcquS2FNYBtIh4LjULqGElNXZM9lm9RYu+FLh0KpzNefux8tBI+89B59S1n3T3Mk61ZshEE/MAtD+fuknDeyaa7JeM+UEe+NwGQlqwzIBY5LR6XMRu3u12bDDuEVsoDrtVWalXq72fb0NrMVF+IQf83oHcuyLMuybix7dnoLMSez0lPx8SCkqyd9BenQ7/lU3N6SyFArCnP92WOH22xqIMrGTiwVECvrGwc7u9ovZbJsxNFyH9PRFs+zGyvrHQO1aVA7PF/j6W/8iNL/8//LoQ8vkDqSl+89wvf/5k8Sf+5pKG4yM461GUTVzXT25d+3tYGcLx0GvGBDh9TdcIRAYgNEa/fGCkXOD5V559FTuErzzLffwElSqCToxyYxT12GA83VB1SyDJ6o58d9x0W8M4q43Id8dwzx0qFu8LhyXH5Qzz5LlNHUkpi23l2A2EwTENka29SYbRvQLMYhRcclMjZAtCzLsqz9wJaY3kr6YsyBBmKqirnYDyeWgax9/ciGtvUG3XKQsxWMn8LYFoGbp6ESZ2uaIjdb51SJN7/vFjpKUZAOD/ePcLG9B7POqtnrNH2ra6WE0hw6N8WpDy4wMrcMgK6UWHj0Xv5/Iz4EAX9lbGLbzbpytcR0JWNYcj36vQBfrGYQB/2AOyr91/QS3DxbaZvUWLs14AUoYzj94B2MTS8yMTnPEz94h5deeBiGNykh7c/WCovJvqzSoOFnpeIHGhA5iMUSvHYA8/wFkDAcBJxr1ZmPOgTSIdZqV9m9RhLz+tIcgczW2Cqjey66rNVRKR2VUnJdYqUwxiDEJld9LMuyLMv61NgA8RawHEeU3GxdnDlWy7p+LhYwJ7Z7lKDv8igCgT5az8pFt2DuWoQ3xxFKZiWn28Q0m80fDFXKaKFE4GSrIK/5JFCAeWAOgEI75I7TF7njw4sUO1nAuFgtEj/9MOVHH8IIQ3D5LHdVBxj0C9ttFcjKRxOjKMjVt8ZTQxNUvdXs60hQ3CTg3h1HiKxRjc0gWrtUcjyEAITgpRce5sf/8Psc/WSKxZF+Prp/kzd9QWEemYa3xhHnBgAwhQRz7zxIAy8dykbWRC4UU3zpoIHz7TqHipU8QNxZBtEYw4vzUyzFEYdLZRwhSLUh0orqJvdv52sVh/yAlkpJjcYTu1ynbFmWZVnWnrIB4i2glsY0VcLhYiWbiyY11IOsgcwWcZhIJeXZwSwjeLi+/RMMdzBPXoYzQ5ij2993OmwjhOBQcXV0RqQ1o0ExX3cnUcbgbhMgamOQQhCqtGd2YXfftWb88jwnzlzi4IVZpDEY4PzhEV4+OcHk+CBfPnIKXIcC8OTQOIeKm3R33USWMdE9zzkcXDmw3C03X+Po2GyJtUsl18WQBWNxwecHX3iMH/uTH/LQq6dZHupj7sDwxgeNdDBPX4bpCnRczOE1F4VKCTQCCN3u2Jiy43Cp3WTQK+yqw2hLpUyFbcYKBYQQ2R/YsgFNmJeuOkKgtCHRBs9eM7Esy7KsG8oGiDc5ZTS+dHCFoJW3lacaI2oFTMeF0uYndhOt4dUyM28HjWOqCebRmSvuixQCjUEbw1TYxhUSY7KyuJUSTk02m7ClUlppwpBfwJMSbQyXOy2kgEPFCgtxiDZwpJQFd5VakxMfXebYx5e72cIo8Pjk1GG+e2yEu48cZbG+iI/paSCzm3JQXzoY6GlKcz04eXmpDRCt3So5Lp5wSIzGFw7LI/386Nn7eer7b/PMt9/gL/7Kc3TKm2S4y0l3nXKPlVmi4ep7pux6LMUx02ELbQzRDss/a3FEYrIxMyuMyDoLb2YlcFz5XEiMwv5asizLsqwba9e/iWdmZvjWt77F9PQ0UdQ7L0sIwVe+8pU92znrymKt8aTkVKWft5cXsgCxL8pGU8yXEG0v625Y7m0178xmQZcZa23YZqhSFuJwx1m3Fc00od8LSI1mMQ5xhUQbDcJQ9fxu505lDO00JjFZpq6Zxgz6BabCNqNBkfm4gzEmCyxjxdFzn3Dy3DQjs8vZPgNTh0Y4d+dhPjo4yLxKqboed1eHSLXhcqfZc4K6GwXH+VSax2QdTJ1ranRj3Z5W5nDGWneP8/OnDjO0UOPODy7w3Ddf55tfehrt7uw9YApJVmjQWf114Oel1vNRh6LjkmJ2VP65nESbfn19BrGZJlRcjyhf2ygRKKNJ9c66IluWZVmWdf3sKkD88z//c37hF34BrTVDQ0N4Xm9XTBsgfvpirSg7LsdKfbxTWwTA9EUIQHw0hNASlMTcP7f6IA3Ml7JS1OGNHUnrSUyqTc8stJ1opgmPDA4QK82LC1M8OTSOLx3ONmtUXQ9XCByyADExmiOlKr50+LCxRKqz7ONTw+N8/8LHHPrkHM+em+bQ3DIyP2dsVEucOXmAy6eOdDMk8+0mDw+McKLST8l1uadv8JpKQgPp4sgseLveAmkziNbuSSGoej6NJAJWP4PfePJeBhbqjMwt89gP3+XVzzyYDU69knyWqAiz0tUVAkFHKUqOm5d/ajzpkGjNUhwyViht2NRM2Mbf5KLH2gzidNji5YVpfnLiGB2lgNXMZGI7mVqWZVnWDberAPHXfu3X+MxnPsOv/uqvMjAwcJ12ydqNOF/fV3BcBKCMwcm7ewqdn6gtrQuY5ktZw5nR1qbNaWKtGfAD2iqlT/obbofsRDA1prvWcCXjN1Eoo41holXmzsoAA37AgBdQyNf0+Y6D0hplsk6hfa6fBaL1Jo9dmuOOH37MqfOXkfnctKRU4M2DQ3x8bIwLQxUUcLgY4OavVQrBqTUNaKqeT9XbfJ93InCyct1Po7toyfFsF1Prqgx4PgtR78Ud40he/MKj/Pgf/YATZy5T6y/zo3uO0Hel98MmJaYAJcdhOYkY8QvU8mH2JeDDxhKnG0v8L4dOdmeqQvZ+nIs6G+aDukKyHOczGY3hvdoC81FIR6W00hg3fw8IhM0gWpZlWdY+sKsAcXp6mn/xL/6FDQ73kVgr+v2AguPgSUmqNU45wTgaofITr46HCR0oKKj7iPdGATATzQ3bM3lgVnJdFqNwy5PLWGuk6P237zgMegU8KXhscJTxQgkpBHf3DXbvFwiHhlGoVDM2W+PApVnu+OgTRmurYzbiYsAbB/rR997JyXvv5dzCNGXH4YvFCi8vTBNqRUVKIqUoOA4V9+oDwvU8KfGkg/8pdBd9cnj8qkthrdvbSin3emGpwPd+7HG+8Kc/5OEffciHHpi779h07WArTSg5LqKweYBYcX2W4pii47IUR8Ra0U4T3qrNEylFK016LsbUk4hWmjBeKK7bjsfFdpNEaxaiDudaDVKjaacpzTTtBojG2AyiZVmWZe0HuwoQH330UT755BOee+6567U/1hV4QuIKSaxXG0FUXJ9AOt11Q4FwYKKJWS5AX4SYqsJSEUoJ4rUJROpgji3D+Mb1h7HWBI7DkWKVmXDz2YihSgkcp2ddkcEgBbh5eeY9fUO9DzIGsVTn7o8u0X9phgOzS5Si1QY6i9Ui9ROHGHvwfj4eLPGdmYt8buwQBc/nxyeOdu/3UWOZ+aiTrV/SKf1esKfrBV0h8YXcVWnt1VrfndWydqrkemzVonh5pJ+XX3iY5775Oj/3yhm+NjxEe3Sw5z6p1kyGLUb8IoN+gHFVtgZxTedjT0ruqPQB2fKBxGhON5ZopgkS0RMgNpOYd2uLWQXDuqx42XFZikPmow7v1xcQCBwhaKuUlkq6718hsBlEy7Isy9oHdnWG+su//Mv84i/+IqVSieeee46+vr4N9ykWr20+nLW9fj/gjnIfZ5o1DhbLgMiyAEJQ9TxqcVZeau6bzx4wU87mIl7sg5aPSCXmxFLWzXDN+aUxhlhr2iprNDNRLMHS5jMLG2nCgBewEIcoo3GERBuQrFlTZwxiuY5zaRr3wiTOuUvIepPH8m0oKWgcHsecOsEflDRTJY8vjB1muG+I/jhkOCgw4AUbXv+QX+ByJ8t8hkpxorK3Iyg8KfGlc92b1FjWtSg5Loatg6nLxyb43gPHef6dc3zum6/zzZ95jrC0+l5ppgljQSlrEEUAhRTRDDCJBH+zjqPZGsSL7SYVx6WtFM00a3yljeGbs5eYCdsbsoeQBZcYwenGEudaDUaCArNhSD2JsyoAuZJBNJtmRS3LsizL+nTtKkD82Z/9WQD+6T/9p1u2O3///fevfa+sbd3XP8zHzVq3A+BKJqrq+syF65rODGb/FrXs5NDcsYS5ozc4VEYz1WkjhaCZJtxZGWTACwikQ6RVd/3gilApHh3sp74ckWiN40hEmjIxX6Mw+QbO5CzOpWlke3VfDKAmRrkwPsBbAwEXR/r5wqETHC5VCC9+CHHULRXt8wJOVQcY2qTZzIAfoPMTY41h0NvbANEVWYmpHdZt7WdFx807f5otGx29et9hDrQjTp6d4jPfeI1v/dRTKC97L7dUyqFimUYa5xtMoZnPQvTjTbYmaKcJ9TSmnAeItTS7GLUYh8xFHQ4US1t25S27DlOdrGLBlw6+FMxFbRKtqeRrFoWAWNkSU8uyLMu60XYVIP7Kr/zKFedgWdffSFDkruogb9XmKTseJSfrZFh1fZL1JVq+xgy1oRFg7puDsdWy0XaasJhkHU9PVPq4uzrEG8uzjBWypjfDfpGFuNMTICpjKMcpd8zWkB9fZnipwehyk2qt2e02CmCkRB0YQx2eQB05QHr0IBQLXFya45OlGQxZtk4KQb8X0E5TKm72OhwheHhgdNPXXl7TAMMAlXWddK+VKwW+lDaDaO1rRcfFdySJVjhblSoLwY+ee5BCvcWh+RrPfPsNfvBjj2HymaN3VPqZizqEKqW4dh1i38YA0RhYjCMipRjyAgIpWYiyxjNTnWxW4nYjW6quz7l2gyP56BxfOjTThNTo7hpEiSDUm89t3YlEK96tLfLgwIjtDmxZlmVZ12BXAeKXv/zl67Uf1i49PjTGUhLRTpPuUPeS6266LMk8Op19fc1tS3FEpBWPD45zqFhmOCjgCMnBYjm7mzE8KHzem7zIiVDRV29TrbWoLjcot7PMwfia52gVAxaG+xg/dRJ1aBw1MQbexsPLlxJjBELQDcIG/YDFOMxmOF5B1c3mKYYqa25R2cFjdqPouJQdF9eeYFr7WOA4BMIl0ZpCnuxeWw6uTbaYcKBY4g8+cx9/+1tvc/DSHI+/+C7fe/oeCo7D4WKVs0GN+ahDoZDmsxA3fz9JAfU0xuSdgwuOw1IcoYzhbKvWc+FmM66U3Fnp7/7bl5IwH32x0gnVEaJbFbFTKyXuAPNRyMetGicr/dfUydiyLMuybne2S8ZNquC4fHb0IAtR2D3BKjouAtMdOB3kgSObXNjvJAnPF/u5p6WQU5OIegNZbyLqTWStgVyqcV+Sct+6x2kBtf4ypUMH+bjicbrkwMQosxKKrstfPXRy2/12pUSTDdxeCRD7vSDvfnrlrF3J9Qikw2zUYdAv7GkH05V9+bHxIzZTbu17Fc9jKR8fAXA5bBFIh9GgSKI1vpSMBEXeK3h85yee5It/8iInPrrErCe5/PSDlFyXo6UqlzpNqGZZQ7FUwByrbXguRwjUmlmGgXRZiEPOteosRCFjwe7WnvvSoZ4msGYdpSMkod55gHi6scSPFmcZ9gt8buwQy0nEchzSUokNEC3LsizrGlwxQPz5n//5XZ0s/+7v/u417ZC1NRNG0GwjUgVaM6ANg0ZDewHSlIFWixNTCwTpLE6SMiZdvDgliGKCcN2fKNn+uQIfdWCMWl+J9zyDHB6kMVDhYw9ODg7z3MhBFpbm+GRplkOFABOH3VKx7XhCooyhIES3C+tEodTNgl6JIwSDfkCsNc8OH7gupWQ2OLRuBlXXY3Zdp+GVgfSxVgTSZdAPAEG7XOA7P/Ekn/+TF3n6vQssHjwME0fp9wIEAgY7WSfThSKkAtzeUnVHCDoq7V7E8aQkNZoXF6ZwpNh1119XZp8Da0khCHeRQZwN27TThFaaMBW2mOq06ChFO83KVNdmFy3LsizL2rkrBoinTp2yJ8z7gPP2aaI//DrlbbrAl4G/uoNtpY6kXgpwqxW8wX5MXxXdV8H053/3VTDFAgiB0YrTlz/GGEO/FxB3mt2h9EXXYyUDoA07ChBdIfP1SqvD6Af9QnebO3FPdZAH+kc4XKrs+DGWdavpc31Ss/L+M1mgl78fY60ZDoqUXQ9PSmKtmesr8cfPP8DPfedtBr/+ImF/H9UTh3CEIEXjjbYRU1XMQmnDCJyVsRTFNRdyAuniCcGIX7rKV2AwZvV3iyezIDTVekcB51zUoep5dFTKJ806M2EbbQxtlbIcR7y0OM1PjB/tVlhYlmVZlrUzVwwQf/VXf/XT2A/rCsxgP+LYIdI4ASExUoAjQUiQEuM6aM/lw7iNE/gsC4NfCNCeR1zwCQs+Uf5HeS6XOy2+dOAYh4rbB1m+dLivOsQPFqbo97JsxMq6vyzrl518GQyuvPKJmCcljpDZPMerbARzfM1aJsu6Xa29QBNpReDI7hq+xCgGfJ+CdChIl1grGmnC4B1HCfvHKPz+n1P4gz+n/6/9NEXHJdQKd6yVjcSZKWM2BIiSVhoxsKZ0c3STLsNda+YpbkUK0VNWXnI8JsMWs1Gbg5t8Ln1vbpL7+ocY8gt0VEorTehzfTzhMBk2iZSm6nosxyElx6UWR8SbdGG2LMuyLGt79jfnTUIfniD4v/8tmgtN9DbDpD+eucg91UHenruML7du4mIw3QzeldxR6eeN2jz1JFuntLLNYj6LzRiDNmZnGUSZzUq0J22WdW3WXqCJVFZSGqmsxFQZQ5/rI4TgYLHEe/VFXCG5p2+IdKxE1OpQ+PPvUf7dP+XkTz7FB30+leEORmqYL4ES4Kx+zgTSweR/b2klKFwOEK8dgLsX4J6tS9kPFMo9/5ZCIBFcaDc2BIjaGC51GgjgM6MHaeQzFH1fIoRgoR0iEBRcl+U4JpAhbZX2NPGxLMuyLGtn7AKNW8wXxg5zqFShz/NJtGI+6jDZ6c0GmLwcbaejHEqux0P9I8zHIYHjdLuNFqSDKySpyUZ272Q9oCtEtwuiZVlXb+0FmkgrijK76GLystNi3ln02ZEDfGHsCA8PjDJWyMpBkyceJPrc04gk5fk/f4W+hXoWEI60EUrCYm/TmcBxuLPSny03mC1Bc92Fp46L+NZxxAfDiA+Hs21M7b4EvM/zOdusb+hmmhpNajQfNZdZjiMaaYIQq+uFK65LxXXxpaSexkyGLZTRJEZv9jSWZVmWZW3DBoi3mJX1NoNeQKQ1oVLo/CRyxcpw7Z1k/Fbc0zfIwUKZqut1m8sEjoubN6vQxuyoZNQTeQZR2gyiZV2LguN2L9AkxjBWKOIKSWI0BrrzUR0hOVUd4PGhsZ7Hx889RvTcY3hxws99+22qy03MWHYxScyW1z9dpukh35xAvD/S+/XFIiKViIv9iFpeeloLMGvjPCVgspL9vYWy49JKE2bWNd9JtUZpCFXK+/UFluOQtTWsg36BAT/Alw6xVtSTiNQY4l10RbUsy7IsK2MDxFvUQN7pU+TlnJ01V+Q1eZOYXawB9KXD08MTnKoMdr/m5CVhOs8g7mR7KyWmRVtialnXpCAdfOmQaI3AMBRko2JCpXCFpLyD91j8wlPUHr2XUpTwwldfphzMY4SBuRJslnxbySy2ezOIotE7VsIUUoSW6MXVr4uPhpDvjsFkdcv9EUIghKCWRD1fT4xGYxgvlHi3tsj5doPCJuWuK91VI61whCDRNoNoWZZlWbtlA8RbVMl1SbSi4nqM+EXaanUtkMqHXe8mgwhwoFjmvv6h7r9XtqHzNYieuHLZqCuyJjXFKwzWtixre66UFJ0sY2bIZnj6UtJWKb50dvYeE4L4xz/D+3dMUOpEfO4bL1GszCESJxt5sf7uS9nXROz2ZgLzAFE/MIt+YAZzbBkANRdkt0cOXM4CQ9HafF30ikBK5qL1GcRsvmtBOvR7PpOd1pYXmQSAAYENEC3LsizratgA8RZVdrJS0IlCmaOlSs8AamUMrtj97LLNeFKgs7OxHbWTd6XEl3LHDXIsy9pa1fVZSiIKjkPF9Si7Hu00oer6O54BWHA9fvD0fZw9Nk652eFz5/+EUlpHvDsGM+VszaEh+7O0pnNpJw/QDNAIMI6GiSYcaMFgCEB6tgzfOIZ4+RBC5/vT3j5ALEiHuShEG8OZ5jLtNCE1GkGWYax6PsdLVUpbBMCucLq32RJTy7Isy9q9PTtL/zt/5+/wT/7JP+HVV1/dq01a16CUnyxOFEsM5e3oV9YhKqO76wivlS+dfAbbzprUQLY2ajflrZZlba7P8yk7Hs8MH6DouJSdbC7ggO9f+cFrFDyPrz97LxeOH6DSafHC8v9BudNCvjWOfHMCpsvQ9LPM4oqVALHjZk1pKvHqssBKjPEUxBJSgQjdrEMqXDFALDouHZUyG7V5c3mehTgkXZcJ3O7i1nihyJBfwBiIlQ0QLcuyLGu39uws3RjDpUuX+Ht/7+/x8z//83u1WesqFR2XQT9gxM9OlsqOR0ulQNYyPtijLqKelKxM3ZBXGnyW6/N8SnYNomVds7uqg/z0wePcWRkAoOx5CCHo93YXIJZdl1TAyy88xIUTByhHLV5Y/j2KlRkAxGIRFvMLTW4edHXyQK+Rl5FW16wbFMADc3j31+HzF9CPT2KemsT4KYTu5usbc66UpFrzUWOZxSgk0VfXjdQR0NHprh9nWZZlWbe7PTtL/8//+T8DEMcx77zzzl5t1rpKjhD8+PgRvDxTeKLSx7u1RSquhzJmz7qI+tLJSkzZeQbxuZEDOypHtSxrewN+0PPvkuMSSIeyu7sAseR4pEZjpOTlzz6EEYJjZyf5/MU/4jvV/5XmUgkR5p8ZB5pwsR/RcbPRh/n6Q1ONezc62sGraOKmhqEwf6IEsexiQhdKWwdvQsBCHNJMYyKt8pL03X1muFL2NOey9kYjiXGE3LLE17Is61awMkLqdp3bveMMYhzH/MZv/AYffPDBtvfzfZ/HHnvsmnfMunbemjLSY6U+DAZlsj/bDrzeBV9mTWpgZ2sQd3M/y7J2JwsOvV1n6MuOS5on6YyUvPz8Q5w7eZBSO+SFhf9BtdGCxSLGTzETzeyOLR/x5hh8MpD9uxptuu0eK0HhFcpMXSGZjzoE0iFWKs8gmm0fs54jBB11/TOI81GH8FN4nv3ig8YS59v1G70blmVZ19V8HPKD+akbvRs3zI4DRN/3+c3f/E3qdfuL4WY0Vigx5BeoJ3GWQXT3qMRUOLsOEC3Luj4C6VBy3F0HiIHj0hOAScErn3mIcycPUUpbfG7u/2AgWYCxFpSyjshioYSYrYCvMCeWoC/efONrmPyx3fLULfR5PgJByXVpq5RU612Gh1mA+GkEbm8tzzHZaV3359kvIpWizG5/GpZlWTeXRCui23iZwq7WID700EO8++6712tfrOvIEYI7K/200gSNIdizElO56xJTy7Kuj8BxKLnersv/fGeTEk4peOX5Bzlz5CQF3eGFuf/BkHsBPL3acAYwD81g7lzaWQVoMQ8ud9Co5lCxjCskHZUSa7XjNc4rHJHNhDTXOZhZSrIy2NtFrHX3oqB1dT5qLNsRLJa1zyljbuv36a4CxK985Sv8t//23/gv/+W/cPHiRdrtNp1Op+ePtX8NeIVsEDUCd4+COVdKsh6mwmYQLesGG/QLPDE01lNevhO+dNj07SsErz93D+9XH8c3MS/88HuMT85BMbuqasoxDGSlpanWtNJkk42ssZJBbO8sgF0pEw2V2vUFKFcIFFfX4GanEq3oqJT2LVhiqk02e3K9RGvS6/g9vdUpY/iouUQ9uXLG3bKsG0eb1WVZt6NdXWb+63/9rwPwr/7Vv+Jf/+t/vel93n///WvfK+u6qHoeAkiN2fUJ5FZcIclK0wTOLq/wW5a1txwhmCiUd/24QDoYDMYYxPpArKh557kTxJciHn73HZ7/+o946UiFSe7HHK53M4dLSUQ9iTlZ6d/6ifLAkmYASoCz/S9eJ88gFh131xegHCFJtSHWezfWZ71IqSwwvgVP9j9u1mimCY8OjvZ8PTEapW/PE6a9oI1B6c2Db8uy9g+NQZnsPXs7VsjtKkD8lV/5lY0nD9ZNo+r6FByXpTjcswyiI0U3LLQZRMu6OfnSwRESZczmnw0HWnx44AhxPzzx4js8c/5b/OhEyCcHh7p3SbXGk3LzIHOFpzGDHcRSEd4axzw8vW0diysEodZ0VLr1L2gDtDwoJz1lro4QeYmQArYvab1aoVakRtNU22dO1T44wWilCR82lnh0cGxH94+0opluDHyT/DVbV2clK2HLdC1rf9MGtLl9S+p3FSB++ctfvl77YX0KXCkZ9APqSbxng+odITBGgDA2QLSsm5QvZVaSacy2vxTO3XWExHd55jtv8sQnPyQYOMUHD50EIVAGCo5LrPW2c1bNQzPw6kHEfAlzsQ+Obd34LAtasxLODWsQs8IFuNiHPD2CvnMBTtS6X88+j67vGpIsg2hoJVuXmIYq5Zuzl3h+5CDVXc6n3Ev1JOZSu8nDA6M7+qxO8sB8vdRmv66JxqC4fcvWLOtm0b2Ys+sWabeGq4oSzpw5w+///u/zm7/5m8zNzQFw/vx5ms3mnu6ctffGgiKOEHlp6LVzhQRhEIgbfoXcsqyr40sHV8gdrdc7c2SU3/3MvSSuw4Ovf8TjL76LyIOwQDrE2zRsmQnbzJlWFiQC4txAVmq6BVcK0jzb0vP5slBAfP0EXKwiLmQlreLsIOKdUcTXTyBePAxTFQxZU5XrJcqzaZFRWwailzst5qPOpzJyYzup0cRGb/vzWSvRilj1viZjDKnRpDa4uWpZiam2AaJl7XPa3N4Xc3aVQWy1Wvyzf/bP+OpXv4rruiil+OxnP8vo6Ci/9mu/xsGDB/mlX/ql67Wv1h7o9wOKrrOnGURtDJ6UNoNoWTcpKQQFZ/vgbkUrTZiaGOAbX3qaF77+I+748CLFdsjvPXUKPwhop5sHQpFSGCDSGioJZqyJmK1kWcTjtU0fk2UQs5PptZ9Z4uMhhBHwwQgCgZEaoSVMVTHCIJo+nB1APDaz44DoakRaZUGs1kQqxZO9GUJjDKfrizTT5IZ3w0u0zmZKak1hB0syY62ITO/3buVqus0gXr3uSSf2e2hZ+5kmWy98u5aY7ipK+NVf/VVef/11fvu3f5vXXnutp3345z73Ob773e/u+Q5ae6vP9Sk7Ht5eZhDJKr2cPdqmZVmfvpLjke6g+UikNWXHZ36owjf+8rPU+8scuDTHX/vmW/THasuAbD4OGfYLiLxcx9yxDID8aBjx2gTEW39+KKNXL0AtB4haIQsE87JTc/8cZqid/Xn+AsbREGedWeei69ddu60SvHztZrjJ656LOkyFbRwhbvgojNRoYr3zrq6JMcTrxoSk+Xoc26Tm6q2uQbzRe2JZ1nZWLojZAHEHvva1r/GLv/iLPPPMMzjr1pgcPHiQy5cv7+nOWXuv3wsYDYr5YOxr54gscygRu55TZlnW/lF23R03H/GlJNaadqXIN376WWbHBxlfavKTf/JD+motluKQ6bDdvX82xxAmims6rFZj9IMzmGKCWCgh3h5js6UegpUucvnFqHMDAJh75jHVCFOJYKyFeXwa8/g0FBR4CpE6VITH+VadVGteWZxhds0+TYctfrQ4u9tvE401HUtbSZJfbDNEavMA0WCQiBueQUy1JjZbB/DrJVqhMD3HhM4Dm9Rmv66axqDtOk7L2vdWRv3criWmuwoQoyhiYGBg09tardaGoNHafwLH4fnRQ3taYioRCAHSxoeWddMquh5tlTATtre9YmrIyj3TPOBJAo8//+JjfHR0lGKjzf/2jTcZnJzvOQFejiMOlSqMB6XejU20MM9ewlRixGIJcXZwk2fMmudIIbIAcqmAkRoONjBPX8Y8c3njbzI/C4IqFGikCR80lni3ttCTTZzptDndWCLM1wYaY/igvtgN9DY7KZgJ23xr7lLeGRWaKul+lm6WIZyPOlkAKbiupa47EWtNordeK7leorNxFsmaVJcyBoPZUabZ2py6zdc1WdbNIjEKY7BNanbiwQcf5A/+4A82ve2rX/0qjz766J7slHXzcIVACoEQwpaYWtZNrN/zmShU8KTccuB9rBWukBSk05NZiiV8+/kHWX7iAQpxype//Q4PnJkEssAr0po7KwObX5hyDOahmaws9OwAzBd7bjb5H0cISCQidaCUZL+9BGxauOBl+yaTbL7j2eYyS3HIzJoM4lTYop7EzEchAB2V8ubyPBfaDRpJzFenz21YT3m502Qu7FDLs4jtNO2W2a8PEI0xzEUdio6Lg7guTWomO80dBxqRTkmN2XHTnlgrNIZkzTrElfEMNvt19W6WrMQbS3M099F8z0QrPmltvlbZsq4HpbMLYrbEdAf+8T/+x3zta1/j7/7dv8t//+//HSEE3/72t/nKV77Cn/3Zn/GP/tE/ul77ae1TjlwtMbVdTC3r5nVnZYCfO3ySw6Uq7S2CmVgrio7LaKHUk4lKtKHk+sQ/9ixff/puEPDFV89w77ffpJ3ElF2Pg8UyrpRs+ru2nGDun0MgEO+MwWKhe5NkzRXclt+9/7a8PKhJHMqOy8V2k7GgxFzUQRtDrBXzcUhqNFOdFgDNNKGexLxfX+T9+iIzYYfWmvmGymjONmu0VUo9iUm0JtQKV0oEgva6WYgtldJKEwqOgyP2LkBsJjEmn+/4+tIctSTa0eMipVF6511MVR7IrM0WpkbnTWpuzxOmvbCypmk/n3RqYzjfrrO0w2Pr07AUR7xbW7QXJ6xPTbbmmn39Xr2edhUgPvHEE/z2b/82cRzzL//lv8QYw7//9/+eixcv8h//43/koYceul77ae1TWQaRvMTUBoiWdbObyIM/Y0zPejuAUCkG/YCK66FMliWL81EPFc+jIB2W77uT03/1C7QDj+NvneXzX3+NO90CBcfFExKRdz7eYLyFObaMSBzEjw7A5SqQD7xfCUZb+cD7KwWIfn7/RDLgBRwslun3fDoqpZHGLMcRkUoZ8Qucb9dRxnSDwdmozQeNJSKV0lmTQVzJHBYch+UkykZcaI0rshmSC1HI9+cmqcXZSXUjiUmNyUaISLknAaIxhu/PTzIXdYhUtp4w3WFGMNQpKm88s5PnSXTWkGbjGkQbIF6LlXWcibmxJcfbWZmBudWFohshNZpQKTo7OH4tay+kt3kGcdedSh5//HH+63/9r4RhSK1Wo6+vj2KxeOUHWrckR0gkcs+6olqWdWMN+QWEECzEIbUkJnAcfJmtL4+0ZjjIgj0hYCmJWIojCo5DxfEQQvDF8cM0hxN+5ydafPkH73Fseomx//ld1N/ox+0rZwHfyprCdcypRUwlRr47BpeqmEMNCo5DmJ8UijxANKXtS9+Mp7LK09hBCEExb8qVGk09ibvbq3oeM2GHpTikmSQIAZ5wUEbjSUlHZyfIidZ81FwGoChdZsM2R0tVlDG4QuBJh/PtBkprjpar9PsB9STG5JnPvcogJkbTVCkdlSKFIMyD852IVRbMrrym7ayOszA9meK1V9SNMQh7UXDXtMnW8d7opkWbCVWKn88yDZXacmQNZBcRpsM2B9Y2nrqOsk7B2bFfcb1P5Tmt25vi9r4gtquz+hdffJFOJ1vkXygUGB8ft8HhbU6KrLTUlpda1q1hJUPYTBOGgwKRyrJUl9pNJFkAWZAOYOgoxWhQpJ4klNwsCHOExBMO7b4i3/nyZzl7cIjicoPy//v3KJ292J2duikBHGhiPAWNAHTWeflYOcsm0t59iWkPA7UkZiZs5Z9bEoVhIQpZjEN8IRkvFDlQyE56W2lCqjXfnr3E+/VFRoMCRcdhMY4401hG50FSv+cz6hfwpNM98V+IQ9z8c9ERklCpa74SHStFR6WEWhHlg+zXN4xRxnCmubzhuSKj8KXcUQZmZZyFWdfFdKVJjQHbx/QqrWRhd5r5/TS9uDDNVKdFrDWp0RsqCNZaTiJeXZy5LmtrN5MaTaRUt6mUZV1vSuv8s+72DBB3lUH8+3//7+M4Dvfeey9PPPEEjz/+OI8//jiDg5t1nrNuF76UtkGNZd0iHCGZKJQpuy6ukMxHHZQxjARFnhs5wEhQZDEOAYExhrFCiaU4IljTxdrLPxMiT/JHz9/P//bxAmM/eo++3/sqTz54gvceOglbdb0WQF+EWChhWj5UY0hk9melxLS0sxJTEcueX+2+lHxQX6SWxPR7WbAZCMnlTpNa0vsafOlQT2IW45Dz7TqHimUcIXGFZDlp81FzmWE/ALILZQXHxRB1A6q5qE1BZr9iXSEIyU66fXH13b4jrYlUSpSmeEJ2y3vXaqUJ79UWGPGLDOT7Z/LSUl86dNQVvneslkEKRE8gs9KkZmUdnb0wuHs6D7DTfZiVaCQxHZ1lp5U21LcJEJfiiKZKsvLvT6GBfaoNkd5fZa+3A5OXmXvy9ptSkN7mcxB3FSD+4Ac/4NVXX+VHP/oRL7/8Mv/pP/0ntNbccccdPP744zzxxBP87M/+7PXaV2uf8oTDHk3NsCxrH3igfxiAc60ak50WqdAcLfcxVsjGVBRk1nhFCMkD/cMsxSHBmhMIN29cpbTBSMHiZx+nevQwhT/+Jk++/Qnjiw1ee+ERkmCLUrFqBAslqAdQjRHvjCHms+c2QQruFX5hb5FBHPADFuOQ0aDQLZutuB5TYQuDoeys7o8nJLUkop7GeRfV7ENOCkFqDEZn2dMeeWZIG0M7TfHzD0ZHSFKddRD1r+FEK9IpiTY00gTPcbJ1kOsCxNRommnKchJ1A8Q0H63g7TiDmJ0YSSFI1mUQs5d56580GWN4qzbP3dVBCns0NxhYzczuswyiNoa2SgiVwhMyP45i9Bbl4PNRh06afmqBbpZB1NuWvVpbu9qS8MlOi49bNV4YPXQd9mrvJFrteRCbao0xm488uh3s6rR+cHCQn/iJn+CXf/mX+b3f+z1eeeUVfv3Xf52hoSF+53d+h1/6pV+6Xvtp7WOelN1W75Zl3fyGgwLDQYGq56PJAoZhf7WzaOC4uFIy4PuMBEWeHTnAeGF1xqEQgsBxuh0HfemQ3nOS9v/556n1lTh6eZ4f/6Mf0LfU2PT5TV+WuRD1LMu3EhwCUN5+/aEyBr1FgOhLh4lCuSdIKzouHZUSKd0T5GbjPlLmww5y3SyN0aDA2PqZjrkkL89T6G6Gzc3XXSZX6CD6zvI8lzvNLW9fKf1rpgmhSrNh9utOXlKtaamEpXi1A+VKyagvHaIdlLqq/P4SSJTq+boU4rYou0qM5kKrQWOLkS9XK1u/SU/gvR+kJju2WmlMrLOfc5w3htnMVNj6VDvarqyLbeyjzqo3i1Rr/mLmIu2rOJab6z5L9qO5qMN35ib3fLsKfVtcDNvKri+LtVotXn/99W4m8a233iIIAj7/+c/z+OOPX499tPa5TWebWZZ10yu7HoJsDmHVW5Ndk5KidDhUrAAwUdjYqCJwHEKtEQj8/AKSHhnk6z/zHI9+5w1OXJrni3/8Iq8+9wAX7zjY++C+/ISkEYBad9W7sn2AONVp45uYCcgGNF7BylV1sy5T4kuHRppwudOiuK4ctrhFRskRgigfRq80SFeseY4rzyCcjdo4UnJoi6X9kVaoPEAspS7KsKHZSWqyAfczYQsYBeh2JPUdSVulxFp1s2LtNKWeRj0/w5W1hq6QROtKTAXXL4OYaMWlTpMT5f493/ZuxUrlP8u97Zqp8lWc+61JTZofs800oeL6uEKSaEWoU0r5qaIyhjeWZjlSqlKL4091Jmass8ZTtWRvA/admOw0WYyjbmXFzSbSirZK6ChFaZcNfjppNq5HGb1vlxJFSnVHD+3l+Wiafw7e6hfDtrKrAPHLX/4yp0+fZnh4mCeeeIIvfelL/PN//s+5++67bTez25gvJfr2fP9Y1i2t4mQBoiMkfV7Qc9tYobRlFg2yMtSaSnCl6Cn9cQoF/vT5+3n+wykefP1DnvnOmwzPLvPWk3ejVwKxQopxFTR8aGe/psxAB3O4DsOdDc+1MtvPlw5CGBInP4lc36RmC/2uv2HQvSsEqdF0dNJTeroduTZA3HBCJa44g7CZpps24bjQajBaKBKlKRJJqFNqSYzAEK3L8KQ6O2lfiMNu2VVqsv1ZCXoTrSnk35rpsMW5Vn1DgCjy1xOu6Xqq8jI1w/WZDXamUePd+gKHi5UbvuYp0rr7s9xLK8H1Spb2w8YSp6oDN/zke+WYbaYJoU5x8p9zJ00h7w0VqpT36otc7rSIjcrWKn5K2ZVYKwLp0Nqm7PV6MMbwzvICBm7aADHWikhd3cWORhqT6qy8t+TuzwAxNbrb4daT/p5tV+ns886WmO7A6dOncV2XRx55hEcffZTHHnvMBodWd86XZVm3lpLrETgOFdejvC5r9uzwAY6UKls+tuA4xErhCNldiwcQSAcNnH7oJN/5iSeJAo9TH5znx/7kh5Tr2dD6bqMaLWGlvLScwIHW6ozDNWajkLloNXA0kizAXAkQL1URPzgM85un5qpeViq7lhACAYSpyru2XpkjRNb1NR8ov76Jy5UyiKHKrtavNd1p8f35SabDFi2VUnSyTqntNOmOJFgrzQPBUCmW8yYjad6NbyXoXbsfsVY00njDNkB0X8+KRGscxHUZ9B6qlLdr8zTTpCdreaN0T6r3OEOWnWxmJ52hUnzcrNHc4zLWq5EYjSJbO9tK0+6xu3YsSphnVafDFiL/b6djVq5VnJeAx3rrstfrYT4Oudhp9lwoudnEKxc7ruJn1Ujj/DNj/86fXOlwu9cddZXRCFidw3ub2dVZ/auvvspv/MZvcOedd/K1r32Nv/k3/yZPPfUU/+Af/AN+67d+izfeeOM67aa1n3nSsXMQLesW5ElJ1c2Cp/UXAl0pt704WHRcIpWNVlh7AangOihjmAk7nB6p8rWffZ658UEGF+r8xB9+n8OfTGV3XFmHOJtltkxx61/+K3uR/UIX+NLJZiGmEhKBODOEaPmI1ydgcuugdqut7/QiqCMEsdk667TdSZYymsToni6NkVK8tDjDdNiiHse00oSCk33/UmMIHId4kyY12TpBQy1fr5Xk35cs6BU9Q9rjfN7d2oBPaQN5gBtqhclvS7TqZpb2uuzqk2aN5WT/nIxGWl2fDCJZZjbRmiQ/VvbDGqdUa7Q2JEazHEd5XwHTE4xFeZB0qFhmolCET3ENYqwVgeOQmL0PBLZztrlMK00+1aB0r8VaEV/FsWyMoZkkKGP2xXtyrVClvL08D2THbrjHAWJWZp83GLtNh/rsqsS0WCzy3HPP8dxzzwGQJAkvvvgiv/Vbv8W/+3f/DiEE77///nXZUWv/KrnuvuvIZlnW3hgJCvSvKy/dCT+fCVjwen/NBNLNmltoRWoUYbnCt3/qKe574wz3vvUxz377DT6eWuCNY08AA4h63hynuHWWxWCywCdfg1J0XLSrsiugF/sRiYOpRIhmABf7MAe3bgSz1sqYip2SecYt0Zr1IaUxWTC2lVhrlDE9AeJM2GYuajPsF1iIO7RVmq0LRJPoLKOyvsRUrRli38jXa/V+Phtitfrvtk5R60ZwKFYyiJJIK95cnuvOeJT5HMu9DgzmopCClCT5SI5rpYzm/foS9/UNXVU5YqQVsdZ7si9rpVrjiCxQjJTKR5Xc+AAxyS8spHm2yZUC10hqaxqURFqBEWvKYT/FElOjcIUghk9tFmI9ifmwscywXyAxes/XuH1aVjKIuw3yVh6XGr2hBP9GW4hCzrZq3Nc/RGqyESh7GSCujPNx8pEvt6NdN6lZXFzk1Vdf7f45ffo0WmtOnTplm9Tcpu6qDNzoXbAs6zp5dHDsqubdeVLiSLGhoYsrBNqs/g1gpOTdx+5ibmKIp7/zJic/vMjwTI2Xgp+h6eVzdrfIIK6s9TPGEOXrlCYKJRa9BJci8uOh7DnunYc3JrLGN5od1c8MB4Xt73B2AHGpD/PUZShk2bWVTqOwPuMqti0ljPOOpJ08myeFoJ3PLCw6LvNRhEZn2Vj1/2fvz4Jsy+6zXvQ3xmxWn323+119lUoqVanUWJ0tWXAMNgYc3AsHrgGDfX1vYIIb9wk/EATwQjiACIKXGzcwAcdxDNxz4JiDMQYbW7YkS7JUKlWVqlSlql273zv7zJWrne0Y92HMOVefuTJ37l27SvOLUGhX5lpzjjnXmCvHN77///tMNlnZGi0xTVUCV8oBBTGF1mTHBWNSMxzBYRb9ZgxBHPNWs86ZYjlTv7gPJaatOMCRMjOHuVe0o4gb7QaPVmaObcwBPTfa7imXFqbutgqjekRaPxQlbCn5TyM4zEaL4K7XJlJm3vlxzPBXwYMyqUnHB0bVfhB4u7mPH8esFEvUg9M3QXlQMOXS6tgKohebGBMrUbwfJrTikE4UESqVqaOtUzQwUslGmyUeXBn1w4ZjEcSf+Imf4ObNm1iWxTPPPMOnPvUpfumXfokXX3yRubm5+zTEHA878h7UHDk+uJjk2HkUHGlhCTniAJouNKuF4kjo9dbZJX73z36WT371NVbXd/mS+N94dfbzXC8/M6Ag9hvABH2LtnYUsVYqs1wos233jq1nPZj1TV/jbhndcrMS1hNjv4B4dx6BQG9X4EIDiSTQMV4cZWWZKVwpOYgm28WnJiGRFpnLaCMMsDCRIfuBjyUFRWmhNQhhyp+GCaIfG6LqCEk9IYimB9GMxxIiI45gFoG9CA5DpNIdc0sIPDQHvkdBSiq2k0V+nHaJaTs06qggPrJXcxrEWp2orC4bTxSgtT710sJYaSQSrcFTUbYx4MURX9u+y+eXz1GwHrxBT7oI1ghiFCVh4Vo2d702236XM6VKotD0Pnf9AEtMQ6WQGAL7IModm2HAm4095t2CUZHQSWn26WViPih4sXE/Pu5c9hLX5NSd+WHCQeAbdTNR+QXQOOT79bhIvzEl4oe2Qu5YM/2nfuqn+MQnPsHzzz9PqTTBhztHjhw5cvzQwxHG5KQ85ADqCIkUxsRmXOi1Vy7ylT/5CZ753rt86LtXeLH+Zdb8a7wUP0pAAaU1V1sNFlyT1RgqRUnaIGDf95ixXWqOQ3e+TvlgBlbb6Ef2M+MbdsvQKBxOEI2PyOjPtirgxlAJEG+sIJIXid0S+kLDLCS1MmH0Q+93paQZhhMDqyOlUEkoc+oyWg99XGll5boaiW1Ls6OfqIyhUgPHDJRxl3SlRTsKiZQaKGEsWBa7vpf9dyeOTP9j3yIo0gqtzefXjkJcKWnHEVIIZDL001QQQxXj65iKZaPRp7IYDZVK+vxOShAjHClPnSBGyYJbJeQzTPIHfRVzEAUchD4r1mR34PuFMAkFF0ITKY1lS2Ri1HS70+JMqUIrCkcyjx8EQVTJM+FKsz3xIPoBt/0ufhyznJhXDT8j7yek+Yfd+HgKWzeOsq+x97oHM91wS7/n9gLPfFcmG0EFy6IR3uOmXx9SIy6jIOYlpkfi7/ydv3O/xpEjR44cOT5AcKSFa8kRNcSWMlMWhZjwh1cK3vzo42yFj/LJN7/Bue51Fv/Pu3z7c89x6+wiM45LqBXNMCBQMWvFIkLANaWo2S4V28FfaRBdCAbiA/SMjwBEo4CmCXtFaLlwoQFbFcR22eQu7pegFKI/cdeUomoQby8ibpp8Pu1GiMBGL7Vhr2Rer8hs/9txkCltKVxpUQ8DPBWPVWWDpDctTkplq1pTD4KeA2zyO0sIKrZDN44yhS/SGidZOPmJkYwrJY3ImN74KsrGU0jGkZYGpr2P/apdWmJqC4mFYKVYYsf3CKWVkeLTbMvxY6MEOLY5X3fMxsFxEWtNcA+L+k4cUZDWqbtXRkonJaZkCkisDSnrRCHNKGTlVM84HQKlEEKjtSBCYSfzqWa7XGsf8ML8Mq0oHCixFHDqOZHjEGtNnJQ820KeKPD9uBjXz/Z+JYjdOMqcjY8DUwlh2gXu5z3vRCGtKGSlOHlj5I2DXRzL4qnaPLHW1AM/2zjwVExR2nTi6NTKgFVmUpOXmE6NW7du8au/+qu8/PLL1Ot15ubmePHFF/n5n/95Lly4cD/GmCNHjhw53mdwpKQg7ayvLft5Qg7nnCJ3u+2x7w2UCT7m3DL/Y/cv8Zz/Bzy69w6f/x8v8dZTF/jqRy/zzOIq39rdxBKCWaeAFOacJduc00rImtXP02aSEqSGMd0Rby0h2i6qEiLeWEbEfQuL0EJvVky0xo1ZxM1ZtBMbspiQQ/3cFuLVVVO22ihgzXqoxPlvuG/TETKJp4jGEsQwUe2ESHqGVIyvImZsk+slk0gBIQQzjsuM4xKoOFGiIr6xs80nF1cJkl4tW0rTQxdH+HGcGbUUpEUjWZC50iLWRjnqdzYNExVSCsH5JMpEYxbq6XFOU0H0EiMMK1Gd28dUOsYh0opInZwgdqMoMQE67R5EnSnAXrKgjZNcRBNN4gGzp3rOaeAn2YdCCLpxnCk1Vdth3euwG3i0hxREyYPpTYuSzMh0fgyXpt8PNKNg4BkWD+ha7wfMZoc8dj9tO46SUvbTeSYn4a7XZr3bPpQgtuIQKyG43SjEUzGKVEFUxuFWKbxTykJMzb5k8j36w4hjEcTXX3+dv/bX/hqFQoEvfOELLC0tsbOzw+/8zu/wm7/5m/zar/0azz777P0aa44cOXLkeJ/AFkY9dId2c52kl80YwIixJZf7gU8njlha6hAtVfnOhedY79b4+Ne/x9M/uMXq+i7Rn/uTvJKUUVYd0xtXsixKlm2iNYQkUhq37/SxG4ETIVouBBLRNgsJ8X1DDvVSG335ACKJfGUNcX0OvdpG3JhFo9EvroMTo/dLsNoCCXqhi9gtw14JOeej0IkaOHhNIjEA6cQhi4ya3wQqThRV0+/TjqKB/sqa7XAwZMIgk0zCeuizG3ST98Q99VKbEtG9wMs+B1tKYq1M3qINkdbYUgxlI6oxzp/G1c9J4g9OswfRT3qIhBBGrZhyMRomTqOVMSY0kT55iWmoFL5OYxX0qZqTxKkZTPIZxDrtPTVEccvrHn2Q+wAvySy1haAd9T5bM1bNtt/FU/FAHqoU4r72Ayqt2fI6VG3HGDdhFMQHEXPRCIOBzS2tjZPq+xEnVRBbYYAj5H2/57HSI27MwwjimBjzmlYUEmmjcptS8jgr4e/GETXn3gmi6UHUJuYidzE9Gr/yK7/Chz70If7lv/yXAz2I3W6XX/zFX+RXfuVX+LVf+7VTH+Rx8Ou//uv8q3/1r9je3uaZZ57h7/29v8dzzz33no4pR44cOX7Y4MiUIA4qiAVpGYLoljKVzx4iIykx0nYML24AcJdVfmd5lue/+hoX1nfRv/6bfPGjj/NbjyxQsmwkgrLtUEjMcdwxO797oUe10qZSn0Xfmsl+Ljzzp1BfaMC8B9oY24iDIry6ahTD5TbUkh6XM30xGYsdeGfRuJleaCAQmUo0CjFxoRXGcaIgGoKZkqSUqNUcd2Thk5a0NsKAdhziJ6YnvXNrNrwOO77HotsjpQIGFMS0lzEbi4pHTF4Fpr+yICxIiOlpwbhSmjFbQo7tTR2Hm50WW16HTy+dGfldrHRiUnP8RX2oYmKlKdk27ej0ytbAEHKZ5FEGKkYnP4uUURH3Az87351Oi7JtM+8e4aZ7CvBjs7Ew5xSYGZpnrpTcbDeMm6ndpyAmSuj9QiMM+M7+Fh9fWM2cfW1p3H0n9fKe5rkHymmFfl8qiOkmScGyMlXdnmIue3HElt+lYJnv024U3bd7Pk32aRq5AUZNTEvdI6WyDTkhODUznbTEVIoH59T7sOFY33jf+973+IVf+IURg5pSqcTf/Jt/k9dee+1UB3dc/Nf/+l/5x//4H/NLv/RL/MZv/AZPPfUUv/ALv8De3t57Oq4cOXLk+GFDjyAO/pkp2w5fWr1AxbYzgtiPlLDYQo78zisX+e0vfITvfOoZkIJnv/s2P/fl15nba1C2bSqWk5VvFi175A+7r2KCBUPusn7CpA9SuxEsJuqNAP34HlpoxE7F/P7iwfgLrYXoM02EbyPeXDLXoNRA72MKgTE/GYeuikw+njbREp0hx8hxSGMJmlFAO4qM6Umf+mdLwa7vjRAcgaCR9G8KBBIxUEqZZuL1w00MW4xJzenGXPh9rq92EhUyzaIsVL1wbD+OB4hlav5yEoOJNPutIK0+98rTQax7GZlxYoQRJZEarrToxhGtyGxEXG0fsOU/GEUx7V0VQozM3bLtcBAGmWqTwpSY3j9VLdKmv6wZBlnEiiVk8rnev0V7oGI8FQ08M1oLwvfYqOUkCFRMnGSmpqYu0+Ctxj77gTH9soXpS03fux94p/r8R0oRHDGuQMfZd6cx+wLQidOqcQaG0zNNUlqbqoYHmPX5sOFYBLFQKFCv18f+7uDggELh+GHKp4l//a//NX/pL/0l/sJf+As8/vjj/MN/+A8pFAr8xm/8xns6rhw5cuT4YYMjJE/PLzLjjP5dcKWVxWAML/TaUUTNdsaSR4AYuP3sY7R//i8SnFtlZb/F+X/7W6x+63UuFMqUbUMQy5Y18P4osckPU4IYGWVTP7JvionONwadRxc89CfuoKuBMaOZ95gE/dQOuhAhNqtYXXegV2/wuuVAxEQ/unGMLSW2hHYc0gqDbJf8MAgEB0FAN4poRWFm5mHOZ9GMAorWqIq763tJWalRO/uVzXElpmmJWvrz+BRLTNtRlKmetpQmrD0+eiGbxkMAXGsf8Ep9e+B3kdYn6iH0VYxGY0uZGWGcFmKtk8/VjM9OelN7c0ZnboypC+2DwKDyPIiyZWd9f/0KkhRGoWpHIf9j8+apK2xpf+1BFJBulqSl4/59vC/dKCJUemBzyxKceibmg0CgTNZmShCnKQk+CHxeO9hh0S0iks26SGmCOEZrzTd3N9gLJn8fHn+M6sh5HihFoM0G2H7gUbAkWoskpict6T89MmcIsEgUxJwgHokvfOEL/NN/+k956aWXBn7+0ksv8c/+2T/ji1/84qkO7jgIgoA33niDz372s9nPpJR85jOf4ZVXXnnPxpUjR44cP4wQQvCRhaWJpXmp0+bwH992FHK+XB1LHsH8sS5aFnphDv9n/zytH/80SEn5ay/xo7/5NZwtUzFSspwB9agVhcw6LqISoyqGpGk0XDpAf/4mPFofHeRsgP70bfQLm6OxF/1wNCwYpccO7Iklpv3ZhMPwEldSW0iaYcC61xlRXyfBUxGRVjSjIDPzAENId4MutaEevZJlsx10E2Vm1PgjzZzrRzEpUUuPPZzzeC9oxWFW9pZ+7tMsZFPHVzALyE2vk/3OV2Yxe5LeqSBWA1c/bvG64bXZOYG6F/eps7E2ym6o42Sua5Q2cxWMuciDIIipi+24TQ1I+xAZ2bAwJaaGIO763qmSBkgUxNgoiCnsJErmfvY+djPS0U8QxXse9XAS9G8CTbvZcaPTxI/jrLc3dfL0k8icUJ2uguur6EhlM4wNifRVzEHo40qJJcyzkpYfGyOt0xmX2QDTmYJ4EsVUac3tTvNUxvNe4Fg9iL/8y7/M3/pbf4u/+lf/KgsLCywuLrK3t8fu7i4vvPACf/fv/t37Nc4jsb+/TxzHLC0tDfx8cXGRGzdunOiYUh69e/ugkI7lYRpTjg8G8rmV435gmnlVsm2aYYgQpqxyK+hiS8n5So1Nv0uk1EjPS4ymbDvmuNKCT79A96lHKfyX38e6tU753/xHws++SPVDF41ak7y/oyJemF3m3dYB4UKbQrsAlRDhAI7icAY4BRyzMJGRTYSHLeXI2AuWKSFsxyH10Gfb6/LR+eUsiNooVrAf+hyEAedKlSN7foQw5ZRFy6YRBpmxghCCqu2yWoTSEEEs2zb7XZ+toIvARJL4Ks4+qxiNNTT+gmXzzMxCela0OL3vjHYc4kgrUSvMsSPU2OP3z6u07E3KhKjEIYGOKVp2Vmob6PHHOQwRZt6JpK8pQo8c40aniUSwUhp0Xlzvtpl1XMpjjHOATOEVSdSFKy0inZj+CIEtwNcmRzNQ8cT7kKIZBlRtZ2Se3O22OFM8ev6AWXyrRDGd9PqCJQn14POYkvkQRSMK2A26nClXjjzftNCJQumpqO/zEJAQ09P8m9U/r3wdZ59RiuFn5P2CdC5LKREimX+HXEOsFe+2D5hx3Oz6ReJoHKHQQhNh5stp3YsoUYd14pg6DKXNOWM0XRXRVTFlaRNI88wrSL6vjM58KuMS9MqthUJIJm6gTELd93mtvsMzZ1fed/MGjkkQ5+fn+Xf/7t/xla98he9973tsb2+zvLzMRz/6UT73uc/drzHeE07aVGvbksXF6n0Y0b1hfv70vnxz5OhHPrdy3A8cNq+WmhX8TotKqUDge1wsz/Kl8xdZKZW5EbXY9T0qxcES1YL2WZ6vDn4/L1bR/6+fJf6jl4l+6yu4X/02L/7gCpufeIziyiJKa4ra4ekzy7S2YvYvdODWPM5agFs9ndaIsCoIgQIusmAzUy4iug6iFJMKEQXlcL3Z4Ld3b+LHMa60+JGZ88aFdduiJhxsKbnTbvLY4jzuUGnoOBS1j2XbLNplZMHCFTa1SjFbzFTHOKYClAixihYV5VJ1XdBk99TZtikIQcUd7wZY1D61meKhfyNvtZq8vL3JF85eYPaQ9hOtNXpbMFMoZucr6YDSTIHF2uTjz89XKHRd3NBhdr6M6zngSayqw2K5QqHjUG0XsIr2sf+W3xUexYZDpVqgREBlpsDi3OAxnI7NnuePHPuPrm/wZGWBC/Pjz1nYdkxZaaBxpIV0JW7ZplB0KXdcbCmwSjYz82XcLYdCxZ04/s1Om6/tbvCFsxc4X+295sD3+f5+nQvLc8wVjja4aQYB7pbNTKmII8fPuUfGPHQUjwMAAQAASURBVCcqFISxolgtgCPYFeGx7nUQx4fO8bod4RQt7KJDCZdKMoYyAeWZIoszp79Gm5+v4Kh29vlnY3U00rKOdX2t0DgsnzZCFU/8nIaxYwUU6+Zaito/8r7dbjXpypjzM7UBQlTUAbXZEjOFIu6eTXWmxOLs6dx/p+FQxGFuvjx2PgRxTHHLIQg0uiSxXIu5cgntC1zHpoBNrVqgTkDliO+laVG3I0r7DpVSARUKZucrI5m+R6HdUlhtQ7Pej+urqQii53n84R/+IXfu3GF5eZlPf/rT/OiP/uj9HtuxMD8/j2VZ7OzsDPx8b29vRFWcBlGkaDTeG7vpcZBSMD9fYX+/jfohtdzNcX+Qz60c9wPTzKvIi2i1fSqxRdP3KBbL2F3NXrdN7MW02h6laLDM0vdCui2fXdEaPeCHnkKcWaPwX75M4eZd/vxvvcS7T2/zR89dplQsUPQAT3FgNyh8BsJSRNg6pTmvXQSgOpJmx2duZwb58ir6sX14rJ69bE0WCSNFWTisdzqs75jd+kbLp2LbSMvmjFUm7EaEHF0e6XkhASZb8SDs0o1CugRHvk+GivV60xhERAJPxVzb2OPNg102Gy2W3RLtYPy98bshe/vt8Z9BgpuNfb6zvs7mQZM/febyREWtG0cctDxqtpOdr+sF3No+oBaMLsj659VevU2747O102T3oE293eXmdh2nqtk9aKOCmL1mh93dyeMch716m243pC18ut2A7f0Wi/EgWd496LDhtbm1uZ9dW6wVN3cPmIltltUouVZa02r7FKRFNwzxMUYo+3TBUwReiBaSTdVkw2nQbPvs0Ga3ODr+bhzx39avc6Pd5BGnSsnvLeavtxtsHLTYKjeJC0fPoXrg0+4E1JRNIKYvyfWjiI6K2NhrEPox1/f2uVXZn/hZD9+L39m4yY8srjHnFuhE4cj7dlvmc6jToRMGtDHl2Z1uwNZek9nweAt2gDcP9ihaNo9UZwZ+3j+v7uwcEHSj7HwAQWieq2nn0o7f5aW9Lf7UmUvHHmN/SPsw9nyPb+9t8hMTjvu9+g6PVGepJvdyp9HC64a08el6ITtH3LfXdjbwvJCuGPwO6XoBO/stYjek0fbZ2W8xFx07Sn0s9hpt2mHA9m6T4piM2G4c0er4dMKQG9t12l0fHwc/iFC+wgtDOiIwc+Wgk30vpfmiw07a02C/1abrhXRVQDvy2ZkwtsOw3mzQaJuy64dpfTUzU8Jxjr4nR17trVu3+Lmf+znu3LmT/axarfLP//k/f6hUQ9d1efbZZ/n617/Oj//4jwOglOIb3/gGf/2v//UTHfNh+TD7oZR+KMeV4/2PfG7luB84bF4VhEWsFDrpaylKK3ttUZrg4+FeN601NnLyXJ2dofNX/izNl15h4Ssv8fhbN1i7sc7tH/044pygnJQf6kqyADqtKe+YLD8rskxpbBqjsVlGP7o/+NJEUtRam0B2YSUmOsfv7UsXkwUpacWmH2eaY1Qsh9vdFjO2a4LbleKPd9a50jpg2S3hSnnocUKtDv2+aIcRJWmb3jTfoyhHlxsHoc83dtbpRCELTiE7X9Wy+dbuBrO2y5nS+J13lcRYREoTxjFeFONHMfu+hyrP4McxtpB4UUQcj5YqHwaTyWbuo9bgR/HItXpRTCeM2Pf97NraSQ7bQRCMvTdxEvguMJ9zDBQx5dW+jBEaLGn6Qf0oSsj76LkB1jtttrpdZmyHrW6HJ6vzWS/WZqdDKwwI4t5ntN5t40jJUqE0cqwgNk6X6bimhyZWikYQUJQWfhyz1e1ysXL0QrobR7TCgGZo3vvlzVt8fvl8RmwgiX7BZDRq1ZvXWoEXRSf6e3W302KxUJr43iCK2fE9U+rcdy+kEHRjM8fSvmo/NmZG44hDOwzphCFhki95HLzV2CNQiufmRsWN/cCjEQYD40ihteZq64B5p0A5mZNBrHrfCdrkDR523za6XUrSHv3eVWaehLEiiGOCI45zHASxIlaaKFYoMXrMIDKxM1II9gMfpcy1Skx/sE6uT2AckdNx3Ww3uN1t8dmls8cek/nbYxoP1CFjOwydKCJI+lbfj+urI2ftP/kn/wQpJb/+67/Oq6++ym/91m/xzDPP8Pf//t9/EOM7Fv7G3/gb/Pt//+/5jd/4Dd59913+wT/4B3iex8/8zM+810PLkSNHjhxDKFp25oYZa51FVACUpU084e+pc9SCSwg6H3mK/+VPv8i1R85Q7QY8/d+/TvE//Daz3eBULdp7gzILASu0Eb4FO6Y3TbQK4E/YrdWm9zCNdbCPuZAEEzWgEjfMSOnJzqe+BVF/T5WkKC3KfXEjN9pN1vqcYCdBYHIGD0MzyZETpEYZg4i14hs769zutjhXqg6Us806BQTwzd31gc/qrcbegGFJqEwvVJS4MxYtKzOOCZRZQMd99vzTwuRAJj1pMNacJFAxXRUNmA51YpNDmcZUjF6zCd82XqUGaQaliZmQWeZcOifG3TswJjxSQFHabPtdQhXzOxs32PDa3O62jItr33tvdprc7bbHHitQ8YlacKUQKG0yAy1hZt60Tp9+bCJK0ngSL45HwtJjrSlIOWKsIoUxZjoJDqJgosGNF0f84dZtbnVaI1mQlhAoNWjy8nZzn+/VdyccK8ZPIhimwbbf5WbbGJq0opDGBDOrRhDQSYLih9H7LumdM+iby2mEziTE2kTmjDfH0obEJbmKJ4mPmYQgcQ2edK8inbj8Jlms6dPTc7pOntWkZ7V3XMVBMP4+HoX0eyd9Vk/iZHoQ+LzPOOEAjtzm+e53v8sv//Iv8+KLLwLw2GOP8Y/+0T/iJ3/yJ9na2mJlZeW+D3Ja/ORP/iR7e3v8i3/xL9je3uaZZ57hV3/1V1lYWDj6zTly5MiR44HCETJbKQ/vxLuWBWN2bDVMFVruSkm3WOC//chTfOjxc3z+2z/Aeec6z12/zcGHL7HzkcfRRxxnx/cQwOJQH5cXmwWtI2Xm9IcbJ//nsLq/gtDC5ChqAXslODOmNE2YHX1PRlnO27QQby5C16H24ZtEqCweYqxSFkjEH12AeQ/9wkb241Sd00mcQMGypuqzkYmr4WFoJQvNKFZjnROvthrc6jQ5W6qMLaWbdVz2A59OHFG1HUKleLOxR8VxuJy8JlTGXTB1tSxbNnu+l7lyulISJIva45SZBaoX5yGFwB8iIzohpAUp2fQ6mXlPOw4JlKIZhmOPqxJFUpC4aQidEUTjImpcOj0UnThMcuvGL+iDRF0rWTaNKOBGp8mNdpNQKQ5CHwEDxDhSig7jx9WJI+MQckxITA6nMRmShJEintJ1NUgyLL04wlMR3TgeudY4ceQNVTyweWILQTs8PkGMlKITRSNENMVWp8O7rQPOlcojqp8lRF8mpvmeakXhRFfibhRmCrc7xb7PerdFPQy4WKnhxRGtCXmpu0E32xApDSmXvjLK3ghBFOk1gHeI+2s32eAYdj0GIHnmY22I4mm5yEbJJo95jsezqXRjxZHCVAYkF2QJgaI33wRiYFMk1opmFI440k6DjCAm7q8n2VQ8iE5GTh8WHEkQt7e3uXDhwsDPLl68iNaanZ2dh4ogAvzsz/4sP/uzP/teDyNHjhw5chwBJ3Ge6//vFK60RkQNlWTITUMQTc6ioBlFWI9dpv3R53G/9h3cP36FL3z3XerXt3j5Rz7E7urkDUSjUowunLd9j8VCkW2/S9myDSlLXUxDi/LuLGAyFsXVBcRuCT2GIApM/qErj7nY7diI2+YcNVWColmsCdGvTfWhXkTEEr1TMkpiYXBxJ4RgznGp2eNNacaNOzpka1xrTTMypEHHYmQxGSrFd/e3qdnuxIWbKy1CrWhFxqXzIPRphOGAohbqOLPuD5WibNt0k1iEWJscu25C2spjz9JDJ1nsny1VCVQvziN1mO1HpDUxmorlsOV1stLOThShtVHRQqVG5qnS5n9CpCRbJyTLbDpkQfBK046ijOiOQzeOsDBRMb6Kebd5gBSCDa+TONPKkcVyMGFNb5yEj7hBYyATBSdSqfotplaWjNplws/LdowXRyMbCen4ldZYfS6QtpQDsSzTIiVAk0LZ05zPcXPSEpJYK7pxxGyS7dqJQ/YDfywBMcREHxq70AwDWlHImVKFZhjSSUhhN47pxqNkXmvNjm/ON+75C5KNhgGCGPcURBPVMfm+dZLcTXvMZBD04i00JyOIu77HW829gZLPKCm71iROvn1IxxpphcBEAHXiKNvssYRMKhnM+0zsSu8Yae6jF8dU7OMTRK1NBcG4sR0FrfXEjaL3C45fz5IjR44cOXKcAvoX0FqLgdIm87uhiItEUZjGwa8gZZKtp1koFMFxCL74I9z52Z/mztIMc/tNfvy3/5hPfPVVCp3Rnd4gVS2GFryBinGl5HNLZylKu6fSJCWmhBZ0HLRUcLFhshZ3S2N5my0k7SigE0eTlx/rFcTLa7BZId0sF3f6DDa8o/u9xL5RQAUCtsdTpXm3mGURHnm8RE2ZhHTxbwuZlGgOLko7cUg7Dqkd5fCoBa1kkbUf+DSHygNDZRaXvoqJ0UlkRJIHiSEtpgT1aFVrw+vwVsP0ivZnAsqxBNGct2zbeHGcXd9B6FOyTD+pF0fsBd4A6TFLa0MK7aQk0wRxqyxjMs35a0chKim7G6estOOoF0uhBXuBx5zjMue4mao9oCBqTTcav2DdC7oUpvzs+5Heo0hrbGFCxScpnsPwY6OuNSPflJqqeIQgpnmcq8Uy827PUdQSYiyBOgppCfAkBTFQ8cjzPoyDvhLndmTG3RpzX3sEcfLxrrUPeK1ujBUPIj+7JlN+O1qe2okjuocoy34cE+h4gJT2z2VLyEMVxE4cwVC8RwqJ2ehJr+mwUtVJuJmo3P3PcJoxqPRoGeeV1gFvNHaJlXluDEEMsxaDdINC67Qc3KjN2bGVygjiNHi1vs2bDZOjqwCESUHoLzH9QXOfzoTnqB/pd+D7GVNZ8vzCL/wC1piyk5/7uZ8b+fk3vvGN0xlZjhw5cuT4QKOfBAqhcUXv74krLUOu+hAni+gjexAx5MsWgrLlMO/2lYiuLvEfv/Q8n7izz/PfeZvL797l7M0tvv/841x55hIBZve4E4dUbYdGGAwoBK0oZLFQYqlQomhZCWG0QIK2Y/BsU15aCYyqOO8h9kvorTKsdkbG2IoiBD7OBAlHXJ9HtFzEbtncj0o42NPYtWEuJbi9fpwBHPSuX2xV0OfvLbzZ9CBOJl1+HGcKmiXEiNozLoh8HKQwpAtgy+tkpb1AVpKm0HixURLTPrhWFBIrkLa5F9OEg4dKZQv9/r6t1MCnH1FCTAvS5kCHdOOYsu1QD3zKtk0niujEES/tbfLc3BIXyrVszBqjIC4XSmhSsmmUxV72nqAVhaa/FJXcq8G1VjcKM6VHCmhGAef7ejnbnWhAQYy0ojtmoay1Zj/wT+T0CEZdiZTCtu2RHrDD4KmYKFGaZ5JyzOFe0TDJIxwupbSFpJt85scpy+4mKuXEHsQoQh9yPFsItr0OT9Xm0cl3hB8bgpiqiilakckkPWxz4manRStRu1uh2RDQWuOpiCgpm+6/9mYUECa9yuPu86QS0341/DCy1I2jRM8ehRSGIKabI4cRzXGIEwOdThzSDEMWC2a+RdoUiY4Lue9GEa04ZNE1Bkq2lHSCiGW3lF2P0jpTv6Vg4H4HWhEqfahq2o+9wOdu0hOdmjalSEtMrzTrVG2Hsu3gx/HEknyjViuK1vtXhzuSIP7tv/23H8Q4cuTIkSPHDxkcYUigTowGBktMJSIxYIHebrEl5FQlpiJZWJYsBpwRC9LClpIrj6yxfmGViy99n49ducvz336LR965zX9//hFurcyh0bwwN8fbrTqBUnSiECk03Tjiw7OLSCGYcVz2A6/vghQiShYMJUM29OU6Yr+EuDaPXukM8DdHyiToWeHGNmyWof81oYCWg3YjmPGh5SLapgw062/sUxCXxzhUEgtoFNCpwrlXglBmJbEnQVoe2Y9uHGEnn01XRWjMZ2UnpivDr51mWV+QFtt+F6U1617bxEMkKktKDuNEQVR95ZqNMEDRI4zTkBZfxXTiMHPUzRREBH48RBCTXixbmB68bhyhtKYRBrjSoitiNr0O+6E/qCBmbotJ6DsgtUhK2BQyI4EaX0XYQqAUY/vYOnGUEewFt5CVR6awxKC5TqRVZprS3/PpqZhOHDE7ZXnxMAQiUT/N8zotQexEIa6UdKKIeuAbVWwMER83T2wh6egoMSaaPnqgG0eEejJB7EQR9iEzs2TZbPldM0cS1TfSakRBDFWMl8zJSQpiKwrZ9T1AcxD6+CpGiJ5pVaSMW2g/QWyFoekVnUDEgzEmNX5fP60lxET1FEzJq5xw/ZYQ2bHVmM/qKOz6Xeqhl5SfB1lfd6RMGa4UjPT5deOQdhhmRjRFaVGW9kClSaw1bvIcmB7E3jFCpQh0PDWZ9eOYba/LK/VtKpadGX6lf4fSzzV1Tv3D7dt8YmF1cAMyG7vZjCiebN/loUBOEHPkyJEjx3uCkmXhCCvrs3IGSkxND+GG1yFQigvlStZXNq1qULIc5od29gvSwhGSSGt8x+IbLz7B1SfO8/mX3ubMVp2/+Aff49ajZ/ntD53n7Jkq616bbhTRic2CVmlYKZgyzXm3wKbX5wzpxtBNyGgpIUWLXXTNRzQL6N0SLPXyde1kRz9UMdVbq8hbC6jn12E5eU2jiECgFzz0R7YA0G3HlKxKjXhzGeE52Z7/WBXooGAUzXkP7Bhxdwa9V4LV8Y6W00Awutv/Rzt3aYQBH59fHejXsaWgM2Ty4sWHFaj2ULAs9gOfg9CnFYXMOG7WpxVrlVjdm76qOFGTLAT1wM8II4ipXEw7cUikdabcpHPRlJiqAbUqjV9JSV43jrIySeMAq9nwOjTDYKTEVCUupilkooLESmSKJwhiZUpmDQkeHH/qblpMxli07BGiNGyuky7EQxVj9b22nah3450rp0NKxlNDmWnQjiNKlukzrSemOsNmQP3lkf2wpdmg8I9JEBuhj50owunn149WGGAdch9Kls1+ENCOI9CaSBmX1WGnTC9OSARMVBB3/S6hjhEIdvwuoTIkO1XXU0Lfj4PIRyTGXePmtDE2GjSFSst0IVEQE5I3zhiqHvoTN99kShCVUfyOUz4ZqJgbnWainosBh9Z0bgvECJnuxDHtOEyUcI0tJefL1YHXKHrPpelB7L/2OCv3nga+ilgsFLnaOuBsqUKv7dX0HPsJaTffEzp77ufHHMuL46lK2x9mvH+1zxw5cuTI8b5G0bIpJIYTthADBMeVEluaRcnZUoUNr0us1dg8vUm4WK5yYWhBIYSgbDtEfQulc5cu8u+/8GF+81NP4pWLXLh6l5//7Ze49K3XWRbGJbJoWXx8YZW1Yjnb/Z51CoNKmtNbNOlyoioIY1YDIK7NDYzFTiz8g1hhd42CI/rLQevm33q2T6WshHCxAbPJIqt7xP1IjzHnoRfMcdKexJNieDGntWbP99jxu3xt5y71wM9auSwh8eJoIFetGQaMWhCNoigtPBXzan2bQKlEQUwJos5ImxfHhiwKo0KnSmBq2jMNaekmuW5eHGeEx4zflHn2L/ZirTOVV2tBOwppR6Epq03MWrw4ynreUvQ7I6aQSY9T/zl1ojw5UhoTmKGFZpCYhRzWMzpsrhMn0QTDpCNVv46TEzmM9J2GRExn5tEOQ0pJJqkpxbPwoiEzIz2eIKaGMcdVsQ7CgKI00Tpj+zr7ynbHwRgnxRyEPl6ixpYth52gO/C6bhxlZi+T3C+3vG5ybZrdxHnX9J5GiWsnI59VOzT9d3qCUttO+nXT+R4nRKa/BzHdJBiHVAEfh7QHMdIaS4yPrhmHVhTyn+9c5ZX9LeadAq6Q7Pi977PUgIYxn4mnIkJt3G71BJddR0iKSZmnFAyUVYfJJtKk2JlheHFMUZoe4k4cDUQGpc6tfkI6o2STZtJ9OImJ0sOGnCDmyJEjR473BFIIZlzXODJKOWhSIyQ2kjOlCp9bPkvZstkNfEr29DU7T88ssDYmaL1s2Vl5mCUkz84u8fnlc2w+foHbP/cz+J/5GFIIyt/4Ll/833+fx6/cZdkp8uzsIn/qzOXMJKdk2Ymjp6IRBoNlm6W+BcJKB10JEPUS9JEzW0gibXLFpJcoj82+Ur96on7O9RHEFMXk+EeY1Igkj5H5rvkfmDLTe4AUYkDV8pOF00qhRDsKueu1s74gK7HH79/ZP0gyEo9CGt3xdrPOWrGELUVGENPeJSnMzn9KcFxpFOn+df40zprdOCRGZ6WBWQ6iEMSKkX6+9PCuNIpIal4iEqOZg9DHEXKgzHMSWdCJzX//OdNes3H5cEGiUI1TgVKMEkRDNIeJRTsKxxooHQfp4n04ZuAwtBNFXifumEVpj2Qb9qtfwzCK4/H64Bqh2ejRY0g3mJ63o7JIBYJGGGTZfUXLoh4EI8+D+Wgmx8Hc6jYpSxutBQdhkG0UtBMTGsmoOVKqqMoJ196Kw4H+xFgrFIOOvMP5mNmYk1zKSUpyL47FmE8d5dCajSkMqIc+50tVKrZD0bLZC7xsw8jMbfPv/ucjjd6JVErwxk/S8+Vq1v+ZloKmxwmVxpHWVG6isU43DCVzboH9wB+YeWl/Z5jmQCb3Yty9jJTi3Vad0hSRQQ8zcoKYI0eOHDneM8w5RdO/ltiYpxBCMF8o8uzsAgtukT915hKfWljjTLF6yNGmQ9m2Mze+gmVKWZ+aWeCnzj7C6uwcwY99ivYv/mXCDz2B2/H4cy9f5Sf/6zexbtwZIDZly0ZrE3uxF3i9Pj/IehDNxYB+pG7+2aciDqgjKdFrJqRQAQdF44ZaHbMD7ii0rcz7Ji3wPQtxUEQXQ6gFUIzRpdD0MQYn//NvSkx7J00NGVxpUbZs6oGfGQnZSWxD/067CeOebvE057isFsq40jIREImDYqYgYkpAU7hSJg6PvXs7jdJkXCNNOZoaUF0ECj1Uuqay4zvS4iAM2fG72ULckZKDMGDGcQbcNtOYlmEIxEDJY0ruTA/lKMkIEqOQw0x+5FC/WaTV2Py6/cCbiqxPRm8eTOtiagxpYjN+ba6vYFkjBirRBAXRYDQ+5TD4cYynIoqWlSlrA+dSCj+ODyXdAI4QbCZl7wKM8hlHAySkdx06iWEYhBdHtKOQomXhSFOWqxOi1IlCNGaeDDuFBjrOSnn9MQpVJ4qS+a+Sa9IoxcBcjrUeW55qHIIn54WmJjV+nBLE8VEbwwiTzZR0bhcti3YUDWz0pM9S/3dKlCjeYZJleNTnko4xzVQ012+qDppTKIihSs2gBFXbwYujvudC0I3CzJk0TMx6ggmGR7e6Tba8LvPOvVVqvNfICWKOHDly5HjPMOu4pnzQskbK3D63dJZHKybvb94t8onFVT40Ozm3cFpULIcw6cnq3+XtN7PRszW8P/cnuPOXf4rNpVkqO3XK//Y/U/wPv43YrQNQth0TEK4Vc26BwOpbiJSGFnCrLUPOdsvQ6o930IhIZOY2wrdhu4z4xnlELI16OOkvdTE0r4kmvCCNtOg3vllIVMT9Q1REjYnViCeoN2KQtHRjY0ojhWDOLbAbeNlC004XpclCKkzKt6YlJTXHzZwCLSGynfs0O80Shlyla0tHWgSxyv7blMYdXu4Va42fkM5uHGXKZPp+pdXI4rXX9ylpRgHrXjvpP4Sa7bLoFnDEIOmZ3Hmp+/kstpDJQjwpvVOjCuJR62VL9AhUL0bALGp/0Nhno9tGa82W381K9E4GQRoxZ2IGjiYNacSFI2TSU2ciDIbNRMIJJjVgVNcgnk6thKRcURnnWTVGRUsdOo+KeilZNlteN+trs5IolXpfX103Ckl1sXEKYjvqbaiYrM4oIUCCdtJjK4XJ0+yHuR9irBtppEzPolHQze8irYj7SpdFYqo0vGHixzHf2ttIzjvZpEZhHFYdKc09HHNtu743YNzVv5kCpjIk1DEbXscouX3zpV9BTPsd48SwZ5q+cwEDxkChjilYMtv8OQz9LQcAl8u1zHzGFoJmFCal3TqLZImUGpmzsda8Xt+lZFknyhZ9mJATxBw5cuTI8Z6hkpCskjWaiVexnWPZ2E+LgmWBMCrCuPP2o3jxHG/8zBdp/dkvoWZrOO9cp/Kr/z8K//0rlLtGCVsqFDlfqtG1EufSQgTW0EJZgr7QAEDcnM1+rDVY/uAYxGsriI6Lnu+in949ZHDJAnJCH6LYMuW1eqVnSKPnp+hDvD6LfG0VcWWc/UK6EOst6LpxnCljlhBcKleZdZKeyoTkpApi6u43TVTJMOzUXCjulXal7rapeYeVlOql/52aaxyGUJkFpNKmBzHWvdLGNAdtoMRUqSwvz0n6SJtJT136s3m3aPL6+hb5k0pMjYbY70AqkngCc4+GFR9TXnj4cyEx9yq9LmOQY4jQD5r7XGs3aEUhjTCgfMQzcBjWiuXMtEkmGweTr7M3/nQxLhAJITeKWVp6mC70Jz7/eryKNgkp4bDTz3NMX2eo1JElpkXLphMbxbi/L26/z6gmLfVkjPEKJGW9yYaKKy1aUYgjJZqkd02bMuV2OOyOqjIFcbgc15Q7mr7V9NrSz76/THecq+/3G7vc7rQ4UxyfkQrpRolO3IrF2N5YgLcae7zTrA+Mqz+uSAhBUdp8eesW39rbTI5hNnj6SVyYkDFLSGKmizORQiTH6ZWYutIy7qNHZCGGySaQ7CPTKZxkE8hPvieCOM5eP+zQ3IoCdgKPuSFztPcjcoKYI0eOHDneM5QtY1v+IPs1XGklRivqyPO60uITS2fQzz5J+xf/Z/wvfAocG/flN5j5//5bfvSNmzxbqHKuXCG0kwVdaULPy9mmKRldr5qoCWCpUGRRmbLZdCEllDTk8OPrxpRmEkqH9CG2bdgvmbLX/h7G9N+NCQuYSCBuzJl/b1STxOhBFKQpq0sXxaZcrLcIdOWwGtxTs1KXxqOUmnGQiVqYmmUIellog+j99zTOmkG2GO31OPaPf7jMs3+B7WR9pPFIeZ4txXQ9iEM/NuZMcaYqDb8vdeE8DOl9CZXK8vUkpg/vIPS53W2xE3SJtLqnElNLiAEXyTR65DCk/XNCCObdAvOOa8of+8yA0hiTScTAlsK4iU6JVHVNVbSRvk7VMzo6DCkBq4dBppyWpD3gZuwnRE4wvt+v3Vd2XJAWrThM5o5GaQXC9N+2+l6Xxq+I5H4Px1X4iQJqCJE55yS31uENh02vS8U6fDMuddv1lZkvCj22xHQ/8NnwenmvgVImmqMPS4Uis47L1dYBfp+j8XB+ozkvIyR34hhJS0xVYvTUux/DUSTDSO/VWNdcIWlFId0oSnIq40RxVNn3RYpudPLvt4cN7/8ryJEjR44c71sYgmiNhGHfTxSSxVikoHwMV1Rsm+DTH6P1//y/EXzyo6AUT796hY/9+m9z+XvvYhd8Q/Jm/PHvdxScbSGURLy9CNooEnaQGNPM94icfnT/yOHoREEU/WRvswK3aoi3lky8xaWDQbGpGBmS2nYMj9opDfYj3p5BhEm5a2DDZhVu1yDqHcROSsw2kkXxQeAfqbz0K4j3ogkLYUrilO4piGpAowBNL+57GgUxLVmViePqOPQvhoM+g5iUcIy7JkuY8uN0wa4YT5xStTNFybKp2W5yjtGeMaOcHX4X+w1JUldMWwi2/S6+immGAddajbE9kSeFTHopjyrn699QKFk21eRaY2UW6n6i4upDiIEtBJ34aPORFP2qa2os1Y/j9DOiSVxKZXYNu4GXbUSkvYymvHn0XuwHfjZ/bCmZtV3Klp0RHHN9km6fq2tKmI2CaEqQ+zcJUsJoiZ7Dab/bbj/6Nzi01jRC/8iYEynMXlHcV+45rCDGWtGIzAZE+hx5cYQ1Zgwly6ETR+wGHhKBEINmUmESbZEaH03TgygSEpv2mGbltUJwo90YuQdf276bjTPSaqKTryNN+fNB6Gcl7Onxh91Kh91P38/ICWKOHDly5HjPULIdCg+YILqWhdZmYe6cRLksF/G/9Bna/4+/QviRpxCez8yX/5i/8odfY2Xlq+hH9ya+VT+yjy5EiLs1SAxrRKIA6pU22o7Rix1YGONcOoy0XPTaPOKdBQgk4rUV5FvLiL0yuhzApfrgewRQDk3P41YZ+d0ziLeWzO86NuLqPBqdEVT5+gryzWW4NTNwmJJlc7V9gNaag2hyflpy1dkCvB7492SaqTWZSQ2YRXg05Ha57BZZdk2P5aRFej/SxSjaBMePW971L4Z9FQ0oDQIxdv5aQqBUr+erGQRjSaLWDFBcS0jOliqGfGqzKO9HR0WZejUJaeltmJQZam0cHTOyqjX7oX+qyr3sW6AfhuvtxsiGQhrBsB/6/N7mLTqJWdAkXmALmfXrTYNhAjhatjt9P2PBsvrKSFOjmjhzsg1UjEQkbrSjxLMeeMkmlcFqsYwtZUbuJEkfqur1zqWluzLpQYwYNNrxlVHi+rMAexESPWjNgKKeOhAfZRolk4oLnfx7nHlSJ4oyI5v0XvT6KweRbn504wgpyJ7jFEFiNGULQaDj6UpMMc9RnGSHphsMc47LldbBwOZPN4643W1yt2s2uUI1afsm6ZtUioMooCAlvjZGNWkszsA9SPqxPwjICWKOHDly5HjPYCVlZvfmpHg8uFJiJRlz07ppjoOereH9mR+n8/N/kfCJy1TaHj/63e/xP/3WVzl7c3O0dhCMk+gLG2ipjKNpLHolotUA/blb6Oc3phvArI96YR1tx4jrc0b9Q6ALEdqJ0c/sjP8rn5StijsJ6dstQSwQr60a05tH6ujLdbTVW7CJIVObGcdlx/eohz7NMDxSgfDimFYY8EZjlznHPfS1h0EkgdVR4vpo+t4GS8MKlpUZ26Tui4ehV/KoM+I5iEEVz1eDbpfnShUW3NGeTlM2qQl1zPV2g5eSLLhxV3XY8nfYcbMTRYc6mEKvHDdK3F5TBdFLesgcKakHPuVT3JjJVKZDCGI98LndaTHvDt6H1ARly+twEPk0wwAFE5Wj/siTaeANKG6jvYHhhI2BcShZFq0wxJa90lrdZ1QTKENo0miIfsRJeeq4753UnMgSAlcaNXs3yQzsz/0c3ngw41cITBlx2ocXaTXyFSTEIBlOHYiP+v5N1bV0DMN9uWBKZ40SZ0qZzfHjQ8ote5s7w2Q6SDZtHCnx4ylNapINlTTqQmlzvVXboR2F3O60+o4f04pC3m3VgeQZmzBtbSkzwxxXWiZmRmssaUhyv2JeD7wT9Vc/jPhgXEWOHDly5Hjf4mK5xpz74Jr6C9LCTojFUcRmGqjlBbz/y5/mlT//BW4vzzBbb/HZ33+ZL/2Xb7B2a2uUKNYCWO4glDSZhKnJTDEyZajHGdJSF1Lzm0SR1E/voL9wY6IKqSuJ2+quIX0ishBvLiGaBfRc16iHlkZ/bB31UUNmqRcHFlBOsmh6dX+HQMU4YjLRtoRkP/B4tb5DJ4qo2n0EUQNX5xBfuwCNKYijEPhJnw+k+WyT4wnSRfphPXvpQtsSMnEMHXyt1oPqxjBBnIRUFfPjmJf2Nila1oBTborFQmEswUzHP0xw21F0aKB7BpEa8JgFs5MYohSlzazjEiYxAKeF1MjksBLTW50m0SFxCtt+l2YY0I7CibEg0F++O11paCcO+0iQIU9eHGXv9+J4QqHwKEqWyWwcvoa0Ry3M8gpH1et2orKNu++WEARJ1IItJUIIXtnfzshe6q7bv/GQwvRQpiXXhrTESo+UL5sIlR6x7kSm3Hc6l1CRGcYMR92kxxKYebAbGLdkT41XEMEQ7U4cZcfrL+NOFT1byEyRnQqCLMJI0ytRdqXM1EIw5FZpuNNtUw98Mw/E5O+ItATWlZYpLY3CrP+4/zM+CINT+ZvyMOCDcRU5cuTIkeN9iw/NLrJWHA20v19wpYUtTEnXaSqX0fk1/sMXn+OrX3qR/cUZFnYP+PzvfYcf/61vsHp7e4Ao6iVj5CC2y+DZpiypOL0i0g99xuyMCyXRQveiLCYhVRD73Q3Xa+ZYT+72VgZzvonImPOMstgcJHCrxTJvt/bpHhFbMWM7XGsf8EZjl6XCIBES319GvruA6DqIq+NdU/thIWhHJkxca6OmhHpyoHqqTB2mahmnRZEZpQwriEIMmo348XQlbyn2Q59WFFKzxxPgkmVPLLG2hghipBTNKJiK2KWLbtOjadSYVmTcVouWzeVKbWLf1UkwyQAmxUHg82ZjbyxJNuMVtJK8uXZfdMo4mHxNNXVpaDvqERWdKFff3tvky5u36cYRnainCB4FS0iers0PEEQLkbmzpr1v43Ih07k7TlWzEifXdJwrhSI3u01udZqJIpaobfQMiFL4ypjwmDLfnoI4PJctIQfKIo+jwpKZHY3vjW2FARozn9MYC9ODOP67oWTZtJOMQ1MJ0BuXF0dYGKIcTLkhA2TmY9GQK6krJa2+PETTR2xKjde99ohKP3rlaV6nRGtNKzLGQrHulc8rrWmGAc4pbrq8l3hwTR85cuTIkSPHQwApBEXLohOLeyoxHUZJ2iAEGxdW2Di/zNlbWzz73XdY3DngR//HS+wsz/HGC0+wdWYRljqGFG6XIbTAjQ/dsk1zx8aOtxKiaz6iWTDk0D6iB6bPGVXbCpHkKOpZD2ZHQ6X1nIfYKxu1UwDVAIRREdeKZdpReChhKtsO5XGkoGMj7tbQbrJI3S5Dx4by5EWrJSWdMKKozSLV9C5p5DgnDHqqVqQV9oQb7KkISc/5c7iHSCaL/xSBmkxIhyEQ7Preid1CBQwoFK0oxIsjZp1Dciz73p32rmmMIdSiW8zKb+8XxsUfdKKQP9i+QysKD41TSGMejnKdNFELaVD50TEdnb6eQZFkAW75Xe522xyEAb6OqZRdOIZXTT9kUr4b9fW+jSsxNfNo/PNpCUmgVEagLSFBG2JdsZ2kb7o37/o3LTpRhC1Md2C/UcvwXB7OUDT3edpNApGRrmFVHcxGiCskRcvKVOBIawoTiHdRGgVxxnFQelBB7CSEviAtKpZzrGdnQEFMzYCEpBmFmatroGO0FrhSsOt3KSYmQROhjarpOi6tKKKdKNJpJiIYsu0rleWhvt+RK4g5cuTIkeOHDmXLwRIS9xT7RYqJ+Q0AQnD34iq/+2c/y9e/+AL1+RpL23V+7He+zRd/+49Z2dmCWQ8R2AgtjFJ3CPYCjzt9JVLD0OdNmalenfyaDOWwt3BcaZkoDHo5jSNIzXDeWUB+87whcglcaWWB0sfGZqIan2uizxtHTTFkhjMMV0j2/O5gn5c+vMRUaX2oQpAuRi1hFr3DR5KiRxDTxee0igZo0491Qt8KKymxS9GKzGd3VA9ieu40rw3MdSwWTvhZTQkxIftvy++y5XU4Uywfqlr6cUzFtulE4aGdmeYYgqutA251moeOSeskvy8hGRJBIwroRCHnSxUUirJls1SchnSPh5XMkUj38hslowRxODi+H7YUI+XLtjRZmrFSQ28bVPBSM5jMKEipsaWZwyWmjdDHOcZcNj2Io6o6JARRWhSkRaCM4VCsJj8rQggulCrUbBcpBjcWUuVRCsH5cvUYir3OSqr73+FISajjbLPFRIZoCtJiL/CT800+h5NEz9jC9K6nmZSiL8KnE0eEOv7A9CB+MGhujhw5cuTIcQyUbTspMT1FBdGysaUpfctKyITgzqU17lxc5dyNDZ595QpLW/v82O98m+25a/zA+jQbT9bQTx4ea+Ed5TR4roma9Y26dxSspJzVc9Czvonl2C/Bamv862d9Y6qjEgWmUUAfQWingdhM8h/XWuAodGK0w8VGL+NxCCXLphEGOJh+LJmQukkLyH57/mF044ib7SaNMMhKjr0xlvr9ZZ5p/pk8pOdyGKGKT1zKLMVgLEErCsZ6H41DaiQyvFi+v9BJH+cgfBUnxGLySIw/kFm0DxOrcXCl5Ft7m1wu17hQrk18XZiUHBZlz7ioEQYEyvysZNkIIe6p3DYjiMn9tpLjDWcRhkmv4DjYQiIZrGqwhKQbp7mfvfFpbeIy0uvuxrEhVPScPIPkng+Ps19BrB+zJFIlqv2wqh4mpi+V5F5qzPhirQ7dzEgrCwRikPAe0rt4OHoVA/232ZGSMNR4KqJgGaMZrY2hVSMyfYOHnc+VFs2kUkIPbBLpjHSaTY3D5/j7CTlBzJEjR44cP3Qo2w62kKfag1i07GSnekw5oxDcuXyGO5fWOH99g2dfeYfl+g7L/CZ7b8/wVvEx7lxcZaKvf4Jxwdfm+Bjzm2kx46M9G+Y8qIboC4eoMJY2zqv7ReTVBegcXdJ3JDq2McWpBKbkVQCXDhDX5uH1ZZAaPefBo/UB5cS1LBqxT0uHmeX/glucGNeQ2vOPUxA3vDZ/uH0bECwlKmikogmqS8yO3+V79R26cTTBjXQ8unFE8YRlncMmNf0ZekfBlKeajMcHh7SPcxBBXyD6JCwWCiaGQcfJNR/+juVCCVfKI2NM/DgmUho7yQZJlWKY8CydAGl4fUpMUrdRP1G0UlMhP1GuJh3jidrswM8sIegm7qD992PWcXmjscsTtTljmpO406ZOnpFSBPE4BVHiq8go5cIo0oUpvwONv685R8myudlp8tzcEsWk59CLIxaS50Kg2Q/8jCxPc//6n1EvjqfuCR1GqvL3E2pLmOxWP47BMQTUliJTENtHKIhzjkstLZMXZJEj9KnEJuLig4MPhg6aI0eOHDlyHAOlRDk4jtnIUXCkpGTZh6sfQnD7kTP89z//eb7+hRfYX5hhYbfBZ778XX7iP32VS1fuIMaEeDtCZs6r7ShkL5giJ/EQ6Kd30R9fh+qUYeMLXuaWSvseCWIoEa+vmH+vtjMCqB+po4shol5C7JUNGb05WnIq6NntgzHLmaRSpARgnLNmPQiwhORiuZopyuEYNTJd/L9e3+HtZp3lQukQ6/5BWELSjiOK8mT78Ua97I19x/emJpspsT0ql/B0MV5BbMch1hE6ZsmyKdt24g45Lm5kFHJMHt8w0nuQEgCZuICepq5qJbmF/USuv/81xWGmLeOPaxS/4fiVmuPSCgOuNOvEWhH2KXVpYHwwZi5bQiTGKopubIj4tH3Y6fWAIah7gcebDVP58G7rAAs50PPXCP2pCbgUvZ7KQMUD13NcxFlZ9fA87OUWZopraqx0SBUCmHuaPvOpg6uVKKXpBs623/3AlJdCThBz5MiRI8cPIVzLonYPeXyTULPdibl7Wmt2/K5ZZAnBnctr/I+f/gxf+RMfZ3tlnpmDNp/82mv86f/jKzz61g1klC5mIiq2gyWNrXojDGiGUxK7SSjEWW/h1HAU2o6NgngPnEO8toI4KKJnPfTFeu8XlkZ/eAu90kY9uWPKWt9ehNYgIU3NIaYl9+NCvQG2/c6AemIl/YwjBDGJK7jttVkuFCc6jo6DJQSdKDqx9X1q8+/HxgyjEfkUpiSbEkMuJkeA3x+MI6SH5+ENwpHW1PEV08SYGJfanlooMYTfPcXNISvZvPH7yjeFAJXk8qXwjuHIaY4rEwV0UEEE813zdrNOoEwJbU9x05m75vC50tD31Lk10mq6yBTScm2dXJtg0S3yan2b1w92udFustAXVeRK61BDnmGkvatKm55dPx4fBXIUND0FcXiDQSPwkv7LbhwO3Jt46r5eM1pTZi6QmM9Uac1Gt3Os74aHHR+cK8mRI0eOHDmmxFqhfKoZcClmHIfbnfGKRjuOaEQBRcvuWf0Lweb5ZTbPL7O0ucfTr73LmTs7vPjN7/OhV9/l7Wcv8/WLi1xYXOZ2p530wJnIgqP6e04dAqiEhtx59sQ+QXwL8fIaLHfQj+0PrtNiAXsltBuhP7Y+6rg676PnNwHQsUS+u4DeqkC1nr2kZDtsd9pZT9nRGI1eiLVi1/co9i3ojIKox5aYhsrk5i06BdPU2CjArH+kyFWxHNMDeEIy4kiZnVthCMjclBsblpAEcVpi+mD6orQeT8Y7UTg1EUmV8mEHznFI1cD+Mk5zPpNxOOsWCIaMhywhaEVBr2TwFJA64Pb396URK4Olk8frrbOFwMMQOq0H31eybBpRQDMMBhTSNJJh3CaKSPrmOmnZqp6+91IiBtThiu0QacU3dtcRMOCOW5AWXTV9hEaq5KUEMc10PDYSchjr0W0RAXiRGZMXx5mrrS0EQawoOtP/PTD321R17AeecW2NQ5ZPatj1ECJXEHPkyJEjxw8dqo57qLHFiY9ruxNL+lpRwEqhTGeChf/O6gJf+5Of4Hf/zGe4fWmVYtfnoy/9gL/xm3/M8y/9gEXP2OgLISha9sBi9DBseR2a4TH6Ew9DORn7YWWmd6uIVgFxbR7x/aXB37Vc0xs04x8dx7GcZEXuDsYiVJxeftp0GCUtzTDEU/FA72K6UB5W+1IjnLT/iluzyG+f67mwpojFiNpZtm1WD4l1OAqWkCg0XRXRikLUMZQOY7qTEsQHpSKOz0HsHqO0Ms1TnAYSYxoy/Plebx/w1e27xAlRGniPEHTi6FQ3iGSigJlcwZ5SqRKykuK4BNESkkjpsXmFTtJ/uR8OmsGkJZDhhDgWjcljbEfRsfYNao7LvDu4OTHrFDhTKLNWGJzjBcson8OkdhLSsvFYa/ZD76hW7IkwrsYq6UEcnEO2EDSjMOtFTAloQVqZC+x00Flv5YzjcqfT5la3RdxvTvYBwAfnSnLkyJEjR473GGkG1qbXYT/w8PoWdpHWzDiFkYDpYdSXZvnGFz/Gf//zn+fa4+dwYsXqd9/iz/4ff8iPff37LO43KVnWVARRaY2n1JG5ctNCVxKiOcmoRoNYN8RbOzHi7ozJNkzRTBaY0xjqVAOTkVgvQCDBNwt6R1pUbPsYxi96IGMNoBkFYxXYp2pzI5mNUphYhGry2Yp6YsSxM7goFm8uIb9xAQ6mNLDxLfD6rkFhSOYQBEbx6ETRsXTA1OAm1npq59N7RRo70g+TV6gyxWZaTHOtWazD0AW2o4hb3SZXWgfcajcH1KiCtCgmcQynBaMgqqSEsVeGqYcI83CMxTTHjbVR/IY9W9Jrqgf+0Ls0nTjCn+Cea2FcXPcD7xgRF0axHBdpY0s5QoysJA5ikiHPMGRirhNrzWa3M9F06ujjQJTO+eFxCkkrKauN6ZXWFqRNJ55+w0lrkfVAFy2bQMXc7DQ+MO6lKXKCmCNHjhw5cpwSLpZr/PjqBS5XZqnYLju+6fMzRjMWlyq1qbSRbb/LVq3INz/zYf7NT3+K5qc+SuzaPHV9k7/6O9/lT/3ed1m9s40fRWPVhRStKGTWcbPeodvdNvsjC8pjoGKIppikILZcRNtFV31YSTIZ2z3VQbTMv/U0BFEAS12j3H3tIuKrFzNCdbZUndpcY5yCeGQ2YSAzYusIyYztULOT60iugf1i7xieBRsmtkNsTacYipfPIL55HmKB+O4q4vceQfz+ZXPcPmiMAncQ+j1FaLc4SLzHIDW4MarzVEO6Z8ikXK8ffqyS6JfpB1GQFuUp+rnSGJMRhTgKCJXiu/tbXG03WCn0Mg5tKblYrp3qgj6NdugOqWYCwYbX4Vu7G4TKuOkepyw8Lb3sRNHYkkuN5iAMBsi0xuSm+mp8H5+bOHfuBd59KbPvH9u0z6jAlOP6KmIv9E9s6iQSV9FwTJ6pIw1BDJQiUr3PoWzbPFqZOYYyz4BPb9my2fW9E5PahxV5D2KOHDly5MhxSrCE5NHqLI9WZ7nTafHbG9cBU9K4XChyvlTFFdah7oGRUnSiCKU1NdslqpSJvvBRvvORR2m+9AqffGedlbs7/MzdHbZnr/Lyk+dpPX0ZNWaB0owCzhQrtKKUkGlaUciM454sZywtMe0M9cHFAnFlHpJyUH2mBSJRgdoOLKcDSt43TV4joBc7iLs1RGwWb7rpwtLRGXkDxxhT9rjjdw81jhGvrEHTRX/6NqIcsZKWicYiU0+F56A7NihpxpgSg90yPHF4riWB7JHlG7OInb5y1d0Sus9ASCJohSH7gQkip+EiXz6LFhrONdC1wKi2sTB9na65P6YHTk2VKXhakDByviBx9zyOgrhcmC603pRxqpEoj1Zknjcvjlgrlh5Ir64A/LinIBporjTrdOOIZ2cXUUpj2cd77kzXoB6r6FiIMYY+IitjH0eCC5akHnrEWlM6IRGbBudL1akVbynIshP9OM7iMo6LNC4jGlNe60jjKNyNo4GeTWCgF3mac6i+ez7ruFxtN7h0H1oW3kvkBDFHjhw5cuS4D0hNG7TWdOOYD5WqVGyHGdc1zpauxd1uG0fKgQXxQRiwVCxRDzwCFVOxbVPGVSzwrcfWuP70ZX66qdDfeJkze01+4ttv0339BlefvMDVpy7glY0CpZIyq7OlKne9NmFS5rdQKLLjd0/WG1cO0ZYyKlfbhkoECsSrq1mvoLZjONPKyKBou2bJrIFWAS1Vj2gehaUOesZDNBJVreMAx1NABYwsopthODkgPJSIg+R8by+in9/s/S7toUyP/Z2zCN8spbTQ4MQm39G3jFPsJDT7VNWr8+b9Ky3EVrWnUCZwpeQg9KmHPgVLGoMcMIT09uzgMvjVNfRiB8ohcqVBrExZ44MuMd0PPHYDD1dYFC3LBKzfBxkzy/3ru0CVRME40hpbEnk/MUw8QLDldyhIy5jJMF0u4CAE8QTTltQtdKDXT2tCpSfGirjSoh0EKDRzzv0jzsf5vNN+zRudBlqffK4IzAZbKEcNemwhiZTiIPThHuajIyWdvlJwW0qerM2d6FgPM/IS0xw5cuTIkeM+oCAt7KQXB9HrTzxTLNOJjUJoyqoGiURHRZlTZaBi5pLd9IK0sISg7LpYzz7Jf/vTn+JbP/15rpxbpNj1efbVK/zUf/gDPvmVV1jY2seLQsqWw8VKDUtIuokxx0fmFg9VlQ4NVpcmr1BogXhnEQBxZQGxW0ZXA9Snb6F/9KYhR5UhQxvPRkTS9B9OuzazNfpTd1HPbSQ35/j72mkeYD86SbD4WNR76oXYrphyzhQJsdOJAip82ziylgN4pN4rq90dr4CJtxeMw2uj7xzJ4l4/lqiOQwTRkZL90MeLjeqclveqJ3dQH9pGX6yjntswRLpeRL67gHh9BSsp2+vG48sT7wdkktv35a3b/N7GLb6+c5dOHA2Q6tOGEIK4bz77SY7eSaNF7gXxGHJTtR0irTlI+l7HGcccDp2YE41XA704HuhPNCY84cTIBRN1ET94F+RDkCqd11oNFu6B1KfGTJNKTEOluN1p3ZNl07xT4FK5eg9HeH8gVxBz5MiRI0eO+4CiZWFL46pHXznX2VKV7x3s0okNgevEPTXN9CpKHqnMcr3dJNCK2QGCKJlxXIqWzedWzlJcs/lPFcklX/HU27d55J3bXLq6zqWr62wv1PjB0xepnXk0679ZK5aZcwpZmPbwYjZQMdeScqmJZVcXD9C3a4jtCnqvCOtVtNDoF9ah2EfEipFRC9tJbmLjeOWlA8hKW6eIJtBG0cRW6A9vmxzDvr64UCkCHVOZcH2ibhaoeq6LqJcQ6zX0oin5zMpCzx/AD5ZAavSL61BNxrdVRtyeReyU0WdbI+Pi9owpl036MrUdIyILPedBNUQXQ+jappTVMstYR0i8pJfQEb33suBBLcgWu3rOh6tzsFVBBDYytIm1ich4UPYZEkE3jtgPfM6XK2x4Xbb9LvfTRTUtId7xu+wFHsuFUqaWP0hoyNwtU5wrmdLhO902jTDoOeEeE+OeVTBqYD0cDGiXQtCOQhYnEC0hRK/8+yFCeq/uBRXbYdvvjiXq5vc2O373njYshLif2x0PDx6OrYMcOXLkyJHjAwZHWrjCTkKuyVw314plarbLhtdhwS0kFvmKThSy6XV4vDrL2VIFVxqr+DQz0ZWGcNYcJzlOJSs/rVeLvPaJp/kvf/GLvPSZD1Ofr7G81+RzX3+Duf/P/8pnvncd0Wwx5xYpSBtHyLF5dXuBx7xTPLxvzdKZ2iXeWEYENix0B8khmBVoOURElinbTFw/9ZzHsVFOjHi6UxDERgGxXTF9eV1rxFkzUDGxUpNL/VKC+Pi+iVvoN6NJ1b15D/3iOvoTd3rkEGCxa0pstyqDDqXJe9NeSuElZanJfdTnGuY1VUMi+lVER5qeVZ3mKbYdM67hMt1CjH5mN3OIFaGVlNeqB6ogtqOQomU2M7SGXf8En/cxIDAmNbuBx1uN/czd90FdcwZtMhnHm8kkxkgnIMoCMbanDpLNg3jQGVVCojYftsQX91XVfa/gSotYK8IxGZBg+gXTEtMchyNXEHPkyJEjR477hIptsxd42FJmJV+OtHi8OsuO3+WR6ix7iTHDbuDz8YU1nptbwhKCqu3QjiJKSWlqQUqKlkXF6pEkJ7HsD5WiZEFsW1x78gLXnjiPfXOdT1/bYvXGBh/93jU+/Pp16o9uU/jk89hJ+Hu/UU6sjcvijG0xGjM9hLUW+p0FhGfGolfbE25ACK2CITzbFdOnl+QbHguWRhci6Npohel7fHcefbbZI4/rFYh75i8A7FSQq+2BElNjmqLHK0wKaBQMyZszCp1oFtBtB7FehXqx10Mpx/RRWhrONxDX5+HWLPqJvd7vhuIvdCGCiw3USrtHrqsB7FTM/Zo1vZYmOF6BEEZZ9GwoRZnCOAI3OVZgQckshR8UFbCFpB76PFaZNf8tR/s/CSXiygKEEv2RrVMYnMhy/w5Cn93A470gAJZgIpETMFLmPP1xk2fVHl2yCyGo2jaVvmiWkmWj0IcqlWeKJR4+DfF0MGu77Ac+NXt0M8mE23+w3EbvF3KCmCNHjhw5ctwn1GyHO90WZdsZKNm8UK5xs9NkrVhm1nHZ9ju40uKJ2lymBiy4RfYCP7P7dy2LonRGSj9nbJdtv0s98BHChFcjBDdWZlh86gmqssjuH32LlTevsvjuLXj3Fn95psz3HzvL5lOXCIqGUNWDgNVCGSEEzfAIIxgJ+mIDcWXBkL6VQwgiIG7PIELLGKg4J3TVLIWm569jwWYFcW0efBv97DZslZGvrwKJWUwCsV1GrooBRTRQyrhCpgtoBVybg5WOcWNVEr3QNuvnhS40C4jvrhnXUqHRj+8fWn+lLzTgxhzcrsEj+2AnuXiJ8Y22VdKLmdzjPuVVV01kgWg5GcURCUEoWza0HQQCXTnE5GeIIE4qT7wfKNs2T1TnsvOVLYeDKOiRcd9CfOtsb2PhiT1Ddu8BGqMg+nFEO4rY8jq8F+QnVardMQTEEYLohGZBtpB0VURNjFfP14qDpZk1x6XmuGNfm+Jh6T28H6jaDvthkJmEDWO1OJ1D7g87PrgzJEeOHDly5HiPUXEcOlFESdoDodXLhRKfXz7HrFNgqWCI4GqxlJWTgiGIRcuinCiGjpBUbHvEfKLmuIQ6phWHNMNB4lC0LPRsjc3PvcC/+ulPsfUTnyM+t8pMo8OPfPcKf+Z/+30++ZVXWNrcoxOFPDkzT1FaI7EQY3GuYVSwM82JpE9XknLHTWPqoCcRyWmQlFTqlt0rwWw50LURb6yY3wmN0AK92EE7MeyVkLE1RBDjQfpwt4a8uoB4d77nLjpjxq3nu2b8noO2Y/Rnb8Glg8PHWYxhuWNKa/vMaFIFUT9qVMWxpbZpf+aQUc2iW2TeLfQMf8qT+zh1P0HE9OhNLCfUmL7J7y8h3lgyCuU9op+Mli2bZhhkmx7i1kxGtIHe9dwTTA9iN47oxiGeenA9l/0wSt94Mm7KhNWJeGuqIB7f3OYUEIr3XTWmEIKL5epEk54c0yG/ezly5MiRI8d9Qtky/WJp32AKIQRLSbTFnFOkIC0uVWYGXlN1HGYdN9sJF0LwmcUzI+pAzXEJElMOPbSGTIOwS5ZNqVhEP/oInY99hDfe+QGlV97iQze2MlObj86UsV4M2T03f7iTaQpXoT9/8/BF70obvdZEbNRMaeY9EERdNgt/1bZ6RK7tGjUxkugLB4Z0vbWEvnSAWK8i1mu49QrdxUampJlSv2TQ2qibADRdRNGoWalLKfNej3QeQ+3SNR+xVTEEaMEzZZVtF10KTVnpjJ+VkA6gksaIlEwPY6Iuzji9yBBgKgVRJARRYapTx2Kjinx9pTfuagi2QtQL6A/t3LMQZ0uJJZLyag3cTbLizjbhzkxiOtS9t5Ng3ENTt9R2dIhD7X2EJSSdOMASo+qdKyVdFZ+I5GUE8UFe03YJ8e6CKa8+f2B6W3P8UCEniDly5MiRI8d9QkFa2FJmC/xxqDoOS4XSSDj4mWJlpFxt1h0NkC5aFl4cs1J0aUeDxCEliGXLppa4nwKwssTvf+xx3v3Us1y4vs6FN2+wtteEL/8xf8KSXLywxMYzj7CzMn8Iu+BoAiFBf2Qb/UgdtMhC3FNorWlEQebUeij6FcQ0YzGWxhCGRJ1c8NBr7eR1LmIdXN9lJw650WnwSGWWIDaGLwAcFBDNJFfQc9Bpn2CifGJruFRHBzacax49xhRpaW2aAbmdZE7O+uaezU8o4ZXAhQPTw3hjDv3U0MK8PYUTbJ+CqLUw5jbjPijPQry1iEajH98zcSVX5yCSpoz1XBPmjpc5OQ4X00iAnZIpEV7ooBc7iDsziI5zzwKVRBCoGC8xdGqEAeUJ5YX3E4cpfWlUiXOC0k5HGkOp4+cnnhC7JcSra2ZTBG2I/KWDXq9vjh8K5AQxR44cOXLkuE8oWBausKjakwniglvk0crMSP5X0bI5N0XeVknauNKiYjsDBFFrMvVxuVDix5bPZSpEybKN54ljc/2JC3z13Dw/Jas88oMbyNff5pnrWzxzfYtmrcz1x89x4/FzdCv30LtTHa94deKIDa9LUdoTe4Z6xzBkJV4vZuH00Ovty3r6UiREyQptKpbNt3c3WSmU6aokF9CzED8wWY5aKoSSiEbRlD/2OYTqJ/aPc6UGKcFsu6bv7u3kPOcbR75VXzqAm7Omh/Fy3WRKpmi4ZtE+JUG0RJrNN/oy8e68idi4VIdHDqBVQGz0zbeD4qkQRAKJ+PbZLKJEn232MjKniS05AlIwQBA3vA6zzoPPqZNCEExwx3WEcSQuOscnrkVrsK/zvqHlIN5ZgN0yQgvUM9sQWMh3F+D6nFGUc/zQIO9BzJEjR44cOe4TitKmZNtZxMU4lCybTyyunXgBWLRsKradmFWYfMNYKywpM5dSIQTlvv7GfjIWa4UtJZVzZ/D/1I/x8s/9NL/78SfYWZmj1uzwke++w0/973/A53/n25y/to6MTubGOA5eHFOzHZMVOQY3Os3Elh6oROhqgO6M7m3rcgDOkBbVR5Tm3SL10Odmp0k7jLCVhfjWOUMIZzy40EfcKuG9r47KoSGayaJbhBb6wgHMTxH54Cq40DCE9VZf2XEgjblLJcyMb8a/v3fdxjhFjSqICtiqoKVCP5pEbTy6b/os55K+y/oUqm7f2FivjO9X2y0jOq7JpVzoGDOgUmSI7mE9iJqp+t8EAi+OibRx5b1Yrk7MuDwRmu5UvZlFaVG27LEEMc0e7HcNPg6cQyMrTgfi3XnETgVshXpqB8434cKBcfS9WzOfcY4fGuQKYo4cOXLkyHGfULDMorEk79+f25JlM+sUWCuW+X6Sb6i0xhZiYhZaUdqmtFBrvDimkCiQANIt8MZja9Q//DjVgxaXr9zh8rt3WLu7w9rdHQLX4eajZ7j2+HnqizOHl6AeAU/FzDpuEoUwSBbSvqtuHDOb/mqtDVeSPrxZr6cejuvnGzJrKUqL9W6bQCkK7aTcca5rgu63Kz0KVTlEnZsWEpMB2XbRG1VDvB7fO/JtKfSFA7gxC7dn4NHENTU1vJk5QtUbUBBNhl7RHpoHeyWjHi63e2SzEqK/cMOQoT+4bBTEwzIyujbiTg19poV4fRnRKKLkJgxFnojUnOfpHTjT97tiZCI7YjEa2aFBfOM8FCL0xzYOLWW2hKAThURaYUsb9zSftd0i8uWz6BnPjOMQB15bSi5VahN/n0Z/PJTQwH7JuPR+7mZvTjgaFrqIrSq664B7CopyjvcFcoKYI0eOHDly3CcUpGUMYsZkmJ0WyrbNpxbXWHCLWNJkwsVa4wiZ9SAOo2hZOEISakWgYmacAnZCJi0p0InbTWu2yusvPsUbLzzB6t0dLr9zh3O3Nnn8rZs8/tZN6vM1rj9+jpuPnsUvHUNx6oMrrZHeSYBWFDDvFKj3R26stuHKPAB6tdWLjhhHmpyEKIVJH6btsOmZOBEnTHoCZ3xDvvpKNvVh5ZvHQSWAtmt6uVY6h6t+wyjFsNI2C/ONKpxtZQRx7LX2Q2JUn0RBjFXcUxC7FuLuDDQSkj1sGiQw46wm+Y+ebYjcMEELJOI7ZxBdB67NZccX9cJoJmY9IfHD5aqV0PR9du3REmTPNoY8CcFmoWv6I5sF9Ec2zf1JL1cIPBUTa33qfXoiMdURjSJ85wz6k3fuXV2+PmtKecuhUW8nlF8fC4E05PWkl992jMo9543O0zSGxbPgXjhu04VCZBTyUIJ9D+PNcd+RE8QcOXLkyJHjPsGRks8snWFuGhOWe8Bq0RCegrCIlCLWmpJtTwzLLloWjrSIlMZXMZf7+h9tIRHCqIs7gcecU8CRko3zK2ycX8H1Ai5eu8vld24zv9fk+W+/xXMv/YDNs4vcfPQsdy6uEjtHLy+01mg0Vdth2x91smxHMefKRQ7CPsJWCRFzAaruwEoHfcX0Do5V1YYUxJJl0wg75jBB0g+X9veVwqwP8VQUxGSsKfRa69hv1xcaiK0q4uasUemmVRAB3BjRcbGUJOqLXhA35hC3zCpfCw3LnfHvn/NM/uMfnwNLo5/dMkTPVnCxgfjeCqLrmBiTtoO2lDEMagzN81hAy0W7kSGa/SiHsAvslQxx6C8R7utNFG8tgjL5lABcWUR/ZKv3ewRKJ3mPCIgE4uo8dB10zYdH66PXd1BAXJ9Dn2vA0gQX1UiYMlxLGTW4WUA3CvfWl1kvmJJjBDQL0HTRn759b6SzayP+6AKcaZlM0JNgP+kvnh+9F7qQxIb490AZWo6ZS5UA/eQu4pU1WOqgn9syz6cb52TxIUNOEHPkyJEjR477iPkh85n7iZJl04x8Yq2z/MRxMNEDFn4cE2nNXJ87qiMkGgi1IlSKda/DWrGU9U8FRZcrz1zmyjOXmd1tcPnKbS5eW+fMnR3O3Nkhsi3uXFzh5qPn2Dy7iJ5Q5uqpmKJlsVosc609mC2otQahWSmWudMdJFeFT+3T3VUmcmLeQ7dcqI0hdX1KmrlmgUIbR8iEIFKIstdSDaBRHH+sE0BXTOi9duKxC+8jMe+hq74hJgcFaBQMqZtmfK6CDtiRTUS3t/bu9s2Js4fkV855iFuziNCCEMR3zma/U4sdxF4ZXQzRn7oDXRssBd+8YAiiokd4GgWjoKburf3nKIcIQP5gCX1jzpQ2pq9J+ky10KYU1lLGTGe9itiooi8eZGXFlhCopIdVCAGbVcSNOfPfWxXU+caIe674wSLioIjYqqCrPtQCwkUFczGUEmK/XUEoiT7TRCeKKrulkxNEBeL7y4bQPrWD2C4j9srw9iK6HMJaa2ScU+Egucd3q3Cp3lMkY4G4Ooc+3zwynkXsJ0r8uB7Z5BkRvo3eLJuMzkfrxyJ0Yr2G0AJaBfjuGfPvrSq8LM1cenQf/dgJzKBy3DfkBDFHjhw5cuT4gKBs2+yHHkprKkeUtZ4v1XjtwDgTVvsMbKzE8jJUiqJlc7lS4/WDXS6UqiOK5MHiDK8ufojXPvE0K+u7XLx6l/M3NrNsRa/ocuuRM9x49Cz7S7MD/YpeHDNjF8ZGXLTjkIrlcKFU5ZX97SzDEEBWYtA+aNAf3TSEZLiHLUWipOmkz83C5CBaQXJv+hxC9dM76LZ7enb+857pPbx4cDKFSIC+2DCk4q0ls0Cv+pOvtR+pg2vgEDl94e1eko34Y9cPJyMrbdQTu4aMNl3ElQWwFCKyELdns+vD0j1CMuMj9krotgO15Gdp/+HsGOKx3Dblo20X4dloz8pKR0XqePr0DtpWsNg1ZLYcIt5cRlybQz+/CRgX06gvt1MkESjajhGRZZTPlY4Jfd+oQilCHBTRxRCkRrQK0CoQrgNiBrHaNj15O0aV12stQ5LeWTRk5rH60fd/HA4Kpid1rgsXGujFLnyjZIg4JpblRE6hyb0SCHh3Hv3RRF29UzNxKR3XPCeTEAnYT9x758Z8Tn0lpmJzEdF1UIvd6YmyBtarxpRIYMjsjGc2D/aSUu+9Ijw23eEeaqQGWqUI9/ur4Ibwwns7pJMiJ4g5cuTIkSPHBwRl205KTKF6iIIIcKFc5bWDHQRigCDaSVZbpBUly+Jj8ytseB12A4+lwvioCy0lm+eW2Ty3zMs/EnH21haXrt5l9c4OT7x5gyfevEGzVubmY2e5+cgZbpZs6kHAI9UZE6JOkteXEJl6EPDCwjIzjosrJaFS42MwLA2HGUO6MXQwKmIpomzbbHhdhJ9cb3/Z42xg/ndMNMIARyZh8P0oxsb05V6w1kK/s5BlNU4TkwFk/Zd2ZBPZfdl8no2W6lCzFcAQ2suJqrvYNST39gziB0tw10RIjPRCzvimXLRRzAiiqB9iIlSK0Z+8i3h9GdZr0HGhlCitaYnpjA8zfZ/J2Sb6B4uw3zPQkYlzb8YRW272Wm7OGTK40kH8YAmxXjNEBdCXDwxR8y1Eq4DTqRBeqWRRH1oqYxa0aMak3cgQ3lCMOuZOAy+5prlETa2E6A9tm3u2UTVZmYeZAk1ARqbRpmfV24VinKmCbJfBtwbjUlK0HMTLZxCByaccu/mQquwdx6jFmN5MPS1B3OvLv1xtw0bVlAhvlY1Ku1s2ZkVHIR3agyhF1cCdmtkgGTd3x0Fh4ly0QH9kC2djFj3bPvp9DylygpgjR44cOXJ8QFCxHOJklVmyDyeIy8USc06BrooyB1MwBFFiQr/nnSJFy+bF+RV+d/PmVEYgsWNz69Gz3Hr0LIWuz/nrG1y6epfF7TrPvnKFZ1+5ws5chfaTl3Fn1pB9hjmusOjGEY60eLw6R0FauNIi1DGFQ5ngBKQqWUIQZ2wXt2yZBTOMXzQfgkDFHIQBS26xR2ZDH0tIzpXGLKnudTFraVN6d20O/dTuiEPoRLgpQXR4vDJrDIgiYco1y8HxxyXJFsoiSu7dEEHUMx4C41qqzzWNsrtfMoT0kEV2WmpKx8nIWFYKWxoycEnGIfZLWWmxEAKFQghtFvYt17hxnm0hbs5BvWCUnQ2jYgmE6Ss80zTHLMRQ7OJWFeHaHqruGqJUCwaJ9GLXEMz9klEkj4tEvdWFvk2Jsy0zTt826mva51kJRlVnBeLlM8bc5pmdvnLc5F4tdY3qeVCAQifrK8zKTy80RgxoxI05Q95WWuaY45A+I81Cz+xoswJP7U6lZov1hHCfaZnrPZ/c9wtN9IUmfPXCZDdbyBRIcWUBqgH6hcNdbU8FjQLyzWW0G6E/d8uM6/osol405HbcOOtFRFqZ8PoyAP5yE1i8z4O9P8gJYo4cOXLkyPEBgWtZWcTFYuHw3kdLSB6vznKr0xrIZ7OlRApTillOylSXC2VcYRFrRaTgrtemYFmsuKXM/XQc/FKBd5+5xLvPXKLSaHPx2jprV++wVG+z9K034FtvEK8u8fG1GW5dXkPPz7If+Dw9M5+VntZsp5eFeOwbkhrVmDEKIYzS59umP3GKBa7SmrteO1N3bCHxVJwphpa4z/lwFxroC1Mqhwm0G5s1dGD1lNdUpRk2i5kWNd/0BGoxvhcyJYG7ZUMOGwVEJNGLE5SpFImZj2g7aAVoAR3H9G6OU+rmPUN+9k2/qCUEcQyVuwuwjHHjrPqGTNixGcfVeRP+/tgeuhSasslxrrKuguXx/aJ6wRBEsV8yrrTHhDjk/uuVNmKvhHh1FRFaJqQ+JVIp6kXEfslcu6XQT+2ZOdl2jNq53EbslBGNgiHdoYUuGqdYeWURriyint6GC33HTZ1xn96dXHJsabQTm37U9FoiC71TPnrDIhKwafI2GXbMTVE+xM0WYL2KfGPF/Nu3TT9uql5qEN9fQldDuHhwasRRJOXFIrDh+hzaUsh3DNHTe8Wxc0RsV3r/Dmy00Pgrx3tuHybkBDFHjhw5cuT4gKAgLQKlWCgWp3JOfbw2x3JxsGzUFgIryR+s2KZcz5YCKQ1ZirRi3i2w6Ja41WlyttRbGGmtudZuslQoMuO4A8dtz1R447nH+N0n1/hz7hznrq1jv/ku1uYOn9rc4VOvXmVvcYY3zi2y/MJ89r4Zxx3rcjoVhpxMAaOkxdI4cE6BUCkK0uL5uWVmnQLf2d8kSAii7ut96++TfM+RXLcIrF7WfOpCWTyeappBAjXflJBWg1HSV4zRS23ETgV9p5bdc71wxGdXTj6HtoP45nmIpSGh5fHxD3q+i2AesV9EX2wgEdi7FRaunoeryYuqiUo665sSxvWaIYsXDk5WHgo9xbTlHv66SfAPIejLbXhrKSNhol7sKW0JxG659++bc+gFD2Y9Q9aqfm98zUJP9TvTQnccY64TS8Tbi+Z9lTBxmHXQxehoJb0QZXExesGYFImd0mikyTC2ekY/E2NeKiHsYZTQMQQxJWt6pY3YqiBuzaDnErfWhou4O2N6OHdKpi91mh7do7BjvhM12mwu9I9nt4weJogaU8oL6HKA6LjEi22zyfE+xX3e9sqRI0eOHDlyPCi4UmILyYVydSqyUrEdzpaqAz+zhVEQIw0lq+cAKpFJnAA40uLJ2hyKwcVYOw6ZcV2aY3INAZpRwJxTYP7sWYLPf4LO//0v0f6Fv8g7zz/Bfq3Ewm6Dz792jaf/l/+T8r/5jzjf/C4r7WDAhOQ4yBZo/QQxXagXplPSQq2wheTZ2UUuVmosuiW82Bw3LbktWBa+OtlicNvvsuWdoGTxMIwjxveqIEJPJZwQtZE6UYpr8z1FZfEoghiZvsD9EiIxrDE/n5APOGuUTPZLoE0OYlYynI4jybLUiemKtmNDHk5KDpPxaKFNnp+m9//T4rD7X4yNW2otJXljSGhCWtSTuwCId+eh7WRjoxqY8TUKiL2E4Cx00c9tob94A/3oPkJJxPeXzHsaScnoNLEpfWPW55rZ+4+CWDc5kvrM5JiXbCOgPaYkXgP1IhqNfmbbkPzNau/zbieGRGhjeLPZ26wiFsf7fFL4FqJhTIz0o/tm7ix2UB9JjH52S6ZceLdo8hyTsYuug57x0E/uou2Y8ML725U1VxBz5MiRI0eODwhcaVFzHFaLlaNfPAGGDJpuo7T01BISKUChUVpTFJLlQomCtPDiiGJSblkPQy6Wq9zsNAdMZ1K0oojn55d6ZalCoJYX2fyRj/Jfnlzl6a5i6d3bvHC3jr2+hbW+xYvAxdkyW5fPcvfSGlFl6Rg3ZJySdrz+w0gpyradEe55t8DbLXO0UCtsKajZDu0oHDWqmQJ+nPTPnSbGEMSUeOl7IIh6tWUcKSflOs4E6NUWYrNqygGd2Kh5h8HSUIwQ3iBBmKQgYmnjmHpQRN+YRVysZ+pWhvSc55roUBpSc6+B9BKoBIhWAX1jFvnOIurxPXikPvi6WCBeOmNcbJ/c6/3cM2WHE6NFPpyoYn940RCf/riQxEhHl0wppd6oIBpFuD5nfl8JM4VXNIro7bIhU/29n5fr6Ds1RL2EDmTPYXZmjHPpMPqflYWuMexpu4N9g7EpJ2WtZcYSStgrmp7Lw1Tk5HMWHWeUz3mW6ZGs+aYE9lwTcWMOfbsGj9URKak804L1GuJODX22ZZTFb59FP1qHpQ7ipTOmh/esmbfinXlTCu3Epvey37l4N6moWOrCY/UB11p9zTeut988b0p4hUZ/eAuREtXlDix30V+8gYojeP8KiLmCmCNHjhw5cnxQULRsZp3CRLfRaSCEwLUsbCEHnEMdYfobFRpXWpRth5VimVaiFkZKIYBnZxepWA7teEyvFZold3RsVcdFCMHWbIXvPP8YjV/8n2n/zf8r/mc+hr8wy/JBh2dfvcKf/M9f48d+7Xd47lvfZ2lzz8iZhyElSuHJFcRIKyp9jrBVx0EkS9lIKRxhcbZYzVTF48KQw1MuTb1fCuK8j/7iDViYTCr0h7bRj+wbEnG+Md2lVXrkTT2+a4jlIcqjfnQfLU1fmLg5hxUOEfOUIBZi06t3r+QwRdJ3KRJiJq7P9VSkFNtlQ942+pT5WJjy0WJ09P2oBSYnsN2nImakpWPiTx5PlNodsxGUkenE8VUgjEtrf7mlpEfU6kVEqgBOoSCmxjqmL9SYDgktBpROcXUe+cYK4lpSHt52zDbTrHf4Nadj7/RtEDRcxKsrvUiVVAk+3zBq4e0ZQ6BTYna+gS6FiHrJnPfavFFL16vmf5GFuDpvFMVAIq7PI5qFUdWRvpLWpTGq/pK5fyK00DVzD8SVBUiMeJi0cfI+RK4g5siRI0eOHB8QVG2HH1s+NxBbcRI4QmJJQaHPvMaRkjCKUVrjJFmJF8s1bnVMydlBGLBaLHGmWOFCuco7zfrAOEJlSjXn3NHStIpto4FQx5QtG8eyUKtLBKtLeJ97kd/7/ms8fmeXR27vsLhd58k3rvPkG9fxii53L6xw5+IqW2cXUcNRGGOJUuomOaWCqBVVp3cdFctBa9NvGWlFzS6wUCiOlNtOD8HJauEOgaNM2WZgmUN37ey6pyXGJ4atDYF5/BglduUQdhM165EDQ24OIxVLXfQLG4jvnEXslpixzWepL9XRbpzlKZ42dDUwTq1pr2Ak4cZsRtig59opfBsdCdN7l977ach5NTDqVtPtEdJ6GmSfELzFLuqJXcSVBUPUkn5aXfPNbHIj0285PP55z/Ts7Rd7JaIzU/Tipn2rldAQ1BnflBA3kn7HYgQbCdG6NQOX671ezcoR5LwYGWU1JYgNF/GdMz23XPpyNMuRUQR3KuitSq8stRKgzzYR7y4g3lo00SFgciejxKCq66D3Sr3e2MTAR3T7lEsF7JbMeMaonnqljbg+ZyI7XtiA75wxpDQd42llqD4EyAlijhw5cuTI8QFCzTmhiUYfitJETwwTxLTE1BHm56vFMraQBCqmHUd8vLaKFIIL5Ro/aO7TjsIsQqMTh9Rsl5o9Or6K5WALSSeKWKoMKoxFy2bx7Bm+Vilw/fknWUAx9+Ytzt3YYHljj0ffuc2j79wmtC02zi+zfn6F9fPLBEV3fKnlYWYhYxBpTbVvzFXbxbUsQq2ItKbiOMw6LhJBrNUJXE3vg4IoMNceWHC7hnxrufe7e1EQ7xP0TEJsUtOTaW5HWj7p2ViueYM+37i/i/S+clk91zUE6easIUS2Nm65fWYyHBRNz186D6e497qWkNCm2yMuKRHqV0IvH6AXu8bVMyV5K2303Rr60sF4U5hEiWO91nN7PSoTEzICSm2wB1W8O4/4wRJ6sZOVCIvQQm9Us/LPI82gJMbJtO2id0uI15eN8U5C4My4eyqnvtBA7FQQN2ah6xh109GmnPjmrFEFIXNeFb6due+K2zNgqd5x3lkcUi4L5tyTnHdnfdRnbpn4FZkcIyWIaWzKBwQ5QcyRI0eOHDlyDMCxLGwphkpMZa/E1DIkaMEt8mhlhjcae1Rth3OJ4c3Fco1PLazx7f0tGmHIvOvSiSKeqtXGmueUbQdXWuwFXWbsUYXxYrnG6we7KK3xayWuPnOJd5++iOOHnLm9xbkbm6zd2ebC9Q0uXN9AA7src4YsRhUanYUeD0tLLadUEAUMEOWSZVG2bPw4JlKKquWw4BZZLpaoBwEFy+IgDDhXmq4PNIltH9uzOQ2U1sRa4wzHjbixsenfKQ/+fJKb5HuJMy1UMTIRFtMiiV8YCFk/Zq7lsdFPEM81EaXIZCNuVE0sxWYliwExhKRmSE5KdKZRb6sJGWoUTUyEbdQ1LfRoLmQtGIwbcRX6k3cnH7sUod0oy+vTl0ZVxrGY81Efu9srR00JYqLypQ6req2J2Kghbs30SPFRCiIJ0XprCfHymimPPdNEP7kLf3wu61HNsNg1TqGNRFWt9JUTf/o2vL0IXRt94QDx+qr53bkmerMCW2Uzb4SGs030lYUBgnhoeWmK/utZaZue3kDC2pQZpe8T5AQxR44cOXLkyDGAgpQ4wqiIKVyZEETNABl5emaBK60DLlVmspJSIQQfnltivlDkauuAd5p1fBWzUiyPnAuMMc6c47LptQfKOVOsFsssuEXqoU+NXr5jWHC4+dg5bj52DiuKWV7f5eytLc7c3mJpq87SVp2P8DZtq8r6Hy2xfnmJ7daaIWWTTFDG3o8+BVII5pwCG16bGDIDmydr83xl6w6dODJq2DEInyUkcZJfeVxs+106cczlcnXwfOkCvdkj3Hr1wfdI7foeVdsZ2GwYgeDQvsaJKEaIZgHdddCWOp2Ig8NQiA0pDWVCVEKTjXh7xhDGxLWTM024OwPbg5sEUxkEVUK0VKas9A8uo5/bNLl6leDenUMEhoRvVs3xDnEXHcFi3+fjKvP+jgMXD4xxDNqY8jQL5jOxpyeInG+gt8qIvbJxD316x5Qqf/q2GfNAzkRCKH+wNHr8QmyC7AHiHlHXy22Y7yK/t2p+Ptc1pjfFyJSYpmY76WbKUc67KSToj981Bj3TKLHvI+QEMUeOHDly5MgxgIK0KFn2AOGwpYXCKFau6C32V4plPjq3xPlybeQ450rV7H/frW+zUCiOvCbFQqGI27bGOoFaQvLRuWW+vHWLWI1fiMW2xcaFFTYurIDWzO41OXt7izNv77PQ3uHxKy0ev3KdSLzCVvE8d69V2Ti3RLNUwBJiIpnTMEJulgslrrebCNH73blSlaJlUbEdmqGJ5nCOIHxKa5PjJ4QhiIe+ejxCpVh0C9RDn3m37/4mwefCt83i/cevg3zw6mErCvF1zFkrMVTRGg2nkxlZjAwh0cL03d1vCAwBiaRRK90YXfUNIVqvGmfVUmj64e7OmP7AgfFOoXBK0M9uw60ZU774bmL6MmVu51HQay3YqqCf2L2nymb9sXWIpSG0TmzmViE2RjptNysTnYq0i8TF9eqccZxNVe5JavcZo/4dmmdqafO6g6IhxZZGHxwgbs6iVxKFsBxC1zE9um3HfI6l8FibR5QevpLt00BOEHPkyJEjR44cA3ClNWJ0U0gURCHoxVQkeHFh9dDjPVqd5WypksVhjMOsU6Bo2ROjIi5XapwvV9nsdpjlCBMeIThYnOFgcYY352YpvVliZfYNzrZvsnpnl7Pd65z9unnp9kyJ9bNL1C+ssr26gLJ7ZDBOCFy/ggiGFCMM0Ul/V7UdPjq3zFKhyB9s3SFQ8WjZ5xBirZFCZAriJHTjCEfIkfue4kypwluNfeacPtXS7SMjxej+q2tjoLXGliJRns21bvtdPBVzccyGwrHRr8i597m8NEW/uiRAXzxAfH8F8UbS57nWGlC1tB0bdXS7PD3JW2sbQ5mvXDKxCjCdEjcNVjroL12797bXYkyW4/BIr1RVL3UQN+bMfxxnzIUY/czudK91NFxooK/PHlqWrJ/dGfzvJ3eNip6WyqYlu5sVYz6DNnEYp9wS/H5EThBz5MiRI0eOHAMoWNaI26gjrYwgWidQfw4jh2CMaqq2M5EgWkLy4sIqf1i/y0HgMzPG7AZM9AT0kdhqgG8tcrP6NDeeOoetVlmsXmHNeoel21ssN7osN27BW7eILMn22gKbZ5fYOLfMTrWII+WIgrhUKFGxHFpROEAen5szZW8V26YbHa0sGFMbgSWMwc0krHc7VGyb1aREdy/wCJVizingWhYfmV1i1/e43W2zWizhSgvtxr117nukckRaYwlJ2bJphAGzjouv1InmzzjoYtS7xjH9h4GKsyzP+4azLfRWtde/dqZlSjATkxRmffSHt4xKdRwDnUKMrgS9jL1TUhCB+0uA5jy0rYzD62mOeQj68T24eHC8vlPBoOFN2cwfcXUegTC5lsuH9B/+ECEniDly5MiRI0eOATxWnUMPKVpmUW9WlvaxnTqPRtU5nCCC6UX80rmL/Mbbb1MQ1ti+tk3fKDyZSUxqLNJyoeOghMXm6jLXLglazz/Cs8omunKdp7ebrK7vcubODmfu7MC336JVKXJrbYGK56Iun4eiIc2OlCbKo3Uwoi4C1GyXRnj04lglBKpo2XSintoSKZURXC+OqDoOoTIL4btem6rlEqKohz6zboE5t8D/tHaRl/e3eLO5z4VSdVBRO07J3Cki1gpbCh6rzvGd/U2kEFRth04cndiUZwADCuIg+erGETc7LS6Vq0duTtwTBOhnt4yhSjnsqWaVEOoWes6UN54oi3Gh28tDPC0F8X5DAgsd2Kqi7+eYBfduSpQ8FwJhymEv1e95WB8U5AQxR44cOXLkyDEASwgYWrwbUmhI46n0jw1hwS3yueWzR5ZlPjm3wHKhRDsMJxifaAa4rZsYi7TdTI2hHOKpiKVCkdnaPH+gA/Y/UkEoxeJ2ndU7O6zd2WF+94Bn3r0L795FC0F8bpX40jniy+c5P1tiw+6MHcOs43K9fbRphTGmkVQsm2boE6iYTa9LqGMul2eQQtCOIiq2w35gXFPR8OOr53n9YJfv7G3xZM30qJVth2dmFnm7WTfKZB9B1MPulw8IUXJ9z8zMs+61udo64Pm5Za61Dwi1GuhlPRH6CKIeKjHdDXyWCyVCpSjeZxERV6E/e2tQmZvxoF4cm6c3LfRCF3ErCYt/vxBEQD+2b0jxe2CKdCz0bZzoiwf3bgL0AUJOEHPkyJEjR44cR8KSPSOX+6EggulDnAYly+Yg8Ed+bvr4xCC3FUA1QOyX0DtJxmI5ItaakuVQtmwQSdiElOysLrCzusAbH3uS1sEBz+52eGGvg3XtFvbtDezbG/BH3+HDtsW5tUVKjzdRl8+jVpcgIbdluy98O8F+4OOrmLU+J9dYa0q2RdGyiLVm2/d4rDrLzU4z60/sxjGPVGdohgH10GfGcVlwizxeneNau8FSoZcbOe8WmHUKtKKQ2QEF8cGVmPYrg5FSlGybsu3wxZXz1GyHD80ucLvbIlLq3ss/+xXEPjXJj2MsIShZFl78gK596JHQj+0bQ5jZeyiznPfQUr1nPaQnRjU0pjMPO0rGMRZpchRz9JATxBw5cuTIkSPHkbCEQGsjLJ4kjuE0UbbtsaYufhxRsmy6w6Rgxof9EqLTUxDjWFNM3VoxRip3u22WC6VMFWwVbPafuoy3dAa0Rm7vYV2/jX3jDtbNuyzc3oLbW8Afo4sFootniS+fZ25lFvp6CmOtaMchYqj5S6EpSJtS3/Vcrsxwp9tCaZONiNBcKs9wt9vmTrfNjyzOIYXgTKnMxXKNhT7nUikEF8s1XjvYGSSID0hB7EQRt7pNnqzOIRJn1rRkuGI7/NjKeTMcyyJQp2AqU4izKIP+ktrd0OOxyiwCuN5u3Pt5TgJb3xs5BHAU+sV1sD9YEQoPDSToj22ApR7OfND3EDlBzJEjR44cOXIcCVtIhDDlm9YRZaD3G2XLIRpj6uKpmIJl040HCZG+dAB3a8Y0BMBRxJHKXFNdKWlFIaFWdOJe6WqsoZr2rwmBWllErSwSfvKjoBRyfQv7+h2sG3ewbm/gvH0N5+1rPAmcLbnsnllia22Bt+ZLLM7PsjvUlxhrTcGyKEqbUCkKlsW8W8hcTX0VU5AWi4UiK4Uym14ny5K0hORLqxdG7sFaqcyrdT0Y+/CACGLq3JqWj0ZaUbFGHWdrtsuGdwrB4gITPu85GUFMy3CfmpnnTrdNdIg77PsCc6NKeY5TxCEuqD/MyAlijhw5cuTIkeNIWEKgeTgUxKJlj5RwAnhxzHKhTD3wB01QCjH62W3EK2vo+W7fcayMJO76HnNugSDuV7Y0BXvCUklK1Lk1gnNr8NkXIYyw7mxg3bgD125R3timevUul67e5ROAXy5yfbFK+9wK26sLNOaqhiBKC0dKfBUz5xaYcQpIYdTFSGnKtkPRslkulpjpuCy6pfHjSbCUKKC+iCi5kSmfcx4MSYq1pmw5eLFxD420omyPIYiOw63OKalilRDt2Vm56W7gca5UZbVQZj/wUWNnSo4cOQ5DThBz5MiRI0eOHEfCEiYH0ZHWfTGpOQ5cKSEJIY+1zmITlDYh9ne6rdGg+uUO6pN3jOKUwEl6KWccl5udFhecKnejQWVrnEvpWDg28eXzxJfPE3z+4/ynd7/P7N0dPtYMObd9gLu5y1O3PLhlstn8gsOtpRm4eA596SyWJlEPTe5iqBSxVlSkIVjzboEzxQq1MYSrHyXLpmw5BEpRfHH9gWa6RVpRtmz8pHxUY0j4MCq2y2mlFuqnd6Dr0HV8djselhA8PTOPSO7jcFlvjhw5jkZOEHPkyJEjR44cR8ISAinMcvt+mdRMC1daCGHC199p1rlUqVGUFkLAYqGY5Qru+z4WgsVC0qc3O1iul0ZJzDkFypZtyiF1j1BojkEQh8ZnFYuET1xmdu0igbS40zjglddf4+n9Lssbeyzs1Hn8zi7c2YVvvMb/27Zon1nCfWyXM0W4OVMgtmRGsNaKFZZXS1NFQ8y7Lne67ZNFK9wDlDaKZ9PrxQeMM6IxfZ+nhHIE5YgDL+BydYZnagucSSJOxrvc5siR4yjkBDFHjhw5cuTIcSRsIZGILNj9vUS68A9UbMopE9dKW0jm3WLWwxcqRTCxB01kkRo1x2XGcTlXrvJOsw6Q5UCe1GnzI3NLrBTK2ftlocCNtXniRy4QKYWIIuTdLT7b1czf3cW5u8nCrU24tcmfBGIp2J6v0j2zjP1ESHxuDatWmercc26Ra+2jXRm9OMKREuuUCH+MTsqPe/fcHdOvWpTWwGtO5dxasVascK5c7TuPWeb2lxsrrdkNPJbc4r3nMObI8QFFThBz5MiRI0eOHEciUxCFODVCcVIYYifwVUzFdgi1IlAKV0rKlk3BsoiVQqOxpCRUaiRfUWudlZhWbYczxQqLCWlQWmcZhSdVodJ8whSWEMjELXUn6OIrhb06z87KeZRb5MvrN/iSKrC0scf+1WvMbu6xttuE3Sa8fhUANVszWYzn1ojPr6FWFrNojX7UbBd9BAGLlGLD61KyLFb7ojfuBQLjVqox91ejxxJsc0/FYJ/oPUJrMVLOWrAsLCEGyo27cYSnYjb97kDkSI4cOXrICWKOHDly5MiR40hYqYKIeM9NagrSwhaCbhxRcwocBD62UFRtFykEJWmxH0UIBDXboRWFzLu9jEWVZAym5OVcqcpqsUystXHhVAqFxpaSwik5tqYEOyWfjjDnsYUpI50pFikunyN45BLfe3KNtw52qTa7fN6TXNxrYd3ZQG7v4Rw0cb5/BQDt2MRnVwxhPLuKOruCrpQp2/aRvXfbvsdaqcyOd/Ig91EI5t0ijpAESiUlpqP3r2TZ2EPE7Z7PLDQlObisLUgLW0oirXCSoEKlNTO2i69iNrw2Fcuh5rinMoYcOT4oyAlijhw5cuTIkeNI2NIE0DtSvuelea6UWFLSDH3jWoomVDGzyUK/aNl4qo0jLc6WKrzZ2GOeHkFMjW1SVVEKgSssdOIqGuoYrcEVEudew9wTWEKYvMVE2as5Lru+hyMlRcvmS6sXs9cWpEUMHNTK7D9yhtWZBfMLz8e6u2XcUm9vYN3dxL5xF/vG3ey9arbGxdVFXiwJwrUlDpbmiJzB5V6gYjSaD80s8PVgfazCehJoNLOOS9GyacehUWDH3L+iZeFIK4vFuOfzap0Y4gxepyMlRWmZ6ItkGHHSJ/mZpTNcazdY77a51W3xSClfEufIkSJ/GnLkyJEjR44cR8JKSkvf6/5DAEdamUqVEoxA6UwJKlo2XhxTsRwulGt8v7E3UM4Ya4UlxQg5EUJQcxzqgY8AanaB04IUAinAtDYKKrZDI/Qzo5zh69MAmkGCWiwQP3qB+NEk/1Ap5M5+Rhbl+hZyZ5/yQZPPA7x6DQ005qrsLc2ytzTL/tIcb5csLtdmeKI6x5uNPVpRwLxbPJXrLEiLlUKJN5t7zDqFsSWmlpAsFopsex0qR7iyToM0d7E0phy4bNvUg545kUrKXi+Ua1wo1/DjmD/avcte4FO7z8viRhhwEPpcKNdO9bihUkRaUbLeX8v6Hb/LrFM4lU2CHKeL99dMypEjR44cOXK8J7CERIiTm7acNkyZomTOKXCTJkJAJcksLFk2XhxRtV3mnQJ2YlqTlsZGWmMhsx7EfszaBba9LlIIKs69k5cU5v6lCqI2pY22O7Zc1xESgTFUPbScV0rUyiJqZZHwY8+an/kB1sY2b771JvM7dVZ3m8zWW8zWWzxy5Q4AX5CCYHkB+/wNPjlT5JuORqy56GMu1NtRaEp6LRulNSIx/vnY/Ap7SQbhOAIMcLZY4dYURjrTIFVAhxVEgKrlsqN6ZbSx1gN9pQXLYsZx2fLvf2B6IwqwE+X0tJ6jbb+bEETNxT6DnocdrSigFUXmGXZPbyMmx+kgJ4g5cuTIkSNHjqngCPnQ7PaXLRtXWiy4RSSmny1VUIqWyWqccVwKlulDC7XC7utDK1jW2FLZWbdAqBWWFlROUZHpN6kBwVqpjICxqo8lBVr3SnqPhYJLfOkcd0uab7YbrBTLFLo+CzsHLOzUmdmus7RzQHlzFzZ3eRJ4Eoil5GChxv7CDPXFGfYXZjiYr6HsyURmP/ARwvRw9sp2Laq2wxdWzrPjdya+d8EtnlpGY6AUFdsZm89ZdYyJUQqlNe7QxkDJsom1vq+ZkbHWCEzmZisKWXDvnSBqrfHjmBfmV3ilvgWkKmXA2VLloVD7x0FrzX7gs1ws4cfR0W/I8cCRE8QcOXLkyJEjx1RwpfVQKYiulCwUijhSolSckS1HmOiGmuPiSAtXDPehKarWeHWwbNloDbEwvWqnBZnEg+hEQSxJmx9dOTf2tbaQCKHRwyWmx8CcU+DdJKrDLxVYv7DC+oUV7nTbPDezyCetEtbdLfw7/3/27jtOrrre//jr1Knbd7OpEFoCJJHQSQigCFcEVFT0JwoIoheVptd7RVFpCgpWmgooXEGvcEXFgmAFUUD0qggoNdT0bC9TT/n9cWYnO9meZFv2/Xw89iE7c+ac78x8s85nPt/v57OerlfXMLsjUwoiO8vnCAyD7poU7Q01dNRXlf/Xc6PXxSg/n+g1tc0tRWkaYvEt/ScHUefGiZlRi5Lt7VdYDHyqncFbgERzYkug5IfhwGqnpsV4f+3R4xWocWLslarhL+0bd8g586U2L3MSSR7riAKvrO9R58ZYl+1lXiI1aNA82bq9ItVOjJRlk/V2bK9OPwxYl8swy02oD+Z2UIAoIiIio9I/AJhsSdvBNS1qnBgx0yYIt2TjouWGFsnSktO0bdNZ3LIPzQ/Dco+8rTXHk8Qti65iYdACK9vDNk38IAAMLHPoD+6OYRKEUVC5rRVj08Msj22IJwjTNXh1NXTvtQs/XtPA7FiCdG+O2rYu6lq7yv/btzyV1Vse312VpKO+mjVVMTbXpLCbDXoSzpDLdgeTtG3q3DhdxfyAD/IdhTyWYYy6umgxDKge4ti4ZdG/FWYwSOuN8p7PcdTjeSyva2R2IkXYtqWS7vbI+T5VjkuV7ZZ7f3phwNxSRjfjF0nbO75CaxCGBOHQy4dH0u0VWV7XSM7z2ZgbOsu8LeNal+0lZbtkfG9cAsRC4FMI/HF5XacSBYgiIiIyKq5h4RhT41v5uGVR58awDIO0Y+OFQXkPWlS90i63PUjbDi35yn1oW2eR+qRsh11T1TzR0bLDA0THMCmGPhD1WByKbZpRD8ftqKKathzCcGDYs3VvQseMCg/5QKYqSaYqybpdZ5fvj2Xy1LX1BYyd1LZ1UdWdoao7w4J+5y3aFh21aeLz1kf7Ipvq8ZsaIDl0FnFuIjVogNDjR1ml0QaIYQipITLCcdMGY8vrYMCAwMY1zXFdXhqUekLOjadpiMWpdlx6vSJVjrtdgWIu8FjgVm15D8OQMDSocVxaLYcer7CDn0lkcz7q47ktex77+mM2x1KsD3pLS653jM5igcZYAse06OxXmGhH6ijk6S3tb96ZKUAUERGRUXFNc8pkEGscl3mJ6ANqte3iBWF5z5VrWsQti0Qpg5hyHLx+H0RHqvi4W6qaVzLduNaOfa622bck0xh2f5htmOUlqduaQUzaTtQDMAgqAqKtexM6pollGvj9egX2l0/G2JBsYsP8pi2PyRep6egm3NhCY2cvc7tzVLd109TSCf2WqAIE6RRBUz3BrChgDGY1EDTUgm1T68Rgq9xdWCp2M5awwTCMIQP+uGVF7UX6BWJbZzljlkXpbRkXfZm8xlgCyzCZm0jxfE8HSdvhue4OdklWlbPdo9FeyBG3bLwgpKG0xLovg2gY0RcAKduisxgMeOyOKJDjhcE2L8nNBT5xy6YxFqetkMMvvdGdxTxVpT6m28oPA6qdBKZh0l7YcUWHMp5HRzHP3EQKL9zy5U4YhgQwZfd6bg8FiCIiIjIqbqnx+FQwN5Fmbr8A0e8XUTimScKySZQ+CCctp9x/ECAMjWE/JM+OJ2mOJYfMSm0r2zDxSsVKhs0glgrabE8GMWVHRXzygV9+z4LStfs/d9swMYmCi9EqxhxamutZWx0FeHPjKVryWRYFNisDF2tTK+bmNszNrZitHdg9vfDiq+XHh4ZBWFPFHvXVFFwIG+voqknTXZumt9R+pBAMDG4GE2VJh94vGjOt0usetcKAgRnELQFWgDkOUWJ30WPv6rpywaHZ8RRPd7fT6xWpdlzygUc8tHg50838RHrEwkS9vkePV8QoFWKyDLNUqTcoP5+k7eCFla9hIfB5qbeb2fHkkEtyR82gonXMaHUXC8xLVhG37FJP1ZAwDNmYy+LHwqh40TYKwrC8/3hHZiZ7/SLZUjGdgLA8Qzbns2R8n12T6UnvDbujKUAUERGRUZmXTO/wZZc7wtxkmobAL/+eth32rKotBw0x06r42D9Suw7HtDimecEO/9DnlJq2j7S30C4tGXTNbe87aRkm1Y5LdzFPiuh18MIAy6jMApul64wlQNz6Ol4YRhna2ir8hjn4ey3ccoDnYbZ2YG5qxdrcirmpDbO1HbOji3RHFwcDsKZ8eE8yRmd1ik1VcYLGOrpq03TVpCnEBw9osr5PzLKpGSLgiZUCkWIQ4Jb2Gm4dnLumFWVRiyHmMHtDhxOEIR3F/KABjk/A3MSWIjp1pcq7XV6BBjdBVzFPPvDxw5B84I8YIBqlPpr5wKfa7uv9aZHxilBqNZKyKrPmAF4Q0BhL0FHMk7JtrFHuFx1sBI5hlPtPjkUhCJhfWppqGyZhqQJxteOS8TzqtyNuDQDXsrAYPEBsL+1tTVr2mL7o8oKAmGXhhwEGUXXhIAzLe1+7S4V2/DDYYf1EJ5sCRBERERmVHd3ge0dpjCUqfrcMk32q68u/x7YqVBKG4cgfwschI+CU9om5pok1zPX7lphu71LAejc+YO+lZRoDspIx096m/WphGGJbUebKDynv+axg2wTNjQTNjVQ0NCgUKW5q4e/PPU1zd566rl6qO3tIdWdIZ/LM2wA8t658eD7m0FWbprs6RU91iu7qJD3VKdpjBk3JqiFfK8swSFhR78HykLYKAt1yltEfdJntaGR9j425DNW2WxF8ZH2PmGkxK54s31bruqRsh7ZCjqRl01bIUShV4fXD4TOnfXv4dklW0VLIlr8EiZsW3WGBMIyWmLqWNSAX6pXm3q7Jatbnepndb0yFwGdzPkeN44xif12IY9rloHu08n4U/PZd1zIMDKLAyjIMAsMo/fe2vQdB6d+1M0hGPO/75AKfKtthYz7LvMTgVW8H09c70wuibHXfcl6AOjfGiz2dpGyHuGWzNtvL3H6v63SlAFFERER2ajEz6nkYhiG9vkfCtmmehA9xthktdYwb1ggZxGh5aXw7A8Rax61YZuiHwaC9LGOWSVdxbBnEaHkhWJSWzRpR9mbUXAd73mxeDLp5xaAclKzv7uYwI0b7+vXM6c5R15WhqrOXqs4emja207SxvXIcQL4qid1QT1BfQ1BXQ1BfS1BfQ1hTBZZF2nbZmOsFouzb1hlEyzCI2xbduW3vyeeXAjM/DCs+XGd9jwY3XrHn1TJM5iRSFAKfOYkUa7I9FIKAZF8/xhGuYxsmS2oaCNmyrzJuWRTDKDvtGOagmX4/DEg7MfaprufVTDdhGNJSCk4NDOYmUrya6SZlOSN8QRJlnYujXAbcp72YY9dkDTVODOjr8RmWemiapFyH7mKRWjc2pvP2CcKokFaUda8cf8Yv0uDG2a+2kV9vfHXwEwzBMCj1UvUJobxnFwwWJKvww5BlNQ3UODF+tu4Fcv2+jJiuFCCKiIjITi1uRh8avTCks1hgWU3DsEVqxotjRsGUiTlslsQyoqWl21umP2U79P+g7AWD79WLmyNnrrYWfTw2StUzAyAsV5EdLcMwqLKdihYkgW0Qb27mJTdkvWmWngMYQUCyJ0tVV4Z0Zw9hWweNPXlqejJUd2cwujPw0pqK84emSVhbxRHpOGvjNn5tFbGYRSLeAE029GsFkrAc2sMsQ1mb7aEplhgyY+aH0TJELwyIseWYQuBTO8iyw7mJFH4Q0ODGCcOQQhBQ5bp0FYevvhkFU1FRnv6vd9yyKQQ+MTPqDzpYgOiFIUnLYXYiSdpxaS3k8MOQo2bNp9p2qXZcfrL2BTqKBSCkql82tLOYxwtC6t1YuRJuZgw9DIPSMuQ9q2rKt0V9QUsZOtNi91QN/9e+kVq2LUA0jKj1hmkYGEZloJ3xffaqSpGyHQzGun/SwDEscn4x+rdZ+lIEQqptlxPmLCyfK207O6QQ0GRTgCgiIiI7tVhpz1HO9zCAhanqSRmHY1jl5XQjVWt0TXOHBIj9PwxHrUAGnjNuWWPegxiWqoI6pknG8wihHMyNRZXjsrm0DDbaN2ZQ48RI2jZ5f0tGLzRNeqtT0c/sWvLBXHK+h2kYnDx7IdU9Ocz2Tsy2Doy26H+j3ztpauukrwbrgQB/+Gd0vVSSsLaasK6KpUmbpBli1NbQW5Ugm4xHqSOi4M8LQtoKOWbHB1+a6JWCnK1fRz8MqR1kf+RuqRp2SVaVi830LY8c6X3Yso+08n2MAsSApB0tIY7uNyoCIa+UpXRNiz1SNTzUso6D6pvZM11bPs+ymgYebl1PwrLpKOZpjCVoL+QoBAFeGJYzmPVujM35LK35HAHQFBt+711XsUCtE2NOv9fPNkwMoi8YovYyVTzWsZmc7435y4Y+lmGUvnyp/PcVElV8TdsOrmmSL1VTHUlfqxjXNGkvROOyTbM8V13TrAg0a904azLdChBFREREprKoL6LFhlyGRVV1NG21Z3GiRNk2RtUqJGZZg+/pG4OkZWMbZrmYiB+GJAf5UBwfJLAZSVBa3piyHFrzOVzLIr0tAaLtUgyia3cW89Q6Mapsl5Tl0FMs0OsVcczKgKirWGCvqlpsw2RjPkMqniBIJAma6gdeIF9g7Zo1PL/mZebkfOJdPezlWdid3Rid3Zi9GVi7gYXAwn4P802DTDpJbzpBVzrOrgmH9oRLrLaWbDpBLhkj7Pc++mFAwnIGzcQOlrWNAhmLhBWWg2zHtPBHaPDRtx9u6y8YouAywC4F7bFSgSMvDHH6At1+1V4XJNMsSFVV7NUF2KuqlhonxiuZLp7uipbz9nge+9c18VjH5lKAalDrxgmBTClIH0m3V2RFw+yK/Zl9S529Ul/SOjfOoqpanupqZ15iW+a+Ud6/2799Sl912lonRtyySdoOhSAgPooYzitlbGtdl5d6u6hyXFKl4DkkHLCft86JsdrvJD3NI6xpPnwRERGRkSVtm7TtcEBd06SVpO8ryuGMovJj3LRHLKQzEts0sUzKwZ8fhiQGCVYcyxpzD8Cor2C0pK7Xj/aNbcueyZTtYBghQRjS7RU5etbsqAqnHVXh3JzPkrAq94z6hMxPVjE7nixn4IYUcwnmNPG8kaXVcckFAfN2WRTtUwsCjO5erK5uWls3se7lNczOeqR6sqS6M1R19VLV1cvsQU4bGpBNxsmkEmRScTbGLILqNK1xG7u2hkwqQcGJsniDBeV94qZFzLTwzIBax+XVQd6I/r0svTAgPUj7FceMsnF9WTHXssp7XvsK7xhsCcqa40mOnjV/QNVNx7SYl0zTWczjhyHFIMAxTeYn0zzZ2Uo+8KMKubaLF/ikHYec7w+7ZDPre8Qta0Dmvi+Y6yvQA7C4qp5nuju2cZlmWN6D2V/G80jbDtWlvY8NbpxXervI+h6WYQwoctVf3/OvdxP4YUDSiorRFPIZbCMKxPtLOzu2Nc5kUYAoIiIiO72+5W3DfRgcb1a5OunIgV+V427zMrs+fT0O+0r+ByGDBnGOMfbuf0EIJiZpx8UPo71p2xJ4R0teDVoLOebEU+Ugosp2SoFFZeGWvqqgzfEkccse1WsUMy3Cfssjy61DTJOwpoqgrprswgYeqbbLvTUBrGIULJodXaQzeRYUobetjYZckWRPjkQmR7I3asi+yyDXLToWXckY6brVmNVVBOkkYTpFWJUiSKcIq5KQSlLlOBRDnxo36ivZX9b3eKm3m0VVNeXqmYnBAsTS84qXss6OYeL0643Y/7WAaP/ncC0Z4paNUQreXNOi3o3jmhZZ36OqtATYNk1mx1NsyPUOu2SzvZBn7+o60lsttY328xnkg6D82Ho3RsK0KIyxQipQbmFimUbFq5jxPRamasrve70T49lSoLt1r8itRcuybVK2jWNapO1ozuX9gGTptv5SlgPG2LLxU5ECRBEREdnpHVzfvB1933aMaO9hKWM3ggPqmjC2s2n71j0ODSMc9EN3X3aqu1igo1hgQTI94Jit9TUMj1tRi4g6d9sC74RlExJlqvavm1UeS8yKgoSmmEtHYUvhlqzv0RCLj6nIUN++sUIQDJnhiZlWec9hH9+x6aqroj3lUOPEqKlt5FcbXim3SDCCgERvFCTm2juYVwyhs4umnE+yN0uyJ0tDZwY6M0OOLTQM3pJw6Ym7xGprcA0fszpNNhEjm4yzyTFosg2KnofluHhBQGKQ+eOYUeGjpLUlAExY9laFZEb35QRQznoWgqC0b88iYVl0FvPMilskLJtq22XPdC29XpGMN/S+wSAM2SU5cN+vYxqYpoHnhRWBa8K2yXpjrygbVagdWKW2GIQVfTLTjkshCGiOx0csClQMAmqcGHEzWq6dsh1c0456UBrugCx/stRfclv7ik4VChBFRERkp7f1N/2TwTQMzFKT8ZHsqGC2strk4AFC35K8Hq9IOMIeuD59vSSjwMGmahuX1sUtm6TlsHu6ptxAHaKALWZaJG2bjmKufHsxCKixx1blMmXbJC2b9kKe+iGKqcQsa+vkXZlXWprbt8cyKBXoCU2TTFWSTFWStTUumWQVr2a6mVfKQrbns9Rj8cZUI0ZPL0Z3L2ZPL0Z3BqOnF7O7F6Onl1hPhngmD23dvGaI5xAChZhDd8zBrkoTr64mTCUIU0nCVIIa12JuTw81Tgo8D+wo69UXAPX1TxxtVi5u2RhAPvCY50TPp8aJ9uElLIeEZbN3dT1z4inWx3p5Ot8Gg1QfLZaWx9YMUqjHMkxMogI9/ceVtBy6i9vWl9MyzVLm3Ci/T4YRVnyhkLYdUrZDUyxRUUF3MF4YBchxy8I1TVK2i0m0XDs+yF7QpBUVwYn6bk7OUvYdQQGiiIiIyAToq146WAuC8dLXQB0YMkDoy4L4REv0+j5YDycgxDXM0odmZ5sK1ECUqVpW08BeVbWV47Zsqp2oWE3/TGoxDKgeJNgYjmWYLEhW8WqmZ8jXvj4WJ2ZZ9HjFAc8lqv5pkbIdYlZUAXNgBtMgudXSz0IYkk6no+I5gxXQKWnPZfB6MqRyeR596QXmeAHJTIFEJgc9GaoLHrFsnmSuSGO+CF0ZWLup4hyzgff0+z2MuRwbd+h0LMJEnLzrsIdjUL8ui5NOESbipZ9Y+b/pl5mMWxaOadLlFcpVWKvsWGmJaxQYvaa2sfzaDdX5L+d7JC170Aq3fRnuvmq4fVK2XWoj0e+1DHxe6O1iUbp20LnZtwfSLv2YhlExj/tXBE7bLk2xBHuma3mxt6tij+fWvDCkynaImTYJyy7PH7OUod2aY5qkbYf2Qg5nO4tMTabpO3IRERGRaSQqUmNgT2CAGLOi1hphGGJgDFr4Jrotqvxom1EvP3eEQjpBGBXbcU2LpGUPWjhlNEzDYFkp0OgvadnUOjGa4wme7+nYckcYLUEcqzmJFHHLGjJArHJdltY28OeWDQMCRJ+wlBmySNsued+rCA76snMp2y4tvI0Uw7C0r3B4dfEkxJNkfY9XvS66HbccyK/J9jA7nqIln2F2LMnm7k5el2pg19DGyGQxejMYvVn8nl42tLbQ5IWkckWMTJZUZy/RYtiuLRd7es1gQ4ieh+uUg8ZEPM5xYZE2C+bXd+BUVbNb6NGW6WRuwcXMGRCPEcZcajAxhlhSmfU95ierhvzCwS31KO1fWCZlOXilyrZ53y8tN/ZLVVkHn5t9VXUtw8QqBZ1BKSUcQkV7l6Rtc2zzLuXAtBgG2AweIIZA3LaJW1Y5QAyIKpsOtcy5zomzIZvBmdwV7dtFAaKIiIjIBLBKhUS2tzrpWMSs6AOtX8qmDLoHsVy4JfqgPpoCISFRU/K07bAgWTVoK4ftUeW4HDN7ARtzGfqv/TQMxrT/sE9jLEHadod9Xour6vhXRxs9XoG03S9LGVJ+XL0T58VCJzX9nm5f8Zuo72S/scKwFUy35paWR3ql198LAmzDpMGNsyGXAcOg4DiE9bX4yaqKxxYDnwfWvsCBdbPYPR01o3+2bTOPrX2ZXQyHIJPFyhU4PFWHmc1jZHMY5f8t/eRymJ3d0NkNwO6lH17YCMBupR94ruLaewHnmQYFx8ZzHfKuje86FF2bDhMaqqpx0+vAdQgdh9B1yv89t7uDwCuQTPVgBAah40SVQY2QQuCzureTPdM1eEG0T9ELQtxB/vn4YYjZbw+iaRj4YVQd12Rg1r4vo5i07IoqqoOJmzamYTA3kaLacen1i1jGwIxxn6ZYnMdHKH4z1SlAFBEREZkAlmFgmyb2BLbZiJlRFdAoiBliD2KpZ55b2veX8ysLhHQW8xSDoKICbNTYPWqrcGD9rHEZe192qS/k6qvGui0BYtp2aCotIx1K0nZojidZm+2p6GNnGAauFb1udW6MZ3sqs2V+qVdeynIGbGMcy1it0pLdvuWVucAnZlo0xhL9As9w0CxoX8uF/l8+2K5LdypBRyJFZ3VUhdSbv+fwgwgCjFwUOD65fg0b29tZWVVP2gvp6e3hlbYWdjVjVAdEx+ULGPk8QS6PkyuQyBfpH7rOB2DjkJd7Xfm//l7+r4OB5ZaJ51jkLYvQtihaJp5pEtoWhmPjWya+ZZX+16RgGmQMSK3vxXJclnS1gG2DbVEVBlR7CSzHAdMEy4x6WJom87rzbC7mSMV9AtMgMExC0yAwoz2mVuBjlf65HtIQNTwp5Hxs0xwykz03maZqB39hMtF2mgBx8eLFA277yle+wgknnDAJoxERERGpZBmDV1kcT65pEmKUGpybgxbriTKIJnVuDNsw6PEqC4R0eUW2boQRhOGAfnPjwTbM8h7Evp502xIgAuxb0zDi/s8a1+Wl3q2zP2F5WWPaqcwSAuXXNmU7pQqWQXnM8VFUrO0vbtl0lwqn5H2fxliitHS1L0AePANtGEbUfqJfVqv/PBuqPcYApkmYTBAmEwR2wLoqB+bvRdGyyBXy/G3Dy8Qb5+BulcEEaM3nKBTy1AbwSlsrz7VsJO75HFHdRCoAo1iEQhGj6GEUilAs0tLVRS6XZZ4Vw/Y8KBQJ8gWKhQJu0SeRKw4yyOG8BMCRA25/ctCjjxnVOR8CooqzAGnD4HxCTMPEMI0ord33pY9hkDIMPhAGFA2D0E7DgvljfA6Tb6cJEAGuvvpqVq5cWf69unpgSV0RERGRybBlj9TEZRBt08QgxAuj9gjWINnLvqxmYyyBFwQUg+7yfT1ekaRlk/Mry5CEMGRhjx0pukZIGIYUw6Bc3XRbbN2ofTBpyy1nKvuE4ZZCPinLIQypaAzvh1FWL1Z6ff0wGq9rmmPuZRlVW42qtmZ9n8ZSSw8DI6oIOsQyYYCjmuZV7PWz+82zvkI7YxG3LKpst5x1jVs2Ccsa8voNsTiUqsQurqkhqK/lhd5O7DkL8YbImj/dupFnetp454JF5fO25LPcvXY1FgbVlo1fKOIVCzRaLrl8nibLwfIDTN/H8gIsP6BYKIDncWhNI4Yf8HTrJkLPw/J8XAx2T6Sj7KgfQFD68QN6C3k6c1kShokZhBhBgO/52GGIHULg+6QsCwsjmgil977ge7ilqsTR/svoPoIAIwxxwjCKGQtjDXCnhp0qQKyurqapqWmyhyEiIiIygGWYE55BjLJ8Bl4QUucOnUGqclxqnBg538PvFx91FgvskqzilUxXRVXIKIM4/sV2osqvJgEhxcCnxomNWGF1eyRKDeL7+GFQUXm2rydgsV+xFD/s6xUYLdX1gpCAKMM61mA2adv4YUCPV8Q2DeYnq4hbNq5pkgs8LNMcspfh1q9L/3nmheGY94k2ugkW9asuG7Ms5ierqLJHV0V2n5p6FlXXDvqlRP9zWpgV2ehoabFJMfBxbYe2wMezXArxFG2ugRtPDThPV7GAaRgcuGAvAJ5Z/yKdhTx+GDInkWJe8y6DXv/V3i5+u/GVcmsSgBd7u0hZNrPiSdZke3jrvD2j4LekEPjcs+5FDqmfzbwheoYWg4CXM10ctnA+tPUO/0JNQdO4vs5Al1xyCYcddhjveMc7+PGPfzzZwxEREREp69uDONwH5h0tChKiDGJqmCWG+1TXMzuejPrflYYXlKpz7lVVi2NE1U37BKUiNePNKfW088OQQjD2FhdjFbesqCppKYvoh9HzdEtZtL6ej5l+jdy9MCRuRQ3SHSOqGlsMgqhn3hjf66Rpk/F8Oop5DqpvpjmeJG5GWbvOYoG4aY36C4a+rGcYRgHrWLOZtW6Mvasr23McUDeL5BiqyI7Uz9MxTZJ2ZVDuljLaXhD1NYzmnVEKvgc/z9a9FGOmhR+GFINg2BYsScuuWDAc9vW4LJ3TKF23P7sU+LvDZGQd02RRdV3F85pOdpoM4kc+8hFWrFiB67r88Y9/5OKLLyaTyfCe97xn5AcPwZzAJSAj6RvLVBqT7Bw0t2Q8aF7JeJju88ohKiLiWNaEPQfXjvbw+YRUue6Q1929Kqp82ekVSluqDLJekSrHZUGqCteKiqfE+u21ci1z3J+Ha1vYZvSB3SNqG7Gjr9l/XqUcB8ey8AGntFzUMU3idl9TdIP5qSr+2dmCYURZpYAoO2eaBgnbIuN5eGFAteuMeax7VNeSdl0Mw2Bhqrp8zSrXpcsrcHBDM5Y1ugDRtaLXLiB6P2MTOO9Gy7FM0k7lvIwbNo5p4Vo+1Y7Lhlx0n2tZmCaDBl2hQcV8jFlWFOQBVc7QcybpONiGWf4iwCsFmn1Bo2UY2FvNcxODw5rmUO/Gh/0CYDr/vZrSAeJ1113H9ddfP+wxv//975k9ezYf+tCHyrftu+++ZLNZvv3tb29zgGjbJg0Ng6eNJ1Nd3cC0usiOoLkl40HzSsbDdJ1XXhBQ052gqT5NQyI5MdfMGMTbXCCkub6KhvrhP9t4CZN4u0My5dKZKbK4tp7ZTdU0dabpLRZJxaO+fgny1Nemxv2zkh8GpDbHiNs2CdNnTkM1DXXjc826uhRVQYKatjiObZNyHLwCxHGZ1bhl/+KeVgPP5jqJpxzW9fZStGB2fZqGhjRN3SnWZXoJfIN59TVjfn0agIXUD7h913wtu9bXcuDcuaPOSiW8IqnWGPGYS8Io0liXpqF2an22nesGBLGBn7kb25NYeYuFTbW8UuwhBObUVbHRz5JKD+wt2Zv1qUsly+dpyKdZ62exgiCa90PMmZTnUdUaI+Y6xG2b3mKRWidO1veIJ1ySlk9TQ5r0VpnrBkb/Ok7Hv1dTOkA87bTTePOb3zzsMUPtOdxvv/34xje+ged52NvQUNXzArq6smN+3HgxTYO6uhTt7b0EweDNSEW2heaWjAfNKxkPO8O8mm8m8Xs8WjM9E3K97kKOXK5IEIbkugu0hsNfN1ssUMz7dIY5uvN50imL1tYerEJIV2+WmBcFJ7lskZ6uHK2M//Mo5Ir4eOSKRfI9BVqDHXvNreeVWQjpyGbBDegu5Kh2XFpbt1zTLPgUch4v5Tupc2PMjydx8watrT0EOZ/unhw+IUHWq3jc9ljsVGMZBm1j2M9WDKJxdhdz5ApFMt05Wv2JmXejlcZkb7dm4OuUDwgKHmY2IJMtYBomYdYnlyvSa+QHnKc3l6dArHyefG+B3kx0XK4nP+ScCcKQYs6jsxDi2w6dxXyUPS8W6fXz5L0iHe0Z8lZh0McPZyr+vaquTuA4I++LndIBYm1tLbW1tdv02Keeeoq6urptCg77TJU3s78gCKfkuGT609yS8aB5JeNhOs+r3VPRUs6JGr8VGpiUWkQYxojXdY2oEmfe9yCEWidGEIRUWQ6FICjvzQvDqBH8RDwPxzApBD4BITHDGrdr9s2rKsels5gvVav0ScadimtWWS5p26Eln+XIprns1u89nRVL8s+gDdOIXssdNVYbE0IGVFgdjhkaGGGUuQ7CEIuR3/+pImHapCwX14iWe1pEfSaDfvtD+/PDANswy8/PNsxS1VdzxDkTMy0KgU8Y2hT9INpjGYaldiVghNs3z6fj36spHSCO1u9+9ztaW1tZvnw5ruvy0EMPceONN/KBD3xgsocmIiIiMmn6iuLYpkHMHPljn2Oa1NoxXsl20eAmqHOj5XxJ2yHcqv/fRBXbcU0rquq5DVVBt0W141AMomoohSBgTqJyiaBpGMyJJ3EMkwWJyn6ATbEEjmlSCALiEzDW4Rillhh+qbjQRFSd3VH6Kq7GTAun1BombTsYGBXVdPsEYbQHsY9tGGQ9j32q66lz4wwnZW0pOlQMA+zS6xSEYDKxRaWmip0iQLRtm+9973tceeWVAOyyyy5cdNFFvOMd75jkkYmIiIhMHsc0o96LRljuZzeSo2bN48nOOLZplKtQDmxOH2JNUDF817TI+z5x2x5z4/lt0dcLsRgEWKbJrFhiwDGLqurYMz2wkmuNE6MhFmdzLjvmqqHjIap+GgXXQ7XHmIp2SVbhhwGxUqEd17BIWja2EVU1dbcKdoOQittsw6QhFmd5XdOIAV7StvFyURDthQGOGRUGCggxiIrSzDSTP3N3gCOPPJIjjzxysochIiIiMqVEwWGUSRxt9q3KcVnROKfitni/yo7lc09QdcaYaZIPfGrNGM4EZOVStoNhGLQVcjS4cWqdgUVRZsWHLjK0W7Ka7mJxQoLZkcQsk2I+wDbNctuL6aCv72BY6reZsKLKppYZVZbdmmFUBus1boz9aptoHuZ96pO0nXILF4MtrTnCMMQyzGnbqmJ7TJ+ZIiIiIiJj5poWcdPargAhbtnlfoSRgf3hxotrWeQDf9h+djvS3ESKxVV1dHtFFqaqxxwgzE6kaHDjE7IcdiTR/rog6tE4jQLEPoZhkLBsknY0fx3DLC+Z3Vr/ZadNsQSvqW0c1TUSFb0QDVKl+iUhYE/DFhU7wk6RQRQRERGRwY12aelw4lb0Ab0Y+FiWXc6uTATXtAjCcMICRNMwOKh+FgEhC5JjbwvRGEvw+uYFUyLzFLMsiqGPbZgT9n7taGnbJmFF733Cssl4xUGOMnC28fm5poWBQRiGhISkbAcICcIQe5q+ZttLAaKIiIjITqyv0Mf2niNmWhSDgJgZYhgTW6TGNAzStjvywTtI3LI5smneNj9+672Jk6UvgzgVlrtuq5Ttlgv+JCybruLANhcwsHDNaPXtzfRLAWHKcgCDkFAZRBERERHZ+cRMa5AiM2NjGAbVjktbIUcIGBhYE1S8wy5V40xsR+uymapvz+Z0DhD3TNeWv4xIWnZ5mXPGK+KUlk6HsM1FeGKmRUgYVTA1zajNBVHhm5maQZyZz1pERERkhqh2XKqc7c++VdkuxVJPPdOYuD2Ife0tpsKevunGMUxMDOKjaHEyVTXE4tT2a7fSV1BmUz5LWyGHH0Z7LFPWti1Bdk0LE4OM51Ftu8RMm5CQAC0xFREREZGd0LKa0RXrGEmNG8MLAwJCTAzMCfrwbJtmVGhnGmfBJottmpimsd0Z5KkiYVlQylw7pkUxDMj7Aa5plnsnjpVrWtiGSZdXYJ+aeizDKBdkmqkB4sx81iIiIiIzhGEYO6RgSrz04bwQRB/Id0Txm9GwDIO4ZU3rLNhksY1oKfDOEly7pSxyWFpmagD5wKfKdre5SmvMMst7RhvdRBQgGgZ+GEzLyq87wsx81iIiIiIyJn1ZqJzv0RhLTNgSU6e0xHRnCXImUl/2dWcJdPq+lCiGQSm7Z5DzPercgb0qR8syzCgDadnUuzEsw8CY4RlEfRUjIiIiIiNKlgNEn6ZYYsKu65gWccsuZ49k9JxS/0NnJ3nt+grKeEGU3bMw6CjkqXPj23XepG3jmCZpxyXne5gG+KWiNTPRzHzWIiIiIjImcSv6EF0MA2q2I2MzVvVujCOb5m5zG4OZLMqObX+bk6kiVtovmA98YqZFVWnfYWo7K9ymLJd5iajnpWWYGIaBH7LTZF7HShlEERERERlRvK8XohlQvQOqoo6WYRjbXIBkprNNA9c0t7kFxFQTsyxs0yDr+9S5cdK2w6ZcdpsrmPZZVFVbXsLcV6QmCMMZm0lTgCgiIiIiIzIMgyrbwQ9Dqiawab1sO6e0v25nWSrpGGZUcdQvkLIdGmIJEnYXqe38AmFOIlX+774WLkEYYu0kmdexUoAoIiIiIqNS7bgYhjFjl95NN45plVqE7Bwf+Q3DIGk5rAt6SdkOaduhxo7t8DYetmlOaK/PqWbnmC0iIiIiMu5qndh2Z2tk4jimyetmLZiwliQTIWXbGERVdZvjSQ6on7XD96c6holhMGP3vSpAFBEREZFR2aemnlILOpkmdqbgECBlOzil/bCuaZWLy+xIthntQ1SAKCIiIiIyDMswo+7kIpMkZTnYpd6Y48U2ZvYSUy0gFxERERGRacG1LOKWNa6ZUce0MFCAKCIiIiIiMqXFTIuEZY9rBtExjBm9B1EBooiIiIiITAtxM8oejmcG0TZNTIwZ2+ZiZj5rERERERGZdqocl+ZYEnc8M4hmqYrpDN1wqwBRRERERESmhZTtsKJxzrhewzGsUgZRAaKIiIiIiMiMZhnR8lIFiCIiIiIiIjOcZRhYpjKIIiIiIiIiM15f9lBVTEVERERERGY4yzCwtAdRRERERERETMOIWl2ozYWIiIiIiMjMZhkGtqEMooiIiIiIyIxnGQbOOPZZnOoUIIqIiIiIiJQkLYd6Nz7Zw5g0ChBFRERERERKat0YhzbMnuxhTBoFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkZJpESB+7nOf421vextLly7lbW9726DHPProo7z1rW9l6dKlHHvssdx9990TO0gREREREZFpbloEiABvf/vbOf744we979VXX+Xss8/m0EMP5Sc/+Qnvfe97ueiii3j44YcneJQiIiIiIiLTlz3ZAxiNT3/60wC0tbXx/PPPD7j/jjvuYMGCBXziE58AYI899uCvf/0r3/nOd1i5cuWEjlVERERERGS6mhYB4kgee+wxDj/88IrbVq1axdVXX71d5zVNY7sevyP1jWUqjUl2DppbMh40r2Q8aF7JeNC8kvEwnefVThEgtrS00NDQUHFbY2MjHR0dFItFHMcZ8zlt26ShIb2jhrjD1NWlJnsIspPS3JLxoHkl40HzSsaD5pWMh+k4ryYtQLzuuuu4/vrrhz3m97//PbNnzx7V+QyjMjoPw3CbxwbgeQFdXdntOseOZJoGdXUp2tt7CYLte24i/WluyXjQvJLxoHkl40HzSsbDVJxX1dUJHMca8bhJCxBPO+003vzmNw97TFNT06jO1djYSEtLS8Vtra2t1NbWblP2sM9UeTP7C4JwSo5Lpj/NLRkPmlcyHjSvZDxoXsl4mI7zatICxNraWmpra3fIuZYvX86DDz5YcdvDDz/M8uXLd8j5RUREREREZoJp0ebi5Zdf5qmnnmLz5s3k83meeuopnnrqqfL973rXu3jllVe4+uqrWb16Nd/73ve47777eO973zuJoxYREREREZlepkWRmk9/+tP8+c9/Lv9+0kknAfDMM88AsGDBAm688Ua+8IUvcNtttzF79mw+97nPqcWFiIiIiIjIGEyLAPH2228f8ZjDDjuMu+++e/wHIyIiIiIispOaFktMRUREREREZPwpQBQRERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlBhhGIaTPYipKAhCfD+Y7GFUcByLYtGf7GHITkhzS8aD5pWMB80rGQ+aVzIeptq8siwT0zRGPE4BooiIiIiIiABaYioiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgCgiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgDilfO973+Poo49m2bJlvPOd7+Txxx8f9vh7772X4447jmXLlvGmN72JBx98cIJGKtPNWObWc889x3nnncfRRx/N4sWL+e53vzuBI5XpZCzz6n//939597vfzcEHH8whhxzC+973Pp544okJHK1MF2OZV7/5zW94+9vfzkEHHcTy5ct5y1vewt133z1xg5VpY6yfsfrcdNNNLF68mKuuumqcRyjT0Vjm1Y9+9CMWL15c8bNs2bIJHO3oKUCcIn7xi1/w+c9/nnPOOYcf//jHLF68mPe///20tbUNevzf//53Pvaxj3HyySdz9913c8wxx/DhD3+Y1atXT/DIZaob69zKZrPMnz+fj33sYzQ1NU3waGW6GOu8evTRRznhhBO47bbb+P73v09zczPve9/72LRp0wSPXKaysc6rmpoazj77bO68805++tOfcvLJJ3PRRRfx8MMPT/DIZSob67zq889//pM77riDxYsXT9BIZTrZlnlVW1vLH//4x/LP/fffP4EjHoNQpoSTTz45vPzyy8u/+74frlq1KvzWt7416PEXXHBBePbZZ1fc9o53vCO87LLLxnWcMv2MdW7197rXvS68/fbbx3N4Mk1tz7wKwzD0PC/cf//9w5/+9KfjNUSZhrZ3XoVhGJ500knhddddNx7Dk2lqW+ZVJpMJ3/jGN4YPPvhgeOqpp4Zf+MIXJmKoMo2MdV798Ic/DA855JCJGt52UQZxCigUCvzzn//k8MMPL99mmiYrV67kscceG/Qxjz32WMXxAKtWrRryeJmZtmVuiYxkR8yrbDaL53nU1NSM0yhlutneeRWGIY888ggvvvgiBx544DiOVKaTbZ1XX/jCFzj00EM54ogjJmCUMt1s67zq6enhta99LUcddRQf/vCHef755ydgtGNnT/YABNrb2/F9n8bGxorbGxoaePnllwd9TEtLCw0NDQOO37x587iNU6afbZlbIiPZEfPqy1/+MnPmzOGwww4bjyHKNLSt86q7u5sjjzySQqGAaZpcdtllrFixYryHK9PEtsyr+++/nz/96U/azypD2pZ5tfvuu/P5z3+eRYsW0dXVxS233MIpp5zCz3/+c5qbmydi2KOmAHEKC8MQwzCGvH+w+4Y7XqTPSHNLZFuMdl7dfPPN/OIXv+D222/Hdd0JGJlMZyPNq1Qqxd13300mk+GRRx7hyiuvZJddduGggw6awFHKdDPUvGpra+Mzn/kMN9xwA4lEYhJGJtPZcH+vli9fzvLly8u/77///hx//PH84Ac/4Nxzz52gEY6OAsQpoK6uDsuyaGlpqbi9ra1twDcTfRobGwcc39raOuTxMjNty9wSGcn2zKtvf/vb3Hjjjdx6660sWrRoPIcp08y2zivTNNl1110B2GeffVi9ejU33XSTAkQBxj6vnnvuOTZv3swpp5xSvs33ff7yl7/w3e9+V9WXBdgxn68cx2GfffaZkiu6tAdxCnBdlyVLllRUXQuCgEceeaTim4b+li9fzkMPPVRx28MPPzzk8TIzbcvcEhnJts6rb33rW3z961/nW9/61pQt7S2TZ0f9vQrDkEKhMA4jlOlorPNq2bJl/OxnP+Puu+8u/yxdupS3vvWt/OhHP5rAkctUtiP+Xvm+z3PPPTclK8YrgzhFnHnmmXz84x9nyZIlvOY1r+E73/kOuVyOt771rQB8/OMfp7m5mY997GMAnH766Zx66qnccsstHHXUUfziF7/gySef5IorrpjMpyFT0FjnVqFQKLdLKRQKbNy4kaeeeoqamhrmzp07ac9Dppaxzqubb76Za665hi9/+cvMmzevvF86mUySSqUm7XnI1DLWeXXTTTex7777suuuu1IoFPjDH/7AT37yEy6//PLJfBoyxYxlXiWTyQGrG5LJJLW1tey1116TMXyZosb69+r6669n+fLl7LrrrnR1dfHtb3+bdevWcfLJJ0/m0xiUAsQp4vjjj6etrY1rr72WzZs3s88++/Ctb32L+vp6ANavX49pbkn4HnDAAXz5y1/ma1/7Gl/5yldYuHAhN9xwA3vsscdkPQWZosY6tzZt2sRJJ51U/v2mm27ipptu4q1vfStf+MIXJnr4MkWNdV59//vfp1gscv7551ec59xzz+W8886b0LHL1DXWeZXL5bj88svZsGED8Xic3XffnS9+8Yscf/zxk/UUZAoa67wSGY2xzquuri4+85nPsHnzZmpqali6dCl33nknu++++2Q9hSEZYRiGkz0IERERERERmXz6ukREREREREQABYgiIiIiIiJSogBRREREREREAAWIIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiAFFEREREREQAsCd7ACIiIhPluuuu4/rrrx9w+4oVK/jv//7viR+QiIjIFKMAUUREZpSqqiq+9a1vDbhNREREFCCKiMgMY1kWy5cvH/G4XC5HPB4f/wGJiIhMIdqDKCIiM96aNWtYvHgxP/3pT/n4xz/OQQcdxAc/+EEAOjo6uPjii1m5ciXLli3jXe96F//4xz8qHt/V1cXHPvYxli9fzqpVq/jGN77BVVddxdFHH10+5rrrruPQQw8dcO3Fixfz3e9+t+K2H/zgB5xwwgksXbqU173uddx8880V93/iE5/gbW97Gw899BBvetObWL58OaeccgrPPfdcxXG+73PjjTfyhje8gaVLl3LkkUfyiU98AoDvfe977L///vT29lY85k9/+hOLFy/m6aefHuOrKCIiOwNlEEVEZMbxPK/i9zAMAbj66qs59thjueaaazBNk0KhwJlnnklXVxcf//jHqa+v5/vf/z5nnHEGv/rVr2hqagLgk5/8JH/+85+56KKLaGxs5JZbbuGVV17Btsf+f7Pf+ta3+OpXv8r73/9+DjnkEP75z39yzTXXkEgkOPXUU8vHrV+/nquvvpoPfehDxGIxrr76aj7ykY/w85//HMMwALj44ov5yU9+wllnncUhhxxCZ2cn9913HwBvetObuOqqq/jlL3/J2972tvJ5f/zjH7NkyRL23nvvMY9dRESmPwWIIiIyo3R0dLBkyZKK2z73uc8BsN9++3HJJZeUb//BD37Ac889x89//nMWLlwIwMqVKznuuOO45ZZbuPDCC3nuuef4zW9+w1e/+lWOP/54AA499FBe97rXkU6nxzS2np4ebrjhBj70oQ9x7rnnAnD44YeTzWb5xje+wSmnnIJlWQB0dnby/e9/vzyuMAw555xzeOGFF9hjjz1YvXo1d911F5/61Kc4/fTTy9foG2N1dTX/9m//xo9+9KNygNjb28uvfvUrPvaxj41p3CIisvNQgCgiIjNKVVUVt956a8VtrusC8NrXvrbi9kceeYQlS5Ywf/78iqzjwQcfzJNPPgnAE088AVCxnDSVSrFy5Uoef/zxMY3t73//O5lMhuOOO67ieocddhhf//rX2bBhA/PmzQNg3rx55eAQYI899gBg48aN7LHHHjz66KMAFdnBrZ188smcccYZvPrqqyxYsIB7770Xz/M48cQTxzRuERHZeShAFBGRGcWyLJYtW1Zx25o1awBoaGiouL29vZ3HHntsQMYRYJdddgGgpaWFVCo1oKDN1ucajfb2dgBOOOGEQe9fv359OUDcuvKq4zgA5PN5IMqUJpPJYbOYhx56KAsWLOBHP/oRF1xwAT/60Y94/etfT21t7ZjHLiIiOwcFiCIiIiV9e/f61NTUsHTpUi699NIBx/ZlHRsbG+nt7R1Q9bS1tbXi+FgsRrFYrLits7NzwPUAbrzxxkEDzN12223Uz6W2tpZMJkNPT8+QQaJhGLz97W/nf//3f3nLW97CX//61wEFcUREZGZRgCgiIjKEFStW8NBDDzF37twhM4J92cjf/e535f19vb29PPzwwxWBWXNzM729vWzcuJHm5mYAHnrooYpz7b///sTjcTZt2jRguetYHXbYYQDcfffdFcVttvbWt76Va6+9losuuojm5mYOP/zw7bquiIhMbwoQRUREhnDSSSdxxx13cNppp/G+972PBQsW0NHRweOPP05TUxNnnHEGe+21F0cffTSXXnopPT09NDU18e1vf3vAktMjjjiCeDzORRddxJlnnsmaNWu44447Ko6prq7m3HPP5YorrmDt2rUcfPDBBEHASy+9xKOPPsoNN9ww6rHvvvvu/L//9//4whe+QGtrKwcffDBdXV388pe/5Ktf/Wr5uObmZo444ggeeOABzj777HIRHBERmZkUIIqIiAwhFotx2223cc0113DdddfR2tpKfX09r3nNayqK0nzhC1/g0ksv5corrySZTPLud7+bZcuW8ctf/rJ8TH19Pddeey1XX30155xzDkuWLOHLX/5yOevY5wMf+ACzZs3iO9/5DrfeeiuxWIyFCxcOOG40LrnkEubOncsPfvADbr75Zurr6wfNEB5zzDE88MADwxa0ERGRmcEI+5o/iYiIyA7T12Pwd7/73WQPZUQXXHABmzdv5n/+538meygiIjLJlEEUERGZoZ555hmefPJJfv3rX/OVr3xlsocjIiJTgAJEERGRGepDH/oQ7e3tvPvd7+a4446b7OGIiMgUoCWmIiIiIiIiAoA52QMQERERERGRqUEBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBoojINBaGIUcffTSLFy/m5ZdfHtVjnn32WRYvXsyjjz66w8fT2trKddddx5o1aypuf/TRR1m8eDHPPvvsDr/mSK677joWL1487M9pp5024eMazHXXXcehhx66w8972mmncf755w97zOLFi/nud7+73df6xCc+wdve9raK237zm9/wxje+kaVLl3L00Udv9zW21vdvYOufn/zkJ6N6/Hi97iIi05E92QMQEZFt9/e//521a9cCcM899/DhD394UsfT2trK9ddfzyGHHML8+fPLty9ZsoQ777yTXXbZZcLH9I53vIMjjjii/Pvtt9/Oo48+yvXXX1++LZ1OT/i4dlYf/vCHyeVy5d993+fCCy/kyCOP5LOf/SzJZHJcrnviiScOCPQnY76JiEx3ChBFRKaxe+65h2QyyV577TUlAsShpNNpli9fPinXnj17NrNnzy7//stf/hLXdYcdTy6XIx6PT8Dodj5bB2WbN2+mp6eHE088kYMOOmjcrjtr1qxJm2MiIjsTLTEVEZmmfN/nvvvu4+ijj+btb387zz//PE8//fSA4773ve9x1FFHsXz5cj74wQ+yefPmAcfccsstvP3tb+fAAw9k5cqVfPCDHxywZLVvmeKdd97J0UcfzWte8xr+/d//nY0bNwKwZs0a3vSmNwFw+umnl5f5wcAlpqeeeioXXHDBgHFcddVVvPa1ryUMQwDy+TxXX301Rx11FEuXLuXNb34zv//977fjVRtozZo1LF68mJ/+9Kd8/OMf56CDDuKDH/wgMPiyy8GWI65bt46PfvSjHHLIIey3336cddZZvPDCC9s9tkwmw+WXX84b3vAG9ttvP44++mguu+wyenp6Ko7zfZ8bb7yRN7zhDSxdupQjjzyST3ziE0Oet7u7m3e96128+c1vpq2tbdBjnn32WQ4//HD+67/+C9/3y+/ho48+yvnnn8/+++/P61//er73ve9VPK7/EtMf/ehHHHXUUUCUWVy8eDHXXXcdAEEQcNNNN3HssceydOlS3vCGN/DjH/94m1+roTzwwAOceeaZrFixggMOOIB3vvOd/PGPfxz2McVisTwXly5dyqpVqzjnnHMoFArlY8brPRcRmWwKEEVEpqk//elPtLS0cPzxx/OGN7wBx3G45557Ko75zW9+w+WXX85rX/tarrvuOhYtWsRFF1004FwbNmzg1FNP5etf/zqf/exn8X2fU045he7u7orj/v73v/Pd736XT3ziE1xxxRU888wz5azlrFmz+NKXvgTAxRdfzJ133smdd9456NiPP/54HnjgATKZTPm2MAy57777eOMb34hhGACcf/75/PjHP+bss8/mm9/8JsuWLeNDH/oQTz31VPlxfXsMt9fVV19NKpXimmuu4eyzzx714zo6Onj3u9/Niy++yKWXXsrXvvY1MpkMZ555ZsVSy22Ry+XwfZ+PfvSj3HzzzVxwwQX86U9/GhBcX3zxxVx33XUcd9xx3HjjjXziE5+oeG23Hu8ZZ5xBsVjktttuo76+fsAx//rXvzjttNN43etex1VXXYVlWeX7PvOZz7D33nuXlxJffvnlPP7444Ne67WvfW15Ke+FF17InXfeyTve8Q4APvvZz/KNb3yDd77zndx0000cc8wxXHTRRdx///3lx//oRz9i8eLFA/a0DiYMQzzPK//4vg9EXwC87nWv4+qrr+a6665j//335wMf+AB//etfhzzXjTfeyM9+9jMuuOACbr31Vi666CKqqqoIgqD8Go7Xey4iMtm0xFREZJr6+c9/TnV1NUcccQSu67Jy5Uruuece/uM//qMcYH3zm9/kiCOO4LLLLgPgiCOOoK2tjR/84AcV5+ofNPq+z+GHH86KFSv47W9/y0knnVS+r62tjTvuuIN58+YBMHfuXN797nfz4IMPcuSRR5YDtT333HPY5X7HHXccn/vc57j//vs54YQTAHjsscdYt24dxx9/PACPPPIIDzzwALfffjuHHHIIAKtWreKll17iG9/4Btdeey0AhmFUBDDbar/99uOSSy4Z8+P++7//m2w2y913301tbS0ABxxwAEcffTQ//OEPec973rPNY6qvry+/dwCe5zF//nze/e53s27dOubOncvq1au56667+NSnPsXpp59ePrbvdeyvra2NM844g2Qyybe+9a1B917+4x//4P3vfz9vfvOb+fSnP12eS31OOOGE8pcChxxyCPfffz+/+tWveM1rXjPo+PfZZx8Adtttt/KcePnll/n+97/P5z//ed761rcCsHLlSjZv3sz111/P6173OgBM08SyrAFjGMytt97KrbfeWv69ubmZBx98kFNPPbV8WxAEHHrooTz//PPcddddHHjggYOe64knnuDEE08sjw0qX8/xfM9FRCabMogiItNQoVDgN7/5Dccccwyu6wLRB/e1a9fy2GOPAVGg99RTT/H617++4rHHHnvsgPM99thjnHnmmRx66KHsu+++7LfffmQyGV588cWK4/bdd99ycAhw4IEH0tDQMGQGaSj19fUcdthh/OIXvyjf9otf/IJddtmFZcuWAfDwww/T1NTEAQccUJEZWrFiBU8++WT5ceeeey7/+te/xnT9wbz2ta/dpsc98sgjrFy5knQ6XR5jKpViyZIlFePcVnfffTcnnXQS+++/P0uWLOHd7343AC+99BJAuRrt1pVDt9bS0sKpp55KbW0tt9xyy6DB4d/+9jfOPPNM3vnOd/KZz3xm0MDs8MMPL/+34zgsXLiQDRs2jOk5PfLII5imybHHHjvgvX366afL2b+TTjqJf/3rXxVzbihvfvObueuuu8o/N910ExBlxy+88EKOOOII9t13X5YsWcIf//jH8us3mL333psf//jH3HzzzTz99NPlJc/9xz+e77mIyGRSBlFEZBp68MEH6erq4qijjqKrqwuAQw89FNd1ueeee9h///1pa2vD8zwaGhoqHrv17+vWreN973sfr3nNa7jsssuYNWsWjuNw9tlnV+y5GuyxfbcNtq9xJMcff3x5P10ymeS+++6rCHLa29vZvHkzS5YsGfDYHZEx3Npgz2002tvbeeyxxyqC3T4rVqzYrjH9+te/5sILL+SUU07hox/9KLW1tWzevJlzzjmHfD4PRMsdk8nkiJVYV69eTUdHB2edddaQlUQfeughfN+vyBpvrbq6uuJ3x3EGzJORtLe34/v+kBm8zZs3VxQWGo3Gxsbylwt9giDgQx/6EL29vZx//vnsuuuuJBIJrr32WlpbW4c814c//GFM0+T73/8+X/rSl2hubuass87ive99b3n84/Wei4hMNgWIIiLT0M9//nOAQQu93HvvvXzyk5+kvr4e27YHfBDe+vc//OEP5HI5vv71r5cDB8/z6OzsHHDuwT5Ut7a20tTUNObncOyxx3LppZfym9/8hnnz5rFp0ybe+MY3lu+vqamhubmZG264Yczn3haDZctc16VYLFbctvXrUlNTw9FHHz1oBdlUKrVdY7rvvvvYb7/9uPTSS8u3/fnPf644pra2lkwmQ09Pz7BB4qGHHso+++zDxRdfTF1d3aD9CD/0oQ/x8MMPc+aZZ/I///M/49YmoqamBtu2+f73vz/o6z7Yvsht8fLLL/Ovf/2Lm2++mSOPPLJ8+0j7BGOxGBdccAEXXHABL730EnfccQdXXnklu+22G0ceeeS4vuciIpNNAaKIyDTT29vLAw88wIknnsg73/nOivueeuopPv/5z/Poo4+ycuVK9t57b377299yyimnlI/59a9/XfGYXC6HaZrY9pb/S7j33nvxPG/Atf/1r3+V974B/PWvf6W1tbW8/8xxHIBydms4NTU1rFq1invvvZe5c+eyxx57sPfee5fvX7FiBbfeeivJZJI99thjxPONh9mzZ7N69ery70EQ8Kc//animBUrVnDvvfey11577fDWGLlcrryEuM/Pfvazit8PO+wwIFqK2n+/3WD6smkXXHABN91004Bsl23bXHvttXzgAx/gjDPO4Pvf/z7Nzc074JlUOuyww/B9n+7u7oolqzta3zzs/xquXbuWv//97yxatGhU51i4cCEXXngh3/ve91i9ejVHHnnkuL7nIiKTTQGiiMg089vf/pZsNsvpp5/OfvvtV3HfAQccwDe+8Q1+/vOfl9tVnHvuuVxyySUce+yx/OUvf+EPf/hDxWP6Pqx/8pOf5OSTT+a5557jlltuGbCUEKLMztlnn815551HPp/nS1/6EkuWLClnZ+bOnUs8Hufuu++mqqoK27YHLPvr741vfCOf+tSnSKfTA4Kbww8/nFWrVvG+972PD3zgA+y555709PTw9NNPk8/n+djHPgbA9ddfz9e//vUdsg9xa8cccwz/8z//wz777MOCBQu46667BrSYOOOMM/jpT3/Ke9/7Xk499VSam5tpaWnhL3/5CwceeCAnnngiQLmJ++233z7sNftn1FauXMnll1/ON77xDfbbbz9+//vf88gjj1Qcv/vuu/P//t//4wtf+AKtra0cfPDBdHV18ctf/pKvfvWrA87/n//5n/T29vLhD3+YW2+9dUAxoXg8zje/+U3OPPNMzjjjDL73ve/tsIxe/zG/613v4j/+4z8466yzWLZsGfl8nueee46XXnqJK664AoiC3osuuohf//rXo9qHONh1Zs+ezVVXXcUFF1xAb28v1157LbNmzRr2ceeccw5Llixh3333JRaL8ctf/hLf98t9HEf7nouITEcKEEVEppl77rmHhQsXDggOIcrgvfGNb+See+7h0ksv5dhjj+Uzn/kMN910E3fffTeHHHIIV1xxBWeddVb5MYsXL+bzn/88119/Pb/+9a/Ze++9ueaaa/joRz864Pz7778/K1as4Morr6StrY1DDjmEz372s+X7Y7EYn/3sZ7nhhhs47bTTKBaLPPPMM0M+l9e//vVcfPHFtLe3D6i6aRgG119/Pd/85jf5zne+w/r166mpqWHvvfcuB1sQtTfoK2qyo5177rm0tbVxzTXX4DgO73nPe9hrr70qeiPW19dz55138rWvfY3Pf/7zdHV1MWvWLA444ICK9hvZbHbEICeXy5WzsADvete7WLNmDbfddhv5fJ7DDz+cL3/5ywMyx5dccglz587lBz/4ATfffDP19fXDZuYuvvhistksH/jAB7j99tsrMrcQLZO8+eabOf300znrrLO47bbbRvV6jcUll1zCwoUL+cEPfsC1115LOp1mzz335OSTTy4fEwQBvu8PKBIzWq7rct1113H55Zdz/vnnM3v2bD74wQ/y5z//udyTczD7778/v/jFL/j2t79NEATsueeeXHvtteUvO0b7nouITEdGuK1/dUVEZEY57bTTqKurK7eXkNErFAoccMAB3HLLLeWWHYM5//zz2bhx45D9I0VERMab2lyIiIiMsyeeeIJFixYNGRw+99xzfPe73+X+++8f0JZERERkImmJqYiIyDg78MAD+dGPfjTk/Zdffjmvvvoqp59+OmeeeeYEjkxERKSSlpiKiIiIiIgIoCWmIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiIjVDCIIQ3w8mexgVbNvE86bWmGTnoLkl40HzSsaD5pWMB80rGQ9TbV5ZlolpGiMepwBxCL4f0NGRmexhlJmmQUNDmq6uLEGgukKy42huyXjQvJLxoHkl40HzSsbDVJxXtbVJTNMa8TgtMRURERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlKhIjYiIiIhMqjAMCQKfcBJqeZimQaFQwPO8KVNMRKa/yZhXhgGmaWEYI1cqHY4CRBERERGZFGEY0tPTSW9vFzB5wVlLi0kQTJ12BLJzmIx5ZZoWDQ1zsKyRq5UORQGiiIiIiEyKvuCwuroe140B25f52Fa2beB5yh7KjjXx8yqko6OFrq426uqatvksChBFREREZMKFYVgODpPJ9KSOxbZNQBlE2bEmY15VVdXS3r6JMAwwjG0rN6MiNSIiIiIy4YLAB8JS5lBEdgTLivJ/27O0VQGiiIiIiEy4LQVpJmdZqcjOKfr3tD0FnxQgioiIiIiICKAAUURERERk0vztb//HqlUHkclkhj3u5JPfxA9/eOcEjWpi3X33D7nwwo+Wf/c8j8997hKOO+51rFp1EM899wyXXfZp7rjju5MyvnPP/Xeuv/5rk3LtyaAAUURERERklK644lJWrTqIr3716gH3XXbZp1m16qDtCiZ+8YufccIJrx9w+80338YJJ7yl/PuqVQfx0EN/2ObrTIRMJsP113+Nd7zjzRx99Ere/OY38NGPnsPjjz9WPiafz3PrrTdxxhnvL9/2wAO/5Q9/eICvfe3r/OQn97Hbbntwxhnv57bbbqW3t2fYa5588ptYteqgAT93333XiOMdKli/8sov8r73fWAsT32bTJX3VFVMRURERETGYNasZn79619yzjkfwXVdAHp7e/jDHx5g1qzmcblmXV3duJx3RygWiziOM+D2L37xSp599mk+9rFPsOuuC+noaOevf/0LXV1d5WMeeOC31NTUss8+S8q3rVnzKvPmLWDvvfcp37brrgtZsGAXfv3r+zjppJOHHc/ZZ5/D8ce/qeK2dHrbK+VWV9ds82OnIwWIIiIiIiJjsO++S3jxxRf44x8f5OijjwHgN7/5FYsW7Y1pVi7QW7XqIK666qscfvgRQJRV+7d/O5Jrr/0mBxxwUMWxf/vb/3HllZeVHwdw5pkf4Kyzzubkk9/EKaecytvf/v84+eQo+Olbljl79hzuuutnvPrqK1x//Vf517/+SS6XY/fd9+DDH76A/fZbXjGe//zPT/L73/+Of/zjMWbNmsUFF3yMFStWlY954YXnuf76a3j88b+TSqVYsWIV55770XKQde65/86eey4CQn71q/tYsmQpX/ziNQNep0ce+SP/8R8XcthhKwGYM2duRSAI8Nvf/orDDz+y/PsVV1zKvff+vDzWvucGsHLlKn7721+PGCAmk0kaGhoHvW/DhvV85StX8/jjj+F5RebNm89HPvJfzJ49h/PP/yAA//Zv0Xje+MYT+dSnLuXcc/+dvffel3PP/QgQZSnf8pa3sXr18/zxj7+nrq6Bj3/8kyxYsJAvfOFynnzycXbbbQ8uu+wK5s6dDzDiezPUewrw4IMPcMstN/HKKy/R1DSLN7/5rZxyymkD5tqOoiWmIiIiIiJjdPzxb+IXv/hp+fdf/OJnA7JWY7Vs2X6cf/7HqK6u4Sc/uY+f/OQ+TjnltAHH3XzzbQB85jOX85Of3Ff+PZPJsHLlEVxzzdf59rdvZ+nS1/Dxj19AR0dHxeO/9a1vcuyxx/Hf//09Vq06ik996uNs3LgBgO7ubs4//0Psu+8Sbrnlu1x11dd49dVXuOKKSyvOcc89PyWRSPLNb97Ceef9x6DPp66unocf/uOw+ysff/yxikzhBRf8J+9616nsueeiiucGsPfe+/LPfz6J53lDv4gj+MpXrqJYLHDDDTfzne/cwVlnfRDXjTFrVjNXXBEtG77zzrv5yU/u44IL/nPI89xxx3c58MCDufXW/2H58v257LLPcPXVn+Od73w33/72d7Ftmy9+8fPl40d6b4Z6T//xj8e48spLede73sPtt/8vH/nIf3HXXXdy113jtx9VGUQRERERmTKefMhg0ysTd71Zu8Dyo8b+uOOOO4Fvf/tGWlo209vbywsvPM/RRx/Dfffds81jcRyHdDqNYTBkBgy2LDdNp6sqjlu8eG8WL967/Pt5532U3//+dzz66MO84Q3Hl28/5pg3lIPZc8/9CH/+8yPcffcPOfvsc/jhD+9kn3325f3v/2D5+I9//FO85z0n097eRl1dPRAt+Tz77HOGfT7/9V8Xcdlln+b4449m0aK9Wb78AI455t9YtCgaY3d3Nz09PRXPIZ1Ok0gksCxrwGvQ0NBIoZCnvb2NpqZZQ173+uu/xje/eX3FbTfccDOLFu3Nxo0bOOqoo9ljjz0BmDdvfvmYqqpqIApsk8nksM/t8MOP5E1vOgmA9773LO699+ccdthKVq6MMrHvfOcpXHbZpwmCANM0R3xvhnpPb7nlJk4//X0cd9wJ5fG+973v46677uSd7zxl2DFuKwWIIiIiIiJj1NDQyEEHHcq9995Dd3cXRx11NMlkalLHlMlk+Pa3b+SRR/5IW1srvu+Tz+fL2cE+++67tOL3JUuW8dJLLwLw/PPP8Ze/PMqxxx4x4Pxr164pB4j9s35DOeCAg7jrrp/xxBP/4PHHH+PRRx/hjju+y8c//ilOPPEt5PN5gPI+zpHEYjEAcrncsMedeuoZFQExUN4b+ra3vZOvfOUq/vKXRzn44EM5+uhjWbhwt1Fdv7++ABOgvj56TXbbbfd+tzXgeR49Pd1UV9eM+r3Z2urVz/LEE//g1ltvLt/m+wFhGIx5zKOlAFFEREREpoylh4dw+ERf1dimR51wwpv45jevJ5PJcMklnxv8zIZB2K9r+fYsjxzJDTd8jb/+9S98+MMXMG/efGKxGP/5nxdQLBa3GtPg4wTIZrMcccRrB80ONjU1lf87Hk+MakyO43DAAQdxwAEHccYZ7+eqq67glltu4sQT30JNTQ2GYdDd3T2qc/UVt6mtHb5gT21tLfPnLxj0vre85W0ceugKHnroDzz66CPcdtstXHjhp3njG08c1Rj62Hb/MCp67Sxr4G1BEL33o31vtpbJZPnABz7EEUdsQ5p7G2kPooiIiIjINjj88CPp7u7GdWPsv/+Bgx5TW1tHW1tr+ffnn3922HPatoPvj5wdsm2bIPArbnviiX9wwglv5sgjX8see+xJdXUNmzdvHPDYf/7zyYrf//WvJ9l114UALFq0mBdffIE5c+Yyf/6Cip9YLD7iuEay6667ljOAjuOwcOFuvPTSC6N67EsvReOqqqrarjHMnj2Ht7/9nVx99Vc58cS3lIvi9FViDYIdn50bzXsz2Hu6aNFiXn315QHvxVAB8I6gDKKIiIiIyDawbZs77/wxhmGUM3Bb23//A/nhD/+XffddSjab4eabvz7sOefMmUNvbw9/+9v/sfvuexKPx4nHBwZms2fP5f/+78/su+9SHMelurqa+fN34YEHfsdhhx1OGAZ885s3YJrWgMf+9re/YvHivVmyZBk///ndvPLKy1x11dcAeNvb3sFPf/ojLr/805xyymlUVVXzyisv8eCDv+fCCz81ptfnvPPO5g1veCOLFu1NOl3FM888xf/8z+2sWrWlaukhhxzG448/xtvf/v9GPN/jjz/GwQcfOuJxmUyG1taWitsSiSTJZJJrrvkyK1Yczvz5C+joaOeJJ/7BsmXLgShwNAyDhx/+AwcffBixWGzEvYijNZr3ZrD39L3vPYtPfvJjzJrVzFFHHQ3Ac889w/r163jve8/aIWPbmgJEEREREZFtlEoN31/v3HM/whVXXMYHP3gmc+fO47zzPspHP3rukMcvW7Yfb3nL2/jMZy6ks7Oz3OZisPNef/1XufvuH9LUNIu77voZ5533Ua68MrpWXV09733vWXR2dgx47Fln/Tv33fcLvvjFK2lqmsVnP3sVs2fPBqCpaRZf//q3+eY3r+MjH/kwxWKROXPmbdMSx4MPPpSf/ewnvPLKtRQKeZqamjnhhDdXBDYnnPAW/v3f30sm0zvsHs5isciDDz7Al7507YjXvfHGG7jxxhsqbnvPe97Lhz50Hr7v8aUvfZ6Wls2k01WsXLmKD3/4vPJzP+uss7nhhq/R1tbGccedwKc+demYn/dgRvPeDPaerlhxOJ///Jf57//+Frfddiuu67Bw4e687W3v2CHjGowR9l8ULWXFok9Hx9AleSeaaRo0NKRpbe0pr2UW2RE0t2Q8aF7JeNC82rl4nkdLy1oaG+dttZ9r4tm2ieeNX9GPqWTrvoxTwac+9V8sXbofp5xy6pDH/PSnP+b++3/DV796w5DHTDWTMa+G+3dVW5vEcQZmlLemPYgiIiIiIjJpzjnnI4Muo+3PNE0++tH/mqARzWxaYioiIiIiIpNm7tx5vPWtJw97zIknvmWCRiMKEEVEREREZog//vH/JnsIMsVpiamIiIiIiIgAChBFRERERESkRAGiiIiIiEy4LW0DVZFWZMeJ/j0N0ZZzVLQHUUREREQmnGlamKZFR0cLVVW1WJYNbMen2u1i4HkKVGVHm+h5FdLT04lhmJjmyO0shqIAUUREREQmnGEYNDTMoaurjfb2TZM6FtM0CYKZ0QdRJs5kzCvDMKmvn4WxHSlEBYgiIiIiMiksy6KurokwDAiCgHASknimaVBXl6S9PUMQKIsoO8ZkzCvDiDLz2xMcggJEEREREZlkhmFiWZNTGsM0DVzXxbYLChBlh5nO80pFakRERERERARQgCgiIiIiIiIlChBFREREREQE0B5EEZlhNmR72ZjL0FksEBISArsmq9gtXTPZQxMRERGZdAoQRWTG2JjL8KuNr1AIAtxSha+AkDWZHurcOLVubJJHKCIiIjK5tMRURGaEvO/zp9YNhGHI/ESKWfEks+JJZsdT5AOf/2vbSDAZ9dVFREREphAFiCIyI7zQ08HGXIZZscSA+5pjCV7N9tBdLEzCyERERESmDgWIIrJDBGHI2mwP/hTMwvlhyNPdHVTZ9qDNY23TJAhDerziJIxOREREZOpQgCgi260Y+PypdT2/3fgq67O9kz2cATbmemktZKl2httjGNLjK0AUERGRmU1FakRkm/lhwJpMD491tLAxl8EAXujtZH4yPdlDq/BCTyemYWANkj3sY2LQWchP4KhEREREph4FiCIyZjnf45VMN091tbEplyVuWcxPpCgEPi/1dnFAbRNpx53sYQLQ4xV5sbeLumGzhxCzLFoK2QkalYiIiMjUpCWmIjJm929aw+83raXXKzIvkaIplsA0DOKWTd73ea6nAz8MJnuYAKzJdJPzPRLW8N+HxUyLjkJhyoxbREREZDIoQBSRMcl4HpvzWWbFEtS7ccytlm3WuzH+r20j929cQzGY3GDLD0Oe6W4nZTsjHhszLQqBT6/nTcDIRERERKYmBYgiMiZdXp5C4OOag//5SNkOcxMpXurtYnM+M8Gjq9SSz9KSz1EzwvJSiCqZemFAj6dWFyIiIjJzKUAUkTHpKvUKHKxdRB/LMDEMWJ/bUtG0GAQT3oi+t9S2YrjiNP0ZoAyiiIiIzGgKEEVkTNoKOSxGDrjStsOLPV3lvoh/ad3An1s3jPfwKhQCf8yP6VIGUURERGYwVTEVkTHZmMuMWPAFIG27bMhlaM1naYjFeTXbQ1exQH0sThCGNMeT1Lnx7R7P5nwWA2iMJQbcl/V9YPRZS9e0yhlSERERkZlIAaKIjFrO9+gqFqgaRdEXyzAICdmQ68UyTHq8InHL4sHNayn4PntX1/G6WQuGXao6Ei8I+OPmdXQW8+xf18R+tU0V9/d6BWxj9AslHMOkq6heiCIiIjJzaYmpiIxKGIaszfZSCAJipjWqx1TZDs92d7ApnyEMoSmWYHYsyYJkFS/1drMht31FbF7JdNOSz5K0bB7vaCHnV+4fzHjemAJE1zTp9Ty1uhAREZEZSwGiiIzKo20beGDTGmKmOeqsX5Xt0lHMs7qnE8eMHmObJo5pYhoGj3e0bHMrDD8M+VdXKwnLosp2KAQBPaWiNH16/SK2OfoMpVNqdZFVoRoRERGZoRQgisiorMn0UGU7g+71G4ppGFgYtBVyJLfat9gUi/Nyppu/tW8iHEV10yAMK6qgvtjbybpshjo3jlFaztrdr8BMEIZkfX9gBrFgQmsCNiWjn81JKMWojmniBQEZXwGiiIiIzEzagygiIyoEPrnAI2WNvPdwa/VunLW5HhqS1RW3W4ZJcyzBk50tzE2kWJCsGvY8z3V38GqmmyNnzcMLAv7atokq2ym3sDCA7n4FZgqBjxcGpIzSn7kQjKcaMdZWDzh3OL+TcJ/W6DyGQc4fe/VTERERkZ2BAkQRGVHW9ygGIa4z9kUHMcti91TNkPeZmLzc2zVigNhayPLPrjZCQnq9qFjOgmS6fL9rWrTkc+Xf876PFwTYZmnMG9IYa6sJHR8aM+CU0obr0xhraghn90JdjjAMyfiVS1VFREREZgotMRWREWV9jyAMsMZQ8GW0ahyHlzLdAwrMbK2jmKfOcVmT6SHrF5mbSFXcHzMt2gq58nLVfOATEEYZxryF8XQDISHhfhsJl24mXNxa+mkBwHi6EYiWxfYqQBQREZEZatoEiH/5y1/44Ac/yKpVq1i8eDH3339/xf35fJ7LLruMQw89lP3335/zzjuP1tbWSRqtyM5l1EsuR99ysCxh2eR8b9iKpkEY0lUokLQd5iRS1Lnx8tLSPnHLotfzyJYCzXzgY1A6Zm0VhmfBgi6oy1WefHYvYbKA0eNCMSqg01lQL0QRERGZmaZNgJjJZFi8eDEXX3zxoPdfeeWV3H///Xzta1/j9ttvZ9OmTZx//vkTPEqRnVN2pKItOQvjL3Mw/jy3XPBltAzDwDYMnu1qZ3VP56AtJnK+RyEIcM2h/2Q5hokX+nSXKpnmA58wJNp7uDZavhru0jnIAIB0KSDsdXBNk071QhQREZEZatrsQTzqqKM46qijBr2vu7ubH/7wh3z5y19mxYoVQBQwHn/88TzxxBMsW7ZsIocqstPpKRYxqczY1W9q5+CHngDP4JH64+kJouqmYUsSZo2tv2Gjm2BttodXMt0cM3sXFqYqC8lkfI9iGOAMs8Q1qmQKHYU8zfEkBd8HQmhNYOQcwvoMJIcIdFOlJaU9Lk7aIrv1/kURERGRGWLaBIjDefLJJykWixx++OHl2/bYYw/mzp3LY489ts0BojmG/mnjrW8sU2lMsnMYzdzq9gu4llXuf2gVPA773eOkSstCV+Z/xa/2fBt0J6Iqoc3ZMY3BsSzmJtOsy/awuZBl96rKoja5wAcDzBECtrhl81K2i31q68mHPpZpbKlaOr976P6N6ShANDIuMcui2y+QD31c0xrT85At9DdLxoPmlYwHzSsZD9N5Xu0UAWJLSwvxeJx0Ol1xe0NDAy0tLdt0Tts2aWhIj3zgBKurS418kMg2GG5u+W0GNVacVCyG3+Iy97frSOUyrIvvhm3mmZVZx55zH+P5lw7BaEkQtxKYiTGuNQWanJA2CtTVpzANgw2ZXroKBZy0QyLukkrHhn28nbBpzWWx0jZkLKqtFMbmJMR8krv7GObgjw+aIAdYuRjJqjidPR7x6hgNSf172176myXjQfNKxoPmlYyH6TivdooAERg0MzCa5ttD8byArq6xZUHGk2ka1NWlaG/vJQi2/XmJbG2kueUFAZu7ekmYFr3FPDzWwC4dzwPwzAG7YNTkmXXvOuY/8QLPLdoH46Vasn+sg6WboWps1UCNIGRdvpsXN7RR68Z4rHUjq3s62DVVRS5XoNcYeW9gVybHn15ey+qeDmIvN0BoEM7pJpMZ5rFGAQjxO20yvQWyuQLrWzpxUvq3tq30N0vGg+aVjAfNKxkPU3FeVVcncJyRV0ftFAFiY2Mj2WyWnp6eiixiW1sbjY2N23zeqfJm9hcE4ZQcl0x/Q82t3mKRgu9TbTmEfki8w6OxsJ7eVIKWvRJAgu7qFA2bO0gfsoae2jhGR5zwr7MJj3hlTKWwLMPADwI25TJU2y5rMz1szmVxDQvXMEf1pU/ctHiiowVCqFlfC0A4txuGe6wZYiQ8jKxDUATCqNei/q1tP/3NkvGgeSXjQfNKxsN0nFc7RQWGpUuX4jgODz/8cPm2F198kXXr1rF8+fLJG5jITiDre1sKtvS6zM6tAWD9giYwDDAMXt5jLgDz1q0jPGgdYX0Wo2BDR3zM17NNg/XZXrK+R2cxT8y06CzmR70fsN6Nk7JsZnu1UXGa2uyWIjTDSfVVMnUByHgjVG4VERER2QlNmwCxt7eXp556iqeeegqANWvW8NRTT7F582aqqqp4+9vfzuc//3n+9Kc/8eSTT/LJT36Sgw46SBVMRbZTzvcpr+DuijEr9woAG+duyc6vWzALgHmvbgIDwuYeAIxNpXX3XS7G47MgO/KihWo7xku9XazN9pD3fWbHk3R7ReLW6AJE0zCoclzIlY5P9wsOwxCG+hav77heB8cw6VKrCxEREZmBps0S0yeffJLTTz+9/PvnPvc5AM4991zOO+88LrroIkzT5Pzzz6dQKHDEEUdwySWXTNZwRXYa2cAjLLW4MLpcGgvrCYFNs+vLx3TWVdGbTlDf0kk8kyPXZMFTwOYkLG7FeLkGY2Ma8hbhARugYEFi8Axd0rZpKeRY3d0JBtimyZ7pmkGPBaK+i4N91VWI/ryFbnSdqo4eDn3wMRKZPH9Z9Ro2zG+qODxMFDEAI+vgmBZdxbHtnxQRERHZGUybAPHQQw/lmWeeGfL+WCzGJZdcoqBQZAfLeh6Ukm6x9oCU301XdRrPdbYcZBisXTCLRU+9zNxXN/HC4l0Ia3IYnXHCHhfaox6JRkcCHtgVAiMKFBsGLwSVtm1aClncYfoeArCmCuPpRpjfRbhnG9j9soP5UgYx5kMQcugf/kFdWzcAB//+Mb594sEU3OhPoGkYzE0kSk/YxjFNer0CQRhiDtUaQ0RERGQnNG2WmIrI5Oj2CjimAQHUt7UD0No0MKO3bpdmAOa+sgmAcFYvAMYLdRh5mzBeJDQDCAwMDIzn6suB59ZqHJfWQo607Qx+AIBvYKyuwwgNjFdrMJ6cVXG3USgFiK7P/Jc3UNfaxYaGap7ffQ7xoscpm/OcNG8PTpy7GwnLpsuKxkvOxjVNCkFAzvdH+zKJiIiI7BQUIIrIsLq9AvF8DOMfzdTno+Cvral2wHEtzXUUXJtZ61uxih7M7iE0wi37EJt7CQ9/lfColwmrcxjdsWgJ6iAsw2RRupbkcAHiuiqMgk3YkCG0AmhLVAac/TKIez71MgCPLN0Fc+VBANQ89wqNsQSz4ykOrm+m0y5lM7M2jmFSDH1ygQrViIiIyMyiAFFEhhSGId3FIqkXmzFaUtR7GwBoGySDGJom6+c3YQUBzetaIO5DY2bL/XW56DY3INwjykQaTzduCeTGwjcwXorGEO7ZBukChm9Crt+q+VIGMVXoomlTOx3pOKm9dqdpwXz8+lqsjS0YHV0A7JaqJuXaBK4HeRsjNAjD0vJaERERkRlEAaKIDKkQBBQCHyvnQhhS723Es0w666oGHFsMAv7ZHAVtc18tLTOdFwVgISHU5rYc3JAlnNONkbcx/tEcFZoZTt7C+FcjdEctKIyXSi0smnqhugDpUouKHrff4KMAcf66tQA8s0sTe1TVAeDvtSsA9svRfZZhUuu6+LECRmiUglaDrDKIIiIiMsMoQBSZwYpBwKMtG8gNkSnL+R7FIMDM26T9NpyiR3tDDaFZ+acj63tsyPXSMr8Z3zCYs2Zz1E6iMRv1IZzdA06/KNCAcN/N5UI2bE4NP9D1aYy11Zh/mg+vVsGLtYRmQLi4FYBwsAAxbxPaPvNfKWU995hPYywqROPPnwOAtWZD+fAGN04xVjpPzsEwQorBSJGriIiIyM5FAaLIDNbjFXi2u4PVXR3l2zbkenmuu4O12Z4og+aDUbCpD9cDlfsPc77H2mwvncUCB9U3s6R5DmuaaojnCjS0dESB4MHrCZdtHnhxE8KF0XWNjcMHiEa/paPm003REtDd27e0yigFiEYpw4hvYPgmSaOd+tZO2tMJmnfZtVyR1J8/OzpXvwCx1onjxUsBYtYmDKGoIjUiIiIyw0ybNhcisuP1eEW6iwX+1rKRw6tn86+ONv7Z2UpAiGtaLK9twipEhWLqvY1AtP+w1yvSVsjjmhaLqmrZt7qBhlicnO/x7IImdt3UwdxXNtE6q274ATRkowIzm5PgGZVtKvrLRGMIGzPg+ITNvRX7G8tLTHtLAWJpX+P87AsAvLDrLBaktiyLDZMJgroarLYOjEyWMJkgbTt4bqlQTc7GMgzyyiCKiIjIDKMMosgMlvE8HNOgJZfl52tf5PGOzdS7MeYn0uR9nzXZHsx8FHTV56J9ha0NNbQW8uxf18RJ83fniKZ5NMTiAMQtm3CvhQDMfnXjyAOwQmjqxQhM2JAesu0F2VLT+2UbCZduhqYM9G9P6AaErge9TrSfsW//YXcUIBYXR60s+itnEddG40zbDkG8CICRtTENg7z2IIqIiMgMowBRZAbrKhYwDZPGeALbMFmQrCJeCqRqHJeOQh4n72KGHjXZdrKJGO0Jh4RlsbSmgRonNuCci3ZZSHddFbWdvcQ6ukccQzg76j9oPtWE8dCCKJNYcQCQdQgdf+gMI0SVTEMjChLzFkmvi/pMKx3pOI277DLg8L4AsW8fYsp2sJKljGE5g6glpiIiIjKzKEAUmcHaCjlipknacal23Ir7qmyHjmIet+BSV9iMGYa0NdaQCwKqHbccSG4tYdm4e+8JQOPLGwY9pkJjhnC3dsJEESPrQGui8v68FQV+yeLw56kuLTNtT0DBZl52NQBrFs6hKT6w32I5QFwbjdE2TVLpUnCadUoZRAWIIiIiMrMoQBSZoYIwpKOYJ2YO3ofQMAwWJNIki3HqC337D2vJ+h7NgwRc/Xl77QbArqV2FxAVtCkMFnAZEO7ZHhWdAYy2fgFilxtlBGFLQZohhLOiTKSxMY1RsJiffR6A1j0XlIvT9Bc01BG6DtbGFijtNWxIxvAdL8ogYlDQHkQRERGZYRQgisxQOd8j5/u41tCN6h3TxMjZ1BVLAWJjDT4h9W582HMHc2dRrE4zr6WLWHcUuG3O59iQyxCEQywTrS8ViOkLEFsTmI/Ox/hXU/R7YqQMYp4wXsToiJPaVKC+uImOZBK/qWHw4w0Dv7kRo1DEbOsEomW1fb0QrYJDQVVMRUREZIZRgCgyQ/V4RYqBj2OM8GcgZ1Nf2EhIVKAGGLAcdQDDwF+yFwDNq9fihwGWYdAcS/JqpodXsz10FPKVj4n7hKkCRsaFnIVRWmpq5EoVTIcIEFvyOTblMgSE0BwFo/PXrwXg2fmzSDrOkMMMZkfBp7khasORsG28WHQdO+/ghSH+UAGtiIiIyE5IAaLIDJXxPQwjWko6pBBivQVSfjddtWkytolrWlTbA4vTbK0vQNztpQ30eh7VjsuKxjnsmqriNdUNdHvFgdnE/lnEjq2ylMmBS0yLQUAh8Kl2Y6zJ9hDM6gFgfvY5AJ7ZrX7IJbQA/pwoQLTWR0thE5Zd7oVo5V38MMDTMlMRERGZQRQgisxAxSDgld5uKntFDHagSUMuyq61NNSwOZ+lxnZJ2iO3UA2aGig01DKroxdncxtz4ylmxZMcN2chB9Y3MyuepK2Qq3hMWAoQjY0p6HYJjX4B5CAZxJZ8jl1TVRwzawFx06ZYnSW5cDV1xRa6alK01iRxhwsQZ88C+mUQLbvc6sLKOQRhiBcqQBQREZGZQwGiyAwThiGPtK7n6e42ZsUSwx+ctakvRFU+X6hNsDBVzeFNc0d9rWC/fQBYsno9zYlU+XbbNNmvtpF8KQNY1pAltH2MllTUG7EhS9iYIUznIVa5H9ALAgJC9qmuJ2U7JG2bnO+zS09UnObVhXPAMIgNs8cyrK+pKFSTtGyIR5lKI+fgh6EyiCIiIjKjKEAUmWHygc/LvV00xRI45sj7DxtKAeL6xmr2q2uicaSgsp/isr0JLJNlr2ymYau9jrskq9i3uo4NuSx+X5bOCmFuT/mYsCZHuHwD4WFrKYaVweSmfJZdU1XMjqcwDIN6N07B89jtuTUAvLjHXAyMYZeYYhj4s5swih5maweOaeGkorGYOYeAEE97EEVERGQGUYAoMsMUgwA/DEcuTgMYGZO64iaKlk1XTZrEEL0Ph5SMU1y8O27Rp+G5VyvuMg2Dg+qbmZ9M0ZrfstQ0nNe15aCaXLQK1ogCwo25LFnfo8crYBsmB9bNKrewaIzFmbOuhWQmx8Y5DXSm49iGOewSU4CgtA/RLO1DLPdCzNkYoCWmIiIiMqMoQBSZYfKBjx+GWMMVpympbevBDj1aaupwbJvEMMs1h+IfuBSA2P89AVtl4xzTYlG6rrLfYLpI2NhL6HpQ07/SaciuqSpa8zl6PZ/965qo69duo9qJsfSF0nLYRQvwggDbNIlZw/+Z80uVTK0NLdFzTjgEtgdZG0K0xFRERERmlDGmA0RkuisGASHh8NVLSxra2wDY0FBD0raxRpF13Jo/bzb+3GasdRuxVr+Cv+euFffPTqRwTYuc7xEvZSjD/TZCaERLTvvZp7qeJTUNVNsuVVu12qjtyTJvXSu5uMu6XWbhBT4xyxpxzH2FaqwNUQaxynHZFCvi9iYwPYuiMogiIiIygyiDKDLDFAIfY6TqpSX1XVFWbV1Tmmp76H6CwzIMCiv2B8B95G8D7k7bDnOTKTqLhS03mlQEh1E7DIO07TAvkR4QHAI0/v1pzBCeXryAwLLwwoDUKJbEhnXVhDEXc2MrBEHU6iIWjcXOxbTEVERERGYUBYgiM0y0nLMUfPU60c8QGjJR+4dXZyWocUbufTgUb6+F+A112Gs2YL3w6oD7d0vV4IUha7M9FAdZ0lkMAlzTHHIPpJHJEn/iGTzb5PE955Yfk7RGEdT2FarxPMyW9q16ITpaYioiIiIzigJEkRmmEPiEoQEhGH+dA4/OISz0yygG0U+sp0Da66LLqSUbs0ltawYRoiziUYcAELv/Edgq6NotVc1xs3dlfrKK9q16I/aNOW7aQ1YkdR/+G4bns3bvhbTb0XPxw5CUM7ox+32FajZsjoJQJxqf4VmqYioiIiIzigJEkRkmF3iYBlA0MfJ2FAS9kIp+/2cjxu92w/zt7jQ+Gh3fmmrCgPL+wG3lLdoNb/5srE2t2E88U3GfaRjMS6bZNVlFYZAlnYUgoNpxB903abR34fz1SULXIXfY/gSEhGFISBj1NRyFoK9QzfrNJCwLoxQgWp5FPvCHe6iIiIjITkUBosgMk/W8qIJpv6WlxefS8NA8jHXVYAWEZlAuUNNa00gIY29xsTXDIH/0SkIg/rtHMHoyAw5piCUwMEp7DqGtkGNttpdC4FPrDtx3CBB74BGMIKBw6HIaGxpIWQ69vgcj9UDsp3+hGse0sEtZSMu3yPsKEEVERGTmUIAoMsNkfA/bMCETBVyhEUbZw4JNOKebcNWrhLt10JhfB8Dm+nosY+j9f2MRzGumeOAyjFye2C8fHND2os6JkbYdMn4xGmspmM0GPtWD7IG0n16N8/QLBNVpCofsh2taLExVsyGXIWZaVA9SzGYwYW0VYTwWFarxfRLxLQFiQRlEERERmUEUIIrMMFk/CrqMTCmDuGc79l49hIeuJVy6GZwAe1Y7dcVNZM0k7XUxnGEKxIxV/rWHEtRU4Tz7Is5fn6y4zzZN5iZS9HgeYSl4bHAThGE44PpGb4bYL/8AQO7414IbPZ9dklXMjid5XfN8GmOJ0Q2qr1CN72O2tJOMRX8aTd+ioAyiiIiIzCAKEEVmmJzvYZv9lpjWZ3GXdUHNljYTjR0tmIS0xOZRSBZImDaOuYP+XLgO2ZP+jdAyif32YayX1lTcPSeeohgE5Et9DPeprqPejVfuJ/R8Ej/8JWYmS2H5vvi7LSjfNS+Z5oS5uzEvkR7TsPoK1VgbNpOKR9cyPYucMogiIiIygyhAFJlBioFPMQyj5vF9GcSkN+C4pg2tAGzcK0WuqpeqUVYDHa1g7ixybzgSIwhI3HUv1qvry/fNTaSIWxZthTw1Tozd0tXsXV23pc2G7xP/+W+x1m7AnzOL/LGHDzj/tmQ7+wrVmOs3kShlEA3f1BJTERERmVEUIIrshHK+x4u9nXQW8xW3F4IAPwiwiQLE0PHLLR36m7UhKlCzeY9qiqFPlT26vXxj4e23D/nXHoZR9Ejc8XPsfz4LQNJ22CNdQ0cxz7xECssw2b9uFjHLglyexA9/ifPUaoKaKrInHwf2jln66vdVMt3QQjLeb4lpEKgXooiIiMwYO+aTlYhMKetzvfx2w6vYpsny2ib2TNewJttDrRvDC0OsnIMRGoSpwoDH2oUida2dZJMxeqqT+LleqkZZ7GWsCiv2j5aa/u4REj/9LcVnXyL/2sPYPVXD6p5O6mPx6MAwxH72RWK/eQizqwe/oY7sKScSplM7bCxhTRVBIo65qYVU6S+j6ZlkfY/2Yp6m0e5nFBEREZnGFCCK7IR6vajNQ43j8pe2DTzZ1UpPscC+1fWEhJilCqYkiwMe27ixHSOETbPrwTAIQ4O4Nbp2EduieMh+BE31xO+5H+fp1ThPr2a3BXM4oS5FfbqLWCaL/dIazI7u6Ph99yT3b0dCYmBV0+1iGASzm7BffJWazm5CIwWeSUhIaz6rAFFERERmBAWIIjuhzkIexzRIWDaz4ynygY/txFify2DnHYxnGwAIqwts3Xq+vLx0dnSMYYQkzPH9U+HvtoDefz8F98//wPnHU9ivrmfXVyuP8RbMobBif/w9dh2/ccyJAsT4plZCexaGb+IaJuuyvexdXT9u1xURERGZKhQgiuyEOot53FLVUcc0cUyTMAxZk+2l+ZndMTIu4axemNcFW4WIs9ZHBWo2za4vtZowov1/4811KKw6iMLhB2JubMFsaQffh0Qcf14zYSo57kMI+u1DNOwAo2iTMl025DIUAx/HnIDXQURERGQSKUAU2ckEYUhXsTAgmDEMgyrbwc0kCM2AcNnGAWWqYpk8dW1d9KQT9FYlKYYBtmHssB6Io1Ja6tkXrE2kLYVqNmHWQZiFZOjQHuRoK+Rpjo9/kCoiIiIymVTFVGQnk/U98oFfziD2V2vHMD0LXB9M8IKAZ7vbyXlRq4vZ6zYDsGF+ExgGXhDgmNa47kGcSsLqNEEyjrmpDceKXhPDtzCA9kJucgcnIiIiMgEUIIrsZHq9IsUgwDEG+eddLAV6pdYWucCnzo3TkssCMHtNFCA+2VjF+lyGYhiQsKyob+JMYBgEs2dhBAG1XrQXE8/EMgzaC/nhHysiIiKyE5ghn/pEZo6M74FhYBhbl58BiqV/8m7U/L0Q+FTZDgCduSyz1m7GNw3m7rOYuGXRXsiPSw/EqaxvmWldviW6wTOJmTab89lJHJWIiIjIxFCAKLKTyfoeEA5+Z6GUQSwFiHnfZ24ixe7VtTS0dBIv+gS7zGOfxmYWVdWS9T2qx6kH4lQVzCkFiJkom4pnErcsurwChcCfxJGJiIiIjD8FiCI7mc5iHmtA84qS8hLTKNDxCalxYxw1dwHH9ETLTv09dgFgt1QN9W6cdCnDOFP485oBqOveEN3gmcRMi7zv010c2DdSREREZGeiAFFkJ5HxPJ7v6eDVTPfQbSkK0T/50I2CQQNIWg5pxyHx4loAvFKAWO/G2S1dQ2qGBYhhKolfX0sy00XM7wXPxDQMQkK6vcJkD09ERERkXKnNhchO4B/tm3m8s4Wc75OwLBrc+OAH9ssgBqUehynbJuzoxtqwmaC2mrC+tnz4qsa5mIPtZdzJ+bvMwWrroLGwnle9egAMDLqLChBFRERk56YMosg054cBT3e3YxsmC5JpGmOJwQvUAEa/PYjFIMA1TVK2g//EcwB4i3aDfo+dicEhgD9/DgCN+XUYXvRn0jVNFaoRERGRnZ4yiCJTWBiGbMxnyi0WFlXVYQKb81l6vCJNsQT5wKfHKzJ7NE3c+2UQ84FPwrKJWzbB489Edy/efZyeyfTi7zIXgMbCekJvPwBipkVbIUcYhkMG4CIiIiLTnQJEkSmqGAQ81LKOF3o6CQkxMMpB4K82vkxP0WNJTT2zYkkCQqzRBC2FvjYXAYXAZ04iBb1ZghfWEKSTBKUCLTNdWFNFMZWiprcFO+vhAXHLoqNYIOv7JG396RQREZGdk5aYikxRz3S18Wx3B02xBPMSaUKgxyvSVSyQ83zmxJOs/v/s/XeQXOl12H9/nxs7Tg6YGeSN2IANwAbuLpe7pCQGUZQoyvL7WrKtVH7f10m2yyrL5VCOsmRbzirrV5JLsixbtiiZEimK5FIMyyU3ERu4CTlOzp375uf94zZmMJgMzCDt+bC2CHTfe/tpoAfdp895zqmVOV0v4250kH0rgxhYAY04ptfNYZ08C1oT37V/SXnp+50/MIACuivpPERbGQRJTD2WTqZCCCGEuHVJgCjEDWjab/JGaZoux8E2Wp1H0VTDgEoYAArXNIl0wqzf3Hin0cBEoxmPatzb3sU9bV2Yx84AEN0t5aWXilr7EHtrkwAopVBAPZIAUQghhBC3LqmTEuIG89rcFO+UZwFNwVocUm8rg9nAI9Yax0gzfV12hgm/Qc+lXUtDA/XdQTA0ur8Ge8rpV0E6vQ87JmOaPNDRixWEmGdHIJ8lae27Eylj/xB8E3prU6B3ggKNoiYBohBCCCFuYRIgCnEDmQ883irP0G7Z5C7LCmZMk2m/SaI1GTP90c1ZFvuttqUXKbuoehpYqqqLns1BYEJgohKDJBtiGunwd+vEaVSSYN57OxgGJPqaPM+bgerroGlm6fKnsMqaqENhK8Wc713vpQkhhBBCbBspMRXiBjLWrBPrZFlwCGkXzXoUUo9CMqa5+kUa6bl6qILOB6j5LKruoFr7DxMrxlYGtmFgv3sCAOPQPVv/ZG52SjHZ1Y+Bpu9MFWh1Mg0lQBRCCCHErUsCRCFuEInWnKqVyJsrJ/Zdw8RPLs4vXD1AVM1WgNjVRD8yit4/T3JgevFxrHS8harWMM+NkhTzGLft3tonc4uYHuoFoH88bVTjmia1KCRI4uu5LCGEEEKIbSMBohA3iPFmnRnfo812VrxfKQVard9otNEKMHMh2Bp92zzsrKJVWj5qeDYZ08R67xQKiO67E2VI99KVlO7oBKC/NAG6FaTHsTSqEUIIIcQtSwJEIW4Ab8xP8dXJC9iGgbnGyArHTPcOrqmVQSS7NIjRj4yinYjqrilypoX9TlpeGt1351Wt/ZbWmaPkdFAMy2SnQwyliLXm2zNjvDk/RUMCRSGEEELcYiRAFOI6i3XC0co8OdOiz82ueWyfm6VnrWM00LTQdgz2ZQ1n2gP0hy5Q7ynTU65jTs0S93Wj+7qv/kncolzDYrSzVWZ6rgTAjkyWWhjw3fkpvjB2lvlA9iQKIYQQ4tYhAaIQ11ktCvGTmLy1BU2F/bRTKbnVM1uJhp0nhgEI773j6h/zFuYYBuf7uwDYMTndus2k08mwK1ugGgYMN2rLztNausEKIYQQ4uYkAaIQ11ktCkm0XrO0dMMaK5eXXspKYnqPnUMbBtH9d139Y97CLMNgeDBPgkFfaWLZGJCcZXG+UVkSEAZJzBfHz3G8Mi+BohBCCCFuOhIgCnGd1aIQzRYFEgsBYrTqIbePzGD5AdGd+9D53NY87i3KVgbNYsyMO4Ab+3TNlJbcX7QcZn2PShgw2qgRJgnTXpPxZp0Xpkc5Wpm/PgsXQgghhLhCEiAKcZ2VAx+Trekiqpppmapeo8T0vtMTAIQPyuzD9VjKQBua8bZdAAyen15yv20YRDrhtVaTobP1MmPNOoZSZEyT0eby8lMhhBBCiBuZBIhCXGczQRN3rcH360mAyRzqrT4435HetkqAWChV2TVdJmwvEO8duvLHfJ8wDYUCxvoGABi4ML3sGEcZnKyVSLTm3fIc5xsVipZNxrSYCzxiKTMVQgghxE1kC7piCCGuVKwTSkGw/uiKNahTXahWYKjtGL2rAu3+isfuazWnaRy8G2PdgYrCVgagqfW4VK0OOqolcrUmjcJiJ9leN0usNYZSjDbrGAp2ZPJorZkJPOpRuOpsSyGEEEKIG41kEIW4ji52ML2aAJGZdB9hct8k+oMX0LfNE+iYKa9BPQoXGqVYYcT+k6PEhiI8KM1pNsI2DBSKpOAzntkLwMDw1JJjlFJYhoGhFHnLwlQKs3VbrDXVMLgOKxdCCCGEuDISIApxHdWjkFgnWMYKP4oJcKEN9dIQ6vndqHfSeXwMF1Gv70B9dwBKLqruoHMBDNTBTIPBShiQs2y8JGbUa9CMIzqOnsEJI07t6ccqFq/dk7yJtdkuBcumkWkwntkHwOBlAeKlupwMOzL5hd9rralGEiAKIYQQ4uYhAaIQ11GQJCu3p0lAHRnEON6DqrmowEKNF8EzUcd6ULM5VCmLeqs/Pb6ruey6+wptfGpwP4PZHOXA59DJcQCOH9iDKeWlG2IqxWA2T81qMpPtIzBceidmMcPVu8ReyjIMZn1vm1cphBBCCLF1JEAU4jqKkmTlO4bbUeUMuuiTPD6C7q2nt08WUCh0VxNtJii/1bX0sgBRoylYDkXb4cN9u/jzvkNbtcFIbxvNvs7tfEq3nB3ZPBEanY+ZcPdgJpqB0eXNalaSMUymg+b6BwohhBBC3CAkQBTiOgr1CgHibBZ1uhOtNPq+KSgGUEjLFNV4AQDd0YSdlfTXaOi6PEulyJlp8JgxLbreeA+Ac/feRta0t+fJ3KK6nQwGCp0PGM3eBsDOcxMbOjdjmlTDgHq0+tgRIYQQQogbiQSIQlxHUZJw6RAEdbwL4/UBVGzAvhIU0sBCXwwQq256YDFA7y6jjQQ6PLAXA82LTWlyrUDQGJ3AOj9G0tFG38F72Z0tbPvzupW02y5ttoOf8ZjI7CYyLQZGpjGjeN1zXcPEiyPeK88t3NaMo9Uzx0IIIYQQ15mMuRDiOgqSGOPiLsTQgOF2tJWg75mGvvrigYXLGp0UAsjE6CdGwFwabARJgm0Y5Kz0x9t98XUA/CceZiAvzWk2y1CKHZkcI5kmWdXLeMcQu2bPs2N0mtE9O9Y8VylFj5vl3cosGdNkNvAYaVa5p62bhzv7rtEzEEIIIYTYOMkgCnEdeXG82DBmKo/SCvpr0F9nSfeaXIhWaWZQmwlkW01SshE4lweI6diMjGFiTM5gnTpP0lYguu/Oa/CMbk3dbhY/m5bxjhT2AxsvM82a6eiLV+cmOF+vYKB4rzIrZadCCCGEuCFJgCjEdeQn8cLAejXR2l+4o7b8QAPIt7KIhYCVW5+mgiShw3ZRSuG0sofB4w+BeRWzFt/nipZDlPXRaCaMfUSWycDwFMYGykwBet0sQ9nBsCozAAEAAElEQVQC/ZkcXU6GZhRxulbe5lULIYQQQmyeBIhCXEdBkqQZxPkMzGXQbgSdq4xFuFhmWlx7rl6QxHQ4DsbMPNax0yT5HOHBu7d45e8vRcvGMBVkI5Igy/hgL3YUs2N05oqu1267HK3MESQbCzCFEEIIIa4VCRCFuI6CJCY70o1xZDAdXzFUWTU7qNv91v+vPVcvRtNmuzgvvo4CgsceAFu2G1+Ngm3jGiZxLv07GKkfBGD3qfErul7RsqlGAVOejMAQQgghxI1FAkQhrqMgicmMdwCQ3DsF+0urH7yzQnJoDAZWKEEFYp0wF6TBY+d8FevdEyS5DOFD927xqt9/TGXQ5bhUd06juxqM5/YSKJfB4Uns2uazgEopDKUYaVaX3ScdToUQQghxPUmAKMR1kmhNECcYTQftRDBYW3NvIQbpvMMVjpnym0x4TfKWzdO9Q+x95Z00e/jkYXBk7uFW6HGz1Is19KEJ4g+NMNK5B5OEne/OLj0wNMBff79nm2Vzrl4lvKTMdLhR5fNjZzhTK3OuXmG0sfKXAUIIIYQQ20UCRCGuk0gnqKaVdi7NX3lHS601YZLwkf5d/NDgfg7MN7FPXyDpKBI+dM8Wrvj9rcN2SS4OrbQ05+5OR1zsvTC85Dj12gDq27tgIr/m9fJmWmb6bnmOWT/N/F6oV5loNvja5DBfGT/PS7PjxFoyikIIIYS4diRAFOI6iZIEVWsNvs+v3nimGUfM+h6zvofWaYTixRHl0CdMEhpxRNa0GMoWMAD3Gy8D4H/wUelcuoUKtg1KL/x+dn+emlmkpz5F/lwCw21Qt1BVF5UYGG/3w3Ru1esppWi3HL47N8lXJ84zH3icb1Tpy2TZmc2zK1egHAbM+GvvORVCCCGE2EoSIApxnYQ6wWykAaJeIYOYaM1os04lDOnJZIm0xktimnHETOBhKINJv0E9ChnI5LANA+vEWcyxSeK+bqJ777jWT+mWVjBtLGUQXtwjaMGFnnQm4p7X5jGO9aBOdAOgWwG/WiNABGizHXblClSjkFfnJmnEIXnTWtijqDWMNevb96SEEEIIIS4jAaIQ11CiFzNQUaKxGk76m8LyDOKM36THzfLDQ/v56I49dDouXhzjxRE7Mnm+v383ljKoxxGD2QJE8WL28JnHQa21oVFsVtayyRgm/iV7Bs/fNgjAnsYx0Bo1k5aV6v3z6QE1Z0PX7nEzjDZqGEqhLvl7K1gWZ+tl4kteN0IIIYQQ20kCRCGukUYU8dWJ83xraoRKGBDpBLuRSe+8LIPoxzGR1hzu7KPDSbOMPW4WP4nw4pheN0OH47K/0I5jmHS7GZxXv4cxXybav5t4/65r/fRueaZStDvuktmFtX2K2XwvhbhClxoBSBsO9dfRZgJVBzYQ22VNi6xp0uNkltxetG3mA49pv7Glz0UIIYQQYjUSIAqxzbTWzPhNvjU9woVGjePVEs9PjRDGCVbTRVsxOItBx4zfZCZocqCti6FcYeH2LsclSjQxmo5WIHF3sZPBTJ4uL8R58TW0YeB935OSPdwm3U4GP75krIWtOXewD4C98Vvpbb2NtNNsMUAlBjQ3NoOy08ngGEv3jJrKQCnF8cr8VixfCCGEEGJdEiAKsY1infCdmXE+P3qG0WadoWyePjfLfOhTqkQYiZFmD1vx3MXM4ff17+ax7h1LrlW00nJFhaKt9eu+TI4fGNhN7huvoMKI4NEH0N0d1/Ipvq+02+6ycs8L+wcJLZNd0xcw7xxB3z6X3nGxbHiDZaar6XEynK1XFjqdCiGEEEJsJwkQhbgK5cBnwltsIhImMa/NTVKPQmKt+e7sJO9V5uhxMwxl8xhK4RgGQRwzX21lorLR4vVCn53ZAnvybRiXZQELlo1pGJhKUbQWZxs6wxPYR0+RFPIETx7a3if8Ppe37GVzKCPb4sL+Qaw4YU/9BDhpExtd8NMDqlcXIDqGSaQ1x6tzV3UdIYQQQoiNkABRiCsUJQnfmR3jG1MjlMM0GJjymrw+P813ZsZ5aWact8oz7Mhkl5QOqlYjkobfChCtxTl3fpKwr9C+4uMVbBvXMMmZFrmLAWIU4X75+fTcD38AHHvFc8XWyFsWCrWk2RDAmbvSPZ/7TwzDxfuKrU6mF0eZXIVeJ8OxyjxjzdpVX0sIIYQQYi0SIAqxAbUo5LW5SZ4bP8+M3wTgRHWe0UaNWhhyZG6SWOuFkQTn6mXeq8wxkMkv21d2URK1UlGtALEZR2RMk4HMyqMRTGXQ4Tj0uJmF7KLzndcwZ0tE+3YR3XP7Vj5lsYK8ZeOaSzuZApS625nraae9VKNnqrVf8OJsyw02qlmLa5qYSvH6/NTimA0hhBBCiG2wse4JQryPaa15bW6So5V5lALbMHmws4fX56fpsF2ypsWZWoWd2RLnGxXabYeCZaNgyciCS7mGQRSACWgroRT4VKKQe9o6F7ODK+h3c9itgNOYmsV5+U20beF97GlpTHMNOIZJ0bKZ9Bp02C5Fy174Oz591y66ZsrsPz7MTH8X2Bpd8FE1Fz2dg75GGihGCuzNR4y9bpYxr85c4NG/ypcIQgghhBBXSzKIQqxjpFnjZK3EUDbPQCbH2XqZ78yMEyQxRdvBMgyKls1r81OUQ5+8ZS+bZ3c51zAJL062MGOqUcjTvYN8oGdwzbUc7OjlQFsXJAmZL34DlST4H3oM3dG2hc9YrOVwZz8PdPSigeFmfSGjN7x3gNC22HluHMdLs4f6jnTfoDrejTrRhfrOLtQ398JsdtOPezFrXGqVMwshhBBCbAcJEIVYQ6wTXp+fJmOY2IaBY5gYSjHSqNGfWfyQ3+G4NOIQhcLcQCbPNU3iVgViZMa4psnuXNu659qGka7j1e9hTkwTD/YTHrrvqp6j2JyhXIHHunfwqaH97M23MR+k3UVj2+LcbUOYiU73IgL0NNG9dZRno853oJo2CoU63XlFZae2Mpj2ZCaiEEIIIbaPBIhCrGG4UWPab9B1yQDzfjfLrlweUy398RnK5NmxwdI/xzAX9iAGRkSuNSh9I4zJGZznX0WbJt4PPgOG/BhfD1nTYm++iH/JnsBTB/aggX3vnSMIWlnEAzPoffMk90yTPHkBnQ9Q5QyUMqtcee3HnPAay5rkCCGEEEJsFflkKcQlvDhitNUpMtGa9yqzOMpYMnJCKbUsOLx4++WjKdaS0+n4g8AI6XLcNUtSF0QRmc//WVpa+uzjJD1dG348sfV63SyWYRAlCVprau15hod6KHgBXadHqEUBuDH69nkYqkIuQu8tAaDOr9ytdi1Z06IWhdSicP2DhRBCCCGugASI4n0l0ZrRZo3xZn3ZfV4c8cL0GN+eHiNIYmb8JhPNpdnDreQkaTOawIjodDa2J8395iuYM/NEe3cSHr5/W9YlNq7DdulyXKb8JmfqFaphwJE7032kHzw9SamVRVxiRw1txzCTg3Bz/wTbhkGkk4WxKkIIIYQQW+2W6WL6n//zf+a//Jf/suS2ffv28eUvf/k6rUjcaGKteX5qmLP1CgrF3W1dhElMpBNsw2SiWacU+pjKoBIGzIc+CRpru0o44/S62oxps9cfpm6eGcb57lvojIv3yQ9L19IbgFKK3bk2prwmd7V1crZeodzbRrOnk8LMPEPTJdhTWHqSAfTWUWNt6JkcDGxutqFCMed77MoVt+x5CCGEEEJcdMsEiAB33303v/mbv7nwe3ODe7rE+0MtDDjfqNHrZkm05mhlDkulTWVircmZFjuzBcaadSphwKzXxNrOIKyVPYqtmLy19o+iqtbIfOHPAPA+/iF0Mb996xKbsr/QRtG26XdzjDfrJBr8Rw6S/dLzHD4xxsu7BrEv+5JB96UBoprKoy8GiJFCvd0HhTAtQ63bUAzAXLrf0FKKSrRCZlIIIYQQYgvcUgGiaZr09vZe72WIG1QlCki0XhhcP5Rd+eWvlKIU+kz4DbLmNv6IxGnwaVpQsNbIIMYxmT/6KkbDIzh0H9Hdt23fmsSmtdsu7bYLwJ3FDkpBgLl7J8kL32Xf6CxvlCokXR1LT+ry0GYCM1loWpCNYCqPmsnDDKhz6fF6ZwV9YGbJqbZhUJUAUQghhBDb5Jbag3jmzBmeeuopPvKRj/ALv/ALTExMXO8liRtIOfDZSPNH1zAYadSoheH2BoiRgTYSMrZJbo3HcZ9/FWtkgnhHL/6Hn9i+9YirdrCjl8e7d4BpEh6+HwXc887Z5QeaGnobqMTA+PZu1PEu1FSaFdZFH+1EaKVhMg/J0lNtZdCIou1/MkIIIYR4X7plMogPPPAA//pf/2v27NnD1NQUv/Zrv8ZP/MRP8IUvfIFcbmOjBy5nGDfOHq+La7mR1nSj01oTab1Q3jcdemRMY91uoTnLph6HhMS42x0gmgntjoNlrvxdjXn8DM4rb6IzLv5nPorhbP165LW1dfKGTd5Omw9Fh+7DfPF17jw7yZlDHs3CZY2I7pxDuzGMFuBCOyjSrOJjY+lXd6/1o2ZzUM5Cl7dwmm2a1KOImHTv7I1KXldiO8jrSmwHeV2J7XAzv65umQDx6aefXvj1XXfdxQMPPMCzzz7LV77yFT796U9v+nqWZdDdXVj/wGuss/PG33umtWbO9+jObKwz53Z5a2aKV6YnGMoXeHJgiPp0TFdbjrzjrnleJrEZb9TJaId8Ye1jr5ROoJkY6ExEd1t+xddaMjZF8PmvAeD8hU+QvW1wW9Zy0c3w2rq5FJh87F7aX3iTe4+f5+iHHrj8buipE7ZD+FY7aDAHPNy29DUX7goIZ3PYpSLO7sXUt5PYBM0G2fYM7eu8lm8E8roS20FeV2I7yOtKbIeb8XV1ywSIl2tra2Pv3r2cP3/+is6PooRKpbnFq7pyhqHo7MwzP18nSW7sIdljzRqvzEzw0YE95Cx7xWNindCMYwqr3H+1qmHAN0cvkGjNm9U6tZrHbKNOj5OlHqw/IqBU98iaJnW1heMEKk5aMrirAoZGAbEREzZDZmcv62RZb5L9rT/ECEKCDz1KfWAALj9mi9xMr62bTem+u8m+9Ba73j3H2/fsw8+uEND1+ZDJozyLqLNKVGu95tojFB2EIy7hPh9aX0Bqrak2fSZmKkTu9f0SZi3yuhLbQV5XYjvI60pshxvxddXWlsW2168+umUDxHq9zvDw8FU1rblR/jIvlST6hlzXpU5USow3G8x6Hpnc4kusGUfM+E125YocK89zqlbiE4P7MLehU+jbpRlqYciuXIFCHHO2ViHRGlMp9AY2IvY6GRzD3NCxG1JxUK8NoCIDfaENfdscCkjMGBtz6d9pHJP9wy9jlKuEB27H/8DDcA3+zm+G19bNJlcscvT2IR44Nswd75zh7cN3Lz9IAfdNwlQe3VeDi38FTgTtHqqcIZlzl5SZajSNMCKxb/y/L3ldie0gryuxHeR1JbbDzfi6umWa1PzKr/wKr776KiMjI7z++uv89b/+1zFNk0984hPXe2nvK+XQ52ytTKw1M/5iBjbRmu/OTvDNqRHGm3Xeq8wx4TWY9hrbsoYTlRI9bjrg3jVNbMPA2kQNeN6yl40muCKBgTrejToymAaHXQ1UbKBOdQEQmzHupeNYtMZ97gWs4XHiHb14P/iszDu8iWVMi+DRB4gMxW3HLmA2PeYDHy++rMlMp4++a27Zv8h6VxkAdb7jsjsUXhKhtd66LzGEEEIIIbiFAsSJiQn+zt/5O3zsYx/jb/2tv0VnZye///u/T2dn5/Ve2vvK2VqFMEnosB1Gm4slkWfrFY5XS3hJzKuzE8wFTZSCC43qtqwhSOIlHUh73Sw7MtegBjww0v8gnWv3+gDqQrq/LNk/h354Am0lqCQ9RpvJklmLzkuv47x5lKSQo/ljHwP7lk3yv2/sHxjk1B07saOYXd87hW0YTPve+icC9NfRmQg1k4PaJeXYCvw45q3yDEcrc9uzcCGEEEK8L90ynz7//b//99d7Ce97jSjkvcos7baDbRjMBh7NOMJSBm/MT1GwLNpshwuNGkXLJmOanK6XebCzd2E24ZWKteYbk8PkLIvhRo02e425glul5KK+14++fQ6G0tJA9coQxAb60BjqeA+q6qI7m+iDk+C05hXkAyin2c3EirFamUrre0dxn38V7dg0/9wn0MUbr0mS2DzHMMk8/TjJqTEOnRpj17NP8bnyOPUoJL/eHlwjzSKqk92oM53og1MAmEAtChhrNmi3be5p797+JyKEEEKI94VbJoMorr8T1RK1KKJoO7iGiZ/EzPkew40q84FHh+1iKoPduSI9bpa8aVMNQ743P01ylWVyFxoVzjUqvFeZoxT6FLe6+Y0mHWjebH2nkoB6rxcVWKhjPdCwoOyiPBsVmqiXd6Lms+lMuwcnFoNDSAPEi5c1EyxlYJ48R+ZLz6MNg+aPfpRkx5XvnRU3nu6eHqJD92FEMV2vvsNdhS7mww02QNpVQbsRarIAc+kXC7ZhMOk1KYU+07531T8/QgghhBAXSYAotkQzjnivMkeXk2bulFJYyuDVuUneK8+RMa2F+YMXm9Iopeh3s7xZmuG1+Snmgw2W3V0mTBK+Nz9DxjDZmS2wJ1dcd9bhpngm6qWd6UDz7+xKS/3Od6DqzkK5qHqvNy0DBLQVo1DoDg99aByspR/edSFc+HVixRQnZsn+0VdRWuN98lnifbu2bu3ihhF84CG0Y2O/+S53ahNTGYRJsv6JpkbfOQuAOt4NGixlECQxQRzTjCNqUbjORYQQQgghNkYCRLElxpt16lFIwVos7ex3s5RDnwvNKp32yvPaXNOkx83wvflp/mj0DN+cGtl0oDjarDHtN+lyMlf1HFajTnalwaATobRKS0fPdKCVRj8yii4EqPksnG8HQB8eJ3lgAv3wONgrBACXZBA7G3Ps+eOvo6II7yNPEN1757Y8B3H96VyW4PBBVJzQ9+rb9LgZqlGw/omQ7kUs+KiaC00L2zCoRxEZ0yRKEirhBq8jhBBCCLEOCRDFFQmTZEknxjO1Ms5lXT+VUuzI5NiXKy7ss1tJ1rTYmSvQ7bicrJZ4ZXZiU2s5WytjGwbGdnT7nHdRE0W0E6EfH0XbMWoui0oM9L55KITou2cA0ttyARQD6GuAuUrZXyH9MN8ezvCJt7+DGYT4TzxM+OgDKx8vbhnBYw+gMw72W8c54EMjipYdE69ULqqAztYXJxUX2zAohT4Fy0YpNh5oCiGEEEKsQwLEm1yYxHxvfprSBoa/b8aKH1Iv8VZ5mq9OXKARRVTCgNFmjY5VsoQbLfd0DJP+TJZxr7HhLGItChlu1ujYpqY0F8dR6DvmwI3Re0vp73MB7Et/TaeHHmh1Y+3ZwNgON6YYT/PBmT8mE4VUHrmP4OlHt37x4saTcfE/8DBKa+589T0MpYj1YpZ5PvAYadSY8ZvMB96Sn2vdlv5alV0cw2QomyNv2VjKYNprLnuoMEk4VSvxTnmWmmQYhRBCCLFBt0wX0/ejRhTy7ekxTtZKlKOAp3uHrvqaWmveLc8y3KzxAzt2Y6rl3yF4ccTxSolS4PPizBimUgRJsnSe3xVyDJNYJ4w2akx56SiMO4urjyoZa9bw45iMm73qx16m7KJK2TQYHGiN7NhVIYkV9NeXfL2i75pF50MYqqx72WK5ytPT38BNPN7au5fupx+lTWYdvm+Eh+/Hef1d8meGufu2Po52abqdDBnToh5F3NfezYRXx1AGs0GTNu2k2fH2VrBYSb+IuVjOnTUtpv0mw40qvW6WTGu8y3uVWV6ZnSBKEqz+Xdxtd12X5yuEEEKIm4tkEG9SsU54eXac840Kg9k8Z2rlJYPpNytMYo5X5nllboKXZycYbdQYa9ZXPPZCo0o9CtmdK3C+UeV8o0rfFgZoedPiWHWeF6ZHeWV2gvIa2dHz9SqZLQhMAUiAsx0wnT4XdaG1p3B3OS3xg7Rs9LYSFC5rCmInaUbRWbvpSMdMmWe/9AqZ2ONU+z18+9A+rKsc8SFuMpaF/8zjAHzozbPsy7Ux7Xt4cYRSijvbOvmRnbfxycF9FC2H+sUGNLkQbSVpgHjJyyxnWswFHl8eP8+3pscIk4RS4PNWaYYuJ0PesplcIcMohBBCCLESCRBvMkES81Zpmu/MjHGqVmYgkydrWsStzN+Vtruf8Bq8MD3Ku+VZut0MlmFwslpadpzWmmOVeXKmhWUYDGXz7MjktiR7eFGb7TDjN2m3Hfwk4Y3S9JIyvIuiJGHab5IzN5EIL7uoY91QuawkVadjK4xTXajjPemw+8k82o5hsHaVzyjVMznHM195FdcPOX7vXl76oUGUq7EMyR6+30QHbiMe7CczPccPTDW4rdDeKpV26XIymMrANtKRMNWLAaIC2nxUYkB9cYyLZRjsyhUYzOY4X6/w0uw4z0+P4icJBcsmZ1pMePV1y8aFEEIIIUBKTG86lTDglblJLBT9bm6h+Uuvm+FErcSOTI672jZfSjbne6AUQ9k8kI6iuNCaX9h5SXfQZhxTCv1t2/OXPrbB3nwbABnT4kR1Hi+O6HQylEOfp3uHyJgW5TDAiyM67NyGrqtOdaLOtspVR9qgswlNG5wYmhYqaP04NC2Yy6K0Qveu0WxmE/pHp3ni669jxQnvPHg7Rx+4nTiOMDCwVijjFbc4pfA+8gT5//E53Odf5f6f+mEuNKrsLRQXxsAADGULvFOeRWud7uVt82EuC5UMFJdmsU1l0OtmON76Amcgk/5c5CyLSa9JJfSX/CwLIYQQQqxEPpnehBQwkM0vydo5hkmH5fDq3NQVNawZ8+pkjaXXi5KE8/XqkuNqUUAQx9jXKKixDYOhbIFJv8G7lVnO1SucqpUBKIc+idYb616qgfPtaCNB70rPV3M5VNNGlTMQmujOJrrNQ6FQ44X0tOLVN//Zc2qUp772Glac8K0H9/PNu4dIgERrnO3qvipueMnOHYQHbsOo1Rl68wQPdvSyJ9e25Ji+TJasZdFsdQzWrQ64qmEvux6kX6jsyhXodjMLgaapDBI0pXBrG1kJIYQQ4tYkGcRbSNF2KDdrzAYeHc7KHUVX4sURM36TgrX0Q2eb7XCiOs+97V3YreCxHocotfHOpFvBVGm2FNIM6tvlGfbn25gPvI2vo2GnYyg6mui7Z2FvCe1b6UzCyAArAUujTnWm2ZnZVlay7So+VGvNge+d4r43T5EoxXOP3MnMgX10AaPNOkXLJruFpbni5uM/8zjWiXM4L7/JQ/ffhb5sL2/GtNifb+NoZY6cZYPbGovhb+51o1DM+h778u1btXQhhBBC3KIkg3iLUai0XHQT5gMfP4nJXNYspWjZlMOA0Uua1dTCkOu5k6nNdqiFAW+VZpjwGhsPsKqtkthiq91/Jk67Qlo6/bWVPivdul9phUYvzCzcLBUnPPLtt7nvzVMElsnnPngvMwf28UzfTj7YO4SpFJFOcKRBzfua7mgjePxBVBTh/tl3Vjzm9kIHCkWYJODG6Y2bDBDzpsWpWokpbwNjWIQQQgjxviYB4i0ma5pM+Zv7EDgfeCiWZwWVUjiGwZlWSSfAXODhXOc9c31ujncqs8yHHtkNNqhRrQDxYgC4qsIlGcNcuBA4rkZrvawxUNho8MGvfpe9p0ep5Vw+930PcfsDB/nYwF6KtkPBssmYFo04wjXkR/D9LvjAwyQdReyT5zBPnV92f6+bZVeuwFzgXZJB3FzxR4fj4scJX528wJla+YqbWQkhhBDi1iefTm8xWdNiPvQJknhDxzeiiKPV+VUDrTbbYbRZW9gDNRd463csTWA704yuaVK0bCphuCzruaBuob6zE/XdARgpQrVVcrvensJchDZaHVPXCyaBca/BSLOGbn3gdmbm+fifvkL/xByznQX+z0ce5J4772J/oR27FQxahkGb5dCMI8kgCrAtvO97CoDMV78NYbTkbqUU97R1E2lNaMRoM9l0BhGgP5PFRPG1yWGem7jA8co8F+pVKuGVZcmFEEIIcWuSAPEW4xomfhxT3sCHPq01r89PMet7dNor71nMmhZ+EjPtNfHjmHoc4q4V1MQK9eIu1Bs7rvQpbEi77bI/37bqHkR1shvVcFClLMbRXpjLopWGfLji8YsnslBWqi/bfxgmCdUwWMi+1KMQSxn0ujmm/SZD58b5+JdfpbPmcWZnD5/98AMc2nvbQkfWS3W5GcIkwTVkG7CA+I69RLfvwShVcF5+Y9n9g9k8txXamfKb4EaoyIR48/uAOxyXHZkc036Db8+M8uWJc7w2N7kVT0EIIYQQtwgJEG8xhkr3zm0kKzDtNzlRnWdHJrtmsxcDxZhXoxaF+PE6++Ym86imDbNZCC97eTUsiFQ6UuL53XCmY4PPapPmM6jpPDoTktwzBaR7CskHGxtZ0dnaw9mxuJdzLvCY9puEWjPtN9FaMxt43N/Rw2OdvTz25hme+Oab2FHC2OMH8X70ozyzcz+3FVZuCtLpuJjKkBJTscD7/qfQlonz0huoufKS+5RSPNDRg6kUiXNljWousg2DXjfLULZAl+My5TdlRqIQQgghFsin01uQQjHZrOPF0ZrHjTbrrVELa3/QLFo25+tVRlullGuNZVCjbQtroHxJVrLkLmQW1YV2VGChLrSn5ahbTJ1OZx3q2+dhsIbubLaeyMZK6fRt8ySPjUBHmkGMkoR6FPFM306e6hkkTBKm/SY9bpZ7DJfbPv88h48N49kmX3j6PpKnDrMr38ZQrrDqY1wcYG5JgChadEcbwQceRsUxmS8/D5cFbZ1Ohh43S+S0suBXGCBeKmOke2FrUmYqhBBCiBb5dHoL6rRd3q3M8fnRM6vORIy15kytvGy0xUryls186PHK7DhFe43jazaqtDiIW823fh0r1Lu9KK1QpSwMt4LI0EyHfm+lmo2az6KzIeyogQJ99wy63UMPVNc/H9IsY9viB+bpoMnefBt7W0HfjmweP0l4phzT9dt/iHVuhLCnkz/62CNU9w7RZjnrPkTBsslaEiCKpYLHHyLu6cQ6P4r91rFl9/e7OQKr9dqsuKj3eiC48teQZRgkWm+oJF0IIYQQ7w/y6fQWlLPSYdnlMOBCY+WgaMZvUgo9ivb6wYyhFIOZPEPZAu2r7FUE0owgLAZirWBRne1ANRx0/pIREq1ujGpi9SzbplQc1OlO1NlW9nBXJd1PCFAI0Y+OQffmxn9Auu9Qa3igowdDKUyleKitix87NsGez38do+ERPHQP3k/9GAf27OOetq4NzWZcyCBe546w4gZjmXifeBYNuF97EVWtL7m7280Qt0pM1emuNGM/snyP62ZoDeXwKuZ9CiGEEOKWIp9Ob2FFy+ZUrUSsl9dxXqhX0DoNeDbCMcw1S0vxTBgroq0Efdcs2oqh4qb7EEfa0EqjHx5H99XTX98/mXYLncov36u4WQmot/pRZzpRE4X0uoMbzBauYy7w2Jkt0NsaYG7MznPHZ7/K7rdOojMOzU//AP7HPgS2xf5iB7cXOzZ0Xdswabfdhc6mQlyUDPUTPnIQ5Qe4z72wpNS0zXaIWyWmKk5fO6q2/pc8a3FNQ+YjCiGEEGKBfDq9hbXZDvOBz5TXXHL7jN/k3coc3e7q2cDNUuc70kYwu8pgJ9DhoRIDdbQnLSXtq0MmTgPDJy9Apw87aqjYQL3Zf3V7EceKqKaNzoRpp9KdlXQNVyBIYqb99M8r0ZpQJ9zV1onSGvuVN8n9t89iTkwT7dxB/Wd+nOju26542Y9172Agk7/i88Wty3/60XQ24omzWMfPLNzebjuY2cte29WrCxCzpslM4EmjGiGEEEIAEiDe0i5m/IYvKTNNtOb1uSk0esND5tcVKxgtoo0EvTvtvqgHagCoybSEVO+qtBYFZNMZjfruWXTRR5WyqO/sgrMdaZfTzUjSElYAfXAK/ew59J1zqx6utWYu8JgPlpebBknMpNcgSBKiJKEaBXTYLruaEbnf/WMyX38J0PjPPE7zJ34Y3V7c3Fov02Y7sgdRrMyx8T7+DADuV15ANdIvLWzDpJi/rDlNw76ikRcXXWxUU5V9iEIIIYRAAsRbXtGyOVevLJSZzgUeI80avc4WNoeZzqXlbn0NcFrZjR11kgPTaDS6zVsyMmKBqdEPTaC7GyjPxjjVhXphN5Q2kdmczaE8G93dgHY/bTCzymflRGuGm3UypoVlmFxopJ1ZR5t1Rpo1pn2Pe9q7KVg2XhIRhCGPnxij7bf+EHN0gnhHL42f/nMEH3gIJLAT2yzeu5PgwQMYjSbuJV1Ne9sXM4baTNKOwVdRZmoZBrFOKMk+RCGEEEIAMqX7VqBZNSgqWDZjzTozvkd/Jh3onqCvLnMVKtTZTvRQFfLhYpawv7b0uJ1VdHcTrGTV9eHG6Icn0HU7bWYzXoQzneiHJza0FDWRlmjqDew59JOYnGXx8YG9xEnCyVYXV1MpIp3Q6WTodjJ8LRqGkTE++eoJest1tGHgP/2oBIbimvM//ATWuRHs42eJ3jlBdP9dtGdsZsw4/VJmsArD7WmZafuVB3gGilk/7dYrhBBCiPc3CRBvZpFCvdMHZTft0pldPvfQUAoUTHp1+jM5LjSqZNaZe8hcBnIhZOIV71YXOlDnO2Aqjz40BjNZtJVAzwqNLlZY04ryIfqeaZjJpaMvAiMNLNeKx2IF0/m0KU3v+k02vDii3XLT0loTHursXX5Q0+MDL7/HwNGzADSG+tCfeJakp2tjz0OIreQ6eJ/8CNnf/SMyX/029d2DuJbJ/G2jdFoZsDRquB1Vc1iygzABdawH5jNgaPSh8cXs/gqypslIs8Yh+rf9KQkhhBDixibpkJtVqFBHBlHT+XTofGsf3krypsXZeoVGFDLlNdaefXi2HeO1QdTbq3xQTIDRdO+datqoF3ehEgN661f/ajKA/no6L/HtPtQ39sLYGmMwZlqlrb2NtLR0HV4c05fJrHxnkmC//g75/+f3GDh6loZj8dXH7qL0//qkBIfiuop3DRA8/hDKD8j8yddxDYNGXwmGalBoZQ2n8qiTnYsdgYfbUaNtqIaDqrkwu3ZJec60KQcBjSjc3icjhBBCiBueZBBvRhrU0V5U1UV3NtNxEmNFuG0e3OVZv4LlMO41eHF2HD+J6TWzy693ohvmM6hquv9PlTLomg2Fyz4wzuRQvoXuaEJoQt1Gt3noPaWteWr9NdRIG2oul95wvBvd01gx+6GmcwvnbEQMdDjLA0TzzAXcr72IOTOPBir33cHv3taNW8jz6AbmRAqx3YIPPoJ15gLWhTF63jiK2pEl0RojF6HdCOVbcK4Tag763mnUmQ40GvaWUOc6UeUMeqC+6vVd0yQIYuYDn9xaXyAJIYQQ4pYnGcSbzPkjNjveuAM1WUBnQ/QDk7CzkmbdVski2oZBv5vlfL2Ka6zwnUDdRl1oTwNOO14IuNTo8i6dF2/Te8rox0fSrqGPjUFxizIPnR7ajdJZiR0eKjJRJ7vSfZYX/7uo4i6cs5JKGDDcqKX7LrVGAW3WYsBnzMyT/T9fJPd/vog5M0+0e5DGT/8Y/ieegVyGHje79uxHIa4Vy8T7oY+gTYP2F15jYL5GpNO9vfrxEZLDY+hcgJrJo76zCxWZ6R7godbe3PIGGj9pOFkrcbw6T5hc+dyZRMZlCCGEEDc1ySDeRJJEUxoxcZo22onQ90+BnaD3lGG0iBpuR/c2oLu57FzXNBnKrjJzr5Rm1fTuUjoiIjDTAfbjRbhjbunXCBU3nTXY00hvN5Z/GPTiiJFmnX35NszNBliKdL9UZEA2hO/sQo21QSUDTQvaffTD45CoNHvpRitmFxOtKYcBD3T0MO7VGWvWsQ2Dou2gShXcbx/BeucESmuSznb8D3+A6I69oBQZoGg59Lpb2OlViKuU9HXjf/gJMl/9Nh998Sh/8onHIJdNX/+Ohz44Ba8OQmSguxvo2+bSfx/sGKpuWh6+xleC3W6Gs7UyJ6olxot1nugZwFlvv/Jlpv0mL8+M81j3DnbkZManEEIIcTOSAPEmYhiK+3/I4/PnzzJYzC52BnVj9IEZ1Nv9qHd60U8Nb2hP3kXqYoDY5aXXdGPoaaCm8+jpPPS3StNCAxVY6Hyw5gfNucCn3XZoxtGy/Y5aa5RSVMOAchSwM7vCHsP8YjZSHx6Hd3rTfVQAc1n0TA7sGIVCt63cuXEu8OjL5Hi4s49Jv8Gfjp+j24/p+uqLOG8dQyUJOuPiPXmI8NB9YC79IHxXsYNuCRDFDSY8dB/m+VHaT5zl8Vfe4/VnHoaLX8IUA/QTw+nP8KUNptp91EwOXXXX7HSaNS2yWYsoSThRnQfgg72DmGpjhSZzgcefTV5g2mvSn8lJgCiEEELcpCRAvMkYJiR2vHxsxI46eqyBms2hKw50bqLl/cXys/bFUk09VEkb4IwW0RcDxHor2MutXk6aaE2Cpt12KQXekgBxLvAohwG7cwVKYYBtGPhxjGuukaUoBujHRtE1Bxo2xtv9qNOdC2MtVgoQE61pJjFPdfRgGQZDgeZH3h5hz/HzmHGCdh38Rx8geOQguCvvMTzQ3r36moS4XpTC+8SzBKPj3HZ+ivmTI5y9c9fi/dnle5B1m4eayaU/5xsYhWEZBoOZPCeq8xRtm0OdG+tsOtqoUQtDBrN5TtXKPNi1tEtwmCTYMiZGCCGEuOHJu/UtRF8cRl/dxKD5wEA1HHQuWFqq2d1Myzdns9BsBXCNVrCXXz1ALIcBXU6G/YV2gkv2MQVJTDOOGcwWGGnUcU2TPjdLeSPDuQ2gLYD+Orroo6puOmYDoLj8/HIY0O1k2NMMyXzxGxR+/X+x/72zKMPAf+Jhav+/nyR46vCqwaEQN7SsyzsfeYREwYOvvEdmprT28a2gUI0XINpYybdlGPQ4Wd4rz9GINjaqZrRZI2ua5E2LehQy1lxsijPerPOl8bNUw2BD1xJCCCHE9SMB4q2kFSypzQSIrfJSOi4LtAxgsIpCpR1SAdXKIOrc6h/yqlHAXcVOepxMup+w1bBi2m9yV7GTR7r6sAyD2/Lt3FnsXBJErkuBvnMWjUZ5reR32+JaGlFEmCQUJmf5oW+/R/E3fh/7rWNgW/gfeIjGX/1Jgg89BtlN/PkIcQOKBvt58b69WHHCE9/6Hma4RhDX1Uy/WKlkUK8NpHt5NyBrmvhxTD1evwGVF0fMBE3ylo1SCtcweKc8ix/HlAOfF2ZGGWk1jBJCCCHEjU1KTG8lxVawVN14ZkxNpvuEdPvyTqB6oIo624mayqNvK0Gjdd1VMoi1KKRg2ezLt2EoRcY08ZIYA4WpDO5r76bddjjc2ceufBHHMHFMk2YcpcPrN6LLgz1lON+RZjhbYz3iMKLn9AUeOjnG4GxafpoUcviPHCR86F7JFopbimtZfOvuIXZNl9kzMc/hF9/hlacfWNyPeCkD9KExeHMHqpSFl3bCrgq6qwlOlI6yWeE0pRRKQS0K1m3YNB/4eHFMt51+4dTjZhlt1vnO+CgnZ2aphSFZ02KiWWd/oX0r/giEEEIIsU0kQLyVuHHasbDmrNuxEIDpLGqiiHaixUY0l8pH6GyIqrloz1x3D+J84HO4q29hjlqXnWU2aBIlmr35NjqcNHP3QOfi3qS7ih18rzTDUDa/4WYY+vY5CA10u0+m4bH/+DB7j18g76UBcrOjiPrAw4T33QXW5rowCnEzcA2TQGu++cS9fPrL32X32XHmeto5ee++lU+wddod+EwnnO1AnUv/A0jumIW95RVP0yjqGygxnW1lBlUrQDWUos/NcmRmEivUDGRy1KKQkWaNWCcb/lkXQgghxLUnAeKtRAFtftqopu4sZhRXkoA6mgZq+p4ZsFcp9expwHA7zOagaaUB6ApjJbw4wjVMbit0LNx2T3sX35waIdIJdxQ7lp0D8HBnP7Uo5FStTLvl0G47Cx8yV3+aCf1t77Hv5AiDF6YwtEYDtf07MR59iHjv0MqZFCFuERnDxFIGXZ0dPPf0/Xz6udc5eOQ4pa42pgdWabBkgL59Hoaq6Kk8qpRBTeVRc1n0KgGirRRz/spzRi/SWjParJO5bCRGxrS4PZ+jUQ/QWpO3bMa9BnOBLyNkhBBCiBuYfI17q7kYFFbWKamcz6B8C93dgN7Gqofp7vQ+NVJEJcaq5aXlMGAoV6DNXnzcvfk2Pty3izsKHQxkcyueZxsGT/YM8mT3AJZhMNysrdrIolCucf+R4/zgZ7/JB7/2GjvPTxI6Fm/cvYs//cwzJD/+SeJ9OyU4FLc81zTJ2xY7c0Wi/h6+9eidGFrz+PNvkq2vs88vG8GeMvr+yXSm6Rol6a5hMhcuDRC9OOJMrUwjSv8tGGnWGGnWlvzsX3Tplz2GUmg0M7IPUQghhLihbTqDODk5yTe/+U0mJibw/aWNTZRS/MIv/MKWLU5sni76KECd6EYHFuwtrby/aKq193Cl0tJLdXlopVGVVjObQhq8xVqTaL3Qtj5IEvbm25advjtfZHe+uOZDZEyL+zp6uKutk6OVeV6ZnaDY+rDpNn12np9g95kxeqZK6ZqB8aEezt2+k7FdfZwPmjzTN7Bu5lGIW4VrWLRbLt1Ohl43y9t7+thVanD7sQs88Y03+MbHHiNZr7zaAPJBWkLumwv7eZc8jmlSi0KCJMYxTLTWvDk/zfdKM+RtizsKHUx4TRzDwDHWL+fOmRYnqiXuKnZiyM+rEEIIcUPaVID41a9+lb/zd/4OSZLQ1dWFbS8dgi4B4rWXaM2k16DDcdNGLz0NdH8NpvIYp7pIehrLS001MJVHo6F3nQDRbB0zVUD31tH70wHaE16DWCcMZPLEOsE1TXZkVs4SbpRtmNxR7ODE5ChDR89x24Up+iZmUWkjVGrFHGdvH+L87UM082mJmh/HOIZx1Y8txM0kZ1k82TtIp5Ohw3GJ0bz5yAE6Ziv0TJd4+OV3efWJ+5gPA0Kd0Gm7K88bLQZQc9Msors8s+caJnOBTz0KCYyE0WaNdytz7MjkiHXC2+U5tE4YyhY2tO5222HCazLlN8gaFrZhkrNkp4MQQghxI9nUO/O/+3f/jieffJJf/uVfpqOjY5uWJDYqShLGvDrdbpZZ32NnrgCWRh+cgnPtqJPdqIkCuji39MSyiwosdGdzxf2EM36TehyyO1tEKYW+bxodzkImXnhcgD25Ns41KmgNtxfbyVv2smttlCpXsU6dJ3viLH/5/ChGazxGI+Mwum+A4b0DzPZ1LCsfrUQBA9n8QsZRiPeLLifN6rdZDmio6ZjvPPMgP/DFl9h3apSxvIN/8A5sQzHre/Sby79E0UUfNV5MZ6f2LA8QL5aFfq80w4VGlSCJyZt2K9g0FxpSbZSpDBTwXnmOSb/B/nwbj3UPXMnTF0IIIcQ22VSAODExwT/6R/9IgsMbgNaacb/BbYV27m/v4Uvj55eOi+ivwclumMjD7XNLykzVcFoKqvvqS65XjULqUYhjmnTYGapRmO4rMjWYi+VnpdCnP5Plg72DOHMGbZaz+db1SYIxNoV1+jzWyXOY04tBbJjN8OZgB+f37mC4q0h3Nrtq+ZoXxyuWtgrxftHuuPS1uoSeVjHf/vDDPPulV3jie2fZt2sPo3v6mWiOrXxyq7pAVR30KtdXKE5U5+lxsuS2oLlMh+1wrDqHo0xO18o80NFLZqNjboQQQgix7Tb1rvzQQw9x9uxZnnjiie1aj9igCa9Bp+3yWPcABcvmjmI7RyvzDGVbf6XZGN3hoUoZdNmFjtZ+0ZK7ONpisLpwvWoU4icJu3NF7mnvZsJr8Nr85IqNJ7w45q5iFznL5tm+XRtbsNao+QrW+RHMc6OY50cxmovNL+LuDuLb9xDdvpfaQA/vTQ1zsKMHp17lZK3MUDa/wiU1SkFnK5MixPtR1rT41NB+GlHIlyfO857yaTx6Jz/80jEGvvJtwj/3MeDiz8tl+/42MDt1IJNL9zVv0Z7BnGWzxyxioBhp1hiT2YhCCCHEDWVTAeIv/uIv8nf/7t8ll8vxxBNP0Na2PHOTzUr78u2UMS12ZQugFA+091BolXgdaOvidK1MNQwWyi11fy1tZT+ZR7cCRHUybYGv75gDazFn0IhD7ix08kTvIACOYfLm/BRhkiw0ooG0vNQ0DPoy6/w9a40qVTBHJrAujGGeG8Go1BbvNgyivUNEt6VBoe5a/ICYBT4xsA/bMOiwXUabdca9OlnDwk9i+twsSim8JCZjmmmJnRDvcznL5gPdA7w4M0bh/gNUrAJtLxxh5xe+QcdHDhK4yfJ9iHaSzjptOOhQgb08j7gdzWQuzkF0DZOT1RI7MrlNl6terhlHvFOe5f72bslICiGEEFdhU++in/rUpwD4+3//76/6bfLRo0evflViVQXL5qMDe5fd3ulkONzZz7dnxsiaFpZhpM1ljvekMwyZA89MM4rZEAZqS86PEk3vJY1eut0MA9kC035jycyyIIlxDZO8edmHuTDCnJjGHJ3AGJ3EHJnAaCzuadJAvKOXaO8Q8Z4h4p0D4Kz+gfBiUNrpZPiBHXt4ZW4cL44xlKIUBnQ6Ll4c0Wat0nxDiPehgWyeT++8PQ3qnuwnnK9gv3OCH3rhXb7wkYdwcys0c2rzoWlDJQPd13YERZeT4UKjyudGT9PlZOhxMzzc2Y95BUHpqWqJ785NECUxj3dLV2MhhBDiSm0qQPylX/oledO9gd3Z1snJWolqFKRll9kYXQhQNQfdtGCuVYrZ01iyJzHRGlTaYfBStxfbGW5Ul9zmJwndEbgXxjAmZzAnZzAmZzBmSyi9mH3QhkE80Ee8cwfxrgGi3YOQvbJS0G43w8d27AXgZK3E81OjdNgOXhyzvyDdS4W41ELGTym8jz+DKlXoGZngmRfe5rXvfwRtLB1/qzs81GQByu41DxAtw2BXrkA9CpkPPEYaNdptlzuLnRs634sjXp2bYGe2yDuVWdosh/cq8+zMFdmVW3u8jhBCCCFWtqkA8Ud/9Ee3ax1iC5hK0Z/J8V75kg953Q2oOTCTQ5XSAE1f9iHQi2OypkWn4y7eqDU7A7h9pkxfdZruWpNiuU5+vkqxuXT+JUBSzBPt6CXZuYN4qJ94Rx/YW1fmdfFD7758G287M5TCgFjrhU6OQogVWCbNH/s41n//Q/aNz6FffIfXnrx/aTfg9lb5eTmzaqOa7Za3bPLYmMrnyNwkOzL5Ffc/X+5srcy75TlOVcvEOmFXrshIo86870mAKIQQQlwh2ahxi+lyMsSXfMzTPQ3U+Q7UTA7KLlpp6GyikgS3GZCrN2kvVdgRJBSOT6MqNYxyFWO+TDGM+NRl108UNDrbsAf6ifu7Sfp7SPp70Llrs/fUMUwe7OjlG9MjKMWGPkQK8b6WzVD98U+gf+dz7D81SjOX4b2H71y8v+ijjSTNIGqWVBdca+22y3CjxoRXX/dn249j3i7P0mmnM2Avxry2oahEwZrnCiGEEGJ16waIn/nMZzZVVvoHf/AHV7UgsTrt+VBroKIYkgQSjdIJxAlEESoI2VGrcvfUFH1qFiuKsf0It3wcd9bHTRq4NHA/28D1w7Ufy3WIB/qotud5105QXZ1UOwqcsBKeGdp3XUdL7C+0M9qsMdpc/0OkEAKyXZ3UfvwTWP/rC9z71mmqWYfhA3vTOw2gGKQZxIYN+bX/bdhullLMB96ax8Q64e3yDOUwYGc2v+Q9yjEMCRCFEEKIq7BugHjHHXfIvsMbgPn2cfwvfI38OjVgOWBwnWtFpkE9n8HLulRyLuWsw+7BQbJdXSRtBXRbAZ3NgFKEccRbIyfJmzYZwyRq1sld5w6BhlIc7uqnt15ZnPsohFhTdnAHjc98FOv3v8Sjrx5lyoIzO3vImzad7R6UM6j3etBDVRisrX/BlWjSMgPzyotVM6bJpLf6XkitNS/OjHO0Mk+vm1n2/mQbBtUwXHmshxBCCCHWte6n61/+5V++FusQ69Cd7ag9Q0RBCMpAGwpMA5QBhoG2THBsEsfmuFfDt0zMjEtkmQQZB89y8f02/IGY2E3/2hOtGWnW+UD3DuyOHqIVHjdjWuxw84x7dUxbYRsm+atsR78V8pbNPe3d13sZQtxUzH278T/1ETJ/9FU++fIJ3vx4N9/Kh3T0NmC4HVXKokpZdNNG3za/uYuHBur1HdC00U8Og3NlQWLGtKhEPn4cr9ihuB5HnKmV6XezK95vK5NmHOAnsYy7EEIIIa6AvHveJJKdO3D/5k9Qm62RJGt/8LowNcK5eoX+zEodPhf/yqtRQLeT4e62rjWvtzNX4FyjQtCaOyhZOyFuXtGB2/HrTTJf/TYPfuVlTjx9H8nOPMbT59HlDOqdPtSZTrQdw+7Kxi4aK9RrA6hq2uhKT+Zh15VlITOGyWzgUYkCes3le5sroU+oV5jp2GIZBmGS4MUSIAohhBBXwlj/EHGz6XGzNJOIMEnWPK4WRewrtC3MHFzregpFKQhot51tGZwthLh2wsP343/oMYww4tPfeofsdAmcBHob6IfG0UaCOtEN8xvsEjyTQ1XddMYqoMYLS+/fRDLxYlloJVx5H2ElDNa8nqkUmnQEhhBCCCE2TwLEW9DOXIH9uXYmvQbNVT4kJVqj0Qxk8uter9Nx6XYyDGbzPNzZt9XLFUJcB8ETD+M/8TBuGPH9X3uNYqmV8evw0XfPoLRCHe3Z0LUWRujsn0dnQlQpC81W9i5WqCMDqCMDGw4UFYpSuHKjmhm/ibXOl1paQzORAFEIIYS4EhIg3oLabZcfGNjD3W1dlIKVv4VvxCFFy6HHXX88hakMfmDHHj46sJe+FctWhRA3o+DpRxm+7zayfsiHnnuVfLWR3jFUQ2dCqNsQb6BioNSaodrhwUAr0BwpojVwtDvd2zh/SdC4jqxpMr1Ko5opv0l2lfLSBUrjxfGGHksIIYQQS0mAeAvbnSsS6wStl39tX4lCdueK65aXXpSzLEwpLRXi1qIUMx96hHf29ZNt+HzoK6+SrbUCs1yIQq0f1MUKqi7aiSAboYeq6VzFc+0Er7ejxi4ZWD+3sXmptjKohMvHbTSiiFoUkjHWXpOJorbC+UIIIYRYnwSIt7D+TI6cZVO/rMzUj2OUTucJCiHe34qOy58dvoMLe3eQrzV55suvkKs1F+ch1tfpWlx2UVql2UNFGiTeMYfSivh8Hm3FJPvnAFAbDBAtwyDQMWGyNAtYiXyCJMZZ54st2zCoRP6GHksIIYQQS21ZgPiX/tJf4m//7b/NkSNHtuqS4iq5psnefHFZs4dpv8kdxc5VupwKId5PipaDbVm88OR9XNg7QKEVJGZVKT2gsU6AeHH/YcclAdmuCrqvjiqG8Og47C2jlU4ziBvYh2grgyhJ8C8rE61FIWi17nxD2zBWbXIjhBBCiLVtWYCotWZkZISf/umf5jOf+cxWXVZcpZ3ZIskln8j8OMY2DO6XGYJCCNLy8aJl09AJrz59kAv7BtJM4ptfIxdVUA1n6Ql66a/VVKvRVcclTWUU8MAUme+bhkIIpoZ2DxWaUFt/jqqpFJFO8C7LIAYb3FdoK5N6HBEksg9RCCGE2KwtGxL1P/7H/wAgCALeeeedrbqsuEo9bgbXMPHiiIxpUYtCet0c7Y57vZcmhLhBDGTzHC3P0eG4vPrBg2il2HNmjA8Fn+P54sdZmGjomahXhsBO0LvLAOl4izYP2i4r6VSwJNHX5UEpCzM5KJbXXI9SCgXLMoheEmNsYCt01jSZCz3mAo8dG+jULIQQQohFG84gBkHAf/2v/5Vjx46teZzjODz88MNXvTCxNXKWTa+bTUuzSFu/78oV1jlLCPF+0uNkiVuZQW0YvPrUQc7tHyQX1/jQ2T+lUKmn2cKjPajAQtUdjKO9GEd703Pumk2zhmvQfWmYqcaLGxx3ofAvywA2o2hDzbIulqDO+h61KOTt0gzxCs26NitMEs7Wyys2/hJCCCFuFRsOEB3H4dd//depVCrbuR6xDfbk2/DieOFDzUZGWwgh3j/aHReUJrkY+BiK7z51kHNtd5CL6zz7hVfoeNlGzeTRuYDk8Bi6v4ZGower0LGBhjDFEF30UXUHznagXhtYs0Oq1nrZsPtmvLEAESBjmIw0a5yozvPS7DgnKvMbOm8t036DV2YnmPAaV30tIYQQ4ka1qT2IBw8e5N13392utYht0uNmUUpRjUIypkW3m7neSxJC3EDabYeMaS2dHWgojux7gtP5+8iEPh868WW6olH0PdPQ6aEPTqGfPZf+foP0QDW99Oku1FwWdaFt1WMNpWhcFiA24ghLbextK2/ZTPsNjlXmcAyDI/OTXKhXF4PgKzDne4w3G7xVmrmq6wghhBA3sk0FiL/wC7/A7/3e7/G7v/u7DA8P02g0aDabS/4TN54ux2Vvvshc4DPg5nCMdYZMCyHeVxzDpNvJ0LwsIKMY8mb70xztfBBHB3xw5vP0N0YW77f0uqWlSwzU0Epz8X9MFCBZ+VDbMBZK4y/y4nhTGcRmHFOPQnZk8hgonps8zzemhqlHVzYjcdSr0+W4XGhUOVqZ25KyVSGEEOJGs6kmNT/+4z8OwL/4F/+Cf/kv/+WKxxw9evTqVyW2lKkMnu3bxW2FDrLmlvUlEkLcQgYyeS7Uq3hJTJ+bxTYM9O4yOhvxTv8gwTGPB44c46mvvcbLTz/A6N6BFa8TJgn2anMKnQT94AQYGnWuAzWbQ89noXv5l4uWWjrsPtYJoY7JGhv7N0wpRc6wcM30C7FuN0OUJJypVaiGId/Xv4uC7axzlUVBEjPtN2mzHaIk4cWZcab9Js/07dzwNYQQQoibwaaihV/6pV9ad/6UuDEZSrE3v3o5lxDi/e2utk46HZfz9SpHq3MMZvLYDjCUloWeuG8fgWNx+KV3+MDzb3IkiDh3564l1yiHPnOBT5fj0uGsUsrekwaD2q+hZnOoc+3oog/O0lSipQzq8WKAGCQJsdZYK7UxTUAdGQQzQT80sVAbc3k5vWUY7MzmGW7WGWnWuNvu2vCfz3zg48UR3baLMtPA81y9QjUMKG4i0BRCCCFudJsKEH/0R390u9YhhBDiOsqaFnvybQxlC6DgWGWOndkCxiVfCp67cxehY/H4t77HIy++Q6bpc+zgbaAU9SikEUXc3dbF6Vpp9QDxot462o1QcznU83vRVozeW4Z9JaBVYhqHBEmMY5gESUys9colppN5VDl9PH2+Y+EaK1FKkTVNLjSq3N228QBxLvDSTq6tx3cMk0gnTPtNCRCFEELcUja1B/GiU6dO8Ud/9Ef8+q//OtPTaYOC8+fPU6vV1jlTCCHEjcwyDB7r2sFgtsCEv7xb5+jeAb79kUOElsn9b5zk0EvvopKEchhwoL2b+9u7MVBEySqbCxceSKMfG0XvLqEzIcQGxqkuKKUzWi1lECZ6YRZimCTEOsG82KRGg3qrD/XdAdTZzvQmpVGnO6Fur/nQRctm0mvQ2OBexLnA483SNHlr6XeqJoqJZn1D1xBCCCFuFpsKEOv1Oj//8z/PJz/5Sf7hP/yH/Mf/+B+ZmpoC4N/9u3/Hr/3ar23LIoUQQlw7rmnyePcOFIpwhUBvcqiXb378MZpZl/0nhnny669jBhF9bpYuJ0O3m6ESBQvH16OQU7UywWVzDXFj9F1z6A8OL3RDVUd7IUkD1ThJ8FrnBEmMurQjznwGNVlAlbKouoNu92BPGaUVzK09yidjWvitPYXrKQU+35wawY9jOi/LihYsm+FmjVivEwwLIYQQN5FNBYi//Mu/zBtvvMFv//Zv8/rrry8ZFvyhD32IF154YcsXKIQQ4trrcjJkDXPZsPqLSt3tfP0HP0ClPc/AyDR/7ptv0R0mGEpxR6GDWhSitSZKEmYDnx2Z3LKupEsM1NAdTVTNgflWuSgw0kj3QAZJ0rolpc51pMf01tHZEH37HDqfBqXKW79Ts4HiQqNKrBMSrZnxm5yqlpYExDN+k69OXqAU+vSvMD82b9nUooBJmYsohBDiFrKpAPG5557j7/7dv8vjjz+OaS59Ax4cHGR0dHRLFyeEEOL6MJSizXGWZ/0u0Shk+fonPsBEXwf98zUGfu+LqNl59hfa6XWzjDfqjHl1bi+0sy/fTjNe/Voo0L2tQKuWlpl2OS5vlWaZC7xW4NbKIM5l0g6omRB9cBL91DB0eZBpjenw199e3+1kOFqZ4xuTI3xh7AyfHz3DN6dHGGlWF455rzJHOfAZzORXbNBmKIVlGHxjaoRz9cq6jymEEELcDDYVIPq+T0dHx4r31ev1ZUGjEEKIm1eHnVkzQAQIXZvPfeh+RvcNYpar5H/nc+RHJnm0ewemUtxV7ODJnkH6MtklVScrKrQygNW06Uvesol1wtulGYIkTvOH01nUGzsA0PtKS9/F3FaA6K0fILqmyWAmz3CjSj0K6c9kcZTB8UoJrTVBEjPSqNHpuGtep9/NgYZXZiek1FQIIcQtYVMB4v33388f//Efr3jfV77yFR566KEtWZQQQojrr8N2iDYwDN5TMPrxp/AffxDl+WT/95+w99h5PrX3dp7qHcI1TbqdDI5pLjSdWVGxtW+xttgVtNNxGW5WKYc+BqCO96ASg+TOWdhZXXp+pnVtf2NfVlqGwUA2T5eTwVQGnU6GsWaN2cBjxm/SiEJyG5gd2+G41KKQ+cDf0OMKIYQQN7JNBYg///M/z3PPPcdP/dRP8dnPfhalFM8//zy/8Au/wJe//GX+xt/4G9u1TiGEENdYzrKBtWffhkm677DLzRI8+wGaP/gsAO6Xnqf3Ky8vzFLKWTbdTmbJbMNlnBhtx2mA2ErGZU2LZhQz43tYkYlq2uhcAHvKy883dXq+Z126XXHDbMMgAd4tzzLWrINSG5r9ayqFRjPre5t/0E1aM8AWQgghtsCmAsTDhw/z27/92wRBwD//5/8crTX/+T//Z4aHh/mt3/otDh48uF3rFEIIcY3lLRvQS0pDq2HA+UaVKa9BlKRzAPcX2ulrNXGJDt5N8y98Cp3LEH/7ddz/80Xw0szarlyBRhyt/oAKKPppJ9LG4qgKUymCJCbTyKU3FIKVzwdwI1RiQHRFU5zod7Mcr5Y4VSuR30D28CJHGYw0t3fU06TX4E/GznC2vkJwLIQQQmyRjb/7tRw6dIj/9b/+F57nUS6XaWtrI5tdu6W4EEKIm0/etLCVSagTHGUS64RSGPBwRy+zgc9os4apFPe39yzJtMW7Bmj+9I+R/8MvY50ZJvff/y/NP/dxBvMFDKaIkgTLWCWAKwQwl4OqA4U021i0bEqhT3ejHQBdXCNAzMRQI80i2msctwrbMNiRyTLpNxlwcxs+r2DZjHt1giTGMbZ+P/584PH1qWHKgc935ybpd3OtDK8QQgixtTb1FetLL71Es5nOjcpkMvT390twKIQQt6iMaZExTbw4Zj7wGWnW2ZUr8HBXHz+wYzcfH9jD071DdLuZZefqjjacv/kTRHfsxZwrkf/vf0jf8CQ9bpZyGDAXeCuOvbgY/KnaYnOYvGVTjyKceutx1goQFxrVXHmQ5hgmu7KF1YPYFWRNCy+Otq3MdLhRpRaG7M23UQ4C3q3MbcvjCCGEEJvKIP7Mz/wMpmly4MABDh8+zKFDhzh06BCdnZ3btT4hhBDXiaEU7bbDyVqZoWyeBwu93FXsxFRp4DSYLax5vsq4+D/2MeJvvIL78hvkPvslPvToffyPXUW63CzzgU/h8izYxfLR2uLthlLcWWjHuBggrlFiqjNRumtyA6MuttLFDGop9BnI5rf8+ufqVfJW+pwKlsVkU2YvCiGE2B6begd98cUXOXLkCK+99hqvvvoqv/M7v0OSJOzfv59Dhw5x+PBhPvWpT23XWoUQQlxjA9k8bbbDw519ZDaxJ2+BYRA8+zjJQC+ZL36Dna++w18a62X240/zfHVmeUmme7ET6dLHUiioOWgrXpx3uJLWfcqzrqRPzVVxlMF4s86Btq4tvW61lXHtao3ccAyTShQQ62QhWBdCCCG2yqbe7Ts7O/n+7/9+vv/7vx+ARqPByy+/zG/91m/x+7//+3z2s5+VAFEIIW4hD3T0bsl1ortvo9HTReYPv8zQyDQDn/0q4x86yGkV0OteslXBidFKQ3BZiWjDRiUGuq25dmPVVQLMayFn2Uy2mvdspjx1PdN+k0gnC4G0a5hUopBaFNJurz2nUQghhNisTb+D1ut13njjjYVM4ltvvYXrujzzzDMcOnRoO9YohBDiFpD0dNL4qc+Q+ZOvY584y/d98SWiw7dTvWvvYiZMAXacBoiaxWCw3io5XaW8NEoSJrwmA66Zbq6/ij2IVypnWoyHDcphsOK+zCsRJgkjjSrmJVGxZRgkWtOIIgkQhRBCbLlNBYg/+qM/yvHjx+nu7ubw4cN87GMf4x/8g3/AXXfdtaFZUUIIId7nXAfvRz9K8vIbOM+/yg++fJw3Ziq88OB+DMuiP5MDN0YFFjo0wGkNRGxlFLW78hzA2cCjaNtM+VUG0dBwrtUzWmC05iHOh96WBIgjjRqvzE4wGzSXZlkBraG+QpMfIYQQ4mptqgbm+PHjWJbFgw8+yEMPPcTDDz8swaEQQojNUYrgAw/T/POfJMlmeOjUOD/7/Hv0NQJKgX9JmeglWcCw9XZlJws3JVoz3qzTjCPCJOHe9m4sW5EUfJRnQfPal5maKKa8q28gc6Za4s8mL9CMQ3ZmC2RX2P9ZlQBRCCHENtjUu+eRI0cWykufe+45fvVXfxXbtnn44Yc5fPgwjzzyCA8++OA2LVUIIcStJN63k8bP/jkyf/xn5IfH+cyXvsuXDt9O0xlKCyoDC0iDIBW1gkV7MYNYCn1yls2032Qgm+dAWxfNOORCsUaxloHZLGqyAO0e+vb5q1/w2fa0Cc5AfdVDOhyXo5V5upwMd19Fs5r3KvNYStHjrjxKyjUN5oMmtSgkShI6HCk1FUIIsTU2FSBms1meeOIJnnjiCQDCMOSll17iN37jN/jVX/1VlFIcPXp0WxYqhBDi1qOLBZp/4VM4LxzBefE1PvnSMY73BbxnfT/JpRnEYGkGUWtNLYp4pm8I1zDJmBamUhQsB7+9TnG8B3WqCxWaMJdFdzah+ypmFDYtjFPdaCNBd3qQWbnUNWtatNual2cn6HVzK5aahkn6HOxVGtloranFARlz9X2UrmEyF/h8e3qUWhTy0R17KNrXvqxWCCHErWfT9Tdzc3McOXJk4b/jx4+TJAl33HGHNKkRQgixeYZB8KFHiXcPYP3xV7lr6gz91h/wUukxaoOtYy7LIFajkHbbYU+uDfeSQCpjmnjFNMOnwsXb1Xu96IcmoHCFZZmlNEOnEgPOdaDvnl310IJlUw59GnFIN0sDxHLo88L0GLtzBQ6u0iHWT2LCJCFrrR7wOYZBJQqZCzwMFC/NTvCR/p0y9kIIIcRV21SA+NGPfpQLFy5gmiYHDhzgscce46/9tb/GoUOH6Ojo2KYlCiGEeD+I9+3izP/7E3R87lvsnJ/l+488x5vW3Zy9Y+eSDGItCqhEAU90Dy4JDgEyhoV2Y3Q+QNUddJsH2SgtNX15J+wroffPrz0qYwWqfEmgN1qEwSq0rdxRtXUGXrw0y9iMI742OcxIo0ZujeygF6cB4lqjMlzDpBo22JHJkjFNhhtVKmFAp7M13VOFEEK8f20qQPzBH/zBhX2G2ezK+yKEEEKIK5Vtb+MLjx7i6RdLHKh+l8MvvsPA8BSvOT2EZImtiLkg4IM9g9zd1rns/ItlmbqrkQaIu8vQX0e3+6jTnagzndC00PdOby5ILKWBlx6sosaK8OoQ+p5pGKytekrzsiYyJ6rzzPoeOzI55gIfrfWKTd68JCJBY67RAE4pxW2FtiW3NaKITqkyFUIIcZU2FSD+zb/5N7drHUIIIQRF28HIwrG2R5js7ePR6a8zNDxFt/mHHOn4MKeJyFsWtxc7VgyuMqaFbRgE+2dxepvQ1UwDwT1ldHcDXh9AjRfRQxXo9De2qEhBzUG7EfqeaXSbjzrWjTrdiR6orRhoWkot6TJai0LeKc/S6TjYyqQcBXhJvGJ3Ui+ON5vgBDSNONr0WUIIIcTlNr0HcXh4mN/8zd/k9ddfp1Qq0dHRwaFDh/jZn/1Zdu3atR1rFEII8T6RNS0yrQKVOWuA5z71JA++epT9J0d4avaLdLw6xLFH71m1wYtrmFjKIDQinO7m0jsLIXpPCXWiBzWbQ280QKy4KK3Q7V4aDO6qwGgRVXXRTQtyywMz2zCWBIjDjSqNKKQ7V0RrTZDE1KNwxQDRj2O03tjSFilqMvZCCCHEFtjUbvZ33nmHH/7hH+a5557jvvvu40d+5Ee47777eO655/iRH/kR3n333e1apxBCiPeJnlyGxIzBN4lti9ceP8hLXR/HN1zuOznKx7/4MsbE9IrnGkqRt6yFTqHLXAwa5za+TUKNFwHQ7ZcElF1rX8dSBrVocY/ilNfAMdLyV6UUClYN6BpxxGbHCzuGQSncYMArhBBCrGFTGcRf+ZVf4Z577uE3fuM3luxBbDab/JW/8lf4lV/5FX7nd35nyxe5Gf/zf/5P/tt/+29MT09z4MAB/uE//IccPHjwuq5JCCHExnW7Gap2hO256FhBYDCW3cNsTwf3Vb7M3ol59H//vwRPHSZ4/EG4rOFL0bKphqs0kMmHaDeCsguhsTA2Y1XDbaixItqJYGBxv6HubKLOd6Dmsuid1WWn2YZBPY4IkxhLGUz7zSXZQq1Xz/hVwwB7k91IHcOgFFzFGA8hhBCiZVPvQG+//TY/93M/t6xBTTab5Wd+5md46623tnRxm/Wnf/qn/Kt/9a/4a3/tr/G5z32Ou+66i5/7uZ9jbm7uuq5LCCHExhUth9hpBU+etTDiwsu5fO6D9zL17KNgKNxvvUrud/4vxtTSkRMFy1k9g6iA7iYKtTT7p1v/XWqkiDrWjVYa/cAkuJd0Je300ErDfGb5eYCtDKIkwYtjGnFEPYqWzDW0DcX8KgFdLQpWLaFdjWOYCwGpEEIIcTU29Q7kui6lUmnF+8rlMq7rbsWarthv/dZv8ef//J/nM5/5DLfffjv/9J/+U1zX5XOf+9x1XZcQQoiNy5gmfnsDAHWuY2HERWLFWKZJfPgg9Z/9caKdOzAnZsj91h/gfPsItMZK5C2beI09fLq7de2zHTCdQ73bi/rmHtR3dkHcqu2cyWIc7QUF+uAkdFxWvmlpaPNRgQUjS7uJAlhGK0BMYqphQKjjhRJTuDjo3kNrzbTf5EytnK5Na6pRiHUFGcQwSWhE0qhGCCHE1dnUO9AzzzzDv/23/5YjR44suf3IkSP86q/+Ks8+++yWLm4zgiDg3Xff5cknn1y4zTAMnnjiCd58883rti4hhBCb4xomtaFptB3DWAE1n2b6IjMkZ9rkTAvd1UHzJ34Y7/ueBMPAfeG75P77/8WYnCFjWmvv4ettoDuaqKqL8eYO1FgRFZmopg1TOQDURAEgHWXR11jxMnpvCa00xrEeONe+7H6lFF4cUYmCZV1JXdNkxm/yvy+c4POjp3lldoIwSQiShCCJN51BNJVBoqWTqRBCiKu3qT2Iv/iLv8hf/at/lb/4F/8iXV1ddHd3Mzc3x+zsLA899BB/7+/9ve1a57rm5+eJ45ienp4lt3d3d3P+/PkruqZhbL7R+Ha5uJYbaU3i1iCvLbEdruZ1lbEtbBei/bPYx/vgbDrvMLRiejIZLLMVPBkm8WMP0LxjL+6ffB1zeJzcb/8hOx+9H2NXccUxGED6znd4An2iCypuOvTeSlBv9aPG2mCgAbNZtNKovgarRpv9TTg0AUcGUKNF2FdZdoivY8qhj6mMJevJWfZCVWvGNKnFITEJIQmx1jimufr6V6PSGYrr/ZnHWtOMIwqWvXBbOfR5tzyLo0wOd/dv7nGvIfn3SmwHeV2J7XAzv642FSB2dnbye7/3e3zrW9/i7bffZnp6mt7eXh544AGeeuqp7VrjVVltEPF6LMugu7uwDSu6Op2d+eu9BHGLkteW2A5X8rqKdUJxNoO5vwknNSTpv+EqlzDY1bb83+buAvrnf5L4O68TffFb9Lz8PX7ieIFjH3mYykD36g90uA7UAdAavJMRzGVxqm0EgYXRFZBZb/J8QdM8HkLVIWNmMbKLex+z2sfIWtSimM5ilnxm6TaMPOnvoyQhaDQodmTx4hgnY9FW3HiX1SWPl7Po7i5wdH6WShBwf3cPuUsCQYDT5RJvlKf4kX13YBkGWmueOzXCcLNCr5ulvTOHtckM5rUm/16J7SCvK7EdbsbX1YYCRM/zeP755xkdHaW3t5cPfOADPP3009u9tk3p7OzENE1mZmaW3D43N7csq7gRUZRQqTTXP/AaMQxFZ2ee+fk6SbLpAVlCrEpeW2I7XO3rSvsJlaRJe4eHajWT8RKfsG4wO1tb+aR77kIN7MD+k6/TfWGcJ/7gW5y+ew/vHLqTyLFXPudSA1XUmU781zpQQNxRp17bwOiI9iaqatMcMWBg8X0j9GNeHhmlFgYMZPPUo5WvpbWm5vlMzVZpxjGeF1JXKxzrmeCb0L5yh9YkSDg1Ncs+s8CRsXFO10q8OzHFJ4f2YV6yp/HYzDQnSnMcc6cZyOZpRCHj5QpdlsNkpc7J8Rn6Mrn1n/d1IP9eie0gryuxHW7E11VbWxbbNtc9bt0AcXh4mJ/6qZ9idHR04bZCocB/+A//4YbKGjqOw7333suLL77Ihz/8YQCSJOGll17iL//lv3xF17xR/jIvlST6hlyXuPnJa0tshyt9XeUMi3oYorsbCwFibEVYylj7eu1txH/hh/neCy9y33ff4/Zj5xk8P8Ebj9/D2J4daz/orjKMF9K9iLSa2WxkYn1nEzXSBnMZ9I7F4LXbdvGSmJ3ZAoZS6DWupbXGj2P8OEJrlh9bs1FHBlGhSXJ4FDqXB5AZw2Taa9IIQ+Z8jz4ny7TXpOwHdDguzTjCMUwu1Ks0o4jztQr9bo5KEOBHMY6dZhOnvSY9zuYzmNeS/HsltoO8rsR2uBlfV+vWkPybf/NvMAyD//k//yff+973+OIXv8iBAwf4x//4H1+L9W3KT//0T/O///f/5nOf+xynT5/mn/yTf4LneXz605++3ksTQgixCTnLItIJ9Cw2iInNZGPNW5QiPHgXv/3xQ5zc20+u6fPkN97gia+9Rra+RmWIk6AfmkBbcTr3sG1pEObFESdrJaLLR2h0tsZVzGeW3GwZBgXLxtjANgeFWmhSs2xuRmigXh9Ahem3vupYD6wwxSNrmjSTmLFmnWYckbdsNJpKGDDRrPOV8fNcaFSohAH9mSxn6hWCJB3DoVTaVCdjmgw3ls913E7VMCDW68yjFEIIcc2sm0F84403+MVf/EUOHToEwG233cY/+2f/jE984hNMTU3R19e37YvcqE984hPMzc3xn/7Tf2J6epoDBw7wm7/5m3R1dV3vpQkhhNiEvOWkAWJ+cZh84sQ4av3SGIAuN4OXcfnCo3dy6I5dPPDi2wwNT9E3Pss7D9/J6bt3o1cKNvMh+omRNEa77O5aFNLjZJkNPPovLcF0Y3Q+QNUdtG8unZe4CWGSECbJ8rGK0zmUb6F762mwWMqix4qwc2kgZyqDWCcMN2pordOsJYpymAa65xtVDKWI0bRZDqNenSmvSS0K0ToNYvOWzaTXoBGFy/YubodZ3+O5ifMYSnGwo4cDben7dawTKmFAp5NZ5wpCCCG22roB4vT0NLt27Vpy2+7du9FaMzMzc0MFiAA/+ZM/yU/+5E9e72UIIYS4CgtD5RUkD49D1SF2Nz5AvtPJ4Bhp59C9B+/nC91t3P3mSQ4dH+GhV4+y7+QIrz9+D7P9K3yBuEqA5yUJ+/J5ztYrxDpZsq+PDg/qDpTdVcdirE0T6gQvjjAvG4pxscRWD1bB1KjXs6i5LHrnCpk+DfU4WGjO5hoG034TP4npsB1GGjWKto1SCgVM+Q3qUYjd6rKXMUxm4ibfnZvkqd7Bpc9xG5xvVKjFIW2WzYsz46A1txc7eW1ukvONKj84uG9Jt1UhhBDbb1NdTIUQQohrwTVMuBgodTfT/5psOEDMmhbdboZuJ0uXk+HZob28mc/zu7t7+egbZ+ifLvHhL73CudsGeevQ3fg5d/2Lorm90EGYJAw3awy4i90+dZuPGgVVdtFXECDqVolpI4qWlqRqYC6LRqelrHHrvubKb9+OYVAOAjJGGmBnDJNpv0GQJLTbDl1OBqt1/ZxpL5STuq3jlVIMZPKcqM4T6oSd2QJ3FDu2JVAMkpiT1RIdlkPRdjCVwQszY7xbmWMu8NFoztTKHOzYfKM5IYQQV25DAeLP/dzPYZrLy3p+6qd+atntL7300tasTAghxPtWGrAsFlvGWmOgsDcRqDzStYOsmb7NtTsuT/cO8Z6b5X935Hl4dJ7Dr59k7+kxhi5M8e6Dt3PqwJ6Vy05Jyz8tZdDlZHiqd4hXZyc4WSuxO1tIs3XtrX2I5SsriTQAP4nxkrQRz4KGnZaXtnlgJ2CBNhJo2Okfz2XbG7OmxUzg0e/mlvw+0gk9RmbJ2KeCZTMbeFiGQd5c/DhgGQb9mRxjjRpnahUcw2R/of2KntdaRps1KlHAzkx+YT1Z06IS+vS5GYIk4WhljruKnbgrfAa53sIkYbhR3ZY/GyGEuJ7WDRD/+l//69diHUIIIcQC1zTTQfKtWbYXSzo3mkEE6HWXduJUSnFvezdzgcebhmJmzwe5981T3H70PA9+99hC2enMjuWzE5txRNFyKFhpeeYTPQOMNmt4SZwGoYUQbSZQcVcM3NZjKoUfR3hxjHlpBnGuFXB2tQJQBeRCVM1FhwY4S5u75CwbNwoXSnQtw0j3cqKWzQS2DYMoSUi0ptNeOu/RMUz6Mrn0z6o0zc5cAcfY2iDtQr2KrYwl6zKVWth36BqaUa/OuFdnb75tSx97Kww3qrw2P0V/JkdeymCFELcQCRCFEELccBzDbDVd0VhKEWuNaSjsLQhSBrMFjlfmiTI233v0AGfv2MlDL79H3+Qcz375VS7sG+Ctw3fRzC8GmI045PZCx0IwkzEtet0sM34zDRAV0Oaj5rPoug2FcJVHX5mhFF4c04wjLEOlQeaFNtS5DgB01yXdV3MR1Fxo2uAs7bRqKsVgdulQ5oxhkjFXfrs3lcJPklVLSDttl+FmnXP1CncWO5fcN+U1OFadx4sjPtK/e2lgu44giRlt1imuEVhd3CfZiDb3Z7mdJr0Gx6vzHOrs41S1xJzvUQkDCRCFELcU2YMohBDihuMYBpZSRDrBYjFQ3EwGcTXdTgazlT2zDINKZ5HnP/You86O88CRY+w+O87QhUmO37uPY/fvp2kqQq0ZyhWWXGcoW2CkuTj3kDYf5rNpo5pNBoimUtSjkFAnOFiod3pRE0UA9EAVOi8JELOtazdsaF8+D/FyPe7qMw273QxevHrXVaUUjqGYC7xl971RmuZ8vYKpDGb85tLOruuY8Zs04pBOO7/mcQaKShRs+Lrb6UK9yjemh6mHEV4cMdqsoZWmHPoMZNd+HkIIcTORAFEIIcQNxzVMbGUQtQbGxzpZaKRytdpth3bboRaFdDit5jRKMbx/kLFdfdz99hnuevcs97x1mn0nh/nWvXvoe+Ae9uSWljl2uxnQi2Wwut1HAWqigB6obWDS8CJTKZpxRJJo3JFu1EQRnQnRD05CcWmApHNh+jgNe/lIjE1yDHPd0lFbmVSCpWuItWbe9+hyMpTDgAv16qYCxEmvCXp52etK6ysFN0aAeLpWAg27cwXO1SsYSpExLGb8NWZrCiHETWh7+1cLIYQQV0ApRZvt4MURkAYkq5VJXsm1d+eK1FvXvihMEmLb4t2H7+RLn36ac/sGyDYDPnrkJM9+4dvYF8aWHN/lZMhYJl7SysB1N9C5ADWXS4fZb4KpDGI0kU4wKukePH1wallwCECulUGczqFeGYSpjQdmV8I2jGVZvHoU4iUxGcOkzbI5Uy8TJhub/5hozYVGhby1fsDvGAaV0Efrqw2Fr06UJEx4DfKWjWUY7Mjk2OHmyJomUxIgCiFuMRIgCiGEuCEdaO/CS2JinWxpgAgwmM1jKcWs7zHlNRhu1hj36tRa+92ahSx//OgdPP/JJwgH+7GmZsn9r8+T+YMvoWZLQLoPcTBTYNpvEiUJWBr98ATaiVCjbeCtEAA1TdTpTgiWvv2arX2WidYov/U8c6uUqbZuV1UXVcmg3umDxvYVBNmGgZfESwLAahSk5b+GQcGyKYc+75XniHWy4jUSrXltfooL9SpvlKaY9JoULWfFYy/lGGaru+vGgs/tUgp9GnFErvUadAwTyzDImha1MLyh9kkKIcTVkhJTIYQQN6TduTaGsgWmvAYaTXYLRx0MZgt8uH8XL82M02VnuKvYyaTX4L3K3MJg9gRN32234d13kOjoadxvvox98hzW6QuEDx4gePIwH+gZwFSK49USu3MFyEbQ4cFUATwLMpcENjUb46VdAGnH073lhbtMpUiStFQV30pHWVgrB1u4MdpIUImBtmJUZMK7vehHxrfsz+dStjIIk4RmHC80CaqFiwGRUopuJ8Mrc5NUo4CneoeWXaMaBbxdmiHSCVpDn5tZmCG55mMbBkGSNu/JbuEXBJs1H6RZTOOykljHMAmSmHIYkJNGNUKIW4QEiEIIIW5IplLc197NV5o10JA1tvYta1euyI6daSZRKUXesjlaSbNgYZLueex2M6AU0T23E925F+e7b+G89AbO6+9iv30c+5EHOHToHs7WKwRJnO7nc1tBoW8BrSYyCag3diw8tqo5S/YPmkoRo9PjQhOdDVcflaGAtgBdcdCPjMHrA6hSFh0rMLe+FNMyDGKd4MURba1xGPOhh3nJAvOWjQLON6o8lsTLus2WgzTjOJDJoTUbCg6BhYCsEUV0rZ9w3DaTXn31Nau0kc4A0qhGCHFrkBJTIYQQN6xeN0vGTPf5OdswLN02Fufw9bpZut206UotCul1s0uzVpZF8IGHqf1/f4Lg0QcgSXBffI3+3/wsj58cx/fTYFC7rb2N/iXrHSuiPBuda+3lay4Ndg1asx6D1u3u2iWV+oEJ9BMjabfU/MrX3FqKxiV7Nmd8b2HW4kUZ08KL02za5eYCD0W613KjweGlGvH1K+GMtWasWSe/SgbTAGorPGchhLhZSYAohBDihpUxLXa4eRKtsVeZ1bdVDKW4u62LWhRSi0N2ZgsrH5jL4H/kCer/n79AeP9dKM/nkddO8GNfeJk9J0egFSCqiwFiAupsBwD63mm00umIikukM/8Uht9Kk7lLG+hc1IgiEq3BSdJyVlj8/+Y2ljhqvdAwKEwSyqGPe1lG11AKjV4xQBz36mSuOAOsqEcr/3lcC7N+k1oUkrNWXr9jGMwF648bWUusE07XygTXea+lEEKABIhCCCFucDtzBVzTvKLM02bdXujgnrZuXMNac34ggG4v4n3ywzR+9scp799JW8Pn0e+8zQ+89BUGmmcWm9TM5NLsYXcDOnzIhqjAgnBpDWmiNVbYOmeFDOJ84DEf+kxf1jVTX5yLuI0ZREMp6q0sXi0K8OMYd4WMroFizl86MzFIYmYDb9UAaz2OYVAOry4AuxrjzToJGnOVLygcw1xYXyMK04ZFmzThNfjW9CjfnBqVhjdCiOtOAkQhhBA3tB43S7vt4FyDANFUike7+3msq3/dAPGipLeL6qd/gN//vgeZ6uukvVrlibkv8eH3vsSO4SlUKc0K6v56ekLukkH3l4h1gh20jr0sg1iPQvwk4VBnH7HWSzNNrQyi2sYA0TYMKuHFADFsBUzLN0lmTZNxr77ktlLg48fpSIwrkWbovPUP3AaJ1pyulymYq2dnXcOkGUd4ccS3pkc5Mje56bEcF+pVYp1wrl7maHVuU+ddzOxqrYmS5LqPBBFC3PykSY0QQogbWqfj0u1krlkXS8cwuae9e1PnFG2Hxo5ePt/XyV1jVe77znm6mtN88GszzOXO8172ccbzrQApH8IMaYDYvliO2eVkyMXpDMTLM4ilMOC+9m4e7OylFoUcr84zlG01RbkGJaa2Mqi2SkfrUQirxCBZ06Ic+nhxtDCWZD700eiFvZ6blTEsylFAI4ooONe2U+hs4DEf+OzIrP5lQdppNWHW95j2mww3avRnc+zLt2/oMbw44my9TKftEiYJ5+tVHuroW9YxdaXzvjMzxr58G/e2d/PNqREqUcA9bV081Nm3qecphBCXkgBRCCHEDc1UBh/u37Vqid+NwFCK/kyWU7UyE3t7mTx9mAHvHPdG36FrfoanGn/CzHc6ePehO5jKFtL+n5dlENtsBxW0brssg5hoTX8mB8CefJHjl2aZrkGJqW0Y1KKQWGvKob9i9hDSbNps4lMJg4UAcdJrXNX+Uac16qIS+tc0QIx1wtHyLKxRXgqLnVZHmzX8JCZvWRyZnWIoW0i72q6iFPi8ODuGY5jUo4jOrEtiaia9JvOBn3bQXcOs71GLQt6rzDHlN5nymhiKFfeACiHEZty477ZCCCFEy40cHF7U6+aILg6Kz8RMOLfx1Y8+zUtdH6PkdNEzXeJDz32XZ9/4Gr3eMKreCujqNgSt5+cv34MYJgm2YdDlpAFDmklVi6WEdpLOVfTsVTN7V8ttDayvhQGzgbfi/kNgIUvoxen6E62ZaDYWBsxfiYvXLEfXLvDRWvNmaZrj1Xn63NxGzmC2VQbbabuUQo8L9SoAUZLwwvQo85eUydajkOenRxlr1hmuV2mzbZRSmMogRjPtN9Z9xCm/iaEUrmEy5TUYzObSjr+xNLoRQlwdySAKIYQQW6DddlCkwYVyY2gAcznGsn2M7upnsPN73PvmKXrm5niazzNd28GxqQeZSnaiu5voQxOt2YksySDWo5B226XYGsSeM21swyDUCY4y07mI2RBVc9GRAfbmm6Ss5+IsxOmgSTkI1syMAQQ6DVIqYUAtCujb4H7OVR9fKWb9a7cP8XS9zBvz0/S6WewN7H1VrTEgGcNEKUXOtHm3Msu+Qhvn6hWOVebpy+TobAX5p2slJr06u7KFZaW3WcPkXL3C3W1dqz6e1poLjQo501y4JqR7aJvXcSSIEOLWIAGiEEIIsQXaHRfHMAmShEym1ThmthUYFUNG9w4wumcHO89OcO9L5+j1J+gd+TLzdi9Hw4cY1Qb4ZpoNtBZTgY044rZCx0IgkTVNXMMkSOLFQC0bQc1Ny0ztK8i0eSZMFGBHDTIrZ6BMFOfrFfwkpmCtVeqpCVudPOdDjwR91R1oM4bFpLd+Vm0rzPhNXpoZp81yFspk1+MYBqXAp9NOmwx1Oi4jzRovzUww4dXx4oiJZoO7ip0AjHtpVnWlfZlttsNYs85os8bQKqNWqlHIfODT5bhLbjeVwr+BRmVcuhdVCHHzkJ9aIYQQYgtkTYs226EZRWQulojOpuWJutAK2pRiZP8AI4NDDJ2e5sDJ43SWpnli+jkqf1TguBFyoXsvmjRLNB/6JGj6LmmSopSi3XaWdva8tFFNIYByBtq95RtJYoV6txfdW4eBVrfRyRzq3T5UbKBrDvq+/z97fxIkWZal54HfvW/SWdVmMx9jjozIyIzIqaoyUUgUqgg0ARCggN3FRZPoFmkRdAuEG665IHdccMENKQLhgr1oEbAHijRaWBSMrEJljTmPERmzz4PNprPqG28v7lM1VTNVm9w83T3rfCIu7mGm+vTq02cW93/nnP/fmfn+yq7HbjgkMdmpVbVRm+PucIjiYuY0kxSdkVFNzFH7oE4c8fPmLrvRgOvFKl9uLJ9LkFqDmAKNXGw96HcJ05SVc1Q9C47LXtRlI58T1UqxFpT4uHNAZgwbxRKbwx6pyciMYTcczG279bWDpzXf29vkd1evU/P8Y4Y1+9GQJMuOVXIdpRlmybgt+Vny8+YuP2/tUHcDfnvlylSlUxCE55vnf6hDEARBEF4Q1gslBmkyjqlQo1zDypGqXiHj4ReX+N/+w2/ypxt/h11/g1qryzcO/pB//+7/m5c/vMvjboeC4/I7K9e4VqpOPb3hB1NRF+MsxL4H9+roH15B/eU1aE1XmNgvorYqqM8Wx/OK6tYCKtXj78+bYyw5Lr0kPlXwOUozyKMXHg97lObMK56HkVFN80geYmoM/9vWfX7Z3qefxPy4uc3ukZzIk4izjO/tbvKHW/fHM4KPBt1zO+ZWXI/XKvUpIRc4DleLZa6XKpQcj25e9WvGEYNTKmvLfoH9cMj/7+Hn/JvNu6Rmum24l8Qw43NwlCLLDiu4z4rPuy1+sL+FrxweD/t81mk90/UIgnA+RCAKgiAIwiWx5BeJTYYJDufATCE5zD48ilJs1a/ynZX/iH/3rW+zGdygHHf5+vd+yf/1X/yQ/+hei9f80jHX0Jrrk07m3eUCVHV81IGt1Ki+j/pgZfrl9m1VTA09aAdWDPY9jJtiqiEqdOe6obpak5whY89VimGakJqMbhITXDD/cGrdSqFR3Om1p74+SBNaccj6aL7PwPYZDF5GNOOQXprQjEP+cvcx/SRhLxpSds/fYHWa06kxhv1oSDMKwagTYyyUUlwrVVjyCzzod9kcTL+ng2iIp2cLxBRDbJ5dm6kxhl+0dik6DjXPZ8Hz+bzXms7uFAThuUZaTAVBEAThkrhWqnCtVOFhtsu113woJLDSP/l2rGurPbuldf58+UvU67e52f4+rz3YRX3n+5jv/pT4vbeJvv4lTM3OpJXyGcBeHj1Rq+Qv0PUhVRgM+Cmq52MSBdtlm7+4f9jmp7bLmCBBZRpTGcLCEDqBrSKWOjOXuuwHp+bzWaOUhDBNibOMygXE1iwaXsBnnRbdiRiHfhKTZBluvqaS63Kn1+HLjZV5h5liPxpiMGwUSmwO+3zSOSDKsksRtUfxtOazbpOy4+GcsevW0xpHaT7vNrlaOpxH3I/CmWt0lDUTepYVxF4S05yYj6y4Hg8GPR4Petws157ZugRBODtSQRQEQRCES6LguHx7+SrlwKVzbcfO+bnTVbfUZNMtg7lAVHnQ/UFjgf/1r73Fo//zPyT+0psQJ/jf+ynlf/rPKPzBH6K3dik5LsZYodBNYgZOZNtae56tDpZiqOftmNtl9AerqB+vW6dTL6/kbJUPsxhLMWbBtmaOKpCzKLneqaYjoxbTMEtJTIZ7UkRJM4DN8mHMxwmUXJdhmnCrfdiu2E8TlDqMwqi4HvvRkM4ZswA3Bzaj0VEaAzwYdDGYmeYxT8pyUORhv8ftXpvSOUTzgu9zp9cZv6c4y2gn0dyokdFjnhX7UUhiDucjlVJ4WnGr2z7lmZfD7V6LW91W3oYrCMJFEIEoCIIgCJdIxfOpez6xOb5JD9OUh4MeW8OJOblRLEXe2pm5Ka7S6NUlhv/B79L7z/5Twm99FXwP7/1PKP/f/2eu/X//La9utbhRrPDuwjI74QBTCQ/nA6vRYdvpvbr9O8kFxUoPUxuiBh5qu2y/VkpgYYhRxlYQn0BfOEoRZRn9JMFg5lccY4360Qb6F2uoP7kJj/MKmQEeVY7PT2Jba//k8QN+crBDajI77znxfV87JCZj6wxtpqnJ2Bz2xu2kDc9nc9ij8BSqh2DPy7VimYJ2qLr+mZ9XcFzCLOXR0JoK9ZKYKE3x55jQKNQzFYh70XFjogWvwN1+eyoL8mkwTBP+fPcx/3bzHn+59/ipvpYg/DojAlEQBEEQLpmK45Mc2aQnmRUuN0s12wI6Iq8gjqp5qZvgaj1uITSVMtHf+E26/9k/Yvi3fpusUSW4+4h/8J2f8w/+17/k6/f2qCqHpHxo4GKqEaY6mku0Qmv0mmZxCEu5QM1FmSnFttK5MEBFrjWxuSBu3ubYSaKTDW02y7a9tZyv84MVW9W8W7cVz5+vHROqdT+g7vv8cH+LR4MerTjEOfIaBe3w3b1NbnVPNkZpRhG9JKbo2PNedj1cpah5Zxdv50UpReMMbbpH8bXmYb8LWIGYGTN35tEYZt6c+FXxcNA9ZkwUOA6pyZ66WU03iQnTlNVCkUeDHt0XoIpojOFer8OD/PM9K5kxdp5VEJ4CIhAFQRAE4ZKpeN6xTfp+NORGqco7jSUmvV6Mm7d85hXExLGB68diCnyP+Otfovd/+z8y+Id/m/TKKv5ek8q/+A7/6f/yl7y1+WMKaR5dUQ2hMr15NO9sY9a7toK4mLeTjqqKuYmOeXsX46aouw3UT9Zhu3Tu9+4oRWoMnSSeFsJHUI+r+WvuYN7eQRmF/vka+lMbZKGGLuwef/2K56MM7IdDWlF0LOphOSjioviLvUf0TxAI+9GQ1JgpA6D1QvnY8Z4HKq7H42GPKEvppvEsA9MxShniZ2AI82F7n7/YfcR+NKTkHM/JbHgBH3cPTvxMnpROEmGMoei4hGn6K8vOvChxlvKnu4/4V5t3+MH+FtkZTKBGPBx0+ReP7/Cz5s4xl9vLoBWHz9wNV3h2iEmNIAiCIFwyR2MSUmOITMbbtSUqroejtTVX0XrcYjoSa4mbnOyiqTXJF14lefMVnIebeN/7GcVPbvPe7Y/5Mp/yoPgqn4ar7C9WMTrLTWgi2OhhRtmH9RCjDMrkSmPkslpMMF/ehp+toXZLsFvEfOuBNbg5I45SJCajHUfzdUzPQ7UKmFJkZyUbIZmboT5fgJ4PVzqohzXU/Tpm9fgmv+C4PBh06SXxzFbLuufzaNinm8RjQ5+jbA17M51Az8x2CfwUGk+/ilNyXA7ikL1wSDuKjlVNJzHGtvj+qrnba3Or2yZwnJnzkWXX46AfshsOuTHnM3lS2lE0Fs++1tzutegmEUXH5Y3qwlN5zYsSZxl/sfuYjzsHrAZF9qMhu+GA1cLZbsrshkNaccgP9reoeT4vl+uXtratYZ8/2rrPaqHIt5avnDv2RXjxkU9cEARBEC4Z2x56uIlvRiFrQYmrpQrGGALtEI0Eoju9mY+dmIpzhjZHpUivbZBe2+CDu7fwfvQBX/p0hxuDT7nxbz9lf6nOZ36fh+pt0saRbEDHQH0IzaI1rfEm1rA0wPzOHbi1gLq9ALcbmHd2zvzelVIoFL0knm9Qs2VnH81G9/A0rfYxK31IlV3ffhG1X8T0XCgnU08vuy77+TxbbcY8n1LWybWbxKzOePnUGB4NepRnVLrORN9F/2wdU4wxv33/Ysc4B0opMHCv32F72D+xyukoO4t3EoM04eP2ATfL1UsJsDfG0IojVgsFKifNVypFMx5yg+r8xzwBO+FgPENa83xu99p82mlS93yuFCtUnpIwvQi3ey0+7hxwpVDG1ZrMDHk46J5ZID4cdKl7vp1r7ncvTSB24og/3n5AlKXc6rZRwO+u3biUY/86kRnD+609+mnM1xfW7O/yXyNEIAqCIAjCJVM4UkEZpCnvLtRtO6NSlF2XQZJQwp0hEBPKXoXz4Cw0+JP3XubuF97lxv0HvHb7Fot7LX6DP2Gof8Ct4k0+720wLE+IgUUrECnOqA5qMC834UHNzim+3JyuIqYKHlVQu2XMSg+uHY3FMMQmO94mmzPKY2T5SHVQcej6utyH+3XoBscEYqAdwjRFKU40a2nPcTNtxSGdJGa9UJz5/ZlkwN0GuClEuUPnwMPEelpgPyVKrssvWruAYuOEdTt5DuVJ7IYDvre/yc+bu3x79SovPWH8xDBLCbOU+inmOwWt2R4OTnzMRcmMYS8ajmd3i47LghdQclweDnp81N7n64trT+W1L8K9foeCdsbCoup5fN5t8eXG8omZmgD9JGE/GlJ3fXztcL/fJc7sz9utbotftHZZL5R4r7F6otvtLHajAZ0k4lqxQpimPOj36CUx5UsU18M0oR1HZxbDzxvGGL6795gPWvsYDElmeKlcYzkonOry/KLw6/EuBEEQBOE5ItAuBoMxNjJBKahObLAWvALNKDfsOCIQEzehdM5Nhm0BU6QLGbcXrnD7SxusbO7z2gf3uPpgi7c//4gv3PqYhzfX+PzNG+ysL2KW+qhbC9bxdBaOwVxvoW8tYnZKUD40GFG3Gqg7ecteM8Bc6RxxNVB5PuGMjW6qoFmwlct5rw2YYmKLi4Pj50IpBbaoNjeSwtea/ei4GMnywHrDfKOXYyQK9bM11L7d0I7nRgE6vhXbT5mR2DlbzMjJM4idOMJRClcrvr+/yWpQOlf0xlH6SUKczXdWHVFwXHbCAanJjp37JMswMPemwulriBmkCUsTFdFRxXDJL/DL9j5vVBeeqgnRWRmkCY8HPaoTa6m6Po+HfQ6ikOXg5BsXB9GQKEsJHAffaB7GPfbCAUXX5bt7j4mzjK2hbVc9b2WxM9EaHjgOYZiyHfZZo0w/jU9d21n4RXOPzWGPv3/1lSc+1rNga9jno/YBa/mNmo/a+3zY3uelco1/b+36U4nJ+VUjAlEQBEEQLpnAcXCVJjGG0f37yda7hu8Td3NhOFF9MsqAc/6g9qLjMuV8oxQ7G0vsbCxR6g549aN7vPzpfa7f2eT6nU06tTK33rjOnS9FREsnbGZGTqhDd9puZuSMWoxtFW2/CMuTYsxWEMuzxMxBAWWUNco5aR+VVzaPvXZOxfEYnGDGEmiH/Sgci/R+EvN+a4/Pey2K2j1xju8YD2qo/RKmEKOG3qG5D0D3VyMQlVJnqk44SjHMTq4g7kVDPKVZ8AIeDHr8tLnNby6tn10wH2EUN3LaxrjoOLTjiHYcHWtt/cH+FgXH4SsLs5qCT6eTxKTGzBSYJddlLxpyp9fiy40VwFaRA+38yio+UZbySadJJ45YL5YYpikrE2JL523RrTg6VYTtRQPI54dH7cefd1t0koh+mnKtWObxoHeh1tP9KMSbuA5cpXjY73K/12GYpvztjZvj76UmY3PQx9WatTNWA/fCIR+093C1IkzTc1c4nwd+2d5HKTVu9b5WqpBkGff6HR4Nelwtna8D5HlEBKIgCIIgXDJB3jqWmIzEQODoqfmnsusfypPJCqKbgVLn3jSVHBdX63Gb2ST9SpFffP1NPnjvNa7fecwrH99neafJuz/8iHf0xzx4aZ1bb95gd3UBjm7wg1xohEe2Cz3fVkhfaqI+XEFtVTATAtGYvILoHt+sj9pLR06qcynkrz2jggjQ8AMaJz3dcWhGEYM0QSvFH27dZ3PYp+75dJKIxXPM3qmmfax5ZwceVVGPqpjVHmq7jOoEJ3i1/upxtWJ4SgVxNxxQcByUUqwVirzf2mOQJvy15SsXEkz9NOZktW9xlCbLRdCkQGxGIZ90DrhSvPjGuhWHJ7rm1j2fD9sHfKG2yH445Ds7D3mvscKbtePmNakxHETDsYi7DBHzJzsP8+gVxU44wJlhkKRR7IdDXq3MF3XdJOaTTpOye7immufzQXsPX+tx+3HV86daT8/KXjicugaqns+9vjWEqnk+mbHZpqnJ+Neb93jU7+IoxTuNJRpegdVCkbp3PMN0Pxry04MdWnFEYjLSVNFL4xdOIO6EA+702iwH078/XK1xleJnrR3Wi+Upd+QXERGIgiAIgnDJeFpT0A5xlpEZQ9X1pzZCZcdWxVJj6JoB4y2qZzf2564gui5+/nrzNoOZ63D3tWvcfe0atYMOr358j5ufP+LmrcfcvPWYdr3M52/e4O6rV4mDXMwWcqExnFhPomxVrxjDWhfz0bJ19HyLcZupqyFMU9zRJinWtrXUy2AnrzScJhCLuUAcXmyr4ilNlKW04ohPu002hz2uFSvnb/8yQCuw1d1aiKkPMRsdKMWo7bJtMX2OcJQmzJJDl9wjDNOEbhKPW5597XC1WOZWt8XrlQVulM9vINNLkjPXYxXQikIoH37t484B7SSiOFHxPS9bw8FU5esoVdfjwaDLv358l/1oSDMO6aeznU3v9zv88fYDYpOx4hf55vLGmStks+gnMY8GPdaCEkrBg36X1RlzpEXH4fGwN/c4SZbx3d3HNOOQq4XDE1jz/GOts2XH5WHcYzccsFEsHz3UTAZpQj+Np4yfyo7L9rA9jg4Zpgkl16OfJGwP+6wVSiQm4+fNXaIs4+sLa3xjaXrWc5gm/PnOI7bCPmXHZaNQZnPYoxvH57pRcxHm/RxclP1oSIaZaRS1HBR42O9xt9fmlRNE/ovAr5fljiAIgiA8J5Rcl8RkhFk6NRcF1vK/4npsDfsozxyG2LsZjlJjJ8az4ihNyXWJzdny79oLVX7yW1/kD/7jv8kP/to77C3XqbV6fOX7H/L3/z9/xDf+9Ocsb+2Dl1hhNCnSerl4LEfgGVjuoxIH9dN1iPR4PSnZeKOvfraG+tMbqO9eRfV9TGNwKADn4WYYJ4Ohx0VKdHb2087YfdTeZ71Qvths0NBFRS5UIuuuqrEtpUFq5yi7vjWweU4Y5VAezeEc0UliwiydugnhKI1Cz33OaTTj8NT5wxElx+Xj7sHYQKgTR3ySRz0M0oTBKQY7s0iNYXPYO3F2VynFol+gk0RUXZ+GF9BLZs/A7gwHpMZwrVDmIBryg/3Nc69pkt1wYmZQO7xSqc10VC06Lq04nGsy9GjQ406vzUahdOq1bL+vThScR+nm18bkZ6mU4qVyjfVCicik9PO1DdKEJDeiKjouV4sVGl4w8/Xeb+3xeNjnSqHMgl8YV9d66bRB1kE05OP2Ac38RsGTkpqMP9y6z0F0eS3g3SSeezPEUZqy6/Ljg+1TjaKed6SCKAiCIAhPgYrjs5MNiE127C551fP5OxsvYYzt6vxLJ0OlDpmX4mp9obarmuvzcI5r5yTGGLLcoCX1XO68fp1PX72K2dzhy7ce84U727z0+UNe+vwhnWqJu94ud/236WdYcdTLqwu5q6l5cw/6HmqvBB8vYb60Q8X1DjdRqbJzhyjo+5hKhHl36/SORAUUE1TXxyQXcwotaIeDKORqsXLxlq9m3i7XOLLJVEA1slEcfQ8qTy8A/jyMBGKUpjPz6zpxBEYdFxjKEJ0w03kSrXMIxAW/wINBjz/bfcjvrd7gTq/NMEtZ9gt04t6J2ZXzaMchvSQem4bMo+x6lLHHHqQJ3eT4Jt4Yw8Nhl7LjopRiKSiwFw7pxNGUqcx52A779vo/hUA77GUhrTia2ep7q9vC1erMs6J11+PjzgFv1xbP1DrcTSIwx2dJ9ehGD9BLrFFNPz1eNS45Ls04ZJAmU9fedtin4rrj44AVU/vh9M/UZ50W39/fpOR6VF2PVyp13qwuXNhBtR1H7OXV4suIcwFb/T4pZmbBC7g/6HK31+GtxuKlvOazQCqIgiAIgvAUqHgeiclQMDMbru4FNPyAouOOXTEzJ8FXDt45K4gAdT8Yb/Bbeaj6rLvwrTjidq8z9b1Hwx7B1XX+8Guv8wf/8d/kh996h93VBtVOn3f2f8jf3fx/8Nf/zQ+5dvsxTsduHUw5F6PFBPONR7YKms/qFR330Gij7aNQmMU+2Vs7mK89Av+MYq+Qi645c4insRQUWC+UnmgeSLXy+cP6jCpEJT8H3eenzdRRmswYwjlirx1Hx0ZNwW7+w1NmF2eRZBm9JMZTZ79mrxRKPOh3+f7+Jh93Dqi53liUHK0qnYWDKBzf9DgrntYzX6uXxDSjcOzq6muH2GTsznDEPQvGGO71O7MNm44wyu9sxeGx73XiiHv9Do0Z833zqLgenTjmdrd9psd3otnXxiSTFcSjv118rYnSlGY0vf5+khxzNA60Zn/iccYYHg27LPoFlv0CmTH8aH+bf/n4zpmrccM0YWt4GJ1zEIUcREPa0ek3zs7KaTdDlFJnipp53hGBKAiCIAhPgaLjMkwzio5H/YTKg6s0Jjeqybz0WIbiWZmcG+omCZ7WPBj0jonEXprQ8AN6+QYmzqxr6jcW1yg4Dh2tuP3Gdf7d3/0m//If/nU+WnuHoS6zvrnDN7/zU/6D7/9z3mt+h0a8c+ic6mVQtg6fozbTMe1cYC0ObV7iWcUhPPEc4qXQGlUQj2/azShDcvD8BLCPmCUQU2O4229TnHGN2XiM829qB2lCnGVnriCCrUitF0p81D7gIBoeXrtK0Y3PLxD3wiH6PK60WHfOME1Jj7TV7kchicmmqkQOis1B/+ghAI49/yitOKIVRzNbSmfhoNgLj9+MeDjoEmbpuUyElFJUXY8P2nvEZ6gO70TDE6tjGkU7F6+dODrmBDyKn2lOCNzUZEQzIm8C7dJJIuLMnr9uEnMQhZRdF09rap7P9VKFZn6z6yz8rLnLn+48HB9zNxwwTFN2wsvJ3oyzjH6anHozRKMu3K79vCACURAEQRCeAhuFMr+3do2/s3GTuj//rr9WauxkmjoXF4hV18Ng78QbDN9YWiNwHKJseqNiMDS8gE6+EY+yFF871D2ftaA0VVXp1iu8/+q7/Mv1/xN/+rW/xv2b67hpwqu99/lbf/zH/K3/5c95/YPbBIPwsJp2xLRFtfP3XjsusE7DnOJk+tSJNLQDTJAcuqpOMorieNL13anD7fqFZi3nMUsgPhp02RkOZrpMukpdSCAOs/RCRiC+dlgJCiz5hXH10FOKg+h810lqMh4OuzPbaU9i5Pp7tGq6Fw2PSc2K63G/3+H91l7uRGp/bn5ysMMfPLp9YrXol+090nOcn6Ljsh0eF6MP+90L/W5oeD770ZBbvZOriIM04dGge6KQ9bXDQV6Na8bhTEMsX+mpKl6YZvn1MX1WA0czTBN6if0Z2o+Gx4Q5AMZ+7zT2wiEftvc5iEK289d/NOxR93z2oiHZJcw0nvVmiFJqLFJfVGQGURAEQRCeAg3ftpCeBZXP16Vucm6DmhEVz8dTmm4SE2iHjUKZsuONhcJ2OGA1KOIph1fKNTZzM4koy6i6Po7SXCmWudOf3kiaIMEozWbtOptfrBH82w2uRx/zkvk5C/sd3vvBR3z5hx+ztbDOffNFHhzUSZcmDtC6uEAcVRDV0Hs2URK7Jdseu9KfPTNZGglYDxIFfQ9q52xnGzroT+0JM30f8/bOWRIjTsQwu130o/YBntYzW26dCwrEKE1PbUucx9FqWKAdm/F3Du72OuwMB1w5o1PnCJtTak2kRuEaxhju9zvHxGbJ9bjb6/Cd7QfcLNd4pVLng9Y+39/bxFGK9pGZwShL+bzbwhjDh+39mY6l8yg6Lu04mprjy4xhLxpe6HeDUoqa6/Oz5g4112dn2OeLjaVj7bibw96xbMaj+FrTikMyY2jH0cxqY8l12Rr2x3EYUZaSmOMVREdpDLaluEHAbjSYOadZcBweDXt8ieW56xqkCT852CYzBkcpHgw6NPyAVhSx4Ad0kphWHPJZp8mXGysXjtYYGfOcJvY1iEAUBEEQBOHJ0J6VP4mbXDi4u+y4lByPVhyyXChScFyWgwJ3e23CLKXoOjwYdLleqvJypc6Pm9sM0oQoS2n4tuo3MtOZihrIoy7U0MEMPGJd5PONN/ns6zXqe21e+uwBN24/ZmP/MRs85qt/4fLw0Qr3XrnK1soKauDZVswZJjOpydgc9ilol7rnH994PeMKosojOczyHCfIifWpTxdRD+pk72zDRvfsL7J9KGzUoypmYQBXzvD8tm9nHze6xwSlg537muThoMu9fofVOQLgoi2m9gbE5WS+BY5DL43HVe3TiLOUnzZ3KDnuuedMR4Ypk0J6Lxqym99ImcRRipfKVeIs4yAa0k9i7vXb1DyPXpIem2VsRiF/sfsYg6Go3TO9lxG+HsWzhGOB2M/dXRfOeMPpKHXP5/6gx7/ZvIsBXq7Ujxnu3O938WZkM04S5Nmi7ThimCVUnOPVRk85DNKIKG+HDbOUDDNlUDPJ6Jp70O9SmiHcyq7HTjggTNOZwm5z0ON7+1tsDftcKZQYZgm3ex2KjkecpZTdIgdxyAetfe7027xcqRM4Zxfsk/TT+Q6mk2ilzuwo/bwiAlEQBEEQnjFuOSUFoiCi4Jw/hw4YOy7eH3T4gm/z3ZaCIp92WqAyXinXGSQtrpcqFB2XjUKFR4MuicnGxhcLfoGS49HJQ7EBCHLRELrQz7cNJbshbi3V+NnS2/z8G19g9f4BN7/b4urw83G24tAPeOA94G71Ovsjy9YJ2nlguq81jwY9rhbLOMq2nh1EIeuj6LlnYQKTAXsljM5srMUsHGPbT4cu7NnFqo+XMIsDCM62QVSbtn5lXjlA3VpA7ZYwZxCI6pcrqE5A5mTWSOdxBRSYL+7gVgZ0J0TLIE343t4mvtZzczJdpRhmGWlehTkrF3U+nUWgHfYj60jq+6eLqoeDHvvRcCoT8HwYhhPrv9/vkmFmVoi0UgSOQxil3O93OYhCFv2AfppYZ9gJbPXIcK1YOXac07BGNfZnYz1/X904Ip7VfnmOY64XiqR5JTLMUiZ/ywzTxApe92QB6ilNmKXc73eI0gzPO74enbvopnlLZ5SlJzi4GoZpSpSldJKI8gzBWdAOe9GQg3jIujP9Of9of5ufNXdwlOZ60cbYlJXHnX6H7+1tUvNGx1M8GnTpxvETXa+DGa63s9BKEWfPpOfh0hCBKAiCIAjPmOJrPW7VtomLQzx98YDlJb+AozRLeQXEhqHbjcqb1QVKrg2pBrhSLHO720IpxjbygePw1YUV/nTnEYU8s21cJRu6toUSMKXpionRmq2bS2zf/Qo/HnybjVd/wM07D1l7sMtr0S947aNf0HlY4t6rV7j38gbdut04d9OELzdWeKO6wJ/sPODzboslv8B+NKTouvRUTLUY2ypkouBX6QWzU0alGrPSs/mH8yjGqNAdG9Wo2IFPFzHv7Mx/jgF1awG6HqpVwBRizM0m3G7AftF+ZCdptFiPZz3V+6uobELQ7BZxq4rehNnLR+199sLBiYLFUZrUJMRZijNRxR6kCYF2TqgApVzW8KTOXTy7STwVS9CKQ37W3OHdxsrU/KQ1TJkR2XEORi3YSZbxaecg/5k5AQN3e+18Fs3BU9NunMATG5SMjWpyFdc5IXvvrIzEpUIdm09txiFhmrLsn1xZU0pRcBw+7jRz19jjq9JKkRlDkp+DMEuZN/7nKE0rvyEQphmLMwSnUgqMdSRdn7gR8HDQ5WfNHRZyJ+jJx79Uqk5dEw5wEIfWmOgJBGInic5khqRQJNJiKgiCIAjCk1DwHMLSEFBzKzxnoeb71D2fau4KWfV8lLLHXPALXC0dCoRFv2ArToapgPE3qgvshkM+7uwDinW/iMLYwPiRW2dpjtNkJSILS9xfu8n91zYo/KDG9QePuK7fZ+nggC/+9DO++NPPaC5UuXNzjcHVBa5eq+BpzbeWr+Brh8+7LV6rNig7Hj9v7lGtRFZ8dX1YuDy7+hMZOqgP7cyTuXpKREAxgab9p1nu2aiPzQq8vm+riHsF6AZwo3Uo+u7VrEAcsdYD10BjiDooYjr+ybOMo1xJQGUaozPMKwfoz5Yg0bhK088riJkx3Oq1qeXXwjxcrUiMIcoyCvk+vRWH/JvNexQdl28srrFWKB17Xj+Jj82XPRGGsXHJiDvdNj9t7rI9HPB7a9fH4nE3HBI8wc+LMYowrwptD/q0ooiNGe9xkoLj0E6isTgqOC57R0xUnnT+7KhRTTMKz5SjeFaOzqfaduSzHX8pz7GcJ5Q0kGFI8gqanVGdrRB9rekk0bgdet5NCKVgOLHmOEv54f4WrlIzzYmOXuerefV0ezggSi/+2TSj2XOXR9EKaTEVBEEQBOHJ8LUzLhp5T7DZrrq5QMxbq6quR+A41Fx/nOs2YsEPKDgucZZRnPieVopvLq/zWrXOTw522B72Wa9EqG6A2c8rDPMEop9vimL7HsJBg8+qS3z6N6uUe11u3H7M9duPaRx0eO+gw3s/hfSHt0neehX1hVf56ytX+XJ9mYJjLfDfb+2RVkLcnbKtmP0qBGIG6hdrqNjBXG/BymzTlCTL2IuGrBUPqztmcYAqxah7DczDKtxojY+VLQ6gGtlcyE+WrKh7cw9CB25YEWqWBqiDom1XPUEgqoN8VvSVA2gFmKudw8zIxMHVml4+X9pNYlpReGqIvMZWfkYteJkx/ORgh2YU0mTIx21vpkDspfET5UwexVFqKiYhyTI+7TZZC4ocRCGfd1t8fbGAMYa9cEhwwbZLsKJ41IrbiSNQ80XKiLLrsTnss5jPAwbaCsZhejg/nDxhBbHgOHbOLz/mbjR4ovd5lKNtloM0mVvlO4pWipWgMLdCNhJno3MwOKHF1FOadhznM5zzF+AoRZgdtne24oidcHDm1mJHaRwFoAjPOGfbTWLu9tp8sW4NpHbCAZvD3mHr/Qlo1LjF9kVFBKIgCIIgPGM8rcdthU9SQVzwA96qLY4riJ52aHg+GzMcHn3tsBaU2A77lI7M/jhKs14o804941/3u2T1IU43QPXyzVFxziZrZEQTa1uFC11MJQTH0KuV+fDd1/jw3deoNjvUP73He4+aFLd2cbZ2Cf74e6TrK/hvvUr8hVfx61XWC2V6xR51FlGdADiH+csFUZ8vopoFTG2IeWNv7uOaccggTUkKEeMtYz3ELPdR9xqoBzVItW05BWgGViDmzqjZKwc2F3KSxT6waOcQX2rOL+ocWLFnNjrw6oH92mg+NNZ4SpPkEQ47w8GZQuTtxt6Mq1+PBj0+7zZZL5ToJhHtZPZNgX56PAT9SQgch/2J3LvNYZ9mFHKlWEahuNVt8W5jhShL6acJC/7F51NHrr9gQ+LPQkE7lB13/DNmTWUyukk8FohROr+t8kzr0g5xFjJMUzytOYjCC8ffHMfkbcGHtOLoWAzFSRQd1/ZtzkGhxgKxn8y/geBpTSeJ85zD+a9v55IP15yYDHWB1mJ7Q+D4765uEh+L99gPh3zQ2uNqsULJdfnu7mMMnClOZRRzcTSD9kVCBKIgCIIgPGM8pa05hTF4T1ApcJTmC7XFqa99obZ4GER+hCvFMmG+CZ39/QobxTLdSoc6djbSBAk4hkGasB9Zy/truUGEcVO7zYsdOCH/sFmv8PE7L7H+t19mtTPA/fBzvA8/w9ncwdncIfh33yXdWOWrN1b4bqUOXJ9vVJMBe0U7K1mJz2+oOTnv1/ZRdxoYN8V8eftYWvQwTdiNhqwHJQZpyqIfEAYhPmCUsQLQMVYk7pbgTmP8XNUqYK53DnMhF2ZUJmsRphhbgbpdgrUZ4eyxgo5vP4dJoZ5naZLYGIvUmLGhyNmrT2pcXWrGISZvefa0ppfE0+622CrjIEmOXz8ZcK8O2sBSH8pnd0cNtEMzj3n4WXOH+/0ujtJopai4Ho8GPbbDPg7WKfKixi1gBcOonXUvHOKfQegqpVidqKSqibnJ5Xz2d5AlT1RVdZQiw+QVYDvHVzttNvKMuErTPyL2m/Hw1Gy/82CANG8x7SfzbyD4uRDeCfsnvr6j1JRATDOb9XpeXKWOvffdcMCf7Dzkr69cnYr4GGQJO+GAB/0OiTE8Hva5dsYoFUcpQgzZswnnuRREIAqCIAjCM8ZVepzh9SQtprN4rdKY+71rpcrYoGYWjlK8XK7xveouY+ucvL10NxzyVm2Re/02/TSxx/EORYoa2i2GqR8XiP0kpux6LAQFskKJaGWJ6K9/A72zj/vhZ3gffo7zeJvXH2/zOtD0PuJR52UevlokKU/koXV81C9Wx5VNUx9ivvHo7CLx8wbqYQ3z3qZt6dzLK3MvNY9VSbtJTDMOWQ1KPBj0KDouNc9nJ+hT0ZkVwrmZjXlnGz5dhIdVWO+iNqt2NhGgHdjNbXVGxUqBeWsX9eMN1EfLmOQAVnrgT7TzdQKbzdgYTr9P97B6OxJxB1HI42HvxPDzaQ4riM1oiDcOsLfRBWEeXTBilHFXVNMiTX22iLrbsEdUBvPNB1Ce05Z8hEA7dJKYD1p7/Ky5y4IXjNtjtVJopbjf67AUFC/FuGXUinswHF5cbBo1rkSCnfF70rZbRW7wgo2DOS1776y4Sk/Fchhj6MTxpQpExWGLaT+N51YndS6Eh2l64k0MzXSLqa0gnh87mzv9c7017HO/3+En+9v83vqN8efWT+x18XG3ST+JWfSDU9uPRyjszZPkBXYyFYEoCIIgCM8YV9uKj6f1pW0Ez0LdC6ZcIWdRcFyyIMEEiXXrLI0qSfBGtQEYPu00pwSiijV05lcQe2nMa5XGdNujUmSrS0SrS0Tf/g309h7dn/8S95PbLLX3acT7vP0H0K+VeHB9lYc31ti79UVUz8c0BtDPHUH73pnFiNqs2Pf0k3XMNx7ZuAiAxoyqZxTy9cVVXi7X+V8f32ajUGa1UOJBv2tFqT/RtudlmLd34fU9az7Tse25puNNtd3OZGmA2eigHldRv1zB1KuY33h0+P2Rk2z5iMDUYJwMksNz+lmneWr4+STGHFYQ96NwLJhcrYnzltVpgZiRGDNdIdoqo+7aKiwLQ9ROGbNZhlebZ1qDqzWpMdzqtqi53rGZr4YX8Mv2PleLlSc2biloh73QZh924ujCIsnXit3wsCI8TNNTW3pPRxGOW1Uvb8ZzsmoKMMxSwiylcYbZurNjiE1mK8xpeqKRkEIRmXRmxMUIRynCCXMZO993/nPiamveNFkJv9Nrs+AF3Ol3+PHBFm/Xlii7Hu04ZMEP2B0OcLVmJTh7BVcrhTFW2L+oiEAUBEEQhGeMq2xboKvVpd7JvwwCx7F7scYQtiqYUkxsMjylKbse10pVPuoc2E2XNzKpcWwsBsw0tEmMYf2kdi2lyNaWaf321/gXry7xhc9qXP10jyvmE5bae7zxwR3e+OAOQ/0zHpde4sEXyuz0X8fcW4L9wtkEYqRR/TwqInLhkyVr+KLMTFE7ai2s+wG/s3KNwHEOw+jnGcp4uQish9DzUffrJz8+x7y9g1npoT5dsqK3dyh6VX/kJDujbdPLYOjkfh+G7bDPclA4/rg5KGVzAZPRTF1+LTp5G+UwSw8rydgKYmqyqWqZemizGcwXd6Aco3bKqK0K5owCEayzbiuOZrb0lVyX1GTc6rWeWNQopUDBw36PME2pXrCCWHBcdsPBWHiE2ZNXEA22gphirIvwJeHm83yZseH1/SQhzrJL7VwwRpFm2fj6cNV8uWEMRHMiLkY444zODEfpC5sAjbI+oywjcBw6udnNoh+QGsNPm7s8GvT4D668QjuOCbRLzXUInPOdG42tjL7IRjUiEAVBEAThGeNpO2Ol0ZcbGXAJFLSLwZBdaaPbASz3ifJWw6Ljsl4oUXBcBmlCaWIOjsixIfOu3STFWZZv0Gx1Zck/XbgUHRcFtF6B3uZX+bjwJRb+9/dY+Og+V+9ssbK5z8vdj3j5DyF2fsaWf5NHn23weCUgKpwiHlq2wmnWujZ7cMeax5jq8ereaE6z4dk1j+JCDtQQlc/7nSQITH2IelS1YfaAmSFAp9DAWh/T861pzuMK5rWRGc0JUSNuisLFJBpfO6TGnMlUY/x0pRkkCb00njn3NjjSnhfmDpXjuUSDFdk6g+W+rWpWQuuA2/XsjOgZqLguWs03Ial6PkXHvRT3VFcpNoc9UjIc7V3IWKTgOBxE0bjVengJLaYOts3R0xpjLrGCqDR9k4x/hvtpjME8UZbkcYw1ScpSW2E+wQDH1RBm2Yntm4cZnRmOo3PhdZEZRE2S2dnOwHHYDgckeZ4lwEZQYica0o5DukmEp/Ux9+ezMMqCzEQgCoIgCIJwUUYVRD8Xis8TBcfBUw7xYg//t627ZBhmLAdFtFIUHJc3Kg1+2txhRfuUAULHxkQUrSBITcaDQXfcdveNxdWpIPQTX1trIj/EaQxQzSKDYZ2DtzSfb7xO8N0l1r1PuMInrD/c4drgc67d/RxzF/ZWGzy+tsqj66u0GxUbpjbBqJ3ULAxQXop6kNfG6sOjy6CfJtS941EhFden4DiEaXryRnK1h7ndQA1zwXWaQByx0YXPF62wfPXAVnJPyqKcEOgrxbO1lU7iKMUgTegnCZkxU+3OxhzPzzsal0DfQyUOpj4cG/yY9R7qs8BWESsHZ1pHwz+57RmY3Yrd8eGgYM/N4uCYydAsSo5n59KeYEfsKU1sUjpJRMFxSEw2rr5eFBtVEuNmCu8cDqOnH9fmXY7mSa3ov9zfOTaWwlbq0iw7sd224nqo5GQTI53fhEmyDBzbYnoR6TVp3lTMMj5s79kOiRzb3pyxHQ6Is4zyBcQh5DOImCeOO3mWiEAUBEEQhGfMqIJY0M/f/5ZHIm3yTnuYpSxOCLyvLa7haYcfbe1YgTiKw8jn8gZpSsML8plFxbuNlTO9dqCd3Okwo3Clg2oWiX7SgC+GMHSJdYF7V29y980KTpKy+h3Dlb1HrJvPWd5usrzd5Es//oReucDj66s8vrbK9voimeuMK4jUQ0w1GgvEWaY6gzThlUr92NdtVTGgFYeUTtpS+Rnm64/gxxu2/bZyxjzHYoLJhbFpBbZVte/a+T5vxuZzMmbk/PqQkuOyGfZYC0vHYhqU4pjBR5im026S43M6IbLXuvDZIjyqwCsHl61Fptf4/gqqa9eQvboPrzRPfU7RcdmPh3iOe+G1KWWnITtxTMML8lbIJ/tZdpU1vnGUeqLom6M4SpPm86R40EviS/9IdJ5bGKbp0fsyx6i4PpU5LssjRsIuzgVXlKXoC6x6VCUNs5RbvRaPBjOcSQ1sDXrjNvqLYK+HFzsL8fn7P5EgCIIg/BXDzW38Ly/r7PJwlKbgOMQT1aIMQ20if85RitcrdX52sANwmP0X2OcM04S1QpmvLa6d67WVUlQ9j2YUwkYXs12B3RL8cAN1vQWAKVjRkroOmzcX2MrewCx9ndq1z7nyeIuN+9ss7rZ47aN7vPbRPRLXYWtjic3eW2wGN+hXbEC6KUV2JrFxvIKYYViaM8u3FBTYHs6IozhKMbVunqmeb1AzA7PSRzWLNvuwkKAyjakcXyMwVUG8CCXXY68f8mDQPbax95S2YfLYDfqP97fppQlMtD+qUdvupMlPKcEs9lH7JcxuEVZmxHtcBhnQ8zE6Q2UatV3GnEEgelrTTxJWSoE9xgVRKJpRyEahdGrL8RSpsnOzi8Op68LGUSRoxWyhcjGfltFibXZjHPFJp0npHG3IZ8FRiiifQbwMdB4BNHLYjbKUJymqHkQhH7T2qHvesY6NwHHYj0O4hLZbEYiCIAiCIFwYV2vc51Qggm0D2xlOVI8MVI64DpZcj5LrYpwUlebvw7fPCbOU1TM6aR6l5vrsDPN2wa9s4XywTvqoiNmy83wUJiz7r7eti+ZehTav0/pqlQ/ffY1gELL+YIcrD7ZZe7jL1fvbXGUbgNb/UmHz6jJbawfslDaOmb9kxqBQNOa4vVZd/+wbQQ3oc6qQBSsG1UHBtm7CbIMamK4gXpCi43AQhcfMkmyouRWId3sdftbctRVU34dIw1bZznLCsTZdc62D2i/ZSJGnJRD7HsrY+A8TOqhOgBk6UDhdpKwXSjQKRaL+2WYkZ1FwHHbCPq+Z+tkFYtezMS3dAHOziXljf/wt22KagIHyUQEXK9R3r0E1wnxx+9AM6YwoFK045JPOAZ0k4lqxcq7nn4bOBWJ4SQIR7M2iUctmlGYXqiBarENuO4m4PuN9F7TD8FLabsWkRhAEQRCEJyTQzlSEwPNExfV5ZHqAnSfUSh3LT9RKsRwUCN0UJxeIZiL6oX6GubJZ1Fx/3FqGAr0akj4qokazeJN5hUFqIyH+/LoVKxmgISwG3H39Gndfv4ZOU5bfD7nyyQFr2R3qzTb1Zpc3uUPiaHbWF9m6sszm1RU69TK9JKbienMFop09fELHSmM4iEMa3oystWpo4yuahUODmuJsIWPc1K4kufiNhoYXcKvXZn0iDB6sQOwmMUmW8X5rj6rnjduM1SeNw9xDPxlXjses9OzXd0pWTPpPYTarl5+bcgRV4J4P22Xr/ro4OPEjKrmenXV9gpcvaJeDOBy34Z5afeq7qB9eOay2b5Xh9f3xOq2hij1PnntE8DcLdp516MEPrmJ+4+HYDOosGGP4SXObfpJy5cjnDMCduq3A5k6050Vj41KG6cmzhefBwLiCGJv0wrPaxii2hv1j1/eIouOyEw252JTjJIpMZhAFQRAEQXgSnmeBWHW9w7v3WYbvOMcEIsByUOSem+KMOgwDa3OvUNQvGElQcr2pvDtnMWJqy1o4sgn1MqhEqIMiZnA8EzFzHHbcG+w23iF793VKxV3WH+2y9nCXtcd7bDzcZePhLvzgI3rlArfWGqSv3MBdjaFwXCQWHRel7GZyFB1wXjpJTJxlPBj0uFosT1efNNAYovZKkFdNzSyDmtF7h9MriBlWiMxYqqs1L5Wrx9oaXaUZpDE/b+2yGw64Ojm7NcpmrIaYK53jx9XA0gD1uIrpBLD0FKqI+dyrKcc2XuNeHfXxknWmfekA8/rZDHIuSsFxOIjDqTzEuSQK9dN1a+R0vQWtANUuYLo+VK1MdUcVM3PckGdssORkNl9zrwRrvTOvdbVQJMkMy6UZVf1HFfSnS/bfP9zAfP3xuUWirSCm9JL48lyZDRMziCe7np7ESlAgw8yd63S1Zpgmp7fdGqAZ2MiaOS3jUkEUBEEQBOGJKLku7nPmYDqikMdNgDUmqeQVl6PUvIDMnage+SmDNKXouMcCz8+KjWk43GipWjKeMzNONtuspRTbmb3+cYEIQL7Bph7SD0rcevMGt968gcoylnaarD3cZf3hLgt7Lb50axNubWL+8AekV9dIb14lfeka6ZU1cB2KjotW1v3wQb9HwXFZK5yvnbaTRLxVW6IbRzwc9NgoTlc3zIIViGrUwpkLxGGaEGjnsFqVzyCqRM+vf6QK9efXQRvMG3uwenx+0p+RB+hrh0E64McHO9Q9f3qDnmdemq8+nlsdNJXIXkMd/6kIRDVZQVwYWvGU5tfo/Tq81Jp9rVwSo3D03XDIqREM22Ur7Jb6mDf3bMWuXbBVu1wgjj7TmZXIkRnQtTbcbaD2ipiRQOz44KUnttb62sGfpY8ijfpw2WaBLg1QuyX4dBHz3tYp734arRRxnqV5WQJRKcYV1Ti7eItpcIY2/iW/QHBSJmYG6oMV1GYV0xhgvro5QyQaEhGIgiAIgiA8CRuFypns/Z8Fk7ORUZay7s0Oua95Ppk7Ich822a2WiifaHV/EuW8gmgDtx2Uxt61bxZs9XDGPtGUcmfGngdHDVNjbTfnxfhYK6TRmt21RXbXFvngq29gen0aD7b56+2E4M4D3AebuA824c9/hHFd0usbODc3uBKk9JZcXK0xGAZpcub8wSy37H+pXCXKMu4NOscftHAoqMx6B+ohmTE8HPSouh4rQZGtcICXavt2TzKp6fqo0K5N/Wyd7L3HZzKO0Upxo1Sd/c2Ba7MPTxJgI+HT9S8x9n2CkXNuObb5i1/ewgxdVDtAPazBvTrm1adbRXTU8azIWYyEvrnWttfvah8+W4Ltko0zGT0OxTGxaYB2AaMzzI2Wbe0d3TjYLKN/YY2gTH1onXPP82PX8e2Nl/WunW3845emWrXPiqMUQ4wViEfdZFKF+nQRs9qzxjxnxGAmWkwvXkE8C6fdzFIfLaM27c+CahbhRxvQGGJutsa/U4yx7fgvKiIQBUEQBOE54M3awrNewlwC7YxjD6LMnGjYovwJB8sgJcxS1i5oUAPWIKfguAzTlMrorn5jaAVicc5mPK8aqr43vb1Olc3Jg5l5h0fZcUC/+TLJxk0SY9A7+zh3HuDefYhz7xHu7fu4t+/zfwCGvsvj1QWim1f4i6oDa6vHshcnGc0dZsZQdX1WghLDNMFVmihLp6t49ZDszV0riPOK3yBJWPALDNKER8M+q0GRRqPMAE5uMe0dtoOqToD6ZAmz9OB8QmKSRNnsw1J08ijmKNqjM2PzbYC2b4X/Rfb9Buh5GDc7FP3LVvSawQAeVeFeDV5qnstB9ryUXJd+Ep8sgA2wV7QzbiPhX44xxdia1cR6LLSNMcfPR8+zFeLGAAopphLa53U91Me2NdR4KapVwLQDaJwxcxMOW4XLkb0eFoao3RLmoGirlmu9M7WbOnlQfJRlBEc7De7XUPfr0Pcwi5tnXpqDYpjncMZZenmtq+dl4MLDKsZLMV95jHp/1bb8tgoQO3ZuE0BiLgRBEARB+HWm4NjqWJJlKGWozJg/BGtkMnXz3U8x4dmCz+fh5k6ZzShk7Dm4MIQ72HbCWYxm9EamLhm2Fe9WA5XZjeWsvMNJBmlCYgxv1xftF5QiW10iW10i/o13IcvQj7dx7zyk9ennLG7t8/KDHXiww5tArxiwu7HE9voiD1dqRPUqamKzvBUOKDouGamd+dMaV3ks+AG9JMb3JwSiAm60p9bXS2Kulqo4SvFg0OWbyxvsqoR7cGIFcdSKaW604HHFxk/crcPLrRPPx1zy9tK5Yn1EkFqjmp5/vCJ1v4b+eJns7R24OqOCeoY1qExjqsPjgqqYwGoPtVXBbJdgo2cF9H7Biu1LLEQVHZf9KDzeYWqAzTLq1oKdJ41c60g76T5aC2HgWQGdV9ZqR1t5YSq/E7CP7Qaon6zb4653MLUI9ckSaq80HTlyCqqf//DmPz9m0baZqvdX7LEH3oQAwq51pwQb3anPX2MFYkJGeTIPMlGoOw377/7s3yHzGGUrpiYjMzzVCuJJqPs1O9d6vQ31CPNbDzEdH/WTdXhcgVf3x+29mQhEQRAEQRB+XSm7HkXHzdvnFEV3/vbB9e2myLgZqbZug/U5FcezsuKX2BxMzMotD8je3RxHQByjGNs5qnwTqj5cRj2q2bY8N7OVxBPm4FKTsRMO+friKtfntVVqTXZ1nejqOu9/4Rp/uXWf/zAr8Ppej8Fnt6ntHHDz1iNu3nrEN4Be0WdvbYnd9QXuLFVxq0V+b+06Fdcbm9IopbheqvKTg21OqydHWcaVYpnrpSpfSBZYDoq0/a79ZnzC/NREK6Z5Yw++V0R/tkSWKXi1ecqrzmCQXwtHzYJmUYmsIO0dmrGQgbpbB0C1A8xFBGJ3NH84x931Sge1VUE9qmKWB6jv3EQZNb+9NlH2PDkZVM5u0OJrh2GaHq+a3W6gP89vNIxE2OL065pKhNoCutMCcfpBoEZGRblANIt9a8gz9DBBYqMyIg0s2fbQ87TV9o6cx8U+sISK8s+4f/hzrz5cQj2wn5u5W8e83Mwr3D10HmyfGWMNdvK2UvaLh66tA/dcrauOshXE1JjcSfkZRAKlylYPlbHtwWAr0o0QrrdRtxfgbgPz5h46z5p8URGBKAiCIAjCiThKsV4ocavbQgFlZ/7dfy/Auoz6CYM0pex6VL3zVQuO0vCDadv50dzWPDQ2VH7gYR5VrDj0E+vIWIztRu+E7Lit4YCbpSpfri+faX0Vz6MQBKj1m0TvVNn9zS/x/7zzKW83B1Qe73Bjp83Sfpsbdx5z485jvgrEBR9u3CW9vkF6/QrZ2hJozUpQxBjbXjgvKmHUerjgB1Rcb1zRDYL88SfNII5EQCkCz2De24Sfr6FvLZKtd6F8zmiCkUHNWQRiNYL9khVBI4G4U7aRDTAlQM5F296AMNU51bKlAaaQoPZL8P0rKJOfp4EHHBGIQwf1F9fHBjfmessK6TMKmarrEThHXEcfW1GXvbqP+nzBVqCOCMTxjGbnhBnNh1VbFSxFsJxf/8sDslf3bWvtetcKFj+v1rYCK3bPGoExquqNKvCVGOMnhwJxOPFzvFmxN2HWuqjNKip3Ps3e3kFf7WDyn1hHKdStBdtWinVexU/tz+YMl+F5OEoRZilJZp5dBfGgYNup17rH55dvtOBuHR5U4aUmCkguMQfyV40IREEQBEEQTmWtUOL91h5138+z/2bj+yoXiCmDNGHjCQxqRlRd7/zGJuUYBh7ql9alZirTTc8/WjuOCByH31xaPxYvMI+RS2vdtxWflaDISr3ODz0Hd7XKW7VFPt3b4kudmOWtA+qPdtjY76I/uY33yW27Pt8jvbbOjWvrvFEwPEZRL802AxpmKQXHZcErTH3d96xJzlyBmAEDz4qHkUBeHsBqDx5XIXTPLRDVcH4FMcmyqXM4cjJV+0XMhq12qnu1wyecs+1wvIZcIFKbIxAVmKtt1OeLh22UYGMmjj52v4hKNaYSQuhaYeNmmNfOVolbCqY/E0IH1fetqHulabNBmwU7RztJJV97d45BSqxRHy/Z6tU7O4ezlAp4pXns/bI4sC6bB0VYOeFmyogMazYUJFPHNjdasFO2n83QsY/L8rnTcoT50g7mage1WUE9rKFatgo8jqZpBXCnjnEza5pTiu2s5ENv2mXY5I8txTOdcB2lCTMbm2MwZ3MxvVtHtX17vi5DT45uhlRmtLb7ma0i3m3YivFLHSIxqREEQRAE4deZhh/gaU3R8WbGIIwICtCD3KAmY21OIPV5qHg+Xm7eclQyxVnGdtjHGHC0Zi0o2upC6XDjmb26PzYtOcpBFFJy3LH9fSeJeW9h5Vxzk1XXZ8ErUHXt5l4rxe+sXuejzj79JOH1aoNftvd5fKXOoytLbL11lf9o7SZLe22ce49w7j/CebCFe+s+lVv3+XtAqhUHizX2VxfYXW2wt7rAsGTFRz9JWA4Kxyz7fa3J3BQ9z6Sm76GMwhxtm/TySsdJranzGFWVjgjEzWEfg62iLAdF6+q63LcGKo+q1sWyFKOaResomym7AT+nYyYA7cBWs6pzZlIBXmqSNYZ2nT0f/dN1CI+/33HG4CtN2xL7F9ftnN0ZBeIxmrlgHLVDX+tgrs1ooy2kGDe1AnHWOdgu2TnLK+3D+cMTMEtWIKrtMuYsArFv3YLN0bnel1uYl1uoH2zYz2ro2s8KDj/zxaF1Dn5YO6zmYsAo1MMqCkX22u748xm7DE/eENgton+6kUds9G2F9Up3bNijlSJMUxKTkZ4lb9SAulO3s5OvNM+d5TiLk26GAJiXmvCgBg9quOs+cUUEoiAIgiAIv8Y0vICS69I4xQK+vJxyd2OX8rUQxZMZ1IyP6biUHG/sYjjCGMOjYY83qwu8VK7x/b1NeklM1fNtYPvAtRWQOXb6mbFW/N0kYr1QzrMdDYvnXPNSUOB3165NbVoDx+Hdhq1exllG0XEZpgkGW3Gslkqk5QrpjSv2CWmK3tzBvfcY/WCT7MEjlndbLO+2eOOX9iG9cpG91Qa3FkoUX7oOaxlMVOg8ra0AG7iYVB137JxsL508j15mN+wnuZ/OY4ZJTSsOcZXmb65e406vzUedA64WXfAzzNs7qJ+toz5YGbdJmqsd1F4RFbrnaju0r+9YEVAJT3Yo1RxeB6P3OUsQj01ghla0FWIr2ibcRc+Dyl1zzdGK4bEHYgVpszjzHIxnD9d7Z3vh1R7moww2y/DG3ulrP9peepRiAk1sW+7oNE8KpSDFeIcC1wZ0mEMRPmmWUxq5DLvjQ6n9wxtJareM2i1jbi9g3tqBtT6uUgzJ6KeJrSCeJhBD57A1tnfOa2oepwhE/Ayu2Spi4aBKsngOB9nnDBGIgiAIgiCcSsFxWfSKpwo+z9UcvPKQUrGEGRpKJ8wrnhWlFNdKFT7qTFdxYpNR0C6/sbhGyfV40O/wWbdJ1bMzbqcFfA/TlKLrcq1Y4bNuk41CCVBzYzxOwjuhquppzXJQYHtoBdFqoXS87dZxxqY3AGmWsr29y2cffsiV3Tbruy1qzS7l2wNu3AZ+/DnG+zPSK6ukV9dJr6zhrS+R+S4MAoic486iuUGNObpZHomHiwjEgWuFQHD4Wu045m+sXuVqyYqaDzv7hzOVq33M9ZZt3Xxctc/dsGKeg6KdQzzPZr59xNXzLPj5jYajFcRUQde3LbijGbPFoa14HhROnnudx9EK4klUI2gWrTvo5DmINOwXrQBbmG+uNIVrz6t6UMc8rMJLp7jUjiIuThKIcGhKxJG5UwXUQjsj2fXJPDs3OBbh3sTNnaMuwzAW5ua3HmAix85tPqqiPljFrNzB0w5RFNKJ51SJQwf143VrcnSjfXhdQH7dX+CzO8oZDJlMIUEBOtPE0mIqCIIgCMKvO29WGxROmD8E8JQGBYkxuEofa4O8KDfKVX7Z2Z+yjo+zDE9rgjyUfr1Q5sP22VsBB2nCUlDgawur3O21acURpXye8LJZL5S42+uglWI1OL3t1tEOjfU1Ei/jX7X3uVIo40YxSztNvEfbvNOOqGzt4d59hHv3EQAl4O97ZZrOOnvvFzi4VuZguU7i2fOjdvLXPSqmXLt5V8mMmbyTyLAiK0jHLZGjucO1/D2uFoqUXY9eGlPJW3DNG3vQLKA6gXWTLaSHbYezjGNOYDR/aObNH85iNOMWHbk2275twa2H45k1szBAPaqiDoqYowKxFdh51nmtrZGGjm/n+s5g4mOq+Yxmx5+uFO6U7bpWe+dqvzXX26gHddSDmg1xP6Hopkazj/OcYIv28xm3WcLx91QLYa8E7YDiimNb0Ufn2J8QiEVbBZyKoWkHVgCXY2uOszhEDV3retv1cWoRBkMrjma+DXW7geoGcFfb9906FIiqd4EZ5lkM85shJ32W+XyzSm0s0IuKCERBEARBEM7Eq9XGqY/xtLWPSIwVCscs/y/IWlCi7vm0oxAv3yLGWTYVE7HgF3Byi33nDC6HgyxhvVCm6vlcLVV4v7nHO/WlJzbVmcW1UpUP2vscRMNztd1eL1V5v7lnc+V8j80ryzxcKLJ69RXwC+jdA5wHmziPttCPtynvHlCJP+faB8AHeQZ9o8J+bYFmq89+fYGD8gAzqTQuWkGMHTu3NlE9HKQJJcelkotsTzu8VKrxYXt/LBDRYL68BZ8s2XgEsO6ygOqfczOft3DONaiZhWNs3MlRgTiqYtUnqn2jyt+jCmqrjHlrF5b6qE+XUPfq1h332/dmii91u2HPz0rvbCYpI/OTI0Y1qpmv6yyzhFPHi63APShitss26H4WBtgt2fm/+rzomFEF0QOVf0JHhNKkwF2+VrRfjBw7Wzl5aTm5yBrNnLaDXJgfybGsh9b1thVAzZ6bThJhjp7M0IGHNo5GDT1Mz5uuIM4z/jkPBmvi5Kcni3Qnn5k0UkEUBEEQBEEArCAweVaZpzTuJYktV2teqzT4RX+fZRWgsC2mk9W+hu9Tdj36+RziqRgbFQHwcrnOp53mpZjqzGLRL/B7q9f5/v4mC+doYV0LStQ8n24SU/N8YmOrpiXXs1mMq0tkq0vEX/0iAP/6322z8lnKwsItFqJtFneb1Jtd6s0ucB9akP5PiuZijf3lBgfLNQ78ZXpmDXNugZg/fmK+bZAm3CjXpgT6tVKFD9pW5I5nx0rJdAtwKRcb53EybQWHJjfVCGMM9wddHKUoOd74s52Jn1h30VQd7oZH7aCTFdZCginENoojAR5VMKGDupdnN0auPW8Tzpvq8wUrWh5VMU5mTVLOQsVWyegcWfcou3KWe+YpmJebqIMi6lYDtkt2VvCN/ekHtQPr6Lo4mB//UsgriwP30AV4VgUxPx5gZxFTbT+foxQTK+YGHoyMgY5Utk3dzjGrVgFz3TqjhmmKmryFkIH6eMka+HipzVncKduKpM6HIfse6pfLEDv2xsRFHE1Dx4rYo23bR8nnYFWmiKWCKAiCIAiCYFtMtVJEWUbF9edm+V2E16sNWjrhk909NoIScZZNCUFHaTaKZT7rNE8ViKnJcLQezxtuFMqsFUqXYqozj9VCib+78fK5MtxcrblZrvJBa5+a5xNlGb52rCvoDFTZZTdYZ/tKEV6+CkDQTFj6c5eFcJuF8j0W95ss7bZY2j2cS0v5E1oHCxz0ijSXahws1mgtVMncE1qEZ7QPxiZjNShOPWy9UKbuBXSSiPo8cTxrLu0U1O0GkLtHKltRLmiXLzaW+PH+9ikCMbNjaZEDbopJFOwWbU7fpFBRYN7ZwbQCG/beLjD6+MaCpO+Bnz8ndFC3FsZPz17eP5aZNxfHWGfXvm9Fp5fZylXPs2LnLFmTR1kcYGpDVLsA3bwS+fr+lEgatR6b5RMqlIXUVhgH7qEZ0NH3VUjsY8L82pzVXjrxWMCaDI3aQY8a+YyqmbngDLRDlKWMFx9p1Purdu4xSDBf3EH9eAN1v2bbpetD62baLsBDG6dibwhcoOH0NIOaEbl41qkmy2+UvYiIQBQEQRAE4dJwtR5b0q8VLnebUfV8/v5Lr/I/9Ya0o5DMGMpHhNIb1Qb3+x22hgPWCsU5R7JRESXHHQvJkuvyW0vrrJxhPvBJuEjA90pQIjN7AMRZStUL5rbQugVDAqjocJ4wur/Bpl/l8WtLmDdXwRjKnT6Luy0W9to0dtssbHdZHOyy+MnhsTKl6NTLHCzVaS5Wx38nfi7iZhiQGDgmAj2teb3S4If7W/MFomOsOcxZoy76LmqnbNtbr9jYiDC1+ZBvVRf4ZWuPYZpQmCOkx6IlcqCUkm4Ftgq11j3uhrowtH8eV1FdH5Pk7ZjrXbhftwJx5NKZV1VNObKGKddPNocxxrAXDVEom6FYjaDvW6OaxaHNP0wc69Kqpp83SBNbST4JlQvCn69ZMQvWjGdSJO3m1/xJAlEBhQQ1yM1s/OT4eVLYFss0X+gsg5oRI6EVuva9AlSPtAn7mZ197FnBHDg2CxGMDa3/mX1PphxhvvI4d51NDuckF4a2ktueyKaMHHAvILTPKhDHFUSNgamZ6RcJEYiCIAiCIFwantI4StFP00txMD1K4DhcLZbZHvRBqWMCYL1Q5t9bu8G/fHyHKEvnZjYO0oTrpeqU0LpSrFz6ei+DBT9AK0VqMqIsOzFqxC/aTshx9Wa/YAPT/QTzat5aqBS9Wplercz9V67YKsu/fYmS26L+6odWNO63WdhrH7anfn74Gp1qieZijZZepjPocZA63Bn2GWYZvtbUZ1Tubpar/KS5c+JnYnMRXZu1N2o5NbZl05Rim4s3YtTGuHZo3BJmKWuFMiXXY61QYmvYP0Eg5sfPz1P6MG9znDenB1AbQtdHJRpTDTHVvAVycm4yyRdTieDmyeIwM4ZHgx41z6ed2BZZqhFqCzs3tzg8bC89Yh7TjEN6aUI7iVkLiidX6heHmN+5Cz/cQB0Up0VSrFGdwLaBTjiYJlmGo9T0cZf68MC21s4VSk4ebWE4sYJogiQ3JXKt+YuXzm5vrYV27rEd4C/E9KIIkynU+ytWHF5tW9OjXPCa1/Zgu2KF/moP7tanO0pjh/wn5HzkAtGcsYJIpjAGXlB9KAJREARBEITLw9MaR9k7/Uere5fFol8gy7fks1otV/Jg9jCdL0Zikz21ecPLpuYFVFyPfpIQm4yGX5j72KCgrKF/ZIWKepzn572+P7+1TgG+oZ/V6d1c59FNG7WhPl0k2MloVO7RMDss7Ldo7LepdvpUO32uswm8D9+H6Mea3kKNzmKNxm6CWV0iXVmCkl3rgl9gyS/QSyJ8f55AzLP2+t6hQGwFqNsLKCAbupDP86lxZMfhXF6YpSwGVjjeKFW51+9wEA1xlD7uTDvpZJpBulmwbZwnVNFMPUQ9yv9jYTi7LXYkEN3TWwsfD/tcKZX51tIV/sXjO/TThHI+Z6g6vr3CR9mVRwRiP015o9pga9inGYcsnHBNjJmqmh6JrShH4wrlME3YCgc4SnG1UB6LRPNyEzUSiPP0qJvZPMtMja/ByfnMMbnQUu28cluZbY5jqqHNgOx5eIuaKEupP1yx84vLPczbu9NP2OhhNiZE/tEM1KPGRGdEnbmCmL/X7PKNrn6ViEAUBEEQBOHS0Erhazt/EzwlgVj3AhQKrdRMgaiVou4F7IXz4xIMzKx0PY84SrFRLPN5twUGSiec13FX7SgkfD//woTwMcbQSxPKjntYIXIz1MDDjNo7mwHqToMI2O4tsvnmLrzbBsALY+rNDvUPMxrbfWrBJtVOk4Ud+4eP741fK6uUyVYWyVYXebfo8HMf9Ko3c7ZxVtTFKCAeQH++SDZq95whnAxQc+1nuhwUsX66inYSUXG9qfZe4+cVrMix1bpE23N0tG1ykonZRNMYHr72BQTiQTSk6nn89vJVap7PtVKFW90m5VGbZW5Uo3qjfMJpgxpjDNeKVWpuwA8PtlngDIxaPeOJcz8SPrn5SmoytsMh79aX2QkHVsQWy/YxhRSz0kPtlKeqjVOMBFJ6mIFoZraY5l8bGQPNM38ZGSClGqUUWQa1B6sYZWzl8DTqIdnv3EHdq9vZ0LMKxIFrz9fopsroepsQiN0kJsmy6bnlcczF5c1ePwtEIAqCIAiCcKkE2sXVGt95OnfRa55PyXFJMRTn5Cwu+D6PB92Z34uyFE85Y4OaF4G1QomfN/dYLxTtrNocfF9hVGarNwPXVlqq4VQVp5PEdJKY/WjIeqFkq6xeaoVZ7ICfoj5ZAhgLAtX1x22UceCxu7bI3tYqKq6QfP0BW4UDfr+2Rv2gi7O9h97ZR+/sofeauN0e3L7PO8A7gFHQq5RoNyq06+X87wodzydj8bBl0wBbZQwG88oB+taijZpYmGy9nBZO5Tync8Ev8BuLa1wtVfiTnUccROH0ecvPh4oc6Ofb4XmiZ3zwCKMzVKatoYqX2biMvmfXqhgLRHOKQOylCb9ZXx9XNq8VK3zSObAizMkORWf/eIvpyA227gV5hfxQ1EZZSjeJKTnu8fbaWfmPR1on23HMWqHI1xfX2I+G/MGj21Pus+ZL25j7NTt/OYuRwE60Pbcw26Qmj0ZRSf6YeQIxP48qsTN9DVNEp7kBTfmMraJeZg2F4LCqeRKRRv3FNWvw85Ut2C3aPEY/GX8OnTiik8S4StOKw8PZWuewxfRFRgSiIAiCIAiXSuDYeIu5s2ZPiKs1y0GRVhzizXmNmheQzknU6ycJNc+jfJrBx3PElUKZby1v8GZ1gZI7f/vmaU3qJTiRB3t59XBhupIaZik3SlWKjsNH7QOulSrTWYg9z0YLVEPMKwe2YhTOOM95hSh2YzxH4y0skC4vk77+0uFjkgS910Rv79F/vEnn4WNWOgMqnT6VTp8r96cP2XcqdFo1Wk2PjrNIp12gvVIkvNaBW4uwU4I39qyzp5eORU9qMhylx5+poxTvNJYBeKe+xB9t3WfRmMOK6eQMYm68MlekjNBg3tyzDqMjB89ShGoXMKFjq2JnqCAaY8AwJVhXCyU85RCZlCCYiOCYUSkd5OY7Nc+n6LgE2mGYJgTaYXPYZ61QYjcc0vDM1DVu/OMiSQ2mWyejLOW6X8HVmqWgYFub0/gww9Ix8NIJs5XOYcVvnklNO45oJRE3RmIbMIU54tyduC6Buh4JsXO6g+YiVcXO9G+F+zX7GhsTgrfn2bbX3ZK9yfKhvY7MW7vgGJIsoxlH/M7qNVyt+JPth3STHiXHYUHbnzmVSoupIAiCIAjCmIJ2cbQieEoCEWCtUOQkX46y4x0bk8qMYZim9NOEm+XaU1vb06Di+XxlYeXUx3lak3kJbuTDlm0NNIvTAjHKMlaCIq9W6tzpd+gmEdVx+6EeV+fMam/abfIoudCInJhAuQSzqrmuS7a2TLa2zPALL/MHDz5j2S8QpBm1Vo9as0u11aVy0KHe6lHt9Ch1u6x9CHAX+AnsQnjLo+0s0mWRzndden3oLBToJCmZ6xCmKYF2KM8wRrpRqlD3fDp5liQwUU3Th3N4pwlEgGud6f8uJdDGVvwKKeoUgWiMYZilFFyHxYm5wYrrUfU8BmlCMIrgCB0YuNapdaL1dZAmVlBqjac1S36BgyhkoFLqXsDfWrvJjw62+Lzbmr4Jkn/Gkw63R905Y2PGM66O0lwtlvmsawVhP7GveyKjlsx09gyiMYZmHNr23yCBQf55nFJBHAvv0WyfPqf7y+T85Yihg/5o2bar1iYqkvm1rlDw0zVbhV/pwapt0z6IQ64Wy7xWqaOUorzhsR0O+O7eY2p+aj2TpIIoCIIgCIJwSNFx8Z5iBRHgRqnGkj8/xsJW2RQmrxoN0oSdcEDJte2Ly8H8577IeEqT+gn0sG1xytiZvSNUPI+q5/Pl+hLf3dui7KY4ALFzWFUqxrY9T5nZFcTIwShD7CRnatctux4F7TDMUlzP42C5zsGyNT253++glOLmX75JddilGu9TY5equ0s1OaDa6rISbrHCFnwC8AvYB/M59MtFDqoF+vUqxa0h2WKDbLGOqVfBcfC0w2vVBj852B4LxI7Tp4axwm60l58V6H4ak0Y1i8O5FcQoS9ka9smMdeLdKJaPtYAuB0Vud1uHYqbro1DHnDPDLGNtIo7lWqnCrV6bouPyN1auUnJdNgplPu4cTK/VP2EGcfQa5rBNF6wr8IftAw6i6FhES5JlHMQhjlKHYteZEHQzWkzbSUTV84nSlCxIcM4rEEezfSfNis7CmyEQ8/lcZRR8voj58rb9+vDw/atuYAXk69YB2OQ3mb5QWxxXo1cLJZaCInd6LQ7CkBWMCERBEARBEIRJAsfB1das5mnR8IMTQ+1LjoenNbHJUEaxGw742uIqb1WX6CTRySHqLzCu1qTeRJ7cUv+Ye6nBUMkrbV+oLbIXDdlRQxpgN+KjlstSkjucpofRBWp8ECs0vJTYZNTc+dEbIxylWAgK7A4HVCYqW/0kpuha19msYminS7S9Je6/V4GVNQBUllHaial9v0g1aVFJWpT9bapxm1J3QLk3gM2DKYMcozWmUSVbaPBerYQhQi3U2C369AsupWKINyhYx00Yi5RRlS/OMsqui6PmX8emHFkrnF4+ozlHIG4OB7xVWyQxGb9o7vH1hdVjx1r2C3xiDg4rfblRzWQgfZjaNtGViYzPK8UKX64v83KlxtU8qmUpKKBQ49ZbYE4VzbU3AEavocxUPM1SUEArRdX16CTx+IZLZgwPBz2ulyv0k4T7/S4Fx2FRp3hwrMW0l8QcRDbL8bcW1/lFa480iBmvZJ47qDvRsjr597lbTKdbVQFU3oJtlEFtVTC3I7jZRB2tlm90DmcP8yr0tdJ0JI6jFG/XlvjDrfvgGGkxFQRBEARBmMTTGl85T7WCeBpFxyHQtvWwlUS8Xl3gK41VtFInzvC96LhKTxmkmFenq0hJluFOzOr52uG3l6/yb4v54+IJ05ZRRS1IbHRB5BwKiUSjjML4GYkxZxKIAMtBgQf9aYOTgzjiWrHM/X7XVuRaBZvLt3zYGmu0prcW0Hu3wtbHLwGQffUxLA3QSUpvd5dv6RLXBwlqv4Xeb6IPWuh9+6cO/M6RtfTdH9HXDfpOjV5QpXs7plsp8jDQtAs+Zc/j4aA3jk2ZyWg2cDQrOBIg3uFnYLMfNe81VnCUIkxT1kfOoBNUx+2vhxVE+9+HwnU77POl+vJUZudyUOTbq1enjlX3AuqeTy9JJtpqjwjEVKEi155rBfHo2ph4r3UvYK1Q4mapyo8PdohNhq8coiyl5Lr87up14izjl+099qOQLhH1/NhEDkZnZDpjbxjytYVVNool1gol7vU7RH6Mj3WUnVsRfFoVRAPsF2118O0d+OUK+rNFTNcbV//MWhc6PuaVw5+hQZrwaqU+83fb9VKFRd/GpYhAFARBEARBmMDTmornH2tJ+1WilKLhBXzSbbJeKPG1hdVnup5fFZ7WqHw+y+gMatMun2EeVD8pkj2tCQJNCqjYVhCNkx2KnJEoDCcE4mi+zEsBQ/GMhj8LXoHMmHFlK8kyFPBGbYHHwz5pOcSlirnenp21d6NNlinUbgnqtnU2dTR79TJm42Wio8IrjKxQbLbp7eySHbQod/s4zQ6Fdo9Ssgls2lSNPzt8WpZXH5ulgAeBRtVr9CtF+uUC/XKRYSnAaA2lGIM5dFWdUUHs5yKt4noopfjb6zdnXotV10ejyLzEVtY6+Sxofs47SUzdD3j3DLOoWimuFit81N4/FIheZtc6quwN878nDGoC7Ux9llopfnf1GoHj8IvWHnGW4WuHxNi/A+1QcFx+c2mDu70233MGh+chN/PZjgZcK5b5cmMZL+8qqHsBj/z82swrt0mWEZtsWow7xq75mEA8vYJojOFOv8uVQonAcTBueigQu74Vx40BXOli6iF89yrslsai37yxdxjHkRNn82+GeNrhy41lPtUZbuwyxyPrhUAEoiAIgiAIl0rZ8Vg6S3D3U2YlKKKU4jeX1g6rM7/muEozuLpPIfPQr7SPfT/KrJHJ0bZJz4cUoO+hUo2phIcCbSwQXSDf1MeT82WKwpy4kaPcKFW5WaryYNDlSrFMK45YLZS4Uaria4fBlX3K1RiW5mdY8lILM+GkGeWipTbrMw58svUVsvUVgi+8CkAGfN5r8Rcf7XPzZyuU0g7V6i7F6mPKnT5uu8tKP8bbb7G0DzbwY3PqsEbBoGTFYr//MYNWnd4HIYNmSj9eoJeFxEZDPv/6cqU2nlmbd6Oi4noUHJfIjSkCatTqOyEQ31tYnl/NPMJGscz7rb1xWygKK/ojbcXLcDrbL8pSal6Ac2R9pVwwVlyPfmLFU5xlNo904rE1zydzbEi9Grp2ftJPSU3GW/XFsTgEm0F6O8gD7fM5zp1wgKs1e+EQV2vquUsr7qRAzF1Pz1BBjPKbD/00tgZKfjp2h1XbRwycyjFUckfajrKidEY8h1JQOKED4aVyjc+d/Hkv8ByiCERBEARBEC6VjWKZjRktdL9q3l1YQTF/Q/7riKc1upDRf3Nras5vRJilLMwQ74UiDAEO8u+VDmfCTJCHyk8a1USHIegGc2bR4mrNbyyts/v4Nq04pJ8mfL26hqM0Vdenm0SUl08QhzMYZgkV1xsLmbPga4ewOqTv1ui7NZo368Qv10iylK3hgH947VUWcOCgxfc+/4RSb8DiMKbUG1LqDSh1hxT7Q0q9IZC3IP4A4AP77/8ZYs+xBjqBR3VxAX/hHqZSxlTLZJUyplrClEuQCydXaxq+T8+NmLJQ8hMyYytpVwrTs28ncaVYpnbMvTW185KpOjRjySt4YZadaDZU93yaka3axll2GH2RU3V9vNFHMDI68m3YzFFH45LjMqx3MC8fYPJMxRTDbyysEjgOjwc9Pu+2aMYRV5zU3pwwnKvFdJAm1D2fMMuv5ZE7bM+De3U7e3llot25EkG7YCMuggRmdomefK17WuO7hgTGER4vIiIQBUEQBEH4teRoJeSvAlrZal6UzQgnBxJjZhr0lBYy9rwEJzoyfwiHlZTwsDVRtayQzLwUV+njoewn0PADfmNpnT/auk9Bu1wt2JsJdd9nPzqfOAQYpOnYnOWsBNohc1JMMUYNPFQecTBIU4p5xiBKw9oysQ75UbfJemH6pofKMoq9IeWPPUoPobi0SWkzo5R0KRX2KXUH1JtdO5O3dXB8EYBRClMuWuFYKfHXPM3DVOP2+gycMkOnTN/02I0iaq7Pyjncd33t8EZ1gR8dbE20mR7O4qmuVXMjl9Qky040fqp5PrGxrZ2xMceq8q7WlIP8GhlVP/PXOzqzV3Y92z76mj0vmTEoFGuFEstBkdcqDd6qLfKvNu+SuRlOqKyoPcGkppPnK17Lr4VhlrDkl+iF8dRa1KeLqERjrrWm3FNNJTrsap5jmmPMcbF7FJ3/KCipIAqCIAiCIAjPA0XHo58c3+CmJkOhZrb/+q6mv9yk+jgPBZ+MHQjsv1Xo2va8715D5S2mqZfgaU3hnIZEr5TrPK71SI2hkguNhnsoQM5DYjJWglPy+Y7gaY2jNaY2RA08dMW+x2GasF4oT7XgjqIejmK05qAU0L9SRx+sYlbXYFCHIMV8+x4YQ9jvU+iH/PuVZZxuH93toTp9VLeH7vRQ3R6q20d3bcbetfwPfH74Qv8iN40t+DiVH2PKJUypaIVluYQpF8lKh/825SLkbZAvlav8tLmTG+U4h2K/WYAHNTunOpGTWT6hCjtdoTWUZtwUqBc9OjCuIGZeiqP0VHsp2Aqim8+gulozTBOKjkt9ooK5HBRZ8gtkTh7BkmjUCRXEgziyzsVZhqc1iYGS66BGpr75e1f7JYzOMC83pw9QnZjXDY7//IzWelq1XOVre5GNakQgCoIgCIIg/BpRcly2ZwitZhSxWijOzID0tKa/sjcWiFMVxEmTms0KKnas82U5Ilxs4ysH95yRJlopvrW8QWoON/olz7Ph5Ocgy59fP+eMaaAdXKWIXtklWAzRKxH0YJhlrB0Jg2/4AVopHg56+FqzEhRJsozNsE+cZVwrBQQA7cDO3eUGNQbYUoZvXL+GWVhlTpADZBlqMER1erT29vnlw3tc+aRBMe1TSHsElSbuYEgljNG7B7A7uxo5iQl8TKlIsVzk97Vh31G4pSJRe5OoVyf6YYFIxwxfConMkE5kXYdPygct6kPZYObMndYLViCqxH4v8xIcpY5VEEuui69tpdvVmn6asFIoHROSa4US9508OiPRkM2uIHbiiKrnUdKujbHxAsCwXihzp9chMwZnYqbQvNw8ZkBDZVIgHq/Ax8YKxNOq5eO3KhVEQRAEQRAE4Xmg7Lkk5niFpZfP+82ayfSUQ1jtj1suxwHwMGVSox5UATBf3IaFkDiKqToXMwBylMaZWErJca05yDk4iEJWguJULuBZ8LSDozRxISK43kGpUeXKHGuzXPADVoMigeNwr98BYCsc8FKpzl40YOgM8DHQss8zbspuOCAzhrrn84Xa4smL0Tqv/pVQyw0+LKU0976Ail2Mn5B9+y4PBz3+wZWXWdUeqtdH9wao/gDV66N6A/unb/89+p4+aKEPWmwAG/Neexf4of1n7Do45R9higGmUMAUC/m/A0zgs+ooXu8dUCn3SUxCtbCIMg4mCMB1QCkqwbS0SPMW5KOZqI7SlF2XQZJQws7Grs+oAi/6Be6OTF8SPXMGMTUZB3HIby2tA/D9fTt/6yuHK8UyvtaEWUqchDbrE+Cl5vFz4WcYP7HupjNaTOMso6CdYyL2KHpUQRSBKAiCIAiCIDwPFLRLdkRn9ZKYouPMndXztEYpMF/axnT9KZMa/NQaenR9m31YCaFh+/ZSk1F0LyfvsuR46KPh7idgjKGfJvzm8vqZHj+JoxSB45Bmh5WoQZJQcI5X0Ryl+btXXqKbxDwa9EgyGxfxerVO2s7YzQZQilF9K5RTJwVl5+7ea6yc2cAHrEguOq5tzYxdCFJik+Fpx7biuh4m8EkXG6cfLE5Q/QGmP+RHj+7QbXep9g2LuwGBOyBwe/hhjB9GOMOQSpSiWx1odWYergD8vamv/Gz8L6M1puDzhuuzMSiQaJ9Y+fQ/TogeGYp3muB7GM/D+B74Hq/2DthKY8qlEt00YqWSQRiB71m7UGxl2LgT0RlHZhDjLOPxsMfL5TpvVBdoxva6bMcRFc+j4QWUHI+tYR9/NaU8KOO82ppjQIOtIu67M1tM4yw7scI6YlRBlBZTQRAEQRAE4bkg0A5KHSpEYwz70ZCvL67NdDYFxlURUxui6uH0NxVQPBRA5kZrHIGRmrM7mJ5GyXXxHYcoyyg6p2+u20lEww+4Wape7PUcl4N0OHW8G8XKzPczclktOR6dJMJVmoYfsOAHPBp0bd5kfn4yJ6XmBvy9Ky+hz9kyq5WdER16MQ4BBAlRllJwnHMZAQHguZh6FepVbi5WGKQJf7bzCF/rqVnDzBgeD3v8/SuvsOoXUMPQtrwOhjAYooYRKowww5BPdrfwoxgvTrihfZwwRoUhhBFqGOH1hywyEa/ycPSP+8eW981jX/nh+F/GczGeR8n3+A9DyJIC6Z+nZElAGvukP4wYehkDBd8sllivdNDeFmXH4Zu9A4YarlcbeJ1bvNU5oDjsUgsKZCtNigOfLFQYrci0JtMKk/+dNXahuURa7mKSzH5PKVCK2GRUvdOdcg9NakQgPnPefPPNY1/7b//b/5a/9/f+3oxHC4IgCIIg/HriaY2ZECYHcciiX+StE1odPaVxlCY1BndGC6p5dwvT822FpXzYfpqYjKJz9niJk/C1Q8lxibOM4kRR0hhDL02OidthmvJapYp3ToOcESXHZWeighibjOvl2tzHa6VYLRR5v7XLeqFM1fWpej4ZYGohatNWZzPXBs6ft6o5YikoctdL8AGClDDNWC4UnyiuZVT5muVw208TSo7Hol+w7a6lIqY0u1K2s7fJ9/Y32QjK/P6N1499fzgI+d7/y+BlEZ4JGbx2m6UivFuqo+IYohgVJ6go5qDbYb/bpZIZiGPWtY+O7feJYlQUofuDvC20PU4TAeDB/Pf6W0f++zfzP+fiuJ4lU9gZWTX6w8S/889GKb6dgMkUyS6YNeD6tfO++jPn10YgAvw3/81/w7e+9a3xf9dq83/IBUEQBEEQfh0JtDNVt+qnCV9fXDuxAuVpjaOUFYj514wx7EZDSo5LuQJU4mPPM4aZZiUXpeH5PBr0pr7WjEP6aUovSVibmDVMTDYzsuOslBxvbJIzTK0b69opLYSrQZE4y9golNFKUXY8wED1sOqaOZkNZr8gdc8n9UbZfSlRlrLoHXeevQhFx2WQTrdPxllK1QvOZDT0heoCH3cOKHuzryU38Bm6mtDYecLNK/s4C1WSlSvHHvu42+KPtx9Qcz0Mit+//hrqqAjOMr73wxaDD0qol3ZwdwKcjsPBFz7jStnnK9UFdJpBnECaWnE5+jtJUUlCPwqJ44RBHNGPQkpKozKDzjK0MagsQ2cGnU3+O7OPMRkqAzBkWTY2N8KY/A8oYwD7b7IMxxiMAZUA0fGfmReBXyuBWKvVWFlZedbLEARBEARBeGZ42sFgMMaQYdCoU2enrEDUU66irTjCUYp+mtBNk5niSSlONe04D3U/4E5vegaulyR8sb7E3X6bg2jIQh7TYVAnxjKcRtF1yXJTnF4cs+gXxpEbc9fnBdS9gNXc6bTkuhjAVA9bVVM3wb9g9RCg4nokvj2eKSZkmMMcwyek6Lgk2bQDaJxl1M54Hut+wFvVRZI5cSSuVhgnQyX2GoydmKI7W27YaBRDbDIW/cJxcQigNbrkETlFjFsFt4TyArZXt/nGjZtkQZHTglGc/M8v9rZ4v7XLRrF8yjNm82DQ5X+3fpPrp7Q0//zHMZvvB3Ref8z/5WsvQ/P82Z7Pmhe3OXYG/9V/9V/xW7/1W/z+7/8+//yf//NnvRxBEARBEIRfOYHWuLnY6ye2NXMyX24W1lHUGsSAnUtrJxFfW1jlm0sbx0TFCIPCV5dXQay4/pSTaZJlaKV4vdrgndoSvTzf0RjbRPskAjHQzrgVN8pSGmcQYXU/YDEojJ1OS451y4ydFFOyMQmpkz5RVbXieoQbTeIvbMF6F3iy9znJZNV0hJ2tO3sl9r2FFb6ycEJBZhRB4Vn5PS8j01ZZFVGWniiA3dG3JkxqSt7JkRyzKLou6Rldcgdpwp1+B5Ofq4MopOr6LPmnv6YznkEUF9Nnzn/+n//nfPOb38T3ff7sz/6M//K//C/p9/v8J//Jf3LhY2r9/Hywo7U8T2sSfj2Qa0t4Gsh1JTwN5Lo6GwXPxdOaFOvy+XqtgXcG05dR+6FSilYcsloo8Vptga1hLx+3On7eFRC4zqV9JhXPQyk1fq1uGrNcKLJcKKKUQh8oMiAxhsDR1Hz/wq8duA5agdKKODU0CoVTj1XzfX5reZ2VfCaw5LkUXIc4ywhyo5rMTSm4F19X0XPxChBdaVFwXJTSVHzvUs5xyXPtLN3EZ6mUouy5Zz5+oEc1udko10AI+ClaKwJ39rFLnoerNcM0oe4Hc1/f9/OvJxoyhVEGz9PnPh+B46Anrq0RUZriHxH0wzTFUYphZudJe2nM765dp+KfLtRdzx5/ZFLzIv6+eq4F4n/33/13/Pf//X9/4mO+853vsL6+zj/5J/9k/LW3336bwWDA//g//o8XFoiuq1lamm0F/SxZWLhYWVwQTkOuLeFpINeV8DSQ6+pkjDHUdgu4jsbTKW+sLbO0cPqeZqldZmfQp1wM2O9GvL2ywvpKDdV3KBx4lCvTVSZjDEXjsbZUZal4PMPuImQlTeHAp1Dy2Bz0SVx478o6K8tVFk2Zje42qTFoHJZUmaurjQu/1iAwFJoepZIP3SHri9WznSemH3OlXWNn2Kfw5oA4c2E9ZKmx/ET7yMZekQyDqx0aboHrq43zu5jOYEUNKfb8qc+ySMTGUo2l2uXsex3/gKwHTtFQKHisLlZmHrueZdT3CsThwL5+Y/brL7USHgIuLmmqMU5GvVI89/ldcWMK3en33o0jNrsDbpRqlCccStsq5oZfohWFxKS8vbrC129eOZPxUL3eBwxebmf6Iv6+eq4F4j/6R/+If/AP/sGJj5k3c/juu+/yT//pPyVJEtw5vc8nkSQZ7fbz0zOstWJhoczBQY/saLiRIDwBcm0JTwO5roSngVxXZycLM5pJyDBLcAeGvax76nPSQUKnN6SYagb9EAYpe3td+nFENExomcGUkUmSZcRRQq81RPdPmwQ7G2GakEYJt4dNFoKA32pscJUCe3t2/asq4GetXXxtQ9BHX78IgyhkOIzp6hAMxP34TOfpKEEMre6QUtGB97oMBkN6nZA9Lr62LEzpxDZOwwC95pDeqc86nUE3ZDiM6KlDU51+P2LYidiLL77eSYyyLqmpkzAcxPTb4dxjZ1FKGqZE3Yi9dPZjwjAEPJIhkCqMlxIP4nN/9v1+yHAQ0ePwvW8P+6x4BR4ctLg2MVvYGYRUjUerP8RRilcaGzT3+2d6nTBM7HrDvD31Ofp9VasV8bzT25+fa4HYaDRoNBoXeu6HH37IwsLChcThiOflw5wky8xzuS7hxUeuLeFpINeV8DSQ6+p0io7D3V6bVyo1qq5/pvPla01qMowxGBSBcsgyg4edT4wz23Y3IskyNAoHdWmfh4/GVw47yYBvLm9ws2Qd6UfHXw/K/NTs0okjFmpLT/S6Ze0RaId+HIOjKOTv97xUXJ8kP29gzS2f9JwUtcNBlmEUZ/78zoKLtp9vvtbRjGdwwfc+C+VaQ0+8lAxz4rkoa48DFZ74+uPxy8hBGUXqZHjq/OfXzddhJmYwozTler1KN4loRyHVfBbSGMN6UGJn2Ge9UGbNL5359Ub3UEYtpi/i76vnWiCelT/6oz9ib2+P9957D9/3+fM//3P+h//hf+Af/+N//KyXJgiCIAiC8Cun5Ng5xHfqy1Oi7iSK2iXJN9DGmHFgvK81ntYkR8xNEpPhKH3hHMJZKKWoe4HNJCwed4u8UizzbmOZnzR3zhRafhKe1ix4ATvRgLIfjN/veTmazwjgPoGLKUDR8azohKnWxyfF05rJjzE2GZ7WlxpVol1DBmRekl8f889FxfXwtT7x3Ad+/vzQrtHoDO8C59fXdgYxMwadR7popbhZqlLULt/f36SXJqznDrUNP+Cd+jJXi+XZDqtzGCWAqPTFmz0c8WshEF3X5Z/9s3/Gf/1f/9cA3Lhxg//iv/gv+P3f//1nvDJBEARBEIRfPUXX40qxzPXS2ee0fMdBKWsA42pNKd+0K6UoOR79ZDrTLTUmD4S/3I3woh+w4PuUZnSBKaX4ysIqgXZYC5587nGtUOJWr8WCLtkZvwsUeiquh+JQeAA2K+8JKDsuSQZGZVScyxOIQS6SUmPyqnBGQTv4lyjyXRcSRgJRnXjsqmuruMEJj/FcRerHOJE9D8bJzpTZeBQ/j3JJTIavHPpJTMX1WPADloMii37Av9y8S5Ll7quOc7Jb6xwcN//sxcX02fLtb3+bb3/72896GYIgCIIgCM8FN0tVrhUrZzLVGDGqykRZiq+dqfy6suvSjsOpx6cmm1k9e1K+1FhGM39z7SjFlxrLl/JadT8AlHVDzatL56XsegSOJsxSio6LwVxIwEziOw4oQ4qamyN4ETzt5BEoGY6y7qtL54yLOA0394BJvARXafwTzkXBdVkM5mQgjtasNGkhGgvETGd4F4hW8bSDo9U45qObxLxRXRj/jKwUShS0wyBN0CgK+mLnfVxBzF7cNMFfC4EoCIIgCIIgHHLejDgAV1tDlDjLKLvulLgsux7xkSzExJhLcdY8ykVbPS9CzfUpOE4uFC+Grx0qrs8wSWyFDvXELaa+dnKJbObmCF7suBpXa5LM4GvbYlq7xBZWgNorQ+4nTfRiZ1y1m8dGoXxqxqOrNWkhhrb970xnJ7atzsPTGk9pkiwj1RkphhvlwzZmRykW/AKPB108rfOcxvPj5hXEF7nF9MWVtoIgCIIgCMKlseAFuErTS2PqR4LTK65/LGQ8NdnMNtAXiZrnU3RcFoLCEx1n0SsQZul4ru2JK4jaGZ/tiwqVWbi5SEqNFfuJyah5FxfHs/BLhu7VPRKdnVqFq3o+V4snt0E7SmOKh+3NF20xBXvzITWG3XDIlWL52GuvBAW6SYyr9IltrycxFogvcAXxxV25IAiCIAiCcGnU/YD1QolmFB0TiIF2UHlNKzOGzWGfbpJQvGAb3vNCwXFZCopUnrCKtuAHxMaQ5bN9TzqDOGrLNHCp84Fg33NiDEleEa65/qUef1Q9TU1G0X3ytTtKTQtEnV147rXouIRZSmIyvlRfHs+Mjqh7gTUGcr1j3zsr449LBKIgCIIgCILwovNKpU7JdSkfqQxOVlNacUjF9fhibfFCrazPG+8tLHOtfNwx9TxUPA+Fyc1fTnbuPAt+3qqqUReuZM2j5DqkJmM7HPBKuca1cxgZnQUrrAzJhBPuEx+zlIz/bRxzYYFYclz2oiE3S7WZlcuK6xE4DpUnqIw74xnEF7fF9MW+7SMIgiAIgiBcGhuFMitB8djG3rY5jsw9Ev7a8gpv15eewQovnyvFClXfZ4/owscoOx7GkJu/qHOZA81iNLun1OW2mIKtoh3EIct+ka8srF64UjYPV9lZ1tRkFC/JgdUrH86/Zk6Goy523KLrsnTC+654PkE+U3pRtAPGTUG9WNmHk4hAFARBEARBEAA7E/alxvKxyuCoxbSfJASOw43Sk1Xcft2oej6BYx0wR2HrT4KnHVytUJwcE3ERNgplvrW0wSuVOgv+k81ezsJVdt0Gc2n5in4RUp2hMo3RKY662Dle9At8bXGVpTkzpyXHpeJ6pxrnnIRSoL62STsbAo0LH+dZIgJREARBEARBGPNmdeHY13zt4GnNTjjg7foilUsQQb9OFB2XqufzeNC7lLbbkeOmp/Wl50y+XKnzMvVLPeYkjtYYY1CnZCCeh8BxaAcR3qDwRDOIL5VrJ35fK8V6ofTE5ktuIyEdXrwi/awRgSgIgiAIgiCcSNFx+ObyBp7SrBWePKD+15FVv8itbuvSRFHR8U7MEHxecZVCKTCYS1t/oB3SQi4Qn2AG8Sz8xtL6E7cIP2nMybNGBKIgCIIgCIJwIkopXqs0nvUynmuWgiKOUpc2M1h0nEtr0fxVopVCK02UpU9s1jMi0A5xMaRwAJmbPrGAO4nLEPhPGnPyrBGBKAiCIAiCIAhPSM3zKWj30lxHS653aS6gv0pcpdHYSuJlVVNdrWlv7FEJXAaNDo5avpTjPi08qSAKgiAIgiAIwl9tap5Pwbk8gXijVH3iPMVngaMUWikc9KUKxKwYkb26D8On22J6GUgFURAEQRAEQRD+ilNyXGqed2ltlZedT/irwsZzKFzFpc0g2oqcIsPkLazPuUDM5zBfVEQgCoIgCIIgCMITopTiSrFM8AK2hV4mrlI4KEBdWqvlKFsxM6Dgqc4gXgaOUrzA+lAEoiAIgiAIgiBcBl9dWHvuq1tPG6XUOJ5DXdK5sJmQkBlbQXzeW0xfhCrnSYhAFARBEARBEIRL4LLaS190XK0p6MuTGbaCaMYtps/7bKaj9AtdQZSrWBAEQRAEQRCES8NTmtIlRnSMTF8yY9DYGI3nGUc9/2s8iRd35YIgCIIgCIIgPHd4WlN0vMs7ntK4SpOYDK14MVpMn/UinoAXee2CIAiCIAiCIDxnFByXont5LaYFx8XVmmGa4r4AlbnLnL98Fjz/Z1gQBEEQBEEQhBeGmutRvkSB6GlNyXEJs/SFmPPUvNgVRDGpEQRBEARBEATh0nhvYfXSj1n3fB72u5cWnfE0cV5wF9Pn/wwLgiAIgiAIgvBXmoYXEGXp2LDmeUZLi6kgCIIgCIIgCMLTo+x6aKXx9OW5oz4tHKVfaJH1Iq9dEARBEARBEIS/AhQdF19rvBegMqcVUkEUBEEQBEEQBEF4WliB6LwQLaaBdvG0fmHnEJ//MywIgiAIgiAIwl9pSo4VXS+Ci2nJdfm9tRsvhJidxYu5akEQBEEQBEEQ/spQdG0F0VPP/wwiWCfTFxURiIIgCIIgCIIgPNc4SlN1vRdaeL0oiEAUBEEQBEEQBOG5Z8EviED8FeA+6wUIgiAIgiAIgiCcxhfri/gvQMzFi44IREEQBEEQBEEQnnsW/MKzXsJfCaTFVBAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiC8P9n777j5Krr/Y+/vuecKdtbdtNDSIAASSB0CKEY5YpgQUV/ooAgerFQ9HovKipNEcHrVQQsoHAFC1wVUUGwgiggooi0AKGkt+1l6inf3x8zO9nJltRNNtn38/HIQ/bMmTPfmfnuOJ/9fL+fj4iISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEjRbhEgfvGLX+Qd73gH8+bN4x3veMeQ5zz++OO8/e1vZ968eZx00kncc889O3eQIiIiIiIiu7ndIkAEeOc738kpp5wy5G0rV67k/PPP56ijjuIXv/gF73//+7n00kt59NFHd/IoRUREREREdl/erh7Alvjc5z4HQEdHBy+//PKg2++8806mT5/Opz/9aQBmz57NP/7xD77//e+zcOHCnTpWERERERGR3dVuESBuzlNPPcWxxx5bdmzRokVcd91123VdxzHbdf8dqX8sY2lMsmfQ3JLRoHklo0HzSkaD5pWMht15Xu0RAWJbWxtNTU1lxyZMmEBXVxe+7xOLxbb6mp7n0NRUvaOGuMM0NFTt6iHIHkpzS0aD5pWMBs0rGQ2aVzIadsd5tcsCxBtuuIEbb7xxxHP+9Kc/MWnSpC26njHl0bm1dpvHBhAEET09me26xo7kOIaGhio6O1NE0fY9N5GBNLdkNGheyWjQvJLRoHklo2Eszqva2gpiMXez5+2yAPGss87irW9964jnNDc3b9G1JkyYQFtbW9mx9vZ26uvrtyl72G+svJkDRZEdk+OS3Z/mlowGzSsZDZpXMho0r2Q07I7zapcFiPX19dTX1++Qay1YsICHH3647Nijjz7KggULdsj1RURERERExoPdos3F8uXLWbJkCa2treRyOZYsWcKSJUtKt7/nPe9hxYoVXHfddbzyyiv88Ic/5IEHHuD973//Lhy1iIiIiIjI7mW3KFLzuc99jr/97W+ln0877TQAXnzxRQCmT5/Od77zHb785S9z++23M2nSJL74xS+qxYWIiIiIiMhW2C0CxDvuuGOz5xx99NHcc889oz8YERERERGRPdRuscRURERERERERp8CRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkbHW2l09iLEoiixhGO3qYZSJxVx8P9zVw5A9kOaWjAbNKxkNmlcyGjSvZDSMtXnlug6OYzZ7ngJEERERERERAbTEVERERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAUURERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAcUz54Q9/yOLFi5k/fz7vfve7efrpp0c8//777+fkk09m/vz5vOUtb+Hhhx/eSSOV3c3WzK2lS5dy4YUXsnjxYubMmcMPfvCDnThS2Z1szbz6v//7P9773vdyxBFHcOSRR/KBD3yAZ555ZieOVnYXWzOvfv/73/POd76Tww8/nAULFvC2t72Ne+65Z+cNVnYbW/sdq9/NN9/MnDlzuPbaa0d5hLI72pp5dffddzNnzpyyf/Pnz9+Jo91yChDHiF//+tdcc801fOxjH+PnP/85c+bM4YMf/CAdHR1Dnv/Pf/6TT37yk5x++uncc889vOENb+CjH/0or7zyyk4euYx1Wzu3MpkM06ZN45Of/CTNzc07ebSyu9jaefX4449z6qmncvvtt/PjH/+YiRMn8oEPfIANGzbs5JHLWLa186quro7zzz+fu+66i1/+8pecfvrpXHrppTz66KM7eeQylm3tvOr33HPPceeddzJnzpydNFLZnWzLvKqvr+cvf/lL6d+DDz64E0e8FayMCaeffrq96qqrSj+HYWgXLVpkv/vd7w55/sUXX2zPP//8smPvete77JVXXjmq45Tdz9bOrYFe97rX2TvuuGM0hye7qe2ZV9ZaGwSBPeSQQ+wvf/nL0Rqi7Ia2d15Za+1pp51mb7jhhtEYnuymtmVepdNp+6Y3vck+/PDD9swzz7Rf/vKXd8ZQZTeytfPqZz/7mT3yyCN31vC2izKIY0A+n+e5557j2GOPLR1zHIeFCxfy1FNPDXmfp556qux8gEWLFg17voxP2zK3RDZnR8yrTCZDEATU1dWN0ihld7O988pay2OPPcZrr73GYYcdNoojld3Jts6rL3/5yxx11FEcd9xxO2GUsrvZ1nnV19fHiSeeyAknnMBHP/pRXn755Z0w2q3n7eoBCHR2dhKGIRMmTCg73tTUxPLly4e8T1tbG01NTYPOb21tHbVxyu5nW+aWyObsiHn11a9+lcmTJ3P00UePxhBlN7St86q3t5fjjz+efD6P4zhceeWVHHPMMaM9XNlNbMu8evDBB/nrX/+q/awyrG2ZV7NmzeKaa65hv/32o6enh1tvvZUzzjiDe++9l4kTJ+6MYW8xBYhjmLUWY8ywtw9120jni/Tb3NwS2RZbOq9uueUWfv3rX3PHHXcQj8d3wshkd7a5eVVVVcU999xDOp3mscce40tf+hIzZszg8MMP34mjlN3NcPOqo6ODz3/+89x0001UVFTsgpHJ7mykz6sFCxawYMGC0s+HHHIIp5xyCj/5yU+44IILdtIIt4wCxDGgoaEB13Vpa2srO97R0THoLxP9JkyYMOj89vb2Yc+X8Wlb5pbI5mzPvPre977Hd77zHW677Tb222+/0Rym7Ga2dV45jsNee+0FwAEHHMArr7zCzTffrABRgK2fV0uXLqW1tZUzzjijdCwMQ5544gl+8IMfqPqyADvm+1UsFuOAAw4Ykyu6tAdxDIjH48ydO7es6loURTz22GNlf2kYaMGCBTzyyCNlxx599NFhz5fxaVvmlsjmbOu8+u53v8s3v/lNvvvd747Z0t6y6+yozytrLfl8fhRGKLujrZ1X8+fP51e/+hX33HNP6d+8efN4+9vfzt13370TRy5j2Y74vArDkKVLl47JivHKII4R5557Lpdccglz587loIMO4vvf/z7ZbJa3v/3tAFxyySVMnDiRT37ykwCcffbZnHnmmdx6662ccMIJ/PrXv+bZZ5/l6quv3pVPQ8agrZ1b+Xy+1C4ln8+zfv16lixZQl1dHVOmTNllz0PGlq2dV7fccgvXX389X/3qV5k6dWppv3RlZSVVVVW77HnI2LK18+rmm2/mwAMPZK+99iKfz/PnP/+ZX/ziF1x11VW78mnIGLM186qysnLQ6obKykrq6+vZd999d8XwZYza2s+rG2+8kQULFrDXXnvR09PD9773PdasWcPpp5++K5/GkBQgjhGnnHIKHR0dfOMb36C1tZUDDjiA7373uzQ2NgKwdu1aHGdjwvfQQw/lq1/9Kl//+tf5n//5H2bOnMlNN93E7Nmzd9VTkDFqa+fWhg0bOO2000o/33zzzdx88828/e1v58tf/vLOHr6MUVs7r3784x/j+z4XXXRR2XUuuOACLrzwwp06dhm7tnZeZbNZrrrqKtatW0cymWTWrFl85Stf4ZRTTtlVT0HGoK2dVyJbYmvnVU9PD5///OdpbW2lrq6OefPmcddddzFr1qxd9RSGZay1dlcPQkRERERERHY9/blEREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAPB29QBERER2lhtuuIEbb7xx0PFjjjmG//3f/935AxIRERljFCCKiMi4UlNTw3e/+91Bx0REREQBooiIjDOu67JgwYLNnpfNZkkmk6M/IBERkTFEexBFRGTcW7VqFXPmzOGXv/wll1xyCYcffjgf/vCHAejq6uKyyy5j4cKFzJ8/n/e85z3861//Krt/T08Pn/zkJ1mwYAGLFi3iW9/6Ftdeey2LFy8unXPDDTdw1FFHDXrsOXPm8IMf/KDs2E9+8hNOPfVU5s2bx+te9zpuueWWsts//elP8453vINHHnmEt7zlLSxYsIAzzjiDpUuXlp0XhiHf+c53eOMb38i8efM4/vjj+fSnPw3AD3/4Qw455BBSqVTZff76178yZ84cXnjhha18FUVEZE+gDKKIiIw7QRCU/WytBeC6667jpJNO4vrrr8dxHPL5POeeey49PT1ccsklNDY28uMf/5hzzjmH3/72tzQ3NwPwmc98hr/97W9ceumlTJgwgVtvvZUVK1bgeVv/f7Pf/e53+drXvsYHP/hBjjzySJ577jmuv/56KioqOPPMM0vnrV27luuuu46PfOQjJBIJrrvuOj7+8Y9z7733YowB4LLLLuMXv/gF5513HkceeSTd3d088MADALzlLW/h2muv5Te/+Q3veMc7Stf9+c9/zty5c9l///23euwiIrL7U4AoIiLjSldXF3Pnzi079sUvfhGAgw8+mMsvv7x0/Cc/+QlLly7l3nvvZebMmQAsXLiQk08+mVtvvZVPfepTLF26lN///vd87Wtf45RTTgHgqKOO4nWvex3V1dVbNba+vj5uuukmPvKRj3DBBRcAcOyxx5LJZPjWt77FGWecgeu6AHR3d/PjH/+4NC5rLR/72Md49dVXmT17Nq+88go//elP+exnP8vZZ59deoz+MdbW1vJv//Zv3H333aUAMZVK8dvf/pZPfvKTWzVuERHZcyhAFBGRcaWmpobbbrut7Fg8HgfgxBNPLDv+2GOPMXfuXKZNm1aWdTziiCN49tlnAXjmmWcAypaTVlVVsXDhQp5++umtGts///lP0uk0J598ctnjHX300Xzzm99k3bp1TJ06FYCpU6eWgkOA2bNnA7B+/Xpmz57N448/DlCWHdzU6aefzjnnnMPKlSuZPn06999/P0EQ8OY3v3mrxi0iInsOBYgiIjKuuK7L/Pnzy46tWrUKgKamprLjnZ2dPPXUU4MyjgAzZswAoK2tjaqqqkEFbTa91pbo7OwE4NRTTx3y9rVr15YCxE0rr8ZiMQByuRxQyJRWVlaOmMU86qijmD59OnfffTcXX3wxd999N69//eupr6/f6rGLiMieQQGiiIhIUf/evX51dXXMmzePK664YtC5/VnHCRMmkEqlBlU9bW9vLzs/kUjg+37Zse7u7kGPB/Cd73xnyABz77333uLnUl9fTzqdpq+vb9gg0RjDO9/5Tv7v//6Pt73tbfzjH/8YVBBHRETGFwWIIiIiwzjmmGN45JFHmDJlyrAZwf5s5B//+MfS/r5UKsWjjz5aFphNnDiRVCrF+vXrmThxIgCPPPJI2bUOOeQQkskkGzZsGLTcdWsdffTRANxzzz1lxW029fa3v51vfOMbXHrppUycOJFjjz12ux5XRER2bwoQRUREhnHaaadx5513ctZZZ/GBD3yA6dOn09XVxdNPP01zczPnnHMO++67L4sXL+aKK66gr6+P5uZmvve97w1acnrccceRTCa59NJLOffcc1m1ahV33nln2Tm1tbVccMEFXH311axevZojjjiCKIpYtmwZjz/+ODfddNMWj33WrFn8v//3//jyl79Me3s7RxxxBD09PfzmN7/ha1/7Wum8iRMnctxxx/HQQw9x/vnnl4rgiIjI+KQAUUREZBiJRILbb7+d66+/nhtuuIH29nYaGxs56KCDyorSfPnLX+aKK67gS1/6EpWVlbz3ve9l/vz5/OY3vymd09jYyDe+8Q2uu+46PvaxjzF37ly++tWvlrKO/T70oQ/R0tLC97//fW677TYSiQQzZ84cdN6WuPzyy5kyZQo/+clPuOWWW2hsbBwyQ/iGN7yBhx56aMSCNiIiMj4Y29/8SURERHaY/h6Df/zjH3f1UDbr4osvprW1lR/96Ee7eigiIrKLKYMoIiIyTr344os8++yz/O53v+N//ud/dvVwRERkDFCAKCIiMk595CMfobOzk/e+972cfPLJu3o4IiIyBmiJqYiIiIiIiADg7OoBiIiIiIiIyNigAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEZA9hrWXx4sXMmTOH5cuXb9F9XnrpJebMmcPjjz++w8fT3t7ODTfcwKpVq8qOP/7448yZM4eXXnpphz/m5txwww3MmTNnxH9ngnzDwwABAABJREFUnXXWTh/XUG644QaOOuqoHX7ds846i4suumjEc+bMmcMPfvCD7X6sT3/607zjHe8oO/b73/+eN73pTcybN4/Fixdv92P0u/vuuzf73u7IxxMR2VN5u3oAIiKyY/zzn/9k9erVANx333189KMf3aXjaW9v58Ybb+TII49k2rRppeNz587lrrvuYsaMGTt9TO9617s47rjjSj/fcccdPP7449x4442lY9XV1Tt9XHuqj370o2Sz2dLPYRjyqU99iuOPP54vfOELVFZW7rDHOvHEE7nrrrtKP//mN7/h1ltvLTsWj8d32OOJiOypFCCKiOwh7rvvPiorK9l3333HRIA4nOrqahYsWLBLHnvSpElMmjSp9PNvfvMb4vH4iOPJZrMkk8mdMLo9z6Z/BGhtbaWvr483v/nNHH744Tv0sRobG2lsbCz9/OyzzwLovRUR2UpaYioisgcIw5AHHniAxYsX8853vpOXX36ZF154YdB5P/zhDznhhBNYsGABH/7wh2ltbR10zq233so73/lODjvsMBYuXMiHP/zhQUtW+5cp3nXXXSxevJiDDjqIf//3f2f9+vUArFq1ire85S0AnH322aUlfjB4iemZZ57JxRdfPGgc1157LSeeeCLWWgByuRzXXXcdJ5xwAvPmzeOtb30rf/rTn7bjVRts1apVzJkzh1/+8pdccsklHH744Xz4wx8Ghl52OdQy0DVr1vCJT3yCI488koMPPpjzzjuPV199dbvHlk6nueqqq3jjG9/IwQcfzOLFi7nyyivp6+srOy8MQ77zne/wxje+kXnz5nH88cfz6U9/etjr9vb28p73vIe3vvWtdHR0DHnOSy+9xLHHHst//dd/EYZh6T18/PHHueiiizjkkEN4/etfzw9/+MOy+w1cYnr33XdzwgknAIXM4pw5c7jhhhsAiKKIm2++mZNOOol58+bxxje+kZ///Ofb/FoNZ86cOdx2221cffXVHH300aU5unjxYq699tqyc/uXrKZSqdKxrq4uLrvsMhYuXMj8+fN5z3vew7/+9a8dPk4RkV1JAaKIyB7gr3/9K21tbZxyyim88Y1vJBaLcd9995Wd8/vf/56rrrqKE088kRtuuIH99tuPSy+9dNC11q1bx5lnnsk3v/lNvvCFLxCGIWeccQa9vb1l5/3zn//kBz/4AZ/+9Ke5+uqrefHFF0tZy5aWFv77v/8bgMsuu4y77rqrbKnfQKeccgoPPfQQ6XS6dMxaywMPPMCb3vQmjDEAXHTRRfz85z/n/PPP59vf/jbz58/nIx/5CEuWLCndr3+P4fa67rrrqKqq4vrrr+f888/f4vt1dXXx3ve+l9dee40rrriCr3/966TTac4999yypZbbIpvNEoYhn/jEJ7jlllu4+OKL+etf/zoouL7sssu44YYbOPnkk/nOd77Dpz/96bLXdtPxnnPOOfi+z+23316Wgev3/PPPc9ZZZ/G6172Oa6+9Ftd1S7d9/vOfZ//99y8tJb7qqqt4+umnh3ysE088sbSU91Of+hR33XUX73rXuwD4whe+wLe+9S3e/e53c/PNN/OGN7yBSy+9lAcffLB0//6AbdM9rVvre9/7Hq2trVx33XV87nOf2+L75fN5zj33XB555BEuueQSbrrpJhoaGjjnnHOG/EOLiMjuSktMRUT2APfeey+1tbUcd9xxxONxFi5cyH333cd//Md/lAKsb3/72xx33HFceeWVABx33HF0dHTwk5/8pOxaA4PGMAw59thjOeaYY/jDH/7AaaedVrqto6ODO++8k6lTpwIwZcoU3vve9/Lwww9z/PHHlwK1ffbZZ8RlfieffDJf/OIXefDBBzn11FMBeOqpp1izZg2nnHIKAI899hgPPfQQd9xxB0ceeSQAixYtYtmyZXzrW9/iG9/4BgDGmLIAZlsdfPDBXH755Vt9v//93/8lk8lwzz33UF9fD8Chhx7K4sWL+dnPfsb73ve+bR5TY2Nj6b0DCIKAadOm8d73vpc1a9YwZcoUXnnlFX7605/y2c9+lrPPPrt0bv/rOFBHRwfnnHMOlZWVfPe73x1y7+W//vUvPvjBD/LWt76Vz33uc6W51O/UU08t/VHgyCOP5MEHH+S3v/0tBx100JDjP+CAAwDYe++9S3Ni+fLl/PjHP+aaa67h7W9/OwALFy6ktbWVG2+8kde97nUAOI6D67qDxrC1JkyYwNe//vWtvt8vfvELli5dyr333svMmTNL4zz55JO59dZb+dSnPrVd4xIRGSuUQRQR2c3l83l+//vf84Y3vKFUhOPUU09l9erVPPXUU0Ah0FuyZAmvf/3ry+570kknDbreU089xbnnnstRRx3FgQceyMEHH0w6nea1114rO+/AAw8sBYcAhx12GE1NTcNmkIbT2NjI0Ucfza9//evSsV//+tfMmDGD+fPnA/Doo4/S3NzMoYceShAEpX/HHHNMaa8ZwAUXXMDzzz+/VY8/lBNPPHGb7vfYY4+xcOFCqqurS2Osqqpi7ty5ZePcVvfccw+nnXYahxxyCHPnzuW9730vAMuWLQMoVaPdtHLoptra2jjzzDOpr6/n1ltvHTI4fPLJJzn33HN597vfzec///khA7Njjz229N+xWIyZM2eybt26rXpOjz32GI7jcNJJJw16b1944QXCMATgtNNO4/nnny+bc9uif5nr1nrssceYO3cu06ZNK40R4Igjjtgh762IyFihDKKIyG7u4YcfpqenhxNOOIGenh4AjjrqKOLxOPfddx+HHHIIHR0dBEFAU1NT2X03/XnNmjV84AMf4KCDDuLKK6+kpaWFWCzG+eefTz6fH/G+/ce2ZbndKaecUtpPV1lZyQMPPFAW5HR2dtLa2srcuXMH3XdHZAw3NdRz2xKdnZ089dRTZcFuv2OOOWa7xvS73/2OT33qU5xxxhl84hOfoL6+ntbWVj72sY+Ry+WAwpLRysrKzVZifeWVV+jq6uK8884btpLoI488QhiGZVnjTdXW1pb9HIvFBs2Tzens7CQMQw477LAhb29tbS0rLLS9JkyYsE33639vh5qDu6Iir4jIaFGAKCKym7v33nsBhiz0cv/99/OZz3yGxsZGPM+jvb297PZNf/7zn/9MNpvlm9/8ZilwCIKA7u7uQdfe9L79x5qbm7f6OZx00klcccUV/P73v2fq1Kls2LCBN73pTaXb6+rqmDhxIjfddNNWX3tbDJUti8fj+L5fdmzT16Wuro7FixcPWUG2qqpqu8b0wAMPcPDBB3PFFVeUjv3tb38rO6e+vp50Ok1fX9+IQeJRRx3FAQccwGWXXUZDQ8OQ/QE/8pGP8Oijj3Luuefyox/9aNSCoLq6OjzP48c//vGQr/tQ+yK3x/a8t/PmzSt7/QfeX0RkT6EAUURkN5ZKpXjooYd485vfzLvf/e6y25YsWcI111zD448/zsKFC9l///35wx/+wBlnnFE653e/+13ZfbLZLI7j4Hkb/+/h/vvvLy2nG+j5558v7X0D+Mc//kF7e3tp/1ksFgMoZbdGUldXx6JFi7j//vuZMmUKs2fPZv/99y/dfswxx3DbbbdRWVnJ7NmzN3u90TBp0iReeeWV0s9RFPHXv/617JxjjjmG+++/n3333XeHt0/IZrODApFf/epXZT8fffTRQGEp6plnnjni9T7ykY+QSqW4+OKLufnmmwdlOD3P4xvf+AYf+tCHOOecc/jxj3/MxIkTd8AzKXf00UcThiG9vb1lS1Z3pk3fWyhkUAc65phjeOSRR5gyZco2Z5hFRHYHChBFRHZjf/jDH8hkMpx99tkcfPDBZbcdeuihfOtb3+Lee+8ttau44IILuPzyyznppJN44okn+POf/1x2n/4v65/5zGc4/fTTWbp0KbfeeuugpYRQyOycf/75XHjhheRyOf77v/+buXPncvzxxwOFojXJZJJ77rmHmpoaPM8r7Skcypve9CY++9nPUl1dPSi4OfbYY1m0aBEf+MAH+NCHPsQ+++xDX18fL7zwArlcjk9+8pMA3HjjjXzzm9/cIfsQN/WGN7yBH/3oRxxwwAFMnz6dn/70p4NaTJxzzjn88pe/5P3vfz9nnnkmEydOpK2tjSeeeILDDjuMN7/5zUChTQjAHXfcMeJjDsx2LVy4kKuuuopvfetbHHzwwfzpT3/iscceKzt/1qxZ/L//9//48pe/THt7O0cccQQ9PT385je/4Wtf+9qg6//nf/4nqVSKj370o9x2222Digklk0m+/e1vc+6553LOOefwwx/+cIdn9GbNmsV73vMe/uM//oPzzjuP+fPnk8vlWLp0KcuWLePqq68GCkHvpZdeyu9+97vt3oe4qZNOOokvfOELpeq4v/3tb3n55ZfLzjnttNO48847Oeuss/jABz7A9OnT6erq4umnn6a5uZlzzjlnh45JRGRXUYAoIrIbu++++5g5c+ag4BAKGbw3velN3HfffVxxxRWcdNJJfP7zn+fmm2/mnnvu4cgjj+Tqq6/mvPPOK91nzpw5XHPNNdx444387ne/Y//99+f666/nE5/4xKDrH3LIIRxzzDF86UtfoqOjgyOPPJIvfOELpdsTiQRf+MIXuOmmmzjrrLPwfZ8XX3xx2Ofy+te/nssuu4zOzs5BVTeNMdx44418+9vf5vvf/z5r166lrq6O/fffvxRsQaE9Rn9Rkx3tggsuoKOjg+uvv55YLMb73vc+9t1337LeiI2Njdx11118/etf55prrqGnp4eWlhYOPfTQsvYbmUxms0FONpstZWEB3vOe97Bq1Spuv/12crkcxx57LF/96lcHZY4vv/xypkyZwk9+8hNuueUWGhsbR8zMXXbZZWQyGT70oQ9xxx13lGVuobA09pZbbuHss8/mvPPO4/bbb9+i12trXH755cycOZOf/OQnfOMb36C6upp99tmH008/vXROFEWEYVjqi7kjvfvd72bFihXccccd5PN53va2t/GRj3yEyy67rHROIpHg9ttv5/rrr+eGG26gvb2dxsZGDjrooCGX6IqI7K6MHY1PWhER2aOdddZZNDQ0lNpLyJbL5/Mceuih3HrrraWWHUO56KKLWL9+/bD9I0VEREaD2lyIiIjsRM888wz77bffsMHh0qVL+cEPfsCDDz44qC2JiIjIaNMSUxERkZ3osMMO4+677x729quuuoqVK1dy9tlnc+655+7EkYmIiGiJqYiIiIiIiBRpiamIiIiIiIgAChBFRERERESkSAGiiIiIiIiIAAoQRUREREREpEhVTIcRRZYwjHb1MMp4nkMQjK0xyZ5Bc0tGg+aVjAbNKxkNmlcyGsbavHJdB8cxmz1PAeIwwjCiqyu9q4dR4jiGpqZqenoyRJEKz8qOo7klo0HzSkaD5pWMBs0rGQ1jcV7V11fiOO5mz9MSUxEREREREQEUIIqIiIiIiEiRAkQREREREREBtAdRRERERHYxay1RFGJ3wVYtxzHk83mCIBgze8Vk97cr5pUx4Dguxmy+EM1IFCCKiIiIyC5hraWvr5tUqgfYdcFZW5tDFI2dapOyZ9gV88pxXJqaJuO6my9GMxwFiCIiIiKyS/QHh7W1jcTjCWD7Mh/byvMMQaDsoexYO39eWbq62ujp6aChoXmbr6IAUURERER2OmttKTisrKzepWPxPAdQBlF2rF0xr2pq6uns3IC1EcZsW7kZFakRERERkZ0uikLAFjOHIrIjuG4h/7c9S1sVIIqIiIjITrexIM2uWVYqsmcq/D5tT8EnBYgiIiIiIiICKEAUEREREdllnnzy7yxadDjpdHrE804//S387Gd37aRR7Vz33PMzPvWpT5R+DoKAL37xck4++XUsWnQ4S5e+yJVXfo477/zBLhnfBRf8Ozfe+PVd8ti7ggJEEREREZEtdPXVV7Bo0eF87WvXDbrtyis/x6JFh29XMPHrX/+KU099/aDjt9xyO6ee+rbSz4sWHc4jj/x5mx9nZ0in09x449d517veyuLFC3nrW9/IJz7xMZ5++qnSOblcjttuu5lzzvlg6dhDD/2BP//5Ib7+9W/yi188wN57z+accz7I7bffRirVN+Jjnn76W1i06PBB/+6556ebHe9wwfqXvvQVPvCBD23NU98mY+U9VRVTEREREZGt0NIykd/97jd87GMfJx6PA5BK9fHnPz9ES8vEUXnMhoaGUbnujuD7PrFYbNDxr3zlS7z00gt88pOfZq+9ZtLV1ck//vEEPT09pXMeeugP1NXVc8ABc0vHVq1aydSp09l//wNKx/baaybTp8/gd797gNNOO33E8Zx//sc45ZS3lB2rrt72Srm1tXXbfN/dkQJEEREREZGtcOCBc3nttVf5y18eZvHiNwDw+9//lv322x/HKV+gt2jR4Vx77dc49tjjgEJW7d/+7Xi+8Y1vc+ihh5ed++STf+dLX7qydD+Ac8/9EOeddz6nn/4WzjjjTN75zv/H6acXgp/+ZZmTJk3mpz/9FStXruDGG7/G888/RzabZdas2Xz0oxdz8MELysbzn//5Gf70pz/yr389RUtLCxdf/EmOOWZR6ZxXX32ZG2+8nqef/idVVVUcc8wiLrjgE6Ug64IL/p199tkPsPz2tw8wd+48vvKV6we9To899hf+4z8+xdFHLwRg8uQpZYEgwB/+8FuOPfb40s9XX30F999/b2ms/c8NYOHCRfzhD7/bbIBYWVlJU9OEIW9bt24t//M/1/H0008RBD5Tp07j4x//LyZNmsxFF30YgH/7t8J43vSmN/PZz17BBRf8O/vvfyAXXPBxoJClfNvb3sErr7zMX/7yJxoamrjkks8wffpMvvzlq3j22afZe+/ZXHnl1UyZMg1gs+/NcO8pwMMPP8Stt97MihXLaG5u4a1vfTtnnHHWoLm2o2iJqYiIiIjIVjrllLfw61//svTzr3/9q0FZq601f/7BXHTRJ6mtreMXv3iAX/ziAc4446xB591yy+0AfP7zV/GLXzxQ+jmdTrNw4XFcf/03+d737mDevIO45JKL6erqKrv/d7/7bU466WT+939/yKJFJ/DZz17C+vXrAOjt7eWiiz7CgQfO5dZbf8C1136dlStXcPXVV5Rd4777fklFRSXf/vatXHjhfwz5fBoaGnn00b+MuL/y6aefKssUXnzxf/Ke95zJPvvsV/bcAPbf/0Cee+5ZgiAY/kXcjP/5n2vx/Tw33XQL3//+nZx33oeJxxO0tEzk6qsLy4bvuusefvGLB7j44v8c9jp33vkDDjvsCG677UcsWHAIV175ea677ou8+93v5Xvf+wGe5/GVr1xTOn9z781w7+m//vUUX/rSFbznPe/jjjv+j49//L/46U/v4qc/Hb39qMogioiIiMiY8ewjhg0rdt7jtcyABSds/f1OPvlUvve979DW1koqleLVV19m8eI38MAD923zWGKxGNXV1RjDsBkw2LjctLq6puy8OXP2Z86c/Us/X3jhJ/jTn/7I448/yhvfeErp+Bve8MZSMHvBBR/nb397jHvu+Rnnn/8xfvazuzjggAP54Ac/XDr/kks+y/vedzqdnR00NDQChSWf55//sRGfz3/916VceeXnOOWUxey33/4sWHAob3jDv7HffoUx9vb20tfXV/YcqqurqaiowHXdQa9BU9ME8vkcnZ0dNDe3DPu4N974db797RvLjt100y3st9/+rF+/jhNOWMzs2fsAMHXqtNI5NTW1QCGwraysHPG5HXvs8bzlLacB8P73n8f999/L0UcvZOHCQib23e8+gyuv/BxRFOE4zmbfm+He01tvvZmzz/4AJ598amm873//B/jpT+/i3e8+Y8QxbisFiCIiIiIiW6mpaQKHH34U999/H729PZxwwmIqK6t26ZjS6TTf+953eOyxv9DR0U4YhuRyuVJ2sN+BB84r+3nu3PksW/YaAC+/vJQnnnick046btD1V69eVQoQB2b9hnPooYfz05/+imee+RdPP/0Ujz/+GHfe+QMuueSzvPnNbyOXywGU9nFuTiKRACCbzY543plnnlMWEAOlvaHveMe7+Z//uZYnnnicI444isWLT2LmzL236PEH6g8wARobC6/J3nvPGnCsiSAI6Ovrpba2bovfm0298spLPPPMv7jttltKx8Iwwtpoq8e8pRQgioiIiMiYMe9YC8fu7Ec123SvU099C9/+9o2k02kuv/yLQ1/ZGOyAruXbszxyc2666ev84x9P8NGPXszUqdNIJBL8539ejO/7m4xp6HECZDIZjjvuxCGzg83NzaX/TiYrtmhMsViMQw89nEMPPZxzzvkg1157NbfeejNvfvPbqKurwxhDb2/vFl2rv7hNff3IBXvq6+uZNm36kLe97W3v4KijjuGRR/7M448/xu2338qnPvU53vSmN2/RGPp53sAwqvDaue7gY1FUeO+39L3ZVDqd4UMf+gjHHbcNae5tpD2IIiIiIiLb4Nhjj6e3t5d4PMEhhxw25Dn19Q10dLSXfn755ZdGvKbnxQjDzWeHPM8jisKyY8888y9OPfWtHH/8icyevQ+1tXW0tq4fdN/nnnu27Ofnn3+WvfaaCcB++83htddeZfLkKUybNr3sXyKR3Oy4NmevvfYqZQBjsRgzZ+7NsmWvbtF9ly0rjKumpma7xjBp0mTe+c53c911X+PNb35bqShOfyXWKNrx2bkteW+Gek/3228OK1cuH/ReDBcA7wjKIIrIuNWZz1IfS5T+aioiIrI1PM/jrrt+jjFm2P8vOeSQw/jZz/6PAw+cRyaT5pZbvjniNSdPnkwq1ceTT/6dWbP2IZlMkkwODswmTZrC3//+Nw48cB6xWJza2lqmTZvBQw/9kaOPPhZrI7797ZtwHHfQff/wh98yZ87+zJ07n3vvvYcVK5Zz7bVfB+Ad73gXv/zl3Vx11ec444yzqKmpZcWKZTz88J/41Kc+u1Wvz4UXns8b3/gm9ttvf6qra3jxxSX86Ed3sGjRxqqlRx55NE8//RTvfOf/2+z1nn76KY444qjNnpdOp2lvbys7VlFRSWVlJddf/1WOOeZYpk2bTldXJ8888y/mz18AFAJHYwyPPvpnjjjiaBKJxGb3Im6pLXlvhnpP3//+8/jMZz5JS8tETjhhMQBLl77I2rVreP/7z9shY9uUAkQRGZfachn+0rqGE1umUR9P7OrhiIjIbqqqauT+ehdc8HGuvvpKPvzhc5kyZSoXXvgJPvGJC4Y9f/78g3nb297B5z//Kbq7u0ttLoa67o03fo177vkZzc0t/PSnv+LCCz/Bl75UeKyGhkbe//7z6O7uGnTf8877dx544Nd85Stform5hS984VomTZoEQHNzC9/85vf49rdv4OMf/yi+7zN58tRtWuJ4xBFH8atf/YIVK75BPp+juXkip5761rLA5tRT38a///v7SadTI+7h9H2fhx9+iP/+729s9nG/852b+M53bio79r73vZ+PfORCwjDgv//7GtraWqmurmHhwkV89KMXlp77eeedz003fZ2Ojg5OPvlUPvvZK7b6eQ9lS96bod7TY445lmuu+Sr/+7/f5fbbbyMejzFz5ize8Y537ZBxDcXYgYuipcT3Q7q6hi/Ju7M5jqGpqZr29r7SWmaRHWE8zi1rLX9qXc3S3i7eOnUWE5M75q+DstF4nFcy+jSv9ixBENDWtpoJE6Zusp9r5/M8hyAYvaIfY8mmfRnHgs9+9r+YN+9gzjjjzGHP+eUvf86DD/6er33tpmHPGWt2xbwa6feqvr6SWGxwRnlT2oMoIuPOumyaV/u6sVjym6z1FxERkZ3rYx/7+JDLaAdyHIdPfOK/dtKIxjctMRWRcacjnyWyFgeHnAJEERGRXWrKlKm8/e2nj3jOm9/8tp00GlGAKCLjTirwcY0htJZ8qABRRETGj7/85e+7eggyxmmJqYiMOz1+npjj4BhDJhq9flQiIiIiuxsFiCIy7vQGhQDRNYb0KDYsFhEREdndKEAUkXEltBGZMCRmHDzjkFKAKCKyS2xsG6iKtCI7TuH3aXtaPGsPooiMK5kwxI9CarwYvo3IhP6uHpKIyLjkOC6O49LV1UZNTT2u6wHb8a12uxiCQIGq7Gg7e15Z+vq6McbBcTbfzmI4ChBFZFzJhgGBtXjG4BmHTBgWKppuz5/aRERkqxljaGqaTE9PB52dG3bpWBzHIYrGRx9E2Xl2xbwyxqGxsQWzHd9rFCCKyLiSDUMsFlMMENM2IB+FJF19HIqI7Gyu69LQ0Iy1EVEUYXdBEs9xDA0NlXR2pokiZRFlx9gV88qYQmZ+e4JDUIAoIuNMNgwwxSVMnmMIrCWnAFFEZJcyxsF1d01pDMcxxONxPC+vAFF2mN15XqlIjYiMK9mokEEEcI1DaCN8LSsSERERARQgisg40+Pn8MzGjz6DIReGu3BEIiIiImOHAkQRGVd6fZ+YKf/oy1sFiCIiIiKgAFFk3FuXSe3qIexUvUGemDPwo8+SD7XEVERERAQUIIqMa+kg4MnODfT546MXYCYMyIQBiQG9gaw15MJgF45KREREZOxQgCgyjkVYAmsJx0mRlr7AJxeGxAdkEGOOoTvI78JRiYiIiIwdChBFxrHQRoRRRGDHR4DY6+cBU9YfKOG4dOZzu25QIiIiImOIAkSRcSyylhBLuJ2diUMbEe2K7sZbqcfPs2nv2Ljj0hvk1epCREREBAWIIuNaZCG0lnAbM4ihtfxx/QruWrGUv3Ws28GjG1o62Pb9gm25DAmn/GMv4Trko4h0MD72YYqIiIiMRAGiyDgWUdh/GETblv1rz2V4LdVLZCNWpHpHzER25XPbHYT1+nn+uGHlNl0nspaOfLasQA2AaxxCG5EKFSCKiIiIKEAUGccia7crg7gumwIsDfEEfYFPt58jEwZDBnBPd7WxPN27XePdkMvQ5WfJDGhs/1qquziOkaXDgHQYkHS9QbcZILUdmUkRERGRPYUCRJFxrBQgbkMGMbKW11I9VLoernGIKGTo/t6xnme72wed35bPkN7OLN3qTB99fkA22hjMLU/10prNbPa+fX6eIIo26YHYz9CrSqYiIiIiChBFxrPtySB25LO057LUeHEAPGN4ta+bV/q66fLLq4LmwpB06JPytz1Ll49CVqX7CG1EbkAGMRX49G7BktO23PBBZMJx6Mxnt3lsIiIiInuKwWutRGTcKPRBjLapimlnPofF4hUzclVujLZclh4/T7UXKzs3Hfrkwu3b59eay5AOfOKuSy7aGCBmwoDYZrJ/kbUs7eumyhv6Iy+uVhciIiIigDKIIuNaWMwgBtsQIHblcxg29oyo9Dw68hmaExVkwoBsuDFb2Bf45KOQ1HYUqenK57CAiyntcQyiiNwWXLctl6Ezn6U2Fh/y9oTjFvYoqpKpiIiIjHMKEEXGsai4vDTchh6AbfkMSXdjRVDXOOxTXU9dLI4fRWQGBIjpICCwEfko2uaCOOkgwDMGz5jSktJ8FBJElkwYDnndXj/PPztbWdrXRWQLYxxKwnXJhiHLUj3bNDYRERGRPYUCRJFxLMISWUuwlQFiaCM687lBLSMAHGOIsGUBYrefI25c/Kh8/+DWyIQ+rjHEHIc+vxAg5qKQwEbDXrcjn+Vv7et4tqud+nhs0O0D1Xoxnu1pJx9t2/hERERE9gQKEEXGsdBaItjqoKgv8MlF4ZABIoDBkB4QIHbmc1R5HoGNyvYPbo1UGOA5DjHHIRX6WGvJRSEWS2DDstYX/QJb2CO5V1UN1d7Qy0v71cXidOXzrEhtXysOERERkd2ZAkSRcSyyFmst+a3MIPb5PpHdWKBmUxZb2s8XWUuXnystR93WADETBnjGwTMO+SgkH0XkwwiDwQK5aHCF1CCKsFu4v9IYQ9xxtqinooiIiMieSgGiyDjWHyD64VYGiIEPDB94xYxDj58ntJYV6V4yYUDccQuB3DYsMY2sJRuGpSWmgbVko6CY+bQYDNkhruvbiAF1dDYr6bi0qd2FiIiIjGNqcyEyjkXWYgF/C7J6obW4phBtdflZnBEir7jj0OXnebx9Lc93d5BwXeLF5aj5KGJDNk21F6PSG3lfYL98VChC4xkP1ziExT2H2SjEYgA7ZGbSj8LBo8w70JuAsHiLAZrS4EDSden182TDgKSrj0cREREZf/QNSGQcC4oB4pYsMf1L62qmVdYws6qW9dnyCqabijmFQGttJsXEZEUpOKRYvGZJTzszq2o5qL6ZdBCQcJ0hK4z6UUhgLX4UFfcTFoI6YwpLVTNBgEshhzhUi4pcFJaCWiyYJRMwq2sHnWendWMPaCfhuLRFhV6OChBFRERkPNISU5FxLLQRDluWQdyQzfD3jvU819XG+myamhGKviQcl9ZchrpYfEBwWOhhuCbTR2suy2upHoIo4k+tq1idHnrf32upHp7s2FDKIA7MWmbDkPSAyqa9QwWIYbjxPuuqMatrsbEQO7kXO6O78C8WYlbVQWcSYwwGU1xCKyIiIjL+6E/kIuNYYCNc4+BvJoPoRyE5G9Kdz/HPMKQuFh+2QA1AzHGYXV07KCsYcxyyYYgfRbTnsrzQ28nqTB97Vw3O6gFkg4DWXIa9o1oMBtOfDcTQ4+dIhT4xxwEMvf5wGUQHci7mhSYsFnvwemgYsM+wNot5diLmhQnYY1ZhLXT5uRFfDxEREZE91W6TQXziiSf48Ic/zKJFi5gzZw4PPvhg2e25XI4rr7ySo446ikMOOYQLL7yQ9vb2XTRakd1DGBX2FW6uD2I2DAmiiMnJKuKOoTY2TPZwQN2aoZaMesah289RG4sRWcurfd105/OkhsnYpcKAvjA/qChOrRfjpb4uUkGAa4qtL4I80SYVS3NhhGMMrK7BBC5M7ykPDgEmpbCVeUxfHHyHpOvQmsuM+HqIiIiI7Kl2mwAxnU4zZ84cLrvssiFv/9KXvsSDDz7I17/+de644w42bNjARRddtJNHKbJ7CQdkEEdqB5GNCgFipefREE8OcYKLeWIy5m9TYIRY03McOvM5arw4CddlTSZFfTxO9zAZu3TokwsjOvPlt1d7Mfp8Hz+K8IxD3HEKexLD8lYX+SjExWBW1wBgZ3QPfhADVOcL/52KkXQ9OnJZ2hQkioiIyDi02ywxPeGEEzjhhBOGvK23t5ef/exnfPWrX+WYY44BCgHjKaecwjPPPMP8+fN35lBFdhuBtbiOIbKWqNguYijZMBiwvLOgcUMnRzzyDASGxxpPoS+qAMC2VUJLesjrVLkee1fVEnMcGuMJYsbBGOj280OenwoKrSy6/VxZUw1jTKniaHVFJTHj4NuIvsCnqlgZtdDfMaSiswaTjWEb01A5uFdiYWDFDGZfnKo6j3VBmvvWvsbilulMr6wZ5tUTERER2fPsNgHiSJ599ll83+fYY48tHZs9ezZTpkzhqaee2uYA0XG2ooHaKOsfy1gak+z+IgrN7iMK1UzdYeZXvthPsD9IdPMBR//xaaqyhUBwYe63/Hafd0BvRaFK6MShs2/GGJLFvYuecWlIuKQDn2wUlsYyUDYKyNtiBVPjlAWpjfEkvk0Td1yMMTjGkI6C0u+IH1msgfja+sIdpvUOCnJLqgsBoknHMY7DlIpqVmX6SIWBfue2kT6zZDRoXslo0LyS0bA7z6s9IkBsa2sjmUxSXV1ddrypqYm2trZtuqbnOTQ1VW/+xJ2soaFqVw9B9iCJ7hhVxImspaa+Yti+hCtsioqeGFXVCcK2OFP+sIaqbJo1yb3xnBwt6TXsM+UpXl52JKatgqRbgVOx+dYZAPHIozWToaIuQcL1SBTbZ+TDkNh6j1ongZt0qXYTVFUmyu5bR0Xpv5M2h1Phln5v04FPYkUCr60KEiGVs0KMU37/flEzZAE3myBZnShdr7o2MSY/B3Yn+syS0aB5JaNB80pGw+44r/aIABEYMjMw0p6qzQmCiJ6esbMHyXEMDQ1VdHamiKJtf14iA3X3ZfH9kFjCpb2jj4w7dIC4ur0HPxuQMjl4qokZXS8D8OKhMzB1OVruX8O0Z15l6X4HYJbVk/lLA8xrhZotaxfRm8myqrWbJzs2MLeukRlVtfQFPj2pHC7Q1pPCMYZUNHx10TAX8lpbJ3u7hYCu18/DsiqwBju5l3R6hMqkJg9Ywm6PVF/hvGzGp6MrTbvp26LnIOX0mSWjQfNKRoPmlYyGsTivamsriMWG72Pdb48IECdMmEAmk6Gvr68si9jR0cGECRO2+bpj5c0cKIrsmByX7J78MMQBImvxw4jIDD23evJ5XGOwoSXZFTAhv5ZUVQVt+1YAFfTWVtHU2kX1kavoq09iupLYf0zCHrdiy0phWViR6mVVupfIWqYkq8kGAUFUaKnRkc9RH0uM+EefhOPSns2Wfj9yQUjF2obC5af0wkh/MHIspiLAZGJEPuBZDIX2Hvp92z76zJLRoHklo0HzSkbD7jivdpsqpiOZN28esViMRx99tHTstddeY82aNSxYsGDXDUxkjItsofVEZC3hCAFUX5Av9BtMxZmUXQXA2unNYAwYw/LZUwCYumYN9vA12MYMJu9B1xAVT4dgLWzIpgkiy5pMivXZNPkwBAwJxyMVBHjD7R8sijsO6dAnW6xk2tMBXi6Orc9sLEIzkqr+SqaFFh6OYbP9IUVERET2NLtNgJhKpViyZAlLliwBYNWqVSxZsoTW1lZqamp45zvfyTXXXMNf//pXnn32WT7zmc9w+OGHq4KpyAgCGxU/BMywAWJoIzJhSMw40JOgJbsCgPVTNmbn10xvAWDqyg1gwE4sLMs0G4rr7nvimKdbIDP0ogXHGFKBT00shoNhaV8XuSjEAjHHYVpFFRXuyAseEo5LPoqKPROh1KWiekBwaG0hKh5K/3mpwjJbgyHczf7iJyIiIrK9dpslps8++yxnn3126ecvfvGLAFxwwQVceOGFXHrppTiOw0UXXUQ+n+e4447j8ssv31XDFRnzrLVE1mIcB4gI7dDZslwY4kcR1Z6H6YkzIb8WC2yY1Fg6p7uhhlR1BY1t3STTWbLNLiwBWithTjtmeR1mfTXkXOyh6yDvQsXGlhMxx6E9l2VKRRVxJ2RtJkVLogJTbG5RE4sP/0QiwCnsQ7ZYeoM8ExIV5IqdNmy88Dg1XX0c9fBTVKRzPLHoINZNay57LXpjKeqox2RiWArtEYNhXhMRERGRPdVuEyAeddRRvPjii8PenkgkuPzyyxUUimyh/tYW/Qs3h8sgZqOQwBYyiInOiKqwl57aaoL4gII2xrB6egv7LVnOlJUbeHXODGxdFtOdxPbFobNQbdR0VcBDe0FkCoFiUyHNV+3FCKKImOPgGMP6bJrWXAY7TF/GklU1mBcmwLQe7D4dxIzDSz1d7FVZSz5bvG8ihMhy1J//RUNHLwBHPfwU951+Yuk5pEKfXs9SB6Usp2OMAkQREREZd3abJaYismNF1hJhSxWAh8sgZsIAMBhraOzoBKC9uW7QeWtmTARgyooNANiWFADm1QZMzsMmfawTQWQwGMzSRooJQipcj8kVheWorjFEWHr8PCPW2QoN5pUGjDWYlXWYZ1toiidZleljbSaFny2eFw+ZtnwdDe09tDfXs2z2VOL5gH1eWFG6VK/vU9Ff3ypbCBANhkBLTEVERGScUYAoMg5lw4DQWqy1OBQKzQyXQcwEAW4mhvnXRBpzheCvo7l+0HltExvIxz1a1rbj+gFM6sMau3Ef4sQU9tiV2BOWY2uzmN5EYQnqEFwMuSjEHakwzZoaTN7DNqWxbgQdFXjGwTOG57rb8bPFj7dEyD5LlgPw13l78cL8vQGYtmxt6VIhlnhl8fmXMohaYioiIiLjjwJEkXEmiCIe2rCKHj+PtYVCpIxQxbQv8KlbPgnTVkVjsA6A52vixcziRtZxWDO1GTeKmLimDZIhTEhvvL0hWzgWj7CzC5lI88IEyA3OE1Z6Hj1+Hs8Z5iMqNJhlhSym3acDqvOY0IGsR0M8wepsilym8Hyq8j00b+ikqzrJixNq6Kqroqe2ioaOXip70+SjEM84VMQcwrgPOQ+iYgZRAaKIiIiMMwoQRcaZwEbkopC+wC8sMcUwUhXTbj9HPBsHa2kM1hO4DutqKwqN6AdeN4r4e3MhWzhlZXGZ6dSewv9ioT678eSmDHZyLybnYf41sVBoZoBKN0ZPkMczxY+onIt5fgL0ForVmGX1mGwM25yC2jxUF8fSFyfuuAQ2IsoV7jttzWoAXp7RQmMiSY/vs7ZYdbVlbTt9gU9TIklzopIg4WOsgZxb3IOoJaYiIiIyvihAFBlnQmvJhSGZMMBS/BAww2cQu/wcbi5OddhBzA/oaKqlIhYnv0l2LRuFrJvSTGQMk1e1sqyvh7ApVehDOKkPYgPON2APbC0VsqG1quxaMcehKZakyivW0VpbjVldi/PXabCyBl6rxzoRdk47AHZAgAhQ6XjYnEvkhkxbUch65vefxb41DfQFPm0TGwCYsKGTTBgwpaKaKs8jSBSvk41hgFB9EEVERGScUYAoMs4ENiJvo0KAaAtFagyGVLAxI9jn5/lz62ryUUgqF+L4Ho22sGdvQ1MtMccpFZjplwtDklWVrG6pI5nNM6mtm2wUYo9Yi53fOnggDtiZXQCY9VWDbm5KJHGLGUST3Vhw2XmhGWMNdlbnxlYZxQDRFDOMdU4CJ3SpMJ00tnfTWV1B84zpTKusxjOGdRMKy1ObNhQev9L1SLgeYbL4GmQ8nOK+TKssooiIiIwjChBFxpnIWvwoIhuGxSWmhT1/azKp0jmdfo5VmT7WZFKExWIvjcF6ANY11RJ3HDzHwR+QYctGIdVejFemNAFw4PrustuH1JQpFJhprYRghII06UI7CjshjZ3cS7RgHczs3nh7fwYxVQgQPb9w/vTsKwC8OqOZ+niShliC2liCrphDb20ltT0pkrmAhOOScNwBGUQPU+zCGG0aCYuIiIjswRQgiowzgbUEUURvMWNojKHKi9Hl50gHhYxcKvDpyGVZke4tZe8as4V9hWsaq2mMJ6l0Y2QHFKqxFmKOyyuTGwGYvaaDfBSOPBjXQnMKEzmwrnpQVrKkWFnUzl+PndcKzWnKWiTGI2w8gFSssJ8xXyh8M733NQDW7j2FpOthjKEmFiMfhbS1FJaZTm7rIeY4JFyXIOEXXpOMh2MgIhp26a2IiIjInkgBosg4E9qICFsWvCVcl3wU0VVsHtjl58hFIR35LF4ujmMD6jKdZCoSdCZj1MXitCQrSpVMrbVgLM2JJD01SdrqKqnvTlHRnR5yDAPZSYXMpbOkGfPI9MGZRAtkYthYCN4IwVp1vlBgJhWDnEtl0ENjup2u6iTepJbSaXWxOH4U0V4MEKe09ZQyiLZ/yWp/BtEWMq4iIiIi44UCRJFxJowskbVlFTqNMRhr6S5WJu3IZamLxekLfJxsjIZ8K461dEyowxqo9GK0JCpKhWp8GxEzLi3JShwMLxeXmc5e2775AU1IY/fuxFb4mEwM2ivKb8+5hcCv0h/5OrXF5aGdFZD3mJopLC99adoEmpIbr1ntxQmtpa2lHoDJ7T3EiwGiqSg+RiaGYwyRRRlEERERGVcUIIqMM6EtBohRVLZKM+a4rMukCG1El5+nLpag188Ty8dpzBf2H3Y01wOQdF2aEhU4GILifsYqz6MpniTuOiybWggQ91nVVvbYQRSxPpsuL/xiwO7TWSg6A5iOAQFiT7yQEYSNBWmGYVsKmUizvhqTd5mWeRmAl2Y0UxOLl86rKC417a2rxvdcWjr7SBhD3HGIeQ5RLChkEG2hPYcyiCIiIjKeKEAUGWeCAVm/gSpdjw25DD1+nnwUknRcGuMJkvkEDX4xQJxQBxgqHI+WRAVTK6ppz2dJBT5N8SRJ16PCidHZXIdfW83Uth4qejcuM02FPtliD8ZBGjOF/+0PENsrcB6fhnm+ufBzxeYyiDls0sd0JanakKfR30BPVRWdDTXUeeUBIgDG0N5YQzwISXb1Yoyh0o0RJQu9EB3fI7LDt/8QERER2RMpQBQZZyJr8Uwh8zdQpRejx8/zQk8nobV4jkNdLIGT82jMr8cCrU11GCgVfNm/toFsFBJ3XQ6sK2QN62Jxqrw4+QNmAzD1tTWlx/CjiJZERWkpa5lkiK3KY9JxyLqY4lJTky1WMB0hQAyiiPW5NEwsZBGnrV0NwKvTJ1Lpxaj0YqVzK1wPU3wd2hprAIitLyyFHdgL0WS8QgZRVUxFRERkHFGAKDLOBDbCNU4xk7hxkaljDEnXZW02RSlpZiGRylMV9tJTX03Wc4g5Dkm3UCV0WmU1c2sbWdwynYnJSgAa4gma4hVE8+YAMOO1taXHyEcR9fEEMccpq4BaMjCL2JUsv61y+CWm6TCgN/DJt/QUxpVZCsCSmQ2FfZFm4/NMui6xYouO9cUA0V1bqNBa7cXw+wPEXKzQ5kIZRBERERlHFCCKjDOhtWCG7jnYGE/QnstuvNl3aMoWmtx3TKjDt2GpoAuAaxwWNU9lcsXGRvfTK2vYp6YOWproqq+mqbOPuo5C4BZZy+RkFfvVNNCay9Lt58oe3xYDRLO+CnrjWDMgONskgxhEEctTvUS2UJG1xouTqUpTOfMVGvw2euqqWFdbwaRi4Nov4bjEHZd8FLK2vjBuZ13hOVZ6MfxEf6GaQqZRS0xFRERkPFGAKDLOBFEE1jJUiOgah9pYjIZYonAg49GYXwdAe3M92TCkNhbHDBNgArQkK5lSUQ3A2jl7ATDrpZVAIS6tdGMc1TSJ45un0uP75Rm6pgzWCzFtVYXeiE0Z7IQ0tjoHifKeiukwICQiH4X4UURtLEYmDJjRVyhOs3LmJDCGhnh5JrK/F6JvIzqqkwQxD3d9G0QRScclTBSC1v6lreEmezVFRERE9mQKEEXGGd9GuMYwXGKsLpag0isWcsl6NPUHiC0NZMKQWVV1W/xYfXP3IXAMe72yBifvY4EKz8Mxhr2ra6nwPHID+jHiWpjSV/rR1mWxC9Zhj17NphFtNgyojcXJRxEhlgrXIwhD9l66CoAX955M0vWo7w92B6j1Cr0QQwOp5gaMH+C0d5FwXcLkxgxiYYnpFj9dERERkd2eAkSRcSYfRcUM4PBBYj+TdmjwN+C7Hq3VSRKOy9QBy0k3p6K6mqXTJxDzA6a+tpaYcUpVROPFKqnpoHxvoZ3as/GHumwhMBwiYZm3lmo3XggwbaG/4cx1nVSms6yf3MT6Co8J8SSJ4n7JgWpjcXwbYTBkJxaK6zhrN5Bw3NIeRLIeBqM9iCIiIjKuKEAU2cPZTVo1BFGIA0xIJGhKDM6uDVTf0YdnAzrqG+kM88yorKF6QE/BzamJxXl69hQA5ixZVhYgAkxKVpEtLhHt6a9sWu1jJ6Sw8QDqckNdtiTuuuSjCAy0JCuY/2oh2/nqftPJRhFThglma2JxrC3sicwXA0R3XRsJx8V4FuuFkPHAQoiWmIqIiMj4oQBRZA+3KtPH4+3rSj/no6hYsdQrC9aG0tTZAUD7hAaCyDKzunarHrvGi9ExsYHWCXU0dKWYs74bd8D+xYZ4ArC05jJ05nOlbJ09eD120Urwhs7eRcU9lE3xJGGxKuvkjM/ea9rJJGKsmdEC1g7af9hvekUNkysqC30OJxX6LLrrNhB3XTzHKfRTjBycwNUSUxERERlXFCCK7OHSQcD6bApbDL58G5W1fRhJY08bAG2TagvFXbwtzx4CxByX+niSJw+cDsBBzy0ru72wP7AwlppYnHR/6wuHwn7EYeSikITrMjFZSWQh5hgan1yCY+Hp/aaSMwbPcYbcfwjgOQ4H1zfTEE9gGuuxiTjO+nYSGDzjlPYhutm4itSIiIjIuKIAUWQPl49CegOfTDH48qMIp39TXypW+DeMpnSh/cO6lmpijrOxeM1WaE4keXFSA+21lTSu78B9dWXpttpYnErXY0ZVDdMqq+kL/BGutFE2DKn14tTHEsQdh7p8ROKZFwk9l3/MmkQmDKj2YlR5wz+3aRXVHN44kbp4gnBSMyYI8Nq7qHBdwmKrCy8X0x5EERERGVcUIIrs4dKhTy4MS8FXKYNowfxjMjw+GZsfkFGMCv8SfXmqgx56YvX0xR2SjkfSGVzwZXMa4kly1vLo/ELLi8SDj0FUyMq5xmHfmnrm1TUxpaKq0IJjC+SikAnxJFWeR9x1OeL5FZggpHf+fuSThUxkS7JyxEypMYZZ1XW4xiGcXFhm6qxrpcqLEXqFYNoErvogioiIyLiiAFFkD5cOQ3LRxgAxiEIcA/gOJudhApfg1arCz89NwPxxb5w/zGLC44X7t1c1k48i6jfT/3A4NV4czzF4++9LMG0S7oZ2vGdeLN1+eONEJiWrmBCvwHUc/C0IEkMbUR9PEHNcJqbzzH5hOTYewx57GEnXpS/I05Ko2OIxRv37ENe2Uu3FCNxCgFjYg6gAUURERMYPBYgie7hM6BcCRD9PaC2hpbDEdMDSUn9pNTwyFbOmFtwI60QbC9TUTSAfhdTHR654Opz6eIL9auo5tHEiucULsUDyj49h+tJl59XF4tTF4qTDLVlmakgUC+wc89SrOJElf9QCvJoaJiUqiRmXumH2Hw4lnNQCFArVVLsxArfQm9EJHQLtQRQREZFxRAGiyB4uE4YkHZd2P0dkIyJsIROYLhScscYWsod5Dzu5F7toJXbvLibk1gDQ3tRIiKV2K9pbDFThehzfPI1KzyOaOhH/sPmYbI7Ebx5mYCNGYwwtiQqyYbgFV7UkHBfvhVeYvGwtYU0V+SMPBmBKZTU1xWBzS9n6GmwygbO+nSQOUTFAdAOXQGVMRUREZBxRgCiyB4usJReGVHkeHbksgbVE1uIag0kXM4j7dOLt24c9ajV2XivEIryWThr8DWScSnoaKjFApTt8wZetkTvxKKK6GmIvvUbsH8+W3daUqMDfgoydBSqzeRK/+XPhmqe+DuKF8bUkKplWWU3lCAVqBjGmUKgmDKnt7iv0QQSc0N2i8YiIiIjsKRQgiuzB8lFIaCMq3Rjp0CcV+MUeggOWmDZmiM/vgbp86X4TutpwsLQlpmKr84WAbBsqmA4pHiNz2r9hXYfEHx7FXbaqdFOtFy9EfyMIooh4BJN+9SBOOkN+wYGEe08v3d6USHJ889StHlZ/oZqa1k5CrxAUOqGrNhciIiIyrihAFNmD5aOIwFoqXY9cFNLlF5rRO8ZAfwaxMhh0v+Z17QCs37cKvy5D3Lg7LIMIEE1pIfvG4zFRRMVP78dduRaA6lgM13FGrGYahgFvfPwFEms2EE5uIXfSsTtmTMVCNVWtHVBcYmrCLSuaIyIiIrKnUIAosgfLR+HGJaVAZz6HxeJYIB3DxkKIDQ6AWtYVCtS0zq4lX2xKX+FufYuLkQQHH0DuxKMxfkDFnffiPfcS1V6cCsclGw3eh5gJA/x0hhMeeop9VrQS1dWQOf1k2EGZzbAYICbWd2C8QhrTCVwVqREREZFxZQetGRORsciPImyxKI3B0J7LYC2YbAxjDbYqP+g+Xt6nob2bTGWCvtpKfD9HbSyxTS0uNid/zCGFpaZ/fIyKX/4B76VlTJ83g9dihUb3JdZS/+oqTvznq9Smc3TXVeGedRq2umqHjcXW1RBVJIm1tuM6qmIqIiIi45MCRJE9WC4K6Q/rKlyXVBgUAr2+/uWlg1tKTFjfibGwYVIjGIMfRVRtTcGXreQfeTBRcyPJ+x4k9sIrnPzCK6xqriPV0kgQc6lI52hZ00Z1XwaAl/Zq4eVFCziupnrHDsQYoknNeK+tpLkvjXWiQo9IxYciIiIyjihAFNkDPNGxnknJSqZX1pQdH7h/Lul6pEIfJ+dhXmoCwNbm2TQvWFpeOqlwTmBteTZvFIR7Tyf172cQ/9u/MP98jmmt3dDaXXbO+pZ6Ht9/Gi9PquegqsrRGcfkQoDY0tnLOjfCBA6B3ZK2GyIiIiJ7BgWIInuAzlx2yCAuH4VYWwgBk45Lez5Ly4t7YdJxbEsKpvbAJiFi45pWoJhBBCILle5O+KiIx8gvOpxo4aEsW76cFcuXE7fgVlTwTG2MBVP3YkN3O6lsiipv23oybk5/oZpJHX2s9SIc3yMI4Z+drUytqKIlOTqBqYiIiMhYoSI1ImNYt5/bovP6Qp90MHi5aDYKcIrxnykWqomlk1gnws5fP+gTIJHO0tzZR3dVklRNZfF+kNgZAWKR4zhM3ntvKhbM4x8zJvDqtCb8iiRTK6ppTiQxGBLOji2Y06+/UE1TRw9RsZJpJhvyl7Y1PN/TMSqPKSIiIjKWKEAUGaPWZlL8cf1KuvIjB4mRteTCkN4BAWI6CHgt1U06CHAHFJcxkcENPIiHQ/72N65cD8BrkxsKkWHRaAVkI9mrqoaY47Ium+aA2kbq4wma4hXEHWfUxmNrq4kqk9R39oJTKODjRR5Tk1UsT/XS6w8u6iMiIiKyJ1GAKDIGpYOAx9rXsi6bpm+IzOBAgY0Iiej1N563Npvi4Q1raMtl8MzGX/Nmp1jYZYjWFgAtqwvLS5dNbsDaQqsHay2JHdziYkvUxRLsXV1LQzzJ/LrCfsjaeJwqLzZ64zGGaFILTmSp8wsZw0angkrPIx+FrEz3js7jioiIiIwRChBFxqAV6R7achlijkNqMwFiPooIIksqzJeCuj4/T0+QY102jedszATGwuJS0fjgwismipixtpPIcVg3sRHfRoQ2wh3FjN3mLKhv5oSWqVQW91fWeHGqvdiojqd/mWl9rhAsExQ+Jqs9j6V9XaP2uCIiIiJjgQJEkTGo1/fxjIODoWczyxr9KCS0Fj+KyBUbzHf6Oeq8OBMTldQMLOiSLwZWQwSIdRs6SfoBuemT8BIJ8lGIH0V4xhB3ds1HRW0szqTkxl6HdbEEU5JVo9p2I5pc3IeYaSscKAaISdejL/DLKsOKiIiI7GkUIIqMQd1+rrTXrsPPjniuH0VExQAxGxYDxHyWhOtS6Xk4Axvc+8UAMTY4QGwu7j9kn5nUxxLkwojAWmJm12UQNxVzHI6eMJnYKAas4dSJAEzsK88gxoxTfI2DUXtsERERkV1NAaLIGNQd5Ik7LnHHoSufIyouHR2KH0U4BiyWXBSSj0JSoU98qKAuX/iVt/HBWbApqwsZs3D2DBrjSXJRSBBFVHoxjNm0W+Key1ZVkq2vpS7bRyJMlQJEz3EIooiMAkQRERHZgylAFBlj/CgkEwbEHIeE65INwxGzVnnb3+vQkAkDUoFPLoyGzvoNk0FM9mVo7uwjU1uFbaynNh4nolAAp8obf+1S01NbAJiQX1sKEKFQ2LU/SysiIiKyJ1KAKDLGpMMAP4qIO05xWWM4YiVTP4qKve4LGcRUEGCx5UtLi8wwexBbXlkDQN/s6WAM1W4MU7z2aO73G6ty0wrLTCfk1mCC8o/JTKQMooiIiOy5FCCKjDGZIChUDzVOobm9gfXZNP/qbCW0haWh3f7G3ogbi6YY0kEhgzjsgtBhMoiTigGiP2cWAA3xBDVejO4gT/XAIjfjRH7aJGBwBhEKLUhERERE9lQKEEXGmHQYgN0Y4llreLa7nSe7Wunx83Tlc/xpw+pSVjEbBTiAZwypIE+Pn8cMFyIW9yAyYA9iPJujcU0bqYo48elTAaj0YhzXPJWWROWYKVCzM5n6WnqTSer8NmLZjQFhzDj0DgjORURERPY0ChBFxphMWFgi2q8hHscAoY3oC3x6gzzt+SwbsmkAskGIawwxx6E9n2V5umf4oG6IDOKUFRswFlbPmEhiwH7DyRVVnNgylckVVZteZY8XMw5rmxowQFNP68bjjkuPP3JfShEREZHdmQJEkTGmN8gTG9DcvsqLUR9PgIVU4NMX+HTlc6xI9wKFgNI1hkrXY302TTYMaIgnhr543i0En7GNGcSpy9YB0L3P9EGnT6mopnoc7kH0HIe1LXUATOjdUDoecxz6gvyIVWVFREREdmfjrzyhyBjXlc8TM4MzgK4x9Ph5IiwJx2FVpo9sGJANQ1zjkHQ9ZlTWgO9gHpsCjsVO7IO9ugt/CrKA7xSCQ1PYx+jmfCaubSOTiGH3mrrTn+tYFXMc1k2qB6C5bz3YqWAg7jikw4BcFFLh6uNTRERE9jz6hiMyhoQ2osfPER+iEXzccenIZwmspT6eIBUEbMhmyEaFDGJJdwKTKhSWMb0JbHsl5F3Iu5jIwVbkAegNfOauWI8TWZbPmIDrjr+9hsNxjUNvQyUZt4KG3Aa8bktQb/CMgx9FZMNg2AAxspalvV3Mqq4jNsT7KCIiIjKW6duLyBiyPpumJ8gP2Voi4bp05XP0+HkSjotnHF5JdZGPovIAMV24r53ag63KYzorMKk4ZpP9hwbYf3lh+eTSWZPwjD4OBoq7LusaWnCwtLxaWM7b3zpkpEqmXX6OZ3vayyrNioiIiOwu9I1QZAxZlurBMWbIHoYJxyUbheSikKTr0hCPsyLVR2ijsuDOZIoBYmMGe8Rq7KxOogM2Flrp339Ylc4zfX0X6cokayY14CnbVSbhuqyc1ADAxLVtZbctS/UMe7/12TSd+Sy5MBz2HBEREZGxSt8IRcaITBjwaqqHumH6DsYch8BGpR6JSdcjH4UE1m6SQSwufaz0IWaxszthWi/WFAurZAq3z1mxAQOsnDUFjFN+DSHpeCybWajgOrFrHf2FZZviCV7u66IrP3SG8LW+bjJhQDZSgCgiIiK7HwWIImPACz0d/HbdctJBMOTy0n6F/oYbA7lqL0aPny8P7ooZRCrK2zHYI1Zj4wF2VhewcXnp8tlTAKslpptIOC491R7diXpq/G4qWguvZ9L18G3E0t6uQffp9nNsyGXwjEMuHH4ZqoiIiMhYpW+EIrtYOvB5omM9fb7PlGTliOd6xhAfEAzWx+LsVVmN6T9mgYyHjYUQ26QVQ10ee8IKmJiipqOHlq4UrXVV9DTWFq+tj4OB6uMJ/ChiQ+MkACYu6yrdVuvFWZ7uwW7S7qI1l8GPIpKOS2qEfYoiIiIiY5W+EYrsYutzabJhSFMiudl9gBOTlbQMCCKNMSQHVtPMFSqVUjlyM/e9lq4CYMnMFqy1GAOuoyWmA9V4cTCwbvIEACat37iPM+kWAsD0JlnCbj+HYwye49Ab5HfqeEVERER2BAWIIrvYynTfjmuHkB56eelAThAy65U1hI7hhZkT8W2Eg6MM4iZqYjEcDOum1RDh0NK1DqJCxjBmHHwbDgoC23NZEk7htewLRg7SRURERMYifSMU2YWyYcCKdC+1wxSm2WqlAHH45Y1TV6wnkfdZPq2ZXEWCIIpwHYOnIjVlarw4SdcjVe3TlphMIszR2NYFFDK3WEOfvzEIjKylM58j6brEHId04A9agioiIiIy1ilAFNmFWnMZskFAxQ5qUm+KFUrtCEtMZ724EoCl+07FNYbAWgyF5vCykec4NMQTZG3I2trpAExZvnGZqWMo63WYDnwyYUDC8YoZxoicKpmKiIjIbkbfCEV2oY5cFmPYWGRmW0TA+krM0y2wvL5wbJgAsbq7j5b1HfRUJemZNgnHmEIG0Th42oM4SEuigmwUsqZlMgCTV2wMEBOOS2suU/q5L/AJbETMKbyWfhSpF6KIiIjsdhQgiuxCa7Ipko63+RNHYF5uxHl6EmZ9NXgRdlYn1OUIbURbLkMQRaVzZxezh8/Nnkx1cY+dbwtLTJVBHKwungCgb0KCXq+e+t4eKvsKQWHSdenIF15nKASI2EKQ7RqHCKteiCIiIrLb0TdCkV0kF4a057NUetsXINJWqGoazVuPPW4FdnYn2ShgdSYFhlKxFM8PmLl0FaFjeGbvFqq8GDHHIYgi4s6OWeK6p+nfG2qr86xNzgRg8spC/8ik65KLwtI+xO4gx8BEsMEogygiIiK7HQWIIrtIl58jF4YkhwvOImBFLeaxqZg/zcA821w4vrIG8+QkzBOToSuBScWxlXmYnAK3UBSlN/DZu6qW5kQlYbFQyl4vrybuB6zcewqpRKEAS9xx8a0CxOFUul5hn2ZVjrXJvQGYUgwQXePgRxHP9bQXs7WFCqb9LJCN1AtRREREdi/bmboQkc15tquN2liCGVU1Zce7/BwWO/T+wwjM36dgupMbj62twe7TgXlhAobifZ6eWPjfxkzZ3f0oojGeJBUEBDYCa9n3+WUALD1wL4wxxBxnYwZxBxXJ2dMkXY+Y4+C7edoqppF3EjSva8f1A8KYx6RkBc92t7Mmk6LLz9EUH/B+WcgGChBFRERk96IMosgoa8tn6Rmiafr6bJrYcPv+VtZhupPYmhzR0auwzaninaoxGGxjButGmFyxaukmAWJkLVVejArXI7KWyataqelN0zqxga6mOsASNy5xxyGwEfEd1YdxD+M5DhWuh0+IrQpZl9gLN7JMXl0oVhN3XCYnqwhtREuiggp349/c4o6hLZ8d8rrWWrryuSFvExEREdmV9K1QZJSlQ5/cEEsNu/P5oZd2tldgXmnAGoudtwFq8lBdCDDN2moAbH0GpvUU/hsLjeWBiDFQ4XpUeB4hlv2eew2Alw6c2X8Gccch7rgE1pJQBnFYNV4cP4qgKs/qitkATFu2rnR7zHGoiyUGvZeVXoz12XSpiM1AG3IZHtywqqxNhoiIiMhYoABRZJTlwpDMEEsNc1GAu8nyUvNiI86TkzGhA3t3QXWhAIrtDxB7C1U1qcljZ3RjnQjqsxDbGIRYa7G2ECDGjMOkth5a1nXQV1PJmukTC7djiTluKXOoJabDq43F8KMIW+WzLjmDwPWYvKoVNxi5AE2F65EJA7ryg7PH7bkMKzO9LO3tGqVRi4iIiGwbBYgio8haSy4KyWxSzTKyFj+KygNE34GVdVgvIjpofaFdRb/qTYKM6jwkQ+zCVdiD15fdFFiL5zhUFvfPHbWk0NpiyUGzwDGkQp9KN0aV5xEvtthQBnF41V68UOinyicyHmvrp+IFIZNWt454P9cYIsuQWcKVmT6SjsuSng56/cEBpIiIiMiuogBRZBQF1hJYSyYszyCGNiLE4gwMEDdUYayBiX0wsdCioqTSx5pCNVLrRlBRvF5FAPHyJYx+FBJ3XCo8j+r2Lmat6SBdlWT5rKkAdOXzHFDbUCrA4hhDTFVMh1XheoX2FZWFQG5V9SygfJnpcBwDrbny/aHZMKA1l6Y5UUE2DFmXTe/wMYuIiIhsKwWIIqPIjyIiawf1w/MjSxTZsgyiWVfcXzipb/CFHKCqmGmqzpcHj5vIRxFVnodrHFqeeA6AF+bNwroO2TAg5rjMqq4DwDOGmHHwVKRmWEnXxQJUBlgs65y9CTyXySs34GxmmWml67E2myo71pHPkgsjko6LMYWAcWuENiKIBu9rFBEREdkR9K1QZBT5NiS0Ft9GZcVKgmIGsRQgdiahI4lNBNAwdOXL0jLTmpGXJPo2oi6WwGnrpHrpclLJGK/tM5WufI7WXJb9auqpixX2MnrF4NAbqtWGAMUMIobIKWRuo3wFa6c0EwtCJq1uG/G+lZ5Hdz5H34BlpG25LNYW2pt4xqF3iAq3I3mpt4tnutu36bmIiIiIbI4CRJFRFES2sJzURuSj8gAxshEOBpbX4fx9SqF9xdSeYbODti5X/N9hAsiifBRSG4sTf/RJDPDk/tPJuQ69gc/xzVM5smlS6VzXMXjGKIM4glIvxGIlU4BVqYMAmPHy2hHvG3dc/ChiXW7jMtLVmb5SO4yYcejz/a0aT1suQybcuvuIiIiIbCl9K5Tt9mJvJ88pozGk/gxiUCxK069/iaAxBrO6BoBo7gaY1TX8xab1EB22BiYPsQR1ExO6UnjPvURUmWTJPlPIhAFJ12WvqpqyZa2ecYg5Dt5w/RiFhOMSNw6+jbB7d2Eb06ytnEneJJiycj2xvpGXmcYdh2WpQkuSTBjQlstQ5RUDRMehdyuDvc58TktMRUREZNToW6Fst3QQ0LeVy+TGCz+K8IxDZC35KCw7DkAEpGPYeABT+kbcW4hDod/hMOdE1rIum8Y1Dns9/gwGyC48jCgeIxMGVLgeyQGN3KFQadPTHsQROcZQ3d8LsT6HPWwd4QmrWNWwFy4R057b5I8jvgO5jUV/amNx1mRS9AU+HbksuSgkUSwKFHMK+0L9TQK+bj83ZP9EP4roDfL4Q9wmIiIisiPoW6FstyCKBn3B3V2lA5+/tW++OuWWGiprCGz8gp+JFSqXVm3/ksHeIE+VF+NtQYLq11YT1dcQHjoXzzhkwqC073CgUgbR0R7EkdTEYvgDAnw8y7L9C0t1Z65YWXau+cdkzF+mw7oqoLBENReGrM2kaMtlwBpMMYvrmcLS1dyAa4fW8ufWNaxOp7DW8ljbWtYXK52mAp9cGO4xv28iIiIy9ihAlO3m27Bsf93urDfwWZ/NEFlbOpYNg7Kft0YhELSAHbQH0VoDqVjhQNX2Z2D9KKIxFmfqo/8CIHfckeC6pYbt9UMFiMXlpVpiOrKaWHxQ1q59VhV9bg0TUhuoWhbBylpIeZjeBCZycJ6ZCK2VAFR7Hn/vXM/ydA8VA3pOesYQ2Kiskmm3n6M1l6E9n6UnyPNibycPbVhFZz5LKvTJR9Ee8/smIiIiY4++Fcp28/egL6x+FBHYkGBAMPB4+zrWZFIj3Gvk6xVCS0PebswSBVEExkJfHAC7DRnETZcmBjZi5qo23DXrCVuaCObuC1Bop4ChNhYfdA23WKBGS0xHVuXGGPQ3Ag9WTCj0RNzrH504L0zAvNQEgC0G/KYYIDbEk2TCgHXZdGn/IVDKJGbDkHTgE1pLRy5LX5BnTaavsN/QRqQCnyfa1xcyiFH5/BQRERHZkfStULZbIUAcuVDH7sK3heV74YBooCufG9TofkvlorBQqZRNitQUr2/6M4jVW59BbM1lS0sPAWwQMudvzxce98SjoRh8JF2XuOtQ6XmDrtGfPVQGcWQJ1y29ngMtnz0FgL3SL4C1mLbCslI7q7NwQt/GoHxyopLGeHLQPlCsIRMG/HHDKp7vbmddNkXMOHTks6xI92IwTEgkWZ3pY2W6l03nkoiIiMiOpG+Fst18G+0xRTOCqNizsPgFPLQR6TAo2yO2NbJBgGsM1hry4cZr5KKgEDimigHEVmYQ81FIzHFIel6pQNBhL66moruPYNYMwlnTS+cmXY+445ZaKwxU6XrMrWukKhbbhmc3fhReu8HLjPv2NrRXNVMd9tBoVgEUCg5NTGHdCHrjpbsZY6j2hnidjWVNpo/12RTPdLezOpOiMZ4kF4Wsy6SoKr5/IZYuP0+F6xFau83LnkVERERGogBRtpsfRQR7SgYxCovLTAtfvvNRIfjtHdDovDOf5ZW+7hGvExW/wOeioLiMEzLRxixkLixmFlMxrBdCfOtev77ApzGeZF5tE535PBWpDEc+v4LIcci+4diybFfS9Ug4LpXu4ODEGMPe1XU4Q2THZKOk6+IaZ3Bl0Zhl2UEtAMwMny4ca04XKs3W5DGRA5nBgflAnjH0+HkskAr9YrEhDyykw4CqYlBZ58VpzWaocD0iLKG1vNjTwcu9XTv2yYqIiMi4pgBRtptvI0JL2bLM3VUuighsVNrjlY8KfQz7go0Zvg25DE90rCs7tql/dm7g+e52slGIawyucciGIR35LNkwIBdFxHPxQgBR5Y/Y3iIfhYOWuGbCgJlVNexdXUvMcZj/xAvEwojuQw/ENtWXnRt3HCpcr6w4imydCtcj5pghl3aumDUF33OZ3roCd79V2H06Cjf0LxvuG7z3cyDPOHT5OarcGBPiSeLGwTUOCdclEwbEivtDq70YVZ5HtRfDWktoI7r9PB357A59riIiIjK+KUCU7RZEERHRkH3bdje5qFCxtD/Y9YsB48A+j7kgYH02M2zmJrQRr6Z6eCXVTTYMcYzBNYZuP8eD61eyIt1LLgzx/GJGr2Lk/Y2tuSw9vs/abKHtQWQtFmhJVlLtxZjZ2sNey9bRVxEnfcwhg+4fc1ya4slSQRTZenHHJWG8IQPEIOaxYtYUvDBir9RLEC+cY6tzhRN6Rw4Q445LZz5HbSxGhevRkiwUtmmKJ5lWUV06zxhDc6Ki1FcztJZsGI74hwoRERGRraUAUbZL/xfVKCrs39vd5cKQyFIKdvNRSBhZMmFYChp7Ax/XGJb0dgxZvKYtl6U7n6MjnyMXhrjGwTWGVBCwIt1LVz5HPgpxg2JGz9t8YD2vromY45IJC9nESjdGU7wCN4w44e8vAfDogtnEK5KD7ju1oooFDc3b+pJIUXUsNuxe21fnFPZ8znppJaVypzXFSqZ9g9uLDFTjxdirsgZ3k0JBjjGl7GH5cYgoZOzzUUg62LYCSiIiIiJDUYAo2yW0lghb3BO1ZRnEV/u66fO3v+/faMiGIaHdWMU0H0VYLMGASq19gU9DLEGf77O22P6iI58tFQ1Zl0lhTCHIDLG4xpBwXNpzWRrjSdpymUKAGG55gDipopLGWIJsFJAJAyYkksQch/gj/6C2O8WrE+tYNnMScWfwMtKk69EQHxw4ytap8WKDMoh+FGGtpaupjo4JddR19TFhQ7GCaX9vywGFaoZijClUSd1CDqb4h5nCnEyHyiCKiIjIjqMAUbZLaKPifii7xb3ZXurtpG2M7pvKRSEWyvYgesbBH9DMvC/0iTkOMcdhZbqXznyW365bzj+7NpANA15L91Dpxogbh0yximnS9di3po5qL0aXnycfRTjFANFuEiBmwwBbDDb7g85K12NiRSWZMCQXhUxMVOJsaCf+16cIYx73HTKLylhMxWZGUa0XLxUvArDWsizdQ09x+fEr/VnEF1cWTohZbHUOk4lBsR8iFvC37z0yxmCLRWpyUUjeRvh7SJEoERER2fUUIMp26S+3319VcXMia+nx8+TCsfmFNltcShpGGzOI/TFXLgwJoqiwf9A41HpxVmb6WNLdQZef48mOVu5e9QobsmlqYzFqY3FSoV/WYzDpumTDgIiNASLuxgDRjyKWp/tK+8r8KCoVmWmIJbG2sIKx3ouRvO9BTBTRtnAB2ZqqoVsoyA5T4cUYmArMRSHVXpxMcS6vnDkZP+Yxbdla4tlC0Gj3LRSsMS82YV5qxDwyHfPQTGiv2K6xGDYuMQ2iiJz6IoqIiMgOogBRtktgIyIoK+wyknxUyIBlt7Hx/Gjqz4IaNmYQs2FQanSfLY7dL/YgrHBdMkHAq+keJsQraElUEHccpldU4xqHpOsxp7q+LKvnGqcQTEdsDBAHZBB7gzxNiWSp72I+Ckk4hTYVtbE4xhT2pk3711Lcda2EUybiHzaPhOuW2iHI6Ei6LgPLzWbCgNpYvDRXwpjHstlTcSNb2IsIMCGDbU5hsjHM8npMJobBYF5pGHHZ6eaZYoXdwlwdq39wERERkd2PAkTZLv39/lwMwRZkMXJRSGAtqTG4b8qPCvsPXWNKSwnTQYBnDNYWMojZMMS3EZ4xGGPwjEM6CKj2YiRcl2ovVlYtdLjKoREWExZ//QYEiOkgoCGWIB/1L3GNqIvFMcZQF4uTcF2m92Spe+RJrOuSPfVEquMJkq5LtTdytUzZPpVurJS5A0iHIZVueY/Dlw/YCwvss2Q5JixWMz2gDbt3J9GBrUTHrsBW5THdSejann2hheWloY0IokK/TREREZEdQQGibJfQWiwWY8wWZhAjgigak6X5g6hQnMYzTqkYSSYMcI2DMYZMGJCLgkIGqBj4TUxWMLWiaqsexzMOuTDEBOUBYhBFOMbQGE/SHzL6NqQuXgj8Yo7LBMfjDY89j4kicq87mmhCI65xaE5UkBiiQI3sOPXxOBWuN6ByrWVysgoHUyrQ1FdXxdrpLVRkckx4ZWWhR2EixO7TCVN7oTLAzuwCwCyv247RmNJyaLClPyiIiIiIbC8FiLJdQmtLi+4GFnZ5pqutVGBloHwYEtiI1BgJEDNhUFru6herl8Ycp5QNzUQBnmPwjKEvyJPdZClff4/DrZF0XPI2xGzS5qIjn6UpkWR6Zc3G1zSy1AzIDC58+jVqu/oIZk7DP3x+6fiC+mamVW7smSc7nmscJiUrSQc+oY0wGKZVVpN0PbJhSK+fJ7KWlw6cCcABS1aQ9ofI7E3qw8ZCaKsEf9s+gq0tZOMja3Edp7QkWURERGR77TEB4g033MCcOXPK/p188sm7elh7vEJQWAhn+jOIbbkML/d1DfmltbAsrtDge6gAcmd7uquVp7vaAEpZQ9cU9ndZa8kGhQxizHHo9vPFKqfbN+66WJwZFdUwYInp+myGmONyROPEwjJVNr6elV5hGaP76kqmPv0yUTJB9s2LYUBgOiFRQcUmyx1lx5tUUUU+ikgHAVVejIZ4kvp4nM58jg25DH2BT+ukRjoba5jY2ce0tu7BF3GA5hTGmkKQuA2MsYWenViMNeTUC1FERER2kD0mQATYf//9+ctf/lL696Mf/WhXD2mPFxWXuMHGNhdd+dywlUrzUYiDIbAb+wruSuuzGV5JdZOPwlITdMeYQusAGxFQ2G9Y48VZn02zJtNXLFqz7Uyx7UUpe+QV2hQc1zyVKRXVVHkecdctvD4GKlwP09tH8le/ByD3phOwNVu3rFV2jIZYAgx0+XlmVdXhGsOEeAWpMGBisrLwO2AMSw/cG4BDX1o95N5c21Lon2k2DHgfA4P550TM0sbC3OhKQDj8XMtFIQaD5xj6Rij69HJfF91+bhufsYiIiIw3e1TKwXVdmpubd/UwxpXQWqw1YDZWMV2XTZMrVvzcVCYMiTkGv9guIrkNWa/2XLZUEGZ75MKQniBHn++zPpsuBbsOBj8Mi/slLa5XyCBaoMfP4+2oXoPFL/+BE+A5DnWxjXsNq70YnbksCcel2ngk7/k1TjpL/rB5BPvP3jGPL1utvlgQKGZc5tY1lo5Nq6iiNpZgbaYPgGUzJ3Hg319g1up2nu7qJWjcZL9hYxbrRtBWARkPKgLYUIVpq4I2MMvqAbDTerAHtA0ah4XSH2A8Y0iPsGR7WaoH1xjqYontfwFERERkj7dHZRBfffVVFi1axOtf/3r+67/+i3Xr1u3qIe3x+rOGho1VQNdn08OW3k8HPnHHLXzB3cYM4ou9HaxK9w55W3c+x4s9nVt0nd4gTy6MiDsuy1M9xQyiKWQQo6j4fGwpIGyIxdmQzRBzdtCvTeBgnQjfRHiOU2yjUNAYS9Dt59m/ppGmR57EW7WOcFIzucULd8xjyzZJuh5TktUc2tBCZfEPFNMrazihZRqNiUSp+m3OWJ6ZMxUDHPDsa4Mv5FpoTmMiB+cvMzAvNpayibYmh40HWGNhfRUMUX/GUKiEC4WiRyNVBU4HQWn5tIiIiMjm7DEZxIMPPpjrrruOvfbaiw0bNnDTTTfxvve9j1/96ldUVm7bPh/H2UGZoh2gfyxjaUxQyGQ4Drg4BDaiN/DJRAFxxyVPOGi8haIvDmEU4hNt0/PJRiERQ78WHUGO19LdHFDfuNnr9IU+xhSWDS5L9xYaoRtwHUNAYYmpMeAUA8KqWJxUGFBdbDux3QIHXEtgLUnXJeFt/HVsTCSZXFnFoa29xB9/CptMkHvnG3HiO/5XdqzOrbHqxInT8Ab8kaDKiVEVi9GWz4IpLCEOrOWV/ffi8CUr2fe1dbxyWJZMdUX5hfbrwCZCWF0NK+rAUMgqHrWm8Ke7f0zEtFdCdwU0Zsvu6hoHsBgDMdclG4UYM7itirWWbBQQYnf6+6t5JaNB80pGg+aVjIbdeV7tMQHi8ccfX/rvOXPmcPDBB/O6172O3/zmN7z97W/f6ut5nkNT09irCtnQMLb2nlWTIdkXI+Y4JKri2EqHRLJQZCVZHR/0GpoOh1ovSW8+T7I6QVPD1r/GptOlombwtQFWk8HPQH1jZfFL9PBeDnuoSMZprqkm09tDnxdQkYxRnUgQWUjUxEkmY1RVb1yat3f1jlmmZyPIRA6mIiCW9JiQrCh7PvMqHWZHlvr/+wUA8feeQsXsKTvksYcz1ubW7maim6ciFaeqOkE6E9LcUEv3EQcy4ZGnmfvicpaccHD5HaqBCSn8OvCfrgML7uQsidrCHPOn5/HbK4l11RCfUV4Yqcr4VCQTJAmoq0jSnc9RXV9B0iv/SPejkNiGGImqoX9fRtuy3m6m19ds9ndRZGvp80pGg+aVjIbdcV7tMQHipmpra5k5cybLly/fpvsHQURPT2YHj2rbOY6hoaGKzs4UUbTrq3/26+hKkcnkiRyPdlL4aZ981sdgWNvewwyz8ZfCWktbbxrPOGTyPhs6e2mO4oTWEtrCUs8teszeFNWRQ7vbN+i2Ne09dPVlWLOhu7QEcODjm2KF0tBaXt7Qgc2HpPpyVEYur7Z1YYBsWGgbsLqth2zWJ2V2UIGPnnhhyeD0HnAK7UEiJ6QnlaXFSdDevvH5OKkME378G8j75E84ktTkydA++PnuCGN1bu1uMukcmUyeFDl6MlmmuJW0zt2X2sefZfpzy/jn/jNY6URMSlbhDMz0teQgWYXJegQNvQR9xflWF2Cox1+VwN87x8DaSLmsT2+YJZPLk7cevbkca9q6B+0zzIQBfeksG5xe2r2anfAqbBRi+Uf3esJUQL32P8oOos8rGQ2aVzIaxuK8qq2tIBbb/PftPTZATKVSrFy5cruK1oyVN3OgKLJjaly5MARbWBGXCyNW+ymSjktobaEv3ICx5sKQfBiS8BwcoC/vE0WWZalu1mZSLJyw+QxZZC25MCIXhEO+Dr1+nnwYkQkCkk5hemfCgL93rCfpehzROJFnOttZ0tMBQMJxsdaSdFwcDBWuW2ox0ZHLYGwhsNxuPXHMPyZjAge7ohY7u6Pwfd+LyIcR1U5s4/MJQyp+9gBOdy/+AfuQO+ZQ2Anv+VibW7ubmHGJrMVaix9Zqt0Y8UQFT8+ezOEvrmb60y+z9pB96PPz1MQ29rbEAPPWw4YqbEsfpS4q8QDqspjuJFFHomyZqaFQ6MnYQtXdIIrI+AE1brxsTPkgJIgsmXDo35fR5NuQIIoIokjzSnY4fV7JaNC8ktGwO86rPWbdz7XXXsvf/vY3Vq1axZNPPskFF1yA67qccsopu3poe7QginAwOBhSQZ5uP0eF6+EZh75NerPlSkVfHDxnY2GNXj9Pez471OUHP56NiIjKCtx05rP8pXU1AH2+XyiQU7w9iCL+sG4lT3e1sSLVS2QtazJ9pAOfdBCU9Q6cmKygNhbHNYbIWjryuS3Oag4r72BebML8fUohOGxMY0IH83Jxj6RX2OdYWhpoLYnf/hlv5VrCSc1kT31dWb9DGbsSjotrHMLi3tUK16PKi/HcgTMIHMNBL69llhOnd6iCMg057JyOQZ/Idnqhj6JZXl923DGFue0W54YxZsiiT76NiGxEboQ2GKMlsBY/ikrVjUVERGT3sMdkENetW8d//Md/0NXVRWNjI4cffjj/93//R0NDw64e2h4tH4U4plD5M7SWXBQywUkSWEs69EvLOvvPDWzhS61nHHr9whflHj9Pyi8/dzh+FBFGlvyAqox9gU9rLkM+CkmFPkEUkS1WUF2TSbEul2J6ZTUd+RxtuQwd+SxNieSwjeUNhQAxEwbEt7Ziab54fjwq9LV7cjKmN4F1IqJZHTCrCx6aiQk29kAEStnO+GNPEn9qCVF1JZnTT4bYHvMrusdLOC6eMaWKoZXFAPGoGfuwav+1zHx+GYe/sJolsxu3aK4DMDGFfTnAtFVi+2JQXfidMRh8Gw1YqmqHDBCDYoCW3QU9R4MoKvxBRwGiiIjIbmWP+fb5ta99bVcPYVzyrS0FiL6NwBayGZ4xZMKIfBSRKLZv6Av80u0Jx6U3yBNEEV35PH4x67e5voj9X3gHlu3PRxGpMKAznys0l6eQrbTW/n/2/jtIzuw874Z/5zypw+QZ5LDYxM3YgF1uIpfZpCiJlkSH9/0sW8Eq11eWQ9klleVYTq8slS2Vy/7D+kpySa9sWbZlm7YoieIyLsMuudzMXW5eAIuMwcROTzrnfH+cp3u6p3sSMABmsOdXhQIw3f300z0dznXu+74uXq/NEghJKD1yrTnaWOyI2JVoVxBTrRjxwxWvx3yEeHEX5qZZ2GdbA8V394GSmCOnEa9PWXE43sIcPmdFI0A1hYXi/n2NwbqY+i++SvTE05gwoPXnP40Z3nomSY6VCaXNy4yVwhOCclEV3lcZQnz0McwbJ5h88TXGDz5IK8z7ZmQHIm0VUbw5iXhnHHP4vP2xEORKdTYwDHQ2RbqxFUQGRs5cbnKji/eri9hwOBwOh2M7cc20mDquDplWnRbTRKlORqAvJLnprWqci5udikfkWSOYWp5aoWgGV0D67s9oFKYjBNvn0MpzZtOYvGhhTfKcmTTmRLPORGjFmBCCmbTVEakr0c6YS7Veyjw02EDzViFgNYgf7ECkPuK1KWj6sBAh4gCReYjv7EfMlW2m3T1nl8QhWIFYoD2FJySjx05R+sITGClp/cQn0bsvfnbWcXUQQlDxAuayhPEw6tlcMMNVsvvuROSKx14/TW2VYPs+Dixiohxxbghm7WtZCkFubHs3gIegmdsq/Hy6ZKrUFmhtsXYlUcZ0NnTWop5nPe9ph8PhcDgcVw8nEB2XRG40UtiZqEaeddo2bdbh0iygNoYTzRpDRdXEExJtTKc1NNd6XVWOtuFFpnXHPCbVmqbKmUliVFGxrKuM83ETjemIvIrnMZ+mawbdCyEQWHMaKQTEHuKp/TbQ/NsHoB7A8TFEI8T4GqGlFYsXbN6m8RUCgRmLMUfOgN+7QDZDS+JAeYr9M4tMfv5rCGOIf+QjqOsPrOOZd2xFhnyflso5WBnp24RIH74XEwYceu1dyvXm+g/qGcz7ZgAQr092TKFybToziL6UnVbrb06f6oit3JhOy3R2hSt51qDGrEsgvjg/zYnm5XHpdTgcDofDsTGcQHRcEpnWCASBlEghqHblsAmx1No2nyUsZmnP5QaYTlqdWaruCuKpVn3g7JKtINoqYl5cHqucTCsWsgQhBIGwi+WzcYOoy2Sm4gXMpC0qa7SxFmff8YYRb05YMRjmCCNs6+g7YxhhMA+cwgyliLkyHB+1j+v+M+i7z2LuOwPBgEV5VwVxtHGBH/769xG5Iv7YI+R3vG8d5+bYqlT8gKofsLtU6bvMVMqk9x9Gas37XzmxsQPvamCGEkQ9gpZftHSrTkW+/ZpfzFPmsoSFzL7GMq3wpOhU864k7crlegRiI7fmUg6Hw+FwOK4+TiA6LolMW3HnCcn11ZFlgdiCWFv3xAtJC21Mz+UeMJ8mRZOc6YjJuTTmezPnWMj68wczbeccTZGdCDbGwheyEJgGXwpqWcq5uNVjRBN5HjujcqeKuRrGGIwRMBchzg5jwhzz0ClMoBCzZYSWmOvnYCjD3HrBPlotMZUUhlPY2QRvhYXxkF28j2YX+OiL3yTKcpJH7iN7/92Dr+/YNgz5IaN+yFQ0eMY1ffBuVBRyx7GzDM/3V8wyrXtaRDsIYLxw+l2MOtEW3RXEZp4xlyTMZwkLxTHyogqujL7yFURjyLRal0lNS+XOzMbhcDgcji2CE4iOS6LXSbEXTwjebdQwxnC8sdjX2hlKrzCTKUw2igrimVaDmTQe2HKaGb1UESkWlC2lqPh+5/pWLNq20+XVwtEgWpd7ZGY0oRSdOApz8yxECnNo3v6/ksL19t+Mx5g9NfvvqXW0DkaKYTXNBy/8H0p5xut33kD62PvXvp1jy1PxfK4fGiFYKR6lFLH44GGkgbueea3v4oUs4UIaY4xhIUs42VoSkWbEij6xEOELybAfdmJYAiHJjOZ0XEdpbWdtgUTneAgM9Bg7XQns3OPaLaZtx2AnEB0Oh8Ph2BpcMy6mjiuPMgZj7PzhICbCiHebNb6/MMO7zTo7o3LP5ZHn0VI5spj5a+Qpxhjeqi/QUjkt3Z/d1m5p1cagigVvrK0QbKocWbS7NvIcg1lRvK7FnlKFoFZGzJetGNxTLNQPLKKVgF2Nnu0Vc8sMpprBvsU1jz28UOOx6a8R6ZjvHzrEOw/cyl6XdXhNcMPQKIeqI6teJz1yF4vPvsy+k9PsODPDud0TtFRO1Q/ItKbqB6RaU89zeiTTaFFZLCqI+ytLLre+FOTGUM8zxoKIs7HdqEgKR1VzFVpMc23W5WKaauXyEh0Oh8Ph2EK4CqLjoklUO9dw8MsolB7KGF6vzREI0VdBjKRHLcs68QCNPGMmjbmQtAikGGjbn2iFLyS6mEE0xhCrnFIhNgMp8YUkLionG0IDR8dgukzJ8/FP2AxNc3CBzqE8AzfOd/LoOgTaVhTD1RfDYxcW+PAXvktJxbw1ejvfPHIIf6Vqk2NbstamRCmK+N49NwJw9/deo5YlnGjVrYgzhqrnE2u7wdE2SwKgkmF8DYuRfa120TZ9SpRiLIxYyFKaeUailyr8V7rF1M4gri1M206nbgbR4XA4HI6tgROIDsC2ec2l8YZuM5/FZFqvGiY/EUZFMH2577JASjKtbAagkNTznFNNa04TCI+m6o8CSFTembvK2/b9xWzjWBAy7IeF4Y0ePGu4ECFem4TFZfmGxsZWyLcmEK9P2cD7c1VMoGDv5rgrTp2b5cNffJpSkvH0zXt5/scOogOzosB2XJtIITh/437OTY4wPrvI9W+foeoFnXbtsufTzG013BdyqbImgJEEoSU0Bs/RagxlzydVioUs7VQQ4cq3mKbFTPBawjQ1RRTHFT4/h8PhcDgcg3Er022MMnrDom4lppMW35g+RTNfauvsjpIYxGwS2yrHKhWTsudzXWW4s0hdzk1Dowz5oTXZUBlv1OcZDgJ8Iahn/QIxVqpoSbU5cJnWqMLufyoqE3m2GndTdYThoFcEirfGkU/vQ5wYRTy9D/HsbsS3DiCe3ov4xkHEmWF7xZYPs2WEEbBjFbOZDbDr1DQffPx7BFnOk3cc5Nv33gBCYApTHcd7i5Eg4pv33gDAgy+9wyiSRCkMhqEgpJZntootRW9lbaTdZtpvgqOLimOb+Swh0VZoGmMdTa8kibLnvZYwzVwF0eFwOByOLYUTiNuMWOW8ujiLMYaj9UW+deF0z+WnmvWLCpyu5xnn4xZn4gZg29q+MX2K08X/B3E2blK6xPbItrj0hSDTmoUsYdgPCaSkNkAgJnqpIqK0DbNXRuMvq8L1iVYDHB/FSI05sGCvM1tBtALEQgkyDzPewozECATijJ3vMsMDHCU3yHVvneIDX3kWX2leuP9WvnvHdQghMcagjXWgdLy3GAlCTkyMcOLQboZaKUdeO0GsFRLBzqhMKD0moxKB8HqEkykccEWzv4I45oeMB1Y4BlLajFFlnU6FsHmhK3GssbjmrOBGybRCwJqVwVSrIobDzSA6HA6Hw7EVcCY124x6nvH9+QuMBCGv1eaYTxMSpYg8j1jlPD17jvdP7GJfl4HFeljMUmp5ylu1eW4cGmUxSzndqrOvXIX+7lAyrTiXNNeZKbg2gZQ085zIs3mKgZQ0VIYxvRXKuNNiaisOmdFosw4zmmZgYyjGWphbZ+DQPCbxbSZhLsHX4BvEW+O2OjNT5NiN9ArERClCKdflhIox3PbiW9z5wltoIfjeo3fy+g17ifKU3Bg0xlYQ3T7Ne46qHyCE4aUjt7Dn3XPc+coxvrN/nGB0mF2lCmXPZ3dUIVWaer6Um0lUVPiT/o2Z7op52fM512qSGU1JSjyxFDmznFjlfH9+hpEgZCIcHM9xMaRG40m5ZotppnWnXdzhcDgcDsfVx61MtyGLecpzc+c5FzfJtO7M6p2Nm8ykrYHun2sxl7YYCyLOxA3m04TppGXz1JZlERpjeH5umlcX52jlOaVNEoiesEY17QVqIDxSrYpswyXSIvvNYKMuUq3WJ9ZqxeJ5uFhsl5R1hfSN/bdvqxemuFwY2/7ZziwE29J7vFmjlvdXNpcjlOaBb32fO194iyzw+NbHj3Ds5gM0VUbZ8wvzEVvY9FwF8T1HyfMwQHO4wjO3HcBXmo88/w6h9BgPS4yHEaNhRNX3e4VTVLwfBgjEbsqeT0NlqGKuUSIGxsYANFVOS2WbPgOYaoUv5boqiLl2LaYOh8PhcGwVXAVxG2KAs60mUgg0NkNsHDjZrLFYuBdu6HjGMJsmDPkBi3nKDxZnSJVCafvzbmKteHnhAi2lkKzt2LgR9parnX/70racJkp1RGheVBoC4dOpIGoNrN2aJgqB2BaAKzLU9XgrWUc4gq2yjoXRmgvZIMl4+OvPs+vMDM1KiW99/AgLEzb6oKUU+8rDNPNFNFYhrjSf6bh2sZsENuz+mVsPcM+JGW45M8e5s3N4BwUPTu5mIow4Hzd7BVangrj6R3cgJbnRCCSesH8GuQIDNPOcuIia2ExSpQmE7OSVroSbQXQ4HA6HY2vhShfbEIF1B90ZlcEImionUYp3m3XKnsditoYIWkasFU2VE0mPnVGZVxfnOBk3mAgjFtKkJ8C6kWekWrOvXGFPuTL4gOvTbKviFVEWcVcFMS/aST0hwFjBuOKituEjvr0f8b09cHIYapH9+VozhZUcI4tjLhOTdZUzEoQ9C3Zles9hZK7Gx/7oSXadmWF+fJiv/PDDLEyMYIxhOmkhgN3lCkLYCqIQIDcax+HY9owGIWXPp5anyDBg5sMPAnD/069BlrOrVCGQHhU/sBsJbXyD8fSaFUQAjM0qbbds1/J0YBh9U2W0VL7pMRiZWV8FsaVyfCHcDKLD4XA4HFsEJxC3KVU/sLmCwtDMMqaTFk2VMRpEawrE+rLL63lGqu1sXSg9StKjVlTL2uKx+7oGOlWJPpRAPHkA8fzuTXiUgpbKOxXRtKg0eEIghSA1ilQrjOkXWOLNSUQzRMyXka/ugNkyRhiorlFdFXTaSk3X/GGqFYGQDHlBT6D3dBJ3jH32HTvDx/74KYZrTU4d3MXXPv0QcdW2zDZVjhCCj+8+yPXVEURR/QWxqVVYx/YgKDZj5rOUUHqEt97IsX2TVGpNwu8837leNMgEKsoRuQdq9ddNVGSDekJQ8XzqeUYt7/9sqOVZJ9N0s9DGkGmNv44ZxJbK8aXcdJMch8PhcDgcF4cTiNucQEgW8pTzSRMBhFJSy7OBlQKAs60GXzl/grhL9DXyDMGS8+dkVOJQZZhQWgfFRlfLajPPEKuVB89VEa0AZsqQLXt5NX3IBbR8xBMH4Z2xVR+bwPB2fZ4/On2UmSTuzFz60hrZJEoXM4jLzmeuhJiuYkoZ+vbz9lhGQDUlYR3zmeNFdMjYUoRIPc/YEZXZGZVRXXeXG41n4M5nXuORr7+AlyueufsGnvzIveSB33O9YT/gQGUYKSQS0fkduRbT9yZ7ylVilTPsB5Q8nxfefzva8wifeh4xa512BwvE9c0hDvtB5/Z+0XK6kPYLxIU07quEXyrKaLRZanVdjZaymy9qjVZUh8PhcDgcVwYnELc5ofSYT1NONGtUPJ9AeCQDzF3AtmQ+M3ee2cL5tE0tS5clqC2JRYHoEYhzabJqsLs4NdK5HQvR0gXzUaeyKN4dRaQ+4t1R24660rEQvFNfYDZNeHVxltcWZzuuqRLrpNrM8/6Ii7fHATA3zcHeOma8Zf8/lHC0sUh9jRlNc+Mc+sGTMLZUQcy1puoHhJ7XI0irrYzPfuMVbnv5KGng89WP3sOf3rSLllbkWvNus4YxBmUMkbTn3o4dMNg2U1dBfG8yHkZUvKDjPrpv714WHzyMUIrSnz4BxhAVZjY9rFMgljyf/V1uxgKYHZCbOp+lGNbOK9wI1qVX4wu7EbLShhVAS2UE66g0OhwOh8PhuDI4gbjNCYvZork06bSdZlrRUv2VsmONRc606iitSbsWY7NpTLiCSDGYnpbU2TQhWsl1sx4g5pds8sVc8W8lEK/sQBiBmC/DiUJEZh7MDsjQKNhVKrOnVGV3qcxb9XnOJy3GQruY9oQk0Yr5LOkViPUAMVfGlDPYXQcB5tYLmNGYfM8iI0FIba0ZTc/ASO91lDFWgEsPCjG98+R5fvKLz3Lg3Byzo1W+/KOPcHTPBCNBSKwUDWXnNTNjW2NL3tKCPihyEN0M4nuXibBENfAZ9u1r+taRCbxHH0BNjeMfP0Xw0mtE0uupNgMQFu/txQjxgylI1/cxXpJ+px26TVa0kJc9b0WX04tBaTsv7EsrcFeqDhpjSLTCFwJjVr6ew+FwOByOK4cTiNucUHqFTbwmlF5RjRK08n6B2K7+CSFIiwpj2zxlpbiKUEhmi6iLXGtqeTq47Q1sRRAwe2r2B4VYFEfHEM0QU+2KkCjcGMXZlfMaPSHxpaTk+Rhsu1q7eimFnZ06FzcZDUJYDBFvjyOOFtXDA4t0dNdQhnn/abLxJpHnremqOAhlbEUmEBKpFIe/9xof+vKzVJKMo7dex3/7xL00RqokSjEShCQ6J1aKId/OLCqjewSi15lBdBXE9yolz2dXVKXid733fI/40x/BANFXnqTcjDvtoW1MUUEUb0/Yiv3JkXXdX8X3mUnjznsfrINpqhQl6ZNcRDzOSuTGoI11I9bF63/w9TS5MQTSmlKtVml0OBwOh8NxZXACcZvjC0GyLAvQGAZmITZUhl+EzLfbyVoqp5HnPeKlm6ofcKJZYyFLaKiMRCuiQdeNPTg9jPE15pYZjK9gMbJziCdHMMJg7juD2dmw/77rnHULPV/tn1UcwJ5Sxbq2FtgZRAUCfCTipV2Id8YRZ4fscffW+o6hjM1QjORFVEuEIZSS6nyNv/CVF7nllaMkoc/XHzvM9MceIvbs858ZTcXzybV9jkuehyoqiGW5JAR84aGNrdBKpw/fszwwsYuDleGen+l9u8geOIxIUka+/CQ+orf9s725ouz7RtTDdd1XSXq08pw3avOd139T5WisQFspBuNiaDsO+2J14ZdqjdL2/s0qQtLhcDgcDseVwwnEbY4QAg9pq2idH5qBWYiN3M76mK4F52KWkhlFuEJVsOoHJFrxysIM82lSiKz+l404PmaNYA4sQKBhLEZoiXh1yraS7mxASVlh+Oi7MJ7A7jpCScQLu1adRRyEJwQX0hYTQQSnhxGtAFPKrFPp/kV7DsuwbZ4+O0tlFge4Oa6G1IZ9L7zBwd/7PLvn6kzvHOO/fvII9ZuvY8QP7cwlYIxg2A+tYBfgC9mx7w+7hLUvBaaY/FxtptNxbTMWRgOr98lj70ePDRO+eYy7z873OAl3ZhDb1NYnEIUQjAYhT144w5MXTgN200gg8IqNps1CtdunhejM4A7CZiBqfCExBlzShcPhcDgcVx+3Mr0G2F+pMuQHnf8HQjKTxn279t2GLu02s/UIpamwxA8WZ/n6+ZN9hjCAtds/NYyRGnPQui+aPXUAxDnbQmoOLNrrSqBctLfeOoMZThDzZcS3D8DRMetyug6qXsDeUpWS8BFHx+zxDp/HfOQY5n2zA2+jjKEkPW4eHifRqs+sRhVVj+UMLTT48199ib3ffh4BfPvu6/nqJx9grhIyHkYMByGeaItuw+5yBSkEvpAEcsmdMeia3fSFRBvjTGocgwkD4h/6MABHvvMDZKO1dNlygdgM1oy8aDMShOyISpyK68Qq52yrgcRuUsSbKBBzbRuopRDoVWYLc6PRmE7uqb7UAFWHw+FwOByXjBOI1yBjQcRbtQW+N3uuszDLtCYpgqslEBctqHNpjLeGSUrJ85kISoyHEbtLlf4rTFdsu9vOJoRF5W53A33bNAaDGYl7IiM6eAZz71nMZBMRB8i3JhDfPAjzUf91lyGEsKJ4poKIA8xkE0YTazCzwsNRxhB5PjcOjfLo5F7m0qSnde9Es8GFZGkhnuUZe194nU/84bfYO7NIvHOS2Z/6cV64/TryYtZzyA8Z8gPGwxIzaYtAeuyKKpSkR8WzP2/PjwVd4tqX0i6FnUmNYwXUof2k99xG0Er4+HNvk7dbQKOlaqLxtK1er7PNFGyraZwrppMWp1oNhvzA5ooqhdmkGUBlbHVcAJreCmKmNS/MTaOMIdf2/GXh6utaTB0Oh8PhuPo4gXgtsGxNF3k2hPul+Qu8WZsDICmMbHwh8cSSic35OF5x/rCbiu8vtaFmAvHGBDRs1bJTJdxV773R/hrmAycw951dUbQRKcx9Z9GPnMDsqSFyD/HO+PoeNyDOVu19D5g5XE67gghw68g442HUcXtt5hlV3+9Y7U+cn+MTn3+KR194B2EM377rEOf+0o/g7Zwq2kbt9dqL69tHJjqznEN+wERYYkdUour7xeJYLKsgCpQxyKK9z+EYRPLRR9Cjw9x08gK73zxhf+gbO+uLWZq1XWebKSxF2LxVX6CeZ1T9AE8IFOaiDJwGkRuNMUv31S386nnKiWbdmmsV9ydYOw7D4XA4HA7HlcEJxO1MLhAv7EJ84yC0eueYIs9jNAh5du4880XuoTIGv2h9bKqcVCsW8qR/Bmq2ZE1nVkC8O2ZnDp/fDS0PLpQxvoapZv+Vy/nAecA+qhnm9mlMoGz0RSrXnktUAqar1pRmx4D7Xn51ozuPVQjBzlKlIxDnsoSJsEQYZ9z35Mt87E++w46FBqd2jPL5Tz/Ec3dcR+j51llVSBvuLSVDRUTBgcoQE1GJibCEEILd5Qq7S1VK0rdmNMYUERkWX0iU0QghXIupY2WikPhHP4YBHnn2DUo1+zo3t07b98u4rcz3GdVoED+YQnx7P+KpfX1RGGXPZzaNC5Mku0mhtSHVitcX5y65kpdohaAt/ugRfpnWpMZuWNnquj0Hw8qzig6Hw+FwOK4cTiBuVzKBeGYvYrpqQ+eLObxuRoKQllK8ujhLonNrilIsBmOlqGUZqVK9sRVHR5HP7kV8f9fg+9XAKeu6KFoB4skDCC1hR+PSX00S2NWweYnf34n42iE4vXIMBheK1tYdTdtaugbGCMKuKt6OqEymtW1z03D4rdP89J8+w41vnKAVBTzx8O388cfv49xICU+IjsAreR71PGPIDzoRBSXP57bhcXYUTquHR6e4dWScUHqdRXhPi6mQnTY8JxAdq6EO7KHx/sNEmeKeb7yA1hr2NGBfHYZsBA3nq4g3x5ccgU+MIk6NIJohoh7BTG/eaNX3mU3iznu/XUGcTWN+sDjDXJpc0jnPJC284tgGUF1tDqnWRfWwLRDt679dRXQ4HA6Hw3F1cQJxO2JAvLoDUYsw4y2Mp+H0MCT9Vb8hz+ds3LAOhcYuxHwpiniLDF20OYrXJxHf2Yd8axLABt7Xg77jcaGCSHzMWMvmGmqBGYkx181vzkMr2lTFbMW6oL4+uWIQuJiu9Nymm7Nxk4Vs2SJX9BrFjAYhCBh+9ww/9aXnuf3bL1FOct65eT//7w/dj7rrVoYC24baNpwBKxAbKuuJ3QA4PLaDw2NT9q6EQAhRmNToQmD2ziC6FlPHejEfeohsxwQHphe44eV3li6o5JgoRyQ+4tg44uUdkErEO2N2/veQbTEXC6We45U8HynouB9LBMpoZtOYuTRhMduYy+9yzictyoVAXF5BTLUiU7qzOWO6xKMTiA6Hw+FwXH2cQNxmHH8mYPfzNyPODWHKGebuc7B/0VbdBlQRy55PLc9YSFMQdvHlCUlmNPNZYldvjQDx7qgVnIFaEmmnhvuO1/6ZuW4B89BJ6xr64GkY7o/VuCjGY0yU26zEsdjOJL45YcsQ7T9tFqPObZaTa01mDOe6TGcwvQJxYrHJj3/jFX7k6y8xNl+nuW8X/+UT9/Lso3cRRz67ShVGg5CWyok8r1PpK3s+AsHkMoEoB7SL2oqlwJO9ArEdDC6cSY1jPfge6Wc+jpKC+154i/EL1i0YAeahk+j7T2MqKeJCFfHtA4jcszPA+4oZxYV+46d95aHOXLEQNqhlLk1YyFL72VDwTn2Bs63Guk+1mWfU86yndX25SU1q2hVE0/PqV8sHqh0Oh8PhcFxxnEDcRmhtmD/pETbLmDDH3HUeAm3Fmq8QJ0b7WslCKUm1dSxsL8Q8IVDacD5u2rbHeVtdMAfnMR86boPuhYEzw/1zgIuRvWyqaV89/iYv6ASYI2cwD5zG3H3WPq7TI4jv7Ed87RDiuT1Fz5qARoCJ8iXn1PbzZGxL55HxneRFzpo9tiEQHmJ+kdIffZWp3/5fHDozy/xQmfkf+zjn/sKnOD9RGO5g5zhHgpBE6R4jn7LnU/Z8RoK1jUFC6eFJm1XZ3WIqAa1xM4iOdaN3TvLc/bfgacNDT7yAnxabMqG2GyuHz9t53FxiJpuYG2ehnNu53lq05kyvAWpZCtjPhjZHG4tcSAe4EK/AYp6SatXTzq2WVxC1Jtemx0UYnEmNw+FwOBxbAScQtxFSCu760ZiTD76CeexdG+sA6DDH3DYNYFvMujLR2i6CsVrKQGwbpMxnCaH0bDspYCZiW1GMFEw1bcD9dHXpBDKJSH2oZJf3lVPN7GMLNeb+M5ihBFEPEUoiZstwoQK1Ipx+pH9WShmDJwQHykNMhKVOu9xwM2HvV79L9f/3+wTffx2ikFcfvIPv/PmP4d12M4Hn2eqq1kgEkfSo+gG+lJS9pXbbUlsg+msLxEBaU5vQ8zq/C2jPHboWU8fGOH7b9RzdP8VQrcmRp16BbkE1nGIeOYH54LvWOTjU9v08miCMsCJxNYwg1oqxIGK2KwJmLo2JVb76bbtov9+6X+/dpjctlXfmDxOd97z+nUmNw+FwOBxXH3/tqzi2EtIDHaie2IijjUWmJlPGJkcQMxXMYgjjS8LJQ5Bo1RGINrzakGhFWfpL7WejS1UCs2/RGuCcGsbsKtrLilgLKpvUTroehlPMg6cw9RCaAfL7uxBvj3diLcxAgajxpCD0PG4aGuXlE8e5++13uOH1d/G1wUQhyfvvJn3gMKMS7i4WqKH08IQg0Tm+lESeR8nzCKWk3FVBDKRkJAio+gNmNJfRPmZZ9s6H2mBwnEmNY0NEvs9XH7yF/2uuzsGjZzi/Z5Kj7zuwdIVyf9i9GYkRFyr2fT66svmMEIZY5YwGEfNZQi1PqXg+LZXTzNcvEGcHZKt2C7+mytHGkBlNqnRPi7WrIDocDofDcfVxAnGbY4pqWayUndmbqdhKQZdALBVziJUukSOEIFGKMVNGNENMJe1t1Zxs2fbNmbKNsigraBaCqHoFBSLYauVIasXisQRRi+B48ViGV6ggIglnFzj85As8+OpbeNqQ+pLF9x9GPHQEylYUd09ZBkVGZKysmI6kR9nzrUCUS2+Vqhewtzy0LmEXFhXEyFsuEG04ePdcosOxFpH0aAY+3/3QPXz4C9/lnu/+gJkdYyyO988LdyhEoTgzZDdWVmkLT7VmKvSYywwLWYIofhbr9QvEc3GzZ/7QmF7h11I5yhjyws20+33kBKLD4XA4HFcftzrd5uTGUPJ8GzhdiCWxrJWs7HnUsrRTQWxjMHgLxczi2DKhJYG9NdvGebqItSgqiKZyaQ6HF40A874ZG9cRFwvQkaVzOdpYZDFLmZie55PffJmh3/xvDL3yJsrzeOa2A/ynH32I+LH3d8Thcnxp5wRjpSgXpjQVzyfyfMIugbe/MsSDk7vXdcqekEUFsncvRgqBcO2ljg1S8nyU0czsHOfle2/GV5qHnngBL1tFwE20MMMJYrGEeHZPX2ZqG1PkddrWUMFcmtDMbV5qrPork4PItKKWZz0zu9BbQYxVjsAaSaVG9baYOpMah8PhcDiuOq6CuM3JjbaRCSqH4UIs1Xpn4yLpMR5GfSLFGBDn7IyhGe03oTB7aoij44jzVcyN89AsjnsRFcR6nuEL0aksGGOYz1JqecqOqNx3bisyEcN1C3B8zFY4I7twFUpzy/FpHnznLLsvLAKghyokDxzmu9ft4Kn6DGNh1GMUM4iS5zOdtBgq5gvb84ah7I8QWS8lz++pqMBSBdFb43wcjm5CKWn7fr5+1w3sPDvL7tMXuP/Jl/nuY3fDoA0HCebIaXhhN2K+DE/thwOLmIkWhDkMZSBsNmJeCLmK53GyWWfID8i0prXOGcRmnpMqxXiXgZMUVjiCrRDGShFIj0QrErVUQTS4CqLD4XA4HFsBJxC3OZnWBEKSAETKOhbWQ+tYWGgPIUQnwL2NLyTluSHE2WFMmMOuATb21RxTzhD1CBN7Fz2DqI1hLk3whSCQGVNRmYUsxQA7owpNlVGSHm83FtlXrq4pFs1Ns5BJzGhCqRlzw+snuOGNdym3rECeGy5z9PBN3PzIw+B7jDcWMPUZfCHx12jpLHl24dqeL5RCMBFGnUDxi6HqBX23l9gKoi9dBdGxfnwpEe0qmxB897G7+fjnv83Bo2eYnRrlzTuuH3zDwGCOnIF3xuHoGOKY/QOgb56BQwuMh0tZiVU/YC5NOBc3kUKQGZtbuFZLdENlaEzPxkcgJLXcfmZk2prThNJW6jNtOjOIAmdS43A4HA7HVsAJxG1OpjVl3weEbb0cSaxRTSNcqigOYFdYRry1DwBz+wUIVvDAn2rCiVGYqUDLtwI0XMMvfxn1PGMkCLlvfCdPTJ+05200+yvDeAgWGwm5MUTSYzFLOwKxkWcYTKea10ag2TXyA65/8yR73z2PNDZq++i+SZ67aQ9ndk9w4/AYN/tWlI0HpaJVdG2RV/F8tIGhLpH60OSeS6ogTkUlhpYZ2nhCIBH4rsvbsQGWV8DTUsiTH7mPj/7Jdzj8zOvMT4wwvWcSsGKrUbz3AFtJvGkO9tUw56uI+RLifBUxW8YcWug5big9MqOYSWIqno/ShkyrjkC0/156TyxkCUN+SFPlYJZlgXoes0VMRqYVyhhC6RFrm4UYFcdcPqvocDgcDofj6uBWp9uc3GhGgpBASDKjl0Th4hoRDHMlROJjJpuwo7ni1cykvUycHEZo2Wkvbam8yExbm1qeckN1lMmohMC2l6pCEA4FAVlheV/2ffsY2qeYJcynS9XKoYU6dz3zOj/8B1/ng195lv3Hz5EEHi/cdoD/+WOP8qUP3c2J3eMo6KlCjgQhQ35IaR0ir+z5BFIQ+X7Pzy5lVvCusSmuq470/EwW+YeeqyA6NsCgCt781CjPPnwH0th8xHKjBdhMwzPxgM6Acg7XLWDuOmczTWuDPytE4X5cLuYe27EXJ5t1vnLuBKYQc8povjl9ipPNGvWsv7sgkh5NlZEoRWZsLmkoJS2VodGd95atVK5v1nEQscr59vRpcr2xDSyHw+FwOBy9bLiCeO7cOb7+9a9z9uxZkqTX2EQIwS/+4i9u2sk51iY3hqmwzIW4Rao14bB1HhRvTGJSHw7NwwANIs4Xs4cDWkvrecb5pMUN1RGYiDHCIBaL9rMhKwpn0wRtDMNrhMXrorq3vzJUuIRKlDEooyl7Xmc2L9OaUEgyIcm1LlrpoJKk3HD8AtcdPc3U+Xl7zsCZfVMcu2k/T09VwPep+r414VECjSHqEohSCPaWK2TrqE5ExbzhpbSUrgcpBELQZxzkcKyGL+RAG5fjN+9nYmaBm157l0e+9jxf+9SDZEYTSg9tzGDHXQlUU9tCnnided42Fc9jLk3YVSrTyDNSo9HG8MrCDOeTFi2lqPg+s2nCubjFnlKLWp4RLtv0CKVHojRNlZFqjcFW0BOlUBqkv9RiulFxZ4zhTNxgT6nKYpZyPmnSUjnDcu2MUofD4XA4HIPZkED80pe+xN/9u38XrTUTExMEQW/bnBOIVx4DVHyfIT+klicw1cTsqsP5KvKtCfRUs7/V1ADnqxgM7OgXiItZil9kJUoPe53zQ5gdDcwNc/YQxgz0w1h+nIUsZVepwo6oTG5stUAZg0EQSq9wOxRkWjMZlQikR1pvcPOZOR58+yT7pxeQxYq4Plzh6E37OH7TPlrVMspoRBKjtK1uVH3PPibT34q3vzJMfR0Vz1DaeIv1VBsvBa9wMXUC0bERVpsBfOGB2xibWWRqep77vvMKf3jfDUSrCUSwnw31yFYRo1bPRUN+yEKWEUkPIQSpVpyNG5xs1THGUM9TKr7PhaRFPU852aqjjelr5ZbCtr/XizlEgX3958YU84pLFcRcb6zF9HSrwXdmz/KxnQdoqpx6nhFrxSqhHw6Hw+FwONZgQwLx13/913n00Uf5lV/5FcbGxi7TKTk2gsBQkj4jQchM2oLQYA6fh2OjiDcnEWeHMMOzvTdaiBCpjxlvDZwn1NjojExrIs/D3DmNyWagZCsMxhgoql/tat9yMq1ZzFMemdrDjUOjtiJo6FQQBdZwI5JW1JXrTe44foHd755j7NT5jihslkPeOrCDCzceYGbnWI9LY6o1gRRoQ2eGUWAriMsX0oeWtXiuRCAlpXXOK14KrsXUcTH4QiIRA0Wf8SRPfeRePv5HT3L9W6e4rxLw/TsOoYxZ8YPeDCeIM8M2O3WqVyAGUnKo2pZahkxrTjRrSAQKQ0NZwXe8sciIH1ojKimpDjKZMnam2M7yCiQSbZR9HD0mNeuvICpjeHFhmvNxk3qe0cgzmnlOvE7HVYfD4XA4HIPZkEA8e/Ys//gf/2MnDrcUgpLnMRKEZN2777vq8OYknK3CTbM9babihBVLZmd/9TBRilB6nZnGCA88A95S+1msFZH08IQk0WqgQJxObYvq7SMTRa6aFYe+kLbypw2jZ2fY8e45fvL1t9ixsDQH2YgCzhzaw/N7x6hefx1vNObZGVUQxuB3LYptW6pHjCLXmomwxHQS09TZRQfQh8Ij8jwieXn9mzxhl8WugujYCL6UyKIKP6gqGFdKfOujR/jIF77DB146RnN0mLPXrZLZWXQXiFq4RgKhnUc8Fzep+j61PKWWpTSKdvTxMOJCEqON6Ym4aOMJwWKWFoY5pugk0F25i3TcUtfLyWaN060GnhDUctut0I7OcDgcDofDcfFsaBV87733cvToUR555JHLdT6ODaCMRhbZglU/QIiuJV5ZYcZixHwJsxDBWDEvOh8tRVvsrfUds5an7IzK5NrYllWCvuskSjEShEgk9TyhSoAympOtRuECaheAh8d2dBZ/GIOYW+TOt0+z4/QFdp+bo5IsGVrMDJfJb7qO5MaD/C/RZFe5yoU05uFKldfq85xPWihjOFCudo6ZasVIENFSOS2dMxKE+FIglVgz73AlAikpSY/Iu7zCTVK4mDqB6NgAdo7XiqtgBY+x+alRnn7sbh752vN89MlX+JPhMunOycEHXCE7dTkGmE8T6nnGZFgiVjmzacJQ3CRRilJUti2iRg/M9gyldTJtG920RW63xhUI1AZaTBfSBIwglIK5NGE+jcmNJtZOIDocDofDcSlsSCD+0i/9Er/wC79ApVLhkUceYWSkv22vXC4PuKXjcpAVLZYlzxuYHWh21a2V/bkqphCI4k27UDQ3z4LfvxiLleJAZZiZpMVs2uq7HCDWOQejEbTRnetkWlPxfMaDEoGU3DEywY5mivfGu/jvnsY7dhK5WOfB4hhKCpoHdsPN1/O/q5oTJY8f3XuDjYM4+TZZMa+4p1TluuowN1RHeW7uPPNZyngYde5zZ1SmnmfU84yKb/MGWzJfM+9wJSajEveN77zsAfaeEEgpLvo8He9NfGmNntaKgzh+YCfcdYhHvn+Mj339Rb72I48QV0r9Vwy0zTpthphMQDD4uBKYLQRYuw17Jok7mYYAo0FIIx+ckRp5krks4WSrzo6wjFfMOPfch7CuzOulrnJ8KYik5ELSopHbecn1uis7HA6Hw+EYzIYE4mc+8xkA/v7f//tLlaFlvPrqq5d+Vo41SZRiLk2o+gGh9BjyA7sD372Dv6MBr0/ZDENmIfZsRbGcwZ563zFzbSuSu0oVUq1XdP3MtWEijMiNIdPzAMhcsWd6gU/mLYLT5/FOnkU2lwSmAdTuHRzbMcIrExWOTw3zo9fdwmRUIj3xFkEaW3MYzyeQkljl+EIy7Af8md3XdY7ztfMnGAtChLCzhqNhxFASUMtSIulR8X1q+cW3mHpCsqdcvajbbgQpBB7C5cw4NoQnRNGmbYhV3nEBXk5mNC/eeYjdjYQb3jnDo199jq9/8v2oYOn6tSyl6gd4Iwm0AlgsweTgTSFPCOswWnwkRNJjMU+pNVPGA7thU/UDqn5/x4G9vs/pxiK7SuXOfK/GILp63wXWuGa9NPMMXwgiaVterVGV/bfD4XA4HI6LZ0MC8Zd/+ZdXFIaOK8u5pMWh6jDXVWwVd8gPKHk+sVJU/UJ2lBVmKEXUQ0zLh9migjDVHBh9UctTJqMSE2GJmTS2jqADKKUZu87M4J+fYezESfYutBheqHeMZQCMlKg9O1H7d6MO7CE/uBfKJY7NnOXt+Qt4UuIXBi1VP2AxT605TDH/2FI5E1Gp5/W2u1QhkJ413Sh+XvZ8xoKI6aRF5HlUvQCP+KJbTK8UnhC2iujeT44NEnmS+TRhtpVwQ3WkI7jOxS1CKRgPS2RaU/YCXv7g3ZRrTfZML/DQEy/w5Efvw0hJpjXnkhaTRjM+FiPODcFCtKpAbKm8s/ESSkmiFAbWZegUSMkN1ZGeirkVh0sfGu0W1fXSUBm+kESex1xmOySGfH/FKqbD4XA4HI71sSGB+BM/8ROX6zwcG8AAu0plPrbrQKda6EvJWBAyn9mZwA6TTaiHcKGCmLcC0aywCKznOXeNTiGFoCw8hhoJO+dihhcaDC827N/zdarNuHObvcXfjUrEhYlhdt98E2rfLtTunRD0v7xK0rP5bHgEwi4sh3y/0yorhaDqB8ymMZVl1RGvMOjQxaLSABXPOrgGwjqiVrwAKQXBZY6puFSsg6m87K2sjmuPSPosZDXGwmjJSArIjSJTMI5tvx4rRQSezx994A7+4ldfZO/JaY489QrPPHIntTxld6nCQpYwPlq0ny+UVjSq8YWkoXIqhRi0FXwYWaFiOPAYa1T1S57HbJownyaMFW3kK2GMoZXnRcutjdEQQCA8Wkr1dlI4HA6Hw+HYEJfXqtFxWSh7PneMTvYtgCajEufiZs/PzFQTcXwMcaECCxFGGBhvIbQmaMaUGzHDzYRSrcnNi3XeZ44R1ZrcNrvAHXm/XbwWMDdSobp/L/GOCb4mWmQ7J1kIPDwp+ez+m1Y998DzrLmOFJ1qxJAfEgm/sMCHkSAkVnmfQPTFkoNjrjW+kJQLg56S53VaTAMhe9xOtypB8Xgcjo0QebaKPuwHy4LlRacgZw2cQnwhaYU+3/jEA3zsT57i+jdP0qpEfPGWveyqVphPExhOMFLbCqJhYHeBJwSNPGMiWBJuBytDl/xYugVpKD0yrTnWWOSecMeqt7Mt8JpSsckkAGMEvhRkuertpHA4HA6Hw7Eh1hSIn/3sZzfUVvo//sf/uKQTcqyMiROiVsIhJbg+AzG7gDAalIY858DCAo0LF9gt5vEzhZ/nBElOtPA60UxCpJtENIn+oEmUrN6GpcOAcxPD1EeHmB+pkIwPUxsd4mQkKZcq/Oi+61Fac+bEG9a5VClK69ixD6REG/CF6G0TDZdcFIeDAANU/V5nRa+Y29PGkBZmGWXP71QR27mKQ36wLVqhQylxMYiOjdJ+jftC0jJ2E8cUs3vtl70yMOyHaGNQBlpDZb7x8fv58J98h9tffJszvmDPB67jdNwgNjnl4dRWEJsBVPs/G8qeT9nzOoY0m0Hb7bibkSDgjfocd4xOrjpHnGhFbpbyTifCUlFBlOTGFAJx/dVNh8PhcDgcS6wpEG+++eZtsdi+1vG+/zrJ57/CbgM/tMJ1bin+rEXuSRYrEWKoymIl5HzkM18OObB3L3t27caMDJFGIZ87+SbzaUogBQcrNjC7FTfZW4g5T9ioBmUMBrOuqp1f2PRH0uu8rqaick9gfMWzxjulZbNNUohCYBrAEEkPX0p2lytUfJv1Vvb9Imtt6xNKD8/Z1Dg2SMmzAnFnqcLcom33zk07W9B03EHLnk+iVSf+5tRwiS9/+G4+9dXn+chzb9G67kYmh8vMpTHl0RgWSogfTGH21WBvr4mVLyX7yuuoGBpsm4G3ttlMIGWf4BzxQ07FDc7FTfavUqFMdW8b6XIX51j3dz84HA6Hw+FYH2sKxF/5lV+5EufhWAMzPoq4bh95moGQGCnAkyAkSInxPVLf4820SRCF6DAgC3xy3yMthcR+RJKMkOxRqMjnVKvBR3buxxeSr5w9RsXzuX3/Tehi1z0Aql7AWDXiQtIi1arTAjYe2llGUQg2Y4ytCq6juhAWc3fdxhaTUYnJaMmC31YrllpOuwmkpFW0vrZbUD0hO+e0t1RlZ1S5uCf5CrOvMsRouD3ErGPrEEmPA5VhRoOQduJfbrSdxzOGVCsQhuEgRGcJ7Z7RhSzjhpsOsVgaZeyPvkblD7/MHZ/+AF8qacyOJpwYRcyXEfNlTCvA3Di3sRPLJOK53dAKMI+egHB1kbi71P8+bW8a1VdwIrUVUUOi1KBO2AJ7ucNxtVFGIxFuk93hcGw73AziNkHv3030t/4S9Zk6eoUwaWU0T7/7JoGUNk9wIEu/cl9I9par7IjK7IoqVJbd5r7xnYyHEV88e5xYWYEoBD2tW54QpEYXFcS1BWK7glhaxUSmVFQPB7WzBVLSwGCMXSgvRwhBsE2+jG8ZHr/ap+DYhtw4NIo2htNxozPEl2tNqXD4rRd5gMN+UDh6miLCBg5WRvDv2kWSZJS+9C1u+8K3efmxO+HAEOax45iFEuLlnYh3xjGBgoOL6zspJRDP7kHU7IyiOVeFA/1ROuvBQ7C4QpbhscYiZ+NmIS4Hv88NYkWB6XBcSZ66cJabh8fYNWAzxOFwOLYyrr/tGsITkv2VoXXlgBkMfhHU/sjkHu4Yney7zsHqMMNByI6oTKxyjLHCrFsgBsJDF21t6xGIofSKFtOV9yZKnk/ZCwYKwLB9f5h12es7HNcaJc+n4gdFm7b9WWY0Fd9nOAio5SkjQWgzRYv3ZDvCZrKotGf330XyoQfxspwf+8bLjM4sQqhhRxNz7xmM1Ig3JmGutNJp9HKhgqhFNmMVEGeWtYeuP96QUHrMF7EVy4lVzqlWnabKVzxoJCXn48FOzQ7HlaSlclvRdzgcjm2GE4jXGDcMjaKKNqxVMXSiIHaXq6vayk9FZTJjXQMD6VHtmvcJC9MZDesKp/eLqIqSv5pA9CgXrqTLCaXXaTMbdLnD8V6h5Pkdc5pca4a8kFE/opnnTIVlwL7fDBArxa5Spcc1N33kPmYeuJNSlvPYl77H8HxR8RtLMLdeQBiBeHVqXefSidC5YQ5TyhDzZWgV73ElEM/sQTyzZ11CMZSS+TTtPLZuEq1ZzFLOL3Nr7qbs+cyk8dqfgQ7HZSY3GvcydDgc2xEnEK8xdpeqTIbWeKKZZwMXWdoYRJeL6FqMBCEGawxR8jxKXQLRlxKNwayzghgISVC4ja5EyfN5cHL3QLOZ0LP3p42rIDre20TSRsuoYvNmKAgYDSN86XVmetubNsoYxoL+TaD5R+/j+Zv3UopTPvT401RrhfDaV8eUMmgEoNbxOTFfHHsshj2F0Dw5bBfHr07a2ca5LtG4CqH0iHVOPKDykuicpspo5NmKnzdlz6ORZ9RWaFN1OK4UyuhObq/D4XBsJ5xAvMbwhODW4XE0sJBn1PN+y/q2vXywziDpET/EE3ZXfzyMeqoQYeEqqjHrMqkJpOyIxNWYisoDB/ujYs7KYAaa2Dgc7xUi6eELQVZkIbbNnYb9gOFic8XO/MoiN7F/w8X3PJ649wbeuWkf5WbCh774NOV60Z5ZyRCItUWdElCLMGEO5Ryzr2ZzFY+Nkj43ijg9vHTd2fKajyuUkkxrmgNyWGOlSJUi1mpFgegJicGsOMfocFwpcm2/qxwOh2O74QTiNcj7Rsb57P6buGlolIbqX2SpQiCuR9ABDAUBVT9gIipxz1hvgLVtYbNfgetpMZVCUPGDdYvT5QTSwwDGcNHHcDiuBUIpCaVHbjQgOq3ZI0HIiN8lEBGERTTGcnwhkdLjew/fwbvX76Fab/HhP/0ulXprKQ+xsUae4EKEMMJWDwVWJN48izACdbyK8RX6hlkAxDoEYntjqKn6N7dipaj4AYtZir9KiKhBMJ/FnGrWqa8gFOfSmDdr82uej+PyUc/Sa7bSa4xBFYZqDofDsd3YtBX2X/krf4W/83f+Ds8888xmHdJxkXhCUPUDdpUq5EV1oRsrENeu4i0dT/KhHfv41O5D7FzmxhZID23sunB56PVKVP3BBjTrwRcCUdiGr1fgOhzXIkIIql5AVlQpIukxEkTsiModI6lASqS0uaNDwSCBaLNMcwFPf/Aw7x7aw1AhEsti3l6puYZAbM8fjnUZyxxYxOxsIIYzeP8ZOLSAEcZWENexYDbGDKwgJjpnuBCIq20QlaTkWKPGl8+d4FSrMfA6F5KYo42FtU/mMqGM5rXF2U5u5XuRd+oLvFGfv9qncVloj164FlOHw7Ed2bQVtjGGkydP8jM/8zN89rOf3azDOi6B8bAEgr4FiEbjCdEJmV4Pu0oVKgOMZUJhTWqAntbT1XhwYhe7y9V133c3tq3MVizXO0PpcFyrVIOArJjVi6TPkB/woZ37O+9FXwg8BGNhOPD97kuJJ+1nhJGSpx87vFRJfOErVPJFRHNZa6rp/bc4X7yXx+Klnwvg7vOUPj4NQxl4BkZjROZBfQ3Bif0sGdQiGis7B32oOkzZW7n1tez5nGjWWMySwvG0n0Srq1q9auQ57zQW3tMulxmaRtZfKb4W0KZ4Xzl96HA4tiGbloP4n/7TfwIgTVNefvnlzTqs4xIYCyIqXkBL5T3RFMps3vyerRqarn+vzfK8xQ3dnxQYIxBifS2tDse1zJAXsJhnDPsBpQGmTULY9tK2q+lyfCGRyI7jp5GSpz94GCME171zmg+ln+OJ4R+ik2gYe4jv7oNAYw7a6puoRZiRGEaWRVMI6PlImIhhvgwXKjC8euUulLIv6kIZjTKGQHirikOwXQrXVYaZTeMVRWA9T0m0Rhm9oc2yQcwkMWdade4cW5/rK9jHk2vznq4gKm0GthJfC7Rn810F0eFwbEfW/a2Ypin/4T/8B1577bVVrxeGIffdd98ln5jj0gmkZGdU7ttB30wHUE/KYhFoW9UuN76QnUXnelxTHY5rmZuHx/jg1F5uGR7vcRfuZsiz7qaDkIVZVbdIMVLy9AcOc+yGvVRUnQ8d/ROGFhu2WvjqFCL1EY0Q+eoO5Kt2JtncMrNSbv3ScXdamSnODK/ZZhpI2ZfnmnbE3Po+Z3xp2+jrK+TC1rOMXGsS1d+GvxFyrfnu7JkNt0raOCK9rjiOazWyIzd64Jz8tYB122agk7jD4XBsdda9wg7DkN/4jd9gcXHxcp6PY5PZW64Sq94Wps3MELSLNYFh/RXES72/tiucqyA63uuMhRF3j+/goak9K77/bhweZXdUGXgZ2OiYPgEiBd/7wGGOjdxMRTX4yOe/y9h3AsSFKqaSou8/jdlVtwZVe2s2O9GYgTPPHYYzzHCCaIRwdAzx7J4VHVJ9IYmV6jmvXOuOwdZ68YWkNsDJGaCuMnKjOy26F8vrtTmO1hdJlNqQGMgLcbieCuK3pk+tmv24Xcm1IVEKZS5NpG9F7Pyhqx86HI7tyYZW2IcPH+aVV165XOfiuAwcrI5Q8f2eNqvNFoimY1Jz+QWbLyTG2Pt1FUSHY21uGhpbsYIINndw4DJWCp65/hHert5JKUv40Bt/ykR+CnP7NIzHmMPnMR85Zv8PzGUJx5v1/uN0YfbU7KHfnkDMlhHvjgy8ni9svmP3fF5mNlZBBLuJlBnVN+enChMcZQzJJQrEt+rzVDwfhSkcZdeHrSCu3YKYac1MGtO6BittCrMpVdytiDamM4focDgc240NrbB/8Rd/kd///d/nP//n/8yJEydoNpu0Wq2eP46txZAfcHh0irks7exua2NWbEfbKLbl07ooXokKoi8lUtjWOOdi6nBcOpH0Vl7EDme8MPoYr47fQ2hSPnjhD9nVPLl0uW86raWZ1vhSrNgO2cwz2FPHFJ8XBgNnh2CANvClIDeGtKv7IdNWSg3KR12JQEoybfrEVapVUcHTnRzJiyHTilqeUfUDlDYbOpbSplNFXI1mntFUOVkhPp+eOTtwrnIujft+ttXJit/DtWjUo7DVYScPHQ7HdmRDKuEv/IW/AMC//Jf/kv/n//l/Bl7n1VdfvfSzcmwqNw2P8eLCNLFWlD0fZdi0CqIsWkzBrNvF9FLwhEAKaQWiqyA6HJdMKAe0mBaYgwuYcs7Lu/aSvhZz9zOv8YGvPMt3HrubU4f29Fw3N5ohPyBeZooFVpAdb9a4vioo3XMWpEEcG0PMVDBzZZjs3Vz0hERp3VPdy7Te8JSzV1QiE6Wg65RilZNpa06z0QqiNkufdfU8I1GK0SiknmcbE4ho1DpMahoqo6Vycq3RxnA2brKvMsRwsOQuG6ucp2bO8tiOfQPzLrcq2liRfKlV3K2IMe0qopOIDodj+7EhgfjLv/zLG9q9dWwNyp5PKHw7H+SBEGbTqm/t2Am4MjOIgZBIrHW/i7lwOC6dSPorL2JDDftsW+gbd15PGvrc/9TLPPzECzyT5hx734Geq1c8n0ZRUesm05qyF5BpTWnKikGT1BEzFcSxUcxwYu+rG2GNaTrHMApjVnjPaxDP7AVPY+4929MbI6BvDjsp/i8FGxJ1c2nM0zPn+PjuA3hCUs8zDIZASjSmU+VbD0qbTpVpNZp5TqsQtKlWJLq/ZTYv5j/tPOX2EYh5UUW9FiuIuqiSO4HocDi2IxsSiD/xEz9xuc7DcZmpeH6PK+BqIdMbwRMCDVa0XZEKom0xDT3PbVY4HJtA5HmdmTyNZsgPV7zusfcdIAt9HvrGizzw5MuUWgmvHb6xyLMQRJ7P7IBWRysQ/d4ZvR0NTJQjZiuIJw5hfIU5tADXzwMgED3CIdeGFd/y56qIhRIA5vhY5xgABkGse1tMY60AgzFiXdWrdhTGiWad80mTRp4zEtiq4fLHuV5UUT1TazQhLuYpqdLEStl5PZ2TLpvZU0aTXWK77NVAoTtGNdcaNuaCNX+/DofDsRW5KJXw1ltv8b//9//mN37jN5ietgYFx48fp15f3aDAcfWo+F6PU9xmVRA9YeMtpBBXpMXUlwJPSCKxOS2yDsd7nbYb8GwWM7+O4PhTh/bwrY8dIfM97nr+TY489QqiECbDfjBwOZwbTdnzeiqC+Abz4CnMwXlMKQMlkW9NwLw11DGYZS2mqjd03IB4aSfie3sQR8ftj4RBvD0OjaDnenHeKxDbgsSXrJnD18xzvnDmODNJzFv1eZp5TqMQhgtZglc0vgo2JhBzs74W0/k0RgpItJ1DTFR/S6YqKojbLQ4jN4Z8E4yCtiLaGDCg9fb6nTgcDgdssILYaDT4B//gH/DFL34R3/dRSvHBD36QHTt28Ou//uvs3buXv/f3/t7lOlfHJVDxg57d+82rINp5wCvlYuoJiSesNb/D4bh0PNFOtDc9+YTaGOazhImw1Hebc/t28PUfepAPfPlZbnjjBOVmzP96//uYisq8WZtHGY3ftYmTac1YWOqPnIgU5pZZuGUWTg8hXtmJeHUH5sGTCKClck416xxvLlL2AoToOsG5EuLcUOe/ZjSG8RhxbAwzW4aqva9AChaXZSG2VI4xAk9Kmvnq7qAtlXMubvLUzBnm0hgh6FQOZ5KYUidTVmysxXSdOYhzaUrZ84iVIiuyIJeL2lzbCuJGXFS3AkobfCHW/B1sRzSm02bqcDgc240NrbJ/5Vd+heeff57f+Z3f4bnnnuvJfPrQhz7EN7/5zU0/QcfmUPEC8u7N+02tIFqzmivRYgoQSI/SJpnsOBzvdXwhO+YvvpSdKti5pMlitrLxyvzkKF/94YdZHK2y5+Q0f+5rL7Izsw7J/dmrFDPDqyyW99QxYy1EPYS5Er6QNPOMC0mLdxqLzGdxz2eMODYGgNnRwJQzzE2zmKoVgiJe+nwIpGQxSzkXNzuZh/U8JZB2jnmt+IhUK7QxnG7VMUUr/WKekGvNQpYSFp9FBrOhTMVM2+bD1SqIscppqoyy5xNrRVpUCZvLhLbuzCBuM4FoNIGUNNao4m5HjLF/tltV1+FwOGCDAvHxxx/nF37hF3jooYfwvN4F+t69ezl16tSmnpxj87CupQZT2G5vlgOoV7SWCuwc4pUgFB6h5wSiw7EZBIUo9IUk8jwSnVPLUnwhqfqrGNgAzaEyX/30w5zfNc6uuTr7/9sX2NNI+4SKEHbW0az2GSHA7CjC4OsRvpA08pzppMVCmrCYpUtdCrMl64BayjCHz2E+cAImYigVYi9Zao4JpceJVp0/Pn2Uky07BlHPc3wh8YRcUyAmWiEF7C5V2B2ViaTHTBLTUBmJVl0VRNsyuV7SwpV0tRzERp6TFvObiVZkRhUCsd+kZrtVEFXxXRRKuWab73bERlw4kxqHw7E92ZBKSJKEsbGxgZc1Go0+0ejYOtiWTIHG4AmJLzdHzHlCIgqReKUqiKEnieTm5Dg6HO912ptFofQYDyJipZjPU+4cnUQIsXaQexTw5Y8d4c2DO/AXanzqC99l59mZvuuNBRGrVhABhooKYC3El4KGyphJYwx2btATAqbLiOd3A2Cun+/9FosKsRcvfT4M+QH7y1W0sYLLGFNUECW+kEVVbmVhZY1yBKH08KWk5HnMpQnn4xZ5EZUB4CFobaBV0uY6ri4gWiovMmYlqVKdc20uE7W50eTa/tkutMVxINZu892OtNtLXQXR4XBsRzYkEO+66y7+z//5PwMv++IXv8i99967KSfl2HxC6SGE3bX1EASbZPLSMam5Qi6mACXpEW1Si6zD8V7HKzZ3RoKQHaUyjaK6dl11BA+xrgpIKuGrj95J8uA9hGnGj3ztJa5/7V2AzijCWBghEauKMYaLWcF6iC8kiVI0Vc6OqMR8luAJgXh9CqEl+n0zsL/We/tSUVlLej/f2ptiC2lCrBUtlRNJD1+KImah/5za550WQq5NKD1ilfPKwgzlrk1RKQRJl1vqk9OnWVzF9CcztnV1NQGRaoUoPlsVhlae4wlBalRPlbbtiLqdWky1sR0tgfRItNpW4nY92MfHmhssDodj+7NWJ8p2ZEOr7L/9t/82jz/+OD/90z/NH/zBHyCE4IknnuAXf/EX+dM//VP+5t/8m5frPB2XSCQ96wqoFJHn9bRFXQo2sN4uYK5U7MRwEFL2XQXR4dgMAmmNpibCiNEgItGKqajEeBDZfL91CERlDJHvk370Yd788P0g4MhTL3PbEy+iVI4vBGPF8VYVMaHCBMoKRCPJjUYbzYgfkmpNqAJEK8BUUrhuof/2nrG3j/2+YmUoJQt5QiPP7LGkxBOCXGvSZTOTLZXzpXPv0lI5zTzrOJXa43hkRjOTxoyH0dJdC9GZvVTGMJPGHbfTQdgK4uoziEkRx+EJgdJF5VN4KN2bHaiMbVfdTm6gbdkdSIEyG8uQ3A60H59rMXU4rm2U0Txx/iS1dbiAbyc2JBDvv/9+fud3foc0TfkX/+JfYIzh3//7f8+JEyf47d/+bQ4fPny5ztNxiYTSwxOSpsqZCEubGkkRSIl3BSt694zt4FBl5Irdn8NxLeMLSSAkY0HEkB9Q9QOur4wghMAvAuDXoh1jAbBw5038zw/fRRKFHHrpHR778nNUc82wHxJKb/U5OQEMJwgj8OOIvJhTE0Jw09Ao5VbFXm9olS/iKEdoCXnvZ1IoPRbTtHAgNQhhI3MGCauzcYPzSYtaltJQeZ+plzYGKXqdmz0hOwIx04p0jZlAO4O4lkmNKo5tW33reUbkSXJjlglEs/0EYnHO7d/BtdaKaVMu3Ayiw3Gto4wh09vr83c9bLgMc+TIEf7Lf/kvxHHMwsICIyMjlMvly3Fujk0klBJfCGp5xlS0ub8vX3hX1Mr7SlUqHY73Au25uoofMOyH7IhK7Cnb+IhQSlr54Pf28WaNsSBkNIhQxlDxbPZgJD1O7xjlKz/6CB/82nPsPTPDTzz+LN7/vZ8hP2AxSwCYSxMCKRjyw94DD6UwW8GrR7SGc6rd3QI1e10zvIpALCmoY6uIwdL1QmlNb9ozjW2EoM919d1GjYU0oals5qG/7DNnb6nat8nmCUFctJi2BdxqAjE3Gl+IVY1tWirDF7LTmhsrhS8kyqietlibgci2CpzXhfj3hG1jVtdqi6kTiA7HNY0uIou2k0nYethQ2eepp56i1WoBUCqV2LVrlxOH24R2BVEZzWgQrn2DDRDIzTO9cTgcVxZfCMqerRxW/YBHp/YxGdnsw0B4Ays7tvIjqGWFINKaimeFnG1nh+Zwhaf+3GMc2zfJ6GKT6v/7P7nhzGynxbSWp9Sy/hbMtvgTdduSOtwlIEW9+PdqArFjVNPbRh8I27J6Pm72tIwa0zs/0sxzTrTsbGNL5cQq73N99ou23G48ITrOpJm2M4L5KiHpmdadFteVaBQzh0IIBFZMtme9uyuIqVEIDKlZWSBqY5hPkxUvv9KoYgaxXR1V19isnmqb1Fxjj8vhcPSijd0UXO3zfjuyoQriz/7sz+J5Hrfddhv3338/R44c4ciRI4yPj1+u83NsElIIyp5HSfoM+cGmHtvOkDjTGIdjOxJIj8Njk0wU83RtcQgQFTOIqVacajU5VBlCCFHEO/jEhSuoMlAuBGInF9AYVBjwx4/ewadfP8P1L77JA48/jbrzICeP3G5bCwctntvto/WAA5Wh3suKCuJqLaamlFv5l/R+vYkih7GlcqJl5jJ1lWKM4fXaHDNpTCtXVDyfuTQm0aojflfDE6Kzi5wVmYQr7Si3Wyo9IVbddW4tE6fKtF1TRU87U6Y1vpSrVhAvJC2emzvPJ3dftyW6MNounxIBhmvOpMYYgzb05EU7HI5rD+tWfO1VEDckEJ988kmeeeYZnn32WZ5++ml+93d/F601N9xwA0eOHOH+++/nM5/5zOU6V8clUvYCIi/rb+m6RALhIYX7EnQ4tivXVQfP9PrSQ2NbF7XRxFpR9nxaKme0+BxpKWuk0haGkefhC9lpncwlnHj4MLtvuJ7wj77Kwy+/y+n5Fv/ngZuJwwFmWVHbiXTZ15MB6iHGV0t5h4MoLhOx3yc/jbHGL2HXTGEgJQtpSkvlPD1zjlQrxgJrijMdt8i1wfPXFlS2Q8OQ6iWBuJIhjzK6Ezm0kqurMYamynq6M5QxRFJiDD3GOqnSBEVkx0ooY4i1IjOacJNcrC+FdoupKCqk11orZjsHUV1bD8vhcCyjveF3rW1ybUggjo+P84lPfIJPfOITADSbTb7zne/w27/92/z3//7f+YM/+AMnELcwFc+n6gVUNtkBNJAScY3tnDgcjqUKojKGIT8kVjllzydWipuHqlTzgJPNGkIIgkJ0RUVeYHs31c6ZSfJbb+Ttssfez3+dvSen+b/na3z+0duhvKxKGCqMMJAuEzHNAKElZqQFq+m1lQQmtloYK0W1y300lJLFPKWWZ6RGsa9cRQhBLUtp6byYFVy7Q6I9S5drTWZsXuFKFb3u9sqVZhDbwfclaTs+DO0KoocU0OqK1MiMwpdWoC5VGfvvMyscW9ti/mqijen8Gg1m1VnM7YjG/s407rvR4bgWqWUpQ36AZulz/1piw0qh0Wjw/PPPdyqJL730ElEU8eEPf5gjR45cjnN0bBLVwEdTWvuKGySUEvcd6HBcewTSQxsrLoaCgPk0YRy78B2PIkbCkNcW5wik7IiOQEpC4XV2U4WhMzeXT47zXz9xL5955m32v3uO/+vLL/Dso3dx4oa9S3cqgEBZgWhYEoONojV+NQdTWKouxv0iKJSS+Sxld5dRVyA8mnlu5/PMUlxPKD0W8tS2Qa6jJVMWAjEz7fZS05OL2E1eiG5frjyDmBYzjJ5fiL3i9+AJazjWyLoEoraB86q4b8/rF4i6EIiJ1gz1XXrlsRVD+7yKtfIxtzCpVrwwN83ByjC7y9XOz9sC+FqrjDocDsuTF87wwOQuJHZU4D1dQfyJn/gJXn/9dSYnJ7n//vv51Kc+xT/8h/+QW265ZUvMNDhWZ3dUZUe4+V9WwRbYjXY4HJuPX8ztKWNbGE1R+QIY8UOG/IDHdu7DF4KprtnFiudTV4WQE0sC0ReCNPB46iP3suf513jk+8d46BsvMnl+npceuAXdng2MFCL1MZmEsPjSLSqKJlrDqbOUW1flZn8r/bAfdtoa2wRFBfFs3KDbayssMhs38s0mhOi4l2rTm1XYjTJ2+rK7FXc5qVaowunUHttW2XwhiDyPmbTVc91A2mOtdDyFPZ+VzulK02vesj1jLjKteeL8Kd6szzEaRuxmSSAqo5EIrjHfCofDgd34aYtCX0oMZst8tm4WGxKIr7/+Or7vc88993Dvvfdy3333OXG4jdi33PBhk9hVqmzb3V+Hw7EynpQI0Z598xBCEBczfMNBSNnzuXN0su921SBgPl9yzGy3PLZbNRXw7G0HOTc+xI9853Vufu04U9NzPPWhe2iMVG2baA1IvCWBmBVVsWCNzxrPwFCKqEeYlg/lpUpb5Hns8HqdtwMpybUNvo+6Nrva32vGbOT7zZAoRaxUZ+ZvEDa3UONLf8XPTjtjuFTR9IQg0RohBJH0qOUZscopeT5Z0Qab6nzFXWzVqSBujUVMb2VNbEuBuJilHG8u2qinZeefa9OpKjscjmuLdsap7vzdH5e03dmQQHzmmWc67aWPP/44v/Zrv0YQBNx3333cf//9PPDAA9xzzz2X6VQdW5VdpcrVPgWHw3EZ8AvHTGVgZ6nMTBpzJm5y09BYx7V0EFXP7wgVA50WzXbgvA2aF5zYPcHjn/kAD33jBXacm+MTn/82zzxyF6fCKXug1AdsFIbIC/EWrONLeDyGegQzZcS5IRiNMTfNrXz9Yjax5C3vhli2uD86altY9zQGHsYYQUvlJDonkCubxqgiI0+sIowS3Vtjs4Y2VuxG0uOCjqnlmRWIWuFLgVGs6KSnCjfarbLLbYXT0iPcjpuM7efaVgp7f48KjRRuBtHhuBbRxnZBtEUihQHatcSGBGK5XOaRRx7hkUceASDLMp566il+8zd/k1/7tV9DCMGrr756WU7U4XA4HFcWr2gxFUJQ9nx2lspMhBEfmNq76u0qftBpIRR0t5hKa9xRGLQoY4irJZ745Pu5/YW3uO2lt3n4iRd4e3edl+TH0EmXYEvXWUEEzHiMODGKeGsCkXkwW8aMt2AyXukWJFoxGvRGANl4i6KC2PKRb01ipMaMx1DqXwx4wuY7xspWWdOVTGqKSqAUYkVjg1RrRJeAKneJbiEEGGukMxGW0GZJhK9UQdSFw+pqTqdXEt01YLpdTWryogXZCNMnA5U2rsV0i/NOfYGqH7hNbseGMZhi5AKMoGgx3RqfrZvFhk1qZmdneeaZZzp/Xn/9dbTW3Hzzzc6kxuFwOK4h2oIOY6t/D03uIewypFmJSHpdDpW2wmKPJzoD/bIQnwBGSl65731M757gwW+8yI1n32LSn+Op+Qept7XoOiuIC1lCMKwZYpcVhwXiBzsw956FoazvNhJrFrPc/XM87DL1mrfOp0JLODaGuXWm7ziBlCxmKdpY85u2GY23bAxDFdUzgRUSg7AVxKXbDflBT4atELCQpUVkhkYW0RUrziAWO92NfA2TnytEu4oKViZuR4OHjrg3/WY0qqiStzdE1mN01EYbw/m42WN649h8zsYNJqOyE4iODaOL/F9dCEVt2DLdGZvFhgTiJz/5Sd599108z+O2227jwQcf5Od//uc5cuQIY2Njl+kUHQ6Hw3E18IVAIDACQuH1CJTV8IToWfx7XS2mUggybQ08lkuZ83un+NJnHuX9X3mZXTPTfOKZx3nBv5WjN+9fdwVxMUvxRE61miIaIWYkhnJuW02/sx+un8fcMNcTlTHsByvOC7YRC11i8dQw7K3BSK/YCovZQL+I/VCFiYG3rHVVGYMp5gtXEkatPGc1GR5JyYWkZYWfBulbwb1Si2mmNcYYGvkqGZJXkC4TUyRixczIrYx9rgVS9Lf2qi73W9Njx7s2i1nKs3Pn+Xh4kKiv7dmxWbTjZhyOjaINaKOLjSD7GnpPC8Qf/uEf7swZlsvltW/gcDgcjm2LJ61zKYKewPY1bycE3QUTr8toxWb/aQLpWfFpTI/RWVwp8Y1HH+H2r53httr3uP/Jl9lz4jzPhlNklCFQLGQJI37YZ5DWPpY2wEQLGiHm4ALsamBGE8Tb44h3xqHlY+6Y7qzZh4OQ4bUe1LwViGZvDXF6GJ7eh7l9GvbWO1cJpKSpcjwhbIuptlmG0TKplxvbmihp5xv2VxlbKuv7WTclz2M2jUm1QmM6VdqVBGeubdW2qbaGQFRmySHWttpuv8VVp+WX/kqwKjZBrImFbT9eL8rYlueWyp1AvIxkWvdtUjkc68FgOzJsq+lSi+lGuwW2Mmun/3bxt/7W3+Lhhx924tDhcDjeA/jCVrmM2VicTXewvOmajwukxBM2PsIrZvDaSzRlDHNpbAVpSfPayAN8/YYfpj5cYd+J8/yZY/+TXfExlFScbjVoDBA6WRHHIQSYG2fR952B3Q37TXfdAub9pzBRjjgz3GkZXRe5gHqIiXLM7dPoWy+AAfH2eI+PTVA8NmUMgfRQxgwUbJ0WUyE6LnjLqeUZgVz5KzqSPi2VFy2tS4uSlWYaM2PnIlurVBAXs5SzrcEGPJuN7qreCNimFUS7QBQDKohLvxNTVBDXjy7ccFtbRMxfq+RFBcjh2Ci6aCvVpv1vg0av2MGxHdnwDOKJEyf4rd/6LZ577jnm5+cZGxvjyJEj/NW/+lc5cODA5ThHh8PhcFwFPGFbQgVW/Kz/dr07qLJTQZRIYUWMJwQSOtWVRp6RaM2JVoM9fpUImPX38PhnHuWep1/lhjdP8oGZP+b17x7g9O37BgqKVCtCzyPPMwgMTLZ6rzCUYa6bR7wxhZipYMaTvmMMZDFCGIEZja2aObAIp4YRtSJKo5J3Hne7UhcIicYMFGyq3ZpYVFCV0QRd+7XKaBaytCd2YznteI65NLEVxELIryS0cm0IhEdiFJnWA8XnmVaDc0njisy+aVhqMRXbs8U00TkS24a9XOTnhYupGTCfuBa6q4LouHzkRrsWU8dFobGCUBuDFoXpmrZdBWvN6G8XNlRBfPnll/mzf/bP8vjjj3PnnXfyYz/2Y9x55508/vjj/NiP/RivvPLK5TpPh8PhcFxh2qYyXjFTt168IjhYFy2f3YIxkh651pSk35MTp41hNIi4oTrCrG5hPA2Jhwp8nn3oME9N/BCJjLjl9RP81FdeYvTCfOeY7fiGRGlK0mPVea+2aJxdfyeMOGMbUM1ol6Cc6D+OKFprlTH40grrQTvKqqvyZAw0Vc7TM2c7i9VGnpNqtapAtHcIM+mSM6snBE3Vb8IDkBcVRKX1irMyiVYsZoNvv9ko3dtimhr7O3x5YWbbLNoTpWw7Nf0xHVrbGJPeMI/1oYz9HW2VduBrlVwPrt47HGthjH2P6+KzXK6yIbhd2VAF8Vd/9Ve5/fbb+c3f/M2eNtNWq8Vf+2t/jV/91V/ld3/3dzf9JDfC7/3e7/Ef/+N/ZHp6mttuu41/9I/+EYcPH76q5+RwOBzbkXbFT2xUIIqlqoqEnpmMQHhkRlP2fUS21GJqMERScrA6zLHGIoQK0QowSkAqOV2+jpmpMe6pP87+0zP8uS8/z6t338Rrd93A+aSFATwEU36ZmWSlOAugmmGiHBYiyOTasRknRhCnhzFhDnuW5g3NeAtxfAwxW8bsry39HIEyujMTOMilNC3EkShm1ObShLNx085mCo9GnhUic/XnPBSSxSxBsNTC28xXEIjaEEhJUgjEKv2GQy2V0RzQglovjrlek6L1kKM7521dZA0LWco79XluHBpdNWdzqxAr1amwL3ePVegiyoUNC15t7CbCYrbOCvcWpZalHG/WuHN08mqfykCU0agNy3eHo11BNF0zxqIwJbt2Xk8bqiB+//vf5+d+7uf6ZhDL5TI/+7M/y0svvbSpJ7dR/uRP/oR/9a/+FT//8z/P5z73OW655RZ+7ud+jtnZ2at6Xg6Hw7Ed8aXAExIPueEW03acha0gLt029GxrZMnzewLG7ZesZCIs2XbJqBAqsd+JuIgrEV/88N08ef/7MEJw5/Nv8tE/eoqpuQaBkCRadW6/4myRACZbVpx0VxEHlXpODiNem8QIg7n7HERdlbfxGCMMzJV6b2fs7nLbQGfQjnItS/EL8W2w7bWxyjsio6Ey1qMpyp5ftCHaK/tCUl9hxrDd1muK+bZBoqWpFGnRgtrNm7V53qzNr31CG0Bp01NBzLQmVbZqFq9QOZtOWmRbyCkw1aqzGbK8UpwbU1QQ+zMS16I90zS/zQXiYp5yulVf+4pXCc3G238dDmjHXJiuWWr7OrqWZhA3JBCjKGJ+fn7gZQsLC0TRBob+LwO//du/zV/8i3+Rz372s9x00038s3/2z4iiiM997nNX9bwcDodjO9KuIIae1+cYutbthBA2LFz0ziSWpIcp/vZEOwLA/u1LwXgYUfUD0hFrliKOjfVEXCgMb9x2Hf/pz9zHhZ3jTMwu8v/58vN85PXTeNowHkb4Qva1/IGdD1nMUsxk0x776BhMVxCv7EB8/TrEtw+AKs71Qhn56g4QYA6fg7Fli3XfwEiCSH04OdL5cSBF1333CweAep4SStmpsrZUTmoUqhBmtSxjPU+3FYgKY9oxIrbFdJD4a2dPagNfO3+SJ6ZP9V2nlWcobfpEWKLzTRVmxpiuLEyKuVRVzN2t3Fr50vwFzsWtgZddDRKt7AyisBsc3Zgu46ANVxCLd0UtG/y73C5oY7b0bKlyLaaOi8RAx2CsXYXernmuK7EhgfjhD3+Yf/Nv/g3PPPNMz8+feeYZfu3Xfo2PfOQjm3pyGyFNU1555RUeffTRzs+klDzyyCO88MILV+28HA6HYzsTSK+Y61s/1qG0HecgOu2WYMWmLFpWfel1FtbaGHxhXU73lqvM7TuPCRScHkLMFZW+QNlICAQLIxW+9qkHefK+mzrVxJ/66kvsnG8i5eAK4nyWcC5pwY4mZqyFqEXIF3YjTg8jcg/RCuC8Dc0WZ4cAbJTFzubAx2kOzWOEQb42BcdGARj2Q6pdrZjLFwzGmCIrURZB6oZ6npEq3akgzqYtonW09PpF1qIQSxXETGvSAYuUTNvfxa6oTG40F5J+odVSitxokuUCUSlitTkC8a36PC/OXyDvriBihWtL5TTzrOe+WirvCO5Y5egttEOfKr3iDGLeqdjCRsMU2g6oqVZr5nNuZdoCcauKXGV0X2uw49pmpe6EjdKuHC5VEFd3kd6ObKjJ/5d+6Zf463/9r/OX//JfZmJigsnJSWZnZ5mZmeHee+/l7/29v3e5znNN5ubmUEoxNTXV8/PJyUmOHz9+UceUG8j9uty0z2UrnZPj2sC9thyrEXkeZc/f0OsjxAq9XGs8KQg82bl9yfPxpCTwJKGUNLVtQ0UsXW9Ppcob9Xm4cQ7x2hQcHbcHDjS6OCchBEYKnnnfXrxbb+S+b77I1ImzmN/7PA/eeR0v33E9YtnMXGo0Vd9Hexrv/rOYNyZgMbKh975GvLQLcXoE9jRhpowRBrGzyYrlvF0tOHIWntmDODUM1y9SDQKqQXG/oghM73ruEqXJjGbYDxBF1EdTZXY3WljjmvksIfL8dVVthQBh2nOiHpqUDE1Z9n69K+xMY8n30RhirTDCdNp/lTGkxmYq5svOOW27zm7CZ8RinjKTxgRSIqWtNEspMVrR1HkhivLOfT174RyHqiPsrwyTGY1uO59e5c8rZQw51hRJaysC2+fUFkTtCqLY4HOnhSGUdlY30Wrp9bTdEPaxIHvnkLcCush3Rdjfm/sevPbJteYb06d4dMdehoPw0g5mh8jt67v4EG7PlHe/hrbz62pDAnF8fJzf//3f5xvf+Abf//73mZ6eZseOHdx999184AMfuFzneEksD2FeL74vmZwcugxndGmMj19++3HHexP32nIMYnyxwkgYbujzUBtDZTok15pKOWTH1HBngThlGlRrIZNjQ4yZGJ3EVEsRkUiZGKkyOTnEdSUoL05TeV9G6w1DWxWEQ5Kg5LN/fJTGgiKIfEIC9l53kKH7DqO+/Rz5H3+D+146yvUnL/Dqx+5jYfdE57xKxgqvMAwo+T7c3wBsK6sxEL+Zw2yZsDZCmvrIiZTS+BoLiSFD6/UMaiElr4wsL+0gV0gpDfU+d/NJTBD5jFXKeFJSMilBFBARMDxaphJFcE4yHkb2HNdgX2SrpdXQjngs1DIqIxENpQg8yZ7KENoYSucDSp5PNQjwlY9KYobGylQKEd3MM8JzPkFqqIxETA4vnbM/5+NLsSnfibo+Ta5hOAqpEFItR/jKJ09AR4Ig8qG09P2bzBpKwxFjoxXCmYDqUAm4+p9XscoJzwUMhyGxyok8v3POudaUzoeUfI8sMYyNV5gsrd81d1jEVGoBGIiGw57fxXbigpdSikPGxquE3tay/s+1pnw+pFyNel7XV/t15bh8xHlOuBgwPFbe0PtxEM26IboQUBmKqAYh5br9nqiMlJic6H+/bsfX1boEYhzHPPHEE5w6dYodO3bw8MMP89hjj13uc9sQ4+PjeJ7HhQsXen4+OzvbV1VcD3muWVzcOrMOUgrGx6vMzTXQ15BLkuPq415bjtVImyl5LpiZ2ZjZRJ7kqEBg4py52aXw9WYtQaWKRi0maWY04oRSLmm2UlpRwsxMnVaakMQZdVrIsRhRmMmkOqHZShEVjUoUs3GTVOXQVMzmDbj9FsSe3TT+1xfYcXaWh//gCd6+9TpePvI+8jCg1crwA5hP1OAd5D01xDvjJM+O2bbBsQaN+jqMQkZbiFpA66SEPUvfG2mcMT1XZ8Zfeu7OxU3qzYS4cBGN45SF3NBIU6Zn69S8FguNmKryaIhl7YWxB4kHo2nnRwL7Rd5Ik+J4GWdnary2OEszz/n03kPWCKeZ2ugQT6OMph4nnL2wyGhQCMssodZIyIzm/Gyd4XRpQT9baxAIb8OvgUGcmV9kIUvJ45wky2iohExrGmnK2awGmeHk7CIzpTqJUkwvNpn1G5zLPBbqLeZLTRifuOqfV408o9FMiHLbmpuIvPP8ZFrTbKXg+TTTjJnZeq/B0RrMLTSJW9Y59szMItV0Q9NAW4bZWoNaPWZ6pkZpi7nSplrRaCYs0GJmpu6+B98DNPOMxXrMhQ2+Hwcx22zQamXMLTTJg5xWbN+vM3N1Zkypc72t+LoaGSkTBGtv2Kz5jj1x4gQ//dM/zalTSwPtQ0ND/Nt/+2+3VNUwDEPuuOMOnnzyST760Y8CoLXmqaee4qd+6qcu6phb5ZfZjdZmS56XY/vjXluOQYTCIxDehl8bXuEqGgjZc1uJsPmKRhRmMnaGQ2mDh71uICSeEGRaEU42OwLRBAqjDQGSsvR5t1njUHWEES9cuo/REb73w48Sff91PvjCUW567Ti7jp3m+Yfu4MzuUXwhiVU+eC7qwAKcGbKziGDNbNYzozTeQpwcgdkSZveSiPIQ1LOs5/E3s8waphbHNQZSpdCFiyfGdO6y5xzrAeKZvYjMQ99/CsYHC1djDM08YzpuMZPEvF1b4EBlyOYOysI8pTDPSXKF9ux9JLmdP5TYnfb2OWtjSJTGyEv/TlRGU8syEqVIpO6cr8DmIiZKUfY8FtMUrQ3NzLq7pkqT5YpcazJlb3e1P6/S4nxE4VWad51PrrQ1HJJLr+2NnGuudcc8xb42tufnslLWjChX2rbibSFyZZ9jpXXP83u1X1eOy0emNJkuXo+X+lmmNRpNrjWp0lC4FscrvF+34+tqzW2pf/2v/zVSSn7v936PF198kT/+4z/mtttu45/8k39yJc5vQ/zMz/wM//W//lc+97nP8fbbb/NP/+k/JY5jfvzHf/xqn5rD4XBsS3aWKowHG3eo9otcKH/Z14wvJL7w8IUViu2FsBBLc0qR9DqGK0x1GcQEupPJ2K4A3jo83jffVPYDXr5+N3/64x/kzUO7GI4zHvv6C/zIt15hf87Kzoqhxtx7FuMrm3s4ss6YgfEid3Gu1PPjUHp9UQWxUkV8+hKZ1vjSQ63k+phJxHN7EJnd9RWvTbFSdoIBZpOYlsoZ8n1emp8mNzarq/tpEvQ+D4lWnVzCWKnC7MaKRo01vrlUx0d7XHtMGy5tfy6xLra5MZQ9n1jbqIuWzkm0ItE2AiQ3W8d1MjPWeqY787Mt6NsupFLYHJONnrM2pnDNXyWuZRugsVEAW/Ex6CKOZiuem+PyoNobApvwO9fFRp4yBk17o4iOE/W1wJoVxOeff55f+qVf4siRIwDceOON/PN//s/59Kc/zfnz59m5c+dlP8n18ulPf5rZ2Vn+3b/7d0xPT3PbbbfxW7/1W0xMTKx9Y4fD4XD0cfPw2EXdLpCSPDf4Xq9484UkkBJPSkLp9XxZt+MwpBCUPY9UK6h2Bb8HtsLmC8mIHzARlthf6Z/3KHm+zfsrR3z54dt454a9vP87P+D6kxc4+D++hnfndVy46ybMIKfQaoZ55KRdoK+whXo6blD1/E57JpHCVFNEI8QkXqd9KZSSurIVs6iYwVoe4WAN8Axe4fq65O3ZxXQFkfiYHQ0rFufLmNPDsL/Wd1WJYCaNyY1mR1hmMU9pqdwKsq5jG6xLZhsrFu1z21IZry/O0lKKO0YnUBqQBmU0Ulz8LFmryHr0EEXlcMnExRj7+If9gLk0IS6cUzOtSZS2lajiz1ag+zwEbdt78LBV0c7LWvTHa65FZlQRSbI1xdV6aefEbcXH0B1y7nhv0N6sUBt+R/bT3gRSRqO1/Qxo57leK6wpEKenpzlw4EDPzw4ePIgxhgsXLmwpgQjwkz/5k/zkT/7k1T4Nh8PheE8TSo/caHyxrIIoRad66EvZEwHQXQkc8kPOxQ3rFHffGaiFUFKYlhWf42GJ20fGB842BV3CTxnDhf07+e1PRvzEOzNc99JbfPj5t5k/dp7nHrqdmV0DNhBXmU9pqRwPQS3PlgQiwFgMjRAWok4sRiA90jShqbKOQKxlac9z0n7IxgjbWlhEX3TTabHdWwPPIJ4rI2bLmAEC0S8WKQL7XOfG0MrzTnRC55iYvgoiWJHezHMWs5RASuscikFoG/5+KX6asVIYrHGcxgrFpefBPv6wyMmMVU5L2fzFTiVzC+XqdZ9H+/FoY/AKYdcW5KIQwxtBFREgsmiz3q50wsQ3YUG+2RhjClG/NV5PjsuPMjZHdzMqiLbIb4rOBtvZMijuZjuztaaGHQ6Hw3FNEBQxF77sbzENpLR/C9kz4tctGKp+sJRRNtmyf9rHlpI95dEV7zuUshMer4xhKirRVBnTH7gOdcf7KD3+TfZdWOSjX/gux27cy0tHbqFZjjoVzNWYTRP2lqucbjV6XLLNSII4BWIhwhQC0SuEQ1Pl1Js15tKYep4SLntO7MM0xUwbvSUnA8yWrWgcj0EV59ga/PXtSztjKRF4QqK0pqVyltcmjenN7Mq0Xcb7QlLLUxoqZ8QPybQushbt75NLMKOMVY4AAiFIlI0c6X6gBtH5HTRVbuc3jSFVqhNqvpUqiO2Xp4BOJhrYSBGDFf+GjQuk3OgiI3N756qpYnNhq7QFd9NuCVbb9+l1bBBdzANvRkVbY7sEdPG+72zobOP363LWJRB/7ud+Dm+ARfFP//RP9/38qaee2pwzczgcDse2JZASXbSDdtOeQfQKI5puuitcw37QJwZUYbCy/JjLCYXXCY83GEaCiNuHA6aiMuwu898/epiHTy9y97Ovc+jt0+x59xzfvv0gs3e/b3DbaUG7Mnf32BTzaUJT5VTbWYujxRziQu8cIkbQynNOtxq8XptjOAh6zl8Xs3gSYef80L3PSzOw7aUjMQQafDBSQ9PGICzvSPWFpJ5nlIvKqhC26kmRldhGCHoC6Zt5hlcItEQrmnmGX1T1TPHcX6o4aypr0BNKj1qeMdy1BFlqOLUP6VzcpFVUXhNtsyO3lEDUpvMaa4u5duXXGDottIL1+Rz1HRv7PKTbWMHkuhBhW1Eg4iqI7zVsi+nmzCC2x4Tz4pj2/SpQ11DP8poC8W/8jb9xJc7D4XA4HNcQgbSbh/6ygOCy5zMZlYg8O4fYrYW6BaJtyey9rSoC24NVRJy9b9lz20BKbhmdBKCeZ/jS450b9nDm4E7ueOEtbnr1GB998Sjzx6d5/qHbubDbXvd8bCuBO0sVwAqcsTBib3mIPeUqxxuLSwJxKLMxEotRj3ATwobDn4kbSAHTSYuD5eHOuY35IV5RtUt03mlT7DBbCM6JQoAKoJIh6hEmkxD2LnDbAnE8XGp/baq8Lw+4PWvYfR2vaPtNVE6q7bxfs6hGmsIk5lKoZRlBUUGOdY4QS2JadD1pI0HA8WaNUEoi6ZEa1Zkd2iotprnprQu2qwnQFh/tiq24qApiu2UtN9u3xVSh0WZrtt2pog14K1Y3HZeH9gzi5pnUFDO22M03KdgyG1ibgROIDofD4dh02iJuuZiLPI9HpvYAbVOapbpRtzCKpLe8OGbFk1xbIIbFbW3lQvS0dJY9j1B6ZFoRhAEvvv82vnNgko89/xb7zi/wkT99mnev38NL999CKnu/7BOl2F2ygcd7y1Xeqs0vXSiAkQQxV8Y0Ahiy4isQgtOtOo08Y3epgjKGUC513rTdWJsqI9XWLdQT0orMd0cQx8YAMBNdubyVHOoRtAIIe11SS57HWBBS6rqPlspZbpXiCVH8nM79+1IWM4gZVc8n14ZGnmGK6uOlOvTVcjvXGEmPXC+rlHbN6lW8gNNxg4oXUPJ8UlU4nxrbhrsVyLSGoo1ZInrEhjbtFlNrX7PaejRWed8crY0bEQgB6TauSNjq89Y0grFRM87F9L2EQm+ySU27IrlUQbzUTbStxPZMX3U4HA7HliaQEiEE/iqul6u1mNoKYu+XrW0xlWu2mJY8z7qoFgvUoOscPCEpe17PrMjsWIXHP/EAX3nkdlqViINHz/BD/+sbPPL9Y4TZUgUnNYaJ0Fa9xgZFf7RjMRaWLgulZ7OxMHhC9ojD5Y891ZpE53hGIF7egXxjCpH6mD01GO8SiOWi8tfst4yRQrCzVOmpGCYDjE48IWnligtJiy+fe5e5NCnafyXNPGc0CMmNpqGyTpX3Uudr2hVEX0puGR7veS66TXRksXGQaEUkPRSGRNkq4laZ8UmUwuuqEhvoLDy16W2YXamCmGnF18+fpJlnPT9XxiBEseDcIoL4YmhXa7ZilU53KohX+0wcgzgfNzds7rQWm9tiansEVDHXKBDX3AyiE4gOh8Ph2HQ8IdZsB/WKBLyl/y+JmpL0O/lybWz1TfblHi4nlB6BkJ0v6+XnUPL8nsqBMVANAl4+MMUXfvwxfnD4RgAe/MEJfvpPnuHQmydAGwSmU/GLpIcUvTl1ZtQKRHF2qJNTGEpp2zcHxVd0IYvYiVgpqid2IM4OY0oZ+qGTmDune76tTcUKCjFAIC7HL4xqlrfrekIQ65zTrTpv1eYRwJAfIIXgfcNjVPwAgaCRZ7R/R5dSbUm1IjGqY1q0/He4MyozFS21nA55PrUsJZIexhhilV/xCuJqC8lGUXEFunIQi9sV1YU2y11p22RaF3mTy2ZtOwtOG3mxXVFFG67agnN+Vri6GcStSKYVz8ydZzFLN/W4nZiLTTGpASnoVCTthg7X1AyiE4gOh8Ph2HSsCU2/EU3vdVavIPpS9sx0KGMoybW91aQQVP2QrAh/X+4aGhWh9EDHaXV3qWLnpQKfV+57H1/48cd47eAOqnHKA99+mY//0bfZf26BoWLmMJD28fXMV002MZUUMVuxYfZYsTqfJkuziqucc6xzcqPxFotYi8PnYXjAIqkQiExXEN/dC+crKx7XF3LgXIxfVCxPNusM+yETYWlZBc+Sat3jsnqxJEqRa02wQvU3Klp/24wGIYeqw3iFCG/kefF6uDILMG0MXzl3gtoKi9S2iQ+0pfeSW+lyYbnSKWcrZDvm6I5xUb6NF5z5Vs5BLCqIbUMhx9YhLzaCNrsapzexgqiNQbLkjCoQtg2/aIW/FnAC0eFwOBybjldkHcpVKmeeXJpBNPTm9EXSwxeyx5REGd3JE1yLoSAgVspWMUW/QGwvEjJjBaI1ojGdL/fWUJkvPHQr/+MT9zG9Y5Tx2Rp/7usvsfcPv4aYmbcCUfZWEPEN5r6zmDBHnBqB2IrcXaVyR1jS8hBvj0Pae05SiI4Fu0wLEVzpbT3s0K4g1iLEYgnx8k5orhR7MXgupi1uZ7OYir+y6F4yzRGXZMCQFFmG64kSATu/F3ZVaZsqs9XQK9TC1W6vbeSDfwdNlXdanUXhYtp+TSVadeYTYXmj9BKqyHVcLqC6W9byi1hwamM43li86q2dbSOfq30eg2iLeetk6thKtB2TN3tjwWZybk5VXhUt8dbJ1M4gysJqayvmfl4MTiA6HA6HY9PxC0fM1SuI0s5yFDNb3deVQlDx/WUC0VBap0Ac8QNirTrOnN1E3lIFMdOakvSYDEuUfI+4mNfTxmYczuwY44//zP189dE7qFdLRG8dp/pb/42hL32b4Vbav4gp5zBWOI7GVniNBpEVv/UA+a3rEO+Mw+nhnpu1MxOVMTbWQmrwV1i6RspeDhhfIZREvLJj4FW9dn7hskVLWzjGueoxtOnF7rjbhdCSi2lL5Xz3wpkNLeASpayRwzoFYpv2fWdGL8VuLLvf0636pi8mM61JlRo4v5lrTaJV3+uqLYSaebcpkFlR4OVad4K2e35uigpi12tiIxxvLvK92XPUVxC3Vwqt2dIVRG1MkWe39c7vvYwy2r43NrmdPCs+OzajDVQXRlIaU7gO21lkzeYL26uFE4gOh8Ph2HSkkPhSrDov6Anr1NjejV1+3SEv6GsxrXjriu+l4gdkhSPocmOYngqi1gz7ISXPZ8SPiAtnT1VUzgIpyYzh1QNTfOPPfZTkww9C4BM+9wp/8fPf4Z4X3sJPly3Eo0JUJF3nqkE8v7vzX1EPe24iizk2pQwi8+wxVnrqBDCSYqTGPHAaE+WI+TKo/hv47SrUsp+37w+xsmjzhexUYdszkgCNPONk3GAxSwbebhCDhNZ6EYXDqSckmt5ZyFxrnp2d5kLSWvkAF0FWiMBB551qRa5740hElxlNLU+7LlvZpCY3dgaxe8Hats4XiKXXhDG8MDfN2bix5nk385xnZu381tWu3OW0XUy33oK5nYPY3Rrs2BrYvNPNN6RqC87NiMrpVBCL92f7/WrM1qyYXwxOIDocDodj07EmNatXEINiTrHdouMtawUdCcKeL3MNROsUiG0TmUGmNn5X/mJmNMOBbf/cVSp3wuPbmYtDvhWpqTGMVaqkD99H/f/7l0jffzdSa+59+Rif/p9PcPMrR5G5va2JiviIpEuYnh5GxAGmUsy0tXofR7uV0mu3l0arCypz91nMIydtnEZ18DGhPYNo+vocRRFzEa1YPbS3TU0hEAUdgZhqxWKWMptuTCBeyrJJGft7Wx68nhlNU2WbXi3LjRWIyw1kYKlddrmbbnthuJCmnU0JY1aOuWi30nVvgrSFiyhiLto5gheSVlGZ7OVb06eY7/o9HG8uMpfGF1V53GzswnlrRkkYYxfA19KC/lpBFTOIa71uNtpu3m4t3Yw29e4WU6DojrDv12vl9eQEosPhcDg2Hb8IRF9VIBaXt3Pfls8rVv2gb5Gw3HBmJUqenWFcnjEH9Mwk5sZWEAEmwnKnmqCKitV4EBWZd4axdvh8pUTysUf42p//KK9ev5swzbjne6/xqc99g+vePAmFQBRtgahBHB0DwNwxjRGmL6LCE7Za5KdFZTHqFwO9T4S27ayw9Her3wjHK9oyB1Vyd5fKTIQD4joKfClIlK3CSgRpIZ4zrWnmGedaa1e02jRVtuo86mrYRbxtMdVF22ubXGtaKl+342Gscl5dnF3zepnW5NpQz/uP264qLn9O24XAdt4jtNvOVq4gLl8It9sehVjKV7QzmHnfwlMbw2ya0FBL4ng2ia04NVd/Fkpp05mj3Gq0W8gNK8+IvheZT5NOF8XVQrc3Tlap9C1kCV89d3JD7cHtz8HNeD2q4jurvcEgii4LswU2ZjYLJxAdDofDsel4UuCtEUnRdgLNtJ3hkMuuWvb8nvZHgVkxR3A5Jc8nkILygJnF7tkxUdwPwHAQFAHaphOpMRSENFVO6Nk5xW7M6DBffvB9PP6ZD3DqwE6qjZj3f/v7/Jmnvsie1jsQF/d9oWKrh5NNGEugnCFSH7LemUsD664g9pxHOxdxQAVRFKJq+XMLMOSHfVXbbnwhSbXqtP+2q2lZYSBxOm6se7e8kS25fm4UIayVvC+krah1tWTac9HrbjGdTWPeqi2seb3caDS6L6MQ7DxlP7aVMlGKlso7GxmruWTm2nTOv40qZnJlYVLTXizHKu8L+E61ItWqp8o+k8a2Kiw2p1JyKbSr8Fsxy1Fhq5tX28VUG8Mzs+cGVoevBi8tTHN6Axs/l4NBlfXlpFoTK7UhV+Os/XrcJBdTr5iPthV/Ou9XJxAdDofD4VgB62IqVxUgXhHMnhc7sMuvW/K8ZRlyq+cq9txWevjCGxiL4QvZZSFCp8o44keE0iMtqjol6VMqDG0mwxKVZVEVZemTa8Pi+DBPfuwIX/30Q0zvGme0VuOR2S/w0R98gd0nziPmbVXQ7CoWXpWVgu6XWkzNWhXEnhMpKpYDBCLQMQHaKL6QRSC8NRBqt5hm2rrJLmYpC+ucQ6x35QZeDMbYiqYxvRXEtgvobBqvS6ymWpMataZ4ah+3PmDhng4w/QFbsWupnExrgvZGhljZJbNdJelesLbz+USXSU17Ibz88bUzFNsL6UwrFvOUkuf1ZYheaZSx79x2C/lWoy0KDeaqupheSFq8VZ9nPouv4lksUcuyqy5w2lmFg9q727QjKzby2sq0WTH2Z8PnCMtaTO0nrLmGZlqdQHQ4HA7HpuOtw6QGrAjMtG3XWd6OWvb8noWuMWbVmbluIs8nkJLSgAgHvyintReJbWfUiu8z5AfEOkcZTcnziKTN59tfHuo7Tuh5PUYyMzvH+fqnHuSbH76fuWAHE60LfPArz/LRF77Ervg4VAsxVV1JIAq8tPjZsgpiolTPrFkPq7SYAkyEJUaDcOBlqxFKyWgQduY5262VmVJ42JnJC8n6FrbNPF8xA3EtDO1qlOybrcuLnMaWygdW+5aTFFW3tfIFsyIvraXyvgrTYMMd0bm+psvAZpUKVTtku2fO1tiaRLsdV2Af26CZrFTrngpiPc9IlOpU2a/mQr/dKmsriFtvway7Nk2uZgXxVKvBTBLTvMptnWCfk0aeXXVB384qTPXKz4kpjGw2Up3Otd6016Mu5uZNV0v48rib7Y4TiA6Hw+HYdPxOBXFtgdi2CV8uJiNpRV5etOF5Uq67gugJQdUPBkY4+EIiCoHjC9kjOndG1qimHalR8nxGg5CpqNx3nEDK/sqcEJw9tIOv7P4s397xKebHh5loXuADM3/ER779BDtPX8CUi7m2ZQJRG9MlEHsXR7U8ZSZdQYyt0mIK1uxn0CzmWggh2FOu2hZTREeINHWOJwQVz+cHi7PrqsbFA2Ih1ovEtoX5QmKMFT4vzV+gkWdF25hEGUNtPQIxz4vq4Nrn7AlJZlSfm2IzHzxP2a4gLr9kpeVioq34zLoEp2q3rHUdJFZ5R7D2nKNRfQIR6LznruZCVXe1yl5twTEIjX2Or2ZunTKat+vz1mgpu7qRJFC0LBs1cGPhWGPxis0mqkJ0JWqVCiIXUUEsDLc2xaRG2xl1QzumybJVTZkuBicQHQ6Hw7HptPMH16wgSltBHFRdKnkegZCdlk+vCE9fL+NBOFBQBsIu71Ot8KUg6ppTnIrKZNouxkueT9XzGQsiJqPSwOOsuBQoKc6GN/KlTz7GUxOfYj6cYGp6ng89/j0+8vxX2BGfQDQK0dYIILUh8P4KFURduOYNJNAYT0McXDbHjfbsjirm7DwhGAsjzidNTjVXn1lKtCLX/a6fG7pvrTtzlJlWHK0vMJ8mnflVg1mXk2ld5cWM0+pPVKoVoZTk2vTNHDZU3id27ewqNFWO6ZKIYpVZwLRYAKddArGdzye6lpyxVgMXw5m2MRnt87OPf+lxXdUKIu0W0y0qEI3pVICu1tM0HbeYzxLGgoj5DUTGXC5Srcm0GRgD8crCDLMrbVBtMrr4naSrRONosxQTs17axmOb8b5QRdWwbXLU/mxudztcC2x8S9HhcDgcjjXwheR9o+MM69VbG8tF1uGgSqMsqoCNomLjC7luF1OAO0anVjSp8YqWyUB4PeJ0OAitwQdWIFb8gI/vPjhYaErJioosUtAEZiucLu/k1IFd7Bl7kVuef4Op2Vke4w+Zru/mtfP3cF7vx0y2mLo7IcgGVxA1S06nfUJRYI1v6hEmlxBs/gLFzsPZyltLqc5zGArJDxZn2V8Z6jmvvKgaDvkBiWrHQlycSY0Ugswo2vXaRpbRUjmJVmRa2UqVEOvKZWzmWWd+aTXiwmhGGUOiFcNdlzXyQYY7VtgtZmnPZavNArYNgNKeFlMrdpeeS2MNaga006VaozDERSveXBr3vI+u5ixUu4K4VQVibnQxQ9a2Gbny1PIMgd0km1+nC+/lJC3iW7JlwqydCXqlWoVVsUmSmpUFosF0TJ7WS1a0mG5KDqK2GwyicDLtZgt2VF8UroLocDgcjk1HCMFdkzvWbAkteV4ROj74eiNB2GkxDeXqpjfLmYz6jWXAilc7U6epeEGPU+qIH1ojg66q5kqPYXk1M1Fd7VmlwjhmpmhNHc5488AUv/WJu/n6o3eyGIyxIznLB0/+KR+d/gP2nj3FkOcjEt9WA/3+SINAeisvtjtziBe57xt7cGx0yXl1Gb6QZNoapiRFiynAZFjiRKvG8eZiz/VPtuo8PXMWsK2UNtfvIgVi0Q7cvn0jz4rzUCRFBdETYl1zXM1iRnCtKkJStJjaf/cuVFt53lcNFVhBVsvSng2H1VrO7AaF7BGIyuhlew6i0/K8/HefaoUq3BwBZpKEqGPKdHXdFHW3Sc0WXDErbYpYgqtXaU21whib1VrPs6teeUq0QmnTV7lLtepkf14JlNFFi+nKAlG1TWrWIfbaxlbtivZm/M41tsrf3mBoV/yvtjnUZuIqiA6Hw+G4agRFG6o/KIcBGz2RFe2Jw95gE5aN4hdCs5mnVJeZ2FT9gIrn92TZrXjuRT5gu/31bNxACMGuqEKp3SI6UwHADKXESjEaRbxxXYnpA9ex7+1pbnvzdcbnp3lk+nEW//cQr8uMdycP9dU0dDET2d5d18b0tjl2G9UMpbBQgtG4fxtYCcQrOzA7GrCnaA09V0G8shOhJKYeYu6cHvic2ephTly0mLZ/XvV8npudZk+p2pl1jFXecRaNV1norYee34OwFcREqx6x6gmx6oIS7EKxmWdo3Su2FtKEqh/0PJ+JWhLB7QXzm7U5pv//7P1Jl2VZft2J/c45t3mtPeu9jz4jMiM7ZBKAABAkgSIWq0iKUqkkqAZcNdGMM34Ccs4BJ+RMiwNxppK0qCVWlUSCDUC0hUxkh+yi8/Deza03e+1tzjkanHPvu68zM/fwjMhI3J0rMtzNnt13u2dx9t37v3cyJrGa9txMZ7HoHOpsZn8v6kHMjCGQcjakBjsTfGT9+zsFcS6kRuuyWkNbQz9PaVTe+yoLVW0tEl6YvK+C8YqqlC8283VveE4kJTeXhEO9DGjcgwXm+finiInRSOEeNJ3nGaM8dw6GzwilgrgQhqRJtXkute6TQPvZ1eyCBwuWogrj4qtnreU/PnvI1zd2MPh5ZX9vXjYff/E+mnJO2FlMK9/7THNxXx5qBbFGjRo1anxmCKVCSbFyPq2lwnKuoxlcff7wIrgKDlfb0JlTGKUQbMdNlLi8UqPocSyeZMcq4J3uBgfJuKypEJnf507KxGjWgojEGGgYHn95i//wv/91/vDG3+UwusHa2YBfOfmP/Df3/++88dP7yLxCeIQg9MrmYTLmse8qG+U5gzyddiGOQnjQQ377JuJPb8NZPLvTx03Esw7iw81yZSzubiC0LL+/asUscHNuuTUzSu5GGHOcTmb608ZaM8xzly6q808059UNQl5vrZV/H+Y5mdEM89STVTlTw7EKqXGLXIMtuxSHecbvHzxibzKaeW1idNlzVhDPjwZnfOfkgPM0XZyZtd5Wq/WCxVSvWOimXkHM7OwMYjX4qAjSXzaDODY5oVQlWc4qQUD2ikrGt472eDQeXPq658VUQXyx1Mj9yYjjVam9LwBrLQ+G/TKxNDfGq9qfXYrpOM/KWe3cms88yTTRblY4m3vQkvjwmk+rzzKzhkAK7xxZfm2MD6u6bJ9SYzjLU87SBGNdeNp8Vc7z4I8OHrsHX1SqLWzRhEgZovWLgJog1qhRo0aNzwyhkChWE8SmCrDeLtd8gSTOVYiUIrNmqQV1J24uzCYuQ0Fuizm1SCpeb/fck+XGdLFnG7nvPrREvjuxhBA8693iD3b+O/7zb/xN9uJXaGcD/tqf/Zi/9//6A97+4V2CLAes75SzZNai/CPr4zThJEudagiIfoQ4cYE6YhQhfrQzs8/i2FlexSSE89iRwVGIDTS2myCS4AKbqpvz03NP34VwdSZnlTmqYZ6SWs1I5xwnE8IVCvFVIPwiusA4z8mtZZhP1Uwl5Ir6iSmcTc7N9xVk68dnxzwZDxfIZbFdVzOhGeucg2TM7WabV1qdhZAaIWCkMxfGM/e9VQpiatxCuAia+c/7j5Yeg8ERrgWCqDWxlKTG7V9uK2FP9moW036e/UyISXWW8kWsiUUAz8vCIM/4wdkhQ3+sRUgNiM9sVrOqxGPd/fNZorDIzyuFqXZziRf1Er5MFIFWxczzMlj/ebhM1ZyYnLHOGPjZYyXczOCLuJ6ttRynCcM8K2cQwSuIxYvEL07NRW0xrVGjRo0anxkKFW4VQdyIYgIhmeic5kuymALlPOOyXsW1MKIVBJfWMoRSEvjY9MwY1oKYWCm33NweYd46ckRxZ4QVLplvM4p5NOrPbihwi5zD1nX+ePur9Hof88XhX3Dr/jO+/u33+NL3P+IHb17n/rtvsB9Pg3Gs9f1bUBJEBhFop3wRacQwwuYC9tuuf/F4msYq9tvYOEcYie1MYGMC/dipiK25fcS9z0m6SBABYik5SKYq3DDPSbVmmGccpeOya/JloHhgMNROgZGImZ7GVUh9Gqi7ZpaTdMKPzo+wzC6KtVcuQqFoyIDH4z5bUYPEaHbUYt0JuDnJUe7qKIK5GcRlC8aiDDwoKzpSjtMJG2G8+FofrjFP+MY6I5IKjWGYZ74ew12XqxKzsc4vJWL7kxHbcfPSROLZ43Pezemc36zqfBnyK86XXRWlJVk710DxoABrPrMU07FXvx3c/fNZYqhzQrmoxDv18OJewpeJYqRAG0cWlyVXFzbR5JJ9SrRmnGvO87SciTUvWGafW1PacA3Tz7llOh+96vP+eUStINaoUaNGjc8MoZTOYrpCYVoLInphzNjol0oyGlIRCLGSILaD8Eqdiw0VoK0lNaYkswBWWHj9zM35Be77sVJca7RmZsyAkiAKX3R/ur7Bn/72N/l3/+3f4OO3bhFozS//9BH/h3/zh/z2n/6YrZMBoVAVUiMgMs7WOgydOtjKoOctevtt5I92Ed+57pJOQ78AfNaedjG2MuzG2G3tZLHSAxypPs9SN1s2dxANFZTkEWCoMzJjOE0TBnm29Dy7g41hrw3p1ZcjmTE0pGKidUVBFJdazhKtnSXMz40WwSCRr1qpbl/7ZN31KObpeMR7/ZMlzYdTCOFmymYTSB1h09ZymiYzC0ddWWQaDIM8Y5hn9PN0hrBIBKk1hFIuWFXH2qnW2jiFbNaaypUIVmo0owvqQbQ1fPvkGSfPafe0fieKGcznXTQ7deiTza5WkRrNxOQloaiS589KQUxMXtqRAyk4fYmW2hfBKM8IpVp4EJH6FOKLeglfJgqLqWF1HY21FmO5dO44MZrMam8xtZWQmuc/ltSY8h9bjgrP/lb4LEOPXjZqglijRo0aNT4zhNJZTEOxnEAIIXil1bnSTODzIJKKUMqZDsQCa2HEG+0e7Ssolk0VeDucZT2KCaQon1JXMdY5nSBkK2r4RNDKAqWopfDWTuv/3l/v8O3f/Br/8//pt/jzL90hCwO+eG+f/+Hff5f/9ve/z/ajA2bYRCedkoRuxXb6oOf+nftj3Rli1yaIcYjYb7uvtXLYmDhie9xkWc5C6O2MsBhq0pCKsc6d/cq6WbxQSp5NhqQrVAAyifiLG8i/vIb4L6/CUx9IYoEnncX5Sf+t3BgaKihnlJQPC6raMLU1/PDsaGYh6BRGRxGdGuAmiSRipgQ8r/Ruuu5NybNkSOsCi7OLu5/OIk2/7sjbf3j2gL3JdEYzNwZtXMiPMW4W0v2TUz210ndABktmFROtfRWHWehAvIqCaK3rvLvIYppoF1DyvAvqghBKipmv5ySIK/r4XhSpMUx8NYrbv6K77rNJndT+/isUxFgqjj6lnsFVGPlql8yYmbnMscm9WvfyCPtFKC2mS+ZuC7j+QevmuS+Am6t0+26xZVXQi1zzzBgf2KOdWr/skVHlXtfWcn94vviazwlqglijRo0aNT4zhEI5i+kFM2o7cYtuEBGtIJEvglgGBCsspkpIvra+fanFFOBWo81Ya4SwTnWsJJtWkRjNTtykGQREUs3auLyCWKp5gSYzplzETFoN/uRrr/Hv//u/ze/90uuctRvc3jvhv/5P3+V/+Hff4Usf7yG1hu5UgbDdFNst5hId0Sr63uzmBLacWliQMtvKXLXGxhiRBi7EZg5T1XJxcRX4zsB+lpJoZw9sqYChzhdUtRJ7bWdvbfv9/NGOUzXv95zi+YNrC0RVWK8gKuWJnFmqIA7yjA/6JzPKV3WBq60t+96UEIwrJCnzxLPY562oQT/L6ASrEybF0rPiFpEnPsCnX1HqcutsbqF/mOCqO/IFIiaAzDqyXb2nCrtsKCUWOM+S51YQtbVo7IWzb4nRpEY/94K6mPETwpGxF1IQXypBdPbSQnHS1hSxIp+JxTQ1Zqb/taEU53m60EF4ESY6595LIiDW2opleZbQj/KcUF4+4/uykJUdlavv4WL/LlMQJ36fU2P8/ShKi/rzIjXu9/LEaFdzIQDmQqXEVJ0+Ssb84PSQ9BOmOH9WqAlijRo1atT4zBBKWapuq7AVN+iFEdFLVBBjtVpBfB5cb7bL4IOWcnOLSi4uiDNj2YgaKCHpBtFM4IMN/AKiCIcJDQ9HfU5nit8FUaPBt9+6wf/4D36dP//tb/Jks8PW2ZD/+s/f5+/9P/+AL+19l4b2KlU3gc6sZc1+ZR97feAUxE1vJy1UxZYjCfbdQ2ygEffXEd+9Dvut8ucLdWHRI+u372fpEuNm8dpB6IjwqlTUp13/ngfYdw8QViB/cA35wZb7/iSAw9bsz/g6i1iqss9Q+ZCcasBGZgxnWTqjyri6DWePTX3ohrVLCKK/NrK0/0leb69dqGALUYSdzB5sKwiwuCTW08q+aGvKqhLjz5ulWNDOKoGZmc4qVvexmGEEp1BX01OdgnjxIji3xhOD1QtYl2Bp0M9pwywUdMmLLcivEkDyPEh92fu4JIjThf1nYTEtr59/MBZLRaK1V4KvhqNkwvdODi4lSVfaH3++IynLAJgCozxffKj1M0RurE8IXa2CW+uI/WUziMM8paGUJ96frKsw86R+nLvQsGlITeXzWkktPsvSzzyZ9pOgJog1atSoUeMzQyilD6pZrSC2g5Avrm2yHi1aDj/J+0ZSLbc+Pgc2owYbUYNQKtelJyQSuXRB3PKdixtRNLvY8pbSkqyFZqG2wVpLSwUoIWhFEaN3XuP/+rfe5X/+O7/Mh7e2aIwTvvzRT/i7e/+aXzn+92wmz6CZYaXbtu2kcGOI/eq+Uwp7ibOTljvnF6bNHPu1fawyiMMW4vvXYOiUzUBK/0R/+eIqkILjNCntXLFUDL36sIBhiDhrYFupm5W8OcB8fQ/bcftlbzllRDzszfyYFG4mKhCyLKEvCKJb2Lp9S30oydNK9cYwT931EcX3c5TAhyBNz/WVUzf3W26GkqliF8zdx00VcL3RoqEUB8mUIBY2vmImapBntFSwoDY4gjhVEE15fLMKVGbtbP/iBYvrAsX2ivTKZXAJlua5F9TF9sQLWvpy+3ItpuPc2SSHeer3r+ixEzML/E8LhSpbzPK6hxGWfnZ1gpgYzWmWcJSOP/n+eCtmJNXC9RppN0P8qRFEq32v4GL35/Q1jlynl8xFDvLMjQHMfRZe5KFAat3npKjtESXhnEIKUVrBD5Pxpfv384w6xbRGjRo1anymaMrg0tLiL60tWh4/CUIhaQfhJypLBrcgeKO9xgeDU5oqQPqZtYUFt7C0/EzjWhDNLn6D2UWEDXKUlCXZKdJKm8rZYnthRFuFCCE5vb7Ov91o8nYueesnD3j9p094ZfwBr/zeBxxv9fgwGvFYvIten1tEKgu9CZw2XWhNWNmHrTH2t+7B3Q3Exxvw8Tr2Kwf+OFYvqBsy4NlkxM1mG4E7D4M85VrcWnzxMzf7aG8Mpius3RF2ZwRauP07biKOm9hhAG3fK4lTELvSz2tWEwTF1JKWevvp0/GQzDgrZhFoo+0sQVNelSxwJWIyCpDfv45tZtjffIhAuNqKFUp4LAPOsqTcF21tZdbQkhlnUXbkegpXGF7MIDqiVixCXY+fJ4hGz7y3FJcTXZfGiE/h1aglM5aFxfR5FcDpDKJ7nPC8C/LcGF6iYYChzgilZOiTQqsK4mdhMc2Mmbl3Af+gIF39Q0u2cZ6lHCZjbjY7n2h/Ev/AwVmeKX/3GGuZlLOudmmNy8tGbqbEedU9XJTeF3bwVb/Hh3lOKCQps8r8Ve7nzBiO04kLFmOq+k4KgijAWjEzMyz8/gMzM8efR9QKYo0aNWrU+EzRDILnitB/GYikYn1JpcCL4NX2Gu90N8pjKJ7CFyhCF4qQEynl7GPnOYJoQhd/X7XASSEdQZSStTCmoQIi/2eJYNBp8oNf/SL/0z/4Hb79za9zutFl8+iMX336X/i7e/833j38No3hXAjGpv97c4lqIcG+furI49NOqSIaa1EIR+Iedp0N9ZGzinaCkNMsYd+XzgshuNXssBYuzu4VfYxsj+a+gVM4ReV7g+l1KsiRU94WYyKKBWURjz/SGSfe2jkx08TTzGhG2hXLTxeaU3K5VCU1wMfr8LBbzm6KcQiZUyWzCwhiQ7nU1YIAzC583TE1ffBO9a2LsBk3aziN53fKRPFCW75musXLC+qdgmjILwggSfzc1XMTxCLGwz9QyCszn5fBegUre5GyuhUoVLChn7d0M6bVff10kRmzcPeGQnL8HEE1ReXCg9HgE+9PcT8WIS7Tz4J7j+J32ot0Wj4PCnur8H9YoasAAQAASURBVJ/vVe+njS0rhlbNKTrFOFtKaK+iaB8lY75/elD+PfWfg8x6co8AMfu4rPi8jvLsudTgn0fUCmKNGjVq1PhM0Q2il5pQehXcanXYbSzvtHterEfxjP01loq+nSoBqXF1BE1PEJUQs/xjjiDmSqMQGL84Mp4vtYKAWCpaQUBTuX+6YYT0izopBHrD8PHGTT7+6g129o5560cPuPXoGe9+9FO+ePc9Hr96jY/eeYWD65vYrRHi7oZLPF0GZbF3zpB3N7EHLWifcaPRcmEPH60j7m24153G2Jt9F1Tjn7oXy6ZOsCQJVgs4bTjyueq9AdvM3RJ6PF2qqMqiWgHZzDpPlOpfaopKCzjJEnYbLRLjiLfFkBrLxOSVgBuXKtlUkrO5wBd3UQTi+9cQx05NKOdGAfoRojMmszltuXxZVbUQbkQNv/CdTjHlxrh5RT8TWaDoCXUL9+nCdqSzUvmy+DnFQM6832XJo7mfwdSsDoQZ5dmMtfWqqL5eAD88O2KS5/ydG6+Wx3eWJqyF0UIirvF3j/YzkvPfL/BkPGAzatC4IF22wDjXNFTAROty/rOYe/5MQmqWVHjEUnH4HARxrHPaKuQomTDIs+WftSsit6ZUpKups27uztKVkpHOHRl7eVlhCyiuvUTMJILOo5i/LUhrvGSnCnLbEu7+mD5vuNpMrGb2wYmrJfH3Je6+FszeP4W1+zRLGOmcrlwdbPXzjpog1qhRo0aNzxTf2Nj5xFbP54USYqml7mUgVmpGlUiNoR0E5ZNsUf6fR8XeaYVFS01gC1sUZQpow5PClgpoKDfz2AlCF7owr4IIwcGNLQ5ubNEajHnzpw94/YOH3Lm3x517e/TX2tx9+w73vpqSbl1w7osk1IkLWymJfJGM2swQ4xB73ITtMZGUDOcCUxZw0kBY4YJyLrrsXtks3hugF8XstAL02Cludi4EolAcEmNKC1iS51hrSX31hrSinEEMhOvgLGbemsoVwy90bj5aQxy3sI0MMQmn86IAgwjRdYvp8IKwJWuhX8zAmWqgjbeRSumDjqYnpakC3ur0SktsQbz6WVZ+ZoSf1QpmFMTLbXTaDVJ5e+xydW+QZzOK0lUxTyjvD8/JvOX3dquDsZY/PnzCr25dZzuefVCjrcWZX4UnAstvkh+dHfN2d51X22szX386HrLbaJYEUFsXUNOQitQYxr6moKg5/6wUxHmrdqwUgzx1IUxXCM8a6ZxWEJBozWmafCKCWL0fRaUiJfFpuZHvR1wVHKSt4YenRzSDgFvNDu0X3Jfi2kufWL3qwUWRXnxR92midfm56oVxRcG+WkiNsRZtpkFYYx/WY6w7U8J/dqr3T2HtPsvSn7na+rNGbTGtUaNGjRqfKSKpLkwx/bwhmiubTo2esbMW/WslqgpiYNC4xY+ry5hWLsRSshU3WAuikih2VIgUF6sgo06Tv/zld/iffve3+fPf/CqHO+t0z4d8/ds/5X/77/+//OqffoftZ8fLNxJ7ApbMkelhhMViXzsFQDxzlstuGHGcTlZaLWFqLy2SVFei4d+7qiB6ogxOub3ZbJffs3Y6gzjWGYGQBBJGJnediUwDbSZGk9tph6L2tQqZMZxkCY258CJx2nDv8ZUD7M2++/OumzES/Xg6g3hBXUsoJUc+qCaz1WWlLTvaXGLvovW5UEOL++okm5QBS0oszrwKIS6dpSxUI7AzqbpVjPL8hVJIjZ3WR2TGHVsoJO/3j/3XDGOjGeWLKY9OsWQhTXNx37KF/Z7onD872mNvPLUuF4E+DeVqWsY69zUFxQzip08QJ1ovPBuJpCLVZiZR9yKMtHtIICrBKC+KeUW7SOJ0SrwPgWJ1cf0gy/jO6QH/8dlDPhqcvvB+FNdeCkEgJf1sucOgKL03rCatRR2FEoJOELIRNaY/f4WHAk5dnz4cGWvtf7d7Zbv89ExRWLsPJuMLHxZ9HlAriDVq1KhRo8ZLRKxmZxAza2cW/VLMGRirBDF0xCWSroYjNxbr0w6lkPzNnVvlS7+xsctOo1mpWLgYJlDcf+s299+6zdpJnzffe8CrHz3h1btPefXuU857bT565xXuv3mLLPYKQMMvPCcVwpQLp+o1M7g2wP502yV6fskpXqnWrM93BmbSWUtDAwc+tOYygtj0C+XJ1ZYqQkyTL11CqZtjGnslQRuLCgRa+K5D/3ch3FIvM5p+njLRmo0qSbPAWexSX9cSbG+CvdGHVobYb0N/apG+6EFHLBXHmSOIJ2lSUcbEpVevsBE74mU5TdOy9qUh1cK8YREOc1GAhyN9ziy3agZxqLOlvZ6rcJ6l/PDsiG4QutJK4NVWB+FTeR+MBpykE0KpGOt8aQdjcYz2AqXHWMvEB+hUcZomHCZj9pMxt1ruoUXqU1qLOc5qTYG1z9/R+DJQ3J9VFPN/F9V7GGs5Tidsx03Guggm0gvX31rLj86PeavTu5IFd/b6Tq93YnRJ9AUCveJBwti4Ds+mCq5U1ZEazVmWsrNMPfbkK5ZqpqZm5nW4hyDCigsVxBWFPFe6nw0WXZm/HeucyIeHlRZTIbCV9y9mEPeTEc1PWKH0WePzTW9r1KhRo0aNnzPEUs3Yx6ydncWT88uWoGI3C11YSi+MCIvkSixKsLCgvN3qEArp5xWfb5F7vtHlu7/2Zf7t//m3+dZf/wpH2z3WzoZ8489/wj/4H/8Tv/KHP3CqYpg7YlQlaT6whnYKoYXtESJXiO9dh1TyZqdHdy6YRnz/GuIPX0H82S3EKMKuj6cEcBUCg1UGJuHKLsUqZIXojPQ0kGass8p5FEikUwesqRA6tzA/z1wf4Uxo0iRApAF0UpeuKnEBP7F2c5SDiKYIeKe7fuH+OQthRmo0p+mEuFQp7aUU0SkVzg45MZqJyUsFcT2Kud1qz77ePzS46L7Q1mKtU4aWqY2Z0WTWJVgWpOXxeHCh4rY/GXF/eE4/S8u7vFDqCmV9lLtZtlTrmSCPDwenvH9+4giiP95VC/miJ3Ey14N3kiUMdcbDUb/8WmI02hTXWjA2lZoC4bKHfpboZykfzqlqY50vf5gguDDM5zid8L8e7ZEZQ+LvcbskAGiocz7on8x1qa6GUxDt3N99d2ilDmcVeR1rNy8cCnklgvh4POD39x+VAVIFivk+KVyw03meLj0f2hffX7RPF9VyXNliWpmDnJQKoi0TaDtByFo4/d0ucOr4MM+uRMx/nvH53vsaNWrUqFHj5wwL1iJhaQbT/9wWgSUAj8dDIinZDQzkyllMrXUW0iBklGfebrX8abQQAuXDGl4EOgy494U73PvCHXpH57z5/gNe+egJr330mNc+eky/2+J+eMj96F1GBkeOhp78td1C0L5zBKMQcdSC97awXz2YexPh5g4RMIqwnRT79WcXzx+C+34zRwwibC5nqziWQAlR9hm6xbMs/1x0+SkhkcLg/ldV15xFdJCli2TNdx2yPqdmCKCbuiqOUQidixfGsVQcpwnnWcpplpYEMZLq0qAU4fsStU9mzIwpFcRlkBRhI4ZwhRbg0iKdOj1eYvVMKt14uZ/Z/P7pAZ3tcKkNFly0/1mWcpYvCfoBCiJe1BNUCcyz8YhQSnYbrfJ+XkkQjcUYu2BRfToe0g1CjtMJ/SylG7pKmSrfd52IboYMK36mFtOJzvnDg8eMdc5bnfWZry+frbzYGpwazVjnnGUJ2hoCH8Ay/zOnacJZls70e14EbWceaZXnf5hnMw+0Vll+J36uM5CC4RUIYj9LeTQa8K2jZ/zt63fKz2qhkksEkf+8DPKMjWj291+hMsLqOUWnfi6eY8sVCSLWWUx9ZU5uDY3i4Z//cffgr0IQhcAYd3+vSUl2xfP/84haQaxRo0aNGjVeIlxYiK+o8AuZVuVp8qyCaEm0mdpMQ2eHawQBnSAsu+8ummcJ5eUWxctwd3DO3nqL7/z6V/i3//1/xbd/4ysc7q7T7Y/4yvG3+Xt7/5q/8e+/ze2Pn6L6Pt6j7eeDmjn2V564hdNpY3Hj5xECgd0cYb50gP1rTyC6om7T8IvN8eXPs6VwCqKx1ieW+nlDTxCrr1u2psyM5iAZl8pcAXHm5w97S+xuHX8OBpenFRZzXAfJmNTokiDuxM0rJ+oaW5Ci1eme4MiPSz1dvS1tDNY6lXWZ1TPx9rrC6lwE+ayqz9DW8Hg8JDF5mby7ZM9IjSbz3YpnFYJ4liVl56LxaulFCqLGzszr5cbwbDLygSSmtCc6VdntTSgkHw/PXPATAiGeP6H1efC90wM+Hp6X5xKc/XO0SkG0qxUxcMR4rHNO0qS0DyuxaBE+SSecZ+lMv+dFSI2u/F6ahtScZ+lMwvSqaz/IMhSCQEjG+vLezOM0YSOKeDjusz+ZWs2r6lzx8KaqSBZ/zjG+psSu7I6cmJylI8H2aj2IZUiNn9HNrZsxXggZq6Cwdn8GuUcvHbWCWKNGjRo1arxEBGJK2FzFhSwrLqAgChUIWyGIBmPdXJkJInJjUEpcGH6ihGTyCUIqiqj4iXbJoDoM+PjtO3z89h06ZwNe/5MTXj34mOt7B1zfOyBVP+Zh423uZtuc2oZjI6GBdoYYRthUzhLAc0+wNidwu79iL1agOoe4dnGJeLFQTn3yYiACLJYJhlGFSMgyebBSUm7dYng/Gc2QeQDOCgVx0a5nm5mv4rhiaqOFZ5ORS+d8gWoXY62ruLjkdRJHRs1FZMPPIAaVfsAqEm/fLOaqtA/xmVeREq358fkR1xotBnlGL4yZGL2029RCSTLdHGFO4vsoz7KURpEAbJ0asyo9NbcGY2ev61mWMtY5vbDFuUjZn4x4rb1GanRp4d6JGzwaD9wcsE+h1D/D1fzBZEInCH0IkkapgLHWjHROb35Ol9k5WnBERjC1POc+ZOc0myWI80rh08nId31eLfAmNbokU9UwmkGeVR5OrQ4NOssSQikJpWSYu2vaClZTjKN0QkuF9PN0huQXx1vAYktSeJYm/MnRE37n2qv+AY8LPjpK3efy4ajPVtSg5e38o3xxzhOKLtXLH1AV6b25MaRCz8zzLlfHKWdtP+3app8FaoJYo0aNGjVqvEQEcvosPjOGWAYz8yhSLFlgVAiiEM52SADah2hEYnXgQSQVAy4mT8uQGk3oEzBjn843j0Gvww/ffIUfq7/Bzo0f8NrhR9y6v8+bwx/y5u/D6UaXe2/d4sEbN0k7qbOf9iPYmqpt4twTrLWrzUNVYRuLXYiroIT06pQpF3PWpwqOKiqE9PH4VZquBOwnYwZ5zmarooKmEs5jbJxPU1WrKKo4xsGVaIYSzoK3IGDc6zn29NrZSnWiqK44z9KZPsilr/VVmxeRn9SrrIGQjPPFBwxFQEkxVzVVEGfvk0Ge8YPTI7biIdZaOmG40mYocemSDWsIpSxTOwPrrl3q7XwIP3O50mLqrvHEV5gIITjLkjIBM5KytK+OtQZvNZRCcC1usZ+MnYIIZWLnMrzXP+FOs3sh2VkFay1D7azEE39fNhQM8pRUa6JokURYO2sx/cHpAS0V8s6a6xzNfE3Hqe8aFV4lryqImTEcJmNaQbhSXZtHqk2pILpzYsqi+YLszO9bFf3cKY2Bn5tOTE5rBcWY6JxRnrEWRJwjZkisnklThUBIjhKnMA7yjJHvsdS4GcSGCjhKxmhr+dbxM760tsmX1jYBZyVelqYsBeQXzCcWMNaph8bf97Mzy8shcZ/v7XiJk+Jzhpog1qhRo0aNGi8RoZClYpFZw2Y0ax+cV1YkAhu4BY8NNeBsfUIUVkF74RPpUD5/SA3AvWGf3bhJQylipVYu/mycY4Vkb+0Oe19eI/69G9xJ3+M1+wM2jvv80rd+yte+/R7PNq7z0H6ZRyc99FZlA2cvThALBVFMwislfVZJRvG0X3tLX+H7Kqye1aughOAkndAL55TAw5azx+6MlhO3VlHFEUIuYBReqHTGSjnCUsVEIT9wJ8yOIuy7BytJosFykiYLNth5SKapp6uQepUv9CXomTEz95k21s0oCtcTWQTDzKsv7uuax6MBrcB1dR4mCe0lpEoJwSTPyVTg7m2cIhoYSWoMqScmwiugF1lMjXVWw8waIqFIjC5nDSOp6HuS2s9SoooCHyvFHZ9w6s7pivveWt47P6GlAlpBd+V5XIXUK67dIGTgg5KgsEmKpRZhJRyBKvB0POR6pcol87Nw7h4S/mdmCeJZljDWOWtBVPZuXobMThVf6edxJ1qTWUNbBuW+LbOs5sYpuU0ZlNu4yNo68PUkkZQEwin3BeavdzXJdKAzEm9fNbbohlWcpil7kyGnacLHg/OSII5MvtR5IS6Z8yxgoOxBtAuvX35fKuHOXVMFz10N8/OGmiDWqFGjRo0aLxGFgmitm11Zm0v0nE8xDaXEBLkLBQjcE/RISgLrJlos4mKC+AIhNdorOLk1aCuJpFo6hwaUVRdiorDjkEw2+ejGO3z4y2v0js557cNHvPLxU24cP+UGT/nmnwQ8frLDgzdu8WxnBzEOXSXGJSEzy997sQtxFdxC2TLRuTOQFj13LLFlzjpMXSBGNuH11mzpuvCVHHbbdR5qa9ifjLneaLntV/ZPfLCJeNTDfGUfbgyW7mMkXRl6rCrXc39KAMSTLnZjDDeX/7y2tlRrOI/c7OONwQKhFBVyvAqpT4IMhPSpmDmhnN6rGlumfebeWrrMYpoZ16f4ik9SFV6hXWbvc6my+XSBbp2CFIhCQazOr62u1yhm4XJjPdlQpHpayRBKydC/z1mWEl4Q8qRXnKLUp1FeJXRlGSYmJ6883ClSNftZOpMMWoWzi7p7KjOG0yxlPZoGAiXG/Z5w/YTW/4ycIYhHyQRrLZGUDDO3rYnOaagAay1PJkNuNtozBDWpWIKl71VMjDt/hQrnlMpFFb24nr1gakWdXKDQDfKsVD9DoZYQxOm5aShH9FOjOU9Tl0hbSRYtkp4fjvokfoZ4kKW0g5BJni+1cUtP4i5DaTG1BmGL1kOnpIoV1y+Qki921xH+Pv88oyaINWrUqFGjxktEICTSWzdzaxcJolewCkRSkTdS9x/kVoa1llAqgrKfzxBeYDENpHzuKarUGFoqIPeLreK9qtDWcm94zmuRz8FMAhj5ZUPLzwVtrfH9rXf5wa98kd2HJ7z6Z2fcmnxUditOophH4SPud+9wbIvoyOdA++ohMEWP3EjnC8cy1nqGmDtb7XTxuB7F9MJoVtUxwFELK42rtcD1FxZKV6wUKOvsp5MAjhyZFO9tYTfHEC8ukmOpeJINud5olV8Te07Nsm+cIO5uIA5b2KUE0d0LqXFpiuLHO4h+jFHGBek87Thr5pcPYGt8oUUTCoupJPAzhhOj6VS+b6xFCGfJy6xGG+uI4tziOrPeilo5d6+0OisIomSitQsRQqCFZZRlhEqVBLRY/AtWp2YWgSHaGk+8QsYmp+AooZBe2coY5OnKBywCVs5pJsbtZ7WK43mQ6Gm9RlW1OpqpOJmFErIkVwM/n1edL0y0pqGCmYROKYQnx+68fTA4paEUgZQMdUY/S/kvB4/LDtXvnhzQ24noVH4vZWZqMS0I1FjnLsynrCmRHKaTBaV5rF1tSZWMzYfmfOdkn62owavtNaeg2uk2B3mKtpb/9OwBTRVSfdrhkn8nnKYJJ9mkJG3uAURxz1mOkgkNqcisZj8Zc1spcgyNJb83ZSWE5yIUlRtFcM70GkF2wS/ci8KjPk+oCWKNGjVq1KjxEhEU3YS+324+9EQKUSqMIAikZHDngOj6BN1OkYkgEpJWEJYzNhcriOq5FcTEB9KcZylaGiIVMG+byox2c2dR5oLcJ4GzUAK2lVVe5xaMz17dYv/+N/jO+G9y481v8eq9x1x7dMhb6V/y1k//kv7jFg/evMmD128w6HW4EgLrgmDGITYX1UT5BRRWu/1kNPP1ouC7Slg0BiVmr8vCwu6gjdASuzN0RNBaxlrTDaNZZauZIZKgDKoRmYIPNrFfmav7wClbW1GDtgoRH23AIEScNbCNDPvqKXy8DsfNBYXTwZZqTcf6WU9A/HAXYSr3x2ETuzVGcLH1OLcuCbI47vmgk6L6QHolr7CY5nPbzI1d4P2r7lclBBOTM9G5mxUUivujPltxw3XMYSv9dYsE9/snB1xvtsmst2QzVeZcKIl730A6gniaJmTGLLW7QkEQl5+j1DiL5Um2vKz9MjjL6/TEZMZgrSu6X00Qp4Ez51nKROczXY8TrWmpgImehsooIZj4YJnzzIXz7PoC+txYnk6GnGcpI3/OR3nGeO5hQGZMSQSLmdOJ1jMPWnphzKPxkHvDc75Q6fycaD1z/a11NuIqnk1G3Buec6PZ5jidEPqdD6Wkn2ccJWMejYcLt7wUAgMlSSySbYvKGvweD/KMVhAw1jmPxwN2Gy1yY1HB8hnEqyiIuZn2IDqyWCi24kKF9BcFNUGsUaNGjRo1XiJCKZBSlAvs5jxBRPgZKwBLJCQDDHSzUnEIpSKUkl4YsTcZXph4GUjpUzmvjtRo1qOYfu7tgAjmGUluDbFU5KGzhDEJEEVaZ6EgZgn7yZg32z0309Ya00i6PLz2Kg/fukHjW2vcefSEO/KHbJ2c8OXvfciXv/chpxtdHr52nUev32Cw1uZCdFJHvgYRbKyeqVJCOoVuPJx54o/vM6vOfm6GjYXrMoOJQvxk2/30rXN/rCkbUVyqGCWaOZz6d9oeuqqPvQ584dipiEcNGMTwigug2YobcH8NcXdjuo1rQwgsrE8QJ01sP1qYZbTWqzXWEJ63ysW7MBIrDfaNE+SHW5BPrX4XWkz1lBRgxULpfFFGLnzqo+suNAvqUGb0lbsEHYk3vuZBsB7FPJ0MyXzHnPG27HIf5rb7cDygEQTkxj1+EVhS7V4/XtIteJImZNasrIkRQrBqqe96IA3nWVoG4TwP3Bxesf/WB8zkjPKc9Wi5Iq6EKOf3zrOU1JiZeb7EJ2SOsrR88FQo57k1PBr1MUwTcnNjeDoe+U5ETxB1PjPnaH0IS0HqVWkx1TOfIykE3SDg+6cHvNLqOgUdFqyUoRQz1RTgft88Hg/4w4Mn3Bues+7Vy1AqMpPwdDJEW8NaEC0Q9khI7g/7rmvRWn/tpz19sZScpAm3mm0EgmeTkZ9VNEu7JotU3sugMRWb6XSf2sEVE4s/56gJYo0aNWrUqPESUSiIubdtLRBEIXzxuVt+dcOoVL20tSg5nTncjpu83z9datcrEL6AxTSzrt6geE/3fnZmIZwZN8dkhYVOihjE2GMfuOMJoiuxbjDROed5RjfIaABkvqR+vM6H3S0++O0u7eGAVz5+yp2Pn7J+0mf9pM9Xv/sBJ5trjiy+dp3hMrLYTeGg7RSzCwgiwHZU1BhMCUFhE6uew+pc1wIMiL+8hsgU9s4Z7ExTFH916xr3hv2ZVNSy6gKwm2NEK0M8WMc+7sIrZ+W2zObYHct5hHh/y5G6d44gUfCKI6F2a4w4aTq76hxBFIJyTlSeuOtg3ziBsxh7qz/tjMyn6tRFDw5yO7UVIhYVxBw3Wyhx5LSwf84HkMwX0V+EQEhGNmeYZ2VFQyyVr7gIypoSdy/O1lxo68jaOPczpv7/U1/xMp7vFhTCq3+ryd1lFtOClCdGzyQRXwUToyv00JGkQZ5dSFidOuWI+EEypqGU3w93DBNPrCOpyt8rRSBRbgx3h+e01Wxx+0k6ITHOqlrMgFavde7TOhuVGcSJ1pymyUJa7noY83g85CSdlOE5Z1kyY98OhFwgiBOt6QYhH/ZP2W00y31XvvJnbzJCIBbs+AAtFXCcTUh9kE7m1bzimnaDqCTOFsVplvp+zeVBQNL/br4M2tgyKMnNfrpttYPwrwRJrAlijRo1atSo8RIhhGA7bnB3cE4rCGioWTtZYTEtysTbQVjOE2m/eCwI4noUEyu5NK69wCryaK3rEMutoRNEM7Y/aykVCO3nJA+SsQvVqHSuRUo5FWc9gUGMGPoFXNPNHQmEi6vPnJVPhn5JnEmnwiUBtpOAsgzX2vzk62/xk6+/Rfe0z517e9z5+Ckbx+dsHJ/zte+8z/HWGo9eu8GDV6+x3wzphhG2mzglqx8Dy8Nbquf+VnPWvlqQ9YtI9sw2PtpEnDawaxPs20cz296IGuxNRi5opECzoqD0Euz2CPFgHfFoDbR0llOA09gRRJ+Mat44WeyF3BwBm24O8bXTBZtpqUoVBPFGH948cd8s5kOzShLpCmWvUI2iQjWChUoEZzt0x22wJEZ7hW+WII7N8r65ZVA+wCYz08qAzSjm0WjIVhQzTvKZ7Vf3f6w1mdHlTGFhfU19sqWbzax8TiyLibFzEBcE4TjS4ZJxRz7k5XkwzKd1JApHuga+4mQVYVVCom1OagyHyYS2nxMuPpepv49vVZJNi3M60jlDndGe2U/3denrJEIpGeuccYXAaeusrwUB6gQhj8fDhblCcPstxGx5/bPJeOZ3XCglAz27fW0ta0FMq7H8HA7yjKZabrttBQF7k3H5UciMmUkhjpUqP/OhkKRac5ImrEoaFUKUdt+LVOHCypobwyTXV77Hf1FQE8QaNWrUqFHjJeNLa1t8PDynMdeBCFOLqbaOYHWCsFRgcmNpVualukFIS4UXLk7UkoCZsc45SCb0wgglJMfphGuVYBSEZSOKvYop6AaRm9uyhr3RkOuNNrkxtIOQ3Brs+sQRHlztBcpynqZsx01eb6/xp0dPCYRERP7JfKbggv7D/nqXH/9Slx9//S3WTgf0PrjP2w8P2Tw6Z/PonK/9xXs83mhz+MZtHl+7xZjrq4NqDHDUdIminWyhRqSYTWytWIDOzPudR4h769hAY7+2X/rYtJ956wYRTRXMWtS8mmqFdQRQWUcSD1twb316ys8a2Dv9aS/kxnhxX9ZSp0ieNrD7Lbg2nacseIzIJfQjdx2q5LTo0syns1mFXe+HZ0cEQvBFXwFQqEbFuQqlZDAXxqKN9QqicPOXueuknFcQ07kAIMBdkwc9kBa2RtB2++nIjKmo1o4Uvdru+h+zJNpbCAWlOgguiTO1hkGe01KBs1b6xMzMaF9tMv3shFL4vrvVnx1XI7P8e27OzylcwzxjM2owyjOX2FlRoPcnI3bi5gLZGFQ6BAvlbqTzlQmY0/NjOU0TRjqjG4RlGqsU7qFNuGR21mLpZ6kj/eGsej7KM9bCiH6WOju6tWUFCFAGVRX3ghKSW802e5Mxm0uVdsFZ7j7Tidac5ZMZ1TLwCmTRGzjtEFxOOdxsbzazjdlzIksLsxDFLOfysnp3DQrleBUJFyRMw7lWodB/i17HmiDWqFGjRo0aNT4Rbjbb3G51UCwPSZCCssur5QNirF+oxbJKEB0huZggLr7HUTrh6+vbfGNjh++dHPCjs6kSVizc1sO4VFBaQUAkJP0sRVtnZdRYVx+Qa1ivBHV4QjTKc76+vuPn8qAThpTryVwiJu44bO+C/kMhON/o8pOvvsaffvlVvpxYbt/b4+bdJ9w6GXLrL97j67zHafg9nvRf5/GbTfL29vTn+xHiL3dLZdP2JthfeTKzNlRCMjY53WW2sI/WEY/XsL+05yydR16Ze+10hnyNfahPNwxpyGB2TqqVuaTTNaeUAtiv7MMHm/C4C9cHiL2um00EOHfEnO4Su6wA+6VDxHduIH66jc1PYGcIkfGBHZZo4LsZ1yeza+CCIGbTGcRiP0/SCfuTMW911gmkXFCNXFjI7P4UpLggURPtagPmZxCddXFOafpwE3F/3e2FsNhffwTtzJMZZiyNs4fvFDssSMlMX12RljnMMwLhCuIDJCPfq5dbO9N7F/mqi4tIwEUW02GeEgj30KQoc/94eM5BMua3dm8Dbk7wTw6f8ps7N9mOm3M/Py1qd+mtOSfp5FI3gLau6F5bS0MpzvPM9RQafDjL8vN2lqdz4S1eUbO6TAsNpJvTrV5r7bsnqw9WCpK4DLGUHCXu98F5njLRmq2wMfOz2jpSq5QLC1pVe1Ic8zDLZ7Yxj7UwQoA/F8bX2Kx4sXBq8qq52CKYSFt7IQkqZnBTo5mYWkGsUaNGjRo1anxCSCH45sburBWx8j0hnIVJgCeA0j/JNzNKVzHvsowEFlCiyHN0KBZGr7a6RFIRSzVjo0t9IMV6FPv+uYxIKloqZD8ZsRO3fM+aTxG0Fho5Ns5dWqcniEII2kHIRtSgHQTcbLaxTcUYEJmE/moFcRECIeFss8vZ5hr/7os3uHk+5suPj7nz8ID102PWs2Pe/bcwWmvx6M4uj1+5xtHdLyOGEXZ9DCOfCDoKoT1VSJS3lC1dWO913DF99zr2V564ughwltoKJjpnt9FCCUkzCNBV+1pkHCmNKsQpNNh3D+ELRy58pu/subYfzthul2JrjL3RRzztIn68g+11sb/6xC9WDdHEdzO25+4tCVaZUkG0dmrRdIrymKeTIXda3QXVKBCSsbdqFucps46USpxCNTa5IxzzBHF+8fysjbjvVFg2JoiDNnavDW+eFlcabSwqWLweFlu+b9G/WMAF9FgmJifSsnzPkXa2VFMhvOBI71mWrVaO/d4UPYijPOPu4IzXfBfmyBM8bW1pvz3LEp6Oh+VDllGecZiOeTjqzxBEYy3DOQVxYjSTVK9MMAVKAn2YTlzFhHca5MaiWE20LCz9XbMTN10PaJ7T9/vTVMFMdUduLQa75FHWcjSU4iRNMD41tdjvAsXvjOLhRGYvJojtIIQ8v9DuWcwmnueZC6mxdqmCCK4aI9F6wUkwu3/4+dbV10J7sp37oKBV2/tFRU0Qa9SoUaNGjZ8BrjfaXG8sPoWfWkzdDEysVNnp5lSD6X+apRC8u7a5wurlML/wyqwhEqpcVLlF6vQ1idZ0CuuqFKCd0tAKAjJj6IYRT8fD8v0NflhyfQLPOmXFhcUSCLfgvNZocb3R5qzhCCKZcrUYUBLKizHX6yAEp5s9/mJ7k5/8tS/S/UvFrQ+OuGnfZ+v8iLd/dI+3f3SPifw+T1uv8eiLbQ5GX8A+2ILjxgxBDKRLhlywQaYSMfJVEWkA72+5wBdhF0htYgy7sSNmoZCL401rK8JzipnMXgLDCPGwd/Hri7Px7gF2Z4j4YMuR3mGIVL4Tc+LvhdaSIu7QwESBr5wsQmpc92DOe+cnTLQL9KiqRqGUDPKcROe0vNJaWkz9gr9Iupyf30rnCKJ47Oyi9ssHTjU8aCOedbCeIIIjJMuVMPzivyhsn57oUe4IapEGKoUgEJLTNC2DbaokIxSKkR7RWxJ8Un0/gyOhh+MxPzg95FajQ+g7BAMpsEiOE3c/nGYJI51zmqZsxQ2fCKr5oH/KV3rbJSFMjSa3hpa3VQZSMNYZubU05eVL7/MsIRJyGhhlNdIuhi1Vj2Oi84XbUnrLZVEnUbgFEutIdSRVGQR01ZTWWAYcpRN/HiYLRE0K5zAukj8LFXjV9tfCaGk4zTIUDxCWtsCU+6cY6mwlIS0eeFQfmp2kEzaiWQXTVeEI33taK4g1atSoUaNGjZ8hCnXEYJHCLWgU0vdtQWNOYXij07twe8ovAguMdU47CKdJgVLOzD1l1nAtjAmlJBJOiQmlpB0EtIKQtSDiiR2CcGSomNGyt/purnB7OhdXWPp+Y/smDan4oDHmCJyKlSpnvQyukrEqykh97dM1C7sdQP9Nwft73+S9xlfZ+D8+YOOnD7l17xk7e8e8Pvgpr/9HyNT3eRa9ypMPb/B0JyZtuEVnQwZ0giVznGeOaNlrA9c9eOCtm91Fdc9i6UVTwv28lQe2N0E86boye8CuUFUHPt2zqQK4NsIOIxea87SDuH1GZgzNcUEQlxDvQCMIsLks01vB3RM7cZO7w3PuDc+JlZpRjUIhya2z0rV82WRW9CTiiKbxc4Ma62fhprUUcRFmYt15tdK4+0SC7SQuAXcQQsft87zaV54nK0riKhFkFbXyPE9pKlUqXoFP8zxJE07TxfMZSUlDqpXhJ1BRyHHzfYM84zRL2IoajLUmlhIpBcfpxKWopq68/ixL2IobDPKUhlSc5yl7Xp0F9xAmq4S8KCFJjAufWQ8v0eqsm1csPr8CMVNkv+zes1gys3qmLpSFQ0GzHkacZO44IqnI/Sz0VRH6WeVBnvJsMlo4vy5V1ZSf3atUSjwPMnOxxTSWitMkWTnTWFzz4rNxkk74k8On/M61V8rqDnDz4IF09S+5dXb7v0qoCWKNGjVq1KjxKaJIMc39QjgQkoZSvi7AEl5oiVuEs59OCc1Ea17vdMqF5Hykfmp0qao0VIDy1rN2ENEJQm63Ovzk/BiFoBOGmLHf9tYY+5sPgamNNRRuXztedWo3/XslytVENK+iHrKw/w0V0JCqnP2ilWPXx4jTJuNJj5MvST668QXiP9vievg+N3mf648PuD3+iNv3P8Leh6PddZ7e3uXJnV2C9c7CirKwk9qNMSLUiEeeiPdmi9GNt7OtBY6YrSqBvxC7Q+zH64iJX7SuIIjHaUIgBM2mX57dGMBHm/C0g7zt5vPUxKstSwniNKhG4BbTmXEdhm0VsOlVkvMsdcRAVEmHmOm00/64hRBg3XkIhPRqoiWUVAJI/D07ChG5wvYmZcCPvT5EfBg7FbFzUqo/y0l2EZtEGcpS4DxLiaQk1xpjQQpJJN3n5ij116wfwUkDWhlic1wStotQEIXcGPpZymma0PXhTG0RIKXgKJ1wmExIjEsZPkjGvNHpcZq6RNXMGk7TpHy/sclnVFIlnK22sKZeCOFmXncqila1yH4VilnDZXBzgY4Ixl41TLSGsDj+5yvKEQgeDPscJBPWwlkiJoTA2kUF8WWgmAm8yGIa+aTWVcpx4Yoo7q1R7mpXJjqfIYjuAYr0gTurLbK/qKgJYo0aNWrUqPEpQ/lZLiUk0ttM3eJcPDcBKbrECuTWsFOZh3KhGNPFjWVa9lykQYZ+VvFGo81GFBNISSDEyqfwbvErZ0JBALoFsRn6n4surhmo7lOxiE2MZj2KicRsmIa92UecNkm/uw5fTmASkMkGD269yv13Oqhcs/sHlptHT7huP2J7/5Tt/VO++p33GbYbPL2zy9Pbu+xf38QEqlQQ6SXYbloSxPlQnaIOou3TZYvOyOdCZLC//AS+c8PZbzvT4zrPUiyWbhAhBTPl5DSnxDjstxi3+shx6Ob7wiUL73AaVBNEskzdNHMzf8tsfZbZ+oJiFhB8obxXEMdal4vrvJwv8/dseU4rJPvaAD7chCcdeOMExax1dAZ+Pmw6g+heZ/wcYCgV6Hw2FVO4lFFrBeKHO4iB2wfz5jG8cbr8fSh/dDorZwwTo3k2GbIbN33Ng/D3peXZZERmNWthxN7EWbBPs4RYKoy2M+R6ovUMfVFCuLlVewWSYZ29cVox4WyVyqz+WYmzUa8iiNOjdTZcgeA8c6E27lo+P/l5f3CKwC70vIK/XzwxzKxh1eV+Xkic5bNac7Hsve80OxfWklSvu6sHyRmbnB5TK39BCot5ymWK9y8yaoJYo0aNGjVqfMpQUqBzSyzwSaYhR3aCZVHxu3RbfsE3yFO0tVjr0k8LzJM4gSg7EFuBJ4i+auBGo0VDBcTSNbg1g2Dpk3rtF0zz+9rxBFFkfnkRX04QC4WuiPifaM1O5IJyZjrqbgyw+x04bMG3byDunAFgG25hrgPFk1fXeWbexm79Mmu3P+Lm02fceLjP5uEZb/30AW/99AF5oHh2Y4u94ZfYi19h1EldemgrdTOJ67MKYmZ1GfYDlFazy3rUFtDULs1TyxkL63megvVzoCpkNFcybndGiNMm0WkbLYcII7GdyfzWHSoKYhC7ubPMz8Ndplwp4DSdbtfNIE5hsMRCMbB5aR/MfAJmoa6IwrZbDflp5djNEeK4hT1sEqyNmeTLlWXh5xOL2cfMv09iNKkxZQVMNWDHWVEt0gLDCCsNwkjEfht7CUGUfsbMWEuOASx7kxFf6OryoQU40n6QjBEI2kHASeqUxkGe0ZCS1Myqr+O5eUAlpCdMS+4XLdzc7OYElCWQYGz1gc40ZGmGaFUG8Vy5fU5brU4CFTOTe5bvnR6QGsOX1jZ43gcem1HMRGu2q9U5c8gryuzLEt+kECTGPUi76LPXuqTI3jJVpwd5xijPmMzVt2hjyyqVWkGsUaNGjRo1avzMEfgn00XkfUMVYRH2BRREp0IepwndICJWim5Y7SWTpSpVWEOLp/5NFRII6YrH/UwXOMuowXoCuLh4NNaiJAtF2qESWKUR2lu1oiVBKnOwTK22ubHlvN8gz2bnlyTwjWeoH11HP2lin7l5PhqObGhr+Gj9IW+3OsijDud8gbNvdvnJ198iHidcf3TAzUf7XHt8yK2H+9xiH4Cz/0+HvVvbPLt2wkHrxkL4iwvuiWcsu4WqdFGFwlJIQC4qfy5xM2U9ihnrOfK04UhbeNZCtfx1reyjtdb3BooZBbEIWkntLIlbhYZSHCQVgmhN5V60MxUKhW0w99uWmYJnbTfLCQs2XXu7jzhuIR6vsbk9ZC1YYf/zyaVFFUyRYjrxXYChdBFPjvCKcr9HOiNOGgjr6j9sohD9GDtR0Fj9kEIKgcaQW1eT0ZAB/TzjvfOTmSoTiSNgFNUvRvPB4JTEaNaCkEDqGYI4yDLUHBlMjaY7b3schK6mZRBjXz3Fvn3MtXiWdEkcQQ58+rG7AALxZ7ehm2K/vF/2LF70u0MwdRp0g4hEa0Y+3fZ5FcSmCpYqh1PYispsZ1XxT4AixGhVhcXVtyPKh0/nWUJqjL++U2h/jzkR+zkfBv0CoCaINWrUqFGjxqeMIpSmWOS2ZEDu1/bPG4ag/EzjzWabv7Vzm4NkPLMAD6QsF1aZNQRClgpiQylaQbAw37ThFYJ5e2oBpyDK5Z1uoQFPEO0VLKaFGjkNpXHWVhdnP/feAuRugn7SRIw9WfJ9hbmxBE3D+Tc+pvfnbzmyYgAJSTPm/hduc/8Lt5Fas/3DhJvvn3DN3KN3ek7vdMA73CNXkoPrmzy7uc3erR36vTaZMTPnM5SyVDtfxiJKIOiEEfeHfa4t657rJlhlCM9brG95UlyZ7TxOEwY649VWFxt4a2OuCISbn5roiysECsQy4CxLylJ2CzO2uqpql1cURCFA3Fuf9h5G+aJyvDN0Xz9oobIAFS2fS5NCuNlcXEhNQW4Tr+5IH6h0nmXlvjSk4iRLWRt7YtVOoQs8iGC/7RJtN8dLOZCbDXREdGJ9aIsxvD84YTueqnENpRjmWXk+Wirg/rCP9kE0BUErcJYlC2RtLYzKWV0ARgHi2zcRmf+8P2vDF44XrpUSgkTnxFJNidZpw82zTkL41i2Cb3xEbuyFc4rXGlPbeWEvziYjr5zNEa57PafA+iTa58eUgE10vkCWXxRFRcUn52rTkJrTLAEsw8r1M/6hixKyTAL+q4aaINaoUaNGjRqfMqR08fqFIhP5VMlALNo2L4MSgl4Y8bXeDt0wWlApAiGRfqGT+nm6Yj4nkmrpnOFG1GCYZ64GYwmMtURedVxAaKAQkK5gMbXWqUWBT3oEZ30d6XwmfbU83s2UmSVrYTG1lqYKmZDR66SIkyZ2HC4scI1SHASvcLj+FczXv0Crecj1J4dce3zItadH3Hh8yI3Hh/CtnzJsN7h7bR351uuwtg2NmFCqcl7yoh61q8PSVgGdIPAzZHPnVALrE8RRi7XjTfcTlYCaorMSWFAQ+3nq+/HmzmPhdqy8VawUJ1nCIE9LBXl6eafpouDIeEEmARi5e8h2E+zN/iIZk8DWGPG0i+3HsDVeeiaKhwSBVE7dsy5kJ6mkmRbl9dP9DhiOh2yNfOhQO3P1Gg96iPe2nHL22gn2CydL38/4Gb/Ud93daXUWXhdLxWmWlgnD61HE3mRcnh/lyXhxjs7zdIEgVnsSyQXie9ddkNOdMziLEecN7CCC7mwFirOPaiKZT5NMi4AlZRDDiPWzDVo7/aXndHqsi79XukHoLM5VPOkgP9hyf/72DewvP30BkjhVECe+kuRlQBaznJ+YcDoCmxvDMM9pqZBBpUfSeNVTVWzOC7DAaewqa1Z1mn6OURPEGjVq1KhR41NGUcBdzAdGUmGsQcnwuS2mDRXw69s3yp6+xfcSvnDbkhlNN4jLBdt23GAZB3yr08NYSz/PWGYx1daWKuQ8RDU85QoKovEW004QcjqeEElFS4WEcnlXoFjLyzkzq0xJigzG2Q3zzCV8njQdcVm2uPULbHoJo7jF3Xde4e47ryCMYevglGuPD7n++JCNozO+encP7u5hf+/P0LeuoV+9xZ0W7G+twSWzTqswYwtFsNNoMdaa9TDmPosLfbvhCKIoLJwVgqixhD6ZUvkZRJG7kKHMGn8NKxdZC8Qf3wFpsW8fwa6rLXEzbpZ+ltFUAXYumKOayvl4POBbJ0NeaXXdtn3npf3mU1ihDtpO6rbWj1YSRDdjZmhQEEFLYrQnou4+XAujmc+IEoL1MCIe+3PTTmFj4siT9q972IPXzhaCfaZF9C7Vc5UNt6EU/VHKmld4lZAoQRmVEgjBxFtVha+pWPX5AGC/jRhG2K0R9p0jp9idN5xqN0cQlXBVCzo1U0tzEQZ0+xzuryOPW8TXff1MP4JQX2itLdBSAYfphKggj6lE/GTbdYFujRGHLfhgE/tLzy7dVhXWUobUJC+xQ1AiPrG9tIC2hpF2fZDtIOA8m36mjE/TDaRkki95PwPiRzuIvS52fYz95t4vHEmsCWKNGjVq1KjxKaO0KPqFWSidwqfk86eYAlxvLLEmegRSoiRlZ13R5wfQC2N6YbzwM4XCOPLJqvPQ1pahLfMQYWXi6Dkspu0g8PH0MbFSRFIuNXcJiXtqf9pw6qGYbkd5Wcy2MvflYQg7cxvIpFucN7MFhdNKyeG1TQ6vbfKjb75NNEmI7j3h104Teg/3CB65f/4ekCv32v0bW+zf2OJkc42lbHsJ9iZjDJZbzTZguR63uNFoMcrdnNsCNqaEyl7vQyVpVeDuHxfiUqm58Ivyfp7ObnEQIRIfJvT965hfego70+2f5ynbtrFg5avGphwmYx4O+zSkcgv2ceC6Dz0BezwesBbMqdme+IhBtNK0V84gBlPLcWo0idGl3Vj5hwlV7DZaLmAI3AMBCfZrz7CTAHEeIx6vwYMe9s1ZFVFUKmcSrVcmVSohudPqzJC+6mdO+fnZ1Bhn5TaGMLhgHtATfXv73J3Y3RF8uAX7LZjbRyUEgyxjkGfO9mqB8wZWGuwrZ87aWzw42Gsj//Ka23Zv4pJzL/h1IoSg7UOpAOhH7sHL9QH2y/vw+6/NWLWvDlGG1CwQRC0QH2xid4cumOc5UO2t/CSw3mI60m7OuRPEDPO0VICND/tSYsXvoJ9uI/ZcpYk4bcJf3ID1CfbVsyu5Jj4PqAlijRo1atSo8SlD+T65KkFUQqIQy+f6PgECIZF+5jGzht6KgJBVP1tEwldtYgY70xlWhQw15RLpShZTdx5aQchE65KwXjiLuT5xBLE5OzcUKTenZVuejIzC2QWeFq4nD2aCVM6zlJM04dX2bG9e2oj5+NVd3v711wniJvLgGHXvESfvf8jW0yOuP3H2VIA0Ctm/PiWM/V575bBUbmd77QIpudZocXdwxlL7XC/BvHPoCLFX/KqIfXBKs2IxBTffmBo9u7YfTu2goh8j3t/Cbj0C6TrkjpIxr7W6LjzI74utkEWL6wXcbTQ5zRKklq77sJWWu+4skZqZs1lUe/SX3H8WOI9QzbQsbi/qGBKjvU1x6amc/vwwxAZmes9tO9Jrx2N40oUHa/Da6YLSY3GzlIm3mK5C+wK1OBBThd51Q9qFAKeZNzxqunnCgvi3M2wzc2E1mZxROpWQ3m7tPxODEJFL7PoYGhrbSdzPDULEe84aakONOGtgz2NYX965WWDG+lpYhdupI4QbE8RhC3vSdKrlteGV7KZSuPRfwCuzlXPxcA3xsAejELu5d+m25rebvzQF0VeTWGfrH9ucxGiaKsBYPEEUGDs3Cz0O4HEXG2rsN54ifrjrLL9nDciUm9v8BUBNEGvUqFGjRo1PGUGpIE4tpoEQNJR66Wl50s81Gut62C6LgJ/fz+KJenXxfJGCKCM7JYhXtJhGUtLwc2cb0bSQvpj1W5if2pjAPZydsLpPQhIKSd5M3HSgX/BigPvriLvrCOOrCyoq3ETnfrZpFrkvKG+owHX07W5hdrf43uvb3D0/5YuDlN2nR+zuHbP97ITbD55x+4Gz441bMfvXt9i/vsnh9U0G3Rb4OoJYKTI/V+fCMHxlw3yVQQEBvHK+4gwKIik5SzMI/PnOp+mjRVx/+eqCIL5yBk87rn7ifg9eP3Nzi1mG9t1v1Xtxaqd0ZHwzanB/2KeZeIJRIetSLLECxtoF1QyjRUXq4RryvW3id/bQm09nyGCiNcM8vzgxdhI45as7WeTXzRx2h4hnHex+C24MHYE+bsDuCIEjiOknsEK68+QUxPmKC8Bd5L024u6GmydNA2xvAmHllWsJjENHoCvKWiQlj8cJrxcPLyr9nYB77SBGfPe62+71PnYtRby/hThqzVaOXHYchQrrLcx209lMxQ933LbH4SwB6kdw0IIbg4Xrn2qnproEVn+xc4G4t+7+PHp+e7agUBA/aYqpu+ZOsZ8q8BOdO4JYqVvJrSWqfn4errm51jvn0Euxv/YY248Q370OTzvw5vGV7L0/76gJYo0aNWrUqPEpQ/oFUxlS46sTVqlynxSRkj7Nkkvi6WehfBDNfJKftma1ghj5So3AXGkux1g3Qxf6rsGiwzGSqrTiqvl1+/YY8/W9sgLC7ZNlPYoZ6pxEToiELReh4ifbiCdrzpYXGKckVubgck94c2NmlJ/MVz005o61GQTkAo53Nzje3eCnXweyjN2DM3b3jtl9csjm0Rmv3n3Cq3efADBuxhxc2+TedofT69vcbamygLtYQIvy/64Oi6UThBwmk0pIjfLbc3OIM8RnOLVi2reP4H9tIj/cwhiBemWfxGo/gzXlcFJQpj5WaxiuN1qoof+7Dwuyvtdy6ZXvpI6QDithLAbE/R4AatAgWzdl96bFkhpXx7BSkQMYhOUxLT1HN/uIZx3Eky52e4z4g1cRVjh7bWdAbl0QTvkQJBfuPCkDnasGtDi1tqjDmMHH68iPXMAQBQnbnJ3DtJ0U8QwYzBNExdudniOhFoSvdykecNjNkQvkmYTYOMe+fQypBLacPXTOsnohhnPncXMEbCFS/ztjNP3dIX6yhXjkrpu938O+fuoV7iESfP+mdZ8tKxE/dftTpraOg+e2rk5/F32yh2iuO1Mz1hmBFOV1L7oQi4cb0j8MkcUTCy2ceiissweD+x23nsCdc8THG3B/3c2Vfs5RE8QaNWrUqFHjU0ahhhQhNaEnQw35s/nPciQVAx/C0Aqu/h6Fgqjn1CDLaguoKlSRK3QgAhjrVJJQOptpsX+Rrw8Y5BmpSbheLeUu5rZmtmNpqID1MOYwGdNt5IhxiH3SceQwyl0iYzNzC72KemOAplKk8wTRGBpSLRxrUwYzs1DDPONpMuJ8Z439m9vwzbcJ0oydZ8fs7J2w/eyYjaNzXrn3lFfuAXzAOAo4vLbJve0ujXADbl1HCrFy6Wu8GlMl+IW6uhE1+HjQnxJEryAGPgFzRoEtSEArhdBif2kPfnANeXeTYOeUpJGU3XWFgiigfEhQVRVjpSBxhMdW0mRDKZfPinVTOG45ElQQxIO2q2wA1Nhtq/hcYN2ifayzi9W9c6eq2e4KtWxrjG3kiOMW/PlNRGEZHIfQcQqyMdZxlYlC/MmdMuDG3jlzRPoKRCYzhqHOFmYZxVNH6sybx4iPNhyBniOI5Yxmf3FGszznj7tOFWylsO3v/+0x5s1jZ629PnCEJfJq7VnsyG5wRcWtUPWKEKROho3yKUGcVFS/vY4Ls7k2QOx1ET751Lx7gNwekxpT9mTG97ecrRSXvEqk3WdzScrwRXhZITVSODJ/nqU+Odgfnk9RNl5BL9JOy3vvpOHs1NcGi/PLr5zB/R486jorc3C1338/r6gJYo0aNWrUqPEpo6iPKMhIYadsPIe69zyIpWRiXM/b87yHEhLJYjBEEYyyDIWCeBV7KTjiEUoXStNUqiRASkhCodhPhsRXIM4apwJuRg0ejwdu4TkOET92KTUznW5y/nhcAbqbm5q+V2YMW9UZLY9ozgqcW8Nu3KSfZ36eMiCPQp7eucbTOy40JMhyNp6d0HzyjHdPxjSfHXHn4T53Hu7Ddz/CRiGv3Njhl3sR6a1rnGz1MMGUmPbzlL3JmHe669P3Nc6mvB7GICwo6xbt+fS+GuucblCx2o5DRx4Kgrw9ht0hPO2i0hDdmJBqPUNxNqPGTLXEzLnzCabVupGgrAGBk3RCOwiJpCqTTMVxE3tj4H7+wdp0W6OQL3bXy3MbSskgT/1M4wWhL54gsraCIAqwt84RH21ObZTgaiasI9HaGlcxc9xEaIntJJAEjtgEBvvW5UpcajSHyWR2XxOFGEWO1L1x6rpBTxtujraKjt/3wYoZ4Uwi3tty6tVXDqbqvADeOF04XjbHLmXzpAk7i3OrCzC4sKE4n9m2feUMDtqOPE6Ue50Rjii1U+xXD7C3+oi9DuLxGuIsRu0IUuvmMeVZA3V/AxsYF5rTytys5ONwNmXY4ghtK1uZhCsEZXH9lXC/hziP3Pmq3NCOIBpPEJX/Gnw8OOfV1tqMgt5WwTScqEjr7SxJWI6MUxHvr8PH6/CF50t+/XlDTRBr1KhRo0aNTxmBlyOKf0shiCvk6GUjkoqJ1nSCqOxyuwqkcPbHRTVodV9jWBBE/4T9PEs5z1y33rqfL6zOFRprCYXw9RYBrUovY0MpduIWg/mutiUoSKsqkg5b04WnefO4DC1Z9dNu/i4n0ZrMunOVWzMlVxW4+cuKAmkt3TBiN27yYNRfUGlTo7GB4uPr62S7a9y48Sr/+v4HvHE2ZmvviG+cZwSPn9G5/4TfBPjBPYwUnGyucbS7weHuOpP1FiqYVTTyUkGMXWUDhiAwZUiN65ZMWReeQI1ChBXYTjY72xm6a6XyAG2cUlm94rFSxKs6HwtVqSSIzpab5W6bR2mCttaFoWyPXIDKk65LsWxliNOmS5Q1ri5DWFEu5pUQnGUuuKYlLvhsnMeOGHcvuE9eO8WsT9x+DiPk965DolDCKcDG93GWHYNvnDpL7J/ccXN2lxBEa912jpLJ7Of41IciFXbo233s7SWdhQ2NDbQjiMusl/stN2d583wmxXbl/mw5gij229irEMRR6JTN9tw5fP0M+/oZ4ls33LWaBO5aQXnN2Zy45ODHa3AeO2uzcR2Wrb11Nzv41mF5fcqU4eoc4mET+b0bvmJj5BTWm4OZwB7Jot199QkAca/nZiffOJ1RKiWCfp6SGFN+VneiJncHZ7zR6dEJwlJBv9GcptXOPwxZeMvXTuHRGjxaQ9w+uvJDsp9H1ASxRo0aNWrU+JRRzPapitLQViHxC1RcXAWxDEiMphuGzx2CE0r3tH0eq9JWG9ua/o1D2rfdIvY8S3m7u8G94TnDPCOWivcHp7zV6fn+R6ferYURr7V7NCvzfrtxk1Aqvnu6f4U9FQRS+sRN4Qrbx4FTQK4Qp9+QAUdmzFE68dH3jiAuC/WJpJpZphrr5kjbQbRgx9XWcH84YDt2KtzNRtspokHAo50eD3Z6vPPK20hjOH3wiPs//jGvn4zY3j9h6/CMrcMz3v4x/AZw1oo59oTx4WYXs9EhVgGdICQqLLKhRmQRVrvzMdH51LLp7aVZc8KHgzO+2N0AwIYGAchcYXAE8cp3SbFo9iEleUFg/QZiHwDiTpzBvnuA+P51xI92SpukvdVHHDURSTBjOwyEU0BnbH4L768cCegkMzOv1lrOspReGLl7XjK9DzyBJnPBSEOd+T5OWQmBmTjS1sgcaZtLF51HIGE/GTPWOevh1A4tfGqunVcM5yFwhPS0udR6Wc4eXh9evJ0Cu0PsTw3steHtowv3HVi0l86jmcMpzpZbnOYqUYo1NnQEV1npkmFNjkr9dqthOf49xCgoNyWOK+fssI04bGM/3sB+6QCuuftkWnNxhbszUVNr7HD2fBZpqJnV5YOuQEqaKuC7Jwf89e0by0XKSwgikYHbTkVUR224cfWAoJ831ASxRo0aNWrU+JQhcOpIddHbDUPC51D3ngexnwnrBYudh5fBqY+LC6JgRe+AlHDyxlParbZbzAn44toGJ9mEcZ47VVLKkkg5i6kkkoqvrW/PbOvXtm9wkk743umBCz+5kNw6a6MVrsOMbnqlgu9ipmkjink07ruC+Mr7zAfUgJuPLBIVi+CMUClaQYCeW1ieZSnXmy3OswQLXG+2CaVAShcgE/n0VpQivbHDt+0rPG22wVo6/RFb+yds7Z+y/uyYzbMhvXt7vH5vj18BMiU53lmn/cYRX2xYHvfaTrUYAami0TBcb7SnM5Q+oCZrJk4tKs6pJw8yc4Q90c+hfIwDZ8iLqzOIqlzCT5MnPXZH2Dtnzrr51NVpcMOReU6aLgilIIhSlrURKwni+VyqZ+W8n2QJoZSLFRWFspO42d9Ua7Q0SB3CIHIW3GLGbHPiFM+TxtKKkQJKSK+8zt4/CwriReimcNp06aBVgpg666sN9Uwn5oUI3HkVj3rYx1147ezi1xcVF568PZuM6IXR1JJepJSOp9TBVomSANYSxFELNYpJ2mPGWiNzb5kNK/dUQUKrCqIn5vbXHmFT5eY2n3QRP9rF7twDSXlel84hJgrxnevYW32X+Hte+V03jHAfimJXRRmmVP2d0goChjojNWZ5Q834EoLoz4kAMD+bh32fFmqCWKNGjRo1anzKkD78pRpm8bXe9sXdf58AgZQEQtKLnp8gusCRJdtcoSBKIRDC/cAgz1gLIrbiBp0gpJ+lSCOIhSpJg4ULibH0mZZXCTwMi2JrcfUgi0Lx6oVRWd8xnbcTS2ctY6kIhCS3hsgfSygEsVQLC8thnvPFtS7nWYrFJa0WnZcTo2dK32eIhRCcdJp8GAmuv3WbvcmIrrbsHJ6x+eyEW0d9rh2dc23vGPaO+e3i/aLvciKvc/TDBie324TbPYrlrDhwKk3aGRNJicGiEGU9hsjddUjMFQmiARLlyJQ/TdoaGlU7qGuAmIF9+whOG4h+7NJkG3pqOxyHgCNBgRCMrZkJzJlHMX9oK/OHxlr6ecZuo0Wqc9rME0R/fVOflOtnzkQ/dhbcXlKKVHZjjHjSRZw0sfME8Sx286zdlMATzZmAmlRCP3JzfReQivK8dP2MZj+aVQoP2m6/dofPlfpp75wjHvUQj9ZcifsFz1fEYJpumxvDSOcuOMsTRNt016e0WcLiMa0lcNQiHDQYtUcM8wyZeWWwards5u6MV2tozmNHgNuZC8fZnCAmgUu9HUSwVlhf7dLjEB+vIwYx3JfuuM+mv+vEcLYPdRq8NXtjKiHQxjAxS6pKACb+YchF19LPNwv9cuuKPm3UBLFGjRo1atT4lFGQQzmjIF69wP55EUgXgPMiM46RVDNzP8XT+5UhNZUuv0Ge8W5vEyUknSB0oRVCECk1oypdlFBZkOnL0gstXFyFsAK5dcml62GMEoJOEHKWpeX+LZu1jKQilJLcWCJJaZON5mYTEx+u8pXeFnuTEWOdsxHGrptSSvq5IRRTcqx8n16h7I11zkk64VrcdMpmI+betXU+2F1jLYx5MuzzO7LFLw00/fsPkE/22Twf0uYjbv8I+JHvoF/vcLy2wenZiOPeBs+a/ZL4K0GlHsMdq4v7v8ICN1NOjYmnC+Zpv6coazyMsLMKsAT7tWfw/parRwCXLosLqinOoAu7sRfvibdwVgNqjtMJN5otemHMR4Mlypmyru4kVaVtUQimKlavovYVyt+TDuJZG/ulQ9gaIT7YQjzouXTcv/kAJSSDPJv5jImP3fyd3RlerZmhCD+ZC6oRp36/VswSDvKU4zTllVZnbnuZI7gnTex+2xXdL4MFDltu/q83oZ+nrEfxrJJcKojh9AHMHFEqCK7qN7C7ltNsgsq23Gxl9WOkPMmaBCU5dMR8rseyl7jU27O4JIhLM2oSBY9dT6SYhNhhOKsgzp1PKdzDmfm0WffQxynoC3nCFkgCR3Qv+jWj/GepVhBr1KhRo0aNGs8DhXAJoS9YzP28CHzHYvMFehajucqCwu63KqRGVmxbxlquN1zIQzuI0Lhk0EjKyhpPXEgQlRDOpnhBOMU8aRX+a1eZtyzSK9fCiFgqrjVaDHNXFm99uuk8AimJpCyVxiKJNVazs4lDnbETN9mIGrza6vJsMipnGiOp3LlQ0/Mo/P+KKStjLUpKDO68x0pxkrrvtpTrYjS722Rvb7P/ziv83rP7vPrgGpsf5Gxs3GUj3Wfz8JTe6YDe6QB4CGfwtx4JDtc7nO6sc76zzkm0zdBew3qCmJglXX7LUMzyVebbtLVlSm+h/IVIZ6etkGFa+awFuOXJRsV2qITw53jFdTyLpyE3lYCasdb8aneD3BjesyvCZaIcMYpQRqKFdYdb2EGrdtVGjm1kroojB550sIlCPHC1DSINsJlESUE/z9iKGoiPNhxpedLFKoN945TH4wHrYbxod62i41Rm+nNKf9FduSw9ExjlObkxS+95+/op4qSJuLsO+y03K/j28ewGzmOX6Lo5htAyGufcaHZ4klUIZcPbQsfBNAV4mYIIyH4DYy2nk5SGVu76zKOZOzI3DqEIBpqzCdte4lTLswb2jg/2scyq9AbEe1suwCfUrmfxoO0USWncrTMKET/ehkxhv/YMiSDReiGwSwqBxTJZpqAnypHY5iVKsKoVxBo1atSoUaPGC0D6+cMVY3wvHYGQNKSaSQi9KiKpOM9SUk/sOkGI8nOEy1BVEBGUFsqGcnNpubW0pEL74BLBartqsT0p4CIB0WBRwtlo3XynrChZFyM3llYQ0lABvTDmZrPD/dE5uXWF7auU0pYKOMt8WTn4OcppLUihTBX22S9010uyXJyP3JoZe62z54rC8IjFEhYpsl51LtJHdxst7g3PSwLbDUNAkLUkh/Et9m824fVbAMSnOVt/HLCR7LPRfsD60QnXj/tcP+7Dew8B0PwXzk42eHwWkF7bIm2HyOvNmaqNBaT+exX7oMX6vjoX3iNxDxnc/XPBtpbMpQlREOblF198vO7e87XTkkPmvstyJ25ylqWsJJeRgRGoLCSVCWgJh03X01clKgLsVw6wZzHig004b5QEpSQko5BmT7MTN4jzCHF3o/xx87rrKMyGlkGeXUwQlUvfFaPIkfXQuJtrGDqys8LamFmXxrlAwgE2x9i1CeK8AQOvRH7heOa0FNZjuz0qQ2Dc57Zy3hvaKYzjYBoGNNcFSCPHCotIAuc+nkADlqd5FscyUVM76HyQT6HkVtRAVz/hdz6ViB/uum7IOMd++QDxnRuIh2uuhqM3cYTyvAGPXZ2K1e73yUTnrK24FktncC8LqClQkGdTE8QaNWrUqFGjxnNACE8Sn2eg6BMgkG6WaFngymVoByGvd9b4QneDjwfnPJ0MaalgJakTuOOz3hpYqIOxJwdFCExWLj7thUqqI02sJAngVStcJUdxbrW1V1rk5NbQUgFSCH5t6zqbUYNvHUlSo0sr6DK0gpCjdLqgVUIQy2BmNtF93X1/I2qwETXK18deQawm10oK9dP9oegUNH5eSvj+tl4UcL3RohtGpQLZDkJipciCDAWIdKpmpg9vsBd1efrWFvadXR6P+lwb59w8HnD9dMj64Tkb+wM2x4ds3gXu7vHXACME/V6bk60ep5vd8t955BfWmb+fQk3u7cPgrb5iqiA2lGKsc5ifBaxCWRcOU9gOKzONS9XqUYA4aDt7681pbUQ/z9iMYtbDuLSnLlWTPWlRWYCJxjSPuk6FujYgFTnDNGejmNndmLh/nnYRgwibezvm9QE87MEoRK4nbEYNGLh9te3UBabccRbX0IcSXYpuCqPIBdVsTlz/Ya5cSuuKj4m10AgUqdGLJFx4QviDa47MAmjhQmwKHPo5we0RI53RCUJuNtu8f346sx0aOWLsw2yifCY1tnyNMqAFxhp06nc4vIAgJoE7VoDuXOpnZNzs43BKmC0uXIaTBuL77phsO8V+46lPnc2nc5IbE6fknk8/d6QK1dAkRhMv+X0oECQmX3wgdVWCWCqItcW0Ro0aNWrUqPEckBQK4qfzlLmpArpeJXtevNPd4J3uBlII3u6sc56ljE1+oYIIFmcMnAbxNFTgF+qUKpuDuFBBVEIgWR6UU0Bbi5SOzBWkdL5uYhVya0vb527DLZRjpRjkGcr3My5DSwXkZhpmo4QgVpJASnKvlllw1QlLUCxOqzOIcs5OW8xVGhzRKYh5U4bsxE26QVgS0UgqukFIEqROtSnUveOGK0yPcuybx367kuFam4/W2uyHkVNZfu81WsEZ+s53eaOf0jw44cbpcGpP/Wi67/1ui9PNNc7kNv3xkBOt+Ol4SKQUIGjIoLTISuESYs+Gl3dZul7EwHXtectpSwas3b8GXeN68QoUqtK12eCWoc754tomQgjaQUjo1csFMhC57asscMmrz9wMm7025Mx3d27MhzqtTWAQIXKJ7SbYrrdAVuYmyf3OdFJ4dTr/eNV+d9tNEc9wc3Obk6m9tL2ifgL3QCaSinGe01n2Ed+cYH/rPnz7BuKk6e6NwBOdTCL6sbOBtjLyzH0eWipYTPLcGsEjZ62lkS8n3spCorAGTOLPxRIF0cY+7XMcuPCXUEO45AStJW7u8dwFGhmL+63ywx1HDm+du9AjT3jtW0ew38FeG8DuEO73Znl1pghbkjfbvRWfbUuil6SYeoJoawWxRo0aNWrUqPGzQJli+imtITaiBr+1e/uFfrZKYoUQ9KKYHqvTUAtCWCiFxc/HUhH4xboUVPTDCyoMmKaYXk1BdBbNQEgMV1BrcBbT9hxxbqqQo2RCKwiJLlAQCyJX2GSVkDMpqNaHtCxDLAP/78oMoldLCxhvk9VeUmwHIYGUZf3A6+3eTDLtVtTgYzWmBy5BE1xdAF5F8otoIaxPhvXnVOBmz2yPp3d26UcN9pMRtx+9QnxgWO88YN0esHF8xvrxOd3+iG5/xB32gB/Cn8PvfEdytNbmcL1NfOMaw8iSb28gQ8VG1ODD/vnFFwIcKTzF2Uw9QdyerCMfuPoTMwngjVO3y544VYvdrbVgLdcaTQAaUtGUAekytcgnmco0QGuIDjrOxrk9Ik8NoZQLBMj2EsQT/5eNyfK6hoIgBtP7rwjrEVKUFtiV8HOGoh+5q+O7Ky8iiNYf65m5pHevIGqpms58FtUN7bRUfasPRqrnwL5+iigIooD3+qe81u7OPngKDCIJEFZMFeZoyWfREy1xHjvltrO8BsR2E9cBOQxha8xu3CR+sOnmF7eH2HcPZ3/gxhB7ozI7Od+B6h+cLFMPgcqjmdnfN+LKCmIdUlOjRo0aNWrUeAEUxEldoJy9bLxIwueLQBYJlt4KVpC/hlIEUmCsqNgmmXnNMgg/r2kuUASNtURKlQvZWCmSJd2Ny7e/uFhsKWfX64l45TVyltliv6c22WagOE1z/1VWPgSIpCOUasZiKkrlrTwuOU18bXvCuhE7UvhLGzsz29yMGrwfetWqKAk/dmSpKKX3R42SkrRyjrIgI5o0UNZZZOPzNuLeOimwP9xk751D+LojeWGS0Tvt0/uJYX1/xFq8R7d/yo3jPjeO+3B3j7f9dofNCL2zRaMp0btbPOu2OOhGrDXbzGNZ1UVREA8gP9rEFHbPJcQpt5ZAStZCd36EEKxHMc8mQ7rz7xU5BUtkAWoYI7XCbo9AWYwPJ1qYY63MJtr1yfS9r0IQfQ3KxGg6F30WC5ulD6oRw6KfcLkCq61BItiKmzyZrEgpLVBYPbPK/V4Qn+b0ni0edBRKfHkOGhq7M0QctDHNlKYKGOTZLEH0BEkahcq86rbUYuq/VgQDrQp/KQKQvGWzJQPEvU3Xd/r20cXHC9BLML91D/Gg52ZD04tt9gp3zGoSQlix4hb32xUVxDqkpkaNGjVq1KjxXFAIFJ+exfTTREGIrHV/Lo4xkopQKIyEbhCyPxlhfVLoZURZSYk2hkGecTxI2WQ2tl5bS6ti1WxIxShfrbjMY95q1lQhidEXWnLdbGLFCuqPoaNCDs24/Poqi2kgJaGUM8R9GlLjYLyaU8wgtlVIUwV0guWVKIGUWGXdfFwqYRw4paWblCpOQTYllLZdYy3GdyEGWpFpw/rHTnEuCIEYROV+ZXHI4bVNjp7tIrIO5lce8zg6YnuS0T3u88u5ZPB4j93zEb3zEfLBU34Z4L3H7v0EjDotztc7nPfa/t8d+mGEYXNq2bTAszYWi33jBHl301VNbFStl1PilPkZvGpa72YU83A0nVEs4c+HSBXSz9WViiCCwM8MBlX/ajvFSoMw0gWqhMbVZYxCyuhZTxBtlSD64J52EHKeJTPdlwuItQvKKUjn6GKLaWac2rkVNS5v0qj0P5aYs04WqnXsH+jkc+fAfnUf+3CNZPeMdhAwyefUwcoMnvQEcWlIja9GKbo3VxJEfx5F7pOPU4XQ0gXQtK/2EIjQuEAhKJX1VVBCoBPB9e+8g9gcY7/xDA6bro8xyi9Uct0GaotpjRo1atSoUeMFUKhiq+yHn2cUx2R8QElVHewEISaztANHNox//WVpo4EQ5FjGOifBsjlHkJyCOF34xSq48gwi2DJAp0AzcCmMF9WCNCoKoqgcQzsIyf17W2vLkJp5hEISCjlzfqSfzyx2vZhBnOicgrRsxY2VBEMK4XYp0i6c48irhxvj8jWFIhRJxQC32E2NRniVJ8gDGAVE/Zabs3vjBHHQdtubRxlSY7AC8l6XB62YN3Zv8x+erbMWRETW8t81tvjJh+/Ds0N2zkZsnI9Y64/o9EfcfDi7yZHq0D9b4+w0pK826Z83ON9pktzuw91NOGjB20cu2TPUM/bF1BjaQTDzwKEVhMvtyX4GkVQRCH8+SxXNhQPlxkD1sCXYd45cYEqR4NlKEecNbKKcKrZKQZRwrdFifzLmQgggdhUcVotLLaa5dfOu61EMiAvrXWy0SJLEeNY6aXEPZEKfCpzPB+soC6+dofMMZSSIOfKnpoROVkKMFhCaKdkGbGMF8SrOY1GpUihz6moW8hKepIpstoqGh2vuPW64+dZASkw/QBqJPWy5hyw/cRZn+6XDxWCeeUh//HVITY0aNWrUqFHjeeAspvJTm0H8NFGE1BTzd1UFrROEfkHrQmcK6526xP6qvCXV+A5GO0f+tDUznWYNbw+cfn/5nGMR6d8MZpdDoZQEPn1zFVwgizvOYt4SXCBQ1Q4rVyTVBsIriJXzs2zesgj0cWRT8utbN1YG55QPHCKNSAJ45mycdrNKEA1KCtpBwGHi3ic1hoYPCFFZgB54W+PucDZtch6eaJgwR2jBZtRgrHNfaeKseiIIMNe2iToh/8uTe9xqdjhKJ7wSxKydDVk7HdA9G7B26v7p9Ie0BgOu/QTgPvBdOITkbsi52mTAJv0/CxiOoL/RoJ/rsoojs4bduYcHKwOQSjVN0hSeSDdzjLWe8CuyZX14t+fUyFYO5zjFr6ERSwmiuw+2osZi+MmqfRvhSPk4cEmtK4hJZgw9368YScneZEQoFdtxY/HFnqhVE27n0zmttS4FVwhaKlypxBefqUgoEl2Z8fSWTGkUUR5Oj2ceAkeyx/58XaIglsS7mO2TV30A5FGdvywwUcifbju76ppTJJUQ2LHyuyjge9ecCr8zhN3Rkg3PoVYQa9SoUaNGjRovgk87xfTTRNGDWNSbzyiIoSOIxdesn927aAYR3CLf4havoZ/Jq547be2MHbShFNorHxOd8/HwvExirSLz3Y6tOStp6ANnmhdYASOpUEKS+2TWwipaJHm64wO54ilA4FNXq8dehNRMl76irOxw4TviQttrQc5LteTY1zFsTIM6cmtRSJoqLIlsajQtP+uldICZFIpa5tVBu1xBTBVWWIzSKCPYjZucpQmxVH6/pxUVNxptbjbb3Gp1OEzG6DDgZLvHyXZvZpPqP92iOxnQzY5Z45BucEg3P6F7NmAnecYOz+B9gL+EY7AfwajdZLDWYq8d0d7dQfUNZrOH7XW9FXjJNWjkjoiPQprFt5uZ76aUtIKAoyQj0a4SYS1cbuudCarZnCxXEHFprp1VauY8CjIziFwP5AVzb6kxdIKIhlSshTHaGo7T5YEv5XaXzSA2ZmcQAdpBwHm2PPhGW+veVwUM83RKEL2yt6NaiJIgLiHaxXuOZ9XbBcwTxFJBfE6CGC4hiH4+V1gBH21iv7bvjr3yMEQMYkcgv3B8tfcpKnlqglijRo0aNWrUeB5I4YjTpxlS82lB4GyOjszNHt9aEPtQGokQ1tVTiItrLsBZTI21aCxtpcgzS1QhVgZLt7KAj6TCWvf9zBiUnO0mLII9UqNpyGDBYurmJeWMKjmPSEoC6bZRDdqJpZoWqePSVZcfk1MP5zv+AiFLhbQg2MUxXPZAoSSb1QX51mim805bQ0MpF37jyUpmDDLyCmKuMOVMXj5rWS3m7NzBOaIRaoxwatLNZtsFogqnZWo7nS9tqIDf2r2NsfCD08MFkl/AdCzneovzcIuHv9SBnWvuXBhD6yBj7c+bdPMzOvkZ7WifbnZOazCmPRxzDeDDp8AP3C5KydtrHdrNgHy9y7Dbcv90mgy7LUxRSl8s5ps5qXGkdjNq8Gw85DidLLWuFrDt1IXdDP2M5gqLaSgVTRUgccT5ws9+ofT5oBpizUEyJpaKtTDiLEvcfatcYm43jBBC8Ld3b6Ot5f/9+O7yTsSlKlrgHgB4y6zFovxDjZYKS4upthbt7azFMcVKshU3+N7JmI1ie4X1U8uZnsylqBLfVSQ4qGyv+u/ntpjOWVUB4S3YVljEsw724xR1+2hRLb/Rv3z2sNwooGxtMa1Ro0aNGjVqPB8K1ewXcgZRUNoL4zmC+GanhwU+HrikzWo9xUUIpCyD5yOpyG1OVA3OQMyogKEvai/eIxazltMHowFr3oq4HTcXZrYiKYk9iVqFYkYr8wXxxYLfqZ3FDOJqlTj0ITXz3xczia22VOIC5KVEuryfwuni2b55MvOaQm0N/TkFr3D5n5G5Iph4st30i+I4RyQBNlXT2btcIqzARqZUODtBxLu9BqM8c32O1hBWFNSNqMEgS8vgnfljz41hEo5Yo+F6+ban1lgrJcNrMcOvd3j23mtuv7/5FLbGkOes9cckh8f8KhGbgwR5fIo8OSM+PXfNGE8XFaBx0GQoe4zUGsO4y+DjjL2GIu916fQCtO+f3G40OUkTtuPm4kkviEMxK1gQkHCWIDaELM97ZgxKXXAtKwqi+3vORGsyY1gLI86zjIHIueWTYIt7vxNGWGvpBCETfQWCqAUiDdy5roRLFfdZWwUUGTQn6YR+nvF6e839qLd1d4NoVhMtlD0tnMIsDShHLs+zlF4YT6+7D6qx0WoL7c9MQbTAcdOpg+8ewI93kB9u0uiHJP6g7bUB9CPsGyfLt7kK0k7383OKmiDWqFGjRo0anzIC4YhB8As4hFhWNSxJJy0WhmUVxlw9xSoUCqLAh7ZUgjOsT/hsVeygoZxSb20tccVyCr5UXGuUgPVo0ToYSulUxAtmI4sZrdN04lXQ6bGJ8jXLVTLwBNOTxPljzcsld2ExLRTnyxVECyA8QZUG1mbrEbS1NFWAquynRSC8giizAJHEWKWnJKcghUmFIBZBJ6FeIPpFx2dm7AKpLZRQs8RqOdI5WXsMh2DvnC91hvLKOcYIxGELes5K+cFkwG6nST/e4su33qDdaJUvP+73+aP3fsTrqaUzGNPuj2hX/t3Mx8Cea9X4o+nbGCl5px1z3m4g1td4EArC9TVGnSajdpNJK8ZKCa3MPRAoUlVXWExD/9AhlgGZMTRWPHs4SiY05MTVcvR912OsZ86Z8DZGN//KzKysEIJrjSYfDc5oByHWV3+4a2XcvhbK3sT/u6LeVT+3cRAg/L1UdHEWKD5X8+q7DYx7VS4dWY41CDhNUqywPBoPuN5oOZW/4UNzVtlLAZRLOl4kiM+pIEqwgZ4SxEHkyPH6GG4OsL0E/uwW8qiFarj7yr59NK3jWIJEa3JraM9b0ZVBZOF8leLnCjVBrFGjRo0aNT5ltIOQv75980KF6vOKouNRW7uSABdER1tDS1wQ+e/hFETr/yzIzXTllVlDKNRM2X2VlBS2uOrPACAsBsrOvCoiqS4liOAW5qkxNCr2Q1H5f2vFSo048EmR8wRSIcv6CesTVqeJsJcoiMVs56tnkEvs66cLr8mNoamUP0eiLJdvxIIEEOMQqRW6PZkGqpQEMQA84SxL0PUC0Vd+lrJqMS2P2x/zspTZsc7RN09I1iHcuaD0/bUz7GtTFbqlQk7ShIYKaM7NaAaNmKOtNVTcWDx/RzGdP+/S0n263UOa3afI03OuTzTt/ojN/pjN/hj2Tnh1bheMgGEzJum0GI3eY3zWY/ijhPGpZpRtMDQJmZXgH25E/l7qhiEnq2YE/TkQQUoXdy3cOXbzksLbUyWuhmI/GdMKAnbmlM3tuMl7/ROejkcgLLebvktS4Eh/Kh15mSx2+1k7JfpV8mfmEnkNloYMaKgAUWVCRYrpJHDzk161nBjN19a3meic9/unTv0s3rd1gX1T4CzSJUH0qafPqyCCC2/y6bBify7AqZ1BxyXShsOm+32zZHbyNE04z1NeaXU5zRLGWi8hiJ//oJqaINaoUaNGjRqfAVaGXnzOUZAE16e2nNAUC/VChbgMCkkhYMxH76fGEEs5E94SVgiltpaWVEz0dBFaqCqJ1guEArzF1KuIF6GtQjJraFVmEKUQ5XtfpCA2VMBXelt051I3HY+YLn6jIpSHyxXEqXVPY989XPoabaEpA78tW5bLt1uOIHLi0i9la6pj2tiVys8E1aTT+TJtLc1KD6UUAol0ITVLFNKijBzcffJgNOBms0VmDY1IoZtDQuGuy1mW+G7D5UvW3AcNgbvuCwRRyGn5+fzpW0sZBWuMgjVOX+2Rvb7Go1Gf39i+yWbU4H+59z43E81/09zkvUf3UedDNicZreGYuD+iPU7ojhLAWxC/BfAj9+f/B2ShYtRuctYIEd0O0c5TvkzOPamJ19cYNxskzcgpkf5YlJSYcFZR01FOICTaWnLj1MhrjRY/Ojvib+3cnlHPAXphjLbQkJLMzpGcSLt5SS2mATVVBU9M76PqfKzxdueiRsNad75jOU2sVUJMyVFRnxFNZxt34iadIOTD/qmbkdwaYV8/wV4fLL2204tonNppeXGLKUzTYYchPOi52cublffupHDeQFqJjjKW/fpKjS4fNhkfULUAn7BaVHh8HlETxBo1atSoUaPGS4PEzVbm1lxAEB05MXaxg3AZAimdioYgkHLGLpoazXoUzxCx0JMVay3aOsI3zKfdhEIImspZ/eYTTMGRitc7vXJOcRVaQUhq9EwibaniVYJmVuFVP881894VBREgVmo6s3oFgigqx7gMQrikVWdHFWWYycaG5CDMUak/H60KaYgqFlOAiUKc+RqFyPjruFjXoa1dqDARwqW3FnOWidGEUnCSForhjB7FeZYhRc6t5vIla+bvs17sEjyDufcLpUTK5YolocU2M8Q4RJSl667eJJYKG4WI9Q3s9Vc52Wry47Mjbvi5v0ejIdJo3rSKznsRrcfQ3NqjtWdo5QNajWNagzG90wE9gL0T+OAhXwa+XNkFK2DSiBm3YvqNiFEr5kzEhMOEsWozUW1OTZ/AWjSQWU0oJG+0e5ymCW911xcOqxdGdIKQnbjJg9FcLUdlFk8UdSYzATHThxrF7K/7qlMWix5NhCCUioZSBNJ1RiqlptbaQv0Mdal69sKIjajBa+0e94bn3Gi2sG9dYb4vMAgCR2pfNKSmcuzig01ELrG3z2bIse2k5efVxBnLfjNZKp9xfCjXPFRBEGsFsUaNGjVq1KhRw4XUCDBL5s8KTC2m9sKuwQKBVywEuJqLCoVIjWY9nO18c/URnlQK60mlf+rvF8DdMGKi8wX1BRyJ+Upv69L9aig1Yx8Et4+iJDni0vnKeRQKZKEaxtKRuegSuysUxEzMhI3Ow+JCagIhEVgyY+gEIVEgGW2f0n3qS8GrqpIPExGJW6SLP7uN8BZTG2oM1td7+HNQsRnPp7SCU0WLfr3MGLpBxHE6oR2ESNy1njkfF4hFuXEzYG91ehwmiyX084rlAnoJjENkp6h5sGVCaChlGUyzHsYz950QEIYhp0HE+GYPebKL3b0G455TcP/mA7CWMM3pn5zwNdXgbSJOjo7YPzxgOzU0RxOao4TGOKE5Ttic2bG70z/+/7wjNA4ZN0LSZoONjQ1ebUQ0H/ax7Sam1cS2W9h2k1a7yVd6W+zGTR6NB7OpqQXZP23AozU3p1rpycROw47cnOp0UlV59T7wrwikKBN/c2uIUUsURMPYK/WFa+LNTo+Phqcrr+kCKkE14hMpiJX6F2kWLdjd6bxu0Fw2Jevuj2pK8VIXvfQ2289xkmlNEGvUqFGjRo0aLw2ynD9bVHOqr6FMOr2CxdS/HgHtMJx5aq+tZX3Orhv5ovvcWJckCqUqpz3xut5oMcyzldbFqyCSCiVlqVhCtewewD53Uq3yqk2R8hlLhfTF7ZfBnfvC4rr4vtoahFdyEq0BQWZdMqYSgtHOlCCWCaYwG1Kz10FkyiVftlPYHS69jkoIDCy1xcZS0bduMZ4azXbcJPfpm8M8W+gKLIJSlsGFhAS83d3g9U5v4ftCCCKl0Ga54mTfOoaNCXInxQ5cEFKRYNsKQnp+RnV+zqyYD52YnLjjicW5q3GxBaERgiwOOVxrMdi6Tr6+zdlowH/euzedCwSOxiPseExnnPI11eTg4ICb76/T1CMaeohqH9NKMhrjlGaSwdkI9o5ZnJ6d4jfiCNNq8ruBJY9j8kZEGkek53ukwx7ptxukMmPyWkJqJyQ6wipZknvAP0SgDIhSQs4Q7WKetBUEjHP/QKGYQcynDxDGOudmo12pPFFLlbfU6DJEaQaqkmRqPoGCWJkptK+fLgbQdCqBTvHycJriQZX7s5i5N7U1fNA/44vymntNrSDWqFGjRo0aNWpMVaxV6hFMSYMVzChPK7cpRJnc2A6ChSf78ypg7FWNzBoQTnUsFnKOeMHNRtvZ4p5T4asi8kEzVSJchPRYPzT5vJtXPjimsNQWpfOXBeYU7+0W9CzO2wETrWmpgG4QkdsEa52C2A0jlJAk3VFpuawGhxyJATsASYB41AXAfnkfNpwt1Iwt0Vxtg1Ofls9gRmqqAqfGsBM32YwaSCH4aHA6rd+oEJOlvX5MFchASgKWn6NYKvp6RVJmM4c7fYSIS1t0odpej1tsRo6GdYKwDIkR3kbdCUIOkjG9tie1Z56yBfPkZTo/WpCjqg14jOHtnWuk1hB3N/lhL+D06MuOiEc5B7/2HtcbbU7TCYf9M36zucnXwxZiNEYMR4jh2P0zcn+WwzFiNEadnHFj+VFPcQh825/LQDGOAoJ2i6jdJmhE/HY+QTYb3BAW0YjJooCg2UCbnFbcRxjJGpK+0cuPPdIk2rBbSZaNpCqJZ/X+OEpc5+Sr7e7sNqpVF59AQbTCTmnpa6eLL4gMNspduumKXkZTuafnH1zkxtfSSI2ktpjWqFGjRo0aNWoATrERuEj+VQqiKpIszeo5xfnXW6/GtYNwOifkSdj8HKEQgpZXoyhJZRGe47a302hy3c+TvSiiJfbPYtFfLB2fW0H0VRUFkY2U9ATx8u0U85/zClyBsc7ZbbQcmfJqo7GWjgodgRFgv7qPHUQzM4ip8gRoELnuw04C69OUUYMllrPXIBQKKeQKBXE6g2ixdIKINzprWODe8Lyc3ywIW6RcoNAygqjnKk6WoSEVp7YILTKcpilbcWPhdblx92zxPn9952b5vXYQEitFog2BFARCcq3R5slk6MhKK0OMvJK9QBCnduumCgiEU24jrwoL4Gazw1vddfpZihTSEZXM1Yrk1tIOQlKrGQUKsbWOvoIFmizn9++9TzIYEkxSojTl+iQkfqYI1ZA4GBIlGVGSEvt/r40SGCVwcEIAfO3CN/geAP87QEtBFoVkQUiWtMllRCYi0p8a3mxm3F4/Imp3sGHIWiB5+/yQuNFARCF5oMjDgEaeoALlZbrKfTNDED+BgnhzgO3Hrtdw1a+dTgrHQWmrnoe1oqyRcZjupylSh0VtMa1Ro0aNGjVq1ChR9OtpSxmXv+w1Ei6swqhCCoHx22uHjgwYa3kyHnK71WEjWlzsd4KQsywB69JGS1LJVJX6pIj8rGOV5LryiGqS6fNtU0n3s0UYRqkgXsli6jvyVogridFci1v+tU7pzKyh4UNrBAKzNkH2ZismjLDkzZRw7BQy+8rZjINVVDoQq8chYKmC6Hopp12PrSAg9KSsIK0wJWwbYYODZER3YUvuvS+bY21U3m9/MmFictajaOEeyK1x6vOSBxuhlHSDyD90cKrxDMlcS8ETRBtoJjovk3WFECg5VRBDqciMKYmohfK1gXSk2kYahkCco62lrQIy45TSqyT/up0OUOs99gLITAshYHjJQ5EnwwF/p7fLKzJED8f88cO7dLUhG0/Y0AKShK626MmEV2REmOak4zFmMqGR5jQmKW7HPR7B6wA8Lr/UAP7uJbueB8oTR4XWETqL0X+sMXmMziL0t1N0LNBKopXEKIUOpP+7cv8OFEZJjJQYKTBSYq89w4wlJhFY/zUjBbZ4zfohnG6h2wNsbtz3fCiPu5hUQoZn7+2i7kUXM4h1iulnj3feeWfha//8n/9z/v7f//ufwd7UqFGjRo0af3VRWCxXpW5WEzmvSnwKO1orCAmE5Ml4xGbc4Dd3bi1d0HeDiNS4gvF2EJbF4i5U5uX0T8ZSlQrXdF9nbaWrmxCXo6j0KGYlIz+DOG/hXPqzws2QLY/XcOh5y2QgZCmiNH1ojfLkbNl1O/zSfa7lPaewtOd76xbV4uIaL1MQI+EspoVSWJ05k0BRsJFbV2Gx22jxaLy6CuGyOdZYBhhr/dylm3Gb630HXCJq74L6mc0o5iSdoITrIVwPY6S3naq1BLHn5gpzpbk7POdL3Y2yEqI4D0rIctayjU+crZDcYq7PFlUXsdvnOAjo4GzbDXn15bv7HJiZ+pWLYKXwoTdd2Fznoe0TSslZlrAbtzhOJ2xEMSdpwu/e+QItX1vxBwePuNXsIDNN/B9vEZqU0CaILz5kaPr8xto2LWMhzRBZzvtH+4SZpmksQZYT5BqTpIS5pqktQZ4TZgXh9CE61cDTR1c+BS+Gh0vOjXDc0PqZ6OLveAJp/GswEmEk+SHYa8Cd2z/jnX35+IUhiAD/7J/9M37jN36j/Pva2mJ8dI0aNWrUqFHjZ4vCJrlqvk95e6MU4koKoiuPd5bLdhC6+H1r+c3tm3RW2AtbgauxaKqAVhCUPXLGWhpXIFtXQSQVgZydDyxyH50K9iIhNe7cWev67gIhUZIrzyDOp4AWqAbUwJTAuaqCYKogriARWTOB1nDp94AFq3ARcKKWePkC6b6X+Z7ElppeQyUk1nf3aWvohLFPv1y+X9bamQ7MZXCKJRymE15vr/FwNFh6nLkxtNVqu+pm1OCn9oTQGroqohUEREqSGYPqViy3ShNKSW4toXBBJtXzsx03OU7HQEzu+wNLBVEIAgQ61G6R7oNVYqkwylkYr5L8W6AZBExMzlbUZKzzlQ8Appjes9VKkkLlLD5DSoryoUBV0TSBYhI0SaxTqse3BpyLJv+bO18gq1ynHzy+yyjPWI+mUTuPx0PAcqsS4COMQd1rE7y/jnjtgOAgRvUV8uuPkCpD5QalDUprbJ6TpSldJIEuvm6Qxv0jjEUaW/mzQVqLMMZ/vfpn/xprcI5Ri7BgrAELiqLKxqIQCGvdPwaE0QhrEDmQzj9M+XzgF4ogrq2tsbOz81nvRo0aNWrUqPFXGlP1aFWKqSyL368yg1ioclJIGoGiF0a80VubCb6YR0MFbvEtBW0/Y6d9+MtVKiOugmJeLZoriReiWnPxnNsUbkFusERCEkhXOn8VpbWw9xbkR1vDo5Gz4c5XDRRqYygETaUwdqrULuKy41i8joG/B5aRkeK1qdELhEdVlK7cWloqpBOES+mhtq5Y/jIFMZQSISzWwq1Wh8fjwVISnVuz8oEDQNefO0ckAxdQ5CseWKsQxEATCUVuDaE3HVcflmxGcVm2XlhNm2pqsY2VwsSOWBR1I7FUWK9+XiX5t0BTulKKbhCirSEz5kKLarXnD9xDkEGelvO/hkLdnlqr3f5ULJjKQO72N1M5IYvXqKUCzrPpOdPWlFby8jxay3464Vqji1FNbNCFoIUIY8zuAMLZOcTDZIwSkkGecq3RemlOgSoejwcIBNcaLfYmIwBuedvuaZq4zta7PdbvX6f/haf8X/7a63C6WL/y847Przl2Cf7pP/2n/Nqv/Rq/+7u/y7/5N//ms96dGjVq1KhR468kHPlYPn/mvi+Qwr3uasoYPjnSkYv/6tod3lnbvPBnGj5ARiFpBUHZ4Wa8Mvey0A6CuRRTZlS851UQpQ+LcfupynO0ap5zHqpMUHUJoZk1jHVOojUbUVyS9qIfsCGVfx+fvgrcHZwzXpX6uQLzSrBTCZdbTN1rBakxdMNw5j5RJbl2RKylAj8jKdF2lhBkxhCIy2cQQ68eSyHYCOMyEXcehiUVCxX0wphASCZGu7AkIWip0JG9wGJbribBKE2kFLmv1rC+Q7BAN5jaWDOrafrjKxBJxfj6MeZLB9hrfaz/WiyVI4jPoSA2lCJSitutLrEMSM3y+oYqZgmiJPcW1YLEFt2fxeti5eZkH44GPJkMsUWATOjuv7aKFvpAm16NLJAb6/tOp18b6ZxhnpFIr8JdElKTGsObnR7XGm0/K/qzgTsW98Cheh+53lXhuiWpU0x/LvCP//E/5td//deJoog/+qM/4p/8k3/CaDTiH/7Df/jC25RXsL18Wij25edpn2r8YqC+t2r8LFDfV3+1EUivDkq58h4IpXKx/kpdep+ESqGkIFQKIQTdKMKY5ZbDAs0wIJKSOFCEStEMAjKjMXCl97wq1sJo9jitI8e+tpFArT4Hy+DCXQQWUe5nUwVX3k7oiUmZUBqEJEaTWs1us1XZhiBUkrUgQkpBKGTZc6expMbQCgqrof+JC0hqNHdOQyWdDXHJfkdKIYRb0G/FzZnvF2RbCIERrveyGQSlZbNKRLW1xEoR+/ti5b4FyvU9RhHrcYwUErzSC3CepyjtZj2bQbDyPK9FEZ0w5PE4oRWGSCnohCH9PHXb8kE1NtDESpF7wiD8+Si2uxa7e0ZbS24tO1E8857NIOA0TBB3BuTGEmpFMwxoEnC92aIRXH353gydarzVaHCQRBwlkwvPlWD2c1scRyglrSB0KjPQqlzvtSjilza2iaVTBQ+lJiKESKOtYS0KF85pOwzRTKs+3Hu43wngrv/EaLbiJukopwW+B1G4uoolPS5WwEbcYGRyzotr8pyw1vJwPKAXRmUH5sz5KR+kCKSkTEcuXANKCHJfwVGE1Hwe/zv4c00Q/8W/+Bf8y3/5Ly98zR/8wR9w/fp1/tE/+kfl1959913G4zH/6l/9qxcmiEEg2drqXP7CTxkbG58skrtGjVWo760aPwvU99VfTXTPmjT1hM2NNltry/9bun7cQGSS3e21SxWRfCRoHkWsNV1q5FXuqzAN6R432Gq22drqsH3W4iiZYLVkq9d5af+N/5X4Fu0wZKOSaNk+iAmVJAmMOwftq7/XBmOaA1epsNFpsbXVYavfcvu8cfl21o5jRjqnHcekiWXn/8/enYc3Ua1/AP/OJOleulME2QQToC0t+1JEQJBNFFARFLSyKqusRVRWQQQBadlFQcSLXC7IvSjIIspPBUFQRHFDZQellELplrbJ+f2RzLRp0jZp0w2/n+fxuTfTmcmZyUnIm/Oe98ADt7Kz4QEZdUIDbc4RcMMbNX191XsRkOyFLFMuAjVe8NBp4ett+YLsJSypgL5+9l+YzULABx4IC/ZHsFfePQjK8YVPVipCgvwQ4mObCpzlJeCVYplXeE9YMEKC89pULc0bqXIufL094S2MqB7kj5pBAQi44QWtJMPXI2/0LSvLjBAPT4SGOqpvmifdwwzfGx6oFxiEGmHV4HPdA95arVoR9+/ULJgys+Dl7YHqIf4I8S/8Pt+TGYwb17JRPcgfIUF+CDf64bowwtfXEyZDJnLMWkg1jQj08UZGbg68vT3gA0+b+xNg9kFwig9kjQyNrEHN4Go2/TE00xfJMMLXxxOZuTmopvPEXaHV4KHRoG54UJHXWpC/yRt3ZfijfvVg3NbmIuVGDnx97V9HhbcwIiTYFyHeltcsJNMXF3PT4afzwF0h1eCdlgQPrRYhPr42bX4w1FL3Iy0nBzu+TAUyAY23gMZLa3d9ABCOTHhlpah9ypgl4C3LENkSfHw9IUsSkoURNf38cTXTMjKrhRYmkwxoBXwc9EUfkY27QqrBlCbhb3NmkddZmOSsTIRofWASZvj62B/vJYzw0Gjg4+kBbykXkKC297aci1AfXyR7WwJDnbWYUFX8d7BSB4hDhgzBww8/XOQ+hc05jI6OxurVq5GbmwutC7+0KHJzzUhNrTw5w7IsISjIFykp6cX+akrkCvYtKgvsV/9sxoxsZBtzcftWJpJzHAd/xsxcGHNykJqSUUzRDOCWMRPGrBzkSpa0R2f6VY7ZjFyjCSYpF8nJaRBZZqSlZyFbmGH0zEZycuFVMV3hDQlmYy6S0/LOl5WZjRxIyMjJwc2bGfDMcv58t1OzkJWVg1zJBKPG0k5zpgnpchaSzcW3OSszB+k5OfDIkXDbaISPVovM7GxAAOb0XJtz5GbmArJZvRfZmTm4mW2ERpKQlm2Ej8ny2mVm5UACkC4Z7Z4vx2xGdrbltRbpeWmpGWlGGLNykHozA9pM23TA21lZyMzMtgyxZppsXovMdCMyMrKRbtIgKysHmWlG3BDpgNGM1NxsyB55r3ua0Qhfk6bY1zItKwu5RhN8cmXcvJGBrMwcmGQToDVb5qVmm2DylGDMykFmqhHJ2YWfzydHBnIFMm8bkWxOgznDhLQMI9KFDvA0AjFpSMvKgjbLE7eNWfDOlZGdbbkPamVSAF65Eq6nZyDTnAtR4B5kZ+QgPT0b6WYjMnJzkGU24WZKRqFFn4rT2jcMIj0XcpZAerq1rQ6YhUBWVi5u3cyAnGFW23I7wwidhwRjWjYyrH0zBJ4O73uWKRcmyQQNAJMmFxmZ2TBlmOz2zbxttPRVWPpUqjELAToPZGfn4LY5C1pZRmZmDmSdQJbJsk9uFgCTBHiYkJ5m2xeFEMjMykZ2WjZMmblIy8hGurDvr0XJNOUi2ZiFmj6++DszC+lm++OzsnJglk1Iy5GQmZ0NCRLShOU9k5GVDUn2Rq7Jcu9yjZa+Wpn+HaxWzRs6XfEpypU6QAwMDERgYGCJjv35558RFBRUouBQUVlezPzMZlEp20VVH/sWlQX2q38mCQCEZT3pwl5/LSxpjRCFFUbJdz4hQRKWuWSAc/1KAwkekgwPSYbZLOAtW6qamq2Llpdlv7QsfWBdxqGIe+CQsHzZNcMMDSSYzQLRAaHw1GidOo8MCWZhhhACuWYTZOgsc8YkDXw1Optz+FgLnijbNJIMoykXgR6eyMzNzZsPJqBWVi3IZDZDBiAXuE4ZloqqjvqAMtvOU5ZRTWObLiwJCWazWV2SRAfLa+Wr0eJWttGmDWbh3GupgWWuYDWt5blk5D2H0ZQLnWRJU81BLnTFnM9fq4OfRqfu5yFZ7p9tu8yWPmAWluqxQrJeV94+IR5euJhhCZo8JY3N3zwlDXKt5zRZ+5DkxPukMF6ype94SppCX0el3cp7V2mPDpY5iBrI0MKyrkOW2QR/rc7hfZKFlG8OogkQUN+D+WlhqUSstCXHZIK/tw43jEaYhBlmk6W6693efvhdk2o5KFsDyXr+gteQbTZBCxlekqViMYQo9DoduWbMBAQQFRACrSzjSkYahBC4lpUBf52HOjdVeQ3M1vnMljm/ZgjIMJnN0EkyPK3xt5JiWhX/HazUAaKzDh48iOTkZMTExMDDwwNfffUV1q5dixEjRlR004iIiP5xNJJsLUJT+IiHUgHUGUplUFeLy/hpdeoXO1+t1lJEAkW3yx2U9QSV+WeukK0TGM0C6uLxfkWszefouZXvxSYhEOThiVs5RstyHwUKsDQNDLUpyuIhy2pl0TThXJEakxAOiw3J1mtxNDqss665GKTzsksvVorUKOsDKn3EV6tDjtl2JNIshPqjQVF0kqVQkbrEh2wJ3gDAaDLBT6tDoJcXsjJziq0QGqDzhL9Wp+5nWZ+y4ILp1sJKyrqSsn0RnyAPS7qpSQi7Ijtaa9VVWO+Du/prwde/ICEsV5K/sJJlriSgkyWbYkZ1fBwvJaeRpLwCMjoTBOyvD4C1knDe85gh4K/1hCxZKsxmmXPhp9WhlrcvPDys+xmt55Hzgi0hBHKE2dJvNZaKuK5UeVVkm014ILw26vsG4MdbyWrpmdTcHGuBnvz3Lq+QkmVJG0BjXRNRK8vw0lnmaUqmqjf3UHFHBIharRbvv/8+FixYAACoU6cOZsyYgccff7yCW0ZERPTPo823zmHh+8jwciVAhHNrAebnr/WAp/WLXd5aec4trVEaGkmGUVgWOC8ufbYgJY4wW0deXKWV5HzLXFgCmmo6D/hr7StJKkGKQidrrJVBNWphGiEEhDWwFkLYnSPXWmio4JImlmVOHFcx1ciWALGGt/0yJZZ1IIU18JTUJUl8tR52axc6W5HWR6uF3i8w3xIfEnKt5zKaTbjb0x+1qwXg71tpxf5o4afVoXlwdfVcnnLevcrfLtk6TmoWgAzZ7j7U9a2GztXvxu+3b6Ka1vYHgPzXJGC5X+7grdFCgnV5EAd9y9EPKFrZciUesgYesgytLKOmlw9CPL3sjgcsQbGktQa3ulxIgMN1KnXWZTvy9ykfrdYSVEMg05SL+r4B0MkaBHt5wuSRA022dWhOk9cPUnOz8bcxE0E6T4R4ekG29pnixuuyzSb1tc41W+5HsM5yTVqb65eQW2Ak0lKlWFjXPM1blsVszXLw9ZBxGwBYxbRidezYER07dqzoZhARERHyFmwvauRDJ8sQcC5AVEYtXF3XrIF/gLp+oGWkSlLPV5Zk9Uuj6yOIliOUlE/X25l/qQBJsozUhHv6wLeI9f0UOkkCJAk6OW8UUiBvRMlyRbZyzGYEOqj2qLGOEha2DqKPVodgD/sgQwMZQlgCT02+19zRqJAyYlMcjSSjSUCIzXMoGX85QiDYwwu1ff1x0dvPqYA+/0LuSvtsgmfrkhDCup6lZF3SxbZNEu7xC8A9fgF258//A4ZliQz39FdPjcZSDdYsUFhdKClfdVelLbIsWZdakRGo84Tev+glZmTr+oS5HrnQShqHPwR5Ws9nEkINyLw1WjX4yjGbEehh6Vehnt646pWdL0DMG0k2mkwI8/DGX1npaOAXaD231hK4OfhBA7D02T/SbqGebzV4a7TIMpvgo9GqI/XKEi3CmsKsLK+ivq9gGSEU1tc2j4BWlqFVqv+aq+5qgndEgEhERESVh1aSC00vVFgWL3fufLI1bHI1QKzhlVc90MtaUVD50leWZNmSOlgwXc8ZSjAgSSUbOdIWGD3RyRrEBIU5FaoqQYBOltVI0GxdP1AAatCbX44ww09nH3wW9SOBVpIQ4uGFEA9v++Ms01Kt87vyUlcdBYjOppgWpJEBJQiXIOCr1SHcxxcdq9dyea6YpzXtMn+gI8ES7GhkGTlms8sj3/mvSQhLQOsOOjlvKRNHzA76rMa6XqZOtqx12Kn63fAtJlVVqnMbadpsIPi2ZU6eg2hUSVfNFWbLfERYA0TrMhpKewHL/cj1zIYnrO/nfCOIOUKguocnUnKy1BRiD+sIdf7XJD+TMMNf54HbOdmWANGUixpevmpfVT4fzNb1K81KgGi9N5KkpEDDOrKed25ZkqDcnqqcYlp1Q1siIiKqlDTWlFBNEUGJhyyrQZsz53M0z80VnhoNtJIEEwQ0ZbwumWz9wltwNMa5Y5VgzHFQVBxl/qOFZUFzLycXV9fJlnvkp/WAEkBZ0g4luy/CilxhRjUHI4iyNcCVHQRwkjXQqOZgbqUlWBCWOVzIW7TdU2MpsGI0mfB3Vkbe/iUJoiXLCKIlfdaSNlpSnhqNNQ3Rdn6kj1YHrSQhNScbIQ5GSouiyxfkCwhrQFt6Gkm2vAeE/SLzlueCXWq4zvpjj5Lu7KfVFdunPXwEMmolI1c2W4M1+wtQfozItRbikSHBU9ZYXxsB5EtP1sgycr2y811IXvuFAO728cddXr7wsRamLOw1yX+d3hotsq1zWo1mM6p75f1YoTyv0i7lRxGhrmspWdOdJTUlFrD+qJM/QOQIIhEREZGFLMmWKpZFjO7c6+/8em6yJEFbyHw2Z3nJGkvqmNlU5iOIWqVIDVz/JV6S8qpzOkrdLPa5bUYQJZdG2HSSpXCQn1anxIcQ1oIrZiHZzQG0PAMcphAqo4euvmayJEEIS3pf/h8EPGXLQvbJ2VnqF3tlf1dZCuFYipt4yBr4lqLivU7KC3Ty89ZoLfdecq2vA3lBr6WSK9zaXz01GmSZHBcgEtaAKP891ciup3frJA3M1sDPW+M4+JYlCV4aDbLNJpiEGVpZtgZ2lkq6EvKuWwIKBIj57rUkEOzhiXYhd6kpqYW9JgpzvuvMNVuSRQPyvdeU5zUJS3Cea1KOgxoumqwj67a9z9LfJSWArcIBYtVtOREREVVKGsmShlXUQJ23RlugMmDhZEmCtpCRCGdprSNpcikDTWfI+QJEl0cQrVVIfbU6+LtQvVShjMApxWV0Lnyxt1SWleGn1anXYFZGTQq9DMnh6KQsuRac5j8OkrCm9+U9qRo8mE1q4CiV8LXUSJYg2lKxVXa6HzoiSZYlNHJtKqxa2u6j1aGGlw/u8nZtoXRLlVdLsSF3zkEELPPzCk0xBex+1FDSxT1cGKn10FjabhYCnkUMf/pqdcg1C2thJMuPE1pYRxCR9wOBLEnI9cq3JqFGKcJkWU7ER6NDDW9ftRiOZK06mmt2PIKoLE8R4umFJGMmJEg2o9ka6zxepdiQUoRGIC+wzAsW8+b8CljSgTXW9klVuEgNA0QiIiJyK9maElqagK4gS0pa6b5w+Wl0kMuhiqnWmnamVDl0hTLHKdzLp2TBj3UEUZk/5UparjJS5Kf1UOdwKaMtlnL+toGFso6doyqV+QvMuEIZlRHCtrCLkn7op9XZtKWkhXzMyuicrHE5iC/IR6OF0WzC7RxllMsSuIZ4eCEiIMTlNmokGRplLU3YF7gpDS+NptAAUSijYgWK1Ogk2aVUXp2sgVlYAriiKhX7aXXIFWaYhLBWwrX8EGS2rrup3DcZksMU02yzGR4axyPAPhpdkSmmGllGQ79AVNN5oo6Pv02AaJkfLamVdC1riwpYM18hW9N0ldFE5VkkazAvaSSYNCbL4pVVFFNMiYiIyK2U1MKSpP8VxsNa1KI0lJGx0gaaxVFGASW56FHUwo7VyRqEe9kvAeHU8QAgJOSaLQU6XBn50UiS+oVbI1u+BAsIa+EQyS7B1CQsVRsdBQGhnt6Iylc51FlKmRczhM3agbK1MqhO0uF6dpYa5JSkgIsygmgWAl5uCL58tDpkmkwwmk3qPDiNJKFtaA2XixQpx1oKoSjpxu7rr5YAsfDAqeCPJ1pJglZ27UcVD+vop0k4XuJC4afRIccsoJPNqKaxBGg66zInUr4fcmRJgsnDBCGbIZllCOsIXbbZBF+N1uEoua+2iJFS6+seERCCCAd9VGMdNc0x5y3hkivM6mi6Tso/xxhQ87HzpVVfanIG/l46AIFO3rXKhSOIRERE5FZKcRF3psb5a3WFzmdy5RwaSXLbunKFka2jD4DrC11IkOCjyVvUvSTPLUmFL2BfFK0ko5pWZwnGIVtHEK1fmCHZFanJsc4dcxQEeMga1HAxtRJQUnItozUFg5IQT2/U8wvIV4inZOmXWklWl6AouIB9STT0C8AD4bXhpdFaR/2EOoJektFJZRTPbE1uLGour6uKSjFVfgzIT2MtJuNKYSdltNEkRJEjiJ5aLSRJINdsho/1va3LV2U1L5XY8h+8rXMn840gBhQyT9e7yBHEol93rWSp3JojzPDWaKGVraO51tF0nSyrVYqlAu8LS4o0YPTLgMknu9DnqOwYIBIREZFblXT+WVHah9ZEmJf9sgiu8NRqLfOcymMOonW0wfURREvKYkkK1CjPLWBJ79O5mOYb6uGFe/2D1FRTJdjRybJ1dUbbwCLHbEkhLE112YKUyrdm2C9H0jo4HPf6BearHFmyHyFkWVJHEJV1MkujupcP6vtWU9NygdKttWmb1liypTwK4yHLEMJx2wqm9QKWYForaVwaQbRcu+WHCl0R1XOVKr25QsBXZ/mRQStbRussI/3WEURlbVDvHMuBsjKCaEZQIRViLetQ2qdFAyi28I9WliHLsASuWh08JA1yzWZ1jqZSaVVS0qEBdc6v8mOK/YqhVQsDRCIiInIr2ZqqWNl4yRrrunVlPQdRzrdOmmtfFKvpPNEsqDp8Srj0gixJgIA6r8sVfjoP1POtBsDy5d0kzOpag7K18md+ucJsXRLDfSRrcOFovUovjdaybEK+4Kkko8E66xd8AbgtuNUqyzaYzZBKGLgqZOsPC8pyJ7Ibl2XJv8ZlQY5G1jTWFFNXrkcrKYu1FB2IWUYXLa+lt3XJG52kQa5ZQANJfZ/K1j4BH+sIok4ZGRSFLlGiLO1yMSMNGbm2VVvNxRRvsgR5MnKEWS1ilKv0N+t8TMscY2XOr1DXSFTSg6s6BohERETkVpZCMJXvW5KlcqrGrXMjHVFHEOH6OogaScLdPn4lfm7lC6pJCHiVIkhXipmYhVJV00GKqdkM/1KsIeiIEp+YAYdpgJKUl+IHqWQjdUoaoLvn93lqNMixjn6Vto9p1SDWvSOIymiwI2ZhqYKbnyxJliViXBxBVH4eKSoAV37AEID6g5I6gihL0Ml5RWoEAFHnFkT9FCAkbx3Mws5f18cf/Wo1QAO/AKSbcgpcp4CuiNdHmUeozEH00Wqs83Gty35AqVJs+ZxTRiqVtPqSzDutbBggEhERkVu5um5aeQnz9Eb70Jpl/jzKQuwlWQextJR0vFxhhk8plm9QAkTLqJI1QCywT45wf4CoJO2JItI/LQGiZYkDTQm+jCuFfMwF1losLS9ZixyzpbplaUeplbUaLXMQ3RdwFBXoCQiHcw0N1YIQ5OF8ynPeCGLRwa2nrFXnHCrpplpJQq51rp9yD63xPOCdC9EwBdDmLStR2PklSYKfzgM1vHyQbTbZXWdxVVk9rIGqp6yFj7XaqoBQi/Yoy9hoJcsIovKDkPKDRVUPERkgEhERkVsF6Dxwl5frBUrKmiRJJVpb0FVqOqbk+jqI7nhuWJdIKKqCZHGUgitma6qnsi6iQqmEGeJZunmhBSnzt8yFBCuAJUDMMZtLXAhJKeQjYFnmwl28NJpStSs/y2LzAITk1i/rOjlvXT8AuJKZjuvGTADK0hL2z1bfN8ClvqSR835MKCoQU9a2lCWoPygpBYg8ZFkNjNU5iAVIkIotnhPo4YWC4ZpZFJ9arJM16gihj6xFrtlynAaymiGgFCKyzEG0jH4ro8dVd4ELCy5zQURERG4V5OFVaPGIfwJ1Hb8KGEdQvlQLCPiWYnTPS6O1LHZuTRPUQLb50ptszEJNL1+XF4Evjtp+UXihI09rAR3LcgSuh0/Kc5iFZUkGd/HSaJArzPCSSl8ISaMs9yC5dwRRGZUV1iIrZghkmiwjbMoC8qWljFIWN8dTY126JMskqyOIGskSDubPQCjs+oWDQkYFBXp4QitJyDab1HM6U5zIwzpqrga4Ut5outY66qlR5ooKqEWptNKdUKKGI4hEREREbqWMIJT1XEdH8gelvqVYFkSrBmrWEUQ5r4qpWQgYzWY0CQhx+zWqpysiMNJJlkBMkhzPUyxO/vO6cykWL1lrmT+HkgWu+SmFdAA3p5jKltRNM4Q6j04ny8g2m2wWpy8NjSRZ0y3lYgM4X40OWkm2GUEsmKKujPbmp7S9uPb6arTw13kg05SvUI0TQbendd1VpW2Sdd6hRsob5ZSlvFRgszUtVrZee1XHAJGIiIjIjZQiFRURIMqSpQIoIKmLtpeE+qXYusyFFrJapCY1JxvBnl6oXYpiOoXRQFkovfBgxUOTtxRCiVJMrSmLkiTcWtHW0zpvs6i2O8tSHdPC3SOIGmsKstFsgqdGRpCHJ9JycxxWji0JrbWokUYqukgNAPhqddDKMjw1eRVLJckygqeQYR90KaOdxbVXkiTU8PK1qWTqzOujkzXqUhuW0U2hpiRrrMG7MoKtLJmiBLfuHvWtCAwQiYiIiNxI+YJYYQGiZEntK02KqY9Ga13bzTKPTEl5BIDbuTm41y+wTJYLyb+2XGH3z1O2LIUgo2QVI8tqBNESrBQfFDlDp875FG6tiqmTZcjWhd+zzSb4anRo4BuADFOuWqWztCxpopLNWoaF8dPqbJaeka1VQD0LpJgWXGLFDNtCNkUJ8fCyrpupKP6HBU+NZa6hVpbgqdHkBYHW64I1ANZYl2TJn07LKqZEREREZEO2BjkV8UXR8gXbEuB5laIAi7dWC42cf66VZaQk22yCVpbLZPQQUOZuWXIKC/vyr5M1yLVWIC1JEaC818W9QbxOlqF1Q4EawBKUK0GRe6uYWtpnEgJGkwlBHl6o7uUDwLrshxtCA60sQSNbnqu4uZheWi2q6fJ+yFBG4fKv4Zk3LzUvyDMLAVl2LsXYErgVXN+xmCqmUl6Kqad1mY9cYYZWtry/lEq1SnVfc77RV0vV1aodJLJIDREREZEbyai4NDMlHS9A51mqCqo+Gh08ZBlpudmWVE7rSMmtnGzU8vItsyJEymiRZC0A4ogSdJQ0EMtfZdKdI4g6a7XX4gqgOEMrKSm97l1XT5Is6xpmm03IFmYE6zwR5OEFH40O142Z0Lhh9NOyFqAlsCquD4Z4eNlcnTJ/0WYOIiwBl0BemGcSAjKKn+MIKO/DvOBSiOJfd60sQydZ/rNUW5WQmWNWK/paRkjz+pKSig1U/eAQ4AgiERERkVspIwhuyNZzmTICE+zp/Lp1jigpqsqXaa116QKj2eT2yqX5KaOvApYlBRxR5riVNBCT1REe985B1FkrXBa3xp4zlEIygPt/aPDUaNQCOH46D+hkGWGe3pbCP244v2VuHmxGAQsT6ukNvX+QzbFa2TZNN2/piHxBHvLm/BVHK9lW4LXMPS36OMv8SU2+QFGDHLMJGllSf7zQWkcYhXU5GF3+EcQqHiMyQCQiIiJyI6WkRmEBTllSKkD6a0u/3mOQzlMtBKOO7KHote1KS0kxFUIU+uVfI1vnt5WwHWU1B1FnXbtP54ZfBnQ2RWpKfTobXtZlQgCo81Tv8vJRR8fcQSdrbOYROktJ68w/Migr4Xy+KM9kXSvRGVoHlUWLG5W1tMG6bIUkwVejQ47ZrBb5Uaq0Wqr7Kmtq5s1BrOLxIQNEIiIiIndSgo6KKlLjqdGUaokLRYDO01qIQ86X8ohC1yd0h/yjRYWnmFpGqEoaiOUPDtwbIGqsI5vuSdNUIkS3jyDKWqTn5kAryfDVWGabBXl4wUerdV+AKMklDxBl2WZuYd7annnMQkDn5Pk1smwzf9GZIjVaSVZHEAHAV6cDrH1TqVSqpNIqy1zkf92reojIOYhEREREbqRUcNRUUIqpl6wpVQVThZ9WBw9r0JOX8ljykTtn5B99KSz9U/liXtJALH8QVBYFYNxxf5R5rMr/dydfrQ7VdJ6o61sNPtZ+EuThCV+NzmYdzdLwkDXw1rgeZsjWAFtbINiSYZtiahZwbQRRshS5kZz88UYjS/CQZTWQ9NPo1OUx8lLILa+3ELZzEC1VTl256sqHASIRERGRG8nqF8jyT9TykDVoG3IXAj1KNwcRAHy0WnhqlADR8kVYGTkpK8oX+KIWQVfmIGpLWKVV48RzlITOulyDO4rUlFUQCwBRgSGICAixmefno9UhyMPTbc/lKcvwLEGAqLGmbtqkmFrn9OUfBDRD2BSyKYpsrcJrhoAslPmLRb83A6wBtMJHq7WMXFuDVQnIS8mVlADR0h77hNaqhwEiERERkRspXyAraj20EE/3VBj10ejgJWvz1nS0Xk6ZppjCtkKkI1rZkmLq7AhSQcoXeEkqfp0+V2gky6iTe4rU5FXtdHdAblmewX57TFCYW+auApZlUkrST2RrkRptgSI1loxb22UunB9BlCHDMuooSbCun1j0PfXT6hAZEKI+9tRo1DmmaoqpdckLCMvaox7qCCJTTImIiIgoH0lSlrmo6JaUjo9WC2+NRl3vDQIQkijbFFPrfZNE4cs7KOsyljRQtaQJWr7cuzv48tJobUbmSkq2jtiWZ7BRw8t91WmbVAsp0X1Q5nDmXz9Rti50UXAOorMjiEqRJbOwFFlSUkNd4Slr1JRT9UcMyNb3uqVlyvuiqgeHAIvUEBEREbmVsm5bRaSYupOHrEF0YBgCPTzUpSdkuHfUrSBl1LCoL/FKimlJ1+yTrEtpqCOjbuSj0bol6NRI+deDrHoBRzWdR4nmIOpkGXf7+MEv3xxayRqU5S80Y3IhQFRSQc0QMEOUKLXYU9ZAJ2vU0UPlHHk/YuQVJ5JQ5acgcgSRiIiIyJ3yqhxWdEtK724fPwCwfsE2Qydpy3iZC8voniQKX6tOWQqhpIGYOo/MWnzHnXy1OrcE0AVHvP4pZElCdGCY7TZYAi5zgX21Tt4XJZAzCWF57YtIXy6Mp8YygijnK06TV3E3b04ioGQQVO3XjAEiERERkRspi73Ld1CilgwJJrOARiM5/cW8RM9jnSMmihg5U9aoK3GAKDk/F81VUQEh7pmDqKYxFp5q+0+RN4oq8m2D0yPIkiRZ1pUUAmZJlOiHgfwjiEqQmVfR1EJZmkMJaKuyO+eTi4iIiKgSUOZMyVV9EmI+siTBZK3+6I45doU+j/WrtVRMkRqtLJd4pE6Zg6gpIggtKR/r0iCllb8Yyh3UjUpMqaKbx7X1JnWypYqpsI4iuvrDgIesgYd1/U2lKmrBQlRqf6zio4cAA0QiIiIit1KCG3etKVcZ5K39Vvj6hO55HmsKIIpOIfWyjuaUhDIKVJapsqWlznUrxUjpnUSp6ppHuPT662QZZiFgBkqUYipLEmr5+MFXq8s3ipi3vqLyHIAygli1X7PK+84gIiIiqoLUZS7uoC/2yjV5umF0rPjnsh+dKcizFMVglGspy+U6Sksj5UsxvYP6UUnJ1qI9+bny+nlIGpiEgFmIEo88Nw+qjgCdZ948RuvrYxlZlwrMQSzRU1QanINIRERE5EaSdOd9sVdSHnXlECBqZAkwF13oo1lQGPzzVbp0hTJKqa3EuZtqiikqbj3NykQDGeYCKaYaF14/D+sIosi3oH1JSdZRdOU1MgnLaGbeMhdVfw4iA0QiIiIiN7JUyKz6XxLzU4KU8hlBBFBM+mewh1epnkMjlXwOY3nQKHPcrGmm/3SW7pAXIQq4NhKolWUIWNZPLG2KtEZ5f1vTrpVsAXUE8Q545zNAJCIiInIjOd8Iw51CtqY8epbDvD2NJEMukE7o/ucon9HQklKWZijL+Z5VSf4RRMvyH67NzfSQNdYRxNKnFkvW+cVKqqkEy2Oluu+dENQzQCQiIiJyIyU1sGp/RbQlW9MyPTTlMIIoSWU+CqORZOgq8Zd4ZRSaBWosNPnmIJqF7Zw/Z3jI+eYgljK1WKliqhSrkWB5XyhBIUcQiYiIiMiGpFY4rPpfFBWWgFeCp1z2Xx015RIgVoUqphxBVGjkvDFls7WCqSv3xjK6J8EsROlHEAFoJCWItwTynlLeDyfKGptlOwZethggEhEREbmRulbaHTCSoFAKcniUR4qpiwVISvQcZbyeY2nlpZjeOX2oNDTIW07CLITLRYY0sgzLzMXS/zCgrKOZlykgwUOTd847YQSx8r4ziIiIiKqg/Guk3SksKX2upfWV+Lnksn8erSRBJ1XeOYiWEbKyXXOyKpHzrYNoEgIyXCsypAR1lhHE0r3uyhqnynqnkCzrcub/e1V/67PXEREREbmRZZmLO2t5AgkSNLJcLmmZcjlUGNXKcqUfndNIlb+N5UUj5aWY5gozvDQal4pAKf3JBMCrlPNolRRyWf1f+7m5Vf1lY4BIRERE5GYaSa7yXxLzk9URxLK/KA1Q5immHlUg+KoKQWx50UqymmKaZTIh1NPbpePz7qOAv86jVG1RlrTQyspPQPZzc+UqHmJV7dYTERERVULacii0Up5kQP1SXNbKY35gdS8fBOo8y/Q5SkvrYhrlnUyW81ZBzBFmhLi4DqZWktXlMfy0ulK3JzasJoJ0ntZUYPu5uWX8+0aZY5EaIiIiIjfTyPIdlWKqVI0srzmIZT0/sKF/YJme3x20MovUKCwrY+bVBfXXujYKqCyT4anRuHysI0qQKUOCVrYvfFPVKxjzZwkiIiIiN9PeYSmmUjkWqdFa15j7p9NKcpmn2lYVWkmCEBJM1lFAf51ro4Aaa5/y13rA041reUqSBA1ku6UzqnqAxRFEIiIiIjcL8/R2SypbZaGRlCI1ZR+w3OXlW6mXoCgvWpkppgpJkgBJwGgywUujgZ+Lo4Baa1EZV1NTiyNDqfBr+zpZqs+a3Ppc5YkBIhEREZGbNQ0MregmuJWHrEHLoOqo5ob0vOLU8vEr8+eoCrQuLgZ/J9NYl44wmnMRoPN0+QcEjWyZ1xriYnGb4siSBJ2DH06qeno5ex0RERERFau6l0+Vn1tVlehkuVyqxlYFSrXQLJMJYZ6ujwJqJQk+Wp3bR/UlOJ6bW9UzgzmCSERERERUyXjJ2nKpGlsVWOakCpgEEKgrSYAow0ejRbVSLnFh3y7L6GbBEc2q/kMKA0QiIiIiokqmcUDwHbVUSmmoKZuSBG+N6+GLVpbRufrd8CrBsUWeV5Jxj1+A3ZxITRV/3RggEhERERFVMh5y2S71UZVYRhAto4glrULq7uAQsIwUNq4W7HB7VcZxayIiIiIiqrQkCTAJAY0kw8uNy1SUlao+B5EBIhERERERVVoyJOSYTdBKErzkyp8AKVfx6rNVu/VERERERHRHkyUJkmRJu/WoAoV7Kv8YZ9Eq/x0mIiIiIqJ/LBkSJEjw0+qqxPy+qtDGojBAJCIiIiKiSkuSLGsO+rt5HcOyIlfxKqYMEImIiIiIqNJSUkz93LyOYVmROYJIRERERERUNmRI0FkXu68KWMWUiIiIiIiojMiSBJ0sl8lahmVBruIhVtVuPRERERER3dEkSPCQNfCSq0Z90CpQaLVIVbz5RERERER0J5MlwIMjiOWmareeiIiIiIjuaLIygqipGiOIGhapISIiIiIiKht+Og9EBoRUmRFECZalOaoqBohERERERFRpaSQJdX2rVXQznCZJUpVeCZEBIhERERERkZtU9QCrqrefiIiIiIio0uAIIhEREREREQGwzkGswiEiA0QiIiIiIiI3kSSJRWqIiIiIiIjIsixHVcYAkYiIiIiIyE0sy1xU3SCRASIREREREZGbsEgNERERERERAWCRGiIiIiIiIrKqwtmlABggEhERERERuY1UpccPGSASERERERG5jQwuc0FERERERERQUkyrboTIAJGIiIiIiMhNmGJKREREREREACwjiAwQiYiIiIiIyDoHseqGiAwQiYiIiIiI3EQCRxCJiIiIiIgIqNKjhwADRCIiIiIiIreRULWDRAaIREREREREbiJLrGJKREREREREdwAGiERERERERG5iGUGsumOIDBCJiIiIiIjcxDIHsaJbUXIMEImIiIiIiNykao8fMkAkIiIiIiJyGyXFtKqOIjJAJCIiIiIichN/rQ7RQaHQyZqKbkqJMEAkIiIiIiJyE0mSUNPbr6KbUWIMEImIiIiIiAgAA0QiIiIiIiKyqhIB4quvvor+/fsjMjIS/fv3d7jP0aNH0a9fP0RGRqJbt27YuXNn+TaSiIiIiIioiqsSASIAPProo+jVq5fDv128eBGjRo1CmzZt8N///hfPPPMMZsyYgcOHD5dzK4mIiIiIiKoubUU3wBkvv/wyAODGjRv4/fff7f7+wQcfoHbt2pg+fToAoEGDBjhx4gTeffddtG/fvlzbSkREREREVFVViQCxOCdPnkRsbKzNtg4dOmDRokWlOq8sV57FS5S2VKY20Z2BfYvKAvsVlQX2KyoL7FdUFqpyv7ojAsTr168jJCTEZltoaChu3ryJnJwc6HQ6l8+p1coICal85WmDgnwrugl0h2LforLAfkVlgf2KygL7FZWFqtivKixATExMxIoVK4rc59ChQ6hRo4ZT55Mk2+hcCFHitgFAbq4ZqamZpTqHO8myhKAgX6SkpMNsLt21EeXHvkVlgf2KygL7FZUF9isqC5WxX1Wr5g2dTlPsfhUWIA4ZMgQPP/xwkfuEhYU5da7Q0FBcv37dZltycjICAwNLNHqoqCwvZn5ms6iU7aKqj32LygL7FZUF9isqC+xXVBaqYr+qsAAxMDAQgYGBbjlXTEwM/u///s9m2+HDhxETE+OW8xMREREREf0TVIllLs6fP4+ff/4ZSUlJMBqN+Pnnn/Hzzz+rfx84cCAuXLiARYsW4Y8//sD777+PTz75BM8880wFtpqIiIiIiKhqqRJFal5++WUcO3ZMfdy3b18AwK+//goAqF27NtauXYuFCxdi06ZNqFGjBl599VUucUFEREREROSCKhEgvvfee8Xu07ZtW+zcubPsG0NERERERHSHqhIppkRERERERFT2GCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrSQghKroRlZHZLGAymSu6GTZ0Og1yckwV3Qy6A7FvUVlgv6KywH5FZYH9ispCZetXGo0MWZaK3Y8BIhEREREREQFgiikRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiJXK+++/jy5duiAqKgoDBgzAqVOnitx/z5496NGjB6KiotCnTx/83//9Xzm1lKoaV/rWmTNnMG7cOHTp0gUGgwGbN28ux5ZSVeJKv/r3v/+NJ598Eq1atULr1q0xdOhQ/PDDD+XYWqoqXOlXBw4cwKOPPoqWLVsiJiYGjzzyCHbu3Fl+jaUqw9XvWIp169bBYDDg9ddfL+MWUlXkSr/asWMHDAaDzX9RUVHl2FrnMUCsJHbv3o3XXnsNY8aMwYcffgiDwYDhw4fjxo0bDvf/7rvvMHnyZDz22GPYuXMnunbtitGjR+OPP/4o55ZTZedq38rMzMTdd9+NyZMnIywsrJxbS1WFq/3q6NGj6N27NzZt2oQtW7YgPDwcQ4cOxbVr18q55VSZudqvAgICMGrUKGzduhX/+9//8Nhjj2HGjBk4fPhwObecKjNX+5Xi9OnT+OCDD2AwGMqppVSVlKRfBQYG4ssvv1T/++yzz8qxxS4QVCk89thjYu7cuepjk8kkOnToINavX+9w/wkTJohRo0bZbHv88cfFnDlzyrSdVPW42rfy69y5s3jvvffKsnlURZWmXwkhRG5urmjWrJn43//+V1ZNpCqotP1KCCH69u0rEhMTy6J5VEWVpF9lZGSInj17iv/7v/8TgwcPFgsXLiyPplIV4mq/2r59u2jdunV5Na9UOIJYCWRnZ+P06dOIjY1Vt8myjPbt2+PkyZMOjzl58qTN/gDQoUOHQvenf6aS9C2i4rijX2VmZiI3NxcBAQFl1Eqqakrbr4QQOHLkCM6ePYsWLVqUYUupKilpv1q4cCHatGmD++67rxxaSVVNSftVWloaOnXqhPvvvx+jR4/G77//Xg6tdZ22ohtAQEpKCkwmE0JDQ222h4SE4Pz58w6PuX79OkJCQuz2T0pKKrN2UtVTkr5FVBx39KslS5bgrrvuQtu2bcuiiVQFlbRf3b59Gx07dkR2djZkWcacOXPQrl27sm4uVREl6VefffYZvv76a85npUKVpF/dc889eO2116DX65Gamop33nkHgwYNwkcffYTw8PDyaLbTGCBWYkIISJJU6N8d/a2o/YkUxfUtopJwtl+99dZb2L17N9577z14eHiUQ8uoKiuuX/n6+mLnzp3IyMjAkSNHsGDBAtSpUwctW7Ysx1ZSVVNYv7px4wZeeeUVrFy5Et7e3hXQMqrKivq8iomJQUxMjPq4WbNm6NWrF7Zt24axY8eWUwudwwCxEggKCoJGo8H169dttt+4ccPulwlFaGio3f7JycmF7k//TCXpW0TFKU2/evvtt7F27Vps2LABer2+LJtJVUxJ+5Usy6hbty4AoHHjxvjjjz+wbt06BogEwPV+debMGSQlJWHQoEHqNpPJhG+++QabN29m9WUC4J7vVzqdDo0bN66UGV2cg1gJeHh4ICIiwqbqmtlsxpEjR2x+acgvJiYGX331lc22w4cPF7o//TOVpG8RFaek/Wr9+vVYtWoV1q9fX2lLe1PFcdfnlRAC2dnZZdBCqopc7VdRUVHYtWsXdu7cqf4XGRmJfv36YceOHeXYcqrM3PF5ZTKZcObMmUpZMZ4jiJXEs88+i2nTpiEiIgJNmzbFu+++i6ysLPTr1w8AMG3aNISHh2Py5MkAgKeffhqDBw/GO++8g/vvvx+7d+/Gjz/+iPnz51fkZVAl5Grfys7OVpdLyc7Oxt9//42ff/4ZAQEBqFmzZoVdB1Uurvart956C8uXL8eSJUtQq1Ytdb60j48PfH19K+w6qHJxtV+tW7cOTZo0Qd26dZGdnY0vvvgC//3vfzF37tyKvAyqZFzpVz4+PnbZDT4+PggMDMS9995bEc2nSsrVz6sVK1YgJiYGdevWRWpqKt5++21cuXIFjz32WEVehkMMECuJXr164caNG0hISEBSUhIaN26M9evXIzg4GABw9epVyHLegG/z5s2xZMkSvPnmm1i6dCnq1auHlStXokGDBhV1CVRJudq3rl27hr59+6qP161bh3Xr1qFfv35YuHBheTefKilX+9WWLVuQk5OD8ePH25xn7NixGDduXLm2nSovV/tVVlYW5s6di7/++gteXl645557sHjxYvTq1auiLoEqIVf7FZEzXO1XqampeOWVV5CUlISAgABERkZi69atuOeeeyrqEgolCSFERTeCiIiIiIiIKh5/LiEiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREAABtRTeAiIiovCQmJmLFihV229u1a4eNGzeWf4OIiIgqGQaIRET0j+Lv74/169fbbSMiIiIGiERE9A+j0WgQExNT7H5ZWVnw8vIq+wYRERFVIpyDSERE/3iXLl2CwWDA//73P0ybNg0tW7bEc889BwC4efMmZs6cifbt2yMqKgoDBw7E999/b3N8amoqJk+ejJiYGHTo0AGrV6/G66+/ji5duqj7JCYmok2bNnbPbTAYsHnzZptt27ZtQ+/evREZGYnOnTvjrbfesvn79OnT0b9/f3z11Vfo06cPYmJiMGjQIJw5c8ZmP5PJhLVr16J79+6IjIxEx44dMX36dADA+++/j2bNmiE9Pd3mmK+//hoGgwG//PKLi3eRiIjuBBxBJCKif5zc3Fybx0IIAMCiRYvQrVs3LF++HLIsIzs7G88++yxSU1Mxbdo0BAcHY8uWLYiLi8O+ffsQFhYGAHjxxRdx7NgxzJgxA6GhoXjnnXdw4cIFaLWu/zO7fv16LFu2DMOHD0fr1q1x+vRpLF++HN7e3hg8eLC639WrV7Fo0SI8//zz8PT0xKJFi/DCCy/go48+giRJAICZM2fiv//9L4YNG4bWrVvj1q1b+OSTTwAAffr0weuvv469e/eif//+6nk//PBDREREoFGjRi63nYiIqj4GiERE9I9y8+ZNRERE2Gx79dVXAQDR0dGYNWuWun3btm04c+YMPvroI9SrVw8A0L59e/To0QPvvPMO4uPjcebMGRw4cADLli1Dr169AABt2rRB586d4efn51Lb0tLSsHLlSjz//PMYO3YsACA2NhaZmZlYvXo1Bg0aBI1GAwC4desWtmzZorZLCIExY8bgzz//RIMGDfDHH3/gP//5D1566SU8/fTT6nMobaxWrRoefPBB7NixQw0Q09PTsW/fPkyePNmldhMR0Z2DASIREf2j+Pv7Y8OGDTbbPDw8AACdOnWy2X7kyBFERETg7rvvthl1bNWqFX788UcAwA8//AAANumkvr6+aN++PU6dOuVS27777jtkZGSgR48eNs/Xtm1brFq1Cn/99Rdq1aoFAKhVq5YaHAJAgwYNAAB///03GjRogKNHjwKAzehgQY899hji4uJw8eJF1K5dG3v27EFubi4eeughl9pNRER3DgaIRET0j6LRaBAVFWWz7dKlSwCAkJAQm+0pKSk4efKk3YgjANSpUwcAcP36dfj6+toVtCl4LmekpKQAAHr37u3w71evXlUDxIKVV3U6HQDAaDQCsIyU+vj4FDmK2aZNG9SuXRs7duzAhAkTsGPHDjzwwAMIDAx0ue1ERHRnYIBIRERkpczdUwQEBCAyMhKzZ8+221cZdQwNDUV6erpd1dPk5GSb/T09PZGTk2Oz7datW3bPBwBr1651GGDWr1/f6WsJDAxERkYG0tLSCg0SJUnCo48+in//+9945JFHcOLECbuCOERE9M/CAJGIiKgQ7dq1w1dffYWaNWsWOiKojEYePHhQnd+Xnp6Ow4cP2wRm4eHhSE9Px99//43w8HAAwFdffWVzrmbNmsHLywvXrl2zS3d1Vdu2bQEAO3futCluU1C/fv2QkJCAGTNmIDw8HLGxsaV6XiIiqtoYIBIRERWib9+++OCDDzBkyBAMHToUtWvXxs2bN3Hq1CmEhYUhLi4O9957L7p06YLZs2cjLS0NYWFhePvtt+1STu+77z54eXlhxowZePbZZ3Hp0iV88MEHNvtUq1YNY8eOxfz583H58mW0atUKZrMZ586dw9GjR7Fy5Uqn237PPffgiSeewMKFC5GcnIxWrVohNTUVe/fuxbJly9T9wsPDcd999+Hzzz/HqFGj1CI4RET0z8QAkYiIqBCenp7YtGkTli9fjsTERCQnJyM4OBhNmza1KUqzcOFCzJ49GwsWLICPjw+efPJJREVFYe/eveo+wcHBSEhIwKJFizBmzBhERERgyZIl6qijYsSIEahevTreffddbNiwAZ6enqhXr57dfs6YNWsWatasiW3btuGtt95CcHCwwxHCrl274vPPPy+yoA0REf0zSEJZ/ImIiIjcRllj8ODBgxXdlGJNmDABSUlJ+Ne//lXRTSEiogrGEUQiIqJ/qF9//RU//vgj9u/fj6VLl1Z0c4iIqBJggEhERPQP9fzzzyMlJQVPPvkkevToUdHNISKiSoAppkRERERERAQAkCu6AURERERERFQ5MEAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiERERERERGTFAJGIiIiIiIgAMEAkIiIiIiIiKwaIREREREREBIABIhEREREREVkxQCQiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREABggEhERERERkRUDRCIiIiIiIgLAAJGIiIiIiIisGCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrBohEREREREQEgAEiERERERERWTFAJCIiIiIiIgAMEImIiIiIiMiKASIREREREREBYIBIREREREREVgwQiYiIiIiICAADRCIiIiIiIrJigEhEREREREQAGCASERERERGRFQNEIiIiIiIiAsAAkYiIiIiIiKwYIBIREREREREABohERERERERkxQCRiIiIiIiIADBAJCIiIiIiIisGiERERERERASAASIRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERExZo+fTr69+9vs+3AgQPo2bMnIiMj0aVLF4fHHT16FAaDAb/99ptb25OYmIg2bdoUuc+QIUMwfvz4Uj/Xjh07YDAYkJ6erm77448/8OSTTyImJgYGgwGXLl0q9fOUl0uXLsFgMBT7X1W6JiIich9tRTeAiIgqv9GjRyMrK0t9bDKZEB8fj44dO2LevHnw8fFxeFxERAS2bt2KOnXqlFdT3a5Tp07YunUrvL291W2LFi3C7du3sXr1anh7e6N69eoV2ELXVK9eHVu3blUfX7x4EVOmTMHMmTMRERFhsx8REf3zMEAkIqJiFQzwkpKSkJaWhoceeggtW7Ys9Dg/Pz/ExMSUcevKVnBwMIKDg222/fnnn+jSpQvatWtXQa0qOQ8PD5vXRAnuGzZsWOhrlZOTA1mWodFoyqGFRERUkZhiSkRExcqfYrpjxw7cf//9ACwjiwaDAYmJiQ6Pc5Ri+s477+DRRx9FixYt0L59ezz33HM4f/683bH79+/HY489hqZNm6JNmzYYMWIELl++7PB5hBCYN28eWrVqhe+//97hPrdv38bAgQPx8MMP48aNGwAAg8GAd999F0uXLkXbtm3Rrl07zJkzB9nZ2epx+VNMlfTMCxcuYOPGjTAYDBgyZIi674EDB9C/f39ERUUhNjYWixYtQk5OTlG3tlJS0nO3bt2Krl27omnTprh27ZrDVGPlnnz22WfqNrPZjHXr1qFbt26IjIxE9+7d8eGHH5b3ZRARUQlwBJGIiFzSqVMnrFixAmPHjkV8fDyaN2+OGjVqOH38X3/9hcGDB6NmzZpIS0vDBx98gEGDBmHv3r3w9/cHAOzcuRPx8fHo3bs3Ro8eDSEEvv76a9y4cQO1atWyOZ/ZbMbMmTNx4MABvPvuu2jSpIndc968eRPDhg0DAGzatAmBgYHq3zZs2IC2bdti8eLF+PXXX7F06VLUrFkTI0aMsDuPkp45duxYtGnTBkOGDIGfnx8AYPfu3Zg8eTKeeOIJTJo0CRcuXMDSpUshhEB8fHyh98NsNsNsNhd5zyRJshm9M5lMEEIUeYwsy5Dlkv8O/O233+LChQuYMmUKvL291dfGGfPmzcPOnTsxevRoRERE4KuvvsKMGTMQGBiIzp07A7AE3i+++CI+/fRT3H333SVuJxERuRcDRCIicklwcDAaN24MAKhfv77LKaQzZsxQ/7/JZEJsbCzatWuHTz/9FH379oXZbMaSJUvQrVs3LF26VN33gQcesDuXyWTC9OnTcfjwYbz33nu499577fa5ceMG4uLi4OPjg/Xr16sBnaJWrVpYuHAhAOC+++7Dt99+i/379zsMEJX0TA8PD1SvXl29diEEFi9ejL59+2L27Nk2+8+dOxcjR45EUFCQw/uxcuVKrFixovAbZm3jwYMH1cfdunUrdDRVMXbsWIwbN67IfYqSmpqKDz/8EGFhYS4dd/78eWzZsgWvvfYa+vXrBwBo3749kpKSsGLFCjVAVFJWJUkqcRuJiMj9GCASEVG5OnnyJJYvX46ffvoJN2/eVLefPXtW/d9r167ZpTIWZDabMXHiRHz//ffYvHkz6tevb7fP9evXMXjwYISGhmLNmjUOi+nExsbaPG7YsCF+/PFHl67p7NmzuHLlCnr06IHc3Fx1e9u2bWE0GnHmzBm0bt3a4bEDBgxAp06dijy/h4eHzePVq1fbpME6UtoiMxERES4HhwBw5MgRyLKMbt262dyLdu3a4eOPP4bJZIJGo0Hfvn3Rt2/fUrWRiIjcjwEiERGVmytXrmDo0KFo2rQp5syZg+rVq0On02HUqFFqwJOSkgIAxQYnmZmZ+OKLL/Dggw86DA4By3IUSnppYZVWq1WrZvNYp9PBaDS6dF1Km0eOHOnw71evXi302LCwMISEhBR5/oKjbA0bNnQqxbQ0QkNDS3RcSkoKTCYTWrRo4fDvSUlJLqUkExFR+WKASERE5eaLL75AVlYWVq1apQZsubm5uHXrlrqPkoqZlJRU5Ll8fX3x5ptvYuTIkQgLC8OUKVPs9mnTpg0aN26MmTNnIigoqND1GktLmdM4b948Nf02v6Lm2FXWFFNHqZ8eHh52RXfyv3YAEBAQAK1Wiy1btjg8R8GKsEREVLkwQCQionKTlZUFWZah1eb987Nnzx6bVMT69esjPDwcO3fuLDaga9euHZYvX45x48bB19cXzz//vN0+zz//PNLT0zFhwgSsW7euTJamUNp8+fJlDBgwwKVjK2uKqSM1atTA5cuXYTQa4enpCQD46quvbPZp27YtTCYTbt++bZe+S0RElR8DRCIiKjdK8PDiiy/isccew5kzZ/DOO+/YpHnKsoypU6diypQpmDx5Mh566CFIkoSvv/4avXv3RlRUlM05u3TpgkWLFmHKlCnw8/OzWXZCMWXKFKSnp2P06NHYsGGD29dmlGUZ06dPx7Rp05CWloaOHTtCp9Ph4sWLOHDgABISEuDt7e3w2PDwcISHh7v0fAaDwR3NdlnXrl2RkJCAl156Cf3798dPP/2EHTt22Oxzzz33YODAgZg0aRKGDRuGqKgodR7muXPnMH/+fACWSrUzZszA/v377SrTEhFRxWGASEREZU5JNTQYDHjttdewYsUK7N+/H40aNcLy5csxceJEm/379OkDT09PrFmzBuPHj4ePjw+io6MLTU/s3bs3MjIyMHPmTPj6+joscDNz5kxkZmZixIgReO+999CoUSO3XmOvXr3g6+uLtWvXYvv27ZBlGbVr10anTp2g0+nc+lwVRa/XY8GCBVi1ahX279+Ptm3bYsGCBRg0aJDNfrNmzUK9evWwbds2JCQkwM/PDw0bNsRjjz2m7mM2m51aroOIiMqXJPjJTEREZeTgwYN4/vnn8cUXX5RJyiMRERG5V+lKnBERERXi22+/xdatW1GjRo0SV8QkIiKi8sUUUyIiKhPPP/88goOD8dprr5V6yQUiIiIqH0wxJSIiIiIiIgBMMSUiIiIiIiIrBohE5Wj69OlqdcUdO3bAYDAgPT29glvlXv3798f06dMr5LlPnDiBfv36ISoqqsKWAQCA9PR0GAwGu/L/VVGXLl3w+uuvu/Wcly5dgsFgwGeffVboPu58fxgMBmzevFl9bDabMWfOHLRv3x4GgwGJiYmlfo7SOHv2LBITE5Gammqzvbw/IwprR2mMHz/e4bIj5elO/awFnO/Lu3fvdvh5NGTIEIwfP75M2ubM+7wqef3114tdl5XoTsE5iETlaPTo0cjKyqroZtyxZs2aheDgYLz99tt2C4tTyaxYsQKBgYEV3YxS2bp1K+6++2718b59+/Cvf/0L8+fPR8OGDVGjRo0KbB1w7tw5rFixAv369bNZD7JTp07YunVroesnllc7qrryvo/lydm+/MknnyAlJcXh8i9ERAUxQCQqR3Xq1KnoJjglKysLXl5eFd0Ml/35558YMGAAWrduXeg+VfXaKkqTJk0qugmlFhMTY/P4zz//REBAgM2afJVRcHBwoes+UvFMJhNMJtMdfR+rSl8moqqFKaZE5Sh/iqkj69evR1RUFD799NNiz9WlSxcsWrTIbvv48ePx5JNPAgAyMjIwd+5cdO/eHdHR0ejSpQvmzJmDtLQ0m2MMBgM2bNiA+fPno23btujTp49T1/Pbb79h4MCBiIqKQs+ePQtt9/HjxzF48GBER0ejTZs2ePnll+3acPToUfTp0wdRUVF49NFHcerUKbRp08ap9L+jR4/CYDDAZDJh/vz5MBgMapprly5dsHDhQqxcuRIdO3ZEixYtAFhSs9atW4du3bohMjIS3bt3x4cffmh37gMHDqB///6IiopCbGwsFi1ahJycHJt99u7di+7du6Np06Z46qmn8Oeff9qdx2QyITExEZ06dUJkZCR69+6NXbt22eyj9I/PP/8cvXr1QnR0NEaOHImbN2/i/PnzGDJkCGJiYtC/f3/88ssvxd4XdyiYYvrdd9/hueeeQ4cOHRATE4NHHnkE//vf/+yOu3z5MiZNmoQ2bdogOjoaffr0sbve/I4ePYpmzZph6dKlhe5T8P2h3K+vvvoKffr0QUxMDAYNGoQzZ87YHJc/xXTIkCFYvnw5bt26BYPBAIPBgEuXLgEArly5gokTJ6J169aIjo7GsGHDHL6WBTlz3Nq1a9GtWzdERUWhffv2GDZsGJKSknD06FE899xzAIAHHngABoNBTWMrmBqppOx9/PHHePHFF9G8eXN07NgR//3vfwEAb731Fjp06IC2bdti8eLFMJvN6vP/8ccfmDhxIu6//35ER0ejd+/e2Lhxo7pPUe1w9hqvXr2KESNGoGnTpujSpQu2bdtW7L1LSEhAbGysTVsB4LPPPoPBYMD58+cBADt37sSgQYPQunVrtGrVCkOGDMEPP/xgc4zSHw4cOIDevXujadOmOHXqlMMU0zfeeAN9+vRBs2bN0LFjR0yePBlJSUk251P6/saNG9GxY0e0atUKEydOtEvBTUlJwcyZM9GhQwdERUWhe/fu2Lhxo/p3Zz9rCsrMzMSrr76K2NhY9XPxyy+/VP9eVF8ueF/27t2LY8eOqfsV/FzdtWsXunXrhubNm2P48OH466+/bP5uNBqxaNEi3H///YiMjMTDDz+MQ4cOFXsNBTnzOQgAmzdvxv3334+YmBiMHj0aR44cgcFgwNGjR4s8f2JiItq0aWMz3eCRRx7B8ePHbfb79NNP0b9/f8TExKBVq1Z4/PHHcezYMfXvqampmDx5MmJiYtChQwesXr3a5Wslqso4gkhUSaxcuRLr1q3DqlWrcN999xW7f8+ePbFnzx5MnToVkiQBsMx9O3ToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixbBmeLGWVlZGDZsGIKCgrBkyRJkZWVhwYIFyMjIgF6vV/c7ceIE4uLi0LVrVyQkJCAlJQVLlixBamoqEhISAAB///03Ro4ciWbNmmHSpEm4fv06pkyZAqPR6NS9i4iIwNatW/HEE09g6NCh6N69u82IwUcffYSGDRti1qxZMJlMAIB58+Zh586dGD16NCIiIvDVV19hxowZCAwMROfOnQFY5u1MnjwZTzzxBCZNmoQLFy5g6dKlEEIgPj4eAHD69GlMnDgRXbt2xYwZM/D777/jhRdesGtjQkIC1q9fjzFjxiAqKgr79u3DlClTIEkSHnroIXW/q1evIiEhAS+88IL6BXHmzJm4dOkSBgwYgOHDh2Pp0qWYNGkSPv74Y/W1dyQ3N7fYe6fRaIo8R0FXrlxB8+bNMWjQIHh4eODbb7/FjBkzIMuyeh3Jycl44okn4O3tjfj4eNx111347bffcPXqVYfn/OKLLzB27FiMGDECY8eOdbhPYe+Pq1evYtGiRXj++efh6emJRYsW4YUXXsBHH33k8LpmzZqFDRs2YO/evVi/fj0AoHr16rh58yaefPJJBAYGYvbs2fD29sa6devw7LPPYu/evYWOOjtz3M6dO7FmzRpMmTIF9957L27evImvv/4amZmZiIiIQHx8PF5//XWsWLECYWFhxaZHK8FNYmIitm/fjunTp+Pnn3/GlStXsGDBApw+fRpvvvkmmjRpgt69ewMArl27hvr166NPnz7w9fXFzz//jMTERBiNRowaNarIdjhzjUIIjB49GikpKZg/fz48PT2RmJiImzdvol69eoVeS+/evbFy5UocO3YMbdu2Vbfv2bMHERERqFu3LgBLcNy3b1/UqVMH2dnZ+OijjzB48GB89NFHqF27tnrc5cuXsXjxYowePRqhoaG4++67ceHCBbvnTU5OxqhRo1C9enXcuHEDGzZswDPPPINdu3ZBo9HYtMNgMGDevHn466+/sHDhQixduhSzZ88GYPkcfPrpp5GcnIwxY8bgnnvuwYULF9TAFnDus8aRl19+GQcPHsSkSZNQp04dbNu2DaNGjcK7776Lli1bFtqXCxo9ejSuXLmC27dvY9asWQBgk4r6/fff49q1a4iPj4fRaMT8+fPxyiuv4K233lL3GT9+PE6dOoVx48ahTp062LNnD55//nls374djRs3LvQaCnLmc3D//v2YN28ennzySTzwwAM4ceIEXnrpJaefIysrC1OnTsWoUaMQFhaGDRs2YMSIEdi3bx/CwsJw4cIFTJgwAUOGDMHUqVORnZ2NH3/8Ebdu3VLP8eKLL+LYsWOYMWMGQkND8c477+DChQvQavm1mf4hBBGVm/j4eNGvXz8hhBDbt28Xer1epKWliSVLloiYmBjx9ddfO32u06dPC71eL7777jt1265du0SjRo1EUlKSw2NycnLE8ePHhV6vF5cvX1a36/V68cgjj7h0LZs3bxZNmjQRV69eVbcp546Pj1e3DRo0SAwePNjm2MOHDwu9Xi9+/fVXIYQQCxcuFK1btxaZmZnqPh9//LHQ6/UiISHB6Tbp9Xrx3nvv2Wzr3LmziI2NFVlZWeq2c+fOCYPBIHbs2GGz79SpU0X//v2FEEKYzWbRqVMnMX36dJt9tm3bJqKiosSNGzeEEEKMHz9e9OzZU5jNZnWfVatWCb1eL7Zv3y6EECIlJUVER0eLxMREm3MNHz5cPPjgg+rj+Ph40bhxY3H+/Hl12+uvvy70er348MMP1W2ff/650Ov14vfffy/2fhT3n9LGwnTu3FksXLjQ4d/MZrPIyckRr7zyihgyZIi6/Y033hDR0dHi77//dnjcxYsXhV6vFwcPHhQHDhwQkZGRYv369Tb7OPP+UO7X2bNn1W379++3uzcF+0VCQoJo3bq1zbmWLVsmWrduLVJSUtRtN2/eFM2bNxebN292fHOcPG7OnDli7NixhZ7j4MGDQq/Xi4sXLxZ6D4TIu2/5++Tt27dFkyZNRLdu3URubq66/dFHHxUTJkxw+HzK67Z69WrRpUuXYtvhzDUqffLkyZPqPpcuXRKNGze2e/8X1KdPH/HKK6+oj41Go2jevLldn1CYTCaRk5MjunfvbvOeio+PF3q9Xvz00082+xe8jwXl5uaKv/76S+j1enHs2DF1e+fOncUDDzwgcnJy1G2vvvqqaN++vfp4y5YtwmAw2D2nwpnPGkd+//13u+NMJpPo3bu3GDp0qLrNUV92ZNy4cQ5fh8GDB4vmzZuLmzdvqts2bNgg9Hq9+nmsfF4fPXrU5tgnn3xSjBs3rtDnzP8+F8L5z8H+/fuLESNG2Owza9Ysodfri/03MiEhQej1evG///1P3ZaWliZatWolFi9eLIQQYs+ePUXes99++03o9Xrx8ccf252jc+fORT4/0Z2CP4UQVbCFCxdiz549ePvtt9G8eXOnj2vSpAnq1auH3bt3q3Osdu/ejdatWyM0NFTdb+fOndi4cSPOnz+PjIwMdfu5c+dQs2ZN9fH999/vUrt/+OEHRERE2PwS3aJFC4SEhKiPMzMzcfLkSbz88ss2o1ktWrSATqfD6dOnodfr8eOPPyI2NtZmlOaBBx5wqT1Fadu2LTw9PdXHR44cgSzL6Natm0272rVrh48//hgmkwnnz5/HlStX0KNHD5t92rZtC6PRiDNnzqB169b44Ycf0KtXL5vRqgcffBBvvvmm+vjMmTPIzMxEjx49bNrVq1cvTJ8+HcnJyep9q1Wrls1cVWUEJf/oivL3v//+Gw0aNCj0uv/zn/8Ue2/yF29xxq1bt5CYmIhPP/0Uf//9tzoiGx4eru7z9ddf47777nM4mpHfvn37sGvXLrz44ot46qmnHO5T3PujVq1aNiNUyv0o7t4UdOTIEbRv3x5+fn7q6+3r64uIiAj8+OOPpTqucePG+M9//oOEhAR06tQJERERNqNUrsrfF/z8/BAUFIRWrVrZnLNu3bq4cuWK+thoNGLt2rXYtWsXrl69apMmnZubW+TIiDPXeOrUKYSGhiI6Olo9rlatWoiIiCj2enr16oWNGzdi5syZ0Gq1+L//+z+kp6ejZ8+e6j5//PEHli5diu+++w7Jycnq9nPnztmcKzw83KkRrUOHDmH16tU4c+aMTbr7uXPn0KpVK/VxmzZtbO5Nw4YNkZycjOzsbHh4eODrr79GkyZNCn1OZz5rHPWFH374AUIIm88MWZbRo0cPdbTQXaKiohAQEKA+btiwIQDLe6hu3bo4fPgwwsLC0Lx5c7trcKVSszOfg4GBgfjll1/wyiuv2OzTpUsXbNmyRX1sNptt0pILZkJ069ZN/f++vr5o3749Tp06BQDQ6/W4ffs24uPj0adPHzRv3hw+Pj7q/krqcv4U64LnILrTMUAkqmD79u1DREQEmjZt6vKxvXr1wvbt2/Hiiy8iPT0dX3zxhc0/rPv370d8fDwGDRqEiRMnIjAwEElJSRgzZoxd+mb+oNIZSUlJDgs/5A8QU1NTYTKZMGfOHMyZM8duXyXlMCkpyW5ZCk9PT5t/tEuj4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc5sK7qc8vnXrlvr//f39bfbR6XR225VtxaXgOvNF2dVAZfr06fj+++8xevRoNGjQAH5+ftiyZYvN/NObN28iKiqq2HMdPHgQgYGB6Nq1a6H7FPf+KOx+OZuerEhJScHJkyexe/duu7+1a9euVMc9+uijSE9Px9atW7Fy5UoEBgZi0KBBGDduXIkCxYIVRj08POy26XQ6m3uwePFi/Oc//8GYMWMQEREBf39/fPrpp1i9ejWMRmORAaIz11jU50Fxy0v07t0by5Ytw9dff40OHTqoP3opP2ClpaVh6NChCAkJwfTp01GzZk14enri5ZdfRnZ2ts25nPkcO3XqFEaPHo2uXbtixIgRCAkJgSRJGDBggF2/cXRfhRDIycmBh4cHbt68ibCwsEKfy5nPGkeVR69duwYfHx+7yqshISHIzMxUA1R3cHSNQN57KCUlBUlJSQ6DfVf6rzOfg2azGbm5uXZ9qeDjGTNm2MzjfO2119T5/T4+PnYp4SEhIfj1118BAPfccw9WrVqFdevWYeTIkdBqtejWrRteeuklBAcH4/r16/D19XV4DqJ/CgaIRBVszZo1eO655xAfH4/FixdDlp2vHdW7d2+sWrUKJ06cwKVLl2A2m21+Of3kk08QHR2tzpcBYDMRPz9X5qEBQFhYmMMCHvl/3ff394ckSRg7dqzDEUplhCksLAw3btyw+ZvRaLQZ8SyNgtcWEBAArVaLLVu2OLzu4OBg9UvtvHnzHAZayshbWFiYzTUDsLsW5QvkjRs3EBQUpG5XjiurZSScGb3J/8WqOEajEYcOHcIrr7yCQYMGqdv/9a9/2eyn/BBRnJdffhkbNmzA0KFDsXnzZpt7oyjN+8MVAQEB6NKlC0aPHm33N19f31IdJ8sy4uLiEBcXh6tXr2LXrl1YtmwZwsPDbe5jWfrkk08wePBgjBgxQt3mbJERZ67R0XsYsPTx4qoG165dG5GRkdi9ezdatGiBzz77DBMnTlT/fvLkSfz111945513bEaFb9++7VT7Czpw4ACCgoLw5ptvqu//y5cvl+hcgYGBDuc4Kpz5rHGkevXqyMjIQGZmpk2QmJycDG9v73JdxicgIADh4eFYuXJlqc7jzOegcr8K9qWCj8eOHWuTdZA/EyIjI8OuWnVycrJNIN+pUyd06tQJt2/fxueff44FCxZg3rx5WLZsGUJDQ5Genu7wHET/FAwQiSqYXq/HW2+9hbi4OMyaNQvz5s1z+tiGDRtCr9dj9+7duHTpEtq3b2/zD29WVpbdF4miKkm6IioqCrt27cJff/2l/gJ+4sQJm39EfXx8EBMTg7NnzxZafAQAIiMjsWPHDpt/kJ2p5FpSbdu2hclkwu3btxEbG+twn/r16yM8PByXL1/GgAEDCj1XZGQkDh48iMmTJ6tfAPft22ezz7333gtvb2/s2bPH5j7s2bMH9erVK7MS/O5OMc3OzobJZLLpU2lpaTh48KDNfu3atcN7772H69evFzmi4+fnh7fffhtDhgzBsGHDsGnTJvj5+dnsU5r3hyvatWuHPXv24N5773VpGRRXj7vrrrswcuRIbN++HX/88QeAko96usJoNNq8biaTCR9//LHNPoW1w5lrjIqKwooVK/D999+raaZXrlzBTz/95FTqfO/evbFmzRq0bdsWWVlZNmmIytqx+dv/7bff4vLly4iMjCz23AVlZWVBp9PZBGwl/Vxs164dPvnkE/zyyy9o1KiR3d+d+axxJCoqCpIkYe/evejbty8AQAiBvXv3FjoaWZSCI8quaNeuHTZs2AAfHx+X0rYLcvZzsFGjRvj0008xcOBAdZ+CnzF33313kZ9d+/fvV6txp6en4/Dhww4/x/39/dGnTx988803+O677wBAzX44ePAgevXqZXOOgp9PRHcqBohElUDTpk2xdu1aDB8+HH5+fmqFTGf07NkTmzZtQlpamt2X5/bt22Pu3LlYvXo1oqOjcejQIRw5csQtbe7fvz9Wr16NkSNHYty4ccjKysLy5cvtRoGmTJmCuLg4yLKM7t27w9fXF1evXsXnn3+OiRMnon79+oiLi8O//vUvPPfcc4iLi0NSUhLeeusteHt7uzyy6Yx77rkHAwcOxKRJkzBs2DBERUWp8wrPnTuH+fPnQ5ZlTJ8+HdOmTUNaWho6duwInU6Hixcv4sCBA0hISIC3tzdGjBiBAQMGYMKECXjsscdw5swZu8AsMDAQzzzzDNasWQOtVovIyEjs27cPhw4dKnJZh9JyJs3TFf7+/oiKisLKlSvh5+cHWZaxbt06+Pn52czjiouLw86dO/HUU0/hueeeQ40aNfDnn38iIyPDZgQLAIKCgvDOO+/gqaeewqhRo7B+/Xq7tLrSvD+cFRcXh//973945plnMHjwYISHh+P69ev45ptv0KJFC5tKs64eN3PmTAQEBCA6Ohr+/v44evQozp8/r1Ybrl+/PgBg69at6N27N7y8vOxSrkurffv2eP/991GnTh0EBgbi/ffft0vPLKwdzlzj/fffj0aNGmHChAmYMmUKPD09kZCQ4PSPHz179sSiRYuwaNEitGzZ0mb+akxMDHx8fPDKK6+oSzCsWLHCZt6rK2JjY/Huu+9i/vz56NKlC7799luHS7U4o2/fvnj//fcxbNgwjB07FvXr18elS5dw7tw5TJkyxanPGkcaNGiA3r17Y+7cuUhLS1OrmP75559qJVJX1K9fH59++ikOHDiA8PBwVK9e3en7Fxsbiw4dOmDo0KEYMWIEGjZsiLS0NPzyyy8wGo2YPHmyU+dx9nPwueeew9ixYzF37lz19VFGu53JIPDy8sKyZcuQkZGB6tWr45133kFOTg6efvppAMAHH3yAkydPqvOkz507h08++QSPPPIIAEsg26VLF8yePRtpaWkICwvD22+/bffjyOXLl9GtWzcsWLBADeKJ7hQMEInKWWEBT6tWrZCYmIjRo0fD19e3yBG3/Hr37o3ly5fDw8PDbi7XwIEDcenSJWzatAlGoxGxsbFYsmRJkSNizvL29sb69esxe/ZsTJw4EbVq1cL06dOxatUqm/1atmyJ999/HwkJCZg2bRrMZjNq1qyJ++67Tx1dCg8Px9q1azF//nyMHTsWDRo0wIIFC/Dss8+W2S+2s2bNQr169bBt2zYkJCTAz88PDRs2tFlwulevXvD19cXatWuxfft2yLKM2rVro1OnTupoS1RUFJYuXYqlS5dizJgxiIyMxLJly/D444/bPN/48eOh0WiwZcsWJCcno06dOli8eLG6DEFVsWTJErzyyiuIj49HYGAgnnrqKWRlZanrDAKWtLktW7Zg8eLFWLBgAbKzs1G3bl2MGjXK4TmrV6+OjRs34qmnnsLYsWMdrjlW0veHs4KDg7F161a8+eabeO2115Camorq1aujefPmRQZrzhwXExODf//739i6dSuMRiPq1KmDefPmqe/XWrVqIT4+Hu+99x42b96MGjVq2I2YlNYrr7yCWbNmYe7cufDy8kLfvn3RrVs3mznLhbXDmWuUJAmrV6/GK6+8ghkzZiAkJASjRo3C4cOH1fm8RbnrrrvQrFkzfPvtt3avbWhoKJYvX45FixZh9OjRqFu3LubMmVPiYi33338/pkyZgs2bN2Pbtm2IiYnB2rVr0b17d5fP5enpiXfffRdLlixBQkIC0tLSUKtWLXUtWsC5zxpHXn31VbzxxhtYtWoVUlNTodfrsWbNGrRs2dLldj755JP4+eefMWPGDNy6dQtjx47FuHHjnDpWkiSsWLECa9aswbvvvourV68iICAAjRo1wpAhQ1xqhzOfg926dcPLL7+Mt956C9u3b0fr1q0xbdo0vPDCC079e+Dl5YVFixZh3rx5+OOPP3DPPfdg3bp16o8OBoMBBw8exGuvvYZbt24hLCwMjz/+OCZMmKCeY+HChZg9ezYWLFgAHx8fPPnkk4iKisLevXvVfYQQMJlMdmt4Et0JJCGcWPCMiNxi3LhxyMjIsFuDkOwdP34cTz31FN59912bqo1Uvtq0aYOhQ4cWGtwREZW1VatWYc2aNTh27FiRqdyJiYnYvHkzjh49Wo6tI7rzcASRqBzcunUL33zzDY4dO2Yzr4LyLF68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdtH+kS5cu4eDBg7h582aJ5nkREZXEjRs3sHbtWrRp0wbe3t44fvw43nrrLTz22GMuzQ8mopJjgEhUDr755htMnToVbdu2xbPPPuvUMfnXmypIluUyq+YI5KXOlOfzZ2dnY9GiRUhOToavry9iY2Mxffp0yLJcIe35p9u0aRN27dqFoUOHulRcg4ioNHQ6Hf7880/s3LlTnQP49NNP26SAElHZYoopUSV06dKlIheK79evHxYuXFhmz3/06FF1Qr8jrsxfuRPbQ0RERHSnYoBIVAllZ2eri/o6EhQU5NLyBK5KS0vD2bNnC/27KxXw7sT2EBEREd2pGCASERERERERAICTdoiIiIiIiAgAA0QiIiKX7dixAwaDAenp6RXdFCIiIrdigEhEREREREQAGCASERERERGRFQNEIiIiB44fP47BgwcjOjoabdq0wcsvv4y0tLRC91+7di26deuGqKgotG/fHsOGDUNSUpL695s3b2LmzJlo3749oqKiMHDgQHz//fflcSlERERO01Z0A4iIiCqbEydOIC4uDl27dkVCQgJSUlKwZMkSpKamIiEhwW7/nTt3Ys2aNZgyZQruvfde3Lx5E19//TUyMzMBWJauefbZZ5Gamopp06YhODgYW7ZsQVxcHPbt24ewsDAAwPTp03Hs2DEcPHiwXK+XiIhIwQCRiIiogCVLlqBZs2Z488031W3h4eGIi4vDb7/9Zrf/qVOn0KFDBzz11FPqtgcffFD9///9739x5swZfPTRR6hXrx4AoH379ujRowfeeecdxMfHAwBkWYZGoymbiyIiInICU0yJiIjyyczMxMmTJ9GzZ0/k5uaq/7Vo0QI6nQ6nT5+2O6Zx48Y4dOgQEhIScOrUKZhMJpu/HzlyBBEREbj77rvV8wFAq1at8OOPP6r7LViwAPv37y/bCyQiIioCRxCJiIjySU1Nhclkwpw5czBnzhy7v1+9ehU1atSw2fboo48iPT0dW7duxcqVKxEYGIhBgwZh3Lhx0Gg0SElJwcmTJxEREWF3vjp16pTZtRAREbmKASIREVE+/v7+kCQJY8eOxf3332/39+rVq+Orr76y2SbLMuLi4hAXF4erV69i165dWLZsGcLDwzFo0CAEBAQgMjISs2fPtjufh4dHWV0KERGRyxggEhER5ePj44OYmBicPXsWY8eOdfn4u+66CyNHjsT27dvxxx9/AADatWuHr776CjVr1kRISIi7m0xEROQ2DBCJiIgKmDJlCuLi4iDLMrp37w5fX19cvXoVn3/+OSZOnGi3/8yZMxEQEIDo6Gj4+/vj6NGjOH/+PKZOnQoA6Nu3Lz744AMMGTIEQ4cORe3atXHz5k2cOnUKYWFhiIuLAwDMmDED33zzDechEhFRhWGASEREVEDLli3x/vvvIyEhAdOmTYPZbEbNmjVx3333ITQ01G7/mJgY/Pvf/8bWrVthNBpRp04dzJs3D127dgUAeHp6YtOmTVi+fDkSExORnJyM4OBgNG3aFF26dFHPYzab7QrcEBERlSdJCCEquhFERERERERU8bjMBREREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERuNX36dPTv3x8AsGPHDhgMBqSnp1dwq9yrf//+mD59eoU894kTJ9CvXz9ERUXBYDBUSBsAID09HQaDATt27KiwNpSlzZs3V+j9raz++OMPPPnkk4iJiYHBYMClS5cc7nft2jWMGDECLVq0gMFgwNGjR8u5pXkq8v2qMBgM2Lx5c4W2oSiXLl2CwWDAZ599VuR+iYmJaNOmjfr4zz//xJw5c9CzZ09ER0fjgQcewKuvvorU1NSybjIRlSEuc0FEbjV69GhkZWVVdDPuWLNmzUJwcDDefvtteHh4VHRz6B9m0aJFuH37NlavXg1vb29Ur17d4X5r1qzBL7/8gqVLlyIgIAANGzYs55ZWLlu3bsXdd99d0c0otccffxydO3dWHx8+fBjffvstBg0aBIPBgIsXL+LNN9/EyZMn8e9//xuyzHEIoqqIASIRuVWdOnUquglOycrKgpeXV0U3w2V//vknBgwYgNatWxe6T1W9tn8yo9EIT0/Pim5Gsf7880906dIF7dq1K3a/6Oho3H///YXuYzKZYDKZ/hE/dMTExFR0E9yiRo0aqFGjhvq4d+/eeOqppyBJEgCgTZs2qFGjBoYNG4bjx48X+TlFRJUXf9ohIrfKn2LqyPr16xEVFYVPP/202HN16dIFixYtsts+fvx4PPnkkwCAjIwMzJ07F927d0d0dDS6dOmCOXPmIC0tzeYYg8GADRs2YP78+Wjbti369Onj1PX89ttvGDhwIKKiotCzZ89C2338+HEMHjwY0dHRaNOmDV5++WW7Nhw9ehR9+vRBVFQUHn30UZw6dQpt2rRBYmJise04evQoDAYDTCYT5s+fD4PBoKbNdenSBQsXLsTKlSvRsWNHtGjRAoBl0fV169ahW7duiIyMRPfu3fHhhx/anfvAgQPo378/oqKiEBsbi0WLFiEnJ8dmn71796J79+5o2rQpnnrqKfz555925zGZTEhMTESnTp0QGRmJ3r17Y9euXTb7KP3j888/R69evRAdHY2RI0fi5s2bOH/+PIYMGYKYmBj0798fv/zyS7H3xR2ys7Mxd+5ctGzZEq1bt8aCBQuQm5trt9/Nmzcxc+ZMtG/fHlFRURg4cCC+//57m31u3bqFiRMnIiYmBh06dMC6devw+uuvo0uXLuo+Sur1qVOnMGTIEDRt2hTr168HYOlvI0eORLNmzdCsWTOMHz8eSUlJLrdj27Zt6N27N5o2bYo2bdpg8ODBOHPmTJH34eeff8YzzzyD6OhotGrVCpMnT8b169cB5KUgXrhwARs3boTBYMCQIUMcnsdgMODIkSPYv38/DAaDeu3Ka3/gwAG1badOnQLgXB905t44+37dvXs3+vTpg8jISNx///1YtmyZzWuuvEanT5/GkCFDEB0djUceeQSnT59GRkYGXnzxRbRo0QIPPPAAPvrooyLvq3JP8qeYDhkyBOPHj8euXbvQrVs3NG/eHMOHD8dff/1V5HmuXbuGF198EQ888ACaNm2K7t27Y9myZcjOzi62DZcvX8akSZPQpk0bREdHo0+fPnbvz8zMTMycORMtWrRAx44dkZCQALPZrP69YIppUFCQGhwqmjRpAgBITk4utk1EVDlxBJGIys3KlSuxbt06rFq1Cvfdd1+x+/fs2RN79uzB1KlT1S8h6enpOHToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixZBCFHs82dlZWHYsGEICgrCkiVLkJWVhQULFiAjIwN6vV7d78SJE4iLi0PXrl2RkJCAlJQULFmyBKmpqUhISAAA/P333+qX20mTJuH69euYMmUKjEajU/cuIiICW7duxRNPPIGhQ4eie/fuCA4OVv/+0UcfoWHDhpg1axZMJhMAYN68edi5cydGjx6NiIgIfPXVV5gxYwYCAwPVNLHdu3dj8uTJeOKJJzBp0iRcuHABS5cuhRAC8fHxAIDTp09j4sSJ6Nq1K2bMmIHff/8dL7zwgl0bExISsH79eowZMwZRUVHYt28fpkyZAkmS8NBDD6n7Xb16FQkJCXjhhReQmZmJV199FTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccf230Bzc9RIFeQRqMp8hxvvPEGtm3bhokTJ6JBgwbYtm0bPvnkE5t9srOz8eyzzyI1NRXTpk1DcHAwtmzZgri4OOzbtw9hYWEALEHQt99+i5deegmhoaHYuHEjzp07B41GY/e8kyZNwqBBgzBmzBhUq1YN58+fx6BBgxAZGYnFixfDZDJh+fLleO655/Cf//wHkiQ51Y5vvvkGs2fPxvjx4xETE4O0tDScPHkSt2/fLvQe3LhxA0OGDEGDBg2wZMkSpKenY8mSJXj22Wexfft2VK9eHVu3bsXYsWPRpk0bDBkyBH5+fg7PtXXrVsyZMwf+/v6YNGmSzQjh5cuXsXjxYowePRqhoaG4++67neqDztwbZ9+vX375JSZOnIi+ffti6tSp+PXXX7F8+XKkpKRg7ty5Ntcyffp0PPXUUxg+fDiWLFmC8ePHo2nTpqhTpw4SEhKwfft2xMfHo2XLljYja874/vvvce3aNcTHx8NoNGL+/Pl45ZVX8NZbbxV6TEpKCgIDA/Hiiy+iWrVqOHfuHBITEx22Pb/k5GQ88cQT8Pb2Rnx8PO666y789ttvuHr1qs1+b7zxBh588EEkJCTgyJEjWLlyJRo2bIhevXo5fV3ffvstAPzj04qJqjRBRORG8fHxol+/fkIIIbZv3y70er1IS0sTS5YsETExMeLrr792+lynT58Wer1efPfdd+q2Xbt2iUaNGomkpCSHx+Tk5Ijjx48LvV4vLl++rG7X6/XikUcecelaNm/eLJo0aSKuXr2qblPOHR8fr24bNGiQGDx4sM2xhw8fFnq9Xvz6669CCCEWLlwoWrduLTIzM9V9Pv74Y6HX60VCQoLTbdLr9eK9996z2da5c2cRGxsrsrKy1G3nzp0TBoNB7Nixw2bfqVOniv79+wshhDCbzaJTp05i+vTpNvts27ZNREVFiRs3bgghhBg/frzo2bOnMJvN6j6rVq0Ser1ebN++XQghREpKioiOjhaJiYk25xo+fLh48MEH1cfx8fGicePG4vz58+q2119/Xej1evHhhx+q2z7//HOh1+vF77//Xuz9KO4/pY2O3LhxQ0RFRYm1a9eq20wmk+jevbvQ6/Xqtn//+98iIiJCnD17Vt2Wk5MjHnjgAbFw4UIhhBC//vqr0Ov1Yvfu3eo+mZmZonXr1qJz587qNuV9sXHjRpu2TJkyRTz44IPCaDSq286ePSsaNWokPvvsM6fbsX79evU96KzFixeLFi1aiNu3b6vbvv/+e6HX68WuXbvUbZ07d1afpyiDBw8W48aNs9kWHx8v9Hq9+Omnn9RtzvZBZ+6Ns+/Xxx9/3O79um7dOtGoUSP1WOU1yv/+Ufpk/rampqaKJk2aiPfff7/I+1HwfTt48GDRvHlzcfPmTXXbhg0bhF6vt/mMKE5OTo743//+JyIjI23uTUFvvPGGiI6OFn///bfDv1+8eFHo9XoxdepUm+0PP/yweOGFF9THCQkJonXr1oU+T0ZGhujRo4fd/SWiqoUppkRU5hYuXIh//etfePvtt23Sk4rTpEkT1KtXD7t371a37d69G61bt0ZoaKi6befOnejbty+aNWuGiIgINf303LlzNucraj6UIz/88AMiIiJsRgZatGiBkJAQ9XFmZiZOnjyJnj17Ijc3V/2vRYsW0Ol0OH36NADgxx9/RGxsrM3cwAceeMCl9hSlbdu2NnPYjhw5AlmW0a1bN5t2tWvXDr/88gtMJhPOnj2LK1euoEePHjb7tG3bFkajUU1J/OGHH9ClSxebUbgHH3zQ5vnPnDmDzMxM9OjRw2Z7r169cO7cOZt0s1q1atnMVa1bt656DQrl73///XeR1/2f//yn2P/yF9Uo6LfffoPRaLR5LWRZtnttjhw5goiICNx9993qfQKAVq1a4ccffwQA9X/zp5N6eXmhffv2Dp+7U6dOds/RrVs3yLKsPsfdd9+NWrVqqed2ph2NGzfGTz/9hAULFuCbb75xKv3w1KlTiI2NtRkVbNq0KWrVqoUTJ04Ue7yzwsPD0bhxY/Wxs33QmXvjzPvVZDLhp59+cthPzWYzvvvuO5vt+edaKn0yfz/19/dHUFBQsf3UkaioKAQEBKiPlRG3os4lhMDGjRvRq1cvNG3aFBEREZgyZQqys7PtRgPz+/rrr3HfffcVWlRIERsba/O4YcOGxaa95m/bSy+9hBs3bmDBggVOHUNElRNTTImozO3btw8RERFo2rSpy8f26tUL27dvx4svvoj09HR88cUXeOWVV9S/79+/H/Hx8Rg0aBAmTpyIwMBAJCUlYcyYMXbpm/mDSmckJSXZpHEq8n/hTE1Nhclkwpw5czBnzhy7fZUvbUlJSXbLJnh6esLHx8elNhWm4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc8EK7qc8vnXrlvr//f39bfbR6XR225VtxaXg5g82CuMovVOhzLErrN2KlJQUnDx5EhEREXbnUAKH69evw9fX167YjKM+VNhzvPXWWw5TDJXXwpl2tG/fHq+99hree+89bNq0CT4+Pnj44Ycxbdq0QvtbUlIS7r33XrvtoaGhuHXrlsNjSsJRPwWK74PO3Btn3q8pKSnIycmxa4fyuOC1OuqT1apVs9nHw8PDqSC8oILncabPv/vuu3j99dcxcuRItGrVCtWqVcMPP/yAuXPnFnnczZs3ERUVVaI2OZsGv3jxYuzfvx8bNmxA7dq1nTqGiConBohEVObWrFmD5557DvHx8Vi8eLFLpc979+6NVatW4cSJE7h06RLMZjO6deum/v2TTz5BdHQ0Zs+erW47duyYw3MVNQ/NkbCwMIfFWPKPhvn7+0OSJIwdO9bhCKXyi31YWBhu3Lhh8zej0YiMjAyX2lSYgtcWEBAArVaLLVu2OLzu4OBgdX3KefPmOQy0lLL8YWFhdgUnCl6LMgfvxo0bCAoKUrcrxwUGBrp4Rc5xFCgV9NprrxVaOEkJDJKTk23aWPB6AwICEBkZadPPFMocu9DQUKSnp9tVJC14rxSOXrOuXbvi8ccft9tXuafOtAMA+vXrh379+uHGjRvYt28fXnvtNfj5+WHKlCkO2+LoNQYsQa8z97iklHteXB905t44834NCgqCTqezu1blh4L8I3qV0SeffIIePXpg4sSJ6rY//vij2OOUH87KysaNG/HOO+9g6dKlaNmyZZk9DxGVDwaIRFTm9Ho93nrrLcTFxWHWrFmYN2+e08c2bNgQer0eu3fvxqVLl9C+fXubACQrK8uuTH7BynwlFRUVhV27duGvv/5S09ZOnDhh8+XSx8cHMTExOHv2LMaOHVvouSIjI7Fjxw6bJSicqeRaUm3btoXJZMLt27ft0sYU9evXR3h4OC5fvowBAwYUeq7IyEgcPHgQkydPVoOaffv22exz7733wtvbG3v27LG5D3v27EG9evUKHUUrrf/85z/F7lPU+nN6vR6enp749NNP0aBBAwCW6q8FX5t27drhq6++Qs2aNe1G/hSRkZEALK+rUtQjKysLhw8fhq+vb7HtbNeuHc6cOYPIyMhCf8xwph35BQcHY+DAgdi/fz9+//33QveLjo7Gli1bkJaWpqaZnjp1CpcvXy50FNodnO2DztwbZ96vGo0GERER+OSTT9RUdMDST2VZRrNmzdx0ZWWjpJ937dq1w3vvvYfr16+7nElRnF27dmHhwoWYPn26S8VsiKjyYoBIROWiadOmWLt2LYYPHw4/Pz+1OqEzevbsiU2bNiEtLc0uuGzfvj3mzp2L1atXIzo6GocOHcKRI0fc0ub+/ftj9erVGDlyJMaNG4esrCwsX77cJkAFgClTpiAuLg6yLKN79+7w9fXF1atX8fnnn2PixImoX78+4uLi8K9//QvPPfcc4uLikJSUhLfeegve3t4uj2w645577sHAgQMxadIkDBs2DFFRUeqcrnPnzmH+/PmQZRnTp0/HtGnTkJaWho4dO0Kn0+HixYs4cOAAEhIS4O3tjREjRmDAgAGYMGECHnvsMZw5c8YuMAsMDMQzzzyDNWvWQKvVIjIyEvv27cOhQ4ewdOlSt1+fwpm0uaIEBQVhwIABSExMhFarRcOGDbFt2za7kd2+ffvigw8+wJAhQzB06FDUrl0bN2/exKlTpxAWFoa4uDjo9Xp07twZc+bMQXp6OsLCwrBhwwZ4eXk59RqPHTsWjz/+OEaOHIlHH31Undt2+PBh9OvXD23atHGqHQkJCbh16xZat26NoKAg/PTTTzh27BgmT55c6HM/++yz2LJlC4YPH47hw4cjIyMDS5YsgV6vt5tv6k7O9kFn7o2z79dx48Zh2LBhePHFF9GrVy/89ttvWL58OR5//HGXK5GWt/bt2+O9995TK6nu2rUL58+fL/a4uLg47Ny5E0899RSee+451KhRA3/++ScyMjIwYsSIErfn2LFjePHFFxEbG4uYmBicPHlS/VvBNROJqOpggEhEblfYl+FWrVohMTERo0ePhq+vb5Ejbvn17t0by5cvh4eHB7p27Wrzt4EDB+LSpUvYtGkTjEYjYmNjsWTJkiJHI5zl7e2N9evXY/bs2Zg4cSJq1aqF6dOnY9WqVTb7tWzZEu+//z4SEhIwbdo0mM1m1KxZE/fdd5/6a314eDjWrl2L+fPnY+zYsWjQoAEWLFiAZ599ttDlAkpr1qxZqFevHrZt24aEhAT4+fmhYcOGeOyxx9R9evXqBV9fX6xduxbbt2+HLMuoXbs2OnXqpM6JioqKwtKlS7F06VKMGTMGkZGRWLZsmV263/jx46HRaLBlyxYkJyejTp06WLx4MXr37l0m1+cu06ZNQ25uLlauXAlZlvHwww/j2WefxcKFC9V9PD09sWnTJixfvhyJiYlITk5GcHAwmjZtalOUZuHChZg9ezbmz58PHx8fPPnkk6hduzZ++OGHYttRv359bN26FcuXL8fMmTORlZWF8PBwtGvXTi3k40w7oqKisHHjRnz88cdIT09HzZo1MW7cODzzzDOFPndwcDA2bdqEhQsXYvLkydDpdLj//vvx4osvlvlC9s70QWfujbPv1w4dOmDZsmVYvXo1du3aheDgYAwdOhTjxo0r0+t0hzFjxiAlJQXLly8HAHTr1g0vv/wynnvuuSKPU5ZDWbx4MRYsWIDs7GzUrVsXo0aNKlV7jh49ipycHHz55Zf48ssvbf42duzYKnFPicieJIQTi4ERETlp3LhxyMjIsFuDkOwdP34cTz31FN59912byoh058jNzcVDDz2E6OhovP766xXdHCIiomJxBJGI3OLWrVv45ptvcOzYMQwcOLCim1MpLV68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdNHKTPXv24Nq1a9Dr9UhPT8e///1vnD9/HosWLarophERETmFASIRucU333yDqVOnom3btnj22WedOkZZw80RWZZdqnbqKiEETCZTuT5/dnY2Fi1ahOTkZPj6+iI2NhbTp0+HLMsV0h5yPx8fH+zYsQMXLlyAyWSCXq/HmjVrSrTECxERUUVgiikRVYhLly4VuVB8v379bOaAudvRo0fx9NNPF/r38p4/U9naQ0RERP9MDBCJqEJkZ2fj119/LfTvQUFBRS5PUFppaWk4e/ZsoX+vXr06wsPDy+z5K3t7iIiI6J+JASIREREREREBADihhYiIiIiIiAAwQCSiKuizzz6DwWDApUuXXDquS5cubltqYMWKFbjvvvvQqFEjTJ8+3eE+iYmJaNOmjVuezx12796NHTt22G0fMmQIxo8fXwEtck52djYSExPx888/22y/dOkSDAYDPvvsswptR2ls3rwZBoOhyH127NgBg8Gg/teuXTsMGzYMp0+fttnv4MGDGDhwIFq2bInmzZujd+/emDlzJtLT09V9unTpop4nMjISHTp0wIgRI7Bz506YzeZi21tWfaXgfTh69CgMBgN+++03p45PTk5GYmKiS58JBoMBmzdvVh+789oKe6+VVHp6OgwGg1vO6c7PQWd8+eWX2LhxY7k9HxGVHquYEhG56IcffkBiYiImTZqE1q1bIyQkpKKb5JRPPvkEKSkp6N+/f0U3xSU5OTlYsWIFatWqhcaNG6vbq1evjq1bt+Kee+6p0HaUl3fffRdeXl5ISkrCqlWr8PTTT2P37t0IDw/HRx99hMmTJ+OJJ57A888/D0mS8Ouvv2Lnzp24ffs2fH191fM89NBDGDJkCEwmE5KSkvDll1/i5Zdfxq5du7B69Wp4eHgU2oZZs2ZBqy37rw4RERHYunUr6tSp49T+ycnJWLFiBVq3bu303OWtW7eW2TznqvpeKwtfffUV9u7di7i4uIpuChE5iQEiEZGL/vzzTwDAU089BT8/vwpuzT+Xh4cHYmJiKroZ5SYqKkoN9CIjI9G5c2fs2rULw4cPx+bNm3H//fdj7ty56v4dO3bEiBEjULDUQPXq1W3uW48ePdCzZ0+MGDEC69atw9ixYwttQ8OGDd17UYXw8/Mrs9c2KysLXl5e/6i+Q0TkCqaYElGpTJ8+Hf3798fnn3+OXr16ITo6GiNHjsTNmzdx/vx5DBkyBDExMejfvz9++eUXm2MzMzPx6quvIjY2FlFRUXj00Ufx5Zdf2uwjhEBiYiLatWuHZs2aYdq0aUhLS7Nrh9FoxKJFi3D//fcjMjISDz/8MA4dOuTy9ZhMJiQmJqJTp06IjIxE7969sWvXLpvrnTZtGgCgRYsWMBgMOHr0aJHn/OmnnzBgwABER0ejb9++OH78uEvPeeTIERgMBvz999/qtieeeAKNGzdGamqquq1Pnz5YtmyZwzZMnz4de/fuxbFjx9QUw8TERJt9du3ahW7duqF58+YYPnw4/vrrL5u/l/QeO3Pcp59+iv79+yMmJgatWrXC448/jmPHjgEAmjdvDgB48cUX1bZfunTJYYqpkj63bt06dOjQAS1atMDChQshhMChQ4fQu3dvNGvWDKNHj8atW7fU4zIyMjB37lx0794d0dHR6NKlC+bMmWPT1wprh7PXmJ2djblz56Jly5Zo3bo1FixYUORaoEW56667EBwcjMuXLwMAbt++jdDQUIf7SpJU7PliY2PRvXt3bNmypcj9CqZh/vXXX5gwYQLatWuHpk2bomvXrnjzzTeLPIcz98FRium2bdvQu3dvNG3aFG3atMHgwYNx5swZXLp0CX369AEAPP300+prk/88X3zxBZ577jk0a9ZMDaILppgqtm7dii5duqBp06YYOXKkzfuusNTX/PeluPfagQMH0L9/f0RFRSE2NhaLFi1CTk6Ozfn27t2L7t27o2nTpnjqqafUH6WK88Ybb6BPnz5o1qwZOnbsiMmTJyMpKcnhvitXrkRsbCyaNWuGyZMn4/bt2zZ/v3jxIkaPHo3mzZujWbNmeO6553D+/Hn174WleCv/JgCWNPt33nkHly9fVu9FYSn5RFR5cASRiErt6tWrSEhIwAsvvKAGfTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccfq19YX375ZRw8eBCTJk1CnTp1sG3bNowaNQrvvvsuWrZsCQDYtGkTVq5ciVGjRqFly5bYv38/Fi9ebNeG8ePH49SpUxg3bhzq1KmDPXv24Pnnn8f27dtdSgdMSEjA+vXrMWbMGERFRWHfvn2YMmUKJEnCQw89hNGjR6NGjRpYvXq1mvJX1KhKVlYW4uPjERcXh9DQUKxcuRJjxozB559/Dm9vb6ees1mzZtDpdDhx4gR69eqFzMxMnD59GjqdDt9++y06deqEmzdv4syZM5g6darDdowePRpXrlzB7du3MWvWLABAjRo11L9///33uHbtGuLj42E0GjF//ny88soreOutt0p9j4s77sKFC5gwYQKGDBmCqVOnIjs7Gz/++KMawL377rt45pln8Pzzz6NTp04ALKNg165dc/h8H3/8MZo2bYoFCxbg9OnTePPNN2E2m3H8+HFMmDABWVlZmDdvHpYsWaIGC1lZWTCZTJg4cSKCg4Nx9epVrFmzBhMmTMDbb79dZDucvTdvvPEGtm3bhokTJ6JBgwbYtm0bPvnkk0LvW1HS0tJw69YtNShs0qQJPv74YzRp0gTdunUr0ZIo7du3x+7du3Hp0iWnUy+nTZsGo9GIefPmwd/fHxcvXiw2mCnJffjmm28we/ZsjB8/HjExMUhLS8PJkydx+/Zt1K1bF2+88QamTJmCmTNnIiIiwu74l156Cf3798czzzwDT0/PQp/nu+++w9mzZzF9+nQYjUa88cYbGD16NLZv3+7U/QCKfq/t3r1bTQWeNGkSLly4gKVLl0IIgfj4eADA6dOnMXHiRHTt2hUzZszA77//jhdeeMGp505OTsaoUaNQvXp13LhxAxs2bMAzzzyDXbt2QaPRqPt99NFHqFu3LubNm4ekpCQsXrwYL730EhISEgBYgvi4uDhotVq8+uqr0Gg0SExMxODBg7Fr1y4EBgY61Z7HH38c586dw9GjR7FixQoAQHBwsFPHElEFEkREpRAfHy8aN24szp8/r257/fXXhV6vFx9++KG67fPPPxd6vV78/vvvQgiuTrydAAAYAElEQVQhfv/9d2EwGMSOHTvUfUwmk+jdu7cYOnSoEEKI3NxcERsbK2bOnGnznHFxcUKv14uLFy8KIYQ4fPiw0Ov14ujRozb7Pfnkk2LcuHHq486dO4uFCxcWei0pKSkiOjpaJCYm2mwfPny4ePDBB9XH27dvF3q9XqSlpRV5bxISEoRerxeHDx9Wt/30009Cr9eLQ4cOufScAwYMEHPmzFGvt3Xr1uKFF14QixcvFkIIceDAAdGoUSNx+/btQtszbtw4MXjwYLvtgwcPFs2bNxc3b95Ut23YsEHo9XqRmZmpPqcz97ggZ47bs2ePaN26daHnSEtLE3q9Xmzfvt1m+8WLF4VerxcHDx5Ut3Xu3Fl07dpV5ObmqtseffRR0bhxY3HhwgV12+uvvy7atWtX6HPm5OSI48ePC71eLy5fvlxkO5y5xhs3boioqCixdu1a9e8mk0l0795d6PX6QtshRF5/S01NFTk5OeLKlStiwoQJonHjxuKnn34SQghx5coV8fDDDwu9Xi/0er3o0qWLWLBggbh27ZrNuYp6D/zf//2f0Ov14uTJk4W2ZfDgwTavd0xMjPj000+LbH9+zt6Hr7/+Wuj1evHrr78KIYRYv3696NevX6Hn/fXXX4Verxdff/21zXblPPPnz7c7Rq/Xi/fee8/m2po0aSIuXbqkblP6gPJ+Ldiu/Mfmvy+O3mtms1l06tRJTJ8+3Wb7tm3bRFRUlLhx44YQQojx48eLnj17CrPZrO6zatUqh32vKLm5ueKvv/4Ser1eHDt2TN3euXNn0apVK5vPr//+97/CYDCon8//+te/7N4zV69eFREREWLNmjVCCMfvPyEs/ybkf60WLlwoOnfu7HS7iajiMcWUiEqtVq1aNsUk6tatCwBo27atuk35u5Ku9cMPP0AIgR49eqj7yLKMHj164MSJEwAsI5NJSUl44IEHbJ6vW7duNo8PHz6MsLAwNG/eHLm5uep/7dq1w48//uj0dZw5cwaZmZk2bQKAXr164dy5c0hOTnb6XAqdTmdTybRBgwYA8u6Ds8/ZokULNTX1+PHjaNmyJVq1amWzrVGjRiWeExkVFYWAgAD1sTIqqrSzpPfYmeP0ej1u376N+Ph4fPnll8jIyCjRNShat25tM1pSt25d1KpVC7Vr17bZduPGDWRnZ6vbdu7cib59+6JZs2aIiIjAk08+CQA4d+5ckc/nzDX+9ttvMBqNNn1ZlmW7vl2Uli1bIiIiAp06dcLXX3+NBQsWqKOTd911F3bs2IGNGzdi6NChCAgIwMaNG/Hwww/bpQoXRpRgWeRGjRph6dKl2LFjB65cuVLs/iW9D40bN8ZPP/2EBQsW4JtvvrF53ZyhjPgWp0mTJqhVq5b6uEWLFggJCcGpU6dcej5Hzp49iytXrqBHjx42/aRt27YwGo04c+YMAMtnY5cuXWxSgx988EGnnuPQoUMYOHAgWrRogSZNmqBjx44A7Ptw+/btbQoXPfjggxBC4IcffgAAnDp1Ck2aNLF5z9SoUQPNmjVTP5+J6M7FFFMiKjV/f3+bxzqdzm67ss1oNAIArl27Bh8fHzXNUhESEoLMzExkZ2fj+vXr6raC++SXkpKCpKQkh6ll+QOF4ihzdQp7vlu3brlcsdTX1xeynPdbnFIhUrkPzj5nq1atsGHDBqSmpuL48ePo1KkTWrZsiQULFsBoNOL48eNo0aKFS23Lr1q1ajaPC75eJb3Hzhx3zz33YNWqVVi3bh1GjhwJrVaLbt264aWXXipROpqja3HUR4UQyMnJgYeHB/bv34/4+HgMGjQIEydORGBgIJKSkjBmzBj1HpTmGp3ty0V5//334eXlhaCgINx11102/Up5rnbt2qFdu3YALMsLjBw5Eu+88w5mzJhR7PmVHwNcadObb76JZcuW4bXXXkNqaqq67IvShoJKeh/at2+P1157De+99x42bdoEHx8fPPzww5g2bRp8fHyKbaez1+Rov5CQkELn8bkiJSUFADBy5EiHf7969SoAy2dCwXY48z44deoURo8eja5du2LEiBEICQmBJEkYMGCAXR8ueH4vLy/4+PioadtJSUkO57SGhoY69UMAEVVtDBCJqEJUr14dGRkZyMzMtAkSk5OT4e3tDQ8PD/ULSsGRu4KPAwICEB4ejpUrV5aqTWFhYQCAGzduICgoyO75nJ13UxbP2bx5cwghcOzYMXz//feYMmUK7r33Xvj6+uLIkSP46aefMGzYMLe3T1HSe+zscZ06dUKnTp1w+/ZtfP7551iwYAHmzZtXaNEdd/vkk08QHR2N2bNnq9uUIjnFceYa8/fl/P3IlVHpxo0b24z6FKdDhw5o1KiR0wVOvvrqK4SFhbm09EN4eDgWLlwIs9mMU6dOITExEc8//zw+++wzm/6sKM196NevH/r164cbN25g3759eO211+Dn54cpU6YUe6wzhXoKa0dycrL6PlXmLxYsKnPz5k2H15ufcr3z5s1zOGdXue9hYWF27bhx40axbT9w4ACCgoLw5ptvqterFDEqqOD5s7KykJGRoc6pDQsLw++//2533PXr19VMg6LuBRFVbUwxJaIKERUVBUmSsHfvXnWbEAJ79+5VR8LuuusuhIWF4dNPP7U5dv/+/TaP27Vrh+vXr8PHxwdRUVF2/znr3nvvhbe3N/bs2WOzfc+ePahXr16ZFFdw9jkDAgJw7733YuPGjZBlGU2aNIEkSWjevDnWr1+P3NzcYkcQdTpdsaNhhSnpPXb1OH9/f/Tp0wfdunVTv6AWHM0sC1lZWXbr/+WvJFtUO5y5Rr1eD09PT5u+bDab7fp2STkKbIxGI/76669Cq5vmp6xVN3DgwBI9vyzLiImJwdixY5GZmVnoKJM77kNwcDAGDhyIli1bur2P/PTTTzZtP3HiBJKTk9G0aVMAecVm/vjjD3Wfq1ev4uzZszbncfReq1+/PsLDw3H58mWH/UQJMCMjI3Hw4EGblN99+/YV2/asrCzodDqbYLhgH1YcPnwY6enpNueXJAmRkZEAgOjoaJw+fRoXL15U9/n777/x3XffqZ8zISEh0Ol0NvciPT0dJ0+eLPZeEFHlxhFEIqoQDRo0QO/evTF37lykpaWpVUz//PNPtfKfRqPB8OHD8frrryMoKAgtW7bEvn37bL6QAJYS/R06dMDQoUMxYsQINGzYEGlpafjll19gNBoxefJkp9oUGBiIZ555BmvWrIFWq0VkZCT27duHQ4cOYenSpW6/B64+Z6tWrfD++++jQ4cOaupiy5YtsWjRItSrV08d5ShM/fr18emnn+LAgQMIDw9H9erVna52WdJ77MxxH3zwAU6ePIn77rsP1av/f3v3H5Xz/f9x/N5VV6VwdVHKRe0wKtRSIwtnuA5nE+MoZTOJJcWUzbIfWk1CfsSWakpnlGEMzYbFDjabw2Fnfq2zhv2oaZJ+UKqVku8frevrWpmrpsk+z9s5znFd1+v9fj3f73N1To9er9f71Y3c3FwOHDjAxIkTgYZpuT179iQrK4u+fftiZmam28bgQRk6dChLlixh/fr1uLm5cfToUU6cOKHX5l51GHKNarUaf39/EhMTMTExoU+fPuzcufMfr7dsFBQURO/evRk1ahTdu3enqKiIrVu3Ul5ezpQpU/TaXrt2jbNnz3L79m2Ki4s5duwYn3zyCUOHDiUkJMTgPm/evElQUBATJ06kV69e3Lp1i40bN2JjY6Nba/tXrb0P69ato6ysDE9PT9RqNT/88AOnTp3Sfe80Gg3m5ubs2bOHTp06YWJi0qI/DjXq0qULISEhhIWF6Z5iOmDAAN1aPjs7O1xdXUlISKBDhw7U19eTmpraZHbBvX7WGrfJqaio4Omnn0apVHL58mUOHTrEunXr6NChA8HBwfj7+zN//nwmT57MpUuX2LVr131rHzZsGBkZGSxbtgytVsvp06f57LPPmm1rZmZGSEgIQUFBFBUVsWrVKsaMGaNbe+zj40NaWhrBwcGEh4djbGxMUlISarVa931SKBRotVrS09PRaDR07tyZjRs3Ym5urtdX7969KS4uJjMzk759+6JWq1s0Si2E+PdJQBRCPDRLly4lPj6e999/n/LychwdHUlJSdFtcQEQGBjIjRs32L59OxkZGWi1WhYuXKg3rczIyIikpCRSUlLIyMigoKAAlUqFs7MzAQEBLaqp8Zehjz76iJKSEhwcHFi9ejXjxo17YNfd2j4HDRrE1q1bGTx4sN578P979P2dqVOnkpOTw6JFiygrK2PevHmEhYUZVGNr77Ehxzk5OXHkyBHi4uIoKyvDxsYGPz8/5s+frztPTEwMK1euZObMmdy6deuBjbw1ev7558nPz2fz5s3U1NQwbNgw1qxZg7+/v1675uro2bOnQffm9ddfp66ujuTkZBQKBRMmTGDmzJmsWLHiH9c/a9Ys9u/fT3x8PCUlJXTp0oX+/fuzbds23ehXo3379rFv3z6USiVWVlY4OzuzdOlSJkyY0GRd498xMzPD0dGRzZs3c/XqVd3m8x988EGTkHC31twHV1dX0tPT2b9/P5WVlWg0GsLCwggMDNTVEhsbS3JyMgEBAdTW1nLhwgWDr6WRu7s7Xl5eLF++nNLSUjw9PYmNjdVrs2bNGt5++20WLlyIra0tCxcuJCMjQ6/NvX7WvL29sbS0JDU1ld27d6NQKLC3t2fkyJG6UVBXV1fWrl3L2rVrefnll3FxceHdd9/Fz8/vb2sfMWIEERERbNmyhZ07dzJw4EBSU1N55plnmrQdN24clpaWREZGUlVVhVar1ZtebWpqSnp6OnFxcURGRgIND39KTEzUC8PR0dFERUURExODSqUiNDSUM2fO6O0TOXbsWE6ePMnq1aspLS1l0qRJD+Q7L4RoO0Z3WvPYMiGEEEIIIYQQ/zmyBlEIIYQQQgghBCABUQghhBBCCCHEnyQgCiGEEEIIIYQAJCAKIYQQQgghhPiTPMVUCCFEm/r888+prq7Gx8dH7/2AgADUajXr1q174H2WlJSwbds2Jk2a1C4eqZ+YmMiWLVs4efLkv9ZnQEAAp06dAhq2jNFoNGi1WsLDw+nYsSMAVVVVbNiwgaysLAoKCujYsSO9e/dm4sSJuqdmnjx5kunTp+vOa2Fhga2tLYMGDWLatGk4Ozv/a9ckhBCi7UlAFEII0aYOHDjA9evXmwTEtlRSUkJSUhKenp7tIiA+LEOGDGHBggXU1dWRnZ1NQkICV69e1YXysLAwcnJymDNnDn379qW0tJRvv/2Wr7/+usm2CvHx8djb2/PHH3+Ql5dHZmYmvr6+LF68+L5bMAghhHh0SEAUQgjxP626uvpv9+17lFlZWTFw4ECgYc/MqqoqEhISKC0tpby8nGPHjvHee+8xduxY3THe3t40twOWk5MTjo6OAHh5eeHv78+iRYuIiYnB09OTxx577F+5JiGEEG1L1iAKIYRoM2+++SYHDx7k1KlTODk54eTkRGJiol6bvXv3MmbMGDw8PJg1axZXr17V+7ympoZVq1YxYsQIXFxcmDBhAkePHr1nn/n5+Tz33HMATJ8+XdcvNEyXdHJy4ptvviE0NBR3d3eWLFlCfn4+Tk5OfPnll03q/+vI58WLF5k9ezbu7u64u7sTHh5OUVFRi+/N5cuXmTt3Lh4eHri7uxMaGkpeXp5em7KyMl599VUGDhzI8OHD2bBhAytXrkSr1ba4P4ABAwYADfeovLwcABsbmybtjIyM7nsuhULBW2+9hUKhYOfOna2qRwghRPsjI4hCCCHazNy5c7ly5Qo3b97knXfeAcDOzk73+blz57h27RpvvPEGNTU1LFu2jKioKNLS0nRtwsPDOX/+PGFhYTg4OJCVlcWcOXPYvXs3/fr1a9Jnt27diI+PJyIigujoaF0oultkZCQ+Pj4EBgZiZmZm8PXk5eXxwgsv4OLiwurVq7l9+zYJCQmEhoaya9cug4IVwK1bt5gxYwYmJiYsXboUY2NjEhMTmTZtGnv37sXKygpoCKinT58mMjISa2tr0tPTyc3NxdjY2OCa7/b7778DDaGwU6dOWFhYsHz5chYsWMDgwYNbdC8AVCoVLi4unDt3rlX1CCGEaH8kIAohhGgzDg4OWFlZcefOHd1Ux7tVVFSQmpqKSqUCoKioiLi4ON20zxMnTvDVV1/x4Ycf4unpCcDw4cPJzc1l/fr1zT7gxtTUVDdi2KdPn2b7ffbZZ3nllVd0r/Pz8w26nqSkJKytrUlLS8PU1BRomHo5duxYjh49ysiRIw06z+7duykoKODgwYPY29sD4ObmxujRo9mxYwchISFcvHiRI0eO6E0B9fLyYsSIEVhaWhrUz507d6irq6O+vp7z58+TkpKCi4sLdnZ2GBkZERsbS1RUFEFBQSiVStzc3HQPqDE07NrZ2ZGTk2NQWyGEEO2fTDEVQgjx0Li6uurCITQEOoDCwkIAjh8/jo2NDR4eHtTV1en+eXl5kZ2d3ep+DQ1yf3XixAnGjBmDQqHQ1dKzZ0969OjRonrOnz9P//79deEQGoKWu7s73333HYDufHdPJzU3N2fo0KF657r7vtTV1el99sUXXzBgwABcXV158cUX6dGjB/Hx8brwN378eI4cOcLy5cvx9vYmNzeXqKgoXnvtNYOvpbn1ikIIIR5dMoIohBDioencubPea6VSCTSsOwS4fv06RUVFzU4Tbe00S4CuXbu26rjr16+TlpamNwW2UUFBgcHnKSoqwtrausn71tbWXLlyBYDi4mIsLS2bTPvs0qWL3uu/3psLFy7o/v/UU08RERGBiYkJGo1GL4w3UqvV+Pr64uvrS21tLdHR0WRmZjJ79myDtrAoLCxs9lqEEEI8miQgCiGEaLdUKhW2trYkJyc/0PP+dfpkYwirra3Ve//GjRtN6hk9enSz2zqo1WqD+7exseGnn35q8n5xcbEuxFlbW1NZWUlNTY1eSCwtLdU7ZteuXffsR6VS4erqanBdSqWSGTNmkJmZyS+//HLfgFhWVkZ2djaBgYEG9yGEEKJ9k4AohBCiTSmVSt2IYEt5eXmxadMmLCwsePzxx1vUJ2Bwv127dkWpVPLzzz/r3qusrOTs2bNoNBq9ei5duoSLi4vBa/Sa4+bmxqeffsrly5d100wLCws5c+YMYWFhALi4uABw+PBhvL29gYYtOY4fP663BrElAfBuFRUVmJiYNNnio/FJqvcbZa2vrycuLo76+nomT57cqhqEEEK0PxIQhRBCtKlevXpx+PBhDh06hK2tLd26dcPW1tagY4cNG8bw4cN56aWXCA4Opk+fPlRUVPDjjz9SU1Nzz7VyGo0Gc3Nz9uzZQ6dOnTAxMfnbIKVQKNBqtaSnp6PRaOjcuTMbN25sEp7mzZuHn58fs2fPxtfXF7VaTWFhIcePH2fSpEkMGTLEoOvy8fEhLS2N4OBgwsPDMTY2JikpCbVazZQpUwBwdHRk1KhRxMTEUFlZiY2NDZs2bcLc3PwfhdNGv/76K3PmzMHX1xcPDw/Mzc3JyckhJSWFfv368eSTT+q1v3DhAlVVVdTU1JCbm0tmZibZ2dksXrxY9kAUQoj/EAmIQggh2tTUqVPJyclh0aJFlJWVMW/ePN0o2f0YGRmRlJRESkoKGRkZFBQUoFKpcHZ2JiAg4J7HmZmZERsbS3JyMgEBAdTW1uqtzWtOdHQ0UVFRxMTEoFKpCA0N5cyZM1y8eFHXplevXuzYsYOEhASio6Oprq7G1tYWLy+vFoUkU1NT0tPTiYuLIzIyEgBPT08SExN1W1wArFixgsWLF7Ns2TIsLCyYOnUq9vb2fP/99wb3dS8ODg74+flx7Ngxtm/fTnV1Nd27d8fX15fg4GBMTPR/RYiIiACgQ4cO2NraMnjwYGJiYgxapyiEEOLRYXRHHj8mhBBCPBLq6uoYP348bm5urFy58mGXI4QQ4j9IRhCFEEKIdiorK4tr167h6OhIZWUlH3/8MXl5eaxatephlyaEEOI/SgKiEEII0U5ZWFiQmZnJb7/9xu3bt3F0dCQlJYUnnnjiYZcmhBDiP0qmmAohhBBCCCGEAEDxsAsQQgghhBBCCNE+SEAUQgghhBBCCAFIQBRCCCGEEEII8ScJiEIIIYQQQgghAAmIQgghhBBCCCH+JAFRCCGEEEIIIQQgAVEIIYQQQgghxJ8kIAohhBBCCCGEAOD/ALcKCtN39HWvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "\n", + "# Setup utilities\n", + "import scipy.stats.distributions as dist\n", + "\n", + "fig, axs = plt.subplots(4, 1, dpi=90, figsize=[11, 26], sharey=True)\n", + "fig.tight_layout(pad=4.0)\n", + "\n", + "axs.flatten()\n", + "idx=0\n", + "\n", + "for adaptive in (False, True):\n", + " for jackknife in (False, True):\n", + "\n", + " mtp = Multitaper(lc_ar4, adaptive=adaptive, jackknife=jackknife)\n", + " \n", + " mtp_stingray = np.log(mtp.multitaper_norm_power)\n", + " \n", + " Kmax = len(mtp.eigvals)\n", + " \n", + " if jackknife:\n", + " \n", + " jk_p = (dist.t.ppf(.975, Kmax - 1) * np.sqrt(mtp.jk_var_deg_freedom))\n", + " jk_limits_stingray = (mtp_stingray - jk_p, mtp_stingray + jk_p)\n", + " \n", + " else:\n", + " \n", + " p975 = dist.chi2.ppf(.975, mtp.jk_var_deg_freedom)\n", + " p025 = dist.chi2.ppf(.025, mtp.jk_var_deg_freedom)\n", + "\n", + " l1 = np.log(mtp.jk_var_deg_freedom / p975)\n", + " l2 = np.log(mtp.jk_var_deg_freedom / p025)\n", + "\n", + " jk_limits_stingray = (mtp_stingray + l1, mtp_stingray + l2)\n", + " \n", + " \n", + " axs[idx].plot(mtp.freq, mtp_stingray, label=\"Multitaper S(f) Estimate\", color=palette[6])\n", + " axs[idx].fill_between(mtp.freq, jk_limits_stingray[0], y2=jk_limits_stingray[1], color=palette[4], alpha=0.4)\n", + " \n", + " axs[idx].plot(freq_analytical, np.log(psd_analytical), color=palette[0])\n", + " \n", + " axs[idx].set(\n", + " title=f\"Adaptive: {adaptive}, Jackknife: {jackknife}\",\n", + " ylabel=\"Power, ln\",\n", + " xlabel=\"Frequency\"\n", + " )\n", + " axs[idx].legend()\n", + " \n", + " idx += 1\n", + " \n", + "\n", + "text = \"if jackknife == True:\\n\\\n", + "jk_var_deg_freedom = jackknife estimated variance of the log-psd.\\n\\\n", + "else:\\n\\\n", + "jk_var_deg_freedom = degrees of freedom in a chi2\\n\\\n", + "model of how the estimated PSD is distributed about\\n\\\n", + "the true log-PSD\"\n", + "fig.text(0.5, -0.05, text, ha=\"center\")\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "06082f55", + "metadata": {}, + "source": [ + "### Linearly re-binning a power spectrum in frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "efea10b1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "Original df: 0.0009765625\n", + "Rebinned df: 0.0068359375\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHYCAYAAABHktmQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AADrAElEQVR4nOzdd3hc5ZX48e8t09R7l9wt924MxmB67xAI4LC0zYaa3lkCWQjpyZLdX0iApcWEQBKH5gChmGIb3LvcZVWrd0295ffHSLKFbVkjjazi83keHqSZe997xroe68x53/Mqtm3bCCGEEEIIIYToNXWwAxBCCCGEEEKI4UYSKSGEEEIIIYSIkCRSQgghhBBCCBEhSaSEEEIIIYQQIkKSSAkhhBBCCCFEhCSREkIIIYQQQogISSIlhBBCCCGEEBGSREoIIYQQQgghIqQPdgDDhWXZmKY12GEAoOsqhjE0YhFDm9wrIhJyv4hIyP0iekvuFRGJoXC/aJqKqirHPU4SqV4yTYumJu9gh4GqKqSmxtHS4sOy7MEORwxhcq+ISMj9IiIh94voLblXRCSGyv2SlBSDqmrHPW7EJ1JTp05l/PjxAEybNo1HH310kCMSQgghhBBCDHcjPpFKSkri1VdfHewwhBBCCCGEECOINJsQQgghhBBCiAgN6URq7dq1fOUrX2HRokUUFhbywQcfHHHM0qVLOeecc5g+fTrXX389W7Zs6fZ8c3MzV199NTfeeCNr1qw5UaELIYQQQgghRrAhPbXP6/VSWFjINddcw3333XfE88uXL+exxx7j4YcfZubMmTz33HPceeedvPXWW6SkpADw3nvvkZmZyd69e/nyl7/Ma6+9Rlxc3Il+KUIIIYQQYoSxbRvLMrGlj0ZUqKpCMBjEMIwBazahKKCqGopy/K58xzOkE6nFixezePHiYz7/zDPPcMMNN3DttdcC8PDDD7NixQqWLVvGHXfcAUBmZiYA48ePZ+LEiRQXFzN9+vQ+xdObNogDrTOGoRCLGNrkXhGRkPtFRELuF9FbI/VesW2b1tYm2tpaAMmioqmuTsWyBrr9uUJcXALx8Un9SqiGdCLVk2AwyPbt27nrrru6HlNVlYULF7Jp0yYgPK3P4/HgdDqprq5m9+7d5Ofn9+l6uq6Smjp0KlnJybGDHYIYJuReEZGQ+0VEQu4X0Vsj7V6pqanB620lOTkVl8s92OGICAUCfpqbG4iNdZGRkdHncYZtItXY2IhpmqSlpXV7PDU1lZKSEgD27dvHgw8+iKqqqKrKD37wA5KSkvp0PcOwaGnx9TfsflNVheTkWBob22U/BtEjuVdEJOR+EZGQ+0X01ki8V2zbprq6loSEFFyukZUgDgUnYkNelyuWuLjwz1FVPUdUpRISPDgcJ+E+UrZtd/1hzJkzhzfeeCNqYw+lNwDLsodUPGLokntFRELuFxEJuV9Eb42ke8U0DcDG6XQNdiiiH8I/PxvDMNC0vqVEQ7prX0+Sk5PRNI26urpujzc0NBxRpRJCCCGEECIaDjWWGFnrvk4+4Z9ffxqFDNtEyul0MnXqVFatWtX1mGVZrF69mlmzZg1eYEIIIYQQQogRb0gnUu3t7RQVFVFUVARAeXk5RUVF1NbWAnDbbbfx0ksvsWzZMvbt28dDDz2E3+/n6quvHsywhRBCCCGEGFE2bFjHokXz8Hq9vT7n0Ucf4oEHvhPVOAZizL4a0muktm3bxi233NL1/SOPPALAvffey3333ccll1xCQ0MDjz/+OLW1tUyePJmnnnqqaw8pIYQQQgghxCEHD1by9NN/YM2aT2ltbSE9PYNzz72AW265HY/Hc8zzpk+fyauvvtXjMZ/31a9+C3sEb7I1pBOpBQsWsGvXrh6PWbJkCUuWLDlBEQkhhBBCCDE8lZWVctddtzNlyjR+8pNfkJaWwb59e/j97x9n/fq1/M///BGn03nEeYZh4HA4SE2NrA9BXNzQ2TpoIAzpREoIIYQQQggRHb/5zc/JyMjipz/9NaoaXuGTlZVFYeEkvvjFq/nLX17kS1+6lUWL5vHtb/+AlSs/Yv36tdxxx38wadIU7r//K7zzzkfExMQA8Oqrf+fZZ5+itbWF008/g3HjJvDaa8v4619fB8LT8Hw+L4888nMA7r33y0ycWAjA8uWv4/HEsGTJrVx77fVdMT7++G/46KMV1NTUkJaWxqWXXsGXvnRbV7xDydCLSAghhBBCCBFVLS3NrF37GV/84pIjkpK0tHTOP/8i3nvvna7Hnn76D5x99nm88MLLnHvuBUeMt2XLJn71q5/yxS/ezP/931KmTJnGiy++cNw43nzzNZKTU3nyyee5/vqb+O1vf8GBA8Vdz8fFxfHAAw+zdOkr3HPPV/nLX17k9df/0fcXPoCkIiWEGHaClsmLJbv4tL6KmoCXzq1JbsifwI2jCgc3OCGEECel3+zayKf1B0/Y9U5NzebrhbN7fXxZWRm2bTN69OijPj969BjeeeefXd9feOElXHzxZV3fV1SUdzv+b3/7C6effgY33HAzAAUFo9i0aQN79uzuMY7Cwsl86Uu3AnDjjUt46aU/sWnTekaPHgPA7bf/e9eGvNnZOezdu4f333+XK6+8ptev9USRREoIMey8UraHv5bvJTGgk6m7aXObtBhB/lK2h3Mz88lwxwx2iEIIIcSQpChH3//Ktu1uz02aNLnHcUpLSzj77PO6PTZ58tTjJlJjx47v9n1qahqNjY1d3//rX2/zl7/8mYqKcvx+H4ZhkJmZ3eOYg0USKSHEsFIf8PP38n3EmzqvfDYfTVXxfTeFpWW7+HPpbl4s3cXXJvb+EzohhBAiGsLVoaH7709eXh6KolBcvJ8JE46cvVFScoC8vIKu793unrvz2faRSVlvOvTpevf0Q1EULCtcgdq2bQsPPfQAd955F/PnLyA2NpY33ni125TDoUTWSAkhhpWXy3YTsEy+3zAZRwuoTRZqlcnVueOI0x28X12OzzQGO0whhBBiSElMTGLu3Pm89NLSrsSlU11dLe+888+jroU6llGjRrFjx/Zuj+3cWdSvGLdu3UJubh5f+tKtTJo0mfz8AqqqKvs15kCSREoI0SPjc2+2g8m0bT6pqyTB0Fmw+VBLVbU4RIzuoDA+GQubKn/7IEYphBBCDE3f+MZ3qKo6yPe+9022bdtKdXUVK1d+zNe+djfjxk3ghhtu6vVY1157A6tWfcwrr7xEWVkpr7zyEhs3rj/m1MHeyM/Pp7Kygvfe+xcVFeW8+OILfPbZ6j6PN9AkkRJCHNMrZXu4dtWbbGisGexQANjRXE9zKMg95eNQ/WBlaQBo+4MAZHWsjary9X7XdSGEEOJkUVAwmieffI74+Di+971vcMMNV/Hb3/6SRYsW89///fuj7iF1LDNmzOLrX/8OS5c+x2233cTWrZu59trrIxrj8xYtWswNN9zEr3/9U2677Wb27dvNzTf/W5/HG2iKPZK3G46iUMikqWnwfzlTVYXU1Djq69uwLPnRiWPrz71i2zZ/K9/LswfCJfoz0nL47uR5AxFmRP6wbysfF5fxyop5aJaC7+vJeH7TCG4F73+msqxiP08Xb+eOMVO5Om/cYIc7rMh7i4iE3C+it0bivWIYBnV1FaSl5R6x3udk96Mf/QCfz8fPf/6bPo+h62pX176B1NPPMSkpBodDO+4Y8tMXQnRT2t7Kk/u3sbGpFocSLlqva6wmZJk41OO/qQwUy7ZZVXeQm/fmoocUQos82Ok6Vp6OVmKg1JhkdlakZGqfEEIIMeBefPF5TjnlNJxOJ5988hEffPAuDz/8k8EO64SRREoIAYS74S0t2cm71aVYQL4njm8WzuGlst18Wl/FpqY65qdkDlp8u1sb0ZotrizJwnZC8Oxw0mSOcaCVGGjFIbKmdSZSg189FkIIIUa67du38uKLL+D1esnLy+P733/wiJboI5kkUkIIAB7e/in721uI1x18IX8Cl+WMwalqnJaazaf1VbxbXcrc5AzUfiwi7Y9VdQf50u48HJZKcFEMxIWrZdZYJ6zwhROpeeFEqloSKSGEEGLAPfroLwY7hEEliZQQgnYjxP72FjJcHh6fcxZxuqPrudO0dCZ/MoP9ce382ljPN6bNPeHJlG3b7DtQz93lkzA9EDrz0N4W5igdWwF1f4gYLZ4E3Um134tl24OW9AkhhBBi5JOufUIIyrytAIyNS+yWROG1SH3ey4SmWC4sz+Cq5cnsrWk44fHtb2/h8q3paLaCuTgWPIe9dblVrFwdtcVCqbfI8sQQsi0agv4THqcQQgghTh6SSAkhKPO2AZAfE3/owZCN+/kW1GoTY4KDugyDmQ0JjH42hNJkntD4avY3c25lGl6PRej0I3dat8aEkz+tOEiWOxaQdVJCCCGEGFiSSAkhKPOFK1L5no5Nbi0b159b0IpDmHk6gS8lUn6rizXpTSQ3aLj/XxO7dtfym10baTdCAx7fxJXhboE7F4TAeeR0PXNsOJFS94e6OvdVS+c+IYQQQgwgSaSEEN0rUraN87U29O1BrFQN/22J4FIYm5LEf526l3/l1aE2W0x6waR6ZxN/Kd09oLGpJSEKDjip8vipm3X0tyxztANbAa04RLorXLGqC8jUPiGEEEIMHEmkhBCUd6yRyouJw/GBF8dqP1acgv+OxK7ueJqiMikpmZ/M3EPlaRAT1Pjlp1OoW9/EfRtW8KNtn9Kf/b29RohHdqzhpdLdmIeN43w7XFl6dmI58Z5j7JYeo2JlaaiNFtl+F4CskRJCCCHEgJJESoiTXNAyqfZ7SXd5iN9g4Hzbi+1UCNyeiJ3afQPeGUlpoMBTk8t4fGoxDkvhwXUTmLbDw/rGGjY31fU5jvdqyvm0voo/lezk5zvXYds26t4g2r4Q1YlB/pVbS4LjGIkUYI0JP5dXGf6/JFJCCCFE9GzYsI5Fi+bh9R57DfLTT/+BO+740gmM6tguvfRcli9/fUCvIe3PhTjJ7WxpxALOr8/A+VErtgb+LyVg5TqOOHZ+Sib/V7yDD2vKscZAfmYiV6xI5htbx5Lmd/JGSjGzktP7FMe7VaUAxGo6K+sO0hDwk/tWOBl6dVotlgrx+rETKXOsA8cqH6kVKmRDQzDQpziEEEKIkejRRx/in/98AwBN08jIyOTss8/ljju+gsvliso1brzxS1x33Q1RGWs4kERKiJPYp/UH+WnROiY3xnHbZ9koFvi/GI818egJS35MPHmeOMp94TVV2iwPwfFJuJ9r4ZY9eSz3V1M1uo2s2LiI4tjX1sy+9mZGx8RTEJvAR7UV+Le2o5XZmDk6H2bVQwASHEcmd53Mjs59MQcslGypSAkhhBCft3DhGXz3uz/ENE0OHCjmscd+DCjcfff9URk/JiYGiInKWMOBJFJCnMTeqSolq9XFr9dPRTcUApfGYs5293jO6WnZ/KVsDwDj4pKwMp347krCfrKeS8oyKXqqDvvLHhSP1uM4h3vzYDEA52cV0BoKodqQ+YEJqIQujKGlMYhH03CoPYwZp2JlaGg1JqPNWMqCXmzbRpFNeYUQQggAnE4HqalpAGRkZHLOOeezbt1nAFiWxZ/+9CyvvbaMxsYGRo0azZ133sXChYu6jbF580Z+//vHKS8vY9KkKXz/+w+Sn18AhKf2rVr1CU8//QIQroL5fF4mTpzEyy//GYArrriaL3/57q7xFi2ax/e+9wAffbSC9evXkpubxze/+X1mzpzV7ZpPPPE7du3aRXJyMueeez533nkXTmf4g9/6+jp+9rNHWLduLenp6dx1130D8wf4ObJGSoiTmNVs8vPPJuP2q4TO8GCcefxPkU5LywbApWrkx4QrT3a2TuieZMoT/EyujMX8n7oe95r6rL6KH2//jMagn2q/l/eqy4jVdM7NLCDHGcuXi0aRWK9ijtYJTtRpM0I9Tuvr1FmVOqUpGcO2aTGCvfljEEIIIU46FRXlfPbZajQtXFd54YVneOedt/jud3/I88//hSuvvJYf/vDb7N69s9t5TzzxO7761W/xxz8+h9Pp5Ic//DaWZR3zOmvXfkZjYyP/7/89yf33f5MXXniGzz5b3e2YZ555iosvvoxnn/0z48dP4OGHf4hhGF1xfutbX+Xccy/g+edf4sEH/4vVq1fyxBO/6zr/0Ucfoq6ulv/5nz/wox89wtKlz/e4litapCIlxEnsyvVpZPvchGa6CF4S26tzxsUmckFmAeluD5py6LMYR6qT2n+P4eBzDcyvS8L6nyYCtx19rdWzxTso87XxjU0fMzE+CdO2uTJ3HPHNKme/4iauMge/w8K+LI62jjfSnhpNdDLHOnB85mdGfQJ/SQ1P70t0RGfetxBCCNET58st6NtP3Ad4xlQnwesTIjrn448/5Pzzz8A0LYLBAIqi8NBDjxIMBnnhhWf43e/+wOTJUwHIzc1jw4a1vPbaP/jWt77XNcbtt/8Hc+fOB+CBB37Mddddxrp1azjllFOPes2kpGTuv/8bKIpCQcFo/v73l9mwYR0LFpzWdcxll13J2WefB8Cdd/4H119/NRUV5YwaNZoXXniGiy66lOuu+yIAeXn53HPP13jgge9w333foKyshDVrPuX//u9PTJw4CYBvfvO73HnnLRH92fSFJFJCnKQsv8m8ygS8uol9XTyo4Slw+rbdOD/bhDFlAsHTZh9xnqIo3D9x1lHHnJCewpfP2MDN67K5tCwT9xNNBG5KwJzcPZnpbG5eG/BRG/CRoDm5vjoXz1ONKEHYltzKCwsP8mD+6bR0tGbvTUXK6qhITaiJgYnhhhNjepcfCiGEECPevHkL+PrXv43P5+Pll19EURTOPfcC9u/fh9/v5/77v9Lt+FAoxJw587o9NnXqtK6v09LSyMrK5sCB4mMmUmPGjO02zT41NZXGxoZux4wdO/6w58NTDzunF+7du4d9+/bw1ltvdB1jWRaBQID6+npKSg7gcDiYMKGw6/nCwsk4elhXHS2SSAlxkjK2+Yi3NFblNzHTmQWA0tSC+80PUCwLraYeMyMFc9yoXo+pKAozUjP45Yz9jBuVyqRPdFzPtRC8PA7jdE/Xca0dU+4mJyRTqCVy+4Y84rf7sBUInuvhezFrsVQb27ZpCYWP7U1Fyk7UsFJV0usdJAR1GmRTXiGEECdI8PoEhvqEco/HTV5ePgDf//6D3Hrrjbzxxj8YMyacyPzyl78jNTW12zlHdvQ7cu1xT+uRdb17uqEoyhH7Th5+TOdYndMFfT4v11zzBa6++gtHjJ2UlIRt93z9gSRrpIQ4SWmbw+3Bd4zzdT3mXLsFxbIwU5LC36/ZEvG4c5LTQYG/FVbhvykeNHC91obztTawbIKWSXMoSJY7hl/FL+C+13KJ325iJav4/yOJ0AVxZMXG4jNNmkKBrqSrN4kUgNmxn9SM+gTp3CeEEEIcg6qq3HLL7Tz55O8ZNWo0DoeDmpoq8vLyu/2Xnp7R7bzt27d2fV1fX0dV1UFGjRo9YHFOmFBIcfH+I+LKy8tH13VGjx5NMBhkz55dXefs2rWTUCg0YDF1kkRKiJOR1yJur0WzI0RtQUdTCNtG33sAAN9Nl2MlxqMfKEdpaYto6JmJaaiEG0osS6uk9c547FgFx0ofrhdaaGz1oVkK/1aUh/uPzajNFsYsF76vJndNzctxh+fjHfS1d1WkejO1D8AaGx5jZoMkUkIIIURPzjrrXDRN57XXlnH99Tfx3//9K956600qKsrZubOIv/xlKe+//263c/7v//7Ihg3r2Lt3D48++hB5eQXMm3fKgMV48823sGnTRn7721+yZ89uSktL+PDD9/nf//1vAAoKRjNv3in87GePUlS0naKi7fzmNz+XqX1CiIGhbw+gWvBRXgOJnnC7c7W+CbWpFTM7Azs+DqNwLM41m9H3HCA0d9pxRjwkzuFkTnIG6xpr+OP+bejjFC69pwD3M83oO4JkNsDv/FOZ3BSP7VIIXBWHMdsFh5Xlsz3hRKrc1xbR1D441LlvZn0CG4I1vY5bCCGEONnous51193Aiy8+z8sv/4Pk5GSee+5pDh6sJD4+gcmTp3DrrXd2O+c//uMefv3rn1NREW5//pOf/BxVHbjazIQJhTz++BM8+eTvueuu21FVjby8PC666LKuYx544Mf89Kc/5p57/p3U1DTuvvt+fvnLxwYspk6K/flJiuKoQiGTpqaBb6N4PKqqkJoaR319G5YlPzpxbD3dK+6nmtD2hPj6qds55ZQCrsgdi2PjdtxvfUTgtNkEzzoVrbSSmKWvYowtwHfDpRFd27As3qku5f/t3cJZ6bl8a9Jc8Fq4X2hB2x8utVdlhkj4t0zs1CP3hlpdd5BHi9ZydkYeKU43fyvfy7cL57I4I/f4F7dtXI/VozZbfPPaPTxyyukRxX6ykvcWEQm5X0RvjcR7xTAM6uoqSEvLPWL9j+g/XVcxjGO3U4+Wnn6OSUkxOBzH3w9TpvYJcbJps1D3hmiPMdmS2kKKM1yR0iqqATBzszr+n4nt0NHKD4J57D2hjkZXVRal5QCwu60JANujsObaEJvn+PjDpBI+/IL/qEkUwIykNFQUNjXW0hwKr+VK6G2JXlGwxjpQUcg8KP/ACSGEEGJgyG8ZQpxk9K0BFBu2jvJiKZDkDHfj0SqqALByM8MHahpmXjZ6cRlqVd2hx3spweEk2x1Lpa+d1lCQzU11/HTnOgjnV/zAc+zqUqzuoDAhiaKWRrY113eM1/v9oOyxTtgYZEy1G9u2B62bjxBCCCFGLqlICXGS0Tu69a3KbwQgxemCYAi1oRkrMR475lCbcnNUOOvRSyv7dK3C+CQgXJUqaum+Z0Say93jubOTwl2CqvxenKpKputQXHrRPmJ//yecKz6Fo8xO7lwnNaM+nhZjqDejFUIIIcRwJImUECcRpclEKw5hJatsTGgGINnpRq0LJzlWekq3442CcCKllVb06XoT45MB2N3SSHF7S7fn0g5LjI5mdnJ619dfnTCbuI5mE0pzK+7X3kVtasW1eiP6rv1HnGunabR4DCY2x9HU6jvieSGEEEKI/pJESoiTiLYlXI0yZrhoNAJ4NA2PpqPVhhMpM6P7JnxWVjq204FWFvk6KYDCjkRqZ2sjBz6XSCUeZ6peYXwyl2WP4b4JM7s1mXB+uim811VHrI4N2448WVEozwqi2QpmsVSkhBBCRM+h2eIjo3nGySv88+vP7H9JpIQ4iXRO6/NNd9BuhEhydLQ+rwmvQ/p8RSq8TioLJWSgVtVFfL2xcYnEaDqbmmppMYKkH1aF0o7zzqUqCl8ZP50Ls0YdetA00Yv2Yqsqvhsvx4qPRSupBO+R+0XV54U7/jgPGBHHLYQQQhyLqmqAQjAYGOxQRD+Ef35Kx8+zb6TZhBAnCaXORCs3sNI06tMMOADJHY0mDk3tSz3iPLMgB31/GXpZJcEIG044VJUFqVl8UFMOwMykNM5IyyW2j+1itZJKVJ8fY9wo7BgP5ph8HFt2opdVYhSO7Xasd7QKH0NiWZ8uJYQQQhyVoijExibQ0rH21+l0AdLUKHoUDGMgq302wWCAlpYGYmMT+tWQShIpIU4S+pZw1caY6aKho6V4Z+tztaYBW1WxUhKPOM/Iz8EFaKWVcOrsiK+7MDW7K5EaHZvA3JSMPr4C0IvDWZExcXT4/6NycWzZiXag4ohESs9y0uwIkVatEwjZ4JB/5IQQQkRHXFz438twMiVT/KJJVVUsa6D3kQonw50/x76SREqIk0TntD5jpovGYHi9UrLThdLuRfX6MNNTQDuyvG1lp3fsJ1UFlgUR7l4+JzkDt6rht0zGxCb06zVonYnU6Dzg0J5XWlXtEcemuNxsTq3mzKpUQqUhrHHOfl1bCCGE6KQoCvHxScTFJWJZ5tEayIo+UFWF5OQYGhu9A7aBs6KEp2dGY2uUkyKR8vl8XHLJJVx66aV861vfGuxwhDjhlCoDtcrEzNawM3UaK8PVqWSnG7X22NP6gPA6qdws9APlqNV1WNmRVZRcmsYlOaP5tL6KCXHJfX8NbV602gas5ETspHBCZifFYzsdqLX1RyR5KU43K1NaOLMqFW2/JFJCCCGiT1EUNO2k+HX6hFBVBafTia4HByyRiqaTotnEE088wYwZMwY7DCEGTWc1ypwZnsrX2LFANtnhOiyRSjn6yYTXSUHH9L4+uH3MVP4471xi+rg2CkA7EJ4e2FmNAkBRMDNSUUIGSmP3roDJThdbUsOPacWhPl9XCCGEEOJoRnwideDAAfbv38/ixYsHOxQhBodtd5vWB9AQClekUpzucDUHwlP7jsEsyAb6vjFvNOgdiZQ5Jq/b41ZGGgBaR+fBTpqiUp9q0qYbqCUhGNCFq0IIIYQ42QzpRGrt2rV85StfYdGiRRQWFvLBBx8ccczSpUs555xzmD59Otdffz1btmzp9vzPfvYzvvGNb5yokIUYcpQKA7XexMzXsVPCa6C6KlJOV9ceUlbGMab2AWZ2JrauoZUfDE+hO9FsG624HFtRMEbldnvKygzHrdYc2Z49yeVia0origFqubRBF0IIIUT0DOlEyuv1UlhYyIMPPnjU55cvX85jjz3GPffcw7JlyygsLOTOO++koSH8i+G7777L6NGjGTNmzIkMW4hB5zcNHty6mn+WFqNt6l6NAmgMdqyRcjhRaxuwnQ7shLhjD6hrmDmZKP5g11TAE0mtb0Rta8fKTgd39418zc6KVHX9EeclOlxslul9QgghhBgAQ3p13OLFi3uckvfMM89www03cO211wLw8MMPs2LFCpYtW8Ydd9zB5s2bWb58OW+//Tbt7e0YhkFCQgJf/vKX+xSPqg5+++TOGIZCLGLo2tHUwLqGGtbX1/Du5tOxFSieEKK8/iCZ7hgagwFUINkXQgkZmLmZqFrPn6tYo3KgtDK8Z1N2+ol5IR0OTevLP/Lez0zFVhTUmrojnvPoOnsS2gFQawz5e9MDeW8RkZD7RfSW3CsiEsPtfhnSiVRPgsEg27dv56677up6TFVVFi5cyKZNmwD45je/yTe/+U0A/v73v7N///4+J1G6rpKa2sMn9idYcnLsYIcghrBgazUAUxvjUZssqvIM7tqzGghvGWgDaW4PKQEvIcCZn0Xsce5vc9o4Qh+vw3OwBucJ/rsQLD+IBcTNnoh6lGsH0pOxaxpI8egoMe6ux5Ni3KyJC1eqnPU2CUPo7/BQJe8tIhJyv4jekntFRGK43C/DNpFqbGzENE3S0tK6PZ6amkpJSUnUr2cYFi0tvqiPG6lwf/1YGhvbh0VbSDE49tc3AnB2ZXj90IvJpXg0nQlxSWxpDq8lStSdtO+rwAl4E+Ix6tt6HjQ+kRhdw9xTQn1tS8T7SfWZYRKztxScDhrjEuAocbqSk9BrGmjaU4aVl931uGLY1LmDGE4b7WCI+tpWGCafcp1o8t4iIiH3i+gtuVdEJIbK/ZKQ4MHhOHJvzc8btonUsdi2fdQNtq655pp+jz2U3gAsyx5S8YihpcbvRbXgrMpUTMXmwJgAv551BgB3rQ83bUl2uFBKwuudzLSU499PmoaZn4NeXIZSVoWZn93z8VGilVaihAxCE0ZjKSocJU4zNRkdUGoasHKyuh53qzoo0JZik1RlYzea2MnHf2M8mcl7i4iE3C+it+ReEZEYLvfLkG420ZPk5GQ0TaOurnunroaGhiOqVEKcbGr8PmbVJ5ISdFJTYPLj004nPyae/Jj4rmNajdBhrc+P3bHvcMa4AgC0/aXRD/oYtOJD66OOxUoLb/Sr1jV2e9ythpOm5pRwp0G1xhyIEIUQQghxEhq2iZTT6WTq1KmsWrWq6zHLsli9ejWzZs0avMCEGAJqAl7O6ZjWl7ogGYd6qApzelq4kpTjdKM2NGPFxcBh64p6YowNJ1L6vhOXSOnFZeFr9yWR6thtviEpnEApNdICXQghhBDRMaSn9rW3t1NaeugXtvLycoqKikhLSyM9PZ3bbruN73znO0ydOpUZM2bw3HPP4ff7ufrqqwcxaiEGl2nbNPr8LK5KBR3Mad3bhX994mzGxSVxiRqLYq3DTDv2RryfZ6ckYiUloFXXobS1Y8cN7GJQpd2LVl2HlRSPnZxwzOOslKRw57767omURwsnkHVJIcAlFSkhhBBCRM2QTqS2bdvGLbfc0vX9I488AsC9997LfffdxyWXXEJDQwOPP/44tbW1TJ48maeeeoqUlN7/YijESNMY9DOnJpG4kI42OwY83dcVuTWd6/MnoG/bDfS8Ee8RFAVj/Cic67ai7z5AaM7UaIffTee0PmNMPhxl7WMXh46dlIDa2AyBILicwKGKVHVCEAC1VhIpIYQQQkTHkE6kFixYwK5du3o8ZsmSJSxZsuQERSTE0Ffj93JuRccmtQuO3e770PqoyD54MCaNDSdSu/YNeCKl7y4OX7NjbVZPzLRk1MZm1PpGrJxMADwdiVRNbBBbC+8lJYQQQggRDcN2jZQQ4ujqW32cXpVM0GGhzYo55nFaTTiRsjIja85i5mZhxXrQSipRvAO4JUDIQN9fiu3Qe2w00elo66TcHVP7fBjY6RpKuw3t1sDEK4QQQoiTiiRSQowwniIDt6VROd5EcR77r7haU4+tqlipyZFdQFUxJo5Fse2uitFA0IvLUEIGxvhRoB+/eN75OrRuiVT4PJ9pYKWHv5aqlBBCCCGiQRIpIUaQar+XuK3hRCEwy3XM4xSvD7XNi5WaBHrk+yoZk8cBdK2zGghd0/omju3V8VZH04zDK1IeNZw8+U0TKyP8OqXhhBBCCCGiQRIpIUaQP2zezKyaBNo9JgUzj91EQu2c1tfL/aM+zyzIwUqMRy87iNLQ3KcxehQKoe/aj61rvVofBYSTQkCtb+h6rHNqn980JJESQgghRFRJIiXECFKwR0ezFfTZsaAdu8tdVyIVSce+wykKoemFADi27uzbGD3QdxWjBEPhalRHB77jcjqwEuNRmlohGAIOTe3zmyZ2Rvhr2UtKCCGEENEgiZQQI0TQMllcHk6MrNk9b7Db2WjC7GsiBYRmTMIGHFt3gRndKo9ja7hbZ2ey1ltWWjIKoDY0AYf2kfJZBla6hq1IC3QhhBBCRIckUkKMEP6aANMa46mJC2Ll99ycod8VKcBOjMccNwq1tR19574+j/N5SlML2oFyrPhYzNG5EZ37+c59uqKiKQp+0wCHgp2sojZaELR7GkYIIYQQ4rgkkRJihNA3BQDYNKat581rTRO1rgHL48aOO3Z79N4InjIDAOeazWBHJzlxrtuKQrjihRrZW5TZ1XAivE5KURTcmo6vo2JmdUzvU2tlep8QQggh+kcSKSFGAtvu6ta3c1zPezupDc0ophWuRvWUcPWCOSoXMyMVraoOraSiX2MB4A/g2FyErWmE5k6L+PTOFujdO/dp+E0D27ax08NT/RRpOCGEEEKIfpJESogRQD1o4qmD3Ylt+NJ6To7Umjqgf9P6uigKwdPmAOBa8Vm/q1LOjTtQgiFC0yZix0ZeLeuc2vf5vaRsIGBJC3QhhBBCRI8kUkKMANomPwDv5tQRpzt6PvZgLQBmVnpUrm1MHoeZmYZ2sKZ/G/T6/Dg/3YCtKAQXzOzbGC4nVnwsSlMLGOFkyaMdvpeUbMorhBBCiOiQREqI4c6y0TcFsLH5IKf+uImUWhVOpKzs6CRSKAqBs04FwPXeqq7W45Fyrd6A4g8SmjUZu2OKXl9YaSkott3VuU/2khJCCCHEQJBESohhTj0QQm22OJhrUOcJ9pxIWRZaVS2204GVkhS1GMyx+YQmjUVtbsX10ZqIz1eranGs3Yrt0AkumtevWD7fua9rLynLhBgVK05BqTPBlM59QgghhOg7SaSEGOb0jeFufTvGewGI04+9ga1a34QSMsLT+vrZaOLzAuefge124ly7BW3Pgd6faJi433gfxbIInHUqdlxsv+I4lEiFO/e51Y69pMzwdD47Q0exQKmXqpQQQggh+k4SKSGGM8NG3xrA1mBzfjtAjxUp9WANEMVpfYex42LwX3I2AJ7X30Otre/FSTbuNz9Aq23AGJXTp059n9eVSNWHK1KH1kiFEymZ3ieEEEKIaJBESohhTNsVRPHZmJOc1GvhylRsD4lUV6OJ7IwBiccoHEtg4RyUQBDP0te61mMdlWXheucTHDv2YCXG47/i/KhUyczUo0/tO2IvKWk4IYQQQoh+kERKiGGscxNeY5abNiPc5KGnipRWFa5ImVkDk0gBBM88heC86ag+PzEvLMOxZnNXB71OSkMTnr+8iXPDNiyPG98XLun35sBdPG6sWA9qQzOYJp7Dmk2AVKSEEEIIER36YAcghOgjv4W2I4DtUjAnO2nfepxEyjRRq+ux3S7spPiBi0tRCJx3OlZCHK4Vn+F+bxXOTzdijsrFdrtQ6xvRSg+i2DZmanI4iUpOiGoIVloyekklamPLoWYTnWukZFNeIYQQQkSBJFJCDFP69iCKAaGZTnAoXRWpmGMkUmptA4ppYhTkRL3RxBEUhdCCWZij83CuXIe+qxjHjr1dT1sxHoLzZxA8ZQbo0X8bslJToKQSta4Bd0LH1D4rnDjZiSq2S0GtNcCyQR3gPwshhBBCjEiSSAkxzHxYU86K2gq+8WkBWegYs90AtBkhYjQd7RhJ0qH1UdFvNHEsVmYa/msuAl8ArboWQgZ2XAxWZhqoAzez+PAW6HEpmQA0B8PTIFEUrHQNrdxAabawk7UBi0MIIYQQI5ckUkIMM/+o2E9dfTvppWNocRu86S5j184mvKZBhstzzPO08oMAmDmZJyrUQzwuzNF5J+xyhydSY2ZPBGBvW/Oh5zPCiZRaa2JKIiWEEEKIPpBESohhpi7g46zKVDQU3smu5Y8HDnQ912PHvvIqAMy8rIEOcdAd3gI9PyYOl6qxp60Jy7ZRFQU7QwcCKDUGTDz2vltCCCGEEMciXfuEGEZClkVTKMBFB8Nd94rGeRkdc6hxxLEaTShtXtSmFsy0ZPC4T0isg8mO8WB53Kj1TWg2jI9LxGcaVPjaAOncJ4QQQoj+k0RKiGGkIegnu93FxIZYrFSNb5y3gN/NOavr+abOdUCf0zWt7ySoRgHhdVBpySimidLUwoT4JAB2tzYBkkgJIYQQov8kkRJiGKkL+Di3Ig0AY7YLFAVFUViYmg1A0LaOel7XtL7ckySR4tD0Pq2ukYnx4a93t4Y36bVTNGxNNuUVQgghRN/JGikhhpH2ah/X788BwJjl6nr8vgkzcagql2aPPup5XYlUfvaAxzhUWKkd66RqG5iYPwmAPW1N4Sc1BTtNQ602od2CWPlMSQghhBCRkd8ehBguDJvpr2vEGTo75gaw0w99DhLvcPLtSXOZkph65HnBEGpVLVasBzspuhvfDmVWVrhyp1bXkemOwaPplHlbsW07/LxM7xNCCCFEP0giJcQw4VzeTlqNztbkFirP6n3LbrWyBsW2MfOyB34j3iHEzAgnUlp1LYqikOOOxWeaNIXC68isjHAiKtP7hBBCCNEXkkgJMQxo2wI4Vvpod5n8eM4eUiPovKeVVQInUaOJTi4nVkoialMr+ALkeGIBqPC1A1KREkIIIUT/SCIlxBCn1Ju4XmkF4KkFFdR5gqT3sPHu52kHKgAwR+UOSHxDmZmZDoSrUp2JVGVHImV3VKQUqUgJIYQQog8kkRJiKDNsXC+2oPhtgmd5WJFah64oJDpcxz8XsANB1PIqLI8bK+Mo66dGOPOwdVKdidRBf0dFKl3DVkCtlYqUEEIIISIniZQQQ5hzeTtauYE5WufgYpWmUIBUpwe1l2udrOIKFMsKV6NOovVRnaysjopUVS05njgAKjs25cWhYCerqI0WBO3BClEIIYQQw5S0PxdiiOpcF2XGwBOnlfP6xlIAJnZsLtsb1p4SAMzRJ9+0PgAzs6MiVVVHjrv71D4AK11HbQii1hpYuY5BiVEIIYQQw5NUpIQYgpSGQ+ui/ndeKX9tLQbgmrxx3DNhZq/H6UykjFF50Q9yOPC4sRLjURuaSLAgRtM56GvvaoFudzScUKThhBBCCCEiJBUpIYYaw8a1NLwuqv1MF/9IqCDd5eF3c84iTo+gauLzY1dUYyXEYSefPPtHfZ6ZlYajuRW9toEcTyx725ppDAVIcbq7de6TVEoIIYQQkZCKlBCDyGcaLC3ZyY+3f8Yvd64naJn4Xm1AKzeozAry2Snt2MCk+OTIkihAK6kAG8zReSfl+qhOVkfnPrXbOqnOFuiyl5QQQggh+kYqUkIMkipfOz/YuoqagK/rseua8pm6RqHZEeKrU7fC/vBnHRPjkyMeX9tfBoA55iSd1tfBzM4AQKusIXNmeK1Ytd/LtMRU2UtKCCGEEH0mFSkhBsmzB4qoCfhYkJLFJdmjyfS6GP9meO3Or+YWU+cJUhf0A5E1mADAttH2loAC5tj8KEc+vJg5nYlUNZmuGCCcSAEQo2LHKSj1JpjSuU8IIYQQvSeJlBCDoLi9mU/qKklxuvjOpLnMjEvjwQ0TcAVV/jyuArPQyZjY8LomFYVxcYkRja/W1KO2tqOMyoGY3m/eOyK5XZipyahNLeTZ4SmONQFv19NWho5ihht8CCGEEEL01ohOpAKBANdddx1XXHEFl112Ga+88spghyQExe3N/HLnBgC+kD8Rl6Yx61MXU5ri2Z7cytOFZeR4YjknI1xJGhUbj1uLbBauvi/crU+bPDa6wQ9TVm4mAPkN4bVRVf7DEymZ3ieEEEKIyI3oNVJOp5PnnnuO2NhYvF4vl19+ORdeeCEJCSdvBzMxuFpCQb6zeSU+02BGYhoXZhWg7QyQsdqi1WHwX7N3Y6o2OZ44FqRm8lFtBedlRj41T98b3nNKnTwu2i9hWDJzMnFs2UlqbROKftjUPronUubUwYpQCCGEEMPNiE6kFEUhNja8CWcwGMS2bSzLGuSoxMlsfWMNPtPgjLQcvj1pLlqrhevl8H5R/292KdUxQQByPbEkOlz8ZvaZkV/E60etrMaKi0XJzYCG9uOfM8KZHRUpx8EaUsd5qA/4MCwLXVWx0sNvg4p07hNCCCFEBIb01L61a9fyla98hUWLFlFYWMgHH3xwxDFLly7lnHPOYfr06Vx//fVs2bKl2/N+v58rrriCs846izvuuIOkpKQTFL0QR1rfUA3Amem5qDa4XmpFabcJneamdHyo67jcjjbdfaEXl6LYNub4ApSTuO354ay0ZGynI9y5z+XBAuo6uiXaMrVPCCGEEH0wpBMpr9dLYWEhDz744FGfX758OY899hj33HMPy5Yto7CwkDvvvJOGhoauY9xuN6+99hrvv/8+y5cvp66u7kSFL0Q3lm2zobEWTVGYmZSO430v2r4QZo5O8NI4cjzh6mmMppPocPb5Ovqe8Pooc/yoqMQ9IqgqZnYGSshgejCcXHauk7ITVWyXEk6kbOncJ4QQQojeGdJT+xYvXszixYuP+fwzzzzDDTfcwLXXXgvAww8/zIoVK1i2bBl33HFHt2NTUlKYNGkSa9eu5eKLL+5TPKo6+J/ud8YwFGIRkdnT0kSLEWRGYhoJZTaOd73YToXQkgRUl9qVSOXGxKFpffyMwzDQ95VgO3Ts8QWA3CudrNxMKKlgSmsQnFAb9HX82SjYGRpqmYHWamMnDenPlwaMvLeISMj9InpL7hURieF2vwzpRKonwWCQ7du3c9ddd3U9pqoqCxcuZNOmTQA0NDSg6zoJCQm0tbWxZs0avvCFL/Tperqukpra9+lW0ZacHDvYIYgIFDXW8/Nd6wE4PzUf9/Ot2DY4b0kjdlI8ABN9qXAAxiQm9vleM7ftIRQMoc4sJDkjCZB7pZM5eTShVRuY0OKDNPiwvoIJGanMz8gikO/FLGsj0edAGxcz2KEOKrlfRCTkfhG9JfeKiMRwuV+GbSLV2NiIaZqkpaV1ezw1NZWSkvDUpvr6er7zne9gmia2bXPjjTcyadKkPl3PMCxaWnz9jru/VFUhOTmWxsZ2LEumIQ0X/7V+NQe97SxKzeGCd+Kxm0IYc934ChWobwNgijOJC7IKuCRjFPUdj0XKuXYHDsA7poD2xna5Vw6XmEQMkFZRj56ewqb6Wu795D0uyCrgGwkTcAGte9sws0/OhjTy3iIiIfeL6C25V0Qkhsr9kpDgweHQjnvcsE2kjsW27a4F9hMmTGDZsmVRG3sovQFYlj2k4hHHZtk2pe2txOsOHqibgnNnO1a6RuDKODjsZ+hUNO6fMCt8Tl9+tqaJvqcYW1MJjS1A7RhD7pUOLhdWRirOmnpemHQpa8x2ni0u4p2qUi5wZjAXB0q1cdL/Wcn9IiIh94voLblXRCSGy/0ybBcDJCcno2naEc0jGhoajqhSCTGYGoJ+QrbFgvZUnG+1Y+vgvzkBXNGd/6uVVKL4g5hj8sHV92YVI5mZnwNA8sE6zs0s4D/GTQdggzPcoKazc9/Oloaurn5CCCGEEEczbBMpp9PJ1KlTWbVqVddjlmWxevVqZs2aNXiBCfE5VX4vsSGNu1bnoZgQvCwOOzv6xWB91z4AQoVjoz72SGEWZAOglR0EYGpiCgAr7RpsDdRag7qAj+9sXsn9Gz6kpL1l0GIVQgghxNA2pBOp9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCdFPtb+fe7aNJaXNgTHNinOqO/kUME8fOfdiaijFxTPTHHyHM/HAipZdVApDsdJPtjqUk0EZrqo3SZlO1sQELmxYjyH9uW43flI16hRBCCHGkIb1Gatu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj1NbW8vkyZN56qmnSElJGayQhThCQ5OPmyvSCLhtjOviYQA2ydX3l6L4g4QmjgG3K+rjjxR2bAxmahJafRNKWzt2XCxTE1M46G/nZwW7eLRmEhPfVog5Q8NyQUMwQHF7C5MT5D1FCCGEEN0N6URqwYIF7Nq1q8djlixZwpIlS05QREJELnk3OGyVqkkQ7xmYIrC+fTcAxtQJAzL+SGIW5KDVN6GVHcSYPJ5piam8W13GqqxG3sup49zKNP6jqIDt55u8U11Kpa9NEikhhBBCHGFIT+0TYiQYvy/c+MGeMQBT+gD8AfQ9JdguJ8b4UQNzjRGkc3qfVhKe3jcnOYNY3cGClCwen1ZMozPEFaVZLGoKN62p9LUPWqxCCCGEGLokkRJiILVbTKqKpdEZIrZwYDZ61XcXo5hmuMmEPqSLzEOCOSoXAP1AOQApTjcvnnoh/zn1FArSEnl8WjEA899z4TZUSaSEEEIIcVSSSAkxgOytPjRbYX1eM5p+/I3d+sKxNTz9Vab19Y4dF4uZnoLa2IzS3AqApoTfCq/JG8dnec00TAR3E9yxq0ASKSGEEEIclSRSQgwgZZMfgJ1j/QMzfkMTemklVlJ8V6VFHJ85Og84VJXqdEpqFq+cfgnuL6RguxWuKc4iqSK80bcQQgghxOEkkRJioLRaxBywqHcFqc+1BuQSjs07AQjNmDwg3QBHKqMjkdKKy4/6vJ2gEbwiDhWF+zeOock7MImwEEIIIYYvSaSEGCD6tgCKDR9m1+N0DMC0PtPEsXUntqIQmlEY/fFHMLMgB1tV0Q6UwzGqTcYcF3tyfRS0e1D/1XaCIxRCCCHEUCeJlBADRN8SAOCDnHo8avSbQOh7S1DbfZjjCrDj46I+/ojmdGDmZqL6/KjVdUc/RlH47Gw/7bpB1qc2annoxMYohBBCiCFNEikhBoDSYqIWh/DF2WxPbsWtRT+RcmwqAiA4a3LUxz4ZmGPyAcJVqWNIzYrlD5NLUG0F1yutYMhaKSGEEEKESSIlxADQtgZRbCgbH8JWwKNFd2qf0tyKtr8UKy4Gc5zsHdUXneuk9P2lxzzm1NQsPhnXzMbUZtQqk/p/1vH/9m5hf1vziQpTCCGEEEOUJFJCDAB9S7g5wd4JQQBcUa5IOTbtQAFCMyaBKn+N+8LKTseKcaOVVYE/cNRjnKrGVfnj+OWMffg0k5yVFjt31fDk/m0nOFohhBBCDDXyG5gQUaY0mWgHDKwklfK08C/oUa1IhQwcG3eEm0zMnhq9cU82qoo5bhSKZaEfo3sfwMVZowkkK/xfYRm6rfL9LePZ3lhPlV/2lxJCCCFOZpJICRFl2tZw8mTMcOGzDADcUWw24di+G9Xnx5g0FjtBmkz0hzE+PC1S33vgmMfE6DpPzDuH62+chTlKZ3xTLF/eOYr3qspOUJRCCCGEGIokkRIiyvTN4UTKnOnCb5oAeKI1tc+2cazbCkBw3ozojHkSM8bkh9ug7ysF69h7fXk0nRing8AX4jHdcMP+HPL+ZWH3cI4QQgghRjZJpISIIqXBRCszsFJUrFwdvxmuSLmiNLVPK6lAq23AzM7Ays2MypgnNZcTsyA73Aa9sua4h9vpOsH/SKbVZXDJ3nTMl5vAkk5+QgghxMlIEikhokg/bFofioLfim5Fyrl2CwDB+dNBUaIy5snO6Oh6qO8r6dXxVo7O61e1UOsKkrjRxPWXVjAlmRJCCCFONpJICRFFWte0PjcAvo6KlDsKFSmlvhFtbwlWXCzGpHH9Hk+EGeNHA+ENjnurYEwyX124jca4EPqmAK4/tdDmC/B6xX5aQsEBilQIIYQQQ0n0dwkV4iSl1JtoFQZWmoaVHU6cOtdIRaPZhGv1RhQgMH86RHlfqpOZnZKImZKEVlOP0tLWqwYekxNSqI0L8a2FRTy5YTb6jiDBp9t4dtoOXq3cz/i4JEzb4juT5uJQ5WclhBBCjERSkRIiSvQt3af1AV1rpPrb/lxpakHfthvb7ZKW5wPA7Ozet7u4V8e7NZ1JCcnsd7bzfxdXEcpUyS9z8rPPJtPSGuCTukpW11extbl+IMMWQgghxCCSREqIKNEOT6Q6dFak+rshr/PTTSi2TXDedHA5+zWWOFKocCwA+q79vT7nrPRcAJY27uUHi3axM6mNmQ0J/GnTPC5LKgBgS1Nd9IMVQgghxJAgiZQQUaDUGmiVBlaGhp11qPrktwxcqobWj8YQSls7ji07sZ2OcCIlos7KzcSKi0UrO4jS7u3VORdlj+YP884h0xXDukAd31ywgwOZfpKrVe55J4/kgIMtzZJICSGEECOVJFJCREHn3lGHT+uDcEXK1c81Ms7PNqOYZnhKn8fdr7HEMSgKRuFYFNvu9fQ+gFxPHJfkjAbA6zDZdJ2JMcGBu8bm8dXTKG1qwWuEBihoIYQQQgwmSaSEiILOtuf+6Q7eriqh0teGadsELLNfrc+VNi+ODduxdY3gKTOjFa44CmNSx/S+nb2f3gdwQWZBV7I8JT2NwK2JmGMd5LW5mVeTxPaWhqjHKoQQQojBJ137hOgnpdpArTKxsjT+2LaTNw8ewKNp3DVuBtC/1ufOVetRDIPggpnYcTHRClkchZmXhRXrQSupQPH6sGM8vTov3uHk3gkzqPb7yHHHgqIQOtWNtj/Eoupk1jZUMz9FNk8WQgghRhqpSAnRT53T+jaMauPNgweI0XT8psmvd28Ewh3e+kJpasGxcUd4bdSps6MWrzgGVT00vW/PgYhOPTsjny8WTETpmNZpFjqxNTitOoVV1ZWEOjZmFkIIIcTIIYmUEP1h26hb/AD81rMTXVF4YMopjI9L6jqkrxUp1yfrUCyL4IJZva6OiP7p3OhY37mvfwO5VcwJThJCOmNq3KxtqIlCdEIIIYQYSiSREqIXiloaaA0FAbBtm7+W7WFzeTX6Jz70WovdCW0k58Ty+OyzmJGURpb70DS8vqyRUusa0LftxvK4Cc6fEa2XIY7DzM/GinGjHagAr79/Y00Jt6lfVJXC+zVl0QhPCCGEEEOIJFJCHMemxlq+vfkTHtmxBrvVpPnjRqa9BAv+R8H1RjsAK8Y18sDUUyiIjQcgyxPbdb67D137nCs+C+8btXCO7Bt1IqkqxqRxKJaFo59VKWOKC1uBM6tTWVNXRYWvLUpBCiGEEGIokERKiM9pCPpZU1+F1whh2zav7t7D5SWZ3P52FrGP1pP7psncuiSanSH+MaqKby3cwbxLxxCnO7rGyD6sIhXpGimtuBzHngNYSfGE5kyN2usSvROaOhEAffvu/g0Ur2KN0knzORnfHMvfyvdGITohhBBCDBXStU+Iw/yjYh9P7d8OwL3eiZy7N4XHSsejEW4i0OQOsXOUj5dSyijJ8NNiBvne5PkUxid3GyfLfVhFKpI1UpaF672VAATOPg10+St6olm5mVhJCejlVSiNLdjJCX0ey5jqQjtgcHZNGk8nl7Jk1CRSnLIXmBBCCDESyG9pQnRoDQVZWrITFyp3FhVw7b5UAOpcQbxTNP6WWsEbrgpsBVRF4fn5F+A3TTLdR7Yl7+saKcemIrTaBoz8bIzCsf1/USJyikJo6gRcK9fj2LGH4Olz+zyUOdUFb7ZzXk06f5hYQlFLA6en5UQxWCGEEEIMFpnaJ0SHNyqLIWDzv1tmct2+bFocBj+Yv5PvXbGH5BsyOWVeAZYCNjA+LolEh+uoSRRAqutQl71eT+3zB3B+tAYbCJx3OnS00hYnXuf0Pse2XWDbfR7HTtWwsjTSmsIb9Ja2t0YrRCGEEEIMMkmkhACClsnqveX8z8ppjCt1E0iBu0/fyurMRm4cU4iqKMxMSuuawjc1MaXH8bTDkiC7l7+Iuz78DNXnx5gxCSsrve8vRvSbnZqEmZ2B2tCMerC2X2MZU11AuHtfiVcSKSGEEGKkkERKCGD31hp+sWISY1tjMcc7MO5LZeq4DBan57IgJQsARVH497FTKYxP5vzMgl6P3dzRNr0nakU1jg3bsd0uAmef2ufXIaInNK2jKtXPphPm1ENt0EvaW/odlxBCCCGGBkmkxElP2+hn7ksaKUEn5bMt/LcnQozK/RNn8e1Jc1EOqy5NSkjhV7POID8m/rjjdnbuS3MdZzNdy8L91ocoQOCc02Tz3SHCmDwOW1XRt+8Bw+zzOFaOjpWsMrUpHn9TkJDV97GEEEIIMXRIIiVOSo1BP9/Y8BG7Xy7F/VIrigV/mFFC3PXpoEVnbdJjM07n38dO5ZLsUT0e51i7Ba2mHiM/m9CMSVG5tug/OzYGY/woVJ8ffc+Bvg+kKJhTwtP7Tq1KpsLXHp0AhRBCCDGoJJESI1ZzKMDjezbxuz2bCZiHqgAhy+JnW9Zx40cZzF7vIeS0+d6CIppPceBQo/dXIs3l4crccTh62JBXaW7F9fFabFUlcNGZ0mBiiAnNnAyAY3NRv8Yxph0+vU/WSQkhhBAjgbQ/FyNSUzDAfRtW0BgKALCtuY6AaeLUNBIaFL62bgyFzXFUxPh599I21vma+XrCCW43btu43/4IJWQQWDgHK63nBhbixDPH5mPFx6IVl6E0tWAn9W1PKWuUg4DbZnZdAi80NkJGlAMVQgghxAknFSkxIq1vrKExFGBOcjqF8eHpVFqzxU2fZvI/70+jsDmOorQ27l60lXc5CEB+TNwJjdGxuQh9XylWSiLBhX3fq0gMIFUlNGMSCuDYsrPv42gKzRMVHLZK4r6oRSeEEEKIQSQVKTEiVfjaAFiUlsvZsdn43mkiawMoBlgeheDZMbyRWUlLrUFLx7F5nhOXSClNLbjeW4WtKPguOxcc8ldxqArNmIRz5XocW3YSXDQP+jj90z9Zhy0G4w+4ohyhEEIIIQbDiP7tbf/+/fzgBz+gra0Np9PJD37wA+bNmzfYYYkToNzbhsdQOWVdDIlrmkkKgO2A4DkxhM70gEcluzwOOrYISnG6idEdJyY428b95gcowVB4Sl9u5om5rugTOykBc0w+enEZ2v4yzPE9Nw85FrXQjU9rprDCgxmywSHr4YQQQojhbEQnUi6Xi5/85CeMHTuWffv2cffdd/P2228PdlhioIVspm528e0dc0gK2tgahBZ6CJ4TA/GHqgk5ntiur0/ktD7H2i3opZWYmWnhCocY8kIzJ6MXl+HcuB1fHxOphBgXa9ObOLMqFf/eIOZkqUwJIYQQw9mITqRyc3O7vh47diytra3Ytt1tXyAxMti2ze62JsbudZLwTz83NWdjYROa4yJ0fix2ypGd83IPm8p3oqb1qTX1uD78DFtT8V92DmjH7ugnhg5j4misuBi0vSUojS3YyZE3ndAUlXW5zZxZlYq2XRIpIYQQYrgb0s0m1q5dy1e+8hUWLVpEYWEhH3zwwRHHLF26lHPOOYfp06dz/fXXs2XLlqOO9d577zF58mRJogZQUzDA3ramQbn2v6rLeOb9TSS81I7abPFxZgOPXFJM8IaEoyZRAJnuGFTC90NeLzbY7bdgCPc/3kExTAKLF2BlpA78NUV0aBqh2VNRAOeGbX0eZleeD0Ox0HYEwLKjF58QQgghTrghnUh5vV4KCwt58MEHj/r88uXLeeyxx7jnnntYtmwZhYWF3HnnnTQ0NHQ7rqKigl/84hfHHEdEx893ruebmz6mxu896vO2bROyzKM+1x+WbfNayT6+uWUsKgq/mLGPB+fvQs1y9nieQ1XJdHsAyD8BFSn3Ox+j1TdhjCsgdMrMAb+eiK7QrCnYqopjSxEEQ30aQ4/V2ZTagtpuo5YYUY5QCCGEECfSkJ7at3jxYhYvXnzM55955hluuOEGrr32WgAefvhhVqxYwbJly7jjjjsAaGtr4+677+Y///M/GTWqb2sbOqnq4FezOmMYCrEcrj7gY2tzHTawp72JrJhD648O+tpJd3lYXnWAJ/dt49ezz2RCfFLUrr22vpqztiYyui2Gg/kGy/NrAMiLjTvun9PM5HRaayuZkJA0oH+m+padOLbuwoqPJXDFuajawH+GMVTvlWErIRZz8jj07XtwFu3FmD0l4iESHU5WZjUwry4JfUcAY1zPyf6JJPeLiITcL6K35F4RkRhu98uQTqR6EgwG2b59O3fddVfXY6qqsnDhQjZt2gSAaZp89atf5frrr2fRokX9up6uq6Smnth9hnqSnBx7/INOoPf3VdA5UanS8HX9Wa2squAba1Zww7hCVlVXYto2n7XWcOrovKhde9Oqg9yzNxfTAZlfyYfVawEYn5Zy3J/Zfy5YSNAyB7Rjn1VdT/Dtj0FRcP/bFcTkpw/YtY5mqN0rw5l17gKC2/fg3rgd57nzI54qnBEfxyeZpXx1Gzh3hEj4t9ghN91Y7hcRCblfRG/JvSIiMVzul2GbSDU2NmKaJmlpad0eT01NpaSkBICPPvqITz/9lLq6Ol5++WUAXnjhBRISIl8obhgWLS2+/gfeT6qqkJwcS2NjO9YQWmPxzoEDXV9vq62lvr4NqynExx/sRk2CV/btwup4fmVFOUtyJkblus1+Pxd8kIDDVglcGIvlNLlr/HTeqCxmvCOe+vq2Xo3jIxCVeI7gD+B59m+owRDBxafQnpgMvYypv4bqvTKsxcXjzk5HO1hL08bdWKNyj3/OYdyWQp0nSH2mSWo1NGxrgpwT1Hb/OOR+EZGQ+0X0ltwrIhJD5X5JSPDgcBy/IdiwTaSO5fCufGeffTbbt2+P2thD6Q3AsuwhE09j0M+25jqSHS5ajCD72pphfxD92Ubu943ivKQUHpu1l/I4PwAl3laqfV7SXZ5+X7f23TpmN8VzMD1IwulpYNlcmj2GS7PHAIP8M7MsPP94F7W+CWP8KAKnzRmUBgND6V4ZCYJzpuF58wP0tVvx5+dEdG6CHp7K93pKJbdW51O1pp6MK4bWPmJyv4hIyP0iekvuFRGJ4XK/DOlmEz1JTk5G0zTq6uq6Pd7Q0HBElUoMrPeqy7CAxRm55MfEM784Hvcfm3D5FKrdAaY0xfPkRzO4pjiLs9LCn+Cvb6jp1zXfOljCtz5YwaRPdAzFou4KFwyx+bTOj9ei7yvBTE3Cd8V5MMSmcIm+MaaMx4pxo+8uRmlqiejcBEc4kfogoz78/S6rp8OFEEIIMYQN20TK6XQydepUVq1a1fWYZVmsXr2aWbNmDV5gJxnbtnm7qhSACzMLuLMonx9smoBt2fxm2n6+c+luAufH4ETlvu1j+OoH+WR6nbxdVYJh9e2XSMu2+VvZHr62dSweU+PViTWMnjC0WonrRftwrdqA7XLiu/ZicA2dpgKin3Sd0NzpKLaNc83miE5NcIT3jiqN91Ea6yO1TkdpiH4nSyGEEEIMvCGdSLW3t1NUVERRUREA5eXlFBUVUVtbC8Btt93GSy+9xLJly9i3bx8PPfQQfr+fq6++ejDDPqlsa67noL+dmTEpjP+bzelbEmh1GPzotN28Nrqa0zNzMM6LJXBvMlaWRlKJwjMfzWJckYM/HdiJbUdett3YVMvUfTGcWptMU6JJxuWZqEOo2qNWVuN+431swHfFedipSYMdkoiy4Jxp2A4dx+adKN7er51MdBxKqD/JCm/ToG0foPV5QgghhBhQQzqR2rZtG1dddRVXXXUVAI888ghXXXUVL730EgCXXHIJ3/ve93j88ce58sorKSoq4qmnniIlJWUQoz65rKw7SJrPyUMfTEDfHsRIUXng7D18khL+JfHM9PBUPivXge++ZIJneXCbGt/dPJ5Z/9D40eqVbGuuj+iaHxWXcu/20QC4vpjCnPSMqL6m/lAaW/C8shzFMAicuxBzfP9a7oshKsZNaOZkFMPAsb73G/QmdlSkAD7MDt/3zve9KNWyp5QQQggx3AzpZhMLFixg165dPR6zZMkSlixZcoIiEp/XtL+VJz6ZTlJAxRzrILAkgbuU2Xx/y0pyPHHkx8QfOlhXCF0chznZhfJSE6dXpzBteTy/LdvJrtMzuTZv/HGvFzBNTl0ZS2LIQWCBC2vsEJoy5/UT8/IbqF4/wbnTCM2fMdgRiQEUnD8Dx/ptONZvI7hgFjiP333v8IrU3qR2XhpbyRf35+B+uhn/3UnYScfvECSEEEKIoWFIV6TE0NMY9PN2VQkhy6J1XTMPfDCO1ICT0Hw3/jsSIVYlPyaeJ+efx6PTFx51DGu0A/MbaQRPc5MYcvCjDROZ/WcVbY0PvD2vm6rYVM955Wm0eAyMi4fOvl4YBp6//RO1oZnQhNEEzjtdmkuMcHZSAsbk8ag+P44tO3t1jlPV8Gg6CjAjKY0/Ti6hfrqC2mzhfroZ2qX5hBBCCDFcDOmKlDg+y7Z5ung7DQE/35o0F62fv7zbto0FxxznuQNFvH+wjLyPbU5ZF4uFwkentTL3yrRuiYNHO86t5VQIXRWPOc1F+59rmV4XD39rw/5HG+ZEJ8ZMF+YUF7gOiyNgM2q5BWhsO89kpmeIfA5gmniWvYNeXoWZnYH/ivNAHSKxiQEVPHUWjh17cK7ZTGjO1F793O8YM5WQbVEf8LGpqY7V5/i4KJSAvjOI+9lmim5U+FdjOS2hADcWFJIbM4Q+MBBCCCFEF/ltbxizbZs/7NvKqxX7+biuks1Ntf0az7JtfrZzPf/22Tu0hIJHPB+yLFp3tfHHj2dwyrpYfLrJD+fvRF0c1+fqizXeyRu3ePn6qdvZOKkdn26iFwVxv9RKzH/V4fpTC9q2AIRsnG+3k9CmsSK7jux5Q2QdnGXhfuMD9L0lmClJ+L5wca+meImRwcpMwxiTj9rcir5jb6/OuSh7FJfnjCHHE06Qtrc30HiDB7NARys1MJ6r583yYlbUVvDmwQMDGL0QQggh+kMSqWHs47pK3jx4AL0jiflXRxvyvijztvJ08XY+qaukKRTg0/qqbs8rTSbB5+v46SeTGNcay+aUFu46fSu7831MTexf6/HZKelsSmvhG+O3cMW5a3nirApCc8L7QulbA7hfaCHmv+rRV/lodRj8dV4tGe6Yfl0zKmwb19sf49ixBysxHt+Nl2PHDoG4xAkVXDgHAOfK9RBBS/88TywAb1WV8OUtH3DwJjdtqTazqhJ4cNtEFBsOtEe2T5UQQgghThxJpIYh07Y46Gvnqf3hbmE/nHIKsZrO6voqWo9SSTqe96vLuGv9B7xasR+VcFK2uv5g+MmQjeP9djy/bCCjSKHWHWD9JUF2LlH5wrzJ/H7uOTjV/i2QHxuXSIIeXoRvqjZ/iStl68Um3v9Mxf+lBIzpTjBtFBv+d8oBcjMT+nW9qLBtXO+vxrlpB1ZsDN4vXo6dIFOwTkZmQQ5GQQ5aQxN6Ue+qUgCFCSl8IX8ChfHJNIUCPFG1jf9auJcad4AzS1P4ys5RlHolkRJCCCGGKkmkhqGvr1zBHWvepSEY4OyMPBa0pfDv7eMxbKtPU4G2NNcBcHpaNj+beTqxuoNNDbUYW714ft2A820vWPC3iVXcdvZm8k7P4LLcMZyVkUes3v9pbKqicGnOaApi4rmpoBAIr8XyqSa7RvtouykO74OpvHpjC2/n11JweCfAwWDbuN5diXPNZmy3C9+Nl2GnJA5uTGJQBRfNAyKrSmmKwr+Nnsx/TTuNFKeblXUHWWPX8duzSrFjFK7fl8MFO1NpCso+U0IIIcRQJM0mhqFZaem0+gPkeuK4dcxknM+2c+XeZFYvSOYVdQ/nZeaT5vL0erzitvCn3v8+dhppLg8Xa7nMX+khsbYdAGOyk5ZL3PzPrtXkemKJi0Ly9Hk3j5rEzaMmEbJMPqwtZ0tzHTetfouQbXFp9mjuGj+DbTEt0Ar5nkFMpDqm8zk3bsfyuPHddAVWev+mNorhzxyVi1GQg15aiV60D2PqhF6fG6Pr3Dt+Bv+7dwvzUjL5YsFE/GN1tD82cFfRaHZ/2kLSmekDGL0QQggh+kIqUsPQ7ZOm88vZZ/DVibNIdLgInRZOmr6/YwKEbJaW9Lz31uEMy6LE20qC7iTV6UZf6eOuZVmcUptEXUII/20JBG5NpCo2/Kl4hmtg1wA5VI2fz1jEtIRUQraFisK71WW0GyFKva0A5A9WFzPbxvXPD8NJVKwH381XYmVIEiXC+lKV6nRKahbPLbiA+ybMJN3lwRrl4MOLvRiKxfjlNlqRVKWEEEKIoUYSqRHAnObCmOIksVXjlt15bO2Yqtcb5b42DNtiTFwCWomB8/U2FE3hqcml3LF4M/6J4epTTcAHcEKaPCQ6XfxkxkKWLriQ8zLzCVgm71eXUeZtw61qpEdQbYsa08T9xvs4NxdhxcWEk6j0IdI5UAwJ5qhcjPxstPpG9J37+j2eY0oMP5u5D9VWcC1tQak3oxClEEIIIaIlokQqGAzy+9//np07e7f5pDhxglfGYTsVbtifQ2wNBK3e/dJV3NEVrFBPxPVSC4oNwSvj2XeKSYsd6lo/VeP3ApB5gpIYVVFIdLq4JHs0AM+X7MRnGuTFxKGc6I1ugyE8f30Lx7bdWPGxeG++Eis1+cTGIIaF4BnzAXB+si7iqtTnjYqJ5928Ot6YVIsSAv0zXzRCFEIIIUSURJRIOZ1OnnjiCVpapJPUUGMnaQQvikWzFb65ZSyV7W29Oq+4rRmAyz5LRW20MKY7Mea5OC01C4DVdeHufdWBcCJ1otuOj49PYkpCCj7TACD/BDeaULw+Yl58DX1/KWZaMt5brsFOSTqhMYjhwyzIwRiVi1bfhGNr76fYHk26y8OY2ASezSvBUmz0dX4w7ChFKoQQQoj+inhq34wZM9i+fftAxCL6yTjNzcH0IJOb4lFX9e7T6/3tzZxbkUZ+kYaVqBK4Jh4UhfkpWajAuoZqAGr8HVP7BmFa3Z1jp3Z9nTnAa7QOpzS2EPP8MrSDNRj52XiXXC0tzkXPFIXAWacC4Px4LYSMfgyl8MCUUzDjFVZmNKK227DNH61IhRBCCNFPESdS3/72t/nzn//Mn/70J8rKyvB6vfh8vm7/iUGiKmw538BUbMZ9rKI09Ty9r7S9lerKVr6+dQy2AoEb4iEmfEskOJyMiU2kLuinxu+l2j84FSmAifHJzE/JBGBGUtoJuaZWfpCY5/+G2thMaOIYfDdcBh7XCbm2GN6snAxChWNRW9txrN/ar7Ey3TE8PO00VoxrAGD/vw7ym10b+XPprl5P3xVCCCHEwIi4/fn1118PwCOPPMKjjz561GOKior6F5Xos/hRMbw8toIb9+WivtZG4JZj72/0wv4ivr9xPLGGTvAsD9Y4Z7fnJyUks6+9maKWBmoDXnRFIcXpHuiXcFQ/nDyfA+0tjI9PGvBr6ZuLcL/1EYplEZw7jcB5p4MqfVlE7wUWn4K+uxjX6o2EZk0Bd9+T8HFxidxywUwatjQxvS6en+/fy3txfvI8cZyRnhvFqIUQQggRiYgTqZ/85CcnfrG/6LVcTxw/nljOeVXppG8HY1sAc9qRv8SVtLcwbq3G9MYEjByN0PmxRxwzJSGFNw8eYFNTHU2hINnuGNRB+tnrqjrwSZRl4Xp/Nc61W7BVFf9FZxKaPfX45wnxOXZqMqGZk3BuKsL56UaCHdP9+irNE4PjdBve9vKNxkK+Ebe5azsAIYQQQgyOiBOpa665ZiDiEFGS6nSjOhV+O2M/j66ehPPVNnzjHeDuXlEp3dnArbvzCek2oZsSQD8yQZqcEG7v/WFtOTA40/pOGK8fz2vvoheXYbtd+K65EHOUfNov+i64aB6Obbtxrt1KaO407Pj+ra8z5ntw/MvLtN0xOHIUKnztUYpUCCGEEH3R5/lKe/fu5R//+AdPPPEEtbW1AJSUlNDW1rtucWJgKIpCnieeVamNbBnXjtpi4Xzrc79wBSzmL3ei2Qpl56vY6UfPp9NdHhIdToIdbZxz3EdWrUYCtbyK2GdeQS8uw0xLpv3W6ySJEv1mx8cRnD8DxTBwrfgsCuOpmFOcOHxwZlUq5VKREkIIIQZVxIlUe3s7X/3qV7nssst44IEH+O///m9qamoA+PWvf83//u//Rj1IEZmbRhUSrzv40dgd+FwW+qd+1JJQ1/OOV9tIbXOwMquBlDOOvR+SoijMTc4AYExsAtcXTBzw2E8o28axZjMxS19FbWkjNHUC3n+7Fjs5YbAjEyNE8LQ5WLEeHNt2o1ZW93u80IJw18wrSzOp8LVj2dIOXQghhBgsESdSP/3pT9m4cSPPPvssGzZswD7sH/LFixfz8ccfRzVAEbn5KZn8ZvaZNLkMls6oRLHB9fdWMG20zX6c6wPUuYK8fUYTDk3rcawvj53GT6Yv5LezF5M+CK3PB4zPj3vZ27jfWwUK+C86E//l54LTMdiRiZHE5SS4eAEA7ndXQj8TH2u8AytFZXp9ApnNTuoC0iVVCCGEGCwRJ1LvvPMO3/rWtzj11FPRPvdLeE5ODhUVFVELTvRdljuWfE8cSzPK8I1WUatMnG+041oWnnr501l7GZeZctxx4hxOZiSloY2gBiNacRmxT72MY1cxVlIC3luuCTeVGEGvUQwdoemFmJlpaBXV6Dv29m8wVcHoqEpdVppBhU+mUgshhBCDJeJEKhAIkJSUdNTn2tvbj0iuxOCZk5IBCnx0Zju2Bo5VPhSfzasTqtmQ3sxpqdmDHeKJFTJw/esTYl56A7WtndC0ibTfdh1WVvpgRyZGMlUNt9AHXB+shlDoOCf0LDTPjanaXFiewcFWaTghhBBCDJaIE6np06fz6quvHvW5t99+m9mzZ/c7KBEdneubPlKqCZ0T7rjXlG7xv+OLWZCaRW5M/7qIDSdqRTUxz/4V57qt4a58V10QnsrXj/19hOgtsyCH0KTwJr3Ozzb3b7A4ldoJNgkhndjtRnQCFEIIIUTEIm5//tWvfpXbbruNW2+9lYsuughFUfjwww959tlnefvtt/nTn/40EHGKPpiWmIpDUdnSXEfgLA92gspDgXWEsLkub/xgh3diBEO4PvwMx7qtKIAxOg//ZWf3uxW1EJEKnH0a+p4SnKs3EpoxCTuh7/dg8BQX7AoxabsLLo5ikEIIIYTotYgrUvPmzePZZ58lGAzyX//1X9i2ze9+9zvKysp45plnmDFjxkDEKfrAqWpMjE+izQhRFmijbpbKZhrJ88QxKeH466OGO21fKbFPvoRz3VZwO/Fdcha+L14mSZQYFHZSAsEFM8Pt0N/9pF9jJU2OpyLWz9haD0pV/6YKCiGEEKJvIq5IAcydO5cXX3wRv99Pc3MzCQkJeDwjqKPbCDIlMZXtLQ3saGkgxekGYFLCsVuejwRKazuu91fj2LEHgNCkcQTOX4QdN4I3FBbDQnDhHBzb9+DYVUxobwnm+FF9GkfTNFaNb+YLm92Yq9tRr06KbqBCCCGEOK6IK1KrV6/G5wu33HW73WRmZkoSNYRN6ag87WhpYGdrIwCT4kdoImUYOFdtIPYPL+LYsQcrLhbftRfhv/oCSaLE0OBw4D9/EQDudz7uV+OJsikmQdXCvTEIQdlPSgghhDjRIq5I3X777WiaxuTJk5k3bx5z585l7ty5JCeP0F/Oh7nJ8ckowI7mBjLd4WSicKRVpGwbbe8B3O+uQm1qwVZVAqfOIrhwLricgx2dEN2YE0YTmjgGx+5inKs2dO0zFamMtDg+zmrg3Mo0rK0BjLnuKEcqhBBCiJ5EnEitWrWKdevWsX79etasWcPzzz+PZVmMHTuWuXPnMm/ePK644oqBiFX0QZzDyaiYeA54W6kOeHGrGgUxCYMdVtSoldW4VnyGXhLev8wYPwr/uQuxU5IGNzAhehA473T04jKcn27CmDoRKy3yDzfGxCbwSsF2zq1MQ//UJ4mUEEIIcYJFnEglJydz/vnnc/755wPg9Xr59NNPeeaZZ3j55Zd55ZVXJJEaYk5Pz+FAyS4AxsYljojNddW6BpwfrsGxuxgAMyWJwHkLMcf1bc2JECeSnRhP4Iz5uN9fjevtj/DddEXEG0KPjk1gc2oLB+MDZJeCctDAzu7TslchhBBC9EGf/tVtb29n48aNXZWpLVu24HK5OOuss5g7d260YxT99MX8icTpTpaW7OScjLzBDqdflMYWXCvXoW/bjWLbWPGxBM+YT2h6IagRL/kTYtCE5k3HsXUXemkl+tZdGDMmRXR+ktNFktPFsvyD3L1jNG0fNxF7fVpEY5i2xc6WRiYnpKAy/D9gEUIIIU6kiBOpa665hl27dpGamsq8efO46KKL+OEPf0hhYSHKCKh0jESKonB5zhguyx49bH9Gam0DztUb0XfsCSdQHjeBhXMIzZkKunwKL4YhTcN/0WJiXliG+72VtI/Nx46LjWiIL+SP5/1QKcGdFrGbbeou9pIW37vGKrZt8+tdG/mwtoL7J8zkopzRfXgRQgghxMkr4o/wd+3aha7rzJo1i9mzZzNnzhxJooaJ4fgzUg/W4P7bW8Q+9Rcc23dju10EzjyF9rtuJnTKTEmixLBm5WURmj8DxR/E9dZHYEfWfe/K3HH89xlns3dsgFhD48N39mL2cox/VOznw9rw2sJVdQcjjl0IIYQ42UX8W+i6deu6pvW98847/OpXv8LhcDBnzhzmzZvH/PnzmTVr1gCEKk4aloW+uxjHuq3oZeFf8Ky4WIILZhKaNQWcjkEOUIjoCZx5CvqeAzj2HMAo2ocxZXzEYxSckwl7W7hufQa7HRVMuCQX9J4/OHm1Yh8q4NI0tjTX4TeNPr4CIYQQ4uQUcSLl8XhYuHAhCxcuBCAUCrF69WqefPJJfvWrX6EoCkVFRVEPVJwEfH6cm4twrN+G2tIGgJWcGE6gpk8CXRvkAIUYAE4H/kvOIubF13D962PM0bnYMZHtzaeMdVJ9hkrKJxazVrowdjZgXBaHOdl51CYWzaEAdUE/BTHxFMTE80ldJVub6snNSMKybf6wbytZ7liuzB0brVcphBBCjDh9mhfV0NDAunXruv7btWsXlmUxYcIEaTYhImPbaCUVODYXoe8qRjFNAIyx+QTnTcccWxBxNzMhhhtzVC7B2VNwbtyB61+f4L/y/MgGUBTiLkvl8dQNnL4qjlNrktGfa8GY6CB4eRx2Rve3+uK2FiDcQn12cjqf1FWypqGKixjHWwdLeL2yGI+mcVnOmBHR5VMIIYQYCBEnUhdeeCGlpaVdm/IuWLCAe+65h7lz55KUlDQAIYqRSGluxbF1F44tO1GbWwGwXU6CMycRmjcdK3WEbRosxHEEzj4NfV8pjh17MSaPx5g4JuIxtEwn3z9lJ790zGP2x2703SG03zRinO4heG4MeMLLYve3NwMwLi6RecmZaIrCB9XlfLGpkWf2bwfAZ5pUeNsoiI2P3osUQgghRpCIE6lLL720ax2UxxPZ9BNxclPaveg796Pv3IdWWtnVbNkoyCE0YxLGpLHgkPVP4iTlcuK/eDExf3kT1z9XYOZmYsf2rgNfpwxX+PjteV4mfT0bx0ofjne9OD72oW/0E7wwFmOem31t4URqbGwiSU4XF2eN5o2Dxdy+4i1ClkWsptNuGuxua5RESgghhDiGiBOp+++/fyDiECOU4vWh7ypG37kXraQSpaOjmBUfS3B6IaHpk7BTEgc5SiGGBnNsAcE5U3Fu2I57+Qp8110c0dTWDFf4w60avxd0hdDiGIzZLhxvteNYH8D1tzYcn/i41JHIqbiZVevA4Wnj37VRxFUHaVFDZCXGUpiWwk/bt7C7tYnzMgsG6uUKIYQQw1qf1kiVlZXx1FNPsWHDBpqamkhKSmLu3Lnccccd5OfnRztGMZzYNmpNPfreEvS9JaiV1V2VJys2htCkcRhTxmHmZsnaJyGOInD2aegHytH3luDYVERo9pRen5vhDlekagK+rsfsBI3g9QkYp4ZwvtaGVmYwn44PL8pDQAgn8B90T5h+FzONR5KL+/tyhBBCiBEr4kRq27Zt3HLLLbhcLs466yzS0tKoq6vjnXfe4fXXX+f5559n6tSpAxFrn9x///2sXr2aRYsW8Zvf/GawwxmRlDYvWmklWkk5+r5S1Nb2rues+FhC40djTBmPmZcFasRblwlxcnE68F1+LjHPL8P13kqMUbm9rtp2VqRq/d4jnrMKHPjvTmLb/hqeKdrG7Jg0/i17EgRtlICNEoJYzYG3KYC6O0BupZupRW6Cc0ycqnTMFEIIIT4v4kTqZz/7GVOmTOHJJ5/stkbK5/Px5S9/mZ/97Gc8//zzUQ2yP26++WauuuoqXn/99cEOZcRQWtvRyg+ilVSilVag1Td1PWcrCmZuFsb4Aoxxo7AyUqXyJESErJxMgovm4fp4LZ7X38X7pat79SFEnO7Ao2ndKlIV3jYe2bGGwoRkloyaxIvefexKaueayZMx01xdx6mqgiM1DqO+DXuWC/dvG7h5dx776xqZlJE2IK9TCCGEGM4iTqS2bt3Kb3/72yMaTXg8Hm6//Xa+/vWvRy24aFiwYAGfffbZYIcxfPkDaFW1aAdrUCtrwv8/rOIEYKYkYY7KwSzIwRidDzHuQQpWiJEjuHAO+t4StMoanCvXEzxj/nHPURSFdFcMpd5W2owQcbqDZw7soMzXRpmvjY9qKwhaFtnuWE5NzT7mOHa2TkmhwZhdDoyP2uA6SaSEEEKIz4s4kXK5XDQ1NR31uebmZlwu11Gf64u1a9fy9NNPs23bNmpra3niiSc4++yzux2zdOlSnn76aWpra5k8eTIPPPAAM2bMiFoMJ41QCLWhGbW2AbW2Aa22AbWuoas1eSdbUTAzUjFzMjELwsmTHR87SEELMYKpKr4rziX2mb/iXLk+/PdtVO5xT8tweSj1tlLla6cu6OPT+irSnG7Ozszn1Yp9AFydN+64+0MpF8YT2u1l+iY3pYubCXlgbJw0hhFCCCE6RZxInXXWWfzyl78kLy+PefPmdT2+bt06fvWrXx2R6PSH1+ulsLCQa665hvvuu++I55cvX85jjz3Gww8/zMyZM3nuuee48847eeutt0hJSYlaHMOeZaH4/Cht3vB/7V7UphbUplbUphaUphbU9iPXVNiAlZSAmZ2OmZ2BlZOBmZkOTmlRLsSJYKck4b/wTDyvv4f7tXfx3nE9dkzP2050Npz42qaPuh67aVQhF2SN4tLs0expbWJBatZxr52eG8+KceWcvzeNrX8v4bnp5fzp1AtxyHopIYQQAuhDIvW9732Pu+++myVLlpCamkpqaioNDQ3U19cze/Zsvvvd70YtuMWLF7N48eJjPv/MM89www03cO211wLw8MMPs2LFCpYtW8Ydd9wRtTg6qeogr/WxbRxFezFMA2ebD9swwbLAtMLJUjCEEgiCP4ASCIa/9vlR2n1dbcePOqyqYiUnhv/LSMFOT8FKS8FKSz4iaZJWEcNH5/066Pet6BdrRiGhkgocW3bifv19Al+8tMd1hxnuQ4nW5IQUzsrI5YLsUaiKQoYnhgzP0femOtr9UnY6+IpNrjyQyStjKtne0sCclIwovTIxnMn7i+gtuVdEJIbb/dLrRMrv9/Phhx9SUVHBjTfeyJIlSzhw4AC1tbWkp6czc+ZMFi1aNJCxdhMMBtm+fTt33XVX12OqqrJw4UI2bdoU9evpukpqalzUx42EVVFD8O/vYAC9rgmpCsTHoiTEoiTEocTHQkIsSnIiSmoiamoSJMWjSDe9ESs5WaZeDnf2jRcRrK5F31+Ke8sO9HMWHPPY0+w8Xjiwk2vHTuTrM+aiRtjs5fD75YKZE/j7qq3cvCePW3bnsWVaA+dPGNvn1yFGHnl/Eb0l94qIxHC5X3qVSJWVlXHrrbdSUVHR9VhcXBy/+c1vOOOMMwYsuJ40NjZimiZpad0XQaemplJSUtL1/Ze//GW2bNmCz+fjzDPP5I9//COTJk2K+HqGYdHS4jv+gQPJ5cFxxbnEKBbegImtKKCp2KoKmgoOB7bbhe1ygtuJ7XKFK0o9/SJlA41HTusTw5+qKiQnx9LY2I5lHbsiKYYH5Yrz8DzzV0LLP6Y1LRUr9+jT8/KVGP6+6FIcqkZjQ/tRjzmao90vqTi4+KZpmD9v4uKyDL67czf1eW1ReT1ieJP3F9Fbcq+ISAyV+yUhwYPDcfyp7L1KpH7xi1+gqipLly5l2rRplJeX89BDD/HQQw/x3nvv9TvYaLJtG+WwxOGPf/xj1MYeCm8AoemF6KlxhOrbehePDfQwrU+MfJZlD4l7V/RTWgqB8xfh/ueHuJb9i/bbvgCeozf30VD7/DP//P3iinFgnh2Lc3k7l21JY9OcWmYk9b2L3893rmd/WzO/nnUGMbqstxzu5P1F9JbcKyISw+V+6dV8ro0bN/K1r32NuXPn4nK5GDduHD/+8Y+prKykpqZmoGM8quTkZDRNo66urtvjDQ0NR1SphBBiJAjNnExo8njU5lY8r797wj4kCS304I21OOtgKs99vJm713/A43s2YUV4/SpfOx/VVlDua+Pv5fsGKFohhBDixOhVIlVbW0t+fn63xwoKCrBt+4hE5kRxOp1MnTqVVatWdT1mWRarV69m1qxZgxKTEEIMKEXBf/FizNRk9H2lOD9Zd2Ku61BQL0wA4Cu7R1PqbeWdqlJW1R3s1ell3lZ+v3cLL5Xt7npsWcU+GoL+AQlXCCGEOBGGdIeB9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCCDFwXE78116I7XTg+mQd2p4DJ+Sy5jw3VprGrJoE/jvuVABeLN2F2Yuq1B/3bePNgwd4t7oMBTgtNYuAZbK6l4mYEEIIMRT1umvfnXfeiaYduejq1ltvPeLx1atX9z8yYNu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj3dtyPvUU0/JHlJCiBHNSk3Gf9k5eP7+Np7X36P91uuwUwZ4s1xNIXhBDO4XW5m60sGURSnsaG1gbUMVp6ZmH/O02oCPTU21qChY2MxOTmdBahar66toCAYGNmYhhBBiAPUqkbr33nsHOo6jWrBgAbt27erxmCVLlrBkyZITFJEQQgwNRuFYAqfNxrV6I56/v4X3lmsGfLNsc7oLM9eHVmbwpbbRfJ8G9rQ295hIfVBdhg1cmzeOOckZjIlNYFdrIwBNIUmkhBBCDF9DOpESQghxbMEzT0E7WIt+oBz38hX4rzyv5+0O+ktVCF0Ui/Z0MzNXuVBPhUrfsduhNwUD/LMqvB3FuZn55MfEA5DkdHU9L4QQQgxXQ3qNlBBCiB6oKv4rz8NKjMdRtBfn6o0DfklzggNzrANPPZxfnk7FMRKpgGnyo+2fUhvwcUZaTlcSBZDk6EikpCIlhBBiGOv1GikhhBBDjx3jwXftRcS8sAzXh59hpSVjTBwzcBdUFIIXxeL5f03cvjufJx2laEEvqg/wWSheG8VnEWj2873mUaQYTuLGxhAaZ4MzXC3rSqSkIiWEEGIYk0RKCCGGOSszDf8V5+H521u4X3sX75euxsocuP30rFEOjKlOMrbDD9dNgHXtRxyTgkoKseFvtoVQg80E/i0RdAVdVYnXHTSFAkdsoi6EEEIMFzK1TwghRgBj4hgCixeghAw8f/0nSpt3QK8XvCKONZNaeXlsJaVnQuCqOPw3xuO/IxHfvUn87xcOcsUFa1l1n42VpaHvDuF6qRU6dqpPcrgIWCY+0xzQOIUQQoiBIomUEEKMEMHTZhOaOhG1pQ3P394Cwxiwa9lJGpvOCfL7KSWsndOOcZoHc5Ybc6ITK9/BDkcLrU6DzNRY/HckYqWo6FsDOJe1gW0fajgRkk15hRBCDE+SSAkhxEihKPgvWYyZk4lWWY37zRXQiw1z+yrXEwdAhe/IqX0VvjZ0RSHdHYOdoOG/MwkrXsWxxo/jn+2yTkoIIcSwJ4mUEEKMJLqO77qLsBLicOzYg/PDzwbsUp2JVPnnOve1hYI0h4Jku2PROtY/2aka/jsTsT0Kzg99nL8jvHG6dO4TQggxXEkiJYQQI4wdG4Pv+kux3U5cqzfi2LBtQK6T4fYAUB/wdXu8wh+uUOXGxHWPK0vHf3sithPOWBPP5SUZUpESQggxbEkiJYQQI5CVnoLv2ouxNRXXO5+g7SmO+jXidCcK0GqEuj3euUlvjif2yLgKHPj/LRFTs/na1rGk7Ih6WEIIIcQJIYmUEEKMUGZBDv7Lz0WxbTz/eBe1oiqq42uKQrzupCUU7PZ4hbejIuWJO9ppWOOdbL/cwgbOejcWbadUpYQQQgw/kkgJIcQIZkwej//chSiGgeeVf6I0NEV1/ASHk4Bl4jcPdQis6pjal+0+siLVFdc0F7+YuQ/NVnD9qQW1OHjMY4UQQoihSBIpIYQY4ULzZxCcNx3V5yfmL2+itEdvj6l4hwPoPr2v8+sEh/OY56U43bydX8vLs6tRQuB+pgXl4MC1axdCCCGiTRIpIYQY6RSFwHmnE5o0FrWpBc9Lb4A/OtPpEvRwG/PDp/d5zXAiFas7jnleqtNNjKbzf/klBM7xoARsXK+0gjlw7dqFEEKIaJJESgghTgaKgv/yczFG56LV1BPz8nIIho5/3nF0Vp1aDmtj3t6xEXCsph/zPFVRGBuXSMAy2X+6RWseaBUG+irfMc/pDXMA980SQgghDieJlBBCnCx0Hd+1F2PmZKBVVOH5+9tgmP0a8lAidVhFygihAO4eEimA8XGJADxZvJ37x27CVGyc77SjNPYtppdLd3PT6n9S8bl9rYQQQoiBIImUEEKcTJwOvNdfipmegl5chvu1d8Gy+jxcfMf0vZbD1ki1mwYxmo7asRnvsYyLSwJgY1MtBxJ8/GVcJUoQnK+2QR8qS582VNFuGrxRGf1W70IIIcTnSSIlhBAnG48b3xcvw0pKwLFrP+5/ftinxAUgwdG5Rio8tc+0bXymQUwP66M6dVakOj03oZy6+BB6URBte2Rd/EzbpqS9FYD3q8u6dREUQgghBoIkUkIIcRKy42Lx3ng5Vnwsji07cf5rJXYfkqnEz03t85nHXx/VKccTh1vVALg4axRJMS4em7IHAP0freDrfaXsoK+dgBWeEthuGrxTVdr7FyGEEEL0gSRSQghxkrKTEvB98XIsjxvH2i0Yr6+IuDLVuUaqs+W5t+P/valIaYrCxPhkAC7MHsWvZ52JVujmndxa9FYb+58tvY6juL0ZgML4ZBTgyf3bWC5T/IQQQgwgSaSEEOIkZqUl47vxcmyPC3PFWhzvr44omYrXu3fta+9F6/PD3T9hJg9PPZXxcUkkOV08MGU+a0/30uwIEftZELW0d50Fi9vDSdcFWQV8b/I8NEXlyf3bCVn9a6YhhBBCHIskUkIIcZKzMtPw33QleNw4P92E88PPep1Mfb5rX2fr85heTO0DyPLEMjclo+t7TVFZMm0qf5hcgoKC8++921uqM5GaYMdz1pZEztayCNlW1+NCCCFEtEkiJYQQAisrDedd12O7XbhWb8T50ZpeJVOxugOVQ4lU59S+uF5WpI4mzeVh3fg2Nqe0oB00cXzS895Stm1T3NrMpaUZTH3Cwvm2ly9tyAZgd2tTn+MQQggheiKJlBBCCADUvCz8N12O7XLiWrUB58drj3uOpijE6c6uNVLtHc0merNGqieTEpL51Yx9WBo4/tWO0nDsKXrrdlfw/Y/G8q0t41ACNrYD8kodpPuc7G5t7FccQgghxLFIIiWEEKKLlZ2B94sdydTK9ThXfHrcylSCw0nAMvGbRldFqjdd+3oyKSGZsjg/m+b4UELgXNZ6ZBymTfC9Fk571sGc+kS86eC/O4nQ6R4UFC4sT5eKlBBCiAEjiZQQQohurJwMvF+8DNvtxLV6I653V/aYTHWuk6oN+KJXkYpPAeAvEyqx0jT03SHUzQGsjjjUSgPX/zSS/E4ABVg5rxX7a2lYBQ6M+W4ALivPpMLbRpvRu4YVQgghRCQkkRJCCHEEKycT701XYsW4ca7biuufK8A6+r5OM5PSAHirqiRqFamxcYk4VZXNbfVsOT88pv/vDXz74w9Rl7fi/l0jeqXJ1uQWfnZxCVOvHQW6AoCdpmOOcZDZ7mJmfQLvVZf1KxYhhBDiaCSREkIIcVRWZhq+m6/CiovFuXkn7tffB/PItUqXZo/Bqaq8U1VCTSDcGKK/FSmHqnJD/kQClsnXWz/jn/k1JAcc/Pc/J+P50A+6wlMzy/j6wu3cfupMHB0b+3bqrEpdWpbBk/u38UFNeb/iEUIIIT5PEikhhBDHZKUl411yJVZiPI4de3D/419gdE+mkpwuzsnIx2eafFRbAfS/IgVwff4Ebi4oJF53UHaOgt9t4bJU9ub7qbjPw9L8cgriEkhyuo4415juwnYqnF2dRmxIY/lB2ZxXCCFEdEkiJYQQokd2ciLeJVdhJSfi2F2M56//hFD3dUdnZ+R1+76/FSkARVG4cVQhfz7tYm6eMoW2/0jg26fu4Ftzt7NVaQJgUnzy0U92KhgzXWiGwkUHM9jf1oJpH31qohBCCNEXkkgJIYQ4LjshDu+SqzDTU9CLy4j58+vg9Xc9PyE+CV1Rur6PjUIi9XmeHA/GeAfNRpBl5fuAcHe/Y+mc3nd5RRYBy6TM2xb1mIQQQpy8JJESQgjRK3ZcDN6brsTMyUSrqCbmT/9AaQknJ05VY1xcUtex0ZjadzRnpocrX3vamoBD3f2OxirQsTI0RtW7GdMSw96Oc6JtXUM1v929EV9Hx0IhhBAnB0mkhBBC9F6MG++Nl2OMG4VW30jM839HrW0AYErCoaTGPUCJ1LmZ+UxPTAUgTneQ44k99sGKQqijKnVxWTp7BmBPqTJvKz8tWse71WW8XinrsIQQ4mQiiZQQQojIOB34rr2Q0PRC1NZ2Yv60DK38IJMPS6TUw6b5RZOmKHyjcA5pTjdnpOWgHOc6xmw3tgoXlKdzoLklqrHYts3Pd67Hb4Wbb/yjfB9+qUoJIcRJQxIpIYQQkdM0/JeeTeC02Sj+IJ4/v86cmtYTcul0l4f/O+V87pkw8/gHx6uYk5wkhhxk7lMxjrEXVl9U+b0Ut7cwOiaexem5tBhB3q4qjdr4QgghhjZJpIQQQvSNohA861T85y5EMUzSXnuf31gp/GjqggG/dCQVL+OU8PS+C0rTqPS1Ry2G3a2NAExPSuPCrFEA7Op4TAghxMgniZQQQoh+CZ0yE98V54GiMGfVVhZt2g+2PdhhdTEnOmmLMZlfm0R1VfSm9+3uWHM1MT6JLHcMALUBb9TGF0IIMbRJIiWEEKLfjKkT8N14ObbbhfOzTbiXvX3EXlODRlMon2KhohCzKXprmHa3hatPk/Qk0is1VKAu4O/5JCGEECOGJFJCCCGiwizIof2Wa8Ib9+4qJmbpayhtQ6NCE5rnAmDcDgdY/a+WGZbFvrZmYjUHo18xiftDC4sb06kP+GTjXyGEOEmM+ETq3Xff5cILL+TCCy9k+fLlgx2OEEKMaHZqEt5brsbIy0I7WNOtPfpgyspPYEtKC6ltDtTi/lfKDrS3ELQsrq/PQ98fHu+6fVlYQEMw0O/xhRBCDH0jOpEyDINf/OIXLF26lJdeeonf/va3BIPBwQ5LCCFGNDvGg+/GywlNGY/a3ErMC8vQ9g9uN7sY3cHHY5oAUNf4+jXWx7UV/Oe21bgNlWs3ZgBgexSmVMUxpiWGWv/QqMIJIYQYWCM6kdq8eTOFhYWkpaWRnJzMjBkzWL9+/WCHJYQQI5+u47/iPAKnz0UJBPG8vBzHms2D2oTi4EQTr2bi2BYEX9+m361vrOEXOzfQboT40cEpxLarGDNcBM8LN5v4QnE2tbJOSgghTgpDOpFau3YtX/nKV1i0aBGF/7+9+w6PqzzzPv49Zfpo1IsluclFNu7GBUwxGAIEQjAltDgkBLIJkITsy242m90kkE1Cwi4ppFNCSCAhkGAghNA72MaAC+6ybMsqVu/T55zz/jFFkiXZGlm2ZHN/rkuXpClnnhkdy/PT/Tz3U17Oq6++2u82jzzyCCtWrGDOnDlceeWVbN68OXVdY2MjhYWFqe8LCwtpbGw8JmMXQoiPPEUhcuYSgp88BzQV58vv4HzmFYiOzqa14zK9vFLcjBoDfVP60+9CRoy7tr+HicV/5S9k6ZYMLBtELvIQW+wkYrc4pzaPrtYjq3gJIYQ4PozpIBUIBCgvL+fb3/72gNc/++yz3Hnnndxyyy2sXr2a8vJybrzxRlpbR38+vhBCiLjYrOkEVl2KmeHBtmUX7keeQunqPubjOKuglBcmNMfHtC79/aQaQ0H8Roy5vjzOfCcDxYDoOR6sLA0cKnXzLOymimddhB9tf4/WiFSmhBDiRKaP9gAOZfny5SxfvnzQ6x988EGuuuoqLr/8cgDuuOMOXnvtNVavXs0NN9xAQUEBDQ0Nqds3NDRw+umnD3s8qjr0DSCPluQYxsJYxNgm54pIx1E/X0oKCH7+Uzj/9hxaTT3uB/9G+IoLMEuLjs7jDaAsI5PTF01k36YAk+rchBoMrHF9/xtsCAXIczjRlP5/Z+wy4mtsT23MQt8ZwczTMJa7U69ZcJkD470IZ1Rk8YuJe1AUhW+ctOjoP7FRIL9fxFDJuSLScbydL2M6SB1KJBJh69at3HTTTanLVFVl2bJlbNy4EYC5c+eyY8cOmpub0TSNTZs28f3vf39Yj6frKrm53pEY+ojIzvaM9hDEcULOFZGOo3q+5HqxvvppYk+8CGs343r4KfRPnYe+ZM7Re8yDXJ11Er8c/wY3bZ+E98MY9tlZqeseqdjOPR9+wI0z5vCFk+b2u68RasVmKFy4PgcA16p8vIXu1PWKR+e1cZs5py6P82ry+btWy9XmTE7OL+x3rBOF/H4RQyXnikjH8XK+HLdBqq2tDcMwyMvL63N5bm4uVVVVANhsNv7t3/6Na6+9FoCvfe1rOByOYT1eLGbS2Tn6895VVSE720Nbmx9zBPZCEScuOVdEOo7p+bLiNPSsLOwvvEXs0X8S3LWfyMdOB107uo+b8OaEVr6wYwLW2110nWIDn8b6lgbu2fIBAG/UVnNZYVm/+9W2dnDlnmJ8HRrGTDvtJSa09ExRtCyLx8rqOKcuj8/tn8AzExp4ZPtWJqnHxxuCdMjvFzFUcq6IdIyV88Xnc2GzHf7/pOM2SA3GsiwUpacceN5553HeeeeNyLHH0i8A07TG1HjE2CXnikjHsTpfIgtmYeRm41z9ArYPtqIeaCJ46XlYmRlH/bHNDI1Xi1v4WG0+jp+2EVqVwe9bt6Wuj5rmgK9BpDnKqooSDM0ifLEXa4DbLJs/gbrKKMUHbJzSmE1jRvCE/vcnv1/EUMm5ItJxvJwvY7rZxKFkZ2ejaRrNzc19Lm9tbe1XpRJCCDH2GBOKCXz+itTmvZ7fPY5WefT3m8qyOfjfuZV0L9BRu0ycv+1gzlYXZW4fDlWjMTzw7IOT33LgNDX2L7Gwcgf+S+UV46eR87FcAK7cM46WyOjPZBBCCHF0HLdBym63M2vWLN55553UZaZpsmbNGubPnz96AxNCCDFkVoaX4LWfJLJ4LkoojOuxf2B/410wh7fP01D4bHaimsXeixTCl3qxsPjXLWX895bpFOtu/LEogVi0z33U3RHK97pocIZpO/3QkzmMmXbMXI35LZnkN+kY1tF7LkIIIUbPmA5Sfr+f7du3s337dgBqamrYvn07TU1NAFx//fU8+uijrF69msrKSm6//XZCoRCXXnrpaA5bCCFEOjSN8LmnEbz0PLDbcLz9Pq7HnkUJHJ1qTpYtvla2MxYlvNTBv5+2nWZnhMnbbNzx2lQKgva+VSnDwvFUfC3Ur0/aR4bnMGttVYXoGS4ALt8zjrZI+ntWCSGEGPvGdJDasmULK1euZOXKlQB873vfY+XKlTz66KMAXHjhhXzjG9/gnnvu4ZJLLmH79u3cf//95OTkjOKohRBCDEdsxhT8n7scIy8bfW817gf/ilZzYMQfJ9NmB6A9GqYpFGRDZgd3f3w/xmQb41ud/PbNuUR39QQp/Z0gaqPBtoJuXh/XSqbt8E2LYic7CTgMzq7LpbNZpvcJIcSJaEw3m1i6dCk7d+485G1WrVrFqlWrjtGIhBBCHE1WbjaBz16O87k3sG3dhevhp4icsZjIqQtAHZm//SWDUEc0Ql0ovjGvN8dJ6AuZ7Hu0hlmbncz7i0WkM4Cx0In9xQCWCr+ZU4WuKri1IfzXaVf4cGaQpRu9eNdG4fIRGboQQogxZExXpIQQQnwE2W2ELl5B8KKzQddwvPEurkf/jtLlH5HDJytSHdEwB4LxY45zekBT2HMufH9+BYYKjmf9OH/WhhK2iJ7qZKurC5/N0acz7KFUzTeIKiYlGxUIyzopIYQ40UiQEkIIMfYoCrG5MwhcfwVGQS56VR3uBx5D2111xIceqCI1zhXf66nA6eal0mbuu6geM1tF7TKxvAqtZ9sxsVIhbCjcuQ5eLmnGHlHQ3wsd8biFEEKMLRKkhBBCjFlmbjaBz15GZOFs1GAI9+PP4njpbYgZwz5mpr2nIlWXqEgVJ4OUI94k4kNvB3VfdLNpfpDKy1TatQjQ06hiKHLtLv5aFl/jZXsrCMfBnihCCCGGToKUEEKIsU3XCZ9/BsHLL8ByOrCv34z7j0+gNrcN63A9FamDpvYBOXYnKrCrq53PbHmRr5Vu5EGlko5oPEj50qhI5dqdVPoC7CwKoLaaaFsjwxqvEEKIsUmClBBCiONCbPpk/DdcSWz8OLT6ZtwPPo7tvQ/BSq/Sk5ye1xYJUx8KkGmz49FtAOiqyvzsfIxex2yPhumIhhP3TaMi5XAC8PTUBgBsbwaGfF/Lsni1sZq/1+0d8n2EEEIcWxKkhBBCHDcsX3wD3/BZS8G0cL74Fq5Hn0Hp6h7yMeyqhkvTqQ8FiFlmqhqVdMesU3jitIv449LzAIiaZqoilc4aKaem49F0XstpwizQ0KpiRPf2XysViEX53x3vs62jBQDTsvjhjve4e+cGflv5IS1hWV8lhBBjkQQpIYQQxxdVJXLqQgKfvSy+59S+Gjz3/wV92+4hH6J3IEo2mkhSFCUVtgCCRoyuYUztA8h1uAiYBs2naABEHmqmfXUT6r5oas3UOy0HeL2plr9UVwCwq6uNt5t79s+q6B7eFEYhhBBHlwQpIYQQxyWzKJ/A9VcQWTwXJRTB9dSLOJ96EYLhw943Q+8JRJM8vgFv41A1VOJBKmDEAHBrtrTGmGxi8XJpM+/ltVMQdFCyFly/bsf9/Rbsj3dhfhjEYahs6Wghapo0hOIb+Lq0ePiq6GpP6zGFEEIcG2N6Q14hhBDikHSd8LmnEZs6Eec/XsW2bTda9QFCF56NUTZ+0Lt9ongSrzbWcHpeMecWThjwNoqi4NJ0gkYMfywKgEdP77/N4sS0wbUdDdx7SjNFAQfLGrL5TPdkMqstbO+FuJQcLlQX815+O62xVroK40FqWW4xLzdWU9HdntZjCiGEODYkSAkhhDjuGZNK8d9wJc4X3sK2dRfuvzxDZO4MwucsA2f/BhHnFE7gnEECVG8uTac1EupVkUozSLm8AGztjK9/0nJ1nnDXUzgln7U1dSxqzGRcpcbixixOa8iBZy0mqD42npzFohkFvN5US0VXO5ZlDXkjYCGEEMeGBCkhhBAnBqeD0CfPIVY+Gcdzb2DfvAN9TzWhC87EmDZpWId0aTom0BaJN3xw68Ob2pfsArgkp4jVtZW819bIhnALGzJbYCGU2j0U1Opc0jKOM3dn818bplG9xEmZ18eurnYaQgGKDlrLNZK2d7byWHUFszNzOb9wAt4014IJIcRHkayREkIIcUKJlZfh/8LVRGdNR+324/7rP3E+/TIE0+9+50pM5WtOdM5LtyJVkqhIJS3OKQRgQ1tjn8vPKCphT3GIO2bs5O/ljXhjOlP/ZjLTmQXAlkRF62h5rLqC9a0NPLh3G/+1ZQ1R0yBmmtxXuYU3m2qP6mMLIcTxSoKUEEKIE4/bSeiT5xC44uOYXg+2rbvw3Pco+s49aR3GqcaDU2uiIuVJsyKVY3fgVONNI7JsDqZ6swCIJSpUycl65RnZTM/IwsTip1Mq2ZDXga3e5Np3x4EFj1TtJBCLpfXYQxUyYmxqb8Kj6czIyKayu4P792zlseoKnqrbw28rP8SwzKPy2EIIcTyTICWEEOKEZUybhP8LVxGZOwPVH8T1xPM4n3wBpXtom+O6ExWpsGkA8b2h0qEoSmp6X6nLi1vXye61qe9Xps3n6vHTWZBdwLREyDJVuHdZDWamSsFWuK25nKZwkNu3ruWd5rq0Hn8oNrU3EzFNFmYX8B8zF+HVbfzjwD7+tH8nAO3RCB+2H92KmBBCHI8kSAkhhDixOR2ELzqbwFWfwPR5sW2vxHPvn7Ft2AqJytBgXL2Ck0vT0YbR8CE5va/Y7enzva4onF1QyqpJM9AUhakZWT1D9tkJf8aHpcFF63M4oyuPbZ2t/GD7e+zobE17DIeyrrUegCW5ReQ7XPxgzjJmZGQDMDczD4A3xtj0vtZISDYqFkKMOglSQgghPhKMsvH4b7yKyOK5EInifO4N3H9cjdo4eLWld5BKd31UUjI4lR4UqCa6fdjUnv+Gp3ozU1/nO9yY421ELvGimHD7B9P5l7yZAPzzQNWwxjEQy7LYdaCV3LCNRdkFAJR5M/nfeafzh6Xn8V8nLUZXVN5uOUDUHBvT+0zL4t83vcW/b3oT6zBBWAghjiYJUkIIIT46HHbC555G4LOXYxTlodU24H7wr9hfWwvRaL+b9w5S6a6PSrqoeBKXFJdxXqLdenJvqbJewQkg2+4k3+ECSH2OLXESXeRE7bK4/LU8vIrOm821dEcj/R6nKxphZ1dbWmNrbfTz4xdn8MgrC8mq6AkliqKQY3fi0W3MzszBH4tSG+xO69gjzbIsuqMRdnW10RAK0BgO0h49/ObLQghxtEiQEkII8ZFjjssn8NnLCZ17GugajjUb8Nz/F7TK/X1ud/DUvuHItjv5wpTZqZbip+aOY4I7g3MK+28YnKxKJYMUikJkpRejRMe+L8a3984kYpr9ptr9ef9OPvvuC9y28U3eb208+LADMywyHvWTHbHhMFQcf+hEf7v/2rF8hxvoabgxGkJGjG9tWcN1776QWrsFUBv0j9qYhBBCgpQQQoiPJlUlunhuvFX69Mmo7V24H/sHzidfROmKv0HvW5Eama0XS9xefnXy2czOzO133QXjJjHVm8mC7PyeC20K4VU+LLfC4i1ezq7N7RMgTMvi8eoKIompd2tbDgxpHLbn/GTXqWzP6uL9j0dAA8fTfuxPdYHRU53KsTuB0QtSlmXxox3vszHRFOODtqbUdTWB0a2SCSE+2iRICSGE+EizfF5Cl19A8PILMDM82LbvjjejWLsBd6//Jt3a8Kb2pePk7AJ+umA5ecmKVHKMORrha3xYwL9vnoK9sWe9UlskTMQ0U1WsDe1NHI62LYz9jSABm8EdCyvwLPER+pcsLI+C7Z0Qjj90QjgepnLt8S6DrZHRmUbXHg2zvrWBfIeLSe6MPtfVjfJ0QyHER5sEKSGEEAKITZ+M/wtXE1k6H2IGzlfXct5Tb7KoLbEZ7whVpIbLmG6n5Wwdl6Fxxcu5EIyHqYZQvDpVnpHNZI+P+lCAA4eY8qa0Gjge6wLgRwt2051hUOLyYk60EbwlGzNfQ98RwfmbdpQOg+xkRWqUuuTt9XcCMDszly9OmYOuKJyaWwTI1D4hxOiSICWEEEIkOeyEV5xK4MYriU0ej7ejm7u3tvC9bS0UBY/OhrjpMFd4eLuwlYIuO86HOyFg0hCOr2sqcrpTUwIHrUrFLOyPdKAELQ4shTcKWpmekY2aaOtu5WoEb87CmGJDq4vh/EU7Je3JitToBKl9iSA12eNjTlYej5xyAbdOXwAw6g0whBAfbRKkhBBCiIOYudkEr7qInRecxgGHxhmtIT773PvY31wP0dELVG6bjf9bsIf9GUG03VFc97QR2xefclfodLMwK97CfHVNJc3hYL/76892o9cY7Mz18/WSzQCckqju9DyISujzmURPdqB2mpQ/ZLC0IWvUgtTeXkEK4t0TvbqNbJuDAyE/hjU22rILIT56JEgJIYQQA1EUQtMmct3CQh4cH1+b43jrPTz3PYq+o/Kwm/kenSEp2Dw6Ny/7kOgcO2qbySdW+1i5r5BCh5u5WXmcklvEgZCfb324BqPXGLUtYRxvh+iwRfnv+TuoifhZnFPIx8dN6v9AukLkUxlEznOjRuD762ewaLvn2D3RXpIVqUmJIJVU4vJiWBb1of6dBoUQ4liQICWEEEIMwq3pRDSF30/08eKly+Pd/Tq6cK1+AdfDT6LWNRzzMWXZHPhtBg2fshO+JL7J761bypj/Dx01YvGNGYuY5PFRHexOrZ9SWnrWRf1gwW66PAbnFU7gtukLUtP6+lEUoud4CF2dgala3LBxPNq6/lWuoylqmlQHusiy2VNrtZKSGxvXyTopIcQokSAlhBBCDKJ3+3Ml20fo8gsIXHMxRkEuek09noeewPnUSygdXcdsTFmJLnpt0QixZS6+tbyCeleIjC0GrnvasTWYTM/IAhLNGKIWjkc6UcIWm04O8m5BO5+bNJOvTp+f2tvqUIwFTn56Znx/LduL8eMdK7XBbmKW1a8aBVDocKOZCoHGEJjHvjoohBASpIQQQohBuHp16nMnQpUxqZTA9VcQvPAsTI8b27YKPPf+Gfvr6yAcOepjyrLFg1RHNEzUNFjnaeE/z60gNsOO2mzg+mUbZ+7LBqA60IX9H91otTGMMhtPzY43oZjgyRj0+ANpHG/wRlELWpeF/u6xWyu1p7sDgIkeHwRM1MoI+psB7I91ctnjmTz73BIufNCN81ftqS6GQghxrIxuL1chhBBiDLMpKpqiYFgWbr3XPlKqSmzeTGIzp2JfuwH7uk043vkA28btRM5cQnTeDFCPzt8qkxWp9miYxnAQC/D6HIQ/68N8I4jteT+nveTm38dPwew0sa0JYXkVwtdksHd3vHI2wZ1ekMqxO3loeg1n1udiezVA+BTX4e90hJR2g5xXo3yvrpyFr2fj6mrpc30WKu32KAG7SVY1OO/vIHRDJriH9rr7Y1G+vWUtp+QW8anx047GUxBCnOAkSAkhhBCDUBQFp6bjj0VTFak+7LZ4cJp/Eo7X12Hbsgvnc69jW7+ZyFlLiU2bBIOtQRqmrMR0vLZImIZQT+tzVIXoWW6MCTq2Rzq4sLoAqsFSIHSNj1iGQk2gG59uT1W1hirH7mSPL0DdNIPiCuJrpS5JL4ylxbRw3t/BaU3xx7AUMPM1zHE6ZrGOOU6jJjvMF3au4RRvAbevnY6jKhYPUzcOLUy929rAzq42dna14bPZOb9o4tF7PkKIE5JM7RNCCCEOIRmgPL0rUgexfF5CF5+D/3OXE5tQjNbShutvz+H+w2q0/XUjOp5kCGqPhmlKtDjPd/RUiMwyO8Fbs9mQF58WFz3XjTnVzoFggJhlMsGTgZJmuMtxxBs9rFsYb+xgeyWAFTl6U+m0TWHUJoMt2V3cvmI3ge/mEfy3HMKf9hE9240xw0FmrhsUqDUDfH3xNjbndKLVxnDe1wH+w49tQ1tj6uvf7P6QQCx62Pvs6e6gMjHdUAghJEgJIYQQh5Bjd+JQNbyHCFJJ5rgCgtd+ksBVF2EU5qHVNeB+5Clcf3kGtX6QTXLTlJza1xGJ0BRKBil3n9uoPp2fnVXNp8/eQOvy+LirAvE24hPTnNYH8T2qALZ5O4nNsaN0mcReP0oNNgwL+0vxStt9M6pwlbnB3j/4uXUdl6bTFA6yNdzGfyzZzt6iUHwj4fvaDxmmLMtiY3sTKnBydgFRy2RXV/shh2VZFt/esoavb3qLxlCAB/Zs5dtb1vD7vduO4MkKIY5nEqSEEEKIQ/j3GQu5c+4y7Ko2tDsoCkbZhHhDikvOxczyoe+pxvPgX3E++SJK65FVNAaqSBU4+q9ZKvF4qfOEqAl2A7DfP7z1UQAlrp5W45Fz4l9Hn20/Kh389E1h1GaDquIwm3O7mJ2ZO+ht8+xOQqaBYVmEdJObFmyie7KCdsCIh6nu/mFqT3cHLzTspzUSZnpGNguz45sY7+hqO+S4DoT8tEcjhE2Dr296i9W1lXzQ1sRfa3bTPYRqlhDixCNBSgghhDiEIqeH6RnZ6d9RUYidNA3/v1xN6PwzMD0ubNt347nvURzPvYHSNbz9j1JBKtITpPIGClLu+B5TtckgFRh+kMp3uNEVldpgN9Y4ndhcB3QYaGtHeF8pw8KWqEb9vGwPKgpzs/IGvXmuo2dvKZ9uJ6yZPHDWAYxptniYure9T5iqD/r5901v8fOKTQAsyM5nRuJnu6Oz9ZBD291rSl9zJIRL0xiXqNQNZVqgEOLEI0FKCCGEOJo0jejC2fi/9GnCy5eATce+YSueXz+C48W3ULrTC1QZNjsOVaM+5KcpHA8deQ5nv9tlJwJXZzTekr0qGaTSbH0OoCkKxS4PHdEI3dEIsY95QImvlSIyclUpfUMYtcVgd3GQ97PauaSkjBx7/+eW1DtAXlY6BRV4vb0O/3U+2iaD1mBg/qoJukxMy+KnFRsJmwalLi85difL80sp8/rQFZWdXW1Y1uDPZXdi6l9OYmrldRNnUuyKh9WgETvyJy+EOO5I1z4hhBDiWLDbiCw7mcj8WdjXbcD+/hbs732IbeM2ogtmETl1AZbHfdjDqIrCRE8Gu7ra8RsxfLod5wAdBT2JPbACsRgx06Qu2E2WzU5mmh37kopdHvYHuqgN+fEV5aAt8mCs96OvCxI74/DjPizDwvZyPFT+ZPJu8uxOrp1Yfsi75PYKWXOz8piblcfG9ma2BlpZfUoll3XncEpTNua97bx3pcGWjhYmeXz8ZP6Z2Hq1p5/qzWRHVxt1QX+qknewZEXqv09aQsQ0meXLYWuiiiVBSoiPJglSQgghxLHkdhI5+1SiS+ZhX7cR2/tbsa/fjG3DNqInzyKydP5hA1WZJzPVHCHfOfCeTi4t3mQiYMSoC/qJWRYT3L5hD7skUX2pC3YzMzMH2yezib3nx/ZagNhS14ANIdKhfxBCbTXZVNjFtuxuvjllMa6BWs73kpuoSCnEpyyekV/CxvZmHt2/i81dzWxc1MRdG09i/gEfs35v8j1POeOyvHiq/FhOBRwKllNlZec43uyCug9bGV/oiM/XUeMHtlQFS7EIHggxSXEzNeJFdWmgKKmOjgEJUkJ8JEmQEkIIIUaB5XETXrGMyNL52NduxPbBFuzrNmH7YCuRk2cTXTofyz1wSJrizUx9nT/A+iig15v8aKpj33DWRyUlG07UBuJVI7XEjjHXgb4pjL42yLrZ3WTZHZR5fGm3V49Xo+LTFH87dR+Lcwo5NbfosHdLVqSKnB6cms6y3HE8uHcbmzuaAYhqFv+5YDtP5ZyOZ2uU07pzoAEg1Oc455PJ+WTCewDtAz7WvcyJf/Fye3xvri9lpYLeaFWkTMviiZrdKIrCGXnFFDhHoDIohBgyCVJCCCHEKLI8bsLnLCOydB72NRuwbdiGY+1G7O9vIbpwFpEl87C8nj73KfMMIUj1mtq3/wjWRyUl1wMlm1cAxD7mQdscJvpyJ3ca7xHSTaZ5s/i/+WegDSFMvdVUx4N7t/Gj4HwmtlnsLg2yPbub28fNGlIYG+/2ogIzfPGGERk2O/837wzu3vkBzeEgOXYnlf4Odl4Kf56ym4Z2P9+dupRc0w5hCyVkoYQtCFmsq6vD3x1hitNHicOLXVHBBExoD4fY29VJgc1FqeJBq4thezuI67TRDVLPHdjH7/dtB+CRqh3cv/jcQ64pE0KMLAlSQgghxBhgeT2EP3Y6kVMWxAPVxm3xCtV7W4jOnUHklPlYWfGpeRM9GajE3+cPFqQ8qal9UaqOoPV5UrIiVdMrSFmFOnunRiirsHNNbSlPT2ukorud6kAXkzyHn0b4RO1uWoJBHK+GAAd/mXkAYEj3hXi4+/H8MynqVYkpdXv5yYIzMSyTh/Ztp9Lfwd5AJ5uVNmJZFr7pXowBQlpGVz7f2fgGFuBUNe5bfA7ZiVDyYm0L9+7ZzucmzeSKohLc329B2xoma0n8NQ7Gjn2QagwFeHDfNlQUZviy2dbZygdtjZxbOOGYj0WIj6oTvmvfV7/6VRYvXsy//uu/jvZQhBBCiMOyMjyEzzsd/82fJrJ0PmhqvMvfb/6E8+8voza34dT01Jqlw1akjBgtkfhUtqIjmPqVZXOQZ3eyz99JRyScuvyfs5sxsbi6soRzsksADru5bVJXNMrHq/MpCjrYPT7EG64mvLqtTxOJw5makYXXZu93uaaoTE5U7t5va8JvxOIVrEEqXdMysvjBnGXM8uUQMg3Wtzamrku2mc93uMGmEFvoRDFg5s54447RWCP1UkM1QcNgZWkZl5dOBWBD28hs+iyEGJoTPkh9+tOf5kc/+tFoD0MIIYRIi+X1EF5xKt03ryJ8+iJw2LFt2YX7vkdxPvEc51pOFGDiIA0kkut3ArFYqgW6b4DAMVSKorAktwgLWN/akLp8p7ubV4tbsAdgxe745rkVh9ncFiBkxGjxB1i1uxSAH0+qIGKaTHIPY43VICYnKltvNNUCMP4wFbk5WXlcOWE6AOtb61OXN6eCVDzgRZfEP5dtsYE1OlP79vrjXQRPzR3HnMw8NEVhY3sT5iFauAshRtYJH6SWLl2Kx+M5/A2FEEKIscjlJHLGYrpvXkVoxalYHje2nXv53Eub+Pt+g8nNnTDAm2eHqqGiEDCidMUiOFUNu6od0VCW5BQCsLalJ2S0RcL8YVoNlgJT39NwxlQqutsPe6yqQBcXVBdQEHTwYWk32zPjUwYnHsE6roOVurx4dVvq+6FMbZyTmYtT1djY3kTUNABoPGjjY6tIx5ig421TmdfqG5UgtS8xXXOiOwO3rjMjI5uOaIR9/s5jPhYhPqpGNUitX7+eL33pS5x++umUl5fz6quv9rvNI488wooVK5gzZw5XXnklmzdvHoWRCiGEEKPMYSe6dD7+mz9N6PwzMTMzyNhfj/tPT+P+/d/Qt1WAaaZurigKHl2nOxbFH4uScQTVqKS5WXk4VY0PWhsJG/GQ0RIJ0ZwVxZjnQPPDVdUl7PN3pkLIYPZ3dPLp3fGpgPtP77l8qOujhkJXVf7f9AWp78cPskdUb3ZVY352PkEjvu8UxCtSKpDba+Pj2NJ4qPpEVcExn9oXMmLUh/wUOFy4E0FxQXYBAO+3NR7qrkfk2QP7+NaHa/jd3q10x6JH7XGEOF6MapAKBAKUl5fz7W9/e8Drn332We68805uueUWVq9eTXl5OTfeeCOtra2p21xyySUDfhjGoX+BCyGEEMclXSe6cBb+L11L8OJzMApy0eqbcD31Ep7f/Anbu5sgHJ/K59ZsREwTC/DpRx6k7KrGopxCQqbBbe+8RnM4SNCIkWN3EjnHjaXAtTuK+cqmSTTs7BiwUpbkez9GQchB/VSTaeX5qctHMkgBLMkt4tZp81mQlc/czPzD3wFYlAglG9ubiZkmbZEQOXYnmtLztik214HhgDPrc1H85mCHOiqqAl1YwMRer9UyewH/vmkKe/a0HLXHfby6gg3tTTxRU8nz9VVH7XGEOF6Mate+5cuXs3z58kGvf/DBB7nqqqu4/PLLAbjjjjt47bXXWL16NTfccAMATz311DEZK4Cqjsyc7ZEYw1gYixjb5FwR6ZDz5TikaphzywnNmY66rwbb2k3oe/bjfPkdHG+9R3ThLIrtFsnVTD67fUR+vv8ydTZ1oW7WN9Xzq0ROynE4UYpsxM7zoL3YzSf3F8HvDcy8VoyTXRgnO7Gye00rjFos3BBvfBE618V4bwYTPRnUBwNM9vpG/Dw8v3gi5xdPHPLtZ2bmAFDZ3U5bLBzvjuh09x2XU6Frnk7WuzFm73ajLjp2/3aS7ezLer1W097SmFldQFHAQdOpQQpHeE+pqGmk1ooBbO1o4VMTph32fqPxu6UzGmFLRzOn5I4btLmIGJuOt/+Lxmz780gkwtatW7nppptSl6mqyrJly9i4ceMxH4+uq+TmHn5KwLGSnS3rvsTQyLki0iHny3EqbyYsmolZ14Tx+nqMD7ZhX7OBuxV4Kc/FX0oyyCt1j8j/Y7l4+VHGcj714t/5INHZrjjDGz/2VV7aPpbBHx99n8W7fcxqzkB93o/teT/qDCf6qRloizzE3uokGtR5c1wr5yxaiK6q3HPGOXRFI4zPzD7iMR6pzGw3jg0ae/ydhOON+SjxZfR7/VrPNeHdZk7Z7SMnxzNiTTIO5cPWZt7tiMfj2YUF5OZ6MZujhD6Id2Zc2JLJmztbOWlFwYg+7v7uTixgbk4eO9pb2d7VRnaOZ8hB5Vj9bqnq6uT/rX+TukA3dy49gxUlh28HfyDQzU1vvMTFE6fw+Rmzj8nPURza8fJ/0ZgNUm1tbRiGQV5eXp/Lc3Nzqaoaejn5X/7lX9i8eTPBYJAzzzyTe++9lxkzZqQ9nljMpLMzePgbHmWqqpCd7aGtzY9pSmceMTg5V0Q65Hw5QThccN6ZKKeejP7eh8TWb+L8piDnNwXZXxumPerDmD4J1COb2e9WVByallon5bF0Wlp69pc665Jyrl/3IouNHL4fWYD2fgh2hIjsCGE93ISlxtcWvDyvjUVtAQBsQA62PscZTZM8PnZ2tfHO/moAMgcYW8hnsjeri5ntGbS/34Y5+cinTx5KbaCbf1n/Msl/oXmWnZaWbmxPdKIbEChWcNdZ5L8YpWXeyL6OO1qbASiyuzEzLLZ0tPDB/jomeHyH3Hz5WP5u6YiGueW9V2lNtOd/Y38185w5h73fy3X7OBDwc+/2zYSCEa6eWD4i46kLdvN07R5WlkyhyHV8BIPRNlb+L/L5XNhsh2/OM2aD1GAsy0rrLwX33nvviD32WHpzYZrWmBqPGLvkXBHpkPPlBOFxYyxfys9yFTK27uaKum4mNHXA357D9HmJnjybyNyZ4B76fk29qapCWUYm29vja5az7Y4+502+3YVXt7FZ7SC83I1yrht1bxT9/RD6hxHUsMUrxc3YShxj9nyb6s2MB6nm+CbBeXZnv7HaUPnHhEZmtmegrg0Sm2gb6FAjpibQnQpRU7yZFDs9WK0xtPUhLIeCeUM2dT+uY0aDh0BlGGsEg92BoB+AAoebbJuDLR0tfOvDtWiKwk/mn0mW3XHI+x/t3y2WZfHznZtojYRZmlPEutZ6Nrc3Dekx93b3dDr8U9VOVpZMOeIOl1HT4Htb17PP38mG1ibunn9GqjGIOLzj5f+iMdv+PDs7G03TaG5u7nN5a2trvyqVEEIIIfrTHA6eKPay6uRCXluxgNjk8aid3TheXYv3l3/A8eyrqA3Nhz/QAKZkZqW+zrb1D2QFDhdh04jvYaUqmFPsRK70EfhWLi9e3M3/zq0cdA+ssWCKNwuA3d3x/ZryBtj4WFEU1k7oIKAb6JvDEOjfdCJkxLi3cgsbRqCbXltiY+VrJkznZwuWoykqttcCKAZET3eheDWenx0Pt8qLI1uRqg/Fg1Sh081JmfH9wj7z/jjueXYGayqqR/SxhmNrZyvvtByg0OnmtvKFjHd5qQ36aQmHDnvffYF4kCp2eYhZFpWJn/mR+Mv+Cvb5O9EVhepgN/fu2XLExzze7fV3cNvGN3m1cfTPl5EyZoOU3W5n1qxZvPPOO6nLTNNkzZo1zJ8/f/QGJoQQQhwnPIm/gJuKQtfkUoJXfwL/v1xNZOFsUFXsm3bg+d3juB5+En1HZZ/26Ycz1ZeV+rp3W/CkgkSzg8bwQdPi7Qpv57US0s3Uhrlj0VRvZuprm6IyNSNrwNupDpWXiptQYqBvCPe7/oO2Rp6u28O3tqzlkaodRzSm5JS1HHv89VY6DPR3Q1h2hejp8aBXPSNGrTuEq9JArRq5FuUNofgUzCKnm1m+HE7vzmVlVRFFQSdz/qFjxY5t58KDJVvVf7J4Mm5dZ25W/I/umzsO/YcCy7Ko8ndiU1TOyo9vDr0rsaH0q401/KJiE+8016W90fGrTTUA/Hj+meiKyrstDVgjuFnySB7rWGgJh7hjyzp2drXxs12b2DMCYXUsGNUg5ff72b59O9u3bwegpqaG7du309TUBMD111/Po48+yurVq6msrOT2228nFApx6aWXjuawhRBCiOOCW+uZwZ/cR8rMzSZ8/hl03/IZQueehpmdiV59ANfqF/D86mHsb65H6Tx8NaN3RSpngGld+YkKTlM40O+65KaxI93qfCRNcGeQZXOQabPz/Tmnpp7PwVyazjMT49Um27vBfi3f60M9z//P+3exP7GR7nAkK1LJIGV7PRivRp3mBHf8Ld04j5eHp8XfxNte8g/7sQ5W3ytIORWN23efBECXI0Z5i4e2fx69tutDsTMRfqZnxJuVzMmMB6kP2w8dpFojYbpiUSa4M5jpi993V1c7rZEQP6/YyHP1Vfxg+3tpVVEMy6I5HCTH7qDMm8kUbyadsUifc+FIPFZdwap1z6fOh+PB7/ZupTkSYrzLS8wy+X8b3+DWD16ncYRek9EyqkFqy5YtrFy5kpUrVwLwve99j5UrV/Loo48CcOGFF/KNb3yDe+65h0suuYTt27dz//33k5Nz+IWDQgghxEdd7yDVbx8pp4Po4rn4v3gNgSsvJFY2HqXLj+Ot9/D86mGcf/0nWmXVoFWqKb0qUsk39r0lg0fvilTIiLGrq43qQDdZNsdh19WMJl1V+dXJZ3P/4nNTU9kG4tJ0KjL9hItV1HoDdX/fzXmTlZyTfPH3Lk/U7h72mFoTb5yz7Q6ULhN9XRDLDtEzelqdl7g8vFjSTIfPQN8VRd3fU5X6oK1xSFPdBtIQCuBQNbJsDvQPwmg1MYzxOuuujRHUDEretlD3Rob93I6EZVns6mpDVxSmeDMhYLKgyosrplIVOHRwTYb6iZ4MpiVC2M6uNv5Ws5uIaabC/ocdQw+KrZEQhmWR74j/XKYnqplvN9dx5/b1qcccjpAR4w/7ttMRjaQ1ptEUiMVY03IAl6bzkwVncnHxZFyaTqW/g2cO7B3t4R2RUW02sXTpUnbu3HnI26xatYpVq1YdoxEJIYQQJw633rsiNchCd0XBmDKR4JSJKG2d2DZtw7ZpB7aKfdgq9mFmZhCdN5PovBlY3p7OY7lOF6UuL4Zl4tT6v50oSLyJbAzFg1R1oIvvb1tPTTBe7RrL0/qSfLbDN2tIhtW2hRpFdSb6uyEivZpOJKsQ102ayf9sXcdrjTVcM6F8WPs89Z7aZ3sxgBKDyHIXeHr+Ll7s8mKoFi/MauVTa/KxvRQg/PlM1rXU8z/b3qU8I5u755+R1uN2x6J0J6o2SsTC9ly80hW52MucYg/3zHmf/9g4Fcefu/DfmsV7oSZm+HKG9PodiYqudn688wO8Nhsd0QjTvFnYYyrOB9rx1MR41LaQp6c0Yk03UNwDN49Iro+a5PHh1W2UurzUBLt5qnYPDlXj38oX8uUPXmNnZ9uQx5WsshQk/phQnpHN39nL7/fFZ2BFTJPvzFoKQNQ0eaWxGruqcnbB+MMe+42m2tTXHdHRCa7pWttygIhpck5BCU5N54tT5nBF6TSuf/cFXmmo4bqJM9GPsJPoaDk+Ry2EEEKIw3JrPW/o+1WkBmBl+4icdQr+L3+G4MrziE0qQe3owvHGu3h++TDOJ55H21udmr72o/mncde80wc8VoEzWZEK0BEN8x+b3qYm2J0KEItyRnafo9HiSgSphpkmlh30TSEI9lTxkhWpyR4fnyguI2ZZfGfLWtoj/ddTHU5yKld22Ia+Nohl61uNgnjDBIB/FNdj5qjoOyOo1VGer49vHZOcApeO3o0mbK8EULtMYgscmBNteG126mdZvFTchNphUvuHWr679V0eq9414LEsy6IzGjniNT57ujv4+qa3qA52sz0RcqZ7s3D8pROtJoaZpeKJ6azaUYL7R63YXvAP2Axkc2LqX7LyVJ7Rs4/ZNROmM8njo9DppjrYTXdsaGvOGhPTWZPrBGf0OqYzppLsPR2IRbl1w+v8vGITd+/cwAN7trK1o4WoafQ7ZkckzM8rNvFIVU8BYqBps2PR64nwd1ZBSeqyXIeThdkFtEfDvD8CjVhGy3HX/lwIIYQQQ5OsSOmKknrDPySaRmzmFGIzp6C0tmPfuA19805sO/dg27kHM9tH7JR55EydhOEdeJPfZEWqKRTkT1U76YxFOKdgPLdOn49hWdiO079AHyz5Gvt1g9g8J7b1IfSNYWKnurAsi8ZwAK9uw6PbuGbCdPb6O3i3tYE/VG3nq9PmD/lxLMuiNRLGp9txvh1CicY79ZHR93X06DaybA5qI37CZ7lwPeFHf9HPlhnxaWC6kv7rXp2YHjcrkontzXiAi3y8pzp5St44fjJnG/M7Mpmxz8VFGQVsyeg/7Wx7Zys/2LaetmiYKd5MvjNr6YDTQodibUs9Ucvk9Lxi3mk+gInFJZvy0bdEMHNVgrdk8+stm5ix3saFtYXYXw5gezNIdJkzHj69Kpvbm3m/rZECh4vZiembV02Yhk+38zG9mMnNLrQN3Xyneho/mryLiq42FmQf/g8AySpssiJV6HTj0+2cUZnFv35YxuYJ3TDZZEOgif2BLiZ7fDSGg6yurWR1bSXnFU3od248uG8bLzX0XafVFBr9/U0PJ2qabGhrwqfbUw1AAJTmGF+qmMRN2U08X1/F0tyiURzl8J0Yv8WEEEII0U+yIpWh29Pag7E3KyeL8Ipl+L98HcFPnkts/DjUtk5i/3wT18//iOvRZ9C37YZY37VBmTY7dlWl0t/BPw9U4dFtfL7sJFRFOWFCFPRUpIJGjNjSeCjQ18WbTrRHw0RMM1WF01WVz0+eBZD2IvvuWJSYZTLBcmN7J4ilQ3T5wA0wShJtvKtPMjCzVWw7o4xvia9Hi1lmaiPlodofiE/H/Nh7WfHmFme7sTJ7psqdkltEwGbw7fk7MRSLL2+dRJm//9TFN5vqaIuG8eo2Krs7+I9Nb6U9lqQ9/njXt0tKyrhu0gyuri9h2nody6UQ+lwmeFTchU7unreHlz4fInqqEwwL+2tB3D9swfb3Lh7fGu+i+KX8k3DtiGF73s/kR2J85Y+FzPxVDOejXdjeDjJzv5sfvjuTqvr2IY0tuS4wWZFSFIWrwhP51y1laCgs2J+B66dt6Hvi/2aW55dw19zTuKBoIgC7DppGuM/fycsN1fh0Oz+Zfya/PXkFAE0Hd8QcQe+21B9RY5Sk9mgYE4sStwctGeJjFs6HOpmyVmNhIIv1rQ2pqufxRipSQgghxAkquX4nYyTWqugasVnTiM2ahtbWQUbFHqLrPkTfW42+txrL6SB60jSic2dgFuWhKArJSUwmFp+ZOINM29htLjFcvYOUWapjFOtodTHUmhj1mfGwVOjoCRWeRAUrYMT6H+wQko0mPllZiBKB6DInlm/gdT/TMrLY2tnKM437uOXsqTie6Oa6XaX815L4tLDmSJAS18CVxIHs93exsNlH8W4NM1slembfkJTncPFv5QtpDAXYr1lMfkPj028WwVILHD0BPtlk4XtzTuXeyi1s62xlZ1dbn0rFUFV2d6ASnzI5q9mLc0MHlgqhVT6sgvhrXJKY5lhp6+a0leOJnu3G9noQfV0Q+1shfqhOo9thkBO0AT0NICwdjAk65ngbxnidwIfdFG11sPxpoKzvcxrIwWuklKYY17yaj2JZ/GZuFdNaPZxTk8fZf3NyYMoEfFOcTPT4+PK0ebzTfIDaoB/DstASf/x4vLoCC7h6wnSmZWRhWCYqSp8gFTJi3Ln9PbLtDi4pKWOS2zfsP540hgL8z7Z3menLGXTq7lClpqP22mvO9lIAtdHAmGZjykkFrKtu4x91+7ihbNYRPdZoOHH+JCSEEEKIPnIdTjJ0W7yT2QiycrOwXXQmwa98hsCVFxKdUQaRKPYPtuD5/V9xP/AYtnc3sdwT71T3+ckn8YniySM6hrEiGVb9sRgoCrElyapUqM/eSz23j1cJA7H0glRbJIw3onHmziwsDaLLB29WcUXpNDy6jX/U7WV7eZBGV5hljTlcQbzi0ZxmJaOmu4tbtsZ/fpELvWDr/wb9rIJSrpwwndwL8tmQ28GEdif2f/atMlQF4hvUTnL7WJJTCMDu7va0xgLx9UJN4SCl7gxcbeD8YyeKAZGVXsypPX80SIbF2kSDEytTI/JJL4Fv5LJtYQRDscgK6ZhFGtFFTsKXegl+NYvAd/MI3ZJN5JNejAVO1Kuz2ZzXSWmrA/2RdjAOvb6rqXdFKmDi/H0nSsgicpaLNTO6+N78Cjo+5SZss/h0ZQln/cWB0hw/H0rdXqKWSUOvCk1dMP71GfnFAGiKSq7DSSAQIZao6G3paOH9tkZeaqjmKx+8zr+89wrrWurTfm0BqgJdWEBN4Mg3dW5LrAXMTnToVGui2F4PYNkVwpdn8PHiieiKwgsN+zGs0d2LbDgkSAkhhBAnKKem87slH+Nr0xccnQdQVYwpEwldej7+r1xH6NzTMApy0Zpacb78Dv/5/Cb+UadwZZcC0fSCw/HCm2jikWxEEJvvwLLFm060diYqUr2ClF1V0RSFgJHeZrmtkRCX7x2HI6oSW+zEyhq4GgWQZXewauIMTOCOHet5eGp8sf+FW+LrgNKZEhY2DBbt8lLW5caYbMOYc+jqpqap/HTRPjptMWxvB1G3x99It0fCdEQjlLq86KrKVG8WEK8spasyMa1vli0b54OdKAGL6BkuYkv7TnVMNt6oDR40bSxD5feza1h53nu8f5tK8F9ziHwqg9gpLswSG2h9g6LNrvHiBV1UeQM4dsawP93db7+wpOS6uAzdhgsN58OdqM0GsVl2oud7yE2sCTtwkslPPlHDluxOMuoVXD9rQ18fZLwrA4DqXiEmeW55VR21KorteT//98oMnn1uKeqjHWBYqWpfnt3JVG8mB0J+/mfbuzxVWzmk17Q7Fk0FmarEsTpjkbQD/8FSFSm7E2IWjse7UEyIXOTBytbItjspdWfgj0UJHuFjjQYJUkIIIcQJzKXpqSlCR5PldhFdPJfADVfiv/4KIifPAbsd754aXE++gPfnD+H8x6to+2oG3ZvqeJRsK98VS7SidqnE5jlRIpC7LX5R7yClKAoezRavYKWhqyvE5fvGYaoW0bMO3zr9wnETmezx0R4N81xpIwGvyeR9DqZ2uNMKUvWtXVy/czwmFpFPemEI51I0A+6aF98vy/6XTqz2WK/9muLd8aYmqqQVw6hIVXZ3oJsK171eGA8pJ9mJXOjpdzufbser2zgQ9GP2Cj5R02BzezOaXWF67tD2Jl1cUsw3luygyxnDtjaE/sbAr2FyXVyB3Y39yW60yihGsU74Kh+oCrmOeJBqCYeodHRz66lb6TzbAVFw/LWba17PxxvRUg0+CJos2OflvzZOI/MH7bh+1Y79lQAT2pxEFZOMzQaOP3ZS3RF/ff+1fAE/XbCcb520BIBn6vYd9rnVBrr57LoXuH/PVqBviGsIH9napd4VKdsrAdR6A2OKLbWeEOJ/XACISkVKCCGEEB91ZlE+4fNOp/urnyVwxQVEZ04Bw8C2eQfuP/8dz68exvHKGtTG42ND0UPJSFakoj0VpuT0vmXveflEVQFTXH33zHLpOmHTSGsq08SNOhlRndpZJlb24NWoJE1R+dKUOfHxaBbhs+PVmut2jac5jU15XS8HyYza2DozhFk8tKX1Xt3O20VtdC+xofgtwvc3sa+7b5Dy2uwUOd3UBf34D2orvs/fyZ5DVKoqOtv52oeTKaqJr0kLXx0PKQdTFIUSl5ewadAS6XnO2zvbCJsGczPzh7x/0bysPPw+k28s3o5lA8ezfrTN/VvYJ6tfl+4pwvZuCDNDJfxZX2pdVbJLYUskFA8ZqoJyfgahL2VhZqtM3G3jgTfmMfltFedv2nF/t4V/f6+Mc2vyIGhhTLERvsjDI1e18ukVG+jONtG3R7js+RxcMZVJ7vjruzS3iHyHi/qQn9Bh1uM9e2AfYdPgneYDWJbF/l6bGDek2RTlYG3R+Gs0vtWB7dUAlh3CV2T0CeR2JX4+R47DP7BIswkhhBBCHB2ahjFtMsa0yRAKo+/ai23LLrSqWuzrNmJftxEjP4fYrOlEZ03D8g29AcJYkaxIdcZ6Nkc1J+g0zVfI32jjtg+nYNYFiHxMwZjnAFXBk1hXFYjFhtYIJGyyYLMLQ7FoOE1jaDUUmJWZy5emzMEC7AUZRF8Pc0ZDDu8e2A/TDn9/pSHGxI0a3XqM/WdC2RAfN/ma1JyjMn2/BtuCnNFsx+OczEldPrSOMFaOxixHNvWhAFet+SdXlE7lc5NP4oX6/dxTsRGfbueRU87v1zChORxkwnsKF1UXYmQofULKQIpdHnZ2tVEb6CY/0fxhb2Jq4Exf9qD3O5iuqpyWV8xzsSreOj/I6f9w4fhLJyFfFuaknv3atnW0cEpDFhe+l42lQ/izvj7TMJNT+1rCQdojYbLsDlRFwZxkI3hrNtYT7RRsdlCwwQFEMb0Kz2U3sHt8iM+fvwCc8eBnr7PT5I/w9GVdXPnPHE6q8/LTdbPJXGqDxCk1yeOjKRykOtDNtIysAZ9X2DB4uaGaOS0Z7M0IcCDk76mG0bOh9HC1RkLopsLs5zQUE8If92Ll9P1DQLKLZ2SA/bPGOglSQgghhDj6nA5ic2cQmzsDpasbfdvueKhqbEF7bS2O19YSKy0iNnMqsfIyrIz+U7XGolRFqleQQlF4dGkDW7z13L7/JMbt13E+2oX5WoDI+R7cavyNt9+IHj5IGRa214PYwxr/LG2kOL/k0Lc/SO8mH6HlLmx/D3LB+hzUyVHMcTrog4QQy8L+TDeqpfCH6TVcUDz0jmrJ16RTiRL5dBbO+zoobXRQShHsh2SHvP9mAjc7iqhzh6hzh+mc3ExjcyOXaUWENJOozY/LZQObQkgz2dDdRGe1ny9sm0BUt4h9LuuQa8WgZ51UXbCb+dn5ADQk9l8qcqZ3jp1XNIHn6qt40LMH95lTOfl1B84/dBC8ORsrLz6OlqpuvvXBdBQUQldmYI639TlGsiK119+JiZVqwgCAS8W6Npvbne8wsdvFVStm05Ab5a73KznJl5MKURDvlAhQo/jZ+ek8zPvbmNPmw/xtO6EbMrF8GhPdGaxvbWCfv3PQILVlQx13vTaDmR1e9nuCvFpSS6hXoNnZ2cbP/Bu5YvzUtDo9JrVFwly7uwRXAxhlNmKn9N83LBmkolKREkIIIYQ4NCvDS3TpfKJL56M2taBvrcC2bTd6TT16TT3Wi29hjB/XE6q8h18TNFq8emKNVK+pfaZl8XbLARqyAoTPyyJYq2F/zo9WFcP5UCf/ljeBn06NDryQP2iiVUVRq2Jo+6Ko1VGUKJiKxSNTa7lDnzTssapLPTS92MGsRi/8oh1LA7NYxyztafVt5WmgKmg7Iui7ouz3BNk7L9ZnndfhZPRqwGEV6Zg/GMcNjz/D1LCXf8ubh9pqoLSY0Bwjs81GTpud2W1ArcUXE50FAdgcBOKhxwmcjTPxFbRe4cRV2jekDKSnc1/PWp+BuikOxTRvFpPcGez1d/JvGR/w/6aWcfHuQpy/6yB4SxamafGZlwtwGxqhc10Y8/qHhuQaqd2JqYsHb0isKgp7J0V4PdDCRePm0B2KnyPJ8ywpO3G/9miYPUYXv1q6nd9smc/EGgfO37QTujGLSYlplPsCnRxMqY8R+XsbZ+6OHyfkMJngd7HsSZNHl6qUZGZQ6e/gzea61ON8Z9bStF4vAF+jwmcqSrBsiSl9A0zBtKvxECpBSgghhBAiDWZ+LpGzcoksX4pa14htRyX69t3o1QfQqw9gvfAmxoRiYjOnxEOVZ2yFKoeqYVPUPhWpNS0HaAgFmOXLId/hwiyD0E02tJ0RbM/5mXjAyU+aZ9FRH0E9J4LabaLui6JVRVEaDJReDeEsh0Jsms5v8yqp9YZSXQKHxabww3P2MmeXm2uUydhrDbTqGFp1DNaEUo9njtdRmuJViV+dtI9zS6am9TCp6Y7R+GuysaORfRlBJpblEJtx0M/PtPjDxq3srmpmfMSNFbEoVF2EQlHOzi6lVPdA1GJvWzv1XX7shoq5wMm8BflDGsvBLdABGsKJfZ7SDFKKonDBuEn8pvJDAH5avoePO8ajb43gfKiDkGFQGHTw/sQuZpw78N5YyeB0INHePHuAvdWSe5NFTCPVsc9zUJDKSlSy2qNhqgJdhHSTLZdZlLxiR98SwfmbdqZ9Ov7ck134AJROA9sLAfT3grgthTp3iD1nmkxdUkTjL2qY2+rju++Vs+lyI9UdERhWwxorZvKF90rRLZXwxz1YuQNXD23HcbMJCVJCCCGEGH2KgllSSLikkPCKU1FrG+Khakcl+v469P11WC+8hTGxmNiMKcSmTx4ToUpRFDJsNjqiESzLwgL+XBXf+PaqCdN73xBjhgNjup1XXqxg3jonE/a54IG+TRXMbBVjog1jkg1zog2zKF4hem1dC0qkZ9+qYY83R+eh8hoWL5zKJHcWSpuJWh1Fq46hVkdRa2Nou+Nv3tcXtLO5uItv5Bam9RjJilSyk+G7jfH9jOZnDRB+VIXsIg8f+PfwQWLK32WlU3iiZh+usmw+WRJ/7Gcq9/H3ur3818zFnJo3bshjObgFumVZNIQCuDSdDP3wFa2DXTRuEsUuD/+34wM6YxH8V3rx3t+JVhXDA2zL6mLj+RFmDBI8su0OHKpGODF9rs/UvgRHokITNnqC1MEVqazElND2xJ5aAPleN+FrfVh/68L2fpipD1mUn+xhn60LQia214PY3gygRKHDFuOP02rwLc/m8knxBXP/t6KBm57XWNycxdw1Np6avJfuRJt+mzKM/nSv+pnW4WFXnp+SUwffdFnWSAkhhBBCjBRFwSwtIlxaRPicZWg19ejbE6FqXy36vlqs597AKC0iNn1yPFRlj+ymw+nw6nZaI2GChsHWzhb2BbqYkZHNgkGCQ3W5wU+dG/lxbBGzqjxYeRqxiTqxiTpq1sBvzfxGFLduQz3CVvbJtTVN4SCTPD6sHI0dti6+E1jLqpNncGHBRJRGg2BtkP/pqKDY6cWmHr5LYG/JilQyBLzXFA9S87IGfjM9yZ3RMz67M7XHVGO4p9FBMNF5zpVmkHRpOjl2Jw2hAFHTJGTECBoxJrkz+jWyGApFUViYXUC+00VndwS/GkP/XCau37TTHg7z34t28pWswfdt0xSVswtKea6+CoAse//pfw4t/nqHzMGDlE3V8Og22qNhWhJBKtfhBE0hckUGOFVsbwf58ZpZ/HXSAZwvtKL5LSwdXpnVxo9LK/jszFlcOG5S6pj/Nn8RoUkRzAfCODZH+VqwjO9N3wlKz89yyK9TfQz3KyHCqslflzVzqzpp0NsmQ5pM7RNCCCGEGEmKgjF+HMb4cYTPTYSqHZXou/am1lTxypp497/pk4mVl2EW5A5pv6OR4uvVcOLDjmYAziuaOOgbdbemY6qwa2aYqecUA3DPro28vrWWy0uncuX4aX3acsdMk6BhUOjsX71IV15ijU5zr72kXmmspjMW4Te7N5PvcLF4XCH7PFG6NsWYk+b0N+jZpLgzGqE1EqKys4Nil2fQqXTJlugAZd7MVHe93vtdhYx4tSLdIAVQ4vLQGgnREAqkWoGnO63vYMlg0x2Lkul1EPzXbP5v23ra2qPkOlyHvO8niif3BKkBmo2kKlKmkZoyOtCUzmybg5pgN3WJaltqvZWqELnYg+VUcL8c4LqKUiwsoic7qDzN5H/27KDQ4eb8ogl9jpdhs5ORbyd0oxPXr9o5pyKHoGsad0+oSC9IGT0b7z5w0n5ieYcO4rJGSgghhBDiaFNVjAnFGBOKCX/sdNT6pnig2rkXrakVrakVx9vvY2ZmpCpVRmkRDHGvoOHy9mqBvqurHYDyQbqkAan25/7Em/raQDcvNuzHAv60fydZNjsX9uq25x+kKjEcBQOElA1tTQCYwK93b2bR4nNTba/TbcgAvYNllJrE5q7TMwZvNe6z2cmxO2iNhJnizaTAEX/MxlDPGJMVKaeWXnUM4uukPuxooTbYTSyxDied5hkD6R2kANAUmmPxdWYDTdfrbZLHh66oxCwz9Vx76z2171A/+6xEkGqLhvHp9lQgAUBRiJ7n4Z+B/XiqLEouKmLCVB9/370ZgJUlZWiDTNez8nRCN2Ti/G0Hn9icx06rg/fLD78xr2lZNIYCjF+roNXEaBln8LfJB1hpn3LI+9llap8QQgghxDGkKJjjCoiMKyCyfClKSxu2XfvQd+1Bq2vEvn4z9vWbMV1OjGmTiE2dSGxSKTiOoFnDIJJrgjqiEXZ3tePSNEp7TVc7mCvxpjj5Jnl1bSUWUJ6Rzc6uNvYHuvvcfrDpXcORd1CQagwFqAl2M8GdgU1VqezuoD4USHW2G07gSAbLrlgkNe0sWQkbzES3j9ZIE2WeTLLtDnRF6RP2hju1D3rCYGMokGpocORBqicsJrVFQqhA5gANJA724JJz2d7ZSvkAe1klp/aFDzG1DyDT3nMu5wzy+m45KcRLudV8Py+fCcTXVAHM8B16NzKzxEboOh/O33XwtQ/LuMtZCYsHv73SabD3rXpsGyPYO7xYOvzfvEpMBeYNNMW1F12aTQghhBBCjB4rN5vIqdlETl2A0uVHr0hUqvbXYdu8A9vmHViJilZsygRiUydh5YzMuqpk04Idna2ETIPZmbmH7HKWrEgFjRiBWIxXGqtxaRpXT5jOHVvX9dncF45OkEpO7dvQHq9GLczOR0GhsruDzR3NvSpS6e/nlWo2EY3QHI5XaXIHWAvU26WlU8i02VmQnY+qKOQ5XNSHAkRMA7uqpabkDSdI+Ww9oac9Gg8ShQNUgtKR/JknG2qYlkVbNEymzTGkDnfZdifL8ooHvG4ozSYgXpFKGuz1darx1ys5NTLZ5MI+hCqtOdVO+Gof9kc6uO39MmLzw1hT449ZHegCv8nkPXb0jWHUvVHmWnbATrUnSNMKnbVWCyf5clh4mCCVrKRFZGqfEEIIIcTosjI8RBfOJrpwNoTC6Huq0Sur0Cr3o++rQd9XAy+/g5mTSWzqJGJTJmCMHwfDmDYG4E28UX+/rRGA6YeY1gfg7lWRqg/5iZgmi7ILKE6Elo7Em/2kwVpgD0eevaci9VRtJX+t3g3AguwCTMtidW0lm9ubaUtULoZTufHoNhSgKxalJZIIUodZN7Qwu4CF2QWp7/MTQaopHKTE5e01tS/9t66pvb5iURoTAXKkp/Z1RSMYltVvX6jh6LtGavCffZZ9CEEqcU4nX7/k9DnHEBuIGHMd/HF7HZ/9oAT9D52Er8+ENoPu1xqY35iBbiWCpE/lrdI2Hs6pYlemnwmuDAjAqokzDtvUo6fZhEztE0IIIYQYO5wOYidNJXbSVDBN1LpG9Moq9N1VaI0t2N/dhP3dTVgOO7HJpcSmTMQom5DWJsDJ6kRyfdR07+DrgaCnhXnAiKWCRp7DRaatZ4pgbyNZkXJoGpk2O/WhAPft2QrAKblFzM3MI2oaqCh82NGCrigoQIHz0AFoIJqi4NVtdEYjqcrX4ab2HSy+dqiFplAySBnoipJqlZ0Ob6927G2J1/tIA8/BQao1OrT1UUMx1Kl9vfegGuz5JCt4oVSQild90unEuH5GN2Z3NdfvGo/rN/F2/YvIpMMWpb48yoTTCjAn2Xhy2y52tcXXUu0PdDHNm8XcQTo19pasjkmzCSGEEEKIsUpVMUuLiJQWxddVdXaj766KV6v21WDbsQfbjj0AGAW5GJPHE5s8HmN8EeiDv2XKOKij2owB1r305k4cKxCL9Qoarnh7cxQ6D6pI+Q/RuW048hyuVFi7sWwWK0vizQBsqsrUjMxUIMy1O/s2MEhDkdNDRXc7u7raEsdKL5AlA1xy89yQERvWtD7o2449uUlw8rLh8vbq1AikKngjWpE6XLOJ3hWpQYKqMzWNNF7t6alIDT2QenU7f5hWwydyJpK32aJmYpRfZFTwfl4HWU4HD0wqRleV1PqrpE/0aphyKDaZ2ieEEEIIcXyxfF6iC2cRXTgLojG0qtp4tWpvDVpjS7xitW4jlq5jTBgXD1Vl4zFzs/u0V+/9pnx+Vl5qHdJgPFr89gEjSkuvNUSqouCz2elMbO6bnBI1khUpiE/vqyReWTgzv6TPdSsKxqeClG+A1txDNcGdQUV3O83hEArpV2qSa7PqQwFMyyJkGmQMczwZvUJPRzRChm4btGPdUB1ckUpWuka+IhVBV9QBp+INZY2UK7kn1UFT++xpTGP16jZQoOJsE/el+fypYhPv1rfj0W20REL8z7Z3+X/TF6TWn0G8c+MZ+QOvATuYLdVsQqb2CSGEEEIcf2w6xtSJGFMnEgaUtk70vdVoe6vRq2rj66z2VMPLYGZ4UqEqNrG0T0Xq4702OB2Mq1f78+ZI36lvmTY77dEwASOWWhcz0kGqqddGtwdXUC4aN4lnD+xjf6DrsIHwUMa7vamvsx1OdFXFNK0h3z/Zaa8+6D+iPaSg53VrCYcIm0ba0wwHPOZBmw63Jqox2SNYkQoZMbpjUby6fcB1Rr0rUoN17UtVpMyDpvalESQPDo07ElXG/565mF/u3sz7bY08sHcr7ZEIOXYHnywuY7I3c8jVTJnaJ4QQQghxArGyfUSzE9Uqw0Cra4yHqj3VqAcasW/eAZt3YAEz8nO4xRbmgywHSz2HntYH8XbPDlUjEOupSCVDiy+1Tip81ILUJ4onc0/FJr5QNqvfdYqicNfc0/hLdQUrCkuH/Rjje7V/z3el39gh2QyiPhQgZA6/Yx/Eg4muqKl26kdSaUtKhYtoMkgl116NQEUqEUA6YxFiljXoz31oFamDuvYZBnZVPWwDiN56B6lALMZ+fyf5DhdzsvK4c+4yPrPuBTa2N2NikWVzcMX4aUM+NsjUPiGEEEKIE5emYYwfhzF+HJEzl0AwhL6vFm3vfvR9tTiaWrkSuLLOj7X9IcyifGITSzAmlsQ3BLb3fyPs0XU6ejVjSL4RTu5B1BGNUJwoCI1k1z6AcwsncJIvl9JeVaPevDY7NwwQstLR+9jDaViRY3diU1QaQgGCseFvxgvxcJih22hLTD0byj5PhzPYGqkRqUglnmcyZA8WpJyajkvTiZjGoM/J1avVPsSnz6W77q13kNra2YJJfM8ziIc5j25LBcnhvLbStU8IIYQQ4qPC5SQ2cwqxmVPi0wDbO+Prq6pq0arq0A40oh1ohLUb4ntXFRfEQ9XEEoySQtB13JqN1kiY+lAAl6anWqInO/d19urcN9IVKVVRBg1RI6XI6UZXVGKWOayKlKooFDrd1AS7U50Nh1uRAsiw2VNByjcCTTvcmo5KvKU6MGLdAKGnIpUMJ4cK0J+dNJOoaaIOUmFyHrRGKmyYZA0Q7A+l9zTG5w5UAXBqbhEQD6nFicYi0He64VDJ1D4hhBBCiI8oK8tHLMtHbN5MsCyU1nb0qjq0qtp4wKqpR6+ph7ffx9I0jOICvuRWeFoPsyXDTm6GL3Us3wAt0A/VuW2s0hSVEpeHqkAXecOoSEE8jNUEu6nydwJHFqR6v3YjMbVPVRQ8um2ANVIj12wiGaQO9XM/XGc8V68NeWOmiYmVVse++OPHX6893R180NZIts3RZzPhYldPkMoeTkUqERyjlgQpIYQQQoiPLkXBys0mmpsdX19lWahNrT2hqroOvfoAZwBnAAZQ52vH0foWxvhxFCTe43dGw3REwvzfzg+o9Mc77B1PQQri66SqAl3DqkhBT+e+vYkg5RxmK3YY+SCVPOaBUIBdXW0cCPnJd7iG3S6+t2RFKhmmj+Tn7uw1tS/VsW+YU/uSG05fMG5in/28il2e1NeZR1CRisjUPiGEEEIIkaIomAW5mAW5RBfPTQWr6L5q3t+8kTkdEcZ3BuH9D+H9D7kMWOLU6KiNsa+wlsZoKzg1Cl2eI27ZfaydkV/Mzq42FuUXQij9+xclAlgySLkOsZfX4fTurJg5YkHKDgT49e4PAbi8dOqIHPfgVudHsn9Y7/bnyWYOww1S8fuq/TpT9g5SWcOqSCWDlFSkhBBCCCHEYBLBSivI5a+Obr7b0cKNORO4wnKj1dQTq6qmtK2L0r0NsLeB04Gw045ZrKFG3scoKcQYVwCOkQkDR9NpecWcUVBCrsdLS6g77fsnW6DvSwYp9Qim9tl6V6SOfPod9GysXNHdTqHDzflFE0fkuP2D1PArUo5U+3OjV0Uq3al9PY//8XGT+q0DK3b2rLcbzhopm5KY2idBSgghhBBCDMWyvHFs62wlp7CAWH4JsTnl7PV38N/rXuGskEpxcyeLumJM6Y6g7KmGPdUAWICZnxMPVcWFmCWF/TYJPhEkp/Yl1844x9AaKejbcvzmaXP7THc7Eg5t5IKUpig4VI2QESM87Kl9Pa/XFQNU3Y60ItXTbEKm9gkhhBBCiCH4ZHEZ5RnZqVbSEG8f3WHTeMoGZGRy9fjpFJZORa1vRqtriH/UNqA1taI1tcLG7QBYDjvGuIJUxcocl4/l9QzyyMeHEpcHFUjWKY6oa1/vqX0j0LUP4NoJ5czIyObMgtIRXb92cNA50mM7NY2QYaSmzh0c1A7Hpqp8Y8Yi3Lo+YHv3DJudDN1GVyx6RFP7pCIlhBBCCCGGRFUUZvpy+lzm0+04VY2QaaArKmcVlIKuY5YWYZYWEU3cTunyo9U1oCaD1YEm9H016PtqUscyvR6McfmYRfkYRfnxcOUZXuOH0WBTNYpcHuqCfqBnvc9wZByFilSRy8OFrkN3zRsOVVGwq2oq+Bx5kIrvWZbcS8o2jLV2p+cXH/L6M/JL2OfvHN7UvuQaKenaJ4QQQgghhktXVb4/dxkt4RAzfdmDbvBqZXiIlZdBeVn8AsOIdwesbUCrb0I90Ija3IatYh9U7Evdz8zwJEJVAUZRHmbR2A5XE9wZqSB1RFP7EuFJV9QjqmwdKw5VSwWpI92I2ZWocHUlugCmW5Eaipunzh32fTVFRVMUmdonhBBCCCGOTHlGNmSkeSdNwyyKV5+SVSuiUdSGFrT6pni4qm8aOFz5vBiFefHugoV5GAW5WFm+MbHmqtTV08hgJPaR8tnsKGPgeR2OQ9XoYmT2D0sG0GQ79ZFo0T7SbIoqU/uEEEIIIcQYYbP1mxJIJIra2IJ2oLFvuOrs7hOuLLsNMz8XoyAXszDxOT8X7Md2L6sJ7p5EeWRrpHqC1PGgd9XoSNqfQ8/r1hGNbxqcbte+Y8GuaqlmGMcTCVJCCCGEEB8V9kHCVVMLWmMLakNz/HNjC1ptPVptfequFmBlZ2IU5mIW5MU7B+Zlx6tXR+nN+fgRClIFDjflGdmcnF0wEsM66pIt0FWUI1obBvFmEzC2K1K6qtIdix7+hmOMBCkhhBBCiI8yuw2zpAizpKjnMstCaetEa2xGTQarxhbUtg7Utg7YsafnprqGmZsd/8jPxszrHbCO7E17qbtnap/zCAKFrqrcPf+MIxrLsZSsSHl12xFPRUxO7etMVaTGXpCyqyomFsZx1nBCgpQQQgghhOhLUbByMonlZMKMKT2Xh8KpipXa3BpvcNHchtbQjNbQ3OcQyYAVKcnH5vNh5GZj5GbFA9YQQ1HvKpT7OGgSMVKSFaneGwkPl6vfGqmxObUPSDXYOF6c0Gfknj17+OY3v0l3dzd2u51vfvObLFq0aLSHJYQQQghxfHI6MCYUY0zo1Q7bslD8wXiwam7rF7DMhmZ6r/KxFAUry4eZk4WZk4mZm5X62vJ6+jW5uGP2KTSHg7hHcK+msc6hxt+ij8T+VMlKXmeya98YrEglW7Ifbw0nTugg5XA4+MEPfkBZWRmVlZXcfPPNPP/886M9LCGEEEKIE4eiYHndGF43xqTSnsstCy0YIjMSpLuyFqWpFbW1HbWlo2eKYGXfQ1k2PRGqEiErJ4vFOZmYWYVgWWOik+CxkJza59FGoCKlHtxsYgwGqeReUsdZw4kTOkiVlJSkvi4rK6OrqwvLso6LtpdCCCGEEMe1RMDScguI5eRimlbPdeFIPEy1tqO2Jj63tKO2dQw4TRDActgxs3yYWRnxilavDyszY8jTBY8Hqal9I1KRGvtT+5JBSipSaVi/fj0PPPAAW7Zsoampid/85jecffbZfW7zyCOP8MADD9DU1MTMmTP57//+b+bOTX/Tr5dffpmZM2dKiBJCCCGEGG0Oe2rfqz4sCyUQjIeqRMhSWttRO7oOHbIAy+ftCVZZPszMDKxML6YvA8vrPq6C1kgGqWTXv2iikcNYrEglx3S8bco7qkEqEAhQXl7OZZddxle+8pV+1z/77LPceeed3HHHHcybN4+HHnqIG2+8keeee46cnBwALrnkkgGP/cQTT6AlTpza2lr+93//l3vvvffoPRkhhBBCCHFkFAXL48bwuPuuw4J4yAqGUNo6UdvjH0p7r687u9E7u2F/Xb/DWonqmOVLBCufF9PnTX02fRngcoyZqYOprn0jsO9VxkHHsI/BQNkztU8qUkO2fPlyli9fPuj1Dz74IFdddRWXX345AHfccQevvfYaq1ev5oYbbgDgqaeeOuRjdHd3c/PNN/Otb32LiRMnHtF4VXX0/3ElxzAWxiLGNjlXRDrkfBHpkPNFDNXInisKeN3gdWOOL6LfW+6YgdLZhdrWidLWGf+6owulszv+0eVH7fKj1TYMeHTLpmP5vFgZHiyvB9PrTn1tpb52wwh00jucZIOIDJvtiF+7fKer37HH2r/dZEUqRnz651gb32DG7BqpSCTC1q1buemmm1KXqarKsmXL2Lhx45COYRgGt956K1deeSWnn376EY1H11Vyc72Hv+Exkp3tGe0hiOOEnCsiHXK+iHTI+SKG6pidK4WZg15lGSZ0dmO1dWK1d2K1dSU+d2K1d0FbJ0pLO7S0H/oxnA6UTC+KzwM+L0ryIxHyFK8bxeuKfz3M6s9JwXyo2sncosIjfv851dV3TVR+tpfcnLHznhYgw+UAwOGJh9Tj5XfLmA1SbW1tGIZBXl5en8tzc3Opqqoa0jHeeOMN1q5dS3NzM4899hgAf/zjH/H5fGmPJxYz6ewMpn2/kaaqCtnZHtra/H0XbQpxEDlXRDrkfBHpkPNFDNXYO1dUyMyKfww0USkSRenyo3T7UboD8SpWr6/jn7uhoQWroeWwj2Y5HVhuF5bHheV2xr9Ofu9xYbmc4HRiuRxYTgc47KAoLHDl8thpF+LVbbS0dB/RM1YsExVSFbxgV4QW68iOOdLMaHxtVFtHAPIZ9fPF53Nhsx0+BI/ZIDWYdLrunX322WzdunXEHnts/AKIM01rTI1HjF1yroh0yPki0iHnixiq4+Zc0XXIzox/HEo4gtId6AlZ3X6UQCjeKCMQRPEHUYLxz2prO7S2D+nhLUWJByqnA6czHq6SISv+tTN1vWW3YdntWA4b2O1YdhvYbf3WeSkoZNudtERCANgUZcz9LPTEPlIhIx6ojpfzZcwGqezsbDRNo7m5b2eW1tbWflUqIYQQQgghjhmHHcthx8jNOvxto9F4yPIHUQI9H6o/iBIKQzCEEgr3fATDKMHQsIZlAdhtWI5ksIoHrW8FO2mwYgQ0lcLQBuwOB9hsWLoGNh1L1xOfNdB1LJse/5y6XAddBTXxMcJNOaRr3wiz2+3MmjWLd955hxUrVgBgmiZr1qzhs5/97CiPTgghhBBCiCGw2bAybfG9roYqFusTrAjFw1WfwBWJQiSCEo6iRCLxaYnhCEokGq+WWT0VnQW9j31gyxE/JUtVQYt/WKoKqhb/XlWxNDXeal7t9b0CoMQDmKIc9D1cHPSzINhNvn8HzJxxxOM7VkY1SPn9fvbv35/6vqamhu3bt5OXl0d+fj7XX389X//615k1axZz587loYceIhQKcemll47iqIUQQgghhDiKdB3Lq2N5h9l0wbIgGouHrXCE1Xu28359DS7D5D+nzsdmWijRWDywJT/HjL7fRw2IRROfY2AYKIYJpgmJz4phoMSiYIRRrOFPxZuc+Ih078Eyjp+q1KgGqS1btnDdddelvv/e974HwJe//GW+8pWvcOGFF9La2so999yT2pD3/vvvT+0hJYQQQgghhDiIosSn+Nlt4HUTC+SxIdQEgDVrOrGjsV+WZaUCFoaJYho931sAVvw2lhUvSFnJ76EpFODF+iouKJ+NbwzuczWYUQ1SS5cuZefOnYe8zapVq1i1atUxGpEQQgghhBAnljxHz15S6tHadFhRQNeAeBA6VH3q4OtyyeXqCeOPm/2jktTD30QIIYQQQghxvOodpMTIkSAlhBBCCCHECSzX7hztIZyQJEgJIYQQQghxAsuRIHVUjNn250IIIYQQQogj59A0vjlzMT6bfbSHckKRICWEEEIIIcQJblneuNEewglHpvYJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaFMuyrNEexPHANC0MwxztYQBgs2lEo8ZoD0McB+RcEemQ80WkQ84XMVRyroh0jIXzRdNUVFU57O0kSAkhhBBCCCFEmmRqnxBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmC1Bj0yCOPsGLFCubMmcOVV17J5s2bD3n7f/7zn1xwwQXMmTOHiy++mDfeeOMYjVSMtnTOlYqKCr7yla+wYsUKysvLefjhh4/hSMVYkM758thjj3HttdeyePFilixZwuc//3k+/PDDYzhaMdrSOV9eeuklLr/8chYtWsT8+fO55JJLePLJJ4/dYMWoSvd9S9K9995LeXk5P/rRj47yCMVYks758sQTT1BeXt7nY86cOcdwtIcmQWqMefbZZ7nzzju55ZZbWL16NeXl5dx44420trYOePsNGzZw2223ccUVV/Dkk09y7rnncvPNN1NZWXmMRy6OtXTPlWAwSGlpKbfddhv5+fnHeLRitKV7vqxbt46LLrqIP/zhD/z5z3+msLCQz3/+8zQ2Nh7jkYvRkO75kpmZyRe/+EX+8pe/8PTTT3PFFVfwzW9+k3feeecYj1wca+meK0lbt27l0Ucfpby8/BiNVIwFwzlfsrKyeOutt1Ifr7766jEc8WFYYky54oorrO9+97up7w3DsE4//XTr/vvvH/D2t956q/XFL36xz2Wf+tSnrDvuuOOojlOMvnTPld7OPvts649//OPRHJ4YY47kfLEsy4rFYtaCBQusp59++mgNUYwhR3q+WJZlrVy50vr5z39+NIYnxpDhnCuBQMD6+Mc/br3xxhvWqlWrrB/+8IfHYqhiDEj3fPnb3/5mLVmy5FgNL21SkRpDIpEIW7du5bTTTktdpqoqy5YtY+PGjQPeZ+PGjX1uD3D66acPentxYhjOuSI+ukbifAkGg8RiMTIzM4/SKMVYcaTni2VZrFmzhr1793LyyScfxZGK0Tbcc+WHP/whS5cu5YwzzjgGoxRjxXDPl+7ubs466yyWL1/OzTffzO7du4/BaIdGH+0BiB5tbW0YhkFeXl6fy3Nzc6mqqhrwPs3NzeTm5va7fVNT01Ebpxh9wzlXxEfXSJwvd999N+PGjeOUU045GkMUY8hwz5euri7OPPNMIpEIqqpyxx13cOqppx7t4YpRNJxz5dVXX2Xt2rWyhu4jaDjnS1lZGXfeeSfTp0+ns7OT3/3ud1xzzTU888wzFBYWHothH5IEqeOAZVkoijLo9QNdd6jbixPX4c4VIXob6vly33338eyzz/LHP/4Ru91+DEYmxqLDnS8ej4cnn3ySQCDAmjVr+MEPfsCECRNYtGjRMRylGAsGO1daW1v51re+xS9/+UtcLtcojEyMRYf63TJ//nzmz5+f+n7BggVceOGFPP7443z5y18+RiMcnASpMSQ7OxtN02hubu5zeWtra7/0npSXl9fv9i0tLYPeXpwYhnOuiI+uIzlfHnjgAX7729/y4IMPMn369KM5TDFGDPd8UVWViRMnAjBz5kwqKyu59957JUidwNI9VyoqKmhqauKaa65JXWYYBuvXr+fhhx+WzqAnuJF472Kz2Zg5c+aYmX0ja6TGELvdzqxZs/p0OTJNkzVr1vRJ473Nnz+ft99+u89l77zzzqC3FyeG4Zwr4qNruOfL/fffz69+9Svuv//+MdVuVhxdI/X7xbIsIpHIURihGCvSPVfmzJnD3//+d5588snUx+zZs7n00kt54oknjuHIxWgYid8thmFQUVExZroPS0VqjLn++uv5+te/zqxZs5g7dy4PPfQQoVCISy+9FICvf/3rFBYWcttttwFw3XXXsWrVKn73u9+xfPlynn32WbZs2cL3v//90Xwa4hhI91yJRCKptviRSISGhga2b99OZmYmxcXFo/Y8xLGR7vly33338bOf/Yy7776bkpKS1LpLt9uNx+MZtechjo10z5d7772Xk046iYkTJxKJRHjzzTd56qmn+O53vzuaT0McA+mcK263u19l2+12k5WVxbRp00Zj+OIYS/d3yy9+8Qvmz5/PxIkT6ezs5IEHHqCuro4rrrhiNJ9GigSpMebCCy+ktbWVe+65h6amJmbOnMn9999PTk4OAAcOHEBVewqJCxcu5O677+anP/0pP/7xj5k0aRK//OUvmTJlymg9BXGMpHuuNDY2snLlytT39957L/feey+XXnopP/zhD4/18MUxlu758uc//5loNMpXv/rVPsf58pe/zFe+8pVjOnZx7KV7voRCIb773e9SX1+P0+mkrKyM//3f/+XCCy8cracgjpF0zxXx0Zbu+dLZ2cm3vvUtmpqayMzMZPbs2fzlL3+hrKxstJ5CH4plWdZoD0IIIYQQQgghjifyJwIhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJNsyCuEEGJM+PnPf84vfvGLfpefeuqp/P73vz/2AxJCCCEOQYKUEEKIMSMjI4P777+/32VCCCHEWCNBSgghxJihaRrz588/7O1CoRBOp/PoD0gIIYQYhKyREkIIMabV1NRQXl7O008/zde//nUWLVrEl770JQDa29v59re/zbJly5gzZw5XX301mzZt6nP/zs5ObrvtNubPn8/pp5/Or3/9a370ox+xYsWK1G1+/vOfs3Tp0n6PXV5ezsMPP9znsscff5yLLrqI2bNnc/bZZ3Pffff1uf4b3/gGl112GW+//TYXX3wx8+fP55prrqGioqLP7QzD4Le//S3nn38+s2fP5swzz+Qb3/gGAI888ggLFizA7/f3uc/atWspLy9nx44dab6KQgghRppUpIQQQowpsVisz/eWZQFw11138bGPfYyf/exnqKpKJBLh+uuvp7Ozk69//evk5OTw5z//mc997nO88MIL5OfnA/Cf//mfvPvuu3zzm98kLy+P3/3ud+zfvx9dT/+/wPvvv5+f/OQn3HjjjSxZsoStW7fys5/9DJfLxapVq1K3O3DgAHfddRc33XQTDoeDu+66i6997Ws888wzKIoCwLe//W2eeuopbrjhBpYsWUJHRwfPPfccABdffDE/+tGPeP7557nssstSx129ejWzZs1ixowZaY9dCCHEyJIgJYQQYsxob29n1qxZfS773ve+B8C8efP4zne+k7r88ccfp6KigmeeeYZJkyYBsGzZMi644AJ+97vf8R//8R9UVFTw0ksv8ZOf/IQLL7wQgKVLl3L22Wfj9XrTGlt3dze//OUvuemmm/jyl78MwGmnnUYwGOTXv/4111xzDZqmAdDR0cGf//zn1Lgsy+KWW25hz549TJkyhcrKSv7617/yX//1X1x33XWpx0iO0efzcd555/HEE0+kgpTf7+eFF17gtttuS2vcQgghjg4JUkIIIcaMjIwMHnzwwT6X2e12AM4666w+l69Zs4ZZs2ZRWlrap4q1ePFitmzZAsCHH34I0Gcan8fjYdmyZWzevDmtsW3YsIFAIMAFF1zQ5/FOOeUUfvWrX1FfX09JSQkAJSUlqRAFMGXKFAAaGhqYMmUK69atA+hTbTrYFVdcwec+9zmqq6sZP348//znP4nFYnziE59Ia9xCCCGODglSQgghxgxN05gzZ06fy2pqagDIzc3tc3lbWxsbN27sV8ECmDBhAgDNzc14PJ5+jSkOPtZQtLW1AXDRRRcNeP2BAwdSQergToM2mw2AcDgMxCtvbrf7kFWxpUuXMn78eJ544gluvfVWnnjiCc455xyysrLSHrsQQoiRJ0FKCCHEcSG5tigpMzOT2bNnc/vtt/e7bbKKlZeXh9/v79flr6Wlpc/tHQ4H0Wi0z2UdHR39Hg/gt7/97YBBbPLkyUN+LllZWQQCAbq7uwcNU4qicPnll/PYY49xySWX8P777/drbCGEEGL0SJASQghxXDr11FN5++23KS4uHrTClKxuvfLKK6n1R36/n3feeadPgCksLMTv99PQ0EBhYSEAb7/9dp9jLViwAKfTSWNjY79phuk65ZRTAHjyySf7NKk42KWXXso999zDN7/5TQoLCznttNOO6HGFEEKMHAlSQgghjksrV67k0Ucf5TOf+Qyf//znGT9+PO3t7WzevJn8/Hw+97nPMW3aNFasWMHtt99Od3c3+fn5PPDAA/2m+p1xxhk4nU6++c1vcv3111NTU8Ojjz7a5zY+n48vf/nLfP/736e2tpbFixdjmib79u1j3bp1/PKXvxzy2MvKyrjqqqv44Q9/SEtLC4sXL6azs5Pnn3+en/zkJ6nbFRYWcsYZZ/Daa6/xxS9+MdXMQgghxOiTICWEEOK45HA4+MMf/sDPfvYzfv7zn9PS0kJOTg5z587t01zihz/8Ibfffjs/+MEPcLvdXHvttcyZM4fnn38+dZucnBzuuece7rrrLm655RZmzZrF3XffnapiJX3hC1+goKCAhx56iAcffBCHw8GkSZP63W4ovvOd71BcXMzjjz/OfffdR05OzoAVp3PPPZfXXnvtkI0phBBCHHuKldygQwghhPiISO7R9Morr4z2UA7r1ltvpampiT/96U+jPRQhhBC9SEVKCCGEGIN27tzJli1bePHFF/nxj3882sMRQghxEAlSQgghxBh000030dbWxrXXXssFF1ww2sMRQghxEJnaJ4QQQgghhBBpUkd7AEIIIYQQQghxvJEgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBp+v8g94NCrVDNAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "mtp_rebin = mtp.rebin(f=7)\n", + "\n", + "print(\"Original df: \", mtp.df)\n", + "print(\"Rebinned df: \", mtp_rebin.df)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Original\", color=palette[4])\n", + "plt.plot(mtp_rebin.freq, mtp_rebin.power, label=\"Rebinned\", color=palette[7])\n", + "plt.plot(freq_analytical, psd_analytical, color=palette[0])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "163d3050", + "metadata": {}, + "source": [ + "### Poisson distributed lightcurve\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2c4dcaa6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABpKElEQVR4nO29e5glV10u/K6q2ve+Tff09Mwkk0yYEGguEkw0qARkouR7sIGon+IzD5yj4vFR/DDikw9HOGZCAh4bfcRoEsMR1Afh4CEigQz4JcCgh0QuETESOpCQTDKTTGcufZm+7Utd1vfHqrVqVe2qXatq757e3b3ef2b6slf/du2q33rX+7sRSimFhoaGhsamh7HRBmhoaGho9AbaoWtoaGhsEWiHrqGhobFFoB26hoaGxhaBdugaGhoaWwTaoWtoaGhsEWiHrqGhobFFYG20AQsLq/C87KnwY2MDmJtbWQeLuoO2Kzv61TZtVzZou7Ihr12GQbBjRy32Z0oOvdls4g//8A/xta99DaVSCVdeeSVuu+02HD9+HIcPH8bi4iJGRkYwPT2N/fv3ZzLO82guh85f24/QdmVHv9qm7coGbVc29NouJYf+x3/8xyiVSrj//vtBCMG5c+cAAEeOHMGhQ4fw5je/GZ/97Gdx880342Mf+1hPDdTQ0NDQUEOqhr66uop7770XN954IwghAICdO3dibm4OMzMzmJqaAgBMTU1hZmYG8/Pz62uxhoaGhkYsUhn6yZMnMTIygjvuuAPf+MY3UKvVcOONN6JcLmNiYgKmaQIATNPErl27MDs7i9HR0XU3XENDQ0MjjFSH7jgOTp48iZe85CX4vd/7PTzyyCP4jd/4Ddx+++09MWBsbCD3a8fHB3tiQ6+h7cqOfrVN25UN2q5s6LVdqQ597969sCxLSCuveMUrsGPHDpTLZZw+fRqu68I0TbiuizNnzmDPnj2ZDJibW8kVGBgfH8TZs8uZX7fe0HZlR7/apu3KBm1XNuS1yzBIIhFO1dBHR0dxzTXX4KGHHgIAHD9+HHNzc9i/fz8mJydx9OhRAMDRo0cxOTmp5RYNDQ2NDYJSlsv73vc+vOc978H09DQsy8IHP/hBDA0N4ZZbbsHhw4dx1113YWhoCNPT0+ttr8Y2AJlfRPWT92Htv/wc6GB8vq2GhkY7lBz6vn378Hd/93dt3z9w4ADuueeenhulsb1hzC3CWFqBsXgernboGhrK0KX/Gn0H4nnsP463sYZoaGwyaIeu0X9wfUfuuhtrh4bGJoN26Br9B5+hE+3QNTQyQTt0jf6DkFy0Q9fQyALt0DX6DkRLLhoauaAdukb/QUsuGhq5oB26Rv+BO3ItuWhoZIJ26Br9B66hezptUUMjC7RD1+g78Dx0ohm6hkYmaIeu0X/QQVENjVzQDl2j/+Bph66hkQfaoWv0H7TkoqGRC9qha/QddB66hkY+aIeu0X8Qeeg6y0VDIwu0Q9foP+jSfw2NXNAOXaPvoCUXDY180A5do//g6tJ/DY080A5do/8g0ha1hq6hkQXaoWv0HzyfmWuGrqGRCdqha/QduIau89A1NLJBO3SN/oOuFNXQyAXt0DX6D9qha2jkgnboGv0HLbloaOSCdugafQeiGbqGRi5oh67Rf9CFRRoauaAdukb/Qfdy0dDIBe3QNwmK//x1mCdObbQZFwa6l4uGRi5YG22AhhqK33gEtuvBvWTvRpuy7gj1cqEUIGRjDdLQ2CTQDH0zgFIWKNwuEgSXXKT/a2hopEM79M0ALj1420SCkJ34dtnENDR6AO3QNwOEQ98mzk124j3S0Yv/8k0Yp870ZC2NFFCK0hcfBJlb3GhLth2UNPSDBw+iWCyiVCoBAG666SZce+21OH78OA4fPozFxUWMjIxgenoa+/fvX097tyV4G9ntkvVBPA/UNEBcD8R1QbtdkFKU/vVbAPXQ2rurFyZqdABZXkXx374Db2QI9tjIRpuzraAcFP3zP/9zXHHFFaHvHTlyBIcOHcKb3/xmfPazn8XNN9+Mj33sYz03ctvDcdi/24Whex5QKABusze56NtsQ9xw2Ox+1ZW+Fx65JZe5uTnMzMxgamoKADA1NYWZmRnMz8/3zDgNH+72k1xosQCgR0MuuGPRDuaCgNg2+w8nIhoXDMoM/aabbgKlFFdddRV+93d/F7Ozs5iYmIBpmgAA0zSxa9cuzM7OYnR0dN0M3o4QTGe7MEwvcOi9cMJiU9CVpxcExGfoegO98FBy6J/4xCewZ88etFotfOADH8Ctt96KX/7lX+6JAWNjA7lfOz4+2BMbeo1e2+WtraAFoGQZGOxi7X69XkBgG/UompTCqpRAAewYLMPo0m5qUTQBlAsGhjKu1a/XrJ/tcufOwQZQLRgY7hM7+/l69RJKDn3Pnj0AgGKxiEOHDuE3f/M38fu///s4ffo0XNeFaZpwXRdnzpwRv6uKubkVeF72sNf4+CDOnl3O/Lr1xnrYZZ5bQhVAq97C+Zxr9+v1AiK2OS4GAdiGAQvA4twy3Gr+TR8AyPwSBgA0VxuZrl+/XrN+t8s6t4QKgPpyHYt9YGe/X6+sMAySSIRTNfS1tTUsL7M/SinFF77wBUxOTmJsbAyTk5M4evQoAODo0aOYnJzUcst6YDulLfL3WPAllx7IJEJy0RLAhUGLaehEa+gXHKkMfW5uDu985zvhui48z8OBAwdw5MgRAMAtt9yCw4cP46677sLQ0BCmp6fX3eBtie0UFPXjBL3U0IMsF+3QLwSEI9cb6AVHqkPft28f7r333tifHThwAPfcc0+vbdKIgAdFt0PaHfGrYXua5eJus6DyRkOkLWqGfqGhK0U3A7YhQ++t5KL7q19IkBZPW9TX+0JDO/RNAMF0toND8tZBcuEnHO1gLgxE2qJm6Bca2qFvBnCHtJ0YupBcevCedR76BQUvLOrHDdR69HEYp05vtBnrBu3QNwO2keRC2hh69yyP6KDoBQXpY4Ze+srXUPz2zEabsW7QDn0TYFtVinKH7jeCE86hG2yn69cP6ONeLsRx+3Kj6RW0Q98M2EYMXU5bpIQAvC9IV2vqPPQLiaCXSx9eb9ftT7t6BD2CbhNgO6Utik3LNICC1RVDJ2t1WN/5PmCx21xLLhcIdh8XFvktmbcqNEPfDNhGlaIi8GsYoAWrK4ZuPfo4yse+BoMPWtjCD3I/gbT6NCuLj3LcwgxdO/TNgG0ouTCGXuiKoRvz5wEApNEIr62xvuCbsO2wId/9gm2Qvqod+iZAkIe+DRwSrxQVDL0Lh76wCAAg9Sb71/P6y8FsUfBNuO+GfG+D9FXt0BNgHn8W5olTG20Gg+/ICaVb3yEJycVkDL2VX3JpY+jAlj5u9w3kTTjvhlxvovCtR3t6vwdN2vpQ2+8RtEOPA6Uof/4Yiv/nmxttCYN8A/YT41kHEElyocUugqK2DWNpha3ZaAbf38LsrF9AbBu0y0B0+csPofzAV3tLqrZBcoF26DEwzszBWF4FqTfSf/kCIPRQbOGbEYDE0A2WnZIzKGosLAVf1AOHvpUzHPoClAK2A1phdQS5T0S8GGx5tUeGQUpf1Qx9W8H6wTMA0DcOPfRQbHGGLvLQDQO0i6CoMb8o/h9i6FpyWV84DggAWikDyJ+6SKsV9vq1eq8s2xZ98bVDj4H1g6cB+MG0PtCs5aj8lu/n4oUll7waLNfPAT/2wJGRoRtn5mA+81wuG7Yj+AbMHTocF2RpBdb3nsy0juzQre89CXK+BxOHeCxqC5/StEOPgXH6HKhpMOfZRVCuZ9hGkouch87SFvNdf7K8yrJkot/PeP2KD30LpQe+msuGbQn/eREO3XZQeOQxlO/9YqbTJbXY8Hnj/ArKn3kAhW9/t3vbHM3Qtx9cF8T1QAfZzL6+kF22oeQCs8u0Rc8N2geE1s/2MBPb7irTZruBSyxCcnFZ7xTia+vK6/hzhs1Tz4OgN9KLaNK2hdNXtUOPwr/pvKH+cejEdSFuvy3O0EVzLs7QPS9XZgpxPcA0gShLz8rOXLerXPhth1ZUcnHEqShTPMS/D4xFJrUQKbCdG/J9tEVZunboEfAjPu0jhw7HDfqDe/1zI5o/eCasbVLKeqd08bC0lf4D+Ryq6/lrFMLrZ90cHDcU2LO++wTQ6IFz6QMYs2dhPH+2p2uK58fPciGOG5wqs8hnkZNoT57DkHTZP89RL6EdehSCoQ8C6A+HThwn6A/eJwydrNVRvecLqNz7gPiecXYelaPHYB4/kX/hSOk/gHw6uueB+g2+AICapr9+RsnFcUUJO1ldQ+VzX0L1k/dlt6cPUfryQyh95Wu9XbQtKOoI55yHoXP04jkkjif9Xzv0bQERpR/mDL0P2JgbMPR+0dDNp06y/8gata81E7uLh4U7XJmht3IwdM9n6P51o6WcM0pdl5Wwu55wVmaPWe1GgdgOSLO38QF+AqJliaG7fcjQt2guunboEXA26A3U2Nd9wNDhuKDFIvt/nzB0nqvv7hoT3yO9aCLmeUw/JySQmXIwdOK6TEP3KxbhXz+ZpSmtw5mc7YTkGuJXoW5qeF7vHRu/XuWi+JrkYOjRbKRepBATLbn0OepNmL5j6Rk4GywVQcvFrhm68ezzIAvn038xCZ4HQqlgmr3KQydzCzCeyzlb0XVhPXVC2Bd832v/Xla7XI/JLYBg6LmKi7iGXvQllxLfEHMEReFnb0jHdKvX991GwHV7MxEqsiYQTJyC4+Rk6IHz9gaqvUkhlus5tOTSf6jc9yVU7/kCyErvyoNFUKdggZbLXTP0yn1fRumfv55/AX7j9VhyqX30U6h97B9zrWcsLoE0WwAiTErM7uzCRp6dAgQBzTxOx9fQ+RpBDCJrUNQJbJCcgDl7JrtNfQbi9r43OHeUfAOVg6Iki3TmB/+9ahnOFZex13d7WtYMvb/BMyzIWg9lEa6hFwqgle4dOpqtYMBCHvAHpNDboCh3ukYexyQ7Acme3kguLgtmAiKgmU9y8cTUIwAAdzBZg6I85c4JSy49GY230fA8EKfH74PnofMagFBQNBtD9wZqWL3xV+C8YB97fZfPokw0NEPvR/BBws3eBS7FEbRo9cShE9uBsXA+t/4ngkyl3jJ0b5hl8eSSDmTHJqdRimHMXaQthhh6F2mLPCgaZehZH+QEhp6JbfYrXBfoJoAdA+E0LROwTBDHDb6XqbAokN7Ai5R6ydC1Q+8/CCfXaPVuUSG5+Ay90cVNRCljdn4/i1zgN57vmIylFRjPPQ9QCvOJp/M7Tz87JY9DDzGdOMmlm03HdVnZP9Bd2qLrslTFQlhDzyIHUUpDDB2uzz676ALZTyB8vmYvM6f4Bmia7Dp1k7bo36NUdugtG+aTOeMXWnLpb/DASy8zUcRNV7BAy6XugqLSDSw3i8pkDz/C+g6p+NC3UP37ozBmz6D6D/8E86mcOd++Bm6emcsdKAQQcgZCkuhSQ6eRoGh3DJ1nueTQ0GUWZzsiQ4ZWSr0PJm4E1qP7oOuyLCXDYCy9i8IicR8Ih95E5dP/H6qfyhc3Izoo2t/gDJ30snLPttkNaZps/ZadXy6RbmC5nWsm+I5X3NSrayAtG9bTz7Kv88QPKAVpttj7BLI7YC4DERJ+bS+GWXuB5BKkLWZ3noGG7ksuluXbm8WhB3+XZblIRTNbgKEL5tzD1EXiuMyRA4Bp+qeAnAzdvz9FTnu9Ie57/lxkgmbofQ5+JO81Q5dYHaE0P4MJMfTFfPb48QFa9R26/33Rsz3Pje04IJ4n1sxcPcmdeLEQYei9SFuUJBfDYCwtZ6VoiKFLmq4ynLDmKuIZW4GhS3JST3vVcKkLYJ+dl5eh0/B9UC7COLcgfpyrYZpcR6ALi/oQnGH4Dt04O9/9hBPblgJpvu7ayqfRhxl6TsnFjw/w/tBiPT+HPM/pJLpmZs2bD6EoFGKLNXqVtggAKFj5ApBcuuGVoqbJGHuWzUtydEQKitJyfzF08+Sp7PbIG3EvnVuEoSNn2iJxA4YOsGtuPXE8+HkOh04cN9jge5AtRuYWQBaX0n/xAmJLOfTyZx5A8avdzQElrYChd1V6Lr2OFgtdMPSw5CK+H/l5rjUFQ88nuaBoRQqLeiC5uFLaIvxNI2dQFIYZfIamyZx6lqBoiKE7gdTUTwx9rYHKxz+LwnefyPY6+Tr08L0Qxw02ZF9yEfdF1tJ/yaF7YyNhopCLoXtBgVkPNrHK57+C8hcf7HqdXiKTQ7/jjjvwohe9CI8//jgA4Pjx43jLW96C66+/Hm95y1vw9NNPr4eNyYg4dNJqdd2bgth24ARKvWHo7sROljOfpw1s1Pkm/DwTuIxT8Vl/Xg29WIjPQ++C/ZAIQ6fFQq6HV6S98fx9y/QdTE4N3XaCoplKmTn0PuipTRoNtrlnPam568TQXVcMp+CSS57Sf9YCIugTVP/5/wsrv/U2rP7qL7C18jyTbtBCoxdBUbJaB1lZ63qdXkLZoX/3u9/Ff/zHf2Dv3r3ie0eOHMGhQ4dw//3349ChQ7j55pvXxcgk8Cb4IhPFdbsPdthOEEjrJm2OrwXAm9gJQmm+41mzCUpIUErd9vMeMPSMLXmJJLmEg6Lda+jw3BAzQ7GYUy/1giEZ4JKLmS0eEmXojt+Xnn8WfcDS+bXJ6qBCbZh7mIseDooaYcklZ1CUrWWCDg0EMmGOUzPxm9xRoDdB0WarP3o9SVBy6K1WC7feeiuOHDkC4ueGzs3NYWZmBlNTUwCAqakpzMzMYH5+fv2sjcKNMHSeV9sFiO0EToCnuuVk/fwGdid2Asino5Nmi50UZD2R5+cS0p3kIqbK5JRc+ACKyPe7y0P3wpJL0QLysDG/yZeosDVNxhy7Yeguc1aix0wPmC1ZWOqq0ZfY7LJuLqGNuIfxANcFzEDmYpJL9qAoiTp0H+KZzMnQecO2rhm6nynWbw69fehiDG6//Xa86U1vwr59+8T3ZmdnMTExAdM/HpumiV27dmF2dhajo6PKBoyNDWQ0OUCpaMADYDSaGB8fRMPzUDQJBsYHc6/ZpB7IQAUD44PwnAZaAIbLJswMa477v+uUTTgAhl98CVqfB4ZadVgZbWuBgtYq2DkxDH6oNl5wMeiJWRi7d8JwHeX3K+z6gQEHQG1iBxwAO4bLMDLY5ZQtOACKgxV48wti3VaBfR6lgoHBjO+Tr9EkAKmWxOtbA1XQhaVMnymlFE3PQ3WwAmv/BJqmgeFLJ2D/exHEgLJt7vyc+H+lwDpAugULA2ODcACMDpZgjOa/1wCg8T/+EgBQ/tN3Z3odv17uWQs2gGrBwHCGa+QZLrhLHK4UMt3fnVAgAKkUMT4+iFalBNpsgvrSlOW5wu40NA0CUim0fe7U89AEULMIChmfySYhIJUivIKJStHEUBfvmbZsND0PaHnYuaMKYpnpL0qwq5dIdejf/va38Z3vfAc33XRTT/8wx9zcCjwvuxY5Pj6I5loLBQCwHZw9tYABx0Wr3sL5s/knhNfqTbgUOH92GWSlhQEAS3PLcBTXHB8fxFn/dwvzKygDmHcIqpUy1k6cQTOjbZXzqyCWhaW5FQwQAkIp6i86APuG61H+p3+Beeq0+HvKds0toQxg2SWoAFg4twyvVFO2qbhURwlA0wNM2xHrllcaKABormX7DGTbai0bruOJ15dBYK41lN6jgOtiEMBaw0HLIcC7fhUoFFAhBrDaULZtVGLgjaU1UNOAZRhYrjvsuj2/CM/tLq+AP85Z3p98vayzS6gAqC+tYTHDGsbcEvgnvjS/onx/p9nlNFqglTLOn11G2fVgNGwYDusp7zZayu+z2nLgOTT2sxooWKgvriq/X369qo0WaKUEwzDRWq5nul5RkOVVcCo6d/Ic6EA18xry55gFhkESiXDq3fjwww/jqaeewnXXXYeDBw/i+eefx9vf/nacOHECp0+fhusfYV3XxZkzZ7Bnz57MBuaFfLQna3WmU3ebjiQFRUUAJU/gEZA6NxZAR4fzZbo0m0FknhdalIpMCywV82nojRbT5XnBRua0xaBhWFzpf1ZNPrx2VHLJERSVpx4BQWC0WMimx0fz0B0XsCypgnXjUxd5cDCz/CMHRXsZC3AcERQVQejcGjqJ/VHeQLnIkbcyBsdjIPuEfpJdUh36r//6r+PBBx/EsWPHcOzYMezevRsf/ehH8YY3vAGTk5M4evQoAODo0aOYnJzMJLd0DYnZk1U/2sw/KEphzKZPliErqyDLgYZJpKAoeCVq3j7MLYcFYCwT3ugIjHPzMI+fzJQdQZqtwKGbkkMHWL/2ZivTesbpc2yCeqkQOLzMGrrvdE0jtrAoz6ZKFpeAtYZINxTI6oR9+wAElbA+aGaHzjtvWmxz5g6hiwpWuC6M0+dC63eF3Bp6JODbI4jBIgD715M19Px56CEUi/myXPyALc0aHI+D1BCQrK4Fn+kGo6vz4i233IKPf/zjuP766/Hxj38c73vf+3pllxpkZ7JaZ//xbx7z5Cxqf/sPMM7Oxb1SoPxP/4Ly0a+wLygFpKAoTJM5hZxMjDgOe/gJgTuxE8Zag/VhOdPZptAaPCgKhBk6AJSKjF2r3pwtG7W/vgfF/5gBLZVyl/7zh5aaRvi1XeShV/7hn1D6l2+Eu+zBPwVIDZ6U7OMnBDOsa9JiMVMwjdq8kKjErjF3CF30mCk++C3U/voeGGfmejMnU2S59AtDD7JcKC/k8jxQ+CdBVWZMkx165o3ZRzDFyux6E5MZevGbj6D6N//ACMkGQykoKuPYsWPi/wcOHMA999zTU4Mywc9kIJ4nDVzwMy38/FCS0omRrNaDm8x1Wam/PCm+WMif227brOMcAPvql4OWiqh8/iuZJBzSbAlphJoGCCSGXgokIeFkOq0lbUy0VAwcXp5KUcNgTDquP0YOh07qDXZycCMOnW9eLRsoJ6RuRsH/ftQhZHUE0nxMYjsAIeyadZHOapxjWWDG3CK8sZHMr48ib5ZLSGbrcaVoSHJx2DNFy0XWFbXlABWFAKLrtZ2wOLqWXLLWI8RAfobNk7NM7q03EutFLhQ2f6VoMTIEgTt0zsTSPjjbDhhKKzhiczA2kFNDbznCPhACumPIt0nR4VEKyJILv8G5g+ffV+0HH+o25wjHmfnm5sUj/gYTNHnKX1hEHH8cmuuJXiAA8s0V5ZKLGSO52BnYPh92Ui6JSlHaJUMXqaKNRm+0V6Gh5++Y2UuGHpZcDOF4RWdU1c9R7uUSRSEfQ+dtJajVveQS0tDFcPSNj6lsaodOPC/IM+YfMHcm/OuUh5c4jngwxQcScei5g19SXxgAoFwbVnWgzVaIkbdp6PwhUe0HL93Exvz5gAlnZNTioY1q8N3koTsO21wj+ceiuCsTs45n6CKHWdWBOZJD55WiUo/1PE5F7u3dlUN3HJCF80GBTdZ7NK5LpoxmS0wEy2aXXClqshMvpHtY2aF3CIqWMjB0x4F3ljX1Yvet0TVDN87Oi8pcOXqlfD/4n916YFM7dEgOXeySnhv6OpUtthzhyInTztBRLOaWXEKdG4GAESs6PMECJIZOTSOYZF/KloUj38TO/ou6aJ/rdzI0IhtCztJ/Silj6Pwzi5b+A5mKu5I0dMH2FU9copdLqegPuOAaehdBUW7DWkNUOHNZLgsK//EYah/5FJOpkKNSNIWh1z78vzBw18czrckGgkgMPdRcizN0tWuWVFgEZNPQSw98Fa3/8VfMAfubDS0Vg5hbRhjPn0XtI/8bpf/zTZYpVpPSFRWfw8Ij30Pto58C7dE4yZB9PV/xQsKjgeTCP2Befs6ddBpDt+2AsYnxWRHJpUcMXdzoih+kqOj0mTg1jIDpIKyhK8F/6OtvvA71//sN4oHJzKj53M/IhpB7pqhvl3i/slTSheSCGMkFgDq7sx1Q03fgfrdFagUMPdfJjZ9iJIYu7MoAslYHcRwYC4vC1mx2+LIU0K6hex6MPA6Pf/78+ZGKbYKh0Yp2dnDoyNCwzTzFZuYaC+f9gLsJ95K9bNB5jjTi0HD0UiGkmavaROoNPyaT+c+nYnM7dFeWXMKauWDVnZyLn9Uiou+8+ZLMLPIGYNDO0ANGrMamAofOJRcz6CMC2aGraeiEj1CrVZldGTcYsY7jiWZXgMSI8/Zy8R9y0Qo4dP15UDRDHMNLSlvkzdZUj8Z+xkbB8odEO6ysnRA/lTHnJCWwoL2QXJIcVyfw+3zRH5SeNbDJP6Nyse19mM89H3yRpQEZf34kyUVASC6KJwnPa4uBCJOKReXBM9SfnWuc9VuSmCacyy8FkHOebihgXwp1QVW+r/i1J7336JvaoRPPC/RM34ETStk0cxXJxXGCTbLlxB/Vc6ZIAfA7N8oMPaNmzR16WZJcZIbOsz6UGTo/gfgPXMYNRoDniidp6FmPktyh8PcRI7lkkb1IAkMPJBd1rZPyIJpg6H4cI+dcUZGrv7IaOHQ5/XZBrYEbl1jE/ZszD52WSm0M3ZQdXZbPktsQJ7nwjVm1b4xHAZKUh+4PnlF4z94Qc+imn11ELRN0ZAjuzh0oPPYkjOfTa1VCkK4HLRVBK1Lmlep9RSnLztMOPQLqxXdE9LzgYevgPGVmQhxbkly6b98KIJzTDgSMNiNDh/8w0FoF3rBU8iucnapD9xm6nIUAZGfUPnuKavB5JRfKg9L8624ll4S0xcySi2DoBRD4wWfeeIpnzGSF74gNiaFzycs4t4CBuz8B89nZ9HUi9xDxvGy5+lxyKbUzdOvEqeCLLNed6/j8+ZGfI5+UEBWGTilz2IkMPcM94QdWzWfZQBiecupccRnMU6dR+5t/gDG3kPTqdkQd+vAQPP8UkImhJwR8u8XmduhuwNBDD6njBiXRnW5y+UZuOQmSS86qNPg3XBxDV2U9nEX5Drg+dR0ab3id9AcIs1U1yOpGHjiRtphVcglnuZAug6JtWRZxQdE8+eNthUVZg6IOq/Kt+S1b/a8BP3CeazSez6wbzaCXthewdgAg59O7L8YGQbNsMIKhF9sYujynNsumRSOEISR5CYausJ7YkDuU/gNqgXJeaOjLSM4lrDVJ6yeuQuOnXw0A2XqayxtpqYjmtT+Ctf/6c6CWpXxfEY+ui9wCbHaH7lEx/Fe+mKzQKF1ykXd4YttBD5Ko5CJPXcmClsPav/oQDkbVAXsR6aBSai+uMQ11hxzROBHNUlGF5zt0WbKR++hk7eUSdYxxDD1Lz5qEtMXMkovNClHoQNC4TFy7Qj6GLn9WvMgoOnNT6b1KDj1zwFH+mzEMHc2WxKgzbFp2lDDEBEVVrllC6waBLBuzdC96O4ZBR0d8Gy24F+9m62Qp9PNkhl5iPZVq1Wwn+U4B3y6xyR26f3SxzPBD6rpKkos8Wo71u+aSSyQoCuRoEOVParFi0hZVN4ckLVhGHoYuaZyUkBwaui+5yBuUXEqedYOIHsPlDTVHALJtI/QRBFizSC5WuJOeKTP0/JILgLZCLJ5TruRgpM9MzJvN2isFXEOXrr/f59vjmxiXw1bX0u8TNyLphbJc/OcoE0PvEBSF2mYjb6DOgUtCzFjEo7JMe3LbN1IA2WJtXnIVbLfY1A5d5KqaZkRykYKiHTV06TW2LUkuMZWKWR26NE9UIGvetxtjTwTUMNTXi2qc3KashUVOlKFHTjBZ89Ajjig2OyWL7JW0EWYtCHIctnHJDl0wdCtfOqvnigElAHuvhFLmSLmzU8haktl4IAll2JhFW4Ni+H04jIjwUwlvSlb78CdReOSxzmsKhu53K40JiqpszCTVocfIrEmQHfoVl4V/ljXtN7IeHZJObpkYOl03DT17RUM/wXfo1AwzdOJJGnon5xKd6h7D7MQRO2NamOF3f6T+w8a+mZERJzDNEMwMDjlOW84i2ch28W6L8CUu0VLXyi7hRK9tTHZKpg01IW0RBhtJp7oW5Qy9WhE9g6jE0JUCfBEQ14M3MYbG618D0mrBPHEKpX/9d2YzL45TqfyNY+gZJRdqGH4ltD8fVZqAJTaxlsMm8zRbIMudtWZRiMVPuPJ9VrDY56HE0P10xCQWa/GJUQrX33NBdu/EytR18MbDnWAz13Eg2GzW3vpmuLt3BWtlaRGiJZcE8FxVK8rQ3UBOUcxyAR8xBoQZbJabR17bD3DJ+iuATA40janwnylXnjphBiXWzjGCjkZL//npJjI4WglR1hYTzMzTVKutUhQZmZTjsDUICTZmkcFh5RtB57CUT++iCbiX7Qvysz1P3I8qDka+H7ltmWQp12WffbEY7oLonw68QYmhNzg5SllfBEXbC4tgGP6ppvugqFhX4ZkkLquZiDpzAKyvS8HKyNDZ3/RGR8JV4MWC8pzTTlWw3WJzO3TXY7mqhhEquiItW8q86MTQI0HRGMmljaG3bCWWwSPnXnSSCe8RrQJVDV2V8XO75RMIt2etoV5EwpscyUFRbmuxGGrYpYRUySVb6mjHjbCQgUnZwbAGvjHTbjX0SMFMKPUzS1C0W4bOh2hHJEV+OqCShi7sSTuRRCS9kORiGCx3X4lVdw6KihOmyn3v36tJYENismjo3LYuWjNTneXSBupR5jgMEjhdH6GmRxkYeqzEEWHolX+8H+X7v5pqHx+4EWXoNIsD9jwm0XT48GlGyYX6jFPANEDqDQzc9XewHvuB0jJykyMgIrnwmEEGh07bJJf2Hiy5mnPFbIS0VFRbi1LQtYZgYWJj7pKhh3qdAKH2C+J+VHEwjgvPr1L0RobYGpnSFv3AdiToH5VciG0HlchpDJ13p5QHXHCYBlAwM2W5JEsu/n2nsjnwezUBtFTMxdC7kgU9um5B0c2rocvON+oAJIfeSY4IpS227OCIZyUzdOP8EjyFzdVYXmUsLtqnwzTVe7lEH/7YP6QumRBp+ID8emNlDcR2YJxTLLDgG4Oc9ihr6ACzSfXuapNcIgzdMnOl5MU9NKps3zg3Dyyvwt3H8paFpswDfpyhZ2VbrguUpZ7Z4hrSTAydOC7cy/ahfs0rAgkt0zXy7y2JoVPpb3sxDD0tZiA2ZrHpSddfMHSF0y3tfDIVko4CMSKuB1IqJP9CqajerRSdMqiyZbnowqIo+IdptDv0EENXCIqKYI0jrckR1dBbdmj0XRLIyhpj59GH3TSypS12klv4elkZugRqGoIRct2/I3i+uWkE0oHUBwc5GHqaQ4dpZYphJJb+A8q9tHmfD+fAJQBkycVf07JEm4lMiMxMlat1s2jovDe7t3s8V392EpFcAobud4AUDN0JWjKkauhRySXC0C1VDT0tKOqfapQZeifJpdSTGgdBFFRkS62hx8D/0Jk2F34bvC0p+73kD53wiUJFiwU0eH6onFYWYeikZQM0/SEmq2vt+jmQLQipkq9qZGD8CQydMxRDpWJOMBQzmP3pylkuPuPrSkOP2GiZ6jIV0DkoKvfS7uDYzR88A3LRLtBB1mohlqHH2J6G6KlLpDC6XpDzrVpYFMn3Js2W+uAG1wM1TKlhmf83ueRSKbPN37ZF07TUrJ6k1hLwn9OCGkNPLSwyw89kR3he+KQQAS0rDlr3/M/Hddt8BADRX4bU02NRpNPwji6xeR16Lxh6i/VaYe1RbRERD0EcZ1k1pCpDN1ZWw/nLPrJp3ukMPdN6TgxbMc3ggVVx6PI0ILn0340w9AyZLjTqhKLH2axDfTt0s6M+QycLSxj404/GN2eyHZjPnYbx4hcES/o6tWiIljP7qe0zFQxd6gevMPibuMHmzDfR8pf/FbW/VOxhzrXlaFC02WItdYsFlpXSkoKiqRp6ci8XGFkYekqWC+/F36OgqMoGWvz6t1H9m3vEyaZtHX9jHLj9b1F86FudF9OSSwykTIaojECyaOj8xvW76bXtnHIAxmbdGVXYJ1lZCze/58gwLUUpvSlLYZDrtgWQYRhCn1Zz6BL7jUtbLOSRXDqU/gOsEjgLQ+eZJHHats/2jZUVEEphLC61/Qqxbca2pMIR99KLsPq2n4U3sROAdHLL0eUwdL8aPLBMA8kFSGeN8uxO6TNVOmWhk+TiDyUnRMwCEBp6yuZF1+rMJlFYFJZcVBl6kKXUIX5kmUqbaWocStGhGwtLMM4vJ5IsuQmf9WRKW16qK0Xb4Uq7eEKWS2oVpR0wdN7LpU1jlgJOQfVpCkNv2SzINFhr/5mZQXJJYRcAmEPOJLmEI5WynktW19JH9kkOXZ5Y1JblkiUX3XFDU3vaP4NsDJ24HTZCnrfP7YtzyEKDD7cg8PzeHwCCQdFZM12inylnanKHUHSWXajniWENbI0cj7HnMYcZx9D5iEMe+OW2pH0Ga41Qf/CQ4+slQ4d/j6hs8p4HEiUx8jqlUjCNqhNaNnt+PDe+cltqA+DujMl5D9mkJZc2UDmTwUhw6OVSetpioSBu3HjJRWLoXGfsoKFTSmGcmQMAeDEMneV9q6Ytuuk7eSYJx2kfGiA7dCB9NFdIcpHygUUeuqKGTmnwENlOuK90m40mWy8t4CT3RkmSqrgj4L3b48r34wrMouZnYeiS7SLlk68j5aET2xFfd2SNcQVi/E/FkYg4uG4obVHW0EWPEv/kKmxJ2bzoaj3s0OVsMcMELShuzCoFdaqbvBtz6pagWi0qKs9bdipDT920tOQSAynaLIYO8IeBz2pMcehsRJwVjLSKk1x4ub4iQ3e/9ghqf/cZ9veHBtp/ITNDT9HQszTncrx2JxB5v6myiyy5yCPsommLKTYVv/owBj/4P5kz9yc7ic0mQfbq9ACTtToG/vSjbDhDEouCvxG5XnCqiXv4eDvbTg6F94VRYOi1//n3KDz8n+yLqOQi96S3nSC7RMGhJ030UQHhJwV+0hKFRU2JofuxpSySi7wxy9fPNACroHaiSSksYuupyXCxJE1C0KArRXaRJam4U7P0XKVNECOeXxC5Dti8Dl3exfkFFgN46372SqGjHMFHxImjJZ+VGfolIvQ6lYZf3iPfhzcyhPoNPy1ymEPIIpF0kg44Mm0QTntZfTT+kJK6SGQ5QtLQeWBVlMin2FTigSPbYU2wLCt4KKIpYQqVgWS1DuK6KMw8kcrQCaXBHNMYhx503ezE0BWzXCgFWVxiee1SyqdAqLDIDgrROjp0nu8dOJHVt/8i7Bfuz9bXh2drSDnUpNkKWjRzhs67EaY54yhD5/36Ab+Pjql+ovFfkwRlGc5LIUXKDD0IWMdtpO6+PVj7pTfCufSidE1eSy4xkHONeTk2d+iUMqaQJkfwEXE+Q0/azUXJchpDb7bgPXkS9otfAGfy8tgPTZTaqyDtZgQy9XIJBdKk14e+XFVl6MwZUEKYTllvsNQ0XjSTpee7zQZHUMuKD2aqVAb6kob15Am/G2SSQ/e/z6WWTpJLp/iFKkP3PD+drRlO+eSQi7NsB96gz9A7tHTl3Snlz9LbNQY6NKDeaE1qQUAjDj0/Q49o6EB4mIplMVatktbHX5ME1UB5Wh66v3mlsmp+fVp2vDMmBO5lF7P1Uh26B6ollwjEsSwo/Zd1LFopp8oRgqEXrWBiUdxR3TJDkgtJuCGt4ycBz4PrD6GNhamYbgX4D51CpWiW5lxtaYv+Q82d5nJKcZEbOe77zcZIvcFu5ugUozR4HqjtM3R5cLUEqlIJyWWSRpONcEvpAxI8oJ2Cop0YoiJD5yeBeiMcf+DrcDv9YeWiba2Khh69VpkynrwwEZIZaERDh4qGTimwVm936FyyJCRoZpV2zeSEhyTIqaxJGwQ/ESlILqmsOk1ykdZLZ+jrV1i0KUv/K/d8ATYPLMqSi2mC+g6GVkoAIZ2LIfjMT8vvbe0lTBq3LF9y8T+ohIfGfPpZoFyCe9Hu2J8ze80MkosbHjIdA5pJcklm6LRUBC1Q0YMm2aYIy/SDjKTuszMhj3TOLhLgDL1QYCX+cTe6SjMm6TMxllbg7twR/3tc4uBl9jEMXQwL7+AIVBm6SAmtN+KZP98Aoz1UlCSXGPksU1sJ/1pzhu4PtwhlufgZW+w1XnKrg2aL9SiJOHRqBp8ptYJrRqMtMWQoaOjUTz+tfOrz8EaG0Xz9qxPXIWnNubj9HRCqEZBbYkeh5NC15BICWVkDPXWGfRFx6IJ1VMqpjIUVZ1hiIg5x2jVmgOt1TsBiEhgBWauDjAx2/rCyMHSV0v8srCymUlRsYIWC2uDjiFPipyDm0EtSKmPyezQWz0vreUHaYqEQfyJRkVx45bA4OSQ8xGbAiEP/ynAVHEEOht42MQoINhhRoVlhhT2d1hVB0ZjNOUuvfYmhkxYjNMTzguKwQoHNPnXdwPElbGChzDIZUgGaMkNXyXIxWVzLOLeQPFRbpVupygAbzws25mar46lZNH/r5Hd0lksYtFgIotKGEUguphEwTgWHLjrO8WNXo5kYwVYJipKW096MK2p7BhalVvqfoR96nJ5oBHKVUqApKhv4uf6k3vQZuqQJJ5k8Hzh04nnMSVgm+/txKWEqQVE/ldS99KLArhi0SS4d89A7ZbkobDJA0DKi3ozPTuEOnQeVC0x66sj87XiGDtNQb13supKG7rd+5VO2/FMhLVhCXhTB7oT3Kxx6VHKRsqGUpDOgc/tjH6LRV8uGMb8YT7Li6gmi60RbH8QhNDyns1wiNrROLJ1qhh5GdKybHEmXGDrtxIZ5HrRhiCIR1Juxkgs73jnpWS62DVJIUbGM3jfnyjKCrk1ykdmTQkvYNpbpNwcj9QbAN1Ggo6wkO3SuoYNr6HE3egaG7ryQjRlLTOkTmnWHoGjcsPA2mzjb7Nzoi9vMrlGzbd0g79z/WcFizqoDi6VJefJy5W4KQhlUvCKUvxd+D0vPGa+pSPoMkhw6lZu4cZkqlaGnNOcCRNoiadnsdB2TbqsknZlGKG0zDm3sXUHC6Si76KBoGLL+Rg0jPGXcChw6DDOZvVK/n7ppBtkxSQzdNJkWz1ldQpYLsR2gU6tOIFMhEOHVfB2gmodOPRquLpTtgc/KlBh6xNn5x3wuuUSdivnUSdTu+Fi4CnIh7NBhO6CmCVoqxWurVjpD507A27kD3o7hYJOOQjB0nzl3Slvs5NAJ8dv6qjF0QEoJjctD55JLoaDM0EUbWR9y5W4qpIIbWigATVt8Rjy5QB6CLNIpEyUX/4RRiUoucQw95ZopVIryKWWcYBjzi+2/o3LSiqRtxv5KZNPumP8fcehk4TwGPvTXIBESs6FB0Xe84x149tlnYRgGqtUq/uAP/gCTk5M4fvw4Dh8+jMXFRYyMjGB6ehr79+9fF0NliOntQLiXiyy5lEudJRcp/Y5PJCeUJlaBkXoj+NCTNHTeG6aT7Vkkl5Tm/AACySWtL3dM7jIgOYGCxbTbtDQ87kz4Q2+aIE1WFi0yiwBx3Y25BRjLqyBrDdBhaeMU75EHRS00f/QVscxGOK6ODD0IpNV/9vXJzoAHIVXSFjt06WM/T+9NIjt80WclVnLx33fRSu8bHp3dyaESkOZwvUCqLBUE0wUgNkN78nK2lkFAi0UUHvsB+5xjlhP9k+IkF8HQ/c1UUUNPC4rKPZuMhfOB3Ca9R6BzLARAei/zZkqvIXmtiEM3z86DNJowFhbhjg6zX/LouhUWKTn06elpDA4OAgC+9KUv4T3veQ8+85nP4MiRIzh06BDe/OY347Of/SxuvvlmfOxjH1sXQ0OQnaachy4d74Sem3Rzyy06JTaXGJRznKD0P1FycUDkzSYOXAZSGYyQlHUTWs8MbOp043L9NinLpeC3/0yL9ouH3r91TANk1Z+fKksu/Bpx5yg5ttBgEer5hUUm6OhwrLNQ6n/NN1mDiAZasb/GnYSShm4CHXyj0hi6GIYebs4VCYpyhq4UFI2v+iVevNMNDI+c1goFJl/INgBAuQT76pcDAMwnnm57PzJIvQGQ9qAoNQ0py6XQcQ2xlmpQVHq24xi6kuQCpA49adPXO5yaacnPa+ekxd905Ht3w4Oi3JkDwMrKCgghmJubw8zMDKampgAAU1NTmJmZwfz8/LoYKiN0LJebcxnhLJdOckSoyZTshDulLXJH1ElySWHoME0m9ag0wlepFJV6gXSEmCcalVzkoKgC44wwdBgGyArr/xIKinJ2xP+V17WdoA+47bLrGdOXhENlQo2SEwAkySWZofO10pidUsxBfpBX2xm60NB5UJRXzHZYlyYERamqhh7NVOKSIx+bGBcHSoljkHqTTWKKXn+5iZsIJCtmuXSsA4hUOMuSBkfaKDuONIaeQXKJpkGKU4R83TZacgGA9773vXjooYdAKcVHPvIRzM7OYmJiAqZ/U5imiV27dmF2dhajo6PrYixHSEMnUtBFZus+W0wMzsn6WojxJ6ctkmZ6UDTdofOHLrlpUOlLD7G/p/DBi/eeopvSJIYupy26brombLNRZcIBm2bgCCSGjo4M3WFaY6Mp2E/Hk4il4Aj4Bpl26olUiqZmudjJ11XuRlj760+hMXUQ7r694V8KMXTu0JM1dBQt0ILZuX7CSWCeqhp69F7gMgG3L9ahd5a9SKMBUi23fZ8WLBDeTlc11VPFEcuB5YIVDrSLdVQZeuc5sySD5IIyu5blLz0E97En4Y77vlC+d/thpugHPvABAMC9996LD37wg7jxxht7YsDYWEwDqxQ4o4Pgl2d0fBDU9GADKNfK8NbWQAGM7dsJ5/tluNTD+Phg2xqe4aIFYHCkBmPPDnBVtzJYwVDk9+3BClzXFUdZQil27hwAkScbuR6argdSsGL/nrB9qAIHwM4dNZBoAMlH89wcY7GeF2tPeL2qv14VJG5CEn+/p1kHyKEdNZjSevz1leEqYAGuF3+9OGyLwC0WML5riH192V64zz0PABjZOwoyMoQmgIFKAdb4IOySBRfAjoEiDH/dpucC1TJoo4mhsgUbwMBIDVbC36UVM7RmHNznSrAB7Ng5KP5O7HVYHUQLgCm6LTrYOTYAIh2BnYrF7i/LxPh4cvfCZqUEYgA1w0VrcRlDjbU2+5xKQdyrxUYDFMCIZCNt2WgCMP2NbWzPKOxaGXRxOfFzcB5lK45NDINIEoe7owYbwOhwpeM1oMsGu57DVVjjg3B3DsEGUKMu+6wmRtpe7zVW0AIwXCuE7h+OFqGg5WKbzd7PHgSaNmrjg+JzHCyaiZ8jANiVAlxCxD0Wew2Gq+K6Gjt3gJxvv17e6hJaAGCaHe/p1kAFdG4x+XqXTMhbUKVWTnwmqVtFE+zEZT17CqWdw3ABDEr3boN6qA6wza+TXXmQuVL0hhtuwM0334zdu3fj9OnTcF0XpmnCdV2cOXMGe/bENKTqgLm5FXgKE4BkWC0XvFZrfrEOY6WJKoB6y4XhASaAcystFJsOio6Hs2eX29Ygc0sYALC02oKz3AS/rGtNB63I7xdtD0XbgVdvCo3q3JmlMINo+GuUCrF/j6NQd1AGMHfmPGg1vuKsutYEHAeG48baE16v5a+3BFpPZnVjPrNaWrPhSOsV6jbKANYcCuJQFFp2R/tLS2uwLEv8jnnRHvBtZL7hgi6sYhDA6lIdrbPLKC3XUQSweG4Z7jB7Ta3RAq2UYQJYnl9GGcBK3Yad9HebLQwCWFlcTfwda3ENFQDzi2ugZrL9xnIDNQC00QJ34edmF0Inq+L5OkoAYJodr0UFAFYbWDk1jyqAlYV2+woLq+C81V1chgFgYakBj/+e62IQAF1rgAA4t9RA2QOMegtLCX97h/9ZnlusA2ag71qrLVQALJxbhmckx3LI0goGEFxzs+mhCqBxegEFAPMrTVCE/7ax3EINwNLcSuj+EdditYFCIebeN0tAtQScXQYch90b88sd7+nicgNFg3R+jhqOuK52rQpz9izOnj4feibNuRV2b5pGx7XKIDDXGom/U/DvUY56y8Vih/WEi27aaJ5ZgAVgZWGF3RuUYtCjWGvYGAY62pUEwyCJRDiV96+urmJ2NqjEOnbsGIaHhzE2NobJyUkcPXoUAHD06FFMTk6uu9wCxGS58CAFr0rjGS4dNXR1yYUHYEIBw4gGLo7uWSSXJPh9Y4hCAYJyqhqf95gYFLWU0hZZ8VTAA9xL9gYZLx0kFzn3nrTsQGuUB3UngUsuKqX/adkD0eZcaE9LU2rOBfjtYF2hk8bKVf519yrleMlFCiJTnoefos1Tx2GyV7QrpaFwbwFtlaYiM4MHbWNSPqOzdaMgtpteg8H19LTcfRWNWYq5eMNDbHOOtsDl9163QVERLOaZXepyiXGWxRTFvUEVcuy7QCpDr9fruPHGG1Gv12EYBoaHh3H33XeDEIJbbrkFhw8fxl133YWhoSFMT0+vi5FtSAqKmiZowYLHma9hMKcYl1EiKh5Nv9qUPUSxHxYviGi2QAkJpr3LDyYfH5aS5SIPNEhCaKiASum/v575zHMoffFBrP3Xnxc2F//1Wyh+9d/Q4jdS0sQiOSjaKQOHD9bmsCw4l+2D9cxz7Hrwv8OdSlzfcdsJutzxB6mT8zQMP6VSLculE0QQUr7+toPCN/4D5uxZNG74aZZdpLJWwWSflQh8sfdoPfo4Cv/5PdQPvUk8yHRoAAYvvolMQuL3lKjQTCksEi0cop+RYlCURLXlctihd9LQE2MsjgMUU4ZrEMIGskc16SiUHHpwDb0RxolJvQEq6/gq9QRIT1skYrKZn32UttFLMPg15RuhSo59F0h16Dt37sSnPvWp2J8dOHAA99xzT8+NSkNbYRFPVTQN2D9xdZAyJN/g0V1abgMLgBat5F4ucgBmZIgVxnhRhu7fEApZLqG/Hweps6PSxCIwVmM8f5blva7VQYfZTW6enAWtVWBd83KsORTuRRPh18tpi5afgdOhQx2f8iSj+bpXwZ5b9H+BgJZLIGs+axWO3f+Xj6uL9gZJK/7wmzEl/krGLJfQa20H1olTMHh/IL8TIUkLsPokIMrQzedOwzxxiv2OwzJ6vB1DME+f822IZoIYzEmLHioKhUVxn080ZTQJ0SwXP9XOWFkLtc+QkcbQeS1BGmixGD8lKmRferpu6Jn0B8mQeiOUrkkiz3giikX2u0mtdlstpgrIyRcdsHboTSDLq6jc9+XAFr4R8p5DGx0U7SfQaOm/1JzL2zUW/F7o+B9Jc4r2pi4WgbVG/Acq3aje2AiMGIeOjJILcb3EXOEQC1JpnwswRylyq22xNllZgzexE4U3vCZetxS5yFa410bSMdW2WbthCXR0BO7oiPjaG6wFKXo8bTHSDEsc8/n3U+WNlKpMT42hxz6Mtg1SbwbVfSoFXQiyXERJvxiaYYtTHPHZtCddn7a1DQNA0ABLMPSkk5LjtOegy+umprAmSC7NVntzLY60tEXHAUnpDAr4ck6nvilAag9z2R4KwJMcengddYYOgPWyqcRs+C0/e83/KNJaWruXXiTyzwWcgNCwRXXpf4BoYZHcRF9GJ3mjjaH7x91OzaEAMQCWROaKinasxc57ZGqaIaXh47Zq2qIbOHRIPb7Jyiq8gQ5H4WjpPzoX8MQx9DabatXgqBlh6CTBoacxFir3v479BUVtMoGhg3dDdFy1/H+gjaEL9sodlr8etayQQ4/tkggp/7sgnZRiQGO6ZgIIYkkpM2vbmKsV5IrH5qADUtpidwwdxUKq5NI21SkG4hoWC6AVJrG2OfS4gSIJNgExBUTcnpYNWiwEhEfl3iiXwp8zb9KmepLMiU3p0NuCojzPNaFohsTd4HKlKKRdOoWhizmhbZKLIkPnD53rovjQt1B64MHwz/0JN8F7UNTQPVeqfrTF3zDWGqLHdhwES5Nv2A7HfcKnPHUAHaiKAGBbYRHvF8KZoK2goQPBtJsk8HLxFOYjbxwBM7MD2aTZ9EcRpuukAUMPSy5iaIYTdJL0dgwHL4ysLWwqSgwdSNbRHSf+vvC/Z5ydR/Uj/5udOOMQ1dAJCU8pigMhjDx0YOip9z7A2mykSS4q158z9GJR9I8xT59D9a/+HuR8kEEEKAZFgWQd3XfoicQxDoSEnruo5KIdugwebQbY0aVcQv1nXgfnpS8M/16HDJB2ySXZoScO9ZXRUtXQA8nFfPpZWE+dCP888hCnt8/lm5YXMAweoF31Kzg7MHT30ovQ+KmfgLd3l1o2CR8K0gHeQI05dN7REmAVoZAYOQ+KCsmlS4aeQ0MPbLCDuEuzpcQQAYAO1kAoFZkMgoW1AumGT4nqKLnwU1Ip0NCBDoVUDTtMaiLrmLMslmIsLMa/3g1LLgCCmEanE2ZS9g0/Vapo6IWUqkyAfc5pDl08txZQKoISAuuJp2GeW4BxhtVchDLZUmwCkJjpQhpN0HIp2GgVg6IhInWBgqKb06Ebfqqh9EE5P/Ri0FqYiXYshU6QXJJK/wHAG6gmpgmKBvipvVw4Q2dpkNFjYtsDo9I+l68X6U/CWbLXgaHDMmH/yA+JdDkAHTMsiG2nPrh0oBq01BVpi1yO8B8akbaoGPxNC4pmrRSF5NBX1sTrSaMVGs/WCd6OEQCA4TNCwcJawQkJjr8BytkX0fcqdz1EOkOnjWaoE6L4fqQvTFI/GOK0SxG0HDkdxP3dpM/AdUGA9LRFgAUgUzR0leHoVGLoIAS0Ugo+h6YkeQHpn2WpM0MXraH531Rk114sQ09vPNYNNqdDB5hDUO1zEqdXC8lFCooiIcfU303p4EDgMKK9WBQZerDJuOx432iG7Ys+hGkBHfk9RvqTcB27k+QSWktkMqQx9DTJxZ+LubIWsKQoQ88aFDXNzpkfqgydEBEw5jYYSyvBj5stduRXeOC80eHwN1zO0AOHHjvHNQqpLzkABYYe79DFaY33Vk+SNmIYejBHtMNnayU0DeNtClSCokWrY843AHb9U2QSTj5E7Evq8igcukJPGLYGvxeTHTqt5GHo7DnwKmVxb2jJJQGkWFB26JXPfRnWf34v/LNEhh7zYfkPlrtrNDgqRRm6cpaLJJHwakWpIKLtIc7QnCuJoas6dP6QFGaeQO3P/xa1u/8XyFo9+LnnMQetwNDZ318NAnT8hnZ8Rh4pLEp96CwT5nOnUbvz78I2CdsUs1wICdL1OEPnmit8Z6gquQwNhByP6L8iZnC6gJsuUUXjOKkMvd5gxXNRRPrCyM7XeuxJlP/hn9gXMT1OeOpiNIMp9HcTCs+IExmM0QkpfVMA+JKLYjJArENnG1pbvn3SWnwjius0agetoeWhLirgDp0O1sS9IZIptOQSQbmonKNtzp6BxfOCfUT1tU4O3b1sH5qvexWaP/XqINc3ytBtmwXklAuB3PaObEDAdnykt8+Vco8jQVGysgoKtElRSeDOyTp+EsZqHcbCeZBFKdWR58anbFqecOhrUipfJGBYLLCCGjGsIV37Js0WjKUVmM8+H/NHM6SD8b9VKoKWi0F+OOBr6Aqs2v9boWBnlKE7Hnvf/lqrv/aLqL/pp5Lt4XJdXobO74U4h/74cRSeeJoFceOkCAWGTitlkHrMZso/W5WgaJFV13ae9Zs+2KUTQxeOWTT5yi+5BIM7ykHsTpFd2y+/Ao3XX8sSKdyw5KIZehQKkkvowkcfDn7sFJJLctoiDAOtV73Sz0XlDD0my6VYSC1G4euTRivQbSWH3s7Qs+ehC8e+usZmQarePLwacHk1sEcu2Y/2Qk8AZ+iGLLlwZyem4vgxEOUslxh5IPRHKdtQFRy6yOwxTXg7RoT2CvjOUKGwhSMU7LRZcUqomMoNUgy98bH2wD0QaOgqDN3zgKadoKFzycV3aJKD4v3C5U02TnLpdJqQs5dkiHtWqbCocwASAKvUTZNcRHaWfx0SJBdqGKHGa51sipNc5NF6wSAdRcllcAD2VS8L983Xkks8SLGYfmwJOfTIUTGir4ljV4ZCnhAUsj/k9WXZIMzQswVFaUhy8ZmZ/4AZy2sdM1za1uK2yTbI1012xp1QKLDp5yur4jqJoJDcT90wgr+lGARjNsU5Oqp+jJUq/kIOGSyjgbV1UHXojKHTcokFfuWBwq6rdl/wGI2Kht6MSFYyxDQmJ/QvKGXFcACM1dVgk5UmHqlo6LRWC6YuyVDc6AFIOd8dHLpCYZe4HwRDDyQoPv1JtUAMlsXIQEx+fGhWqjTUJRNMM9jkFdNr82JTVooCYP0nVDNAIN3kC0sof+ErcPf6JfCRarnUIGQiQ7eVgkLioUtw6NGHWFVWghvkofPCIrK6qiy3AAjn25eL7MHw7Sl+/dswnjvd9ntJ8GrVEBsUKX1iELEfA1HtWSNVRhLbQekL/wz3sn2glonC955knStVWQ//PdOEN8quD/XfF/ElF2olVExGwDcEb7AWHlMIAI6rJN/QSFC00+xNrg/HB0Uj759Lb2v1QIZZWYvN/uDxhFSG3myxdaV7PQ9DJ61W50rpVMklqJ8AIIqLvEoZpNlC6YGvovDv302f8QsgmCvagvX4cViPPo7Gz74eIERy6KUgsyZDLxfAv6ZtaYvrw6U3rUO3XnM1Vvfv6/xL8kXzb2Khp0d2W+fy/Wi+5kfhjY2orZmTofMHx1hcEt8LzdjMyNBl3ZTv+cS2GStbXIK9dyL5tVHIDY8GajAbLcEszCeehuVr10onkXJJOEcgzNB5rIEaBgxfdkp9SGRC47gozDzhN2azYD32A9g//DL1h0QaWSgYernEmi81W8pBUQBwrrgMzfPLIKt1FB57IuTQiZy22NEeLrlwlhxzUuJr8g2wA0MXv+u/Xh7+QJZXAddln4F8vRQYuhwboXLsQDSmU9HQ/b+TIrmkBTJhWWi8/lo4L2A+wH7J5aAGgfXUCZBmE4XvPgFCKTzFe4KWiiCNJsynTqLw/afQOjMHb2JnmKFnDIoKmEHbCqIll3gY+/fCmby84+/I7FY8HNzBNJrs55xxV0po/cRV6RpsQlBUmaFbFmi5CIM3s0KKhq4oAUU3BVJvgDRabZJCJ8g5yMGU93C6IQDl9DRi28HGJ69TsPxsE+n2S3lIQrq+7Q80dj1fs/bY31E8xgp93DADyaRSZqy32WIOT/WhLZfQuvZHWFGQ44b7lCinLXK2ySf7JM/eFK1c47Jc/M6NAtzRSvM2yeparE1qGjq7J0RbB75mBoauKrmoXH/7qpeJjYUOD8K+5krQUglktS6eByOpWjYCFvBtgjTY71s/eIbZyYOi5XJo7GIWxDN0neWSHWY7QxdMsdHMt0smpS22FDV0AF6tBiIz9E4aemrg12dzkkMnti2CYG250p0gBx4HfYcuerAED6DSSaRQYO8lIrlAbh0gv7cUpxcKXNZ5WpoXZDK4Lqiyhh4wLZ6lQitloMRPFQpZFjFrEscNOyqXD8BW09ChwNDRSXLx7eDgn5kxfx7UMOANVJkG7roh/Vxer1MGE5Wzl2QIDV0tywXo7NCJqyC5JK1fKobSUJVfVykzEuQ/i9aT3KE3glkBGYOiAnygteete1B000ouSpBvbu5YBENvZT86AZJD9z8YSlG55wswTp8Tx7800MEqyNwC+3+xwG4ix0HlMw8EWqavYSu3z61HGLp/zObVjEowmAxCPA+e79CjwUxAISgKMD26ZQcDl+U+J1GmQ5DOrqUTkYg/uK54GbEdpA634BAaugGUiqwC2A+qkdV6pqCoAM8QWguftkiHVsQccf2EWP93yaF7Hsr3PiCmXCU7dANiXpqQXBbh7RhiOeAra6DDA20SF89D7zisO+rQPQ/lz35ROHJSsICUFPPELBdKUf7cl2G/5HK/fXNOh1cqtqcUK4BWyow0uMw+47nTrB+OYQQpkTkGXAAIrqkbpGsqk4+M2NoOPS5tkQfnms3UfOo4UO40/AIBslaH9eQJuHt2wX7lS9XWqAWZJ97IEGMG55dh/eCZIMhTLqttOkJyCYYnENuBMb8IahigfvN/ZVgm0PICycWNkVxSOkoCvtOXCzVkhs7foxFIH2kOvf4Lb4D51AmUjn0tONG4bvA6x1E+xvIHkju15ut+DLRWReE/H2NSmOtlD3zxPjjyaYu//zSGHq2FIIRtiNI1J8urKHz/eHA6SnDo1DCCWIrvNI2lFdDhQVDThLG4BFKrtLFMb2IMzR97JZzLkkkJrZTZ+rzx2loDhe89FdhdVGi8ldDZ0JhbQGHmCdbbKMf1FzZK16X5ulfBG6iFxsclvq5SEq0qnP0Xgw5UYT32JIjrwp3YCQBwLr8UzZ+4CnQkedZp7Np8Q7el/HtV8pERW1pyCeeh854iEmPMc9NEGDq/uVuvuhLugUvU7PKZDiUEdGiAaXdc72yxiUAde8vIEHnt/lG8VgFsG8b8eXgjQ9n1Ph4wbGPokuRiKTJ0WQaSNXQrHJBWYWPe+Cjsa65k64rhGZ604bgZgqJ8I/ED4i+7Au5lF4c09PwMXcpe8tPnUnOqo6X/QDA9iq/FnahonZCQhROX2bXC0ldFHnlcrxrTROsnXwUkDC5nC7EOgkJD5xWZnG0rDrgA0MbQuWbt7tmlNoIuaX3JodsvfxGcl12h9rpKGWg0QdYa8HaNofHG61hfc/4zALRWRes1P6ocqxHg94brBKcHraHngHxzRxh69OfKMCIM3b+5O/Ycj0A07SkVA+1OZsCWGVTCpWmJfIQZD97UqgFDz6KfcxSCRmQA2PXiJf8cSgzdEjev7JyIPCCD39QZNlZqWSGGLuxyHPUHzYjXQmlJyszJuhFyhi47dFWGbhhsI5XtiTB0Y1XSrS0zWcaR7faD0mR1jclKAzUYfmpl6iaTgFBrZOkERrldaShYoGjX0E3foYt7I699XLIkJHEIe9LrCJif4PKbc/ml7GcVFY7fYW25R5KuFO0CshNyXIDS8PCGPBfVdxokwtCV+6VIv0slh45I0FHc2CqbjmGwIC8YQyetFoyF85kyXAQ4Q69UmDTheiE2ReUJUZ0g6ey0VGSO12+z2hYUzXJSKlhB+TmvxIT/IGZk6G1aaLnotyG2s5/eJIYupkXxAKaChh6V/9oYupTlg04OJhQU9bOdKBUMHQDI0nK+0yn81si+LaGh6QUrfWQfIOV8Sw690RTtHEQWT077uBRFa9VMTFp22vz/gUNXq0lIhJjH6ug89G5Adwyh+apXgtQbKD7yGLuYUil7rpsmkodu5HLoftOeUpExA8cVx3MALLUxLhMkCaYh5A1voArLXyuPQxeTzSulYCKPzxRbP/Ti9Dz9yDoAWHHHKtisVMeRTh9ccsnwOVhmaHgGJTyLxs2gocfnE4ce6oynN8ozU9Ya7OTVsoNAdYoU4fzQi+DtHg9/s1wKBbrlzBJSTm7RHNrUbCdMOHwHZyyvwBsbTX1PcfB2jcF6/HioWAlAeiaPbGOxGIqvGEsr4fbFQNeSS5bnEYh36HR4EM3XXgPHl17yIszQ+UxRLblkByFove5VgRNy3HD1XQ7JhbZp6KvsmJfhhvZkhs7LvKUjNS1Y2cqMDSOQN6rBjZwpZZHD9MeRlYo+Q3dFtoR7yV7Yr3ql2jqyHsz1Xn79I5NfSIbPITQgQZJciO1k19CjgUFZNsucmiYxdH+6jShKSemR7+7bC/uql0VsqQo5D0Do/7GdFoUdsoZuCzbt1arCUZFGK3umhg/n8ktBAJhPnmhj6KqgpWL4tdLpVMRd8kouvGtkDxw6ALR+/IfhRQerZ8UFZOhb26FzSBc0NI0nT64rCTN0srLWeYBEDEQGSakojogkpJEyhk4BpQ9epL2ZphhUAORn6LRcYmzOstjpgT9wGbKCZIYuep87DssXF6PPckgu8oPuekF73gxZLuLvRa5tyAlkdXgSQ2eNx2SHniObaiDcN8VYWQtSSTtJABGGzrV3OlANa8F5JZfd4/BqVVhPngix7CwMHRGHLgK9BUusmXcABL/XssS0gGSH3hMUAoZOVGff5sS2cOihI48jSy7589DNM3MoHz0G4/xypgZYAFjr2GIBtFQKCi1Wg2AaLZiM8ajaJ6e9ccmkYGVmKWwtM7ihTTPE0FULpwC0aegA2A0tZxclMOVOkG0QQ539tVVTwYINMOrQg88xc9qiz9CNeoN9vpJDz7IRBrZUQRpNGM8+j/LRYyBLy/B27WTXUoGh05IfD/CLbKiUaw8oZN4kgRA4l1/CSuzlFM0eMHRarQTfz6uhl3shuXSpmUfX5n2IQkFRnYeeH8KhO+ERWl1o6MVvPiK+ZSumRslovvpqeLt2CnsMyaHDKrDeFKpReu6gRkeE9u6NjmRPrwJgv/IlQQqkP9Ag1FBLEfEM3Q0xdMHCsmysMhN0XRGIY0HRrN0WI1kuncbEpdolVdnWqszZcXacw6HzU1/x376DwmM/AAC0Lt4N59ofweD+3YmvE2mnfpMqY+G8kARDrDevwwTg7Z0AeeR7MPziOACZJEdaLoV7GfnN5ERxD5BfcqmU0brmFXBefCDbC8tsLimhtPcMnWdAOY6uFO0JhOTidp/l4jsNr1YVx9msxzsALKcagHmSDd4Ia+gmvIt2o3VR8oMrgzMl5/JLg7TDPPo5AOdFLwi+8Nt+khwMPVRNKk0nimXoGR7e0NHe9QCDj7jLkuWS0GQp5PCypi0GdnljIzAWFoN+YjkZOgCY0mAWWqvC/pEfgjk+CJxNKG/nm3u1DCwuwVhYCiRBwwjYcTcOnfd0ObcoKot5UFgFIt/fB08pDrHkvA6PEDQP/niu19FyiZG+LPKRAkLdM0X7XC255AaVGbqUCpZPcgnnoQPZj3ch24qBhi4aK2W8oXiQ0Ln8UuF0M5X8J9nGR46p9kGXEcfQeXVgREMnGdMWOYgXSC4EUD6RiErRmBiKxzMcMqctSp0qR4fDwyPSBofH2cidprzRqxAH7tD9drLGwvmwlMTfX97SegT3u7HgF68B2e7ZqOTSCiQXgS42nLyglXJ807NuEWLoujlX95AZepeSC3e6YpQaunTohUBDp7Uqy0nOolVL8MZHhSySl6GHYPkNp7IMMPBBYzR0IeV0o6GHBl14kSC3ai+X5DaogiVmLiySGProSJDPbxj5sqmke4pm0IXFZlXlGS3N8FpyfCQnRD6754FWy/Aq5Wynt1IxFP8QJ0BZ8sqr8XeDSqn3cguke8N21r197raQXMIMvbu0RdE7xWf69ktfCPeSvfmN4/MMPQ+0aKF15Q/D3bcn0xKN11/LHihC4E7shP3SK+AqNgrrCNNkA6xbORh6MYahRyonc2nosg1uJPdcNWbQaSPJ6/AiDF28Xh5bmAG0WhFyRuuaK2GcXYBzscJ9wR265Ji88SDnXAT8unHo1YrQm1EqovWqK0GztGkW90MT1Kqy/j5AiB3nlly6QOuVLw1Lsr1CqQBqGizxgctvOijaBSSG3nVQVHo4vVoFjbihvxkgB8xooYDWtT+SeY1QDnOpiMabruvKJmGPZYYKi1RK/sVrZcfLH9RojnGXDJ1QCiq3TMhaKRrz+8LhZX3e5KDoQE1IGnkCouzvE1b1u7wK96LdaP34VWqv473VJfmCVzwCsuTSBQM2DGbbyhpoqaRem8Bt4PdDswX4rSpQLIRZ/gZILs7LX7Q+CxsGvJFh1vVy15j43rr8qXVZtc8gM3R5B87FAuTX9CJ4wucZImNa4IUA7+Ns2+ol/xxxGnpUcuGBoSx6buQaya1SVbNckipFAUjFN822n3WEfF8QEkgueR06IMYHZqoniEguAOCN7QjWzCkptdkmFcdlfm30xManfcnPU87Cp36FN8ocOjz1YeZ5sLWuWhLkKLPbreQSfBBdsRwOv7cFgExpgRcEfj8RMWUoCwwj0HP96j1Ryt4VQ+9gh+oxtkMPGaE91zM69Og6suSSE95gLXM9gcixF331SyHnIRx6l/cubwFNO7QhSETEofNpX6FU1w1g6OsJOjoMY2GJFcKtk9wCKEguCwsLePe7340TJ06gWCzi0ksvxa233orR0VEcP34chw8fxuLiIkZGRjA9PY39+/evm7G5IaLMkbTFLiWXXqU30UIBpNnqO4Yul/7nsq1QANymeOjbGDqPR+Rk/m1QZJ3u/otgv/xFrNVwBK1XvRJkcRmtKyfVbfLR/LFXwuU6txhinMPh+XBedgW8iZ3Z2Jy/Sbo7R2FPXs7GKkqgebN4IpA7hmZFMkOXbNpyDH0ExHVhLC6vm9wCKDB0Qgh+7dd+Dffffz/uu+8+7Nu3D3/yJ38CADhy5AgOHTqE+++/H4cOHcLNN9+8boZ2gyAP1C895wMW8tw08tzGHrEI2scMXZT+57AtOowh2qdDSCR589CjUHR83s5RNKYOxj5YtFpB4+eu79zRMAGtn3wVXK5X90BycV58IHtMhb+nchGNG346FBAFehMUBXojufCYCmnZrK3uBmvo6wkumxnn5jfWoY+MjOCaa64RX1955ZU4deoU5ubmMDMzg6mpKQDA1NQUZmZmMD8/v27G5obE0OG43euIBte8e3TT8Q0mQ9DxQoBaZlcMnQdGaaHAMjaiQdFcWS5+hkyc896AzIgk9EJyyQW+kSRsfD2TXKSOoZlfyyU4Ibn4LZWtrSu58DRi49zCuunnQEYN3fM8fPKTn8TBgwcxOzuLiYkJmP6FN00Tu3btwuzs7LoY2hUMgzmAls0yI8pdshThiHokufQrQ/eDoqTVymeb3NNdmmAUBCUj/yqAO6rYApA+cugiOHmBP1OaUn3bK8klYOg5CnF4qi6XXBw/RlPYukFRWquy+cFY35TMTB7ptttuQ7VaxVvf+lbMzMz0xICxsYHcrx0fV5+X2ShYqBIPLoDCcA3e6XOoDVUwnGENsZZpADZQrJUxEPP6LHYBQGuwAg9AZbiKoRz2qCKrXc5wFQ6AguOA1KqZX9+slkEJwfjEMBrFgqgU3TE+BGN8EM5ghc0zNk3ltd3FQdgAzIEKqNwcCkC5UsRgj69f1vfMYQ9W4AKojNTW5TNNssu98gp4roPx3SOxP6fDZdgveyGGX34ARhd20crlsB97AXa87DKQwaASVfV6NUpFVA2K4fFBND0XZLCC6vgQeP3ozt3DID0swc/7OfYSzYsmQI8/C8MK7vde26V8xaanp/HMM8/g7rvvhmEY2LNnD06fPg3XdWGaJlzXxZkzZ7BnT7aimLm5FXgeTf/FCMbHB3E2qZ9FDAYMA43FVRQANE0LBQArdRt2hjXEWiAgAJouxfnI67PaBQBlaqAAYM2maOWwRwV57Co0HJQBuMtrcGu1tveahgolME0TZ88uo2ay4cIEwPxSA7SwjEK9hTJYP3RV24zVFmoAHKuAKMestxws9vD65blmHMWWixKANRc9/0w72jW8Azj4E8m9XgDgjX7tRLd2vfl6oOEBjeV0uyKoFQuwF1exeHYZtXoLjgfYK+yzBYBz82s9kya6+Rx7ieKlF6F0/FnQ5VWcPbuc2y7DIIlEWIn7f+hDH8Kjjz6KO++8E0U/aj82NobJyUkcPXoUAHD06FFMTk5idHS001IbBiof+buUXGiPNXQRpO2zLBcRe2g0c2X00GLQAphawYxRsVaeiUVcl+97ycXXsvvtM+0TsAZdflCUpy3KFcTrqDNvFHiBl1w70Wuk3m1PPPEE7r77buzfvx+/9Eu/BAC4+OKLceedd+KWW27B4cOHcdddd2FoaAjT09PrZmjXMM1gxqMo787b0a23Gjr61KFznZW07HwB20JB0nRjMhi6qBSNdej95AT4e8oRNNwW8AdyAwiC7lmmdG1CeDvXn+ymPqUvfOEL8f3vfz/2ZwcOHMA999zTc6PWA7Rgsb4kYClEzoFL4OYdLZUj3a6jbf0aFJXL2XOk8TkHLgkKXOSikbYslwwOfWiAfXb7LxJ9wgX6iKGLjedCZ7lsEtBigZ38XBfE80IMfaulLAoQgsbBH2NzZ9cJ/UUJ1xOmCbLmD5EoFVH/xZ/Jv5YRyAi9QP9KLpEOghnhvOSFcF7ywra1gjz0fAMu6r/4MzCeP9v2o/UavJsLQnLRDj0OtGCxGQByr31+X2xVh45gDsJ6oX8ozTqDWqY44nVdsk96y9DBqwn7jM3JD1Yehx5aK65oJI+GLtaIuXX7iKEL+0r99Zn2DUze+E2ahsXbRWxRyeVCYPtcOb/qEUD3VXKcofeIUfcvQ5ckl277qwv2JQW8TF76n6NfeNyA7z7S0MUouC5K/7c0+PCUVmQaVsHaupLLBcC2ceg9GZDLYfS29N/duwvOxbu7ZsE9h9mdhi5DPLDyNcuhoQvEfYZ9xNC9vbvg7NsTTPTRCIGKxm+coVvi+7lacmgA2EYaemgkW7eOuNcMfccw6m/72Z6s1UuENr5u2S9PSZNZf48kF2pZbOBIH2no3tgO1N96w0ab0b+ITMMSsQZLM/RusG22wtBItm6DmT1m6H2LlL4gWSA2P3mtLhi6LLmItddp8K5G70ELlj+vNjw8hWrJpStsmydAljO6D4p2wSw3E/wCCG8of3sGgbiUNDNHlotYT1qHxyD6iKFrpMA0QTxPtIOQGbqWXPJj+0guMkPvWnLxK0V72GuiH+HtGIY3WEPz+mu7X6zQLrl4YzvgTuxEaWIMaCW9MAGy5CLmNGpHsFnAT1XE78fDv3Yu29dX0tlmw9b2SDKkoF63DJ32Om2xX1EsYPX/+S89WSquaIQO1rD2q7+A2vBg9r4isvMWkot2BJsGvAqZF9n4DL312h/dKIu2BLYnpelVUHSLM/SeIoahdwVCghF3mqFvPvA+QRGGrtEdtucT0HXa4jbR0HsI4ch7ec1Mk52WeE8dfVTfNOBkiDv0zDNrNWKxrRx646dfDW94sHsmR7aHht5TrEefDsNgTp0zdc3QNw8EQ2+yz01ntvQE28oj2Ve/HPbVL+9+Ic3QM4P2WnIBq8YklAYBUq2hbxqEGHqfjV7czNBXMgfyDDfe9lgPhm6ZoJQGG6yWXDYPJA1dNzDrHfQZNQ+2SdpiLxFbWNQtDL+RU7TZl0bfI8TQ9XPUM+gnIA+05JIdvPS/h0Uj1HfmQjvXksvmgTQNS/eM7x301pgHhPjZFdqhq2JdGLplsmJWvklohr55IN0HOmWxd9BXMg8MQ7PzrIhpztU1DBMwAw1dZ7lsHoTuA62h9wzaoecBIVo/z4jY9rndrmkaIDRIW9SSyyaCZujrAn0lc8DdNQaysrbRZmwuFCy4O3fAG+/doFxvYifr2GfooOhmg2bo6wPt0HPA/tFXwP7RV2y0GZsLhoG1//ZLPV2y+dOvBgAUH/w3/29ohr5poBn6ukBTGo3ND1PnoW86mAYo/7926D2Ddugamx5ixqsecLF5QEgQKNeSS8+gnwCNzQ9dKbo5wXV0XfrfM2iHrrH5oStFNyV4YFQz9N5BPwEamx+6sGhzggdGtYbeM+gnQGPTQ5f+b04EDF079F5BO3SNTQ9vxzCoZYHWKhttikYW6KBoz6G3Ro1ND+/i3Vj5f//bRpuhkRGiuEgz9J5BM3QNDY2NgQ6K9hzaoWtoaGwMeFBUpy32DNqha2hobAhEUNTSDL1XSHXo09PTOHjwIF70ohfh8ccfF98/fvw43vKWt+D666/HW97yFjz99NPraaeGhsZWg2boPUeqQ7/uuuvwiU98AhdddFHo+0eOHMGhQ4dw//3349ChQ7j55pvXzUgNDY2tB11Y1HukOvSrr74ae/bsCX1vbm4OMzMzmJqaAgBMTU1hZmYG8/Pz62OlhobG1oOpC4t6jVxXcnZ2FhMTEzD9kmvTNLFr1y7Mzs5idDRbv+uxsYE8JgAAxscHc792PaHtyo5+tU3blQ1Z7HIu2gnnqSGM7xpaR4sYtsL1UsGGb41zcyvwPJr+ixGMjw/i7NnldbCoO2i7sqNfbdN2ZUNmuyavAF54AMvr/F62zPXyYRgkkQjnynLZs2cPTp8+Ddd1AQCu6+LMmTNt0oyGhoZGIgwDKGr9vJfI5dDHxsYwOTmJo0ePAgCOHj2KycnJzHKLhoaGhkbvkCq5vP/978cDDzyAc+fO4Vd+5VcwMjKCz3/+87jllltw+PBh3HXXXRgaGsL09PSFsFdDQ0NDIwGEUppdwO4htIZ+YdCvdgH9a5u2Kxu0XdnQNxq6hoaGhkb/QTt0DQ0NjS0C7dA1NDQ0tgg2PA/d6GKwbzevXU9ou7KjX23TdmWDtisb8tjV6TUbHhTV0NDQ0OgNtOSioaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWw4aX/WXH8+HEcPnwYi4uLGBkZwfT0NPbv37/RZmF6ehr3338/nnvuOdx333244oorNtokAMDCwgLe/e5348SJEygWi7j00ktx66239sUwkne84x149tlnYRgGqtUq/uAP/gCTk5MbbZbAHXfcgb/4i7/om8/z4MGDKBaLKJVKAICbbroJ11577QZbBTSbTfzhH/4hvva1r6FUKuHKK6/EbbfdttFm4dlnn8Vv/dZvia+Xl5exsrKCb37zmxtoFcNXvvIV3H777aCUwvM8vPOd78TrX//67hemmwxve9vb6L333ksppfTee++lb3vb2zbYIoaHH36Ynjp1ir7uda+j3//+9zfaHIGFhQX69a9/XXz9R3/0R/T3f//3N9CiAEtLS+L/X/ziF+kNN9ywgdaE8eijj9K3v/3t9Cd/8if75vPst3uL47bbbqMf+MAHqOd5lFJKz549u8EWxeP9738/fd/73rfRZlDP8+jVV18tPsvHHnuMXnnlldR13a7X3lSSy9zcHGZmZjA1NQUAmJqawszMDObn5zfYMuDqq6/uy5mqIyMjuOaaa8TXV155JU6dOrWBFgUYHAwmnq+srICQ/mig1Gq1cOutt+LIkSN9Y1O/YnV1Fffeey9uvPFGca127ty5wVa1o9Vq4b777sPP//zPb7QpAADDMLC8zIZbLC8vY9euXTCM7t3xppJcZmdnMTExAdM0AQCmaWLXrl2YnZ3tCwmh3+F5Hj75yU/i4MGDG22KwHvf+1489NBDoJTiIx/5yEabAwC4/fbb8aY3vQn79u3baFPacNNNN4FSiquuugq/+7u/i6GhoQ215+TJkxgZGcEdd9yBb3zjG6jVarjxxhtx9dVXb6hdURw7dgwTExN46UtfutGmgBCCP/uzP8M73vEOVKtVrK6u4sMf/nBP1t5UDF2jO9x2222oVqt461vfutGmCHzgAx/AP//zP+Nd73oXPvjBD260Ofj2t7+N73znOzh06NBGm9KGT3ziE/jc5z6HT3/606CU4tZbb91ok+A4Dk6ePImXvOQl+Md//EfcdNNNeOc734mVlZWNNi2ET3/6033Dzh3HwYc//GHcdddd+MpXvoK//Mu/xLve9S6srq52vfamcuh79uzB6dOn4bouAMB1XZw5c6YvpY5+w/T0NJ555hn82Z/9WU+Odr3GDTfcgG984xtYWFjYUDsefvhhPPXUU7juuutw8OBBPP/883j729+OBx98cEPtAiDu82KxiEOHDuHf//3fN9giYO/evbAsS8igr3jFK7Bjxw4cP358gy0LcPr0aTz88MN44xvfuNGmAAAee+wxnDlzBldddRUA4KqrrkKlUsGTTz7Z9dr992R3wNjYGCYnJ3H06FEAwNGjRzE5OanllhR86EMfwqOPPoo777wTxWJxo80BwLTX2dlZ8fWxY8cwPDyMkZGRjTMKwK//+q/jwQcfxLFjx3Ds2DHs3r0bH/3oR/HqV796Q+1aW1sTmiulFF/4whf6IiNodHQU11xzDR566CEALAttbm4Ol1566QZbFuAzn/kMXvva12LHjh0bbQoAYPfu3Xj++efx1FNPAQCefPJJnDt3DpdccknXa2+6ARdPPvkkDh8+jKWlJQwNDWF6ehoveMELNtosvP/978cDDzyAc+fOYceOHRgZGcHnP//5jTYLTzzxBKamprB//36Uy2UAwMUXX4w777xzQ+06d+4c3vGOd6Ber8MwDAwPD+P3fu/3+kLjlHHw4EHcfffdG562ePLkSbzzne+E67rwPA8HDhzAf//v/x27du3aULu4be95z3uwuLgIy7LwO7/zO3jta1+70WYJXH/99Xjve9+L17zmNRttisDnPvc5/NVf/ZUIJP/2b/82fuqnfqrrdTedQ9fQ0NDQiMemklw0NDQ0NJKhHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwR/P9WOPqjG/dGXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc_poisson = Lightcurve(times, noisy, dt=dt)\n", + "lc_poisson.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b9e4b55d", + "metadata": {}, + "source": [ + "### Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "dabd22b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wcdfnA8c/M7F7vLXeX3ntPCIRQQpEuGBFEUBERVJqogAIqXfgBitgQREABQToiTZBOCAnp7dKv5XrvW2Z+f8zu3t7d9pK7yz3v1yuvJHd7s3OzbZ55nu/zKIZhGAghhBBCCCGECJk62DsghBBCCCGEEMONBFJCCCGEEEIIESYJpIQQQgghhBAiTBJICSGEEEIIIUSYJJASQgghhBBCiDBJICWEEEIIIYQQYZJASgghhBBCCCHCZBnsHRgudN3A6dQP6X1aLCoOx6G9z5FGjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4f6GGuaiqoqQW8ngVSInE6d5ubOQ3Z/qqqQm5tGa2sXui4zk+NBjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4NxjLOyUlBVLejtpLRPCCGEEEIIIcIkgZQQQgghhBBChEkCKSGEEEIIIYQIkwRSQgghhBBCCBEmaTYhhBBCCDFEGIaBrjsxYrSmXlUVbDYbDodDmiHEgRzf+IvHMVYUUFUNRQnemS8QCaSEEEIIIYYAp9NJQ0MVuu6M6Xbr61V0Xdpzx4sc3/iLxzFWVY3c3CI0LXh3Pn8kkBJCCCGEGAJaWxtRVY2cnFFAdFfKvVksCg6HZEviRY5v/MX+GBs0N9fT2tpIdnZ+5PsVwz0SQgghhBARMAydnp5OsrMLsFisMd22xaICkjGJFzm+8RePY5yenkVTUy2GoaMokbWNkGYTQgghhBCDzF22pGlyjVuIQ8H9WoumZFACKSGEEEKIQdbbXCJ2JX1CiEDM11o0jV0kkBJCCCGEEEKIMEkgJYQQQgghhoT169exYsUSOjs7A97u3HPP4oUXnj1EezV0vf76vznjjBMHezdGLAmkhBBCCCFERO688xZWrFjCb3/7fwO+d+utN7NixRL+8IcHIt6+v0DhkUf+zhlnnO35/4oVS/jkk48ivp9D4dFH/8KKFUsG/LnssotD+nlfweOJJ57Mk08+F4e97evOO2/h5puvj/v9DDeyolEIIYQQQkSsoGAU//3vW1xxxY9ISEgAoKOjnY8+ep+CglFxuc/s7Oy4bDcW7HY7VqvvzotTpkzj/vsf7PM1f7cNRWJiEomJSRH/vIiOZKSEEEIIIUTEZs2aTXZ2Nh9//KHna++88zbTps2guHh0n9v2zxx1dnayYsUS1q9fN2C769ev4667bqWlpcWTvXn00b8AfbMz5557FgA33HAtK1Ys8fy/vLyMG264lrPO+hInn3wsl1/+HTZt2jhgf15++QWuvfYKTjjhaL7+9a+wevXHfW6zb98efvzjqzjppBWcffYp3H337bS3t3u+/4MffI8HHriPBx64l9NPP5Ebb/yp32OlaRq5uXl9/mRkZHq+/+ijf2HVqjNYufIovvKV0/nLX/4IwJVXXkZ1dRW//e29nmMBAzN2jz76F7773W/y8ssv8JWvnM7JJx/L73//G5xOJ4888mfOOONEzjnnNF599aU++/WHPzzA17/+FU444WjOO+9snnjiUU83u0cf/QtvvPEa77//P899ux+vmppqbr75Bk455TjOOONEbr75eurr6/z+/ocbyUgJIYQQQoionH76Wbz++quccMJJgHmCf9ZZ5/Dmm/+JeJtz587n6qt/wuOP/5V//MMMmpKTUwbc7pFH/s5ZZ53ML35xG0uWHIGqaoAZpC1ffgyXX34FFouVV155keuvv4Znn32FrKwsz8//9a8P8cMfXs21117Hq6++zE03Xc8///kio0YV0tbWxtVX/4BzzvkqP/rRT+js7OL3v/8Nd955C7/+9X2ebfznP69y7rnn89BDf4v4933vvXf417+e5pZb7mLixMnU19dSXl4GwF133cvFF3+Dr3zlXE4//ayA2ykrK2XDhnX85jd/oLR0P7/61Y3s27eXWbPm8NBDj/H++//j/vvvZunSZRQVFQOQlpbGzTffSm5uHrt27eSee+4kKyubs89exQUXfJPS0gN0d3dzww03AZCRkYnD4eAnP7mKefMW8Oc/PwooPProQ9xww4955JEnUNXDP18jgZQYsaxPtdCjtMM30gZ7V4QQQogBfluygc8aqqLfkAKE2OL5yNwirp2+MOy7OPXUM3j00b9QX19HR0cH+/bt4YQTTooqkLJaraSlpaEokJub5/d27jK/tLT0PrebPn0G06fP8Pz/qquu5YMP/seaNZ9yyimne75+0kmneIKTK6/8EZ9/vpqXX36Byy+/ghdeeJaZM2dx6aXf99z++utv4sILz6WpqZHs7BwAxo+fwOWXXxH0d9q9u4STTz6mz9e+/OVVXHXVtdTUVJOTk8vSpcuwWCwUFhYyZ848wAxcVFUlJSUl4LFw+9nPfklycjITJ05i1qw5NDU18b3v/QCACy/8Fk8++RibN2/0BFIXX3yp52eLiorZs2c3//vfO5x99ipSUlJITExE15197vutt15HURSuv/4mz9duuulWTjttJTt3bmfWrDlB93O4k0BKjFjaThtOB4AEUkIIIUQ0cnPzWLJkGW+88R/a2lo57rgTSElJHdR96uzs5NFH/8Lq1R/T2NiA0+mkp6eHmprqPrfrf8I/e/ZcDhzYD8CePbtZu3bNgOAHoLKywhNIzZgxM6R9mjBhInfddV+fr6WlpQNw/PEn8eyzT3PeeWdz5JHLWb58BcuXHxN2Zqe4eDTJycme/+fk5JCQkOj5v6qqZGZm0dTU6Pnau+++zXPPPUNlZQXd3V04HA5GjSoKeD979uymrKx0wLFxOp1UVlZIICXEYc1hgHOwd0IIIYTwzcwMhZ8d6s9iUXE49Oh3KIgzzjiLhx76A52dnfzqV3f4vI2iKBheE1AdDkfc9uePf3yAL75Yyw9/eA2jR48hMTGRn/70Gux2e7998r2fAF1dXRxzzPE+s035+fmefyclJQ/4vi9WawJjxoz1+b3CwkL++c8X+fzzz1i7dg13330706bN4P77f+/Zn1BYLH1P7xVF8fk1XTcfh61bN3Pbbb/g0kt/wNKly0hNTeW1117h3XffDng/XV2dzJo1m5tuunXA93JyckLe3+FMAikxMhkGivu9W49ipLUQQgghADj66GO5995fk5ycwsKFi33eJisrm8bGBs//9+zZFXCbFosVpzN4EGixWND1vldHt2zZxBlnfJljjz0egNbWVurqagb87LZtWzn55FM9/9++fSvLl5tZlmnTpvPRRx9QVFSMpmlB9yNaSUlJHHvs8Rx77PGceuoZXH75xdTU1FBYWBjysQjXli2bKS4ezTe/ebHna9XVB/vcxtd9T506nffff5ecnJxBzz4OlsN/FZgQvjj9/FsIIYQQEbFYLDz77Es88cTTfjMoCxcu5oUX/sWePbvZsmUTjzzyp4DbLCoqoqOjnfXr19Hc3Ex3d7fP2xUWFrNu3ec0NNTT2toKwJgx43j//f+xe/cudu3ayS233ORpROHt3Xff5o03XqOsrJQ//el3lJWVcvbZXwVg1aqv0dTUwG233czOnduprKxg9eqPueeeO8M5NB5Op5OGhvo+f5qamgB4443X+M9/XmXfvr1UVlbw7rtvkZaW7snuFBUVsXHjeurqamlubo7o/n0ZO3YsVVUHeffd/1JZWcHTT/+DNWtW97lNUVGRp5SvubkZh8PBl750Gqmpafz859exadNGDh6s5Isv1nLffb+mra0tZvs3lEkgJUYmh1cWyikZKSGEECIWUlPTAmYnrrzyR2RlZfP973+He++9i0suuSzg9ubOnc/ZZ6/iF7+4gTPPPImnnnrC73bXrFnNqlVncMklFwJmc4mUlBS+//3vcOON17Fy5YmMGzd+wM9+97uX8eabr3PxxRfwwQfvcfvt91BYWAhAfn4Bf/rTo9hsNn70ox/yrW+dzx//+GCfrn/h2LNnF2effWqfP9/+9tcB89i9/PILfP/7l3Dxxd9g584d3HvvA57ZXN/97veprKzg/PPP4cwzT4ro/n1ZseI4zjvvAn7zm7v5zncuZO/eXVx44bf73Oass77CmDFj+O53v8mZZ57E5s0bSU5O5o9/fIS8vFxuvPEnXHTR17j33rtQFNWzz4c7xfAuVBV+2e1Omps7D9n9qapCbm4aDQ3tnhpWEUPtOqm3m6UFXbfmoSeFXnssQifP4/iS4xt/cozjS45vL4fDQX19JXl5owesZ4nWoVojNRytWLGEe+75LUcfPbCZRKjk+MZfPI5xoNdcVlYKVmvwUk7JSIkRSfHOSDlG9oe3EEIIIYQInwRSYmTyCp4UuYgkhBBCCCHCJF37xMjk3W1Vmk0IIYQQI9LHH68b7F0Qw5hkpMSIpEizCSGEEEIIEQUJpMTIJBkpIYQQQggRBQmkxMgkGSkhhBBCCBEFCaTEiKTYvQOpwdsPIYQQQggxPEkgJUYmr+BJkYyUEEIIIYQIkwRSYmTyzkhJ+3MhhBBCCBEmCaTEiKR4N5uQgbxCCCGEEFFbv34dK1YsobOzc7B35ZCQOVJiZHJIRkoIIYSI1p133sIbb7wGgMViYdSoQk477UwuuuhiLBY5zQSoqjrI1772Zf7+92eYNGnKYO+Ox+uv/5u77rp1wNdzcnJ59dW3gv78lVdexowZs7jyyh95vjZ37nxeeeVNkpOTY7mrAzz66F/49NOPefTRf8T1foKRZ7gYmaRrnxBCCBETy5cfww033ITd7mDTpvXcc8+daJrGN7/5ncHeNex2O1ardbB3IySDsa8ZGZn84x/P9vmaqmoRb89qtZKbmxftbg0bUtonRiTv0j5FuvYJIYQQEUtIME+eCwsLOeWU0znllNP4+OMPAWhtbeHWW2/m1FOP56STVnDDDddSXV0NQHt7O8ceewS7d+8CwOFwcNJJK7j22is82/7Xv57m0ku/5fn/vn17+PGPr+Kkk1Zw9tmncPfdt9Pe3u75/pVXXsYDD9zHAw/cy+mnn8iNN/4UMDMYq1adwcqVR/GVr5zOX/7yR8/PnHvuWTzxxKP88pc/56STVrBq1Rn85z+v9vkda2qqufnmGzjllOM444wTufnm66mvr+tzm1dffYmLLvoaK1cexTnnnMaf//x7AL72tS8D8K1vfZ0VK5Zw5ZWXAWY27+abr+exxx7h7LNP4ZJLLgRgxYolfPLJR57tdnZ2smLFEtavXwf0ls+tWbOab3/765xwwtH85CdX09rayrvv/pfzzjubU089nvvuuxunM/BJjqJAbm5enz/Z2dme77/44nOcf/45rFx5FF/+8inceectnn3fuHE9zzzzJCtWLGHFiiVUVR0cUNr3+uv/5owzTuTDD9/n61//CiedtILbbvsFNpuN559/hnPOOY0zzzyJv/3t4T779fTTf+eb3zyPE088mlWrzuCBB+6np6fHs83HHnuEkpIdnvt+/fV/A9Da2sqvf30bZ5xxIqecchw//vGVlJYeCHgMoiEZKTEySUZKCCGEiIvExETsdjsAd9xxC9XVB7n33t+RmJjIgw/+hhtv/AmPPvokaWlpTJkylY0b1zN16jR27NhGYmIiW7duxuFwYLFY2LBhPQsWLAKgra2Nq6/+Aeec81V+9KOf0NnZxe9//xvuvPMWfv3r+zz3/5//vMq5557PQw/9DYD33nuHf/3raW655S4mTpxMfX0t5eVlffb56af/zsUXf49LL/0+H3/8IffccwcTJ05i1qw5OBwOfvKTq5g3bwF//vOjgMKjjz7EDTf8mEceeQJQef31f/Pgg/fzwx9ew9Kly2hpaWHXrp0APPLIE3zve9/m97//C+PGje+TdVqz5jNSUlJ54IE/h32cH3/8Ea677kY0TeOmm67nF7+4gZSUFO6++35qamq46abrmTdvPl/60mlhbxtg587t/O5393Hzzbcyd+58mpub2bFjGwDXXPNTysvLmDJlGt/5zqUAZGVlU1V1cMB2Ojs7efnl57n99ntobW3hxht/ys9+9mNGjSrkd7/7Mzt2bOOOO37FkiVHMG/eAgA0TePaa6+nqKiY8vIy7rvv11itCVx++RWceOLJ7Nu3l3XrPuf++x8EIC0tDYBf/vJnJCcnc//9fyAlJZnnnnuWa6+9gqeeej4u5YYSSImRySFzpIQQQgxtCf9qxbLNFptthXg7x+wEbOdlRHw/27Zt5a233uDMM8+mrKyUTz/9iIcffpxZs+YA8Ktf3cG5557FunVrWLr0SBYsWMSGDV/wta99nY0b13PMMcezfv06du7cwezZc9i8eQNnnGFmdF544VlmzpzFpZd+33N/119/ExdeeC5NTY1kZ+cAMH78BC6/vDer9emnH5GTk8vSpcuwWCwUFhYyZ868Pvu9cOFiLrjgIgC+8Y1vsnHjF/zrX//kllvu5N1330ZRFK6//ibP7W+66VZOO20lO3duZ968eTz22CNceOG3WbXqawCMHQtz5swFzAADIDMzc0DZW2pqKtdff1NE68kuu+wKz+9x6qln8OSTj/Pvf79NZmYWkyZNYcmSpaxfvy5gINXS0sLJJx/T52vLli3njjvuoaammqSkJI4++hhSUlIpLCxixoyZgBm4WCwWkpKSgpby2e12rr/+JgoLiwA4+uhj+fzzz/i//3sAi8XC+PETeOqpJ1i/fp0nkDr//As9P19UVMwll3yPxx77K5dffgWJiUkkJyejaVqf+960aSMlJTt59dW3PMHqtddex4cfvsenn37MiSeeHOKRDZ0EUmJE6tO1TwIpIYQQImIfffQBJ598DE6nE6fTyUknncIll1zGunVrsFqtzJw523Pb/PwCioqKOXDggCuQWsw999yOYRhs2LCeU045DcMw2LjxC5KSkmhra/OcXO/Zs5u1a9cMOPEHqKys8ARS7pN9t+OPP4lnn32a8847myOPXM7y5StYvvwYVLV3hYs70HObPXsu77//rud+y8pKB9yv0+mksrKCyZMnU1V1kEWLloR97CZPnhpxU47Jk6d6/p2Tk0NOTi6ZmVmer2Vn59DU1BhwG+npGa6sWq+kJDNzs2TJEeTnj3Idt6M58sjlHHvsShISQg3LTampqZ4gyr1fY8eO7fN75+Tk0tzc5Pn/2rVr+Mc/HqO09ACdnR3ouh60THHPnl10dLRz+ukn9Pl6T08PBw9WhLXPoZJASoxMUtonhBBiiLOdl0Es8lEWi4rDEb8WtUuWLOPaa6/DYrGSl5cXNDAwDANFMf+9YMFCWltb2bNnF1u3buaGG25C13X+97//kpSUxOTJU8jIMDNkXV1dHHPM8X2yTW75+fmef7sDAbfCwkL++c8X+fzzz1i7dg13330706bN4P77f4/i2hH3397cX+vq6mTWrNncdJOvDnc53j8R8Pf2JTk5yef9GkbvuYnD4RhwG6DPcVYUZcBx778dX1RVYcyYsT6/l5qaxuOPP8369etYs2Y1f/7z7/nHPx7n4YcfIzFx4H7742u/NK3/c0RB183naFXVQW644VpWrTqPyy+/kvT0dL74Yg333/9/Ae+nq6uT/PwCfve7gWWS7udQrEkgJUYmaTYhhBBCxERycpLPk/Hx4ydit9vZsWObJ+NTV1dLdXUV48dPBMyucZMmTebZZ58mMzOLUaMKWbhwMQ88cC8Wi4UFCxZ7tjdt2nQ++ugDioqK0bTwOsslJSVx7LHHc+yxx3PqqWdw+eUXU1NTQ2FhIQDbtm3pc/tt27YybtwEAKZOnc77779LTk4OKSmpA7ZtsagUFRWzfv1a5s9fMOD77jIzpzO0YDYrK5vGxgbP//fs2RXSz8WDxWLhiCOO5IgjjuTCC7/Fl798Cjt2bGfBgkVYrVZ0PfYnUSUlOwD6tFV/441/97mNr/ueNm0G9fV1WK1WRo0qjPl++SJd+8SIpEhGSgghhIircePGs3z5Mdx99+1s2bKJXbt2ctttv2Dy5CksWXKE53YLFiziv/99k4ULzaYShYVFZGRk8umnH3saTQCsWvU1mpoauO22m9m5czuVlRWsXv0x99xzZ8D9eOON1/jPf15l3769VFZW8O67b5GWlt4nm7Rx43qeffYpyspKeeaZJ/nss08499yvA/ClL51GamoaP//5dWzatJGDByv54ou13Hffr2lrawPgkksu46mnnuDFF5+joqKcnTu38/LLzwNmYJSYmMiaNZ/S1NTYp8ugLwsXLuaFF/7Fnj272bJlE4888qcwjnp4DAMaGuoH/AH45JOPeP75Z9i9exdVVQd5443XsFgsFBePBqCwsJht27ZSXV1Fc3OzJ6MUrdGjx2Kz2XjhhWeprKzgtdde4T//6RtIFRYWU1lZye7du2hubsZms7FkyRHMmjWbn//8J6xd+xkHD1ayadNG/vjH38Wtc59kpMTIJM0mhBBCiLi76aZf8cAD9/HTn16N0+lk0aKl3HTTrX1K6RYsWMQLL/yLhQsX9/nam2/+h/nzF3q+lp9fwJ/+9CgPPfR7fvSjH2K32ykqGs0xxxwXcB9SU9P4xz8e43e/ux/DMJg6dRr33vtAn7U+F1zwTbZs2cTDD/+JjIxMrr/+Rk+ziOTkZP74x0f4858f5MYbf0JXVxcFBaNYuvRIzzZOO+1Menq6eeaZp3nwwfvJzs7h1FPPAMyszo9+dB2PPfYIDz/8J+bNW8Af/vDwwB11ufLKH3Hnnbfy/e9/h+Li0Vx11bVce+2VYRz10LW2tnD22acO+Pq7735CWlo677//Px599GHsdhvjxk3gzjvvpaBgFAAXXHARd955CxdeeC49PT0899yrA7YTialTp3HVVdfy97//jT/96UEWL17K5Zf/kF//+nbPbY4//gQ+/PB/XHXV5bS3t3Hjjb/i9NPP4r77HuShh/7IHXfcQmtrC7m5eSxcuDhupX2KEax4UgBgtztpbu48ZPenqgq5uWk0NLSj6/IQxVriYy1YdpqV5/aTUrCdPDBVL6Inz+P4kuMbf3KM40uOby+Hw0F9fSV5eaMjbj7gT7zXSA135557FhdccBFf/er5Ef28HN/4i8cxDvSay8pKwWoNXj4qpX1iRFIkIyWEEEIIIaIggZQYmWSNlBBCCCGEiIKskRIjk3TtE0IIIQTw/PP/Dn4jIXyQjJQYkaRrnxBCCCGEiIYEUmJk8p5tJxkpIYQQg6y3iZ1c3BPi0DBfaz5mMYdMAikxMkmzCSGEEEOIqpqnZE6nI8gthRCx4H6tqWp4w529yRopMSJJaZ8QQoihRFFUEhNTaGtrRtMsQBSXyQduHYdDPuviR45v/MX6GBu0tTWTmJjSZ6ZZuCSQEiOTvfef0mxCCCHEUJCRkUNDQxX19Qdjul1VVdF1mXMUL3J84y8ex1hVNbKzC6LahgRSYmTyzkKN8CGQQgghhgZN08jPH42uOzFi9NGkqgrZ2Sk0NXWO+KHH8SDHN/7icYwVxQykoslGgQRSYiQyDBTvEnQpRxdCCDFEKIriKu2LDVVVSEhIwGKxyYl+HMjxjb+hfIyl2YQYeVylfIb7IsQQe1EKIYQQQoihTwIpMfLYXYFToiuSkjVSQgghhBAiTBJIiZHHnZFyBVKKdO0TQgghhBBhkkBKjDiKZKSEEEIIIUSUJJASI4+zfyAlGSkhhBBCCBEeCaTEyOOaIWVIRkoIIYQQQkRIAikx4iiSkRJCCCGEEFGSQEqMPO6MVIIrkJJh5EIIIYQQIkwSSImRx+HKQFkU0Og7nFcIIYQQQogQSCAlRhylTyClyEBeIYQQQggRNgmkxMjjykAZVsxgSppNCCGEEEKIMEkgJUaefqV90mxCCCGEEEKE67APpK6++mqWLl3KtddeO9i7IoYI79I+RZOMlBBCCCGECN9hH0hdeOGF3HPPPYO9G2IocTeXsGAGUwayTkoIIYQQQoTlsA+kli1bRmpq6mDvhhhKXBkpw91sAqQFuhBCCCGECItlMO987dq1PProo2zdupW6ujoeeughVq5c2ec2Tz31FI8++ih1dXXMnDmTm2++mXnz5g3SHouhqsvpoLKznfKudnqcDqyqRqKqYVVVElUNi6ri0HXshs7oVoOpaOzobGKKbiUVONjeTk56MknaoL4khBBCCCHEMDGoZ42dnZ1Mnz6dVatWcdVVVw34/uuvv86vf/1rbr31VubPn88TTzzBpZdeyptvvklOTg4AZ599ts9tv/jii2iaFtP9VVUlptsL5b4O5X0OJw09XbxYsZfSjlbKO9up6+kK+We/XTWGqYzljbpSvtpTxFRS+ckXH9GW4CBFs5CdkEiSZiFBVbGqGgmqSoKqMSophZMLxzEhNSOOv9nhRZ7H8SXHN/7kGMeXHN/4k2McX3J8428oH+NBDaSOO+44jjvuOL/ff+yxxzj//PP56le/CsCtt97K+++/z0svvcR3v/tdAF555ZVDsq8Wi0pubtohuS9v2dlSlujLc9v28FLFXgBUFMakpjE+PYMJ6ZmkWxPocTrp0Z3YnK4/uhOLKyCaV20e0xVjxpBZbYFWWJRTwAHaqe/uorKrw+/9vlSxl/m5+ayaOJWVo8eRGONg/XAlz+P4kuMbf3KM40uOb/zJMY4vOb7xNxSP8ZCtY7LZbGzbto0f/OAHnq+pqsry5cvZuHHjId8fh0OntTX0rEe0VFUhOzuVpqYOdGmEMMDBlnYArpm2gJWjxpCghh7QWDe2AV0syx9FYno3ek0PP5u8CCPL3EaPK/Ay/+jYdSc9us6W5nperzrApoY6NjXUcf/GdZxUOJbzxk0jw5oQj19z2JPncXzJ8Y0/OcbxJcc3/uQYx5cc3/gbjGOckZGM1Rr83HLIBlJNTU04nU7y8vL6fD03N5fS0tKQt3PZZZexefNmurq6OPbYY3n44YeZMWNGRPs0GC8QXTfkhelDm90GwPiUdCyoYR0jw27eVlcxZ0kBut3AcG3DqqhYNZVUzdrn5yanZvLl4klsbq7njeoDfNZQzYuurNglE2dH+ysd1uR5HF9yfONPjnF8yfGNPznG8SXHN/6G4jEesoGUP4ZhoCih10g+/PDDcdwbMVjaHXYA0izWILf0wd3+3OrdtS+0F6aqKCzIzmdBdj4bm+q4eetq6roPXaZSCCGEEEIMDUO2/Xl2djaaplFfX9/n642NjQOyVGLkaXOYGal0S/gldd4DeXFnbR1+b+5XYVIKAE32nvB/WAghhBBCDGtDNpBKSEhg9uzZfPrpp56v6brO6tWrWbBgweDtmBgS3BmplIgyUu45UqC4MlJKBKnirIREAJptEkgJIYQQQow0g1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRZDQbvDRqrFihZGmaeHO/vkPZDXGf5mkjQLyZqFJlt3+D8shBBCCCGGtUENpLZu3cq3vvUtz//vuOMOAK688kquuuoqTj/9dBobG3nwwQc9A3n/+te/emZIiZHJoet0OZ2MSkqM6Od7S/vwNJvAGdnixeyERA52ddDjdEordCGEEEKIEWRQA6lly5ZRUlIS8DYXXXQRF1100SHaIzEcuMv60iMp6wOv0j6vNVIRZKQAsq1mINVs72GUlhLZRoQQQgghxLAzZNdICeFPbyAV4ewmH6V9SqSBVEISIOukhBBCCCFGGgmkxLDj7tgXUetz+pb2KVp0pX1ZVrO8sMku66SEEEIIIUYSCaTEsBPVDCnom5FyF7fqkW0q29W5r0kyUkIIIYQQI4oEUmLYaXdnpKwRlvbZDQwFc31UlBkpCaSEEEIIIUYmCaTEsNNuj67ZhOIwzCBKid0aKWmBLoQQQggxskggJYadtliU9lldAVS07c89a6QkIyWEEEIIMZJIICWGnd41UpF27TPM1ucQdfvzLCntE0IIIYQYkSSQEsNOVF37DMMs43M3mfCskYpsX9xd+6T9uRBCCCHEyCKBlBh2PHOkrBEEUt4d+7z/jrC0z6KqZFgSaLJ3YxiRbUMIIYQQQgw/EkiJYcfTtS+S0j7XDCnDk5Ey/1IibH8OZuc+m67T6XQEv7EQQgghhDgsSCAlhp22aLr29ctIeQbyOiLPJrnXSUl5nxBCCCHEyCGBlBh22h12LIpCoqoFv3E/ijtg6l/aF01GSjr3CSGEEEKMOBJIiWHFMAzaHTbSLAkoihL+BjyBlOv/UQ7kBZklJYQQQggxEkkgJYaVHt2JwzCimyEFA9qfRzqQF8w1UiAt0IUQQgghRhIJpMSw0hZNxz68S/tcX7BE1/4cvAIpKe0TQgghhBgxJJASw0pUHfvAq7SvX7MJPYrSPquU9gkhhBBCjDQSSIlhxd2xL9alfUTRuTxLSvuEEEIIIUYcCaTEsOIexhtpIOW3tC+ajJS0PxdCCCGEGHEkkBLDiru0Lz3i0j7X356MlKvEL4o1UumWBFQUmuxS2ieEEEIIMVJIICWGFXdGKqJhvOBZIzWgtC+K9ueqopCVkEizzYZuRL4dIYQQQggxfEggJYYVd9e+tBh17fM0m4giIwVmeZ+OQZvdFt2GhBBCCCHEsCCBlBhW2u3Rdu1z/d2vtC+ajBRAtlVaoAshhBBCjCQSSIlhJdpmE72lfa7/W6JfIwWQnSAt0IUQQgghRhIJpMSw0rtGKrKMlDIgI+X6vx7dfmVLC3QhhBBCiBFFAikxrLR5BvJGl5GS0j4hhBBCCBENCaTEsBLr0r7YNZuQ0j4hhBBCiJFEAikxrLQ57CRrGhY1sqeuYnf9w52R8qyRii4jlSWlfUIIIYQQI4oEUmLYcBoGnQ575B37zI2Yf7ubTXjmSEWzZ16lfRJICSGEEEKMCBJIiWGj02HHIIqyPgC7q7TP2m+NlB7lGilXRqpZ1kgJIYQQQowIEkiJYSPajn3g1eZc69e1z+Hr1qFL1iwkqpqskRJCCCGEGCEkkBLDRtQd+8CTkcK1CUVRMDSibn+uKApZCYm0OezY9Sg3JoQQQgghhjwJpMSw0ebu2GeNIpByZaQMd0YKQI2+2QT0rpNqkfI+IYQQQojDngRSYthot0fZ+hxQPBkpr0DKokTdbAJkKK8QQgghxEgigZQYNtpdpX3RrJHydO3TvL6mEvVAXpBZUkIIIYQQI4kEUmLYiHoYL4BrjpThnZHSlKjXSIFXC3Qp7RNCCCGEOOxJICWGjbYYZKSU/nOkAEMDRSfqFugylFcIIYQQYuSQQEoMG7HMSGHpl5GCqLNSvWukpLRPCCGEEOJwJ4GUGDbaY9G1z2FgKPR95rvXS0XZcCLb6l4jJRkpIYQQQojDnQRSYthwd+2LqrTPYZhlfYqPjFSUDSfcGalmWSMlhBBCCHHYk0BKDBsxGcjroG9ZH8QsI5UlpX1CCCGEECOGBFJi2Gh32FFRSNEswW/sj8PA6BdIGar5/2iH8iaoGqkWq2SkhBBCCCFGAAmkxLDR7rCTZrGiKErwG/uiGyhO+nTsA6//x2IorzWRLqeTLqcj+o0JIYQQQoghSwIpMSzYdCc9ujO6RhPuQKl/aZ/7VRBl+3PwWiclDSeEEEIIIQ5rEkiJYSEmrc8dZqBk9M9IeZpNRL5pt+wEd+c+WSclhBBCCHE4k0BKDAux6NiHu9rOT7OJaNdIAWRZXQ0nZJ2UEEIIIcRhTQIpMSzEomOf4spI9Q+kjJhmpNyd+ySQEkIIIYQ4nEkgJYaFWJb2DWg2EaP25yCBlBBCCCHESCGBlBgW2j0ZqehL+/q3P4/VQF6AbKtrjZRd1kgJIYQQQhzOJJASw4I7I5UeRdc+JUhGSpGMlBBCCCGECJEEUmJYaLPHsrSvf/tz1/+l/bkQQgghhAiRBFJiWPBkpKIp7TM3MbC0L4YDeTOsiahAs3TtE0IIIYQ4rEkgJYYFd9e+1Gi69jl9l/YZauzWSGmKQoY1kSZbN4YR/faEEEIIIcTQJIGUGBZ6M1JRlPa5MlL+5kjFIiMFkJWQiMMwaHPYg99YCCGEEEIMSxJIiWGht/15FKV9royTv659sRjIC5CXYHbuq+/pisn2hBBCCCHE0COBlBgWYjKQ1x7/OVIAeYnJgARSQgghhBCHMwmkxLDQbreTqGokalrwG/vjDpT8lfbpkW/aW4ErkKqTQEoIIYQQ4rAlgZQY8gzDoN1hj6rRBACujJTRbzOGeyCvIzalfflJEkgJIYQQQhzuJJASQ16X04GOEV2jCbwG7mq+M1JKjDJSeQkSSAkhhBBCHO4kkBJDXpsjBsN4wZORwuq72UQs2p+DZKSEEEIIIUYCCaTEkOdpfW6NomMfeEr3jP7LrGLcbCI3IRkFCaSEEEIIIQ5nEkiJIa/NHn3HPgDF4fpHnDNSVlUlOyGRhp5unDKUVwghhBDisCSBlBjy2mNV2uduJtGva5/hehUoMcpIAeQnpqBj0GTrjt1GhRBCCCHEkCGBlBjy2j0zpGJU2jdgjpQ7IxXd5r3lSwt0IYQQQojDmgRSYsjzrJGKVWmf3zlSsSvDy0tMAiSQEkIIIYQ4XEkgJYa8mHXt85T29ft6XDJSKYAEUkIIIYQQhysJpMSQ51kjFXXXPvMvw19GKkbNJsCrtK9bAikhhBBCiMORBFJiyItd1z7fzSbcGanYNpswA6l6mwRSQgghhBCHIwmkxJAXqzVS/kr7DMlICSGEEEKIMEkgJYa82HXtM//yX9oX3ea9ZVoTsCqqrJESQgghhDhMSSAlhjx3Rio1zqV9scxIKYpCXmIyrQ4b3U5H8B8QQgghhBDDigRSYshrc9hJ1SxoihL8xoH469rnHsirR7f5/jzrpHpkKK8QQgghxOFGAikxpDl0nS6nI/qOfQAOMBQGPustsW9/DlCQ5B7K2xnbDQshhBBCiEEngZQY0hptZjYnMwaBlOIwzGxUv8yW4X4VxLC0DyAvwR1ISUZKCCGEEOJwI4GUGNJKO9sAGJeSHv3GHAxcHwVxGcgLkC8ZKSGEEEKIw5YEUmJIK+1oBWB8Skb0G3MYAzv2QW/XPj22GSlPC3Tp3CeEEEIIcdiRQEoMae6M1ITUKDNSumEO3O3faAJ6B/LGuLleb7MJCaSEEEIIIQ43EkiJIc2dkZqQGmVGyl22dwgzUnmSkRJCCCGEOGxJICWGLKehU97ZToYlgSxrYnQbc7U+N3xlpDzNJqK7i/6SNQvpFit1PV0YRmyDNCGEEEIIMbgkkBJD1sGuDuyGzvjUdJQoZ0h5yvZ8ZaQUBUMj5oEUmFkpm67T6rDFfuNCCCGEEGLQSCAlhqzSDnN9VKwaTQC+AykAFZQYtz8HaTghhBBCCHG4kkBKDFmlne71UbFofR6gtA/MACsOGSlPINUtgZQQQgghxOFEAikxZB1wtz6PttEEoNhd/wiQkYr1QF6Qzn1CCCGEEIcrCaTEkOVufT4+FsN4nYFL+wxNAT36u+lPSvuEEEIIIQ5PEkiJIanb6aCqq4P8xGRSLNboN2h3lfb525QGio4M5RVCCCGEECGRQEoMSRWd7RjEYH6Um7trn+antM/99RhnpWSWlBBCCCHE4UkCKTEkHXA1mohJWR+guLv2+ctIxWmWVG5iEioSSAkhhBBCHG4kkBJDkqf1+SHKSBma6x8xbjihKSq5ick02rpx6HFYhCWEEEIIIQaFBFJiSPJ07ItRRsrT/twapLQvLkN5kzCARlt37DcuhBBCCCEGhQRSYkgq7WxDRWFsSlpMtucp7dP83MD19fgM5U0BoFbK+4QQQgghDhuHdSC1b98+vv71r3PmmWeyatUq1q1bN9i7JELQZrfRaOtmdHIqVtVf5BMmd2lfsIyUtEAXQgghhBAhsAz2DsRTYmIid911F5MmTWLv3r388Ic/5K233hrs3RJBuOdHxaxjH/SW9vl7xsdpjRT0du6TobxCCCGEEIePwzqQGj16tOffkyZNoq2tDcMwUBQ/WQkxJLjXR41LjdH6KLxK+wIN5IW4rJEqkIyUEEIIIcRhZ1BL+9auXcv3v/99VqxYwfTp03nvvfcG3Oapp57ihBNOYO7cuZx33nls3rw5ovt69913mTlzpgRRw0CpK5CakBLLjJTrbz+BlPuVEJ81UhJICSGEEEIcbgY1I9XZ2cn06dNZtWoVV1111YDvv/766/z617/m1ltvZf78+TzxxBNceumlvPnmm+Tk5ABw9tln+9z2iy++iKaZ9VqVlZXce++9PPzww/H7ZUTMuEv7xscwIxW8tC+yjJRS78TIUUH1H6DLUF4hhBBCiMPPoAZSxx13HMcdd5zf7z/22GOcf/75fPWrXwXg1ltv5f333+ell17iu9/9LgCvvPJKwPtob2/nhz/8Ib/4xS8YP358VPurBjhZjjX3fR3K+xwKDMOgtKOVRFWjOCUNNUYZRNUVIClWdcCxVVXF80pQDQIGRX22ecBO4h+bsJ+WiuOEVL+3y0xIIFHVqO/pGnGP50h9Hh8qcnzjT45xfMnxjT85xvElxzf+hvIxHrJrpGw2G9u2beMHP/iB52uqqrJ8+XI2btwY0jacTifXXHMN5513HitWrIhqfywWldzc2LTiDkd2tv8T9MNRTWcHHU4HM7NyyM+LXUbKZunCAWTkJKPlpvT5XnZ2Kj0pHTjpISM1GS03OaRtOna1YQOSu1QSgjw3ilJTOdDWSlJGIqlWa4S/xfA10p7Hh5oc3/iTYxxfcnzjT45xfMnxjb+heIyHbCDV1NSE0+kkLy+vz9dzc3MpLS0NaRsffvghn332GfX19fzrX/8C4B//+AcZGeGvvXE4dFpbD11plqoqZGen0tTUga7Hft3OULWhoQaAMUlpNDS0x2y71jY7FqC1qxu9wexx7n2MNYfD/H5TJ3pDaPV9WkM3CUB3u522IPuabUnkALCrqo5xsexGOMSN1OfxoSLHN/7kGMeXHN/4k2McX3J8428wjnFGRjJWa/ARPEM2kPInnK57K1euZNu2bTG778F4gei6MaJemPvbWwAYl5we29/btUZKVwc+jrpuoLqaTRiO0I+32uMaOmUP/jP5CWaWq6arizHJMVz7NUyMtOfxoSbHN/7kGMeXHN/4k2McX3J8428oHuMhO5A3OzsbTdOor6/v8/XGxsYBWSpx+OidIRXjYMPT/tzP99Xwm00oPa5t2oO/qHs793WGfgdCCCGEEGLIGrKBVEJCArNnz+bTTz/1fE3XdVavXs2CBQsGb8dEXLlbn4+Pdfmbq/254W+OlDvACqP9uSeQcgT/md7Ofd0hb18IIYQQQgxdg1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRbx4jR0yjvbybAkkG1NjOm2gw3kjSQjhc1wbTv4TQuTzAYXH9ZVclrReE9gJYQQQgghhqdBDaS2bt3Kt771Lc//77jjDgCuvPJKrrrqKk4//XQaGxt58MEHqaurY+bMmfz1r3/1zJASh5eDXR3YDZ3pqemxH5wcrLTPtZ5QCae0zxZ6ad+szFyW5RSyprGaGzZ9wp1zj6Iweeh1nxFCCCGEEKEZ1EBq2bJllJSUBLzNRRddxEUXXXSI9kgMptIO1/qolDh0tQtS2ucOpMIp7SOM0j5NUfj5zCXcX7Kej+oPcsPmT7hj7lGMTRl5jSeEEEIIIQ4HYa2Rstls/PnPf2bnzp3x2h8xgh3wrI+KfXCh2IOU9mmur+thbNMVSCn20G5vUVV+OmMxJ40aS4Otm59t/oR9ri6FQgghhBBieAkrkEpISOChhx6itbU1XvsjRqhup4P/1pjr5WZmxKF00xm4tM9Q+90uFGGU9rlpisLVUxdwZtFEWuw2fr7lU0pam0K/TyGEEEIIMSSE3bVv3rx5MZ3NJATAqwf302Dr5ui8IibEY2Ct3RUsaX4yUq5MVVhrpNwZqRBK+7ypisLlk+dw7pgpdDjs3Lx1NY026eYnhBBCCDGchB1IXXfddfzzn//kySefpLy8nM7OTrq6uvr8ESIcLbYenivfjaYofHvCzLjch+I0etdB+RJNRiqErn0D9sf1u55aOJ4up4P/1ZSHvxEhhBBCCDFowm42cd555wFmh70777zT52127NgR3V6JEeWZ8l10OR2cVTyR4uS0+NyJHbAG6ASoRTCQN4LSvj4/ryh8uXgSb1aX8k5NOV8dMyX23QqFEEIIIURchB1I3XXXXXKyJ2LmYFc7r1cdIFmz8PWx0+J3R04DI9F/AtaIomufort+zl/ZYADjUtOZlp7FrrZmStqamBGP9WFCCCGEECLmwg6kVq1aFY/9ECPU3w/sxGkYfG3MFDITYjuE10M3UJxgWAPcRgtzjZTD6HtbJ4FLBwM4qWAsu9qaeaemXAIpIYQQQohhIuw1Um579uzh5Zdf5qGHHqKurg6A0tJS2tvbY7Zz4vBW0trEx/UHyUlI4sujJ4X3w04DpSbExUnugCdQxsgdBIXa/tzWL3MVYXkfwLH5o7EqKh/WVdLjDKO2UAghhBBCDJqwM1IdHR3ceOONvPXWW1gsFpxOJ8cccwz5+fn85je/obi4mBtuuCEe+yoOI4Zh8Lf9ZvfHi8bPIEkL76lo+aybxFfb6f5WBs7ZQTJZriDHCLhGyvV3iKV97o59nv/bDSINpdKsCRyZW8hH9QdZ3VDF8QVjItySEEIIIYQ4VMIOpO6++242bNjA448/zqJFi5g3b57ne8cddxx/+9vfJJASQX3eWMO21kbGp6Rz4qixYf+82mhmbixru4MGUp4SvACld4YaZrOJ/hmpCDr3eTupcBwf1R/k3ZpyCaTEYau6q4MXKvbQrTtRMEcBKCgoCizKKmBFfvFg76IQQggRsrADqbfffpubbrqJI488Eme/MqTi4mIqKytjtnPi8OQ0DB7bvx2A70ychRZJ8xLX7CZtlw06dUgJUKXqLruLY0YqmtI+gAVZ+eQmJLGxuY7a7k4KklKi2t5hw26gtOsY2REuQBNDRrfTwa3b1lDe5bv8++3qMm5Wl3JkbtEh3jMhhBAiMmEHUj09PWRlZfn8XkdHB5omJzxDhfU/7SjtOrbz4zDgNgp72pup6GpnZkY2i7MLItuIK3BRnGDZ2oPjiGT/t3UFXUagp2a4zSb6ZaQUR+SlfebdK5wwaizPle/mvdoKzh8Xxw6Gw0jic21o23ro/HkupEW8pFMMAX/es4XyrnYWZedz3thpGIb5mtENg8qudv68dwu/KdnAbxemMzpeYxCEEEKIGAr7zGTu3Lm88sorPr/31ltvsXDhwqh3SsSGdU031vU9UWdLYq2ktQmARdkFEbfSV7xK6Swbe0K7bTwzUo7oj/FJBWaJ4zs15RjG0HrMBovS5ERxgFobZe2kiIldbU3U94Q/dP2dmjLerS0nNyGJn0xbxJzMXOZm5TEvK48F2fmcUTyR88dOpdPp4K7ta+l2xu/x1g2Dj+oqabEFft8QQgghggk7kLrmmmt4++23ufjii3nuuedQFIUPPviA6667jjfffJOrrroqHvspwtWle072lY5QW9EdGjvbzEBqRnp25BtxZ5kUUPfZUVoDpJLcQY4lhIG8EXbtU+wh/lwAo1PSmJmRTVV3B9tbG6Pf4OHAdRFAbRpaz+GRaF97Cz/d+BE3bPqETkfogU5pRyt/3rMFFYXrZiz2O+bgG+NnsDArn9LONn6/e5PfiwmWL7qxfNQZ0e8AZgnhPTu/4L6S9RFvQwghhIAIAqklS5bw+OOPY7PZuP322zEMg9///veUl5fz2GOP9Wk+IQaP0tJ74jnUAqmS1iYUYFo0gZTrBNs51YpigLY5wNVld9AVoJDVU/YXYmYpHhkpgBMLxgFmVkr0BqhKo7SFH2xPl5WgAzU9nfx1/9aQfqbb6eCenV/Qozu5aMIM5mTm+r2tppiBVkFiMh/UVfLqwf0+b2d9vZ3E1zrMtZFhsutOni3fBcCG5jo2NNWGvQ0hhBDCLaJFB4sXL+bpp5/miy++4IMPPmD9+vU888wzLF68ONb7JyKkNveeeCrtQ6dMrMnWTU1PJ2NT0km1BJqQG5i7XM+xJAkIXN7nKe0LmJFy3TbUc7OefsFZjMonj8kvJlHV+Li+Mq7lTcOGey2cBFKDak9bM581VJObkESWNZG3q8tY21gT9Oce2ruFss42FmXnc+6YKUFvn2FN4Oczl2JVVP62fxtbWxr63sAwUDpdWcqD4b8+3q4uo66ni/xEc03l4/t3oA9SGe2+9hYabd2Dct+HHbsB+tD5nBNCjBxhB1KrV6+mq8uskU9KSmLUqFEkJwdY6C8GxVDNSJW4yvqmR5ONAk8GSJ9oRc9V0codKA1+TrY9pX0Bthdm+3PFVdpnpJovISVGMU+qxcpRuYV0OZ18Un8wNhsdxhQp7RsSniorAeDr46Zx1dT5ADy4ayOtdpvfn3m3ppx3asrJSUjix9MWoYa4HnJqehY/mDIXp2Fw9451NPR4BRs9hudih1oZ3ovOpjt5tnw3ADfPOoLp6dns7Wjho7pD22m2xdbDvTu/4OoNH3Ddxo9H/AWTz+qruGv9Gmq7IyzX1A2S728k8e+tsd0xIYQIQdiB1CWXXMLSpUv52te+xj333MM777xDU1NTPPZNREFp9jrxbB86J6E7W2MVSJl/GRYFx3xXVmqTn6u7Xrf1yx1khdlswh1IxbKhx0mjzPK+P+7ZzFOlO0f2iZZkpAZdSVsTaxtrKEhM5qRR41iWW8hJo8bSZO/hob1bBtxeNwxertzL73dvQgWun7GYLD/rovz5UuF4TikcT7PdDDqchvke5s5GAWhhZqTerCql0dbN8twiJqdlcvGEmQD8vXQndj3+75GGYfC/mnJ+8MV7fFBXiYJZJvlM2a643/dQpBsGTx7YyW3bPueVA3u48ov3WdNQHfZ2lHYdtUmPKEMphBDRCjuQ+vTTT/ntb3/L4sWL+fzzz7nmmmtYvnw5Z5xxBr/85S959dVX47GfIkxKi1dp3xDMSM3IiC6QUrxmQzkWmCdplk1+yvtCaDYR8UDeVKXvfcTA/Kw8vuU6yftn2S5+8MV7fFx3cOR18jOM3jVSrXpMj3E4NjTVcu2GD9nX3hLxNjocdtoDZG8GU2lHK+0O/91Sni7tzUZZVfMj43uT5pCfmMyHdZV9MjpNtm5u2fYZf923DYArp84PuC4qkMsnz2FyaiZbWxt4yrUPite6qHAyUt1OB8+5slHfGD8dgLlZeSzNGUVNdydvVB2IaB9DVd3dwS+3fsZvdm2g1WHj9KIJ/HHRSpI1jZcq91LaMbKyKZ0OB3ftWMsz5btI1iycOnYC7Q47t2//nEf2bg0rsFVaXUF2/3WrQghxCIQdSGVnZ3PyySfzs5/9jBdeeIG1a9fyxz/+kZycHP71r39xww03xGM/RZjUZu/SvqHxAeM0dHa3NZOsaYxNSY9uY+6Tag2MURacRRpqtROleuDJlRJKaZ+72USIdfYDSvti0LXPs21F4byxU3lo8QkcnVdEXU8Xd+9cx8+3fMr+jshP5ocdr4dSMfpmWau6OrDrhyZL9VLlXna3N3NfyXpsEdxnt9PB1Rs+4Fufv81j+7cHDFoOtQMdrVy1/gOu+OI9n8+tHa2NfNFUS2FSCie42vODWYJ6zdQFAPxpz2Yabd2sa6zhqvXvs76pjnEp6fx24TF8qXB8xPuWoGrcMHMxyZqFf5Xv5ovG2j4ZKaXeCT2hnXC/UVVKk72HY/KKmZDaO1fv2xNmogDPlO2iM06Py+r6Kq744n02NNcxJjmNe+YdzQ+nzGNcajoXjp+B0zD4057NI+ZCSVVXBz/d9BGfNVRTnJzKbxcey61Lj+ZXs5eRbrHyysF9XL/pY6q7OkLantLmeg70GDBCjqEQYuiIqNlER0cHH3/8MQ888ACXX3451157LSUlJRx//PH8+Mc/jvU+iggozUNvjVRpRxvdupOpadloEc6P8nC4Ou25MknO+QGaToTUbCLMgbz9S/vikC0pSErh5zOXcufcoxiXks7WlgauWv8BP974IS9U7An5RGPY6lcuqTQ6aXfY+W3JBr637l3uL9kQ911od9jZ1FwPQFlnG08e2Bn2Nl6p3EdNdyc2XeeFij1cuvYdXqzYE1FQFmv/qy1Hx6DB1s0Nmz5hY1Ndn+8/VWr+vheMm4ZF7ftxsSA7nzOLJtLmsHPdxo+5Zdsamu02Tiscz28WHMPE1Myo9684Oc0TsN1fsp62lt7yXcUA9WDwY9jtdPB8xW4U4IJx0/t8b0JqBieOGkurw8aLFXuj3t/+mm09PLh7IzbdyQXjpvH7Rccx2ytDd1bxRCamZrCttZF3a8Pr1KkedJD0l2aUmuFT0raxqY5rN37oaUDym/nHMC7VvKi2LK+QBxcdz6yMHHa3N3P1hg94fP923qwqZX1TLZWd7T5fM56MlAEMnWsUQogRItA1ep9WrVpFSUkJubm5LFmyhFNPPZWbbrqJ6dOnRzxcVcSYYaC0ODEU15X8IbJGyl3WNzPKsj5wZZm8AiPH/EQS3uzAsqkb+ykpoChgGKh77VjWmidfAddIRTiQ14hDaV9/87Py+f2i43i9qpRXK/eyq62ZXW3NPLZ/O5PTMjk6t4hTisaTaQ1vHcpQp/QLpMormrixaRMNrk5nH9cfZF97C5PSoj9h92dtYw1Ow2BRdj4lrU28VLmXI3ILQy5Xa7b18HzFHiyKwh1zl/NebQX/rS7lb/u389rB/Vw4fgYzM7JJtVhJs1jRlIiubUXEHEx7EAU4s3gi/z64n19t+4xrpi7ghFFj2drSwMbmeoqTUzm+YIzPbVw8cSbrm2s52NVBusXK1VMXcFReUUz3c0V+MWe1mvv3bkUpX6cQI1lB6TJQD9rRJwbu/vnawf202G0clz/ac9Lu7RvjpvNBbSUvVe7l9OIJ5CQkxWzfH9m3lTaHnTOKJnDh+BkDvq8pKldMmcd1mz7mb/u2c0ROIRnWhJC2rW3rQdtnRyux4RgV9kd5bDgMEl5tx7EoCX1C4Mdha0sDv9r2GU7DYNWYyXx7wqwBF9TyE5P59bzlPFlawnPlu3m+Ys+A7YxNTuPGWUs9VQ2ejBTm+7KRIOchQohDJ+x335KSEiwWCwsWLGDhwoUsWrRIgqihpsNAcYCer6HUOYdMaV/MGk2Ama1I6n3OGTkaznEWtDIHarkD7AYJ/+1E229eotQLNZwzA5yguM9fw1wjFW1pn+WDTiybeui+PAsS/b+GNEXlrOKJnFk0gf0drXxSf5CP6w+yt72Fve0trGms4f4Fx0S2E0NVv2O6dk8VDTO7WVkwhtHJaTxZupNnynZx46ylcduF1fVVAJxRNJGVBWO4v2QDv921gd8vPJ4US/C3z3+WldDldHBW8UTmZOYyJzOXs4sn8cSBHaxprOa3u/pm1ZI1C2kWKzMzcrh66nySNP/3YRgGj+7dTsWODm6cvgSN8N6Dd7Y2UtfTxZyMXC6fPJeJqRn8YfdmfrNrA3U9XWxsNrNTF4yb7jfAS9Is/GLWEfyvtoIziiaQlxifDq6XTJzFztYmulrNJ4VzshXLVlvQdVKdDgcvVuxFZWA2yq0gKYWzRk/kxYq9/LO0hCtcXQkDUUvtaNt7sJ+S2tvxs591jTV8UFdJbkIS33atefRlRkYOpxSO583qUh4/sJ2rXRm4YNyVBkr34L2/a/vsWNd0o7Tp9Ezwf0GjydbN/+1ch9Mw+OHkuZxePNH/NhWVb0+YyXH5o9nb3kxNdxe1PZ3UdndR1d1BeVc7f9y9mV/PW46iKH0CKXp0SD90FyOEECLsQGrdunVs2LCBdevW8fbbb3P//fdjtVpZtGgRS5YsYenSpSxYsCAOuypCpboaTeh5GkqrPmRK+2LW+txwBYr9MkyOBUloZe0kPd7iCR71Ag3byak45yT4PeEBQFHMUsFQ25+7M1IpUXTtcxgkvNdpXlmvcgS9omvupsKktEwmpWVy0fgZlHa2cfeOdZS0NbG7rZmp6Vnh78dQ5TqmHVYnqXaNcd3J3DRzKUflFWHTnbxedYBPG6o40NHaZ91LrPQ4nXzRVEuSqrEgK58EVWV1fTWfNlTx6P5tnjbg/lR0tvNGVSkpmoWvj5vm+fq41HR+MfsItrU08HrVAZpsPXQ47bQ7zD/1PV18WFdJl9PBTTOXDiipc3uqtIQXXFfstxc2MDczL6zf7wNXk4hjC0YDZqe83IRk7t65ln+4SvrGJKdxbP7ogNsZm5IeMFCIBatrvdTWz80hvXuLupm+VUULEEgZhsHzFbtpddg4sWAsY1LS/N72a2Om8lZ1GW9Vl/HVMVMoTE4NuD8JL7WhVTlxzkhAnzjwAk2308Gf9mwG4AdT5pISZGbexRNmsrqhireryzipYCyzQsh4ut/jBjOQclc7qP5GTwBOw+C+kvU02no4edS4gEGUtwmpGQNe105D55r1H7C1tYH36ypZWTBmYEYqgt9DCCEiFfalm+TkZJYvX87VV1/NP/7xD9auXcv9999PZ2cn999/PxdccEE89lOEwb0+yshSMVIV84N2kDqeubXZbVR0tVOUlEJmmK2QB3B/ZvcPpOYlYqjmCYaer9F9QTpd12bjnJcYOIhyU0EJsbSvNyMVeWmfttuG0uU6GWoJf72MoihMSM3gDNeJyRvVB8LexlBm7zFPkvenmfNllin5nrKxBFXzDHh9Nkj76EgX8W9srqNHd7Iou4BETUNRFK6YMo8sawJvVZcGHUj7+IHt6BicN3aqz7LL2Zm5XDdjMXfNW87vFh7Ho0tP4tmjTuOpI09lbHIaaxtr+MOeTT73//WD+3mmvPf33tBvbVMwTkPnk/qDqCgcndtbirc4p4C7560g27W/3xg/Pfr1jDFSmJTKEUn5ADzcvpOOVCdKrdPnRYy6ni5u2/45/yrfjUVR+gSyvqRbEzhn9CR0DF6qDLxWSqlxoFWZr1e10fdFqidLd1Lb08Xy3CKOzA1e6phmTeC7E2cDZvMORwhd6zwl292xv1AWyv0D4ApilAan30Y9z5SVsKm5ngkp6Vw+eU5U+6UpKt+fMg+Av+3bRofD7lkjBXjWrgohxKESUQ68sbGRt99+m7vuuovzzz+fH/zgB6xbt46pU6dy/vnnx3ofRZjcw3iNTK239GyQs1K72pqBGJb1AUb/i7zpKj3fzqD7wgwzgFqQFFoA5aYpYQ3kNRIAq6tJRQSlfd6NMbwHKIdrZcEYElWND2sr49Z5bDB8dNDMmDizzWyhtbnvMTqlcDxZ1kQ+rj9IWUebz23s72jh25+/zV98zDsKZnWDWda33GvNT2ZCIle5Sq8CDaTd2tLAZw3V5Ccmc1bxpLDuN8OawK1zjiQ3IYl3asr5e2nfBhef1lfx571bsCgqV7qyYhuawwukNjXX02y3sTA7f8CFjclpmTy46DjumHNU0GwUgLazh6Q/NKE0xb95Rr5url9qT3SwKbUFRYcvtlWgu4JNp2HwauU+fvjF/1jbWENRUgq3zTmKoiAZJoAziyaSpGr8t6aMFpufUQr0HbPg63fe3dbMq5X7SNUsXD55bsi/28qCMczNzOVAZxv/crVqDyRepX3/rS7j/NVvhNRYxR3MKQ76BjQuG5pqeaZsF8maxs9mLg1YqhqqOZm5rCwYQ5O9h6dLSwZkpIQQ4lAKO5A65ZRTOProo/nxj3/Mhg0bWLZsGQ8++CCrV6/m3//+N7fcckscdlOEQ2l2lfZlqRhp7kBqcD9gdrY1AjA9Iyf6jQXowueckWhmoLQIrqJrhNz+nB4DI1Ht3YdwM1I2A2177wmZ6uMkJCS6Qc7rPVzWNplu3cn7XjN9hrOGnm4+qzYDmQk5WRjZGkq70Tu/C0jUNL46ZgoG8Gz5wKxUdVcHv9zyGY22Ht6qLqUjjCDTaeh83lCDRVFYmjOqz/e8B9L+esfaAW3DDcPgsf3bAfjm+BkkahrhKkhK4bY5R5JqsfJc+W5erdwHwLaWBu7d+QUAP52+iNOKxlOQnMKetma/QZ0vH7rL+vwEStkJSSzIzg9pW5YvetDKHVg+9zMQO4bcwcNNi5dhKzaP67qtB/nxxg/5oLaC6zZ9xMP7tmLTdb42dip/WLSSeVmhlTymWxM4pXA8Nl3ntar9vm9kGH0CqS/2VvHf6jI6HeabktPQ+f3ujejAxRNnkZsYeuMKRVG4cup8klSNZ8p2saO1MfDt4xBIvVl1gN/t3kiP7uSZ8l2eNYJ+98GrkZFS3zeorO/p4r6S9RjAVVMXBCytDNclE2eRoln4d+V+T1YMgEEscxRCjExhB1JnnHEGf/vb31i7di3PPfccN9xwAyeeeCJZWVlx2D0RCdWTkVJ723MPcuc+zyDeGGSklBAG7EbCCDUj5TDMNukJiicrpoQZSGk7elBsoOe4At0IM1LaHjvWT7o4pcRcU/Fm1YHDYh7Nk6U70VwBc0qSFT3bdZwa+z5ApxWNJ8uawId1lZR39malmmzd3Lx1NU32HtI0KzbdLGUL1baWRlodNuZl5ZHqY33LZZPmMDo5lS2ulvS3bVtDiauZysf1Bylpa2JyaqbfbnehGJ+awa9mHUGCqvLIvq38q2wXt23/HLuhc9mkOazIL0ZRFI4oKMQANrvatAdj152srq/CqqgclVsY8f65qVXmA2XZ0hP3OT7uOVK52akcOc+ca7W0M4c97S3cW7KeXW3NTEvP4oGFx/LtCTPDDmLPHj0JTVF47eB+up0D11+plQ7UeieNiWbQmtgCv9u9kW+ueYv7dn7BX/ZuZV9HK7NcDSTCNTo5jcsmz0XHXFfkN8OsG+CeqRWj4OHfB/fzhz2bsSgqq8ZMBuCBXRuoCjBmwTuQUr0CKaeh8387v6DFbuOMogkhZTbDkZ2QxEXjZ5Bm11C93hIkIyWEONTCDqSuvvpqjjrqKJKT49OdSUTPnZEysjTPGp7BLO3TDYOStmYSVDU2TQFcQYsR646/Gig6wU8G3eujEpXeYC7MZhPusj77MSkAKK2RlUVpG80sQJKuMTE1g30drexqb45oW0PFvvYW3qkpIxNzEb9hNbsyAqj9SqmSNAtfcWWl3OVQ7Q47v9j6GdXdnRyXWcxzHyzhkp1j+V9NRcj74C7rO8rP+pYUi5XfLTyOyyfNIS8hic8ba/jJpo+4acunPL5/BwDfmTgLNcr1RbMyc7lhxhIU4O+lO+lw2Dl3zBTOGt1bLnhEgbmPoZb3rWuspcPpYGnOqKBNEIKyG+b6GECtc6LUxLe8T+nSzYsXVgV9tPkGsLw7j59MX8SsjBwumzSHe+dHPsOqICmFY/NH0+aw83Z12cAbbOgC4IWJ5vNjljOTEwvGogDv11XyetUBLIrKVVPnR/zYnzxqLMtzi6jp7uTP/kpSuwzzvYrYZKRertzLX/Zuwaqo/GLWEVwycTbnjplCh9PBr3espcfp+3FV2r0GJDc4abPbeKemjJu3rGZ7ayNT0jK5dNLsqPfPlzOKJzBX6XdhTgIpIcQhFtEaqfLycn71q19x1llnccwxx3DWWWdxyy23UF4e3kBBER9Ki46hgJHhXdoXfiDVaOvmg9qKgOsFQlHZ1U6Hw86UtCysfjqQhcOzHska40Xw7nLAIOeCnqueCWC49yGcmZhdOlqJDSNZwbHYLP2JKCNlN7BsNa+MKw441XUF/M2q0vC3NUQYhsHf9m/DAFZkuYIYq4KRbQZSio/F/acXTSDDksAHtRXsa2/htm1rONDRyoKsPH6cN5ekZji2NpetrQ3UdHeGtA+fNVSjAEcGyNgkaRbOGj2JR5aexNVT51OUlMqm5npqejpZnF0QcmlcMMtyC7ly6nxUFE4eNW5Ah7yl+eY+bmyqC5iNVBqdaFt7gpb1hUOtdXhO6MGVlYoX3YAuw9Mp08y4K6jVDlbmjOb/5q/gy66MUjS+6mpi8lLl3r5NF3QD54ZOdAxq5yjo6SqJrXDt1AU8eeQp/HjaQo7MLeSKKfM8M44ioSgKV02dT25CEu/VVvBB7cALAN6ZIHunA3uozSF8eL58N3/dt41EVeNXs5exOKcAgG9OmMGczFz2dbTy8L6tvvfVq6yuZF8dF615iwd2bWRLSwN5CUn8bMYSrGr4pa2h0BSVi3KmAuBQXE17JJASYthosfcMKLlXS+0k39eIWjl81nuHfVa7detWzj77bN5++23mzJnDOeecw5w5c3j77bc555xz2LZtWzz2U7g8sm8rf96z2bO4egDdMAOpNNf6ndTw1khVd3XwYsUertv0Ed9e8zb3lqzn51s+pS2M9Rf9xbKsD+hdjxTj0r6QZ0m5M1IJCkRQ2mfZ2oPiBMecREhU0NMUc6F2qOuzXLQdtt4TB7vB8e6mE3WVYa0HGkrWNdWysbmeMclpzE0219MZVsVTAtk/IwXm7KVzxkxGB67b9DHbWxuZlp7FTbOOwGozf66oKwkMeM/HSWl/e9pbqOvpYkZGNtkhDGe1qipfKhzPQ0tWct30RawsGMMPXZ3FYuVLheN55qhTuWbaggEz+3KSkpiUlklNTyfVAQLFhP+0k/SPVirKmknWLAPWfkVCrTYfD8csM3to2RokkOrQsXzY2WetW8i6DRQDjBTX768oOEdbUJyg1oRzJSOwCakZLMkuoK6ni4+8ykFrd7SQ1qGxJbeNb8ydiZGtouhmk4UkzcIJo8Zy86wjOLlwXNT7kG5N4CfTF6FgdvGr9XpcyzvbeMLrc1btNvjOmrd5fP/2gGV4vrxQsYfHD+wgSdW4ZfayPsG/pqjcMGMx2dZE3qou5d2a3gulumGwvrEWo91Jl2Y+B9JaVNIsVk4tHM/tc47kr0tPCtpGPloTdXPd1cEUMzNfUt/Ie7Xl7GxtpMXWg2EYOA2dVruNg13t7G5rZmNTHQe72uO6X0KIwFpsPfxg3Xv8aMOHfcqotX121DqnOQ90mAi7OOqee+5h1qxZPPLII33K+7q6urjsssu45557+Pvf/x7TnRS9drY2UdLWRG5CEuf5aOmrtOsoOuiZrqu27tK+IGuk3qut4KWKPezraPV8LT8xmXSLlX0drdy2fQ23zzkqoq5LnkG8GbENpGJd2me4L5w6DQgw3NQTvHg3mwijtM9d1udYYHZLMzI11HaHueYhLfTg0LKpd3G/4jBItVg5Ln80b9eU8V5tBWeGOK/lULPrTnqcTtKsfefvOA2dv+0zTxC/M3EW2mbXsbAqntK+/muk3M4smshLFXtoc9gZm5zGLbOPJFmzoHSbxzrBrpBht/C/2nLOHzs14ADxYGV9/miKynEFYzguinVRgQQqw1uYlc++9hY2NNf57VDnvpiS3WFlwoSciJpgDNhmtavJwtxE1EYnarUTpdaBUeD7xZn4SrvZrCFFxbEk9EYMAEqn6z0spff6nz7aArvsqJUO9NFRlil6+eqYKaxrquWFij2cMGoMumFQ9nEt48mia56VKUkpGNkOKHOgNDkxsmKfdZmXlceqMVN4oWIP95Ws52czl/BM2S7erCplRX3ve6nVUOnucfB8xR6er9jDwqx8zhs7lblBmmw02rr5x4GdJKoat8050ufsquyEJK6fsZibtnzKn/ZsJi8xiZK2Zt6qLqWr1cYrxlKqUnso6klifFcKf196MloMnlehcncKrEnvYVxHMmWNLdxfss/zfauiYjd8f/YtyS7gnNGTmZ+VF/D9YMB9tukkvNyG/YSUmD7nhBhJnijdQavDRqvDxjNlu7h44izzG+5zqVhXHMVR2BmpLVu2cOmllw5YI5WcnMwll1zC5s2bY7ZzYqCrp84nUdV4snQnG33MjvGeIQWEVNr3YsUe7i9Zz76OVsYkp/G1sVP57YJj+dvSk/i/+SuYnp7NjtYm7tn5RejzRbzsjNUgXhdPaV+sM1Lu0r5gv6L3GikVDAUIMQGktOmoe+3o6Sr6JPND2HAFvWo4s6S6dLSdNowkxcyMuS7enFrkLu8bmk0nHLrOzzZ/ytc/e5Nr1n/A4/u3s7m5Hrvu5K3qMsq72pmbmcsROaP6vKHq7tK+Jt8PTorFwpVT53NkbiG3zz2KDHeQ5rV+ZBn5HOzq8GRI/XF3Kgs3kBpMC12ZBF/vCR6u521OjzVmi/9VVyClF1pwzDUvDPjLSin1DrTN5vfc6zjD4W404clIAXqx+RpSD8b26uWczFymp2dzoKOVL5pq+c++vcwrTcWhGMxeUWzed7Y7Sxq/9acXjZ/B5LRMtrc28p3P/8vrVQdItlg4Lb1v1uvhOSv5xrjp5CUksaG5jl9u/Yy6nq6A2365ci8OQ+fM4okBBwDPzcrjWxNm0qM7uWnLav5+YAc13Z0ckWA+58aOyiChIAHVARbfUwjixl1aOHuymV2dl5TLV8dMYXluERNSM0jWLIxKSmFyaibzMvNYnlvEiQVjyUtIYl1TLTdvXc1VGz7gnZoy7Hpoz0lttw3LVhuWdXEsYxXiMLarrYn/VpeRYUkgWdN4qXIvB9wX8e3xuVAeT2HvamJiIs3NzT6/19LSQmJilMNWRUDjUzO4cup87i9Zz70lX/C7hceRl9gb1HoCqUzzxDPQHCnDMHimbBdPlZWQqGr8fOYSlvQr90nSLPxq9jJu2PSxZ0DoNVMHlhf50+lwUNbRSl5CUp/9jIojTlcsXBdSFYdBoBCkd42UAopZ3hdqaZ+2uQfFMIcHu2dcGRlenftCPL+1bLWhOMC+IBGtxOa5Wj81LYvJqZns7WihpK2JGbFoNx9D/yrfTUlbEwmqyt6OFvZ2tPB8xR4SVQ0FMw/43UmzzeeX97ywVAUjAVQ/GSmAo/OKOTqvuM/XvBfiH28ZxX+p4n+1FX6PS0VnO+Vd7UxISQ9p9tBQMTszF6uisqmlHqdh+FwnZPSYz5FiezILs2KzfkutdmKooBdoGFoiCf/tRNtiw37CwGNnfa8L11KWoBlyX9zPcaN/Rgqzm14sKYrCV8dM5q4d63jywE6KD1g40T6VlikKljTzPnvX7cWvwYZVVblu+mJ+tOED7IbOWcUTuWDcdHI/sAO95X65RiLfGD+d88dN5dF923n14D7+WVrC1dMW+Nxuu93GG1UHsCoqZ3s1LvFn1Zgp7O9oZVNzHccXjOHUwgmMq0oAWiBdw0gDyh0o9fHJzvnjzkhpBVaghyI1he9MDH4BxKHrfFJfxcuVe9nd3swDuzbyxP4d3D73qOANkVzv/5E2CBJiJNMNg4f2bsEAvj1xJt1OB4/s28Yf92zinnkres+lDueM1PHHH899993HunXr+nx93bp13H///axcuTJmOyd8W1kwhtOLJtBit/F//bJESkvvDCnwCqTa+57oG4bB4wd28FRZCcmahdvmHDkgiHLLsCZw29yjyHMNCH3iwI6Q93VPezM6MSzrgzh27Qs3I+X6v0UJubTP4uqy5y7rg96MlK+BlkG3szDRDOScmOvjFKU3K1U9tJpO7Glr5tnyXSSqGn9YdDwPLzmB70+ey7KcQlQFunUnJ44ay5S0LAAU7xS/Ypb3Kd0GdIZ+nLwDqTnObCyKwkd1lX6vPnvK+vKGTzYKzJlaszNz6HDY2eMaft2frdsMNmarWVhi0PSFTh21VcfI08CiYIyyoBdoaAcdA2YKKU1OLOu9SlEjCqQGZqSMHBUjSTFbsDtjm4FdllvE6ORUdrU1c1RZFgCJS3pnIRlBsqSxMiYljT8uXslfl57E5ZPnkmFN8JRpusuR3c9zTVH5xvjppFmsvFNTRkWn77VAr1UdoMtpvt5yQlgHqCoK181YzJNHnsqlk+YwJiWt9zFMVdFzXV01Gw5tcOHOSOn5rseiJ7THwqKqHFcwmt8sOIZ75h3N4uwCmuw9vFK5L+jPKjZ3IDW4I0WEGI7erSlnV1szU9OyOHnUOM4snsjk1Ex2tDaZnVJd1T3G4RxI/exnP2Ps2LFcdNFFHH300Xz5y19mxYoVfPOb32Ts2LHccMMN8dhP0c/3Js1maloW21sbefzAds/XVU9GyvXQumYdeWek3FcEXqjYQ5rFyp1zj2J2gNIOMNdL3TbnKNIsVp6v2MM/S0uo7Gr32y3KruuUd7Z5OoTFqqwPzA51QBxK+1x/Bzkh65ORAgyLq7QuSCmd0uhEK3Og56joY3ujQHf2MNTOfQPKAz1Dgc2/jssfQ7Km8VHdwbCGtMaTTXfym10bcBoG3504i+LkNIqT0zizeCK/mH0ETx95Gg8uPI4rpszv/aF+b6ju8j5fDSf86u49psmtsDRnFG0OO2sba33ePNL1UW7qfjvJ/9foaUt/KC1wZZl8tUG36U4M1/PWvUA/Wt5lfW6OOb7L+6wfdqLoYF9kft+721vIfGSkUMw26IodlLrYnsRrisJXRk8hwamyoiYHwwrOWb0XQAI1QIm1UUkp5HtXHriCGPfaQbp633vSLFbOHTMFHXMeW3/dTgevVu5DpbdDYSQ8+5Cuoue53sPqByeQMlz3H277c0VRmJ2Zy3XTF6GisLaxxn8jJzd3IBXh7D8hRqp2h91zvvr9yXNRFQVNUbli6jwU4PED27H3uE5kYn1+F0chX9Pv7u7mgw8+oLKykgsuuICLLrqIAwcOUFdXR35+PvPnz2fFihXx3Ffhxapq/GzmEq7Z8AEvV+5jVkYOy/OKPRkp7/IKI0016/idBrX2Lp4qLeHd2nKyrAncPveokGeujEtN51ezl3HzltU8VVbCU2UlqEB+YgqFySmMSkyh1WGjorOdqu4OnF4fSLNiWWIWp8WIRojtz90f1kai6tkPxcDMZAWoarFscjWZmJ9klgS66J7SvhBr9Dd39ykPNDyBlAEJCikWCysLxvJ61QFu2vIpt8w+ktzE8Bb2x9o/9u+krLONhVn5nFY0YcD3rarKpLS+z0Ol3+PcJwMQYgmkd0ZKadQ5oWAsqxuq+V9tOcu9sk5OQ+fRfdvZ1dZMYVIKEyOcd6bttqE2OEl8pg1bl4HjqEM3b29hdgGPH9jBxqY6vt6vEc3f9+/gCocZaGV3W4nF6g53xz69qPdJ75ybCP/rRNvSg/14c0YabTqWz7sxrGA/JRXr+p4BGfJQuDNS3s0mAPRiC9peO9pBB47C2KapTxo1loydTlIcGo75ZpdNN/d7rHIIAqn+3BfG9DzNnN/Vb5bUmcUTefXgPj6uP8ie9mZPlhfgv9VltDpsHJc/OqryVfdjaKSpnkBmMDJSRqLSuxY4wvbnadYEZmXmsLWlgd3tzYEv/LkDqTZXp1U1wOeQbqBtteGcZIW0GGSBhRjGni4tocVu46RRY/tUKU1Lz+aMoom8VrWf0pZWZpLi6Yg8HIT0qVNeXs7FF19MZWWl52tpaWn89re/5ZhjjonbzonARiWl8JPpi7h12xp+u2sjJW3NXFCbQy4aey1tZNpSaLfbGZVgJweNH33yPnsUczVwbkISd85dzpiU8K5Oz8zI4Y65R/F2dRlV3R1UdXVQ09NJTU/ftss5CYmMSU5nbEoa09KzY5qRittiRNfnnOIMskbK1jcj5XnB243e8kAftE0Dy/qgd42UGuIVTssGV0C20LUd13HwXtt18YSZVHa1s6m5np9u+ohbZi9jfCyGIUdgY30tL1bsIVWzcPW0BWbpV7OOc3aQ9ZSeQMr8y50BCGdNivcJptrkZEnOKNItVtY11tBqt5FhTaDVbuPuHevY3FJPhiWBa6ctDKuLV5/7c12lVwxIfLkdpdvAvjIlom2Fa2JqBpnWBHa2NdLldJDs6rC5ubme18v3c41hlu6qkWSDfFCrBmak9CINPVdDq3B1s8vWsH7caa7nOybZHBKeqESUkepdI9X3sXGOtmDFtU5qUeS/jy8WVeWEyjygB+eCfhcjrOYsKaU5hBPqGHMHUoarpE7p7ns8kzQLXx83nT/t2czfD+zgtjlHAebaoBcr9wJw7tjIs1HglQ1K8yrti2FGSt1jM58veX6uTtkMlB7DLOvTFAxLdHOkjsgZxdaWBtY21AT8vPKU9ulmJ0wj3f/jru63k/RUK/ajk7F9OTaZYCGGMsMwz0P6DyQ/0NHKawf3k6JZBsxCBHNu3acNB2np7AFShlVpX0inovfeey+qqvLUU08xZ84cKioquOWWW7jlllt49913472PIoClOaP4+thpPFO+ixcq9vD15sU4FIVr9q5Gd5V7/9qYwZFko7c5mVCUwZyMXFaNmUxBUmQneDMzcpjplWHqcTqp6TaDqQxLAmNS0kgN0Ko5WvEr7QttjZTiyUh5lfZBwKG8Sp0DrcqJXqhh9Ltq7u6wGErNvdLgRCt3oOeq6GNc23G/4Xh1DkyxWLll9pE8uHsj79VWcP2mj7lp1hHMC9ISOda6nA5u27AaA7hs8lzyE5NJeLEJ9aCDzltyzRby/niaTbiOs6uMKVDDiQG8M1JNTqyKwrH5o/lP1QE+qqtkVmYOd2xfS013JxNTM7h51hGMivB1Ab2BlO20VKzvdpDwZgd069hPTe2ThYwHVVGYn5XPh3WVbG1pYGnOKDoddh7YtYEkZ+/JaCTrk3zen4/SPhQFx9wEEt7vQtvSg2NJEtbV3Rga2I81s3NGumqecNuNsLLKvWuk+mWk4tRwAoBuHXVHDySr6DMSBnzbyFZR23SUVv2QNlmgwzCbfLjeO+geGEB8adQ4XqrYw/qmOjY31zMvK48P6iqo6+liSXZByJUI/nhK+9IUSFExUhSUBmdsgso2naRHW9DHWej+ge+gxv1+aaS7jkGS4vM4hOqInEL+tn87axtruGjCDP839JqBprQ4e+/fB9VVbhpqtYEQw5ldd3LF+vdptvUwLT2L6a6L6NPTs/nL3i3oGFw4fobP+YypFiuXTZpLwgfmRXm7poffDW+QhJRr3rBhAz/60Y9YvHgxiYmJTJ48mdtuu42DBw9SW+t7rYE4dC6aMIPfLDiG66YsIrfHSmeqwRF5hUxJy2RWRg6ZWeYJzL1TlvOHRcfz/SlzIw6ifEnUNMalprM0ZxTTM7KjC6JCadkdr4G87vOgYOdjnoyU6/+uk0ElQMMJ94J05xgfxyZRNa/Sh5CRsniyWr3lgX1K+7xYVZUfT1vI+WOn0uF08Mutq3k/hIG0sfS3fduo7GjnqNxCTnDNV1LazFlnSlfgxzpgaV+I3BkpI0Ux2+a3G5xQMBYwh5H+dOPH1HR3ckxeMffOXxFVEAW9mQLH/ES6L83CSFZIeL+LhJfbfQ9cDnMIczCedVKuNugP79tKbU8Xx2T0ljEqncaA50rYdMPs2JegeC4EuDndbdC39GD9tAulx8CxJAkjw9VJ1DUrLeyslDsjldz3dW/kaWZHx4OOmB9PtdaJ4gBtRpLP95tD1XCi750aKB262UgoyXURxkcAYVFVLhxvBgRPHNiBbhg8X74HgK+NnRr1bnivkQLQczUUR2yaMKgNThQd1Cqn388Epc3Z5/6NRMW8yBbhc3t0cipFSans7WihPkDreMU7kAryu7q76HrKUoU4jJW0NXOwq4NOp4ONzfU8W76b27Z/zoVr3mJLSwPjUtI5w0dpv9vReUXkKObnx4b2+kO019ELKeCrq6tj7Nixfb42btw4DMOgvr6egoKCuOycCN209Gym2zNQaCQ1L5GbZx3h+Z61oh12dZHSrQZd/jOYLGu6SHizg66rsnsXUfvi7toX46SXZyBvkJMxxdY3I+V5FQX4APd8+Cb6Dv6MDNW8etmj+8/SGEZvWd98r7I4H6V9nvtVFL45YSb5icn8ac8W7itZT4vdFlLL42jtaG3kPwcPkJWQyFXTelvmK12ukw9bkJOLAc0mXCWQYWWkXGtJisx1NGqjk2njshidnEplVwcK8K0JM/namCkRl/N567NuJFuj6/Iskv7ajPWzbrS9dvPSVY9hPh9cmc2eb2bgnBmbsRGeeVLNdXzWUMU7NeVkWxP5dvEMoLeDm9IeXQZFadZRbAbOcZYB2Qd9tAU9W0Urc6DWmO3RPeul8Jpt164Hfp33v093Riq13+tDVcx1UgccKI1OjLwYXsd0B/Mpvl+T7uek0uSEiYeoqL/LMIeupymeoNJXIAVwbP5onq/YQ0lbE3/YvYnyrnZmZeQEbS4UCk8g5Xo8jDzNbIHeEH0LdPe6M6XHMNdBZQzcXv+MlLlmVTdfVxFcZFMUhSNyRvHKwX2sbazxuZYT6JeRChxIqa55aUoYnUajoW3vwfp+J93fypQ1WeKQ297aCMC3J8xkcXYBO9uaKGltoqStiQZbNz+cMi9gx1hFURhtSQF0ZudG/x51qMgr7TDiaTSR2e9DxzNLamhfFdN22VA6DU/JkD/xHsirhNhswh3wuDNCSqChvO7gK8FPIOVugR7gg1mtcqLWOnEWWzBGeZ0s+ijt6+/Uogn8YvYRJKoaj+7bxm4/LbJj6T8H9wNwxZwFZCW4AgWngeJqJKgECaT6Z6RIVjGSFfMkK8Rhw+4TTHf5mdLkRFEULhw/g3Ep6fxy9jLOGzs1JkEU9C5+92TRiix0/yALPccMlNUap9lZ02H+XooTtD0hTnMOQX5iMmOS0yjrbON3uzYCcPW0BaTpfYOLiLrmefFZ1ufZuOIZzqv0GDgWJPYJmNwnvuGWGHoC8OSBj5VnMG+s50m5noOKnxJEI5JOktHuk7sDa6rZ+h3o053Sm6oofMuVlXq7pgyITTYKwzAD4RTF874Zy3VS7u6zAEqt7+151mi51pi6L1JFtU4q11xH+Hljjd/bRJKR4hBlpCzre9BKHVh2DI1urd4e3beNq9e/z0N7tvBpfRVtQ6SjrIidbS0NAMzLzGNSWianF03g2ukLeWjJCTy3/HTmhHABR3Oar+OUpIGl1ENVyJfuLr30UjRt4FWhiy++eMDXV69eHf2eibC537T1fqU2vbOkhna7Vs+HTrCZTHEeyBtq+3NPUGT1XVrX52eCZKT0TBUNM5Ay/CR4tc1mWZ+zf7MKP6V9/S3NGcX3Js3mD3s288CuDTyw8FisanzWdXQ47HzaUEWyZuHkMRPobHG1A/cu5wuakerbbAJAz9HQKh3QbkCARd5uSreBkaB42jOrTTpOzCv1x+aH2PovVHbX4vfcfq+/PAtdP80xy7HcQZaqoB6wk/zn5pi3UV6QlU9FVzttDjunFo5nac4oaOp70hLXQApXed+HXRhK32wUeGWkwtwHpcMwj5+Phi56sWudVJUD5/wB346cOy4LEkgdytI+T9YzVTXXBeE/IwXm635mRjY7WpuYkJrBkuwYVJDYzAtH7owc0NsCPQad+5Tm3m2odU50H30xPDOkvEr7gLBboHublZFLimZhU3Md3U4HSZqP57fXSynY2iflEGek3Jk8dyOYoaKyq52XXE1O9nW08lrVfhRgUmom87Py+OrYKWRaY5OVF4PDaRjsaG0kUdWY3K8Db1jcn/vDZYEUIe7qlVdeGe/9EDHg7vrWPyPlWZPQEd83c6XKgZHdW7cf9s+7P3SCXaCP10Bed4lSsPOAfkGREUJpX29Gyve33Y+Z2qr77XWhlZofjo7p/TbiLu0LYSjwKYXj+aj+IJua63m2bHfgRdVR+KiuEpuu86XCMSRbLLh7OnqyCgTPSGE3zHJLr9IxI1uFSrO8Tw+wyNu8sVk+Z5bZhd/xL1yeTmq+Smo0ZUB5Uu8g5tju08LsfF6r2k9hUgrfnTTbvI9+J5dRB1JVrtbnhb4DcX2sBfuiRIxsrW/2FK+MVDj74HQFqTl+Suw87bdj/B7nfk0lBC7tCzsjZRgkPN+OXqjhOCa8dXme51mqihFgjZTn9orC5ZPmcn/Jer47cVaMSlgHPteNGGakvANTtdZ3UBAoIxVpKGVVVRZlF/Bx/UE2N9dzRG7hwPv1et9SA2WkdMNzkURxYH4G+KlIiBU1jEDKaejsbW9hcloWWpDnxMGudj5rqOZLheNJi2AN9Guu6oRVYyYzISWDzS31bG6uZ29HC3s7WijtbOPWOUeGvV0xdJR2tNLpdDAvMy+qge+KwzDPqeLcnCmWJJA6jLgDkf6Lvw9FRkppcJLyQBN6hkrPeenoU8NMy9oNVPdsmSABQbxK+zwBUbgZqRBK+/oP8R1w38FmSRlmyaOhgZHf7+TVkxELuNvm9hWFq6bO58ov3ue5it0szysaML8pFv5bUw7AlwrH973/PhmpwNtQ7AzIBOg5XrN7xgf5QLeBooORpEQ2zDdMvk4uAzEyVAwlNovzvZmZxzksyS7wtED3BPIpCkqnEfeMFIqC7Xzf7fa910iFzPW8MZJ9H1vDe61SDIVa2hfu/SrtBtZ13RgpCo4VyWGdNPQG7IpXaV/g96wp6Vn8eckJYe1jwH1oG/hc9wSzsSjt8zqeqr/SvgFrpKIv7QOzDfrH9Qf5vLHGZyAV6hopd1Mdz/87dYyEOHZ2tBme8n31oMO8kBTgefVkaQnPle9mQmoGl06czQLX+kpvPU4nz1fs5vnyPdgNnZ2tTdw4a2lYu9XhsPNOTRkJqsq5Y6aSYU3ghFHmmvvq7g5u3rKaL5pq2drSELT0S9vagz7O4nPNnBhc21zro2ZnRjkz1Mfn/lAna6QOI4onI+UnkIrjGin3VXW1VSf5ry0k/Ls9eIme9897fyAFy1TEq7Qv3IyU+zw+hNI+TyvvCNdIKe0GSqeBXqANKG0KtbTPrTAplW9PnIXTMHhg1wYcemxP5Ms72yhpa2JMchozvYbuQd9AKqSMVL/HOJwW6O7ZOkaSckhKsPovvg9KUzBSFfOEMIbd5lRF4ezRkxjtNSPOfazd61iiuqjiMFDqXRnBUH9XL5GskfIEDyn+L0QYWpiNSEIRpLQPq4KepvTOkgpVd283N6Ux3BJHr+eZp7Tv0JZt+7xokOJaw+hugR4pw0BpdnWEVECp8/2YuuehedqPx6C0D2BxTgEKsLaxBsPHWkzFZpaYGtbAF0GU5r7fi3fnPu9gXuk2Ar7X2XQnb1YdAMz5PjdvXc2t29ZQ3tnmuc26xhquWP8e/yzbhaooZFkT+LShio/rDoa1X/+tKaPL6WRlwVgyrH0vsBYmpXLh+OkA/P3ADp/H203dZyPpH61Y/9vp9zZiIG1rDwkvtUX8mqzsaufyde/y9wM7At5uu2t91OyMKJtE2I3ec5phQgKpw0jvGqn+pX3uQCqOJ5Gu7IKzSMNIVrB+3EXy7815QSH9vFdNfNAStXiV9rkOW7BmE0qPue7GHXgZ3gN5A/wM4D8j5Snz8hNIuUo1+s+gAsIq7XM7o2gCczJy2dfRynMVu0P+uVD817Wo/cRRYweWEXWFGDA7zc5k/aeb95bohfBcdrc+T1Ig0RW0NEV5kheAd8e+UBmZmvl8i/didHcW1R1IRZGRUmvN1tT+yvqC6c1IhXGhxR2A++meh2oGy0qHEfWJdB/9G574YGSbj2E4mcU+g6LLw2s20ud5ZnENoo1iflIkeluf98sY58WgBXqn2ZBGz1UxcjSzZL1n4PaUNt38DHA1H+nNSEX3OZdpTWRGRjYNtm72dbT2/aZhgM18/zcyNfO4+3kf8/5MA/q+98VB/4sIgcr7Pqk/SJvDztF5RfxsxhJGJaWwtrGGK13NIO7avpZbtq2huruTZTmF/GnxSn46fTEAD+3dTGuIjSKchsG/K82yvrOKJ/q8zbH5YxiXks721kbWu8Y2+OIubY91Bv9wZ32/E+tn3RGtXWzo6eaXWz6jsquDfx/cR4/T9zYMw2BbayMqCtP7XTwNi5/P/aFOAqnDiNriND9YUvt96CeYQUdc10i5Tjj0yQl0XZuNc4oVtcZJ0h+asHwU/AqSd5emoKV9cRvI6/o72Im264qkRzhd+/w1m3CVKvjLSKk1AUqpwijt82xPUbh62nwSVY1ny3ZxoP8JQ4Schs57NRWo4JnX5C3kjJSfrGM4JXqek0vXOhI9x3XCG2VZm9/7C7O0D3pLOtU4D+wckJGK4hgo1QGC+hBEskbKvVjfX0YK+rUijxHF9TxUAqxtiSjb6RX4aOXhNQbozUi5Agj3INoQO1nGgr/sqxGDhhOqp0RdMzPw9A629XCYZWxGuuopX4tFswm3I3LMkr7PG6v7fsNplguTqPSWY/tZ4+i+sOkeqxHvrrnu55/uuigX6CLmG1WlAJxeNIEV+cU8tHgll0ycRaKq8VrVfj5tqKIgMZlfzDqCX8w2h5QvyM7nS4XjaLbbeGTf1pD2aU1DNTU9nSzIymNCqu9SX01R+Kars+TfXfPOfFErzA/YQ9W443DhWacX5sW6druNX25dTU1PJwmqSpfTyRdNvrtZ1nR30mjrZnJaZm85eSSCVQAMURJIHS7srg+WzN4PFg9FMT/wOo24XY33lK5ZzSt13d/NpOesVFAg8bUOT0bFnz4ZqWAXu0K4ShwRd8lcoHMAh2FmELxPrMLp2ufvhCxVwdD8r5FSq/0v7g+3tM+tODmNb06YgcNV4uc0ov+A+qKxliZ7DwuzC8hNHDi9XAk1I+V6Dvgr7QvlZFnxzkjhdcIbZilVqHoDqdCfl8EykTHjDuRjkZFyr48qivAD06qYw1PDCqTca7z8f2R5yj5juU7KfXEkwHuNuwFGOAFcdBmpfkFMkmq+Jx3CRm39h/G6xaIFujsgMLJUdNd60P7lfT7vP0ZrpMBcZwhmeV8fXmMsgpVjuy8OekYvxDkj5X7+OWeb3e/8ZaQOdLSyvbWR0cmpzMvMA8CqaqwaM4VHlpzIqtGTuXD8dP60eCXL+q0R++7E2eQmJPFebcXAY+PDqwf3AfDl4sBzC4/MLWRqWhZ7O1r4tL7K523cow2CDXIXXpyG57USzvOv2+ngtu2fU9rZxsKsfK6ZuhCAj/yUdW5rNcv6ZkW9PspdbSSBlBgEfmdIuRhpKopB3EqIegMF1xdUBceKFBxHJZv/rQkWSIWekYpXaZ/hfjUEajbhI7MUUte+/g0q+lPNK5xKh+FzO56T11EBSvvCDKQAziqexIz0bPa0t/B+bUXYP9/fO64mEyePGuf7Bt4ZqQAnPANmSLlZFfR0NbQ1KV5rpCCyE96wBOra50dvk5E4n2S5n7fJitlwok2POIMRKKgPlZGumo9/qOWoIWSk4hEoKyGsx4xklpT3mia10hG0wU0fHX0DKSOEFuix5i/7GosW6O7Xp5GteRrr9G84ofRfH0VsM1LjU9IpSExmV1szTbbu3vt1v46soGcEvgjivjjobs3vnRFw6Dot9p6o99Ob+/nnmJmAofgPpN5wrY06tXDCgNLrzIRELpk0mwvGTffZ+j3VYuWKKfMA+MPuTXQ4/F8E2NfewtaWBoqSUlniCkz9URSFb0+YCcCTpTsHXtTr0FGb3JkVyUiFSmn3angSYgDq0HXu2fkF21sbmZaexY2zlnJkbiHJmsbnjTV0Owc+rzyNJjJ8B1Lath6S72jwVDP43V/P+21IuzpkSCB1mPA3Q8rNXQYSt/I+r4yUN88VyiAfrOGskYpbaZ+7RC/ArvaudfLxc4HWSHnaKAc4Icswg90BV+p1A7XGYTZN8PX4hjCQ1x9NUbjIVVbh72pTqFpsPXzeWE26xcqyXN8fnEqoc6TsvScs/RnZ5hX4YMFHb2lf34xUzBsSuO8votI+14lnvDNSPb0XAIw01SxDDdbsww+12oGhgl4Q+ZUMz0iGEBtOeE5CA2Sk3IFyTB9fd9c+P+3PIfrSPsVB0CHk3pQOw7zo4x5MHGQob0A9uidIDYe/9YCxaIGuen2WuZ9jal3f4zOg9TnENCOlKIqnvG9tYy0A1V0dvF16AIANnfX8p8NcC6r6axDk/j3cgZTrs/dgVztXrn+fSz5/h73tLVHvq+f+3Jm8Iou5tqxRH7Auq8vp4H+1FVgVlRNHDSy9DsURuYUcnz+aBls3j+3f7vd2vdmoiaghdKVckJ3PvMw8Krraea/fRT3Ne9B2V/Ay1v0dLdy85VPeri4Ler+HM+/PyFAyeYZh8Pvdm1jbWMOY5DR+NXsZyZqFRE3jiJxCenSnz2HV21vMQGqWn0YT2l47apve93H0JV7VRnE2jEZeiUA8M6Sy/Fwl9mqBbgS+OBQRxU8JjGdNRpBAKpw1Up6MTcznSLn+DnR12HNC6vUBHsoapWAZKdzZRIc5lDe793FUGnUUOzhHawPLNom8tM9tTmYu6RYrG5vraHfYI5oTAvB+XQUOw+D4gjF+B/32mSMVSuDp4w3VyNGgzIHS5OxznAbwlPa5rtzHuXNfZM0mDm1GigTFvIpf6zQX6yeGeS2tU0dt0c2Sqyg+7LyH8gZ8DF1CWSMVTtlnyEL4YI9klpQ7yNfTVdQ2HbXcgT46hNedYZiDnVO8mt14ZaTCfQdIeqIVpc5J189yfA469rv/Ptqfg/c8Lz/HQjf6zIXzue3m3oyU50Jc/9K+fq3Pwes4xKjZyNLcUbxWtZ+XK/fyetV+9rS3MK05lXOYR49FZ6PRyFfIZ2t5LcX2YtL7daRTm801y+5jQpfBluZ67tqxljZXJuc3Jev57cJjSYjBYHS1ybw/I01BL9ZQG5yoVQ70Sb379UFtJV1OBysLxgzooBeOyybPZWNzHW9Wl3JMfjHzs/q2Tm+ydfN+bSUpmoUT/VUn+PCtCTP46aaPebq0hOPyR3s+R1SvE3BFx7wI5Ge98bs15fxpz2Z6dCe725o5Jr84unU7w5j358qaioN8vKsNh6GjGwYOQ6fH6aTb6aRLd9DtdNDhcNBs7yE3IYnb5hzZZ0jysfmj+aCuko/qKvsMs2+29VDR1c7o5FSyEvwMVXZ/7gc9tzP/ktI+MSg8Hz6Z/jJScW6B7ifjYgT7YAVPu1uPUNpix2NgWwhrpHytdQqltM+z7itIRgoGZic8jSZ8lfVBVKV9ABZVZVluIQ7DYG3/xdUhMgzDMzvqpAAfnH2uigU64QmwNkX3tEAPLyPlyViEO/On0Yn1zQ6fncP63K5d75spCIEeZMF6zLjXnLkDKSLLggWdHxWicFug9wZSATJSntK+WDabcP0jUGlfVvgBuvu56ZxqBk9qqA0nul1rNL0H4boHoIe7dsRhoO63o7bqYa+ZUzp086JQ//czdwv0+oHdMZVaByl3NGB9oz3wtt2ZlWwNUlWz22Zd3+35Ku3DfVEgRoHU3MxcklSNss429rS3UJycyum55nvbEYWFHDVpDABt9d1ctu5dXju4v7ckzWaOqzCyNE/zp/rGdm7eupo2h52vjJ7M/Kw8SjvbeLJ0Z8D9qOxs592a8oCtwelxrZHONi+2ubNg7sHZbq+7BuOe1m++X7gyrAl8f7JZ4nf7ts+5v2Q9axtrsLtGabxZVYrD0Dm5cBwpltDfK2Zk5LAsp5Dani7e9MomuRtNuD9rfTVOsOtO/rh7E7/dtQG77mRschodToen3Hwkam/o8vy7uqmd/9aU8V5tBR/UVfJJfRXrmmrZ2trA3vYWKrs6aLX3MCY5jdvmHElBUt9B4Yuy80nVLKxrrKXTq6Rzu6esz3/bc89ncZBzu0AXUIeykRmmH4Y8HYL8lfbFuQV6b+14v0AqU8VQQWkIcL+dBordXL+hdBmhlfbF4YqFu7tSwLU3vrrvWYOX9mEzzO0H2G/dk53w3cbW38mr5+pNBKV9bkfnFfNOTTmf1Fex0ke3vWD2drRwoKOVSakZTA404DfUrn1+SkUBrxboQcpF+zebyIosY2H5vIuE97ow8jUciwc20DA3bi7qNVLVoFfc+/yYu8NWnEv7BmSk8FFCGoJYrI+CvhmpUPQ2mwhwbFMVjAQ8ayliIshAXsA8pmmKeTEohIwL4MmW6lMTYH0PWogNJ5R+66MAr1lS4QUQ7jb24MoM+qtm6M9hoHQZngsT/el5Glq5A6XVa5tOg8Rn21A6DCzbbdhPC7BfrkyOuxxdz9fQDjhQmvTeZim+MlIxLO0DSFA1fjpjEfvbW1mWW8jE1AwsJTagFSVR5dgpY4FGpujptDvsPLR3Cy9V7GV+dh5HOvJYSSJGlorDdWGlrtnsXnv11Pl8qXA8dT1dXPnFe7xUsZcjcgp9DqPd1dbEL7d+RrvDTm5Cks+hudD7nubOjrobwXh37tvR1MCe9hbGp6Qz089alnAcnVfEuWOm8O+D+3mvtoL3aitIs1hZnlfE5w01KMBZRb5bngdy0YTpfN5YzT9LSyhOSmVxTgFqpQNDAX28FW2vHaXLwPDqsl3b3cndO9exq62ZLGsC189YQqrFyjUbPuDVyn2cUTQhpPLCw4lD11m/v5ovYT6vjk0tYvScYjRFwaKqqIpCoqqRrFlI0sy/rYo6cGSJi1XVODK3iHdry1nTWO05T3A3mgg0iNd9ATXoiBZPs4mwftVBJxmpw4Q7hav7azbhXiMVzSDOQDxXEvp9XVPMeu023e+VQne7W3eHpqABgcOIzwvNlZFSAlwc9jkPKoRARrEZAbNR4HVS3dI/IxXk5NV1zCPNSAEsyMojRbOwvqmWLh+LSQMxDIPXXQuYA2WjgJC79in+nk/0ZqSCBkT9mk30aVQRxuJ+9wlqwPvrMudfhNOxD4Ak12DPCEv7lAYnzpKu4Df0Ki2NZCCuW9Qd+1zC3ocQMlIo5nuN0m1EtO7HJ4eP17sPenZ4rfXds470PA09W0WpdQbNeIJX+Wiqd0bKHUiF9zt7NyMIawZWkLWAho9ybusHnWgVrq5r9U7/2XubK7OSpXkCUj3fFRTUeu2vex8yBgZSxLDpxpG5RVwwfjqT0jLNE0z3+7/VfB0ZChT1JPG7hccxLzOPmp5O3q4u4/UdewH40FHNjXtWA5Blt3L7nKP4kisblJ+YzOWT52IAv921gU5H3/fdHa2N3LxlNe2uq/8f1lf63U/Vq0EHeAVSXo/xS/vNeYGnFU3we7IcDkVRuHjiLJ488hSum76IZTmFdDsdvF1dRrO9h2W5hRQmp4a93YmpmZxZPJFWh41fbfuM36xfh9qkY+RpvWvAXa/vToedt6vL+NGGD9nV1szMjGweWHgc87LymJyWyZzMXKq6O0LqMHi4ebqsBK2197WQpyeyIDufuVl5zMzIYXp6NhNSMxiVlEKmNZEEVQv6vDgmvxiAD73WUwdbHwX0rt8Mdf27ZKTEYOidvTE4GalAGQQ9R0Wtd6I0OjF8nIB5FuUWWNDKHIGvWhgGisP3/UTNk5EKcBtPRsprl4IFMu4hjhmBr1sYfmZJBS2ninKNFJhXm47IGcX7dZV80VjLCtcbZiBOw+DT+oM8V76bfR2tWBWV4wpGB/wZpcvAUDCbakSakQoxo9K/tA/AyDHXpCitoa3NATyPeaDSLc/rKjXMa1OKOS5ArXeav3OYz+uEv7fQU+OAX+QFLCn0HOvEaDNSMSrtiyAjZSj0eSx90bM11GonapMTPVDQFSJ/az/7M7I1KHdlTfxczOqzXa9sqT7GiqWpB7XCgT458LoVT0bKK2A3kiMLIKIOpNL9Z6TAbDihTzazItZ3OjGs5nFSa52otU5P+VmfbTcN/Bxzz5JS6pwws+/+xqv9uT/uEm0jUTEvEqapKG06k1IyuGvecpps3WxraYSWDgAOJHSytbsJh6JTrCeTm5XXZ3srC8bwWUM1nzZU8bf927hy6nwANjfXc9u2NXTrTlaNnsyrB/fxWX01P5ysY1EHHvc+5ZC4KkFSFLMs3GnQoTt4q/wAiarGyoIxMT0myZqF4wrGcFzBGNrtNlY3VLO9tZFzx06JeJuXTZrD/Kw8Htm7jdYD5rHcl9XJmKQMrMCumkaes5fzeUMNdlc55VnFE7lk4mysXsfnnNGT2NrSwCuV+wa0cj+cbWqu47ny3fyuZ7bna7FoG78gK590i5UNTbW0221oqsre9hZyEhIp7FcK6M1dUTBoo23iTAKpw4TS7KpZ93OiEe81UoHWABl5GuyyozY4cfoKpNyNMtyLcgMFUvHq2Ae9gVSAbIXnQ9p7kb4nI+Xn5xxm4BCo0QR4NR7wXi/jMFDqneZaGj8nhrEo7QNYnlfM+3WVfFJ/MGAgZdd13qut4PmK3RzsMj/kpqZl8Z2Js/osTh1AN6DH8Jx8BM5Iuf7hK5Byn4QHaeWv9Gs2Aa4TjVKHGdSHGEi5gxC12X9GKpKOfZ59ylCh3mk2GckLvWROaXR6SneUDh2SA/yszdXpTQPdE8SE+V5gGKjVToyE3vLKSHkew3DWSCUrQcvm+rRADxzTh8Y9kNeqBGwm02cY8IQQmkZ4BfnOsRYsW3rQysMIpPqU9rnuO9xAqjo+Gak+DYYcBonPtqI4oeeMNNQmJ2ptl9kG2Ucg1duxr/e5bLiH8nq1QFfadAyl3z5YMJ/jcQyk+q8FNjJcF2Y6DIx0heyEJFbkF2NN6AA6OWf2VGbNHI/6oZlpwzDwXturKApXTJnH9tYG3qwuZVluIZqicMf2z7HpOhdPmMm5Y6dS3tXO2sYaNrfUsyi7YMBu9S/tQ1HQiyxmGVydk/8Z5XQ7nZxSOJ7UCJsJhSLNmsDJheM4uTD0BhO+KIrCkblFLMwqYE+FucbpLWsVeU2NnE8R/91/gE/0WlI0C8fnjeHEUWN9lkYuzSmkMCmFzS317GtvYVKgsvPDRIuth/tL1mMAkxzpvd+IwRwzi6pyVF4Rb1eXsbqhmvzEZHQMZmfkBsxmed6bBmm0TbwNs90VPnXrKD2GeeXOz5O5N5AajIxUb8MJX6einnkb2SqGJUimIo4vNMN9khaoYsxH973ernmh/4zP+/fRbMK9jsE5KsBJcgxK+8BcTJqoaqxtrKHH6SRRG3if+9pbuH3759T1mOVk8zLzOG/sVOZn5QUvF+k2UAzQ0xSMTkJqf+7zylSyYma1gp2E91sjBV7PxSY9YOKxD9dFgj6zzvpxByURBVJeAXQ4gZS2w2sOTZCTaKXHVVqqRJ6RUlrM9xnnGEtY68B86S3tC+E5azfXUOpBMrrgNSssRg0nescWqAEDKe9ZUqHcs3eQr491lWGFsE7KfSHMd2lfeK9/JdKMVJDnuuGVkbK+04Fa7cQ52YrjqCQs683nrFrtCPhZ4B2oe0r73C3QdcMMpNL6rUdUFEhU4pyR6vtebmSoUAlKi7NPdsz9eyTlJTInMx2SG1HanOZnQb+LnZkJiVw1dQG3b/+c35ZsoNPpwGHofG/SHM4ebQ6yXZFXxNrGGj6uP+gzkOpf2gdm23Vtr53GA228ajFbkZ9ePCFGR+LQSNQ0FnVkAza0sQlUV5qfO3Os2cyfOY4lOaMCdjzUFIUvF0/i4X1befXgPn40beEh2vPBYRgGD+zeSKOth5MKxpLSrvSuPY/RIONj80bzdnUZH9VXMj3dXKg2K9CaO6fheU0GXf8+TDNSskbqMOApjfPTsQ+I+xypgO2q3UMa/cwWUT2T7DXzZC9QW+zBzkj56NrnaTbhJ5Dx+TO+WBSzQ1WLjntOhnuAnRGolCoGpX0ASZqFJTkFdOtONjTXDvi+Xde5v2Q9dT1dLMku4N75K7hr3nIWZOeHVHPveSNPViFBibi0D1WBFCXoYEbPmhHv0r4QG1X02Y67tK/Zib/5JUoEw3jd9AiH8lq299ZJBJxabxhmp0vvkz8iCKRca17cQ1KjEU4w5/7dAjaacG83pzegiYmQS/vcz6sQj2m3K0NoBX201RygGkLnPk82yEcgFdYcqTYdtd3oLUsOo2tksOe6OyOl7bdjfb8LI1Gh52vpoCqedZ7upiUDtt2vRM38t3mBzdMCvdO1HtFHaaGR6HpfCTasO1L91sj2XgTpV47dr/mT50Kmnyz6stxCTho1llaHDYeh88Mp8zxBlPn9IiyKwur6Khz6wMfZc9xcz3+HrrMjrQ2AjzeVUdnVwcK8AqamZ4X9Kw82d6OJbx49l/OnmzMPT8gYzfK84pDaxp80ahwpmoX3ayv7DFc+HL16cL9nBtQPCmejOM1yZyNJiVkgNTcrl0xrAhub6lnTYHb5ne0jG+jhfWEjaLMJ19/S/lwcakFnSIG5qF0LvZQmbAGChd521X4+PL3WdxlWxXwx+Wv1Gs8rFu5mEwEOkeI12NTDHeP4e5Pw1enPDz3TXLSO68qzp/V5gEDKE2xEWdoHZvc+gE/qqwZ87/mK3ZR2tjEvM49fzV4WducnzwlxsmKe1Ad4nAM1mwCz6UCwobJKj+tE0Ws+TsiNKry5AykHnsdlwH15yp3Cf176azISUJeOus/rAQ+UjXC4ntPu51+yYnbSDDOQco8wcJ8oR8WqmCe9oeyDp2Nf8I+rmM8Kc7jWZgX5lfXs8AI4pVs3A3xXFsUYpaG26EEDGl9rpCLp2ucu63O6SgnD6Rrpb4aUR6qrBXqnmYG2nZXa2wRhlMUMGv0MIPY0HvJe66sqGHmamY3r0H23PndzP8cjHDYdjM+MFAMvgvSOI3GtWXJdBAh08eeySXM4tXA8P5uxhNOLJvT5XprFysLsAtocdja11A/4WfcMqY4kJ/8sLeGSte/wu45tAMxuT+fSSbO576jjwv11B1+H7mk0QaJKVmYyELys21uKxcKXCsfhMHTeqCqN154OuvVNtTy2fzsWReX6GYtJ7nAF8Zmu12NPbC4waIrK0XnF6Bjs62glRbMwPjXD7+37BHDBXpfuiiPJSIlDzd0u298MKfNGinlVrDNOV+s8L4CB3zJyNLMUy88sKaXZnL9jpKtgVVAM/JfRxLOG1n2yFCiz4wkYe7/kedH72WdP5iWEN4fek2rzWIXUbtoSOCMWjiXZo7AqKp83VHtmggCUdbTxbNkuElWNK6fOi6zrk+sN1XBnpAz8B3+BMlKEsMbGMMyr/kl9XxO9JVhhnDh6vfn7O1GObo1U35bOodB22foE/AHLmfqd/KG6Fsl36GG9F3gyUrEIpDCPldJjBO/k5D75DCEj5RmOG8vSPgtBn+9hBXBO17gHr0ypc2yI86R8ZqTCXyPlGakw0WqWU0e0Rsr/MXEH246ZCTiWeI0MsCoYuWbQ6KuzouKjRA28y/ucZgdY/GekIMjrIRr9Lhj6fO3qhvmZlqZ43vONZHe3Of/7lWKxcuXU+X7Xp65wX+Ty6pgG9Jkhdf+uDTxVVkKTrZuCsenomsHsjgxWjZlMWhQDeAeL5hrEq48xH39PQBrmep+ziiehAq9X7cemx3lm3yD4X005t25bg8PQuWzyHLPLpNd5oef5F6Os1DF5xZxYmcejH8xnqTUfLdD6KK/HSglysTfYBdShSgKpw4Cng1GwrnCpinnyFaMXU599cFcZ+TrxtSoYma620/1P9p2uevcM1eyC5D7Z83NyFd/SPtc2Q8pIeR3rYHOkwshI9V8npVa75mf4G8YLvRmxGARSKRYLi7IL6HA62NRcB5jd+X63eyMOw+DC8dMpTk6LaNu9pX1ej7OfK1TBuqUFvcLrwMzs9VuPYGSaLYvDWkPjtY/+1klF3WwCBswPC8Rd1uecZH7iBCrb8DlEOl013wvCuLKr1scwIwUY6a7HMEiWXAkjI0Wy6+prk/8yzLA4jNCy3/1nSQXSPfD9INR1Up41Un0G8obftc+7jb2RoZrHOMT3j2Bd+wAci5NwjrVgW5VG/3W7nvK+moHPd6XJ1USi30VB3dNwwtGbkfLxeec5pnEKpNzv8YYrJvFV2qd0mEOT+zTMSA3yfhWCZbmFZnlfQ9/yPnfw2ZzmYE1jNYVJKTyy5ERunrcMY5QVtcOAOM+pixfVFUg5R7sCqWT3cQzv8R2VlMKRuUU02218WOe/jfxwYxgGL1Ts4Te7NmAY8KNpCzzZTE8TrwzV09E1VuV9s1Jz+MGO8UxqS+GYjrzAN/Z+XwqxtM+Q0j5xqIV8EhfPhhN2d1cwPye+uZrZ8rrfFX2lRTc72rlLOdyTy/294Nxfj+dA3kDns15tpD2CZLIUH1ksv/vgGcqrm+Vbza4hlIFO5jSzVCsWpX0Ay/OKAPjUVd73n4P7KWlrYmpaVp+6/XB5l/a5T+r9rpMKUsLpWXPg5yS8/zBeD4tinji2+gjq/e2313PRX0lgVIGUn3UWfjkNtBIbhgbOua4uiYHWx/goR42k4YR7/U/MAqkQO/cpnhlSob3m9RwNxY7/RhZOA+v/OlDqg2R/DMN8TYVYZqJnuWZJBft93Cf5XtlS3ZWR0oJkpJQOM9Do0+o+gjlSapUrKC7Swl4zF8pz3bE8me4rsz0ZG2/uMuUB5X1OwxxL4Lqo1udn8ns79/lsfe4W74xUvzVSuo+LIIqvUSTJoXUaDcRfeZ87S75BaQTge5PmeOY36UWu43Yw+Pq7SCjVjrhtG0CtMD/UdE8gFXlmxf3Z9XLlPoxYXGQZZLph8Nf923hs/3YSVY1fzD6izxxHTyCVqfUGoDHo3AeQsNVGbrd5QjPDkhnwtt7BW9BmE47An/tDlQRShwHPkMYgJ3HxnCWlBJmB4z75Uuv7B1LuDx3XB26QjFSgEsKouXZBCaH9eZ8OfMECmRC79gF9ZkkFHcTrzRKb0j6AZTmj0BSFzxqqOdjVzhMHdqApCldPm4+mRP6WoXiV9hlB1jJ4rvz6WyMVZPE2PhpNeH42xxXUh7omybu0z29GyuizX+FwD/YMdX/UA3aULgPnlITeICzAiaOv0lL3SagaaiBlGKj1TvNxS43Nh1zI88DCyUhB0IYi2uYeEt7qxPpRkEHGOuZFnhA/1Pu0Xg/AV5Cvj9IwrK7SPn8ZLcMwg5gUpW+3OotilueFmpFyGqg1DoxU11DZ9PBKS5V23bzoFGSmlz+eYbH9AinPRTUfrfUNr1lSg5qR6r9Gyl2K7Z2R8m6e5N6vENZIhcJd3vexV3mf+/72JrSzKDufI3JGeb7nntXlPTMsZnSD5EeaSfprc2yyvz64G024AymiCAhmZeQwNS2LAx2t/HjjR6xpqB62AZVdd3JfyXpeqdxHhiWBu+YuZ6nX4w6951Z6rEv7DKPPe2e+MynAjfs9VkEzUlLaJwZJKKUWQHxnSdmMgIGCZ9p9v5MbT8dBd3cjd5mcn8FtcS3tC6X9ua+MFJhru4JlpEIp7fPKToQ1/NSixKS0D8xZIAuy8ml12PjFls/o0Z187f/be/Mwuao6//997q2q3jtJd0ISIGEJpIEQIKMsIoigguOGggubyOYoCurIPLiNAm64jIPiuDPy5SsObgPDyPBFZwRmHEDgJ7KvggmELUl3J53urq7l3vP749xz7lJ3rbq3blX35/U8PpLq6rqnb517zvls78/u+2KvgXDPUyTOiFQxwnMcGZGyXk8akYKj50+c9D6T23MOtre54XozVh+3GMZyA47GnnFqlgqPWWl9+5fsfmZhh2if1NLEEalpDlblwiHSTH2cD7Gb8jYRkQKCo4e6JdIRaXio6Hesy9rS61GCE35Gvs5g7lYAq3DReNaPikgZ8zPWeS8TcyDGwZBtM0Tq2YoCwJhv24VATA7MiF5wzc4Dc7lU7vMYUpMep5rzd5baEugqIuXnOOyNdiy0hDdNtpeBFz2pfT6CGdIJ0EpECpDpfZorva+yTUjKb+mv4v17H+iq55NGK8sgaqS9ZIBNW/2xMigX8ApNiIsyoUDXxH1kljNwzcAiPDW9HV949B589E//jTu3vQizRYNq48wUvvHA/4eX52Zb+pw4TFTn8NmH/oD/2fo8lvf04+sHH4Wx4SUN79McqX1pRqS0jTXoloELwLfW0YVznY0UmxD/R6l9RNuJm1Yki4NTV+4zxAYf5kWwI1JBMrHW5qkU6Nqf2qcOTEkjUvJ3o2qkYni2TZXaZ9iGVFh9lAUvsNA+N0mR6X0vV2axqm8Q71m9b8uf6a6Rsl4MaWIMhIhNqIhUwFyW0a9en0NnEols+d3JGge/iFRd9OhoRrFPjWlY1CxFOjk4h/6obUjxGLnvQTVSQHxDSktZaMI1hpg1UkENqRs+VwqKBEWkpNphXCnehBGpqHkVZOSr9L7N/g+yX32UolcTa3CMNUAJTViH7ESGlKXE10wKq4SPWtG3l9x1bH4GiKKHwVykgU2YtsEVEpHKzJCqedZ/xsAX6eL5U427gyNSrTZFFel9yzBdr+GB7SK9b/PzOwAAa1ePYlX/kOv9KvqXhSG10U7BSCJWEhev0ISE91sKdCH7dBB7DSzCNze8Bp874DDsO7gYz8xM4cuP3YuP3Hc7HtzeqIYYh5fnZvGZB+/EL55+Ap998C7srAV4gVPgge1b8ZH7bsfDU+NYM7gIXz/kKOzW71+zrFL7FqdbIyWjUcZBIq08yqh1p/aFfzb1kSJyg02b4mAa1fA1qxqpeuNBreHagREpdz55lNhElql9qiFv2O2pWHLInuvzAhORCx/PltrUE4hNaM7UvpUxDq9FCPGAJjYXP44YWQENDAzAR9YegmKMfh1ROFP7VC1DUGpflNKhqpEK+P254HsuDak4PX/kOMwluuhl43NIbqWHlBqTw4AOHc9WQzS23rUgDmryMF6JUSPlVJqMGw2yUNLnS9PbMrKqkeKqKa+PKtyUYacXR3hHWUIpXpVSGKXcF2BIGRGCE3YPKZ85nUACXRlSVqRb1fnE6CUVKj0eF43B3KUANsdd6ax+PaSc8F1ESq40CkLlz7NK7as07nXcc//8aqTSikgBQjENAP532wt4bGoCunXfjttvz8Y392swl2hg2wzwsDWiCfS/2PM0UeuGmMj6KCk0IWk1TY0xhsNGV+AfDzkal607AmNDS7Bxdicue+RubJyZSvRZU7UqLnn4D5isVjDS04vN5Wl84dF7UlcGNDnHdc8+gc8+dBe216r46xV74OsHH4WRUnBaHZsyhWOhx07ta9WQYuMG9EerMAcZaq+SUvQR63czqX1ZqDJnCBlS3Y7yhkd/lZml9lkOmLADhzlqGQjeGimV2icjUtbrUWpueTbkLXpqFAD7wO+3fnq9mGH0CkU7tkOk9vGCffAPRTXljX5rHBaVevC3Yxtw0dhfJe4XFYi3jxQQfOCJ6iMVoYIlC+/DUvviRaSs/+9h4It1cRDyzM1WhCYkcQUnlFrfAcIqUh74kAO0X2pp3GiQ+gwZkYozF2MS15hLWiMV1tPJ2XsrqvA5afRbrmFxI1LwREvNCAn0UIM9QVNe1VLBctAkiUiFGXNJsBvz2n+rndrn/z1LCXRmutODnbRD/pzrcIlhuASC4LOnAUq6Pw0npjO97/tPP4QVsz0wdI6+xf5qRubKAhgHzM0pRko4d0ekEiiOxkUq9pkeQ6qVOiknjDG8YmQX/MPBR+GMPfZDxTTwxUfviR1RqhgGvvDo3dhcnsbhoyvwy+Pfhn2HFuPRqQlc8cSfWk4XlOyoVnDpI3/ATzc9gZKm4+/G/gof3vfg8GbEc6boo2jNTZm5kKhptw/FO8pgHKi/qs9eN6IiUo69KdLZS32kiDxIcoiLUjpregxxwrE9GsxBS5bYUQeieSNSUal99WSHm0TIhrwRNVJ+MuYqQuYzbj8vZiDMkoqvcLBZDnOXQqASouv6ypBK7wBx7C6747W77J7a57kiUqoWLiryGJHaF3QwCamRskUBYnjgHcXlco42KE/GFHsJI6ixpxf9MVEPIQ0pqQYWq0bKL7UvZkqOHZHKIrUvKjUkaUQq+Pt1etGjVC5VbVzM6LeKkEQ4qoKMfL5EAx9gImLkt45IQ8qvRqov2qCWaC+6WyqoKHgSQ6qViBScyn0OtTvruTIDIlJSAj30+nJtTiAFnwRWRcM6bnpbVmwXzXGdoiwqIpVCatVAoYi/stL7Xti+E4tqRWBE1Lv5IdP7zOdiGlL16LQ5Nmm6BTayiEh5hSYs0ozuAcKges+qffHqpSvx0twsvvb4H2FEGEEG5/j6E3/EY1OTGBtagk/s/woMFou49MDDsbynH7/f9gL+z8ZHWx7bY1MT+Oif/hv3TW7F6v4hXLHhNbH2ZFuxz3pOUlCNRNlE4d458AJQO6IvvoCK3PflIxuSCRDV9qRTIUOqy0lkSA2m5xVzEdE8VV1/1JIHdtSZsEkr/CwPFaonU8CHtKMhb9D5um7VgvkZRKoprs/v+Rxkw3Dm/sdS7APsSF6Ulz1HXDVSUap9YX3JEB1dDfL6A2Jz4VqMFCzn+IrMjnR46qTSiUjFUE6bNqFtqsMc1pQaFwoA9PADmm86UsIaqbSb8QIJ0gtnrNYKMVJjAYjvasjqW+cR79CdEamowme5rsV12vQxob4Ytb76yNGLATEYq4pghn9NS5gypKoFjDqoz5rQdlgF/LJZbDMRqRbmOuAvgS73haDUPimBDgQbUplGpDgXbT4867jdRN0EalZz3EW6O2uhaIlStKjaJ5HqfStmRZ2Kn9KhRK4V/NlK9AcbHH3fnETvj3aEvk06JOR30rQhxTm0TbXG2jE/oQn5KylLeQPCmPrY2g3Yo38If9q+FT/Z+FjIkDl++PRD+MP4S1jZO4DPHXAYenVxj5eUenHpgYdjsFDE9Zufxk0v/KWp8XDO8evnn8EnH7wD26pzOG6X3fGPhxzdUAMX+PdY34dp7Ssq9bcFQ75w7xxYlaO+oRcY1ET2jIbIXoTKcSTX+7AzSj3hmtshkCHV5TQTkULKhlTcbtRScEIeylB2hJ+lNy1uQ94sPBbyFgZ548Ia64ZE0pKo9gG24AQA8DiKfYAjta+TDSlTRO4KLFYfKc5gG7deStbBJGAuK1GQPp97ronokrbTjM7Z9otIeZX71DPY/Jz060fjpfBEFYxb0Sj5vDAmvI1h9Q9+qaU9QvAjbnRaGxde9lYjES5KwqAOHQPn4vDZzwI97r6/tsQS73Ae8KZNaFsMuw9W1HeftKeJxoA+Fl0zoIx8n7TTPcTzrj/dGD2wI1I+44lZI+VsxKvosZ6lGEZ1WoYUl2py1ng452CThvByBziceIyIlC1/nn6EBDWAcTSMzykf79tDSr6vXxOGbgxlziiOGF2JfQcX450De4nPDjA+AduQMjdGR6S0Z2vQthrQ/1ID2xKcJ65ZhlT9YEtwoJnUvjpH6Rc70ffd7ej/8gRKv55WUWQpuOIVmgAckemUlQL79AL+/oDDMFAo4leb/4zf+zTuna7XcO2mx/EfL27E4mIJnz/wCCwq9bjes6p/CJ894DAUmYYfPv0Q7h5/KdE4ykYd//DEffjBMw+DgeGCfQ7G367doIy1OGieiJSKHjVrfBocxTuFyETtKFEbJfaeGOudjEhJB3FIJkDcs2SnQYZUl6O8lHEOOJYHISqVJjExIy7Smy3ThJTXxFmUKw8tTTZqbQnGRP57wJ4QJhqhImR+h7MYNWSuz3IYUrGkz+Hw4KTUlDd1OAfmuCp6VXMlKCJV52IxDTk88wHrYOJn+Iak9gGO9L4AOXM1Dvl9lpjjdzwRqZCUq7jESa/SH7XS+vZ310KwPk1EcAMcAEHzlg9pYpOLMihmTbBZLp5fb21gi/BBTRz+A1U6RaqtKjCP+7k+EugyGmXsXRSGQ1RzyCbWGt5vfRdh6Stqbjb+TfX9xaFMf8Tn0BtSI8VjNuV1NuK1B8TAh/VYcyGNNFbx+0ykMW4xxLydMsDqnroi7+8M2f3nolL7MolIBexzTqEYbzsP1/v6mTDEUkg77C8UcMWG1+B1pd3EZ4cYUnyJBnOxBnNTBYgwlvXH7XlXeDg4gqVb9VH1Q8R8jZMW6mLORO//2YHifRXhGDA5iv9bRt/XJtBz7Q7o988BaBSaAJBOmloAK/sGcPHYK8AAfPPJ+/HM9A7sqFXw25c24ZKH/4Az/nALfv7cU+jVdFyy7gistBofe1m3aBQXjf0VTAD/+OSfMFOPtzE/N7sTF93/e/z31uexS08fvn7wUXjjyj1ckvZxUP05h2WNVGsCHfojVWiTJox9iy7nLu/XhHM7LLpfFhkFas0IW2OyrIHPEDKkupxEHkKNgQ9owoOQYiO6uHmt3oiUXR/l2ASiUtSyTO0DAA1gQR7DsMa6KrWv9YiUbMoL2D1XIrHuR1NNeQ0O7flaKp7SQCpcFJrKCJGKSAW8X4p6hMAHNHEw8dkcWEhDXsCuw4hM71OHJ/tw5BUTSKNuxFuw3kCdQ3+yBl4EjDWeovKoOqmgA2BMwQkpI26mmNZnj4GFjiE0ChOCSsN0KPfpz1hCHXsXxfyLTO2z/j/BWhMlggIgvH5vhQ5zRIO+ud5g5NtCD8GGVNQh3avYp34/ZnpfWhEpMAZzRUGkem81YE5YkamQFDUwplLJTB/pcyDb1D6/NgKA+9757mkSVduTXrRMPZtR921dD8BtZ0wQBYchpT8UsDhPm9C2GjCX6uBLhZR9ktQ+NmWg9/vboT9Vg7FSR/mjSzD7qVFUX98P9DMUHqqieJ8Yp29EKoPUPievGNkFZ+65PyqmgU8+eAfe+4ff4sqnHsAfJ7egXy/i+OWr8dWDj8K+Q4tDP+eoZbvi+OWrMVOvxUrx+8P4i/j4/f+DZ2d34hVLdsE3NxwTeY0gGmuk4jlagij+XvTHUtEoizh1Uqxsin04TvlBPSITpUMhQ6rLUXK0cTe2ASbqfNIsxo3puW2ISKmceEdEKm5qX1YeC50FKt8FbaQA7L89jRoph9KOMzoVirp+8u+1cM8c+q7cDv2x7Ppf2EITlkc5LCLFRRPcyJo7eWj1Se8La8gLwLGxRHjgHd+5PBw1RKR2Bh9wY9OrCbXGgIOs/nQNrMphrC01PGdMHtAC/pbAA2DMOim2Lf36KDWGCAl0l0BJks9VEuiOiJSs69i7CF5kwgEU5lBqQkEqTiF8qJHPGIx1VlTK8zxG9ZESn91Eah8SGFJJ95sQnHVSfNwypEIiUoAtOBHotFDtAILvQ8/VO9BzbXgNkC9BDolhTdTGTZn2nhYQkQLSjaQopcOQiBQAe049EmxIsUkD2ksGzGU6zKU69Bfqdhq+AxmNMvYswq+PVuh4X6qj95+2Q3/RgLFPEXMfWCzqyQY11N4wgNlPjaJy8iDM5TrMXXSYuzXmeKUtNuHHO3ffB0cv3RWzRh3DxRL+esUe+OKBr8JPjjgeH1l7CNYMLor1Oe9atS80MNz4/DMoG8GpklvmZvH1x+/DnGHgtNVjuGTd4Rgu+qswxkE1rbZqpKBbqdxNRKTYpAH92TrMpbrYfxxEfhd1DlazzjJR2UawjKyITJROpMvU2gkvtiRuzEP6gAbAAJsxEx9OAolpKJgNhpRfRCpCbCLLhryA8IQEPeghNVJhqX2JVPtgb8LmimAlpsbrN5/aJ78PbZsRqLPRMkr63JpzYTVScevgHMp9DZ8Skj4F2HM1UnDAWSO1yDoweSMFYQfcBPBFGrSthjgEeuaY/oQVTdmvcXNl6hBtgvu58gIiqXENKaXYl0lEKmIMCXtISUxvat+MKQ6JI5pYb5yOj4B8fNbEWhOnDjXKyK+vK6H4+zIKj1RQf5XtAWbTpvDW+tyLWH2kTC6Mll7WcNB390IKLlBQY2hR/hywhXTYi3XwmmXghUVWANSP7AOr+z8HQIyIVI2j8Hi1qT6EtkPC8wNdpCmyKbtZsF+Kourlk2JESvXeimhLYO5dBPo1aE9VfdcXwE7rM/YrgReA0m1l6A9XUD+m3/0+y5Ay9xQ3kS/SgG0G2A4DfFnwkVL7Sw291+wAK3PUN/Sg8s6hxmeryFA/rA/1w/r8PwS2M67V5sZhMMbwd/u9AqfMrsXu/UPQmzzYr+wbwDG77IbbtmzGzS9uxMm77+P7vqv/8igqpoF3r9oXp+0x1srQAdipfa56615NrLMmT5SiLc+Y5i6Nqd2Rjaad+7Dcc0NT+6IzUToRikh1OUkbJPKIRqZNjSFugWA/A+9jwsvFuVI/c+WTR3ktMmzICwBcZ9E1UiERKd/UuqoVro7ptjB3LaD6hn5U3+iff+2LDJs3k9onvVRpqzk6SBSRksZLjNQ+AL7KfWEF/YDDGI5IAXJFcwpM1BXtcKvBhR1wk+Bt7OlEf9I65Kz1OUBGpPa1HJHK0pCKUO5Tns6YPaTU56peUuJzZTTK2NvqvxVRowcgvkHvvG4cSeCQZtEAYO5RFPVDTzvUzDgXB5o+5nsI4jH6SLEJA6xmRaM8B0OvhLcvnIvI4YD/GJLiG5GKiKyYq4qonD5sz3kvxfDnWv59rIbo2kAvIQ5DvkgHMwH9+eAURZWemmIkRZu0RGCiHKk6g35QP1gd0J/yzzyQhlR9/xKMA0UEy69OSgpNGHuJTceM2QOv54adYGWO6rH9qLzHx4iKSZpS8mHojGGPgeGmjSjJu1ftCwbghs1/xpxPVOqh7dvw+20vYLTUi3ev2rela0m0HaZw7jr3JFmjlzTtdc69d7voC96DAUf03dn3LSjxhXMgRiZKJ0KGVJeTNGc9Ewn0mPLnYAzmiA5WEwcnlQaxyN48uYpI5ZXaB1HL45fyEyRb7ByPT/SeVbk4xMZdkBlD7fUDyuMXB95CQ16Za552fzEX8vAQIyIV1zAPT+2zNpKgeaI813FrpCwDcLGlBjflOOCmdLg0A+qk2IQhahJW6L6pTyq1L2iDlGInXrGJmPLjWgbS5w1jCErtazIixRdb0UOpAvaMndYHIFa+PlPrWoILx2h6zuasXnRB80VjqO/fIw7mViQSVbH2BaaPxohIKaEJn5YKyogPmwtzov1DGml9gN3Hir3oTO1r8bM1q6F5kCHlUJdLWmMTltqt7t/L1rOyyOcep10jVbFEYJbosfYW/RARWfJN76ty6H+ugvcwmHsWYe5WgLlEg/6sp1avwqG9UIc5yMBHrRR0p/x7EAYXtXDDGmpvHGgtdUumZacY2cuSVf1DOGrprtheq+I3Lz3r+pnBTfzgmYcBAGfvdUAiZb5AaqIHpUsNGY6IaMKyjtBWInIPDniWnA5UHuZsBgADwtAjQ4poN2zaFEpzQbUgHrJoypukiRp3CE6w7QY4g7sOSDrc82jIC9jNb32iUmGiEYENebnIHY9bH9U0IWIXUciFMuzw1yqql0SciFRM2enQprxz/ukr6ndjR6Ss/1CGlKdOKsXDZZBynzxM18cCcuYj6mMiI1IRawEbN4XqUquHXB+ixmAbUgmvrVuNradMoM4bvOiRjb+dP0szIsU5UPFv6u3EWCe+64Kl3sdCFPsAO4U13JDyr48Cgueek9SEJiQ9DOaIBm3ShPm8+DuDmvEmgfcw8Vz7OMNcToqk611oRMq6/9w6XPqt9ymrzcm0vqh0SIm+vh9ctwQlPAqf+tNVkTK5tiT2QMZUVMqpIKk9VwMzAXOvojqkqx54IYYUmzTBzHScMe2KSKXJe1avBQD86+Y/o2bah4vfvLgJG2emcMDwCI5Ztlsq12qoj7KwRTqaM6R8xXEi5rQypHo12zEakW3UjQVHZEh1MyYXzSoH3Z6HMEIPn80SJsLgQdVJbTXAdphi7A6jKK78eVapfeqJ8Ls9cVT7vAczw4pwxW0m2ixBhlwcrMUuy4iUXGhVeoCMCPlFpGLKxQem9tUtsYqA+ijX9aPSHDxphvLQImshog64SQg6kKj6qABDSkakAgVkKlZD20KAIRUWhahyaDtNUYOhpz+H7ahYwEYs501SQwqiboRxYUBoL9ZhLtHsWpI4NXJNOG2iGkWjyoXXNcLxZexTAi9a6VZ1HqleGEe1L0ixD0AssYnUDSnHWPjWuljTW0yPBQD0MrHm+kTnnc20s4hIAXYT1Ib3xFF0TIAWU2hCwvo0mPuUwGatJrgOVH2Uo7VC3Se9T/c4JADH3AnpJZVqnWURwnncJREpANhzYBhHjK7ARHUO//nycwCAnbUqfrLpcTAAH1izPrHEeRBe6XOJWiOS1pZJJ6ifISWf16DvQtVGs2jnlTUlKbWPaC+zYlNOsrHZHuD0a6TiPABKuW+j8Gw1eLlzTu3jcp0PkzFPotqXULGvWVJJ7cuwRkot3jK1T57l/AyZuCqQQal9UYp9aLJGCnZESh7IpAGQZkTKVSNV59CfroKXGMw9ArwHKmUjIKpT9Y/OxTGkVH3USDZbRWRUrMnUPsA2egv3zYlGxo7Dn91AO/j3mdrY418zKn3L9tBG/D0lBmNtCcxKuYo0YmL0kVKKfX6GlKOpbBBpznWJcyxxU9SiCHu2Xal9SSNDYREpR8uKoMhtlPc+KUpoIkEUT6r3FZx9yjiH/ngVnLmj3ubqAsxhTURzp921hs6088jWDYCt/Lk0BUOKWbXWZf+oYx5oT1VR/rtNqsG0H6esElGpXz33FOqmiZ9uegI76zWcsGKP2CqAcVD9Ob2Kv3L+NRmR8nP+RKn2qd/tY5FiE82I+3QKZEh1Mc1I0aqDS9IGemEk6EZtWnnV+tNiQfbWfPCoA47qI5Vxap/P7WEhNVK2ap57kbAFKlIboT+tpPbJiFQbxSagseCmqDEFRYKiq1FCEwDiR6RqXkPKuuZ2T0SqFelzC78DibaxBlYFjH2KgRsMCxObCEktjVMjpeqj0jgA+ZCV2AQAFX0q3G/1pNnbcfiLIcUbN8XUdU1p8AU9SzGMfImSrH60ajfCDZpnBQZeCEntmzOhTZhi/fWLjvcw8J5g+X0gq4iU0wBJaY6FPNvOZytpZCg0IuVURwv4OyK99wmJ1UPKg3GA2Ij0RyvKCGEvGdC2m6Jnk/O71RiMdSUwDhQeqYh+g8/WRB2VIz3UjJHal7ryZ78m2rh0SAN6/U9z4BMGtKeDW4jsM7QYr1yyC7ZUyrh646O4+cW/YEAv4L177JfqWDTVQyogtS/pvHem53mJSGV2tq/gUWITGQuJZQkZUl2MvbEl2OhVUXGKQtcJoi7yQKYF9duIksjMOo/WWnuY4XP9sMa6QQ1x2xSRQoj8eigmt2ukqojVC6QpHCF+RQ/zvZ46sMRM7fPWOrCQVAT1uzENKdYgNuGukWrmGQwck096VVRaH2AbUr6H6Lqo2/CNokrZ5p1moGdX25adYh8gxsV7WOpiE4DtqZfGmFTsk9cFQtYZoKlWC8q4D/LQyvkWlnZqUd+vBM6kIRVtsPNeJgw1n+9Se0kKTQQvnHxYE+MLEmrIMLUPQHgz3gSEPdsuQyppjU3IWu5sEGwGRaQi5kZS4vaQcrFIh7F7AdqECWbNicLjwa0V6ustY/6hCrQX6mA1wNij4BZKGWDgenhqH0vZIdOsURBI2RRjLAevhWFom0UkKkrI4RSrVurG55+BCeD0PfbDolJP4uuF0dCM10KtoUl7iIbVSEUJqDj34qhsoyZqUjuFLizrIiRqY4spfe58b5oRqSQPAB/SrEiE+HeDNy3CIEgibNEUYWITITVSPCC1LzQdMEWCrh+JZ1FlMyZ4Kf1Ds19jVV5i0Ka5KHx21t/E/Y77mFBmayK1DzFT++z6P/F/cr5qMiKV4uGSD1pKc47DXuGJENlzSZghFWHI8yEN2owh7pmPvC3LULFPjWFQEx5rnx4irdRIOdMRzUWaatILIFgcxnntZnL2Iw54kY2inQxoMPcqQn+mpgzqoBopcW0NbNrw7Y0VltYn4cMasNUA22mA9zS+z95v0lvL+FJdHMKNhAZBGPLZ9klz1JyH/cQRKes/IiNSAXNVFfuns/cqsYmIHlJejHUl6JvrKDxaQW1lAfrjImLrrI+SmHsKKX796RrMR6vqNRcaE0b4diHs4ud4sB0yKRnLcj0oc2Bxix9W5ej/6oS9R2kQe0ufBnOJhsopw+5InZcaB3vZ2ngjjJT9hkdwyOKluH/7NqzuH8KbVu7Z4uAbUTVSqaX2ybT8JlL75LWcvxtRI0WpfURbaeoQV7CbB6aWX5zkwMGY61DWIBOrWSkqUcouWZ3r5OcmjkgFeFtCmvimStD1I/Auqpml95V9FuMA5T6mQvwR90xjojfGjHsuh8m1SniPtQEkjEih14qgTIprpuql160+VdOmiBRuN6C9bMBcpoc23FSpfX4e+ErInAUi5cezbMarxmAdzP3GwGYtGfsm0j2cB3Nzb1tlDIDtHY0lNpHgorpVvxGY2hcdLXUNQaZiWbUpYfMsrCmv9nJMQwrBTrYsIlLQGfguluBESoZUYESqzl21wWnWSKGXKeM8MEVRt9aOlNRRZQ8pJIyG1w9wqPHNmtA21WEOaTB39ZkbOkP9ACHFX/zfWQCeWkMLvkgD4wEpugYHmzRgDjKgJyVDKsWIFNtpgpWFkqa5Qhfzu8qhbTNQeKqGwkM+cvEOtJfqQtwECK1RlJyz1zrsP7wEH9n3YBS09I/ggRGp3uYM+VDnTwmhwh/OtED13ERkG5HYBNFWmt3YzGFNiDakJB/KPHUkkdd3GlJ+3rsSC45I1bnYPFJSuPHCm4xIqYOeJ7WvXREpddhLWCPlXfizUu4LikgBwcZnnMMzH7DmsiPvOpbXX3527IiU9VmMgS+xUqDmUjakYKVXmeJ7iJPWByBcbCJGRAoIOTyPWy0KEnq9kxBozHEOlLmYM00873xYU+Ix3sOfvamHfECTqSa8XxPRC581LFb9ngNZJ6U+O6wWL6Qpr2b1NzKXB3+PUU151QEtTUMKlpQ2/GXZmyFIbELJQsseYinWSIEx5RQMS1Hk/VaPKz9HXRIS9pByjWG5DnNUg/58HcV7LSGW/UqBn2NY6X2sKg7N5iofQ2o4uE6KbTdFxDHNOssmoyt+yH3d2LuI8t+OoPyZUcx+cRnm3jcMANCeDS/E0p53pIHESJvbe3ARvn7w0dhveKT5QYfApqx2FZ7nlDd7z8Ick4yJ9S5I+MOZ0h/hvLLFJpINrxMgQ6qLaUZsAsggvS9mTYu6vuNQZvp473iRiQOO34NZi3+dprBuZdIaqUCRjDDjK0WaTu1riEhlUyPFZrk41Dr34JL/gSd2g2fAX3AijtdfNu6MqAljVctwd9QEyDmrTZq2CEBahpRDcEJ/Mp4hFVYjFWXIm2HKfXUuWhQs0jJNtwhUD5zjwtMbls4WhsZUlMPY23P4i8jXB2ArhCY1pMJkrpOk9kGslcZKxxrZbETqpTq4Hn6YDd0XnI1YvSlDLVL76wH0XrIbeEqGVJDYhBSIkVG5Zmukgp6l6gkDqB7f71Lw8+JKSWsBu1dQE98FYzCsqFTxv2YA+Kf1SYw1RTW3zN0Kvs+DvW41eiCziGpH9mtLQkDU3rBUUvVnwzdVpyGVtNlt6hgcbKcpnmVPw29Vn5xiHykAQB8Twh9+9c4O1b5oITHr/ykiRbQTeehNbEhJ71FKhpQtfx7v/aa1mfMC/A9JRSYK5P1qV+s8O8U+oGnVviDVvPZFpPyvH4WKFMk9LoOIFOccKJtiIXd2Wg/o5ZPkAOsngR7X6x/WuFNR5Y2NbB3KfVlEpABR/6A/VQMv+qfSuAjrIRQ3IuVjSLEJQ7RXyDCtD0Cgcp+am03UR0mqbxlA5S0D4Ms8h/SwhtCSBAa9EzVen9SxOGmnXuShV3x28FiUqpb3oDRtgs1w8GXhvcDCmvLqVrsKc+/gyEXT9GrQ9kiv4D4wIiVloaXB1mREKuhZMg7qQe11A+Fj629cr5qhldpBwE4ZlVEmY58QZ02BqfcHrUVmiAR62kITQAvRFR8Cv9cBDeZSXdR3hXxf2gsOQyvnJsFspynWbD8DW869xKl9puUEDdhDQkRUXJkoUQI/Ta63nQAZUl1M0xEpuWGGNeJMQsIUGFkcyxf7pyUog8x7yDG58HxkGfpVNVI+P6twcBZw/SCRjA5X7ZOLqjwsZ1IjVbW+tz7PPFWH2cb3A4hnSMliVx9DKrQhLwD0BDfuBCDmW61xYXcq9wlxDqRmKMv0oMJDFbAKh7GmFHkfmGbVXvhFpJT8foQh5WNAt6M+CghO7VOKfT5FznEx9u9B/ej+xmtGNYeEwymRcL0J7G+GmGmnHox14hDL+1h4U+SAiJSqj1oe/oeEOdikrLOxpgu0iQPqH6UstLlcF6IuTdZItdRcvT8dA6AVNUsAMPcoqnlq7l2M/Jtqx/Sjvm8R9cP6fH8u1y3Nx5DKQvlT/d1pCHeE1JEaq8Uzoz8XEEYxOLQX63a6aIwaqSwJqo8CWkztC1PADatXm7MyUQpw9O6j1D6ig2DTpjjYJ0x9idPFPhGWVyt0k3def2UBvAD/4lYgOO1GGjdZphmFiE2wKhdj0/yMP//Uurap9jXZkFcuqjJKmEVqHw84EAdGpJKk9slDuHPcSSJSQHCdlLyXnu9Oyhtr44ZIWUyxZkQ+m/ojlpJWmFqf8/d6reiaGWDIBzj8QyNSbVDsc43Ba0jJiHsLEalA5MEnjvx5Ug9pmJJVQrEJQKyT9YN6UH9lb+j7eEBTXlUftSL8e7RbY/hEpKy+f91gSAWJTSg1s8W6SEdqOiLVwthSSknzqzlNhM5Qt+TO6z6y5174igIq5y0OjCqFNeXNZB1Rh/f0aqT8Mk3M1WK+a5v8N1btZQPMEIYpGJJLi6cMC+ghBQAoiPNNoohUnYPVw52San32OTuwsim+K2aLsQS3trE+rwsjUl1o+xEAoBTDBvwP9qG/mrIhxXxki0OvP6Sh/LElwYXTQeou7Qj9WsYg84tIVXnwoS5v1T5pfCZtyOs1pLIQm1CGVFBEyjNm1Qg1+qP9GqDG6SMFwFVLwQd9fh4QTZR1NzI3Po1mvBKVImPNv0ihCUkvA9sB8Yw45lqUIS//Fv2JqkjrdBiFKiKVUTNeNQaV2uc5+E615nUPvWas1D4IKeSYDiL12QGNogFEqij6whgqpw9HXzcgxVNJn0dGpAL2hbIJ7fk6zGEts8bMqRKR2scXaeD9moiUJNm7EtYC+xElFx2bcuvPRu2NA+AjOuqH+0eZkmDPHZ8aqSwiUimm9oX2B5MRqWdrvqU9cg8wdy9Cf97IvUZKOgucfc3sH1qKolIYIk6KbowIOg9KGawJI8yURlhEE3TqI9WhVCoVnH766ahWqzBNE+973/vwrne9K+9hpcOcSJcym/CGhy16TVELMTCCxuCtWXD+TKm7AM5HrtlUm0QERaTq4n4HpugFqvZZ/5F1al+Mvjh+qNS+pdml9nH5mTEjUmpjSxSRcopNxEufcnqu/e5akBEia6S056MlqZPCnY09R+MfXIXH0LBkfB0/iBA74aM6aof2onjvHHp+tROV9w2rDZZl3YxXjsERkWJb6yg8XIX+SAX6c3XXz1NFRb2D38LqvKm1JizqEDvttBl6/UVH7NS+iO+xaB20pgzXQUvfWBPKbmuK8Q5fORMckbLWusW6nY5UNsGL8ea3n/BM4rFJw6fViJQ0xFpIe+XDOmqvD6/piv9ZjT3wAIj06AlDpBE2Gz3zu16KYhMsJGXTXFEALwLac3UR7fd899oL1h6wWwGsXwPG/d8Xi5qVUdCCRLwWktoHwO41V4PqjRgG82tb4iXAOaDWOvm7umjcHCw20b2pfV045PiUSiVcc801GBgYwOzsLN761rfihBNOwPBwtHev02mlyD1V1T5DGhitf5QiKJdWRtezFJuQC6DXxoyILAWm1rVLta/Z1L45b2pfBobUrJXa4V2Mg/pIJWm6rGqk7M+ILTEdldoXFJEa1sA120hO1ZBybICxo1FAoOBEnNTS6lsHoT9TQ+GxKoy751A/QniotQl3/VxWyPunbayh/x8m1evmiIb6gdEpbU1dM0aNFGq8KQeIHZHyS+1LXiMV+7p+NVKcQ3tZ9BuKI2HPhzRoWwzxTFifp9L6vMqHHYq6tz6qfVwD+ABzC4LEPQ5UeWv1UYDj0Jmv2ETq6Ax8UBNnCochwXYI6XMj5TVEZTekEZEK26N1BnOVaIrNthjgnj5sKiK1W8E2FCu8KQO398c7wHYYKP/dSNPGuq3mGJCC6XQglKK/kzg1nYFGbdknM6TISGyi22CMYWBAeFyq1So45zDNfIsB06JZoQkgvC4iMSoNK73JH9i4TT5oGZr/QTVSkSk5AXVdna7ap9LuBjXhjZ5OYWPyMuOf2hcYkUowp7jVjLIZsQnbcx3QN0d9d54faG4J6FT76vRoalxx66OAgEM0EC+1tIehcuoQuAaUbpoG21IXDpIJQ8ijZz13SwzmqGjoaa7QUX1dP8ofXYLyxSOovXkwVU+285qAz9yTcA7U0ZRCaHhEynotQ0PK2UdKNhs1dynEOpz5pfdpqj4qTW9ZhvhFpOoc2jQXz63VyBtIYNBI4ZkWnwV7brS2zjJnf54OgS+yeuA5nVpZpQc7DIJWidrbleDEJk8oxRQtAXgPAx/VQ9tQxEF7vg5t3ATb0nymkKoDDIhIJTZAY+ylQemqKu3S2TuyyELEJqz/yNJRnhG5GlL33nsvPvjBD+Koo47C2NgYbrvttob3/PSnP8Vxxx2H9evX493vfjcefPDBRNeYm5vD2972Nrz2ta/Fueeei8WLF6c0+nxpqX+NzsAHmdgsw6Sf4yC98ml6EQKKElkGRlsDQfLnUZEluU94DZl2q/Ylbshrp4jwAU0cLBOmB0YRJDYRGJFSqX0xPtvPwzvHRW1LxO9Hik2EfHfc0f9MGnNpYe5eAB9kyQ6uvT6HR8Q35M1VRdTe0A9WA3qu2wk2boCZAB9tzxZR/vASzH5iBOW/HUHt+AEhRJNlGllUjZQB0YKhibXGLr72T+3jBWRzWPAxptlL8YQmJA1NeWdNaC/WYS7WwEe6w+/q91x7+y7xpOp5KdVv+K5XzdCq2EQG+PWSkvVRqUe1dUupNAWxiShnkxKc8PSTYlsNsJoVjdIcqYvNGFImV2u3TGluBpW+6lcjBSQ2QONkdwSlq/oa+0Wr/tevT2c7zncZkWtq3+zsLMbGxnDSSSfhwgsvbPj5zTffjMsvvxyXXXYZDj74YFxzzTU477zzcMstt2BkZAQAcOKJJ/p+9vXXXw9d19Hb24t///d/x8TEBC688EKccMIJWLp0aVPj1VrIjW72WkHX1OQmPaw1NS4+rEObrkObQ/MNL+EQZSix9O5PyUr1qQPc8ZmaYf13MZ1r+d1jZj0Rmum+tupt1BNwbU3k/7Ka5/OsDVjr1Vyflzry+vVk81QeJNiALozybQb0WQ6+JJ0NWtOYWmBZv3uuMnnwq3L3mK17rfXEuGdDttqg/Aw2ZwK9DJoe/jcwKxddq8H3Opo1DlZqfMb4Eg34i/XzIT3VtaF61iKgLuZMFOq61iauVbh73lqODtYbvU4Yxw3AeLIG/S819PxqJwCALy20Z90b0oEhoG0rrIxa1Lj/32fYm3rUWtyANSe1ss9nz4m0nyzuKeu3PeLy83Xp3V4R83u0UoL0nSI9S/tL3aqPKkU+T82S+P5GISMDFfs+yN5YfLH1rFr3SivzeOuy9JYHrf8xYQO2Aef3OWzCEOtwhONDk2vqoAYWYzyp32M/ZKPyKTu1TwrWYFn66wjvZ9AmTRENaOU7sQypoDWS7ykcWvpzNdfP9RctI3E38bfJ50+vcJhJx+MwvvTn6zAPb+LvMTnYlAk+yKCVAp5VOe8riHXPNOmMCFmz2ID/eqdV7Guq1615rRloMJiY2m/9r9WWOdwkuRpSxxxzDI455pjAn1999dV4z3veg5NPPhkAcNlll+H222/HDTfcgHPPPRcAcOONN8a61sjICPbbbz/ce++9+Ou//uvEYy0UNIyO+kl7ZcuSJf7FoFWjijqAgeX9KDQxrrmlO2G+UMcSrRfaaPMpG+ZcFXMAigMFDKV0f6qLqqhjFoOlHtffZmwpowKgZ6CI4RS/C+c9rg3WUMMsBns9137ZuvZwKfDas6VtgMFd82TO2AETwJIVg2AhHe/TYLa4FTCQaJ7OVsaBAjCyfBDVJTMwNtawuNALbTS9BpnVmTIAYHCXfhRG7XttjGqoYAp9WgElx5jLfDs4gCW7DIINRd+z2dI2aLPivvM6R7kGsMV65H2ojdRRwwwG9BKKPu+t94iAa++ixu+8umsV9fvETjG06wD00daVr1qhb0mPmLd6yTVvK5iBAWB42QD0GN+peX4v5i55Hrol99u3qi/VZ61T4HWOMrZBN5nvPOE76igDKPTqGLTWh6C1uOF3F1mfXXY/i7xmomwAbKCQyV7CiwbKmEChztRaXNlehgFgcN8h6KON/bS81FYaqGEWA0YBxdFBVJ+fQx1A/yFDTe0zSYh7f+MwW9wGrWqvxfWnpsWzvKIXw6ODqC0zxLPPir7PvhfTqGEO4ygMFDDYwn3gPdZ3VGEN+6W5uYq5r21G4bXDKJ0e7uwtVyfBAYzsPgQWdGj2Ic177KW2so4ayhisF9Q9reychgFgaM0g9NF0ax3LQ9vBJ6sY6esHG2x+b50zd8IEsHiXAf+z0ChQXrod2st1jPT1gfWLa1XHK+LZ2G8QhSUDqPaJfW642AN9NNl9FvNLUHrBaGrN5VOGWF9Gi4HrS3WkijrKGNJKsZ7nmlZHDUD/aF/gc2JqdcxhAsWqe07XdFP87kiv+t25vh0wYWBksB9skdv8qDBrrxrtD50rWc7hZulYsYlqtYpHHnkE559/vnpN0zQceeSRuP/++2N9xsTEBAqFAoaHhzE9PY177rmnadW+et3E1FS5qd9tBk1jWLJkAJOTMzC9vWEAFLfMoQBgJ6vCHJ9O/PnFXo4CgB3P7oTZ1/yhmW2toRdADSZmmhiHH4V6DUUA05NlGOMOD8d4BT0AKoaB6RSu5XePC9WquPbUHIxxhxT0VuvaqAdeu1cHUOYYd/y8Z7YODcDEzCxQy9aT0qsDqJqu64fCOXpnDKBPw8TEDIolU8yJ56dhDoXImSVA0xj6Le/pTqMCc9yey1qlih4Ac1M17HTes7Ih7tn0LFCNvmc9A8IzOb5lJzDH0QfAKCHyPuhGDSUAs5NzqI83bsT6eBklAGWj7hofAOg9hiqd2mFWwMebz2tvBTmHZ3kdRQAz43OoO+ZtaWcNOoAd5TL4eIzvlAH6SYMo/XQKADDTb8BI6bnuNHp1gM/5Py9swhDrGjNRnpwJXYt9P7uXgU8b7s/eaYq5WeTxn9Ek1K2577huz6YyNAA7+mvgMa6p6TX0ACi/WMbUeAE9j8xAAzC13Iz1+80Qtdc1Q28JQNn+bgvPz6AIYLbHwM7xaeiwnv2tc6jH+LvYy3U1H1ra50yOXgaYU/WGOVD4n2kUDaCyqdyw3njp3VkHCsDEztlYl83iHnvRC3VxT18oq/W054UKNADbC1WhaJcipRKHDmDy+Z3gS5s/ypZm6tABbC+Xwce93eEFxd11FLbVsf3+7TDHxHmp9PQsdABTiwywyRkMWJHQnVvLMMaT3WP2gjhHAYCxuYrxl3YmTnFjm8Vn1AeC974CxD4xvdV9tgqiMD4n9hWzGrwP1MS6U/fM6cK2svhdXlO/W9JM8Z29PANed++5pVlrr5qdA/eZK+2Yw16Gh/tQjKHq2bGG1OTkJAzDaEjDGx0dxaZNm2J9xvj4OC6++GIYhgHOOU499VTst99+TY+pXV+e95q+17WEIswB1tS4TCkpvN1s6e/SrEJ9s5De/TGt+gFecf/tzCE2keZ34bzHprW28Lrn2lYBt1kMvt+8CGjTgFk37bB5hYMzwNR4Y91VyvACgzbDYRpmvPqSmiWh3yf+JlP2Q9rZ2pxowDKkzB7PvZM1TBXP9azvOe494/0aMGnCnDFdzRWj/gZmXZ/P+f+9Mq3BLDbON+ZU1xtgjY1w24yUPOdlz99SlfMW4DHHaB7UA/ZULwp/nEN990Ls3+s6igyo+q+vUoDEudYErsU+8H4GbcKEWTVtIZiylQoUY242hSbWICbnM+dgLxvgJcAYjjlH5b4wZcKcMqC9ZMAc0WAs0jKf40nubxS8x1oLa6aoe520noNhDabJVVoxZuKtdZrsTRey/sfGagbs/RzNasIdOSbOgTIHH9ASjyXNe9zAsDXPtxviGiYHGzfA+xnM3vTXSFl7w2dMmCMtfLa1zhtFBI7RWF1E4f4K2MYazH1LQmhicx28KDIrNJMrsYmGNTgGmqO+iBkAnq+p2qy4FP4ijEBzRA+8vimtNZ/554vsMxm2ZunWuuP5TK72fXsNleI9ZsUENz2RVCvF0tR56J6T6Rxuko41pILgnIPFLELed999ccMNN2Q8onxoRf4ccKgz7WzNk56JKl1QB2wlj5nepRoIaMgb1mtC4ZQgt8IVqllxO/J6pQfLQKwn21sMygfsw0WaBIlN8IAGfayWrF+LHDebNsEMqTIU43cD+s2ocYTMbdPqJcUZlAJYnvCAHkJKDCbh81k9aRDVtw5mr9iXI7zIAov+WxW24QMaMGGCzZrgVkpvHCnhVuG9mvibOAfbLhwLxqp4in2AQ9F1yoD+TJep9TlwCU70swY1s8AmokGkKBrk1wyYTRqq5iZSObXKhRBMB6w7TqTkthQ8YFMmWB0wVmaT0q6a8raqgFiJPsPIxrzas+KZYJPWs7Xa8Wz1B6zBccYgxUM0gJmAtrmezJDiHMW7RHJg/a+CM4wSNzKO2dye92lCBdopfe+j2uc82zWMoIvFJjpH8sXDkiVLoOs6tm3b5np9YmKiabGI+URqhlSrvaSS9PyJSVCPF7shb4YPmlzzvRtsjH5QatxO5bwKT7fHVhjSeIqrujfrPtjZ/W9SNqRmAvpIOQr+XVSRbD7Jcc+aifr0BDXutMcRvMHyJdZE6W+TkRyF6p3jUU6KcUjwhbF5bUQBAEohClItSvG6+hRJ2mBIoZeJv6nubMQb31/q3Bf0p4UVbqzpjv5RLjzPNvM0Kk16CFdrVBqGlI9ymv6YnVImDeHAsch1u4OkzwGHap91ppDS53Gbiie+njQkW5VAr5ii7UnIs26uLIAXLEU9k7v7R1kwpdqXfDxyLpirLIPtuWSp9drTNWhbDRirCzB3C35e1ZxJUbUPEM5MxuFWyiw3ztPA1jaAWnOpj1SKlEolrFu3Dnfeead6zTRN3HXXXTjkkEPyG1iHwKZNMUGb3ejTasqbRRM12ePFu5a0oSGvsUcRXAOKd5TBttp5uvEiUtZ7pSFlNStuuYljTJI25VWLpHXoU4ZU2r2kZk0hR+65D2pR9RoydZ5oPjnHrQyHBBGpIPlzFuaFLjFU39CP6hs6o/A1rI9U1CFhwRLWlLfe2rqmoqQ+/c0QQ42xWZzzQHvZkj5fnuAgW2Dg/cwypMQCbHahIaX63jgMKa7ZjscgyeZAlER2CmOTKdSOfksFK62P65ZxH+TcAVQUtWOa8UqK1tzZYQCcK+lzM6uG3mlFpOI0Wi4wmLsXwMocbJsB7Xnr2fAxpFqJSBn7SoXAZPVkxTtF/X7tyAjRo4QRqbg9Gf2+C1kO4ZY/t9Ynn7YTylnRhXtVrk/izMwMHnvsMTz22GMAgM2bN+Oxxx7D1q1bAQBnn302fvazn+GGG27A008/jUsvvRRzc3N4xzvekeew86fKwarNR6OA9CJSavKnudcGpHy1I7WPryig9jqrn87PdipvNYsRkbIPZta/29VDynP9uE15mbfz+GBWESkhR95Qt6WaojpeM0TaSpL5pA6ts2b8hR8A77Flkn2JSFutvX4A9Vflq9anCDCkWJXP/8hSk0gjqcFhgxTWNZ8mle1I7YOjKS97SRzGeIKIFCD2BlYHtK0GzKW6Sk3sKuTaUuFAnQvH47BmR497GThLEJFqNrLrhzciVTahPVMDH2AqncvZ1LYBH09/p2Au0sTzVOZ2M96MDCm/yF5iTOssFeN7NazvRt9Ud0SkHAtEKw15ZURqqQ5ziQZtqxE/arTdgP5oFXyAwVgfbuknvmcx1yzfJuRln73Ye0ZyUs/gLNkmcq2Revjhh3HmmWeqf3/xi18EAFxwwQW48MIL8aY3vQkTExO48sorsXXrVuy///646qqrVA+phUqraX3ydzlLISKlmqemn9oX2JA3Y49F7dh+6E9UoT9bR/F3s6gdP2B7CEM8VyoiVHMbX207yCZtyutp6igby8r5lQp1LqIifjLmusgJdxnM8r+bikiZtpc2QWpfYERKGu5dUCKiNivnJs6tex/UnHGhE9aUt9XUPp+IVNx6g1ZoOSIFIcigWY18uzKtD+60XbbTBON2XSMAq4EqS14jlcI+xz1Gtv5EFcwEavuV7J5GM2ZgE1tl/HVQM14JH9aBFw2wHabqIZV6M155LR9nRWLkcx5jjxZGbhnaszXoL9TBdcDcxf7bZB+pZhry2vVEDOaqIrTJCrTn6zD3id58CnfPgXGgelhf5HplG1JxI1LW8xFpSAU7jpy/G1S2IV4TEdmOSJVPSK6G1OGHH44nnngi9D1nnHEGzjjjjDaNqDtgO6Uh1cKE0xn4YGOBYOKxpJg7rpBrh/dha0NqHwBAZ6icMoy+b06geOssjLFSeJqXxJHaxwF7/G0ypKQhx2poLOT0wZvDrBbDNCNSc/YG0TgAUYfjDPPLpnxNpfbNctFJGemITTRj1OWGX0SqDjDexoholxG6qbea2qcOFn6pfVkaUvazoG2pg/cyVbsS+zOGdcgTZrcaUs60XbbdWhM8kTXep4nDfp1H7ilpiiop7721zhas+ihjXQ/0J6uun/mORWYSdJjYBGDXSWk7DDsi1cE1UkqdM0b6vbmH2OALj1bAZjiM3QrueaMiUs3USNlOTWNVAYUHK9Cfi2FI1TmK95TBGVA/PEafrh4mnJcJUvt4AdEGmk+qLCub4neda6hThMt7rRjPYafSeS4NIpI0IlKAlcJhwl0Q7bzOhIH+z29D4Z6Q/lkZFAgGHnDk4aYN5j8f1VF96yAYB3p+PqWM19Bcak/YOlY6YJr4iV2EoLyx0sgpMPBelmqNFAtQ7JPwEhMGiyyuriU3Xlze/yTpU0UI1b1maqQ6jQIDL3g2cYcUPOFDQOTb9VqTa43tlPBL7ctw27XmvfZiHaxmRaNiqtxKnBFMY+8uCMf6oCJzFd6g2Kfeo5T7Yqx3tfSeJTU3yhwwOPTHq+AFUR8TJ8qiDt2dViMFh+DEDhPaNkOs+1kZfEkV6PyIU/tswYd1kbpo7Y/O+iig1Rope580d7cEJzZHC07oD1XApjmMA0q2AFLohZgQpIljfHIOzPF4e6l33kqJfk/UNEipF4ClYhl9qU6k855EIpLUDClLcEILSO/Tn6iCzXBVdOw7lkzkz/1rF1gGCoFh1A/tRX1dCdq4XXgdtpHaYg/WPcni3oTAE6b2MU9qHyDmFKvy+Mp/UURt+iVL7UdGG5tIoXGqDapNNc5hVUbEmqyR6jh6mSutJJNncx6hUjb9NvWUxCZcYgZz8Q9tzSIPPdpGqxg+YX0UYBtS5i663Veqy7DTdk2l2OdK7YPDuRMjAp9mmrbTe6/9pQY2x2HsUwJKzM4yCUuvjnBO5YmKSG22DPnR5IZ87GvJNLW4giE+JHV2OiXJvYaUrLtrJrXPmWZv7lYEZ4AWQ3CieJclMpGgVpf3WXVsUeeEuiV8EiOFtKFGqgbhpPfO0SDnFedgdccZqsvozlVygZNmRAoA2JR/LylZUBkaBm4ighA5riCvRZtqpBSMoXLSEExHCmW42IT1a9Y4VUSjXREBR2pfLKSH3ClP6lfb4YC9VEfvtydVP40oGqJeHrinToU1UXDqVMFKWtDPezwRMSfdFJGCiHQI6Wu3Id8t4287oREp6z9alD9vt9iE/Gx9k2VIrUieViXrPur7dWc0CoArbVdT0ueeeyEdMHG882k+S465UXjUSus7QNxrv5RQLx1fIwWoHmRZ1UcBCSOKQcSofXZi7GEbTw0RKY0BPawl1T70ic/gy3VoO8zAsxkAaC/UoW+qw1ymw9wn/oZpS6CHj7NBjCrsMz3rXeDvKvlzzwdIm7Eb0uh96LwnkYhEGVItegujlPu0F8XsDt1oslDSKwUccNqY2qcY1FB915D97zgNeZVqn/X/7VocWk3tAyJ7SRUerEDfXEfp5pmY12iMermQOdPSaG7GMO+zFLhmzOQF/T1WRMxPuU1+f11iiKi/2drI2y520m0oh43Pz1pV7ctJbAK97gNNMxEpc+8iyn+zSIjsdClOIZnA1L4E8tksxbXc6b3XHxWy58b+1kKo1t+w1L7OrZEyZUQqa+lzQETwNASWJsQhqbNTRqS4BpgrGp8t3suEcWYmGxMrm+IMZZ0hjN3FdbTNwVGpgpQ8f1VvsqhfXOW+BDWdDQ2uA/Z9u47bc3+yaKPTRsiQ6kLYTmvSpRaR8nmgDA7tJWlIhSzqGUSkghrLtju1T2Ls14PK2wZQPbY/9FCq1Abr7oNsuyJSTaf2OdLgonpJySaf+l9q0DbFiEoljUhZB5ZEC6om8vDZjC1/HtfDGKrcV+Vio+4W9WfphZd1UhSRCoUHOWyAbMQm5BzLMCXLa6Q1Y0iBMZhrSl3rHQbgikh5m/FKbIMmnxopfWMN2qQJY1VBRXKiMgKAGM6pHGm4xxkJTQAQxkN/AuVFP5Km9u1WgDmswdyr6P989FqOOb904SBkLZLj+7Qb8wYYUrMmCvfPgZeA+l/FEJlwXi5mbVmSCLoauzVvWZDIVICQmK3IHHmpjqRLh72wST21b2fjQsS2GkpBLTwiZX1WmpuuZhXOB6T25ZFHW391f/SbvAZgm1X7VGpf3F5+jgJXCY/oJSUllQGg+N+zqJy5KPQS0REpa8xVS+lQpfYlu2d8QIM2YyinQOz6AceBiw+5f8SqXIwjoxz/tHFKX3MgXhPphUyIal+rqX0oMPAe5p/a15N9Q17AMhRaUXbtYpT8+Ry3m/EO+RtScZryZlEjJaNOMq0PiM4IAGDXSHVgRAq9DLxkO8QyjUhB7CvatGEJFSS/H4nrSAsM5Y8vAfQAx2CvBsAQa3Bc+6Yieic69yzbkPJ3Vhb+OAdWA2qH9yZO8YzbSyqROM6AO7oblNoXWLaRk5M8LTrPpUFEkrbYhF9ESn/BcRovB9SQIMOC9hJrSLfqdK8F96TW5abaF1MowhZmaKyR8i12rosmi+YggzmsQX+0CrYlwmqLo9oH2Atrk6mi6gCywxQFvzHvud1vxvP3ciG40U3RHG9qH0WkwokjNtHKxs77mVJmAyC8zhpsr2wWOA9jKwpd4wRIHek8KIs+UnxIa2jxYavntblGSkpQW9QPsJuo+qk9emFlLta4LFNEm4UxVy1aVtLnkpYFJ5rJGunTgvcX7xocA28bEkA8u7wA6JvrjWevGRPF/04uMiGJWyOVKLWvocl0gAM1KAtA7vskNkG0CzZt5dO26GkOS+3THIYUM+DfiRrILLeVF5j4bOci0q4+Us3iFXvIS7UvgSHFe5nrgBEWkWJbDeE5W1lA/ag+MA61oIddA0Cw10waMiq1r9mIlPU5HGLhj3uADErtMyBUh7rJCJH1MQ01UnkNqMMJEZuwN/bmP16JoFjPAJszxXzL0Lhxeo+TNuKdT8ion7bVEL3U/HppqUN4nBqpFNdyKyUNAMwRDdz5PZUYeDGG2IRn3e4k5L3mPUzVCmZ2rX73M5aUtKP2zqyA2GPwMzp0BnPXAliZg4075gLn6PnlTmg7TdRe0QO+sokFKm5qXwKxCRQYeMmOwAel9tmtbTzXakJkqpMgQ6rbqHNxAE5BlpYPaqJIP8SQUgtDwMJuN+RteThupCy2U7Sm0wsSPTVKuan2xUntM7lIZ/NGikJqpGR9lLlLAbXDe8F7GQp/mgtVFvLztjlRHl556G9Svccpr56kmJ87UvtcKA90omHkSsMm3u7512WENeRNox7T1XjV5GDVZHOzqWs6Pr+p+qh5gnquJyyhicWNRmWcnk2KqhUFSumWymsbB/Q0GNZ8UBNjMnzGZXCRBt2B0ucSKTiRpfS5Iq2IVFoOM+XMSjAenxR7ADCV4IRtdRTumkPhsSrMpTqqJ3py0WOiokdRY/RR9Q39XBmBN3mwERbkvKLUPqKdyEiB8na2gsbAhzSRKuhUmeEc2gt10STQytUN9PhIj07KUSKV2uVIu+ma1L6a+yDbtsXB28cqDLVIeuoGQiJS2hZLiWm5DvRqqB3RC2YAhf8NiUpFiE2ohVVGpJo0lp1prs0YUt6IVDf2YFJ/t5Wm2I1/Q1tR9Xk+P0uj1YKqG0jYKLoVXIbUwo1IyfvArK/RLyLVoDQWgqiXRGpRILl/1w9o9NSERlk6uBmvRAlnZFwfBcDd3LgJWEL588jxyH2uiYiUN2tDnr10S3CCvVhH6T+mwXWgcupQ02OOq1apHHIxG4g7521gbbTPuQ4ApfYR7SUt6XMJH9ZECpMjJ5ttF41NzRUFQB6sgzabGsB1BBZfNo2f56LTU/uUap/4Z7sjUsr4jGFI+dVHAQhVjVIRKcvTXX91H7gOFP8wZxtMAdcJ2vjVvWkwPiP/BPfnOAuvYy78AOzDdEBEqquMEOmFL7vvJdVIBRAakWquVs+Js94l6aGkaXSmxryQI1IowFWHZPoZUvKQFzMileZaUH1DP6rH9wv1N++4QtZgFXnp4IgUX2JFpJa1wZBKkJ7pS9p7dEupfZ6IlBSc2FwDqhy9/zIFVgeqbxxQ0apmiN1HKqnzx9mUN+B3eUBEilL7iLYiFfZaFZqQSINMc6RnybQ+c2XBUUTo/9CxlDcYRcnnkFOz0is61dHqlR9v92E8QUNeFpBOYMuf+xlSjogUhOex/opesAoXxpQf0sAKWoy9hkyTstNZRaS6yQjxpvZRH6lwgjZ1AKmJTQDiYNGOZrwSY98SjH2KKiK2IGHM5bFvaMYL2P3notLCDA5mpLsWmGtKqL1uwD/CFaLcJw2GTpQ+l9Q39KL6hn7UjkouhJAU5UBrUgI97TXSqRYZm6C9eFQH72XQnq+j9O/T0LYYqK8tot7qfY3dRypZ3ztnqqxfj0oA/uc6x787tmwjgs59GglfZO1KaoaUj+CEMqR2K0T3HKjzTMKxfkWJrM6FsdKhSlTe1L62q/Yl6SMVFHovMPBe1qgaJRX7hjVXCkLtNX3gDCjcUfb37Je5eH9QSoxS7bPe32yutDPileSwGlEj1VVGiIx2VNyGPNVIBRCm2ifbOrSwtnFnc9VKhEMhRSrvW4S59y/O/DqdjnPd9RWb0Jjo+xMVzWi3aFBIU95ObsarKDHUXj/QHkM+pnBCIGk7zOQanKBGKlCQSWMwdy+A1YDivXPggwyVdw+3nF6atI9U3DXL5TgKOl/olmKlJ52adXq2UQRkSHUZaUmfS0INKUdEytfjY3nqMlEF89TOABCpfZ38oAWp9rUttS9+jZS9eDeOjQ9owrBwfI5S7PPUXfBlBRjrStB2mijc54lKmSKliYXk86umqFX34T+x2ISjX04aYhMqItVFHrKGiFQ3GoNtJFRsIsWIFJwRKTJq20dPhCEFq0C+ykPXzHZHp0NT+zq4GW8etCp/nlWNVLLUvuAWIapGHRBGVBoiYzHruBL1kYJHvCVMqKLI7PVVUmt9vc0Tehq7DNuQSunB9zOkXqyDM2FIhXp8Mpz8qjbBVSOVTfQrNYJU+9ql/JZCah/g2Mgd6X1OxT4vtWNEs+Li72bBXvT0HwPCPZOePlJMpfZF/w2uMTtV+5Jsij3u6yukx6yLjBC7j5T1vbU7ItptFEOeF7nupCB/zmbaKDZBKOS95pq9zzW8RxokYd75dkek1IHUxzjo5Ga8OdCq2EQn10gBgDEmDg/V1/ap/24ZOcbI1L5ka5bLcRSS0s+LCBGbiHWpjoMMqS4jdbEJ2ZTXqr3CrAlt0hSKOz0stAu2PIBk4rX3Nm4zrehXBxcj5q7a10REys+z6afc51Ls82CuLqK+vgfaDhN9355E8bZZEa2UkZEkEakmjXOXimWCgn7Zb6YhIlXrQiPEG5GqtfcA2G00NIN2UrPECloR0XHWDLRLbIKwsQ7Hfs14Jc50pCDaHpGS669PC4rIvnwLDGV8tBqRSqtGqomGvEEKugBg7lXCzOdGUfvrwTSGJ9Cs9P1I1b6E6cie9Y6X4L9+lpg4yznk/VmTbU86BXoauwwlNpFS/rE3IqVZEQVzV+EaCBWbyNBTp4wSeY1uyKH19HFiVS68L21qnMiT1EjNhUWkGjdyr2Kfl8ppQ6i8ZQBgQOmWGfR+fzu054SlzRJEpNBsSl3JVitL5PUPasjbhWlx3NOQlyJSEYSITYh6zBZrERwpWu0UmyAEMsoQlNYHwHX4C6TN0ekw406JTVBECkDrESlW5WLfTEt12LsGxxlDlBJjBrVmvI8JI9IMHiebs84vMe+Na96WeXBKoJ/Dt8tT+7o0kLaAmUk3ImVaPR+UIfW8LTQBRKQ+ZKm04k276YY+A94FosLbVh8FIFFD3iD5c8CRNuqMSL0cHJESb2CoH90PY20JPb/YCf3ZOvRnd4qf9QfLLHojUq14pvigBjZpplsj1U1GSAlC1ZJqpOIhdz8/1b5a68+uu2YgmQIW0Tq2IRWy/sToJdX+Gilrz/WtkQp2gC1I4irQBZHyHt2QXh2DPOreeJ8GTFopx35GORd1Tklq8ZWIxaQJxoPnqO0kB9BjvShT+rvUIqGIVJfBdpoi5SSthXRAqKg0RKRWWjM6pJiTZelF8MhkdnozXsBeBFhNeHpYvc0H8ZDieS+hqX1eCfQAxT4/+PIC5j60GNXj+1Ufl/CIlPX/Lab2AY46qRTkz+2IVOJh5AdjQoVMekOrED3eOtn5kCeaiGIyb2oft57dVte1IgMvwSV/3g7VPsLCStsNi0jFak7aQap93dCQt63oDLwUQ3nRD5OD1VLeo5uokULZFOt0O8sWItraoArRXzTJXmpF4LUJ4XQNNPZ9MgGaVuvtEDr4WEr4wZfqIiqTlgS4xsCHNGFImRy6pdhnyNS+sNB5hmIKDWIT3ZBDqyJSaLtiH5AwtS9UbMJdIyUV+8xdYjbw0hlqrxuAsV8JxTvm0HvkEBr0TuW1ZERIRqRaaIQqF/K4KkMAIuXPuyoiBeER1SbFs8wqnKJRUZRYo+MhxTRi3q+B7TDtlCwypNqGXFv8mvGq9zgK5INoe3Ra9rfq0oa87Yb3M7AdYs1LlEafxR6tWYZdktS+OS6+zza2dXHWvnOfxpysiQi6ckooQypA4MVPSEyJ+3TnvCZDqsuY+8BiIOW5xoc0aDtMsO0m2BYD5pBmy2wWLa+2r9hEhhEpr/x5N6T26VZqVY3nI5/dTGqf34Y86PaIalvC66OCMHcronZKCdpoCRj3N6TgrYVrYU4ZB/WAzXKYKxN0bC5YogIBqX3dZoi4ip1rnGSSI+BFy5vNuX2QaVI50vfzBzRo202w7dbhgsQm2oaxbxHmwzqMfUM8fbFqpNq8FugM6GPhDXkpIqXgfQzadgSnqQWQVZ9H3stELbtzTQmiJqLfZpvXabUvBM37Zmo6pXFmWP8O+l2HkJi8erNqvZ0CGVLdRgbCBVJwQn+yCmYCxm6OacGsRb3MGxeGDMOxDc1tuyC1D4wBBWusOUSkQms+PISn9tlF8kCM+qhW0Bh4wWkwN6+WVj+0D/VDE3Z9ZwzoYfMmIqUibDutPHXqWxROkYFxiCiUtYmzFL2jMuIh013auh4scMw1JZT/biT0PZ1YIwVYBvhWQ6xDjuuysikyDzo5M6Pd9GsADLAyB+9P8HtZ7dG9DGzK+vyIz1Y1b+2OVEdIoDelMqpbaoBhPaSARucp0PViE+TWIGxD6gkRNVD1UfLnfZrwMnj6rbAsxSaU18L6dzek9gHi8FUDmBWAaetBnFlGSRz587ngDdlbIxWl2NcyPczuI1Xjbf+OeclqyulQMOreiJS7nUHXGYJthntqMcV/W/+fxjz0KGBSal9nkaxGqg0DsvBtysu5UEOjKLML1cJlhxHxTjdZRqSAmEqCsxFGR0YoB0JACmKzKqNONcmg6Dv3CokB6nzX0RlHIdATSdiG1FOWIbWr15AK8F5kedhskD/vgtQ+WOOrcztVrN0HWcuQCyViQ/b2kco0IgXLkKlBGDI13v5eYT0+h+k8UjPTwNr4NNlgmwypcGQUyukdTVFBqiEFiwypjiJOH6k8otO+TXkrXAgAkPS5C3NE7EvaeELlvrSb8Vok6SWlDJk2p2oqB0KQsdekOqRzvYuMSLnEJigiRXQ5qpeUdQBvNKQCJNBbEAaIHJNH2cV+0NK/VqoUhdqNKtZs80GWFxAtNlGz8piDDnUFBt7DhBc9gWJf08jFs5KSWlpC/CTQlbesywwR5Q3dYc0/SiULpaGJNtLd1F0e2hJrW085Ih7q4BcSkcojOu2n3MdIsc8XbhlSUuQgLmq9Tz21z7/Ju+8YcpKzV9eLTO1rPiIVJIiixMl8xSYSXa5joCeScPWk4j0MfMQzLQIiUtnKn1v/71Xt6/CIlBJ8mG3/5gtA1HwYCG+0F2Px5oOibkh7qQ5mAjyuYl8TKENmNievlJ8EepfWSClDSkakutTD1zY8fcwApJpG7GycTml9HUicPkS51EhZ13Kk9snoFPWQcmOOimdMS2hIZdWwnCeQQM+jhxQAu0YqwIFgp/YlHJcrIhXekNdvze26DBALMqQI8GH7kGyu1Bu8pjyo50CGdUAqhU8ZUl2S2ld0b4BtjwjI+xO2p8RYvOUBUHtGhGYyq48C7MOsvGedEJHq0hop5Q2dslTiKCIVjopIOV5LUSHU5aElQ6rz0Bh4X3gfonwjUg4DT63bNI+cqIjUeMKIVEbfq/p+4jTlzUlswjd11EkKEamgvynrLIA8IEOKEGlb8r93bcydC8qnbUdDXplixbol9CtrLmbzqVHhMZT7QqXP5edYG7muDKkMI1IeQ6rd6Zu+TXmrXEjZd3oqqQdlFFKNVCy4j4KUEmtJSf5c/TcZUh0J77NUO42ANTOP6LRfap809ii1zwUf1sALLUSkMlDtA2JGpGaj9+IsMCOMz2b6SAEe52zQ3+QVEgPscoTsjhmZQk8kAfQz0SsKgLlr40xWHhav9yJDQ6rhgNNNqn2wN8C2p4apXlKtpvZZhtRf2hiRms43ta8hIlVEW5skpkFDjRQZUuE4epoo5AafRvQ7hoeWyBdVcxRQeJ9PRMrjXEJ+9TQdj8bAl+hiz40TBbLIqkZKKacmEJtoe93bgIjEatsM3zKAplX7BpzrXXhqn1f+nBfQtTWkZEgRYiGyDs5eoQkASmSgIbUvQ7GJhgNOt6T2FTwbYA41UgBsw9MHu89DWGqf26tmZlkjJb/r2XxT+xpqpLrRCJGGlCV/Tn2LwlFrl0+aSRrz0BmRQg9tt52ISl33aYALINMU9iD8UvuoGW8w5qil3DeRQLkvq0hjAtW+ZtXxWoYxmEt1sJrtdHPRTB8puM8UQX+TV0hM/Dc630keAj2RBADAOKAEY7eCb+TBblroSe3L0lPnSVHrioa8gCO1L5+IVJzUvjh52c4DoDmkZZtOIu+RPDS021j2RqQMDmZ0ZzRHRaSsW9mNf0Nb8S18TjG1r59S+zqegQBHoUUuESlVw+IYE0WkAmlGuU99rxnJn7MY0TE153JYG6RzlG1tvGfNRqQQpybUx3mFOu94J3kYnX4sJdpE9e1DgT8L7CNlpcBkEkHQrOay8mFLs0lmljREpNp8fXkwrHMEmVJxaqQw6DgAZlgfBTgiUtM5ScZ7I1LdKjQBNHoQ2z3/ugy7Ia/jxRTFJlBi4EXL40qGVEei9regwntZL9nG05Jvap+qpyH/txel3DduhOosucioRipRH6m8VPsA8GUFABVoWw2Yaz0/bLZGynJK8B4WmKbX0ATdtByXXVaP7ISeSCKSoD5SmSutFJlKq+jW1L7cVPvCUvsSqPYBGddHAeqwb8ufZ3u5xuu7+36kmdrVbrwbH0WkIvBLM0m5HlNGFygi1Zmo6E9QRKpipfm2s16yR9Qt+9ZIUUPeBpqKSFUycpglqZHKMcpoLrPSIbc2Hhaa7iNlnSlC/x6VBWD9u1ta24RAhhQRTVBEKmM1I15kwmvBedel9imjM6/UvrCmvDH7SEmyVOwDGiNS7V5QG+TPuzgi1XBYpxqpcOR37Cl8BpDaPFReWjKkOhK1DvrVSHEuCuHbvRYwJubNLFdiANSQNxhVI5VAAl2m9mUVkYpjSKFsRTtzWKfNpdKQ8kntK/PQqFIQfIiBa3D1Jm14j1f+vIsdl5JOP5YSHUAu8ucAUGJgHKInkkwj7HCvhSqkzKtGxcfD7iWJ/DnQjoiUJ4rX7nvmSe1jORSXp4ZnQ+7Kv6GN+PU0SV1ER0YQkja3JNpDWETKEGt5Hs8RH2DQpiBSxPqZUs2lGqlGmolIITPVviSpfabYh3NQq+NLdXDmUyNlcqDCwYebWK96NFTOWgRzUcjves4o9jky+eU6BVrZiWhKANfQKA+b8QOgDjJVnmpvl0zxGno5yZ+nmtqXoWIf4IhIzWRsmAddfx5FpKAztwHQjX9DO5HiMJTat2BRYkp+NVIq66KdI7LwKPexWSt6QfOokSKDOayBTZrB/cA8sKwyauR+EiU2YXCwao7rQoGBL9Gg7TDdEfkqFw7sJsdljJXAV4Q4X+Wz5FFkptQ+Yn7DGNDHfMUmuI7svClOz0W3PGye9aMjVfvmYng2iwzmLjqMXQvZN4D0GDK8zXFyldpRdRtS3RrNcfbvaHuNXpfB25DaZ+5eANeyT5ElmsNXIc8iq15DcVDjmnGk9vXmE73oBviIBmYCbHtMCfSsaqR0Bl6KkdqXo9CExFwmNlttmx2ValqxLyaNqX2e17sQSu0jYsH7NGgzhpj8TsngLA+bTkUty0vcLal9ik5syDsbLy+7/KHFKQ4smAaDJafUPq/YRNdGc3oZsNP67y7enNqCctY4XpPCNilFv2uv6UPtiF7qI9Wh2O09QiJSOTxHSrlv1gTqHKzKYY7QHArCHNWhb6yDTRjgo9FOC1bl4hnPwDDlvZqo+eU8UKREzbccUzX5Mh14AmBb6oDsIRqjz2RLeMQmuqb+PQR6KolY+Eqg13imG4zTc9E1ebQOQ48XAOj51EhFNuSN49ns09ojtes1WPJuyJtnOk8KOD2JFJEKx69GKvXaT8bIiOpg1IHRLyKVo1PF1ZSXhCYikXVSsQUnKjy7SGMPE3XSteC35Cl9LrGV+xwRqax7W+kQjtx5JDZBTyURC5UGJjcbg4uFIsvJ74x8dU1qn2N8eWy+Ual9Bger8I6q1/BGpNq+oHojUt1cIwW4N8Bu/RvaRcmxxki6JPpNpERYH6kc1wLbkOK5ymR3C2YSwQmDg9UzVByO0ZTXNqTy+06VIeVK7Wuuh1RsGAOKzCE2Yb3exestGVJEPLzKRm3w2nNnB+wuOdw404FyqbGJSu3LOmzfDA0RqTZfvyB6tqBibXo5pvOkgdwAuY72R0S7DecaY9E10W8iHXQG3stCa6TyiOzK1D7MmNSMNwY8iQR6RtLnaizSCAnoTSZ+lr9xzC1DyqXcl3GNFAAhOOEVm+jS/RYgQ4qIiTe1L3Ppc8D2Fte6SLWvmHM0ICK1L470ebvJPSIFiFSMeRKR4jKNjNL6IgmTP+9mDymRDN5vPf9exbdqfoc8Z2ofNeONxo5IRYtNZC4iEqMpr70X53cM50MaeA8TqX3c2v9UM97sxsWLTKijmjz9dhM5QIYUEYuGXlIyHNuOGqkqt6/X6YcbZ41Unql9AREpFkexr93kXCMFCM8kq0Es7F2u2idT+7p2/O1EpfY5XpPR7y72kBLJUBF6b6/EHHvKuVP7qEYqkkGhlqeN20ZBIJVs1/g4TXk7Il2TMZjLdLAqB5uynOTtiEgpBxal9hELCPWwS7GJWhsOm7JGqg6gbinNdfiMdXlV8ogIyNS+oCLXWblIdtCNLFjFpxZ5RaQAABVuH6q71BBRG2CXjr+t6Ez0yMtSbILofIJ6SeWp4ClV+2ZMasYbB8bAR3QRbfJJ03S9NeusA9WUNyQ61gE1UoBPel/WNVLwZAJQah+xYFCpfR6J6Cy9CI6IFKtzIY8ZICXaMeQckbJT+wIiUh0gudoAY+4NLYcQv2oKXOn+iBSniFQyHIXPABzCNvkMh2g/Qb2kcq2RUmOiGqm4mLJOKkpwok01Up2e2gc0KvfZqX3tKdug1D5iwdCQ2tcOsQlnB+wausNj0SmqfYGpfTJFpLPupevQn1NqHwArItXdNVJqA6QaqVjwEvM05EW2jcaJjiOwl1Sea0GBiZTjaWdqH83JMKQEOosQnMi6RkpFmTo9tQ+OprweQyrLrBVlNFUd9e+U2kfMd7ypfW1Jf/HIn3e6Yh/QAap9fg1GHagNuZNS+wDXQSXP1D5W5e1JW80Q+d126/jbThFgBpTQgIh+071bSChHoTcilbOCJx8QIhhsZ2ccujud2BGpjGukkohN5K2ga6rUPqs4tI01Ukw6yR2vdSMddpoiOpaGiJT1ejvEJipWz6puSLXJPSIVntrXCZKrfrgimxSRagn1t3TxxtRWSp5npsY7Xx2USBUpNa494/FAqbWgzQOyUIITVoSFxCbCsSNS4cp9ao3PMbWvY2qklurgzBmRakP6v1xza1w55bvBUR4EPZVELILkzzP1ess82tnuCf06PZf59JES/xfUR6oT5c8BuDe0PAxmSzLcWSPVrYaUubqA+r5F1Df05D2UrsBWBwVgWo06yQhdUBgH9oAPMBT/vzkU/ndWvc4yrqWJQhpS2jYrWkCpfaGYo9b9yjkixWOITag00iwjP3EoMvDFGth2Uxg2bYhISaOJVeEQm8jscplDhhQRC5VDPuvw2gLtSe2TUZRuONx0iGqfqy+Og05JJ/Aiv1teRC6CIlzaHI6IVJb1f5nSq6Fy3mIYB5AhFQtn4bM8f3WB04ZID75Yx9z7FoEXgNJNM9AfqYgf5OxUkZEyJcPeYet2p8EXi+hK3jVSiCk2wXtYRzRNN5fqYBxg2wygbCkkt8FJjrqd2tcV57sA6Kkk4lGyZILbKTZhGSUqitINHguXal/7L68Wo4CGvCq1L28vmBe5sOa1mPpFpLp4YSfi4+5Xl29NDJEf5h5FVE4ZBgD0XDcF7bmaw6mS03xwpPLxAmhNiqJgRVemzOD0diBzZVYeVSNlcqDCc0/rk3CH4ASb48LAzFBsh8QmiIUJY0Afs1P72jH5ZURK9vbohgdNc/RE6sTUPrmwd1iuvUydya2oW4pNWBEpXgCpti0UHIXPjKTPFzTG+h5U3zQAVgN6/s8OsEkrspGb2ITDkOqwNbtT4SNWdGUyOCrVrhqpQNW+OQ7G86+Pkpi7WCIdW+pgFZ69o9UlNtFFjvIA6MkkYsP7NNEct8aV2ESWnjp1qJZNZLvBkGJMLQj51EjJ1D7/H9uqfR12L3OPSNliE6jyrq2PIpLT0GYBIM//AqZ+dB9qR/RCm+bQLNGCvCJSMrUPQOfVtXYopiU4oYWk92XeH0ym9lX8a6Q6pYeURPWS2mylsmR8PuAOsQmQ2ASxkHAKTrRF/rxkXw9A93iJ5YKQx+arWxGxkIa8HZki4qyRygFXRKpG0uELCmebhXmwqRMtwhiqbxtEfT9HbnZuhhRFpJLCLQl0NhGi3CdrpLL6XnUGXgxO7euUHlISvlTcM/054UnKvBZPrbkQznnHa90IPZlEbOxeUu2pI+Eq/IvMr5Um8hCWy2GcMaAQkNrHuSgk7RAvmJO8Jbvld8Wmrc2XDKmFg5xzNcdz08VpJkQK6AyV04Zh7FmAsaqQW1q5y5DqkEN3p2OOWMp9YRGpNqgx8l5NpPZxn71YKuN1yF7MF2ngJYBNtyljRa25vD3CZRnTLT5+ohNw9JKy5c8zvJ7nMNs1XmK5IOQkmYsC80/tmxP9uHgnSuh2SGqfanxJhtSCgTtU+/g82NSJlOhhmPvg4lyH4EztI0MqHnZEKkS5L+uIFAD0MrCdEMJPHseMUj/ulO+UMZhLC9BfaFNqn7wfNa6yZ3gXWyOdYQ4TXYGrl1Q7DhzeB6tbHjRZI5VXdKXAfFP7ZG8Nc4ne7iFFIg+zuYtN7KSI1ILDpdon/rNrnDZEtjCWSzsGiTMi1WkCQZ1Kshqp7O5pWFPeTkvtAwC+zD4XZB6Rcjivui3jyA96MonYcEdESsmHZjn5Neb2UnTJ4UYdwvKKSBUBZgIw3As4m7QW75EOfOxVRCqn60tDapoiUgsNp9gEpfYRHUUvUyqwHZlJ0In0a+B9TESk/NLqAEdpQobjCGnK24n9HM02GlLelhOcAeg8/25sOudbJDoeu0bKtL0IWR84HYZat/R2qR0lVJ/4opweL2nIeRxyjCJSwdeXhlSZUrsWHD5SvBSRIjoCjQGWAdVJh+5OxxzRwWqODAMPrMqFAyXLXklhTXnnOi8i5TSk0NsmsQlZl1pArpHfVqEnk4iPTO2bbV/jStfnd0lqn7GhF9V3DOW2MHBnIacDzeqrwUc60JAaEksRH8xpSfJED/Nopkzkg+0dnR8KUsT8Qqb3ddKhu9ORexwbD1Duq/BM0/oAuykvyn6pfR1WI4U2p/a5xCbQ9estGVJEbKT8qlNsIvMHwBHxIi9xTAKa8qrUviWd99ibexQwd84i1I7rz2cAuieNlFL7Fg6lxohUtzhtiPmPqpOiGqnYmKOWcp+f4ESdgxnIfo0Pq5Ga7cTUPnvRyzy1z3JUMktsotvPdp3zLRIdjzO1r13dqF19hbrca9E25KJUd7/cyWITYAzGWCnfBoWOqBTVSC0gPPn6QPekERPzH75YrInmMB3X4mJHpHwMqTZInwPO1D6fqJgUm8g68pOEEoMpyxHaFZGylIS7vSaV/G5EfDxiE7yATHOMAbiNJ5qtsfBN7eMcbNIQCzd5Nn3hPQxspg2yuERHwR01UpTaR3Qa1TcNoH5QD/gK2gDjYloS6H4RKaakz7MdgzKSfFX7rNc6bC/my3Rgh5l5pEytubOWkdnl6y09mURsnPLnrF15rUVK7UuMI7VPLeEzHKwKGLt2YDSqQ+AUkVqYyANV1ZnaR98/0RnwYR3GAbRuJ4EvtSJSW3wiUm2QPgegBBt8U/tUQ97OWmeqx/WjsKwCc/eMTQOZTl2eH+I+ZEgRsbENKUuysg3CAK4DbZc/bG1D3idHU14lNNGB9VEdgzPVgwypBYMrgiubQ3Z5qglBLGT4IiGBrr1cB0zuypxh1fZkHUT1keJFdNyZxlxTQnVNG5SWdICz+aOSS6cqIj49DFwTvXaYifYcNp0PGB1uYqG8Ow6xCSl9zjuxPqpDcBntXb6wEwlwSvFK50OHHXAIgkgAYzBXFMDqPnVSba6RaugjxTlQ5h0lNNF2GHOd53iXh3QW8DdJJIYxoNeuI2mH15a7HjY63MTCumdO1T7NUuwzO7EZb6fgSPWg1L6Fg/qunal9ZEgTRFdjrrDqpF50G1KqRipjQypQta9qCSx0ktBEHhTnj+OSTlVEIlxelHZMfkrtS45Pah+bpIhUFJxS+xYmLrEJmbOf54AIgmgV0xLn0F7yyNfKGqmcUvtUXVD/wt5j5lPZBhlSRCJcxZFtMKQ4pfYlJiy1z+zAZrwdg0tsIsdxEO1FGk01ikgRxHzBXOlvSKkaqcxT+6zjtTciJQ2phZzaB7iFxLr8bLfAv0kiKU5Dqi3pT6TalxyfhryaasZLhlQQFJFaoGgMvGgdsKwzF/WRIojuxk7tyycipVL7yqYQvLBgsodUhyn2tRs+j1L7KIGBSEa7U/uK8yf82zbkPZP7h2n1kBpg2eeFdzMkf75wKTKgxsFI/pwg5gc9GswRDdqEKYwna31vV0QKBQZeYtAmTPR/aRz1tSUYYyV7jeld4HEMZxSqy9dbMqSIRDjzetsiNuFMsaLZGgsVubMWbDZtgtUBYwVFo8JwRaS63ENGJIMXmWrrAIDSiAliHmCuKECbqEJ7qQ5zD/FQs3ZFpABU3jmI4h/moG2soXhfBcX7GpOhNQAAHBBJREFUKupnFJGaP6l9dDQlEuF6+Nud2keH23h4UvvYBKX1xYIiUguXEgPjjkaZXe4hJQjCEpx41G1IoV2qfQCMg3thHNwLzJnQ/1yD/ngV+hNVaFNm9k1vO515JDaxwL9JIjGO1L52GDacUvuS40ntk4p9JH0eDtVILVzkOsNmrZ4v5LQhiK5H1Uk5BCdYm/pIuejVYBzYA+PAHtFHqsIptW8eOcnJkCIS0W7VPrfXIvvLzQekN13mYmskfR4LubFyDWS0LzRkCvGsrJHKbSQEQaSErdzn6CUlI1J5OcusfpwLnfkkNrHATWIiKW3vI1VwHG717n7Y2obMN/am9pH0eTjSQ0nRqIWHjEiZANcBaDQHCKLb4aM6eMFS7uPWfphHRIpopDh/nORkSBGJcMuft+F68hpd/qC1E+5pyKvJHlJL6HEPQ9ZFUX3UwoNSiAliHqIzmMsLYGUONmWl7bZRbIIIxnl+7PbUPjpZEclod2qfvAYdbuIjU/tkRIpS++JBEamFi+M773YFKYIgbLz9pNomf06EQ6l9xEKF5yQ20e0ei7biTO0zOdh2E+aQ1vWLVdbwAQ28xMAX07K40JhP+foEQdiYKzx1UhUOzkAtDnKGz6PUvi4fPtFu2i5/XqKIVFJUal8dYDtMMJPS+mJRZCh/bMmC7++xIJlHUrwEQdjYghOOiFSJCdEHIj9ItY9YsPQwcAYwjrZ4btUDRjM1Pg7VPpXWR0ITseCjdJ8WIs50vm7f1AmCsJERKfZSXUmP8wFyLObOPKpLpeMpkQyNiTqpWd6eA0c/Q/2AEsxVNFVjI29VnUObFAW2JhlSBBHMPEozIQjCwZAGPsigbTGAKhfKnFQflTsusbIud17RlkEkhvcxsFlu917JEo2h8r5FbbjQ/EEZuHWATUihCfLAEUQQLgWvLt/UCYJwY64oQP9zDdpmkd5HhlQH4Erty3EcKUCnKyIxUnCCd3k4dt7iTO2T0ucUkSKIYOZRvj5BEG5kep++yeoJQsqsucPnUV0qGVJEYsxVBfB+UjfrWHxS+0j6nCBCKFFqH0HMV5Ry37MUkeoYCvPHeUVbBpGY6omDqL55kFJgOhWdgWtQqX2cgYxeggiB5M8JYv5irhSORIpIdRCudOr8hpEGZEgRyWGs6yf+vKcAsDkO1Dj4Ig3QaeMgiECcqn1dnmZCEIQbc3lBqA3Pima8FJHKH1ddVJevueSmJoj5SIGBVTkYp7Q+goiCxCYIYh5TZOBLHfsgRaTyx1pnuYaud/SSIUUQ8xCnV90cocecIEKZRwpSBEE0Yq6wDSmKSOWPcl51eTQKWCCGVLlcxrHHHot/+Id/yHsoBNEenAdDikgRRCh8HjWHJAiiESk4AQAgQyp/5Jo7DxxXC8KQ+v73v4+DDjoo72EQRPtw1nyQ9DlBhEOpfQQxrzFX2oYUp9S+/CmIyCAf6H4zpPv/ggg2btyIZ555Bsccc0zeQyGItuFK7aNmvAQRjktsIr9hEASRDRSR6jAYw9y5izB32nDeI2mZXE9Y9957Lz74wQ/iqKOOwtjYGG677baG9/z0pz/Fcccdh/Xr1+Pd7343HnzwwUTX+OpXv4qPf/zjaQ2ZILoDx55BqX0EEQ7JnxPE/IYv0cBL1n+TIdURmHsUwVd2v+cq179gdnYWY2NjOOmkk3DhhRc2/Pzmm2/G5ZdfjssuuwwHH3wwrrnmGpx33nm45ZZbMDIyAgA48cQTfT/7+uuvx2233YY999wTe+21F/70pz9l+rcQREdRsBVx+CKKSBFEKJTaRxDzG43BXFGA/mydVPuIVMnVkDrmmGNCU+6uvvpqvOc978HJJ58MALjssstw++2344YbbsC5554LALjxxhsDf/+BBx7AzTffjN/85jeYmZlBvV7H8PAw/uZv/qap8Wpa+x4+ea12XnOhMa/vsZQWXaxBK+RnSM3re9wB0P1NCU00sWYmwErMdT/pHmcL3d/soXssMA/ogfZCHXxFIdV7Qfc3ezr5HndsTK1areKRRx7B+eefr17TNA1HHnkk7r///lifcdFFF+Giiy4CICJUzzzzTNNGVKGgYXR0sKnfbYUlSwbafs2Fxny8x5WBGRioorC8B4M5zFsv8/EedxJ0f1tntmcrUOYYXNKHwmjj/aR7nC10f7Nnod9j/s4B4CRgICNlzoV+f9tBJ97jjjWkJicnYRgGli5d6np9dHQUmzZtavt46nUTU1Pltl1P0xiWLBnA5OQMTJO37boLifl8j4tmHQUA1SGOmfHp3MYxn+9xJ0D3Nz16CwwMHDvnKjDH7XtJ9zhb6P5mD93jbKH7mz153OPh4T4Ui9E15h1rSAXBOQdjyb0JJ510UsvXzuMBMU1OD2bGzMd7zK1O4eYSrSP+tvl4jzsJur+tw4sAA2Dq/veS7nG20P3NHrrH2UL3N3s68R53bBX6kiVLoOs6tm3b5np9YmKiIUpFEISHkjSkSLGPIGIhC9BJbIIgCIKISccaUqVSCevWrcOdd96pXjNNE3fddRcOOeSQ/AZGEF1A7dBe1A7rhXFAKe+hEERXICXQeUb1EwRBEMT8I9fUvpmZGTz77LPq35s3b8Zjjz2GpUuXYtmyZTj77LNx8cUXY926dTjooINwzTXXYG5uDu94xztyHDVBdD58ZQHVk4fyHgZBdA28zzKgesmQIgiCIOKRqyH18MMP48wzz1T//uIXvwgAuOCCC3DhhRfiTW96EyYmJnDllVdi69at2H///XHVVVepHlIEQRAEkQbVNw3COLgOvpjSYQmCIIh45GpIHX744XjiiSdC33PGGWfgjDPOaNOICIIgiIUIX1lAfWXX6S8RBEEQOdKxNVIEQRAEQRAEQRCdChlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEARBEARBJIQMKYIgCIIgCIIgiISQIUUQBEEQBEEQBJEQMqQIgiAIgiAIgiASwjjnPO9BdAOmyWEYZluvWSzqqNWMtl5zoUH3OHvoHmcL3d/soXucLXR/s4fucbbQ/c2edt9jXdegaSzyfWRIEQRBEARBEARBJIRS+wiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIdSg//elPcdxxx2H9+vV497vfjQcffDDvIc0bfvCDH+Dkk0/Ghg0b8KpXvQoXXHABNm7cmPew5i2XXHIJxsbGcO211+Y9lHnFSy+9hIsuugiHHXYYDjnkEJx00kl4+umn8x7WvGF6ehqXXnopjj76aBx88MF4y1vegn/7t3/Le1hdy7333osPfvCDOOqoozA2NobbbrvN9fNKpYLLLrsMhx9+ODZs2IALL7wQ4+PjOY22Owm7x9u3b8cXvvAFnHDCCTjooINw7LHH4ktf+hKmp6dzHHF3ETWHJdVqFSeeeCLGxsbw5JNPtnmU3U2ce3zffffhve99Lw4++GAceuihOOuss9o/UAdkSHUgN998My6//HJ8+MMfxg033ICxsTGcd955mJiYyHto84J77rkHp59+On7xi1/g6quvRrVaxTnnnIO5ubm8hzbvuO2223D//fdjl112yXso84odO3bgtNNOQ6lUwlVXXYVf//rX+OhHP4qBgYG8hzZvuPzyy3HXXXfhH//xH3HTTTfh1FNPxac+9Sncc889eQ+tK5mdncXY2Bg+97nP+f78y1/+Mm677TZ885vfxE9+8hNs2bIFH/nIR9o8yu4m7B5v2bIFW7ZswSc+8QncdNNN+PKXv4z/+Z//wWc/+9kcRtqdRM1hyRVXXIFly5a1aVTzi6h7/Kc//Qnvf//7cfTRR+Nf//Vf8bOf/Qwnn3xym0fpgRMdxzvf+U7++c9/Xv3bMAx+1FFH8auuuirHUc1fxsfH+dq1a/kf//jHvIcyr9i6dSt/zWtewx9//HF+7LHH8p/85Cd5D2ne8PWvf52feuqpeQ9jXvPmN7+Zf//733e9dvzxx9M6nAJr167lt956q/r31NQUX7duHb/lllvUa3/+85/52rVr+YMPPpjHELse7z324+abb+br16/nhmG0aVTzh6D7e+edd/Ljjz+eP/nkk3zt2rX8iSeeyGF08wO/e/yud72LX3HFFfkMKACKSHUY1WoVjzzyCF796ler1zRNw5FHHon7778/v4HNY3bu3AkAWLRoUc4jmV986lOfwnvf+16MjY3lPZR5x6233ooDDzwQF154IV71qlfhpJNOwo033pj3sOYVGzZswO9+9zu8/PLL4Jzj97//PbZs2YIjjzwy76HNOx5++GHUajXXvrdmzRrsuuuutO9lyPT0NIaGhqBpdBRMg+3bt+PTn/40vvKVr6Cvry/v4cw7xsfH8cADD2BkZATvec97cOSRR+J973sfHnrooVzHRU9PhzE5OQnDMLB06VLX66Ojo9i6dWtOo5q/cM5x+eWX47DDDsOaNWvyHs684dprr8Xs7CzOOeecvIcyL3nuuefwL//yL1izZg1+/OMf4+STT8ZnPvMZ/O53v8t7aPOGv//7v8fq1avxmte8BgceeCAuuOACXH755dh///3zHtq8Y9u2bejt7cXg4KDr9dHRUWzbti2nUc1vJicn8d3vfhennHJK3kOZN3zuc5/D2972NmzYsCHvocxLnnvuOQDAd77zHZxyyin40Y9+hD333BNnnnkmXn755dzGVcjtykQiOOdgjOU9jHnH5z//eTz55JO47rrr8h7KvOHpp5/Gd7/7XfziF78gT2dGcM6xfv16fOxjHwMA7L///nj44Ydx3XXX4XWve12+g5snXHvttXjsscfwwx/+EMuXL8ddd92FT3/601ixYgUOOeSQvIc37/Db3zjnOYxk/jM9PY0PfOAD2HfffXH++efnPZx5wQ033IDNmzfjG9/4Rt5DmbeYpgkAOOWUU/COd7wDgBCzuvPOO3HjjTfib/7mb3IZFxlSHcaSJUug63qDF25iYqIhSkW0xhe+8AXceuutuPbaa7F8+fK8hzNveOCBBzAxMYHjjz9evWYYBr70pS/h2muvxS233JLj6OYHS5cuxd577+16bc2aNaTumRJzc3O44oor8L3vfQ9HH300AGC//fbDgw8+iGuuuYYMqZRZunQpyuUypqenXVEp2vfSZ3p6Gueddx76+/vx7W9/G4UCHQPT4O6778Zjjz2Ggw8+2PX629/+drzzne/E5z//+ZxGNn+QAh7OvU/TNOy111548cUX8xoWGVKdRqlUwrp163DnnXfiuOOOAyCs8Lvuugvve9/7ch7d/IBzji984Qv4z//8T/zkJz/BqlWr8h7SvOL1r389DjzwQNdr5557Lk466STlRSJaY8OGDdi0aZPrtY0bN2LlypU5jWh+Ua/XUavVoOu663VN01Cv13Ma1fzlwAMPRLFYxJ133qkcMH/5y1/wwgsvkNGaItPT0zj33HNRKpXwve99Dz09PXkPad7wt3/7t65U9i1btuDcc8/FlVdeifXr1+c4svnD7rvvjmXLlrn2Ps45Nm3ahFe+8pW5jYsMqQ7k7LPPxsUXX4x169bhoIMOwjXXXIO5uTk6hKbEZZddhptuugnf/e53MTAwoGrPhoaG0Nvbm/Poup/h4WEMDw+7XisWi1i2bBn23HPPfAY1zzjrrLNw6qmn4oc//CFOOOEE3HfffbjxxhvxrW99K++hzQsGBwdx2GGH4atf/Sr+/u//HitWrMCdd96JW265BZdffnnew+tKZmZm8Oyzz6p/b968GY899hiWLl2KZcuW4eSTT8bll1+O4eFhDA4O4otf/CJe+cpX0iE0AWH3uK+vD+eccw7K5TK+/vWvY3p6WvWQGhkZaXAaEI2E3d/ly5e7Mlv6+/sBAKtXr6aMlwRErRPnnHMOvve972G//fbD2rVr8fOf/xxbt27FiSeemNuYGack5I7k2muvxT//8z9j69at2H///fHZz34WBx10UN7DmhcEqchdfvnlOOmkk9o8moXBcccdh3POOQdnnHFG3kOZN/zXf/0XvvnNb2LTpk1YvXo13v/+9+Ptb3973sOaN2zduhXf+MY3cMcdd2Bqagq77bYbTj/9dJx++ul5D60rufvuu3HmmWc2vH7BBRfgwgsvRKVSwVe+8hX8x3/8B6rVKo4++mhccskllNqXgLB7fNhhh/n+DAB+97vfYffdd896eF1P1Bx2snnzZrzuda/Dr3/9a6xdu7ZdQ+x6ou4x5xzf//73cd1112Hnzp3Yf//98clPfjLX8zEZUgRBEARBEARBEAkhSS2CIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEKny7W9/G2NjYw3/O+uss/IeWtdz9913Y2xsDE8++WTDz66//nqMjY1hZmYmh5ERBEEsPAp5D4AgCIKYfwwNDeGqq65qeI0gCIIg5gtkSBEEQRCpo+s6DjnkkFjvnZubQ29vb7YDIgiCIIiUodQ+giAIom1s3rwZY2Nj+Pd//3dcfPHFeOUrX4kPfvCDAIDt27fjc5/7HI488kisX78ep5xyCh544AHX709NTeGiiy7CIYccgqOOOgrf+9738NWvfhXHHXeces+3v/1tHH744Q3XHhsbw7XXXut67Ze//CXe/OY348ADD8Sxxx6LH/3oR66ff/KTn8RJJ52EO+64A29961txyCGH4NRTT8VTTz3lep9hGPjBD36AE044AQceeCBe85rX4JOf/CQA4Kc//Sk2bNjQkHL3hz/8AWNjY3j88ccT3sV4fPKTn/RNsXzve9+byfUIgiAWGhSRIgiCIDKhXq+7/q3ruvrvr33ta3jDG96Ab33rW9A0DdVqFWeffTampqZw8cUXY2RkBNdddx3OOuss/Pa3v8WyZcsAAJ/61Kdwzz334NOf/jSWLl2KH//4x3j22WdRKCTfzq666ipcccUVOO+883DYYYfhkUcewbe+9S309fXhjDPOUO978cUX8bWvfQ3nn38+enp68LWvfQ0f+9jHcNNNN4ExBgD43Oc+hxtvvBHnnnsuDjvsMOzYsQO33HILAOCtb30rvvrVr+I3v/kNTjrpJPW5N9xwA9atW4f99tsv8dhN02y4v6Zpuv79oQ99CKeccor697Zt2/Dxj38ce+65Z+LrEQRBEI2QIUUQBEGkzvbt27Fu3TrXa1dffTVWr14NADj44INxySWXqJ/98pe/xFNPPYWbbrpJHfSPPPJIvPGNb8SPf/xjfOITn8BTTz2F//qv/8IVV1yBN73pTQCAww8/HMceeywGBwcTjW96ehrf+c53cP755+OCCy4AALz61a9GuVzG9773PZx66qnK8NuxYweuu+46NS7OOT784Q/jmWeewZo1a/D000/jV7/6FT7zmc/gzDPPVNeQYxweHsbxxx+P66+/XhlSMzMz+O1vf4uLLroo0bglJ554YuR7Vq9ere53rVbDmWeeidWrV+NTn/pUU9ckCIIg3JAhRRAEQaTO0NAQrr76atdre+21F7Zv3w4AeO1rX+v62V133YV169Zh9913d0VaDj30UDz88MMAgIceeggAXGl8AwMDOPLII/Hggw8mGt+f/vQnzM7O4o1vfKPrekcccQS++93v4qWXXsJuu+0GANhtt91cUZw1a9YAAF5++WWsWbMGd999NwC4ok1e3vnOd+Kss87Cc889h1WrVuH//b//h3q9jre85S2Jxi254oorsGrVKtdrt99+O/7pn/7J9/1f/OIX8dRTT+FXv/oV+vv7m7omQRAE4YYMKYIgCCJ1dF3H+vXrG16XhtTo6Kjr9cnJSdx///0NUSwAKqqybds2DAwMNAhTeD8rDpOTkwCAN7/5zb4/f/HFF5Uh5VUbLBaLAIBKpQJA/E39/f2hUbHDDz8cq1atwvXXX4+PfvSjuP766/G6170OixcvTjx2ANhnn32wdu1a12veui3JL3/5S/z85z/Hd7/7XUrrIwiCSBEypAiCIIi2I2uLJIsWLcKBBx6ISy+9tOG9pVIJALB06VLMzMw0qPyNj4+73t/T04NareZ6bceOHQ3XA4Af/OAHvobYXnvtFftvWbx4MWZnZzE9PR1oTDHGcPLJJ+MXv/gFTjzxRPzxj39sELbIggceeACf//zn8aEPfcgVySMIgiBahwwpgiAIInde9apX4Y477sCuu+4aGGGSEa5bb71V1R/NzMzgzjvvdBkwy5cvx8zMDF5++WUsX74cAHDHHXe4PmvDhg3o7e3Fli1bGtIMk3LEEUcAAP7t3/7NJVLh5R3veAeuvPJKfPrTn8by5cvx6le/uqXrRrF161ZceOGFOPLII3HhhRdmei2CIIiFCBlSBEEQRO68/e1vx89+9jO8973vxTnnnINVq1Zh+/btePDBB7Fs2TKcddZZ2HfffXHcccfh0ksvxfT0NJYtW4Z//ud/bkj1O/roo9Hb24tPf/rTOPvss7F582b87Gc/c71neHgYF1xwAb70pS/h+eefx6GHHgrTNLFx40bcfffd+M53vhN77HvvvTfe85734Ctf+QrGx8dx6KGHYmpqCr/5zW9wxRVXqPctX74cRx99NG6//XZ84AMfcKkYAkK2/Z/+6Z/wxBNPNHEHG/nEJz6BmZkZnH766S4Z+cHBQeyzzz6pXIMgCGIhQ4YUQRAEkTs9PT34v//3/+Jb3/oWvv3tb2N8fBwjIyM46KCDXClpX/nKV3DppZfiy1/+Mvr7+3Haaadh/fr1+M1vfqPeMzIygiuvvBJf+9rX8OEPfxjr1q3DN77xDRXFkrz//e/HLrvsgmuuuQZXX301enp6sOeeeza8Lw6XXHIJdt11V/zyl7/Ej370I4yMjPhGnF7/+tfj9ttv9xWmKJfLGBkZSXztIDZu3Ijp6Wm8//3vd71+2GGH4Sc/+Ulq1yEIglioMM45z3sQBEEQBNEsskfTrbfemvdQIvnoRz+KrVu34l/+5V8afnbGGWfgiCOOUHLsBEEQRGej5T0AgiAIgpjvPPHEE/jXf/1X/Od//qer15SkXq/jqaeewmmnnZbD6AiCIIhmoNQ+giAIgsiY888/H5OTkzjttNPwxje+seHnhUJB9aMiCIIgugNK7SMIgiAIgiAIgkgIpfYRBEEQBEEQBEEkhAwpgiAIgiAIgiCIhJAhRRAEQRAEQRAEkRAypAiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCfn/AVWqP9WzEBgDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ps = Powerspectrum(lc_poisson)\n", + "mtp = Multitaper(lc_poisson, adaptive=True, low_bias=True)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Multitaper Estimate\", color=palette[4])\n", + "plt.plot(ps.freq, ps.power, label=\"Powerspectrum Estimate\", color=palette[7])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, Hz\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7b9118bc", + "metadata": {}, + "source": [ + "## Time series with uneven temporal sampling: Multitaper Lomb-Scargle \n", + "\n", + "Uneven temporal sampling is quite common in astronomical time series, and a popular method to deal with them is the Lomb-Scargle Periodogram.\n", + "\n", + "A 2020 paper (A. Springford, et al.) used the Lomb-Scargle Periodogram in conjunction with the Multitapering concept for time-series with uneven sampling. That method is implemented here in Stingray.\n", + "\n", + "Everthing works as before, just\n", + "- Create a `Lightcurve` with the unevenly sampled time-series\n", + "- Create a `Multitaper` object by passing it this `Lightcurve` object, with the desired value of NW, __just additionally pass the `lombscargle = True` keyword during instantiation.__\n", + "\n", + "__NOTE__: Jack-knife variance estimation and adaptive weighting methods are not currently supported, so setting their keywords will have no effect if `lombscargle = True`." + ] + }, + { + "cell_type": "markdown", + "id": "14120f67", + "metadata": {}, + "source": [ + "### Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "7b45c2aa", + "metadata": {}, + "outputs": [], + "source": [ + "# Loading data\n", + "import pandas as pd\n", + "# If downloaded locally, use\n", + "# pd.read_csv(\"koi2133.csv\")\n", + "kepler_data = pd.read_csv(\"https://raw.githubusercontent.com/StingraySoftware/notebooks/main/Multitaper/koi2133.csv\")\n", + "times_kp = np.array(kepler_data[\"times\"])\n", + "flux_kp = np.array(kepler_data[\"flux\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "346ea2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Bin sizes in input time array aren't equal throughout! This could cause problems with Fourier transforms. Please make the input time evenly sampled.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD7CAYAAACWq8i5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABBt0lEQVR4nO29eYAU1bn3/62q3md6mIUGehwERGWRwQUuwlVEYViikJmYIFxQDBoMQiTLe3PFvF6RX3AZrz+TXFQwxHg1RqOTm4jAiCMRFxC3iKAsDiLINgOzMnsvVfX+0dM9vVR3V3VXdVf3PJ9/YPrsVafOc85znvMcRhRFEQRBEAQhAzbdFSAIgiAyBxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIxpLsCWtPS0glB0MdRlKKiXDQ1daS7GqpCbcoMqE36Ry/tYVkGBQU5UcOzXmgIgqgboQFAV3VRC2pTZkBt0j+Z0B5STxEEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRCE3ujugf2RDTAcPprumkRAQoMgCEJncE0tAADTx/vTXJNISGgQBEEQsiGhQRAEQcgmrtCorKzE9OnTMWrUKNTW1krG4Xkea9euRVlZGWbOnImqqipZYbt27cLNN9+McePGobKyMiTP9evXY8qUKSgvL0d5eTnWrl2baBsJgiAyCx17E4nre2rGjBlYsmQJFi9eHDXOli1bcOLECdTU1KC1tRUVFRWYMmUKSkpKYoYNHToU69atw5tvvgm32x2Rb0VFBe69997kWkgQBJEuvF6AYQCOSyi5yKhcHxWIu9KYOHEinE5nzDjV1dWYP38+WJZFYWEhysrKsH379rhhw4YNw9ixY2EwZL3fRIIg+iH2/9oE27NV8SNGgdHhikOVPY26ujoUFxcH/nY6naivr48bFo9t27Zh3rx5uOOOO7B37141qprVMJ1dYBub010NgiCC8FtCKUKHKww/up3iL1y4EMuXL4fRaMTu3buxYsUKVFdXo6CgQFE+RUW5GtUwMRwOu2Z59zy+CfB4YXniPzQrQwot25QuqE2Zgd7b1NP7r9x6+uMJ7efhBmAwcrproypCw+l04syZMxg/fjyA0NVFrLBYOByOwP+vueYaOJ1OHDlyBJMmTVJUt6amDt34qHc47GhoaNcsf7vHCwCalhGO1m1KBwMLc9DY1OHTRWcJ2fieMqFN/uFeTj2D28O1dsEGwOPl0ZbiNrIsE3OyrYp6as6cOaiqqoIgCGhubsaOHTswe/bsuGGxOHv2bOD/hw4dwunTpzFixAg1qksQMXH98nGY33g33dUgCF0Sd6Wxbt061NTUoLGxEUuXLkV+fj62bduGZcuWYdWqVSgtLUV5eTn27duHWbNmAQBWrlyJoUOHAkDMsE8//RS/+MUv0NHRAVEUsW3bNjz00EOYOnUqnnjiCRw4cAAsy8JoNOKxxx4LWX0QhJaY9h2C68br010NgtAdjCiK+tDdaES/Uk89sgEA0H7f3ZqVEU4mqAiUko7nqDXZ+J4yoU1K+tJAmwGNTZ2A1QzuZB1sL74Gb8kQdN/2Pa2rGUJK1FMEQfhg2jrAfXs6pWWyjS1Ads/9+gWu/1wP+2//mO5qxIWERhZgfuNdcMdPpbsaBICcTX+B7aXXU1Ye981J5Gz6CwxffJWyMon+jW5Nbgn5mD4/CNPnB9NdDQIA4/aktDy29wwAd7YR3qDfzdvfhZibA/e1E1NaH0It9LtypJUGkVKY5lZAENJdjazHtPcgzO9/ku5qEFkICQ0iZTDNrch95mWYdDaYGQ4cgWXbznRXgyAyAhIahCyYto6k82A7ugAA3Mm6pPNSE+vrO2Dcf1jdTHle3fwyHVGE+a1dYE+fjR+XgJ79iJDQIOJiOHQUuU/9iTbbFWA4/E26q6AvBAGmT7+A7cXX0l0T5QhC0tZpTFMrmObzClLQngaRwXCnfQ4m2bONaa4JERW9jDGiCMPBr7Nn34rnYa98Bua39ySVTe7vX0buMy+pVKn0QkKDkE8W+WIitMHwZS2sm9+C8RP93W0dD6Zd4owN7xN+xr0H0lAjfUJCQ0s8Xhg/3qfNwStRRM5/Pw8jmdoSOoLp6gbQt38VgY4PIdqerUrpGRs/7JlzGbUHRuc0NMS061OYP9wL0WaFd9ylqufPdnbBkgrHejr+0Ik4dPUAnA7mhhmwSmW7eyJ/1Ljvs00tyHn+f+GeWBpWrqbFJoUOelPmYDhwBGx9g+z4TI/L968ntQe+0oHpg8/oAqgQ9PHV23/3HHLXP5/uamQ+Ggm9wMos2rgSXK4gwPzWLlUsGZOBhIYCrK/vQM5zfwVcbpjf/gDwarykFMXoM510zP6jfTheHuZ3P4Lthb+nri48D0jNDLMVQQB35FiM9x69PzAeb9SwqGnaO1U1j7X87U1fvqLouzc7RXBHjiG38hkgxSf1o8GcT9zBIneyDqZPv4Bl69sq1kg5JDQSwLz7U5g+2gfjvkPyEiQ4vts2veLr8OlGbv1TOBhY/7od9t8+l3xGcax8jJ99Cctf30iqCLahCfZHNoCtk79KDce0+5+w/XU7uKMnQgM0mgHnPPMScl74G9DjSmxfLiy+8cjxvv+rfSYmBub3PgEjCGBbes1dvTwsW/4he7bOuNyq1if36ReTzyTN6mISGonQa1ER16wwye+Za2rxzcxUxvjxPli2/ENBCl8dTB9qdE+7y634QzB8cyJ+JBmYPvw8ZrjlzfdDBrxEMBz51vfvV0cBUYTpg898ew0KYFvbAPSpM7TA9odXAqal/tWJ5c33YPnHB/I998oRYmkc8wxHv4Xxy1qY39oVMx57rglwe5D71J8SLyxGn+a+/hbGT79IPO80QkKjH2L5xwcwflmrOF1Ui5ggbH94BeY33pGdJ9PVDfsTz8K0+5/gjp9KavmeCGxjS0rL406cgfndj2DZ/k5Ky5UD19AM00efh/zm35fLJOseKZjObvkTE1FEzrOvwv7//yGJ8rpgf3Rj1HBbVTUsb+2Cnk9+R4OERkpI09Squ0fWMjzaoT2mswtQuInPNTTD9LlMtR0AplcQGQ4fhe3lLcj5/cuKytMt0V557+DLuJNT5ZnfeCdwwU82Y/zocxj3Jm9WbntlK0y7/ykvsgqr+1RPRlIJCY1ESLUMkFJlyOjYueufj7u8Nhw6ipw/VvlO8Yan/+/nYXv+byltL6OVcYHLHblxLoowHlC+4pIDd/JMcEGq569EMGsJd/wUcn/zR9/z1QDL23tg2R7brJxpaZNlFGH4+tvEK5Jqk2Edm7mT0EgA4z+V6yLZxmaIHV2wVlXD/I8PlKXt7FRcnuFALRg+cs/FcChUOPjNZKOZy3INzdCL+Wgy2J94NnLjPAmVi/nN92CN4Ucp5YN6Mq+ouwdctAE1Tr7m9z4G0+MC2yDdf9hzTfHN1EURTHsn0O2C7YW/g+ndv5FL7sY/+96tnAmHjME4HasERsH7Yxub0+oHjoRGAiiec4hAzqZX4HrgSRi+/hamj/cBAAy1x5Dz1J8Cgxd3sg7Wl7f4NtjjDWixOpnHC+vr0hvd1tfeUlr7kLLsj2yAefu7KbWUiokoAn69e5Rw847dIT+xDU3I+e//8em5E8T02QEYZHvrVWGWKmem63L7NnAVYqt6A7aq6r4fumM8zyiwbR0RExIAyHn2VZ+ZejDhllV7DyD3yRdgfvcjcKfrYdqTmMGFpXqnb9UhhxiPM+fZVxXFT4po+cZ432xXD2wvb4Hlf7drU6c4xBUalZWVmD59OkaNGoXaWumlPM/zWLt2LcrKyjBz5kxUVVXJCtu1axduvvlmjBs3DpWVlbLzzBxi9zRzzftg2zoCg5fl9R0wHD8Fpr0T9sd+n3ixGm9amvYehP2/NmlahlxMez6D/Td/BNMhvRpjz5yFKcwPkvHj/WA7u6XVFalSC2hQjvXVbdIDXhzYM6HnMcw7+1bChmMn5ZW9+a3EJiRAwDKLbWlNKL0f44EjyN34Z81UZXrDWHssLeXGdSMyY8YMLFmyBIsXL44aZ8uWLThx4gRqamrQ2tqKiooKTJkyBSUlJTHDhg4dinXr1uHNN9+E2+2WnWe/Q+H4kohllKoVSCF+F+RMexfE3JyIcO6cSqfURTEJvXbw8wvNg21oguHLWngvuxRgGAiOwoSraDhVn1C6cLNuKbVmVHTYNayv70D3/BsjfufqzoELHFhU/i65YyfBuD3wjroofuRkJwWZvKcxceJEOJ3OmHGqq6sxf/58sCyLwsJClJWVYfv27XHDhg0bhrFjx8JgiJRdsdIRQMyvNQG31NyZc0nUJQ4eb4gKidFiJRRlDFDLoSN3LAEdcpwZL1vfgJw/vArzh5/71Dh/eCXB2mUgHi9yfvc/4CTOwJg+Pyh/tSzR12NtePtVw8phYPvLVlh7T7Yng/SeTZTvOYGJCtPWAcMXXylOJxdVHBbW1dWhuLg48LfT6UR9fX3csETzTBVMSxvEvBwwbZ1gm7XdHDPt+hSs3zxW5UHVWlUN0WJGz7wZUeMYjp0EW9cAwelQrVzTux+BO1kHtr0TbGsbuhaXA1AmoJimVuT8z1/hHV6CnrnTAbMpNILSGVmi7iR4GXs4Yfs8jMsNMby+QUTo+mVg3bYTruZWxelSBSNzP4Q93w62qxvmnXskV1fGL76C54qx8fOpT/COlzQej2CD3p+oQUVsL78Otvk82kddBJiMquef9V5ui4pyE0on9rjgeuTPYCdeBuFTaV/6ublmGBz2qHl4rEbwAHLtFoQPOQ6HHT293kcLzQzcQfdm5z4TelahoCAHbFg5otuDaJ9nbq45pDz/zMt+RwWCDRMLmxshQIBfROUbRHBB5fjjWs1GSIkxR2/cgY5cuBCq1nA47Oj54LPQen3+JYSwtIKnB24ABo4NzLX8YZ7Xd4J/x/dcjLXHYPniIIzfmQrR6w20nes9IV1QGPmMAKAnzHIn/7P9gP+9hD0nh8MOURADeTsc9sAzGJBnlXw2/rqKLW1wPRK6z1NUmAOmwA5vjq8cm9UENt8KDwCTiYPUetARpT+5vZ5AfHPQRrHtm28hALC4ugPhRe4uSK1xgvMWu11wPf4cuImXRbxbs8UYUbcBA2wh7ffjMrAhc2TzB76zEFarEXlBzy+Y3Fwz2MKcwHtnzL7yTEZDoFzr4aPIn3l1IH3ey5t9Ps5+cXtIXgUFNsm2DhyYC4Zh4OJYyTm82WyEPaw9sYx2maAZv8Nhh9jjgnvDKzD+241ghwyMiM+32hBtejJgQF9YQb7V9xyMXEj/58/74hiNHHJ76+n/LRip/tLT6Tv7NLAoB4zFHKNViaGK0HA6nThz5gzGjx8PIHSVECss0TyV0NTUAUFQrh9kOjqRC4Df91XUuUBHhwuehugnmM3dHpgAdLT3wBIW1tDQjhxBBAugpakTkdr4PlpaOiEYw3LweBBNXHk375T8vaGhPSSN55lQ44Lz57vBB7XHH7e7x9cOqfwcDjsaGzoi6hJeFgAIB46GhAMA2+Jru5cXwIWF2d/5JCR9V6cLnq9OhgrV3sOBLS1dEEyR7yK8Dt0dPYC79710uELeS0NDOyCKgTTBbTjfJv1s/HXljp2GLayspqYOiB7AXv0+AMB15ATcgxywAXC7ecmPryFKf7L2eCTjC0d9G9Xek2cDuubzx8/CGidv7ui3sLW0gX8r8kY67+FjEXrr8+e7Qtrvx+blA+8tmO5uD1ol+gDg+x745t737hUguDwwAnB7vIE2isdOhTx/8bjv3Etj7WmIBXkAfANmS0uX5LfT2NAOMAxsQf0qGJfLi/Nh7Yk+/QNEsW9N0PKPTwCTEdaT9ejcvBM9N8+JiM+1dkX0Bz/nz/eFtfbG83pC+78/vcfDo83fx853R+QZ/E4Nh4+C6XbBLPoWUo2NHYBZuVEAyzIxJ9uqmNzOmTMHVVVVEAQBzc3N2LFjB2bPnh03LNE8U4kiD6FuD4wf7u1TmchceXL1cdQ1qTJvjVrfeEJXIlzGvgrTrszFM9vRFbEKSwqp9kZVdyWmRgh2UijfRDcBVDx8JsddDADfnkQUVWPcd9tbXa65FcYo96lL6f5zN/5ZVt3Uhgnak7Nuk56UJUfyG9/Wv9fAsv1dMBp79I0rNNatW4frrrsO9fX1WLp0KW666SYAwLJly/DFF75DbuXl5SgpKcGsWbNwyy23YOXKlRg6dGjcsE8//RTXXXcdnnvuOfzlL3/Bddddh/fffz9uOr1ifucjWHZ+CMPho/EjB2F58/2Y4aaPJDbvNDGu6Bt4QhzjRVmpxToTYHv+f2OWxB39FrlP/gmGr49HhJl2St/HHNNZn9xBUxTBeHsFmhrP0MvD8voOMG1RVpxq3ZUdr3lB5TDtyg+DJgIb431EEwQAZO9DyfIOEOW5pO3Oia4enwmxTM8GWuxpaE1c9dT999+P+++/P+L3TZv69Lccx2Ht2rWS6WOFTZw4Ee+9957idHqFcfXORsJXJ8mazwVvjHe7wLachzCwILk842Cufifwf1MUV9Y5z74KPPEfkmFcnA1KrncGzvXOvrmgE8XmDz+H+4YpEWmUuoGQ8s3EtHfC+JX0gGb8/CA840f31VHGysBQ+w2MB47AIJVnCs0m2SBBYamJPQlJBNur1ei8/fsQigclnZflHx+gs3hw3Him9z+JGycauU+/iPb77o4eQaN3Y/vLFnBnG8En+5x66xei6UjSPb1a0IlwTdHGMiLn+f+F9dVtqucdqG6PC5yCGwqTQTVTX5mPOnCvAhDh0dX4zy9D/rbFcBPix7p5h+8/ir9PpQnSPyM1v/Ohovjs6ejWjlKrFMPxUPfrRoUrdiUYv/pGsUZADoHVt0wVkd9ikoty4RVXdw5we6IeXuW+OZHQCf5kIKERBUbhfQepKoPr9UirjX7cNzDlPPfXkJmrtqTvEBMb5oadcXtCzCGTxbL1bVi3Sd+ypvjdqykzPB5Zq6iYxHLd0ku0gRCAimblsR9M+DsOxvr3muSLF313Y0SoIeWqS2WoL21/+jty178gHfbKNlj/ltrzayQ0omD7UwJXl0bpKOZ3P4r4zfTBP8HI3OBO9hIg2TCA4eDXgQt/0kVCYkRE0stxtrUNOZuiHLBjGDBtHbA/sgGcpGuNyLINJ+vANp+XiAtwCn1ERXNfnwi2l7eGmO0mQmCFlSBKnXaG4PHKnsnLvXmPO5WYEDXWHoOtqlqRvyylAjvQV6KML2xTah0sZv05jURRwwLB7zlWKi/zux8nnb/6MJJO57TAHEdfrfSGupxnXwXvKETXjxbEjpigYDEcOwmx1925ZN01XjDJtWiSAxdDbRQTv579fLtiT7ThJLOSzV3/PBiXG8L9P44ZT4k3AOPH++NHioGSy8PMweeXpOSAUnVTihfrtNJIAsPXx33H9cOWmIaTdWC6umE4cSZKSv2SaidoTE/kTJABkPu7/1GcFxfFPbcamD79AuY4V8PqGSGJ+8n9GE6c8XmkffpFcGk8le5fPbjXPRNTAFreiH0PRyjJj7zcsVN9frxkW/NF/pT7lLQqKhpRrdg0EiYkNJLAcPw0rFvfhjnMWsW4/zCsf96cplolQYJ6c9n3R+sBrSyaVMpXK59B7v96Ln4kGUhd1pVOuASdNPrJfeyZhF2xB2Padwi2v2xRnE7KD1u0s2FKV9/G2hhmz0lAQkMFDEciTUE5tS9y0bHXSy6DVlRa3QwY7ik2RsyYodatb2t6T7rsK0+joLfVszFJdSrDCzC/82HABDzVWIJM2+OhdOOebWpVVhm5+WqSK6E6anlrjUmCp4oZGVdtZhfamr/KvcMiEczv6XEvLf2wSg8DxvlWlBo6ZBIkNNQgBSb0bN25pK0kjHulHS8mg8gLMO2TPvyXFuIZMKR5xZboRUP8EPW8D6eMVN+rTaQEEhoZA5PU9aQAYNkuffo+GVy/fFz1PJOB+zZ9dyfLIZ7LmGiIKnkrFWkg70fQiXBCa2hA0S9qvZsUvmNOxbMlukPjFSt3XNnkR8pljlaQ0MgUaEBXhVgnhGXj0daLqJYwajlQlIFRw9vj0o7G95Ane/hSS0hoqImWAzvJDFkwKdiyCPZfRfRP5FvLZR8kNNQgVasAJXd7JEIWCKZUuQVPOf14kNIjyg4OpgttPmgSGhmE1qathkPaeRVNFYajJ9JdBW0g9SShGNoI1z3azgW1HzSiOdfLJAxHld25QRCEMkhoZAo00dQPpCki+jEkNNQgBXd4J33/AUEQhAqQ0JBC4aZjwMGYhqsBLT24EsqQew8KQWQjJDQkMHxZm1hCrdUWWlvQkApMv9C7IZRCrtFTB9Op3oU3mQWNTASRLWhlbRlXaFRWVmL69OkYNWoUamulZ+A8z2Pt2rUoKyvDzJkzUVVVlXTY+vXrMWXKFJSXl6O8vBxr165Npp3a0msOGc0PvmrFyLiXOSmy5CxA/xX6BNEHeybGHe1JEPe61xkzZmDJkiVYvHhx1DhbtmzBiRMnUFNTg9bWVlRUVGDKlCkoKSlJOAwAKioqcO+996rXWq3ReKJu+uxLTfPX0iV3KmHrGsBfPCzd1SCIrCTuSmPixIlwOp0x41RXV2P+/PlgWRaFhYUoKyvD9u3bkwojJMiOhYDmkJsPgtAOVfY06urqUFxcHPjb6XSivr4+qTAA2LZtG+bNm4c77rgDe/fq14FXH7QnoAfY1rZ0V0EDqG8RCtFokhlXPZUuFi5ciOXLl8NoNGL37t1YsWIFqqurUVBQoCifoqJcxWV7c8xQsjvBMAwcDjvcFiO09CHKcQwtNmRg6epEnsOOTL1PMNduhcFhD/nNbTIk3bccGfxMCOUYON+4pHq+amTidDpx5swZjB8/HkDoCiLRMIej76aya665Bk6nE0eOHMGkSZMU1a2pqQOCoGyoNXa6YFEQXwTQ0NAOi8sLo6KSlMF7BTJ3k4HnbDPON7RD/c8lNXR09MDTEOrC3erxJv2xNpxry9hnQiiH5wU0NCi/CoBlmZiTbVXGoDlz5qCqqgqCIKC5uRk7duzA7Nmzkwo7e7Zv5//QoUM4ffo0RowYoUZ1tYM0CLqAbW0DUnhvRKbAqHGXCNHviTt5WbduHWpqatDY2IilS5ciPz8f27Ztw7Jly7Bq1SqUlpaivLwc+/btw6xZswAAK1euxNChQwEg4bAnnngCBw4cAMuyMBqNeOyxx0JWHwQRDYYXstdFehJobrJN9AsYUcwS4/woJKSe+nAvLDs/VJSm/b67YdnyDxgTPU0uAyE/L0s3edWna9F3YXvp9XRXIyF6brwensvHhPxmfWUbDN8k5/a969/mwfbylqTyIDIH0WBAxy+XKU6XEvUUkSqyWr6rCpndRkKrr/6FVj7SSGioCV2UoxsYWpFFQOopQg1IaBBZCa00IiGhQagBCQ0pEl0xaL3SIO2ULITcHLAttNIIh4QGoQYkNCTg6hsTSqf5mE5mpLIQCshgQAoSGoQakNCQIFHVBtvVrXJNwvKnjUxZiAUDwLjc6a5GwjAaqdZIaBBqQEJDTXhaCegBIT8v3VVICkPtcW0yJqFBqAAJDSLrEAoyW2hwTS2a5EsrDUINSGioCZnc6gJhQGYLDQAAz4f8qYYJMQkNQg1IaEjANjYnmJLMm3SB0QDBnpPuWiQFdzr01jWuuTXpPEloEGpAQkMCra9tJbRHKBiQ7iokBXf8lOp5Ml4+fiSCiAMJDVUh9ZReyPjNcA2EBkGoAQkNIutgOjohZvhmOHvmHJDBZsNE9kJCQ01ooaEPBBFCfmarpxhRBHfiTLqrQRARkNBQEaatI91VIHrJZLNboWAARIOBVFSELtHtHeGZCNeQqNUVoSpMZu9piBwLoWSIJpvhBJEstNIgshMDl+4aJAU/ogRcYwuYjq50V4UgQiChQWQhGb65JALe4SUAtDG9JYhkIKFBZCmZLTiEwQMhWsy0r0HoDhIaRPbBIMNlhggwDLzDLwD37WlAJE8DhH6IKzQqKysxffp0jBo1CrW1tZJxeJ7H2rVrUVZWhpkzZ6KqqkrTMILoD/DDSsC2dYBpplsICf0Q13pqxowZWLJkCRYvXhw1zpYtW3DixAnU1NSgtbUVFRUVmDJlCkpKSjQJ0yOW12rSXQUiQIYvNXoXFv59DcO36qioRIuZ/E8RSRN3pTFx4kQ4nc6YcaqrqzF//nywLIvCwkKUlZVh+/btmoXpEUPtsXRXgQgmg2UG06uOEgvyIOTlqrYZLlrMquRD9G9U2dOoq6tDcXFx4G+n04n6+nrNwvRI19L58JYMSXc1iGyCYeAdXgLDt+qcDBetFlXyIfo3WX+4r6goV3GankTKGTsMrrcN5BxdBwzIt4J12JGpihiOY+Bw2AEAfOnF8Ow/rEq+xjwbhDpVsiIyBH8/UhNVhIbT6cSZM2cwfvx4AKGrBC3ClNDU1AFBUDaUJ/KYGxraYfUK2S+FM4Dz57vBN3Yk9B71AM+LaGhoBwAwRUVQPu2RxsVyMKqUF5EZ+PuREliWiTnZVkU9NWfOHFRVVUEQBDQ3N2PHjh2YPXu2ZmEEEZsM3tAAQkxsxRwbeEehOtmaaU+DSJ64E+N169ahpqYGjY2NWLp0KfLz87Ft2zYsW7YMq1atQmlpKcrLy7Fv3z7MmjULALBy5UoMHToUADQJI4isJuxcBj+8RBW/ZrQRTqgBI4rZfXIoIfXUIxsUl9N+392wvrRZtU1LInG6Fs4DP/wC2B/dmO6qJIQwwI7OFbcG/uaOHIftr28kna/rhskw7/ww6XyIzKH9vrsVp0mJeorwk+FqEUIXCANCd2P4C5Xv5UlBKw1CDUhoENlHhstuYYgj9AezSZV8aU+DUAMSGkR2wmS45NAAWmkQakBCg8g+SGBIY6DPnUge6kVqQoMVoQJMZ7dWOWuUL9GfIKFBEHpD4NNdA4KICgkNgiAIQjYkNNSE1FOEnqHuSagACQ2C0B3ajO4iSY1+hWjQxhMeCQ2C0B3aOGlgyAczoQIkNIjsI8PVhN6xl6S7CkQ2oNFnQEJDTTJ7rCJ0gmCzapIvqacINSChIYHIJfpY6KMkCCK7IaEhgZiXqdf3EARB9KLRFhYJDYIgCEI2JDTUhLRTBEHoBdoITyHZfS8V0V+hSU3/gtRTKSTDTTb7PfT6okAPhkgeEhpSJLjS8Iy5WOWKEISKkMzoX5B6Sv+IuTnprgIBaLYsTxWandzO8OdC6AMSGgShN2hwJ3SMLI9Wx44dw+rVq9Ha2or8/HxUVlZi+PDhIXEaGhrwwAMP4NSpU/B6vVi+fDnKy8uTClu/fj1eeuklDBo0CABw1VVXYc2aNWq1PQYJfrW0/CdUQSOpQf2TUAFZQmPNmjVYtGgRysvLsXnzZjzwwAN44YUXQuI8+uijGDduHDZs2IDm5mbcfPPNmDRpEpxOZ8JhAFBRUYF7771X/ZbHItFvlmaIhBpo1o9IahDJE1c91dTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnToVAFBYWIjRo0fjjTfeSCqMIAiC0BdxVxp1dXUYPHgwOI4DAHAch0GDBqGurg6FhYWBeJdddhmqq6tRWlqKU6dOYe/evSgpKUkqDAC2bduGXbt2weFw4J577sGVV16pqIFFRbmK4gOAi2MVT/YcDjv4Fis8iksj1Ca/wAbWYUdPuiuSIAMGWME5Ql3ZqNGWggIb3CrkQ2QGDMPA4VDfJZJqt3SsXr0aDz/8MMrLy1FcXIzJkyfD0HsJSKJhCxcuxPLly2E0GrF7926sWLEC1dXVKCgokF2vpqYOCIIyEZDj5RVbCDQ0tIM73w2bwnSpxjv8AhiOn053NTSltaULfEM7MtWD2PlWX/2DUaMtLa1dIPu+/oMoimgI60dyYFkm5mQ7rtBwOp04e/YseJ4Hx3HgeR7nzp0L7Dn4KSwsxOOPPx74e9myZRg5cmRSYQ6HI/D7NddcA6fTiSNHjmDSpEnxqp1S+EFFvv9kxJ4G6bV1D3kkIHRM3Al1UVERxowZg61btwIAtm7dijFjxoSopgCgpaUFXq8XALBnzx7U1tYG9kESDTt79mwg/0OHDuH06dMYMWJEUg3WBJYsl4lMgCYMRPLIUk89+OCDWL16NZ5++mnk5eWhsrISgG9VsGrVKpSWlmL//v146KGHwLIsCgoKsHHjRlitvstkEg174okncODAAbAsC6PRiMceeyxk9aE76Jsk1IAWGoQKeIeXxI+UALKExsiRI1FVVRXx+6ZNmwL/nzZtGqZNmyaZPtEwv3DKVESQHCESgc5pEMnjnnKVJvmSXkVNwr91UlsRiUArDSJJPGNGQhgyUJO8VbOeyiqyeiMym9uWLdA7IpKjp2KWZnnTVFhNMmH5T+OR/qF3ROgYEhpS0EdLpJXM74Ci2ZTuKhAaQUJDkgQ/2gz41kWLOd1VIOKRAf0oHvxgbfTpRPohoSFJJuiZEqQfbc6Lva5vCIJQj/4zgqSCjJA16k1jhRyrankRQWhliEHXGBMqQEJDiqy2nlIPT+nodFeB6OdodYCNiA4JDUmUCQ3R1l9n3CRctYAfeWHEb7QXJY2Qn6luKTMXEhpx6FpwU9w4Ql7/9B3K6F5m6L6C0mi07yQMyMIBNkNfcSZDQiMO/EWRs76Mhj6ymPDOQemugnYYssswwFz5i3RXoV9CQkOKbB5YNd6v6fzhD6KGdd1WoWnZcoirzmBpszhTYIyGDDE+yS5IaGhJlm2ouy+Pv/EtmoxRw/gSZ9QwLehaVB752+3fT2kdwum4a2FayyeIZCGhIYEwUP7NgD76yXRHlgyUjiSmwdxTKBkSWQ85RgtWiwa16S2/SGnfUpPUvQNP6aik0ruuv1peRBl9snPJ99B94/VJ1Yfog4SGBGJuNm9sq7f6Ea3yLXp65k5XrVytMa38t5C/ecWTCOX0zL4OHStuRcfyRZqXlQq840ej80cLEk4vqii4hQuGwHv5GNXy6++Q0OhvqKgxc0+6POK3qHNZGXsFevFXxBaHXfRljK5yUwvPVZdBHGCHWDBAMrxr/o2qlOOa+i8JpxU5bYYLtdpGpAYSGpIoHFlTrHkR9eIKhOPADCuWF1fGI9WrSah7Yqkq+SQz6Eqp2rIF/uJhkT/KVWdmqWY4Hepcuehk9MlsXNf16l9jDIw9N0wO/F80JneNiZiXm0TidG3OyyhXrx9KAj6sBIkVQ+eP06x60unjTYo0dGetJjfGH9/S94dGqzo10G/NMglbfP1ryHkPlR3pdVfMlPzdfdVlcdP2lF2jal2EwnxV8wuGLwrNW+mKyztUhvWWxCAkmpWrp6QmBmK6V1Ii4B0xVFbU7u/PifiNHy4vbSxSsT+kNfGeoXvCuJjhgj3+nqnc95QOSGhIEP7CvBf5/pZaMnovlKmeCUHZ9EjIzYmti46SnWv2dfEzjzGj4eVcFxm+cpF4RoLNCu+lF8XPK95MOExI8ENTo7LhdfwBS9FdMQsdK25F+313R4QJFwyW5ZJEyqdT9/f6Jiftq5crHti6b7xeXp9EX5fmBxUpKiNdeEbL6N8K6CmXngjqAVlC49ixY1iwYAFmz56NBQsW4Pjx4xFxGhoacPfdd2PevHn4zne+g82bNycdxvM81q5di7KyMsycORNVVVVJNFU+Ur5/AEQMiO333Y3uxZFnASRJUC3kHTkMnfcsgfvaiVHroRlhg3SipXb+9IeADJWcaIm9YhOGOGKGa4Ze1WZREA2cNquaMIOAnhuvh5Brk51ccBSCv7AYXYu+G3OV2HH34r40QxxwTbkyeqbpeDUSJ+v54sERv3nGjET7z5bKzpbJDTIHD/pepIR/OpElNNasWYNFixbhzTffxKJFi/DAAw9ExHn00Ucxbtw4bNmyBX/+85/xm9/8BnV1dUmFbdmyBSdOnEBNTQ1eeeUVrF+/HqdOnVKr7fLxj/dqDR4K5IdnfJ+9u3/m75o6MVr0uDA6PHAoMgzcl49GT3lZzHgpudhHhVfcM2tq8pkkRbR3rODdy1D9iXm56JkzTX6evQ+XH3ZBzG9JzM8L+iNOnYOCu+P0H7VwXTdJXkSWlX3mp+vWcrAXRAoePRK3ZzQ1NeHgwYOYO3cuAGDu3Lk4ePAgmpubQ+IdPnwYU6f6PpbCwkKMHj0ab7zxRlJh1dXVmD9/PliWRWFhIcrKyrB9+3Y12p0YyQwoogh21PCkihd7Z3qR50j0JwiU4L14GFw33pCAt2DtppldP/hO1DDX5CshGjgIQQOC59IRff+Po9MOxzvsAuUVjEE8R5KyLHO08FMVXGw8YRBUR2FgoazsvSMlrLC0QGXTcM+oi8APVa7m9g67IC2HFuMKjbq6OgwePBhc7+Ytx3EYNGhQYDXg57LLLkN1dTVEUcTJkyexd+9enDlzJqmwuro6FBf3PUyn04n6+np1Wq6EQAdPbJByXzUOwuCBMN75fbT/7A716pUAvJzNYD/h37XUh67GyiXBFZyghb67tzlCrFWN2YiOX96Fzp8tReedt6Bz6Q+SGkhS5vY8yqtKy4FCBf3Ge9klcePwQxy69RsmxhPACVabT9OhxeRsP4NYvXo1Hn74YZSXl6O4uBiTJ0+GwWBIKkwNioqUm6eKFhau3v87HHa4TRwEAExYp3Q4QvXGfIsVnqC//bHti+Ygr3e577hwIDzXXgX+Hx/KqktenhVcbzmekkHgT9Yh31kId1gcj0Rah8OOnrDfci8cHBI3N9cCb5SyDUYuZJyxWIzgw/J3haUJLtN42zzAaAh5TuH1AQCzyQB7bxyp8Gh1zbn8Eng+2R8RL3+AFaxEfubRw5Er8UyCMRh9H3hRYU5IHwhOk5NjxgB/m/zv5svDgWfjcNjh4liIAAwL5sD7yvbA71JtNJv72h+L8HSm/3sX3A/9PiJecJ8JTjNwYC4YkxE9Yf144KUlEXlL9Z3g3wY67GAYBvy56H1P4F0h/bSgICfovYghcXvC0nrtvndtsRhhH5QX9Z1Ze/ukeeqVyCkuBL/0e/Du/Bji8dMh+fnKlIfhuzfA+/rOqOGS31WOOdA3rVaTr05mI+wOO3rCJkVs2PP3x4sow2ICetyS5QGALceEAVHCwscmNYk7OjudTpw9exY8z4PjOPA8j3PnzsHpDJ2xFhYW4vHHHw/8vWzZMowcOTKpMKfTiTNnzmD8+PEAIlcecmhq6oAgKJsNM51d8IuahoZ2WN1eGOCbqAW/7oaG9pB0XGsXgrcFBasFbFc3GhvaAZaFw2H3pfmXK2A7fAzc6bNx69LW1g2vv5xrJ4EbdiHajRYEd4m2892QUuw0NLQH4rmumwTvxcPAtpwPidvR0YNoWlevh0fwHKmnxwP/Vmj3TTegvaEdeWFpgstsLum1wAl6Ttyt5bC9uDkkjcvtxfneOFJd3XthMTylo8CE1fX8+W5IbcO2nu8GH5Zfx48XQcy3A0H1k8Lr4WEG0OgSAvEawtK05Q0I5O/HEvRsGhraYeMFcADO59iRE/S7VBuD2x+L8HRNAifZlrbzXYE+Exze2NoNMD0wXzoCpr0HA7+Ht0/Ob42NHQAALso7aGhoB9xiSB4tLV0QLL31EkPj2sPSGtp7YIWvz7XGeGfdPR6YAHS0u+BpaAeGDIHFZIIxLD9Aum9JEeubkKovAHR0ugJpurt9dXK5PDjf0I5chI4bgiCChU8tZfzqG7hcvvcfPNA3NLQDd98KxuNFe5T2d3W64Y4SFj42KYFlmZiT7bjqqaKiIowZMwZbt24FAGzduhVjxoxBYWGonrGlpQVer0/W7tmzB7W1tYF9kETD5syZg6qqKgiCgObmZuzYsQOzZ89W9ABUobeDizLOYwTTteR76PnOtMhNRYZJ7MSnwQB+hPT1lj3Tp8S0gRfNJkmVS6xzFd4Yp7294yM93sZyix6oB6PcyltwOiTLU4JYOEDZ5UZRztJ0/PSHkia4fO+J7e7vJrIZmyK1Sm+fc82aio5Vt2tfntWC9nt/3GfAoGUzZeQt9B6KdV0/OeT3jpW3oTPI+7Dnyujnm7pvDh1/5BzU7a6YJR3gN3ePVneLGWKMMx3eMSNDy0mRma4sPdCDDz6I1atX4+mnn0ZeXh4qKysB+FYFq1atQmlpKfbv34+HHnoILMuioKAAGzduhNXqm9MmGlZeXo59+/Zh1izfQ1+5ciWGDk2fzbxrxjVg2jpgeWuXrPhiwQB4ovgSUhvP1VfAc/UVsD+yQXaa9l8uA4JUgaLFDPeVY2HesxcA4J52Ncwffi47P8GZmEmsV2Ub90RwXTMB5t3/jBrunlgKw9fHo27Wey4fA+/wklDLnzTBB7kccU39F5jf/yQ0AstCzJFvKhsLMZ7JLctK7l+4plwZ6GdK8F5YDMOJM4rTAUDnnbeA6XGBbWkL+V3MtYWaAEu49+9YvhiMxxOxj9Z592KgxwXDkeORBfr3xxzyNvKVIGWG6x17MbD5LdXLCkeW0Bg5cqTkGYlNmzYF/j9t2jRMmyZtfpdoGMdxWLt2rZwqaozv7YsmI7wTS2ULDc1gGHR/bxaMn+yH4VQ9gnc4RZYFIwgRScLvufCMuihEYAC+Q43u6yf3fcxyZua9M3LX5Bi29HHwXnZpwmmThR/iAFffAH54CfjD38A1Ywqk5naumdfCNfPa6BkxjC4EhvvKsSECwX3txEihIYFgtYDtlqv1D0rnHITOJTfDsmM3uDNx1K1Bq+uQfhaLMIHTvbhc0cQoBIvZZ3TQ2iYZ3DNrKgxffytdjYI8STsCMccG5NiAYKERtnIQB9jRtWAuLDXvg205n1jddQSdCJeDxhatiRze8Y4eCdEeqXd0Txof8rf/RK1Y4BvQ/JY6ah/+CnY61/mjW7TxXBqu0lPBcsvbq+4TBtjRdddCTS6KEnJzIFpiWFfpwOin60cL0LnkewmlFS4YDNGojolu97wZysruncWH+INK8Hl6JoxD94KbEkobr0j+oqGRF5RlqKW8emZK/YE4+xB8yRCIFhOYHnfMeJpiDjXfDO+o/PASdN88G14pz6LxiDVIBz0awVEEOKKYw+pggAzGfd0keK4Yq6lfqM6f3KZZ3nLwr6ZiIeba4quaYqU39QnFCAGp4YFSz8RS8BcMgVAcdLe7zgdjT+komD/4zLfHeOhr6O6jiAOtNOQgt9Mbjej4+Z3qlh1LUEkE+WfOsTbFvaMuCtnojemmQYKeGf+qKL6uYVnt1UoME2fCIW/QkOPoTiqvrlsrYP7/fiKrDDUQDVEcPGrhjoVhQgVGIqTYS4J31EVov+9uCAOUHwfomT0VnbcltiJUCxIaSlCx08c7tRsg0Q6t4KyLELYqcE+6HF23VUSvUtBhNMN0n0sFvkj9zT6tCfZxlNJylydWbueyhei4Z4nyhEYDmCRWEXII9gvmvSRsFevvizqZUGt+mDLeOCGG/asAz1XjIu5W6Zl9HTrvvCVKCvUh9ZQcdOivKYSg6vn3OcLN8ZTgUrCS4MZdgmYVHarxxYMlNlS1GW3StXHt319SjNmkm9sNw3H/61XwXjwMYo4twjS9++bZMO47JNsdiNYIQxzouuVG2F6t9v2g8gooqolxRDGR44r7X8aDbVa2We4JugKhY9XtgCfacV11IKGhhBTOlDyXjoCx9licWJEVEnNtaP8/P5LlVTY9xH6IXQvngm1rR84fXo0I8146AuLOPWC8vERKfcFfMATcuSZV77rWNSwb1QuxmJcLdxLXzCqmt4v1zPjXqBeW8SOHQWQYWQ48vQpuTXRffYVyIRQU3ZXk/TZqmVLHgtRTMuhTJWknNaIeEkpkFmQyKkyno5WU2RShLvMj5uWi45d3pbhCieGaeQ06f7Qg6qDVdctNfdfI6kRtoytUmP2Lebnwjk58xe0n5AK1XroWfTd5r7o6+uyUoNfpqK7omXUtzDt2g0/w8JoUYtg30fXDH4A7fiq9Z0Bo8FIPjot5qIsfeSGYwLmI9Dz4jrsWyrpFUrBadHEAM11IueTnwzwTB0zZFXqN8JFZHx4JDQnEsMtmhCEOdN9aoWmZwsACCAMLlAmNzOprihDy8yByHLimlsiwggFZcUgqUXq+Mw1i7+ayd/gFMAQ551OCWCTv6tVOBRcJKaH7phtg+nhfyG/eUWHCKc2z8Y4Vt8oyx/aMHw0wDDylo2A4+LXvxwxdScSDhIYUJiM6Vt3ef/TRfuR28mRUBzKTdt69GKY9e8G9E+kNuPNHCwBBAPdtGi7k0gGeK8YG/t/9gxuR8+yrGSlEveNHR/oUU2EvThzQe5BV7vcbY19D9vkdloUnDW7K0wHtaURBzLEpc3CXIIIagilGp3eVXQt+iMN330BU9L1kCVflwcBJ+gfKWJJ5/EYDOu+cr/isTTbjuv5qdH9/ToQKKYK0XeOb2UsQEhppwr+53vP9OcnkEjeG4HSga+kPIu53DiV6Jw5xcaLTvs4PHgjPJcPTXQ3lqGXKbTT2uZRRcRzsmfGvEFLkcDM6CTwjjoM36CZF/RDl5ch4Zx0//jd0LS5XtzoJQkIj3UTrMAG3ySmcDaWgqGBX7CLDqHKftmjPQU+M61n1jz5Xep5Jl6MzRbf6ecMtlNK2CtAnYmE++AuVXwmrBbSnoVNcs6b6TAZj+Ihy3TAZEPjMsmyxmNF5x3zk/LEKgqNQ8X3awYi9LvSFovyocbxDnWDcUnfL6Qg1x0edrgbj0T3/O/o/RJs0oe3zW1oJGvo90wISGjpFtFnhmh77ZLZoz0FPtAteNEGdj9pv+SPmyvGlFB2hZAi6Fs4Df2F0z7TJWr3xF8g/2JUNiGYTvCMTcGaZLNH2DyW6nHv8aBgPfa1tfTTFN0vgRwxF1w/mSJ4D0TMkNAjlJKk6EIvy0T1vRtzByTP2Ypj2fAbP+OhWKdFuMowF7yiU5Zur/ed3KPLhlQ10/EJlh5sa4LrpBrhuukHyiuOMgmHAX6LHvZfY9K8vQkX4QVFcf8NnEiqyGaSTjbOA6PjpDyGCgWWHegcPvePiX7wkDrBrMoh1/WiBvIgaO7bzu93wqrmJn0HdjshMSGgkQOddCyHE8PGixfWOqUF6xIl2xSmRHIKjEO3/cZesU9l6oXveDDBd3doXZPA9E9Hss/oT8nLhuXJsrBSKcU8a77vOOAWm9aFk9t4NCY0EEGSepI0F7ygEd7peezfNiojTmTO7r+uTDBIYgLwVoirljLoIruuvhvsqn6FE50r1L7Jy3zAF7humqJ5vdLJjGUhCI024Zl4D72WXRLiLdl99BQyp3uTLjr5MZBMMA/eUq9Jdi4Twu68Xc7JzhU5CI10YDJJ2167pU+CansrZD5EN8BcMBoD0WD4RIfAXD0P3TTfAO/bidFdFE2QJjWPHjmH16tVobW1Ffn4+KisrMXz48JA4DQ0NeOCBB3Dq1Cl4vV4sX74c5eXlccOamppw3333oa6uDh6PB5MnT8b9998Pg8GA9evX46WXXsKgQb7rHK+66iqsWbNGxeYTAGSrnfjiQTAePAIh0UuEUkUmGSGohDDEkXH7I1kLw0T61MoiZAmNNWvWYNGiRSgvL8fmzZvxwAMP4IUXXgiJ8+ijj2LcuHHYsGEDmpubcfPNN2PSpElwOp0xwzZu3IiRI0fi97//PTweDxYtWoSamhrceOONAICKigrce++96reckCD2YOuZWArvRUNle0dNF/3tbEUAEhiqwgd5LyD6iGs20NTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnepzCVFYWIjRo0fjjTfeiBvGMAw6OzshCALcbjc8Hg8GDx6sXgsJ9WAY3QsMAOSCgkia9p/fga475muTeYYblMRdadTV1WHw4MHgemcxHMdh0KBBqKurQ2Fh3ybuZZddhurqapSWluLUqVPYu3cvSkpK4oatWLEC99xzD6699lp0d3dj8eLFmDBhQiDfbdu2YdeuXXA4HLjnnntw5ZXKvHkWFUnfnJYuHA79uQzg8yzwADBbDLAnUD+9tMl/pZEa9dFLm9SE2qQE9fN1GTmIAAoKbGCj1DsT3pFqG+GrV6/Gww8/jPLychQXF2Py5Mkw9J6mjRW2fft2jBo1Cs8//zw6OzuxbNkybN++HXPmzMHChQuxfPlyGI1G7N69GytWrEB1dTUKCuTPdpuaOiAI+hDtDocdDQ3t6a5GBIa2HlgBuHq8OK+wfnpqk/9zS7Y+emqTWlCb0o/Nw4MD0NLSBcEaWW+9tIdlmZiT7bhCw+l04uzZs+B5HhzHged5nDt3Dk5nqL+fwsJCPP7444G/ly1bhpEjR8YNe/HFF/Hwww+DZVnY7XZMnz4dH330EebMmQOHo+8OiGuuuQZOpxNHjhzBpEmTZDafkIVfndMPN5AJglBG3D2NoqIijBkzBlu3bgUAbN26FWPGjAlRTQFAS0sLvF4vAGDPnj2ora0N7IPECispKcF7770HAHC73dizZw8uueQSAMDZs2cD+R86dAinT5/GiBGZ56tF73hHXwT3xFK4ZsR2kEgQBCFLPfXggw9i9erVePrpp5GXl4fKykoAvhXDqlWrUFpaiv379+Ohhx4Cy7IoKCjAxo0bYe11XR0r7Fe/+hXWrFmDefPmged5XH311bjlllsAAE888QQOHDgAlmVhNBrx2GOPhaw+CJXgOLhmXpvuWhAEkQEwopjdTuxpT0Nb9NQm+yMbAITdNpgAemqTWlCb0o/tub+Cq29A5+3fh1A8KCJcL+2Jt6dBN/cRBEGkAO9wn8VoprsXITciBEEQKcA9bRI8V46FmGE39YVDKw2CIIhUwLIQ83XugkcGJDQIgiAI2ZDQIAiCIGRDQoMgCIKQDQkNgiAIQjYkNAiCIAjZkNAgCIIgZEPnNIisof0/7gKy28EBQaQdEhpE9kA31xGE5pB6iiAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2WW9yy7JMuqsQgt7qowbUpsyA2qR/9NCeeHXI+uteCYIgCPUg9RRBEAQhGxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRAEIRsSGirR0tKCZcuWYfbs2Zg3bx5+8pOfoLm5GQBw7NgxLFiwALNnz8aCBQtw/PjxQLpYYXrhySefxKhRo1BbWwsgs9vjcrmwZs0azJo1C/PmzcN//ud/AsjsNu3cuRMVFRUoLy/HvHnzUFNTAyCz2lRZWYnp06eH9DMg8TbooX1SbYo1TsSrtx7aBAAQCVVoaWkRP/zww8Dfjz76qHjfffeJoiiKt912m/jaa6+JoiiKr732mnjbbbcF4sUK0wNffvmleOedd4rXX3+9+NVXX4mimNnt+fWvfy0+9NBDoiAIoiiKYkNDgyiKmdsmQRDEiRMnBt7NoUOHxCuuuELkeT6j2vTJJ5+IZ86cEW+44YZAW0Qx8feih/ZJtSnWOCGK+m+TKIoiCQ2N2L59u3j77beLjY2N4oQJE0Sv1yuKoih6vV5xwoQJYlNTU8wwPeByucRbbrlFPHHiRKDjZ3J7Ojo6xAkTJogdHR0hv2dymwRBECdNmiR++umnoiiK4scffyzOmjUrY9sUPMAm2ga9tS9cEAbjHydEMXP6YdZ7uU0HgiDg5ZdfxvTp01FXV4fBgweD4zgAAMdxGDRoEOrq6iCKYtSwwsLCdDYBAPC73/0O3/3udzF06NDAb5ncnpMnTyI/Px9PPvkkPvroI+Tk5OCnP/0pLBZLxraJYRj89re/xYoVK2Cz2dDZ2Ylnnnkmo9+Tn0TbkCntCx4ngMz5tmhPQwN+/etfw2az4dZbb013VRJm7969+OKLL7Bo0aJ0V0U1vF4vTp48ibFjx+Jvf/sb/v3f/x333HMPurq60l21hPF6vXjmmWfw9NNPY+fOndiwYQN+/vOfZ3Sb+guZOk7QSkNlKisr8e2332Ljxo1gWRZOpxNnz54Fz/PgOA48z+PcuXNwOp0QRTFqWLr55JNP8M0332DGjBkAgPr6etx555247777MrI9AFBcXAyDwYC5c+cCAC6//HIUFBTAYrFkbJsOHTqEc+fOYcKECQCACRMmwGq1wmw2Z2yb/CT67WRC+8LHCSDx9qYaWmmoyG9+8xt8+eWXeOqpp2AymQAARUVFGDNmDLZu3QoA2Lp1K8aMGYPCwsKYYenmrrvuwq5du/D222/j7bffxpAhQ/Dss8/ixhtvzMj2AEBhYSGuvvpq7N69G4DPGqWpqQnDhw/P2DYNGTIE9fX1+OabbwAAR48eRWNjI4YNG5axbfKT6Lej9/ZJjRNA5owVdAmTShw5cgRz587F8OHDYbFYAAAlJSV46qmncPToUaxevRptbW3Iy8tDZWUlLrroIgCIGaYnpk+fjo0bN+LSSy/N6PacPHkSv/rVr9Da2gqDwYCf/exnmDZtWka36fXXX8emTZvAML4b11atWoWysrKMatO6detQU1ODxsZGFBQUID8/H9u2bUu4DXpon1Sbfvvb30YdJzKhTQAJDYIgCEIBpJ4iCIIgZENCgyAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2JDQIgiAI2fw/Me9yy6rjJcUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_kepler = Lightcurve(time=times_kp, counts=flux_kp, err_dist=\"gauss\", err=np.ones_like(times_kp))\n", + "lc_kepler.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "e53378f7", + "metadata": {}, + "source": [ + "##### Plotting the first 3000 data points of the kepler lightcurve\n", + "The unevenness of the temporal sampling can be better seen with this" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "837c95a4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Days')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAHXCAYAAABAoSyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd5wctdnHf7O714vtOxtjbMBgjDFgG0zvhBRK6CWF/oJphoQkEJMAIRBMDZAAocV0BxJ6DYbQezHuvfd6d77e9nZ33j/2ZneKpJFmNNtO33yIb2c0kkaj9uh59EjTdV2HQqFQKBQKhUKhUCgUWSSU7QwoFAqFQqFQKBQKhUKhhFOFQqFQKBQKhUKhUGQdJZwqFAqFQqFQKBQKhSLrKOFUoVAoFAqFQqFQKBRZRwmnCoVCoVAoFAqFQqHIOko4VSgUCoVCoVAoFApF1lHCqUKhUCgUCoVCoVAosk4k2xnoCyQSOuLxRFbzEImEEItlNw8KhSiq3iryFVV3FfmIqreKfETV2/wgHA4hFNJcwynhNAPE4wk0NXVkLf1QSENtbSVaWjqRSOhZy4dCIYKqt4p8RdVdRT6i6q0iH1H1Nn/o378coVDYNZwy61UoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKHzyysZPce6MW9Ha05HtrCgUeYsSThUKhUKhUCgUCp9MWfMW6qPN+GzbnGxnRaHIW5RwqlAoFAqFQqFQKBSKrKOEU4VCoVAoFAqFQqFQZB0lnCoUioIimujB+s66bGdDoVAoFAqFQiGIEk4VCkVBcd2CRzFh9l1Y0rY221lRKBQKhUKhUAighFOFQlFQLGpbAwCY37IqyzlRKBQKhUKhUIighFOFQlGQ6NCznYWCIpqI4f9m3oEpq9/KdlYUCoVCoVAUKEo4VSgUBYmuK+FUJivbN2BTdwNe2fRptrOiUCgUCoWiQFHCqUKhKEiU5lShUCgU2eDBla+guac929lQKPISJZwqFIqCJKGEU4VCoVBkiZc3fpztLCgUeYkSThUKRWGiZFOFQqFQZImE2lqiUHhCCacKhaIgUZpThUKhUCgUivxCCacKhaIgUXtOFQqFQqFQKPILJZwqFIqCRHnrVSgUCoVCocgvlHCqUCgKEqU5lYsGLdtZUCgUCoVCUeAo4VShUBQkSnMqFyXsKxQKBT+qz1QovKGEU4VCUZAoh0gKhUKhUCgU+YUSThUKhULhijLrVSgUCoVCETRKOFUoFAWJMqlSKBQKhUKhyC+UcKpQKAoStedUoVAoFAqFIr9QwqlCoShI8klzqus6Pq6fhfru5mxnRaFQKBQKRQao627Cd42LPD27uasBL234GNFETHKusk8k2xlQKBSKIEjkkeb0y23zcNey59AvUoEXDrgl29lRKBQKhSKjPL/+A5SEinDGDkdlOysZ47yZkwEAD475DUZWDhN69rfz/4HGnlYkoOPnQ48JIntZQ2lOFQpFQZJPmtO1nVsBAM2x9iznRKFQKBQyyJ8RKDd4dt27mLLmrWxnIyts6qoXfqaxp7X32QbZ2ck6SjhVKBQFST5NDPLCD25eZFKhUCgUivwin+YrmUAJpwqFoiBRDpEko4pToVAoFArp+LH0KsR1YyWcKhSKgiSfzHrVGaIKhUKhUCgUSjhVKBQFSv6IpsiPpc98yKNCoVAoFHmGv/lK4Q3OSjhVKBSKLKM0pwqFQlFo5NUSqSKbqG1IFpRwqlAoFFlGiaYKhUJRWCh5Q6HwhhJOFQqFIssozalCoVAoFH0TtY5hJavC6fTp03H55Zfj8MMPx6hRo/Dxxx+7PjNt2jQcd9xxGDNmDE466SR89tlnlvu6ruP+++/H4YcfjrFjx+LCCy/EmjVrLGEeeeQR/OIXv8C4ceNw0EEHEdNZvHgxzj77bIwZMwZHHXUUHn/8ce8vqlAoMo4S9xQKhUKhUOQ6+eTAMRNkVTjt6OjAqFGjcNNNN3GFnzVrFq655hqceeaZeP311/GjH/0IEydOxIoVK1JhpkyZgqlTp+Lmm2/Giy++iLKyMkyYMAHRaDQVpqenB8cddxx++ctfEtNpa2vDxRdfjB122AGvvvoqJk2ahAcffBAvv/yyvxdWKBQKhUKhUCgUil78iKZaAa7ER7KZ+FFHHYWjjjqKO/wzzzyDI488EhMmTAAAXH311fjyyy/x3HPP4aabboKu63j22WcxceJE/OhHPwIA3H333Tj00EPx0Ucf4bjjjgMA/PrXvwYAvPrqq8R03nzzTfT09OCOO+5AUVERRo4ciUWLFuHpp5/GmWee6eeVFYqcIaEnENKUZX8uoOXB6KJMjxUKhUKhCAKlOTWTVeFUlNmzZ+Piiy+2XDv88MPxySefAADWr1+Puro6HHbYYan7VVVVGDduHGbPnp0STnnSOeigg1BUVGRJZ8qUKWhra0NlZaVw3kOh7E3sjLSzmQdZdMa78XnDXBxWMwYVkdJsZydveWL123hhw8d44YCbMaC4KtvZIeK33mqaljd1PmQSTnM1z2b5OVfzmCsUUp+r6DuoeisXTVNl6QXRMiuIeuujrmjIn7kOL3klnNbX16O2ttZyrba2FnV1dQCQ+nfgwIHUMLzp7LTTTpZrRpz19fXCwmkkEkJtrbhAK5sBAyqynQXf3DH3Tby8+lPM3mEZ7tr/0mxnJ2954cvk/u650eU4fcgRws/H9QQ+3DgTBwzcAwNKgq3bXuttaWlRTrQ7HiqaSlJ/52qe+4XKU3/nah5zjULocxV9D1Vv5VBalj9jUC7htczyud5WVpR6fu98muvwklfCKUA2f7Nfs//WdV3YbI4UBy19N2KxBFpaOoWfk0UopGHAgAo0NrYjkchv04EZW5cCAL7ZshANDW1Zzk3+09HW7akc393yLe5b/iJ2LhuMKeMnBZAz//W2u6snb+pIR3t6T3yu5rmlNd2H5Woec4VC6nMVfQdVb+XS2Zk/Y1AuIVpmhVBv29o6PdeV7u78qWfV1WUoKgq7hssr4XTgwIGor6+3XGtoaEhpNQcNGgQgqUGtqalJhdm2bRv23ntv3+kAcGhuecmFBpNI6DmRDz8YeyQTSOT9u+QCCd1b3VzVvhkAsKZzS+DfwWu91T2+W7bJ1TwnTIf25Woec41C6HMVfQ9Vb+Wg66ocveC1zPK53ib81JU8neuwyCtvKPvssw++/PJLy7WvvvoK++yzDwBg2LBhGDRoEL766qvU/ba2NsyZMycVhjed7777Dj09PZZ0Ro4c6Wm/qUIeoV6nLHE9keWc9G1KQkXugfogs5uX4YGVLyOux9HS046ZTUtTVhcslLMhhUKhUCgUiiwLp+3t7Vi0aBEWLVoEIOnQaNGiRan9oZMmTcK9996bCn/++efjs88+w5NPPokVK1bgwQcfxPz583HOOecASJrcnn/++Xj44Yfx4YcfYsmSJZg0aRK23357HHPMMal4Nm7ciEWLFmHjxo1IJBKpPBjHzZx00kmIRCK44YYbsGzZMrzzzjt49tlnccEFF2SqaBQUwobm1IdwGtcTWNW+iUtooLG1uxFburd5fj5X8CoSKeGUzB8WPoZ3tnyD2c3L8et59+P6Rf/EjOal2c6WQqFQKBQ5i3k+5mdulq/0vTdmk1Wz3vnz5+P8889P/Z48eTIA4KqrrsKvfvUrbNq0CaFQWn4eP3487r33Xvz973/Hfffdh+HDh+Ohhx7CiBEjUmEuueQSdHZ24qabbkJLSwv2228/TJkyBcXFxakwDzzwAF577bXU71NPPRUA8OGHH2LYsGGoqqrCE088gb/85S84/fTTMWDAAFx55ZU466yzgioKBSeGWa8fzeljq9/Am5u/xMRdTsPJ2x/m/gCB82feBgB495B7POcjnykJFbsHyjLZPJ2lJFSEzb2LFyvbN2D//qOY4ZXmVKFQKBR9Fd0knunQ+9yY6E8gL7yyyqpwetBBB2HJkiXU+1OnTnVcO/7443H88cdTn9E0DVdffTWuvvpqapg777wTd955JzNve+yxB55//nlmGEXmSWlOfawzvbU5afb9af1sz8JpXyeizkd1QTP95T5wFN7QolAUPl3xblw592/48XYH4BdDf5jt7CgUBUFf1CL2xXdmoWaYirwirLl7+XLDOFNSV92BJ+/TigBQ30GhyDtmNC3Fhq56PL12WrazoshB1AyDH53xq2/QF9+ZjhJOFXlFSIKOyYgj0Qf3NdhRIlEwiJar+g4KhUKhUAC3LXFaTRY6yqjXihJOFXlFWII5qWFmqUN5/FUED492uq/tr1EoFAqFIk1aPPuqcX4W86HIBZRwqsgrQjKEU01pTtN4FIrywgw1e3kUNZfOh9JUZvAKhRW1LUKhUMhAja9WlHCqyCvkmPUmq73qDBSZoGCmr6q5KBQW+uKRFwpFEPT5ptTnC8CKEk4VfQ6lOVVkFg7xVGlgFAqFosBQcwwFH6I1pScRCyQfuYISThV5hYy9eSmHSGrgKBytXp6TD3tOlaWBQmFFmfUqFHLo6+OL6PsbRyIChdkPKeFUkV9IaINGQ9Z1/w6R8t2sqxA7tVwjm+ecbu1uRFusU0pc+V3TFQqFIrPk+/wgk9hLSpUdmw1dddnOQqAo4VSRV8jUnJpXqha3rkF7rEs4rr6+2qeQhXzxtCsexfkzb8OZ0/8kPW6FQqFQKIKir82tRN/Wui2t8JQMSjhVZJS4nsD1C/+J/2z40NPzMpqg4fHXaNzzW1biN/MfxG/nPyAcV1/rQBV8mFd9eZTTQQwtrbEOqfGpuq5QKBSKYNAZv/KfrngUdd1N9ACCmuJEgR+FqIRTRUZZ17kFM5uX4um107KWB82mOV3SthYAsLZzK9fzZsEj/y1PvIlF+bBOlyt55DLrVebVCoVCocgyXfFuthDlQiwRR0tPu4Sc5P3kysL/zboD582cjKaeVuJ9cc2pEk4VihxCglmvT2+9ZkdKyqmSgoSqFQpF4aOWlBSFxoUpIarN0/NXz7sfP/v+z2iMkoUwGvbpWKGdptDYK5Ru7GqQEp+5fAqxH1LCqSLDZL8Z2TWn4pg1p4XVgSqyg+xWEdfjuHHRFKlxqrquUCgUhY0hlG7p2ubp+RUdGwEAqzs3+8pHXxttROejyqxXoZCIeRI+r2WF+PMSvfV6NYswr1jped5BZH+poFARHVrlfonFrWuxpnOL1Dj72mRBoVAo7NR3N+Pf6z9AR9zdgWI+95l+fQyIjmjO9PK59ILHqjktvJmcEk4VGcXciCYteNTX814ROee0JxHDxs56yzXzU/lu1luInVouYB5os3mUjEKhUCjkcdPiJ/DMuneJfjP87NXMNfzObMTnFjaHSPk9tRJGaU6tKOFUkVHMwly2vH/aO01WLv606HFcNPtOLGxdTXyir3WgBvkg1OZKHnlyIdshUjAOlgqjssf1ONolnf2qUCj6Fit7zVbXdybPmYwmYogmYgCA82ZOzlq+ZJNt7+zZTj/TiM4lC21Prh0lnCoyil8PYzIFDp49dLNblgMA5jQvT12zmvUWdgeh8Ib4uCFXmAwFIJgXSl2/Ys59OGP6nzyda8yDrutoiLYEErci18iNBTBe1nVuxcOrXkebWpzxjTEXOfnbP+D0727Icm5yD9G5mnN0IY83U9e9h/tXvOwpT7mMsOZUeetVKOQRz4EGZdcqiU8vCschUn5NrfIUDi2m7O9gnOWrcLK2dy/u5m45XhPtPLjqFfxy+i34auv8QOJXKLzyhwWP4s3NX+Cpte9kOyt5T8jUr8f0eBZzEgx+5zZ+jXdIqUcTPXhu/fuYtvWbvJ97+aE73oOvGxdkOxuBomYwioySU5pTCc/l+55TRTCIroLKNkEOwqS5D88FhHhnyzcAgP9t+D7LOVEUIrqu45+r38S3jQuFn23oSWr0C2lvpCIYMt3d28dM0hh60aw7U3/ngqJDLvwl/u8NHwSYj9xACaeKjBL3uYlbirfe3n+Nzk/88GO53np1Xccbm77AyvaNvuPKdb7eNh/rOrdmOxs5h7lad8WjvuMLB6A5LRSz3kyhSksRBIva1uDVTZ/hz4ufdNyr627CJo5zFAvdmUomCAWyrz+X8Out11/5kBZD66PNqb9zWTj9rnERvt5G1mzSNL4ipb2qwzpXLMSqqIRTRUaJ54T5i3hLtna06W5Exqb0uS0r8Mjq1zFx7n1Y1LrGd3wirOjInEC8sbMetyx5GpfMvjtjaeYCXLXNNLp850EjYqfwJ07+UcKjIh+JJnqo986bORn/N+sO1zgK3ZlKZuDpY/O3nP0vRgruObUl55Z+LptS37T4Cdyy5KnA4g/1AdGt8N9QkVP4P5vJ/6TbrjkVxepx2D/GodcA8Nv5D0qIkZ+XN36SsbQae1ozllYu4d8xRPBpZovGaCtWd/g7rD1X6ct7ovoK2WhlMtq2soLwTxBO53IJv92X39Jxq6O56hCoM97t6TmR8cLpU6Lw6mIk2xlQ9C1ywRTDt0MkUx/SVyegXrrCvuSkR3zPaRoZ+5iDKOsgJrS/nHELAODlA25FZaRMevwKRaEhwyqir45bMgnmuK7cwW9/L14+DtUpk1zVnGbCE3a+LD77oe/MFhUFgcwmaQzQol2wbtGcqkGed8Gh0FeaaXCdc2oO1QcnjmbrgUyhJuiKfETGxNSv7wdF3xAQMom9N85ns14WW7obiUeNicwlg/ApkWsU/hsqchZvRr3yzHq9YtZsKccSwBVz7gXgvmKY6ZXmuS0rMpqeGT8LHlu6G+VmRhJBinK5sRddLmrhShEEfsZA49l5LSvV4oxPghzN/rf1OyxrWx9gCu741pz6dYjkcj8XrPC8cPfy53HOjL/4isNuPVGIyyRKOFVkEQkrwHoC32xbgHYhUwr/uyFSf6kBHms7t+CLhrk4c/qf8MKGj6jhMm3Wu6w9u4N7Cg6h3FyLnl43zXeSQdRL2XH+Z/2Hqb+VgxaFgg8/i3xmgaEu2iQhN30Xnu/gpVdb17kV9614Eb+a93cPT8sjs+6Q+I6SMZOrC5pehXqRp/qC1l4Jp4qM4n8fg/X3u1u/xc1LnsJNBLf6QeXFPJGWsT+wEDQsr2/6HACYh7v3JbNe3bfjr8LHLIRHdboHUoVCkcZPPxo2DaA9iZiM7PRZeDymehnbW2MdXrIjnewvvOenWa934VTEIZJdc1p4cwwlnCoyQnusy3HN2wKw9aFFrasBAAtaVwnH4LXr1ak/FCwKsQOVhuSJQL4teLCOxwiKoMso+5M7RSHCY4FCr3vpPjhXJ/d9nULpN4THe7s/JJdiyFVrm0xkSx0lo1BI4I1NX+CM6Tfio7qZ0k1FvDRSnk4zoSfw3tbvKHflak7zEg8rC9k4ezMX9qVkQyQPolYGKczl6DxDoWCSDY+tPOMXra2aryvh1B+Ffpa07/7eZ/G4za1I+WvobsZ9y1/Exq56f4lnA4HiLnRP0YASThUZ4Jl17wIAXpFwpqZ9YPazj5G1QvnKxk/xtxUvEu+ZV+zyTUMVNNnWjq7u2GT5nS+ma6oWZZ7ANaeBxq7oq/AIRUo4zQTBjHW50m/4VySInu/t9NfLgiS83rfiRfyv7jvcsvgpobTlkgGz3j4guhX+GypyC8kqEk+rlxzPLG/fYHuGHC5XD4IWQYYZEU8MmRDkL+/1HGyQrQmY+V2zc75rAA6RpMdojjtXpmQKRW7DpTmlNCfz9VhCCad+KHjdlc95gbhwKpY8ae7V0N0MAFjTuQXvb50ulL4szNkWmVuJlHZYaU4VChlQVnE99X02zamHIYLnCdZk2Xx8TCFMqmUeh8Mq22yYbuaC5pTnTDLZ9SiQsla2twpFXmDuT7riUcsdA6U59UdwZr250c9me8uS25hIEvzMV+5d8YLkHIkjUoYic4BsW6hlAiWcKjKKfGHOi3CqueaFahal67hyzt9Sv3N1U74IMt6B57tmQ5D3MgFb1LoGTT1tvtI1v+kKuxbeJbwMCmHRJHACLiL1DRTZwqh5K9o34NTvrseU1W9ZrgO5sR8/nwlKQMiVOYXf/kv0edHwJMEv2wI1YH8PgfwIfPfsWGNllsJ/Q0UOQOvEs3MMix9vvQkk0BYXOVM198mVwTAIRLXCqzs247fzH8RFs+7AtmiLFJPn13qP2eHlBwP39Z1mEChhS6HIPnztMBnm/a3fAwBe2fSp41nVnv3hx7y6LxC0cEu8nwsFbspCUHMrJZwqFFLQCX/Jwd+eT4bmlHIrbruRCyt1fpFp1stOJ/NlJTo2rO/cCgDoiHfj7Bl/wb/W/y8zCZvKpiJc6i3NgMn/mq5Q5D9comlvINb5wao9B8+0rd+gIdoi9EyuLBr4XpgVfly3/XJxiESY++VGyaURyY9IWPt2tkL03quEU0XesqJ9g7fOqLche+l77R1iIZxJJtepE72TzEZZ+R3on1//gaSc8CPDXCyICU6gR8nk3LTCP4XQNyhyD556ZbQn5p57VT8zwhubvsh2FjzhV+DxrTl1dYhE2nOa/TptsU4QcogksOe0AIVRO0o4VWSAdEOS2Xk8u+5dT2YT9mZN7kDI8dq1jJnSOgZJIWh/aYgKCLLqp/B+G1M+c3Hg+aJhLpa1rc92NqSSCxMZhSIYknU7yhBOVf3PDJWR3LSECRph2yHHA+JmvblQp607TgMy6+0Dolsk2xlQ9AUozoWkxOxdOGQ7RCJjF4YzdQxLkHgT8MkCFEuuyoYg71fwzsZgJ0dzKo+mnjZMXvqsxBjtHkSz3waCIBcmSoq+iVHzWJpTVTszw6Di/kLhC6Xf8OsQyW3sJt3PNWsVkTIQybvdU3TuLWf7p/DFb0VB46UrsnvrFdFU2U1gC0HrKMOsl6tjzUJRmQeH59a/j5c2fJyhdL2Hl3FEgcxBujsRdQ8kyM1LnpIep0LRFxDxjN6jK81pUHCXXw5awuQFrma9ubnnNBNOx7wcoZhvKM2pImvIaLjl4RIJOXFiz5sh0BaCGW+QsLR+2ZgMmYW0qeveAwCcNfQHGc+HO+ayya2BJ4yw9DhnNy+THqcoQdfGXJgoKQoPLuFUVb7A0cG7KCuqQcwNMq2FtKcmes7pxo56bOyql5wrf4jtOeXHrlApxHNPleZUkTk0TUKHZ53E71G5s8/4+DqQFzd8hO54j9NbbwHMAjIlNGajpLKl2fZTprmwKtoW60ytTIcz4LY+H51lKRRZgava6r3/r+p4tsnXL+B7puazT3d72j62P73sPV/pycL83mLeekXMegtfdCv8N1TkDjkiyKXMeln5sd1qj3fh26aFTm+9SpMKAGjsaXUNk23NaS6nKzuXfsq6vrsZZ07/E/648DEAhW+Vpus6lrdvYHs2VSgIZENjwdO2jYk7c4jLkfE4nxExseaOM2e+S7DCpdsTns45zTGCymO4D4huhf+GipyC1lSjiR50x+lnssnE62S7Idrs9Nab5YFEyn5RCfnY3L3NPZ0C1I61xzrTaXlcMQ0CP++9uG0NAGBOy4pkXNl+mYD5sH4Grpr7N9yz/D9S482dSaaikBBQnPqPR8FElSGLYEtH7hF48vB6lIwIuejRXzZKOFVkDkaDOuXb63HKd38Uiw6ar0m48SSpoTfF2pzhdYK33iwOT+s6t+KEbybhlY2fZC0PdlhdZlAlNb9lFf68+Ak097Q77gVp1vvaps9wxvQ/4eO6mQD8OULIJUHGnneiy/4cyq9fvt62AADwacPs7GZEoeBAnraucNpwduArP3HneLnxXXhzEdcT+LJhHlp7OmzPi46B9t8u3npzdAzSKX+7Pydg1psDW3+CRgmniszB6Ex4G6ZdALB0BJydVdoUyzB9cj63sHU18VmHt94sdpD/3fw1AGDKmrd9xiT+Dl66xqBMoK9d8BC+bVyEf6//wJlmgN/n2bXJPS6vbPo0mVaG0uXCR/JOxxSFTa450VAo/KKn/mWNuQr/8C0CfN4wB/XdzdJizAS8Y9h7W7/DrUufwfWL/ml7PvlvZ7wbD6x8GcvbN4ilXxBmvfxzHpEpg9Ojf+EJq0o4VWSY4DoU/s7Ke0POlaNjookYXt/8ebazQYDhrTfgoiMdeUKqE7Obl6Eh2hJADnxoTi1/+y8okThmNy+jLsYYsfmJn4ds7kde1bGJK5xCkS+Q2tM7W76xhpFQr1/c8FHGjufKRXiKcHrjYty2dCounXN38BmSCG/tWNq2DgCwrH297flkDC9t+BjvbPkGV839m0t6YlZpuTIXc2I26/X2nBt9wSGSOkpGkTkk2MmbHVAk/xbf52fVm4oRz5FzTr9tXOD52QUtqyy/5c69/WvHvUIyzyZNwP6w8DEUaxG8efCdUtM3JyX+rtkbaP/Q6/jo3UPuId4n1Y9cnRbI5vqF/0RXIor79r4q21lR5CDZ0FfwCZU6Xt74CWY2L01deWDly7YQ/nly7TsAcvV4rtxgfVcdAKAj3s33QBYXw5osjg358uF2LndzzLndhge3YnA6p8yNUcmcb5H5oUj+C/HoGDuFL34rso510h5kOpxmvb2dqZfOzNEhZmhTvrH6aNCTiHuO68GVr8jIUs5B6rDTXiut3zrKOJzeK7IcIchoIzLbGamdvL91usQU/BPXE4Fow2c2L3XRKtPJlcmSorDgqVVNPe143GW7h5dtFrqu4+m10zArB84pzja6ztfG82l/4L/WvS/8TMhFjPD69qLnnOYmIsKpdwrRP5ISThV5hcP0w+Ih1dsGfF7PZ7pjl6skzSlHJ/vE2v9aVr79pNsW77T8ljuJppdl0FpmUsrGu2VCUPDqCMFLePf4/Gw6dX/27ytf8h4/KUmfz09e8gzOmfEXoX1NQdeI/Jg8KfIP93rFcyySl9q5oHUV/rPhw9QxUwp3zJrF6xf+E//d/BUzfDYXtcxbY3jzQTMxTT/PP78SwT6fyJXFQHM+ctVpUz6ghFNF4JhlP5kTNqtRr3dTSpE8OZzFZO0cTe8aW27zIsncs+zfAadA0JzqhnCaCUyDUo4MlF5wOkTK/Xf5utfM/fvGxVnOiUIRLLLao5exK1tjR67CU4Jmi56ZzUvx4KpXfccZFF4WWMOmCZ6f49RET0LIh3FJBLF5qDVsIZr5KuG0j9Ie60QL4eiNIMiU/EZLx97o/TRke1zZ6iD9pBvk+WBE7aWu4+FVr6Ohp8VyTTakvS+G6VrGFxEE09M9TQsyQ0bquKTvE9P5zd3vWf5v4vFDssitr6goFGR1ZV7adeFNgf3iXob5JTiY92Bxak5NYgRpawvv29+y5ClaTojY5zG5WM6JgE4o6AsKWSWc9lH+uPCfrt7TgkB+mzKv1JE7gmsXPIzrFjwSSF6y1UfEfe1plJFr/oFgU3cD3tz8RQB5sEIanIxiyohZr0dHCEHgb89r/o58IsLp5u5teKrXoYtC4YVsTIizqTmlve8Hdd/7zU7e4dfs1W+8QeDFP4h5UZj0DO+2KbvXdNFzTnNl3LIK6FnMSJ6jhNM+yraeFtRH+c7d8ovMzdrmtm4fKGn9wILWVZjTssL0nBFevOdw7DnNQO9D6qRldsRBd+qk/U9BpEgUTjO659S7SZPsUUxmbPk0wIoIpwDQaPFOKZfcW8dXyMbc5ueZxph8QGazvmf5fyTGlj/w9I351A9406abNKc+fICIIjv+2c3L8NbmL33HYxeZ+Z8LJmy+ooTTPkymqre1A/ebqrXzM8fmJigax8B4X+0mCYnBe+slaeEy5SVYBuTvEoDmlPBZ0956+eIQyZVzgDCvmIp9H4tRb5bGHbq5d2YFexFiiTjmNC9P/Y4LCqfmdx5XPcJTHhQKAPj9gkewrnNr4OnwtBWeMJ6sOwrRLWjA8GoOcwEvPjzMmtOEZX5m4O39Rc85bexu85SOwR8WPoaHVr2Guu4mX/GYETtKRgQlnCoKFA1aXq6+2CfuIit1/9v6nf/07etiAUsSbbFO4oRbptmot3pAfoZ41ihRuPaQpCv0c04zsYjgZWAPDvH0n1v/fupAdX8xeecfK1/BX5Y8zR3+2XXv4bqFj6Z+xwSPWDIvnJSEioWedSOfJqUKb9jbxsauemK4tR1b8NDKV9Ee6yTe95MmCR6/Al4WOFWNthLEUTLZ9fAqbv0T1siaUwPPqgBXs950/dV1HZ9snu0xJSudPp1+6V5so8UDFzyRbGdAkR2yNcjInLQ7zXrZca/p2GI86B1bEms6t/iIjE1LTzt+9v2fMbx8iOOeV+3vzKal6E70+M0ale5ED3Rdx0sbP8bStnW4YffzM7b/kjQJSGlOA0zX+BY0F/Kk72dHtjDrJb7n1r+P59a/j+tGnuM7Lq+8veVrofBfbptn+S1a18wOK/zKkt82LkSbBOFDkb/EKQLfLUuewoauekT1GH474meB54OnHfi2Ycone/8A4B1ZRPecZlNIsXxSbodI5j2nZsHM33uInHMq0/GQ3LgENKcCxWUPmovOoPyihNO+Su9MTNf1jK3w86Tilh+H5tL2LF8+0vGTNEXM/NnSf279+zhvx2OF4uBldcfm3n83Oe6JD3hJrl/0T8c1L2MI65F3tnyNJ3sdzWyNNga+Z5aFoR2QlV5TTys641EMKa0lpGX623R9WOkgoTSMvK5q34SP62fhvB1/gqJQBrtqh3lCBpKUFo+gcGoRJvz1g39e/KSv5xX5h9MHAXliuy2a3NssOt4Q0+TosLnCeNpfSDbhVNARFRyyqTn14jfBPBexPp/826vg5Ja+xYRYYpH1CFrf2CGVgehzrmH7wMKQMuvto/hxCuQVHe4djvvZVt7umeM2d5W/nne/y1NiaciE5dwll1fK3q+bkfo7rieIE7YgypG0qJHecyonxV98fwv+b9YdFA0JbVDypsW4Yu69eHHjR3hnyzfC+eTeYxvQJNYvuq5z7R+1f3HR72z+jrLbVC63UUUw0ITTQSX9AEDqfjY75sURHu2P3z6xL0yQ2dh6eUp5CAunGdiCIhPzuGsWrPXUfW/xipxzKnOhpDsRlRaXaiPeUcJpHyVtiphbCE3jNetv0r5C8wQ31Vn6WMkLYqJOi5E1OSed6Sk/B/6J6wnKwCE/TVaJyE6N9G1oe069pG3Wlj+y+nXh53nrKZ9zleCx5+OFjR/hp99ch+XtG5jP2RckRPNqDq9ESYVf4pQa2L+oCgDQFpex55ScxreNC1N/82jfPGlONYoJZx8liDKgfbtMCDpetH5h2jmnqYVhSZmz8eamL7GgZVVvGvISoZnm88JbhvY8G78Wtq7Gsrb1QmkW4tilhNM+imbSnWYuTXD0VG77DOih7ffmNC/HT7+5LvWbx0lEMp7cGHS7GCt4ogJ2lHCcix9Yna45Z3E9QQwbRBFrjO5M9jclabVJB5Dbr1OxrThfPudeX/nzgz232ZiEPr12GgDgv5u/YoaztwLSxG5jVz0+qZ9FfN68X0o5MFKIYu9XaGMM79jDlSZHGB5Nkhdtk7mFKOHUCq08/G01SNIVj+LsGX/BY6vf9JQ3XliLqtFEDxa2rmbWZdK7etVquo3Zm7obcM2Ch6jpesVrfrdFW/DoqjdQ150+opEpnNruGVuQfjf/H/jVvL8z07I/W4hjV1aF0+nTp+Pyyy/H4YcfjlGjRuHjjz92fWbatGk47rjjMGbMGJx00kn47LPPLPd1Xcf999+Pww8/HGPHjsWFF16INWvWWMI0NTXhmmuuwfjx43HAAQfghhtuQEdHR+r++vXrMWrUKMd/s2fPlvLeuUSOyGEp3PIj0tifX/++5XdqRcylIWdz0DVPllkDkYg54+LWNTj52z/gOVt5pJ4VyqEYCT1BFBiCKGOSNvnVjZ9i8pJnpO+PIq6u6uY/xdIzhyZ6Zw7o6KAca/4OxDWhznK6aNaduHPZc6lVdjPmQV2Z4Sr8Qmun81uddc8zkvacehn8LXtOc23ykAU8O2ZlQNK+L2lbi8aeVry26TPCE/JgHft397Ln8bv5/8B7W6cznict0HormRc3ussDqbR8lr7d868X/rbiRby++XPcsWyqKa7kv6STIpyLwPz0hZaXVeG0o6MDo0aNwk033cQVftasWbjmmmtw5pln4vXXX8ePfvQjTJw4EStWpA+/njJlCqZOnYqbb74ZL774IsrKyjBhwgREo2kt1LXXXovly5fjqaeewiOPPILp06fj5ptvdqQ3depUfPHFF6n/9tprL9/vnCsYk7JMC2LuelPRST19pS+shS2/jb0cflybB61VNTsXqI82U8OJaLcMD6hT173nK2/WBBmaU9OEn7bn1HiDzV3b8GHdjMDKdU7LCnyxbR42dNW5hq3vbsbtS6e6hgPcz9MUdSdv/n7/JXisjemJpBaas5z425GkiW5AiPYH79d9TzXL2trd6Lhm0ZyKZc2VQlzNVlix185MOAniOsOUYzHLb177uubU2S3yl0eU4TGf9O1kL5zRLanI1j8A8EWvZ/QZTUuseXM959Qb3zYuREtPO1dYvwslZidIvO1iS/c2/GbeA6lztjd2NQCwLlwbbeS+FS8SYvAjnhY+WRVOjzrqKPz2t7/FT37yE67wzzzzDI488khMmDABI0aMwNVXX40999wTzz33HIBkY3r22WcxceJE/OhHP8Iee+yBu+++G5s3b8ZHH30EAFixYgU+//xz3HbbbRg3bhz2339/3HjjjXjrrbdQX289o6x///4YNGhQ6r+ioiK5BZBFMm/US8oD6UxMNuwB0XovbPNoy7uXoD3WxZmCfHjPRFvcZrUG8DNRCHKSkaCZ9fb++3+z7sBfl//bMeDJz4f7O765+Qvu+GIJkpMn8sAso3yjiR6c/t0NuGHRFK7w3KKpoOCcezjby6LW1fxPWwRIhpdwD5OfXNkeoAgSPrPe4FIkk5GjZHK6XwgG5/c1C3P88Zz87R+pi8VE4VSibLq2YwtO/vYPeGz1G860Ob4pOy864W/vme/hcIqXTMlfXYzq6cUC3vN/n1zzDha3rU2ds02e5zAs/Wy3hI6d6QNtL6+Okpk9ezYuvvhiy7XDDz8cn3zyCYCkOW5dXR0OO+yw1P2qqiqMGzcOs2fPxnHHHYdZs2ahf//+2HvvvVNhDj30UGiahrlz5+KYY45JXb/00ksRjUYxfPhwXHrppTj66KM95z0Uyt4qupG2OQ+GYBgKZTJvmqWf0qA50hbJj2YTbzXNGl8kZNWc6tARCmkOjYb595fb5uHWJc+Q09M0Ysfst/zMcYa0EDM+457Dg6tGz4fbwKZpGnQtgS1djdihbCBnnumRmu8ktASgOTtSrTe/Rie7JdpIqAvOesvOk9g9e7yt8Q5nIEr6CS3hCGNZCzG/M+PbGLgNNttiLehO9GBm81Ku8rAHoT1DXAwx18eQBo32rMx+g1FGrHRI9VDXdOIzWsjZ35ifD2nO++lnvTkhy2a/rwgee/1LgFz3zEgdLyhxkczbSaFE+9xwKN3J2ZtDX6jrX9TPT/2tabD0jdTT3SjF8tz693HBzsc5ruumsSP1PUyR+y3nTxtmAwBe2/Q5rtj1VFtWzXvwyWmFbPM22vqeMR8z95uieQ9xjJ2hkEZdGeBNLw6TEMyRpv0Z81zGDK0MjWdo7c/+tyNee1yMsStfySvhtL6+HrW11vMFa2trUVeXNNkz/h04cCA1DCmOSCSCfv36pTSn5eXluP7667HvvvsCAN577z1cfvnleOyxx3DUUUcJ5zsSCaG2tlL4OdkMGFCR+jscSXZ2A2oqUBouDjRdo2+KREKoqiq1XLeXi1t+ikvSVbakJILyipL0swPKUVuWjq+8pMTybKQ4+R2Ki6zVvqIind7bdV9S066oKEZ1v1LHdb/ftrIzHWc4lK4rZ+x8JF5ZY91jQktrQE0FSsJkzX7xGnYzH9C/HH9b/CL+t/F7PHDQr3DY4L2Z4QGgvKWEeq/IVL6V1SWIxsOOMANqKlBZVJb6XVVZSn83U71lUVZGrzdV1e7frXKDMwwpHABU9ytNTUyN9h3qTg9O5eXpvBQVhZl15L0N010dXVT3S5cVT32rSpRZftOe6SGYd1VWpr9tbW0lGovKHGF488FLdRX5+5eURJjpRMLOGWElJa5KQh0z9wWstGprK4XPFtY0jbvuKvKTyqi1zyivKHJtF37bTVXM2RfYtfTlle5jellFsXCf2w/ptPsPKLfcy4U5TtC0N6UXMItLIqipSZeT+W8zRRHn+GdAKrOylvS3e3rTO7hm75+hH9Jl/UHLdPxs+NGetw2Ubk33efb0I8XpPq6isoTSJ1vreHljerww1wmjHy7blJ6XiNaRfrY5HYnk2Eu/x0O0Ix1BZRX5ve0UF1vLkSQcVvcrQ21/clw1tRWW88tLSq3jDysP5Q3W9l1eTm/L+UpeCacAeaWcpQkDkh23xfEFabXdFKampgYXXHBB6t7YsWNRV1eHxx9/3JNwGosl0NLi34W8V0Kh5CSpsbEdiURyEEvEk/82NLQFLpwa42YslkBra7ocNGhoaGizhHXLT3d32vwiGo2hvT3dqWxrbEe4I90Rxnqsq8edXVE0NLShp8c6ITfH0ROjrzi3t0fRHHJ+R/s7iNLWajIj1tPxxaLOvNDSqm9opZZbdzfbU++mhkb8b+P3AID3Vn+PPSLDXfNsLjM7sVh6RXFbUzvRs+22bW3ojqSvd7RHHe9GqrcsOjrp3o2bmp1aUXt68Sg5DVKZ1ze2piaEsVgCDQ1taIymw7Wayqc7GmPWketnPE69Z9DYlN57w1Pfmlus70t7hrT3qK0tXR8bGtrQ1E7WKHut95t69+aYaWntQkORM76u7h5mOvG4s400t3SgIeR8pq2tyxFXrCddB3uicUb7anNsE+CBt+4q8hPzeAYAbe3dru3C73hhnksYcdm3rDS1ktusmXZCXt363JZmU9+wzbof0O975QPmca+7uwcN29LvbP7bTLSHPv6Syqy1Pf19n1/5IS4ccgJaTd/87nn/Qb94FQ4YsIdQ3g3aTeOkPf0u0/yqldBfAsB3dYuxpa45ZZnW2ZGOr66hJf18aycaitvQ1ZmOU7SObGtsQ6SDvZ2uoaENzTFyvLzpbelI+/dobukkjkV2otH0d21oaEMs7pznNDV1oCFOH1OKTcJpZ6d1DsTKe3uHda7T0eGcP+Uq1dVlKCqiL9gY5JVwOnDgQMe+0IaGhpSmdNCgQQCSGtSamppUmG3btqXMeElxxGIxtLS0ODSqZsaNG4dvv/3Wc95zYYKSSOipfGipawkkCGaXwaAjYbV2dJSLW36s3uCs+zM+q5+D04YcCQDY0FmHbd0tlmcTeu/76/bFC3L8pLRJ37Gxuw39irxrSMxJhrRQKg1SXmj1aEXbRnzTuADnDvuJZTWOFo+ZK+bcl/o7pse56ipzb5Xp8VgiTkw/nrCVpU5/t4Q9LC1ZxnvGEgQPuLY4I5TukJR2NB5zhDGHs+5b4cs/i7hpjytXWdg+D6tsHddM5ZhI6Ja0eeJ048+LniLGRcsLMx3CrXgiQY6LkIalyugao5wSwpoKo3/Lhb5fEQyO+sTxveNx8bpkTdPZF9j74x7CRNmRD0o7MeIl3TO3F3u/0BfqecI+/zC9czxOfn/WuEQqM1K52qNY1b4J+/UbxZNlZpqO+ZdurVuk/DX1tOFfa/+H83dKmiSb38/iWIjwvGgdMddRWjmy+lje9MzzA1a7MGPOTiKhE/1asNuY9Qz4hG5dbGXlwZ6WvS4WAnl1zuk+++yDL7+0ml1+9dVX2GeffQAAw4YNw6BBg/DVV+mz8dra2jBnzpxUmH333RdNTU1YsGBBKsw333wDXdcxduxYatqLFi1KCb+FgeGtNxj+s/5D3Lf8Bb482M54ZGG+bx/eH1v9Zurw4otn34V5rSst93epGJJ8zodpPmlfwR8XPuY9Qlg3wvM6RLLz2/kP4oUNH+Etl3MhXfOSAYcegLMcvezn85MeiaIQezXPXDYk51q6ZaDx5iiDRkzwnFqZ3npls7V7G3fYuB5He4xsddIe68Lqzs2O60E4IlK+jRQkvFSLtzbTt454TdNeP928idNjEslHZsaKXMLRt1jWV+V0EqSxxT4vaKP0iTywvhuv08hvGxf6ep4Xo7wfXfUGTv72j9Rw/j1Pm//2Fpdfh0jJ0M7wXfGo65hWiA6Ssiqctre3Y9GiRVi0aBGApEOjRYsWpfaHTpo0Cffemz6M/vzzz8dnn32GJ598EitWrMCDDz6I+fPn45xzzgGQNNc9//zz8fDDD+PDDz/EkiVLMGnSJGy//fYpR0cjRozAEUccgRtvvBFz587FjBkzcOutt+LEE09MaWBfe+01vP3221ixYgVWrFiBRx99FK+88grOPffcTBZPoKS99QZTqZ9eNw3/q5uebFiWHtwkiJHMq13y4zi42HZ/W08LaEQ0d1MCL+WxsmOj8DNmzEKPeV+bl0k26bgMkXfidcnuW/Sx3Qj6jEme/LrVD4vAyfBA7Lzuv42RTKNZcH8fjoCy+4iQwLDzcf0snDH9T+iIOz1o/5pyULnXiQpLm+WlDNS5qQoSb/gUTkmt217nYzxHyXg659SUi8KbDwsR1xNY17XVdIWiORXsO4iOdWx9iZ+jU1jPch8FQ/GCZF4U0Qn3RTHieH3z5+jR6Qu0/hckTQvLtO+o67h/xUuYtoVsQUm0dGMJp465rPPLr++sw6nfXY/7V77MfLYQyapZ7/z583H++eenfk+ePBkAcNVVV+FXv/oVNm3ahJDJO9z48eNx77334u9//zvuu+8+DB8+HA899BBGjBiRCnPJJZegs7MTN910E1paWrDffvthypQpKC5O78e75557cOutt+KCCy5AKBTCscceixtvvNGSt4cffhgbN25EOBzGiBEjcP/993MfeZMPaCmtZbDpsDRiqTyIuGO337c9YD/b1PqobknXC0F0CubVRq+aUwOzS3QvJBirqnXdTVjatg6H1Y5hxmEpX8oHtZej5mE/nyNOxqfZ2Ol+zqlbvSCdX2bLQeov2ecdigqn9sKw77tPXScJ2fZnxVJO0dTThifXvIMzdjgSO5dvn7pO7hPYqWzorMfIymHWa131xLA07b9b21WipEIc97Zir4+khRbvKZKvJjj6iyfW/hcnDD4EFRGyIzgStDMt+yJfbJuLL7bNTf2mlYZoORH7L0fnFEzZJ2zbUWjQ+kqS5tRPv8o732LNW7jSsehPyGlu6m7AtK3fYtrWb3H84IMIefCrvdVhL/OvtyW9Q7+79Vv8ZsRZ5AwXKFkVTg866CAsWUI/33Dq1KmOa8cffzyOP/546jOapuHqq6/G1VdfTQ3Tv39/i0bWzmmnnYbTTjuNer8g0NK60yDRdeuk32qWSzIt9me+UMTSfkl41SBKy9yxVkRK8b+t36E4VOQpLfrh2nywzHIum3MPOuJduGPPy7jj06ETBU/7u/kVyt14Q+AMUxpmcyjSAGYZ4Cwr0BI0p4Q9s0HhXP/xlv/H17yFD+pmYHrTIvx7/z+nrot6vQWAbsah9Xa8ljdrcaLwpwIKL5C0H3bsmqqOeBeiiRjCmsZcTKWm6dL3AHyaUwB4YcOHuGjnnwrngZaPQodppkm5N69lJfG6na+3zcfOZdsTNZsOzamPHon1rHUBlg6trzQ//8amz9Eaa7eEXdK6FqOqduLOK28d81sXLVtyKG9unxt5afv2VC2/9D4hc3KTV3tOFfIwuou7l/870EFGJxor9OZBS4dy/kWLj/2bZ7D3qjnVoQdSVvYB4b4VL+LOZc95iot0NIgIrD2nxor/yvYN7F7UrDilBHFqTv0Lp6y9NDuVDXaPwCUL5hx3xLvRlaB7B35vy3fp5yRUGd7DyFNpcgycxp2gaIgmTewbe1ot18OEYeeR1W8w2xarrO2IvJG52rHroAcTyID3USvyA7tWJ64ncPK3f8C5MyZ7io9ss+FMg4fWmLtXXxr2dt0XYJpp+uhKV3dsxi1LnsZFs+9EnDCO2ecs/uYhDLNeV+sgNmYLn3mtKx3mqDctfkIoPl4hXKYW32vZkp9jLWbYf9PnyvyxFg5KOO2jGJ3dt40LAx5k6JPkwSVJj8o0jRM5Nvb9CEMrkzLrZcwZs7EabBkQfKZPMv8UiZFnL0tHnH6MjDNt2nKg9ZoMzSkr7yMqhvqO31z3nlk3jXl/U7fzuBQ/xBj7bUi4LeK4XbeG8VYnaQsdJM3p1u5GLGhdTY2rK84vnNLqAbEWcr6aWtFWkOCpFjSNi/dx17SY21sx7fngc4gkjllI+hVlz3ffxXsnUR9NH2VC6jcdxyP60Zwy95z6M491c6gouj2F10Gj33mTxWsuZ9nyaLNFNO0k0ZS2wOl4tgAHKCWc9lEsjg0CXIfRQddU7li2HfkB1xgNNEfeQ1oIn9XPdn0yl6DvZRTPsdteSNe8cAxOHfFuIZMf8r5G+zP+8WJy5ZWV7Zu4w+aGWS9NYHPPm2fhlPIcbR96N0M7+mnDLIF0+SdYbXGz5ihXewhFvkA27ZPswZRjEswvBIgfj9SXYVkm+ek9zOVKNuu1p+XdiovVn1vSZsRPm9Nt7W7ylCcamdIkWo8o9NZeiQ6RdB11lDJxOH7WC1PI9IoSTvsqpglikO3BbqpAFp104t9e07t92b+o95J431sWhCCf4NznwYPvFUQuL4/8nbeu08Rl3SKUyzHr5Rx0KbiZe7tp+INc5PFr1iuGfdT0GEtvgdnLVcRbr8HnDXPdA9nS5WFJ2zq+OKFjY2c9Hl/zNtpj/hzaKAoIjrpGOpPQ4PqF/8Qjq17nTEp3CEdGO7fXeV6zXmV5zs+ytvV4bv371Pt++lxzH0laXLP3oe9u+Q6nfnc91nVudYR1g3nuKu+eU/N2CFPeSBZF5rFddEsV/+kBEs16PcZFe+68mTTzfZLm1HqNt7QKUaRVwmkfJVNjkrlvoWnURHSFwt58CQ/789YrnzjF0Y6XtPzmj2dSI5KGDpogZzU98yKw2GENZHIGL5PpD8kpiQ/tpBtmTYiXBQjaI25RvbLxEzxg2zfEi6E5dQinFNN7WW2LbpbFToFdFjquXfAwXt74Cf61/j2ufKijZAofh/k8oQ4562P698zmpdzO2iYteAQnffsHdBO0d/YUeDWnonW0ECfBvLxfN50dQFLh8Cz+dia60Z3owSsbPxWOnzUexTkVBbR6c3jNWEJY7/AustDKrLWHb0817YxyEYhWEwKVguStlxqWksfWWAfxOMF8RAmnfRSrB90ghxz6wJxuX+lrD658BU2MvTjmvGqaM+88nYH3lTEEomaWeXA1jwkti5nNSzlTYQ1c1rC0OMywjhzixb/mlE5DtBmPr/mvJTVH+pQkZjUvw5qOza7ps7AIpx7qr4hDJPOVKWvexgqP5/gaE4aw7dvaf6cT5h+Ym3vaWQG44nE8Zl/Jti0UGWco08y03OJTFD4vbPjQMVH2MkaRmNea9PpaZ5p86ql/bWlINiVOp9eX67SLZY2kshERjopD4gdusOqfXyuuqki541omju6jheP18s5jvefWpkifjbWQ7JwZ+69BZ02/CefPvA1RAe/2uYoSTvsoQa7qmxux20C8sn2jxRHKF9vm4l/r6KYzbrD3HfLF4DV+r1jLy++kwr+5qZuwPLt5mY/c9F7XrYOwjPrIHgj8aYRvXvwUpm39JvWbXK/pMVw25x7X9FmIThr8nFUqa9+L8X3tmlK/WvI7lz2Hn3//Z+r9eABtVKEgYe9bm2Pt+HLbPGuYDOwjs6fBrzlVyEKe5YdzrKKN4UWauHBqr45xPYGZTUvRGe8WWNQwmeqaKhGPzwoapaFiAMDoyp1T13jzQxPoubcLmR6npem2aCDy3Uj3dJ0UnuYQiR2X37OUcwElnPZR/CiqYok4Hl31BhZSvGtahBtbK7IOojomzr0Pf1z4mCUM66xOUoOmx0971vswQnvylY2fCK9WGZ0g79lifHHKNV8lsbZzK1N7ZNHK63THDVYtuARvvT41pyyWta93DROs/YFY7Lyhg8yzMVg7Fh44PRDS+LRhNvM+zaGFm5DAGvC91FVl1ts32Ra1Wv7IXtAkLTvZU+Dv71Qd5Se43tLcp8SFNKdFwmnZ6+P7W6fj+kX/xOQlz1rHUKZDJErcxGf46tjw8u0BAINK+qeu8VoZeNV2ktKhpemmOCCeP8wI/+rGz2xhdX7v8X1gAVYJp30UP2a9H9XPxOubP8fv5v+DeJ/ufdYK7U4Jw1TFIYw6hmoOs15GHF4b/ZQ1b+OljZ9wh39781c44ZtJWNG+geohT675pkAcHFGs76rjiwvk7yxyphcvrIGIZ5DzOk1L750ObsBI2BZ13HGKWuRQPhZq3FaSKZrTbE2HdQC3L53qEoL8i7V3XtF3ofVtbmHk58Nm1suZqmhNVt5E6fhziJSGNI7RYvZk1mv7hkva1gIAZjQvEXCI5G2BkWdhz+IcSmCrBwleSzRzvmmmwG55IfYFjDnJvzd8QMiDaf7no60VQjNVwmmfxbtw2hbrZN5naQK9TKut9/gmxMRnOc4/dGvUrPQ3dtazHzbxj1WvAgBe2/S5JQcJS+fEHZ2vZxxxcHwl1uHtVmE/AdIXnbruPcv38LICbId9QHoGeusAk9CDqhc+8uw28BvfQ8YZtjLoiHfhs4Y5Ak+ILghYyY23VgQKl2O04DqGrd1NvX2bTTgNaM9p38atRcv5zkTzUEoHHtHCwvHbt7hURSpSfw8s7mcKx7vAwRYm+S1rjcVMc3ziwqUZLxZTc5qXU+Ji7yUn50sA3T7i6H16IVQJp30Uyzmngu3XzXlNwqY5DdKLqVPb4a6ple0q3MCLU58Sm1AmriGzIkVzyhGG7RnX9DflKJn/1U23CJMyBBhWPfbqhCRXsLcpN5zTY/735w3ptjc57RCJb5hxS/f3Cx6WEg/1OcaD5lt9ecKgcId0fqHU+E218f9m3YF/rnnT0R/zaoxEt1Pkdy8aLH6+sxdtIeBtO4w59paednSZzpceXFIjHJ81bv/aPrdjdUhQTXF5hVtTmdOc7XnZTytSHgnbXFlkv6qfdHMVJZz2UaydmtyKHIfZGQNjFdmLBsj0EGmS6NcU1rXRMwYO2hEZLIpDEWr6sr6KeJm4h2cNifZ3oJWZeRBwy+Oi1jX4vnExMwxrIOM5WNuv0JEps14u64MMnA/HK5zaJ1B0JS47L/NaVkr1bO2WfiGYRimChWjKJ7BgKoPXNn3uHGUDq7yqUdAI0luvzDpkPsLtZ9//GW+ajjLiNwcnj5VEzanZeRIjTrLmlHMco5r18o6Dznw44rKlwTNfEGmHyT2nfBZSbtvbCgElnCqEtUpuWq5YwnxuZ7CaBnvOPZ11KfD6rKBevJAWaUWWOC2eewnvMnHOfZjXsoKRPwmaU79RmJ5n1a2GaDPpESK/nf8gblz8uEU4aY11WJxn8TnDouO37IIcHhK24dPO7OZleG79+4wyoFkv8F+1YxcUW2MdeGPTF2jvNftPTTYkDjN+XOSLn+lIXjTijUeGky9FPpKNiaI1TRGnOgo+MmPU61xkXd9ZJ034+P2Ch/Fx/Sx62pwWOrSy8H/agF1zyvfetHD8i5nuCgovpvIii6l2KzMdusUkWkzQzX+UcNpHsXtUFXuY3U2bNad2s16eFSpW09pq8xLrZYXY88q2nvo/ItTzGxkUhcKWd3ATQlZ2bMSkBY+ys+i4JlZGfgdC675Zemw9nMcdmIklks90xaM4a/pNuGjWHcR07WRishbk6qVZ80t6lT8sfAxT172XOpOUYa9guy5Pc/q3FS/ikdWv46FVrwEwO0SSJ6RlbYXYlKySORUGpPpoX1SUUWf/t3U6875Xs17RndGFqKGRh/eysZr1Wr/dNRTHk6K0x7owr2UlMwyvbwPaAp0vJz69aWsmscSLWa4ZL0fR0OLa1N3AFZeZW5c+wx2WNVcGgLkWpUTht0MlnPZRLN7hJGtO/XrrZbHB5CWW1EEyneL40hO548WsN2xzaEAXVE1hWO8oweyRZwKyrnMr1/N2D3RmzOZFvINaVE9qzhp7ksc11Ju1r4w4eCZrudzdf8rpyCetWfQ+QeYNGbctLixqXQMAWNK2Lnm/t8x59xPz1AG+aiLebkj3WQtpuq5jXedWRxmYUXtTCx+e6ijjeK/7VrwgFJ63PxX31iv4QB/CS9kY46h5wcteX5pj7RkbnKzbR8QTdZtLsvpE40nzYiZvHqjaTg/P057424oX02ECaAhu3nq3dDfawpqedWQn/xuqEk77KLya06aeVsd9twEtrtPNemU2alKHxBLOjKSdDisETC8Y97yYL9rL0k1z6oYMxz88A0JbnO2x2RyXTDMZw4yXVI9YAihPWr7Nej3U7X+sfJUr3NrOLel0mNr7kGsYK/I0p3aMMpd7lAyHAEu9LvqutPAaPmuYg0tm322ZsCgUAKmeSZ4ocuxJ5HaIpBZQpOFl/Lh58ZOOa5u7t0mJ2w6fxQfn/IMSF/msT17LNENzKu6tl7YA5GWOwTOH+uPCx/DltnnCcdt5eu20dLq6bmnadm+9CT2BuJ7ALYufwlubv/Kddq6jhNO+inmljtIYF7Sswi++v8Wxaqu5aAjtmlNxb73eB0yejkVEQ+J4lukQyZvnPHOabntO3SA6iRKMxu/6gbmMXtjwEbVEYx7Ment6NYOk78wqLxnaCze8TCDe3uJlkKGnQztagPb6foqFJpwaNdCoB14sCmj4+Yru59TRV6PNdzQgNTH5oG6Gjxwp8h/SIhl9fAkmRWfdXtW+SXKqRtr5r5Hxiqgg37+o0jWM4RTQHPfitjWOcKKlbmx/scTBEYk5SEO0BSvbNxLDWZ0cie8RZaVtnkfxbsfxuwBuNWd2f2Z2C/m4GVH+s+HD1N92b732r56Aji1d2/B14wKLh2UShWDhoITTPgqPNvOLbXMBAO/XfW97lg2rQ5A5bIe1kOBgSQ5rcarjKYYkMibhokeG2JGzDu5Tg2j6e13nVmpPyWv+bcYwbSFqzRlxcGkS/Arl/h6Xko5hJk4qHf74+cK6nftmTFR4J3U8qfqZHLtNVNhHyaRvatCoB7UrFPbxtDPeLfwMMyyxDVivre7czBWXyHpqNBHDFw1z+R/oY9i/y//tdILwM37DAUlt3InfXufYeiPqFPDVTZ9h4tz7iOfa06oNSbDjrdppB3pms16f55xyly/570yi62y7OdIWksNrxlBC5z9KOO2jWA+SEavYbpNNs0bM22SS75mSULEjpBdvvS9u/IgzVzozb169ktI0t/JWv8Qi8p8sXwxejgXZaginguZDQWpOdcJfQcJ6z9TA7nDKIh6XGzTNt+GlNn3OKd8MuNtlNRgAVxF7P1bAXmbkqYKmAd82LnTNR3eiB8va1gd4rIci25D7ISt/XPiYazw3LJoiNU1++KXTf617D295svToG9j7Up6SNS95ycLQxn1os+rg29PvDGP4dzBDPUpGgubUbJnHO277Neu1HOGSJUEvYZtfOpycEd5RplVSrlG4b6Zg4scUw61BsBu6POHr3a3fOtNmvIvOEcYNnv1+XmI1sHi69aQ59T/I+T9ShU8wsjhE4ow7JfgQnmANZDyCsNf3TpuxenpcGFY6om2ZGJrzRVz3nApqTu9c9pxrmCA1p19sm4ffzHvAZElBS4vvfT7YOANXzvkbvmtaxJ9JRV5B1mFarzbH2gmhrMxsXsqdJqmN+10ASegJNPW0McPMdfH02tdxfgJ+8TSInb92TRvflicn3YkefGCznqNBHoPNC3uMNzW2gQjOTeu7m6njgpcF8ExsASKh2/acOs16E4QFEK03JGthNT9RwmlfRXM366U+6nKfV/snowHZB1TmWZcc78nqzF7Z+CnzWS97Tp9d925q3wkgYQVPwjkXfic6vAdE+xs4SNoDhkMkH9563cqDNkDYaY91ueaBD1Y6OjGEyLFNvF8/7lKm5j2nH9XNxEsbPuaMmRGnj2d56tvitrWYRRAU/DSJOc1y9icp8oOgNeWiWxpYGKPFLUuexi++v5m5V9X74mth4D60imtOeQUhL3XKy5FGpDDd8SieW/e+9SKlMGQs/JsFWB7N54TZd1HLkXuLCsVKJpPY95zqsC7sxnWnqC7zmLZco2/3Nn0Y61EytA6AXPHdHCJZCXig9tQB01ndQR+c2+Kdgew1+6h+Zupvc/cjawVPNBa/qdq/Acn7IGAzC+V+V50a3K9DpCjl2z619h2+rLlwxvQb8djqN33Hw3oT4z0d7YDyEKlYuPdB2dse5azFEDTcvfx5PLH2v+iKc5justL00b5FPTf+d8s3xHSFj98ogFVsBQ15giKNJptZpUyzXmPya5ipz2yia3D7unDqhpdvQBLIZMVtn9fxCbgE4ZQwLtJySxpn7fv13bDMTTn67K5ElNrmuMvNfIRfljSnCd0unNrGU0JZFLK3bdXb9FH8HO/irjlN48VzoUhu7J06l1mjj87Hi7bPO7KEU1FTT7mds9lduhkvDpGowpdLHG6DXFus0+I5z8yLG/1r/Axe2/SZtLhIiHrG/v2Ch51hfXpINFpkwqQ5NehKdPsaUP1opURNnqeseSudrum6aP6zNdlRFAbXzre20XdMiyYGmVgAUcIpG/v44SZwAvz92dR17wrnx+7plsusl7JYaX8Xq7dec1jnOMutHSbE7XWh1O26M22fFmsS0G1mu/a8JzWn1muG5rQQRxjV2yjE95y6TM4sDShgs16H0OHBIZJYevQ4ZK9ieXEukBveevme9yLop416nWkwNacuJqgsjTkvmRrUeBw/8eZkU3cDIX7OfLgM/OlzTtO1soPDcykzTR9lvC3qdOwhknIasVamNKeFC+nLyjbrXd9VZ/lNOmM6E063lHDK5r2t3wk/w/vV5rSsEI7buSDrzaxXg+Z7wZIPYzFT/CgZ2lyJ3xuy+DOycZ5zaoU0v6TNOQthzFG9TR/Fj+ZUZF+jzI3apHw6j7Ng5UVCHhjPyu4QvEw4pDhE8vkavI97cYhklDFJEGUJ85k55zQzPLb6DUYeenPB6a2XGYfPcGmHSCbNaZxugsWXJj9xPYE/L34i9ft/dXyTR9c9xoJNTGlOCxfimJSFiWFUj7kHIqBpVsGDpe1TwmkQFhNGHynfPNO++Ovm8CqZG391t4dwvqrocS7m8YLrCDgwLIa8aE6z5RAJOswjHM+3MMqqED3C9/Xeps9iHoNEOyQ3zakZHemGY++ARdsTUVsmIPy+tukzzGhaIpaoPQ8ZNOvl7Zhl41vIluTtlRi1IZwSyob1bTIxYczUAPGB7YgASx5A1pwGsZLqVqZps16rUwd/8E/4FrWuwbeNcjzlmj+t6ESyEFaxFbnNU2u874t/lLHYZSaMsOc0+ibu7T69gCcf8xjZGuvAlXP/5voM7xBm6QNN/funDbMdYY3j3xzPOdL2Pl5QzXo99L3Z6q113eWcA835nrRj2gphzJEqnHZ0dMiMThEglqNkRPecCmpOjdhDmmbp/dy8fTrjcuL0SMfmhkVTfDVbYzA5sP9oxz3pZr1ZW8HLzPNezsM1Omey4wU6os5w8hW6gMz/VWXVO2NyFDYNM76PKRJ4nPcAd764vOdbaU4LF6JZbxYmhjOavS266rqONzZ/wRW2kM9UzBZBdg3mMW9zF9kpoR2iWS9hvidiPfLltnmcaScxKz/sx+HQoC2U8i5Km/vobAl2cctsOZknezE780YRTgtgyBHqbc477zysX7+eeO/bb7/FSSedJCVTiszi5tiE93oqPqoHXeuTs5uXuWeOES9A0KDxHDQtwbR4l4ohnuPgxcukVo5Zr08BgrN8SauiH9bNwLI2ch8DpAcbkrDJEkDnetizI0ourFYa5ROU6bolLVs9SZ1BS7nuN18ynpcBqY191jCHGj4X8qzIHPk0MbRP3lmjR1836w3GLyrZ0kUGQXpy9Ro3j09i83gRI5gJE5/03eisQmE20PWEpSLw5IJ+lEwedUIUhHqbtrY2nHzyyXjhhRdS17q7uzF58mRceOGFGDNmjPQMKoLBojklmcvqCbxK8SyquVQbc2y6yT22Bn9NhuwEh3/PqQwyuZ/Iy6RWxrFX/gUIPuzHimzsrMdfl/8bv5r3d0bkdLPebOz1AvjPOc0ExiDtMOsVyhrvPh3rN6BNWCwal+wXkW9Ibez2pVOp4ZXmtJAhWXDI09hHE972kvLinNTTB5CIpsx6ZRNszyA+GSB6wc9Q/5VWYaTz/cTa/6K+u5njWYrmVNBTMABs62nB/JZVXM/JRLdpTu21Q4PmeEvaFrtCGHGEhNOXXnoJF154IW699VZMmDABH3zwAU4++WS89dZbuPfee/H3v/89oGwqZGPZc0powKy9mebmsC3awkwngbQHMhFzYBI8Zr18R8l4z4Oh7cvE+VL5aoq6rnMLV7jXN3+e+lvXdTTF3B02pDWnpIWK7HTJ6zq3Jv/IgRFB9CgZEvwHw/PFF7IthPk6SobjPYIwS/dl1pulveOK4DFqxW4VQwOJP+ijp0TqZl/XnHqxY3KP05+lCysFL9Mtb04Y+WnoacFls/+K+5a/yJ32ZXP+6hovfa4ktl3I4PqFj3E9J5OErlvmr6s7NhM+ot0qidwmc2Gh3C9CvU0kEsGvf/1rTJ06Fd999x1+9atfoby8HO+88w5OOOGEoPKoCAS25pR08HLqSVODOXvGXwghrKs/RkMJQZNiUmvGObgGa9abSYFRdE8ujUw7cPHq9EZEuCSlkS1hvjPRja+3LciJASGdB2teGnv8HKPilhYb86Q2E2a9aUsNr0IwSRuWvibcnpTmtOCxns0oD969gqLsVDYYgFif29eF01yE9fUsZ5FySqq854f7WWBc07mF6TndHnN7vMs1TpmaU4Ds/fqA/ntwxeUV+zvcsGiK6zPGwq/j/QtgyBHubRYsWICbbroJpaWlOProo7F48WI88sgj6Opyr0CK3MF6lIxzUs9yfuC659TUMnRdfLIoov1xOEQKeCJoCPIiHou9EvRRMmOqdiWnm4WeTQefOZzxvYl7TrOooXp367cZT/P6hf/EzYufslxLnXNqqzs8nhoN3L5/yHBfT22nVmRaGWRLzvOTbrbMzRXBk1p4lbCfYnbzMsdZmTK2aZC4ZOcTATjbsNpzSifIET+IeYtG+ZuZD85rMuplj81kPTVP9FDPaKXHX6rBKjV4SJ5zak3DPM/U4ByHaIsOubBQ7hehWvDggw/i5z//OQYPHoy33noLjzzyCB544AFMmzYNp5xyCmbNmhVUPhWSMVdp0uSJJXyJVHuLxkFz2syL4XzarkHjid9PHlJmvUHNGkzImtRSc0q5kR0BQOda5TQEWJJW2Z9Zr7/v2RHryvhwMLN5Kb5pXGC5JuKMamX7RuI9txh+OGg8AP7yNi90+TW95nq/VBoy26jSnCrouPlh4OEPCx/D31a8iM54tyneYMYZQwAQaY8hxp7TklCR7zwpxGHXDjl7Tt3z4K2O2q3z/ByrQ6vHvPu/eeZaQXfjieQmOMs1+4KQ/X5acwpbuPxHqEd96qmn8Kc//QmPP/44Bg9OmoX8+Mc/xttvv41Ro0bh3HPPDSSTCvmYO5Rn176LDZ11lvusVVK3yRbttt9hlhSt09V4sCtgRnqZ0JwGvYeSPqhkp2vjMQc2ckbec5rdvX25sFqZ0py6hHtq7TuYOPc+4j239h3unaR6e99MmPX6w+150ZafC/VCERCEsxn9Yu4HgxpljPFL7TkNDpFvF0QPYa6T3AIkUXVK1J16ypOZ7oTVIaKRjhdhl2rFwzuHCviUBx4SjnNOnRaMrTHrcZ1Kc9rLm2++iZ///OeO6wMGDMADDzyAu+++W1rGFAFjqtMrOjbi4tl3WW7bG0XcciYlP1bNaUho+amuuwlvbPoi5U7cmHgPLO5nyldmvfWm0suE5tSDsCUi0NLeIBtmiDpnuulzTnPLrDcDaxVUyAMwuyzf3UI3Q3Y74kmjrNbSMK9e+15w4VGcBlB//cQ4s3mptHwocgujXpgXKzN1FJcfDMFFJK9KOA2SIMx6xQcl0hgse8+pQXfcqjnVfcRL2ppmxMnDGg4njsELpwk4HB5Z7uu4buGjlvuZUJJkC6HeZtiwYcz7P/3pT31lRpE72IXTn35zHeq6m3p/uWhOzXtOTddFm9E1Cx7CI6tfNx0SnoytMlKOQwfsDYAgnAa959RYKc9Ap7C0fZ3wM+QOlJxX6kCQhUU3Xde5hHHj/UiCaDzL5pPZMt+0HNwNuuZ0fssqRBMxNPW0oi3eSY1vdstyZnrGugxtQuDInykzmXGIlESuUa91e4II9tVuReGRiW0eshhaOjDV9zvOOWW8B0s47QvHJYkKTiJ1wmu/yHpKA/Diho/wysZPfOUjGL0p0GXTnOrQPcdLW9jmXWh/bv37rmGCHt9jetyhuzH/dFoJmuuY9cFC2EoSEQnsphnVNA2///3vfWVIkRuECesWX26bh1OHHCHUkZobCemcJvIzyX+3djcCANZ0JFe1zKvURqO0N1i++P2b9ebTZIRKjpmE8AinrKNkNnTVOa5lCt66HQTmdLd00717XrvgIfxk0IFIgO9gcxq0fS40RJyuuMfFEyiAL2GJsgDavkIKZk/0EiM1Ib+u/WHkuehKJPe1CmlOmbqM/J8MyybbAoKmaXhy7TsAgIfH/s5zPIFpTm17TnVd9zyvopa1xG8Q9Lworjv3nLrVoRClTRaCWa+QcPruu+86rrW0tKCtrQ1VVVWorq5WwmmBQPLW2xVPrnR5Nuv12KEZAqHRUDVTXDEPe079YGjsSJORXJiyEgcSSsZyaccpr1mvESTb+0vtiIlrskmn++DKV/DTwYdQB7UP6qZjv/6jfKWWNuulvS+9HJzDrxiZ2HPqRi60c0VukFowlWjyaq7jQWjdty+tSS34ytpzqjxS+8OrDMXrEIn7pAQPGfHao9v3nPo5A9ur5vSzhjmojpT7SkMWCSQIHozJfxvk0hxONkLC6UcffUS8PmfOHPzpT3/CLbfcIiVTigzgUntJA1Fn72qrW09qNes1m8N568gMATT1rKal9szYzXq59i0K5yBNylsvoVvgjXdV+yYfObByZO04fNYwJ50HoT2nuaY5Tae7LdqCgaX9nGF68xbPwe43F8rNIMicGKvbvKZ85nCZ0CakjySQtwrvd5HNj1ZAkftIPS6p998vGubi04bZ0uJ986A70RHvQlWkPDV+2tsw+ygZurfeArAilI65vR9eMxZfbJtLDRvE2GE5SsaXPyTCVQnV3a459RMt7zJpTyKGolBS7Inrcdy+dCrxuX37jeRPRBLRRAxXz39AKFEttXfcfif/G6SU5b5x48bh4osvxq233iojOkWWuGz2X/HY6jfxyKrX8fiatx33eTWnOuWH1wE8LZwmCUFLmTPYNafB7zn1f5TMl9vmScnL6MqdURyyri/lrzmHblnFv3T2X8mhess/1zSnQGYnaOZ6bv7mu5QPcX/WZx1Jt2NaPNa2IbNOZka4ZV/z8j5Ks1SgBOCt16hfL2/8VFqcAFAciqB/USUAs2m+wGIm4x3zd9zJDPv7tFbxQtpXB/9CIunolc3d27Cpu8FyzTyX8/rlDS1hXXcTehKx3j2n/hYUD68dY7uefp/HVr+Bk779Q+pkCtbpACMqhjquBd2HO60A3ccdmsVGISwWCWlOWfTv3x+rVq2SFZ0iC6zp3ML0Wqan/hXYcyrBrDctnJpc7KdWfsU1p35WlViaU963a4g2e07fkp6mOVK1v9nGrnq0x7rIz9M0p1no2XRYHSLRHPYYOevRY8T72SK55zRz5WZOyzyoDSmpTYWgPuszmylnKh4iWt+5FSs7yOersghrIeKeHBLBeOslLwaIxKAoXMx96fqurVLi7IiT+20Z0MZP5jOMezp0dMS7UB4u9ZmzwiRTVhO0s6tJgg8JUpf+zFrndj4Zb6NDx8auelw0607sVjE0ZV3ipX815oY7lA60XU/z2qbPAQBfbJuHnw89hjl+uVnPZAq3NGmLTIWwWCSkOe3s7HT819LSglmzZuGBBx7AbrvtFlQ+FZLxU3ldNacWrU4aftMSHYta16R+p/ec9sZjmgp48dbr75zT3j2nhJfhjbVelnBKEC8t+5V6OnDRrDupR1nQvke2tDw8wo7xfg+ufCXo7AROV7zb87PmkjK3AZa33iT+pxUpUyJqCOtCg7k+Pbz6dU9pju+3u0uaptQDrr5eFm/6gjfTvkh6z2m6XX3buAjfNy3xHSvJO6cbuxE0PiQMyyORvt5tcfkvi59GNJFbi4bZZER5+lu4ng3vccydsuZtSz3Z1tNKDGffy0iD5FQwqCPadABL2pInEixv3+BrXmb0ryWhIsv1ul6nmmaMWkx6r5EVyRNJPm2YjYdWvmqdy2ajD3dJv5C3iggJp/vuuy/Gjx9v+e+ggw7CL3/5S9TX1+PPf/5zUPlU5AS9jUOgkVo1pyGuDujdrd/it/MfTP02zjlN7yVLTwbsHUwmPKoB/vYYyRNOnfkwd2ANPex06O+QjRVCvkEw2x4QqQgOEi9v/ASnfneD5+TM5WAWTo0VZFY78NtG0qu11u9lrk+WRSMJ3yzlhCkjh6UHq3lVFA5pb73WqdR3jYu8x9lbVbycK8pj1g+kx8+lbfbjyuj9GG0ifPCAvQAkj6C6a9lzTHPJfEZUENilgu9bAP56nM/q0z4nSm3CmcG2nhauuNoJ2nqydt1UFh77d/vxcTro3mdd4+otQbvmfur6/5mOQExCsvzZu2oXAMBRA/cBkJyjvbXlK6zqSPsHEe3DDxqwp1B4EuYUSQtJNC/hhTDeCJn13n777Y4GWlJSgsGDB2Ps2LEoKiI3DEVh4bXaexXn7HtONYRSsTkcIvFMXn2025wy6wXbrNf7/g3vefIDzcRsbUfa1Dw4ra7/eEUGBNKebq9pmVfOM6mhswuK1jyRNadeSZ2tKmC2L9VJDcUahP95aVlR5CD2eVHCg9bTwKjjLAdE1Hxw1nkjnMhCKS3mUZU74updz8Q1Cx7Cl9vm4cGVr+DqXc8saK1OLtGRSFvgFFOE09sojn94IC02yPi09q08SbNeb/126vx5TcOde16GPyx8LHVvZcdGDCrpT3jGKhgDTuHYrHEWFfi8LC7ZsZxhTtKcUs4JKIThRkg4Pf3004PKh6KAsOzPsp1z6oVYbydiPUomicOsl0f75qPpGnsdSQMvT6zRRA9aZB0PoDkHCZE9vjnlrVfXEafM4P++4uV0MIl5M3tQ9SvUacjsgEATBNMBgstNyNWs15onUU1KsRZB1LGn2LCUcH+vhKmfkMXz6z8w/fK+J0pRmNg1GLS+jAfjSS+TW16BUKYDJw0aBhRX4fbRl+B38x/Cu1u/RXWkAhftfIK0NAodPxZB5nFc5oKcAanPleEQSYdzL7/nBXWT6mKffiNx4Y7H4+l105L3bGVLsrpLWUDYF5kIwmFJqIjoadiOHOHU/LdzDKG145y1MBNA3uFcioLHqPDvbv2W/xmzsKRpnubMi9vW4P2t001mvendlg6HSAE3ymhvp+T10HVZJr2AsedU3AwrfV9aVnzDb9YrM02d+Lfn+CQc48OfVvpvi5ZSZ+859XqckyUOiqBofifrqrRYeqR6S2vvmeKThlmpv71ogpW33sLG7jXT3Cb3IR1LwUEkQM2pV/NJYpq97XX70lrcvuclqAyX4cWNH+HljZ9ISyPfCbL1m794UPtDnWnKUJ1aF6RlCKcpYU2z3jObr2sIYV3nVvxr3f9S14z79nZMGm/s+1pphCHefh3oTuHYjJZqx4U3vrhqTg8++GAh84yvv/7aV4YUuYvhTnxuywrLdfsZftbVHrMmzzv3rngBU8ff2BtPWndqn/QFrfUzzDxI78LzfrJMeoGkgGxP09yBuQvQOaQ5BV24Kw0Vp8ME5pzB3zvPal6GY7c7kDt8RAuhx5fpH1kzmYlvx+PpMw6zqbHYNyNNnI2ampk9p/IpgIVsBYHUgqmtL/1f3Xf43W4/A2Dtv3hjBbya9XKGo8zpWMIBrQqbx5nh5UPwl9EX448LH8Pja95GdaQcPxHoF3MZP/MXN021rD4riMV5N0/0XvOegI77V76UjkcH4HHxNG1Vlyxnc51M6Do2daWPwtG05LGJ5rmjsXXMru2cvPRZHFk7DlfscmoqfGmoGC1wt36LhPwvAK03Oagi7jmlaU5zcAwUxVU4Peecc9TegQLES9X9vmkJZjcvc1yP6XEUaaaqZPEwlr7s1U24gbEqqCGt9XPsOeWI308eoimzXm8dT32UzzEBF4SjZLZ0bzPd9mbWmw3Povb9J2ZKw0WmcN45b9hPMHV9erXUuojinzuXPccdNqSFAF/CaRrzMQFpb72syYQ/vmxIntP7z9Vv4oeD9iPG78esl6U5jXOZ7fvDrX94Z8s30uNU5CdGV8kSPkS/PU+cNEhtZ+eywbhrr8st17xa/vCkuWfVcPxp9wtw85Kn8PcVL6EyUo5Da/aWll4+8Ztdz8Lqjs0YUFSVkfSCsCwJ6pi0rTZPujp0z+bmxrhn1GuLFQ8Sljq6LdpCnSfaF0Ybe1rxxuYvcMUup6YaZkmYb7EpJEFz+ubmL1N/kxZm+7RDpF/96leZyIciT5hBcJH/3Pr3ceFOxxPDyzjnNBWXno6HZuYXtK19WnPq0azX5jnOD2Yh3aDR5ErebQKSa0tOtAHDbN7m5/s64yfvjc4EES2MbrjvW6GRsJj7mJ1KGN56Gfh8V2M1tznWTg3jxyESca+O4RApA5rTh1e9bjKXkkMh7AFS0GHvLxMUTinaWB5IzwwvH4L+NuGIrjll5ItSh0nP7D9gD1y72y9w17LnccfSf2Hy6AkY16/vHTV43OCDAADfNi5khpPVOwRj1svecyovFR9mvYbmtLdem+t3Qtct7fMlhrl5mCEcG+MYt1mvhD2n1vRJjql6/T/oulXYL4DhxrX0Zs6ciY4OSQ5cFAXJZw1zLL9pk0PNt9sY555TYxJ8ZO04ALyaU++k9px6XOFrkKg5ddtzyvM8iewcNk3XsFmdL7jn7SeDDsCFOzoXS1gavEy/s9+ByzxQWZw2uLyHjEnFUbX7AEhOeslpWMu6U/A8V9KiStoroft3aoq2WZ4RpbGnFZOXPiP0TP+iSuZ9tee0MDHqY1moRHrcXmov6RlSm6HuOfU0rpGfOXrgvrhyl9PQo8dwy5KnsKxtvYe4+wi+Fq+sgphsSDHK8dZr+y1h4ZmsOdUde0lpsMIZuSvhNNOXLpy6aE6vW/Bo6u9C0Jy6lt4555yD5cuXp34nEgmcc845WL16dZD5UuQopAlfEWNvjEzNqdEBmTWGxiTdGGx5Orj2WKfnPEQZe055kOkQyS0friVBeThb3nppJknW/czueetfVEnUDNg7d/PPTL+xl/1kZuiaU934g/ic3vs/PxzdexbcuOoRlDSswqnoPmvSBMH4mjwmwquNs+kyZBoQTfSgqaeNGaYQJgsKOuWRUuo9r3NuWZpTEjK99bI4cftDcd6Ox6Ij3o0bF03Bus6tGUk3CILQFhpI23MaQD+Tqb5LB1s4ZD5r15yaF7R1fo0sy1GYYZWULc0p6TuYt5cZPmGSYfMf19JznGWn65gxYwba2+kmXYrcx2uHQ3quKBSxhSH/nfQU6gOCWa8xWTU6Ap732mzalymKsb/P60Al1SESYc+pGc+Diu0xXdfx2Oo3vcUlgMgxIV6wO1OyHnmUOS+wus3MyAsJi4depxaVVkoyVtZpWkxzTTSfvcrjdt8MuWz4NafVRRVC6fnltU2fu4ZRZr2FSvK7locZwqlHs14vkI84k2OW6TVfZw/9EU7Z/nA0x9pxw8J/ok7i1pZMkqsLTBZvvRkbx8QWjEnYn/Pnj8RqCm9efEkgwb0Yw947noTXwZl8zSnBrDc1LlrJ1boqgjpKRuEb+8HPtHNO/aoyrEfJJEl7WQsT0pOP0UF4d4gkTzh1Nep1KQpes97VHZvx2qbPxDIniE5I14B0ptrgkgHCaTg0p5S/gyYBCcIpxazXqP+0svSvNzV766WXp6gTJDMks15j0sCKNyQgwMpks8kTJA1l1luYGF/V4hDQd5xyTDxZUDVUQXh71TRcNvxk/GDgeGyNNuGGRf9ES0/fUm64zUtklXqmFsFk6JAd/kLgfc+pecuXMx2d2wEYa1w22mVJOFt7TglmvQXsrFYJpwrf8Jv1ytlXYD5KxpislvV6UAt6Emjf2yD0rJ7Ath6J3nrB9sjrNsmhPWl/qqfXQ3G2MOfT0HCyNYBk74KsumEOz6rPctA9nWFo5pwZt6b+NpcFz8RW1jmnrCmVL+GUaNabdvxA45Bej6CpIBmSB/m82SvhtJCROUlM1V8PcZLGJVKToXv5ZORLODem9LQQrhnxcxzYfzTWdm7FnxY/LrwXvZCRpS3n8WYuA6vZrLc47GOErntvR8YYaNTrkGVBW+dWJrDNenuFU27Nqdx5BGnso43FhWCpw7Xc995772HevOTxAcaZlu+++y5mz55tCadpGs4++2zpmVQEgbzKazfrpaUis7nYu7CycElvGhnSnHp4tqmnzdek3Y7bKqN7SfBpToPca0NL04pTc8oOT77nNIsha/gjWsTXGaRu2L0H+o8v/V6tseCd1xkDP0vY92NexqpvrDTtA3WmNKg8C1XZOJ5JETy6bVJMDOOxHnpyTcT5EG1BJRhvr0kioTCu3/08XL/on1jYuhq3LnkGN+9xEYoZ84dcIhPjoF8y1c/IWIv5z4YPLb/9eKl2PGvz1surTGA7RDKE09zx1mvk135EYSGMNly9whNPPOG4NmXKFMc1JZz2TewmTZZVG4mdpfmgZfvgWm4Ip0Gb9TLMR9yQ7gxJs5pUV0XK0RrrSC0guWpOaQ6RsnLOKR1zPo138jIIO48dSv9tXjQI+lxnHbrUVVXzOacbuuqR0BPBCmYm9/WWy6a//azg85hWMbJlWsDIFO71pRD2APVlYok4OhPd6IpH0RnvTv6X6MY3xhEhhD5jQ2cdhpYNEh4Cl7dvwMaueo85JfvrtUObrLP6VVodFtGAloaL8Zc9LsbvFzyMmc1L8dflz+MPI8+VPpHPNZhLqYQyLwkV4aKdfopHVr8umE7+9jM6kkKkl/E3pTnVnJrTBBLc9Ytnzymv5lQ2pLZp5PabxgW2O/lbDwxchdPFixdnIh+KPMa+59SMtbP012CMuEKac7elkYfAzXp1wzuweAdqOEMqC5WgM+HfpElDCNWR8tRvw1TU2LvhJmTS95xmCUrCFrfwve/kZYWfVje64z241XR0iMwD6on5kKw5bYtbvU+7aud9fuD03k46cR+aZ5ZZL0sjazfJytREjc+oN/8nC/lCXI+js1eI7EqYhMl4NzoTUXTFu9ER70aX43cUnYnu3me7Uvc641FPWxumrvsf/rD7OcLPGccYjaneVfhZ0pYEUs2jaYhY5zzSEHVAVhkpw+TRl+Da+Q/h84a5qIq8il/tckbgi4LZhd7+n9/wAZa2rbNc271yRxy33UFcwmm+OkQiR6t5Gn/tmlOvZcK0gOide5SG+YRTNw/uopCPhOKzfstH8sOeQiEdme7teb316rq/RsM6liaSMYdI/jWng0r6Ya0El/oagKpIemKQ9liM3n+9Caf2gVTmpKEyXOYQpkhpWtInhGN/Z7JbaKcDn+TvtZ1bLNeDdjJwwczbKGXgjVabcxEdOrN9dyWivtIjOUTSdR0Npv3Ush0ipY6OYryYyFmoMuFpH4WwBygI4noCXfEouhImAbFXK9nZKxh2mQVGy++0wNkZ70o9G5W4R740VIzKSBlKQ8UoD5egNFyCsnAxSkMlKA+X4H9106nPGo5TvNZHL22oX1EFrtvtbNy1/HlmOFqNLQ+X0R8ivMYhA/bCTwcfzJ/BXmqLq3H7npfid/P/gXe2fIPqSAUu3Ml5NnVu4X1cYDnMmrruPce1MEKeTGczJZwGNUJqcB9/Bxb3c1ihpTWnyTmQeY8pb+vrF6lg7k0VNeuVbQZOPOeUkt9CGG6UcKrwzY5l21HvyZwoGg0uadZrvWdMEJtjcler7BgaTy8dj9GhDizuL0U4nd28HD/e7oDU77Q2Tjf9vzisI0L8csnwk3BE7VhcNOtOx8oiqa7oum7ReBp/szXklD2nDm0rOVzQe4uaY3I9VXbYzOrczHqXta/3lV56Z2e6POe0LLeE8bP3iSzsGftc6ZMvzW7XmyF46ksheOtN6IleTaRJ29grKKZ/R1NCpV37aAicXaa/RY8ZYlESKkJ5pBS1oRKUhotRFi5BWahXmAyXoCxUjLJwKcqMe73XDIGzLFxq+V0aKnY9d5ElnFYwjpcJispIOUZUDLVcI/ar1BjE6ulJ2x/meYvCkNJa3Db6Ekxa8Aj+s+FDVEXKccYOR3mKK9fZt/9IHF27Lw6t2Qu3L/uXa/hkveMdh9Lhltg0sEFh7fPk9W1J6xfx8ffljZ9Yflti0Pl81B9RO5aZstGHl3IKp7IhLVbRFkaV5lShIEJuGH6PsTAfJWPufkLJnQoAgA/qZvhIgR8vAkyDSTiVQWei22LWa5g16jqSykOvZr06XzgvaEieCWiPU9fJdeM33z2EL7bOc+TNywox7Rl7yl4PAs8WdsEnbvqAR9Xug08bZktNj3S22kbbcSp2s15jP7RI/NZrSVh12n6UTCa0lWWhEr72keG5gq7r6E5EXc1V01pKd4HTr8bdTLEWQVm4BAOKqkyCY6/A2KuZTAmMlt+GwJkUQMvDJSjtFUZzbd+iYVGUyYliWAtzafJpmjz2kh9hz5tPK5NdK3bALXtchOsX/RNT1ryF6ki5ZcG1UAhr4ZSJN59w6m3UfWXTpx6e8sbTa6dhbssKHDJgL6nxumlOmWOAZpj1mvec6lyLpRpcDufrjYO1jc2MbOdiIma9hUBWhdPp06fjiSeewPz581FXV4dHH30UP/jBD5jPTJs2Dffffz82bNiA4cOH4/e//z2OPPLI1H1d1/HAAw/gpZdeQktLC8aPH49bbrkFO++8cypMU1MTbr31Vnz88ccIh8P4yU9+ghtuuAHl5emJ/uLFi/GXv/wF8+bNQ01NDc477zxMmDBBfiFkCakaTVtcVlNeeems69U22ruQsMeO3A9eTD8Nj2qDSvpJy0eVSTg1JgoLWldhVccmjK0ewXyW6hAp0MmU2D7XL7bMs4VLoC3WifZ4l3DKtHqa7yaXpPPijLfbqXww4H4MpxBG3TeXW3ssbaas67pjlbemqIpfOCVUzNSeU0bdTOXLyAdXav7h6QqYxxjpOroTPURzVfv+yPT+ScO8lRQ2iq5EVFo7LtIiKAsXo7qowqp9DJkERJMW0vw7LXCWoDT1u1j6MQtZJ0f6kBAIe/YIWSsJF2H3ih2xtH2dLagzcDQRw02Ln0Bdd6Pjnoy+c6/qXXDD7ufjliVP4W8rXkJlpByH1MgVePKNEELcc4zsiCdaytvuiPId5MVK8Cdih72hR0vFY32GQzh1WdxK9Pry4BVOZZ7MAJDbGu9Z9flIVoXTjo4OjBo1Cqeffjp+9atfuYafNWsWrrnmGvzud7/DD37wA7z99tuYOHEi3njjDYwYkZyIT5kyBVOnTsWdd96JYcOG4f7778eECRPw3//+F8XFyY3M1157Lerq6vDUU0+hp6cH119/PW6++WbcfffdAIC2tjZcfPHFOOSQQ3DLLbdg6dKluP7669G/f3+ceeaZwRVIvsJoB06BwHujuaN3xTGpNzVpToVMYOTgyay3uwlAcs+ELCojzj1C1y18FAAwaTc3z9mZ79hYpcZ3RifwV5f9VLRUfjBwPM4e+mNcNPtOS3r2dHNNA+OGXfBJmvUmCWJllSQoujllqi3uhzW2vb00WHtOWZNhzbAcyKB4yntw/GOr34AGzbqX0iRUyjL7DWshlIVKMKi4X9pcNaVptP42zF3LQ6R7ScGzNFTMPCpM4Y7n7RUeBD/S5J7Wr+5RtbNDOCUJ2d82LsDs5mXCeRHhwAGjce2IX+Cu5c/j9qVTcdvoSzC2H3txNdNk0l+TyJwmG46kzEnyCmtc8ZIWVwQwnrU7UeRpSRrYZanrYsKpzHkeQPaAT1vAyH/RNMvC6VFHHYWjjuLfY/DMM8/gyCOPTGkwr776anz55Zd47rnncNNNN0HXdTz77LOYOHEifvSjHwEA7r77bhx66KH46KOPcNxxx2HFihX4/PPP8corr2DvvZOHtt9444247LLLMGnSJAwcOBBvvvkmenp6cMcdd6CoqAgjR47EokWL8PTTT/d54ZRLgDA7ShF8lgd7BxLKgnGDlwGhIdqC8nBp6kxWGfSLVAIAdiob7DCldHO6w+cOSbJZL7Xc+OqGruuY0bTULZTjyn/2vxn9i5JlNbxse6zu3CyYcg5jm1AmkEgfuxTAxIV08Hd7zKrJtg+kNcVV3PGzFgd4NKeZ/KK8wun0JqfX+xBCKA+XoKa4OmWemhIYTb+d+yOd+yXLQ6UoDStBMmuw2lkGtaoiR3GQQpFymqnc/2DQeLTEOvDI6tdx85KncPdeV2A32/7ZvoJXs95MEVTu3AREgD2PNLSf1h2xCegcWkw3na2O5HfhdYh09MB98dz697nC8iCkOc0RSw4/CI9kixcvxqOPPor58+dj8+bNeOGFF7DXXnvhb3/7G8aPHy8kbIoye/ZsXHzxxZZrhx9+OD755BMAwPr161FXV4fDDjssdb+qqgrjxo3D7Nmzcdxxx2HWrFno379/SjAFgEMPPRSapmHu3Lk45phjMHv2bBx00EEoKiqypDNlyhS0tbWhsrJSOO+hUPa6GiNtSx48ZofYcWjWuC1zS1uSMkohpGkIh0KW35kuX9IEWmPkoz3Whc5EN3YuGyzVG2xxJII3Dr4dRVoEl876qy0/7Gdp+dBs31Nm2Rrfyh6jRhiMSenqmu5ahzRCRaspMQlHWjrNUEgDNGtHLvs82qDRbfmHlm6nQXgeNtqeDj31jdpNCyGaZnWWBCQ1p9zxU9oWQHhXE+Z3TX5X7iR94N73/N/OJ2Bc9QjLnsqycCmKOPcHKnIf4rDY27/olE98SM1e+Hqb/XxCcwTi+QiHQs76qJH7UuLe+t5g5vCREMOShBK3V04begRa4x3417r/4cZFU/C3MVdhaNkgafH7QbSt+imXsBayzHFYsOYdQWEuC5nO3jRN82W5FA4ly8JSdrwTT43ubyIU0noXItNeuO33zQws7ofisNyFQtLYR6sjWii7MocMhErv008/xcSJE7Hvvvvi1FNPxT/+8Y/UvaKiIvzrX/8KVDitr69HbW2t5VptbS3q6uoAIPXvwIEDqWFIcUQiEfTr1w/19fWpMDvttJMljBFnfX29sHAaiYRQWysu0MpmwID0sSPFRd4aTlmZ84ynsvIi1NZWYury9/Hams9x0e5pl/BVlWktYVFJBOXl/g8wLikusuQjEgqjqjKznhH79XOa05aVF1O/c3Nrcr/p9pU1qK4uJ4bxQjK9ZJrhiLWjcivrkhLyCmBVVanlPZoEz7FjUVWZjFuzdZwVlSVos3X65vpqUFwcSQ4gjHM0y8pKUBaxxmV+n0g4ud9tQE0FqorKUA3G8Ql5QEmZ9V379S9DeVvy21eWy28X/fsl629RcThVrqEis2AYQlmFte7tNGAQsIEvflLfVNpbVysq6HW6rDR5L1KUzFe1noHvqukoL2NbQhy7y/4YWd03NUB9hYoKZx0oK0uOi0VF5P21e9buxBROQ2HxyWV1VRlq+1vHoOLiCHFcKt/k7P+NMcPc91ZH6eNVdXWZ9LnNb2pORzQcxYurP8H1i6bgycN/j+3KBkhNwwtlW8XMV/2US1lJMQYO5LM2qawsyfj8srQ03UeXlMoTwtZ1bkWly1yOJXRVVyXrY1VHOo6ysmJUVrmPg6WlRSivIo8vtbWVyUV7LYTtaqqp9w05vSgcQQ1h/uIH+/wOAPpR5pJVVfLbZaYRqlX33XcfTjvtNEyePBmxWMwinI4ePRr/+c9/pGfQDtFZhu2aYzO0rluukeJwC+PHTC4WS6ClRd65hqKEQhoGDKhAY2M7Eonke0R7vJ0F19Xp9NjY3hFFQ0Mb/r7wZQDAB2tnpu61tKbN/bq7e9De4d/jYzQaQ1fIfASBhva2bmr4IGhtcabX2VsOJJY3bQIA9NMq0dYq7syHhjm9RNy6stbWzi6TaJRcB5pbOtEQTsfb3MHnyIaHtrZuNDS0wW5l09rWhY5ua91obHQeudLV7V5/OjujSNjmg9ZySibeuK0N0UgczS3y3i8bdHRYv3NDYxvae691EtqrX1pakvW3q7snVa7d0XR7TCQSaG61lmlpD7+QnIgRnLJ0J+tqSyu9HzXCRHtiaGhoy8h31XUdXZ3s41CamzrQIPlAdkVu0U7oazs7k+2jh9LPdrrUm54YfQGORltbN1phHV+6Te3Ucr3LmS+j3zDPFVhja0tLh2WskMVFO/wUdW3N+Lh+Fi7/8u+4d+8rUV0kb1HXC27t3A5tLsBDTzTO/Xx775iaScx1p7NL7tyro509ZsUTdBPdtrZuNITb0G6Ko72jGy26+1jQ1dWDphbyMW8NDW2pdDtanPWgoaHNYr2fSOhobpI75zePsQa0uWRQ7VIG1dVl1AU7M0LC6cqVK3HdddcBcApplZWVaG4O1hxu4MCBKe2mQUNDQ0qrOWhQ0vyjrq4ONTU1qTDbtm1LmfGS4ojFYmhpaUlpVGnpAHBoXXkxOvpskkjoqXx4tUknPaYnEpb3szRSkxSi63Js4e0GoCFomXeWSCoHXad+57quZNuoLeondROPOT37solrWVNuJ2zvYX+nEwcfire3fCWSTRMasYz0hNPdOzEcR9npuu54d0v97P033tseWINdPhC3lVMsnt5zGsiGMSNqUz2xt/9YwjqxHlDEv+eUZCam99pGxhkVIHXETW++MtLnctbHXOj/FcGhE/uq3npIO1rNrXv24hBJB0KwTvx08Pel5vZs/K3R7JJt4eSi4Xcjfo7WWAe+b1qCGxc+jjv3vBSlEv01iCL6OWjlMmWfSbhk9t3MZ7XecVKD5uqrI6Fnfn5pLgv7+OM/cre0mR44k2Vhzp+eYI4b5nhpc4FEQk/5FyAdw2Qv/xA0ICHXrJb03rTXytj4FyBCxt21tbVYt458yO/y5cuxww7yXEqT2GefffDll19arn311VfYZ599AADDhg3DoEGD8NVX6YlzW1sb5syZkwqz7777oqmpCQsWpM1pvvnmG+i6jrFjx6bS+e6779DT02NJZ+TIkZ72m/Y1zOsW8nz1muK3bV1nOYEYUFSFq3Y5XUKqtjyQNxlRw9enzjitRnCb4fi8NKZDU/Lh0pFP2PmnQrmypklJEsDqjs2Uu2m4zw7jEGIae1rdguYF9jJJWKbDfHVtn+rduNMjeeu11zXnUTJOUyga81pWOtPsfQ32+baZ32Ojg8c5SH7v/VF4w61euNUKL6OlBg0RxzE95HhI+9FJaWbLe3lRKIIbdz8foyt3xuK2NfjLkmfQk/Bm8ZVLbFfsbqIcIjj2oYbNSv9C7/v94sdPAslbL2mxmgbrPNREr7fewSUDMLpyZ/e8SPYnQPLWW8hHyQj1OieccAIeeOABfP/996lrmqZh1apVmDJlCk466SShxNvb27Fo0SIsWrQIQNKh0aJFi1L7QydNmoR77703Ff7888/HZ599hieffBIrVqzAgw8+iPnz5+Occ85J5eX888/Hww8/jA8//BBLlizBpEmTsP322+OYY44BAIwYMQJHHHEEbrzxRsydOxczZszArbfeihNPPDGlgT3ppJMQiURwww03YNmyZXjnnXfw7LPP4oILLhB6v74CqxlkwmsYy+16ebgUe1YNl58mKT3Guzb0Cqe1xf0yJJryCF3knNhX+mV+wdQ5ZLbrK9o34Mtt85wP2OCrTxozz9t6kvt/jdXrfO/IHVpiXU+9E+8A+adRF3Knl3JORPHKDViF04gW9m2Sx3XOaW+Y75uW4NLZd6cWH4LGrxCiyH/IXm7Z1gvuXknF0TTN4bGZ1mVqhOkfKSjNSUwyfLB9Z2m4BH/Z42IML9seM5uX4p7l/5F+fiQvmRwnQqlv4957ZKN/MffD7AVDcUa4eGhmeuvtLTe7w6bl7XwOD2jv8p/1H6biDWth3LHnpcx4NE2TLpyKzKXze0aTREg4/c1vfoO9994b5513Ho4++mgAwMSJE3HSSSdh1KhRuOyyy4QSnz9/Pk499VSceuqpAIDJkyfj1FNPTe1d3bRpU0pQBYDx48fj3nvvxQsvvIBTTjkF7733Hh566KHUGacAcMkll+Dcc8/FTTfdhDPPPBMdHR2YMmVK6oxTALjnnnuw66674oILLsCll16K/fbbD7fcckvqflVVFZ544gmsX78ep59+Ou68805ceeWVOOuss4TeL5eRKTOyOguLWa+k9EK2s9yy4XZdNMWU5rSkP3VScuLgQ6Tmye4xlRfn97T/9l7atCcXta7mel4H0J1w3/vDqpNNtv1/eS+ckuwTei/x1tOKCP+eUEMINKdqr2vmCeTgkgGmyZY3jLdgnnNqaldrO7fi5Y2f+EqTDz0Qj8iKwsFr/+JlYTcEDRFOTSep2pIm5yzNXCZ6zqqicty25yXYvqQGnzbMxsOrXsvrozJ4uotwbyCesNkoCcvWLck5GFExFPftfZWnZ42+2FxsbbFO/HvDB1zP09rq0+umIQHzSQFuC5IacfHHD/ZyHldNPwdYB7+2OFcR2nNaXFyMxx57DF9//TW+/vprNDY2ol+/fjjkkEMsx7fwctBBB2HJkiXU+1OnTnVcO/7443H88ccTQifRNA1XX301rr76amqY/v37WzSyJPbYYw88//zzzDAKMuYJcdxm/iHLsNc8ITQORyYTTAMlDhqcZr113Y3EMCcMPgRvb/maPw8+RfIt3Q1c4aT2cZQy4j37NcohmIp+c6fo7b7PJ5ewmyKZBUPZyzYHDRid3tuJBOJ6HH9e/CS+b0r345u6G9ASSzqWOLxmLH4+9BhiPs4Z9mNs6W7EB3XfO+7RYH0X+yS6My7fGZQdHrPe3D6xUCGL83c8Ds+ue9dx3WtP4smsVws5NJ20eEj1kqSVZNXfTPWTtcX9cPvoS3HNgofw3y1fo1+kAufvdFxG0jaQNw669wdps173sNkYq8yLkUEIQSMrhjHSppO2zEq3gdYYv2M8thZYT8XrtiCpcYQRxT7Ou9WNPy76JwYUVeG6kWdLzUem8OQD+pBDDsEhh/jT8iiyi/d2Q/Z0TEO2yQcpBz16nCmakhrxDwbui4/rZ/nIA2FVzMWsN6KFUR2pAGtwKg+XoCPO5/3OsRfI7mHa5XmaeZT9e9oHvyAm27zDWw/jCBnPaTs6/fwyi7GvqCb0ROqbyfxSh9bsjd/v9kts6d7Wm46ORa1rLYKpwX82JM2g9u0/EiMrhxEXFY4ZOB7vmwRTY1FgYHE/wlmzWipNGnaLhO5E8MIpYC3jB8ZcjV/Puz8j6Spyi53KBguFd+tHvfRBIvsPycKps3/NlYW6HcoG4rbRl+D3Cx7G8xs+QHVRBU4dckS2syWMyD5SnrDZ+D4N0ZbU37I1p26w5pskzamI8Mx6l4SuI5w6xsZFONU06XuBRSzhdF3H3OblqCnm9/WQawjpnY855hj89a9/xcKFC4PKjyJDyDXrtWIe9CzCqS4nYbtZb08ixpS2ybf8dRwiq2I9iRiaetpQW1yNkEbvspLvxB+vXTh17jl1cYhEeQe3L+RnQTDVtdsi4V3E0LnCaYL7M2zCaZ6ZadrLZE7LckxvWgyAvV9MlAP6j0ZZuMQ2qWWXc5ixd8quod6+JOlhnfTtUg6RGAO0U3Ma/PFSMT2OZtPK/NDSgY4w+VafFN6wf+W0hYHHMc+Lt16BukYaw2KCwmmmTQd3rdgBt+xxEYq1CB5d/QY+rJuR0fRlwLO4m+63OTSnWTDfnNm8NPV3MAqIzM3PDJLTU0Zdh869aLAt2iJ17AUIC7OMd9SRXwvsJIRK79hjj8W0adNwxhln4Nhjj8X999+PpUuXuj+oKCDEqjzLo6dXvtq2wNI59OgxuuZUT+pO7fhd1RLpPI1VxtrifslnKZ2KaH8atnllFO3QM20KzUqTt26wNGfW+Pixhw3K++Goyh0Diddedo+tfhMLe/fwyhSMjAHfGHQTlLZlJszyOimQNfMxMfT8WYezTDlOeXPzF6m/KyJluGevKzOSriK3EG1rbqG9jJd++64Yoc2w+tzyMP9edVnsXb0rbhh1PkII4d7lL+DbxkwpS+SMizzVRMRbb7Y129lO3wxJqBfJX5xzIcZtrtUe75JuYUbS6tL7HMNyKn8XRoWE0+uuuw4fffQRnn/+eRx55JF45ZVXcMopp+DEE0/EQw89hNWrVweUTUUuw+sQKRnWPx3xLksP35OIMxuh4PZQLkiP096tIbXftFc4ldRhuGlO3cxteEVT5/f1k3/ys7xCJ8mduhO397aZPzsmZO7vd8seF3Hkw8rQ0kHCz/DA48FWBg7NPIczIGOyQAqngf98YuNp1vd3OgRjR/6LoT/kS1yQSgHnUorCgb1ASnrAzazXg+bUZ3uPJ8Q0p2Oqd/WVnlcOGrAnfrfbz5FAArcteRbzCcdPyUaeEMahOTU0dBwTlWyLhrxjtwis12Z76zUWUM3CKT8syywd6e9hz5+u6+jRrcccBe2tlxV7UnOa7ZrhD09653333Rc33HADPv30U0ydOhUHHngg/vWvf+GEE06QnT9FnhOEt17AZjqMBLWhbl9aQ43BV/oCHY9TOKXGKpSr47c72J4py0+v55zaBxu5342MbM0pqxydQowVt0GlSItgNxd39zzpykJEm+iH1MAvYK4YZpinGbGkfjPLnUdzKla+xaEiofAKBRty/VvUtsZTbJ72nBLawGXDTyGGJfVHRLNeSps7c4ejs2qy/qNB++Hy4acgqsdw0+InsYLzuBCvZE40FTtbdkNnvffMSCDTQhArNfJirJw9p0mHSOQ9p6Q27tdDvR173jTGjMJos/mrN/UonBp0dHRg48aN2LhxI1pbWy3HtSj6DqzOya7pkNWRORodYZA8dfsjcO1uvyA2Yb+NltTx0N6tznTGaTJtilmvYB4usHkrdDzvUtRuJiGpXwIrdm4MLCGXAa9TBZLDDgC2g+fdtHnp+w3RZjy86jXrfZdu8fjBB7umQSKoiRyr7GSmmF41TguKbppZplmvQO6MkKz9TU6NOLtOBXd4vWb7lc9TBAUvpK+8rG09I7yL5tTLnlNbnDeP+j8MKyNbbJBSJ5nC08a1XDiq4tQhR+CXQ3+EjngXblz0ODZmWVDjQWTPKU/YFzd+5DtPfghCc+p15DLGJnPfLpI/Vlizc0177roInuFlj/d8/jZ6w0pNOTsIe+vt6urCRx99hGnTpuGzzz5DIpHAYYcdhttvvx0//GEwZlKKXMLZ4Fht36o5lddk7A2f1A1cvktyxZjk/dbvhNGP5tS3TTGAAUVVBLNeOZrTIFZCp+wzCcvb1mNU5U7E+7xOFWiCWHGoCLF4WnBlfR/ze9+97Hls7vU+y/MsAFw2/CQ097TzZNeWbjCICGx+SA/MyX+betqwrJ0++QbS+6L91jXjmzAFcUFv1UF9EHu0SjTtG5D6jW09LYSQfHg7SkZj/naDtPiXaW+sopy/47FoibXjv1u+xh8XPYb79r4qtRCci/B8k5Ctr81lWE7qvOJm8E6DVG4i+WOd953Q0+ecci0wSP52Yu2wN2weO+MTEk5/85vf4NNPP0U0GsXBBx+Mm266CT/+8Y9RXZ2/7ooVMqA3mh7LHhaJwqlP7YTfVS2RjsdwiORm1puJDfQ8uO059ZLPHcu2w45l29HTJKxwvLXpK65wAFASKkruRU6GYuYlpGmpIBu7nGe9umsDw8z7NAIz6xUQ2PxgF05Xd27GQzats52U5pS055SSNR3AvXtdiRlNS/C87fB0plmvaB+QBxM/RX7gRbvoVvs8mfWKWA8QGiBRc0qJI1e8UGuahom7nIa2WCc+bZiNGxZOwV/3noiqSLm0NBJ6AotavZlneyGlOc2NImby1bb5GU2PXaWt1j2AmOb0sJoxrJSJ8ZN+0675gXTOKXVrVsohUv4iJJw2NDRg0qRJOPbYY1FTQ9vLp+jrmBsM75md4mm4XyHlh3XNL7RBvC7aBIDDrFegM+PJv5s2kirUuJxzKmOjvz0GkiD94MpXHNdo71Qa4t9SQD3qSABv9Scgs17m4CtTOE0i8v3DDBNpVhnuVb0LuhM9wIZ0aMDNhNkenzeHYF7ZqXfxxe/CmSI/IX1ndssMwKxXQHNKzq8zzXxwrBLWQrh2t1+gNdaBmc1L8efFT+L20ZegNFwiJf53tnyDBa2rpMTFQ/q79c2+g9U2eBwimZ8X8doe1kI4afCheGsLYWGc8dzGzjruNLwi0g57EjH3QDmO0J7TqVOn4pe//KUSTBUWnOdEpv8274fQ9fSAu11xf19pOieAos/7gzRBd/PWWxvwgciOfZwukxva5Mdx1XZB9vldgIhZLzlcSdgsnLK/rtXkx1kGPIsEXuRz2d77DNiDtTxSq8YCsbLqCmvlF7C+lxGKVadFzHpPG3IE4643fh6Q919FfkAzXM8k9v3yMkwLg9lTKJ+iUAQ3jboAe1TujIWtqzF56bPSJumix9VM3mOCr/SMRb2+IJqWS1pAAGiaU7EF6EiIrLPTLQ6RrDy46lWhNLxgfw/WdOKvy/+dDJPHNch1lrl8+XJEo9HU327/KfoevEOXebLZv6hKah7YK8T8V7nT43w+oSewLdqC/kWVKOrt9ILQPALOzsptpY2mhepORHHDwin4uH4WVzwy4E0jTpkoldo8rzKPFjLdIqUr4ilRhOD2nMozdWVBWpV2Q6QsWbGmzjll7B9ymDRS6tTz+92Ey4afIr1WU49/yN/5gYITt4UWykPy82Gre+zFISekNpEPmlOD0nAJbt3jYuxcNhjfNy3Bvctf8GwdY0ZkQbZIi2D/AXv4TC9/9pz65dCavR3XWPM5Vn00+mDzWMCvOU3GW8TYtiP6NQba9j4P8DHvzfW937JxNes98cQT8eKLL2Ls2LE48cQTqZVG15P22IsWLZKeSUVuI2J+ZIT0K6DxOERK3+Pf78YLabAidZotsXb06HGLgwa6t176BKciXIr21J5Kyh4Hh+bUm1nvjKalmNG8BDOal+AHA/fNSJe4oYvPy6L5na4feS5uX/YvAMk9p2l0l0EkfZdUd0dWDMP0psUuOeGrQOXhEpNpe0BmvSyHDzL3nFL227Bg7c91c5Jk/jJGkkKaU0pQo+3KnnTnyh48RebRAOG25iZ4eHE0Y1+gERdunG0i3ybFVUXluG30pfjdgn/gk4ZZqC4qxxXDT/XVPoPz7E1Jj7FXn0RCTwRi0eSF/kWVaOpp4w5fpAn7ZaVCqu8rOzYKxRFh+ZQQrENH1o7Dq5s+E3qGhvPUBPe85NPCkh3XWvHss89ixIgRAIBnnnlGDcAKDnjqiF/NpUB8hFs8DbtIizgOVhalPuUMyd2kV7Y+1XXFkNJvFdvMWgLp4Dz2I+a8mE15xc6sTMdhL6PLh5+CWc3LXGPgnfSNqBiKeb0HxHvtOs8YchRe2fQp9b4fpysieNkFxdKcipWHlz2n/sKJQpvA9gXth4JfE8mLjKNkWIvA3PUyT8x6zQws6Yc7Rl+K383/B97c/CWqIuU4b8djPccnJvj5L6+QoFlvQtcRypFuJqKFMbpyZ+7zfYsoZrQ0eM66Ntf7xp5WofjDIXmaU5l9P0nZ4LpvXVrqmce1Vhx44IGpvw866KBAM6MofAzhwrfmFPZjVFhhvaVVFi5GT4wsnPKupKaPkenvOz9u2GN1W/Gm3Y/m8GZ6cwdt1spZhVONW/IhC97BdOlBrb7LENh4MOIScojkMqnjPkrGCM+YmDjTcolb8mf2sidXUSBoTquXbdHWjHvrdVoUiS3akrKbb5pTg6Flg3Dbnpdi0oJH8Nz691EdqcApQw73FFdQ/gLc0uPtS+J6AmE9NzSnogShOfXTB7PGadF47fXGT77s7bDQxxmh2jx69GjMnTuXeG/+/PkYPXq0lEwp8gveCaYsDdxvR/zMIXuI7zl1h6WNI6VHer/67iYAsJr1UjKkQaMfSUAI65Ynr2a90USPNVwAK+dev4m5gzYLI17jc3oi5usSvaUXzGCSKc2pYaplXxhiwRZOrbkbVjYIAIhHDhn1nWXqKPrtpJv1UjWnir7I/+q+Y54D7K71EK+f9om16P55Upq5vFjpxm4VQ3HzqP9DkRbBI6tfx0d1Mz3FY3c0deGOx1PDyuhV3BzJ2UkgkbeLCMKaU8Y9GQuEoh6uWcg0tfY0XuWh1YOBUMmxJkGxWAzhsLfz/xT5jVNwooQzBfSjRSoPl/heNeJp6KwVPVL+Sc2DZNZLzbvGP7DxvL3bO9Las30yYg71k0EHIpuYzXCtx5SYS8TtvcnxJeMMzjQ0KCGFOSmRuOIf05NnFksz67X9/u2In+GsHY7GdSPPpj7D2nNqT4sWMu1cSS7pVXvnHUXhQ5rUfu+6d50Oz6Lg+H67M/PAdAzHWS8/qPueK1yuMrbfCFy/+3kIIYR7V/wH3zWK+0WxCxlBa1KNcYhUp0h9anIcy09BhOWAiAzHUTI5sr/Y3sb8LIiSvPW6vWZ+1ogkrksWGzduxIYNqcPmsHDhQnR3W8+u7O7uxmuvvYZhw4bJz6Eix5BjBumn8xA/t9RbWuwVPe9mvexnyWVZES5Fh8khEg+yNKfmPPUvqhDKAw2viwtWs17zIO3N5MXhZEC2UwlT9NLjNpLIkOY0bginATlE6l9UhYt3PjF9gfBebE+NduHUZZFC8tCdadM/RW5B+vrL2zcQrvLhpgmbtNvZGF21M/5v1h2pa8bEemTFMCxrX4+dygZTn+fZI7uwdTXmtqzgzXLOckjNXvjtiLNw74oXcNvSZ3H76EuxV/Uu3M+HJZpn8pByiERIJ6yFUguFBnE9kTdH/tgR1ZyykOHlmO3pX1BzaovLj+folliH8DMF7RDp1VdfxT/+8Q9omgZN03DzzTcTw5WWlmLy5Mmy86fIMV7c+LHjmr1PZHnhTO059dW5O/f3MEVTwk0uh0iMTpM8ESWY9RLOOKWlTMrTQQNGI64ncPFOJ+KKufeaArsL6G4OkWiDWVS3mfVa/aYy4wwamlmvFfbXNb+PvfPW9QSf2SpnMZDO6pQN+5xTeQJxrLc+ibTdMCN991VfU9n1BhbRnNITNhIIxqzX0TcpmbXg0SA+IfbrXPKYQeMdXlGNOP8+5lfojEdRGSkTjNXaJv69/gM/WcwpfrzdAWiJdWDKmrfw58VP4u69rsCuFTtwPet0NBXs/k5W/GTNaTxvxRDRdsM066VarwjkR+IWMft3lGt67eH4qjzCVTg9++yzceyxx0LXdZx88sm45557MGrUKEuYoqIi7LDDDiguLqbEoihkMr06Q2qOMsyX7BQzzHpJcRL3nKY0p+Y9p/S9afb58uCSWkzc5VRiWLdrbh2hOb9/HvV/WN6+Hs+tfx/ddrNei/aPGWXgmLWENK3cAQNGYX7LKnocFm+91jKKQ7cdSyOPoAYS1iKEXM2pkQ5/rOxJHH88RkgZe04NpJv1ZrtxKLJGEG3bz57TsBZ2FUzd8ry8fQOmNy3GdsX9sTXaJJyXXOSMHY5Ca6wD/9nwIW5YNAX37X0VhpTWuj5n71tYC2Ey5kOpM5MJ38huIQIk++YgfENkAtF+k+ecU9mWeea7QnE5jjeT941YPkoKAVfhtKamBjU1NQCADz/8EIMGDVJCqMIzMtomUWspuImda8+psObUSUO0GWWhEpSHS5n5oeVLFzAD8XPOqXkf7+qOTdRw2V6pMwsnIU3DPXtdibJwMf69/sPU9THVI7CgZbW3+PUEysIlruE87TkNqOiM70MarGQKTIZZryxvvcn88pHaJ8rSnHJ+k/SeU8lmvUb6tmxku80oMoOw5tTlPs9E1qml91fXzGn+p7dPPXPoD/DwqtcIaecnF+x4HJp72jFt6ze4fuE/ce/eV6LG5ag3u0CYObNeJ5FQGLBa9SaF0zwUVIaU1AqXJKtZ+HGIZNR9tqJDDLvlEElh8POhx0CDhv9s+NBxzw03U+58XbAABB0iDR06FMXFxYjFYli3bh2WL1/u+E+RH8jsyHhjsppT+oFk0iof5mHMRIHXSme8G+3xLtQWV1smDSJdn9B3sj0u+o3zYbJh7oxDCGHv6l0womKoMyDny9jncjp01BRVuT/HF73NIDqYEmYNqkFoTkXeQ9RbKJ1es17Wqrmo5lS2WS9jn5ii8JG9+OTFBJCkVRPBSHFtxxZ8uW0eBhRV4ViKE7x8nfZqmoardj0dh9eMxabuBtywaAraYp1CcbAW6OQswPf2JSSHSIRvnMhTh0h37HkpZI5SUo6SYSk6BBu5w0kfoXLsWDbYU35D0PLWQzMPQjuRe3p6MHnyZLz++uuIRqPEMIsWiXtCU+Q7Nm0fs8HoHGHYaHB2Z0FMCFkTa7K3Xus7kUx6AXpeNc1ZLrTOh3TVuedUUDilvK8XzWlluAyH1Y7Be1u/I6fl8XuZtcEyHNDY83Fk7TiUhUvw/Ab5e62CElqMOqJpIFQM+ZpTkfdgH4nAxiLY9wZmWQPw1oegREfaXlwlrBY+XvacuuFl8UQkD6yJ9qsbP4MOHacPORIl4WC2OWSTsBbCpJFno31xJ2Y1L8NNi5/A7aMvRWmYbBUYtzkgCrpNM08KIO05RSI13vcvqnTsRc5dvOybZC1QBmvWKxqr3fqOtC2FNJ/lQuOxjstfhJbZHnroIXzyySe47bbboOs6/vSnP+GOO+7AIYccgqFDh+LRRx8NKp8KycjsXO2DKO1cNJ36QwzRjsfruzIn1hx5SHnqLbEKp7TsEM2PTWX72xE/M98gPG9FpOPSoVNLyYs7pNJwcSADeNxi1ivXKcW5w36C2uJ+FhNsOvR3O2bg+IwKJJny1vvDQfsl45Ro1ssLjykuyzMwiaAGbiWK9lVE987JT9G/GX8yVxu76gEAh9TszZ12vlEciuCmURdiVOWOWNi6GrctfRaxRJwYtke3zmmCfvea4qT1jrHAbYbmEMkQfGqLrCbK+/UbhZO3PyyAXPqH5zgUOzwOkfw43GS3IbF47dZ3pLE6BM1Tuw1B83wiQz4gNLubNm0arrrqKhx/fPIA4rFjx+LUU0/Fk08+if322w8ffihuM63IDkGa9XYnyFp1s0DlT3NKMF9kmmJ4S4flaZSn8zPOOK3l1JwCzs7LrDk9drsDMbhkAPVZx55ThvMYR7qMfOXSvgWLQyTT97F/Y09mMgLCrludMm6TPM7KxqgjpDrpJ027xn94+RBqOjSYZr0essbaY8Ofr4D2nCqHSH0a8b1z7PrnzaxXZMHHiW77t9DrdFm4BH/ZYwJ2KtsO05sW494VLxAn/F1xypwmIFhbS2jnnBp9o30cG1Y2CBN3OU1uBhmIHGmjedCcMr3T+6ivRqysGESFXrvmlJh3j3nWtMI26xUSTjdv3oxddtkF4XAYJSUlaGlpSd076aST8N5770nPoCJzDC/b3uOT1gbC6shlTAhJTZndvL1qTlnmHe77Q+t7PRzyCqek67SVMWIp2vJb1+1cdaWh6zqxmDZ21nPH4YgzgI7T3Bmzvw8d86TQHC7oaZjX1Vz+8zrlvsHk0ROI10XG0jD4zzm1Q3pvpqfGgI93cCP9PoU9oVcQ0LxpP1gE7xCJEZbDOUyh0K+oAreNvhTbFffHx/Uz8ejqNx1l32lfcGeWs/9xb0AR3UHTydsf7riW0HWqw7pMf0OqciIDGGOsn0UV5jgtGK9dc0oSJr1uCQgh5HpcYD4jNJoPGjQoJZAOGzYM06dPT91bu3at3JwpMs7+A/aQEk9nopt4XZZDJLLjF+u1W/a4iBkHz+Keb7PeXuFwkE04ZebL8Zu259T9BRa3rRFIVyeW66/n3c+l/RM9fkXGRM6rMGIuuR7TXiIvZqYi8LyzFwHWWMAgDch+zJv6RSrxw4H7Oa7LcoikgV8rb6TJMmPi1pv2BgxKc0pysqUobHLtKBm/aQaz3JW7DCrpj9v2vBT9IhV4c/MXDp8DXXHrnCZIge8HA8dT9/lOO/iv2LFsO8f1uB5Pa07tnoUz/BHb413cYe2a0xMGH+wrbRkLhDTfG15idWhOaWa9gvEaKLPeXg488EB8//33AICzzjoLjz32GK655hr88Y9/xF133YUf/vCHgWRSkRm8nu9or/49lD2n5rC+Gg1Hb7trefpwba8Nn+X5kKw5tdJAM+sVWHW1m8gU934jUhkLv6duXSwgPd8W7+T6UucM+7Fo6r4xfx97n+9XeDx4wF7ssO6xEa64P/XmQXe6LqzYYZlR+ZlEaRpZ4BVziCRn/44RkmXGxJpUkJBtra5R+gu3CYSiMJDuEImn57VvZxCQRPqCVlSEHcu2w+TRl6AsVIKp697DW5u/TN3rjJMX3En46VaOrB2H60aeTb2vaRqxT43ridQ2HueCIPs7v3zArY5rpw05EmOrR7hnmMCB/UcLhTfnbuJwf+bHRv33teeUeU/QrFezO0SSZ9Yb0jTEdPIeaYNc2pIlitBo/tvf/hannnoqAODCCy/EpEmTsGHDBixevBjnnnsubrzxxiDyqMgQrHM9WfjxMOsFe8dD2rdg/k3eo+qeDmugJ0+6rW9YRzHrFfHqaRc8jAWE7kQP1/Pc6GTNqXHPDdln/PHg3XSH/D7m2G7e4/+wc9lgj/F7JxIKM/c6kzCfc+rAVkYH9BexjtCIToZEJsCyTG2NNGXsOU2XU0CaU1s+Ctn0SpFGtqjnZWIptOeUENRIMqitArnOyMphuHmP/0ORFsbDq17HJ/WzADjNerNZKqR+Prnn1LCgsZ/JyqYyUua4dtnwk/HjQfsL5+2kwYfiupFni1lGSVTtGgvWXiyz9qjaKfkso8SENaccTvpC0DyVgQatoMcWIWlk0KBBGDRoUOr3hRdeiAsvvFB2nhQZ5oTBB2NDZ513zaltDKXvk9QDWcnRQHCIo5H/TuWFIxthj3saDRqiLQhrIfQvquQIjd6jZKzYBX9DcxolCKei2L31+iEbjjPMadqTP3a7A/HE2v8Kxcda4CCFFsXr4oHbl0k5RCJqOa2IeLQNgbxKLwsvUesCTr7c45LbF9G+byE7rVAk8bJvjH8vOStdW58lyVtvSjTtje70IUfi1U2f+Yw7PxjXbzf8cffzMHnJM/jr8n+jMlzmMOtl9f9++hWvz8bMZr0O4dRbnfBSl46oHYcKgrBLTQOaZUHFb/XVKAuEbvSLVOCYgeMBuMxlBDPIp/DxcpxOMp+FbJWTXQ8Sipzg17ueibv2usKH5o1timowr2UlXtn0afIJH0KqZvM/rmlszanXdc5hpc69HekYnU3H/EqxRByNPa2oKap2mNkwvfU6tNDWzqc0VNx73Vl+TM+oLuigD0Y8A+bQ0kGW35kwJ6GZUQJAdVEFzhhylFh8rBUOR9rsOkV6lLsWOh52mcTqdC2HPZ8REY/E0IS1uCKIenV0e4a3/gejN01rrZTmtI8iOMzwLjqJIOat1317iRHm/B2PFc5LPnNozd74zYizENcTuHXpM2iLdQIABhX3xysHTA4sXZ5xkyQ86dBTx6w5LMs8S3xetsb4TcWfdOr16QMHjE4J9TI1p3aHSCRCmuflA8vYQhr/8nnPqatYf8YZZwhV7pdfftlXhhTZQ5ZmR+QIEy/Yc6n1rls7r3ln0m5nY/fKHfH0umnkPGga9qneDbNblqNYiyCqxywdQWNPK3ToDpPe5LO0VDWHRvfo2n0tv1nabT8mlLznnNp5cMxv0NTTit0rd7Jc1zTnu8hGrlEvqV7JhbcfFU2XdZSMHaGzQDXxfZwiuLVRy4p6778s4bQfp4WCgfQFFKpVfP5OEBT8SN9z6qHasBbsuNJkxOy8Utgmvz/Z7kC0xDrw+Jq3AQBDSmrx5L5/6F0Mzx7khXE9Jag4F8OT3LD7ebhr2fOu+xTtz4nlTXB7j83sjffp0lAxughegUO95me+jir0sShth0dz6sXqAkiOj+Zz3/848lxMXvqsJUw+jzyuJTdy5MjAzudT5BayvjKPRkSmt95RlTs5BQvTBS+Tw2MGjWc6dgpBw217Xoq2WCcWtK7CX5Y8bblvHJ5tPyuyN3fEOElXD6sdY/ldzBBO/Wu5xDWntcXVGFk5DM097Zbrfr1G8uDWoYtqHuyDPnMFlfP1MiGY6AzNXHPM+l14VnINkt8wmPwfu92BqIiUMsPs22937N9/FI6oHZdqT6y6WB4uwRlDjkpZZ9AJpm6SHKgNLR2Incszv3dZkWnkntdohHBP1fbb51wt5a3XdpQMz9FphciZOxyNlp52vLjxY1RGytJmowHNiXlKlJSyDp2x5zT5xBG147Bn1XCcM8PpAImcjjUlvr5VFGu74W1Dt+95KW5YOMVxMoSMZQOZSw92h0hH1I7F5w1znel5SrKwzXpdhdM777wzE/lQ5AIeO1yHKSpXg/GxsmVryTfufj7Wd211hEqn5C2tolCEutdG05IrlP2KKohmgg1M4ZQFO68lvWa9JHj2B14x/FQ8svr13pRM3npZDpFM2MMYna/jSU1zqU4SBhGNPajRBENafXBY9bJTd7nrvC/usIcPQwjnmTAJaU4Z+fjBwPH4uH6mQFxWjtvuINcwkVAYk0dfAgB4bv37ANgLDrXF1UJ7ZKXvOSXsd7ptz0uyfv6qIniCEFWyadZrT7kv6yf+b6cTsH1pLXYyOcgLqji49hkTPkYCeqq+hBFCTVE1tvW0GE+Yn2bGPb7f7pi4y2nEkOP67RaAcGrLHWdF27NqOF476DYc9/W1trg06BBfFDa3BVYbEh2b7cf+XDvil07hlLAtjYeQpqE8nF7gJZ4LnsdWO55GTV3XsWnTJsycORMdHR2y86TIAINLagAkTVUMPJtJ2h0icXSwLK2kG/b+a0BxlUNba+5g/ExCR1YMI+eB2OGn0zE0PbXFpMO0ad5iNdecllLOPwP4BI9IiBwmueeU/Aypg/vT7hfg4p1+iqqicuIzIYKJsmwqwmzNG9VrNCVfjgFC8ozMi4nsXXte7lqOiZSWw51ISGDPqcYa3Nw/Lq3tAOJ9jfFtaFri20ZfgrAW5hIEU3EJ5sEN0qRGWR31HYS/tZQKaNvO4ldzmmrvDA/gqZT7Rt3WNA0nDD4Ye1fvEnhaPMIEbSHWfN71nXtelg4v8JmO3e5ADCsbRHyQb+FD0KzXwzPM+Ayv7n4aF8usVzCrkVAYV+96Zup3SbjIobBI6PQtVSw0aDh64D44dfsjcN/eVxWcHYPw2SHPPfccHnnkEdTX10PTNLz88svYa6+9cNVVV2H//fdX3nvzhIt3/ikqIqX46eBDUte8DjYd8U7Lbx7NaVT3IZwS8ml3OmIOI+J4xU8ezKTMekv688fJUfwss14erZFVaE9TGi6mvhOp9Ozmxpk+Sua0IUe6TsRY5q4knE61WGH5MJedl3ce1283fL1tgUsa9ImkfbIjYvrNWizh83YtT2NovJnRlvfrNwoDiivxQd0MAMBeVcmJI+tsYifBeOtV8mjfRPSzB2EWK6Y5FUFVaivZKw8es96dys1aXrOFkY90A+rYsmcgTUam5pTvGT6rNTshLXnU2+W7nAIA+Kx+tnAcuYzQ7OHxxx/HnXfeiZ/97Gd45plnLBOfAw88ENOmkZ3HKHKPykgZJux8IoaU+tecfrFtnuU3j3dK0jmd/JDNWmhByJMAzs7L1CFfPvwU02Vnh29uD2mzXpLmlJqY69marMk3z8Sc1gnuU70b4ymvHX1wa3k8kzDRyZ89Rj9aA9Jd3gHIPglwPXLC0JwSD2e3Or8Q0d6KeJWmxeAlblZ4o52PrByGkwYf5rjPs0BjBJHuD4l4lI+a1PcVsvGtnQ7GBfLACGs/SkbVYivBmfVypE0y69V1NPa0AWAvCorUUXvIILYnaNACEXr99O3m/Fwx/FT7XeH4dqkYAgDUIwW9Kk/s35I8y81ffapQbXv++efx61//Gr/+9a+x//7WA3p32WUXrF69WmbeFJlGUifB0yBoZr3DbEeSkCC53rZra80haoqqURoqxgH993CNm8WeVcOJ10mda323YdYrtuf0ltEXMe+zJt9cmlNCmMpwGXPfA1f3Jlh1/A5I9ufJDjto0Ox6A56CcUYvmgvDOzaPRYG8oybcYZ8XJxhZb/iUdsA2qTH+5ptAGWa96XpwwY7HCWbISbps5WgqFPlDoZhv2x0ipQ0vC+P9ch2euVNVOL2V5vQhR6aeu2XJUwCAT+vnWMJ7P6jEi5ZQMLwmr4/88z7np/4mleN2JQO44jGPkacMOdxyz0teR1XuhHv2uhKPjfs98b49r0fUjuWKl2e+l7+iqaBwWldXh7333pscUSiE7m77QcWKfELWAMSzErRf/1EAgMNrxlg6A6+rc07hNE0kFMYrB07GX/a4mBKCjjlUsYtbcPNbs7310tLSMLikhrBal4YlXPDsOfVyhpeXTfXJDje4CY29HEiDkeiKpON8OMH8H14zFoNLBuDcHX9iyZnX+JwxUO7bPGuacWpOBYRTn5/voAF70uP2qDlNmTDbFlOMv0hmyz8etD8mEtqUuVwrBQ6Op+aRpDktEKFF4Y64t97Mp2l91olu+ze13KKqsYXg2rV7rdihbCCu3vVM3Lf3VQ6LkuTfdMs1t2zrlvHKip/zmo+q3YdxV05ZjqgamvqbtP1pn+qRnDEx5kgev/ve1bugX1EF8Z7d6s9soZfOkbtVji8LwRxESBLYeeed8d133xHvTZ8+HSNGjJCSKUV2kNXd8pxzesiAvfDouGtx3chzLEIVzz41UkO1N3B7JxLWQrZr6fAhaFxaVbtbcCfpVeeGaDOqI+XMPaJ2jNwdP/hgnLL94XhgzNXOMD41p5bn7cIb5Xk+A07WVIcU3h88g4Rvs17BTN446nw8M/4G7FA6kBAb/zt79tZLuGeeUJy8/eGCR/xooH1DUtmaz+S9adSFOHOHoxgxiwqnSYz30aBZ+gqWWe/gkhpURspNYZOUh0tS18S8GNPyaGiZFH2RfDOho1rK6Dp4HCL1bYIpF9711OMHH4w9q4anx0HGg55zautL7Qud5EecqY2sGIZLh59Ee0JaSZqTHlY2CGftcLTlfphzQOf1+P7EPtfxZs2CfbFf13VLuRVrzjkjKU9cZr351SVZEBJOL7jgAkyZMgUPP/xwyoS3oaEBL730Ep5++mnlDCnPEekm+hdV4u49r0j9Njc4Ho2VpmkYXr49ikIRy9mLfMKpE5ZZrxuH1ozBlb3u01nQPN3a02qNdSCqx4RNeg2KQxFcscup2L1yR8c9lmaZZ89pCUFYTh+BQYO+muoVv30mz7vS6iEtbft+TPY5p15MnoKa0ND3nJrZr//uQvkOgeEQiXCnyNQ+xlTvKkXgM3BoTmEtT+O1SO1DA7nenrnD0Tiydhzu2/sqRCTspzIEfy/n9inym+QyjlivlpPCrK7jjI//jCVt62w3VD3OBKJ1wuhz+L3TimzrsNKTcBdORQlqzykAXLTTTy2/ea3yWLkx9+dDywahOkI+rUAE+7cj5bMveoIXGpHPOuss/OY3v8GUKVNw4oknAgAuvfRS3H777bjqqqtw0km01RFFPmCu7HtU7ozLhp9MDwvrOZbmTpVHc2rGLJDShA7zsSFkxy90s14eaA3d3Bm5ydzGbS8mvfa0aLDNet2bc0WYbr5Ii5vr7DXXEHLh229BrofUc045rhiEtRCuG3kORx5Mgr3nwYRd/gmGluPH2x2QTh8as/5MHn2JxfwqF8e+5e0bACQXEqx1oFdzSuo/KPuTKyNluH7387Bn1XCEZGhOlUOkPowm7thEglrDT+0iPftpwxysaduSDqP5T6cQCc6oV9Dap/cD6bqOyt6x/UeD9qOHN+V8ePkQ3LLHRdT79r4rZjph4f4xv8aYql1FcurxnkgKtn6ewy+FeBry0W1HyZDmcSSB9djtDrRH5Iw7FxfAOBE+SmbChAn4xS9+gdmzZ6OxsRH9+vXDvvvui6qqqiDyp8gg5gZSU1yF04YcicdWv8kIbxLcIKg5Nf09uGQA2jqSx9HQBKwQwYTPjHPlUKwb4dHEDS4ZgGMGjscelTsRUzLKoMGjcMqTZabmlEM4ZQqwPsx6RZ/xbdZrH4gIMYp3zNY43ATgw2rGUO+RngxKUEmkTF2dlJlMVzWwBeT9+4/C/v1H4dOvZ6eeoJWhWxN39Wbs1yEW7H1CEqr5k0t6IprT47c7GNO2fkNOB9ak1KS+75DPE0E6TmsARe6Uh3nP6YEDRuOj+pkOoYXW107a7ZfYtWIHyzVrHbYLp2nN6SjbHMgrNKuWIGDPj/hyEYTAm7D554gQFkrt6exZNRzDy7e3XOvT3noNKisrcfjhh+Okk07CkUceiaqqKnzzzTeYMGGC7PwpMoqoOVo6jFkgFW0QN466IPU3rQMJ2fLmSME2W+bRrN2yx0UYUlKL/9vpeGp4i25G0zBp5Nk42eHBzfqsoTmlmfX6WTBnab549xM+t9+fMHX8jY7vRP3mXBnO7GDNI9wIO0QKWFXo2SGSy3uYnQS5pS+SB3Z9cuZJ5Dw9v5YN9ndJ7zl1N+slFRNpQkDj17uegX/v92fHdWL9yUX1syIQvDiO4+2zfzhwP+xYth3hjo/6xeOjILXgouqxmcA0p4JVyKg/cT2Oj+pn9l5jHSXDjz3skJLksYPFvb43SPM82iIxr6msP9zGP//xSNG+2o+Ks3vUJ7Q1+7hGUjLksyBKgktz2tLSgs8//xybNm3CsGHD8MMf/hBFRcm9a9OmTcOUKVOwcOFCDB8+PMi8KgLGaSTHj3izSKdgPmvV3uhCCCGBBA4asBf+V5d2xmXfY3pIjd2LtPsbHDRgz5RH0cZoK2/GqRgDS5Bmvb4dIkFzCM2a7V87nro811HWXyef7XNOSeFd4w9oRpNgeOs1o0PnMv020DSN+hndDaPdBWURHN9G0yz13WgXYUq8bumJ7I/VNA0Dip2WQhqhJakpfd9Ag8i+vyQ6gCf3/SMunHW7a9h9+u2G7kQU6zq3essggVzR/inS2Mess3Y4Gi9t/IQa3uj3pm35NnWNpSH08833qNoZk0dfgl1sGjs3WK1CbLmUjdv4yrv4zBak7Wn6z31SeE/Hw7vn1BlPYeEqnC5ZsgQXX3wx6uvrU9f23HNPPPjgg7jmmmswe/ZsjBw5Evfccw9OOOGEQDOrCBZrQ+MRdNJ4WTUmYW+YE3Y+EacOORzPrHs3na6mWUxMAKA0XEzNGwmHEbCfTib1rGHW2wLAi3DqDntVlEe4Tf9NWvckYRkwaRpmwuUgV/J4TJjFq6RdO+cWmmPAMBddQJPBtJMgfk0Ii+t2OxtNsTauNKnpcL4qfx1xfhvSgE3WnDqNwO1IcYik9pz2abw4RNq+tIYzLJmg65eqvRQypEke6nLuu/H9jb34gIgQRtJymu4TTjzYv/cIQHtYJrpOr6caAi3LpJVdMqc8W7d44mP95sHhrZcnXY9lJGteng1cv9bf/vY3VFRU4IUXXsCcOXPwzjvvoH///jjzzDOxbNky3HXXXXjrrbdw4oknIhTy//EV2cSsiXALafWyRnM+456SFfs5hTp0hLSQpWMJwSmckvInguWsVZ9anfpoEwC6WS9/TE5YAw9PB+blnNPNXdtc4xXF73AUhObUXrbu+yZZ94IZcPtFnGelibwnT75+MGg8Tus93J06dPrccyoKaVJAehfiogVHVuQeJaOm9H0RYYdIgsiOnaeWsuty363nst58fL/dLb8dW23ctmr03jc7obQLYTOalpgeYOenJ5F2euTlHUnPBO1/Ih2PM6YiU78uZUwOYFxP6Lq71tf+bsRCJTlEyl9cpcn58+fj6quvxrhx41BSUoJdd90VN998MxobG/GHP/wBp5xySibyqcgAVr2pWCMUNWmyY6wQ2jd5G9gFh7iLW3P3/Xf2+E3OVSxCNz9pb729mtMSsnDqp39jCWV+J8W0Mnt63TTXNDI9Iefacyq4YOKoFZJfyfOeU5f7Cc6jZNy89Yrliex+IZ0WG2GzXvun0TTiSjjJbNnuEImUsoi5Mw2jj7L0o2qvXp9A0zThBVo56fp62meQfJ765gbblQyw/Ha6dWR/o9RRMqaFEXtftqW7kfgsqe50JaKW1EWhOauk1VNRPwiiREJp41DesY/VZzvMej3k/bjBB1l+8ywu81mKFVZ7dH3j+vp6DBs2zHJt6NChAIBRo0aRHlHkKXanQ26Yw6zp2MII6c7de12OX+1yOk7f4UjL9XH9diPmrcdVc8qGNQiIa0613jjT3npLQkUp1+6OtCl9CM9Ew/9kl256KHOIcF8t9SlI82hORR0icZjsjKwYZgnhmodMHCWT8tbL0WZzRFgSzQZJc0p0HEEY0jS4fyleh0iimqTcKG1F8Hg4SkYIveAcnuQzsgQqxze11SHXRT7NOvcAnAv5YepJB87Yu+NRxl2P2N7JeXyNHEjxFJuEUxljn/sGEXfOGfZjPDru2tRvXU9wL0KIk799hq/l4khE+CQaRS4j0HjtE77fzn9QMClrWrXF/fDT7Q9FsVZkub5bxdDe8GbNZtI7HTt/Yo05LLjflkZ3vAetsQ7UFvcT7gy5zjllHSXDtaBgxt/xO6wng55I8eyruXCnE7BdyQD8edSFXHE6V0Wd3LHnZcz7LGjOevyS3nPqjuggR/uK7m7r3XWnADC2egQAYEy1yJl59BV3Ur1Y17nVEpb0nAzh1Chbt7QUhUf/SAWKQ0XU+0WE+iWyeBZEb8pTM5VZL5mg3lzUrJe47942rQ8TjtyiURlJL6ib075v76tcnqQnoNuOSjFvTdHg/o68kM16I8z7PFy800/paXrIe0gLYXj59vjdiJ9ht4qh+MGg8VzPuMG2Zco/uKTLCRMmIBx2dq4XXnih4/rXX38tJ2eKjJMLQ01RiDxJtHjmhOa6R0xcMDTtabWY9QpMIHS+M077FTn3DfLCNOvl2XMqYLLilyA7RvtAU9PrPbU0lHaMNaxsEJ4df4NApO6aU8vgLVpiAWktDZN6Xm/NMnB1iMSZzkED9sT9Y36NncvYHiDt6YU0jezVkHBtSdu6lFduGjyDv5EuDXLbyoVeVREUD475DWY2L8V+vY5iTh9yJCJaGC9u/NgS7pUDb8PJ3/7Bczp0QdbHgiJXf6EgElBfLmrWS7pv/660hTdzqEfHXYPP6ufgR4P2J4bds2o4Mx8G/YsqHdfY7xSwWa/p3b1qH32N+Qx+st2B+IntTFoafPNZ0p7T/BVPXYXTq67iXDFR5D2iK/5BdCpFIXKVtJv1njHkKCxpW4szdjhaSrp24VeEdMehu55xCgA1xdW4ZOcTMWXN29Z4eNJiCac+v4e/FczMTmPswsS5w36CnkQcJ25/qOc4HW+QIyawZkiDTXriyqN5F9WciuhO07g7VDPCaVwHupPm5jxaA8BYDDK1b0Lm7N6+afBoTs1BcrAKKSQysnIYRlamTf0vHX4y5rescginxYRxTXjamJV5pqrAmYT77HHjPqGDsTuVtO5BJc9zhpcPwfCdhgilbc/rTwYdiMElJO/TNm+9zoGWGP/Vu56F+1e+xMyDNRpnPCyz3uO3OwjTtn7reNT53uaxgz87IrgedcZh5HpYzRg8sea/aI61y8pWVlHCqSKFZT3LbXKpaYGMWzSNqN1hUVVRucXE0i/mSbvoBN4cOq05rWY+c2jNGIdw6le4yDUzLZmxmQcSwCmYVETKcNWup0tMkX+/D/nZ5D37AD6malfMa10plA9Xh0gi3noluNOn4bZbKqKFU162RRdSHJpTkDWnYcI3KdIirqkNKx2E/kWVaOphH6EjqjlVZr19D/sXp2lshKxyONMSQdVM7wRm1mvfc8rh5M6OvY8KWTzWCuRFcDXkwAF7UOKxzS1twh4tS8cPPgj/3fKV5ZgcFqR4zMoOe1ldPeIsy5yCBktxkan+3f5NSd+mIlKGqfvdiJO//WM6XP4qTgOcqSjyD+FzTn2YFIlqJwPuBKwaF29p6SbN6cDi/sywJPMXHpgHbPv0OOpvouN8mtkvCoySO5UNxmXDT7Y9Lr8+OCYGAdS5u/e6wjWMXYvHO0kwHCPRCGkh1EXJnhtp0AY38nW2t95/jP1t+r7w97MlqNH2nJLbAM+RDJftfDIzDMA+K4+851TR13DWNRm1IDsOkZTmn0ymhBK3VIhO4Wx9oHmriyVu6R+XLz67hV6QTvoilj2nfIi03s54t2iWuNK0w3vUmXN8yl/pVAmnihRiomlmtQJm0xRZx2GYMXeQ5s6c64DklJYMXGa9AFAWLsHvRvwMI8p3cMTDgjU55vtmaUT3t7DSEJc1RLQG9rXXYOpA0DMx3oHY68KFmwY1rIWwLdoqGCs5Ti97TqsiZO/VPNg9oWqgTMwC7pPY2vJQ77/Wq4q+jagljgj+xuBgF6AV4tgXtb3sObXPEcrDJdzxBYGu68x0ZeWIlIbFnN5jO2Rtd2uLd3qKUxT7djdaeQbZ12QaJZwqUmTSyyQr9uO3O5gQXm7eWJPrEobXRTd4zXqB5Ib4/U2mMH6PkuFzcEEwPSScz+iXoM/cCqJ+OldM/VsGeCmFQcX9sV+/UThjyFHE+4fVjCFed9OchrUQfjr4EA854sP9k8v7ZiGQzzmlak454uT5VqIOyQpnqqDgRcZxE3Z0yNeBiC5mKszIKRnzOHny9ofj8l1OsabixVuv7RmvZ9CLH6lHxrEI7jhzmiW4+itnL956He3XnN+gGoRLxMWaVTilzV/t41/+6k2VcKqwILcR/nu/P3t67tLhJzmuWTrcnB0x+c16DYSPvPHbkZuCOARIHx9dVBYVNVGzvxuvd1U/aWRrETKkhXDbnpfgkt52YC5bHcB1I88hPsdj1ktyzMKC9p1cNacuZed3zyk0shaaXi/c0+OZxJnTdJ6LS/irgFayFXzwnJfMui6Cql7ZQVaxRxOx1N8TdznVYTXjlg5XH2gaQKzWceJaWS/o0C0J0/tNf5DaQsR0+oP5tn1hk9/RZHYanFeFSUF761X0Hawrbu4dl9vEq7qonPk8/R4hb5I1p2Szw3K0xjo8x6XrSbPeEDQMKPZimsmh+QzQIZJUzanUuJyxZcJ8RbZ21mts9qOHaAKmm8AelijQkxYj3M459TPE2wXHpOaU36yXLz33WmvphzTNUhCFZFKl8IGtGtD6bJEJp86x5/Seva7kjo+VL1soxvNCyRU8B/RPWkGdNuRI7mfct0ew+2xSf2f37Cp2/rQ5qHztMCGRQM85NR8lY74/qnJHSzhLGTGOlAvKotAtVtopFoVM33tjBRXRyaNbGNb+SFFCAgdJ80AaFEpCRXDsyONQCRp9WQIJbIu2YkBRFfcGdlHnKazByvdRMj6eJw+y9LITFV7t41cmzHp9xUWMzFsKPxv6A/xnw4eu4YpdJrsy26P7pIp0zccg70hOIwqDJAFch841ASJNokIIIYG0RtquOY1bctRrpKY5ryn6DrwePUvCAtoQjnHIvLeQD47FUEaYfPYE6hdSf1IZKaNatdj548hzMa9lpeuZ565fiKg5tV7z6unZ7b6IZ2Fa3x+09laj/PjTqAv443CYIWcet7G9EFFmvQoTYk2PfeZfiD0hZE4WSVqX3DeVa+xpQwIJDCxhO0MyI2JmA4gfZcGXB82RF1GC1xrZzHqDGCYYK6bZpDxciuFl27uGc9PEhLWQVO0pC/LeZu/xOY6SEfDWyzuHJoWzlxfLq3e6HQW/0q7IXbiFU4oXVTqkGhps/crRoTbr+LHPAICjBu6Dq3Y9HdFEDzOc27hKGgft8wBz35lJwZCUPhDkQjP/+9Rw+AQhxRqc5tTlO/fBhqiEU0UKkUbo1lRkT4KtmtNgGuqw0kEAgB1KBwo9Z+SnvrsJgLunXsuzgp0O0yGLYLk4lVHeV9KLQ0WYsPOJprjdRAJ/y+6ZWKCQkkQG1Qt7VO7EvB/SQsKDnEjuLcZjxHQ04p9e8qFR0iC2D+5v4AwXsVlAXLDTcem07IsZJIdIfW9OobDRmSAfN7FbxVDuOES8xvPit2r27bpNWkAX5/jBByOEkOOoNN5Yebz1mjWcIt9MdIylhdahO5ZrzGkw1RRC+WXf513QtofKBcXI9iU13GHH99s9wJxkjqwLp8899xyOOeYYjBkzBj/72c8wd+5cathoNIr7778fxxxzDMaOHYszzzwTM2bMsISpq6vDtddei8MOOwz77rsvJk6ciC1btljCzJs3D+effz72228/HHLIIbj99tsRjUZT99evX49Ro0Y5/ps9e7bUd881zA1vXstKX3G5TYLZelO2qQqtO+M1qaHx+5Fn44whR+Ga3X6eusY3re0VTlPOkPiFU0ssHP0e85xTn9MNns6b5TTmzB2OxlBOwV5IZNOd9SWQ44Qcv/10j3ImLyIMLOnPvB/WQh5Me705RCLhR6PoWH2nPE/WnLKPMkiHc2J2qAEAx253oGsezFczpalW5A48E9jf7/ZL7G7b9+YpLUu6os/yPNCnJdDA2aF0IP578F3Ufapupc8659TVY7xL5H6+vFkgtnua1mx/8zsj8gKvQEofmzJh1kuLd/LoS/DI2GswyOZgsy9Y1Gd15HznnXdwxx134Morr8Rrr72GUaNGYcKECdi2bRsx/N///ne8+uqruOWWW/DWW2/hmGOOwYQJE7Bx40YAyQZx5ZVXYsuWLfjnP/+JF198EeFwGJdeeini8eTuoC1btuCiiy7C7rvvjpdffhkPPvggvvzyS9x1112O9KZOnYovvvgi9d9ee+0VXGHkGJu6G1zDuJn1yoQnvkEehUKD2uJqXDL8JCGTDzNdieQCh4hwKuoJjiWU8WjFXNYpXZ938wjL232LHDVDEi6C8NZrR9ZAZAjsu1UOY4Y7McBjXgCgIlwqXG41Rcm2YDcZ9jI4itV0G5z7m2hmvTzp7Vk13HGtOx51BjTywBEr795zReHAU9f2ItQ1Fjp0hJH5uqREUzJkuxBvpeXneDhSmmHb0XA0h0h+zXq5xwBdt8wbHIJggA6R5MRL/2XH0HCOrR4hmAg53tqiauxSMSRnt7IFSVaF06eeego///nPccYZZ2C33XbDLbfcgpKSErz22mvE8G+++SauuOIKHHHEEdh5550xceJE7LLLLvj3v/8NAFi9ejXmzJmDW265BXvttRdGjhyJO+64A0uXLsVXX30FAPjkk09QUlKCG264Abvssgv2339/XHvttXjxxRfR1tZmSa9///4YNGhQ6r+iosLelCzUuDWN2af4OUqC9KzFEQk1cvkNmEdDZE9VyKxXMD9+hTLW+/DkxU045X0fvyt/dnNLGfDuFRNBB/Dg2N/g4bG/czXju3KX093jYwj1tNzeP+bXuH7kuagprhZ+o18M+yFO3v5w3D/mantGSLkTiNmfeTFVc0q4zrsQsmPZdpg6/kbLtageo4RmTRz73kRCkSaISbIOssdOP8dc8OlNVV0mkSkTflcBkjAfMBbygxdoSJstyJgtrqznhmauhnn3yWHaUuYSxc+HHoPrdjtbyOESC6PN2+d9faFVZs1bbzQaxYIFC3DFFVekroVCIRx66KFU89menh6UlFg90pWWlmLWrFmpOAFYwhQXF0PTNMyaNQtHHHEEotFo6po5jmg0ivnz5+Pggw9OXb/00ksRjUYxfPhwXHrppTj66KM9v28olL3qZKTtlgf7fVZ4DcnvRUdjPx+ix2+eYBphIqa0QqEQ8dlwyPkcC54wFqGYll/b9UEl/bm/t2Z6r3CI7IHUzPZl6b0H9jR4Ot+QZv4uyQFD642LJ8+6prPDUW458uqakjmwhnDY+sSAkirpbcpeBrNblhPDsJ430Ex/VBaVYbci9/1l4TDDZNtYDdfoeSDuwQxpGF29M0ZX7+zIo8EPBu5LjbMyVIarRpzmuK67FD0pvpClDfPVtxS2oEY9Pn+n41ASiqT7ibBz0SJZZ61p0xhcNoCZDfOzdkE41c+aCieb/b4iO4QJ46JzbCWPYTRCmtO7byikWdaIwoJtSuMcI1n9TV+t37TzRWWXh70u2eMPE/JhjCNps970mB22za1Y+Q279Jl20TRkGpvM2dJtv81zHHud5Z3TkPKjEa6HKEoNZzrkebK9jEIu89ricBF+uN1+1Ps0aHkrCSfHNsf2EOY8wBZ3nrbRrAmnjY2NiMfjGDjQukettrYWa9asIT5z6KGH4sknn8T++++PHXbYAe+++y5mzZqFnXZKOgLZddddMWTIENx33324+eabUVRUhHvvvRfxeBz19fUAgIMPPhh33HEHnn76aZxzzjloamrCww8/DACpMOXl5bj++uux7777AgDee+89XH755Xjsscdw1FFHCb9rJBJCba2Xcy/lMmAA2215v3iZ5XdtbSXu3v8yTPr+MUfYUCiE/v3o55iGNI35zv2qy6n3o/G0BzsjTHV3Om81AypQW+p8tp9W7niORmlpEdc3qepIL3TQwpvTBYCRg4egtpLve5fXpz02DqytchUwa1GJfxRfjeGVg1Fbbk2jvNnd+2O//mWo7Z98zhjEQqFk/ayOlrEeBQAUl0aY5ZaOU0NJSXoyZX8mFObvMMMhDTU11ud3HDiQu4x5qaoqs+SzI97lCMN6d/M94ztGws62/++jbsQvP50sFLdRXhqjXZWXO7+/PWxHm/Mc378ecpnwqnJRkVMILC5JDyekPBZF02nUDKhw1F8WpXXWibnxra6utQrOLYTzhcOREKqr03XbT19sfjYU0mA+S8a412UyBXbrcxWFRyPhfG97nROt/+UVJahOWOO1xzmgfwVqq/jjrOosdQ1TW1vp2HdtUFbGN4YWItUx51hZWiK/PKpNc7Idymsd8Vd1OvNhhEmew5zs/4xrPYl0h+VWB/uB3WdGIlaBqbo6PX5GIuk6c8O+52JwTdqazNwnDqytQj+dPm8ripDrHik/GjRHf2sekyor0vXd/rx5PlidsL53P9O8qMTlG1dXlnqqA5Wt5Hnm4Nr+qC2tRHW79TtHImFqOkVFVrEuX9tozp1zquv0M+luvPFGXH/99fjxj3+MUCiE0aNH46c//SkWLFgAACgqKsIDDzyA66+/HgcccADC4TCOO+447LXXXqk4R44cidtvvx133nkn7r77bhQVFWHixIn47rvvUqvrNTU1uOCCtFp+7NixqKurw+OPP+5JOI3FEmhp6RR+ThahULLRNja2I5Ggm7i1tli9CjY0tKGtjexpMJHQ0djUTk9UTz5Po6WlEw0h8v1oIm1KZ8TR3pae8DU1dkArdnZazS0djudodHf1uIYBgFbT+9PC279tuKMIDd3ucQNAZ2f6vRoa2riEhN3DOwGdQEOnNY22NqcwZae5qRMN8eRzsXjSRDeR0JPfutX9+faOLma5xXvjjCcS6O52fkd7OB7i8QS2bbPWtdbmLu4y5qW1tQsNxew4We9uvmeYksZicccztSBr53jKVdd1arjODuf+SHvYxk6rcHrQgNGOsuWhJ+o0d40yvjcAtMXS7aSpqQPFnfznMrZ3WPuh9rZuYhqtnc5+tqcnjtaWdN3mafc0LM/q5HvdpsU1tz5XUXg0dzjroL3OCdf/9u7/b+/O46Oo7/+Bv3Y3m01C7oNAgHCEJIRADkDCqQXqBR4gUqiAyCWIR78WpC22VrQSD0SF1qPy/SoeVVHBW2q/trZfi4oHKKL9qt9WK+IPAwFCkJCQzO+PsJM9Zueendnd17OPRw27c3x25jOf+bzncwzaTwTnI6ltHmxVn7cj3dsDNTYeizip1/Hj6u6h8ai5KfxeeeLESdOPR2C59duh14Zt/5jEORSXOZVd2tq67kEnA4LTQ4e+h++4TB3tiHyZ2XayPejfTUdbcNB7aj+nvnPDjcFJ/dHa1IGVpZeguy8bRw533YMaG4/haED9KXQ/J0P2IZeezt8UXN4G3pO+/z64rhWopaXr3Anfu4KWC6wXtbbKn+Njx1p15YHmY9L1zOYjJ4Bjzfg+5DxL1Sv82tqC781Ou0YzM1MlH26Hsi04zcnJgcfjEVsr/RobG8NaU/3y8vLwwAMPoKWlBU1NTejevTuuvfZa9O7dNdFIVVUVXnrpJRw5cgSCICA7Oxtjx47FueeeKy4zdepUTJ06FQ0NDUhPT8e+ffuwbt26oO2Eqq6uxjvvvKP79zqhgtLRIcinI+Srjg5BZhiZoDiWS25fghD5eyHgc/8yroBFI60bmByl490hs//g5cLTIrffdE8qkl1e9ec75HdpmSgoVIeKdSMdu44OQdUbN9qFDtnfNiyrDHuPN2BEdnnQbwldR+srSoTQ9ZXysg5qtin3feB3gTMlqk2n/HKntid33Uh8HHbcQ/59Y/kCXcdRatZmpesvcN9Ch7YyMey6iHQcJPobC0JwOWYk30id49DvQvO9E8p+ip7QawyQug615cOODgHn9xiDrd/+LfI2Vd7TupZXcb/oENBx6ua7adgqCIKAy3bWi+snat6OdK81/Z4UsJ80d0rY9l0yZf5PB87EbZ8/jsuKz5Usm5TOn2J5LlMm+79yubo+m5g/DACw73hXnT+03iGVp6VIptvlCitvg+bYkPs9AceiJK0Xlva7EOXpxac+C+yj7NJdr5UT6Rh4BE94GhT2E3rMYvUatS04TU5ORmVlJbZv346JEycCADo6OvDWW28FtVpKSUlJQUpKCpqamvDmm2/ipz/9adgyWVmd3Qh27NiBAwcOiPsIVFDQ+V7LV199FYWFhRg8eHDEfX766afi8qRmoL7J4wFVvOfUCZM3aH2NjLlpNlYIqTln7QoTIi0sPg9DMgdgZPYgbPjnFkPpyUrqhiMnI7XqmX+uE3FGPN2/WSouVMx/+o9v+IvcI4xFkvhcz2tv1IiUhmS3F6vK5qB/QaEl+yVnU1Oma53YToCAopR8/CCvFm8c3Kk3aUHUpDNwmUIN71qMd1JHzor6h5F61oT8WpyRVx0xrxl9l73ecjU0zfKTYxo7pmrPSegvmdpzfIT0yG9H7yvuIh1L76ku9U6o20abrd1658+fj5UrV6KyshJVVVXYtGkTWlpaMG1a5ziilStXorCwEMuXLwcA7Ny5EwcPHkR5eTn27t2LO+64A3369MH06dPFbb7yyisoKChAYWEhdu/ejZtvvhlz585FSUnX1M6PPfYYhg8fjuTkZLz++uu4//77ceeddyIpqfNwbN26FV6vFxUVFQCAP/3pT3j22WdRX18frUNjC8kZ6PRuy8D3Uhdi8PTj+vZplcD9apmpN2xlg1S1nEoUglqSoDRbr8/jxel51RH3JaZDIa09fXloFfzdI6VeJaP/wLngkkzboPRi3duMxGnPLDO95oyB1PWeUwN5PTS7RNqU1Cun1FwXeshVGH5QUIu8vHTHdaki66mpUOt9/63sDPkWzNZL0qTrKHakQz4fhQemGibMUsjHsv185F6PE/ZvdWmqySrFriOfq95u+Pf6zlBwwGlPowyD0yibPHkyGhsbsX79ejQ0NKCiogIbN25Ebm7nE7pvv/02aJbFlpYWrF27Fnv37kVGRgbOPPNMLF++HMnJXROB7N+/H/X19Th06BB69OiBhQsXYuHChUH73blzJ9avX4/jx4+jrKwM69evD2tZvffee7Fv3z54PB6UlJTgnnvuwVlnnWXh0bCfmdnf7IspsIBwWstp4H61Bqd2FjqhAaKatCi1nJpleHY53jr0sfhvLU9blUgFpw/WrAx7v+1PS2Zi3f89pXs/Vjq/cAxe3L9ddhmpY5SelIq7hlyNaz/eYGj//qMXKdBXov38heZV6UqZVCtBlrebJa3iep+SU3xTk7eteRWW+RKxN4kqUTouSsdf60Pa4DBLqeVUYdu6H/qFz5SrxA2XYq80Iy3BahtLjDS6yAo5lrcOXoITHV1zF4TmA6t6AzmJ7RMizZkzB3PmzJH87tFHHw369+jRo7Ft2zbZ7c2fPx/z58+XXebOO++U/X7atGli620ikb64IweCRhoktL7ntE0IGBgf1fulth9Z4NManJpHahygqjSEvLRbTu/U7uq3K7NFo4WroeDUhbDTmuoOn5yk0Cc9cZEaHegM4j0WZdYrB1yE83qMwZIP14qfqa1I9k/raXj//vOnJTgNuslrPCxh3XojLCf1aoWfDJiBvS3faduhCqy4kxQ1uSJJR7de5f1qzI/Mvyazoluv0vfWnUPlbr06txuyYdm6oIbAUHF9ve85DXwvq2IAbOw99H41WaVB/07EB6HmHEmKW7q79Zr8xC/w5hzxQlWxyeLUznFgA7oZr6BL7TfXm6FxVfMKHaMVGDVpuaDHWFPSo5zWrq68UksaqVdJ5R+p7anJoz8vnS35ub8rqdaxZZFIpcT/gm4t63R+bjzP+VvdtZyH0LZvTfsL+XekcyPVrTdf4wMjtfql9bBkuxTb1FxfHgtaTjXHpoZ3l3gVZj/Jx/gWHA6j40K1bk/LsuEPDNVtO3w55fXUBMJKx19vftXyUNWqKyIRH4QyOCWR5jErBsa/yD9hCl83eKyj/m69tw1eiuUlM3Fe4RjFZdUK3K/X7ZVZ0lpGZvoFoFjy9kvrqRgQWUH6dxnr1qtme2qeguZ6MyU/j0a3m9AgW+0RMeM+F9itt+szAbdULMbqQQsi7VniL5X7C8sDEYJTnZN/6LFi4CzTt0lxIEJW+03FYvFvrWNOrRg2bfSaSISuhZFIHTs7Wre0Bi1aWgEVe/Vq2nPgZrUEyP59hc87oXW75jS0mNvo4mfdVIKxi8EpiaSuK6ue2Gi9iAPHOkZaVU2hl5OcgTO7nxbxxeKhtAZ8eie6MIPRqoLi0TOxhqRlS1J50EhFQO3EX0YmXepqOTXn+lnc93wAwH+UzBA/039tmtByeqrbcug1Nzy7HHU50rOeG6kMq+3Wa9bxViPbm4EphaOjtj+KDZHy+YjscvFvrT0q1Awx0Hp9WTHuNbFFP4Qwdh+U/97rUngQHTZnhfkC83RJt14AgL6pOmdB19utN8Lf0stakwfM6i4cS2wfc0rOYeYFoHSRyhWqUt8EtpxGszuRS0UlIjA9Wm/4Zgb/agLjwEr+mNwhePbbv2J8XlVnWjR241Hel7KC5Gw0tB6WXcbsLlRSXT+llzMeTEXalxsuTWOEh2WX4ZVRtyu8Ukl7dym9goJvlT8j8JxpvYbD2k01dOvVsz+1ErlrI0kzO0dc2X8axuQOMX2/SQZ7wTDvB7M6OJP83sKH4f3TeuKc7nUYkjlA8nvdr5LR2ePnvB6jkZ6UiuHZZRG3rGW/atcNHvcavNysXpPw5Devd32vu+VU/lgm4pWWeOE4RRR4AXgNPlVVupjknhy7XW5MyB+Gmb26ZlBuR3RmiQ3lU3EDT/F0zRatteXUzEIncJKNMwtGKC4/v3gybhu8FAuKp6jafpY3XVN6ZF87I45ZdAWdZ/Frxa2b3XIq8VnIcrN7n6l6H+KEQRFuVltG/gY3ls9XvT0g/JpRrrhE+FzTXtXT8p5T7fdwdeObzBrjq1YiVhpIntm9jSYXjlK1Ta37NX6PT9zcL3kPsaDXhlXv1Ty1dYV9u/AfJTPww4Lhkt+bNSGSWh6XB5MKhiNb47we4n5lv438a4LzefBWhmWVySxrnmj2CHIKtpySKLBw9Y8tjPjaFpf8bL1KBbXSRfyz0kuC/q30fk2r+NzJisukeVLEv7V36zWz5bSrsjE+rxp/anhPYm8BrbxuD6qzBnZ9p3DOlg+cqSk9al4744K+At1QdyapzyQ+DGyFWzfkKgzO6Be2TKSAzN+yGOm3pXh8SE9KU0yrHOWnrRGuXVO69cr/PmUaW05Dfmqk8y81Wy9gzjhbKYk76o4iMb+Cqm57Wverd/6AX5dfhs3f/AXTeo7XtX48iFSymr8f5QBS/7aN0jchkqY9a1lUalhawAb6yHQHlqu3BQaG7YFvjZDYp956ifJjXQanRABUjDcwSOuToMCJhlI94a/9sIpPxQRH3QKCU60tN2YWOkbHECmlpNCXq2l7HTKt3Woq9aHB16icSrx9aA8AY8dN+gXq4ectMI9q74aqPObU6JnXPVuiCVnOv2ct13Hw82dtiQjrAu2Qbr0MTymUXF7bPGK1ju0Z368UvfeL0blDMFpFN+NEkePNwKG2o+idkh/1fRt7SGusTDTnLadKy2q5v4QvG3iPTPVEbmhIkq3vdm33zcaPcB1+LLOoRcNHErDllN16SRR4cf/0VCtZpEtC6VJRHnOqLeuNz63CpPzhuHnQQk3rGZWhonUrMIDV+ooAM8sco5MxBZ4zMyZ26lAxgZLsu1CFrqWA4NfYGCmsf1EW/l5lydZUEwIaK2dwlDq8gfuz8nYmSLQMK51uY8czeOORjmvkfGHN0WBoSlpkersh09tN9/qyvZUMBqdSPUNIWuCxvmfoNVjWbyomWzI5mnWluNGH2WGTRaq8JzuxFVBugszAB7BtHSeDvgv9LVbd7514zKzGllMSBWb/AWlFpz7Td1EoBq8ag4sktwfXlco8sbJI/7Se+FHRRFRkFEdcJvC3aB9zal6h0zu1wLRtpXtSceTkMUPbkOuKrdQtNPCJp3+J4JZM/YZnl+P31dfh8g/v6Nqe1IzAJuxPbsIK409DQ1pOXUBnSq2fmF5Pt97gCZE07s/gTNGJd2snu5hdkbSqR0Rgt9785Cwk2/gatFjW3ZeDC3qOs2TbSqfUyFhEo+PzdU+IZFXrouRn6no/6Q/Uo3NnseM1RXZjyymJAi9eNYWe7CIK69v5yhUtXC4XFvSdrLobk8fGS2poZglWlc3Fw7W/iHjjkLuhmD3oXq5bb6DIN43Q1rLAY2ssraE3SOn31mmb/ViKpS2nEp8F/yzrRkYJARNayadIes9GZ+uVy6uL+56HqswSTdsnMovZde+gd1PKbFvrNRU4HGX90J8kYPXX+ZTn7tBf37DrVUJhs/WaNPTFSNArVx8Nfpe3PKsmLtLy2+Ll/cOxESFQdEhVbHV2kzPa7VcPJ1yUat+f6mf2cTg9rxo9UvJ0rWt2WuQmRNLSEuZPV2DBb/QmEBo0Ks3Wq78HgXVVvvSkVNn9Rb5yjafJPwZUS/CtIm6OSMv42ulFP8A53euCl7eo0uCEMoecRev19ZuKxaqXNbNbb+CEbLnJmZrWTXRO6WZp5D5otIEg7PVeKtezasypEXKBupbXHupOr0J9yCn5LZoYnJIoqOVUxcVg5EZpRYuSEyqKdracqqH3XV96yHXrPf/U+NHJhaNUb09N4KV6W6EtpxIbVHUNKO5H5juDvyJ0PPSRtmNRvIVpv9aM/F6tkz+ZVRb09Mk/6DHY25jikNZ8PiK7HL1MmExH6wOY5JDZehOxAqxXtOanUZyt18A5M/qAV+9QC+vymdQDZnX7lW1FlruHq+iBZYbQ/ZxXOCbisvFyS+KYUxIFVf79DacmbEtKvL63KS0pRXmhAE46CmanRW5CpJm9JuL0/Gr09OXh0a//GPa91KrBLZnGHgKEBp5Sgagr+M6mSzQrfB1Ch6r9mdGK6D89gdvSclPU3K1X49wbemcyDjW7z1l47bsd+Kjp/3StT4lHz+WlthXL7Iddfxh+g+ZJ/Ch6FMecGgpOzR1zqjr/aeurq2Fh7Zs6v3AMXty/HWPzhkZeT0OC9dZrFbsLB6ThyRE3IlvunfNx8sSUwSmJgiutrlP/b824tXidGjvwnadqOOk4mJ2W9lNjTiMFfkWnWgsi7TdsnKHEwxO9wvcpkUYVuVyppdxoBUALt8vd+btU3JseGXZ9WMuJFkrvcZUS/HBBK40tpybdoJNdHkzIr5UJTuOjIkBmCs6blRn9FddwqwwQ5XsracfuvPo4pZXZzvqDmt4pkg+ZrWpd1LHOlQMuwuJ+58tOBqYlvdHovScbmEYpDdHg7D6IFFWBl6DRbrdKhabWV8k43eicSuR4MxQLjlBWBS+GZzc14abnD2AM/0Zx+HP4wxO9QvOf1BPP4L1J709pjLFXptJp9i1ayxii7r4cZHszdO9LfI+rgb4VWoSOo9bardfIsZZ93ZGB7VJ8Cs0vt1QsUlzHjAkCjZbZTgm4YkN0jpWV3XqNis57TrUsK7W0cp3ByCzVofuUm2dDjuLEipomRIoP8RUhkCFqp91Wty15lnTrtfGqvKH8Mjw+/FeaKxlOCtLNvtFNLuyclGZmr4mmbC/wWBl9eBKe/5RubNK8EV7efdvgpShP74NFfc+PuK4VFYto5Sep2Xq1PLHVevlP6zk+ZH2l4DRkfzqPtQD5sipenlKTeUJzi5pus2bMVcDgMnqidqQVdmRrzyuZB+D+vChdPmrobeOAPK1lNuHj7SesSYOG8iFe7kns1kuS/BdkpAvTaKFoRSXazovS5XLpKkidNPbW7JSc1X0khmWVI09X17Hwc6n2lQpqaH15dsSW0wgVz+qsgbhn6E+UEmEqQRCiNlGHX7QqD8luL9I9qWhuP65qvzVZAwEA43KrcGoF3aLZNZtiX9irMlRkPq2zvKvZr+b1nXMrIpXsfP+lXG3LLROchuYzs+4hbpdb5cvrtNGSuqMnv7cgBRrrifERmzI4pS5aZ0MtTuse8Tul60PtOzDjXbSfDMqNMTKz5dwv35ele93QG1vwjdjcllOpsl/N/cCMSqW5AlsyreO/ftV0fZaiJ38FdplSWrvQl4utI29BijtZ9/6AzjzohKf3FDvUzAQeSm3LqeyESMymUROtFksruvXOKPoBfKfKRSNkAybZr6w5dh6XS3zFmYpkqCaX3sDvfG4v6nIqTdgjAezWSwGCJif1t5xGWhbquitFonVsZryybMypxGe/Kpsn34oZcLKj2Qqt9gYc9J5Tw93O3SH/lhpzqr9brx0ERK+7WW1WGQBgWHa5+Jm24FS7k0J71/oqKoepHp8plUi5vBYnEyOSicIHDCjnQbXDQeTym/EykdGt0yjeG3WUbwv7noc5fc7SmyTR9WWXRvxOPqBTT+n3l3Tr1bWs4jVkvLAOqxcFJO/p025ClrebOdsNoeXajpduvQxOKYD5LWdSuidnWzJ9fSxektHsllOa3lv2+8BzbtZsp0bIjRs03q1cueudmmsgN7lzUqGC5GzNaTD7GotmK9/SfhfiF6VzsLTfheJn2k6JnpbTgOBU4/pGjot8XrP/OiGn0d6t15yHlAwuE42d3XrL0vtE/C5aqVpXeZX4t0dpHgKdRXXg9St/vK371dpmDI4PznnsT7YLelWH+F9jF9y0nuNxpO0Y/nzgg64P2f9IFM0JDbR0EbL76ZsAiHeTrpZT856lhXe90/eEOtntxTOn3QyfgRn/YlGKJxln5NcEfaZlHLmeciWwy1Y0W3nk8p3d1wk5T9iYOpWt/Ib3y+A0aqJ1rPXel+ym3IoZsKyB/QS+Dk1q0iAzzlPgIQ7tDq11KJz+NLDllBJY8HsIO7NG5Iyu7mJZ0u9CrCy9RMea2sXiRWnnk085dh3JSfnDAQBjcoeIn5n1oCSQmdtKT0qFV8c7Q61oOXXSBFtW0lopM1KJc+o1Ss6k57pe0u8CVGWWGNsvXyUTNU45Uk49Z0qPwVVvR8PPU2w51VmrCTzGoe8GN2ueDqVWXaeeZysxOCVJaguFNRWXS37uhG6hscC6J58Ss+RpGL8SzfMXmKrlA2fi4dpVGJlTEbacmUGCmiAuWk9FzWTnTUxLYGw020crYOwcxysz5jQqqaBYoidndvfl4PbKKxSXk6tgx0oZReopnVOnPjhTO4mQke0AwXUWq+bvCJr0yBN5IikrnwsnykPnQOzWSyI9T4GKUvIM7SfRtVj0Xiw9As9KVFuhQ24wPVJyIywW3ZbTWLsf2P88SNtUF9GkZW8FydloaD0MAChP74Ovvv9/MkvbftDJYbS8k9BMRiuwsVbe2Slq3Xo1BGexwufx4se9fojuvhxTtyuV/804PIHHeNipiQAjLKl7H0r1re7JnccqzZOivC37KwKmYHBKIlfQ32o7Zmi/IBmcdunmSbVku5KvvlY47E4acyqVBjOfHqrbljlddiJu3eSKhYAOWysrWp7iG02l1ryg5fzdNeRqvHNoD07LqUB3Xw6+Pv6d1uRRArPyEpQvl43umPdl1RxyqJxUlwrMm0rl87zic0zffzTeRz2795lB/w4eCqefUn0rw5uGTcNWITNJeTZg+2tu5mBwSiI9s6HG4IM7RxmVW4kr+k3FiIBXclhHw6B6J5VwpzKZlgl3FDfpoJu6WVyn/mfb/jXs2mg6zcwLofJ9WZjSY4yqZR11nZBDWHcNylVindrFMx455f7h1O6eTjk+Zggec+oN+U56Oa3UtHYW+qR7lElsTXc6nITBKXVxSf6psIqOllOHFqh28LjcuLDnuKjsS+mo29VyqjYPmXnDUzfm1FoWtMWGHKPo3qSiWSGJZhnCSj9pYWVukavDckKk+KNlhv1YZdb4VKu4IvwdtpyB688JPdWchsEpibSMOfV/74TCwy9e+tpbRXn8StffTigsQ1PQKrSZtm1VY04t7tZrNpfL3t5mmia6MJhQTxTH9VVnDUT/tJ5hr84BnHGdkLNYW1YwvzlB9F4lE5XdmM4590vjD9zlehSa9TvNvKrj5Z7E4JREQU+ILCwVrdpyaXpvFCRnY1xelUV7iB1SgbqWMadOlOvNAACUdutteFtqxqdYXTHok1po6vZccNnaK0HbvrWn0+vyoE1o17EvY5LdXtxXvVzyu/ioBpCZrB1zah1nl/6Jyd+Vs19qD8nvO9ARzeSoZlb57IjgPCANVvWiMbNhJV7aaBickkhPgaIvoLHmAk92e/Ho8F9asu344MwuQhPya/HI19swq9ckye/9qUrx+LB15C1h4z6iwYqbZLI7CVf3vwgb/rXF/I3bQNsrArTbUHUtln64FoCTxlrFSU2ATGNlOWpl7yCnP5xMRKkeH7aM/A18bulXmDi1t5gT85LeIxX8WywKTk28j7DllOKOpgLlVOVQTx3RecVW/JF6H5fS+U1ye6xKjqyeKXl4edTt8KhozUz1+KKQIr8o5FSTgyxbJ0TStKz2dPZL62o9sHJCJC0cWjckGzmxYk7mimbPDbnXh3Q4KBAJTIl5R8foOOouegP5wG2EPhR1YrfeeOGMOzw5gpmtoPHy9CZW1WaV4tzudbixfL74mdLZTYnwdDYapANTe/NQNJ6YGlWXMzjo37HTrdcYp7ScspyjUFZeB5bmN2dcUjHBKYcqyWXPA2UpgtDVxdisoM3odnym9LKK/LoYsy513kfCMTglWR0Rnja5Qv6rBWfrtZ7H5cZPSmZgVG6l+JlSQZ8i0dpqJ3/Ws6slIip7Ndj09ovS2eLfLrhwTvc6oynSTduESJxZlEgrJ7WUJTKnlD/dfTmoziyxOxkAgvOmlvK9OK1z7gUrXqc3p89ZqM0qxW2Dl+reRuCDUJdVIZOZY07jpIxgcEoiqQL35KkJSLSso7wfsoXCgQ8c1+KUmy9gX35xyTwxdYqUgG7OLgCzek2U7QZmpWjmmWi8cF2NeKkIkLlGZldYtGWOOaVg84rPtTsJAIIbMrTkpFSPDy/W3YqbBy3Std9ZvSZhfoRjkO3NQP3gJajOGqhr20DobL3h35rBzIdO8XJHcsYdnhxB6mFXW8dJzeuo2JOelcggpcqHmjGfZDITexG4XC64XW4UmzwLsJJ0TyoAoGeK2peEG6d11kSrgshIPUsosdXlDlZeSAcrsxvvymREhxA4c7C23OR1J0m2tqrZymXF5+LHfX6oaX96hdahHHnNxMk9iRMiUQD1LaddFylbTmOFmuM+sFsvfHHsG8vToobtrVKuwD9jL9dG6+itr/oJ3jz4ES7oMS5Ke2TLKTmbVeUF85szOOl+YNXrTbQSgrr1mrNNJxxnufedm5U+Mx9yxksJweCURFKXWZug0HLKCZFiiP0FvS4Wj1Hul9ZTerexeryirCglHz/qNTGq+3TKuWE5R1KimTsXFk9RHH6jjjOuKdLGKXN4BHZNdcps6oH0ltWBh9eqifj4KplwzstBZBupCl9bh9KYU3WuGXCx7H7IGRLx3KwbcqXk50Fz9TqkAiAnkc6dR+P5sOzYxEc9gGKEVMVzRq8J+HHv6HRrJOdxSiDo1HeuGtd17wjtsWNWvcDMgLIsvY9p27KTM3I1OYLUhZaZlCa57OCMfp3rqKz0TS4cJY5Ns7oljKSpOexOeuoWrZREzsOxlU+NzKAdayybNVEjzp5K0ixqYbFyzGkiFBxxyCkPTjsseJWMmZeR7pZT85IQkZnX9ZJ+F5i3MRs54w5PjiBVoIzOrcS8Pudgbu+zgj5f1HeKfyUd+yE7aCkAndQKZ3VKnPNLSS2t3auseugioEN5IUo4VpUpVj48dFKZT+o5Zcxp4IO6C3t2zj+wsHiKoW2amSdL0nphQFoRftxLWy+DaFwXZt5H0jwpGJ1Tqbygw3HMKYmkLkG3y40f9/4h3mrcE/S5/xUWkcecSn3GVgZ78fhLk87DDnkgTRKsGvujFWfrJSI7OWWW/cD6XUVGX7xUdxuS3B4bUxQsye3BvdU/1bye3K2GD3Ss44xcTY5g9TtL/UUXL2h7qKlGO6uqHZ3URMqPcrP0maWbme8kdUjAFg1OGWdFJMWqrpZsOXUGJxW1PrfX7iQACH2VDEwJTJ1xmCOnwqz0mX1Vx8O1zJZT6iL7hEjHSmEEzWuQeZLdsXW5t5+62SW5rH36GqmiEY18Oj6vCp8c/RLjcqsMbysWbkibR6w2NLNoTeZA7Gs54JhxVuwNQlIs69bLlnpHcNJpSHZMcOqgg2KiqHTrjdNjZ0Rs1VbJUrpaTgOn2YZLdoIQ8fpzSMUyUTw67Jc41n5c1U0s8Mxc0GMsXvh/f7cuYQr8wan13ZaU86NVOdbj8mBZ/2mmbCsWrqpMbzdD69cPXqJrPatu/fFaISOi2OBzJ9udBADWTA53QY9xeLNxNxYUTzZ922rJjek1K3A1+yFniscZecII9o0ikZ7LLPDirM0qk11WYMupLQp82RHf5RkqsIi8ot9UcVZmO/hb2NwWt5xGDl1iK6eG3ijjsVXP5XI5ptUUiM9jTGZgt9545qAiyNZuvZuGrRL/FgTzJ4eryirBC3W3Rv092kHkzrVJ+cDs63ph3/NwWvYg3DXkalO3G01sOaUAka+0SBePK9IyEi0KXcGpg0p2kuRydQYCpo6J1CnJppbTaIw5peiwbvZUonBW5Te+usgZnNRhIsntwYC0Ivzz+31R33ehL1f826q8afdwJLl7v2ktpyYfurzkTNxcscjcjUYZW05JJPc0MHL3ta6V2IpAVrCqW+/KgZdgQfHkiDc/Jz0dVyXW0hsPnFRLpfjH95yShJ8MuNjuJCDJFZ9tXdG4LKqzSgAANVmlUdhbbIjP3ES6yPWtjxyauhSXEb8X2HLqeCGVbSecK49F3XonFgxTWMIl+afTOanbq1NYVacfmlWCXU1fYEzuEIv2QLEoFmfrJfWcVsTamS9WD1qAP363A5MU76exyvrZekflVGL90J+gb2oPk7YY+xicUgC54FR6PEFQIa2yFcFpBTtJcc5Jcsp73JzOCQ8SEs3MookoSStCddZAu5NCjmLNtZiTnAEAKPTlWLB1lh9qscNEl7qcwajLGWx3MmKay+VCWXofu5PhKAxOSSRXuY081bX6br0sz2OJc86WXcGpK+hv51bcLi76AZ7Z9wZOz6u2OykJJ8ntwajcSruTQQliWb9pSPOkYEbRBNO37dwSjsg+cvVa59SS4g+DUxLJjjlVNSGS9N+hnzq5op/wQjKBna3cNVkDsevIFxiSOcCW/cdKPl3U9zzMLz7Xsu7PRKSNVSVHTnIGri35kUVbJ7XY+ytxyL2DlN3srcPglERyXVUiXaBul56WU5bsjhVynkvSeuGdQ5+i3IYuJ78edBn+r+MbVHr72/KI0hVDQ04ZmBI5h94HWz19efj2xEGTU6NOrDyMo3AMkazjk3tnKA+8ZRickiqRrkF3wITPck+YAvEWGAs6z9Ks3pOQ78u2ZcKXbkmpmJBXg4MHm2VmiyYiig+yFWEiirpkdxIeHfZLpHp8Yd/x1U7WYXBKoiR35NaXiN16g1pO5bELROxJdnsxuXCU3cmwiSvC37GB8XyXopQ8AEBZN046Qc5lZynDrqpE0gp82ZKfs05rHQanJPK43Hh8+A1IcXslvlW+CLv7crDn6L9OLR2+vL+yzFddOBeL2i7MpfEjzZOC50begmTJso3IXLFZaWWJR0TOwHc0UJC85Ex0S0oN+1xNt8p5fc5WWCIWb9iUqALHYPF5SuxL8fjg5muJiIjIBGqHspF2vFOTKmqeBHdLSkVPX57MNjpx4gXn4pnpwhZ+IkoULO2ItInNHhKxgcEpqaKm5dSt8vbGm6BzsaiVxgcqRKSWWeXomorLTdoSxTMGSfbgUbcOg1NSRV3hJ1+BZwHqfP5zxFAsGINTIrJaaDkzLLvMtn2THB4rAhieWofBKakiCB2mbYs3QefjOSIiss/C4ilR3iPLfPUYlJC6HoWkj+3B6eOPP46JEydi6NCh+NGPfoSPPvoo4rKtra245557MHHiRFRVVeHiiy/G+++/H7RMQ0MDVqxYgbFjx6K2thbLli3D/v37g5bZvXs3Lr30UgwfPhyjR4/GmjVr0NraGrTMP/7xD1xyySUYOnQozjjjDGzcuNG8Hx2D1FyCHVAZwPIe6FgsaomIjNJXkvpvjT63FzN6TTAvOURkuhQ330tsFVuD01deeQX19fW48sorsXXrVpSXl2PRokVobGyUXP7uu+/Gli1bsHr1arz44ouYOHEiFi1ahH379gHonDnryiuvxP79+/H73/8emzdvhsfjweWXX4729nYAwP79+7FgwQKUlZXhmWeewYYNG/D3v/8dt912m7if5uZmLFy4EEVFRdiyZQtWrlyJDRs24JlnnrH+oDiU3MuGZ/WahLqcCqR7wmf5lcJWOSIiImkeG2aV5vxvWjjrYLFOZY+i1HwsLJ6CWyoW252UuGNrcPrQQw9h5syZmD59OgYOHIjVq1fD5/Nh69atksu/8MILuOKKKzB+/Hj07dsXy5YtQ//+/fHEE08AAL788kt8+OGHWL16NSorK1FaWor6+np89tln2L59OwDgjTfegM/nw/XXX4/+/ftjxIgRWLFiBTZv3ozm5mZxP21tbaivr0dpaSmmTJmCuXPn4uGHH47KcXEkme4LlxWfi9WDFnJ203jAbiqSYvPmz3NJFFN4D40Rzipby9J7ozqzBIv7nmd3UhLOjF4TMDy73O5kxJ0ku3bc2tqKPXv24IorrhA/c7vdGDNmDHbt2iW5TltbG3w+X9BnKSkp2Llzp7hNAEHLJCcnw+VyYefOnRg/fjxaW1vFzwK30draio8//hijRo3Crl27UFdXB6+364Xt48aNw4MPPojm5makp6dr/r1ut303Hf++jaRBcAUXxpG25T+sAgSZZVy2Hg+KTDh1WpxwjszIt2Zxu+0/Hmq5A8q2WElzvHFS3iUbBJx2LXkgcMlo5x23RGDM/CvN5bAy1o0k3DF0md3JsA3L2/hjW3B66NAhtLe3Iz8/P+jzvLw8fPXVV5LrjBkzBv/1X/+FESNGoKioCNu2bcPOnTtRXFwMABgwYAB69uyJdevW4cYbb4TX68Wdd96J9vZ2HDhwAAAwatQo1NfX4+GHH8bs2bNx+PBh3HvvvQAgLnPgwAFxm37+dB44cEBzcJqU5EZenvaA1mw5Od10r5t6OLhvfaTf4/F4AHQ+aIi0TLLX44jjQeGSPJ2dKdxul2POkZF8a5bc3G7IS3HG8VCSlOQR/3bKOUxUTsi7FH3px1LEv7Vcg56kzvLX5Yp++Zuy1xv2GcsPaYe9Xdc1j5FzsLyNH7YFp5EIghCxe+gvf/lLrFq1CmeeeSbcbjcqKiowZcoU7NmzBwDg9Xqxfv16rFq1Cqeddho8Hg/OOeccVFZWitssLS3FmjVrcOutt+L222+H1+vFsmXLsGPHDrjdXb2cQ9MgnOruqKfr6smTHWhqOq55PbO43S7k5HTDoUPH0NGhrztK87ETQf8+eLBZcrn29g7xv5GWOdkW+Tuy18mTnWOzhQ7B9nNkRr41y6HGY3D7HFdcSvKfQyDydUrWclLepehrPtYi/q3lGmw/2Xn/7LCh/G1pORn2GcsPaYeOHRP/5jGyH8vb2JGZmQqv16O4nG21rZycHHg8HrG10q+xsTGsNdUvLy8PDzzwAFpaWtDU1ITu3bvj2muvRe/evcVlqqqq8NJLL+HIkSMQBAHZ2dkYO3Yszj33XHGZqVOnYurUqWhoaEB6ejr27duHdevWidvJz88PS9fBgwfFNOjhhAumo0PQnY6OkFfJqNlO6DI1WaXYdeRzlKcXO+J4ULiu95y6HHOOjORb09IgOOMaViNw2HCspDleOSHvUvQFnnPd99xo5xuJ3THvShME4+eXzMfyNn7YNiFScnIyKisrxYmKAKCjowNvvfUWampqZNdNSUlB9+7d0dTUhDfffBMTJ04MWyYrKwvZ2dnYsWMHDhw4ILlMQUEBUlNT8eqrr6KwsBCDBw8GANTU1GDHjh1oa2sTl92+fTtKS0t1jTeNB4LKiXLk2pWvL5uLFQNn4ZLePzQnUURERERRxbGNRFaytZ/a/PnzsXLlSlRWVqKqqgqbNm1CS0sLpk2bBgBYuXIlCgsLsXz5cgDAzp07cfDgQZSXl2Pv3r2444470KdPH0yfPl3c5iuvvIKCggIUFhZi9+7duPnmmzF37lyUlJSIyzz22GMYPnw4kpOT8frrr+P+++/HnXfeiaSkzsNx/vnn43e/+x2uv/56LF68GJ9//jkeeeQRXH/99VE8Os4iaJydTmr5jKQ0/LBghFlJIoqaFHf4eCwiImnGWm+03m/NwImC1XMzOCWylK3B6eTJk9HY2Ij169ejoaEBFRUV2LhxI3JzcwEA3377bdA40JaWFqxduxZ79+5FRkYGzjzzTCxfvhzJyV2T9ezfvx/19fU4dOgQevTogYULF2LhwoVB+925cyfWr1+P48ePo6ysDOvXrw9qWc3IyMB//ud/4qabbsJFF12EnJwcXHnllZgxY4bFR8S55N5zGoyFdizzn2W+FihYisenvJDDsHMTkT30Xnt2vrIqNl+XZY8+qd1xel41KjP6250Uorhk+wwfc+bMwZw5cyS/e/TRR4P+PXr0aGzbtk12e/Pnz8f8+fNll7nzzjsV0zVo0CD84Q9/UFwuYbCmmxDEib9YUQnicdn6SmhNeOaIYpstLadR32PscrlcWFU21+5kEMWt2Klxka3UtpzyBkdERBRbvCFDF8bkDrEpJUSU6GxvOaXYIITM1qu4PJtaYxLPWrDnRq6RfDk9EVEkaicQdJIUd9fwqLqcwfhV2TwbU0NEiYzBKamiuuWUFfkYF3uVKiuleJKVFyIiinGBZZ3b5eK9nIhsw269pMrw7HJNy8fik2PqwjGnRESJw8cZyYnIIRickiqDM/rhx72U30/KkIaIiBJZLM7W63V5bNs3EVEgBqekWqEvx+4kkMXY3k1EZC/2PCKiRMbglFRTNwaFbaexrOtVMkREpI++4JLDPImIGJySBlqe5nK23tjGyTBiH69BIns0th3Vtd7Z3esAABcVnWFmcoiIYgpn6yVTMaQhshcnsyKy14S8Wjz69R8xr885mtabXDgKw7LKbB9Cw27FRGQnBqekmprWNN7SYhtb24iIjClKzcfLo26Hx6W9c1qPlFwLUqQCe8sQkUOwWy+ZzD9mkTe6WMbzR0Skn57A1E6BZT4fURKRnWKr9CRbqQlXOvwT6vApbExiyykRERER2YXBKZnKH9qw5S228ewRESUmlv9EZCcGp2QyduuNZWw3JSJKbLwPEJGdGJySBuonRGJoGqP8szSyWzYRERERRRmDUzKVwDGncYFnj4goUbHtlIjsw+CUTCWwWy8REVFM4R2biJyCwSmZqkMMTikWcUKrOMBTR0RERDGKwSmZi2MWYxpbvomIiIjILgxOSTU14QonRCIiIiIiIj0YnJKp/C1vbmYtIiKimCBE+JuIKNoYQZBqambg9c/WS7GJ54+IiIiI7MLglEzlD23cHHMakwam9wYAlHTrZXNKiIgoWgS2lxKRQyTZnQCKLwJHnca05SUz8cfvduCcwjq7k0JERNHCXjNE5BAMTkkD9QEnQ9PYlOnthhm9JtidDCIisglbUYnITuzWS6qpCTiv6D8VALCo73mWpoWIpPE1QESkFcNRInIKtpySauNyq/BS+nac3X1kxGVOz6vG2FFD4XHxuQcREVEsYGspETkFg1NSzefx4q6hVysux8CUiIiIiIi0YhRBRERElMDYbkpETsHglIiIiCiRBczWy4l7ichODE6JiIiIEhjjUSJyCganRERERAQAOKv7CLuTQEQJjMEpERERUQILnK33BwW1NqaEiBIdg1MiIiIiIiKyHYNTIqI44rI7AUREREQ6MTglIiIiSmACp0QiIodgcEpERESUwPj6GCJyCganRERERAmMLadE5BQMTomIiIiIiMh2DE6JiIiIiIjIdgxOiYiIiBIau/USkTMwOCUiIiJKYAxNicgpGJwSERERJTCB0/USkUMwOCUiiiMuuOxOAhHFmLL0PgCAvumFNqeEiBJdkt0JICIiIiL7VGcNxF1Dr0Jt74FobWq3OzlElMDYckpEFEf6dysCAFSk97U5JUQUSyoz+yPDm2p3MogowbHllIgojszrcw56+HJxRn613UkhIiIi0oTBKRFRHEnxJOPCnuPsTgYRERGRZuzWS0RERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtnMJgiDYnYh419EhoL29w9Y0eL0etLW125oGIq2YbylWMe9SLGK+pVjEfBsbPB433G6X4nIMTomIiIiIiMh27NZLREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2YlxxIwAADHZJREFUY3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwGsPeffddLF26FOPGjUN5eTn+8pe/iN8dPnwYN998M84++2xUVVVhwoQJuOWWW9Dc3By0jX379uHyyy9HdXU1Ro8ejdtvvx3t7e3R/imUQOTybaDW1lZceOGFKC8vx2effRb0HfMtRZuafPvBBx9g7ty5qK6uxmmnnYbLLrss6HvmW4o2pXz7z3/+E0uXLkVdXR2GDx+OuXPnYteuXUHLMN9StD3wwAOYPn06amtrMXr0aFx11VX48ssvg5Y5ceIEVq9ejbq6OtTW1uLqq6/GwYMHg5Zh3o1NDE5j2Pfff4/y8nLccMMNYd999913+O677/Czn/0ML730EtasWYO//e1v+NWvfiUu097ejiVLlqCtrQ1PPvkkbr31VmzZsgW//e1vo/kzKMHI5dtAd911FwoKCsI+Z74lOyjl2507d2Lx4sUYP348nn32WTz55JOYPn26+D3zLdlBKd8uXboUAPDII4/gmWeeQXFxMRYvXiw+yGa+JTvs2LEDs2fPxubNm/HQQw+htbUVCxYsQEtLi7jMmjVr8Je//AV33303Hn30UXz33Xe45pprxO+Zd2OYQHGhrKxM+POf/yy7zCuvvCIMHTpUaG9vFwRBEN544w2hoqJCaGhoEJf5wx/+IIwYMUJobW21NL1EghA5327fvl0466yzhM8++0woKysT/vd//1f8jvmW7CaVb2fMmCHcddddEddhviW7hebbgwcPCmVlZcIHH3wgfrZ//36hrKxM+OijjwRBYL4lZ/Dn1ffff18QBEFoamoSKisrhW3btonLfPHFF8y7cYItpwmkubkZGRkZcLs7T/uuXbswaNAg5Ofni8uMGzcOTU1N+Oc//2lXMinBHT58GKtWrcKtt96K1NTUsO+Zb8lpDh48iA8//BC5ubmYOXMmxowZg3nz5mH37t3iMsy35DQ5OTno378/tm7diuPHj6OtrQ1PP/00ioqKUFpaCoD5lpzh6NGjAICsrCwAwMcff4y2tjaMHTtWXKakpARFRUVit3Tm3djF4DRBHDp0CPfeey9mzZolfnbgwAHk5eUFLee/iA8cOBDV9BH53XDDDbjgggtQW1sr+T3zLTnN119/DQD43e9+h1mzZuHBBx9Ev379cOmll2L//v0AmG/JeVwuFx566CHs3r0btbW1qKqqwjPPPIONGzciJSUFAPMt2U8QBNTX12PkyJEoKSkB0Jn3UlJSkJ6eHrRsXl6emC+Zd2MXg9ME0NzcjCVLlqC0tBRXXHFF0Hcul0tynUifE1lp69at2Lt3L6666irZ5ZhvyUk6OjoAALNmzcK0adNQWVmJX//618jPz8fzzz8vLsd8S04iCAJWr16NwsJCPPHEE9i8eTNGjRqFJUuWoKmpSVyO+ZbsdNNNN+Gzzz7D2rVrgz6Xyn+CICguI/c5OQOD0zjX3NyMRYsWIS0tDRs2bEBSUpL4XX5+ftjTI/+/Q582EUXDO++8g08//RTV1dUYPHgwzjrrLADA1KlTxQk9mG/JafwTdw0YMED8zO12o3///vj2228BMN+S87z99tv4n//5H6xbtw61tbUYOnQobrnlFrS0tODll18GwHxL9rr55pvx5z//GZs2bUJhYaH4eX5+Po4fPx72BorGxkaxdZR5N3YxOI1jzc3NWLhwIbxeL+677z74fL6g72tqavCPf/wjaOrt7du3IzMzM6iSRRQt1157LZ5//nk899xzeO655/D73/8eALB+/XpceeWVAJhvyXl69+6NgoICfPXVV+JngiDgq6++Qs+ePQEw35LzHD9+HADEeSiAzhYlt9st9gZgviU7CIKAm266Ca+99ho2bdqEPn36BH0/ZMgQeL1ebN++XfzsX//6F/bt24eamhoAzLuxLEl5EXKqY8eO4d///rf477179+LTTz9Ffn4+UlNTsWDBAhw/fhx33HEHmpubxSdMubm58Hg8GDduHEpKSrBy5Upcd911aGhowN13343Zs2fD6/Xa9bMozsnl28LCwqCno2lpaQCA4uJi8XPmW7KDXL4tKCjAggULcN9992HQoEEoKyvDU089hYaGBlx44YUAmG/JHnL5tqamBunp6fjFL36BpUuXIikpCY8//jiOHDmCcePGAWC+JXusXr0aL730Eu69915069YNDQ0NAICMjAykpKQgIyMD06dPR319PTIzM5Geno7f/OY3GDFiBIYOHQqAeTeWuYTQDtoUM9555x1ceumlYZ9fddVVGDlypOR3APD666+jd+/eAIBvvvkGN954I3bs2IHU1FRMmzYNK1asgMfjsTTtlLjk8u3VV18d9NnevXsxadIkvPjiiygrKxM/Z76laFPKt4Ig4P7778cTTzyBo0ePoqKiAj//+c9RVVUlLst8S9GmlG93796NdevWYc+ePWhvb0dZWRmuueYajB49WlyW+Zairby8XPLz+vp6XHTRRQCAEydO4NZbb8XLL7+M1tZWjB8/Xhzr78e8G5sYnBIREREREZHtOOaUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbJdkdwKIiIgosg0bNuC3v/0tAMDlciEjIwPFxcUYN24c5syZg4KCAptTSEREZA4Gp0RERA6XkZGBjRs3AgCOHj2KTz75BE888QSeeuopbNy4EUOGDLE5hURERMa5BEEQ7E4EERERSduwYQMee+wxvPPOO0GfNzU1Yfbs2WhpacG2bdvg8XhsSiEREZE5OOaUiIgoBmVmZuK6667Dv//9b/z9738HAKxduxbnn38+amtrcfrpp2P58uVoaGgQ17ntttswadIkhD6XfvbZZzFkyBA0NjYCAJ5++mlMmTIFVVVVqKurw5w5c/D5559H78cREVFCYnBKREQUo0aNGoWkpCR8+OGHAICDBw9iyZIleOCBB7Bq1Srs3bsX8+bNQ3t7OwBgxowZ2Lt3L3bs2BG0na1bt2LChAnIzc3Fu+++ixtvvBEXXHABHnzwQaxZswa1tbU4evRo1H8fERElFo45JSIiilHJycnIycnBgQMHAAD19fXid+3t7WIL6gcffIDTTjsNAwYMwLBhw7BlyxbU1dUBAL7++mu89957uO+++wAAH330EcrLy7FkyRJxW5MmTYriryIiokTFllMiIqIYFthF969//StmzZqF4cOHY/DgwTj99NMBAF9++aW4zMUXX4zXXnsNx44dAwBs2bIF+fn5GD9+PACgoqICn3zyCdasWYN3330Xra2t0fsxRESU0BicEhERxagTJ07g8OHDyM/Px0cffYRly5ahsLAQt99+O5566ils3rxZXM7v3HPPhcvlwquvvgpBEPD888/jwgsvRFJSZ2eqMWPGoL6+Hu+99x7mzp2LUaNG4cYbb8T3339vy28kIqLEwW69REREMertt9/GyZMnUVNTg//+7/9GTk4O7r77brhcLgDAN998E7ZOWloapkyZgq1bt6JXr1745ptvcNFFFwUtM23aNEybNg2NjY147bXXUF9fj/T0dKxYsSIqv4uIiBITW06JiIhiUFNTE9auXYu+fftizJgxaGlpgdfrFQNTAHjxxRcl17344ovx3nvvYcOGDaipqUFJSYnkcrm5uZg1axZGjBiBL774wpLfQURE5MeWUyIiIodrb2/Hrl27AADHjh3Dnj178MQTT+D48ePYuHEjPB4Pxo4di02bNuGWW27BxIkT8cEHH+CFF16Q3F51dTVKS0vx/vvv46abbgr6bv369Thy5AhGjhyJnJwcfPLJJ9ixYweWL19u9c8kIqIEx+CUiIjI4Y4ePYqZM2fC5XIhPT0dxcXFuOCCCzBnzhwUFBQAAM444wysWLECjz32GJ5++mnU1NTggQcewNlnny25zUmTJuHrr7/GlClTgj4fOnQoHn74Ybz88ss4duwYioqKcPXVV2PevHmW/04iIkpsLiH0TdxEREQU9y6++GL0798fd9xxh91JISIiAsCWUyIiooSye/duvP3229i9ezduuOEGu5NDREQkYsspERFRAikvL0dmZiYWL16Myy+/3O7kEBERiRicEhERERERke34KhkiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKy3f8HqyjkYRAoJzkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[12, 6])\n", + "plt.plot(lc_kepler.time[:3000], lc_kepler.counts[:3000], color=palette[3]);\n", + "plt.ylabel(\"Relative Flux\")\n", + "plt.xlabel(\"Days\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6635859b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 19 DPSS windows for multitaper spectrum estimator\n", + "CPU times: user 19 s, sys: 4.61 s, total: 23.6 s\n", + "Wall time: 9.73 s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "%%time\n", + "mtls_kepler = Multitaper(lc_kepler, NW=10, lombscargle=True, norm=\"leahy\") # Using normalized half bandwidth = 10" + ] + }, + { + "cell_type": "markdown", + "id": "864f7f79", + "metadata": {}, + "source": [ + "As stated before, the `adaptive` weighting method and `jackknife` log-psd estimate are currently not supported, hence these keywords will have no effect, no matter their value." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4082f502", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AACxjElEQVR4nOzdd5gbxf0G8FfS9V7tczl3+9x7t8EFMA41dAi9JPQWagjNgVBDCfADQgktEEISHLrpxcY27r13+3xnX+9N0v7+uJNutdquVb338zwJui2zI2klz1cz8x2bIAgCiIiIiIiISDd7uCtAREREREQUbRhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMigt3BaKF2y3A5XKHuxoAgLg4O5zOyKgLRQ/eN2QW7x0yg/cNmcV7h8yw8r5xOOyw223a17Tkal2Ay+VGdXVjuKsBu92G3Nw01NY2we3mWsqkD+8bMov3DpnB+4bM4r1DZlh932RlpcBud2hfN+ArERERERERdTEMpIiIiIiIiAxiIEVERERERGQQAykiIiIiIiKDmGyCiIiIiCKKIAhwuZwQmG+CdLDbbWhtbYXT6dSVbMJmA+x2B2w27cx8ahhIEREREVHEcDqdOHLkENxuV7irQlGkvNwOt1t/+nO73YHc3B5wOLSz8ylhIEVEREREEaO0tBR2uwM5Od0BBNZjQF1HXJwNTqfeLkwB1dXlqK2tRHZ2vvlrmj6TiIiIiMhCguBGTU0tMjPzEBcXH+7qUBSJi7MD0N8jlZ6ehaqqoxAEN2w2c2kjmGyCiIiIiCKCy9XeEHY4+Fs/BZfnHjMyHFCKgRQRERERRRgO6aNga7/HAklowkCKiIiIiIjIIAZSRERERERk2J///CDuvffOcFcjbDgAlYiIiIgoAH/+84P44otPcdZZ5+LWW30DiwUL7sXXXy/C+edfhLPOOhfnnHOaaln33PMACgp64KabrsFXX/2ElJQUv2MqKyvwyisvYsWK5aiurkJGRiaKiobiuutuRt++/ax8agCAkpLDOOec0/D22+9jwIBB3u0333w7hBAs9nX22afiggsuwllnnRf0axnBQIqIiIiIKEDdunXH119/ieuvvwUJCQkAgIaGeixe/AO6devuPeajjxZ5z3njjdewa9cO/PnPT3i3paWlYfPmTarX+uMf74AgAPff/xAKCnqgrOwofvllGerq6ix/XmrS0tJCer1Iw0CKiIiIiChAw4ePwN69e7BkyU+YO/d4AMA333yFIUOGwm5vn03jcDiQm5vnPScpKQlxcXE+27TU1dVh48YNePHF1zB69FgAQEFBD4waNUb1PLfbjX/84018/PFCVFVVom/ffrjqqmsxffpMAEBtbS2efvpxrFy5HM3NzejevQBXXXUt5s493tuLdskl5wMAxo4djxdeeAV//vODaGpqxMMPtweCN9zwOwweXASXy4kvv/wcSUlJuO66mzFt2kw88cSf8csvS9G9ew/84Q/3Y8SIkQCAqqoqPPvsE1i/fh3q6mpRWNgXV175OxxzzGxvmaWlJXjmmSfxzDNPAgCWLFkFAFi/fi1efvl5bN++HTk52Zg79wRcddW13kA22DhHioiIiIjIAieddCo+//xj79+ff/4JTjrpVEuvkZycjOTkZCxe/CPa2tp0n/fOO2/gq68W4a67/oi33/4XTj/9LPzxj3dgx45tAIDXXnsJ+/fvxVNPPY933vkAN910m7fH6dVX3wIAPP/83/DRR4vwyCNPKl7ns88+Rn5+d7z22js46aTT8PjjD+NPf7oXxx47B3//+7vo168/Hn74fu+QwJaWFgwbNgJPPvks3n77X5g371e49967sG/fXgDAI488iW7duuPqq6/HRx8t8vboFRcfwu2334zjjpuHt99+Hw8++DCWLfsZL7/8vPEX1SQGUjFGEAT8YcPP+OuOdeGuChEREVGXMn/+yVizZhXKy8uwf/8+7Nmzy9s7ZZW4uDjcfff9+OSThZg/fzZuuOF3eP31v+HgwQOK57S2tuKdd97AH//4ACZNmopevXrj9NPPxLHHzsbHH/8PAHDkSCkGDy7C0KHD0bNnL0ydOh2TJ08FAGRlZQMAMjMzkZubh4yMTMVrFRUNxcUXX4bCwj64/PLfwuVyobCwL+bNm4/Cwj646KJLcfDgAZSVHQUAFBQU4PzzL8LgwUXo1as3fvObizFq1Bj88MO3AICMjEzY7XakpKQgNzfP23v3zjtvYP78k3H22eejd+9CjB07Htdffws+/nhhSOZtARzaF3OcghsbayqwsaYCNw8ZG+7qEBEREXUZubl5mDhxCr744jPU1dVi1qy5SElJtfw6xx13AmbMOAZr167Cpk0bsXjxj3j33bfw6KNPYcqUaX7HHzp0EM3Nzbjppmt8tre1tWH8+IkAgNNOOxP33Xc3du7cjsmTp2H27LkYNmyE4boNHDjY+zghIQGpqWno33+Ad1t2dg6A9iF93bp1h8vlwttv/x3ff/8NysrK4HS2obW1FYWFfVWvs2vXTuzevROLFn3q3eZ2u9HS0oKKigrk5ekfLmkWA6kYU93WGu4qEBEREXVZJ598Kl5++QU0NjbigQceDtp1kpKSMG3aTEybNhNXXXUNbrvtJrz99t9lA6mmpiYAwF/+8jxyc3N99iUmJgIAZsw4Bv/5z8dYunQJVq5cjuuuuwqXXXYVLr30SkP1iovzDS9sNt9tNptnIVw3AOC9997Bf//bPpSwf/8BSE5OxuOPPwynU33YYlNTI8488xycccY5AACHwwaXq70nKisry1CdzWIgFWO+Kt3vfdzsciLJwbeYiIiIKFRmzDgWTz75KJKTUzBu3ISQXNNms6FPnz7YsGG97P7+/fsjPj4eR4+WYsyYsYrl5OTk4pRTTscpp5yOf/zjTXz00UJceumViI+PBwC4XG7L675x43oce+xszJs3HwDgdDpRXHwIBQU9vMfExcX7XXvw4CLs3bsHvXsXdhxjh9Npff3UsJUdYwalZXkft7hdDKSIiIiIQiguLg7/+tdC2Gw2b++LWXv27PL2GAGA3e5AXl4e7r//DzjllNMxcOAgJCYmYe3a1fjss4/xm99cIltOSkoqzj33N/jrX5+Cy+XCqFFjUFdXh/Xr1yA/vzvmzj0er7/+NxQVDUX//gPR1NSEFSuWo2/f9uF1WVnZSExMxC+/LEVeXh7i4xMsS31eWFiIH3/8Hps2bURKSgreffdN1NfX+xzTo0cPrFu3BnPmHIf4+ARkZWXhwgsvwdVXX4Fnn/0LTj75NKSmJmPnzp3YtGkjrr/+ZkvqpoWt7BiTGd+Z7tGOwD68RERERGRcaqo1QcY111zh83daWho+/vgrDB06HP/85zsoLj4Et1tAQUEBLrvsKlxwwcUqZd2A7OxsvPXW6ygpOYz09AwMGzYcl112FYD21OwvvfQ8SkpKkJychHHjJuKWW24H0B4c3nLLHXjjjVfxyisvYvTosXjhhVcseY6XXnolDh8uxq23XoeUlBScccY5mDx5is8xV155DZ588hGcd96v0draiiVLVmHw4CI899zLePXVl3DttVfAbnegd+/emD//FEvqpYdNCFVaiyjX1uZCdXVjuKsBu92G3Nw0VFTUw+32f+u21Vbi9vVLAAD/nDof6fGhyaNPkU3rviFSwnuHzOB9Q2a53S6Ulx9GTk4Pv7k2RGqMDu1zOp0oLy9GXl4vv3stKysF8fEOzTKY/jyG8Z8uIiIiIqLgYCBFRERERERkEAOpGMNeKCIiIiKi4OPg0xgmMKwiIiKiKPfM9rVYXlES0mtOze2BW4vGhfSaFH3YI0VERERERGQQe6RiGTukiIiIKMq19wyxd4giD3ukiIiIiIgstGbNKsycORGXXnoB3G7flNwzZ07Ezz8vBgBceeXFeOaZJ3z2v/POm5g5cyIWL/7BZ/vNN1+Hhx66z1R9fvzxO/z+9zfg5JOPw8yZE7Fnzy6/Y2pra7Bgwb2YN28W5s+fg8ceewhNTU2GrvP663/DlVf6rmX1yy/LcPzxM/HKKy+aqvtHH32IG274HebNm4WZMyeisdF/OaIVK5bjiisuwfHHz8QZZ5yEN998DaFY4YmBVAxjhxQRERFR+Bw8eADffPOl4v5x4yZg7drVPtvWrVuDbt26+2x3Op3YvHkDxo2bYKoeTU1NGDVqDK655kbFYxYsuA979+7BM8/8Hx5//BmsW7cGf/nLo6au5/HDD9/iD3+4DVdeeQ1+97vrTJXR0tKMKVOm4+KLL5fdv3Pndtx55y049thZePPNf+Kuu+7F//73X7z//ruBVF0XBlJEREREREFw5pnn4LXXXobT6ZTdP378ROzduwfV1dUAAJfLhY0b1+PCCy/1CaS2bNmE5uZmjBs30VQ95s8/GZdf/ltMnDhZdv++fXvxyy9Lcffd92HEiJEYM2YsbrnlDnz99SJUVlaYuuZnn32MBQvuxe9/fycuuOAiU2UAwLnn/gYXX3wZRowYKbv/u+++QVHRMFx22ZXo3bsQU6dOx8UXX4Z//evdoPdKcY5UDGPWPiIiIqLwOf/8i7Bo0Wf46KMPcdZZ5/rtHzNmLOx2O9atW43Zs4/D9u1bkZKSgl/96hS88MIzqK2tRUZGhreXqlev3gCA9evX4vbbb1K99h133IN5836lq56bNm1ARkYmhg4d5t02ceJk2Gw2bNmyGTNnHmvgWQMffPAeXn75Bdx330OYO/d4n31fffUFnnzyEdXz//KX5zBmjL55ca2trUhISPDZlpiYiPLyMpSUHEbPnr0M1d0IBlJEREREREGQkpKCSy65HG+//TpOOulUJCcn++xPTU3D4MFFWLu2PZBau3Y1xo4dj5SUFAwaNBjr16/BMcfMxtq1qzF+fGdv1NChw/DGG++pXjsnJ0d3PSsrK/yOj4uLQ3p6huEeqT17duG5557Gvfcu8AuiAGDmzGMxfLh875JHfn6+7utNnjwV//73P/Htt19j5szZKC0twfvvt782lZUVDKSIiIiIiKLRr399Nj744J/44IP3cOmlV/rtHz9+ApYvXwqgfX7UjBntvT9jxozH2rWrMW3aTGzatAG33HKH95zExCT07l1ocU1tMtsE2Gxy25V1716ApKRkvPvuW5gyZRqys30DtJSUVKSkpAZQT19TpkzD1Vdfjz//eQFaWu5BcnIyzjnnArzxxh7YbMGdxcRAioiIiIgoSBISEnDFFb/Dc889hTPOONtv/7hxE/DPf/4DlZUV2LBhHW644VYAwNix4/D663/Dtm1b0dTU5JNowuqhfTk5uaiq8u15cjqdqKur8wuEtKSmpuHpp5/HzTdfh5tuugbPPfc3ZGdne/dbPbQPAC688FJcfPGlOHq0DJmZWVi9eiUAoGfPnobqbhQDqRjGGVJERERE4Td//sl477138M47b/rtGzNmHOx2Oz744J9ISEhE3779AACjR4/Dnj278dNP36OgoIfPEDWrh/aNHDkaNTU12L59G4qKhgJoT+EuCAKGDx+huxyPzMws/PWvL+KWW67DzTdfg7/+9WVvMGX10D4Pu92OvLz287777msMHz7ScBBoFAMpIiIiIqIgstvt+N3vrsODD/7Rb19KSiqGDBmK//73A0ydOt27PSMjA/369cfChf/B7Nlzfc4xOrSvtrYGR46Uory8DABw4MB+uFwudO9egIyMTPTr1x9TpkzH448/hNtv/wOcTieefvoJnHDCicjJyTX1nNuDqZf8gimjQ/sqKspRWVmB4uJDANrnYCUmJqJXr0KkpKTA7Xbjgw/ew/TpM9Da6sSiRZ/hm2++xHPPvWyq3kYw/XmMCcXiY0RERERkzLHHzsbgwUNk940fPxFNTY0YO3a8z/axY8ejqanR9PpRHkuW/ITLL78Qd9xxCwDg3nvvwuWXX4glS37yHvPAAw+hT59+uPnm63DHHTdjzJixuP32e3zKmTlzIj7//BPd183IyMSzz76IuLg43HLLtaiqqjJc9//977+4/PIL8fjjDwMArrnmClx++YXYtm2Lz/O76qrLcPXVl2Hbti34619fwsiRow1fyyibwJa3Lm1tLlRX+6+kHGp2uw25uWmoqKiH2+3/1m2pqcCdG34GALw1eR5yE5NCXUWKQFr3DZES3jtkBu8bMsvtdqG8/DBycnogLo4DpyJJSclhnH/+GfjHP/6NwsI+4a6On7g4O5xOt+7jnU4nysuLkZfXy+9ey8pKQXy8Q7MM9kgREREREZGqX35ZitNOOzMig6hwYahPRERERESqfv1r/4yDXR17pGKYwLx9RERERERBwUCKiIiIiIjIIAZSRERERBRhOKqGgq39HrPZzJfAQCrG8GuHiIiIopXD0d40dbmcYa4JxTrPPWa3a2fnU8JkE0REREQUEWw2OzIzM1BXVw2HIw5AAN0F1MXY4HTq7VIQUFdXjcTEFNgC6JJiIEVEREREEaOgoAA1NTtRXn443FWhKGK32+F2619Hym53IDu7W0DXZCAVwzjMj4iIiKJNXFwcunfvDafTCYGNGdLBbrchOzsFVVWNuhYBt9naA6lAeqMABlJEREREFGFsNlvH0D4ibXa7DQkJCYiLa9UVSFl23ZBdiUJO4M84RERERERBwUAqxjB0IiIiIiIKPgZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAxiIBXDmHiCiIiIiCg4GEgREREREREZxEAqyrkFAbVtreGuBhGFgVsQ0ORyhrsaREREXRIDqSj31PY1+M3yRTjQUOe3T+DgPqKY9sKu9Thn6ec40twY7qoQERF1OQykotyPZcUAgJ8rDoe5JkQUal+VHgAAvLhrQ5hrQkRE1PUwkIoRcj1SRNQ1rK46Gu4qEBERdTkMpGJEVVuL/0aO7CPqEsZm5YW7CkRERF0OA6kYMTqTDSmirmpAWma4q0BERNTlMJCKESlxcQAAQWA3FFGXw489ERFRyDGQihEumQCKbSuiroGfdSIiotBjIBUj3OyJIuqyuNQBERFR6DGQihEMpIi6Ln76iYiIQo+BVIyQH9rH5hURmbOm6ihuWvMDDjZyaQUiIiI5DKRiBHukiLqwIHz8X9m9CXsaavHa7s3WF05ERBQDGEjFCKfgDncViChMgvEzyqGmegBAq9sVhNKJiIiiHwOpGNHmbg+kxA0q9lERdQ3BHMbrZG83ERGRLAZSMYJNHSKyki3cFSAiIopwDKSi2C8VpeGuAhERERFRl8RAKoo9tGWF97Hs0B52UxF1CRx9R0REFHoMpIiIolxQlzpglEZERCSLgVSUOhTg2i7VrS2oam22qDZERERERF1LXLgrQObcvOZHzWPUfke+6JcvAQCfHnOaRTUionBhnxEREVHosUcqSjW5zK/tUt3aYmFNiCjchCAMv2PWPiIiInUMpGKEkXYUF+8lii3skSIiIgo9BlIxQm6yudIE9Hh759veEkDPFhERERFRV8VAKkbYTA7E+e7oQYtrQkShFsweKfZ2ERERyWMg1RWJWkatbg7zIyIiIiIyioFUF1fdxsQTRNEuqOtIERERkSwGUjFGT4NKfESNSiBV29aK+rZWC2pFRMEUnDVzmbePiIhIDdeR6uIy4hIU9/1m+SIAwCczT4XNxkYVUVfEvi4iIiJ57JGKEXJxjtKv1EaHAdU62StFFMk4tI+IiCj0GEjFCLNDewakZWoeY+cQHyIiIiIiHwykurj8xGTNY7iAL1FkC8YcKY7mJSIiUsdAKkbIDu2zaLiPKzgz2YnIBEEQ0Ohs893GoX1EREQhx0CqCzLa5GpxuYJSDyIy7vld63Husi+wr6HWu41hFBERUegxkIoRbW43bl+3GB8e2m152Z+V7LO8TCIy56vSAwCA5RWlIboiwzQiIiI5TH8eIzbUlONwU4PPNqXmj3iknqBj2F6rmz1SRJFmWUWJ97GezzERERFZiz1SMaLR6Qxa2eOzuwWtbCIyp2dSqvcxwygiIqLQYyAVI6rbWhT31be14vGtq7CrrhoAJ6YTxYLshKSgls+kfUREROoYSHUB/z60C4vLD+OWdT/57dMTUjHwIoo8ofpcctQgERGRPAZSXcB/D+3SPEYQBJQ2N6jOtXALAu7ZsBT/2LfNyuoRkQluRjhERERhxUCqi/M0xb4sPYCrVn6Lfx7YoXhseUsTNtSU4/2DyscQUWgwjCIiIgovBlIxTGnoj9zWd/ZvBQC8d2C7Ynl2uVV/iSgs2CNFREQUXgykCABQ09aqeUyDsy0ENSEiPYL9s4YnTOPvJ0RERPIYSHVBRtec8Rz+/dFDQagNEQUqGLFO59cEIykiIiI5DKRimJF4aXBaFgAg0e4ITmWIKCoxjCIiIpLHQCpKJVkU8Hh6pzzDd9RSKnNhXqKuhHOwiIiI1DCQilJ9UtMtLc/W8buzW6XtxGQTRJEj2GGOd45UkK9DREQUrRhIRalAMnYJMo9t3r+Vy2WyCaLIZAvmjxz8AYWIiEgWA6ko5ba4PE9vk1p89ta+rRZflYhC7aPiPfiydL/mcRzYR0REpC4u3BUgc/Rk3jvYWI8Xd23wP1emiaSnR+pwU4Pu+hFRZHp1zyYAwIkFfXUdz/4oIiIieQykopRbx+/Fz+1chxa3S1d5njlS6qXyN2qiSGEmwDG69IHZ6xAREXUFMT+076abbsKkSZNw6623hrsqltLTHlIMomTO1TMNgqnRiaKbM4C5lXqUtTShnnMpiYioi4j5QOrCCy/E448/Hu5qWE5tCJ6Zcmwqvzt7jjmvzxBLrklE4eEUrJ5d2anV7cLlK77G+cu+CNo1iIiIIknMB1JTpkxBampquKthOauy9hmRGZ9o+ppEFH5Od/ACKWb1JCKiriasgdTKlStxzTXXYObMmSgqKsL333/vd8y7776LuXPnYtSoUTj33HOxYYN/8oSuyKoBOkEe6UNEESSYPVJqa9ARERHForAmm2hsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJycHADA6aefLlv2hx9+CIcjduf0BNYjJZO1T9eMcu1rNruceH3PZswr6IvB6VmG60ZEweF0u7Fg8y9BK39LbUXQyiYiIopEYQ2kZs2ahVmzZinuf+ONN3DeeefhrLPOAgAsWLAAP/zwAxYuXIgrr7wSAPDRRx+FpK4AYLeHP39VoHWw220+ZXj+tkmOEbPZOo6x2RSP8fjs0D58UbofX5Tux+ez5INcCj3P+xUJ9zBZQ/x5tNm039v1VeXYVV/j/VvvveC5jtbxTaLkNrzPiN85ZBbvHTIjXPdNxKY/b21txebNm3Httdd6t9ntdkyfPh3r1q0LeX3i4uzIzU0L+XWV2EzeKLm5aWio7xzek56RhNzcNCQkxPkcI5aWnojc3DSk1icqHuPhLrFpHkPhk50de/MFu6rEpM7PbEJCnObnLaOtxudvvZ/PuLj2nn2teyelNsFw2RT7+J1DZvHeITNCfd9EbCBVVVUFl8uFvLw8n+25ubnYv3+/7nJ+97vfYcOGDWhqasKxxx6LV155BUOHDjVcH6fTjdraJsPnWc1utyE7OxUuk5PGKyrqUd3Y6P27trYJFY56tLW5fI4Rq6trQUVFPerqmxWP8WhtbtM8hkLPc99UVTXAzcksMaG52el93NLi1Py8lVf7Lqit9/PpdLZ/N2jdO40NrYbLptjF7xwyi/cOmWH1fZORkYz4eO0pQhEbSCkRBMFnSIuWV155xbJrR9IH2uwUKbdb8Mnc5XYL7c9L8D3G91rtx4jnqSu9FnbRexNJrxe1877fFPXEi+t6PqNqcuKTfP7WfR8IncerndM3Jd142RTz+J1DZvHeITNCfd9EbPrz7OxsOBwOlJeX+2yvrKz066XqigJZR+qj4j0mryl6rBDJOVTWoyKi8ElwmPy61/mRDiQBDhERUTSK2EAqISEBI0aMwNKlS73b3G43li1bhrFjx4avYhEikDbLotLOoZGeYgx08vmcJ2U3WhARmSL+pAU1hNFZuIuBFBERdTFhHdrX0NCAAwcOeP8+dOgQtm7diry8POTn5+Pyyy/HnXfeiREjRmD06NF466230NzcjDPOOCOMtY5+wzNysKW2Uvfxne0j0VAihWMZSBFFpsqWlqCWzx4pIiLqasIaSG3atAmXXHKJ9++HH34YAHDDDTfgxhtvxEknnYTKyko899xzKCsrw7Bhw/Daa69515DqygIZ2pdg7+yI3F5bhfHZ3WAzOCRPEATZbiyj5RBRaPzn0E5zJ+r8SLuCuNgvERFRJAprIDVlyhRs375d9ZiLLroIF110UYhqFD3MhlFlLU1YV9057+zdA9sxLa+H4WsqXT+QAI+IoheH9hERUVcTsXOkSIPJNssvFaV+29ZUHfXbVu9s89smbicJaM/+t6hkP1ZWHjFXGSKyhJ6vA71fGZ8U78GBhjrDdeDQPiIi6mqiLv05tXNb2PNT3NTgt+38ZV+oniMIwMLDu/HWvq3ebf+dfrJPY8poqnoiCh6lTJtiS8oO4297Npkr39RZRERE0Ys9UlFKAJBod2BaboGh8xaV7PPb9mXpfo1fkwXJf9t7pLZKElasqjqCnslpfmcRkfX0LEegdLySx7at8tvGn0KIiIjkMZCKVh2tovzEFEOn7Ws0PmRH6fLS4X9tbjfsNt9jAODHo4dw1/olaHY5Lbk2ERnHoXdERETWYiAVpQQIsMG65A7icnbWVfvs+9fBnShvafL7BVyaQl06V8rzK/mT29dgc20lvjty0JK6EkWTPfU12NdQG+5qsIeYiIjIYgykopQA44voapXnceu6n3z2HWiswz0bl0LL0PRsSUIKX2pZvdyCgL0NNcz8RTHnprU/4oY1P+g+vqylCUvLSyyvh7RHSm44YG/R0FyjmLGTiIi6GgZSUcwGG6yKO7TKOdzUoJn+PN5uR4OrTfEotUt8fHgPblzzI/6+d7NGTYli29WrvsUjW1dig2iZAi36svZpfx7nduut+5p+5TOOIiKiLoaBVJRyC4Klk8A31OhotIlaSuUtTbKNrmd3rPM+dksaVq1ul2yxS8tL8Nqe9gDqC5lkGETRysy8pFZ3+8K2extqVI8z+vmXVkWuB8nOLJtERES6MZCKUgIA2GxhG05z/ZofEGdXv32kdXtz31bctm4xKlqa8fCWFbh7w88AgEe2rvQeIw2+iKKZU3CbPndTTYXuY/V8D/RPy/A9R+aUQBJS8KNLRERdDQOpqGVtj5Qe0uQSWuQaVtvrqvDu/m1YXlGq0FBkc4xih9NtPpAanJ5tYU2AUZl5Pn/LfdLkass+KiIiInkMpKKUILQ3cCZkdwMATMkxtp6UGT+UFUsqoX680o/bzQpD/AD2SFFsCaSHx2WgN0vPZfx7rfxPCixo4oeXiIi6FgZSUUpAe7KJSTnd8dKEOfjDsIlhqYP6fvkjmkTrSUkbmm42xiiGuET3s3TdNS1Oi39VkBYnVzo/fURERPoxkIpiNhtgs9lQmJKuOV8pGKSB0g7J+lNKjTLxelNcJJRimfj2NjrM75eKEsPBl2pdJJ9Iqz97/CQTEVFXw0AqSlmdtc+MmrZWn7+/OnLA9wAdDTWuG0WxLJAe1n2NdXhg03LF/UZLlls3ykr8KBMRUVfDQCpKtbdZwhtKiXuW5Oj5/Z2BFMUyca+PmU/r9roqXcfpydon/TzKnSFfx3D/ZENERBSZGEhFrfD3SGnR1bgLID00UaQTB1J6eqeC2mskKZu/YRAREQWGgVSUEtA+RyqS6Wmo6e2RcgluxQV9iSKVOHiKs2l/3ZodCqjnLP+fLMIbSW2qqdBcdJiIiCiSMZCKUu3xh28klZuQFJa6KNlSW4k2jQn2Lp2NuStWfIMzf/7MimoRhYy4R0pXsBPUDilphkyLyzcQmLW4XLh7w8+4cc2PFteCiIgodBhIRS3B7817eNS0sNREySNbV+JvuzeqHqO3R6qitRkAs/xRdBEHRnoCDSPBiNEOab/ASeazFKpO7jYO6SUiohjAQCpKudGe+lysMCU9PJVR8e2Rg6r75RYdFQQBj29dhY+K9/jt8wRS7+zbipd3tQdpqyuPoqoj0CKKJD6Bv44YKZg/FEiDNKuvZKg8/iBCREQxIC7cFaDYpvXLs1yPVGlzIxaXH8bi8sM4vdcAn31uCGh2OfGvgzsBANPzeuCBzcuREZeA96bNt67iRBYQz3nSEzqYDS/0xCXSYywPpAwUyDCKiIhiAXukotDhhnoAQFlLU5hrEji5RUrVhhe5BQHbajtTQu9vqAUA1DpblU4hChvfOVLhzdrn3yPlfy3ZlOhBGO/HIbpERBQLGEhFobe2bw53FSxz/ZofDB3vEgSsqTrauSHSUxdSl2Y0C5/TZIChb6mBYKc/119gIAsVExERRQoGUlEo1psgW+sqff5eXdkZODkFN+LsnbctwyiKZEaz9snNGbSK9PpywVeoPk+x/h1GRERdAwOpKPTRvl3hrkJQvbx7k8/fD2xe7n383ZFDPmnexQ0yvRkAiUJFfEdafXsKCo8Vjw/y58NI6RzaR0REsYCBFEWcBmeb9/Geet8FO1/fuxndklI6N4h/8Zc0zlyCG3sbaoLegCRSZDj9efBI+7rCmbWPn0giIooFDKQoolW1tvhtS3Z0JpsUNw6lDdWPi/fixjU/4r+HYrsHjyKXkXWhgOBmBfdLNqHzWsGoE3/cICKiWMBAiiKaXC6JJWWHvY+PNDd6H7slbbN/d6RI11rLiihYDA+/C2JfjVPyAdGbtU+Pn8qK8dKuDbqPZ7IJIiKKBQykYtzA1MxwVyEgdpnp75+W7PU+/vhw56K9wWyEEgUqqKnNdZT9r4M7fM+RK0e+dM2yn9i2Go0up+76sEOKiIhiAQOpGPObPkU+f1/Sb1iYamKNmjb960NJe6Q8vVlss1G0kLtXlRIzBJphTy7YserHCK1S2CNFRESxgIFUjPlNX99AKvqXWdLf4JI2AqP+qVPUEwymPzcS3BgdNmiWmbK1zmGPFBERxQIGUjEu2oMJm4FIUNo28ww1OtRUb2GNiPTzDXYiK3qQrY3MRrNLBKvvjazXgoiIyAwGUhTR/rJtje5ja9pa8NKuDShubA+cWt3BW9yUyDAdsYOR8OJwU4PpqrRfy7pkE37laBTEdaSIiCgWMJCKQeIEE9HeXDEyl+KNvVvwWck+/GHjz/jh6KEg1opIH6OfP9ngRqGQDTXlhsoelZmrWa5sT5GJLxHOkSIioq6AgVSU+df+HdoHdUh2OIJYk8hT0dIMAKhsbWEgRRFHV+hgMr7QM1Suu3gha53nmMesfUREFPsYSEWZt/Zt1Tzmgr5DAAC/HTAq2NWJKOLpVJwXRZHAN9mEdvQQ1NBGUrjea5kJuLTO2FZX1XksoyoiIopSceGuAFlvam4PLJxxMuLtDqypOuqzb3hGDqpam/HnUdOxq74G22or8WHx7jDV1Fo76qq9j482N4WvIhTz9jbUYGddDeYV9NF9TjAX5DUVi8iN4rMoptEqR/y95AbQtfrOiYgoVjCQilHxdvmmyfHd+3gbf92SUtAnJT1mAikxu83GCe0UNDeu+REAMCAtA4PSshSPExT/0HG8/tN0kQZpeq9lLkZTP2tQWhaWV5S2HysIsbBOAxERdUEc2hfFEuzab5+0OZMkmTelVMaTY2b6/F2YnKZ5rZl5PWW3h2OullNgxj4KPiMLRgdzjpSZouWDndD8+LBT1HvMVOhERBStGEhFsSv6j9A8psXl8j4+tWd/zMjr4bPfYZO/BYZl5Pj8fdewiZrXWlddJrs9QaF3LBp8Wbofb+7dEu5qUITS+gIVBwnhniPldy2dFwvGgrwjMju/X0qaGk1cgYiIKPwYSEWxU3r21zym3tnmfXz1wFF+gVOcXd+QmngdvV8OheE5SsFauG2sLseta39Cicp6PM/vXI//HNqFRqczhDWjSLZdlCjBrjEkzejoUrO9RLqCNEE6tE/nOlImhshqnZKXmOx9rKdnnYiIKBLxX7AoYia71ZSc7kh2OHBBnyGy++N0BjlKQZIekTr74YHNy7Gzvhov7togu39TTYXoLw4/ona3rVvsfWwL492daLCn139on/Yx5ulPf57YxZZpICKi2MFAKoqYmfeTmZCID6adhAv7DpXdrzdA0gq4Tu85QLFJ6ZIEgO9MmafrmqEi7rUTu3vDz6K/IjUcJCs43W4cbKwzfJ5Wj5SYnt9B9Bzj+STmi3p1LEtIIVOB4PyE0Fmq9PuBiIgoWjCQiirmGvM2lcaeXIB0fPdCv21qDca3p8zDVQOU52tVt7X4/J2dkKR4bCjZO15PTnanp7avwbWrv8fKyiOGztP6RBqfI6X/Xgz0vg1mVksjJfPTR0RE0YqBVBfn6ZHKFQU3ckOGHCpNxpyEJNVgTexvE+carKH12txuNDrbmHGZvBaXHwYAxWGeSjTnSCk81nO81nlu0Q5dvV06rm/VeVrn+Lwu7JEiIqIoxXWkoor1DQ6bzYaFM06BU3DjnKWft2+TCZr0BkpaeulIo241aWB49apvcbSlydsbp+9VZWOvKyhrMbaQsz2MQz6N9kj5J5uQK9MiGsGReK+bny0iIopS7JGKIsFqbsTb7T4NwiHpWX7HRNqNkhGXoPvYFrfL5++jHY1lz5yzJpcTL+/aiLvX/4xdovVtxNjU6xqM3FeAfI9Us8uJP2z4GT+VFUt6pCwe2hfgTSl3raUdPXPSI43aXleNRoW5h36l88NFRERRKtLaxxQBJucW+G2zqkfKKmYyfQmCgDdk1oQ63NSAT0v2YlNtBW5Z95PiuRT7Bsv8iKBG7lPx3dFD2FhTgSe2rfaJQaxKNgGNuX2fl+zDszvWavZAPbBpud+csJJm/zWdzNz6D2xejtvXL1E5orNQ9kgREVG0YiAVRcQNmm6ijF2WlC1qzMjdFHqyk7lD2B4y8/z3NtTiv4d2mbqe8XyJ1BXI3fINop4YKxKZ+Acygt+1xdd5cdcGfHPkIIpV1kcDgJq2Vry+Z3PA9VNyQCULomAwwCQiIopEDKSiiLixNEWm1ygQ4iBIrvcpzmbDjYPH4L7hkxXLcCmkZ89JSNRVh8x4/cOquiWl6D7Wo9FlflFdpedGscXwvCOZ4ytbm01ff2Hxbv3X1ohApENa5ep6qKle+zq6a2QOs2YSEVG0YrKJKHWFSrpxM8TrSSn1PZ1Y0Fe1DKUhOpWtLfjP9JM016IK9i/TgQzP41o3XYPRt1nueHFyE6NZ+74/ekj3tcWhvVzZR5obMDAts/OYCLqFfZJNRFLFiIiIDGCPVBTKS0o2NUdIjbg8T9a+03sOMFRGqiNecV+SIw5x9s7b7cMZJ/sdE+xfpgMp3dPYO9BQh2XlJdZUiCKOFT1SDoUfDMze38rnqZdnJCjzmCrT0x2czyXnSBERUfRjIBVFPEPTypuNpWg2ytM5pdTrJbfOFADEK2yXkyBzbJNk6N0zY4/VXZ6Wl3Zt8Ctfzdqqoz5/ewKp69Z8jz9vXYnSZvX5JxSdjDbpNddL8pkMZLQ26twa3V3Tcnv41kVHBZIdoR+kwA4pIiKKVgykokiry6V9kAU8Q/scNht+O2AETu85wCdIemfKPNlfrgPllLSojGZQU/NZyT7diSbu2bAU921a7rNNOrSvprXVsroFqtHpxCW/fIl/7NsW7qpEPeND+wykKzdYF+3yBNnHHtKeMemcKdkyQxTVcB0pIiKKBQykoojVw/mUiBfkPb3XQPx24Eif/Slx8eiWKJfsIbIbRFtqK3Udt6Gm3G+btLEXyHCnVZVH8Jtli7Cjrsp0GWLrqstQ2dqC9w/usKQ80k/uLrAp7Ld6iJxWZ1dqXJzoWAFrqso0y5RLqRKUgX3M2kdERDGAgVQUyU5IwtmFg3D/hGlBvY6eJaO6WqYtaY9UIM/+wc2/oNbZiqe3r5Xdz8n34WN8jpS/3ilpuo81Q/D+VzTPSOaeEW/RmywlHOulsUeKiIiiFQOpKHPFgBE4ua+xJBBG2RTz9gXPZf2GhfyaRkgbol+W7jc0T8rpdmNHXZVPg1cu9fR/Du7EaUs+wYEG5TV4KHgMz5GSCTzS4zrT+PsEZhbHC0aGxzl1pu+XKycYwZVPTx1/OCAioijFQIr8mA2jjDaHXhg/G9Nze+DF8XNwduFgQ+cm2R0YmZFr8IrmSdeR+ubIQVy/+gefbW1uNxaXFWNRyX6fRVkB4G+7N+L36xbjo+I9qtd5c99WAMAXpfsCrjMZZ/Tel7vnxcGIOEbY21CrWM6zO9binY73Xve1BfnreOsh2qi3Ryp0vaGCzCMiIqLownWkyOvZccei0emUXZBXyopeq36pGbhn+CTVYxLsdrS6/X9Nv7DvUKytLsOm2oqA66GHXANTOnn/vQPb8e+DOwEAv1SW4oERU7z7vizdDwBYVuGbOt0lCD5reHkYac+Gvv8wdhm9r40MBfz6yAHM7+G/FpsgCPjmyEFD1wV85zNZ1SMVjqCGQ1mJiChaMZAir0FpWbqPPadwELbWVuL8PkO821LjlNeRMiLJ7sAz49pTn8/I6+m3Hs61A0chKyERX5Tss+R6euj5Rd8TRAHAysojPvuUzna63XDIJBEx0kDXM6eNgkOrJ0jPu6gV4iiuIuXTIyU3R0p9DpWcUC08bXShYiIiokjEoX1kSnZCEp4ZdyymiNKg3zl0AibldMf9wyf7HJtmMMAamZmLwpR0AECczOKm8wraf9U/scD/1/1gcQkCalpb/LY3K6xNJY1tPI1FaUNVOmTQw+yv9Px1P/wEhTBBKTg2OkdIkPwXkH/fxetMSZcWUCxb5rhd9TUGaqeP+DK8Z4mIKFoZCqRaW1vx0ksvYds2rldD/nolp+GBEVMwObcAT46ZiYyOSfeBdJjINbLi7faO66UGULLxejy6dZXf9rOXfo7lkuF6arZLUp4rNSL1DcTyd/bSz9ASovXGSH5InTiA8U2qoL8MPXx6nBSO8HDJDI+Vs0qyELW3fIuCnb/t3ointq8JStlEREShZiiQSkhIwMsvv4zaWuVJ00QAMCwjB5nxnkBKXyh1fmH7MEFxT1NGRxnxMj1T9hCOaXNBUFyH6oltqxXP+9eBHVhUsl+1XDlmG5etbrdsNkDSx+gtdf+m5X49lUo9T+nx8j2zWu+10m7x9gONdWiTzNkzk/5cSauOxXz1+OTw3o6huto9dURERJHO8Byp0aNHY/PmzZg8ebL2wdSljc/uhoNN9Zic213X8Rf1G4rTeg3wBk8AcH6fIWhyOXFKz/5YXFaMZEfnLRvKQMotCO2NbJk2n9zwQwHAhupyvLNfvfdWsUeKv9JHjQ8O7cRvB3QuWq202Oycbr1lzzfyTvvMi5Kc+XN5CWaLriG+dqCBlNNt7f3om7qdiIgoOhkOpO644w7cfvvtiI+Px6xZs5Cbm+uX5S05OdmyClL0urT/MIzKysW4rG66zxEHUUB7AosbBo8B0J7lT8wewnx1bkFQvJpSQHfPxqWa5So1cOXmTu2pr0HP5FQkOXw/tha3cbsMp9uNn8tLMC4737vNzB1V3+ab6l6ph0XpfjUyR8onU5/ktDbJ8D1BodcnKz4B1W2tuq/pKSFYuI4UERFFK8OB1LnnngsAePjhh/HnP/9Z9pitW42th0KxKcHuwNTcHkErP6RD+1TSRwfSDFTqeVpfXe7z96aaCty94WcMTsvyZjT0kCbzkK5h5dHicsHpdoc0AI1knxzei9f3bkZRerZ3m5m0/tI5Tr5zpLTmMRntfdSf707pyN4p6aiuMbZsgNWxDrP2ERFRLDAcSD3yyCO61hkiCrZQBgQuQWUmR0cr0w6b6cQBUlVt7fNudtVXQxCAHzpSwO+sr/Y7dmHxbp+/11WXYXRWnt9xx370PgDg02NOs6SO0W5HR+IPaQIQo6T3odHsfEdamjSuIL/wrjQwk34tKw0DNPOpsXoek7huHMZKRETRynAgdeaZZwajHkSGhbJHalHpfsVheA0uJwRBMBVEec7ZXluFbkmdQ2I9z+yWtT9pliFds2p0pn8QdbCxznDdYp1VzXe/AMZnSJ38drGvSw/ovpZaQKOUch/wDcDM9LpZHeq0iXp4mWyCiIiilekFeXft2oVNmzahtLQUZ511FvLz87F//37k5uYiLS3NyjoSybKHsGNUOtROaqPBoVIe/9y/Ayf17Ifb1i9GnM2OOJsNTkHwGW5mlFx8WdHSbLq8WCXXE2ImNpcGJuKhfW6fnhf58wuSU3RfSy3kkJavdKyZ57itqhKD4tKNn6jApeN1ISIiinSGA6mGhgbcc889+PLLLxEXFweXy4VjjjkG+fn5ePrpp9GzZ0/cddddwagrkY9Q9khpqVeYl6Tl26MH8VNZMQDAKbgRZ8Fzkus4EzfojzQ3onuS/sZ7uO1vqIUNNvRJta4hD8iv32Smt8b/PpQfUqfU89IjSf96aGrD4FrcLt/hfIJ8z5jaM0y0O9Aik+r8QH0tBmUF9vor1U3v0D6XIGBZeQlGZeUiMz4xoLoQERFZwdA6UgDw2GOPYe3atXjzzTexZs0an38QZ82ahcWLF1taQSIlgcyRSrI7LKwJ8MjWlabPbfNJZNH+nKz+kV7c1q8znLEtvK5f8wOuW/O95eUuryi1pBzpl6hvj5T8Y7F6p/r7ofde+Lxkn2ISB73D55SOc6gE+GpZ93wCJtF28WO9dfvmyAE8tm0V7t24TNfxREREwWY4kPrqq69w++23Y+rUqXA4fBujPXv2RHFxsWWVI1ITSI9Us0ULjFrNqZIdMBD5iZ3zr9qCdI1gs2pRWKs5JOuI+WTqU1n3yePfB3fpvpZayHGosc5nf01bC97ZtxWVrc0+J6r1uinFRHaZtdL08E3XrtQjpa+sPfU1AIC9DVwQnoiIIoPhfx1bWlqQlZUlu6+hocEvuCIKFrVfyand8ooS3LdxGRpdznBXJWChyO5m5o6SBvQ+vVCQDx7EZuTpXyJArfenPWjp3P/3vVvwr4M78eS21bp7tZSO65eeobBHa96WfFC5rKJEdL6+2iXy3xYiIoowhgOpUaNG4aOPPpLd9+WXX2LcuHEBV4pID/HQvsv6DQMA9E5mopMvSvd5F2d9eMtKrK0uwxeH94e5VrFLmvREqUdKqR8wNyFJtXwjay7JxVkHGut805+rRovyV1A7R+9qVuIEE4ca60VH6AukzMxfIyIiCibDgdTNN9+Mr776Cpdddhn+/e9/w2az4ccff8Qdd9yBRYsW4cYbbwxGPYn8iHsCzi4cjA+mnYSL+w0NY41Co6pVPQPfz+Ul+ODgDp9t4mFxgiDgme1r8cruTUGpX7C4BWBLTQVe2rXBGygGwrOQcd+UziQKZtbIkzbwxWGBUo+MWWolnFc4WHa/w2aXJJtQfo5Kw+zUh9+pzJESl+GzODGz9hERUfQzHEhNnDgRb775JlpbW/HQQw9BEAQ8//zzOHjwIN544w2MHj06GPUk8iNt9KbEmc7mH3EqVYKl+zYt9/lbLnHG0vISn7+lvRrfHj2Ijw/v8W5rc7tVh41FAgEC7tzwMz4r2Ydvj+hfe0mJVf0b0ux/SgkWFBfqNXAttfcoOyFJtrR4m93AReQPNBsE+iwgLMj3TuntkVolWS+NiIgo3Ey1PCdMmID33nsPzc3NqKmpQUZGBpKTk7VPJLKQXNa+WBn8I04OIbVPMtn+rN6D8O6B7T7b9ksW4BX3YkmbrYeb6vG7Vd+hR1IKXp10vLkKh4A4iKiOoMyDCZJA1id4sni9JLUiBEE+JLHbbLoXi1Y6Sj0zn66i4RIlOTGzjpT0niYiIgo3wz1Sy5YtQ1NTEwAgKSkJ3bt3ZxBFYWFkFNZv+hThk5mnBq8yFkt26P+NI96u/TEWLyjslAyLu7+jh6ukuVH3NdUcaKjDUQNlba2txEodvQ3i9rb0OQRCXK6ZlPopkvfKt0fKeM+LH4Vsd1JuyPcclTQ3+PydqJL6X6l0tUBMNbjTMYTP9OtCREQUZoZ7pK644go4HA4MGzYMEydOxIQJEzBhwgRkZ2cHo35Eiow0eW0wN/8lGhgNKVySxrbaulJv79uKtLh4nNl7kO6yPWs+fXrMad7te+pr8I/923DtoNF+vW13rF8CAPho5il+qcTdCkGJ3KKxRsnNFTKTCVIa3CgmmwjyHCm18sV1VBoCqxqkWVB38fvXLzXD27Ma6UNKiYiIlBgOpJYuXYpVq1Zh9erVWLFiBd5++2243W4MGDAAEyZMwMSJE3HaaadpF0QUBDVKQUFsxlDtZBqiGXEJig1Ul2QdqQaV1OgfHNwJAAYCKfmw7t6Ny1DrbIVt10bcN2Kyd7t4yKFbABwqGfDET8eK9bas6gmRluK7CK+geJzWdvlj1XqGBNlen6Hp2T5nZcUnyp6v9oqqB1I6k02IyhD3ioUirT0REVEwGA6ksrOzccIJJ+CEE04AADQ2NmL58uV444038MEHH+Df//43AykKCbkehc01FbqPVTMwNRPDM3NwbH4vb49JKGnVtsXl8q6rI9cArnW24g8bl8qXHcSeOd+EAm44bHb8VFaMWmd7gNvgbPM53ik6vs3t8humKA4MxEGEFVn7rCINA3x6pMTbQ9Ij5X9Egt3h3To7v5diGQdV5iCp9nap1MnnOIXeOb3vZLzNHrWLSRMRUWwylWyioaEBa9eu9fZMbdiwAYmJiZg9ezYmTJhgdR2JZMnFAycU9MEPZcV+2xN0zCMSy0pIxNUDR5mtWtCdtfQz79A5pV6KTQpBpbgRW9PWongN8XGLSvZhfo9+mvUSn3O4qQGFKel4Ytvqzv0qze6K1makdKQk9/DpkfLZHjir1iWSvv6K6c9Nly96rPLE3QrXEH9ObDabYkDXqjJc0myiDJ+sfaJnsrO+WnSMvsLndi/El6VcD42IiCKH4UDqzDPPxPbt25Gbm4uJEydi/vz5+OMf/4iioqKYnYNCkUnubkuSTPzPSUhCZWszRmXmKZazcMYpOOPnT322xdkM52GxlFqDV8poR8dDW1Z4H9e0Ks+PEgcBL+zagGl5PZCpMCxM7hy5eknfs/KWJu/jNEkQJS3P6BCwurZWpMXFB/17SVotpZ4Xa3qkNOZByVzDDt97SWkoZ6tKL5/6/CvFXRCHgYprVKmdDqCipRnv7N+Ko81NGkd2crrdeGzbKkzP7YG53Qt1n0dERGSE4dbi9u3bERcXh7Fjx2LcuHEYP348gygKC7keBWkA9PTYY/CXMTMxOD1LsRzxcLLx2fkAgDFZyoFXKFS2NuOAznTPgcz1kUuuUN3aArcg+JW7vKJUszyXwqKrSsTDJuUa2uJN4tdD6zmvqyrDBcsX4R/7t2nWIVDvHdiOhYd2e/9WWjtK6fUwNkdKmRuCbFDS6nZhTXUZgPZA9tsjB2XPV+2R0pibpbxP+zit9/K1PZvwzZGD2FBTrnqc2NrqMiyvKMXTO9bqPoeIiMgowz1Sq1at8g7r++qrr/DUU08hPj4e48ePx8SJEzFp0iSMHTs2CFUl8iUXu0sDg4z4BOSprMnkMadbbzQ6nbitaDy21FZgXHY3q6ppyu76Gly/5gddxwbS0SGdR7WvoRY3rPkB03N74Ir+w332Vbd2DgPcVV+N4sZ6zOrW2+cYt8+cJ/m+hqrWZqytKsO4jqDVQ65BLS5vSflh8cGqvu5YsPdfB3fi4n7D1A+2wOt7N+OM3gMBKK8dZfZ98h3ap55ZT27/5tpKbK6tBND+44NS75LavDMrEkJIF4nWW3aFyuLUSqxMj09ERKTEcCCVnJyM6dOnY/r06QCAtrY2LFu2DK+++iqeeuop2Gw2bN261fKKEvnzj6RSJcPD9PaT3lY03vt4Yk73QCoVMvVtrXhmxzrUO80vTlspaaR61ptaWlHiF0iJeyVuWfsTAKAoPRsFyamdx4jaxOkyQ/UEAHeuX4KS5kbML+jrW75Mg1ocGIjXeDLSrF9TdRTjVQJj8TWsyOTnM0fKinWkFMr22ydovy42m3LvUjACKfFZ7yj0DmqVbCYlPRERUSiYSjZRWVmJVatWef+3fft2uN1uDB48mMkmKGTkmlfiNYomZHcL+1ynYHr/4A78Uqk93M4I8ULAdkkDVq4xXdPW6htIKSSHEPMs/OtZR0itfLP9CuKy7t+0HJ/MPFXX8GMrklgEmp1OtWyNIXZawZoNNgxKy8Su+hrvtnpnG9Li4pHkUFuo12TWPh0BmNbcMQZSREQUqQwHUieeeCIOHDjgXZR3ypQpuP766zFhwgRkZWUFoYpE8rSaVwtGTlXd3y81I6qHAH1desDyMu2iF/WKld/47JMLdDzrRtU725DsiAsoOYRTo0fKSHNauujwsooSTM/rKXus1fM7fYJJPa+HkddJI2ufZo8UgPS4BJ9t3x45gNN7DUSCXTmQkr6ePlUKMPrU+gRKF2kmIiKKFIYDqZNPPtk7Dyo5WXvuCVGwKDWA35kyT1dq6+fHzbK6SiGltpBuMMg1eF2CgKrWZlz8y1cYkZGDW4aM8+6Ta1+LExrsqKvy2bek/DDO7zNEck3R0D4DAY80UceyilK/QMpTF5+hfRZ0SYnL8Em+YXp4nL4EHm5B0L6GTa53yeZ3Hb866MzMp39PJ606m+mRanC1aR9EREQUIMOB1E033RSMehBZJjshSfOYyTnddfdEJDscaHJ1BgCPjJqOH44ewldHrO8RCje1V+TfB3dideURPDd+tnebSxCwo64aQHtSA7fGfCPxkDJpYNYkExiK51w5DcxlOtRULynH9/iKlmY0y2Sps2Yek0L686DPkdIuX+4HBk+votrpqj1SanXSrJF2vaWLNOvxt90bDZ9DRERklKk5UgcPHsRrr72GNWvWoLq6GllZWZgwYQKuvPJKFBZyzQ4KnfHZ+chNMN4zOjwjR/ex0rTco7PyMDorD2f2HoRrVn9n+NqRTKvhu6ehFls7MsAB7T0uentMtEyQSQghLjuQxViltVKaW2bFHClxgPjJ4b2Wlq0WczS7XZq9O3KBcr2zvfemWBJ8+l63s9yKlmZsqCnH7Pxemj9G6Akete6ZRJUhh0rEP3wQEREFi+FAatOmTbjkkkuQmJiI2bNnIy8vD+Xl5fjqq6/wySef4O2338aIESOCUVciP38aOS3o11BqDPZOScP8gr5YFEADPxqJ10yC4BtougIYJic3dE8pMOielGKobGk5Hxfv8T7Wm15cL8UyjG1WOFb56M9L9uHs3oMMlNauW0eClpdUenHE7+tdG5agtLkRgIA53QoDDhC1RyMy2QQREUUmw4HU448/juHDh+PVV1/1mSPV1NSE3/3ud3j88cfx9ttvW1pJIqsZSTAgt1Csx6C0LABdK5ASEyAoJpiQa/RPzS1QXNhXNv25wnXTHP6p1dVIy1aab2VJr5FSHcyWbuC0W9f9pLrfJlNcZnyiZrk/HD6IWZk9AKAjiAK21VZhTrdC9UhIR921eq30Domsb2vFa3s345Se/XUdT0REFCjDg883btyIq666yi/RRHJyMq644gps2LDBssoRBYuR37jzEpXnXJ1Q0AfJKmmjY5G4YbunoRbNbqfo7xrRcf7UXnfPXB0xpR4poyHJ0ooSbK/tTG5xQvc+BkvQz4peLSVaQ/dq2tTXFJP7ASFBx/37y1H/xXSbO4bPBTpHyqq8mf8r3oNvjhzEbesWW1QiERGROsOBVGJiIqqrq2X31dTUIDFR+9dNonC5afBY9ElJxzyLGtIOmw3H5PWypCw1MxVSd1tNTwxQ3tK5iO/b+7bi2R3rvH+LH7fKJHNQG6Yl7fnb11CL3676VvbYBqfxrGy3re9sYCeIEhiIE1NYkRBCqefJkoyAAZ4v++obKPTp7WtEpwlGT5elFXjqLb+kuQFA+zDEeKZMJyKiEDD8r83s2bPxl7/8BatWrfLZvmrVKjz11FOYM2eOZZUjstq8gj54ccIcpMUnaB/cQbMhF4IpHDcNHhP8i0Bfo/WwSlICsXf2bTN0bWkA8t9DuxSPfffAdkNl66UV7OhJYa48Rcpc79rC4t3YUF2uuH9Ot96adfKQC2SNBI/fHT0kOq+ddGFlo2UHkqBETBy4n95rgOHz11Ydxb0bl6JOo1ePiIjIw3Agdffdd6OwsBAXXXQRZsyYgdNOOw0zZ87ExRdfjMLCQtx1113BqCdR2NxeNF51f7Anw2fGJyAlzticIPN0NGp1zi9bW13mt21phf8QMY8nt632+dsexNfV7HAytTTgHkpHmA0X/nNoF+7ZuBSCIPhkAfQ4rpv+TKkHm+r8tpmtl6cn6Z6NS02W4CknoNO9WkWLayc7jCekvW/TcqyrLlcN4ImIiMR0/2vT3NyMH3/8EcXFxbjgggtw0UUXYd++fSgrK0N+fj7GjBmDmTNnBrOuRGExLCMH/5l+Es5e+nm4qxJ0aok1gq2xYx2plZVHsKTssGZPxb8O7MB5HQv4NrmcqGxtRq/kNF3XUhpOptWDIjePS28Zgc6dWl11VDYFvJEFa9dXl2N0Zl5A9fDQtUaUjmPMLlQs1SYKpIwkk5ESB2RERERqdAVSBw8exGWXXYbi4mLvtrS0NDzzzDM45phjglY5okiR5IjDaT0HIElmYr60yfbm5BNw2YqvLbt2KJM/v7BrvaXliRM86FHT1oIFm38BAKRq9MK9s3+bN5A6pyPIfX3S8bpSo7+9b6vsdq0m/RUrvtEsW67XSFy2IAjYVV+DvqnpSDCwRpLcELo53XoHFDR46qMlI0H/UFijrBraJxbIDCkr5skREVHXoOvfmyeffBJ2ux3vvvsu1q9fj88++wzDhg3Dgw8+GOTqEUWO3w0ciUv6DVM9ZnpuD+QlGl8gWE11FM/ZECd40OPRrZ1zL50megY8iSO0hgU2yyTCALSHmdU6zb8XnqIXlx/Gret+whPeoYz+F82KT8DgtCyfbW/KBH8jM3NN10daLzlD0tvrkCQzVE5Xj5Se9OcWxS3iAGhXfY3KkURERNbQFUitXbsWt9xyCyZMmIDExEQMHDgQf/rTn3D48GEcPXo02HUkimjiJnuAnQMBMZJ0IBBmMubptammwvvYzJCvQF9+td6RQIfmeRr6y8rb54kpracFtK9zpedeKm9pCqj3xaNWIVj3DHM72tTot0/P66Gnd8eqHiBxKUvKD1tSJhERkRpd/waXlZWhsNB3QnOfPn0gCALKy5WzSRF1BeKhVcFIPJHf0cP17Lhj1eth+ZXDq03HfCQA2FlX7X3sEgS0uV2mh4uJAzmpdTLJMwzpqNJiXY18fe9mvbMt4KF9P5cfxm+WL5Ld5wjBXaUVMH8vyhSoJpjrdxEREcnhYhtEAQp2UzOpYx7NIMlQLym7zYZXJx4X5NpEniPNnb0lLsGNz0v8EzIY8XXpAdntRuYzyQnGXCCjsUOhTDKO71QCFXsIulitelUsK4fxGBER6aQ7a99VV10Fh8xE+8suu8xv+7JlywKvGVGUCHb6c70NcDts6JGcGtS6RLoURzz2NRxRPaamrUV1/193rsMJBf4LNmslvzDDLcgPbDNyRxlJE2+32QwNpVMLpPTcl7qy9kVYcgcmmyAiIr10BVI33HBDsOtBFLWC/aO93rlCerLVxaKtdZXex+nx2sHOhcu/NHWdQNN0y51+2pJPZI+1wUCAbuD+M9rDZFc5XF8iCfMLGBullnY+0OGPREREchhIEQUo+D1S+hzXvX0e451DJ4gywsW+j4r3eB8LgjU9Ck0uJw43NWBgWqZ3W6CBVKvbhfKWJsTZbHBqlGXT2XMkQAha7xWgfm9XtDbrLkctoLKqB0hpDbQdddUoysi25BpERERinCNFFKD1OpMQ3DNskqny9Tbg42ztH+dj83uZuk4s+KmsGN8cORhwOecs/Rw3r/0RW0TJJ1wBBlKLyw/jshVf60qPH2ez6+6pMRTIG4z51QKv7XVV2C+ztpUctaei9boGmuK9RSHVPRERUaAYSBEF6EBjna7jpuf1MFX+0PRs2cdSHL0E/OfQLkvLe3jLSu9jrbk8f9u9ERUt2r00pc3+qcSleian+l3vzN4D/Y5rz9qnWZwPQ+GgRtnXr/lB17XUep20hv/p7UULRhp1IiIiNQykiAKkp0fg8v7DTZd//eAx3sf3DZ+seJw4VfVJPfqZvh51qnW2YnlFCZaWH9bsOfnk8F78defagK85MiMXtwwZ69cT+U2pf0/b7voaQz1Seo6cX9DX+1hPYKjGE9woDbtrP0ZfGWJyvbRKbw9/XyAiomCJ6UBqz549OP/883HKKafgzDPPxKpVq8JdJYpB4gn5co2+mwaPxVm9B/lsG56Ro7v8NFG2uMyERMXjxBPqrxs0GlNzC3Rfo6vYorJOlJKHt6zEI1tXwenunK2WEZcge+wRHb1NWq4eNBLZCUl+PTW1Tv9Fc8dm5VseKByT39P7uKS5wft4Uck+02Wq9RZpDV2V2ytXntI1jCaaKGlq0D4IwDdHDmBPfY2hsomIKLbEdCCVmJiIRx55BJ9++imefPJJ/PGPfwx3lSgmdTbU0jsa2OKeI7XMZ9bWwvdCDp0NyOm55oYchlt8x5yw3jJrIym5c8PPpq9376bOZR2UXttinY1wNZ73Uc8QM4fNZvmQTqU078/tWG+8sI4noRYsaT5PmQOuWfU9lupa2BiIM/gCrdUx53FfQy2e3bEON6390VDZREQUW2I6kOrVqxcGDBgAABgwYADq6up0peMlMuuSfsMAAFNEvUHpMr0X2So9S2ZJA7ZgZxMMN6fgxrM71hrKHmcVvUFqIPTMvXNDsPx9Fj83o0GIlCD5rxztHin//SXNDXhk6yrJcfLiA1xIWU51q/paZERE1DWENZBauXIlrrnmGsycORNFRUX4/vvv/Y559913MXfuXIwaNQrnnnsuNmzYYOpa3377LYYNG8b1RMhymfGdgVKG6PEzY4/FhX2KMCmnu3fb+9N+hdcmHqf4q//ZkiGARhhdIyjaCQC+OXIQTS5nyK+tlb48EJ53UdditmbqoXGKeC5YTwO9faqX7ChT7h8crSQRep+h0o9kgQaDRERESnStIxUsjY2NKCoqwplnnokbb7zRb//nn3+ORx99FAsWLMCYMWPw1ltv4aqrrsKiRYuQk9M+x+T000+XLfvDDz+Ew9H+S2RxcTGefPJJvPLKK8F7MtRljc7Kw/dHD/ltH5yehcHpWT7b0uLifeY8WUnaS5Ku8zpsZxrXGiEptQUYWxtKT++V+Bg7gNyEJNO9ft5kEx1/O2x2uAW35JhOqyqPINHuwKisPBPXCh1+ZoiICAhzIDVr1izMmjVLcf8bb7yB8847D2eddRYAYMGCBfjhhx+wcOFCXHnllQCAjz76SPUa9fX1uO6663Dfffehb9++qsdqsYdqsouOOkRCXaiduCdI7/ui1Hskt1lvmXF2u0+P66UDhqPJ7UJ1awvWqcz70NO4vnbQKGQnJOERUTrwcEiLi8eYrDz8XF4S1no0BrEXzGG36X7PBRj8LrBBM43dgPQM72O75J4yymZrfy6eIhw2G9okEc/yilJUtjUjLzEZD27+BQDw+Sz5H8ikdD13m/7XU2+5Zj7zXQ3/rSKzeO+QGeG6b8IaSKlpbW3F5s2bce2113q32e12TJ8+HevWrdNVhsvlws0334xzzz0XM2fODKg+cXF25OZaM8zFCtnZqeGuAnVISuzs+dF7j4jPEUtM8t+ut8y8vHTf8wA8XjALz25YrRpIJSZqfw3kZKRiTG4+sEVXVYKm3tmGuydNxalfLAxvRYIoKysVuRn63vOERAeys1N0lx0f50C8Q33OUH5u531UkJqKknL5BBqZCYmo0ZgrlJWVgtz0NDg60qjHOxxolunNu2XtT/ji5LO8f4vv+bh45fpm5aRgXXkZRuTkwuGQH6mekZmE3Cxj391an7kMd73uY7s6/ltFZvHeITNCfd9EbCBVVVUFl8uFvDzfIR65ubnYv3+/rjJ++uknLF++HOXl5fjggw8AAO+88w4yMjI0zvTndLpRW9tk+Dyr2e02ZGenoqqqAW61xVkoZIYmZ+IzAJNyuqOiol7zeABoaWmT3d7U5L9dWqbSUCulaw9IaG8Yj8/rjjXlR/zr0qrdu9LQ0IxqR+Cpva1QUx0Z9QiWmppGVLTpS5DQ1Nxm6PVoc7pgdyvvtwGorOwMnH5dMABLj8hnx0u0aU+xrapuQGqrHZUd92tdm38KdwCobGlGeXlncg3xvdzWpjyM8u2Nm/Dyro2YmdcTbU754yqrG1Hhkk9Xr0Trc1xb0/lvgd7PfFfDf6vILN47ZIbV901GRjLiVX7I84jYQEqJIAi6h5rMmTMHmzdvtuzakfSBdruFiKpPVzYrvze6JaZgYFqm7vdEKUeAXPIAaZmvTzoeyytK8di2zqxlx3UrVLz21JwCPDl2Jib16YXZH//Lb79NR5UFt/Jk/pBTCQRigeDW/10Tb7Mr3kvyhQOX9xuOuzYsQc/kNL/MgDbYfK6dpJLx7miL9g9LPx09jPP7DMHqiqOax4rX6RLXQe2+W1PZXu6S8sPok5Iue4zL7Tb8Xal1vLhK/B5Wx3+ryCzeO2RGqO+biE1/np2dDYfDgfLycp/tlZWVfr1UROFkt9kwIjMXSY7Af5dw65gyH2e3Y6Zo0dTbisbh1qJxisfbOuqXHCdfP6X5WuOy8n3L0axZ8J3as3/MZyfU8+ym5hZgYnY3/KZPkaH3RYCAooxsLJxxCmbk+a8fJn1tA03zvqaqPdD5slR7FIH4R4R6Z2fPrNonQlw/pYDLaGbDfgoBmdjhJvZCERFRBAdSCQkJGDFiBJYuXerd5na7sWzZMowdOzZ8FSMKpjD8+KYUmJzZe6DP35GwLlW3xJSYD6T0vMz9UzPw4MipyExIRKNTf+ILT0xhs9lk30/PHN1hGdkAgO5J+udfybEBaHY5saW2UvNYcdr1z0v26SrfIRpeqPTRMRpIuXQc/+a+rYbKJCKi2BTWQKqhoQFbt27F1q3t/ygdOnQIW7duRVlZ+8T4yy+/HO+//z4WLlyI3bt348EHH0RzczPOOOOMcFabyFLnFQ72Pg7HIAaldrt0IeFghS9G0nc3uZyWfmld2rGAciTR82r8IEq3X96qf+6muMdT7jqtHcPrHh89E/+dfnLAvawNLie+PnJQdt/VA0f5/N0mHtonCmbU1pny6ZFSOM7oSFClNd7EuDYVEREBYQ6kNm3ahF//+tf49a9/DQB4+OGH8etf/xrvv/8+AOCkk07C3Xffjeeeew6nn346tm7ditdee827hhRRLLhY1JgXICDBbuxjaXbqUmFyGvITk3FBnyK/faf27I9BkjWwghVJaS3IKrappsKyRbUn5XQPeOhaMOjp+TO7ILDPWSqXsdtsSNTI7qfHvoZa/G33Rtl9U0QLVQNAi8LaXGpPVU/vpNEeqfzEZM1j4nQk2iAiotgX1mQTU6ZMwfbt21WPueiii3DRRReFqEZE4SUIwBNjZuKWtT/pPkfPL+hyZub3xIV9h8ruO7Vnf5+/bbbIGNrnsFlTi+z4RDwwYgr+V7zbgtKspef5iYefGRl+J27+h/v9lAbEpc2d2Qf1him+PVLyjAZSeo52MJAiIiJE8Bwpoq5IgIBBaVk4oXsfzWMfGz0DZ/QaiEmSX/b1yklIUqmH5G8heEP7jDRzbTZrGrGe5+6IgODQDHEikPwE7R4UD3HwFO5nLr3+qkpRan4dQ/YA354hpWQTWj2egiCguLEzeYSewCsCOzKJiCgMGEgRRRAjQcXIzFxcOWCEqeQLc7r1Vg3WpCVGSsPRBhviDQ59VGM2ccWCEVMxMDXTsnqI6Rm2N79H384/jDyHCHkfAf/X3mdon85epBRRJkrlHin1MhaV7sfVq7/TdT2PCHoZiYgojBhIEUWQUK3VdEX/4YhTCUh6JPmuDJ5sQWp3NUprAAVNR0vYzBypqbkFmJDTDTcNGWttnTq0CcoL0ALtAfSQ9Gzv32a/xLfXVZk80zxxanHpKy9OoCH+FKh9IhJsnfO4FNdm0/h54ltJMgw9SxBMy/VPHU9ERF0PAymiCCJ4/xucgOquYRNwQZ8hyFYZ1vfJzFO981fuGz4Zc7r1xtTcAsuSPMjR+0VkdL6LEs8zMdMjNSozz6cMq3me4q0Kgdr9wydLAkD9NZnTrbf3sdm5dYFwiIJ36Ws/WJTcxOddVnnLxUUoBUBa98w2SUCp5xYrSE7VPoiIiGIeAymiCBLs/qhZ3XorJpjwEAdMU3ILcFvReDhs+pOUPzZ6hqE6zczrqTtI09NboIdnrlAkZu0rTEkDABynMPRSGoAYeQqn9xzQeZ7xqgVMfBdJ76gUR2dgJ/4hwaXynovLKGuRTwOvFkjVtrX6Hx+WRQiIiCgaMZAiiiDB6okKldn5vTAyM1d2391DJ8puj7frD9Ks6pHyMNMjFewAJN7eOVwtXiaxhjTZhpH62HRkuQu2awaOwh1F4/2CZ5fQueKT+G2Wew089ATgap+pQ411mufLcbmNrk5FRESxiIEUURgoNeA9DcgQTZUyRCtddpzNhisHjJDd98L42ZiZ39N02R6D0rJ0HaeXPUhfgVnxiUEpF7CuF21rbaUl5Rixu74Gp/Tsj1ndevu98p4hk0B779LBxjrZHiMxPe+eVrIJ/+O1T2gTGEgREREDKaKwOK9wCPqlZuDe4ZMAAGf3HgQAOK57YTirpUqr/X7H0AneuVcTs7uhd3Kad1+/1AzVc6fn6Zu8f1KPfrqO0+IJZIM1tO9x0fDGeTpS2RthNtOglHjdplARD5uT9iYliRKafH3kAK5d/T0u/uVL1aF2enqkXCqBkdz50d4rTEREoRPWBXmJuqrcxCS8MH629+/L+g/HuYVDvOmcw9WYU1tbSqvJKt7/4MipaHO7ccbPn2pe87huheiRnIp39m/TPLbAwOKzajwBVLCG9uUmdr6OF/QtwldHDhi+jl5JOjMqDsvI1j4ohKSvo9w97xIEtKkMo9PzXhj9LCnFXS7BjRvX/IjRmXnIT9K/dhcREcUu9kgRRQg9a+IE2/l9hlhWlt4QZWx2vmpjV5xdzqrMgY4AeqT0vDfxdjv+Om4WXpt0XEiSOuj5IjeaBMTjiTEzTZ0nZ4goM590OKdS6v8DKvOY9NwPakP15M5Wuhe/P3oIBxrr8GnJ3pAtU0BERJGNgRQReal9IWjPY9LOJpemkHJbrezL+w3XuK5xgfRIfXe0fd0h9VNtGJiWiYKkVN3zvwAgRaV3qV9qhmIwdEm/Yd7HZ3UME5Xulyap0Ksg2ZpeQED9fTYz6yjQHim5+ijNqXp2xzp9lSIioi6DgRQRiZjvPwmk50XtXLOdUL8dMALPjjtWdp8nqPBby0hHMotd9TWax/is8mSg/icW9FXcN7dbb8WMiAWiBZTPK/TvVQzki97KHjVxUJMgWRDaTC9PnI7g0KVWrMknx/4oIiICGEgRRSStbGVWS+xIud07JU3xGCsa1EoNUPEQrW6J1sw/GZSWpZjlr97ZBgBwSJ7VE2P0D3+ra2tT3GdmudyTevTDZf19e9/Er5fe1O9ygZvcELjjdSY2sXIhZvFTkJZrpkcqzq79T5ja6ya3zw0Ba6uO4qHNK9DodMqex0CKiIgABlJEESlRtJZQKPxt4lzcP3yyYo8HADS4lAMHwL8Bb4cNozPzMK+gM2td/xT57H3iU0eo1MEItWF72+uq/I65dcg4nzWclFzZvz3Fu95gV+/Qvv6pGapzttQa7z7Z8GTr4C9ZZ5IKabCZrjA8U49Wt0txn1aP1OSc7hifnW/4mmpD++QCKUEQcN+m5filshSfl+xVKLTzvOrWFsN1IiKi2MBAioiQl5iMybkFqsdorccjDRhsNhseGT0dNw0e691257AJOL9wCGbl91I8VzpPyNNwTwpCcCkOXPqkpOs6x3OcS2UtIXFvSyD9OceK1t5SK8enp0fmyEBSpkt7jrTXE1P+Z2W/SuIItaQSAPCHYZMwNksSSOnopVNLfy4bSIn3K5zXIgoId3QE5URE1PUwkCIiXcRZBc3KSUjCRf2GorskjXlOQucCttJ03gl2B96aPA/vTD0x4OtLNbo6h27pDjY6DtNaG0t6vBk3DB7jfayeLKKz+W+XG9pn4dw3ufLF3p4yz9R1FpXuV91vt/m/R3qG2KkGUjIliHuwXAqp1z1DQ9vrFYq8jEREFIkYSBGRLtnxidoH6STtCRD3ehSl+653JKB9XSa9Q9GUfDDtJL9t4kVp9TaHPcf1Tc3A6T0H4Dd9ilSPtwcQxCSIeuHEjXcpyavptz+Qpr40UNAKyjLiExSHKM7t1tt0PWwmw0G1nkPZOVKiTU6Fc8XvRSBBKhERRTcGUkSki81mwwfTfqW836LrTMktwNmiFN5WrdmT6OgMSjzB2jBR0Ca9itIQNfHz/O3AkThWMkxR7fhAjmtQDaTUe6TaZAICvQGA9HXR0wFzz7BJstvNpmAH2l8faZ31JKhQH9rnv038WhYqDPf8sazY+1irh46IiGIXAymiCGTFMLpgSImLxyOjpuOGQWP89hnJ7qYWGjlsNp/sdVZlSBPXLr4j25t4iKG0d+L6QaMVypH20Kizqv4Z8QnK19CYI/WfgztNX1cayCoFYCf36Ifnxs0CYGDYo052tN9f0ivrCbKVepUAhaF9ok16FmzWk4KdiIhiU2S21oi6uEv7DUO9sw3nFg4Od1X8jM7KU23U66GWSU1Kb9pvv2v4BQCdPMPtxNukjWrpPC5FGm1tufrnJCShsrVZX/k6iK8gV506md4svWFvWlw8RufkYUNlOQCgTWbeUJzNjmtFgafSvCEj77tYfmL7eyEN1tWCJA+XSpYUufdmZ32197GeQErc00lERF0Lf0ojikDZCUm4d/hkDJHMF4oUAY9mMtCeNtv49pz17Nhj8fDIab6Z9GSegLRRHa+wRpHR3AIOmXJO7dnfWCHQyNonTn8uU8FAUpbbbDa8Orsz0UeP5FSZo7RmaclTSrcvzdDoeUrScv++d4vmNVwq94/a/CmgMyB8avsaxWPMBvpERBT92CNFRIbJ9TgYiS/khlTdOmSsbG+HVtp1JZ7TBqVn+e1TSwBx99CJWFddhqEKQazR5AJpMkGM3OsnziBolFZb/tzCIX7bzCabk+ulkV5ebya7R0dNx6lLPvHb7pQ8IWfHfWFmceDatlbUtLYgM8E/WYqelP4tLhe+P3pI8RgGUkREXRd7pIjIEkYCjKm5PQAAx+R1rpN0XPc+mN+jn6Frzs7vhQnZ3XDNwFGGzvO2x0UN84KOoXwz83vihsFjdDfa9Rw1OjNP8xxp8GDkQlq9dhnx/sHcWaKEHkbIBlKSy+tOsKHwGrslPUWeZBla5U6VWQvty9L9uPCXL2WPV0tE4aH12upJeEFERLGJgRQRGRboj/AjM3Px5uQTcMfQCZrHyvVeedhsNiwYORXT83r471MpUy7oy05IUjxenHpdemZuQrLKlfQLpGdDeuZtReNV9wPqz1eNXG+TNNgIdG0laXDSOadNvdxeyWn4/ZBxyEtIwtUawfX/infjqe2rVY/RM6yUPVJERF0XAykiMkx2kr/BtnNeYrKuBreedqpD5uJDM3L8tk3r6LEYl50PQH+Vm1SG3SU6HHh01HSdJbWTzgECtBvkakGENLHGoLRMSdnq9clPTEb3pBRdPXtyr4Xf0D6L11by9IJp3S77G2oxt3sh3pwyD90S1QPc1/Zs1uxNcgvarx0DKSKirotzpIjIMD3Z0qyi1ivgCSDkAjK5IWi3FY3H1tpKjM7KN12fvQ21GJXlO1QvyeBiwcd174ONNRVYXH7Yu83KHilpIKPVszIuOx83DR6r61o76qo1j1Easmf2KXrK0+qRqlDJhOgWBOxrqEV5SxMm5HTXeWXBb5ihX7mWJbgnIqJowx4pIjJMdm5JkNqTeoZX6R1KluSIw7jsbrrSWoudJ0rWUN7S5LffaP9LosOBu4ZN9Nmmll1Oi18QZtPYH2RWr1Erl65eToKop0967Pa6Kty09kf8acsKLCrZp+u6ArTnUbFHioio62IgRUSGJRvsgTFjfMfwu+EZ8imyxYwGRh56z+qbmu59PEOUIMNwQQCeHnuM7HbtoX3KlOYUeWgtXGs0E6EWPQvlGtJRPbtGNcXD+aS9Yj+Lev8211bquqwgaAe4Vj7Tl3ZtwG3rFjM4IyKKEhzaR0SG9UvNwNUDRmJwehZuX78EgPn1npQ8OGIqGp1tSNOx+G+gyQ2MkFtHycicIPHaYBf3HYp39m8DEFjPxoDUDADtc50A/7lEoW6WKw11NPs22WQeGSVOrf9TWbGucwQIaHW5VI+xMuj5rKOnrM7Zisx4/3TtREQUWdgjRUSmnNprgGxCB6vYbTZdQRRgfXIDtfLjNKKB3w0Yqbvc8/p0DhkMpEdqRGYuHhs9A8+Nm9VxrO/RoU7RHaewmPFFfYeaKs/zbLR6pOTO8TATbAsA/nNol+oxelKoA8DismLcs2EpmnWsFxbs+5mIiKzBQIqIos78gr4AgDndCwH4N5I/mHaSzpLUG6w3DBqNY/J6on9ahnebXJAgvv7cbr399uvptdDbIFcyMjMX6R2Bp/RZWT7UzoRRmbnI08ikp01/gGHFcEVBABaV7lc9Rm+P1OPbVmNDTbnq4r4eDKOIiKIDh/YRUdS5btBonFs4GN06FtGVBlIpcdZ8tc3v0Q/ze/TD4aZ67zaHTf33J7mMda6OPiG1ngaXQna4GwePwX8O7sSJHcGjHtKmvVZmuchvuLfXUOuXP59nKXlS1a0thq+qax0pgwMn9QRe4Q97iYhID/ZIEZElGpzaQ5asYrfZvEGU1LyCPpZfT9ywlUtsId4iN4Qsr2PR3t4paYrXUBp+d2JBX7w66XhkJuifMyPtgYqE5AUjM7WThijxpNtXSqvusUSUUEJ6pDjVvF56XjWjvX16gtYFm3/xCd6JiCgyMZAiIkvsqq8OdxUAACd0tz6Q0mpRi4MnuYby1QNH4eQe/XD/iMmKZVgZ7IQ/bPL1+yHjcK4ohbxRZR0p5430nFnTy2Z9j9Sa6jLNY7bVVeGp7WsNlUtERKHHoX1EZIlIGR5mrIdA37FGGstyPVZZCYm4dtBo9WtYGkiFtkeqd7JyTxsAzMzviXiFBBRGaM17KhJlRLRijpRbx8tm9LVdXlEKoP0+FfewSYd21jtbDZVLREShxx4pIrJGhERS/VIzdR9rVYAhnvtkNhW70hwpM6RPK0Vj3a9AXwWtdbysujW05ixZfwtqvzJrqrR7mKROWfwxTl3yCY42N3q3HW5q8DmmWPI3ERFFHgZSRGSJCJiGA8BYognLQhdRC95s6morU5SL34r5BX1xgsa8sWXlJZplPjhyCgDgL2Nm+u3TesZGeoem5BQo7tNa/0kcz1mxtNiOumrNY37UsSbVgYY62e1flh7wPjbaY6f0I4B4vSwiIgouBlJEZAmrF+QNBb2NV60gUdxm10qIoMTK4Xc9k1MxOjMPF/QZghsGj0G83aF6fK2OYWSTcwvw6TGnya4dpvWc9b4m/VLS0Tc1XXF/iagHR/Y6Pkv3Bh5J1TvbAi4DANbXlMtuF/dCxtvU3yOx53asw5k/f4omyZpUNa0tOOPnT/H09jXmKkpERIZwjhQRWSJSeqSMSHbEYcGIqcg2kBFPjhULqFoZSNltNjwyerpl5WnR7pHSZ0x2vurrEK+Ret5qG6rlAyCjmhQCMrPv+VdH2nuydtZVY3RWnnf75toKAMB3Rw/h90XjTZVNRET6sUeKiCxhNHuZ1a7oPxwX9R1q+LwJOd0wIE19XpVmb5sFw8gCXZA3nDR7pHSWY4cNX5TsU9x/UT/j728gqtqMrz0lJQgC6pQCKdF9ZaZHVzofT6vnkYiIrMUeKSKyRLJGQoNgO7P3oLBd25IMcVE4NNJDs0dK59A+mw1ocCmvR1aQKL92mFw9IiT3CR7dugpLK+TnoIljZ6eJZCPS56iV9ENOs8uJA411GCLKeEhERPqwR4qILJEZnxDuKgSN0uK/HlY02sO5aG5uQlJA51sRSOopx0icYHaumtWUgijAN3heXKa+YHBZSxN+6Uid7iGe4+cSBDy3Y53h+j20ZQV+v24xVlYeMXwuEVFXx0CKiCyhZ82daKXV22ZFoz0cgdQdHfNoXpowJ6ByzPSEyJ2rVYrWXDSrAjojeienoUYyBHBLTQWqWps1zy0Urb8lTRwh9duV3+KhLSuwtbZSdv+G6jKU67im1PqOeWCrGEgRERnGQIqIAjIuKx8AfCa9dzVWNN/DMUdqVrfe+PSY05ASFx9QOXEBLLYrXkB5V321+sEGslqEKqQ61FSPC5d/ic017YkeDjbW4c4NP+OyFV9rnpslSnLSS2FR4/q29oyKnqF/xU313n3i4FsrENPSGOD5RERdEQMpIgrIgyOn4M3JJ2CgRsKGWBZIT8jNg8cCAM7vM8Si2oReIFkLxTODDjTWIz8x2fR1xHulC9wG25Ly9qF5pR0p2vUExuJe3B4yw0df37MZ5y9fhP8c3OndJi5WHEh9ppKkQw8n158iIjKMySaIKCAOmx15Ko3friCQkX0nFPTB3O6FAQ2PCzer6l7Z2oweSamK+40MoWwzkbwhEGaGZnrmSLW6XbKpRhYW7wYAvLlvq3eb+LjipgZsq6vCqT0HeIfoeWysLkd1WwuOye+lqy6hfr2IiGIBAykiogAFGkZEcxAF+KfhDhbtkX2dR7hC3MMiF0itqypTPWd/Qx32ptTgxjU/on9qhq7r7G+s9T7+6851AORf/z9sXAoAmJJbgAQdadGjOf0+EVG4MJAiItLhhfGzFQOecCQ5iATDM3JQ1dqCqwaM8Nt3XuEQ/OvgDkuvZ+R1doY4MJAL257esVb1nH8d3OF9jfY21Koe6/FR8R6/bSUqwxilAZ5LcGNV5VGMysz1mRunNbRvQ3U50uPj0T+16w7hJSKS4hwpIiId+qVmoDAlXXZfVwujHhgxBaMz83D/iCl4ddJxsq/LxSYXzz2j90DFfUY6vsz08qUGsBbal6X7caChDocaO5NBVJrIomeG2rDCL0v3ezP9lbU04dPD+/DQlhV4dOsqn+PUhvY1u5y4Z+NS3LjmR2sqTEQUI9gjRUQUIPkZLrFrUk53TMrpHpSyT+heiBd3bZDdZyQ0mpXfC6/s2WTo2unxCaoLAmu5bs33ps8NhNrcsVf3bAYAXD9oNP5P9LqurW4fdmiHDW4IcKkEUvXONotqSkQUW9gjRUQUIGY8M8+zlhUA9E/NQLzMfJ5kR/s2I0P7Ehza84Kkbh0yTvOY38oMYwy3Bh2BjlJWP8+ivq0q97DeQMoluPFLRSkanUylTkRdAwMpIqIAZSckIc5m966pRe0GpmVidKb6+mKzuvVGasdcHUFjXpO44+WK/sNVjzUzRapnsnLGQI/TeykPPQyXA411OK5bofpBCi+IZwik2vBAp86Mfp8e3ouHtqzA49tWaR9MRBQDOLSPiChA8XY7/jvjpIDWU4pFz449Vtdxjo7XzdNcf2PyCbjcZ0FbW8f/B/f1tcGG2fm98ENZcVCvY7WpuQUoa2lSPUYpTLJp7Af0p3bf0jEXa3XVUV3HExFFO/ZIERFZwGGzG1rnqCuw2Wy6XhPPIZ4eKemivOcWDgbg+w+WXOM+KyHR+zhJYWjfJX2Vk2DYbMDc7ho9OxEoLS5B8xjFBYo7X3zFc/UGUnrSrBMRxRIGUkREFFaenia55vo9wybinI5ASjy2T5plbk633vjdgJHev+02G/rKZVlUCewcOnu8gpVowyw963gpZeXT0yOld5RkONZDa3W7sKOuSnNYaCzbXFOB29YtRqlKGnwlTrcbnx3eq9mjSUTyGEgREVFYJXb0Hsk1xLPiO3uZxP9gudy+DeebB4/16ZECgDi7/z9xav/o2Wz6Bg/eP3wy3ps6X8eRofH2vi345shBw+cpZUeU+rn8sK7jjAy9rHe2oc2CJC2Pb12N369bjJ+ibDimle7a8DO211XhbwazVALAotL9eGn3Rty+bnEQakYU+xhIERFRWP1x2CQUpWfjjqET/Pb5Dg3sfJwnGf4n1xkil4VPrd9CbyBgs9mQEa89nC5UmlwuU+d9XrJPV4/U/2QWAZajt0OqyeXE+cu+wDWrvtN3gopfKksBcF4WoH8IpphnMeeKEK15RhRrGEgREVFYDUjLxFNjj0G/1Ay/feK2uV30xwkFhZLMff6t+H6pGX7D8L4s3a9YD3sXnOJmZQIPvclWKlraG+1HWhotu3YoBvaVNDXgy9L9ETuM0Mw7KddrS0T68RNEREQRSylZhcNmx5m9B2meL/2VvrRZufGuZ65RsE3LLQjLdQVBQG1bK05Z/DH+3rGILwCsNdDTI371nty6Gg1tsbWQ729XfYvnd67Hisoj4a6KLDP3r3g4LdfDIzKOgRQREUUscQIItYai0h4jw52CnV5dD+mQxWDzJu0D8Pe97QHUh8W7vfvv27Rc9rxWtwu76qp9emfE78/3Rw/hT6uX4ewln/nNXxKC0H9kZlibWUdVgvFw0rtwspJgvC9EsY6BFBERRS6b7EO1w3y4DTQO7bbwB1OfHd4X0uu1ujvnV1W1tngfN7mcaHP7z73aVFMBAHhky0rcsu4nLK0o8e6TvnY/HD6IRpcTT2xb7d3WGGBjX0koQ4AmlzOEV9PPs46XEYLCYyLSh4EUERFFrHhb5z9TZoYu7a2v1X2sHbaw/ypvJPCzgidRhUvSo3PO0s/xm+Vf+h1/94afAQCrOob8ra0q8+7TensWlxXj3GVf4COdySuMCOW8pbf3bwvZtYJN/LqFslePKFYwkCIioohzR9F4nNyjH/qI1oJy2Oy4euAo3DNsot/xSnOpap2tuq9pdEHlSFtPKhAlzf5rEOnteREEAV+U7MOBxjrV4z481D5kcJEo4UdFS7OuIEirkd9VQoA3927BDau/1zWfaV9DLQ411oegVkRdFwMpIiKKOLO69ca1g0b7BTen9uyP6Xk9TZc7VSOZg5GhffcOn2y6HpHIzPwsAe3D/f5v1wasry43fP6lK77Cewe2qx7zn4M7cdqST3C4STkokAu0Pj28F98fPWS4TnKaFYLKRqcTxSr1stp/Du3CvsY6bK+r0jz2hjU/4JrV6inmObSPKDAMpIiIqMvol+KbYr0wOQ0PjZyK+00ERXILCAcq2eFAsiPO8nL1GCCTfl7OO/u2eh+7BQE/6FwMV2nY4gcHd6qe92bH9b4qPaB4jNyQzJd3b8RT29foqpsW8fwxAN4EGlev+hZXr/oOZS1NllxHr08O77WkHJfQ2bPV1Ub2uQUBu+qrma2QAsJAioiIYpZ0baO0+Hifvx8dPQPjsrthssm043O79TZdNznXDByF96aeaGmZemTHJ+JvuzfqOvZfosDn6yMHsLehRt9FFBrqLkHAkrLDmqd7ArFDjfWoafMNbNwCUN7S5E2QYfWcKWnM/MS21fjw0C5UddTjRxM9X+IgxqgGmaQdvZJTZY9Vey3Ec+PCPT8w1D4v2Ydb1v6El3Xe97Hsld2b8KlFwXlXw0CKiIii1k2Dx+CyfsMU9yc6HD5/S4fuZSUkBnT9BLtD+yADEu1xiLe4TD2yEhJhtlm/o65a13FqDfXHtq3SUwDq2lpxzervcOkvX/vsKmluwGUrvsata38CANPPxYi/793iffzNkYOGzn1y22qcvuRT2YBID+l9DSgPzVQLj8S9MbEURh1tbkSLyz/rpJgngFqkskh3NGl1u/DCzvXYajB7Y72zDR8f3sOA0iQGUkREFLXmFfTF2YWDFff7/xpvbXMxSaZBG4hwrQm8t0F/dkOzpJkB5by4awPuXv+z7D4BQIOrPfBwSnpzPIku9nX81+oMdNKhfVJGM0r+2DE0cKfOIFSqe2KKfx0U5vepBbBtotcxWrL2fXhoF54UpdSXKmtpwhUrv8H1a74PYa3Cb1HJfiwq3Y871i8xdJ7LxNDG0uYG/GPftohdCiCUGEgREVHMkjYN3QG0Fed17+O37dSeA8wXKCPc61gFy2+WLcJ+jax+QPtwq021FdgvE9hVtDbjPwd36bqelcPUNlSXazZOzaTmB0QLIguCoeGIA9MyFcsCgMrWZu9jtXu+TdSI/qFjeGJ1awv+sW8bqjWCx3D5+94t+LGsWHFe2sGO+6w0QhdODpY6AxlKxcRzFx/eskLXOX/cuAzvH9yBd2NoKQCzGEgREVHMkjaoxX/LBUZKXpt4HG4YPMZve3pcgvnKyYjNMMpYGnoA+KWi1G/bT2XFPsOwVoiOyY73HaJpRe+KZ/HgxTqSaWSYvA8OdqQnX7D5F1yx8hvdwZRcQhJxEC4OpJR6YQVB8PaMAcCRjsDjhV3r8f7BHXh2x1pddQkXpddKnASm3tmGbSYWKo5Ga0RruhkhDrSXy3zu5HjulcNN/ssmdDUMpIiIKGaptUvlAiMlBcmpsr0Ocpn7/jRyqu5ypcz2bMSC9/Z3pkHXM9joT6Jfz1PifAOL1gAzsX1z5ADOXfYF3tq3VVdP2oaacrgFASsqSrHRQBr4l3dvxJ76GqyqOoqyliafoXZq5G5r8Z0jHuan1CO1o77a529Pz4RnmOe+EAz3lNPobMOja37B7nr1JCZKnxWHaBHvW9f+iNvXL+kSwdTwjBxT5wWyCLjWcN0fjxbj73s2A2ifw7Wm6mjMZUlkIEVERDHLv0eqkxVBS5zdv4y8BOPrMXl03TAKPutJGe1RqmvzTdrwWUlnBrJ/7ldfp0rOszvWAQD+fXAntuhshC8tL8GftqzAHzYuNXStNVVHvY+XV5TitMUf4zPNDGr+r4/NZsOR5kZcu+o7rKg8IjpS/rWsbfPtJfS85J7ehnKfXq3QqGtrxX0bl+F/+3bhptU/mCpD/Bkq6Xgue8IUFIZSZrx6r+iPR4tlg/xAMlxqZZ58cvtqfFi8GyVNDXhx1wbcv2k5/nVwh+nrRSIGUkREFLOkmcysTostN8E/LzHJdHnSBYi7qu+OGsuCJx06WNHSGQS8e2A7SpuDPwTpW4N19hDP5Xli22q4AbykkUFN7i5udjlx5cpvcLCpHv8QzV1RuuPzpZ+NCMjb9/t1P2Frbftiw1q1UQq25XpJ5D6nnoQdOQnmP6+BqHe24c29Wyy7N9Ver1111Xhy+2rZIF/6Omp9R+4S9WTqnXPa4nZhcccSB6sqj2ocHV0YSBERUcx6cITvMLtRWXkAgJEZuZaULw58hqZn44/DJgXU08Uwql2giQKKm+p9/l4ZgsbbSlEvkNWkwYFcW3djTYXsuXrmEgGRMd+lxMD7rtSGf33vZr9t0o7j8pYmHGlpv1a4PnNv79uK/xzahatWfmtJeWq9uGoLOLskr6RnqJ9LcOPZHWvxVel+fHZ4L2raWvDPA9txS8cSA1rE6eftsHnrF2u/FTGQIiKimNU7JQ3zCjqTShSlZ+OViXPx0Khpll9rck53TMvr4TNHQ2xOt94Yl5WPB0dMUSyDPVLWkCYB+aWiJEw10ab1o/7ismKcvuQTrK7yDQZr21pxp45U1x8V78HqyqPebHZK1lb7JytYU+UfgNa2tWJJ2WFd6eyB9rkxakPABEEwtTixUtY+ublVX5T4rhX1ronhnkbVtbV6F4iWY2YRZzVq60epzYOSvo2egOeXiiP45shBPLdzPV7avREXLv/S73Xz9GL+88B23LF+sc/7KO7htNk6/461zKQMpIiIqEvpmZyGeLv1//x5mg3SX/r/Om4WTu3ZHzcMGoOHRk1TXcTXkynuuXGz8Psh43z2pcfFIyEI9Y41JU0Nfu+B0UFr47PzrauQiNPt9mtAN2osyvv8zvUAgAWblnu3CRDwUfFuXfO33j2wHQ9sXo5rV/uuqyRtQA+SSal+/6blqG5twSNbVmJHXfuQu/s2LcNj21bha50L2Z7582c4fcmneFO0gLHYqUs+welLPkWzwTWJ/nVA/1ybnfXVaHR2li9dh0xLm9utO3AE2odZXrB8Ea5c+Y3iMQ0m12ByCwIWbP4F/zm402f7Kpmg10NtuJ60J8slCHALAl7f49+zJ7WxpgLLykvw7v7t2Fpbhf0NncG69Iqe108uQU804zcyERGRjAv7FgEAbisar+t4T8NBOrRvYFomrh44Cok6Fu+t62hUD0jLxNzuhT77bLCpZiFUMy4rOIFBJPrtqm/9Gsqe163V7cINq7/Hz+WHVcsI1tq0C4t348nta3y2LVaoy3M71mFPfY3393vxMxKgb4FjNdI5UZnxiXhs6yq/497Zvw1LK0rw+3WLAXT2+KzXkZ1Q3ID/zyH1NcCUepiUGG2PN7s7Axdx8FDR2oy6NuX0/IIg4IyfP8XpSz7xL9PlRINMIOxZg6tS51pc5S1NaHO78eruTZr35u76GqysPII3923VVTag/ENCTVuLX2/Vq3s247Qln3iHPmr589aV3sfi7z7x7emw2RS/H6MdAykiIiIZ5xcOwT+mnIg53XrrOl7vZH21ZkQw/lEem5WHS/oNC0LJkWuZZD0cz3vz9r6t2NdYh0dlAgZxY9qKxAtyvQBqw6+kvjpyADet/VF23+aaCvykY30rNdLara46iiUyjfgmUc9JlSiTn1IACACbOnoqjPT7JMr01D6yZSVe3LVB9ni5BBJ6SZ/7Jb98pXjsto6eOKnK1macvfRznLfsi/YyRe+30SG6l634Gmf8/Ck+OrxH9t4U+8BE1ju5+VM/Hi3Ghcu/9OvZ+1JnT6MccW+T+DMkvrraK7O66ii+O2IuaUu4MJAiIqKYdkLHwrtn9x5k6DybzYashETtAzuI2ypn9hpo6FoecRpD9/SuMyT28KjpyDbwPCLFdoUGrBmet0apzH8e2I4Lli/CvzuGS+nNRqakxeXCqUs+wSmLP0aTywmXIEAQBFPPSW4I2Gcl+3DUYA+O2OKyYr85V0rEd+T7OofT3b3hZ/x560q0qswRArSDj6UVJfi8ZJ/suUaDFfHnUxpYqH2uxM/BU98Wl8sn+HIJAn636ls8uW01mlxO3NbReyensrXZL/W8EXK9XH/Ztlr1HLnb+dOSPQDUA2KjbD7rl4kCKVEF5HrwPB7YtBxP71gbVWtN+S+NTUREFEOGZeTgP9NPQpIjuP/kiX+BNbvIZbxNefhfIL0k0TjB+7Z1i/HW5HmWlDUqMxe76qu9qbWlPJPo39q3FTvrqgNapBSAdz4R0D6X57OSvRiUloWaABrQVnpcpuGdk5CESpm1o8RDsRoNzuv5uHiPz9+Vrc0+6cZ3iRJDWL00gZT48yPX86ZHg7MNafEJPsMEgfahfCXNjShpbsT47G6oblMe0ucJwE7u0Q+fKQSJasTPo6q1Gc/uWKcZFMsF8IH+WCBHHNu6fXqkjF3MJQhRE6CwR4qIiGKe3iDKqrV09JZyab9huGnwWBNndtLT0xat0xLKW5qQbEEAbINNd9rmpRUlhhcElnpXtLjwwcZ6NLlciunJI4f8c/5OlByjWmHOT5vbjXqZnob/SuZF3bHON8uguHfC6Ctu9Jb2vKfipBN6zvle9Py9CRMkV790RWfvlN7vkMx45V7ietU5W52PH926SlfPYo0ksCturLe0x1eOuJ7iJBR7GmrxzPa12KeySHKgP2SEEgMpIiIiC4gbDmrtcHGD8+Qe/X3Ss6uZrTBXS8/k7SiNo+CGYEnd3zugnu7aszirR6AB9SZR0PRLZanKkaG3QSFJhJ7YUS5FOgBcseJrnL/sC5+1gwD/HixpAoN7Ny0TXV+7AuIAd2hGjs++Nrcb3x45oHjux4f34FBjPW5WmHfm8fnhvd7X6Ofyw/hGNGfHBQGv7dmE5Srv6auSbHfi3sn/68jACKj/uKHW8ye+N/VkbQQAp6T76RuTi0drET8lcTD02DbfeV/fHj2Iuzf87LNNHOwF+kNGKDGQIiIi6lCQlAoAptKMCzqHsvgGPvoaDI+NnoEr+4+QL09HqBHIxHzPHLNYUy6aYyR9v4Mx7ClS3LNxqez2KpXhaEoanU68tW+r91xpz4cRenohmkWBWo8k3+D3f8W78cyOdYrn/q94D65Z/R1KmpUXHi5vacKLuzd6XyNpJsFttVX4X/EePKtyHekcoN+vWwy3IKCytRlfiBI5HGhQXtfLyLpPSg411mNvQ41secEeRgloB0P1zja4BQGPbFmJT4r3+CwIbTQ9fTgxkCIiIurQIzkVfxkzE3+fdILhc8XNBrVGhDjI0jvkcERGjmIiCl3rsgTQrXNqz/7mT45gl634Gh8V78GDm5bDKXm/oukX8XA6d9nn3gQdAPDS7o2mXzs9p22u7ezpe3zbaly58husry5DTVsL3jKQDlxJs0s9OUaL29zaT9vrqvxeF7UkD3KvhSAI+PFose408des/g43rmnvfZNbIywYxNXWk33vQGMdllaU4G97Nvn2ZkXR5y9a5nIRERGFhHTIkF7if/rV5sOI2wh611RRy1CmZ3HhQHqkwjm/6vmd6w0nODDi1T2bZLdbNVeuq1lZeQQlTco9Pmr09EhJG9hHmhtx78ZlmJjT3dQ1tUhrZLanclttFfLzk3UfL/fjyLKKUjy5XT07n5wzf/4U3fyGrgaH+O15e/82zePFGRHFmQwDXSMtlNgjRUREZAHxcJkDjcrDdtSaCNJ9PZJSNP+h/lWPfhiekYO7h05UPCaQRTDD2aZRex2DKXqacZGnyWSvjdZ9dvu6xXhoywr/89AewFlBHEB/VXoAb+zd4rO/zWRabq008FJyP44caqo3eW236XONEiDA6XajUSXFuZgnWyYAn3ln0RRIsUeKiIjIAnr/6fcMs+mfmqF57MsTj9Mc5pIaF48nxsxs/0PhR+AUyRDCO4dOwBMaa8+Ydd/wybIN3mhS36avIRhtmoLYu+dhtg2sPi9IUFwYN1ie27nOb9s/dPSyyDEaSMkx0vPhUpljJAiCasa8QFy7+ntDx4szDoq/59TqH2nYI0VERGQBvRO4uyWl4K3J8/D02GP99kn7jRw2m66he1qkQwOPze8VcJlKpuQWBK3sUJFmlwOAnsmpYaiJMmmyBbEku/x6ZB9K0pEHg575LZWtzWiWBHVy6dO9ZYaoj/BIs//7Lqa2PpSafx3cqTn/SqzZ5cKd65fg69LOLIRGXgG1VP8C1F/rcBH3mrNHioiIqIsx8k9/bmKS7Ha1uVBWOa3nAEPHR0+TJrgGp2X5ZBYLt57JaShRaPgrBR7/PLAjmFUCAHynklo7Mz4BR5obceXKb/wCQWk6bLFQJR9YWl4StLKvWf2d7mMXlx/GltpKbKmtxAkdyyMYybS3V6XHSYD8Ar3hJl6bK5oCKfZIERERWUA8v+L47oWGzu2Tkg4AGBiC7Fq/GzjS0PFGEi/kJsgHiGStBLtd9X0JZ0N0W61yI72mrRVXrvwGABSDQDmheD6Pb12Fr1TWoQoll2guVmlTA74q3Y9VOhbe1SMUqc/N+Kms2Ps4mgIp9kgRERFZQPxPf1Z8oqFznxl7LKramr3rWGmZ0603vj96yG/7vcMn4eEtK2XPeXOy8ZTuAAx1SV03aLS5a0SBSFrU2KZRm3A2RHd3rF1kpVD0SKmlIw+1rXWdC+3euPYHNBkYFqhlZ321ZWVZqUE01DOa5kgxkCIiIrKAuK03rCOFelF6tq5zEx0OFDj0z8HJTpAP1Kbm9lA8Jy9Rf/plqXibHW2CG8kOh2qjTprUIpaEYtilXgKEsGZTDLVoWlfICmuqyryPrQyiAOCO9UssLS8Y2CNFRETUxYiHWk3O6Y4nRs9Av9TgDNXT6pGw+GJ4eeJcbKopR9/UDNWJ7J71b47J74nFZeH/hT/ZEWdZpjqnydTXweAWgLXVZdoHxohoalhT4KLp/eYcKSIiogDM694+GXxGXk/vNpvNhuGZuUiJC87vlWrzY/46bpahsq7oP1x1vw02dE9KwXEdz1NNXEeGwTuHTTBUh2Cxcs7W/jCtaSXHGUVDn6wQqqx9FBkidR6XHAZSREREAbhx8Bi8O+VEjMzMDdk17So9UgPTMjEhu5vusrSGH4qvpHZdAEjoSLst12OWozAcMdoN7xjGScETTT0UFLghOodERwIGUkRERAGw2WzIDHGQ4NCYr9O3IwtgPx2L/hoZJGhXuG7v5DRMzS3wZh+UO+r0XgMNXEnd7UXjdR2nVF8zDir0SKXGxVt2DZL3yeG94a4ChVCiQ34dtEjEOVJERERRRitA+E3fImQlJOpaeNdIEoXCjkBJ6rReA3BSj36myjQjHGkflPpE4iIoCYUZ47PzfZIbRKL/aiwkrJUEhShY2CNFREQUZfITU1T3JznicGbvQboy9SkN18uMT+i4VmcZWj1hZvRRCM6sEIpGjmc4Y7S6sM/QcFchYAyiKFwYSBEREUWJlyfMxY2Dx2BsVl7AZV3RfzhGZ+ZhULp8ZsHXJx2PNyefgPSOgMpKl/Ub5n18YoF2EgspvettWdkzNkhhseT+OoZPRjKHPbp71IjCiUP7iIiIokTvlDT0TklDWUtTwGWd2XsQzuw9SHF/kiMOSTLrQt0zbCKaXS48vWOtd5ue1ODiTFzlLc3exw6b/t9042w2XNF/BIoy9E1G10qOYYTc0L6XJszBysojll0jHKx8jYi6GvZIERERkW7T83pibvdC9EjqHF64qHS/5nlzuhV6H9c5W72PjQwXHJOVj9N6DQAATM0t8Nt/nOgaACydTJVg928y9UxOMxQIRqIon+JFFFbR/eknIiKisHhl4nHex2o9ZK9NOg4fzTwFuYmdazr1TO4cmmckEFldddT7+ObBY/32i69hNfE6YR4Om83SzIDhENLFnUlVKJdQiFSpMr3gkYyBFBERUZTJTUjC4LQsnNqzf9jqoHf+kQ02v2BpREZng1Ep653DZsOdQ5UX9pW7fjCDAqW1ucSpJoKRjCNYTu7RDy+On+P3ivn16sWQzCDM97NStM+3s8LIzMDnf4YSAykiIqIoY7fZ8My4Y3H1wFHhrgoA4w3UONEwOfHj1ycdjyHpWQDaR+WprcOaFhePM3sPxMnitOuSYxqdTkP1UrJwxskoSJLPlOgQ1V8ayEVyD8M5hYPRJzXdr87DYniB4benzDN9brDT3N80eAzXywJQmJIW7ioYwkCKiIiIAnJxX2MptMWNUvHj7kkpooa9DdIUD/O6+2b4u6L/CMwV9aBI27olzQ2G6qUk3u6A0oSrabk9Oq8v2ZcUwanRPUMSpa9ZFHWqGRZIj2VakBdenlfQN6jla1/fePZMLc+Nm2X4nAsNfpeEGwMpIiIiCkiGSo+UIJPvLk401E867M9zvFxW7jiZhA9iwRzap1RyapzynI79jXXBqYwFPNn6pFn7YnnOlPSZGWnoG31dLus3DH2DuEaa1YLxvic6jP+QEK/xGY800VVbIiIiCjqjTapAMtdJr+UZzmeDTTbluN/5ogK06q0258rIdcQcNjv+Pul4vDv1REuvF2zeJBk26fbQ1yVUpPPqBiisDabnXC2n9xqAF8bP9kmsEgqfHnNaSK+nJi9Be0HwaMdAioiIiAKiN3PdtQNH4eK+Q5EqGialdK7eZqu4R0WrsXtsfi+dpRqrUbekFGTGJ3qDrSHpWfj0mNN0N6KvGzQ6gHq1OyavJ+4bPln38Xbvf6U9UtpuKxqvv2JhNjOvJ14cPwdPjT0moHKMJhKJtztgs9lwdu/Bus/pE8YeLLPx86Sc7or7zPRIRRsGUkRERBSQ7PhExX0ZcZ37Tu7ZH+f1GYIeogBDOqTI3dEPJdduFdSyT8DSZaMCKttTTb2L3Z4kSphh1l3DJmJwR6IOPbxzpCTb5YZ4Ses3LCMb70yZh1/3GoAPZ5xssKahlRGfgD6p6ShKb1/EWSn7opp5BX2QrCMt9/Hd5TIe6ulXbXdBnyEGamUt/bX0pTfA7J4on6wl2sV0INXS0oKzzz4bp512Gk455RT8+9//DneViIiIYsYL42fjrqET0Esm09Y3p5yDv08+Hikqc4gAmYaYt0Wnb2ifuN1vdPiVll8V9MUfh00C0B543DR4LM7oNVClKpLenRBlbhjekWnPyNU6k034nlXa3IhLJBP+XZIA1g4bshOScNWAkUiI4IQagP9r0ivZeFa47okpuHvoRIzJUk7NPS4rH9fL9CwaCVBCnT7/fzNOUdxXaOJ1UnNJv+hKIqFXTAdSCQkJeOutt/Dxxx/jgw8+wMsvv4za2tpwV4uIiCgm9EvNwDEKw+XSExJQoDK07ckxM3Hf8Ml+k8tdnh4pmXNOllk3Sxy86GmGnluof6jV9YPHYFpeZ1a+eQV9MFllKJNUII0s+d4NdUYSBniOrXO2+mx3CwLO7TMEc7v19m6T9gSGKkC0ghULJgsA+qSm48+jpiseMzmnu08SFe+5Gr2oYoEmfDCaJU+avGVQx5yxBSOm4sUJc/DwyGmaZeh/etFzzxgR04GUzWZDamr7l3hraysEQYDb7Q5zrYiIiGhYRg6m5Bb4Na9O6dEeLJ3fZwjEv+d/PPNU9JNZsNSm8FjJJf2G4cbBYwzX10NPu7Ez86D5xqOZRrWRy3nqJm0Ie3pFips6U8e7Jc862E3iwjTr5gpZkY3u2Pyemse4IcgGmOJW5xOjZ6iW0ehqM1o1r2SHw1DyDDmPjJqBJ8fMxPjsfNhsNl0Z9OSyciodGYvCGkitXLkS11xzDWbOnImioiJ8//33fse8++67mDt3LkaNGoVzzz0XGzZsMHSN5uZmnHbaaZg9ezauvPJKZGVlWVR7IiKi2BTO347n9+iLNyefgDN6DURhx+T7nIRExaDETPNMaXFdqwXSiDdypqcnxMj1PNn5EiSNZc/rvL2uyrvNb2if5L2wujH51pxfWVyiee9NnY+eomFuJyvMZ5O+Rl6i7cM1FmjeVV9juH5WSomLw7CMHG9AqOeHgFhOl6+H9sy5IGpsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJyc9vHAp59+umzZH374IRwOB5KSkvDxxx+jsrISN954I0488UTk5SmPcSUiIurqwv3bcV5ie9rkQWlZeGz0DBTKzMGSo3fImd4kEIFSSyV+TF5PLC4/LNvLBgBp8Z2ZDXMTklDR2ix73PCMHFw/uH1ujjSgGZKehR111fJ163gNpJnipL1PQPtwP7lzPRw2O9yCNSN+0uPikRof3MVvjYiT3FPXDByFz0r2+R0nfY08jHyWlMoIlyQdWfdyEpQTzXQFYQ2kZs2ahVmzlMdzvvHGGzjvvPNw1llnAQAWLFiAH374AQsXLsSVV14JAPjoo490XSsnJwdDhw7FypUr8atfmfulwx4Biyt46hAJdaHowfuGzOK90zXZENh7bui+ETVU5Y4fna3+42e8Q7y4r/r1POU7dC76KVcf8TbpfpvkOIdKX82IrFxcPWgUshR629JFixyPzMzFj2XFsuX8ZVxnWm+Hw/d6k3MKFAOpzmMlvUs2m9/zkgZXDofvMQPTMrFN1IMViEfGqg9/M8pmk7xnoqem5/6Mc9glx9lw7aBRqHe2YVHJfpS1NAEABOl1Oh4LOq43p1tv2O02BBKKCoLxz6z4+Fa3y+/8AWmZuKDPEPzzwA7FMtJUgl5xeTYddRufnW/6eydc/1aFNZBS09rais2bN+Paa6/1brPb7Zg+fTrWrVunq4zKykrExcUhIyMD9fX1WLFiBc455xxT9YmLsyM319oMJoHIzg7tAm8UG3jfkFm8d7oWm81myb95eu6bDKHR+9jMNXNyUoFV7Y9TU9V/HfeUn40mXWXL1SfD3aC439Mj5ohzIDc3DS6VXprU1EQM7tkZJH5wwqlYuHcn/rlrGwAgJbkzkEpIVG6uieuQ2OY7xyYjLUnXeT71Skn02xef4Hv93Jw0ZIp6Ip6cORv3rViCdRVlitfrlZqG4oZ6xf3eOqdbu4hrcnKCz/NJKu58XfXcb7k5aUiSZJ68LLe9B/CrLw50lpscj9zcNNw8ajxS4+K9ZZ+WOhhv7N2Cy4pGIDc3DW/P/RUu+e4L73mvzz4RQzKzkeBwID7BfAZEM59Z8fHfHz2Ex2b6d27ckjfJJ5C6aPAw/Hv3DrS4XQDaX1895aep3IseBelpAX/vhPrfqogNpKqqquByufyG4eXm5mL//v26yqioqMCdd94Jl8sFQRBwwQUXYOhQc+kXnU43amv1ffEGk91uQ3Z2KqqqGuB2R1YXMEUu3jdkFu+drkkQgIoK7UavEiP3TU1NZyAVyDUBoLGxVXW/p/w6nf+ey9VH3Bbw39/+XJ1OFyoq6lUzttXXN/ucnwY7Lu5V5A2kxM+ltcXpfZxkd6C5oxErrUOTq/O4O4ZOQPd45blgSq91U2Or3z7x9QGguqoRzrjOoM0B4De9i1QDKbdL3/dHbV0TkK3rUF2am3yfT3NT5+uq536rqKxHksIaUi5RArP6hhZUVNTjxJxCv7I/nHEybDYbKirqkYcE3DN8Eh7ZshIA0ENIQl11+z01I6sAH+/fbeDZdWpyOQ1/fqTH6zl/dnZPHDuhJ3638tv26zYpJ8gQl1dfLz80FWhPlNHkcmFebqHp7wCr/63KyEhGfLx2YBuxgZQSQZDPiiJn8ODBWLhwoWXXjqRGhNstRFR9KDrwviGzeO90LQPTMi15v/XcN+L9AV9T43Rv+aLjrh4wEn/bs0mzbnLb/PfbvOVrPRdB4xjpfJl+qRnY11DrN3xRXIYgetwnJQ39UuTnX8nX3Vt1v31+mdnc/sdoz+/R997aLP6akb7O4mrqud/iYVc87pbB43DvpmUAAJfGvS4OqpXuobwE7d64u4dOxGPbVsnuM/r58XsPdZzf3smq7zput4Azew/ER8V7MDYzX/G4Z8bOQnpcPDITEgP+Dgj1v1URm/48OzsbDocD5eXlPtsrKyuZLIKIiCgI5hf0xYV9i3Dv8Mkhu6aVTR7pz6zzC/p6H380s3PxUfGcpFN69sd9Ms/3pQlzZK/hyfiXqLIQrVxK6AUjp+JRlXWIPE7tWCtrRp5vym1PjdVeL3EGtQanM2jrPclNQzGyXpKSGXk9FJNvWOXXvQciPzEZvx8yDgDQXSODo9prODa7MzhwGbiTG11O2e3i++b9qfNlj5mpIxW7Hi+Mn+3z9ySd66PZbEBBUipGZuTi3MLBmmlbrug/Av+bcQoy4hPw90nHK5aZGaVJKyI2kEpISMCIESOwdOlS7za3241ly5Zh7Nix4asYERFRjEqJi8MFfYqQm6g9nyGSvDNlHt6bOt+vUddf1Ch3iBZLFWeds9lsGJ/t/2u5UgO7W1IKXhg/G29OPsFvn1qjckJ2N4zK6vwhWKnZffXAUVg442T0TknDxOxuAIAxWfkY2ZE6e5xMXb3XF1XgQGOdz773p/0KT46ZqVLDdnoahnIpr+Wez5D0LB2lteuRlII/DJsU0Npb/VK015/KT0zGG5NPwNyOBY+li9j+utcAQ9c8p2OB5zn5vTWO7FSlkIEx2d45UCwtPsEvNb1RfVLSMaebfL0y433nNum9lh022G02PDZmBi7pN0zXOZ5gNCNefj5VqLJoBkNYh/Y1NDTgwIHOiXqHDh3C1q1bkZeXh/z8fFx++eW48847MWLECIwePRpvvfUWmpubccYZZ4Sx1kRERLHFkyZ7eEZOyK+tf0FPZdkJ7YGftPdAqTdB2liXCwzUmnZGek1uGDQayQpzbJTEd/R23TVsInbUVWFUZh7a3L0wJD0bU3K64+fyEtnzxM9D2jhNi4sPKEjxuY7OYp4eeyzOX/YF6p1tPoGsHCt6JmXfb426psZ1Zp17YMQUTMrpjrndCnHT2h91XfPSfsPwmz5Fuhav9VC6HzITEvHHYZPQrSOIH5OVj5WVR3SXK/XXccfCJQj4/ughAL7DWKX3vNkORSN3lPj+e3/qfJy/fJHhMiJNWAOpTZs24ZJLLvH+/fDDDwMAbrjhBtx444046aSTUFlZieeeew5lZWUYNmwYXnvtNe8aUkRERBS4h0dOx56GGowIQyClNJHfDGmDTKmBJg0y5AMua5p38xUWcNUj2RGHMVntPVCJDodi74KHT2rvjse/HTASnjDF7DNKj/PtSTDyaj00chpe37MZ5/YZjPs3LVe8htlA6vjuhTixoC+SHXF4evsak6W0y4pvH16mZ/0kMSNBFKD+48G0vB7ex0rDR8/sPRAfHtqNJ0bPwJ0bfla5kg3xopvi1F4DRIGUOf7BuP6SxMFbmqh3Su9yBJEorIHUlClTsH37dtVjLrroIlx00UUhqhEREVHXkxIX5x06FmpD0rJwXuEQjMwMPIjTOydIephcMy6QMCp8aVlEQxY7Hp8uGqom1/PmV4LMa3hJv2Focbu8PRvxKvPDpAanZ+GxMTPQ3DEvqDA5DQeb/DOznd7T2JA6oL03yDO0DtD//mspSErF2Kw8DM8IzmfCpbP7R+nZXNF/BM4vLEJKnHoz3ob2Ia2vTJzr3wvWUfi9wyfh5V0bcXE/fVmt9dxDSqRz6+4cOgF7G2qRn2htyvtQirqsfURERBQ7bDab7kacZlkB1MHK6+trJlsfbokDQrlhfHqepeeYy/sPxxt7twBon9tyW9F4rKsqQ1Vbi6m6JTni8MG0k5DocOD0JZ94tw/PyMEfhk30Ds/U8s+p83FBx5Awqck53bG7vsZU/cTsNhse1pEYxCwr3nmtIAro/MGgZ7L/2kyegGhqbg9Mze3ht1+JNBgy8smRBmHH5vfCsfm9DJQQeRhIERERUUyQNuriFOblyPUIvDrxOCTYHbh0xVcBVEB/s9KKxvTNg8dKLt95/Vy5wMRAqzdB5rV7c8oJimnO9TwfucZ/siNOdxAFAOmiIWHSa55XOATDMnLw74M7sbGmAkBkzr/RThXfTk+Af0xeTywuP6xUgoFaKXts9AzcrTqEUB+7zYZrBo7yDqGMBdE7KJGIiIhIRNrwnJZbAKC9sSkmlyWsR3KqddkKdTSU4zWSL+hxjEoq7KIM/1VtjQzLyk/yH27lsNkVh/Xp6SGRY2WgE2e3Y3x2t6CnUA/UiQV90Ts5DTdJAmGpyhblRWz1UHttjbzug9IyvY8DzbB3Ss/+lqVwjwTskSIiIqKYIG3ipcUn4H8zTvFbxFbth/7fDhiBoy1NiDMxAV5PE/OBEVPwZel+HN+9j+HypdSy8Jke5thx5pScAlwzcBTGZimnWxcbmJqJC/sWYWN1BTbUlGuf0GGCzvWLjLi47zB8cniv5eVaJSM+AS9PnKt5XFp8vOYxciH7rwr64khLo2WBlPjz458Z00BBMYiBFBEREcUEuR4XuYBIrWfm9F4DLa2T1KSc7roXP9Wi1oaVyySnJ9W8p2Fss9lwSsfiwLrqYrPhgj5FALYbCqSmdvQaWsls75gVqfitZDZGuX7wGB2Fm8u218XjJj8c2kdEREQxQW/bMHYag8rPRG7dJrNrBRmRYmE6+65Oz9tlNvgzlCRCpUdKKUV7V8FAioiIiGLOC+NnK+4L9nCkYMcrcR1PQDpkUYtbT4+UqRp1OrGgL2bl98IjOrPe5RlINGFGIOm6w62/jrleIVlIV+ExAJzUQ3+vZSzizwZEREQUE+Jtnb+OqyUcCFbj2lj6c/Pen/YrON1u1TlSskLQI5XkiMMdQyeoHjMuKx9rq8vwwvjZlqWej0XnFA5GVnwifiwrxpbaSotLNzC0T6VHKiUuDsd3L8Q3Rw5aVrNowkCKiIiIYsL0vB6YUlaA2d3U16bJFKXQtlKoej+SHHGAiRFV+oaBBf85PDhyKmraWpCjozdqck53rKg8EvQ6RaIEuwMn9+yP9dXKc85MD+0z+TbLnZbq0E6KEasYSBEREVFMiLfbcd+IyZrHpcTF48Xxc5ARpIAqmoUiFHTYbLqCKADY31iHSTndsVIumLJ40ldqXGQGBKMyc7G0ogTjs/0zKJp9BQLN6ih2QZ8hqGprwem9BuC2dYtNlhydGEgRERFRl9MnNT3cVQi5yMpJp4/exWsD8dSYY7C3oRa9ktOCfi0zTurZHz2SUzE8IzfcVYFdJgJLi0/AnRrDOWMVAykiIiIiC9Q6WwEAVa2BLaQaiCdGz4ipeUeuAAMpPa9EUUa27ALGkcJhs2GiQsp888kmzPdJUSdm7SMiIiKyUJ2zLWzXHp6Zi2EZOabPH5KeZV1lLDAwLRMTsrsBAI7J6xnm2kSeUM+RMpzgJMaxR4qIiIiIcEL3PhgaQBAWDEPSsnBSj37on5qBwREW5EUCs/11Znuy9KbcT+0i64mxR4qIiIjIQpGatEDJgI5U8b/q0TfMNen04sQ5OL3nAJzReyDsNhtGZOYioYsv/hpN/jRqWrirEBJdI1wkIiIiCpGBqZnhroIhT4yZidLmRtW1t0KtX2oGfjtwZLirEfHSOoL2JJ1B5vTcHjjQWIcEu7G+lF8V9EWr2637+F5JqYbKj1YMpIiIiIi6sCRHXEQFUXrpGp0W41N6rug/HE63G+cUDtZ1/D3DJ0EQBMMJSa4fPEbXcf+YciJq2lqQ1kWWFmAgRURERGQhuRTRZD19ywvH9puRnZCEu4ZNNHROMLM6ZiUkIishMWjlRxrOkSIiIiKyUKQ23oUQrMkUSnqej97kCERmMJAiIiIissD8gvZkDcfkR2aa7oz42OgpGJyWBQCqad7vGz4ZwzNy8OteA0NUK+qKOLSPiIiIyALXDhqNU3v2R5+U9HBXRVbvlDT8fsg49I3C+VBij4yejoONdRiSrryI7pTcAkzJLQhhragrYiBFREREZAGHzRbxQcrc7oXhrkLAkh1xqkEUUahwaB8REREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAbZBEEQwl2JaOB2C3C53OGuBgAgPt6BtjZXuKtBUYb3DZnFe4fM4H1DZvHeITOsvG8cDjvsdpvmcQykiIiIiIiIDOLQPiIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIEUERERERGRQQykiIiIiIiIDGIgRUREREREZBADKSIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIFUFHn33Xcxd+5cjBo1Cueeey42bNgQ7ipRhHv++edRVFTk87/58+eHu1oUgVauXIlrrrkGM2fORFFREb7//nuf/S0tLViwYAGmTJmCcePG4cYbb0RFRUWYakuRQuu+ufjii/2+g+6///4w1ZYixd/+9jecddZZGDduHKZNm4YbbrgB+/bt8zmG3zkkR8+9E8rvHQZSUeLzzz/Ho48+iuuvvx4LFy5EUVERrrrqKlRWVoa7ahThhg4diiVLlnj/995774W7ShSBGhsbVf+xeeSRR/D999/j2WefxTvvvIOjR4/ipptuCnEtKdJo3TcAcMEFF/h8B915550hrCFFohUrVuDCCy/EBx98gDfeeAOtra244oor0Nzc7D2G3zkkR8+9A4TueycuKKWS5d544w2cd955OOusswAACxYswA8//ICFCxfiyiuvDHPtKJI5HA7k5+eHuxoU4WbNmoVZs2bJ7qurq8N///tfPPXUU5g2bRqA9kbOSSedhI0bN2LUqFGhrCpFELX7xiM5OZnfQeTj9ddf9/n7sccew7Rp07BlyxaMHz+e3zmkSOve8QjV9w57pKJAa2srNm/ejBkzZni32e12TJ8+HevWrQtfxSgq7NmzBzNnzsRxxx2HO+64A6WlpeGuEkWZTZs2oa2tzec7aODAgejZsye/g0jTwoULMWXKFJxyyil45pln/H45JqqrqwMAZGZmAuB3DuknvXc8QvW9wx6pKFBVVQWXy4W8vDyf7bm5udi/f3+YakXRYMyYMXjiiSfQt29fHD16FP/3f/+HCy+8EJ988glSUlLCXT2KEuXl5UhKSkJaWprP9tzcXJSXl4epVhQNTjvtNPTq1Qu5ubnYtm0bnnrqKezbtw9//etfw101ihCCIODRRx/F5MmTMXDgQAD8ziF95O4dILTfOwykopggCLDZbOGuBkWwY4891vu4qKgIY8aMwZw5c/Dll1/ijDPOCGPNKNrIfdcIghCGmlA0Oeecc7yPi4qK0K1bN1x22WUoLi5Gr169wlgzihR/+tOfsGPHDvzzn//02c7vHNKidO+E8nuHQ/uiQHZ2NhwOh9+vMJWVlX69VERqMjIy0K9fP/ZkkiF5eXloampCfX29z3Z+B5FRY8aMAQAcOHAgzDWhSPDQQw/hu+++w1tvvYXu3bt7t/M7h7Qo3Ttygvm9w0AqCiQkJGDEiBFYunSpd5vb7cayZcswduzY8FWMok5DQwMOHjzIid9kyMiRIxEfH+/zHbR3714cPnyY30FkyNatWwGA30FdnCAI+NOf/oSvvvoKb731FgoLC3328zuHlGjdO3KC+b3DoX1R4vLLL8edd96JESNGYPTo0XjrrbfQ3NzM4Vmk6vHHH8ecOXPQs2dPHD16FM8//zwcDgdOOumkcFeNIkxDQ4PPr3WHDh3C1q1bkZeXh/z8fJx11ll49NFHkZGRgbS0NDz88MOYOHEis2d1cWr3TVNTEz755BPMmjULWVlZ2L59Ox599FFMnToVgwYNCmOtKdwWLFiATz/9FC+++CJSU1NRVlYGAEhPT0dSUhLS09P5nUOytO6dAwcOhPR7xyZwwGnU+Mc//oHXX38dZWVlGDZsGO677z6MHj063NWiCHbrrbdi5cqVqK6uRk5ODiZOnIhbb71V1y841LX88ssvuOSSS/y233DDDbjxxhvR0tKCxx57DJ999hlaW1txzDHH4IEHHuAwmy5O7b45++yzcccdd2Dnzp1obGxEjx49MG/ePFxzzTV+SQSoaykqKpLd/uijj+LMM88EAH7nkCyte6ekpCSk3zsMpIiIiIiIiAziHCkiIiIiIiKDGEgREREREREZxECKiIiIiIjIIAZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAyKC3cFiIgocj3//PN44YUX/LZPmzYNb775ZugrFENaW1vxzDPPYP369di0aRNaWlqwfft2xeMffPDB/2/v3mOqrv84jj/5gYIiJ6TwbBKKscQFnKB1BqJgIslZyuIiM0wc1soYLiqbXDIlu3BZRgciR1IMM3XAoEVNqOYO5ilhNe9LY7QuOAJDDu4cIEH4/eH4/joeBI5i/tL3Y+OP87mcz+dz/MfXPt/P54vJZOLdd98lOTmZ5uZmAJycnFCpVMyfP5/ly5eTmJjI1KlT/6llCCHEHUuClBBCiDG5ublRVlZmUyZuTH9/P9XV1Wg0GoKDgzly5MiY7Q8dOsTzzz+vfA4JCeGll15iaGiICxcu0NzczNtvv011dTUVFRWoVKqbvQQhhLijSZASQggxJkdHR4KCgibUtr+/HxcXl5s7oduESqWiubkZBwcH9uzZM2aQ+umnn2hvbyc8PFwpc3d3t/p3iYqKIj4+nqSkJHJzc8nNzb2Z0xdCiDuenJESQghxXdra2vDz8+Ozzz5j8+bNPPzwwzz33HMAmEwmtm7dSlhYGIGBgTzxxBMcP37cqv/FixfZtGkTQUFBLF68mJ07d5Kfn09kZKTSpri4mJCQEJux/fz82LNnj1VZVVUVK1asICAggKVLl7Jr1y6r+szMTOLj4zEajcTExBAUFERSUhItLS1W7S5fvkxpaSnR0dEEBAQQERFBZmYmAJ988gnBwcFYLBarPkeOHMHPz48zZ87Y9Rs6ODhMqJ3BYCAwMJC77757zHYLFizgySefpK6uDrPZDEBnZydZWVksW7YMjUZDdHQ0hYWFXLp0SemXkJBAVlaWzfdlZGQQFxdnx4qEEOLOIUFKCCHEuAYHB63+hoeHlbqCggJcXV3R6/Vs2LCBS5cusX79eoxGI5s3b6akpISZM2eSkpLC+fPnlX5ZWVkcOnSI7Oxstm/fjtFo5Isvvriu+ZWVlZGTk0NUVBSlpaUkJSWh1+ttwlZ7ezsFBQWkpqayY8cOLly4wAsvvGC1nq1bt1JcXIxOp6O0tJTMzEx6e3sBiImJ4fLlyzQ0NFh9b21tLf7+/ixYsOC65j+exsZGlixZMqG2ixYtYmBggNOnTwPQ3d2Nu7s7WVlZlJWV8fTTT1NTU8Mbb7yh9ElMTKS+vt4qIFosFr788kvi4+MndzFCCHGbkEf7hBBCjMlkMuHv729VVl5ezpw5cwB48MEH2bZtm1JXVVVFS0sLn3/+OT4+PgCEhYWh0+n46KOPyMjIoKWlha+//prCwkIee+wx4MqZn6VLlzJjxgy75mc2mykpKSE1NZWNGzcCV8JEX18fO3fuJCkpCUdHRwB6enrYt2+fMq/h4WHS0tL4+eef8fX1pbW1lerqal555RXWrVunjDEyR5VKxfLly6mpqVECxkjg2LRpk13znqienh6OHj1Kdnb2hNqr1WoAurq6gCu7dxkZGUr9Qw89xLRp08jOzmbLli1MnTqVlStXkpeXR319PQkJCQAcOHCAgYEBVq5cOckrEkKI24MEKSGEEGNyc3OjvLzcqmzevHmYTCYAHnnkEau67777Dn9/f+69914GBweVcq1Wy6lTpwA4efIkgNVjfK6uroSFhXHixAm75nf06FF6e3vR6XRW44WGhvL+++/zxx9/4OXlBYCXl5cSogB8fX0B6OjowNfXl6amJoAxd2FWrVpFSkoKv//+O97e3hw4cIDBwcGbFjgOHz6Mh4cHDzzwwITa/313beRzRUUFlZWVtLW18ddffyl17e3tzJ07lxkzZhAdHU1tba0SpGpra4mMjGTmzJmTtxghhLiNSJASQggxJkdHRwIDA23KR4LU1ed2uru7OXbsmM0uFqDsYv3555+4urraXEwx3hmg0XR3dwOwYsWKUevb29uVIHX1bYNTpkwBUMKFyWRi+vTpY+6KhYSE4O3tTU1NDenp6dTU1LBs2TLc3d3tnvtEGAwGlixZMuHzVJ2dncD/fsuKigry8/N59tln0Wq1qFQqTp48yfbt261C1apVq0hOTua3334D4Pvvv+eDDz6Y5NUIIcTtQ4KUEEKIG3L1f/DvuusuAgICyMnJsWk78n6je+65B4vFYnPL38jjaCOcnZ0ZGBiwKuvp6bEZD6C0tHTUIDZv3rwJr8Xd3Z3e3l7MZvM1w5SDgwMJCQlUVlby+OOP88MPP9hcbDFZhoaG+Oabb3j99dcn3Ofw4cNMmTJFCbL19fXodDpefPFFpU1ra6tNP61Wy9y5c6mtrWV4eJhZs2axePHiG1+EEELcpiRICSGEmFQLFy7EaDQye/bsa+4wjexwHTx4UDl/ZLFY+Pbbb60CjFqtxmKx0NHRoZz9MRqNVt8VHByMi4sLnZ2dNo8Z2is0NBSATz/9lLVr116zXVxcHEVFRWRnZ6NWq1m0aNENjXstx48fx2w2s3Dhwgm1P3PmDHv37iUmJkb5Hfv7+21e0FtXVzdq/4SEBPbt2wdAbGyscrZMCCGELQlSQgghJlVsbCz79+8nOTmZp556Cm9vb0wmEydOnMDT05OUlBTuv/9+IiMjycnJwWw24+npyYcffmjzqF94eDguLi5kZ2ezfv162tra2L9/v1UblUrFxo0befPNNzl37hxarZahoSF++eUXmpqaKCkpmfDc77vvPlavXk1eXh5dXV1otVouXrxIQ0MDhYWFSju1Wk14eDgGg4ENGzbYBI7i4mLee+89zp49O+Z4jY2N9PX18eOPPwJXdo/gStD08vLCYDCg1WpH3R0zmUwcO3aMoaEhTCYTTU1NVFZW4uPjY3WVeVhYGB9//DEajYY5c+ZQV1fHr7/+Oup84uLi0Ov1DA4OyrXnQggxDglSQgghJpWzszO7d+9Gr9dTXFxMV1cXHh4eaDQaq8sl8vLyyMnJ4a233mL69OmsWbOGwMBAq6vFPTw8KCoqoqCggLS0NPz9/dmxY4eyizXimWeeYdasWVRUVFBeXo6zszM+Pj427SZi27ZtzJ49m6qqKnbt2oWHh8eoO05RUVEYDIZRL6bo6+vDw8Nj3LFee+01zp07p3xOT08HIDc3l/j4eBobG4mNjR21b1NTE6tXr8bJyQk3Nzfmz5/Pyy+/TGJiotUOVFpaGt3d3ej1egAeffRRtmzZorzz6+88PT3RaDTAlVAphBDi2hyGr77eRwghhLhF8vPzaWho4ODBg7d6KuNKT0/n/Pnz7N2716Zu7dq1hIaGKtexX4+Ojg4iIiJoaGiwumnwZjKZTERERPDqq6+SmJj4j4wphBD/VrIjJYQQQtjh7NmznDp1iq+++op33nnHpn5wcJCWlhaKiopuaBy1Wj3uo4GTxWw209rayu7du3F1dZV3RwkhxARIkBJCCCHskJqaSnd3N2vWrEGn09nUOzk5Ke+j+rc4ffo069atw8vLi/z8fKZNm3arpySEEP/35NE+IYQQQgghhLDTf271BIQQQgghhBDi30aClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2EmClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2Om/aAMr6cN41akAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtls_kepler.freq, mtls_kepler.unnorm_power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "82aa6b7f", + "metadata": {}, + "source": [ + "#### But how does this compare to the classical Lomb-Scargle Periodogram?" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "cf030cc3", + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.timeseries import LombScargle\n", + "\n", + "ls_freq = scipy.fft.rfftfreq(n=lc_kepler.n, d=lc_kepler.dt)[1:-1] # Avioding zero\n", + "data = lc_kepler.counts - np.mean(lc_kepler.counts)\n", + "ls_psd = LombScargle(lc_kepler.time, data).power(frequency=ls_freq, normalization=\"psd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4ed7d4d4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAMrCAYAAABUKTPHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzddZhTZ9oG8Dsy7o4NDoMOg3tpaUspVaC6pV3a8lWp7Na7NeruLkupb9stS5U6FHd3nwEGxl0j3x8zyZwkR5MTmZn7t1evTY6+SU6G8+R53+c12O12O4iIiIiIiMhnxmA3gIiIiIiIqK1ggEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTc7Ab0NrZbHZYrbZgNwMAYDYbYbGERluo9eB1Q97itUPe4HVD3uK1Q97Q87oxmYwwGg3K59TlbO2Y1WpDWVlNsJsBo9GAlJRYVFTUwmazB7s51ErwuiFv8dohb/C6IW/x2iFv6H3dJCZGw2g0KZ/X5zMRERERERERAAZYREREREREumGARUREREREpBMGWERERERERDphkQsiIiIiahXsdjusVgvsrHNBKhiNBjQ0NMBisagqcmEwAEajCQaDcqVAOQywiIiIiCjk1dbW4sSJPNjtLNVO6hUVGWGzqb9mDAYjkpPTERYW4fU5GWARERERUUiz2+3Izc1FREQUYmMTAPiWYaD2w2w2wGJRm/K0o6qqHCUlBUhP7+J1JosBFhERERGFNJvNCovFiuTkBJjNYcFuDrUiZrMRgPoMVmxsAurqqmGzWWEyeRcqscgFEREREYW0ljFXzFyRvzVdY76M82OARUREREREpBMGWEREREREpJsnnngEDzxwd7CbETQcg0VERERE5AdPPPEIfvrpe8yceQn+8Q/XgGPevAfw66+LcdllszBz5iW4+OLzZY91//0Po0OHjrj11hvwyy9/ITo62mObkpJivPvum1i7djXKykoRH5+ArKx+uOmm29CtW3c9XxoAID//OC6++Hx89NEX6Nmzt3P5bbfdCXsAaulfdNF5uPzyWZg581K/n0sLBljthN1ux2v7t6BbdDwu6Nwz2M0hIiIiahfS0zPw668/4+abb0d4eDgAoLq6CsuWLUF6eoZzm0WLFjv3mT//fezfvxdPPPGsc1lsbCx27Ngue65//esu2O3AQw89hg4dOqKwsABr1qxCZWWl7q9LTmxsbEDPF2oYYLUTJQ31+OVELgAwwCIiIiIKkAEDBuLQoYNYvvwvTJ58BgDgt99+Qd++/WA0No3WMZlMSElJde4TGRkJs9nsskxJZWUltm3bijfffB/Z2TkAgA4dOmLw4CGy+9lsNnzyyYf49tuFKC0tQbdu3TFnzo0YN24CAKCiogIvvvgM1q1bjbq6OmRkdMCcOTdi8uQznFm3q666DACQkzMMr7/+Lp544hHU1tbg8cebAsS5c69Dnz5ZsFot+PnnHxEZGYmbbroNY8dOwLPPPoE1a1YiI6Mj7rvvIQwcOAgAUFpaipdffhZbtmxGZWUFMjO74dprr8PEiac6j3niRD5eeuk5vPTScwCA5cvXAwC2bNmEt99+DXv27EFychImTz4Tc+bc6Axw/Y1jsNqJvJrA/nJBRERERE2mTTsPP/74rfP5jz9+h2nTztP1HFFRUYiKisKyZUvR2Nioer+PP56PX35ZjHvu+Rc++ug/uOCCmfjXv+7C3r27AQDvv/8Wjhw5hBdeeA0ff/wlbr31DmeG6r33FgAAXnvtHSxatBhPPvmc5Hl++OFbpKVl4P33P8a0aefjmWcex6OPPoBTTjkN//73p+jevQcef/whZ9fC+vp69O8/EM899zI++ug/mDLlbDzwwD04fPgQAODJJ59DenoGrr/+ZixatNiZATx27CjuvPM2nH76FHz00Rd45JHHsWrVCrz99mva31QvMcBqJ/4oyHM+tgagTywRERERNZk69Rxs3LgeRUWFOHLkMA4e3O/MZunFbDbj3nsfwnffLcTUqadi7tzr8MEH7yAvL1dyn4aGBnz88Xz8618PY+TIMejcuQsuuGAGTjnlVHz77f8AACdPnkCfPlno128AOnXqjDFjxmHUqDEAgMTEJABAQkICUlJSER+fIHmurKx+uPLK2cjM7Iqrr/4/WK1WZGZ2w5QpU5GZ2RWzZv0deXm5KCwsAAB06NABl102C336ZKFz5y7429+uxODBQ7Bkye8AgPj4BBiNRkRHRyMlJdWZ7fv44/mYOvUcXHTRZejSJRM5OcNw882349tvFwZkXBjALoLtxsS0zvij4GjzMzs4jwQRERFRYKSkpGLEiNH46acfUFlZgUmTJiM6Okb385x++pkYP34iNm1aj+3bt2HZsqX49NMFeOqpFzB69FiP7Y8ezUNdXR1uvfUGl+WNjY0YNmwEAOD882fgwQfvxb59ezBq1Ficeupk9O8/UHPbevXq43wcHh6OmJhY9OjRMmwlKSkZQFPXwPT0DFitVnz00b/x55+/obCwEBZLIxoaGpCZ2U32PPv378OBA/uwePH3zmU2mw319fUoLi5Gaqr6bpfeYoDVTpgNLQGVnfEVERERUUCdc855ePvt11FTU4OHH37cb+eJjIzE2LETMHbsBMyZcwPuuONWfPTRv0UDrNraWgDA88+/hpSUFJd1ERERAIDx4yfi66+/xcqVy7Fu3WrcdNMczJ49B3//+7Wa2mU2u4YdBoPrMoPBMcGvDQDw2Wcf47//beqS2KNHT0RFReGZZx6HxSLf/bG2tgYzZlyM6dMvBgCYTAZYrU2Zq8TERE1t9hYDrHaIHQSJiIiIAmv8+FPw3HNPISoqGkOHDg/IOQ0GA7p27YqtW7eIru/RowfCwsJQUHACQ4bkSB4nOTkF5557Ac499wJ88smHWLRoIf7+92sRFhYGALBabbq3fdu2LTjllFMxZcpUAIDFYsGxY0fRoUNH5zZmc5jHufv0ycKhQwfRpUtm8zZGWCz6t08OAywiIiIiIj8zm834z38WwmAwOLM13jp4cL8zwwQARqMJqampeOih+3DuuRegV6/eiIiIxKZNG/DDD9/ib3+7SvQ40dExuOSSv+GVV16A1WrF4MFDUFlZiS1bNiItLQOTJ5+BDz54B1lZ/dCjRy/U1tZi7drV6NatqZteYmISIiIisGbNSqSmpiIsLFy3Eu2ZmZlYuvRPbN++DdHR0fj00w9RVVXlsk3Hjh2xefNGnHba6QgLC0diYiKuuOIqXH/9NXj55edxzjnnIyYmCvv27cP27dtw88236dI2JQyw2gm7zDMiIiIi8r+YGH2CjxtuuMbleWxsLL799hf06zcAn3/+MY4dOwqbzY4OHTpg9uw5uPzyK2WONRdJSUlYsOAD5OcfR1xcPPr3H4DZs+cAaCoh/9ZbryE/Px9RUZEYOnQEbr/9TgBNQePtt9+F+fPfw7vvvons7By8/vq7urzGv//9Whw/fgz/+MdNiI6OxvTpF2PUqNEu21x77Q147rkncemlF6KhoQHLl69Hnz5ZePXVt/Hee2/hxhuvgdFoQpcuXTB16rm6tEsNgz1Q5TTaqMZGK8rKaoLdDBiNBqSkxKK4uAo2m+dHurG0AA9tXw0AWDj+HIQZTYFuIoUgpeuGSAqvHfIGrxvyls1mRVHRcSQnd/QYy0MkR2sXQYvFgqKiY0hN7exxrSUmRiMsTPkemmXa2yH+k0ZERERE5B8MsIiIiIiIiHTCAKsdYqdQIiIiIiL/YCfWdsLu8pgRFhEREbVuL+3ZhNXF+QE955iUjvhH1tCAnpNaH2awiIiIiIiIdMIMFhERERG1Ok2ZJGaTKPQwg0VEREREFAAbN67HhAkj8Pe/Xw6bzbV0+IQJI7BixTIAwLXXXomXXnrWZf3HH3+ICRNGYNmyJS7Lb7vtJjz22INetWfp0j/wz3/OxTnnnI4JE0bg4MH9HttUVJRj3rwHMGXKJEydehqefvox1NbWajrPBx+8g2uvdZ2La82aVTjjjAl49903vWr7okXfYO7c6zBlyiRMmDACNTWe0yatXbsa11xzFc44YwKmT5+GDz98H4GYoYoBVjvEEVhEREREwZOXl4vffvtZcv3QocOxadMGl2WbN29EenqGy3KLxYIdO7Zi6NDhXrWjtrYWgwcPwQ033CK5zbx5D+LQoYN46aU38MwzL2Hz5o14/vmnvDqfw5Ilv+O+++7AtdfegOuuu8mrY9TX12H06HG48sqrRdfv27cHd999O045ZRI+/PBz3HPPA/jf//6LL7741Jemq8IAi4iIiIgogGbMuBjvv/82LBaL6Pphw0bg0KGDKCsrAwBYrVZs27YFV1zxd5cAa+fO7airq8PQoSO8asfUqefg6qv/DyNGjBJdf/jwIaxZsxL33vsgBg4chCFDcnD77Xfh118Xo6Sk2Ktz/vDDt5g37wH885934/LLZ3l1DAC45JK/4corZ2PgwEGi6//44zdkZfXH7NnXokuXTIwZMw5XXjkb//nPp37PYnEMVnshuI5Ypp2IiIgoeC67bBYWL/4BixZ9g5kzL/FYP2RIDoxGIzZv3oBTTz0de/bsQnR0NM4++1y8/vpLqKioQHx8vDOr1blzFwDAli2bcOedt8qe+6677seUKWerauf27VsRH5+Afv36O5eNGDEKBoMBO3fuwIQJp2h41cCXX36Gt99+HQ8++BgmTz7DZd0vv/yE5557Unb/559/FUOGqBt319DQgPDwcJdlERERKCoqRH7+cXTq1FlT27VggEVEREREFEDR0dG46qqr8dFHH2DatPMQFRXlsj4mJhZ9+mRh06amAGvTpg3IyRmG6Oho9O7dB1u2bMTEiadi06YNGDasJXvVr19/zJ//mey5k5OTVbezpKTYY3uz2Yy4uHjNGayDB/fj1VdfxAMPzPMIrgBgwoRTMGCAeDbKIS0tTfX5Ro0ag6+++hy///4rJkw4FSdO5OOLL5rem5KSYgZYpDemsIiIiIiC6cILL8KXX36OL7/8DH//+7Ue64cNG47Vq1cCaBp/NX58U7ZoyJBh2LRpA8aOnYDt27fi9tvvcu4TERGJLl0ydW6pQWSZHQaD2HJpGRkdEBkZhU8/XYDRo8ciKck1cIuOjkF0dIwP7XQ1evRYXH/9zXjiiXmor78fUVFRuPjiyzF//kEYDP4dJcUAi4iIiIgowMLDw3HNNdfh1VdfwPTpF3msHzp0OD7//BOUlBRj69bNmDv3HwCAnJyh+OCDd7B79y7U1ta6FLjQu4tgcnIKSktdM1UWiwWVlZUeAZKSmJhYvPjia7jttptw66034NVX30FSUpJzvd5dBAHgiiv+jiuv/DsKCgqRkJCIDRvWAQA6deqkqe1aMcAiIiIiIgqCqVPPwWeffYyPP/7QY92QIUNhNBrx5ZefIzw8At26dQcAZGcPxcGDB/DXX3+iQ4eOLl3d9O4iOGhQNsrLy7Fnz25kZfUD0FRq3m63Y8CAgaqP45CQkIhXXnkTt99+E2677Qa88srbziBL7y6CDkajEampTfv98cevGDBgkObgUCsGWO2EXdAtkB0EiYiIiILPaDTiuutuwiOP/MtjXXR0DPr27Yf//vdLjBkzzrk8Pj4e3bv3wMKFX+PUUye77KO1i2BFRTlOnjyBoqJCAEBu7hFYrVZkZHRAfHwCunfvgdGjx+GZZx7DnXfeB4vFghdffBZnnnkWkpNTvHrNTUHWWx5BltYugsXFRSgpKcaxY0cBNI3xioiIQOfOmYiOjobNZsOXX36GcePGo6HBgsWLf8Bvv/2MV19926t2a8Ey7UREREREQXLKKaeiT5++ouuGDRuB2toa5OQMc1mekzMMtbU1Xs9/5bB8+V+4+uorcNddtwMAHnjgHlx99RVYvvwv5zYPP/wYunbtjttuuwl33XUbhgzJwZ133u9ynAkTRuDHH79Tfd74+AS8/PKbMJvNuP32G1FaWqq57f/7339x9dVX4JlnHgcA3HDDNbj66iuwe/dOl9c3Z85sXH/9bOzevROvvPIWBg3K1nwurQz2QExn3IY1NlpRVuY5c3SgGY0GpKTEori4Cjab50e6vuQkHtmxBgDwxdizEWsOC3QTKQQpXTdEUnjtkDd43ZC3bDYrioqOIzm5I8xmdsAKJfn5x3HZZdPxySdfITOza7Cb48FsNsJisane3mKxoKjoGFJTO3tca4mJ0QgLMykegxksIiIiIiLyypo1K3H++TNCMrgKFv4EQEREREREXrnwQs8KiO0dM1jtEXuFEhERERH5BQOsdoIhFRERERGR/zHAaocYbBEREVHrxLsY8rema8xg8P4IDLCIiIiIKKSZTE23rFarJcgtobbOcY0ZjcrVAqWwyEU7xN9+iIiIqDUxGIxISIhHZWUZTCYzAB/SC9TOGGCxqL37taOysgwREdEw+JDCYoBFRERERCGvQ4cOKC/fh6Ki48FuCrUiRqMRNpv6ebCMRhOSktJ9OicDrDbKZrejzmpBNCcUJmp37HY7Gu02hPvQvYGIKNSYzWZkZHSBxWJhQWRSxWg0ICkpGqWlNaomNzcYmgIsX7JXAAOsNuu53RuwrOg45o86E2kRUS7r7OwkSNSmPb17PVYU5ePT0WchITwi2M0hItKNwWBo7iJIpMxoNCA8PBxmc4OqAEu38wbsTBRQy5rT5xtKTga5JUQUaCuK8gEA8w/vDHJLiIiI2h8GWG1cYX2t50ImsIjahQNV5cFuAhERUbvDAKuNC+MYDKJ265S0zsFuAhERUbvTbjuxDhw4EL179wYADBo0CE888USQW+QfHSNjgt0EIgoSk4+DdImIiEi7dhtgJSYmYtGiRcFuht9Z7U1lKe2CcjvsIUhERERE5B/sItjGWVnHlIiIiIgoYEIywFq3bh1uuOEGTJgwAVlZWfjzzz89tvn0008xefJkDB48GJdccgm2bt2q6Rzl5eWYPn06Lr/8cqxdu1avpoccsQCLZdqJ2gd/fNPLG+qxsug4f7whIiKSEJJdBGtqapCVlYUZM2bglltu8Vj/448/4qmnnsK8efMwZMgQLFiwAHPmzMHixYuRnJwMALjgggtEj/3NN9/AZDLh999/R0ZGBvbv34/rrrsO3377LWJjY/36uoLBZlc/czURtS12PwRBn+buwY/5h3FD42BcnZqt+/GJiIhau5AMsCZNmoRJkyZJrp8/fz4uvfRSzJw5EwAwb948LFmyBAsXLsS1114LAIrjqzIyMgAAvXv3Rt++fXHo0CEMHjzYq/YajcEfSO5og3tbrLDDaDTAIFhuMBpCos0UfFLXDbUNBoP+3/Uf8w8DAPZUlgLgtUPa8G8OeYvXDnkjWNdNSAZYchoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR2jvLwcUVFRCA8Px8mTJ7F3715kZmZ61R6z2YiUlNDJfCUluVYNDIsyIyUlFnENkc5lyUkxSImMCnTTKIS5XzfUNkRFh/vt75PR3NTDnNcOeYPXDXmL1w55I9DXTasLsEpLS2G1WpGamuqyPCUlBUeOHFF1jAMHDuChhx6C0WiE0WjE/fffj8TERK/aY7HYUFEhMplvgBmNBiQlxaC0tBpWa0u3wKrqehQXV6Gyos65rKS0Ggi3BqOZFGKE143NxjE1bU11TdP33x8aGiwAwGuHNOHfHPIWrx3yht7XTXx8FMLClOeYbXUBlhS73Q6Dyjlfhg0bhu+//163c4fSF91ms+NfW1c6n9vtTctsgrEYNps9pNpMwcdrom2y+/FzdRyV1w55g9cNeYvXDnkj0NdNSFYRlJOUlASTyYSioiKX5SUlJR5ZrfZqc1nLe8M/QUTtF7//REREgdfqAqzw8HAMHDgQK1e2ZGlsNhtWrVqFnJyc4DUsRJyorVbcRq6wWGVjA6otjTq2iIiCxa8BFqM3IiIiUSHZRbC6uhq5ubnO50ePHsWuXbuQmpqKtLQ0XH311bj77rsxcOBAZGdnY8GCBairq8P06dOD2OrQcPMGtznDNJZpvnz1YgDA9xPP16tJRBQknPOOiIgo8EIywNq+fTuuuuoq5/PHH38cADB37lzccsstmDZtGkpKSvDqq6+isLAQ/fv3x/vvv++cA6s9q7UqF6+Quuk6VF2ud3OIKJgYXxEREQVcSAZYo0ePxp49e2S3mTVrFmbNmhWgFrVeWu6vGm2clJioLWF8RUREFHitbgwWaaPlBis+LNz5+HB1hf6NIaKAYhdBIiKiwGOA1cZpmrdacC92vNY/c+cQUeBoHIKp7dgM3oiIiEQxwCJRDewuSNTqMQQiIiIKPAZY7YTw12apmy7h8jqrRfJYP+Yfxu8n8/RpGBH5kf9CLAZvRERE4kKyyAUFh2uXH/HOhXa7HW/u3woAmJzeBQaDpk6IRBRADIKIiIgCjxmsNs7bG6wok3jsLTyejbdvRCGN31AiIqLAY4DVDtklRr4Ll3aLiVM8jsXG2zeiUCb1XSciIiL/YYBFmghv1yx2FsIgChV1VgtyqyuD3QwiIqJ2jwFWG2eHHXk1lai1WtVs7LKfkpKGOh9aRkR6unPzMty08U8crCp3LmP+ioiIKPBY5KKNy62uxI1H/lS1rdabsb8Kj+GKbv20N4qIdHe4pil7taOixLmMc1UREREFHjNYbdz28mKPZWpuuaSHbrSs6BIV61WbiMh/dgkCLMZXREREgccAq40rbayXXFdlacSHh3aioK4GgPZfu+PDwn1qGxHpr0dMvPMx4ysiIqLAY4DVjn16ZDe+Prof16z7TfU+wsyWsMRFvdXKimVEIUD4PfRnF0F+34mIiMQxwGqHHDdd3x0/pLhtVWMDvjt2EDWWRsltaiyNmLnyBzy8Y7VubSQi7wh/+GAIREREFHgMsMjJ7lJFsMnr+7finYPb8cb+rZL75dVWAQA2lhb6sXVEpIaNmSUiIqKgYoDVHmm4/1pedBwAsLTwmNZdiSgI7BD5pcQPDAaD/w5ORETUijHAIifhjZmqsRvNm/x2ItdPLSIiIiIial0YYLVDWn7UTmiuFJgeESW5TZlMpUIiCiwDWjJL/sw4M39FREQkjgEWOdlFnoQbTQCEN22et2yT0rr4tV1E5B1ONExERBR4DLDaGL0n/20Jq6Rv1MKNvIyI2hsDc1hERESieGfcxthU/GKt5ldtxxaOgexieziO89vJPLXNI6IQtauiBHk1lep3YHxFREQkyhzsBpC+1JRoPlFXgy9y93osFwu8HBG447hiR19ZnK+liUQUYhptNty1ZTkA4PuJ56vah/EVERGROAZYbYyaAOvZ3RtQJTNxMNASbLVksDiWg6i1UTslVoPNqvnY7CJIREQkjl0E2xg191NSwZXYzZjjFsrG+Iqo1VH7w4jFbvNrO347mYs9FaV+PQcREVGoYIDVxqjJYKnhHIPlVj1QeHjHw1nd+ulyTiLynTfZ5kab/wKsk3U1eHnvZtyxZZnfzkFERBRKGGC1MWqKXHhD7qix5jC/nJOIAsPixwBLqTsyERFRW8MAq43xJYElNg+WM38lc1w1p6y3WvGf3L04WVfjXeOIyC+sdhvePLBV835qR2DtrijRfGwiIqLWjAFWG6N3BstR5MLB22IX3xzdj4+P7HZWKiMi/1PzbV1RlI+NpYV+a0NeTZXfjk1ERBSKGGC1NT5lsOyij8Weu65UPunJ+qbMVUlDnXeNIyJVhNX97Cq+mzV+7sLnr27LREREoYoBVhvj082MTBVBuaOqOaPZwEuNKBSVNtZ7t6PKPoLJ4ZHeHZ+IiKiV4l0vOe2vKnM+bqki6PrcWyYD58whCjQ139u+sUl+bUOPmHi/Hp+IiCjUMMBqY9R0CZLy+n6Rge4qAiM1Z+SkpEShKczo5T8DKv/UWHWaOoKIiKi1YIDVxvhSbFk2BBK5SWoJ5pRvoLwtjkFE/lVUX+vX4+s1Nx8REVFrwQCrzfHuZsZudw2Bnt29AYBnF0Gxo6s5I2+xiAJPzfduweFd3h1cZVLaavffHFtEREShiAFWG2PzMpJZUZTv8rywvhY7y4u9HoPl3lXRl66LROQ/ajvvNtqsXh2fXQSJiKi9MQe7ARQaNpQWeCzLral0PnbchD26Y43Hdu73T9vKinDftpUAgMu79sUV3foxg0UUIHLTLYhRk1/Kq6nEjRv+RKTR5EPLiIiI2gdmsNoYO+xICAvXvN+WMs+JRj/L3eO8+XJMOLytvFhwrpZzCs0/vNP5+PPcvThcXYGOUTGa20RE/qdmjNSNG/4EANQJslhqC9ewgCgREbU3DLDaGJu96cZnYmonTfsViAx0L2mod3bt03KPVFzvOplwRWOD6Fw4P+Ufxj1blnvd9YiIFKhIHbMADRERkb4YYLU5dhh1/MXYcetVZWnEV3n7XNY9tnMtDldXuCyz2e0obnANsHZXlIge+439W7GjogTrSk7q1l6i1uLbYwextOCYX8+hqgAN4ysiIiJdMcBqY5qKXBh0+01aWJxCrNrY3I1LFM/VNSYOcrd6coU5TtRW44U9G3GyrkbhLESth9Vuw7sHt+O5PRtU7/PziSN4cNsqWGz6VuWzqfhrkSjS7Vj97zjsI0hERO0LA6w2xw4D9Ov2k1dbpWl7q92OMIPrZWWAAT/mH9Z87qM1Vbhxw5/4s+AontdwI0oU6hq9CJJe27cFm8oKsUlkvKSQcGyUqiIXKlJYk9K6eCxT/xeGKTIiImpfGGC1MXYARoMhoN1+hFmuZ3avx9CkNI9tdlWUSu7/0t5NeGnPJtRZLfj3oR34+PBuAMANG/5AY/McOiX19Tq3mih4vAmwHPZWSn+XvCE2PtKdmiyXFHZBJCKi9oYBVhsTjHuZvwpbxpGsLj6huQ31Nit+L8jD98cP4ZujB/CfvL0e2/hyg0cUahp9mHw3LSJKx5YAUzt2U9xGTZaLiIiImjDAakOEFf9OS2/q0nNepx5+P+9Bt0IXSqQmHS5rlM5S8QaP2hKtk+8Kt1dbHh1Qlz0yeTlGSm03ZH5ziYioveFEw22II8tjMBgwNrUjFoyaguTwCHx3/FBA2+EeQLkHRzYAYtOV7pbpRuhemZCoNdP6g4Fwe70DFn1LZohhiEVERO0LM1htiOMezPF7dEpEpHOC4EBy7873xK51Ls+lMli7dR5bQhSqrIIuglLfByFhtujVfZtduuWq3c+XbSR2JCIiIhEMsNogLV2I/GFjqXyVM3Vz8/Dujdou4dQEaq5094zXs7ulq2pqDZi87X6rdi9+k4mIqL1hgNWGOG6UgpC00kTNDaDWMSpErYnWLn9yc8XJUfVjhvtznb97/CoTEVF7wwCrDXHcx4R4fKXqF3OLyipreytLsbuixNcmEQWUFdq6CGqpoqk1oHE/v/rMlP6Rk91ux9d5+7Cm+ITuxyYiIgoUBlhtiOOGx72L4KD4lGA0R9KTu9bhuMIExmq7Lf1z8zLcuWW5Hs0iChhfuwjK0Rr2uB9b7+qAWtqTX1eNDw/vwmM712rYi4iIKLQwwGpD3ItcODwwcFTA2yJnY2khnpEZQwIAFokbyl9O5OJAVbnkftvLi7G1rAgAUNHYwLFcFJJcgxoVhSg0BViC7oeqsmPu51J9KpXUH9CXCZiJiIhCBQOsNsSZwXIbhBVrDgtGc2TJBUmAa5U1ADAbDDhSXYFX923GbZuWiu5Tb7Xi3q0rcP+2ldhfVYa/rV6MF/du0q3NRHpxqSKoYnstXQS1Fq3w7CKocn99NyMiImozGGC1IQcqmoKW3JrKILfEd8X1nvNeVVkaJbe32+1YUnjU+dwxhuPPgqNSuxAFjTAIUhMQaSlyoS035hm8BXMMFhERUVvAAKsNeXN728nW3L75L49l7t2HhJUGbQCWFqibG4go2LR2hFNb9AXQXgXQfXOxgE9s6gfVgRjjMCIiamcYYLUh+TXVwW6C39jsdvx6Mtdl2Zx1vzkf11gaXbpd1VutAWsbkVZay7S7d5mVPbbGzJL/M1GMsIiIqH1hgNWGtOkAC8DSwpYMVZ3VgsL6Wufz9w5ux/DkDPXH48/qFEQuAZaKa1HL1So8nLrgTbmLYKjPrUdERBRKGGBRq3S81jWY/KPgKDpGRqvad3nhcVy4/HtsLy/2R9OINFEVPGmIsLRnsNyeq/zxQfV2PrSFiIioNWKARa2S2C/qv53Mcz4+VF0hue/zezbABjs+O7LHH00jUuRSSl3V9uppzY5VNjZ4fS4lP+Yfxhv7t6renoUziIioLWCA1U6pzfaEKrFB9xtKC5yPN5UVSu7rmGOLN3MULC5Xnqougv6baPgXt7GNemam3tQQXDWdW9PmREREIYkBVhuhNAh+bu8hLs8v65rlz+aEFE42TKFMVQZLSxdBH6/3YH5btHZvJCIiCkUMsNqIWoWqeVM7dtN0PKNIhiiUaPlFX+qmbRvHYFGQaJ2ryttsqzd7BTPIYfEZIiJqCxhgtRF6f5DG0I6v8Po+9V2PKhsb8WXePpQ11PuxRUQauFT607eKYFmjj9e5ypP5IxRifEVERG2BOdgNoMCJMYeh2tKoalujwRDSdzt7KktVb/v2gW1YXnQcm0sLcWp6Fz+2ikgdu2uEpavVxSfEzyMh3hyOCktLoQv1Ewjr//eBXQSJiKgtYAarjfjnpmWK28SawwAAXaPjFLdtsKmf2DTUHW6uKLi1vAg/5B8KcmuIAthFUMVugxNTdDmXHhrb0N8dIiJqvxhgtRG5NZWK29zXbwR6xybgzqxhktv0i0vSs1khodZqcT4+XlsVxJZQW2e329Fgkx8P6bGPmi6Cfox53I+tOoOle0uayroTERG1duwi2I70jkvEy0MnAfCcJ+qqbv1gB3BJZh9UWxqxpPAY3j6wLQit1F9xQ53zcVvKzFHouW/bSmwvL8ZX46YhyiT951XYvU7vebB8FcxCEyWC7yoREVFrxQxWG5QcHqF5n16xibi0a18YDAbEhoWjX7x4Juvyrn19bV5QWUN4XBm1ftubK1Pm11bLbufSRVDFJenPbnuhNB9cfFh4sJtARETkMwZYbdC5nXoqblMv6MY0OCEF2YmpLutNBvEygld06+fyfN7AMV60sElaRJTX+/qb0rxiX+ftw/xDOwPUGmptjBLfHzGqAhwvYyBvKhSqzWD5IzATZv3qFaaeICIiClUMsNqgi7v0VtymURBgPZU9HmFG10vBbFB3aXSKipFd3xovsEXHDuKC5d9jX2WZ5DYfHt6F/x7dH7hGUcj7STB+SGkeOa3BibehjD9zU94kg5UqDw5OaCm4EUqZNSIiIi1a4/0vuXEvvW5Q8ev5GRldMTQxDQ8PHC26XiqDpXW7+DD13RUHxCer3taf3ju4HQAkA6h32sjYNNLXG/tb5mZT+voI4wy9qwgmavjOubdFbXu8pXRsrdUViYiIQhEDrDZA7dxWQjHmMDw2eCxGJmeIrjeJZLBGJKV7LJPrCjU8KR2PDpLuQlhYX+vy/Jns8ZLbBkO9RDW4746z1Ht7sbLoOO7cvAyVjQ3KGwsodRF0HYOl70TD0WZttYvcgzex9ug1dFExwBJsEMxiG0RERL5ggNUGuHfv04NjziyhoUlpmo4xb9AY9IxNULXtHVlDVWXe9OSefWu02TSP+/DHZKsUOp7ctR67K0vxwaEdmvZT6iKolZbrTOs16b612N5iGTTvuvCpz2Hxu0VERK0VA6w2QPhruZpJhNWIMYfh2ezxeNolq+R506jXLdBp6Zk6HUk99zLa/7fuN8xc+YOmY/AWsH347WSepu2lgo+WKpb+K9MuLM/iTYxi82fFQoVDC1db+e0iIqJWigFWWyC4DzHrmAUakJDiUulPbBLiUPuVOV1DZcIqQddKi82GIrc5eI7WVOKqNb/g3GXfYkNJgegxQuvVk78M1Dg+UOy6OFZThQuWf4fPj+xxG2uk71XkOsdWy+NGm1W0O7H7d7ikvs5j2Q8iEwB70+pPc/cgT8Wk6AC7CBIRUevFAKsNEN6GmHTuLii80eoTl6jrsf3B4EXXrIrGBkxf8b3H8vy6GufEpw/vWC26L28C24dOUbGathe7LH49mQugKciwu0ZYKo6noYugxPLpK37Apat+gsVtsm337e/bthJfq6iQ6c2l/1XePty04U/pY8q0i4iIqLVggNXGaK0gpkTYTUcsdElsntS4Y6R8ufZAGZHsWYhDyZayQq9v5hhgtQ/ay6p7bn+gqlxiW2X7JPYVPZ5LBsuTmqI436iagsC7a192L0Hb+d0iIqLWSlu5KQpJwpu5m/pk63ps4WB9sSIU4UYTvhw7DREmIy5Y7pkFkpMWEYXRyR28CoqkRJhMmvex+XAf1zQhsfZzUuui9V5fbHuLYPJq4XdWKXiz2e3OqQPUkJ8iG6i0NCIhvOWHGLHzV3pRmVQPwpYwwCIiotaKGaw2JC0yChmR0boes4PI8Ua5lXaPNptFy7orKayvxQ29B2OE4HjPBqVUu/c3co6iBdvLi/F7cxcwanu0ZrDECkWEG1sCcS1d4TRnzxQCk1XF+W7bKx9TbEJxf4Q/LgEWOwkSEVErxQCrDSiqbxonVFhXq7CldmJZq7v7DRfdNsYknhCN0pBVGpCQorjNPJm5tbS6bdNSlDXWq9r2RG01Ht7uOhbLEWDdu3UFXtq7GeUqjxUoeytLvZonjVzpcasvrPapdQyWEqnCFmLBltaCHQDQTaQ6qb/DHyawiIiotWIXwTagUWJCXH+JNJlxV9Ywj4l4Pxp9Fh7fuRabygr9ev7hIhMee+tAVTmOVFeo2nbO+t89lgm7fQFomkfLcwoxVcob6rG65AQmp3dBmNH3bod7Kktxx+Zl6BgZjfdGnuHz8dozrdUyxbq3uc6Npb5Mu5pTu3atE18uRc331ZtutN5UGGUXQSIiagsYYLUBnZsrnCWG61vgQs6k9C4eyyJMJtEJigPKi3syiw83cnreBN62aSmKGupQ0lCHy7tm+Xy8A5VlAJqqIZJvtH7KYtsnhIWLrtejTLvU8cSuT+GSWqtF1fFFu+tpmNNKNWGRC3YRJCKiVopdBNuAhPAIzB99Jr4564JgN0WULzGIN92ZAsnq9uJWFOWjorFB0/5Ha6pgt9ud83B9emSPx3bLC4/j7i3L2d0vSLQHWJ575CSleX08NWd0EOZUHUGKVGXBBqu67Ld4oCb/Krx5jcxgERFRW6BLgNXQ0IC33noLu3fv1uNw5IWMyGjEhAU5ewTxmyqtt0m39skBAFzVrR8eGzxW077eVBH0hXsXwQ8O7cD921a6LKuxNOLLvH349MhuVLoFX6/v24IbNvyBpYXHZM/z9O712FlRgsUnjujTcNJE6+xqyrFBywYnJDKMdrsdj+9ci89z92o6nzCYcgQpLhkuwXq12Vvvgh3fuggyvCIiotZKly6C4eHhePvttzF8uHjxA2rdHh801iOQkBLf3A0q3IcJj6d06IopHbp6te8FnXvBarfjy7x9Xp9fC/cMFgAcdhvT9ciONdhZUQIAOFRdgQcGjHKuc0w+u7LItbKb5Pls6j4HCi6x7m1SMcrywuMY6VaZEwBKG+uxuvgEVhefUDyfUhdBqcBF7fda7Dr3TwDEebCIiKj1062LYHZ2Nnbs2KHX4SiE5CSluZRSlzOrWz9MTu+C54dMdC4bkpgKAIhxG5/VUWNJ+T6xifhk9FkAgKGJaR7rnxsyAbHmMKwrOanpuL5QcxPoCK6Apqp+Yoxu1RqlCgRoCq9EKkBSgIh8fMKgyyXjJBGqiAU10qcTBiZizRAPXCwqA3axgFFq4mTnGX2MjxhgERFRa6VbgHXXXXfh888/xyeffIK8vDzU1NSgtrbW5T9q++LDwvHPrGHoGZvgXPbPrGG4rU8O3hk+Gd1j4p3LwzVWyuseE+8s5OEekABA/+bxWpd17etN071isdtEs2VzNy5BUb3YNS8e9CwvOu7yXOq219ubzs9ExnWRelpDVfEMlvg4KKlPVMtnbXM5dstjR5AmdSi1Gazt5cUey5QKZGi5UpcXHsfKouOcB4uIiNoE3QKsSy65BLm5uXj88ccxZcoUDB8+HMOGDXP5j9qnWHMYzuzQFYnhEXh92KnO+bLE5tgS07M5KOslCNrk9gxkJUOr3Y6PDu/yWH64ugIv7d0kskfTTeNP+YexobRA8rg2iRtfrwOs3D0obwitObpaE7XXqsPLezd5TJ9glwirpI7sTZlzwDWDtaeyFHa7XTJw8aWCpjL1x35693o8uWu9SyDIDBYREbVWupVpf/LJJzXfhFD7NDgxFauLT6B/XJKq7R8bPBabS4swIa2jc9l1vQahfPdGXNtzID4+vAtdBBOhGjXnG7wn141LLINV0lCPNcUn8Mb+rYrHFQsTrRpuWt3fBS37km+O1VZj8YlcnNeph3OZ1PxUY1I6QoyWz8v12K777awoQd+4xJb1gtVqM1jS55Vuo3dlMdTPD0ZERBSqdAuwZsyYodehqI37R9+hWFGUj1PSOqnaPiEsApPSO7ss6xQVi5eGngIAeGbIBJd1pgAG+laZG1STQTxB/NjOtYrHlcosuBe5aLTZ8M3R/ZiQ1sk5H5rzGCyI4ZWyhnp8dHgXZnTp7dNx3ANsl+BB8PGaJa5XLQkc12O77lhrtUjPu+VjFCNXqt3XBJSWMWhEREShRPd5sPbv34///e9/ePvtt1FYWAgAOHLkCKqqqvQ+lU+OHDmCK664Aueccw5mzpwZ7Oa0KzHmMEzp0BWRJv/Mcy02Pstf5G4Cve3iJbfvN8cOONfb7XZ8f/wQPj6yG7dvWuqxbZ1bF7WTEuXAf8k7jPUBLAwS6t49uB2/nMzFg9tXOZfpcUVJZbCkxho12OTnqJIa0yUWVttVnHtwQors+cTboHkXkWOIH8SX7w8REVEw6XaHW11djfvvvx8///wzzGYzrFYrJk6ciLS0NLz44ovo1KkT7rnnHr1O57P7778f99xzD7Kzs1FSUqK8A7UaUpkjfzjkVpJdKK/W+x8VHF2v6qwWRIgUA7lt01LEmsOxtbwIAFArMmHsArexYWLBYHlDPR5ctwIA8P3E871ub1tS3Jx5KhRkoAxehFjue9gkxmDZJOKI7/MPqT6XXDBigEE2wyXcTk9KExE7CANCFrkgIqK2QLc70aeffhqbNm3Chx9+iI0bN7r8Iz5p0iQsW7ZMr1P5bO/evYiKikJ2djYAIDk5OcgtIj0FMoM1/9BO2fXHvAyyfjpxBMdqqnDRyh/xzO4NzuVjUjoAAA5WVziDK7XiRIp/uFcvpJabfF/H8rl3VZXMOEkEPIV16iuvygYjBumqhcI2SXWtlQveSuvrVLZQmrCgi8t7xPiKiIhaKd0CrF9++QV33nknxowZA5PJ9Rf3Tp064dixY6qPtW7dOtxwww2YMGECsrKy8Oeff3ps8+mnn2Ly5MkYPHgwLrnkEmzdKl80QOjIkSOIjIzEddddh+nTp+OTTz5RvS+FPmMI1Vpxn3RYrU+O7MadW5p+lBAGQb7c9IvdrwqzWkplt0PN5tJC7K7QP/tcI/I+eBOzuwf6LpkaFfNgjU9VN0bR/XjurDabZHU+YZukXqNcnHOgoky6TTL7CUl1s1Vb5KPOasGiYwdR2uB7sEdERKQH3boI1tfXIzExUXRddXW1R9Alp6amBllZWZgxYwZuueUWj/U//vgjnnrqKcybNw9DhgzBggULMGfOHCxevNiZjbrgggtEj/3NN9/AYrFgw4YNWLRoEWJiYnDllVdixIgR6Nevn+o2Uugy+fC7QZjBiEYfK6sJPbVrvdf7VloadWsHIJ4piRGMg6uxWBDlp3Fx/vBA8xgpvbs2OoJiX7uoyU8eLT7xr9CRGvng3I6Wbohy3fF+zD+MQYLxVfbmtrhXfZUK3uXeBbnuuGozUMIAy2U+L5UH+DpvP77I24vfT+bi1WGnqjspERGRH+l2NzV48GAsWrQIp5xyise6n3/+GUOHDlV9rEmTJmHSpEmS6+fPn49LL73UWZxi3rx5WLJkCRYuXIhrr70WALBo0SLJ/TMyMpCdnY309HQAwNixY7F7926vAyxjCKRMHG0IhbYEm9nk/XugZ3DlFwbpTIPiZ29o2aa8oR65NZXoFtsy8bPNYG8114/w5jsQbTYYDJrPYzYYXfcR7m5wXS527F9P5Moe32g0OIM4uSkyjtdVwyA4/qayAry0dyMeGTTGpRnuAaGjTXKBTqTJJPm+GGV+5xDuYxfsXiso7GGXeF/cHa+rBtDUbba1XL/tGf+tIm/x2iFvBOu60S3Auu2223D11Vdj9uzZmDp1KgwGA5YuXYoPP/wQP//8s27d8BoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR0jOzsbhYWFqKqqQmRkJDZu3IizzjrLq/aYzUakpMQqbxggSUkxwW5C0NVGtN3BG+HhZiRLXG9K12FjhMG5zd++X4yyhnrcnTPSuT4pKRop0aFzLcsRZjoC8f2LjAjTfJ642AiXfaJKwp2PY2IinI+jYyJEj31x7yx8vFd6jF9KSqwzKLLWymSSDK5/F37KPwIAeOfQdtwxZIRzeWSE6xg9R5vcJ0wWijKbkZQg/jcnorFBtu1OgrFma0pPOB/HxIq/L+5io1re11D6W0zy+G8VeYvXDnkj0NeNbgHWiBEj8OGHH+KFF17AY489Brvdjtdeew1DhgzB/PnznQUlfFVaWgqr1YrU1FSX5SkpKThy5IiqY5jNZsydOxeXXXYZAGDq1Klet89isaGiQv1gdH8xGg1ISopBaWk1bFJlydqJCsEN24ejz8RXefsQaw7Hf3L3BrFV+qivb0RRsXjhjLyTpYgWKWThcMeqJZg3aAxGpmSgrKEeALCzoKVQRmlpDT7bsRPpkdGY1qm7ru3Wm3COr6KiShyoKseWsiLM6NJLtwnP+8cnY1fzGK/6+kYUS7zvUupqXPeprG4ZI1QleFxRVSd6bFu9fJn2ouIqZ2GKUpFJrR1yElJRXOJ5fIMNKC9v2a+xwXXsmaNNcgGWzW6X/JtTLdPFVfh6hfOFNVhazlVRWavqPa+vb2m31s+IAo//VpG3eO2QN/S+buLjoxAWpjzsSdcBF8OHD8dnn32Guro6lJeXIz4+HlFRUXqeQpLYmAI5kydPxuTJk3U5dyh90W02e0i1JygELz81PAo39srG13n7gtceHVVbLLBaxbsxvrh7E+4fMFJ0ncP/jh7A8KR053PhRMk1jY34svl9mtqhGwDgRF01UsIjESZSKj6YhBMuW2x23LqxaR6wrtFxLq/PF5Fur1nr98oAg8s+wsdWl8c20WNLjc0SHs/xJ88icU0AQL+4JNHjmw1G2dfkWGexSm9jtdsl/+ZYVRy76fgtbReOx7JY1f0tW17YUgSm3f/ta0X4bxV5i9cOeSPQ141uVQRXrVqF2tqmXyIjIyORkZHhl+AqKSkJJpMJRUWuJapLSko8slrUPrXl3tlJ4RGSRQfWuU0WfF6nHh7bbCordHl+rKba+bjR5nqT/lfhMcxZ9zumr/jBu8b6kVWiGEKxTCZHK2HhCG/miJKrIuhSyU+PyXpl1lnt4gU7DHB9jVLHkCugIRsEqixSYbELg2VByXaVRUbqFSZkJiIiCjTdAqxrrrkGI0eOxMUXX4xnnnkGv/32G0pLS/U6vFN4eDgGDhyIlStXOpfZbDasWrUKOTk5up+PWh+xm2Gp7Obc3tmtaoLdMKNR8sbTvUBHtIqKgMK5tNz3f1Yw/5a7ozVVKNFQFttut+PN/VuxON+1G2+91YpdFSWihRTu3rIcD29fLX48l8ctz+pt/ilS4lXQ7vaa7C7l0cUfazyB4JH0Meywi8Y6uytLXfYSm9BaiVyA5U2ZdmFQqpTBIyIiClW6dRFcuXIl1q9fjw0bNmDt2rX46KOPYLPZ0LNnTwwfPhwjRozA+eeru5Gtrq5Gbm5LBa2jR49i165dSE1NRVpaGq6++mrcfffdGDhwILKzs7FgwQLU1dVh+vTper0camMskjferSvfZYBBdflrsc06RkZLbi81H5G7RpsVN2z4A4D6EulljfX4Mf8wAGBqx27O5c/t2YDVxSdwe98cnJHR1bm8tKEOO2XmuJLKAKkt7a2VN0d130cYSEll4Lwldwib3S4agHWPiXdZKjVBt1yGTS449CbASouIQnFz4B7i9TyJiIgk6RZgJSUl4cwzz8SZZ54JoGkuq9WrV2P+/Pn48ssv8dVXX6kOsLZv346rrrrK+fzxxx8HAMydOxe33HILpk2bhpKSErz66qsoLCxE//798f777zvnwKL2Tew+cWmh+omu5YQbjWiw2TAoIQXby4t1OaZWctkKq93mnJtILAOQX1fjHGflTjoIdVVv1d4lSyyruKm0AKuLm6rGbSwtdAmwiupbsmNi4ytd5kvSJRskT6m7mliQ5L6P5GS/OgRYcq/bZreLBkndouOc7T4tvYvk/gery2WPLfUbhdoufjapzB4zWERE1ErpWuSiuroamzZtcmaytm7dioiICJx66qkYPny46uOMHj0ae/bskd1m1qxZmDVrlq9NpnbijIxM/PuQZ8nrCJO2XrKnpHXG7X2b5nQ7d9m3urRNCwPkMwo3b1iCt0c0FW+R2uyjw7tEl5+sr3E+bpAZ1yI87rfHDuL8zj2lG9RMeONcY2lEtDkMDwq6/7kHKK7d/qyIdOvu6HojLljurwyWwmHFVrsvs0sED95mauyuMw1LskE82DEaDM6lkUYTaq0Wj20A+XFtVpkASy1hy/ZWlgmWq/sssxNSXbq6Kp5PY0EkIiIirXQLsGbMmIE9e/YgJSUFI0aMwNSpU/Gvf/0LWVlZ/MeMAkrsakuPcO0a1zU6Drk1lRgQnyJ5nE/HnIUrVv/sssxs0G3YoncMgNzd9NHaljLVWruevbZvi/Ox2izVuwe345xO3Z1ZMylWjQHF1rKWG2axVyEMUISVEJVecb3VimVFxzA2pSNiZEraux9L7c2+UEl9HRpsVoQ3j21ybXNgM1hiaw1ouUaMBgNyaypF95cb1yZf5EJmlSDIkTqG0vuyp6IUr+zbjCqL9Hxb7soa6nHVmp9xcWYfXNm9v+r9iIiItNDtbnHPnj0wm83IycnB0KFDMWzYMAZXFDLCjK6X+os5E/HeiNORITMmKSGsZTLYmV16A2jKhAXTLydysUAiA+XOl+5yB6pcu4XVWS147+B2HKou9yiGsa2spaukzW73qEYIuAZBcukgq90Om92ODwWvUexGW5i1+vVky3hNpaDyq7x9eHnvZtkCHt4QO+s3xw7g5g1LnM+lqgh6E7x5nF9pDJbIBnsqS/HozrXO5werK0T3l6vS522RC+E6qfmylKorvrJvM3JrKlHSPKebGquK82ED8J82Mm0DERGFJt0yWOvXr3d2D/zll1/wwgsvICwsDMOGDcOIESMwcuRIVvmjoHEPsCJNZnSMUr78nxw8DmaDAQMSUnBZ176IUlGZz99+aC4WIaXRZsXvJ/NQquHG090D21e5PF984ggWHTuIRccOYt7AMS7rhN0J79qyHHsqS/G/8efCLHjP1XSJ+/jwLvwnbx9u7ZPjslzsJl4YlOyvkh4j5M5ROGNDaQGK6muRGqFuKglvs0z5dS1l8CWrCHp5bLUZNjvsosH2sdqWtkkVuACAeomug4B8YRT5NrVwv9YclH4gsNpZBoOIiEKTbneLUVFRGDduHMaNGwcAaGxsxKpVq/Dee+/hhRdegMFgwK5d6n55J9LbQEFXQKWuYULZiS1zq4VCcKXGl3n78HnuXl2PKRyfk+YWlFgEN9l7KpumZihrrHcJXtR0iXNkFX4+4VrKXTyD1bJMS45ceFN+44Y/8dW4aZLbCk+rHAIpbyEVVOkRJsidvSmDpf2YjoIpETLXvffdG4UDyCS2UDi2UrdUqbMSERH5m653jCUlJVi/fr3zvz179sBms6FPnz6ailwQ+UKsYl2EqWWOn7eGnxbI5gSc3sEV4Dr27KaNf7qss4hkEhzLDlaVo0NkjNsYLG23uRYdAyzhkWqtFuwoL8bABOlxeKqPq+Il+bWKoMwxbHbxDJaQAQbnuESHtcUnMTa1IzJksnx6zIPlzbEBwMTu50REFKJ0C7DOOuss5ObmwmQyoX///hg9ejRuvvlmDB8+HImJiXqdhshrrw87FZFGE5LDI2W3+3LsNBh576ZaUX2tszKgg9Vmx/6qMty+6S90iYrF3f1afmARu2+uEozDcWTBHDaXFeB0QQl3wDVI0zLO031urTUlJ1wCLKmsiR5zVbnMg6VLOXKVZdChHACKvYWOsXZywZlsF0HZIhdQjIyVgkJvCs7kSRTyICIi0pNuAdY555zjHGcVFaVuXAORP7iPt3LoHhOvuO8V3bIQbfbua/FyzinYUVGM9w7u8Gr/1urfh3bi34d2YtGEc53LLHabs+T20doqxaIOm8oKJY/vqMInJCyAUN7YMtZMa6jiHgRsLBVvh9Jx1ZxX+B6cqG0pia9HkQvlKoJKGSzpZUrZMSGr3e7MLKkdgyV9bPn14RLfcznfHT+keR8iIiKtdAuwbr31Vr0OReSTGHMYbu6d7VGaXY0OMlUFlfSOS0TvuESc26knrlv/O07W1Sjv1IYsOnbQ+dgO6bLkYswGg2hXQADoHBXrsUx4bGFQpLXbmHuAIDVHmB5jd4SnWlNyQtP2vmy7ruQkJqR2kt1frFut44eKVwTl+90JP9dPDu/GF3l78eGoM1UUD9E2Zk2MWOBNREQUCnSd1CcvLw8PP/wwzjvvPEycOBHnnXceHnnkEeTl5el5GiJFZ3fsjuHJ6V7s6XvfQJPBgOFJ3py7dTshCChtzeXWnc8VusRNSusieVyx4Ezq5js+LFxVW6WOc6BavCKhchdBNWUwpOZ7UtxV8Yxy2aJ9VWV4Ye9G2WOJxaWOaQqkyqgDwO7SlhL9X+Q1jf1bUnDUo33u1LxkPbplAk1zn32RuxdlPlTVJCIi0kK3AGv79u244IIL8Msvv2DQoEG48MILMWjQIPzyyy+48MILsWNH++o2Ra2TXkOvrmrnk5iuKT6BMkHXvR3lxTJbA5Em6WyEWDnukoY60W21BivfHT+Efc1dGQFgcrp4oKd3F0HXff07DxbgOa+ZO7EMlhqf7d8NwLVUv2M8nVyApCZ2UhqbpvZ9+yJvLz45shsPbFupansiIiJf6dZF8JlnnsGAAQPw3nvvuYzBqq2txXXXXYdnnnkGH330kV6nI9LVTb0G49eTeRiT0kH1PhFGk+QkrLHmMIxISsf60gK9mijq/E498e3xg8obBsD+qjLn409z97isE04cXGFpQDrUd8V0z2AtKzyGZyQmChbOO6XWPVuX45vxTePH4swtGbCt5UXOx7oEQRqXK/V2dKlK6GP7xE6lJYM0Y8UPLfup2F7N+6nXLFe7mgubHPaywIXVbkdFYz2SFIrjEBEROeiWwdq2bRvmzJnjUeAiKioK11xzDbZu3arXqYh0N61TD7w09BREapjrqltMnOx6LdXtvHVNjwF+P4dawolr5bwvUgTkcHWF5PZ7BRkmAPjlRK7ktl81z6WlRYOt5VZeKlBRijVqZSbjVT62d+e8bNVP+PehpveyTuT8f+uapdgmOd4GOI7gydFl0OvzK2aw1Km3Nv0IEm40YopbNUo1nty5Dleu+UUxC0hEROSgW4AVERGBsrIy0XXl5eWIiIjQ61REIeH+/iPRNVo+yPKn7tFxMHtRSc1f1IaT20W6C+5wK58u9EFzEHGspgqrivJhVAhcD7rdCCsV2BDyZ8V06S6C3mm02/DN0QPIq6nEg9tXe6zvFZug+lhrik/oNubJ8YLkAmF1h9HWniiJbqaO7ovhRpPLfHhqOQqSbPRzNpqIiNoO3e7OTj31VDz//PNYv369y/L169fjhRdewGmnte3JXan9SY2IwuvDTpVc7x4G/Kv/SH0bEMCJVv+jYvJiLa05WlOl6fxWuw3Xb/gDT+xah2O18vveummp8/G5y77FBcu/E83wiPmz8KjocrkueHa7XbLLotBvJ8WL/TgCG7vdjryaSk0BIQD8etIzkOkQGa0YiArli1S89DbgUtNd0Zcxa1KkxpE53k+TweD1WDNAn0qSRETUPug2Buvee+/FTTfdhFmzZiElJQUpKSkoKSlBcXExhg4dinvuuUevUxGFDKPBgC/Hnq2YSTqnY3eMTe2o67nlutXprU5irJm3btjwh6btH9i2yvnYm2pwx2ur0VNFRkeuYp7cPsLxWlo5ApI/Co7ipb2bcG7HHrih92DJG/qksAiUCgqIfHP0gMc2WousiE2sLRdQdI+Jx+HqCnSMjtG0n3Mbu+P/ZebYUnkMB6UuueWNDQH9zhARUfvlc4BVV1eHpUuX4tixY7j88ssxa9YsHD58GIWFhUhLS8OQIUMwYcIEPdpKFJKizWGiy4UZBF9+OffVjM698M0xz5twvVV6EZyotU3QrVDt2DaLYGyVlmyOmOMy48tqVGbHpDjihM+aC4N8n38IN/QeLLptr5gE1NusLgGWmFqrBTEm8etSrTqrBb9KdPOrbGwAAOTXiLwvqlI9TRvJBVFKGaxy9/dARZVGXwJh7/uPEhFRe+NTgJWXl4fZs2fj2LFjzmWxsbF46aWXMHHiRJ8bR9SaCW/p/dGbb2B8MgDgnRGTcf166YxQlNksW/GwtVHbr3mJW3e/PC+ryAFAbk0lShvqRCvJ/Zh/2OvjAi337e4TU4teMgZ1Y8osNpuma65HTAJq3ALk9w7ukKzKKHdodVUEm/9fLoOl8DqPuH2eUlt7O8+YO4ZXRESklk9jsJ577jkYjUZ8+umn2LJlC3744Qf0798fjzzyiE7NI2q9/J21cmRyOkfFym5nMhjx5biz/dqWQKpWmTGqaM6yOHxyZLfodo5PSemG/so1v4gu93VSaaliDmJLDTLbi22rVpw5zOOociXvTTJdYtW0zxlgyWyrtfS89PvI0IiIiALLpwBr06ZNuP322zF8+HBERESgV69eePTRR3H8+HEUFLDiErVv/q5BobYIQKTRBJMhdKoNBopwAuFIkwl1VvEMniMQnrtxiVfnMfn4QYt9jOcu+xb/ESlzboBB1edugLYAX+uUAnKvWUtPOrlsnNYiF1KZKr3CK4ZpRESklk93XYWFhcjMzHRZ1rVrV9jtdhQV+dDXnagN8PeQDbU3oKemdwEAXNi5pz+bE3KWFR1veSLzVjkKPOSq6EJYVF+LdSUnXZZprfrnrqShDnsqSlVvr+pzNxj8GuCbZQL2E2ome3ZUTlTeRDXJTJXE4sL6Wn2OT0RE5Kb9/axNFCAri/NVbffAAO/Kt6vtQhXe3J1rTs9BXp2nLXjrwDZskJjHSEsBjNlrf8W8HWuwpazQuUwpwFIKiFYW5+OOLcsQpWKS63CjUfUEwP7somqWec/Wlxbgu2MHZfdXNQZL4fpOdRsPJ5XBkjqO2tL9REREWvlcRXDOnDkwiUzeOHv2bI/lq1at8tiOqD2Quo9MDAvHmBTvyrefkdHV+fj09Ez8XiA+z5KvXdjaAqngCgAabGpDlhb/2rYK/x13DowGA6wKgcD5y7/DvIFjFI9Zq+KGf2RyBha5BS8D4pOx022i5pN1NchUGJun1aCEFOck0UpdTt85uF12veMdkws+lQLTSLeAlBkmIiIKFT4FWHPnztWrHUTtTnpEFOYNUr7xlnJ2h27Ox7f2zZEMsIQZmgcHjMJjO9d6fc62qtKtIIYaM1f+gBiTGXf2G6647XsKAYcaN/XOxlkdumKhW8l99+AKaMp0aR1XpeTMjK7OAOtAVblzuTdzSzmCIdky7QoBk3tAJZUNk1quNcPXqDIQP1pThdSISI8AkIiI2g8GWEQB4LjXHZqYhk3N3ctu7j0EmdFxLtsNjE/GDpEbZndmg+sNtFyWyii4kRyd0gH945OwS8WYn67RcarGJYWarm7vqRqXr17s1bmqrRY8sXOd83liWDjKRIK1o7VVXh1faFhiGkwGo6qxSZEms+4dBLsJ3ldh8HPT+j+1H0zFRMNax2DZADy+cy0uzeyLPnGJLsvFmMVmV5bxZd4+xQmc82oqceOGP9ElKhZvj5is6fhERNR2cAwWUQBcnNkHAFwyVlEiXWvDJMpfu98Kaqmw5m0mY3BCilf7BVujzYrHA5ils9hbbuH9Wa3R8TlWWJSzbTa7XdPYMjXl3xsFrzNFZD4wLZxdBOXKtCtc42JrVxefwN1blrtuJ3EcuUId3trfnNnTI6AmIqLWiwEWUQAkN9+QGg0GPDl4HC7L7Iv+zRMFA8D7I07HyzmnIMzoGXQBwNU9Brg892W8ib/n5wq2/LoarC4+EZRz+3O8m5Yj2+x2XT9lk8GAasFExL4G384ugs2Xsdg/RIpdBCUCJ2Eg2HQuqTYQERH5BwMsIj8Zmpgmujw7MRWzuvdzySx1iIpB77hEyZti98yILzeHam+O1QRiXXQupNDaeVMwwx9ssGsOpOW2N8Lg/JEAaMqmReswxsgRaJlFMreW5vfSbrdj3o41+ODgDq/PIrrUD/MotO2fLoiISC0GWER+om8yQ7+bwcu69sW9/UZgVHKG7HZq2n9tz4F4MWeiTi3zzZyeA4PdBJQ11vvt2Fq6etrt2q4/AwyyWVGjwYAeMfEtz2GQ3DpCIgsrxtENUKy73rKi4/jm6H7U26xYV3LSo7iH0jfCUYZdsny7vyeqIyKidosBFpGfdG7O7nQX3Jh6S+om0RthRhMmpHVCz5gEAEDH6BifjqdlrI8/jUySDxhbO+1dBPX7XIwGg0uAN7VjN8my8onhEYrHc1zOjjnEaiSO9e9DO73q4re88DguWvkjfjx+SHIbpfL63giNbwIREQUbAywiP5nVrR+u6JqFRwaOVr2P1E2xmjFX746YjO5uFfQyIqMlt5+Z2RuzuvXDW6ecobp9YkJlTFeoBHqhwGw0aspg2WF3FmIJF+mu5/7edpC5rk7W1Sieb1tZU7n3FUXHFbeVyjTJdfH7+ug+AMAHh3ZKjuViBouIiPyFARaRn8SYw3B5tyykRkT5fCw1t4KdomLx+vDTnM+fHDwOH4yUDp6iTGb8rXsWOkaLj6OSClhOTevsfGxAaPxqf2lm3zYfYKkJZCend8HwpHSc16mHpsDXjqaJq/8z9myc07GHx3qT27F8fa+3lBXCbrfjw8O7FLe1CgKhkoY6xe0jjCbnmEWr3SYZiGkNsKTGVAoFq7gKERGFFgZYRK2ANwPyfak0CHjeVDtc1JzpCCUZkVFtPsBSM21Tx6gYzBs0BjHmMByqLlfeoZnj+ooxh4l+6tXWpgqCl2b2wZiUDog3h6s+tpTjddWqthMGQutLTjofy13d5uZrwWqX/hZYNX6nIkWmVXC3TEVGjoiI2j4GWEQhRBgjPJ093vnYm1DJ1x5QPWITRJe7dzv0V1zTW+L8Yk7U1aBGUEbcV5dl9tXtWIF0oKolqCprUF9ww+VSEfk8HcHIld3744EBo7yeW83hr8JjuH79H6LrnhsyQfTcko1zY0BL1U07pL87SmXg3cXqEFQSEVH7wACLKEQNEpRTt9tbxsio5e098N+6ZuHufsMxSdAV0OGzMVMR5Vae219jsLQEiNWWRt0mjn0p5xS/zmflLTXvszDbo6bYRMuxtZ3HV3U2q+S6GFOYy/NyQWVGYcvksrqun58+XQRD74ogIqJQxQCLqBWwAfh79/6q5rC6uXc2hiWluQRoWmRGx+KUtM6iXe7ECiD468ZTSxdHo8GAGHOY8oYKhielo09cotcBVpSKbmTeUtMiR2VIAMhOSFV/bMHrDXYg4X7dfXv8oPOxcJXU1WEwuM6r5W2Z9kabDRtKC1q259TERESkEgMsolbA8Wu9mjmGzu7YHY8OGusxObEa53XqgXGpnSTXu2c3DM3/8wctt7NGGDRlbJSYRAJJNZ4aPF6XQE+Mmm55Z3Xs5vN5pEqmB4r7yxQWtlDOSzWJU/EZKAVYCw7vxMPbV6venoiIyIEBFlEr4Pj13N+3eP/Xc5Bk9ibeHI4ItwxNemSU38Zg2e120YyZGL3a4DiMNxmsGZ17oXdcIu7KGqZPY9xY7TbZ9Zd37Ys0LytWhgmC8XWCQhKBMjwp3fnYvbjKxtJCwTM1n4sBYYIfIuoluiPKv5vA/44ddHmu5rt3TsfuKrYiIqK2jgEWEeGdkZPxQs5E2Up8n42d6nz87ojJeHDAKGS6zbslZ2xKB01t6hAVE/A5thxZIqkKinK6aHgvvBHeHDS8Oew00fV/65rl8lxLl7Y5PQc6H6frMK2AL9wzdQPik1vWCZZLTXTsvp0UuYDVYvNcpyaDlRCmXxaViIhaLwZYRK2A1DgSvWRGxyErLkn19p2iYjG6OWBSEwQNiE/GPf1GiK7rG5courxzVGzAxwP5ksEyOP/fP612dD3sGiMeyLkHJlp6tKULKkMGY+LoWHMYMiKjMS6lo2yQL1wl9RkZoG6eLrmAaXNZoccyNW+nr1MjEBFR28AAiyiEGCVvbh1dBEPvBk7N7fidWcNcCg843NtvBF7MOUV0HzvsqsuBd44SnyzZW0adKhK6UzOGTi/eFmXYXlGsc0uUlTbU4/0Rp+P+ASM9rqfBgmIdxfV12FBagIK6GtlxVmquGrkfLcS6FaqZi47jtIiICGCARRRSrukxAD1j4vHYoDEAgIu69AYATErrAsD3ua38QuFudt6gMc4MyYikdJeM1YQ06YIasAOT07uoasLpGZmqtlPiyIr4q0z7o82fK6D+tXkrkMGcr2qtFmcw7Z59Es679uHhXXh4+2pcs+43yWOpzmDJBKBie8ttf6i6HBWNDUHJ/hERUegxK29CRIHSISoGrw471fl8do8BuKJbP4R5WdVOLzObAz0xSreUwvWPDBqDqsYGXLZ6seI5p3fphaM1Vfgh/7DituE6BROOyotedRFs6SMoKtxoRO/YRABAn9hEXJzZB38UHPWileqkqhxLdX3PQV4dPyU8EsWCCn++iBQUT2l0G/8klRXKr6uRPJ6vXQTFAiWpzfNrq3HLxqWIMJowo0svxfMSEVHbxwwWUYgLdnAFuBYacKf0q737WqXqbQ5J4ZGyXQTHp3ZUeST1fMlgldTLBxsNNhsiTCZ8M/4cvJAzUVO2Q2kS5aGJaaLLY0zyv6Gdnp6J8zr3VN0OoYcHjfZqPzHRJunufpq7xRoMsKoYtGiVC7BEPhqpDNb/rf8dQFO3wpDMMBMRUcAF/86NiFQL1hgsNRkBKe6BhFK5cZfzyqzrLxP0yRmT0gGXZvYVXdcSYGn/0/h9c6ZN6Z0KN5pgNBg0lZYfJxNM3pE1DPMEXQ+FLhNUFnxl6CSP9X0kCoyoEemnSZXjw8JdnqsZ+yRUbWlUtZ1eGSyXbUJwjCQREQUeAyyiVqS0oT4o500Oj5Rcp3Vgv1zmwJ1sRTlNZ23xfz0H4W/dskTXOYobuGew3hB025TieB+KFDJZDmrb3ys2ATf1zpZcH9EcsIkxC5Yni0zELLZfd9Xl5vUbbyQMTKLcsm7qw/EWqRHS16uDluuwqR12rCg6joe3r0adRIl4hldERAQwwCJqVWJkKqf5w1vDT8OdWcPQKzZBcpu82kpNx0wOj0R2QqqzgAcADIpPEd1WmEka4zGPlnc3+HbYJf/wrSjKbz5vy7Hv7z8S3WLiFY97TY8BAIATddWq2iFdMdLVhZ17IVbmc5cLcIXBiVhWRux96KS6IqPreePN4RLbKSuor5U+i0IgNCalA7IFlQbV0lrkwm6346ld67GhtADLCo+L7ic8YlmQfgwhIqLgY4BF1AqpvTn3VWZ0HE5VqHbnXpTAnXuSxGgw4MnscZjdHJAAwP0DRuK2PjkeQZQwsEhxy6L1ik1AcngEzu3YQ/b84m2Sf/+EmZ1uKjM6HZqr3an9ZNSWoBczu3t/52P5cuwt68RO50sbtGZrpMaJAcDh6grJdUpl4x8YMAqDE8QDdDk2DV1VAdfXK5UxFAa7RTJBIxERtW0MsIjIJ30VJihWU8whPiwcZ3bo6pGp6RgV43wc65YhiTSasGDUFNzQe7CG1sIjMuggKAPusKuixPlY7fgzR7Byfid1RSN8Ga9zUWYf52O5rm7CWg9iQbnYZ6M25nI/rVFhv0clxokBQE6idAbKkVWU402gaJHN/HmuEwZPjSLzZLlv48u4RSIiat0YYBG1IqE4iD4jMtolo+IvZ3fs5lFNz5cMjMP7I89wPnZUS0wUZMvUVhR0bJUQHoEvxp6NxweNld1e7RggpbOXypRKt7tksNS+DrXvqWv7lQIKg8GACani854pBelK3P8hU/POWmQyr2KfjfC97BAZ47EeAH4UTCngr7nUiIgo9DHAImpFHOWs48ICOxZLyUWZfXBV9/6Y1rG7xzott5ly44lSI6KwcPw5zudWPwSbjm6Io5IznMvcA4fre4lnzISBSaw5DGaF8vpqSomrES1Tit2lW5vI+j9O5nks8y68kt4zKy4JTw4eBwC4rKt49UafuX1G7m0TK1cvl8ESC7CEH5dU8FQvyGwpldYnIqK2i/8CELUiN/fOxsjkDDymkB0Jhksy+2CywngtJUohhzALo7V8t5pzOIIp4e2z+/aS3dk0JiysXtXH08b1PfJs4KEa6bFPSrpExyE7pWVcVa1IZb30iCi8kDMR2c3vmVRg4m2o6ah46P4P2Y5y13Fb1SJts8iMwRILsLaWFzkfO65Dueyh/Ng4IiJqyxhgEbUi6ZHReHjgaPSUqeoXTGLd0LR049MSNHl7++ro6vX28Mke5dfFWuqeVZOq6Ke1Q5hY6fvzOmkv2CF3ZrvLY893bLQgU6eVyWDAe5OmOJ+LFQNxP6NU90P3z/1iwRgzoXD3rKAjIHa7xjaUFojuLyTXRVCpAIbNbked1YIr1/wiuY3WMvBERNR2SPctISLSyNfqhikRUQBcu3S9MexU0e52csFY//gk7KoolT1Xl2jPcuRGkRt2R9bl7eGTUVRfiySJOcHcgweldyIhLAIGuHfj89xLaWJmufhV+B6JZY8mpXlmHPvHJ2NZkXgZcjlqusQpFcJw+Hv3/vgqb5/HcvegxXFGb666j4/sRoWlAf/Xc5DIeZT3VyrDrnV+OCIiajuYwSIi3VQ0Nngs03Lze2lmX1zYuSeez5noXNYtJh6dReZmkgs7+sUl45PRZ+Gt4ad5rFPTRVAotTno6xIdi5wk11LjXQTtct8zRcVkt5nuWR+RN8uXTIhwz0iZsVpC53Tq7tW5xN479yDD18p67u+FIxBWOu6sbv3Qo3kus9PTM53LFx076LHt7ydz8WXeXtnj2ezK5WYYYBERtV8MsIhIN412z/LVWm6po81mzOk5yDPwEKF0A5sYHoEwkaxKeoRnWfaezTffvWMT1TVUjNsL7RAZg0skuro5uGfhooyeQZBSgCX3/rq/Ry8KAldAfJyQcHJnx6NJaZ1l2wAANdZGj2XuR9d7/jbH8ZSOWmVpwPNDJuL1Yad6BMnuXtq7GSfqahTPrRRisYsgEVH7xS6CRKQbsZtKPUqpi1FTsl4ssxEm0t3wscFjsbm0CBPSOgJQHxRGGE3OxyfrajwCtJzENHwp0tVNyvQuvXC4pgKri084lynfqEu31j2Acg9wlILUizP74sru/RTO32R/VbnHshKZIhB6UiotX22xIMJkQveYeBxxm9S43mrF2we2od5mxW19clSdzwY7lIpAssgFEVH7xQwWEekmkN2iTCrG/KjZBmgaDzUpvbPq7R2md+nlfCwWCKmZG8qhb1wiYsxheGDAKJdtfOoiqLBroOdVa1QYT6aV2Jg5Ma5Bteu2y4qO4deTufir8Bi+O+7ZZVCMHcrXup4ZrD2VpdhcWqjb8YiIyL+YwSIi3QxMSAEAJIZFoKxRvgiAt+7pNxzrSwqckwLL8fdkrzGCioIjfajIB8BlYmKzwegsI65Y5EJmXYTJ5PLc/ZZfKQuj97sXbjSJLvc2FHG0TyksFhbgcL8ktpS1lF/fUVGi6rx2u10xQ6Xnjw13bF4GAPh+4vm6HZOIiPyHGSwi0k1yeCS+HjcNH49uKd+t9036xLTO+EfWUNnskCMz422ApfbWuMrSUtRDLHgQ/oEdn9pR8jjx5nBEC4K11wXl45Vu1OVe4rmdemB8akfnRL/uQUGgCzGkNRcMcTciKd2r4zleu1IGyyDxGHC9RtaVnFR1XjuA307mym6j9r3dUFqAt/ZvVbW9t3O/ERFRYDHAIiJdRZrMLje8SuNj9JSd0DSh7dDEpht29wDLvciDFKWb3dPTM9ExMhrxYRHOZWLBnPB9+EffoZLncS9fLiwh70tXsyiTGff1H+mc6Nf9Bj3QXQTF9ItLwmCpyZsVOK4tLf+QuV+P3hTesNvt+J9IBUIhq8r39uHtq/FD/mFsUtEFkOO6iIhaB3YRJCL/Clx8hQcHjkJudSWy4pMAeI6B6huXpOo4SpmCf2QNhd1ux+Yy+Zti4dnDRDJcjm6AcmO/pAKsm3oNxo8njmB8aifZNghp7iIYgM8uPdKzqqN28g21yHSz3F0pP1+aGDVhjtbsYL3NorhNRWOD5DxsREQUOpjBIiK/Epsby1+iTGZncAW4Bi53ZQ1TfRw12Qc11RGF24j9sR2d3AEAME6m+6DUjfq0Tj3w+rBTEaVyfiuxYyllRALRI+30jEzljSTk1lQCUJ7AeGVRvvOx+8fmOIYWajJ/2gMszykO3F255hcsL9Q+CTQREQUWM1hE5FeVAQyw3Am77QkDLyVqb46VthJ2PxMLyGb36I/hyekY3FwcRIzarmZqeGawgtvl7PMxUxEXFu71/lWWprm3lLqh9oxNcD7WIymnlPkDlIuTuHthzyaclu4ZbLpnU3/IP4QJaeqzlkREFHjMYBGRXwWim5kUYRfBWLP6G3m1cYf3M1Q1CTOaMCwpXbT7oIPWG3U5nl0fvS+goUaOwtgqX4IrIaWMUoTL++v7BSnX5dDhkNt8W2pcsXoxzl32LeqsLd0FD1S7zi8WyIwwERF5hwEWEbULsYIqfUr0KiagxyTLes6nJNQvLklx/NaOcuWy5TO79AYAPDxwtMc6PQucRJmkg9A/Th5VfRyl7oRqbCgpUNzm89y9itvsrypzeV7eHDz9JegGWGd17TpYJ9OVsNFmRbnE9Agn62rQaNN3HjIiIhLHLoJE5FetsbJ0gk6ZFX26o+n3BvaPT8aA+GSMSemAGc2BkZzt5cWK21zbayCu7jFAdJ1e2ctB8SnoERuP744fEl2/zy1QkWuHHkHf0doqn48BAMskxlMJP/Nwo9vvoDKXw/+t+x1FDXX4cuw0RJtb/nk/WFWOWzctxaD4FDw9ZLxPbSYiImUMsIjIr0KhFLhWSeGReCFnIlJ8rNimR4ChZwbLbDTi2SETNOzh27n1ymANTkzBgapyyfXdY+KxR6YaoN5TBcidS4tjKgK1GJNr5rXWKl1tsKihDgBQ0lCHaHNLqf/dzRMob69QDpiJiMh3DLCIyK/UFATwp+eGTIBZpgy6lCyVJd3l6HFj768ugmrITeYciP2dx4EBa2UmAf579/64f9tKyfVyEw0Hy58FR7G6+IToOmEXVffuqhUW5TFY7t0g5cb4yWm0Wb3el4ioPeMYLCLyq/Ag36D1j09Gn7hEvxxbKcPlzSS27oJZ6S8lPCpo5xZSGssWo2F8nR7j4vTwwp6NkuuEQfXyItduhPFuxVpKG+qwq8J1rJxwegKb3Y7Pcvdobt97B7dj+oofcKK2WvO+RETtHQMsIvKr1thFUK3M6FjZ9Xrcy6upWKe309K7AIDG7oSeTLplsOSFRsjkKi0iCvsry5zP7XY7lhYcVRWwCMcA5lbLz9N19drfcNeW5Tgu6G4orDy5ujgfhfW1GlreZNGxgwCAvwqPad6XiKi9Y4BFRH4xPCkdADAgPjnILfEn/9/a6xWkaHFH1jB8P/F8pET4NgZNr+xlnsJYJaWuiMKsVaAq6RXW1+L2zX9hW1kRAGBbeTGe27MRc9b/rrivMCPXz23+tgpLA2qtFvx+Mhc1FoszAD8uCNwsgn65R33MQFVZG33an4ioPeIYLCLyi4cHjkaN1aKpPHpr48/Q58nB4/DZkT2Y1a2fH8/iX3r9glfWUI8wgxGNEtk8pc9BuF5NZUQ97aooweDEVJyoq1G9j7BbaJfoOI/1F6/8EQDwa3yec5kwT9xot6HWakGUyYyPDu9y2ddqt8Fmt6seW8XS7kRE2jHAIiK/MBoMbTq48rfsxFRkK0zUG+pMXhQXEbOprBCRRhMaJXqbaikmoufEzerO59noKoXJgi02G6otjXhj/1Z0ioyR3E5YFVBYXfCVvZtwsLoCbww71WOfv6/5FWWN9fh+4vkqWs8Ai4jIGwywiIi8ZDQYcGHnnpLFIIJZoCIUjE7JCMh5tPSibAhwwOAIsIRNfHnfZtl9nti1TjZjJ+bZ3Rucjw9WVwAAVhbne2xXJjERsdVux66KEmTFJbpkt5QCrD2VpUgKi0B6ZLTqthIRtXUcg0VE5IM5PQdhepdeouvaW3g1q1s/RBhN+HDUmXhz2GkYm9LRY5uPRk/x6tgzZSZG1lKt0Zshbb6Mg/siby8OV1dgv2AyZKny7EJagispcvH950f2YHt5MRptNmwrK8J/8/bh3q0r8Nb+barbUdZQjzs2L8M1637zua1ERG0JM1hERH4SjAqAwXRZ1764NLNPU1GJCPFtok3a/9npGh2H8zv3xKdu5cbNzYGPUvwjXD2tY3f8ciJX8/kPNWeFvDF34xKv9/WF3Nvyae4eIHcPzuvUA98dP+Rc/ntBHm7tm+N83mCzSh7jRB1LuBMRiWEGi4jIT7yZ4Li1U5pnSm026Ons8c7HaRFRonNdpUU0dUvTksHyJsC7p98IxW3uVbFNoFVZlCsALi1wLcPunvWS6yJYLRj3Jed4bRXu37rSJYtHRNSWtb9//YmIAqRbdBwu6tIbDw4YFeymhIwwown/13OgYkAyKCHF+dgxlm1qh24u2zhiNWFQN72zeHdNB2+6baaqKFc/Ia2TF0f2r0iTCSOap0vwlh7jCN8+sA1by4vw0LbVPh+LiKg1YIBFROQnBoMBs3sMwOiUDsFuSki5oHMvTQGJrTksmttniMtyRxBmENlWSBiAJZjDPdYDQHeRcugORoMBV/cYoLa5IaNrdLxiQFlhka9oKEdt3tBR6MOXcxERtSYMsIiIKKSJJVEu79oX1/UcBMA1gLK4dWnrFZOAKwVzicWGiQdYo2SCYCMMSAyTGFQmEBZiXULtsKNeZgyVGBvsLqXs7TIhmtrkVjC6ypY31GNlUT7s7biS54aSAty+aSmK6ms171trteDTI7txUsP8bUTUIrT+NSAiImqW0TzGKjHcM7iZnJ6JyObxVMJMisXthvqVYZM8Soj3ik3wOJ7cXFpGlePG/jPubLw7YrKqbQPh+T0bvZpY+fGd65yP5cKTz9yKjkhR+/4BwPLC48irqVS9vZQ7tyzDk7vWYVnRcZ+P1Vo9vGM19leV49Mj6j4nof/k7sXnuXtx/9aVfmgZUdvHAIuIiELSo4PGYEpGV/xfz4Ee64Q37cLgaHhSmuJx7xMZ/1VYL/1LvdrwINxoQqeoWJVbh651JSedj+USQHsqS1UdT+37l1dTiad3r8eNG/5UuYe0/ObMy8Gqcp+PpcRut6NRY6Yw1DkyVydlvhdEJI0BFhERhaTO0bG4tW8OksI9i0xI3bSPTemI14edKnvcDlExHlmsPwqOSm6vVBmxrWuwWfHc7g04IAhWCjR0HRMGw0sLjkl22ytrEJ8E2ReB6CD4wp6NmL7iB5Q21AXgbNp5c/mGGXl7SOQLfoOIiKjVkep2ZjAY0D0mXnF/ParjBdIlmX2Ccl477HjvwHYsLTyG2zYtdS6Xmly40WbD8doql2XCMvrP7FqPL/bvxv1bAlO2PRBjsJYUNpW631Fe4vdzeUOu1L4ULd06icgTAywiImp1hN0C5QoxSLFqvPEO9u3myqL8oJzXDmB18Qnn86M1VaKZpi1lhQCAR3eswXXr/8AOwdgv93v1l7dtxOayQmfZdqvdjgNV5aIVIPVof6DU2dTNCxZof8pkZ6W0th8giEINAywiImp1wgVdmCKNJs375+pQSEFv4TLdso66ZYUCpditAt0NG/7ArDU/e2z3r22rAACbmgOtzc3/D0hPBF1jbZoI+fMje3DbpqX4T+4+XdosFMhAwR/tV6usoR5Ha/S7RrT+AEFErhhgERFRq/HooDG4uXc24gTl1mPDwnFvvxF4KeeUILasxUVdenu1X4MXXbn8Lb+uxusxaFWWRly88kfFSn6/nswFAGwtL3Iue+fANsXy4sdqqvDD8UOy3QDFsmLlDfWos+qTbRKeu6wxeGOwZq35GTds+AO1Kl7XW/u34puj+2W3sdhD71okak0YYBERUasxLCkdZ3fs7rF8Qlon9IlL9Pq4/eOTPJYlhkU4S8VrMbsVTkosZ6zKibIPVbcUwbDbgQ8O7pC94XeU1Bfr4vnd8UN4fvdG2fNdv+EPvHVgm0sXRnfuGaxGmw1XrPkZl69aLHtstQ5WVzgf11qtzuIfX+ftw8PbVwe8q51SWX6LzYYf8g/j34d2KmzX0u72OJeY+3x6RFq1ywBr27ZtuOCCC5z/DRgwALt27Qp2s4iIKEi6RbsWxng6ezwWjD4T7448HYB3ldj0dH3PQbhXpLy8v3WMjMaP+YdVbXvLxpYiGF/k7cXyomOq9pO6f99eUYxdFcqFIwqaM10n62o8Ajo7mjJWji5vDc3l1Bt1ytDUu53vmnW/YXnhcXx4eBc2lBaoar9Le+12n7rniQVYyYJ55NQe2eIy2XT7sqooHxeu+B5LvRi71tZ8mbfPZdoGUq9dBliDBw/GokWLsGjRIrz55pvo0KED+vfvH+xmERGRTqZ17I6pHbqp3j7WHOZ8bAAwKCEFJoMRJi8jq+yEVK/2k9IpKhYT0jrpekw1YsxhXt9g11rVzQ0lV6Tkri3LATRlnqSq4dlhR2lDHa5d95tLpUOgaazdFWt+xrwdq1W22ndP717vfLz4xBFN+z6xax2mL//eGQhqFdM8+baQ67Wo7tMUvtfeFJEJVdvLi1GuMB3AE7uaJtp+bo98BrW1qGpswDO71mO3xmD/RG01Pjq8C/N2rPFTy9q2dhlgCS1evBhnnXVWsJtBREQ6uql3Nub2GeLVvnrcTqZGeM7d5YtgZdD2+3mi3hN11ShrbFDcbvqK7zF9xfei6+x24ERz17zjtdUu6xwZnY2lTUU39Oyy12izKmb3pAp8SFldfAI22HGi1rsJfjMiPbu0Ckuuq331jfaWAM8l2Arh7oL/t+53nLvsW8n1eytLce/WFbpMZN2afHl0H5YVHcedzT9WqFUjyM4qjYd02FRagPu3rkR5o/5z2rU2IRlgrVu3DjfccAMmTJiArKws/Pmn55fh008/xeTJkzF48GBccskl2Lp1q1fnWrx4Mc4++2xfm0xERK2YsBhClEl9VcIIown39/fsunexzvNWab1Rby3mrPtd0/Z7Kks9li08dsCZ6QLk533SM8D6Om+/cw4sKd5O2OuIiTaXFmrqopUQFuGxTBhgqe2yuKui5X3+q/k1ris5iUtW/aS522Og5Nc1BddSBUwcVRYrLMoBfVty0MsfSYTfldlrf1W1z4PbV2NreRG+yN3r1TnbkpAMsGpqapCVlYWHHnpIdP2PP/6Ip556CjfffDMWLlyIrKwszJkzByUlLV964Rgr4X9WQZeFY8eOoaSkBNnZ2X5/TUREFMIE991PDB6nerevx03DuFTPrnvCLocOM7r08qppQPDHgAWT8IZeLLNT0uBave+69S1BW6eoGJd1Vh/zk0eqK3DD+j9wrKbKWZJejqOLYEFdDSpVZOoc7t26Ao02Gx7YvsrnLlrC4LzGolxlMM9tCoP65oD16V3rUWu14N0D231qj7csNhv+PJaLGkuj7HY2iY9Y2N134dEDuGXjEtSr7MbamuXqWL5frTqF9/VwdQW2lrVUDVX6TFsjz866IWDSpEmYNGmS5Pr58+fj0ksvxcyZMwEA8+bNw5IlS7Bw4UJce+21AIBFixYpnufnn3/WpXug0Rj8f/kcbQiFtlDrweuGvNXWrh274GX0S0j2WC9VqtxkEv+dMlwkC3Z6Rld8c/SAV+0zGY1t5r3WSpidMhiVr7lCQXcmYUBhNBrwe0Ge8/mSwqOYnJGpqS03b1wCoKmCoVqHqsudBUB+nHSBqn3KGxuwqazA+XxHRTH+fXAn/tYtCyNTMqR3NHi+PwaDASWNdXhz31b0iGkp5iL1Pm52CxztsMNoNKC+eVzYvqqygF+LNZZGvLF/K/48eRQjkzMwb/AYyW2lrpEwwXfyg0M7AACbygtEfyBxaAvfuQlpnfDtsYMAxF/PuuKTSI+MQrcY10I/BrdttbwXVthkt5/b/D36ZsI5+OboAXxyeDfmDRojf217KVj/VoVkgCWnoaEBO3bswI033uhcZjQaMW7cOGzevFnTsRYvXowHH3zQp/aYzUakpMT6dAw9JSXFKG9E5IbXDXmrtV47EUaT84YRACIjWzJOYn/TY6vFx1RJ/f2PFskUdEqNF9lSncSEqJD6tyZYNlYUYmb/fqq3LxOMBUlJicX2nS3ZsOd3b8S5ffsgyuzfW6HPjrV0l9LyGdYLkqD3bFkBAHh4+2qsmXGF5D5x8ZEe5yiw1OKq1b8AgEtJ++TkGNEfDgZa0gHB7wDR0eEexwz0tThn8SIcb87ErCs5KXv+hKRoJIR7dpU0VHr+GJIQFy15rB5xCUH5zhXV1uL93VtxVd+B6BTj+/kjj0r/bVtx4hge3t5UAMb9uiowuo6jUnovlh5v+fEiPNwsub1wHF9sQhQ+Wb4bAPBbUR6m9vU+y68k0P9WtboAq7S0FFarFamprhWaUlJScOSI+mo9x48fR0lJCQYPHuxTeywWGyoq1A3+8yej0YCkpBiUllbDJpUfJ3LD64a81dqvneeHTsQtG5Y4nw+LTcXnAM7IyERxsWeXmqoq8UlkxbYFXMcBZSek4rzOPVBRJv9vhQHSRQgqK+pQbAh8V59Q89uxXPxT4j1XUlxchV0lrmXMF+87gFPSO+vRNEmrTua7tEGtqmr5a67OasH28mIMTUpzriuvqEWxuQon61q6Um4qKvA4BgCcKKpAuNEz02qrdf1xYNPJk5iS7JrpKyyqdBnb5W/H3bq5yb2PxSVVsIR5djl7YqNnV8vqqjqXY20ubcnehcGg6fPSy0NbV2FDaQEWHtqvOuMp52RFy2twfz1vbdssua680vXvlWN9RWMDbt+4FP3jk2G12zG9Sy+8tnez65xw9Y0oLq5CRWMDqi2N6CjoqntCUIimpLTlcWOj1S/vt97/VsXHRyEsTHmcbqsLsKTY7XZNs8136tQJv/32my7nDqWbC5vNHlLtodaB1w15q7VeOz2i4zEyOcNZQKB/XDI+Hj0FiWERoq9Hqnqa1Gs3Cca9nJreBWNTOqK4XvyG+bY+OThZV4Mu0bF4Xqo0tL3pXO6ZNwAwGwzOSXvbA2+vN5vNjo6RMTggmBB5b0UpJsh0EdObXNvdC3BIbetY/vyujVhZnI9rBBNb22x2rCrMx2M71yq25f/W/o4uUbEYm9oR0wSTd7ufd31Jgceyd/Zvw5yeg7CvshS9YhMRZjRiTfEJLDx2AA8MGCU6BtHd98cPoc5qwZkduooW57h3ywocr6vCR6Ndh3IYRNootKWkSPWUBo9sX4PvJ57vfP5V7j7nY7td//s7u92Oz3L3oH98MoYlpYtus6G0JSDWev4tZYXoGBmDdEE1yaWCQiwexxM8dV9ndSsW41j/4cGdOFFX46zc+ZdIoZelBcdwY69sXLbqJwBNY1Ujm6cQsArOIzyH0ufqq0D/WxWSRS7kJCUlwWQyoaioyGV5SUmJR1aLiIhIraTwSE0/1I1L6ahqO8c8Qu5zan0+ZiqeHDwOZ3boilnd+8EgUynQMS/Sx6PPwoejznRZ1ynK+25E6RFRXu/b2nx8eLdH1sVRPdJqt+OXE7keBTPc9YjxvpunnK1lRTh/+Xcuy946sE102+WFx1FjacTK4qbM2L8P7XSuswNYUXRc1TkL62uxqawQb+53rcLsfgt6enomfj2R67Lsu+OH8N3xg7hzy3K809zOx3auxfbyYnx3/KDiueutVrx9YBs+PLwLV6z+WXSb7RXFKGmo95g82mSQv3V1H0OmRJhtFlYTrbVaFMvSX7P2V3x8eLfqcx2uqcDnuXvx0HZ187I5gu5dFSUoqJMv3Z9XU4l/bVuFa9apTx7IzXHmHvCvKzmJN/ZtUT2324uCH4uERS+E77HwFEqfa2vT6l5NeHg4Bg4ciJUrVzqX2Ww2rFq1Cjk5OcFrGBERtQvvjTgdF3Xpjdv75qja3nETEeM21icuLBzZiep+GHQEX9FmM1J1DIou65ql27FC3X/y9mJfVZnLMsf93X9y9+LVfZtx1ZpfPPYTFsrQYx4osWN8eHinyJbint69XrJsdl5NpeYAw517+37MP4xX9m322G51UdN4rsUnjrjMe7TomHSAtbeyFLsqStBoly6l794G9/aYDAa8e2A7fjh+SHQbs8YbdYugLcKg4mhtFV7cu0lyvw2lBSior8V/8lxLkpc31OPeLSvwSHMQJWybUnU9d3M3LsFNG/7EXVuWKwZO7x/coenYgPi0BTvLi3Hl6p9dqvwBwLwda/CThomz1wqmF3CZi01wSmGAJzep+47yYpfum61BSHYRrK6uRm5uy68lR48exa5du5Camoq0tDRcffXVuPvuuzFw4EBkZ2djwYIFqKurw/Tp04PYaiIiak0mpnbCupKTmNqhm6b9OkbFYLagW5ayppuIMKMJ2Qmp2FpeJLqVXPLMH+NdPh1zltcT2gbT+pKTGJGsU7Wx5vu7L/P2ia5+78B2LDp+EH/v3h8Xdu4F+bBAWbWlEZc2d5v677hzUGNtRLQpDHsryzQdp0ZiridhNssb3x07iGK3LJ5FIhgSXpPzBeetkim5/c/NywA0XXtyGlyySq7qbVZ825wlO6dTj+ZtWm7UtX5XhAGQ1S3g+LPgKO7IGia630m3Sa2Bptd+xZqWjFyjzYpr1/2O0ckZuLJ7f5eKmO72VJYiwRzusizXrWS+nG1uf1fsdjue2LVOdh/31wsAL+3dhNLGenx0RH1mTonwExFeT1aZ917onq1NRV6E3TlDXUgGWNu3b8dVV13lfP74448DAObOnYtbbrkF06ZNQ0lJCV599VUUFhaif//+eP/995Gc7Flal4iISMxp6V2QFZeEDlHK1aV8SVwIbxCTRKqbqaFH5sRdQliESzGE1uKRHWvwxdizdTlWz9gE/HEyTzKIWNR8I7/g8C78ejLX5+mefxF0tfsybx/+k7cXESKFJoKhzmrBOwc957iKNplFAzqr4D0TlsZX48tc14A2r6YSmdFxzufCaodqJocW3pxr/YyEx9+pYRJlk8gk0sVu78PCYwdR0lCHn04cQYZgXJS7eqsVdzQHn8KxoVoIhxftqSjFXVuWKf4gcMQtgLPZ7cj3w98Em0RXROFSm92OBptVtPBKaxSSAdbo0aOxZ88e2W1mzZqFWbNmBahFRETU1hgMBnSO9n8ZZpfuTiq3u7ffCMSHheP+bStl9mgidUM5Ob0L/ig4Kruv8Nf+1PBIFCmMQQoV7uNyvHW4ugILj6mbm+x4bTU6RvpW6tkx/xLQMoGye9GSYJGadFfqmt0hCEa2lIlnZZcXHkdpYz3Oa840Ofzs1tXs0R1r8N7IM5zPf8gX7/4nRRhgmUTmO5LLjtTarIgFsLIoX3IboCk7FWUyw2QwoKi+Fq/t2+Jy/JN11R7Zs48O73I+LnALvoTF2YRdV1PDxaeEaDqPTWasUstrvGPLMtnXIuW3k3nKG3lD8PYLf1D4Irele+XK4nzMWPEDbukzBGcJehW4dxfVMk42mFrdGCwiIqJAc1TA8obw1k7uZlHYNWtCWidV47O6x8RLdmFSM2hcOO6htQRXgLqshhpiwZXLPD1u1fCkfon3hlRX0WARdm0T8jaY3VNRiqd3r8c7B7bBare5ZLzq3IJK9+BDmElS854Lq9ENik9xWbe5tBAXuBUQEbp67a9478B2PCnTna68sR6XrfoJdzZnmdzHmeXVVOK69X/gtk1LJY/xY/5hl+eO7oKlDXW4t7kLHADZ8Wly173a70SDzYpGiaB+Z0Wx6HJfCT9DYTvdA22gqVsuACzOP4IDVeUuwbtcoBxqGGAREREpGJmcgUlpnfHQgFGa9xXesMvdLEZ5EcS9PuxU9IxNEF0nN2jcwehDp7c3hp3q9b6+kqt+5qsr1/yClUXH8W+RogF6BXbBoqZ8uh5u27TUJYvy7bFDLuOq3Mldh2oqa68rbelS99aBbXh851oU1NWgqrEBD2xfpbj/IoXKh0eqm7rSOTJN7tff3spSAJB9je52V5aisrEBRW7TN8hlkcQCDLvdjg2lBarHB85c8QMuXvmT6Dp/Xd7Cw64qls8UGg0G7K8qw+v7t+C2TUtduqdKdeUNRSHZRZCIiCiUhBmNuKvfcK/2Fd5crC8Rn/TVfTs9qBnLIFcaXkkwxw49vWu9345d1liPJyWO39oDrEC1/kBVucvzDw7twESZuankfgtQymBZbDaXOeYK62tRWF+L/Npq0fm1fGW32z0CKW+vi10VJUiS6RKoxl+Fx/Cc1Px5IuxoClTOXfatyDr/XCHC9+dDQbdJMTVWi0vxnRprS9GU1pTBYoBFRETkR8JbAtnxNhpuHjpFxSjebFyS2Qd7K0txade+mLdjjeg2ESYfgqQgDoXY73YDHyit5/ZOnD+Kpagl19VQLvNjVchaXLjie9HlZY31HkUcvCUMPOYf3unR3c89C6VWnc3q89dod3P2TA+NGjJwWpQ11uNAVTkSwsKVN0bTVAQOwvLsrSmDxS6CREREfqT2V+EJaZ0Rbw7H7O79RY7h6u3hk/HeiNNlj5cYHoHncyZipEhJ85jmrmLulc2eHDxOVVsB7dmv54ZM0LR9KFKaiDjUSV2JUgUu9OTtzbtVTR9BEXrGkhZBG7456jlu7wu3ubDU+lghm+PODmBN8QmUCq5DLd18leaS2lAqnWH3xe2b/sJjO9fiTpky9VLUlnIPNcxgERER+ZHa7kPxYeH4bOxU0XXu1cn8MS8WANUTHwPaE1j949vmVCpTOnR1Kb8ebN2i4yQzN1IZrJkrf/BnkwAAJ+o8541y6BgZgzqrBU/sXIchbtfgmwe2enU+q475xsUnDut2LKH8uhq8tn+L8obN1hafxHN7NiAlPBILRk8BoK3witJ4NKn51YIpWdCF0uKnDJs/MMAiIiIKkBhzGKplJmKVorZrjWoiN9qfjREP7qRoKZccKnM9+YMvhUL8Qa5YiiWIGYBfZYo35NdV46KVPwIANpW5ZlmkSsAr0as75AcHd2CVYF4uvbmPV5NzqLpp2+KGOhTV1+JQdQV2lPun8l+oyBcE5q2piyADLCIiIj8SZrDGpnTQNNfMq0Mn4UhNhcskrHLGpHRwmaTV4awO3VxKIgtvPe/rPwLRJjPiNQZxWsKKJwaP1XTs1iSUwqtEhc8wmDeo3kyeq0SPsuVK1M6TFgjrBV34btzwp27zwQHK84AFy1rBddOaughyDBYREZEfCW8JRiV3AABMSuusat+esQk4LT1T9bm6RIlPnHxLnyGSbRqf2glDk9JVn0MoqrlIRkZEtOx2sWadM3AhJJQmPrXZ9Z2rK9TJBVFt8V04XF3hfKxncAVAdh6wUMEMFhEREQFwLZc+NqUD3hp+GjpFxfjlXHI3lfHmcFRYGnQ7l9FgwLsjTkdeTRVKGurwvEypaLOxKQi5tGsf/Cd3n25t8FZCWDjKG/V5L/JrpccWBVqFpQEVlfp9xqFOLqPR2kvqkydvC54EAzNYREREfvDooDEYl9IRZ3Xo6lxmMBiQGR0Hk8E///zK5VLeHSlfddDdC0MmeixLdJtXKCk8EtmJqYqTGjuCzIsy+3isiw9CditOx3Mera0SXR5qY7PaIrkS7v6cjJqCQ2s35mBigEVEROQHw5LScf+AkYiUKTqgN7nqgrHmMOQ0V2hTUzQjLixMdr3wTEoBY1xzWXix9l0lUpbeWxNTpSez9Zfi+lrR5f3jkwLckvZHbjwjM1htT3qkfFfkUMIAi4iIqI1QyiTd2icH41I64qEBoxWPpWWeq34SwcQ/+w7FZ2OmIqw5gyV2xKTwCJGl3jm7Y3fdjqWWVA7FX1nKQBnYCsrqv3twu+S61jNah9qi1v3tJyIiIqcOCr/wpkdG4/4BI9E1RrkqYZhR/BYhuTkgijW3ZLikutxFmkwu3XrEAkCpMK6rysqJoUquXHprcFnXvsFuAlGr1bq//URERIT5o87EsZoqRJl9/2f9jqyhOFJdidSIKNH1H4w8Ew02qzMrBchlzgxuz0QCLMG+M7v0xn+P7gcATO3QTTZDIaZbEIKyjIhonKyvcVk2Ob0LzBIBamsR1obnLiPyNwZYRERErVxaRBTSIqKwp7LU52PJlYU3oCmz5Z7dMhoM+PfIM2AyGPH3tb84l7sXgBALOpIEhTPKGupbttVQ/nxSWmdc32uw6kHwehZAEDvWrX1y8PaBbbqdIxhad3hIbU1YK+ty27paS0RERJKCWbcuPTIaKRGReG7IBOeyDTKTy/5fz4GYmNoJveMSncuE3Q7lCna4O1Rd4Qyu/tl3qMf6MzO6eizTy+iUDh7LzEaj4ni4UBdK83sR+WtqC39hgEVERNRGdIlq6iI3KCHFL8dXc8/dX2VxhLM7dsc9/Ue4LBuY0LKvUeYX69lulQdzayqdj7PiPAtu+DNWGC9RuVBLgBhKBsWn4KnB41hmPoQEozpmqBkl8kNGKGOARURE1EZEm83477hz8NTgcX45vtbK1xkayyoLK++ZBPf3z2SPd3YlTIuI8uiiKJxLq1NUDKZ17I5RyRnOZe7BQqmgK6IvPhx1puRrlCoSAgBDE9N0Ob8/PDhwFAYnpnoEpXdlDQtOgwLg+4nnB7sJkm7tMwTLio4HuxlB1yc2MdhN0IQBFhERURsSYTKFTPeuczv10LS9sNXCDNbAhBTn+C2xVyY8j8FgwE29szExrbPkeWqsFk3tkpIaESWZ55HrlqjX+f3B0bXRPSgNlWuqvZnSoVtQz39Zpv7VJD8fM1XzPmOZwSIiIqK2SOs9doQPleikuqgZDAaPshJiWwpvcJS668WY5SdV9kaXqFiMTemAq3sM8FiXLlGhMRQ43iv3gKo9dRn8etw0vx17/qgzg5INPC29i1f7+SOuDvfi70JrC/AZYBEREZFfmGXGUQm7GyaHRyI5PMKlW537/ZSteQcDPLsqivdcNIg8Evfu8MkKW2hnMBjwrwGjMLNLb+eyDpHRuK1PDv7uNoZMSq/YBF3aco6GCZgdgZT7e6bm/ra1zV02Ka0zLs7s47E8UsMcZlpvpNMiojApvQsu7NxT456+ub1vTkDPJyfC1PanAGCARURERH4RLTMvl7DK3vxRZ2L+qCnIFoxNcr+fd5RDF5tLS4wwIFDaJyE8Qna9HLmxVu66RsfhzA5dVRfAeGXoJG+b5fTfcefgfA038y0ZLNflYu9hb7cA8MnB43BJc8Dy8egpGlsaWDM698Jd/YY7g90YLyaGntG5l6rs5+hkz+5tsRKTc4txL+riDbXfG71kJ6Sq2q61T8gthQEWERER6eqZ7PH4R98cJIVHeqz775Tz8eqwSS5zYpkMBud/Du43hI6slcHgOfeU2Pxawi5tevcumpzeBQ8PHA0ASAiLwDU9BmCSzJgvB0erA1VhcERSOiJMJk3d+xxts7qlCWusjbjUbTxOstvnazQYcFX3/vh+4vmin30ocf8Mhialaz5GZnQcHhs8VjaYGJmcIZo9smuoGBMf5v0PAA5arrhPx5zlfCxsptlgVJ2lNKo84YMDRmloWevBAIuIiIh0NTAhBadLFHnoEhvnMveVuzeHnYaXh57isTyxOcsU5/bL/5DEVMUucGp+vb9Tw7iYf2YNw0hBlcIZXXqLzoflS3uknJEhPRG0O8dYF2/iuWM1VR7LruzeD4PiW6YAsLkFCa2pNL0ebY0ymdE7NhFPZktX7Tw9PdOlOqaDTfAjQbiGLKg3Phx1pqYxTAluAd3ZzYU23h0xGW8OP03VGLJAZ8xCDQMsIiIiUsn/N01dY+LQOzbRIyj4R9+hGJaUhjuzhrl0r3pi8DjRblouXQRVNPvU9C74V/+R3jZbE7W/7ovRcuPqyPR5U6DCPb9ia16wvaLYucw9y+Xvm8q7huj3+XhUSdS4/9QO3TA2VTmodn+PHISLP5WoqhfVPFZpU2mBxta16BgZg1Qfi6rc3GcIFo4/F+nNUxKIBYzuWlOw7Q8MsIiIiCjk9YxNwKODxqJjVAxOTe+M09K74Ons8ZLbu5R8V3n77O+bQke3MLnzKM33EyMzrs3d6c3ZLm8qsLlPVu2erQJcszCA/9+/i3rpVzLcva0ap3jDTb2zXQKNVyXGy9lgE10u7OYqNQ7JEUyXNNRpbJ3+hGMN1XzO0W10bJVa7fvVExERkWqB/E1abohKuNGEOxS6KYUJSkGrbbfJhwBByyTMcgHfBZ17wmK3YURShuj67jHxLtsuOnZQdLuPR09xjoNyP9upaZ2xpPCYbBtj3bKCYm+NRwbLbaPU8EgU6RQcvDzMs9uoL3wNBt337xmbgKy4JFQ01qOwvhaW5vfGareLZiylMltCjm6nFq0zfLvwZV+gwW71WDYyOQM5ianYXFYkuZ+W4i9Kzu2obT69UMAMFhEREYUc90IWWg0WZmBU3kv7NteO+vbK3dybDUackdHVOebslaGTXMaY2QSnkWutsMiEe7dCNfMQuQebYudyz2q5n+fJ7HGIU6iyp7ZoQmq4vnOHuX8Gevx48ELORLw38gyXK8FqtyPSZMblXfvitj45zuXndOqBeHM4buqdDaCpMIzQAwNG4ubmdeYgdrf77USex7IwoxGPD3Ydd3Z5V/0nJHZIiQjtgiliGGARERFRyPEtvHIdJ6K2i2CgbmO1jKPqFZuAG5tvtJuIvzNykxcLMygv5kzENBXzYnkGgcptdt+nU1Qsru05UHG/YPDnDbBw/jJHEHpFt344s0NL4Ze0iCh8Nnaq87MYmJCC63oOcq4fk9LROR+XcC41rfLrarzeFwDqbBZV203r2N2ly67aa1xuTizHDwtna5jHLVQwwCIiIiJZPZq7pV3RLSvILVFPeHvnnpkSZmcuFUw0KwzEXh92quhx/9ZV/D1QMzmtWGgUYzJjQHyyYBv50NI9M5XYXPFNrnuj8GY3PiwcmSqyRt4UgRC7qfSl26VQlIaxZ97o01zZMisuyedj3Z013PlYTVdAB4tdfLxWfFhLUZeBgmtF6JPRZ4ku12qOW0DcN1bd+2GAAakaSvM/NmgMLsvsi76xiTg9Xbwy5t+7D8D3E8/36K7aGjDAIiIiIlmT0zPx1bhpmNJcrjkQfBp2gqa5sWZ37487soZ5BAfC+ZyulJjEtXtMvOhkuX+TCDJHJGfgrA7d8Ejz/FhyhBmlz8ae7dI9TOplvz7sVFzXc1DT3FbNXfxSI6KQ0VzZzfH/YoQxTkFdrcu8YVd164crRIJG96BUTZwk1sVSKZOhNB9URkQ0Xh06ye8T0p7fqSfuyhru/PweGOBasVAuQ+iuQ1SMM9joprILJADk1lSKLheOJ3xmyASP9WaDwdml1FdT3b7jPWLjJbZ0ZTA0ve55g8bg/RGnK14vQ5PSMat7PxgMBszuIf4dbM2FCBlgERERkSjHL8ddo+P8foPrztcxWABwUWYfnJbexeMmP1KiW5L7DZ2WrnwmgwG39BmCEcnixSlcz2/GGRmZuKpbP5gMBlVjv7rHxOP8zj1hMBjwUs4puLxrX5zTsTvu6TccZ3fohtv7DpXcV5iNssPuklW6pGtfDEgQz4oI6XmvO3/Umaq3TY6IQE9BlztvJKqYqNdsNGJSemfENWeLxqR0dK67r/8IvJhzCmZ07qX6nK8Mm4THB43F4ETpSYjduc8/5dAzJh4XdO7pnEZAS7An5q3hp+GlnJaiIaeld5HcVu0PHY5rbHhSOjpExWhqj7Br6bxBY5yPW3F8xQCLiIiIxL05/DT8q/9IDEtKC/i5kzV0N1LiXsVNqsiEvydHFQaNt/cdiktECgOouaHtGhOHK7r1g9loRHpkNG7uM0R2riNhAOe4Eb6iWxau7zVYQ+s935su0bEa9m+RFhGFp7PHY1BCCq7o1k92W28zmed36okHB4zCSzmn+Pypdo+JR2J4BCamdVa9T0JYBHI0fm+ksnkGgwH/13MQxqY2BX3pEeLZSkcA+PbwybLnyYyOc3520SYz/iEIztX+GCHWRpfnGt514bbDk9Kdj/XqXhoMLNNOREREopLDI503dYE2OCEFN/fOxsD4FOWNNTJJ3PxpL+ugja/dHr0l/DXdEVxeLugWqKZdYu/FtT0GIi0iCp8e2aO5TYMSUvB09nhYbDZkxSVhbEoHfHh4l6DNBiSGh+MGlUFg37hE7K0sAwD8o28OTs9oKSgh2nVRw827IyjtHZuAczp2R7aGrJQWVrVZW7emO/a6pudAXNm9v6oS6VEmMz4aPQXRJrPbeMWm/38mezwWHTuIi1QW2PBmMmsHq9vYs8cGjUFZY71L18jWhgEWERERhRyDwaBb9TD3X9OlMljuBQniw8IxJqUDesTE4/Pcvbq0JRA6u3XRcslgibx2Nd0xHbtdnNkHX+XtAwDEmMNwedcs55gw0f0Ujms2GvFCzkQAcAmwzu/cA3MEVfXkxJjMeDHnFJy77FvR9ff3H4EX927C8dpqVcdz53jPDAaDW0VHfYlN5ixG7j11BFdGGDwmgnYnliV2HHtgQgoGJsj/uNExMtpZpdA9S6wl3Ipp7oqc3DyObKggi9VasYsgERERtWnuMUXv2EQAnpPpeu5nwAMDRil2Y9OX72mul4dOcnkufPl9m6vlCYnXrnPXdBSxsXgzuvTGDIlMh7BcvhZaMiJK71i/+GS8O+J0DPIyGxqojmrDmgOLUQrj+Eob6l2ei7VvgES1QWXqX+2zgoIbvnSvDTea8MXYs/HByDO8PkaoYQaLiIiI2jT3m/Ws+CQ8OXicxyS3chMAT0jthGpLo1/aBzRV8/sx/zBGqiiSocQ9CBLe/IoFPEqV/JqO0eS8Tj1wpLpCdXZxdEoHDE9Kx66KEtRY1c2pBDQFRWqpDUlv75uDOet/B6AtaJK7LvQ0MjkDbw0/DR0i5YtEyM0d5SCWlUwKi0CdzSq7n7fvi3sGS2u81RpLscthgEVERERtmti9ntg4Grl7wnv7j9CtPWIu6dpXtOiFHjxuft2oCVAch4gymXFXv+Gy2wqFGY2YN2gM3ty/FT/mH1a9n1IWx5W6EEtrdbtgUDNHWZhbkCz36oUf/Yejpyhsra00unAso3sGy98FY0IdAywiIiJq04RjkPo0dw9U2s4f9Cg97w2lm111Y398e296NZdaVzsvlJaPwr35er/LQapNIklNe8S2aarKp/TGaij+IfiQ3L873WPUzZ/VVjHAIiIiojZNeOv3zJDxqrbzB3/fqF/RNQv1Il3AlAJHLUUuvHVGRldEm8zITlCuwDelQ1evx261B1d0y8JD21er2lbrx+Z1F0G3ddM6dsM7B7ZpPHvbwauXiIiI2jTHuKaJqZ0QLlPxLr55ktnW6vJuWZjdY4DHcqWbvUCUjzcZDJiY1hkJ4dKT/j6TPR6XZfbFLb2HKB6vX1yS83GoZZj8bVhSOhZNOBf945Mkt3FkJbVmZb0NsNzPYzIYXea0am+YwSIiIqI2rVtMPL4YM9VZDlpKZnQcbuqdjZ5+6t4UrHmw/N31US9qSoM7pEVEYU9laUCCK/cxT6HAZDCif1wydlWUYmii54TGjvdFcwZLw7Wi1PX0/3oOwsmda3Fdr0GqM25tBQMsIiIiavNiVWanpuk091Zr4v8RWPqz2u3oGZOAA9XlHkU89ApkHx00Bvm11UiUyboF0xXd+qF7TDxGpXSQ2cp/n5xSdcUu0bF4e8Rkv50/lDHAIiIiIgqAnRXFQTv368NOlZ0QWEmoVYWzw+4cF6ZlziwthiWlA9K98IIuwmTC5IxM0XWOcXX+/NRCL68XOvjeEBEREQWAJVh9BNFU1a2jD2XKR6X4Pj+XnnrGJOD2vkPRLToOjwwa47KulfSI9CvHpebPOby86XraXj4aBlhERERE7Zp84PdM9njZ4iCBdHWPATAAOD0jE91j4vHG8NPQX8OkxO1FsKYEUPJ0tnQVz7aEXQSJiIiIAmBSWudgN0GT14ZNwq7yEgwIoQDm4q59MKNzr1ZTuCNYYpsLuiSoHHsYYTSJlvhXkhIeiWiT+nCib1yi5nO0RgywiIiIiAKgtYUEPWIS0CMmIdjN8KA4r5eK5E2ojSnT2619cvDuwe24sls/Vdt/MXYqbF4kvf496kxV7+Rbw09DlaURYSGSCfU3BlhEREREARCqWZfQ7EzmvVDtHhdI6ZHReGDAKNXbexv4mFRe05nRcV4dv7XiGCwiIiIiPzI334QmhYVmue/QDPu8J1ctMSMyGgDQKzb0MnPUdjCDRURERORHL+acgh/zD+PSrn2D3RRRI5Iz0D8+CaeldQl2U3zy2KAxWFp4DONTO0lu83LOKThUXYHsxNQAtozaGwZYRERERH7UMzYBc/sMCXYzJIUbTXhuyMRgN8NnQ5PSMTQpXXabuLBwBlfkd+wiSEREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOjHY7XZ7sBvRmtlsdlittmA3AwAQFmZCY6M12M2gVobXDXmL1w55g9cNeYvXDnlDz+vGZDLCaDQobscAi4iIiIiISCfsIkhERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhtwKefforJkydj8ODBuOSSS7B169ZgN4lC3GuvvYasrCyX/6ZOnRrsZlEIWrduHW644QZMmDABWVlZ+PPPP13W19fXY968eRg9ejSGDh2KW265BcXFxUFqLYUKpevmyiuv9Pgb9NBDDwWptRQq3nnnHcycORNDhw7F2LFjMXfuXBw+fNhlG/7NITFqrp1A/t1hgNXK/fjjj3jqqadw8803Y+HChcjKysKcOXNQUlIS7KZRiOvXrx+WL1/u/O+zzz4LdpMoBNXU1Mj+I/Tkk0/izz//xMsvv4yPP/4YBQUFuPXWWwPcSgo1StcNAFx++eUuf4PuvvvuALaQQtHatWtxxRVX4Msvv8T8+fPR0NCAa665BnV1dc5t+DeHxKi5doDA/d0x++WoFDDz58/HpZdeipkzZwIA5s2bhyVLlmDhwoW49tprg9w6CmUmkwlpaWnBbgaFuEmTJmHSpEmi6yorK/Hf//4XL7zwAsaOHQug6eZn2rRp2LZtGwYPHhzIplIIkbtuHKKiovg3iFx88MEHLs+ffvppjB07Fjt37sSwYcP4N4ckKV07DoH6u8MMVivW0NCAHTt2YPz48c5lRqMR48aNw+bNm4PXMGoVDh48iAkTJuD000/HXXfdhRMnTgS7SdTKbN++HY2NjS5/g3r16oVOnTrxbxApWrhwIUaPHo1zzz0XL730kscvzUSVlZUAgISEBAD8m0PquV87DoH6u8MMVitWWloKq9WK1NRUl+UpKSk4cuRIkFpFrcGQIUPw7LPPolu3bigoKMAbb7yBK664At999x2io6OD3TxqJYqKihAZGYnY2FiX5SkpKSgqKgpSq6g1OP/889G5c2ekpKRg9+7deOGFF3D48GG88sorwW4ahQi73Y6nnnoKo0aNQq9evQDwbw6pI3btAIH9u8MAqw2y2+0wGAzBbgaFsFNOOcX5OCsrC0OGDMFpp52Gn3/+GdOnTw9iy6i1EftbY7fbg9ASak0uvvhi5+OsrCykp6dj9uzZOHbsGDp37hzEllGoePTRR7F37158/vnnLsv5N4eUSF07gfy7wy6CrVhSUhJMJpPHrzYlJSUeWS0iOfHx8ejevTszn6RJamoqamtrUVVV5bKcf4NIqyFDhgAAcnNzg9wSCgWPPfYY/vjjDyxYsAAZGRnO5fybQ0qkrh0x/vy7wwCrFQsPD8fAgQOxcuVK5zKbzYZVq1YhJycneA2jVqe6uhp5eXkccE6aDBo0CGFhYS5/gw4dOoTjx4/zbxBpsmvXLgDg36B2zm6349FHH8Uvv/yCBQsWIDMz02U9/+aQFKVrR4w//+6wi2Ard/XVV+Puu+/GwIEDkZ2djQULFqCuro7dvEjWM888g9NOOw2dOnVCQUEBXnvtNZhMJkybNi3YTaMQU11d7fLr3tGjR7Fr1y6kpqYiLS0NM2fOxFNPPYX4+HjExsbi8ccfx4gRI1jNq52Tu25qa2vx3XffYdKkSUhMTMSePXvw1FNPYcyYMejdu3cQW03BNm/ePHz//fd48803ERMTg8LCQgBAXFwcIiMjERcXx785JErp2snNzQ3o3x2DnR1XW71PPvkEH3zwAQoLC9G/f388+OCDyM7ODnazKIT94x//wLp161BWVobk5GSMGDEC//jHP1T94kPty5o1a3DVVVd5LJ87dy5uueUW1NfX4+mnn8YPP/yAhoYGTJw4EQ8//DC767RzctfNRRddhLvuugv79u1DTU0NOnbsiClTpuCGG27wKF5A7UtWVpbo8qeeegozZswAAP7NIVFK105+fn5A/+4wwCIiIiIiItIJx2ARERERERHphAEWERERERGRThhgERERERER6YQBFhERERERkU4YYBEREREREemEARYREREREZFOGGARERERERHpxBzsBhARUevz2muv4fXXX/dYPnbsWHz44YeBb1Ab0tDQgJdeeglbtmzB9u3bUV9fjz179khu/8gjj6CsrAwvv/wyrrzySqxduxYAYDabER8fj759+2LKlCm4+OKLER4eHqiXQUTUbjHAIiIir8TFxeH999/3WEa+qaurw9dff43s7GwMHToUq1evlt3+r7/+wq233up8Pnr0aPzzn/+EzWZDSUkJ1q5di+effx5ff/01FixYgPj4eH+/BCKido0BFhERecVkMiEnJ0fVtnV1dYiMjPRvg9qI+Ph4rF27FgaDAZ988olsgLV3717k5+dj4sSJzmWJiYkun8sZZ5yBGTNm4PLLL8dTTz2Fp556yp/NJyJq9zgGi4iIdHX06FFkZWXh22+/xd13340RI0bghhtuAACUlZXhoYcewrhx4zB48GBcdtll2LJli8v+FRUVuOOOO5CTk4MJEybgrbfewjPPPIPJkyc7t3nttdcwevRoj3NnZWXhk08+cVn21Vdf4ZxzzsGgQYNw2mmn4b333nNZf++992LGjBlYsWIFzjvvPOTk5ODyyy/Hvn37XLazWq145513cNZZZ2HQoEE45ZRTcO+99wIAPv30UwwdOhTV1dUu+6xevRpZWVnYvXu3pvfQYDCo2m7JkiUYPHgwUlJSZLfr168frrjiCnz33XeoqqoCABQUFOC+++7D6aefjuzsbJx11ll46aWX0NDQ4Nxv5syZuO+++zyOd88992D69OkaXhERUfvBAIuIiLxmsVhc/rPb7c51zz77LGJiYvDKK6/g+uuvR0NDA66++mqsWLECd999N9544w0kJSVh9uzZKCwsdO5333334a+//sL999+PRx99FCtWrMAPP/zgVfvef/99PPLIIzjjjDPwzjvv4PLLL8crr7ziEYTl5+fj2WefxY033ogXXngBJSUluP32211ez0MPPYTXXnsNU6dOxTvvvIN7770XNTU1AIDzzjsPVqsVP//8s8txFy5ciIEDB6Jfv35etV/J0qVLMWnSJFXbjh8/Ho2NjdixYwcAoLS0FImJibjvvvvw/vvv49prr8U333yDxx9/3LnPxRdfjMWLF7sEjtXV1fjll18wY8YMfV8MEVEbwS6CRETklbKyMgwcONBl2fz589G1a1cAwJAhQ/Dwww8713311VfYt28fvv/+e3Tv3h0AMG7cOEydOhX//ve/cc8992Dfvn347bff8NJLL2HatGkAmsYUnXbaaYiNjdXUvqqqKrzxxhu48cYbMXfuXABNQUZtbS3eeustXH755TCZTACA8vJyfP7558522e123HzzzTh48CB69eqFAwcO4Ouvv8a//vUvXHXVVc5zONoYHx+PKVOm4JtvvnEGHo5A5I477tDUbrXKy8uxadMm3H///aq2z8jIAAAUFxcDaMr23XPPPc71w4YNQ1RUFO6//3488MADCA8Px7nnnounn34aixcvxsyZMwEAP/30ExobG3Huuefq/IqIiNoGBlhEROSVuLg4zJ8/32VZjx49UFZWBgA49dRTXdatWrUKAwcORJcuXWCxWJzLR44cie3btwMAtm3bBgAu3QFjYmIwbtw4bN26VVP7Nm3ahJqaGkydOtXlfGPGjMGbb76JEydOoHPnzgCAzp07O4MrAOjVqxcA4OTJk+jVqxfWrFkDALJZm4suugizZ89GXl4eMjMz8dNPP8FisfgtEFm+fDmSk5MxYMAAVdsLs3GO5wsWLMCXX36Jo0ePor6+3rkuPz8f3bp1Q2xsLM466ywsXLjQGWAtXLgQkydPRlJSkn4vhoioDWGARUREXjGZTBg8eLDHckeA5T4uqLS0FJs3b/bIegFwZr2KiooQExPjURBDaYyRmNLSUgDAOeecI7o+Pz/fGWC5Vz8MCwsDAGfQUVZWhujoaNks2ujRo5GZmYlvvvkGt912G7755hucfvrpSExM1Nx2NZYsWYJJkyapHq9VUFAAoOW9XLBgAZ555hlcd911GDlyJOLj47Ft2zY8+uijLsHWRRddhCuvvBK5ubkAgPXr1+Pdd9/V+dUQEbUdDLCIiMgv3G/8ExISMGjQIDzyyCMe2zrmZ0pNTUV1dbVH1UFHtzaHiIgINDY2uiwrLy/3OB8AvPPOO6IBWo8ePVS/lsTERNTU1KCqqkoyyDIYDJg5cya+/PJLXHDBBdiwYYNHQQ292Gw2LFu2DI899pjqfZYvX46wsDBngLt48WJMnToV//jHP5zbHDhwwGO/kSNHolu3bli4cCHsdjvS09MxYcIE318EEVEbxQCLiIgCYuzYsVixYgU6deokmZFyZMT++OMP5/im6upqrFy50iWwycjIQHV1NU6ePOkcW7RixQqXYw0dOhSRkZEoKCjw6K6o1ZgxYwAA//vf/zBr1izJ7aZPn45XX30V999/PzIyMjB+/Hifzitly5YtqKqqwtixY1Vtv3v3bnz22Wc477zznO9jXV2dx8TD3333nej+M2fOxOeffw4AuPDCC51j14iIyBMDLCIiCogLL7wQX3zxBa688kpcc801yMzMRFlZGbZu3Yq0tDTMnj0bffr0weTJk/HII4+gqqoKaWlp+OCDDzy6DE6cOBGRkZG4//77cfXVV+Po0aP44osvXLaJj4/H3Llz8cQTT+DYsWMYOXIkbDYbDh8+jDVr1uCNN95Q3faePXvi0ksvxdNPP43i4mKMHDkSFRUV+Pnnn/HSSy85t8vIyMDEiROxZMkSXH/99R6ByGuvvYbXX38de/bskT3f0qVLUVtbi127dgFoyjYBTQFo586dsWTJEvx/e/cdJ0V9/w/8NbPXG1c5uAOOfsBxR+9NEBVbEFARJXxt8Wc3JkYTYxIwGsTv1xg1JtFoEBG7EKyAhaKAFOlwHP2Ao10/rt/ezO+PYfd2b9vs7uzu7O7r+Xj4kJudnXlP2d3Pez5txIgRdmvTqqqqsGvXLkiShKqqKmzZsgUffvghunfvbjXk+tixY7F06VIUFBSgW7du+Oyzz1BcXGw3nhkzZuCll16C0Wjk8OxERC4wwSIiIr+Ijo7G22+/jZdeegmvvPIKysvLkZqaioKCAqtBLZ577jnMnz8ff/nLXxAXF4dbb70V+fn5VkOgp6am4uWXX8bzzz+PBx54AHl5eXjhhRfMtV4mv/jFL9CxY0csWbIEixcvRnR0NLp3726znhp/+tOfkJWVhY8++gj//ve/kZqaareGaurUqVi3bp3dATEaGhqQmprqcl8LFixASUmJ+e9HHnkEALBw4ULMnDkT69evxw033GD3vVu2bMHs2bMRERGBxMRE9O3bF4899hhuuukmqxqrBx54AJWVlXjppZcAAFdccQWeeuop85xlljIyMlBQUABASTaJiMgxQW4/rBAREZHOLFq0CKtXr8Z3330X6FBceuSRR1BaWop3333X5rW5c+di9OjR5mHjPXH+/HlMnDgRq1evthr50JeqqqowceJE/OEPf8BNN93kl30SEQUr1mARERFpoKioCPv27cPXX3+Nv/71rzavG41GHD58GC+//LJX+8nMzHTZxFArtbW1OHr0KN5++23Ex8dz7isiIhWYYBEREWngvvvuQ2VlJW699VZMmzbN5vWIiAjzfFrBYv/+/Zg3bx6ys7OxaNEixMbGBjokIiLdYxNBIiIiIiIijYiBDoCIiIiIiChUMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSSESgAwh2kiSjtVUKdBgAgIgIEUajPmKh4MH7hjzFe4c8wfuGPMV7hzyh5X1jMIgQRcH1PjXZWxhrbZVQVVUf6DAgigLS0hJQU9MASZIDHQ4FCd435CneO+QJ3jfkKd475Amt75vk5DiIosH1fr3eExEREREREQFggkVERERERKQZJlhEREREREQaYYJFRERERESkEQ5yQUREROQnsixDklohc5wGt4iigObmZhiNRg5yQaq5e98IAiCKBgiC65ECnWGCRUREROQHra2tKC8/C0lqDXQoQamsTIQkcZh2co+7940oGpCW1hkGg+vRAh1hgkVERETkBzU1FRBFA1JTMwF494Q8HEVECDAaWXtF7nHvvpFRVVWGmpoKpKRkeL5Pj99JRERERKrIsoSmpnqkpHRERERkoMMJShERIgDWYJF73L1vEhOTUVl5AbIsQRA8G66Cg1wQERER+ZipiZLBwGfbRHpm+ox60xyVCRYRERGRj7UNasGmgUT6pnxGvRmIhgkWERERERGRRphgEREREZFuPPvsfDz11OOBDkMzZ8+ewfjxw3Hs2JFAh2Jjx47tGD9+OOrr6z3eRn19PcaPH44dO7ZrGFlwY0PgMNLaCoiiMsY/ERERkSvPPjsfDQ31eOaZ5wMdiksHDxbijTf+iYMHD6ChoQHp6RkYOLAAv/3tHxAZGdwDi+zYsR0PP3yv+e+UlFQUFAzC/fc/guzsLh5vNz9/EFauXIXY2FgtwqRLmGCFiVYj8O27Ijqkyxh1DYc4JSIiotBRWVmBRx99ABMnXoYXX/wH4uLiUFJyGmvXfntp3jHtEyyj0QiDwftJad3xwQf/RUxMDM6dO4e//e15PPHEr7BkyXsezdlkNBoRGRmJtLR0H0SqPaPRiIiI4Ehd2EQwTDTUKv+vLmP1FREREWnju+++wdy5N+Gyy0bjppumY8WKj61eHz9+OD79dAV+9auHcPnl4zBv3mwcOnQQR44cxj333I6pU8fj0UcfQGVlhc2233zzNVx77eWYNu0yvPzyC2htdTxB8969e9DU1IjHH/89+vTpi+zsLhg5cjSeeOL3iI6OMa+3a9cO3H//3bj88nG4+uop+M1vHkFTUxMA4KuvPsedd87FFVdMwPTpV+HZZ+ejpqbG/N4vv/wM1157OTZsWIdbb52FKVPGoqqqCmVlpXjssYcxZco4zJ59A9avX4trr70cX375mcN4jx07gl/96iFMnToe06dfheee+zNqa2tdnu+UlFSkpaUjL28gHnroVzhx4hhKSk4BADZsWIfbb78VU6aMxezZN2DZsiVWI+GNHz8cK1cux+OP/xKXXz4OH374rt0mgq6u6cmTJ3D//XdjypSxmDdvNnbv3mkT544d23HXXT/H5MljcMMNV+PNN1+zisXVOTM1q/z2269x//13Y/LkMdiwYR0qKyvxpz/9DjfccDUuv3wcbr/9Vnz//Tqrfd944/VYunQx5s//PaZOHY+ZM6/Htm0/4ty5c/jlL+/H1Knj8Ytf/A9OnTrp8nx7igkWEREREbmtsHA/5s9/EldeeTXefvsDzJ37P3j55RewYcM6q/XeeusNXH/9dCxevAzp6Rl4+uk/4uWXX8D99z+Mf/7zPzh//hxef/0fVu/ZsuVHnDlTgr///d948sn5+OqrL/Dee+84jCU1NRXNzc344YcNkB0M/3byZDEeffQB5Ob2x+uvL8Hf//46hg0bYV7faDTinnvux1tvvYc//3kRjh49gr/+dZHVNurr6/H+++/g979fgLff/gDx8fF45pk/obKyEq+++jrmz38W77//jtM+TRcvXsTDD9+HAQPy8J//vINFi/6GU6dO4tln5zs527ZMiWNLixG7d+/CX/4yH7fcchuWLv0Qv/zlb/Dxxx/g448/sHrPm2++hsmTp2Lp0g9x+eVX2mzT1TWVJAlPPvkbxMTE4PXXl+CRRx7DP/7xktU2Llw4j8ceewT5+YPw1lvv4eGHf42PPnoPH3/8vnkdtefstdf+jjlz5mLZso8xePAQNDU1oX//PPzv//4Nb7/9Aa688mo89dQTOHHiuNX73n//HQwbNgKLF7+LwYOHYsGCP+D555/BzTffijfffAcRERF44YXn3Drf7giOejYiIiKiELNvo4ALvnuIblfHbsDAcdp0Ffjgg3cxcuRozJt3JwCgW7ccHD58CO+99zYmTrzMvN51103H5MlTAQBz5vwcjz76AO65534MHjz00us3YOXKT6y2HR0djSeeeApRUVHo0aMnTp8+hfffX4Zbbvm53VgGDizArbfOwx//+FskJiZiwIB8jBgxCtOmXYvExEQAwDvvvIX8/EF45JFfm9/Xq1dv87+vv/4G87+zs7vgwQd/iV/96kFI0p8hikqdREtLCx577Hfo2bMXAKC4+AS2b9+KxYuXoU+fXADAr371OO644zaH5+2TTz5A//4DcPfdbX2qHn/897jtthtRWVmBlJRUh+81qa6uwptvvoaMjI7o1i0Hjz32CObNuxPTpl1rjv9//udOfPzxB7j55jnm91111TW4+urrzH+XlJy22q6ra7pt2xacPn0KL7/8L6SmpgEA7rzzHvzhD781b2PFio+RlZWNRx75NQRBQE5Od5w9W4J3312Km2++1a1zNnv2bZgw4TKrZbfcMtf871tv/Tk2bfoe69Z9i9tvv9u8fNy4iebreccdd+HLLz/D6NFjMXbseADAzTfPwYIFT0GSJPO11RITLCIiIiJyW3HxcVx22eVWywoKBuHbb9dYLevVq4/536ZCeY8ePS2WpaKystLqPX369EVUVJT574ED8/GPf5ShtrYWy5d/iKVLF5tfW7r0I3Tq1An33/8w5syZi+3bt2L//r1YtmwJli1bgjfeeBvp6Rk4cuSwVeLX3sGDB/Cf/7yOI0cO4+LFi5CkVhiNRlRUlCM9PQOAkviZkitAaS4XGRmJ3r37mpf17t3X6aAaR44cxrZtW3DFFRNsXispOe00wZo+/SoAQENDA3r37otnnnkekZGROHr0EPbu3Y3Fi/9tXre1VYIsW0+W269ff4fbBlxf0+LiE+jUKct8HQElubV04sRx5OcXWPVNy88fhH/+8xXU1dW6dc769Rtg9Xdrayvefvs/WLv2G5SWlsJobEFzczO6ds2xWs8ycbZ/z6XBaDSitvYikpI6OD0nnmCCRURERBQAA8fJwLhAR+Gd9gM8yLJss8xyYALTS9bLBJtEwNHAEYIA3HDDLEyZcoV5WXp62yANKSmpuOKKabjiimm4++77cMstM/Df/35iVVtkT0NDA37964cwevQ4/OlPzyIlJRnHjx/H73//G7S0tJjXi4mJsXqfLDuO1dm+Jky4DP/v/z1g81pGRobT9/7zn/9BbGwsUlJSERcXZ15eX9+AX/ziPkyYMMnp+2NiXI8W6PyayipHo26/Det/qz1nsbHW5/vdd5fik08+xMMP/xo9evREbGwsFi16BkZji9V67e8vADAYLNMeZZkk+WbgNyZYREREROS2nJwe2LNnl9WyvXv3ICenu9fbPnSoCM3NzeZarP379yE9PR3x8QkAoKrWISEhAWlpaWhoaAAA9O7dBzt2bLdqSmZSXHwC1dXVuO++h80Jm5p5nXJyuqO5uRlHjhxGnz5KjcyRI4etkrL2+vbNxfffr0fnzlluj/6XlZVtlVhZbvPUqWJ06dLVre215+qa5uT0wNmzZ6yaMu7fv9dq/e7de+D779dbJWb79u1GRkZHxMcneHTO2mLZjYkTL8OVV04DoPSbKyk5jU6dOntz2JrjIBdERERE5FBtbS0OHy6y+q+09AJmz74VW7f+iKVLF+PUqZNYuXI5vvhiJebMsd9Pyh1NTU343//9C06cOI7vv1+HpUsX4+abb3W4/saN3+PPf/4jNm/eiNOnT+H48WP45z9fwfHjxzBunNIUb+7c27F372689NILOHbsCI4fP4YPP3wPjY2NyMzshMjISHzyyQc4c6YE69Z9i3ffXeoyzpyc7hg+fCSef/4ZHDx4AAcPHsDf/va/iIyMdFhLM3PmTaisLMfTTz+FgwcPoKTkNDZv/gGLFj3ryakCAPzP/yj9jN566w0cP34Mx48fw5o1X2HJkjfd2o6razpixChkZWXjmWfm48iRw9ixY7tVs0QAmDHjRpw5U4KXXnoBJ0+ewNq132Dp0sWYM0fpO+XJOTPp2rUrtm79Efv27cWxY0excOECVaMv+htrsMIEJxcmIiIiT2zfvtVmAIKbbpqDRx75NebP/wv+85/XLg24kImHHvqV035Oao0aNRoZGR1x//13o7XViKuvvh633jrX4frdu/dAVFQUXnrpBVy4cB4xMTHIyemOZ555HkOHDgegDNjwwguv4LXXXsXKlZ8gJiYW+fkFmD59JlJSUvDkk3/C66//Ax98sAz9++fh/vsfxlNPPeEy1qeeWoCFC/+M+++/G+npGXjggV/imWf+aNWHzFJGRkf84x9v4l//egW//OX9aGlpQefO2S6b9zkzZsw4LFz4At566w28/fZiREVFonv3npg58ya3ttO/f57TayqKIhYufAHPPfc0fvGLecjO7or7738Yjz/+S/M2OnbMxP/930t49dWXsHLlJ+jQIRk33TQHN954i3kdd8+Zyf/8z104c6YEjz56P+Li4jBjxk0YOXKUW8foD4LsaCxLUqWlpRVVVY6H4vQXURSQlpaA8vJau+1Ja6uATZ8qFZZXzpNsXqfw5Oq+IXKE9w55IpzvG6PRiLKyEqSnZwfNZKl6ExEhwmjUfxnm5MkTuPXWG/HGG0tdDipBCl+eM3fvG2ef1eTkOERGum7WyU84EREREZGHtm3bgqamJvTs2QulpRfw97+/iJ49eyE3t1+gQ9OtUD9nTLDCBJsIEhEREWnPaGzBv/71d5w9W4L4+AQMHjwUDz/8a7dHFwwnoX7OmGAREREREXlozJjxGDNmfKDDCCqhfs44iiAREREREZFGmGARERERERFphAkWWWluVP4jIiIi7bR1LQmv0ROJgo/yGfWmOxj7YJGVdR9yKHciIiKtiaIBgiCitrYaCQkdAIRGZ37/EmA0MkEld7lz38iora2GIIgQRdfDsTvCBIuIiIjIxwRBQGpqR1RUXEBjY12gwwlKoihCkvgAmNzj7n0jCCJSUzt6NaIhEywiIiIiP4iMjEbHjl0gSa2QWRHjFlEUkJISh8rK+rCbpJo85+59Iwim2mbvapiZYIWouhrgwkkgZwAg+qCnnSxzbi0ivao4DxzdLSB/vIyYuEBHQ0SWBEGAwcDil7tEUUBUVBQiIpqZYJFqgbpvOMhFiNq4UsDhHSLOHNF+27vXC1j3oQDW0hPp0/bVIirPCTi8g09BiIiI/I0JVqiSlYJVY53jAlZ1GbB9jYCGWvc2fb5YQEuTgOYGbwIkIl+TWgMdARERUfhhghXGtq0RUHFOQOEWPuUmIiIiItJC2DYCzsvLQ+/evQEAAwcOxLPPPhvgiHzESe4kGZUX+ZSbiIiIiEgbYZtgJScnY+XKlYEOI2Rw0AsiIiIiIjYRJA3UXwS+Xiri6J5AR0JElsrPBjoCIiKi8KPLBGvbtm249957MX78eOTm5mLt2rU26yxbtgxTpkxBfn4+br75ZuzZ417pvrq6GjNmzMCcOXOwdetWrUIPSt4OWnn2mPL/o7t0eTsRhS1jM6uViYiI/E2XTQTr6+uRm5uLmTNn4qGHHrJ5/csvv8TChQuxYMECDBo0CEuWLMHdd9+NVatWITU1FQAwffp0u9tevnw5DAYDvv32W2RmZuLIkSO455578OmnnyIhIcGnxxVyWHYj0o0LJ4GyMwL6j+L8MERERIGkywRr0qRJmDRpksPXFy9ejNmzZ2PWrFkAgAULFmDdunVYsWIF7rrrLgBw2b8qMzMTANC7d2/07dsXx48fR35+vkfximLgMw1TDO1jUWakFiCItuua17GzTM0xiYIAUbTue6WHc0HqObpvKPjsWqdcw6xe1st9dW1575AneN+Qp3jvkCcCdd/oMsFyprm5Gfv378d9991nXiaKIsaOHYtdu3ap2kZ1dTViY2MRFRWF8+fP49ChQ+jatatH8UREiEhL00/NV0pK/KV/1QEA4mKjkJYWhUhBAqBMXNUWr7JOZKQBaWmxVsucH5OyTkpqHOISRJTENgNoUfE+0qu2+4aCl/K5TIiLBdBoXurrzyTvHfIE7xvyFO8d8oS/75ugS7AqKyvR2tqK9PR0q+VpaWkoLi5WtY2jR4/ij3/8I0RRhCiKePLJJ5GcnOxRPEajhJqawM+4K4oCUlLiUVlZB0mSYWq/V9/QjPLyZtRWw7ysvNw0s7Dyd0tLq82ytr/tUdaprKxHQxNQX6/2faQ3tvcNBS/lM1hzsQGW7Xe1/kxerASO7wP6jxTQKYv3DrmH3znkKd475Amt75ukpFhERhpcrhd0CZYjsixDUDlO+NChQ/H5559rtm89fdDLz8k4fajtb1lW4pMlwFToaotX+Vu2s8z5MbWtI0mALLeddz2dC1JPuZa8dsHt0ufZ4gELoP1ncsuXAowtAgAZnW7gvUOe4X1DnuK9Q57w930TdAlWSkoKDAYDysrKrJZXVFTY1GqFoy1fOkgyfdD0lK2gicKPklwBLU0BDoSIiEingm5c7aioKOTl5WHTpk3mZZIkYfPmzRg8eHDgAiMi0h0fPq3jExYiIiK7dFmDVVdXh5MnT5r/Pn36NAoLC5Geno6MjAzccccdePzxx5GXl4eCggIsWbIEjY2NmDFjRgCjDkMsYBERERERWdFlgrVv3z7MmzfP/PczzzwDAHjwwQfx0EMP4ZprrkFFRQVefvlllJaWon///njjjTfMc2CRm3zwkPvCSeDMMQEFE2SIrvsCEpGONdQCe38Q0GdI25cFn68QERHZp8sEa9SoUSgqKnK6zty5czF37lw/RUTu2rVOaX169riM7N6O15Nl63m0iEg7Wn22Dv0koOqCgG2r+WElIiJyJej6YJF7BCGwI+1IkuPXSo4C374roLbKb+EQhT4f5EBSq/bbJCIiClVMsChg9m8UIbUKOL6PT8WJiIiIKDQwwQpxTfXBlbzs3yTg0E/BFTORP12sAJobVa6s1UeJH0kiIiLVmGCFuNOHA1wycrOFYskRASf2szRHZE9DLbD5cxEblmv3GTG2AKUlzpvzEhERkXpMsAiV54GD2wTILGAR6Vr9ReX/klG7BGvv9wJ2fiviZKGbb+RzECIiIruYYIWBg9usS0KtRqDsjOUSAScLBVw47dewiMgNTQ3AmaPaZzWlp5VtVpxzvG3mUkREROrpcph20tbJQgGdure11du3UcD5Ytsik7HFs+031nkaGRGptW21gPoa91IdXyZGTLqIiIjsYw1WmNj7fVtxyF5yBcDjCYc9TcxckSSgpck32yYKNu4mVwAgSUyDiIiI/I0JVphoqNW+oKV2EtPiQmDXOgGymwncj18IWPuBqH7ENCLyWFmJe98R7n6eiYiIwgUTLPK5om0iLpwUcHS34FZtV22lUuCrq/FRYEQhqK7aP/u5cIq1Y0RERPYwwSK/ObZHwIEfbQtlDbXAT18LqKkIQFBEIabqgg8SH+ZSREREqnGQCzJrrHf++sUK1+u4Un7GdpmpQHjxG/e311gHXKwEMrrYvla0XUB8kowufd3fLlGw8qbpXtkZID1Lu1iIiIjCEWuwQsjGL7zrrFRxtu0x9cVK24La5s9F7Pyu7ZY59JPg/giCTp6EezJYxoZPlJiqy6yXtzQDxQcEHPiRtzgFJ2MzsGutgPKz/tvnjm/4eSEiIvIWf01DyImDrZpta/NnIk4ddL7OmaMCdq+3zpgqzztPlJy1NPJmouOGWuu/Tx/yfFtEelBcqPRz+ulrkQNKEBERBREmWOTQsb2uO160H4Bi22oRu9Z61mFDlrUbPv7wDt7aFNxajW2fh+1fq/9MMRkjIiIKLJZCyax9way5UcDpQ8CGTwS3RiarONdWGLSpzVJZTrxYqX5/ADyew4soGFSeC85RJg7vELDzO/enaCAiIgpmHOSCzOyNPmbqw7Rxpf0CnrFZgLPspn1Nktpi4ubP3Mv9WX4jukRHH4bj+5RP/KkiGWmdgfgOAQ6IiIjID5hgkddamtxY2YMH8dtWi0jPliEagIHjZEREur8NonCho/zK7OBW5YHJlfO86GhJREQUJJhgkdcqz6vPmprqBciyjKJt7mVaZSXK+odjgQ4ZMjr3AASVm2g1AtvXCMjuI6NLH7d2SxR89JhhERERhREmWOR3ddXAyYOe9Sk5VSTgVJGAiEgJtZb9tJwUKs+dAKrLBFSXCejSh0/QKbQxvyIiIgosDnJBfidpMJp8w0XgyK622/fcCUHVPFqSBNRf9H7/RHrlzXQHjqitLSYiIiImWBQA7Yd210LpaQGFW1wP877zOwE/rBBRcV77GIj0oPyM+mzI3mfxxy8EVJVqGBAREVGYYYJFfrf3e9/cduVnVaxzqfBZ4UYhlEiNViPQWB/oKNxTU2ZnWbmAn9yYd0trLU2+qYUjIiLyFyZYFJSKttu/dY/sEnD2mPUye31Sju0V0GrUPi4KXxuWC9jwsejeqJp+ZGxRnwBKAUpwGuuAtR+I2LaGD0CIiCh4McGikNHSBBzbI2DvD9a3dW2l/cJaaYm67TY1ACcPggkZOdXSqNxnjXUBDsSBtR8oCaBlX0WHA2IEaKSM6ks1avbm5CMiIgoWHEWQQoYs2S+UORqxsLFW3XZ3fCvgYoWApgYZfYZwjDZyTu0dsn+TgPgOMrrn+TQcM9Pnw9gMziVHRETkQ6zBorB16Cf7t3/FOaBouwD5Ukn5YoVSMDUNC19XAxzfp10zKlkCThVpP7phaytw4SRr3vytQUXi3tIElBwRHN6DvtRqbKsp0pvmxkBHQERE5D0mWETtbF8joviAgNJT1stNNRObPhVweIeIksPa7O/McaBwi4jNnymJ3MVKYN9GwevC5uGfBOxaJ+LgVja3MpFl3w9EsXud6HIqAlmDitBjez0bkXPrKgFbvhRReR4Oq9u0iM9dsqx8DoiIiIIdf80orLUagQM/Cnaf6NvMq3Wp0GlqatVQa524tDR5VjBtqBEuxSLg/Elg2yoBZ44KOLzDu8So7Izyf7V9zcLBwa1KP6TS077dT10NsO4jASVH7L+uRQJzZKeIzZ+7f4+0NCnvqSl3slIgcnK2viUiohDBBCsEyDLw45eBjiI4nTwInD6kPNEHlNojT9SUK6Of7d/kXcl09zoRxhZlG2wupb1TRcq5PXvctxlE8QEBzQ0C9m/y7VesZPTNcbDOk4iIyHNMsELAxUqOuuUp09N8QEmSNn/m+CMhy0pfKXsunFS2c+aouutwqgg2w8m742IFcL5Y5couagZkWXa7RqWqVGkq6WlCGiwkSTnX7p4fvY0kGIgmf/boJQ4iIiJfYoIVAjgppzbajzZ4sd3w7uVnBM36iBRuEW2Gk3fH5s9F7F4vqupP1NxovwmkyX//3YCNn7q3/53fCqitErDvh9BO7A9sFrD5c9FhUz9HKs7ZPy+trf5PMuprgK+X2t5rgch1Nnws4OA2++eGuRcREYUKJlhEl7RPVooPOE8eTP146i8qExebuFsYV1Pgrq8BdnwnoLbKevnR3QL2/iC43IapCaTdbV+UHc4V5ojc7v+hRJKU8w201UieLPQ+kTS2AN8uE/H1UhEXK7zenGolKmtVnVEzMqIaTQ2CJueSiIhIz5hgUVg7sb+tsFdx1rbgd3yf4/fWVSvrF7V7In/2mO12HA3pfnCrgOP7HBc4TbWTe34QUHZawO711uuWHBZw9pjg/yZpoZhZXbJng4Af/iuaBwkBgNoq75OCqtK2f+/4NvBfvRcrBOzbqC6OmvLQSIpMUyJolTASERHZE/hfeSIdO7zD9Uekfe1R+9zj6G7gm3dEVJyzfa+jSZABpW/d1++IOLEfMDYpy1qa7a/b3Kj0yfKm+ZmxRZlU2dkIe9VlwNE9nu8jGJj605Wd1japOLpbX0mKvQcBoe7MsUtTIngw+iIREZFaTLCIvNDUYGdhuyTn6G7lY7Z9jXsft8Y6pRB46CfRXAPmqFi45UulT9b5k27twsrpQ0BZiYCd3zmOc8uXIo7uahvpMJRpNZG0SVCNChmil7f+0pQIxuYQPUAiItIFJlhEXlj/kYiyEt8X1kzJlivu9qWynAvJ1eS4Wmtpth4Wv6Yc2L9ZsJ1/LEC0HowimIr0prne3HqPrPRH1Oq87dso4LSTybzra5RBM1SPpklEROQnTLCIfOhkYeD2bdN00U7BtyGAw4lv+lTA5s9E88AdP34houSwgGN7BBzeKTidCFeWgV3rBBz6Sdu0xbLWytnonLIMHNwmoPyM43UstRqB+ov2Y9VrfyB3E6Xj+4AfVogoPqDN/s8cFXBgs+OfqCO7BDTWC9i9XkRVqboaRw4TT0RE/sAEi8iHDm7T9iPW1KA+oWhoV6A/fcjitVqlQGxZa3X6sGfJSkuT/WSk8jzw7XuC1WARlprqlf3VtptL68R+Acf3CvjxCydzkklKXynTICWSBLdqvhwd6QWVtSHlZ5SRBX/6Rt313b7G8bktPaX8v7FeGfREL3NoqUlGGuuVlS5WAkd2KufC0/vIbRa72fqVqLs+bkREFL6YYIUAPpUNLt42gfN03rPCLSLqqpV/f79cxOEdygAaJpbNEM8cbetfduGk7RD2Jk0NwNoPRGxbbVu4PfCjgNYWAXu/d17w1eL23bRSwHfviV43c2xV+X53r2F1mevC/74fBJw8KGCPi/PlL6b7rK7G8TpVpcpKziboVuP0Ybg/dH27G+fcCa9CICIi0kxEoAMgCjWV5wVIkoxWo+1rJUeA/Zu8K4z+8F/PC+BbvhIw6ca2kmn9Rfvr7dsoIi5JxoDRMnatEyGKMqbOtU2FWhqVWKpKBbiTKlkO+ODJA4L2bzE1v2tpAqLj3H+/HpiaCmrdZNDTu8V0XarOu/tG91avKYfTpoCOnDuhj0SUiIioPSZYRD7wzTv2C4zeJlcA0FDrpGDponBrbBZQVaquBFxfI6C+RllXktxLoJwpPwPrpnWebNbiPZYJidpNlZ1WmhWK7S9HkJbZAzXQQ1OjjMKd3m2juUmbWHSZNRMRUVhiE0GiEHKu2PVw4D993faxb2lynlEc+NG9r4jKC8DeH5SRAB3VjrWvefAov7J4kyfNAo0tgsvBGNTWrLUagf2bPM/MvM0LThUBu9f77qvcWXy7NzbjzNF2x37pT9PgJa74M6dlc2oiIvIHJlhEIaS+RsBPXws+KUja62dlqfgAsG2ViLPHlP5QpqG+W5oE5/3G3OxTJsvAsT32Y9n7g6C6id254wK+Xy643/enndOHgJIjgav6Ktzi/Gu8+KCHG1ZxDzU1OF5p06f+/XlxWrN7CRMsIiLyByZYRCHmYqWAr5dq/9GuPO+8AHtsr+PXrSZkbrfa6cOCw1q3hlplvixLVRdgHj0QsH698pz1oBrH9gB7NthPOC9WCmioFbD5cxGFW5Sh4T1Jk1q8nLS2td2AGVqnaq3+nhRaBs4cc2N9H4V3vli/Q+ATEVFoYx8sItKEs+aGzU3KvEWyDJuakeoyAbvX23/f98uVRHHqXMncX6r9CH7tR7mzHHDjyC7lTf1HyYiMdhz7qSIl9oHj/F/FcWSXCDHCw6Eh/aB9AmjJXmJcf1HAvh8C25mt8kJbs8kr51lObhaggIiIKKwwwQoFLDSQzv34ufMaNVe1Y031QGyC8m+9NfMSBBnOqmEKt7hONg5tFxGb0HZgaibN9bXWVsAgA82Nvk2WvB1a354GB/3/iIiI/IEJFhEFl/YJlp2ES5bhchALu5u22NbZY9okFqbaMZf7vvT/VsnxKJT+tP4jJYacAdpntMYWICJSOd87v/PfsZrmgSMiIvIlJlghQGcP9Ik0d7ECKC4U0GeIrGqSX0/7oGkxjL63WnxcY+Su4gPax1NdptRKuqq51Fr5Wff3V3JYmWi71yAfBERERCGJCRYR6d6udUric+aoMpeXnhzdrU1SJtmZmDqU7dsYmKHl3bX/0iTIPQZKEA0abpiIiEJW4B/XEhGpZC+5aqxz/T5ZBg78qK/ErD1f93UKKz6o1i8/q/02iYgoNDHBCgVsI0hhTE0NUvlZ4PQh7xKYvQEeGS+UuDNvmLEF2PKVYB76vazEveHXjc1A5Xlgzdvu/dw11Co1piaBnOuMiIiCC5sIElHI2/u998+Szh4TkD+eTzO0cO64+mTlzFGgulRAdamApFQJO75171p+975n137jSgFSK5MqIiJyH2uwiIhUOryTBW6/s8hpG1Q0B9VK++SqoRY4utt2HjYiIqL2WINFRKTS8b0Cju8VkN2bNVmBILuYM6vVCBhU/qoVbhEgGoDc4equ5cUKARcrBEitMvoM5fUnIiLHWIMVAvhTT+Rf7I/jP60WSdXJg87P+/mT6rd7qkhA8QEBdTXuxVN/aRLjViNQtF3Axcq212QZKD9jHTMREYUfJlhERKRbh3e0/UyZkhuX3HjqJHmYDJ0sVOYI2/xZW3y71gn46RsR3y7jTysRUThjE0EiIgoJ+34QIYqST/chXKpEa2qwrU0rPcWaTSIiYg0WERGFkD0bRLea6B3dJUB2Iyc7X2y77Nhe9e8nIqLQxwQrBMTEBToCIiL9OLhV/U/bhVMCztlJmhyRZcEmgTuyU0R1mfptEBFRaGOCFQIiIgMdARGRH/hoRJ+WRjfDkIDGeutlW77U789pYz2wZ4P1gBxEROQ7+v1FICIisqCXEVObG4ALJ4Onv9XBrQLOnRDw0zfBEzMRUTBjgkVERMHBhxnWxUqg/Ky6dWurXa/TvobLG031QKMXkyy3NCn/b7YzMEe4qq1S+s5Jvh0ThYjCFEcRJCKisGcabv3yWyWPh2631FSvXf/Y9R8rsV05z7NsQNZL1Z+ObPpUOadRMRK69AlwMEQUcliDRUREQcFneYJFxY7UCmxf4/uaHlkCdq0VcPqQ/dcb64DCLYJVTdiBzQKTJY01aVjTSERkwhosIiKiSxrrgYuVLhIsFUmOaeh3WW6bO8tSVakyguGFUwIkSUK3ftav79kgoKpUQH1N27LThwV0zJGRnuV6/0REFDiswSIiIrqkQmU/LFeKCwVUnAO+Xiri7HHb1y1rouwNK19/Ufl/Q7u+V5JRm/iIiMh3mGAREVFQ8NUgDZYJTtF2bX4WK84C+zYq8Zr+DwBHdgnYuFKwGVzBnaZ/zY1AyRHA2KLUdJ0/qf69xmb16xIRkWeYYBEREbnhvIoh2luaBTTW2a53bI+AumoB1aXWy7d+JaDqgu12Gmqt/66pELDzOwH7N4nY9Kky/PrudSIqz6uLfctXHEnQkizzfJBnig8A370voKkh0JGQHoVlgrV3715Mnz7d/N+AAQNQWFgY6LCIiCgInD3mZqFcRe1UdZmAravafpKbG5V9yJL1vo7tEVBdpiyzTOCO71MXU1214/XqqoGda637fXmqplypYfMnWbKuCbxYqRxP+yRVK5LU1tdOjyrOAbvXCx5fB2MLR6B0pmi7CGOzgDNHfb+vVqNv7jVjC/DTN+7VgpM6YZlg5efnY+XKlVi5ciX+8Y9/oFOnTujfv3+gwyIiohAkywIuVlovq6mwn+h4WqBtblT+31gHHPpJMP+tbNT1+yUJ2Py5gNJTAn74r4jyM9avN9apj62qFPjxCxFbvvS8dkhqBS6cdJ2kWR7nhk8EbPq0bZ87vlGO58CPbctamoFNn2lTa/XNO0pzz9LTwI9f6K8mY/saEeeLBZwqcv+9LU3Ad++J2LYqtGr4Guvgl+u041sBO75z79zV18DmewJQPgvfviti8+faX4szR4DyM0otOGkr7M/oqlWrcNVVVwU6DCIiCmGniqwLR6Wn7BeWTh20X8hypaZc2d7OtQJO7Bew4WP3CmO71wmQWtve89M3bcWDM8eADZ+IOLzDdpulp5WaL0vVZcr/ndWWuXJkl4Bd60Sr5Ki9o7uBdR+KOHdC+bupQbDaZ/OlCZYt+52VHAZqLUaJFARvqmgE1F8UsPM7ETXlAo7t0Wcy0mp0Py7TPVhVqs9j8tSGT0Ss/8j3Rd+yEgFlp907dz/8VzTPx2fJ9BChtkr7a8GJtn1HlwnWtm3bcO+992L8+PHIzc3F2rVrbdZZtmwZpkyZgvz8fNx8883Ys2ePR/tatWoVrr76am9DJiIi8trBbfYLWWqZkh1JUubQkiV1heRSO4XB3esFHNkl4MwR5bUT+63Xqb8I7PxOxMaVbfEe2SWgaJt78bcagaLt1rV85ZdGcyw91basfQ3a0d3Kfk4VCeZRF71x+lBbcuhKUDWd8yTW0MqrfMreNAxEupwHq76+Hrm5uZg5cyYeeughm9e//PJLLFy4EAsWLMCgQYOwZMkS3H333Vi1ahVSU1MBANOnT7e77eXLl8NgMAAASkpKUFFRgYKCAt8dDBERhb3mBuDgNt+WxNoX+o3NcNhMr64GiE0ARCe50Pli5b2pnaw3LEtKctViZ0TC9rU4tVXKfgxOShvFhUDxAQHFB4Ar59nPBs4eA/b+IGLk1RKSM6xfqzwv4IcVnp1bZZALGbVVwIEflZNx5TxtH+tXXgDik4CoGG22V10GHN0tYMAYGTFx2myTPBdUybYfNdQCFyuAjt0CHUlg6DLBmjRpEiZNmuTw9cWLF2P27NmYNWsWAGDBggVYt24dVqxYgbvuugsAsHLlSpf7Wb16tSbNA0UxsI8vnP1AEhFR4F1w0CRQS/s3CVa1Fc2NAprqbfdbcU7A9jUCUjJldOwKxCU6367lE3pRFLB/i1Jr1DW3bWeNdQJ22TY2waZPRSSlyRh7vWlbAs6eaIUhVjAnXc3mPjGC+ffMMmpRFLD3B2XJsd0Chl/pPN6WRgEni6wHCDH9TrevbRAE5TXLZoRqftPtFapN2wKAkweVWriKc0BLk4CoGBlTbnG5WStHdwMJyUBmjvK3JCn72LZKqaE8tB0YfJmKDQnul1Pqqtr+XVspICnNrbf7hOkYHB2LLCkPDuI7uK5VMm3jwimlCWzBeEA0eB6Xo3KYJ+VDqVXA5s+Bbv2AnP6AYLFtrcub7T/bWvp+ubK90dfKNg9F/MnVfeMrukywnGlubsb+/ftx3333mZeJooixY8di165dbm1r1apV+MMf/uBVPBERItLSErzahrca62UA9QGNgYiIAuvMUesCxPY19gsUhT+KAGRUnhdUDe8eGWUAoNTqpKUl4FSRMvuxZb+y/RsNqKmwX/NTUy5g82cCWpqB/sMi8dO6RqR3FnHVrbEAgJiYJgBG8/YBwBDRAEBCq1FA1dkoAEoGFBkZgbQ0U1VQu1mYL9n8hYjGurYMKCLSgOTkGLQ0AXFxRvO2ACAuLgppaVEwNrQCaLSKwRlZtv3djYmJRFpaNABg1Y/WsTU3CkhLi3e5XZP6ixIO71Qyz9t+HQ9ji4wPXq5Hdk8DJKkVACAKlufCHiWG2FjlGN2xaktb/LHRsUhLM+DC6Vbs3NCMcddGI6GD/5/syrKMmkoJyclxECwyg8LtLUjrJOLUYSMO7jBi+JQo5A6JdLAV5bhM13jVW8rfPftHo0d/d4vEynvj4qKRlta2v6aGtntDbfmwuMgIQOk0WFsWjbrqZhRuAYaOj0ddpASgwa3tqXU+rhlAi6bbrquRcKLQaN6uATFIS/M83WhtlSFLQESkdwlSSor6z58Wgi7BqqysRGtrK9LT062Wp6Wlobi4WPV2zpw5g4qKCuTn53sVj9EooaYmsEMHNdUDbDBNRERq1NW416appaUVpt+Y8vJa2Pu9KT/nvFlddbmyz5/WKclN2VkJ5eW1kCSgsRHttq/0yzIt+3F1W0LU3GI0r+Pod88yuQIAY0srPv1PHeprBPTIl63eV1/fjNLSZtRU28ZgiqOmHEjuaP20Xxky23r/jY0tuHC+BRXn7MdmuV1XlKHy2+KpqVD+LjnWal6nudnoYpvK+xsamnHqRDPOHgO65zlvrln0Ey7Nx9YWf01NAyLLga8/UJZtWl2PYZerPhTNHNsj4NAOIHc40GOgco1rKoAd6021k8q1PbKvCendmszvazUCh3cCnXsCttdY+bumqhHl5fb3W7QdSEwBsnq1f0V5b319E8rLlf0VFwKFW9rOndpr/oPFCIG1tU1WcSrTDLT9XVcD7NsI9BsBdEi33ZY76i3Kj+7cn86s+8h6ConaWsfnVo1vlgHGFgHTbvesLaYoCkhJiUdlZR0kyfv2nElJsYiMdF3dGXQJliOyLFs90XAlKysL33zzjSb71uKCebd/gAkWERH5gtRWpkdrq3WC4o3WVhnfvidAshjlrrlJhiGibR6w9mTZ8jdXfRz1Ncq67Uc8PLpbwNHdwODJknl7lr/pu9cLuHBKwIDRErr0bYtBaYppvX9ZBvZtcjxPWvuygiwDx/YAGV1g0wSv1eJ3XZJkuwmd9bmwxzSXGrDlK6CpXkBrq4zeg2VIrUrTs/bFpuN7bWumJFm2KmdIrerLPaUlQGy80tTRXaZmmKYYiw8qMZwqkpEzQHmx2SI5b3ujdXzH9wMn9os4sb9tlfb3UNsxWmuoBY7vU85Jpx7tV7h0fi3eW7jF+vypLx+2HYMstX3GJKnduZdk7NsooPK8gG1rZEy5xbvyp2xxH7ePtaZc6TcYE2+97GIVkG2TbLZprLM+B2UlQGaO8ziNLUCEg0pHY4toNz53KefSf+X1oOu9k5KSAoPBgLIy66F+KioqbGq1wgX7VxIRka9UnresutFuu7IMq+QKaJt7qdFO3zGt92/pYoX95aa+c+Vnlf9XnAO+Xiriwin7658/oX6f54uVkRB//EIpijU1KKMwNjcC546r344apr54DReVvnrfLBOxa52HibKDa3C+GPjp67aJjU/sB3Z+K2LTp+4VNVualVqgr5eK2PKVbYz1Fy0mT1ZxCPb6IaoViAEsXO2y9dIDD0lpVYvGOuV8nTkKbF3leD42qRU4sFlA5YW2ZZafs4Za4MCPAprqlYTnxy9EbPjE+tr9+IWI/RtFmwcVJvbmrSs54vz8l59VPvdHdztdLegEXYIVFRWFvLw8bNq0ybxMkiRs3rwZgwcPDlxggcQMi4iIQoSzYeV99XNn2aQJUAqsu9Za1Cpc2rFpJMi9G21jPFUkQJKcFyaP71OSNFm2niS5uRFY/5GIY3sE7N8soLqsbTsXK4HNn6srrsmyMnKjo8Sg8kJbgbf0lIALJ+2PBulM+VmlkH+y3Zxtu9eLKD+rDO0PAId+aov5/Ek7sUqmWjillqP1UsJwdJdg7t9Xc+k8VF2wTpS2rVb+3Wi/G57bWtpaFKKqVLn+ljW3etFY13ZOTJd47w/K+dq3UUTVBQF7v1emaDh92Hqeq5IjwOnDAratarsuJwvbzumutQJOH1LuP5cTfDfZLpMkmK+9O0zX+uhuEbvXu953sNBlE8G6ujqcPNn2aTx9+jQKCwuRnp6OjIwM3HHHHXj88ceRl5eHgoICLFmyBI2NjZgxY0YAow4cDhFKRET+YK9GwWMe/HbJHhR61ezG8in7sb22E0ObmCYpbl/zpkZNBXB4R1vhNj27LbKfvmnbXukpweq1oyoKrc2NSpJQckSZaDp3uP0+ca3tCq+71olI7ihj5DR3LoaATSuBhlolrvbD2p8sFNClj/X2dq8TMekmCdHKuCaoKgW2fqWci/gOMuqqBWTmyBg0SbZbA7N1lXWCebFCQEuTjH0/tC1XhtxvS9TccXiHiLTOEooLBXMTz/gOMtKzXL9XeSDg+PyVngbikpSh+tWwTPYrzgPbV7cd454Nlk0JBexeD5s54CrOCdjypZKQypKElEzlfaZz70jDpWS1sd66YlBpEuq4CR8AVJ4Htq32vs7mfLGAxFQZPfOV5ryWUxs01CpTPgQLXSZY+/btw7x588x/P/PMMwCABx98EA899BCuueYaVFRU4OWXX0ZpaSn69++PN954wzwHVrhhgkVERP5QU65dgvXNMvcLZK4Ks/Y0uzkO1ZGdvmncU3nO+u+yEotaqgrr82pZo6JmiP91H1rHfMaiH5hlLUZLs+22qi64f05NyRWglEGM7WrB7E3YbGyGuZB/bG/b++uqlX8r867ZxnHyoP0YCrfaPy8XK90/HgDmppomB7eKyOrVtp3mRvtzmV046Xh/p4ra+mWpnV/Nci65g1usj7F97e75YgHRcbb7NtX21VUrTQdrqwTUVqnavcJiN6bPae4Ix/EXF2r3vdBqFNDUIGPjShGioe3Yvl8uaj5HnS/pMsEaNWoUioqKnK4zd+5czJ07108RBafueTJO7OfgF0REFDqaGtybtLd9879AKdquPnGzbCLokAycPa7UWLRnmbA56l+mla+XapeQ2ntgfHCr/e2fO+75da2tUmrRXLGc+sCTJoPtB72QZddzdFmqrXK9srM1Th4UkJRme1IbapXJuy0ZLyXfrS3Avh9st1q0zfPr3L726fhe4PBOEUMul+z2Zzy8wzSgij4+u57QZYJF7nFUZdqpOxMsIiIKLeeLPX9i3mKn70iwKj8rmAffcMZeAtbe2vcF9B6iXXMYpTaqHUGpjYqOhcMKJkeDJ3iq4rz95p7uDryhhVYjsOETAZ26A/1HtZ0ArY9Zje1rBKtaSEsNtcKloeEdO/CjgFHTZESonF6tfbPNw5dqiXd+a3sd6msc3D9BJugGuSBbggD0KrD9tnLWXpaIiCgYHdkpoOGiZwUwqxERyaylWbCpbTExtgCbP3PvvFk2fzSRJaU2avd60e7rgGe1RM5s16BfkD2HfrKO39jiun9idTnQ0iRYJXwNtcDGld7FaG94eUv2mvU6Sq7UqqsS8N37IupqlFo5pZmkNto3Nw1WTLBCVL+REuJUdqgkIiIKFsYW/ydJVRfCt7/z2WPCpX5N3vFnrVHJYe1rK+uqlQTwzFHYtA767j0R1U5GvwRgVWu35UsBjXXa1F45mjPOH7Z+JeBkofr1ZRnY+V14PORgE8FQ0e5+7dYvMGEQERGFmuZGAV8vDY+CYSC5qo1Ra/9mESeLtM2If/pGNI946AnLIeWrywRs+MSzwTj0pKVJQNF21+ejoVaZ1LtjNxmlp13NixUanzMmWERERERklz9r7gq3CIhL1GZb7Udm1IKnyRUA7NtorwYvNJIJV3ZvECAZhZDoW6UWmwgSERERkV2lKoaJ14ovkiIKPE/mjQt2TLBCRXDXMhMRERGFVS0HhS4mWERERERERBphghWCJt4YPDNdExERERGFEiZYISgmLtAREBERERGFJyZYREREREREGmGCRUREREREpBEmWERERERERBphghUqOKopEREREVHAMcEiIiIiIiLSiFsJVnNzM/75z3/i4MGDvoqHiIiIiIjISmtroCNQz60EKyoqCv/6179QU1Pjq3iIiIiIiIisyEE0zavbTQQLCgqwf/9+X8RCRERERERkSw50AOpFuPuG3/zmN3jssccQGRmJSZMmIS0tDYJgPcJCbGysZgESEREREREFC7cTrJtvvhkA8Mwzz+DZZ5+1u05hYaF3UREREREREQUhtxOsv/zlLzY1VqQDHlSbJqXJqCn3zbUURBmyxPuEiIiIiMKL2wnWzJkzfREHBcDoa2WseVubJMgyWUvPltHcBNSUabJpIiIiIqKg4fE8WEeOHMF///tf/Otf/0JpaSkAoLi4GLW1tZoFR/7XIcOzHoTRcRoHQkRERER0SRCNceF+DVZdXR2efPJJrF69GhEREWhtbcWECROQkZGBv/71r8jKysITTzzhi1jJGY1a43VIA6pLtdmWPV36yjh9iE0HiYiIiCg0uV2D9dxzz2Hnzp146623sGPHDshyWz45adIkfP/995oGSNpIyfRx3q9y832GBtPzByIiIiIi97idYK1ZswaPPfYYRo8eDYPBYPVaVlYWSkpKNAuOtNN/lOeJzZRbJEy9rW12t+FXBdFMb0REREREfuR2gtXU1ITk5GS7r9XV1dkkXRT8IqIA0eKypmbaWSkIW/0lJLM2jYiIiIi05XaClZ+fj5UrV9p9bfXq1RgyZIjXQZE+JaXJiEuyn5QIDv/QLw7MQURERERac3uQi0ceeQR33HEHbr/9dkybNg2CIGD9+vV46623sHr1arzzzju+iJN0YNQ1oVXjw+nciIiIiEhrbtdgDR8+HG+99Raam5vx5z//GbIs45VXXsGpU6ewePFiFBQU+CJO8pIWyYQgqNuOo1XiEvWRoA0cp/Qh61mgj3iI9CAymp8HIiLSsSD6mXK7BgsAhg0bhnfffReNjY2orq5GUlISYmNjtY6NgkhKJxkXTjnPvkZMk3Xx4cjqBXTuKbEGi8hCUipQfjbQURARETkQROU2t2uwNm/ejIaGBgBATEwMMjMzmVwFCdHgOruJjlOXAcVfGiBi+JUSRl0joWNX5+sPvVxCtI5uEyZXREREROQLbtdg3XnnnTAYDOjfvz+GDx+OYcOGYdiwYUhJSfFFfORnOf2BwzuUf0fFyOiRbz/hGnW1jPqLMpJSlb8b65xvNz3b/vLLb5OwfbWA6jLfZjyGCBmtRuf7iIiSYWzWLo7IaBktTczkiIiIiMKJ2wnWpk2bsH37dvz000/YunUr3n77bUiShJ49e2LYsGEYPnw4fvazn/kiVvKBhGQZtVVtSYBoAPqPllBxVkDBRNlhTU9EJMzJlT2JyUBNmev9Gwy+r00aMFrCuRMCKs45X69jV+DMUe32m5kDnD6k3faIiIiISP/cbiKYkpKCK664Ar/97W/xySefYNu2bXj11VeRmpqKDz/8EE888YQv4iQfGXm1bQ1V177AoEmOkys1cofbr/kyRLq3naxe3nfa6tLX9TrZvWVdNWEkIiIiojblJYGOQD2PBrmoq6vDzp07zTVZe/bsQXR0NC677DIMGzZM6xhJI5HRQFO99bIINxMeVQRlcmJ7RBFI6yyj/Ky67C2ji4wzR33fzK5zTxnlZ9icj8IYb38iItKx5qZAR6Ce2wnWzJkzUVRUhLS0NAwfPhzTpk3D73//e+Tm5kLgyAG6NvRyGXs2AHXV2l8n2Y2KJtGg+e7N8sZK2L/J7YpZpHYCys9oHIwORkwkIiIiCgXBlGa4XRItKipCREQEBg8ejCFDhmDo0KFMroJEYgoweLLvS/2BvBPiEn27/XHTJWT3ljFgjOTbHRERERFRUHK7Bmv79u3m5oFr1qzBCy+8gMjISAwdOhTDhw/HiBEjMHjwYB+ESnrmVX4dRLl5fAcgb6ySpB7YHOBgdKBDuuzzESCJiIiIgonbCVZsbCzGjh2LsWPHAgBaWlqwefNm/Pvf/8YLL7wAQRBQWFioeaAUfDJzZJwvZuE7lGR0kVF6mteUiIiIyBGPBrmoqKjA9u3bzf8VFRVBkiT06dOHg1zonR/7BXnaXC8yRkZLo+NCfHZvGSVHHLyup7K/i1j6DpdwaLv7/cUCacgUGRdOyti1LrjiDjeCIEOW9fRhICIi8o47/f0Dze0E66qrrsLJkyfNkw2PGjUKDzzwAIYNG4bk5GQfhEjhZOTVEpobgV1rHRcOe+Q7TrAEAN3zZJzYH/jCZddcGacPOY6j+wDg0Hb/xCKIMmRJm3PSsZsmmyHSTM4AGcUHAv+ZJyIiAjxIsK699lpzP6vYWE4cRHZ4XM6RkZwBlHkzz4EA9Bkqo3uejHUfulnLonH5LNLBUPWBYDAARp2NyzHyagktTcDO71gbRt7pNYgJFhFRqBODqLjgdoL18MMP+yIO8pPYBKX5UFp2oCPxHUEAomICHUV48Ka2PjlDszA0l9VLRuUFoOFiGBXag6jpBRERhZ/E1EBHoJ5HfbBOnTqFN954Azt27EBVVRWSk5MxbNgw3HXXXejatavWMZKGRAMw9TbZL32VOveUcXyfgB4DPS+5RcdpGJAfdenL0mogJaTIqK307iaP8OjbUb2EZBm1VWGUwBEREYUJtyvb9u3bh+nTp2PNmjUYOHAgbrjhBgwcOBBr1qzBDTfcgP379/siTtKQIPpnsraEZGDqXAl9hnqebCRnAL0HO27b1jVXRlJ62/YTkj3eFdKztEmKuvSVMWC099vq0kfZRmaOBnGFWTk+GA63c08m4URERKHI7We0ixYtwoABA/Dvf//bqg9WQ0MD7rnnHixatAhvv/22pkGSf8QmaF/g06K9bKcewJFd1sv6j5JwcJuAbv1lVJcB+34Q0GuQhIhI+9tQc2QpmcD4GRJ+WGE/6Kxe6s6PQaOajy59ZfQdLqPiLFQPdy8aZEitWqUXMlymKnrNEXSaYcV3kFFXrQQXTG3JiYiIAs0flQNacfsnfu/evbj77rttBriIjY3FnXfeiT179mgWHPlXcsdAR6D+k9M1V2nqGJ8EZPUELrtZQq9B3kcQG+/4tZRM/yZYABwmjI70HaY+4/FFQq0XwfQlTERERKHF7QQrOjoaVVVVdl+rrq5GdHS0tzFREPImqfC0MGz5Pj0MatGpu4xO3WV0HxC4xMXgRkKWkqkMaU8UaBGRvA+JiCh0uJ1gXXbZZfi///s/bN9uPYHP9u3b8cILL2Dy5MmaBUfBI9Iirw7X2oPkjjIKJsqIuDQ8e3QckJ4tI6OLZ4XHxBTX69jUQrm5q45OxqTpmuvetog8NewKGYMmeTGPAPMzIiLSEbfrHX7729/i/vvvx9y5c5GWloa0tDRUVFSgvLwcQ4YMwRNPPOGLOIn8bviVErav8byjjCAAQy9XSn6yLOPrpe5tSzCtbi9hFWSMvlZGYgrw9VLXGW16FlBVKqOxTn3227mnjFNFQZotW4QtCDJk2fY4ktJk1JQH7vjcfRCR1llG+dkgvR4uREYDHdIDHQUREZE2VCdYjY2NWL9+PUpKSjBnzhzMnTsXJ06cQGlpKTIyMjBo0CCMHz/el7FSmDCNBBgdp91j6aRUoPKcihUtyq+pnTTbvU1hOj7Z82OLS5IxbroMQQBklZsxRAITZ8lY83ZbIF36yoCdxCOQcodLKNru/egPcQlATZnybzECaG3xepPasDjdWb2B8ydlVJ53fQ2S0mQUTJKx9n3fXa/MnNBN4IiIiPxJVYJ16tQp3H777SgpKTEvS0hIwIsvvogJEyb4LDgKTzHxymh+WvariolXMSIelERo8GUSInzclXDUNDcSLDurulv70X71y25Wzm/VBfe240udusuaDbSSkinj3Al9JwsRkcDwK2VVNZAdu8mIjPJtPNl9gA4ZEjZ/FnzDG7KFIBER6YmqX9L//d//hSiKWLZsGXbv3o0vvvgC/fv3x/z5830cHmlG32VNG3GJ7o+gp5WO3YDUTN/uI8KLwnJ6tvf7Fw3K/4XgK0urY3G/W04YbJpbLGD8tPv4Du6/RxDU9fvzpR75Mrr1Z7pERETBTVXxaufOnfjlL3+JYcOGITo6Gr169cLTTz+NM2fO4MIFHT0CJ7IwbrqE8TO86DjvJp+NZNguOe5rMXGzIADDpnp+jMkZbf+OjtV3wXbgOM+O07LAntxR38eolRQfPyDwlT5DZPQbER7XiIiIQpeqBKu0tBRdu1oPN9atWzfIsoyysjKfBEbkiNrmcfEdlJowX0vPltGzQEZmN9/vC2irfTJJy/J8W4IAJCYHR/VmVi/161oeUaBqQgMtKkZJVOISwyBhCYNDJCKi4BGqDYSI/CYpDeg9WA7a5na+KJv2Huy/mkNyzlf35ehrmdUQEZEfBcfzYABujCJ49913w2Aw2Cy//fbbbZZv3rzZ+8iIgoXOypmZOTLOF3vwLaTRF1dcooyeBcCRXdpsb9wNEkQXScKIqyRsW+06kxAtv/GC6Itaj7Sc7y6c5s5LSJZRWxVGB0xEFIZUJVgPPvigr+MgX/NjEhBOhSW9EUVg0CTr4dj9bdwN9m+21E4yKs65H1d8kut1nPU5srwfI8O0uWCoczZdQXyyjDo9JTQ6CoWIiHyDCRYFXpgUOLrnyTix3zcHO/gyCWePC8jMcbCCH89x+wQ7LkmGsRkYPFnGd+/5KRCL3Rjcnk6dXElM0Vm1rRNjrpPxzTth8iVDRBTCgumbnEUPIj+JjFI3F5cnOnZT5krSo3HTZUC27gs06LLw7KPVuYeMI7sE5AzQ57VSS29Jq7sDmQybKuGnb4K00yQREemezn4miQgAhl0R/AnIlFskQLhUo9Uur/T1PGN61WMgkJ4tISHA802Z9CyQcb4Y6DtM+4QvpZOMSg+ahHpCNACTZ0tY+4G6pMmbkTeJiIhc4SO8ENHx0ij6nXs4KCgFU72qD3TuAUREyegzVPvExRd1EWmdfbBRNwiCuqPqmS8j1sEw4BFR4TtEuiOCqIw66WrQDq05mistLlHGuOkyMrpov8/EZO236UxktH/3R0RE5AgTrBDRIR2YdV8cCiYGOhJ9iooBptwio8fAwMXgLGWJiPJxkzE3N99zkLo3xCQAE2bIyLs0CXC3fvpr+uZJRJ0cPajwoZgE3+0zEDU23frJEMTA3w/B+mypc8/Anzt3pXQKvpiJKIgE0Rc6E6wQEhMnBOUIfsESsqPaGC3itzMDgv9oUCbK7gWMnyEhd0TwF7Auu1lCup8SkqD7vJpqNlXEHZcETL0t+O8HUm/IZF5vIiKACRaFOUOEjMgY14WCuCTZ3AzTF+I6+G7bANzOAlWvbnHq4hK9Txh8MniCm61mo2J8EIMK0QHarxqR0TIGtxuYxNnQ6CZq74dAJ5oTbwz+Po9ERKQfHOSCzDQr5ATRU/nJt6h74tp3mGw1Cp4nnJ1fAUBKpozK8/45eVaxONilZY1daifZcf8+DcV3AHrky0jOkLHzu+B//hObICMyGqgpd31dRTdqMWMTZDTU+u+DNvpaGbEJftudtlScppg434fhSESkDGNLEH1pEhEFSFQQ9bUN/hIMkRdE0fsBB9SmHV36AskdZRRMCtzT8kGTJOSOkFTVFCUkA32HSxh+pYThV8rI7mO7jtY1ToIA9Bni/aALlsXVxEsj9kXHyf6cbxsAMGGmjMwc53s1Da/vbLLk9gZPlpGQHB7NsZLSQvs4L7vZ/vEFulaPiEhvogP4MMxdYZtgvfHGG7juuutw3XXX4dtvvw10OCGF5QL7IqOAkdNkdLKYDHj4lRISkmX0H+WfQmRmDpDTX/363QcAqZ1slw+5XEKvwRLifd20UQOJqcDoayWM/Zmb59hPN/LAcUrzu5756uOLjFYmrlZDTVM+CgxDhOxWzaU7eg1y/0FO/gQ2lSQifUrJDK4fs7BsIlhUVITVq1dj+fLlaG5uxh133IGJEyciMpJjSpN/pXaC+wV/rdnZvauIMrKV/3SrXXKUlHbpH+6caj9dlohIZaJoNcbdIKGhVmnSpuefGrXJH/lOejZwdLd77+ncA9j7vW/iISIKJ2FZg3X06FEMHjwYUVFRSEhIQHZ2Nnbs2BHosEIHq7A0FYpNhXz11D7UxSfBbyMcuiMhRUZO/7akKjHFeYLVb6S6mpJR14RHjUp6trYJ6fCrJI+/N3JHhMc5JyLyJV0mWNu2bcO9996L8ePHIzc3F2vXrrVZZ9myZZgyZQry8/Nx8803Y8+ePaq336dPH2zZsgW1tbUoLy/Hjh07cO7cOS0PgSio+SqnG3O90qfLJ6MFquHOgWl1EjQoO/sqyfYqNIs3j71edmuI/q657RY4OL5gaIKqhVSN549KdaM/X3sB+2wSEYUQXX6V1tfXIzc3FzNnzsRDDz1k8/qXX36JhQsXYsGCBRg0aBCWLFmCu+++G6tWrUJqaioAYPr06Xa3vXz5cvTp0wezZ8/G3LlzkZqaisGDByMiQpenIqh07inj7DEBHbuyeVBQ8WMNmWnAiYDR8NacMFPC98v984yqS1+/7MZvQrFWVi2/HbpOz3GfITIO79RpcEREGtFlVjFp0iRMmjTJ4euLFy/G7NmzMWvWLADAggULsG7dOqxYsQJ33XUXAGDlypVO93HbbbfhtttuAwDcf//96NZNZScIO0Qx8D8WphgcxSKKgsvR8gTBu2MpGA/0HiwjPsn5NiwLV6IoIDJK+bchQra7//aL1ByL1kTB8T69PW9292exvfaFUU/25ShGURTsJh2Ck+P1GWcxutB+HcHipFmdS4tjyuoFVJc53parvbq6z03ban+/OzPqGhlbvrRep88QGdExrj8Xliz3KTjZr7P72mo902fOYp5hQbR/jnHpNWfbbb++ozjanz+127NkMLi+pwL2HX7pnrdXa+RNEiqKAjqkAZ26yzh3Qv2G1J5vZ+93RQjn7JqIPOZpWctV+dhXdJlgOdPc3Iz9+/fjvvvuMy8TRRFjx47Frl27VG+noqICqampOHDgAEpLS5Gfn+9RPBERItLS9DNBTEpKfLsldQCA5OQ4JKU4KvEo6yR2iERampeTDGS4XqVT12ZcONWC9M4i0tJiMXaahC3fNGPQ2Eikptl2zokySAAazH8np8QhIclfpf9L5yYxBmlp7T8uymuxsVFIS4vyek+RkQ0AlP4PlvdUQ5URQJP5b3X3W53VXzExzq5tPQDAYFGCjo3T5pjUUWKNjopAWlqMzXLr47U+LhNlnbbX0jJiYDpnlu9vuth2LoeMi0fhlnoH2wIMEW3XQ80+Ha1zLq4ZQIudY7G3PnBgUz0uVrVlvXEOrkX1uRYAzXa3Ex0dCVFsBSDDYBCRlhZnN9aEhGikpbUf3Md2vbbPnPJaRKQBSYlRABrbHVfdpe1afl5st9f+3KWkxCEu0fIzrbyWmhoPg6ERzq5DRKTt/p3ty94yNdfSkfHXRePgTy0oO6uu71JEhAGm4xEFAWlp8ShPsL2WMTGRAIxux5OUqmwTAC6fBSx7Qf1xpaUloNJOLGqlpsbD9H3iSGxsJEyfByIitSIjDUhLi/X4/bblY98KugSrsrISra2tSE9Pt1qelpaG4uJi1du57777cPHiRSQmJuK5557zOB6jUUJNTYPrFX1MFAWkpMSjsrIOkmRZJaFk7FVV9Whx8Ps/5nrgZCGQ3bcF5eW+/+Hr1AuQRSCjSyvKy2sBAAUTARlGlJfbrl9fA1jWJ1RV1qPJb7/Pyn4vXmy0E5vyWkNDM8rLPSuQWGppadum6bwo+25b3v41x6yf1DQ22r+2yhMdZV1Jksz/bqjX5pjUUfbZ1Gxsd2y258JRvZKyjvJaepaMmKRGu++vqW7bRkVFnd3tmdZvNTreX/t9Olunvt7RsdgXFQegqm279Q6uRW2t4/iamlogScrrra2Sw1hra5tQXt7UbqntetafOQFGYytqLjaaX287LuHSdi0/L8qyvLEy9m+yPA9t+6msqkeD1SG2XSOji+sgy7LN/i3ZO/b2y9RcS0cS0huR0gkoO6vu/UZjq3lfptjr6mxjb2pqURVTv5EyDm5tWy+7j6TqM2NPeXkt6pzcV644+kxZamhgckVE7mtpaVVZ/rHmuHzsmaSkWERGuh6pK+gSLEdkWXar6cEHH3yg2b61uGBakSTZboKlLLf/nsQUIG+s6f2+jc8UUuee6venHE7btXV2LNpzdv5MhSRt7oGufYHK8wJ6DZKs9iXbOX7XrD8LzmO8dBxW6/v/HMMmxrZzb7NuO8o6yms9CmSre8by/bLNctvtmdaXXRQUHb2//Tq2+3Qubyyw4eO27Tq6FpbHGJcoo9cgGXt/EC+9p2092Ums9rdt/5yYEjbT9mWLbbYd16XXrT4vyrLs3m0JVvt4bD9fzq+Rvficxd5+ub39e5pUtL/GAJCWJaP8jLrttT+3JmrnL0vOsI7d9pqqPy5Jkm2+b90htbo+j7Ls+bkm1zK6yCg9Hbjzm9JJRuU5Xl/SXttvmWdsy8e+pctRBJ1JSUmBwWBAWZl154mKigqbWi0ComKVmyna81pV8pNOPYDLbpbQa5B22+yaq1z/zj0cf6mMvCIagiAjb4x+HhQASp+82AR9xeQPMR7MVD9+hmx+aBGMvCmO6fEO6TPE+6gElb/O5jneiICA566JyYHdP5FeBF2CFRUVhby8PGzatMm8TJIkbN68GYMHDw5cYDo1caaMy26WEBFCcyiHch/pqBjX67gjd7iMybdISHEybHPnHAOunKdMTKonk2+RMX6GHovP9vUaFA7zB1nUlGi41Ugvu376Q5+hPri+Ovwuy+wGRMW4f3VjE1W+J0DHHBMfPN8lgTLxRknzKQN8ISlV/zES6TLBqqurQ2FhIQoLCwEAp0+fRmFhIUpLSwEAd9xxB95//32sWLECR48exfz589HY2IgZM2YEMmxdEg3aF9oDKauXjGgPnvCHLQHmURqdrqbDgp4o6jMue3IGyOiZr9QYZoTBNAVaXBelaRvQrb8c9hNPJyQHOoI2kdHAZTe7fw+Pny7rsjbRLEi+S+zp0teNM+vFRYiJA7r20/VVVATxtSTPBdtl12UfrH379mHevHnmv5955hkAwIMPPoiHHnoI11xzDSoqKvDyyy+jtLQU/fv3xxtvvGGeA4tCS2yCMtxwh3QZOQMCHQ3pXaC+hAUR6D9KxslCoPSUhlH48IDUFqV8kegOnizjwinvmzZqFVpEpAxji3YHGhMvo7FO3fZSO2m224BR26QxUIKtcBa0eKLJR4Ig9beiywRr1KhRKCoqcrrO3LlzMXfuXD9FRIEkCEDBRB1/tHQcGlkLpUuVfKnLaVKavo9q9LUSpFbb5VExQJc+3m9fq8mrI6MBo5YD3HlZ0LSX1OYMkFF8gCVYT4RLLam9b4MR0yRsW6UuA0510pyciNTT+TMnIgoInZbhRl4tIbu384RCb+mGr+KJ7wBMnCVh5DR1eyiYEJg+YklpQHJH320/voPvtt0hw7d3U+4Ix9vvkS8jIbnt9Zg4GbnD9XZ3t6MmPBfreDuwTX6A7nPdsHf63Dil/u4PKRp0fk+Tbui0WOIQEywib/nxUx+Oo+pZSs5Q5lPyVISHdfZ9h1sX2toXCgL1dDwm3sm+292XnXp4v7/OPZXjTs8Krvtw/AzJHLs7UhwkhvHJ2hx/kpNW7TFxwNifhd9ImkOnysju4/kxd9bgPrdn0CRvErfwuoZqdEiXMeZ6CWIYlUITU3gfeCNY+mSbhNGtTRT8xv6MX9DuMERan6/kjkD3PBlDp6ovLBkiZHRv1/fPVGs07AoJ6dkyuueFx3UZMEbG8Csl5OQhqMqMcYneT1WRnNH27yw1yVoQnR89iU+C7qaMmHijhMwc59NdOBOT4N3+vS5Yqnh/Zo5/z3lMvHbNe4NFYpANE6C3hztRQTbdEBMsoiBi0GWvSf0RBGDKHAmT242GJghA32Ey0rM833aXvrJ57qG0zsDQy2WrkRpDbZTL5Iy2kTsNBmVABr89dfbw992TfmlxSc5ft5rqQF/lDt1QOzlyQHiRpJjmpkvxdAhzP52X6DjPd6Tra9eOr2sy9N6v1V9GXs3z4A0mWETe0uF3UGKKDEGUg65KXUsRkd413Yu4lDSpGebeUsduSpPCsT8Ljb4gI6/W+X1kJzY1T4pNk3CbGOzcK6an+sHW789S78HW92HOAN9Fq/eRBEPd0Cmy/URJzzdokEvrHJonVxBlr2v9wx2fhxOFoNHXKT+0ui4Y61zeGBlF24DeQ9z7ARUEWDUpTOsMHNmJoJjA0x3B1lzDEx3SgcmzJXOybeLPK+ntvmLbNU9Tajl888Xg7sMIf3L3iEVRhiQJQVWbEQwTdocSQ4SMYVfI+OYdQJJC68d26OXBc9/rFZ83EYUgQfBjM64QYK/pT1wiMGSK7HU/gQ7pwISZEoZODa0frPgkYML10Rg33XfHpYczFhnt2YOKQPXLax9rp+5Az3z/xRITr4er5p5egxzXNvv6IVVsgozR12pY223v9Ks4Bj6M07e4RP9+rvR4P+gxJmdYBCOioJM3VtK0qZPvC1H+T3hN82R1SPPdPrr1jQh8R3WdNolKUnPeVcSp5ta87GYnCYLofi2sM54O9KBnvQZ5/l5vB4dIz1Z5r2jEm35aviSIsvo+bkFW0NaCJ6Oghppg6icIMMEioiCU3dt1vxg1hk2VkJgqo+/QIPvmViFvnIx+IyX0GxV6x+YLvp7zSivRsbZxRsX4b/8Dxwf+PHXpG6DaQTvL0rMDfz4sBVsh1CShA5Ddy7fBR7QbVVaz+8gPCV/XXPvL0zycMkOviXYoYYJFRCHFnZqitCxgzHUyYuJ9s/1AiowCuvXTd78Yn7FT4GlfuGovZ4D6QkdiilKwNs2PluDDyY7b65Duv33Z421trzcDzySmyoAgo/8oGZNukhDfgYVEd8WEwCinntyCgiBj0s0yJt/SVtsbnyRjyBT/DUbk6W9HYorscAThYGs2Z4+zJrrBLEiKCkREzuVPkJDdR/ZZc5uhUyWkZMro4cf+LOHO3sh+NlQWMLr1Bzp1lzH8Kvs/5qKo9FdSQxCUTuCmwUw6dgMKFeJOkgAAKUlJREFUJvi/kFAw0f19BrI8lpkjo0sfz98/+loZU29TRrWMjnWztkanBVF/FJAtd1Ew0f5JczWYh6c1JT7h4TkzGGwfOGV08TyMjl0v/aPdqemQbv9csdbIPkMkMHiy6++yYEsmOYogEYWEzj182z8kPQtI11MhI4RNukmCscW72o72IiIdFy69JQhApx7Anu99snmH/F2bmtPfu/M3aJJ3IxgKgueFrCArm3nMVZfE9qNKmuQMsL9cD+KTZXTLlVG4JfB1ApFRMlqalbtpQLsJsZPSZPQeLKNDBrD2fX3fcfFJQFN9oKNoE2zJkxqBv1uJggCL1RQMTCNNJSQH9x0bHasUADwW3IfvlKfDhpumCUjp5Pm+TfNcRUZbx+DOgDOiCEy5MQZjrtfHRYqICmwcmveZ8nB7WiXr2b1lrwf+aC+lo+M+SIHUvtmeICiDlgRDs2x7A9/Y69/pqSQHtXjhhAkWEVGIGDFNxsBxErK9aIZlqVN3bX8k+w6TQqKJZSCPoHueZ+8bOlXGxFkSktpNwpyS6f7RjLlORpbFgAS5wy22oWJznXMMPh3d0mcC9JS9/TxsbvPTDTt1roTEFNvEQyt5Y2QMm+z77MVp0uvje6CTxq0w+o203/QuItJ2mVa/GwAwwM3Blfw5kqa/MMEiIgoR0bFAVi9tnkZ36Ssjf4K2P/bd84A+Gg4ZHo48bTYpirAZzKXPUMmj2oaYeCejePozCfHRrRTfQba7aX/VTAiC9d67D1BZK6Txuc8d7l4fP183We2aC/Qbaicz8JA/v4nyVfbR7DtMdpgUeaJbP8025VPRsW2DXSRnuDFkv44xwSKisGfvaV5YcPIbZogIzXbxzmhdY+eO7D7BM2S0r6R21nehKqMr0GOgjJHT7BeAu/WTkZii/TFERJr6r7kWrMO0uyPYbvGUTBmde6hb1xCh35EeI33cnLZHPjBokoQhl8voqtX3YQAxwSJSIViG5ibPiAZgwkwJk2eH5nCxJu7MHRYsyZWWYXZI9/NIXxbB542RMfJq7+8/f9WyaH2Wxt0gYegUH557DW4UQQD6DJWR3NH+68kdZZuBDxwRI5T1YuK1PeboWE03Z6ar7wONYlFzrhLaJ8x29u3qCqptMjlsquTW53fQJN//Xhku3aedesgYebVvvxtFEcjMCY4+bGqw2EjkRMFECZ26y0jLCmAQevphC2GxCUBkdKCj8K0BY2RcdrPvf5Sj3ZhXzBOi6PyH3pvCYKAmsXVEbTQjr5bQPU9GZjf3tu/OufJlITs+SdtRI9vL6ungTHp4uQeMkZCULiMzx7P3j7lORq9BEnL6e/Z+R/dpv5HW/eOCSYeMtn/7I3lQc791bl+r7cGp7a+yP5K75QxP7z13TLxRxrgbJBRMkBHvx/n+kgI8358WmGAROdGpuzK0c7jVYDGnC02CAETF+G77426QMHC8hNRM3+0DACIdHMPA8RJSO6nrr2IacTHQo8ip5uLJeXKG0n9DCPR3lYPTGR+AkS1NIy527CYjTuPCYZc+wOhrZI+bF8cnAb0GeZ5UDhjtYK6lWGDgOO3PtSy31WZY6uwocfWA5cihHbu1jVYZm2C9j4Df4+04+73s1l92ODS+OwLV9DMyyvWIrmN/5l0ybO/8xSUCE28M7hYlnAeLiIg0EZ/k5fDqKnTspsw1s+lT25/lrJ5KTUXledfb6ZoLSJJk8xRYi4cLEVFAc6OKFYMkt3OLnRM4fobkcdO1nAEyig/YvyquTl9OfxlRMUqTvopzbcuze8soOeL8SqdkAhVndTK6mbc3pZP3d+ouqx65btQ1Mk4eBE4fattg78Eyzh7zzSO5UdfIOF8s29TyaV2Tmpgi42Klb47B1w8rew2SUVYS2EeiCcm+2a5e+6KppbPnAETUnsGHzWaCWai007anx8BQLHlrY/BlsiY/6KIB6DFQeVKqldHXScifIGm6zVAQl+j50N0dMjz/LAii0uyq/b7zxrreZsEEZTS3PkNdr9ux66U5xhz0zYKs1O4KTpq2ujO/Wddc7b4fOnaV0bGrunUTkoH+I6337bOaFVm5b3oM9G3TUUBJ5DqonLep16DAfDc7Sio7pANX/Nx+TY+7o0B6I62z7FYfXysh2mSGCRaRzqVkKk9c/dEmPZhExwGDL5Mw5rrQOy+WhTqf/vYE8Q+baTLlRA8n3vWFpFSoHi0s6OnhtLsTg6N73cHyqBhliGs1TQAHXSbj8lslRDt54h6fBHRzMlnuyGl6OKEqBPF3hiOiAU6vnaVO3d3bttVVtXPu7DVRdvdOEARg1DUS+o+2/i30ev40Nwy7Qlb14MJSnyESkjNkZPf2UVABxiaCRDonCOqeuIajjm526Kfg4+gJ+fArZVScc39QB03w4+hYGJ4bQfB+cl1f19J4y1eDoQwYI2PPBgF9hgX2xnEUs2VUQ6ZIAbtOrmoKO6Qr/yV0kLBtdXDUnXTqgZCYeN4RJlhEXgqHeUcoRAXxvRsV4/7TZDW0OiWmZoLRcTKa6kPksX+ADiMyWkZLk5c7D6J73RAJGJvdf18w3WWmGqNO3YHMHMmc4JivtZ8PxpvfcT3dWik+HmAokHQ1VYAKTLCIyFaQfZFR6LL8URUEPRVlnIuKUUbBiowCvn3XNx8oT/tnJiTLqK0SlGGxL51S0aDfczvpJhlyGDzJmnijhJYmYMe3gkcJVjAYPFlC5TnBqi+T5Wd80k0ypFbZp4Xpbv1knCyCz0c71YqWd35SuoyaMkGTkQ3JOSZYREQ6FvrFSvXG3RBcZ8PuKFhOCo5qC5VDpkgoPSV4PD/fyKtl1FXL6HBprpnBl0mazTvTuSdwfJ822zIJpmkyvMkDY+LcGzlt7M8kyDKw+TPPT5CzvkeeNntM7ayM0piebTvCXXxS26Ag9oiib653Vq+2f/cbKSN3hJPPm6Mp04Lr68fu8Y26WklgvW3SGgjxHYLrAgThKSYinwuu7zEKA4YIOeRH50tKA7J6yUjt7PwDmNEFyOji+Yc0IhLm5ArQti9jUroMVoH7h2k0zYgoGcZmARGOJkp3cKv0GSrZbVI27AoJZ48JyOoFHPhRWWZvEvaUTPsb7tQdiEuUkJACfLvMt/dCRlcZpaec72PENAkd2g2376/mZpa7iVI5kb29BNOdeAsmSjhzTLDbhFqL/oJacac/W3wHGd36+S4WX9DJaSYiItJG3KW5uKLjgutJgSD4ZpJYfzIlbhGRMowtTLT8YdKNMlqNsttNRi1rdSyldVaG3bZkGk3RsqA/aJIMY4vt+wXBOoH3pdh41+s4HD7fgjcJlwB1zySzewP1F2V07iHjxy8cV9PZq5l2p/asU3dlfjNfiu8go67au8+3O3Pjdc2VdT8QTHtBVPFORETkWnQsMHGWhPEeNCnUXUoQZPlWTBww+RYJw6/0feBu7SGAF9bbM+Gq8G+IUPr8+VJWL9uj8PU+9UZQm0k5IBqA3OGy1eTVGV2A2AQZfYa0DbEuikDeGP9PP+JOH9deg5V1+430LM6O3YLsi80DrMEiIlu6K2WGr0BdiujY4P4BjFHxZNuerrnAhVMycgYE9/H7mrMn6pFRQGOwfIf48DLHJshoqA2WE+Gcv2qk3KaD0+vNLWSIACbMtLMFi+PydW2UiSyrP5kpHYGpc6Wg6h/pb0ywiIjIbMz1Es4dF9DVyaSo/uTvjuWR0cDoa5lcBQVeprAU0JwqADvvMRBoNfp/v64wuXKOp4eIiMwSU4A+Q4Ovvbs/9MiXERUrez3XTK9BEpIzZMQnaxKW3+igskD33BkFkEgNbwfkmDpXQlYv2ePmfIE0cJyEpHTZYX9BPWMNFhERkQp9hsjoM8T77fQaBKt5gJxiVhNUYuKB4VdJiI0Htq/hxfMn0SBDavXdOQ/kMO2GCGXgkfKz7h+fKAbv4DlZvez3/wsGrMEiIiIiXfKmuGwa+c7fUjNhdyLXgBUTwyTPS8/WZjt6LM4LAjDsChlpWXqMjuxhDRYRERG55kZBPeZSghGb6P8C4fArJZSebjcRs6Mw9Jh8sAztVCBPj7/mzwoEQZCRO0LGhZMCklUMbU/OMcEiIiIiTUVGAZNnSzD4shbJQUk7tROQ2kldMTzCj6WgEC6bq+bT+8EPDBFA/ngJURZzOEVEAi1N+pnA1xs5/YGc/t6nsPYmpg43bCJIRKRnLJWRHqkog0VG63+ksT7DTAcSWtVGY67X14AGo6+VUDBB0mQQEMuvxKho/1+3zj2VyZhNhl0hI62zjAFjQuse8sS4GyQMuVyyaiI7bKoUFvNetafzrz4iIgpnSanK/5MzAhsHaa9gopIEePrEXIsiW3Ss63W04s8iZmJKgHbsQFIa0KmH9tvt1h/o0kfGqGt8n1A6ah6YlKokWXGJPg9B9+KTgIx2feHSsgBDu1FpO6Tr4Kb0sRCo0CQKDNMkkokpof9FQRQouSNkJKTI6OyDwhkFVqfuQHKGhOhQHdpc49rn6DgZTfUC4jvwN8ckIhJ+qzkK5CiCoaRgooSO3QIdhe8xwSLy0MirZVRekJEZBl8URIESEan0CwhbOinURcfJ6NpX+2Bi4u0v7zFQxqlDQGpn+69rToD257rd9tTmW+nZQMkR2+WjrpFRdlpGVm/3whDYVilwgqiJt7+Snk7d/bOfQOPHjshD0bFAp5zQHlWIiAgAJt0o+7Wmqc9QGZNny4iMcrxO9zwlg0lM1UkW6oLaKPuNlDFokm2Tt5g4oEtf9f3aBk2S0He4FBKDL7hr+FX66oPWXkyccjc4rI308y09ZY5k3azUleD4yAVUGH7siIiIyBv+KF+5eniV0x/o1F1CWQmwf5N3T7oGjJJx4Ed9PC0zRACZOd5vx7SNi5X2X9f7ACQOqbhMqZm+D0MVBx+UkVfLKD0tI7uPf8NxxOdzxunjo+VXwfrxIiIiojCn1SAVXfoCEZEap406LVQOmSIhd4TEobQd8cPTg5h4oGuukyRXp/cOqccaLCIiHeqaK+NUkRAWnYGJ9MDXfZX0UmbO6BLoCEhPYuL9kFGGYZNCJlhERDrUf5SM3OEyRIPrdYn8LgwLTN4K1CmL7wDEJclIzwpQAEGgUw8Z54vtp8BJ6TJqygQkpfk5KD/p0ocfZl9ggkVEpFNMrkLDhJkSvl/OFvlhK8DlV1EExt/AQrQzzkYDHjlNhrFZRlSMBxvWS7Wl1kL1uDTEb3wiMku6NPlfSscAB0IUQmITAENEaBVwg2301OQAfKcF2SkKexFR9j+jogjPkisKa6zBIiKzEVfKaKiVkZAc6EiISM9SOgGpnWVkdguOxDEQQ5UHx5khk3BNiH0+gmCYYoJFRGaGCDC5IiIIogxZclzkFEVg+BVMIVQJ15K7nwVbrWqgjbhKwpmjArL7evBmfvRdYhNBIqIwkzdWQnKGjE7dAx0J6dXY61mC0gxPJelQSiaQN1aGwQ99fcPxI8AEi4gozGT3Via6DESzKQoO8R2AngVKsSjSQd8Uco4VKv4la3Sb8m4nLTDBIiIi8rHeQ5RiW/cBwVN86zFQRs8CGaOuCZ6YiTymYUY8cJyE6DgZOf352QlXfH5JRETkYzn9gaxeEiKjPNxAAKpDDBFA78GhUUA09c+JjAmN4yFbeuqDldULyOrFey2cMcEiIiLyA4+TK/KaIABT5kicW85N3frJmjW987cpcyS296OAYYJFRLrA/kBE5EuWw1Fn95Fx9hiQlOa//Qfjd1y/kcGboXD4cQqkIPy4E1EoGXm1hBP7BHMfFSIiX8sbI2PAaP82K+ueJ+NiZXD1wwsm3fNknC8W0G+kFOhQvJaSqfw/LavdvRKkt0441t4zwSKigErOAAZPDtJfDSIKWv7usxMZBQydwu86X+mQDlwxV4IQAsO3xSUCk2dLiNBpYuLuXdx7sAxjM5ATRg8XmGARERHpXfiUSwImLhGobgJiEwIdCTnjLDEOheTKJDLazkIdDeThjshoIH9CeH2JMcEiIiKisDdokowTB5Th6Um/fD7ohuzg30RuYIJFREREwUujp/ox8UC/ESxRE5H3mGARERERkdti44GkdBkpHe2/PvFGCWIINdsjUosJFhERERG5TRCB0dc4rvWLifNjMEQ6wucKREREFLx03qpP5+ERkQ8wwSIiItK7IB09jEhrPhtePxg+YzrJ1oPhVAUaEywiIiIiH2FhlEKNTvI8XWMfLCIiIiJSpXNPmQNXELnABIuIiIjIR0LtaX/++FA7IiLt8RkEERERkdbYNjCoWF6uhGQlieyQHphYKPiFfIL18MMPY8SIEXj00UdVLSciIqIgwkSGNDZymowR0ySkZQU6EgpWIZ9g3XbbbVi0aJHq5UREREQUviKi4HDyZCI1Qj7BGjVqFOLj41UvJyIiItIMuywFhZz+yoXq0pcXjLwX0ARr27ZtuPfeezF+/Hjk5uZi7dq1NussW7YMU6ZMQX5+Pm6++Wbs2bMnAJESERERUajqPhCYOEtCTv9AR0KhIKCjCNbX1yM3NxczZ87EQw89ZPP6l19+iYULF2LBggUYNGgQlixZgrvvvhurVq1CamoqAGD69Ol2t718+XIYDAafxk9ERETkFPuIBQVBAGJ03rApKkb5f2Q0a9n0LqAJ1qRJkzBp0iSHry9evBizZ8/GrFmzAAALFizAunXrsGLFCtx1110AgJUrV/olVmdEMfDfnqYY9BALBQ/eN+Qp3jv+JSA0zrUv7hvLTenxHHl77fR4TIHQdh4EO8vCQ7+RgCDK6DEwsMcuCoLqudACfY0C9Vul23mwmpubsX//ftx3333mZaIoYuzYsdi1a1fgAmsnIkJEWlpCoMMwS0nR+eMX0iXeN+Qp3ju+JYr1AGQYDCLS0uICHY5mtLxvqs+1AGgGAF39HhsMyrUTBE+vXR0AfR2THkRGGQC0AgjPc5PVJZB7V+7JlJQ4xCW6yrD0df/6+7dKtwlWZWUlWltbkZ5uPQlBWloaiouLVW/nnnvuwZ49e9DQ0ICJEyfi9ddfR79+/Rwud5fRKKGmpsHt92lNFAWkpMSjsrIOksSqY1KH9w15iveOf0gSAAhobZVQXl4b6HC85ov7prYWMNVq6OkcSa0AIECSPLt2w6Yq29DTMQWS6d5paWk1L+O58Tflc1ZZWY+GZnXrBvoaaf2dk5QUi8hI112QdJtgOSLLMgRBfTXf66+/7tZyT+ipcCFJsq7ioeDA+4Y8xXvHx+S237tQOs9a3jcRUYCpMKencyTDu2tnmoNJSbLJTJahx+sdHi6dd1lWcV/q6xr5+7dKtwlWSkoKDAYDysrKrJZXVFTY1GoRERFReErPBnoWyEjP1kdBjohIt/NgRUVFIS8vD5s2bTIvkyQJmzdvxuDBgwMXGBEREemGIAC9B8tIzgh0JEREioDWYNXV1eHkyZPmv0+fPo3CwkKkp6cjIyMDd9xxBx5//HHk5eWhoKAAS5YsQWNjI2bMmBHAqImIiIiIiOwLaIK1b98+zJs3z/z3M888AwB48MEH8dBDD+Gaa65BRUUFXn75ZZSWlqJ///544403zHNgERERERGR/xh028FIPwJ6ikaNGoWioiKn68ydOxdz5871U0RERERERNTe2J9JaG4EIqMCHYn+MQclIiLSOQ7fQESBlpAc6AiCh24HuSAiIgp76mclIZ1xY0YZIgoxrMEiIiIiIiLNTJkT3hO4McEiIiLSK7YNJKIgFBEZ6AgCi00EiYiIdI6tzYiIggcTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiouDADokUBJhgEREREfkIB4IkCj9MsIiIiIiIiDTCBIuIiIiIggOrBCkIMMEiIiIiIiLSCBMsIiIiIgoOHOSCggATLCIiIp1iaygiouDDBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIyFfYzpMo7DDBIiIiIiIi0ggTLCIiIiIKChxEkIIBEywiIiIiIiKNMMEiIiIi0lh0rPX/iSh8RAQ6ACIiIqJQM3CcjMM7gV6DOMoFUbhhDRYRERGRxmLigfzxMuISAx1JaElMVf6flMbElfSLNVhEREREFBR6FQDRcRI6dg10JESOsQaLiIhIpxI6KP+P7xDYOIj0QjQAXfoAUTGBjoTIMdZgERER6dTA8TJOHgS69WNzKCKiYMEEi4iISKeiY4E+Q5hcEREFEzYRJCIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijQiyLMuBDiKYSZKM1lYp0GEAACIjDWhpaQ10GBRkeN+Qp3jvkCd435CneO+QJ7S8bwwGEaIouFyPCRYREREREZFG2ESQiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgQrBCxbtgxTpkxBfn4+br75ZuzZsyfQIZHOvfLKK8jNzbX6b9q0aYEOi3Ro27ZtuPfeezF+/Hjk5uZi7dq1Vq83NTVhwYIFGDVqFIYMGYKHHnoI5eXlAYqW9MLVffPzn//c5jvoj3/8Y4CiJb147bXXMGvWLAwZMgRjxozBgw8+iBMnTlitw+8cskfNvePP7x0mWEHuyy+/xMKFC/HAAw9gxYoVyM3Nxd13342KiopAh0Y6169fP/zwww/m/959991Ah0Q6VF9f7/RH6C9/+QvWrl2Lv/3tb1i6dCkuXLiAhx9+2M9Rkt64um8AYM6cOVbfQY8//rgfIyQ92rp1K2677TZ8+OGHWLx4MZqbm3HnnXeisbHRvA6/c8geNfcO4L/vnQifbJX8ZvHixZg9ezZmzZoFAFiwYAHWrVuHFStW4K677gpwdKRnBoMBGRkZgQ6DdG7SpEmYNGmS3dcuXryITz75BC+88ALGjBkDQCn8XHPNNdi7dy/y8/P9GSrpiLP7xiQ2NpbfQWTlzTfftPr7ueeew5gxY3DgwAEMHTqU3znkkKt7x8Rf3zuswQpizc3N2L9/P8aNG2deJooixo4di127dgUuMAoKx44dw/jx43H55ZfjN7/5Dc6dOxfokCjI7Nu3Dy0tLVbfQb169UJWVha/g8ilFStWYNSoUbjuuuvw4osv2jxpJrp48SIAoEOHDgD4nUPqtb93TPz1vcMarCBWWVmJ1tZWpKenWy1PS0tDcXFxgKKiYDBo0CA8//zzyMnJwYULF/Dqq6/itttuw2effYa4uLhAh0dBoqysDDExMUhISLBanpaWhrKysgBFRcHgZz/7GbKzs5GWloaDBw/ihRdewIkTJ/DSSy8FOjTSCVmWsXDhQowcORK9evUCwO8cUsfevQP493uHCVYIkmUZgiAEOgzSsYkTJ5r/nZubi0GDBmHy5MlYvXo1ZsyYEcDIKNjY+66RZTkAkVAwuemmm8z/zs3NRceOHXH77bejpKQE2dnZAYyM9OLpp5/GoUOH8N5771kt53cOueLo3vHn9w6bCAaxlJQUGAwGm6c2FRUVNrVaRM4kJSWhe/furPkkt6Snp6OhoQG1tbVWy/kdRO4aNGgQAODkyZMBjoT04M9//jO+++47LFmyBJmZmebl/M4hVxzdO/b48nuHCVYQi4qKQl5eHjZt2mReJkkSNm/ejMGDBwcuMAo6dXV1OHXqFDuck1sGDhyIyMhIq++g48eP48yZM/wOIrcUFhYCAL+Dwpwsy3j66aexZs0aLFmyBF27drV6nd855Iire8ceX37vsIlgkLvjjjvw+OOPIy8vDwUFBViyZAkaGxvZzIucWrRoESZPnoysrCxcuHABr7zyCgwGA6655ppAh0Y6U1dXZ/V07/Tp0ygsLER6ejoyMjIwa9YsLFy4EElJSUhISMAzzzyD4cOHczSvMOfsvmloaMBnn32GSZMmITk5GUVFRVi4cCFGjx6N3r17BzBqCrQFCxbg888/xz/+8Q/Ex8ejtLQUAJCYmIiYmBgkJibyO4fscnXvnDx50q/fO4LMhqtB75133sGbb76J0tJS9O/fH3/4wx9QUFAQ6LBIxx599FFs27YNVVVVSE1NxfDhw/Hoo4+qeuJD4WXLli2YN2+ezfIHH3wQDz30EJqamvDcc8/hiy++QHNzMyZMmIA//elPbK4T5pzdNzfeeCN+85vf4PDhw6ivr0fnzp1x5ZVX4t5777UZvIDCS25urt3lCxcuxMyZMwGA3zlkl6t75+zZs3793mGCRUREREREpBH2wSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItJIRKADICKi4PPKK6/g73//u83yMWPG4K233vJ/QCGkubkZL774Inbv3o19+/ahqakJRUVFDtefP38+qqqq8Le//Q0///nPsXXrVgBAREQEkpKS0LdvX1x55ZW46aabEBUV5a/DICIKW0ywiIjII4mJiXjjjTdslpF3Ghsb8fHHH6OgoABDhgzBjz/+6HT9DRs24OGHHzb/PWrUKPzqV7+CJEmoqKjA1q1b8X//93/4+OOPsWTJEiQlJfn6EIiIwhoTLCIi8ojBYMDgwYNVrdvY2IiYmBjfBhQikpKSsHXrVgiCgHfeecdpgnXo0CGcPXsWEyZMMC9LTk62ui5Tp07FzJkzMWfOHCxcuBALFy70ZfhERGGPfbCIiEhTp0+fRm5uLj799FM8/vjjGD58OO69914AQFVVFf74xz9i7NixyM/Pxy233ILdu3dbvb+mpga//vWvMXjwYIwfPx7//Oc/sWjRIkyZMsW8ziuvvIJRo0bZ7Ds3NxfvvPOO1bKPPvoI1157LQYOHIjJkyfj3//+t9Xrv/3tbzFz5kxs3LgR119/PQYPHow5c+bg8OHDVuu1trbitddew1VXXYWBAwdi4sSJ+O1vfwsAWLZsGYYMGYK6ujqr9/z444/Izc3FwYMH3TqHgiCoWm/dunXIz89HWlqa0/X69euH2267DZ999hlqa2sBABcuXMDvfvc7XH755SgoKMBVV12FF198Ec3Nzeb3zZo1C7/73e9stvfEE09gxowZbhwREVH4YIJFREQeMxqNVv/Jsmx+7fnnn0d8fDxeeukl/L//9//Q3NyMO+64Axs3bsTjjz+OV199FSkpKbj99ttRWlpqft/vfvc7bNiwAU8++SSefvppbNy4EV988YVH8b3xxhuYP38+pk6ditdeew1z5szBSy+9ZJOEnT17Fs8//zzuu+8+vPDCC6ioqMAvf/lLq+P54x//iFdeeQXTpk3Da6+9ht/+9reor68HAFx//fVobW3F6tWrrba7YsUK5OXloV+/fh7F78r69esxadIkVeuOGzcOLS0t2L9/PwCgsrISycnJ+N3vfoc33ngDd911F5YvX45nnnnG/J6bbroJq1atskoc6+rqsGbNGsycOVPbgyEiChFsIkhERB6pqqpCXl6e1bLFixejW7duAIBBgwbhT3/6k/m1jz76CIcPH8bnn3+O7t27AwDGjh2LadOm4T//+Q+eeOIJHD58GN988w1efPFFXHPNNQCUPkWTJ09GQkKCW/HV1tbi1VdfxX333YcHH3wQgJJkNDQ04J///CfmzJkDg8EAAKiursZ7771njkuWZTzwwAM4duwYevXqhaNHj+Ljjz/G73//e8ybN8+8D1OMSUlJuPLKK7F8+XJz4mFKRH7961+7Fbda1dXV2LlzJ5588klV62dmZgIAysvLASi1fU888YT59aFDhyI2NhZPPvkknnrqKURFReG6667Dc889h1WrVmHWrFkAgK+++gotLS247rrrND4iIqLQwASLiIg8kpiYiMWLF1st69GjB6qqqgAAl112mdVrmzdvRl5eHrp06QKj0WhePmLECOzbtw8AsHfvXgCwag4YHx+PsWPHYs+ePW7Ft3PnTtTX12PatGlW+xs9ejT+8Y9/4Ny5c8jOzgYAZGdnm5MrAOjVqxcA4Pz58+jVqxe2bNkCAE5rbW688UbcfvvtOHXqFLp27YqvvvoKRqPRZ4nIDz/8gNTUVAwYMEDV+pa1caa/lyxZgg8//BCnT59GU1OT+bWzZ88iJycHCQkJuOqqq7BixQpzgrVixQpMmTIFKSkp2h0MEVEIYYJFREQeMRgMyM/Pt1luSrDa9wuqrKzErl27bGq9AJhrvcrKyhAfH28zIIarPkb2VFZWAgCuvfZau6+fPXvWnGC1H/0wMjISAMxJR1VVFeLi4pzWoo0aNQpdu3bF8uXL8cgjj2D58uW4/PLLkZyc7Hbsaqxbtw6TJk1S3V/rwoULANrO5ZIlS7Bo0SLcc889GDFiBJKSkrB37148/fTTVsnWjTfeiJ///Oc4efIkAGD79u14/fXXNT4aIqLQwQSLiIh8on3Bv0OHDhg4cCDmz59vs65pfqb09HTU1dXZjDpoatZmEh0djZaWFqtl1dXVNvsDgNdee81ugtajRw/Vx5KcnIz6+nrU1tY6TLIEQcCsWbPw4YcfYvr06fjpp59sBtTQiiRJ+P777/HnP/9Z9Xt++OEHREZGmhPcVatWYdq0aXj00UfN6xw9etTmfSNGjEBOTg5WrFgBWZbRsWNHjB8/3vuDICIKUUywiIjIL8aMGYONGzciKyvLYY2UqUbsu+++M/dvqqurw6ZNm6wSm8zMTNTV1eH8+fPmvkUbN2602taQIUMQExODCxcu2DRXdNfo0aMBAP/9738xd+5ch+vNmDEDL7/8Mp588klkZmZi3LhxXu3Xkd27d6O2thZjxoxRtf7Bgwfx7rvv4vrrrzefx8bGRpuJhz/77DO77581axbee+89AMANN9xg7rtGRES2mGAREZFf3HDDDXj//ffx85//HHfeeSe6du2Kqqoq7NmzBxkZGbj99tvRp08fTJkyBfPnz0dtbS0yMjLw5ptv2jQZnDBhAmJiYvDkk0/ijjvuwOnTp/H+++9brZOUlIQHH3wQzz77LEpKSjBixAhIkoQTJ05gy5YtePXVV1XH3rNnT8yePRvPPfccysvLMWLECNTU1GD16tV48cUXzetlZmZiwoQJWLduHf7f//t/NonIK6+8gr///e8oKipyur/169ejoaEBhYWFAJTaJkBJQLOzs7Fu3TqMGDHCbm1aVVUVdu3aBUmSUFVVhS1btuDDDz9E9+7drYZcHzt2LJYuXYqCggJ069YNn332GYqLi+3GM2PGDLz00kswGo0cnp2IyAUmWERE5BfR0dF4++238dJLL+GVV15BeXk5UlNTUVBQYDWoxXPPPYf58+fjL3/5C+Li4nDrrbciPz/fagj01NRUvPzyy3j++efxwAMPIC8vDy+88IK51svkF7/4BTp27IglS5Zg8eLFiI6ORvfu3W3WU+NPf/oTsrKy8NFHH+Hf//43UlNT7dZQTZ06FevWrbM7IEZDQwNSU1Nd7mvBggUoKSkx//3II48AABYuXIiZM2di/fr1uOGGG+y+d8uWLZg9ezYiIiKQmJiIvn374rHHHsNNN91kVWP1wAMPoLKyEi+99BIA4IorrsBTTz1lnrPMUkZGBgoKCgAoySYRETkmyO2HFSIiItKZRYsWYfXq1fjuu+8CHYpLjzzyCEpLS/Huu+/avDZ37lyMHj3aPGy8J86fP4+JEydi9erVViMf+lJVVRUmTpyIP/zhD7jpppv8sk8iomDFGiwiIiINFBUVYd++ffj666/x17/+1eZ1o9GIw4cP4+WXX/ZqP5mZmS6bGGqltrYWR48exdtvv434+HjOfUVEpAITLCIiIg3cd999qKysxK233opp06bZvB4REWGeTytY7N+/H/PmzUN2djYWLVqE2NjYQIdERKR7bCJIRERERESkETHQARAREREREYUKJlhEREREREQaYYJFRERERESkESZYREREREREGmGCRUREREREpBEmWERERERERBphgkVERERERKQRJlhEREREREQa+f8effSXsUdM9gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 11])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, 1/Day\")\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "948d53f6", + "metadata": {}, + "source": [ + "A pretty visual reduction in variance can be seen\n", + "\n", + "##### Zooming in" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "185d7f36", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAUGCAYAAACMyxAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd7wcVfn/PzO7t+bm5t7c9EogIQmBFBIIvamIVAEbUqSJiAj4VRQFCwoqX1QU/QkWpIkoti8IiIjSeyCd9N6T2/u9uzvz+2PnzJw5c6btzu7Okuf9euWVu7tTnjkzc855ztMUXdd1EARBEARBEARBEHmjlloAgiAIgiAIgiCI9wukYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARQQoWQRAEQRAEQRBERJCCRRAEQRAEQRAEERGkYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARkSy1AOWOpunIZLRIj5lMqkinoz0mEQ10b+IN3Z94Q/cnvtC9iTd0f+IN3Z/4EvW9SSRUqKrif97IzrifksloaG/vjex4qqqgqakOnZ190DSqAR0n6N7EG7o/8YbuT3yhexNv6P7EG7o/8aUQ96ahoRaqmvA/dyRnIwiCIAiCIAiCIEjBIgiCIAiCIAiCiApSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIoCQXBEEQBEEQRFmg6zo0LQM9JvkkVFXB4OAg0uk0JbmIGbncG0UBVDUBRfHPFOgFKVgEQRAEQRBE7MlkMmhp2QVNy5RaFBvNzSo0jdK0x5Fc7o2qJtDUNBaJhH+2QDdIwSIIgiAIgiBiT2dnK1Q1geHDRwPIz8IQJcmkgnSarFdxJPy90dHe3ozOzlY0No7M/bw570kQBEEQBEEQRUDXNQwM9KKxcRSSyYpSi2MjmVQBkAUrjuRyb4YObUBb217ougZFyS1dBSW5IAiCIAiCIGINc/NKJMg2QBQW9ozl4/ZJChZBEARBEAQRa6ykFvFxDSTer2SfsXwSqZCCRRAEQRAEQRAEERGkYBEEQRAEQRAEERm33/4d3HLLV0stRskgR1aCIAiCIAiCKAC33/4d/POfT+L88z+BL33JrnDceust+Pe/n8GnPnURzj//E/j4x8/2PNY3vvFtjBkzFtdddzWeffYl1NbWOrZpbW3Br3/9S7z11htob29Dff0wTJ8+A9dccz0mTz4gyksDAOzatRMf//jZeOihP+LAA6ea319//VegF6FY2cc+dhYuuOAinH/+Jwt+rjCQgkUQBEEQBEEQBWLUqNH497//hS984QZUVlYCAHp6uvHyyy9g1KjR5jaPP/6Muc/99/8W69evxe23/6/5XV1dHVauXOF5rptvvhG6DnzrW9/DmDFjsW/fXrz55uvo6uqK/Lq8qKurK+r54gYpWARBEARBEARRIA45ZBY2bdqIV155Caec8kEAwHPPPYuDD54BVc1G6yQSCTQ1jTD3qa6uRjKZtH3nR1dXF5YvX4Zf/vK3mD17LgBgzJixOOywOZ77aZqG3//+ATzxxN/R1taKyZMPwJVXfh7HHHMcAKCzsxM/+ckdePvtN9Df34/Ro8fgyis/j1NO+aBpdbvkkk8BAObOPRy/+MWvcfvt30FfXy9uuy2rIF577VWYNm06Mpk0/vWvp1FdXY1rrrkeRx99HP73f2/Hm2++htGjx+LrX/8WZs06FADQ1taGn/70f7F06RJ0dXVi4sTJuOKKq3D88SeZx9y9exfuuutO3HXXnQCAV15ZBABYunQx7r3351i7dg0aGhrxgQ98CFde+XlTwS00FINFEARBEARBEAXk9NPPwtNPP2F+fvrpf+D008+K9Bw1NTWoqanByy+/iFQqFXi/hx++H88++wy+9rWb8dBDf8I555yPm2++EWvXrgYA/Pa392DLlk348Y9/jocffgzXXfdl00L1m988CAD4+c9/hccffwbf//6drud56qknMHLkaPz2tw/j9NPPxh133IbvfvcWnHDCyfjd7x7BAQdMwW23fct0LRwYGMDMmbNw550/xUMP/QmnnvoR3HLL17B58yYAwPe/fydGjRqNz33uC3j88WdMC+COHdvxla9cjw984FT8/vd/wre+9T28/vqruPfen4dv1BwhBYsgCIIgCIIgCshpp52Bd99dhObmfdiyZTM2blxvWrOiIplM4qabvoV//OPvOO20k3DttVfhvvt+hW3btrruMzg4iIcfvh833/xtHHHEURg/fgLOOec8nHDCSXjiif8DAOzZsxvTpk3HjBmHYNy48TjqqGNw5JFHAQAaGhoBAMOGDUNT0wjU1w9zPdf06TNw8cWXYuLESbjsss8ik8lg4sTJOPXU0zBx4iRcdNFnsG3bVuzbtxcAMGbMGHzqUxdh2rTpGD9+Aj796Ytx2GFz8MIL/wEA1NcPg6qqqK2tRVPTCNPa9/DD9+O0087Axz72KUycOAlz5szDF75wA5544u9FiQsDyEWQIAiCIAiCIApKU9MILFiwEP/851Po6urEiSeegtraIZGf5wMf+BCOPfZ4LF68CCtWLMfLL7+IRx55ED/4wY+xcOHRju23b9+G/v5+XHfd1bbvU6kUDj98AQDg7LPPwze/eRPWrVuDI488GieddApmzpwVWraDDppm/l1ZWYkhQ+owZcqB5neNjcMBZF0DR40ajUwmg4ce+h2ef/457Nu3D+l0CoODg5g4cbLnedavX4cNG9bhmWeeNL/TNA0DAwNoaWnBiBHB3S5zhRQsgiAIgiAIgigwZ5xxFu699xfo7e3Ft799W8HOU11djaOPPg5HH30crrzyanz5y9fhoYd+J1Ww+vr6AAA/+tHP0dTUZPutqqoKAHDsscfjL395Aq+99grefvsNXHPNlbj00ivxmc9cEUquZNKudiiK/TtFYQV+NQDAH/7wMP7616xL4pQpB6KmpgZ33HEb0mlv98e+vl6cd97Hce65H0cioSCTsaxWDQ0NoWTOFVKwCIIgCIIgCKLAHHvsCbjzzh+gpqYW8+bNL8o5FUXBpEmTsGzZUunvU6ZMQUVFBfbu3Y05c+a6Hmf48CaceeY5OPPMc/D73z+Axx//Oz7zmStQUVEBAMhktMhlX758KU444SSceuppAIB0Oo0dO7ZjzJix5jbJZIXj3NOmTcemTRsxYcJEJJMq0unoZfODFCyCIAiCIAiCKDDJZBJ/+tPfoSiKaa3JlY0b15sWJgBQ1QRGjBiBb33r6zjzzHNw0EFTUVVVjcWL38FTTz2BT3/6EulxamuH4BOf+DR+9rMfI5PJ4LDD5qCrqwtLl76LkSNH45RTPoj77vsVpk+fgSlTDkJfXx/eeusNTJ6cddNraGhEVVUV3nzzNYwYMQIVFZWRpWifOHEiXnzxeaxYsRy1tbV45JEH0N3dbdtm7NixWLLkXZx88gdQUVGJhoYGXHjhJfjc5y7HT3/6I5xzzkeRSFRg06YNWLFiOb7whesjkc0PUrAIgiAIgiAIoggMGRKN8nH11ZfbPtfV1eGJJ57FjBmH4NFHH8aOHduhaTrGjBmDSy+9EhdccLHHsa5FY2MjHnzwPuzatRNDh9Zj5sxDcOmlVwLIppC/556fY9euXaipqca8eQtwww1fAZBVGm+44Ubcf/9v8Otf/xKzZ8/FL37x60iu8TOfuQI7d+7Al750DWpra3HuuR/HkUcutG1zxRVX4847v49PfvKjGBwcxCuvLMK0adNx99334je/uQef/eylUNUEJkyYgNNOOzMSuYKg6MVKp/E+JZXKoL29N7LjqaqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Y5YnlJTKjc0wp9c7o3Xs9bQUIuKioTvMShNO0EQBEEQBEEQRESQgkUQBEEQBEEQBBER8bKxEgRBEARBEEQA7lqzGG+07CrqOY9qGosvTZ9X1HMS5QdZsAiCIAiCIAiCICKCLFgEQRAEQRBE2ZG1JJE1iYgfZMEiCIIgCIIgCIKICFKwCIIgCIIgCKIIvPvuIhx33AJ85jMXQNPs6cOPO24BXn31ZQDAFVdcjLvu+l/b7w8//ACOO24BXn75Bdv3119/Db73vW/mJM+LL/4X//M/1+KMMz6A445bgI0b1zu26ezswK233oJTTz0Rp512Mn74w++hr68v1Hnuu+9XuOIKey2uN998HR/84HH49a9/mZPsjz/+N1x77VU49dQTcdxxC9Db6yyb9Oabr+Ozn/0MPvjB43DuuafjgQd+i2JUqCIFiyAIgiAIgiCKyLZtW/Hcc/9y/X3evPlYvPgd23dLlryLUaNG275Pp9NYuXIZ5s2bn5McfX19OOywObj66i+6bnPrrd/Epk0bcddd/w933HEXlix5Fz/60Q9yOh/jhRf+g69//cu44oqrcdVV1+R0jIGBfixceAwuvvgy6e/r1q3Bl798PY4//kQ88MCj+NrXbsH//d9f8cc/PpKP6IEgBYsgCIIgCIIgish5530cv/3tvUin09LfDz98ATZt2oj29nYAQCaTwfLlS3HhhZ+xKVjvvbcC/f39mDdvQU5ynHbaGbjsss9iwYIjpb9v3rwJb775Gm666ZuYNetQzJkzFzfccCP+/e9n0NraktM5n3rqCdx66y34n//5Ki644KKcjgEAn/jEp3HxxZdi1qxDpb//97/PYcaMmbjkkssxYcJEHHXUMbj44kvxpz89UnArFiW5IAiCIAiCIIgi8qlPXYRnnnkKjz/+N5x//iccv8+ZMxeqqmLJkndw0kkfwJo1q1BbW4uPfORM/OIXd6GzsxP19fWmVWv8+AkAgKVLF+MrX7nO89w33vgNnHrqRwLJuWLFMtTXD8OMGTPN7xYsOBKKouC991biuONOCHHVwGOP/QH33vsLfPOb38Mpp3zQ9tuzz/4Td975fc/9f/SjuzFnTrDEJoODg6isrLJ9V1VVhebmfdi1ayfGjRsfSvYwkIJFEARBEARBEEWktrYWl1xyGR566D6cfvpZqKmpsf0+ZEgdpk2bjsWLswrW4sXvYO7cw1FbW4upU6dh6dJ3cfzxJ2Hx4ndw+OGW9WrGjJm4//4/eJ57+PDhgeVsbW1xbJ9MJjF0aH1oC9bGjetx990/wS233OpQrgDguONOwCGHyK1RjJEjRwY+35FHHoU///lR/Pe/z+HEE0/G7t278Mc/ZtumtbWFFCyCIAiCIAiCeD/x0Y9+DI899igee+wP+MxnrnD8fvjh8/HGG68ByMZfHXts1lo0Z87hWLz4HRx99HFYsWIZbrjhRnOfqqpqTJgwMWJJFcl3OhRF9r07o0ePQXV1DR555EEsXHg0Ghvtiltt7RDU1g7JQ047Cxcejc9//lr84Affxa233oyamhp8/OMX4P77N0JRChslRQoWQRAEQRAEQRSZyspKXH75Vbj77h/j3HM/5vh93rz5ePTR36O1tQXLli3Btdd+CQAwd+483Hffr7B69Sr09fXZElxE7SI4fHgT2trslqp0Oo2uri6HguTHkCF1+MlPfo7rr78G1113Ne6++1dobGw0f4/aRRAALr74UnzykxehtbUFw4Y14J133gYAjBs3LpTsYSEFiyAIgiAIgiBKwGmnnYE//OFhPPzwA47f5syZB1VV8dhjj6KysgqTJx8AAJg9ex42btyAl156HmPGjLW5ukXtInjoobPR0dGBNWtWY/r0GQCyqeZ1Xcchh8wKfBzGsGEN+NnPfokbbrgG119/NX72s3tNJStqF0GGqqoYMSK733//+28ccsihoZXDsJCCRRAEQRAEQRAlQFVVXHXVNfjOd252/FZbOwQHHzwDf/3rYzjqqGPM7+vr63HAAVPw97//BSeddIptn7Augp2dHdizZzeam/cBALZu3YJMJoPRo8egvn4YDjhgChYuPAZ33PE9fOUrX0c6ncZPfvK/+NCHPozhw5tyuuasknWPQ8kK6yLY0tKM1tYW7NixHUA2xquqqgrjx09EbW0tNE3DH/7wByxYsBCapuGZZ57Cc8/9C3fffW9OcoeB0rQTBEEQBEEQRIk44YSTMG3awdLfDj98Afr6ejF37uG27+fOPRx9fb05179ivPLKS7jssgtx4403AABuueVruOyyC/HKKy+Z23z729/DpEkH4Prrr8GNN16POXPm4itf+YbtOMcdtwBPP/2PwOetrx+Gn/70l0gmk7jhhs+jra0ttOz/939/xWWXXYg77rgNAHD11ZfjsssuxOrV75nbvPzyC7j66svxuc9ditWr38PPfnYPDj10duhzhUXRi1HO+H1MKpVBe7uzcnSuqKqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Ugm4+WAlUyqSKe1UotRMnbt2olPfepc/P73f8bEiZNKLY6NXO6N17PW0FCLioqE7zHIgkUQBEEQBEEQRE68+eZrOPvs82KnXJWSeC0BEARBEARBEARRNnz0o84MiPs7ZMEiCIIgCIIgCIKICFKwCIIgCIIgiFhj1bTdf+PQiGKRfcZC1lG2QQoWQRAEQRAEEWtUNTtlzWTSJZaEeL/DnjFV9U9m4QbFYBEEQRAEQRCxRlFUVFXVoqurHYlEEkAe5oXIUZBOk2UtnoS9Nzq6utpRVVULJQ8TFilYBEEQBEEQROyprx+OlpZdaG7eWWpRbKiqCk3bf9O0x5lc7o2qJtDYOCqv85KCRRAEQRAEQcSeRCKBkSPHQ9MyiEsVV1VV0NhYi7a23v26TlkcyeXeKEpWwcrHegWQgkUQBEEQBEGUCYqiGC6C8UBVFVRWViKZHCQFK2aU8t5QkguCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIIjYsruvB2lNK7UYBEEQBBEYUrAIgiCIWLK7vwdXLvoPvrz05VKLQhAEQRCBIQWLIAiCiCXbe7sBABu6O7C6s7XE0hAEQRBEMEjBIgiCIGJJTSJp/v3YtnUllIQgCIIggkMKFkEQBBF7GiqrSi0CQRAEQQSCFCyCIAgilujc3xUKDVcEQRBEeUAjFkEQBBFLdN1SsXrSqRJKQhAEQRDBIQWLIAiCiCW8Batfy5RMDoIgCIIIAylYBEEQROzRdf9tCIIgCCIOkIJFEARBxBKN06o0kIZFEARBlAekYBEEQRCxRyMTFkEQBFEmkIJFEARBxBKds1qRgkUQBEGUC0n/Td6fzJo1C1OnTgUAHHroobj99ttLLBFBEATBo3F/6+QiSBAEQZQJ+62C1dDQgMcff7zUYhAEQRBucDqVRvpVJPxp61qs627HLYccWWpRCIIg3rfstwoWQRAEEW9sLoJkwYqEh7esBgCs7mzFjPrhJZaGIAji/UksY7DefvttXH311TjuuOMwffp0PP/8845tHnnkEZxyyik47LDD8IlPfALLli0LdY6Ojg6ce+65uOCCC/DWW29FJTpBEAQREbxKRTFY+TOQsWqJdVPhZoIgiIIRSwtWb28vpk+fjvPOOw9f/OIXHb8//fTT+MEPfoBbb70Vc+bMwYMPPogrr7wSzzzzDIYPz67InXPOOdJj/+1vf0MikcB//vMfjB49GuvXr8dVV12FJ554AnV1dTnJq6pKTvt5HSvKYxLRQPcm3tD9iTc53R9uUz3svoSDvnTa/LtXSzvuCbVvPKH7E2/o/sSXUt6bWCpYJ554Ik488UTX3++//3588pOfxPnnnw8AuPXWW/HCCy/g73//O6644goA8I2vGj16NABg6tSpOPjgg7Fp0yYcdthhoWVNJlU0NeWmmHnR2Dgk8mMS0UD3Jt7Q/Yk3Ye7P0MFq8281oRSkr92f6Oni0oZUOccuenfiDd2feEP3J76U4t7EUsHyYnBwECtXrsTnP/958ztVVXHMMcdgyZIlgY7R0dGBmpoaVFZWYs+ePVi7di0mTpyYkzzptIbOzr6c9pWhqgoaG4egra0HGkV1xwq6N/GG7k+8yeX+8H1rKp1BS0t3ocTbL9jR1WH+3d7VZ7YnvTvxhu5PvKH7E18KcW/q62tQUZHw3a7sFKy2tjZkMhmMGDHC9n1TUxO2bNkS6BgbNmzAt771LaiqClVV8Y1vfAMNDQ05y1SIF0rTdHpRYwrdm3hD9yfehLk/fNxVRqf7mi89KSvuKq1pjvakdyfe0P2JN3R/4ksp7k3ZKVhu6LoORQnmY3n44YfjySefLLBEBEEQRD5otjTtNHHJl14uBiutaR5bEgRBEPkQyyyCXjQ2NiKRSKC5udn2fWtrq8OqRRAEQZQzllKlk4KVN70ZS8FK6aRgEQRBFIqyU7AqKysxa9YsvPbaa+Z3mqbh9ddfx9y5c0snGEEQBBEptjTtJZPi/UOaU6rSpLASBEEUjFi6CPb09GDr1q3m5+3bt2PVqlUYMWIERo4cicsuuwxf/epXMWvWLMyePRsPPvgg+vv7ce6555ZQaoIgCCJKdHIRjBTeCkguggRBEIUjlgrWihUrcMkll5ifb7vtNgDAtddeiy9+8Ys4/fTT0drairvvvhv79u3DzJkz8dvf/tasgUUQBEGUPzpnw9JACla+8CpVmlwECYIgCkYsFayFCxdizZo1nttcdNFFuOiii4okEUEQBFFseJWKYrDyh7cCpsiCRRAEUTDKLgaLIAiC2D/gFQLKfpw/NhdBsmARBEEUDFKwCIIgiFhiU7DIRTBveJWKLFgEQRCFgxQsgiAIIpbwShUlucgfPqaNFCyCIIjCQQoWQRAEEUt4t0CdLFh5wyupg1qmhJIQBEG8vyEFiyAIgogl9hgsUrDyhW/BQbJgEQRBFAxSsAiCIIhYYncRLKEg7xMopo0gCKI4kIJFEARBxBJSCKLFluqempMgCKJgkIJFEARBxBJewaI6WPmj2f6m9iQIgigUpGARBEEQsYRPbEEKQf6QkkoQBFEcSMEiCIIgYkmGCg1HCq+kUlZGgiCIwkEKFkEQBBFLeBWAsgjmD6+kksJKEARROEjBIgiCIGKJTkkuIoWsVgRBEMWBFCyCIAgilvDqAMUP5Y8taQgpWwRBEAWDFCyCIAgiltgtWKRk5YtdYS2ZGARBEO97SMEiCIIgYokmfCadID90smARBEEUBVKwCIIgiFgiWqwo0UV+2LMIEgRBEIWCFCyCIAgilohKQFoXbVpEGPjMgeRuSRAEUThIwSIIgiCKyv2b3sNNS1+11bmSIbqxpTRSsPJBJwsWQRBEUUiWWgCCIAhi/+Kv29cDAFoH+zGyqsZ1O7FWU4osWHlhzyJIEARBFAqyYBEEQRBFg7dadacHfba2qwGDWqYAEu0/UNp7giCI4kAKFkEQBFE0etMp8+9frV/hua1oryIXwfwgCxZBEERxIAWLIAiCKBoDnBVqRWeL57ailYUUrPywZREkCxZBEETBIAWLIAiCKBr9GUvBOqppjOe2GrkIRgqvU5F6RRAEUThIwSIIgiCKxkAmbf49tnqI98aGFlCpZocqsmDlBxUXJgiCKA6kYBEEQRBFo5+zQvnVtWIWrISiACCrS77wMViidZAgCIKIDlKwCIIgiKIxwLkIan51sIyfFSiFFGm/wZ5FsGRiEARBvO8hBYsgCIIoGrzVyq/QMLOyKKYFi7SCfLArtNSWBEEQhYIULIIgCKJo8EqVn4sgI0EWrEjgVSqKZiMIgigcpGARBEEQRYNXsHwtWDqzYGU/k1tbfmiURpAgCKIokIJFEARBFI2gVivA0gFUsmBFgr3QMGlYBEEQhYIULIIgCKJo8FYrv2K3um6PwSLyg1eqSL0iCIIoHKRgEQRBEEUjw9Wy8pvkWxYs9pnUgnywZxGktiQIgigUpGARBEEQRSPN12IKmEVQJQtWJNhdBAmCIIhCQQoWQRAEUTQyYWKwWB0sKjQcCfYk7dSaBEEQhYIULIIgCKJo8DFYms8knykBlosgkQ82CxY1JkEQRMEgBYsgCIIoGnwWQb9JPvudXASjgZJcEARBFAdSsAiCIIiikQmRKpxZuBSWpp20grygNO0EQRDFgRQsgiAIomhktPBWFNWMwSKlIB+4picXQYIgiAJCChZBEARRNHgXQd8sgro9BquceGjzKtyxalGs0qGTgkoQBFEcynHcIgiCIMqUTIhU4ez3cswi+Ni2dXi5eSdSIbImFhpe1/NLMEIQBEHkDilYBEEQRNHI2JJc+GQRNC1Y5Zvkws9KV0w0SnJBEARRFEjBIgiCIIpGOicLVsHEKTiZGClYtiyCMZKLIAji/QYpWARBEETRsFmw/LIIMgsWcxEsQ6UgTgqWLclF6cQIja7raB7oK7UYBEEQgSEFiyAIgigamRDFbnUxTXsZkolRDJbdXbF8VKzHtq3DpW/9G8/u3lJqUQiCIAJBChZBEARRNNIal0XQZ5LPflXLuAxWnCxYvMVQi49Yvvxl+zoAwFM7N5dWEIIgiICQgkUQBEEUjUGNT3LhvS37vdySXPBKVawULLM9ywt2/zNlqWITBLE/Um79LEEQBFHGpLSM+bdvDBbsMVjlAm+lS8fJRdBsT7WsamL1ZNIA4pWRkSAIwgtSsAiCIIiiEc6CZY/BiqtSoOs6nt29Bdt7uwGEK6ZcTFh7JhSlrFwEGV2pwVKLQBAEEYhkqQUgCIIg9h96Mynzbz+FSYzBiivLO1pw97qlAIAnjz8bS9v3mb/Fy4KVRVXi5boYFKXMLJkEQey/kAWLIAiCKBrdaV7B8kbMIhhXnaB1sN/2+dcbVph/x0mR4Qs3x0eqMJSn1ARB7H+QgkUQBEEUDV7f8HOfM5MysDpYhRIqTypUayjVdB3NnMIVKwXL+D+hqGVZU6wc3RoJgtg/IQWLIAiCKBq8W6DffLlcklxUKNZQurKjxfZbRouPi6BpEVTiq6yK8IpgXGPwCIIgREjBIgiCIEqCbwyW8bOlXsVzgs1bsJ7ZvQVVasL8PBgrBSuLUkYugnz7zapvKqEkBEEQwSEFiyAIgigJvlkEBQtWXJWCJGfBenHfDhw2zFIEerikHqXG4XJZBm6C/Vra/Lu+orKEkhAEQQSHFCyCIAiiaOi2vwPGYMW80LB4FSkuc+BAJoP4wJJc8J/iDd9+WllITBAEQQoWQRAEUSKCWrBYCFZcDS6iopjia30VWxgPrDTt8bYI8gxwhanjVFOMIAjCC1KwCIIgiJIQuA5WzC1Y/MT/2BFjbQpWrNSYcnQRzJCCRRBE+UEKFkEQBFES/NI/sAl13LMI3rNhufm3CsXmIhin1OKOumKlFCYgfRkrBosULIIgygVSsAiCIIiS4GdBMS1YpktbPCfYO/t6zL816EjH1EXQak/xm/hicxEsoRwEQRBhIAWLIAiCKBq8TuU3vbcsLuWDpus2C1YclRhmwYqTdc0NsmARBFGOkIJFEARBlARfC5YYM1RogSIgo+sYtMUNlVAYAV3XocBSWONqEeThswhmdLJhEQRRHpCCRRAEQRQNflLvN71nablZkotyMGBouo5+jU/NXhyhu9Mp/HfPNgxq7mnhdWSVK6XMFFZGnJRVgiAIL5KlFoAgCILYP/G1oBg/KzFPcsGT0XUM8G5tRTrv1Yv+g/bUIB7avAoPLDxVuo0Oe1uWg8LKPyNvtu4uoSQEQRDBIQsWQRAEURL8LBKaIwYr/hpBW2rArlQVSYtpTw0CAJoH+123YS6C1sAf//Ysh1TyBEEQIqRgEQRBECXBtw6WMblOlJEFq5+zXgHFsWAFVUJMddVoz3KIaCoHGQmCIERIwSIIgiBKgn8MVpZyqtuUEZSdYsj80r6dAbe0J7koBx9BsmARBFGOkIJFEARBFA1+uhx08swMWOUw1eZrYAEoihIzoKX9NwKLweKShhRQpqggCxZBEOUIKVgEQRAR8ezuLfjeyrccVgxCjq8Fy2hHtYxcBMV7XwwFoVJNBNpO1w1roNGcWlmoWJaMTZXVJZSDIAgiOKRgEQRBRMTd65bizdbdWN3ZWmpRAvPcnq1Y09lW9PMqCFAHS0jTXg42F2etpsLLnOKsZg0VVb7bWy6ChZEnSvhEKOVQt4sgCAKgNO0EQRCRUy5JGfb29+Kna5cAAJ48/uyinJMpVQoUX+sOm1ybLoJlML9OixasIsic5pS6SbVDXbfTzRis8nER5JUqqoNFEES5QBYsgiCIiAnqslVqBsV4oSKiKkFisEQLVvxJCxasYlhdeAuWl9sfq4NlxbTFX2PRuGekHOQlCIIASMEiCIKInHKJGUqqlpzFihtjZ1GgBM4iyNqzHKbXWgmyCKZ4pc7jhKwOVnlZsLi/y0FggiAIkIJFEAQROeIkO668zKX3bvUoUFsIVEUJXAdLKSMLlnhFxUgzHsqCBSsGqxweU779yiMpB0EQBClYBEEQkWCbCJbDzBXAg5tXmX+LBXKLgV8zWdYu8Zt4Ma2uoaTnTwV09dQBoNxcBLm/qSYWQRDlAilYBEEQETCgZcy/yyFNu2ixCjpJjwpV8Z/g67oOFfGvg+V1HcVo1ZRuPXveyn0ZugjaLFgEQRDlASlYBEEQEdCfsSa5v1i/tISSBKN1oHQKFpvk+2YRRDYpQ9zxVGqK7CLoqV7pootg/FUs3i2wXCzDBEEQpGARBEFEwIbuDvPvTT2dJZQkGEnV3v2nHPWbCgOz9gSqg2UkZbA+F06ufPBquWK0atqmYPnFYCllZcHiIQWLIIhygRQsgiCICPjBqrdLLUIoxHTiKc7FsdAoyFqmgiRpLweFwGviX5Q07dy9DKSDlFMMlq3QMEEQRHlAChZBEEQE9BdRQYkC0SWQfc7oOm5a9ioe2bK6oOdXofhbsKBDVeKfQ9DrOophdMkEzLSXbU+urlgZaCx2JbAMBCYIggApWARBEPslaUHBYkWHd/X1YEVHCx7durYg59VDWCScykk8J9jeaSUKL7MesFGz1iBLXS2HtOf2QsMEQRDlASlYBEEQETCyqqbUIoRCzHTI3MzUopiLlGBZBA2LS9xNWKXOGsmf3Vtpysa0qeVjwBIKDZeDxARBEKRgEQRBRMJpYyaXWoRQOGOwsp8TSnGGBQWKb9ICDfYiw3GdXnumaS+C0EGd6HRkU96bMW1xbVAOnSxYBEGUIaRgEQRBRIBaBunEeRwWLCOGrBjXoSjZLIZpXfeJX9KhKErsFQK/2lOFxqaE+MaD8QprTBuUg7fIxV9agiCILKRgEQRBRAA/sT20vqmEkgTDYcFiLoJF8sdLGoqcX1KGMvAQxN6BPtffil0c18/pMusiGPcWtRD1xTi6CaY0DU/t3ISu1GCpRSEIIiaQgkUQBBEB/ES6HCawYpKLYhUaZlYT5orodV5dFxW++E2u13W1S79ng2sxFIKgcUrZtPcW5VBXSpQwjhL/v/VLcc+G5bhnw/JSi0IQREwgBYsgCCIC9ICpsuNCWphcDxougsVwG1NgFTr2ShBhxQxZn+PG6s5W6ffFVLL1gG502fZUYt2eIuLzGEeZX9m3EwCwpQwKjBMEURxIwSIIgogAW6xIGVgGMi5JLgoNaxnmIiha0ng0PevShjhbBDnZeCnVAC6QUcE/bm7nY88kK/JcLjitbPF7t9jiRG0yWWJJCIKIC6RgEQRBRECY+k5xQLRgpfRiRgspSBougqIcPNkYrPhnEWTYFKwiFvO1WbBczse+VrgWLUcXwWJkZQwLe3OKlYGTIIj4Q70BQRBEBPCT3HKYuGZcYrCKJbmlYHnEYMHu0hZ/LEmLasGy/e1iwWJ/KPbU93GnHCxYjGQZWQYJgigspGARBEFEgGb7O76TQIbDgsUUrEIrh8bhk0a1W08FS9ftg1QMFVd+Ss3Pr5mCVWyJvSPamIug37bxoXzUK7JgEQRhQb0BQRBEBNhrEZVQkICwulcnj5oAwIojKQYKrMmoZwwW4p+UgZdJ5iJYjGfB5p7qckL2NZ/2vhxiBUUZ42wdTpKCRRCEAfUGBEEQEcBP+8rBgtVvKFRDk5UA5C6CXhn+coUdscIniyCflCHONFZUAQAOHFIPu4tg9v9iZGUMkkXQ+p4r3FxIoSKiHN4lhhr3h5UgiKJBChZBEEQE2C1Y8Z8U9mcMBauiAoA8TbtWoMQXigIkDD81t+QaZlIGJd5JLpiCeHjjKJu7Y7tRdPYfOzcVXIZgdbAMhVXhv4lji3pTfhITBLE/QgoWQRBEBPAr7cXMx5cr/VoaADDMsGANMlc9bgZbCAsWg7lTick2GGzyr8JSsuI4uWbp7hMlTHBgr8Hmso3xf7nFYIkugXFevIivZARBFBtSsAiCICLAVosoxpNAxoBpwTJcBHVmwbLY0tMV+XmZ4uSXpt1Kxx3vnHdMCS1lgoMgFiwrBotL1B7/x7SsklwUckGCIIjyghQsgiCICCi3QsOmi6BoweL45YZlBTm3AgUJ3yyChgWL165i2K6WgmVXA6fVNQAo/iDr7iDIZREsmjT547BglUiOIJTDwgpBEMWBFCyCIIgIKLdCwwOGi6BpwTKTXFjS96ZTkZ/XTHLhk0VQ4ywuccbNRbChMpv8YtawpoLLYE9y4V0Hyx7TFv8n1WHBirES41VygCCI/QtSsAiCICLAlhyiDCauA0ZSi7qkmOSC36ZwE8aEj4sgb3Gxvosfbi6CrOhsMdzG7Gna/bcxvyuMOJEiKlRxljlVwPeFIIjyghQsgiCICNDKLIvgYCY7GaxJJJFQFGmSi75M9BYsdnzLkOJvcYlzWvGudDZboGjBYjFmxXYbc7dK8YWG42kVfGzrWnzhnefN+EDAuVgRZ6vbe52tpRaBIIiYQAoWQRBEBNjqYMV3DmjCLFhVagKVqmoWHuZF78tk0J9JR35uBVYhXre2YkpqNotg5CJExqNb1wIAegRlVDWELoY10249ddsmS5wLDT+0ZTW29HZhWUez+Z1DxHiJTBAEIYUULIIgiAjQytRFsFJVUaEkTAuWaCFYWaBVeStVuEsWQXO7uDsJZmke6Ld9NtPQF0GJsSmpri6XBjGvKwbAptSzd8lUyGMotRrzOEGCIIoPKVgEQRARYI+Did8kUGRQy6BSVaEoimnBksm9r78v0vPq4oTZx4Jls7hEKkm0iK6ALEtisV0EXRUQrj3jDlP+edQYmzErVZpKEQRhh3oFgiCICAjiphUndN1ScirUBDRkrS3F0AcUhS8eHCTrXXwn1wwdOmYMbTQ/FzMGy/bsuelXxv/loLD28zFYQhr8OMocR6saQRClhRQsgiCICCi3JBcadFPJqTBW4FPSNNPRXgs7mmp+diuMa7d0Zb+LVJRI0XTdZmVJFDOLoCCH1zaKosQ2yQWDdxE0nxelNBbBIPAyxVE+giCKDylYBEEQEWCb5JbBirau6+YAYKYU17QiZWmzMgO6WVz4Noy3OpBFvAzTglWM9uRO4XY+XeIiGNeFAN5FkCkscXYR5J/hYijUBEHEH1KwCIIgIsBuwSqhIAHRYLnpsRpOKd05PS/UpbSnBgC4p7YWLRfZ7+LbsOeOP8hmbUsU0eJidxH0sWBxpZvj2pq8gsWuLRHjVP38W5OhYsMEQYAULIIgiEgoTwtWdtKaVIvnzsZ4ZvcWAMC/jP9FmChxj8AaXlkNFcCBdcNsgiaKmEWQd7vUIbdM6TaLYJxbFLY6WOxSmKIdN6ubqNCWQ4kGgiAKDylYBEEQEaCXWQyWDitjN3NnS0tcBAtxJUGm92a2wWxGjAJIEQ26rkM12m9FR4v5vapkB9hiWrDUAG6JMW5Kk14uBmuQq9cGxM+C5VSwyIJFEAQpWARBEJFQbhYsTddNS4apYBUhi2BQ5VOmmMSxVXXoUF2UFlVRiqNgGaew3BIl2xj/K1B8a5CVmt60pWD1GcpWTTIJIH4ypwWFKhMz+QiCKA2kYBEEQUSAPZNYCQUJiEwxkE5eC6AghDGiqHzMUAwtg5oud7lToSChqEV1EfSK+5KJEcPmBGApVQDMAtjVzIIVM5nfbNlj+0xZBAmCAEjBIgiizNjc04mN3R2lFsMBr5zEbZVdBq8Y8G5jcZGcWQEVJd4xWK4WLCXrJlhMa6apYEnOyZ7JbExbnFsU6MmkzL810/3Ru25aqehOD9o+UxZBgiAAIFlqAQiCIMJw7bsvAACePP7s0goiYK9FVDIxApNVDAwFi2Vo83Ati+68AWOwzCQX8VYGNLhbsFQUyUWQZdoLkLlQVfgsgvF8UDOa5XZnJrmIaRbB6oR9GkUWLIIgALJgEQRRRuzt7y21CK7Y0rTHbhpoR9d1m6LD/s+muCiC7IqCs8ZNAQA0VFRKNykbC5auSwv3KkDxXATNTHtGkgvJOW3fxbBB+fTmsjQriiL9seSs7263fSYFiyAIgBQsgiDKiCXt+0otgit2C1a8J1lmwgNmwTL+bx3sx9O7Nku3jfrcRzWNAQC0pwY9N+RrS8WxVXXo0oFUUZSsi2ARLVjJABYsW6HhQgoVkpQmV7DEemhxSyDzj52bbJ93x3gRiCCI4kEKFkEQZUOcXe/sFqx4JmRgmGm9he+/teINPLt7a8HPrwDY3NNlySOzuPCWCyWe7mGAPZbtgNqh5vcKjCyCRZDakeRCGoPF5LJKDcepPQc5BUt8lwC7oh0nPjJmsu3z33asL5EkBEHECVKwCIKIPWwCXpVIOL6LC8WoHxUVTFE1LVge2xbqOqq5eymmugbsMVhxziLIJ7lYMHy0+b2iFC+LILtJXsWNzeeTd7mMUXPaLVicYOazanyMkcwAUJussH1urKgukSQEQcQJUrAIgog1z+zagnNffQrbervMVM1ANrlAnBAnfnGOw7IsWPYkF8U6OwCcPGqC+c2AJlGwuKx3TBlrGxwovHgh4S1YKheLpcBq30K7CdqKMrudz9KvHPvFgZSeMf+WScXaOG4ugmIbHt44skSSEAQRJ0jBIggi1vxi/VKkdQ2P79hom8xoEqtHKdE4hQAoD3dGM8mFpwmrMHWwKtUEpg9tBAAMZDKObfg4MWYV6NfSju1KjQ6dswTyCpZiWrYKr2BlCe4iaP8uDvRwxYV1ScIY1fMhLSGGqONrhgCgNO0EQWQhBYsgiLKBV1paBvtLJ4gENq8Kkiq71DiSXBTz3FyzsLbKSJRl1n4qFFSo2aEqJbF0lRpdt5Jc8PWwFMXbZS9SGYz/PQsNc+qULOthqfknl1yFv8tM6t19PQCA/ky8lGwmX9K41+kYv/cEQRQPUrAIgsDHX3sKZ778RKxXXxXYJ6qrOttKJ4wEZjVgk+o4uV+J6KbyksXLRbAQV2EWOPbYxlICs9YuIJ4KlgZLYVEFC5aXAhkl7H4mzDTtkm2M/6VFkWPAwYY1E4D0odvW1w0AeHzHxiJJFAwzg6PKlOn4PaMEQRQfUrAIYj+nOzWIPsNFa01na4mlcUdRFJvSMqa6toTSOLEmucyKUEppvGFTwFJbMhSP7IB8DJZpwYrZ5FXnrGyAvT1VWIrhgOZ0gYxUDuN/TwtWzJOGVKnWdIR3cdR13aaIx9VyXUEWLIIgOEjBIoj9nD5u8vdejBUswD5xjJu1TZzklocFiykGHttGfW7ub6+JPq8QMDnjpBAAvKKa/d82oCqKmfWy0AoWwzsGy/qu31hQ6S+SXEHgFRN7DJbd0nkEl6kxDpgugmTBIgiCgxQsgtjP4ScEsQ0kR3aSxU8c0zFzFzNjhsogBstWYwrFzSKYTQphP6+spXgZzRTdRZAvDEwRUFwsWFWGBWswUywXwQCFhhXgP3u3AQB+s2FFQeUKA79g4ozBUvCpiQcDAIZXVhVTLF+Y4mpasGLWLxEEURpIwSKI/Rx+MlbBpUGPI3wxUlntpKjRdB3NA32Btg2SyS0u8Nah7P+eW0d+bkWwnEmtfcZXKmfBipvSamW4g/G/PU17VZFcBHf2ZxNAeNbBEu45ALSl4pP23m750W1/KwqQMBo5ri54lgUrnvIRBFFcSMEiiP0cPlZoMEYuQwCwj1NuFCjY1N1hfi6GgvWztUtw6Vv/xuaeTt9t2WTbTHIR43mWmPq6mLFYOqyYGstF0LmdZcFSTEUsbkqr5qGoKoqCSmPSXWgFKxPAghVnl1VAsGDxdYb1bLsmXZTHjd0dWNHRUgwRpTBxkgpTAMmCRRAEKVgEsd/DrxzL6hGVEj4lc4Wqop1bcU8XIYsEc6V6tXmn77ZimvY4T2gtxcD+v4xCxGCJdaOkSS64Wl1WDFZu52wb7Mft772FtV3RZp4UFVWHBSuRBGBXsO5ZvwxnvvwEulKD0cjANQpTQrzrYMUTzRZ3ZY/BAp+RUXDBu27xi7hp2avoTZcmfbvpImhYK8mCRRAEQAoWQez38JOxYgXjB8W+qq2jK50yPxczo9zftm/w3cZK0x7/LIKlLN7K143ychE0E0jAUshytWD9v/XL8HrLbvzPkpdz2t8NUVG1pWnnLFiDxsKFput4yqj39Mv1y6KRgWsTKy28VwyWJePoqvhk4rQ5Ber2XxR4K+MA0Fqi7IJWHSyyYBEEYUEKFkHs5/CKQNyKePKr2s/s3oL2Qd6CVbyJTBDF01GLKNYWLMs6xP8vI+oFeb5ulBLAMqUo+acVf6Nld077+aFzboz8/4A8BqsrbVmt2iOKf+ItuUFdBG+cfjgA4OgRYyKRIQrsViun/KqHMg4AvZmU9PtCw55JMwYrzisrBEEUDVKwCGI/x+YiGGML1oCWwXaj2CgQv5ViJo3pIhhDV6G/bV+PK99+zkwWIlMMCokuKHbm95JJM3suE4piWtri1qJiwWZ+QFVgpWlnsY19nBvbzPrhkcjAv79WoWH3JBcJRTHd2eL0iPKyiOkusrff2zJcOhfBLFYdrHj1SwRBlIZkqQUgCKK08JOxuMVgedWUiV1GOTHRQOzUAeB3m94DANy07BUAdpc2N6KMJbPigOxJIWRnYEpghaJGmvq+N51CbbIi7+MAzoLNNguWwlmwjPeqh7MQR/Wu8Vn1WKY9mYugmTQEljUoTs+ozYJlq4nFaqE5t+PpKZEFi+GWhIMgiP0TsmARxH4OP2kdjFkNF6/JSrEVrDafGA8rTXv8swi2GwkWrAK5RbJgifW3PCxnKcPqU6kmPBWxsLy0b0cER8kiFmy2xWBBcbgIbu3tMn/vjcgdly1CDEkkPZNcWG6h8Ux7r7v8beJjxVzZUZoi6WYMlkoWLIIgLEjBIoj9HF6J8bIYlQKvCWCxV99TPsqnVgYWLBE20S5Wrgu3+luy+2xasFQ1UoVgXE1d3sdgiAWbVa4dFViZ5di19HBJWqKaiDML1uQh9VySC+exWdOpnMtlnKwtdquVPR4rm0nSe7sndm4stIhSmAwVZMEiCIKDXAQJYj+HVwTiNjnwkidusoqZ+eJkHXCj2EkETSsKs2B5WM6YkpBUVNPSFYW7YpSX7HR5tGcRZAMse1Z5q1VUzwdLW55QvC1TGvd8xjGmzc2CxWKwFInMvHvkofVNhRTPFdNyzQohx8wLgCCI0kAWLILYz9H0+CpYXhRbgfGzOLDg+6SZ5KLQEuXOLCPBgkwxEInyMtixRMuZ7BwZ3uLC9o9AmCgti+wZVE0Llj2LoGhR6uUsWFE9v0zJSCqqZ4kAWV2xOC0C2JUqXfhenkmSt9SNqx1SSPFcMetgkQWLIAgOsmARxH5OnF0EvSwWxZbUr7Axk7Uc0rQzmEJQLEOWmFnRK/26pbwoedfBssuQ9yEAZJNUXPrWvwFY03+7i6DiSJvex1mwono60pJsi7L3mH3DW7BipWDZat7ZfnCtg8Vbi0p9LRSDRRAED1mwCGI/J84WLC9p4mbB4mNcgGiz70UNiwUy9QEPDSvKdPOmBUusgyXZlndps+pl5SZLTcJaS8xEdF/+sn2d+bcqdRG0rpNZmfgyCFE9vywFfFLlsi16JLlQoXhuVyq8LFjZYtPZz7zM6Rj0Xey0lEWQIAgeUrAIYj8nzjFYpVawGiuqzL/92kYzLVjxdxHcbGSzYxPtYmURdBQ49igey9o7a5kx9s/xvG6JEfJhV1+P+bcspkzlLFjMomSv9RSNHC0D2eyW1WoiUKFhRbEG/lJbfXjck1wA4JRsvtkyMVCw2H2sIAsWQRAcpGARxH5OxuaaE58JFwBPDasYslYahWKBIBYsHSq8M+PFjSLnuLAm+eb53ZVR3uLCtsu1Tfm9IksuwR2HyZdQ7C0qWjX0AixmpIzncnhltakoS+tgySxYMXpG3ZJcAO61u+ztWRrFpiM1ACBbTiArR3zalCCI0kEKFkHs52i6fMISB7xjsAovaxj3yez0TkFPOhtnM6iVpmhzx+CAWUPKDzFdeqEx07QLsV+y+8zHYKkelq4gaKJFJAIOHtpo/s3k4/UrVbG+txQsi6gsaWa2RdW7IDNfFDmeLoL2e2S1j10p5y+Nl75Uis1gJtuyI6tqAMRLaSUIonSQgkUQ+zk2C1YJ5ZBRahdBvm380i/rug5VAZZ1NAMAfrpuSSFFk7KttwsXvvkv/GTN4kDbm7FQHvnao2xlTbRgeaQLl8Vg+eQZcaUQE3FeiZVlYxzQNC7GzFCwbO9aNHKw5CsJhXdJlLgImhasmGYRFETRue/dklzoIRZACoXpIsiS28SoTQmCKB2kYBHEfg4/MYkyoUGhKcZEJowFKxuMb02wd3IxOsViUeteAMDLzTsDba8I/8t+ixQ3C5aHS1uC277TcMcKf9rorbR8TSumqPIugm+27HbUGSukq2JS8bZgsW/sWQQjESESxPvC268UKJ7xekDpFBvzOVXjZxUkCKJ0kIJFEPs5hXCfigovhS+qbHBe8G3jG4MF3VYHqRSEjUPxktdy34sO0yolqG9SCxbvImh815NJY29/b+jz2lOAR3NFfMp1WSueOW6KT4xZJGKY9zxrwTJivjxcLpUyyCIIyFL6O5VHe4Ke0tjfmQxJsmARBMFBChZB7OfEOclFyV0EQ0zgmCtTKQnrJsXklSlaXm6DuSLeMy8lzlKwVJss77btDX9e23FD7y6lP8O5CBryre5qM78bU11r/m26CNpkishF0My2aFmwPJNcKIqp4PZwhY9LjfhsWG2mQ1FcimFzu8QlTXvc+lCCIEoDKVgEsZ+jcYpD3JJceFFsF8G0z/k06AVRSsIQWsEKYMEqRL55MfZLZqm00rTbvw8rjXjsqBQb3oLFFJYBTumqUhMOBbIQljQzyYXiLGzMw1waeUvre52teKc1vMJaDJgibMZgSbMIWizvaCmJkmVZsJhVkCAIghQsgtjvscVglVAOGZ5ZBIsegxUsTXspydWCJbUOFMAeF8qCxSW54AnrhunnepYrNhdBSRbBSjXhqcBG8fz2Z9L43ab3AAAJVTUVvV39zvi/u9ZmE5/8Y+cmm5z/t2ND3nJEgeM+2ax+ltWN31BUlld2tEQq09+2r8c965d5bmPFYJEFiyAIi1LPBwiCKDG8G1wu8S2FxGuuwtSd7b3dWBHxxIphzyLoZ8EqjFtdGHKNwZJJXYiCqVaiBRjn9VdAxHitdV3toRRJUUkvpAWLl7VStYZXptTZMuBFIMNL+3aYfycUBa80Zz8/u3ur534JTk4+WUcpERVfftnHzYIlNmLUb9/vNr2Hp3Zt9ix7wOROelgPCYLY/yAFiyD2czKCG5xfOvJiEiQG6+p3/oublr2K/gJMFMNbsBRHsdliElZ5MBUcD5GjnC6yyaiZ1twjMxwfM8TzzO4t+Mu2dYHPKerFUcVgySxYU+uGcd8pThdB7jqjmIizpBZAdoLfHTCmim/T3pjEYblZGnXAiMFi37vvk1QLM6XxUuhZr8DuRZwShxAEUTpIwSKI/Zw9gtWqEJaL3AnuIvhmy55oz6zrtslSKkiadgU4c+yUSOUIg59lR1T+FH/9KlIcdbA8suwxy6rMJfDhLasDn9NhwYqqDhb3nrDrOGHkeIyrGYJPTJxmfC/Iwru3RSBHklOwdvf34uLJMwEAk2uHeu7Ht2lc1AFRMXHmEJTUwRK2qlQTBZHNa9FJMy1Y5CJIEIQFKVgE8T4mrWm+A/7TuzYXR5gc8LRgCb/ebcSYRIU4pRrwsZANaBl0pAYxrKIyUjnC4HevJwoTb+bS5uWqF60FK/u/ow6WlwUrT/VPbJLoCvzyCpbxv6Lg1ws+gEsOmGl+BuRtGEWZgQrVapsBLYOGyioAwJbeLs/9+Ge01KUFTITmMC1Y5jPDNuOcB4V9CpWq3SvBDZMnyepgkYJFEARIwSKI9y2aruO8V5/E9YtfDL1fXPASRYzZmD60MdJzi+3Q46Fg7ejrNv8+e/yBkcoRBt/YJJckE8WaY+uiBctDATGTB0iEm1BTF/qc5ueInm+/rJKyc9qVg2hdBCuUROB3t4Kz9MRFwRIVXz63qQK5tVO8t4XKIuhl1ecXAhTEq/8kCKJ0kIJFEO9TBrQMNACbejpD7RcnB0EvdNgnqVOHNkR6fHGiNOgR6M7H41QnkqhUVTSUwJLVlRoMtb2V5MI+yT66aQwumjwDQLSp+01rBAQLluQUZmFcQ8ZzOMV1Qm1wBcsZgxW9BcsNh4tgAeRgVKqqZzIGN+I6CbDFYMF6Vm1KqrBPSRQs439VyRZwLpf+kyCIwhJJ3zo4OIh77rkHq1cH94snCKKwpHJMVhGnFVi/NO28FcEvy19YxIQBXhPqCkV1fPaL2Yqa/kwaLzfv9NxGlEhUdBjXTJ2N4Ya7WZRYqddFuSQugsb/bGLNZ8YL84w6swhGQ5BYRVnckCVH/s8Hr1BUqGpOMUilznzJcBYatv7nZfS691H2XfziTcajb7ESt2Tvd5z6T4IgSkckClZlZSXuvfdedHaGWyknCKJw5KpgReVCFQVekuiwx1xEHX/Rlc5ag5iLmpdLWFJQsBKKWvRsjO2pAd9tHAqWZG5966FHobGy2n2nPBAtWKqHiyB7DllKcV6JDSOSo9BwZAV+reO4KilC3JA9yUX+MvDX8qHRk3AQl8Uwl2PECVExViXKqih7lNfCv71+LoLZNPLZDKJxbU+CIIpLZN4Bs2fPxsqVK6M6HEEQeeLl0uZFnNIMe9bBEi1YEU9smIJUnUjaPstgZx5fMwRANuC9UO5KbuSiUJtJLjgF4dD6JuOv6C0bZgyWkL1QptRrwrZDkhXWb6EsWHIZ8iVIe4sukPZzR2vBGlpRCUVRMKKy2vPOibGKm3o6Y7Go4lSW7NYhSZ1hB1G+cxqnVHn1LRqshQJViVf/SRBE6YhMwbrxxhvx6KOP4ve//z22bduG3t5e9PX12f7FiS1btuDCCy/EGWecgfPPP7/U4hBE5ARVsNiEmrmERexplydeExsdGY2fBEVrMWJpuGsMt6sgge5jqrMKVkJRbRO0YsAXjB1dXRtoH1madjHpQZSPA3u2xJgvryQXTAkckkw6fgt0zgKkadeEFP5uCo3XdUbRrpphZ/nYhKnmd6qiOOITAeDUMZMAAJ+eNN1xnIEcF2OiRKYIs+8UKOZkxTsGK7p3zl4f0GNxRdctiyy5CBIEYZD03yQYn/jEJwAAt912G26//XbpNqtWrYrqdHnzjW98A1/72tcwe/ZstLa2llocQqAjNYD6ZGVs4gPKkcGAFg02UUzGsFCmp4ugbl9ZjnoVnlmsqhJZBcu72CiLLbJc3zRkJ+LFytLWl7YUrDEuCpbYRrI07Vbii0LAWSTgncHOnFwb2zBLIgDs7u8JfkYxyUXgPd0JOpH3SkMfxePKJvMVXIFd1qYadNO90hDC+D37/0fGTMY/d28BkLs7cZQ4FSzuO8Uli6Bo9Yqw77IVGfeqgwXdbFNVUWLRlmHY09+LYRWVtveLIIj8ieyN+v73v182k+G1a9eipqYGs2fPBgAMHz68xBIRPOu723HD4pdw7Iix+PrMI0otTtnyfzs2BNqOKQ57B7JW5p50CiOragomVxi8pksa9IIWRWbtwhIHBAmuZz0gi9sqpoLV61OnC5DFYDmVKdGtIcosgmJmQPF72XdMHn6PXf29WctBgLYtRKHhlGDmfa/TZZFOcGvjFYIo2jUjWPkATsHSdSS45rGKPGe/XNg0JmYKlpDkQrdUrGyMk3M7pwUrumfVbsHySnJhtX92YSU+C1R+dKcGccXbz2FkVQ3uP/JDpRaHIN5XRKZgnXfeeVEdCm+//Tbuu+8+rFixAvv27cO9996Lk08+2bbNI488gvvuuw/79u3DzJkzccstt5gKkx9btmxBdXU1rrrqKuzbtw/nn38+LrroosjkJ/Lj7ZY9AIBXm3eVWJLy5sV9OwJtJ044n9uzFVceeGghRMoB7+xdhVSwmIugqWB5yWL8zya3zHKQ1jUki5QI+w9b13j+vry9Gdu5el2AvA6WqXQVQC+0XATZ//IkF80Dfeak301BHdAygVbdHZaRCCbhogVLzDjJKLiLoKRWGJvsZ3QdFdy27LJZe/ZnLLfAXOM1I8VhabS7YBa7DpZmU7Dc+5kMLEU/6yIYmQgFp8Mo67BvIF4hHATxfiBym/D69euxYsUK7N69G+effz5GjhyJLVu2oKmpCXV1wWqX9Pb2Yvr06TjvvPPwxS9+0fH7008/jR/84Ae49dZbMWfOHDz44IO48sor8cwzz5jWqHPOOUd67L/97W9Ip9N455138Pjjj2PIkCG4+OKLsWDBAsyYMSOna1bFnMN5wI4V5THLDf7a49QO5XRvxImGl8yi4nBg3bD4XKNkcq0iu0qcXd/mZGduOhHJnjGOXcVZsNyOrSuWi6CqKkgwly2leM/LZqHeGX/ejK7j68tfc+yTULPy8pYgtp+laCmRXEP2GPZ2YodVuHba0duNz779H05GFaqqYELtUCzvaDG/79PSqK3gVQgXxJTwLvdkUesevLJvJ74wbY7N5U5GRrG/M+NrhkiP6dWX6XB/noLCpv2sjQBO2RKukz2j7J4z11cASBlHKuV7rwunVhT+uVSQMGTTFd3xjJrHQHTXwMvz4r4dWNA0Wr6driNhPs+KZz+RK4Uae3TuOdagI+nz3BNyymlusL9RynsTmYLV09ODb3zjG/jXv/6FZDKJTCaD448/HiNHjsRPfvITjBs3Dl/72tcCHevEE0/EiSee6Pr7/fffj09+8pNmcopbb70VL7zwAv7+97/jiiuuAAA8/vjjrvuPHj0as2fPxqhRowAARx99NFavXp2TgpVMqmhqCl70MiiNjUMiP2a5MGSfVX9n+PAhsXM9LYd70zloT9nt9Ywqhh/RCWMn4KVd2zFlZGNBnulcqOt21mJKqAo0TUeyIoFUtfVsVFRmu7Oo7k9NX7ZQ8JDqSqADSFQkXNulXunP7lNVgaamOlRVZGWpb6zFsALUk/KjQpDVrQBtbU0VmprqMGSvVRSZ7Te0O5uqvaamMrLnYU9b9rmsNtqpdkf2vHVDq81zvNm917ZPY0Mtmhrr8JUFR6ByeQKPb866vg4ZVo2mIf5ypXvt/UdVdYXjenRdx7defAMAcMyECfjIpCnhjlmRlLZRSyJr2aqoSKAtmUK3brlxKoqSd7vWtGfbb2id1X6VxrM3rLEW9dyzV2m8Hw3DatHUVIcPDz8Qt658EwDwfOtOzJ0wtqR9G5OPLaAMa6jF8NpsLGEioWLYsFpzO/MZNd47Rs2Q6J5V/h7/Z882fPfo4+QKiKHINjXVIZlQoUEvWP8Z9f1pTVqW14qhlRheXe2xNeFHOcwN9ldKcW8iU7B++MMfYvHixXjggQdw+OGH29z1TjzxRPzud78LrGB5MTg4iJUrV+Lzn/+8+Z2qqjjmmGOwZMmSQMeYPXs29u3bh+7ublRXV+Pdd9/Fhz/84ZzkSac1dHZGZ15XVQWNjUPQ1tYDrZx8DSJkjGp18nuau3xXk4tFOd2b1kH7xKOlpdtlS2AwlZ18K+nsNXV09KEl4b59Menq7nd8x1ygBgZTuPnNV8zvBwayk4Wo7k97Zy8AQMno5vnc2rGtI7ttajCDlpZu6JmsRaC5pRvpSrn7WNQcMKTetGKlUhmbrG4uYAP92Wvq67VkZPt1G23f2zvg+fwERVUV0+I4OJhGS0s3+vuz5+3s6rPO22NfHOjq6EOLlv3t4vHTTQVrb0s3qvv9F19a+nttn3sk1zPAucv19Qz6Xu++PnuSjXRak+7T2Z09956eHlz4n6dtv2manne7dhr3qL/Xktl89lq7kaqw7muf8X50dfajRbGf98nNG/Cl2fNL2rf1G/KpStaVtLWtBxV92WvRNA1dxjjbP5A2r7Wjw35vO7v7InlWAaBZuMfb9rajvqLSsV1G05FUjPfGaLp9zV2Rxl4Wauxp6bKusaW1G3qVfxwn4aSc5gb7G4W4N/X1Naio8C/qHpmC9eyzz+Lmm2/GUUcdhUzGPpiPGzcOO3YEiwfxo62tDZlMBiNGjLB939TUhC1btgQ6RjKZxLXXXotPfepTAIDTTjstcPyWjEK8UJqm77cvaoa77sFMxp4JKwaUw73p5zLKJRXFU14zmQAXHB+X65MlJGCWfk0HOo0YAsCKzYjq/gwaE9VKI7tixqNdWJYxxTg/c9NKZbSitWUtF4+k6/Z+KZ1xiSHRnf0X+2zWbpJskyvM7Yq1E2T3TJbwwvitUrEGtYFMJpBcYgY42fOd4sasBLzfFyDbL/HokD8b7FJ29/U6foviPTOfO+4esVildEaDluBcwLj2Fc87zqjfVsq+zdYPGTJmzGuC9axw8ov9g65F96yKde/602nUJZwuqZquZ61umm5GW6YzWkHc7aK+P3y/kNaK11e9XymHucH+SinuTWQK1sDAABoaGqS/9fT0IJHw1/byIWhGKcYpp5yCU045pYASEbnCx9WkNQ3weXQ6U4O4a+1inDv+IMxuGOG98X7CIDdw+vUpLGCfKQVxGh5kMevMgiXGjkUtN7P6sEQKnlkEmWxmkgumlJU+Oxvg/gzI6mCJRNmuZjp7ocCx/RyK8MmeIW/KkHps6un0LPxsQ0yeILmPKdt98r/ioCUQGN3pQcd3UbQri7W0JbkwF0rk5+PHyU9OPBh/2rYWRzWNiUCa/NCFa9Ghm++/wj0FfJISh4IVoTxiHOtARm4F1qE7yg6USyZBvn+i+l0EES2RLbEcdthhrnFP//rXvzBv3rxIztPY2IhEIoHm5mbb962trQ6rFlGeBM3exHh8xwa83boH35AE8e+v7OLqBPkN9mwiljAsNXGaG8hEYZMYMRtclOnEASvteW0ygIIlpMtmMkaZ1cwPe/rqYG1j1cFyUgi7MbtnYnp4Xdeh6zruWb8MrwvZQxPCwtmk2qEAgk9iM8J24mfAfp+CLHKu7WqzfXa7zUxyeS+W/7NhWX2soTzhMskXn1EAGF1d4yFfcWHSmgsoum57bmUZJyU2w8jk+c+ebbbPm3s7pdtpOmxZBLPfxagT9eCdtn3m3+UiM0GUC5EpWNdffz2effZZXHrppfjzn/8MRVHw4osv4sYbb8QzzzwjzQaYC5WVlZg1axZee82aTGuahtdffx1z586N5BxEaeEnOF71Rxi8mxiR5TcbV9g+e6WmzugaFFidQbxWX52yuFraIhabpS4emszGXXi1i1XfKfs5UQIFywu3yZNpzfC0/kd3DVYtJucZ1nd34Kldm/Fai13BElOdh1VeHVYOyW6BrWEGYrp7N0TZ7XKFOqUUsw6WJE2707pjf0Z5+eIwuTYVLMn7rUBeB8vtGFHwl+3rbZ//37plrmd1WLBK35yB+NO2tebfsoUHgiByJzIFa8GCBXjggQcwODiI733ve9B1HT//+c+xbds23H///aFinHp6erBq1SqsWrUKALB9+3asWrUK+/ZlV1suu+wy/PGPf8Tf//53bNiwAd/5znfQ39+Pc889N6rLIUoIP5ENMvE5eGhjIcUpS0ZU2gsFeyoHyBbDjVu2RjfYan2hJ4XMRbCpsto4n/u2bNLHJlgs/iI2LoKuFqwsUgtWAR4Hy+XLOD83mXazVotyhLUSiNvJ9tvNJcIIYgkdV23PSOWW0KDQr5S0DpbipmAZv7sUJS41uqAs6tBNt7yd/T2m3LY6WAGU51wZU11r+9zgkg1UB19PrrxcBHli8AgQxPuKSOtgzZ8/H3/4wx/Q39+Pjo4O1NfXo6amxn9HgRUrVuCSSy4xP992220AgGuvvRZf/OIXcfrpp6O1tRV33323WWj4t7/9rVkDK+40D/ShsbLa4foSVxa37cWIqhpMNFxzCs1KrtaNn4tgRtfxs3VLCixR+XHiqPFY0Wm1o6YDCZfHTdOzky5ZjEOpkUnCu0CNrqrFnoFe123zOrdxwIoAyhJTvtgksBQWLHsBVvffeERXPelx85JKPJa7i6CbkiImubHaNpjyasYeGX/LFKh71i9zbB/kmAxZdrnsOd1bNgqX1oyg2Gf/zv7vpljyzcwrM6WGSWBaqHXg/3ZuBGC8R+y6bK6wbkfJnzkNI7F7t5U46wOjJ0q302E9z/2GW3EcFNawlKPMBBFnIlOwmIteTU0NqqurUZ1HPYWFCxdizZo1nttcdNFFuOiii3I+R6nY1tuFz7/zPE4cOR43zpif9/F0XccL+7ZjVn0TRgkrblGwurMV31yRrQ/z5PFnR358GU/t2mz+nfKxYG3r7SqwNOWJOFR6DZ467JPbOA2zMrH5CZhX3FG+sIlcIoDFTBMmunGLxXBbUfde4ol+AYgpotaRLQuWW7ZQ0bIa1g3LsvKoSOuaVOnlF3KCLDCIW4ytltdY8WrBKGybnhYsQcrudMqQiXcntB+nlJhWYC6JTfOAVQJFlbSmM9YwOsTSBrI2MmMKjc/MErqrr8dV6Y4r5Wh1I4g4E5mL4OWXX44jjjgCH//4x3HHHXfgueeeQ1tbm/+O+xnL2rPJOV7cF03a+rda9+DHaxbjmneej+R4Il9Z+or/RgXEzwJQLlbAohMiAYSmZ2MIoqzbEh1OuZOGwpPS7VOCQk0PkgHcqDRhosWeyyBJWqLC6/rdZA9yzyO1YAluYKp5eh1tqQHpPqKMbkkc3GDXnlQsZU7khJETLBmDHNQ45nEjxuHEkeNx4eTp8u08TYP5tyxzoeOVjwRXVoDRm07hvc5Wx7Zxihky3UetYCtb/87+fKNlt2Mf83OE8jAF67QxkwHIF/ss66jhGmwIOeBSdy7OxEHJJoj3E5FZsF577TUsWrQI77zzDt566y089NBD0DQNBx54IObPn48FCxbg7LOLYwGJM9VcrZredAq1SWddjTDsMIKt+8uwQ3fjhJHj8ZKhgPp1+kklHkWI44Y4FfBLMc5bCeI00MokYZPCzT2d5oTGdeN8zs1ZPgBvi4MYg1XyJBcBJ55mkgPpb9EjTkgZmg7cuvJN6T6iHGpIF0HmRpdUVUDLSJ9vmwUrwDHZ1tOHNuLcCQe5bldo18snd20CAKR0q/+XWU+ZGy0gdxGMg/WCvUO8Aq3abJ0BnsiI3rdBLYNXjWyWdcYYLVssMc9miPaB0ZPwr91bhLT/5UGc+n2CeD8QmYLV2NiID33oQ/jQhz4EAOjt7cUbb7yB+++/H4899hj+/Oc/k4IF+4Tr9ZZd+MDoSaH2T2saPrfovziwrh43H3JksEEnIjK6XhSLUUOFFUzsN4mKo80lDohuTp7KgRH/IkuDXGqswHzrGnilis8yGbWLoBgTEiZNu8yKUEpcLVjG/15ucVHG5IlxQEGeObHPyTXJhWXBcu7HYmeAoNfrjGeSUegYLEZnKmX+LYvBslmtJEpLHCbX5rvOuQDbXZedMhaqFh5fGJotgsrd1e2W6yo1W7RRLEQdVw4YUo/NPdn085RFkCCiJdIkFz09PVi8eLFpyVq2bBmqqqpw0kknYf78/OON3g+wzgwAfrZ2SWgFa1d/D/YM9GLPQC/aB+UuNYUipWWQSET6yLieh+E3QaVBQU4YC5YOHQnbVDBGbcrXTRIsSo5Noz618X8Qa5SZ5IJZsNTSTlwdsSk+adplvxbGgsUmpPYkFykPC7yopIS1DoqWSNl+qZAWLMsS502BPQRNKlXrnTAtfNyVqBJXO8Bqyz1cFsVSwdqDj8F6lksyIWsv8auomrRPsxTuIcaYJypYHYMDGGIoX6xJ2X0oFxfBiTV15pwkTsmNCOL9QGSz5fPOOw9r1qxBU1MTFixYgNNOOw0333wzpk+fXjbpn4vBE0ZWJCC3IOcKbiBtHugreBpgniA1qaJgLxfY7DeJisPKaxwJOsEGuEKZVuhDbLC7lNnd8Ap+biGBgF+qe4Crg4USZBEMIJ9IEAtWlIhp2tnY4NW3iPc7bGpxy/KpGjI498vYgpD8j2vF3PmasFyJssX5RQc/Cx9vwWIFk/m4plIhutm+tG+HbYyUXk2BYrD48iBDJC6Cb7bsxvfeewsfmzAVgPUcmxasMlGwNnELvnEeS9OaZpa+IIhyIbInds2aNUgmk5g7dy7mzZuHww8/nJSrArCt1ypwWZVIFOw8vekUvrn8ddt3mZDFOHOlJ225u/jFBogrhXEaJDK6jt502n/DAiA2g1c7ZrMI8imzCydXWEQrkvh3cc7tn0VQXH23rCXxiMVwS2LgZcEqSBZBYRLNzuDVTuIglXOSC2ZVlGzDnz9Mwgd/C1ZxXAR5ZAqoTdHnRGqszD3bb9SI7/o/dm4Sfvd3EYyq8+KPMkTiIvifPdsAWMWITRdBY0weiJGL4D92bMStK9+UWon5gtnx6Kmc/HnbOnz01Sexsbuj1KIQRCgiU7AWLVqEe+65B1OnTsWzzz6LCy64AEceeSQ+97nP4Te/+Q2WLFkS1an2ax7fscH2uVBTzRf37cDi9n2274plwerj4iG8LADP792GGxa/ZPtueUdzweQKyw9XvY1Pv/FM0V05AedkxGvSqOnZiaBZyDNGNiyZK5ZbYhPeMtGfSeNHq9/B8vbcnwezHRQjBszHzRKwFJZEAMtM1HjWwXJVofzveZRXIKa1FtNby3BL0x7UOsinaedl4OGPJTuqruu2Cba5jY+yX0gXQTel1E/BqlCshbljR4wFAEysrctPmAgQM0zynDp6UqAHMapnlW+7GsNFkLdgNQpFh9l7VMFlOI0Lv9q4Am+37sGi1r227x1xunFaWeN4cPMqAMDTXPkWgigHInMRrKmpwTHHHINjjjkGAJBKpfD666/jN7/5DX784x9DURSsWrUqqtPtt2zgVnGyHWK0KtbTuzbjj1vX4viR4xy/FWs1nlewvDr9+za+5/ium7N+lZrXDbebNV1tWNg0pqjndhQZ9UvTHlMXQVsMlkFSlT/zvNxP7tyEF/btwAv7duRcv423SqmKEkzBMj4HSYxRTNzTtLvvUwhDoVUHy7BgGSfxmjw5XARDJmYwswh6KGb275y//2jNu3hx3w48etRpGFpRaSkDgSSQk+9CxuvNcrc+mYWP77urOFerKjU7BShmsiQ3mLSyeldT6obZSzIYfVYhXFt702nbs8Xc/ngF2y3Girnw+9VvLAWi0idmHo5LX0UQ7xcizVjQ2tqKRYsWmf/WrFkDTdMwbdo0SnJhcPDQBqztagcADM/TPSNsat3XmnfhyZ2bcPMhR5huDyK/XL8MAPCWxCe/WDV9+jN8kgv3c1ZIfLKr1cIn4QiLlRXLqSwUCocFwy/JBZ9FMEbjrDXpstjU3Ykjho/G2617XPdri8BqyCtNqqJ4u1kKikPYVOKFxr3QMFNW3PeN0qJpWfrY+f0Rt8k3yYXsevwsWKxu4equNhwxfHTwJBcu77oKpWALGUxBybhZsFTLgmW6tMUgZkiMwXL7HQDOeuUf+NGc4yJPctE80IdL3/o3GowiwaeOnmQu6PAKynOGiyCDyRxnBUt8XfYKVuO4J4yKQykBgghDZLPRD3/4w9i6dSsSiQRmzpyJhQsX4gtf+ALmz5+PhoaGqE5T9vCrREfnYNU4pL4Jb7buNo4Vbt/vr3obQDZ4+CNjD/DcdpfEZSddpGqUfE0Xr1MmJQNxnDvhry97DQlVwe2HHVPwc4mt4LY6qevZaYsCfrIYnzY0J7LcvW5LDWBkVY3rtgCwrrs9snNnXQSDWbCYRSgZszTtbmLwhX5FCpJFUIhV60gN+u7jSNMeNsmFsR2b/Ip9SkbXzD41K6O76xT7O18XQT+LaBB4Sz9/Hj8XQT7jYEJRUKmqtjT1pcKrOXRdd/z+8JbVOGvcFHHLvGRgC4vtxnOpKIrpUpkOoDSx976YBcaDIi4ssMLT5u8x6asI4v1CZArWGWecgSOOOAJz585FTY1z8kNk4Qe9XFa5DhhSzylYelFXyIs1aNhXXt3PKUvXHUc3BzZwrehsKfo5GW6Kp0yBiVcLMlcsS77pQxuliS7YNe/s63ZMHvJBMVwEg6RpZxahkhcaFvC1YHntHOElmHIYt++1ll2++4jua+GzCDILljw5xpI2e5yeeNTn9263jsXOKcSShSWhKEjrGv539Tu4ePIMjK0ZEvoY/+Ay0h48tMF2bJussPrRD46e6LCqVShqLCwuTAFYY2Q25NGgOxSEtKY5lK58H1XRjU6F5ZLsNf5ZrsHxVbC6BPf5EcIi1ZquNiwYPrqYIoUjHl0pQQQmsiQX1113HY4++mhSrnzgJ1y5BMLas13pOQXR5zrpK9Zk0TX7lYAsbWssFSzhc+tgP25Z/hpWdBRO4RInkW6WQNPyAs6VsWBShcd0EeTmhIfUD5fGabBt+UybeZ2b0wUSOcZgxSZNu18dLMnvhYjLEeNsghRkFV3GkiETCViFhv2zQfIyMvgJP2tjy0XQz4Il/519+9K+Hbhj9SLPY7ix0UixPaGmDpOH1Jvfs/b6956t5n1l44RsUUpRCueuGAbvRDw66g23PUZa17n7kCXf103cXVWUQFYphds+CjkKwa82LLd9FhcvH926tpjihCaGTUoQnkRaWGDbtm349re/jbPOOgvHH388zjrrLHznO9/Btm3b/HcuY7pTg1gVcMU8qPIQZH8NeiC3BZFcJ33/3Vuc++gWOyBSIbNgxaQb5u+TDh3PcEH8v9+yGkvam3HTslcLdn5HmnaXdjQtL4rCTVLi0YaAM7YJyCovXrWwZM9FLvC1rXxjsIz/mcJS6hgsUdla1em0CgDBBoAonwYrDjH7OUi9IPFOM1e/oAsU7BlPqnIFS4zlFJ9/3lrKjiXWPXPD7XfeiiRzxw7CiSPHAwCuPugw2/dMeX29ZTfeMuIUtxuLDrJU3SoKkywiV84Zf6DjO03XMa7GnukwrWvcwkY0GVDFZ0OBYmUE5TTAY5rG2nc033vjODEZh7wQr7U2Eb/4ZZ44ZbcliCBEpmCtWLEC55xzDp599lkceuih+OhHP4pDDz0Uzz77LD760Y9i5cqVUZ0qdly/5CXcuPSVQEoWH0iai3L0arPlUpPRdfwxh1Wn32xcEXofwFmXpBBour0b9RqoZG5icbFg7e7vMf/WdeAXRvIQoDgB0I407a4ugrwLXhwtWGwiG0LBirggJUth710Hy7IEAnwdrGJasNxxe+e962BFj6bzz1uw9hFd2l4z+sC3PJKc2M4puAiK74Y4sRQl4hX2XharZPd0dMXtdz5+Ktenlb0DoiWffzdY+nt2///LuTvyxOGdZ/fFK1ERnxgqxbkIRlV8XGwHRbHuP2/BqhOSRKnm//HKHuqF+O71xiAOT6R1sL/UIhBEzkS2ZHHHHXfgkEMOwW9+8xubm2BfXx+uuuoq3HHHHXjooYeiOl2s2GMMYlt6ujCzfrjntnzHG9ZPW9N17BnotX0uh5WyMIgDU7+HC5HcRTBykXLiqkX/Nf92uJ0UMCVyRtfxzeWvY4VQD8zdgmW5tsU1CguwT0JVRZFOStkEza1OVlj4mk1+SQnMN1mog1WqGCz+tF4ymLXPArg/RiKXcKxc2ue4keMcNfq8MJNcmC6C9t/FfkSUiP/97nVLcOqYSdw2+b/LYmxMUKz6XvIYNUCeCEhEVeJhHWCPQhCZAaAzNWhaiJOKgrSef88lLnqqUJBQnYslDkVMKDsQRwVrWl2D7XNc4kO9+OrSV8y/y0BcgrAR2VLv8uXLceWVVzpisGpqanD55Zdj2bJlLnu+f6jwKipjkMlDwRI7RLE4Z6HdPKbWDSvo8QGnpcXL2hbXLILvCa5L4n2WWd6iYnNPJ5Z1NDuSFri1CptsqopiujOVvgUtRNc7RkIWgxWx4HycTVJRoQH4z55tpruV7OSsQ7VqLhXRRdDl+tdKkgYwvO55IR5T0eKQS/vMHJpdxJrfOCrQ9qIiIvYRDuXCw0VQ3Mevyw8Sx5brggAbDxx1wmw14/yPrUCJxcIUa1Pv/pFzkdd1sw3YdeY7BopjrKIEzAxoiGwmYMlLimgZYVj92gRrUByVQBF+jhOHRQCCCENkClZVVRXa29ulv3V0dKCqqkr62/uJIAOlzYIVclQTJyNbezuF3wvbAU0f2ljQ4wPya3AbNOOaRXDfQJ/ts1j8eKlgXYqSF11cgFzTtHMueLGsgyWZRD6xc5OnS1BUGbz4mk2sXtBdaxfj2yvecGzLzmjFYAVLqFAMqri6RyJBYleivAIzdsk470cnHBT6GCyr2+qgca+wT8L97on49IgxfRkuZXiuLoI8p4yeEGArOys7WvBK804AToWEj7MKYg3KJrnI7y63Dfbj3vXLTW+OXGASeL3b4pDJkndEZbWuTdqdelQoZhvy1i2xvcwkF+z3GLz3DNaeg4J1rhwsWDzlJi9BRKZgnXTSSfjRj36ERYvsGZEWLVqEH//4xzj55JOjOlVsCbJaKCapCIOzfov9i0Knhi1G7JBs8uN21nfa9gbav9iIz8F9G+3xh/lMQvz4244N0u9dY7A4y4uZ5CKGK4V8i46orJZOwpjcv9v4XiTn5BNs8EoK76ZrbWu5EwLWpDeXLJ+5wt+3oGf1ssAUws4qKianjZkc+hjs3vcEjBlh/aZboWHnLbJ/IT5rAxk+ktbXhOVLLsrBd1a+af4tuhy/2cLHpgVwEUT+CsFDm1fjyV2b8krc41domG3FwxYdWdxl5C6CigJFUYy0+u5HFwuMx8GTguGmmJSbwhKHUgIEEYbIYrBuuukmXHPNNbjooovQ1NSEpqYmtLa2oqWlBfPmzcPXvva1qE4VW4JkL7P5cYfs4MROe1dfj+1zoSdzuaSVD4us09d0PbBbXRwGNnHCNCBk7qpJJNAXID11lLjGYBn/K4pizsVK34IWMhfBT0w8WKrkvNuWjcuR1dHJ7dyW0uRXuJh3JwRKH4PF4/VOBErFHuEl8FbBwOcXCKuQWGnaWXyM9/Z+l9uvpc2t/C1Y/teXy6IQv4+okDRWVmGXkWQnyKS02XAdy6fYMEtGIFrvw2Apws42Y0kl+HuX1jXOghVNshZxjGP9TlJRPZNSic9zHBb6GOwZcJTuMBMcFd+lcU9/L4YkKxzJQrwIknGUIOJE3gpWf38/XnzxRezYsQMXXHABLrroImzevBn79u3DyJEjMWfOHBx33HFRyBp7/LKXZXQd3elB83PYLlh0EVwkWHAyIVZ4+jNpVAvZs/wG41JZsDK6hgrB2Oo2kMfBNcPPknlIfZPU+hYFJ4wcj5f27TA/J4wCuW7tYlmwYuoiaPzPr9InXJJcMKbWDcP67o68z82UoyDKvRiTYylYpV919Zrsscl5IWpeyWUxzmsmBQh/DLFAKk9/Jo2PvfY0AOCPR52GuopKXxdBsXX8fu/PpF1jA0WCXF4urxtveRSfz0qu/wmzKPbnDWtxetOkHKQBZgxtjKxPUwUF+oyxB+ADo7NyiUoCU3pMpTvPzkt02+djKvl3WTyNw4IVo06UebaIErH+rVJNoL+Iykt/Jo0r3n4OVWoCfz32jMD7iS6OBBF38lKwtm3bhksvvRQ7dlgTurq6Otx11104/vjj8xauHOA7Ur9JyleXvmJbKQrbCfttH2Yw/eeuLThXiH94ZvcWz32KUZ3ezYIlssalrk8cBrahPqtysqfk5uWvYUN3Bx5eeCoqPGJm/BgpTD6TioqMnnFdoeTr+cQyi6AkBktV7PF3KqwaVRldw/zho6JVsAK5/rK/mAWr+DFYbmfykiGIehDlFVh1sIwJaY6KXU0iIY3BfI+Ly/rqslfxy/knm9dfY6T/Fi3Kfojv1KCm2bJvehFMwQrfwvwtFS1Y/NFkda/c6BgcCCmDbt7HMJYIN2RZEVUAn5862/zMx7OmNM28l2yxMH8Llr29FO59DvLcJCKypEUJWxgVF9m0EilY7B6GfQ/7YphGniC8yCsG684774SqqnjkkUewdOlSPPXUU5g5cya+853vRCRe/OFXtbb3SbKLcYiuS22DA6EsLn4dTBh3pFHVzlXgvS6xQcz9ohAWrJaBflz21r/x7O6tAOTuTLIJIks6IBIHlyw/EUQZmwf6sLS9Gd3pFDb2dLrsFYwuzkIKcPEqLqmgzULD3PJA6VvQgsnCu98qsNfBqk0mUWM8D/3pTGQZ0VLm6ngIC5bxOVYugl4KlmnBKpIsgmudnwXIDbe6ZNXc4sTW3i5ouo5njYWjTuPdEPtRR0yWcEwvl0Rf6YM8Ozk8IvwuYkZN/nidqew1swRFXzp4nusxw2Q3fb15F85/7Skz0UiUrtk2BctDppSumW6N1S7jQVhECxY7fVJVbQuMbkku2P9xWOhjWBYsefxaZcR1A/14N4Slc0x1rfm3mCyKIOJOXm/W4sWLccMNN2D+/PmoqqrCQQcdhO9+97vYuXMn9u4tjAtU3OC7rHs3LPdMiSyyZ6AX928KHpD/Iuf6JSOMhUlWzLGpqlqyJVBjrA4WQsF6atcm7Bvow93rlgCQu1TJJqlu/vC/yrGIcpSIA9m4miG2z2INH97dMV8Xx960ffLIJivfe+8tbO3pcpU1YQRzZ7+LD8uMjIt9GleYVSg0rAAYV1MHILtiH1WSDqvGjoqDhzZ4biu6jJVCwdJtf1uf2Jsye9gIzB42Aj+cfaz5m9cA4DXdznUCaSa5CKDYHT9iHC6ePEP6m1tdshohC9y6rnZz0eLpXZtRrSacsUbCYfzeQd3WulG4COZgweL2EZUQfsLMYqNGGH37BOM9kRGmWO8PVr2NQU3DV5a+gv5MOpJFDSsmKJiCBWQXKQFgiGFBy1cMcQxlsiR9XK2ZnHFLcqHp1pMi3iP2/kzz6dui5u51SwNvy9fuioO7dRh29nVLx1xi/yEvBWvfvn2YOHGi7btJkyZB13U0NxcuFXWcELvRRa3hFEu3rG8yDqitt312pA8WelCviYJsAKh2cU0zFSzDfSJKRUuMW5NnEZQoWDHubMOsgPvtGxax/fjV4Ldad3tub1qwYrT6urQ924/s5BK6KAD4J1WBYk6END26GDIWQJ9QVNQmvL2pnVkEA9TOKRLsHo+sqsH3Zx+DQ4c1mb+ZdkuPeayoAAxkMvj4a0/jztXvhJaFTZLMtNYeE+ivzVyAT046WPqbqijSfiEhDGli+1cnko4EM+JR/B6fnnQab7bsNuTw3jaQgpWLBcvDRfAgrl5hj7HgwixZQyvcXflkLpdu8HFS77TtzXlRo2WgH2e+/ARuXPqy2fAJ2+KJdwsyBbK+ohJA/hlQxYU7M8mFyt5n3TiPHKsfikcfai+ObJeJedywenJRpbqPEl7iuLRpUK5a9F9c8+7zpRaDKCHxe6PKDeGl/8PWNQU71RDBz130e+cnE4vb9uKsV/5hTgQAoKlSbqFiPL1rs/T7as6C9eiWNfjk609jW280KzOyGjMiUgtWGXW2YQaGfJUbcRDlJ00yOdgEhc/QFKeWPWHkeADAKaOsWkGKYMEC7MHlfBuM8HnmvTAtWKriSAgjItbBSiglmGi5nIv1CzIXMC8Fx+2nbb1dGNAyvhZ1IGudfWTLavQa7j0/WrrIJpPb2b89a6HncZmL4MqOFjy0eZXZzs7n336GmkQSaV3zzEjmVLjs39y07FVzcuqfHCRAFsGILVifmHgwTjLeG3ZsZtmuS1a6HjOMiyC/bXUimfNz/qpRy2tVZxvaUwOOY/tZsJi7pzmO5Pm6iXHM7PxM+XCzoogLBnHpQ3l5RQvWc3u2AQA293QhqSi+scNRwStyfuNdPmVtCKLU5J1F8Morr0RC4v986aWXOr5//fXX8z1d7Ijilc+ESEPO05ayByXzCta9G5YDAH6+bikWNo0BIHRWko5tW688hozVAEppGh4xFMi/bl+PGzz8+RlL2vYho+uYP3yU9PdKwWomtWCFcBFk7Orrwe2r3sanJx2MY0aM85UzSsRBw8tNLKNrwipjfoiDKP9cyVqMZWbqzaRj6SLIpOcXF1QothV0RbEsCRldt7VBPtfCW7B8g/i5emKANdEqVQwWf9p2w41qWKWz2LsVOxJicu1ntuG4Y9UirO5qQ9vgAL548Bzze2YVdzvvpNqhnsdlLoJfM+ouzR42AnMbR/pao+orKrGrvwedqUEzG6HD6hHhPcsxxMwXXkIxUUhVIoFPTDwYL+zbYfadLKGAV9HpXBWsGjWR83vGiiUDlpXNlsDGRyZ2XVEpNo46WMb/Zl07TbObzw3Yc6xw/VAc0Gxji1ym1sF+KJBbhAvB/MZReNPwpsjoumeMq83VOSZtGhZN10O53xLvH/JSsK699tqo5Chbonjl05omVVKd5/I+G9+pi/VBxP1lxzpi+Gi81rLL8b3lImgNPs/t2RZIwbplRVapfvL4s6W/iwG2QS1YXv7Yf9q6Fg9vWQ0A+P6qRa7n9uMfOzZiSXszvnHIEaEmH6K0XgPXc3u2YWy1FaOVzyCyuafTHLgYfHzXVonVkZ1vVn2TNU0r8UD27O4tOKiuAQfVDTOtJLaYKwVIcLdDAbC+K5s1cF1Hm/Cc58Y7rXuxp783646oKLho8gxzxRfIPn8266ApmxWzwbYrFm7XmvYIZmfyzmsYib9uX2+6CwHuyk8YZWyTEf/0zO4tmNM4wvz+RMPCIr5WlxwwE6OrajCaC26XkXURtEi5BPLzHNU0xrR4eFlsxTvm9Qz5dQtBWiqXd97LRRBwlgkY0DJQ4J3QYGilu3XL7fhAdqzJ1fLO9+3sHvL6u5+LTX9GVLDy67u86mABnIugcL2sOZiyGxc36yB1NytUFaqiFK3b50vVpHUNSY+7bHcRLKBQEcO3e4YUrP0WUrBiQFrXUGUsi/Vn0vjZsndwfMNYTKyxr+L6dYB8bBSricVSTOu6jvYUV4MrRGdVawSO+1mNckFMSR40i2DK4wKYcpUPb7TsMhNmbOzuCBUI7JiwecjaPNCH0VXWZDKfMeQrS172/P2lfTvw1Rnzbd9l+CQXBUjLHZaN3R1mEDSvGPOZ31Q4XQTZxOi2d1/H8ZzFMpeJTvNAH7698g0A1mq6WHvpwjf+hbvnnYjlHS04ZdQE1xisXFayl7TtQ28mFZnllc8UKcKmNnMbR+Le+adIFRvxEsJcE5+KeWWHlUKdvfei9WVq3TAc3ii3dvOI95+5iImi6bqOY0eMxavNu3Du+IPwx61rfa8hzCTdT9l0+31ew0gz2U0u75uXiyD/Hbv3A5kMqtSENGvjaWMm45ndW0KlzBeV21xHhhlDGx3Zde0lGbxl8nJ/zQVxjGPvddLQ+txqSjnqYMXED4B/zt3u0aTaoXirdY85FhSalVwpBb++hP85Lm0aBL48gqyOJ7F/QHc9T6JYqeIVo79sW48/rF+Nzy96Hj9ctch2fH8LlnUcNhCwice7bfbMdbJjuXVgo6tqkVQUpDTNXMljaX8Z77Ttxa0r3zRjLYISlQWLtwJFwb3rl5t/5zt2eylYnanByNwg/GqZjK9xthE7n6oo5nVGlYUvF9pcavHwkz9FESfmnBukjrxdBIOkA+5Op3Dd4hdx19rFeGDzKiuLoFk3J3cXwVtWvI7vr1oUel8vlQGQd/b8hHtCbZ1rsXRN1/G7TSuxoqMlVG0lHj6VNrPwiRP+oJP8oNvpsO5JUlHl98XHr9DrNvhJ4eZN+d1DjzKzOeY7hsjaQowB7NfSrqUtWNrs7y9+M3AtLF4RSXN1wYD8r0escecFGwcsy1Fep3YkRWHPSTJg0pqo5IgKsQ/h7029EY936phJrlk5o2a7EIaQ0jR8c/nr+J8lL0mTZ2kRjY3FZsCmYJWP3ES0kIKVJ5G4CHKddstAv/n3K8077Sm8XfZnhTCZ+0Ja00xrFRto9w7Ya1zJzO1iP/DTeSfg9LEH4MLJ01Ghqq6FjHVdx7dXvIG3W/fgn1yx4tc4//qgyDpRvkzuGy278O0Vb6A7lZ0Ef3rSdHxq4sH43znHYkRldWQPNN8phs2u5FbQUcZTuzbb7kUhV+maKp21z57YsRFAtgQAm8qUcjhwq/XGT/wVKLZJGD8FSyqKoCCGvxr+fvPv5nzBssIUsb9uX2+ek02oo4jB2tqbX000hui+yBNEUdGh463W3fjb9g24admrtgQzYZQtvl3Z37m+r24WC/H90WFfRJAVgBYXFMK8g36LL24WGEVRzGc63/dNpsSZzx+yys+gpjniXRn8ZPDHa94NdE5+n7Su2ReJAh3B2lcklAVLYxb4aNpSnOSLCpaYqZfBxIxbDJa4EMl/YmVZKtQEEi515aKmX7P378/u3oLF7fuwtqsdL0uS5vBjaTkpWIO8N1EZyU1ECylYMcBzsLetDMr3P3DIMADWquLvORc5a2U9gBzCuacMGYZrps5GbbICFUoCaU2THue7771l/s13Jv+72hqs3TpHcbxi+x/TNFa6zW3vvY132vaaGQ+HV1bjogNmoLGyGooQl5ErG7s7bAlEwhqwxCtl1zTRpQYN3+5R98WfnjTd/FumvDA3pWwh4uyVru9qj1aIEPxw9SLp9wuHjzH/dtTB4m5QUlVtbZhLc7oFXX9n1kJH1kuG9YyKFqxwTySf9bM1oDVBhi0OTXBf5PGav/I/8ZZF3noh1l3zglewEm4WrIDmYnG7HazIu8RF0KyvpCimMmLvc/1w38LPRdBLgWW/eE0c/7JtHZa1e5c8kSmblgXLegbdrJPXTZtr/h22zAjALFjW5zAWLNnkky+c7Pc8OOO28utAxey0poJltJ3bIiM7fVSxYFHRKRSe5+8Nu7aE8V4UQ4ER+8+/bF9v/i3zwMhvqax0DGTsLoLE/gkpWHkiM2v7DTB1yQp8/7BjzM9eg30GOjK6jk++9rQZFyLCBk7WYT6xc6Pk2PaBSrZKK8rNPxw6dFsHyA8gb7fuMf/mJ6e8+5/bKo4mTASZvDWJpKlkyTqo3kzWepDklm95a18+PLh5le1z0BWo7tQgfrzmXWwRkkmwa/zohIMc+xw5fHRBU9E2cJnj3KxDjFWGb/wLAdJvF4vhlVVIKorNvYklnoDtmyxJVRWUixxO6jKnUxTFdYK1xbA2sccx1xisOzgFsy+E8uKF2QPkaMEC7ErVf/ZayT4GvNKdC9fOZx90KzQcdDFDHLjuMbKmyrz9NE7BDHJfHHFcHnL4yStrc4Zf22/s7sADm1fhG8tf89xOGoMFS8FPaXYrjMiwiuDJLWSkOSUWCKdc+FqwfNqIPZdRWbAcdbCM/0XXUvE8ZgxWzOpg3b12ie2zzB09YSxYFSPGSXwGpwypd9kyiyZRCMuBQXIRJEAKVt7sEVzvAHmNprZBy/Xv5FETbIVLRSWDR9N1LGnbhx6PyXGFWQQxOzhM5aqfu3Vgf+VWjsxzC5/5yUGX4Q7FJphusTJ8B8orWG4DDn+9g5wvf9adx32wSnODQ9SIK71BO8i/79iI5/dux682LLd9z+QfkqhwTBcmD6n3TZ+fD3y6a7/rYEor48dr3sWvN6yIVJ6wZEsYqLb00hWqarvvfJsmFEWIwcqhPXPYZW9/ryELi/fJzUWQdy0R70eueFuwPCwsilMhAoDn924PdF5x6iyb4IsWIC95vLabYcSESmNLZX2Kb8RaMILKK98ZnrKIZTjckCkhfF04MR5XhHe3ndswMtA5h3P15dK6PQZrIEQyJKkFi2tTv5IAZgxWRGnanVkEs/+ztmMKmDhOWy7C0cgRFRt77G7GvFx8ghBWV67QiM/6KC6pjnine9Np08MCiI/SGgR+4amc5CaihRSsAiCzav2UW0m6cNJ0TKi13MW80o9mhNVBwKlUMPeYJ3duAgAsGD7a/I3VDxLnARu6OxznCtMRuFmLkpxywmcI5AfSNZ1t+P3m1Y6isBu6281MRrwbmNckVS3AIyxOWIKa+Lf3yYsvWxM84EOjJ9l+S2tazqu/PLJnDsg+K585YCYAYFd/j6MtGyssC5cYo/H83u14YufGnJMa5MOBxsIAS3HLJ0ioUFXbZJ2/W5Pr6vNO055b4Ve7LMzi5mc19KInpAXLnhDHwozBkkzEg8inw32g8FRURAuWNNud/XNgC5ZwrOn1TMESZACnYBjpqAHv9NXie1yo6ZFbQoRnd2/B5W/9Gztc6hKKMsmUPN7iwu6xm8JuLxrsXy5ElCCtabY+cmVHS8BjyDPT8vJU+sS/sr3ZPvkm2BAtamLSGrckF+ysftuVGplFSIWC5sF+6Mivvwp7fkB0G7bf66WcclWfrCyzLILOhGPE/gcpWAUgpTsnpO+0Wb7tdRWVqE4kMc9YLbQHCDtXxsTikOJEZa0RM7OapbvN0SIShd847yLIy7mE6yy/vPRl/HHbWrzVuhsZ7pQVagKDhu9yJWel8LqGZIiip0ERlZCgVgi3wYndUwUKnt2z1fZbbyadkwUrpWn41YblWNOZved/2b5Oup0C4NgRVjxbi6AYnzZ2MgDg8wcdZrtf/ETl5uXFLxDOhiRWhLuGs/hWKAkhBkvBxyZMBQDMbhoZMr7GSS5zNFbviU126yuqoCJbxDNX3BT75oE+LG7bG+LdthR8kZ6AWT9dLTUeIoh92Rstux3biEpf4BgscRHEWKVyWBZ0KxFChSLvU8RLeLXZWQvQjXx6H7esnXevW4q9A315lZvgLVh/2pZNTb+r3+ltwW8LBL+eNLcqmLVgWb81cdYt3+NInnF+oi2W8XAjTIp5L8S+njUNc5t+eV82cZNDkTe+8EuGUWp4qVjfyr/b/+KSVBX6/IDdW4T36gGAoZzrKuv/y8UaxL/T5CK4/0IKVp7I/NfdrAkispTBDv9/3dmp+LnFLedWENkkJ8jKXpgxQewMZcfgV6e+v+ptx7adqZStI0rrmhnnVZ1IBoqXiNpF8FcbljuK9QbtINMuDci7KPFJJ4DsgGbLIhjwHjy3Zyv+sXMTvrw0W/vqPa7GEI+qKDbLlBgzwya4FWrCtebIe53yY0eNTNHUjElANfe8VQougoDlauJovhwGt3xWSlVuxbu+ohIdqUGfPdyRuRpv6unApW/9G99c8QZe3Gd31eO33tDdge+seAOarjsScPAEebZ1XXdN5uDVVmK/JUvWkKuLnaiIudUnAoAOw9UuabNghVlVdr/GMPKLg61f3Tm3BRs+5tUN3hVytbEI47ctEPx6+PZLCWnaw9RTkj3j/L11S8zhtU8+aLouFICwH/fJXZvwqw3L8YqQIZe9B37JMEqNPSuf5uhH+eQMhUDsE3h5RGWbbfuBURPNecJfJKENcaRcY8eIaCEFqwCs6GjBmS8/gWveed7TvUoNsJqq6bqjsxZN6SK833KGm6j6EcaC1ZtJSzvj321aaf7tlo3NdkahI2LHrFItK4XXgO3XFmH5h+FmyRN0MuZ2uXyQ/YF1zpi4XFwEuzjLw683rLDdcx4VCho4N0BR+WfnE0V3UxYLCS8ba7OMMQnwisECrI6MzxoHFM+CJSOpqNBCTrTGcbXKZM/d682W8u83cV7Uthd7+3ut+BDJNjMN1zoZtommmwHLo63cfjqGs6iKMgW1RIj3320So0PHNsOFmsWaiNvnc7vDTOtF5YV9clv8cmuLNyWWQMe+3OKdb+2mEEklGGnbxNj+znWGWFSQPeO8pTWsgpXvq5sRlA72V7XR/8xvHCUdI9iJ2aJiZ8D4uUJzeKM9po5vbWbBsv1eYGVAPH7GQ8FiiSIqVRV7Dc+Lh4QEVHGFv5JysboR0UMKVp7I3p0fGbVEtvZ24dxXn5L6mQPyQUFWk+W+jStt34mKy8mjJmSP57FCvdXDn988t3HqSw6Yia/OmO+7/W1cenYG7x7i163osHc+W3o6zYE64ZPkguG3cikWMs4F2SprWtOwpqvNNkC4TU74OkQyhTAXF0H+THzWSMd2ioKkqppugm6TLUXJza3hgU3v4cq3n4tk5ZNfSGCyaEaSC9uqtuKMwVK4FXte9FyGtnwsWPy+srIBS9r24UuLXzKTYojwiQj8Vvfd6hrZjqcmPLMINgZw59Lhrkh5tZR7aQZ7G/EENUSI75ppwRKTBHF/1yUrAvUpIl6bhlGwRJn9lAK35zBIXT52rt39vb7uavwkW5a0SQbfP2R0zfb51pVvBjoG4FzIUWG3Gq0IGM9lxmDlqWKxpDoMJsnnpx4GAJjGJZDiYedlY3N7ajDveLAoGFVVa/usC4qxKjxLhY5zEhdL+fFInCexhD9B+rm4oXkojsT+AylYeRKkO5LFHgBWJr4+Lg5HtDBouo7tfXblSOwUTxqZVbCOHznOcY6X9u1A22A/ntxlX3UbW13r2JZ1riePmoATRo53vR6GzGqysGkMnt29BR2DA6hNyt0IGTWJpG0CdM+G5dhoJN9QECzlLa9sXjx5huP3EVXO4rphkZ3//k3v4ctLXsbfQ7gsqFCkCmEuRTrbA66QsrMlhSxY5rl1+3amHAEGhbvXLcFftq/H7v5ePLwl/5XFlJB5SdN1aHBOTCtUIQaLm5JpundWziDkM0mTKdy8DLeseB3rutvxrRXykgv8mTN+CQACTDwUxTuLoOe+3B5uz4NXW7m1vVfr+tWVYojvkWmpF7ZjbTi2utamqMuSXBxhJAcaz1kRo5JXJjMj7Ap3kLhTXnHt9slGySsU6wLWwPNyEfTin7s24xmjhqF4HMBIbsS1adCFHnOfPPUDllTHRGEuv/ZMvSKyRQzZAkmxcXjE8GONrttqjgHRjJee8nhYsFLCbyzT8W6Xxag4Qy6CBEAKVt4EmYyJ1csZa4ykFH/auhZnv/IPnPnyE44Vu7vWLnbsJ5r12YC7vKNZOqnZ0dfj+G6qZCXOzV0sDH/Zvh53r1uKP25bi1U+LkxJRXHIy7Ib8imVvWOwrEe4RzKRiKJvk7mxsGQVL3E1o/ysaYoCx4AG2DNMBlUIHt/hbrXiYTJVuMQGcLYE28o4PzkYI1HGAeDZ3VbCjv/bsRFbe+RZFINicxGEPXaNx+EiqHDxLLq3BaszNYg7Vi3ynEg+tXOz629njp3idQk2RYSJKFsVFhdNrP3tK8wifFuIlmy3FOVeFqyguNax83he3Vx7vfYJbMEStnPzEmAxnczF1KtPSQqT6SCEaVKnW2tu94N/T6868FDf7f0SmYSVI6PbnzQxTbsX/2/9Mvxi/TJuX8GCpcgXofywLFj5IboIsmfCTyL++llpjKCx2IVElvQFAN7raMGAljELEX9g1EQA2Wx9hUR8TrwsWGx+JMZElwOU5IIASMHKmyAvj1/n3MxldhP912XKkTixYivZrYMD2CnZXoZs0se8NWSrsrcderTrsYZL3IzcshHZ3eGcK87s0hTO2uM1ePODIT/hl50vV7wmurz8fvdZheKYZIlE7aLBJk+WBUs8PlNigHouYUsug4Kb0gAAXalBV7c4Bq/8abpuysDa7JGjPozfHfFBQ/m2u/GwCbcO70WPX21Yjpebd+IHkqQrjGc8MmmNqPJ2qePPzN6jMOFsskKgPIOcK2Zw9z7jHnPf/+Lwk/CLw0/y3pl7VN2UJR3ZGMC71y1x/Nbv4jY6tkausGdlzM+CJU4o2SS3wlSwWOIc3h0Vtt+c7e6hEOZhwZIp4GEtrmePPzDwtpdPOUT6fdhEQeKCU1rTA8Wp2trcuM5BIUY5odhbdF7AulyWu2UULoKcO7JpJfZW4PjvrcWs4pe3EJFlJQayii4P6/sLrQw4LMwBXOkukXimxJ1C1rYkygdSsPIkn7oR5004CABwUN2wUPuJK6x83EbQtNCyd17nJtthCNOB8Kt6GcMNjIcpa6rivdrMsBWllEwUosguJS2GKXH/8msFRbHXCZOxNqCLTlDY5YvFqBmcvQWfnHSw+YmfDAUddL0Cuy944xlc/vZznklf+Gdj30CfQ8EaVlFlZgvkFxkU8MqMaMGyy84sjt0B05PXBK4LZJyPO50YF+JYvZWscPPKmGzSymctFd32ZHdJN9wss1htdsCQehzgUoTccQx4J5F4YudGPLt7K7b0dOKv29eb27q18aeETJq54BqDJWzHnjdm5WdlCu404mR5ghQhzgexPSyrq/WdW31BnmFc0hovxAQmNS6ZX8MqWOIiTVrXArk2v9liZT9kiymbhEK4atYcbTJ9qP0a3IjOgmWPwRpq1JFkY2KHSx/H9zPui1nFR+xzmEiiZEFqThZCHr4PFPvDEcZc4OMTpxVUpkLA33qKwdp/IQWrhDDFKGyXJiZu4CftlZIJIb/1DGPAkk0irHgc7zghkXAKFhdnA91xXDZQ8vFKXsM3PxjKVr+jmCzJJrpsTtKVHvTczraPSwwWz9NcfAJPZ2oQd61ZjM3ChMQP0YLlyCLIxecw95Cx1bWOIPYg7Oz3t56yZBi6rqNLsNaKA+xaw0UkiOLMPuoQsggKt599rJeUVwCAd7l6dQBw7/wPSLdzw27BysLej3Xd7bZtpS6tPvF4TVyMRJDJEP+OhV044Td3VbC4r7/w7gu4f9N7eMlIHy9aJxhibCZL0pOVMTcLltskhgXKVyjZfnEVqxXocUzxWr1aOZ/lG/6ZZfxkzWLf/dh9vGLKLM/txGQYbm3Lv191hkLBs6KjBV9e8jJ2Gd4RzYISmNI0m6s0ILfEtXOLf2lNk26jChas4C6j+cdg6YbVPKEouO3Qo3HamMlmXDOT6t02ebZWu9UrPhYspy02+43YpyvcFrbtJYug+eCVRVCsEanBWaerXODHoDBJX4pNfyaNby5/Ha/s2+m/MREaUrCKwL8krmtA7qllxZVIPpUtP2ixVf6ugKv1ZgyWpD/zklE2ARcny2zy3sNZ/DRJ522mNA8cg8UPDYI/P+SJAoLySWPlTHZ+NuC2Dlormlt7vWOQ+LiysDy4eRX+s3cbvr7sVQDudcgcchqn86vPooCf8IlZwoI9oUMSzsmZm0A/XbsEF7zxDHZzLq2ibKu6svW3ZDEx9u8UwYLFWxXlsle7JIgQk080CS6B/i1hbaEI77eYaVFm/eabWjaxsdeNCyCN7r1wEgQdTmXY+s1Jy0B2Iu0WgyLKsXD4GO63YDgULONcYpsNChYsmcCsTXPJMJiPhVyVWLBWd8lrzsmC5v3KYIgKFrsvDjm448je9VuWv4Y1XW349cYVAJzK7GstzsLMgzLrLP+3rqNNYg1yLJyETNufjyrA5EsoCuY2jsS10+Y4+h63fjfBTaUqXBazSgFfIoT/7G6RtnPryjfxmTefjcyyJS548s8Sb73VdR2tgwNlG78kvq9xeBZkvLB3Oxa378MPVy8qtSjvS0jBKgJuhVr5wPwwiAqWLDnBQXXDzL9/awyMALDaWMGVZTZkYsgsQV7Br9J4Lpdtrnj7OfO7VZ2teFlYOdFMGeR1wkT4AW9A6MRURXXtoLtSg3hh73abIsif57MHzjKL28oVLAs2ieOVLRlpzVnYMShs1Zgpy3NDxiYwq+c2QQnk1AHwcQaii+C/d2/Flxa/hN60u0vs2q529Pu4zLI2/s/ebQCAJVzxWXEQYvdGNom1F0e1T8T4u+X25DRJsmVtD1DKwA8+Loq9leyaxYmpzIWIf5dkCxdeLoSyR523YIV99PjN/75jg3QbWd/FFEs392nxfvJZ8QJnERS2W+nSxzKXW5Y8yMtyzxDd9Ly65yhckLUASjN/r9k2CR93YzHLq1vJCn6BTtbXsvOxfo5tMbwy66oou88yV2BbXArk71s2Bsv+bgfBVFbzULGYy62sj2ZfubpZcs+wacGKwaSatYZfvStxMYixqG0v2lIDeYVC2OQRTiCOrWx8Wh4wPX9cEZ/DAQ/X+FIiZm4kooUUrBLC+rygKbcZfCevQpFm4rHVNum3JgwjPdKwauZEzDnATB3a4Lqf3yrTkGSFdOB+ZvcWbOjpsH3HMgYpimLGOf1p6zoATteUajVhu54vTptj+z2hKK6yfe+9t/CjNe/i/7iJI7/t6WMPsCxokoGSb6LedNrVHYqnZbDfttIZ5uUTB+ugihqbeLBJy2Pb1tl+5yffivWlrS00XcfP1i3Buu52PG8oRrIB983W3fjG8tds33WmBvHlJS/bjsXDP7viNaY8JjxiMVAzYYBgFeVPx98j0TIFAFe/81/b589KMrR5PekHDqnHgsZRllxs0uKyaixza9OFdnee3/t35/Hyt2B5XbTsGthZfrTmHek+4nPPWwmCPtdu24kTG2ZdkVlURPj26fBZLMmFo5rG2D6HUc5sFmXjWvwLudtxy46YUFQ8evRpqE0mPfty9hNrY+Z2KUPW2uKzK5NeFZ7SoM9sFF5kVsyns538Ds8vcrK/g4wJhUYXromN8eJ9dnMR5A4UiTziAoeb4rE3YD22uCL2zX4Lj8T7E1KwiszchhHm32zyG3a1ho+5UhV70POrzVmLkFuAuTjIMzKca1XYh8JvopeAu6LjBh+vxIpfvtW6x7bNI0edZlMGTxg5HrfOOsr8nFQU1+xnzKrIJ5Vg1zGhpg4VasJSsCTH4K0PGnRXN1Ce0dW1tpXOML7l4kQ2aGuKk3wH5uTbGmR16A4Fi5cjo+v4+GtPSw8nJun46/b1ZrpdwDnA8sf+yVp74oGUhwVLrINlrWA7ogiksgVRTg4b1uT80mO/T0462HZPxUyTDgudzELl8rfs9M76MHKFLPcYLP8dZKv07L3pc8kiKD73svgVP9YL8WyMfKaBvFR8RkyvY4ZJcT7apdwB/yx+eMxk6TZp2zvorgh44dXdDKusQl1FZaD6d6xBvO6VzJJk61OgS5Ve8V0PeoWyhCFhYfLJ+ht2fDGOksE/wyzGsNnFJbOYsGsSrWpOBcu7/dxcy8PicOEV+ggmh+jeevth7lmM44jonFCuro5EfpCCFQENFZVorKjC2Gp7gcrTJIPl97h050FWMIdIgo6bbOmZFdQlKzDVyET4TyPFtD1du3xFn9GTTuHcV57EZsM8Hzao1K/zUJXwqUpVBVjUak84MISz3P1s3omokiT0mNtoKbAJRQ0VgyUOsGZxSckx+JW3jK6b2cm8OHRYk23g8JvA8kqRGHfRMig/32cPPBSfP+gw7hxZ3NyJdHM7K5i4J5O2Tf55pSilaaFWZkU3Nq8g5w4hzoe5I/pZsHh03Z44hT+bYtvOS2rvc7hRJcR1iYWGnemt87NgiUHhMlix5iy5LfN7FfqUTby8nmuZQsK/E0EVrH0uk9dc5jEyZYBNRLOubu4HDfOIiGnrZTG444Qixwy7y25uFiw/ZTChKLb6c7LfAUteWUZU07tC5q4qPNuyBQbVZkqHo4HdXPQY+bgIpgO4CLqxvtvyxGiqzHpVDLjUv/RjfVc7dgdIGBQE1h5swZUtLDpcBIXtRaJSENhx2Pm2CaU92LMt9gNzGkZiaLIidFbXUiEuJAZNFEW8vyAFKwLmNY7Cw0d9GLM56xQgdzFSbCvv/ogrPED25WXFDNmgMKrKvbaM3wC+qrPV1iGEGbb5QqZuqIoqjX2YVDsUBw0Z5rKPgroKu3K5h5vouaW2TygqxtUMwbyGkVAVJZQywGS0FCz3GDBewdJ03TfpBFOUR1XV4LQxk/HZA2e5WhRe2bcTZ778BM599SnTJz1jDv7ZV9atiPPJoybgjHFTzM9ssuv2osvuXk86hbu54sf89ad0LZTSWifE7jmSmng8PSxOS1bAmJ8E9WbS9jpY3CHdFKwg2SXFVVTxeCKVgoJlui0ae4nxNbJ4G3uBSu8YrCCyZdsjN8s061uWdTS7biOzYHktHPnF01UEtMqcP2Gq4ztd1/HUrk3S7ZkrscySa37DiZbSNXSnBnHuq0/h7nVLXeUIY8E6wOizJxv/yya1bpZmWdIZPwvWtw450vbZb8HAL8mHqFDJ7pWX0scfVRMWQngZeAVdPMOdc47Dh8dMxgVcSYl5DSPzyubIy8RkEPFbDOPLo1jWovBKyaCWwQ1LXsKVb/8n9L4yRAneNGKvRa8MWRJG/t2OKtU4u+eyvhXg69k5f/Ny+Y8bbunxif0LUrAigHUWYhcss7DwBIkLkK0QZ3TdsZIX1J9/LKdgsZTf4rsfJjYgiGWKdYzi5GHKkHpXbU6BgnPHH2T77qEtqwPJ9Kv5p+C7hx6F9tQANMgn6DLMARZ2C5asUx/NKbSarmN8bZ3nsdkxFUXBtdPm4JzxB7kO2iyjT1rX8GcjZopNxv2CZd3Sl7thWrCE7fiVRZuLoKY7nkmvItRDhOfUYcEK8A7Is43Za7/xWQQdxTXZqil3kaIcG7kVaEYipE+duOoqFhoWLVZ+CpRsUOYnpW6ZEO3H03NcOgkWpC+beFWqqtQ6B8jdFG3xKwEtWLLj6HC6ETPOHpctyCsrY8FbcRkpLeNZcJoRxto/vrYO98w/GT+ee7ztfPyj6Nbiaclk109hmlk/3PbZTyET43ScvzMLlt3tjKfBcFeXHcGe5EKXTqL9FNYDhtTji9Pm2Nzio8ribXkJ5DctquAytuq6jm+veAM/91DSeWQLqvnA2pzVRDtmxFjb9yL810/s3Gj+nYlIQ2DnTbr0rWKWQ34hxStpVdwQ5zpkwdo/IQWrhPx1+3rX37572FGuv2m67jCVe40x4soh49p3X8Ar+3Y6ij2GCYbvD2AhYoNmi1AEWdN116x0qhJ8siWiCLUzntvr7krFD86sExQtWDJLA19HKaPrvh2/vJaT5y4ArMGeV0R0Xbcl92Ar4rLz+J5C99+OHxrSuuZoD7Gu0SJukiveQ3HlNIhv/4GSgrjik+GWYp59B9gVBnGCcfe6JY5zhLVgiduLE9IgWQTtdbCsv/syafxz12ZbyYXhLinkP3fQYaa7YnYiyyyzHsJLCLJqLVPCKtQENgrJaxgyhcQegxXMBUha887jHWTXft20uYGOn9I07A3g9humSVOahom1Q83spNYz62/BWs3FMTL3b7/+sVoYI2YIhYdF2ILCPeuXY6/ELZQ937rwmTGrfrh5bTLrFP88u3k+OOtgyVvYnuTG6u/zmX57xWD5LTp+dPyB5t9Wmvbs2PhO2178a/eWQNmCo4p1YrAzDjfCCliX43QRdLYfv+gUpC9Y3LZX+tzwsOOI1n5W0JndA/as8PfZbaE2joizotgqhnGV630CKVgRwLqApe3yIoRuuFkjnj/7E1gwfLSrv7Gm66hSc7NgicPakzs34aHNq4RjBTqUub8fqqmoCPE40F3TvypQhFiz3AkaDG6miBcULNnqU0pwEfRboZKtCgdxL2KTKF6p0WDVtLlu2hxMrWswf3PPriYnrHUjLXERFFeyv8MVVpSlB17FpdRe2SFPr83zgdGTHN+JEy82QdjZ041lRup3VZg0vM7V6xHvh2xRIWwMltOCZZzLuHeiu6pfkgv+mfrdxpX4f+uX4VcblpvfuS1OnDH2AMw3shk2D/SZ1siwWQSD1NmSWeGTiuJqBZA98x1cse6gbS6beHs5K7PzMtdqm2uyZJGBV0y95fCXlSHef1kdLLcz/oXL/vmOUQzbz/25Qk3YrJwHSBYqeFg/+e89W/GDVVkrOt8/m4tKOju+/R5/cPQkz/Zo5eLmsn2tpE8MuEAkZhFl5DP5Zm5+nS4137yYUGN5MPCulrw01y1+0Vc+sURAvlhuj+xe2S1EDKsN7Uoww09B2NHXjW+ueAOXc2VYZLAFmWph/sIULtbnsWQrfH9htqvnGeKBeJ+jLNZMlA+kYEUBi7UI+Q4dP2Kc9PtaYzXHTTHI6LqjpomXgsVbOMQXfUWnM4NhmIlYe4B0xqxjFIO8NT2rYMkmYwoUjOCsNPkMnGLyAR67e4591YzJJesc+QxpGWhSawSPmMABCOZepOk6blr6KnZxQc+PbVtrynrqmMkYVW21k9sEVWx7hpmm3VeSLO+27rWtsk6tG4ZKj3TNojwZXccmbmXUK76HESSOjp3lld07zO8sN5TsNf6DWwwQb6ns/ZFbsNzvsxiT4ig0HCCLoFuSC1n2MsfiBCcau57b3nsbbxsWxbCuVFUBLMiya0gLbpr85FPWztJsjT7IJPOaBLJ7wc7PW1Kl1hZdd81AajtugDeH9fOH1Nuv01TAA1iwZJNKWZ8i0mjUqgqyWNXMlfNY192OtKbZCkwzi5ibi6BbnS3GPzmXS3kElswCL29fWxZRzur1z91bbFlLw8Dc+GQF493u8hVTZuGkkePxgdETHdvqsKuQm3o6fV28n9q5ObC8QRDjytgwdeTw0QCymXcBeR2seY1WrUU/y1rQsgZsQUYMn2DPEnuHM8JiJ/93oEyXJcaR5CIv2ypRrpCCFQFmIgGuMzjJ6Li8+KgQYyTCD1iHcP70GV13XS3nucpIssH7qw9qGkb4DLZh5mFBJm09hltTr5A6PqVpGNAyGFlVjVMFKwUbEMYYqY35LvWmGQtCSOhd+2uYzdXP7iLI/pcNLj0Z61o0PVjSBBFxNV+WuGNpe7NDCX5kyxrbZz5WTTwmezaPbBrtKUvQyfe2vm7bpLpKTXhmflMFpUPTddzLWWGC8DcPV1qGTFk1XZokt0a8XzKrbRDLJ7+F2A5iFkExvsLXRZD7WbZI4KZ4KpC/w2EtWHMbRvluI3MR/PGad23f87FAMgVLdBcKguw4Xm8ge2bNvSQPhQKYdczSuh4o7iSIFfqrM+bjr8ec4ai9JpvUuvUjMsUriLWPWSGDxBW1CZkZF7fvk9aUY99UKCrquCy3SdWqYuXXcllXL+f3quDe7eZNwV979qzW53vXh+tfGDLFiuH27syob8RXZsy3ubbaS2PYL9JPwTqYqzcZhVsZ609Ye+3u78GZLz9h1oc7c+wBWZnZ9vz95o7jFytb7ZPkicH6LLE/qxDinWUJR1gcc2zd7TicSS7iKXNcCyC/XyAFKwJYF8B3BpcfOMt3Pz8fel4xauD+1nTdMfmTT1yYe5nVOc5tGIlTuNU2GX6WlS9Pn+f5O8+JI8ebSQrYCiarB9NrrMBXJ5KOGSETISFZtfKLJWB8aiLLNOXeufFp8FknyCZNbPW3VYgd03XdVmdMCxCDJUNs5kmcpZERZBLFJzwR7x17LqYPbURSURzHY1mlwky++YmnAsVTwRKPqkG3Kct8Vktm6TiLy4IYVDbZFkyup3dtNt2qTDmE+yVNH+6WScHg+4cdg8umWO+5Y9HD2J2tXooKUUqXZAjljs+7CMoS5uiwXwevnMnjSBxfeSLG1o2SLFSkXAZovuYY3y5uj/Mfj/4I/nj0RwLLJuuj/iIU0eZh7pR2m6bz71mGNS2jaYEC04MsTCiKIr1/iqCAZ/+WH0M2QTt51ATfc7NFrZpksAkwT1rT8LrRP8hkUBTFphzzfYso7gYhiYzbhNP5HrpYsGB/pvj7ECZJ05aeTjy0eZVvQhe3Q8rcdHklU7zM3X3eMUoNldY4/7FXn8q7WLHp9m7I9BdhsSohJOjixR20JVbxHt+Clldgi618DDPAuQiCKVjOGoh+WS7jhBh2EUelUNd1PCDISURL+F6XcIXvDIKkG/YbBnilih+8MrqGCjEGS3I0Jg+rfXFU0xg0VFaFji1hXDx5BvoyaczjVrb9Jr/HjhiLF/dl3baYa1il0TZs9aSCW/kUj8v+5zv4ER4WKZ6kkC735X07sKe/Fx+bOM3cRrW1q33VzPILt3eO4krnzr6enDp9/prPG3+Q1OUnSKIP2WTzumlzsL2v2zaQNVZWo1nw8WeB/G2DwYti8hY9RfG2QIit4swiaH0eVlGJ7X3O1c1LpxziK5M8eUK27X69cQUAYGz1ENPV0qFgeezvxuyGEdjOPQuilUCMsekRXPoGBIvWQCZjT//PtZ6bm6um65LMkfK3MqwFS0SW9OHRrWul2/7GaHPA3i5u70mdpN6fF8vbna6lf/JSsEyLs7uFReEWILJujv6ESdPuPB8csri5oC4Yblmgh1dWoTM1GMjyd9PMBbhz9bu4durs0PLpANZKioSbWTlhX6F19uIWL+/bYfucXWiRx2Dxx1jr4u4nxmC5xWT5cf3il5DWNQwVykmIuE2QeYXIPL8hwNbeLscVdqa93Tp5q3ZK17Czr8c3ds4Lq8i4vFXMTKkSayrvcRJVFjy2MDlUeN/ZOGdmETS+tytY7ll944aokMYxi2A5tGO5QxasCOG7sKEV3h024L/6eSDnMiYqAg5fdeHzbYce7Rju3jBWI8Os8PF8ctLBuHTKIXb/dyafy7DGT1KHGYMRmxgwl6mk4tyb9fvbjQB9Ftw/XDKgubF3ILtayFaT7lj9Dh7YvMo2cPBnZtm5FhvJSiy3CftxxUninWveyamzslkUFPnzELQukMipYybj8il2K2pCUaRZ9oBgKbll2ypQfGIv7OdqHujD6YZbCmAfeNxacESVf/yITAKx7fg4NvFcKzqcsYiyhQhxP9uiiktcpA4d3alB/Muw4DJLnZiB89GtdtfPVZ1tuHP1O+jLpF0n024uZTKFMz/1Sk4QFxO+HbtTKY8tg7NIsEj6wVbjZe8YrzAwZTCta66p5nly7ErN8/HnB9wD+EdW1eD5vdvwu40rDatEsBPPaxyFPxx9GmYIKduDoeOoprGWbIac/BOnSCbA2W3sz+U0zvUNyPapsi5TfOe2C4VoZdvt6e+1nTvM+Ma8O/wK+4qLIRWKio+OP1Dq1s2U/+zCov0iRTd5N3miwqu2F/+9+St3U57fu52Ty3t8syVq8diWLc6JLoWmt41mT3LBy73ByEzaLinbEXfiaHWL+lkjnJCCFQEy87qMWcIg55UcAHC3YGmQrFpzf/9oznGY2zjSdaDJJUsSDy/Ls3uyKdDd6lqoioLZw7IFmFmgNZuIskmPW5ILnuf2ZIvOdvsMUDyv7NsJwLlq6NbZiRkR2WWKk1jZYJNLB8ordyoU6f2SJTfIFZm7pflbiJT4/D1QFO/4DrFZvr9qkW92qlyGImkWQA+fOPF+TZa4Z8oQJ478PRPbgf2i6TpWcSvxLCapX7BoieUSgOwk7e/bN7jW1OPbj5dMtuARpmZTlOS6oBOUIIsQx3CKAuPutUtwK5fxEuAD6eUWFpF8rIKyeCWvQsM/XrMYf9uxAe2pgdDunrmg6fYkNLrwvwJ71ruEorgqnPJFKrkFy76fiysht93Gns5AXhmPbl2DR4X4VYbfQoHozvv3487ElUaMswivAIjS9xRZwWLnd7Vgwd1FkFduw2TJ9WpLtjjniMFyJLmwu+vzsLlAOcD6nThai+Ko9L3fIAUrAtjERfQrFjl97BTbZz7+RH5c629+hS4jcQviBxi2Qu7Wqe5wWRUMCj+RZJnM3NypVEUxsxGxTHamBcvmIujcT0aQ4syMWpfA2y2cWxc/MLAijEyxdZs8yQabXFwAHPFSISdr07j07N+etRDfnrXQc3svF4swljJeQVehhJ64uylYTHkRlZggWeZkIiQ82lOcPM9pGGn7PLa6FkGQxQhYMlkTaD5WifUT4qq42zPfkRpwfTbcBknZoUqjXhVewfLLXnfsiLGY05Bd5OGtRs/u2Yq3W/fYFVOmYCHYpChXd+vsuWCcS64k84j9S77unjJmNDitXP/iMv/JYrB4su59weTSXJwhxYQVbnXRxHbnP7/HlYHgeWTLGjyydY00btDvVocZd3iZxeP2upQlYQQpvB4GXwuW8RCye7m+u0Oq1PplyeXxusa0WxZBxe6O7yW36F4YR4ZVVKJSVc047jgqWEHKcBD5QQpWBAQd6nYJbgiKouBQYfLI1y3hj8sHu0pdBLmtmT9zELe9XJDFBblN0BOw4hr4mCvAuqaE4pyk5xPbYJ7bRaavLXvV/JufNLAzsiQLimQbQN5Z5mvBcoub8eKqg6wV1COGj8YRw70zBVr1yPxXjr14p80qJOy+Yu10J2IwqycguAgaG4v3zW2S9ZO5x1tyhLTYiPdLfJ+6AlpKFeEe8rD7q+k6XthrxaCwCYK40us2CUrp7rYUt4Fb5t6WrwXrygNn5TRgFEK9OpRLee4XizShps5x7XyrsVV1BYrtnrkl8ODxKgHhh5XkgpPLw4JVaCbW2a244lNnWrBcZLEluRB+c6St1j0KDXO3yi29vFPBsp5MmcLN38uURFnwWyDjFazDG0d6bJmtA8cQr9JPfbpv03s+W4SDnd1tLBRdBP+9ZyueMZTqiVx5BT/LGt+fdnl4yDAXQfG9YfdMA3MRdMaOMS+DyXnEpBWLlKahQlFjHTcWx7iw9xukYEWJzzvUIfEd5mM/fnH4SXjwqFPNz/zk7UUuSFg2mefHGzbh0Fy683xWXd3293IRZJ3MoEPBslwExb2jWPR2c6vi4Ts+VqeItZ+b0iGbvLLsRx8ZM9n8zs8qZMt85XE+N8IqoWzgl3WsQ0JkGeMzi7Fn9N75p9i2sdwyvV+KnkzaoYx9YJR3lktGpctihNd3DPEdEp+VoK6oXq5avIXiNa7IMcv6GCSTIZBNBDLgsirssCoY/78gJBXgfwvDkZzSvnD4mNDP6BlcvF2UXDh5uvm3n4LFTy5lijjrlxTF7iIYxGpRGaCPcYM1Jb/w5qZKixO0QrgIXjbd7vImPluiYuXldSBuKw5ZshTmgHNs+dSkgx3bAPbMqeJ+svu2rdfu7tYxOGCLJZW9Lzz8Aqff8+a2IAT413OMMm12Tzpl1gRzj8FyjlGvNmdd6we5cSJMjO56IWMkT8rFgpUUXQQlyTlmG1boclAMBjUNFWoi1pkP46j0vd8gBauIjOdWhGQcMKTelhzDbQzVdN0xNvEvMOuUuoUUsklhtSpK3OJwEooVWzQoKDBsNUuW4pVNNuc3+tficePqgw7zlA2wdzKdhgLMOn8F8s7Ry4I1vb7RzIg23s8F1HYngrvXcLuEgg2mss7+iOFjwh1MEGGM4FLHXEeDdOEsqQiDTw9+xRT3cgd85jmZdcZrUBN/CWqJEA/ppeTyFooPcXXerIKtwdjZ3+06AQxSpJaRy8IK7/ackLiAsTpy3zv0KGm2sw+NnoSzxx1ofr5w2szQMsjgJ7l+KaKTkjTxvGWBn5AnmFKs64EmlX7uiV7wbcksLG63sMuRfS76Xryuwu56JV6/GIMlkvCwwjstOR51sLjPbsmixO/5Z3u4xOrFZz5tGxzAhW/+C9e9+4Jtm2qPPoD3NPGbl9otWHaKOaV92YhBBtyzdFpzAqfMfP/pl1iC74de5xaTRILGYMlcBM0ENCHcFQtNWtPwbttem7u3rutI6xoqVNWU369QcymgJBeFhxSsCLCClb1f/A9z1g3GXGNVRn5gq3M5b4JVTFY2wX9q12bHd+LN/aAxyStETAS/EsbLWqUmwLpSNokQJyVJRXVcExPxuBHjcpaJxbgdLGSw4unlCgazNM9Vqhj4a5dN1jHxNbTYpNtvhYifGPKKaFDCWrD4FNSMKjWB+mRlzlZNJnNCUTC6ylKy2EAaZJGMuZSwdlZguYOcM/5At90woqoGN04/HD+Ze7y0JbZ5xBqK9ybXIdvL7c6K59HN53lEZTUajQmgaK1wO9SqzjbXczjeGw9Zc8lIyRfplj2fXolqgGyMB5/K+rrDDg8tg/S4nCx+Sg4/4bXeaQvefYy/Z0FcBPNxt+Zb89xXn8Jj29a5WrD6BAtmIQbuRiFbpzgpFPtBUZ3yaguHy6Cum8fj+3ixT3Pr4/i06p+YOM32PMiyjvJeB5uMbHRi/7CwKbvI9JkDnIsA04c2WrL79Bb8uyC33AXHb07hBf/uur377HnnX20mIt+3+Nbj4sSU1XNksGQhDhdBlxgs/v5b41d8FIM/bVuLb614A/esX2Z+l+YWjpli65fcpBQEKaRO5AcpWBEgzjtkQ8JZ46ZIV1rPGuc+geSPs6DRctXJeMRk8IjbMLeaKMzVfIZDwD6J4VcQk6rqsGCJk7GEqjgGLdaxBi1gKIOd10vRYbWn+BWopNHZW6vddtjx+EGCKWcJxYo5y/jcJT7lfNIjA5cbYbdvMWpd8YNlWtdc3TuDwNpAURT8cv7JpsXRVLACHGNXfzadPn+bfjrvBPz1mDN8lc4TR03AwUMbHdvdOH2+534O9yfhdzE20m07L+nYb5purdbfcPA8R30sIPtMyeqg+WEvNOxNLm/9KZy7ZqPEMsAmrm712ti7fuHk6fgEV38uX+zp8b2tj/b+xtn2zC3LEYNV4ImcqJw/tHmV64KEo6BtARbJRHdH0YJlpWnXpSLwFk6H5Ua4MI1zwphYa3l2iAs9bl1TDSfrhJo62z2WuQjyY4BYHoHBTiWzgPH4jp82mYMv5GyRZBHNZw7M2vJDoye5LgSxdrNbsOxKjvi3DFsWwYy7MjboluRCsGCx8XR3f69km/goWK8377L9D1ju5bWJpOnKKmaMjQPkIlh4SMGKEK/H9bBhckuV1wTyHa7WC29uzmZg8n85xEGtwnQR893VF7HD5SdY/GpZbSJpXmNKcBE091VUx/FYZ+rl3ucHP8F1g2XE4y1ZTOGQBaEDVscks66pnILlNyjx7aAqSmiLVFiXwj3GYMUyg2m6joyumxmcgGwcIM/M+kZ4wSvAVYmE6f5mTU79HzaxBo0CBRVqIlAMnRsnjhrv+btjFVS4V27B9SJe99isg8Wt1vNxPvw7/NDmVWY85smjJgQ6NyCbbGSP/cmJztiVMHEUDN71U5aGm93npKI6ylCwfQDggknTcemB/gWjg8JPxP3cO2UWLP65tJJc2GOwcmmvfHHr10ULViHcvEVEC57pIujyyKtQXAVzWLA8XQQV22fpubjvRev/5p5Os69j8O97v4sCwLbwW9TxHXu5n8VkOV778nFipkx5TIL5PsftiqS1/nTnuf0m4zaLsIcCxGpfijF0ZpILYd+tXMZfZiGVJSkpFZsN+fix3CqmbHmGxFGZ4d8Jt4zLRH6QghUB4kSX/8Q6DreU7F5d+V5h9YZ/WacaKbq9zPE1QuIC1eigwhTrdUO0OPGKED/pHlVdy1mw5C6CCUVxWMRY556XBcto3XXd7XjZJYal2ajjwrvNmZmVJPEa2W2zHVOjpB0TXFIPv06V75STqhreghVuc5OOwaxSySbnvAVLrAcl3heRczl3UMAaBFuMdg0yrHRIXATDElY5Fe+NOCXY4Bqobd/PrRAqYE3UHt6yGhuN4/HTR34C89ft682/Dw8Rd8jPNXjJ5ksyneVi9FAUBTfPPAI/nH2s53a9mRQum+JUoPLNWOpGwqW/kcFbLGRtwAfzm1ZveCe5uGTyDHzOpQ5SPri9L6KLVhRZVv1I6Zpt4uVMqOIug9hnOmKwuCyCtkycsL//bqUWVEEJExfiFguFqNd1tZt/uyWSeMkn0UVQ+Cu94u3n7L95dIiyREP5KFimwggFq7k6fDxsrOvmYvzYneE9MPx8ZvjFXK+FCdb24qKImOSCuWSyjL6Ad5KmYtMy0G9bGOTH8hRn1VcDzgVKAS9THJNwvB8gtTUCnEOA9c19R3wQO/p6pAHggPdqGb+CX6GottieE0aOR6WawKxh2VXj2w49GreseN22/0IhcQHrTC85YKY5QXly1ybX83vhtGBZ11GbsAfUsgHULamFAsUxEWMKT351Zqx971j9jnSblsF+PL5jIxY2WS6YTBaZKxdgdUwy2RKKGsg1ERBjsNTQk6awMVuzh43Aso5mzDLc39hKID85EV1Jqj1Wtn5w2DGYMmSY7Ts2Sfn+qkV48vizQ8ZgMSH893EQch/RgiVOAPNR7BlMpOVcplAFVhunNA0Pb16FYwVLqPhcVakJ10mhoz6SsavosvfB0RNxqIsV3Y+jR1hFet0m1UOTlahOJHFM01hbxsR8M5a6wbuO+b0HsgD9Ts6ywFbVoVjvfFrTbJNOkU+4ZLfLF7eJTpg6TFGR1jSpPG4LIWlds75zxB7ZP/OFhvnjiGdzu7d8P8W7ZduPLz/uu6125UtkU3eH1Io8sqoG+wb6MLnWO034cSPH4d9cKQo3OURkrq7BggHk8ErP83u3S7dhYx2/kMb2ytWC5RYj9XrzLuwd6ENCURzbVAiKCJOHt3SxPq3UMVjdqUFc/va/beN1ZcJepxTIXlMy4FygFPBjRz7PGeEOWbAiRGb+b6ysdo3nALxXIqsEFzJW/2GMYRU6ZsRYDDM6ormNI3Ht1Dm4/bCjzX3ETEtssBpaUYmrpx6GCbXeWQ29cChY3CRddO2yshpmJzXiQKIqzolYhnM9ypWgdX9+s3GFrQMUB/UVnS22IGlWDFK2Om93EfQeCPJNchF26jrXsGqwASqtWyttbry4131V1y9dcRb3jvuL0+YAgLW6amyaSxFV/j36+iELfLcXU+2L45/bc+dwdQrgIsijKIrZ6b7cvBN/2rYO1y1+0baN811wP4cGHd2pQYc7MC//sIpK3HDwvIIpOwAweUjW8lntElsRNfy757cwYQ/wz27LB52badph3bMBLVOSQpxuZxQV7EKkaRf507Z1NuufFYNlIMigQXd9d6VZBF2Ow38O0ieqiuJ4zsR3hveaWNHZAi/c3rfvHXo0zht/ED7NlQiQMb9xlKvbqpeLoLT8R14ugllURXEtfWElueCdZ8PHYAWxYN2+6m0A2WsSFwzY/Xtw8yq0DPSbE37+/ptZBEusrDQP9iMjxGjy95uNq7Z47BhY3UR4t+M4KoDvB0jBigKjDzhv/FQAwBUHuqeWFvHyVxYnsF+fuQDnT5iKaw6aLd3+tLGTMafBvQiiM4A491FafCG9FCFnZijhd4lywaws+cgY5uHmM+owtxT+3P+3Y4P5N+vgkxLZVCiYPzzr4rXAp/BvJRf7lFQU/0xNAmEVEdEfPB1AieVXtvjirkCwybNXty0+F/m4CPL7jDbihg6RxAQljVg3cZAOkikyux2E7dyv0O3++Cn+uz3iR0RWd7bhU288g19tWGGTjr+nhXLT42H3Uuyz6pLyNNv5wvdlfH3Besn5bGnaJccaNGOwrH6oWPFX4jvllmXO2TcUQcMS0IX/FSj4LDfWHchZs8WrcHzWrUUNsR8IEoPFk1BUVCeSOG88l2lXOGOoCaTLKSfU1uHyA2c54odkuFmcvaTwyk6bC+xZUgB8ZOxkx+/DXErCsKEwjAuZLQYrwLsjxvft7e8z//7dppUuadot63IpkSXx4Ps91m5JNd6FhvmYP3IRLAykYEUA6wKOHjEWfz7mdM/U0iJeKxv8qsiEmjqMqKrBZVMOwbAcY6jEwSqfmy+alPmOcJSRHpZ14KJi50w5bHfxePL4s80OS9z34yEykYVRzgZ1q9OUrfTzPuzsniUkCkZ1IoFLD5iJm2ceYdbhcoM/TUJRXLMvTXCpnxZW9xR92JnSuMbFPx+wpyyeOtTuDuhnXXxky2pvBYuTX7fFZISHV1rYhK1eUkNHVRQkVcX1vWOFdWXxRDLGGsrcUEmdGdnzp8Lf4rKuq90x8RZh7r/P7s66IjFXX3Zk3mW3kJYrdnzW/qLSXTgXQeu4/Lt54qjxeGThh23K9Vxu0UkmzX/2brOOC7u1vdCI1hQ3Vx1RwSq+esVNwkxLs7sy5IjB0p0Kj2xBxeEiGOBK2TbnTZhqfvcXIwsdI8yk/MOjncpIVHilaZcpWE/s3Oi+vaZha0+X6zF5C5bM/fADoy2rFt/KbJwIZcHi/k7p/guF44QxjX/ue9Ips3/m739cXARlyjOvQKU1mQUrfgoMn9lQRzxTyZc7pGBFAD/IBFnd4pnfOAqHN47Elw6e5/jNXiAz+iE1H+uQmHKZl7WhsgoPHnkq7jvig8Z57PuK7gEyCxZDnKDJapS4ESbZ0NutexznVCWTdsA7BqsuWYEKNYGjR4xFdSKJk0a6Z7P7x04r/o2P3RJxS2TiFR8lg19Ne2zbOvxt+wafPezJWRxudD5+So9uXYvdfdlA4BMl7cBbVtI67zIU/rnk92DviuwoqhHvJ1qe2LNy7IhxeOK4s1wTTYiTmQ+NmYTPHXgofjrvRE+ZeNn8Lu/McVNw1vgpntswl6d13e2cbNbvtrg679PlDf8eHN001mPL6HCb8KmKgmGVVbYJzUxO2fLqR7Mugtm/32nzjtMpNn3C4ktvCdM+88qTozaWS/NaCRfYZ/n7ruu67XkNZsFyvu/tQsmDMG5lw1yKG0eBpwVLMmC90bLbdfufrl2Ma9593rWwr2ZasBSpt4XbpL9STUDXdZvS41dyRLcpGP5tLcak8+9zpZow+2O+b0nExEVQpuAxF2mAs2ApaqxdBEWJfrp2cUnkeD9DClYE5DOBqVAT+O6hR9tWkxhhixKGRXb0oOmpPz3J7ofOxzlUqgk0VVWbCoA4SM4RiivzxXlF3AoYB6HGJ833EE5BeWTLGsc5eYnearUGOsvH2vn6iFYdr271HK4GmrjfPG7VfWtvFz574KH4iFCouiZQDJQFWwV/t20vHtq8KtA+NtcRj8yRDPEbFsMxikv3zeBTgKc0zdQQcrNgOWWQuehlM44pkhVt69xekzrRKpZQVJw1/kDTLVE8l0NOSGoaCTRVVvuueLrLmP2eX/CIsheRnZV/D2Zz7/aP5x4f4ZntNFVW44SR420uaoDl3sve0eow74jife+PN5KR8JnNosZNcRSt/m4uaIWEvf+8pfkQw9I6gyvEy29jfcFialg6bt31fQ+rYJnbeGwaZoJbiMVMhmcMlptbsssz8YKRUOgtbnFQdi5FkcfZ8s/aCdwCWEbXHeNWGAvW8o5mz20ZEzkrFt/fVahW2RZbvTu2QFhiF0FZ38zH+PGu96VyEVzd2WqW/XBDvKdL24PdNyI4pGBFQSn8NSJgV5+VZnRmfSO+PWshfiZZiZchDkJ8By6mYReVp/mCdUBRgCONLH5i9iZ+BeuyA8LV0VEURWo5YXxk7AHS79k57YGr3GqeRwyW+JWXknxgneVy56WENlVV45zxB+IgIzU/I6wF66ldmwEE70in1TWAf7jdapXxXDttru0zayvxmQBgu540Vzw7txgsay+vCRJLoy9OuCyrpHeXeMbYKThtzORAyoPUggX/WDtVUXyLncqOzd8dXvmdJ0nZHiWyewv4p/jPB0VR8NUZ83HOePuii1kSIsNKQjgVLHfV1LnQw/qA2cNG4IvT5uDL0w/HpSH7oTCU2pHoSo/4YbErUxQF04Y24J75J+P2w47JfmdubN+WvW2sb+UrOeY7fJqJGjyOFKZodCEnRV7zbDcFy09yt+vuMRZyVChCohfjuJwwtckKPHjkqQCyyrvY1/srWLxVM1hMzzauxAV/7aqimPdLrHcGhLuXhUAWY/ZeR6v5t7kAq5bORfArS1/BTcte9dzGWXaBiBpSsGJMlK+kTBngX7CEouKI4aPRkGN8l8yUzxCVB3ECrCoKxtfU4bGjT8f/CK6S/L65rCx67eE2oLFz1kriagArIYbMRVC8Vq/0p7yHnXh/TuEsmldMyU56xImsV/Y/GcdLCiPLOMVQcr9xyBG27x0KlmTQPnaE3UWMKTKyiW5SUcx6JylNwxazqGR+95lJVSFJbsAyjqV13ab87jAGe7+YoapEAtdOm2PK7S2TXAH3S7mtAJhVPxw3HDzXtWad27vAvuUVrKsKUK+JRyzLwBji8v4UEvb+jTcypE4b2uDYxusOi+/vgXX1eODID+F7hx2F2mQFTh41Ia8C2H6UOtj8vIlTHcXGGW592cTaoWabuGcRzMKnrXa90pD9vMxFUCQTwl+8ZBYsFxn9rG9uVr6frVsCIFurT7YY5pZpcTAXBUv4uV+wuPLnkiWi+dDoSebfy9qbzULRfK1JsVZWqZDNG9ZzdRPTXPkT9mwWK27sj1vX4k0Pt1Iex/tc4Fjd/RFSsCIgl7TSQfCtGB+Cn0sGTf4FkylgYfDKHOTn5sHcemqTSadlLM8MaF6DpVgnzJTHR17eRVBUWsQVcJZZ6yDOWiXbNmtV4RRe7remqqw1I9/+75gRweJjvnTwPPzt2DMwsqpGcBG0IwucFhUpr8FQUaz0ynztpFyuU6aIf+aAmTh4aANuO/Ro83cVijnx7zTSmy9rb8brxqAUZVIG2furQMGYGqc7oWM7RcEHR09y1BljyF1qufeZ097DWjq95XJ+VyVM3u474oP40ZzjUFckBevMsZbLHmuXa6fOwQWTDnYs2GRxV04di0FQMKKqpiiZGIHSK1iAf3ZQ5l7slpQHkGUNNCadquXmZVqwhHc37BvI7rlXXx9mgluo8RzwtmC5lfXo83Ep9pN2c0+ndCbhTFRlKTDib/51sOy/i0lidnAZ62T94sHcQkjLYD/aUwOo4FzsgPhkEfRTeK0SM3zJlsK/11t7uvD7LavxvffeMr/r9UhcEYe+5v0OKVgRUA56vyz5Br9glu8E4sV97vWSZJPBSybPMP/2DDzPs3G9dj+sYYQ0W5tfW/Ad6CeFgqPiBO28CQfhi9Pm4NZZRzllE9wfnt29xfaZwZQW/n75uZDJCHqPFUUxz8nXUhttZIe05JLFoAkWPJ+4qpWGn/jzXCa3fN8nNkEaVV2Ln8w9AXMbR5rPoKoo5grqrzeuwFmv/APfWP6aJX+B6jaZsinAVMHV07kNF3fgIo/svcjoulVouEgKAeB85kdX12KGJEV+oeBdIJksDZVVuHDyjNAZVx2ZVou8qssmskEspIVCZpkGrHd5U08nAHv2RRFHFkHh2GmXGKyc3IMV/33DWD2iqDE2xGVRw0sKt2m7W9Fiht+1Kci66w5NVmAKl1xCnGCz69Z03XFMv0K0ouw9GfvE/idr3/WUV6bUin2xVQer1C6CTvnnci797PpURTEzDRfD6vaSZA72x21rXben4sKFhxSsGFPod5LvYAuZNUs2SeHjb7wmMVH557vx1ZnzHd95WTFe3b3DnGAkOBcAt/NVqAl8eMxkqeul3YKl2AYplZvkWIqMdb9GCspOEA4UMjcFYVb9cHzmgJm4c85xjngXmWIsfuc3GLIrWtvVHlo2Hru7q7vrJp86V7YoEOWEWvb6somEl3WHl4Cf7PKp4GWLFmKx7M8eOAtfmX54cIFzpJAuVYHOz/0d5P55beJ4nwu8fHZ0k92KzhcpLRVuSr2oNH3vUNmikfyYbN8KLtU26xls8ZPIvc/PxR1cRhR9wI9cYjS9vFKYlW+q4O3QL7EU8u7Nfm79rL7bo0d/xObJIk76TWsLdIfy9WrzLmzk3OCcAtk/ijLvG+jjNpUoWJI2FxV9K017aRUDmQWL/4Zdn8qNNcVQCidKsg23DPS7bk8xWIWHFKwIKPUEI1eidEFsqKjCXXNPMFOz88gGLH4CUcjW8+uLZSv9vGwjOEtR++AA/ue1F7Coda+5nbNIZnBsVeo96gcxy1O+d8vtOT1smHvNJUVR8PGJ0zCzfnhOsScZc5VawU0zFjh+H12VdZfjV+xzcdHhJwuyvdl3XiUBALtrZr7IEpyYcgQ8D+9yySeHkV1DRtdtbXfO+INwkpA0Jn8kymuJh2ZbDbQgCpbHccRrKbSic5qQaOe9ztainNcLt/vJHudqNYG6ZAXmSUoZuMZgGfuybIjZ1XYry525vxJexbL6cGs/sS5dGLeyKFwEZTGngI+LoPH/iSMn2N512aPA1y70c/VKCCY5prgMFWKh2Luj6ZaCxY+P317xhofs3i6FfGIfWaiZbCIqlgExLVgldhGUnd9eMyz7P1/f08uCpes67l2/HP/Z424RDoImsYF6hW6I96E8Z7HxhhSsGHPJATMxorIa35h5hP/GOeDnax8G1cgoJUtXLZss8ApFIScTXm4sgLwN+EnaFw+eCyBbi0oM3E2qztpVYVY/+fFDbANZm/B9dFQrYjfNWIBvzVoYybFksDouqgIcN3KcwyXz6BHZFXw+mDkXRY4f4GRDmRmD5aNgRflOyLJdsVN3pgcdv5kycJMaXh7VZ1Gi1MHfpYJXCAI6wbp+60zIk7NYgRBdalnsSjFdPEXckvuwSfSgpvmmvxcfRbaYx+pTre/ukGYRzKW5zSQXvKImHCmcBSsHIQTcDuG9qMksH/b+cEKN0zKxy0gCATiLUIuIi0Y/mXc8PjR6Ej4turfDUrBYX8L3P10hCtGKSt9Axmp/mQVItvgnurQzT45SlCjgkfXr9vHHcn1l77GXEvxW6x48uWsT7sqzDpUsSYrXcy/K1JVOlVx5fb9BClYEFGoMnlBbhwcWnho4OYGMK6bMwsmjJkjrW318glUsWMz+FhYvJYn/7afzTnB857UCLkukkCuTORM6O7+fBWtkZdYVb2RVjaOzkk3Ww1hAxCQXlS6TaQbfHUbRESrIKj1hi2MD2bT+YTBXTSvskzfWBuz3U8dMQi7wyoVsADddBLlVRRm5tIUbL+zd7vjOb3X88imH2OKGeHlsha8l1+AWJB8lYkILoPRpk/kJcV4WLNmxC7yu6xYXGUsXQeMV06H7em24xWDxlhnrlc1PqWXyirultAwe2PQeNvd0hnIri8KC5fYcvtosLwoMWBYF8fzVkgUnfhFGlpW0kyu0LD5LU4YMw/UHz0WdUNOPJRjRuCQX/Hm8WsUv6+ARw0e7/uZW31JUHFkNws6U++JUMZAtZIlp6gHDIh7ARfAHqxZFIpfsHG410gBrweRQzoNlWcAaZkQwSMGKgDibVs+dcBC+PP1w6YDIT+ROFYrYBoFPIR3UKsAC/G0dt8e+I6tq8KmJB0vdy8Iyu2EEHj/uLFwxZRZ+efjJAOTZE/lJD3OveKdtL5oFf+akRMEK4y4qJrmYyK1UyhUsXonI31oxWyj4HIZVnW3+G3EkDUX5dSGFLGsDdj11Lim//eCVKtlkis805jV5jTLznUwOv6fjvAlTXeWxW7AkClY48XLiW7MWYvrQRnzzkCPN77yyyRUDvi3cXLNs23vcBHEhqtBJLtyexYVGbNZRTfJMp6VAR7a0gQ53xdPVcmPGFzXYjifbJ2iLf/6gw/DB0RMxtnqIsZ99z6d3bcFftq/Hte++gFQIq0ch7vhBRjbQ9tQANrjEMlmFgRWbBXCRZJLMu8/JLFirOq26TGESWKmKYovB4s8TxrMgIyjY07kFObGfclNoOwRFKi4Klmxxkx+P2bOuAIFcBKPyRgkbm6aZ76QV87d/+kAUDlKwIiHOKlYw3DJHecG7LnplvZJZifiJkN8k5qIDZuC4kcFqOHnBfKLPnXCQWSdH7pqgSP/+xrLXhO1USSam4M8C73KYUBR88eA5GFVVg9sPOxoAcOkBM3Ht1DnmNvyponjiipmmtcIYqEVLKbsO04c/xwubzCXwqJJMstk8IaNrnlaJXJKHhCHs6ji/OMFbR0tl4Dh4aCN+PPd4LGwag1rDujageaeRLjT8OxdIwfKwYQ2tqMQYzs250AqW2/Fn1g/HA0d+CF8vkHt4UA79/+zdd5wcdf0/8NfMXsvdpVzu0nsnpFMChNACSBNpShMQBBSQAIqCIiIoiOIPRUCxIHwREBAIUoQACQkJ6b33nku5nutlb+f3x+7szczOzM7szuzM7r2ej4dy2TLz2amf93w+n/enWzHujUweLkkdleN4m0V7ZZH/XayTkCHRLXxJ/2G4b/SU6DVcWaYQJJQputEZzTGlx4kx1cr9+rU+g3HT0LHRf1coEj7I2kIhVcZV5cO0TxTZZWXZQsdxrjfORtVDxE63dQiqMVjK9Zh1W43XgmWW2tzqWPCAIKIwKxvH2losfd4teoGMpPO3IAiWugg6Vi6bvVqirZSKa6aTY5AJcK4/TCeWCYdkImNPlOOt7ho50fBzejcA5dOwVA2St3qjMZs0WSlLEGJuDnZ+yVTFPFxZgohBhV3x0tTzo699c9Ao1eeV67KbflrPgejEvu6Tb9Tn9Rms6iYjap7wJXosFGRl4/EJp6FCaEW/LgUIaSpU8tiP0qYGjDJIk/6bCdMcTVgzqEshDjTVq17TW3y2IBp2s1Mef6oskzZbENzQPTsXje1BNMSZp8dtyt+s14XR7nIG5XfFkUjl3O1rk1GlVQBQ4nKwb8W9oyerssvJT+eNrqXa8+ezI/vwxdGD0W5IyvcrW5tjXhMgJPwUXblmCeqWgVR3Y1WW5aSevU0D0k8O78Wfd67H1Eg3Ou0RoTdBvDKphF4LVqJdTEVBQEiC7hgsM9p9ZhZwXT94jPmXTXTPzkFpUwNa2ttdnfDbjF6LUyhOC1YqsgjaaaUFoAiizYcmUOLYguWATDgmExlUrTwZzbpWDcrvioFdCnFZ/+HR19TjjWyv2rJRFtPBKxm1YMV+TkTfSPcUK5/XUt4grHxvco+O+X70WmnsS92BK3c10ZZbbk2IN3mjFSf07I3rRh4X93NGQXMyXSb1mKVpV7ookknuOs2gcwA4pAjQlNvID9ecw80NALwfdC5YfCASfznh/6qSZnjURdAvFR0B6rLIFXurgeezO9ZhY20lllUdiSxPGUx1/PecSLbLU4v7Jvy0Xzm1BSRJ1dKQ6rmTlNsnJJkn8vjzzvUAOsbLCII6yNRLw67cRvoBVse2sHOvEAUB7cougop9b5piXvOe9qGqHLDdPnwcrh8SDrAu7T8MAHBmrwGWyxftJmiSJMht8bIIdiRvEWIeIOpxKqHNv/Zt1X39msUfo16nW6XeeeaX606mYIBFAGJTolphtTk5WxTxwonn4PYR4zvWl6KnJneOnGB7PaLlACv2vUQHSFupGPbr0hHMJbrNBnYpTHoZAFRdXqyQW7AGRrpmyt3LlJNbJlsmq1KVQEB/vpfYz105cAReOPEcXKd9sgv1OIRv9B+O4QXd8LOxJxm3YKXw/jgsgXnV3KA8c/ZG5qgzEy8gVF4Km9rdbZ0zOhadSLTgCKGjLMquY/FKpz32o9M1KL4o1+8EAPeNnoy/nTgDp5X0SziTZ0AQ8MrUr4UTNUBdEU51djRl0D++e7Gt/SlAUHV11aucqwOs8G/77Mg+fHRoDwB1y9PM0ZNgVbgFS9LtPmYW92rf++3WlXhpz6Zoa478G3pkd4xx/P6ICXh72sUY2bUHAOB7w8cjnm5Z4WDTy26Cui1YqiQXHdkg5XpOKsZgGWloD+Ljw3tjXpei73dkh2QWQWexiyABSL4FKx5t1xFlQOFmN5yeikHrVn7h2G5FqrLZ6XcOJB4g2I1vEw0SLuw3BC/u3pTUMgCgv6blTulHo6fgD5qUs3IA3zMnDy+ceA56ZIdvlGK0Bctaxc0JqXpKpzfsQ2/NWYKoO0mk9vPFOXl4NjJR6I4kJ2Z2wuD8rtFJt70kWHzKbpXy/HdzAnbAOJBSHqJf7zcMHx3e42o5jISfwof/lqAeX6JHPi7r2tpU88B1dJsScFzXImytq+6odAoCAoIYHRebIwbw+0nT0U0zT5MVxbl5KMjKRrsUUk3RkeoWLOXW6ZGTC6FR8V6c648ohLvCyeJlrZN/27M71gEIZx0cGnn40S0rBwMUD9XiCUBAUApF16l88Kqd68qoPLJZB3fh40N7cXbvgdE5nrTLUGZJvajfUPx998bov6cqMg/K5Cy09W3WU8Y7TW8Mlt48WFBkrG33OHBpMWl1C3nY0pvp2ILlAN88bUxCIk8Nk6moKi/cbk7UbCeZBhAeh6NUYNL1MT8r9vlEotvEbrUw0eDIrKuKU+uf0WdQTHc3ZT/vQfld0TVSgZD3fUhRAXObly1Yeg8TzMrTVVHRUmURNPxO+l+L7FJul6lJZN2Tj71UdpMxWpXyOCnOjZ1iw21yS7f8IAQIn6PxxmDVRFoW/rZrAxoVrX8d3aYUE9oaZBEEwkk+5IDLrnCiBvVrdpJcOEF7ftq7rgk4vlvP6L/0uk8rf0675rc9s31ttEVpvMkk8npEwXiiYb2J06PvGbzeHGrH7CP7omPglNkNtbR1kGad7KTyww9tlsJU0t8fOi1Y6Li2H2iqj9sNvke2/QcKSgUmU4zodSOVy6zMVMoAy1kMsByQCVWaRFqwkqmopqoFSzXWy8J6RJ3tMMHgJtXfxpNBI7cND89TVpRtL2lF4mNNOrZBVWuzyefMZcUJyLUVsFyDi7+8FL0uRG5JVQVatz6is2qzffntIR3dBlXzYCVTsAyjPK8H6UzKalcq56AyWpMyOPdi0uE/n3g23p52MXIDAc14oo7Kox65rAO6FKoq5AcjYwlFITWt1tpuoG1SKKX7VXuvsbNmUQBO6tkHVwwIzw+l20VQcXzoJfDoSPluY8WITdOuDAwHF3ScWzWtLarus2bBl5KdbMV6XXkDmgdyXtBL2iUhHHi9smczttVVh1+MtMzKXtq9OeZ7yi55yf6ioSZdtvVS28vHVZdAFi4fMDxSHiZqdxLv007IgAjL7S6CWlYTSSTLbguW3lYYFekj7obLBxjPU2bGiRYsu/NmKHWL87RNeyPtatASqJ0Hy+0WrK5Z2aZjCZwkPxkcrOj+pxfkm41/7J6tP9eccjv1V4zNS+WlyC+3YuWpkMhY0uhyIv/NU1wz+ikypbrB6HhXVi7rPBjQHxDEaPct+RzdUV+DY5GyGF2vHjjuRADhDIj6406E6P7qqCQ7e9TqFS0YClm6x5XkONNamJ+VhZuGHBedv9HW/IiR7TEtMqWFbhfBOBOry2/bfXgZTdMeObuVvTTkbsztUgg3LPsU31r8cXQfWr0W2Okpo3eP6ZhXyruWFqMxcV8eOoi39u+IZskVob5mf6qTbr85iTGeT2xejuci3UIB80yZc8sOxATB0YQ1inTybMFyFgMsB2RCF8FEgqWAIOLx8afhmSlnJrVuNx8sqp76G6zolalfU5Ql9jMHGutjXvOaEwFWIp6edAZuHz7edN4zIDZzlVFAJpcnlKIWrPP6DE7ZeJabh43Fr8afiluHjTP9nNXWSOU+V26nkhxv0nlbfWqdSkk9rIl8VRnU3jd6SpIlsrTKGDmK+Yc2Hqt0tQzxKI/OD0p3R17TL7lcgQ5KId0WiNZQuyKzWrgy53QWWb37cVAKxW11B4AfRwJEJ1w9eHR0/ka7LViAIsW33vgZ5RiskGRYebZLjGQwlNfZJZCF748IJ4qSV1Ef7Bj/9GX5wfB7FtdnZyL3H+hM/WJl4l636QUh7ZKEulb1gxDtPterfzQrzhE7P0mSJCypPKIK2vRa1pS03TOVQXhHMg4GWE5igEUAEhuDBQCTi3phpMG8Qlalah4so7UU5+bhqoEjccuw43Xf3+eDgfxaCXcRTDKCGdOtCJcNGB73c9maAMsoVbC2spWKhxXjFOMb3JQtBnBCUW9VOv54E1ubUaUPV/ytnLw5/R/1JEBRMUnmWiJ/V5lgoNihFg0jcgruLpoutMrxR4lemx2jOD7lbsVGD6vkY3l3/THdCXLnHj0Q00XQ8RYszb/75eWjLRRCtoXzrMSl8W72xr6GPyFf4/WCJWVPrqAUMuyNYPfBqd68hEMiLVfyQ7Amxbx3cpIbqz3LLomkZrdCbx44eZsou7LVtrXiuR3rcLipwfKyk6HfRVCKCeBjx+HF0hsbZYXeMREvwGrUtJYpW7ACkag+mV4tFIsBlgPSuVLz6/Gn4oejJ8fc4FMpVWNizNZzy7DjcdXAkbrv/WjMCTGv5Xhc6clyoAUrXitUMrTbx6iLTMeA98i/XStRWI4YwDU68025SfmbkjnSjZJceJEEwa+sdMV6d9olmFYcDkrHdus4B+TvqsYLunxpygtk4Y1TL8RLJ58XfW2gZmxnD5vjM52mDFrla4bRZpGfhG+tq9at8CpbsKymfLerWpPCO4RIC5bBQyllF9tk5lEzY68LuBQpi3FrTUjTRVDb8pDotpX3jdzdLCAI0CYlUXZFk1tarbRg9crtYrme8U/F+aDUMel1Rxme2roSnx7Zp+ou5ybttg5EUttrH5RpHxbqHQOtqjFY1oMbvWAq3mTa2vIoJ0SOtmAxTbujGGA5IJ0DrClFvXFun8GeliFVAVai3Yf0nmp6PRY00VnslVvg4eNPdqYwOnIsTm4ZM9GwS8fCr8afiik9euGKAcNTnjRAWWlLpoXOKMmFsnUw0a5BnUluIICHjj8ZH06/VFV5lbdptjLDaQqu7l2zc9StnJr35QnG8wNZ+NnYk1wvj5ZyXJv8lN7omq188KM3V1EIsa0kbl/+20Lhs8Koi2AvRUuJW+OB1S1Y5uuQ7y1mXQQlVZILKablIV46fSPy3JZyBV4UOkqrndMKAPpExihaSTqRbyG4+tX4U3HXiAnR5caUTyfoPNoczoF/sMnZrvz1ba345calWFtdrnpdmwhChABJij2+tJter3U9XquTEb1joj0UMj2ytOXpaD/uSCfPFixncR4sJ6Ryds8MlKougnoZAq3Q694W0nla1NflAfFAuA97fbANQ/MTm+RVuaWLXOz+FO9pmkzeI/JNy60KzglFvXFCUe/wOlN8vqrHAarfO6VnYmnFBdUyO/5u0klt7Ba/3IoTLYcgCKhu7QgCtC0rQOoenikr3drjc0afQegSyMKEHsXonp2LG4ccF52cNRWUDwjitYwoK5nddVrevtF/OJZWhpMAmKVpd5LcDctKBruAS6VRBVVxViFZasHq+Ls9FMJOzbx4UpItWEGpI8CSX5NXqTw/RAEoa260NEGtla6uJxT1Bkw6VkTTtKu2STQEjLt8O/5zcAdWVZdhVXUZPjrjG9HXtWOwREFAO6SYB3exLVix61B2EbRTer37a3ukFc2wu6i2BUuRadLKhMhkHwMsBzC8SlKKNmBibT4GAZbO5+IlM3DCM1POxOrqcpzde2BiC0hRcGF1Rng5UDjaEn4KmYrWpVSmawbMA7o7R06I+/2BXQqj8wvJlDfmVD2g8KtkJheWVJXF8HZcVnk0+pqbc/Qpmc1xFhCEaLIEACnv4qo8X17ftw2AcWVQ+TuGFHTFVxXq96cU9cLyqiMA3BuDpSWfK0YtWDcMOQ7rar4C4GILlo3FysGTMrPbH7auxoyhQzE5Lzx+VJXkQpLw8MYlqmXI7yY6Bku+fouKMEFvYto11eX44/a10X8LMD42nGgN1pu4V35o5XSvkprW2BZYQC/A0m/B0/5avd/flmCadr2Wr3CAJSIo6T9ki2nBUiW50PQkIUewiyB5riWJVKV2JNpyYSX7VDLLt6NvXgEu7jc05a0wdk0t7mPpc9otW5+ClNSpDrCU69MGQ1b2419OPAevn3qB6rXVim4ruYEATktigt3OTFlRlffNccpxWSkqh2jwt9/ImQH3GiT+UVY0W3RaU7MEIbqdj0TGaLnfghWKrLtjyw5QjLs6TjEWNeDS2FpV5TpOTTo6UW3k2rC5tgpzjh7AQ8sWdnxGUgZY5hPf2iGvU05eIQpCNOBfWHEIbaGQqpVjWdVR3e+bLTsZeq16gsUWrGNtLahoaQIAfFlWiiPN5kkx5pUdjP5dHvkeEPvwMEsQI9slNvBSUv7zw0N78JN1C9HQ3pGR0U4aQd19Dsl0G2sDvJCiBUuMBvNswXKSn6/lacPfVV3/M3pS5LTylsQm1rVaIU+H4yBVZVR2D/qRSapr7Q2hrLnJ4JPOcWsguxFVUKXZATkWyiIKQkyZla2qxTldUGAj/bFTkmk5clIypVA+9ZYrHNNL+ht82j2CSQuWHxltc2XFVy9Ne7YYiJ7zByJjZlL1exsVlVnlOalcv1sPX5QBzy83LcVKTWCiJAdPZmWxGkAlMg8W0PFQsS7YqlrG/w7vUQUSeZreHWbrc2LLRrsI6hyB8bbIz9Yvxs3LP8eq6jL8ftsq3LZirunnlct7Y/+26N/aIKQwKxstoXbVxMtAbECjTL7yt10bsKW2GitMjgMzehMCy10E9dLbAx332q/KD+GZ7WtUmSLlcZZswXIWAyzyzLDIzOODTWYgd5Lc998uqzcpv7cqAd6Mmzmr9wDD97SVK2VXKLc4Pe9OPHotWL84fipuHz4OhXEmbDaiTDzQIycn5Yk7fCWJg1pZUd1QE55vStli7cU5nR5dPvU3unKeI70AK0uI7SiVql9bqshq2GpQkXQrwGoOqSvfj25aBkA9p5RMLpnZOR2vGtzROpFYF0G5C96owh6qrmXb62pU69b27jBtQXFg0+q3YIXFizn3N9YBAFZU2g9qlK1W2tYjOetoQ5t6X1r5vQl3ETRotQwIAi7qNxQvnXxedP4ymbztfrt1JeYcPRCdX09QPMDjGCxrrPa64hgsB6TDE0c/+t3E07G/sQ7HpWheomQGwzv5OS8l2nUkGeZPNTveG5rfFSf3tNa1MBmpnhhcNb4m8t9TkuzSN7Zbz2g3wYAgejJXUibci5WtcPLfWaqsj6nnx8vINweOxDsHdype0S/koMicSYB+F0FlC5bM6aAmWxDjJtlpM5h/yK3gttkg+czu+mMxrznRgiW/bffXaLPJCYounQBQ19aqauXQXnfsdFFLhF6A1ZEx0doylBPNS5Jk6b6tDITkdQ/oUoCTe/bBhkigop3TSvt7u2XFPkzT+x1W1LXFdqVvl0IICOEqfe+8fFzcbyh653bB7CP7sKLqqOHE8AI6sn/qdT2kWGUtTSjMiz99Rid+7OkcH94P00J+VnbKgivA/eAiHU4mLwIssxuYsjVJ74m3G1J9viorSnpdWxLxrYGj8P3h4/F/U88HkJrkIH41vLA7huZ3xTWDRtn+rrI6IVeIvN6WqX4AYIU2/b9RZQ0AZkQS8OhNohoQBNV4lvBrzm7v30ycFvczel2sAPcekhk9ANFLXR6dE9CkLPG650YzxFkrXlTHJNBykgt14KIdg1WvabUxHYPlUpILmdnSjY7Xn21YbPidEkWWXeWDg/Ck1SL+dtK5uG34+Oj1QvtAQS7Pg8edCEB/fLE6oLF2b5AkCV+UHYj+W76nt0uSahsHBAGnFPeNtiobhU7KLujtXs8/kyas1qPYgkWdRk+X0pKfWNQbq6rLMKKwhyvLd5Jfxs3IlJVJq3NnJUtZCRhZ2B1DC7phYveSlKzPqcpzliji0gHDVf9ONb8cS9miiOdPPCeh7yorXvJuSvU8WFqpTsJiiWZXm3Ulkiuc2labEQXdAYSTNqg/7+zvHaCZqFmPdqzJPaMmoSHoXrIleS4zLe2kyEDHMWnaRTBeC1bkvwlnEVS0YCnPgVapXbXuWk3QYHYVcmI3y2VR/vqOYNKkxc/gWiV3k9OjDPyVx2hQCqmut/L5qj3e5WBdnig8BKC2rRXdFN3ClV0PrT77XFdTgS8UCTjk/SFB/2FFRxdKs3M2vVqwFpSX4lhri+oemEpW73wMsKjT+N6I8a4s99Fxp6Al1I48i7PUeymVfazP6jUAjXH6KitbsLqkaPsJqqd8Iu4zScLhBGUlp1uCY67icbqSaoU/wqvkKINEed+oJob2INbxYXgVU0E1m9BarnBqW6S7ZOmf3063GhktbURhd3TLysGamnKM7lqENTUdmTi/1neIo2XQEgUB47sVY2OtukL/WGQslpI2i6CeuGOwEs4iGP6vsgVLGfC3alqwtMyCHCceVsjlU563cqOL2WGUyIS+oiqo6lhfWyikSjIUPd4NWrDU8xQGVd1C7d6PW9rbcUiT/VCCFN0GesdMdH4/SLqtyqoWrDTp9/3U1lUAgEv6D/NknKzVh4v+rxGmAT926aAOz51wFkobGzDUpWQagiCkRXAFpLaL4E8iXSPMKLs0pC7A6uDL1oIEZKeo9U9pSo9eWFp5BGMUaa7TzXl9BuPDQ+ExGTcOOQ6AOy2OdvhxLKf2smF2HZGf7msrc71yuxgs29lrktHWO6moD749ZAwa24P4x66Njq7TiiEFXWMCLFlBVjYaIgkvzCrLMqvbLNEWrHaDFqz2UCjhe4gTrSNyWdQ92eLPp2Z1XkYl5cM/ZdnbQu3oqkjm0tFFUD+LoHIf1LS1qOYsUy433latbm3Gjcs+i3m9XZKiv1zvfibfYyUJ+Pe+bTHvC+jowpouLViycKCT+uul1Z6U6VEr9Dkf3g9JYVhBdwyLdE/p7Px2+cxX3KhyA6kJEpTna3pkbIvPixas8/oMRkAQcWYKMj+65YoBI6IBVqFOqnsvjg4/HpPa+oRZ/cKoi6DVZSfN4FwQhXBltzAr25PurUYBJgBkK8ps1jpY1dqMHlm5MUFOt6wcVXc9+X27DwjkY08OSASoN6cgCAm3cjgxxlZ++KBOThN5z+R79e2x2RrjKczKARBuLZK3R7sUQgjqMXWiQQtWSyRzpLJc2+tqNJ+xvk20XWtl4cq+cWIUQdGCtUQnk7IIIfp7Emnp81I4c2Lq12v1+tF5R0Y7yH+3Q3LTeX0G4ZfjTvG6GAnxIsmFmQJFq1WqkgsoK7Cp6F6QiutDkUvjC83kBgK4sN8QVZCcbtRzIBmPX0glPz6wsxOQyJW8g5F5ruJxOgOm0eZTZSyN9GYYaGG8llOUx5f2FyuvfcrWqROK1GO35ArwZ0f3q17XjoWS/207yYW2BQtCzPXSLMDSlkOp1WLAbVq+yH+V97F4AdbOuhrMXP2l7XUp1yFnpZQnrVb2GDB6oNAS+azyHqNteVSnaTc/x7IN7o/hLoLh5egGWJH/hiQJxTmxQX44TXv4U1+Wl5qWwW+8yslhtRrFFiwH1OikzKTM9aPjTkAoTbPt+O0JlV4Kc7cpK9WpmBOrR3Yuzuk9MDrvmxtyPEhykQmUu18v2Paiu54fW7DsMAqYjH5VscMPB5TrGVbQDXsaasOvK964tP9w5AeyMDXJ6RLsUFd+1VtDmTRBeYWeVtw/Oh0D0NFSrc3EqPXcjnXhtdg8lDqSXMjBgaa1BuYtbGZaHbj3KMcTRUXHYCm6MkbmhAKA+9YuSGhdyoBHbsFqiwZYsUkutC1YcoCmPJ+bNd0InRjzFJKkjnXp7PBAtNUPGNm1O9Yfq1C9LwLR7qnppqatBX0C+SldZ1sohFCALVgp43QfciK3tEmpSYVulTrYSU3FMl6l2vH1CQLuH3MCrhw40rV1pHul3Cvx9r8nXQR92IRl5/iym3Z9iOMPHjrK2lUx95DyN2SLIi7sN9S1zLJ6AiYPdpQtWLmKynuW5oN2axp2nwN2pGnvaMFSjo0NITYDo1WOdBFUjCeSHW1pBBDO0CdJEvY31OGyrz7Eewd3JbUu5abraMEK/4YcGwGW8h53TNPCp2qJi7OvjMZHhSQpOv2Hfiu8EC273gNWQRBwfLdi85X71K0r5mCeImV9KlS3Nlv+LAMsBzC8onThuxYsRaXHkxasDAlM/FgpTwfxtpoX13Y/7kk7yWCMxgPKFb37x0yJvnZKT+dbkJQxibIi7HXykHgtWL8efyqmFffDBYqMhtoKs91nuXaDmo6JfCNjsDQJnEKShCabXf2GROaQciKBgrxv9VrRWkLt+M+BHfjg0G4AwD/3bLK0zJAk6T4kV74mt2DJ/80WFF0ERf0kFx3ZIDtee790t+oz7TaSXFS1xqb0B8LbQg6I9c5TeR1PblmpezwIEJAbCETHCKZbg8HT29akdH3vqiZcN8cAywHplnmFEndan35eFyEpvguwlF0EPWjBcnqSU6/4sVKeDuIlAfAibbHXgYAe7Rx1eSZZK+PNydY9Mi8QAFzm8jw2ynJ7faaLimtNSFNnyBZETCnqjYeOP1kV0JRoWtjsds+z+5u182DJadqfP+HsSLklNFrsTnbd4NH44ejJNktgTq8FS+mN/dts18e+8dWH+On6RTGv67dgmXQR1AQvylZAI+qgyXzf/nXXBt3XQ1JHy5pe99xmRbm0rWxARwAoPxg50Ght7KRXrI4jlyQJO+pqMPfIfvxt8zrH1v+/w3stf9bra05G4OzXncdPJp/sdRGSojcPhpdU3fVSFCaIJl110hVbsBJjtNW+1ncwRhR2180s6LY6H47pvWzAcIztVoRbh43DwC6FplMwxHto4XaSGWWFVjlnkNeBq/JaEwKwrbY67nfGdy/GHSMmoFukq6PdJEV2t++hpvD2kifglbfZgC4F4fVDshzAfHvIcTi3z2BHr+ry7/ng0G78PZJqX9lqU5iVk9BDs021VTHbVtmSIz+YlAMtdYAlt2DpB1hmrb/KoMxsz2rHbimFIHWMDdP57crup2b3f3n9d62eZ1ISb62tLo9pBQSA+YqJl2Xb6qrxw7UL8PS2NXhp60bUezDOjEkuHMAWLEoXfmvBUqcATtE6FX9nSmDideUxXRlVau4ZNTmVxVDZWhe/4p1qXbNz8PtJZwAArhg4wvSz8aYMUJ5zbsxDp1zk3kiCC8D7Vl7t+p/b2fFU/RSDZBuCIODr/YdhaeURrK0ptx1gHWlutPX5HfU1qn/LwbC8zw41NeCTw/tsLdNJym34waHd+N6I8arWrIKsrISnrFhaeRjTSjqmnFDeKeX7ZrSlSBG0yOtrDqqDILle6MRcejUG3QOBcNAtd13UtjRr6SUakfet3+oGepRziCn9v22rcXbvgarX1iiSwwDeZFBmC5YD0mX2a0peuu/q47uHB7OeWNTb45KEebE9lTe8jBmD5XUB0lSPnFzcPHRs2k674Efa6RZmjpoEEcCVkcDM9QDL8HVvz3Xt+vc21EYr6t8aZJ4AR95OdrsIrqous/V5I8rrZE2bcWXfjBOXer0HScptkisGEn5oZhaMyi1XbTqBjGjURTAkJ7mwtn6ze6HZRPLBUChavnjnk9EYLMD/AZbdsWHa7pKJJmdJBluwHMAWLEoXF/cbiv55BTi+e0+viwJA/VQpVcGO8h60sOIQHkzJWt2VKS1xXvjmoFFeFyGjKDPfnVrcFxf0HYKv9RkcrRwrj1R35r7TPxe87g6sd4qKgoDuFrq1yd81qwRfOWAEZh/Zh0aT7mR2ydvMagt5liAa14cceJqmvUcENdujOLdLwseUtoUjpJPkQi9Ne5ZBF8GCSPfigOX7mvH2MQuU26SQaZp2JbMxWGZzmPmB3fJpx4J60RDCB58O0J7klHkGRzIhleTFTtSXTgKCgBN79lal3vWS8uljqrq5ZUqrlZLXT+eJZMpgYWnlEQDG0zG4MwbL6HWvz5HY9beE2i2NDZGvWXevmo8yg5aWHDGAO0dOSKqE2p4NdvbPmK5FOEfTTQuAo32/tYt6/5B6PE5RTq6qFcdOq4dZLS7agiXFJpOQ16edSPnifkMjZbb2+81K+uyOtYbvPb55ueUAS9sFFPDDeWFNrYWxqb/fugp/2LYaQOzZ5lSANbKwu+XPMsByAFuwMt9zJ5yNd6dfgrwsfwQmmUL5lDBladpTtJ5UKm+xN9aCyC3xWhCUDzjcHoOlft3rM1+/gmel4qf8xN2r50f/HtO1KPp3liiiLcmEWz8Zc4Lq31YfRh3XtQi/nXi67jgXR5NcaJb28p7Nqn+HJEl1/AVtVKrzNQ8d23WSXHxxNJxMYUttVfQ9+YGCdk25gXC3PrePuiPNjdFWy0QeHnp9VhjRBsdWujB+WV6KL8oOorSpHtvralTvOdVF0M5YLgZYDrBzElN6CgiCb1p9MoknAZbnFS3nVZsMgiZKpXhJBpRvuxFgKa8k1w8eE/3b68pOMoPsd9cfi/6t7AKozHKZLYromZOr+t43bU5uXpido0rBb7UF69bh45AtmnQPdEi84rRLkqrMdsaL9cnLV/1b+Vvkyv3iysMAgJ2K/WEnqYuZZGqRcvINvVWZrV6AP++HW2urcOlXH6oC6HjHljIg/v7KL/Bleanh+8nYrUicE4/X15yM4MXgOaJM0FMxz0uqxhEpu0RM6dErJet0mxcZkoj0BBTdp87vMzjmfXWSC+erIMqryMQeJR2ve1yRbE/iFDXKDqcdC6Tt4tcvkl7dDrnlBbB+TZaTdbh9HYrXQhOSJFUZFmoq2Wa09bi2UCgmucjJPfsAAC6JdP8D1Me7nlR0wZOTV+htH7P1K9/LjZOBMJV+vO4rAOpJfeO1YOmNL1NyIsAqtTlHGAMsBwQ5DxZRQvoqKgCp6guuHOwu3zDT3VSDNM+Ufh45fqrXRUiKMoX1ZEWAI3O9i6Dib+Xyva7sGAUfym5+RvICBgGWYltniyIEQVAFWYl1GbOfZVVOKGDWyuBELak5zjyO7ZKkGterNy+UEe3+aZNC0cBWfq9vpJVrsuLBXKJp4fXYzZQnk8cn6QXEZqVTbiu7rZ2pZnZsTexegpaQeXIXJwIs24k2kl4jcQwWkQO8eMDsThel1BuQwJNq8pc3T70Qx9paMSC/0OuiJEV5TmlTJWvludDtWtlSpRyP43ULVkhRTxhR2B27It3MSnLzjL4SZdSSpJfNTlkfSSRzovIrlluwRP1xSNrlJSteQrF2KaSqSPe1cV3UVsCDoRByxQBaBSH6ntyKosxQp0yhLgL4xbhTUp7V9aVIVzq9ta6tKdd5Nda1g0fj9f3botkPlSRJSur8qQ+2oSHYFtMN08j0kv74quKQ6rWy5ibDz4cg4c39202X6URPM7tbwOuHOhnh3D6DvC4CUdpLVXY/t7OYecGNrlaUWoXZOWkfXAHqoEZv/h5lNbZQpzLnJGWw53W2NGXbyy7FGJ5krnuiTjCrHteaQAuW4it2uwi63VM53gOxkKT+/X/esU73c1frTM0gB1Hy9+XxXCKEaHAsB6+qlkNFmfKzsnFyzz4JzzOZ7ObT21/ayYWP76Y/RYsgCCjIytZtab1/3UI8tmlZwuW6Yels3LpiDhotZMwE9DP1PWeSSTEkSfjf4b2my2x3oKeZ3SCTd+UkDS/ohgv6DvG6GERpL1WxjqoLTIYEWJnyOyj9BRTNJnpdtFI5ZlnVRdDjU8Soi2Ay564yOJO3tbIlJpFWByGBLpzR4M6RjoDG4i1d24JV0dqs+7nGYGx3snZJwv/bugo3LfsUbaHw3FKiICAgCJDr5rrzYCn+1mYiDJfZ+jaRPylJkqq7oF6rkh69gFrbu0FvXKSsIdiGpvZgzLG6va4GK6qOWiqDHjkRnJVU64B6QuS2UCjS9TPWP046F4C17n9OdBG0+zCEAVaSzGbYJiLrvBiDlUlzYj1/wtn4+0kzvC4GdXLKSrl2sk/A/VYOI163YLkRYAlxWrCSTdtt9ftWxjq5udv/36TpACJjsCwcYA3tsS0pIUnC/PJS1LS14mhzI0KQEBAEiIKAdimE8pamaGY6ZYCl3Eb5OoFQ9+zcmNeMhct+75ov8cjGpdFXzyjpb+nbeseStlteTpxuuwBQ0WLcHS8ZVgP+NxTd/a5c9BHuWDk35jOD87siPzJtjpWHNo50EbR5OjHAIiJfSF0jTMeKjAaPp6OhBd3Qv0v6dzGjzKE3BsvtVg4ldVIEb5NRGVXwrFz2jEp+TJGGXO6aqdy+CY3BSqALtRxI6yVp6Ahsk9/+Rq1B3bJzAIR/e6IVaWULR3OoY16pQGQM1i82LIm+bzS2T28ql2xRxHunf91SGeQi7G6oxRrF2Cm9lkRlq5Yc5OntrluHjVP9W++hh5ZyvyeaeEO2V5HWPJFbvATgsM7k2t2ycqJd49mCRUSkQ+5WMaLA+gzpyVBe9NwYZE/UmSnrMXrVEafmo7FCOZYjlevVY1TttxLEKOfBMuLYGCzl3xa/bpbkQn/JiTHahcqKdqLtFMokJPVt4RYuQQgHNyFIONjUkaLbqAXLKKlLvGQvstpgq25Ao/ez7xk1CUMLuoXLHvmEXgDQNRJ8yqykY59z9IDpuu0oUwRHW+uq8ejGpahs0e+6aebsXgNU/75uyOho4LnHwtxUVs//jccq8cjGJbqteGzBIqK08ofJZ+KOERNwpuYC6pZ4TxyJKHHKaoxepUZOdZ2Xgu71yuQv8TLQuc2wi2CCgccDx52oCjjkdOGqLoLJtmCZlE05h6G8nfVamOyMQYrHaFkBxW93ogXrr7s2AAgHv6Iii6BMFWApNlGyKdtvWvaZboCoF3QV5+ThR6OnqF6zsnorAdY6ReuZcs3N7eap0PUoj6entq7CyuoyvLRnU1LLAYAe2bmq41MvMYaS8rhYXHHIMOvgwxuWYHV1OT47sj/mPXk3WE3/z9oFEXlqYH4hBnqUPS0VlTyizmSgoptqQSB2TEpJbhf8+YSzVRV0p/3ntItiWoaCHrdgGVX8E21ZO7PXAMwrOxj9t1wBbVcFWEmOwTL5frfsHFRpkkiY/RQ3e4CLit+e6PZUHh9ya1W4i6AYExxnCx33DXVSkMTaLLpmZaMukmEvpHOc6Ke/F2K6DloJ1nMtdIvfcKwSu+uPYXhhd1VwV9bchMEFXeN+P57m9nYcaWpAWUuTajJwM3I5zuk9ECFJwuB8dTnind/K4+I3W1ZGl6UdoyZnitzdENtqLC/ByjYE2IJFRJ2YtvsEESUnNxDAM5PPxL2jJhtWxoYUdHP13MvPyo7p/uv1fJXKLNHn9B4Y/btRJ+GC1qkGE4krK7/aNOMAMCCBMZlGEzXLGdtkepNI67dgOcco4AugowVL21JptVWpui2225qcpl37G7IUzVZ6qfLtqlOkL9cLEHW3oRAb0FkJqK20YAHAv/dvi6y7Y+3Kvw821uNIc0Pc5cxVdDeULas6gt9vW42HNizGHp1ARq9nibzmi/oOwU+OOxGCIEAQhOgDnVYLk1BrKccwai2tPIIttVXqMtgM3hlgEVGn1Tu3i9dFIMo4I7v2wPl9jdNBe8H7MVgd679teEfigSWVR+J+9+FxU/HhRVdgfPdi1evq7pihmPUMyrff2mDURbCfJt23XmXebAs70YJ1YlEf3dcD0RasUEwgbdSqpH21TacLqQj936lswVJ2EXRi4nplIC4fs3qBq4DY4NFozN03+g9XlNFatX9p5RH8357NqvIot9Edq77AbStis/tpaScMlm2rqwYAHG5SB2mVLc1o0umKKK9b21VQTtpxqMk82NM7//X2uXKbKjM5AvYfFjDAIqJOK5nZ6YmIrBoYCVB6ZOeoUnf3sJDGWxQE9O6SH22d0RtvFU14EHmtOMEumFa6CF43eDQONNbHvK4XwzoZ1maLIrplxbZ8KrsIVmq6LRplzdNe++t05mgSBUE1J5NMmX1WGdRkmQQvJ/cMB4fK1kuZssVGGSBHu5XqbEQBAgKitgVLf923Dj8++ndBlvWRQe8c3KkK7tpstgJbSZmvDaZ+tVl/QuPFlYd1X7eSdj5cFmtdL5Wvacsm7xurtQaOwSIiIqKMVuBxQpuzew9CuyThhKLeAMIBUGVrM7rYmCpCbp3J0kkqIQdtcotDovNrmU3E/pcTzsGuhhqc03sQvrX4fzHf1U1CIVeyHXqYpZfmXy5nY3sQ+xrrVO9lCQJuHHIc9jbUYqGiNUVbmvmROa60y9WOM1OuT/u3WQvWI8dPRU1bC1ZXl6nGzgHApB4lWBppyVSO1QuGJOSIRmOwYtdnNAYrIIh44cRzUNbShCKbgbcyQ59ei09Nawt65Og/JIjXbQ8A2jU/blecjJna3xgv4YSIcBZIvTFayyuP4EhzA0IS8DULLe52uwgywCKiTufsXgOQk0FzYBGRvgeOOxGzD+/DjD6DPC1HQBDwtb5DVP8G7HVdPLv3QOysP4aL+w0FoO5OJoum7E4woFFW8LXLGFzQ1TTJQSo6YepVcuVub9U6wVBAEHHN4NEAgIULP4i+nisGEIyTFU8UBHQJBNDUbhwoKCv8ZnNMCYIQCW5i94tyGcpWHzmg1g1chdgAy6xHxqD8rgl1GV2gCDzlAEu5DzYeq8T0XvoTITebbDeZlVYuFc1PzIkzpiw3IKKpvV032JtVuiv691mRpDFm56NyAgQrGGARUafz4+NO9LoIRJQCZ/YakLIpIOwQdbr5xXP5wBGY1KMEg/PD3QH1Kt4i7C9XSfmkv81CC4RKCiIsvU5q8rbUa6VQjqm5e+QkPL9zHa4cOAKX9BuKv+/eiBm9B0XTsmsJEJAtBNAE4+1Qr0hQYWUM1mnF/fB2lx3IEUXsjrQOKVvljim6KsrBrt6uFCIZDpXsjvkZoBlX179LQcxYpg8P7Yn+LQcpVjsK6nWv1JK77oUDm/gHkHYLx5s4OVsMB8jxgr12ScLzO9fFvF7V2hzNeNoSWYbVZxccg0VERESUQom0YImCgGEF3aPf1fuq3F3LarY4LWV5+uUVGH6uOCc2QZAc8Imq18KcGu06LDLWTMls2coK+IX9huDD6ZdiWEF3HNetJ/4w+cxoum+9KTt21tege5xslw3BjoDISgKJ/Kws/PWkGbhswHDd9+9ePT/6d9Bmkgu7rZa/nXi66t/xpi1pk2JbsH67dSU2HqvEi7s3xkxFYGXeLPkbt6+YgxuXfhb382ZdBPWOefn9eMGe0TQKNy3rKFNDJONnwOLRzACLiIiIKIXkyrjemCKrJJ1B9/ePmYITinrhwbGJtdLLFc2BXQpNu5zpBR56XahGRCaAHdO1KKHyaP107Em4bvBoXBfp9qdeWyxt4gntb5KDEr0EDu2SFJNIQmuoIuAra240/ayqHBYq6e1ylzyd90QhtgUr2aRNrXEm45a7CGqP2Z+uX4T/lu7GwnJ1xsDtdTVx1xmSJEiShLKWJtQGW+NvlZgugh3bIE+n27+cOj9esGdlGodWg0yGRthFkIiIiCiFxARasLQ6Woc6Knz9uxTiV+NPS3iZcqtJvPmj9Fqm5G6Jyq9+f8QEDC/sjhm9nRkD1zMnD98echxmHdwZfc2swhuv255ZS6KA+K0QY7v1tLwu1bIVHzXqzmk2eW5AiJ1o2Orav95vGHbU16iyWQL6SSz03jcqrzyfV1sohHllB/HsjrVxyxKChN9tXRX99+QevbCmphxZgqgb9GgD08OKoFavBTHLcguW8bZul0IICGL04QOzCBIRERH5UCJdBLXkiq5Reu5EyK0m8VpuZMpV6wV8BVnZuHzACIdK16HGZJJYJbPU6YBx5j1ZvNYK5fvx1qX6nmK9RsdAUKdLnkwUhMhEyB3d7Mpbmiyt+46RE3RfH5BfgKMtxq1w8pg8veQqSh8c2o2X92y2VJZ2SVLNlbWuphwAcP3g0fjXvq0xn9fuDXk+LUA/wM2NtGrVt5lP6G3WgtUWCiEQEKP7yerpxi6CRERERCl0fKTlY2L3koSXoRfQJEvOytYYNO9SFa1s6lRqUzG7YP+8QgDA0MgYKuU6lXOAxWtVijduKV4AphQv4YKScqlGLUcdWQSNy6VstVlTXW55/Xp+OHqK6fttZlkNgeigwAOaVPlm2g1/u/46tLvrxMi0B4D+vpS7suql21d6cstKw/f+uH2NuqwWWyoZYBERERGl0HeGjsU9oybjh2PMK7VmOlqwnAtp5Ilo43WpGt+9GIB64lwpyRTxdpzXZxDuH3MCnpgwDYA6YLln9OTo3/HSeJuVVYjzvpadFixliS/qN0T3E+0hOcmFsYCqBS257V6Uk4f/nHaR4fvxugjK7CRY2asJxnpEgmOj7a59mHCSIsDS+0ZeZP67hjhjsMzm31pUcRiSJNluwWIXQSIiIqIUygtkWZrc1IxekovkyUszr0RfP3gMRhX2wMk9+3SUJxUTYUVkiaIquAuXO1wAZQVfL/GBknn3Snttg1k2+moqPzowv1D3M9qsfQO6FKA0kkZd3vfNikA4O8HMkUpdTCbkNkpyIWuKBDF2As0FmgmeGyLjuIyCRe2rygCza1YOjqARwwq6RSdIln9PY9C8i6DS6SX9sKjisOo1CR2tauwiSERERJSh5IAm2exxSvKi4gVLuYEApvfqHx3jArgV8Fmj3ATKim281pR4XQC1LSlmn7aSpr1jOYLu30ra1OHfHTYu+rfe7rlWkVkxUWbHUptqzqpY8pipLzVBkx1yy2lBVrZ++TTbSrl/skUR751+Cf405azoa7liALmBQLTLq5VA68djToh5TYJkmMrdCAMsIiIiojQjtyQ4WZGTAw7DcTYmomPCPIiwlJV+ZcnjjYsy7wIoxQRgZq0z2XYCLM1q5bFkSh3zYIX1yM7FCUW9IADonRs7D9lQnTnCnFTaVA8AaDWZtLc11G45AQkA9MnL1319SlEv3de12025/0QIyBYDqteyRAGFWdloaG+DJElxu74WZGXrtgSGJEWWTM6DRURERJSZpI4mLOeXncSXnEy6kax4JTELsEKI3bT9uxhPvmwrTbvm74fHTY35TDCkSSohAI+NOxX/nf51R7oD2rW08ggAqLL+aZkFX3oaDFqUjFoetdtY+W/lvhzbLTzv2pQevVGYnYP2SHAVL8AyCoo+PLS7o4ugxd3MMVhEREREaUbusORoC1ak9pjIeCq5Rc3JLouJUAZB8ZJUBOKlade8/4vjYwMhq+vSLlm5jr55sYFbe3QMVmT5ECAIgmGZ481j5ZT/27vF8L1mgwDmqoEj8a5i7jKZUZc9o9ZAbWCpasFSbJaHj5+KA431mFhUgrcPhdfb1B5ES5wA0OjhwEuKtPMcg0VERESU4dxoMUqoi6DNJABuKVKkaY8nbgCmeP+7w45HX4dasJTBgNHX2qJZBK1t135d9LvbOWWAyW+XfXJ4b8xr04r7YWhBbBdIoOMhgVaWKOp2edQmvxAVYYzyPOienRvNdFmYHR7P1RAMxm3BsrILrYaxDLCIiIiI0syYruFuUHJF0glnRzLzXdhvqO3vdszL5R/JBp/KCvfwgu6mn7XTgqVXrrN6DVD9+6PDu/HYpmU43Nwof8mUnSQbiQjGm2EYwFsHdsS8JgjmkxP3iMxVpZQtivjV+FNNWwwB4y6CSnLCjIb2NgstWGF9DcaGAUB9W6vpMmTsIkhERESUZm4fPh6ju/bAGZqKeTKuHDAC47r1jE6EbIcbEx8nK15JWuN0q1P+lskGiRdk2QlONCyv40djpqgy8G2prTYsi5tOKOqFfQ11qNRMznu0pRFHImni7RAgmLaIat8REQ4We+bkYVIP9UTcXbPUwZgyqDKan6swEsA1BttQEyc4qo9kGzy5Zx98eGiPpfIaYQsWERERUZrJz8rCRf2GotAgpXUiskQR47oXJzWOyuMhWGpxytInLzYbn5KdVqn8gPX9oNy+8l8iBJxa3Nf4OzqvTSvuZ3mdVj027lS8PPV83RT2z+9cZ3t5AUEwnZw4qHlPOc5K2+1SmxVS+f7BSJZDrS6RybOXVB7B09tWm5Y1GBn3VtNqnAmxWCeDox4GWERERESUlJBPxmApxWv1yRYDGGfSWhdvniwAuGf0JBzXoyfO6TMw7md1sb611QAAzTFJREFURVYhCAIePn4qhttItx5vTFFCxREEiIKA/0y7KOa9ypaOVq2TinpbWl5IkkwDrJBmfqksC93+9N43yjwoL+9jnfFhOQatjhebdJGNN7datGyWPkVEREREFEc6dREMf0b/U09POgNf6zsYAPDNgSMNv39hv6F4ZcZF6BKwPupGGbhp1949O1f/OzrBxqrqMsvrtCsvkIU7RkzAT8acGH2tTpH17+dxxkfJQpBME0NoJy5WdrW0MxG0URdNs7nQ3p12ie7rE3qU4D+nXaz7ntVkJhyDRURERERJkSu78Sb3ddOPx5yg+reVqrDR+KAxkbmUXj/1AnTLik3EkBRlFkFNKb/WdzDW1JRbWowIIZoe3w1f7z8MAPD7basAAPXB8BimUYU9kC2K6JdXgMPN5uOy4rVgaZNnKCdzjtdVNV6afcA8+YfZ8vOzYkOky/oPj7s+GVuwiIiIiCgpPznuBIwq7IGfH3+yZ2U4LpJZUWZlLJlcvTeqEHfPznV8bi/lurRLnl7SX/c7eiXoFkngYCWFuhPk8VJZkTzzVroohiSgj0lWPm2AaCdZiLIFyyiEixfw3zNqkuX15dlqpSQiIiIiSsKwgu7445QzMbKwh2dl0AZC9lqwBFw5YITjZdIjqJuw1O8ZBHN6XRnlliG3U7RryV33tKnl9YQg4aSi3rh31GT8cfKZpssDYicTNi2HclsZtJJlifrb8/bh4wAAPQy6ZOoxGrOlWzbLnyQiIiIi8qlE2pnkerkgwNGU91ZZHbOmF3e1R4JDO9kOnSAHgd8ZOhanl5hnMhyS3xWCIOD8voMxzCCBRxdFdzztZMJmlOOhjMZ56QWffztpBi6LBNNmrZNXacbe2Wpds/zJDLJhwwZcdtll0f8df/zx2LJli9fFIiIiIqIEaQMNK8GLcoJks/manCTqpGlPxNmRgDBekJOsMzWBp1zmLFHEtYNHG37v+sFjVO8bJYhQZuazEyxa+azeZ4oUrVbK938wcqLqc9+KCbCst651yiQXEyZMwPvvvw8AKC0txY033oixY8d6XCoiIiIiSlRMgGWhri4HVQIEyym4vaCXUe+24eNxZq8BOK5bkc43nDO9pD8WKCZBVgauwwq6Y0L3Ymw4Vqn6zqX9h+H6IWNUrxm1Fim3+876Y6r3TizqbZgtUZnkQjLoIqhd4x0jJiBfMXecsqXpSHOj6rOipvXLThfBThlgKc2ePRsXXHCB18UgIiIioiRoK9N2UsYLAjA4vyuuGTQKo7u6G7AoW3IsJ9DQ+Vh2ZGJot/XVJKnQFrmXYvLdh48/GbMP78O1g4xbtrRyA8aB7cAuhYYBljKkOmAw0bB2s03qUaL6t3Ki45Z2ddIO7fCtbBtj3XzZRXDFihW44447MH36dIwZMwbz5s2L+czrr7+OGTNmYMKECbj66quxfv36hNY1e/ZsXHRR7GRqRERERJQ+tBVgS0ku5DFYECAIAm4cOhanFPd1vnAKOYoWG6shoJeziw0v7K76t7Y1TdlyOKF7CR4dfyq651hPHmHWcmjWadNKl05tAGvWrVAbfGnHb+WkexfBxsZGjBkzBldeeSVmzpwZ8/7HH3+MJ598Eo899hgmTZqEV155Bbfddhtmz56Nnj3DM3JfdtllusueNWsWApFIubS0FFVVVZg4caLuZ60SDTKUJLMsJ5dJzuC+8TfuH3/j/vEv7ht/4/6xLjcrS7WdBEGIu92UlfREtnEi+yc3SzHmSIxfRgCAhd+SKoKg/r3KoCVg9fco5GlasFTfFwxe17yn974oxrZhZomi5hjpeG9ar36qgEwbsOcE0ryL4FlnnYWzzjrL8P2XX34Z11xzDa666ioAwGOPPYb58+fjvffew6233goA0TFWZj799NOkuwdmZYkoLi5Mahl6iopSM6cB2cd942/cP/7G/eNf3Df+xv0TX99e3VSV/fwu2XHraIFIsBMQhaTqc3b2T0NuR867nkUFKO5iPE+UrGv3Liju5nx9MxG5OVmqbdUlr2NM08DePWzPG1aYp57IWbnsvIPZuq8DQDehOfp395xc3f0nVKnLUtKzEMX5Hfuqa2tH98aSkq6m5ezRPR/Z2dZasXwZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL36RVHmCwRBqa5uSWoaSKAooKipAdXUDQqHUZLMha7hv/I37x9+4f/yL+8bfuH+sq65qUP27pTmIykr9sTmyYDA87kaSEPezehLZP/XNHYFBTXUjxEajJOMdqqrr0b3NH0k42traVdvqhMJeeB+7cHbvgajS7AMrpKB6uymX3dTUqvs6ANQc60hKMb5bz5j39Vqwamsakd3Usb66uo46fLz9X9Amoq2t3VKQlXYBVnV1Ndrb21FSou4nWVxcjH379llezqFDh1BVVYUJEyYkXSY3LnihkMQLqU9x3/gb94+/cf/4F/eNv3H/GPvD5DPQGgrFbB8J8bfZpf2H4Znta3HNoFFJbV87+0dSfE6SrH2vTef3eUWAoCrLiUW98Y+TzkXvvPyEyqgc0/XtwWNUywgpklBol10Q6Ahjxncr1l13TIglqZejTD4Yr+xS/Dg4Ku0CLCOSJNlqkuzfvz/mzJnjYomIiIiIyG1GWf+sZBE8r89gnFzUx1ZShmQlMjFwyCANeaqcUdIfCysOAdBPuNGvS+JdWAOCEF3+pf2HWf7eoPyuuH34ODQEg7jY4HvaTa038bCZE4p6YXV1eXhZNr7nyyyCZoqKihAIBFBRUaF6vaqqKqZVi4iIiIg6J6sV4lQGV4A68NOb36pHdk7Ma/mB7JjXUumB406M/m0n/b0VAUHAT447EbNOvwSFmt9+bp9BAIBvaib9lV02YASuHzLGcBJjbVmNPmdEGdfa+WraBVg5OTkYN24cFi9eHH0tFAphyZIlmDx5sncFIyIiIiKKQ5nsTq81668nnYvnTzhb9drAfG8TXAiCfuY9J2QJIkRB0E2DPrprEd6ZdjFuHnZ8QsvWltVu6+GamvKOZdkILH3ZRbChoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyC7vZ7FJF1YKlU8bCrGwUZmXjvtGT8cz2tbhusPVJe1PB6a0aL+jJCyQeriTbgqValo2v+jLA2rhxI2666abovx9//HEAwN13342ZM2fi4osvRlVVFZ599lmUl5dj7NixePHFF6NzYBERERFR5+bP8EpdUTcLLs7rMxgnFfVBd50ug14KJjEe7Lw+gzDn6AEMK+iGPQ21AJILeuLRTp2VVICV7i1Yp5xyCrZt22b6mRtuuAE33HBDikpEREREROnErwGWGGcMllKPFI8Ps2JF1dGEv3vvqMn4ztCx+M+BHdEAK8tm4gk7qhQp8YHY7W3nGMnoJBdEREREREZ+M2EapvToha/byEiXSspWq0QyCqYzQRBQlJOnCnTcbMH65MCemPUnys53fdmCRURERESUiIk9SjCxh38zS6vHYHlYEA8pA8uA6N/2nmnF/bC48jAAtmAREREREfmSKougbzsyukvZGLSjrtqzckzsUYIRBd1xi0GWwtNL+kX/TvsxWEREREREmUhZUfdrpkO3KQPLtTUVJp90V44YwJ9OOMvkE4mlp2cLFhERERFRinTWboFKLaH26N+5OvNf+YUyqGIXQSIiIiIiH+psiS30fHioI/nEzFGTPCyJOUH1N7sIEhERERH5TkAQ8eBxJ6Jrlr/mt/JKN5/N86XURTHJMVuwiIiIiIh86oxeAzC5qJfXxfCFbBfnwbpmxHHRv5+cMM32908o6h392854OQZYRERERERkanz3YleWm+VimvZJxR1B7IQEUvcru3OyBYuIiIiIiBzjVkuTmy1YbaGQY8tigEVERERERL7nZgtWSJIcW5adLoJMckFERERERKacTH4oQkAI4eAny8UWrDFFRTi1uC+m9Eh+vJudn88Ai4iIiIiITNlJUx5PtihG58LKcnFisIAg4pHxpyAUSr4ly056fXYRJCIiIiIiU06GQQFFsJInpkd7T46NCZEZYBERERERkSk7Y5Diubjf0OjfeQHrgYuX2IJFRERERES+dO3g0dG/7bQMeeGEol6YZDPFe3q0yRERERERkWec7CKYrQiq7LQMeeFX40+z/R22YBERERERkSknk1wEfB5UJYstWEREREREZMrpmOjS/sOQH8h2dqE+wQCLiIiIiIhMOd3m9P0RExxeon+wiyAREREREZmaUtQbAHBqcV+PS+J/bMEiIiIiIiJTF/YdgkFdCjGqaw+vi+J7DLCIiIiIiMiUKAiYYDNdeWfFLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA4RJEmSvC5EOguFJLS3hxxdZnZ2AG1t7Y4uk5zBfeNv3D/+xv3jX9w3/sb942/cP/7l9L4JBESIohD3cwywiIiIiIiIHMIugkRERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgOUTR44cwf3334+pU6di8uTJuPLKK7Fr1y6vi0UAZsyYgTFjxsT877HHHvO6aBRRX1+PRx99FGeccQYmTZqEr3/96/jvf//rdbEI4X3zq1/9CmeddRYmTZqEm266CTt37vS6WJ3SihUrcMcdd2D69OkYM2YM5s2bp3q/paUFjz32GE455RRMmTIFM2fORGVlpUel7Xzi7Z+33noLN954I0444QSMGTMGDQ0NHpW0czLbPzU1Nfj1r3+NCy64ABMnTsQ555yDJ554AvX19R6WuPOId+489thjOP/88zFx4kSceuqpuPPOO12vYzPA8oFjx47h+uuvR05ODl588UV8+OGHuPfee1FQUOB10QjAO++8g6+++ir6v5dffhkAcOGFF3pcMpI9+eSTWLJkCf7whz/go48+wnXXXYef/exnWL58uddF6/R+/vOfY8WKFXj66afx3//+FyNGjMAtt9zCiocHGhsbMWbMGDzyyCO67//mN7/BvHnz8Mwzz+DVV19FWVkZ7rnnnhSXsvOKt3+amppwxhln4I477khxyQgw3z9lZWUoKyvDgw8+iI8++gi/+c1vsGDBAvziF7/woKSdT7xz5/jjj8dvfvMbfPzxx3jppZcgCAJuu+02hEIh9wolked+//vfS9ddd53XxSCLHn/8cem8886TQqGQ10WhiEsuuUT661//qnrta1/7mvTiiy96VCKSJElqamqSxo4dKy1YsCD6Wnt7u3TaaadJb7zxhoclo9GjR0tffPFF9N+1tbXSuHHjpNmzZ0df27lzpzR69Ghp/fr1XhSxU9PuH6WlS5dKo0ePlurr61NcKpKZ7R/Zxx9/LE2YMEFqb29PUalIkqztmy1btkijR4+WDh486Fo52ILlA1988QXGjx+PmTNn4rTTTsOVV16J999/3+tikY7W1lZ88MEHuOqqqyAIgtfFoYgpU6Zg7ty5OHr0KCRJwsKFC1FWVoZp06Z5XbROLRgMor29Hbm5udHXRFFEdnY21qxZ42HJSGvjxo1oa2vD6aefHn1txIgR6N+/P9auXetdwYjSVH19Pbp27QpRZFXbTxobGzFr1iwMHjwYffr0cW093Os+cODAAfz73//GiBEj8NJLL+Gqq67Cz3/+c8ydO9fropHGnDlzUFdXhyuuuMLropDCww8/jMGDB+PMM8/E+PHjcffdd+PJJ5/E2LFjvS5ap1ZYWIhJkybh+eefR3l5Odra2vDSSy/hyJEjqKio8Lp4pFBRUYG8vDwUFhaqXi8uLua+IrKpuroaf/nLX3Dttdd6XRSKeP311zFlyhRMmTIFCxcuxEsvvYSsrCzX1ufekskySZIwYcIE3HfffQCAsWPHYuPGjXjjjTdw7rnnels4Unn33Xdx5plnuvrUg+x77bXXsGXLFvz9739Hnz59sGTJEjz00EPo27cvJk+e7HXxOrXf//73ePDBBzF9+nQEAgGceuqpOPPMMyFJktdFIw29VnnuJyJ76uvr8f3vfx+jRo3CnXfe6XVxKOIb3/gGTj/9dJSXl+Of//wn7rvvPrzxxhvIyclxZX0MsHygpKQEw4cPV702YsQIrF+/3qMSkZ7S0lIsXrwYzz33nNdFIYXm5mb88Y9/xAsvvIAzzjgDAHDcccdh/fr1eOWVVxhgeWzIkCF48803UV9fj5aWFhQXF+Pqq6/G8ccf73XRSKGkpARNTU2or69XtWJVVVWhpKTEw5IRpY/6+nrcdtttyM/Px3PPPedqCwnZ07VrV3Tt2hVDhw7FpEmTMHXqVMydOxcXXXSRK+tjF0EfmDJlCvbt26d6be/evejXr59HJSI9s2bNQnFxMc4++2yvi0IKwWAQbW1tCAQCqtdFUXQ3QxDZUlhYiOLiYhw4cAAbN27EjBkzvC4SKYwfPx7Z2dlYvHhx9LU9e/bg0KFDfEhBZEF9fT1uvfVWZGdn44UXXlCNPSX/kSQJra2tri2fobUP3Hzzzbjuuuvw97//HRdccAFWr16N999/H3/605+8LhpFhEIhzJo1C5dffjmfSPlMYWEhpk6dit/97nd4+OGH0bdvXyxevBizZ8/Gk08+6XXxOr0FCxZAFEUMGTIEO3fuxBNPPIGzzjoLZ555ptdF63QaGhqwf//+6L8PHjyILVu2oKSkBL169cJVV12FJ598Et26dUNhYSEef/xxnHTSSZgwYYKHpe484u2f8vJyVFRURD+zfft25OXlYfDgwZzWJQXM9k+XLl3w3e9+F01NTfj973+P+vr66FQUPXv2jHkASM4y2zetra348MMPcfrpp6O4uBhlZWX4+9//jry8vGivFzcIEjtY+8KcOXPwzDPPYN++fRg8eDBuv/12XH755V4XiyK++uor3HrrrZg9ezaGDRvmdXFIo7y8HE8//TQWLVqE2tpaDBgwAN/+9rfx7W9/2+uidXofffQR/vCHP6CsrAw9e/bEN77xDcycOZNPdz2wbNky3HTTTTGv33333Zg5cyZaWlrw29/+Fv/73//Q2tqKM844A7/85S/ZRTBF4u2f5557Ds8//3zM+//6179wyimnpKKInZrZ/pk6daruewAwd+5cDBw40O3idWpm++baa6/Fz3/+c2zcuBG1tbUoLi7GSSedhB/84Acxw3OcxACLiIiIiIjIIRyDRURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERE5LrnnnsOY8aMifnfzTff7HXR0t6yZcswZswYbN++Pea9WbNmYcyYMWhoaPCgZEREnVOW1wUgIqLOoWvXrnjxxRdjXiMiIsokDLCIiCglAoEAJk+ebOmzzc3NyMvLc7dARERELmAXQSIi8tTBgwcxZswYfPDBB3jggQdw0kkn4Y477gAA1NTU4JFHHsG0adMwYcIEXHvttVi3bp3q+7W1tbj//vsxefJkTJ8+HS+88AJ+97vfYcaMGdHPPPfcczjllFNi1j1mzBi89tprqtfefvttXHLJJRg/fjzOOecc/OMf/1C9/9Of/hRXXnklFi1ahEsvvRSTJ0/Gddddhx07dqg+197ejr/97W+44IILMH78eJx55pn46U9/CgB4/fXXMWXKlJiue0uXLsWYMWOwdetWm1vRmp/+9Ke6XTVvvPFGV9ZHRNQZsQWLiIhSJhgMqv4dCASifz/11FM4//zz8ac//QmiKKK1tRW33HILamtr8cADD6Bnz5544403cPPNN+Ozzz5Dr169AAA/+9nPsHz5cjz00EMoKSnBSy+9hP379yMry/4t7sUXX8Qf//hH3HbbbZg6dSo2bdqEP/3pT+jSpQtuuOGG6OcOHz6Mp556CnfeeSdyc3Px1FNP4b777sNHH30EQRAAAI888gjef/993HrrrZg6dSqOHTuG2bNnAwAuvfRS/O53v8Onn36KK6+8Mrrc9957D+PGjcNxxx1nu+yhUChm+4ZCIdW/77rrLlx77bXRf1dUVOBHP/oRhg4dant9RESkjwEWERGlRE1NDcaNG6d67eWXX8bgwYMBAJMmTcIvf/nL6Htvv/02duzYgY8++igaAEybNg0XXnghXnrpJTz44IPYsWMH5syZgz/+8Y+4+OKLAQCnnHIKzjnnHBQWFtoqX319Pf785z/jzjvvxN133w0AOP3009HU1IQXXngB1113XTQgPHbsGN54441ouSRJwg9+8APs3r0bI0aMwK5du/DOO+/g5z//OW666aboOuQyduvWDV/72tcwa9asaIDV0NCAzz77DPfff7+tcssuu+yyuJ8ZPHhwdHu3tbXhpptuwuDBg/Gzn/0soXUSEVEsBlhERJQSXbt2xcsvv6x6bdiwYaipqQEAnH322ar3lixZgnHjxmHgwIGqlpmTTz4ZGzduBABs2LABAFTdAQsKCjBt2jSsX7/eVvnWrFmDxsZGXHjhhar1nXrqqfjLX/6CI0eOYMCAAQCAAQMGqFp9RowYAQA4evQoRowYgWXLlgGAqnVK65vf/CZuvvlmHDhwAIMGDcInn3yCYDCIr3/967bKLfvjH/+IQYMGqV6bP38+nn/+ed3PP/7449ixYwfeeecd5OfnJ7ROIiKKxQCLiIhSIhAIYMKECTGvywFWcXGx6vXq6mqsXbs2ptULQLQVpqKiAgUFBTEJMbTLsqK6uhoAcMkll+i+f/jw4WiApc1+mJ2dDQBoaWkBEP5N+fn5pq1op5xyCgYNGoRZs2bh3nvvxaxZs3DuueeiR48etssOACNHjsTo0aNVr2nHhcnefvttvPXWW/jLX/7C7oFERA5jgEVERL4gj12Sde/eHePHj8ejjz4a89mcnBwAQElJCRoaGmKyDlZWVqo+n5ubi7a2NtVrx44di1kfAPztb3/TDdCGDRtm+bf06NEDjY2NqK+vNwyyBEHAVVddhf/85z+47LLLsGrVqpiEGm5Yt24dfvWrX+Guu+5StfwREZEzGGAREZEvnXbaaVi0aBH69+9v2CIlt4h98cUX0fFNDQ0NWLx4sSqw6dOnDxoaGnD06FH06dMHALBo0SLVsqZMmYK8vDyUlZXFdFe069RTTwUA/Pe//1Ulx9C64oor8Oyzz+Khhx5Cnz59cPrppye13njKy8sxc+ZMTJs2DTNnznR1XUREnRUDLCIi8qXLL78cb775Jm688UZ897vfxaBBg1BTU4P169ejV69euPnmmzFq1CjMmDEDjz76KOrr69GrVy/885//jOkyeMYZZyAvLw8PPfQQbrnlFhw8eBBvvvmm6jPdunXD3XffjSeeeAKlpaU4+eSTEQqFsHfvXixbtgx//vOfLZd9+PDhuOaaa/Db3/4WlZWVOPnkk1FbW4tPP/0Uf/zjH6Of69OnD8444wzMnz8f3//+91VZFYFwevnnn38e27ZtS2ALxnrwwQfR0NCAb3/726p094WFhRg5cqQj6yAi6uwYYBERkS/l5ubiX//6F/70pz/hueeeQ2VlJXr27ImJEyequrb99re/xaOPPorf/OY3yM/Px/XXX48JEybg008/jX6mZ8+eePbZZ/HUU0/hBz/4AcaNG4enn3462uolu/3229G7d2+88sorePnll5Gbm4uhQ4fGfM6KX/7yl+jfvz/efvtt/OMf/0DPnj11W6jOO+88zJ8/XzchRlNTE3r27Gl73Ub27t2L+vp63H777arXp06dildffdWx9RARdWaCJEmS14UgIiJykjzH1BdffOF1UeK69957UV5ejn//+98x791www049dRTo2njiYjI/0SvC0BERNQZbdu2De+++y4+//xz1VxZsmAwiB07duD666/3oHRERJQodhEkIiLywJ133onq6mpcf/31uPDCC2Pez8rKis6nRURE6YNdBImIiIiIiBzCLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDsnyugDpLhSS0N4ecnSZWVkigkFnl0nO4L7xN+4ff+P+8S/uG3/j/vE37h//cnrfBAIiRFGIv17H1thJtbeHUFPT6NjyRFFAcXEhamubEApJji2Xksd942/cP/7G/eNf3Df+xv3jb9w//uXGvunRIx+iGIi/bkfWRkRERERERAywiIiIiIiInMIAi4iIiIiIyCEMsIiIiIiIiBzCJBdEREREKSJJEkKhdkgWx9yLooDW1lYEg0EmUfAh7h//SmTfCAIgigEIQvxMgWYYYBERERGlQHt7OyorDyMUarf1vYoKEaEQ04D7FfePfyWyb0QxgOLifggE4mcLNMIAi4iIiCgFamurIIoB9OzZB4D1J+RZWQKCQbaO+BX3j3/Z3zcSamoqUFtbhaKiXomvN+FvEhEREZElkhRCS0sjiop6Iysr29Z3s7JEAGwh8SvuH/9KZN907doD1dVlkKQQBCGxdBVMckFERETkMrmbUiDAZ9tEfiafo8l0+2SARUREROSyjqQWyQ2eJyK3hc9Rq4lo9DDAIiIiIiIicggDLCIiIiIiIocwwCIiIiIi33jiiUfx8MMPeF0Mxxw+fAjTp5+E3bt3el2UGKtXr8T06SehsbEx4WU0NjZi+vSTsHr1SgdLlt440pKIiIiIdD3xxKNoamrE448/5XVR4tq6dQtefPEFbN26GU1NTSgp6YXx4yfipz/9BbKz7WVu9JvVq1finnvuiP67qKgnJk6chLvuuhcDBgxMeLkTJkzC++/PRpcuXZwoJkUwwCIiIiKitFZdXYUf/vAHOPPMs/HHP/4F+fn5KC09iHnz5kYmdnY+wAoGg0lNRpuIt976L/Ly8nDkyBE888xTePDBH+GVV95IqBzBYBDZ2dkoLi5xoaTOCwaDyMpKj9CFXQSJiIiIKCFffDEHN9zwLZx99qn41rcuw3vvvaN6f/r0k/DBB+/hRz+aiXPPPR033XQNtm/fip07d+B737sZ5503HT/84Q9QXV0Vs+x//vNvuOSSc3HhhWfj2WefRnt7u2E5NmxYj5aWZjzwwM8xatRoDBgwEFOnnooHH/w5cnPzop9bu3Y17rrrNpx77um46KIZ+MlP7kVLSwsA4JNPPsJ3v3sDzj//DFx22QV44olHUVtbG/3uxx9/iEsuORcLFszH9ddfhRkzpqGmpgbl5eX48Y/vwYwZp+Oaay7Hl1/OwyWXnIuPP/7QsLy7d+/Ej340E+edNx2XXXYBfvvbX6O+vj7u9i4q6oni4hKMGzceM2f+CHv37kZp6QEAwIIF83HzzddjxoxpuOaay/H666+oUo1Pn34S3n9/Fh544D6ce+7p+M9//q3bRTDePt2/fy/uuus2zJgxDTfddA3WrVsTU87Vq1fi1ltvxDnnnIbLL78I//zn31Rlqagw32Zyt8q5cz/HXXfdhnPOOQ0LFsxHdXU1fvnLn+Hyyy/Cueeejptvvh4LF85Xrfub37wUr776Mh599Oc4++xp+Na3LsOKFUtx5MgR3HffXTjvvOm4/fbv4MCB/XG3d6LSIwwkIiIiyjAbFwkos1LHEwBIzqR37z0YGH96EvmnFbZs2YRHH30It912B84++1ysWbMKzzzzexQXl+DMM8+Ofu7//u9FzJz5Q9x33/145pn/h1/96hH07NkTd911DwoKCvHLX/4Mf//7X/Dggw9Hv7Ns2VLk5ubh+ef/gQMH9uPJJ3+FkpJeuP76m3TL0rNnT7S2tuKrrxbgzDPPhiDEbq/9+/fhhz/8AS6//Ju4//6fAgBWrFgKKZKPOxgM4nvfuwuDBg1GZWUFnnnm/+EPf/gdHn30iegyGhsb8eabr+HnP38MBQUFKCgowIMP/hC1tbX485//DgB49tk/mI5pqqurwz333InLL78K9913Pxobm/Dcc3/AE088iief/H+Wt78cOLa1BbFu3Vr85jeP4r77foIJEyZh//59eOqpJ5CdnYOrr74u+p1//vNvuPPOmbjvvp8gEAigtPSgapnx9mkoFMJDD/0EvXv3wd///gqOHavBM8/8XrWMsrKj+PGP78U3vnEFHnnk19i1ayeeeupxdO3aFVdffT0A4PHHf4m6urq42+xvf3seM2f+ECNGjEJeXh5aWlowduw43HDDzcjPL8CXX87Dww8/iFdeeRNDhw6Lfu/NN1/DHXfMxPe+dydefvlFPPbYLzB69BhcffX1+OEPH8Bvf/trPP30b/HMM3+xvL3tYIBFRERERLa99da/MXXqqbjppu8CAAYPHoIdO7bjjTf+pQqwvv71y3DOOecBAK677kb88Ic/wPe+dxcmTz4h8v7leP/9d1XLzs3NxYMPPoycnBwMGzYcBw8ewFtvvW4YYI0fPxHXX38THnnkp+jatSuOP34CTj75FFx44SXo2rUrAOC11/4PEyZMwr333h/93ogRI6N/X3rp5dG/BwwYiLvvvg8/+tHdCIV+DVEMd/pqa2vDj3/8MwwfPgIAsG/fXqxYsQwvv/w6Ro0aAwD40Y8ewC23fNtwu7377lsYO/Z43HZbx5iqBx74Ob797W+iuroKRUU9Db8rO3asBv/859/Qq1dvDB48BD/+8b246abv4sILL4mW/zvf+S7eeectVYB1wQUX46KLvh79tzbAirdPV6xYhoMHD+DZZ/+Knj2LAQDf/e738Itf/DS6jPfeewf9+w/AvffeD0EQMGTIUBw+XIp///tVXH319di3by9WrlxuaZtdc823ccYZZ6teu/baG6J/X3/9jVi8eCHmz5+Lm2++Lfr66aefiUsvvRxZWSK+851b8cknH+HUU6dh2rTpAICrr74Ojz32MEKhUHTfOokBFhEREZEHxp8uAafH/1xWloBg0JlWJyft27cHZ599ruq1iRMnYe7cz1SvjRgxKvq3XCkfNmy44rWeqK6uVn1n1KjRyMnJif57/PgJ+MtfKlBfX49Zs/6DV199Ofreq6++jb59++Kuu+7BddfdgJUrl2PTpg14/fVX8Prrr+DFF/+FkpJe2Llzhyrw09q6dTNeeunv2LlzB+rq6hAKtSMYDKKqqhIlJb0AhAM/ObgCwt3lsrOzMXLk6OhrI0eONk2qsXPnDqxYsQznn39GzHulpQdNA6zLLrsAANDU1ISRI0fj8cefQnZ2Nnbt2o4NG9bh5Zf/Ef1se3sIkhRSff+448YaLhuIv0/37duLvn37R/cjEA5ulfbu3YMJEyaqWhEnTJiEF154Dg0N9ba22XHHHa/6d3t7O/71r5cwb94clJeXIxhsQ2trKwYNGqL6nDJw7tkzvD3Vx1wxgsEg6uvr0K1bd9NtkggGWERERESUEG1XPEmSYl5TJiaQ31K/JsQEAnpd/OTvX375VZgx4/zoayUlHUkaiop64vzzL8T551+I2267E9deewX++993Va1FepqamnD//TNx6qmn45e/fAJFRT2wZ88e/PznP0FbW1v0c3l5earvSZJxWc3WdcYZZ+P73/9BzHu9evUy/e4LL7yELl26oKioJ/Lz86OvNzY24fbb78QZZ5xl+v28vPjZAs33qQRrP1e7DPXfVrdZly7q7f3vf7+Kd9/9D+65534MGzYcXbp0we9+9ziCwTbV59TJMMLrCgRiXwuF3HlwwQCLiIiIiGwbMmQY1q9fq3ptw4b1GDJkaNLL3r59G1pbW6OtWJs2bURxcQkKCgoBwFKrQ2FhIYqLi9HU1AQAGDlyFFavXqnqSibbt28vjh07hjvvvCcasFmZ12nIkKFobW3Fzp07MGpUuEVm584dqqBMa/ToMVi48Ev069ffdva//v0HqAIr5TIPHNiHgQMH2VqeVrx9OmTIMBw+fEjVlXHTpg2qzw8dOgwLF36pCsw2blyHXr16o6CgMKFt1lGWdTjzzLPxta9dCCA8bq609CD69u2XzM92HLMIEhEREZGh+vp67NixTfW/8vIyXHPN9Vi+fCleffVlHDiwH++/Pwv/+9/7uO66G5NeZ0tLC37/+99g7949WLhwPl599WV861vXGn5+0aKF+PWvH8GSJYtw8OAB7NmzGy+88Bz27NmN008Pd8W74YabsWHDOvzpT09j9+6d2LNnN/7znzfQ3NyMPn36Ijs7G++++xYOHSrF/Plz8e9/vxq3nEOGDMXJJ5+Cp556HFu3bsbWrZvxzDO/R3Z2tmErzZVXfgvV1ZX41a8extatm1FaehBLlnyF3/3uCd3PW/Gd79yKjz/+EP/3fy9iz57d2LNnNz777BO88so/bS0n3j49+eRT0L//ADz++KPYuXMHVq9eqeqWCABXXPFNHDpUij/96Wns378X8+bNwauvvozrrguPnRoyZChOOmmqrW0mGzRoEJYvX4qNGzdg9+5dePLJxyxlX0w1tmARERERkaGVK5fHJCD41reuw7333o9HH/0NXnrpb5GEC30wc+aPTMc5WXXKKaeiV6/euOuu29DeHsRFF12qSm6gNXToMOTk5OBPf3oaZWVHkZeXhyFDhuLxx5/CCSecBCCcsOHpp5/D3/72Z7z//rvIy+uCCRMm4rLLrkRRUREeeuiX+Pvf/4K33nodY8eOw1133YOHH34wblkfeeRXePzxx3DXXbehpKQXfvCD+/D444+oxpAp9erVG3/5yz/x178+h/vuuwttbW3o129A3O59Zk477XQ8+eTT+L//exH/+tfLyMnJxtChw3Hlld+ytZyxY8eZ7lNRFPHkk0/jt7/9FW6//SYMGDAId911Dx544L7oMnr37oP/9//+hD//+U94//130b17D3zrW9fhm9/sCJAffvgxPPnkry1vM9l3vnMrDh0qxQ9/eBfy8/NxxRXfwtSpp9j6jakgSJLkv1GTaaStrR01NcapOO0SRQHFxYWorKx3rV8oJYb7xt+4f/yN+8e/uG9SIxgMoqKiFCUlA2xPlpqVJSIYDMX/IHlCu3/279+L66//Jl588dW4SSUozK1tlsi5Y3au9uiRj+zs+N062YJFRERERJSg5cuXobGxCcOHj0B5eRmef/6PGD58BMaMOc7rovnWihXL0NLSkrHbjAEWEREREVGCgsE2/PWvz+Pw4VIUFBRi8uQTcM8999vOLtiZZPo2Y4BFRERERJSgadOmY+rUaV4XI62cdtp0nHbadK+L4RpmESQiIiJyWceDeY5zI/K38DmaTGMaAywiIiIil4liuMrV3h70uCREZEY+R0XR3hxlSuwiSEREROQyQRCRm5uPuroaBAJZAOw8HhcQDLLly7+4f/zL7r6RUFdXg9zc/KTGgzHAIiIiIkqBbt16orLyMCoqDtn6niiKCIWYpt2vuH/8K5F9I4oBFBX1Tmq9DLCIiIiIUiAQCKBXrwEIhdphdRZSURRQVJSP6upGzlPmQ9w//pXIvhGEcICVbDZDBlhEREREKSIIQqSLoDWiKCAnJwdZWa2swPsQ949/eblvmOSCiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIyLdqyoEF7wioPup1SYiIiKxhgEVERL61cZGA5kYB6xYIXheFiIjIEgZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYRETkW421TM9ORETphQEWERERERGRQxhgEREREREROSTL6wJ4Zdy4cRg5ciQAYPz48XjiiSc8LhERERmSvC4AERGRNZ02wOrRowfef/99r4tBREREREQZhF0EiYgopXatAw7vsfkl5rogIqI04csAa8WKFbjjjjswffp0jBkzBvPmzYv5zOuvv44ZM2ZgwoQJuPrqq7F+/Xpb6zh27BiuuOIKXHfddVi+fLlTRSciIhOtLcCudSI2LPTl7YeIiChpvuwi2NjYiDFjxuDKK6/EzJkzY97/+OOP8eSTT+Kxxx7DpEmT8Morr+C2227D7Nmz0bNnTwDAZZddprvsWbNmIRAIYO7cuejTpw927tyJ733ve/jggw9QWFiYUHlF0blHq/KynFwmOYP7xt+4f/xN3i+CJMS8ZkRSjruSuG/dwnPH37h//I37x7+83De+DLDOOussnHXWWYbvv/zyy7jmmmtw1VVXAQAee+wxzJ8/H++99x5uvfVWAIg7vqpPnz4AgJEjR2L06NHYs2cPJkyYYLusWVkiiosTC8zMFBUVOL5Mcgb3jb9x//hb9+5dADQBQNxrpyRJABoBAKIoorg43+XSdW48d/yN+8ffuH/8y4t948sAy0xrays2bdqEO++8M/qaKIqYNm0a1q5da2kZx44dQ5cuXZCTk4OjR49i+/btGDRoUELlCQZDqK1tSui7ekRRQFFRAaqrGxAKMW2Wn3Df+Bv3j7/J+6fmWMf1srKy3vQ74RYsIfJ3KO7nKTE8d/yN+8ffuH/8y419061bF2RnB+J+Lu0CrOrqarS3t6OkpET1enFxMfbt22dpGbt27cIjjzwCURQhiiIeeugh9OjRI+EyuXFChUIST1Sf4r7xN+4ffwvvG0HxtzFVgGXh8xRf2X7g6D4B406XIGqGwfHc8TfuH3/j/vEvL/ZN2gVYRiRJgiBY62N5wgkn4KOPPnK5RERERP6ydn44quo9WEKfIR4XhogoQ6VdGqeioiIEAgFUVFSoXq+qqopp1SIiIqJYoZDXJSAiylxpF2Dl5ORg3LhxWLx4cfS1UCiEJUuWYPLkyd4VjIiInMXeNkRElIZ82UWwoaEB+/fvj/774MGD2LJlC0pKStCrVy/ccssteOCBBzBu3DhMnDgRr7zyCpqbm3HFFVd4WGoiInINgy1HMaE0EZF7fBlgbdy4ETfddFP0348//jgA4O6778bMmTNx8cUXo6qqCs8++yzKy8sxduxYvPjii9E5sIiIyKcYKBERUYbzZYB1yimnYNu2baafueGGG3DDDTekqERERJRqqliMTS7O4vYkInJN2o3BIiIiIiIi8isGWERE5H/sWmhqxxoBu9Z5XQoiIgIYYBERUQoxTnLHng0Cdq2zcUtnF0EiItcwwCIiIv9jQEBERGmCARYREaUOm7CIiCjDMcAiIiJ/kgz+pqSxQZCIyD0MsIiIiIiIiBzCAIuIiPyPTS5ERJQmGGAREZGKJAGVh4C2VneWndgXHS0GMWAlInINAywiIlI5shdYNUfEqs9ZC89U3LNERO5hgEVERCrHysPV79pKVsPjaW4EVnwmoOqo1yUhIiK/YIBFRES+pOoV6NNYb+caAdVHBKz8lLdTIiIK4x2BiIj8z6djsELtXpcgQT4NWImIMgEDLCKiTqy+Bti4SEBrs9clISIiygxZXheAiIi8s2K2gLZWAZIETJjus2YiZXHY4kJERGmCLVhERJ1YW2s4cmlrUbzIYIaIiChhDLCIiCh1OA+WLwgMoomIXMMAi4iIKEHKiZNXfia4MjkzERGlFwZYRETkf2nQ4lJ1RMD+LV6Xwlg15+oiIkoJBlhERJQyyp5+8Vp7lK1D6dJFUAr5NxIsO9BRNilNticRUTpigEVERJ5QJdbIEH6OW1TjrvxcUCKiNMcAi4iIPMFWFCIiykQMsIiIKHUS7fbn3553MVqagPKDDCCJiDorBlhEROQJWwFIGgUriz8QsOYLEVWHvS6JsTTanEREaYcBFhFRhti5VsDuDV6XwpyqAStDa/ltLeHmtvoab8thKkO3PRGRH2R5XQAiInLG7vUCAAHDJ4S8LooxRcU+UwMsv5K47YmIUoItWEREnYiVinXKhjuxku+ZnDyvS0BElLkYYBERdSLLPxGw6nN/ZIzI9FYUP/88MeB1CYiIMhe7CBIRdSLHKuTgyvvqf9wAy/siUgpJUvh/Ih/9ElGa42WMiIg8Ifl4qFhGUgSspTv80YqptPR/Aua+LmR8yyYRZT4GWERElDJ2Ei3UH3O3LK7zWaCgLE7pTv8FWHVVAiRJQKjd65IQESWHARYREXkiXoBVUdoRBLQ2+y8gSDs+C/isKjsAbFwkIMQWTyJKExyDRUREaqmKZdK0wk8u0xx/a+eFnwX3Hiyh9yAPykNEZBNbsIiIyBOZnuSCY4mcxa6DRJQuGGAREVHq2BiDlY7xSSjY8Xdjrb+6NaZjwNeQ7uPwiKhTYoBFRNRJ6VW4d6wWsG9zagKDTGzBUo4T8mMiiXTT3OB1CYiI7OMYLCKiTujoPmDdl7HP2PZsdDcokAz/ofPZNAywBMZUSVNuwkC2Z8UgIkoYW7CIiDqhzcsYCXQ26RKwKoupClh5yBJRmmCARUTUCXlWV1XUntfOF1FT5lVBknN0H7DhKyFmsuTSnebfa2sN/4+IiDIXAywiIkJLozfrXT7b+Dbk5xaXdV+KOLxbQOVh9evtQfPQdd6bIua96dGt18fbU8WgnGzAIqJ0wQCLiIhQV83qayLipQ6vq05NOaxIl/iKiCjdMcAiIl9rbgQObldnZyMHeBRP2arkZ0BEsORDH91mM2B7+lFzI2JaMomoc2MWQSLytRWfCmiqE9AeDGHI8V6XJnP4YQyWgx/1joA0KWgG8Gkj64J3wkH0aZeG0LXI48IQkS/46NEaEVGsprpwrYpd2ByWDpvTocAl2Aos/0TA4T3OLI9IT1Od1yUgIr9gCxYRpQU/Jzwgdzi1z0t3AjXlAmrKBfQb5nBf0wTLKEmcM8uKdNpG7MZMRDK2YBFRWtCmw/ajykPAod1elyJzHNjmTO3al8G5B2Xy5XbQYVROv8da6xewSkVEYWzBIqK0kA5Ph1fNCVew+g4JQQx4XJg40qllwNcSHIMlSakPGCoOpXiFRESdFB+3EFFakJ9qp8tTeL9rbvAmwvJk/1n4qe1x0q07zcntYHVZrU2MqomIUoEBFhGlBSkEtLUAn78qYssyf1cUGQOml4pSYO7rIvZtTt06+aAgAT467XesEbD8EyEtui4TUeoxwCJygSQB9TXpMW4onVQdDf/XqbE5rsngynNFKbD0fwKaG7wuiXXxjpa9m8Of2LYyhbdEl44RBm6psWdDOGlKIzMHEpEOBlhELjiwFVj8gYhtq3weCKQROxXH3euBNV8InlU2M7mSu3quiNpKATvX8thORgYfIkREnR4DLCIXHN4Trnwe2OZxQTKNxVrpzrUiyg8KaGl0tziGOkHtOeEgshNsGyOZHHgTEVEHBlhElLE8a8HyYp0mKz20C1j5mYBmrwJOBcYYEdwQxozStLPRlIjSBAMsIkoPElSDaZrqPStJfD6rPG9cJKLqiIAF73Rc8ov6+KyQLvJDiv9QCL47LoiIyB0MsIgITfVA6c406MKkKN+mxf59nO377QggkMGzILYH1f/esdr8Vuf2kbR1hYA5r4nutSBKBn93EulwvhFR58IAi4jw1X8FbFosomy/1yUxpq1EtbV6U45MVledgpW4XBk+uAOY+28RR/Za/47b9fP9W8IhnPL8cisoWPiegNpKd5adKnY2TX1NeOqG/VvdKg0RkX0MsIgIUihcAUyrlMMpemp9aDdQeSj+51qaOv5OiyfqOs02Sz5M/1vCjkjmzt3rvWnhzMs33vmpOC6aGwRft+46bV8kxf7W5R4du51nUxORDel/NyUiXaEQEGyz8Ln2jr8rDqVfbaG1ObZLmFNC7cDGr0SsmiMi2BbulmjUOvDl24rLqSdZLux9POk9nQ5BpEVOHvXNjcZLcyvAaqh1Z7lERJQYBlhEGWrx+wK+eEOMG3wc3tPxd/UR/wZYenXTYBsw/z8iFn+gX+5kK7StLR1/790koHSngKX/i3/ZzKDYgxDujnp4t/phRCLcCrDkVhxZXbV/z2O7VNvMhz+Lk8kTkR4GWEQZqrEuXBtRdl3TY6WVyxek2H82HAv/3VTvTs1LmXWvrcXkgxqVpS4UJkOkKvh0cj3rFwjY8JWYfLdDRaHSohupz/gwvkL5Qa9LkNm2rRSw9H8CA1lKOxmcR4qIMk3pLkUVS/Lv0+NwC0Jqa9C21+ZVbTVOQUOh8H71U5bDykjX2Zry5JbDoMoao5ZCP24/v16DMoXcOtvUICG/q8eFIbKBLVhEmc6HlZJEVRz04zPsWGLA6xLEl+yWdOuwWvCOgLn/FpOuTPvxSJEkP5bKf/Zs1N9O21b6cPtpihSvxwARdQ4+ekZIRG7IoPgqbRT0SIOt7rO6asUhoKEGaG2OFCzJTejLPdDJ56uyqqZM//XG2tS3DMcjaM4jtxLuEFF6YQtWJxIKhSsx7UkO1CZKrXCFStui4WV3oXjdgroUpKYc6chov62eI2LbSvNbUuVhCyvwWeCopPzt1WVAc4N3ZfE1H+9DLSFOLUqSgAPbO8aLplprM7B2vmAYtBKROxhgpZmmemDjIgFN9fa/u2udgNVzRGxd5v+7V4j92h2T9mME5MPVRw+uP39NxIFtxu9XHRYy/xj2YH+s+tzCLctHx4mWMsBav0DEgncz5xbcUAvs3pB8pkUg3JKZLrQtWNrjr6IU2LJUxKL3vdnXu9cLKNsvYPnszDnWiNIBz7g0s36hgEO7BGxYaD9IqohkNjuyz/gz5QeBg9sTLJxDqo8Cc14TPS9Hutq2UsDu9R3/Prjd24C6vib8UKC1ObHvJ1V6m5VtO61iW5YZXz53bxCwd6O9dSfNx4EFhfkxSYNTlnwoYOcaEQccuG63B/3/EFCmDbDaWtX/9rqVMl6WWCcCYiKKxQArSVII2LMx9qLqlpbG8H+bkxlIa3KTX/OFiM1LRU+fvssDnDcv5eGZiH2bBexc27Ht6mu8KwsArPg0/FBg+6rkKk1u1033bAQ+f1V0bNLWitLEfm+qKuExT94zhY9/l98CrD0bw5NnOyHUHl5Oc4OzO8Bv20xL20Vw2cf+um+ZnecHdwBzXhdxdH/qykPUWfjrSpCGGuuAHatFbEmDbnfxKlSJtjA4LSvb3udDIXtzFFFqtbWED7yEjy+D49bpiteO1eHLoVGL34Ft7p/jwTZg7r8FbFzk/rr8Phg/6d3rx4q5w2Vqbkju2rdjtYjSnYLtufCaG8LjeuqqE193pkjnBxXbVoQLn/T8bkQUgwFWkuRKSspuNA7coI0WsWudPy6y8QYNay37WMC8t0TfBIh+k84VABWdAzfe6eDHOraZuqpwS8ChXe7vtERb2JKWbjslDjtb0cmeAaF2YMG7Yvjal+IHTJuXhcf1rJ6TKReXWJJkLeV6xlxffY7bmdINAyynpLjS4Ma4FLtPMf2iriq8NbzuCkfe8qIr0dYVAqqOpH69ZEGKKmRexYvKbLDlB1Jb+5RbzTL5oda2lQK+fFtE2QHzz9l9IJhqh/d6XQKizsnnlwZylA+zsemx86RKTtxBaSDBOqDhYSupF7lmXmLLT8b+LQJWfha+jObl+/zE8gm9reRKcOzGMtPoKfrONTYK69ND18vxV/u3hLff4d3m29HvLSuhNEoYQpRJGGD5VEsTsOBdAQd3OLdMW/GVT2+4WqvndhzCfh8M7Zl0v78aHLiNdYLqpbL9zv7QmnJ7n/f68PN6/UlJ48JLIX8GMrs3WC+XWbGaG70ZrxdqBxa8I2Dlp8a/Q5LCWWfdxPsKESWCAZZPHdgWzsa0eYl6FzlxrbdVIfCA358IJuJYBbB1ucCUuKmWxAlzdF+SB2ICX3eqLndknz8qhqEQsH6BgKMmU0MABr872fIbbP+kWr2TLJMPdok+g4K1tQIL3hHx5TuC/uddvFbXHwNamgSETO5XpTvDD1pc5dud1rkc2u11CYjsYYDViWRyf3kAvr4RLvtYxP6tzrZIWmU3YPVyYuKy/YitjKc64E70OPL6+FNOYvul6HqFRBvA6SVwqDgIHNkrYN2XiluNbh/B2JeSTetvtD9WzxW9e9Chl6glwePG6tZpbQY2LBRQV2V/HfK0IMFW907CdoN9YeW6VXXY/YtD3P3j9XnfSexay+oqpRcesQ6RJKDqqL8TRXg5t5UdmdiCJUvVfGnJcKs7kJXduna+qKqMS1LHGAI/tMiYcaR4Dv5GOflLKhzZF54c/Mhe9etWA5k5r8feivZv1S//0v8lnx484c2c5Cb1IrDbvkrA4T0Cls826WqXwvIo7d8KzH1dRPlBjwpggc8vO46oqxJ8P20DUbphgOWQxloBKz8VseYLdys1ciWzqd6F9Ui6f7qurhpYPVdAY13kBQd+2u71wKL3BcOno17R+2nBNmDLMgHLPxHQ3JjyIsXwU4XC7fEVjvLThksxubVp+0r1EW6xscqW2koBG7/qWE/lIaCp3t4yEr3ESKFw5ki74/Nkh/ek/umRnPGv3SzZgUfH7tbl4SrI3k2xZfPNg7ZOcl4n3WJMRCoMsBxWfdTdi1RrU2LLrzoCtDT68wK65gsBFaX6k6vaebKpbOHYuVZEwzEhqQr60X1A5eHEvw+Ex7sdqzD/zJZlAg5sE1BTLmDHauN9dHg3Eurmk9vF/nf8QvVU1WJFx4knsc0NwL7N7nRRy0SpTqAjn+sNx4BVc0QsnJWaW1n1UQH7twhY/omD6+tEx4khnVPNLwFWRamAxR8IOLDN65K4ixl5iZzFACsDVBwClnyoaAHSsXmJM3erI3uBsgPOdteSu821y90rFcu281RN9/cnUc51X4pY9Xnyp8iyj82XUXmo42+j4KChFtjwlYglH9kvT89+PqnBpajCpOymm8hxKgHYtT75wtaUC77v1piu5Mp3c4Pzyz60y/llmnH7ELG7fElypyvz0X3Ask+EaItaPH4JsACgvkbAlmWZXV1K9lrV3AAs/4TzAhLJMvuK4TONdYh2AWs4Fg4enBiztXqOiLpq89YPKySDf9TXhAO4mjJg/QIRa+eJWPaJC3e/yCIT3SZydxOl2kqfjd3R2WxWime1UuIIP20vryQSmOl8R/lUePXccDfQjJQmc+xZsXFR57stKo/dlZ8JmPemiJbG+NdOO0fzui9FHCsXsN9iS1BtAq31XsiAQx5A8vfJ7avCvTDkeQGJOrssrwvQmXz1XvjCM+bkELatCP8tisDIKf6+RG9aIqCuWsDKzzteq60Q4Nat5che5yqhO9eKEAMhDB3n2CKdJxn8bfSZTsqRKQqk1D4ZXztPwPk3hkteUepuFOLlg4SUh41OrzAN417Lu9vKBxWfkbu5H6sEuhTaLZVD5UH4YR6lTrLXj3RJokWUKryCuWDR++YpceXgCgi3aEkhYN2XAg7vSUHhEhG58Iba07AWAgfmM0ohL+rI2q3jqxY/JasZEwzK3x4E5r0pYPPS1B0PkmRvXY5ue7/uRwcYBckJJ7Xxcls5mLrdwSKYbpMMPrR8nQnYVcnu1BQcFL69NxHpYIDlgoZjAjYutlaxOrRLQOWRcBCwYWHqdockhRNfxEsI0NoMHKvI/IkcQ+2p6YanVzFU3TSMtkWSu2D3BugmEUmlhNau+FIih4kynfexCiDYJuDgdpe2Q4qO48O7gXn/EdBYm5r12RF3yiBJci0d9L7N4ZTfbS0d+7e5EdjwVez+9sElx9CmxQI+f1VM6ZQO5QeATcvSYA6JOLYsS+7c3rRYwBdviNi6XH85lYeBJR+pxzuX7U+fB3hmkg1e3Din0mFaEyIjDLB8wIuJXUt3Ais/E7HuS/0arCSFW9VU73vBjWz0UjhphHK7L/5AwLy3HKzUOF1uC3ev8lIYZizcuUbEoV3OjPlLWCLbJMm79oaFImorE1htgskxUmHDVyLamgXs2eijip2F3o+hduDff2jE2vnOlbtSMdHstpWxt7MtywQc3m1hfT7alKU7w4U5ui88Hqq6zOCDDh5wm5YIWPtVG5oUSUNSHYRaPecajhm/d2BbcjtS3vb7twqAEFugVZ+LqKsSVMmXGGC5ZwdTx1MaY4DlEjvjPLy4sFVFKiYd40LUasrCrWqJpJ3ftyX8lN0RTqR01vz76F5g0X9FbFJkVmysC//dFHkyWbbf4ZVa/GyiP7e9HVgzV4ybsTCt6XWlsvC1RAIscohiBzU5mPGvtjI8F5Xe/ElKrU3OrdMtRsfw9lUCqo4IWDE7dee0aiJks5NLfs+D+q/yoV8i987GunBrfrwMlKY/zYfBiJ5EpzlJiAvbpEHbSp9G233DVwLHpXVyGVwb6xxiLkAOWb8wsTunJIXHmG34Sv/QaqoHVs3RnxuqqS751jwrLVBHI08cD+0y/o2pHKejkuANxGy7HbWZNCSVAX/cdcUruhtlTXSZFr/X2qypyDqxbg8o9538QMms+AGHUyoZPRyyxE/b2WTMoJFgG/Dl2ym4RvlpO0XI1/iGY4mNr133pYBDuwRsiNdlOgMaT+JNz6KafNqH+1orDYoIAFjzhYjDuwWUHfC6JOQlBlh+kMRVw61xQ8FWd+4u21YIqDwkYMVnscsPtukkILBZjHlviimfx8aOHatFbFuh/lFu3zTKDvizplBTDnz+qvvJXeTtaydwdDPInP8fEV/9N/l9kupAeOfacKuR+QdTUhwAwG4rc5U5cOjX1yS/jIQYbMvmBuCLN0SEQu6e16k8vgTA8rHT0iigpRFY9H5i1ZeWyFQp8Vo3TbeuPy+ptnB8k/v8OE6WUocBlg8dqwxh59rkruChEFC6C2hpCnc1kbvApVpTfXgsgUx+KhtSPDlT3lflPvCylsb4iTi0YlqmXK4oHNlrryvGvi2C9a44FjmaejwFFavaSkQCTfPkLsqfZdjq4xN2NltzQ3rV0CpKwwHN8k/S65aRzFZuaw0/wNq32V/7quJQ/M+kIzvnz5fvJH8cJt16ng5MfkMwHQOsdGnCiti5RlTNhUidS3rdLdNUezAc6Fj18avJDxw4uA3YtEjEik8F3XEKqUp2sHCWiHVfiti0WAjf0GzetIKtAha8q/5S9VHgyD6DLzhEeR2Pt63WLxCx5gvNqRTnd+7ZqL8uPww0Vrb4HKuwH+DGU1sJLP2faDs7ZVN9/M/XVoVwTDvmKlXbNMX7Liao1ll/cyNUYw0TldKJrmN4c1LMe1PEvLfcv0UanfOGCUXtjO8N2bymSKb/TAtHHGoRT+V8eTJJSt292enxQckcK5LkTbKvVDi8JxMidUoEA6xkWTh3vnxHwJdvG29qbQXb6Em9na5UddXhgjXW6hcwqfELZgyusqU7BVQcSuympUy7LEnAik9FrP9STHzOG5sSGusQ526za53ieFB8tvKQkFiXJBdasMr2A8s+FrF2nrPHSq3JHHF2aSuPH77chNVzHSivzdpCsE0zniE1qzVflhQeg1G6I/nU1WaaG2Epi2DCOmv9xOYcanqSCq7TMboCsH6hGD4mk+XBcbd6bjhNvJUHssG28FQriT6Ua6pT/zvp3Z3gAvZtBj5/VcQXbwm+eMBox5G94V46RHoYYKWAnfFMW5cbv5fKebLs2rlWwJ4N5tfY5gbo37RsXFT3b+n4e7PFucYSoiiTExVn3VWEgEUfCDETOG9baW19VUeAeW8JqD6aXDn2GGRiqzoSfl2ZCjsZdoPrYxVA+cH0qF07Np2BgxWMA9sERx6klO4UTB/6LHhHRENNeD2+i68MvpxuFTkVGxvELJFPvGVL0f9zpixxObhPnOj+5kULVuWh8EqNpttQWjtfwMrPRBzaafwZs59gafoCh9TXhOcPqy4DqsuABbM6ph+Qp1dobxPiHgN+Om2rjoR7ryyc5d96GXmLR4YPrJvfsRv2bUmPCqXW7vUCdqyJfzgle9M6oJgkNtVN763NwFcfNVu6+VmpeLQ2I1oxVYnMQVa6Q/WSStn+8DxmbS1CeALhBO88+7eGB42rVq+zrPagexkrjSz7WEx6XhtA8XtMtpGye4ok2d+ccsUoWavnJn5JdrPysXmpfrkO7UzBOZiel0TXuLo5/FSDJVPyVCtVCUylAqT2/rl5qYC6qvCUAytmi2iuF7A+kYdSPjo+G+vifwaAr8pMqcUAK8OkqttcQiRvngo6ZedaYN+2diz5SEB7MDzw37Afu5WLqsG2OFYRTj+8aYl+N0IAWDs/sVNXu/13rjHeIcrPLp8tYNF/RUe795mx3MLgwM2rpRH4/LWO7RlsA9qak1+uk6RQ+Ljw27wqYkDzgpW5k2zy4pKhPP6SbSGOvzKXl5+gYKvXY+9ckuoDyuX1pcM9Na1bjJOk99MlCag8zEyOmc7hmUlIZvnphoOO7hNwdJ+A076emlpYSxMACcjNt/6dZG8GiX6/rhrYs1HAmJMk04v95mWCYcpgZWVjy7LwXCrDJrh752iqB3asFnDEbC4rO4PeLRQ3+hnFcuuqOrqudOsZ+522ViArO/U3+1Vzkn9GpM0AmcquM1bt2QjsXCtiyPEdO1CSwuMXDu8RcPKFHtRgJECIs/mVpVo+O8H1eLA7VszuWKnbGVht7zmbxbGVPECx7C3LUvv81W918GST+wRbgawcqH6YZPUho1Mbw8axEgoKaKqX0KXQoXXHkchP3LZSwODjJBT2cLo0qVW2H1j3pYiuRRJOu9RvRz45hS1YLgm2Cji635t1798qxKQ7t8LuU6Yv3xZj0+WaLKOpXgiPw/LAitkCjuwRsH2V+XaprRBwrEJAW5xxc3LqeW0K1mAbUF6a3P1RWWld/EGc4ApAU52AA9uTWKHGqs8FbF0h6N6bla8d3QfM/4+AQ7vDGdfiTWppa1JQF+456Xwbk7vzaOd427ZSRG2lgEoPUgGXHRBQddj6572aKiIRNeX+LavdksljKf0s1I7Un6DxxvuYzDMWL0g6shf44k0R+zarX1d2+zazdr6I1XMFZ5J12LBwlpjwPdqs/qC7uSzsb+3Yz4PbBSz9X+zStq8SsOxjwZ+ZCHV+p5xBV05GRpmJAZaLyvZ7c/Ic2u3JamPWrb3g7t0k2E7NrZVoV4NgW3i9ba3utbLUVQNLPxKwZq6IWgu/02h8kbJ8VhNsbF/p3KncVC9g/xbBsCZXXxMeYL3uSxGtzQI2fhVedyJBPdmjzKjph65B8nkls5oR1ZYkfqcftpEVh3Z5OKFxAuTrcCgoONJttaZcsDWVSTK0h0Rzo/0U4XKCBiPyw6Ydmi7YdiZ9ryiNjK+Nw+4x3tIErPzM+EsNx+wtz0nK68f+LdCtL2iTQgEddYsmjx7gploolKHddzMMAywXpUu/YycncJW7kgHwbZOBcr/UaudMsrqMyH+Vv3fJh6Ktp/S71xsEWC6eldo5YhLZRavnCKYPD6RQuLIoSbEVDKsrdfTQ8elxaEsquxUlQ1GG1XMFbF6S/MGcJjFSwmorgI2LRCz+wOK28tkGsTPJOhCeokJv7InbY90ajoUDo9bI+MrGOgE1ZeEsmOsW2NuorU3mn1c9eFDeEk3me6o6EvtaswspwHeuEVLfqpnAbWDrClZPjSx+X8C8t/TPIzsObgfWL/Bpy18G4BHsJocqPLVViJlsV6adyyIRuzc4d7FVnqi7DAKI2C/F/8jeTYmVBzAPdJf+T/RkvJwZNwOsqiPW5xqpNOj+1RrnydmW5QIWfyCidAewx8FjK2l+CEAc5PcHOE5lVkymFcqsVUSe5qDK7SQWcTSnqOXGLYk8oNu3Wa9lwoHCmFj0fjiDnaSYX6w8Mo2BW71NQu0Cdq/rWHblIcHwXr7ys9RUx+IlwkrZZcWpFu5OSH6Qm0z9T5LC2WGP7BXw+Wuipy2XmYoBlouO7BWwd3P8z8Wz9CMRzQ36F+UNX+nsQptXyLpIZjgnKmzKZRi10MR8R/PvvPzYgmxfZf1pTdypWzTF2rrcX+lim+vNy5PM4OsjewXLczbVJ9g//GAklf4RO2OuNJycvHHrCjGxfeyQHasFR+blMeOXWMsv5ZAZTbQOCdi4SOiY5iCNuNrtMYEdmEh59K5hO1anfj+IovtHbIumtUv7b7eUH0RMvaHiEGyPsQq2WqwbJLAprc75mM4qD3ldAgOa/bVmXubvi1RjFkGXOTk2xi1O3mKcGIfT3Ki/DKeasbU3C6uTsSq/ptcPPFWSfeoXflqbeM7sVPz2Rf919rzZv1VA9xL93+x2FWvPRiHpjGS6CUc6y/3Q7d/pcVRo9+e1pDjxgSt0trl2PF8qZMQ5ZPAb1ut0e1xtM+tqc2O4C2XPvhJO+przJ8rhPfE/k+7CCbP89ugplt+mJskE/q/9k222T2WPzv1Wmyd0KGTyRFqh2qx/eYK/deVngiPdMTsTv9VddFt7U8TJFjmZ6kGBX+7ffilHBtvm4kO7hLpLC7HZVONJ9WFi1P3Jze7YqWJ4nXXgAnysIvzfZMds6QayuhNEJbWa6Hra272ZKicRTiUDag+GxzEm3BPJbzfsDJABlxdv+fKYtHmCVZQK2LzEPHGBG3atE9BUb54OV2nbCu/GdFQdST4DolMqdQZDU2K2rRQMszmmk3Vfio6m6vcTN1oZ/BoHGmUSDLWHK1DlLqfjrym39jll5kABwOq5/q5KLHpfv3yiv4ttjcH54cRpY2UZddXAwR2aDKIWeptIJstPtkv10o8EfPWeiMba5JaTCmvmCZjzuohgW3LL2fCVgBWfijhocSoAv14DM0kmXF46LeObrf1L68EdiV+O4w2aNRJqB9ba6Pdrax4lJeWVRPB/coB4Srd7FxBYHVcHAJWHYz+77ktn0jo7oT0YHmyf6Fgzv9m5xgeX83Q6t+Td7nWZFYefXvIHANi3JTy5+RqXA5ld66ydCw01+lnyLPN6m6cLDy9N7cHwfFzxLPlQxOYlImorOl77/DUxbvKYYGvsfJP1NeEusGstjhM20nAs/P3aqqQW45jDu4E1X+jf+yoORhJWJNnLQX5ALicXsp3GPTNug77CMVhpzO2brVUbFiZ2ZjY3AvXMXOMtmxUdo2QrVh3dJyT9pM4JVUeAbsUpXGGyNy+d7/tx/IiEcOY+p1qbASArO7E5X+I9RffL5rNSjtpKwbeD5f2yHROS1oWPI9HfFrknHN1v72vaMXR71gvoeb69G8zS//mjTuM0uXt6xUEJvQfrfyYr27n1lR0A1s4T0WeIhOxcYNSU8H/NZPKp4JXMPJoppRLtWlh5SEh9H3jJnxVTO5zoW15b6d3Epn5IzZuqlMiycoMJRpsbw8FIvGkI6qtjX/NrS+z2lQKO7HXuJItXMTBidU46P21Go6fYgoC0qQFZCYb9cuymySb1hF/2USZprAN2rk0s6VFzo/V7ttwj6eg+AQe3C9juQYZOYgsWeUwUgFT3GEv3G0dTnDTuVshPCgPZzm4MO10+OztJAhb9V0B7MFx7Lu6vPhMa64AuBfJA/DTZrlL8edL8yDcPXYyyykv+OQJirp+agikfoFQeBvZuEjBhuk8vun7ZqElw69g1W+y2lQKqjwKnXGRxv2bAdnbC9lWJP9hb8E74u+fdEL/GpN3cljKPch85jgEWeSoVLVh1yjE2vIioON2aVGbQUqOU7gGuU6rLEAmuwrRdJ796L9zFY9JZ3GCO8+kmNTp7Eh5/6qDGunDq7x691a+bVfBXfR6+wG9e6mLBdCRyjdnqYLdWP3Dz18hjBZsarG1oz7ZsZu1SAPHv2WX7BfQaaGG/aD7S2iQgFJIyI/GLT3BTkqdSfTJzrgcf8GnlNtW0Y4Ram2I/Y1axtjvNQSqk1a6VUzoHE0/U05ms+lxAbaWA/VvUx6Q2u6pecKPtRn6s0vHiJaSmrKNc2t+V9lLwc+ym50+5OBek9mB4Qma7DxrrqoC9G318vCRYtMrDzhYjU1l9gMMAizyVqlntZX5Jtd6Z6V2bWnSCC9f5LBpY96W9y3FbkqmMXSGlz/kllzTYKpjPneeyZmX3HR9vPqOuyXYyi8pqfXIddnKsoF8E26yn20/W9pUm28/FTdseDCfhSPbByNblAtZ8Idoeo7TkI9HyGE+nWekSqh3za7lF12f3RL+qs5idkgEWdTqpnu+L1FoaYl+zmh7aSV7fS5IeO+H1DzBQHSc9s11dCp1dHhCeS84vrVZVOtMZpDN2AfbW8tkCln8ioq0lueOqdJeF7t5W33T4EN+yTMC6+SJ2rEpuweUHw//1Q0scz5v0YWWeN4ABFhGlWHNj7E1RCgG71nlQGA9ZnUxz5WfpVQEPtTtb3oALI4VrygS06ByHXuhW0vG3b5JtJGnflvQ7br10eLf+61aOB+1nnJrXz1KrbpygQA4anD4S5DlAy0vDcyu6rbkRWPaxf6dKSES6xHM7VgvYtzl16zu6z3oLVTwMsIg6MSnkj0pQsA3YtS7FlyOP7zAbF1nb9lUGFR12d01cY63XJeiwZ0OG7UcJ2LZCNDxuU6WpHlg9V0CtT8Z7mZHnScok7e3A56+KmPOaC8dB5NrdVCeYJ4BxaNU71wg4ViFg1Rwf7KcMu1zEs2ejgG0rw9s92GYxI2KCmhvCXfWXfOTMfmYWQSLynB+ypKWadmJOSp2KUm57t/jlyfiWZQIqSoWUjUfyTORQbm50p7XXjNm+rq0I/zcUEuJ80v/idQlLZCL0lNLb/DqvHauwmIHQA63NwPz/hAOfGdeFHJ2YWeb0fvRBOE5ElHrs806+kwlxn8Xzyu1KqRxEB1szYaOaC4XC8yTNe9M/vQCUb6VrkGv1HrF+obvlUGpvi/+ZRO1eL1hKntRwDFg1R7A88XGilNt/m2IaBT9m0NXDAIuIOiUGWOkhU8YlWZEJP9XqaTXvLVY/nCAgnFXPu7XHp5zvL1001Ia7OO7bEv+YrnBibJbFE0duxXFh0QCsjQ3e8JWAykMC1s5Pbr+GLCaLAIAmRXIst+4JTlcJeIVLkp0DhIiIyFD61UNj8cFFWmvWyfIafa8RqHI4S2iq1FaFE680GIy/1HYDPLAtfDJuWyHGP6b9fsw7XD45CAsm0Zq2dxMw5zXR8hhJZVBVXdaRATLV7LS8M8BKlt9PLCLSxRYs8ptMiK/IeabXKocPmm0mc1steEfEyk8tVhvdvL4msOy1XwioOiJg+SfhxCctjUBrc/i3NtYK+OJNQb2dbaxDcmD+v1Tfjuzc/0LtwNr5Ao7ui7wg/9wkCr19Vfg4kgNZOzZ+JWLNF6In9/D5b1svLwMsIuqcGGCRz5QdSP8Qiw8unHVgO/D5a8C+bUEE28LbVzsxu5NHjdH8cIf32FuO3w4DubWlrUXA0v+JWPaJequ1BwXf9Ug6uCOcrMVrR/eH5w9d92U4ZJBbk/x0rre3A6u/EHDE5nFql53My8wiSESdkp9uDkSZovKQ9xXCTLJlabhS+9VHLcjOBQaNEbB7vXobNzuYulo02H0bFmbW8/jmBp0fqrgn2Lo/CO7cTDYvCW/zYeP1l2+1u1qypQt5NSl7nMmqpRCwa4OAPkMkVJQCFQcFVBwU0HeY/UhZCsWfMkOSgLwC61uTARYRERFljE1L/B/kNRwD9m4SMHKKSYVN8zPaWgTsXq/5iAAs/sC54EcQzcdhWebiA6xEFp3MtBhH9sb5bqSL4OIPgdpK5wNRo2BvxxoBxf0tbA3NR1qakkuMIii6CIZCQH010LWnuwmJ9BZdujOc+XD3egGDxiR3wB3ZazxdTG1lOHPhluWCfmBugAEWEXVK+zb7vxJGbGkk+2rTYBLulZ8JaGkSEmgdkODmaL32oIAF7zqxfP/vAye1NEmorUziNydwnbOaZKL6qIB9WyQMGRv+95dvGweByuvtkT1Abr7xciUAO1YL2LdZwMgpIQyfYK08euTumaKN+NRoPsO21vBy7MwLZ9YKvPR/iQXNmdXmS0Rk0f6tnasCkK48655C5JK188PBFQC02J3Th5ct1yTzMOedvzjYT9MF21bYq+4H24D1C0Ws0EtqomjBKt0Z/vPInuQOzC//I+CLN9TLiLc7yg/qr3PemyLmveX9idIpW7A2bNiAhx9+OPrvHTt24N1338XYsWM9LBUREWl5lY6XyC1l+y1W/nRqmIL+y52LxQ2QTBXby5bzYBtUSTgMu94lUEarXQPNfr8boUtbqyJqS4B2G4Xaw2eKUStfRSmQnQt0L0lodZZ0ygBrwoQJeP/99wEApaWluPHGGxlcERERkW80HItfla2rTkFB0kTZfnW3sESq6pIUrqzXlDtWLNvK9gMNNc6HMdVlwIrZCXRc025IRRbBVE0En8h69m4Ctq8ScNblQXTp0fF6KASsnhveDl+7KdI30YWAutN3EZw9ezYuuOACr4tBREQ6hE5/lyIyxqyNHbatFLF5aeIXjANbgc9fFdBwDKivTu12VbYYWW09a6wTbLW02QmulL9+0xL195TBjgNTYlmSSFIOea6travVzVhWttnquQIqD9lfp5Ivb10rVqzAHXfcgenTp2PMmDGYN29ezGdef/11zJgxAxMmTMDVV1+N9evX6ywpvtmzZ+Oiiy5KtshEROSCVD0hJfJCsNXmF3g+uFaZ37FGBCBg3xaPN7KNH+javE8WNoFkId9KdRmwYaFgOSGHkZryOCsyeVv7VkgnWNNu8opSAavmJBci+bKLYGNjI8aMGYMrr7wSM2fOjHn/448/xpNPPonHHnsMkyZNwiuvvILbbrsNs2fPRs+ePQEAl112me6yZ82ahUAgACDcPbCqqgoTJ05078cQEVHC8gqsz/dClG7sZp6zM9Fppmq3mHJdFARUHw1fQ+wwe6gjuPTERxSFjgx6Qux7RpobBVuZ9+IRhPDyDu3Sf18UBVWa9uj3oF/OFbPDrxX0AEZO0luf+nuqZdgINOPtFnm5ezcDW5fHrs/o+2bbPh5fBlhnnXUWzjrrLMP3X375ZVxzzTW46qqrAACPPfYY5s+fj/feew+33norAETHWJn59NNP2T2QiMjHsrMCAOxPHElEnVuWmIsVn9ptIgTy8rIB6PdJE9u7ALCb+jG+7t3z0aM4HClVFbQB6Ch3UVE+gCbd7+Xn56C4OAeAE5OXAUU98tG1SMTs5frLKy4uRFZ2E4AQIHQEd6F2EbvXBjByYjaKeikjvvByssVsFBfnxrxefVREcXF+9N/FxYXRT7S3SwCsZWdsqTe/TxQVhaPsT1eof5e8vsP5rQBim9nC7ye2bX0ZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL37hcAmJiMgpwWA72C+KiOyqrmxBIteO5uY2w+9VVjYltMx4jhxqRHU10K0nUF8H1TqqaxoN19nY0IrKylbHyrRlTWMks57R769HMBh+P9QenrQYABrrJGxfG8T2tUFc8B0JddVAYY+O5TQ1t6GyUhnAhF9vqJVQWVkf/Xf477DwFB3WfteR/eYP4aqrGxAKSZFGsY5lyutrbNBfl7JsdqVdgFVdXY329naUlKhzKxYXF2Pfvn2Wl3Po0CFUVVVhwoQkZkYjIiJXcaJhIkpEotcOs+9JVgYeJWDV5+FlzrguFJl0t2MdoZDxOiVJivl8MnasMV9OKCQBkvlnDu6UsGmRiH7DOjakJMm/Q6b/+5SfcfJ3hUKS7naU1xfe57HrMtv28fgyyUUiJEmy1Te2f//+mDNnjoslIiIiIqJMcWinu63pwbbYjHnLZxuvc+daEdVHXS2SbeUHwuU9rJh8uLEWSSe6cITNoLupPv5njKRdgFVUVIRAIICKigrV61VVVTGtWkRElN7YgEVEflFe6u7yV8wWsGO1umreXG8e1K383P9dqMsPClg4S0BDLdBYF//zoZA/rv0LZyUeJqVdgJWTk4Nx48Zh8eLF0ddCoRCWLFmCyZMne1cwIiJynh/uskSUdg5sS+x7ktlwHpevR01xgik96ZJZsq1FwKL/ivjqPfPQo7UZmPOaiLmvOxSiCAZ/K7ixW305BquhoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyg7aWxAIPs25hYiDBwpBlnnR5dCHC8mWAtXHjRtx0003Rfz/++OMAgLvvvhszZ87ExRdfjKqqKjz77LMoLy/H2LFj8eKLL0bnwCIioszABiwiSiWza86AURJ2rU2PFiOvNNZ6XQK1YJsicYlm525aLKDUpXF1vgywTjnlFGzbZt62e8MNN+CGG25IUYmIiMgLDTWszBBRCplEWE5O6pu24lyS65O9Zjt8ya84FMLmpcDYU2Lfcyu4AtJwDBYRERERkRvM07Snrhx+dGg3XO9W4EbIc2Cb4N7CDTDAIiIiIiIC2C/ZxMavnA8byvbH/4wTtq8S4s7h5SQGWEREREREMG+lqiljl2WnW4HWzk9NKLJ3U2r3HQMsIiIiIiIAxyqMK+IVpQywXJchm5gBFhER+VqfIeyzQ0TkB6F295ZtZRLidMEAi4iIUq73YOtB04BRDLCIiPygrsq9JqalHwnYtiIzmrB8maadiIgyW16+1yUgIiI/CbYJCLZ5XQpnsAWLiIiIiIjIIQywiIjI39hDkIiI0ggDLCIiIiIiIocwwCIiIiIiInIIAywiIiIiIiKHMMAiIqLUy4xMvFHde3GgGBERhTHAIiKi1MuweKTfsAz7QURElDAGWERERERERA5hgEVERKlno4tgurYN9eybriUnIqJkMMAiIiJyQ4aNMyMiImsYYBERka+la5zSo1dq11cygC1mRER+wACLiIh8LV3Dht6DUlvy4RPTdUsREWUWBlhEREREREQOYYBFRESUAYR07UtJRJRhGGARERF1IunYlZDjy5w1bDy3J5GbGGARZSAxizdPItI3cnL6XR+Gjku/MhNR58UAiyjDFXRnxYTSXBocwuyeR2mFxyuRqxhgkW3ZeWlQ26Go/sO5v4jcVtzP6xJkOAYERJRGGGARZbih470uQWYr6ssAtjMbOk7CjGtDyO/mdUnYikbW8VAhchcDLKIMx0qXu0ZOCgdY3UoYaHVWWTlelwCYdHYo7me6FUuYfkX8z/kRL2MO4wYlchUDLKIEiQFWqAko6gOcf0MIA0byeCDvdC+O/5n8ruH/ERGRuxhgkX2sR4bxCSBFCLySUhoYOYUXbyKiVGC1gKgTKCxixcptBT4Yg5NJivqkxzGb3y09ygmkd+uVGPC6BJlFENLnuCVKRwywiBKUUAOWRzc1Nra5r2dfr0uQYdLkoB0wwusSRAhIm21m1+DjJAZYRJRWGGARpUifIRJEnnFEGSOvQPJV99BE46vcLv5uzejey9/lS0sZGowT+YWPbg2UNnivy0jDJ3DHEnVG3Uq8LgGlGuMrIncxwCLKQIncPHN8/hSbOpdMqABKqT6lEtxo6bCtvZhuIiuH10QiSgwDLKJEJXLDT4eaDEUdf1oIJ56XnvMG+V2XAvPKK6u2qcNtrS+vwOsSuIj3IiJXMcBKE70H8RZoRU5e6rZTpt2fOCFxrIGjgOL+XpciM+V28boE7uM5RUTUOTHActigMe5U8IdxfExcRX0knH21v7dTqupb/t4K/ubWOUz2KM+VlHe1c0gqy51MMMc4UJ92u5yQQa3ZDP6J3MUAi2zza13npPO9LdmEMzLn5tuZFfX26xFOZCyZCnMyR/zA0RJ6D+4c50wJW7OJyCIGWJQxvE6XnJ3r7fqV7Na1+g3vHBUkS/hkN2UE0dpxl2lP27u6NPG3V9sp0/YPEVGyGGARJUow/aensnOAXoMkDJ8YvyJ32qUhjD+dARal3vTLJYw7PX7Lb7p2ETRy2qXO/6BM7iLo9/IREWlleV0ASkMZVtnJVFPOsbajsrIjlTPWYsK4HVKmSyEwoBDYtMjrkmSABI/bwh4SL+mdEFsdidzFFiyHZdqTVjI2clJm7WzebymlMvCAO25qCANGeXNdsFthHnVCuOVw6kVpcB3LwGOFiDIbAyyiBBX1TeBLrCi4YuDoNKgk+lTfodx2Thl8HDDuNPe2Z16+8bLtBljDxgNfuykUbsFOslyu0xQwvyuP2aT5fqcTpTdbAVZrayteeOEFbN261a3ykAG2jGUGz+5pvJla1tk2Va+B7lxcSgYkvtyuPdPjgtfckNqjpbDI5E0PD1y3u5tplx/wcHBDz77pcWzG09muc0SpZivAysnJwV//+lfU1ta6VZ601WeIhFMu9jZNd1GfzLjwp0J2rvPbqqC744tMXCJ3zzS64wayXDzW02g7ZKLTLwth6oW8ltklIHMfxHl1SuboTIY96SwJ407jlBxEZM52F8GJEydi06ZNbpQlrfUfIaF7idelSI1MuIef9nXnf0VegeOLTFwm7CQTOXnqf3PAduYo6O5tC0XaEpC5571H57ded8/sXGDAKCA7J803Nq+ZRK6yHWD95Cc/wRtvvIHXXnsNBw4cQGPj/2/vzsOkqO69gX+ru2ffNwYYZgYYmGEYZphh3xFEJYrKEhci+mj0JvoqMffNfWNcbqKJEU2uMWpyc2O4GkyMRr2o0Rg0cRdwXxAvwSVRAVH2ZRZgmDrvHz1L90wvVdWnqk51fz/PwwN0V1f96pxTp+pXy6l2dHR0hP1JaR7vc73El8BVDDfO9Cp1hSuJlQxJrHJT4bjDrtsCQyXj1ZScAmHbO6wSpWnJWeZAhHVzaCONedIs5OgpM8d7Be+LcPTnT/PeehCpyvR5wrPPPhsAcOONN+LHP/5xxGm2bNmSWFRkWvEQAcG7FpQ2YpzAZ1tS4fDdXXnFwN6dcuc5/XQdGx9PjjGBRrfo6DymYff24P89cUilSJAzzhBoPwSsf0y97TiZEywVz3ooGJJhJUMFhtYAW14N/7xqDPDP99yJiSjZmE6wbrrpJmi8H2eAnh2bW/u3SScJvP6Ue/WiaQJCOLx8jx1M+ANQYq+s+QSErkAgCXC66vNiDS4QQckQgb071SxjfxrQeSzkA5sKMxl3EzLWad459p0JS9YEKwmbkmsq6wTqp0ZuKMm4zRK5xXSCtXTpUjviIAPqp+rY8qqcs+gVowRGtQi88JD5+ZUOBb78NPyz2csEXnyYvXM8E04UeO0v7pbTuJkC773UF0PPTpW1101GQShemJ44kNKi/NuknsGHXn3SnSuQgTSB4519K5CWIX8ZzSck9+0LnmivHjFmcpJm4USKsbzH+eijj/Doo4/iv/7rv7B7924AwKefforW1lZpwXmSjX3XkJGJ/b7/yEcZEUZIMqJsmMCMM5J7h26ElZ1+YVno/+xrLJbm7OGDGB6AWVc2zO0IDEhgUykohdQBiMxcJdI02L5dZecLDKoK/jtpbxN3aPv2+ZM/+dCS405nsolXXpHhBaY3tba2Nlx55ZVYtGgRrrvuOtx+++3YtWsXAOBnP/sZfvnLX0oPkmyQ4A4rt1BKFABSeXj55M8K3HhnTF6x44v0NDuuqBiSxM1/7DQdg4eLYFu0aRNIzxw446S9RdChttI4S04BFg5K0oqgpDf5FLZdWUwnWDfffDPefvtt/Pa3v8Vbb70FEdKjz507Fy+99JLUAMkeKh3b8OqDs5ws7sJBDi6s29CRQGGZ9Z1ESrTHVFhHCTKyrLWjYbVA0xzhSFsKXYYbCZYT65iW7vwyE1E7gQep5E2qb1teYjrBevrpp/Fv//ZvmDZtGvx+f9h3Q4cOxY4dO6QF5yle60+5EaWuaHXvpTbRf3sLiV3TgPLhXtsgSUVNcwUaZobfd2c6iXFwu3LtXYw2r6PXrkrnlbgdgTWaJiJeGSUi80wnWEePHkVhYWHE79ra2gYkXSSP3WcWEhndqv+LX81w44yJUi8FtkEy3Wc/e2myPljiTXOWpVZ9JNw92XS8Gmm2gTR7lqWEkBXuPOpeGMmuqNztCMhVXjrRqjjTh2GNjY147LHHIn731FNPoaWlJeGgvKz/2c2GGWoejERKahJ5FiPSSwtVNbzBmVt33NQ8N7whWl3fyjr3z2Zm5QKZufLiKHLhuTDVJNL8/abHnrUWg9UYE33RdLwYvNTXJauO1iTvwN3CYk15qjcBLz3faHpXceWVV+Lpp5/GhRdeiIceegiapuGFF17A//t//w/r1q3DypUr7YjTsypGuR2BfNKbt8JbdH6pNzbm5nl62IAS+TFuUYmWSEeqhvRM4cpAFWaZaUKZ2cGXPqtiZJPzsQweEVzm8AYLy1Z4ewWACQvsLc/sfJM/iFJeLfPVPPnmdQVu9NnqdCdEyc1D25rpBGvSpEn47W9/i2PHjuFHP/oRhBC48847sW3bNtxzzz1oamqyI07lmanzrDzzLSQ7z/RPPEPlq0leuOM1p0BgUKXxKwvFg03M3KW6ye63jQyqjPOD/nHG2MQ0TZ1bKE86X8eoZuf3GLmFwILzdNROlLtsu0YENTNXu/sT0/OPEnwy3aasUheea/Kl4KGycuXEoFJ5mOHVuIlUZOkwY+LEifjDH/6AN998Ey+88ALeeustPPDAA5g4caLs+JLS9EUCgTRzByKJPOMUiUpJjRtn8I2K9UB7pDJ0+vJ1Zq7AxJOML9MXMHd7pFvPn8xaEv7D2gkCfpPbjBe4uR36bDh5kOg8ayfxqo5hEjeHYbXy5hVN0xyH6jaBcskvARpnWYtzfJK/7DmatPTk65eTQXa+xXpR6NjQ60wnWBs3bkRHRwcAIDMzE+Xl5cjKsvjG2mRi8uWTPivPMchs+IpsROmZot/Ld71tVIuzO5uqOoHM7ARnovX7WyZJ8/T5gZIhcualafDUbQaqiVWliT6fNHh4Yr+XTkb7VaSvjWVQJRLvR+LIMXtrZT9ObbKDqq39rqxCbhyusNBWdYkVU17NjjlRg6qCZShrf6kaL7UQ04f5X//61+H3+1FfX49JkyZh4sSJmDhxIoqKErgun0QMDeHrgR2uU1S6khaRya3ZZ2F9cgoE2g4qWhAqhWWiLrzUCfc3tEbg849jF3xVvcBnW1SqnKBAevxpSBLJ1Z+eoeFIu41nvaNMUzFKYMdH6rRlvx9oPkGXftdIshISL9zlFgp8+ak6bcGLGmYIDK0RKCgFtm1NvrLMzgMO7nY7CmNMJ1gbNmzAG2+8gTfffBOvvfYa7r33Xui6jpEjR2LixImYNGkSzjjjDDti9QYbjuxKK4Iz9eIFLH9AYOqpAhv+ZMNDLwmWdct8HZ9t0bB3p7XSMPM+nBGNfRPPXqpD14H1jwbLJD0TaDtoKQSpopaCin10vLKP8X1escDRDhVXKsjIaJ7DRstNsOado+O5PxrcRtUtOlsom6yrFJjFWMZM1lFVD2MJloPrO6jKuWV5nkrtkOAPBK9IW32Vgerde90kgZ3/UD3KINMJVlFREU466SScdNJJAID29na88soruOeee/Dggw/ioYceSukES/YFrNpJOqrrB35eNFig9QDQeST63IbVCmz/IMr3ibRPU0+cBx+oH/CxJiCEuxtJ2TCgbJjA0/dGjyPWqkbswKLMKjOnb06yHqR2gje6MXNXQofVAh+/a08cuUUCrfs15BQAez+3OBMXDljSMgB/mkBXp1dq3ENS4AA0jVd7koKlrd8HIDUfP1NSwj24zbuAQJrAcYv7maJygTQP3SVh6Y0mbW1tePvtt3uvZG3atAkZGRk44YQTONCF5J1pRmbkg8fJJwu88VcN+3b2fRb6gPmwWoGx02IkWJQw3cRORZla8PDBnqzQ7XyP0YQTBXb+Q6CyDkrewqeUOMWT0f1MUEaW8HS7lWlUi0D7IaB2ksD7G+S2r0SKuNrgLauaT0Do5uIOPTlFNrPQpNjLKUqBilH68QcHmE6wli5diq1bt6KkpASTJk3CwoULce2116Kurg6a8g/U2MeNXcDoFoHXvgDGzQouvX6qwMuPBOsgXlU4VVUqtghT696vYgNpwPHO4L/1LmkhqUvFCpTBpg02+I4te+YdypbtV4Hj2NDVqp0o4PMHD95bD7gVkQQS6yo7r2+EzfflzTZhRkePnLNM4IWHkq9TUWDTsWTKV3Ts2aHhH5sSqJMEq3NUi46P3u4765WeJXBM4Vu4lZdg0cnct4xsFHjv5dStS9Pncrdu3YpAIIDm5ma0tLRgwoQJKZ9cAejtYZ0c5KKgFFiwQmDIiOD/Q9+VFS2Oou6XxhZ54OWx8biyBiF150/r+/fMM5PgHgkb7ia1JkrNirhT9H3v5eateFfqVFefngmMnSaQU+DM8qJKtC15uS1KluHAgMOe3vYdVliGhN/Dl2h3ELZ9a/a8PoLUkfD2qfj+MZTpK1hvvPFG7+2BTz/9NG699VakpaVhwoQJmDRpEiZPnozm5mYbQqVIzB7sTJgv0HZQIK/Y6C8EorXoyafoeP0pRd7YmoC5X9XxwsOR16N/XxBaEoWlff/ueWlo1PrwUKfgPvPjqHvx/E56VvxE0lEyypAHt47pPBqssK7jLgdikNHkKjtPoP1w7Mbo8wvoXZGnkf0C555lmbpV0YP9kWsU7zNitTWiWEwnWFlZWZgxYwZmzJgBAOjs7MTGjRvxm9/8Brfeeis0TcOWLVukB+oV0s+eSd6u/YHgyxRNLT/KOuXKGJk/wTsTZBR3Rqz3vySwAJUT0EGVAru2GXhmItH2p/jO003DRrsdgb1Khgrs2RG9AaXMIYvNK3qkzb4Xu+UVCRzer8W9bcvIfs/osOctJwqsfzTePe7G5iVF97qlp/DrPmM+S+OxDdnIazDCeGz9evbZHgs7KVka5GLfvn144403ev9s3boVuq5j9OjRHOTCTgluMVZ2wQnvum3cyp0+ds8vESgbkoaPN3efMo6zbgUKv0B5/AkCf/1d+AokWlWZuQJHWvvNxcBMayfq+OBNZxPRVL6NKOGkOdbvQ74rGwZsfT3BZSUDD7e1pjkCRzsE9n2h4R+bnFmmX9FbxGI1++p6D1dyiKE1wME95n4je9Q6uxODcTP7EqzRE3R8+JaaJ0GTVXJsKcaYTrBOOeUUfPbZZ70vG546dSouv/xyTJw4EYWFhTaE6DESWs+iC7PwxG87APTb2bjRMhPMsAZVSovEVb6AwIzTgX+8E2WCOHuFvZ9rGDbahgq0uDcKPcjWBvzD2vwzMoEJ83W8/ayGjv6JVgxDRgAfvBn6SeRycqz589SfFHbftulPE6idILDl1YEHSFl5Ah1xbjMzwou3nsrkDwDFg4H9X0a/VRyA3I3TSJnHWp7kjiLe7PwBgeEN5kaVVZWllytb2EYaZup4f72x2/L7D4JBBinadyUUlmZvn9wwQ8f7G+S1NdMJ1mmnndb7nFVWVgpfM+/PzCAXcRSU+NAyT2DnP4HSYdbmEakROr29+fwC9VNT6XxF9I3/aLuzcbgltzD4TqWOVhtmHqspyWzckptsZZ2A0IEvPgWOH7MW6ODhAiUVIupBiZNiroEAhjcIHNgd+VmYytF+bPtQzvCbWTlAZR2w5dXo02RkK9D/SGybqZ7wqSjmLeYeY6l9WfhN6PPLrl7SMLBsbnJyKdAjRzW0Bnh/g7z5mU6wvvWtb8lbehKSNYhgeTVQVtlvbg5s6SObRNiQrZEuYIWOVhhL2bDgGVAv64k/0svttCj/jvWZbHYvw7M7F4V68TFTBDQN+OJT66WZlgFU1ADvr5cYmE1qJ0Yv/GE1cRIsA0UUSBfxE1WF6t/TDDbZjKzg81oFZTD37sXuSbPzBdoPaTEXafTkpdNVnwxJr5X3k/X+1sJvUvkWbepTVC6w/0vjLcj24x3JC7B0+Ltt2zasXr0ab731Fg4cOIDCwkJMnDgRF198MSork+SeMKtsHKbdiX58VLNAzXiB5x7QcLxTQ04BcHh/+DRF5YnHM7QG2PERUDEqgZnEkcgbw3s0zBD4+2vA6AlxbpFRnYHQiwfbH4Y0cbazRPbfgbT401jh4dYjjRcPrMqrgH++J1BZ58HgzUhg9TQfMP304Awsvdze7LIVqoreNq1QTGbNP1dA6DFWwM7Oy8WO0cNVJlVapkDnEYcqIqTQy6vNJVheY/p+k82bN+PMM8/E008/jXHjxmHx4sUYN24cnn76aSxevBjvv6/S6w+dY3RDbZ6nh2XJ2fnGN3HNF3wx4Iwz4t/sHelAxuiSNA2YuVhg0sm6uREHTRjZJDD9dB014+3r4ka1JD7v7DxgwokCeZFGTIx0G2aCd3DVT7XnRv6iQcG/S4ZEnybS/fdFFpKuwcPNl/vspTrSMsJ/N3aajnEzjZWH2S460vYxfm5w2/L6VVfZhtUK12+1C12607vjQHrw5b7VYx1esEsyor0+IIpB/e+0SJSBCo65RI8dNTfOcv/hLX8g2M4pAgPtUfN5rNH1U+XgyaPqsUBWrsC4WXpSXP2NxfShxC233IKxY8fiN7/5TdgzWB0dHfjGN76BW265Bffee6/UIL0k1hnasmEi4UEfCh0amS4jK/hn5z9iTJTIEOsaIictJuQVAYf2Rv8+LSOx+VuRW5jY7ytGxX6mxKpRzQL5xQJlkZ7pi1GP+Ybfl9anemz/QSvi0ICs3OALJw/s6vt4WK25eSQqIztYf7HalDIc3DH5fMD4uQKv/YWDRlC42Ut1ZOW6HUWfvGI1DnTNNPPiIcD0RTo2PpHY2bkxk3X8/XWbntF0qFi92j3Y96KEyEJvqZUzv+DfPn9wLdLSBTotPi8cT2a2wOylwX9v+8CWRSjD9Nb43nvv4ZJLLhkwwEVWVha+/vWvY9Mmh8ZyVVWMrWxQtRqdf7IYP9dceQ6tEdA0gYoERvOLd4uTqgeQ/gAwZKS5s5TpmdbKKawM3GryCm1qqrYJMwpK409jhMxbBBWqYuc43JbiLc6O5MrKFeSeA0NbtrWehhbtNVAJLlNWzGlWRgB0wOARybOlNp/g/tVGO+QWApMX6pi9NFhXJ5wt0DzPnnUtrej7d6JNv2SoUOakSiSmE6yMjAwcOHAg4ncHDx5ERoYLlw0UMnqigC+gboUnE7OjN1WPFViwQhgepMPUbVFJcBBti37lMqhKzrYR2klLYyG0SScn5w5XadzWkprPg+/BUoGt8Tm58v36YSt3UVhdViRhg1lFOGIuGSKUbBxmE/eiQcG7loDgetpxsmLs9ASvePeLqXaisO2ZaRlMJ1gnnHAC/uM//gNvvPFG2OdvvPEGbr31VsybN09acF6UXwzMP0edBKthOg8AQxntNGYt0THzzNj1GG9ejrcC2R2iDR1s8WA5Vw/HTEmsdLPzov/eTOLulYFBCgclVl5Gt5t4S5Gy01ane3Wc48dxzj/3bkhGjDfEOD2Qiozl+WQ892ljXSUy68SvUgATF5g7jhnR6FwjyMpLjrsUnODrn3EkWG6JPmZiN9MJ1ve+9z1UVlZixYoVmDlzJs444wzMmjUL559/PiorK3HVVVfZEaf6YmzPY6fpyC8RKK9yLpweFaOdX2YyyM6zPppcVb1AWaVwvtN1/llz1yQ6EEXE7aJ7hTOygGmLdMw9K/ZO3ZYXR9ukZV78WKPWt10Nwcx8I4SvcvtMNkIkVtoTT4pzgGxyU5q4QIQPxuHhxqBpQE6+jBlJmIcdJNxCWTLU3G9GSxjgSsVleY7kNtkzu2G1AiObhKFlJHpyMRGGD1OOHDmCF154ATt27MDy5cuxYsUKfPLJJ9i9ezfKysowfvx4zJo1y85YPWtYbbBBOCkVzqiouopjJjtY16oWQg+X+rZ4i/X5AH9AoOt45AI0clvK2One2LFmZAtDt10ZXpsE2pzXnsFKpStudoZp5rYgI0WeUwCMmyXw5l/d7wB72ojmC94ulp0PS9uI2XcCDYjD8i8Tk3C76T+DOCtSPVag8yjw+cexJ2yaq2PTC7GvIcho8/64J2IFapoF2g5o+OIT99uro+I9s25xtmOn9c041jwGjxCoGAW8+VeLC0qQoQRr27ZtuPDCC7Fjx47ez3Jzc3Hbbbdh9uzZtgXnWR7ahrJyBTpaPRRwImw8gpBWgqbHG5e14BjcvD/E6GK0fu8pi1IuFaNcPNp1qCzGTNHx99dsGk0sDkdWMcZCeEu0BIruDmIm5woksZoGTDwpGIgr73tTtN5Mi1N26ZkCdZPiJ1ilJq96WRWv2OedK5CWDmx60ZFw+nihPdgco9tFYGgv/NOf/hQ+nw/33Xcf3n33Xfz5z39GfX09rr/+epvDI6uMdvDNJ1jfEyR0djfhe2/jx+3UkPbK8MAzWAmJVeUGY22Y0TcTu97xFpVDB11VY5xZDoAB7ylz5BmsGHL73ZOvRBMOCWLKVxROABVIUgAkXGlefAZLBmlt3en1sWkjldbXKNGJeFSKl52hBOvtt9/Gt7/9bUycOBEZGRmoqanBD3/4Q3z++efYtWtX/BmQslQd2nX83OgHIvVTdUxbFH8vkJYBzDtXkQMaFZ5j8QoJ62Rk59o0R2B0iyLtw0ZGz+RGK7JYRTm0xmw0Erl4YFtaYX7huUXC9EmfAc/5JeP2HsHwBpPlK6FcRoyLvExF8id1ebmAZMSuQcntsn9I+aVerqhuCpZzLIYSrN27d6OyMvwNuVVVVRBCYM+ePbYE5jWWm67Lbd7O9ppv8f0Eo1p0lFdH/z6Q3n0AbSD4AaPW2EWFDd/tQS5klYGE9agcE3y4taY5egKVkQWMaEx8WYb1K5/gbY1SZhVVyRAxcMRFk/UUyEiCHbNkmTn2L8PnF64/5yfrKoDZ+YxyYeCAnMLIy+wZsTDayciEyyjVr7TYVdURyqOyzvl25dVqcUSU6tB8kuopSuFXj3WmHbhzo34y8ugxiB1hj5mso2GGjuqxcuc76WQdlXWiL/nyaJn3qBoTXIGkeRGjkdVIYFXN/DQtHZiyUGBQZfxp3ZLoyGxGDKoWA0ZcjDYCY6TyzcgWqK6XF09ZhcSXHEUoPhm3azm18yVgULSRdRWqgokLBAYPF6ifqlBQDul5gXOio7a6IVLvGu0qpdn5WJlGlVtJnRTvNvxoRTLzDIG6STqGjLSn0Jxqz4YXc8kll8DvH7hzvPDCCwd8vnHjxsQjSxVJeHojLRMYMkL+fIsHJ/geJYmxyFh43SSBYbUCOQXAllckLCMJ21KiUmE0TUNCymHwcOM/a5gh90WOeYUSz+klsEH7AgJ6lBEkaycKfPq/7jec+mnJfUQ2tEYgs/udc6Frqmly++qcAoG2g331OeUrOvZ/AXz4dnhbjFbjuYXB24lVJ6uvC13TeecIdB0XeOd5czP3+QR0XYsaV9gLe7Uo/3aAEye57JCeAbS7HYQBVl8/kJ0PVI8Fuo4L7PxHXx3JGqHZ5+s3KJZNDCVYV1xxhd1xJBVvbrIW2PVwqokJB1UJ7PrMuRKXeRZK8wV33soyW6wGpjdUfBaqM9pPUvGsYSit399A9Ntmk6HfMnKQmZYuMOVUgfWPRp5YlaS8ovv5tilf0fHaX1LsZhOJdTBupsCrT/bNsLAMOLR34HQp3lVE5A9YO9tfN1lgy6sDK3HcLB0Hd2vIzpMQnEOGNwh8+Hb0Bhn3cQUb+pOa8QJv/s39jmrmmTrWP5ZA3xRnowtte3WTdeQURJjI/WKIiglWCvD5BfQuTc7LDA1wqr1rWnAUxKfvNbZEo3H1vsDOZCxJR8I6pWdKPFPUr1oqRgns+EiL9JUnRHsGy451CSbzIvIOKhaPFWxPQh0r7JHjhWN9oQyhA2MkUzcT1mfKbGcKtNmk3B+YMKwWOLBLIKdAoP1wX2EMHQkM7X/bl4PPYFlROCj+PJ2u7rQMAxM5EJSZ99tFYqbqraxOQakzV6qiSbHTYqkjtIOftUSgZb6OovII0yWyjAR+6wajG7M/oMAe2kHxDgbyimJ/H0vPA+KmGCz+qvr4E7p5oDNmio5RMQbZSIjJ9dI0YPrpAuPnJt62rRdp+LJT5SC0rCL4d/Fgd+OwIlYdJTJIi2x25WpOSvhqu0Lbk6YBjbMFRja5HUk/BspoaI2FipBU9jPP1DFnWfKPbNtjcIzBzPqzsnlU1kb+PCxpthETLEnCKl+Bji60s87MBsqGRZnOmXAGUKCIwuQaeK9WqqoZn1jZ9DwoLVvowZ9q7QkIvo9KpQOMeAlNWaQBQcwWrF2bkVtXOCQ0rPppAuPn6hg9QcJKONDQjS6ioFT+sjNzgmUUqa0WlABlwwTGTLHnAFSdPsRaO1EnfpPcftSgn/LqGOVv82FCTgGQbuWkpEelZSQ+smP0ZydF+LN+3YY3CMdOdjHBksSznZsdVBm21oSw9814KNeys6h65u0PBEeTk8LIbCSuVCBd3ryc4lZfMtb2QRVcWDMFOuZAGlBeDUQYI8rbopRttOHOTc1a60u2ej/zAS3zRe+LtEOTMBkt1/MnGzXYd8U8AZ6/Uu3iIBxusnT3iYL6t7/8Eue2dCZYCcrKD45sVz7c7UgoIps7xMHDBQrL5G2wSvXfir2fxUopZ2YD2fkeypjh3oGelKFrE6xraQdj3qrypDL1KwkUvlIdYGyNswUC6cKBExPGaDD4bI4VsVZRjdUfyNDY6XIW1XOrm5UTkYH0ficSZAQkYT75JcC4mTpmnBEjaVd4e+15JKZ4MDBkuDtnt5hgJSg9A5h0ski+s5MJiPTg45CRAoWDVO2J+4nRaRSUhG8yTXMEpiRyQOFxwTp1aP0tLiba7bFkQKQyj7VTtakplFUGzzzWT9UHLD/T7EFNxPhTdxvuEfEZoJjPYEX+3FKibqH4Q+MNC8WhqiwZAsw/V0R8ttkU1Q5SU2BT6EmEcg1cbTVSPfVTgfnLMjBmsvlYHNs/WajXoTVyRzq24wXtg6oir1jPLdk+HzB/WZS3hNuMCVaKM9u3B0dliWzWEh3j5+oR781vnCUwZWG0PaJDjHYwMaarHW/xNL9d6+tQOfYM7R1ICy+cKQuFqasOOYXBv9PSU2AvTjFFOtse7UF/fwCYdppAZd3A72YtERgyUiAzRyC/uPtDk9tFMg9db1pKrrQ7qz14uLz3zGXl8bUUoWLtl6adJtA0Rzd255GBZ319fmDI8EDUfsQVZhq0A+2meqyEkxERDK2J/HnUix4ObugefD83yWRmu6qbrMd8SWl2Hjz1fgsrfH7Fjj5s7BhD13T8XIH/fQVomC6w8Qlt4IQG4ygZAjTP01FQArzwcGJlmVMQPHtVNEig63hCs1KKYi1MuumLBPZ9KcKGH0+Ezx88gRMmSQ807XyeJTtXQ9shgYxs4EibfcuRJVJZJJJguNFkxvVvtyb5/ALTTxfQu5J/32vF6BYd/jTg76+FZz4ZWeZeuO6oJN0BVIwydzI2YQqUo0r5Nimuut7jDz4qsMF5VX5J8KxfXnGEL00cI2gaMKgSyMhOPKae96BVj018XipJ0tygV0FpsC9xjYIFPKzW/aBmnpaBitECTbOdj6VniRG7aJP9tupXcXw+eQFmZgM5+Ym9SiNRMotbkzzDEY3oHRTFLaoM8lEyJPh3aUWEApYQY6KjASYjJlg2UGWDsp3i66lp7tyb7ygnhhG0Z/LUk+IFNHi4whtgtLqJ9mJRyXU5qtn9ssnJ96FxZvgztFZWU/r+z+QJHNVVxTu54IF1kMpi07cyXL/dRev+VhxdbpHA3LN0tMx3JsrhDSqXhjN4i2CScmJH4/MBoyfoUq5GJKJ4sEC6O88wypdAvbm9X2Z3GkcKF1BBmUDjLLejkEf1qySOcLvDiSDZ6yUtQ6DzqPMFn1Cxmg03ZPqKUdGX7IVk2k2RyifqHUhxKjgtU6DzyMAZRquCQVXC8Hv/8opEjDkZoPCJYF7BSlJGdzSJNrYR44ChIxOcSYImnSzQNEfentWOfbQTCaBKxxZDa4LRmHqoNc4KJPvBky0UOQgpHSoMjS5n5KBJkVVKDQpdIbe8GIUbjNnQ5p9rSxi2iruO/Sfo7uczcwUaZrjf6cdqP5rmfnxOMPvqhcxs49tdxSigdqJ672+TgVewKGXIHG7UrJGN3uuIzR6YhE4+bqbA2OkiOKqS9FU3OUNVil7lkTMV4UgSrfABd7JSLclRLR6jXIs7ge2ytEJg+4da1OG0o7FlVSXOdP5y3Zb68GrbDGNiHTQfMHgE8MGb9oXjFl7Bcsm4mQI+vzovKUwFPoPvKrPjalMgXf48Vdc7ZK3RztamHQu3sORkORlLkQZRXi1QPVbSyib4XHzc/i/mKBfm9G8XkdoJr4ZHJ7toyiqBGWfo0e8y8WhdBNIivPPN7HsDvU6BdZMVgh1X0Zhg2cjnj95zlA4FFpwnUDzYwYAi8GjfZqto71VQnQJ9XUSqxpWIkU0e2XJ4htUT7ChTnx+omyQwqNLdtjp7qW74XU8yRhFMKR4oG00L3j0i6x1RPSdALb3Q2kXJntR7bf2mn65jVEtfUjW8Qf4yPNZEvWP+cl2tl86RYaw3uQz3u/EmlHiWOxElQ4Tro74xyZFcBklYnj3lU1AmsGubeysYOiphKKciUm1bCbuTIjQ2K12Kxw5qIzJYP9NO0/HlZxqGdD/zPXg4sGeHwBefKFbBySgZ2lmP7uaSVxQ81vvobfsWxUNJmwTSjN+S1qNmvI7pi5xtyeyakkey9IHx2qRbbbbnOboKBd5Z5BQ3368jhdHGYrJKVThoz8yOHbSMM8p2rGfPO7/KjQ7bn0SbW8lQgeFxbtt0u2mNGi+gaQKNswzeMiWxfvwxrnTmlwCjW0TvCVCfH2iaI1BUbm8DSXQbcLs+U5UKfTSvYCmkYjSQHeVsX7KJPTKPc3GQelQ9nqppFqiqT6JXAsRQN1nHkBHOjH5plZu3pJRVCmzbqrn6bq+sPOBIu2uLt3zkWD81eAXYtrZloErc2sc0zxPwxznxaqpF2bAe+SXAghXC0TKadLKOzz/WUDEa+GSzc8slMmJ4g8An75vfIJhgJSnVkxSv3a+bKCfqQ/Eqj8+uFZDU1jTNvoSjtEJgz45gAaSlJ/heEAnsXFcn1DQJvL9Rs230ztKhwWeLMt18B6DLG7zVxUdqW0rsDpQIIjGlFXLm4/TxQ/Hg4PssVad+hNHFqlJHBm+1q00lMNpxz3vB/IHYJZBTYG2fzAQrSaVaAhOV57OOFCD6/R1nMq+K1RSb5wns+iyYZFWPBT5+17GwklLFaKB8uPHBFayI9myRJYr3U45te4qXgxM0WC/v7Lzg89/P3m/v0x/pmQLHIrx4Vgav9/PJyO46cWuzD6QDc5bppkd5zikwNh2fwaLklQI767CzQkmyvqZfTGnoR2rz+YIPbY+bKQYkBZnZAsMbeNhhlqnkKkr7Uf1OgEgyc4JtJSdfxkNYic/CiNzuA5ac/MRjsLzWNq1rw4y+Z5mcKE47TyoAwdv5qupTqD/yYB9gViJXo70uM8fANtN/PQ2uNxMsIoWY7bBCr1TWTRLILxGYeJJab0W3lDBFEmuf7oH9fWFZvw8Mrvecrwq5V0tsNKTGAxWR5KYsFKidpKPahmGH7dI4W2BEo0DDDIvtJ8ZofOlZlsOSomJU37+9unX0xO3zBV8tY+eBtWrH7HbGU1phb4uYtijkWCCBFQnwXjdLmGARJYmsXGDaaQIlQ9yOhCJpmCkwZkrIDk/hoy0rB1CDKgXKJD0D4jiF68KszBxg+FjEHUzBiJjNQOKRZ0ZWcIS4iM/9JVg3mdnhV5GicqENeO4KQE+8Ht1ezI7sPICV9Y5Sx3PP0tEy396CzC82Nl28KDLcfNZUAVY3UyZYpJzyarcj8A7P7aDtEqMcVHkeMS0dqBrjdhT2SctwO4LUktGdjGRkKdLAFSZr8AennHC2jppmhe5EcLCJ2bGoSSfrGDdTR5rJZ20A2HYJyx/g/tsVDpY5L/wphNsaUD9V98ztUGRM3B0mjw/JDDs6Sg92vnWTBXx+8Pk8AzKygOZ5cfYtCo30mp4Z5Xk0sqR4sKQZxalAMyfzkiW5GlQlsOszDWXDBLZ/YHGlEigLlYuRCVaKS88EsvMECvo/H+IWiVuLShtesnSmoVrmO3uGtWffZbYo80uCQ6wGh1pVSIwVaZyt472XeINBqrDSPWRkBQdFoXDRDnIHVTobRyz5JQLth8z9ZtaiDABHbInHtCTcnxmSpJtbItXZNEeg47AwPLKeVT4P7g6ZYKnEhU5L8wEzFzv7UkFKDmXDgn87ts+xmGENrQECaTqKyqVHpIwhIwV2/mNgwcjcrE/8mkK3LAFSGx67vyhUeCG8meUk0iYc6Mh6FjH1VGF6eUrto0XEf6Y8perIhETq0OczOGy5xbJpnqdjx4cahtZY+70UFmNngqUSl3oqr3YKpJhoQ11b/J0smqbmc30yz8gl/PC2Af6QvUXLfB1+m4eDdpLrB4nsgxPiteLTNHgvaIrL1PO+rH9DBlUGB1CKSuFyZIJFZNLYaQKa5vohmXpYJIa0nKhj2981VNbJm6f0fUycGfZcvXSVwjvWZBMIBG+zVVW0rmfSKSauurr8DJYnuk91m4BtEj0B3ftzEeXzCJrn6fAHgDf/GvksnBMn1JKVkxcUPHhXYxJLwc4rlrrJit2S1K1qDFAx2uSPUrhuOchFuLIKYMKJA18oHMZEmZTFOrtnUVaO9FnKl2Ltxg093VblGGDwcIFJJ7vQJydwVaDYi7cFe21fwe1QukGViPm6lZwCoGqMQONsa9tjbpG9lea1JhwPh2mnpFNdn/g8km1DV5qKz2QkqdCzcAWlQtoxzqzFOhpm6CgZKmmGNnByEEHePh0USAs+zC5tNDYbWX4tgyqJguj3dwxOt09bFqdKudvFhkLTNGDMFIEhI6zF4cUBI7yIxUzkIaXDRPj7UTxwAOiBEKlbdj5QMYqJBXWL1Q4MtJHZSx264hVykJ6RFfzb51PnyD23UAAQ0GIccam8ybnyLkGVC0Qi9rVqG5XA++iYYCmEGxqFqps0cMOumyhQ0+RCMHYy2e65mRC5p3GWDk0TGDU+/lF3eqaEBZrc4Ec2ClTWCUw9TZ0Ea/rpAgtWxB6tV51oHRatTJK9QLrX20jympWb7IVhnaYF359qh6JygZEJHG+lbIK1evVqLFq0CIsWLcIzzzzjaiz103RUjRFydkakJCtJQW6h7CjcURzjXnIzXDmL6hXRyobZKEk2ZCSwYIVAfonbkUQWSAfqpwrkFZn8oY3biqaZuC2L26xSTJ34NriPqq4Xpm7Tq4lxMmPqqTqmfMVkgpFkbayyDva+55LDtBu3detWPPXUU1i7di2OHTuGiy66CHPmzEFamjvjDlfWAsl/uobs4IV+ctxMgece0KKfhWPTJ/KUpLzbgv2QYSyqxNRNlleCBaUSZuJAhSZjlxFPSl7B+vjjj9Hc3Iz09HTk5uaioqICb731ltthkR1U2apVicMFaenBl9TOWszdslMGVQXL2guDEpC6CYsScZnoNpSI1yp2j+FcqssBd0qYicPCLaBOtVnZi2mcpeYozypRMsF6/fXXcemll2LWrFmoq6vDc889N2Ca++67D/Pnz0djYyPOPvtsbNq0yfD8R48ejVdffRWtra3Yu3cv3nrrLXzxxRcyV4FUoIE7LUX4A4j5gLcpXj6IMqioOzEqr7bWgMfPFZi/XEdWrsSgiMxKgW3VLkruurSwv6i/CJXm6aQ/hvLqGF+qvM4OxqbkLYLt7e2oq6vD0qVLsXLlygHfP/nkk1i1ahVuuOEGjB8/HmvWrMEll1yCdevWobi4GABw5plnRpz32rVrMXr0aJxzzjlYsWIFiouL0dzcjEBAyaJIefPO1fHcA0qeByCyTWZ28Kqf1RdKahpiv2eLjFH5QIF6KZmMKGbSKXrvCIumOVnArEznWenn2DfGpWRWMXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPxVzGeeedh/POOw8A8H/+z/9BVVWV5Xh9PnktrWdeic4z+FBt4nGFnn2Rup6aFvEhT63f5xkhA3+YXb7Pp4X1AbF+b2Q9E6kbny/y+vaYtUSg63j4vLUIy+lfPv3/b0W02OK1of7faRE+M7V8E21twLIltNNobdItvvQY34W2E02zbTs1I1Z7CbbT+NtPvO0kOLPw6c2Kt82EztPONhE630jrYfSzeBLp2xJtSzLKL1q7CusHwz6PH3OkqwqakbZngeEy7FdPkWJMpE2UDkmgLvu3oTizMtNuBrSRkKtklvvyBNptrG1AC6mUsH6i+99ahErr/c5AfFH7TwPb5ZCRAhlZsefRU879p7CyncbrqyOVY7Tp+3+eaD8XOo8BcZhc10hxG41OyQQrlmPHjuH999/HZZdd1vuZz+fDjBkz8M477xiez759+1BcXIz//d//xe7du9HY2GgpnkDAh5IS+ffhFBXlWPxlGwAgMzMNJSUZCceRkXkUwHEAkLSewfiKirORleMb8HluTgZKSvqfem8zufzu6Ytzum9La4/7+z05nQCOGVqOuboJxlJcnIPM7OibZUnYiFzB3+TnZQE4EjZdYWE2Ckp8vdPk5kYqL3OxFRWFxtbW+63f70NJSXbU3/WWkwj+P5DmR0mJmVOkPcvPRlauD4FABwAdgIaSkoFlHPAHv/dpA7/fmX0MQGfv+pgTjKOgIAslJRYvGTmmr8yADgBAdnY69E4Budup+ZgyMiL1OcHvsrLSUVQUzBgj14+x7QQAfL52ACJG+4wdZ05vH9PX1kMPjILlF/yusDAb+cX2ZFg+XUdPHRYX56CnnwqPo4fZPrDPFyHbhvG+zfrywn+fA3/A6kFysJ59vsj1fLy9C339Y3AZgYCxPmhvbl9/3yOxvjQSc2WY1t3/ad392+FdxwEcDZsmWD/G++hQifQLPX1vT2yh/W2kw01jywrGmJeXiZKSvkPR3no3uH2npfXsN8wuPzyOHnl5mQgt96LCvr429LtIy8jJyUD/OuuZLj39CICuAb/NyIh1jNW3nw9tr5GWPX9JhFULmUdoOQf6lVlBQRaK4+77wsuppDgHPn//uu/p70P3Bd19aVE28goj96VH2gVC+z8rbdXvD7abePPIzw9vbwP1rWda9zHN4d3h26I/YGyf4LkEa//+/ejq6kJpafjQKSUlJfj0008Nz+eyyy7D4cOHkZeXh5tvvtlyPMeP6zh0qMPy7/vz+TQUFeVg//426LqVa+XBBn/kSCf27u2MM218R4/0zXPv3taE59czr/372tF+ZODnrW1HsXfv0Yi/Mb787un3tcHnA8bNANIyY/++rS3+cqzVTXCe+/a1IcNwMwn+5tDhDvTfeR040N7dFccqL3PL2b+/Dekd4Z8BQFeXHqUsIpWThuPHu0y2ke6y2d+OzKPA8eM9n4mI8+n5XoiB33e0h6+PuW0n+LuDBzugJX5OwmY969je++/29mM2bKfmYzp6NFKfE/yuo+MY9u/vjLH9GN9OdD04ffT2GTvOtt5tpq+tCyEQXn7Bfx842I5Om25ZOnywL6Z9+9rQf1vvv30N/MyY9pBtw3jflmhb6vl9G/wWjzJ66lnXI9ez7gt+n1so0H44+G+jfVBba1+MPVpbE+lLIzFXhp39+rfWCDHu3x9+kBuvjw6VSL9wvKt7nt2xhbap9CyBjsOx2m40wd8cPnwEe/f2fdpb7wa3787OvnmZW354HD0OHz4S9tn+A319beh3ocvo2X7a2ga2n57pjh1DxN8ePRr589DY2lrD+ysr6xdazsf7ldnBgx0QcbfTfmXcfXwVaZrw48/uvnR/O451RZ7z0Y7w+Vtpq109bbTfPHrqpsehQ0eQsRcx9M2js7Mr4rbYdVxHWnr8k7GeS7CiEUJEvDwbzR//+Edpy7aWCMWfZyIJlhBy4hKir0zlrGdwfroQ3R1p+OdiwOchvzGZ1PRMP3QUuv8f/RfBkYOMLcdc3cRar9i/CT3Q6YtT9O6AAEDoZuYbfTl98wg96IxWFv3LyWqb67cOcdqaQPTv9X71ZyWOgW1SRd23PQT62oYQwobt1HxMkeu/+/YYX1/ZRq6fSG0xCsvr2n9bjLy/CN3uDMVjUWgMuhi4rYevm9k+sI+1vs368oL61ktLsH8SUeIIpAMnnC0QSAeevd9cmxAh8+/9THpdmyzDfu06tE8L/Tx2OwlfdvzpDOq/zYXENrJJ4P31RmKKHOOAflfErvdo8zG//Mi/71/GYsD2EL1eY23H0fvoWG03cv+Q0H623zJ75he/7Rtvd+H7gvj71/79cSLHvvHmEf9YbOB8RL9t0Wh0nkuwioqK4Pf7sWfPnrDP9+3bN+CqFlGycfJlu1bPPJN95p6lo/OodwawmHiSjm1bNVTWyZ83n4VXn/FTnjHEqOj0zOjfWZ0nmWNXXySl7cigTCAJirEe2flSZ0fdFHqk25j09HQ0NDRgw4YNvZ/puo6NGzeiubnZvcCSVEb3LdCaj3skp7nZgWXnCTTOUqzOw0+IhUmVzj4jC8gtdDsK40qGAM0nCLkHYQ5WtlOLSpX2azsWpCMU2zN4QtmwYKkNHq5O6WmawIlf0z1zws5xCfYnSp6jbmtrw2effdb7/+3bt2PLli0oLS1FWVkZLrroInz3u99FQ0MDmpqasGbNGhw5cgRLlixxMerkNLwhOLpdxSh1OgUvsvIOqIgX4Ptv8DYdUEw6WSDT6jgrFgW6n3+yfFaayCoemKvLjrrxQn2n+C432Va/YjSQV6wjr8j8b21rrloCd6qotg3ZEM/YqcFWWFoBZOUNfNYwHiUTrM2bN+OCCy7o/f+NN94IALjiiiuwcuVKnHrqqdi3bx/uuOMO7N69G/X19Vi9enXvO7BInkAaUDfJhq4u2XrPOFTri1Q0dqrAVn/wnv5YWJYkW7K+DDRlJLA/CaQJHO/UkFMgL5xkk2K7a1toGlDAp1giktH/Gp6FwQlLK0RvnxBIA2YvEXj63iRIsKZOnYqtW7fGnGbFihVYsWKFQxERJchKB5Jie7XMHGD83OgrPXi4wEfvaBhS42BQlBJ8PmD8XB3pVl/ESkqw0s3OXCzQdlAoc/CrZK7f7/ZsJ2JUshzIFk4+W+5ku1IywSKSQaUOWtYZcic7ItWMGAeUDNWRxwvVZIPy6ggfqtSJkDShL7DPyAr+UV1apBePu9Q+pe6GvLRPixerwuuS7F1ZUTlweL/bUYTz3CAXRF5kKcFys0c0tWxnAtV8wVsszL5xnpKUwgcz5CyzTaGsEhg9Qcf009V5L0O8dRhcHeG9Ow5vA5F6ei8NuhPJnGWx20BS3j6chOs0eoJA4yx1tmeACRaRM7zWoVnYcSfljoiIXNHzLObIRvlZhKYFr4hbGXDALWbe8ylbrBrIyQemn65jylcsHty6vN9wejCnZGG2OdrdfP0BYMhIe5dhFm8RJHKApc7FY2foU/n2xVSWVyxweJ+G/FI2AJJn2Ghg8PDUGULa0vGn08lJlOXlFQGtBxyNxD6p1I0psq7JenKWCRY5yucX0Ls0BCLdT57EPNeBeC1ecs3EBQL7vxQYVOl2JLFpPgGha8jKczsSMipVkiu7ZGQJHO2Q0JkrciDuNteOW7g/lidOWeYUCLQd1Cy9fLk/JljkqBPOFug6Lqy/e8EMdkqOcjWJZF27Jj0zygARipm1OJgIlg1zOxKSLsZLyL1CZg7TM/R8WSWw/QOJM5Yov0Tg0F4N+R4atKioHBgxTqB4iLMZZyo9dzx+rrvPUU1cIPD5xwJV9YnPiwkWOSqQxrOSMsk+niivFjiwy4Mv+03xM6y8PTO+rNzgHxV57go32UdCW5i9VKCjVWD/l5JmaIMpXxE4fkx4al+jacHBFJzSPE/Hl58GE+Ue5dWJL1+1FhG6/3L7ZF1mDjCySc68mGARUa/xcwWEMHfAl1so0HpAs3zwqqXQ2TlbMLnyPM0HzFysIxAAXnhY7gYxrBb48jOB6no2lFSRlhH8E0ywJIqxXzB7ksfn88aJPDdPfgyqBAZVhhfs0FEWt2PVsqoUwASLCMFL/wBQWCb3IGTqqTr0LqmzDGdDp2l2hzLhRIFtW4HhDebKrnmejvbDknay3HmkjGSt6hwJ9/xHkpYOTDvVpeTK4crydNsQMf8bkVPr25M89SwvtyD4d1oGk3anebqNpxgmWEQIjoI0e6mOjGy58y0olTOf6nqBvTsx8MFLBfZvmTnWbptQfVAEIiIaqKwSaJqro7DM7UiC+9j9XwLFgwX2fZF4+pHIQBahe8Gpp+rosvPkahJx8iqhk8tigkXUTdXnMwCgbrICmZTCVK472/GUpm1UeTZqwom6MrGQTTxUv5oGDFZkYJuaZoHcQoHSCuD5BxMsRE303s2SKFknV8m7mGAReZmHdsp2Kq8Gxk4TGNWQjWNd7W6HQyRVaYXbEagtKU8/JeVKyef3A0NrAF3C4HOjxouBJzJM7GOz+NJiCsEEiyjF+fxuR5A4TQOqxgB5hT7s3et2NA7jgRiR96m8HXtgGHwVQiseDIybqaNAgVsnyX1MsIgUlZ0HlFYIFA6yZ887eaGOo+0cNj8tQ6DzqPVREMkdKh+PEiVMhYyhHydC8vp2PbTG7QiM83pZq44JFpGqtOAIfXYpGmTbrD1l9lKBzqMCGVluR0KG2HCUxwONcGOn694sFAWTEssUKn+FQiEZbN5O+LxoEN9AQ0rJ8MB7MSi5BNJSfJAMon6GjQ6+P4vIaTw2j0NGAVnImJvmSHjILcXwChYpYfoiHXs+R9gbyxPFsyiUEtjOKdXxEgvZ1A8mS/ea6PFQyRDj05p96XSy4hUsUkJeMTBiHJOiUMkw+AQ5IMV2Zg0zBHx+gYbpKbbiRG5xcJAL5bZqxY5JpISj2DolK17BIlLMhAU62g4CmZJfekyUDEqGACd+LcJwypTC2BhcJzszcrBKfX4BvUtDVp5zy1SCTdms0n0zXzRMlLpKhwb/GKJyR0ZkE6V34OSapGgXCq+DwqElZOaZAnt3Cgwe7nYk0WXnCbQf1pBT6HYkZBQTLCIiogiS4oCdKEFO3raXnQsc63D2pb1ZucGBXVQ24wyBY0eF6TtbisoF9n+pIb/EnrgoOiZYlHQaZ+k4dtTtKJLXiHHK3SWf2pgEJI5N2hZsmhaYaYtOF7ADy2uaI/DJ+9zP9OfzW3tsYNLJAsc7BdLS5cfkRU5uMkywKOkMGel2BMlt9ATu+JTC6iBSTsv8xIa1VmqzNhCMrHgzc4AxU8zPjVebI9M0SEmuEh0ZMBXrhwkWERGlthTc+ZO9yoZZ/CHbIjlGg2KpfFLhMO1ERB7H944kiOVHFF8KJn/JeOUl0XWafy5fOmwEEywiD0vCvp9SUF5xMMNJy3A5EPKk3KJg+8lOtWG2ncITEEkl0RNyAT7PZQhvESQiIldNO01A6AI+nvIjCybMF9j+IVA91vuZgJmTZk6dYDP0nmHvFz2lAr4Hi4iIUoWmAZrfveWXDInyhQuXiOcv15PntiSH1iMzBxjVzCN8IiOSpn9RHBMsIiJKWcMbBEY2qXNwHkhzOwJykxjwDyKSxcnckjdkEHkYD8aIEjNkhOB2RErLzlMk20qRKx+BdEXKmzyNV7CIPGjSyTp2b9dQVul2JEREJEukHGbWEsfDCJdi+caMMwRefDhYE34eJXvKvHPUGeGQTYfIg4oHA8WDU2yvRyRRbqFA6wENWbluR5LEBFLmqoedVBn8JVWqMjMbWHCeDl0HNEXKnoyJOxItB7kgIiKyz/RFAl3HBYccJiUYHTq7+QQd7zzv7FF/Kp7K8/mDf3R1LoiQxzA3JyKilKP5+D4X26XKJQ8HDaoCAmnOpjzagH8QpS6jozDyChYREVEEPJ60Zs5XdXQd53DQyaJ5nsDmDUDjzFS8lkVkDRMsIiIikiYz2+0IklvZMGDnP4HiaO9vk6ygFJh5RuzkyugtjnYKpAtksO3ZQoX69RomWEREREQqiXFAWz9NYFC1QFmFc+F4wbyzBS87G5CdB+z/EsgpYNZkJyZYREQelpYJ4JDbUSQpHqyRggJpQHmV21GohyP+GVM7SSA9ExhWywTLTmyOREQeNO00HdVjBSpq3I6EiIi8Ii0dGD1BOPuKihQ8WcUrWKS8eefqqbhtEsWUXwLkl/AMJBFF5uMRXsJ47GGeyoPbOBkbNz9SXhqHUiYiIjJlaA2w/wuBoTU8EUPO4YAYQUywiIi8jjs0IurH7wea5rBzIHIDn8EiIiIiUgjTotSg8u10oXwmsgWvrJPdeAWLiIiISAU8OFWLzfXhldvp0jKAmvE6svPdjsQ7mGARERERKcTMFQMiJ9SMdzsCb2GCRUREROSmflcyBg8Hvvi0Z4AKXtYi8homWEREREQK6EmlfH5gwnyP3D9G5BEcpp2IiAzjYRhRcvDqtuyVZ4lUwwEhnDFmssCez4G8IueWyQSLiIiIyE080CayzfAGoKre2bMAfIySiIiIyE0evwKUlRv8O5Du8RVxGK/8JS9ewSIiIiJSgFcvZGVkAbOW6EjPdDsSIjUwwSIiIiKihGTnuR2B9/AZrOTFBIuIiIiIKILcIoHsXLejIK9hgkVEROSwrJzuv3P5EAaRqjQNmL5I8EoTmcYEi4jI63iM7jmBdGDeOTr8aW5HQkSxMLlKXCoWIUcRJCIickFaBuDjXpgoZRWUirC/U1GynmTiFSwiIiIiIodVjALSs3QUlbsdiXv8fmDmmToCSZZoMcEiIiIiInKY5gMGVbodhWQW7gfMKZAfhtt4cwIREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiKyRwqO084Ei4iIiMhFqTtIN1FyYoJFREREpIIUPNNPlIyYYBEREREREUnCBIuIiIiIiEgSJlhERERELqppCj6FVTuRT2MRJYOA2wEQERERpbLyamDBeTp8frcjISIZeAWLiIgoAo0DDpCDmFwRJQ8mWERERBEI3q1FREQWMMEiIiIiIiKShAkWEZHH8UoLERGROphgERERRcBnsIiIyAomWERERBHwyiAREVnBBIuIiIiIiBLGC/9BTLCIiDxuyIjgpZZhtbzkIhNvESQiIiv4omEiIo8bVAXMWaYjI9vtSIiIiIhXsIiIkkBmDq+4EBGRO/JLg3dQFA7inRQAr2AREREREVECJp0k0HpAoKDU7UjUwASLiIiIiIgsC6QBhWVuR6EO3iJIREQUAYdpJyIiK5hgERERERERScIEi4iIKAIOGkJERFYwwSIiIiIiIpKECRYREVEEvIJFRERWcBRBIiKiEI2zdbQfAtIy3I6EiMj7UvFkFRMsIiKiEENGuB0BERF5GW8RJCIiIiIikoQJFhERERER2cLndzsC5/EWQSIiIiIikmrWEh2dR4FAmtuROI8JFhERERERSZWdByDP7SjcwVsEiYiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYCWZonIR9jcRERERETmHg1wkmZb5Aof3CRQOcjsSIiIiIqLUwwQryQTSgKJyt6MgIiIiIkpNvEWQiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJkvQJ1re+9S1MnjwZ//qv/2rocyIiIiIiIquSPsE677zzcMsttxj+nIiIiIiIyKqkT7CmTp2KnJwcw58TERERERFZ5WqC9frrr+PSSy/FrFmzUFdXh+eee27ANPfddx/mz5+PxsZGnH322di0aZMLkRIREREREcUXcHPh7e3tqKurw9KlS7Fy5coB3z/55JNYtWoVbrjhBowfPx5r1qzBJZdcgnXr1qG4uBgAcOaZZ0ac99q1a+H3+22Nv4fPp0mfl8x5khysG7WxftTG+lEX60ZtrB+1sX7UZUfdaAZn5WqCNXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPORJrNIGADyUludLnW1TE2xdVxbpRG+tHbawfdbFu1Mb6URvrR11y6qYNAOD3G7v5z9UEK5Zjx47h/fffx2WXXdb7mc/nw4wZM/DOO++4F1g/x4/rOHSoQ9r8fD4NRUU52L+/DboupM2XEse6URvrR22sH3WxbtTG+lEb60ddcusmeOmqq0tHIC3+HXLKJlj79+9HV1cXSktLwz4vKSnBp59+ang+3/jGN7Bp0yZ0dHRgzpw5uOuuuzBmzJion1thxwal64IbqqJYN2pj/aiN9aMu1o3aWD9qY/2oS07dBBMsYXA2yiZY0QghoBm9ARLAXXfdZepzIiIiIiIiq5Qdpr2oqAh+vx979uwJ+3zfvn0DrmoRERERERGpQNkEKz09HQ0NDdiwYUPvZ7quY+PGjWhubnYvMCIiIiIioihcvUWwra0Nn332We//t2/fji1btqC0tBRlZWW46KKL8N3vfhcNDQ1oamrCmjVrcOTIESxZssTFqImIiIiIiCJzNcHavHkzLrjggt7/33jjjQCAK664AitXrsSpp56Kffv24Y477sDu3btRX1+P1atX974Di4iIiIiISCWuJlhTp07F1q1bY06zYsUKrFixwqGIiIiIiIiIrFP2GSwiIiIiIiKvYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREVEcmmZsOiZYREREREREkjDBIiIiIiIikoQJFhERERERURxCGJuOCRYREREREZEkTLCIiIiIiIji4CAXREREREREDmOCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJAm4HQAREREREZGqGqbrOLhHg89vbHomWERERERERFFUjAYqRgvD0/MWQSIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJJoQQrgdhJfpukBXly51nmlpfnR2dkmdJ8nBulEb60dtrB91sW7UxvpRG+tHXbLrxu/3wefT4k7HBIuIiIiIiEgS3iJIREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwVLEF198ge985zuYMmUKmpubsXTpUnz88cduh0UA5s+fj7q6ugF/brjhBrdDo26tra24/vrrMXv2bIwfPx6LFi3Co48+6nZYhGDd/PCHP8TcuXMxfvx4XHDBBfjoo4/cDislvf7667j00ksxa9Ys1NXV4bnnngv7/ujRo7jhhhswdepUtLS0YOXKldi7d69L0aaeePXzxz/+Eeeffz4mTJiAuro6tLW1uRRpaopVPwcOHMCPfvQjnHLKKWhqasK8efPw4x//GK2trS5GnDribTs33HADTjrpJDQ1NWHatGm47LLLbD/GZoKlgIMHD+JrX/sa0tPTsXr1ajz++OO48sorkZOT43ZoBODhhx/Gyy+/3PvnnnvuAQAsXLjQ5ciox6pVq7Bx40b87Gc/wxNPPIHly5fj6quvxmuvveZ2aCnv2muvxeuvv45bb70Vjz76KGpqanDRRRfxwMMF7e3tqKurw/e///2I399000147rnn8POf/xy/+93vsGvXLnzrW99yOMrUFa9+Ojo6MHv2bFx66aUOR0ZA7PrZtWsXdu3ahauuugpPPPEEbrrpJrz44ov493//dxciTT3xtp2xY8fipptuwpNPPom7774bmqbhkksuga7r9gUlyHU//elPxfLly90Ogwy68cYbxYIFC4Su626HQt1OO+008V//9V9hn5188sli9erVLkVEQgjR0dEh6uvrxYsvvtj7WVdXl5g+fbq4//77XYyMamtrxbPPPtv7/0OHDomGhgaxbt263s8++ugjUVtbKzZt2uRGiCmtf/2EeuWVV0Rtba1obW11OCrqEat+ejz55JOisbFRdHV1ORQVCWGsbrZs2SJqa2vF9u3bbYuDV7AU8Oyzz2LcuHFYuXIlpk+fjqVLl+Kxxx5zOyyK4NixY/jTn/6EZcuWQdM0t8Ohbi0tLXjmmWfw5ZdfQgiBl156Cbt27cKMGTPcDi2lHT9+HF1dXcjIyOj9zOfzIS0tDW+//baLkVF/mzdvRmdnJ2bOnNn7WU1NDYYOHYp33nnHvcCIPKq1tRV5eXnw+XiorZL29nasXbsWVVVVKC8vt205rHUFbNu2DX/4wx9QU1ODu+++G8uWLcO1116LZ555xu3QqJ+//e1vOHz4MJYsWeJ2KBTiuuuuQ1VVFebMmYNx48bhiiuuwKpVq1BfX+92aCktNzcX48ePxy9+8Qvs3r0bnZ2duPvuu/HFF19gz549bodHIfbs2YPMzEzk5uaGfV5SUsK6IjJp//79+M///E+ce+65bodC3e677z60tLSgpaUFL730Eu6++24EAgHblmffnMkwIQQaGxvx7W9/GwBQX1+PzZs34/7778eJJ57obnAU5n/+538wZ84cW896kHm///3vsWXLFtx1110oLy/Hxo0bcc0112Dw4MFobm52O7yU9tOf/hRXXXUVZs2aBb/fj2nTpmHOnDkQQrgdGvUT6ao864nInNbWVnzzm9/E6NGjcdlll7kdDnU744wzMHPmTOzevRv//d//jW9/+9u4//77kZ6ebsvymGApoLS0FCNHjgz7rKamBps2bXIpIopkx44d2LBhA+688063Q6EQR44cwW233YZf/epXmD17NgBgzJgx2LRpE9asWcMEy2XV1dV44IEH0NraiqNHj6KkpARnn302xo4d63ZoFKK0tBQdHR1obW0Nu4q1b98+lJaWuhgZkXe0trbikksuQXZ2Nu68805br5CQOXl5ecjLy8Pw4cMxfvx4TJkyBc888wy+8pWv2LI83iKogJaWFnz66adhn33yyScYMmSISxFRJGvXrkVJSQlOOOEEt0OhEMePH0dnZyf8fn/Y5z6fz94RgsiU3NxclJSUYNu2bdi8eTPmz5/vdkgUYty4cUhLS8OGDRt6P/vnP/+Jzz//nCcpiAxobW3FxRdfjLS0NPzqV78Ke/aU1COEwLFjx2ybP1NrBVx44YVYvnw57rrrLpxyyil466238Nhjj+H22293OzTqpus61q5di8WLF/OMlGJyc3MxZcoU3HLLLbjuuuswePBgbNiwAevWrcOqVavcDi/lvfjii/D5fKiursZHH32EH//4x5g7dy7mzJnjdmgpp62tDZ999lnv/7dv344tW7agtLQUZWVlWLZsGVatWoX8/Hzk5ubixhtvxKRJk9DY2Ohi1KkjXv3s3r0be/bs6Z3mgw8+QGZmJqqqqvhaFwfEqp+srCx8/etfR0dHB37605+itbW191UUxcXFA04Aklyx6ubYsWN4/PHHMXPmTJSUlGDXrl246667kJmZ2XvXix00wRuslfC3v/0NP//5z/Hpp5+iqqoK//Iv/4LFixe7HRZ1e/nll3HxxRdj3bp1GDFihNvhUD+7d+/GrbfeivXr1+PQoUOoqKjAeeedh/POO8/t0FLeE088gZ/97GfYtWsXiouLccYZZ2DlypU8u+uCV199FRdccMGAz6+44gqsXLkSR48exc0334w///nPOHbsGGbPno0f/OAHvEXQIfHq584778QvfvGLAd/fe++9mDp1qhMhprRY9TNlypSI3wHAM888g2HDhtkdXkqLVTfnnnsurr32WmzevBmHDh1CSUkJJk2ahMsvv3zA4zkyMcEiIiIiIiKShM9gERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkScDtAIiIyHuivfR0+vTp+O1vf+t8QEnk2LFjuO222/Duu+9i8+bNOHr0KLZu3Rp1+uuvvx4HDhzAz3/+c5x//vl47bXXAACBQAD5+fmora3FySefjLPOOgvp6elOrQYRUcpigkVERJbk5eVh9erVAz6jxBw5cgQPP/wwmpqa0NLSgldeeSXm9C+++CK+9a1v9f5/6tSp+L//9/9C13Xs27cPr732Gv7jP/4DDz/8MNasWYP8/Hy7V4GIKKUxwSIiIkv8fj+am5sNTXvkyBFkZmbaG1CSyM/Px2uvvQZN0/D73/8+ZoL1wQcfYOfOnZg9e3bvZ4WFhWH1smDBAixduhTLly/HqlWrsGrVKjvDJyJKeXwGi4iIpNq+fTvq6urwpz/9Cd/97ncxadIkXHrppQCAAwcO4Pvf/z5mzJiBxsZGnHvuuXj33XfDfn/o0CF85zvfQXNzM2bNmoVf/epXuOWWWzB//vzeae68805MnTp1wLLr6urw+9//Puyzhx56CKeddhrGjRuHefPm4Te/+U3Y99/73vewdOlSrF+/Hqeffjqam5uxfPlyfPjhh2HTdXV14de//jVOOeUUjBs3DnPmzMH3vvc9AMB9992HlpYWtLW1hf3mlVdeQV1dHf7+97+bKkNN0wxN9/zzz6OxsRElJSUxpxszZgzOO+88PP7442htbQUA7Nq1C1dffTVOPPFENDU14ZRTTsFtt92GY8eO9f5u2bJluPrqqwfM76qrrsKSJUtMrBERUepggkVERJYdP3487I8Qove7n/zkJ8jJycHtt9+Ob37zmzh27BguuugirF+/Ht/97nfxy1/+EkVFRbjwwguxe/fu3t9dffXVePHFF3HNNdfghz/8IdavX48///nPluJbvXo1rr/+eixYsAC//vWvsXz5ctx+++0DkrCdO3fiJz/5CS677DLceuut2LdvH7797W+Hrc/3v/993HnnnVi4cCF+/etf43vf+x7a29sBAKeffjq6urrw1FNPhc33kUceQUNDA8aMGWMp/nheeOEFzJ0719C0M2fORGdnJ95//30AwP79+1FYWIirr74aq1evxsUXX4y1a9fixhtv7P3NWWedhXXr1oUljm1tbXj66aexdOlSuStDRJQkeIsgERFZcuDAATQ0NIR9ds8996CqqgoAMH78ePzgBz/o/e6hhx7Chx9+iCeeeALDhw8HAMyYMQMLFy7E3Xffjauuugoffvgh/va3v+G2227DqaeeCiD4TNG8efOQm5trKr7W1lb88pe/xGWXXYYrrrgCQDDJ6OjowK9+9SssX74cfr8fAHDw4EHcf//9vXEJIXD55ZfjH//4B2pqavDxxx/j4YcfxrXXXosLLrigdxk9Mebn5+Pkk0/G2rVrexOPnkTkO9/5jqm4jTp48CDefvttXHPNNYamLy8vBwDs3bsXQPBq31VXXdX7/YQJE5CVlYVrrrkG1113HdLT07Fo0SLcfPPNWLduHZYtWwYA+Mtf/oLOzk4sWrRI8hoRESUHJlhERGRJXl4e7rnnnrDPRowYgQMHDgAATjjhhLDvNm7ciIaGBgwbNgzHjx/v/Xzy5MnYvHkzAOC9994DgLDbAXNycjBjxgxs2rTJVHxvv/022tvbsXDhwrDlTZs2Df/5n/+JL774AhUVFQCAioqK3uQKAGpqagAAX375JWpqavDqq68CQMyrNl/96ldx4YUXYtu2baisrMRf/vIXHD9+3LZE5OWXX0ZxcTHGjh1raPrQq3E9/1+zZg0efPBBbN++HUePHu39bufOnaiurkZubi5OOeUUPPLII70J1iOPPIL58+ejqKhI3soQESURJlhERGSJ3+9HY2PjgM97Eqz+zwXt378f77zzzoCrXgB6r3rt2bMHOTk5AwbEiPeMUST79+8HAJx22mkRv9+5c2dvgtV/9MO0tDQA6E06Dhw4gOzs7JhX0aZOnYrKykqsXbsWV155JdauXYsTTzwRhYWFpmM34vnnn8fcuXMNP6+1a9cuAH1luWbNGtxyyy34xje+gcmTJyM/Px/vvfcefvjDH4YlW1/96ldx/vnn47PPPgMAvPHGG7jrrrskrw0RUfJggkVERLbof+BfUFCAcePG4frrrx8wbc/7mUpLS9HW1jZg1MGe29p6ZGRkoLOzM+yzgwcPDlgeAPz617+OmKCNGDHC8LoUFhaivb0dra2tUZMsTdOwbNkyPPjggzjzzDPx5ptvDhhQQxZd1/HSSy/hRz/6keHfvPzyy0hLS+tNcNetW4eFCxfiX//1X3un+fjjjwf8bvLkyaiursYjjzwCIQQGDRqEWbNmJb4SRERJigkWERE5Yvr06Vi/fj2GDh0a9YpUzxWxZ599tvf5pra2NmzYsCEssSkvL0dbWxu+/PLL3meL1q9fHzavlpYWZGZmYteuXQNuVzRr2rRpAIBHH30UK1asiDrdkiVLcMcdd+Caa65BeXk5Zs6cmdByo3n33XfR2tqK6dOnG5r+73//O/7whz/g9NNP7y3HI0eODHjx8OOPPx7x98uWLcP9998PAFi8eHHvs2tERDQQEywiInLE4sWL8cADD+D888/H17/+dVRWVuLAgQPYtGkTysrKcOGFF2L06NGYP38+rr/+erS2tqKsrAz//d//PeCWwdmzZyMzMxPXXHMNLrroImzfvh0PPPBA2DT5+fm44oor8OMf/xg7duzA5MmToes6PvnkE7z66qv45S9/aTj2kSNH4pxzzsHNN9+MvXv3YvLkyTh06BCeeuop3Hbbbb3TlZeXY/bs2Xj++efxzW9+c0Aicuedd+IXv/gFtm7dGnN5L7zwAjo6OrBlyxYAwatNQDABraiowPPPP4/JkydHvJp24MABvPPOO9B1HQcOHMCrr76KBx98EMOHDw8bcn3GjBn43e9+h6amJlRVVeHxxx/Hp59+GjGeJUuW4Pbbb8fx48c5PDsRURxMsIiIyBEZGRm49957cfvtt+POO+/E3r17UVxcjKamprBBLW6++WZcf/31uOmmm5CdnY2vfe1raGxsDBsCvbi4GHfccQd+8pOf4PLLL0dDQwNuvfXW3qtePf7lX/4FgwYNwpo1a3DPPfcgIyMDw4cPHzCdET/4wQ8wdOhQPPTQQ/jNb36D4uLiiFeoFixYgOeffz7igBgdHR0oLi6Ou6wbbrgBO3bs6P3/lVdeCQBYtWoVli5dihdeeAGLFy+O+NtXX30V55xzDgKBAPLy8lBbW4t/+7d/w1lnnRV2xeryyy/H/v37cfvttwMATjrpJFx33XW97ywLVVZWhqamJgDBZJOIiKLTRP9hhYiIiBRzyy234KmnnsKzzz7rdihxXXnlldi9ezf+8Ic/DPhuxYoVmDZtWu+w8VZ8+eWXmDNnDp566qmwkQ/tdODAAcyZMwf//u//jrPOOsuRZRIReRWvYBEREUmwdetWbN68GX/961/xs5/9bMD3x48fx4cffog77rgjoeWUl5fHvcVQltbWVnz88ce49957kZOTw3dfEREZwASLiIhIgssuuwz79+/H1772NSxcuHDA94FAoPd9Wl7x/vvv44ILLkBFRQVuueUWZGVluR0SEZHyeIsgERERERGRJD63AyAiIiIiIkoWTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJL8f7OHFRknddK3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 18])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, Hz\")\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_xlim([5.8, 13.2])\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlim([5.8, 13.2])\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "13ba292c", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Springford, Aaron, Gwendolyn M. Eadie, and David J. Thomson. 2020. “Improving the Lomb–Scargle \n", + "Periodogram with the Thomson Multitaper.” The Astronomical Journal (American Astronomical \n", + "Society) 159: 205. doi:10.3847/1538-3881/ab7fa1.\n", + "\n", + "[2] Huppenkothen, Daniela, Matteo Bachetti, Abigail L. Stevens, Simone Migliari, Paul Balm, Omar Hammad, \n", + "Usman Mahmood Khan, et al. 2019. “Stingray: A Modern Python Library for Spectral Timing.” The \n", + "Astrophysical Journal (American Astronomical Society) 881: 39. doi:10.3847/1538-4357/ab258d.\n", + "\n", + "[3] Thomson, D. J. 1982. “Spectrum Estimation and Harmonic Analysis.” IEEE Proceedings 70: 1055-1096. \n", + "https://ui.adsabs.harvard.edu/abs/1982IEEEP..70.1055T.\n", + "\n", + "[4] Thomson, D. J. 1990 “Time series analysis of Holocene climate data.” Philosophical Transactions of the Royal Society of \n", + "London. Series A, Mathematical and Physical Sciences (The Royal Society) 330: 601–616. \n", + "doi:10.1098/rsta.1990.0041.\n", + "\n", + "[5] Lomb, N. R. 1976. “Least-squares frequency analysis of unequally spaced data.” Astrophysics and Space \n", + "Science (Springer Science and Business Media LLC) 39: 447–462. doi:10.1007/bf00648343.\n", + "\n", + "[6] Scargle, J. D. 1982. “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of \n", + "unevenly spaced data.” The Astrophysical Journal (American Astronomical Society) 263: 835. \n", + "doi:10.1086/160554.\n", + "\n", + "[7] Slepian, D. 1978. “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete \n", + "Case.” Bell System Technical Journal (Institute of Electrical and Electronics Engineers (IEEE)) 57: \n", + "1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x.\n", + "\n", + "[8] D. J. Thomson, \"Jackknifing Multitaper Spectrum Estimates,\" in IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 20-30, July 2007, doi: 10.1109/MSP.2007.4286561." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8d79e398", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Performance/Dealing with large data files.ipynb.txt b/_sources/notebooks/Performance/Dealing with large data files.ipynb.txt new file mode 100644 index 000000000..1010d934c --- /dev/null +++ b/_sources/notebooks/Performance/Dealing with large data files.ipynb.txt @@ -0,0 +1,567 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "24df35e1-e5c9-40a8-89ab-73c782e070b3", + "metadata": {}, + "source": [ + "In this tutorial, we approach the case of a very large event file, larger than the memory of our computer. Will we be able to analyze it?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8957430d-d905-40a2-87cc-dcbdbaec91d7", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%load_ext memory_profiler\n", + "import psutil\n", + "import os\n", + "import numpy as np\n", + "import gc\n", + "\n", + "from stingray import EventList, AveragedPowerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "73c7f674-c04e-44c9-bf02-54713675352b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 91.16 MB\n" + ] + } + ], + "source": [ + "pid = os.getpid()\n", + "python_process = psutil.Process(pid)\n", + "memory_use = python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "ac2a89f2-c520-4c32-9f28-9da5a0029b46", + "metadata": {}, + "source": [ + "## Data preparation\n", + "\n", + "Now we simulate and load a full dataset. Let's simulate a large observation, about 2GB. We use HENDRICS, you can install it with `pip install hendrics`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ed97efbf-1310-4651-bf46-6830d92fb6f8", + "metadata": {}, + "outputs": [], + "source": [ + "fname = \"events_large.evt\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c2221d2a-a3fa-4119-860e-e090affc17b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/meo/devel/StingraySoftware/hendrics/hendrics/io.py:38: UserWarning: Warning! NetCDF is not available. Using pickle format.\n", + " warnings.warn(msg)\n", + "/Users/meo/devel/StingraySoftware/hendrics/hendrics/fold.py:38: UserWarning: PINT is not installed. Some pulsar functionality will not be available\n", + " warnings.warn(\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!HENfake -c 20000 --tstart 0 --tstop 10000 --mjdref 56000 -o events_large.evt" + ] + }, + { + "cell_type": "markdown", + "id": "b7d9d777-09ad-4a7c-a479-a50548bedc90", + "metadata": {}, + "source": [ + "## Naive procedure: create light curve, then calculate PDS\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c0b076b3-33f2-4ff2-86e1-f33c796d4e17", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 5645.70 MiB, increment: 5347.78 MiB\n" + ] + } + ], + "source": [ + "%memit events = EventList.read(fname, fmt=\"ogip\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "0c7520ca-69f2-4445-83df-4a888c10082e", + "metadata": {}, + "source": [ + "Loading the observation into memory takes about 5 GB. Now, we want a power spectrum with very high frequencies. Let us do the traditional way, creating first a light curve, then analyzing it with AveragedPowerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "40c1a77b-2ac5-4bb9-8f8c-1204eecbd5fb", + "metadata": {}, + "outputs": [], + "source": [ + "fine_sample_time = 0.00001\n", + "segment_size = 128\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5dde9f16-9fd6-4618-9ef4-8f5013e01f1a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 15315.70 MiB, increment: 9670.00 MiB\n" + ] + } + ], + "source": [ + "%memit lc = events.to_lc(dt=fine_sample_time)" + ] + }, + { + "cell_type": "markdown", + "id": "42b15eee-88b1-43bb-bdef-4ca7b7946887", + "metadata": {}, + "source": [ + "This very finely sampled light curve will take a _lot_ of memory: 10000 s, sampled at 10 $\\mu$s, will give ~1B float objects, or 8 GB, for the time array and the same for the counts array. Here, the value that comes out is slightly smaller because the operating system is using swap! Some of the swapped data will come back in the main memory when calculating the power spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b009941b-a1a3-455b-9b64-4c5021affdd7", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:28, 2.69it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 14324.80 MiB, increment: 2063.22 MiB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,\n", + " 1.10340774e-04, 1.07141777e-04, 9.10072280e-05])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%memit ps = AveragedPowerspectrum.from_lightcurve(lc, segment_size=segment_size)\n", + "ps.power" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f19ebe91-bdad-41c6-a9c6-ca1bc2cc02e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "del events, lc, ps.power, ps\n", + "gc.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "920771d2-0a75-41b4-8533-b9c7f572bdca", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 1876.75 MB\n" + ] + } + ], + "source": [ + "memory_use = python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")" + ] + }, + { + "cell_type": "markdown", + "id": "7c81b95f-3bec-4046-a3ba-af944cb3f34e", + "metadata": {}, + "source": [ + "So, if we want to take the maximum memory usage for the full procedure, we can profile the three steps done until now:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8b7d8223-5f2a-435c-9510-dc4c4d13da09", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:28, 2.70it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 16715.56 MiB, increment: 14837.95 MiB\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,\n", + " 1.10340774e-04, 1.07141777e-04, 9.10072280e-05])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def legacy_pds_procedure(fname, sample_time, segment_size):\n", + " events = EventList.read(fname, fmt=\"ogip\")\n", + " lc = events.to_lc(dt=fine_sample_time)\n", + " return AveragedPowerspectrum.from_lightcurve(lc, segment_size=segment_size)\n", + "\n", + "\n", + "%memit ps = legacy_pds_procedure(fname, fine_sample_time, segment_size)\n", + "ps.power" + ] + }, + { + "cell_type": "markdown", + "id": "7838fc58-1231-4bcf-9257-05cb5293cc2c", + "metadata": {}, + "source": [ + "Let's clean up the memory a little bit." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1db9bc50-c624-46e5-ab43-44cf40f387cd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 1876.75 MB\n" + ] + } + ], + "source": [ + "del ps.power, ps\n", + "gc.collect()\n", + "python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "6d127938-71a9-4815-813f-e1cc5ba97503", + "metadata": {}, + "source": [ + "## Slightly better: PDS from events\n", + "What if we get the power spectrum directly from the events, without previous binning of the full light curve? In this case, the binning will happen only on a segment-by-segment basis, freeing memory." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ef2ebf7f-7526-4ade-b543-7ddb1669e410", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:28, 2.71it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 7543.30 MiB, increment: 5701.02 MiB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,\n", + " 1.10349785e-04, 1.07137039e-04, 9.09968704e-05])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def pds_from_events(fname, sample_time, segment_size):\n", + " events = EventList.read(fname, fmt=\"ogip\")\n", + " return AveragedPowerspectrum.from_events(events, dt=sample_time, segment_size=segment_size)\n", + "\n", + "%memit ps = pds_from_events(fname, fine_sample_time, segment_size)\n", + "ps.power" + ] + }, + { + "cell_type": "markdown", + "id": "ce8f04da-9c8e-46d3-ba77-a04d8f60bb86", + "metadata": {}, + "source": [ + "Much better! The memory increment is now dominated by the loading of events, so just about 5.7 GB. Let's clean up the memory a little bit again" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f2d79666-b03c-4a11-bd22-bfb5f691e218", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 2245.31 MB\n" + ] + } + ], + "source": [ + "del ps.power, ps\n", + "gc.collect()\n", + "memory_use = python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "1eeef29a-56f3-4b41-9691-d276369c99ee", + "metadata": {}, + "source": [ + "## Let's be \"lazy\": lazy loading with FITSTimeseriesReader\n", + "\n", + "Now, let's try not to even pre-load the events. What will happen?\n", + "First of all, we use the new class `FITSTimeseriesReader` to lazy-load the data, meaning that the data remain in the FITS file until we try to access them. This occupies very little memory." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "74ef9faf-ac33-4590-8f1e-46c11a0882d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 2245.34 MiB, increment: 0.00 MiB\n" + ] + } + ], + "source": [ + "from stingray.io import FITSTimeseriesReader\n", + "%memit fitsreader = FITSTimeseriesReader(fname, data_kind=\"times\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0e7440ca-3c8d-4e6c-a2fd-cc486156bc11", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 2245.36 MiB, increment: 0.00 MiB\n" + ] + } + ], + "source": [ + "from stingray.gti import time_intervals_from_gtis\n", + "start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)\n", + "%memit interval_times = np.array(list(zip(start, stop)))\n" + ] + }, + { + "cell_type": "markdown", + "id": "89acff6e-1fe9-4705-8891-13ec6cd47fc6", + "metadata": {}, + "source": [ + "Let's create an iterable that uses the FITSTimeseriesReader to send AveragedPowerspectrum the pre-binned light curves for each segment. Events will be read in chunks from the FITS file, and streamed as light curve segments on the fly." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "92518923-fbc7-429a-b1d8-dc81591fc965", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:32, 2.43it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 4531.69 MiB, increment: 2286.30 MiB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, 1.13488540e-04,\n", + " 1.10641888e-04, 1.11452625e-04, 1.15657206e-04, 1.04863608e-04,\n", + " 9.25844488e-05, 9.50754514e-05], dtype=float64)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from stingray.utils import histogram\n", + "def fits_times_iterable(fname, segment_size, sample_time):\n", + " \"\"\"Create light curve iterables to be analyzed by AveragedPowerspectrum.from_lc_iterable.\"\"\"\n", + " fitsreader = FITSTimeseriesReader(fname, data_kind=\"times\")\n", + " start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)\n", + " intvs = [[s, e] for s, e in zip(start,stop)]\n", + " times = fitsreader.filter_at_time_intervals(intvs, check_gtis=True)\n", + " for ts, (s, e) in zip(times, intvs):\n", + " lc = histogram(ts, bins=np.rint((e - s)/sample_time).astype(int), range=[s, e])\n", + " yield lc\n", + "\n", + "\n", + "%memit ps_it = AveragedPowerspectrum.from_lc_iterable(fits_times_iterable(fname, segment_size, fine_sample_time), segment_size=segment_size, dt=fine_sample_time)\n", + "ps_it.power[:10]" + ] + }, + { + "cell_type": "markdown", + "id": "2da603a0-6e82-4076-9e33-576145024735", + "metadata": {}, + "source": [ + "Hurray! We managed to keep the memory increment to ~2GB, comparable with the sole AveragedPowerspectrum operation!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3265e2f0-264d-48d8-8187-fb44b10d4f72", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb.txt b/_sources/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb.txt new file mode 100644 index 000000000..080f1b969 --- /dev/null +++ b/_sources/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb.txt @@ -0,0 +1,779 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectrum example\n", + "\n", + "This tutorial shows how to make and manipulate a power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create a light curve\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy` into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, noisy, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot it to see what it looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIeCAYAAABENbUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3OUlEQVR4nOydeZhcRbn/vz1rkpnsM9kgC7KEgCwJAZSwyCWAREAWuShrWAT0XpTFBfSKwassPwRUEJUrCIgRlM0gigGUhLCHhDUGAmQlC1knk0yS2fr3x6HmvKe6zr5Vdb+f55lnerp7uqtPn1NV3/q+71uFYrFYBMMwDMMwDMMwDJMqVXk3gGEYhmEYhmEYphJg8cUwDMMwDMMwDJMBLL4YhmEYhmEYhmEygMUXwzAMwzAMwzBMBrD4YhiGYRiGYRiGyQAWXwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkQE3eDTCV7u5urFy5En379kWhUMi7OQzDMAzDMAzD5ESxWERraytGjBiBqip3f4vFV0RWrlyJkSNH5t0MhmEYhmEYhmE0Yfny5dh5551dH2fxFZG+ffsCsA5wv379cm4NwzAMwzAMwzB5sXnzZowcObJHI7jB4isiItSwX79+LL4YhmEYhmEYhvFNR+KCGwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkAIsvhmEYhmEYhmGYDGDxxTAMwzAMwzAMkwEsvhiGYRiGYRiGYTKAxRfDMAzDMAzDMEwGsPhiGIZhGIZhGIbJABZfDMMwDMMwDMMwGcDii2EYhmEYhmEYJgNYfDEMwzAMwzAMw2QAiy+GYRiGYRiGYZgMYPHFMAzDMAzDMAyTASy+GIZhGIZhGIZhMoDFF8MwDMMwDMMwTAaw+GIYhmEYhmEYhskAFl8MwzCMsfz738DttwPr1+fdkvC8/Tbwy18CGzfm3RKGYRgmK2rybgDDMAzDRKG7G5gyBViyBHjjDeD//i/vFgWnsxM49lhg5Upg4ULgttvybhHDMAyTBex8MQzDMEbS3m4JL8ASMCaxebMlvADgnXfybQvDMAyTHSy+GIZhGCPp6lLfNoHOTvv29u35tYNhGIbJFhZfDMMwjJF0d9u3qZgxgY4O+/aOHfm1g2EYhskWFl8MwzCMkbDzxTAMw5gGiy+GYRjGSKjzxeKLYRiGMQEWXwzDMIyRmOx80bBDFl8MwzCVA4svhmEYxkhMzvli54thGKYyYfHFMAzDGEm5OF9ccINhGKZyYPHFMAzDGAnnfDEMwzCmweKLYRiGMRIquEwLO6TOV1eXee1nGIZhosHii2EYhjGScnG+AHa/GIZhKgUWXwzDMIyRlEvOF8Dii2EYplJg8cUwDMMYSTk5X1x0g2EYpjJg8cUwDMMYSbnkfAHsfDEMw1QKLL4YhmEYIykn54vFF8MwTGXA4othGIYxEpNzvlh8MQzDVCYsvhiGYRgjMdn5ksMOOeeLYRimMmDxxTAMwxiJyTlf7HwxDMNUJiy+GIZhGCMpJ+eLxRfDMExlwOKLYRiGMRIquIpFpxjTHXa+GIZhKhMWXwzDMIyRyGLLJPeLnS+GYZjKhMUXwzAMYySy2DJJfPEmywzDMJUJiy+GYRjGSNj5YhiGYUyDxRfDMAxjJOXkfLH4YhiGqQxYfDEMwzBGIjtfJpWbZ/HFMAxTmbD4YhiGYYzEZOeLww4ZhmEqE23F19SpU1EoFDx/truMVq+99hpOO+00DB06FL169cIuu+yCSy+9FB9//HHGn4JhGIZJC5NzvrjgBsMwTGVSk3cD/Jg0aRJ222035WPV1dUl9z300EP4yle+gs7OThx44IHYZZddMHfuXNx+++3485//jDlz5ri+HsMwDGMOstgyKeyQnS+GYZjKRHvxdeGFF2Lq1KmBnrty5Uqce+656OzsxG9+8xtcdNFFAICuri5MnToV999/P8444wy8/PLLKBQKKbaaYRiGSZtycr5YfDEMw1QG2oYdRuFnP/sZ2traMHny5B7hBVgO2a9+9Sv0798fr776KmbOnJljKxmGYZgk4JwvhmEYxjTKSnw9+uijAIAzzjij5LHGxkaceOKJAIBHHnkk03YxDMMwyVNOzhfnfDEMw1QG2ocd/utf/8Jbb72F1tZWDB48GAcddBCmTJmC+vp6x/NaW1vx/vvvAwAmTpyofK2JEyfi97//PebPn596uxmGYZh04ZwvhmEYxjS0F1/33XdfyX3Dhw/H3Xffjc9//vM99y1ZsqTn9qhRo5SvNXLkSADA4sWLPd9z69atvu0K8hyGYRgmPcrJ+WLxxTCVzbPPAlu3AlOmAFyWoLzRNuxwv/32w89//nO8/fbb2Lx5M9asWYOZM2fikEMOwapVq3DiiSfi2Wef7Xl+a2trz+2GhgblazY2NgIANm/e7PnejY2Nvj8jRoyI/yEZhmGYyHDOF8Mw5cBbbwFHHgkcfzzw9NN5t4ZJG23F1+WXX45vfOMb2HvvvdG3b18MGTIERx99NObMmYMvfvGL6OjowGWXXZZ3MxmGYZicYOeLYZhy4K237NtvvplfO5hs0FZ8uVEoFHDttdcCAN544w0sX74cANC3b9+e57iFBG7ZsgUA0K9fP8/32LJli+/PypUrk/g4DMMwTERMzvnighsMwwioEy674kz5oX3Ol4px48b13F6xYgVGjhyJ0aNH99y3bNky7LPPPiX/J4TamDFjPF/fLWyR0mXSEivDMEwZYrLzxWGHDMMI6GIMi6/yxzjnCwDWr1/fc1s4Xv369cNuu+0GAJg7d67y/8T9EyZMSLmFDMMwTNqYnPPFYYcMwwio4Gpvz68dTDYYKb4eeOABAJbgGjt2bM/9J598MgBg+vTpJf+zZcsWPP744wCAU045JYNWMgzDMGkiO18mhR2y88UwjICdr8pCS/H1+uuvY8aMGeiURtLu7m7cdddd+N73vgcA+MY3voHa2tqexy+77DL06dMHTz/9NP7v//6v5/6uri58/etfx6ZNm3DggQfimGOOyeaDMAzDMKnBzhfDMOUA53xVFlrmfC1ZsgQnn3wyBg4ciAkTJmDo0KHYtGkT3n77bSxbtgwA8JWvfAU//OEPHf83YsQI3HPPPfjKV76Ciy66CHfddRfGjBmDV199FR9++CGGDh2K6dOno8AbKDAMwxhPOeV8ccENhqlc2PmqLLR0vvbbbz9cdtll2HvvvbFw4UI88sgjeOaZZwAAX/rSl/DEE09g+vTpqKkp1Y6nnXYaXn75ZZxyyin48MMP8eijj6Krqwv/9V//hTfeeKMnL4xhGIYxm3JzvorFfNrCMEy+sPNVWWjpfO2yyy649dZbI///AQccgIcffjjBFjEMwzC6UU45X93dVvtJJD3DMBUC7bu44Eb5o6XzxTAqtm8vnWwxyVEsAm1tebeCYYJTTs4XwHlfDFOpcNhhZcHiizGCN98Ehg8Hxo0Dtm3LuzXlyYknAgMHAg89lHdLGCYYJud8qcQX530xTGXCYYeVBYsvxggeeQTYtAl47z1gzpy8W1N+rF4N/PWvVrjDfffl3RqGCYYstkwOOwTY+WKYSoWdr8qCxRdjBDQcjleHk6elxb69eXN+7WCYMJSb88Xii2EqE3a+KgsWX4wRUMFl0uq2KWzZor7NMDpjcs4XO18Mwwi44EZlweKLMQIWX+nS2qq+zTA6w84XwzDlADtflQWLL8YIWHylCztfjImUU6l5gEOqGaZS4ZyvyoLFF2ME1IY3aYJlCux8MSZictghO18MwwjY+aosWHwxRkBXhLljSh7Z+SoW82sLwwTF5LBDzvliGEbAzldlweKLMQIOO0wX6nbxZsuMKbDzxTBMOUAFFxfcKH9YfDFGwOIrXeQ8L877YkzA5JwvFl8MwwjY+aosWHwxRsDiK13kPC/O+2JMwFTnq7u7VDgCXHCDYSoVFl+VBYsvxghYfKULO1+MiZia8+XWh7HzlSxLlgBnnAH86ld5t4RhvCmXghsrVgBnngn8/Od5t0RvWHwxRsDiK13Y+WJMRBZbpvQNbpMrFl/JcvPNwB//CFx6KbBuXd6tYRh3ysX5uvVWYPp04LLLLCHGqGHxxRgBi690YeeLMRF2vhgvVq60fnd1ARs25NsWhvGiXApufPCBfXvt2vzaoTssvhgj4FLz6cLOF2MipuZ80T6stta+zTlfybJtm32bF+0YnSkX54s6zNyfucPiizECdr7ShZ0vxkTKwflqbLRvs/OVLFR8mXJuMJVJueR8UbfLZAcvbVh8MUbA4itd2PliTKQccr769rVvs/hKFna+GFMoF+eLxVcwWHwxRsDiK13Y+WJMhJ0vxgsWX4wpyM5XsZhfW6LS0QFs3Gj/zeLLHRZfjBGw+EoX2eli8cWYQDnkfLH4Sg8OO2RMQZ7XmHi+ykVtWHy5w+KL0Z5i0XkRs/hKlmKxVGxx2CFjArLzZUrf4OZ8cYJ6srDzxZiCfH6aKFzk6obcn7nD4ovRHjn+2eR4aB1pby/t+Nn5YkzAVOeLww6zgcUXYwrlMM+RxZeJAjIrWHwx2iOvnvAgmiwql4udL8YETM354oIb2UCPpynnBlOZyPMaFl/lDYsvRntYfKWLyuVi56uyWLsWeOwxoK0t75aEg50vxo1ikZ0vxhzY+aosWHwx2sPiK13Y+WKOPRY4+WTgiivybkk4TM35ohOrhgb7Nouv5OjocJ4fppwbTGVSDs4X3WAZ4JwvL1h8MdrD4itd2PmqbLq7gfnzrduvvZZvW8JSDs5XbS1QX2/d5slKclDXCzDn3GAqE1lsmegasfMVHBZfjPaw+EoXdr4qGzopNe3aKoecr9paoFcv6zY7X8khiy/Tzm2msigH54vFV3BYfDHaw+IrXdj5qmzo9WTatVUOzldNDYuvNGDxxZgE53xVFiy+GO2RxZeJnZLOsPNV2Zgsvsoh54vFVzpw2CFjCsVieThfcs4Xiy93WHwx2sPOV7qoXK4dO8zs/Jnw0O/ZtO+8HJwvGnbIOV/Jwc4XYwqqfsu0vhjgTZbDwOKL0R4WX+ni5nJx6GFlUE7Ol4niq6bGLrjBzldysPhiTEF1bprmGhWL7HyFgcUXoz0svtKFiqwBA9T3M+WLyeJLFlumtN+r4EaxmE+byg0OO2RMQdVvmeZ8bdpU+jlYfLnD4ovRHvkCNmWCZQrU+Ro+XH0/U76YLL7KxfkS4qtYNG/SpSuyi2jauc1UDqpr3rR+QA45BFh8ecHii9Eedr7ShTpcVHyx81UZmCy+TM35cnO+AA49TAoOO2RMoRycLznkEOCcLy9q8m4Aw/jB1Q7ThTpcw4ap79eJri6gutr98WLRCoEAgKoqoH//TJplLCaLr3JxvkTOF8ATlqQwNexQnNNVvDReMbDzVXnw5c1oDztf6WKS8/X000BTE3DSSercmE2bgHHjgEGDrJ8BA4Cjj+Y8Gi9MFl/llvMFsPOVFCY6XytWAGPGAHvvDbS05N0aJivKoeAGi69wsPhitIfFV7q45XzpKL7uvdcSWH/5C7B0aenjTz4JvPuu876nnwbeeSeT5hmJyaXmy8X5YvGVPCaKrwcfBJYvBxYuBGbOzLs1TFaw81V5sPhitIfFV7oIkVVba7lFAh3DDtva7Ntbt5Y+TieuhYJ9W56IMTbl5HyZIr7Y+UofE8MO16yxb9O+jilvyjXni8WXOyy+GO1h8ZUuQnz17Wv9yPfrBO3MVZNUOsFqbLRvmzaQZQm9nrq7S90knZHbakrfwM5X+pjofFH3gPusyqFcnS/OX3WHxRejPSy+0kU4XI2NTsGio/NFzwU/8dW7t32bV+Dcka8nExwCQTk4X1xwIx1MFF/UPeA+q3IoB+eLww7DYZT4+s53voNCoYBCoYAf//jHJY9Pmzat53G3n4ULF+bQciYOLL7SxVTnSzVJpecGdRNMG8iyRL6eTLq+yiHni8MO08HEsEM6geWJa+VQTgU3qqrshU/TPkOWGFNq/oUXXsDNN9+MQqGAok/psv322w/777+/8rH+XHfaOLjUfHp0d9u5UyY4X2HCDqnzxeeMOyaLL1OdLw47TB8TN1nmsMPKpJzCDgcPtq61bdtYfHlhhPhqa2vD1KlTMXz4cBx44IF47LHHPJ9/0kknYdq0aZm0jUkfdr7SgxatMM35YvGVDPKxMelYmZrzxQU30sfEsEN2viqTcgg7FCGzzc3A+vXWbQ6hdseIsMOrr74aixYtwp133snOVQXC4is9qLtlgvMVJueLww6Dwc5X9ng5XzxhSQbTwg537HD2uSy+KgfTna+2Nrs6Z3MzUFdn3eZz2B3txdezzz6L2267Deeccw6mTJmSd3OYHGDxlR7U3SoH58st54sHAXdMFl+m5nzJzhctuMHOVzKY5nzJpbpNmnwz8TDd+aKObVMTi68gaB12uGXLFpx//vkYOnQofvaznwX+v3nz5uGqq67Chg0b0L9/f4wfPx4nnHAC+tKZJWMM8gWs+yBqErLz1auXlTDb3a2n8+VXcIPDDsNjsvgqR+eLxVcymCa+5GpxPHGtHEx3vui529xsLybxOeyO1uLrW9/6FhYvXoxHH30UAwcODPx/jz/+OB5//HHHff3798cvfvELnHPOOb7/v1W1e2uE5zDJwM5XesjOV6Fg/W5pMdP5MlF83Xsv8NJLwA9+AIwYkf37myy+OOeLccO0sENZfOncZzHJYnq1Q+rauoUdPvQQ8I9/AN/7HrDLLtm2T0e0FV8zZ87Eb37zG3z5y1/GSSedFOh/dt11V1x33XU47rjjMHr0aADAggULcMMNN+Cvf/0rzj33XFRXV+PMM8/0fJ1GmvjC5I4svopFayCtrs6nPeWE7HyJ3y0t+jtfYcIOdZ3IrF0LXHCBdT43NgI33ZR9G0wWX+x8MW6Y5nzJYYcmTb6ZeJjufNFzl4Yd7thhzdfa2oBzz7V+F4vAb3+bTzt1Qkvx1dLSggsuuADNzc247bbbAv/f2WefXXLfpEmT8Pjjj+Mb3/gGbrvtNlx++eU47bTTUCfODkZ73PZzYvEVH+puUfElP6YL5VZw4+OP7TavWJFPG+Rjo/sklVIuOV/0XJVFAxMN08QXhx1WLqbnfG3ebN/u398WX4D12TZssAtyrFyZbdt0RcuCG5dddhlWrFiB22+/HU1NTYm85rRp01BdXY21a9fi5Zdf9nzuli1bfH9W8hmUGX6b6TLRoe6WSIkUv7dssVapdCJq2KGuExl6HufleMjXkkmDviy2TOkXZOeLnqssvpKBww4ZUzBdfMnzCFpAqL3deS2a9LnSREvn69FHH0VNTQ3uuOMO3HHHHY7HFi5cCAC466678PTTT2PYsGF44IEHfF9z0KBBGDJkCFatWoUVPkvMDQ0Nvq/XpXtPXkaw+EoPL+eru9vqNPv0yb5dKorFcAU3THC+dBRfJl1bpjpfLL7Sh50vxhRMDzuU5xHU+WLxpUZL8QUAnZ2dmDVrluvjS5YswZIlS3pyu/zo6upCS0sLAHDVQ8Ng8ZUeXs6XeFwX8dXV5XTiyiHni7aLxVd4TM35ksMOqfjinK9kkI+j7uc153xVLqYX3JDnEVR87djhFF+6X4dZoWXY4aZNm1AsFpU/5557LgDgf//3f1EsFrFkyZJArzljxgy0tbWhUChg4sSJKbaeSRoWX+nh5XzJj+eNfB6UQ7VDdr7iwc4Xo6JY5LBDxhzK3fmiY5tJnytNtBRfUVi2bBnuv/9+bFfMYB577DFceOGFAIAzzzwTw4YNy7p5TAxYfKWHn/Olk/iSVwLLQXzRdqnO8ywwWXyZmvPFBTfSxcQxg8MOKxfTc77kLWs47NAfbcMOw7JhwwacffbZ+NrXvobx48djp512wrZt27BgwQIsWrQIAHDkkUfiV7/6Vc4tZcKiGkj5Ak4GP+dLp3Lz8mQkTM6XrhMZdr7iITtfxaL1Uyjk056gsPOVLqpjqPt5zeKrcjHd+ZK3rOGCG/6UjfgaOXIkvvvd7+LVV1/F+++/j3nz5qG9vR1NTU04/vjjccYZZ+D0009HVVXZmH0Vg4mrmKYgr1jR3/LjeRPE+eKcr3htUP2tM6pQsq4uS9DojOx8UbHI4is+qmOoc9hhVxewfr3zPpOuQyYe7HxVHpoPUaXcc889uOeee0ruHzx4MG644YbsG8SkDouv9HDbZFn1eN6UY9ghO1/xkJ0vwGq/7uJLHONCAaiqsgRYVZVdYZSJh2nO18aNpdt6sPNVOajGJ5O+fzFPqKmxhBcX3PCHbSDGwcqVwJw5+uzvJJcXF5hwAX/wAfDaa3m3whu6YiV2WNDF+Vq1ynkulmPBDc75io5KeAF6OxwC8b3X1lq/CwX7fM1TfK1ZA8ye7X5sTcE08SWHHAJmTb6ZeJSL89W3r9WXsfPlD4svpoetW4FPfxo47DDgd7/LuzUWbheqzgMpAKxYAYwbB0ycCMycmXdr3BErVg0N1so7oIfztW0bsM8+1rn4299a95Vj2CE7X9ExWXyJY0wdurzF144dwP77A0ccAdx+ez5tSArTwg5V4kvXPotJnnLJ+RJzB8758ofFF9PDu+9a4Q8A8Nxz+bZF4OYG6D5BfPllu5N58cV82+JFW5v1m+7lRW+Lx7Nm0SI7B+KFF6zflVBwIw/H2VTx5TaZ1nmSLZCdLyB/8bV4MbB6tXX7X//Kpw1Jwc4XYxLl5HwB7HwFgcUX0wO9KHQptGCq+KLHT+fORrgtVKjQVSsdQuFEG8ox54u2q7s7n/PaVPHl5nyZ0H5dnS+BSgyYhGniS95gGWDxVUmYLL66u+35jnC+vHK+TPlcacPii+nBJPGl+wVMj5/Og6g4vm7iK6+2q8LxwuZ8mRZ2COQTeigfG50nqRSTnS8dxRc990wXX359g25w2GFlY3LBDRodoxJfsvNlyviSNiy+mB5oB6BLlTtTnS96/HTuRE1wvkQbw+Z8meZ8Afkcb/la0vVYyZic8+UVdrhjRz4FL+j1pHJiTMI054vDDisbk50vOtcRYYec8+UPiy+mB9oB6O586TyQAmaEHRaL5Se+2PmK3wbdry1BuTlf9HzN47qj596GDeacBypMFl/CNWDxVTmYXHCDznWCOF+mfK60YfHF9MDOV3KY4Hx1dNgFHkwUXzt2lBaocMv50vk7oLD4Co7JOV9ezheQT+ihfO7Jm/6ahGnVDqnTOHy49ZsnqZWDyc6XvMEy4C2+ikW9r8WsYPHF9GBSzpfuEywTnC96bKng0kF8qfa/kgWUqkAF7dTp59D1O2DnKzrl5nzlLb7ka93kvC9Tna+aGqC52bqt64IRkzx0fBLCRdcxS4YuNAcpuAGY89nShMUX0wM7X8lhgvNFJ/rU+ZI7zjwIUnCDPqb6v9pae3Kra2fPzld0yjXnC9DD+So38aXzeSGOdVOTvWjU3a13m5nkoH2u2OpF13mDTBDny2ucrlRYfDE90Ingtm16dPx0wk33n9J1Mi0wodqhm/jSwfkKEnZIHxPQc7a62p7c6nq+yINQHse73KodmtB+HZ0v+VoyueiGSc5XsWiLr+ZmpyDXtd9ikoV+z2KeY8p3r3K+vApuAOZ8tjRh8cX0IA9OOoQe0sloQ4N9W9eBVEA7JF06mmLRmSNVDuJLbp9p4ktH50vXYyVjqvNVLNrH3HTnK49NwYNgkvhqbbX7tubmUteAKX9UzpfOuVH0ug+b8wWYM8akCYsvpgf5gmDxFR3dnK9Nm4AJE4D997cT6emxNVV8eYUzVFXZk1sdvgMVnPMVHVPFF22fTs5X2Jyviy8GRowAZs5Mr01RMSnskDqMLL4qE5O2SPnFL4ChQ4Ff/tL6m3O+osHii+lBviB0yPsyVXzplvM1Ywbw+uvAm28Cf/mLdR+d6OtWcIN+v6INQXK+xASruhooFPR3vlh8RcfUghv0+OokvsI4X2vWAHfeCaxeDdxxR7rtigI9flWfzHJ0Pa/ff9++PWwYhx1WIqqwQ/l+XbjlFqtvuOEG6292vqLB4ovpQUfniwoXk8SXbtUOW1rs25s3W7/dwg5raizhAuhR7TBKzld1tfVbd/Gl4ybLul9bAlNLzdPvXOewQ6+cr9Wrgz0vL+hnEavxup4Xs2fbtw8+mJ2vSkQVdgjoOW5t3Wr9XrPGCj+MkvOl67WYJSy+mB50d77EhQ3of/Hq5ny1tdm3RUfoJr4KBbvz1MH56uqy/o4ivnQv28vOV3TKzfmi16AO4svL+aKCiy7s6AI9fmI1Xtfzgoqvww9n8VWJuDlfOn7/ov/q6LAWctn5igaLL6YHLriRDF1dTrGjQwcqVqsAf/EF6CW+AKutQQpuyFXkTHO+WHwFx9ScL1OcLy/xRR/btCmV5sRCJb50PK+3bwdeftm6veuuwE47cdhhJWJSzhdt09q1/jlfLL7UsPhietDd+aLiS+eLlwodQI+2qpwvt02W6d95CUeV+Aqb8wXoL750cL641Hy2BMn5yuM8CFNwgz6mu/MlJoTFortgz4uXX7b72MMPt36z81V5iD6YVuil9+sE7b/WrnUu0qvE19atpX21jp8ra1h8MT3omPPlts+XzhMs+bjpMICa7nzt2BEv50uH70CFjs6XKQMjO1/Josr5cislT8VXa6t+x1wcv6oq53HVrZ005PCII6zf9JzQtd9ikoVGbOguvmTnSxV2SBdzVc64jp8ra1h8MT2Y5Hyx+ApHmJwvQD/x5RZ26FZqXhZfnZ167kmkwybLpoYdllvOl27iq7PT3dWSi2yIIj66II5f797OY6zbuS3newFO14AnqZWB+J5ra/X+/ru7nYte69Y554lijkY/g6oP0e06zAMWX0wPnPOVDLJo1aEDrRTxJSbeYsJFBwEdzxkdnS8dj5MKdr6SRXXuuYUeyvfrlvdlgvjq6ABeeMG6vfPOwJgx1m0OO6w83Jwv3b5/+fqhzlefPqWFrgC1+NJhTpQ3LL6YHnQPOzSl2qGOzpcq7NBtk2Ugf/GlEiVBCm64hR2qXlMHdMj5MlV8lXPOF4uveLiJL52E+Wuv2YtiRxxhb++h8+SbSQfqfOk8ZqnEl1hspvMzFl/+sPhieuCww2SQj5sOA6if8yUX3BCdZ2dnPknqSRfcAPTs8Fl8RYedr2RRXV9BxZduRTeo+BJ9AaDXua0KOQT0Djtj0sGUnC8v50vkewEsvoLA4ovpQXfny5Rqh/Jx06GtUcMOAT3ykMLmfMml5gE9RLCMDpssu1U73LYN+OEPgdtvz75NQaAiS7gG8v15UiwCt94K/OQnzmNskvPltoGyqc6XTuJr1iz7tpv40rHP0pEnnwSuvBJYvjzvlkRDnJdhnK9f/xqYNs05tqeN3B6a80Wdr6oq+7pT9Ss6zInypsb/KUylwM5XMujofEWtdghY3wGdGGZB0tUOAT07fB2dL3GcHnwQ+NGPrNvjxgFHHZVtu/ygzlddnd1X6CK+nnsOuOIK6/YeewCnnWbdNkl8qZyv7m5g/XrnfTo5X93ddl/Rq5e+YYdif68hQ4CxY+37dV8w0o0dO4DTT7eKvmzcCNx9d94tCo/oc2tqgjmf8+cDX/uadXvkSOCCC9Jtn0AeK1autM9R6nwB1udwm6fpPH/LCna+mB644EYyyMdNh0p75ep8+eV86R7Co3PBjWXL7PtmzsyuPUGhE2kdC6vQ47dkiX3bLeyQXoM6i6+NG0tDPnVyvujn0DnsUByzkSOdzq3ufZZubN5sV9tcuDDftkTFzflyE9+LF9u3aT+TNvL5SNtBnS/AeR77vU4lwuKL6YGdr2RQHbe8OxvqfInJSZCCG/LzsoJzvvJrg/ibDvw0REoXqACg37Mu7gY9rvR71dX5CprzpbpPJ/FFj52uYYddXfZ56pZvC7DzFQR5018Toc5XkDGLjudZjmvy9UMdb5Xz5YaOY3HWsPhietAx54sOPqaIL9Vxy3sQDVtwI2/xFbTaYZicLx07fJ2dL3q8X3tNj/6A4uZ86S6+dC24IdrYr599nyrnSzXB1Sns0Et86XJu0GtL7ns57DAc9Ds1VXyFzfmi43mW45rXe8nOl3xeB32dSoHFF9OD7s6XKaXmVcctz0G0WCzfsMMwzpeOExmdN1mmx6uzE3jxxezaFAQ550ugS99A20G/Vzfnq6bG/jtP8TV8uJUwD6gnsypBprPzpWPYIT0fvJwvnqT6Q8VXS4ue/bwfcZyvLD+v1/XDzlc4WHwxPejofNFBiq4M6zKIqlAdtzw7m+3bnTlnJoqvIAU3ikV7Qm5K2GHezlex6F7tUD7etDS2DpSb8wXYfVweDqh4zz59gMGDrdtBww5Ncb50GTeCii8ThUTWyNe7XAxGd7q77XEraMENE5wvL/Gly3WYJyy+mB7kC6K1Nf9CEWKQqqvTfyIt0M35kkvRbttmfa9Bc77yaLuX80XPA/oZ6CBsSsGNvHO+VHtliTbJols38aV7zhc934LkfAG2+Mra+eruttvbqxfQ3GzdLrecL13ODS/xpbtbrxvyd2pa6CHtD4IW3MhLfHmJJi64EQ4WX0wP8gXR1ZWP60ER719fr+cKpgrdcr5U+4Ds2KF3zpdXwQ2ak0I/Ax2EOecrGKrrSLRJPmdffjkfR8aNcna+shZf8kJMU5N1u62ttP8wzfnisMPyppzEl+4FN7zeSw475Jwvb1h8MT2oLoi8875MFF+6VTukHbVg2zbzxJcQA0HElylhh3k7X6rryC3scMcO4JVX0m9TUMot5wvIT3zJfYFwvoDSHC+TnS9dzg0OO0yOchJfuhfcYOcrOVh8MT2oLoi8875MFF8mOF9UfNXXO/eZEfcJdBNfdIUtjPjScSKTd8GNMOIL0Cv00FTnS55sUXQQXzTsECidzFIxNnCg9dsU8aXLuUGvc3mSqnufpRvyd6oqCKMzdN7FBTcqBxZfTA+qC4udLyfLlwMffuj9HN3El5/zJed7AfmLL7lzpgU36uvt9vnl0uTlfK1fD7z1lv/zdAw7dMv5AvTa78vN+dJlgh0k7FB2vsS12NGR7ecII77E3zU1wOjR1u2WlvzzgwXyZ+Gww3gsWAB8/HG4/ykWs9uewiTn6/XXSxcq5MUY+fvv6rJCvuk5wwU3zIfFF9OD7s4XnUjncfEuXgx86lPArrtaA4sbuoUdujlf4tjqKL7k73fLFnuyXVdnt9mv4EYe4mvLFmDsWGDffYEHHvB+rsrhy3ISG9T5GjTI+v3CC/oMnG7Oly7tC7vJMpDfXl9yzlcQ8dXUBAwYYN3u7FT3M3nAYYfJ8eSTwN57W+NeGEfpppuAiROBgw9WF/VJEvk71VV8/fa3wPjxwD77OL9/L+ervR34xjeAz3wGOOEE+34dww7Z+QoHiy+mB5NyvvK4eJ9/3u58nnnG/Xm6OV9Bwg5laMepg/javNm+TcWXX9hhHqvI8+bZ5Y69zhOgtE2q0u9ponovlfg64ADrd1ubPqWcTa12GKTgBpCt+JLdIuFoAcAbb9i3i0V7ctvcbIsvQJ+iG9Tp79PH6Xzpcm6YUu3wn/+0fm/dGm6fP+GQL1gArFmTfLsopjhfzz5r/V6xAvj3v+37/XK+Zs60bv/zn/bCnI4FN3iT5XCw+GJ60M35KhadoWZ5r2DSAdNtorFjh/o4cthhOLzEl1vYoS7OFx38/SakqvM4y+MdtNph//727bwroApMyvkKW3ADyE981dcDhxxi/03z/LZutT+LLL50yfuiY1bfvvmPGypMCTukC3dhRA09zmnPIUwRX/S7pG30y/kSz6XVp9n5Mh8WX0wPuokvOvmrrweqquzCEHkMorQ9bhMNt+OlY9ihqeLLzfnyy/nKSgDTgdVvQqo6L7LM+woSdlhX5xQFupSbL4ecL12dr6Ym4NOftv6eN8+OgKDndnOzU5TrIr5otIbp4itv5ysJ8ZV29IwpBTfod0mPpVep+bY25wKeOJZ5FdxIKueLxReLL4agW8EN1QAlBtK8xZebo+F2vHR0vkzK+aLHVfecLzr4ezlfxaJaKOgivugG5/Qc0UV8cc5XcsjiCwAOP9z63dVl5foBzkkjzfkC9Ak7pAtgjY0cdhgHOnaEETXsfJVCxx96LOXFGNqXrVrlfA1xLE13vnTpo/PEKPH1ne98B4VCAYVCAT/+8Y9dn/f0009jypQpaGpqQu/evbHnnnvi+9//PrbkXT1Cc3R3vgB9xFdY50u3nK/Nm+34cR3Fl3wu0omd7HyJz6GL+ArqfLmdw7qIL+p85X0+qNA95yuu85XleSAX3ABs8QXYoYfsfCVDJYUdZu18rV+ffpGPKLiFHXo5XytXOl9DHEvdqh1WV3vvFRr0dSoJY8TXCy+8gJtvvhkFeUMiiVtvvRVHH300nnzySey999444YQT0NLSguuuuw4TJ07EOl09aQ3QreCGaoASHVPeOV9uEw16vOiKq25hhxs32rdVnWTek22/nC8xQaQFKlSOQh4TmaA5XyaJL5OcL93Fl+7Ol7j2qfgSBRRk8WWC86Wj+FItLAp0CjukzpcpOV9dXc7xTReC5HzJBTdk8SWOZV4FN9yun759S/cK5bBDb4wQX21tbZg6dSqGDx+OL37xi67Pmz9/Pq688kpUV1fjiSeewKxZs/CnP/0JH3zwAY466ii8++67uOSSSzJsuVno5nyZGHZIj5cozy3/b9aowg6peNTR+fLafFh2YsTEsVycryyPd5Bqh1TsAvqIL7ecL10m2EEKbuia8wUAw4cDu+9u3X7lFas9dO1S14IbsvPFYYfRMdH5AvTM+4rifMlhh62t1vPpeZGX+KLbUcj5XgCLLz+MEF9XX301Fi1ahDvvvBP9aZyDxPXXX49isYjzzjsPxx13XM/9ffr0wV133YWqqio8/PDDWLhwYRbNNg5xQdDBShfnS1zIQnzlcfEGCTukx0sX8eXnfJkgvihuToyf+MrqO6AD/44d7mLF7RzO2/kSuWjsfMWDfr/t7bZY9NpkWSfxBdjuV0eHtdGrnPNFh2N2voJjYtihrjlfqu9Ux7wvOv7QY+lXap6yZUvpeJ5XwY3hw+3bQcRXQ4P6dSoV7cXXs88+i9tuuw3nnHMOpkyZ4vq89vZ2PPHEEwCAM844o+Tx0aNHY9KkSQCARx99NJ3GGo7oBAYOtO9j58smjvOlc9ihn/jKQziGEV/iPNHR+QLczxVdww7F/W4FNzjnKxhu7q1X2CE9zjqJL8AKPfQKO9TF+RJ9cK9e1vE1TXxVV9shXHk7X1HDDuk1mIfzpaP4Clpq3ssxam0tHc/zcr5GjLBvy8U2gNLzul8/9etUKjX+Tymlu7sbr776Kp555hnMmzcPa9aswcaNGzFw4EAMHToUBxxwAP7jP/4DBx54IKqqouu7LVu24Pzzz8fQoUPxs5/9zPO57733Hto+OSsnTpyofM7EiRPx3HPPYf78+Z6vtVUVpxXhOSZRLNoXxKBB9sqMLs6XDuKLtqe11er0qUso7hfo4nypTtVydL78Ss1nMUjRTWgFmzYBQ4eWPldX50vc71Zwg52vYMjHdvt2y9nSsdS8quAGABxxhH179mxr02JBc7NzsUkX8SX6YLEab1rYYaFgnRft7fmLLzrR37LFOodV44VMnjlfgFniy8v5klE5X3kV3AjrfPXrZ4dRsvMVUnx9/PHHuPPOO/Gb3/wGKz/JBCyKUmME4SyNGDECl1xyCb761a9iyJAhoRv3rW99C4sXL8ajjz6KgdSOUbB48WIAwIABA9BXJcMBjBw50vFcNxpVZ1KZQzsAuprJzpeNPBBu3ux0CQE9c75MLLjh1Tm75SCpnK+sQ3haW0u/a+F8Pf88cP75wJQpwK236u18dXTYxyuPsMOrrgIeeQS4807gc59TP8eknC/Ae5FAoEPYIb32R48GRo0Cli0D/vlPZ1L94MHO9usWdiimAbo7Xyqno67O6kfynqTKY8fatcAn0yhPdMv5mjEDuOIK4MILrb4lD+h3uX69vXjrtcmyzJYtpYupeTlfVHypptzyeU2fk/d5rQOBxNeOHTvw//7f/8ONN96ItrY21NTU4IADDsAhhxyCvffeG4MHD0a/fv3Q0tKC9evX4+2338YLL7yAN998Ez/4wQ9w/fXX46qrrsK3v/1t1HvVnyTMnDkTv/nNb/DlL38ZJ510ku/zWz+5whtoYKmEEFWbaek0BoDzYujTx+7883S+VKEwOomvTZtKxRc9XoMH27fz7GzKoeAGReeCG6q8CHGsf/5z4L33rJ/vfc+9PVkeb7fjTCf+WRfc2LwZ+H//z3IRb7nFXXyZ5nyJ71VH58st7BAAjjwSuPde67ZYa915Z6sv1rnUvFhD1V18qaZE4nzOc9GuWCwdO6KILx2cr5/+FPjgA2DaNOC73y2tzJcF9LovFoENGyz32KvghkzeYYf0vT71Kes4FotOISZg8eVNIPE1duxYLFu2DPvssw/OP/98nHnmmWhqavL9v3Xr1uH3v/89fve73+Gaa67B3XffjQ8//ND3/1paWnDBBRegubkZt912W5AmJkqQ/cA2b96METTo1XBk67tvX2t1Jk/ni66kikE+z1LzKvElY6LzZaL48nO+VGGHWXwHqnAXcZ589JF9n6hapSJL58ttEKSTrqydr7Y2e5IvV/uimJbzZYrzJfcHP/wh8PHH9vnbp481gQWs9jc0WOeLDs5XZ6f9WUwNOwTs8znPcaOjo/R4BS26oZv4EuemKIBEr7OskL/Ldess8eVVal5G5XxleY7Q73XUKOCmm6xc0CuuKH2ul/jSZREkTwKJr969e+PPf/4zTj311FAv3tTUhMsvvxyXX345/vznP+Oaa64J9H+XXXYZVqxYgQcffDCQyAPQE2rolYslRFU/mvmnwMs9E3Tp0osnhNwBNDZa4itP54uKGxEKqZPzpZpslEvBDdpx6i6+VIUM8nK+VOJLnCdyFUTa3vp6+3PoEHZIz5msN1mmbfLK3TDN+RLfq47Ol1vOFwDssgvwt7+5/++AAdaEUAfni/a/poQdejlfukVMBM2lyjvsUG4nPd5bt+YjvuTvcu1aYNy40sUYeUGGopPzVVMDXHml9aNCPq/79LHG5a4udr6AgOLrnXfeiVU4AwBOO+20wOLt0UcfRU1NDe644w7ccccdjsdEmfi77roLTz/9NIYNG4YHHngAY8aMAQBs2rQJra2tyryv5cuXA0DPcxkblfgC8nW+6GAunK88S83Lk07VZEPnghs1NXZHTztwHXO+vCZJYXK+dBBf4jyhj+3YYbs7gDVR1El85el8BRVfuud8yeebqc6XH/37W66YbuLL5LBDHZwv1aJdFPGlg/NFj7fqc2WBSnzJ99fW2gVX3PZdldsvtgaRi3+lgdcehTKy89W7t/U/LL4sAomvuMIryut0dnZi1qxZro8vWbIES5YswejRowFYoZF9+vRBW1sb5s6diyOPPLLkf+bOnQsAmDBhQsiWlz9yByC0a1tbdhe2DHWWZOerq8vqdLKM3Y7jfOkwiA4aZIUPyagmWzU1djy3buIrzD5fWRfcUIXltLRY703dRvl8aGy0/1eHnC9ZnGcpvuj32NZm/dAqe6rnlaPzlaUIdyu4EQTRN7e1WZ/Nb1KWJvIGy4CZYYc65HwlJb50KLhBj2NehardxJdblV7VeNXaqm5/R0c2czSvPQpl3MTX9u0svgBN9/natGkTisWi8ufcc88FAPzv//4visUilixZAgCoq6vDF77wBQDA9OnTS15z6dKleOGFFwAAJ598cjYfxCDki4oWfMyrs/JyvoDsB9IgOV9uzpcO4SNuEbwq8VUo2JMCU8SXDqXm3Zyv9eud98lhh/R608H5ksMO83K+APc8EzfnS5cJdpR9vkx0vmh13LzzvsrF+SqnsMO8NlmmkQU6Ol+iX1O5SW4LGCrnS/XaaZGE8wWw+AIiiq9ly5ZhxowZWLFiheP+d955B0ceeSQGDhyI8ePH46mnnkqkkUG56qqrUCgU8Lvf/Q5PPvlkz/1tbW244IIL0NXVhVNPPRV77rlnpu0yAVXBDUFeeV9ezheQ/UAaxvmSj2FeK5hdXfbA07+/enXMbbKVl/jq7nZOrGXccpD8wg7zKrjR0qIOg9FZfOkSdgi4T/jcnC9dJthBCm7okvMVN+xQkLf4UjlfJoovXcMOoxTcyMP52r7d2YfpKL5UYYeqRUOKm/OV1XnitXAkI5/XvXvnm7OvG5HE109/+lOcfPLJjuIWW7duxeTJkzFr1iy0tLTgjTfewIknnohFixYl1lg/JkyYgJtvvhldXV2YMmUKjjzySJx++unYbbfd8Mwzz2Ds2LH49a9/nVl7TMIt5wvIL+9L5XzRTinrCzhMzldjY/YTfxV0AtenjzrRWDfx5fe9mpjzpRJftD1UqOclvqiA0aXgBuAuvkytdugVukPPa10KbvhBna+8875UzpfJYYddXd4LUWkSx/mixznLnC+ahiDn2AryiOTp7i4991Rhh6IfU+39BuTvfHmFTMuw8+VNJPE1e/Zs7L777hg7dmzPfdOnT8eaNWtw0kkn4fXXX8ePfvQj7NixA7fffntijQ3C5ZdfjqeeegrHHnss3nzzTfzlL39BY2Mjrr76arz66quBqydWGm45X4Be4ksn58ur1HzfvtnnG6mgA01Dg1p8ueV46Cq+wuR86SK+5BVjXZwvekzouZFnzldc50uXCbappebD5nyx8xUe0adWV6ujEXQYO6LmfBWLzuPc3p7u4iO93pub7duiz+3udh7DPJwv1XcY1fnSJewwas4XwOILCFhwQ2bVqlU44IADHPc9+eSTKBQKuO2227DTTjth3333xR/+8Af885//TKShgnvuuQf33HOP53MmT56MyZMnJ/q+5Y4svmiCe95hh7172xMCesFnfQEHCTukzhftfPJyvmhH3aePelXbNOdL55wvMeAPGmRNnrdtcw87pOcHFV95Fdzo3ds+p3UKOzQ150s+31SbLOsmvqqr/SdVMro7XzqKLzEeuAldOWoirCBOgqjiS+XUbdnizIFOEnq9Dx1qF5USbZXH3jycLy/xFTbny63gRhbEKbjRqxeLL0ok52vjxo0YJF1JL730Evbaay/stNNOPffts88+JXlhjJ7IF1UWzteWLcCNNwKPPqp+XAzkdGVVZ+eru9vuGPv21SPsUBZfUcIOs257OThfzc32eesWdqiD80XbQI+pTgU3yjXnq7q6tFprVZX9WfIQX2FDDgFn/5y3+DKt2qGbqNJh4U41yd+40f/6Uj2e5gIu/U6HDbNvi35DXszSxfkSi0pBnC9RKLytTX0sueCGeUQSXw0NDVhLRsQlS5Zg1apVmDRpkuN5NTU16NRlJGQ8kS8qOhlMq+P87W+Bq64CvvQlYOnS0sfFKjxdWdVJfMnOl7zqqkPoSJCwQxOdr6AFN6qr7YEr7UnMjh32tdLcbJ+3bs6Xbjlf9Dzwcr50zPnKswqqG345X26TF3GNmiK+uNpheMQ15Jbbo8PYoRIpxSKwYYP3/6mOcZqpC7LzJdBdfImKjH4RGwAwcqR9W7VdTFYCPYzzxQU3vIkkvvbaay/MmTOnR4BNnz4dhUIBhx12mON5y5cvx1B6NTDaIocdZrHfzIcfWr+7u4H333c+1tUFbN5s3dbF+fIruPHRR/btYcP0WL1Mwvnq7Mw26dtvsuGWg+QWj57VahsVCU1N9qR082ZgzRrnc01zvuhkQEfnq6rKFty6iy9xbFV7lwH5iC/Rt0URX3ntTaaCTvJNyPkKGnaYB7QPoALbL/QwT+eLtlO0Xx638wg7VH2H7e3WcVEVsZBF+S672LflsQRg58tEIomvc889F9u2bcPEiRNx8skn49prr0Xfvn1x4okn9jxn+/btmDdvHsaNG5dYY5n0kDuALKqb0feUV8ZoZ0071DyrHfo5X9S9Gz1ajwE0iYIbgB4b/wrChB0C2XX4NDeJhh0C9kKDQHa+dBZf9fVWeJx4XMecr6oq/VZV3cQXzQtVkafzFSW3KOvQXi/ouGFCtUNTwg5Hj7ZvRxFfaTpf9P0aGuzb4pzW1fkCrGPp53xVV/s7XybkfFHx1dXl3IetEokkvr761a9i6tSpWL58Of7yl7+gV69euPvuu9GXxM7MmDED27Ztw+GHH55YY5n00E18qSodAnqFHW7a5OxAZPFVKNjt1SF0JKrzBbD4CgKdlNCwQwCQd9yQnS/qgmR5rINUOxSDaFbiy60ks9fzaNU4XSbYbpss04qoKkwLO9RJfJWL86Vb2GFc8ZWV80XFlzjGOjhfbt/hunX+BTeamoB+/ey/8xRfSTlfQP59Rd5EqnZYKBRw991349prr8WaNWuw5557olFaxttjjz3w6KOP4jOf+UwiDWXSRV59oRdOFuJL7pyp+NIh56tYLBVfnZ3WACU6fFl8AdZx7OzUI3TERPHVp0/pSmVdnVP0euV8iecD2Ysv6tjIiwuy+Kqttb6H7dvzc77ouSHnfAH5OV9Bcr5MCTukRXmCOF/FYmlRjjRISnzluSkwoHa+TBRfOhxT2geMGWPf9ttoOc+cLxOdL7+CG83Nzr5CdXx1LDWvyvmSxZdbzmMlEEl8CUaOHImR1A8l7L///th///3jvDyTIbo5XzSkz018Zbly0tmptslbWrzFl+hsdBhAwxbcyEKAq5BzoeTBsr7e+V0EzflK+zuQxdeqVe7PlcMOdRBfXgU3gOwKsMiTi40brWMlr7TKYlt857qIL7l/2r7deVzdnC/xPXR3W8fCb4U5Ll1d9jEvR+dLt7DDri67HTqHHZrufOkqvqqq7IUjOexQ5Xw1N7v3FYI8Cm749Uvy47TgBqDPQkheRAo7rK6uxgUXXOD7vK9+9auoCbtpCJMLeYgvevF5OV86hB26dW60nUuW2Lep8wXoETri5nzpnPOlcgd0DTukK8JNTc7zVkZ2vmpq7OOtg/iSc77o41k7X4C6wpqb86XLoK5yvlTOjEzWe33Ra9t08SWOb6FgH0fdJnz0eJsSdjhqlH3bT3ypBG6ezpcO+3zRNgwZYt92c77o99/U5N5XCLJ2vgoFu4qwG/IG4hx26CSS+CoWiygGzJYL+jwmX0x0vnQQX7SdwvkaMsQe+PN2vugA2tCgnly5Wf8svsLhlfMl4+Z8iceyImi1Q/p4HuJLNeHTOeeru7vUKd++Xe3MyGQtvuj3GaXghg5CQSCOb2OjHa5povjSOexQt4Ib9HqnubO6Ol8jRti3k3K+si64EdRToX0D3WSZvlalEkl8BaWtrQ21acdMMImQt/gy3flqbwdWrrRu0xAN0fnoMICqnK9evdxzSvISX25VAAWi9Llot0p85V1q3k98tbeXOl9ZiRtKFPG1Y0e6laqCii+dc75Un4HuAwfo43zR861cnC86WdUt7DCs86XDwp2JYYe6Ftyg4mvduvA5X36vnybiuw06rafnNztfTlITX5s2bcKcOXMwfPjwtN6CSRC3ECgg/2qHOpSadzsGop0rVtgTUpX40iF0xE18uaGj8yUm2bT0uWgb/T8dCm74hR26OV9Zii/aBr+cr6w2Wo7qfOmU86X6DLLzxeIreajzJTDR+dLBTRRjR1WVFfomvmcuuBGeoM6Xm/gqB+dLzvnKu6/Im8AJWZ/61Kccfz/00EN49tlnlc/t7OzE6tWr0dXVhYsvvjhWA5lsSNv5am+3wvJ23139nvLKGA3n09n5Eu1UFdsA8g879Cu4kYX46uqySq2PHRuscpvbvi1ym+rrrclp0LDD9vbkqsd99JElZgcOtO8TAqGx0TqufmGHXjlfWVW5c6t2qMr5ks+HKBP1sG0SqCZ8Oud8BRFfuoQdJpnzlWe1w2JR7XyZKL50OKZi7OjTx+qLmput6A6dnS/VfolBxdeKFdZ547VoFhU61xk2zL69dq1TjLmFHfo5X1mdI2GdLyG+CgU7YkV+rUolsPO1ZMmSnp9CoYAtW7Y47qM/K1asQFVVFU499VRcd911abafSYg0xVexCBxyCLDHHsDtt9v304svqPOV18oJ7dxo5yza6Sa+8g479HO+vHI8kjoHvvhFYNw44Jprgj3fy/mSY8iB4OJLfk5Unn/e2vRyzBhnIQghEJqarN9RnS8g+8EUCL7PF5CuO1cOOV9u4kv3sEOTN1kWpfwB57E1Pewwb+dLLIA1N1u/163zDjvOc5Pl+nq7EISb+FKFHT7/vDVujx6tLu4TF9qf9+oFDBpk3XZzvuj3Xw7OV+/elgDTpa/QgcDia/HixVi8eDE+/PBDFItFfOlLX+q5T/756KOPsGXLFvzpT3/CAK/lX0YbvMRX3Ing2rXAa69Zt//+d/V7ejlfuhXcoNWKVM4XTU6mIW951J5JKuwwzjnwt79Zv+l370VQ8SVXB/QrNQ8k0+H/9a/Wd7l5M/DCC/b9mzdbv8X5Gtb5yiqsj+KW80VdpazFl2qCHCTnS6ewQ9V5FtT5om5vmpNWQdywQx2EAuAcQ3R2vmhfqnPOF3W+AGDwYOt3R4e3k5Wn81VdXRqOHsT5+sc/rP6kpcXZpyeFPL8S7teqVc7vV4xV48ZZv+vrgb32Ui/U0GqDuuZ87b239fvTny79v0oXX4HDDkeT5fxzzz0Xhx12mOM+xmzSdL5oZ0zfJ2jOl25hh0OHWmF0gL/zJdvsWdefyTvskFZ9Czoppt+rPEGlkxI5lyuI89XRoS63HwYqBMR5QTfhFsctTLVDWXxt3w706xevnUFwE18U05wvHSbYcQpu0POGLkKlRbnkfLnl09FJqg7nBu1L3SrN6hB2KDtf8nnp1j/lmfMlxFdbWzjni14DabjN9Lqoq7NK9y9YYL2vKNQF2PObiy6yzuGxY635hmrhtl8/e/6hq/N1553Aww8DX/iC9bcufYUORNqE63e/+13S7WByJs2CG0HEl1u1w6oqPZKn6TEQ4ReAPTlS7fEFlK5gZi2+6Cpf797Ziy/6HQcVX17VDmmbgoqvpFfmaf6R6r3Fd9zQYLVD9bll50te8Miq6EZU8ZV1wY0wOV86OF9xcr5UYc1pUi77fLk5X4WCfR3qcG6YEHZYLNpjh3C+ZPE1cqT6f3VxvtzEl6g0S+cS9Dlpi6/aWucc4cMPnY8B1mc4/3z7flVfMWBA9uIrrPM1bBjwX/9l/80FN2wiVTtcvnw57rvvPrz77ruuz1m4cCHuu+8+rFixInLjmOzIyvmiq3hB9vnq399ZeCCvhE23sEPZ+erf3zl5ynsQFat8vXtbE9SsxRf9jqI4X3TfFsB5POViJn6l5ulz46Byvujr0iRjei7Q0Di/sEOdxJeq4IbOzpcOE+w4OV8mO195FtzwqiQprjvdnC9dww6pABF9cNBFgbydLzkcXTV2yQKLXgNp9G3y/IqmJtAFUjdHSRQ9odDvI+sc4aDOlwwX3LCJJL5uu+02nHfeeZ4bKBeLRUydOhV33HFH5MYx2SF3DvQiScv5kgtu0NNJdO5y6JYOYYfU+dq0yVqBX77c+luOxM17YiKvXmZdcIN+R9SpCPo/8kKAKuxQHFe3UvNJr8wHFV+Ac4BsanLmI3gV3MhKfNE2uIVj6hp2qHPOl0nOV7kU3HBzvgDzxJcu4wbgHnbohur608n5AkpDD7MMO5SdL4FwaFUUCqULCrSf0DXsUEaXvkIHIomvmTNnYty4cdhzzz1dnzNu3DjstddeePLJJyM3jskOuXMQpUGBbMIOu7vtTq9YdDpfFB3EV0ODPSC1tFhJs+KzyJ1q3iuYsviSV7Z1d75kR0glvorF0pCirMSXeD35+hHQCUtzs31MdSy4obP4UlVYo+KLOl80zzAvKinni4Z86pjzBejlipoQdigXagLiOV9btwZffAtL2IIbQGnRjbTFl1xUQyW+/ASNfE7TfkLXsEMZFl82kcMOd9ttN9/n7bbbblguLAFGa1SV4uhEMQ60c3QTX4A9eG7bZj/m5XxlefHKSdJiINq0yb3SoXiuIM+wQyEWw4Qd0rbrKL7k1eEsxFdHh3PiEcb5ksWXV6ivTmGHeYov6ljIQoR+31QAyI/lgeo86+hwfgYdna+oe7eJa0wX8WW685X3oh11htxyvtxQHWOaQ5Y0cri5OIc7OqzHdHO+6uqiiS/5nM5afBWL7HwlSSTx1dbWht4BSob17t0brWn6zUxiqFbukxJfQZwvwF4VdtvjC9DD+aqrs9vV0uJe6RDQJ3zELexQd+dLDsdzC0GUxRc9T5IUwOvXO//2E1/0/G1qCu585SG+3CaCbpssZ9EmeUNSipvzBeQvvtz6Jlo4RBfnK27BDUAP8eXlKupUCbMcwg7DOl9Aenlfcri5HEEQxPnKuuDG8OGl7pGfm5S380X726jOFxfcsIkkvoYPH47XX3/d93lvvPEGhtDqBIy26CC+ROdMJxw6hh1S8bV1K/DBB/ZjOoUddnTYx8jN+coy5ytKtUO58qYq7FD8T5CcryT2rFO1NUrYoQ45X+KYVVX5l73Ow/kaPty+LR972fnSaT+nIOKL7udFMS3nCygtfpMHQZyvvEU5YEbYocr5oudlWOcLSC/vy63gBmCd26pzMuuwQ7mvr6oqrRYZ1vnKuuCGPC5HgQtu2EQSX4cddhjee+89PPzww67PeeSRR7Bw4UIcfvjhkRvHZEdW4ot2EvLFZ4rzVV/v7PjefNO+7SW+sh5EVQOoCaXmdQ47lAVAnLBDnXK+amrUA6rI/wT0E18mO18NDc79pyj19fax5rDD4Hg5X6aFHbLzFRy3nC/A3fnKu+AGUJqiENb5yrrghhyREgUOO7SJJL6++c1volAo4JxzzsHPf/5zR2hha2srfv7zn+Occ85BVVUVvvGNbyTWWCYea9YAhx1mhfIMG2atvPzkJ9Zjpjhfea2cyDlfdCB69FH7tk5hh6qk6TzDDqNUOwxScAPQV3y5hR22tzv/R3b4sq526Ca+6GdRia9vfhM45BDg3/9Ork30e6Rhh+ecY4mxr37VLrIikCuF6Sq+Nm60frvlewloWHMazJ0LTJgAfOc7yYgvec+9pFm3Dpg8GfjSl5zvcffdwH77WRu5ejlfpoUd5p3zlVTBDboRc1bOl9xP6VhwAyidK+ie85W08xW2zR99BBx5JHD22ekVb8mSSOJrwoQJuP7667Ft2zZcccUVGDRoEEaNGoVRo0Zh0KBBuOKKK9DW1oYf//jHOOigg5JuMxOR228H5syxRNiaNcCKFcAPfwhs3pxuwY1yzPmiK/KiHf37O8vQi+eqXiML6GQkSsENHXK+ZPFF2yQLW9U5LD8v7iAlb/brF3ZIz5NRo5ztp4N83mGHbuKLtldeUX73XeAXvwBefBG4887k2wQAn/qUfXvzZmD1auC3vwXeeMMegMXEmrZfV/ElcMv3EtCCPmkwbRowfz5w000AzSDQ1fl64AHgmWcskfXUU/b93/++FXlw2WXBnK+8zwvA3LDDKAU36P/k4Xy5iS8dnC+vhVoVeed85e183X8/8Oyz1u/nn4/2/joRSXwBwLe//W089thj2HfffdHV1YUVK1ZgxYoV6Orqwr777otHHnkEV111VZJtZWLy7LP2bdGhdnVZHamX89XREa90s0p8ySvXgN050wmHV85XloOSLL6+/nXgc5+zQgfGjAHGjQN+9rPSjRDzHERVDmJ1tbMDNE18eeV86eh8ffnLwIknAmecAUyZ4jymdAJQU5OPq0tLB6sGVPpZZGdu9Wr7782bk28TABx3nLXSOWaMsy/YuNH+vkX4Hv3O83Y44oovMbFqbU1eMHR1Ac89Z/89a5Z9W1fxRRc9xDVYLNr3r1jhDP82vdqhjmGH1MUK6nwNHGjf1kl85VlwQ/SppjlfboubYYgzf6PzGXkR1EQiHkKLE088ESeeeCLWrFmDZcuWAQBGjRqFoUOHJtI4Jjm2bQNeecW6vfvuwGc/C9x3n/V3W5u3+AKsASBqMrZKfKkGQbFySS8yXZ2vXXcF/vUv///LcxB1O469e9vfQ9CCG1HbnoT4ClJwwyvsMEn3MUrO11/+Yv/tJr5qa/NZWPBzvrzCDun5laRAkCswin5q2jTg2mut2zt2lDpfOoUd+n1/fmGHVGhu3uycxMbljTecYplONnUtuEEny2KckPMm582zb5te7VDHsMPqauu8bW0NvskyHXfSDjssFKwfeZFIh7DDNJyvSiu4Qc+rtLYtyJJY4kswdOhQFlya88or9gV6+OHOi2DrVn/xtWNHMuJLtEE1OVE5XzqKrzDHIc9B1M1B7NXLnnzp7nzJ4XhBC26kFXYYttqhDD2mdCVYdiSzdr6iiC96fiXZXrcVVvl89HK+8hZf9DMUCqWRA0GdL8Ca6CYpvmbPdn9MV+eLLlSI68bLSdE57NBtoYaiU9ghrco5YIAlonR0vsT1H7fgRhoh30HEV5xqh5UQdkjfX/7+TCRy2CFjFjS05PDDnR1qEOcrTt4XHfBEuKGX+NKx1LxccCMouoQdys6XQEfxJa+wBdnnK2ip+aRzvvycLxmV81VTY03QdXS+3HK+dBBfpuR8qYRW0IIbQPJ5X3QskIkrvjo744Wou6FyvtyclPr60skhhx2GQ+V8AfZ4HCXnK23nS3zHphTc2HlnZ5qC7jlfeRfcoOdVOThfgcTXrbfeivaYPUB7eztuueWWWK/BRIeudh5+uLNDbWvzLrgBxBNf8oDX0aG+8IIU3Mir2mHQybVMnoOom/OVpfii33MlVjuUUTlf4nrLY2EharXDHTucEzDdnK+8J9n0/VVCK2jBDSBZ8dXd7cz3kolb7RBI59jTyZaf86U6thx2GA5VwQ3AHo+3bXNvV9YFN8T7qZyvIAU3isV8wg7r6oCddrLv9xM09LyurnYuoFea81Ux4uvKK6/E2LFj8Zvf/MZRVj4ILS0t+OUvf4ndd98d3/72tyM1kolHezvwwgvW7VGjrOR12qHKYYeiE6MDQBbiK2zBDRPEly5hhyY5X0FzvnTY5yts2KHKCRXPz2MPlDBhh3IuhW7Ol65hh6rNlMM4X0mWm1+wAFi/3rpNK3EK4jpfQDrnLp0s+zlfqmNLz6O8y1SbUO1QVXADCLbRcl7Ol7j+w+Z8ycc3q4IbgDP0MEzYYZ8+2Z8jSThfcaI7KjLs8NFHH0VVVRW+9rWvYdiwYTjrrLPwu9/9DgsXLkRRijEoFov497//jbvvvhtf+cpXMGLECHzjG99AbW0tHqUbIjGZ8dprdoci9rx2Czukm6qm6XwFLbiho/iKmvOlQ7VDwCm+vD5LTY3tKphQ7dBt0p6UAO7uTjbsUJCn8xWm2qFXwQ0dnC+Twg7zcr5oBMR//3fp+Ri34AaQTj8X1/nKa9xQYXLYYZBwWJ1yvoKILznHKyvnC3CKrzBhhw0NzsWmLM6RpJ2vsNdhuTlfgfTrF7/4RRx33HH4xS9+gdtuuw3Tp0/HH//4RwBAVVUV+vfvj379+mHz5s3YtGlTjyArFosYNWoULr30Ulx66aWoC2MZMIkhhxwC7s4XvTiyDjuUna8+fdxj98XrZEXUnC9dwg6jOF+AdQ5s25aM+AIsAVPls+Sja9hhS0vppD4J8WWK8yVPaui6W5ITWrfCKWGcr7wn2EnmfCXpfNGx4JhjgH/8w76vpsZ5DMOQdj+nKrgRxvmSz408pyImiC+3sMMgiwJ5O19uBTcGDLDbTD+fLuIrrPNVKFiv5TafShqdcr4qxvkCgLq6OnzrW9/C4sWL8fDDD+Oss87CzjvvjK6uLmzYsAFLlizBhg0b0N3djZ133hlnn302HnnkEXz44Ye48sorWXjlCE2wPuII67dbzlcW4qu93TvnS0w25HwvQA/nq1IKbgB2+5MSX0EcCa9qh16bLNPXpgIvKVEjhxzS14tS7VCgg/MVpeCGbs6XTmGH9HzQxfkqFu2xoG9fYP/97cU4IHrIIZCt8yXGiajOV97nRhDxJSbWgF5hh0EWBXR1vmhb/JyvpIvGqApuANGdLzF/y/Ic4ZyvZAmtX6uqqnDyySfj5JNPBgCsX78ea9asQUtLCwYMGIAhQ4Zg8ODBiTeUiUZXFzBnjnV76FBrjy/APezQa7ITlajOV7mJL9MKbgD2OZCk+PLruL2qHQbZZLm62r2KVNLiK8mww6yLydCNzkWIqVwW3avgBl0hNjHn65lngHffBc47z3lNJIGOztf779sbY0+aZB3bI44Afvxj67444ivtRSZV2CF1UnbaCfjoI+u2X85X3q5oEPEF2K6GTs6XKuxw5kzr3Dr/fOscoseXjjt5OF9UfNG2eDlfxWK8fU1VJO18iflbXV1pteq00Mn5qkjxJTN48GAWWxrz9tt2p3f44fakVMeww9ZW637RMcr5XnL7TMj50iHssL7eOSDR7z5t8SV/z0GS3aOGHcpVrwS6iy/RvqxDalXhfTU17snhoiS+qA6Wd8GNODlfq1cDn/+89V6dncA3vhGvzTJxc77SKDUvii4BtuP12c9ax62zU2/nS1VwgzopU6YA//d/1m2vaoeAPuKruto7zFNMrPPM+aqrc15XcsGNJUusY9/VZfUL//VfpZuk9+5tLdTkUXBj2za7Pb162W2hk3fV2LZtWzbia8wY9f0q5LBD+j9ZO19ccCM+vM9XmbNokX17/Hj7tlfBDUHWBTe2bLFXLwFg2LDS55jsfOUVdiiL2BNOsCbRY8cCe+7p/RppOF9h/qemBjj2WGvgbGgAJk+2H3MLO5QnNEm5j2mHHWa9sKBayZQHVXrsCgV7gi6HHSYZykU/Ow0fTTLna8kS+znvvRe5qa7Edb7SCDukxWJ23dX63dAAnHmmdfuEE6K/dh4FN+hk/oQTgN12s85R1efQMezQb3Ivrr08ww7pQh1Quigwb559PMV1JC/qiD4jzhzCC699vjZvtm/X19vzHq+wQyD5vC/xHVZXO/u03Xe352XHH+/9GgMG2GkjnwSe9Vx3lVBwg55X7Hwx2rN0qX2bWtxyzpef+IpzcYdxvtzaK9Bhk+UwHY8OYYdy+OappwIrVgBNTf4rWDqIr9GjgZUrrUGLTkq9wg4pSU0M5UqHgNnOl2owra11Tjzk9vbqZT2ehfMlh48mmfNFj28ak/Ekna+kwg7dwt3uvhv44Q+dq/BhSdPhLxb9na8hQ6woj7Vrrc1rZXQMO/QTX1lOrGXE8ZbFl+x80fFaXFNy/522O+O1zxe9durr7c/jFXYIpCe+5LlDdTXwyivAqlXAyJHer1EoWKHSH31kbRlEX4/DDs2DxVeZE0R8bd2absENVYU41YW3fTvw4Yfq9gryqnYoBkC/UBGZvMIOu7vtVT9V7tyIEcFeRwfxBTiTpQVu1Q7lgUH3sMO8nC/VcfZyvgB7YrNpk/NYpiG+vNrS3h4v5yvKFghhiOt8NTZaorK7Oznny018VVUBu+wS77XTdL7odw1YE6+uLqfz1bev9ZlUwgvQM+wwqPOVZ9ihvEed7HxRZ0m0kx7f6ur0HTyvnC9ZfAV1vlT3xcFNfAFWP+cnvATV1bbwoq9XaQU3OOwwRf7whz/gnHPOwX777YchQ4agtrYW/fv3x0EHHYTrr78eWxSlc6ZNm4ZCoeD5s3Dhwhw+TX5Q8UVXNnUsuAEA77xj39bJ+RIDS9iinXmFHba22oUTVLlzQRHnQFdXtElqUuJLhSxs88j5SiLsUAfnK6j4Eu2XXcAsxFeYnC+/9qQtvuJWOywU7Os2becrCdLs51Sr3Fu3Op0vv+OpY9ih31iiY9ihKudLoBJfWThfYcQXdb7E+JiF8yWOTVTR4kaW5wg7X8mirfP1q1/9Ci+88ALGjRuHCRMmYNCgQVizZg1efPFFvPrqq7j77rsxa9YsjFAs4e+3337Yf//9la/bP85M1EBE51hbCwwfbt+vY8ENwAodEajCYPIWX2EnLXmFHbqVmQ+LHHoatipcEqXm3cg67JCKrz59nMnwJm6yHMf5kksx5yG+knK+0jjW9DVl9wDwd74Aa6K7cWP6zlcSpOl8qVa5t2xxOl9hxJcpzldeYYddXXYb/XK+li2z/84r7NCr4Iac8yU+T3e3XdHQreBGkojPnvSOS6Y5X1xww0Zb8XXzzTdj9913x6BBgxz3r1+/HieddBLmzJmDK6+8smezZ8pJJ52EadOmZdRSvRHO18iRzkRPHQtuAPo6X0FXK2XyCjt0KzMfFvkciCu+glQ7DLrCFjTsMCkBLNye6morx2TJErM3WQ4ivlQ5X36vlVS7wjpfJoUd+okFwJ7otrRYYpfmv0UhasXWIKR57qpWuVtbwzlfHHYYHLc9voBS8UUja/ycr7Q+R5SwQ8D6nPX1+eZ8xSVLgZ608xX2Oiw350vbsMODDz64RHgBVmn76667DgAwc+bMrJtlFC0tducjC5naWvsCoiFqeTtfK1ZYvxsb1Xk+eTtfpoQdUvGVlPMV5RyQP3M5hB0OHmwfF5M3WQ5b7RDIRny5iWg/5ytMaFmW4kt2uWpqgvUj4rrt6EhmMpiV85X0RNDP+aqr8z+eOoUdBo2iEJ+pszP5TX+9cNvjC7Cuf9Gu5cstZ1ZgUtghYH/OchBf3d3BFjbjoFPO1/bt6X/etNFWfHlR80lPWp/0CFJm+FUOFB0R7aDoxUEHtDTFl+prHD1avdJbKNidrGniK6+wwySdr7CkmfPl5nylLb6am0tXpZN2vnQPO/R6raTaFcf58mtPntUO+/YN5mIlXW7e1LBD1Sr3li228xUkhFOXsEOaOxs07BDIduHOy/kC7EWBxYud97uFHdK8pDREZFTxJT5nOYgv+h5poVPOF2C++5Vo2GGxWMR9992H119/HaNHj8ZXv/pVNKiu3hi0trb2hBSeeOKJyufMmzcPV111FTZs2ID+/ftj/PjxOOGEE9A3SC9dRviJr4YGKyaadlBZFNyQqx0OHGhtekpRtZe2savLjJwvHcIO83S+4oivQsEZKiuTZc7X1q32gNzcbOcShBVfqsdUwifPUvMUt4IbXq+VVLuyyvlKW3zJQ2CQkEOgtNx80AqlbpRTwY3WVtv5CnI8dQk7DPMdyItLSecLuUGPt+x8AdaiwMcfl97v53wB1rUWdeKugrofbpssC+Swwyydr7QKbshjW5p+RBKbLCctvoL2pToS6RDefPPN+MlPfoKHH34YRx55ZM/9J598Mh5//PGev++55x68+OKL6B02UYQwc+ZMTJ8+Hd3d3T0FN1pbW/H5z38eN954o/J/Hn/8cUc7AKvQxi9+8Qucc845vu+5NUA2X5Dn5A2tRKQqXuHnfGUVdjhoUHjxtWNHtquBUXO+VJOSjz6yip94CYu4pFFwI2vx5dfBu22ynEapeVrdr7nZHrC7uqwJgImbLOvufMkiWmzzIAoCiImXW87Xxx/bBQHq6oBPf9p+bpbiq77eOq7ivqBrgOx8WbiFHUZ1vvIMO4wqvrIc67zCDgH38SSI+OroSFZ8yRs6i9+in6C4OV8mF9zI8hwJOsZ5UVVlLaoWi+HbK3+fpjtfkaZ/f//731FdXY3DDz+8575//etfmDFjBpqbm/HNb34T++67L9566y3cc889sRq4YMEC3Hvvvfj973+PmTNnorW1FWeccQbuueeeksqFu+66K6677jrMnz8fGzZswIYNGzBnzhwcf/zxaGlpwbnnnos//OEPvu/Z2Njo+6OqsqgbQcMO6epRHgU3VLldXht+ik42qxXMYjG5sMMbb7T2ohE71KdFUgU34oaexhFffh28fGzTzPmilQ6bmkoHPdM3WY5bcCPJCa2X+BbtoZMjVc7XrFmWU3TggdbPfvsBxx1X+h5A+qXma2qcxy2q8xUXU8WXapLV0mLfH+R46hJ2GOY7yCtqwi/s0G08Ed+7LIjS/BzynmICVT+lKrgBpO98FYvBx7SwZHmOJOF8AXab4xTcAMyveBhJfL333nvYe++9UU3O9oceegiFQgF//OMfccstt2D27Nno169fILHjxWWXXYZisYj29na8//77uPnmm/H3v/8de+21F2bPnu147tlnn42rr74a+++/PwYOHIiBAwdi0qRJePzxx3HppZcCAC6//HK057FrYQ4ECTuUyWKTZdn5UokvP+cLyG4Q7eqyY9XjVjsUl8OMGem2X9ewwzDVDv06+KBhh0nk3dHjOXBg6feaRKn5qiq1M5MWujtfQcWXyvm6997SfmfmTNstydL5ksWXDs5XWiWvgWycLxopEeR4mhh2mNT4GxZ6bamClsI4X9XV6Z4b9NoNIr7yKLiRRKEKN7LM+Urqc0QtwFJuOV+RxNf69etLnJ85c+agqampJwyxb9++mDRpEhbLWZkRqa2txa677oorrrgCf//737Fx40acddZZ2BbwKpk2bRqqq6uxdu1avPzyy57P3bJli+/PypUrk/hYqSLEV6FguS0yqpCCPMIOw4qvqCsnUQk6sVYhT9KpIE6zs9Sl4EacaodRww7TcL7oZ+/du1T4JbHJMmB/5rw2zTRFfNGBV5XzJSZUdXXAqFH2/aqiAGmLr9raynK+kl7bVE2yVq2yb4d1vkwJO6TnTNJhcF74tTFs2GGaoXFhxFddXT4FN5II13PDtIIbQHLiqyKdr+7ubmwnZ+zWrVuxYMECTJo0yfG8gQMHYsOGDfFaqODggw/GXnvtheXLl2Pu3LmB/mfQoEEYMmQIAGCFqGfuQkNDQ6Af3RET/REj1KJB9RHyKrgho5PzFWd/HJGnAlg5KHTTxzQ7S12dryTFV9B9vpIYoOgATcsti/em50jUnC/6v7o6X3kW3KDv7+d8CQ4+GNh339LXpudB2pssR3W+5D2V4iKuX9onJUXWYYdxxJcpzhd1nXQSX35hhzo4X6p2hwk7VN0XlaBjQxTY+TKXSOJr1KhRmD9/fs/fM2fORFdXV4n42rhxo3KvriQQ4udjVdkdBV1dXWj5ZPmwEqoetrXZFYnchEwY5yvOamaQghuUujpg6FD318tafMUN1xHHlBZAASrD+cpDfKkKNQiSEl9uYYd+E1udnK8g1Q512mSZtkflfKmef/jh6glK1mGH9DgGdb7SCjtMoyJamu6GaoWbiq9yDTvUVXwFdb5EGLXuYYdpF9xI0/nKq+BGHOcr6hjH4gvA5z//eSxbtgxf//rX8Ze//AVXX301CoUCvvCFLzie9/rrr2MUjflIiHXr1uGNN94AAOyxxx6B/mfGjBloa2tDoVDAxIkTE2+TbogqX4B78Yo8ww69Cm6MHu1dCTBP5yuK+BL/o8p9SwsxWSsUgq+0q9BZfNFzlYojWfwUCvE3+qSvX1/vHnboN7j6OV9ZnttJ5nwVi8lsetndbedXqr5/uvGswMv5OuIItethQs5XWmGHaYgvk5wvU8IOdRVfbot5svhSVXHNW3zlUXCDfmaTci1lkna+uOBGBK6++moMGzYMv/71r3HKKafgvffew5lnnok999yz5znz5s3DypUrccghh4R+/QULFuAPf/iDI7RR8N577+G0007Djh078JnPfAb77LMPAGDZsmW4//77lf/z2GOP4cILLwQAnHnmmRg2bFjoNpmGX7ENILuCG2FzvrxCDoFs3QEgOfHl9bpJI8RX//7xStrrLL7ocaWDpdekPeoxDxp26Hd+qB6n11xckRiGJMWX/HpRUZWOpqgmg6qcL/H3Zz+rLuGfp/gqR+cra/EVtuCGjmGHfn2FruLLzfmSXWWV+Ep6zDOh4EZWOV9p15HTLefLdOcr0iEcNmwY5s2bhzvvvBNr1qzBQQcdhLPPPtvxnHfeeQdf/OIXccopp4R+/Y8//hhnnXUWLr74YowfPx4777wz2tvbsWzZMsybNw/d3d0YN24cHnzwwZ7/2bBhA84++2x87Wtfw/jx47HTTjth27ZtWLBgARYtWgQAOPLII/GrX/0qykc2jiDiK0/ni3aaUcWXCTlfgHuHm0XYYZyQQyB+6Gmcaod+A1V1tSUsu7vVpccpcUUNPf+9wg79JlSFgvUceixNcr68zv/Ozvgru37ljFXvLxYX5OdPnGgJHVUJ/zxLzeflfEXdKD4IaU4CVSvc9Psr102WdRBfqus5aNihuO6yKrhBr/Mg4osLboQj6VLzlV5wI/IhHDp0KH7wgx+4Pn722WeXCLKg7L333vjJT36C5557DgsXLsT8+fPR0dGBQYMG4aijjsIpp5yC8847D/Wk9xo5ciS++93v4tVXX8X777+PefPmob29HU1NTTj++ONxxhln4PTTT0dVmjvbakRU8aVK/gfSFV/9+tmTaMBffGVd7TBuzpfb/2QRdhin2Aagt/MFWOfCjh3piy8v5ytM2CFgHVO3JGzdCm4EzfmSXy/JNnm1B3B3vsQ2lOx8WZST80Up102WqfhKsgCEHyaFHbrt8xW34EaS4qtcCm4kJSLZ+bKIJL7OP/98HHrooTj//PM9n3fPPfdg9uzZuPvuu0O9fnNzM773ve+F+p/BgwfjhhtuCPU/5UwSYYeFgtVh7diRfLVDkdcBWBPZxka7EqDOzpcJ4mv7drvNSTpfupWaB6xju2OHd84XkK74CuN8AdYxbW21/1Y5X6aVmgeSmdS6TaYEXs6Xm/hSOV/0s2dRap62O6jzVVtrLZC1temf85V1wQ0KVztMlrBhh+IcDRJ2mHfOFxfciE5SzlfUMU7up00XX5FsoHvuuQdz5szxfd7zzz+Pe++9N8pbMDGhlfXcap74hR0C9sWdZs5Xba1zAA0qvrq7k0ny9yOu+Mo67DCpMvOA/s6X+D78cr6SLrgRNexQ/D9Fh1LzbtUOs875ihN2SCdfhQJw6KHW7Tydr0LBal8U5wuwr192vixUxZNNqnYYJoRdV/ElL+jttpv1u6vL/gH0F1+y81Vfb/clXHCjlDQKbtBF+DDvD5gfdphqDF5XV1fFhPnpwHPPWfva7LEH8Mor1n3NzWqHC/B3vgC7840jvlRV/mTxRQdQt+qMgqxDSOLmfGVdcCOpMvNA9uKrWAwfdgioS49T0iy4ESXskJJlqflVq4AvfAH47/9O3vnKO+yQPn+//WzhkkfOl3wORxVf4vqNK746O+2FKlPFV02NWnzlXe1wzhzgyCOBIAE+5eZ8DRrkzNmmlYzFdZlkPuDixcDkycBVV1l/x6l2KBfc6N3bPuamOF8mF9wAgl+LtAquwHTnK8Yh9GfRokXoH3f2xwTmW9+yRZdg113dnx/E+UpCfKmcL3oh1dQATU3Au+9a77fTTt6vJ0+mku7QZEzL+TLZ+aJOZhjni7Yti4IbccMOKVk6X7/9LfC3v1m3zzmntA1xC27EJY7zRRdwjjhC/Toq5yvNTZbFe9MJanNz8NcRw+fWrda1E3Vz5DCT/ihkUXCjTx+1y5V32OGPfww8+ywwdy4wdap3ddkw3wMVEDqJr759rbZt3265XvJCVJphh9deCzzzjPVz0UXJiq9evazX2LrVTPFlmvMFWG0OMs6rrtmKEV8/+tGPHH+//vrrJfcJOjs78c477+CFF17A5MmT47WQCURrq9X5A9bJ3K+fNeB71ETxLbgBZCO+amuBq68Gvvtd4MIL/S9G2rHu2KH+HEnCYYcWSYgvvzDRsB286vvwKjWf9ibLQc4P+Tkq50uEZBQK0drrBt3/b8GC0vc1ueDGwQcDX/oSsHy5tRAlyGOTZfE+4jNceKEVmbD//sBeewV/HbnoglsUgx9Ziq+0nK8+fdRCK++www0brN9btljfkdd4VA7OV1UVcP311kLOD38I3HGH/Vh7e7rVDp991r69caNT6AYpuFFXZ+exiwgRKr5Em1l8lZKG89XR4TzP3VBds6aHHQY+hNOmTUOhUEDxk1nz66+/jtdff93zfxoaGnDNNdfEaiATjOeftye2F18M3H67//9kFXaoKrhBJ5W1tVYolLRHtyu0Y82iCpRpBTeSDDukbc/C+QrbwasGMy/nSxR7CStqvDZZ3r7dXkyIEnboVmG0qyveIKdi7Vr79gcflLbBxLBDmvP15z+XPp7nJsvivffcE3j55fCvIy80JSG+ks47kV8zrYIbDQ3JOF9Jf9/0XNq2rfzFFwBcdpn1AwD/93/2/SrxlZRAWLrUWUhMdk2COF+AtSC5Zo09TtJcSNHWJOcV5VLtMCnnSxUGHua9BRXjfF1zzTU94utHP/oR9t9/f3zxi19UPreurg4777wzjj32WAwZMiSxxjLuzJ5t3xZVvvzIM+xQFl9hoB0ri69SdHK+wlY7DFtRSXVsvXK+isVoosYr52vLFu/2yATJ+QKCh2SEgYqvjRtL3zes+BLhR0D+myy7oSq4kVW1w7iTraT6Ona+7NtJO1/0/PETSSaIr7A5zlmFHdI5jngtOo/wE1+inf37W+JLjJPU+RKLaKYU3Miy2mEazlfQa7HinS+BEF8//OEP02gTE4G0xZcIFYwSBlVO4ivJTZa54Ib389MQX0A0UeO1yTIdBOLmfKVdEpuKL1Ub5OMin7vypGbwYOCjj6zbeTtfbuhQcCMqlS6+6Abqbs5XkLDzNK8r2fnywgTxFfZckfNfvcRXnDFPFl/t7c6+Psgmy4C9INnaal374vPK11pSYd/lUnAj6U2WAXa+QtOdRX1vJjBtbXahjT32AIYNC/Z/qhAWr5yP9vZoA7ef+Ap7IWctvrjghoWO4ks1mHmVmges8zhInDnFy/mi4itutcMoq4JhWLdOfb+q1Hxtbamwkdve1JS/+IrifLH4Spa0JoFUdKicr8ZGf/ENpBt2WG7OV9hzRf7us3S+6GsHyfkC7DGxWHQuRvXq5ZyXbN8efpxQUY45X0kW3AhCOYovrgNfBrz8sn0SB3W9gHDOFxA99DDIPl9hkPMg0obDDi10FF9RnK8ok0M68a2rSzbs0M35Svr86Ohwhhqq2kDfX/VZ5BXlpib7dtLiy+97FJSz85VUfqupzhedYKmqHQYt259V2KHfdxRmIc8U8SXnBYu1+SQLbqxaBbz3nvO+jo7g1Q4LBbs9NBpkzRrn/6RxzMtFfOXpfKn66IoJO1SxcuVK/Otf/8JHH32E7S69TqFQwA+8Su4xsaErQrTEsh9hCm4AyYovOmEK2yGZVnAj62qHOocdhql2mGbYYVjoRpyFQrJhh1k5X+vXuz8WVXwNHmzfTkLEsPPlJKmFprih036klXtCr62GhlKxFSTfCzA/7DCLcU4QNtKDXl+qze6TEAjPPVd6XxjxJfptwLkgScVXfb3zPElKfJVLwQ3x+tXV8cIxueCGReSh4YorrsDtt9+Ork/O/qK0A5oozsHiK31mzbJvh3G+VJZ6GuJLntzIsdrlnvNVLs5XFMcoTrXDIOdF1LDDsNCkbCDZsMOsnC+3fC/6vjo5XybnfMml5qNiYtihjs6XiWGHee/zpQo7VkH7CdpO1SbLUc8NOeRQvFYY8SXwcr7chGQcyqXgRlILSlxwwyLSYbzlllvws5/9DIVCAcceeyzGjRuHfv36Jd02JgDt7cCLL1q3R48GRo0K/r/V1faeF4KsnC/qgATp4Ckm53wNHWp3+Fxww/v5OoUdyknZaYUdpul8ueV70TbQtnjlTYjn0m5f15wvletBJypZbLIcFVPEl1gNLxbTFV+qnK+g7ROY4nxVVdnjcx7iK+h54ia+kiy4oRJf7e3RxBddkFy92vk/aYuvcii4EfczJJXz1dlZmvdnEpGGhrvuugs1NTWYOXMmPve5zyXcJCYMc+fag3IY10vQ0OAcELxKTachvmprw1vYpuV80c5h991t8ZW289W7d/yVtpoaaxLQ3V0epeZVbQqC7HylFXaou/NFz4f+/ZMXi2k4X3lsslxppeYB67O2t6cbdig7XzqEHablfAHW95+X+Ao6dtBznIrlpMIO168H3nqr9H4v50s+tkHFl5uQjEO55Hwl5eYnJb4A63yLu8CcF5EKbnzwwQc49NBDWXhpAA05DJPvJZCLbmRdcCNKZ2Razhf9n913t2+nLb6S6pTi7PWWR7VDr02WAb3DDtN0vrzEl6raoepcLxTsY9C/f/KOQlbOV5riq1hMp+BGnIWmrMQXkOwKfFLOV5abLHtBHw/yPYjUAFOcL5X4irvwJSJ7AGeOaRphh1xwwx3dnC/A7NDDSOKrb9++GD58eNJtYSLwwgv27SjOV17iK86FbFrO1+TJ1u+BA4Ejj7TvT6uzFMckyP43QdBZfLm5M17PiyO+xLHIapPlJEnC+QKAY46xfk+ZkryjEGWT5TDOVxbii4ZUV0rYIWAfZx2dLx02WS4Wgddft2737x9sccw08ZVGwQ3qTu29t/O13PqLoGGHcsGNNMRXuRXciNunJVVwAzC76Eakw3jYYYfhjTfeSLotTAQeegh47TXgpZeA3XYL//9yxcMsxFd7u72TvGniK4rzdeyxwPvvW6t2L71k359WZ5nUqrsgSfFlYrXDYjHdsENdc77cPstDDwELFlgToZtusu83wflShR0Wi8ltqCq/diWJL3G+6JjzpYPztXChvQBy6KHBcp1NEF9phx3S16TCiS7iAsk7X0nNLbjghpOkCm4AZouvSM7XNddcg/fffx+//e1vk24PE5L6euCQQ4Arrog2ecg77DDKhWxawQ0A2HVXa+DIorOME9KpIi/nK2q1w6TDDun3lEbYYR7Ol7zoErTgBmAd3332sSaPSTtfaed8qZwvINkJeaWKrzScLz/xZVLOV5QtYaj4kgpKp0bSYYdpia80Cm6YHHaYdsGNpOYVHHZoEWlo2Lx5M6644gpcfPHFmDlzJo4//niMGjUKVS6j4OFR4uGYTHCbhAniiq9isXRiE7czMq3gBiWLzjJp50t85izEFz03dAk7pJPeJKodys9xKzWfZs7XhAnOvXPCOF8UHcRXFOdLVQgmqesl7DnsRRriK+nVd0EeYYcmVTuk4ivolEiIge5u67im9d0JikX9qh3Sc4C6VlELbtDXoNEAposvE50vDjsMyec+97mefbwefvhhPPzww67PLRQK6Eyjli+TCGGcrygdp2qyHbczMq3gBiWLzjKpxFhBHOerHKodqsSXiZssC/HVqxew1176iy/V92ia8xX3GuSCG/btpJyvNPf5chuPikW7OFZDg7X4EQRZDKQtvmjfmFTYYdxoD6+ww7jOF3UTWXx5k6fzRb9nUW0XqEDn6/DDD0chqQB5JlfSDjtUTcg6OuwQSdNyvuJOXNLuLKnTmHfOl8r1NLHaIT3HVAU3vPbJU5HXJstilbepCRgzRt2GOOIriUltHjlfAIcdJkEWYYf19db7iPeIkvOV5KJGd7dzAu82YV+8GPjoI+v2IYcEH/fkHKS0y2pHGevSLrhBJ9hRxRdtY2OjcwIv4IIb3iTlfMUtuNGvn13RueKcr2effTbhZjB5kXbBDdWkpr3dLPGVZMhO2p1lkhM/gTgHurqsH7/JrkD13evgfCUddujXHpk8nK9i0RZfzc3WhuyqNtD3DzL50iHsMAnnK8ljXaniK42CG3LYIWBNnjdutG8HIa2wQ7k/c5uwRwk5BNIRA15EOU/cxJc45knmfAUNO/RyvqqqnBN4+j/0/0xwvvIouJGk8xWl4Ea5iK9IBTeY8iEP56ury54Am1BwI8mww7Q7yzQ6+qjngOq7z6LaoV/OV9jjTj+zKuzQrz0yeThfmzbZx1YlvnQMO2TnyyzxlYXzBThDDfMOO2TxlV+1Q6+CG145X/LrCLIIO0w6bDSrghtJRtTEzfmiAtzksEMWXxWOLL6SLrjhNiFLap8vLrjhJE3nC4gvvkwPO/RzvnTdZJkW20hSfGW9ybKqTX7Ol98my4AZ4itOX5dk6LQb4txVhRtHxc35EuQddii/ltuEXeR71dcDBx0U/PXTcGK8iOt8+YmvrApuVFd7V25VhW9yzpc7SeaxxhVf/frZt012viINDbPpMk4AuNqhvqQddug30JlUcKO6OnjInRtpd5ZpO19hBs8o4its+7MOO1TlfPm1RyaPUvNUfDU1AcOHO3Nnytn5UgnasIVggtDSYk3qkqx2mFRfl6XzBVjXGJ3IRiUp5yvoIkFrq/U+UUOrVRP2FSuADz+0bh98cGlInBcmOF9p53wFDTuUr7VevexKtEGcr7RyvspBfCXZpyUpvkx2vmJVOwwCVzvUmzzCDr3eLwh55XwlETJgcs4XoJ/zpUO1Q4quzhctqdzcbLlFo0YBH3zgbEOQfb4oSYsvr8mUW5vCOF9phR1ecw3wv/8LXHklcO656veOgolhh4B1nNMSX3GdL7fv+umngS98AdhzT+C114J9d0GcL1pVNOw6tAniK6tqh1VVzu/ba5NlILz4YufLnSSdr7gFN6gArzjny63aYXd3N5YuXYrly5cDAD772c+iNumzjUkUP+fLrapbUMpBfAmnxATxpVPOl+rzZRF2qPq/OKEvqpyvQsF6H/n8NsH5am62fk+YYImvYcPsdo8ebX22YhHYZRf/1zXV+UpafN1/v/X73nuBM89Uv3cUTBJfaeSz0pVtIb722AN45hlrBXzIkGCvE+Q8ve8+q294803g7beB/ff3f90gzteCBfbtz3zG/zUpJoivtDdZFudAQ0PpOeYWdgg4r508ww7TrHZYKFifu6vLHOcrShQKhx1+gl+1wzfffBNTp05FQ0MD/va3v0V5CyYj8na+olzIeYUdJiG+0i64wc5XNtUOxWsmIb6yzvlqarJ+//SnwG67Wav9wj0aMwZ44AHg/feBCy7wf92sxZcI/ZX3ffEiC+dLnCOtrVxwA0iubxOTq/p6+7q+5hpg0CDgyCNLxy83goQdLl1q3w468Q7ifNFrb8SIYK8ryFN8BR3v/MIO6bGP43z16VO6iOYlvuh5rovzlcY+bXV1VlvTLLiRZJ8mb58Q9v0rOuzQj3333RePPPII9t57b9x000246qqr0ngbJgHyKrghiLISVFNjT8CyLLiRtPOVRmepk/OVV7XDLMIOAfXxjRJ26OZ8pVlwA7DCDq+7rvS5//mfwV83602WAev40RVPHZwvcS3v2KGegEbFxE2WgeSdLzpODRsG/PjH4V4nSNjhkiX27aDHOojzpVr4CIoJzpdf2GGhYOeXxim40dBQeo6l6XwltbCbZtiheM1t27JzvuJ+hijnNP2ey8X5Sq3a4ZgxY3DggQfivvvuS+stmASgYYfV1fb+WwIdxRdgd6xZOl9JTFo45yv4/+gSdqgquAGohZ+upeblnK+kyHqTZaD0+IV1vqJs/u0H/a7o/kFxr0Fatc0k5yuphSUxuZLD48NCzxFVv9TZaW+CDATv5+TXUn1HqoWPoJggvvycLyDeNgRuzlcc8VUuBTfoa2aV85Wk8xXFYWbxFYDm5mYsoctJjHbQFUVVx5DGJssUE8RXkgU34oZg+JFkYqwgS/Gle7VDOewwSHtk5A0/6cQwq1LzSZF12CFQOpEK63y5Tb7jQM8psQEwkMwCSBJ9XZIbxbuRZthh0PBCN0RuDKD+rj/6yNk3peF8NTaGq3QImC2+6HUZdQPuYtF5DiSV8+UWdlhTY1+zSYsveg4mSRbiK2/ni/f5CkF7ezteffVV9InbazKpQlcU0xBf5eR8JTFpESEYQPoFNyrB+QoqvuJMDFUFN+TX9LpPhh5P+TOmXXCjqgoYODC519VBfIV1vqKcl36YIr6S2C7DjTQLbsR1vgD7u1B91zTfC4jufHmJryiLHmmEwXkRN+yQ/n8Szhc9nlmEHdLfSRfcSKv2XKU5Xw0NdoQWO1+ErVu3Yu7cuTj11FOxfPlyHHnkkUm/BZMgYZyvKKEkaRTcAMwVX/R1TAk7jFrxMq9qh7o7X/Q5cvvTdr4GD/YXK2HIepNlILzzJQvEpMVXV5czl5GKryQmXOKcSyLnK62QQyB556ujw36dJNZwxXmg+v6jii/5vJEFQVcXsGGDdTtsvhdgnvNFSUJ8yVsNeIkvr3z1oM4XYB/zpJ2vtBxn8bpZFdxIsoJrFPFVW2svxpjsfEWanlUHWDorFosYMGAAfhw2M5bJFDqo+ZV21sn5Eu1Ku+AGnVglNXERn7kSC25k4Xyp/k8n8ZWH8yVyvpIMOQTMcL6ChB3GEV/y95RkzheQrPNlkvhS7fEVB6+wQ1l8RSmBLdi2zd6PasMGK3QOiHbtRZmoxiFt8RW276WT64YG50JLe7v/Pl9ubZSdr6oqu71piS+Tna8kI2riOl81NVZ/sGVLBTpfxWLR9aempgajR4/GhRdeiHnz5mHs2LFJt5lJEA479CaNXIk0O0vdC27kVe0wzsTQreBG1LBD2mb5M6bhfLW12YOU7uLLb5NlIJ7zlUbYoTyhTDrsUHzeShZfuoYdql6LTijj5lpm7XzRczlK2CElDedLDttPKuervt4OZWPxVUqSzldS4gswW3xFGhq6/WZQjDGkXXAjbfElVrKTEhoydDAyQXxVmvNlYthhoWA9r729tP1pOF9xSl37YYLzRTcirVTnK8mKrW4kXe0waefLK+xQrgsWNecLMFt8peV8RQ21V50DdXV2SGpSOV/0uSy+SknS+YobdlhdXR5hh6lWO2T0p1cve8XHbyVfR/EFpBt6aJr40t35MjHs0K3gRlTxBdjHNAvnK61Kh0A+4ks+xkEKSIjXonlEFJ2dL3HOCfEYBZOcrz//GTj0UODEE+37sg47TMr5ols8lGvOl9s5noTzJYcdyq+VpviSXz8qWRXc6Oy0Q1yTJsl5RaEQvqiJl/OV1mdOGxZfFU6hYFvwIk5dfjxOfhW9aOhAIohbcANIV3ylEXaYZsGNtJ2vMMJFp1LzSYUdJlHtELAHf/maS8P5Wr/evl2JzhfgnKCkHXaYlvMFRO/rshBfSVU7/NrXgOefBxYssO9LokKnm/PV3Q0sW+a8r1LDDqOILxoKSEkj7FB+LS/xRfeDorcB61ylgl4lvoBkjnlWBTfoeyVN0vOKsO6iPC4IIV4sZnNdpEEs8bV+/XrccMMNOPbYY/HpT38an/70p3HsscfixhtvxHo64jNa84MfAKNGAVdeqX48TfEVt+AGkG7eF31tVfujwM5XsP8p17BDALj6auua+853nPen4XzRwSnpnT/SFF9ujlbYnC/A6XylHXaYlvMFRO/rTHG+2tudiwU1NcDYscDUqbGaBsB90evjj0v7NQ47DHeu+EUgiHOjuzvcteYlvtrbvcXXuecCe+0FnHwycMABpa9N3S96jdE+MomcoqzCDul7JU3S8wpxXgftz+RcYCqmN2+O3548iHwYZ86cia985SvYtGkTisT3W7BgAZ5++mncdNNNmD59Oo455phEGsqkx+WXWz9uiI5VJ/GVxIQkCHTAS1p8pVHtUKdNlrMoNZ/1Jsv0WMQRX1//uvUjk7SYAaJPqIJA25tEiE5ezlecY+0VdpjENRh3oamzM/mKrSqSmATSye6xxwJPPhmvTRS3cUwOOVQ9xw3VOU+/o0oSX3L+jUp8Ada5EXSvuThhh3vuCbzzjvtrDxgArFpl3aaflRZ3YfFV+ro6OF+0YMqmTcCwYfHblDWRxNeiRYtwyimnoK2tDfvuuy/OO+887LrrrgCADz/8EPfccw9ef/11nHLKKZg/fz523333RBvNZEsc54t2jiy+LCp5k+Usqh2q/i+LTZZFYYc4pBF2mJX40nWfL/paWVQ7pBM2HZyvNL9/ShIFN5IuskFx2w8pjvgK43xFCfkVVfiyCq+Keq74RSDIoXH0nPbCreCGeJ0g1VHdyML5KhbLQ3yl5XwlIb5aWuK3Jw8ihR3ecMMNaGtrw7Rp0/D666/jm9/8Jo4//ngcf/zx+MY3voF58+bh2muvRVtbG2688cZIDfvDH/6Ac845B/vttx+GDBmC2tpa9O/fHwcddBCuv/56bNmyxfV/n376aUyZMgVNTU3o3bs39txzT3z/+9/3/B/GHR3DDvMQX0EHDD9oCEbShUM57FA9Ga+utgvLpBV2mERMfxphh+UuvvLO+fKa8FSq+Io6CaROR9LiS3z29nZnkn7SzpdbwY0ozhctTpD2tipA+mGHQLhzw8/5ChKm7AadwLuJr7jV9Lq67HOtXMRXkhvHb9sWrGCGPC5Q4UxzbE0ikvh65plnMHbsWFxzzTWuz/nBD36AsWPH4umnn47UsF/96le4//770dnZiQkTJuC0007DxIkT8fbbb+N73/sexo8fj5UrV5b836233oqjjz4aTz75JPbee2+ccMIJaGlpwXXXXYeJEydiHe0NmUDoWHAjbgn8oKThfKWZIFtppeaDhh2K8u5AdPElJ5anIb7ScL6i7N0TFHqsTXC+sii4oXrfOMQtuJGV+EqiX0t6by+KaF+x6Py+5TLzQPLOV21tadGHoCRd+tyLqAWm0hJfcQpu+OEmvpIMO6SfNa2CG0lv8aAi6YgacU4Xi8HazM7XJ6xevRoTJkzwfd6ECROwevXqKG+Bm2++GevWrcM777yDJ598EtOnT8czzzyD5cuX49BDD8X777+PK6UKEfPnz8eVV16J6upqPPHEE5g1axb+9Kc/4YMPPsBRRx2Fd999F5dcckmk9lQy7HxZJB12CCQvvkx3vsKKR+poCdw+d9RwT3F+0Y04Ve1LQuym7XwlPQHQYZPlIM5XlqXmVe8bhySdr7QmgID+zhf97PSYpOl8CfHV3FzaTwUlL/EVN+wwbfHlV3DDjyBhh3GdrzQWQ2WyqHaYtPMVNpeRna9PaGhowMcff+z7vI8//hgNEZevDj74YAwaNKjk/sGDB+O6664DYBX9oFx//fUoFos477zzcNxxx/Xc36dPH9x1112oqqrCww8/jIULF0ZqU6UiOuGOjvB7KrD4KiXNlapKc75UZY7dBuG4zpccdmqK81XuYYdBJl0mhx3GLbhhUthhFs4X4OwD0sr5KhZt8RVni4eweyLFIYuwwzD9r1fYIc2nAuI5X/SzJpnzlYX4yrrgRpLOFxBefFVXV7Dztf/++2P27Nl46623XJ/z5ptvYtasWdh///2jts2Vmk++/XpyxbS3t+OJJ54AAJxxxhkl/zN69GhMmjQJAPDoo48m3qZyJuo+TwCLLxWmOV9uK8Zh2iJIWnwBwTfdjSq+xGfOQnxxzpf6tSlxna8sww6TzI8AzBFfOhbcUI1jxaItvgYPth9PwvlqbbX79zibm5vgfOURdgg4r4eknK+0wg5NFl9pFdwA2PkKxVe/+lV0dHRg8uTJuOOOOxyFLLZs2YLbb78dRx99NLq6unDRRRcl1lgAaG1txbRp0wAAJ554Ys/97733Hto+uVImTpyo/F9x//z58xNtU7kTJ7+KXjSqwZTFVzKvqXq9vJ0v1WdLutohENz5iht2KIuvNMIO2flSvzZFN+eLc74sTAo7FN/Zpk2WSAIAWpQ5Cecrbpl5ARVfYSNPwpJW2GHU0DiVE0pfK474yqLgRrmIr7RKzQPRxJdcat5EIg0NX/7yl/H3v/8dv//973HppZfi0ksvxeBPlo3E5srFYhHnnHMOTj/99FgNnDlzJqZPn47u7m6sWbMGL774IlpbW/H5z3/eUUlx8eLFAIABAwagb9++ytcaOXKk47lubA1wxQV5TrmQlPjKquBGsQg8/TTQty/wmc9Ee32BaQU3TM/5SsL5cvs/E8IOTXO+qqrsUthJiy83RyuO89XVlXzOF1c7tDCl4AZgHxMacrjHHsBLL1m3g/YRXs5X0uILsNqdVNVdFboV3FCJcfpadHzW0fmi51EW4iutght5O19yLnA5hB1GPoz33nsvPvvZz+KnP/0pPvzwQ0cVwV133RXf+ta3cPHFF8du4IIFC3Dvvfc67jvjjDNwyy23oD+5elo/Wb7yyjFrbGwEAGz22RJbPI+xSFN8peF8PfWUtUEnAPz739Zmi1Ghr22C86XTJsvlEnZIC254vW/SOV8miC/AarNceSwq4jN7ffdxnC9ALWCS3GSZooP4SrPaJcVE54uKr113tRcSkna+4uR8yRPVLMRXbW2wRQ1BHgU3gOScryxyvtIqdpNFwY00na8gfRqHHUpccskleP/997F8+XK89NJLeOmll7B8+XIsWrQoEeEFAJdddhmKxSLa29vx/vvv4+abb8bf//537LXXXpg9e3Yi78F4EyfnK49NlufOtW+//nq01xeYXHCjUpyvNMMO6UQsi7BD2nYTwg4BZxn3uAQRX/IkJozzBahXWnUOO+SCG8ngFnYoaGoKX9lXdd6I7ygN5yvtvC9xXMKeJ35bfiRRcMPP+Qp7rR10kP2ahx9e+j7y+0ch62qH5ep8eYmvinO+KDvttBN22mmnJF7KldraWuy666644oorMGnSJHz2s5/FWWedhXfffRe9e/fuCTX0CgcUuWn9fDbcCLIZ8+bNmzFixIgQn8BcohZcAJwXjWrFLg3xRQfwuPlgpuV8pRF2WFNjTXC7u7MtNa+D80Wfm0XYYaFgfW633KQolJv4iut8JS2+OOzQwsSCG/Kxqa+3jnESBTfibrAsyFJ8ic+dhPhK0vmqq7NfLynnq6kJeP99SyTvu699v2kFN7LIf0/6c9A2RxFfdXXWdbFtm7nOV+Ch4dVXX8WqVaswbtw47E4zUxW89957WLhwIUaMGOFa/CIOBx98MPbaay+88847mDt3Lg477DCMGTMGALBp0ya0trYq876WL18OAD3PdSNIefyuJGJsDCHOykoeYYdUf1ea+Eqrs6+vt45FmO8/jvOl2r/LjbA5X93dVjuCDNb0/MlCfAG2+DLF+RLHMS/xFdb5UvUJOjtfXHAjGVSLiCrxJd/vRZYFN+hrp0VU8ZV2wQ16LiRVcAMAhg+3fiimOV9ZiC/dnC/AChs1WXwFCjtct24djjrqKHzta1/DABoo68LAgQPx9a9/Hccccww2pXRkhEAS+42NHTsWfT65aubSuDOCuD/IBtGMTVLiSzWYplFwIy3nK6lYe9OcLyDaRttxqh2GaXvYsEO3tqnwEl9phB3S12HnS00U5yuvsMNKKjVvUsENL+dLvt+LoAU3ksr5SrOyL6Cf8yXEDz0Xkiq44YZpBTeyFl86VDsE7NBDU8MOA4mv+++/H1u2bMG1116L5gBLOM3NzfjRj36ETZs24f7774/dSJl169bhjTfeAADsscceAIC6ujp84QtfAABMnz695H+WLl2KF154AQBw8sknJ96mcsa0fb7oalWUlWKKadUO03S+gOxyvsKIr7Bhh0Dw85ieW1kU3ACce1IlgUniS5wfSTtffgU3OOwwPiY5X0mJL3a+LNIOO6TngupaLhSCR0r4YVrBjbjOeBB02WS5ULD7e+EDtbYmU+wpawKJr7/97W9oaGjAueeeG/iFzz77bDQ2NuKvf/1r6EYtWLAAf/jDH7BdMdK89957OO2007Bjxw585jOfwT777NPz2FVXXYVCoYDf/e53ePLJJ3vub2trwwUXXICuri6ceuqp2DNO+bsKxLSwQ5NyvpJOkNXJ+cpLfPmFHQLRxFdWYYfsfJWP88UFN8KhQ86XfL8XQXK+CgXnBs5hCZsfE4e0wg7jFtxwc75omHpSmBZ2GLd/CIIuYYf0e6ZBeD4FzLUk0GF8++23cfDBB6M2xNlTW1uLgw46CG+99VboRn388cc466yzcPHFF2P8+PHYeeed0d7ejmXLlmHevHno7u7GuHHj8OCDDzr+b8KECbj55ptxxRVXYMqUKTjiiCMwZMgQPPfcc1i1ahXGjh2LX//616HbU+kkVXCDxZeFqTlfgJ7iK82wQ/p5swo7TNr5SrvUeN7iK6zzZZr4SjLnK63Vd8CsaodZ5nwNGhRPHGTlfNHKrjo4X52d9rXl5nwJ0hJfXHDDQpdNluk5JZebHzgwfruyJNDQsGHDBgwbNiz0iw8dOhRz5swJ/X977703fvKTn+C5557DwoULMX/+fHR0dGDQoEE46qijcMopp+C8885DvaKHuPzyy7HPPvvg5ptvxiuvvIKtW7di1KhRuPrqq3H11Ve7bsDMuJOm85VEzhcX3LAx3fkSxyNMBx+09HilO1/V1clOUgQmiK80nS8OO7RIwtHXJeyws9PKT/U7t4LkfMXJ9wKyE19xQuT8xFeUUHv6Wd0KbgiS7Neqq63zYMcOFl8CXZwv+t7U+TKx6Eagw1hfX+9Zwt2NtrY2pUDyo7m5Gd/73vdC/59g8uTJmDx5cuT/Z5ykWXAjCecri4IbtbXJdfCmbbIM6O180fOzqso99r/Sc77SmninIb68rjXeZDkcJoYdVlUl31bV9S+7wnIhJ78FNzfna/t2QOxYEyffC8hOfMU5T9LYZJlOOd3CDlXvlQR9+ljHI27YYbkU3Mjb+VLlApu+11egnK9hw4bhzTffDP3ib775ZiTHjNEL0wpuUPEVNwFVvHZSrheQXcGNJAck0eauruAugWpi4lbtcOtWYPVq+/yKGnbo9X+VXu0wrZAzccyTSHout1LzaVU7LBaD98UmVTsUk90+fZIroCAIk/MlP+Z2rN2cr6SKbQDeE9WuLj1yQ9MIO3TL/0s77BCwxV4lFdzw6k/SdL6CCMZydL4Cia9DDjkES5Ys6akWGITnn38eixcvxiGHHBK5cYwexMn5ooNTVpsspxF2mKT4Mtn5AoKfA6rPppqsPPKINUEZPtyetER1vrwG4SjOl1fOV9rOV9KTKpOcL95k2UYOsW5vBw44wLpeXnvN//9NdL6SDjkE/MMO6+rU/dx//ifQty+gKKKsPOe3b09ug2XAXXx9/DGwyy7Wz+rV8d4DSF580esyrvjyc76SFl/i/KuUghvf+hbQ2Aj87Gfqx/N2vvxyvsrW+TrzzDNRLBZx0UUXoSXAp9y0aRMuuugiFAoFfOUrX4ndSCZfdKx26NXhpBF2mJb4SrraYVrOVxTxRb97MTiqJrm/+11pB7zzzsHblqb4yjPnq5LDDsvF+Uqj4MacOcD8+cCGDcCf/xyufaaIr6SLbQDBCm7IfcTGjdYxbm8HfvrT0td0c75WrbL/HjIkXrvdJqqPPgosXw6sWAHMmBHvPYDkww7dxFfQvtct/88k58uEsMOuLuC226xr9q671M9pbbVvJzEXClvBs2Kdr8mTJ+Ooo47CggULcMABB2DGjBkoFoslzysWi/jLX/6CiRMnYuHChfjc5z6HY445JvFGM9mSlPiqqyudKEWdnFRX2/8riwF2vix0El/i/1WTFdpxfvGLwLnnAj//efC2lVvYoWnOl5j4dHZa4XBx4FLzpcgLTR9/7Pzbj6ycL/pZ4xbcyMP5UoUd0knn66+XrrCr+tuuLuCDD+z7R42K1WxP50uQxMp/ks5XdbUzbDRKSKpb2GHaBTfo+3V0xBujs7j24oqvVavs60HkKcosW2b9rq0Fhg4N/x4ySRfcMNH5Cjw0PPDAA5g0aRLee+89nHzyyRgwYAAmTJiAIZ8s63z88ceYN28eNm3ahGKxiN12262kFDxjJknlfNXUWB0n7SDiTFh79bI6C/p63d3OvytNfKVdah6IJr7q6qzBVDXJFR1+bS3w2GPh25aV85V1wY3u7mAV1/zIyvkCrPZGnQjRfEAv0RK0uiUlr7DDJCaFVVXWZ25vt85Hmk8UpP/ISnwVCtb31tkZrV8rFtN1vqLkfNE+rFi0XMcvfMG+j543fftaThkALFxo3z96dLx2u+XH0PPAbdIchiTFl3z9pl1wIy3xBVjnJA1xC0MWrnNc8bV0qX3bTQgtWWL9HjUq/ngEpFNq3jQCi6/BgwfjlVdewX//93/jj3/8IzZu3IhnnnkGhU+WN4QTVlVVhTPOOAO33XYbBlBpyhhLUvt81dRYHWea4ku+kOMkoHZ22u1X5atFJc2CGyY6X2LiEHUXiHINOwSsYxj3dbMUX52d0SdCQc9dU5yvqqpkJiqAde6pxFeQ8zgr8QVY52pU8UWvNV2cL9nJnT3bXXw1NqrF15gxsZrtOlGl5wF16KISRyjI43gS4kuHghuiHVHFVxbXXpSxmeInvjZtsjcxjruQIEh6k+WyFl8A0K9fP9x333249tpr8de//hVz587F2k96gObmZhxwwAE4/vjj8alPfSqVxjL5kFTYoRBflLjiC3AO2nKCbBznK409vgDzna+g5wD97sV3pap2KCYOjY3R2kY/p9cgbNomy4DVzjjiS+xXBGQnvqK+T1DxJfYrExPfsM5XVjlfae2zp6vzBcTLV0xzjy8g3CbL4jE59Hf2bOff9HHaf1HxFTfs0C0/hhb1KEfnS4eCG3I7wmJC2KGf+KKPJyW+6uosp7xYrNyCG5GGh1122QWXXnpp0m1hNCVN8RVngiI6M9rhyB2l7uIr6YIb9HgnteoOxK92mJXzFTRczSTnKw5ZDP6y+IpKGNe2vt6+1vN2vuh5LiYUQLKLH3ShqVzFl9tkOym8nK+amtK9xXbsKO3r5s61RKJon+x8CVautH4PHRo/aiKI82WS+DKh4AZ9vzgVD00TXx0d1jlNj2ca4qtQsM7rtjYuuMEwriSZ8yW7FHH2chGdDu3gTBNfaTlftbXJ7pOTVthhd7c9uEV1vsot7FB2vuJgqvjym0zRz5KE85XUJst0QpCk80XFF3U8dBVfURaV0na+vHK+xGNyPydPvDs7gRdfdP4tUC0eJTFZzSrsMMlqh2mGHfrtKZYEcthhVLK49uhYH1d8AaViKA3xBdjnddRNlhsa7HHCROeLxRfjS1LOV3W187Xirgxz2GEpQarFRSEp8VUsOvMo6PcV1flKM+zQq+BG2pssA+x8uUE/S97Ol+gTC4VsxFcc5yutjV4FSTlfWed8uYkv1cSbhh66OV+CtMRXsWiW8xUlz1mXghu6O1+FgnohOiiimIZA7h/p43mIr2JRPa8pFOzQQ3a+mLIkqU2WZecrKfHV1WVfnPJgGafgBp14Jym+sii4kfSeIklUOxTQc4Ku2CbhfJVD2GFSYgbIptoWbW8cERNVfIV1vlTnbxJhh7W1zgWENHK+4hTcELlyaSKuAd3DDuWcr6DOF+AUX245X4K0xFdrq/MY5+18qUrNU0wvuBGVrFxnVQpGEIrFcM5X3OIxFHFe+7XZqwquWOxi8cWUJUk6X2mIL8C+gCvd+RKvp5PzJU/66ESXrtjqWO3Qq+BGFjlflRp2mKbzpSIJ56uuzjkBT8P56u6OHnaYdsghYE7BDfGdid9hnK+XXrLHFbnUvEwS4qu21l5gEGMSFeBA/s5XuVU7NKngBqCOAgrCunWlYkt+DSG+qqqAnXeO1j4Vos1+zpfXuCCcr5aW+HtMZg2LL8aXJMSXKLucpPiSNx8FzMv5Cno8//EP4MwzgVdf9X6ejmGHNTXOwZGuZCXhfGUVdphHtUMTwg7pMc9DfIV1vlQkJb7Scr7ouUcnGeUkvvIsuBFEfDU32/eLftjP+UrCKRDFCQB38ZW08xV2ISntghvlEHaYZshvVPElu16Au/M1YkSyETXU+fISTl7jgnC+OjvjieQ8YPHF+JJEwQ1x0dCLN+7khE5IRCcnX4A0JDEsujhfxSIwdSowfTrw7W97P5eGQCVJkuLLJOfLS3xVVTnfj52v7MSXmOiKksV+pOl80WuOTsDTqHbo9t5e5CG+yrHgxjHH2LdfecX6nUXOF2AfD9Ee3ZyvtEvN+xXcqPSww7TEV1ubfa4lme8FuG8eLhPE+QLMK7rB4ovxJYlNlsVFk0bBDcA97BCInveli/jasAFYvdq6LUoYu5GW8xXlHKCTUjfxZVLOl2rwpK+pY86XSeJLzg/14r/+Cxg0CLjyymCvnVXYYRbOF0VX8dXdrd7Tz4ssC26IDZTFsRGPeTlfu+5q3xbjTBY5XwAwbJj1e+XK0tBTwBJfccOu0gw7jJLnrMs+X7oX3ACiF9zwE1/Lltm30xRfXqGHXlVwTS43z+KL8SWJsEOV85WG+FKtUkUNPaQdQty9WihhByLaQfp1rpXofOW1ybL8mmltshyHLMJe8nC+zjzTmoBed12w184q7DCtnC+3iVuQ/ljOa0qTOMWE0g47lEPfOjttwaJyvtrbnW2iEz1xTL1yvgYMAPr1i9tqCxG+2NEBrFpV6nx1dwcr2e2Fbs5Xnvt8meZ80U3Yw4hwP/GVVqVDIJr4YueLqShYfOXrfNEO0u+z6JrzRfNy3MSXaft8ya/JmyxnJ76AcPvYZRV2yM6XfTus+Eo77JAW/mlvV18bsjtG20QneuKzeTlfSU5W6WstXVoqvoD4eV+6iS86ltPzXzVvSHq8S6rgBh1nssj5AsK5X3KZecA570mr0iGQjPhi54spa9LK+Uqj4IYqREBn8RXkeIYRX6Y5X3TCoHPOV1WVeoBPO+yQc76Swe96SGKT5SyqHcqUk/hK2/kC7GPgJr68wg7pRE98Ni/nKy3xtWSJWnzFzfvKqtph2IIbffo4F+9MDDukFSvTQLUQHQQ/5yutDZYBFl8svhhfqqvtjiNqzpfoHLMuuAHoLb4qxflyq3aYhPMV9JyKU+2wvl7ttKQRdsjOV/KTqXIpNS/jdx53dtrXm+7iK23nC7AXSHbsCCa+/Jwvr4IbSToFsvMl53wB5et8yeeCiWGHaV975Sy+vHKBOeyQKXtE56qT81UpBTdoaEB7u3ciexabLAc9B8I6XzqHHbpNftn5ymeT5bCklfPV3W3/r45hh1nlnAiiOByCtAtuAM5xLKzzpXvYYVznK86G7H7iq1Cw7wsrvmQXNItqh0nv85X2tRdlcXTzZrVb5Ca+Ro2K1DRX2PlimABEFV9iYpJVtcMknS/6f0mKrzgFNwD376Cry0621cH5ohs+m1pqXnzWLMUXO1/Jn79pOV/0+pWdryQXQKIW3MhTfOkYdhhVfNXWOifkcsGNqqpSwZik+KIumo45X/K5ruqHw+4BR8MOvd7L7f3ikHTYoY7OF51X0MIwKvHV3Jz8ggiXmmeYAOjofAXZZJk+Fpa0nK+wzoYsvtw+D+2kdMr5SrvUfBZhh27iK+1qhyy+kkH13dD7ooovOaG+0p2vONUOswg7DJvzJdrU0KDuP2hYvTxGJCm+mpvt10/L+Uoz7BAIJ76KRQ47DENc8bXnnvZtMe9pbwc++si6nXTIIeBsMztfDOMCHbTCoEPYoW7iK0wIxpYt1j5fFLfPQ19LB+crbLVDHZ2vPMIOTdtkmR5zXcWXX7GUJJwveZNl3cRXmtXWBEk5X7rkfFEBoPps4rypri79jpKcsBYKdtjXhx+qhVY5ia/2dvvYyi5oFuKrVy87x7cSnC+V+Fqxwo6kSbrSIZB8qXkWX0xZQgetMHiJr0otuAHYx8FPBKgSYoM4X2mLr1WrgBkzgnWapuV87dgBPPII8H//Z59PboOn7pssx8njCEoemyyHxW0yKBYF2PlKhiDi6733gOeeK92PSMecLxr65uV81dQ4x4jevYGmpmTbLsSc2xgcJexw+3bg8cctJy3Naof0OUEWvrzOhSzEV6Fgv69oy/vvA089FW7zcJ3FF80lV4mvNIttAMlvssxhh0xZomPYoakFN4Dgq4BhxJe8Cp8kdPBoawMOPxz44heB73xH/fzubnuQClrtMGqeR9KbLF95JXDqqcBFF9nnb5Zhh6Y5X6aGHdLzMinxpbPzpUPBjVWrgE9/2uo/ZsxwPib67tra5PsvQdScr4YGdUgldb7oGDF6dLh96IKgmgAPG2bfjuJ8ff3rwIknAscdF+9codEcQHznK2/xRd+3rQ1Yvx7Yf3/gmGOA3/422P8Xi/YxTdt1jhKZsmyZfZuKLzG/0FF8sfPFVBxJiS+TCm6kKb7EcYgivtw616ycr5dftlYBAeChh0pXsIFSF8PP+WpoiL4PysiRwIgR1u2DDnJ/XlDn6+WXS+/7zGfUzxX3jx3rTFqOA+d8Zed8xRVf8oLHqFHAzjtbf3udi2Fx++5otUUVWYsvvypx8+bZx+z5552PuVW3SxJxDGhOEb2fHqNt2+zjJztfov+g41uvXsB++1l/H3108m1XTYB32cW+HcX5euUV6/drrwH//rd9f5RzhfavXmG+QcTX5s32bTkcXRZ6bu8XF3Eub90KvPqqvTjwpz8F+3/6OXV0vjZutG/TSoZi3rN+vX0fFflJkYT4qqmx+wvTnK8UTlmmHImS80XdD9U+XyYV3HBbeY5K0FVA1Q70eTtfK1bYt1evBhYtAvbYw/l8ucP0q3YYNd8LsD7ra68B77wDfO5z7s8LKr7EY7W1wK9+ZYUPHXec+rnXXmu95wEHJLeJpsml5nUVX37OV9R2y85Xba01UXv7beDII6O9pgqv/qejw33lP2vx5ZcATyMT5MmSW3W7JKF9ABUrKvFFJ6duBTeo81UoAP/8pyVovPqhqKjybnbZBXjxRet2FOeLfh+0X4/i1PilFIRxvui5Qc8p+lpp7gsI2JP6tjbnIugLL1jXvd8xyvLaiyK+aN9FHSQx76HXR5zx2Y0kxBcA3HyzdT4MH55c27KAxRcTCNHRdHVZP0E6O1UOR1phh6KjS6vgRl7iS5ecL6+BZvbsUvElF//wE19R870Ew4b5r84FDecTg1KfPsAFF/i/5jHHBGtjULjUfDabLKcRdggEOxfD4ie+3B7PIueP4hcGRBfH5MfdqtsliZv4EveL4kDd3c5CR0FyvgBg0CDg859Pvt2A2vn61Kfs21GcL9ViZW1ttJBJP+crjPii5wY9p+hr0fE57bBDOg5v22Y5uG7REALTxRcV83HHZxVJbLIMABdfnFybsoTDDplARKkUpxIDaRXcSNP5qq9PztUQpF1wI03nS2b2bP+2uFU7FBOGNFbWZOj55ldwA8hmsqqCnS9zcr7SdJspfuLLjTydL1UYEF0ccxNfaYYd0nGMhrbRYyNu0/YFqXaYNn5hh3GdL0HU8ySo+AoyfwjifFHSFF/d3VaRGMqsWf7/n+XChyoKyA/RN9DQPUDtfOUpvtIcF/KExRcTiCjiK0vna/t2a0BUTUTiFtxIOt8LiOd8uX2eNEvNy+XiKaqBKEjYYXu73eY0OneZQiFY7qJ4LIvS3CpMdr6iihgg+5yvmhr7/iSdrzQwUXz5OV90gt3V5cyvSgu/sEP6HPp4Q4N6ixDZ+UqTESNK3ydOzpec9yaIep74FT4Sj3d1qfOEKX7Ol3ytpRl2CAALFjgfUy04yuTlfAWd79BxTrXnVhLbwHjB4othAkA7jzjOV5oFN+hAQt8nrvOVhvgKknwsSrrL5OF8Ae4DyLJlpSLRS3yJPMC0Y8pVBBG9eYuvtApupPV5Ktn5ykp8ydfe4MH2bZ3EF50oq5wvt7BDen8WBTcAd/GlOk5CEMruTZbOV3W1XcxFEMf52rFDLYLScr7CbMBNz428nS/AymumzJnj32eYEnZYV2ctrIrvJyvnK2ibWXwxFQ3tOMNusguk43zJVjsdwAcNcj4WBfF/eTlfy5er789jk2WgdAA58UT7trwSGMT5SjumXIVpzpcJYYembrJsctihqO4JBAuhBfRwvtwKbtD783a+VMdJCEK53xbnTVaTQrnoxrBh9rkR1vly2zw4CefLK+wQ8O/X6LnhlvNFSdv5kvu1zZuBN97w/n+TxBdgz3PY+coGFl9MINLI+Uq64AYdTJIQX1mEHXZ2uodgUDeJrnTnUXADcA4gffsCl15q/x1FfOXhfAURX1ntzeIGl5rPxvlKotR8XmGHVHyVm/OVlfjyy/miyM6XHHaYhfMFOPO+Ghut80L0nWGdL1XIIZB+zhdgnvMloKH3fqGHuosvObdZFl9ifK6qSmcOxOKLYQJgQsENOpgEESteFIvZiC/AfSCiZeZpNcE8Ss0DzgHk0EOBQw6x30fO+wpS7TAP5ytM2GFeBTdMc76SEl9+Va3ikGW1wzSQxRetpqiT+ArjfG3fbrcvq7DDqM6Xm/jK2vmi4qu52fot+s6wzlee4stvDhG24Eaa+3xRJk+2b/sV3cjy2ouyyXJQ56uxMfkNw+n70fdUkfaWAnnB4osJhO7Ol1fYYZSCGx0ddm5SXuKLOl9jx9q389hkGXB28EccYQ1OYiPZRYuc+WlyW1TVDtOOKVfh53x1ddnfOztfwTDB+VIVizE17HDgQGefpJP4amiwj6lfwQ3AnmRnFXYYNedLCEI5VzdP56upyfrt53xt22Yd361b7b4N0DvsULeCG4IpU6zrDwCee855PGV0d77CiK808BNf4tiy88VUNFFWVlQrFkkW3JBzvpIMO6SdQZoFN4Dw4ksH5+vww52/AWswEsjFP/ycL13CDrNyMrxIw/mqrk5vgmiC+CoU1KvlSW+ynBb02mtuDn6OZFFwhVIo2JNlv7BDwJ5k5xF2aFrBDcDb+dq+vfQ8Pvdcq+2NjdbP7rvbmynTY77nnvZtHQpu6JDzpToPd9kFOOww6/b69cC//+3+/yaLr2Ix/W1g6LxAFl/f/KYVvfTQQyy+mAonKeeL5irE3ZGcxiK3tCRbcCNt8RVk8iQGSSBY2GHanZT4vvr3Bw44wLpNN5p8+233tvhVO9Ql7FAH8ZWk85VFCKUJ4kv1miaFHdbX26HUu+0WPIQra+cLsMPE/MIOAbXzpWPYoargRne3na+b1aRwzz1tF3fXXa3ftO+kC1qrVwP33ef8/w8/BP78Z+s2PebHHGN/7qjjcho5X/L+aqrXArITX6NHu495MjqLr2LRXXx1d1vfT9rOF31POt/atg247TbrHLjjjvIVX2X0UZg0SUp8TZoETJsGbNwI/Od/xm/XyJHWBojLlqXnfHntsROVIAPR2rXW77o6YMgQ+/68nK8bb7TaccYZ9vlA4/Fpu8JWO9TF+cpjsiqTxibLpomvNCZTtbXO6zqJfb6yCjssFIB77gH+9Cfg298G/vAHdRtk8jifqfNVLDrzRcrF+erocJ4zWTlfO+0E/OY3wIsvAt/5jnUf7TtbW+0+ef16+/5evez+WXXMR4wA7r8f+MtfgO99L1rb0gg7VOV7ya8FZBd2OHq0+5gnk6XrHFZ80UJfcsENwDr+4vxOW3xt2eLslzdvtttG2wGw+GIqkKTEV6EA/PCHybVr9GhLfG3d6nSK4uZ8Zel8uR3Pdeus383NwTrXtFeIxo+3BmiKW7t0LzUvcrvkXCAdnK80Nlk2TXxl4XyZVO0QAI4/3vqR30s38SUmp52d1gSfTmKDiC8T9vnq6MhvRf7CC60fgZvzRZ3HffcFXnnF+RxZ8H7pS9ZPVNIouKEKOZRfC8jG+erXzzq3gwodnQtuqPotOs/5+GP7dpoLoyrni57DW7aUr/PFYYdMIKJsspzFigWNgae70Dc22p2KiWGHxaK7+ApScCPNVXiKW7vCFtzIepNlQH3cdRBfJjtfUUUMkP4g65XzZYL4okTJ+cpafAGleV9Bwg6zcr7odxe24EZnpz5V2GjfSSeu9NjTzZlFv5t0qCc9tqrjEfSc7ey0P4eb85VHwQ2xx1pQoaNz2KGf+BJRN0D2YYd0XtDayuIrUzo6OvDMM8/g29/+Ng488EAMGDAAtbW1GDZsGE488UQ88cQTyv+bNm0aCoWC58/ChQsz/jTlQVKbLCeNm/hqaLA7PB3Fl9/KdUuLfX9TU7DONe1NllXIRU/c2qKb8wWoFxF0EF/sfGWf80Xzd8KQVdihTNCJrJvASBPqVsh5XzqFHVLCOl+As7/Lc1JI+046caXHnoovN+crLn5hh0HdWrr/Wp5hh/IxEXONoEIny2svCfFFXyMr50u8J21zpThfWn6UWbNm4eijjwYADBs2DIceeigaGhqwYMECPP7443j88cdx0UUX4de//jUKig0I9ttvP+y///7K1+7v5mMzniQVdpg0VHzRykN9+lgXdmtrNPFF/ycP54uuPEUJO8zD+QobdpjnJsuA+rhnXR1ORRql5tMc/Ol3q7P48nK+AEuAhZ3EsfNVitdeX27OVx77fLndH1R80QU6dr6SK7jhV2Zefi1AT/GV5bUnoku6u4PNd1Rty9P5am+35gXV1c55wZYtzj6WxVfKVFVV4dRTT8U3v/lNHCbqen7Cgw8+iDPPPBN33nknJk2ahHPOOafk/0866SRMmzYto9ZWBiaIL7piJsQXoKfzFVZ8uTlMlDycryDiSy41L6od5rnJMuDvfJXTJssmOF9phyl7OV/i/U0UX7pVO6QTZioAikV35yuPfb7c7g9S7RBg50smKfHlt8Gy/Fpu7xcXWZDqLL4KBes9tm1LPuwwi5wvwGp3Q0PpfnV0XsebLKfMf/zHf+Chhx4qEV4AcPrpp2Pq1KkAgPvkOqpMakTJ+cpCfIk4bJmGBruT1L3ghmogEvlegD4FN1SY7HzpGnaYZBifELomiK88ww6BaHlfeYUdmlBwA3AKALlCIH08b+eLHhvVc0x0vuixHzbMzrsV/W7WYYfsfKVLmPlOmIIbWThfgH090XkBYFXGFpST86Wl+PJj/PjxAIDly5fn3JLKIW7OV1qD04gR6tfu00fvnC+/lWuvsEO345/HRDBowQ1dcr5MKLiRlPOV1eBvivjyCzuM0nYdnC+dxRd1MeSQQ/p4HgU3BHJBINVxEmOAm/jS0fmix37gQFukiX43z7BDrwVcKr50KjUvxJeOBTeAcJE+Ojpf4nqSnS96PpST+DLyoyxatAgAMNxlN8B58+bhqquuwoYNG9C/f3+MHz8eJ5xwAvpmtbxehugadlhTY4VULF3qvJ86X9u3l+4340feBTdo59fUFCymOw/ni34OL+fLq9phbW12E0O/87iccr6y+iymiC9Vqfm4lRpZfJXiVnBDDjmkj+dZcEM+LvLfvXvb/Zdbf6e789W/vyXSWlrSc77SCDt0c76yqHZoqvOVRM6XTs4Xiy9NWL16Ne655x4AwKmnnqp8jijKQenfvz9+8YtfKHPEZLaqlugiPKec0FV8AVanKIsvmvPV3W21JYwblHfYoex8FQrW52lry2+TZRUi1nzHjujVDrNyvYBwYYem53yZ7HyltckyxeSwQ53Fl5vzpRJfWRfcUB0DP/FFJ+E6hh0Gcb4GDLCfp3u1Q12cL3pMevUChgyxbwvomPfSS9ZG6BdfbO2JqbP4Yucrf4z6KJ2dnTjrrLPQ0tKCffbZBxdffLHj8V133RXXXXcdjjvuOIz+ZJliwYIFuOGGG/DXv/4V5557Lqqrq3HmmWd6vk9jlrNBQ9BdfMlQ8QVYHVJU8UVfJynC5nwBVgfuJb7yKsnaq1ep+AqT85WlIW1C2GEazpdp4suUnC8dnK8gBTdk9zlN3Jwv1XqleJxOuHRzvqgY1LHgRhDnq18/Z9hhsZh82CH93lT9TZoFN9IQX3V19sLi6NF25Iyb+PrqV4G33wbefBN44YXsxVeYNAsdc77EYgDnfGnIJZdcgmeeeQaDBw/GQw89hDqpJz377LNx9dVXY//998fAgQMxcOBATJo0CY8//jguvfRSAMDll1+O9qDqgekh7A7qQDabLAOl4ku4RFHaLNDN+QL8E2rzKDUPqFfcvMSXXO1QV+dLB/EVx/nKysUrh02WAbPEV9iCG1m2za3ghlfY4YoV1u/GRv3El6nOlzi2ffta7RPP6+622p6083XKKcDw4cCeewJHHln6uGkFNwDg61+3zodPpo8A3POclyyxfi9eXPpYls5XR4c9xrrhJ742bLBvpzk+9+tn3xbnbqU4X8aIr29+85u46667MHDgQDz11FPYY489Qv3/tGnTUF1djbVr1+Lll1/2fO6WLVt8f1auXBnn4xiHSc5Xnz62ABOELbqhS8GNQsFKlgb8wwryKDUP2AOLW8ENudR8V5c1OIiV1yydLxPEV1WV7VKw85Uc5VTtMGzYYZYhtG6l5lXOV2ur9b0vW2b9PWZMuNzcsCTpfOlScMNvny8hhunzWlvt76OmJplzd9ddre9xwQL1hD2oW6uL8wUAt9xiHav/+i/7PrdtX8Rt8R1knT8cpCiXwE98UdIcn1Uuuex80fOhnMSXER/lyiuvxC9+8QsMGDAAM2fO7Kl2GIZBgwZhyJAhWLVqFVaIZTYXGgJ48F1xlngNRGfxJZebF1+fzuIraMGNwYPtgcVPfJnifHV1WauuxaL1d5bOl9+kVYeCG4B1zNrbzRBf5bLJsknOlyniy8/5KhaBRYvs46gKIU+SuM4X/X9TnC/xfdDnbdlifx9J5th5XbdJOl/y95jm/ELuN1Tzis5Ou//assVaXMzL+RLt8pq3qNrmll6R5visyg+VnS/q4pWT+NLe+frOd76DW265Bf3798fMmTMxceLESK/T1dWFlk++Xa56GB6dxZfK+QLiiS/6/Dz3+RIhh4C+zlcQ8SVXO8yjzDxgRsENwD4/KrXgRlbVDll8JU9NjX1N+xXcAIA33rBvpy2+kiy4oUvOF63GKPrV9nZbHKqcLyq+0gzzpJhWcMMNumgjzgEqxAHr2OYtvrzQxflShSjLzheFN1nOiKuuugo33XQT+vfvj6eeegoHHnhg5NeaMWMG2traUCgUIgu4SkbXTZYBYORI598mOF9ek6dt2+yQECq+xHfgFtOdZ8ENwC7pr2qLPMnNY4NlwIywQ8D+/kxwvpISX2nniJZrtUOv/lg8lvVCgnAs3Apu0OOepfhKK+wwz0lhoWCLXdGvqsq1yw6Z+D7SrC5JCVtwo7raXRjmKb6A0gVHWXxt2ZL9Qp5bOKSKMOIrzcVRVYiy7HxR2PnKgP/5n//BjTfeiAEDBgQSXsuWLcP999+P7Yqz7rHHHsOFF14IADjzzDMxbNiwVNpczui6yTJgdYT0KxUdtqkFN1TFNgD/mO68JoK0XaJT9ys1n5fzZUK1Q4CdrzxyvkzaZDlswY2sxZdY0XZzvmh//eab9m0dxZfuzhdQuoGyyj3K2/kKG3Y4YIB7/l/e4kvOc5bFV2treeR81denO5cI63zlfZ0liZYfZcaMGfjJT34CANhtt93wy1/+Uvm8pqYm/PSnPwUAbNiwAWeffTa+9rWvYfz48dhpp52wbds2LFiwoGdT5iOPPBK/+tWvsvkQZYbOYYeANWivXm3dTiLsMM+CG/IGywK/mO68nC9Z5NbXe4cddnfr63zplPMFmOF8pZHzlcZkSiW+ktxkOctrTuewQ8Be0d661Wpfba1TfI0YAXz0kXU7b+dLvs805wso3cPLz/lqabHHxDzEV5CCG24hh/JrAXo6X+Laq63NZpuHMPMdv02WBWkvjFay86XlR9lA6lzOnTsXc+fOVT5v9OjRPeJr5MiR+O53v4tXX30V77//PubNm4f29nY0NTXh+OOPxxlnnIHTTz8dVVltdlJmmCC+RBFLE8IOvVauVXt8Af6fRwfna/t2q3ys/N3TFUzO+fLHJOdLVGcUm5lHRfwvrfaYJGmGHdbWplulTyaI+OrstMOT83K+AGtS1dTkDDscMcK+LUQYUFo8KWni5ny5FdzIe1IoFrBaW63Qbz/ni+7jpFPYIW27W7ENoFQw6ya+qPOV1bWXRs5X2gujKueLxVeOTJ06FVOnTg31P4MHD8YNN9yQToMYI8SXIEnnq1BIxwGJEnboF9Odd84X4Kz+JKittXPBgHxzvkwJOzTJ+QKSqc4o/jetiVSamyxnfa4EmchmnfBPUYkv2fmSqa8HhgxJt12qRSnT9/kCnHt4bd+uLtdOF7nWrLFv61Rwo63Nvg7LxfnK6tpLI+crS+dr0yZrDPBqezmJL7aBmEBEyZ/KUgzQFVOxkpdEzlfv3umsaMfN+fITX3k6X3JbTK12yDlfwQkiFteuBZ5/3l3kiP9Nq69Is9Q8iy8nqnLzbs6XYNSo9MOzqqtLJ+rysZG/S7ewQ51yvuRiGqpy7XSRKw/xFeScDVJmXn4tID/xFSTnKw/na8cOqw2zZ6v7ZF3EV3293e6WFm/XC8j/OksSFl9MIKI4X2lXL6Ok5Xy57X0Rl6Diyy3ny6/ghk7Ol0nVDjnnKxqivW4CZvt2YPx44NBDgZ/9TP2ctMVXGqXmadhhlgTJn9HJ+QL8na+0870EfjleUQpu5O18yRsoh3G+8gg7dDtng5SZl18LyK/gRkeH1W/o4HzRcXjbNmDyZOCII4Bvfav0uaq+ob6+dKE5i7FZfM+bNnkX2wBYfDEVSHW1fWHqGHZ44IH2IDlhgvU7jvgSg1e/fvHbpsJrIIqa85WX86VyGINssizIauUVMC/ssFycrwUL7Nye6dPVz1m/3vqd1oBfTs5XkBAu3Zwves0PH176P1mJLz+xZWLY4eDB9u01a/ydL5rzlVX/S50Vtz3fVIVCVKiu5SyRF0J1c75WrwZeecW6/c9/lj5XNc4VCqWLzVlEpYjvudKcrzL6KEyaiNynHTv0FF9DhlgFNxYvBqZMse6LKr66uuyJIBU/SZJG2KFOzpfcFrovWXe3c2KYlruowrSCG0k5X2mLAzH5dGvv0qX27ddftwZaOrnavt1ejU9rEl7JOV9Zt0/lfPmFHerqfFFnSNeCG/TYLV2qdpDydr5U54RMUOdLl4IbgNV36eZ8vfuufZsu5grcFhl79XJ+liydr82b3c8LQd6LHEnCzhcTGHlvCz+yLgDx6U8DJ5xgX6BRxdfGjXaBCBr2lyReK9duYYdhCm7olvMlT3Jp+3UVXzo4X52dzmIlYchSSPo5X1R8dXdbuV+UZcvs22lNwtOudpgluud8qaqYUbdjp51K/0dX8WWC8yWLL79S82JbFiA750t1TsiowiVV5B12KI958nich/NF3+e99+zb69aVjiFu45yc95Wl8wUAK1e6P69QyKZkf1aU0Udh0kZcpFGcrzwGp6gFN9ycpyQJ4nz16+f8DCY5X7qKL1PCDmk7o4gCQK+wwyVLnH/Pnu38m4qzLJ2vuBtEm+J86RR2WFUFDBpUOpFKu8y8II7zpWvBjSDOF3UxaNuzEl+9etnHPojzZULBDUAddkh2S8qsb3Bzvjo6So93UPGVpfMFACtWuD8v72ssaVh8MYGJI77yuHCiOl95iy8RJiC7bn4FN3QoNa/K+ZI3mdTZ+dKt4AYQPfRQJ/FFxRVQKr6oODMx7JALbjjxCjtsaLD6A3lyzTlf0fFyvlRhh5Sswg4BZ3EFFaY4X3IUiiy+RNqC/Nw0oePo4sXOx+icBnDvG/Jwvlh8MYwPLL6Sw018dXbaq2bye+vqfKnCIf2cr7wmhqblfAHRi27oLL5efdWZA0QfT8sBkSdscasdFov2581aqBcK/kVZdHW+hJihz6muVocipoGf8yVvjRFEfOU9MRwyxB4fqPNVV2ffX1OjXujKsuARLa6gwkTnSyW+aJ5VHuKL5ljL7QH0cr7o98zii2EUiE6kksRXWjlfbivXdMUsrPgSx7uqKtvYaA47TJ5yd746O4GXXlI/borzRc+fPM4Vv73g8lxI8HK+xGSfPmennbIbI/zEl3xfkIIbeTtfhYK1TxrgFF+ye6RyMrIUX6I9LS2lAgEon4IbeTtfMrLzpVPOl5vzJVeaZvHFVCziItW14IZMmB3fKW6l3pPEreCGl+sWtOBG1iFQQaod0sGxu1vfsENxX1VVvhOqcnK+tmxx5kAIaOhhFuIr6YIb9PzJ+pqj76mj8+VVcEOIGbrinVXIIRBefAXZ50uHiaE4hlu32ts6yO6RysnII+ywWFTv6RS11LxuOV95iC+v94kqvrJ2vpYvt28PG+Z8ng7XWJKw+GICEzbsMMtNllX45Ui5kWfYIRV+XjlfXmGHee55orvzFTTnK0/XCzDX+VIJGCqsPvc5+7ZKfA0enN5ksNKcrzzFV69edvtaWqzJthx2SAVanuJL9d25OV+6brIMOI+h6DN0c77oRFsVehh1k+W8xzwdxFcY50vXnC+xaACU7gXI4oupWMQg1dUVbKKSt/NlYs6X13sHLbiRp/MVdJNl3cMO8xZf5eR8UfF16KF2TtdLL1lt7Oy0B900J+FpOl95ii8dC24UCs7iCnRyqnK+sqp0CPgX2JDvc3O+aPluHSaGqmtHFjC6OF+AuugGFWRy2Bklb+fLr+AG7Qd1FF9urn3epebpWMfii2E+wWtvKsHcucCnPgV8+cvOC1xX8bVhAzBxInDQQXbHn7X4evppa/Corgb+8z/d31tX58uv4Iaq2mFeVQWDhh3mWWwDMM/5EpOfrq7SPWXkSoZHHGHd3r7dKryxYoUtfNIUX0k4Xxs2AAceaPUXtJ/II+xQnMs6Ol+APanatMm5x5duzpeX+Kqqcj7f7XvWwflSCVg5dM8U56ux0Xscy1t8+TlfFB3El1vBDTHvEORdap7C4othPiHIvll33GGVOX3wQWdYka7i66GHgNdesyaBf/qTdZ/oqGprvVff4lBb6+x0urtLE5B32cX5d9CCGzrkfMnC2835qq+3Vsmzgg4uqpwDXZwveq15Dexe5OF8AaUiRs7nOvxw++/Zs7PJ9wKScb4ee8xaYHr1VeAPf7Dv57DDUgYOtH5v2uScaIvJ/siR9n177plZswKJr6FDrd8jRjj7J7fvWYeJYVTnK4+CG4C38+WV7wXoX3CDonPOl3wcZQGXddghRRZfOixwJIkGXQZjCn6uAQB8+KF9e80a+3YeFw5tr5v4WrXKvi32xhAdVVNTesKgqgr49a+B229XC9kjjnBOUgH/ghs65Xxt2WK3pa7OXXxlGXIIWJOPvn0t4UWTewW65HwNHmzfpvkDYchLfHV2Ov+Wy8jTRYVZs4Cdd3Y+nhbydVFbG95hpIVDFi60b7P4KmXkSEukFovAe+/Z94swt/POA954w3repEnZtSuI+LrhBuCmm4Dzz3fer7PzpRJfQZyvvMIOVc6XGDf8HBednC9VwQ2KDs6XW86X3La8C25Qyt35KrOPw6RJEPEll5QW5HHhiJCR9nZ3p452SkuXWhMFcV9aIYeC00+3foISNOdLJ/HVt68lYN2qHWYtvgoFa5Ly9tvAsmVWW2hIpC7OFy22Ig+cQRHniLxvURp4iRjaJ4wcaQ34I0YAK1cCzz8PfOYz9uO6hx1St/T99+3bXO2wFPpd/vvf9m3htAweDPz+99m2CQiW8zVpkloQ6iy+Royw2kHPY92cL9X+b4Ji0Rzx5Zfz5fbcNImS8yWPc3kX3BBUVZXOv8pNfHHYIRMYP/HV2al2E4D8LhzRIbk5XzQWeulSa3IlPlva4issQXO+dCi4ISapovP2CjvMGjEpbG8HVq92PqZLzhc99+KKryw+SxDxNWyYda4UCraru3WrFcon0D3sUEwOAaf40r3gRh7toy7mggX27SydFhVBnC833PpWHSaGNTVOFxkI5nzJE+408Qo73LbNDr33m/TnLb50DDtUiS8RZRBFfBUK2QjzxsbSxcHGxlIBrsM1liQsvpjA+OV8rVzpPoHRVXzRTmnJEu9S73kTNOdLh4Ib8gqmPMkV50/WzhfgnBTKTq0uzlcS4itLIekmvnbssEN7qbCiIbVvvmnfNsn5otdgHucLrT4rFzkB9HK+qPjK0mlRkYb40sH5AkqvHz/nq1evbNvuVXCDXlt+4quqyjlhz1t8eVVTzqpvkPuzIUPsvMq2NmfRmyDiq6Eh/YgJwBJ5qv3oWHwxzCf4OV9uIYdAfheOGFiDiK+VK60fgW7OV9Ccr7wLbnR32+JLDKJytcO8wg4B5wSFnrN0CwWdxJdcqSooWeavuYkv6oS7iS9BY6NdpCENkna+vF47C/y2I9BJfKnCDvMijvjSueAG4C++ZFGT9Xfh5XzRaytIrhE9//MMtdcl50t+r9Gj3ceRIOIri3wvgeo8lc9VXa6xpGDxxQTGRPEVxvkqFoH58+2/dRNfujpfcrvoCpub86Wj+Mp73yZKkjlfeTpftMw8dRz32qvUWR49Ot3Kl0k4X27iK8+wQ0B/8UUn2nmHHQbJ+XLDNOfLL+ww6+8iKecLcF5zeTtfuogv2q4xY9wjKIIU3Mgi30vAzhfDeBBHfOU1OInOSBUmWSyWugpz59q3dRZf8ucpFu3JY97Ol2oQpd//9u12mBSLLzUm53xREeNWRr5QAA47zPkaae/1JF8XtbXxwg4pOoovej7nIb4GDMi/wIOKcs35AsKHHZaD81UoZLtdCaBnwQ3AOZ7KzpcYR4rFYM5XluKLnS+G8YB2In7ii5aTrq7OvnMUUOdLzotoaSktDkDFl245X3SlXna+6OfIupOqrbW/3x071IMoneRSZyzvFXk38ZV3wY2+fe2B0QTxRb9fei567eElhx6mWWYeSNf54rDDUkRlUZm8na844kvONRLo4nzJ15Cf85W1+BLVb4FS8RXW+RLnfx7H3gTna/Ro5xxGLDTTHFFdwg5Vzld9vbPPZvHFVCz0QlU5STTE6Kyz7Nt5XjSiMyoWSycoqkktzU3QzfkC3MMo6YQ364lgoeDMrfNzvrZutW/n4XwNGWK3V1fnq1Cwz7+4OV95hh16ia8jjnD+nbXzVVPjvTm0Cp2cL79IhLzFF6D+Tk12vgB1/6rLxDCs85W1EK6qAvr1s27LYYdRna+8xdfmzeqCNwLdnC+vcU4n56tQcLZBlwWOpGDxxQQmaNhhnz7AySfb9+d50dCO75xzgK9/3RZYKvFFO1EdxZdbAREqLPOYCFBRqBpEaWhI3uKrqgoYNcq6LfZ2A/IvzS0jVi3XrrXb+I9/WJvTnn229fP//p/a9ejstMs26yq+9t3XnoipHk8aP+cryCbLnPMVDh2dL/lYhP3uVM/XZWIoqtsBVn8ri5i8nS/AnmiXi/O1caP3c3UpuCHmO179Av1ceRfcoL8BfRY4kqLMPg6TJl7iq1i0Nq0FrNCHffe1rOSWlnwnsnRwefBB6/ebbwJz5vg7CjqKLx2dL8DZLrdBtKrKchfyFl+AdY4uWmRNpjdssDZ81cn5Auzzr6PDWl0tFIBTTnGGbQLWZ/nP/3TeR88PHcTXwIGlg3l1NXDoocDf/mb9naXzVShY52NSOV8cdqhGFUqqk/MVZQNynZ2vXr2A4cOt7R369y/9bHnnfAF2iFlc50uMHXn01W7iq3fv0hDELK89+n2OHu1cTA7ifNGFkbzDDuU26HKNJQU7X0xgvMTXxx/bE77Ro61JzWWXWX/TEMSsOeOM0sHy9detTskrl6ZQAAYNSrVpkXArIKKL8+WW8wXYE10qHvISX6q8L51yvoDSVctFi0qFFwB88EHpfXTLhCFDkm+bjEp8dXYCK1ZYt93yuf77v63rc//9gYkT02yhOn8gjPgqFtn5CovuYYdRjotKfOnifAHARRdZ49d555U+lne1Q8B2OXbscC4ShXW+zjnH+pznnJNo8wJBzxsqvlQLtllee2eeaQnuL3/ZEjSqqrle4mvffYEJEywR+eUvp99eQSU6Xyy+mMB4bbKsCi+aNs1a3brtttSb5srppwOrV1sTV1FdbetWYP16b/E1cKCeF3sQ5yvvsEO3QVRMUOgkV4dJoUp86eR8Ada5SnMqP/tZ+7ZKkNHnpu0oAWrxtXKlfdutDccdZ12Lc+emf97GFV9iDzsVLL7U6Bh2mIb40mmsmDbNCum75ZbSx3RwvuhEm7pfYZ2vq66y/v/nP0+saYGh5w0Nn1QtdGV57X3ta5YY/OMfrb9VBTe8xrnqauDVV63F9KOOSretFHa+GMYDL+fLLbeD5nTkxaBBwG67AWPH2vctXeoUX/LKi44hh4C7+KKTrzxCoGgump/zRdHJ+dI15wuwBk56jY0fb9+mYZwCr1yrNFCJr6Bt6Ns3G+eAXheqfBE/8eUWcii/dlbQ9/QquBEltC4pdHS+6GS4HJ0vwH3c7d3beS7kGXYIOIVLWOcLyDY0jkKL9VABmbfzBTi/+/p6++8gOV+AdX5kWWwDYOeLYTwJKr7SLhkdFdqupUudOV9yyJOu4kt0lp2dTrdLF+drxw4rP0ngV61IJ/Glu/NFr7G99rJvq5yvrK/HOOIrK+I6X24hh0D+1Q69nK88z2VaWVRguvOlc8ENP+QKcnmGHQJO8RXW+cobWklZkLfzpUKMI0HCDvOCnS+G8cBLfGUd5hQFecJNnS9TxJfbRsu6FNwArDAyganiK+8BEwguvkx3vrKCXhdRxJeX86Vz2GGe5zKtLCqg5azzoNzDDv2gfXLezhd1jaI4X3miOnd0cL5kRJs2brT6CR3FFztfDONB2Jwv3XATX1VVVsI/RbcNlgVu4kuXghuAU3zRlStV6FNeA9NOO9kTb9Ocr5oaK4xW4Od8ZS2+hIjRrU9QOV9h9vmiK/Py58k77FBX8QU4j1VdXf6TqHIvuOEH7ZPZ+YqOauFw4MDScyHvsYTOZTZs0G+cA9z3o2Pni2EQLOywrg4YNiy7NoWBTgKWLLHF1+DBwC67OJ9rgvNF8750cr6oo6ir81VTA+y8s3VbuLa6DUr0HFy3zm7nzjs7ByUv8TV4cDYTLNV+WbqFIifpfO29t/Mxdr7cof1u3iGHADtfeTtfbgU36PWlw3nih2rs6t27VDjmff3Ji3i6RXgApWGHKufLpAWOILD4YgITRHyNHJlfcrcfI0Y43Q6R89XcXLqSbZr4ytv5op04zaXTteAGYH/nGzZYq646F9z44AN7lXj0aOekSQ477OiwS7xn5Th5hR02NOixbYNfzpffJst0Zf7Tn3Y+lrf48iq4kfcEiwrvvIttAJVRcMOLvMWXW8ENcX317m2GmHUTX3LIZN7Xnyy+dBvnAM75YhhP3MTXpk12kQUdVrjdoG7HokX2pLWpyUqUpZ2pruKLduTsfMVDDkPVzfkaNMhKkAeA+fPt+8eMcYZvyc7XRx/ZJdHzEl/Foi2+Ro+2P0eeJFntcMwYZ+5SHtecX8ENcT7nPfkrN+dL1TeYNDHUKexQ5XyZkO8FqMeuXr1K25/3WOLlfOXdNkFtrXMhgHO+GIYgi6+WFuAf/wAeeMC+X4fcDi9E+6hb0NxsTQ5p2znnKxy0XdT5ooO7SeIr7wkrYB2vwYOt2/R8Fe0Wg5UsvvLItZLFl7zpug7Q8y9I2OGOHcC8efb9ck6KnMuUNSaGHergfFV6zpfuzpcJ+V6A+tyRww5ra/OPBDJBfAFOUc7ii2EItLNpaQH22w/4/Oetjf0Euky03FA5c6Jzom3X1fkKkvOVt/jats363aePc1KimqDkOTHU3fkC1OehLL7ksMM8cq3oOdfRoV+xDcCaBImJUBDxdfrpwAEHABddZP1tkvjq7LTdTxZfTio954uKg7xzvlT7fJnsfMlhh3lfe0DpfpE6jnOAWnxx2CHDwHmhPvOMc4IlOOSQ7NoTBdVEUExwJ02yfvfrB+y+e3ZtCkOQnK+8ww4F8gqmagUwT+drp53s22vW6BkLr3JgxTksXEUdnC/azkWL9BRfALDPPtZvkbPlJr42bgRmzLBu/+Mf1m+5FPahh1q3+/a1w5mzxEt8+W2kmiU772yfA/vum29bACv3VzjK4nwIg+nOl6jsW18PjB2b/furwg47Ouxz1nTxRce9vK89wNk3r1+vV99AmTDB+r3XXvY1ts8+9rxBLnJkOmWmJZk0oRNSkdAPAGeeCeyxh+WEHXVU9u0Kg2oiKDqnb3/beny//fQNfdDV+VJ14vIgqlvYoTwJoJ9BF/EVxfnKY889sXABALNnO797nfJAZ8wAnnoKOPlk62838TVnjr156tq11m3Z+brySqvA0H775TNhNEV8VVcDM2da58Vpp+XbFsDqc2bNAubOjdYeWXxVVemR0xiUCy+0+r7ddlNvCpw2qrBD2ofpOvbKmOJ8yfuq6ep8/fznwBFHAJMn2/eNGWNdqytXAqecklvTUoHFFxMYtwv1xhudLoLOeDlfvXsD556bbXvCYkLBDYE8iOosvjZtcv6tw6AJlIqvQsGa8AO287VtmxViJlYI83CdRo2y3mvpUuDFF53OsU7O16hRwAUX2H+7ia/Zs+3b7e2W6yU7X3n3F17VZ3USX4C1OLfHHnm3wmbvvaOvpMv9q0muF2CdN2ecke/79+5t9VvC+TJtg2XAHOdLXmTUVXwNGmQtDMiICINyg8MOmcCoOpJddzVHeAHe4ssETCi4IdDd+ZJXYHUclORzc/hw+zqk+RpUiAvx1dhobfqZFYcfbrflscfs+3USXzJumyzPmuV83tq1+m0Ca4rzVW7IfUO55aJkgeh7hfOl27UVBLeCG7o5X/Iio47jXCWipfjq6OjAM888g29/+9s48MADMWDAANTW1mLYsGE48cQT8cQTT3j+/9NPP40pU6agqakJvXv3xp577onvf//72EKvcCY0qgtVTLhMQbgGFFPFVzk4X3kOTiasCMo5X27FC0TYTnc3sGyZ/dwsw6GOOMK+/fHH1m+dN10H1M5Xa6tV5ZCydq1+q/MsvvLBdOdLB0Tfy85X+vTqZY9nsvjSoX2Vipbia9asWZg8eTJ++tOfYsWKFTj00ENxyimnoLm5GY8//jiOP/54XHzxxSiKoHzCrbfeiqOPPhpPPvkk9t57b5xwwgloaWnBddddh4kTJ2IdrYPNhKIcxFevXqWTQV3LyqvQdZNlE50vupnnpk16FtyQFwbc9kwSRTfWrLEH16xzrVR9gc6brgPqTZZfeKG08qHsfOkwQQwqvnQ5l8sFFl/xEc7X5s3WtWai82VKzhfgFLvcN+iBlsNiVVUVTj31VMyePRurVq3CX//6Vzz44IN466238MADD6C6uhp33nknfv/73zv+b/78+bjyyitRXV2NJ554ArNmzcKf/vQnfPDBBzjqqKPw7rvv4pJLLsnpU5mP6kKlq92mIIdBmSS+dM35Ug0yulc7LBScg5KOzpeX+FI5X3lWGdxtt9KFDZ1DDgG180XzvQRUfNXX53ONybDzlQ/yd89hh+GhUQebN5ev86XLOELDPHUc5yoRLcXXf/zHf+Chhx7CYYcdVvLY6aefjqlTpwIA7rvvPsdj119/PYrFIs477zwcd9xxPff36dMHd911F6qqqvDwww9j4cKFqba/XKmpcYYx7byzXpXMgkLb3K+fWZMTdr6SxW1Q0uWcCCq+hPOVR6VDQaFQ6n7p3j8EFV/r1tkTRF1W5k0quFFOsPMVHznk20TnS3Vd9eqlt/O1ebNz3sDiKz+0FF9+jB8/HgCwfPnynvva29t7csHOUJTyGT16NCZ9Ug/50UcfzaCV5Ueh4LxYDz/crBK7AhM2U3bDreBG3s6XqeJL93AM2ZWlYkYVdpj3/lqyE26a87VtG/DKK6XPo86XLivz7HzlAxfciI9c7KgcnC8xP9It5wuwx7nubmDDBvt+XdpXiRgpvhYtWgQAGD58eM997733Hto+mYFMnDhR+X/i/vnz53u+/tatWwP9VCJ04DEx5BBwTghNCjkEzHK+ghTcyDt8SwxKXV3OQUkX8WVS2CFQ6nyZJr5eftl2kT77WfsxWnBDl5V5L/Glo4tbLrDzFZ9ycL7kMa93b0uA6eh8UbEriiEB+oxzlYhx4mv16tW45557AACnnnpqz/2LFy8GAAwYMAB9Xa7ekZ+UuhPPdaOxsdH3Z8SIEQl8GvOQnS8TKRfn65ZbrFLiRx9tV40C9BFffs5Xr175O6e6D0r19c7JiF/BjbzF1157Wfu15NmGMMjii4Yc0k09V6+2XDFAn5V5dr7ygXO+4lOOzlfv3tZvnZ0vQM9xrhIxSnx1dnbirLPOQktLC/bZZx9cfPHFPY+1fnL1NtAZiUTjJ1f15s2b021oGTN4sPV72DBg7Nh82xIVutnnqFH5tSMK1Klrb7cGrqefBu69175f14IbKvGVN3RQWrvWvq3LoAnYAmbECKfgUuV8rVhh/a6tBYYOzaZ9lKoq4HOfs//ebbfs2xAGWXzRoIgTT7QXB2gunS4r8yy+8oGdr/jQ/QfXry8f5wtw9ru6RNZQsUvHORZf+WHUms0ll1yCZ555BoMHD8ZDDz2EupTOnCD7gW3evLki3a8bbwRuvRW48sr8XYuo7L478MMfAi+9BFx2Wd6tCcfuuwPf/z7wyCPWBOvDD637qZmrq/MlVzvUQXzp7nwB1jV3003Af/+3835V2KHYtHTQoPxKvP/v/1rt+I//sIry6EyhYB2n7m5LfG3caD82cqR1HNevd4ovXVbmueBGPrDzFR+63+ayZWY6X/J1JcTXyJFWH/j888Cll2bfLhXsfOmHMd3GN7/5Tdx1110YOHAgnnrqKexB7QugJ9TQKxdLiKp+/fp5vpeXeybokjeCqRBOOsn6MZ1p0/JuQXR+/GPrp6PDWkGUT3ldCm74OV86TArpoKRjwQ0AmDLF+pFRhR0K8UVFZdbstRfwzDP5vX9Yqqtt8SWOX12ddU43N1vii54buqzMs/OVD3LfwM5XeGg48pIlzsUDXa4vP9ycLwD4n//Jti1+0PGA+wY9MCLs8Morr8QvfvELDBgwADNnzuypdkgZ80kZsE2bNvWEIMqI6ohjdK9/zDABqK0FDjmk9H5dnS8dww5VIqVQMGNCJTtf3d32CjIVlYw34rvu7LTF14AB1nmgChvSZWWexVc+sPMVHyq+li410/nyEl+64TYe6LTIWGloL76+853v4JZbbkH//v0xc+ZM10qGY8eORZ9PZiNz585VPkfcP2HChHQayzAZoyp6YorzpYP4Ug1KdXVmhNTKOV+bNwPFovV3ns6XaYjzsqvLLlwjjp+qII8uk0MWX/nAOV/x6dfP7nuXLi2vnC8dYfGlH1qLr6uuugo33XQT+vfvj6eeegoHHnig63Pr6urwhS98AQAwffr0kseXLl2KF154AQBw8sknp9NghskYlfjKYyVWNcEz1fkyZbIqhx3SipfsfAVHnJcdHfYxFMdPJb50mRyy+MoHdr6SQbhfy5fb111VlR7jQhDkdurcbrfFOBZf+aGt+Pqf//kf3HjjjRgwYICv8BJcddVVKBQK+N3vfocnn3yy5/62tjZccMEF6Orqwqmnnoo999wzzaYzTGYcdFDp5Iqdr+C4OV8mIIcdipA5gMVXGMR52dJS6hzq7HzR89RLfJlyPpsCO1/JIMRXZyfwydat6NvXjKgDwL3gho6oxoPqaj5380TLNZsZM2bgJz/5CQBgt912wy9/+Uvl85qamvDTn/605+8JEybg5ptvxhVXXIEpU6bgiCOOwJAhQ/Dcc89h1apVGDt2LH79619n8hkYJgt69QIOPti5P1EeK7E1NXbVOIFftUMdVuRNFl9ezheHHQZHTEDWr7fvM8354mqH2cEFN5KB5n2JsENdFjaCYFLYoWo8MGWcK1e0FF8bNmzouT137lzXHK7Ro0c7xBcAXH755dhnn31w880345VXXsHWrVsxatQoXH311bj66qtdN2BmGFM5/PD8xVehYA1GoupeTU3ppE9H58vkQYmdr2SgBTcE4rzgghuMDIcdJoOq7plJ0zOTxJfJi4zlipbdxtSpUzF16tTI/z958mRMnjw5uQYxjMbIeV95hB0CTvHV2FgaPqKj+FINSqZMVuWCG1R8sfMVHNXk2QTnq6rKdptZfGUHhx0mA3W+BLosbATBJPElwjlFWDXA4itvtM35YhgmGJ/9rHMCkNdKLJ3kqSaoOoov1ZZ/pgxKsvjighvRUE2evcSXThNEIQQ6OqzNU3/yE+CFF5xhiCy+koWdr2Rg8ZUdVVWlYx33C/nC4othDKexEaA7MOQlHuhgpBpEdRRf1dWlQtEU8VVdbQ+gctghO1/BUYkvr4IbujhfgFN8fe971uauU6Y489d4kpUs7Hwlg0p86XRt+WFSwQ2gdEHOlHGuXGHxxTBlwCWXWL8nTgR23jmfNlAxFcT50mVSKAsVkwYlUXSDna/oeDlfOud8Afa52t4OiNTolhZnDqgu11m5IPcP7HxFo6mpVLDodG35YZr4MnmcK0dYfDFMGTB1KrB6NfDii/mV6vVzvuRqhzo4X4DZK4Ii9FDO+WLxFRwv56tXr9JzWafVeep8LV1q309qVrH4Shh2vpKhUCh1v3S6tvyornaeC7qLL5PHuXKExRfDlAlDh+a7Cmti2CFQOiiZNFkV4mvrVi41HxUv5wsoDT3UaXVeTP7Wr3eKb4pJ57MJcM5XcsjiS6drKwh0DNNdfLHzpRcsvhiGSQQTC24AZg9KNOyQna9ohBFfhYKz0EneCCEg9klSweIrWdj5Sg6TnS/AeW3pMp65YfIiYznC4othmEQI63zp0vmbHI4hhEB7O7BunXW7UDBvBTlPvMIOAaf4Um2hkCdBtpXQ5TorF9j5Sg55ry/T+i12vpiosPhiGCYRwhbc0GWl0ORBibowq1ZZv/v3L82vY9zx2ucLcBbd0G1l3u9cranhcyFp5GPOzld0THe+TBJfJi8yliPcLTMMkwic85U9IuwQsPZ5AjjkMCzyeVkoOCeBsvOlE37Ol0nnsilw2GFycM5XdrD40gsWXwzDJIKf86VrtcNycb6KRes3F9sIhzx57tfPea5S8aXbyrxKfNHryqRz2RQ47DA52PnKDnlc4IWZfGHxxTBMItDO3GTny6QJK3W+BOx8hUM+L+XjZ5LzVSgAJ5xg/80TrORh5ys5hg93ilfdri8/6PWlu/gyeZwrR1h8MQyTCKZusmzyoKSqvMfOVzjk81I+fjrnfMlCYPhw4Oij7b91ucbKCXa+kqO6Ghg50v5bt+vLD5OdL5PGuXKExRfDMIlgas6XyYOSSnyx8xUOk50v+VwdPRo4/HD7bxZfycMFN5KFhh7qdn35YZL4MnmRsRxh8cUwTCKMG2f9LhTs2xRdxVe5FNwQsPMVDj/na4897InV3ntn06agyC7M6NFWe3ff3fp77Njs21TuVFc7txtg5ysen/mM9btvX6cLZgJinBs0CBg6NN+2+ME5X3rB3QbDMInwla8AHR3AzjsDu+1W+vj/b+/eo6I47zeAP8udLLCAN+TmNVGjFEFAUzHFWxTvVq23IKgxtdYYrNfk6JFWG2+1LaLRNkfF69GjVQIhUYwBkShECxop0WrEIIoKKhcRZJH39wc/KIRFgYWZneX5nLPn6Mzs5GGyMvud7zvvGGrxxc5X6/aqzpejIxAXB1y+DISESBSqgXQVXyoVEBNT+ZoxQ55cxs7cvPLZegA7X/r66KPK4bK+vsrrfK1aBbi7A2+9ZTjns/qw82VYWHwRUbOwsADee6/+9YY626GST0osvvT3886FruPn71/5MjS6ii+gsuPFrlfLqVl8sfOlHzs7YNEiuVM0jUYDfPCB3CkaRskXGY0Rhx0SkSQMdcINJZ+UOOxQf68admjI6iu+qGXVPO7sfJESWFryMRSGhMUXEUnCUIcdWlnVPhEZSlHYEOx86e9Vww4N2c+/QHXuLEuMVqfmcWfni5Si5u82Fl/yYvFFRJIw1OJLpard7VDSSYmdL/2x80WNxc4XKVHN321KushojFh8EZEkDLX4ApR7RZCdL/0pufNVswho00Z3MU7Nr+ZxZ+eLlEKp5zljxOKLiCRhqPd8Aco9KbH40p+xdL7Y9ZIOO1+kREo9zxkjFl9EJImasx2qVHWHTMmJww5bL2PpfLH4kg6LL1IipZ7njBGLLyKSRM0vKVZWtR9UKreaX7gNqSP3Kro6Xyy+GkfJxVfNL1AsvqTDCTdIiZR6njNGLL6ISBI/L74MiVKvCP68+LK2VlZ+Q8Bhh9RY7HyREin1PGeMWHwRkSQMufhycvrfn5XU+fj5sEMlZTcUP+9cKKn4qvn/+/XXZYvR6nDCDVIipZ7njBF/bRCRJGoWX4Y25GHePCApqfILrLe33Gkarmr4phCVf1dS4WAofn5RwNA+my8zbRrwxRdAu3bAiBFyp2k92PkiJXr3XeCrr4C2bYGAALnTtG4svohIEobc+erUCUhIkDtF46lUlUMPi4sr/86rmY1X83OptOPn5AR8/bXcKVofdr5Iidq3B06fljsFARx2SEQSqTnboaEVX0pW874vpRUPhkDJxRfJo+b9Mux8EVFjsfgiIkkYcudLyWoWXxx22Hg1P5c8ftQQ7HwRkT5YfBGRJFh8tYyak26wc9N47HxRY/GeLyLSB4svIpKEIU+4oWTsfOmHnS9qLHa+iEgfLL6ISBLsfLUM3vOlH3a+qLHY+SIifbD4IiJJsPhqGRx2qJ+anQseP2oIdr6ISB8svohIEpztsGVw2KF+OOyQGouzHRKRPlh8EZEkeM9Xy2DnSz8cdkiNxWGHRKQPFl9EJImaw3PY+Wo+7Hzpp+bnksePGqJm54vDDomosVh8EZEkvLwAJydApQICA+VOYzxGjao8ps7OgLe33GmUZ+jQyk7Ga68BQ4bInYaUYMSIyn9z7doBPj5ypyEipVEJIYTcIZSosLAQGo0GBQUFsLOzkzsOkSIUFwOPHwNubnInMS4//VT5RbBmF4wa7v79ym4shx1SQ2VnAw4OtYf9ElHr1tDagA1zIpKMWs0vKy2hUye5Eyibk5PcCUhpXF3lTkBESmWwww6vX7+OiIgIhISEwMPDA2ZmZlCpVFi3bl297wkLC4NKpXrp69q1axL+FERERERERJUMtvO1Y8cOhIeHN+m9np6e6Nu3r851Gt5RTUREREREMjDY4qtPnz5YunQpvLy84O3tjU8++QT79+9v0HsnTJiAsLCwlg1IRERERETUCAZbfL333nu1/m5iYrAjJImIiIiIiF6JFQ0REREREZEEDLbzpY/U1FSsXLkSjx8/hkajgZeXF8aOHQtbW1u5oxERERERUStllMVXTEwMYmJiai3TaDTYunUrZs2a9cr3FxcXN8s2REREREREVYyq+OrWrRs++eQTBAYGotP/P/gmIyMDGzZswBdffIHg4GCYmppi5syZL92PjY2NFHGJiIiIiKgVMariKygoqM6ygQMHIiYmBosWLUJERAQWL16MKVOmwMLCQoaERERERETUWrWaCTfCwsJgamqK3NxcpKSkvHTbp0+fvvJ17949iZITEREREZExMKrO18s4Ojqiffv2yMnJQXZ29ku3VavVr9zfixcvmisaERERERG1Aq2m8/XixQsUFBQAAGc9JCIiIiIiybWa4is6OhrPnj2DSqWCj4+P3HGIiIiIiKiVMZriKysrCwcOHEBpaWmddVFRUXjvvfcAADNnzoSTk5PU8YiIiIiIqJVTCSGE3CF0SU1NxYIFC6r//uOPPyIvLw+urq5wcXGpXn7ixAl07NgRly9fhpeXF2xsbODl5QUXFxeUlJQgIyMDN27cAAAMHjwY0dHRzTKVfGFhITQaDQoKCmBnZ6f3/oiIiIiISJkaWhsY7IQbhYWFOmclzM7OrjVhxvPnzwEAbm5uWLFiBS5evIibN28iNTUVZWVlaNu2LcaMGYMZM2Zg6tSpMDExmmYfEREREREpiMF2vgwdO19ERERERAQYQefL0FXVrIWFhTInISIiIiIiOVXVBK/qa7H4aqKioiIAlcMdiYiIiIiIioqKoNFo6l3PYYdNVFFRgXv37sHW1hYqlUq2HMXFxXB2dgYA3Lt3r0EPiKaG4/FteTzGLYvHt+XxGLcsHt+WxePb8niMW5ahHF8hBIqKiuDs7PzSOSbY+WoiExMTuLq6yh0Dpqam1X+2s7PjP+hmxuPb8niMWxaPb8vjMW5ZPL4ti8e35fEYtyxDOr4v63hV4dR/REREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEuBDlomIiIiIiCTAzhcREREREZEEWHwRERERERFJgMUXERERERGRBFh8ERERERERSYDFl4IdPXoUAQEBcHBwgFqthqenJzZt2gStVit3NMW7fv06IiIiEBISAg8PD5iZmUGlUmHdunVyR1M8rVaLM2fOYNmyZfD19YW9vT3Mzc3h5OSEcePGITY2Vu6IRuHgwYOYNWsWPD090b59e5ibm0Oj0cDPzw/r16/H06dP5Y5odJYvXw6VSsXfFc0gJCSk+ljW9yotLZU7plEoKyvD1q1b4e/vD0dHR1hZWcHV1RWBgYE4cuSI3PEU6/bt26/8DFe9EhMT5Y6rWFlZWVi4cCF69OgBa2trWFlZoUuXLggODsaVK1fkjqeTmdwBqGlCQ0MRHh4OMzMzDBkyBDY2Nvjmm2+wYsUKxMTEIC4uDtbW1nLHVKwdO3YgPDxc7hhG6ezZsxg+fDgAwMnJCf7+/lCr1cjIyEBMTAxiYmLw/vvvY+fOnVCpVDKnVa4dO3bg/Pnz6NWrF7y9veHo6IgHDx7gwoULuHjxInbv3o2zZ8/C2dlZ7qhG4fz589iyZQtUKhU4iXDzGThwILp3765znampqcRpjE92djZGjBiBjIwMtG3bFgMHDoRarcadO3eQmJgItVqNqVOnyh1TkWxsbBAcHFzv+oyMDFy8eBG2trbo16+fhMmMR0pKCoYPH46ioiK4uLjgnXfegampKS5fvox9+/bh0KFDOHToEKZMmSJ31NoEKc6JEycEAGFjYyP+/e9/Vy/Pzc0VHh4eAoBYsmSJjAmV77PPPhNLly4VBw8eFD/88IMICgoSAMTatWvljqZ4Z86cEZMmTRKJiYl11h0+fFiYmpoKAGLv3r0ypDMeycnJ4tGjR3WW5+XlCX9/fwFATJs2TYZkxqe4uFi8/vrrwsXFRUyYMIG/K5pBcHCwACD27NkjdxSj9ezZM9GzZ08BQISFhYmysrJa64uLi0VaWpo84VqBwMBAAUDMmzdP7iiK9Ytf/EIAEO+//36tz++LFy/EqlWrBABhb28vSkpKZExZF4svBfL19RUAxLp16+qsO3funAAgLC0tRX5+vgzpjFPVFwF+oWp5c+fOFQDE0KFD5Y5itBITEwUA4ejoKHcUo7Bo0SIBQMTGxvJ3RTNh8dXyVq9eXf3FlaSVnZ0tTExMBACRnJwsdxxFysvLEwAEAPHw4cM668vLy4W1tbUAIFJTU2VIWD/e86Uwd+/excWLFwEAM2bMqLPe398fbm5ueP78Ob788kup4xHpzcvLCwBw584dmZMYLzOzyhHnlpaWMidRvoSEBERERGDWrFkYNWqU3HGIGkSr1WLHjh0AgGXLlsmcpvWJjIxERUUFevfujf79+8sdR5Eac/5q27ZtCyZpPN7zpTBpaWkAAEdHR3Tp0kXnNj4+Prhz5w7S0tIwffp0KeMR6e3GjRsAgI4dO8qcxDgVFRUhLCwMADBu3Dh5wyjc06dPMWfOHHTo0AF///vf5Y5jlOLj43H16lUUFRWhTZs28PPzw6hRo3jhQE+pqanIy8uDs7MzunfvjqtXr+L48eO4d+8eHBwcMGjQIAQGBsLEhNfoW0JkZCQAYO7cufIGUTAbGxsMGjQI586dw6pVq7Bt2zaYm5sDACoqKhAWFoaSkhIEBgbCzc1N5rS1sfhSmMzMTACAu7t7vdtUfciqtiVSivv371eflCZNmiRvGCMRFxeHQ4cOoaKionrCjaKiIowcORIbN26UO56iLV26FJmZmThx4gQcHBzkjmOU9u3bV2dZx44dsXv3bowcOVKGRMbh+++/BwC4urpi5cqV2LRpU62JYjZu3AgvLy9ERUW99PsGNd7Zs2dx8+ZNWFhYICgoSO44ivbZZ59h1KhR+Oc//4nY2Fj4+PjA1NQUaWlpuHv3LoKCgrBt2za5Y9bBSxoKU1RUBABQq9X1bmNjYwMAKCwslCQTUXMoLy/Hu+++i4KCAnh4eOC3v/2t3JGMQkZGBvbu3Yv9+/cjLi4ORUVFmDFjBiIjI6HRaOSOp1hxcXH4xz/+gWnTpmHChAlyxzE6np6eCA8PR3p6OgoLC/HgwQPExcXhl7/8JXJycjBu3DgkJCTIHVOxHj16BKByNM3GjRuxYMECXL9+HQUFBTh9+jTeeOMNpKWlYfTo0Xx8TTPbvXs3gMqRB4Y2HE5pevTogQsXLuCdd97B3bt38fnnn+P48ePIzMxE9+7dERAQADs7O7lj1sHii4gMwvz583HmzBm0adMGx44dg4WFhdyRjEJoaCiEECgrK8PNmzexZcsWfPXVV3jzzTf5bJkmKigowNy5c9GuXTtERETIHccoLV68GIsWLULv3r1ha2uL9u3bY/jw4UhKSsL48eOh1WoRGhoqd0zFqupyabVaTJ8+Hdu2bcMbb7wBOzs7DBs2DKdPn4aVlRXS09Nx+PBhmdMaj8LCQhw7dgwAMGfOHJnTKN+3334LDw8PpKen49ChQ7h//z4eP36MmJgYaLVazJ071yCHdrL4UhhbW1sAQHFxcb3bVD081RCrfSJdPvzwQ+zatQsODg7VV12peZmbm6Nbt274wx/+gK+++gpPnjzBu+++i5KSErmjKU5oaCiys7Oxbds2XrmWmEqlwh//+EcAwJUrVzgxTxNVfZcAoHOUgbu7O0aPHg0A+PrrryXLZewOHz6MZ8+ewdXVFSNGjJA7jqLl5+dj4sSJyM3NxfHjxzF9+nR06NABDg4OGDNmDE6ePInXXnsNu3fvRnx8vNxxa2HxpTCdO3cG8PKZ4KrWVW1LZMiWLFmCrVu3wt7eHnFxcdWzHVLL6d+/P958803cuXMHly5dkjuO4pw4cQJmZmb49NNPERAQUOt18uRJAMCuXbsQEBCAadOmyZzW+PTq1av6z9nZ2TImUa6uXbvq/LOubXJyciTJ1BpUDTkMCQnhZCZ6io2NRW5uLrp27apzxsiayw3tAgIn3FCYqi+mjx49QmZmps4ZD6u+THl7e0uajaixli9fjr/+9a/QaDSIi4uDj4+P3JFajar7Rh8+fChzEmUqLy/H2bNn611/+/Zt3L59G506dZIwVetQdb8SULuDQw3n7e0NlUoFIQTy8vJ0zgaXl5cH4H/3kZN+MjIykJKSApVKhdmzZ8sdR/GysrIAvHyUV9V9zY8fP5YkU0Ox7FYYV1dX+Pr6AgAOHTpUZ31SUhLu3LkDS0tLPnOGDNrKlSuxefNmaDQanD59uvpzTS0vLy8PV65cAQAO8WyC/Px8CCF0voKDgwEAa9euhRACt2/fljesEaq6B8nOzg49evSQOY0yOTk5wd/fH4DuroBWq62+uODn5ydpNmO1a9cuAMDgwYPr7TZSw7m4uAAArl27hoKCgjrrtVotUlNTAaDeRzPJhcWXAn388ccAgA0bNlR/sIDKq4ELFiwAACxcuJAzmZHBWrVqFTZu3Ah7e3sWXi0gIyMDBw8eRGlpaZ11//3vfzFlyhQ8f/4cAwYMgIeHhwwJiep3+fJlREdHo7y8vNbyiooK7Nq1q/ocuGjRourn+lDjrVmzBgCwfv16JCcnVy8vLy/HkiVLcOvWLdja2rJL0wy0Wi0OHDgAgM/2ai6BgYFQq9UoKSnBvHnzquc7AICysjIsXrwYWVlZMDc3x+TJk2VMWpdK1HywAynGhx9+iK1bt8Lc3BxDhw6FWq3GmTNnkJ+fj4EDB+L06dOwtraWO6ZipaamVheyAPDjjz8iLy8Prq6u1VdbgMp7P/gw4MaJjo7G+PHjAVQ+ELx37946t2vbti3+8pe/SBnNaCQkJGDw4MFQq9Xw8vKCq6srysrKkJWVhdTUVFRUVKBXr144efIkn+HTzEJCQrB3716sXbsWq1atkjuOIkVFRWHixIlwcHCAt7c3OnTogPz8fKSnp1cPNZo+fTr27dsHMzPePaGPdevWYfXq1TAzM4Ofnx+cnJyQmpqK27dvw9raGkePHq2eeIOa7sSJE/j1r38Ne3t75OTkwMrKSu5IRuHAgQOYPXs2ysvL0a5dO/j6+sLc3ByXLl3C3bt3YWJigu3bt2P+/PlyR61NkGIdOXJEvP3228LOzk5YW1uLPn36iA0bNojnz5/LHU3x4uPjBYBXvjIzM+WOqjh79uxp0LHt1KmT3FEV6+HDh+LPf/6zGDlypOjcubNQq9XCwsJCODk5ieHDh4sdO3aI0tJSuWMapeDgYAFArF27Vu4oinXr1i0RGhoq/P39hYuLi7CyshKWlpbC3d1dTJ48WcTGxsod0aicOnVKBAYGCkdHR2Fubi7c3NxESEiI+OGHH+SOZjTGjBkjAIgFCxbIHcXoXL58WYSEhIiuXbsKS0tLYWFhITp16iRmzpwpUlJS5I6nEztfREREREREEuA9X0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9ERGQwVCpVo18BAQEAgICAAKhUKiQkJMj6MzSH8PBwqFQq/Otf/2ryPgoKCtCmTRv0798fQohmTEdERE1lJncAIiKiKsHBwXWW3b9/H6dOnap3fc+ePVs8l5Ryc3MRFhYGX19fTJo0qcn70Wg0+Oijj7Bs2TLs27dP57EjIiJpqQQvhxERkQFLSEjA4MGDAeClHZysrCw8e/YM7u7ueO2116SK1+wWLlyI7du3IzY2FqNGjdJrX6WlpXB3d4eZmRkyMzNhaWnZTCmJiKgpOOyQiIiMgru7O3r27Knowis/Px+RkZFwcXHByJEj9d6flZUVZsyYgZycHBw5cqQZEhIRkT5YfBERkVGo756vkJAQqFQqREZG4vr165g6dSrat28PtVoNX19ffP7559XbpqSkYNy4cWjXrh2sra3x1ltv4cyZM/X+N0tKSrBlyxYMGDAA9vb2sLKyQo8ePbB8+XI8evSo0T/Dnj17UFxcjKCgIJiY1D1FP3/+HJs3b0a/fv1ga2sLCwsLODk5wdfXF8uXL8fjx4/rvCckJAQAsH379kbnISKi5sXii4iIWoXU1FT069cPV65cwdChQ+Hp6YlLly5h4sSJOHbsGKKiojBo0CBkZ2dj6NCh6NGjB5KTkzFy5EgkJSXV2d+9e/fQv39/LF26FDdu3ICvry9GjRpVXSD5+Pjgp59+alTGqKgoAMCwYcPqrKuoqMDo0aOxfPly3Lx5E4MGDcLkyZPh4eGB3NxcbN68GVlZWXXe17dvX7Rr1w7fffcdcnJyGpWHiIiamSAiIjJg8fHxAoB41SnrV7/6lQAg4uPjay0PDg6ufv+6detERUVF9bqtW7cKAMLV1VU4ODiIffv21XpvaGioACCGDRtWa3lFRYUYOHCgACDmzp0rCgsLq9dptVqxZMkSAUAMHjy4wT/ns2fPhIWFhTAxMam1vypnz54VAISXl5fO9RcvXhR5eXk69z1u3DgBQOzfv7/BeYiIqPmx80VERK2Cn58fPv74Y6hUquplv/vd7+Do6Ijs7GwMGzYMQUFBtd6zatUqAEBiYiK0Wm318lOnTuHbb79F3759sXPnTtja2lavMzMzw6ZNm9CnTx/Ex8cjPT29Qfn+85//oKysDK6urrX2V+XBgwcAgEGDBulc7+PjgzZt2ujcd+/evQFUdv+IiEg+LL6IiKhVCAwMrFV4AZWFUpcuXQBA58yCbdq0gaOjI8rKymrdwxUbGwsAmDRpEszM6j61xcTEBG+//TYA4Pz58w3KV1Vc1VdAeXt7w9TUFLt378b27dsbNYSwap9V/w0iIpIHiy8iImoV3N3ddS63sbF56fqqLlNpaWn1slu3bgEAVq9eXe/Dnz/99FMAlc/taoiCggIAgJ2dnc713bp1w9/+9jdotVosXLgQzs7O6Ny5M6ZPn46DBw+irKys3n1X7fPJkycNykJERC2DD1kmIqJWQdfsgY1ZX1NFRQUAwN/fH926dXvptlVD/l7F3t4eAFBYWFjvNh988AF+85vfIDo6GklJSUhKSsLhw4dx+PBhrFmzBufOnUPHjh3rvK+qsHNwcGhQFiIiahksvoiIiBrJzc0NADB+/HgsXbq0WfbZvn17AHjlFPUdOnTAvHnzMG/ePADAtWvXMGfOHFy4cAErV67E3r1767ynap8dOnRolqxERNQ0HHZIRETUSIGBgQCAo0ePQgjRLPvs3bs3LCwskJ2djaKioga/r2fPnlixYgUA4PLlyzq3qZr0o1+/fnrnJCKipmPxRURE1Ejjx4+Hr68vvvvuO8yePVvnfV1PnjzBzp07UV5e3qB9WltbY8CAAaioqEBKSkqd9d988w2+/PLLWrMuAoAQAl988QUAoFOnTjr3feHCBQDAkCFDGpSFiIhaBocdEhERNZKJiQmioqIwevRo7N27F8eOHYOnpyfc3d1RVlaGW7du4erVq3jx4gVCQkJ0zoioy4QJE5CYmIjTp0/XedDy999/j8WLF8POzg7e3t5wdnZGSUkJUlNT8dNPP0Gj0eBPf/pTnX2mpaXh0aNH8PPz03k/GBERSYedLyIioiZwdnZGcnIydu7cCT8/P1y/fh3Hjh1DUlISAGD+/Pk4deoUrKysGrzP2bNnQ61W48CBA3jx4kWtdWPHjkVYWBh8fX1x69YtHD9+HAkJCdBoNFi5ciXS09PRt2/fOvuMjIwEAPz+979v8s9KRETNQyWaa7A6ERER6W3hwoXYvn07oqOjMXbsWL32VVpaCjc3N5ibmyMzMxOWlpbNlJKIiJqCnS8iIiIDsmbNGtjb2+scQthYERERyMvLw/r161l4EREZAHa+iIiIDEx4eDhCQ0Nx9OhRTJ48uUn7KCgoQNeuXdG9e3ckJydDpVI1c0oiImosFl9EREREREQS4LBDIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpIAiy8iIiIiIiIJsPgiIiIiIiKSAIsvIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpLA/wFYNv5CU/sxtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc.time, lc.counts, lw=2, color='blue')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `Powerspectrum` class to create a `Powerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize power to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "ps = Powerspectrum.from_lightcurve(lc, norm=\"leahy\")\n", + "print(ps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Powerspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Powerspectrum(lc, norm=\"leahy\")\n", + "```\n", + "However, we recommend using this explicit syntax, for clarity. Equivalently, one can initialize a `Powerspectrum` object:\n", + "\n", + "1. from an `EventList` object as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(events, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally.\n", + "\n", + "2. from a `numpy` array of times expressed in seconds, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(times, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Powerspectrum.from_lc_iter(lc_iterable, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterable` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.)\n", + "\n", + "Since the negative Fourier frequencies (and their associated powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"\\nSize of positive Fourier frequencies:\", len(ps.freq))\n", + "print(\"Number of data points per segment:\", ps.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Powerspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the power spectrum.\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of power spectra averaged together. For a `Powerspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curve.\n", + "6. `nphots1` : The total number of photons in the light curve.\n", + "7. `norm` : The normalization, one of `leahy` (Leahy et al. 1983), `abs` (absolute rms), `frac` (fractional rms), or `none`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1. 1.125 1.25\n", + " 1.375 1.5 1.625 1.75 1.875 2. 2.125 2.25 2.375 2.5\n", + " 2.625 2.75 2.875 3. 3.125 3.25 3.375 3.5 3.625 3.75\n", + " 3.875 4. 4.125 4.25 4.375 4.5 4.625 4.75 4.875 5.\n", + " 5.125 5.25 5.375 5.5 5.625 5.75 5.875 6. 6.125 6.25\n", + " 6.375 6.5 6.625 6.75 6.875 7. 7.125 7.25 7.375 7.5\n", + " 7.625 7.75 7.875 8. 8.125 8.25 8.375 8.5 8.625 8.75\n", + " 8.875 9. 9.125 9.25 9.375 9.5 9.625 9.75 9.875 10.\n", + " 10.125 10.25 10.375 10.5 10.625 10.75 10.875 11. 11.125 11.25\n", + " 11.375 11.5 11.625 11.75 11.875 12. 12.125 12.25 12.375 12.5\n", + " 12.625 12.75 12.875 13. 13.125 13.25 13.375 13.5 13.625 13.75\n", + " 13.875 14. 14.125 14.25 14.375 14.5 14.625 14.75 14.875 15.\n", + " 15.125 15.25 15.375 15.5 15.625 15.75 15.875]\n", + "[9.75294222e-02 1.37192421e-01 6.62062702e+00 5.42273987e-01\n", + " 1.26707856e-01 7.14262683e-02 1.46986106e+00 9.35172244e-01\n", + " 2.04574831e+00 4.88638843e-01 1.46127864e+00 3.24027874e+00\n", + " 2.95907471e+00 1.46905530e-01 1.42916439e+00 3.58020047e+02\n", + " 3.04922773e+00 2.14088855e+00 3.89197375e-01 3.48148529e-01\n", + " 2.32409725e+00 3.72418140e+00 5.10604734e-01 5.98258473e-01\n", + " 1.75462401e+00 2.24000263e-01 1.06137267e+00 1.07517074e+01\n", + " 1.14917349e+00 4.59646030e-01 1.30278344e-01 2.09102366e+00\n", + " 2.17910753e-01 5.49240044e+00 7.32466747e-01 3.46833517e+00\n", + " 1.93866299e-01 3.93997974e-02 1.97441653e+00 4.28610905e+00\n", + " 2.93970456e-01 2.72920344e+00 4.52529974e+00 5.42552369e+00\n", + " 3.00538316e+00 3.14413850e+00 1.65733555e-01 6.16733137e-01\n", + " 2.85338470e+00 5.56565439e+00 1.60825816e+00 2.83059003e+00\n", + " 3.84807029e+00 6.35749643e-01 2.52661012e-01 9.73415923e-02\n", + " 2.64107250e+00 1.31206307e-01 2.20321939e+00 2.08750811e+00\n", + " 4.61234244e+00 1.15633604e+00 3.60363976e-01 2.24498998e+00\n", + " 1.71646651e+00 3.38371881e+00 3.32514629e-02 1.67607504e+00\n", + " 1.77957522e+00 6.92787087e-01 3.35553415e+00 1.94034115e+00\n", + " 1.16770721e+00 3.76130715e+00 4.34584431e-01 5.72348179e-01\n", + " 1.14572517e+00 1.41890460e+00 1.64121258e-01 1.96499122e+00\n", + " 3.52679951e+00 2.58201128e+00 1.05541840e+00 3.76982654e-01\n", + " 3.81558230e-01 1.09665960e+00 3.52309943e+00 3.00115328e+00\n", + " 2.81888737e-01 3.46916554e-02 4.78900280e-01 5.10837621e+00\n", + " 7.05428845e+00 1.79144555e+00 1.45542292e+00 4.14645129e+00\n", + " 5.47936328e-01 1.43060457e-01 3.85238243e-01 2.86842673e+00\n", + " 7.07492195e-01 2.11192195e+00 8.18724669e-02 3.11165001e+00\n", + " 2.71594888e+00 8.22251145e+00 4.21393967e+00 4.85809743e-01\n", + " 1.66578478e+00 4.52801220e-01 1.39963588e+00 3.83710679e+00\n", + " 8.29760812e-02 2.04827673e-01 4.46966187e-01 4.58682373e+00\n", + " 5.11398498e-01 7.53864807e-01 1.49293643e-01 1.48889204e+00\n", + " 1.55536424e-01 1.34814529e-01 1.31907922e-01 1.49852755e+00\n", + " 8.75140990e-01 9.00289904e-02 4.72042936e+00]\n", + "0.125\n", + "1\n", + "256\n", + "7984.0\n" + ] + } + ], + "source": [ + "print(ps.freq)\n", + "print(ps.power)\n", + "print(ps.df)\n", + "print(ps.m)\n", + "print(ps.n)\n", + "print(ps.nphots1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAIECAYAAAAdL2E2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4tElEQVR4nO2deZxUxbn+n56VWYBhHRRQEBEXUEFQ45Ig4oYat0SNiZFEjcZLiF5NQozE5GqM0WgurjGJGu8vmsQN4oILbnFHDIpiEFEhgsq+zgDDLOf3x7Gm6pw5+366n+/nM585093TXd19TlU99bzvWwVN0zQQQgghhBBCSEYoS7sBhBBCCCGEEKJCkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBVpN4AY6ejowNq1awEAtbW1KBQKKbeIEEIIIYSQ8Giahq1btwIA+vbti7Iye7+EIiVjrF27Fo2NjWk3gxBCCCGEkNhYtWoV+vfvb3s/w70IIYQQQgghmYJOSsaora3tPF61ahXq6upSbA0hhBBCCCHR0Nzc3BkxpM55raBIyRhqDkpdXR1FCiGEEEIIKTrc8q4Z7kUIIYQQQgjJFHRSUqa5udnxb0IIIYQQQkoNipSUqa+vT7sJhBBCCCGEZAqGexFCCCGEEEIyBZ2UlGlqajL8rVY9IIQQQgghpBShSEkZVu8ihBBCCCHECMO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmC1b1ShjvOE0IIIYQQYoQiJWW44zwhhBBCCCFGGO5FCCGEEEIIyRR0UlKGO84TQgghhBBihCIlZbjjPCGEEEIIIUYY7kUIIYQQQgjJFBQphIRg6lRgjz2AV15JuyWEEEIIIcUDRQohAVm9Grj5ZmDJEuD229NuDSGEEEJI8UCRQkhAtmyxPiaEEEIIIeGgSCEkIK2t8njHjvTaQQghhBBSbFCkEBIQihRCCCGEkHigSCEkIBQphBBCCCHxQJFCSEAoUgghhBBC4oGbOaZMc3Oz498ku1CkEEIIIYTEA0VKytTX16fdBBIQVZhQpBBCCCGERAfDvQgJCJ0UQgghhJB4oJOSMk1NTYa/m5ub0djYmFJriB8oUgghhBBC4oEiJWXq6urSbgIJCEUKIYQQQkg8MNyLkIBQpBBCCCGExANFCiEBoUghhBBCCIkHihRCAsLqXoQQQggh8UCRQkhAzE6KpqXXFkIIIYSQYoIihZCAqCIFANra0mkHIYQQQkixQZFCSEDMIoUhX4QQQggh0UCRQkhAKFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQExixKKFEIIIYSQaKBIISQgdFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQGhSCGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHirSbkCp09zc7Pg3yS4UKYQQQggh8UCRkjL19fVpN4EEhCWICSGEEELigeFehASETgohhBBCSDzQSUmZpqYmw9/Nzc1obGxMqTXEDxQphBBCCCHxQJGSMnV1dWk3gQTELFLMfxNCCCGEkGAw3IuQgNBJIYQQQgiJB4oUQgJCkUIIIYQQEg8UKYQEhNW9CCGEEELigSKFkIDQSSGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHihSCAkIRQohhBBCSDxQpBASEIoUQgghhJB4oEghJCCs7kUIIYQQEg8UKYQEhE4KIYQQQkg8UKQQEhCKFEIIIYSQeKBIISQgFCmEEEIIIfFAkUJIQChSCCGEEELigSKFkIBQpBBCCCGExANFCiEB0DSgrc14G0UKIYQQQkg0UKQQEgCziwJQpBBCCCGERAVFCiEBoEghhBBCCIkPihRCAkCRQgghhBASHxQpIXjwwQdxyimnYJdddkFtbS322Wcf3HDDDWi1msGSooIihRBCCCEkPirSbkCe+e1vf4shQ4bguuuuQ2NjI1599VVcccUVeOedd3DPPfek3TwSIxQphBBCCCHxQZESgkcffRT9+vXr/PuII46ApmmYPn16p3AhxQlFCiGEEEJIfDDcKwSqQBEccMABAIDPPvss6eaQBLESJBQphBBCCCHRUHQiZfHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667znOeyYsvvoiqqioMGzYszNsgGYdOCiGEEEJIfBRduNftt9+OGTNmBPrfiy++GDNmzEBFRQUmTJiA+vp6PPfcc/jJT36CRx99FE8//TRqamps///f//43ZsyYge9973vo0aNH0LdAcgBFCiGEEEJIfBSdkzJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPn277/2vXrsXJJ5+M3XffHddee21Ub4dkFIoUQgghhJD4KDon5bzzzjP8XVbmTYddc801AIBp06ZhzJgxnbf37dsXt912Gw4//HDccsstmD59Onr27Gn43y1btuC4447Djh078MILL6Curi7kuyBZhyKFEEIIISQ+is5JCcKnn36KefPmAQDOOuusLvcfdthhGDx4MFpaWjB79mzDfS0tLTjppJOwbNkyPPXUU9h5550dX6u5udn1h2QfihRCCCGEkPigSAHw1ltvAQB69+6NoUOHWj5m7NixhscCQHt7O84880zMmzcPs2fPxogRI1xfq76+3vGHZYvzgZUgaW0FNC35thBCCCGEFBtFF+4VhKVLlwIAdtllF9vHDB482PBYAPiv//ovzJo1C1dddRXa29vx+uuvd9639957M3m+iLEr9tbaClRVJdsWQgghhJBigyIFek4JAMdckvr6egDA5s2bO2978sknAQDTp0/vklT//PPPY/z48V2ep6mpybEtzc3NdFNygJ1I2bGDIoUQQgghJCwUKSFYtmyZ7/9hUn1x4CRSCCGEEEJIOChSAHTv3h0AHJPWhQMSdQiX+TWZOJ8PKFIIIYQQQuKDIgXAkCFDAADLly+3fYy4Tzw2KkQYGckXFCmEEEIIIfHB6l4ARo8eDQBYt26dITFe5c033wQAwx4qpHSxEyMUKYQQQggh4aFIATBo0CCMGzcOAHDfffd1uf/ll1/G8uXLUV1djUmTJkX62k1NTYafVatWRfr8JB5UJ6VQkMcUKYQQQggh4aFI+YLLL78cAHDttddi/vz5nbevW7cOF110EQBgypQpXXabD0tdXV2XH5J9VJGifmUUKYQQQggh4Sm6nJT58+d3igoA+OijjwAAd9xxBx577LHO22fOnImddtqp8++TTz4ZU6dOxU033YSDDz4YRx55JOrq6vDss89i48aNOPTQQ3HVVVdF3l4mzucTs0gRlaUpUgghhBBCwlN0ImXz5s2YO3dul9tXrFiBFStWdP7d0tLS5TEzZszAoYceiltvvRWvvvoqWltbMWzYMEybNg2XXHIJqmLYAIOJ8/lEFSn19YCI0qNIIYQQQggJT9GJlPHjx0PTtMD/f/rpp+P000+PsEWkGGG4FyGEEEJIfBSdSMkb5h3oueN8PrATKXaliQkhhBBCiHcoUlKGifL5RHVMamutbyeEEEIIIcFgdS9CAsBwL0IIIYSQ+KCTkjKs7pVPKFIIIYQQQuKDIiVlWN0rn1CkEEIIIYTEB8O9CAmAuQSxgCKFEEIIISQ8dFJShtW98gmdFEIIIYSQ+KBISRlW98onqhihSCGEEEIIiRaGexESADophBBCCCHxQZFCSAAoUgghhBBC4oPhXinDEsT5hCKFEEIIISQ+KFJShiWI8wmrexFCCCGExAfDvQgJAJ0UQgghhJD4oJOSMixBnE9Y3YsQQgghJD4oUlKGJYjziXBSCgWgpkbeTpFCCCGEEBIehnsREgAhUiorgaoqeTtFCiGEEEJIeChSCAkARQohhBBCSHxQpBASAIoUQgghhJD4YE5KynCflHwiREpVFUUKIYQQQkjUUKSkDPdJySd0UgghhBBC4oPhXoQEQIgRihRCCCGEkOihk5Iy3Ccln9BJIYQQQgiJD4qUlOE+KflEFSnl5UBZGdDRQZFCCCGEEBIFDPciJACqSAGkm0KRQgghhBASHooUQgKgVvdSf1OkEEIIIYSEhyKFEJ+0t+uhXQCdFEIIIYSQOKBIIcQnwkUBKFIIIYQQQuKAIoUQn1CkEEIIIYTEC0UKIT6hSCGEEEIIiReWIE6Z5uZmx79J9qBIIYQQQgiJF4qUlKmvr0+7CcQnFCmEEEIIIfHCcC9CfKKKFHMJ4rY2WfmLEEIIIYQEg05KyjQ1NRn+bm5uRmNjY0qtIV5Q3RKzkwLoIqa6Otk2EUIIIYQUExQpKVNXV5d2E4hPnMK9AF3EUKQQQgghhASH4V6E+MSLSCGEEEIIIcGhSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRCfOFX3AihSCCGEEELCQpFCiE/cqntRpBBCCCGEhIMihRCfMNyLEEIIISReKFII8YmbSFHvJ4QQQggh/qFIIcQndFIIIYQQQuKFmzmmTHNzs+PfJHtQpBBCCCGExAtFSsrU19en3QTiE4oUQgghhJB4YbgXIT5hCWJCCCGEkHihk5IyTU1Nhr+bm5vR2NiYUmuIF1iCmBBCCCEkXihSUqauri7tJhCfWIV7id8ARQohhBBCSFgY7kWIT5iTQgghhBASLxQphPiEIoUQQgghJF4oUgjxCUUKIYQQQki8UKQQ4hNW9yKEEEIIiReKFEJ8wupehBBCCCHxQpFCiE8Y7kUIIYQQEi8UKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITihRCCCGEkHihSCHEJ6zuRQghhBASLxQphPiE1b0IIYQQQuKFIoUQnzDcixBCCCEkXihSCPEJRQohhBBCSLxUpN2AUqe5udnxb5I9KFIIIYQQQuKFIiVl6uvr024C8QlFCiGEEEJIvDDcixCfUKQQQgghhMQLnZSUaWpqMvzd3NyMxsbGlFpDvECRQgghhBASLxQpKVNXV5d2E4hPhAgpLwfKvvAihVhR7yeEEEIIIcFguBchPhFOiipMysv1H4AihRBCCCEkLBQphPjESqQAMuSLIoUQQgghJBwUKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITIVLUil7q3xQphBBCCCHhoEghxCdChNBJIYQQQgiJB4oUQnzCcC9CCCGEkHihSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRAfaJq7SGlv138IIYQQQkgwKFII8YEqPuxECiCFDCGEEEII8Q9FCiE+UEO57EoQmx9HCCGEEEL8QZFCiA9Uh8TJSaFIIYQQQggJTkWQf9q4cSOeeuopPPvss5g/fz5WrVqFDRs2oFevXmhsbMQBBxyACRMm4JhjjkFDQ0PETSYkPShSCCGEEELix5dIeffddzFjxgz89a9/xfbt26FpmuH+rVu34tNPP8X8+fPxpz/9Cd26dcNZZ52FH/zgB9h3330jbTghaUCRQgghhBASP55EyurVq/HTn/4U99xzDzo6OtC3b18cf/zxOOSQQ7DPPvugT58+6NGjBzZt2oR169Zh4cKFePXVV/Hiiy/izjvvxN13343JkyfjmmuuQf/+/eN+T4TEhleRwsR5QgghhJDgeBIpw4cPx5YtW3DCCSfg3HPPxfHHH4+KCvt/Pfroo/Hf//3faGtrw6OPPoq77roLd911Fx566CFs2LAhssYTkjR0UgghhBBC4sdT4vyBBx6IefPm4ZFHHsFJJ53kKFBUKioqcMopp+DRRx/F3LlzMXbs2FCNJSRtWN2LEEIIISR+PImUOXPm4IADDgj1QuPGjcOcOXNCPUfW+PDDD3HhhRdizJgxqKysxJAhQ9JuEokZOimEEEIIIfETqLoX0Xnvvffw2GOP4cADD4SmaQxlKwEoUgghhBBC4ifQPinLli2LuBn55MQTT8SKFSvw8MMP46CDDkq7OSQBKFIIIYQQQuInkEjZbbfdMHz4cFx44YV48MEHS9ZBKCvjXpilBkUKIYQQQkj8BJplDxkyBB999BH+8Ic/4IwzzkC/fv0wduxYTJs2Dc888wxaWlqibqdnFi9ejJtvvhmTJ0/GqFGjUFFRgUKhgKuvvtrT/z/wwAMYP348evXqhbq6Ouy333647rrr0MqasgQUKYQQQgghSRAoJ+Xjjz/G0qVL8cwzz2DOnDl4/vnnMX/+fMyfPx/XX389qqurccghh2DixImYOHFiolW9br/9dsyYMSPQ/1588cWYMWMGKioqMGHCBNTX1+O5557DT37yEzz66KN4+umnUVNTE3GLSZ4odZHS2go8+ywwZgzALY8IIYQQEheB45WGDh2K888/H/fffz/WrFmDf/3rX7j22msxceJEFAoFPP/88/jZz36Ggw8+OMr2ujJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPnx5z60nWKfUSxFdeCRx3HHDYYUBHR9qtIYQQQkixEll1r9GjR2OvvfbC/vvvjz322AN33nkntm/fHtXTe+a8884z/O01b+Saa64BAEybNg1jxozpvL1v37647bbbcPjhh+OWW27B9OnT0bNnz+gaTHJFqTspr76q/16yBFi3DujXL932EEIIIaQ4CSVSNE3Dm2++iWeeeQbPPPMMXn31VezYsQOapqGhoQHHHXccJk6cGFVbY+PTTz/FvHnzAABnnXVWl/sPO+wwDB48GMuXL8fs2bPxjW98I/BrNTc3h7qfpIuTSFH/LlaR0tQkj7dsoUghhBBCSDwEEim///3v8cwzz+D555/Hxo0boWmaZR5KoVCIur2x8NZbbwEAevfujaFDh1o+ZuzYsVi+fDneeuutUCKlvr4+8P+S9Cl1J8UsUgghhBBC4iCQSLnoootQKBSw55574rzzzsPEiRNx+OGHo1u3blG3LxGWLl0KANhll11sHzN48GDDYwFg69atmD17NgC9mMDWrVvx4IMPAgDGjRuHXXfdNa4mk5QodZGiChNVsBBCCCGEREngcC9N0/Dxxx9j3rx5aGhoQO/evXHAAQdE2bbE2PLFzKuurs72McIB2bx5c+dtq1evxte//nXD48Tfd999NyZPntzleZpcZnbNzc1obGz01G6SPKUuUuikEEIIISQJAomUuXPnGvJQXnjhBVxxxRXo1asXJkyYgIkTJ+Koo46yDZ0qFoYMGQJN03z9j5MQItmnlKt7aRpFCiGEEEKSIZBIGTduHMaNG4ef/vSn2L59O1588cVO0fLQQw/hwQcfRKFQwNChQ3HUUUfh9ttvj7rdkdK9e3cAzknrwgHp0aNHpK9tfk0mzmebUnZStm83lh2mSCGEEEJIXATeJ0XQrVs3HH300bjuuuswf/58rFy5Epdddhmqq6vx8ccf4w9/+EMU7YyVIUOGAACWL19u+xhxn3hsVNTX1xt+GOqVbUpZpJhFCXNSCCGEEBIXkeyTYt59fv369Z1hUNXV1VG8RKyMHj0aALBu3TosXbrUMkztzTffBADDHiqk9ChlkWIWJXRSCCGEEBIXgUTKhg0b8Oyzz3aGeImKV5qmoVAoYP/99+8sRXz44YdH2uA4GDRoEMaNG4d58+bhvvvuw89+9jPD/S+//DKWL1+O6upqTJo0KdLXNifSM3E+21CkSChSCCGEEBIXgURKv379oGlap1sydOjQTlFy5JFHonfv3pE2Mgkuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlSuS7zTORPl+UskgxixKKFEIIISpNTcDq1cBuu6XdElIMBBIpDQ0NOPLIIzuFSZaqeM2fP79TVADARx99BAC444478Nhjj3XePnPmTOy0006df5988smYOnUqbrrpJhx88ME48sgjUVdXh2effRYbN27EoYceiquuuiry9jJxPl+UcnUvs5PCnBRCCCGCrVuBESOAzz4D/v534PTT024RyTuBRMratWujbkdkbN68GXPnzu1y+4oVK7BixYrOv1taWro8ZsaMGTj00ENx66234tVXX0VrayuGDRuGadOm4ZJLLkGVeVYaAdyBPl+UspPCcC9CCCF2/OtfukABgAceoEgh4YkkcT5LjB8/3vfeJSqnn346TueVRWygSJFQpBBCCBF8/rk8fu+99NpBioeiEyl5g4nz+aKURQpLEBNCCLFDuCgAsGSJPg7GEIBCSojA+6S0trbihhtuwMEHH4xevXqhvLzc8qeigjrIibq6ui4/JLuUskihk0IIIcQOVaS0telChZAwBFIQLS0tOPLII/Haa6+5hlaFCb0iJGtQpEgoUgghhAjUcC9AD/naZ5902kKKg0BOyowZM/Dqq6/i6KOPxuLFi/Htb38bhUIBLS0tWLhwIX7yk5+guroa06dPR0dHR9RtLiqam5u7/JDs4iRS1L+LUaSwBDEhhFijacDcuXr53VJFdVIA4N//TqcdpHgI5KQ88MAD6N69O/72t7+hZ8+eKBQKAIDKykrsvffe+PWvf41DDjkEJ598MkaNGoWvfe1rkTa6mGB1r3zhVIK4rAyoqNBt7mIUKSxBTAgh1tx2GzBlCtCvH7BsGVBbm3aLkscsUpg8T8ISyEn54IMPcNBBB3VubChESnt7e+djTjzxRIwePRo333xzBM0kJBs4OSmAFC6lIFJaWwGLSt6EEFJSaBogpjpr1pTu5JxOComaQCKltbUV/fr16/y7pqYGgL5HicqIESPw7rvvhmhe8dPU1GT4WbVqVdpN8kR7O/DII8D8+Wm3JFlKWaRYhXcx5IsQUuosWAAsXiz/XrMmvbakRXMzYJoC4oMPinMsJMkRSKQMGDAAnysZUmLn9kWLFhke99lnnxncFdKVvFb3+utfgZNOAg4+uGuyXDFTyiLFKryLIoUQUur89a/Gv0tRpFjNA1jhi4QlkEjZa6+98OGHH3b+fcghh0DTNFx33XWdifL//Oc/8dJLL2HEiBHRtJRkirfe0n+3tgILF6bbliShSHG/jRBCSgVNA/72N+NtpShS1FCv8nJ5zJAvEoZAIuWYY47BihUr8MYbbwDQd3nfe++98eijj2LgwIE44IADcNRRR0HTNFx00UWRNphkg+3b5XEpFSRTRYrVFkClJlLopBBCSpnXXwc++cR429q16bQlTVQn5cAD5XGp5ueQaAhU3euss85Cnz59OhPny8rKMGvWLJx22ml49913sWrVKpSXl2Pq1KmYPHlylO0tOswlh/NSglhNmC6l1XQhPiorgS/qRRgoZpHCnBRCCDFidlEAOikTJwKvvaYf00khYQgkUvr27YtvfvObhtt23313LFiwAIsXL8b69euxxx57oE+fPpE0spjJawliVaTkRFdFgnBSrEK9gOIWKXRSCCFE0t4O3H+/flwo6KFfAEXKl7+sj4U7dtBJIeEIFO714osv4pVXXrG8b8SIEfjSl75EgVLklHq4V6mJlI4O6++5lFw0QghR+ec/gZUr9eNJk+TtpShS1HCvwYMBkY7MCl8kDIFEyvjx4zF9+vSo21KS5LUEcamGe3kVKR0d+ipbsbB1q1wlVKGTQggpVdRQr29/G2ho0I9LMSdFdVJ23hnYe2/9uK0NUOosEeKLQCKlV69e2HnnnaNuS0mS1xLEDPeyvl/dhb6YVo9UIVqm9BpJihQrkUS888YbwJVXAsuXp90SQvLPjh3AQw/px3V1wPHH67vNA6XppAiRUl8PdO8O7LOPvI8hXyQogUTK/vvvjyUsfl3SqOFedFIkpSBSGhvlcVIiZfFiYI89gGOO0Vfm8sx77+kboX5RrT0R2tuBr34V+J//AS69NLnXJaRYeeYZYP16/firX9WFSt+++t+bNhVX/+8FIVLE+rVwUgAmz5PgBBIpU6dOxbx58/D4449H3R6SE0rVSVGre1lRrCJFFSNf7N0KIDmB+pe/6CEDTz8NvPpqMq8ZB2+9BRxwgL4R6h/+kNzrfvQRICJJ3303udclpFhRQ73OPFP/LZwUoLRCvpqa5Bghxgc6KSQKAlX3Gj16NKZMmYJTTjkFkydPxmmnnYYhQ4agpqbG8vG77LJLqEaS7FGqIkU4KaoYUVFvV/dUyTuqGFFFSlJOyqZN8lisXuaNjg7g+9+X185jjwEXXpjMa6uThJykvRGSWbZtA2bO1I979tQdXsAoUtaska5CsaMmzYv3vPvu+mJeayudFBKcQCJl6NChAABN03DnnXfizjvvtH1soVBAW97jM0gXGO5lfX+xOinqd6wOvEmJlG3b5LEqWPLEH/8IzJ0r/3777eReW50kbNign5t2QpsQ4szs2bJPPPVUoLpaPy5VJ8WcNA/omx2PGAEsXKhX+GpttR83CbEjkEgZPHgwClY72RHfFMNmjjlpciRQpKTjpKgiZfPmZF4zSlavBqZNM9726af6aqs6sYkLc7jF6tXAoEHxvy4hxcgTT8hjEeoFyJwUoLSS51UnRR0f9tlHFymtrcCSJcY8FUK8EEikLFu2LOJmlC7FsJljqTgpmibLCpeaSFHFiJo4n9R3n3eR8qMfARs36sdikzNAd1OOOir+1zeHW6xaRZFCSFDWrZPHo0bJY3O4V6lg5aQAXZPnKVKIXwIlzhNSips5qjkmpSZSVDHS0ACI9LOknBT1fMubSPnnP4H/+z/9uKEBuPpqeV8SIV/t7cD77xtvY14KIcFR+0N1nZEixShSmDyfTVat0r+PDz/U90DLMhQpKVMMmzmWikhRRUcpixRRBx9guJcbO3boyfKCX/9aJtkCyYiUjz4yXq9AcYqU7du5lw5JBrU/rK2Vx6Wak+IU7iVg8nx2uOMOYORIYPhw4IUX0m6NM55EymeqTA5BVM9TTBTDZo6lEu6lOileqnsVk0hRxUj37lKkMNzLmRtvBBYt0o8PPBD43veAPfeU50kSIsVqclBsIuXxx4HevXUBSKFC4kb0e7W1QHm5vJ1OilGkDBsmF/Ty5qQ8/jjwla/IDTuLCXX+Joo+ZBVPImX48OGYNm0aNmzYEOhF1q9fjx//+McYPnx4oP8n2aK93bihXqk4KQz30qmvlyEOdFLsWb1a3zwRAMrKgN//Xv9dVSVXGN9/3/je4sBqclBsIuWOO/TPcc4cPYSBkDgR/Z45pbRUE+eFSFEXsAB9nBwxQj8WFb7ywk9/Crz4op5PWGwUnUg5+uijcd1112HQoEH41re+hTlz5qDFHD9goqWlBU899RS+8Y1vYNCgQfjtb3+LY9Q4B5JbzF99W1txTcjtoEjRUcO9duxI5n3mUaQ8+6xs9/e+B4weLe/bf3/9d0dH/JsrloKTogqT1avTawcpDUR/qE7IAX3XeZGvV0oiRYR7qS6KQCTLt7bmawFh5Urj72IiTyLFU3WvmTNn4plnnsEll1yC++67D3/9619RWVmJ/fffH3vttRf69OmDHj16YPPmzVi3bh3+/e9/Y8GCBWhtbYWmaRg5ciRuvPFGTJw4Me73QxJATWIWNDXp4RbFTCmLFLtwL3Ffnz7xvn5a+6R0dACXXaa/5owZXVdOnXjtNXl88snG+4RIAfSQrwMPDNFIF4STUijIUKhiEint7XrejaCUJockHYRIseoP+vUDPvmkdHJStmyR44PV5pXm5Pm99kqmXWER3/G2bfpCbEWgWrjZRJ3DFYVIAYCJEyfi3XffxZw5c3DLLbfg6aefxhtvvIE33ngDgL5po6YEA1dXV+PEE0/ElClTKE6KDCsTrbmZIgUoXpFi56SI++IWKWlV95o9G/jd7/TjQw8Fvvtd7//7+uvy2CxCVFclzrwUtbLXiBHAsmX6Z1lMbsOnnxqvtVKZHJJ0aG2VY6CTSFm3Tl/kKPNYnuijj/Tqf3H3pVFjtdu8Sh6T59vajAtjTU36d1MsFJ2TonLUUUfhqKOOQktLC1555RW89dZbWLVqFTZt2oSGhgb0798fY8aMwSGHHILqrL97EggrkVIKyfMUKTp1dcbBOYm8lLTCvd55Rx77qfuxbRvw1lv68Z57Ar16Ge/fd195HKdI+fhjeb3us4/erv/8p7icFHMICZ0UEidqDqaVSBF5Ke3twIYN3kTHnDnA0Ufriz/LluVrwc+u/LBA5KQARsczy5jzbLdsKV6R0q1beu3wQmADq7q6GhMmTMCECROibE/Jkccd563CvXLQ7NCwBLG+6lJZ2TXcK27MIkXT9PCluFmyRB77Ocfnz5fFJb70pa739+wJ7LabLiIWLNAnNGqVoKhQk+b33htYvlwXKWvXFk8Ig1mk0EkhcWK3R4rAXOHLi0h59FH995YtugM7aVK4NiaJXflhgbpAk5d8QvOia1IFYpIiT04K90lJmfr6esNPo7qdd0axC/cqdliCWIqTJEVKa6s+iVf/dqnbERmqSPGz6ZUa6nXwwdaPEXkpW7fGl1CqipR99gFE96JpxTOZp5NCksSvSPHCp5/K47xNiN2clKQXtKKAIiU7UKQQ3zDcq3SdFDEom3NS4sSqRG9SK3LqBNiPEPciUpLIS1FjwFWRAvgL+brrLmDUKOBvf4uubVFBkUKSxI9I8boQoIqUvLgNAjeRklRo8EMPAaeeCrz5ZvjnMrez2ERKnhLnKVJSJo87zpdquJcXkaLeHqdIWbMGuP/+5CpdmUVKkjkpVudbEgP55s3GibwfJ0VU9qqvNyaOqpgrfMWBcFLKy/Xdhfv3l/d57Wq2bAGmTAEWLgSuvDL6NobFHOdeLA6RXzRN/54mTtRD+kg8xO2k5E2kuIV7lZXFv69Weztw7rnAzJnA9Onhn49OSnagSEmZPO44z3Cv9J2UU08FzjgDOOec+F5D0N4uJ+hphHtZOSlJiDPzCr3Xc3zFCjnpOPBA+1yTuEWKWtlr+HB9MAripDz8sPwOslYVTNPopAjefBO49VZ9f54//Snt1hQvbiLF74aO7e3GiX7eRIrdbvMqYryIa6xYtUqOCVHsa1IqIqWiIp5cyCihSCG+YbhXuiJl1Srg5Zf143nz4nkNFatqNmmLlCQGcjUfBfAuUryEegHAwIEyqVZUAosSc2UvIJhI+X//Tx5v2qSXVc0KK1d2dbhK1UlZtkwe58CQzy1ROymrVhlz7pLcByoKhEjp0cN+HykxXsTVb69YIY+jyFcsFZGSdRcFoEghASjVcK+sVPd65RV5nMRk3WpQznJOyvr10ZyP5hV6r+FeqkixquwlKBSkm7JqVfQ7G5srewH+RcqKFcBzz8m/NS1bA7ZVwYHmZutzpthRz58sfEe/+AWwyy7Agw8m+7pPPKHne82YEc/zR52TooZ6AflzUpx2mxeI8aKpSW4oGyXLl8tjq/mJXyhSsgNFCvENnZR0q3sJFwXQP3d1FS4OzLvNA8nmpPgRKQsW6IPl4MHhV9SDOinqTvMHHeT82DiT581J84B/kfLXv3adVGRppdeuKlpcbkpbW7acJBU1ZCjtSdWWLcBVV+mTx//+72Q/s5//XL+WLr4YePzx6J8/aiclzyJlyxb5eVglzQvEuNHR4S+3zytROymlkjhftCLlxRdfxCvqci4pKZiTkq6T8tJLxr/j7kDdnJQsiZRHHtE/9w0bgBdeCPe6QUTKjh3Av/6lHw8bZpywWBFnXkoUTooa6iXYuDFUsyJFFSmDB8vjOPJS3n8fGDAAGDkynokWoAvC//kf4LLL/E+2suSkLFgghcny5V37rDhRiwace27054KbSOnZU8b5F7tIcavsJYh7vGC4lz+K3kkZP348pkdRQoHkkjyHe6lJ4H7JgkhpauqavxD3oJa2SPFT3WvdOnkcdiJpFilenm/BAjkAOIV6CZIQKeXlwB576Me9eslz102kLFgAvPtu19uzKlLUzzsOkXLXXfr5tWgR8OKL0T8/oAvrK68EbrgBuPNOf/+ripS0J7rmPuree5N53dZWo4u2ahXwve9FG2LkJlLKymTyfCmJFKdwrx495HHcIoXhXu6IMSrru80DAUVKr169sLOTbCZFTV7DvbZt08Ne+vXT45X9DlxZEClz53YN70pDpKiDc5ZyUtavl8dhRMqmTV0nGF6EuBrq5ZQ0LxgxQg4UUSbPW1X2AvQ8GFGG2E2kqC6K6lJkUaSUlwNjx8rb4wj3UsPn4sp5+fhjeayGdXohS+FeZsH9wAPJbMC6enXXfn3WLOCee6J7DTeRAkgHdc0a93FGnWAD+RIp6jnn1UmJ4/2pOSl0Utwpeidl//33xxLzMiMpGfIa7vX888Dixfrk9eKL9VAAPx1aFkSKVdhE3DkCVjkpaYd72b3nqESKXUK224TDa2UvQUWFvkkioDs3YnBcuBD44Q+B0083Tly9olb2EqFeAhHytWaNfa5Aeztw3336cWWlfq0IsiJS1PLDu+5qnCTF4aSoIiWuUE71/PW7KV2Wwr3MgnvjRmD27PhfV/0Mhg+Xx1OnGqufhcGPSGlpcR8b8+KkbNjQ1V3OYrhXW1v4PM1izknRtBIQKVOnTsW8efPweBxZaSTzWNmpeXBSzBPPu+8GjjjCe1WlLFT3slpdTcNJqaiQDkCWclKiCveyWoNpbzcKVSuESKmpAfbd19triZAvTQN+/WvgsMN04XLTTfoK9G9/67nZnVglzQuESGlvN35eKs89J1dJJ03S82sEWREpa9fK82D33YPt9O2V5mbjJDcuV0AVKUuWeP+s29uNe9ikOanasUMX2YCxn0wi5Etd2f/mN4HJk/XjLVuAb387miIjfkQK4C6Y8yBSNm0Chg7VnV+1aloWREpHR9fPMOz1WcxOijovKVqRMnr0aEyZMgWnnHIKvve97+Gpp57C4sWL8cknn1j+EHuam5u7/GSdvDopVqvjr72mh4l4WbX066REERtrfn01nEiQhkgB4t+gS5BGuJcqUgoFeex0nq9aBSxdqh+PHWt/jphR81KuucZYYlo8r1/UpHk7keL03Gqo19lnAw0N8u+sVPdSr+fdd/e/iZ4fFi82umhJOCkAMH++t/8zu2LbtukrymmwaJHsK085RYYXPvpo/AJXXXAaMECfUO+6q/73Sy8BN94Y/jW8iBQ/56J5gr1lS/YqyL3xhn7da5pere2pp/Tb3XabF8QpUlav7nquhx17i1mk5Gm3eSCgSBk6dChuvfVWtLW14c4778SkSZOw9957Y+jQoV1+dtttt6jbXFTU19cbfhrVGURGyatI+egjefzYYzLO/tNPgcMP7zo5NOOlBHHv3kBtrX78+uvRlgd++2058a6okLfHLVKswr0AOUBnNSclTN6AeQIscBI+fkO9BKpIEaihKkHeh1VlL4HaxVjtIN/crO8yD+iVio4/3ihSsuKkqNez2UmJWqSozhSQnEjxGvJl5QanNbFSQ73GjgXOPFM/3rEDeOiheF/bLFJ69NDzUcRCw69/HV4AqP1dXZ31Y7yei5s3W/efWYtMUCf9HR3AGWcAH3yQjcR5NR9FQCfFHvWzKdrE+cGDB2OXXXbBrrvuil122cXxZ7CacUmKgryHe9XW6iEs8+YBhx6q37Z9O3D//c7/79VJOeYY/XjNGmvnIyhqqNfhh8vjuFe203ZSvFb36uiIx0kROSOAsxj3uomjmYMOAr7yFT1E7Jvf1Fd8FyyQ9wd5H2JSrVb2Erg5KbNmyfd5+un6QJZFkeLkpEQd7kWR4h1VpIwerZ/TgrhDvqxW9r/yFdlfbtgQvuiB6A+rq+3HAa+hh+akeUHYhaeODuDWW4FbbonGlTH3wZs2AV/9qlwo6NnTXrAB8TopVp9hWJFSzDkpeXNSKtwf0pVlUWWgETSZZvfNzc2Zd1Py6KS0tclQnN1311fWGhuBO+7Q9z0A3IWWF5EC6CEOM2fqxzNn6jkGUaAmzR9/vF4IAEg/3KulRf9svIY3+cWrk7J5s3FAjkKkDBxonHA4ned+NnFUKS+X36VY8dU0/VjT/L8PtbLX7rt3HYjcRIo51AvQJyGCLIqUYcN0kVdXp39HeXVSzDlCXkWKOjkXpDWxUit7jR6tu8vDh+vX1Asv6JPKQYPieW2zkyJQz9+mJucJtRuiP7QL9QK8OynmUC9B2D59zhxgyhT9eLfd9EW5MKgiRfRLixfL25xcFCDe6l5WIoXhXvbkTaRwx/mUqaur6/KTddSTvKZG/511kbJ8uRQZahKwaD/gvsLmVaQcf7zczGvWrGhq9GuadFIaGowr9UmGe1mJFCBeJ82rSDGvQgcVKRs3ytXP4cONExq752xr0505ANhlF+ckUisKBWPuS6Egz02/K7/r18tB2ira1kmktLToSfOA/j6E05hlJ6VQkO9TTA6LxUlZurTrbVZkxUnp6JAiZfBgoE8f/fsRboqmAX/9a3yvr4o19TyPsmS6F5HiNSdFFSlqCHHYPl0VEGroZ1DUMf+nP9WFp4pbf5c3J8V8jrS2JlNCOwlUAUeRQooS9STv00f/vXVr9pL9VMzx6wKRPwK4T2q9ipTevYHx4/Xjjz+23hDPLx98IAe7Qw9NNpFZ7bCtclKAeCdE6iRdiL84RYoa6jV8uPEcsRPj770nX89PqJcT4nX9vg/1c1AnSwKRyAx0FSnvvSfP88MP1zemA/TvWhxnLXF+0CAZWy3e77p10eWDbd9u7D+A5EQKAPzrX+7/lxWRsnSpvDbVXCs15Osvf4nv9cXn0Lu3cQKWtEgJ4qSoYZlhRYr6/1EIdnXM32svveqg6IuBdEWKVU5K1E4KUDxuSkk5KS+99BJOP/10DBo0CNXV1ThXKaY/Z84cXH755Vjptb4ryQ3qSS5EChB+h+84sUuE9uOkeClBLDj5ZHk8a5Zb69xR81EOO8yYiJh2uBeQnEhR9x8wr2yZQ2WCno/mc0V1UuxEijpQmhPVgyLOTb/vQ/0czCuegLOTolaTOuAAeVwoSGEchZPy/PN6cYE77gj2/xs2yPepXs/i/NA0/TFR8MEHXRdg4lhVtdtTw0vIl1W4VxqlbM2hXoLdd5chkO+8I0sUR4mmSZGihnoB0YmUjg75HXkVKU4iQRUpe+0lj8MuBMQpUrp1AyZMMJYidiu3HmfifNROSlubtcihSEmHwCLl6quvxvjx4/Hggw/is88+Q2trKzQlrqVnz574zW9+g4dFmRhSNKgXsDoJynLyvBeR4sdJsavuJTjpJHks8lPCYE6aV2OskxQp6oQ9KZGinm/qBNv8vpNwUuyeU33/6oAcBvG6fsO9VJGiLiKotwlXxCxS1FX7MWOM90UpUq6+Gpg7F7j00mDhkHbOaBxliM2hXkA8TooqqtTqbl5ESlacFHPSvErcCfSbN8trxZwjEZVIUa9/J5GiXndO56E6wVYXN8L26arIieI6MIsUALjoIuBvfwOuuko/diLpcK8wTord+VGMIqVoq3s98cQT+PnPf46BAwfi/vvvxyqL7MsDDzwQ/fr1w2OPPRa6kSRb2DkpWc5LMSfZCiorpW0dVU4KoMdjjx2rH7/9dvjdjkXSfHW1/rx1dTKHIakd52trjRZ/GjkpaYgUL06Kl70T/BJFuJeVSCkvlyu9Tk6KuTSyKlLC5lmJ1d3m5mATCrtFhzjKECclUtTv7UtfkudRXkWK+fw54wzZfzzxRPSvbZc0D0QnUrxe55WVQK9e+rGXcK/ycqMwzXK4l5jYFgr6d3rFFe6FCOISKVYbOQLhnJRSEilF66TMmDED1dXVeOKJJ/C1r30N/dSRQWG//fbDEqutm0muUU9y0RED2RYpYuW1qspYWUZNUI4qJ0VwyinyOEzI1+efy/aPG6d3LGVlsuNPykkxD8pp5KQ4iRRzuFfQUqNql7Xbbt4S5+32kgmDOC9bW/1tzOcW7gXIz3H1aik4Wltl6ePhw41uHSD/bm8Pf62rk54g35MXkRJV8nwaIqVfP+lkffKJ9X42Klmp7iXCvXr1kpsoCvr3B4YM0Y+XLo2moIiK08aCUS2o2BURsUK4el5EyoABxrE0DyLFD1VVMvogyvFqzRrra5EixZ6SECnz5s3DgQceiH3MWxmb6NevH3NSihDRYVVXR5uQGBcdHXKSv9tuRjcA8B5Wk5ZIUTeZVPdHEZPGtERKGjkpSTgpakJ2ba23xPk4RIr6un4m8m5OCiA/xx07ZPjWokVyADOHegHRFmtQ30+Q78lOpOQ53Ev93nr3lk4s4Jw839Qkr1G1b0t6UrV6tdzcb//9jdXqBEKkbN4cfZW4LDkpgBTMmzdbT5pbW6X4HDgw2jxD9f+juA6iCBGKY18tNdRLPd8Y7mVPSVT3am5uxgBzL2DBpk2b0JHlkk8kEKLD6tbNWyhM2nz+uZwUqRMaQVxOyp57yootL70UfLBQ90dR91wRg1pS4V5pi5SqKuNEOQ6RoiZki/ALL+d43CLFz3vx46QAMuTLLmleEGUZYlWkhHVS1PDNqJ2UHTuks6Y6S0mLFKeQLzVkb+hQeZx04rxTqJdAiBQgfAismayKFKCrywvo45JwkwYOjDbPUP3/jRuNY1cQopjYivEqLpGi7hsexklR26f2ecUiUkrCSWlsbMSH6ihhw+LFi7njfBEiTnKzk5JVkWI3oRF4dVL8VPcC9JUd4aZ0dABB07NE0nyhABxyiLxddPpbt/oLB/KDWh/ePPlOOielpsZ5tdGqupffkBJzPgqQfriX0+ta4cdJAaxFipuTElakqJOeIGJSOKM77WT8fqJ2Uj78UF5b6sQ7jupeZpEybpz820mkqGFOal5D0pMqu8peKmoI2H/+E+3rO4V7pS1SrM5FdYI9aFB8Tgrgba8dJ8KGewHxOynqAmRUTopaWrkYRUrRJs4fdthhePvtt/GKGodi4rHHHsOHH36II444InDjSDYRHYDZSclquJddJSBBECfFrbqXQC1FHLTK16JF+u899jBOFNWVt7g6UFV4ppWTIs43s0gxO0jmgbi93f8KoipSxLniJdwrzsR5ILiT4kekqCFFVpPMrDgpTU1y1dx8PQdJnG9pAf7wB+DZZ7vep4Z6qSIlCSdl2DB5jTuJFNVBUPfaSHpS5VTZS1BKToqbYFYTvqMO9zL3jWEFe5QipaUluutHLf2u9gVR5aSoYrcYRUrROimXXnopCoUCTj31VMyaNQttpmXcJ598Eueddx4qKyvxgx/8IJKGkuygOil5CPeyi18XiMmg26TWb7gXABx4oOzonn7a/wC5Y4ecxJnrUzhN2KPCaVBOOtyrWzfngdxqtdDvKr16rmQp3MvPRF6IlIoK+4mUWaS0t8uV8KFDrcPEVFEcRqS0tho3WnT6jpYt08ub3nyzfJzTokOQcK877gAuuAA45hhZOECQpkgpFGTI12efyXwPM1kTKdXVwIgR1o+JU6TkzUkxixS13wgjUjSt6/+HDX2MUqQA0Z2bqpOiRklE5aRQpKRPIJEyZswY3HDDDVi7di1OO+00NDQ0oFAo4KGHHkJDQwOOP/54rF69GjfccAP2jmpnM5IZ7MK9suqkuIkUr2E1QURKWZncM6WlBXjqKW//J1DFh7naUhIbOjpNvpMWKX7DvQD/IqWYwr369LFOXga6ipQPPpCvYRXqBUSXOG+eQDgJsOnTgdtvB6ZO1Se4115rDEszh2/27CmTx72uHr/3nv67vR245RbjfWmKFMBb8rw6OR82TH7nSU6qmprktTNqlH3/mISTYs5dA+IRKW7XuZtgNouUigq5MBGmP9+2zbgIYPf6fsiDSKGT4o2SSJwHgB/+8IeYPXs2xo0bh23btkHTNGzZsgWbN2/GqFGj8Mgjj2DKlClRtpVkBLtwr6w7KeXlXctiAt5XrIOIFMBY5euRR7z/H+AsUpLY0NGrkxJm4F+wwDlm2otI6eiw3mE8qEgpFOQE2E91r7Iyo7gIQ9hwL7ukeaCrSHHaxFEQVbiX+Rpzem9qOMeaNcBPfwp897vyNvOiQ1mZDLPxOjFT38u99xr/FiKlosK4I3gaIsUu5Et1UnbaSV6nSSbOv/OOzP+yC/UC9Bj/igr9OC6RMmBAV3GeBycFkP1bmO/O6n/tBHtHBzBtmu4kOk3Co1h9j1OkNDQYQ1ujSpwv9pyUohYpAHDMMcfg9ddfx+rVq/HGG2/g9ddfx6effoq3334bJ5xwQlRtJBmirU3v2ID0wr2WLQPef9/bYzVNhofsuqu1uPDrpBQKXcsYO/GVr8hjD/UmDHh1UtII94oiJ+Xee/UV6j33tP7s1dCgmhp7YbZ5szwvVfzmOwiRMmiQXDH0k5NSX2/vXvglSLhXS4tso10+CmAUKatXu1f2AqITKX6cFPWcKLMYraycUXV/Ci+FE9RrZ9s24J579OO2NmDxYv14jz30/k5MsOMUKeXlckIXRKTEkaDshpfKXoD+3nbZRT+OMnG+tVVOxM2hXkA2RYrqAsQtUuwE+7PPAr/5jZ6T9fe/2z+nuGYLBX8LdCrqeBXFualp8jMcNMg44Wa4lz0lkThvpk+fPhg7diwOPPBA7GTVQxBbmpubu/xkGbMKTzrc68MP9TCcvfYCXnvN/fFr18pO22pCA3ifDIqJid9OWhVzfid3xR7u9dxz+u81a2TYjYo62Dg5KVahXoD/MCnhxqhVkioqZKEEt3CvqEK9gGDhXlar8Vb06yfF1KpV7pW9gHScFHFffb3uakyeLBcIevTQxa0ZMTncvt3b52Z+L7fdpk+APv5YXvMiallMhOKs7iXyUQB9YUWIzTfftBZdItyrvFx/bBoixUtlL4FwszdujG6vFHWzS6vdEbp1kyI3a4nzDQ1yfFBFStDNLv2IlA8+kMdWG4IK1OiJoIswUTspa9fK61BdVAIY7uVESTgpf/7zn7FCXQYggamvrzf8NKpLnBnEHJuatJPy1FOyJOgLL7g/3i0fBfDvpARZSRK7CVuFJDmR5XCvykrZyQXtwNXP2+o51Amtk0ixCxfzI1Ks8lEE4jx3C/eKUqQECffyUtkL0IWXuH/lSilSBg/uWqBBEJdI8eKk1Nbqydh3361/T9dfr/cFav8j8FuG2OxCfvCBLp7VfBQhUoRYjdNJUcWlmjy/erVx9V0gnJTGRn0iLq6Rpqbod3W3QzgphQKw777Oj1XzUqJyU9QJtpVIKRRk/5UFJ0XTpEgRLgogv7uOjuCb0Vq56nbXgVqMwek6VEVKUKIWKeYSznE4KY2N6eR4xUlJiJTvfve72HXXXbHnnntiypQpmDVrFjYnvXMUSYUsOCkCLzHnXkSK35wUr+WHVcQEL0qRkna4FyAHnqDfvToQWz2H+n1066YLFbGSrr5nVaSooXh+BvqlS+Wx+VwRk2Gr59M02fa4RIrXcC8ve6QIxHrIf/4jB2A7FwWIrrpXkHAv9bMYOhS47DLg4IOt/8dvGWKr93LbbcmKlLY2eT6bHTCnkK/2dukiiFVfcQ6Gmej6ob0dWLhQPx4xwlo4qsSRPG8OebMiaZFSWyvPW/NYtX69HEutRAoQvE/346SkJVKimC6aN3KMykkxRw+I77lYREpJJM5PnjwZgwcPxgcffIDbbrsNp512Gvr06YODDz4YV1xxBV544QW0ht3itERoamoy/KxStw/OIGaRkrST4lekqOVKrTZyBJJ1UrZv97fKk6VwL6tBOWwH7tdJKRSs47ZVB0FNdvQzSVMnIObqQGKyYXWOq5tGph3u5WW3eUH//l1vcxIpPXrIVcUwothPuJf4vFWR4obfMsTivey5p1yF/8c/gDlz5GPiFinq4oWTSHnjDeN9a9fKnC3R9qgng25s3izHBavCJGbiFilWTgqQvEgB5LloFstWSfNANH16UJHiNC5l0UlRi2rE5aR0755O+GSclISTctddd2HZsmVYvHgxbr31Vpx00kno3r073njjDVxzzTU48sgj0atXLxx77LG44YYbom5zUVFXV9flJ8ukHe6lhuSk5aSEESmAv1XoLIV7WU3Aw3bg6jnj5qSISbuVSFEdhEGD5LEfkeKUUOgU7uUm5IISJNwriJOiYpc0DxhDiZII99I0ayfFDT/hXi0t8vX79gW+9z39uL1dhpOWlcn9R+ISKU65RAceKI/nzjXeZzU5T6o0uMBpw1cr4g738uKkBA2D8ytSxLm4bp2xsIc5VEkQl0gJG+6lbjsQlKgT582fYRw5KbW1xS1Sij5xfvjw4fj+97+Phx9+GOvWrcPcuXPxq1/9CuPHj0dbWxuefvpp/OQnP4mqrSQDmFV4VZWctMcd7tXeriezCvyIlEIB2G0368ck4aSoK/N+Qr7yEu61fbvMFfKDXycFiE+kONngQqS0tXXd8DOOPVKAYOFefpwUK5Hi5KQA8jyOMtzL7jvasUNO7OJyUtTrpqEBOP/8rpX7dt9dng9hRYrd5NhJpOy8s6yI9cYbxj0wrCbnaYoUL2tsaTspbW3Bvz/RH6rFNJwQ52JHh/E7TsNJsTr3mJPSFfEd19YaK+0lmeMVJyXhpFjR2tqKLVu2dO6VInah14rhWyWdWJ3gbknFUfHJJ8YJoh+RYl5pUYm7uhdgdFLiECl+BrRt24AnnvAmbNxESticJDeRYq7uBcjPYft2+Z1E7aSYO2+nMsRxiZSw4V5+nZQBA+xXoQWqSAnatXt1UtT3HJeTYhYpgwbJzVcF6n7EQap7tbYCv/+9Hm66997GSlQCt6psIv+muVnmfwDWk/OoV6zd8Osu7LyzFIJRiRS3xHkgmvxJv6XGVcGsChM7kRKFO66e06JktlWlu+3bjeed3XXY0SH72ayKlMGDjX12FE6KOF+SzvGKm5ISKW+//Tauv/56HHPMMejVqxeOOuooXHvttViyZAmOP/54zJgxAwvVHpXkHqudZ5MSKeY9RtxEysaNctJml48CGCeDpRDu9f3vA5MmAV62MnKbgIcdePwkzpudFPU11cm5KlL87JPi1Hk7hTUm4aQkEe7lFOolECJlx47gq5VenZSgIsVP4rx6LYrr6aKLjI9RRYrqpLiJNE0DHnwQ2Gcf/Zr7+GN9f6eHH+76WK8iBQBef10eZy3cy4uTUlGhTyqBeJwUuwKZUYsUL6jnzowZ8jgpJ0V1rczXgrnksN31HFV4UFyJ8z166M9dUSHFbxSJ86K9SV9PcZO3xPmKIP905pln4rnnnsO6deugaRoqKytx8MEHY+LEiZg4cSIOPPBAlPvZ7Y7kBquJXBQJiV4wi5TNm/XJgp3tribN2+WjAN4ng1FU9wKic1Jqa/V4+Y4Of+FeYm+S117TJ1JOK4Jew72AYB24OsFxC/cSA6R5IO/TJ/pwL7ucFKvn9LuS7JWkw73cQr0A4zm4aZNR4HslbiclTLgXAEyYoFepEhs5WokUTdPDripsRtAXXwR+9KOuie6A9cTcr0i54AL92C3cK4nE+SDn/5Ah+uewYYP+HZj7Nr8IkdK7t/3EK4rNZ/2KlAsu0DdL3LhR3yT0ssv08ykpkTJsmBw31641ihY11Auwvw6d+kU/eB0r3MYk8RiROK/299XVer8RRbiX2UkB9HbbOXV5QZ3DBZnLJE0gJ+X+++/HunXrsO++++Lhhx/Ghg0b8M9//hPTp0/Hl770JQqUIsYt3CvO6D41aV5gt4kf4C1pHkjeSQkiUgqFrqv0dpWunOjokBOb9nb3ya8fkRI23CuIkyLetzrJC1rdqxjCvZJyUoDgeSleq3upt/upJ6K+7yBOSqEA/PjH+nFlJfDlL8vHqIO6XV7Dq68C48cbBYq6C/snn3T9HzeRMnq07Hfy7qQA0SbPa5rs05zCFcM6KWqpca8ipVcvYNo0/bijA7j8cv1YiJSqKmN4YtQiRc3DNAv2pEWKlzDE735Xrzr41FPOz7V+vWyXcOXU9gV1Ulpb5f/aiZS8I95fVVXwjTmTJJBI6d69OzRNw4IFC/DNb34Tp556Km644QYsWLAg6vaRjGHVYUWRkOgFs5MCRCNSvDgp7e1SgKUR7tW9u9wxWUVMrLwOaGvWGBPc3f5P7ZStVrPDrE6azxe/ifOA/HzEedDQYLw/KpHi5KRkKdxLfA5iTxkngjgpUYgUr/ukBHVSqqvlORDESQGA73wHePZZfZNCdRLkRaS88YbsK/bZB3j8cV24CIKIlG7d5E7u778vFzqyIFKCOimCsCJl82Z5TjmtcocVKdu3y0IOfhzTH/xALpz84x/6uSBClXbe2divxylSzILdq0iJKodBOP+A9Xn52Wf6Zq1r1+r7FDlhVx1NtC+ok2JVqa5YRUoeKnsBAUXK+vXr8corr+CXv/wlxo4di+effx4/+tGPMGbMGDQ2NuKss87C3XffzV3pixAnJwWINy/FyklxmoSoIiVsToqasJ9GdS+7cAgxqHkN9zIPTG4DobpyaCWSwnTg5s/aa+K8k5PSu3ewyT3gHHudtpPidzNHNxcFMO6T0revcbC3Iy0nxY9IAeTqdBAnBdBXGCdM0EWGiheRop5HV12l53/V1MgwtCAiBQC+9CV5LFwa4SD06CE/o6QT58M6KWHzUrwkzQPhRUrQsM7aWuAXv5B///d/y+9bDfUCohUp1dXGa9rNSbGb2EflpBQKzvtqqe1RxbcVdiIlrJNiVU6+WEVKHvJRgIAipby8HF/60pcwffp0/POf/8SGDRvw2GOP4Yc//CEGDBiAv//97zjvvPOw6667Yq+99oq6zSRF0hIp5vLDAieR4mUjR8DbpDasSAkb7uUmUtRKV06EESlWhOnAzedK0HCvjg75mYYRKV5KELu1O0qRUlEhzzUv70PTpJPiRaRUVwOHHaYfn3aaN+s/DpEStZMCSEGwYYNzaWz1PZg38LTCi0ixm9SJMsKfftq1TV5EilXyvJjMqZPzPDgp6qaPYUWKl93mgfRECqA7cyNG6MfqXjdxiBQxZvToYQwlSzvcC3Dec0Tdx9qqAp6KeSNHQVgnxaovLzaRIj6bohYpZmprazFp0iTceOON+L//+z9ceumlqK6uhqZp+OCDD6J4CZIRnMK9gPiS51essJ4UeHFSGhudJ49eVqzV104q3Ku1VbbHTqSot3vpQNWETcB7uJcXkeL3u3cKmxJ4SZzftEmGYfTpE42TEjTcK8rEeUC+Fy/vY+tW+R7ckuYFTz4J/POfwE03eXu8OpEPujeP1+peqhgM6qQAziGhToUprPBS5tTuPBIipaOj63UoREqhYN8Os0hpbpbnnp1ISSJxPm0nxcseKUC6IqWiAvjVr7reHqeTYhYpTrveA8mKFKv35kekmMsPC4KUCFex+o6zLFKWLfNfFrkknBSVFStW4O6778Y3v/lNDBgwAGPGjMENN9yA7du3o7KyEocffngU7SQZIU4n5e23gXfesb5PDfUSK1KAvUhpbpZhAE75KEB2nRQvEyi/GzqaV8/cOl3RaduJvDA5KU5VsgRWToq59LJ5FTpIwjmQvcR59XW9hHv5SZoX1NXpieFeq7yon30enBTAOeQrDifF7jxS3QNzyJf47hoaum4mqf6/yCOaO9d+l/U8OCmDBkW3V4qX3eaB8EU+wlbxO/VU4MADjbeZQyzDCkxNM4oUp0p3aTgpYrxqapILSwJVbG7d6jyX8BLuFaSIT5wiZc4cfe6ihv6F4YEHgKFD9ZDUIONcUYuUWbNmYcqUKdhzzz2x66674rzzzsNf//pXrFmzBiNHjsTFF1+Mxx9/HBs2bMALL7wQcZNJmjjtkwIEFynz5umJoaNHA2++2fV+Nb9Ejc22EyleQ70A/zkpQcr21dRIcROXSPEyqPlxUnbskO87jnAvv06KXbiXWaRUVcn8GT/7pHgtQZykSBHv2csg5Kf8cFDykpPitQyxXeK8HX7DvaycFMBepDiJy0JBuikbNugOmCDNcK8gTkpFhZxchk2cz4OTAujf37XXGm8zOynV1fKcCSJStm+XoYQ9ehjPJzeRYjexj2qfFMB4bpr7UdVJAZzdFLfEeSBYEZ84c1JuvBH44APg6quj2RRy9mz997JlwEsvef+/kkicP/XUU3Hbbbfhgw8+wKBBgzB58mTce++9+Pzzz7FgwQLccMMNOO6441Drd2QhmcdpnxQgeLiXiLHu6NBXCMyoIkUNe7CbgKgDn1rhxAovK+9hnZRCQbopXid3XkSK3w0d/eSkeBmUo85JMQ+SXkSKeZf1QsFfmJQga9W9AH/vI4iT4pe4qntZTY6iSJwHvDspXsK9/DopVjkpgFGkmHOqnFD7vlmz5HFcIuXWW/V8JbFnjBVBJ+8i5GvdunDtzHrivMoRRwDHHCP/Hjq062P8FkNRUfvznj3180+0Vb0OtmxxL1RidVvY1Xenc9OPSBE5KfX1xvFAvd6ChHzFmZMi5irt7cFDZVXUts6b5+1/OjqkiM2LkxJoM8eTTz4ZRx11FCZOnIjhw4dH3SaSYeIK91Ino+oKoUAN9/IiUtTJuFvVospKPfTAad+QKDZA6tVL73jTDPfy46R4ybWIMidF0/Tb1PPJrbrXpk3WSce1tXp7goiUQqHrJn1O4V5xJc6rrysm8k7J7Xl1UgD9ezaXTE7SSamu9rayGCbcy06kbNokRZofkTJnjjxWw5wqK/X3sn17uJyU118HpkzRj+vr9c0IrQjipADG8Lf//AcYOdJ/G4F8JM6r3HEHcP75usM/blzX+3v00AVFkO9O/R/RT/brp7ddvQ7Mu80Ltm3reh3GkZMCuIsUu8UFTZNOyuDBxj5Rvd62bzeOFV6IM9xLfe4tW5zPVb/P51WkRFVOOkkCiZSHH3446naQnBBX4rw6IXnzTf151OcVTkp1tR6DKXZat5uAqJNxdXM/KwoFvWN2mtRGsVouJnibN+uCyG3P0zjCvYI6KUnkpIjnUCc6QcK9gHBOSnV1VzHgxUkpKwu2A7sT6uTcaiKvYnaU4iCOxHnAenKUpJPidcfzOESKl8pegrFjZd+nvo7ZQejeXf+cw0yqfvYzeWzuN1TUfsKPSDEnz4cVKdXVziF7YcepqApk7Lor8PTT9vere1952X1dRb0mRT/Zty+wdKl+nolxx+77tFtAECQpUuyclE2bZN9gFS4nCOukxClSoigwpD6HVYi8FVG6YkkRSXUvUjok4aS0txs3P+vokDkmw4bpq9xiEmZXuUfthN1ECuCeoBzFKprfCl9Rh3u1tHSdsKUZ7mUlIMydt5fqXlYOQhCRIjpwq4HYS+J8fX30O/j6KQKQRLiX+tlH6aRYvbegO84D/hPnveSjAN4mQXYTgX795N9qOKofkVJfD4wa1fV2K5ECBJ9UPfec/iNwep6gVdiiqvAlXIEBA5yvv6w4KW6Ia6ytzX8pXSsnRQh2NazQTqS4hXtFKVLMY49XkeJUKEFtX5AyxHGKFPV/o8gVU6+7zz5zXkgQ5NFJCSVSFi1ahAsvvBAjRoxAfX096uvrMWLECHz/+9/HokWLomojyRBJiBTAGPK1YoV8XRFdKDpeL+FeXkSKW4JyFE5KHCLFT7iX1QZZUYZ7hc1JsXoOKyelrk4mxpudFDE5V0WK1yovTlVPvCTORx3qBRgnfW5FAJII96qokOdClCLFTbjEEe7V0SHP/7icFHXSVFYm3ZT//Eeel35ECmAM+RKYJ2thRIqmGV0Ut+cREzt1R3EvRCFSWlvl9+uUjwLkT6QA/kO+7MK9BOKzUsdH9b3E7aTYbTTa2mq8DgB7keI0tod1UqzG+ShEiqbF66QA3kK+oiyCkBSBRcqf//xnjB49Gn/84x+xZMkSbN26FVu3bsWSJUtwxx13YPTo0bjHLoiV5JYkwr0Ao0hRk+ZFOWEhUpqarFdMREdWWeltVTkJJ8XvrvNRh3uZ81EAb5MPwH4CXlUlJ25hc1Ks2mMlUgoF+b7dwr06OrxXefEqUuxKJ8ctUrLgpADyPI4qcR5wd1LiCPfaskUKBa9OSphwL0CKlKYmeX37FZdmkVJebny/gDwXd+zwP1l77DFZyETgxUnx2y+qIiVohS919d1NpKjnUCmIFDFmWG3oqE701eqXVuNflKvvdhN+K0ES1kmJKtyrulrmKAYVKdu36xEigiiclLAipaidlH/96184//zzsWPHDhx//PGYOXMm3nnnHbzzzjuYNWsWTjzxROzYsQPnn38+3vQaLEdyQVJOyhtvyEmKmjRvFimAdciX6IR32snb6l7STkpUIsVPuJeVHRw23Eu9L85wL7WsMOAuUoLsleJUmtEu3EtdIYtj4uLnfSThpADhRUoSTkqPHrIKn52T4ncjR8C/SDEX2bDKSwnrpDQ2du3j7Fas3ejoAK64Qv4tnteLSPEbkjdokHz+oE6K16R5QH8t0cZSECnmcC9ACnY/IiWJnBRzqBcQTKSYE+f9YvUdFwrhwyfN5xtFincCiZTrr78eHR0duPPOO/HII4/gpJNOwsiRIzFy5Eh89atfxT/+8Q/cddddaGtrww033BB1mzPDhx9+iEmTJqG+vh59+/bFRRddhOYwuxnmADeREpWT0toqV/NUJ8Uc7gV0nYTs2CE7Yy+hXoCcBLW3G8sNC7Kak+In3MvKSQkb7gUE78C9hHuJgcacVK2KFHVyLj5jP2FS5tfyE+61davclCxtJyVpkbJtW7C9CLzmpITZcb5QkH2EnZPidyNHwN8+KWZhDUQjUvbYw9iXWDkIQUNUHnhAbqg7diyw//76sUjitiKoSK+slInPUYgUNycFkG0sVpFilTjvFu5VTCIlDicFiF6khA330rSu4+ebb7qHNpdM4vxLL72E/fffH9/5zndsHzN58mSMGTMGL774YuDGZZlNmzZhwoQJWL9+PR544AHMmDEDDz30EL797W+n3bRYcQv3ispJAWTIl5uTYhYp6sDlVaS4rVhn1UnxM6CFcVKc3nPQDtyPk2InUrZulYOZulu3n8m9wCncq6JCTlDV54tzjxTAn9gSk93u3YOXyfZC2ApfdtW9zKifc5CqaWJytnat9eDtdyNHwJ+TYnUeqSJFhDj5FSllZcBBB8m/oxIpbW3Az38u//7Vr+R11tFh/R2pZdv9OimADPlauzbYxM3rbvOCYhcpbk6KWaQ0NBjPubQS563yJcPmpARxUuwW5sKKFPP/hXVStm+Xi2OC9euBjz92/r+ScVLWrl2Lvfbay/Vxe+65J9Y6FanPMXfccQfWrFmDRx55BMcddxy++c1v4vbbb8fDDz+Mf/3rX2k3LzbiCveymkgKkSKclKoqueeJk0jxmzQPuE8Gs5qT4ifcy6+T4vU9iw582zZj3K0bfnJSzIOjOpCLjb3UwdavSGlrk52+XectnlM9x+PcIwUIFu4Vp4sCGM85vyFfmua/ule3bv4SsgWij9ixw3pS4HcjR8BbYq6TSFH3BgnqpADGkC+ryXkQkfL//p++IzYAfPnLwFFHuT+P+r0F6RfD5qXQSTHiJdxL0+QYufPOxr41rcR5KydFtNWM13CvsE6KOq8R18HWrf7GOKvntfo77PMJ3EK+SiZxvqGhAZ+ohd5t+OSTT9DTa++fM2bPno0JEyagf//+nbd99atfRX19PR577LEUWxYvVhveRRHuJTrHsjI5cL3+un67Wn5YrJRHLVLUyaBVR512dS+71+zWTX4Pbqva6uciVnSjzEkx/48bfkSKnZMCyB101WRxvyLFy0AsznNVpCTppDi9D02Tk904k+aBcBs62rkPTsLFb6iXwK0McVzhXl6dlDAi5bDD5LHVruV+RUpbG/DLX8q/f/UrYyy+3fME3chREFakeN1tXiD6qpYW67BeJ0TfJvbViouoE+fN4V6bNsnrbeed3ce+pMO9xHfU1mbdv4jvvEePrn1DVCWI1QqSQLhNi63+J6yToj6f2nf5ESlF7aSMGzcOr776Kp5TC6mbeO655/DKK6/gINWXjpnFixfj5ptvxuTJkzFq1ChUVFSgUCjg6quv9vT/DzzwAMaPH49evXqhrq4O++23H6677jq0WvRm//73v7u4SRUVFdhjjz2KuvyyupeEqEnvtIeEV9TJ6Fe+oh+3tAAzZ8rXFKFegHEiFrWT4haGFEVOih8npXt3+40fzZWunBBOSn29dKS2bZOTfDNec1LUiZXTnhRmrM4Vv+Fedu3wK1K8dN5iEmYX7hXH6qrXcC+xQSgQv5MSRqTYvQcnJyWoSGlslMdWK7VxJc477bcjrjvAWqSofYQTEyYAl14KnHaavnu5Gb8T3ffekyLhqKOkCHITKWH7xbBliP0kzgPhQpPtJrBRE7eTYh4f3URKEtW91Otzn33ksVXIlxApVt93VE6K+VwOW4Y46nAv9dwV8yWAIqWTH/zgB+jo6MCJJ56IH//4x3jvvfc6SxAvXLgQl112GU488cTOxybF7bffjqlTp+Kee+7BwoUL0e7Dl7v44otx+umn45VXXsGBBx6IY489Fp988gl+8pOfYMKECdhmuno3bNiABovlt169emG9ueB3EWG1SlhWZh0K4wd1QqJedHfeKY9VkeJU3SurTkrQcC+3CZS6Q7ETqsXvpfqP11Amqzh7L7g5KW1tcuKdBZFidY7H7aR4DfdKqvwwEI9IicNJUVfWrWLe03BSamoAYb6bRUqPHtIVdaNQAH77W+DBB+XzqfidVP373/J4wgR57DZhjtJJCStSVFFqR5hy+XGWGleJWqT06iVF1dq1ziIlyZwUO5GiblZqFilbtsjvwWpsjypxPmqREme419ChMox0/nzncLSSSZw/5phj8LOf/Qzbtm3DDTfcgH333Rfdu3dH9+7dsd9+++F3v/sdtm3bhiuuuAJHH3101G22ZeTIkbjssstw7733YtGiRTj77LM9/d+sWbMwY8YM1NfXY+7cuXjqqafw0EMPYcmSJRg1ahRefvllTJ8+PebW5wO7AThMrC9g7aQAxl2PRWUvIN6clKw5KW4iRQxGTuFeauc+cKC3gdDre1bj7P1MNNw+Z6s9UgRWn0mYcC8vsbpiEtbaKkNFshLupQr1JEWK38R5dZBUz6k4nBR1pVUNCxLEXYLYbhIgRP1nnxk3sYvSAfM7qVLNfzVAIG4nJWjfIRB9fZ8+3opFRCFS4sxHAaKp7lVVJc+/sjLZJ1iJlCRzUtxESk2NsdqYWaS4FUqIKnHe3JdnzUkx586MHasfNzcbr2UzJeOkAMBVV12F2bNn44gjjkB1dTU0TYOmaaiqqsKECRMwe/Zs/FINck2A8847D9dffz3OOuss7Lnnnijz6Mlec801AIBp06ZhzJgxnbf37dsXt912GwDglltuwSZlVOvVqxc2WiwjbtiwAb3jjrdIEbtQBqt4fT+oE5KhQ41hEQI7JyXJnJSysuDxyD16yBA5txXo1lb5mXgVKU4bt6lJ82YnxW4g9BrKpE40onRS1O/BKXFeEMZJ8bLCZPWccSfOew33Sqr8MBCdk6K20/ze2tqkCAiyQg+k46R0dEgBa3ceieulowNYsSLfIiWskzJ4sOwT/YqUjg7Z14tSxm7kTaT4XQQQfbm5f1TLcfsN94pSpFRUyNdTxx0hUhobjY6YX5ESxknZsUNe01l3UtTrrr4eGDdO/u0U8lVSIgUAjj32WDzzzDPYsmULVq5ciZUrV6KpqQlz5szBscceG1UbY+XTTz/FvC++1bPOOqvL/YcddhgGDx6MlpYWzJ49u/P2vfbaq0vuSXt7Oz744APHymfNzc2uP1nGbpUwzCZZgNFJKRSMbopAFSlqaISdSOnWzfvkw6uTUl8vB1W/lJVJweHmpFglQNrhpcKXOjANHGhfClJFtLGqylmYBRUp4lRXJ352IsVvuJfbwGvGT04KINsed05KFsO9wlT3shMp5vemPi6KcK+onBS3mHcvjpwaHvnee/HkEgUVKVVVwG67eX+esE5KVZVcSBJV+ryydq0UhHGLlB075GvFLVL8VGw0Ix5vPp+FSGluloVoAP8iJYqJrbmcb1ubXGRpbDSGLybppJgn/lZtBqIRKVE6KUFFSlFW9/rwww9x3XXX4aKLLsIll1yCe+65B9u2bUN5eTn69++P/v37o9wuwzejvPXWWwCA3r17Y6hVmRQAY7/w0sRjAWDSpEl4/vnnsUbJFH700UfR1NSE448/3vb16uvrHX8avQTWpohbuNe2bV3rd7vR1iYHANFhmkVKZaVxcFc3a7MTKTvv7F1QeHVSwq6Wi5AvN5HiZwLlZeUtiJOirvA6fY5hnRS1+ozXcK80E+fV58xiuFeWnRR14uDkpITZbV6gTmKSclK8nEdqP/b22/I4yu/NT8hQW5ssPTx8uDEvJm4nBZACY9UqfxW3zH2aF4KKlKTKDwPBw700zd5JUfvYd9+Vx35yUioqvOdMOWEWKWqp4ShFil8nxek7znq41wEHyL9L1kn53//9X+y999746U9/ijvuuAM33XQTvvvd72LEiBFYuHBhnG2MlaVLlwIAdlFHDhODBw82PBYALrjgAvTu3RsnnXQSnnjiCdx333248MILcdJJJ3WKmmJD09zDvQDvm+cJrFZNzSJlt926VriyEinbtkkB4HXgUl8XcHdSwiBEysaNzrvDBhUpXp0UL4nzXvfd6NFDvq8gIqW+Xp4/YZyUuEsQW1Wxy8pmjnlMnHdyUqIQKX37yoRhK5EirjFzqV0n8iJS/EyqPv5YigNzEIBb3xLF5F2E9mqateNlhypS4nZSkhQp1dX6ohzgT6SoZZXtwr0Ao0gZMMA9J8Utx8ovZpFiLn7gVDrcLZQ7TAlip748a+Fe5vOxZ09gxAj97wUL7AVa0SbOv/zyy7j00kvR1taG2tpajB49GsOGDUOhUMCKFStw2mmnocPv8nlG2PLFGVfnsAxU/0WvtFnpMRoaGvDcc8+hR48e+NrXvoYf/OAHOPnkk/GXv/zF8fWampocf1ZZ1crMCG1tcmJtF+4F+L8ArSajw4cbwzXUpHmB6Hi3bZOTGnWQ8yNSnJwUTYuusouYzLe3O39OfkSKl/AAv07K9u3yM/Uy6RVuyooV3je7UvOQxOeqfiZqh5o1J0WIlKxs5piWk+I3Zt5rToq6Qh9UpJSXy/h2q8mvEFg9engvKesmUrxMArImUuzyUbw8TxROipp/uGKF9/8LK1L8TDaTFCl+ysqrWFX2EqgiRfQjffvq56jXcK+owoPEOdXaqve76pTHLFKKxUmxCvdyWqR0wyo0TYR8tbYahahK0Topt9xyCzRNwznnnIOVK1fizTffxAcffID58+dj2LBh+PDDD/Hkk0/G3dbMsccee+DJJ59Ec3Mz1q1bh9///vedgsaOuro615+s4hTPGKb+vNWqqTkvRc1HEVglzwdJmldf19wewBjCFnYi6rUMcdThXk5OitVAqLbNy+RJiJS2NuNr2aEmRtfWyvMnqpyUUg73ynJOil24VxxOCiAXOlat6hqGKtruNdQL8OekeMlJUfMD8ihS7Hbo9oMqMJIUKVl1UoBgIkXt+53CvQRifExapJjHHrNIqauT51KSifNJhnu1twcrkSywaquXvJSiFSmvvfYaBg0ahDvuuMMwid53330xY8YMaJqG119/PbZGxkn3L84+p4T1pi/OiB5WM6OQ5Clx3mmV0GqV2St2k9EjjpDHVrUIohQpTh11lMnRXnedjzrcSx3QBwxw/x+/u2D7zUtRJ6F1dcYQALHC5FTdK84SxF6qeyWVOJ/FcK+qKtmuuKp7RSVSxESmvb1r7prXEt8qUYR79etnPeGLUqTU1Eh3KCknJWy4F2Dsp9wIIlKC7hyeB5HiVGxFHSsF4jPzmpMStZMC6OeUWaQAMi/FTqSo7rtKmMT5JJ2UoM9j9Xxi7uVXpBRV4vyqVaswduxYVFkUIj/si61pV1ttDZoDhnyxm9Ryh9Ii4r4h6s5TEZGnxHmnAThMaUe7Sj7nnAN8/evASScBFoXXDJMxsZIch5MSZUiP171Sog73Ep+LsPjdqnv5DR8KI1JUJ0V1WPw6KeqKeBw5KWk4KX7DvQoFf85AUMQ5F8ZJUa+FuESKXRni7dtlf+bn81L7vaAipVAwuimCKEWKmmfjNtEVIqVQkHHtgiSclLTCvfIgUlpavK+4ew33Eojx0es+KWmIlHXr9DFB4FYUJyonJe59UoI+j8BqcWD//WVhg5JzUnbs2GG5uzog3YUddjtbZZzRo0cDANatW2dIjFd58803AcCwh0op4jSRC+OkqBMSdVLWrRtw//3ArFnWA0MenZQ0wr2s9hPw46T4yUkBgokUq0HASaTU1RkHqYYGY2EFrw6EIKyTUlYWbjJtR3W1fJ9eShCbP4e4EOdxGCelrk5+1nGHewHGUJEg5YcBo5NiNQnyuqdE3CIFkNe402RI04D339ePhwzpep0l4aSEDfeqqrKehFuRN5ECeJ/MOokUp3CvqirZx6QtUsT1qlb4EmP7tm3yurUK9QLCOSlO43wcTkqY5Hmr87GmBhg5Uj/+97+t52FFmzhfzAwaNAjjvvDJ7rvvvi73v/zyy1i+fDmqq6sxadKkyF8/T4nzThO5qBPnvZBUTkpcTkpS4V5r18rVKPGZuA2CcYd7mROjrcIwnBLny8qM/2MWUl4dCEHYxPkw++c4USjIc9PLZo5J7SMrREpTk3Gl0w3ztW733qIO9wKMTkqQ8sNANOFeQDIixVxFyYpPP5X3W4XUVlfL92zVt0RZgli0xyvisX5KzedRpHgN+QrqpBQKsr+02lRVFEKJuroX4O6kADLkyy0fxdzGLOWkJBHuBchSxB0dcvFBJY9Oiueq1x9++CH+7//+L9D93/72t/23LEEuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlCnr6WXLzSJYT5c14DfeKInHeC3l0UtII97IKi3AbBJMM96qrM1Y68eKkAPp7EG03tzHpcK84Qr0ENTX6NWX3Ptrb5aQ77nwUgTqx37zZ+wTb/DnX1OjXgZOTEqaLtAv3CuqklJfrkzpNy49IaW7WJy1WFcyc8lHU51m3Lp7NHAH9POjbV+/DvTopaql5r6FeQHGLFKfEeSeRAujX4datXd2HOHIY7ERKdbVst1WFLy8iJUwJ4iQT582v5xc7kaJ+blbnTVGLlFdeeQWvvPKK5X2FQsH2/kKhkJhImT9/fqeoAICPviidcscdd+Cxxx7rvH3mzJnYSTnLTz75ZEydOhU33XQTDj74YBx55JGoq6vDs88+i40bN+LQQw/FVVddlch7yDJxhXvF4aTU1/ubOCblpKQR7mUl3NxyUvyGe/Xtq39327YFC/dSV0L9iBSBeYJXWalPKNvbk0mcj3PiIl7X7n2oe+6kIVI2bvQ+wU7TSVEnOUGdlEJBdxZaWoKXIAaMol4Ql0gB9D7MKo8rrEiJwkkBdKGxdq2+oGInqFSC5KMAxS1SnBLn6+pk/yxQRYoYz83XodfwRT/YVfdqbJTjgOqkiL1SvGwv4BaO6YTTd1xRob//7dv9i5SODus5URQ5Kd26GTfYdCuxncfEeU8iZZdddkEhjliGiNm8eTPmzp3b5fYVK1ZghbJE02Jx9s6YMQOHHnoobr31Vrz66qtobW3FsGHDMG3aNFxyySWWRQOiwFzNK8vVveIK94rDSfHjogD5dlLcBjSrAb2iQv+st26NprpXoaBPvN5/XxcpmuYcgmH+ztU8CnH+OFX3Aozv2zw5F2FSW7bEF+4V5f45TriFeyW5R4ogaBlis0gR110SOSlRhHsBziLF6yTA7KSo+TlRYV6ICCNSAOfV4OrqcLuRDxqkb0LX1qZPSt3qxwQVKUHHqbyJFKvvum9fQK0PZHZSgGREinpebtwoRYj6nVuFe6mLbXZOSqGgn4t+Cg4I3IqgdO8eTKTYjT9RhHs5OT5W53fROinLli2LuRnRMH78eGghdsg5/fTTcfrpp0fYInfc9lXJEnGFe0XlpGzZIi/8MCIlazkpbpWv3cK97ELgune3FylBJr5CpGzbpn8fVsmaAnNOiroGEIWTIp43LpGydWu0++c4YTeRFyRZflgQdNd586RHFWCqsM1q4jwgz9Uow73iEJdekq+9iBTxPNu36xvFid3QAXkdh41aNlf4ikukqCviWRYpXio2mvEjUsrKjEIgLZGydKl0gd1EipdwL0CKlCjDvQC93WvW+BcXdo+PItzLfN35cVLyIlJKPnGeeMdruFdUJYjdUFcf164Nvts8IMODzO0B0q3uVV/vXq1JTW61CveyG9CdavEHmfiqISxu6xrmnAOrMAw3kaIO5HYixfxadngZjM3hXnGXHza/blubPkk0k4aTEnTXeTsnBTB+B1HsOA8Y9+CJykkRfY7VSq3XSYA6KQfi+d68xNELkdLYaFxA8fo8diu6fvFb4SuoSAFkW7MsUrxs0GvGTaSoi0aNjUbnSxUp6jpv3CLlww+NbRKEESminVGGewHOjuK6dfY7yNstcsbtpFg9v/g+y8rCOZ9JQpGSMsVS3SuqxHk/TkqhIN2UtWuDJ82L57JbTYpyMuo33MvrKq+T4LD7XNT/MXewQqSoG/e5oW4j5JaX4qUEsVN1L8Cbk2J+LTuChHvFvZGjwK2ccjE4KYDxvUXlpAByQhNF4jzg7KR4zUnp1s04KUtDpKxfLyeAdi6K2/PE4aR4qfBVSiIlSidFYB4f1f5VPa/jWHmPW6SIdsbhpAD656N+RlddpX+2Z59t/bzqNaO2O6iT0tEh+0dzO91yrsT3mRcXBaBISZ26urouP1nFa05KUuFegOx4160zDlx+RQpgP6mNcoCqrJSflZdwL68TKPE4p5yUigrjapoYyDo6uk5+1ZK2XtPR/FT4CrtPCuCckyKeVzyPWxRokHCvpJwUt3LKqpOSdZHi5KSo7y1KkSJCvjZvls8bNicFCJeTAhivlzREipdQL6fnUXOywvaLfjd0TFqkJLUgIYi6uhfgLFLsNnSMO3FeddxVkaK21ZyTUl1t7/qJ+4HgOSlq2XcVq+ugvR343e/04/vuk+WaVdTzTBUpQZ0UdTwzTxfdrnnxmeQlaR6gSCE+iCvcK8yEREzKWlqAJUvk7UFEShJOCiA7WDsnpa1NCj2/TsqmTV0n5KJz32knY9Ucp4FQrM77mfT6ESnmcB63cC+rTlVdbbNaWRPfZ0eH9YRSxcvk0hzuFWWukhNu5ZTTDvcKI1KScFKskufTzkkBjHkpcYsUq4luWJGyfbv9ZMkvfsO9wrjmoq/ZutV6UmmFXcnXuAjjpFRVWfdh6gKVk5MSt0hRzyeR0wcYRUplpbwmzE7KTjs5L5yJdgZ1UurqrKvLWV0Hc+fKcVzTrEPzohYpXksl00khkdDc3NzlJ6tkLXEeMK64vPOOPM6qkwLICZ6dSHEqJWmHGNTa2oyd844dsnqKecXRbiDcvl1+Bn4mT0GdFDVvAPDupHz728CXvwyccQYwfnzX+/3sleIlTKeyUiYNJ+mkZDHcK2h1L6t9UgRxOSlWZYiTcFLSFiluifNeRYrd80TZLwYN9+rTx//kWW2rl1BQQL7Xmhr3HMEoCCNS7AqteA33SlKkqKiLCYAUVatX69eaWIxxCvUCgjspbq6g1Rj1xBPGx1iN6VGHe6nzK6dwLycnJU8iJSepM8VLsVT3iircy++EJEqRkrSTsn27/mPu/IOs8pqrwYj34lRMwG6lVe1o/UyedtpJDylra/Mf7qUOkl4T53feGfjnP+1fwyxSnEIEvE4ua2v17yfJxHk/4V55SZwXhSrSclJUkRLUSWlt7Vpq28+kLkknJapwL7WfiGqPFECfWHfvrrfTzUnp6JBOit9QL6Cra+vl2o0qrM0rcYiUcePk8UEHGe+zK2ARh0jp1k3uYaVirujWvz+weLH+2S9dKm93Eymine3t+ljkNUE8CpGyfj0wbJj18wLpOyni+8yTSKGTQjzj1GFVVcnOIEy4Vxgn5Yu9OwG4d2RW2FVRitrqdytDHESk2FWDUcMivDopQXMcysuBwYP14yQS593w46R4FSni+08rcd7qfeQpcV4IEfF9ujkpFRXGkrdBUPsCc7hXt27+B2z18WY3xY+T8uUvy2PzpDEKvIqU7t2dF3XsnifqflH0TytWOOeQrV0r++coRIoXikGkHHAA8PTTwKxZwNFHG+/zkpMS1cS2ULAWhlYiRbBggTx2W4BU2+nHTXHb88p8HaxaBfzrX8bHqH2x+XkB44JJUCfF6borRieFIiVliqW6FyAvkLTCvQQNDcFWX+0sb3Gx19REU7bPrQxxWJGiDmpOxQTs/sfvRo4qIuRr40bnwdWck+IU7lVV5b4DtRVBw72cVgzFoJBWuJeTk1Je7r6nTlSEre4lPmM3JyWKya/VXimizX5DvQDjnj5hRMro0cArrwDPPWcULFHhJFK2bpULCXvt5Rzjb/c8TmEnQRAhX1u3OrtzYZLmgXyIlNpa2ed5ESnq5qJOfcBRRwEnndT1+7Yb++LaodzcxqqqrteinUjx6qQA3kWKWrHLq5Py5JNdH+MW7tXQID/rOJyUmhp53pjPbU2jSCEBKJbqXoCcUCSZOG8lUoKEeplfW21T1AOUWxlidYD2Oomy2/zLq5OidphRiBTA2U3xs09KEBcFCO6kOK3ci+dMMnHebgIhCFKJLSyqAxGnkxI21AtwdlL8hnoB0YkUADjkEOCII+L53pwS5xcvlm6FU6iX+XnidFK8VvhKWqSoeX5JiZRCwbmsvJkwhSCAZHNSgK79Zf/+Xa+BoCJFve68Js97ya8yXwfmUC/A3Unp3l0+f1CR4rQ4UCjYP39bm7zmWd2LFCVuHVZYJ6VQ8K/woxQpbk5KVBPRJMO9gjgpYXIcgoiU2lpdGIjv3uykBO1Qg4iU6mrnCaOYjO3YYRSYaTopQSqxRYFbAQgr/DopUYgUs5PS3i7P96idlLgmdUFwclL+/W957CZS7BYzonZSvFb4SlqkRP0+veJHpLjtkeJGkjkpQNf+0hzqBUQjUrw6KX5FysaNeuicGau+0Pzc4nniCPcC7J8/j7vNAxQpxAdenZTmZvd9KVTEhKSmxv+KYh6dlCTDvYLkpITJcQgiUsQAad6/IEonxcqBUPFqg6uDghqZmVZOyo4dcuKYVNK8QEwiVq40lhJ1Ig0npW9fWZFp5UrjRDttJyVOnKp7eU2aB+wdmTidFKcKX0mLlKQ3chQkKVKS3CcF8C9SVNHqNr6r7QzipHjJSXnmGTl2q+eglZNizl102rneb1utzkc7JyWO/KIkoEhJmbyWILbqsMRA1dbmvi+FSpjJaNxOSmurfN9xOClRiRS7cC8nJ8Vu8pFEuJc4zbt1kzG05s47rEhxq4qlYl7ht0OdNKsiJa0SxGkkzQvEd71jh/GzsKO9XfYL4ruxem/qjspRiJSyMjkJWrkyXPlhID8ixSmJNqhISSInBciWk5K2SNm6VR9TnYjSScmKSFH3dVGJw0nxUgRFbfOcOfL4G9+Qx37CvVpajAV6vOJ2PqpOirpYnKW+yQ8UKSlTX19v+Gm0ulozgpsSD7pXiugUg0xIrCZmUTopcQxQSYV7rVghq4/U13cdvLIQ7qWuwJpFijjfksxJCeqkpFWCWGx0BhhXHpNALaHrVs0NsF7ksHpvaj8ThUgBZMjXqlXGiUQQJ8VpEpSl1Uq1xLOdSKmqAoYOdX4eLyIlyupeAEUKYDw33Vbd4xIpcU1szW10c1IEFRXuizFhnRQvIkUVF2edJY/dEudVJ8X8ul5xu+5E+zs6kvku44YihXjGa7gX4E+kqOFefjHvsQFE66TEUcEpDifFLDg6OoDJk+Xgddpp7v8jCLM6L0oQA95EijoJFZ3r9u36uSZWD0tdpDi9jzRFip/NOwHrKn5WTkqUe6QIxOpre7uxVHkxOymAPC/V67u1FViyRD/eYw/3ioVeEuejdlK8hHtVVwdzD/MiUvyUIY4ycT6LOSmCAQPcKz0mkZMiGDPG6ES6OSn19e5lgt3w6qSYHxtXpba4oUhJmbyWIHYK9wL8rRCEDesxh3xl3UmJIyfFHO51003As8/qfw8cCNx4Y9f/iaO6V3W1/PyXLbN/nBCx6meudq5r1sjjJERKkHCvtWv134VCdJNpt9c0h3upn5NdeERcRCFSrJyUOESKmjz//vvyOK6clIqKZHYmd8Mq/v2tt+QCgFuoF6D36yJXME4npW9f+dl6cVJ23jlYVTS/K9lZECluG6bmPSfFvNs8oC/mma8hL2N7kBLEQUXKpEn664l+zClxvqZGfz9hnRSvOSmA8XrN2gKKVyhSUiZPJYjjCPdqb5cXT9AJSVQiJQ0nJY5wrzfeAKZNk3/fc4+12HAL96qqCvadiMnrqlX2druTkwIYHYKkq3s5oV6eIt63vj7e0r9ZDffyK1KsJjxJOymAUaTE5aRkZRIgrvEtW+T5+sc/yvuPOsr9OdTN9+wS56OYvBcKxg0drdi2zTph2Q9hnJQ4HVMzfpyUYsxJKSvruvDiZZPmsCWIvSTOC447Tv8txnSnxHlx3rltsuqGWy6YnQjKUiiqHyhSiGf8hHt5XSEIu6s40FWkWK3KeCGNnBQ3J8XrgKM+7q235Hd1ySXAkUda/49Y2QGsw7369Ak2+VYnr5980vX+1lYZ02uVkwIk66S0t+s/gHvnbTVpjnvikodwL6vv2UwWnZS4ShBnZRIgzs32dr1tmzcDf/2rvE9N+vXyPHE6KYAM+dqwwfqaDZuPAvgPtykFJyWLIgXo2qf5FSlRJs6bz/FevYCDDtKPxSKgk5Mi3nOQzUStns+qTebnp5NCSgrRYZWXW8cx++lUBWqHGIWT0rdv8AswKSelpkZuGOgkUurrvYeMWA1MI0cC11xj/z92K6RCpAQtaeu2wm73naufrzr5jluk+Om8nerSx0VWw70aG+WE3W+4l1XivJWTEtXkVxUpixfL47jCvbIS821etb33XikuvvUt75NuK5ESx+TdLS8lapGS5XAvNd9GhJbaUYz7pADBREpcifNlZcb7jjlGjs9irNy2rWsfbd7CIKyTEkVOCkUKKUrcQhlUsaBWiHLCar8Mv6ivGzTUC0jOSSkUpJviFO7lZwJVVWXsnKuq9AmJ28BirsW/fbt873GJFHUF1i7cK2onxWmfFD8DcRoiJavhXmVlssKX33Avq8T5OJ0UdXKjnn9BnBS1/8t6uJe5zPjvfy//vuAC/8+jljWNw0lxq/BVSiJFXXRQ+0MrVJESRHjb5aQkUd2rosIYXaCSlJPi9TtWrycR6gXYR0e0tcl+TzxvlInzVv2jFyclK4soXqBISZk87pNi11n5WfkRWIWA+CUqkZKUkwLITs3JSfE72Kgd/69/Dey7r/f/EYNcFPtuuIkUu0lo1OFeXvdJ8TMQZzncy2rPoLgRImXzZmvBreIW7hVnTopdCGhYJ8U8CcqySJkzB3jnHf344IOB/fbz/jyin9A0KU7idlIoUuSxm0gJEiKskma4V//+9hW7zO6w38T5KHNSAONne+yx8lhd0FPHdKvnjaoEsRqurUInhURKHvdJseuswjopUYR7ReWkiI46rgFKrOBu3izzIQD9WLym3wnU8cfL3xdf7O1/RKe7bZu+6hOmspfAj0hRV2DtEuezHu4V98TFbgIByMlLQ4Nx8pwUfpLnrSY8aeSkqMSVk5KVlUp1UqVW+PPjogDWG7+KyVJ5eXTnXhLhXlVVMty2WERKEjkpUU5s1fPJacqTpZwUADjzTP332Wcb26Y6KeoYavW8UYV72bXTzklh4jwpevLgpHjpxOywmjDF7aQAxhXoMLb9n/4ELFwI/OMf7rXkBeYyxEmLFC9OStzVvfzY4GmEe6mTQDsnJelQL4EfkWJ1rZeVyf5E3G8XDhiG2lrryVuUOSmaJv/OyiRAPTc//FD/3dAAnH568OcRfaI6WYqqul0S4V6AnMhlWaSo17S6aGOFGDcqK4Ode24iparK+5jihThFSlwliAHgF7/Qx6Z77jHe7sdJiSpx3kupZDopJDR53CfFS05KEJESdEJyxBH6ZKOiAjj55GDPYX79uJ0UO5ESZlOusjJgn3387c9gLnMZZrd5QX29/F8/OSlpJc77WWFKI9xLfV31fbS0yMlJXkUK0PW9xeGkAF0nOOZEWK/YiRT1OCuTAKtz89vf9v+5WokUcR1HWTXfT7hXGNc8qEhJcocAtbqiVyelR49ggtEuRCouZ3DXXaWLKSpkWaH2a2Vl3vq5sCWI3fqEvn27fsbqWKku9Fk9b1QliP06KXkVKS57zZK4yfK+KGbcOizVSUkycb5fP2D5cn0SFGaylpaToq68hN052C/mMI4oclIAfRBav16faLS1GavB2U1Co06cr6zUX7etLd/VvQD9c9q40TjRT7Oyl8BPGWK7+PaaGv0aiDMnBdBDvtTKXj16BFsdthMpWZwEWJ2bfkO9zM9jdlKiHMLEjuIdHc7hXmGqOAL5cFLKy/XJ77p13kVK0DHDbTPHqEVKbS3w4ovA/PnA179u/zh1PG9s9LYAFyZxPujGvH7CvcIkzre3y/7R7rqzE0FMnCdFjaa5OylVVfICSdJJAfTXDbuanEZOCpCuSDE7KVGEewFy8treDnz+ufE+u5yUqBPnAWsHwkzYxPkkJi7iM1DfR5qVvQR5clLMeSlB8lEA++pecSUZh8EsUg4/HNh7b//PYw4LBdxXdINQUSG/J7OT0tEBfPaZfhwm1AswihRRrcyOOMIPvSIWH7wmzgfJRwH0ybk4Z62qe8UhukeNAs45x/kzVfs1r6HcYRLng4YuJpU4r/aNXpwUhnuRkkFsvgc4n+Ai5CtJJyUqspCTkrZIiSLcCzAOKOYIRi9Oivq5xy1Ssl6CGLB+H1kQKYMGyUE9qEgRx3E7KeZJTlCRYlfdK4uTAPO5GcRFMT/P5s26OLPakDUKRMjXqlXGcWfNGt0VBaITKZrmXJ4ckOejmj+VFEKkNDXZt7OlRYrloCIF6HodAukXgthpJ3nueRXXYRLng57Ldk5K1OFeXhZN7Z6fifOkqPE6kRMhQuvXG6tW2RFF4nxUWCUPJpGTklUnJUy4l5oMaRYpXnJSVMIMkOL5nSYieQn3AvTrsKNDP85CuFdVlZz8B6nuBRi/I01LzkkJen3lKdxLvb779AFOOy3Y85gnPuo1HLWTKESKphld2KiS5gF/yctq7k1UBQK8oi4+2LkpYSt7CcT4l0ROildqaoC//x2YOhW4+mpv/+PXSWltlQ5d0MI7dk6K1SJnmMR5L3sTMXGelCReT3DhpHR0uO+bAMQ3IQlCZaWMeTU7KeXl0XbUWQz3iqq6F+BcmcZLuJdK1sO9khApVjtCZ8FJAWTI16pVzpMCNycFMG4mCkS7Sh+Hk2IX7pWVScDw4bJPu+CC4H2YWaTEmUxuV+ErCyIlabyUIY5KpJjDvTQtfZEC6JsmzphhDC11wq+TsmyZXFAdPtx38wD4S5yvrpYlsONwUtTztBgS5ylSiCe8nuB+k+ez5KQUCl0tb3GRR1lmEyj+cC8nJ8VLuJdKmPNCzeWwiz3303lXVRmLAADJOimA/PyyJlIA5+R5NycF0K+7YnBSspKT0tiob+J46616+dSgpOGkABQpfkVKmDHDPPa1tso+Myvnsxf8liBeskQe7757sNfs2VPOD9wS59XjOERKRYX8LumkkNDkZcd5r+FefssQR5U4HxXmlXdxkUc9Ec1KuJddda/q6nDfRxCR0q2bdfWWKJwUtfCDGb8Jz+bJShKJ81ZFHbIQ7gV4T5734qRs3ZqvnJSsh3sBeon2iy6Sq7dBMDuuXsJOgmK3oSNFivVjog73EmGXWSwE4QW/JYjF/kFAcCelrEz2J26J8+qx33Avr+HnViIoi4soXmAJ4pSpT7KmYQj8hnsB3pyULCXOq20wOylRi5QshnupIqV373DOkVO4l11OSqGgd67qZwBEI1IA/Vyz6pz9Ti5ra41tTDrcK69Oilt1L/GYYnBSsiRSosC8mBFnWd4shXu1t8vvNasiRe2LohApHR16gYK8ns9+w72icFIAfeFxwwb3cC9AXk9+nRSviwPdu+vnC50UUjJ4VeF+d53PUrgXYHRSOjriKbMJGJ2UxYvlZCdLIiUMXp0Uc0drNeGPUqRY4bfz9tLmqHEK9yoUwhU5CItXJ8VpnxSB6qQUCtEOpn36GEP1oihBrJ47WcxJiQqncK84nZQVK/SJ1uLFwPvvy9uTEilplh8GvO06H3VOCqCPy3RS/CHGzI0bZXETu+qg4vxrbpaP9UIYJyWv/RNFSsrkZcd5rye433CvLCXOA0YnRc1jiHoi2qOHnNwtWACccYYuVNIUKatXy+8j7KS3e3d5nngN9xL/ZyaK6l7m11UJG+6VtEgxh3v17ettk7O42GUXeRwk3Mv83sTEsLY22jywsjKjeI4z3CtPkzovOCXOx+mkPPCA/tp77gm89pp+W3V1+EUUryIlriIOXvHipKg5jVE4KUC+RUpFhewP/Tgp9fXhHGmx8NjRIYWjm5MCGIWwG16vO/H8LS2yjDedFBKIurq6Lj9ZpBQS5wE5YWprM4ZhRT0Ql5UBd90lO/9Zs3Shogq7MAOOV9TXUCeYYScBhYKcEDpV9zKLFKvPOWtOipc2R41TuFea+ShAfDkpcSxaqCFfDPfyTpJOSrdu8nuyKnZx6KHhxWsQJyWrIkUNg9t55+CvVSwiBZDtdXNSWlv16l6A7qKEOa+syhDbiYqgu857PR+tzu+89k/MSSGe8LpKmPfEebWjVifXcayWT5gAPPoocOKJemc6a5a8r66uaxWpOFDf19Kl8jisSAH0ValPPtHPg/Z2ubrlFEIRZ7iX02ZoAr/hXoVCMpMXs9hqbpaT+TTzUQD9OxPx2F7DvdTP2S4nJY7+QE2eL5XE+SgQFYO2bYvfSQGA//kf4Je/1D/HQYPkz5AhwJlnhn/+vIgUddHPTqQsXy6PBw8O/lrmUuB5FinV1fp35+akqOWHw+SjAF3LEA8dKgVIoWC/J5if5Hm/Tor4n1698uv0UqQQTwQJ98pj4rzakagiJa7V8okTjUJFkESoF9B18iGIIsdBOCkdHfq5ICbTTt953pyUqEtTe3nNbduME5a0RQqguykbNug5BKogVREisVs342eWpJOihhIFPce97JOSp0mAV7p317/DzZvjn7yff77+Exd5ESmVlXIBwC4nRRUpaj6PX5xyUvImusV7cRMpUeWjANa7zotzyzxOBN113m9Oivr86meh9mFZh+FexBNBwr38OilZGNiTdFIEEycCjzxifP9JiRTAOqwsCifFLnleTEJravSwNxXz51xV1fUxfrAKkzITJicliXwUoOv7UM/NtMO9ABny1dYmd282Y7cxnFlIxilSLrhAX40/5RRgv/2CPUcpOimAsSJR3E5K3HhdyU5bpAByEcLNSenVK1wbzeFeeV15B+T15xbuFVVlL8A63MuuOmjQXeeDOimA/CwqK8ONqUmTo6aSNPHaYVVXy4vHT+J8t27ZuHCSdlIERx1lFCojR8b7eipxiRR1hd9KpFhNQs2fc1h3Le7qXkmJFPP7yEr5YYGXvBSxIGH+TtW/N22S4RdxiJTRo4GPPwYefji4A6aKFPXcKSWRkoXJexjy4qQAchFiy5auzkBHh8xJCRPqBRRXToq4/rLkpKgEdVKC5KSYnZS89U0M9yKe8GP99umjX5x+EuezEOoFGNuhrlwlMRk96ihg3jxg9mzgW9+K//UESTgp6qRard5kxvw5hx0ckwj3SgLz+8hiuJfAbq8Uu2tdfW9qnxHXpDBseF5ZmR4m2dZWWk6K6CdaW417QeTRSQlS3SutnElz8rwa0rVmjTwHKVIkXhPn43RSNC16kRLGSaFIIUWNnwG4b199NXXdOn2lx8khiTO0IwhpOSmCkSOTdVEAa5ESRU6Km5NiNQk1i5SknZQ8hHtt25a9cC8vZYjtwr3U96a6r1npE6yoquoqUvI8qfOCeq5//rk8ppMSL04iJap8FMB4zhZD4jygX5+aZr8wIZyU+nrjoloQzInzLS16HwEkH+7l5KTk7bvMQIANyQN+JnIieb6jo+vu4Way7KQklZOSNlbvLU4nJWvhXn4TRBnu1ZUw4V52TkrWRQpQWk4KRUp87XFCFSnm5PmoKnsBxemkAPYhX62tsqLl7ruHd1jN4V5OgiKKcC+nsbGYnBSKFOIJv+FeAre8FDFxycqEJG0nJQ2STJxvbZWbS3kJ98piTopdKck4yVO4l5VIaW2VuSZOOSl5clIAihQgn32jmgOZdZGiXt/m5PkVK+RxnCIlb+ez2l47kfKf/8g+KWw+CtA13MtJpIR1UurqnCNUrJwU8X3m7bukSEmZ5ubmLj9ZxG+4l8BJpGganZQskGS4l1uMd5xOShz7pDDcS7ZBtNFKpDityqrfUZ5FSp4ndV5Qz3XV8cpK3+2HQkH2NVkXKU4bOkYZ7lVM1b28OClR5qMAXZ0U1SExjxNhc1LcFgaKyUlhTkrK1OdkGcqP9et113n1ObMy0NFJ0TuxKL6PPn301Z6ODvlZqiLFS05KEonzfieXWUicF59nRUXwTQmjpFDQ81IWL9ZFijkO3G63efPfeREpasy7IM+TOi9YLWa4rehmmfp6fc8Xp0linkRKWCfFnJMi8inM9+UBtR+3S56PsrIXoPdj1dV6P+DmpMQtUsxOSkeHjGDIm0jJafdCkiYOJyULlVPMqBMm9T2XkpPSu3c0GxSWl8tzwauTEnW4l5d9UsT3XFXl7X2rA0Da4V79+mVnkihCvrZu7bo44bQfUp5zUkqxBLFKHvNRBH6dlKxU91KJ00nJc06Kl3CvqJ2UQkGGfLk5KUHDvcT56HbdmZ0UdTElb99lRoa30qWpqcnws0otg5QhgooUJyfFaXU1LewGolJyUqII9RKIvJTVq/XV9TTDvdxEiteJ5Ze/rA9GVVXACSeEa59X7DZzzEKol0Ct8GUuQ+zkmqp/q4/Lg0gp1ZwUQZ77RVWkaJr1Y9yc3yTwkjjft2+0Czp5FylmV8iKqJ0UQIZ8xZE439Ym34tfJyXPfRPDvVKmLidLUUHDvZycFFWkZGVCYtfRF7OTYn5vUSTNCxobgXff1TvJzZvdVybTTJz32nn37q1PwrdtMwryOFHfx8qVcnKchaR5gTl5fswY+bfTgoTdtZ+VPsGKUs9JEeRk+LJETOTa2vQ+wGpcy0K4l9rHqE5Kezvw2Wf6cVgXBegqUlThljeR4sdJiaL8sECMnWY3OYrEefVc9JuTkue+iU4K8UTc4V5Zd1LyPBi7YRXuFRXm5Hm3lck0SxD7GYjr6pITKIA+KRZhXWpiepZFiorTIofd554HkdLRISsEFXtOSrE5KVbJxWayIFKqqmTemSpSVq2SeSNh81GAro5mnie2bk5KayuwbJl+HEX5YYGaPK+G4pmvndpa2Z97dVLUc9RPuFfenRSKFOIJPye518T5vDgptbV6fkWxkkS4F6CHKmQ5JyXLnXehID8vde+hLIV7OYkUJyelrMz6s8/ywoAQKYB0U/I8EfCCXeJ8XlH7ms2brR+TBZECyOtcFSlRJs0Dxol93qt7uTkp//mPFHhR5KMI1AU+NeTVLObV6nJeRYofJ6W6Ws5ZKFJISRBHuFdenJQ8rxZ6IUknxS3cyzwRCDs4VlbqP0C+RQpgfY3kxUlxyz+zOheysnBhhXqumEVKWZleda3YKDYnRe337CaKor9SJ31pIETKpk3yfItapJRSTkoc+SiAvUhxuna8hnt53W0e0EWQeM2mJooUUgL4OclrauQEI2+J81btKOZ8FCBekeLXSSkrMwqVKM4L8Tp2+6QECfdKA6vPK0siZeBAOZHzE+4FeBcuWUF1UkTfmJfzKCjFlpOi9ntuTkra79Oqwpe6kWMcOSl5FiluTkrUlb0EariXk5MCyOspSLiXl8UB1anJsytGkUI84VeJi3j9vCXO00mJL9zLS04KYJwMRSlSrJyUjg5p+2d9hcnq3MxSuFdFhS5UgOJ3UpzCvbJ+HgWl2JwUP+FeaZ+LVrvOx+mkmHNS8jaxdRMpSTgp6vdjdZ14qS6n4jf0UHVS8pxfRJFCPCFO8ooKb7a3ECnr1nkr70gnJT3irO7llDjvpdxzFOeFeA4rkZInGzzr4V6ALEO8bp3x83YTKXl2UkpZpKTtMITBS7iXOIfTfp9WTkrcOSl5Filu4V5JOClq5T+ra0fc1t5uXyZZJaiTQpFCSgK/A7BYjW9vNyb6qmTRSbGaLOV5tdALaqURIN5wLy+boyXppORJpGQ93Asw7pWiTqLcJjx0UrJPt25dc23y3De6OSmalu1wL/X6Eg5mGMrK5HltTpwXeX15wauTUlcHDBgQ3evajZ1O4V6At5AvvyJFPL+mARs2yNvz1j9RpBBPiAvd64qKlzLEWXRSKiu7OkXF7qQUCsZVxShFijq4enVS4hQpZlcvT6uFWQ/3Auw3dCwFJ6XYc1LUZFxB2pP3MLg5KTt2yPLSab9Pp5yU/v2jm3iK61B1Urp1i65Eb1I4OSltbcDSpfpxlOWHAfux0y1U0kvyvJ8SxObnV3ODKVJIUSIudL9OCmCfPJ/FxPlCoWtb8rxa6BV1wI4yJ6VbN6BnT/3YnDhv19Gqn3cUEz51smsesPLkpJjPy+rq7AloO5FSbE6KU3WvrJ9HYTCfb3nuG90S57NSfhjouut8W5vcyDGKUC+B6GPUnJQ8im4nJ0UtPxxlPgpgDPcSVFYaFzUEfp0UPyWIzc+vLhTn7fukSCGe8DsA+3VSsjQhMbclaxPBOIjLSQFkSFLaTgrQNeQrTyLF/Hn175+9Fc4onZSsLFxYYa7upWmlKVLSnryHwW2SmCWRYk6c//xzvegHEK1IERNYs5OSN5yclLjyUQDrsdNOUIRxUvzkpADGOVje+ieKFOKJOMK9suikAKXppOy3n/57xIjovwuRl7J5s9FVSypxvphFStZQJ0xqzLzf6l5p70vhhjncq7VVhhJm/TwKQzGJlLw6KWvWRJ80L7AL98obTk5KXJW9AKChoettdoucYXJS/FT3AvItUopwyykSB3GHe9FJSZf//V/g0EOBo46KfnVeTZ5ftkwe233n6mr8zjuHf331dcx7peQpJ8U8uc9aPgoQPNzL/N7SnhS6YRYped6HwA/mcuV5XsBxS5zPktOvLvqZRUoUe6QIVJEixoG8TWoBZ5ESp5NSXq6HN6vFguyukbgT54slJ4UihbiiaTLuOq5wLzop6dK3L/D978fz3OqKv0hYBOwnohdeqMcN77UXsMce4V+fTkpy9OypD75btvgL9zK/t7QnhW44iZSsn0dhKFYnJevhXtXVens3b9ZzUtSNHONwUtra5PvPo+h2CveK00kB9JAvVaTYLXL6DfeKKiclb/0TRUrKNKtnnsXfWUCt9+21w6KTQgSqk6JOBuzOpf79gTvvjO711UkxRUq8FAq6m/Lee7pI0TT9Nr85KVnqD6ygSNHJ8wKOm5OSJZEC6M7p5s3xhnupfbKobJZHkeLFSYm6/LCgVy/jYlzWnJS8fZ/MSUmZ+vp6w0+jOqPLCEE2AqKTQgRWk+maGuPeLHHi5KQw3Ct6RMhXS4ssl+q3ulfeREqeN0vzQzE5KRUV8prKupMCyOt940bg44/l7XE4KSpZ7xetsHNSOjpkyPFuu8VTeMScPB9H4nwp5aRQpBBXgqwSqk5K3hLn6aREi5XuTnISynCvZLHKSyk2J8W8UlsqOSnF5KQAMuQrD06Ker2//bb+u1CIJm9PUCwixc5J+fxzvcgFAAwZEs9rm8sQR5U4L85Hq20SrFCvTfX8zvo4Z4YiJWWampoMP6tWrUq7SV0IMgDX1soLKU/7pAB0UqLGSqQkOeirE15zNCVFSvS4iZRidFLydB6FwZw4n4XJexjERDEPIkV1TkW414AB0e4GXywixc5JUQu3xCVSvDopQcO96uu9OUB24ihv/RNzUlKmLgu9nwtBQxn69tU7U7dwr6qqbJUbpZMSLVaT6SQnoWpZyI0bjfflaXKZl3AvNfxEiBTRh5SVWU+q8uaklKpIKaZwL0CKri1bZP6UIMsiRRBlqBdgLUjyeD7bOSn/+Y883nXXeF7b7KREHe7l9Vy0e928fZ90UogrQQdgEfK1bp3cQ0BFrK5mbUJCJyVa0g73Ule21q833pennJQ8OilixVdc6zU11quAeXdS8nQehUEVKdXVel5HnhEipa2taxWoLJUgBqxFSpTlh4HicVLsREoaTkrU+6R4nY/YvW7evk+KFOJK0AFYJM+3tTnXoc9SqBdAJyVqunfvKm6TXJl0Eil5WgE3n5dZdVKswr3cNoajk5IP1L6wGBZvnCaKpeikFItIUa9Pdf6ShJMSJNzLTwlir9cdnRRSMgQdgN0qfNFJKQ0Kha5uSlaclDxNLtXzsq4ue9eNYOBA6ZaYc1LsFiTy7qTk6TwKgzqxysLEPSxOu85nTaRYOacUKdYUCvI6TNpJ8Zo4r55Tbk7Kjh1yK4iwTkre+ieKFOJK2HAvwDp5Pg9OSkVF/i7qLJIVkbJhg/G+PIXpqJ9ZVkO9AH0Cv9NO+rFXkZI3J0XtE0pJpKiT+mJYvHHaKyVrIiWtnJSs94t2iHZbOSm1tcb5SZR4dVLKy2U/5yZSgpyLdo/LW/9EkUJcCRvuBXR1UjTNfeKSFmp7vFbSIM6YJ9VJTkLVla08Oyl5ESmADPlauVL/jN3CvcznQxYmhU6oTor6/oD8Tuq8UMxOSh7DvZiTYo/ZSdE0KVKGDIlvXPeaOK/e5xbu5Xe3ecAoglSyPs6ZoUghrsThpOzYIZPps7ZqqraH+SjRYHZSkhz0q6vld5pnkaJ+ZlkXKeoK7/LlxeekMNyLTkrSpJWTktfz2eykrF4tj+PKRwG8J86r97k5KX53m3d67bx9nxQpxJWgG5U5OSlZ3W0eMLaHIiUa0nRSADlw5FmkDBoETJigl/D99rfTbo0zavL8kiXy2KuTQpGSTfr1k/36nnum25YoyJOT0q2bcYJaVibDKqOimJ2UJPJRAO/hXoCcX7g5KX53m7d77UIh2n11kiDnBQRJEoTZJ0VgFinq5m5Zm5Co7SmG1cIskGZOCqAPHCtW6CJF3Q8hT2E6hQLwzDP6gJV18ayKlA8+kMfF6qQE7SPzRlUV8OijwAsvAOeem3ZrwuOUOC8W0gqF7PQN/fvLCevOO0dfArqYRYpa2StOkVJbqwsBsbO9U18t5hctLfrj7QREVE5KdXX+wtfppBBX4gj3opNSWmRBpAD6uawK5LytgBcK+Tgn/YqUYnJS8jqp88rBBwPTpmW3BLYfvJQgrq3NzsRO/cyjzkcBijtxXnVS4gz3KhSMboqTqFDzV+6/3/5xQXJSrB6bhzHODEUKcSWOcC91opg1kUInJXrM4V5Jh0/YlSHOm0jJC3Yixa7/MN+edZFSqtW9ig0vJYizEOolUEVK1PkoQHE6KR0d+l5tSTkpgFF8OM0hvvENefy97wELF1o/LkonJW9QpBBXgoYyODkpWQ73opMSPVlxUgBjGWJOLuNBFSmLF8tjuwWJsjLjZChrfYIZc3Uvnkf5xEviPEVK9K+TBGq7t29PzkkB9L2iAL0fcxIVZ54JfOc7+vHWrcCppwKbNnV9XFQ5KXnsmyhSiCtBB+DaWtlR5ClxfsgQGRs6YkSqTSka0k6ctytDnKeclDzRp4+8rpcvl7c7XevqfXkSKeacFJ5H+cFL4nypi5Q8TmwBY7tbWqST0q1b10WzqLnySuCww4Abb9RLAdtRKAC33gqMHq3/vWSJLlpE5VNBVE5KHvsmihTiStBwr0JBuil5Spzv1w945BHg2muBqVPTbk1x0KePvlouSNNJYbhX/BQK1pMop/5DPSey1ieYKdXqXsWGXbhXR4cco7IkUoYOlcd77BH98xdjTgpgdFJ22SX+HKPDDwdeegm44AL3x9bUAA8+KBfSZs4Err/e+BjmpBDiQJjKNSIvZd064+pAlp0UADj2WOAnPzEOYiQ45eXGVUDmpBQ/asiXoFidFJ5H+cQucV5dRMuSSPnmN4FzztEXz449NvrnL6ZwL/U6/OwzOdGPOx8lCLvtBvzlL1I8/fSnwD/+oefSAMHDvYohJ4UliIkrixbJ44YGf/8rREprqz4IiEl/lp0UEg/9+wOrVunHWXFShACvrDQ6PSQ8YURKliaGVqilXylS8ou60qw6KerKdZbGp+7dgT//Ob7nL1aRoubFxZ2PEpRJk4Dp04H/+R/dyTv5ZP2z328/Y54KnRRCFDZtAubM0Y8HDgT23tvf/9slz2e5uheJBzUOOCsiRUwu89h5Zx0rkVIs4V6FgjxnmJOSX8rLpSC2EylZF8xRUkwiRW23KlKy6KQIfv5zo0O2fTswdy7w/vvyNlb3IkThscfkpkSnneZ/tdmuDHHWw71I9Ki7IycdRkeRkjx+nRTx+F698jExFCFfrO6Vb0RfpIZ7lapIKaaclLw5KYAummfNAm66CTj9dGD33Y3319RY96t2mAVNHr9LhnsRRx58UB6fdpr//1edlNWr5THDvUqPCy7QXblDD+3a+caNWwliTiyjx6+TcvXVejjpySdHv5N2HAiRwnCvfNOjB/D553RSAP26q6iQuRBAfs/nPDopgP55/+AH+g+gR7O8/bYedn/wwf62RSgGJyUHQwFJi6Ym4Mkn9ePGRn1y6Re1GsmiRcDxx+vHdFJKj0MP1RMY09i92a0EcR5XmLKOXydljz2AP/whvvZEjSpSwhQXIekiJnJbtujFXQqF0hUpgH6Nqq5SXvtG9TpcskQeZ9lJsaJnT+ArX9F//MKclBLnww8/xIUXXogxY8agsrISQ7Iu0X0ye7YcfE85xbnetx1jxsjj+fPlMZ2U0iQNgQLonbVYnWe4VzIMGtT1tmJakLByUgoFuccSyQci3KujQy6elbpIUcmrSFHbLeYblZXGsONipxicFIqUELz33nt47LHHMGTIEIwcOTLt5kTOQw/J4699Ldhz7L23HMzfekveTieFJEmhIEO+KFKSoabGWHYayO+ExworkVJdnZ4QJ8Gw2nVeHZ9KTaSYr9G8XrNWffrgwcEWW/MKnZQS58QTT8SKFSvw8MMP46CDDkq7OZGybRvw+OP6cZ8+waxGQF+5GDVKP168WNb7ZnUvkjRmkdLRoU8wgfwOxFnHHPJVTNe6Wt2LYje/WO06n9USxEmgXqPl5fnID7PC6lossmAXV7jjfIlTVsQbKzz1lOyowyayipAvTQMWLNCPGe5FkkaIlC1b9Ip1QqAAnFzGRTGLFLW6lwiL5XmUP6ycFIZ76eT5fLaakOctHyUsdFJiZvHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667Dq2ipi6xJWxVL5XRo+WxCPliuBdJGnOFL1Zkih+zSMnjSp4dQqS0trIAQ55xc1JKWaTk+Xymk1IcOSmZNvJuv/12zJgxI9D/XnzxxZgxYwYqKiowYcIE1NfX47nnnsNPfvITPProo3j66adRw9mxJS0twKOP6sc9ewJHHhnu+ayS5+mkkKQxixS14lceO+88UApOCiDDWHke5Q9VpNBJMQqTPIsUOil6H6WWlM5j/5RpJ2XkyJG47LLLcO+992LRokU4++yzPf3frFmzMGPGDNTX12Pu3Ll46qmn8NBDD2HJkiUYNWoUXn75ZUyfPt3wP3/+859RKBRcfx5ULYYi5ZlnZGf91a8aB+Mg7LuvTFYTIoVOCkka84aO3CU8fkrBSQHkpDaPk4BSR11tppNCJ6WYKBSM53ce+6dMOynnnXee4W+vOSDXXHMNAGDatGkYoyzj9+3bF7fddhsOP/xw3HLLLZg+fTp69uwJADjllFNw8MEHuz73wIEDvTY/t0RR1UulpgbYc0/gvff0n5YWY0nAvCbmkXxh3iulb1/5dx477zwweLDx72JakLBavMnzpK5UsXJSSrm6V7GIFDopOt27yw2M8zjOFd308NNPP8W8efMAAGeddVaX+w877DAMHjwYy5cvx+zZs/GNb3wDANCzZ89OwRInzeoSTYD746a1FZg1Sz+urweOPjqa5x0zRhcobW3AwoVSpBTTpIVkG7OTwpyU+CmVcC8Bz6P8wcR5I8UiUszXYnm59d5NxY6aPJ/H7zPT4V5BeOuLzOzevXtjqLrducLYsWMNj02S+vp6x5/GxsbE26TywgtSdZ9wQnQntTkvRaxUFdOkhWQbp3AvTi7jobHRuLlhHgdJO6zOGZ5H+YMliI2o12iez2dz2wcOLM2oDYZ7ZYylS5cCAHYxL+EpDP4iBkE8Nihbt27F7NmzAQAff/wxtm7d2pmzMm7cOOyaQ28xyqpeKuYKX8JJKbUBgKSHk5NSTJPnLFFWpod8ffyxLlaKaSM1OinFARPnjRSLk2Jue6nlowhUJyWP/VPRiZQtXyyF1Dn0LPVffGubRY8UkNWrV+PrX/+64Tbx9913343Jkyd3+Z8mUQbGhubm5lTdlJUr9d81NcBxx0X3vPvvL4/ppJA0YLhXOnzjG8CvfgWcckraLYkW5qQUB0ycN1IsIsXcp+dwzTgS6KSUMEOGDIGmab7+xyye0s5BMfOPfwDLl+ubLkbZOffsCey+O/Dhh/pzi4306KSQpOA+Kelw9dXA977XNYk+79BJKQ6cnJTKSmO4YilQLCKFTooOnZSM0f0L2eg0+RduRg+1d0qJevOWoBlg8OB4JhSjR+siRc0FoJNCkoIliNPDIfo2t1CkFAdOifOl5qIAxSNSzNdiqYoU9fzO4/dZdInzQ744E5cvX277GHHfkFI9a1NCTZ4XUKSQpFCL9zHci4SFIqU4qKvT95MAZLiXCEcuRZFSrJs5lmq4l7pAtNNO6bUjKEXnpIz+IkN73bp1WLp0qWWFrzfffBMADHuopIU5RyXtnJQ4sfq4Ge5FkqK8HGhoADZupEgh4bE6Z/I8qStVysr01ebNm+mkAMaFwzz3i3RSdM4/H1i6FBg+HNh777Rb45+ic1IGDRqEcePGAQDuu+++Lve//PLLWL58OaqrqzFp0qSkm9eFurq6Lj/FilrhS0AnhSSJCPmiSCFhoZNSPIiQGHPifCkuohVjuFehUHw5cV7p0we44w7gssvSbkkwik6kAMDll18OALj22msxf/78ztvXrVuHiy66CAAwZcqURDZvJJJ+/bpuplSKgwBJDyFSNmyQZbCBfA/GJB0oUooHkZ66ebO+oXFrq/53Ea8Z2lIsIqW8XO6LsvPO1tcryT6ZDveaP39+p6gAgI8++ggAcMcdd+Cxxx7rvH3mzJnYSQm2O/nkkzF16lTcdNNNOPjgg3HkkUeirq4Ozz77LDZu3IhDDz0UV111VXJvxAFzgn/Wqn1FzZgxwIoV8m86KSRJhEjp6ADWrJG3c3JJ/EKRUjyoTooagV2KIkVNtM5gXR9fjBkDvPEG8JWvpN0SEpRMi5TNmzdj7ty5XW5fsWIFVigz3RY1buMLZsyYgUMPPRS33norXn31VbS2tmLYsGGYNm0aLrnkElRlRFZnsbpXnIweDTzyiPybTgpJErXC1+efy2NOLolfuE9K8aAW+ly1Sh6XokgZPx448ED9czjjjLRbE45HHwWefx449ti0W0KCkmmRMn78eN/7kKicfvrpOP300yNsEQmLOXmeTgpJElWkfPaZPObkkviFTkrxoIoUsaExUJoipboamDtXd5vLcp4Q0L9//oVWqZNpkVIKlFJ1L4AihaRLr17ymE4KCYPVOcPzKJ+oIU6lLlIEeRcopDigSEmZYq7mZcXAgUDfvsDatfrfDPciScJwLxIVDPcqHlQnRe0XSmx4JiRzUCuTRCkUjG4KnRSSJKpIYeI8CQPDvYoHOyeFi2iEpAtFSso0Nzd3+Sl2VJHCQYAkiSpS1HQ3roATv1CkFA90UgjJJhQpKVNfX2/4KeZ8FMFZZwGVlfrq1RFHpN0aUkqoIkWFk0viF4qU4oE5KYRkE+akkMQZNUovb1goAA0NabeGlBIUKSQqmJNSPNBJISSbUKSkTKlV9xKoVZYISQqKFBIVrO5VPLAEMSHZhCIlZUqtuhchaWInjrkCTvzCcK/iQQ33EpUnAYoUQtKGOSmEkJKhutq6WAMnl8QvFCnFg+qkqLCwCyHpQpFCCCkpzCFf5eX6DyF+YE5K8aA6KSp0UghJF4Z7pYy55HAplCAmJE169wZWrJB/c2JJgkAnpXiwc1IoUghJF4qUlKmvr0+7CYSUFGYnhRNLEgSKlOKBIoWQbMJwL0JISUGRQqKA1b2Kh5oaoMxiNkSRQki60ElJmVItQUxIWlCkkChgTkrxUCjobsrGjcbbKVIISReKlJRhCWJCksUsUjixJEGwEilWt5F80L17V5FSU5NKUwghX8BwL0JISWHeK4VOCglCZaXx76oqfUWe5BNzXopdCBghJDl4CRJCSgqGe5EoMJeupiOXb8wihUEOhKQPRQohpKSgSCFRoYZ38TzKN+a9UihSCEkf5qSkDPdJISRZmJNCoqK6Gti2TR6T/EInhZDsQZGSMtwnhZBkoZNCooJOSvFAJ4WQ7MFwL0JISUGRQqJCFSl05PINnRRCsgedlJThPimEJAvDvUhU0EkpHuikEJI9KFJShvukEJIsdXVARQXQ1qb/zcklCQpFSvFgdlJqa9NpByFEwnAvQkhJUSgY3RROLklQKFKKB4Z7EZI9KFIIISUHRQqJAuakFA8M9yIke1CkEEJKDlWkcHJJgqIKXIrdfEMnhZDsQZFCCCk56KSQKGC4V/FAJ4WQ7EGRQggpOShSSBQw3Kt4oJNCSPZgda+U4Y7zhCQPw71IFNBJKR4oUgjJHhQpKcMd5wlJnl695DEnlyQoFCnFgznciyWICUkfhnsRQkqOPn3kcU1Neu0g+YYipXigk0JI9qBISZmmpibDz6pVq9JuEiFFz8knA/36AQMGAMcdl3ZrSF5RhQnDBvNNdbW+yauAIoWQ9GG4V8pwx3lCkmfgQGDFCv1YXQ0nxA90UoqHQkF3U9av1//m0ExI+tBJIYSUJFVVFCgkHBQpxYUa8kWRQkj6UKQQQgghAaBIKS7U5HmKFELShyKFEEIICQD3SSku6KQQki0oUgghhJAA0EkpLhob9d8VFUDPnum2hRDCxHlCCCEkEKowoUjJPz/+MfD558BJJ3XdN4UQkjwUKYQQQkgA+vWTx/37p9cOEg0HHQS8+mrarSCECChSCCGEkACccQbw8stAQwNwxBFpt4YQQooLihRCCCEkAD16APfck3YrCCGkOKFISZnm5mbHvwkhhBBCCCk1KFJSpr6+Pu0mEEIIIYQQkilYgpgQQgghhBCSKeikpExTU5Ph7+bmZjSKYu2EEEIIIYSUIBQpKVPHbW0JIYQQQggxwHAvQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKaoSLsBxIimaZ3Hzc3NKbaEEEIIIYSQ6FDntuqc1wqKlIyxdevWzuPGxsYUW0IIIYQQQkg8bN26FfX19bb3M9yLEEIIIYQQkikKmpvXQhKlo6MDa9euBQDU1taiUCjE9lrNzc2dbs2qVatQV1cX22sVI/z8wsPPMBz8/MLDzzAc/PzCw88wHPz8wpPkZ6hpWmfUUN++fVFWZu+XMNwrY5SVlaF///6Jv25dXR0v7BDw8wsPP8Nw8PMLDz/DcPDzCw8/w3Dw8wtPEp+hU4iXCsO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCmzkSQgghhBBCMgWdFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEgpUR544AGMHz8evXr1Ql1dHfbbbz9cd911aG1tTbtpmaa1tRXPPvssfvSjH2HcuHFoaGhAZWUlBgwYgK9+9at4/PHH025iLvnxj3+MQqGAQqGAq6++Ou3m5IYdO3bgpptuwmGHHYbevXujW7duGDRoEI477jj8/e9/T7t5meaTTz7BlClTMGLECNTU1KBbt24YOnQozjnnHCxYsCDt5mWCxYsX4+abb8bkyZMxatQoVFRUeL5Gn3nmGUyaNAl9+/ZFTU0N9txzT/zsZz9DU1NTAi3PBn4/v46ODrz66qv4+c9/jsMOOwx9+vRBZWUl+vbti6OOOgr33nsvSq0ga5hzUOW2227rHGPOO++8mFqbPcJ8fh0dHbjnnnswceJE9OvXD9XV1dhpp50wYcIE3HbbbQm0HoBGSo4f/vCHGgCtoqJCO/roo7VTTz1Va2ho0ABohx12mLZ169a0m5hZ5syZowHQAGgDBgzQjj/+eO3000/XRo4c2Xn79773Pa2joyPtpuaGV155RSsrK9MKhYIGQLvqqqvSblIuWL58ubb33ntrALS+fftqJ5xwgnbGGWdohxxyiFZbW6uddtppaTcxs7z++uta9+7dNQDawIEDta9+9avaKaecog0dOrSzb7z//vvTbmbqiLHC/ON2jd54440aAK1QKGhf/vKXta9//evagAEDNADaiBEjtDVr1iT0DtLF7+e3ZMmSzsf07t1bO/roo7UzzjhDGzduXOftJ5xwgtbS0pLwO0mPoOegykcffaTV1dV1jjHnnntujC3OFkE/v40bN2pf/vKXNQBajx49tGOPPVY788wztcMPP1xraGjQDjjggETaT5FSYsycOVMDoNXX12v/+te/Om9fs2aNNmrUKA2Adumll6bYwmzz7LPPaqeddpr24osvdrnvb3/7m1ZeXq4B0O65554UWpc/mpubteHDh2sDBw7UTj75ZIoUj2zdulXbc889NQDaL37xC23Hjh2G+5ubm7W33norncblgH333bdzQUH97Nrb27UrrrhCA6A1NDRo27ZtS7GV6fPHP/5Ru+yyy7R7771XW7RokXb22We7XqPz58/XCoWCVl5ers2ePbvz9ubmZu3II4/UAJSMgPb7+X344YfahAkTtCeeeEJra2sz3PfCCy9odXV1GgDtl7/8ZRLNzwRBzkGV9vZ27fDDD9fq6+u1c845p+RESpDPr6OjQxs/frwGQLvgggu0LVu2GO5vaWnR5s2bF3fTNU2jSCk5xIrM1Vdf3eW+l156SQOgVVdXaxs3bkyhdfnn3HPP1QBoRx55ZNpNyQVTp07VAGiPP/545wBCkeLO9OnTOyfZxB9r167tXE1cvXp1l/vb2tq0mpoaDYA2f/78FFqYXbxco1//+tc1ANp5553X5b5ly5ZpZWVlGgBt0aJFcTY1k4Tt46666ioNgDZs2LCIW5Yf/H6GwtW79dZbtSuvvLLkRIoZL5/fnXfeqQHQjjnmmARbZg1zUkqITz/9FPPmzQMAnHXWWV3uP+ywwzB48GC0tLRg9uzZSTevKBg9ejQAYPny5Sm3JPu88MILuPnmm/Htb38bkyZNSrs5uaG1tRW33347AOBHP/pRyq3JH9XV1Z4f27dv3xhbUnzs2LGjMy/PaozZddddceihhwIAZs6cmWjbigGOL/5YvHgxfvazn+ErX/kKvv/976fdnNxw0003AcjG+EKRUkK89dZbAIDevXtj6NChlo8ZO3as4bHEH0uWLAEA7LTTTim3JNs0NTXhu9/9LhobG/G///u/aTcnV8yfPx9r167FzjvvjN133x3vvvsufvnLX+KCCy7AtGnT8Pjjj6OjoyPtZmaW+vp6HH744QCAK664wlAspKOjA7/4xS+wbds2HHfccRg8eHBazcwlH3zwAbZu3QpAjiVmOMYEh+OLd9rb23HOOeegUCjgzjvvRKFQSLtJuWDVqlVYsGABysvLccghh+Djjz/GtddeiwsvvBCXXXYZHnjgAezYsSOx9lQk9kokdZYuXQoA2GWXXWwfIwZl8VjinZUrV+LPf/4zAOC0005LtzEZ57LLLsPSpUsxc+ZM9OrVK+3m5Ip33nkHADBo0CBMmzYN1113naHiz29+8xuMHj0as2bNcrzWS5k//vGPmDRpEv7whz/g8ccfx9ixY1FeXo633noLn376Kc4++2zccsstaTczd4hxo6GhAd27d7d8DMeYYGzdurVzhZvjizvXX3895s6di9/97ncYNmxY2s3JDWJ86dOnD/70pz/h0ksv7VL1dbfddsPMmTOx7777xt4eOiklxJYtWwAAdXV1to+pr68HAGzevDmRNhULbW1t+Na3voVNmzZh1KhRuOCCC9JuUmZ5+umncccdd+DMM8/EySefnHZzcse6desA6CvRv/nNb3DRRRdh8eLF2LRpE+bMmYM99tgDb731Fo4//niWFLdhxIgReO2113D00Ufj008/xT/+8Q88/PDDWLp0KXbffXeMHz8ePXr0SLuZuYNjTHxcdNFFWLp0KXbeeWdcfvnlaTcn0yxcuBBXXnklDjnkEEydOjXt5uQKMb6sX78eU6dOxUknnYR3330XW7ZswWuvvYaDDjoIH3/8MY499tjOx8YJRQohEXDhhRfi2WefRZ8+ffDggw+iqqoq7SZlkk2bNuHcc89Fv379cPPNN6fdnFwiXJPW1lZ84xvfwC233II99tgDPXr0wMSJEzFnzhx069YNCxcuxN/+9reUW5tNXnnlFYwaNQoLFy7Efffdh5UrV2L9+vV49NFH0drainPPPRfnnntu2s0kBABw1VVX4Z577kG3bt1w//33o0+fPmk3KbO0tbXhnHPOQVlZGe666y6UlXGa6wcxvrS1teFLX/oSHnjgAYwcORL19fU4+OCDMWfOHDQ2NuLzzz9PZK8UfnslhLDfm5ubbR8jNtriKqJ3fvjDH+LOO+9Er169OleyiTUXX3wxVqxYgVtuuYVJyQFRw2isHLtddtkFxx9/PAB9Qz1iZOPGjTjllFOwZs0aPPzww/jGN76BxsZG9OrVCyeccAKefPJJ1NbW4q677sLzzz+fdnNzBceY6Lnxxhvx85//HNXV1Zg5c2Zn4QFiza9+9SvMnz8fv/zlLzFixIi0m5M73MaX7t2741vf+haAZMYX5qSUEEOGDAHgXBlE3CceS5y59NJLcdNNN6GhoQFPP/10Z/UVYs3MmTNRUVGB2267rcsqzPvvvw8AuPPOO/HMM89gwIABdAIs2G233SyPrR7z+eefJ9KmPPH4449jzZo1GDZsGA466KAu9++222446KCD8Pzzz+OZZ57BEUcckUIr84kYNzZu3IgtW7ZY5qVwjPHOzTffjEsvvRRVVVV46KGHcOyxx6bdpMwjqsY9+uijXaqULlu2DIDeB4wfPx6AXmWSSLI2vlCklBBiAr1u3TosXbrUssLXm2++CQAYM2ZMom3LIz/+8Y9x4403omfPnnj66adtq9kQI21tbfjnP/9pe/+yZcuwbNky7Lrrrgm2Kj+MGTMGhUIBmqZh7dq1lhWo1q5dC0DG/xPJJ598AsB5Jb9nz54A9Lhs4p0RI0agtrYWW7duxZtvvmkp8DjGeOPWW2/F1KlTOwWKcEeJN15++WXb+1auXImVK1cm2Jr8sMcee6B79+7YsmVL5zhiJsnxheFeJcSgQYMwbtw4AMB9993X5f6XX34Zy5cvR3V1NfetcGHatGm4/vrr0bNnT8yZM6fzcyXObNy4EZq+iWyXn3POOQeAHn+taVrnqhcxMmDAABx22GEArO321tbWThF44IEHJtq2PDBw4EAAunO3adOmLve3trZi/vz5AGBbqp1YU1VV1TmZthpj/vOf/+DVV18FAJxyyimJti1P/P73v8eUKVM6BcoJJ5yQdpNyw9tvv207xlx55ZUAgHPPPbfzNmKkoqKis6CNXTjXnDlzACQzvlCklBiiKsi1117bORADurty0UUXAQCmTJnSuZJIunLFFVfgN7/5DRoaGihQSCqIwfbXv/41Xn/99c7b29racOmll+Ljjz9G9+7d8Z3vfCetJmaW4447DnV1ddi2bRvOP//8zhwJQN+M8JJLLsEnn3yCyspKfO1rX0uxpflk2rRpKBQKuPvuu/Hkk0923r5161ace+65aG9vx2mnnYY999wzxVZmlz/+8Y+46KKLKFBIalx++eWorKzEH//4Rzz22GOG+66//nq8/PLLKC8vx3/913/F3paCRilZcvzwhz/ETTfdhMrKShx55JGoq6vDs88+i40bN+LQQw/FnDlzUFNTk3YzM8kjjzyCk046CYC+Kdk+++xj+bi+ffvit7/9bZJNyz2TJ0/GPffcg6uuugpXXHFF2s3JPFdffTWmT5+OiooKHHjggRgwYADmz5+PZcuWoaamBg888ABDRGz4y1/+gu985ztoa2tDv379MG7cOFRWVuLNN9/Ep59+irKyMtx666248MIL025qqsyfP79z8QoAPvroI6xduxaDBg3qdKQAPQ9A3WDwd7/7Hf77v/8bhUIBX/nKV9C/f3+89NJL+PzzzzFixAi8/PLLJVE4w+/n9/bbb2PMmDHQNA177rmnZc6UQOzJVewEPQet+MUvfoFf/vKXOPfcc/GnP/0ptjZniaCf3z333IPvfve76OjowNixYzFkyBAsXLgQ77//PsrLy3H77bfj/PPPj/8NaKQk+fvf/659+ctf1nr06KHV1NRoI0eO1K699lqtpaUl7aZlmrvvvlsD4Pqz6667pt3U3HHOOedoALSrrroq7abkhqeeeko77rjjtN69e2uVlZXa4MGDtcmTJ2uLFi1Ku2mZ5+2339YmT56s7bbbblp1dbVWVVWl7brrrto3v/lNbe7cuWk3LxM8//zznvq7pUuXdvnfOXPmaMcee6zWu3dvrbq6Whs+fLj205/+VNu8eXPybyQl/H5+Xh9fSlO3MOegmSuvvFIDoJ177rnxNzwjhPn83njjDe20007T+vfvr1VWVmoDBgzQvv71ryfaP9JJIYQQQgghhGQK5qQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRT/H/nb65T8rLR1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(ps.freq, ps.power, lw=2, color='blue')\n", + "ax1.set_ylabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the power spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together power spectra from multiple segments of data.\n", + "# Averaged power spectrum example\n", + "You could use a long `Lightcurve` and have `AveragedPowerspectrum` chop it into specified segments, or give a list of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here.\n", + "## 1. Create a long light curve.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and a signal in count units, with the same properties as the previous example. We then add Poisson noise and turn it into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4dklEQVR4nOydd7hUxfnHv3sL7dJBQFSwoIDGhqhRxIoaSzCIibHFGjX6s2HvMbEnWKJGTQJqErEiEWM0CLFhR7CBCAooSFF6517u3d8fx8OZnZ05Z9opu/t+noeHvVtmZ8+ZM2e+87ZcPp/PgyAIgiAIgiAIgih5qtLuAEEQBEEQBEEQBOEGEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJNWl3oFRpamrC/Pnz0aZNG+RyubS7QxAEQRAEQRBESuTzeaxatQrdu3dHVVW6NjQSeIbMnz8fW221VdrdIAiCIAiCIAgiI8ydOxdbbrllqn0ggWdImzZtAHgnsW3btin3hiAIgiAIgiCItFi5ciW22mqrTRohTUjgGeK7ZbZt25YEHkEQBEEQBEEQmQjdoiQrBEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAmZF3j19fX405/+hP322w8dO3ZEixYtsOWWW+KII47AU089JfzM+PHjceSRR6Jz585o2bIl+vTpg2uvvRarV69OuPcEQRAEQRAEQRDJUZN2B8KYN28eDj/8cEybNg2dO3fGgAEDUFdXh7lz5+KNN95AXV0djj/++ILP3H333Rg2bBhyuRwGDhyIrl274s0338Stt96K0aNHY+LEiejcuXNKv4ggCIIgCIIgCCI+Mivw1q1bh0MPPRTTp0/Hb3/7W1xzzTWora3d9PratWsxY8aMgs9MmTIFl156Kaqrq/HCCy/giCOO2PTewYMHY8KECTj33HPx7LPPJvpbCIIgCIIgCIIgkiCzLpq33XYbpk+fjrPPPhs33nhjgbgDgFatWmG33XYr+kw+n8fpp5++Sdz57x0xYgSqqqowevRoTJ8+PYmfQBAEQRAEQRAEkSiZFHgNDQ148MEHAQCXX3650mfq6+vx4osvAgBOPPHEotd79uyJAQMGAADGjBnjqKcEQRAEQRAEQRDZIZMumpMnT8bixYvRvXt39OrVC59++imee+45zJ8/Hx06dMDAgQNxxBFHoKoq0KczZszA2rVrAQD9+/cXttu/f3+8+eabmDJlSiK/gyAIgiAIgiAIIkkyKfA++eQTAMCWW26Jq666CnfeeSfy+fym1++44w7svvvu+Ne//oUePXoAAGbPng0AaN++Pdq0aSNsd6uttip4r4w1a9ZE9lHlPQRBEARBEARBEEmSSYG3ZMkSAF7SlPfffx/nn38+LrzwQnTr1m3T31OmTMFRRx2FyZMno7a2FqtWrQIA1NXVSdtt3bo1AGDlypWh3++/jyAIgiAIgiAIopTIZAyeb61raGjACSecgPvvvx877LAD2rZti0GDBuGVV15BixYt8Nlnn+HJJ59MubcEQRAEQRAEQRDZIJMCj3WxPOecc4pe79GjB4466igAXlFz9jNhrpN+ofO2bduGfv/q1asj/82fP1/vRxEEQRAEQRAEQcRMJl00t912W+Fj0XsWLFgAANh6660BAMuXL8eqVauEcXhz584teK+MMDdPn8bGxsj3EARBEARBEARBJEkmLXj9+vVDLpcDACxevFj4Hv95P16ud+/eaNWqFQBg0qRJws/4z/fr189pfwmCIAiCIAiCILJAJgVet27dsN9++wEIXDBZGhoa8PrrrwMA9tprLwBAs2bNNrltjho1qugzX3/9Nd5++20AwJAhQ2LpN0EQBEEQBEEQRJpkUuABwI033ggAuO222/Duu+9uen7jxo249NJLMWvWLLRp0wann376pteuuuoq5HI5PPLII3j55Zc3Pb927VqceeaZaGxsxNChQ9GnT5/kfghBEARBEARBEERC5PJsgbmMcfPNN+P6669HTU0N9tprL3Tr1g2TJ0/GnDlz0LJlSzzzzDObrHY+d999N4YNG4ZcLocDDjgAXbp0wZtvvokFCxagd+/emDhxIjp37mzdt5UrV6Jdu3ZYsWJFZNIWgiAIgiAIgiDKlyxpg0wLPAAYN24c7rnnHrz33ntYtWoVunXrhkMOOQRXXnml1BI3fvx4DB8+HO+//z7WrFmDHj164LjjjsPVV18tLYKuS5ZOIkEQBEEQBEEQ6ZElbZB5gZdVsnQSCYIgCIIgCIJIjyxpg8zG4BEEQRAEQRAEQRB6kMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARhwfr1QD6fdi8IIlk2bACamtLuRTpU8m8nCFesW5d2D8obEngEQRCG/O9/QOfOwP77k8gjKoepU4EttgB23BFYuzbt3iTLlClAt27ALrt4Qo8gCH1OPBFo1w545JG0e1K+kMAjCIIw5JBDgDVrgIkTgQkT0u4NQSTDL34BLFkCfPEFcO+9afcmWY46Cli+3BO5tDglCH3mzQOeeAJoaADOOCPt3pQvJPAIgiAcsHp12j0giGSYPj14vHBhev1IgwULgsfLlqXXD4IoVT77LO0eVAYk8AiCIBxQXZ12DwgiGcgd2aN587R7QBClB7tBRMQHCTyCIAgH1NSk3QOCSJ5cLu0epAcJPILQ5/PP0+5BZUACjyAIwgEk8AiismjRIu0eEETpMW1a8Lh37/T6Ue6QwCMIgnAACTyCqCzIgkcQeuTzXoIin7Zt0+tLuUMCjyCIiuHyy4FBg4BZs9y3TTF4RKVAMXgeJPAIQo9FiwqTEzU2pteXcof2nAmCqAjefBP44x+9x8cdB0ye7Lb9KtouIyqQSo7Ba9Ys7R4QRGnx1VeFfzc1pdOPSoCWJARBVARs5q4pU9y3T1YNgqgsaFOHIPRoaCj8mwRefND0RBAE4QC6URGVSCVb8GhThyD04O+TdN+MDxJ4BEEQDqBYAoKoLGhxShB68NcM3TfjgwQeQRCEA2ixR1QiZMEjCEIVsuAlBwk8giAIB9CNiiAqC7rmCUIPEnjJQQKPIAjCAXSjIojKIi0L3syZwFVXuc8ETBBxw18zdN+MDyqTQBAE4QCKJSCI8iYr1of99wcWLgTuuIPcRInSgmLwkoMseARBEA6gnUiiEqmkGLz16wv/TktcLVyYzvcShC1Z2SSpBEjgEQRBGECuJgRRWfACj655gtCDBF5ykMAjCIIwgAq2EkRlsW5d4d/kHkkQetDGaHKQwCMIgjCgvr7wb4olIIjyJosWPBKZRClBMXjJQQKPIAjCAF7gZWGxRxBJU0kxeFm04NG8Q5QS5KKZHJRFkyAIwgASeARRGcybB3zxBdCmTeHzaVzzvKhsbASqq5PvB0GYEJfAy+eB998HWrcGdtrJTZulTmYteKeddhpyuVzov/W8v8QPfPjhh/j5z3+Orl27okWLFthmm21wwQUX4Lvvvkv4VxAEUa5s2FD4Nwk8gig/1q0DdtsNGDQIuOuuwtfSsOBt3Fj4N7m4EaVEXALvjTeAH/8Y2Hln4Kuv3LRZ6mTegjdgwAD06tVL+Fq1YNvq2WefxQknnICNGzdizz33xDbbbINJkybh/vvvxzPPPIOJEydK2yMIglCFYvAIovz573+BJUu8x089VfhaGps6/MYSzTtEKSGyQLvg7beD9idNArbbzk27pUzmBd5ZZ52F0047Tem98+fPx6mnnoqNGzfi4Ycfxtlnnw0AaGxsxGmnnYZ//vOfOPHEE/Hee+8hV0mBAwRBOIdcNAmi/GPwwn5fGhY83nGJt+gRRJaJy4K3Zk3wmDY9PDLromnCPffcg7Vr12LQoEGbxB3gWfoefPBBtGvXDh988AHGjRuXYi8JgigHSOARRPkTJvDIgkcQesQl8NauDR7TNeFRVgJvzJgxAIATTzyx6LXWrVtj8ODBAIDnnnsu0X4RBFF+kMAjiPKnKmSVlIYFjwQeUcqQBS85Mu+i+eqrr+LTTz/FqlWr0KlTJ+y111448sgj0bx584L3rVq1Cl9++SUAoH///sK2+vfvj3/84x+YMmVK7P0mCKK8oRg8gih/sm7BIxdNopSIKwaPBF4xmRd4f//734ue23zzzTFy5Ej85Cc/2fTcnDlzNj3u0aOHsK2tttoKADB79uzQ71zDjhSL9xAEUb6QBY9IgnweWLUKaNs27Z6IoRi8ZCELHlHKkItmcmTWRXPXXXfFvffei88++wwrV67EokWLMG7cOOy7775YsGABBg8ejNdee23T+1etWrXpcV1dnbDN1q1bAwBWrlwZ+t2tW7eO/Ne9e3f7H0kQRGK4XoyRwCOS4PjjgQ4dgL/+Ne2eiCGBlywk8IhShlw0kyOzAu+SSy7BhRdeiJ122glt2rRBly5dcOihh2LixIk45phj0NDQgIsvvjjtbhIEUSK4XozRQouImzVrgGee8RZBTN4wIkHCYvCy4KJJ8w5RSvDXTD7v5t5MAq+YzAo8GblcDjfddBMA4OOPP8bcuXMBAG3atNn0Hpn75OrVqwEAbSN8XVavXh35b/78+S5+DkEQCeF6MUYWPCJuaEylT9aTrFAMHlFKiOY0F/McuWgWk/kYPBF9+/bd9HjevHnYaqut0LNnz03PffPNN9h5552LPueLwa233jq0fZmLJ0sjjSCCKClcX7Ik8Ii4KYUxVckummmcH74OHi1FiFJCtCnS1ARUV9u1Sxa8YkrOggcAS5Ys2fTYt9y1bdsWvXr1AgBMmjRJ+Dn/+X79+sXcQ4IgsgZZ8IhSoxQWKmlYsZIk7BxkwYJXCmOEIHzisuCRwCumJAXek08+CcATdb179970/JAhQwAAo0aNKvrM6tWr8cILLwAAjj322AR6SRBElojbgkc3FcI1pTCmKlngZSEGj1w0iVJCdM24mOdI4BWTSYH30UcfYezYsdjIzVxNTU0YMWIErrnmGgDAhRdeiNra2k2vX3zxxWjVqhXGjx+PvzIpxxobG3Heeedh+fLl2HPPPXHYYYcl80MIgsgMZMEjSo1SWKiU+7gnCx5BuINi8JIjkzF4c+bMwZAhQ9ChQwf069cPXbt2xfLly/HZZ5/hm2++AQCccMIJuPHGGws+1717dzz66KM44YQTcPbZZ2PEiBHYeuut8cEHH2DWrFno2rUrRo0ahVy5Bw0QBFEECTyi1OAXKo2N9rEqrin3cR/2+7JgwaPFLFFKxCHwNm4svB/TNeGRSQverrvuiosvvhg77bQTpk+fjueeew4TJkwAABx33HF48cUXMWrUKNTUFOvTn//853jvvfdw7LHHYtasWRgzZgwaGxtx/vnn4+OPP94Up0cQRGVBSVaIUoMfs+wudVYo93GfdQseuWgSpYQsyYoNfOJ8EngembTgbbPNNrj77ruNP7/HHntg9OjRDntEEESpE7cFj24qhGv4MbVmDcBUBMoElSzwyIJHEHrEEYPHb3zRNeGRSQseQRCEa1wvxviFVrkvdInk4ceUpMRrqpT7uM+aBY/KJBClTBwummTBE0MCjyCIioBcNIlSg1w004cseAThjiQEHrkte5DAIwiiIqAkK0SpIXLRzBrlPu6zZsGjGDyilIkjBo9cNMWQwCMIoiKgOnhEqUECL33IgkcQ7ogjBo9cNMWQwCMIoiKoJAveyy8DJ50EnH46MGlS2r0hTCEXzfQJ+31ZsOBldTG7cCFw+eXA88+n3RMiS5RKDN7LLwOXXgrMnWvfVlpkMosmQRCEaypF4K1bB/ziF8CqVd7fU6YAH32UapcIQ8iClz5Zt+Bl1UXz1FOBceOAP/4RWLQI6NIl7R4RWaAUBN6aNcARR3iP33gD+OADu/bSgix4BEFUBJWSZGXJkkDcAaW9A1npkMBLn6zH4GXVgjduXPB4+vT0+kFkizgEnusYvMWLg8el7AFDAo8giIqgUurgUcB5+cCPWXLRTJ6sW/BK4frO5dLuAZEVRJsiWYvBa9bM7vNZgQQeQRAVQaW4aPI3u6z0i9CnFCx4aVixkiRrFjyqg0eUMqXgolkucxoJPIIgKgLXC6GsFjqnjGLlQykIvKyM+7jIugUvqzF4BCGiFFw0y2VOI4FHEERFUKkWPBJ4pQtl0UyfrFnwStFFkyB8SsGCVy7XFAk8RyxeDDzzDLByZdo9KeT994G33sqmyTmf9/p2333Av/9dPhcVkU2yWgevoQEYOxb4+mv7PgHFIqDcF+BZYuNGby778ks37cVtwVu4EBgzxsu8akq5j6+sl0l44w3gvfeS7wdBmFAKdfDKZU4jgeeIX/7SS01+yilp9yTgo4+AvfcG9tsPePvttHtTzLvven278ELgpz8FRo5Mu0dEOZNVC94f/gAccwyw++7FizcTyIKXHg884M1le+7pRozFKfDyeWDgQODYY716ZaaUy2JIRtZdNB97DPjxj7NdCiWLG8xEOojGQtYteKU6fkngOWD9emDCBO/x2LHp9oVl2LDg8XnnpdcPGR9+WPj35Mnp9IOoDFwvxvhkB6btX3ut9/+yZW524kVJVkr1BlVqXHyx9//y5cB//2vfXpwCb/XqwNL4wAPm7VSywMuCBc/nssuS7QdBmFCKMXj8vb5UIIHngC++SLsHYtibTxbTFPPB4RQsTsSJ6105VwLPdRuiOC0SeKVJnGUSXN0TKlngZcGC55PFe7wPzT+ETynG4GUx9lkFEngOmDo17R6IybrAa2gI/5sgXMLfRGwXHXzckgtXSBdtiKw85KZZmsRpwXMlTipZ4GWhTIJPVYZXczT/ED6lGIOXxezFKmR4SigdSOCZwQs6suARccJP2rY3gaxa8EjglQ9xCjxXY6KSBV6WLHgk8IhSII4YPNcumqVQnkaFDE8JpQMJPDNI4BFJwk/atjcV3oKXFYEncicp90V4uRKnqxAJPDWyZsErRRdNurcTPqXgohmna3ySkMBzQCUKvKVL7V0qKQaPSIolS4rHq81NpbHRvr2mJuD774ufy+eB774z7xtZ8LKBi4yoZMFLn7DfZ/Pbly7Vv+fl85Vnwfv++2Atk88Xz5lEaZGEwLNdS5IFjwDg7eLPmlX4XBZveC4F3vjxQNeuwI47FqeK14Fi8IgkeOEFoFs3r04li82iQxQHo9veoEFev/g2fvYz7/q6/36zvpHAywYuMq9lUeDxVqss3u9cEocFb8IE79rfcUe9+17Ye7Ms8EwX3I8+6s2Fhx7qHetBg7y/qaRS6RJHDF7cWTRJ4FUo339fPBiyIlTich859FBvwv7yS+D5583bIRdNIgkGDxaPLZuFqagwtE57X30FvPpq8WdWrw5KrVxwgVnfRDejcl+EZxGb4uE+/Hlz0aasbVVI4AWY/vZBg7z738yZwFNPqX+u0gTe6ad7423CBO/f//7n/X3mmW77RyRHKbhokgWPACAeSDZWLZckEYPn0oJHAo9IEpubisg6o9OezLrjwuojihcgC17yxGHBc3keTdvix3klCzwXm6grV7rpS5YFnotxu2iRfRtE+rhOstLQULyWpDIJHhmeEkoD0cDMogUvLoHXurX5Z3lBl5XjRlQGNjcBWwue7L0ubiTkopkNXFjb+PPW0ODOM4MEnhpZyqIZ9n1ZFnguNm9XrbJvg0gf1xa8OO535KJJACCBZ7vzwkIWPCJJXFvwdG4qskV6XAKv3BfhWSQOCx7g7lyaLoJcZ6PNOnFb8HTuzWF9yXIWTRcbTCTwygPXMXhxeKyQiyYBgFw0bXapSeARaZKmBU+2MHRh9SEXzXTgj3EcFjzA3TxJFjw1yIJnj4sxu3q1fRtE+pSiBY9cNCuUSrPg8SmabXapSeARaZJmDJ7svS5EAblopgM/N5LAKw/Cfl/SdfBKVeCRBY/wcR2DF8f9jix4BADxQDIReOedB3ToAPTsCYwebd8vHlcCb/Hiwr9tFjEUg0eosHYtcPjhwIEHAsuWuWs3zSyacVrwbF00N2wAjjoK2G8/tzWnZs0C9twTaNfOaztrSROmTwf22CPI3KcLf+7ictF0NU+SwFMjSxa8UnXRdLEpsXy5fRtE+ri24MXhsUIxeAQA8cDUddGcPRt48EFvAvvmG+D22510LZbdRX7BRy6aRNzccgswbhzw+uvAVVe5a9e1i6ZOe6pJVnSv4Xze/oZ3773Af/4DvPWWeakGEX//OzBpkpc18K23iusSps3Pfw5MnuzV3nr5Zf3P82MijjIJgLt50nRRxY+lpK1YSRN3DJ4OlWzBI4FXHriOwUvCgkcumhWKix1W3vVAJ21yGOyF5Gp377vvCv8mF00ibt59N3j8zjvu2k3TRVM1yQrv9hdFfb14TtK54X30UfD4tdf0vj+MFSsK/87aruhnnwWPZ8zQ/zw/JuKy4JGLZrJkyYJXqgLPxZh16b1BpEcpxuBl7V6lSoanhNLARQyeKBW2C9hFpKvJP04LHrloEiLYa6y6Op52dYmrTAKfSED3+pLdiHT6xs4VLmP3+Os7y8LAZC6Kw4JHLprpkyULXqnWwXMh8JYsCR67vA8QyVIKLpoUg0cAcOOimYTAy6IFj5/0yYJHiGCvD5eLGJubgK0FT/bdvMDTvb5kriQ6v5VdPMUp8LKc+MVkDi51C56qWCGBF+Dit+uIxFKx4PH9dHGtswLPpv4ukS6lkGSFsmgSAOKx4LkqsxCHwKMYPCJp2OsjyxY8nZuK7L38zcqVBS8LAo+f17IsDLJswYtL4KmeD6qDF5AlC16WNkz4vrgYs0uXBo9J4JUupRiDRxa8CsVFHTx+wGfZgscLPIrBI+ImLoGXpgVPNtb5G4nu9eVC4JGLZmVa8FTPdaVZ8EqlTEKWBZ6LvrHXU12dfXtEOlAMXnKQwLMkyzF4LHG5aGYlBu/BB4FLL6VMW+VIXC6aacbgJW3B0+lbUi6aWREG48cD55xT+FyWLXim8+SHH3q/009aZGplqTSBVypJVrK0QSoKv3j5ZeDcc80SGPHU1tq3kWXeeAM4+2zg44/T7omc6dO98/nKK3qfoxi85KhJuwOljosbcBIumq6Isw6e6Q3q7be9OoKAdyE+9JB5n4jsUSoumi4seLZJVrIcg8fPa1mwOOTzwKGHFj/vwoKXtTIJ/ft7///lL97v5tsmgScmbhdNFxtDQLYEHt/P9euBI47wHv/nP145KJftlxsHHOD9/8gj2U0+d/DBwIIFwMMPe2NY1YhQiha8Uo3BMxJ4TU1N+OCDDzBhwgRMnjwZixYtwrJly9ChQwd07doVe+yxBw4++GDsueeeqMpS5G8MVFqSFT5texZcNNkdpIcfJoFXbsSVRdO1i2YcMXi615ds7jAVeC4X71m04MnKULiw4JWriybF4AW4+O0657NUXDT538SWgpo71779ch9zPlkS7TwLFgSPGxqAZs3UPifaFHEdg2d73OKIIU0DLYH33Xff4S9/+QsefvhhzJ8/HwCQF5ytMWPGAAC6d++Oc889F7/+9a/RpUsXB93NHnFY8PJ57znbxWwcAo8f6FlIslIpk32lQhY8dWQ3SnLRFCNzvSlHF82otsmCJyZuC54rgZelRWjcGbLLfcyVGvX16gIvThfNli29ede1Ba9Ux5uSwNuwYQPuvPNO3HHHHVi7di1qamqwxx57YN9998VOO+2ETp06oW3btlixYgWWLFmCzz77DG+//TY++eQTXH/99bjttttw1VVX4fLLL0fz5s3j/k2JIprgbQUe4F0wLVua9cknCYHn0oJnunAp1YuPUCOLAi+uMgkq36PablVV0CdTC55LsphF06XAoyQr5UmWLHiVnEUzrH0iXXS81uJ00Wzb1o3AiyNJUBooCbzevXvjm2++wc4774wzzjgDJ510Ejp37hz5ucWLF+Mf//gHHnnkEdxwww0YOXIkZs2aZd3pLOEii6Zsl7YUBJ7LGDw/LkTXqzfpTGZEsmTRRTMuC57K96i226xZIDKyIPCyWAdPFlvhwoK3caP3r8Yi0j1JgUcWPDFkwdOH74urvAI+5TzmSvG3ZUXgtWsHLFpEFjwfpaV0y5Yt8cwzz+Djjz/GRRddpCTuAKBz58645JJL8Mknn+Cpp54qO+sd4CaLpos2RJSaBU/UvgqlevERapSKBU/npqI6zm0seKzLjM5vjStsutxdNEXnytaKF5fAa2ykGDxVwn4fWfDE8H2Rxbq6ar+cEIXsZB0dgec6Bo/dpGvTxr490edLdbwp3cqnTp2KoUOHWn3Rz3/+c0ydOtWqjSwSRwwe4GbHKw6Bx/fVZQye7LkoSvXiS5vVq4F//hPgjerr1gFPPgl89VU6/fJZuRJ4/HHg66+D57JgwZs0CXjppeDvVq28/+Nw0bSJwWMFXhYseOXuoik6V3//u91mXVwxeA0NZha8777zfhNLU5NXhPrxx4vL6JQDZMHTJ24L3rp1wNNPq5VcWL0aeOIJ+8ydceHf57791vs77mNnSj7vlZR57bXi19Ky4M2a5WVRB7z7nemmZlR/snCvMkHJecRVJsxyzKgZRxZNILupccmCVz5ccYVXP3DrrYGZMwNXst/+FrjzTm837PvvgbQM7//3f8A//lH4XNp18BYsAPbZp/C5li29XcQ4XDRdWfBMC527JIsWPJcumqJzdf753rm+8EL99gC3ZRJYGhrMyiQMHgy8917hc01NwPHHe4u/vfYqfr3UyVIMXqkIPBeln8LE85Il3pirrfVq3/qbbCIuuggYORLo1s0TUVlbhp57ridAt9nGEyyiMJgsOL+99VZQUsavpemThsDbuDEoJwEAdXXFCcJMz3VFWfAIOZVmwYszi6aofRVKwYUhizz4oPf/nDmF1ro77/T+X7UKmDYt8W5tghd3QPoumi++WDhGmzcPhHEWLHh8DJ5PHH3TJYt18GQWPJP5V3auLrpIvy2fuFw06+vNFjEi8dbU5Ik7AHj/ffu+ZY24LXguyqvothM3/Bg1cdFU+T0NDdEbCiNHev8vXFicpTgLPPGE9//s2d54crmJ7hJ2HrvsssLXdM6vK4G3dCkwb17w90EHucsAzfcnS9eWDkYC75tvvsHYsWMxjz268Fw5DzroIHTo0AG77747XtEtcV+CxCXwSiUGb90685ucaKFCFrx0kAm5rLiH+KTtoslXe2nRItgljCMGLw0XzbgsAVm04MkEnsnGlYuyCDxZc9EUkYXzGCdkwdPHhZuh6u/RWX9kfTPYT8zEEse8YgJrReQFna0Fz+RezLbTooUnlF0JPNFnsz52RBgJvD/+8Y8YMmQI1jB3xzVr1mDQoEF4/fXXsWLFCnz88ccYPHgwZs6c6ayzWUR00rPiopmEwGtqMre6uYrBK/cFRhzw41YWHlvOAs/FuKmtDfqUtTIJpgIvrt3KLAo8mYumya552Gdk3xNFXBY8kcAzPe9ZOI9xkqUYvFKx4LlIsqL6e3TOQdbHan19di147P3ERuCJzpfJeWHbOeIIr39xWfBs20sLI4H3xhtvYPvtt0fv3r03PTdq1CgsWrQIP/vZz/DRRx/hd7/7HTZs2ID777/fWWezSJZdNNlBGpfAA8x2mGQXi60FL2v+9VmFd1WpRIFnMmHzN7bFi4Mxl8UyCT5ZdNHMwmIrKQve55/rtwck66Jp2m4p7mzrkKUsmmTBsyPri/SGhsq04JlcR6J1X5wWvCzcr3QxWg4vWLAA2267bcFzL7/8MnK5HO677z7ssssuuO6669C7d2/873//c9LRrFLpZRIAsx0m2e+zjcEjgafG998X/l2JLpomE7boeMQp8NKw4CXlopmFxZZM4Lm24JnGsroSeLwIIwueOlmy4IUd6yxcTz4uLHgk8DyyYsFr0SJ4zPep3AReRVvwli1bho4dOxY89+6772LHHXfEFltssem5nXfeuShOr9wQnfT58+ULB9U2XAs8V7iy4Mkmb9syCZUm8BYv1htrPnw68+nTxeckrWyusu91tVEBuBd4cbhBphGDl7SL5rx56d08k7LgmVYIcnVvEGU1LIUYvMbGwkQKIhYuDF9gbtwYpKA37YOMLNXBKzcLXhwumsuWeck58nng00+9kje2c8/cue6uAdF1mUULHn8+047BIwueGKPlcF1dHb5nTABz5szBggULMGDAgIL31dTUYGOWZp0YEJ300aOBnj299L0qxOWiyeJqcGbRglepLpqTJgHduwM9eng3Lh14C159vbjuXVoWPNnC2+Uka3IDEB0Pkxi8LBc6T9JFc8QIYKutgP32S8fVL6kYPFOB56pMAt+OSZkE2RiKq2ZUPu9lxttqqyDjL8+LLwJbbAH07Su+pzQ1eaUbttyyuH6fKq4teCblKWSfNW0nblyUSYjj9/TtC2y+OTBgALDLLsCeewL7728+99xzj3f//clP3PQvyxY8VuDxorPcLHiiz1aMBW/HHXfExIkTN4m8UaNGIZfLYeDAgQXvmzt3Lrp27WrfywwjO+lLlngXv2kbri14Lm66sjZMdphI4NkzZIh3HJcuBe69V++zvMADvBpvPGkJPNnCW3cch924XVjwTj/dzEUz6TIJabtoipIqNTUBZ53lPX73XeCLL9x/bxQuLXhhbmimRZZduWjy7Zi4aMq+10awhDFvHvDmm97j884Tv+foo73vnzXL21jlefddYMoU7/Gpp5r1w7UFz8ZyWioumkmVSQD0xVl9PfDOO8Hfb7/tecKYcMkl3v+vvOLdh23JcgweK574eTONJCuiHBNxumhWjAXv1FNPxbp169C/f38MGTIEN910E9q0aYPBgwdves/69esxefJk9O3b11lns0jYSVe9MEtF4MluRGkLvEqNwWNdl3Sz9PEumoB4HJrcmF0gW3jrTtquEySwN7K99gLuuKP8YvD498ZV68uVi6ANLgWe/3vatgUefRR4/HFgs82851auNOpeplw0ZWMorppRuu2I5kDRPOeyHybXBn+cyUVTrY04cbHecnGvFGXRzIrAY88hf7zIgpdNjJbDv/71r3Haaadh7ty5eP7559GiRQuMHDkSbdq02fSesWPHYt26ddh///2ddTaLhA3Mujq1NpIodB6nwDNxIXAZg1epFjyWVq303i+y4InGYVruIa5cNF2nFWevy2uv9RbwWY3Bq60NHttYF10sfkTzWRZ2RGUbI6J6VFH4x6221rMWnXiiJ/YAtwIvaxY8G8EShovxoRomEUbcFjydeaNULHhZLZNg+11huKpPmVUXzbBzaFvo3OT4izb2yYJXSI3Jh3K5HEaOHImbbroJixYtQp8+fdC6deuC9+ywww4YM2YMfvzjHzvpaFZxIfCSyKJZzha8OMpBlBotW+q9X9WCl9buoWzhrTtpu16csULFt5DFGYOXhoumyNrDtmWCLD4qbcISFK1fD3C3tVD848ZuMrVr5/2/cqU3H+vOT0kKvKh2Za/z4t2VwHNhEXEh8MLGKVnwxJSaBc/Fd7kQYvX1xeMtKxa8sN+XRQuezTktFwuekcDz2WqrrbDVVlsJX9ttt92w22672TRfEoSddBsLXikJPEqykj66Aq9SLHhh48nWgueLnqy6aLJB8TYxeC68CVQEXhqbMy4Fnv972EWGb8HbuNFrT/c6jUvgiVw0o8aI7HVe5LhaCGVF4LneJLIReKVqwTNB9bhkxYLn4l7Z0FD8e0rBgpd2DB5Z8MQYLYerq6tx5plnRr7v17/+NWpqrDRk5gk76WzdkDCScNGMc8J1acEjF00zVMeaj6rAS2v30FUMXhIWvCwlWYnDRdPFXCRqg/+eNAReWOyq6bEXCTwAWLFCrz22TRYXMXguLXim74tCV+CJFo662YVFZCkGr1SyaLroi+ocmaSYDMPFvTLLSVZcCbw4LXis3KAYPEOBl8/nkVec2VTfV6q4mPzjsuCxZM2CpxrPoYJrgTdihJf6+P777dtyxfr1wMEHe6Ji662Bt94qfF138lF10Uxr99BVFs0kBV4cmSqzkGQlKQue7vk4/XRghx2AW24BttnGi4nUJcqCp0OUwDOJw8tSmYQ4Ftz+vLbHHsANN3jz7k03eSnsXYTvsxtZ7LnQQfR7/Gu+XFw0m5q8rMzNm3tlJ/7zH/O2gGRFV5JiMgxXLpqlGINXbnXwKtqCp8ratWtRy24jW3LFFVcgl8shl8vh5ptvlr5v/PjxOPLII9G5c2e0bNkSffr0wbXXXovVq1c764uPix21UnfRTDsGjz1+7AVuyllnecVLL7ggndpcIsaNA1591TtuX39dXBdKd7yIdrYrzYJncgNgb3I2MXiq3617c2evn1Jz0dTp45QpXqbKmTOB664D5swBbr01XLCJCHu/CwueH4MHmAm8LLloxrHgvuMOb16bPBn4/e+9efe3v/WKULsYd6zAa9/erA3RcfGtzeXiovn++8C//uUd8/nz9cvu8JAFzwyy4Jm1Q1k0xcQm8JYvX46JEydi8803d9Le22+/jeHDhyMX4cdz991349BDD8XLL7+MnXbaCT/96U+xYsUK3Hrrrejfvz8WmxY8keBiARmXiyZ7AbgWeKwp3CRWIi6B59rN69tv3bZnyqpVhX/zAk1X4InenyULXhIxeK4teID6hkBcu9Ol5KJpI/BkYkm3r0la8ErdRTOOBfcHH6i/N+raEr3OCjzd+Ecf9vccfTTwxhvpWfDictHk7y8mY5UlSdHl4ruyYsETXZck8KLboTp4YpQD5LbddtuCv5999lm89tprwvdu3LgRCxcuRGNjI8455xyrDgKeJfC0007D5ptvjj333BP/+te/hO+bMmUKLr30UlRXV+OFF17AEUccsenzgwcPxoQJE3Duuefi2Wefte6TT5YteGy7LgYn215dXXATsBV4LVsGk5jJ72Y/Y+uiyd+wp04FttzSrk0X8MeYX+Dq3txF7xc9R1k0C2FvZL6FjB1zTU1qVmTV37Fxo172xVJy0dQVGCxMRZ7I75GRzycbg5clC57LMgmm7wP0jnF9faFVWgXWFd30nuoflz33BF54wXuclgUvKiSkqcnsHsgfG9t5nyx4ZtTXF8/15eai6SrJSpxlEsrFgqcs8ObMmbPpcS6Xw+rVq0NdHps1a4af/exnuPXWW606CABXX301Zs6ciRdffBFPP/209H233XYb8vk8Tj/99E3iDgBatWqFESNGYNttt8Xo0aMxffp09OnTx7pfgBuBJ2rDxaLKtcBjf4+twGPbYgWeyUTrUuDxC76pU4HDD7dr0wX8eFi4sPBvncVLU1O4H3xtbdAeuWgWEmXBa2xUE3i6u/aqrsdxlElwkc3QtYumzHKiM2+uXx9ugdEd+/7vYcdDVgWey0LnPDr9CxPYPOvWhQs8/lzm8wDrsGMi8PL5oF32GsyiBQ/wzpHJPZC/brIg8JKMwcuKwGtoKJ7rK8GCRzF48aA8FcyePRuzZ8/GrFmzkM/ncdxxx216jv/37bffYvXq1Xj66afR3tTx/Qdee+013HffffjVr36FI488Uvq++vp6vPjiiwCAE088sej1nj17YsCAAQCAMWPGWPWJxYVPfKlY8HiB5+PCgif6DpO2bAUevwibOtWuPVfwE+iCBYV/64wX2bhkBZ4PuWgWElYHT6dNnXFuusPPCjybEg5ZdNGUvVfnOoiK13PhopnVGLw4LXg651FH4OmejxUrCseDyTiWJfCyseDZWK6jjq3popa/bmznfXLRNCPLhc7D+mFb6Jxi8OJB2YLXs2fPTY9PPfVUDBw4sOC5OFi9ejXOOOMMdO3aFffcc0/oe2fMmIG1P9wt+vfvL3xP//798eabb2LKlCnO+ugiq1WpCzzbOniswDP53Wy/XAu8adPs2nMFvzjhF6c6x002Lv3x0qxZsPAqZxfNOCx4qteZCzET9d6su2jqZnFUea/OdRAlLsqpTIKLLJppu2jqng8+U7Bt7GJcFjydazNqfjG1RJGLpn0brlw0+byElWDBy5rAqzgLHssjjzyCM844w3Vfirjsssswe/ZsPPjgg+jQoUPoe2fPng0AaN++PdpIAjT8ouz+e2WsWbNG6R8QnwXPxaKKnbRcT4JZtuDNn+9lwnz4Yf22+EXYtGlmN/HXXwd+9Svgvff0Pysiajy4WByzAs9HRbx/9x1w7rnAAw+o9yEKVxY8FzF4b7/tncs333Qn8OKy4MXhovn5515JgiefVG+DR6UOngvRqzNvJmHBy0qZhCRdNHXOo87iNep88PM0X+vTpcDLYhZN3bZY+OumlCx45VQmIcsWvKzF4JEFLxqjKuRz587Fq6++ir333hu9e/cWvmf69Ol4//33cfDBB2NLgywV48aNw8MPP4xf/vKX+NnPfhb5/lU/pIGqY5UHR+vWrQEAKyPutP77VKhUC16rVsFjFzF4oudVYY9VLgf83/8BY8Z49ez23x/o21e9LX5orFzpuUN2767XpwMP9P7/xz/clFqImkBdumiyY0VlAXbuud7xBoD99gN23VW9LzKyVOj8B89u/OMfwMCBwfOyGDzbfvGk7aJ5wQXe/48+CvzkJ2bp5l3H4Llw0UzaglcpLppxxuDpwCfMNtk0TcKCl0UXzbgteCrJYCrBgsePn6yWSWhsDD/OFIOXTYwsePfddx9OP/300CLm+Xwep512Gv785z9rt79ixQqceeaZ2GyzzXDfffeZdDExKAYvWxa8xsZAbAD6FjTRIsxkYeYalwIvyoLHjhWV3UP2eOukPQ/DVaHzsPFk66LplwophRg8Vy6hS5eqt8PiWuC5cNGMWjjpzGuyZBxxxOC5KJOQFQtenDF4fOp/suDJ4Y9NY6Od6IkaAyrHrRJi8ETXZRYteFFzYdoumq7LJJSLBc9I4I0bNw59+/YNzUTZt29f7Ljjjnj55Ze127/44osxb9483H///ejcubPSZ3y3zDUhfjd+1s+27Laq5H1R/+bPnw8gPguerYumnzLZx7XAY42cLgWebQwefyx1Cx+LFmG6bcRBkgKPPYa6u4eu6hBmyYLH4p+HZs2C3xp3DF6WBB4fH6KKSpIVF5YMnXnTpcCTCQFXMXhsm+VkwRMtXrfYQvzeqPPF7zfzc0hTk938kQULnkoWTRNE142N5UjFgheF6m8p5SyaotjYLFrw4hB47Foha2USysWCZ+yiOZD1VZLQq1cvvPXWW9rtjxkzBjU1Nfjzn/9cZAGcPn06AGDEiBEYP348unXrhieffBJbb701AK/A+qpVq4RxeHPnzgWATe+VEebm6dP4w+gJm+BtyiTYWvD4NivJgseiK85Ei7AsCLyoY+wyBo89hrq7h3ELvDRi8Fj888CKp1KIwbNx0WRx5QImaitpF82ohZPO2JdlW3TlotmiRXBNxCXw0iiTIKJdO+Dbb4uf152LRNZBURr6MOLIohmni6YrCx7gXR+yepNRuBB4SVrw0hJ4KtdluQq8mppg3FEMXjwYCby1a9eiJbsql9CyZctNsXG6bNy4Ea+//rr09Tlz5mDOnDmbMnn27t0brVq1wtq1azFp0iQcdNBBRZ+ZNGkSAKBfv35GfRLhIktfHC6afJtxFDr3yVIMHlnwouFFgN+2aQweS9YseHG5aLL1uExi8KLGOVuLMEsWPJcLyLRj8KIEgwsLXrNmnjhbv95O4DVv7lbgiVw0XYkH24WQTFTozkWiOaShwTsfqlSKBU903di4BrqIFXQx3lTPj8lx49s2OV78+awEF03/uLECj2Lw4sHIRXPzzTfHRx99FPm+jz/+GF26dNFuf/ny5cjn88J/p556KgDg97//PfL5/KYC7M2aNcNRRx0FABg1alRRm19//TXefvttAMCQIUO0+yQjqy6acQi8UrDg8b9zyRK9tkSLMJ04kbiIS+CxQsWFi6ZtmQofVzF4cbpo+pjE4EXdfDp2DB5nSeC5dAGLo0xC1lw0gcCKZ5NFkz2X5VImQTaW4hZ4OmQtBi8uC14pu2i6mK9cbJq4suBl0UXT5WaYf+5Zd3+y4MWD0XJs4MCBmDFjBkaPHi19z3PPPYfp06dj//33N+6cLldddRVyuRweeeSRgti/tWvX4swzz0RjYyOGDh0aGjuoiwsLgeh9//oXYODdKm3TtRsDm0XTtg4e25aLGDxWZPCpssN49VXgb38rfl7XgiearN54A3jmGbcLZBYXAu+TT4DHHiucrDdu1Lv5TZniZVu03XVMIgbPxoIXt4umqcCLo0wC3/60aV6GWh3njCy6aCZhwQMCgWcTg8depy4Wo08/Dfz3v4XPJZ1kRTZ+ZAJPt0yCaJNIZwOgvh74+9+Dv11Z8HRdY1mStOCtWwe8+CLwn//otTV9uvg+yuLSRTPsfXHERMs+44/P+fOBv/4VWLgwug2+fy+8UJi0zG/XZi3ogrhcNPnnPvwQePxxtbk3SuCpjp+PPwZGjgQWLfLua9On21nw0j5XLEYumhdddBEef/xx/OpXv8K8efNwxhlnbIp5W7VqFUaOHIlrr70WVVVVuPDCC512OIx+/fph+PDhGDZsGI488kgccMAB6NKlC958800sWLAAvXv3xkMPPeT0O8MGtu1O5oEHAl99BfTood2t2C14tbWBe1+WLHiNjZ510V888MVuZcycCRx8sPg1XYHHH/vp04EDDvAeP/aYV1NNl7jq4LELx6ee8v7xrF9fmFQnjHvv9f6fPRu46Sb1PrHk8+5i8Fzc/Fn8m7hM4LlaBLu24LmKwVu9Gjj0UO/6+vRT4J571NoULSD5MZ21GLw4LHj5vJ4bM5tkpbra+9uFwFuzpvgaSzrJisyiKcuBFnW++DFua8F74AHg6quDv+Oy4OmM+6SyaALAK68AV1zhPX7nHeDHP45up74e2HvvaGt1OVjwZJa2I4/0RMOAAcDEieFt8P374gvx+/bbD5g7FzCoOOaEOAQeb2377jugf3/v72++Kbz2wtoBzC14q1d76+zly4PnunUDdt65+L2qY+nNN9XelwRGFrx+/frhtttuw7p16zBs2DB07NgRPXr0QI8ePdCxY0cMGzYMa9euxc0334y99trLdZ9DueSSS/DKK6/g8MMPxyeffILnn38erVu3xtVXX40PPvhAOSunKuzEeO65ha/ZTlAbN3o7CybELfBqagJxYCvw2JgI1zF4qha8p5+Wv6brosn/hvvvDx6feaZeWz5JWPBkmFjjfvc7/c/4rF4dnQhGFdcumv5YSNKCZyp84rDgvf12sHnii3kVROPXRuC5cNFMyoLnl0pobLSrree7NLkQeCKStuDJREDLluJEKFHnSyX+WmeeHDas8G+RwEuzDt7pp0e3rYrouvkhZQEAz7tDhW++UXNFTioGL2w+9sWEan+ivtcfnx9/7P2vYsnRuQf9kF8wFZKw4L3wQvD3NdeotwOYl0n47LNCcQd4llfRulF1jKR5nniMI2Yuv/xy/Otf/8Iuu+yCxsZGzJs3D/PmzUNjYyN22WUXPPfcc7jqqqtc9hUA8OijjyKfz+O6666TvmfQoEF46aWXsGTJEqxfvx4zZszArbfeKsysaQs78IcNKxQKSWaBimrTtcCrrg6EmcskKyYumrzAYwWZqgUvrJC5rgUv7Aauk8GNJa5C5yoCL+kYgDBR7jIGz5WLZhwxeJ06BY+zFIM3dap6Oyyi8ck/5yIWKcsWPEA/Do8VeP6CyEUdPJP3uLbgyVxWa2sL7wk+uhY8WxdNHpGLpisLnqpQZL/vV78CPv8c+CEtwaa2TBCNKdaFVvUeUKPoE5ZUmQRZG+PHA+efr9aG6ve6iMHjYT1nXNRGNiWOJCt8DJ7u2BWVSWDHn0p7Mjdx0WdVr/XPP1d7XxIYuWj6DB48GIMHD8aiRYvwzTffAAB69OiBrl27OulcKcAO7KoqYNddg79tyiT4mOwQAqVlwWNj8Gwn2nXrCo/ZkiXeb49K/sEuhnlcCjzVGyBPqVnwAO/Ys0JFlTBRnrYFzyduCx5bINvU/VYU46DbBo9LgefKRXPvvYH33hO3GUYSZRKA4lp43bqptysSeFm34Nm6aNbUeJuHP5St3UTSFjweUZkEFxY8wOu7yr2BH2d9+pjPFSxRAk/1WlA9vkmVSZB9z667AgsW6H8XiyjbpW47UcdhwIAgVtZFKQdTkrDg6d6PXbhoyjaTRb9Hpb2GBuDLL6PflxRWAs+na9euFSXqWNiBUF1dGF/hwqWFv8mpUkoCz2UMHn/DbWoCli4FojxzwyYoWxfNJASeixg8GaYWvKlTAZMcSy4teLZJkGTfF3cMHtu+iWXLj9nS7VfUe1mBF2b15hGNX37eMO2jqQdA0klWADsLXtwumq4seLYumqYWPBWBl0ULnv+cyr2B/Y2mVgsRouNiYsFTPb5JCTzZazU19seN/8y6dfprhajvZcNXysWCJxJ4jY3ZF3gq/Zs5M10hzuMoqXnlwlvwTLL4hA1EVRfDqDazLPBsYvDy+egLWeUYhk1QthY89viYCryoYxynBc9G4JkQJvCStuDJPi+rg+fKgseOkywJPHbRpxPwr2LBM92kMBV4SbloshYWXYHnj6eqKjsXTRcL6iRdNEW16pJOssITVwye7DkR7G/0+2Oy5uBx5aKputB3seGg8j7ZuK+psT9uIhdNFxm3WWzDV1yRhAVP997uQuDJ1oamFjzTNU9cKAm8u+++G/WWhdnq6+tx1113WbWRRXgLnsmuUNj7dNL8h7XZ0OBlaDJ1+eTbZAWeiQufrOSC7iSm8n6VY5iUwMtCDJ5LF8043PnCBHnSdfBkn7eNwYtaUJguPvz31tSYCU9Afd7SaTNOF01WDGQxyYrrGLysu2jGZcHTddEUWVNcCTyXhc5lz4mIy4LnykUzDQueiZdGHBa8xYs9C45NGzxZEXhR57+hQf1aYAud+6Ql8Fxb8EpS4F166aXo3bs3Hn74YazSKX4EYMWKFXjggQew/fbb4/LLLzfqZJYpFQve6tWev/5ll5m1B8gteBs36i+8Xbloqrzf1oJn66LJTo5Zi8ELiz30Cdu9DZv4s2DBs3XRVBF4JkIq7LubNUvXghdHcijR+OUXBEm7aKaRZEW3Fl6SAi/pJCtRMXg8SbtoskkggPjKJMieExGXBS+LLpqlZsEDgnJIqkQdB9sM465QmQt1z30WYvBcW/CmTYt+T5IoCbwxY8agqqoKv/nNb9CtWzecfPLJeOSRRzB9+nTkubt0Pp/H559/jpEjR+KEE05A9+7dceGFF6K2thZj+AqOZUCpWPB8bIyoMoEH6Ltpsu+3SbKisqBT2TXnL+hf/zp4bFsHj22bXzSokqYFL+zchgm8b79V7xNLqVnwTGLwwsZ5q1bZddFk0emXyvg0FaHlGoPHL+bLrUyCbOPM1ILn2kWTnxuzYMETLWpN5woW0XFhj3eWLXgmMXimazXV7/WxLUyfFQueK4HHXi8uY/BMyyS4tuCpFLdPEiV7wjHHHIMjjjgCf/rTn3Dfffdh1KhReOKJJwAAVVVVaNeuHdq2bYuVK1di+fLlm0RfPp9Hjx49cMEFF+CCCy5AMxVzQYnBXnRxWfB0i+PqfLdpm/wu64YN4puyDPbmy8aoxOGiqXKhsxf00UcDd94J/PWv3t+l4KIZZ5KVsGMctrOra/n0KYUYvDgteDYCj3XRNHEdzefdlXpgUbn5m5ZJMHXRzHoMHt9muZVJkL3PNAaP7X8+b++iyS9XXFnwRMfZRDzHnWSFJcsxeGHjTXR+qqq88xeHBU/0nrBlb7nE4AFq515kgfafz7qLpssxmxTKSVaaNWuGyy67DLNnz8bo0aNx8sknY8stt0RjYyOWLl2KOXPmYOnSpWhqasKWW26JU045Bc899xxmzZqFSy+9tCzFHVC8eDdZmIVd5PX18lodYcQx0Fxa8FjR1L69+DtUcCXw2P5fconXJ9+yaOui6SLJij/hyMo9mFrwRAupsPfzhO3s6gpjH9+CJxLDSdfBk/32OGPweIFnYn2rro4nuyeLqQVPtlmVtIumSwueTpkEVWQCL+sWPNuNTRcxePX14vZ1NgD4uZE9r1mw4MWdZIWlnCx4/nVka/lUFXhhVJoFjx+/7EaJ7ppVVAfP1EWzVy/gvPPCP+vSrTgptJebVVVVGDJkCIYMGQIAWLJkCRYtWoQVK1agffv26NKlCzqZFL8qUfgYPNcumoC3y8AuEly0aQI7WVVX2wk8VjTZ1PFReb+uBc9fvNfVef20teC5jMHr0MGrL8cTZ6HztCx4m21W7PLgMgavHC14ti6aSQi85s3FC0bT7zZNJe6yDl4cLppJCzxXFjxbIVhTY1/oXDZn64wP/jxmIQYvySQrLKoWPNV1QJoxeCKBF5eLpq3Ay2IMXvPm4vOs66JZVeX9890zk47Bq68PNty6dIn2ripFC551HbxOnTpVlKDj4WPwXLtoAt4uw3bb6fUrrE3Vmjuiz/m4suDxN/O0LHgygff999kokyATeNXV3u+LMwbPVODV1+uPtXw+2FUTCbykLXilGoNn6qIZR6weUHh9tWghFk+mLprs/JFFF00XMXhVVYUxeLpu+1kskxBmwRN5FuhY8GSbSzrzJD+WshqDF1eSFZYs18HTTaTlz61JuWiGUYoumm3bil0bdS14rMCzjcEzEXjsb9hss2iBV4oWPKqDZ4lLC57M/W7hQrcLW1PXOXaCcSXw6uoKj1kcMXgqE7FI4MXhomkag+e30aZN4fN+sem0YvCiFl26Y23VquBcdOlS/HrWY/DSFnj+e01dNHXGhqkFT+YWXMoumknG4PGv6bYlI+kkK2ExeKJ5UicGTzbv6GwA8Oc/axY8vz9JWPBcu2i6GI8qbaVtwYs6rjoWPFOBZ1May4c9/zJvMlOB5z8fRwxe2G9nBV6XLtEb0aVowSOBZwm/eGcXVboTlGzxf+yx3kX14IPq/XIp8PJ54JhjgDvuCJ7jBZ5uLTxfNPECL2sWPMA7XjqTpGsLXlNT0Ca/6PYFX5wWvLBzErXo0h1r/K4aT1ZcNNnjxl63++8PfPihebtAdlw0d9lF/b1R8C6atu3Jkqy4dNGsr1e/7sMEHrsp4yIGD9CfJ0styYpos9PURdO0zmqYwEvagjdvnlfm6B//KO5DEjF4pVomodIteE8/DWy+OXDDDfqfZeEteCJ0BR6b6CYOgffYY0C3bsDNN4s/TxY8IhJRoKc/gehOUNXVwNZbi9+zZg0wfLh6v8K+W9ci9dJLwNixhc+5tOCxF7ruJBZ3DB7gnWMdAevagsceEz5Xke+2lZaLZtRx0R1rS5cGjzt29DKasmTdRRMAjjsuut2wcTtkiPniQybwTFw0RRZUFp1+sdeXbMyZWqFNXTRVrmkTiwR/jTdrFohQGwseW2IlDoGXtAVP9r6aGrH7adQ9RmbBY5N42Qg89l6ftAXvl78Evvii8DmRBc/WRVPmRVTuSVbKNQbv+OOBRYuA3//ebKz6LFsWPJZFZKmsAcMseC5cNNk58ttvvXCP668Xf54tx6Qi8FxanZOCBJ5D+KxWuhNUVZUnpI4/HnjiCeCKK4ABA4IFkU42TZcWvAULip9zJfD83VXTBAJxuGj6v8sXeICeUOG/j939NJlkefH5yiueiHjtNXuBp5Lc1jQGD9Afa7yl569/BU49NXiuqUlv1zxpF00AmDMnvM2w33DFFcBpp7kpk2CbRbOmxhtrKu9V7ReQHRdNFauE6rwWJvCAYNfblYum7kZYqVnwRAJPp6YYO1+zAk9VgGzcGF5XL2kL3ltvFT8XR5IVmXUmyxY8XS+NJC14UddpkjF4qudQhF/Au7YW6N1b/B6V8yVKsuJ/1kUdPJWs4D68iyZZ8IhQ+AlXN3C6uhrYeWfgySe9Hbs77gAmTgyseqYxITy6i26RCBDVwVNl48bgRuCLKBOhovp+Uwse69qjc8z472N3P00mab5vgwYBzzwDHHBAMNZ0dsCyHIPHJ/Lp1g149FFgn32C523cZVniEnimbV51lXfN87G8Sbpo8plyBw0Cnnoq+r1RsGOI3WVlSdJFs6kpuK7CrgGTrICi8eDH4bkSeFm24LlIsiI6hlHXq8xF08SCJ5rXVq8OHqcVg8cSh4tm69ZicV2qMXiqFjxbgXfjjUC/fuHvUe0fi0uBZ5N7YcYM73Hv3oUb3ywq59RlDJ7Ie04m8ERrBt6CRzF4hBT2hmTjoinCX4C4Eni6bnOiBZCNBY/9/qwIPLb/vIsmoDc5hk3qLgQei4nbVpIxeDYJatgJ10SsRL3XlYumrtutrE3RHAKYCzzb8g0iFzAWE4EnS6DBf3cUti6a7IKVT1wke18YOhY807i+UonBc5FkRSQyotp16aIpup+xAs/Ggif6HWHHVjamXSZZ8b+DdSdmybIFT9dLw9Vx469PkfUz7Rg8FlOB9+WXwXfvtJNdDDUv8FzH4InKq8j6RhY8Qhl2cJi6aMoGmD/hrl9vtjjg0b3QXQs89vttBV4SMXiAnYum6msyVAWe6rHLsgVPZukxEStAOi6aUcjGgEzgmQha//OsC4zO54FogWeSZEVmnQHclEkwsdC0bl34GjsPu3bRbGxUn0tkZRIA/XmylMok8O7FPkm6aIrOOzuXubbghV1LvvWEJw4LnqxExYYNamsPl3XwSqlMQk2NmcCLmkPZ+7NtfJdpXdqpU4PHYQJPpX+8W6XrGDyZBU/UN90kK2TBq2CSsOAB6jd2lwJP1C9XFrwsxuDZumjGacHjJ1eTRR87NuKsgwfYu2j6ZNmC50rgsb/RxFqTzxe6e7P/m1hVRK5MsveqtitbvANuXDRVF/DsuOUteOzGjmuBB6i7aWbNguc6yYrrGDyXLppRAi/JGDx2gc0SRwxeba3cChJXUiIZpVQmoaamsByKj00MXk2N3aYOj6kFjx1/O+5oZ8FTjcFTuafqWPBEx4510ezcOdpFs+ItePl8Ho899hguueQS3HPPPVhjOqJKkDgteCZCyqXAE7VVXW1eJsGlBS+OGDz/Qo/DRfOrr4AjjvDS6T/8sFp7IvdRH5NFn0sLXlIumqYWvCRi8NJ20XzlFeCww4CBA4v75P8/ZQpw2WV6i/goC55OwhvXLpqmMXjvvAP8/OfAmDHBc7wFj93YcSXwTGrhZS0GL+0yCToWvLgFni9AdQXec88Bjz9e/LyJwOOv8ah2wohy0QTU3DTjdtEUjQvTGDyXFjxTF82wvvOZc5MQeF9+CZxwAjByZPCcqgUvao756isvgaAP66L59dfAffcFr6ncU11Z8Nq398Z9OVrwDKpyAcOHD8ctt9yC0aNH46CDDtr0/JAhQ/DCCy9s+vvRRx/FO++8g5YyWV1GJGXB27AhPGaEb1OEbeFuIDsumq4FXrNmwc2bXfix8RdRRE3qL7/s/f/22142TFnaYb5vfv9YknDRDPs9cSZZYX9bHBa8OF0083mxFQLQd9GMGk8XXghMn174nH+82DaHDwd+9CMvS6cMHYHnv1+ltqNrF01+nFRXe32Jugb23df7/9lng+d4gReHBY+ds00FHjuedLMWJ5lkxfZ9tbXA9tvrt8u+zs7XHToEj21cNHfaKXjMnouwa51n6FDx82HHfuZM8fMiC56JUMnng88lZcEzddHs0yfI6OiTFQue6xi8XC55gXf00V45jiefBI46CujaNXARrq0FevUC3nxT/NmoY3jMMYVikbXg8SQh8HwLnl9vl2LwfuCll15CdXU19t9//03Pvfrqqxg7diw222wzXHTRRdhll13w6aef4tFHH3XV10zjwoInG+xpW/BEE4trF804Y/B0XDTZhXvHjsHjxYvd9gnwzhFbXyaqb0D2YvDiLJPgwoIXl4sme9xE123YJoprC97ChcXPiXapAeC//w1vi1+08H0Je38YKgLPVLizO906dfB8khB47Hgxra3HzkdsvUjdtkzfk5QFr6YG+PWvgYMPBnbYwXOfAoqve956xr7OztfdugWPTS14u+4K3HJL8LdtAiMek0RWrpKF8JslsnuCiQVvu+3E79NdLHfvDhx0EPB//1f8vizE4MkseFHjLer+5FLgqWzss7UWv/3W+98vz9WuXfG6jyXqGPKWaDYGj0fXRdPfYMnlxP3jj92GDcFGm1/vlbJo/sCMGTOw0047oZq5Qp599lnkcjk88cQTuOuuu/DGG2+gbdu2eFzkj1CG2Fjw+LgZnrQFnsyCZ1omQWTBizMGT9eC5+Pv7ACFAblRmFoiZMQp8GQp61nSLJPgY2rBS6tMwooV+n0yFXii10XuW0C0oOcXLaI2or477H1xxOBVVwfnw2QR5CIGLyp+xMTKwv9Gdj5i40d023r9dWCrrYrfk6UyCbW1wIQJnmWateaxoo6/ftn22Pl6iy2CxyYWvMsu81yc2ePPW/BUCBubuiIFcJdkhb+/yGqj6lrwvvwSuPxy8ft0LcozZwL/+594/nJhwXORZEUUg2djwdu40a6PYXUcVfC/2z/v/nrPJgaPpapKbvlWEXiiMgmA2ALNHzs+wQpAFrxNLFmyBN27dy94buLEiejcufMml802bdpgwIABmD17tn0vS4BSisEjF81iRDWx/J0dILsCzzYGr6YmemLLQgwe28esZdEULXzC3PBULHg6i7YwgcffKKMK2+u6aKqOuTjLJLDJCFwIPDYGz1WZBNcCT2c+ErUlGgeuLHgukqz48Lv87DWrKvA23zx4bJJltXnz4oWoiQUvLoFna8HjMxfL5ghdC17z5vK2dOdePiuw7H0qr4kseLYumnHE4OXzdhY8/v2myfX88+4LJ5cCb8GC8O8OQ7apFpfAqxgLXlNTE9YzM+CaNWswbdo0DBgwoOB9HTp0wFJdX5ISRbT7HofAU11whH23KwteHHXwNm7UC1x3nUVTZsHT2TEvJQteTU20a0KSMXgqZRJcxeDZTNjseViypPj1MIGXhAVP5qIpi1HwMYnBUyHOMgmsYMmqi6ZJvUp+AWO64SRqS7TwTjrJSpgFj0V27YcJPH++7thRLwmPD3veRQtaEwte2HExec1VkpW4LHhhbenG4IV5E+h6acRlwYujDp6NwOPnQt3NVv+6U7Xg6R7DqqroGo9hyASe6B4XJvD8eZUseD/Qo0cPTJkyZdPf48aNQ2NjY5HAW7ZsGTqygQNljCjFuaskKyaukFmOwWO/n4/BA9wIJPYGrHIe/P6zNyTTBZUrF0KfuAVenBa8OFw0k7Tgyc4Pex5E8ZlJCTw2QQKLCxdNlRg8EwtenDF4ablo6ljwTMqZuHTRNLXguU6yEhaDxyK79vnvYV/z5+suXQp/q4mLpmjByI7htF00s2rBcynw/N/qwoIXR6HzmprCecPHJgYPcCvwdO/FfpbkOC14Jq+x/RO9X2TB448dO3/68yrF4P3AT37yE3zzzTc477zz8Pzzz+Pqq69GLpfDUUcdVfC+jz76CD169HDS0awjcq/KqovmqFFeanVVXFnw/vc/4JFHgOXLg+f4GDzZ98mQTXrsRW4ag1dXF7RTzhY8G4En2tVlF0RxlElwJaDjtOCFxeC5TLIia0vmohkl8OK24LmKwXPpoplEmQQXLpo2FjwVgZe0BU/FRRPQd9Fcvz5IDLHZZnpz5OuvA3/7W+EGTZQFz4WLpomngasYPFWBp2LB40v6yNrSmXvZDLK6Ai/Mguc6yYqudVHWPxYbK6OtwGtsFG90uBJ4YZlnbQRelAVvyRLgqquCv1UteKUo8IzKJFx99dV49tln8dBDD+Hhhx9GPp/HySefjD59+mx6z+TJkzF//nwczxa+KGPitOC5FngAcPjhXl2SbbaJbktF4EVN/rNmAYcc4j1mF1C8iybg3XBUK2vIdmRbtgzEhanAA7wFwjffxBeDp9M3oHhytV04xmHBa906GA9xlEnIQhZNdpyIbiguLXgm2fdMLXhxxOCx9fLCYvDIRTO8zbgteK6SrNi+z9ZFk4+vURV4c+cCBx7oPd555+B50TXj2oJnYt1zVSaB30CU/Z60LHgyTw4f0xg8001D0WdqagrXNT621xT7e5N20dy4sXBd56/JZG7+Li14ccbgXXllkCEUcJdkRWddkhRGFrxu3bph8uTJuOmmm/Cb3/wGjz76KB577LGC90ydOhXHHHMMjj32WCcdzToiC14+r+e3m1SZBL9v//qXWluiSaqqSi/19xNPBI/DyiQAehOZLIcPO9lGTbL5fPCd/A3J391ZvFj9AnZtwQsrdJ6EBU83Bo9dMMdRJsEmBo+9OYVZ2aK+iz0Pt91WvAi0TbKiumiLcnOzEXiuyiTwFoKsuWjyC7O4s2iaxIE1a1boUWBrwRNlz123LjqrnwpJWfBkLpqs+NVx0Xz66eDxp58Gj11Z8MKOi25ZlVwu6IOtwIvDRTOXk28kAHrrItl9wMc0Bs/vY1QbMngL3h57eHVGVfsm6x8LWwsvaRfNxsbCc24Tgyf6nVVVXoZaEboCj70eoyx4n38ePO7cGfjxj73Hovuczroja9Y7wFDgAUDXrl1x/fXX4/7778evfvUr5Dh76ymnnIIxY8YUxeWVKyILHqB20pMuk+CjGh4pm1h0YhtEu1uA3IKnCl9bRfR9UceC/T6RBQ/wzpFqvqBKctEUjUd2kZB2Fk22vQ8/BObN84q1AmqLZNnYYa/JHXbwrLzsHldSMXiycyNz0YxClNjA1oIXt8CzddHkFyxxx+Cpzg+i3XN/w8lW4MnOqe/aGNXGZ58Bd94pfp9tkhXVGDzXFjzZuY7DgrfvvsCLLwZ/67p0s8fEtlYaf33KFvA6SVaaNZPXJAP0LHiiDOUsphY89rELC15VFTBpEnD11cHzOjF411wDXHJJ8XvSFHiiOcjERVM0dqqqvDnkmmvEr0WhUyaBPXZsP2fPDjakozwvosZs2Qi8M844AyNHjox836OPPoozzjjD5CtKDtMU5/l8MFCTFni2GTldCjzTXchp08TP68TghQkoE7eoShd4uVxwvl0lWXFhwevWDejUKTiny5dHj1sVCx7gLbxZd+ekYvB0XTR1XIbiEHhhMXim1w1rKWhs1HeV4Xd8s1Imgd099+czf+wuXmxn8ZRd86obEzvsYB+L49qCJxJ4XbqoW09l5zqOGLyddircYNW1+LPHxFbgqbpV6ljw/GPmIgYvyoJnGoMHuLXgAd7v7t1b/J6o/m2zDdC+ffF7TGsE8/dm3c1W3oJnI/BE6wC/Dt4uu4hfi8I0Bo/dOGC9jaIEXtSYNRlDcWMk8B599FFMnDgx8n1vvfVWketmuSKz4JksqHhMyiSoTKBhNxWWJASeyU3q++/lO9mswIs6B2ECyiSxQZICL+06eCKBV1UVnFdXZRJcxOD5bbDnVJQBU/Z5FtHChU2TnZQFT9dFU2c+krUhe78MPq7SRR28MJdD2XiVjZskLHgmMXjsXO8vWnyBl8+rexQAxYshmWhXFRrV1fZCPSpBkI9qDJ7IRXOzzQrd3MLuUzoCz9aCV1tbWBhbd74wLami0i8XZRL8NlzE4LHjQddFU9WC56JMguixznzLh734pGXB42PwbFw0Rd/tb5KI2lO5pkxj8GQ5L8iCp0ljYyOqdH2EShSTBAn860lb8FRikAD5xKITgyebFGxi8GTumWy7gJ4Fj++nSXHhUrLghe3mi97PI7PgmQq8OLNo+u3pnFMdgWezYAPMvAB0XTR1diFLxUWTF3iyuUjF3RbITpkE0e45uzmhk2hF1YIXdk/wz7VffNz2PMrGjmpRcVUXTUBtkbxsmfh5kUXA1oJXW1u4IZQlF00XFjyXAs8myUqUBc+li6bocdT5YPsni1lMSuCJrqe4LXiA+PpSGR+mZRJkAk90n9Ox4FWcwJs5cybasaueMkbmJ+7Cgue6Dp5PkhY8WX9sLHiswNt++8LXdFw0w5KYkIummQXPF9hpxuCtXw9MnlzcBr9IXrjQy6AnIg4LXjm5aKaVZMX/Hb6bD3s+ZONV9tv5BUtWyiSEWfCA8M2JfN6Lk1u/3rNSf/VVYf9sXDRFWQhF74tC9Xyr1sHz/+aTrABqi2TZ/O7KgsfPbTbzhQsXzcZG4KOPCseZq0LnLgSeaCHuog5enC6afPu6FrwwK5LKuZ06FXjpJWDBAv0smvxcx8fg2ZRJEH23fy5F7enkrmDbAqJdNEWuv0B5WvCUyyT87ne/K/j7o48+KnrOZ+PGjZg6dSrefvttDBo0yK6HJUIpWvBsBZ5fnyafjxZ4ojaaNRNn6lOdbFmBt/POwMyZwd+uYvBMXDRNLUwysizwRDd91oLX0OD9E2Xti+ob+xldC14+D+y/vyfefPzfyS6SP/gAOOoor80pU4rjAWQZ7ETHjC2YrWIJ4YnDRVO2CJZRKjF4/OJP5TpQFXhZcdG0seANHw5cfjmw1VZe3Sd2gWUq8PiFUVwWPB5VC57/t8iCp1JGQza/xxGDV1vrxf/4909di78LC95ZZwGPPlroeVBba1cmwb9eogSejmt3lAVPN3ujTUkrFpkFT+daV7Gsq7qRPvYYcNppwWfuuqvw9SgLHj/XbdxY2L+4LHii9lxb8GQxeCy2MXglLfB++9vfIpfLIf/D1f/RRx/ho48+Cv1MXV0dbrjhBqsOlgouLHhJlkkA7AWev3O+YYOZwGN3ME1uUosWBY+3267wNZ0yCWECStXtjsW1BY/9XnbxCaQbg9fUJP7O4cO9fz5r1oiDx6O+y8aCt2aNJ95YRC6a114bPD7nHOCddwo/I7qO/AxxPLW13r+GhvDdUtnxjMOCxwvwqDEisqDaWvB40e7SRVMk8GRzkarAY4W6qotxHGUSRLvnW2wRPCcrEQN44g4QW6ZtLXhRGVpN5qEwTOvg5XJeUiVAzQqiI/BcxODlct49cMUKOwueaQzeo496/7ObUWEbcUm7aPJiESg/Cx4/b9hY8MaPL/ze//yn8HVdgce7aPpzUFUVsPnmnpWwZcvgPS5j8HQFnk6ZBFMXzbK24N1www2bBN7vfvc77LbbbjjmmGOE723WrBm23HJLHH744ejCbjmWMaYWPN4HW4RLgbfHHl66eMA+Bg8IBF5Uv0RtsAttE4HHLuT4JC6uLHi2FrIoVCYFPisci0n/+J1H0xg89pwfcICXHrq+Hjj0UOChh4LX1q5VF3iuYvDCdr1lU9Lq1cXPyQSejJoa7zyE9VF2rZjMIVExeLzAS9uCF2YhMBF4ft9UXDRVY/DY7IZhZQNkbceZRXPHHYPnwmKQwzCNwVO14Ll20dTNoulbNjt2LN6kCOubjoumCwseEAg83Rg8l1k0WcLmtqRdNP1NMnZT03UWzbRj8FQseKoCj9/YYot5A/Yumuya6u23gQkTvM2w448P3i9D10VTZXzYlklQcdFkx2/ZW/B8fIF34403xtGnkiTOGDyXAu/ii4FTT/UuIBcWKRXXF1kb7ELbVuDxF3WpCDyV9/JZ4VjSdNFkx2KLFsDhhwd/s4JbJ9GKqxi8sMQE/DH0ES1GdAWe/x0uBV6SFjzRfBQ2PkwEnuwzJteNCxdNfse3Q4fgseomWNwCz+9j797eOGlqshN4Jlk0VS14rl00Vevg8S6aog3EsM0q2W+PKwYPCLxYknbRlB0H37IoIsqCx3p0+HOkaR0837UfKLyXyJKs5PPifqdhwdNx0XRpwYsSeOvWed8nu25F9wrRHAQAW28NnHkm8OqrwXMuXTTjjMEzddEsawseS5NuoaEKIKkyCbYCz8/etXx5+gKPvQGbLIDYY8ELvObNvePZ2GjnomkSO+Na4PkLlpYti100k8iiqSLwwuKYdASerEyCCwue34bMgidyTxJ9l2zRArgTeH7ykHzeLgbPRuD5bfgxh6LfpJtkpaZGfqPMiotmq1beImH9evU5Mo4YPNHuecuWwLbbAl9+CXz+efiCTYZtmYQsW/DWrQss8ex1HmXBC4uvjtOC54cArF3r9U10XnRcNFXvATLLdFgZkygLHvvdtjF47D0jyoIHeOdA1G9VC56twHNRJsE2Bo+/r4jKqKxdW1j7LezzYRY8H1VjRpZi8CiLJqFNUklWbOvgsdm7VBcvUS6aQLTAi9tFk7+omzVTW2zz7WTZgicSJjYxeH6SnLgFnk4mTRULnspEKkuOAgCdO4s/oyrwVCx4YedCdg3zixeVG7trF02VuBLZ+2XwC1uXdfD8tlxm0ayu1p8jdSx4NmUSAK9Itv/6nDlqbbHEHYOnuvuuavnSicETJVgBguMvO/a6As9FDB6glkkzSuCxc7jqPUBmmbYpdC4qNySbN6IW8Ow9Q0XgycZcmCcH27+0XDRV6lP6Y6WpKfy4Ra3BgPB7cVQMXpTAS9pF03WZBLLgccyfPx+vvvoqvv32W6yXrFpyuRyuv/56m68pCZJ20YzauQ0TeP6uoar7Udhv8Pvm2kXTv2nK3EXY76ypKZ4YXQk8k4WZS4HX2OhlwQPEroU2AlQliUZYH8MEnq6Lpj+eVWLwdGooiWjWzIsJXL68+Hkekxg82ed8VCx4flsNDXYumvyxMp2PbEQZn2RFt05dWJv+8WavgxUrxJlbVQWeP0d+9130HNnU5C1e2GsvzjIJgCfwnn/eezx1qmfR08E0Bo8/5jYWPJ1zrZNFk028JRJ4Jha8uOrgAcUCj43/9IkSKX57jY3q9wCZmKytld8PojaX+XILQJCIjb/mRceMXdOw94woF01AT+CJ6o2y4yJqbeWvTVwkWeHn2ygrUkOD3INEReCF3YtVyySwqAq8sCQrruvgqbpo6pZJKEULnrHAGzZsGO6//340/vCr8tw2lp+QpVIEXpwWPHbArlwJ7LOPlx1t3LjCoHuWMNct/6aybp1aCvskXDTZPixeDPzoR97kMnGil7FJBBvQzR879jkd1wZ+8kzbgrd0aXBDEVnwbPqnEmMV1i47+du4aD78MHDFFcCllxaLAR9dC17Ucd1ss2KB59KC50LgqYzfKBdNHtP5yKUFL44yCew5OfhgL47uySeBww4Lb18kdngLniy+5+uvgYMOKs5mGWeZBCCw4AGewPvpT9XaY/tnUybBhQVP51zLYvD475k5E9hrr+Bv0Qai7HvDSk5EuWjaxOCpZGkOczf3qa315mMXAk+2Hgiz4H3xBdC3b/A3ez2qCLynnvKyGJ92GnDPPfoumrLzKhIK7LnjN+T+/GcvWdiVVwLXXFP82WXLgAEDvPf37FncDhBfDB6QrMDjY/BEljFVMZtkDJ6piyZZ8H7grrvuwj333INcLofDDz8cffv2RVt2K6oCSapMwtixweMrrwReeEH8GdlEzxdYXbVKvGvIwv8G9v1xCLx77gGmTfMen3lmcbpfnyiBp+p+keUYvLAEK4AbC17aMXjnnuv9f+ONhYtVGwte1Dnv3LmwbiIgXtiIzk9SAk/FRTPKgqf6ftHrMrcjFt0YvLjKJHTvXvj6smXAyJHRAs8ft3V1wTitqgrmSN9Cx8e+AsDo0eJSBVFlEmwteNtvHzz++mu1tlhsXTRdWPB460fYuVe14PGILHiyhByieCXAO+6iY6U7HwHRFjyZ9VTVgsd/RxhhLpoygRdmwTv//EKhyws8Hv43/fKX3v/33gvccYfcRdOFBY+F30Q7/3zv/2uvFQu8K67wYl8BYMYMcb9sLHi77Rb8feiheu2pCLyw61u1TAKLCxdN0fjIYpmEirHgjRgxAjU1NRg3bhwOPPBAx10qTZIqk8ASlkVNdiHzAk/mFsLC3jSOPhq45Zbgb//i9N0qZS6VohuPKAgeKFy0vPSSvF+qFrxSjsGTxZT4JCXwROc2yzF4/HF95ZXCv9mdcx+XLpph59WlwIuKweNJ24IXlrXVxkXztNO8xCOffgq8+ab3HG9xCBN477zj1W78xS+8v/k5UiTwZBsXccTgsYsW9rFJcgiRwGvTxtvsS6pMAnuumzcPnyNUY/B4ZPeXjRuLRYzsXPbuLX7exIIXVwweoJ8sJCxjqOxaD7PgTZhQ+HeUwAs7d2vW6FvwZHOHqgUvn1cTFVOmiJ93FYPXqxfwt78B774L+InrVe/xKgJv8WL5a7ZJVkyzaLIJxXySiMHTddGsGAveV199hf3224/EHUNSMXgsO+wgbzdM4OkW72Z/w+OPF96U2Mm7vl7eVx0LXteuxe5zIrIq8EwWqjLCauABxcdf5ztVBR7g/SZ+QnQZg+cjK3RuY8E76yxg0KDC10UCL20XTdmOYpIWvDgEHu92G4eLZocOwAMPePGqfhId/hyECbyddw4KPwOF42PFCrGbuOx6c10mgY8x1t3s4BElc2jb1hN4SSVZkW3kiFDNoskTlqVZVeCx7rAqfQojLIsmYO+iyX9HGGECTzZ3qBQ693Ep8Nh7iYskKyy615LsGLjMon7mmd4/H5cCL8wVWadMgo+qMSNM4PmPdTZvAHkdvLjKJJSiBc8oi2abNm2wuSwwqkIxqWEF2Am8rbeWt6tqwVNJtCKLiwLUBYaOwOMnUdmFwwo8fuJnXTSjzkGaSVaiJoU4XDT5HSwVgSf6TXwdPBbTMgnsTcZVDJ7o94k8ykXvSzMGT8XFWDcGT2c+kgls2ftlJOGi6RM2TkTtixYDgJplRcd6alMmgd+RthF4/rHn+6iSNZSfN2TeGroWvKj5RxaDp+OiGXX8ZXOULMbdVQyeqQXP1kUzTODJ5jeZi6aoLR2Bx7e7dq3cgqe7cRU1RnQ3XmQCz0UMnuy3uRR4YcmEki6TwF5D/D1BJctu0mUSStGCZyTwBg4ciI8//th1X0oa2Q6OiyQrsvS5YRkmZcKNTSAAqFnwZFYVQF3giSamTp2Cx3wWPBZRnAv7fUlZ8NKIwYuy4CXhoilrOw4XTfa9rix4omtHJPBEv1E0dsLq4JW6i6ZMGMtuti6TrLgWeHzfwix4PK4Fno2LJi9CdTxEZH3j++hbklavlp+HUrPgyVw0RcdfNkfFbcGL2myVtW1rwZOtD8IEnkzc+PHyLOzaJCqJBi861qyJt0wCS9haTTTnqQg8nWtdJQeDyxi8MAteWjF4/GMfU4En6qd/HlhXXLLgSbjhhhvw5Zdf4m9/+5vr/pQsotS7gBsLHiCeJMMmD50YvCjCbsY2FjyZKOZvPqIbCBBMSCKBx7qalHIMXpQFL04XTXZM6wo8UxdNmcBzbcETuWiqCjxbC57LOnhJuWjKbra6FrywGDyT64afj8IWbK4FXtwumjILXtQGYtg58fsmctH0ERXBzufVY/D8RCZhRG3AsJjG4LEbiFHHX9dFM6kYPNm5jCsGr0WL8CyNomMuuj/PnRs8jrLgiQSeKxfNqDHCXqv8/C/6rGzuNnXRdGnBk20cssRpwbNx0RT99qhzZ2LBC5t3bGPwTOKh48YoBm/lypUYNmwYzjnnHIwbNw5HH300evTogSrJ1bf//vtbdbIUkF3gRx0FfPghsMsu4s+p7OAA3qTLXyRhAyqOGLzq6mKroY3AYwkr1TB1KjB4cPHzrsokhAm8qirvX1NT5SVZad482MGzseCZCDx+rNnUwVO14InGbxZcNE0Ensy6b+pRoGvBq68H/u//vPbYzHBhFjwgugYV308dF00dgcfH4ImI20XTv/Z0XTTD5mGZBY8XGu3bF74uWohGncewDcuoDRgW0yyabLumLpqyGoOuCp2z4+yWW7xYYTa1geoGjt/eqlVeIrQTT/T+yQhz0Qz7PevXFwouQJzs7csvg8dRAo+3Krl00RRdH6IkK4A4KRP/fa5dNFXWf3HE4H38MXDddcCQIcAZZ3jPRZVJiIrB03XRjEvghcXghRlUVC14jz/uleC58Uagf//i17OEkcA78MADN9W5Gz16NEaPHi19by6Xw8YsSlvHhFnwBg8G5swRf07VghdmdubJ59UFXlhWJR/ZbjlQuECKS+B98UXxc42NwQUuCgzXKZMQVs8N8Nqpr09H4PlFzoEgeQRLnAKvRYtgghf1U7UOno6Lpn8jCNtdU5lI43TRVBF4Sbloyl7zn2/ZsvAmHTXedF00ZefixReBv/7Ve7zPPsHzUQKvsTFa4LHWpLgEno2LpusyCWEumqYCjy21sPvuXhZNH9HvFW2YiDKLsu9XFXibbw7MmxfdZ0DPRZPF1IIn+w0mhc5Fx5Cf06+8EnjvveBvVQseex948UXv39Ch8vEd5qIZ9ntEAo8vNwMU1iM0seC5ctHU2QTg71MbNxYfP5UEWWlZ8HRi8K65xis/NX68txHQokW4i2Z1tXiNZuOiGRaDF9Ue4F7gqcTgNTR49Rr9+YItU1Y2Am///fdHLiwArAIJyzgXVqtI5QIH9Fw0160LT76w3XbB39Ony7+T/x7RBWAag8eXPwgTeMuWFT/HW91sYvBYkSsqGVFb631fGjF4US4ScbposmMuLhdN/tyoCDxdC55qkhUXAs/vtx8kLpomXRY6l80B/vMTJgAnnBDMQVHXAtse+zt1LXiLFgWP2QVgbW34PNfYGD4XAIXnnx8n7DGMOwbP1EVTZSOmqSkYJ2EumqLfFDYP+OPxF78AnnnGq+X15JNe7dGwz4s2TPbbDzjySG+R2K0b8M03hf0Ki1Vl29tpJ08QjBtXmMnUx8SC9/jjhX/rxODdcAPw2GOFxySsTzYWvG239TImjhjh/b1wYeFnZNcrP6+IrpkZM7zssCLCLHhhc4TIgsXeo/bd15vDb7opeE60bmC/g7fghblo6sYW61jw+PuU6oYp304aMXj5fHDddu4s37j3j/Xkyd7/69d7Vl+ZwJO5ifuoCryoTLCi365jwWPPacuWnnWNHYP+edB10eTd4b//Phgn/MZE2Qi81157zXE3Sp8oc7OMOGLwwtwua2q87Ju+22FYLT2fMAueiYvmV18Vu76ExWGIfg8v8ERZNFUFnmoikzQseP7ruVy0C4Fu/2TuWj7sTlhcLpp8u/4NJWzh7sKCJ4rBc+miCcjd1JKw4Pm/ZZ99vOtNNUZHtAgFChexbM0i2blgfyO72KipCbfQ2WZg9K+TxkZ3FjwXLpq6FjxZkXO+fV0Lnt/nqiqvULtP1Dwi2jCpqfEsRT6HHRbUm9RJ5lNTA9x/v/y9ujF4f/lLsXuiqgWvWTNvYcguDkWYWPBk19bf/ga8+iowa5Z6GAb/naI5bupUM4EXNj5FMWjsORk3rtiyK+qbTgyeigXPNIsmey2tXq3WpgjTLOquLHjs92y5ZbHA23xzYMEC71gvWVK4keCL9rAyCbJsw6oJBUWv2bpoysokAF4NwWOPBXbd1fvbPz5hG7+iPlRXB2vlpqbCscrPs1kUeEZJVohiwix4YdgIPNnkESXwWrTwCmoCwOefq9+MRbuEJgJP1E7Yrr2KwAtz0bRNZJKmwPO/U3Z84o7BC2vbRZkEWZ/531sqFjyVHU2TMgm6FjT2t4RZtXhk8ajs97PPy9qT/UYVF80oouZM2caOqK+yhYtKnHKcMXhhlnsbgSd7LWoeV0mKYloeyHUWTdH1qRqDF+Z2KuuTjQXPx/9efq5UdT0U3R/CNm9NyiQAYgte1FwbtXjnBV5YDJ6LLJoyC57IRVMFPl7c9DqwicFjr9mOHYvXi1tuGXz+nXcKX/PnGlsLnu5GpEsLnujzomte10XTz8Hgf5ZdK4qOV9YggecI2Q5OFHFY8MJq2/l987ODrV8vjw/0UbXghWVxCiu1AIQLPNHvcemi6d9gWrUqji9g+5tGofMw91hA30WTrS+jI/BE/Qyz4FVXB8+FxeDJ+hy3BS9uF01AX/zIBJ6sH2Hfwf4W1vqr46KpsqmQtsATnVuZa2spuWiGJTewcdGUnS8TCx6PTpysTpIV2eaObAEouj5VXTRF878IVzF4Pv73rl+vJmL550XXqiz7NGBWJgEQCzzV65ElLMlKWAyeroumjgUvykVT1hbfJ1YURF3rrix47DXfvHmxJ9IWWwSPeQc8/5yGxeDJNsJUr/koC57LGDwf0Typ66JZXR08X4oWPCMXzTfeeEPr/ZWWRTNLLppt2hSmvWYF3pgx3uOpUwvj8mTf48pFU1fgmVrw2AtTFg8FBDcYkXsm27c4YvBUF9yuLHiiCS4OF03AW7Rs2GBmwYs7Bi8JF03ZudUtk+C3JbpuVG74fluNjW5cNFVqA4UJPNXkGyrvCRNTaSVZibJipGnBk6Ej8LJuwZMlygrrW1YseIAnblq39h6rZod0YcGrrpZbMfzjHuWiGbW5IfpMnGUSou6vOhY8UfkQvg32OZW4fVcxePx6aLPNCktV+BY8oFjgubLg6Qo8dj3mMoumj2hTJ+zekcsVhh/47coseGUr8PwsmipUYhZNUwteVJkEHhWB16FD4cTkD2q2vo+sDIFPEi6aujF47GQUVQcPkC+QGxuBpUu9xyL3TLa/acbguRJ4ooVaXAKvrs5LkONC4KlY8JYvB0aO9OLOohakcRU6j8NFE5AnrVCx4Pltbdgg79P06cDYscDs2cFzMhdNGytlVAxenC6aOufSdQxeLuf99o0b1eaHMAteHAJPx0UzaQuebgxeEi6aLmPw+O9dsyYQeKqWKdEc9+WX3nXIj/GGBrElzn8f31abNsE1EGbB8xfIPEm4aJrG4IUlWeHbDMtMzuMnZvvoI+C557x4sKj+qVjwpk/3Shz84heFeQz49RC7lqmq8pIg+Xz4YWH7MgteQ4M8k6+P6qZOHDF4rl00/ef4uYm9n1SEBU+WRbOpqQlff/015v6wdbDPPvugNiolmoTHH38c//3vf/Hxxx9jwYIFWLZsGVq1aoXevXtjyJAhuOCCC9DanwU5xo8fj7vuugvvv/8+1qxZg549e2Lo0KG4+uqrpZ+xJcqCJ6vvpGrBC0v9ysMLPDa7Ge+iCXhxeGG4TrKia8HbsKH4RqUTgwfIBd6SJcHiNcqCZyPw2F3QqPeyRFnw2IWjysJOR+BFxeBFlZfwb8wmLpomMXiXXRZko3v44eB50XkXuWK5jsFz6aIpa0v2PD/NRWXk3H334t15mQVPxXVUZqVMMgbPxkWztjYoMSETeLKxG7YTryrwVC14Ua7Tqrhw0WTHRdRc5MKCZ+qiyR+zhobgN6u6aMZtwfOxicFrbBRn0pRZomTXQuvWwTUguq7D1geAvsBjXTT5jVoXWTTZkiBse1EWPJnAi7JaDh3qiap+/cL7pxKDN2yY9/9//gOwjnT8eohdy/B/88gseOzxyHoWTRMXTdl5Y/vKWvAqxkUzKovmJ598gtNOOw11dXX4z3/+Y/IVePDBB/H222+jb9++6NevHzp27IhFixbhnXfewQcffICRI0fi9ddfR/fu3Qs+d/fdd2PYsGHI5XIYOHAgunbtijfffBO33norRo8ejYkTJ6KzqKCYJVEWPNbtgkW1TMIxxwD//rdXWHHSJO85lRg8vmCt3zf2gg+L2WO/x1WZBF2BB3iTK7srpeOiCcgvvqgEK2x/bQReXZ34xmobgwd4x27jRnMLnuzGYhODBwSLpaQseL64A4I00IDcosLjwkVTRfy4FHjs8bvzTuDaaz3304svFrelI8iyGoMXtVmkk2QlzBrburUn8GTjV8eCB+jNI6ylhF9cRV0LcbhoRpVrAbxMfT6zZ8uLhANuYvB0kqyExeDJ4r3CiCsGDygcbzYCDxCny5dtvsiuBVYQhVnwVCy7Pn7/m5qK74usiyYvuG3r4G2xBXDWWcHfOmUSdCx4/HN//Svw4IPF71PZ4Bed2zffLPybXw916FD499Zbi9sG5Ba85cuDxzK7iGpsfJSLpm0Mnuh+HuWiqRIvym4wlKKLZixJVnbZZRc899xzmDhxIv7whz8YtTF8+HAsXrwYU6dOxcsvv4xRo0ZhwoQJmDt3Lvbbbz98+eWXuPTSSws+M2XKFFx66aWorq7Giy++iNdffx1PP/00vvrqKxxyyCH44osvcO6557r4iUVE7TLJFgmqFryzzvJ8qt95J5iIVVw0ZQJPx7UvbIfOpNC5qcBj4YOKw8ok8N/Pwu7IRLlo2sTgyRYOthY89jVTgSfztnbhoul/p2xsxBWDx44XVZfppLNo8sfd1oK3777A/PlezTs+xjDKgidCxUUzjRg81ZgfW4EXtUFhKvBsXTSjkubE4aIpc5lj4d3+w1CJ6fOJ24Kn8tvC+uTagsf2xyYGDxBv3sraVBF4YTF4KpZd/jMiwci6aPLnQ/YdKsfp9dc9t1V2g4JtL6pMgmwjXCXuUHZso6xQQPTaCIi24O24o/yzMgueH7oCiEMagMK5SNdFM6zMAWBXJgEws+Dxz7VoUdoWvNiyaG699dbYc8898fe//93o83vvvTc6CqpOd+rUCbfeeisAYNy4cQWv3Xbbbcjn8zj99NNxxBFHbHq+VatWGDFiBKqqqjB69GhMV6nurUmUBc9W4AFeoGxNTfSCXkXgsTdBVYHnKgZPNRCbJUzgqbpoimB3ZFRcNFVu5i4FXlQMHhCcA1MXTdlvsimTAMjdjlhUXTR1s2iy40U16VFSSVZkBaxlhc4BNYFXW+sVuQ3LBCtqR3YjVXHRLKUYPJ0yCUC0i7FOFk1Ab6MoymLmWuBFbfjJkl6w6Ag8UxdN9nM6Frwwq7OJwIs7Bs/H1oInsjrZCLywMgkmFjzRtcW6aPLnw8aCt/nm4RlpTV00VTasZcdWZf2nskEpSrLC/t29uzixGCCvg7dsWfBY9lkgOkMzm7mbRVbKh/1cGHHE4PHHumXLcAse+7sqSuABwGabbYY5UTn4Daj54Sw0Z66a+vp6vPhD1dUT+SqnAHr27IkBAwYAAMb46SMdwg4W0WCTLRJ0BJ5PlKsPH4PH4n8HO/ijFgQuYvBYV0ORxcjGgicSeLylQHbx6VjwwtphKRULnn98XAi8MBdNQN8KYmvBE2WOjSIq9sjHpkxCPh+M3SiBp2vBC/udYTdh2Zhmxxx7zEvFRdMmBg8oFHhRCxTR9/OYumiKRGiYYI9D4Km4MfbtGzzWseDpJFmJw4LH/ra0YvDY7zWJwZNd+yJRIht/YTF4PmEumiYxeKL7gksXzagYt7AyCa5i8ER/+8RhwWvevFjg5XKFGzAsMhdNFQseEC3wZM+z4zDuLJoqZRJE/WjRQl4mASj8DRUl8Orr6/HBBx+gleqMqciqVavw29/+FgAwmEn9OGPGDKz9YWbs37+/8LP+81OmTHHaJ6BwgPGmfsCNBc8naic4LAbP76eqi2ZjY3HdNBZdC55soouaxHj3iCiBV1WlL/BkFryw+A0RovMiuwxcxOD558DURVO2QGEXliYxeCrFzl3G4LGYWPCScNFkj5kLgRcV28q/JmpHFgCvEhNi4qIZJvCy6KKZz4sXtnG6aCZtwXPhotm+fVBva9q0cOGjY8GTbe64qoOXlAUvbGMiLhdNFxY8dnFv4qKpK/CWLw/6qOqiqSKEo4QYvwnPjxOZi6ZKDJ7N+s/WRdM/rzKBZ+OiCUTHd8ue55OZqH7Ox3WZBNFzLVsGbYsSbrHHPYsCzyjJShhr1qzB559/jptuuglz587FsbL8sIqMGzcOo0aNQlNT06YkK6tWrcJPfvIT3HHHHZveN/uH/N7t27dHG9angGGrrbYqeG/Yb4iCfw87MNgLI3i/uB3VMgksOi6avAWP/a7qau/7w4RBVHkD1ULntgJP14LHf5fspqaSZEXFYgEAn37qpSMWvUf2u8Pay+f1LHhJumh+9x3w3nvi9/qoCDzVQue8cHr/fe+GJVuQsROxjgWPr5foSuDV13uJX3bYIXjOtQUvbIyE3YRFbfNtyergmVjwwgT3Rx8VZ/3zaWwEPvig8PjbumiqWPAAb/G3fLlnGe7d23vOJIumrB88URa8uF0016/3zsWee3rfpSqCdtoJ+PZbz71r4cLCxCssLix4sgWV6JzG6aKpYsGbOdPLaCnqD/+9Ki6accTgydyV40iy4n9GdF9g78mqLpoffAD89KfF3kFR66s4yySofNbUgse/N8pFE9C34LFjR8WCp7oZ4RMl8GwteNXVQV07Fy6avPUOKFOBV62wJZ7P59G+fXvcfPPNJl+xiWnTpuGxxx4reO7EE0/EXXfdhXaMY/CqH3yy6kJmaL9EwkrZ1ca9Twf2kIgmVZmLpmoWTRabGDy+ncZGu+QouhY82Y1I1HaXLsFkbyLw4nDRlB3zf/0LGDJEnm3KRODJ3OJk/TMtdK5iwWPbXr3aW+SybpCi/qnE4Mn6HBaD99vfAtdcA+y6KzBlitjl10TgAd75iLJQmbhoHn+8N0aOPjp4Lg0XTVULXpjAs0myEhWD96tfeZtS7HHyuewy4J57Cjet4iqTABSO3y+/BA44wJt33ngDGDhQPauuTxwxeHG4aNbXe8d/wgTg//4PuO8+tRg8wEvm4IfGT50qF3guYvDiSLJi4qIZtRCdNMkTyuxn+WvA1kUzTgsee08zKZMgej4sBo+N/VIVeDff7G0M/eIX4u8BotcILsskhIklFtMYPD+uzb/3RSVZAYAePcTtyyx4LDYxeCreJ3G4aALesWtocJNkRUTWBZ6Ri2Y+n5f+q6mpQc+ePXHWWWdh8uTJ6O1vdxpy8cUXI5/Po76+Hl9++SWGDx+Ol156CTvuuCPeYAuBpAw7CM46q3hQyCwYrDun6s0lKpbDn6hqasKTCKgIgygXMJMYvLC+sLCLA35yjSp0DqgJvDB3VlHfZMdqyBDvf5F7LuBZbvzqHBddFD0p8t/lKsmK6HzqWvDGjy9Mody8uVhksWNPtPPLt8sSZsHzf+fHHwOLFok/z/ZPduNka+XJ+iM6PyaFzv/1L+//f/87eC4qvkT3+Km4aKpa8PhFsm6SFdM6eEBhGnOWe+7x/mcXgDplEnTPJbu4vOqqYNwdf7z3v66Q0onBi7ovhJ1PWxfNhgZP3AHA/fd7/6uWEth+++AxW3+Vx0WZBFcumrZlEqIseGPHFv4dtRlmkmQlzhg8tm+uyyREOUvxY1+W8RkoPs5s34DoRBz8vTtsnMja8OG9uGwseLvuKn6e/W38eqiuDvjRjwo/f9BBgVA78sjg/f45DZs34ojBY+eAe+8tfl1H4MnGBT/n6pZJYC14IspS4DU1NUn/bdiwAbNmzcJf/vIXbB1WfEOT2tpabLfddhg2bBheeuklLFu2DCeffDLW/TA6fbfMMPfK1T9cwW3DRusP74v6N3/+/ILPsIOgRw/g3XcLd6Fl3VLJ4sgTtRPsD7pmzcIXUyqxW64teDoCr1u34HFUDF5UALWKK5lMDOvG4Ilo1cpzK3ziCeDWW9XctVQFno4Fjw/GBvRj8Hi3X9nCQCVTq6qLpmwcy/rOTv6yMXfGGcBzzxWOM5XUx7ZZNH2iBB47TckWCC4seKJ+qrh7yj4LmMfgAXLRLsI2Bi/smLHnh60n5i+IdOcCHRdN9nyLds/DFlW2hc5FY03VjZG9h4lcmnxclEkwrYPnukxC1EKUTzgj+r26MXhJWvDY+4CrMgmqAi/qfPzzn8FjUWKfKAseO1b4enz8cZJd7yILO7vBCMjnbxUL3vbbe+Wx7rxT3j9+PZTLAS+95B0ff2OsfXvgrbeAJ58ErrsueL9/TsPmM5UYPBsXzYEDvU0ldoMo6v4ZVSZB1Lc4LXg6JYiSItYsmnGx9957Y8cdd8TcuXMx6Yeq376YXL58+SZ3TZ65c+cWvFdGXV2d0j8WfhDsuWew0wvId39UXAR5ohb0bNxW2OBUid2KivHRrYOn46IZZsHTjcFTWYjKFu6qMXhhNGsGbLMN8MtfegtHXYEXtgjy+9fUFD0pin6vrgWP3y1TCQ6PGqthnw37DnYcyCzgYQuPIUMANieTigVPVeBFjZUoF01dgaciylRdNMMseHHG4Im+D5CPa9sYvDCLADvFs7v7/nmK00WTPd+ixVWcMXj84hRQd2NkBR67eclj6qJpasFTjcFT9aLRseDxwsOFBS/JOnjs867KJITF4LFECbzBg4OY2OnTw632orUQO1b4OdZG4PHYWPAA4Mc/Bi6/HBg0SNw/fj0EeGW1TjqpMIZyp528dSm7aaSyYRWHiyb7fC4HHHyw98/HhQWPn3NtYvBElKUFLwv4Auu7H+4ivXv33pSx0xd9PP7z/fr1c94f0SBQSROvkuSDx5XAS9KCF+WiyRbM9FEVeM2bm7to+gtRf9dLhIpQiVqk8IsOFYGnunjXqWkouhHoxuDxfWZd5lhsBJ6qBY8VErLFWdS5CeunTQxe1IQfJfDYm6orC56LJCtx1sHz4RwksGSJvD0e9rey/ZZlC5XBLi7ZPUP/M6Yumhs3RouCKIHnukwCO6ajYsjDFt3sPUzVgqeTZMW0Dp5qmQTXFrwNG7z4TRbRXJ5kDJ6uiyZ7PMMseCZlEmQb3z5RgruqKkgesn49MGuWuG+yfugIPN3kNCw2MXgssnEsuq+HIXL/D1uLxO2i6aNjGfdfD5vDwyx4qmUSKi4Gz2fJkiW4/fbbcfjhh+NHP/oRfvSjH+Hwww/HHXfcgSWyO7IDFi9ejI8//hgAsMMPaemaNWuGo446CgAwatSoos98/fXXePvttwEAQ/yAKYeIBoFKFkETC17UQkHVRTPJGLwoF022Pz62FjwdgRcWi6MiVKJ28UwEnq6LZlj/fHRuBDILnupEpjI2TLJosqgIvKgbZ1g/43TR1LHgyRYIujF4+XzxjTPJJCsqLpqAl2afRSYWonZh2d+qa8FjxxMr8HK5YvGogo74Z8+3roumrQVPtGGj6saoKvDiLJMQNSZcl0kIGwczZqhZ22xdNHVi8Fxb8FzF4EWtoWRts9kh+XkjykIW5qLJj5M0LXg+snGsK/DYPrty0bSpg+cTl8CzKZNQkRa8cePGYYcddsC1116LV155BdOmTcO0adPwyiuv4JprrkHv3r0xzk+npcm0adPw+OOPY71gu2jGjBn4+c9/jg0bNuDHP/4xdmZyal911VXI5XJ45JFH8PLLL296fu3atTjzzDPR2NiIoUOHok+fPkb9CkM0CHQEXl2duntIVJY/1oIXNjhduGiyk0mYu4WtwPMXPH7KW1dlEnQFnsxFJWqS59tnJx6VLFOqAk+WjMNHJwaP7TPbR9WJLGkLnk4MCItLCx4v8PJ5+fGyddFsair8/aZxc65dNDduFAs830qvspDh3dpk7n46Gzu67tXs/M2Oi6oqs1hclfnIhz3foqo/cdbB410083l1EdSxY3B+w1w02Vu7aZkE1fpzgHsXTdVC56K4sCRdNHUEnswSxY6NOMskiDa4dQUef7yjLGTsPS5qXpRd8yoWvDVrxOdS14LHnuf164OxJ7qvhyGy4JkKPD6+W9XyGSXwoix/KgKPXeM2Nuq7aEZZ8Nj7XNkIvJkzZ+LYY4/FsmXLsPPOO+Puu+/G2LFjMXbsWNxzzz3YddddsXTpUhx77LGYOXOmdvvfffcdTj75ZHTu3BkDBw7ECSecgKFDh2LPPfdE37598dprr6Fv37546qmnCj7Xr18/DB8+HI2NjTjyyCNx0EEH4fjjj0evXr0wYcIE9O7dGw899JDJT45ENAhkbhcs/k1QNcEKEL1w9i/2pF00H38cOPXU8HZUhQrgZZ30v3PlSm+S3Hlnz7f8s88K+yC6ybqy4LG/u39/4NJLg78vv9yb/MIWM34fRX37+msvyceHHxZ/RtU6w7bdtStwww3y97pw0UxC4KnG4LETrOxGEnXjjMtFc8kSLz5km23E7+UFHt/PMBfNFSuAvn2B114TfzdPWGygTR08/vj89a/e9SCK4/I/p7KQ4RdqOhY82W+1icHj27e1kqkKvObNxXOTaxdNtm+8tbihofD+FSaCqqqCbMGyc3bppcCwYcHfrpOsiHCdZEW10LlI4Il+b1wumitWFM/vNhY8kzIJqi6aIoEXJbirq73SHD788dax4PG4jMEDii2EgFocGQt7jHv08NZDa9bYW/CamuTjuLY2XMSym03XX+9tSPmJXfznRYjGocxa7zN6tJcs5uST9Sx4330H9OoFLFhQ/Jrs+4EKteDdfvvtWLt2LX7729/io48+wkUXXYSjjz4aRx99NC688EJMnjwZN910E9auXVtQjFyVnXbaCbfccgsGDhyIefPm4YUXXsC///1vzJs3D4cccggefPBBTJkyBT0EhT0uueQSvPLKKzj88MPxySef4Pnnn0fr1q1x9dVX44MPPkBn/+7jGNFFHmXBa2wM0umqumcC0Qtn/7mkXTQB4O9/F09kUTF4otfatQt2r1et8uoxTZ3qZdl7+unCPrDH38+hoyPwVMpJ+Nx1V3Cj++Mfo61mfh9ZeCEweHDxZ1Rj8PjXfv97+XtNBV7YRLbvvuLPu3TRVLHgyRYuOvGRUS6aLVoEC1gR7Jh78UWvwPEPuZ2KsMmieccdhYWTAfVrS8WCx4+pSy4JHrMe7vxnzz5bfj34feB/p6iwOZ9iX7aBEnWTjrLgyVKQA/LFZS5nb8GL+rx/vmU756YWPLYeG0uYi+a6dXoiyN+s/O674rll/Xpv/mQxjcHTseCFHXt2vKou1pOy4Nlm0dy4sViUqcTgsfejPfYI2jfJonnYYcXPiVw0u3Ytfl/UWKuq8koQ+cyeLe6brH9hYog/TrJzIRozbLIQH5E11e9fVZW+wAO88fXHP+oLPN7tNir+Lqxv7Fx0883eGGHvF7K1lyhSKspF87jjvDHz+OPe5jgQ3jf2eM2Z4wlQvt8s5RaDF7H0EeNbw24IMRVcf/31GDVqFMaPH6/d/mabbYZrrrnGpGsAgEGDBmEQm24oAUTl/qIE3pIlwc1Bx4IXtVDQzaLpx/KJLhQdC57PunWFbkWsm5qOi+YOOwQTkShYne1Ds2ZeWuDnnw8sbCoZDf0blqqLps8XX4QvDkV9ZOGPA59UAjBz0fRpahKfex2Bx964wlwRRoyI7peti6aNBc+Vi+b55wMHHqjmrgIU10Li0RF4vFVl3rzi9sKudV0LHj9e/Rtj167AD6HOAPRuav5x5vv5f/8HfPWVV1DZv6XwfTKNwZMJvMMO87wNwhIqyxaXSbho+udblr3OROCdd57ncSAizEVz/frC+1eUCPI3Kzds8LKPsveCL74ofr/rGDwRYcde170NsLPgyUIdqqu982niohl2DFeuLDxnKha8v/7Vuzb69we2287rW0ND8fdGlSEAgL33Bh56yCv4/re/FX6O/a1suRofFYtq8+be8auvL/aUSsKCJ9ocHjnS24R76qngPiCKo1axQrGIzvOcOUD37sHfKgIvl/P6vX6998/UPZPtk2xjjx0zJ50E9OzpzWs/+1nxe3Vi8Px5SsWC58OW4IkSeLmc13YpW/CMBN7ChQsxdOjQyPf169cPo0ePNvmKkoP1A/dhJyeRi6ZJBk0g2tVH10UT8C5w0cSgE4Pnw8ffsANfNU5om22848cKPBl+H37yE++fqD1XSVZ8pk0DdtlF/hlZH0V9k6Fb6JxlzRpx7I7OTh8rQGQC7w9/AGQhrWyfZYtOVRdN2Thmd5TjdNHs2DEo+hwG+12ywHofmxg8fuFTW6u+k2liwaurA26/3XusIqpFyARe586e5W/DBjcCTyZm2d/95z97C9cwwgRenC6a+by6BU/VRfOYY4AHHjDr27p1wf2rVatoSwOfaIWdh/gkGEAyLpphv89E4KlY8NavF29KiubyXM47tqtWyV00a2vV50v2vStXFlrHVARely6FxadlLsGqWXzPOQc48cRA4Ili8NiYex9Vl9m6Ou888hvpNhY8GxfNnj29OaZly8BiHWbBU3FbB+TrAJVyTzwtW3pjdN06O4EX1Xf2OLZuDdxyi/y9KjF4YZ/h4Y9XLhdcr1Gbg7L7FUvWBZ6Ri2ZdXd2m8gRhfPfdd0X14soV0eQUVSaBXbS4isFjs7upumiK2vExseDxYkw1loz1j/YFs47A44ly0WxqCn6fagyez9SpejvItgJPx/IJyMWFTh08FQte2OTustC5igVPNsG6cNFUvQGz3xWnwOOtfzpWEH7hIjpuqhsxUQKPFQOyGDx/BzzsenXtoqly/aVlwVu3Lui3bHHFZkXlr1/RXBm16As736wFT+V2HlYLT2TRSiLJiqoFT3VxrGLBmzFD/Jps7PnHVmbB0/HiYM8BbznSjcED5JkSdZKEiM4jK2aj1lBhiI4d+z389/vEZcHzUUmUBZjdX3zyebMx7Pc7yoIXVgMPiO67zhiJisEToWPBa91a/hr//f5xLGULnpHA22233fDGG2/g008/lb7nk08+weuvv47ddtvNtG8lg2xXk83uGCXwXMXg8VafsN1WXQuL6IIQ3RT4BYbqwortgy/w/EnId/cRYSrw2H7qWvCmTtW7oE0EnmkMHiBPq6/joskeExOBl3QWzTgteKo3YJcWPDbBBn8++c9GjaewBa6Ki6asn1HXALtok8Xg+b8lTIS6dtFUuf5UY/BU9zBVY/CiauAB4XObaC4Pmz+A8PPNxuCp/NawUgmqSUdYdOvgiQg79iaLYxULnui3AvK5RCRS2DEb1jf+/LLngJ+HdOvgAXKLse3i3ZUFz79WeU8pNsZNRFwxeD5RtUyj+sfjUuD5/VaJwdPtE4vtJkAUpgIvyvtDZsFj/y5LgffrX/8aDQ0NGDRoEP785z9jNbPyXr16Ne6//34ceuihaGxsxNlnn+2ss1mFDfJlyeWCCcqli6bqzUrnpm5qwRNdJKYCj8XPjMVa8GSLPNmEFrVjnnWBZ+OiKRMXaQk8XRfNJGPwwq6DNAUeENxcXVrwTFw0WfxyB7LPsmy5ZXGb/O/0N3H8mAdRH12XSbC14LHjmV00hKFqwYuqgQfoCzwbCx7ropmGBS/uGDwT9zYVC55M4IkSlQDRFjzV7L1A4TmIKuDtY2LBMy1Yzwu8qiqzMgn8+2QWPFnfkrTghcXg2VjwADsLXpIumqabOaqf4eG/j71uVV00+fexGxFlKfB++ctf4pRTTsH333+PCy64AO3atUOXLl3QpUsXtGvXDhdddBG+//57nHLKKTj++ONd9zlzhJXV8xdicblohk1CzZqF3wSjLCwzZgBsrpoowegTJvBU2+BdNPN54Ntvxe+V3ZjitODNnAkohKFK25dNdOvXA6ec4qUBZrOR6lrw+Jv6nDnA0UcDV10VPKdT6DxpF03VGLwNG7yUzIcfLm9Lx4Lnt9HUBPzmN8GYS8NFEwgW+CtXAqNGAYcc4pVG4BcVUdeVrgVPtb3ly4Ff/hI44wzxOd5qq+I2ZRY8tt2NGz2L/QkneOUgZNV2ojadlizxrtNf/7pwDLt00RTFuopQjcFTseCpuhyKvjuqbzysBU/FZY634M2e7c09V17pJdPhMY3Bc1UHjz1eqhuQuha8Xr2Cx7JkFP6x3bAhmGNVBZ6OBU+3Dh6gZsEzWbyzGweizQxdF02+Rq6NBc9FmQSRi+bq1V484umnB2Jf1YInuk55C55qHKnfb9skK7J7o39dpGnB448Xa2iJunfI7ldbbBE89o/7TTcBDz8c3dekMUqyAgCPPfYY9tlnH/zxj3/ErFmzsHjx4k2vbbfddrjssstwzjnnOOlk1hGlAfaR7SwBAHPIQlOv8+i4aKoKPNGi4PzzC/9WvfmFpWVWbaNvX+9/drISZQ4E3Lhoht3cZH1+6SX5Z3hULXh//CPwz396j9mMc7YxeCedBLz9duFz/rHdbTcv7TCPrP5RGi6ast//9dfA8OHyPoR91kfUz2ee8TK/qbbhwx4P0TXPwt+Ioyx4J53kPf7f/7wMbSw6Lpomhc55/N/51VfBol2UdKhTJ+83rFwZ/BZZDJ7fT78o7XPPAU8+qdYP2XPnnAO8/37xe2xcNE0FXpZdNMNeX748WKzpWvDmzweOPx744AOvbIgI00WfaxfNZs3UUtUDahY8P8FKs2be/cz/W1YTl0/K1qZN4bW5887BPXC//Qo/G7eLZlwxeKzrr2is61rwAO/Y+fNXlIUs7DeHra1YwtYO7dsHj/313m23AU88Ufg+GwteU5OdBa+xMbzUk6mL5saN3rh0FYMnO/5h1yz/GnvtRfVFFoO35ZbBPWXDBmDKFOC3vw1vKy2MLHg+5557Lr788kvMnTsX7777Lt59913MnTsXM2fOrBhxd9xx8uLeQGEMGQ8bU6a6SADCF878hR4m8KIsLHyFC9mF/Oc/F/5t6qL54oueNfSOO4LFFTsByxbMabho6qIi8DZuBF5+Ofh70iS1Poh+P+8Owos79nMXXujtsPOLBpcWPNs6eDI3uDlz5N8va4tH1E9eFJi4aEahI/CirG42SVZsLHgsEyYUP9e8OXDrrd51feWV3nNhFjzWUrBkifg9LKJ5k+2bSNyx3xNGy5bixUPcLprsgtyVi2bU+czl5GOI3YhUWXBvv33w+PPPPXEXhqnblujeJjuvKhZP1YUx3yeZBc+fM+vqCsepisDz73V8ivlf/hLYay+v3iwLf37ZccNvuJq4aLqIwQsTeK1aqVvwnnjCm0/8jJz8+0Quri4seCYxeGym3unTvf///e/i99nE4AF2MXiAuHaxj0qx+bA+mVp5+etbdt2EHTt+c4M9TqJ+i7zN+PbZjPn19eLSL1nB2ILHssUWW2AL1m5ZQYwYET7AwrJA6hSPZQnbjTS14KlkhZMtEn7zG6847rXXen+bCrwjj/T+sai4G5ha8Ngbn47Aa91anvBFhkpM2apV8t0oWxdNEf5xa9YMeOEF7zH7/WkmWQlbsLCopKs3SbLC71raxkiI4MdtmMDj4RcbOoLMNgYPEB8P0UK3eXPPE4D1BlB10WT79c9/el4OBxxQ+FnR8VE5VyrnyU9dz28slaKLpsoxqa0V94sV2iouc127emVFli6Vx6Hp9E0nBk92XlVcNHUEnooFz/+emprCMR7logkEi1k+iyZv+fHhfzc7bsLuxywqFjzTMgk+VVXe8VKx4DVvLh4bv/yl949FVnM4iRi8MIHXs6d3XteuDa4F0TVkUybBNskKEC7wwiyUQLjAq6szj9Pk71OyDf6w9feyZfLXRH0R5T3g38fWP66vVxfnaaDctQ8++ABjx47FTFkwBMOMGTMwduxYTGJNEBWKP2lu3Bi+I6Ej8JJy0eQJm8BlYkDUJx1UBJ6szbhi8KJcFqL6AoiP5cqV8snCVZKVqM+x1NQE/Uk7i2arVtGF22WYuGiaCjwdCx5//EXiXiZsderPAfaFznlkrkI8osWBLMkKUFjAm188itoSHR9XAg8Qz8tJJllx5aIpszKxyM45K/BU7lO5XLDLzZa+keGyDl6WLHhsgiYVgRdlwVOda4HC60JV4IWdBxcumkBhEqWmpmCTta7OO0ZsGzprIpnASyIGL0wAVVUF4SZffeWde5HAs7XgmSQKYvsdtl4IE7CAngXPJgbPtcATHUuRUGbvy61bAx06FL6/5AXe4sWLccghh+A3v/kN2rNOxRI6dOiA8847D4cddhiW++XmK5Qw4cMOWNVgYkA9YNzGRTOfV4+DAgonCxdZNEXtimBFCE/YohZQF3hhu6Oqn1EVeDILnqs6eCwqNwKRi3EaLpq5nPi4q1ieVX3t2f7w4yEtgScba/zvDouhANwnWdGx4EV9VmbB42N3RQsN0fFRmWNUz5NoXi7FMgkqyM65rsADCt2YonCZZEVF4MnCGlSTUwD6Fjx2HMneLxIpqvdOHRdNk1gmFy6aQHAum5qKN7hzucJ+6wg8kfXT/56wvumUSTCx4AHBtZDPe26aovenUQdP1YIX9fui3EZdxeCZuGguXar2XT4iYwSb3K9Pn+L1QskLvH/+859YvXo1brrpJmymkM9/s802w+9+9zssX74c//QzRlQoKgKvulpv9zAJC96aNcWTedgucNjvtBF4UTdd1dTRSVvwogSC6DisWOHORVNWB49FZcyJXIzTsOAB4uMeJWxkbbGI+smP4SQEnghVF03Zzc8nTBCIrg1XFjzRdcXfENm2ZBa82lrxZo+Ji2Z1tXoyDdEikxd4qptzScXgicIBVH6vbI7RjcED9ASeqduWaNzKrnXXFjz2eEZZ8HiBJyPKRVPHgmfiohk2RlTKJOhsrDQ1iTe42X5nzYJnkn0UKLwWpk4VCyaXdfBU11iqFjwbF03AvEyCCwteGKJ+i8qM+bGTgCfw2Htafb35hloSKB2a//znP6irq8OpYdlEOE455RS0bt0a/xZFlFYQskyEQKH/ueqCAyhekDY2Ag8+CDzySPEADRNlbDtr1wL33RdkUxTVnAtLaKEq8Fy7aIZN0Gm6aEYl0NC14KXhogmIBZ6qT71M4DU0AH/6k5f2XzUGDxAvdqMyVUb1UdZPfgzbutCIULEYuBJ4cZVJYDEVeOyYl8Xg6Vjwos63zjkSLTL5BZWqwEszBs+Vi6bqb/XrmKqgkyDI1ILHHvvnn/fmHh9bF80oCx7voinDxkXTRQxe2BwXhwVPlIOAjWfV8WoyjcELm+dcxOABhQJv2jT3MXjvvhskk9LJBOvKgheXi6aLGLwwRPOOyILHbiL37VtswZPVtcwCSre6zz77DHvvvTdqNVbntbW12GuvvfDpp58ad64cCBM+/qJMZyIDit1NRo0CzjvP+/vyy4PXmjULb5sdqH/6U5DGukcP8c3ORQyeawueSuYvwK5MgonA69OnMHMlP0m6jMGL00XTP76yMglh51Pmovm3vwEXXRT+eVULnorAM8miyY9h1aQ6ri14qsllonYRk0iyIloAqQg8FtZSwM8brix4OnOQaP7k3UdVY3JVLXhs3EgWXDSzZMFz4aIJeBkpt90W+PGPg2vdtQWPddHs2jV4XvY9Ll00WaEUdj9mCVvIs9dlPh/8fpsYPHZTyr/O2D7obAbLXDSjLHi5nPc9omPiIgYPKNzs+PxzoFu34vfYbCCyG+86bsZsv22SrETFBbqKwTNx0Qwj6h7mX6d+YiDAS7DCrxdUvIjSQunQLF26FN1EozKCrl27Ygm7/VeBqLho6rgiAMU7wbffHvzN1gSrrfUKI++2m3cRPv+8vB22RtFjjxVb8Dp08NLpywizVLp20WRvrnw2LRZXZRJ0Y/BatfKyqz7yiDc5HHIIsM024W0C2YjBu/hi739/oyAOF81rrgkeyxa63bsXPyc67irCy4WLpuo0lpSLZpTFjsd1khXR9aIq8MKOEWspiLLgNW8ubl+nJmAUorm5oaHwt3bt6pUZyeWKS8bIvjcsBs/PY1ZVJb4OAH2Bp7KrLzvnbAwKm2AgDIVIjk24TLKis2H0j394YsU/F64teGySlRNOAHbYwfsOWT1Al0lWVGPir7jCa3effYDdd5e3L7Oi2ljw2H7513bUpqwMUwseID/v7DXKZv7kibJwsTWOV68Wj0VXWZrD1kM8KiWoAHsLns76LywGT9bHsLlNdq3x3+UjsuA9+aT33j32AA4/vHC8bNhQBha85s2bY43KVjnH2rVr0VxnS6EMCZtoXQi8hobCAcdeFLW13oQ6aZIXk9Wxo7wdlqoq4Lvvgr+HDwfOPjs8W1ySMXjvv++JqBYtvF1YGWm4aP74x8C4cd4Oap8+3sKvU6fi98li8Fxl0VSJwRP95rvv9gSYv0CLQ+Cp3MxEFoA0XTTDgrVZbMokiJCNNZsyHS4seKKbvksLHi/wRDF4KtatsO9QQTQ3b9xYnNRg7FhvE4BdzPGouGg2Nnq7/ADQq5d89zwOF03ZOWd3qNki5mFUVXkLL5XvNXXbMi2T4NOypXjHXgVdC16zZl781cqVxfdhH5cxeKr345NP9kRehw5qMXj+50Uum7oxeKLEIKpWbh7TGDzAO1ai+wj7/WF90bFw8dZ/H1UrVNi8vMsuwF/+otYO31bYfdQ2Bi/NLJpHHumtZUXzlqrA+/nPgYMO8q7bqqrSsuAp3eq6deuGTz75RLvxTz75xMjyV06E1RLzlb+ui2aYwGPxn6+uFt9UwurHsRa8nj2jU4EnGYPXurUnnqKIqw5emMBr167QPUa24Muyiya7+84KPN81xzaLporLpGjaMHHRzOWib54qLpphyYpYknLR1N1v07XgRV2nopu+SFjoCrywMgnV1YXuVKYCT+ccqbho1tZ64yxM3AFqi9fZs4N5KczNMUkXTRZdy5xKltskYvBE39GihVn2QUDfguf3QSbugGgXTZ0YPJ2s1qINSB7ZeLOx4MUl8HSyaLLfzcN+f9g41skyyc9rPi4seDvvrNaGD5+DQUapx+Bttpn3vXx7qmUSgMK5vZRi8JT2Dfbdd1/MmTMHb7NBRRG89dZbmD17Nvbdd1/jzpUDMuHDqn5dCx7v6iMTJ1E37DALHivwVG7qYTcUmxg80UJS9Xi5KpOgI/BUBaxoojNNsmIq8FT66h+XfD44hqoTNvuajgVv++3VSwZEWQhUbpwqFjxVknLRtLHguXDRVLXgidpRsRSIyiQAhfOBTPwm7aKpes2ruGhOmxY8NhF4fn0xHhsXTRZVCx5gdlxEuHDR9C2KLDYCT9eCp0KUi6aOm77rmHjZ/GETgyeq3WbqosluxOha8FRcNMMEXpTA4NchNha8sPOlksiHhf3dYVYo0xg81xY8mxg80TlWteCFtZV1C57SsDrppJOQz+dx9tlnY4WC79fy5ctx9tlnI5fL4YQTTrDuZCkjm2hFGaRU4V19ZBOUjcBjXTRVbupJumia1J2ycdHUicFTXdSIJvmVK+U3NV0XzVWrwq1OYfUDWUTCXXXC9gPYAb1Fxfbbi5+XLejDUBlvIoFnuiunKvByObX3uhJ4YQsnVxY8lUQFou9nCSuTwJMlF00VVKwTU6cGj00Ensx6Z+OiyeIyts4niSQrov7wAk8nmiSq0HlTU/C86nGIy0XTRUy87F6q21YSFjxXMXiqFrwo2M0FmcBzYcGLEmI8qi6aWY/BU1nHqMaCmwi8krfgDRo0CIcccgimTZuGPfbYA2PHjkVeMKvl83k8//zz6N+/P6ZPn44DDzwQhx12mPNOlxJxC7wwC17UwkPVRVPlpi76nevXA//7X2GGJhcumqourWnE4Kku9kQWohUr5JYj3SQr+Xy4CFDtp+i86uzI+d+zYAHw5pvepK1iwROhmq2QReXGqeKiqYrqgkk1nbXsN+u6aLoukyC66Yt2MkU3v7Bj6/ezqUm8KcAuCtMSeKtXAy+/HPytOqepxOCpCjz2N4wfH8yxNjWZon5H8+bRrvosJuJBhMhta+VK73fz6Iig6mo3Frw1a7z7nD/Wv/kmSFsf1ScWl0lW2L9dhEzIvGF0LXhZjMFTEXg6fRHBblzFFYNnY8GLw0XznXe8DJ9pxuD5qGaFVxF47Jro1VeBWbOivz8tlG91Tz75JAYMGIAZM2ZgyJAhaN++Pfr164cuP5h3vvvuO0yePBnLly9HPp9Hr1698NRTT8XW8VJBtpMmShGsimoMngsXzepqtcxpIiFwyinAs88Wvs/WgldVpb7TmkaZBNUbpmghFibwdF00/fZkfTUReP741Zmw/b4tXAjsvz9w553RY6BXL/HzJgLP1IIXt4um6hiOQ+C5KHQuul5EGwqixUyYCGH7yc6XaQk80dy8bh3wxhvB3yauiLIFo++iWV3tZV2Uwf7Ga64BnnvOExWycevCRbNLF/N6rWFEtcnv6ufzwMEHA4sWFb837NzyrzU0uInBu+wy7/+hQ716tH36FG522Lhoqlo/+DGfy3lzzIYN7l0044zBY8+BTvp7WZmEOCx4qsmDWGpqgsRRccXg2VjwwgSeqYvm7bcD99wDXHJJ8JxNDF7SLpphBhB/DOTzwH/+E/39aaF8CXXq1Anvv/8+Tj75ZFRVVWHZsmWYMGECnnzySTz55JOYMGECli1bhlwuh5NOOgnvv/8+OkdFnVcAcVjw4o7Bq64OsgZ26KBvAvcXZry4A+wFnk5ReFdlEpKy4K1daybwZN/pT4giV6akLHh8v6+4InwMdOoEHH+8+LU0Bd7116t9n+qN2j/+Rx/t/X/QQfL3iW6wvMBjS6VE9SsuCx5fS6l1a2Dw4OL37b57kETnd7+T91Mk8NiFVVoxeDwmLpoyl68FC7z/t9hCvcYn4GVK3rChcNHsz9tVVYWLLBlR51zHPRMIP85+spE+faI3OPld/XXrgA8/FL/3wQfV+1NfL44DU0F0Dxo92stCzFuyVecEURyZjjv8Hnt4j8880/tflAEZMHPRlM0fpi6ajY1igXfLLcFzOhkhZRY8/zoL65tuDJ7uhjwQbcFTLT/iMgYv7iQrgDeH33ln8HfSZRJ8VAWev2atqvLWKrLv05kr0kRrud22bVv8/e9/x0033YR///vfmDRpEr7/wdSz2WabYY899sDRRx+NbcNy11cYsuQjScTgmbpoVlUFSTpU457CYvBYbAWezuQal4tmmJuS6q616BitWydf+JlY8PyFhui7knbRZBHtfm67LXDvvUDv3vIxZxKD5yLJyhNPAMceq/Z9Oi6aAPD4456r2cEHy9/btm2xqyNrLXv8cS+Vs2q/4orBY9vt0gWYOFF8zmprgffeAz7+2KsrJOsn+5tF/ZHNm3G7aPKYWPBkcYh+iHvUWBf9hvXrCxfNv/gF8Otfe8Jsyy2j+5ekwBs+HGjf3isrE7VA4wWeKIHUmDHemPvxj+Xt8L+vvt6NBY9F1DcTC55uDB4AvPSSd835UTEuBZ7rJCsyC16fPt5mxZo1wMCBan0DxAKPdfMOu7/rWvBatTL3oJDF4LHF0MMIu0Z1LXiqLppR10XUeS8lF82f/hSYMMGb63r0CG/P1MsnSTSX2x7bbLMNLrjgAtd9KUtULHhZc9Fkb6KqVhNVgWcbg6cjhl0JPH4i0I2HEyFyU1u/Xu66ZfKd/gI5TYEn6pvoZtKiRWDNkpGWBe/nP1ffhde14LVtGy0e27UrTHoEFI6TIUOix52uBc8kiybLT38qj6UEvJun6AbK9pM9B6LzKLtm43bR5HHlotnQEGzKRI110W/kBV6LFuEbBzwqLpo6hB3nNm2An/1MrR3ebUskovbZxys4Hwa/YLQReDJRKprbbGLwVMskAN6idMiQ4G9/we86Bs/GRVMWg8dey74lUgeRi6bq/V03Bs+ktLN/LcgseGHxtqJ2RMRlwYvagNGZT7OeRTOXU5szbWMyk0LDy5kwQSZ82MFqm2RFdgFG3bBkk/uqVdG1pnj43ynL4OjCRVOVqAWVaR08E39+HpkFz6WLZpgFT/UmFYcFT7QTZ1MyIAyVRYdonPi/1a+/5vL7AL3FZNTvVrmmkkiywqJzzFiiYvBYZMewFFw0RcecdXGNsuCJju+6deaCBXBvwTPxOhDBu22JBJ7KIo9fIMZhwRMtQnWs+v57dcskiJBZ8LJQJkFmwTOlujr4vf6xU42xl90LZS6aJnOb/xlZDJ4LgecqBk8n9hHQOx4mCZV8XFvwTO9RQLZLI7CQwIuZJGLwZLsJUTdR2aTKZtA0ddE0yQYpgp+0suCiqZPNTIZLgRenBc+mTIKsb6KJWuW4pVEmQXe3VtdFUwUXAi+JMgm6fRIRFYPHEhYEr/odUcTloik65mwFIpNzzlvw0hZ4OglPwlBx0Uxa4OlY8EwsxiYumjz+3JXFMgmyGDwb/GtVJPBcumjqCiDAnYtmXHXweMu/j45VVgWduTluF00bgVcqkMCLGZFla8MGty6apgJP9jor8FStJmzg6YYN8h2OJC14/KKW75OpwHPhoikSXevXuxV4/u8VpapP00XTtD9xWfDCXDR1BV7SFjw/o1cUuhY8WxdNU4GnE4MXliRK9TuiUJmbXVnwWOFi4qJpa8Hj38+LeJcumjYCT1SKV+W642N/47DgiRahJhsKJi6aPFExeKq1OPnvdmXBM01wI8M/dl995Z3ruASeTiZZn6gkK23aqLXjskyCrC32uldZz7gUeCIXTb/uqOs6eKb3qFKCBF7MsANrzRqgXz8vU+CECcHztklWZALP1EVz8eLgsc6imr2hyAReWjF4Dz7o/ZYzzgieU3Xh4CelOF00ZUUzwyYjmTus6yQrJmUSVL9HZVzo3sAA+xi8LAi8MMul7Q48kC0LnkzgiY5rEgJPZb5xldU3bYHHH08+RjItF02VGDwTqwqfdVTnWpedc5H4NBlvLl00GxvFVjed9lyVSYiqg2cDuxmz996FgsBlDJ6JwIuy4Om2I8LGRVPWjsp1GmcM3tKlwHbbeUmivvwy+jMyyIJHxAI7sYwd62WOW7MGeP754HnbGDyTzIuAfGKzFXjr18uFiu6C2SaLJjtR+ZbORx4RJ9II6xfbTt++blw0L7yw+Dl/p0q33U6dxM9nNcmKCJUCyjY3VtX3ZFHghV2DtmnORX8D9jF4Ll00q6qCm/jZZwevH3KI2XfriAuVuVnVshV2DoBC4WISg+faRXO33Qr/7t1brz1XFjyVGDyTxZqNBU92HzK1LvLtunTRBArvASqlA3hclUnwf9+6dYXHyoXA22674PEHHwCvvRb8rSPw/N8hi8HbZ5/g8S9+odY31oLHX/vsnBZFXC6aLOyxcm3B043B+93vgG++KfQq43FZJkGVAQPMP5skFWCkTBf2YpEt3nVdNF3F4MleX7IkeKwT96RiwdPdBbax4MnKMG7Y4P12nSya//sf8MILwAUXuHHR/M1vvFT3dXVeu//7X/j7w9pt1Qp4+WVg3DhP7F17rfd8FsokqB6PPn3U3vfee8CoUV5x0Zkzo9+v6jZUVeUtHvkkK3HF4Om0GybwXKTod1XoXPZ9OrCf888B+xtvv90b4z/6kbfZIiLqnOvMIVHvHTtW3b0q7hi8desK3RBtXTRvu8071kuWAEccEV54XbWPKq/xqLhomljwbASeTOwuX178nIkFb8OGYsubrcDz1xm2FjwbF83evb05PJ8HPv00eN6FwLvrrsKi05MnB491BF67dt6Yl7lo9uoFPP20V87h8svV+iaz4F15JXDNNWptAG7LJKh4QKjcX2QeRFFtR73e1ATMnl38ns6dC40QLsskqDJihFcnb+xY8zaSgARezLAXnaj+F2BvwTN10ZS9zl6wpi6aMgtekgJPZtnasMGzGLHCJ2oiO+igoBg1n7KeRfVG1axZIMTGj49+f1T/Dj/c+8cWlw+z4KkKA5HA04kLUT0eqlnE9trL+7dggZrAU53EfcHPW/B0b5pZddEsZQse21aHDsCtt6q3IUJnDgnbfDvlFK8chCpRdfBsXTTXry/czdZdNPPnbNttgT//Wa+NsPZUX+NxlWSFx6bQec+e3tjgk6rYWvD4UgkmCVF8ZDV4/TZNM5nauGiyyUSmTAkeuxB4vXt7VrsDD/T+NhV4bduGC7zaWq90TlTtURZRmYQuXbwNKx3iKpNg856wEgs8NmUSfFwJPBsLXu/enjeYbI2ZFchFM2bYiYUtTsxiG4Nn6qKpcvG6jsHTDdS3cdGsrQU6dix+3r/ZsZkSddz/XLhosqiICNWbO9tWmAVP9fdGWfBcucOpZhET9csFfj8bGgoD9MvFRdN1kpUkLHgmlgaV9+u6ecuuFRvrbhIxeLr9c536O8kYvKRdNKuqxBZk0b3YNKnPmjXZcdF0ZcFjN/Jcu2jy7bMCL2y+4r/bF0rsuTSpHcjClknw2zVpx2UMnuyY63oB6BR913HRDBN4ss/IiCMGzyTpW9KQwIsZFYGXtSyaLDqDmC2sKrLgNW+uFmvFf4ZFVwyLLIb+zS4ONzyTSVtl5021XbatMAueqltFUi6acQk8kaVEBCvwbBbJSZdJMLHguUiykoQFz7Qtlxa8XE7+ft0FlY6LZpRrfBxlElj3Qt3fJiLJGLykXTQBN7XLeNixtnZtPALPZZIVXQuj7Ji52rDr3Fm8iRzWPv8a607pY1I7UNam6cZV1GfisOC5Fng6FjzZvZtf06Ul8EohCycJvJjhs2iKiKsOnqmLJotJDF5Dg9hs36WLfqIM/iLUPVaiyZ4XPi6tNCY7kVGLKTbJhE5bYRY8VeFjWwdP9XjYCn8ZsmuDh70Bq8ZmikjagueiBltWC52r9kX3u3XnENkGXNYteDYCr317vc+KSDIGzyQBU1ICz5WLpo3AYzdcbV00bSx4vmsrjysLHiA+Lzoumv5xCXPR1EVUJsGknSTKJOi+R2a4EGFTB8/HlcBzIdCyLvJI4MUMO7EkHYOXlosmIL4J68bfidC1dqpY8FzGWcVhwdNpk7fgPfQQ8MtfFr/PxIJnUibB5HiooHrOVAUea8HLmsBzHYP38steFrBHHvH+Fh2jqHaTcNE0bculiyYgn59J4IUTh4umzIJnIvDefrswSYbu8erVS+19phY81y6aCxYAP/kJsHChfr9clUmoqhJ7a2RJ4LGbff6azVbgRSWPMmmHJw4XTd0YvCixpWPBu/12cRITPu4tzTIJLsdtHJDAi5moRUDr1voXOnshr16dvRg8QJxNzIXAc+mi6S+GdC/SpAWezo2YbWv1ai9bpwhVC14SLpp+8hod4nTRzJrA69pV/ppOEhmfKVO8xa1fEzJLhc6z5qIZ9v40BV4cLpps+vcjj9T7rIg4LHiyGDwVorKd6p7PH/1I7X02Fjx//qqq0hex/Nx9wQXAf/8bPJdGmQRAnDHZ5UJZ1L6JwAOC4+8qBg8IPGvSFniy79cVeP37B4+HDAl/r04MnowOHQr/VrkuROffxK2bhwRehRM2sfTsCdx5p/7E3bp1IFy++CJeF02XAk83wYoIFy6afDZI3Yk2bJKKw0VTp39sW2y5C56kBF7U8dhvP+Dvf1fri6xfYSRtwYsjBm+HHby6iaKxrPp9ssVtPl94jHbaCRg+PHpMJmnBS9tFMymBpxODF4cF7/LLPWF31FFe/SlbkojB69dPPdPn+PHAnnvKX9c9XjvsAFx3XfT7dH4re52uXBnMtSbWBn7uHj3avF+uLHiAOPGZy4WyqP2wa5Vff4muU1cxeEDgPeM6Bk9XsLiy4F14IXDMMV4W7z/9Kfy9OhY8GfzcaGLBc+VayR+f3Xf3SmhkhYx7kJY+tbXeBMK7Z/7tb8CZZ5q3u9NOXkrgRYvkF005WvBcumj6k7fuzTNsQsmSiyabSpgnC0lWRo8Gjj1WrR9h/eKprg76qCpkk47B02333nu9BfhWWxU+rzo2ZNcxX3j3o4/Ubn6lbMHTnUNcxeCpFjqvrjaLcbS14LVuDbz4ot5nwog7Bq9XL+DDD9Xb2Wsv4P33vY0SUeFkE5Hx+997Lmp33SV/j879hV28rlxpl5BDlmTFJ40YPEC8YeJS4InaD7tW+WuRz1IOuHXRtGnHZciDqxi8Fi2Af/3LeyzzJvPRicGTwd/LTASeC/dMvt1jj/XWNKYeBnFAFryYyeXEk4vthcr6mc+fL35P1HfkcuEDvXlzvUVMVAxe1ix4/s3J5OZpKqpFlLMFL6zvuudS1i8e9hjYumhmoQ6ej+g3q45dmcDjY3hV+1/KMXhZteD5C4O2baO9OmQWPNO6bnHgKgaPPRasi6ZpmnLZcTE9XlG/RWf8sr/J1oLHJ8ji++GiTIKJi6boenIpXHQFHi9K+CR2/HtsXTRt2nHhVqjz/ba1NHVfV/l9WRV47OZaViCBlwA2CzMZKhm8VL4j7ALWvYGWWgyeqQUPkB9bk0VCXDF4YQLPlQUvanINOx5xCTz2NRMXTTbjnO4iXvUGnCWBxy4iTeojisiyBc+VwIurTIJK5uI4YvBc48qCl8sF43L16mC86mR4ZnEt8KI+l5bA4+duvo20XDR5i3h1tbsFt6h9IPxaDRN4/nVqG4PnyoJnkkworC1Rv3RdNPk2w3DhoulC4Lly0WTbjbJepgEJvASI24InwncNjSKsH7oCj51ESyGLpo37S1YteM2aBeddJLJ9XAg8lcD/sL7rnktZv3jY46kr8GxdNKOs4j6uBJ7q2KiuFguV+nqz6yDqvGc5Bi8tF03ZItlHxzIVR6Fz17gSeEDwe5ctC54zteDJjktcFjxTF80VK+w2IfkMyPwxz4qLputxGreLpqv1QhZS7IvGALs2cJ0F21UMHttOmhY89viQBa9CSUPgqd6swvqhu0MaZcHTrXUmQvcmLKuDx05iLgVeHBY8XXcmFcuCqsBj2+LLJNgKmSxZ8NgxwNarNFl8xCXwbGv5iBbErIumywUHuWgWw/Zr0iTgqqu8JFmAtzjwry9XAi9tC54rF00gWMSx4QhZcdFMwoLnIgbPlQVv40bggQe8BHHseDMVeK7Hqa3AY3/rffd5Fq2sxOC5hu9DbW3hb3V9bqLGnGoMHttvctGUk4E9hPInDoHXqZMnXr77Tvy6avtxuWiyO60+fHpbE3TdoviaKYB3s7MpIBv2mTiSrOguJFu2DFIxy+CTdah8t4nAC3uPjQUvbBywfdaNwQPsBV5NTfRkb3LjzOW8z7Ft6y4eFywofC4ugWd6A82ii6YsA6mNwFuyBLjjDmDECC/hh06JBL4tn1Jy0XSR2Mq0Vl/SMXg6v5UXeK4seLYxeOz3jx8PPPWU95i9llTb4+d91+NUdF8Ju1bZNcI22xS+97bbvMyyWYnBc42oyPvWWwe1Erfc0u33uXLRZMeaiqdaXAJv++2ByZO9x6prqiQhC14CxBGDB4S7PKpOHmEXsK7AYyfWpUsLXzvoIGDXXfXa83n0Ue+CHDwY6N5d77M1NcDppxc+t2FD4cLfZbpi1y6auRxw0knu2gO8G9o996i1xSZ88EW7jsALs6CZ7sAD8bloAl6cj8r3yIjLggcU90dn7Ios8qYumlFkyUWT/7yuwBs6VOx94KKEhp/pls14K9qU4ikFC55sDFRV6SeLEL3/5z/X7xOQ7SQrvIumP+eaiNm4LHi+uAMKN8NK1YJ3/vmesGvd2suC+ItfFL4+e3Z2YvBcw/ehpgYYOdIbb1tuCVx/vdvvi0PgpRmDd9ddQOfO3r8//MFNmy4hgZcAogW3i4s7bCGvOmmGuXraCDzWRXPqVGDCBPMA4VNP9QSjn4pXl5EjgUceCf6O04LnykXziSeAmTM9l6TLL7dvz2faNGDePPXdpurqYMHpW4t1BF6YJcvGZTeuLJpAaQk8nXmkFFw047Dg8eNM13K8xx7ejjafCt9VAp7GxsK0/SqxynGUSXCNy00w/vc+8QQwcKB+O4D8uJjGgkUdZ537C2stXrgwEFAm8etRAs80Bs/mPUD8Ak/XgteqFTBjhne8d98d+OlPPfdTn/p6t3XwbNpxjchFs29f4NtvPWFrmshIhguBV11d2G++BJkI/vy7suB17+6tp+bOdW/tdAEJvASIw0VT1q6PqO6NiDCBp3txy3bGu3Sxz/6kkjo8DDYWz4UFL+4kKy1benWeunVz055P27b6bq7+4sJfhOoIPFlmqTZt7CZZ1Rg83Tp4QLYFHn/uXMbgucxkl6UYPF7gmcR+1tUVjwWTBDyi37J0aaGrvUo5GVE7WbPgyeZCk7HBL/xsSu5k2YLXrFlwjX/1VfC8icDjyyTwawJTC57Ne4D4XTRraorbVMn6y84LXbsGjzdsqCwXTcA7R3EIUBcxeHw7Kl46cbloAt7Y0l1TJQUJvARIQ+CFFblm2XFH+Wu6FjzZwikqxiwJ+N1MWwuey91p0fGxySwWdrxN2vUXU2vXejvKLgSejXsmoC7wVJPJyCx4JhO3yo3R9PyWu4tmHBY8PobO9ObO98NkbIi++/vvK8uC50Lg2dxTsizwgOA6ZeMyTQQtf89j3Sl1+6Xy3qxY8ETfoXut8skzKsVFM+4+ubDgAfYCLwvW0yQggZcAccXguUgvHJeLJksWdjfCBF7aWTRFx8fm3KomIFGFXXB+/72exUfmohmnwDMZb+SimQ2BF0cMnixJii58P0wT8PB8912hBc9U4GWt0HmcAs/mniI7LqbC36WLJiC+Tm1dNFevLp6Ly9VFU/QdutcqL/DK1YInisGLk6wIPJcWvCxDAi8B0rDgqdKjh/w1Fxa82tpsXEx8NkiT+j0scWfRzJIFjxd4Oqm707bgqVKqAs+Fi6ZNKnYZWXbRNIVv15XA4y14KtaaUkiyIpsLXSyQ47DgmYYAuLbgia5TWwueKKu1TqIbly6apS7wyikGT+aiGQcqdXNJ4LmFBF4CJCXwtt1Wv42wC85FDF4WrHeAewue7DMmE0eSAs9k3LGLi+++03PRlAVA2wZvh40rk8Wfyxg8lfFEWTTFJJFkxZS4BN533+m7aJZymYS0XTRdF9Z2WSYBiMeCx2e1BtTj9AG3Fjze08f1+XDxHZVqwXPdJ/Y6dTmGRMXowyCBR8RGUgKvZ09gt928x+edp97OTTeJn3fhopmF+DugWODFkWRll13Mfq9IrJjc0MPaA4C99zbbpZZZ8FQmyWuvFe/KxWnBu+SS4PVnn1Vrj70e2fhVE/e+OC14/CZKmoXO/aySoiRKaVrwSk3gff+9GxfN9euDRXttrX1iK1tKyUXzkEPctsdiGoPHYnI/YOcKdgPBZ+1a9bZcxuDxxysJC57ueou9tkshBm/0aLPPxSHwrrnG+3/77YHevYPnVcaHaK3AZs0cPtz7nz2eMi8hlt69C0uN7LVX9GfKgQwYicufpGLwamuBV14BPvhA74Z11VXe4n/ECOCZZ4LnXbholoIFz4WL5h13AGedZbao4o9R69Z2RTNFIvNvf/PqeZlgY8HbemuvTMaYMcHED8Qr8Dbf3PvOBQuAAQPU2mNvbPPnB49NXKPiFHj8cbONwbOx4F14obep0bcv8KMfFbqBuSx0bhuD52oBGWcMnr8Ab9FCTZDKju+qVd7/aVvvALeJqOJMsvLEE8BRR5m3l4QFz2QeYtth5zQfHYHn0vrCk4TA070vu7bgxSXw/vEPr4bfvvuafT6O5CO//S2w//5Av37AkCHB8yrlDPjr/NxzvTJRLVp4JZ4OOsh7XteCV1cHfPIJMH68t4Fic72XEiTwEiCpOng1NV7BxSOO0GunWTPg8MM9ccjiwkUzKxY8PmW0awvekUcCHTua9Y2/+ey4o93uu2i8DR1qViwXsLPgAUCfPt6EzxKnwKupAbbbzvunikzgmeycJynw0rTgVVcHG0k25RuiPmcbg+fKkpWEBW+zzdT6KzsmK1Z4/2dB4Lksk8BfUy4teMcdZ7ewTSIGz2QeYr0PFi0qft21Bc/0GMYxVnVrXfK4jsGLy0Vzhx3srFFxWPBqa731JFB4napY2niBd8QRQehR9+7B87oWPMDbND/9dLX3lgvkopkASblo2u6+8BOtCwteVgRe3GUSXPp0h2U2VUF0zE1qf/nYCjygeKzaxuBFCTxd2M/4VpCaGjNRzLYlc/E0vf7542Ybg7dhQ7CzajN/8GMuSzF4OskkwuD74Sp2d9GiwC1Y1VIju/b81PpZEHhxuWhWVdndP11bLeJ20czlgE6d9NoAvDESZg1Oy0WTf28SFjxdkrDgubCW2W5eJRmDp1KyiB9DsvOom2SlUiGBlwBJCTzbNm0FnmjXrBRcNF3syGVJ4PHHvLbWbmzYuGjK+mRrwaupkd/cTM6n6PioWlN42OMiE3imN3fXLprsIs9mwRGnBc/WRdOVwOP7YTI2RL/viy+CxY+qpUZ27fkxeOUs8Fq0sFvYuj42cbtodupkfn8Jm2fTdNFkx0DWBR6/XiinJCtxZ9HUXf/xczUJPDtI4CVAUjF4aVvwmjd3GyvhkrjLJGRJ4PHH3NZdpWPHYEHlyoJnK/ByObkVz+RciG5sJnEv/PfLBJ7pAtW1i+a6dcFjmzHsyoJXSi6aJoiOsW6CFVk7LFkQeC5dNNn7iu09JWmBZ+uiaZNwy5XAc+2iyb7X1QYMS5wumlmKwbM9dkla8FTgf4/sPJLAU4MEXgKUootmixb6N8JcrnjHJSsWvOrqYFEUR5mELAk8/pjb7mZWV3uxnYC5Bc+1wAPkY8ulBc8EFRdN0xtznAIvCxY8Fy6a/LGNy0UzjjZUNxWi2smCwHNZdoMdF7b3FNfHxnWhc95F03SjCciuBY+db9nNVlfE6aJpMp/EZcGz3byKI8kKC1nw0iWTAq+hoQETJkzA5Zdfjj333BPt27dHbW0tunXrhsGDB+PFF18M/fz48eNx5JFHonPnzmjZsiX69OmDa6+9FqvZAlcJUioCj23PdAHO77jYTrQu8X9fHElWbAXeoEHB4y23tGuLjxtzcQ4239z7f/78bMTgidr0cRFTCZgLvK239v7ffHN5DEy3bmZt28TgicSmK4GXJQsezy9+ETy+9lrzdpIQeKrjImqMx1FbTBeXi0WXFryk6+DpHocddij822bDL2yeve469XZEv6FDh8K/TQWeapIMHVwLvCVLvMdt2rhzzTa9PtgkejqJxETwY9e1x5Vue6oxeHGPn3Ihk1k0X3/9dRx66KEAgG7dumG//fZDXV0dpk2bhhdeeAEvvPACzj77bDz00EPIcVfb3XffjWHDhiGXy2HgwIHo2rUr3nzzTdx6660YPXo0Jk6ciM6+OSIhRDcUFxafOGPwTAUef0HauJe4pnlzb9cyjjIJtufzoYeAv/4VOPZY+125Pn0K/3Yh8Pr29dIMmx63OCx4soWayfFz6aJ5xx1e6uqjjwZuvLHwtZ/8BLjySnMXIpsYvOpq4K23gNNOA2bO9J7LmsCLY6d7n32Af/4T+OYb4KKLzNtxsSkXdVx23FGtnVJw0ZT9VpPr06XAc10f0LUFb489vJJFr7/uCf5hw8z7Jppnf/Yz75o4/3z1dkS/oXt389IoumnudbG18rL3luXLgVmzvMf8vVUVly6ajzwCPPCAl5nadqOU74Pr9VpcFry4x0+5kEmBV1VVhaFDh+Kiiy7CwIEDC1576qmncNJJJ+Evf/kLBgwYgF/96lebXpsyZQouvfRSVFdX44UXXsARP2x1rF27FoMHD8aECRNw7rnn4lnV6seOECW9cHGTidNF05XAs3EvcY1/HrJowdtuO+D22+3a8OF3fG3jEQDxwjOrAs8Ely6aPXoAt97qPeaP0a23ArvvbtYuYOeiCXj1kv7wB2+RB2TPRTMOC15tLXDSSXZtuOiHShuq1ppScNF0Gc/D3i9tF++ud/xdW/AA4IwzvH+2iObZ884Dftg/V0b0G7p18+qNhr1Hpb04LDAu10KffBJkGja1prrcuOraFfjd78w+y8PPE64FHsXgpUsmXTQPPvhgPPvss0XiDgCOP/54nHbaaQCAv//97wWv3Xbbbcjn8zj99NM3iTsAaNWqFUaMGIGqqiqMHj0a06dPj7X/PK6FmI+rRZUPe7Gb7gzxF2TWLHhA9ssk2NKpU+HE6sKCJ7qxlbvAc7E54XojwMZF04e9zl1l0cxSmQSeUonBq6vzajWpUMoWPJWCxzzshpytBa8UBJ4rRPdxk/uBaLz5bvs+OtdZ3C52LjaFfPzSI4C5wIsryYotcVvwbAWebJ4jgadGJgVeFLv/sAU+d+7cTc/V19dvis078cQTiz7Ts2dPDBgwAAAwZsyYBHoZ4NqVUtYuWfDCkQm8LFjwXNOzZ/CYtdKYYivw+Ik7zhg8E1zG4LG4Tvhha8EDCuefuCx4ptdDVhdCgBuvi7BjvOOO6uOjlAWeCX75ByB7FjzXLpouEd3HTQSe6FzyAk/n+ojbgmd7zNmkbCyqLtQq/UlT+Pvwc6vr9Zrutap63uIeP+VCSQq8mT8EkGzOzDAzZszA2h+2o/v37y/8nP/8lClTQttfs2aN0j9VkhJ4FIMXjizJShZi8FzjJ/oAgDlz7Nvr1at4IWPzm8MK8KpSiRY8mxg80WeyFoMXV0FgF7jI9hcl8FQpBYEnG5smQrm+Pnhsa8FzveOfZQue6D5u4rIvc9E0JW4LjItjLrqGys2ClzUXTdW5gSx4amTk1qnOwoUL8eijjwIAhg4duun52bNnAwDat2+PNpLc5Fv94P/iv1dGaxerTway4GUD/3itX5/tMgku2Gab4PG8efbt1dQAvXsDn34aPGfzm124zWU1Bo/FddFtFxY89jpnnRmyYMHL6k43EL/Ak5XUEBE1jrIg8Fy6aLICL2sWPNeFzl0Sl4tmy5bF2Zp1yLqLJuBdQ+wGWOvWXny1CVktdJ41C54qJPDUKCkL3saNG3HyySdjxYoV2HnnnXHOOedsem3VqlUAgLqQ2csXbitZp+oEiCsGz3W7HTsGj01350ohBg+wt1xk3YJ3+OHBYzZNvA19+xb+nfZvdnnziEvgqcYUqMJ/3lXNP8Buwcbu1FZVmQvZLFvw2PGgI8ZYwn7LAQeYtQkUz7uu052b4PK8sQLPdmOHTXL005/atQVEj/WsWfBMxi7/G+rq7OKo2VT/Bx9s3o4MNtvlrruatcFvkvTube6mnVULXtZi8FTZZ5/g8eDB8XxHOVBSAu/cc8/FhAkT0KlTJzz77LNoFtM25erVqyP/zZ8/X7m9UnHR3Gsv4JxzPHFgmsGL19esaEwb9nixySXK0UVz8GDgwgu9+np33OGmTb7uke7C5dlnvSyOzz3npj/8+N93X2D0aLO2RNeOi0Qwri14PLYumiznnmveD/ZGbrOgdbXTPXq027EGeGnhb7/dS0/++utmbfC/7/bbvYyGZ57plUjRYeRIYMAAYPz44oVZr15m/XOJyzIJbAyercA77jjg7LO9kiUPP2zXlgpZisHr2tVM4PG/oVUru/nxuuu883DcccAVV5i3I2PPPYGrrvLE4zPPmLXBLy9t1jJZ3bhy+RtV2ldhxAhv7h4/Xv6eU0/15syjjgLuvde8f+VOBoaYGhdddBFGjBiBDh064JVXXsEOXDVQ3y0zLDbOL3TeNmJmCrMC+jRq+OuIyiS4wLUFL5fz6rHZwB+6LAkf9nixw6QcLXi5nPuJj7cS6P7moUO9f65gz+eQIXaLeX4MtGnjRozFPU5sXTR9xowpLrCsAzvH2cxDrhZCxx6rL5hUuPJK758p/G/Zaitg3Diztk4/3fsHeK5VX38dvGZTHNsVLi0UrAXPdl83l0tG2PlkKYumqxiyujq7RFmtWpkLL1Vuu83u8/w4syk3VCoumq7vTybXqkqJkKoq4G9/M+tTJVESFrxLL70Uf/rTn9C+fXuMGzduUxZNlq1/yCqxfPnyTe6aPH7Wza3ZDBQJUCoxeC5wUXMtLthFqK0Fjz/Wri0zWSRr4p0d/y7TYgNurHeA+yyaUe2rIJp/bEtpxGnBy8K85gr+t7i6F/AWPNNsfy5xGYPHxtlkIb4wDNfli2zg5zFXWSBtXTRLAX59ZTNHloqLZqm1T4ST+WXpFVdcgbvuugvt2rXDuHHjpBkye/fujVY/qItJkyYJ3+M/369fv3g6K6FU6uCVO3Fa8CoBEnj6xG3BY13XVBEtkG0FXtYseFmF/y2uxAqfHCHLLpq2ZF3g8S6QWXLRdGXBs3XRLAX4cWYzR2bVghd3iYEs/MZKJtMC76qrrsIf/vAHtGvXDq+88gr23HNP6XubNWuGo446CgAwatSoote//vprvP322wCAIUOGxNNhCaUSg+cCjeoRiSMTeC5i8CoBWxdN17Dn03bsJyXwXFvwWEu0KqJjZWt5d2XBy+pOtyvisuDxCXKycMxclklgcZk9Nw54gZclC56pwBNZ8FzUMs0yLl00s7pxtXx5vO1nYR6qZDIr8K677jrccccdaN++faS487nqqquQy+XwyCOP4OWXX970/Nq1a3HmmWeisbERQ4cORR82xVICVJKLpsmCMylcWvCycKyTppwtePznXS1eXGfR5HEl8Fxa8Gx+I7lomsEmhs6Ku7hLF02WrFvw+CpLac6TvNg0FXi8KK+rs58zsk4lWPDiFnhZv1bLnUzeOseOHYtbbrkFANCrVy888MADwvd17twZf/zjHzf93a9fPwwfPhzDhg3DkUceiQMOOABdunTBm2++iQULFqB37954yDaLiAGVJPDY8goSb9rUIBdNO7Im8Fy5BQKlZcHr0AFYtsx7bNLPOFw047TgZWFec0VcLppbbBE8jiPtvAnkoumR5vjl5xtXWRJbtbK3xGYdlwIvq54JnToFj03LSYRR7lberJPJW+fSpUs3PZ40aZI0pq5nz54FAg8ALrnkEuy8884YPnw43n//faxZswY9evTA1VdfjauvvlpaBD1OkqqDl4UJ44ILvPTdy5YB//xn2r0phHWxYPPwkIumGuSiqU8cMXgvvwwcdphXzP744/U/H4eLpiuxndWdblfEZcG76CLg0Uc9i+5f/uKmTVtclklgKTWBl/Y8edllwN13A7//vbs2fbFz1VXAH/8I3Hyzu7azQtwumlmoVXn++V42ymXLgKeect/+9tsDP/uZd8/K2nqwEsikwDvttNNw2mmnGX9+0KBBGDRokLsOWVJT493UfNcUVzd1ftLIwk53mzbAF18AjY3ZuxGzO3CsSxO5aKqRNQteKSRZiSOL5l57AQsXer/fZLGc5SyaZMEzo1MnYNYs7x6TFUEcVz8oBk+PP/wB+N3v3AoKf7647TbghhuyIVZcE7eLZhZcXJNYr40ZA6xbV55jJOuU0a0zu+Ry3g73unXe365ufPziLu0biU91dfqLfxHsDhwr8MiCp0Y5C7y4YvDiyqLJZ9DVobq6eMPJdk6iMglq8L/PpQjK2nGSjfVKi8HLQkyk68U1ey8o14V73C6aWSkplcR6rVzHSNbJwNRTGbh0J5ORtRt81mAn6BUrgscUg6dGOQu8UorBsyWXK/y9LhYarlw0RcennOa1uFw0s0hcYz3rAs9m86VUyIo4iZM4LXhVVdm3RBOlTwaWG5WBy8WojHJeLLhAJvDIgqcGxeDpE3cWTVPY3+vCVciVBS+XK28RFJeLZilR7mUSst4/F2TBvTBu+PPoMgavrq78k9QQ6UMCLyHIgpc+MhdNisFTgyx4+mTRggcUCgsXizWXGU35Y1ZO11o5i9ekyLooJoFXHsRpwasECyiRPhlZbpQ/JPDSh52gGxqCx+SiqUY5C7xSi8GzJU4Lnu1vzGLyKFeQwLP/zVl3gayEeKNKEChxxuBVgkAm0ocEXkIkIfAqcbGgg2xSJRdNNbLmorn33sGNc9997dpKyoKXFbccth8uFmvNmgF77uk9tj0X/DHr3NmuvSxBLprAgw/qf+a++7z/u3cHDjrIbX9ccMcd3v/bbJO9+q9xUAkCJc4yCZVw/Ij0KaO90WyTRAxeOe10x4FsgiYXTTWyZo3acktg5kwvntK2SGtSMXhZgbVgu1hs5HLAhAnA5MnAfvvZtcVeW127FhbjLXUq2YL33nveddWnj/5nzz8f6NcP2GGHbIriyy7zNjZ23NG7BsqdShAocbpoVsLxI9KnApep6cC6lVTSTT1LkAXPLVk4Bltv7aadpCx4WcG1wAO8mkoHHGDfztKlweOddrJvL0tUssDbaSfzsZbL2VuG46SqKtjYqITNP3LR1IMfE5Vw/Ij0yej+cvmRhItmU1M87ZYLsgmaYvDMKKeFTFIxeFmhvj54nOXFRrkLvCxao+KinOaLMCrhd1aCBcqliyZZ8Ig0IIGXEEkIvMbGeNotF8iC55ZyOgZ8bBxfrNiUSnHRjIsdd0y7B27JmptzklSC8AEqwyqb5TnDFbzAszmvFINHpEFGlx/lRxIxeCTwwqEYPLeU8+LUlTDL6jFirf1kwUsOft7IStKdJMjqZodrKuHekOU5wxUuy11QmQQiDSpkyk0fctFMn2bNxAtukxtypSxWwqANhWiyKvBYsly3q9wFXiVRKWK2Es5xJVigXLpPkwWPSANapiZEXALv1FODx/36uWu3HMnlxBOrySK8UhYrYWzYkHYP3NK+vfd/z57u2iyFjYCsxYEdfLD3f20t0LFjun1xTSUs/lnKTaCrUK4umgMHBo8rodYfCTyi1Kmw2016xCXw7rkH6NsX2GMPYLPN3LVbrrRqBaxcWfhcpS26XLF+fdo9cMtbbwHPPgucfLK7NkvBgpe1Belf/wr84x/A0KFp98Q9lTbX/Oc/wGOPAYMHp92T5CjXc/zEE8DIkcCRR5bGxpUtLgUeuWgSaVCmU1H2YMskuLwBtG8PXHmlu/bKHbLguaPcBN6OOwI33OC2TRJ4+my7LXDjjWn3Ih7KdfEvo0cP4Prr0+5FspTrOd5ii8o6ly7v8WTBI9KgAvZhskESMXhENKKJtVxvyHHAjuNyE3hxUAo73Vlz0SxnaK4pf+gclwcbN7pri8okEGlQAsuP8oAEXjYQuUaUgpUlK7CW6HKLwYuDUhhbNB8lBy3+y59SuOaJaNhSMrbw1kASeEQSkMBLCBJ42cCVBa9SXTTJgqdHKSz2aD5KDhJ4BFEauBR4PBSDRyQBCbyESKIOHhGNqxi8SoW14JHAi4ZcNAkWmmvKn0rd/Cs3XLpo8pAFj0iCElh+lAdshstOndLrR6VDMXh2sJkNDzwwtW6UDFld0O+7b/B4553T60elkdXxQLijbdvgMd1bSpdddw0eH3KI27ZJ4BFJQNNPQhx3HPDKK179mMMOS7s3lYvINYJuwur8/vfAwoWeJe83v0m7N9knqwv6f/4TuPBCoH9/YK+90u5N5UDWnfKndWvgoYeA0aOB225LuzeEKQcc4GUo//xz4IEH3LZNLppEEtDSNiHatAFGjUq7FwSVSbCjro7GsQ5ZddHcZhvghRfS7kXlkc+n3QMiCc45x/tHlDa33x5Pu2TBI5Igo8sPgogHisEjkoTGFsHS1JR2DwiCSBsSeEQSkMAjKgreNSKXy66VhSh9SOARLGTBIwiCXDSJJKClLVFR8DtnpvF3leqiSehBmwcECwk8giDIgkckAS0/iIqCn1jJwkLECY0vgoVcNAmCoNI0RBKQwCMqCt41wtSC17mzfRtE+UMCj2Bp3z7tHhAEkTbkAUQkAQk8oqJgaxQB5uLsJz/xauN07Ai89pp1t4gyhVw0CZa99waOPhpo1w4YPz7t3hAEkRT33OOVybruurR7QlQKZHsgKgpe4JlaWHI5b4G2cSNZ8Ag5tFNLsORyXnkKmjcIorK46CLg/PPpuieSg/aXiYqiXbvCv20nW5qsCYLQheYNgqg86LonkoQEHlFRuLLgEQRBEARBEEQWIYFHVBSuYvAIgiAIgiAIIouQwCMqCrLgEUlCMXgEQRAEQSQNCTyiomje3PvnQxY8giAIgiAIopwggUdUHKwVjwQeQRAEQRAEUU6QwCMqDlbgkYsmQRAEQRAEUU6QwCMqDrZUAgk8giAIgiAIopwggUdUHKwFr74+vX4QBEEQBEEQhGtI4BEVByvw1q5Nrx8EQRAEQRAE4RoSeETF0bp18HjNmvT6QRAEQRAEQRCuIYFHVBytWgWPSeARBEEQBEEQ5QQJPKLiqKsLHq9bl14/iPKnf//g8VlnpdcPgiAIgiAqB6oCRlQcrMAjiDjp2BGYOBGYNAk4/fS0e0MQBEEQRCVAAo+oOEjgEUkyYID3jyAIgiAIIgnIRZOoOEjgEQRBEARBEOUKCTyi4iCBRxAEQRAEQZQrJPCIioPNokkQBEEQBEEQ5QQJPKLiIAseQRAEQRAEUa6QwCMqjp12Ch7vsUd6/SAIgiAIgiAI15DAIyqOXr2Ae+4Bjj0WePLJtHtDEARBEARBEO7I5fP5fNqdKEVWrlyJdu3aYcWKFWjbtm3a3SEIgiAIgiAIIiWypA3IgkcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMqEzAq8L774Avfddx9OO+007LzzzqipqUEul8PNN98c+dnx48fjyCOPROfOndGyZUv06dMH1157LVavXp1AzwmCIAiCIAiCINKhJu0OyHjwwQdx7733an/u7rvvxrBhw5DL5TBw4EB07doVb775Jm699VaMHj0aEydOROfOnWPoMUEQBEEQBEEQRLpk1oL3ox/9CJdddhkef/xxfP755zjllFMiPzNlyhRceumlqK6uxosvvojXX38dTz/9NL766isccsgh+OKLL3Duuecm0HuCIAiCIAiCIIjkyawF76yzzir4u6oqWovedtttyOfzOP3003HEEUdser5Vq1YYMWIEtt12W4wePRrTp09Hnz59nPeZIAiCIAiCIAgiTTJrwdOlvr4eL774IgDgxBNPLHq9Z8+eGDBgAABgzJgxifaNIAiCIAiCIAgiCcpG4M2YMQNr164FAPTv31/4Hv/5KVOmJNYvgiAIgiAIgiCIpMisi6Yus2fPBgC0b98ebdq0Eb5nq622KnivjDVr1kR+n8p7CIIgCIIgCIIgkqRsBN6qVasAAHV1ddL3tG7dGgCwcuXK0Lb89xEEQRAEQRAEQZQSZeOiSfx/e/ceF1Wd/3H8PYCAgoCIFxBRs8J9KKupqLvieq1VNK3oZg8VWrfdrawsy1sX7br7qEf1ULO1dkutpQet13LtohZe0MQLbJtbmS7eMCvUBAJFhe/vjx4zP4kBZoYhmDOv5+PB4wHnnO9nvuec+ZxzPsw53wEAAADg7yzzCZ79tsy6bp20f9F5REREnbFc+UL0kpISxcXFudFDAAAAAGhclinwunbtKkk6c+aMSktLnT6Hd+zYsWrL1qau2zztKisr3e4jAAAAADQmy9yimZiYqFatWkmS9uzZ43QZ+/S+ffv+bP0CAAAAgJ+LZQq84OBgjR07VpL01ltv1Zh/5MgR7dixQ5J0/fXX/6x9AwAAAICfg2UKPEmaPXu2bDabli5dqg8++MAxvby8XFOnTlVlZaXS0tLUo0ePJuwlAAAAADQOmzHGNHUnnMnLy9Ndd93l+Pt///ufTp48qfj4eHXq1Mkxfc2aNYqNjXX8/eKLL+qBBx6QzWbT0KFD1b59e23btk0nTpxQYmKicnJyFBMT0+D+lZSUKDIyUsXFxfUO2gIAAADAuppTbdBsB1kpKSlRbm5ujemFhYUqLCx0/F1RUVFt/v3336+kpCQ9//zz2rVrl8rKypSQkKA5c+Zozpw5tX4JOgAAAAD4umb7CV5z15yqdAAAAABNpznVBpZ6Bg8AAAAA/BkFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWERQU3fAVxljJEklJSVN3BMAAAAATcleE9hrhKZEgeeBsrIyRUVFSZI6d+7ctJ0BAAAA0Cx8++23ioyMbNI+UOA10PHjxxUeHt7U3fA7ZWVliouLkyR9/fXXCgsLa+Ie+Re2f9NjHzQ99kHTYx80PfZB02MfNL1L90FsbGwT94YCr8EiIyNJpCYQGBjo+D0iIoJ98DNj+zc99kHTYx80PfZB02MfND32QdO7dB8EBDT9ECdN3wMAAAAAgFdQ4AEAAACARVDgAQAAAIBFUOABAAAAgEVQ4AEAAACARVDgAQAAAIBFUOABAAAAgEXYjDGmqTsBAAAAAGg4PsEDAAAAAIugwAMAAAAAi6DAAwAAAACLoMADAAAAAIugwJO0YsUKDRs2TG3atFFYWJh69+6tZ599VhcuXPAo3t69e3XTTTepQ4cOCg0NVbdu3XTPPffou+++83LPfduFCxf00Ucf6aGHHlJycrKioqLUokULdezYUePHj9f69evdjjl//nzZbLY6f7788stGWBvflZGRUe82O3funNtxyQPXHD58uN7tb//ZunWrSzHJA+f279+vRYsWKSMjQ0lJSQoKCpLNZtNTTz1Vb9tNmzYpNTVVMTExatmypXr06KGHH35YP/zwg8f9OXjwoDIyMhQfH6+QkBDFx8crIyNDBQUFHsds7tzdB1VVVdqxY4cee+wxpaSkqG3btmrRooViYmJ09dVXKzMzU56MFbds2bJ6c+SDDz5o6Oo2S57kQWMeU/wtDzzZ/q6eI9544w2X++GvOdDQa09fORcEedzSIqZPn64FCxYoKChII0aMUHh4uD7++GPNmjVL69at04YNG9SyZUuX461cuVITJ07UxYsXlZycrG7dumnPnj166aWXtGLFCuXk5Ojyyy9vxDXyHVu2bNHVV18tSerYsaNSUlIUFhamzz//XOvWrdO6dev0hz/8QUuWLJHNZnMrdu/evdWnTx+n8yIjIxvadUsaPHhwre/NwMBAt2KRB64LDw9Xenp6rfM///xz7d69W61bt1a/fv3cik0eVPfXv/5VCxYscLvdiy++qAceeEA2m01DhgxRhw4dtG3bNj3zzDNatWqVcnJyFBMT41bM7du365prrlF5ebl69uyplJQU7du3T8uXL9fKlSu1adMmDRo0yO2+Nnfu7oOCggINHjxYkhQdHa3+/furTZs2Kigo0KZNm7Rp0yZlZWVp1apVCg4Odrs/3bt3V0pKitN5nTp1cjueL/A0DyTvH1P8MQ882f51nSOOHj2q7Oxs2Ww2DR061O3++FsONOTa06fOBcaPrVmzxkgy4eHhZu/evY7pRUVFJikpyUgyM2bMcDne8ePHTatWrYwk88orrzimX7x40UyaNMlIMsnJyaaqqsqr6+GrPvroI5OWlma2bt1aY15WVpYJDAw0kszy5ctdjjlv3jwjycybN8+LPbW29PR0I8ksXbrUK/HIA+8aM2aMkWTuuOMOl9uQB8797W9/Mw8++KDJzMw0X3zxhZk8ebKRZJ588sla2+Tl5RmbzWYCAwPNe++955heVlZmRo4caSSZtLQ0t/pRVlZm4uLijCQzZ86cavPmzJljJJnOnTub8vJy91bQB7i7Dw4ePGhGjBhh3n//fXPx4sVq8zZv3mzCwsKMJPP444+71Y+lS5caSSY9Pd3TVfFZnuRBYxxT/DUPPNn+dbnzzjuNJHP11Ve71c5fc8DTa09fOxf4dYGXnJxsJJmnnnqqxrxt27YZSSYkJMScOXPGpXgPPfSQkWRGjRpVY15paamJjIw0kswHH3zQ4L77g6lTpxpJZuTIkS634cLWfd4u8MgD7yksLDQBAQFGktm5c6fL7cgD19jf+3VdWN10001Gkvn9739fY97hw4cd++eLL75w+XUXL15sJJkrr7zSVFZWVptXWVlprrzySiPJLFmyxPWV8VGu7IO6PPnkk0aS6d69u1vt/PXi1hlX9kFjHFPIgx81JAfOnj1roqKijCSTlZXlVltywLnarj197Vzgt8/gHT9+XLt375Yk3XbbbTXmp6SkqHPnzqqoqNB7773nUsw1a9bUGi88PFzjx4+XJK1evdrTbvuVq666SpJ07NixJu4J3EEeeM+yZctUVVWlnj17auDAgU3dHb9z/vx5x/MYzt7PXbp0cdw+aH/fu8K+7K233qqAgOqn4YCAAN1yyy2SyBFXcJ7wXeRBw61atUpnzpxRdHS0rrvuuqbujiU4O6b44rnAb5/By8/Pl/TjPf3dunVzukz//v117Ngx5efna+LEiXXGKy0t1cGDBx3taov35ptvOl4bdTtw4IAkKTY21u22eXl5mj17tk6fPq3IyEhdddVVuvbaa9W6dWtvd9MysrOz9dlnn6m0tFRt27bVgAEDlJqaqpCQEJdjkAfetWzZMknS1KlTPWpPHjTMV199pfLyckl1v5+3bdvm1vvZvmxdMS9dDrVryHlC+nFwg0ceeUTfffedwsPD1atXL40fP97t52j8hTePKeRBw73++uuSpEmTJrl1rr4UOVCds2OKL54L/LbAO3TokCQpISGh1mU6d+5cbdm6HD582PF7bTHdiefvvvnmG8fFbVpamtvt7Q/KXioyMlILFy7UlClTvNFFy3E2+lZsbKxef/11jR492qUY5IH3bNmyRQcPHlRwcLAmT57sUQzyoGHs79GoqKhaL2DdfT+Xlpbq1KlTkurPkaKiIpWVlSksLMytfvuL8vJyLVy4UJJn5wnpxwEOtm/fXm1aaGio5s+fr1mzZjW4j1bjrWMKedBwhw8fVnZ2tiTP/wkokQOXqu3a0xfPBX57i2Zpaakk1bmxwsPDJUklJSUux6srpjvx/NnFixc1adIkFRcXKykpSX/84x9dbtu9e3c988wzys/P1+nTp3X69Gnl5ORo3LhxKi4uVnp6ujIzMxux976nd+/eWrBggfbt26eSkhJ9++232rBhg37961/rxIkTGj9+vDZv3uxSLPLAe+z/mfXkP6nkgXd4+zxxacy64tpjuhPXH9111106dOiQ4uLiNHfuXLfaduzYUQ8//LByc3NVVFSkkpIS7d69W1OmTFFFRYVmz56tZ555ppF67nu8fUwhDxpu6dKlMsaof//++uUvf+l2e3KgurquPX3yXOD2U3sW8fTTTxtJZvDgwbUuM3fuXCPJXHPNNfXG2759u5FkJJkLFy44XWbDhg1GkgkODva43/7A/oBr27Ztzf79+70W95577jGSTLt27UxFRYXX4lpVVVWVmTBhgpFkevfu7VIb8sA7iouLHSORXjpalzeQB/+vvsENMjMzjSTTqVOnWmO8+uqrjofkXXH8+HFHjhw4cMDpMl999ZVjma+//tqluL7K0wEmnnjiCSPJhIaGmpycHK/26fnnn3cMsvbNN994NXZz1NCBbjw5ppAH/8+T7V9ZWWkSEhKMJPPyyy97vU/+lgPG1H3t6YvnAr/9BM/+EWtZWVmty9i/tDAiIsLleHXFdCeev7rvvvv02muvqU2bNtq4caOuvPJKr8WeP3++AgMDVVRUpNzcXK/FtSqbzabHH39ckvTpp5+6NIgBeeAdWVlZKi8vV3x8vH772996NTZ54DpvnycujVlX3Eu/MJc8qemFF17QY489ppCQEK1Zs8YxuIG33HfffYqJiVFFRYU2bNjg1dhW5MkxhTxomE2bNuno0aNq2bKl00E/GsrfcqC+a09fPBf4bYHXtWtXSXWPvGWfZ1+2Ll26dHH8fvTo0QbH80czZszQwoULFRUVpQ0bNjhGMvKW6OhotW/fXpJUWFjo1dhW9Ytf/MLxuyvbjDzwDvvtmRkZGTVG1moo8sB19vfomTNnqt1Ocyl338+tW7dWdHS0pPpzJCYmhueOfmLRokWaMWOGgoODtWrVKpefD3ZHYGCgrrjiCknkiCs8OaaQBw1jP0ekpaV59AXz9fGnHHDl2tMXzwV+W+DZd+CpU6dqfSByz549kqS+ffvWGy8iIkKXX355tXYNiedvZs6cqRdeeEGRkZHasGFDrSMKNURlZaWKi4sliVEEXWR/AFhybZuRBw33+eefKzc3VzabTbfffrvX45MHrktMTFSrVq0keff9bF+WHHHP4sWLde+99zqKu7Fjxzbaa9mPfeRI/Tw9ppAHnjl9+rTWrl0rqWGDq9THH3LA1WtPXzwX+G2BFx8fr+TkZEnSW2+9VWN+Tk6Ojh07ppCQEKWmproU8/rrr6813g8//OAYeeqGG27wtNuWNHv2bD333HOKjIzUxo0bHfvF2959912Vl5fLZrM1SgFpRVlZWZJ+LNwSExNdakMeNMxrr70mSRo+fLguu+wyr8cnD1wXHBzsKCKcvZ+PHDmiHTt2SPr/970r7MtmZWWpqqqq2ryqqiq9/fbbksiRSy1ZskTTpk1zFHfjxo1rtNfKy8vTV199JUkaMGBAo72OVXh6TCEPPJOZmamKigp1795dQ4cObZTX8IcccOfa0yfPBW49sWcxa9asMZJMeHi42bt3r2P6yZMnTVJSkpFkZsyYUa3N6tWrTWJiohkxYkSNeMePH3cMjPDqq686pl+8eNFMnjzZSDLJycmmqqqq8VbKxzz88MNGkomKijK7du1yqc2iRYtMYmKimTx5crXpR44cMW+++aY5e/ZsjTZr1qwx0dHRRpKZNGmSV/puBfn5+eadd96pMSBKZWWl+fvf/25CQ0ONJPPII49Um08eNI7z58+b9u3bG0kmMzOzzmXJg4ZzZXCDvXv3GpvNZgIDA83777/vmF5WVmZGjhxpJJm0tLQa7XJzc01iYqJJTEysMa+srMzExcUZSWbu3LnV5tkH94qPjzfl5eUNWDvf4Mo+ePXVV43NZjPBwcFm3bp1Lseu7ThVVlZmXnrpJVNSUlKjzZYtW0zXrl2NJJOSkuL6iviw+vZBQ44p5EH93B1kpU+fPkaSefrpp+tdlhxwzpNrT187F/h1gWeMMffee6+RZFq0aGFGjx5t0tLSTFRUlGOEzZ9u1KVLlxpJpkuXLk7j/fOf/zSBgYFGkhk4cKC55ZZbzGWXXWYkmQ4dOtQ6Uo4/eueddxyjA/Xv39+kp6c7/flpkT1v3jwjyQwdOrTa9Pz8fEfBPmTIEHPrrbeaCRMmmCuuuMLxOsOHDzelpaU/41o2b/Z/crRp08aMHDnS3HbbbSY1NdUxOpckM3HixBoFIHnQOFavXu046Ti7mLoUeeC+vXv3moEDBzp+YmJiHCfQS6f/dLSyF154wUgyNpvNDBs2zNx8880mNjbWSDKJiYmmqKioxmtlZ2c7trczOTk5jn+E9OrVy9x6662mV69eRpIJCwszn3zySaNsg6bm7j7Iz883NpvNSDI9evSo9TyRnp5e47VqO059//33jhECBw0aZG6++WZzww03OLa/JJOUlGTZkRs92QeeHlPIg5o8PQ4ZY0xeXp6RZAIDA83x48frfS1yoCZPrz2N8a1zgd8XeMYY8/bbb5vf/OY3JiIiwrRs2dL06tXL/OUvf3E63G99F7bGGLNnzx5zww03mHbt2png4GDTpUsXc/fdd/vNULOusm/L+n5+uq1ru7A9efKkmTVrlhkxYoRJSEgwYWFhpkWLFiY2NtaMGzfOvPXWW6aysvLnW0EfUFBQYKZPn25SUlJMp06dTGhoqAkJCTEJCQnmxhtvNOvXr3fajjxoHOPGjTOSzF133VXvsuSB+y490db1c+jQoRptN27caEaPHm2io6NNSEiIueKKK8ycOXOc/gf8p69VmwMHDpgpU6aYuLg406JFCxMXF2emTJliDh486K1Vbnbc3QeuLu9sO9d2nKqoqDCPPvqoGTNmjOnWrZtp3bq1CQoKMu3atTOjRo0yr7zyiqW/QsTdfdCQYwp5UFNDjkPTpk0zkkxqaqpLr0UO1OTptaedr5wLbMYYIwAAAACAz/PbQVYAAAAAwGoo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAADNhs1mc/tn2LBhkqRhw4bJZrNp8+bNTboO3rBgwQLZbDatWrXK4xjFxcVq27atBg4cKGOMF3sHAGjOgpq6AwAA2KWnp9eY9s033+jDDz+sdX6PHj0avV8/p6KiIs2fP1/JyclKS0vzOE5kZKTmzJmjhx56SG+88YbTbQcAsB6b4d96AIBmbPPmzRo+fLgk1flJ1NGjR1VeXq6EhAS1atXq5+qe102bNk2LFy/W+vXrlZqa2qBY586dU0JCgoKCgnTo0CGFhIR4qZcAgOaKWzQBAJaQkJCgHj16+HRxd+bMGS1btkydOnXS6NGjGxwvNDRUt912m06cOKG3337bCz0EADR3FHgAAEuo7Rm8jIwM2Ww2LVu2TPv379ctt9yi9u3bKywsTMnJyXrnnXccy+bm5mr8+PFq166dWrZsqV/96lf66KOPan3Ns2fP6vnnn9egQYMUFRWl0NBQJSYmaubMmTp16pTb67B06VKVlZVp8uTJCgioeYquqKjQc889p379+ql169YKDg5Wx44dlZycrJkzZ+r06dM12mRkZEiSFi9e7HZ/AAC+hwIPAOAX8vLy1K9fP3366acaOXKkevfurT179uj666/XypUrtXbtWg0ZMkSFhYUaOXKkEhMTtXPnTo0ePVo5OTk14n399dcaOHCgHnzwQR04cEDJyclKTU11FGH9+/fXkSNH3Orj2rVrJUmjRo2qMa+qqkpjx47VzJkzdfDgQQ0ZMkQ33nijkpKSVFRUpOeee05Hjx6t0a5Pnz5q166ddu3apRMnTrjVHwCADzIAADRj2dnZRpKp75Q1dOhQI8lkZ2dXm56enu5o/9RTT5mqqirHvIULFxpJJj4+3rRp08a88cYb1dpOnz7dSDKjRo2qNr2qqsoMHjzYSDJTp041JSUljnkXLlwwM2bMMJLM8OHDXV7P8vJyExwcbAICAqrFs9uyZYuRZK666iqn83fv3m1OnjzpNPb48eONJPPmm2+63B8AgG/iEzwAgF8YMGCA5s6dK5vN5ph25513Kjo6WoWFhRo1apQmT55crc0jjzwiSdq6dasuXLjgmP7hhx9q+/bt6tOnj5YsWaLWrVs75gUFBenZZ59Vr169lJ2drX379rnUv//+9786f/684uPjq8Wz+/bbbyVJQ4YMcTq/f//+atu2rdPYPXv2lPTjp5gAAGujwAMA+IUxY8ZUK+6kH4uxbt26SZLTESvbtm2r6OhonT9/vtozdevXr5ckpaWlKSio5jcOBQQE6De/+Y0kaceOHS71z17A1Vak9e3bV4GBgXr99de1ePFit263tMe0vwYAwLoo8AAAfiEhIcHp9PDw8Drn2z8tO3funGNaQUGBJOnRRx+t9QvYX375ZUk/fq+dK4qLiyVJERERTud3795dL774oi5cuKBp06YpLi5OXbt21cSJE5WZmanz58/XGtse8/vvv3epLwAA38UXnQMA/IKzUSndmX+pqqoqSVJKSoq6d+9e57L22yPrExUVJUkqKSmpdZl77rlHN998s959913l5OQoJydHWVlZysrK0rx587Rt2zbFxsbWaGcvHtu0aeNSXwAAvosCDwAAN3Xu3FmSNGHCBD344INeidm+fXtJqvfrFTp06KA77rhDd9xxhyTpyy+/1O9+9zt98sknmj17tpYvX16jjT1mhw4dvNJXAEDzxS2aAAC4acyYMZKkFStWyBjjlZg9e/ZUcHCwCgsLVVpa6nK7Hj16aNasWZKkf//7306XsQ/00q9fvwb3EwDQvFHgAQDgpgkTJig5OVm7du3S7bff7vQ5u++//15LlizRxYsXXYrZsmVLDRo0SFVVVcrNza0x/+OPP9Z7771XbTRPSTLG6F//+pckqUuXLk5jf/LJJ5KkESNGuNQXAIDv4hZNAADcFBAQoLVr12rs2LFavny5Vq5cqd69eyshIUHnz59XQUGBPvvsM1VWViojI8PpSJvOXHfdddq6das2btxY48vO//Of/+j+++9XRESE+vbtq7i4OJ09e1Z5eXk6cuSIIiMj9cQTT9SImZ+fr1OnTmnAgAFOn88DAFgLn+ABAOCBuLg47dy5U0uWLNGAAQO0f/9+rVy5Ujk5OZKkP/3pT/rwww8VGhrqcszbb79dYWFh+sc//qHKyspq86699lrNnz9fycnJKigo0OrVq7V582ZFRkZq9uzZ2rdvn/r06VMj5rJlyyRJd999t8frCgDwHTbjrYcHAABAg02bNk2LFy/Wu+++q2uvvbZBsc6dO6fOnTurRYsWOnTokEJCQrzUSwBAc8UneAAANCPz5s1TVFSU09st3bVo0SKdPHlSf/7znynuAMBP8AkeAADNzIIFCzR9+nStWLFCN954o0cxiouLddlll+nyyy/Xzp07ZbPZvNxLAEBzRIEHAAAAABbBLZoAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBH/B+lJ1xUb/OFxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy = np.random.poisson(long_signal*dt)\n", + "\n", + "long_lc = Lightcurve(long_times, long_noisy, dt=long_dt, skip_checks=True)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `AveragedPowerspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 50515.52it/s]\n" + ] + } + ], + "source": [ + "avg_ps = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm=\"leahy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check how many segments were averaged together by printing the `m` attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(\"Number of segments: %d\" % avg_ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AveragedPowerspectrum` has the same properties as `Powerspectrum`, but with `m` $>$1.\n", + "\n", + "Let's plot the averaged power spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAIeCAYAAAAxuAm3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABonklEQVR4nO3deXgT1f7H8U9KS4EWKGsBAVlEFEQBARVQkU0UN8QVF1Bc0Iu4gIoLohf1KopXFvW64HavehUEXOAqiyICCijIosgioLKp7DSF0pLz+2N+aZImadN0pkmb9+t5+tBkJpOT0GTmM+d8z7iMMUYAAAAA4ICkWDcAAAAAQPlF4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcExyrBtQnnk8Hu3atUuSVKVKFblcrhi3CAAAACg5Y4yys7MlSbVr11ZSUvh+DAKHg3bt2qXMzMxYNwMAAABwzB9//KG6deuGXc6QKgAAAACOoYfDQVWqVMn//Y8//lBaWloMWwMAAADYw+1254/k8T/mDYXA4SD/mo20tDQCBwAAAMqdouqUGVIFAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAx3AdDhu53e5CbwMAAACJhsBho/T09Fg3AQAAAIgrDKkCAAAA4Bh6OGyUlZUVcNvtdiszMzNGrQEAAABij8Bho7S0tFg3AQAAAIgrDKkCAAAA4BgCBwAAAADHEDgAAAAAOIbAAQAAAMAxBA7g/337rfTKK1J2dqxbAgAAUH4wSxUgaf9+qUcPK2zs2SONHBnrFgEAAJQP9HAAkn7/3dez8fPPsW0LAABAeULgACQdPRr6dwAAAJQMgQMQgQMAAMApBA5AUl5e6N8BAABQMgQOQPRwAAAAOIXAAYjAAQAA4BQCByACBwAAgFMIHIAIHAAAAE4hcACiaBwAAMApBA5A9HAAAAA4hcABiMABAADgFAIHIAIHAACAU5Jj3YDyxO12F3ob8cs/ZFDDAQAAYB8Ch43S09Nj3QREiR4OAAAAZzCkClBgrwaBAwAAwD70cNgoKysr4Lbb7VZmZmaMWoPioIcDAADAGQQOG6WlpcW6CYgSgQMAAMAZDKkCRNE4AACAUwgcgOjhAAAAcAqBAxBF4wAAAE4hcACihwMAAMApBA5ABA4AAACnEDgAUTQOAADgFAIHIHo4AAAAnELgAETROAAAgFMIHIDo4QAAAHAKgQMQgQMAAMApBA5AFI0DAAA4hcABiB4OAAAApxA4ABE4AAAAnELgABQ4jMrjkYyJXVsAAADKEwIHoOBeDXo5AAAA7EHgAETgAAAAcAqBAxCBAwAAwCkEDkAEDgAAAKcQOAAFX3uDwAEAAGAPAgeg4IDBxf8AAADsQeAAxJAqAAAApxA4ABE4AAAAnELgAETgAAAAcAqBAxBF4wAAAE4hcACiaBwAAMApBA5ADKkCAABwSnKsG1CeuN3uQm8jfhE4AAAAnEHgsFF6enqsm4AoETgAAACcwZAqQME1G9RwAAAA2IMeDhtlZWUF3Ha73crMzIxRa1Ac9HAAAAA4g8Bho7S0tFg3AVEicAAAADiDIVWACBwAAABOIXAAInAAAAA4hcABiAv/AQAAOIXAASg4YNDDAQAAYA8CByCGVAEAADiFwAGIwAEAAOAUAgcgAgcAAIBTCByAKBoHAABwCoEDEEXjAAAATiFwAGJIFQAAgFMIHIAIHAAAAE4hcAAicAAAADiFwAGIonEAAACnEDgAUTQOAADgFAIHIIZUAQAAOIXAAYjAAQAA4BQCByBqOAAAAJxC4ABEDwcAAIBTCByAKBoHAABwCoEDCc/jCb6PwAEAAGAPAgcSXqhwQeAAAACwB4EDCS9UuKBoHAAAwB4EDiQ8ejgAAACcQ+BAwiNwAAAAOIfAgYQXavgUgQMAAMAeBA4kPHo4AAAAnEPgQMKjaBwAAMA5BA4kPHo4AAAAnEPgQMIjcAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER+AAAABwDoEDCY+icQAAAOcQOJDwqOEAAABwDoEDCY8hVQAAAM4hcCDhETgAAACcQ+BAwiNwAAAAOIfAgYRH4AAAAHAOgQMJL1SBOEXjAAAA9iBw/L+pU6eqX79+aty4sapUqaLWrVtr3Lhxys3NjXXT4DB6OAAAAJyTHOsGxItnn31WTZo00dixY5WZmanFixfr4Ycf1qpVq/TWW2/FunlwEIEDAADAOQSO//fJJ5+oTp06+bfPOeccGWM0atSo/BCC8onAAQAA4ByGVP0//7Dhdeqpp0qStm/fXtrNQSkicAAAADgnrgPHunXrNHHiRA0aNEht2rRRcnKyXC6XHn/88YgeP2XKFHXr1k01atRQWlqaTjnlFI0dOzbiuowFCxaoYsWKat68eUleBuIcReMAAADOieshVS+99JLGjx8f1WPvuusujR8/XsnJyerevbvS09P1xRdf6P7779cnn3yi2bNnq3LlymEf/9NPP2n8+PG65ZZbVK1atWhfAsoAejgAAACcE9c9HCeddJJGjBihd955R2vXrtV1110X0eNmzJih8ePHKz09XUuWLNHnn3+uDz/8UBs2bFCbNm20cOFCjRo1Kuzjd+3apUsuuUTHHXecnnrqKbteDuIUgQMAAMA5cd3DcdNNNwXcTkqKLB89+eSTkqSRI0eqffv2+ffXrl1bL774os4880xNmjRJo0aNUvXq1QMee/DgQZ133nk6cuSI5s+fr7S0tBK+CsQ7AgcAAIBz4rqHIxrbtm3TsmXLJEkDBgwIWt61a1c1atRIOTk5mjVrVsCynJwcXXzxxdqyZYs+//xzNWjQoFTajNgicAAAADin3AWOFStWSJJq1qyppk2bhlynQ4cOAetK0tGjR3XVVVdp2bJlmjVrllq2bFnkc7nd7iJ/EP8oGgcAAHBOXA+pisbmzZslSY0bNw67TqNGjQLWlaS//e1vmjFjhsaMGaOjR4/q22+/zV/WqlWrkIXj6enpdjUbMUQPBwAAgHPKXeA4ePCgJBVae+ENCgcOHMi/77PPPpMkjRo1Kqig/Msvv1S3bt1sbiniBYEDAADAOeUucERry5YtxX5MVlZWocvdbjdXKC8DCBwAAADOKXeBo2rVqpJUaP2ENyiU9PoazGBVPoQKF9RwAAAA2KPcFY03adJEkvT777+HXce7zLsuEluocEEPBwAAgD3KXeBo166dJGn37t0BReH+vvvuO0kKuEYHEhdDqgAAAJxT7gJHw4YN1bFjR0nSu+++G7R84cKF+v3335Wamqrzzz+/tJuHOETgAAAAcE65CxyS9OCDD0qSnnrqKS1fvjz//t27d+v222+XJA0dOjToKuMlxXU4yiYCBwAAgHNcxhgT60aEs3z58vyAIEm//PKLdu3apYYNG+qYY47Jv3/69OmqX79+wGPvvPNOTZgwQSkpKerRo4fS0tI0b9487du3T126dNGcOXNUuXJlW9vrcrnCLsvKyqLIPE6NHi39/e+B96WmSocPx6Y9AAAA8c7tdudfaqKo49y4nqXqwIEDWrJkSdD9W7du1datW/Nv5+TkBK0zfvx4denSRS+88IIWL16s3NxcNW/eXCNHjtTdd9+tihUrOtp2lB30cAAAADgnrns4ypqCQ6j8r8NBD0f8GjlSevrpwPtcLsnjiU17AAAA4l256eEoawgUZVOo3gxjrJ9CRskBAAAgAuWyaBwoDv/AUaFC6PsBAAAQHQIHEp5/sPAv7eFq4wAAACVH4EDCCxc46OEAAAAoOQIHEp5/TwaBAwAAwF4Ujdso1CxViH/+wSI1NfT9AAAAiA6Bw0beqcFQthA4AAAAnMOQKiQ8isYBAACcQw+HjbKysgJu+1/4D/GLonEAAADnEDhsxIX/yiaKxgEAAJzDkCokPHo4AAAAnEPgQMILVzRODQcAAEDJETiQ8JilCgAAwDkEDiQ8hlQBAAA4h8CBhEfROAAAgHOYpcpGXGm8bGJIFQAAgHMIHDbiSuNlExf+AwAAcA5DqpDw6OEAAABwDj0cNuJK42UTReMAAADOIXDYiCuNl00EDgAAAOcwpAoJz1ur4XJJyX4RnMABAABQcgQOJDxvsEhOlipU8N1P0TgAAEDJETiQ8LyBo0KFwMBBDwcAAEDJETiQ8AgcAAAAziFwIOH5Bw5qOAAAAOxF4EDC89ZqFOzhoIYDAACg5AgcSHgMqQIAAHAO1+GwkdvtLvQ24lO4WaoIHAAAACVH4LBRenp6rJuAKNDDAQAA4ByGVCHhUTQOAADgHHo4bJSVlRVw2+12KzMzM0atQaQoGgcAAHAOgcNGaWlpsW4CosCQKgAAAOcwpAoJj6JxAAAA5xA4kPDo4QAAAHAOgQMJj6JxAAAA5xA4kPDC9XBQNA4AAFByURWN79u3T59//rnmzZun5cuX648//tDevXtVo0YNZWZm6tRTT1X37t117rnnKiMjw+YmA/YKN0sVPRwAAAAlV6zAsXr1ao0fP17vvfeeDh8+LGNMwPLs7Gxt27ZNy5cv12uvvaZKlSppwIABuuOOO3TyySfb2nDADsZYPxJF4wAAAE6IKHD8+eefeuCBB/TWW2/J4/Godu3a6tu3rzp37qzWrVurVq1aqlatmvbv36/du3drzZo1Wrx4sRYsWKDJkyfrjTfe0KBBg/Tkk0+qbt26Tr8mIGL+oYIaDgAAAPtFFDhatGihgwcP6oILLtDgwYPVt29fJSeHf2jv3r11zz33KC8vT5988olef/11vf766/rwww+1d+9e2xoPlFTBwEEPBwAAgL0iKhrv1KmTli1bpo8//lgXX3xxoWHDX3Jysvr166dPPvlES5YsUYcOHUrUWMBuhQUOisYBAABKLqLkMGfOnBI/UceOHW3ZDmAn/1BBDwcAAID9opqlCqG53e5CbyP++IcKisYBAADsF1Xg2LJli5o0aWJzU8q+9PT0WDcBxUTROAAAgLOiuvBfs2bN1KJFCw0ZMkRTp06lEBxlFjUcAAAAzoqqh6NJkyb65Zdf9Msvv+jVV1+Vy+VS27Zt1bNnT/Xs2VNnnnmmUlNT7W5r3MvKygq47Xa7lZmZGaPWIBLMUgUAAOCsqALHpk2btHnzZs2dO1dz5szRl19+qeXLl2v58uV65plnlJqaqs6dO+cHkESZnSotLS3WTUAxUTQOAADgLJcpeLnwKK1YsUJz5szRvHnztHDhQh0+fNh6ApdLeQk6NsXtdufXdWRlZRFI4tDmzVKzZtbvV14pjRwptWtn3b71Vulf/4pd2wAAAOJVcY5zbZulql27djrxxBPVtm1bHX/88Zo8eXJ+6ADiVcFZqigaBwAAsFeJAocxRt99953mzp2ruXPnavHixTpy5IiMMcrIyNB5552nnj172tVWwHYUjQMAADgrqsDxr3/9S3PnztWXX36pffv2yRgTsm7D5XLZ3V7AVhSNAwAAOCuqwHH77bfL5XLphBNO0E033ZQ/M1WlSpXsbh/gKIrGAQAAnBX1kCpjjDZt2qRly5YpIyNDNWvW1Kmnnmpn2wDH0cMBAADgrKgCx5IlSwLqNubPn6+HH35YNWrUUPfu3dWzZ0/16tVLTZs2tbu9gK0oGgcAAHBWVIGjY8eO6tixox544AEdPnxYCxYsyA8gH374oaZOnSqXy6WmTZuqV69eeumll+xuN2ALisYBAACclVTSDVSqVEm9e/fW2LFjtXz5cu3cuVMjRoxQamqqNm3apFdeecWOdgKOYEgVAACAs2y5DkfBq47v2bNH3usJpqam2vEUgCMIHAAAAM6KKnDs3btX8+bNyx9GtXnzZklWIbnL5VLbtm3zp8c988wzbW0wYKeCs1RRwwEAAGCvqAJHnTp1ZIzJ78Vo2rRpfsDo0aOHatasaWsjAacULBqnhwMAAMBeUQWOjIwM9ejRIz9kMBuVxe12F3ob8YeicQAAAGdFFTh27dpldzvKhfT09Fg3AcVEDQcAAICzSjxLFVCWETgAAACcZcssVbBkZWUF3Ha73crMzIxRaxCJgkXjSX4RnMABAABQclH3cOTm5mrcuHE6/fTTVaNGDVWoUCHkT3Jy4mSatLS0oB/Et4I9HC6Xr5eDGg4AAICSiyoN5OTkqEePHvrmm2/yZ6oKp6jlQCwVnKVKsgLH0aP0cAAAANghqh6O8ePHa/Hixerdu7fWrVun66+/Xi6XSzk5OVqzZo3uv/9+paamatSoUfJ4PHa3GbBNwR4O/38JHAAAACUXVQ/HlClTVLVqVf33v/9V9erV5XK5JEkpKSlq1aqV/vGPf6hz58665JJL1KZNG1122WW2NhqwC4EDAADAWVH1cKxfv16nnXaaqlevLkn5geOo3xHahRdeqHbt2mnixIk2NBNwRsGicck3tIrAAQAAUHJRBY7c3FzVqVMn/3blypUlSQcOHAhYr2XLllq9enUJmgc4q7AeDorGAQAASi6qwFGvXj3t2LEj/3b9+vUlSWvXrg1Yb/v27QG9HkC8CVc0XnAZAAAAohNV4DjxxBO1cePG/NudO3eWMUZjx47NLxL/6quv9PXXX6tly5b2tBRwADUcAAAAzooqcJx77rnaunWrli5dKknq1q2bWrVqpU8++UTHHHOMTj31VPXq1UvGGN1+++22NhiwE4EDAADAWVHNUjVgwADVqlUrv2g8KSlJM2bMUP/+/bV69Wr98ccfqlChgoYNG6ZBgwbZ2V7AVhSNAwAAOCuqwFG7dm1dc801Afcdd9xxWrlypdatW6c9e/bo+OOPV61atWxpJOAUisYBAACcFVXgWLBggSpUqKAuXboELaNmA2UJReMAAADOiqqGo1u3bho1apTdbQFKHTUcAAAAzooqcNSoUUMNGjSwuy1AqSNwAAAAOCuqwNG2bVtt2LDB7rYApS5U4KBoHAAAwD5RBY5hw4Zp2bJlmjlzpt3tAUpVqFmqKBoHAACwT1RF4+3atdPQoUPVr18/DRo0SP3791eTJk1UuXLlkOs3bty4RI0EnMKQKgAAAGdFFTiaNm0qSTLGaPLkyZo8eXLYdV0ul/I4VYw4VdgsVZLk8UhJUfUDAgAAQIoycDRq1Egul8vutpR5bre70NuIP4XVcHiXEzgAAACiF1Xg2LJli83NKB/S09Nj3QQUU2FDqiSrjiMlpXTbBAAAUJ5w7hYJrbCicYk6DgAAgJKKqocDoWVlZQXcdrvdyszMjFFrEImiejgIHAAAACUTUQ/H9u3bbXkyu7YTr9LS0oJ+EN+KKhoncAAAAJRMRIGjRYsWGjlypPbu3RvVk+zZs0f33XefWrRoEdXjAadEUjQOAACA6EUUOHr37q2xY8eqYcOGuvbaazVnzhzl5OQU+picnBx9/vnnuvrqq9WwYUM9++yzOvfcc21pNGCXSIrGAQAAEL2IajimT5+uuXPn6u6779a7776r9957TykpKWrbtq1OPPFE1apVS9WqVdOBAwe0e/du/fTTT1q5cqVyc3NljNFJJ52k5557Tj179nT69QDFQtE4AACAsyIuGu/Zs6dWr16tOXPmaNKkSZo9e7aWLl2qpUuXSrIu8GeMyV8/NTVVF154oYYOHUrQQNyiaBwAAMBZxZ6lqlevXurVq5dycnK0aNEirVixQn/88Yf279+vjIwM1a1bV+3bt1fnzp2VmprqRJsB21A0DgAA4Kyop8VNTU1V9+7d1b17dzvbA5QqisYBAACcxYX/kNAoGgcAAHAWgQMJjRoOAAAAZxE4kNCYpQoAAMBZBA4kNIrGAQAAnEXgQEIrqmicGg4AAICSIXAgoVHDAQAA4CwCBxIagQMAAMBZUQWOBQsWaNGiRXa3BSh1FI0DAAA4K6rA0a1bN40aNcrutgClzj9QJP3/p4EL/wEAANgnqsBRo0YNNWjQwO62AKXOGyj8QwYX/gMAALBPVIGjbdu22rBhg91tAUqdN3D4hwyGVAEAANgnqsAxbNgwLVu2TDNnzrS7PUCpInAAAAA4K7noVYK1a9dOQ4cOVb9+/TRo0CD1799fTZo0UeXKlUOu37hx4xI1EnCKd8gUgQMAAMAZUQWOpk2bSpKMMZo8ebImT54cdl2Xy6U8BsIjToXq4aBoHAAAwD5RBY5GjRrJ5XLZ3Rag1FE0DgAA4KyoAseWLVtsbgYQG9RwAAAAOIsrjSOhETgAAACcReBAQqNoHAAAwFklChxff/21rrjiCjVs2FCpqakaPHhw/rI5c+bowQcf1M6dO0vcSMApFI0DAAA4K+rA8fjjj6tbt26aOnWqtm/frtzcXBlj8pdXr15dTz/9tKZNm2ZLQwEnUDQOAADgrKgCx//+9z898sgjOuaYY/TBBx/ojz/+CFqnU6dOqlOnjj799NMSNxJwCjUcAAAAzopqlqrx48crNTVV//vf/9S6deuw651yyinasGFD1I0ra9xud6G3EX8IHAAAAM6KKnAsW7ZMnTp1KjRsSFKdOnW0ePHiqBpWFqWnp8e6CSgmAgcAAICzohpS5Xa7Va9evSLX279/vzweTzRPAZSKULNU+ddzUMMBAABQMlH1cGRmZmrjxo1Frrdu3To1atQomqcok7KysgJuu91uZWZmxqg1iAQ9HAAAAM6Kqoeja9eu+uGHH7Ro0aKw63z66afauHGjzjnnnKgbV9akpaUF/SB+GSN5O+DCzVJF4AAAACiZqALH8OHD5XK5dOmll2rGjBnKKzDu5LPPPtNNN92klJQU3XHHHbY0FLCb/2g/ejgAAACcEVXgaN++vcaNG6ddu3apf//+ysjIkMvl0ocffqiMjAz17dtXf/75p8aNG6dWrVrZ3WbAFv5hggv/AQAAOCPqC//deeedmjVrljp27KhDhw7JGKODBw/qwIEDatOmjT7++GMNHTrUzrYCtvLvmAvXw0HROAAAQMlEVTTude655+rcc8/V7t27tXnzZnk8HjVq1Ej169e3q32AY8L1cDCkCgAAwD4lChxetWrVUq1atezYFFBq/MMEReMAAADOiGpI1ZtvvqmtW7fa3RagVNHDAQAA4LyoejhuvPFGuVwutWjRQj179lTPnj3VvXt3VatWze72AY6haBwAAMB5UQWOQYMG6YsvvtD69eu1fv16vfTSS0pKStKpp56aH0C6dOmilJQUu9sL2IaicQAAAOdFNaTq9ddf15YtW7Ru3Tq98MILuvjii1W1alUtXbpUTz75pHr06KEaNWqoT58+GjdunN1tBmzBkCoAAADnRT0triS1aNFCt912m6ZNm6bdu3dryZIleuKJJ9StWzfl5eVp9uzZuv/+++1qK2ArisYBAACcV6LA4S83N1cHDx7MvxaH9+rjxhi7ngKwFT0cAAAAzivRtLg//PCD5syZo7lz52rhwoU6fPiwjDGqVq2a+vbtm1/PAcQjisYBAACcF1XguOqqq/TFF19o9+7dMsYoJSVFp59+en7A6NSpkyr4H8EBcYiicQAAAOdFFTg++OADuVwunXzyyRo9erR69+6tKlWq2N02wFEMqQIAAHBeVDUcVatWlTFGK1eu1DXXXKNLL71U48aN08qVK+1uH+AYisYBAACcF1UPx549e7R06VLNnTtXc+fO1ZdffqnZs2fL5XKpdu3a6tGjh3r16qVevXqpYcOGdrcZsAU9HAAAAM6LKnBUqFBBZ5xxhs444wyNGjVK2dnZmj9/vubOnat58+bp/fff1/vvvy9JOv7447V27VpbGw3YIZKicWo4AAAASqZEs1R5ValSReeff77OP/98rVy5Uu+8844mTZqkw4cPa/369XY8BWA7ejgAAACcV+LAsXXr1vypcefNm6e//vpLkvJnrzrjjDNK3EjACZHMUkXgAAAAKJmoAseMGTPy6zc2bNggyQoYLpdLJ510Uv70uGeffTazVyFu0cMBAADgvKgCx6WXXpr/e6NGjfIDRo8ePVS3bl3bGgc4iVmqAAAAnBdV4LjkkkvUq1cv9ezZUy1atLC7TUCpoGgcAADAeVEFjmnTptndDqDUMaQKAADAeVFd+A8oDygaBwAAcF6JAsfatWs1ZMgQtWzZUunp6UpPT1fLli112223ce0NxL1wPRxJSaHXAQAAQPFFPS3um2++qSFDhig3N1fGmPz7N2zYoA0bNuiNN97Qyy+/rIEDB9rSUMBu4YrGvbfz8ggcAAAAJRVVD8f333+vm2++WUeOHFHfvn01ffp0rVq1SqtWrdKMGTN04YUX6siRI7r55pv13Xff2d1mwBbhejj8b1M0DgAAUDJR9XA888wz8ng8mjx5sm644YaAZSeddJIuuugivfnmm7rxxhs1btw4vffee7Y0FrBTJIGDHg4AAICSiaqH4+uvv1bbtm2Dwoa/QYMGqX379lqwYEHUjQOcFK5o3P82gQMAAKBkogocu3bt0oknnljkeieccIJ27doVzVMAjqOHAwAAwHlRBY6MjAz99ttvRa7322+/qXr16tE8BeC4oorGC64DAACA4osqcHTs2FGLFy/WF198EXadL774QosWLdJpp50WdeMAJ1E0DgAA4LyoAscdd9whj8ejCy+8UPfdd59+/PFHZWdnKzs7W2vWrNGIESN04YUX5q8LxCOGVAEAADgvqlmqzj33XD300EN64oknNG7cOI0bNy5oHWOMRo0apd69e5e4kYATCBwAAADOi/pK42PGjNGsWbN0zjnnKDU1VcYYGWNUsWJFde/eXbNmzdJjjz1mZ1sBWzFLFQAAgPOivtK4JPXp00d9+vTR0aNHtXv3bklSrVq1VKHg0RsQhwrr4fAWjVPDAQAAUDLFChwbN27UtGnTtGXLFqWmpqpt27a64oorVLlyZdWtW9epNgKOKGyWKno4AAAA7BFx4Hj++ed133336WiBI7BRo0Zp1qxZOumkk2xvHOAkajgAAACcF1ENx8KFCzV8+HDl5eWpSpUqateunZo3by6Xy6WtW7eqf//+8ng8TrcVsBWBAwAAwHkRBY5JkybJGKOBAwdq586d+u6777R+/XotX75czZs318aNG/XZZ5853VbAVhSNAwAAOC+iwPHNN9+oYcOGevnll5WWlpZ//8knn6zx48fLGKNvv/3WsUYCTqBoHAAAwHkRBY4//vhDHTp0UMWKFYOWde3aVZL0559/2tuyUrZx40YNGTJE7du3V0pKipo0aRLrJsFhkRSNezySMaXXJgAAgPImoqLxI0eOKCMjI+SyatWq5a9Tlv3444/69NNP1alTJxljtHfv3lg3CQ6LpIZDskIHMz0DAABEJ+oL/5U3F154obZu3app06bptNNOi3VzUAoiDRzUcQAAAEQv4mlxN27cqLfffjuq5ddff33xW1bKkpLIXommsKJx/yFWBA4AAIDoRRw4Fi1apEWLFoVc5nK5wi53uVxRB45169Zp9uzZ+v777/X9999r7dq1Onr0qMaMGaOHH364yMdPmTJFL7zwglauXKkjR47ouOOO0zXXXKO7775bKSkpUbUJ5UekPRwUjgMAAEQvosDRuHFjuVwup9sS5KWXXtL48eOjeuxdd92l8ePHKzk5Wd27d1d6erq++OIL3X///frkk080e/ZsVa5c2eYWoyyJpGi84HoAAAAonogCx5YtWxxuRmgnnXSSRowYoXbt2ql9+/Z68skn9e9//7vIx82YMUPjx49Xenq6vvrqK7Vv316StGvXLnXv3l0LFy7UqFGj9Oyzzzr9EhDHqOEAAABwXsRDqmLhpptuCrgdaZ3Fk08+KUkaOXJkftiQpNq1a+vFF1/UmWeeqUmTJmnUqFGqXr26fQ1GmULgAAAAcF65q5Tetm2bli1bJkkaMGBA0PKuXbuqUaNGysnJ0axZs0r0XG63u8gfxC+KxgEAAJxX7gLHihUrJEk1a9ZU06ZNQ67ToUOHgHWjlZ6eXuhPZmZmibYPZ1E0DgAA4Ly4HlIVjc2bN0uyCt3DadSoUcC6kpSdnZ3f47Fp0yZlZ2dr6tSpkqSOHTvq2GOPdarJiBGGVAEAADiv3AWOgwcPSpLS0tLCrpOeni5JOnDgQP59f/75py6//PKA9by333jjDQ0aNChoO1lZWYW2xe1208sRx5ilCgAAwHnlLnBEq0mTJjLGFOsxhYUaxD96OAAAAJxX7mo4qlatKkmFFmx7eyaqVatWKm1CfCoscPj3eFDDAQAAEL1yFziaNGkiSfr999/DruNd5l0XiamwWaro4QAAALBHuQsc7dq1kyTt3r07oCjc33fffSdJAdfoQOJhSBUAAIDzyl3gaNiwoTp27ChJevfdd4OWL1y4UL///rtSU1N1/vnn2/rcXIejbKFoHAAAwHnlLnBI0oMPPihJeuqpp7R8+fL8+3fv3q3bb79dkjR06FDbrzLOdTjKFno4AAAAnBfXs1QtX748PyBI0i+//CJJevnll/Xpp5/m3z99+nTVr18///Yll1yiYcOGacKECTr99NPVo0cPpaWlad68edq3b5+6dOmiMWPGlN4LQVyiaBwAAMB5cR04Dhw4oCVLlgTdv3XrVm3dujX/dk5OTtA648ePV5cuXfTCCy9o8eLFys3NVfPmzTVy5Ejdfffdqlixou3tLXhdDq7DEd8oGgcAAHBeXAeObt26FfvaGP6uuOIKXXHFFTa2qHBcl6NsYUgVAACA88plDQcQCf8gkVTgk0DgAAAAsAeBAwnLGyQqVJBcrsBlBA4AAAB7EDiQsPwDR0EUjQMAANiDwIGE5Q0SoQIHPRwAAAD2IHAgYRXWw0HgAAAAsEdcz1JV1hS8sjhXGo9v3iBR8CrjEoEDAADALgQOG6Wnp8e6CSgGajgAAACcx5AqJCyGVAEAADiPHg4bcaXxsoWicQAAAOcROGzElcbLFno4AAAAnMeQKiQsAgcAAIDzCBxIWIXNUkXROAAAgD0IHEhY9HAAAAA4j8CBhEXgAAAAcB6BAwmLWaoAAACcxyxVNuJK42ULPRwAAADOI3DYiCuNly0UjQMAADiPIVVIWPRwAAAAOI8eDhtxpfGyw+Px/U7gAAAAcA6Bw0Zcabzs8B8mReAAAABwDkOqkJD8QwSBAwAAwDkEDiQk/xBB0TgAAIBzCBxISPRwAAAAlA4CBxISgQMAAKB0EDiQkCgaBwAAKB0EDiSkono4qOEAAACwB4EDCYkhVQAAAKWD63DYyO12F3ob8aOoWaoIHAAAAPYgcNgoPT091k1AhOjhAAAAKB0MqUJCInAAAACUDno4bJSVlRVw2+12KzMzM0atQWGKmqWKonEAAAB7EDhslJaWFusmIEL0cAAAAJQOhlQhIVE0DgAAUDoIHEhI9HAAAACUDgIHEhKBAwAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJiaJxAACA0kHgQEKihwMAAKB0EDiQkAgcAAAApYPAgYRE0TgAAEDp4ErjNnK73YXeRvyghwMAAKB0EDhslJ6eHusmIEJFFY27XNaPMQQOAACAkmBIFRJSUT0c/vcTOAAAAKJHD4eNsrKyAm673W5lZmbGqDUoTKSBIy+PGg4AAICSIHDYKC0tLdZNQISKKhqXrKFWOTn0cAAAAJQEQ6qQkBhSBQAAUDoIHEhIBA4AAIDSQeBAQipqliqJwAEAAGAHAgcSUiQ9HN4gQtE4AABA9AgcSEgMqQIAACgdBA4kpEhmqSJwAAAAlByBAwmJHg4AAIDSQeBAQqJoHAAAoHQQOJCQKBoHAAAoHQQOJCSGVAEAAJQOAgcSEkXjAAAApYPAgYREDwcAAEDpIHAgIVE0DgAAUDrCHGohGm63u9DbiB/FKRr3eCRjJJfL+XYBAACUNwQOG6Wnp8e6CYhQcYZUedcP1xMCAACA8BhShYRUnKJxiWFVAAAA0eKcrY2ysrICbrvdbmVmZsaoNShMND0cAAAAKD4Ch43S0tJi3QREqLiBg4v/AQAARIchVUhIkcxS5X8/PRwAAADRIXAgITGkCgAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJqTgX/pMoGgcAAIgWgQMJKZKicXo4AAAASo7AgYTEkCoAAIDSQeBAQiJwAAAAlA4CBxISs1QBAACUDgIHEhJF4wAAAKWDwIGERNE4AABA6SBwICFRwwEAAFA6CBxISAQOAACA0kHgQEIqbtE4NRwAAADRIXAgIRW3aJweDgAAgOgQOJCQGFIFAABQOggcSEgEDgAAgNIRZkJQRMPtdhd6G/HDGyCSkiSXK/Q6BA4AAICSI3DYKD09PdZNQIS8ReDhejcKLqNoHAAAIDoMqUJC8vZYFBY4KBoHAAAoOXo4bJSVlRVw2+12KzMzM0atQWEiCRwMqQIAACg5AoeN0tLSYt0ERMgbIJIL+QQQOAAAAEqOIVVISPRwAAAAlA4CBxJScWs4KBoHAACIDoEDCam4s1TRwwEAABAdAgcSEkOqAAAASgeBAwmJonEAAIDSQeBAQqKHAwAAoHQQOJCQKBpHosjNjXULAACJjsCBhETROBLBkCFSerr00kuxbgkAIJEROJCQGFKF8m73bunll6UjR6SnnpKMiXWLAACJisCBhETROMq7b77x/f7bb9Ivv8SuLQCAxEbgQEIqbg8HNRwoaxYvDrw9b15s2gEAAIEDCam4ReP0cKCs8e/hkKQvvohNOwAAIHAg4Xg8vvHs1HCgPMrNlZYuDbzviy+sv30AAEobgQMJxz88EDhQHq1aJWVnB963a5e0enVs2gMASGwEDoS0e7d07bXSmDHlb3abkgaODz+Ubr9d2rHD/rYBdvCv32jZ0vc7w6oAALFA4EBIw4dL77wjPfKINHNmrFtjL//wEOksVd6i8eXLpcsus65rcPfdzrQPKCn/+o0HH/T9TuE4ACAWCBwIsnu39N//+m6//HLs2uKESHs4QhWNjxzpu++zz5i9CvHJ28NRpYp09dVS3brW7a++4srjAIDSR+BAkDfekHJyfLdnzZJ+/z127bGbf0gozpCquXOlOXN89+3fL33/vf3tA0pi2zbp11+t3zt1klJSpO7drdtZWdJ338WubQDg7/BhaefO8jd0G8EIHAjg8VjDhQre99prsWmPE6Kp4cjLC+zd8PIPIEA88B9O1bmz9W+PHr77GFYFOGfJEqlJE+m886yDaYSXm2udDKlfXzr1VOm99xg1UJ4ROBBg9mxp0ybr9/btfQfdr71Wfr4Iogkc06f7ejOaNvXdT+BAvCFwALFx6JA12cqvv1pDbt94o/D1t2+X9u4tnbbFow8+8H1frVghDRggHXecNH681RuL8oXAgQAvvuj7/ZFHpAsusH7fvl369FN7n8vtli691Ppxu+3ddmGiKRrfutX3+0svSc2bW79/8035/2LMzpamTpXWr491S2LnwAFr5/jhh/Hf9e8/Q9Xpp1v/Nm1qnXX1Lj90qNSbBZR7Tz4pbdzou/3MM+FP1M2aJTVuLDVrFnyRzkRgjDRuXPD9v/4q3XWX9d7MnVvqzYKDCBzIt2WLL1Q0aiT17SsNGeJbbnfx+OTJVs/B9OnSW2/Zu+3CRFM07tW9u9S7t9Srl3U7N1dasMDe9sWTDRuk006TLr9catVKGjYscc7IHTxodfH362cVXV95pTVD2YQJsW5ZeIcP+3riWraUatXyLfP2chw5Ii1aVPpti5XVq6Xjj5cuvpghLojshMHHH0unnGId+EZ6gmHtWunppwPv27zZOllTUE6ONHSotS/at086/3xp5crInqc0TZtmhahffrF/2/PnW70akjWc6osvrGFoXnv3StddV/5P6CUSAkc5t25d5FcXfuUV35frLbdYB9y9e/vOjH7+ufUFapfPP/f9/tVX9m23KNEMqfJ66inJ5ZJ69vTdV16HVX3yidShg7RmjXX76FFp4kSpRQvrb6W8Xgxx/Xqra79uXevfGTMCJ1F4/PH43Ql+/71vFirvcCqvRB1WNWKEFZw//lh67rmSb89b0/bvf5ffz0A8OXLEvm39979SRoZ1Mu2330KvM368dMkl1sUzx48P7DEMx+ORbr3V99nznpCSrBBSMLRMnBi4L923z9rXxlMv8pdfSv37Sw89ZAX2K66Qli2zb/v+n8Xhw6VzzrF6fVavlrp2te7fuVMaO9a+50SMGTgmKyvLSDKSTFZWVqk//7ffGpOebsygQcbk5RW+7uHDxtSpY4xkTHKyMTt2+JY98YR1v2TMAw/Y07bDh42pUsW33fr1jfF47Nm2l8djzMaNxrz7rjFTpxpz6JB1//r1vue95prwj//5Z996kjGXX+5btmePMUlJ1v0nnWRvu2MtL8+Yhx8OfO3NmgX+f0nGtG9vzNKlzrVj505jLrnEmNtuM+bgwfDr/fKLMVdcYcyNNxqzf3/Jnu/2262/f//XKRlTr54xrVr5bj/1VPG2vWSJMW+9ZUx2dvTti8Qzz/ja+Oqrgct27PAt69TJ2XYUR26uc9v+5ZfA/8e0NGO2bi3ZNp9/3re9M84wZt264j1+6VJj3n/fmK++MmbDBmNisGsoE3791Zh+/azv2XPPtd6rkti715iaNX3/d9WqGfP22779Tl6eMXfcEfzZv+66orc9ebJv/ebNrc95x46++z77zLfuX38ZU726db/LZUybNr71GjWyXnc8OOec4PdCMqZbN2M+/7xk2167NvA1HzkSuHz9emNSUqzllSsb89tvJXs+OKc4x7kEDgfFMnAcOGBM7dqBB8s5OeHXf+cd37pXXhm4bMcO30FYZmbwl0M0vvwy+IuspDsUY4xZudKYv//dmL59A1+/ZEyTJsZ8+GHgl93114ff1oYNvvUqVLC+BP116uRbvn17ydseD3bvtnbuBYPWwYPG/P67MVdfHbisUiVjli8vfJt//WXtMPbuLd7B5TXX+J7n1FOtQFDQ999bf5Pe9c4/v+hwXVBWlvU3k54e+Npq1bLCzvz51jbXrvWFzJo1rc9YJF58MTCkObnz7NfP91xr1gQvb93aWpaUZP1/xNq//mUF2R49nHlf7r8/+Hvm2muj317B71XvAdHzzxtz9Gjhj/3hB2N69w59EFe1qjFnnml9xhLdkSPGjB0bfIIjNdX6nB4+HN12H3gg9Ht/6aXGbN5szIUXBt5fsaLveXfvDr/dP/8MDDKzZ1v3T53qu++cc3zr+4eaG26wTl6dcorvvuOOCzzhFwsLFwaeDPT/jvX+vPde9Nu/9Vbfdp55JvQ6d99dvNBnh/HjrQD05JOl83x22b3bOqaKBQJHnIh1D8fUqb6zBN6DsXBnWLt08a331VfByy+7zLd8yhTf/QcOWGdvt20rXttCffm//nrodXNzrQO/q68u/Az2zz8Hvt5wP/5nlG68Mfz2Dh0yJiPDWm/YsODlDz7o287bbxfv9cejw4eNOf30wJD17LPBPU9ffWXMySf71jv2WCtUhPLcc76DdP8Dh9q1rQO/cOHV/+De+9O0qfV/7PX558EhQTLmnnsif80rVxrTsGHg49PSjHnssdC9Kv4h6Iknit7+2LHB7cvMNGbRosjbGCmPx3dgUL166APgYcN87Zgxw/42FMfixdbfmH/AmzXLvu3n5Ph6bVNSjKlRw/dcixdHt81HHw38fPj/v551ljE//hgceH/7zZiBA62z2UV9N/XpY39Pr9fu3casWlX09hcsMOYf/4hNIP36a6vHuLD3qGVLY774onjb3brVCobeIHH55YHb9P+/SU425o03jLnzTt9948eH3/b11/vWGzDAd39enjHHH+9btmSJ1RvmPXlXpYpvv/nHH4HrtmlTeK+u0847L3C/fOiQ1WPq38ZTTolu23/+aZ2o8gbtfftCr7dnT2CQW7YsuufzeIz56COr97qwz/3EiYF/E2+8Ed3z2c3jsb7L9u61/l5+/tmY6dONGT3amIsuMqZxY1+bY3Hik8ARJ2IdOIwx5n//8324Jas71P/M7OHD1pAj7/LWrUPvkObMCVzniiuMadHC90VdrVpwD0BhTj01eEdyww2h133jDd86d90VfptDhwZur2ZN64tz9GjrDGqondfNNxfezvXrrV6RUGfN/XtpCuspKQs8Hmvonff11KlT+E790KHAHp4ePYJ7L55+uugDrGefDb19/wN775lG70HpokXW8CT/oU9t2wbefu21ol/z0qWBB6EVKljBNlRPite6db4gVKNG+ADs8QQPS/N/rpQUaxiGnTZtCjxwDWXGDN86N97o3MFtUfbts3ocQ/1NPPSQPcOs/vtf3zavvNKYF17w3e7YsegeiYL+/NMXcJOTrbBa8DvH+3d0zDHGnHaaMRdcEPj9K1kB/dFHrTO4V11lBZVq1XzL33mn5K+9oF27rDZJ1nd3qINZj8cKyN7v9K5di99bGK09e4y56abgEDB0qHWQNWJEcMAbMyby7d98s+9xd99t3Td1qvV94r/N6tWNmTvXWr5mje/+Vq1Cf1bmzfOtk5ER/N3x6qu+5ZdeaszFF/tujx4duO5vvwUePD7ySOSvz07ffedrQ+PGgSeFjh61/q69y1esKP72H3ss+P8inPHjfeueeWbxv69++smYXr1820hOtr4HCm7n3/8O/hxXrGgNSy+OffvsGyK6aJH1XVHw776wHztP2ESKwBEjWVlZAT9//PFHzAOHMdYZ6apVfX+UnToZ85//WDuegmeIX3gh9DaOHrW6egv7Yx8yJLL2/PWXb6d2wgm+A8rjjgu9/kUX+Z6jWrXQO8uDB3077cqVrTON/l8qHo91VqBp0+jaHIp/HYrdNSh791ohr7T+bP75T997UrmyNVSpKFu3Bna1jxjhW/aPfwS+z716WUO1One2eke8//9VqgSPWfbv3ahVyzqj49+j4h9AJGsYUXa2NTzH/4B+/vzwbV+wIPgz4d97Uhj/M5p//3vw8qNHA8+OSlYX/a5dxnTvHnj/sGHRncmcMMEanjNunLVdY6zPdGHtMsb6u/LvOerdO/yJgj//tEJ1NENYZs60Duofeyx4B+zxWAHA24Yzzgj8jEvWiZGSnq3r1s23vS+/tNrhf/Y81BlM79C/UPyHePh/b3zxRfjw5P+TkWEF7FDvp38QrFPH93/qLzfX+v++6y7r/6Y47rknsC2tWwfWnuTkWCd8Crb5sceK9zzF5fFYPeYFh+ycemrwGe0ffgjugY1k6JH/90m1aoG9sTt3+oZSNWkSPAzRv+d/4cLAZVlZVm2bd/nLLwc/9+HD1r6h4Ptav37o7/affgqsXSis3qgk+5ulS60e4lDb8B+W+eKLwctfesm3vLATgKEcOmRM3brWY5OSrKFshTlyJLBX5cMPI3ueffusz2uoejzJmFtu8Q0x/+ijwIN6/1q9+vUjH73x7LPWY2rWtD5LM2dGP/wvN9eYE0+MLGSkp1snB+64w/qMlDYCR4x43/RQP7EMHMYEn80N9dO8eeHj0v3PEErW0JiOHX0H3ZUrFz7W1cv/zOO99wZ+qRfcgWRlBZ8hDPUl6H8mqahhUk88YQ2bcbmMmTat6PYWxr/rOdSY+eLKzbXeZ+//VcOG1pk4J89Ef/554EHof/8b+WMXLAj8Un/33cBJBiRjHn88+HG33+5bftFFgcsGDPAt8xZn79sXupfq9tsDz8L6H+jXqmVNGhDq9XqHV0jGnH125PUYxli1Pd4dVEZG4AHqL78E17lMmOBbfuRIcGFqlSpWiJk3L7Kz7v4Hp97P4bXXWkMmvffNmRP+8QXrGipWtM6mZmdbO9dJk6wx596/idNPL16x+44dvqGIkhUy/UPl66/7llWvbsyWLdbf9zPPBO7469WLfuiZf51Wy5a+z8/cub77MzOtHqq9e62DKG+PXbVqxnz6aeD2fvvNep+933MFD0IOHLAOzi+6yKrTycz0heqKFY0ZPrzo78b+/X1tGzgwcNnhw9YZcu/ydu0inyBh8+bgkO59nTNmWAfgZ50VuMzb9qSk4ANtu2zdGnjGX7JOAkycGL5n5ejRwPH/4XpI/fkfQIcbBrl5c+jhnW+/7XtswToC/+GJZ54Z/rMbalhlYb2b/t9h4fZlq1dbYef444tf7zFrlu+zPWCAbzIVYwJ7derXD1zmtWeP77NQp074YbHPP2/VUv7tb9b/6Zw5voNyyTrhGYmPPgo8RimsFtXjsXorvKHG+9O4ceCJIsk6SH//fd9r8e5PcnICPw+nnRb6ffD366+B2/H/jF1zjRWUinMI+Nprvm3UrWu19dxzrb/lAQOsIekffGDti4rbU2s3AkeMxHPgMMYav1vwTFLNmtbObfr0og8qPB7rg/P229a2vF80/gdQTz9ddDtuvDHwwGjkSN/tDz4IXHfatOAP8YknBvdetG/vWx7JWM/9+4s+uxKJceN8z/v88yXb1vz5gWfy/X/OOy/0wXNJrV8feHD44IPF38akSb7HFzyj9I9/hH7Mvn3WAaV3PW89wdq1voOd2rUDz/7n5FgH1t7HPPlkcBDLzbWGE3nXOeYY62z6iBHWgf/zzwcefPXpY4zbXfzX7P83PHq0dZb74osDx4InJYWvS3r11dD1Ro0bWwf/4QLQzp2+uoRwP0lJhR+MejzW56pRo+DvgnB1BgMGRB56CwYuyQrQ06dbvUj+xcAFP+8LF/qG/kjWexTqzHFR/HsjnnsucJn/AejJJwef0PAecI8b53vNgwf7lt13X2RtyMmxwlSkPVjbt/tmL/J+NxpjHaiEKjbv0SOyM6j+n5nrrw88gysF7hMqVbJOOPjXqjRuHNzrs3On9f/coIEVFIt7QuT99wN7GCWrpyGSovl163yPOemkwp978eLAA+ji7oazs33fj/7F419/7fusVK5c+HDi/fsD/19PPrnwoWq7dgXOYrVyZeDy3bsDe1Yeeijy17NzZ/DB+Gmn+UKL/8megp8bf1dc4Vvvo4+Cl3/2WeHfUZJV0xIJjydwxqxBg0L38G3bZg1h9H+OSpWsv2Xvd/zbb4cOBt7vOO/B+59/Bg5vGziw8L8z/zAT7ju0cmVrH/Hmm4WffMjODvwO/PrryN6nWCFwxEi8Dqnyt3GjdaZm2DDrIMmO8Ybr1/s+ZA0bFj6LlcfjK9KtVMk6czBzpu/Ddccdgetfd13gAVHBnbEx1heX9/4OHUr+eopj1Srfc/ftG902fv89cIiJ96fggUGlStZQmQ0bCj/LUxS32xrvv3hxYLfthRdGd7bE4wk9HGPs2MIf9957vnUbNbIOzPx3eKHCq8djnaUubMjXvn2RdUdfemn0Xd6bNoXvrpesg+qCB9MFrVplDc3xPxjx/zsuuFPyeAJn0unTxxoqU7Dn8uSTI3sNWVlWb0e413HccVZPoPd2uPDo7/PPAz+vBYca+YelcPVTf/4ZPCXnLbdE/n+Vne37rgg1w9Avv4Q/6GjQIPD2jTda/0/eM8LVq0fWixutl1/2PXezZlYI8e8Brlw58P/7yisL/8yuWOH7bq5Z0woOBw8GF01LVvDwjlnPzbXOqnqXXXGF74BrypTgmbouuyzyXsIlSwLDdmam9VkpTmjp3Nn3+HDfBR6P1fPgXe+VVyLfvj//nozx463vzxYtfPcVdmDuNWpU6H1XOP7TW597ru/+vLzg8Nm8eWTv3dGjwTMQ+n//Tpni+zuvXbvwcOa/z7700sBleXlFF/536VJ0e/0tXx54IJ+WZgWtvXut1/7224EnziSrx3DLluBtLV0a/Dm/4ILg45YVKwJ7wv/5z9Bt++GHwM/Y9u3WCbTrrgv93S5ZPbk33xz6WMm/9vHCC4v3PsUCgSNOxEPReGnxPxB6//3w6/30k2+93r2t+/bu9X1g27b1rXvkiG/nWq1a4Bh1/w+if7Gz3YW4RfGfGSgtzQoCHo9VN3PDDdZwlLfeCr9DmDUrMEhJ1nCJhQutx0ydGni2w/vjclnBrWtX60zjgAHWQcTFF1u9IT16WDvb006z3tNWraz6lVCzOknW8pJcw+LQocB558eNi+y98995Xnpp+N6N4vrll8CDkoI/115b8rDtX4jq/TnmGKvnJdysXaEcOmR9Zs4/P3BoW9u2gWP5/YcN1q1rzWxjjHWA/fbb1k68Zs3iDYkzxqp38h7gt25t9bCsXOnrCfH/m/v44/Dbyc62Dn78P4t79wYOFfL+nHBC4Qc0ubnW+HD/x5xxRmTjqf2HwYSbAveRR3zr1KplHVSuWGEdlPkv8x7ke38PNTzQTkePBh4k+/cCVKtmne1cvDiwTXfeGf77xf/z5X9g7PFYw1u8Q9hOOSV4WuJffw08iHvuOavIPdxnqlWroicO2b3bKoT1PubKK60hOsX1yiu+bRQ8SeX1ySe+dVq2jP7zXrB43L8e5owzIiusz8uzhgLPnBnZcx46FPg+ea/jcd99od/7SK6H9NxzvvXr1bOm7y04Q5/3p6hpYXNzfT3UKSmB31P+/zcdO1p/s6++ag0r7NvXCj1r10b2PvibNCm4NzIjI3g4YGam1ZtaGP8gf+654Ud3vP++b7tJSdbfVEH+Ia7gfi8nx5q455ZbQk8tfM01gScMdu/2feaSkqyhc/GOwBEnEilw+I+N7tw5/Hr+s074j7/1zkPucvm67/1nALnqKiuAeL8gXS7roHLPHt+XUPXq0Q2PKSn/GZUGDw5dXN+nT+A49tzcwGl1vQfZr7wSvAM7cMD6si7ObBXF+alRw57hWn/9ZQ2Pmzo18sds3Bj6bHNRvSOROnTI6hGaN8/qyv77363xsXaMe/31V99O9/TTrR6bkl6jZvXqwB3TySdbZ/w3bgzsbQg1jKGkwgW8v//d97zp6eFrlR56yLfeWWf5DoI9HqtGwvv/XLFi5MWNBYdApKRYBy1vvRV+Ok3/oBmu/sDjsc6qf/RR6J6T994LPrjJzCydqUrXrg2uuahdO/BM/iefBH4fhLoQpf/Mgk2ahH6dq1ZZY97D7Z6mTAn/vXHppdZJIP8ZtqpVC31QZoz1mfMf8tK5c/Sfl337fP8/NWsGv7bDhwOLjUtaq+ffy+T9SU2N7sA5Uv6zR7ZpE3jCLTk5sFe5qNmeli8P7FXyXrhvx47AWae8B/GRnHwaMcL3mIkTrfsOHAgcsmX3cKDt262akHDT3w8YEHrChVA8Hl/9WGH8v9fS0gKvO+V/3HPssYX3wublWTVpw4cHfr6HDPG14d57ffeHm7Uz3hA44kQiBQ6PJ7AbNdz4zL59feusWuW7378OxHsWyP8+71nbJ5/03XfPPYGzK4W6VkZpePPNyA7sq1a1ZlLavj1wBh3J6pkoaqjGmjXWAf0VV1hnjooay+/9qVjReu7ata0zfWedZfWGDB1qDZOJ9UULx4wJPrgqKx+X3btDd9uXxNq1gTPbtG4deFBw0032Pl9RPJ7AMdvNmgX34Pz4o+8gICXF6sksaM0aq9jxm2+K9/zffRdcb+L9u774YmtY2H33WTtr/2lqw03xHaklSwL/H7wHVaXBf+rQY44J/X76F99LVq+vd+aho0etnlLvsv/8J/q2+NevSNYJinfe8b2369YFD/8cOjT4wM+/eLpWrZJf5NC/Vqjg7EX+71+XLiWfdOOtt4L//iKpVyyJo0cDe439hxRNnGh993g/cw0ahD+JkpVl9Sh6H+s/m6Ax1kkZ/6Gsjz4aWftWr/Y9xjuU2f/gvH//6F97UTZvtoY7enuEI+nViNbRo4FDnhs0sP52jx4NrB39978j3+aMGYEnDEaMCJyYIjW17FxdncARJxIpcBgTOLOC/wWQvPynka1XL3An8MEHvseOHGkt8x5kpKT4zrj89ZfvQ1m9emBvQqidcmnYujV4Z9Sjh7WTnzYteLyo/9mNChWiK7r0ysqyhjFs3Gh9Qe3YYe2IDhzwDe+Kd4cPB+4Q7erdKMvWrQs9lK5Zs+LNqGUXtztw51qlinW2+oUXrL89/2FADz9s//P/+ad1ZjDUexLux46A8Pvv1ljs4cPtm18/Ejk51pncSy+16oXC8T8B4/1p2TIwJLRrV7Ievaws3wxeffuGHtZ24EDgxWG9weT5561ejAULfAdYLpc1zKSk/OuF/IfYrl/v20ckJwee2IqWf/G4ZL0fpfH38NVXwf+/N9zg+1737zEKNw24/9DP9u1D1/95PNb+aty44r0u/+tp+V/zKyXFmUlOCtqwwTrQd7Kuyhjr//+MM3yv9ZRTAuut2rYt/mfsnXcCQ6T/RAD33uvIy3AEgSNOJFrgyM72FRMmJwfvmL780veBKjjF4I4dgWek/C8+VPAiZqEKlLt1c/SlFenpp61hNY89FnzGe+/e4LOE3jMl8T4DRWn57jurxqRXr9gMi4tHGzcGntl3corSSPz2W+hxyP4/zZsXbwrd4jp61HoP7rgjcJazgj+NGoUfclWeeDxW6As3Fl+yxuqXVG5u0dOveutC/Gchk6yhTf49RXYF0rw8XwCtUMGagcnjCbzQm50Hbt4hsJUq2TMFeqT8pw7u1ClwitZ33vEtu/XW4Md++mngSYJIrzUUqQkTArfv/f2ee+x9nnjw55+BocCOz5h/aPH+ZGQ4H6DsROCIE4kWOIwJvLpywen6/GsWQnU/ensrKlYMHB9acFrM5cuDP6SFFarHi9mzfYWAPXv6in6BcDZt8hViF+fKyk7ZuNEK/OEO9u04uI1UXp41BfYXX1hnd7/6yjqTvmhR6dRaxJPcXKt26uyzA/8/evUq/bZs3Rp8zQPvzznn2Hv18gce8G37uecCZ75r3NjeoZm5udZ+5scf7dtmJLZssc6gn3568IUADx70TSBQq1ZgTcyBA4FB9LXX7G/bX38F11PUrBndRABlwdq1wbNhlfQz5j+1vuT8UD27ETjiRCIGjm3bfNNs1qxpjTP2jtXt0MH3oQp1tsy/58L7JepyhV7Xf8rGzMySTRNbmnJyrOEyZWGoE+LDoUPWBAnx5OhRK/g/8YQ1nCojwzr4Q+ytWmUNxxowIPKrJDth2bLA7+l69Yp/kbqi/Pyzb/snnBAYhJ2YWCEe+ddXzZrlu9+/BrJXL+f2Of7XtZECL3RaHn35ZWDI8i8ij9bjj1s92G3bOttD7ITiHOe6jDFGcITb7VZ6erokKSsrS2lpaTFuUem49lrpnXcC7zvhBGndOusjevLJ0sqVwY974w3pxhsD7zvjDGnx4uB1p06VLr/c+v3hh6UxY+xpOwDAHsZIM2ZIX38t3Xqr1LKl/c/RubP0zTeB9118sfW8iWDGDKlfP+v3666T3n5b+vZb630xRqpcWVqzRmrWzJnn/+gj6ZJLrN+PP956rpQUZ54rXsyYYR1zXHONdM899mxz1y6pevWy994V5ziXwOGgRA0c69ZJ3bpJO3eGXj5ihPTMM8H3//KLdNxxgfc9/bR0333B6xojTZxoPcejj0oVK5a01QCAsuaVV6ww41WlirR2rdS4cezaVJpycqTMTGn/fik9Xdq6VerSRfrxR2v5s89Kw4c79/x5edZJxu++k/7zH+n00517LsQfAkecSNTAIVlfQkuXSrNnS3PmSEuWSEePSsnJ1u/t2wc/xhjpmGOkHTt8961fL7VoUXrtBgCUHfv2SfXqWQfekjR2rHTvvTFtUqm78UZrhIBkhY1Fi6zfTz3V6u1ITo5d21C+Fec4N6m0GoXEkpxsdek++qj15bd7t/S//1lnQUKFDUlyuaQzz/TdbtWKsAEACC8jQ7rjDuv3Ll2ku+6KZWti46qrfL97w0aFCtKrrxI2ED8IHCgV1atLffpIp5xS+HpnneX73TsuFACAcJ56SvrpJ+mLL8reGHg7dO8u1a0beN/w4VK7drFpDxAKgQNx5dprpQ4dpDZtpKFDY90aAEC8q1BBOvHExK3lS072TaIiWQXio0fHrj1AKAQOxJXq1aVly6RVq6T69WPdGgAA4t/tt0tpaVbR/OTJ1r9APGF0HwAAQBnWqpW0ebM1YQsn6xCPCBwAAABlXJ06sW4BEB5DqgAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwAAAADHJMe6AeWZMSb/d7fbHcOWAAAAAPbxP7b1P+YNhcDhoOzs7PzfMzMzY9gSAAAAwBnZ2dlKT08Pu5whVQAAAAAc4zJF9YEgah6PR7t27ZIkValSRS6Xy7Hncrvd+b0of/zxh9LS0hx7rvKI96/keA9Lhvev5HgPS4b3r+R4D0uG96/kSvM9NMbkj+apXbu2kpLC92MwpMpBSUlJqlu3bqk/b1paGh/SEuD9Kznew5Lh/Ss53sOS4f0rOd7DkuH9K7nSeA8LG0bljyFVAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAwX/gMAAADgGHo4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIGjHJgyZYq6deumGjVqKC0tTaeccorGjh2r3NzcWDctruXm5mrevHm699571bFjR2VkZCglJUX16tXTRRddpJkzZ8a6iWXSfffdJ5fLJZfLpccffzzWzSkzjhw5ogkTJqhr166qWbOmKlWqpIYNG+q8887T+++/H+vmxbXffvtNQ4cOVcuWLVW5cmVVqlRJTZs21cCBA7Vy5cpYNy8urFu3ThMnTtSgQYPUpk0bJScnR/wZnTt3rs4//3zVrl1blStX1gknnKCHHnpIWVlZpdDy+FDc98/j8Wjx4sV65JFH1LVrV9WqVUspKSmqXbu2evXqpXfeeUeJNmdPSf4G/b344ov5+5ibbrrJodbGn5K8fx6PR2+99ZZ69uypOnXqKDU1VfXr11f37t314osvlkLrJRmUaXfeeaeRZJKTk03v3r3NpZdeajIyMowk07VrV5OdnR3rJsatOXPmGElGkqlXr57p27evueKKK8xJJ52Uf/8tt9xiPB5PrJtaZixatMgkJSUZl8tlJJkxY8bEukllwu+//25atWplJJnatWubCy64wFx55ZWmc+fOpkqVKqZ///6xbmLc+vbbb03VqlWNJHPMMceYiy66yPTr1880bdo0/7vxgw8+iHUzY867ryj4U9Rn9LnnnjOSjMvlMmeddZa5/PLLTb169Ywk07JlS/PXX3+V0iuIreK+fxs2bMhfp2bNmqZ3797myiuvNB07dsy//4ILLjA5OTml/EpiJ9q/QX+//PKLSUtLy9/HDB482MEWx5do3799+/aZs846y0gy1apVM3369DFXXXWVOfPMM01GRoY59dRTS6X9BI4ybPr06UaSSU9PN99//33+/X/99Zdp06aNkWSGDx8ewxbGt3nz5pn+/fubBQsWBC3773//aypUqGAkmbfeeisGrSt73G63adGihTnmmGPMJZdcQuCIUHZ2tjnhhBOMJPPoo4+aI0eOBCx3u91mxYoVsWlcGXDyySfnnxzwf++OHj1qHn74YSPJZGRkmEOHDsWwlbH36quvmhEjRph33nnHrF271lx33XVFfkaXL19uXC6XqVChgpk1a1b+/W632/To0cNISpgwXNz3b+PGjaZ79+7mf//7n8nLywtYNn/+fJOWlmYkmccee6w0mh8Xovkb9Hf06FFz5plnmvT0dDNw4MCECxzRvH8ej8d069bNSDK33nqrOXjwYMDynJwcs2zZMqebbowhcJRp3jMljz/+eNCyr7/+2kgyqampZt++fTFoXdk3ePBgI8n06NEj1k0pE4YNG2YkmZkzZ+bvDAgcRRs1alT+ATOKZ9euXfln+f7888+g5Xl5eaZy5cpGklm+fHkMWhi/IvmMXn755UaSuemmm4KWbdmyxSQlJRlJZu3atU42NS6V9DtuzJgxRpJp3ry5zS0rO4r7Hnp721544QUzevTohAscBUXy/k2ePNlIMueee24ptiw0ajjKqG3btmnZsmWSpAEDBgQt79q1qxo1aqScnBzNmjWrtJtXLrRr106S9Pvvv8e4JfFv/vz5mjhxoq6//nqdf/75sW5OmZGbm6uXXnpJknTvvffGuDVlT2pqasTr1q5d28GWlD9HjhzJr2MLtY859thj1aVLF0nS9OnTS7Vt5QH7l+JZt26dHnroIZ199tm67bbbYt2cMmPChAmS4mP/QuAoo1asWCFJqlmzppo2bRpynQ4dOgSsi+LZsGGDJKl+/foxbkl8y8rK0o033qjMzEw9//zzsW5OmbJ8+XLt2rVLDRo00HHHHafVq1frscce06233qqRI0dq5syZ8ng8sW5m3EpPT9eZZ54pSXr44YcDJsrweDx69NFHdejQIZ133nlq1KhRrJpZJq1fv17Z2dmSfPuSgtjHRI/9S+SOHj2qgQMHyuVyafLkyXK5XLFuUpnwxx9/aOXKlapQoYI6d+6sTZs26amnntKQIUM0YsQITZkyRUeOHCm19iSX2jPBVps3b5YkNW7cOOw63h2sd11EbufOnXrzzTclSf37949tY+LciBEjtHnzZk2fPl01atSIdXPKlFWrVkmSGjZsqJEjR2rs2LEBM9c8/fTTateunWbMmFHoZz2Rvfrqqzr//PP1yiuvaObMmerQoYMqVKigFStWaNu2bbruuus0adKkWDezzPHuNzIyMlS1atWQ67CPiU52dnb+mWf2L0V75plntGTJEv3zn/9U8+bNY92cMsO7f6lVq5Zee+01DR8+PGj20mbNmmn69Ok6+eSTHW8PPRxl1MGDByVJaWlpYddJT0+XJB04cKBU2lRe5OXl6dprr9X+/fvVpk0b3XrrrbFuUtyaPXu2Xn75ZV111VW65JJLYt2cMmf37t2SrDPETz/9tG6//XatW7dO+/fv15w5c3T88cdrxYoV6tu3L9Nch9GyZUt988036t27t7Zt26aPPvpI06ZN0+bNm3XcccepW7duqlatWqybWeawj3HO7bffrs2bN6tBgwZ68MEHY92cuLZmzRqNHj1anTt31rBhw2LdnDLFu3/Zs2ePhg0bposvvlirV6/WwYMH9c033+i0007Tpk2b1KdPn/x1nUTgAAoYMmSI5s2bp1q1amnq1KmqWLFirJsUl/bv36/BgwerTp06mjhxYqybUyZ5ezNyc3N19dVXa9KkSTr++ONVrVo19ezZU3PmzFGlSpW0Zs0a/fe//41xa+PTokWL1KZNG61Zs0bvvvuudu7cqT179uiTTz5Rbm6uBg8erMGDB8e6mYAkacyYMXrrrbdUqVIlffDBB6pVq1asmxS38vLyNHDgQCUlJen1119XUhKHrMXh3b/k5eXpjDPO0JQpU3TSSScpPT1dp59+uubMmaPMzEzt2LGjVK7Fwf9eGeXt4na73WHX8V6UibN7kbvzzjs1efJk1ahRI/8MM0K76667tHXrVk2aNImC3Cj5D1UJ1ZPWuHFj9e3bV5J18TUE2rdvn/r166e//vpL06ZN09VXX63MzEzVqFFDF1xwgT777DNVqVJFr7/+ur788stYN7dMYR9jv+eee06PPPKIUlNTNX369Pyie4T2xBNPaPny5XrsscfUsmXLWDenzClq/1K1alVde+21kkpn/0INRxnVpEkTSYXPcOFd5l0XhRs+fLgmTJigjIwMzZ49O38WEYQ2ffp0JScn68UXXww6O/Lzzz9LkiZPnqy5c+eqXr16nKEPoVmzZiF/D7XOjh07SqVNZcnMmTP1119/qXnz5jrttNOCljdr1kynnXaavvzyS82dO1fnnHNODFpZNnn3G/v27dPBgwdD1nGwj4ncxIkTNXz4cFWsWFEffvih+vTpE+smxT3v7GeffPJJ0GybW7ZskWR9B3Tr1k2SNVsifOJt/0LgKKO8B8O7d+/W5s2bQ85U9d1330mS2rdvX6ptK4vuu+8+Pffcc6pevbpmz54ddlYWBMrLy9NXX30VdvmWLVu0ZcsWHXvssaXYqrKjffv2crlcMsZo165dIWdS2rVrlyTfeHn4/Pbbb5IKP8NevXp1SdY4ZkSuZcuWqlKlirKzs/Xdd9+FDGvsYyLzwgsvaNiwYflhw9tricgsXLgw7LKdO3dq586dpdiasuP4449X1apVdfDgwfz9SEGluX9hSFUZ1bBhQ3Xs2FGS9O677wYtX7hwoX7//XelpqZyXYQijBw5Us8884yqV6+uOXPm5L+vKNy+fftkrIuHBv0MHDhQkjVe2RiTfzYKgerVq6euXbtKCt2lnZubmx/oOnXqVKptKwuOOeYYSVaP2v79+4OW5+bmavny5ZIUdvpwhFaxYsX8A+NQ+5hff/1VixcvliT169evVNtWlvzrX//S0KFD88PGBRdcEOsmlRk//PBD2H3M6NGjJUmDBw/Ovw+BkpOT8ydzCTdkas6cOZJKZ/9C4CjDvLNbPPXUU/k7Vcnq9bj99tslSUOHDs0/w4dgDz/8sJ5++mllZGQQNhAT3h3nP/7xD3377bf59+fl5Wn48OHatGmTqlatqhtuuCFWTYxb5513ntLS0nTo0CHdfPPN+TUFknXhurvvvlu//fabUlJSdNlll8WwpWXTyJEj5XK59MYbb+izzz7Lvz87O1uDBw/W0aNH1b9/f51wwgkxbGX8evXVV3X77bcTNhAzDz74oFJSUvTqq6/q008/DVj2zDPPaOHChapQoYL+9re/Od4WlyEWlml33nmnJkyYoJSUFPXo0UNpaWmaN2+e9u3bpy5dumjOnDmqXLlyrJsZlz7++GNdfPHFkqwLWLVu3TrkerVr19azzz5bmk0r8wYNGqS33npLY8aM0cMPPxzr5sS9xx9/XKNGjVJycrI6deqkevXqafny5dqyZYsqV66sKVOmMAwjjP/85z+64YYblJeXpzp16qhjx45KSUnRd999p23btikpKUkvvPCChgwZEuumxtTy5cvzT0RJ0i+//KJdu3apYcOG+T1FkjVu3v9idP/85z91zz33yOVy6eyzz1bdunX19ddfa8eOHWrZsqUWLlyYEJNGFPf9++GHH9S+fXsZY3TCCSeErDHy8l7zqbyL9m8wlEcffVSPPfaYBg8erNdee82xNseTaN+/t956SzfeeKM8Ho86dOigJk2aaM2aNfr5559VoUIFvfTSS7r55pudfwEGZd77779vzjrrLFOtWjVTuXJlc9JJJ5mnnnrK5OTkxLppce2NN94wkor8OfbYY2Pd1DJn4MCBRpIZM2ZMrJtSZnz++efmvPPOMzVr1jQpKSmmUaNGZtCgQWbt2rWxblrc++GHH8ygQYNMs2bNTGpqqqlYsaI59thjzTXXXGOWLFkS6+bFhS+//DKi77vNmzcHPXbOnDmmT58+pmbNmiY1NdW0aNHCPPDAA+bAgQOl/0JipLjvX6TrJ9JhWEn+BgsaPXq0kWQGDx7sfMPjREnev6VLl5r+/fubunXrmpSUFFOvXj1z+eWXl+r3Iz0cAAAAABxDDQcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwDEiSZNmsjlchX68/zzz8e6mbDJihUrVKFCBd1xxx0B98+fPz///7swW7ZsyV9vy5YtUbdj//79qlWrlk477TRxLWAATkiOdQMAAIG6dOmi4447LuSyVq1alXJr4JQ77rhDlStX1qhRo2LajurVq+uBBx7Qvffeq7ffflsDBw6MaXsAlD8EDgCIMzfddJMGDRoU62bAQVOnTtWiRYt07733qm7durFujoYOHaqxY8fqgQce0FVXXaXU1NRYNwlAOcKQKgAAStk///lPSdLgwYNj3BJLpUqVNGDAAO3YsUPvv/9+rJsDoJwhcABAGeSt99iyZYs++ugjde/eXTVr1pTL5dL8+fPz19u7d69Gjx6ttm3bqmrVqqpSpYratGmjxx9/XNnZ2SG3nZeXp+eff15t2rRRpUqVVKdOHfXv31+rV6/Wm2++KZfLFdQD8+ijj8rlcunRRx8NuU1vXUK3bt1CLt++fbvuuecenXjiiapSpYqqVq2qjh07atKkScrLywtaf9CgQXK5XHrzzTe1efNmXXfddapXr55SU1PVvHlzPfzww8rJyQn7/n3//fcaOHCgmjZtqkqVKqlmzZo65ZRTdO+99+rXX3+VJL3xxhtyuVw699xzw25n+/btSklJUeXKlbV79+6w6/lbsWKFFi9erNNPP10tW7aM6DHF4f2/KOqnIO//6QsvvGB7mwAkNoZUAUAZNm7cOE2aNEkdOnRQnz59tH37dlWoUEGS9NNPP6lPnz76/fffVb9+fXXt2lUpKSlaunSpRo0apQ8//FDz589X9erV87fn8Xh0+eWXa8aMGapYsaK6deumGjVqaMmSJerUqZNuvPFG21/DggULdMkll2jv3r1q0qSJevXqpZycHC1dulR33HGHPvnkE3366adKSUkJeuwPP/ygO++8UzVq1NDZZ5+tPXv2aNGiRXriiSf0448/avr06UGPeeaZZzRy5Eh5PB4df/zxuvjii3Xo0CFt3LhRzz77rFq3bq1BgwZpwIABuv/++zVnzhytX79exx9/fNC2Xn75ZeXl5em6665TrVq1Inq9M2bMkCT17NmzeG9UhNq2bRu2DmPdunX69ttvlZQUfL6xbdu2qlOnjpYuXaodO3aofv36jrQPQAIyAIC4cOyxxxpJ5o033oh43QoVKpiPPvooaHl2drZp3ry5kWQefvhhk5OTk7/M7Xabq6++2kgyN9xwQ8DjJk2aZCSZzMxM89NPP+Xfn5uba2677TYjyUgyAwcODHjc6NGjjSQzevTokO398ssvjSRz9tlnB9y/Y8cOU6tWLeNyucyLL75ojh49mr9s165dpnv37kaSeeyxxwIeN3DgwPy2PPTQQyYvLy9/2erVq01aWpqRZBYvXhzwuI8++shIMpUqVTLvv/9+UDt//PHHgNf90EMPGUlm2LBhQeseOXLE1KtXz0gy33//fcjXHUrXrl2NJDNz5syQy73vVVG76M2bN+evt3nz5iKf99dffzX169c3ksykSZNCrnPRRRcZSebf//53kdsDgEgROAAgTnhDRLgf/4N177o33nhjyG299NJLRpK54IILQi4/ePCgqVu3rklOTjZ79uzJv/+4444zksxLL70U9JhDhw7lH2DbFTjuv/9+I8kMHTo05OO2bt1qUlJSTJ06dYzH48m/3xs4Tj311ID7vYYMGWIkmb///e8B97dt29ZIMuPGjQv5fAVt27bNpKSkmOrVq5usrKyAZe+9956RZM4444yItuXlDUObNm0Kudw/cET6U1Tg2Lt3r2nVqpWRZO69996w6z3wwANGkrn77ruL9ZoAoDAMqQKAOBNuWtwTTjgh6L7LLrss5DZmzpwpSbryyitDLk9PT1eHDh00a9YsLVu2TL1799a2bdu0ceNGSdK1114b9JhKlSrpiiuu0IQJEyJ+LUUpqp3HHHOMWrRooZ9++kkbNmwIGtZ0wQUXhKxHOPHEEyVJ27Zty79v586d+uGHH5SUlBRxsXaDBg102WWX6b333tO///1vDRkyJH+Zt9Zh6NChEW1Lktxut9xutyRFNASrsClqs7Ky9OGHHxa5jSNHjuiSSy7RTz/9pKuuukpPP/102HW9bfrjjz+K3C4ARIrAAQBxpjjT4jZp0iTk/Zs2bZIkXXfddbruuusK3cZff/0lSdq6daskqXbt2kpPTw+5btOmTSNqV6S87TzzzDOLXPevv/4KChyNGzcOuW61atUkSYcPH86/77fffpMk1a9fP6BupSjDhg3Te++9pxdeeCE/cKxatUoLFy5UZmZm2NAXyv79+/N/r1q1apHrv/nmm2GXbdmypcjAYYzRoEGD9NVXX+nss8/OL/oPx/u+7d27t8i2AUCkCBwAUIZVrlw55P0ej0eS1KdPH2VmZha6jWOPPdb2doVrT7j7L7vsMqWlpRW6jVA9AqGKn+12+umnq1OnTlq6dGn+gbu3d+OWW25RxYoVI95WRkZG/u8HDx7MP8B3ysiRI/Xee++pVatWmjFjRpHX1/AGoho1ajjaLgCJhcABAOVQo0aN9PPPP2vw4MERn4E/5phjJEm7du1SVlZWyF6OLVu2hHys96D74MGDIZd7p5oN1c4NGzbo/vvvV4cOHSJqZ7S8vSE7duzQ/v37i93Lce2112rSpEk65ZRT9M477yg5OTlgiFUkqlSporS0NLndbu3evdvRwPHiiy9q7NixatCggf73v/8FhJ1wvFP7FhVSAaA4uA4HAJRD5513niTpgw8+iPgxDRs2VLNmzSRJ7777btDynJwcTZkyJeRjvWFl7dq1IZd7azXsaGe06tWrp1NOOUUej0evv/56sR57xRVXqH79+poxY4aeeOIJud1u9evXTw0aNCh2O9q3by/JmrbYKR9//LGGDRumqlWraubMmWGHnhW0Zs0aSdKpp57qWNsAJB4CBwCUQ7fccouOPfZYTZkyRffff3/InoedO3fq1VdfDbjvrrvukmRdPO7nn3/Ov//o0aMaMWKEtm/fHvL5unfvrqSkJH3++ef66quv8u83xmjChAlhaw3uvfdeZWRk6LnnntO4ceN05MiRoHU2b96s//znP0W+5kiMHj1akvTQQw+FbNNPP/0UMjSlpKTotttuU15enp599llJxSsW93fOOedIkr755puoHl+UpUuX6uqrr1ZSUpKmTp2qtm3bRvxYb5u6d+/uSNsAJCYCBwCUQ2lpaZo5c6aaNGmisWPHqnHjxjr77LN1zTXXqF+/fmrdurUaNGigUaNGBTzub3/7my688ELt2LFDp5xyivr06aOrr75aLVq00Guvvabbbrst5PM1atRId9xxhzwej3r06KFzzjlH/fv3V4sWLTRixAiNHDky5OMaNmyojz76SDVq1NCIESPUqFEj9ejRQ9dee60uvPBCHXfccWrWrJkmTZpky/vSr18/PfHEEzp8+LAuu+wynXjiibrqqqt08cUXq3Xr1mrdurWWLFkS8rG33nprfg3EySefrLPOOiuqNlxyySWSpDlz5kT1+KI88MADys7OVsOGDfXuu+9q0KBBIX8KWrFihXbv3q1OnTpx0T8AtqKGAwDKqdatW2vVqlX617/+penTp2vVqlX65ptvVLt2bTVs2FAjRoxQv379Ah6TlJSkadOmacKECZo8ebLmz5+v9PR0de3aVdOnT9eKFSv00ksvhXy+f/7zn2rcuLFee+01LV68WOnp6erSpYs++OADHThwQE899VTIx5111ln68ccfNWnSJM2cOVPLli1TTk6O6tatq8aNG+vaa69V//79bXtfHnzwQXXv3l0TJkzQggULNG3aNFWtWlWNGjXSfffdF/bsft26ddW2bVstWbJEf/vb36J+/nbt2qlz585avHix1q5dmz+Fr12OHj0qyeoZ2rx5c9j1Cs6A5b1dktcGAKG4jDEm1o0AAJQNb775pm644QYNHDiw0Clby6P169frhBNOUPXq1bVt2zZVqVIl6m1NnTpVl19+ue655x6NGzfOxlZG5/Dhw2rUqJFSUlK0efPmImezAoDiYEgVAAAReOSRR2SM0W233VaisCFZ0wB36dJFL7/8clxcZG/ixInatWuX/vGPfxA2ANiOwAEAQBgff/yxBg8erNNPP13vv/++6tWrp/vuu8+WbU+cOFGHDh3SmDFjbNletPbv36+nnnpKnTp10vXXXx/TtgAon6jhAAAgjOXLl+v1119X1apV1bNnTz333HMRXc8iEu3atcuvt4il6tWr519/AwCcQA0HAAAAAMcwpAoAAACAYwgcAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBj/g+IT/wTorwWDwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_ps.freq, avg_ps.power, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Powerspectrum` or `AveragedPowerspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the power spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / meanrate$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times meanrate$. See *insert citation*.\n", + "* `none`: No normalization applied. This is the default." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 56159.93it/s]\n", + "200it [00:00, 56752.64it/s]\n", + "200it [00:00, 43677.02it/s]\n" + ] + } + ], + "source": [ + "avg_ps_leahy = AveragedPowerspectrum.from_lightcurve(long_lc, 8, norm='leahy')\n", + "avg_ps_frac = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='frac')\n", + "avg_ps_abs = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAASmCAYAAADYniQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT59sH8G+YslFRQEVw0LrFOupGEUFRq9ZdB+CqtY5Wrata7dBWq9Zabat14K5a956gFa1a9xYHuKkiokRk5Xn/8M35ERIgQEIO+P1cVy7NmXcOJ8md+3nOcxRCCAEiIiIiypGZqQMgIiIiKiyYOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBFRnnh5eUGhUCAsLMzUoWhp0aIFFAoFIiIiTB0KERUxTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYgKTFJSEmbPno2GDRvC2dkZxYoVw7vvvouxY8ciLi5Oa/nU1FSsWrUKvXv3RpUqVeDo6AgbGxu8++67GDFiBB4+fJjjPs+dO4cPP/wQLi4usLa2RrVq1TB79mwIITSW8/X1hUKhwNq1a7Pc1syZM6FQKNC9e3e9Xm9YWBgUCgVCQkKgVCoxYcIEVK5cGdbW1nBzc0NwcDAePHiQ5fonT55E9+7dUaZMGVhZWaF06dLo0KED9u/fr3P5kJAQqd/ZpUuX0KNHD7i7u8Pc3BxTp04FoNn/659//kG7du1QsmRJODg4wNfXF3///be0vT179qBVq1YoXrw47O3t0bp1a5w5c0av105UZAkiojzw9PQUAMSyZcv0Wv7BgweiZs2aAoAoUaKE8Pf3F507d5a24+XlJaKjozXWuXfvngAgnJycRMOGDUW3bt1EUFCQKFOmjAAgSpUqJaKiorT25evrKwCI8ePHCysrK1G1alXRs2dP4evrK8zNzQUAMXLkSI11Nm7cKACIxo0b64w/PT1deHl5CQDi8OHDer3mZcuWCQCiU6dOolatWsLZ2Vl06NBBdOzYUZQuXVoAEJ6enuL58+da6y5atEiYmZkJAKJOnTqiV69eonHjxgKAACCmTp2qtU5wcLAAIAYNGiSsra2Fl5eX6N69u+jQoYOYNWuWxrEZM2aMsLCwEHXq1BE9evQQPj4+AoCwtrYWkZGRYv78+cLMzEw0btxYdO/eXbzzzjsCgLC3t9d5zIneFkyciChPcpM4qVQq0aRJEwFADBgwQLx48UKal5qaKkaPHi0AiJYtW2qs9+LFC7F161aRnJysMT0lJUVMmDBBABBBQUFa+1MnBwDE77//rjHv4MGDQqFQCHNzc3Hv3j1pelpamvSazpw5o7XN7du3CwCiVq1aOb5eNXXiBEAEBgaKhIQEad6zZ8+kZGX69Oka6124cEFYWFgIhUIhVqxYoTFv165dwsrKSgAQ+/bt05inTpzUSWN6enqWx0ahUIiVK1dqzBs1apQAIN59911hb28vDhw4oHF8unTpIgCIgQMH6n0MiIoaJk5ElCe5SZx2794tAAgfHx+RmpqqNT89PV3UqFFDABAXL17UO4YyZcoIMzMzjURMiP8lBx9++KHO9dq0aSMAaCUlM2fOlJK7zAIDAwUAsXDhQr3jUydOdnZ24uHDh1rz//zzTwFA+Pn5aUwfMGBAtvEPGzZMABCtW7fWmK5OnN555x2Rlpamc131senWrZvWvLi4OCnx+uKLL7Tmnz59WgAQFSpUyPI1ExV17ONEREa3c+dOAECXLl1gYWGhNd/MzAzNmzcHABw7dkxr/vnz5zFnzhwMHz4c/fv3R0hICEJCQpCWlgaVSoWbN2/q3G+HDh10Tq9atSoAaPUvGjhwIGxtbbFmzRrEx8dL02/evIl9+/bB2dkZffr00eMVa6pXrx7c3d31jkM9/lRISIjO7Q0YMAAA8PfffyM9PV1rfqdOnWBubp5tTEFBQVrTSpQogZIlS2Y539vbGwD06ltGVFRpf4IRERnY7du3AQCTJ0/G5MmTs132yZMn0v+VSiX69u2LzZs3Z7vOixcvdE4vX768zumOjo4AgNevX2tML168OPr27YuFCxdiyZIlGDNmDADg119/hRACoaGhsLW1zTYWQ8ShTqQqVKigc71KlSpJ68XFxaF06dIa8728vPIck729PeLi4nTOd3BwAAAkJyfnuH2iooqJExEZnUqlAgA0bdpU+tLPSvXq1aX/T5gwAZs3b0aVKlXwww8/oH79+nBxcYGVlRUAoHHjxjh+/LjWFXJqZma5L6qPGDECCxcuxG+//YZRo0bh9evXWLZsGRQKBT799NNcby+vceSHjY1NjsvkFFNBx0xUWDBxIiKj8/DwAAB07NhRquLoY/369QCAdevWoVatWlrzo6KiDBNgBtWqVYO/vz8OHDiA3bt34+HDh3j+/Dnatm2bY9JnKGXLlsWtW7dw+/Zt1KhRQ2u+uoJXrFgxlChRokBiIqI3+JOCiIyubdu2AIANGzZkWR3S5dmzZwAAT09PrXl79+7F06dPDRNgJiNHjgQAzJ8/HwsWLAAADBs2zCj70qVFixYAkOV9AJcuXQoAaNasmc4+Y0RkPEyciMjoOnbsiPr16+PkyZMIDQ3V6MekFh8fj99//x1paWnSNHXn6V9++UVj2evXr2PIkCFGizcoKAiVK1fGnj17cP78eVSqVElK/grCyJEjYWFhgS1btmDVqlUa8/bt24eFCxcCQK6qd8bWr18/VKlSBfPnzzd1KERGxcSJiPLl22+/RcOGDbN8nDlzBmZmZtiyZQt8fHywfPlyVKhQAU2aNEGvXr3QpUsX1KlTB6VKlcInn3yikThNmTIFCoUCkydPRq1atdCrVy+0atUKNWvWRMWKFdG4cWOjvCYzMzONCtPQoUOhUCiMsi9datasiQULFkChUKBv376oW7cuevfujaZNm6JNmzZITk7G1KlTERAQUGAx5eTu3bu4fv260aqARHLBGi8R5cvt27elPje6qK94K1OmDP755x+EhYVh3bp1uHDhAk6ePIkSJUqgTJkyGDJkCD744AMUK1ZMWvfDDz/E4cOH8fXXX+P8+fO4desWKlasiKlTp2LMmDFGTRwCAwMBALa2tujfv7/R9pOVwYMHo3bt2pg1axaOHj2KCxcuwMnJCUFBQRg5ciRat25d4DEREaAQuelwQET0lpg0aRKmTZuGwYMHS01jRERMnIiIMnn06BGqVauGFy9e4NKlS1JfKyIiNtUREf2/8ePH48GDBzhw4ACeP3+OIUOGMGkiIg2sOBER/T8vLy/cvXsXbm5u6NGjB3744QdYW1ubOiwikhEmTkRERER64nAERERERHpiHycTUalU0ngntra2BTpGDBEREb0hhMCrV68AAC4uLjnep5GJk4k8ffoUrq6upg6DiIiI/l9sbCxKly6d7TJsqiMiIiLSEytOJmJrayv9PzY2FnZ2diaMhoiI6O2kVCqlFqCM381ZYeJkIhn7NNnZ2TFxIiIiMjF9+huzqY6IiIhIT0yciIiIiPTExImIiIhIT+zjVECUSmW2z4mIiEj+mDgVEHt7e1OHQERERPnEpjoiIiIiPbHiVEASExM1nmccN4KIiIgKByZOBYTjNBERERV+bKojIiIi0hMTJ5K9f//9Fz/88AP+++8/U4dCRERvOTbVkaylp6ejQ4cOePz4MW7fvo1FixaZOiQiInqLseJEsqZUKvH48WMAwM2bN00cDRERve2YOJGspaWl6fw/ERGRKTBxIllLT0/X+X8iIiJTYOJEssaKExERyQkTJ5I1VpyIiEhOmDiRrGVMllhxIiIiU2PiRLKWMVlixYmIiEyN4zgVEKVSme1z0o0VJyIikhMmTgXE3t7e1CEUSqw4ERGRnLCpjmSNncOJiEhOWHEqIImJiRrPlUolXF1dTRRN4cHhCIiISE6YOBUQOzs7U4dQKLHiREREcsKmOpI1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlnjAJhERCQnTJxI1jgAJhERyQkTJ5I1VpyIiEhOmDiRrGVMllQqFYQQJoyGiIjedkycSNYyN8+xuY6IiEyJiRPJWubmOSZORERkSkycSNYyJ0rs50RERKbExIlkjRUnIiKSEyZOJGvs40RERHLCxIlkjU11REQkJ0ycSNbYVEdERHJiYeoA3hZKpTLb56QbK05ERCQnTJwKiL29valDKJRYcSIiIjlhUx3JGitOREQkJ6w4FZDExESN50qlEq6uriaKpvBgxYmIiOSEiVMBsbOzM3UIhRIrTkREJCdsqiNZY8WJiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I13quOiIjkhIkTyVrmChMrTkREZEpMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHI6AiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHACTiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk56+v7771GvXj04ODjA1dUV3bt3R3R0tKnDKvJYcSIiIjlh4qSnw4cPY/jw4Thx4gT27NmDZ8+eoW3btqyAGBlHDiciIjmxMHUAhcWePXs0nv/xxx+oWLEirly5glq1apkoqqKP96ojIiI5KbCKU1paGi5duoSDBw/ir7/+wsGDB3Hp0iWDfRGuWrUKH3/8MerVqwdra2soFAqEhYVlu86pU6cQFBQEZ2dn2NnZoWHDhli/fr1e+0tISAAAlChRIr+hUzbYVEdERHJi1IrTq1evsHLlSmzZsgVHjx7Fq1evtJaxtbVF06ZN0blzZ/Tp0we2trZ52tekSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dw+jR4/Oct309HSMGTMGQUFBKFeuXJ7iJf2wczgREcmJUSpOz58/x5gxY1C2bFkMHToUe/fuxatXr+Dm5obq1aujUaNGqFatGlxdXaFUKrF371588sknKFu2LL744gs8f/481/tcvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE7NMvIQQGDJkCO7evZtjRYvyjxUnIiKSE4MnTr///ju8vb0xZ84cWFlZYcSIEdixYweePn2KBw8e4MKFCzh69CguXryIhw8f4unTp9i2bRuGDRsGS0tLzJ49G97e3li4cGGu9uvv7w9PT0+9lj106BBu3bqFjz76CD4+PtJ0JycnTJw4ESkpKVi+fLnWekIIDB06FAcOHMDBgwdRqlSpXMVIuceKExERyYnBE6ehQ4eiTJky+Ouvv/DgwQP89NNPCAoKQvHixXUuX6JECbRv3x4///wzHj58iA0bNsDd3R1Dhw41dGiSiIgIAEBAQIDWvMDAQABvrqLLSAiBTz/9FDt37sShQ4fg4eGR7T6USmWOD8oZK05ERCQnBu/jtHLlSnz00UdQKBS5D8bCAl26dMGHH36INWvWGDo0SVRUFADA29tba56bmxvs7e2lZdQ+/fRTrF27Ftu3b4eNjQ0eP34M4E3iZ2VlpbUde3t7I0T+9mHFiYiI5MTgiVPv3r3zvQ2FQmGQ7WRFfUWck5OTzvmOjo7SMmq//fYbAKBZs2Ya08PDw9GiRQvDB0kAWHEiIiJ54ThOehJC5Gr5xMTEbOcrlUq4urrmJ6S3AitOREQkJ0Yfx6lhw4ZYvXo1UlNTjb0rvakrTZmrSmovXrzIshqlLzs7uxwflDNWnIiISE6MnjidPHkS/fr1g4eHByZPnowHDx4Ye5c5UvdtytyPCQAeP36MxMREnf2f8oOdw/OGt1whIiI5MXri9Oeff6Jp06b477//MH36dFSoUAHdunXTumqtIPn6+gIA9u3bpzVv7969GssYir29vcaDzXT64S1XiIhIToyeOHXv3h2HDx/GxYsXMWjQIFhbW2Pjxo3w8/NDrVq1sHDhQp0jihtTq1atULFiRaxZswbnzp2TpickJGD69OmwsrJCv379CjQm0o0VJyIikhOFyG2v53x68eIFwsLC8Ouvv+LGjRtQKBRwdHRESEgIhg4dmucmssWLF+Po0aMAgIsXL+LMmTNo0qQJKleuDABo2rQpBg4cKC2f1S1XYmJiMGvWrGxvuZIXmZvmMnYOT0xMZJ8nHYQQMDPTzO0/+OADbN261UQRERFRUaNUKqUhhPT5Pi7wxCmjAwcOYP78+di2bRsUCgUUCgUCAgIwevRotGrVKlfbCgkJ0Tnat1pwcLDWLVJOnjyJKVOm4NixY0hNTUXNmjUxatQo9OjRIy8vJ1dy+4d6G6Wnp8PCQvPCz6CgIOzcudNEERERUVFTaBInpVKJFStWYMGCBbhy5QoAwNzcHOnp6VAoFGjbti1Wr16d76vb5IqJU86Sk5NRrFgxjWmBgYHYs2ePiSIiIqKiJrffx0bv45TZjRs3MGLECJQtWxbDhg3DlStX4Ofnhy1btuD58+dYtGgRvLy8sHv3boM3l5kSr6rLPV0dwdnHiYiITKlAKk5CCGzbtg0LFizAwYMHIYSAjY0NevfujREjRqBGjRoayyuVStSuXRsvX75EbGysscMrENndgoYVJ910jafVokULhIeHmygiIiIqanJbcTL6yOEzZszA77//jrt370IIAQ8PDwwdOhSDBg1CiRIldK5jZ2eHpk2bYuXKlcYOj2RMV8WJwxEQEZEpGT1xmjBhAgCgSZMmGDlyJDp37gxzc/Mc16tRowaaN29u7PAKTOZbsPCWKznT1SzHpjoiIjIloydO/fr1w8iRI1GnTp1crTdmzBiMGTPGSFEVPDbF5R4rTkREJDdGT5wyDwFApC92DiciIrkp8KvqiPSlK0lixYmIiEzJ6BUntRMnTuDAgQN48OABXr9+rXMZhUKBJUuWFFRIBUrXyOGUPVaciIhIboyeOKWkpKBXr17YsmULgDdDE2SlKCdO6ksdSX+sOBERkdwYPXH69ttvsXnzZtjZ2aFv376oWrUqHB0djb1bKgJYcSIiIrkxeuK0du1a2Nra4sSJE6hWrZqxdydbHI4g91hxIiIiuTF64nT//n34+vq+1UkTwOEI8oIVJyIikhujX1VXvHjxLEcIJ8oOK05ERCQ3Rk+c/P39ceLEiWw7hRPpwooTERHJjdETp2+//RbPnj3D1KlTjb0rWVMqlVoPyh5HDiciIrkxeB+nFStWaE0LDQ3Fd999hz179qBdu3YoX748zMx052z9+vUzdEiywOEIco/3qiMiIrlRCAO3oZmZmUGhUGhNV+9G17yMimpFIbvXnZiYyM7jOoSHh8PPz09jmr29PV6+fGmiiIiIqKhRKpVScUOf72ODV5z69euXY3L0NuJwBLnHzuFERCQ3Bk+ceFNf3VhRyj12DiciIrnhTX5JtlhxIiIiuWHiRLKlK0lSqVQc2oKIiEzG6COHZ3Tt2jVcv34dL168yPLLr6heVUe5l1WzXHp6OiwsCvTUJSIiAlBAidM///yDwYMH4/Lly1kuI4SAQqFg4kSSrJrl0tLSmDgREZFJGP3b58aNG2jdujWUSiUaNWqE2NhY3LlzBz179kRUVBTOnTuH9PR0dO7cGY6OjsYOx2QyD3jJATBzll3FiYiIyBSMnjjNmDEDSqUSv/76K4YMGYLQ0FDcuXMHq1evBgBcvnwZ/fr1Q1RUFI4fP27scEyGA2DmXnYVJyIiIlMweufw8PBwVKpUCUOGDNE5v3r16tixYwdu3bqFadOmGTscKkSySpxYcSIiIlMxeuL06NEj1KhRQ3pubm4OAEhJSZGmubu7w9fXF5s2bTJ2OCaTmJio8YiNjTV1SLKXVWWJFSciIjIVozfV2djYaHTkdXBwAADExsbCw8NDmu7o6Ih79+4ZOxyT4QCYuceKExERyY3RK05ly5bF3bt3peeVK1cGAI3+TEIInDlzBsWLFzd2OFSIsOJERERyY/TE6f3338eVK1eQlJQEAGjTpg0A4PPPP8fOnTtx8eJFfPLJJ7h16xbq169v7HCoEGHFiYiI5MboiVNQUBBev36NHTt2AAAqVaqEwYMH49GjR/jggw/g4+ODRYsWwcrKCt99952xw6FCJGNlydLSUud0IiKigmT0Pk4ffvghUlNTNaYtWLAA3t7e2LBhA549e4aqVati4sSJqF69urHDoUIkY2XJ2tpaOo9YcSIiIlMxyfDLZmZmGDVqFEaNGmWK3VMhkbGyZG1tjcTERK3pREREBYk3+SXZylxx0jWdiIioIBVYxUkIgd27d+PYsWN48uQJ3n//ffTv3x8A8OTJE8THx6NSpUrSOE9ETJyIiEhuCiRxOn/+PHr06IGoqCjpZr6pqalS4rR//3707dsXW7ZsQYcOHQoipALHe9XlXuamOl3TiYiICpLRm+ru378Pf39/3LhxA23btsXMmTMhhNBYplOnTrC0tMTWrVuNHY7J2NvbazxcXV1NHZLsseJERERyY/TEafr06YiLi8PcuXOxY8cOjBkzRmsZW1tb1K5dG6dOnTJ2OFSIZKwsWVlZ6ZxORERUkIyeOO3ZswdVqlTBiBEjsl3Oy8sLjx49MnY4JsN71eUeK05ERCQ3Ru/j9PDhQ3Ts2DHH5RQKBV68eGHscEyG96rLPfZxIiIiuTF6xcnOzg5PnjzJcbk7d+6gRIkSxg6HChFWnIiISG6MnjjVrFkTp0+fxtOnT7NcJiYmBufPn0fdunWNHQ4VIqw4ERGR3Bg9cerTpw9evnyJgQMH4tWrV1rzU1JSMHToUKSmpqJPnz7GDocKEVaciIhIbozexyk0NBSrV6/Gtm3bUKVKFbRp0wbAm7GdRowYgW3btuHu3bvw9/dHjx49jB0OFSKsOBERkdwYveJkbm6O7du3o1evXnjw4AEWL14MADh79izmz5+Pu3fvokuXLti0aZOxQ6FChhUnIiKSmwIZOdze3h6rV6/G5MmTsWvXLty+fRsqlQoeHh5o27YtfHx8CiIMKmSySpxYcSIiIlMpsHvVAUCVKlVQpUoVnfN2796NJ0+eoF+/fgUZEslYVk11rDgREZGpGL2pTl/ffPMNQkNDTR0GyQgrTkREJDeySZyIMmPFiYiI5KZAm+reZkqlMtvnpC1jgsR71RERkRwwcSog9vb2pg6h0GHFiYiI5IZNdSRbHI6AiIjkhhWnApKYmKjxXKlUwtXV1UTRFA4cAJOIiOSGiVMBsbOzM3UIhQ4rTkREJDcGT5y++eabPK13//59A0dChR0rTkREJDcGT5ymTp0KhUKR6/WEEHlaj4qurK6qY8WJiIhMxeCJU/PmzZkAkUGoEyRzc3NYWPzvVGXFiYiITMXgiVNERIShN0lvKXWCZG5uDnNzc2k6K05ERGQqHI6AZEudIFlYWLDiREREssDEiWSLFSciIpIbgydODx8+lNV2qPBixYmIiOTG4ImTt7c3xo8fj/j4+Dyt/+zZM4wdOxbe3t4GjowKG1aciIhIbgyeOAUEBGDmzJkoV64c+vTpg/379yM5OTnbdZKTk7F371706tUL5cqVw6xZsxAYGGjo0KiQYcWJiIjkxuBX1W3evBkHDhzA559/jjVr1mDt2rWwtLSEj48PqlatipIlS8LR0REvXrxAXFwcrly5gvPnzyM1NRVCCNSoUQNz5syBv7+/oUOjQoYVJyIikhuj3HLF398fFy9exP79+zF//nzs27cPJ0+exMmTJwEACoUCQghpeWtra3To0AHDhg1jwkQSjuNERERyY9R71bVu3RqtW7dGcnIyIiMjcfbsWcTGxiIhIQHOzs4oXbo03nvvPTRu3FjjlhpEgGZTHStOREQkBwVyk19ra2v4+fnBz8+vIHZHRUTGprqMFScmTkREZCocx4lkK6uKE5vqiIjIVJg4kWyx4kRERHJTIE11BCiVymyfkzZWnIiISG6YOBUQe3t7U4dQ6LDiREREcsOmOpIlIQQrTkREJDusOBWQxMREjedKpRKurq4mikb+VCqV9H8OgElERHLBxKmA2NnZmTqEQiVjcsQBMImISC6M3lR35MgRREZGGns3VMRkTI44ACYREcmF0ROnFi1aYPLkycbeDRUxrDgREZEcGT1xKl68OMqUKWPs3VARkzFxYsWJiIjkwuiJk4+PD6Kiooy9GypiMlaVMncOZ8WJiIhMxeiJ04gRI3Dq1Cns3LnT2LuiIiRzxcnMzAwKhUJrHhERUUEy+lV1derUwbBhw9C5c2eEhISgS5cu8PLygo2Njc7ly5cvb+yQqBDIXHEC3iRQqamprDgREZHJGD1xqlChAoA3AxouWbIES5YsyXJZhULBL0UCoF1xAt4kUKmpqaw4ERGRyRg9cfLw8JCaWIj0lVXFKfM8IiKigmT0xCk6OtrYu6AiKPNwBBn/ZcWJiIhMhfeqI1nKPABmxn+ZOBERkakwcSJZyq7ixKY6IiIylQJLnP7++290794d5cqVg7W1NQYMGCDN279/PyZOnIjHjx8XVDgkc6w4ERGRHBVI4vTdd9+hRYsW+Ouvv/Dw4UOkpqZCCCHNd3JywowZM7Bp06aCCIcKAVaciIhIjoyeOO3evRtfffUVypYti/Xr1yM2NlZrmQYNGqBUqVLYsWOHscOhQkLXcASsOBERkakZ/aq6n3/+GdbW1ti9ezeqV6+e5XK1a9fmrVlIoms4AlaciIjI1IxecTp16hQaNGiQbdIEAKVKlWIfJ5Kw4kRERHJk9MRJqVTCzc0tx+USEhKgUqmMHQ4VEqw4ERGRHBk9cXJ1dcXNmzdzXO769evw8PAwdjhUSOjqHM6KExERmZrRE6emTZvi3LlziIyMzHKZHTt24ObNm2jZsqWxw6FCQtdwBKw4ERGRqRk9cRo9ejQUCgU+/PBDbNmyRetLb8+ePRg4cCAsLS0xfPhwY4dDhQRvuUJERHJk9MTpvffew+zZs/H06VN06dIFzs7OUCgU2LhxI5ydndGuXTv8999/mD17NqpVq2bscKiQyG4ATCEE+8MREZFJFMgAmCNHjsSuXbtQv359JCUlQQiBly9f4sWLF6hZsya2bduGYcOGFUQoVEhkV3HKPJ+IiKigGH0cJ7XAwEAEBgYiLi4Od+7cgUqlgoeHB9zd3QsqBCpEshuOAHhTkbK0tCzwuIiI6O1W4Df5LVmyJOrVq4cGDRoUqqRp06ZNaN26NUqUKAGFQoHo6GhTh1SkZTccAcCKExERmYbRE6ewsDDcv3/f2LsxOqVSiebNm+Obb74xdShvBX0qTkRERAXN6E11/fv3h0KhgLe3N/z9/eHv7w8/Pz84Ojoae9cG1bdvXwDApUuXTBzJ24EVJyIikiOjV5xCQkLg4eGBGzdu4Ndff0WXLl1QsmRJNGzYEJMmTUJERARSU1PzvZ9Vq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXr893LJR/2Q2AmXk+ERFRQTF6xWnp0qUAgKioKBw4cAD79+9HREQETp48iZMnT+L777+HjY0NmjZtitatW2P06NF52s+kSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dy/PcZBhZDcAZub5REREBaXAOod7e3vjk08+waZNmxAXF4cTJ05g2rRpaNGiBdLS0rBv3z6MGzcuz9tfvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE3NMvMi4WHEiIiI5KvCr6gAgNTUVL1++lMZyUlcPhBB53qa/vz88PT31WvbQoUO4desWPvroI/j4+EjTnZycMHHiRKSkpGD58uV5joXyjxUnIiKSowIbx+ncuXPYv38/Dhw4gKNHj+L169cQQsDR0RHt2rWTOo4XhIiICABAQECA1rzAwEAAwOHDh/O1D6VSma/5bztWnIiISI6Mnjj17NkThw4dQlxcHIQQsLS0RMOGDaVEqUGDBhqVhIIQFRUF4E3zYWZubm6wt7eXllF79uwZ7t69i1u3bgEArly5gufPn6N8+fIoUaKE1nbs7e2NEPnbgxUnIiKSI6MnTuvXr4dCoUCtWrUwZcoUBAQEwNbW1ti7zVZCQgKAN01zujg6OkrLqG3btg2hoaHS83bt2gEAli1bhpCQEOME+hZjxYmIiOTI6ImTg4MDXr58ifPnz6N3795o1qwZWrduDX9/f9SuXdvYuzeYkJCQXCVIiYmJ2c5XKpVwdXXNZ1RFl64BMFlxIiIiUzN64vTs2TOcPHkSBw4cwIEDBxAeHo59+/ZBoVDAxcUFrVq1QuvWrdG6dWuUK1fO2OEA+F+lKXNVSe3FixcoXrx4vvZhZ2eXr/XfdroGwGTFiYiITM3oV9WZm5ujUaNGmDx5Mg4fPoz4+Hjs2LEDI0eOhJubG9atW4eBAwfC09MTVatWNXY4AP7XtylzPyYAePz4MRITE3X2f8oPpVKp9aCs6WqqY8WJiIhMrcCHI7C1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3CiQGHx9fQEA+/bt05q3d+9ejWUMxd7eXuPBZrrs6eoczooTERGZWoENRwAA9+/fl4YkOHjwIJ48eQIA0tV2jRo1KpA4WrVqhYoVK2LNmjUYMWKENJZTQkICpk+fDisrK/Tr169AYiHdWHEiIiI5MnritGXLFql/k7ppTAgBhUKBGjVqSMMS+Pr65utqu8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgTwpnKxePFiBAYGonnz5hq3XImJicGsWbPg5eWV9xetQ+bO4uwcnj1WnIiISI6Mnjh9+OGH0v89PDykRKlVq1YoXbq0wfZz9OhRrdG+IyMjERkZKT1XJ04A0LJlSxw9ehRTpkzBunXrkJqaipo1a2LGjBno0aOHweJSY2fx3GHFiYiI5MjoiVOnTp2k4QcM3eE6o7CwMISFheVqnQYNGmD37t3GCYjyJacBMFlxIiIiUzB64rRp0yZj76JQyHwVHa+qy15OA2Cy4kRERKZQoJ3D32a8BUvu6BrHiRUnIiIytQIbjuDq1asYMmQI3n33XemS/HfffReffPIJrl69WlBhUCGha+Rwdg4nIiJTK5CKU1hYGIYMGYLU1FQIIaTpUVFRiIqKwrJly7Bw4UIEBwcXRDgmwavqcoedw4mISI6MXnE6ffo0Bg0ahJSUFLRr1w6bN2/GhQsXcOHCBWzZsgUdOnRASkoKBg0ahH///dfY4ZiMnZ2d1oOyxuEIiIhIjoxecfrxxx+hUqmwZMkShIaGasyrUaMGPvjgA4SFhaF///6YPXs21q5da+yQqBBgxYmIiOTI6BWnv//+Gz4+PlpJU0YhISF47733cOTIEWOHQ4UEK05ERCRHRk+cnj59qtfNe6tUqYKnT58aOxyT4U1+c4cVJyIikiOjN9U5Ozvj7t27OS539+5dODk5GTsck+FwBLnDihMREcmR0StO9evXx7Fjx3Do0KEslzl06BAiIyPx/vvvGzscKiRYcSIiIjkyeuI0fPhwqFQqdOjQAWPHjsXly5fx6tUrvHr1CpcuXcKYMWPQoUMHadmiKjExUeMRGxtr6pBkTdcAmKw4ERGRqRm9qS4wMBBffvklpk2bhtmzZ2P27NlaywghMHnyZAQEBBg7HJPh8AO5o2sATFaciIjI1Apk5PBvv/0Wu3btQsuWLWFtbQ0hBIQQsLKygp+fH3bt2oWvv/66IEKhQiKne9Wx4kRERKZQYPeqa9OmDdq0aYP09HTExcUBAEqWLKlRRSBS09U5nBUnIiIyNaMlTjdv3sSmTZsQHR0Na2tr+Pj4oHv37rCxsUHp0qWNtVsqIlhxIiIiOTJK4jR37lyMHTtW68tt8uTJ2LVrF2rUqGGM3cpa5nGbOI5T9tQVJTMzMygUCgCsOBERkekZPHE6evQoRo8eDSEE7Ozs8O677+LFixe4ffs27t+/jy5duuDq1aswMyuQ7lWywXGcckeddGdMllhxIiIiUzN49jJ//nwIIRAcHIzHjx/j33//xY0bN3DmzBlUqlQJN2/exJ49ewy9Wypi1BWljMlSxiSKiRMREZmCwROn48ePo1y5cli4cKHGJfi1atXCzz//DCEE/vnnH0PvVvY4jlPu5FRxYlMdERGZgsGb6mJjYxEUFAQrKyuteU2bNgUA/Pfff4berexxHKfcUSdGGRMnVpyIiMjUDF5xSklJgbOzs855jo6O0jJE2VEnRlk11bHiREREpvB29dCmQkNXxYmdw4mIyNSMMhzBzZs3sWLFijzN79evnzFCokKGFSciIpIjoyROkZGRiIyM1DlPoVBkOV+hUDBxIgAcjoCIiOTJ4IlT+fLlpQEL6X84AGbu5DQcAStORERkCgZPnKKjow29ySKBA2DmDitOREQkR+wcTrLEihMREcmR0W7yS5oSExM1niuVSri6upooGvljxYmIiOSIiVMB4QCYuZPTAJisOBERkSmwqY5kSddwBKw4ERGRqTFxIllixYmIiOSIiRPJjkqlkv7PihMREckJEyeSnYxJEStOREQkJ0ycSHYyJkWsOBERkZwwcSLZ0afixMSJiIhMgcMRFBDeckV/+lSc2FRHRESmwMSpgPCWK/rLquJkZmamcxkiIqKCwqY6kp2M1aSMiZNCoZCes+JERESmwIpTAeEtV/SXsZqUsXkOeJNIpaens+JEREQmwcSpgPCWK/rLquIEvEmkUlJSWHEiIiKTYFMdyU5OFafMyxARERUUJk4kOzlVnDIvQ0REVFCYOJHssOJERERyxcSJZCer4QgyPmfFiYiITIGJE8lOVgNgZnzOihMREZkCEyeSHVaciIhIrpg4kezo0zmcFSciIjIFJk4kO/p0DmfFiYiITIGJE8kOK05ERCRXHDm8gCiVymyf0/+w4kRERHLFxKmA2NvbmzqEQoMVJyIikis21ZHscABMIiKSK1acCkhiYqLGc6VSCVdXVxNFI2+85QoREckVE6cCYmdnZ+oQCg19Kk4AoFKpYGbGoikRERUcfuuQ7GQ3AGbGRIpVJyIiKmhMnEh2smuqy/ic/ZyIiKigMXEi2cmuqY4VJyIiMiUmTiQ7rDhRWloaBg8ejK5duyIhIcHU4RARSdg5nGSHFSfatGkT/vjjDwBA7dq1MXnyZBNHRET0BitOJDusOFF4eLj0/927d5swEiIiTUycSHZYcaLDhw9L/z9x4gSePXtmwmiIiP6HidNbTKVSITExEUIIU4eiITcVJyEEVCpVgcVGxvfff//h6tWr0nOVSoUDBw6YMCIiov9h4vQWGzBgABwcHPDdd9+ZOhQN+lacUlJS0KVLF9jY2GDdunUFFh8Z199//601bc+ePSaIhIhIGxOnt9SpU6cQFhYGAPjuu+8QGxtr2oAyyG4AzIzPFy5ciM2bNyMlJQXffPNNgcVHxnXkyBGtaXv27JFdZZSI3k5MnN5Sc+bMkf6fkpKC33//3YTRaNK3qW7u3LnS/69cuYLo6Ghjh0YFQN2/SaFQoHHjxgCAR48e4eLFi6YMi4qge/fuYeDAgVi+fLmpQzGI1NRUDBs2DIGBgViyZAmSkpJMHVKRxMTpLXT37l1s2LBBY9qvv/6K5OTkPG3v33//xa1btwwRGoC8dw7ftWuXwWIwhsJ4FWBqamqBVnri4+Nx4cIFAICPjw969uwpzWNzHRlSSkoKPvjgAyxZsgQhISE4deqUxvyEhAR8++23OHjwoIkizL2lS5diwYIF2LdvHwYOHIhy5cph7Nix+O+//0wdWpHCxOktNG/ePOlL3NbWFsCbDrl//vlnrre1bds21K9fHzVq1MDt27cNEp++FafMz+WaOF25cgUNGjSAo6MjPvvsMzx9+tTUIWVJCIGzZ89i6tSp8PHxgZWVFbp161ZgydPRo0elfTVv3hxt2rSR5hWGxGnPnj3o2LEjIiIiTB1KkZeWloZXr15pTU9PT8ecOXPQp08f3Lt3L8v1p02bhnPnzknPp06dKv1fCIFevXrhq6++QuvWrbFkyRJDhq7Ty5cvMW/ePOzatStPP7JSU1Pxww8/aEx79uwZfvzxRzRu3BhKpdJQoZIgk0hMTBQABACRmJhosO2qVCrx2WefiaVLl+qcn5CQIBwdHQUAYW1tLTZv3izFUadOHaFSqXK1v06dOknrz549O89xv3r1SsTFxQkhhPj666+lbe7cuVNjuU8//VSaB0BMnTpVuLu7CwDCxsZGvHr1Ks8xGJpKpRILFy4UNjY2GjE7OjqKadOmCaVSma/tX79+Xezdu1ekpaVpzbt27ZrYv3+/3n/PtLQ0sXr1alGlShWNWNWP9evXZ7t+UlKSiI+Pz8vL0DBmzBhpn5s2bRIqlUpUrFhRABCWlpbixYsX+d6HsSQkJAgHBwfpb/zgwQO9112zZo1o0aKFmDt3rkhNTc122eTkZPH8+fNcv1flSKVSiV27donvvvtOxMTE6L3eq1evROPGjYVCoRB9+vQR//33nxBCiGfPnom2bdtK51C7du10rn/69Glhbm6udZ7/888/QgghNm7cqDXvt99+y/8LzkabNm2kfVWsWFHMmjVLPHv2TO/1w8LCpPWbNGki+vbtK6ysrKRp48aNM2L0hVtuv4+ZOJmIsRKnH3/8UdrulClTtD5c58yZI80fNGiQUKlUon79+tK0w4cP672v169fCzs7O2ndoKAgrWVUKpXOL/a0tDQRFhYmQkNDRa1ataQPsVatWokuXbpI29yzZ4/GeiNGjJDmeXp6ilevXokBAwZI03bv3q13/Mb0/Plzjdeh61GlShXpA19NpVKJU6dOid27d4u///5bnDlzRsTGxmptPyoqSjr2QUFB4vnz59L6c+bMEWZmZgKAGDBgQLZfsOnp6eLPP/8UVatWzTbWSpUqieTkZJ3bCA8PF6VKlRIWFhbim2++Eenp6Xk+bg0aNJD2+eTJEyGEZrK8devWPG87O48ePRJt27YVrVu3Fv/++2+etvHTTz9pHLOuXbvqtd6VK1c0vsTfe+89cerUKa3lHj9+LEaNGiUl4tbW1sLT01M0a9ZMHDp0KE8xm9K5c+dEy5YtpdddrFgxMXnyZL0+DzP+uAIgSpYsKWbPni0qVaqkde7euHFDY93Xr1+L6tWrS/Pr1q0r/b9NmzYiMTFReHh46Hwf/PLLL0Y5FocOHdK5P2dnZ3Hu3Lkc109LSxPvvPOOtF5kZKQQQoirV69KyZOFhYW4fPlyvmPdtm2bCAgIECtWrMj3tnIrISFBREZGit9//13n52JeMXEqJIyVOI0cOVLjjRcaGipSUlKEEG+qAp6entI89Zto9erV0jQ/Pz8xe/ZsERISIjp27Cj9AtNl7969Gvuyt7eX9iWEEGfPnhUODg6iWrVq0pegWsYELrvHgQMHNNabPn26NG/Dhg1CCM1fh8OHDzfIccyPpKQk0axZM43XMXToUHHz5k0xePBgjS/Jxo0bi6SkJCHEm1/RGSt46odCoRCrV6/W2Ef37t01lnn33XfFxYsXRWhoqNb6X375pc44lUqlzv01btxY/Prrr+L+/fvCz89Pmj5v3jytbaxevVrjVy0AERAQoJUQ6uPFixfSsalevbo0ffv27dK2P/nkk1xvNycpKSmiadOm0j4sLCzE9OnTdSb8WUlLSxMVKlTQOpbbt2/Pcd2goCCt9czMzES3bt3E+PHjxbx588SYMWOEra1tlu+TEiVK5KrCldGTJ09E3759xZgxY8TLly815h04cEA0bNhQ9OzZ02CfU7GxsWLQoEFCoVDofC1lypQRW7ZsyXL9mJgYrSquruOn/v+IESM01p8wYYI0z8fHRyQmJgovLy9pWsa/R0BAgBg3bpzGtletWmWQ46CmUqlEo0aNpO3Xrl1bY39t27bNcRt//vmntHyLFi005k2ePFljXk6Vyvv374uBAweK4sWLi379+omEhARp3ooVKzSOrTGSJ5VKJZYuXSqGDx8uBg4cKHr37i3atWun8TcCILZt22awfTJxkqnExESNR2xsrFESJ5VKJWbPnq1xgvn6+ooPPvhA44M345sxOTlZlClTRucHUPny5TWSoYyGDx+utfyxY8ek+d26dZOmT5w4UZqekpIiypYtK80zNzcXtWrV0npjABDh4eEa+4yLixOfffaZWLBggfQBkJCQICwsLATwpsSd2yaMuLg48csvv4jdu3fnu/kjPT1d43UXL15cbN68WWOZS5cuSc2LAET37t1FfHy8aN68eZZfBI6OjlJTxsmTJ7P90tD1yPxL+b///hMNGzbUWKZJkybiwIEDGsfg33//lea7uLhoVLa+//77LPdXtmxZsWHDBikp1OXVq1diyJAhon379mLp0qXir7/+0pkgvXz5UkrOrKysxPjx46UP89TUVBERESF++ukncfv27Wz/NgkJCSIkJET06NFD45d35h8b6kfTpk3FnTt3st2mWsYmb1dXV433T2JiolCpVOL8+fNi2bJlGj8idu/erXHMatasmePfslixYqJFixaiRo0awsnJSeM9nfFvt3LlStGzZ09x/PjxbGPPeL56e3uL06dPi/T0dDF9+nSNL8mPPvooX++P1NRU8fPPP2vErH7PDho0SFhaWkrTLCwsxNWrV3VuJ+OPhtDQUK0fEXXq1BFnzpyRkisHBwfpfDl69Kj0miwtLcWFCxeEEEIsXrxY6zhbWVmJGzduCJVKpZF8uLi4SN0K1B4+fChOnDiR4/GJj48Xc+bM0ficzPjDoHr16iItLU1cu3ZNlC9fXgBvfjhlPg9TUlJEbGysUKlUIj09XdSoUUPaRuYfm69evdJI6rNK/OLj48WECRO0ktLKlSuLs2fPirCwMK1k18LCQmt/ag8ePBA1a9YUJUqUEN27dxcrV64UT58+zfb4CCHEokWL9PpMmzZtWo7b0hcTJ5nK7gQwZOKktn79emFtbZ3lPiMiIjSWz+5LcPny5VrbV6lUOn9hf/fdd0KIN192Gd+Azs7OUv+UjBWuoKAgqV9ScnKy+OWXX0SpUqWkD4x79+7p9XozlvyvXbum1zqvXr0SM2bMEM7OztK6LVq0EGfOnNFrfV0+//xzaVt2dnY6m1yEeNPHImMzZ8mSJTXWGz9+vBg9erRG5ap169ZCpVKJFi1aSNPGjh2r8aGp/mJdu3atmDdvnjRNoVCIiRMnitWrV4sdO3aIypUrS/McHBzE1q1bs/zQ/+ijj6RlR40aJcLCwrSSrsGDB4t9+/ZpJA3Am4QvODhYHDx4UGu7gwcPzvKcW7t2rcay/fr105hfqlQp0a1bN1G8eHGNL7TMzTIZhYSESMtaW1uLWbNmiZUrV2p8UQ4ePFgjWXBychJ//fVXjn93X19faZ2dO3cKf39/jb9bxqYhd3d3ceTIEZGamqrRRLpmzRqRkpIiZs6cqXFuZIx55MiR4uHDh9J+nz59Ktzc3KRlFi5cKNLS0jSSQRsbG633u5quJiJLS0uNCkjGR8aq471798S4cePEr7/+mmN17tixY1pJoYODg5g5c6Z4/fq1EEKIGzduiICAAGn+yJEjtbYTERGhcQ6o+9Vt375dtGjRQnz22WdS38GM59fcuXPF8+fPNSruGb94U1JSpL506sekSZM09p0xQRs6dKg0/dSpU8Le3l4AEH/88UeWxyApKUm89957GttPSUkRtWrVkqZt2rRJWv67776TpmesGj969Ej6kWlra6vRRNewYUOd7+OdO3dKy7i6uopbt25J81QqlVi2bJlwcXHJ8v1obW2tkTRl7Avp6OgoJaAZ9ezZU2s7ZmZmomnTpuL7778XFy5c0Ir12bNnWcbh4OAgGjVqJAYPHix++eUXcenSpSyPdW4xcZKprE5Iff9QefH333+LEiVKSPspXbq0CA4OFnv37tVaNjU1VUybNk18/vnnYunSpRodDatVq6bVb+XKlSvSfG9vb+n/fn5+Qggh1q5dq/U6Z8+eLVQqlahXr540TdcH+osXL0RYWFiWH/a6zJo1S9rmnDlzhBBvqiqnTp3Sil2lUonVq1eLcuXK6fx7qDuc/v7772LXrl3i4sWLIioqSly+fFmcO3dOnDp1SkRGRorw8HCxZ88esWbNGjF37lyNvlbm5uZaHdsz2759u8aXtPrL/+TJk9Iy8fHxGtW5jEmMut/RixcvROfOnQXwpmqRMVnL2Cyh61GmTJkc+1Dcvn1bqzku42P69OnSB+CjR480ktiMj88++0z6W2RMnnU9Mjc7JSYminHjxmUbB/CmevH48WOdxzq79YA3SYcQb943maufn376aZbVszNnzkjLvfvuuyI9PV1ERUVl+8PF3NxctGvXTnreqFEjjS8RpVIpLl26JPbv3y9WrFgh/vjjD3H//n2d+8/4pWhnZ6fROTrj9KNHj2qsl5qaqpF063o/KBQKjS9ACwsLcfjwYfHzzz9LyQLw5gdHVk2Fp06dEsWKFdPYbmhoqM6/U1xcnLSss7OzxsUeqampGklGdkmKEEJcvHhR473Sq1cv6XmzZs20kr2lS5dK8728vLQu3rh3756U0CoUCnH69Glx584djR8LVapUyfIHSMbPh4zni/r/9erV01j34cOHUiXdzc1Nqvz37t07y/Nqx44dWR6PjM3y5ubmom/fvmLXrl1alW4rKyvx+eefi1OnTmn0/1I/RowYIVJTU0WHDh2kaWXLlhV3796V9pUxwc3uUa1atSyrv507dxYXLlwQUVFR4uHDh0a9GIKJk0wVVFNdZnfv3hW///67OHnyZK477Wbs95G5z0HGTuizZ8+WfslZW1uLpKQknX1nypUrJw4ePCg9z8tVfFnJmMhVq1ZNBAYGSv1lGjRoIHX4jYuL02iaAN78CurVq5dGFSa/j5w+1NV++eUXaZ3y5cvrbJ7I2JyT8bFu3TppGZVKJa5du6b15a5SqcSQIUOy/NDS90qmUaNGaa1fs2ZNjV/Iaunp6WL37t0iODhYuoJT/ejdu7e4ePGixpfu1KlTxZAhQ6TKX+Y+Ghndvn1b45e/k5OT6NGjh6hWrZrGF1DGvjpxcXEaVZnAwECtJofQ0FCNc/H58+daTUBVqlQR33//vdbfKDg4WFrm119/laZnrBgAb5pCM76nMj5OnDih198hK7qqd+bm5hoVDgcHB439ZDz36tWrJ5KSksQXX3whTStevLh0scXYsWOl6Vn1TXJxcdH6sfDw4UONxL9u3bo5Nh1mrC6GhYVJ0+fPny9Nf++99/Tqg9aqVSutOJ2cnHSe96mpqaJHjx6iUqVKWkmm2owZM6Tt1K9fX+dFFbr6hWZsCixWrJjOK/r27duntV7GC0z++usvjQqhvb298Pb2lpKrzE21mcXExGTZJUP96Natm0az4OvXr8WwYcOk+Z999pm0j8TERI0Li6pUqSKePHmileAuWLBAREREiNGjR2skiupHqVKlxPnz58Xly5el42JjY6ORiBkbE6dCwlidww1px44dUozvv/++xpsyY9PE9evXRf/+/aXnW7ZskX5tu7q6avyyLl26tPT/lStXGixWlUqls49Uxg/7kJAQjQ9xAKJ9+/bi4sWLQog3TYVz5szRaLrL7cPMzExqrtTXunXrxPjx47Pt3Jv512q9evVylQhfuHBBrFu3TsyZM0eMGjVKfPnll7m61PnZs2eibt26wt7eXgQHB4tjx47plfQmJSWJefPmaVTWMlaNgoODNZY9ceKE1HSTnaioKPHPP/9Iv8Lv3bunUTHx9/cXR44cEcnJyRq/0IOCgoRKpRIRERFSU/P777+vcxgL9XASmaslwJsKRv369UX9+vWlvjnOzs4a7+X09HSxaNEi8dNPP4no6GghxJtO5BMnTtTYVt++fXN8vTl5+fKlRlOTvb292LNnj0hKShKtW7eWpltbW4tevXqJrVu3apznGZOZo0ePimnTpmkkF6mpqToriX379tWqVPXu3VvcvHlTJCUlaTTpNmnSRK+/7bFjx6R1GjZsKIQQ4s6dOxrNl1klNplt27ZNK+Y///wzl0f3f5KTk3UO2ZGx/+iQIUM01vn33381qo+rVq0SERERGpWqrDpt79u3T2OZjImaukKampoqHj9+rNf78dmzZ+Lrr7/WaIkA3lRqM1/BnPk1REREaO0jNjZW4wdn3bp1Nbp96Epwb968KX7++WeN5usSJUpoJGHffPNNjq/FkJg4FRKFIXFSqVQavxzUlzzHx8dLvwwqV64shBBi1apV0nIZ29yHDRsmjh49qvVB4+7unuXl7XmVuZOvp6enRjNixkfx4sWlq/IyS0hIEHv27BGLFi0SkyZNEsHBwaJPnz4iNDRUDB48WHz66adi1KhRYvz48WLy5Mlizpw5YuXKlWLv3r3SF6ShPX/+XOMLqrBdfr5lyxatBKRatWoGPfcvXbqklfRm/EJzdnbWaO569eqVOH78eJYXP6hduHBBvP/++zkmzWPHjtU71m3btgl3d3dRpUoVjT5L+fHPP/+I4sWLi8qVK2s0vyqVyiybTzMnr9mJjY2VfpxUq1ZN/P3330KIN/2sPvjgA41tWlhYaFwd5uHhobNpTpfMnztnz57VuLpz8ODBeh+T9PR0jSEK9H2t2dm/f7/Ga1VXTNSJnZOTk1T5jY+P1+hX9emnn0rbefjwoejcubPw8fERV65cyTL+zH2vgDdV9PwM+/Hy5Uvx448/iqZNm4qpU6fma/y7O3fuZFnJUg+LoEt8fLzO95WXl1eBj8fHxKmQKAyJkxBvBuZTx+nn5ydevXol1q1bJ01Td+B88OCBzjfOkSNHhBBCNG7cWGO6Ia+IUEtISBBDhw4VI0eOFJGRkUKlUonk5GTxww8/aHyBtmrVKsv+InJ2+vRp0apVK/H999+bOpQ8OXLkiHRFla2trUHGlMns8OHD0iCUmR/5vXT61q1bYs6cOaJZs2bSDweFQiHMzMxE3bp1cz0EQ3p6usH7baSnp+tswkpMTBRjx47VuAgBeNN8l5vE7cWLFyIyMlLrR49KpRILFizQ2j7wptkltxdcLFiwQKMaov5/+fLlNS6P18emTZuEmZmZaNCggcEGUFX3+7KxsZGa5jI22aqrWn369JGmNWzYME8/Fn/44QeN42lmZiZOnz5tkNdhKJcvX9aqYulTSU1ISBBNmjTRWE+fizEMjYlTIVFYEqfU1FSNDy4rKyvpqjcAYv/+/dKymUvYZcuWlX4Vbd26VeODVJ/LUg3p7t27YsKECWLp0qX5+qVG+XPt2jUxZswYvZta8iI2NlaEhYWJvn37SsM+hISEFImRtvPr9evX4s8//xT+/v6ifPnyWVZd8yohIUFMnTpVI3nNadT5rLaj68pCXf2A9PH69escR2TP7faWLVumkfyHh4dLcbZp00Zs2LBBep5xOJHcio2N1RiqIWPVSk5OnDgh9V20t7fXOyF/+fKl1BetY8eOJnmfMnEqJApL4iSEEEuWLNH5C97e3l7jF9TQoUM15n/22WfSvPT0dOkS7dz2ASLKK5VKVWRuT1KYPHnyRMyfP1/jh1VuDRw4UOPzJDdNdKaQnp4uNcuZmZlpDJWR32qnuvN/uXLlDHJrI2M5deqUGDBggNb4ezlRX9ySU7O5seT2+1ghRAHe+pwkSqUS9vb2AIDExETY2dmZOKKsCSGwefNm7Nq1CxEREbh16xYA4PPPP8ecOXOk5TZu3IiuXbtKz48dO4ZGjRpJz1NSUvD06VO4u7tDoVAU3AsgokLn9OnTqFevHgCgfPnyuHjxIhwdHU0cVfamTJmCb775RmNaly5dsGHDhnx95qWkpGDfvn2oX78+XF1d8xsmZZLb72MmTiZSmBKnzO7du4enT5+iZs2asLCwkKbHxcWhVKlSEEKgfPnyiI6OZoJERHn2/fff48CBA5g1axbq1Klj6nBydOvWLVSuXFl67urqikuXLsHFxcWEUVFOmDgVEoU5ccrO1KlTsWzZMsyaNQvdunUzdThERAWqRYsWOHz4MABg+/btaN++vYkjopwwcSokimriRET0Nrt58yYmTJiAgIAADBo0yNThkB6YOBUSTJyIiIhML7ffx2YFERQRERFRUcDEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9GSR8yJkDBkHbFcqlSaMhIiI6O2V8TtYn5upMHEykVevXkn/d3V1NWEkREREBLz5blbffiUrbKojIiIi0hNv8msiKpUKT58+BQDY2tpCoVDkaTtKpVKqWMXGxvJmwf+Px0U3HhfdeFx043HRjcdFt8J6XIQQUiuQi4sLzMyyrymxqc5EzMzMULp0aYNu087OrtCcqAWJx0U3HhfdeFx043HRjcdFt8J2XHJqnsuITXVEREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREeuIAmERERER6YsWJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMRJpk6dOoWgoCA4OzvDzs4ODRs2xPr163O1jeTkZHzzzTfw9vZGsWLFUKZMGQwePBj//fefkaI2ngcPHmDu3LkICAhA+fLlYWVlBTc3N3Tp0gUnTpzQezsRERFQKBRZPsLCwoz3IozEy8sry9fTokWLXG1r9erVaNCgAezs7FC8eHG0b98eZ86cMU7gRhQWFpbt31mhUKBVq1Y5bqewni+rVq3Cxx9/jHr16sHa2jrHWF+8eIFRo0bB09MT1tbW8PLywhdffIHExMRc73vv3r3w9fWFg4MDHB0d0bJlSxw8eDAfr8Zw9D0uqamp2LhxI4KDg1G1alXY29vDwcEB77//Pn777Tekp6fnar+GfI8aQ27Ol6lTp2b7noiOjs7Vvm/cuIHu3bvDxcUFNjY2qF27Nn777TfI+bo1C1MHQNrCw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHj85xGyqVCh07dsTevXvRsGFDdOnSBVFRUVi8eDEOHjyIf/75B6VKlSqAV2MYv/zyC2bMmIFKlSohICAApUqVQlRUFLZs2YItW7ZgzZo16NGjh97b8/X11fmB5ePjY7igC5CTkxM+++wzreleXl56b2PatGmYNGkSPD09MWTIELx8+RJ//vknGjdujIMHD6JJkyaGC9jIfHx8MGXKFJ3z/vrrL1y+fBmBgYF6b6+wnS+TJk1CTEwMXFxc4O7ujpiYmCyXVSqV8PX1xblz5xAQEIBevXrh7NmzmDVrFg4fPowjR46gWLFieu131apV6Nu3L0qVKoWQkBAAwLp169C6dWusX78eXbt2NcTLyzN9j8utW7fQtWtX2Nvbo1WrVvjggw+QkJCA7du3Y+jQodi1axe2bdsGhUKh974N8R41ltycL2rBwcE6Y3d2dtZ7v1euXEHjxo2RlJSE7t27o0yZMti5cyeGDh2KK1eu4JdffsnFqyhAgmQlNTVVVKpUSVhbW4uzZ89K058/fy7eeecdYWVlJaKjo3PcztKlSwUA0atXL6FSqaTpv/32mwAgBg8ebIzwjWbjxo0iIiJCa/qRI0eEpaWlKF68uHj9+nWO2wkPDxcAxJQpU4wQpWl4enoKT0/PfG3jxo0bwsLCQrzzzjvi+fPn0vSzZ88Ka2trUbVqVZGenp7PSE0vOTlZlCxZUlhYWIjHjx/nuHxhPV/2798vfU58//33AoBYtmyZzmW/+uorAUCMGzdOY/q4ceMEADF9+nS99vns2TPh7OwsXFxcxL1796Tp9+7dEy4uLsLFxUW8ePEiby/IQPQ9Lvfv3xcLFiwQiYmJGtMTExNFvXr1BACxfv16vfdriPeoMeXmfJkyZYoAIMLDw/O93+bNmwsAYteuXdK05ORk0axZMwFAHDt2LN/7MAY21cnMoUOHcOvWLXz00Ucav2adnJwwceJEpKSkYPny5Tlu548//gAAfP/99xq/ij7++GNUrFgRq1evRlJSksHjN5YPP/wQvr6+WtObNWuGli1bIj4+HhcvXjRBZEXDsmXLkJaWhi+//BJOTk7SdB8fH/Tq1QtXr17F0aNHTRihYWzZsgVxcXFo3749XF1dTR2O0fj7+8PT0zPH5YQQWLx4Mezt7TF58mSNeZMnT4a9vT0WL16s1z43bNiA58+fY/jw4ShXrpw0vVy5chg2bBiePn2KzZs35+6FGJi+x6Vs2bIYOnQo7OzsNKbb2dlh1KhRAIDDhw8bJUZT0Pe4GNKNGzdw5MgRtGzZEm3btpWmW1lZ4dtvvwXwv+8xuWFTncxEREQAAAICArTmqZsWcnrDvn79GidOnMC7776r9WZQKBRo3bo1Fi5ciH///RfNmjUzTOAmZGlpCQCwsND/dI6KisLcuXORlJSEcuXKwc/PD2XLljVWiEaXnJyMsLAwPHz4EI6Ojqhfvz7ef/99vdfP6bwLCwvD4cOH0bx5c0OFbBLqJGDgwIG5Wq+onS9qUVFRePjwIQIDA3UmCU2aNMHevXtx7949eHh4ZLutnM6hqVOn4vDhw+jXr5/B4jeFvHzeAPl/j8rNkSNHcOLECZiZmcHb2xv+/v6wt7fXe/3szpemTZvCzs5OtskpEyeZiYqKAgB4e3trzXNzc4O9vb20TFZu3boFlUqlcxsZtx0VFVXoE6e7d+/iwIEDcHd3R82aNfVeb82aNVizZo303MLCAsOHD8ePP/4Ic3NzY4RqVI8fP0ZoaKjGtPr162Pt2rWoVKlSjutHRUXB3t4ebm5uWvMyni+FWUxMDA4ePIhy5cqhTZs2uVq3qJ0vatl93qin7927F1FRUTkmTtltq6icQwCwdOlSALq/8LOT3/eo3GTuQ+js7Iyff/5Z78Q4u/PF3NwcFSpUwJUrV5CWlpbrJNXY2FQnMwkJCQCg0VySkaOjo7RMfraRcbnCKjU1FX379kVycjJmzJih1xdYqVKl8MMPP+DSpUtITExEbGwstmzZgsqVK+Onn37C2LFjCyBywwoNDcXBgwcRGxsLpVKJs2fPom/fvjh16hRatWqFly9f5riNhISEIn++LFu2DCqVCiEhIXonO0XxfMnIkJ8V2W2rqJxDixYtwu7du+Hn54egoCC91zPEe1QuateujaVLl+L27dtISkrCnTt38Msvv0ChUCAkJATbtm3Tazv6nHsqlUqWx0ZeaRyRntRfgEeOHMGgQYPQt29fvdarXr06qlevLj23s7NDx44d8f7776NWrVqYN28exo0bh9KlSxsrdIPL/MvPx8cHK1asAACsXLkSf/zxh9Qv422lUqmwbNkyKBQK9O/fX+/1iuL5QnmzY8cODBs2DJ6enli1alWu1i1K79HOnTtrPPfy8sKwYcNQtWpVtG7dGpMmTcIHH3xgougKBitOMqPOvrP6ZfbixYssM/TcbCPjcoWNSqVC//79sWbNGvTp0we///57vrfp5uaGjh07Ii0tLVfjQsnZxx9/DACIjIzMcVknJ6cie74AwIEDB3D37l34+fmhQoUK+d5eUTlfDPlZkd22Cvs5tGvXLnTt2hWurq44dOgQ3N3dDbLd3LxH5a5Vq1aoVKkSLl68KP29s6PPuadQKODg4GDQOA2BiZPMZNcX4PHjx0hMTMyyP4JaxYoVYWZmlmV/gpz6NciZSqVCaGgoli9fjl69eiEsLAxmZoY5jV1cXAC8GdemKMjN6/H29kZiYiIeP36sNa8wny9qee0Unp2icL7k1PcoN3/77LZVmM+hnTt34sMPP4SLiwvCw8NRsWJFg227KJxDGalfz6tXr3JcNrvzJT09HXfu3EGFChVk178JYOIkO+pL7vft26c1b+/evRrLZMXGxgYNGjTA9evXtQYyE0Jg//79sLOzQ7169QwUdcFQJ00rVqxAjx49sHLlSoN2zFVXDuQwIJ0h5Ob1GOK8k6u4uDhs3boVJUqU0GpmyI+icL54e3ujTJkyiIyM1PryViqViIyMRIUKFXLsGA4UzXNo586d6NKlC0qUKIHw8HBUrlzZoNsvCueQmlKpxOXLl2FnZyclUNnJ7nw5evSoNDCrLJl6ICnSlJqaKipWrJjtAJh37tyRpj98+FBcvXpVY9BCIYreAJjp6ekiODhYABDdunUTqamp2S7/5MkTcfXqVfHkyRON6f/++6/O5efOnSsACG9vb5GWlmawuI3t6tWrQqlU6pzu5uYmAIjDhw9L058/fy6uXr0qHj58qLH89evXi+wAmD/99JMAIEaMGJHlMkX5fDH0AJhKpVJcvXpVxMTEaEx/9uyZcHJykvUAmBnldFx27dolrK2thZubm7h27VqO20tJSRFXr14VN2/e1Jie2/eoqWV3XF68eCGuX7+uNf3Vq1eiV69eAoAIDQ3Vmn/16lVx9epVrek5DYAZGRmZvxdjJAohZHxDmLdUVrdciYmJwaxZszRuuRISEoLly5dj2bJl0i0OgDfVmaCgIOmWK76+vrh58yY2bdoELy8vnDhxolDdcmXq1Kn4+uuvYW9vj5EjR+os33bq1EkaNFS9/JQpUzB16lRpGS8vL1haWqJevXooV64clEol/vnnH5w9exbOzs7Yu3cvGjRoUECvKv+mTp2KOXPmoHnz5vD09ISdnR1u3LiBXbt2ITU1FRMmTMD06dOl5cPCwhAaGorg4GCte1FlvOVKly5dpFuupKSkFLpbrmRUs2ZNXLp0CRcuXMhyyIqidr4sXrxYGrD04sWLOHPmDJo0aSJVTJo2bSo1WyqVSjRp0gTnz59HQEAA3nvvPZw5cwb79u1D/fr1cfjwYdjY2EjbjoiIQMuWLeHr6yuNxaOW8ZYr6lsgrVu3Dk+fPsW6devQrVu3Anj1WdP3uFy7dg0+Pj5ITk5Gz5498e6772pty8vLS+MzNzo6GhUqVICnp6fG/dpy+x41BX2PS3R0NCpWrIj69eujatWqcHNzQ2xsLA4cOID79++jZs2aCA8PR8mSJTW2rx6EOXO6cfnyZTRp0gRJSUno0aMH3N3dsXPnTly+fBnDhg3jLVcod06cOCHatGkjHB0dhY2NjWjQoIH4888/tZZTV2F0/Tp4/fq1mDp1qqhUqZKwsrISbm5uYuDAgXrdakJu1K8zu0fGY6C+LUDmW2X88MMPomXLlqJMmTLC2tpa2NjYiCpVqojPPvtM41dyYRERESG6d+8uvL29haOjo7CwsBBubm6iY8eOYu/evVrLL1u2TAAQwcHBOre3atUqUa9ePWFjYyOcnJxEUFCQOH36tJFfhfGcOHFCABANGjTIdrmidr7k9H7J/Pd//vy5+Oyzz4SHh4ewtLQU5cuXF6NHj9ZZIVLfhsbX11fnvnfv3i2aNWsm7OzshL29vfD19RX79+83wqvMPX2Pi/o1ZvfI/Prv3LkjAGjdWiW371FT0Pe4JCQkiE8//VTUr19flCpVSlhYWAgHBwfRoEEDMXPmTPHq1Sud21dvR5dr166Jrl27ihIlSghra2tRs2ZNsWDBAo2WErlhxYmIiIhIT+wcTkRERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EbzEvLy8oFIpsH3PnzjV1mGQgZ8+ehbm5OYYPH64xPSIiQvp7Zyc6OlpaLuP92HIrISEBJUuWxPvvv691/zIiudO+UyoRvXUy3tAzs2rVqhVwNGQsw4cPh42NDSZPnmzSOJycnDBhwgR88cUXWLFiBYKDg00aD1FuMHEiIgwcOFDjTu9U9Pz111+IjIzEF198gdKlS5s6HAwbNgwzZ87EhAkT0LNnT1hbW5s6JCK9sKmOiOgt8NNPPwEABgwYYOJI3ihWrBg++ugjPHr0COvWrTN1OER6Y+JERHpR94eKjo7G1q1b4efnhxIlSkChUCAiIkJaLj4+HlOmTIGPjw8cHBxga2uLmjVr4rvvvsOrV690bjstLQ1z585FzZo1UaxYMZQqVQpdunTBxYsXERYWBoVCoVURmzp1KhQKBaZOnapzm+p+Oy1atNA5/+HDhxg1ahSqVq0KW1tbODg4oH79+pg/fz7S0tK0lg8JCYFCoUBYWBju3LmDvn37ws3NDdbW1qhUqRImTZqE5OTkLI/f6dOnERwcjAoVKqBYsWIoUaIEateujS+++AIxMTEAgGXLlkGhUCAwMDDL7Tx8+BCWlpawsbFBXFxclstldPbsWRw7dgwNGzbEu+++q9c6uaH+W+T0yEz9N12wYIHBYyIyFjbVEVGuzJ49G/Pnz0e9evXQpk0bPHz4EObm5gCAK1euoE2bNrh37x7c3d3RtGlTWFpa4uTJk5g8eTI2btyIiIgIODk5SdtTqVTo1q0btmzZAisrK7Ro0QLFixfHiRMn0KBBA/Tv39/gr+HIkSPo1KkT4uPj4eXlhdatWyM5ORknT57E8OHDsX37duzYsQOWlpZa6547dw4jR45E8eLF4evri2fPniEyMhLTpk3D5cuXsXnzZq11fvzxR4wfPx4qlQrvvPMOOnbsiKSkJNy8eROzZs1C9erVERISgo8++gjjxo3D/v37cePGDbzzzjta21q4cCHS0tLQt29flCxZUq/Xu2XLFgCAv79/7g6Unnx8fLLsp3T9+nX8888/MDPT/p3u4+ODUqVK4eTJk3j06BHc3d2NEh+RQQkiemt5enoKAGLZsmV6L2tubi62bt2qNf/Vq1eiUqVKAoCYNGmSSE5OluYplUrRq1cvAUCEhoZqrDd//nwBQLi6uoorV65I01NTU8Unn3wiAAgAIjg4WGO9KVOmCABiypQpOuMNDw8XAISvr6/G9EePHomSJUsKhUIhfv31V5Geni7Ne/r0qfDz8xMAxNdff62xXnBwsBTLl19+KdLS0qR5Fy9eFHZ2dgKAOHbsmMZ6W7duFQBEsWLFxLp167TivHz5ssbr/vLLLwUAMWLECK1lU1JShJubmwAgTp8+rfN169K0aVMBQOzcuVPnfPWxyukr4c6dO9Jyd+7cyXG/MTExwt3dXQAQ8+fP17nMBx98IACIlStX5rg9Ijlg4kT0FlMnQ1k9MiYd6mX79++vc1u//fabACDat2+vc/7Lly9F6dKlhYWFhXj27Jk0vXLlygKA+O2337TWSUpKkhIFQyVO48aNEwDEsGHDdK53//59YWlpKUqVKiVUKpU0XZ041a1bV2O62pAhQwQA8c0332hM9/HxEQDE7Nmzde4vswcPHghLS0vh5OQkEhMTNeatXbtWABCNGjXSa1tq6qTu9u3bOudnTJz0feSUOMXHx4tq1aoJAOKLL77IcrkJEyYIAOLzzz/P1WsiMhU21RFRlsMRVKlSRWta165ddW5j586dAIAePXronG9vb4969eph165dOHXqFAICAvDgwQPcvHkTANCnTx+tdYoVK4bu3btj3rx5er+WnOQUZ9myZeHt7Y0rV64gKipKq7msffv2OvvrVK1aFQDw4MEDadrjx49x7tw5mJmZ6d0pu0yZMujatSvWrl2LlStXYsiQIdI8dV+gYcOG6bUtAFAqlVAqlQCgV9NedkMDJCYmYuPGjTluIyUlBZ06dcKVK1fQs2dPzJgxI8tl1THFxsbmuF0iOWDiRES5Go7Ay8tL5/Tbt28DAPr27Yu+fftmu40nT54AAO7fvw8AcHFxgb29vc5lK1SooFdc+lLH2axZsxyXffLkiVbiVL58eZ3LOjo6AgBev34tTbt79y4AwN3dXaNfV05GjBiBtWvXYsGCBVLidOHCBRw9ehSurq5ZJq+6JCQkSP93cHDIcfmwsLAs50VHR+eYOAkhEBISgsOHD8PX11fq3J8V9XGLj4/PMTYiOWDiRES5YmNjo3O6SqUCALRp0waurq7ZbsPT09PgcWUVT1bTu3btCjs7u2y3oatCo6uTs6E1bNgQDRo0wMmTJ6UERF1tGjx4MKysrPTelrOzs/T/ly9fSomKsYwfPx5r165FtWrVsGXLlhzHZ1IndsWLFzdqXESGwsSJiAzCw8MD165dw4ABA/SuiJQtWxYA8PTpUyQmJuqsOmV1aw918vDy5Uud89WX+OuKMyoqCuPGjUO9evX0ijOv1NWpR48eISEhIddVpz59+mD+/PmoXbs2Vq9eDQsLC42mO33Y2trCzs4OSqUScXFxRk2cfv31V8ycORNlypTB7t27NZK2rKiHVMgp2SaSC47jREQG0bZtWwDA+vXr9V6nXLlyqFixIgBgzZo1WvOTk5OxYcMGneuqk66rV6/qnK/uy2SIOPPKzc0NtWvXhkqlwtKlS3O1bvfu3eHu7o4tW7Zg2rRpUCqV6Ny5M8qUKZPrON577z0Ab4aLMJZt27ZhxIgRcHBwwM6dO7Ns0szs0qVLAIC6desaLTYiQ2LiREQGMXjwYHh6emLDhg0YN26czkrQ48eP8ccff2hM++yzzwC8GUTx2rVr0vT09HSMGTMGDx8+1Lk/Pz8/mJmZYe/evTh8+LA0XQiBefPmZdkX54svvoCzszPmzJmD2bNnIyUlRWuZO3fuYNWqVTm+Zn1MmTIFAPDll1/qjOnKlSs6kz9LS0t88sknSEtLw6xZswDkrlN4Ri1btgQAHD9+PE/r5+TkyZPo1asXzMzM8Ndff8HHx0fvddUx+fn5GSU2IkNj4kREBmFnZ4edO3fCy8sLM2fORPny5eHr64vevXujc+fOqF69OsqUKaN1g9lPP/0UHTp0wKNHj1C7dm20adMGvXr1gre3NxYvXoxPPvlE5/48PDwwfPhwqFQqtGrVCi1btkSXLl3g7e2NMWPGYPz48TrXK1euHLZu3YrixYtjzJgx8PDwQKtWrdCnTx906NABlStXRsWKFTF//nyDHJfOnTtj2rRpeP36Nbp27YqqVauiZ8+e6NixI6pXr47q1avjxIkTOtf9+OOPpT5CtWrVQvPmzfMUQ6dOnQAA+/fvz9P6OZkwYQJevXqFcuXKYc2aNQgJCdH5yOzs2bOIi4tDgwYNOPglFRrs40REBlO9enVcuHABv//+OzZv3owLFy7g+PHjcHFxQbly5TBmzBh07txZYx0zMzNs2rQJ8+bNw5IlSxAREQF7e3s0bdoUmzdvxtmzZ/Hbb7/p3N9PP/2E8uXLY/HixTh27Bjs7e3RpEkTrF+/Hi9evMAPP/ygc73mzZvj8uXLmD9/Pnbu3IlTp04hOTkZpUuXRvny5dGnTx906dLFYMdl4sSJ8PPzw7x583DkyBFs2rQJDg4O8PDwwNixY7OstpQuXRo+Pj44ceIEPv300zzvv06dOmjcuDGOHTuGq1evSkMnGEp6ejqAN5W6O3fuZLlc5iv21M/z89qICppCCCFMHQQRUVbCwsIQGhqK4ODgbC+VL4pu3LiBKlWqwMnJCQ8ePICtrW2et/XXX3+hW7duGDVqFGbPnm3AKPPm9evX8PDwgKWlJe7cuZPj1XdEcsGmOiIimfrqq68ghMAnn3ySr6QJeDP8QpMmTbBw4UJZDDb5yy+/4OnTp/j++++ZNFGhwsSJiEhGtm3bhgEDBqBhw4ZYt24d3NzcMHbsWINs+5dffkFSUhK+/fZbg2wvrxISEvDDDz+gQYMG6Nevn0ljIcot9nEiIpKRM2fOYOnSpXBwcIC/vz/mzJmj13hI+qhTp47UH8mUnJycpPGbiAob9nEiIiIi0hOb6oiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnKhQ8/LygkKhyPYxd+5cU4eZJ+rXFh0dbepQci0iIgIKhQItWrQwdShUBLRo0QIKhQIRERGmDoUIFqYOgMgQmjRpgsqVK+ucV61atQKOJmchISFYvnw5li1bhpCQEFOHQ0REemLiREXCwIEDi1wCcvDgQaSmpqJs2bKmDoWIiP4fEycimapUqZKpQyAiokzYx4neGhn7DG3duhV+fn4oUaKERt+JJ0+eYN68eQgKCkKFChVgY2MDR0dH1KtXDzNmzMDr16+z3P6rV68wd+5cNG3aFMWLF4e1tTU8PT3RoUMHrFmzBgAQHR0NhUKB5cuXAwBCQ0M1+mNNnTpVZ7y69vXDDz/gvffeg4ODA2xtbVG9enVMmjQJ8fHxWsur9+vl5QUhBBYtWoS6devCzs4OTk5OCAgIwPHjx3W+rpMnT2Ls2LFo0KAB3NzcYGVlBVdXV3To0AEHDhzQ8+jrR30cAGDZsmVo1KgRnJycpOOQ8XWoVCrMmzcPtWrVgq2tLdzd3TFkyBA8e/YMAJCcnIxvv/0WVapUgY2NDcqUKYORI0dCqVRq7VelUmHRokVo0qQJnJ2dYWlpidKlS6N27doYPnx4rvuZJSQkYNKkSahZsybs7OxgbW2NMmXKoEmTJvjqq6+Qmpqqtc7x48fRtm1bODs7w97eHvXq1cPSpUu1jotaxmORlazOoStXrmDKlClo0qQJypYtCysrK5QsWRL+/v5Yv369zm1l7Lf26tUrfPXVV6hatSpsbW21Yjh9+jR69+6N8uXLw9raGiVKlEBgYCB27dqVZaz37t1D//794e7ujmLFisHb2xtffvklkpKSslwnOyEhIVAoFAgLC8OdO3fQt29fuLm5wdraGpUqVcKkSZOQnJyc5fp//vknWrVqhRIlSkjv5f79++PGjRs6l9fn8yXj33HVqlVo0KAB7O3tUapUKfTq1Qt3794FAAghMH/+fPj4+MDOzg4uLi4ICQnBf//9l6djQQYmiAoxT09PAUAsW7ZM72WHDRsmAIh69eqJXr16CV9fX3HkyBEhhBArV64UAETZsmWFr6+v6Nmzp2jVqpWwt7cXAESjRo3E69evtbZ99+5dUa1aNQFA2NraitatW4uePXuKZs2aCScnJ+Hp6SmEEOLJkyciODhYVKpUSQAQTZo0EcHBwdJj8+bNWvHeuXNHY19xcXHCx8dHABCOjo7igw8+EF26dBEuLi4CgKhQoYLWOnfu3BEAhKenpwgODhaWlpbCz89PdO/eXbzzzjsCgLC2thb//POP1mtr1aqVMDMzEzVr1hRBQUGiW7du4r333hMABAAxd+5crXXCw8MFAOHr65vj3yUj9TaHDRsmzMzMRNOmTUWvXr3E+++/L6KjozVeR69evYSNjY1o06aN6NSpkyhdurQAIOrUqSMSExNF06ZNpePTvn174eTkJACItm3bau03NDRUABDFihUT/v7+olevXiIwMFB4e3sLABp/l5wolUpRo0YNAUCUKlVKdOjQQfTs2VO0aNFCuLm5CQAiPj5eY53169cLc3NzAUDUqFFD9OrVSzRt2lQoFAoxatQo6bhklPFYZCWrc2jAgAECgKhSpYoIDAwUPXr0EI0aNRJmZmYCgPj888+1tqX+m77//vuifv36ws7OTrRt21b06NFD+Pv7S8vNnTtX2o6Pj4/o2rWraNq0qbCyshIAxNdff6217atXr0p/P3d3d9GtWzcRFBQkbGxsRKNGjUSjRo0EABEeHp7j8VcLDg4WAMTIkSOFo6Oj8PT0FN27dxf+/v7CxsZGABCdOnXSWk+lUol+/foJAMLCwkL4+fmJnj17Su8TW1tbsXv37iyPdXafL+q/4/jx46Vtd+3aVZQvX14AEB4eHuLZs2eie/fuolixYqJNmzaic+fO0rGpVauWSE5O1vsYkHEwcaJCLS+Jk7m5udi6davOZa5cuSKOHz+uNf3Zs2ciICBAABAzZ87UmJeeni7q1asnAIiAgADx33//acxPSkoSO3fu1Jim/lDPLu6svvR69OghfYE9ffpUmv7y5UvRtm1bAUA0btxYYx31l6z6i/b69evSvLS0NNG/f38p/sx27dolHj58qDX92LFjwtHRUVhaWor79+9rzMtv4uTo6Kjz75DxdVSqVElER0dL854+fSolOjVr1hQNGjTQOD63b98WxYsXFwDE0aNHpekxMTECgChXrpx49OiR1j6vXLkiYmJi9H4Ny5cvlxK0lJQUjXnp6ekiIiJC48vv0aNHwsHBQQAQc+bM0Vj+wIEDolixYgZPnCIiIsStW7e0lr927ZooV66cACBOnDihMU/9N1V/ges6Vnv27BEKhUK4uLiIw4cPa8y7cOGCtO2IiAiNefXr1xcARPfu3UVSUpI0PSYmRvqRkdfECYD48ssvRVpamjTv4sWLws7OTgAQx44d01jvt99+EwCEi4uLOHv2rDRdpVKJKVOmCADC2dlZ632uz+eLOp6SJUuKc+fOSdNfvXolmjZtKp27mc/tJ0+eiMqVKwsAYtWqVXofAzIOJk5UqKk/rLJ6ZPziVi/bv3//PO3r+vXrAoCoX7++xvQtW7ZIv5Rfvnyp17bymjjFxMQIMzMzoVAoxPnz57XWuX//vvRFGxkZKU3PmHBs27ZNa71Hjx5JVafMX/bZmTBhggAgFixYoDE9v4nTN998o3N+xteRORkVQog5c+YIAEKhUIiLFy9qzR8+fLhW1ePkyZMCgPjggw9yFWtWZs6cqTMJysp3330nAIiGDRvqnD9y5EiDJ07ZWbhwoQAgvvjiC43pGRMndQUls/fff18AEH/99ZfO+evXrxcARJcuXaRpR48eFQCEnZ2dRqKrtnnz5nwlTnXr1hUqlUpr/pAhQ3Sea+pEbd68eVrrqFQqUatWLQFATJs2TWOePp8v6teR+f0ihBCbNm3K9tyePXu2ACBCQ0Oz3D4VDHYOpyIhq+EIqlSpojWta9eu2W4rPT0dEREROHbsGB49eoSkpCSINz8yAADXr1/XWH7Pnj0AgI8++gj29vZ5fQl6OXLkCFQqFd577z3UqlVLa37ZsmURGBiIrVu3Ijw8HI0bN9aYb2FhgTZt2mit5+bmhuLFiyM+Ph5xcXFwc3PTmB8XF4edO3fi0qVLiI+Pl/roREVFAdA+JvmV09/IwsICAQEBWtO9vb0BAOXLl0eNGjWynP/w4UNpWpUqVeDg4IBdu3Zh2rRp+Oijj1ChQoU8x16/fn0AwMyZM1GyZEm0b98eJUqUyHJ5df+X3r1765wfHByMn3/+Oc/xZCUxMRG7d+/G2bNn8fTpU6SkpAAAHj16BCDrv2np0qXRrFkzrelPnz7FyZMnYWNjgw4dOuhcVz2u17Fjx6Rp6tffpk0blCxZUmudjh07wsnJCQkJCXq/tozat2+v1T8MAKpWrQoAePDggTTt/v37uHXrFoA3xz0zhUKB0NBQfP755wgPD8fEiRO1lsnp3AWAoKAgrWnqczOnczvjuUumwcSJioTcDEeQXWfaqKgodO7cGZcvX85ymRcvXmg8j4mJAaA7STM09Yd8dl/s6qvxMn4hqLm7u8PS0lLneo6OjoiPj9fqAP/HH3/g888/19mpWi3zMcmv7P5GwJvXYWGh/fGlTlzLly+vcz0HBwcA0HiNDg4OWLZsGUJDQzFp0iRMmjQJ7u7uaNiwIdq0aaOVEP/www+4du2a1rZnzZoFFxcXtGjRAuPGjcOPP/6I4OBgKBQKeHt7o0mTJujYsSM6dOgAM7P/XZdz//59AFn/TfOTxGVl+/btCA0NRVxcXJbLZPU3zepvc+fOHQghkJSUBGtr62z3/+TJE+n/Ob1+dQf48+fPZ7vNrGR1Ljg6OgLQPBfU75mSJUtK8zPL7v0F5HzuZhWT+hzL6tzWde6SaTBxoreOjY1NlvO6du2Ky5cvo3379hg7diyqVasGR0dHWFpaIiUlJccvBLnL+IWtj9OnT+Pjjz+Gubk5ZsyYgQ4dOqB8+fKwtbWFQqHAokWL8PHHH0vVOEPJ7m8E5Pw6cvs6u3TpAn9/f2zbtg1///03IiMjsXnzZmzevBlfffUV9u/fj5o1awJ4U2E8fPiw1jamTp0KFxcXAG+SqyFDhmD79u04evQoIiMjsWzZMixbtgz169dHeHg47OzschVjXqhUKq1pDx48QI8ePZCUlISxY8eid+/e8PLygr29PczMzLBv3z4EBgZm+TfN6m+j3pe9vT26dOliuBeRT7k9F/Irp3MXyD6mgo6Xco+JE9H/u3btGi5cuIDSpUtj8+bNWr/61M1Smal/PeqqQhiaejDM27dvZ7mMep4hBs7csGEDhBAYPnw4xo4dqzU/q2NSGDk5OaFv377o27cvgDeXxw8fPhxbt27FsGHDpGRJ39t+eHl5Yfjw4Rg+fDgA4NSpU+jTpw9OnTqFmTNn4uuvvwbw5u907dq1LIc8yGq6lZUVAODly5c656empkrNbhlt374dSUlJ6Ny5M2bMmKE1P69/Uw8PDwBvKkRLly7VOwFQn6fZDfmgruoamzqWuLg4vHjxQmfVyZDvLyqcmNoS/T/1+D9lypTRWSpftWqVzvXUfYbWrl2bbXNWRuovvbS0tFzF2Lx5c5iZmeHcuXM6my4ePXok9blq2bJlrrati/qYeHp6as17/fo1Nm7cmO99yJWHh4eU3Jw7dy7f26tfvz6GDh2qtT1fX18AwOrVq3Wut2LFCp3TS5UqBSsrKzx79kzn+D579+7VeX5l9zcVQkhjjuVWmTJlUKtWLbx8+VI6B/Whfv179uyRYsto27ZteP78eZ5iyq1y5cpJTXFhYWFa84UQ0nRDvL+ocGLiRPT/3nnnHZibm+PixYtaVYXt27fjp59+0rneBx98gDp16uDhw4fo1q2bVr+R169fY/fu3RrTypUrBwDZ9qXSpXz58ujWrRuEEPj444819qVUKjF48GC8fv0ajRs31uoYnhfqDrTLly/XqGy8fv0aQ4cOxZ07d/K9D1M7e/Ys1q1bp3Ogxe3btwPQnWRkZfPmzVIn/oxSU1OlhCLj9gYMGAB7e3scP34c8+bN01gnIiICv//+u879WFpaonnz5gCASZMmaezv/PnzGDZsmM711H/Tv/76S6MilZ6ejq+++kqj43ZufffddwDeDOyqPnYZCSFw4sQJ7Nu3T5rWrFkzvPfee0hMTMSnn36qMSjlvXv3MGbMmDzHkxfq/X377bcaP06EEPjuu+9w7tw5ODs7Y9CgQQUaV3aqVKmCKlWq4OTJk6YO5e1goqv5iAwiL+M4ZXdptvrSbzMzM+Hr6yt69eolDfY4adIknZeFCyFEdHS0ePfdd6UB8gICAkSvXr1E8+bNNQbAVDt//rwwMzMTZmZmwt/fX4SGhooBAwZojP+SVbxPnz4VtWvXFgCEk5OT6NSpk+jatasoVaqUAHIeADM3xyc+Pl6aXrJkSdGpUyfRpUsXUbp0aeHg4CAdr+DgYI1t5Xc4gqzk9Dpy2u+yZcu04lVf7m5jYyOaNGkievbsKbp27Sr9Pa2srHQOeJgV9TFxcXERrVu3Fr179xYffPCBNIhh2bJlxb179zTWWbt2rTQAZs2aNaVzR6FQiM8//zzL4/LPP/9IA0u+8847omvXrqJRo0bC0tJSBAcH6/ybpqamirp16woAwt7eXrRr1050795deHp6CktLSzFu3Didx1Dfv+nPP/8sLCwsBABRuXJl0a5dO/HRRx+J1q1bS8dg3LhxGutcvnxZOn/LlCkjunfvLtq3by9sbW1Fw4YN8zUAZlafDbrOBSHeDDnQt29fAbwZALNVq1aiV69e0vlgY2Mjdu3apbU9fT5fsju/83Nuq7ebm+NDeceKE1EGP/30E5YsWYI6derg9OnT2LVrF2xtbfHnn3/i22+/zXI9T09P/Pvvv5gxYwaqV6+O48ePY9OmTYiJiYGvr69WX5JatWph48aNaNSoEU6cOIGwsDAsWbIEZ86cyTHGkiVL4tixY/j+++9RoUIF7Nu3Dzt27ICLiwsmTpyI06dP63Vljz6cnZ3x77//YujQoXB2dsbu3btx/PhxBAQE4MyZM/Dx8THIfkypYcOG+OGHH9CyZUs8fPgQ27Ztw759+2Bubo5PP/0UFy5c0DmEQ1ZCQkIwfvx4VKlSBVeuXMGGDRtw/PhxeHh4YPr06Th//rxUcVTr2bMnIiIiEBgYiJiYGGzduhUvX77E77//jjlz5mS5r/fffx+HDx9GQEAAHj9+jJ07d+LVq1f4+eefsWzZMp3rWFhYICIiAhMnTkTZsmVx8OBBREREoE6dOjh+/HiuXqsuI0aMwNmzZzF48GAoFAocPHgQW7Zswa1bt1CnTh3MmzcPI0aM0FinWrVq+PfffxESEoL09HRs2bIFV65cwfDhw3Hw4EGpabsgKBQKrFixAmvWrEHTpk1x+vRp/PXXX3j16hVCQkJw9uxZtG3btsDiIflRCGHgy2GIiMig1OMQ8eOayPRYcSIiIiLSExMnIiIiIj0xcSIiIiLSEwfAJCKSOfZtIpIPVpyIiIiI9MSKk4moVCo8ffoUAKT7fhEREVHBEkLg1atXAAAXF5ccbxfExMlEnj59CldXV1OHQURERP8vNjYWpUuXznYZNtURERER6YkVJxOxtbWV/h8bGws7OzsTRkNERPR2UiqVUgtQxu/mrDBxMpGMfZrs7OyYOBEREZmYPv2N2VRHREREpCcmTkRERER6YuJEREREpCf2cSogSqUy2+dEREQkf0ycCoi9vb2pQyAiIqJ8YlMdERERkZ5YcSogiYmJGs8zjhtBREREhQMTpwLCcZqIiIgKPzbVEREREemJiRPJ3r///osffvgB//33n6lDISKitxyb6kjW0tPT0aFDBzx+/Bi3b9/GokWLTB0SERG9xVhxIllTKpV4/PgxAODmzZsmjoaIiN52TJxI1tLS0nT+n4iIyBSYOJGspaen6/w/ERGRKTBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNYyJkusOBERkakxcSJZy5gsseJERESmxnGcCohSqcz2OenGihMREckJE6cCYm9vb+oQCiVWnIiISE7YVEeyxs7hREQkJ6w4FZDExESN50qlEq6uriaKpvDgcARERCQnTJwKiJ2dnalDKJRYcSIiIjlhUx3JGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnkjVWnIiISE6YOJGscQBMIiKSEyZOJGscAJOIiOSEiRPJGitOREQkJ0ycSNYyJksqlQpCCBNGQ0REbzsmTiRrmZvn2FxHRESmxMSJZC1z8xwTJyIiMiUmTiRrmRMl9nMiIiJTYuJEssaKExERyQkTJ5I19nEiIiI5YeJEssamOiIikhMmTiRrbKojIiI5sTB1AG8LpVKZ7XPSjRUnIiKSEyZOBcTe3t7UIRRKrDgREZGcsKmOZI0VJyIikhNWnApIYmKixnOlUglXV1cTRVN4sOJERERywsSpgNjZ2Zk6hEKJFSciIpITNtWRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGu9VR0REcsLEiWQtc4WJFSciIjIlJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ5HQEREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ6ASUREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnPW3atAmtW7dGiRIloFAoEB0dbeqQ3gqsOBERkZwwcdKTUqlE8+bN8c0335g6lLcKRw4nIiI5sTB1AIVF3759AQCXLl0ycSRvF96rjoiI5ETWFadVq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXry+YgMng2FRHRERyIuuK06RJkxATEwMXFxe4u7sjJiYm2+XDw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHjy6gyMlQ2DmciIjkRNYVp8WLFyM6OhpPnjzBkCFDsl02LS0NgwYNgpmZGY4cOYJFixZh9uzZOH/+PN555x1MnDhRK/EaP348FApFtg8yLVaciIhITmRdcfL399d72UOHDuHWrVsIDQ2Fj4+PNN3JyQkTJ05ESEgIli9fjq+++kqaN3r0aISEhBgwYjI0VpyIiEhOZJ045UZERAQAICAgQGteYGAgAODw4cMa00uVKoVSpUoZJR6lUpmv+fQGK05ERCQnRSZxioqKAgB4e3trzXNzc4O9vb20TF48e/YMd+/exa1btwAAV65cwfPnz1G+fHmUKFFCa3l7e/s874v+hxUnIiKSE1n3ccqNhIQEAG+a5nRxdHSUlsmLbdu2oU6dOujatSsAoF27dqhTpw62bduW521SzlhxIiIiOSkyFSdjCwkJyVV/qMTExGznK5VKuLq65jOqoo8VJyIikpMikzipK01ZVZVevHiB4sWLF1g8dnZ2BbavoowVJyIikpMi01Sn7tukqx/T48ePkZiYqLP/U0FRKpVaD8oZb7lCRERyUmQSJ19fXwDAvn37tObt3btXYxlTsLe313iwmU4/vOUKERHJSZFJnFq1aoWKFStizZo1OHfunDQ9ISEB06dPh5WVFfr162e6AClPWHEiIiI5kXUfp8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgQAWFhYYPHixQgMDETz5s01brkSExODWbNmwcvLyxQvA4B2Z3F2Ds+ZEIJ9nIiISFbylDg9f/4ce/fuxcGDB3HmzBnExsYiPj4exYsXh6urK+rWrQs/Pz8EBgbC2dk5z8EdPXoUy5cv15gWGRmJyMhI6bk6cQKAli1b4ujRo5gyZQrWrVuH1NRU1KxZEzNmzECPHj3yHIchsLN47qlUKq1prDgREZEpKYQQQt+FL168iJ9//hlr167F69evkd2qCoUCxYoVw0cffYThw4ejVq1aBgm4qFAqldIgmYmJiUysdEhOTkaxYsU0pgUGBmLPnj0mioiIiIqa3H4f61Vx+u+//zBhwgQsX74cKpUKLi4uaNeuHRo3bozq1aujZMmS0gCTcXFxuHTpEo4dO4YjR45gyZIlWLZsGUJCQjB9+nSULl06/6+yEMp8FR2vqsuZrmY5VpyIiMiU9Ko4OTk54eXLl2jfvj0GDBiAdu3awcIi55wrLS0N27dvx9KlS7Fz5044OTkhPj7eIIEXNgqFIst5rDjp9uLFC62R4Fu0aIHw8HATRUREREVNbitOel1V16BBA5w6dQrbtm1Dx44d9UqagDcdtjt37ozt27fjxIkTqFevnl7rEQG6K07sHE5ERKakVwa0f//+fO+ofv36BtlOYcWr6nJPV7Mcm+qIiMiUZD0cQVHCprjcY8WJiIjkxigDYCYkJGR7xR2RPtg5nIiI5CZPidOlS5cwb9483LhxQ2N6eHg4KlSogBIlSqB06dIICwszRIz0ltKVJLHiREREppSnxGnevHkYNWoUbGxspGlxcXHo1KkTYmJiIIRAXFwcBg4ciLNnzxos2MKMN/nNPVaciIhIbvKUOEVGRqJ69erw8PCQpq1cuRIvX77Exx9/jOfPn2PFihVQqVT45ZdfDBZsYcab/OYeK05ERCQ3eUqcYmNjUb58eY1p+/fvh7m5Ob777js4OjqiT58+qFOnDo4fP26QQOntw4oTERHJTZ4SJ10DE544cQI+Pj4oWbKkNM3b2xsPHjzIX4RFRGJiosYjNjbW1CHJHitOREQkN3kajsDR0VEjIbp69SqePXuG3r17ay2b3YjZbxMOR5B7rDgREZHc5Kni5OPjg2PHjuHmzZsAgCVLlkChUMDX11djuTt37sDd3T3/UdJbiRUnIiKSmzwlTh9//DFSU1NRt25d1KlTBz/99BNKly6Ndu3aScu8fPkS586dQ40aNQwWLL1dWHEiIiK5yVPi1K1bN0ydOhVpaWk4f/48PD09sWHDBlhbW0vLrF+/HqmpqVpVqLcVhyPIPY4cTkREcqMQ+RjiOyUlBS9evICLi4vWvLt37yI+Ph6VKlWS7jr8Nsuur5c+d2N+Gx05ckQr8XZycsLz589NExARERU5SqVSylP0+T7O173qrKysdCZNAFC+fHmtIQuIcoMVJyIikhve5LeAJCYmajxXKpUcBDMH7BxORERyk+fEKS0tDRs2bMDBgwfx8OFDvH79WudyCoUCBw8ezHOARQWb4nKPncOJiEhu8pQ4PXnyBAEBAbhw4QJy6iLFcZwor1hxIiIiuclT4jR27FicP38elStXxieffAJvb284ODgYOjZ6y+lKklQqFYQQTMiJiMgk8pQ47dixA66urvjnn39QokQJQ8dEBCDrZrn09HRYWLB7HhERFbw8jeOUlJSEJk2aMGkio8qqWY79nIiIyFTy9LPd29sbSUlJho6lSMs84CUHwMxZdhUnIiIiU8hTxWnAgAGIiIjA/fv3DR1PkWVvb6/x4FAEOWPFiYiI5CZPidOwYcPQvn17+Pn5Ye/evVCpVIaOiyjLxIkVJyIiMpU897BduHAhfH19ERQUBAsLC7i7u8PMTDsPUygUuHXrVr6CLAo4AGbuZVVZYsWJiIhMJU+J071799CsWTPcu3cPQgikpqbi7t27OpflZeNvcADM3GPFiYiI5CZPidO4ceNw9+5dNG3aFKNGjYK3tzdv5EsGx4oTERHJTZ4SpwMHDsDT0xP79++HtbW1oWMiAsCKExERyU+ex3Fq0KABkyYyqoyVJUtLS53TiYiIClKeEqdq1arh2bNnho6FSEPGylLGJJ0VJyIiMpU8JU7Dhw/H4cOHcenSJUPHQyTJWFnKmDix4kRERKaSp8SpT58+GDNmDPz8/LBw4cIsr6gjyg9WnIiISG7y1Dnc3Nxc+v/QoUOzXVahULBCQHnCxImIiOQmT4mTEMIoyxZlvFdd7rGpjoiI5CZPiRNvsZJ7HOcq91hxIiIiuclTH6cjR44gMjLS0LEQachYWbKystI5nYiIqCDlqeLUokULtGjRAocOHTJ0PEUW71WXe6w4ERGR3OQpcSpevDjKlClj6FiKNN6rLvfYx4mIiOQmT011Pj4+iIqKMnQsRBpYcSIiIrnJU+I0YsQInDp1Cjt37jR0PEQSVpyIiEhu8tRUV6dOHQwbNgydO3dGSEgIunTpAi8vL9jY2Ohcvnz58vkKkt5OrDgREZHc5ClxqlChAoA3YzQtWbIES5YsyXJZDoBJecWKExERyU2eEicPDw8oFApDx0KkgRUnIiKSmzwlTtHR0QYOg0hbVokTK05ERGQqeeocTlQQsmqqY8WJiIhMhYkTyRYrTkREJDd6JU4PHz40yM4MtR16O7DiREREcqNX4uTt7Y3x48cjPj4+Tzt59uwZxo4dC29v7zytXxQolUqtB2UvY4LEe9UREZEc6JU4BQQEYObMmShXrhz69OmD/fv3Izk5Odt1kpOTsXfvXvTq1QvlypXDrFmzEBgYaJCgCyN7e3uNB+9TlzNWnIiISG70uqpu8+bNOHDgAD7//HOsWbMGa9euhaWlJXx8fFC1alWULFkSjo6OePHiBeLi4nDlyhWcP38eqampEEKgRo0amDNnDvz9/Y39eqgI4XAEREQkN3oPR+Dv74+LFy9i//79mD9/Pvbt24eTJ0/i5MmTAN4MdCmEkJa3trZGhw4dMGzYMCZMABITEzWeK5VKVp1ywAEwiYhIbnI9jlPr1q3RunVrJCcnIzIyEmfPnkVsbCwSEhLg7OyM0qVL47333kPjxo01vuzednZ2dqYOodBhxYmIiOQmTwNgAm++yPz8/ODn52fIeIgkrDgREZHccBwnkq2srqpjxYmIiEyFiRPJljpBMjc3h4XF/4qjrDgREZGpMHEi2VInSObm5jA3N5ems+JERESmwsSJZEudIFlYWLDiREREssDEiWSLFSciIpIbJk4kW6w4ERGR3DBxItlixYmIiOQmT4nTkSNHEBkZaehYiDSw4kRERHKTp8SpRYsWmDx5sqFjIdLAihMREclNnhKn4sWLo0yZMoaOhUgDx3EiIiK5yVPi5OPjg6ioKEPHQqQhY1MdK05ERCQHeUqcRowYgVOnTmHnzp2GjodIkrGpLmPFiYkTERGZSp5u8lunTh0MGzYMnTt3RkhICLp06QIvLy/Y2NjoXL58+fL5CpLeTllVnNhUR0REppKnxKlChQoAACEElixZgiVLlmS5rEKh4Bcd5QkrTkREJDd5Spw8PDygUCgMHUuRplQqs31O2lhxIiIiuclT4hQdHW3gMIo+e3t7U4dQ6LDiREREcsORw0mWhBCsOBERkezkqeJEuZeYmKjxXKlUwtXV1UTRyJ9KpZL+zwEwiYhILvJVcfr777/RvXt3lCtXDtbW1hgwYIA0b//+/Zg4cSIeP36c7yCLAjs7O60HZS1jcsQBMImISC7ynDh99913aNGiBf766y88fPgQqampEEJI852cnDBjxgxs2rTJIIHS2yVjcsQBMImISC7ylDjt3r0bX331FcqWLYv169cjNjZWa5kGDRqgVKlS2LFjR76DpLcPK05ERCRHeerj9PPPP8Pa2hq7d+9G9erVs1yudu3avDUL5UnGxIkVJyIikos8VZxOnTqFBg0aZJs0AUCpUqXYx4nyJGNVKXPncFaciIjIVPKUOCmVSri5ueW4XEJCgsbVUUT6ylxxMjMzkwZdZcWJiIhMJU+Jk6urK27evJnjctevX4eHh0dedkFvucwVJwBSPydWnIiIyFTylDg1bdoU586dQ2RkZJbL7NixAzdv3kTLli3zHBy9vTJXnID/JVCsOBERkankKXEaPXo0FAoFPvzwQ2zZskWrArBnzx4MHDgQlpaWGD58uEECpbcLK05ERCRHeUqc3nvvPcyePRtPnz5Fly5d4OzsDIVCgY0bN8LZ2Rnt2rXDf//9h9mzZ6NatWqGjpneApmHI8j4LytORERkKnkeAHPkyJHYtWsX6tevj6SkJAgh8PLlS7x48QI1a9bEtm3bMGzYMEPGSm+RzANgZvyXiRMREZlKvu5VFxgYiMDAQMTFxeHOnTtQqVTw8PCAu7u7oeKjt1R2FSc21RERkakY5Ca/JUuWRMmSJQ2xKSIArDgREZE85ampLiwsDPfv3zd0LEQSVpyIiEiO8lRx6t+/PxQKBby9veHv7w9/f3/4+fnB0dHR0PHRW0rXcASsOBERkanlKXEKCQnBoUOHcOPGDdy4cQO//fYbzMzMULduXSmRatKkCSwtLQ0dL70ldA1HwIoTERGZWp6a6pYuXYro6Ghcv34dCxYsQMeOHeHg4ICTJ09i+vTpaNWqFYoXL442bdpg9uzZho6Z3gKsOBERkRzleTgCAPD29sYnn3yCTZs2IS4uDidOnMC0adPQokULpKWlYd++fRg3bpyhYqW3CCtOREQkR/lKnDJKTU3Fy5cvpbGc1F9uQghD7YLeIro6h7PiREREppav4QjOnTuH/fv348CBAzh69Chev34NIQQcHR3Rrl07qb8TUW7pGo6AFSciIjK1PCVOPXv2xKFDhxAXFwchBCwtLdGwYUMpUWrQoIH0JUeUF7zlChERyVGeEqf169dDoVCgVq1amDJlCgICAmBra2vo2Ogtlt0AmEIIqFQqmJkZrKWZiIhIL3n65nFwcIAQAufPn0fv3r3x4YcfYvbs2Th//ryh46O3VHYVp8zziYiICkqeKk7Pnj3DyZMnceDAARw4cADh4eHYt28fFAoFXFxc0KpVK7Ru3RqtW7dGuXLlDB0zvQWyG44AeFOR4jhhRERU0PJUcTI3N0ejRo0wefJkHD58GPHx8dixYwdGjhwJNzc3rFu3DgMHDoSnpyeqVq1q6JhN4vvvv0e9evXg4OAAV1dXdO/eHdHR0aYOq8jKbjgCgBUnIiIyDYN0ErG1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3DDELkzu8OHDGD58OE6cOIE9e/bg2bNnaNu2La/wMhJ9Kk5EREQFLV/DEQDA/fv3pSEJDh48iCdPngCAdLVdo0aN8h2kHOzZs0fj+R9//IGKFSviypUrqFWrlomiKrpYcSIiIjnKU8Vpy5YtGDZsGKpUqQJPT08MHDgQa9euxZMnT1CjRg189tln2LlzJ+Lj4xEREZHn4FatWoWPP/4Y9erVg7W1NRQKBcLCwrJd59SpUwgKCoKzszPs7OzQsGFDrF+/Ps8xZCUhIQEAUKJECYNvm7IfADPzfCIiooKSp4rThx9+KP3fw8NDGr+pVatWKF26tMGCmzRpEmJiYuDi4gJ3d3fExMRku3x4eDgCAwNRrFgx9OzZEw4ODti4cSN69OiBe/fuYfTo0QaJKz09HWPGjEFQUBA7vxtJdgNgZp5PRERUUPJUcerUqRMWLFiA69evIyYmBkuWLEGvXr0MmjQBwOLFixEdHY0nT55gyJAh2S6blpaGQYMGwczMDEeOHMGiRYukIRLeeecdTJw4USvxGj9+PBQKRbaPzIQQGDJkCO7evZtj9YvyjhUnIiKSozxVnDZt2mToOHTKze1aDh06hFu3biE0NBQ+Pj7SdCcnJ0ycOBEhISFYvnw5vvrqK2ne6NGjERISovc+hBAYOnQoDhw4gCNHjqBUqVJ6r0u5w4oTERHJUb47h8uFui9VQECA1rzAwEAAb66My6hUqVJ6Jz9CCHz66afYuXMnDh8+DA8Pj2yXVyqV+Zr/tmPFiYiI5ChfidPVq1fx888/Izw8HA8ePAAAlC1bFn5+fhgxYkSBjuEUFRUFAPD29taa5+bmBnt7e2mZvPj000+xdu1abN++HTY2Nnj8+DGAN53DraystJa3t7fP876IFSciIpKnPCdOYWFhGDJkCFJTUyGEkKZHRUUhKioKy5Ytw8KFCxEcHGyQQHOivsrNyclJ53xHR0dpmbz47bffAADNmjXTmB4eHo4WLVrkebukGytOREQkR3lKnE6fPo1BgwYhPT0d7du3x4ABA1CpUiUAwO3bt7FkyRJs374dgwYNQvXq1VGv3v+xd+fxMdz/H8BfGzlEEglCHCFxtc6KK+77rFJVd4tQqqqo0qKH0gM9SNXVyxFn3dQRNxGhiKtu4r5DiJBDrn3//vDb+e5kd5NNZLObeD0fj32wM5+Z+exkduc9789nPlMnWyttDfrBoTliY2PTnR8XFwcvL68XqVKeZmwATGaciIjI2rIUOP3888/QarWYN28eBgwYoJpXrVo1vPnmmwgKCsJ7772HadOm4e+//86WyqZHl2kylVV68uQJChUqZPF66Li4uOTYtvIiYwNgMuNERETWlqXhCPbt2wc/Pz+DoElf//79UatWLYSGhma5cpmh69tkrB/TvXv3EBsba7T/U06Ji4szeJFpxprqmHEiIiJry1LgFBUVZVbH70qVKiEqKiorm8i0Zs2aAQC2b99uMG/btm2qMtbg6uqqerGZLn3GOocz40RERNaWpcDJw8MDN27cyLDcjRs3THbWzm6tWrVCuXLlsGzZMpw4cUKZHhMTg8mTJ8PR0RH9+vXLkbrQi2PGiYiIbFGW+jjVrVsXW7duxe7du9GyZUujZXbv3o39+/ejQ4cOWa7c3LlzERYWBgA4deqUMk03ZlPjxo0xaNAgAM+zEXPnzkW7du3QtGlT1SNXrl+/jqlTp8LX1zfLdXlRaTuLs3N4+phxIiIiW5SlwGn48OEIDg5Gp06d8NFHHyEgIABly5YF8PyuuqCgIOX2/eHDh2e5cmFhYVi4cKFq2v79+7F//37lvS5wAoAWLVogLCwMEyZMwIoVK5CcnIzq1avjxx9/RM+ePbNcj+zAzuKZw4wTERHZoiwFTu3atcOXX36JSZMmYdq0aZg2bZpBGRHB+PHjjY7kba6goKBMPw/O398fW7ZsyfI2yTZkNAAmM05ERGQNWerjBADfffcdgoOD0aJFCzg5OUFEICJwdHREy5YtERwcjG+++SY765qr8a66zMloAExmnIiIyBpe6JEr7du3R/v27ZGamoqHDx8CAIoUKaLKDNBzfARL5hgbx4kZJyIisrZMBU6XLl3C2rVrce3aNTg5OcHPzw89evSAs7MzihUrZqk60kvI2Mjh7BxORETWZnbgNH36dIwZM8bghDV+/HgEBwejWrVq2V65vIR31WUOO4cTEZEtMitwCgsLw+jRoyEicHFxwauvvoonT57gypUruHXrFrp27Ypz587Bzi7LXabyPN5VlzkcjoCIiGyRWZHOrFmzICIICAjAvXv3cOTIEVy8eBHHjh1D+fLlcenSJWzdutXSdaWXCDNORERki8wKnP799194e3vjjz/+UGVOXnvtNfz6668QERw8eNBilaSXDzNORERki8xqqouMjESHDh3g6OhoMK9x48YAgPv372dvzfKYtMMPcDiC9DHjREREtsiswCkpKQkeHh5G5xUsWFApQ6ZxOILMYcaJiIhsEXtzk01ixomIiGyR2cMRXLp0CYsWLcrS/H79+mW+ZnkMhyPIHGMDYDLjRERE1mZ24JT24br6NBqNyfkajYaBEzgcQWYZGwCTGSciIrI2swKnMmXKQKPRWLouRIqMnlXHjBMREVmDWYHTtWvXLFwNIjVjncOZcSIiImtj53CyScw4ERGRLcrUQ34p6ziOU+boMkp2dnZKMzEzTkREZG0MnHIIx3HKHF1GST9YYsaJiIisjU11ZJN0GSX9YEk/iGLgRERE1sCMUw7hOE6Zk1HGiU11RERkDQyccgjHccocXWCkHzgx40RERNbGpjqySbrAyFRTHTNORERkDQycyCYZyzixczgREVkbAyeyScw4ERGRLWLgRDaJwxEQEZEtYufwHMIBMDMno+EImHEiIiJrYOCUQzgAZuYw40RERLaITXVkk5hxIiIiW8SMUw7hAJiZw4wTERHZIgZOOYQDYGZORgNgMuNERETWwKY6sknGhiNgxomIiKyNgRPZJGaciIjIFjFwIpuj1WqV/zPjREREtoSBE9kc/aCIGSciIrIlDJzI5ugHRcw4ERGRLWHgRDbHnIwTAyciIrIGDkeQQ/jIFfOZk3FiUx0REVkDA6ccwkeumM9UxsnOzs5oGSIiopzCpjqyOfrZJP3ASaPRKO+ZcSIiImtgximH8JEr5tPPJuk3zwHPA6nU1FRmnIiIyCoYOOUQPnLFfKYyTsDzQCopKYkZJyIisgo21ZHNySjjlLYMERFRTmHgRDYno4xT2jJEREQ5hYET2RxmnIiIyFYxcCKbY2o4Av33zDgREZE1MHAim2NqAEz998w4ERGRNTBwIpvDjBMREdkqBk5kc8zpHM6MExERWQMDJ7I55nQOZ8aJiIisgYET2RxmnIiIyFZx5PAcEhcXl+57+h9mnIiIyFYxcMohrq6u1q5CrsGMExER2So21ZHN4QCYRERkq5hxyiGxsbGq93FxcfDy8rJSbWwbH7lCRES2ioFTDnFxcbF2FXINczJOAKDVamFnx6QpERHlHJ51yOakNwCmfiDFrBMREeU0Bk5kc9JrqtN/z35ORESU0xg4kc1Jr6mOGSciIrImBk5kc5hxopSUFAwePBjdunVDTEyMtatDRKRg53CyOcw40dq1a/HXX38BAGrUqIHx48dbuUZERM8x40Q2hxkn2rNnj/L/LVu2WLEmRERqDJzI5jDjRHv37lX+f+jQITx69MiKtSEi+h8GTi8xrVaL2NhYiIi1q6KSmYyTiECr1eZY3cjy7t+/j3PnzinvtVotdu7cacUaERH9DwOnl9jAgQPh5uaG77//3tpVUTE345SUlISuXbvC2dkZK1asyLH6kWXt27fPYNrWrVutUBMiIkMMnF5S4eHhCAoKAgB8//33iIyMtG6F9KQ3AKb++z/++APr1q1DUlISvv322xyrH1lWaGiowbStW7faXGaUiF5ODJxeUoGBgcr/k5KS8Pvvv1uxNmrmNtVNnz5d+f/Zs2dx7do1S1eNcoCuf5NGo0HDhg0BAHfv3sWpU6esWS3Kg27evIlBgwZh4cKF1q5KtkhOTsawYcPQrl07zJs3DwkJCdauUp7EwOkldOPGDaxatUo1bc6cOUhMTMzS+o4cOYLLly9nR9UAZL1zeHBwcLbVwRJy412AycnJOZrpiY6OxsmTJwEAfn5+6NWrlzKPzXWUnZKSkvDmm29i3rx56N+/P8LDw1XzY2Ji8N1332HXrl1WqmHmzZ8/H7Nnz8b27dsxaNAgeHt7Y8yYMbh//761q5anMHB6Cc2YMUM5iRcoUADA8w65y5cvz/S6NmzYgLp166JatWq4cuVKttTP3IxT2ve2GjidPXsW/v7+KFiwIEaOHImoqChrV8kkEcHx48cxceJE+Pn5wdHREd27d8+x4CksLEzZVtOmTdG+fXtlXm4InLZu3YrOnTsjJCTE2lXJ81JSUhAfH28wPTU1FYGBgejTpw9u3rxpcvlJkybhxIkTyvuJEycq/xcR9O7dG19//TXatGmDefPmZWfVjXr69ClmzJiB4ODgLF1kJScn44cfflBNe/ToEX7++Wc0bNgQcXFx2VVVErKK2NhYASAAJDY2NtvWq9VqZeTIkTJ//nyj82NiYqRgwYICQJycnGTdunVKPWrWrClarTZT23vrrbeU5adNm5blesfHx8vDhw9FROSbb75R1rl582ZVuY8++kiZB0AmTpwoJUqUEADi7Ows8fHxWa5DdtNqtfLHH3+Is7Ozqs4FCxaUSZMmSVxc3Aut/8KFC7Jt2zZJSUkxmHf+/HnZsWOH2X/PlJQUWbp0qVSqVElVV91r5cqV6S6fkJAg0dHRWfkYKp9++qmyzbVr14pWq5Vy5coJAHFwcJAnT5688DYsJSYmRtzc3JS/8e3bt81edtmyZdK8eXOZPn26JCcnp1s2MTFRHj9+nOnvqi3SarUSHBws33//vVy/ft3s5eLj46Vhw4ai0WikT58+cv/+fRERefTokbz++uvKMfTGG28YXf7o0aOSL18+g+P84MGDIiKyZs0ag3m//fbbi3/gdLRv317ZVrly5WTq1Kny6NEjs5cPCgpSlm/UqJH07dtXHB0dlWljx461YO1zt8yejxk4WYmlAqeff/5ZWe+ECRMMflwDAwOV+e+//75otVqpW7euMm3v3r1mb+vZs2fi4uKiLNuhQweDMlqt1uiJPSUlRYKCgmTAgAHy2muvKT9irVq1kq5duyrr3Lp1q2q5ESNGKPN8fHwkPj5eBg4cqEzbsmWL2fW3pMePH6s+h7FXpUqVlB98Ha1WK+Hh4bJlyxbZt2+fHDt2TCIjIw3WHxERoez7Dh06yOPHj5XlAwMDxc7OTgDIwIED0z3BpqamyvLly6Vy5crp1rV8+fKSmJhodB179uyRokWLir29vXz77beSmpqa5f3m7++vbPPBgwciog6W//nnnyyvOz13796V119/Xdq0aSNHjhzJ0jp++eUX1T7r1q2bWcudPXtWdRKvVauWhIeHG5S7d++ejBo1SgnEnZycxMfHR5o0aSK7d+/OUp2t6cSJE9KiRQvlc+fPn1/Gjx9v1u+h/sUVAClSpIhMmzZNypcvb3DsXrx4UbXss2fPpGrVqsr82rVrK/9v3769xMbGSunSpY1+D2bOnGmRfbF7926j2/Pw8JATJ05kuHxKSoq88sorynL79+8XEZFz584pwZO9vb2cOXPmheu6YcMGadu2rSxatOiF15VZMTExsn//fvn999+N/i5mFQOnXMJSgdPHH3+s+uINGDBAkpKSROR5VsDHx0eZp/sSLV26VJnWsmVLmTZtmvTv3186d+6sXIEZs23bNtW2XF1dlW2JiBw/flzc3NykSpUqyklQRz+AS++1c+dO1XKTJ09W5q1atUpE1FeHw4cPz5b9+CISEhKkSZMmqs8xdOhQuXTpkgwePFh1kmzYsKEkJCSIyPOraP0Mnu6l0Whk6dKlqm306NFDVebVV1+VU6dOyYABAwyW//LLL43WMy4uzuj2GjZsKHPmzJFbt25Jy5YtlekzZswwWMfSpUtVV7UApG3btgYBoTmePHmi7JuqVasq0zdu3Kis+8MPP8z0ejOSlJQkjRs3VrZhb28vkydPNhrwm5KSkiJly5Y12JcbN27McNkOHToYLGdnZyfdu3eXcePGyYwZM+TTTz+VAgUKmPyeFC5cOFMZLn0PHjyQvn37yqeffipPnz5Vzdu5c6fUr19fevXqlW2/U5GRkfL++++LRqMx+llKliwp69evN7n89evXDbK4xvaf7v8jRoxQLf/5558r8/z8/CQ2NlZ8fX2Vafp/j7Zt28rYsWNV616yZEm27AcdrVYrDRo0UNZfo0YN1fZef/31DNexfPlypXzz5s1V88aPH6+al1Gm8tatWzJo0CApVKiQ9OvXT2JiYpR5ixYtUu1bSwRPWq1W5s+fL8OHD5dBgwbJu+++K2+88YbqbwRANmzYkG3bZOBko2JjY1WvyMhIiwROWq1Wpk2bpjrAmjVrJm+++abqh1f/y5iYmCglS5Y0+gNUpkwZVTCkb/jw4QblDxw4oMzv3r27Mv2LL75QpiclJUmpUqWUefny5ZPXXnvN4IsBQPbs2aPa5sOHD2XkyJEye/Zs5QcgJiZG7O3tBXie4s5sE8bDhw9l5syZsmXLlhdu/khNTVV97kKFCsm6detUZU6fPq00LwKQHj16SHR0tDRt2tTkiaBgwYJKU8bhw4fTPWkYe6W9Ur5//77Ur19fVaZRo0ayc+dO1T44cuSIMt/T01OV2ZoyZYrJ7ZUqVUpWrVqlBIXGxMfHy5AhQ6Rjx44yf/58Wb16tdEA6enTp0pw5ujoKOPGjVN+zJOTkyUkJER++eUXuXLlSrp/m5iYGOnfv7/07NlTdeWd9mJD92rcuLFcvXo13XXq6Dd5e3l5qb4/sbGxotVq5b///pMFCxaoLiK2bNmi2mfVq1fP8G+ZP39+ad68uVSrVk3c3d1V32n9v93ixYulV69e8u+//6Zbd/3jtWLFinL06FFJTU2VyZMnq06S77zzzgt9P5KTk+XXX39V1Vn3nX3//ffFwcFBmWZvby/nzp0zuh79i4YBAwYYXETUrFlTjh07pgRXbm5uyvESFhamfCYHBwc5efKkiIjMnTvXYD87OjrKxYsXRavVqoIPT09PpVuBzp07d+TQoUMZ7p/o6GgJDAxU/U7qXxhUrVpVUlJS5Pz581KmTBkBnl84pT0Ok5KSJDIyUrRaraSmpkq1atWUdaS92IyPj1cF9aYCv+joaPn8888NgtIKFSrI8ePHJSgoyCDYtbe3N9iezu3bt6V69epSuHBh6dGjhyxevFiioqLS3T8iIn/++adZv2mTJk3KcF3mYuBko9I7ALIzcNJZuXKlODk5mdxmSEiIqnx6J8GFCxcarF+r1Rq9wv7+++9F5PnJTv8L6OHhofRP0c9wdejQQemXlJiYKDNnzpSiRYsqPxg3b9406/Pqp/zPnz9v1jLx8fHy448/ioeHh7Js8+bN5dixY2Ytb8wnn3yirMvFxcVok4vI8z4W+s2cRYoUUS03btw4GT16tCpz1aZNG9FqtdK8eXNl2pgxY1Q/mroT699//y0zZsxQpmk0Gvniiy9k6dKlsmnTJqlQoYIyz83NTf755x+TP/rvvPOOUnbUqFESFBRkEHQNHjxYtm/frgoagOcBX0BAgOzatctgvYMHDzZ5zP3999+qsv369VPNL1q0qHTv3l0KFSqkOqGlbZbR179/f6Wsk5OTTJ06VRYvXqw6UQ4ePFgVLLi7u8vq1asz/Ls3a9ZMWWbz5s3SunVr1d9Nv2moRIkSEhoaKsnJyaom0mXLlklSUpL89NNPqmNDv84ff/yx3LlzR9luVFSUFC9eXCnzxx9/SEpKiioYdHZ2Nvi+6xhrInJwcFBlQPRf+lnHmzdvytixY2XOnDkZZucOHDhgEBS6ubnJTz/9JM+ePRMRkYsXL0rbtm2V+R9//LHBekJCQlTHgK5f3caNG6V58+YycuRIpe+g/vE1ffp0efz4sSrjrn/iTUpKUvrS6V5fffWVatv6AdrQoUOV6eHh4eLq6ioA5K+//jK5DxISEqRWrVqq9SclJclrr72mTFu7dq1S/vvvv1em62eN7969q1xkFihQQNVEV79+faPf482bNytlvLy85PLly8o8rVYrCxYsEE9PT5PfRycnJ1XQpN8XsmDBgkoAqq9Xr14G67Gzs5PGjRvLlClT5OTJkwZ1ffTokcl6uLm5SYMGDWTw4MEyc+ZMOX36tMl9nVkMnGyUqQPS3D9UVuzbt08KFy6sbKdYsWISEBAg27ZtMyibnJwskyZNkk8++UTmz5+v6mhYpUoVg34rZ8+eVeZXrFhR+X/Lli1FROTvv/82+JzTpk0TrVYrderUUaYZ+0F/8uSJBAUFmfyxN2bq1KnKOgMDA0XkeVYlPDzcoO5arVaWLl0q3t7eRv8eug6nv//+uwQHB8upU6ckIiJCzpw5IydOnJDw8HDZv3+/7NmzR7Zu3SrLli2T6dOnq/pa5cuXz6Bje1obN25UnaR1J//Dhw8rZaKjo1XZOf0gRtfv6MmTJ9KlSxcBnmct9IM1/WYJY6+SJUtm2IfiypUrBs1x+q/JkycrP4B3795VBbH6r5EjRyp/C/3g2dgrbbNTbGysjB07Nt16AM+zF/fu3TO6r9NbDngedIg8/96kzX5+9NFHJrNnx44dU8q9+uqrkpqaKhEREeleuOTLl0/eeOMN5X2DBg1UJ5G4uDg5ffq07NixQxYtWiR//fWX3Lp1y+j29U+KLi4uqs7R+tPDwsJUyyUnJ6uCbmPfB41GozoB2tvby969e+XXX39VggXg+QWHqabC8PBwyZ8/v2q9AwYMMPp3evjwoVLWw8NDdbNHcnKyKshIL0gRETl16pTqu9K7d2/lfZMmTQyCvfnz5yvzfX19DW7euHnzphLQajQaOXr0qFy9elV1sVCpUiWTFyD6vw/6x4vu/3Xq1FEte+fOHSWTXrx4cSXz/+6775o8rjZt2mRyf+g3y+fLl0/69u0rwcHBBpluR0dH+eSTTyQ8PFzV/0v3GjFihCQnJ0unTp2UaaVKlZIbN24o29IPcNN7ValSxWT2t0uXLnLy5EmJiIiQO3fuWPRmCAZONiqnmurSunHjhvz+++9y+PDhTHfa1e/3kbbPgX4n9GnTpilXck5OTpKQkGC074y3t7fs2rVLeZ+Vu/hM0Q/kqlSpIu3atVP6y/j7+ysdfh8+fKhqmgCeXwX17t1blYV50VdGP+o6M2fOVJYpU6aM0eYJ/eYc/deKFSuUMlqtVs6fP29wctdqtTJkyBCTP1rm3sk0atQog+WrV6+uukLWSU1NlS1btkhAQIByB6fu9e6778qpU6dUJ92JEyfKkCFDlMxf2j4a+q5cuaK68nd3d5eePXtKlSpVVCcg/b46Dx8+VGVl2rVrZ9DkMGDAANWx+PjxY4MmoEqVKsmUKVMM/kYBAQFKmTlz5ijT9TMGwPOmUP3vlP7r0KFDZv0dTDGWvcuXL58qw+Hm5qbajv6xV6dOHUlISJDPPvtMmVaoUCHlZosxY8Yo0031TfL09DS4WLhz544q8K9du3aGTYf62cWgoCBl+qxZs5TptWrVMqsPWqtWrQzq6e7ubvS4T05Olp49e0r58uUNgkydH3/8UVlP3bp1jd5UYaxfqH5TYP78+Y3e0bd9+3aD5fRvMFm9erUqQ+jq6ioVK1ZUgqu0TbVpXb9+3WSXDN2re/fuqmbBZ8+eybBhw5T5I0eOVLYRGxururGoUqVK8uDBA4MAd/bs2RISEiKjR49WBYq6V9GiReW///6TM2fOKPvF2dlZFYhZGgOnXMJSncOz06ZNm5Q61qtXT/Wl1G+auHDhgrz33nvK+/Xr1ytX215eXqor62LFiin/X7x4cbbVVavVGu0jpf9j379/f9WPOADp2LGjnDp1SkSeNxUGBgaqmu4y+7Kzs1OaK821YsUKGTduXLqde9NerdapUydTgfDJkydlxYoVEhgYKKNGjZIvv/wyU7c6P3r0SGrXri2urq4SEBAgBw4cMCvoTUhIkBkzZqgya/pZo4CAAFXZQ4cOKU036YmIiJCDBw8qV+E3b95UZUxat24toaGhkpiYqLpC79Chg2i1WgkJCVGamuvVq2d0GAvdcBJpsyXA8wxG3bp1pW7dukrfHA8PD9V3OTU1Vf7880/55Zdf5Nq1ayLyvBP5F198oVpX3759M/y8GXn69KmqqcnV1VW2bt0qCQkJ0qZNG2W6k5OT9O7dW/755x/Vca4fzISFhcmkSZNUwUVycrLRTGLfvn0NMlXvvvuuXLp0SRISElRNuo0aNTLrb3vgwAFlmfr164uIyNWrV1XNl6YCm7Q2bNhgUOfly5dncu/+T2JiotEhO/T7jw4ZMkS1zJEjR1TZxyVLlkhISIgqU2Wq0/b27dtVZfQDNV2GNDk5We7du2fW9/HRo0fyzTffqFoigOeZ2rR3MKf9DCEhIQbbiIyMVF1w1q5dW9Xtw1iAe+nSJfn1119VzdeFCxdWBWHffvtthp8lOzFwyiVyQ+Ck1WpVVw66W56jo6OVK4MKFSqIiMiSJUuUcvpt7sOGDZOwsDCDH5oSJUqYvL09q9J28vXx8VE1I+q/ChUqpNyVl1ZMTIxs3bpV/vzzT/nqq68kICBA+vTpIwMGDJDBgwfLRx99JKNGjZJx48bJ+PHjJTAwUBYvXizbtm1TTpDZ7fHjx6oTVG67/Xz9+vUGAUiVKlWy9dg/ffq0QdCrf0Lz8PBQNXfFx8fLv//+a/LmB52TJ09KvXr1Mgyax4wZY3ZdN2zYICVKlJBKlSqp+iy9iIMHD0qhQoWkQoUKqubXuLg4k82naYPX9ERGRioXJ1WqVJF9+/aJyPN+Vm+++aZqnfb29qq7w0qXLm20ac6YtL87x48fV93dOXjwYLP3SWpqqmqIAnM/a3p27Nih+qy6jIkusHN3d1cyv9HR0ap+VR999JGynjt37kiXLl3Ez89Pzp49a7L+afteAc+z6C8y7MfTp0/l559/lsaNG8vEiRNfaPy7q1evmsxk6YZFMCY6Otro98rX1zfHx+Nj4JRL5IbASeT5wHy6erZs2VLi4+NlxYoVyjRdB87bt28b/eKEhoaKiEjDhg1V07PzjgidmJgYGTp0qHz88ceyf/9+0Wq1kpiYKD/88IPqBNqqVSuT/UVs2dGjR6VVq1YyZcoUa1clS0JDQ5U7qgoUKJAtY8qktXfvXmUQyrSvF711+vLlyxIYGChNmjRRLhw0Go3Y2dlJ7dq1Mz0EQ2pqarb320hNTTXahBUbGytjxoxR3YQAPG++y0zg9uTJE9m/f7/BRY9Wq5XZs2cbrB943uyS2RsuZs+ercqG6P5fpkwZ1e3x5li7dq3Y2dmJv79/tg2gquv35ezsrDTN6TfZ6rJaffr0UabVr18/SxeLP/zwg2p/2tnZydGjR7Plc2SXM2fOGGSxzMmkxsTESKNGjVTLmXMzRnZj4JRL5JbAKTk5WfXD5ejoqNz1BkB27NihlE2bwi5VqpRyVfTPP/+ofkjNuS01O924cUM+//xzmT9//gtdqdGLOX/+vHz66admN7VkRWRkpAQFBUnfvn2VYR/69++fJ0baflHPnj2T5cuXS+vWraVMmTIms65ZFRMTIxMnTlQFrxmNOm9qPcbuLDTWD8gcz549y3BE9syub8GCBargf8+ePUo927dvL6tWrVLe6w8nklmRkZGqoRr0s1a25NChQ0rfRVdXV7MD8qdPnyp90Tp37myV7ykDp1witwROIiLz5s0zegXv6uqquoIaOnSoav7IkSOVeampqcot2pntA0SUVVqtNs88niQ3efDggcyaNUt1YZVZgwYNUv2eZKaJzhpSU1OVZjk7OzvVUBkvmu3Udf739vbOlkcbWUp4eLgMHDjQYPy9jOhubsmo2dxSMns+1ojk4KPPSREXFwdXV1cAQGxsLFxcXKxcI9NEBOvWrUNwcDBCQkJw+fJlAMAnn3yCwMBApdyaNWvQrVs35f2BAwfQoEED5X1SUhKioqJQokQJaDSanPsARJTrHD16FHXq1AEAlClTBqdOnULBggWtXKv0TZgwAd9++61qWteuXbFq1aoX+s1LSkrC9u3bUbduXXh5eb1oNSmNzJ6PGThZSW4KnNK6efMmoqKiUL16ddjb2yvTHz58iKJFi0JEUKZMGVy7do0BEhFl2ZQpU7Bz505MnToVNWvWtHZ1MnT58mVUqFBBee/l5YXTp0/D09PTirWijDBwyiVyc+CUnokTJ2LBggWYOnUqunfvbu3qEBHlqObNm2Pv3r0AgI0bN6Jjx45WrhFlhIFTLpFXAyciopfZpUuX8Pnnn6Nt27Z4//33rV0dMgMDp1yCgRMREZH1ZfZ8bJcTlSIiIiLKCxg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmewzLkKWoD9ge1xcnBVrQkRE9PLSPweb8zAVBk5WEh8fr/zfy8vLijUhIiIi4Pm5Wff4FVPYVEdERERkJj7k10q0Wi2ioqIAAAUKFIBGo8nSeuLi4pSMVWRkJB8W/P+4X4zjfjGO+8U47hfjuF+My637RUSUViBPT0/Y2aWfU2JTnZXY2dmhWLFi2bpOFxeXXHOg5iTuF+O4X4zjfjGO+8U47hfjctt+yah5Th+b6oiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxAEwiYiIiMzEjBMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgZONCg8PR4cOHeDh4QEXFxfUr18fK1euzNQ6EhMT8e2336JixYrInz8/SpYsicGDB+P+/fsWqrXl3L59G9OnT0fbtm1RpkwZODo6onjx4ujatSsOHTpk9npCQkKg0WhMvoKCgiz3ISzE19fX5Odp3rx5pta1dOlS+Pv7w8XFBYUKFULHjh1x7Ngxy1TcgoKCgtL9O2s0GrRq1SrD9eTW42XJkiX44IMPUKdOHTg5OWVY1ydPnmDUqFHw8fGBk5MTfH198dlnnyE2NjbT2962bRuaNWsGNzc3FCxYEC1atMCuXbte4NNkH3P3S3JyMtasWYOAgABUrlwZrq6ucHNzQ7169fDbb78hNTU1U9vNzu+oJWTmeJk4cWK634lr165latsXL15Ejx494OnpCWdnZ9SoUQO//fYbbPm+NXtrV4AM7dmzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHZ7gOrVaLzp07Y9u2bahfvz66du2KiIgIzJ07F7t27cLBgwdRtGjRHPg02WPmzJn48ccfUb58ebRt2xZFixZFREQE1q9fj/Xr12PZsmXo2bOn2etr1qyZ0R8sPz+/7Kt0DnJ3d8fIkSMNpvv6+pq9jkmTJuGrr76Cj48PhgwZgqdPn2L58uVo2LAhdu3ahUaNGmVfhS3Mz88PEyZMMDpv9erVOHPmDNq1a2f2+nLb8fLVV1/h+vXr8PT0RIkSJXD9+nWTZePi4tCsWTOcOHECbdu2Re/evXH8+HFMnToVe/fuRWhoKPLnz2/WdpcsWYK+ffuiaNGi6N+/PwBgxYoVaNOmDVauXIlu3bplx8fLMnP3y+XLl9GtWze4urqiVatWePPNNxETE4ONGzdi6NChCA4OxoYNG6DRaMzednZ8Ry0lM8eLTkBAgNG6e3h4mL3ds2fPomHDhkhISECPHj1QsmRJbN68GUOHDsXZs2cxc+bMTHyKHCRkU5KTk6V8+fLi5OQkx48fV6Y/fvxYXnnlFXF0dJRr165luJ758+cLAOndu7dotVpl+m+//SYAZPDgwZaovsWsWbNGQkJCDKaHhoaKg4ODFCpUSJ49e5bhevbs2SMAZMKECRaopXX4+PiIj4/PC63j4sWLYm9vL6+88oo8fvxYmX78+HFxcnKSypUrS2pq6gvW1PoSExOlSJEiYm9vL/fu3cuwfG49Xnbs2KH8TkyZMkUAyIIFC4yW/frrrwWAjB07VjV97NixAkAmT55s1jYfPXokHh4e4unpKTdv3lSm37x5Uzw9PcXT01OePHmStQ+UTczdL7du3ZLZs2dLbGysanpsbKzUqVNHAMjKlSvN3m52fEctKTPHy4QJEwSA7Nmz54W327RpUwEgwcHByrTExERp0qSJAJADBw688DYsgU11Nmb37t24fPky3nnnHdXVrLu7O7744gskJSVh4cKFGa7nr7/+AgBMmTJFdVX0wQcfoFy5cli6dCkSEhKyvf6W8vbbb6NZs2YG05s0aYIWLVogOjoap06dskLN8oYFCxYgJSUFX375Jdzd3ZXpfn5+6N27N86dO4ewsDAr1jB7rF+/Hg8fPkTHjh3h5eVl7epYTOvWreHj45NhORHB3Llz4erqivHjx6vmjR8/Hq6urpg7d65Z21y1ahUeP36M4cOHw9vbW5nu7e2NYcOGISoqCuvWrcvcB8lm5u6XUqVKYejQoXBxcVFNd3FxwahRowAAe/futUgdrcHc/ZKdLl68iNDQULRo0QKvv/66Mt3R0RHfffcdgP+dx2wNm+psTEhICACgbdu2BvN0TQsZfWGfPXuGQ4cO4dVXXzX4Mmg0GrRp0wZ//PEHjhw5giZNmmRPxa3IwcEBAGBvb/7hHBERgenTpyMhIQHe3t5o2bIlSpUqZakqWlxiYiKCgoJw584dFCxYEHXr1kW9evXMXj6j4y4oKAh79+5F06ZNs6vKVqELAgYNGpSp5fLa8aITERGBO3fuoF27dkaDhEaNGmHbtm24efMmSpcune66MjqGJk6ciL1796Jfv37ZVn9ryMrvDfDi31FbExoaikOHDsHOzg4VK1ZE69at4erqavby6R0vjRs3houLi80GpwycbExERAQAoGLFigbzihcvDldXV6WMKZcvX4ZWqzW6Dv11R0RE5PrA6caNG9i5cydKlCiB6tWrm73csmXLsGzZMuW9vb09hg8fjp9//hn58uWzRFUt6t69exgwYIBqWt26dfH333+jfPnyGS4fEREBV1dXFC9e3GCe/vGSm12/fh27du2Ct7c32rdvn6ll89rxopPe741u+rZt2xAREZFh4JTeuvLKMQQA8+fPB2D8hJ+eF/2O2pq0fQg9PDzw66+/mh0Yp3e85MuXD2XLlsXZs2eRkpKS6SDV0thUZ2NiYmIAQNVcoq9gwYJKmRdZh3653Co5ORl9+/ZFYmIifvzxR7NOYEWLFsUPP/yA06dPIzY2FpGRkVi/fj0qVKiAX375BWPGjMmBmmevAQMGYNeuXYiMjERcXByOHz+Ovn37Ijw8HK1atcLTp08zXEdMTEyeP14WLFgArVaL/v37mx3s5MXjRV92/lakt668cgz9+eef2LJlC1q2bIkOHTqYvVx2fEdtRY0aNTB//nxcuXIFCQkJuHr1KmbOnAmNRoP+/ftjw4YNZq3HnGNPq9Xa5L6xrTCOyEy6E2BoaCjef/999O3b16zlqlatiqpVqyrvXVxc0LlzZ9SrVw+vvfYaZsyYgbFjx6JYsWKWqnq2S3vl5+fnh0WLFgEAFi9ejL/++kvpl/Gy0mq1WLBgATQaDd577z2zl8uLxwtlzaZNmzBs2DD4+PhgyZIlmVo2L31Hu3Tponrv6+uLYcOGoXLlymjTpg2++uorvPnmm1aqXc5gxsnG6KJvU1dmT548MRmhZ2Yd+uVyG61Wi/feew/Lli1Dnz598Pvvv7/wOosXL47OnTsjJSUlU+NC2bIPPvgAALB///4My7q7u+fZ4wUAdu7ciRs3bqBly5YoW7bsC68vrxwv2flbkd66cvsxFBwcjG7dusHLywu7d+9GiRIlsmW9mfmO2rpWrVqhfPnyOHXqlPL3To85x55Go4Gbm1u21jM7MHCyMen1Bbh37x5iY2NN9kfQKVeuHOzs7Ez2J8ioX4Mt02q1GDBgABYuXIjevXsjKCgIdnbZcxh7enoCeD6uTV6Qmc9TsWJFxMbG4t69ewbzcvPxopPVTuHpyQvHS0Z9jzLzt09vXbn5GNq8eTPefvtteHp6Ys+ePShXrly2rTsvHEP6dJ8nPj4+w7LpHS+pqam4evUqypYta3P9mwAGTjZHd8v99u3bDeZt27ZNVcYUZ2dn+Pv748KFCwYDmYkIduzYARcXF9SpUyebap0zdEHTokWL0LNnTyxevDhbO+bqMge2MCBddsjM58mO485WPXz4EP/88w8KFy5s0MzwIvLC8VKxYkWULFkS+/fvNzh5x8XFYf/+/ShbtmyGHcOBvHkMbd68GV27dkXhwoWxZ88eVKhQIVvXnxeOIZ24uDicOXMGLi4uSgCVnvSOl7CwMGVgVptk7YGkSC05OVnKlSuX7gCYV69eVabfuXNHzp07pxq0UCTvDYCZmpoqAQEBAkC6d+8uycnJ6ZZ/8OCBnDt3Th48eKCafuTIEaPlp0+fLgCkYsWKkpKSkm31trRz585JXFyc0enFixcXALJ3715l+uPHj+XcuXNy584dVfkLFy7k2QEwf/nlFwEgI0aMMFkmLx8v2T0AZlxcnJw7d06uX7+umv7o0SNxd3e36QEw9WW0X4KDg8XJyUmKFy8u58+fz3B9SUlJcu7cObl06ZJqema/o9aW3n558uSJXLhwwWB6fHy89O7dWwDIgAEDDOafO3dOzp07ZzA9owEw9+/f/2IfxkI0Ijb8QJiXlKlHrly/fh1Tp05VPXKlf//+WLhwIRYsWKA84gB4np3p0KGD8siVZs2a4dKlS1i7di18fX1x6NChXPXIlYkTJ+Kbb76Bq6srPv74Y6Pp27feeksZNFRXfsKECZg4caJSxtfXFw4ODqhTpw68vb0RFxeHgwcP4vjx4/Dw8MC2bdvg7++fQ5/qxU2cOBGBgYFo2rQpfHx84OLigosXLyI4OBjJycn4/PPPMXnyZKV8UFAQBgwYgICAAINnUek/cqVr167KI1eSkpJy3SNX9FWvXh2nT5/GyZMnTQ5ZkdeOl7lz5yoDlp46dQrHjh1Do0aNlIxJ48aNlWbLuLg4NGrUCP/99x/atm2LWrVq4dixY9i+fTvq1q2LvXv3wtnZWVl3SEgIWrRogWbNmilj8ejoP3JF9wikFStWICoqCitWrED37t1z4NObZu5+OX/+PPz8/JCYmIhevXrh1VdfNViXr6+v6jf32rVrKFu2LHx8fFTPa8vsd9QazN0v165dQ7ly5VC3bl1UrlwZxYsXR2RkJHbu3Ilbt26hevXq2LNnD4oUKaJav24Q5rThxpkzZ9CoUSMkJCSgZ8+eKFGiBDZv3owzZ85g2LBhfOQKZc6hQ4ekffv2UrBgQXF2dhZ/f39Zvny5QTldFsbY1cGzZ89k4sSJUr58eXF0dJTixYvLoEGDzHrUhK3Rfc70Xvr7QPdYgLSPyvjhhx+kRYsWUrJkSXFychJnZ2epVKmSjBw5UnWVnFuEhIRIjx49pGLFilKwYEGxt7eX4sWLS+fOnWXbtm0G5RcsWCAAJCAgwOj6lixZInXq1BFnZ2dxd3eXDh06yNGjRy38KSzn0KFDAkD8/f3TLZfXjpeMvi9p//6PHz+WkSNHSunSpcXBwUHKlCkjo0ePNpoh0j2GplmzZka3vWXLFmnSpIm4uLiIq6urNGvWTHbs2GGBT5l55u4X3WdM75X281+9elUAGDxaJbPfUWswd7/ExMTIRx99JHXr1pWiRYuKvb29uLm5ib+/v/z0008SHx9vdP269Rhz/vx56datmxQuXFicnJykevXqMnv2bFVLia1hxomIiIjITOwcTkRERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5ELzFfX19oNJp0X9OnT7d2NSmbHD9+HPny5cPw4cNV00NCQpS/d3quXbumlNN/HltmxcTEoEiRIqhXr57B88uIbJ3hk1KJ6KWj/0DPtKpUqZLDtSFLGT58OJydnTF+/Hir1sPd3R2ff/45PvvsMyxatAgBAQFWrQ9RZjBwIiIMGjRI9aR3yntWr16N/fv347PPPkOxYsWsXR0MGzYMP/30Ez7//HP06tULTk5O1q4SkVnYVEdE9BL45ZdfAAADBw60ck2ey58/P9555x3cvXsXK1assHZ1iMzGwImIzKLrD3Xt2jX8888/aNmyJQoXLgyNRoOQkBClXHR0NCZMmAA/Pz+4ubmhQIECqF69Or7//nvEx8cbXXdKSgqmT5+O6tWrI3/+/ChatCi6du2KU6dOISgoCBqNxiAjNnHiRGg0GkycONHoOnX9dpo3b250/p07dzBq1ChUrlwZBQoUgJubG+rWrYtZs2YhJSXFoHz//v2h0WgQFBSEq1evom/fvihevDicnJxQvnx5fPXVV0hMTDS5/44ePYqAgACULVsW+fPnR+HChVGjRg189tlnuH79OgBgwYIF0Gg0aNeuncn13LlzBw4ODnB2dsbDhw9NltN3/PhxHDhwAPXr18err75q1jKZoftbZPRKS/c3nT17drbXichS2FRHRJkybdo0zJo1C3Xq1EH79u1x584d5MuXDwBw9uxZtG/fHjdv3kSJEiXQuHFjODg44PDhwxg/fjzWrFmDkJAQuLu7K+vTarXo3r071q9fD0dHRzRv3hyFChXCoUOH4O/vj/feey/bP0NoaCjeeustREdHw9fXF23atEFiYiIOHz6M4cOHY+PGjdi0aRMcHBwMlj1x4gQ+/vhjFCpUCM2aNcOjR4+wf/9+TJo0CWfOnMG6desMlvn5558xbtw4aLVavPLKK+jcuTMSEhJw6dIlTJ06FVWrVkX//v3xzjvvYOzYsdixYwcuXryIV155xWBdf/zxB1JSUtC3b18UKVLErM+7fv16AEDr1q0zt6PM5OfnZ7Kf0oULF3Dw4EHY2Rlep/v5+aFo0aI4fPgw7t69ixIlSlikfkTZSojopeXj4yMAZMGCBWaXzZcvn/zzzz8G8+Pj46V8+fICQL766itJTExU5sXFxUnv3r0FgAwYMEC13KxZswSAeHl5ydmzZ5XpycnJ8uGHHwoAASABAQGq5SZMmCAAZMKECUbru2fPHgEgzZo1U02/e/euFClSRDQajcyZM0dSU1OVeVFRUdKyZUsBIN98841quYCAAKUuX375paSkpCjzTp06JS4uLgJADhw4oFrun3/+EQCSP39+WbFihUE9z5w5o/rcX375pQCQESNGGJRNSkqS4sWLCwA5evSo0c9tTOPGjQWAbN682eh83b7K6JRw9epVpdzVq1cz3O7169elRIkSAkBmzZpltMybb74pAGTx4sUZro/IFjBwInqJ6YIhUy/9oENX9r333jO6rt9++00ASMeOHY3Of/r0qRQrVkzs7e3l0aNHyvQKFSoIAPntt98MlklISFAChewKnMaOHSsAZNiwYUaXu3Xrljg4OEjRokVFq9Uq03WBU+3atVXTdYYMGSIA5Ntvv1VN9/PzEwAybdo0o9tL6/bt2+Lg4CDu7u4SGxurmvf3338LAGnQoIFZ69LRBXVXrlwxOl8/cDL3lVHgFB0dLVWqVBEA8tlnn5ks9/nnnwsA+eSTTzL1mYishU11RGRyOIJKlSoZTOvWrZvRdWzevBkA0LNnT6PzXV1dUadOHQQHByM8PBxt27bF7du3cenSJQBAnz59DJbJnz8/evTogRkzZpj9WTKSUT1LlSqFihUr4uzZs4iIiDBoLuvYsaPR/jqVK1cGANy+fVuZdu/ePZw4cQJ2dnZmd8ouWbIkunXrhr///huLFy/GkCFDlHm6vkDDhg0za10AEBcXh7i4OAAwq2kvvaEBYmNjsWbNmgzXkZSUhLfeegtnz55Fr1698OOPP5osq6tTZGRkhuslsgUMnIgoU8MR+Pr6Gp1+5coVAEDfvn3Rt2/fdNfx4MEDAMCtW7cAAJ6ennB1dTVatmzZsmbVy1y6ejZp0iTDsg8ePDAInMqUKWO0bMGCBQEAz549U6bduHEDAFCiRAlVv66MjBgxAn///Tdmz56tBE4nT55EWFgYvLy8TAavxsTExCj/d3Nzy7B8UFCQyXnXrl3LMHASEfTv3x979+5Fs2bNlM79puj2W3R0dIZ1I7IFDJyIKFOcnZ2NTtdqtQCA9u3bw8vLK911+Pj4ZHu9TNXH1PRu3brBxcUl3XUYy9AY6+Sc3erXrw9/f38cPnxYCUB02abBgwfD0dHR7HV5eHgo/3/69KkSqFjKuHHj8Pfff6NKlSpYv359huMz6QK7QoUKWbReRNmFgRMRZYvSpUvj/PnzGDhwoNkZkVKlSgEAoqKiEBsbazTrZOrRHrrg4enTp0bn627xN1bPiIgIjB07FnXq1DGrnlmly07dvXsXMTExmc469enTB7NmzUKNGjWwdOlS2Nvbq5ruzFGgQAG4uLggLi4ODx8+tGjgNGfOHPz0008oWbIktmzZograTNENqZBRsE1kKziOExFli9dffx0AsHLlSrOX8fb2Rrly5QAAy5YtM5ifmJiIVatWGV1WF3SdO3fO6HxdX6bsqGdWFS9eHDVq1IBWq8X8+fMztWyPHj1QokQJrF+/HpMmTUJcXBy6dOmCkiVLZroetWrVAvB8uAhL2bBhA0aMGAE3Nzds3rzZZJNmWqdPnwYA1K5d22J1I8pODJyIKFsMHjwYPj4+WLVqFcaOHWs0E3Tv3j389ddfqmkjR44E8HwQxfPnzyvTU1NT8emnn+LOnTtGt9eyZUvY2dlh27Zt2Lt3rzJdRDBjxgyTfXE+++wzeHh4IDAwENOmTUNSUpJBmatXr2LJkiUZfmZzTJgwAQDw5ZdfGq3T2bNnjQZ/Dg4O+PDDD5GSkoKpU6cCyFyncH0tWrQAAPz7779ZWj4jhw8fRu/evWFnZ4fVq1fDz8/P7GV1dWrZsqVF6kaU3Rg4EVG2cHFxwebNm+Hr64uffvoJZcqUQbNmzfDuu++iS5cuqFq1KkqWLGnwgNmPPvoInTp1wt27d1GjRg20b98evXv3RsWKFTF37lx8+OGHRrdXunRpDB8+HFqtFq1atUKLFi3QtWtXVKxYEZ9++inGjRtndDlvb2/8888/KFSoED799FOULl0arVq1Qp8+fdCpUydUqFAB5cqVw6xZs7Jlv3Tp0gWTJk3Cs2fP0K1bN1SuXBm9evVC586dUbVqVVStWhWHDh0yuuwHH3yg9BF67bXX0LRp0yzV4a233gIA7NixI0vLZ+Tzzz9HfHw8vL29sWzZMvTv39/oK63jx4/j4cOH8Pf35+CXlGuwjxMRZZuqVavi5MmT+P3337Fu3TqcPHkS//77Lzw9PeHt7Y1PP/0UXbp0US1jZ2eHtWvXYsaMGZg3bx5CQkLg6uqKxo0bY926dTh+/Dh+++03o9v75ZdfUKZMGcydOxcHDhyAq6srGjVqhJUrV+LJkyf44YcfjC7XtGlTnDlzBrNmzcLmzZsRHh6OxMREFCtWDGXKlEGfPn3QtWvXbNsvX3zxBVq2bIkZM2YgNDQUa9euhZubG0qXLo0xY8aYzLYUK1YMfn5+OHToED766KMsb79mzZpo2LAhDhw4gHPnzilDJ2SX1NRUAM8zdVevXjVZLu0de7r3L/LZiHKaRkTE2pUgIjIlKCgIAwYMQEBAQLq3yudFFy9eRKVKleDu7o7bt2+jQIECWV7X6tWr0b17d4waNQrTpk3LxlpmzbNnz1C6dGk4ODjg6tWrGd59R2Qr2FRHRGSjvv76a4gIPvzwwxcKmoDnwy80atQIf/zxh00MNjlz5kxERUVhypQpDJooV2HgRERkQzZs2ICBAweifv36WLFiBYoXL44xY8Zky7pnzpyJhIQEfPfdd9myvqyKiYnBDz/8AH9/f/Tr18+qdSHKLPZxIiKyIceOHcP8+fPh5uaG1q1bIzAw0KzxkMxRs2ZNpT+SNbm7uyvjNxHlNuzjRERERGQmNtURERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDhRnlejRg1oNBo4OTnh4cOH6ZZt3rw5NBoNQkJCcqZymRASEgKNRoPmzZtbuypE2Y7HN+UWDJwoTwsPD8fJkycBAElJSViyZImVa2RbfH19odFocO3aNWtXhYgoV2DgRHnavHnzAAClSpVSvSciIsoKBk6UZ8XHx+Pvv/8GACxevBiurq44deoUwsPDrVwzIiLKrRg4UZ61atUqPHnyBNWqVUOLFi3Qs2dPAOZnnfbu3Yu2bduicOHCKFCgAPz9/bF48WKjZRMTE/Hzzz+jdu3acHNzg6OjI4oXL466detizJgxePTokcEyt27dwvDhw1GxYkXkz58f7u7uaNSoEf744w+kpqaa/TnN6Rui0Wig0WiU90FBQdBoNLh+/ToAoGzZskoZY3287ty5g1GjRqFy5cooUKAA3NzcULduXcyaNQspKSlm1xUAJk6cCI1Gg4kTJ+LGjRsYOHAgSpcuDQcHB/Tv3x8A0L9/f2g0GgQFBeHChQvo2bMnihUrBhcXF9StWxf//POPsr5Dhw7hzTffRNGiReHs7IwGDRpg165dRrcdERGB9957D2XLloWTkxNcXV3h4+ODN954AwsWLMjU5wCAnTt3olOnTvDy8oKDgwMKFSqEihUrok+fPggNDTUon5CQgIkTJ6JixYpwcnJCiRIlEBAQgBs3bqj2iz79fWGM7m+p23c6ycnJWLJkCd59911UqlQJBQsWhLOzM1599VWMGDECd+7cMbo+/X5++/btQ6dOnVC0aFHY2dmp6pCQkIBp06ahfv368PDwQP78+fHqq69izJgx6fYlXLRoEerWrYsCBQqgcOHCaN++Pfbt22eyfHquXbsGjUYDX19fiAj+/PNP1K5dGy4uLnB3d0fbtm3x77//mlw+s99B/X396NEjjBw5EuXLl4eTk5Py/dP/O965cweDBg1CyZIl4ezsjGrVqql+f86fP4933nkHxYsXR/78+VGjRg2sWLEiS/uCco69tStAZCm6H6j33ntP+XfevHlYvnw5fvnlFzg7O5tcdt26dZg1axYqVaqEdu3a4c6dOwgLC0O/fv1w4sQJTJs2TSmr1WrxxhtvYNeuXShYsCCaNGkCDw8PPHjwABEREfj555/xzjvvoHDhwsoy4eHhaN++PR49eoQyZcrgrbfeQkxMDEJCQnDgwAGsW7cOGzZsgKOjo0X2TYUKFRAQEIDVq1cjLi4OXbt2haurqzK/ePHiyv9DQ0Px1ltvITo6Gr6+vmjTpg0SExNx+PBhDB8+HBs3bsSmTZvg4OCQqTpERESgZs2acHR0RKNGjSAi8PT0VJU5duwYhg0bBm9vb7Rq1QrXr1/Hv//+iy5dumDlypWwt7dHjx49UK1aNbRq1Qrnz5/HwYMH0b59e+zZsweNGzdW1nX69Gk0atQIT548wauvvoqOHTsiX758uHXrFkJDQ3H79m0MGDDA7PovXLhQKe/v748WLVogISEBt27dwvLly+Hp6YmmTZsq5ePj49GqVSscPHgQLi4uaNu2LZydnbFt2zZs3rwZb7zxRqb2X0YiIyPRt29fuLu7o3LlynjttdcQFxeHEydOYObMmVi+fDkOHDiAChUqGF1+1apV+P3331GpUiW0bt0ajx49gpOTE4DngXT79u1x6tQpFC5cGHXr1oWbmxuOHTuGn3/+GatWrUJISAh8fHxU6/z4448xY8YM2NnZoXHjxihZsiROnjyJ5s2bY/jw4S/0eQcMGIBly5ahSZMm6NixI06cOIEdO3YgNDQUe/fuRb169VTlX+Q7GBUVhTp16uDx48do0qQJateubVDuxo0byvQmTZrgwYMHCA0NxaBBg/D48WM0atQIbdu2RcmSJdGiRQvl2O7VqxcAKBd6ZIOEKA+6cOGCABAHBwe5f/++Mr1SpUoCQBYtWmR0uWbNmgkAASCTJ09WzQsJCRFnZ2cBIFu3blWm7927VwBIzZo15cmTJwbrDA8Pl6ioKOX9s2fPxMfHRwDIkCFDJCkpSZl3+fJl8fX1FQDyxRdfqNazZ88eASDNmjUza7o+3WdKS1ePq1evGl3u7t27UqRIEdFoNDJnzhxJTU1V5kVFRUnLli0FgHzzzTcmt53WhAkTlPr06dNHnj17ZlAmICBAKfP999+LVqtV5s2YMUMAiLe3txQqVMjgbzly5EgBIK1bt1ZNHzBggLK+tOLj42Xv3r1mfwYRkbJlywoA2bdvn8G8yMhIOXbsmGrap59+KgCkUqVKcvv2bWV6XFycdO7cWfm8EyZMUC2n2xcLFiwwWo8FCxYIAAkICFBNf/Lkifzzzz+SmJiomp6UlCSff/65AJAOHToYrE//OzB79myD+VqtVho1aiQAZODAgapjPjk5WUaPHi0ApEWLFqrlNm3aJADExcVFQkNDVfMmT56sbDO94zitq1evKsv5+PjIhQsXlHkpKSny3nvvCQBp27atarmsfgd1+xqAtGrVSmJiYgzqpH98DxkyRJKTk5V5GzZsEADi5uYmPj4+Bsf29OnTBYBUqFDB7H1AOY+BE+VJY8eOFQDStWtX1fSffvop3R9n3UmjZs2aRufrTgpt2rRRpq1cuVIAyIgRI8yq2+LFiwWAlCxZ0mjQsHr1auXHNSEhQZlujcBJtx+HDRtmdP6tW7fEwcFBihYtqjoBpEd3YilcuLA8fvzYaBldsODv72+w3uTkZClcuLAAkO7duxssGxUVJQDE0dFRdULs0KGDADAIaLKqQIEC4u7ublbZ+Ph4cXNzEwCyZcsWg/l3796V/PnzZ2vglJGSJUuKnZ2dQbCv+w60bNnS6HJbtmwRAOLn56cKCnRSU1OlWrVqAkBOnTqlTG/durUAkLFjxxpdr5+f3wsFThs2bDCYf/fuXQEgTk5OqmMhq99B3b52cHCQy5cvG62T7vguU6aMalmd1157zaxj+/r162bvB8pZ7ONEeU5KSgoWLlwI4H/NdDr9+vWDvb09QkNDcfnyZZPr6Nevn9HpAQEBAICwsDClD0StWrWQL18+zJ8/H7Nnz8bdu3fTrZ+u/1CvXr2Upg99b7/9NgoVKoSnT5/i6NGj6a7L0jZv3gzAdLNBqVKlULFiRaVZMjNat24Nd3f3dMu8/vrrqr5ZAGBvb4+yZcsCADp06GCwTJEiRVC4cGEkJSWp+tr4+/sDAD788ENs27YNz549y1R90/L390dMTAz69euHo0ePQqvVmix77NgxPH36FJ6enmjfvr3B/OLFi6Nt27YvVB9T/vvvPwQGBmL48OF477330L9/f/Tv3x8pKSnQarW4dOmS0eW6detmdLrumOjatSvs7Q17e9jZ2SlNlAcOHADw/DsZFhYGAOjTp4/R9Zr6zpnD3t7e5H4tVKgQEhMTVcfCi34Ha9asiXLlyqVbpxYtWiB//vwG0ytWrAjA9LHt6+sLACb7oJH1sY8T5TmbN2/GvXv3UKpUKbRr1041z8vLCx06dMCGDRswf/58TJo0yeg6dCdmU9MTEhLw8OFDFCtWDOXLl8cvv/yCzz77DMOGDcOwYcPg4+ODBg0aoGPHjujevbuq/8Pt27fT3YZGo0HZsmURHR2tlLWWK1euAACaNGmSYdkHDx7glVdeMXvduhNEesqUKWN0uq4/lqn5bm5uePTokSo4+uyzzxAWFoadO3eiffv2cHBwQI0aNdC0aVP06tULdevWVcqeP38eP/zwg8F6GzdujEGDBgEA5syZg44dO2Lx4sVYvHix0mG+ZcuW6Nu3r6put27dyvAzmzoesiouLg59+/bFunXr0i335MkTo9NN1VV3TIwfPx7jx49Pd90PHjwAADx8+FD5W2T03cqKEiVKmOxjV7BgQURHR6uOhRf9Dlr62AXwwoE9WQ4DJ8pzdJ3Cnz17hmbNmhnM1/0QBgUF4dtvv0W+fPmytB0RUf4/fPhw9OjRAxs2bEBYWBjCwsKwfPlyLF++HBMmTMC+fftQokSJLG3nRaWXCTF32W7dusHFxSXdskWKFMnUutPrnK9jZ5d+Ujyj+foKFCiAHTt2IDw8HFu3bsWBAwdw4MABHDlyBIGBgRg6dChmz54NALh3756StUxLFzhVrlwZFy5cwPbt27F7924cOHAA+/btw+7du/Htt99i3rx5JrMr2cnU3/fzzz/HunXrUKlSJfzwww+oW7cuPD09lSC+YcOG+Pfff1XHsT5Tfx/d9ho3bozy5cunW7eqVaua+zFeSGaOg+yQ08cu2RYGTpSn3L17F8HBwQCeX+Xu37/fZNk7d+5g69atRu9munr1qtFldCNs58+f3yBQ8PLywvvvv4/3338fwPOsxXvvvYd///0X48aNU07EusE4dVfuxui2ryubHt2J8OnTp0bn64YcyIrSpUsjIiICY8eORZ06dbK8HltSt25dJbuUkpKC9evXo1+/fpgzZw66deuGFi1aoHnz5iYDCn329vbo0KGD0mT45MkTBAYG4ptvvsEHH3yALl26wMXFRfk7pjdCu6l5Wf37rly5EgCwYsUKvPbaawbzM9u0qlO6dGkAQOfOnfHpp5+atUyRIkXg5OSExMREXLt2zWhAlZOj12f3d5BeLgx5KU8JCgpCamoq6tWrB3l+84PR15gxYwCYHtPJ1KNZFi1aBOD51bax/h36KlWqhLFjxwIATpw4oUzXjfeyYsUKo+n4devWITo6Gm5ubqhdu3a62wDUJ4GkpCSD+bo+KcboTsqmxmJ6/fXXAfzvJJzX2Nvbo1u3bkqTrv7fKSsKFiyIiRMnwsPDA/Hx8bh48SIAoHbt2nB1dUVUVBS2b99usFxkZKTR6cD//r7nzp0zmCci2LJli9HldGOHpR0SAAC2bduGqKgo8z5UGrpjYtWqVWYFl8Dz/dyoUSMAwNKlS42WMTVGmiVk93eQXi4MnChPmT9/PoD/deI2RdcRddOmTUo/DH1Hjx7FTz/9pJoWFhamNOV88sknyvTdu3cjODgYycnJqvIigk2bNgFQn7y6d++OMmXKKINK6gctV69exejRowE8b/4z1rk0LR8fH1SsWBGPHz/Gjz/+qJoXEhKCr7/+2uSy3t7eAIAzZ84Ynf/ZZ5/Bw8MDgYGBmDZtmtHA7OrVq7niGYBz5szBhQsXDKbfu3cPR44cAWA8yDAmPj4egYGBRo+dffv24fHjx8iXL5+yf52dnTF48GAAz48d/RsIEhIS8OGHHyIhIcHotlq3bg3geWBx9uxZZXpycjLGjh1rciT8ypUrAwBmzpypmn7hwgUMGTLErM9pTOfOnVG3bl0cPnwYAwYMMLoPoqOj8fvvv6uO7ZEjRyr10XUa1/npp59w7NixLNcps7L7O5gTdOPKvUgnesomVrmXj8gCQkJClFuPHz16lGH5WrVqCQCZOnWqMk13K/aIESPEzs5OqlatKr1795ZmzZqJnZ2dAJCPP/5YtZ5ffvlFAEjBggWlefPm8s4770iXLl2UW/3d3d3l+PHjqmUOHz6s3Hbs4+MjPXv2lA4dOii3pLdr185g/J30hh1Ys2aNaDQa5Tbx7t27S+3atUWj0cjXX39tcjiCWbNmCQBxdXWVt99+WwYOHCgDBw6U8+fPK2X27t0rnp6eAkCKFSsmLVu2lHfffVc6duwo5cuXFwBSr169DPe3ju527bS33evL6BZ83d9pz549RucbG2ahRo0aAkDKli0rnTp1knfffVfatm2rjM3VsmVLo7fXGxMdHS0AxM7OTmrUqCHdunWT3r17S4MGDZS/w9dff61aJjY2Vvz9/ZX93alTJ+nevbsUL15cihQpIv369TO5X3TjPDk7O0ubNm3kzTffFG9vbylYsKB8/PHHRocj0D8mqlevLr169ZKWLVuKg4ODtGzZUho2bGh0H2a0b0VEbt++rQwf4OLiIg0bNpRevXrJ22+/LX5+fpIvXz4BYHA7/kcffaTst+bNm0vv3r2latWqYmdnp3yOrAxH4OPjY7KMqSE3svIdNGfoh4yO76we27r1Zmb/kGUw40R5hq7ZrVOnTihUqFCG5XVXbsaa67p06YIdO3agePHiCA4OxuHDh1GrVi0EBQVh+vTpqrKdOnXCxIkTUbduXVy5cgVr165FSEgI3N3dMW7cOJw+fRp+fn6qZerWrYsTJ07go48+Qr58+bBu3Trs27cPNWvWxG+//YZNmzZlatTwt99+G5s2bUKjRo1w8eJFBAcHw8HBAcuXL8c333xjcrkPP/wQU6ZMgY+PD4KDgzFv3jzMmzdPlRFp2rQpzpw5g/Hjx8Pb2xvh4eFYtWoVTpw4AS8vL0yYMAF//fWX2XW1lkmTJuHDDz+Eh4cHDh48iFWrVuHs2bOoV68eFi5ciK1bt2bY/Krj6uqK33//HT179kRiYiJ27NiB9evX4/79+3j77bexa9cug/3u4uKCPXv2YPz48fDy8sK2bdsQGhqKVq1a4ciRI+neVbZixQp89dVXKFGiBEJCQnDw4EE0adIEx44dMzi2dN5++23s3bsXrVq1wt27d7Fhwwbcv38fEydOxJYtWzI90ru+kiVL4uDBg/j999/h7++PCxcuYPXq1cqQA0OGDMG2bdsMsjWzZs3C/PnzUbNmTRw8eBDBwcEoUaIEdu3ahbfeeivL9cmK7P4O0stDI2JmIzUREVnMxIkT8c0332DChAkGz6sjItvBjBMRERGRmRg4EREREZmJgRMRERGRmdjHiYiIiMhMzDgRERERmYmPXLESrVarjNxboEABg6dkExERkeWJCOLj4wEAnp6eGT5HkIGTlURFRcHLy8va1SAiIqL/FxkZiWLFiqVbhk11RERERGZixslKChQooPw/MjISLi4uVqwNERHRyykuLk5pAdI/N5vCwMlK9Ps0ubi4MHAiIiKyMnP6G7OpjoiIiMhMDJyIiIiIzMTAiYiIiMhM7OOUQ+Li4tJ9T0RERLaPgVMOcXV1tXYViIiI6AWxqY6IiIjITMw45ZDY2FjVe/1xI4iIiCh3YOCUQzhOExERUe7HpjoiIiIiMzFwIpt35MgR/PDDD7h//761q0JERC85NtWRTUtNTUWnTp1w7949XLlyBX/++ae1q0RERC8xZpzIpsXFxeHevXsAgEuXLlm5NkRE9LJj4EQ2LSUlxej/iYiIrIGBE9m01NRUo/8nIiKyBgZOZNOYcSIiIlvCwIlsGjNORERkSxg4kU3TD5aYcSIiImtj4EQ2TT9YYsaJiIisjeM45ZC4uLh035NxzDgREZEtYeCUQ1xdXa1dhVyJGSciIrIlbKojm8bO4UREZEuYccohsbGxqvdxcXHw8vKyUm1yDw5HQEREtoSBUw5xcXGxdhVyJWaciIjIlrCpjmwaM05ERGRLGDiRTWPGiYiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimcQBMIiKyJQycyKZxAEwiIrIlDJzIpjHjREREtoSBE9k0/WBJq9VCRKxYGyIietkxcCKblrZ5js11RERkTQycyKalbZ5j4ERERNbEwIlsWtpAif2ciIjImhg4kU1jxomIiGwJAyeyaezjREREtoSBE9k0NtUREZEtYeBENo1NdUREZEvsrV2Bl0VcXFy678k4ZpyIiMiWMHDKIa6urtauQq7EjBMREdkSNtWRTWPGiYiIbAkzTjkkNjZW9T4uLg5eXl5Wqk3uwYwTERHZEgZOOcTFxcXaVciVmHEiIiJbwqY6smnMOBERkS1h4EQ2jRknIiKyJQycyKYx40RERLaEgRPZNGaciIjIljBwIpvGZ9UREZEtYeBENi1thokZJyIisiYGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmkcjoCIiGwJAyeyaRyOgIiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimMeNERES2hIET2TRmnIiIyJYwcCKbxuEIiIjIljBwIpvGATCJiMiWMHAim8aMExER2RIGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmnMOBERkS1h4EQ2jRknIiKyJQyczDRx4kRoNBrVq06dOtauVp7HjBMREdkSe2tXIDepUaMGtm7dqrx3cHCwYm1eDhw5nIiIbAkDp0ywt7dH8eLFrV2NlwqfVUdERLYkzzTVLVmyBB988AHq1KkDJycnaDQaBAUFpbtMeHg4OnToAA8PD7i4uKB+/fpYuXKlyfLnzp1DiRIlUKFCBQwYMAD37t3L5k9BabGpjoiIbEmeyTh99dVXuH79Ojw9PVGiRAlcv3493fJ79uxBu3btkD9/fvTq1Qtubm5Ys2YNevbsiZs3b2L06NGq8vXq1UNQUBAqVaqE27dv4+uvv0bLli1x/PhxODk5WfKjvdTYOZyIiGxJnsk4zZ07F9euXcODBw8wZMiQdMumpKTg/fffh52dHUJDQ/Hnn39i2rRp+O+///DKK6/giy++MAi8Xn/9dXTv3h3Vq1dH+/btsXnzZly9ehWbNm2y5Md66THjREREtiTPBE6tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOHCdNdRtGhR+Pr64urVqy9SbcoAM05ERGRL8kxTXWaEhIQAANq2bWswr127dgCAvXv3pruO6OhoXL9+Hb6+vkbnx8XFpbt8RvPpOWaciIjIlryUgVNERAQAoGLFigbzihcvDldXV6WMzmeffYZOnTqhTJkyuHXrFr744guUKlUKHTp0MLoNV1fX7K/4S4gZJyIisiUvZeAUExMD4HnTnDEFCxZUyujcvHkTvXr1QlRUFLy8vNCsWTMsXrwYBQoUsHh9X2bMOBERkS15KQOnrFi+fHmmysfGxqY7Py4uDl5eXi9SpZcCM05ERGRLXsrASZdpSptV0nny5AkKFSr0QttwcXF5oeXpOWaciIjIluSZu+oyQ9e3KW0/JgC4d+8eYmNjjfZ/ehFxcXEGL8oYH7lCRES25KUMnJo1awYA2L59u8G8bdu2qcpkF1dXV9WLzXTm4SNXiIjIlryUgVOrVq1Qrlw5LFu2DCdOnFCmx8TEYPLkyXB0dES/fv2sV0FSMONERES2JM/0cZo7dy7CwsIAAKdOnVKm6cZsaty4MQYNGgTg+cN6586di3bt2qFp06aqR65cv34dU6dONTk+U1al7SzOzuEZExH2cSIiIpuSo4FTbGwsIiMjER0djUKFCsHLyyvbxjsKCwszGO17//792L9/v/JeFzgBQIsWLRAWFoYJEyZgxYoVSE5ORvXq1fHjjz+iZ8+e2VInfewsnnlardZgGjNORERkTRoREUtuYNu2bVi/fj127dqFy5cvG8yvUKECWrZsibfeeksZtftlEBcXpwSNsbGxDKyMSExMRP78+VXT2rVrh61bt1qpRkRElNdk9nxskYxTamoqfvvtN8yYMQOXL1+Gfmzm6uqqDDAZFxeHiIgIRERE4M8//0SFChUwYsQIDBkyBPny5bNE1awm7V10vKsuY8aa5ZhxIiIia8r2zuFbt25FtWrVMGLECFy/fh1vvvkmZs2ahWPHjiExMRFPnjzBrVu38PTpUzx79gxHjhzBjBkz0LFjR1y7dg0jRoxA9erVlbvb8greVZd5xoIk9nEiIiJryvamOjs7O3h5eeGzzz5Dv3794OnpafayUVFRWLhwIX766SdERUXlqZOkRqMxOY9NdcZFR0ejcOHCqmlNmjRBaGiolWpERER5jdWb6r777jt88sknWXqGm6enJ0aPHo0PP/wQv/zyS3ZXzap4V13mGcs4samOiIisyeKdw8k4dg7P2L1791CiRAnVNH9/fxw6dMhKNSIiorwms+fjl3IATMod2DmciIhsjVUHwLx69SpOnjwJHx8f+Pn5WbMqZIPYOZyIiGyNxTNOGzZswNtvv43Dhw+rpv/888945ZVX8Pbbb6N27dp47733LF0Vq+JDfjOPGSciIrI1Fg+cFi1ahK1bt6Jy5crKtPPnz2PcuHEQEdSoUQMFChTAwoULsXHjRktXx2o4HEHmMeNERES2xuKB0/Hjx1GjRg24ubkp05YuXQoAmDNnDo4dO4bw8HDky5cPf/75p6WrQ7kIM05ERGRrLN7HKSoqCjVr1lRNCwkJgbOzM/r37w8AqFSpEho3bowzZ85YujpWw+EIMo8ZJyIisjUWD5yePXumenxKamoqjh07hvr168PR0VGZXrJkSRw8eNDS1bEaDjeQecw4ERGRrbF4U12xYsUQERGhvD948CASEhLQqFEjVbmEhAQGF6TCjBMREdkaiwdODRs2xH///Yfly5cjJiYGkydPhkajQevWrVXlzp07h5IlS1q6OpSLMONERES2xuJNdWPHjsX69evx7rvvAgBEBLVr10bTpk2VMjdv3sT58+fz9JAEaYcf4HAEGTMWODHjRERE1mTxwKlWrVoIDg7GpEmTcP/+ffj7+2PKlCmqMitXroS7uztatWpl6epYjW44dzIfn1VHRES2hs+qyyEajcbkPD6rzrg9e/agZcuWqmmurq54+vSplWpERER5TWafVWfVR668TDgcQeaxczgREdmaHA2cDh48iJCQENy6dQsiAm9vbzRv3hwNGjTIyWpYBTNKmcfO4UREZGtyJHC6fPky+vXrp4zTpGsd1DVf1atXD4sWLUKFChVyojqUSzDjREREtsbigdOdO3fQpEkT3Lt3DwUKFED79u1RtmxZAMC1a9ewdetWHDx4EE2bNkV4eDhKlSpl6SpRLmEsSNJqtRCRdPuMERERWYrFA6evv/4a9+7dQ9euXTFnzhwULVpUNT8qKgpDhw7F6tWrMWHCBMydO9fSVaJcwlSzXGpqKuzt2T2PiIhynsXvqitVqhQ0Gg2uXLmiesSKvqSkJJQrVw5arRZ37tyxZHVsRmZ78b+MVq5ciZ49expMT0hIQP78+a1QIyIiymsyez62+Mjhjx49QuPGjU0GTQDg6OiIxo0bIzo62tLVoVwkvYwTERGRNVi8vcPb29usUbLj4+PzdP8mjhyeeaYCJN5ZR0RE1mLxjFP37t0REhKC27dvmyxz+/Zt7N69G926dbN0dazG1dVV9eIYThkzFTgx40RERNZi8cBp/PjxqF69Olq2bIlNmzYZzN+8eTNatWqF1157DRMmTLB0dSgXMZVZYsaJiIisJdub6tI+IgMA7OzsEBERgc6dO8PDwwO+vr4Ang9H8PjxYwBAgwYN0LFjR+zatSu7q2QTOHJ45jHjREREtibbA6eQkBCT80QE0dHRRjuBHzhwIE+PzcO75jKPGSciIrI12R447dmzJ7tXSS8pZpyIiMjWZHvg1KxZs+xeJb2k9DNLDg4OSE5ONphORESUkyzeOZwoq/QzS05OTkanExER5SQGTmSz9DNL+oETM05ERGQtOfbAryNHjmD16tW4cOECnjx5AmNPetFoNHn2rjrKPGaciIjI1uRI4PTpp5/il19+UYIljUajCpx07/PyXXWUeQyciIjI1li8qW7VqlUIDAxEqVKl8Mcff6Bt27YAgG3btmHWrFlo0KABRATjxo3D7t27LV0dq4mLizN4UfrYVEdERLbG4hmnP//8E/ny5cOuXbtQsWJFHDhwAADQpk0btGnTBkOHDsX48ePx888/o0ePHpaujtXonrxM5mPGiYiIbI3FM07Hjx9HvXr1ULFiRZNlvvnmG5QoUQLff/+9patDuYh+ZsnR0dHodCIiopxk8YzT06dPUaZMGeW97gQYGxurZGHs7OxQr1497N2719LVsRo+ciXzmHEiIiJbY/GMU9GiRZXn0QGAp6cngOfPqdMXFxeHJ0+eWLo6VuPi4mLwovSxjxMREdkaiwdOvr6+uH79uvK+Zs2aEBEsW7ZMmXbv3j3s3bsXPj4+lq4O5SLMOBERka2xeODUqlUrnD9/Xskwvf766yhcuDB+/PFHdO/eHaNHj0a9evUQFxeHrl27Wro6lIsw40RERLbG4n2cevXqhTt37uDmzZvw9fWFi4sLFixYgF69emHNmjVKudq1a+Pzzz+3dHUoF2HGiYiIbI3FA6fKlSvjr7/+Uk3r1KkTIiIisHHjRjx69AiVK1dGp06dkC9fPktXh3IRZpyIiMjW5NgjV9IqWbIkPvjgA2ttnnIBZpyIiMjW8CG/ZLNMBU7MOBERkbVke+B0584dm1oP5V6mmuqYcSIiImvJ9sCpYsWKGDduHKKjo7O0/KNHjzBmzJh0RxqnlwMzTkREZGuyPXBq27YtfvrpJ3h7e6NPnz7YsWMHEhMT010mMTER27ZtQ+/eveHt7Y2pU6eiXbt22V01ymWYcSIiIluT7Z3D161bh507d+KTTz7BsmXL8Pfff8PBwQF+fn6oXLkyihQpgoIFC+LJkyd4+PAhzp49i//++w/JyckQEVSrVg2BgYFo3bp1dlfNquLi4tJ9T4b0AyQ+q46IiGyBRe6qa926NU6dOoUdO3Zg1qxZ2L59Ow4fPozDhw8DADQaDUREKe/k5IROnTph2LBheS5g0tE9l4/Mx4wTERHZGosOR9CmTRu0adMGiYmJ2L9/P44fP47IyEjExMTAw8MDxYoVQ61atdCwYUPViZEI4HAERERke3JkHCcnJye0bNkSLVu2zInN2aTY2FjV+7i4OHh5eVmpNrkDB8AkIiJbY7UBMF82Li4u1q5CrsOMExER2RoOgEk2ixknIiKyNQycyGaZuquOGSciIrIWBk5ks3QBUr58+WBv/79WZWaciIjIWhg4kc3SBUj58uVDvnz5lOnMOBERkbUwcCKbpQuQ7O3tmXEiIiKbwMCJbBYzTkREZGssHjiFhoZi//79lt4M5UHMOBERka2xeODUvHlzjB8/3tKboTyIGSciIrI1Fg+cChUqhJIlS1p6M5QHMeNERES2xuKBk5+fHyIiIiy9GcqDmHEiIiJbY/HAacSIEQgPD8fmzZstvSnKYziOExER2RqLP6uuZs2aGDZsGLp06YL+/fuja9eu8PX1hbOzs9HyZcqUsXSVKJfQb6pjxomIiGyBxQOnsmXLAgBEBPPmzcO8efNMltVoNMwmkEK/qU4/48TAiYiIrMXigVPp0qWh0WgsvRnKg0xlnBhcExGRtVg8cLp27ZqlN0F5FDNORERkayweONFzcXFx6b4nQ8w4ERGRrWHglENcXV2tXYVchxknIiKyNTn2rLp9+/ahR48e8Pb2hpOTEwYOHKjM27FjB7744gvcu3cvp6pDNk5EmHEiIiKbkyMZp++//x4TJkyAiCjT9P/v7u6OH3/8Ed7e3hg6dGhOVCnHxcbGqt7HxcXBy8vLSrWxfVqtVvk/B8AkIiJbYfGM05YtW/D111+jVKlSWLlyJSIjIw3K+Pv7o2jRoti0aZOlq2M1Li4uBi8yTT844gCYRERkKyyecfr111/h5OSELVu2oGrVqibL1ahRg49mIYV+cMQBMImIyFZYPOMUHh4Of3//dIMmAChatCj7OJGCGSciIrJFFg+c4uLiULx48QzLxcTEqPq10MtNP3BixomIiGyFxQMnLy8vXLp0KcNyFy5cQOnSpS1dHcol9LNKaTuHM+NERETWYvHAqXHjxjhx4gT2799vssymTZtw6dIltGjRwtLVoVwibcbJzs5OeXQPM05ERGQtFg+cRo8eDY1Gg7fffhvr1683yBZs3boVgwYNgoODA4YPH27p6lAukTbjBEDp58SMExERWYvFA6datWph2rRpiIqKQteuXeHh4QGNRoM1a9bAw8MDb7zxBu7fv49p06ahSpUqlq4O5RJpM07A/wIoZpyIiMhacmTk8I8//hjBwcGoW7cuEhISICJ4+vQpnjx5gurVq2PDhg0YNmxYTlSFcglmnIiIyBbl2LPq2rVrh3bt2uHhw4e4evUqtFotSpcujRIlSuRUFSgXSTscgf6/zDgREZG15PhDfosUKYIiRYrk9GYpl0k7AKb+vwyciIjIWizeVBcUFIRbt25ZejOUx6SXcWJTHRERWYvFM07vvfceNBoNKlasiNatW6N169Zo2bIlChYsaOlNUy7GjBMREdkiiwdO/fv3x+7du3Hx4kVcvHgRv/32G+zs7FC7dm0lkGrUqBEcHBwsXRXKRZhxIiIiW2Txprr58+fj2rVruHDhAmbPno3OnTvDzc0Nhw8fxuTJk9GqVSsUKlQI7du3x7Rp0yxdHcoljA1HwIwTERFZW44MRwAAFStWxIcffoi1a9fi4cOHOHToECZNmoTmzZsjJSUF27dvx9ixY3OqOmTjjA1HwIwTERFZW44FTvqSk5Px9OlTZSwn3YlQRKxRHbJBzDgREZEtyrHhCE6cOIEdO3Zg586dCAsLw7NnzyAiKFiwIN544w2lvxMRwIwTERHZJosHTr169cLu3bvx8OFDiAgcHBxQv359JVDy9/dXTohEOsY6hzPjRERE1mbxwGnlypXQaDR47bXXMGHCBLRt2xYFChSw9GYplzM2HAEzTkREZG0W7+Pk5uYGEcF///2Hd999F2+//TamTZuG//77z9KbplyMj1whIiJbZPGM06NHj3D48GHs3LkTO3fuxJ49e7B9+3ZoNBp4enqiVatWaNOmDdq0aQNvb29LV4dyifQGwBQRaLVa2NlZ5d4GIiJ6iVk8cMqXLx8aNGiABg0aYPz48YiPj0dISAh27tyJXbt2YcWKFVixYgUA4JVXXsG5c+csXSXKBdLLOOnmM3AiIqKcluNnngIFCqBDhw4IDAzEokWLMHr0aDg5OUFEcPHixZyuDtmo9IYjANjPiYiIrCNHA6dbt25hwYIFePfdd1G8eHHUqlUL06ZNw7Nnz+Dg4IAmTZrkZHWy7MMPP4RGo8GsWbOsXZU8K73hCAD2cyIiIuuweFPd+vXrlf5NERERAJ73UdFoNKhWrZoyLEGzZs1yxd12mzZtwr///ouSJUtauyp5GjNORERkiyweOL399tvK/0uXLq0ESq1atUKxYsUsvflsFRkZiQ8//BDBwcHo1KmTtauTpzHjREREtsjiTXVvvfUWZs+ejQsXLuD69euYN28eevfune1B05IlS/DBBx+gTp06cHJygkajQVBQULrLhIeHo0OHDvDw8ICLiwvq16+PlStXmiw/YMAAjBgxAtWrV8/WupOh9AbATDufiIgop1g847R27VpLbwIA8NVXX+H69evw9PREiRIlcP369XTL79mzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHq8rPmjULcXFxBtPJMtIbADPtfCIiopySZ+7nnjt3Lq5du4YHDx5gyJAh6ZZNSUnB+++/Dzs7O4SGhuLPP/9UBuV85ZVX8MUXX6gCr/Pnz+O7777DwoULeQt8DmHGiYiIbFGORQHnzp3DkCFD8Oqrr8LV1RWurq549dVX8eGHH2bL2E2tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOFCZfrBgwfx4MEDVKhQAfb29rC3t8f169fx8ccfq5an7MOMExER2SKLN9UBQFBQEIYMGYLk5GSIiDI9IiICERERWLBgAf744w8EBATkRHUQEhICAGjbtq3BvHbt2gEA9u7dq0x76623UKdOHYNy/fv3x4ABA4xuIy4uLt06ZDT/ZceMExER2SKLB05Hjx7F+++/j9TUVHTs2BEDBw5E+fLlAQBXrlzBvHnzsHHjRrz//vuoWrWqQYBiCbphESpWrGgwr3jx4nB1dVXKAICHhwc8PDxU5RwcHFCiRAlUqFDB6DZcXV2zr8IvIWaciIjIFlk8cPr555+h1Woxb948g+xMtWrV8OabbyIoKAjvvfcepk2bhr///tvSVUJMTAyA501zxhQsWFApQ9bBjBMREdkiiwdO+/btg5+fn8kmLQDo378/Zs2ahdDQUEtXJ9tcu3Yt3fmxsbHpzo+Li4OXl1c21ihvMTYAJjNORERkbRYPnKKiotCiRYsMy1WqVAmnTp2ydHUA/C/TZCqr9OTJExQqVOiFtuHi4vJCy7/sjA2AyYwTERFZm8XvqvPw8MCNGzcyLHfjxg2TTWfZTde3Sb8fk869e/cQGxtrtP/Ti4iLizN4kWnGmuqYcSIiImuzeOBUt25dHDhwALt37zZZZvfu3di/fz/q1atn6eoAAJo1awYA2L59u8G8bdu2qcpkF90QDLoXm+nSZ6xzODNORERkbRYPnIYPHw6tVotOnTphzJgxOHPmDOLj4xEfH4/Tp0/j008/VZ77Nnz4cEtXBwDQqlUrlCtXDsuWLcOJEyeU6TExMZg8eTIcHR3Rr1+/HKkLGceMExER2SKL93Fq164dvvzyS0yaNAnTpk3DtGnTDMqICMaPH290XCVzzZ07F2FhYQCg9JWaO3euMmZT48aNMWjQIADPMxdz585Fu3bt0LRpU9UjV65fv46pU6fC19c3y3UxJm1ncXYOTx8zTkREZItyZADM7777Do0aNcLUqVNx4MABPHv2DADg5OSExo0bY/To0Wjfvv0LbSMsLEw12jcA7N+/H/v371fe6wInAGjRogXCwsIwYcIErFixAsnJyahevTp+/PFH9OzZ84XqYgw7i2cOM05ERGSLciRwAoD27dujffv2SE1NxcOHDwEARYoUUZ0MX0RQUBCCgoIytYy/vz+2bNmSLdun7JXRAJjMOBERkTVYLHC6dOkS1q5di2vXrsHJyQl+fn7o0aMHnJ2dUaxYMUtt1malvYuOd9WlL6MBMJlxIiIia7BI4DR9+nSMGTPGICswfvx4BAcHo1q1apbYrE3jI1gyx9g4Tsw4ERGRtWX7XXVhYWEYPXo0UlJSUKBAAdSsWRPly5eHRqPBrVu30LVrV2i12uzeLOUxxkYOZ+dwIiKytmwPnGbNmgURQUBAAO7du4cjR47g4sWLOHbsGMqXL49Lly5h69at2b1ZmxcbG6t6RUZGWrtKNo2dw4mIyBZle+D077//wtvbG3/88YfqTrLXXnsNv/76K0QEBw8ezO7N2jwXFxeDF5nG4QiIiMgWZXvgFBkZiTp16sDR0dFgXuPGjQEA9+/fz+7NUh7DjBMREdmibA+ckpKS4OHhYXRewYIFlTJE6WHGiYiIbFGOjeP0suNwBJnDjBMREdkiiwROly5dwqJFi7I0P68+I47DEWQOM05ERGSLLBI4pX3UiT6NRmNyvkajybOBE2UOM05ERGSLsj1wKlOmDDQaTXavNtfjQ34zx9gAmMw4ERGRtWV74HTt2rXsXmWewOEHMsfYAJjMOBERkbVl+111RNkho2fVMeNERETWwMCJbJKxzuHMOBERkbUxcCKbxIwTERHZIo7jlEM4jlPm6DJKdnZ2ys0GzDgREZG1MXDKIRzHKXN0GSX9YIkZJyIisjY21ZFN0mWU9IMl/SCK0eFEvAAAONhJREFUgRMREVkDM045hOM4ZU5GGSc21RERkTUwcMohHMcpc3SBkX7gxIwTERFZG5vqyCbpAiNTTXXMOBERkTUwcCKbZCzjxM7hRERkbQycyCYx40RERLaIgRPZJA5HQEREtoidw3MIB8DMnIyGI2DGiYiIrIGBUw7hAJiZw4wTERHZIjbVkU1ixomIiGwRM045hANgZg4zTkREZIsYOOUQDoCZORkNgMmMExERWQOb6sgmGRuOgBknIiKyNgZOZJOYcSIiIlvEwIlsjlarVf7PjBMREdkSBk5kc/SDImaciIjIljBwIpujHxQx40RERLaEgRPZHHMyTgyciIjIGjgcQQ7hI1fMZ07GiU11RERkDQyccggfuWI+UxknOzs7o2WIiIhyCpvqyOboZ5P0AyeNRqO8Z8aJiIisgRmnHMJHrphPP5uk3zwHPA+kUlNTmXEiIiKrYOCUQ/jIFfOZyjgBzwOppKQkZpyIiMgq2FRHNiejjFPaMkRERDmFgRPZnIwyTmnLEBER5RQGTmRzmHEiIiJbxcCJbI6p4Qj03zPjRERE1sDAiWyOqQEw9d8z40RERNbAwIlsDjNORERkqxg4kc0xp3M4M05ERGQNDJzI5pjTOZwZJyIisgYGTmRzmHEiIiJbxZHDc0hcXFy67+l/mHEiIiJbxcAph7i6ulq7CrkGM05ERGSr2FRHNocDYBIRka1iximHxMbGqt7HxcXBy8vLSrWxbXzkChER2SoGTjnExcXF2lXINczJOAGAVquFnR2TpkRElHN41iGbk94AmPqBFLNORESU0xg4kc1Jr6lO/z37ORERUU5j4EQ2J72mOmaciIjImhg4kc1hxolSUlIwePBgdOvWDTExMdauDhGRgp3DyeYw40Rr167FX3/9BQCoUaMGxo8fb+UaERE9x4wT2RxmnGjPnj3K/7ds2WLFmhARqTFwIpvDjBPt3btX+f+hQ4fw6NEjK9aGiOh/GDi9xLRaLWJjYyEi1q6KSmYyTiICrVabY3Ujy7t//z7OnTunvNdqtdi5c6cVa0RE9D8MnF5iAwcOhJubG77//ntrV0XF3IxTUlISunbtCmdnZ6xYsSLH6keWtW/fPoNpW7dutUJNiIgMMXB6SYWHhyMoKAgA8P333yMyMtK6FdKT3gCY+u//+OMPrFu3DklJSfj2229zrH5kWaGhoQbTtm7danOZUSJ6OTFwekkFBgYq/09KSsLvv/9uxdqomdtUN336dOX/Z8+exbVr1yxdNcoBuv5NGo0GDRs2BADcvXsXp06dsma1KA+6efMmBg0ahIULF1q7KtkiOTkZw4YNQ7t27TBv3jwkJCRYu0p5EgOnl9CNGzewatUq1bQ5c+YgMTExS+s7cuQILl++nB1VA5D1zuHBwcHZVgdLyI13ASYnJ+dopic6OhonT54EAPj5+aFXr17KPDbXUXZKSkrCm2++iXnz5qF///4IDw9XzY+JicF3332HXbt2WamGmTd//nzMnj0b27dvx6BBg+Dt7Y0xY8bg/v371q5ansLA6SU0Y8YM5SReoEABAM875C5fvjzT69qwYQPq1q2LatWq4cqVK9lSP3MzTmnf22rgdPbsWfj7+6NgwYIYOXIkoqKirF0lk0QEx48fx8SJE+Hn5wdHR0d07949x4KnsLAwZVtNmzZF+/btlXm5IXDaunUrOnfujJCQEGtXJc9LSUlBfHy8wfTU1FQEBgaiT58+uHnzpsnlJ02ahBMnTijvJ06cqPxfRNC7d298/fXXaNOmDebNm5edVTfq6dOnmDFjBoKDg7N0kZWcnIwffvhBNe3Ro0f4+eef0bBhQ8TFxWVXVUnIKmJjYwWAAJDY2NhsW69Wq5WRI0fK/Pnzjc6PiYmRggULCgBxcnKSdevWKfWoWbOmaLXaTG3vrbfeUpafNm1alusdHx8vDx8+FBGRb775Rlnn5s2bVeU++ugjZR4AmThxopQoUUIAiLOzs8THx2e5DtlNq9XKH3/8Ic7Ozqo6FyxYUCZNmiRxcXEvtP4LFy7Itm3bJCUlxWDe+fPnZceOHWb/PVNSUmTp0qVSqVIlVV11r5UrV6a7fEJCgkRHR2flY6h8+umnyjbXrl0rWq1WypUrJwDEwcFBnjx58sLbsJSYmBhxc3NT/sa3b982e9lly5ZJ8+bNZfr06ZKcnJxu2cTERHn8+HGmv6u2SKvVSnBwsHz//fdy/fp1s5eLj4+Xhg0bikajkT59+sj9+/dFROTRo0fy+uuvK8fQG2+8YXT5o0ePSr58+QyO84MHD4qIyJo1awzm/fbbby/+gdPRvn17ZVvlypWTqVOnyqNHj8xePigoSFm+UaNG0rdvX3F0dFSmjR071oK1z90yez5m4GQllgqcfv75Z2W9EyZMMPhxDQwMVOa///77otVqpW7dusq0vXv3mr2tZ8+eiYuLi7Jshw4dDMpotVqjJ/aUlBQJCgqSAQMGyGuvvab8iLVq1Uq6du2qrHPr1q2q5UaMGKHM8/Hxkfj4eBk4cKAybcuWLWbX35IeP36s+hzGXpUqVVJ+8HW0Wq2Eh4fLli1bZN++fXLs2DGJjIw0WH9ERISy7zt06CCPHz9Wlg8MDBQ7OzsBIAMHDkz3BJuamirLly+XypUrp1vX8uXLS2JiotF17NmzR4oWLSr29vby7bffSmpqapb3m7+/v7LNBw8eiIg6WP7nn3+yvO703L17V15//XVp06aNHDlyJEvr+OWXX1T7rFu3bmYtd/bsWdVJvFatWhIeHm5Q7t69ezJq1CglEHdychIfHx9p0qSJ7N69O0t1tqYTJ05IixYtlM+dP39+GT9+vFm/h/oXVwCkSJEiMm3aNClfvrzBsXvx4kXVss+ePZOqVasq82vXrq38v3379hIbGyulS5c2+j2YOXOmRfbF7t27jW7Pw8NDTpw4keHyKSkp8sorryjL7d+/X0REzp07pwRP9vb2cubMmReu64YNG6Rt27ayaNGiF15XZsXExMj+/fvl999/N/q7mFUMnHIJSwVOH3/8seqLN2DAAElKShKR51kBHx8fZZ7uS7R06VJlWsuWLWXatGnSv39/6dy5s3IFZsy2bdtU23J1dVW2JSJy/PhxcXNzkypVqignQR39AC69186dO1XLTZ48WZm3atUqEVFfHQ4fPjxb9uOLSEhIkCZNmqg+x9ChQ+XSpUsyePBg1UmyYcOGkpCQICLPr6L1M3i6l0ajkaVLl6q20aNHD1WZV199VU6dOiUDBgwwWP7LL780Ws+4uDij22vYsKHMmTNHbt26JS1btlSmz5gxw2AdS5cuVV3VApC2bdsaBITmePLkibJvqlatqkzfuHGjsu4PP/ww0+vNSFJSkjRu3FjZhr29vUyePNlowG9KSkqKlC1b1mBfbty4McNlO3ToYLCcnZ2ddO/eXcaNGyczZsyQTz/9VAoUKGDye1K4cOFMZbj0PXjwQPr27SuffvqpPH36VDVv586dUr9+fenVq1e2/U5FRkbK+++/LxqNxuhnKVmypKxfv97k8tevXzfI4hrbf7r/jxgxQrX8559/rszz8/OT2NhY8fX1Vabp/z3atm0rY8eOVa17yZIl2bIfdLRarTRo0EBZf40aNVTbe/311zNcx/Lly5XyzZs3V80bP368al5Gmcpbt27JoEGDpFChQtKvXz+JiYlR5i1atEi1by0RPGm1Wpk/f74MHz5cBg0aJO+++6688cYbqr8RANmwYUO2bZOBk42KjY1VvSIjIy0SOGm1Wpk2bZrqAGvWrJm8+eabqh9e/S9jYmKilCxZ0ugPUJkyZVTBkL7hw4cblD9w4IAyv3v37sr0L774QpmelJQkpUqVUubly5dPXnvtNYMvBgDZs2ePapsPHz6UkSNHyuzZs5UfgJiYGLG3txfgeYo7s00YDx8+lJkzZ8qWLVteuPkjNTVV9bkLFSok69atU5U5ffq00rwIQHr06CHR0dHStGlTkyeCggULKk0Zhw8fTvekYeyV9kr5/v37Ur9+fVWZRo0ayc6dO1X74MiRI8p8T09PVWZrypQpJrdXqlQpWbVqlRIUGhMfHy9DhgyRjh07yvz582X16tVGA6SnT58qwZmjo6OMGzdO+TFPTk6WkJAQ+eWXX+TKlSvp/m1iYmKkf//+0rNnT9WVd9qLDd2rcePGcvXq1XTXqaPf5O3l5aX6/sTGxopWq5X//vtPFixYoLqI2LJli2qfVa9ePcO/Zf78+aV58+ZSrVo1cXd3V32n9f92ixcvll69esm///6bbt31j9eKFSvK0aNHJTU1VSZPnqw6Sb7zzjsv9P1ITk6WX3/9VVVn3Xf2/fffFwcHB2Wavb29nDt3zuh69C8aBgwYYHARUbNmTTl27JgSXLm5uSnHS1hYmPKZHBwc5OTJkyIiMnfuXIP97OjoKBcvXhStVqsKPjw9PZVuBTp37tyRQ4cOZbh/oqOjJTAwUPU7qX9hULVqVUlJSZHz589LmTJlBHh+4ZT2OExKSpLIyEjRarWSmpoq1apVU9aR9mIzPj5eFdSbCvyio6Pl888/NwhKK1SoIMePH5egoCCDYNfe3t5gezq3b9+W6tWrS+HChaVHjx6yePFiiYqKSnf/iIj8+eefZv2mTZo0KcN1mYuBk41K7wDIzsBJZ+XKleLk5GRymyEhIary6Z0EFy5caLB+rVZr9Ar7+++/F5HnJzv9L6CHh4fSP0U/w9WhQwelX1JiYqLMnDlTihYtqvxg3Lx506zPq5/yP3/+vFnLxMfHy48//igeHh7Kss2bN5djx46Ztbwxn3zyibIuFxcXo00uIs/7WOg3cxYpUkS13Lhx42T06NGqzFWbNm1Eq9VK8+bNlWljxoxR/WjqTqx///23zJgxQ5mm0Wjkiy++kKVLl8qmTZukQoUKyjw3Nzf5559/TP7ov/POO0rZUaNGSVBQkEHQNXjwYNm+fbsqaACeB3wBAQGya9cug/UOHjzY5DH3999/q8r269dPNb9o0aLSvXt3KVSokOqElrZZRl///v2Vsk5OTjJ16lRZvHix6kQ5ePBgVbDg7u4uq1evzvDv3qxZM2WZzZs3S+vWrVV/N/2moRIlSkhoaKgkJyermkiXLVsmSUlJ8tNPP6mODf06f/zxx3Lnzh1lu1FRUVK8eHGlzB9//CEpKSmqYNDZ2dng+65jrInIwcFBlQHRf+lnHW/evCljx46VOXPmZJidO3DggEFQ6ObmJj/99JM8e/ZMREQuXrwobdu2VeZ//PHHBusJCQlRHQO6fnUbN26U5s2by8iRI5W+g/rH1/Tp0+Xx48eqjLv+iTcpKUnpS6d7ffXVV6pt6wdoQ4cOVaaHh4eLq6urAJC//vrL5D5ISEiQWrVqqdaflJQkr732mjJt7dq1Svnvv/9ema6fNb57965ykVmgQAFVE139+vWNfo83b96slPHy8pLLly8r87RarSxYsEA8PT1Nfh+dnJxUQZN+X8iCBQsqAai+Xr16GazHzs5OGjduLFOmTJGTJ08a1PXRo0cm6+Hm5iYNGjSQwYMHy8yZM+X06dMm93VmMXCyUaYOSHP/UFmxb98+KVy4sLKdYsWKSUBAgGzbts2gbHJyskyaNEk++eQTmT9/vqqjYZUqVQz6rZw9e1aZX7FiReX/LVu2FBGRv//+2+BzTps2TbRardSpU0eZZuwH/cmTJxIUFGTyx96YqVOnKusMDAwUkedZlfDwcIO6a7VaWbp0qXh7exv9e+g6nP7+++8SHBwsp06dkoiICDlz5oycOHFCwsPDZf/+/bJnzx7ZunWrLFu2TKZPn67qa5UvXz6Dju1pbdy4UXWS1p38Dx8+rJSJjo5WZef0gxhdv6MnT55Ily5dBHietdAP1vSbJYy9SpYsmWEfiitXrhg0x+m/Jk+erPwA3r17VxXE6r9Gjhyp/C30g2djr7TNTrGxsTJ27Nh06wE8z17cu3fP6L5ObzngedAh8vx7kzb7+dFHH5nMnh07dkwp9+qrr0pqaqpERESke+GSL18+eeONN5T3DRo0UJ1E4uLi5PTp07Jjxw5ZtGiR/PXXX3Lr1i2j29c/Kbq4uKg6R+tPDwsLUy2XnJysCrqNfR80Go3qBGhvby979+6VX3/9VQkWgOcXHKaaCsPDwyV//vyq9Q4YMMDo3+nhw4dKWQ8PD9XNHsnJyaogI70gRUTk1KlTqu9K7969lfdNmjQxCPbmz5+vzPf19TW4eePmzZtKQKvRaOTo0aNy9epV1cVCpUqVTF6A6P8+6B8vuv/XqVNHteydO3eUTHrx4sWVzP+7775r8rjatGmTyf2h3yyfL18+6du3rwQHBxtkuh0dHeWTTz6R8PBwVf8v3WvEiBGSnJwsnTp1UqaVKlVKbty4oWxLP8BN71WlShWT2d8uXbrIyZMnJSIiQu7cuWPRmyEYONmonGqqS+vGjRvy+++/y+HDhzPdaVe/30faPgf6ndCnTZumXMk5OTlJQkKC0b4z3t7esmvXLuV9Vu7iM0U/kKtSpYq0a9dO6S/j7++vdPh9+PChqmkCeH4V1Lt3b1UW5kVfGf2o68ycOVNZpkyZMkabJ/Sbc/RfK1asUMpotVo5f/68wcldq9XKkCFDTP5omXsn06hRowyWr169uuoKWSc1NVW2bNkiAQEByh2cute7774rp06dUp10J06cKEOGDFEyf2n7aOi7cuWK6srf3d1devbsKVWqVFGdgPT76jx8+FCVlWnXrp1Bk8OAAQNUx+Ljx48NmoAqVaokU6ZMMfgbBQQEKGXmzJmjTNfPGADPm0L1v1P6r0OHDpn1dzDFWPYuX758qgyHm5ubajv6x16dOnUkISFBPvvsM2VaoUKFlJstxowZo0w31TfJ09PT4GLhzp07qsC/du3aGTYd6mcXg4KClOmzZs1SpteqVcusPmitWrUyqKe7u7vR4z45OVl69uwp5cuXNwgydX788UdlPXXr1jV6U4WxfqH6TYH58+c3ekff9u3bDZbTv8Fk9erVqgyhq6urVKxYUQmu0jbVpnX9+nWTXTJ0r+7du6uaBZ89eybDhg1T5o8cOVLZRmxsrOrGokqVKsmDBw8MAtzZs2dLSEiIjB49WhUo6l5FixaV//77T86cOaPsF2dnZ1UgZmkMnHIJS3UOz06bNm1S6livXj3Vl1K/aeLChQvy3nvvKe/Xr1+vXG17eXmprqyLFSum/H/x4sXZVletVmu0j5T+j33//v1VP+IApGPHjnLq1CkRed5UGBgYqGq6y+zLzs5Oaa4014oVK2TcuHHpdu5Ne7Vap06dTAXCJ0+elBUrVkhgYKCMGjVKvvzyy0zd6vzo0SOpXbu2uLq6SkBAgBw4cMCsoDchIUFmzJihyqzpZ40CAgJUZQ8dOqQ03aQnIiJCDh48qFyF37x5U5Uxad26tYSGhkpiYqLqCr1Dhw6i1WolJCREaWquV6+e0WEsdMNJpM2WAM8zGHXr1pW6desqfXM8PDxU3+XU1FT5888/5ZdffpFr166JyPNO5F988YVqXX379s3w82bk6dOnqqYmV1dX2bp1qyQkJEibNm2U6U5OTtK7d2/5559/VMe5fjATFhYmkyZNUgUXycnJRjOJffv2NchUvfvuu3Lp0iVJSEhQNek2atTIrL/tgQMHlGXq168vIiJXr15VNV+aCmzS2rBhg0Gdly9fnsm9+z+JiYlGh+zQ7z86ZMgQ1TJHjhxRZR+XLFkiISEhqkyVqU7b27dvV5XRD9R0GdLk5GS5d++eWd/HR48eyTfffKNqiQCeZ2rT3sGc9jOEhIQYbCMyMlJ1wVm7dm1Vtw9jAe6lS5fk119/VTVfFy5cWBWEffvttxl+luzEwCmXyA2Bk1arVV056G55jo6OVq4MKlSoICIiS5YsUcrpt7kPGzZMwsLCDH5oSpQoYfL29qxK28nXx8dH1Yyo/ypUqJByV15aMTExsnXrVvnzzz/lq6++koCAAOnTp48MGDBABg8eLB999JGMGjVKxo0bJ+PHj5fAwEBZvHixbNu2TTlBZrfHjx+rTlC57fbz9evXGwQgVapUydZj//Tp0wZBr/4JzcPDQ9XcFR8fL//++6/Jmx90Tp48KfXq1cswaB4zZozZdd2wYYOUKFFCKlWqpOqz9CIOHjwohQoVkgoVKqiaX+Pi4kw2n6YNXtMTGRmpXJxUqVJF9u3bJyLP+1m9+eabqnXa29ur7g4rXbq00aY5Y9L+7hw/flx1d+fgwYPN3iepqamqIQrM/azp2bFjh+qz6jImusDO3d1dyfxGR0er+lV99NFHynru3LkjXbp0ET8/Pzl79qzJ+qftewU8z6K/yLAfT58+lZ9//lkaN24sEydOfKHx765evWoyk6UbFsGY6Ohoo98rX1/fHB+Pj4FTLpEbAieR5wPz6erZsmVLiY+PlxUrVijTdB04b9++bfSLExoaKiIiDRs2VE3PzjsidGJiYmTo0KHy8ccfy/79+0Wr1UpiYqL88MMPqhNoq1atTPYXsWVHjx6VVq1ayZQpU6xdlSwJDQ1V7qgqUKBAtowpk9bevXuVQSjTvl701unLly9LYGCgNGnSRLlw0Gg0YmdnJ7Vr1870EAypqanZ3m8jNTXVaBNWbGysjBkzRnUTAvC8+S4zgduTJ09k//79Bhc9Wq1WZs+ebbB+4HmzS2ZvuJg9e7YqG6L7f5kyZVS3x5tj7dq1YmdnJ/7+/tk2gKqu35ezs7PSNKffZKvLavXp00eZVr9+/SxdLP7www+q/WlnZydHjx7Nls+RXc6cOWOQxTInkxoTEyONGjVSLWfOzRjZjYFTLpFbAqfk5GTVD5ejo6Ny1xsA2bFjh1I2bQq7VKlSylXRP//8o/ohNee21Ox048YN+fzzz2X+/PkvdKVGL+b8+fPy6aefmt3UkhWRkZESFBQkffv2VYZ96N+/f54YaftFPXv2TJYvXy6tW7eWMmXKmMy6ZlVMTIxMnDhRFbxmNOq8qfUYu7PQWD8gczx79izDEdkzu74FCxaogv89e/Yo9Wzfvr2sWrVKea8/nEhmRUZGqoZq0M9a2ZJDhw4pfRddXV3NDsifPn2q9EXr3LmzVb6nDJxyidwSOImIzJs3z+gVvKurq+oKaujQoar5I0eOVOalpqYqt2hntg8QUVZptdo883iS3OTBgwcya9Ys1YVVZg0aNEj1e5KZJjprSE1NVZrl7OzsVENlvGi2U9f539vbO1sebWQp4eHhMnDgQIPx9zKiu7klo2ZzS8ns+VgjkoOPPidFXFwcXF1dAQCxsbFwcXGxco1MExGsW7cOwcHBCAkJweXLlwEAn3zyCQIDA5Vya9asQbdu3ZT3Bw4cQIMGDZT3SUlJiIqKQokSJaDRaHLuAxBRrnP06FHUqVMHAFCmTBmcOnUKBQsWtHKt0jdhwgR8++23qmldu3bFqlWrXug3LykpCdu3b0fdunXh5eX1otWkNDJ7PmbgZCW5KXBK6+bNm4iKikL16tVhb2+vTH/48CGKFi0KEUGZMmVw7do1BkhElGVTpkzBzp07MXXqVNSsWdPa1cnQ5cuXUaFCBeW9l5cXTp8+DU9PTyvWijLCwCmXyM2BU3omTpyIBQsWYOrUqejevbu1q0NElKOaN2+OvXv3AgA2btyIjh07WrlGlBEGTrlEXg2ciIheZpcuXcLnn3+Otm3b4v3337d2dcgMDJxyCQZORERE1pfZ87FdTlSKiIiIKC9g4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGayz7gIWYL+gO1xcXFWrAkREdHLS/8cbM7DVBg4WUl8fLzyfy8vLyvWhIiIiIDn52bd41dMYVMdERERkZn4kF8r0Wq1iIqKAgAUKFAAGo0mS+uJi4tTMlaRkZF8WPD/434xjvvFOO4X47hfjON+MS637hcRUVqBPD09YWeXfk6JTXVWYmdnh2LFimXrOl1cXHLNgZqTuF+M434xjvvFOO4X47hfjMtt+yWj5jl9bKojIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMHwCQiIiIyEzNORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZONio8PBwdOnSAh4cHXFxcUL9+faxcuTJT60hMTMS3336LihUrIn/+/ChZsiQGDx6M+/fvW6jWlnP79m1Mnz4dbdu2RZkyZeDo6IjixYuja9euOHTokNnrCQkJgUajMfkKCgqy3IewEF9fX5Ofp3nz5pla19KlS+Hv7w8XFxcUKlQIHTt2xLFjxyxTcQsKCgpK9++s0WjQqlWrDNeTW4+XJUuW4IMPPkCdOnXg5OSUYV2fPHmCUaNGwcfHB05OTvD19cVnn32G2NjYTG9727ZtaNasGdzc3FCwYEG0aNECu3bteoFPk33M3S/JyclYs2YNAgICULlyZbi6usLNzQ316tXDb7/9htTU1ExtNzu/o5aQmeNl4sSJ6X4nrl27lqltX7x4ET169ICnpyecnZ1Ro0YN/Pbbb7Dl+9bsrV0BMrRnzx60a9cO+fPnR69eveDm5oY1a9agZ8+euHnzJkaPHp3hOrRaLTp37oxt27ahfv366Nq1KyIiIjB37lzs2rULBw8eRNGiRXPg02SPmTNn4scff0T58uXRtm1bFC1aFBEREVi/fj3Wr1+PZcuWoWfPnmavr1mzZkZ/sPz8/LKv0jnI3d0dI0eONJju6+tr9jomTZqEr776Cj4+PhgyZAiePn2K5cuXo2HDhti1axcaNWqUfRW2MD8/P0yYMMHovNWrV+PMmTNo166d2evLbcfLV199hevXr8PT0xMlSpTA9evXTZaNi4tDs2bNcOLECbRt2xa9e/fG8ePHMXXqVOzduxehoaHInz+/WdtdsmQJ+vbti6JFi6J///4AgBUrVqBNmzZYuXIlunXrlh0fL8vM3S+XL19Gt27d4OrqilatWuHNN99ETEwMNm7ciKFDhyI4OBgbNmyARqMxe9vZ8R21lMwcLzoBAQFG6+7h4WH2ds+ePYuGDRsiISEBPXr0QMmSJbF582YMHToUZ8+excyZMzPxKXKQkE1JTk6W8uXLi5OTkxw/flyZ/vjxY3nllVfE0dFRrl27luF65s+fLwCkd+/eotVqlem//fabAJDBgwdbovoWs2bNGgkJCTGYHhoaKg4ODlKoUCF59uxZhuvZs2ePAJAJEyZYoJbW4ePjIz4+Pi+0josXL4q9vb288sor8vjxY2X68ePHxcnJSSpXriypqakvWFPrS0xMlCJFioi9vb3cu3cvw/K59XjZsWOH8jsxZcoUASALFiwwWvbrr78WADJ27FjV9LFjxwoAmTx5slnbfPTokXh4eIinp6fcvHlTmX7z5k3x9PQUT09PefLkSdY+UDYxd7/cunVLZs+eLbGxsarpsbGxUqdOHQEgK1euNHu72fEdtaTMHC8TJkwQALJnz54X3m7Tpk0FgAQHByvTEhMTpUmTJgJADhw48MLbsAQ21dmY3bt34/Lly3jnnXdUV7Pu7u744osvkJSUhIULF2a4nr/++gsAMGXKFNVV0QcffIBy5cph6dKlSEhIyPb6W8rbb7+NZs2aGUxv0qQJWrRogejoaJw6dcoKNcsbFixYgJSUFHz55Zdwd3dXpvv5+aF37944d+4cwsLCrFjD7LF+/Xo8fPgQHTt2hJeXl7WrYzGtW7eGj49PhuVEBHPnzoWrqyvGjx+vmjd+/Hi4urpi7ty5Zm1z1apVePz4MYYPHw5vb29lure3N4YNG4aoqCisW7cucx8km5m7X0qVKoWhQ4fCxcVFNd3FxQWjRo0CAOzdu9cidbQGc/dLdrp48SJCQ0PRokULvP7668p0R0dHfPfddwD+dx6zNWyqszEhISEAgLZt2xrM0zUtZPSFffbsGQ4dOoRXX33V4Mug0WjQps3/tXfvQU1deRzAvwEiYAIoCgbkjWlFhkJbiG5BqaiVddoiCz7oQgF12zqCtV0RqXah3XXXWl+LqLW1QtWFpbUKbtGh2hWcYgtW6aoQFGvAKuD4KkpAXjn7h5MMMa8bDRLw95nJjJ57zsnvXk7gx72Hc2Zgx44d+OmnnzB58mTTBD6A+Hw+AMDKivtwrq+vx+bNm9HR0QE3NzdERERg7Nix/RViv+vs7EReXh6amppgb2+PkJAQTJw4kXN7Q+MuLy8P5eXlmDJliqlCHhDKJGDRokVGtRtq40Wpvr4eTU1NmDlzptYkITQ0FKWlpfj111/h7u6uty9DYygrKwvl5eV4/fXXTRb/QHiY7zfAo39Gzc3x48dRWVkJCwsLiMViTJ8+HUKhkHN7feMlLCwMAoHAbJNTSpzMTH19PQBALBZrHBOJRBAKhao6uvzyyy9QKBRa++jbd319/aBPnC5fvoyjR4/CxcUFAQEBnNvl5+cjPz9f9X8rKyukpqbi448/hqWlZX+E2q9aWlqQnJysVhYSEoKCggL4+voabF9fXw+hUAiRSKRxrO94GcwaGxvx3Xffwc3NDZGRkUa1HWrjRUnf9xtleWlpKerr6w0mTvr6GipjCAB27doFQPsPfH0e9TNqbh6cQzhixAj885//5JwY6xsvlpaW8Pb2Rm1tLXp6eoxOUvsbPaozM62trQCg9rikL3t7e1WdR+mjb73Bqru7GwkJCejs7MRHH33E6QeYk5MT1q5di3PnzqGtrQ3Xrl1DUVERxo0bh02bNmHFihWPIXLTSk5OxnfffYdr165BLpejuroaCQkJOHnyJKZNm4a7d+8a7KO1tXXIj5fc3FwoFAokJSVxTnaG4njpy5TfK/T1NVTG0KefforDhw8jIiICs2bN4tzOFJ9RcxEYGIhdu3bh0qVL6OjogEwmw5YtW8Dj8ZCUlISDBw9y6ofL2FMoFGZ5bcwrjSOEI+UPwOPHj+NPf/oTEhISOLXz9/eHv7+/6v8CgQBRUVGYOHEinnnmGWRnZyM9PR3Ozs79FbrJPfibX1BQEHbv3g0A2LNnDz777DPVvIwnlUKhQG5uLng8HhYsWMC53VAcL+ThfPPNN0hJSYGnpyf27t1rVNuh9BmNjo5W+7+XlxdSUlLg5+eHGTNmYPXq1Xj11VcHKLrHg+44mRll9q3rN7M7d+7ozNCN6aNvvcFGoVBgwYIFyM/PR3x8PD755JNH7lMkEiEqKgo9PT1GrQtlzt58800AQEVFhcG6Dg4OQ3a8AMDRo0dx+fJlREREwNvb+5H7GyrjxZTfK/T1NdjH0KFDhxAbG4sxY8bgv//9L1xcXEzSrzGfUXM3bdo0+Pr64uzZs6qvtz5cxh6Px4OdnZ1J4zQFSpzMjL65AC0tLWhra9M5H0HJx8cHFhYWOucTGJrXYM4UCgWSk5PxxRdfIC4uDnl5ebCwMM0wHj16NID769oMBcacj1gsRltbG1paWjSODebxovSwk8L1GQrjxdDcI2O+9vr6GsxjqKSkBH/4wx8wevRoHDt2DD4+PibreyiMob6U59Pe3m6wrr7x0tvbC5lMBm9vb7Ob3wRQ4mR2lH9y/+2332ocKy0tVauji62tLSQSCc6fP6+xkBljDEeOHIFAIEBwcLCJon48lEnT7t27MW/ePOzZs8ekE3OVdw7MYUE6UzDmfEwx7szVzZs3UVxcDEdHR43HDI9iKIwXsVgMV1dXVFRUaPzwlsvlqKiogLe3t8GJ4cDQHEMlJSWIiYmBo6Mjjh07hnHjxpm0/6EwhpTkcjlqamogEAhUCZQ++sbL999/r1qY1SwN9EJSRF13dzfz8fHRuwCmTCZTlTc1NTGpVKq2aCFjQ28BzN7eXpaYmMgAsDlz5rDu7m699a9fv86kUim7fv26WvlPP/2ktf7mzZsZACYWi1lPT4/J4u5vUqmUyeVyreUikYgBYOXl5ary3377jUmlUtbU1KRW//z580N2AcxNmzYxAGzp0qU66wzl8WLqBTDlcjmTSqWssbFRrfzWrVvMwcHBrBfA7MvQdTl06BCztrZmIpGI1dXVGeyvq6uLSaVSdvHiRbVyYz+jA03fdblz5w47f/68Rnl7ezuLi4tjAFhycrLGcalUyqRSqUa5oQUwKyoqHu1k+gmPMTPeEOYJpWvLlcbGRqxfv15ty5WkpCR88cUXyM3NVW1xANy/OzNr1izVlivh4eG4ePEi9u/fDy8vL1RWVg6qLVeysrLwwQcfQCgU4u2339Z6+3b27NmqRUOV9TMzM5GVlaWq4+XlBT6fj+DgYLi5uUEul+PHH39EdXU1RowYgdLSUkgkksd0Vo8uKysLGzduxJQpU+Dp6QmBQIALFy7g0KFD6O7uRkZGBv7+97+r6ufl5SE5ORmJiYkae1H13XIlJiZGteVKV1fXoNtypa+AgACcO3cOZ86c0blkxVAbLzt37lQtWHr27FmcPn0aoaGhqjsmYWFhqseWcrkcoaGh+N///oeXXnoJzz33HE6fPo1vv/0WISEhKC8vh62trarvsrIyTJ06FeHh4aq1eJT6brmi3AKpsLAQN27cQGFhIebMmfMYzl43rtelrq4OQUFB6OzsxPz58/H0009r9OXl5aX2PbehoQHe3t7w9PRU26/N2M/oQOB6XRoaGuDj44OQkBD4+flBJBLh2rVrOHr0KK5cuYKAgAAcO3YMo0aNUutfuQjzg+lGTU0NQkND0dHRgXnz5sHFxQUlJSWoqalBSkoKbblCjFNZWckiIyOZvb09s7W1ZRKJhP373//WqKe8C6Ptt4N79+6xrKws5uvry4YNG8ZEIhFbtGgRp60mzI3yPPW9+l4D5bYAD26VsXbtWjZ16lTm6urKrK2tma2tLRs/fjxbtmyZ2m/Jg0VZWRmbO3cuE4vFzN7enllZWTGRSMSioqJYaWmpRv3c3FwGgCUmJmrtb+/evSw4OJjZ2toyBwcHNmvWLHbq1Kl+Pov+U1lZyQAwiUSit95QGy+GPi8Pfv1/++03tmzZMubu7s74fD7z8PBgf/7zn7XeIVJuQxMeHq71vQ8fPswmT57MBAIBEwqFLDw8nB05cqQfztJ4XK+L8hz1vR48f5lMxgBobK1i7Gd0IHC9Lq2trWzJkiUsJCSEOTk5MSsrK2ZnZ8ckEglbt24da29v19q/sh9t6urqWGxsLHN0dGTW1tYsICCAbd26Ve1JibmhO06EEEIIIRzR5HBCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIoQQQgjhiBInQgghhBCOKHEihBBCCOGIEidCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIuQJ5uXlBR6Pp/e1efPmgQ6TmEh1dTUsLS2RmpqqVl5WVqb6euvT0NCgqtd3PzZjtba2YtSoUZg4caLG/mWEmDvNnVIJIU+cvht6PmjChAmPORrSX1JTU2Fra4v3339/QONwcHBARkYG0tLSsHv3biQmJg5oPIQYgxInQggWLVqkttM7GXr27duHiooKpKWlwdnZeaDDQUpKCtatW4eMjAzMnz8f1tbWAx0SIZzQozpCCHkCbNq0CQCwcOHCAY7kPhsbG7z22mtobm5GYWHhQIdDCGeUOBFCOFHOh2poaEBxcTEiIiLg6OgIHo+HsrIyVb3bt28jMzMTQUFBsLOzw/DhwxEQEIC//e1vaG9v19p3T08PNm/ejICAANjY2MDJyQkxMTE4e/Ys8vLywOPxNO6IZWVlgcfjISsrS2ufynk7L774otbjTU1NePfdd+Hn54fhw4fDzs4OISEhyMnJQU9Pj0b9pKQk8Hg85OXlQSaTISEhASKRCNbW1vD19cXq1avR2dmp8/qdOnUKiYmJ8Pb2ho2NDRwdHREYGIi0tDQ0NjYCAHJzc8Hj8TBz5kyd/TQ1NYHP58PW1hY3b97UWa+v6upqnDhxApMmTcLTTz/NqY0xlF8LQ68HKb+mW7duNXlMhPQXelRHCDHKhg0bkJOTg+DgYERGRqKpqQmWlpYAgNraWkRGRuLXX3+Fi4sLwsLCwOfzUVVVhffffx9ff/01ysrK4ODgoOpPoVBgzpw5KCoqwrBhw/Diiy9i5MiRqKyshEQiwYIFC0x+DsePH8fs2bNx+/ZteHl5YcaMGejs7ERVVRVSU1Pxn//8B9988w34fL5G259//hlvv/02Ro4cifDwcNy6dQsVFRVYs2YNampqcODAAY02H3/8MVauXAmFQoGnnnoKUVFR6OjowMWLF7F+/Xr4+/sjKSkJr732GtLT03HkyBFcuHABTz31lEZfO3bsQE9PDxISEjBq1ChO51tUVAQAmD59unEXiqOgoCCd85TOnz+PH3/8ERYWmr+nBwUFwcnJCVVVVWhuboaLi0u/xEeISTFCyBPL09OTAWC5ubmc61paWrLi4mKN4+3t7czX15cBYKtXr2adnZ2qY3K5nMXFxTEALDk5Wa1dTk4OA8DGjBnDamtrVeXd3d1s8eLFDAADwBITE9XaZWZmMgAsMzNTa7zHjh1jAFh4eLhaeXNzMxs1ahTj8Xhs27ZtrLe3V3Xsxo0bLCIiggFgH3zwgVq7xMREVSyrVq1iPT09qmNnz55lAoGAAWAnTpxQa1dcXMwAMBsbG1ZYWKgRZ01Njdp5r1q1igFgS5cu1ajb1dXFRCIRA8BOnTql9by1CQsLYwBYSUmJ1uPKa2XoR4JMJlPVk8lkBt+3sbGRubi4MAAsJydHa51XX32VAWB79uwx2B8h5oASJ0KeYMpkSNerb9KhrLtgwQKtfW3fvp0BYC+//LLW43fv3mXOzs7MysqK3bp1S1U+btw4BoBt375do01HR4cqUTBV4pSens4AsJSUFK3trly5wvh8PnNycmIKhUJVrkycnn/+ebVypbfeeosBYB9++KFaeVBQEAPANmzYoPX9HnT16lXG5/OZg4MDa2trUztWUFDAALDf/e53nPpSUiZ1ly5d0nq8b+LE9WUocbp9+zabMGECA8DS0tJ01svIyGAA2DvvvGPUOREyUOhRHSFE53IE48eP1yiLjY3V2kdJSQkAYN68eVqPC4VCBAcH49ChQzh58iReeuklXL16FRcvXgQAxMfHa7SxsbHB3LlzkZ2dzflcDDEU59ixYyEWi1FbW4v6+nqNx2Uvv/yy1vk6fn5+AICrV6+qylpaWvDzzz/DwsKC86RsV1dXxMbGoqCgAHv27MFbb72lOqacC5SSksKpLwCQy+WQy+UAwOnRnr6lAdra2vD1118b7KOrqwuzZ89GbW0t5s+fj48++khnXWVM165dM9gvIeaAEidCiFHLEXh5eWktv3TpEgAgISEBCQkJevu4fv06AODKlSsAgNGjR0MoFGqt6+3tzSkurpRxTp482WDd69evayROHh4eWuva29sDAO7du6cqu3z5MgDAxcVFbV6XIUuXLkVBQQG2bt2qSpzOnDmD77//HmPGjNGZvGrT2tqq+rednZ3B+nl5eTqPNTQ0GEycGGNISkpCeXk5wsPDVZP7dVFet9u3bxuMjRBzQIkTIcQotra2WssVCgUAIDIyEmPGjNHbh6enp8nj0hWPrvLY2FgIBAK9fWi7Q6NtkrOpTZo0CRKJBFVVVaoERHm36Y033sCwYcM49zVixAjVv+/evatKVPrLypUrUVBQgAkTJqCoqMjg+kzKxG7kyJH9GhchpkKJEyHEJNzd3VFXV4eFCxdyviMyduxYAMCNGzfQ1tam9a6Trq09lMnD3bt3tR5X/om/tjjr6+uRnp6O4OBgTnE+LOXdqebmZrS2thp91yk+Ph45OTkIDAzEv/71L1hZWak9uuNi+PDhEAgEkMvluHnzZr8mTtu2bcO6devg6uqKw4cPqyVtuiiXVDCUbBNiLmgdJ0KISfz+978HAHz55Zec27i5ucHHxwcAkJ+fr3G8s7MTX331lda2yqRLKpVqPa6cy2SKOB+WSCRCYGAgFAoFdu3aZVTbuXPnwsXFBUVFRVizZg3kcjmio6Ph6upqdBzPPfccgPvLRfSXgwcPYunSpbCzs0NJSYnOR5oPOnfuHADg+eef77fYCDElSpwIISbxxhtvwNPTE1999RXS09O13glqaWnBZ599pla2bNkyAPcXUayrq1OV9/b2Yvny5WhqatL6fhEREbCwsEBpaSnKy8tV5YwxZGdn65yLk5aWhhEjRmDjxo3YsGEDurq6NOrIZDLs3bvX4DlzkZmZCQBYtWqV1phqa2u1Jn98Ph+LFy9GT08P1q9fD8C4SeF9TZ06FQDwww8/PFR7Q6qqqhAXFwcLCwvs27cPQUFBnNsqY4qIiOiX2AgxNUqcCCEmIRAIUFJSAi8vL6xbtw4eHh4IDw/HH//4R0RHR8Pf3x+urq4aG8wuWbIEr7zyCpqbmxEYGIjIyEjExcVBLBZj586dWLx4sdb3c3d3R2pqKhQKBaZNm4apU6ciJiYGYrEYy5cvx8qVK7W2c3NzQ3FxMUaOHInly5fD3d0d06ZNQ3x8PF555RWMGzcOPj4+yMnJMcl1iY6Oxpo1a3Dv3j3ExsbCz88P8+fPR1RUFPz9/eHv74/Kykqtbd98803VHKFnnnkGU6ZMeagYZs+eDQA4cuTIQ7U3JCMjA+3t7XBzc0N+fj6SkpK0vh5UXV2NmzdvQiKR0OKXZNCgOU6EEJPx9/fHmTNn8Mknn+DAgQM4c+YMfvjhB4wePRpubm5Yvnw5oqOj1dpYWFhg//79yM7Oxueff46ysjIIhUKEhYXhwIEDqK6uxvbt27W+36ZNm+Dh4YGdO3fixIkTEAqFCA0NxZdffok7d+5g7dq1WttNmTIFNTU1yMnJQUlJCU6ePInOzk44OzvDw8MD8fHxiImJMdl1ee+99xAREYHs7GwcP34c+/fvh52dHdzd3bFixQqdd1ucnZ0RFBSEyspKLFmy5KHf/9lnn8ULL7yAEydOQCqVqpZOMJXe3l4A9+/UyWQynfUe/Is95f8f5dwIedx4jDE20EEQQogueXl5SE5ORmJiot4/lR+KLly4gPHjx8PBwQFXr17F8OHDH7qvffv2Yc6cOXj33XexYcMGE0b5cO7duwd3d3fw+XzIZDKDf31HiLmgR3WEEGKm/vKXv4AxhsWLFz9S0gTcX34hNDQUO3bsMIvFJrds2YIbN27gH//4ByVNZFChxIkQQszIwYMHsXDhQkyaNAmFhYUQiURYsWKFSfresmULOjo68Ne//tUk/T2s1tZWrF27FhKJBK+//vqAxkKIsWiOEyGEmJHTp09j165dsLOzw/Tp07Fx40ZO6yFx8eyzz6rmIw0kBwcH1fpNhAw2NMeJEEIIIYQjelRHCCGEEMIRJU6EEEIIIRxR4kQIIYQQwhElToQQQgghHFHiRAghhBDCESVOhBBCCCEcUeJECCGEEMIRJU6EEEIIIRxR4kQIIYQQwtH/AdfmYgIM7O74AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a power spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized power spectrum.\n", + "## 1. We can linearly re-bin a power spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_ps.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_ps = Powerspectrum.rebin(avg_ps, 0.25, method='mean')\n", + "lin_rb_ps = avg_ps.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_ps.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a power spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_ps, log_rb_freq, binning = Powerspectrum.rebin_log(avg_ps, f=0.02)\n", + "log_rb_ps = ps.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Like `rebin`, `rebin_log` returns a `Powerspectrum` or `AveragedPowerspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_ps))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectra of normal-distributed light curves\n", + "\n", + "Starting with Stingray 0.3, we can also get Leahy-normalized power spectra of normally-distributed light curves.\n", + "Let us calculate such a light curve by subtracting the noise level and normalizing\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURfrHv7OJtOQMEg0ICCrBnFAQI4qYAAMm9MzCGbg7sycmTHjGUzGAEVFMiPAzoaeCBEEkg4ASJIcl7e78/mh7p6amqruqunqmZ/b9PA8PM7M9NdXdVdX1rTdULB6Px0EQBEEQBEEQBEFkPXmZrgBBEARBEARBEARhBxJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCAWZrkC2Ul5ejj/++AM1a9ZELBbLdHUIgiAIgiAIgsgQ8XgcW7duRbNmzZCXl1kbGgk8Q/744w+0aNEi09UgCIIgCIIgCCIirFixAnvttVdG60ACz5CaNWsCcG5irVq1MlwbgiAIgiAIgiAyxZYtW9CiRYsKjZBJSOAZ4rpl1qpViwQeQRAEQRAEQRCRCN2iJCsEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AMXgEQRAEQRCVkLKyMuzZsyfT1SCIrKCwsBD5+fmZroYSJPAIgiAIgiAqEfF4HKtXr8amTZsyXRWCyCrq1KmDJk2aRCKRihck8AiCIAiCICoRrrhr1KgRqlevHvnJKkFkmng8jpKSEqxduxYA0LRp0wzXyBsSeARBEARBEJWEsrKyCnFXv379TFeHILKGatWqAQDWrl2LRo0aRdpdk5KsEARBEARBVBLcmLvq1atnuCYEkX24/Sbqsask8AiCIAiCICoZ5JZJEPpkS78hgUcQBEEQBEHkPMuWLUMsFsPMmTOVvzNq1CjUqVMn7fVo3bo1Hn/88Yr3sVgM77//vvJvfPnll4jFYpRIp5JCAo8gCIIgCILIClasWIFLL70UzZo1Q1FREVq1aoUbbrgB69ev9/1uixYtsGrVKhxwwAHKv3feeedhwYIFQapshVWrVuHkk0+2WuZdd92Fgw46yGqZRDQggUcQBEEQBEFEniVLlqBbt25YuHAh3njjDSxatAjPPvssJk+ejMMPPxwbNmyQfnf37t3Iz89HkyZNUFCgnmOwWrVqaNSokY3qB6JJkyaoUqVKpqthhXg8jtLS0kxXI6chgUcQBEEQBEFEnmuuuQZFRUWYOHEijj32WLRs2RInn3wyJk2ahN9//x3//Oc/K45t3bo17r33Xlx00UWoVasWBg8eLHSNHD9+PPbdd19UrVoVPXr0wCuvvJLk2si7aLpWr9deew2tW7dG7dq1cf7552Pr1q0Vx0yYMAFHHXUU6tSpg/r16+O0007D4sWLA50776L53Xff4aCDDkLVqlXRrVs3vP/++0K3z59++gndunVD9erVccQRR2D+/PkV53X33Xdj1qxZiMViiMViGDVqlPT3X3rpJXTs2BFVqlRB06ZNce211wIQu5tu2rQJsVgMX375JYCEu+inn36Krl27okqVKnjppZcQi8Uwb968pN957LHHsPfee1e8nzNnDk4++WQUFxejcePGuPDCC7Fu3Tr9C1jJIIFHEARBEARBRJoNGzbgs88+w9VXX12Rrt6lSZMmGDhwIN566y3E4/GKzx955BEceOCBmDFjBm6//faUMpcuXYqzzz4bZ555JmbNmoUrr7wySSTKWLx4Md5//3189NFH+Oijj/DVV1/hgQceqPj79u3bMWTIEEybNg2TJ09GXl4e+vbti/Ly8gBXIMGWLVtw+umno1OnTpg+fTruvfde3HrrrcJj//nPf2LEiBGYNm0aCgoKcOmllwJwXE+HDh2Kjh07YtWqVVi1ahXOO+88YRnPPPMMrrnmGgwePBizZ8/G+PHjsc8++2jX+7bbbsMDDzyAX3/9FWeffTa6deuG0aNHJx0zevRoDBgwAIAjFI8//ngcfPDBmDZtGiZMmIA1a9bg3HPP1f7tygbtg0cQBEEQBFHJ6dYNWL06/b/bpAkwbZr/cQsXLkQ8Hkf79u2Ff2/fvj02btyIP//8s8Kl8vjjj8fQoUMrjlm2bFnSd5577jm0a9cODz/8MACgXbt2mDNnDv7973971qW8vByjRo1CzZo1AQAXXnghJk+eXPG9fv36JR3/0ksvoWHDhpg7d65W/J+MMWPGIBaL4YUXXkDVqlXRoUMH/P7777jiiitSjv33v/+NY489FoAjsE499VTs3LkT1apVQ3FxMQoKCtCkSRPP37vvvvswdOhQ3HDDDRWfde/eXbve99xzD3r16lXxfuDAgXjqqadw7733AgAWLFiAn376Ca+//joA4KmnnsLBBx+M+++/v+I7L730Elq0aIEFCxZgv/32065DZYEEHkEQBEEQRCVn9Wrg998zXQt/WAudH926dfP8+/z581OEyiGHHOJbbuvWrSvEHQA0bdoUa9eurXi/cOFC3HHHHfjhhx+wbt26Csvd8uXLrQi8+fPno3PnzqhatapvvTt37pxUT8DZqLtly5ZKv7V27Vr88ccfOOGEEwLU2IG/H+effz7+/ve/4/vvv8dhhx2G0aNHo0uXLth///0BALNmzcIXX3yB4uLilLIWL15MAs8DEngEQRAEQRCVHB8jTsZ/d5999kEsFsOvv/6Kvn37pvz9119/Rd26ddGwYcOKz2rUqGGrmkkUFhYmvY/FYknul6effjpatWqFF154Ac2aNUN5eTkOOOAA7N69O5T6eMHW1d3DTcdVlHeH5cnLc6K9WOEt2wScvx9NmjTB8ccfjzFjxuCwww7DmDFj8Le//a3i79u2bcPpp5+OBx98MKUsV6wSYkjgEQRBEARBVHJU3CQzSf369dGrVy88/fTTuOmmm5KEx+rVqzF69GhcdNFFWhtRt2vXDp988knSZ1OnTg1Uz/Xr12P+/Pl44YUXcPTRRwMApkyZEqhMnnbt2uH111/Hrl27KjJrmtS7qKgIZWVlnsfUrFkTrVu3xuTJk9GjR4+Uv7uCetWqVTj44IMBQGufwYEDB+KWW25B//79sWTJEpx//vkVf+vSpQvGjh2L1q1ba2U+JSjJCkEQBEEQBJEFPPXUU9i1axd69+6Nr7/+GitWrMCECRPQq1cvNG/e3Dd2jufKK6/EvHnzcOutt2LBggV4++23KzJJ6ghFlrp166J+/fp4/vnnsWjRIvzf//0fhgwZYlSWjAEDBqC8vByDBw/Gr7/+is8++wyPPPIIAL16t27dGkuXLsXMmTOxbt067Nq1S3jcXXfdhREjRuDJJ5/EwoULMX36dIwcORKAY+E77LDDKpKnfPXVV/jXv/6lXIezzjoLW7duxd/+9jf06NEDzZo1q/jbNddcgw0bNqB///6YOnUqFi9ejM8++wyXXHKJrzCt7JDAIwiCIAiCICLPvvvui2nTpqFt27Y499xzsffee2Pw4MHo0aMH/ve//6FevXpa5bVp0wbvvvsu3nvvPXTu3BnPPPNMRRZN0z3n8vLy8Oabb+Knn37CAQccgJtuuqkiiYstatWqhQ8//BAzZ87EQQcdhH/+85+44447ACApLs+Pfv364aSTTkKPHj3QsGFDvPHGG8LjLr74Yjz++ON4+umn0bFjR5x22mlYuHBhxd9feukllJaWomvXrrjxxhtx3333KdehZs2aOP300zFr1iwMHDgw6W/NmjXDt99+i7KyMpx44ono1KkTbrzxRtSpU6fCNZQQE4vrRKsSFWzZsgW1a9fG5s2bUatWrUxXhyAIgiAIwpedO3di6dKlaNOmjZYYqCz8+9//xrPPPosVK1ZkuipajB49Gpdccgk2b97sGzdHmOPVf6KkDcihlSAIgiAIgqiUPP300+jevTvq16+Pb7/9Fg8//HDFJt5R5tVXX0Xbtm3RvHlzzJo1C7feeivOPfdcEncEABJ4BEEQBEEQRCVl4cKFuO+++7Bhwwa0bNkSQ4cOxbBhwzJdLV9Wr16NO+64A6tXr0bTpk1xzjnnaMcgErkLuWgaEiUzLEEQBEEQhArkokkQ5mSLiyZFKBIEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAh8eWXXyIWi2HTpk0AgFGjRqFOnTqh/uagQYNw5plnSv/O1+Guu+7CQQcdpPUbxx13HG688Uaj+hHhQgKPIAiCIAiCiDyDBg1CLBbDAw88kPT5+++/j1gslqFa6XPeeedhwYIFma5GEn//+98xefJk6+XGYjG8//771sslvCGBRxAEQRAEQWQFVatWxYMPPoiNGzdaLXf37t1Wy/OiWrVqaNSoUdp+T4Xi4mLUr18/09WwRjrvZxQhgUcQBEEQBEFkBT179kSTJk0wfPhwz+PGjh2Ljh07okqVKmjdujVGjBiR9PfWrVvj3nvvxUUXXYRatWph8ODBFW6LH330Edq1a4fq1avj7LPPRklJCV555RW0bt0adevWxfXXX4+ysrKKsl577TV069YNNWvWRJMmTTBgwACsXbtWWjfePbJ169aIxWIp/1xWrFiBc889F3Xq1EG9evVwxhlnYNmyZRV/Lysrw5AhQ1CnTh3Ur18ft9xyC+LxuOIVdeBdNEtLS3H99ddXlHnrrbfi4osvTnH7LC8vxy233IJ69eqhSZMmuOuuu5LOCwD69u2LWCxW8V7EypUr0b9/f9SrVw81atRAt27d8MMPPwAQu5veeOONOO644yreH3fccbj22mtx4403okGDBujduzcGDBiA8847L+l7e/bsQYMGDfDqq69W1H/48OFo06YNqlWrhgMPPBDvvvuu0jWLMiTwCIIgCIIgiKwgPz8f999/P0aOHImVK1cKj/npp59w7rnn4vzzz8fs2bNx11134fbbb8eoUaOSjnvkkUdw4IEHYsaMGbj99tsBACUlJXjyySfx5ptvYsKECfjyyy/Rt29ffPLJJ/jkk0/w2muv4bnnnksSAXv27MG9996LWbNm4f3338eyZcswaNAg5XOaOnUqVq1ahVWrVmHlypU47LDDcPTRR1eU3bt3b9SsWRPffPMNvv32WxQXF+Okk06qsFKNGDECo0aNwksvvYQpU6Zgw4YNGDdunMZVTeXBBx/E6NGj8fLLL+Pbb7/Fli1bhK6Wr7zyCmrUqIEffvgBDz30EO655x58/vnnFecFAC+//DJWrVpV8Z5n27ZtOPbYY/H7779j/PjxmDVrFm655RaUl5dr1fmVV15BUVERvv32Wzz77LMYOHAgPvzwQ2zbtq3imM8++wwlJSXo27cvAGD48OF49dVX8eyzz+KXX37BTTfdhAsuuABfffWV1m9HjYJMV4AgCIIgCILIMN26AatXp/93mzQBpk3T+krfvn1x0EEH4c4778SLL76Y8vdHH30UJ5xwQoVo22+//TB37lw8/PDDScLr+OOPx9ChQyvef/PNN9izZw+eeeYZ7L333gCAs88+G6+99hrWrFmD4uJidOjQAT169MAXX3xRYR269NJLK8po27YtnnzySXTv3h3btm1DcXGx7/k0bNiw4vUNN9yQJIbeeustlJeX47///W+FVe/ll19GnTp18OWXX+LEE0/E448/jmHDhuGss84CADz77LP47LPPlK6ljJEjR2LYsGEVQuipp57CJ598knJc586dceeddwIA9t13Xzz11FOYPHkyevXqVXFederUQZMmTaS/NWbMGPz555+YOnUq6tWrBwDYZ599tOu877774qGHHqp4v/fee6NGjRoYN24cLrzwworf6tOnD2rWrIldu3bh/vvvx6RJk3D44YcDcO7flClT8Nxzz+HYY4/VrkNUiLzA2717N5599lm8/fbbmDt3LkpKStCgQQN06tQJgwYNSjG9AsCkSZPw6KOP4scff8T27dvRqlUr9OvXD8OGDVPqaARBEARBEJWK1auB33/PdC2UefDBB3H88cfj73//e8rffv31V5xxxhlJnx155JF4/PHHUVZWhvz8fABAt27dUr5bvXr1CnEHAI0bN0br1q2T5o+NGzdOcsH86aefcNddd2HWrFnYuHFjheVp+fLl6NChg/I5Pf/883jxxRfx3XffVYijWbNmYdGiRahZs2bSsTt37sTixYuxefNmrFq1CoceemjF3woKCtCtWzdtN02XzZs3Y82aNTjkkEMqPsvPz0fXrl1TrGqdO3dOet+0aVNP91QRM2fOxMEHH1wh7kzp2rVr0vuCggKce+65GD16NC688EJs374dH3zwAd58800AwKJFi1BSUoJevXolfW/37t04+OCDA9Ul00Ra4K1cuRK9e/fG3Llz0aBBAxx55JGoUaMGVqxYga+//ho1atRIEXiPPfYYhgwZglgshqOPPhqNGzfGN998g/vvvx9jx47FlClT0KBBgwydEUEQBEEQRATxsLBE8XePOeYY9O7dG8OGDdNyh2SpUaNGymeFhYVJ72OxmPAzV+hs374dvXv3Ru/evTF69Gg0bNgQy5cvR+/evbUSfXzxxRe47rrr8MYbbySJpm3btqFr164YPXp0yndYy1+m8Lo2qlSrVs3z73l5eSlidc+ePSnHie7nwIEDceyxx2Lt2rX4/PPPUa1aNZx00kkAUOG6+fHHH6N58+ZJ36tSpYrWOUSNyAq8HTt2oFevXpg3bx7uuusu/OMf/0hqRCUlJSkpZmfMmIGhQ4ciPz8fH374IU4++eSKY/v06YPJkyfjqquuyongSYIgCIIgCGtouklGgQceeAAHHXQQ2rVrl/R5+/bt8e233yZ99u2332K//farsN7ZYt68eVi/fj0eeOABtGjRAgAwTfNaLlq0CGeffTb+8Y9/VLhZunTp0gVvvfUWGjVqhFq1agm/37RpU/zwww845phjADgJUn766Sd06dLF4IyA2rVro3Hjxpg6dWpFmWVlZZg+fbr2XnmFhYVJCWlEdO7cGf/973+xYcMGoRWvYcOGmDNnTtJnM2fOTBGXIo444gi0aNECb731Fj799FOcc845Fd/r0KEDqlSpguXLl2e1O6aIyCZZGT58OObNm4fBgwfjzjvvTLmJ1atXT2lkw4cPRzwexyWXXFIh7txjX3zxReTl5WHs2LGYN29eOk6BIAiCIAiCCIlOnTph4MCBePLJJ5M+Hzp0KCZPnox7770XCxYswCuvvIKnnnpK6M4ZlJYtW6KoqAgjR47EkiVLMH78eNx7773K39+xYwdOP/10HHzwwRg8eDBWr15d8Q9wLFANGjTAGWecgW+++QZLly7Fl19+ieuvv74iycwNN9yABx54AO+//z7mzZuHq6++umJTdVOuu+46DB8+HB988AHmz5+PG264ARs3btTeb7B169aYPHkyVq9eLd3aon///mjSpAnOPPNMfPvtt1iyZAnGjh2L//3vfwCcWMlp06bh1VdfxcKFC3HnnXemCD4vBgwYgGeffRaff/45Bg4cWPF5zZo18fe//x033XQTXnnlFSxevBjTp0/HyJEj8corr2idZ9SIpMBzA1wB4Oabb1b6zu7du/Hxxx8DcG4kT6tWrXDkkUcCQODMQgRBEARBEETmueeee1JcArt06YK3334bb775Jg444ADccccduOeee4xdOb1o2LAhRo0ahXfeeQcdOnTAAw88gEceeUT5+2vWrMG8efMwefJkNGvWDE2bNq34BzhGiq+//hotW7bEWWedhfbt2+Oyyy7Dzp07Kyx6Q4cOxYUXXoiLL74Yhx9+OGrWrFmRHMWUW2+9Ff3798dFF12Eww8/HMXFxejduzeqVq2qVc6IESPw+eefo0WLFtK4tqKiIkycOBGNGjXCKaecgk6dOuGBBx6osLb27t0bt99+O2655RZ0794dW7duxUUXXaRch4EDB2Lu3Llo3rx5hRZwuffee3H77bdj+PDhaN++PU466SR8/PHHaNOmjdZ5Ro1Y3DQCM0R++OEHHHbYYWjWrBl+//13zJ49G++99x7++OMP1K1bF0cffTROPvlk5OUl9OmcOXPQqVMnAMCWLVtSglEBYMiQIXjsscdwzjnn4O233w5Uxy1btqB27drYvHmz1GROEARBEAQRJXbu3ImlS5eiTZs22pN1ovJSXl6O9u3b49xzz9WyUOYaXv0nStogkjF4P//8MwBgr732wm233YaHHnooKbjywQcfxMEHH4z3338fLVu2BAAsXboUgJOKVSTuAFT4RrvHyti+fbtvHVWOIQiCIAiCIIhs47fffsPEiRNx7LHHYteuXXjqqaewdOlSoZccET0i6aK5fv16AE7SlAcffBBXX3015s+fj82bN+Pzzz/HfvvthxkzZuDUU0+tyKKzdetWAOIMOi5uitstW7Z4/n5xcbHvv2bNmtk4VYIgCIIgCIKIFHl5eRg1ahS6d++OI488ErNnz8akSZPQvn37TFeNUCCSFjzXWrdnzx70798fTz31VMXfevbsic8//xzt2rXDnDlz8Oabb1ZsXkgQBEEQBEEQRDBatGiRkomUyB4iacFjXSyvvPLKlL+3bNkSp556KgBnU3P2O16uk+5+F35+sdu2bfP998cff+idFEEQBEEQBEEQRMhE0oLXtm1b4WvRMatWrQLgpGEFgE2bNmHr1q3COLwVK1YkHSvDy83TxW9PD4IgCIIgCIIgiHQTSQtely5dKvbZWLdunfAY93M3rq5du3aoXr06APkGk+7nphs/EgRBEARB5AIRTKJOEJEnW/pNJAVekyZNcNRRRwFIuGCy7NmzB1999RUA4JBDDgHg7KHhum2OGTMm5Tu//fYbvvvuOwAIvDcIQRAEQRBENlJYWAgAKCkpyXBNCCL7cPuN24+iSiT3wQOAyZMno2fPnqhbty4++eQTHHbYYQCA0tJSDBkyBCNHjkTNmjWxcOFCNG7cGAAwffp0dOvWDXl5efjoo49w0kknAXBuRp8+fTB58mT069cP7777buD6RWmvC4IgCIIgCFVWrVqFTZs2oVGjRqhevXqF1xRBEGLi8ThKSkqwdu1a1KlTp2IjepYoaYPICjwAuO+++3D77bejoKAAhxxyCJo0aYLp06dj2bJlqFatGt55550Kq53LY489hiFDhiAWi+HYY49Fo0aN8M0332DVqlVo164dpkyZggYNGgSuW5RuIkEQBEEQhCrxeByrV6/Gpk2bMl0Vgsgq6tSpgyZNmggXRaKkDSIt8ABg4sSJePzxx/HDDz9g69ataNKkCU444QTceuut2H///YXfmTRpEkaMGIEff/wR27dvR8uWLXH22Wdj2LBh0k3QdYnSTSQIgiAIgtClrKysYj9hgiC8KSwsRH5+vvTvUdIGkRd4USVKN5EgCIIgCIIgiMwRJW0QySQrBEEQBEEQBEEQhD4k8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AAo8gCIIgCIIgCCJHIIFHEARBEARBEASRI5DAIwiCIAiCIAiCyBFI4BEEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCCTwCIIgCIIgCIIgcgQSeARBEARBEARBEDkCCTyCIAiCIAiCIIgcgQQeQRAEQRAEQRBEjkACjyAIgiAIgiAIIkcggUcQBEEQBEEQBJEjkMAjCIIgCIIgCILIEUjgEQRBEARBEARB5Agk8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQRADmzAE2b850LQgivSxcCKxdm+laZIb584F16zJdC4LIXrZtA6ZNA+LxTNckdyGBRxAEYchrrwGdOgHt2wO7d2e6NgSRHr78EthvP6B168ondCZMAPbfH2jbFti0KdO1IYjso7wcOO44oHt34K67Ml2b3IUEHkEQhCEXXeT8v2oV8Omnma0LQaSLM85w/t+xA3jwwczWJd2cfLLz/9atwPPPZ7YuBJGNzJ8P/PST8/qeezJbl1yGBB5BEIQFyNWEqCxs3Zp4XZkt19TnCUKfn3/OdA0qByTwCIIgLFBYmOkaEASRTqpWzXQNCCL7mD070zWoHJDAIwiCsEBBQaZrQBDpJxbLdA0yBwk8gtCHteA1bJi5euQ6JPAIgiAsQBY8orJArokOJPAIQp9ZsxKvW7XKXD1yHRJ4BEFUGh56CBg4EPj9d/tlkwWPqIyQBY8gCFU2bgSWL0+8p8Wi8KApCUEQlYJp04Bbb3Ver10LfP653fLzaLmMICoVVapkugYEkV3Mm5f8vqwsM/WoDNCUhCCISsGMGYnXkybZL59WIgmicpGfn+kaEER2sWtX8vvy8szUozJAAo8gCMICtBJJEJULWtQhCD14QUfPzfAggUcQRKUg7MkYrUQSlZHKHINHfZ4g9OD7DPWh8CCBRxAEYQFaiSSIygVNTglCD7LgpQ8SeARBVArCtjTQZI+ojFRmC16mXDTjceDXX2lyTGQfZMFLHyTwCIIgLECTLYLIbXhBl6nJ6dChQIcOwHnnZeb3CcIUsuClDxJ4BEEQFqCVSILIbXbvTn6fqT7/2GPO/2PHZub3CcIUsuClDxJ4BEEQBvCr+bQSSRC5zY4dye8piyZB6EEWvPRBAo8gCMKAPXuS39NKJFEZqUwxeCUlye+pzxOEHmTBSx8k8AiCIAzgN2yllUiCyG14C14UJqdkRSSyCbLgpQ8SeARBEAZEJR6HIDJJZbbgRUFc0bhDZBNkwUsfkRV4gwYNQiwW8/y3c+dO4Xd/+uknnHPOOWjcuDGqVq2KNm3a4LrrrsPatWvTfBYEQeQqZMEjiMrBCy8Al18OLFqU/HkmJqcU+0tkM2FZ8HbsAG68EbjjDhKNLgWZroAfRx55JPbZZx/h3/Lz81M+e/fdd9G/f3+Ulpaie/fuaNOmDaZNm4annnoK77zzDqZMmSItjyAIQhVe4NFDhSByj0WLgMGDndcvvZT8t0z0ed5zoLQUKCpKfz0IwoSwLHhvvw088YTz+vjjgeOOs1NuNhN5gXf55Zdj0KBBSsf+8ccfuPjii1FaWornnnsOg/8alcvKyjBo0CC8/vrrGDBgAH744QfEKpNfCUEQ1t2pyIJHELnPnDmJ1/wYkgkXTd5xqbQ0/XUgCFPCsuAtX554vXq1nTKznci6aJrw+OOPo6SkBD179qwQd4Bj6XvmmWdQu3ZtTJ06FRMnTsxgLQmCyAXIgkcQuR+Dl+cxS8pEn+cFHi0sEdlEWBa8bdsSr6lPOOSUwBs3bhwAYMCAASl/Ky4uRp8+fQAA7733XlrrRRBE5rE9EeVdpeihQhC5h9e4QRY8gtAjLAseK/CoTzhE3kXziy++wOzZs7F161bUr18fhxxyCE455RRUqVIl6bitW7di0V8R0N26dROW1a1bN7z22muYMWNG6PUmCCK3IQseQZAFL92QwCOyGbLgpY/IC7xXX3015bOmTZvipZdewkknnVTx2bJlyypet2zZUlhWixYtAABLly71/M3t27f71kvlGIIgcheKwSPSQXk58McfwF57ZbomlRMvARsFgUfjDpFNpMOCR33CIbIumgceeCCeeOIJzJkzB1u2bMGaNWswceJEHHHEEVi1ahX69OmDL7/8suL4rVu3VryuUaOGsMzi4mIAwJYtWzx/u7i42Pdfs2bNgp8kQRBpI+wkK2TBI8Lg5JOBFi2Axx7LdE0qJ14WPHLRJAg90mHBoz7hEFmBd9NNN+H6669Hx44dUbNmTTRq1Ai9evXClClTcMYZZ2DPnj248cYbM11NgiCyBMqiSWQb27YBbk6wIUMyW5fKStQteDSZJbIJvs/E43aezWTBSyWyAk9GLBbD3XffDQCYNWsWVqxYAQCoWbNmxTEy98ltf7WAWrVqef7Gtm3bfP/98ccfNk6HIIg0YXvQ55OskAWPsE0mLES6UAxeeiEXTSKbEfUZG/2ILHipRD4GT0T79u0rXq9cuRItWrRAq1atKj5bvnw5OnXqlPI9Vwy2bt3as3yZiydLGY2qBJFV2O6yZMEjwobaVLQhF02C0EMk5srKgPz8YOWydh0aNx2yzoIHAOvXr6947VruatWqhX322QcAMG3aNOH33M+7dOkScg0JgogatlfbKQaPCBuavGcer8liFCx41EaIbCIdFjwSeA5ZKfDefPNNAI6oa9euXcXnffv2BQCMGTMm5Tvbtm3Dhx9+CAA466yz0lBLgiCiBFnwiGwjG9pUri9sRE3g0bhDZDMyC15QyEUzlUgKvJkzZ2L8+PEo5e5SeXk5XnzxRfzjH/8AAFx//fUoLCys+PuNN96I6tWrY9KkSXjhhRcqPi8rK8PVV1+NTZs2oXv37jjxxBPTcyIEQUQGisEjsg2+zUYxJi/X273XZJFcNAlCjzAseOXl5KIpIpIxeMuWLUPfvn1Rt25ddOnSBY0bN8amTZswZ84cLF++HADQv39/3HnnnUnfa9asGUaNGoX+/ftj8ODBePHFF9G6dWtMnToVS5YsQePGjTFmzBjEcj0qnCCIFMJ20aSHCmEbvk3t2AFUr56ZusjI9XYfNQseCTwimwnDgldSYre8XCGSFrwDDzwQN954Izp27Ih58+bhvffew+TJkwEAZ599Nj7++GOMGTMGBQWp+vScc87BDz/8gLPOOgtLlizBuHHjUFZWhmuuuQazZs2qiNMjCKJyEbaLZq5bMoj0w7dZ1g0pKuR6u/caN6JgwaPJLJFNhGHB48dFWvRwiKQFr02bNngswK6uXbt2xdixYy3WiCCIbIdi8IhsQyTwGjXKTF1kVGaBRxY8gtAjDAseL/DoWewQSQseQRCEbSiLJpFt8JN3suClHxJ4BGEPsuClDxJ4BEFUCsJOskKrhoRtyEUz85CLJkHYgyx46YMEHkEQlYLKZMGLx4H584GlSzNdEyIIJPAyj5c1gCx43mzYkPvtg9AjDAsem0ETsCPw4nGA2XI7KyGBRxBEpaCyxODF48CJJwL77w+0bQtcf32ma0SYkg0CLyrtPizIRdOMd98FGjcGjjoqmtt7EJkhHRY8G32id28n3vnll4OXlSlI4BEEUSmoLFk0//wTmDQp8f7NNzNXFyIY2SDwotLuw4JcNM045xxnov2//wHTpmW6NkRUSEcMXtA+sXIl8PnnTr0uvTRYWZmEBB5BEJWCyrIP3tatye/37MlMPYjg8G2Kd0WKApVZ4JEFT40dOzJdAyIqZIMFL1e2yiaBRxBEpSDsJCtRmeiGEY9AZAbKopl5oi7wqH8T2UQ2WPDyckQZ5chpEARBeFNZYvAoo1juQC6amSdqLpr8uJMNFjyCcMmGLJq58swkgUcQRKWgsmTRJIGXO5DAyzyURZMg7JEN++DlyjOTBJ4lpk8HhgwBZs/OdE0SlJcDjz8OPPJINB8CZWVO3QYMAP75T2DTpkzXiMhlomrBW7MGGDYM+Pjj4HUCSOBlkvXrnbHsvffslBe2wPv6a+Dmm4Fly8zLyPX2FXUXzQcfBB57LPeFNpEbkAUvfRRkugK5Qteuzv9ffumIvSjw5pvATTc5r2vVAgYPzmx9eD75xJlcuBQXOxNdggiDqGbRvOyyhLhbuxZo2DBYvUjgZY7rrwfGjHFeL18OtGgRrLwwBV5pKXDssc7rTz8F5swxKyfXhUXUXDR5gbdggbO43KQJ0L9/+uujQq4krSCCk4598Gxb8MrLszMuLwurHD3WrUu8njEjc/Xg+e9/E6//85/M1UMGv2ocZBWZIPywPRG1leyAtdz98ot5fVx4ERCP0z5U6cIVdwAwdWrw8sIUeGxmwyDtrjILvChY8FxefDG99SAIE7LBgsfXsaQkWHmZggSeBWbNynQNxLCTuiiuoPHp26PoRkrkDvygH1T08IO+jcmejTJEIoCseNkJZdHMPFG34LlE2cKQ622EUCcbsmhmQ+yzChEeErKHbBB4URz8+TTztF8XESb8QyToQ4Df28mGiCKBR7CEuQ+erTaR65P3bLHgRfEZ70KLt4RLNuyDRwKPqGDmzEzXQEy2WfBI4BFhIvKrD0IYFjwbk26RCCCBl52EOdEggadG1LNouuTnp7ceOpDAI1xEVu+oW/BsLqylExJ4FsgGC55tSkqCd0oSeES6KClJHbSDPATKy4PH4MXj8k3JgzxQyIIXDWxMarNB4OV62wrLRbOkRP/78Xjls+DxY2G2xkMRDtlgwePrSBa8SsquXcDcucmfRWVFMywXzSlTnEx/XbsG60gUg0ekg4kTgQYNnKyyLEH6qWiSpVvemWcC9eqllnHBBUCdOuZJE0jgRQMbE9FsEHhRed6FRRgumlOmAI0b6z9DS0vlvxlFLx0X02f7m286Y2Tfvs77M88E6tYF3njDWtWINEMxeOmDBF5A1qxJHbyiYokKy0Xz+OOdycvMmcCHH5qXQzF4RDro3Ts1Xg4I9hAIWt7SpcD48al9YNs2YPRoZ0y5/HKzuokeRrk+CY8iYQg8m9YL0/bPt6Vcb1thCLyePZ1+OmMG8O676t/jt2ZhyUULXv/+zhj5/vvOFlQffOC8HzDAZu2IdJINWTRJ4BEAxA2Jn7RlirBcNFkhJprompQjek8QYRLkISCaaOtM9mQTdRsTeLLgRYMgY6NLmIuHppNuEngJTJ+xrFDbuFH9e17XOhcFHsuKFcHLIDKPbQve7t32vcFI4BEAxA0zKgKPrVtY7hs1aph/lwQekUmCPFSCWvBkE0Mbwdwk8KJBGBa80lJ7C3embcJ2sqKoE6Usml51yXWBt3Vr8DKIzGPbghdGUjESeASAaFvwWMISeEFEGX+dKAaPSCeZtODJjrVh9SGBFw1s3EvRfct0cpTKZsGLUhbNymzB27IleBlE5rFtwRM97yjJikOEh4TsIMoCL4wkK/zqcZBVarLgEZkkkzF4sgcauWhmL/z4FYYFT/Q7Nss2+V6uC7wobXRemS14JPByA9sWvDCed7liwSvIdAWyHVsCb8IEYNw4oFYt4G9/A9q2DV63MJKsbN6c/J5i8IiwiceBl15y4lauvNLefk9BJqZBLXhhumgGdVmJx4FXXnFcoq66CigsDF4nwLlm//kPsGAB0KmTM87ZKtsG27Y59WvfHujTR//7fJsIy4K3Zw9QrVo4ZavAt/NcXzwgF83g2BB4mzYFL4PIPOmw4NE+eA4k8AJiIwZv/XrgjDMS3/v1V+Cjj4LXLYzVxdWrk9+TBY8Im/HjExkla9QALr7YTrlRtODxD5J4XH9xJugDb/Jk4JJLnNd5ecA11+j9voxXXgFuuSXxvmlT4Jxz7JRtg7vvBh55xHm9YAGw77563+fbBFnwcoMoWfAqs4vm+vXByyAyTzoseJRkxSHCQ0J2YOMB/McfyaJw8eJgdXJhO5KtwZ8XeEFWqSkGj1Bh5MjEa3cCboMoxuDxAk93LNmzR5xKXedc2f337r1X7/e9WLQo+f2SJfbKtgHbtj79VP/7YVjwRGOiLYFHWTTVIAtecEjgES7ZaMEjgVdJseGiyZcRRgyfLRdNsuAR6YbtH7bcMwH7Lpo2smjyDxLd/iVzJdGpG3uNbbrf8eNalIWByRicLguerYUwsuCpQQIvODba7Lp1iddR3tSd8CYbLHiUZIUAYMdFk2+MtgReGDF4Ni14JPAIFdjB3+YkxraLps5kT/bbfCpw3f4lexBFUeBFOXbLZCxKZwyeDfiyVd0NK5sFz2uyaMNFU6cMr2sdJdHD19O2wKtVK3h5RGYgC176IIEXkChb8MLYB8+mBY8/TxJ4hAh2clBgMWrYtoumTnmyCQ8v8HT7VzYJvCgLgyhb8MISeKr3gyx4CaJkwYvSfRDt3xiUP/9MvK5ZM3h5RGagffDSBwm8gNiw4IUl8MIIAF+zJvm9TQtekIdAPE4CMVeJootmUAuerK3zDxKy4KUHG94E2WDBY79rOgmnLJoJbIgqncVXr7pEKYadr4v73ta+ucXF5uVkC9kwnzGpYzbsg0cCjwAQbQteGPvgRTEGb88e4JBDgObNgZkzzetDRJOwBF4uWvBsx+DZnDRG1YJ3/fVA7drJn0XZgmd6Tx55xHFtu+cecdmq5ZIFL0GUXDSjLvCuugqoUwcYPTp4+VGON7TBsGFOX2UTjEWNUaOccfPaa/W+l4374GXrNgk53k3CJ8oCj8WWi+aGDcnvoxCDN2oUMG2a48Jx5pnm9SGiSWWy4AWNwZOJCrLgiSkrcyZR/HWOigXPZhbNm28Gdu4E7rxTXLapBa8yCzwb564jzLLVgrdlC/Dcc04fueCC4OVHYewIkwcecPrq9ddnuiZyLrnEGeP+85/gWwRFzYLH14cEXiUlDIFXWmp/ZdCWwOMnF1GIwfv998Tr334zrw8RTciCF7zcKAq8KAgD2YM7yha8sGLwyIInJkoCL1steDt32i0/19tctqEzXoZpwXOfXbYteNna3kjgBSSMLJqAnYd4GElW+LpGIQYvWzsfoQY72EYlyUpYFjy+T+j2LxsCj73GNuN4+XOLwiq8TOBFxYIXRYFX2Sx4YWfR1Lmf2WrBsx1PFoWxg0gg2ntVRpgWPNfV3rbAy9b2RgIvIGEkWTEpQ0TULXiiCZ/JAzPXJxiVnSi6aIZlwVP5HS/YOhQViT/3w+Y1ZomiBU8WPG/Dgrdrl/2JBhDePnhkwRMTJQtetgo822En2TrhViGM5HhhE1Tg2bLguQLPdpKVbG1vJPACEoaLpkkZIsIQeDYteKJztJWVicgdouiiGZYFT+V3VMutUiXxOooCLwoPTZnAs2HBA4K7poVlwSsroyyaqkRJ4GWri6aOAFAhl5/5/LXLBsFHFrxoQgIvIJVd4Nm04Mk+8yNbO1+mWbsWeOghYPr05M83bgQefRT48cfM1Mtl1Srg4YeBRYsSn0VB4H38MfDJJ4n31arplxeWBS+bBF4UJmlhWvAA4P77g42RYQm8PXvMBN6iRU4CCJbycif2me+ruULYWTQrg4umbYG3cSPw+OPAd9/5H7t2LTBiBDBrlt062MJ9zv3yi/M+bOunKeXlwKuvAmPGpLb7TMXgTZsGfPut87qoKPEsjseDPV9yZRHLYkRL5aSyCbygMUJeZQFmD6koTBSzkVtuAV55Bahb19n+wnXpu+66RCrrrVszt+dQ//7AV18lf5ZpF81ly4DTTkv+rHp1px9EwYJnw0XT1ljBUxktePff77SPf/5TvzwgvPjs3bvNsmgedVTqXqjl5UCvXsDChc5Ede3a4PWLElGy4GWLwOPraSLwvK7ttm3ATTc5rzdscJ5hMi64APj8c+d1aWl4C1imnHOOI1JuuUW8n++OHcmLdZniww+Biy92Xtepk/y3TFjwdu8GTj458b64ODVBmOl2Grnihk4WvIBUNoEXRQteNrgwRJFXXnH+37gRmDs38Tm7T9GCBemtEwsv7oDMJ1mZNCn5fdWqiTrligUvLOGVTRY8E9dKmRj/17/0y3IJKwbP1ILHizvAuY8LFzqv//wzeN2iRtgWPHLRFKM6Ds2Y4f13V9wB0Ux371qgAOf+2pxj2eTeexOvhw9P/lsmYvA2bQLWrUu8P+us5PlBkOcYuWgSAMLLopktAm/HDvOHnK0YvGztfFHi55/Fn9t2rQlKpl00mzRJfl+9eqJOUbDgseWaWvDCmihmkwXPxDPBayJmOkaG5aK5e7d5DB5PFIR6mHhdFxvnTi6aamXI0OlbUV8M3rPHbp4Dm7ALhvwCWCYseOx39t4beP755PlBkP4g6mfZOM6RwAtIZc+iCZitdsfj9iYvYWwHkevw137mTPFxUfH/d8m0iybfPnfvTriBRMGCx9aBLHj+yASeyaq510Rs1Sr98gASeFGAXDT1SafA0yHqbVXkOh0VC17VqonXtgWeyTOHLefAA525n609XEXfjcKCpC4k8AJS2V00AbMVJtkkJWgMXtT866MK69oAyAPQyYKXDH89tm2LrgXPVOBVJguezGXLtgXPNMFDNgi8KNzHMMkWF80o3YeoCrwoiWARu3fbzXNgEy+BFzTJSlALnrvIyrpoBrnXtrdyyBQk8AIiE2c6A3+2CzyTFSbZ+ZEFT4943GySsXp18vuZM8XlZMqCJxtMoybwgGhZ8LLJRdPtt5l0m0qXBU9mIffDVgweP2ERCTzTCUzYVhG/9qHSfoK0sbAteOSiqVaGDfbsSbSF3buDb2MC2B2/RC6aZMHzL8d9BodpwYu69VcECbyAiBrCM88Ahx2mPnikQ+DZapyih5FNC15QgWeaNSkbWbIEaNtWr6258AJvwwbg999Tj8uUBU/2ULP5MDXpE6LrESULXja5aJaVARMmAI0aAZddFs5v+pGuGDxTC56tLJqi1Ou6WTRl7Zv/3OZE6KqrgAYNnAx+IqZOBZo3dzLbysaGCy902hifIEkV2wKPr2dlcNE0EVJhxOB17gzsuy9www1AzZpODPXll+vXzeW995z2ecMN5mWwiPplFC14fJ0yHYOXDoFHFrxKiKxh/vijE/SpQjoEno3GWV4uHkxNVphI4AVn4EAnbb9OW3PhBR4ALF6c+lmmLHgy1zmbg6xJWfz1OOqo6FrwouSiGY+LLXgnn+y4C7/0ktOW041NC57XJNbNMqmLLRdNvhwTF01ZGwprz6g1a4DnnnMWn/r0ER/Tq5cT3/jxx8Cnn6b+fdYs4PXXnTZ24olm9bDtohnENbYyZdEMQ+CtX+885558MuFp9eKLTiZpE/r1c9rnk08CW7aYlcEictGMigWvsDDxeuvW5L9FxYJny0WTBB4BwPum//GHWhnpyKIZZjA4xeBlhu+/T7xeuVLvu6J056Jrb8OFxQTZxFt3kPVq90EteFWrOhPQKFnwbLho8sfasJqWlaWWw/8OP2lIBzYteO61r1YNGDIEuPXWxP5cmzYZVS9SAk/2d77d2xIaKvdg8+bEa9GYxi4amLZj21k0+fLIRVOtjDCx8ZyzIcSibMFj56T8/JQseNHEaFep8vJyTJ06FZMnT8b06dOxZs0abNy4EXXr1kXjxo3RtWtXHH/88ejevTvyctyk4tUwVTeIzhYXTdmDKEoxeDne3KTUqKF3vMiCJ2qHmXq42BJ4XpOEoDF4b70FdOhgZsFTPTYTWTRFE1BWLJog6u/8mJSJ+Fmvjc5LS/X2XXSvcfXqwIgRzuuxYx3rgE2BZzLxDVPgmWyYroJu/xQJuA0bwq2HjUy8ZMETk84JtY1rZ2POFuUsml4iOGiSlTAseEHajy0Rmmm0BN7atWvx/PPP47nnnsMff5mn4oJRddy4cQCAZs2a4aqrrsIVV1yBRo0aWahu9PBqRFESeDYGy3RY8IKuTldWgVe9ut7xIoFnK0OqDWQTb91BNkyB5wqoqFrwbAm8XbvCEXh8naIk8ADn2tesqV6Wez7sKnKdOs7/mzY547HuOWaDBY+fvNsSGjbif8MWeCZWwSCCOFsteCbzmTBcNIP+lhc2npWifhkVC55Xf8yEBU807wtzH7ycteDt2rULDz30EB588EGUlJSgoKAAXbt2xRFHHIGOHTuifv36qFWrFjZv3oz169djzpw5+O677/Dzzz/j9ttvx/Dhw3Hbbbfh5ptvRhV21pEDZIvAC9NFk2LwMk9YFrxMrR7asuDZXn1n+6UreqIag2fLRXPXLj2hI0LFgpcJvAReSUlwgVe7tvN/ebnzW7rXMRsEnulxfthwmzONrWKxPYZURoEXZhnp3otQhi0XTV6wZoMFLyoxeOSimYySwGvXrh2WL1+OTp064dJLL8XAgQPRoEED3++tW7cOr732Gl5++WXccccdeOmll7BkyZLAlY4SXoOLqntPtgg82cQi0zF47HnaEHh//OFkxzr9dKBVq+Dl2eLTT4FvvwWaNQMuuij5bzquZAC5aJqUBUTfgheGi6YNS4qKBU+XqVOdJBqnnAJ88AFw3HFA+/Z6ZciS+QDm115kwQMcK56uwItSFs2wBN6nnzoJKg47zMmW2acP8PXX+olpRJacP/9MvNYdI11E7TQWM9+ihr9/OvczTBfNr78GPv/cyQp50UWJ+FET0inwwvRO0sGWBY+38kfFghemwAsag+eOuZRkJRmlIa9atWp455130K9fP63CGzRogJtuugk33XQT3nnnHdxxxx1GlXS55ZZb8PDDDwMA7r33XvzrX/8SHjdp0iQ8+uij+PHHH7F9+3a0atUK/fr1w7Bhw1CsalZTxOumqzYIWw9xnnS5aGY6Bs+2i+agQc6DbtQoYNq04OXZ4OefnYmsy6pVyX/XvW6qSVay3YKXDoGXaxa8MASeqH0GSa+/ZQtw+OHJ59W4sbPVh06iJT8Lng7udZMJvM2bgRYt9MrMhhg80+MA4Icfksc1ALjuOvXv+8GOc/XqmZUhugd5ec7nuWLBW7kS6NEjcT5z5zoJpExJp8BL5295YcuCx89hssGCF5UYPLLgJaM0Hf7ll1+0xR3POeecg19++cX4+9999x1GjBiBmE8Qw2OPPYZevXphwoQJ6NixI04//XRs3rwZ999/P7p164Z169YZ10GEjQE3Wyx4svMxcaWx6aLJ1suGwPv8c+f/n36yk/rYBnzX+fnn5Pe67UVkuYiSBc/WNgm23au8LHg6K/qqY4PufQ3DRdNW8gC/39GZZH3/fer316zR769+MXg6uPVhV5F5C54uue6ief/96seawHoquO6yuvDnc+ONCStLrgi8BQuSz2XOHPOygtZFt4yoCDxbFryoZtGMsgWPkqyIUZoO28qEaVpOSUkJBg0ahKZNm+KMM86QHjdjxgwMHToU+fn5+Pjjj/HVV1/h7bffxuLFi3HCCSdg/vz5uOqqq0yrLyTKAo8t17YFjzWEBhV47ETUZPLCfifoNgn8BJ0XUpmCH0D5iazudRO1zWyw4GU6yYpXDB6gXr+wJi8yF80g7qNhuWgGSa8vs8bo3NN43K4FT8VFU5dcF3g619jvvEWLK6wFzzQZh3udunRxLFuPPpro81Fy0RRtRaIK3z+DjvuV0UUzrG0SssGCF8UYPHLRzJJ98IYNG4aFCxfi+eefR22PZbjhw4cjHo/jkksuwcknn1zxefXq1fHiiy8iLy8PY8eOxbx586zVzYZPfFgCj/192zF4QQUee35sBkiTTsnWK+haBH8uM2cGK88W/ADKx9DpTBLice8BjB0kKQYvGS8LHmBf4MXj5uIs22LwdOoo6+c646ZoMsUSRgyeLiTwEujej3g8eZw0eaay/a+w0InxjMUS7S9KFjyVv8vgr03QcZ8seGaINjonC55/OeSiKcZoOrx8+XKMHz8eK7ndlX/55Rf06NEDdevWxcEHH4zPXV+3AHz55ZcYOXIkLrroIpzCO+sz7N69Gx9//DEAYMCAASl/b9WqFY488kgAiW0cbBBlgceWa9tF06YFjxV4QS14QVOtsxvnAk4ShyjAD6C//578Xqe9yNql215YYRA1C14UXTRZsREk7tb2sTazaAbFtgVPdqxOP/Cy3gF2LHjseqQtgZdLMXheSW54dO/Hli3JzyaTZ6ookQMQTRdN3bJYstmCFxWBRxY8NdK1Dx5Z8AwF3iOPPIK+fftiOzM6b9++HT179sRXX32FzZs3Y9asWejTpw8W6qbCYti2bRsuvfRSNG7cGI8//rjnsQsWLEDJXz2hW7duwmPcz2fMmOFZ1vbt25X+AZXXRZPNBhdU4LEp/k0EHnutglrw+ElYVC14W7cmv9e5brJ26X7OCgOy4CWTbgseoHdvszmLZtQEXhQseGFl0XQ3cvf7LZ2/6x4H6Ak8v/vBuyfyXg4mz1S2jbL3NYoumoA9gZdNFryouGhW5hi8oElWyIIXDkbT4a+//hr77rsv2rVrV/HZmDFjsGbNGpx55pmYOXMm7rnnHuzatQtPPfWUceX+/ve/Y+nSpXjmmWdQ1ydn79KlSwEAderUQU1JLuoWf6Uwc4+VUVxc7PuvWbNmAOwIPNFx2eSiaTIBZMuqVk38uUlZ+flO5su2bYEBA/QfwPwkbM4cs8F/5EigeXPgxRf1vyvCrz3YEHhuW2YFnsrq4axZwL77AmefbWfTWSA9Ak+1T7zwgnMv//Of7LLg2RJ4n37qbBdyww3qZfCoWPCCWBm9fkeGbQueXxZNctFMReca694P2wKPtQ6QBS9YPVSeE5XVgsf37yhY8OLx7LPgUZIVQ4G3atUqtG3bNumzCRMmIBaLYeTIkejcuTP+9a9/oV27dvi///s/o4pNnDgRzz33HM4//3yceeaZvsdv/cukUcNjx2d3i4QtFlMjZosFL2oumrIYvKACDwD69QOWLgXeeAP48ku9svhJ2M6dTgppXa6/3tlP7/LL9b8rwm8A1blufnsQsm1FZfXw9NOBRYuAsWOBCRPU6+GFrSQrNrYxGTzYuZfXXitOshK2BS/TLpqPPgosXw48+aR4/0QVomjB87Me2c6iybt/65TJkksCL0wLHrsHHmD2TGXPRWTBS7fAS6cFL8hiXWUUeCaWNv5+RtWCV1rq3faiGINHLpqGAm/jxo2ox6Ux+/7779GhQwc0b9684rNOnTqlxOmpsHnzZlx22WVo2LAhRo4caVLFQGzbts333x9//AEg2gKP/f1scdEMmmSlrMyZjLosWqRXlmiV3W+lPx34DaA2Y/DYtqKyerhiReK1iRgWYWubhLBcNPPyEhP5sC14mXbRZDEdl2xb8GwIPL+2rTOuyWK1wrDgZSoGL4y2HWYMHj9u796tL1qi5qKZLgtePB7MNdtGW8o2F00TS5uoX0YxBs9vLIyKBY9cNJNR2uicp0aNGviTWR5btmwZVq1ahdNPPz258IIClBr0nBtvvBErV67EW2+9hQYNGih9x3XL3O7xxNj214hfq1Ytz7K8rIAuZX/dba8BPpMCj9+Ty7aLJnuJMp1khb1W/LXUFWfZKvBsumiy11B39dDSjiqRctFkce8DK56iasELQ+CZYtuCZ8NF069t64xrMiFgS+BVqZJoe7lkwRMdu/fewOLFqZ/rjkWiMaS01MmGqYrsvua6iybgXO+qVc3K86uHynWrDBY8/n7u2RPNLJp+8w8TgZefnzj/MPbBIwueocDr0KEDpkyZgj///BMNGzbEmDFjEIvFcPTRRycdt2LFCjRu3Fi7/HHjxqGgoABPP/00nn766aS/uVscvPjii5g0aRKaNGmCN998E61btwYAbNq0CVu3bhXG4a34y9TgHmuDqFrwgqQgl5ENLpr8eeqsEANiN6pcE3jssQUFifvq/q9rwWOJmsCz4aLJIhJ4UY3Bs+WiaVoXlihm0bRpwZMJgeJip32UlwdLspKrAk+EbCckv/vFL7aKxpDdu+0IvFx30QSc6+2T+sC4HjYteF7HqVpYTa4bX7aJpU3FRTMbLHgmSVYKCsSLyrrlAGTBk2Ek8C6++GL873//Q7du3dClSxd88sknqFmzJvr06VNxzM6dOzF9+nQcf/zxRhUrLS3FV199Jf37smXLsGzZMrRq1QoA0K5dO1SvXh0lJSWYNm0aevTokfKdadOmAQC6dOliVCcRURV4/G/bjsGz6aJpU+Dx571hg15ZUbXg+bUHUxfNKlVShV1lseCZDNjudQ7bglevXqLtRslF06R/Avb3wbMh8Pzats6qtJelp3ZtYOPGYBa8qlWdtP+AnSyaoomkLYGneh9lk2+Zg43uWCRa3Nu9O9n7xI/K6qIJBLMcpdOC53VNwvCokJVtw4IX1Ri8MFw0CwsT3wvDgkdJVgxj8K644goMGjQIK1aswAcffICqVavipZdeSrKajR8/Hjt27MAxxxyjXf6mTZsQj8eF/y6++GIAwL333ot4PI5ly5YBAIqKinDqqacCcDJ68vz222/47rvvAAB9+/bVrpMMGxNIURnvvQf88INZnUS/nS0umiYDrZeLpk5SiClTgJdfTv1cV+CJrvX//gd88IH5oBOWiybrgjN3LjBmTPL93LVLr85z5gCjRwdPrZ+OJCtBXDRZ61gYFjzWMz1KLpqlpcCCBcBrr+mtLEfRRdOmBU+WjANIuGkGFXii39Itx2XcOIDPf5ZuC56sj4dtwVNlzx4nUZdLZcqiCTjX+7PPgEmT9MpauBB45RXvY9JlwVMd90yeyzJL25o1wKhRqUl+VH7300+Bjz5K/mz7duDHH/XrZ5MwBJ5IjM2aBbz9tlo/Za9dkCQrv/wCvP46sG6d81xbtCiYBS/IvN02RgIvFovhpZdewm+//YYff/wRv//+O84666ykY/bbbz+MGzcOF110kZWKqnDbbbchFovh5ZdfxgQmnV9JSQkuu+wylJWVoV+/fth///2t/aZXww66AnXUUckJLHTgf9u2i2ZRUWKSGyULXllZsvuoqsBbvBg4+mhncObRFXj8tV64EDjiCODMM4F33tEryyUsF0124vj668DAganH69zfRx4BLrjA+d+UeDy6Fjx3NTVsC56pwGPPKQwXzW3bnH5y0UXAv/6lXqbogc232XS7aIYVg1fA+cWwAs80yUdBQaKd2XDR3LAhdWxMt8CTCV6ZwPO7X3zfE40hOtfuhReAoUMT721Z8LLFRXPSJOCkk4BevdQFxp49zvjg99xNVwxeGC7zsrLd9nnGGcAllwD9++uXMXs28PXXqccdeijw++/6dbRFWBY89rN164CDDgLOO8/J2KxaDmDuorl9u9NeL7wQaNjQea4dc4z4fFTbkm7m9jAJ5FDVokULdOvWrWL7AZaDDjoIZ5xxhlEMnildunTBiBEjUFZWhlNOOQU9evTAeeedh3322QeTJ09Gu3bt8Oyzz1r9TfaBwafEDyrwSkuBl14yq1cYFjz2fAoLE+IgyjF4IsEmwkt46Qo8/r4/8UTi9YUX6pXlEpYFjxUqMkxiAHQm/zxbt8rPJ9MCz3X7CjsGjxV4Nu6tLQvelCnA2rXO68ceUy9TNIHk23Q2Z9GUufIBCYFXWhps83R3QmRD4ImIisCrXj31GgL+90slwZZO+7jmmuT3tmLwbLloip4lNgXe998nXs+YoVbOb7+pPXPTlUXT628HHaT/WywyC55rwZk82b8MnTHv11/Vj7VNWDF4LmVljoeTy803q5cDJPqmbpKVOXMc93mWVasSzzgW1Xs1Z47acenASODl5+fjsssu8z3uiiuuQAG/nBkyN910Ez7//HP07t0bP//8Mz744AMUFxdj2LBhmDp1qnJWTlXYScottzjuaS7p9CH3K9O2i2ZBQTCBF6YFj429ULXgNW0q/5tuohavB7hpdwhrmwSVLGmmMQCm+yh53TObSVaCTM6iasELW+CpTvR4VAReLmbRBIJl0mQFnjt25LrAKyxMfia4+N0v2wKPJ6wsmuXl6uWw53jppY5L2wUXyMtWRXRd2IRjqs8A1edbuix4st+ZMAG44Qb93/L6XRv74PGwXhim8c82SIcFT/fZbsOCJxuDRO1BtX6zZ6sdlw6MpptuPJzqsTYZNWoURo0a5XlMz5490bNnT6u/K4Nt2Pn5QPfuifeZFHhhu2iGJfCCxuDxq7wbNjj3yM9S5ZUcJKgFj79uJvhNTGzE4MkwzeL122+AScJarxXgdFvwZMNX2BY81k3NRPjEYuYB517HzpypXg6LqP3yn5kK2cMPd2JcZb8jI90WPMCZUDRrpl6ue56sBc+GO5nXb5n+Xfc42eSqqAioVs2x5LOk24LHE5aLJuDUXSVBFT+p7dwZqF/fu2wVRNfFTeoDqD8DVCf6mY7B69bNEXm6v+X1uyUl+u3L7zqccIITlwfY2RvZFJsCz+0z/PPJhsDTfebJFpNVsj6L2LoVWLrU/7h0YSnnnZiSkhIU6uQkzkJ4gWeyD4dXQ1y/3qxeldVFU4TI3O5VH56gAi8dFjzTGDwVF01TC96sWWbf87Lg6bbjoAJP9nvsymoYFjx22DQR72zMFmDPgvfLL4nX7dqplyk6B1sumuz4EUULHivWTS14BQXBXDRVnkVREXjZYMGz6aIp+0yEqJ3ZyBzoJ/BUnwGq1zddWTRlfysoCL5nmsiCFzRenyfo3MgW6bDg6fYlPwueyj3VEXgqfevnn/2PSSehCbxNmzZhypQpaOrl+5YDsA07L89s0PA6TicLpFeZNix4UXTRLCvzX0VViQnwGqB0B23+HNjrY7rekUkXTa/VW69rb2rtiZKLpqxvhm3BM518sBafMAQeiywZhogwXTRNx4+wsmjKkqwAwVw0K0sMXmGhY8HjybQFL6wsmrLPRPgJPFMLnqhN5bIFr7DQvsArKbEv8Nh+EHWBp2rNlsXgZcJFUzbXME2yYjrnCQtle0Lbtm2T3r/77rv4UpIuprS0FKtXr0ZZWRmuvPLKQBWMOuwDIz8/MfADdlagVJOE+JW5eTOw337Av/8NnHOOWZkyF023c7Pn7octgadyvIpItinwvHzzo2DBsxmD51WvMCx46XbRlB0TZgxeXl7yQoCJ8AliwQsj85xoYh0kmyB7LDsJiqIFL1ti8Gyl4Fc9jo3xYomKBS8WS560humiqXrN/NzSMh2DpyrwMp1FMwwL3qZNwAEH6JWRKxa8eNw5F5X5TZgxeLr3VDa/NhV4pnOesFCebrr7zQHONgnbtm3DNo+Zb1FREc4880zcf//9gSoYdXgXTXY134bAM7XgicpcuBA491zz5BcygRePO4MP67bmB3vdgsTgqTyw163Tqw/guJ/Nn++8Dirw2LKjIPBk2yTI8Fq99fqbe/10SZfAU5lkqAg82xa8GjWS20mUXDRNjgP09zXS+W1TF81MxeCpEo8nxupctOCxFiIWNwaPR9eCJ9voXJWqVZOFTVhJVgB7Lpo2BR4bAxllC56Jl0YYAg9IjRv1W/j2az+mY5ttVMbCXbv85zfsmBZlC56pi+aiRf7HpBPl6ebSvyIH4/E42rZti7PPPhsPP/yw8NiioiI0bNgw7Rk0MwFvwTPZaNFP4Olax3R+Wwf2IcTG4AHOAKAj8NiHb9264t/QrVOQY/gH0xtvAF26OK9tumhmY5IVr7K9Vnb5h50qNpOsmKbQdpH1o6AxeF6/zQu8dLpouiuxOr+lgsrkxIaLZtQteDKrlUqZuZZkRTauRMWC5yXwbMfgmVjwwhZ4LLlkwcvLMw+nUf1d9hivsIxscdFUua+7djnPLi9Y40IYMXiZTrKSSREuQnm62apVq4rXF198MY4++uikzyor7CQgjCQrrl93zZp69bIRc8fDW/BYK8bOnUCtWuplsQ9fdgIUhsBTuRZsx5w0CTj4YGeSUVKiv00Cf99tCDx3gOXdhlxMY/BUkqx4XWOvlV1dYeziDrr5+cGTBaXDRTMMC16mXDR1rq+pwJO14XS7aEbdgsePt7lmwZMdZyMGb/du8XXSFXgsUXDRZM8xbBdNFlULnur1teEy7KI7xrvXKx0Cb8+eYAIvW1w0ATURKFqgAMKx4OkkWWnbFjjpJODpp533omtt0+qcLoymmy+//LLtemQtNpKs+DWcNWv0BV4YDU3mognoJ1phRVMQgWfLMsDeR3fyXlxsFjgdpsCrV0+cWTVMF01TC15QgdewYeoKW7pdNFWSrNiOwbPhomlqwTMVWX6w/ZS3jLhQFk3vMoPE4EUxi6aXwAtqwZONPTrtgx+rK5uLJkuULXi6XhrpFnhe6Ai8qLhoVq0qHht1BV5eXmIRNxP74O3aldjkvEmT1HGbx+aiRLowyqK5YsUKvPrqq5jvEWQzb948vPrqq1i5cqVx5bIBtgObWvD8jjOJw/NqaKYDBVtPkYumDu4DuKgoWAyeyoMxiMADgrtosmUHzaLJ7nkEJFwFTV00VSx4Xu3Fa2V3zx79tlZennDRbNIk9e/pdtHMhAWvuDi4i6apBS8dAk9kndEtz4aLpp9VQif1dxhZNGUumiqZg73KkhEVgVdUJF540rHg2RB4/P1n72sQC142umhGOQZPdxHP7UfpctH0IltcNNn5HTuesaj0LV6Uuf3IlgVP556y22c1aeK/+J6NFjwjgTdy5EhccsklnpuYx+NxDBo0CE+7Ns8chU+yEiQGT7aC8MorwKhR5pMDHl2XQ8BJmDF+fOJ9UAue+wAuLjbf80v1eJWOyd5HVzS5/uRRyqLJW3KbN3f+D3ObBFMLHqDf1jZsSNTPhsBLh4sm22/Hjw/+4M+kiyZ7XL166sf6wVvwRFAWTe8yTdsEX5aMqAi8wkLxszDdFjz+/tuKwTNx0YzHgcmTgR9/TK0DWfD0/hYlC55OkhUTgVdSAowda56N3YXtC7LtcUwteO7ntvfB27zZOXdZkj3WcGJL4OWEBW/ixIlo37499t9/f+kx7du3R4cOHTBhwgTjymUDoiyabmOzJfD++1/gkkuAiy9Wr5fXb+sKlk2bnIQj7CaONgUee95hCLygFrwdO4JlIQzqoum6MLB1c3FFaKZcNP1WdnXbGvsgClvgBZlksElWWAvegw8CL7wQrF516kTDRfPAA9WP9UNF4Jlu5RCWBW/PHjNhzI/jtWolXPpsCTyT/UL9iJLAyxPMTEwteOyENIgFL5Mump98AvTsCcydm1ofsuDp/U6UBF7YFrybbgLOPhvo3Vv/uyyswLcp8MK04I0c6Zz76aeLv88KvMaN/V00g2TdzhTGLpr77LOP73H77LMPVqxYYfITWQk/4JoIvNtuc17XqpX6kJs2Tb0uXg1Nd9L9zjupA7wtF83iYudhaZpAwFYMHlsOL/AAPUuUVxZN0cTFD9666A5Y555rdt1sJlnxW9nVbWts5s1atYDRo5P/rjuhSoeLJv9guPpq7zLjcXmbzM93RGKmXDTZ44qLgVNP9f8tFWy7aKbDggeYTVj59pCXl0hAZSMGD8htgVdUJB4ndSbL7LjDWqJV20c8nnrv+Xh79zhdTFw0Tzst9bMwBJ5s8UXVgqd6fTOZRTObBF7QGLznn3f+nzUrWAzfkiWJ161bi49RGZNkFjwTgSdKOCTK5P799+Lv84vJ5KL5FyUlJagme0ozVKtWDVtNc6VnIfwqgonAu+8+4MsvgeXLgQULnAmua8nQEVE2LXiiThPEgldenhBMrogyFXhhuGiKBJ7ONeOvPftdk1U4vm5vvw383/85rrvsdVOdbOi6aJrG4AHB4hcLC4H+/YEffkg8VNh9dFQI6qKpkmRFV7TLJjennuq4QrdpkzkXTT6W7M03gcGD/Y/1g72vskWFdAq8eDzRdr22oFEd17wEHpBw09TZJoG/F0EseNmWZEV0T/zaMNuv2AU5E4EnEvbsVCbdLpoiwnDRlFlnomzB013ECyMG7+STxYnwohSDZ5r0LB4HZs50XjdtCrRoIT5O5Z7KLHi2kqyIkjPJIBdNCU2bNsVM9457MGvWLDRq1MjkJ7KOWCzxUAoi8PLzgWOPdQbavfcGBgxwsgkC5jEhPLodXTQhCyLwduxITNLTIfCCumgCehY8/vdYQWJD4FWtCvTo4fzPim/V9pauLJpAsPhFd6J3yCGJWEMgmLssi62Nzv1cO1TrdOCBTp8H7LhoBk3+kp/v9IETT/Q/1g/3HHjXUZZ0umju3p3ol17bu9gSeO7EmWLw/I+TuWj69VebFjzRfWcFnm0XTZNxKgwLXrVq4gXdKMfg6V67MCx4hx8udmm3acELKvBMci8AwMqViWyTBx0ULIbapgVPlHBIZncSlc0LPBtZNHPCgnf00UdjwYIFGDt2rPSY9957D/PmzcMxxxxjXLlsgm0cugKPnZSJcCeTO3eqWy/CFnhBXDTZgcYVUe5DRdeNIAyB59bF1ILnVScTNwmR+HQxWdW3mWQlbAuei4k1yu/YMLJoqiBrj2w5Nlw0Y7HkGAcV2ONEEyHRb6ngtvuiIvk4Z2rBMxF4bLvlBR5rPVId13hrG49rwdu1y1w0VqYYPBMLnorAU71uonvElmnbRdOrXosXiz8Pw4JXVCTfg1DlXCtrDF5Bgdj6GTTJiqn7uQhTCx5ryznwQLsCL10WPNF94GPwyIL3FzfccANisRguuugiPPHEE0lumFu3bsUTTzyBiy66CHl5ebj++uutVTbKBBF4rFuVCLdDlZfbGfR0O7ootT9vwdNJKc7+vpskJMwYvEy7aLKYrMKJ4gNdMi3wbFvw2N9i+4OpwAvLRZNd5bZlwQsq8OLxxEPP/T67QqpbN5sCz72vMuuMbnlBXTTZdssLPLbf23bRBNSteBSDl0ymLXhsmem04MmcpcKw4PHbFrGoPOOzIYtmGC6aBQXi7QOCWPDy85OfM5ly0WTbn5cFz8RFk30+yTZBVy0LkFvwbAi8SpNkpUuXLhg+fDh27NiBIUOGoF69emjZsiVatmyJevXqYciQISgpKcF9992HQw45xHadIwnbIN3XJi6aIkwsZTYteLJVMFMLHvv7UXHRZB/8bl3CEHiLFwP77ee4HP7jH2rliayLLiYCTyUeiiWdMXi8i6YLO+HTmVSlw0UzDAuezn197TXHtbNZs8Rn7lji/j9jBnDWWf4TMN5Fk68Li85+bKzAs+2iqSPwPvgA6NoV+M9/Ep9li8DLNQuerE5hWvBsuWiaWvBGjkxNHAV4X7NZs8SfhyXwZJNklTg81etr2h5FY62pBc9kSyvZ7+bniwVekBi8oHG3PCrP4p9+Ag49FLjzzsRnbPsLYsGbPh3o3j3xnrXg/fab0zfYv/mhY8ET1c1NslKnjnNO5KLJcPPNN+P9999H586dUVZWhpUrV2LlypUoKytD586d8d577+E2NyVkJUC0+p5JgWfTgicaWIK4aIoEXlRcNKtUSUwu2ImeTnIEvzotXAj88QcwfLjaJvZeLpqs4FO9dum04On6/Weji6ao33qJR1l7FHkBeB3vcvvtTpYzti2JJjHjxiULGxE6Lpr88V6491VmnQHMLXiFhYk6+vWBM890Jhr335/4LB0Cj3XfUh1L+DLZNqebtTiKAs/LRVO0LqxjwduyJfHalsA77rjEa7YNq4q8eByQOTR5jbELFog/t+WiyXoGeVnwbGadNbXgHX642nEu6XTRtG3BY7OLq5Tlh8q878gjnb0W77nHSfQHOIm/AKdt7LuvucA79thEmUCyBY/H1ILHzt9YvCx4bhLDXHTRNNx22aFPnz7o06cP1qxZg+V/3bmWLVuicePGViqXTdhw0UyXBS/IpNslKhY82y6arGBi8wOtXateJ52Hxdat4v3eRHUD7LtoBt0mIeoxeEEteLLv+1nwtm6VZ6Sz7aIpsgi539fdakXHRdM9XmVvR7efelnwTAVeQYHTb0tLzeJU+Ox3YQg8E1cr/hwbNEi81xmP+LJMj0mni+b55wNffOEkeJg3D1i2zOmv8XhiAscLK/YesCnQ99or8dpU4J15ZmILIyB5EllerjYh9Rq3vK6ZrM62LHhseywqkj8TVCx47LOqXj3ggAOAr79OPU53weHoox3Pl0MOAb79Vr0s0RifLS6apaVmC7gyVJ7F7P1bvx5o2TLxvdq1nTZn6qLJ/z5rweMxFXixmGOB5tsqfx+2bUvUx5UrtE2ChMaNG6N79+7o3r17pRR3QHYJPBsWvIIC8xXlKLposhY8F1Z4qVjadH5P51jbAo9/oPu5Q3g9WHI9Bk/FgidaMfSy0ui6aPq1EdF95100Xfwstjoumip1c1GJwTO1zLoCj/0dHdJhwTOJn+PLZMcjVsDolvX1187EjSeIO5lOOX7HuW3khReATz9Ndj1mRR1fH/Y9O16z52oi8G691bF+swsBJi7jXr/tdc38LP7pEni6Frxp04ALLhAfp7u4NnEi8N//iseibLbg+Xl62HTL1n0Wu9fHve+uZTdIkhWWvDz5OZkKPEDsYsz/Dr8HnspvVpoYPCKVMLNomiQzsemiKSrLtotmLgk8nXNQOdYryUpQF01+vzQR6bTgyWLwMuWiqZJkRWRB84qz0nXR9GsjovJELpqAv8VW10XTRODZtuCxyQhMVrltCDyR5ZPFZIsDXuCxa6c645GoLFE7iIoFj5/Ey7b74CdcIoFXpUpimyHATOCJJrQmLppe/djrb34LQkFjydhrUlQk3iYB0I/Bq1JFXpbu2CvzSOCPU/mddGbRDLpoEkTg8XNFXc8t9/q4990VTjYF3qpV8r/5IRN4Ihdjvm4igZeLLppKAu+xxx7D7oD24d27d+PRRx8NVEaUSUcWTSBaFrwwYvB00+Xa2ujcbd7sxMd0QhWmBc9GkhWbAi9MC162JFn588/Uv5sIPFMXTVn/BIJZ8MIQeF4WY1PLLGvBsyHw3My+gFnad1F/MumnXha8yiTw2OvJ9lkvC547gWvcOPlcbQk83kVTBRMRB8j7hS0LHi/wbFnwqlSRl6VrwZN5JADRyaIp2k8z6D54QVw0+bHLNIumqgVPV9x4ibiwLXj8Hngqv5mzLppDhw5Fu3bt8NxzzyVtiaDC5s2b8Z///Af77rsvbr75ZqNKZgOiyZnu3lPpSrLy6adOog9VbAm8JUuAKVO8LXiy35MhG/TYB4upBa9+/cQ90XGJirqLpixBhQxdCx5bXpRj8Gy5aIrioYIKPFWLjyyTpWxCJMuQJ/otmy6atmPwZC6ambLgkcCzdxy/iKVrwSstTSy6NGmiN0leuhT46qtkMZMOC14mXTRVBZ5uDJ6XwNOZLOfnJwS1qG/ZsOCZWF54gSc616ACz6YFz8SbZs+exHm6zw7ZPTWx4MkIIvBEFjz22u3ZAzz/fOK9zRi8rLTgjRs3Dnl5efjb3/6GJk2a4IILLsDLL7+MefPmIc6NbvF4HL/++iteeukl9O/fH82aNcP111+PwsJCjBs3LpSTiALZFIO3dq0T/KwqWlSyaPqt7v35J9ChgxMs/dpric+DCjzZsewqvI6IYicDeXmJzp9JF80wY/BULHi6MXjshDnTMXhhuWiy90F0DWxa8Excu0wteGG4aMbjiXLD2AcvCi6a2RSDJxN4Jq7AYRwX1IL3558J0aUj8DZscNLAH3ecE+/l4ifwbMTgBXHRDLI/Il+vdFnwdAWei66Lpuje2NomgR8rRQthQQVekHvLtzcTgcfe8zBi8GSEacG77Tbgs88S7225aLpJoKKEksA744wz8Ouvv+Khhx5CgwYNMGbMGFx++eXo2LEjioqK0KBBA7Rt2xYNGjRAYWEhDjjgAFxxxRV466230LBhQzz00EOYO3cu+vTpE/b5ZAyRwCsv13MDS5fAA5zOr6q3RR03Ly958PZzZXr55cQxc+YkPhcJPJ1J2rJl4s/ZVRy/axGPi100gYTAW7NG/UFu24IXdgxeEAue6KHPJiPIdAye1/VlU6nLkP0We93vuy/17zZj8ExW901j8EQWvKACj7fK2tgHz6aLJrsYBIRvwVMdH3jX7Fq1Es8CXQsef71Ek9GdO82297B9nGoMnkzg8e5Xqs+W0aMTe9393/8lPk+Hi6aXdUzUL2KxRB1M2haLzRg8ts3KrFqAnoumbKHPxdRFMxbT37NYVD+3jt27O/vbyo4R4XcdYrHE+afbgldWlnzP/WLwvO6DSPjk5QEXXSQ+PswYvO+/T7yuUsXZFxUQty2dfh416x2gkWSlqKgIf//737F06VKMHTsWF1xwAfbaay+UlZVhw4YNWLZsGTZs2IDy8nLstddeuPDCC/Hee+9hyZIlGDp0KIpko0aOIJuc6Zh1ZRMfk2yVKgOWn7uWi2hgicX0Yhtkbl7u5MokjTgAzJwp/pzt5H7XwktAuas7ZWVO2mAVsikGz2vCrVKuqD2yk4RM74PHnuu4cU572Wcf573KJFnFgtetGzB1KnDvvYnP0uWi6ZeFjL+3ooyfsrq541hQF01+AmnDgmfTRZMfB6PiosmvnsdiifEoqIum6J7G48mbefOw9+f994Fhw/yP80LVRVNmwZO5aLLWzcaN1RfBZOcehotmw4bAG28k3uuOF+w1CbpXmk0LHrtQGovZSbLiJ/BMXTTZ1zYEXlER8MMPwNlnJz7XseCddx4wYEDqMaZjmw0XTVsWPFHbycsDnnsOOPfc1L+FacFjr/ns2YntsEQLmWz79WuzURR42vvg5eXloW/fvujbty8AYP369VizZg02b96MOnXqoFGjRqhfv771ikYdr9V3rwkSa9ZNpwUPUBuwAfkgpWPB41fJXYK4aMbjwKxZ/r9nQ+ABzqSKzcgmozK5aIraYyzm3NcNGzKfZIXtB4ceCjRt6tzTRYucrQx27vR2W1SJwQMckcfep6DbJITloqmT1c2Wi6aqBc+Gi2ZZmfNPZYLgwt//sLNoqvZTdvXcnVw1bux4Laxb55Tj9Wxh4QWe7J5u2qS2f+OppyZvWiz7LS/SZcFjz1V3LAPsWfDY3+7bF2jbNvFeV+DJFoNsCDzZIpCOBc8dH21b8Gxm0XRf79plR+ABjgXvtNOAd9913usIvJ49xQs3phnGbQg8HQue1zUU/XZenlPW2WcDb7+d+jc/2GunE4PHuv7uu2/ic5nAc6+j37gWtQQrQMCNzgGgfv36lVLQ8ZhmwBNNqHhsJ1lx8XqosERV4C1bJnezY3/Pr2N6CSg+7qVTJ/96pTPJSqZdNEXtMS/PjsCzvQ+eWwZ/T1u1kn9fVeAByfsgpSuLpm2Blw4XzTCzaLq/JxJ4skmlDYEXRgweuwDnTq7Ytvvnn8l7xOnUz0vgyfoD3zaCWmJVXJX59yoxeLzAcy1Ju3d7j5EybwNRXzdZcOL7gep4IeoXYVrwZPdVJwbPT+DZtOCZumiyZdsSeHz5OgJPFhtrS+DpetOUlelZ8HQzt7vtTHTOKn3K1IInaleAuG1luwWP9sGzhEn8DOA/MQDCs+CpCjwVVxo/gSebUPDbJADqQoW13vGrvjouml4ukCZbJWRbFs0gLpqi++5a8IDMx+CJFlB0shGquGi6sJaPoDF4qi6afmUFEXi2XDT5jZRtZ9HMy1OLs5KVnw6BZxInJbLgmWbS5Osnuwcq7dbNahiWwOPRzaIpSoGu4uYmyoYLhOOiqSPw/Cx4QVLp898pLLSTRTMqFjyvJCvsa5sCL8j8z8v6r3tvdZOs8HVNhwVPVp6uwGPHM78YPNm2ZH6eF9lowSOBZ4lcFngqFjy/wUd0HWKxxKBhIlTY+Ds3UNbFVOD5uWiqkM6Nzm24aIZlwQOcVUMdl0qbMXhPPQV88knivXuerGhfvhy44AKgXz+xNVglyYpLWBa8IC6a/IQoEy6a/ATSZhZNV2yoTHJl14qfYLDW/6jE4IkseF7j0bRpQI8ewGOPAVdcAbz5ZnL9ZM8aFddir02n2eP8UD1O14LHx+ABagJPlpk0jCQrhYXJC0K6Lt02LHjjxztZrdlYQK8kKzoWPLeMyhSD56JzP3grlFccmF9Z8+cDxx/vxJj3758aU+on8Pixjhd4QWLwdAWeSvsIasHj25KfwMvGJCuBXTQJh6gJvHS4aLoDUmmpvwVPVEaNGomOafKQmj8/8fqgg5KzI9ly0XQDcAH5Ci+PbQseO8jatuAFicGLx8XtsUcPYO7cxDE7dshddHlUYvBUBtJdu4Drrkv+TOSiedttzv6MANCmDfDII8nfEd2fggLx5NZtz+XldmPwgrhoih7aXqTDRdNmFk23bioCz8SCp2K1AMIReH4WvBUr5N898kjnOnz5ZerfvBZ1VBYm0i3wgsTg6Qg8mWAOY5sEN5lJtWrO+JgJF80zznD+nzIluV4yi6RKX+CzUQex4LnnUplcNL1Ehl9ZI0cCX3zhvF68OPVa6Qq8srLkuZErnGRjh6mLpg0Lnk4MnsyCRy6ahBTTGDzRhIonqhY8IDGAmwg8VjyZPKRYn/IGDZL/ZiuLJrsaZBLjZuNYVljySV6CxuAFcdHcsycxGejWzUm80KuXs20AO0nWcdNUicFTGfxF7VHkoumKOwCYMCH1O6J+JJu0sJYkr/sq6ythZNHkV90z7aJpy4LHP6SDCDz+frIh5SpbabD1AcK14LVvn/js55/l3/UaC/xi8GREzYLn56JZXJwa4+117U0FnqmLJpCw4mXSRZPF1j54NmLw3Oc7uzgYRpIVvzJkhCHwvMYOv7LWrUt+v2BB8ntbFrxYzBGTBx4I3HRT8vEyomjBU3HR1BF45KKZw2SLBe+VVxLuJUFj8AB1gScqg51omzyk2N/kV210smiqbkOgWi/bLpqs6xB7zYDMumiybbFuXeCjj4CJE51Ji6nAsxWDJ7O8AanX0EXkTqQj8AC1fZVkfVg2hphsgux+X1fgiVw0vRYAMhWDx7vZ2HTRZBeLTMZIUX/SeSa4iCZXBx6Y+Ey2RYwfQWPwssWCx7pi+03kS0tTJ8guYbloAgm37nRvkyCrs5fA87PgifaTNbXglZUlxkn2WZINLpq2Y/BUt0ng52C//Zb83i9cQiTwRItMAHDttc74c9ppycfLyLQFj62bjosmWfAIAHYEns0sml7Z/9yNqL3cyFi8HhpuBzCx4LEPYJOHFDvg8Z26SpVEpw/iohnUBdLGse6EpUqV1BTmmXTRZNuiVxyTqQXPtsBz2wPb7lhEAk9UjpfAU5kwyPow+5BiXwdx0QxiwXOveV5esMm8agxelFw03XusKvDSZcGrUyeR5fLnn/XiW9n62bDgBRXqYVjwdu1KnAO7kONnBfnzT7klzpYFj3fRBBICb+tWefsPw0VTZpkOYsETnZ+pBY/1zvETeIC8H4g+j6qLpiwGT9WCx497fEiJGy4hQ+SiKVpkYlHd81mUwTNTFjwdF01KskIASJ8Fz09IicplKShQWzVkUXHR9FtdEpUhegD7/R6LyD/cpahIffBW3YYg0wLPTfnNEsRF001QYcOC5xXHpJOeOUyB51471jWYRdWCJ0scACSupVcdVQReLJY4/yAumkFi8GSr0jrlAeHsg2fTRZNvuwUFaq5zovoA4cbgAU68MeAsnLAuxqpEwUWT3f/VDx0LnszbwW+S7JWwxlYMnpcFD5CLLj8XzVgs0eZU25bsPnslWfGz4ImeozL3br9rxi4Kss8S3TbnJ44zLfD4TJBeY0d5ufd1U5kbej2LdSx4Lmx9o2zBM3XRzPYkKyTwLJFOF83ly/3dc7xct8IQeCYWPC8XzUWLEok6ZLi/WVCQ+iCpUkVtss2W436PxcRFU+dh4fcA2LMn4Tokci0M4qKp4oLnVa6qwPOz4O3Z4wT679wpj8HTnVD5uRXXq5f6uQ0LXhAXTX7y4p5/kCya/LUy9SiQTdRUHmq8i6btLJpuuS6ffuq0J15AqGQDBpLHSD8vh7lznU16f/op8VmYFjwg2U2T3SpGlSi4aOrca9UsmqtXA++/n3gfpsCz7aIJyK+9n4smoO7G5/dbpha8eBz44YfEe7cMPsOtC3/vSkudPus+K2QCT3dxSDQ+ifIluN/fswf45htvT6lFi5z4tnQnWfErT0XgeT2LVWPwWFQteFGMwSMXTU3i8TheeeUV3HTTTXj88cexXXdnxSzGxkbnKgJvyRKgQwfg4IOBjz9WK5eF3X9n5041l890xOCxg9jcuUC7dkDHjsmZMXnYgG6+c1apojbZBsLdhsAPv7r9+Wfitci1MIiLZlQE3t/+5qTr7ts33Bg8FpFYthGDF8RFU/bA8SrLLwZP9XjR32WLVjrlAenPovmvfznt6bHH/Osqqk9+fmKM3LJFPoGfMsUZo847D/j88+Tv89iKwQMSFjzALA7PK+5WJfsr67rrdZwXOgJPdR+8zZuBG25IvNeJwfMSeH4bnQdJsqIi8PysUGx5Nix4JjF4H38MnHhi4j1bhspG1v/4h9NnjzvOuZ66Ak/HvZWFbxdXXAEccwxw7rni43/9FdhvP2d+Mn16ajn8a5sxeIC3gFcRePzWCV7f5zc6Fwkn1XPNtAWPrVtYWTRzxkVzxIgRqFevHr5wc7L+Rd++fXHppZfiySefxNChQ3HkkUdih0rqpRzA1IInm1CxsAPkd98lzOy33iovV3bZ2dVpQC0Oj39oXH554nUYMXiPP57ovLKBFkgMdqLEDazoC5JkJdMumqJNe1mCuGi619zPRdMkBk9H4L34ovP/hAnhuWgedljyez4bKWBX4AV10QTsuGjyZMJFM4x98PiHdJcuqcd8841/+W67vfhi5//993fq546R8bjcdY4v3yVsC17r1onXqlu3sIgseO77TFjwvFye2boB3hY8HtECoszNbeNGcRn16onP08Y2CYC5BU82VoQp8LymcoMHJ7/3E3j8vXv4Yef/n35y5jdhumiy1ld2jhCPO0noAODDD8XlXXNNQtDPmZNaDhDMgte7dyJ+fcQIvfJUnv8bNsj/ZmLBs+GiKfIOycYsmjljwfv000+Rn5+PY445puKzL774AuPHj0fDhg1xww03oHPnzpg9ezZGjRplq66RJl0umixeD0bZAM4LPBU3TbZzPPdc8sq4O3iXl+tPRGUWPPY6eO31xFrwvARelJOs+JWpI/DCctEsKxOvUtsSeKK6AfYEXvXqzqa+LGwfEP2eqByXbHLR5LHtopmpGDzemnTuuY4V4Z57Esfw7UR0rdx2+9RTwFtvJfaRUhkjZROqIG5WLOzkiu1fOoH/IkSWAp1sjukWeKoxeDw6Md6yMYp1h2XJdhdN2cJutWpmFrxVq8T1AdQseCxeAk937PC7N2w/ULmPMoFkK8lKcbFjGRw3LrGPq00XTTZGlcckBs+Gi2YsljqWpCMGT3ej80oj8BYsWICOHTsin7lC7777LmKxGN544w08+uij+Prrr1GrVi2MHj3aWmWjTLqyaLJ06CAvV/awYF00vY5jYTvHwIHJAy47eHs9XHRi8EQdVISXwGOtekGSrIS9TUImLXhue/Oz4AHicwpD4LH3wpbAu+CCVIudqsAzTbKSLhdN2wJP5lEQRJSpxuAFcdHMywNOOcVZYZfVzcuCV1zsiES3jwUReLYteNWqia0OgL5bUCwmTqxkIvCCtAkVzxXR372yaPLYEHisOyyL7X3wAD0XzbAseFWrysc3mQXPbxHMzzOCPz9e4Pntgycqw+9zF92+JBO5tpKsAI4L6JlnJsqx6aLp5YocNIumqQWPf+3+th/pzqLpN97kjIvm+vXr0axZs6TPpkyZggYNGqBHjx4AgJo1a+LII4/E0qVLg9cyCwjTgldQIB7Y+JT5LF4WPJWHCovMbQtIHsi9BhjRdZC5aPLuMrJVJ1ULni2BlwkXTfbcRTF4Nlw0/SZYQPoEHhu2ayvJikjsiPqOqFxdC55NF80gMXi2XTR1f5+Fd9EMI4umi9eKspfA47Et8ILE4PETK93FDtF3vQSeTLDYtOCpLGy6mFrwRDF4svqlw4Ln56IpsqrJXErDisGrUkXfgjd/fupnOha89euT/7ZtW7hJVoIslqgIPNvzP5sWPB2Bp2LBs+GiyZfj4rdwYhKDF4+Ti6Yv5eXl2Mm0hu3bt2Pu3Lk48sgjk46rW7cuNng5/eYQYSZZicXEExGvzq7qoqkbgyfKVuniNcB4uUfx5fICT5YpzpaLpujBK3ofdRdNXQujqoumrGz2ftvaB48VeLYseKKBW2TBE51jOjc6N1mVT5eLpt+k3wt+/Agji6aL19jrNwaxRMGC504m+YmV3/PFS3C4dePr6J5vebm4v4omRl730W9yJkumJMI0Bk9nn9UgFrwwXTRl5xiWwKta1TsGT3RfRc9n9rnlF4PHL+Bu26a/D56pBY8tj792ovsqE3im+xJGXeClYx88/rVKefzfVS14IoupS1CBlzMWvJYtW2LGjBkV7ydOnIiysrIUgbdx40bUE+Ujz0Fk7ky9e3unslbp4IB4IuI1oQ/DRVO04THbAXQFnqwcviPJMsWxSVaCZNH0suC5e8UBmcmimUkXTXagDGLB00mm6x7Lt7VsEXhBXDRNLHiytsbvl+hi6qKpK/B27QIuuwwYNCh58ixKiMT+hupkWbYK67WibGrBky2CpctFk59Y+Qk8r3FAtqjDWrRlliS+DJnA448XoeOiqZpFk4ftp6YCr317/zrZyqJ5992JGFAX2Vgnew5v2QKcdBLw2mvedTEReIB47BI9n3/9NfHaz4LHiw4vC15YSVaAVBdUUTvxSl7nkimBp/L8d6/1jBnAyScDL7yQ+JvIRTMdWTQB8bn79W8TF00vzwHVLJqvvupcux9/TD42Zyx4J510EpYvX46rr74aH3zwAYYNG4ZYLIZTTz016biZM2eiZcuWVioadWQumvE4cMYZ8u+pPuh0LHjxuLcFr27dxHuVLGzu74hWWoNY8Fi8VnFF++GVlSU6lCwGT9VFkx3ERNfZrVsY++D5HcveH9EG3TYEnkpyn3S5aLrH8u0hUwIvnS6aNmPw3M9r1kz+PF0C7+OPgZdecrLSsWHYXhY8QO3exuPhu2iquLFnyoLn1xe8xmH3u+3aJT7r2tX/fEX9ibXSex3v93c22kPUNkwteCx+11+2CCWLR7OVZIUf02+7Lfm9qgs2e36ffQZcdJH3FkgmMXiAWODMm5f6GZu12M+CpyPwbCRZkQk8/jnl98xjsZVkRYTNGDzXWjpsmJO1+vrrE+fkZcHLzxfP0VRdNMOw4MmscV5JVrzmBSpJVnbvdrZ1mjAhOaGXSn0zgZHAGzZsGJo0aYJnn30WZ511FhYsWICBAwdi//33rzhm+vTp+OOPP3DEEUdYq2yU8doz6rff5N8LYsGTDR4lJfLGVlDgBPG6zJ4t/00X2Wo5oJ5khe/8EyYkv/cSeCIvX97qFsRFkxVRDRqk/t0dYDMRg8eep2hlKsxtEtg2JyqbfSDwD3FVgcffG/dYr9W1TFvwvCZAbj1lmUcB+YPYxEVT1n7c73z+ObD33v7H898Dku+prsBj+xQ7AfSKwVOpH+DtZsNeQxUXTZlYt51FUzfWx51MAPoWPK+Jnju5Pecc59+BBwJvvJE8tvgtdLi/f9RRwOmnO99t08b72nuVd8ABzkRz//2Bb79NPdYkBu+NN5Lf68Tg3XOPcz7spuledQoSg9e2bfIWA3w2Stl15C30oufnL7/I62JqwRO5KLLPgaOPdrYsueMO77qZWvDC2gfP/V0Wnee4aQye11jmoiIY4/FE+xJ5+rjtZfVq59ipU533O3cmtoHxisHjEz25qLpoiuodlgWvalXHGs7i3gcvg4rfuF1e7jzX3D7A7lHMlx0VFMLoU2nSpAmmT5+O559/HmvWrMEhhxyCCy+8MOmYX375BWeccQbOOussKxWNOiqbAotQDTbXcdH0crssLAT22ccZxHft8nYfdbFtwVuyxHmA8vWSITofFYGn6qLJxgCIBkfd+AYdF02/Y1n3WD/LgO0YPFsuml4Cj6+ze1/59mA7yUrYFjzA6dui306Hi6Z7LoceCixYoN4XZPGorMDLz0+MW7Ly2HNk+68NC57XmBmLJepny0UzExY8L9eoIALPrXNeHvD224nP/RaKRNe8oCB5+5HevYGJE+X1YuH75xNPyI/VzaL5wgvA+ecnf6bqolmtGnD77c4/L2y5aALO1kNffAEsXJg6VqoKF9Gi06xZjnVWhJfA82qfIgseey8nTPBekHAxteDZcNGU1U3FgieDrVcmXDTZPtuiReo1bdnSMTSsXQssX568aO4KFq8smrLM5qpiVvQ3P4GnY8Hj28UddwB9+wKdOzvvTV008/OdssvLne+yc0XRxvBRw0jgAUDjxo1xu8coeOGFF6aIvlxGlmTFjzAseF4Cr6DA+XfAAc6mogsWOOZzL3cb2wJPVI6XVUQUE8JvTh4kiyY7GIrcIDPpoun+pkwA61rwRMkSwnDRdFf84nE9gecSFRdN0xg897s2BJ6bSU80uVF54OflJe6FqcBjKSpKTPRUBB7/3aAWPD+39oKCZBdur7KzQeDpZtH0Godlf/MbR1Syq+pYLnSytepa8ET9U1XgeT0HWWy5aLq4IkbVisT/puj5IItdB+RxpVWrei/AiCx4fovUos/Y+ouSrGQii6apwCsokJdpQ+CpPOPZfl27tvOPvcetWjkCr7wcmDw5+bvuWONnwROh6qIp+ht7zURtztSC5yLq87oWvPx8558r8Ni5Ij+WRtGCZ+Sieemll+Kll17yPW7UqFG49NJLTX4i67BhwQtD4Mn8jN3sYPE4MGeOdx29BJ5JkhVROboWPHag87Pg+QkCt9M2aOBdt0y4aHpde0Bf4LGDoo6Lpq7Ay8tLTJaiKPBE2yTYzKLJ14FFNQZPZZNVFYEHqC92qFjw2HrpnqOfBU9X4MkeyqKyskngsRNpXQue1zggmzT5eQJkUuDpWvCCCDxWTHhhYsHzWjxxx8o9e5KPUxUuoueDl3eOyTYJgL8FT2YF4bEdgxeGiybfTlTi74DkfSYzYcGrUiXVE6lVq8Trzz5L/pstC57Xtfbby9G2BQ/wF3j8fZPF/7LzSC+BF0ULnpHAGzVqFKZMmeJ73LfffotXXnnF5CeyjrAFnmjQVRF4fBJTt9Gz6Z+9VvoAOzF4bF39gll5VFw0+TLZJCte2fni8cQKomifObcsILMuml7WFBcVgSe6DyoWPL8YPNFEOYjAM43Bmz3bsUibWPBE90I0wVLZ6Fz2XUDfgierm9dvyASel1CcMSO5bux5ihYGvH7fS+B5jXNBXTTZz2xtk2Aji6ZrRRXVS0RYLpoyct2CpxqDZyLwbFrw2LoA6sJFJvBE4rO8XNymq1Rx2ihfFttHRBY89nr6Jclh6+DCCzyTjc51kqywsO2CTwTClykbB7zGoPnz5fv4AmpJVtj7UVLieF7x95+fD/FzmRYtEq/5/AcyC96ePeFa8MKKwXMR9XkV936WSinwVCkrK0Oe13KtB6NHj8ZFF12EAw88EI0aNUJhYSFq166NQw45BMOHD8c2j1njpEmTcMopp6BBgwaoVq0a9t9/f/zzn//0/E5Q/ASeSpICW9sksIKofv3kv7l1Yzdw9RN4Nlw02fPUddHcssV/QPNy0eR/ny/bHdhE8XdsfTNhwfNz0XR9xNljVX8vzG0SALnbEYtNC95TTzk+9127JrcP0fnVqqVWl6AumiJMBJ5fMhUeXQte375OcoR33kl8JuuTQQReUZFdC57XpuJBXDSrVUucpw0LHqA3jnjtPxXERVOGbYHnd442LHiy/iVqt15WENZSoSrwwnLRBJLHS1XhIjrnzZuBZctSP9+2TVxnty/w/ZP1dhBZ8NiMtn6JOPjvAN4WvPz85PE2ky6aOgLPvb/btzv5BmT7z+kmWenfH+jWDbj44uRj+PkQO5cpKgKaNk28d5OquLhtnx83du5MXL+gMXhRtOB5PTvYct2yy8uT7yM/TuaMi6YqCxcuRG2RL5QCzzzzDF5//XWUlpaiS5cuOOecc9CtWzfMmTMH//jHP3DwwQfjjz/+SPneY489hl69emHChAno2LEjTj/9dGzevBn3338/unXrhnXr1gU9LSF+Ak+2f4qqBa9TJ+d/NkbMxILn1m2ffRKf8Zm7eNIRg+e32S0/KOkkWQHkg4XfPnNs3YLE4MkGyKAumkDi4a4r8Nwyw4jBAxKTFq998FQFnsqK+XXXOf/Pnw/873+Jz1UGcllddJOsBHHRlGXR9CqLvS+sN/zVVycf5yfwPv449TP29226aNqMwQvLRTMWSywC6FrwZIJFR+B5WfD82lgYAk9m2WVht9/5/Xfv37NhwbPlosmK6TBdNG0KPBULHgCsWJH6mWw8lvUFdjHMy4In69deMXjxOLBxY/Lf2I3Oi4uTBZkNF80LLhDXjb8ufDvx2nqKh70fO3YAjz/uXz+VGDy3b7Nbz7Cfu8fzAs9rtzKZBY89X1lsqqpnjZ8FLxMxeCrxouzzKqeTrNzDbfowc+bMlM9cSktL8csvv+C7775Dz549jSo2YsQI7Lvvvikbpa9fvx5nnnkmpkyZgqFDh+INJh/yjBkzMHToUOTn5+PDDz/EySefDAAoKSlBnz59MHnyZFx11VV49913jerkhV+Sle3bxZN81Syad94JdOgAdO8OHHyw8xCWTRTYCYnMRZN9CKq6CWZS4G3alDyB0EmyAsgflH4ZNN3ygWAumjVrih+OQV003b/t3GnuoimboAR10XQnLbt2Ob8rusey8w8ag8dmCVN1mbZtwQsag6diEWE/v/hi4NRTnUWgffcVl6Wzyihz0WQ/tx2DFxUXTcBpv+vXyyfEmbLgeWUK9aqXF34CjxUd/N6KLm7GOsBxDzzySPnvhWnB0xV4sngvL0wseF4xeLoumipJVgDx4oSs/akIPK8YPBXLrot7Xjt3pp4La8Hj70eQLJr33ONkemXdFXUseKYCD5CPh7oxeDK8LHhVqiT3TR5ZDB5rC2HnXiyxWCLLpK6Lpp/1MgwLnt+zg69H9erqLppRtOApC7y77roLsVgM8b9mgzNnzsRMH9++GjVq4A52QxQNDj30UOHn9evXx/33349jjjkGE92czH8xfPhwxONxXHLJJRXiDgCqV6+OF198EW3btsXYsWMxb968pD37bOBnwdu2DWjYMPVzVQte9eoJs3xRkbfAU7Hg6cRueQ3gJklW/JIQiOAHV5UkKyqTbR0L3p49jhgSuaGwiH6ruFjsi2/TgqcycRRNrFQEXhALHuBMklUzV7J1c9EVeOzEJp0CT6We7nWrVi15wmTiosl+XqUKINuVxkvgySaoYbho2rbgheWiCfi7GMv6m58lI2gMnvsbokyhQDgWPBURxMZ1+22/E6UYPBOBF2YMHrugENSCJxIlQQSeVxZN2X30iq8S9S0vgRfERfP88+ULX6K68GXqCDz+M9kzw5bA4+dDbAxelSpOkhU+s6aLzILHCjwvR7yCAuf3vdyJRXMMvzlhGDF4ui6aXgJv9+7k+WBWW/DuuOOOCoF3zz334KCDDsIZZ5whPLaoqAh77bUXevfujUaivPMBKfjrLlRhes3u3bvx8V9+RgMGDEj5TqtWrXDkkUfim2++wbhx4zBs2DCrdWIbi6ixySYJqgKPxc9l0KbAi8fVLXgqG53L/PS9LFRA6uDq56LJTyRVXDRlSVb4bIZ+ExKZwFM9lsUvBg8I7qIpE3i2YvAAp/3rCLygFjyvTLIyVF00gyRZKS9P/E6NGt4CT9dF06uNeIkL2fWUuWgGsVL6xeDZyJBqw0UTSHYxFm1TkSkLHuA9qQpD4LGiQ+au5YYRAOqJu4DMZ9FUOTeeqLloysYkkSiRlSkTIX4xeH4uml7WGdG8aOtWfQueiqXTTwSEacFTcS2VnZvf3Ajwt+DFYk7eha+/Tv2uzIK3fn3itejZ7eKORbqZTNnrKzr3dGfRBFLvU7VqyQKPvSaAc95uv8lqgXfXXXdVvHYF3p133hlGnTzZunVrRV369OlT8fmCBQtQ8ldL7datm/C73bp1wzfffIMZM2ZYrxfbMESrJGEIPBULHp9kxRVXqhtks/Wz4aIpm4T6rVLx19Qvi2Zenn0LHuBcK78Jiei+yGLwgrjHuugIPL9spix+Fjz2HqgIPBFRF3i2XTTZa+aVPIMvS8VF01Tgicpms4cB+jF4srHAhgUvnS6aLiUlqZPNMAWenwXP635myoJXs6YT271okZPNtqxMzeJi24Knm2QlXS6aNrNoqrpopsOCZ+Ki6WXBW78+cd42LXh+FpswBd7WreLv6iZZkeGXZAVwLOwigSez4KkKPNmCmovK5+mKwdPds7F69UTZ27al3kdW4GW1iyZLueqIZoGJEydizJgxKC8vx5o1a/C///0PW7duxUknnYQHH3yw4rilS5cCAOrUqYOakiCBFn85X7vHytjulRVCcgzbOUV5XGQTXNUsmiw6Ao+34Lm46ZD5fXd4/CaQYQq8goLE9dG14Lnfd7ERgwfIr/natcAttwD77Sd+KMsefl6DArsxtV8MHmCeRdMkBm/48OQNU0Wix6bAYwfw2bOB884DzjgDEBjrAZi5aJaWplpqbLloTpwIPP98cvYz3loQNIumqcBTsVLasuD5xeANHAh89ZU45uOnn5x2x7oCpsNFE3Ae7Pff74ztjzziTHplbdcv3bkNC57XHp82BN6HHwKvvgrcfDNwyCHqIujAAx2Bt2MHsHAhIIuEyPYYPB0XzV27gBtvBL75Rlwf/ndtJlmxLfC8smjqJFnxsuCxi66qAu+884Dly5OT0LG/I/tuWAKP/y3Zd01dNPkxxivJitsfWAs7i8yCx14PPwseoJfJFPB30QxqwXMzYJaXm2fRZC14fDIgwLnurtzIagteppg7d27KXnoDBgzAo48+mpShc+tf0rqGh49F8V+jxRY+JaPkOB3YBsampHVRieNQnYj6TejZya2X73RRkb/A83sQ68bg+WWYY9lrr0SaZ68YPFGSFUDN6rN2beK1zJtYZaPRIUNSM1ux8BPWWCxZwInw21rCJagFTzZBkVnwfvkF+Mc/kssR3Ve2K+oKPK8YPPc6v/22I/JEXV7Fgrf33sDixcmf7dmTPEHUzaIpEz+9ezv/jx2b+IyfuHu5aMquk+pE2abACzMGb/Zs4L77gBEjUv92yCFOW2WvYTpcNAHgpZcccQk47e2xx/STmejE4HltdO5Xlo0kK65zzLvvOvdeR+C592fOHDsCz0YWzTBj8PxcNF97DXj22eS68GEKQffB03HRjLoFj/0NfmyXxb/v2uX0SbePuugIPN46w7cTnW0S+Cmm7LsqAk/UJsvLkxcj+Ri8hg0TC+SuAOnQQVy+zILHoiLwZG1VZXGyWzfg55+T/+63cKLi3sq7suu6aLIxeCLYOW8ULXiBtkn4448/MHr0aDz00EO45557hP/uvffeQBW88cYbEY/HsXv3bixatAgjRozAp59+ig4dOuBrkb05Q7CNYMAA4Ljjkv8um+Cy1r4GDdR+y28l2G10VaoEFwa2LHhu45fVR/SA2muvxOuwLHjsw0SWHU5lou0l7gAnyPm664DmzYHPPkvUzWs1n/0tWwKPfxB4IRN4S5YkHycrRyU+08RFk0W2VsM+rGUTj3HjnD2KvOoTRhZNFz+Bx06sZC4+YblohiXw/GLwAODRR8Wfix74QV00vSzj7OSSFZWjRjn/6wopHQue3yJdmC6aIgcWVRHUunXitWAXowqy3YKn46L5ww/yurjIFsO8Elf4lQmIhYWsTJnAY8cpkyyaujF4LPz94AUee94//pj6fT8XSLbd888Svp3I+pXourFZnIFgFrwTTgCOOir1c/Y+8vOhwkJg2DAnr4C7fdDhhwPnngs0a5Y8xrpzIK/xLAwXTfb6PvxwsmcGENyCB6SOuboumqwFTwR73XPKgjdkyBA89dRTKPvrrOLcMpabkCUWi+H2228PVksAhYWF2HvvvTFkyBAceeSROPzww3HBBRdg/vz5qFatWoVbppd7pbvReS3RLseC47zYsmULmjVrVvGebQSFhcAXXwAvv5zYm0pWpEqSDx6/iYLbUf0mUyr7u+kIPJVydFw00yHw2ImobOKu4qLpR5UqziD2xBPOQ6qgwCnLSwSwv6XioqmS5ZO/boC+iyY/2Ktct7AEHjuoutlleWQTj06dHAveaacBn3wiro9ukhWdWEF+dZo/R3ZiL5sgZMJFM0wLngxZGw3qounVV9jJJTv5c7+TLoEnmlyF6aIpckVSFUGsa5goa7CLTmiCrgUvHTF4OhY8PqOoqH5RdtFkP/fKommyD56uwOP5808nLGLtWuc6888/PysP++zixTB/nWTXTeRC7bWnHIuKFapqVce9t7wc6NnTmVu69XHbkui5fs89wN13J65HLAa89ZZzjebMSRzvinavcckviyYQzEWzXj1g+nTgyiuBF15wPgsagwekjrlBsmiKyEmB9+ijj+Lxxx9HLBZD79690b59e1/RZJNDDz0UHTp0wC+//IJp06bh6KOPRuu/lg43bdqErVu3CuPwVvy162drdplRgJebp0sZdzdFjYCtgkx3qiT54PFLi88KPK/GmU4Lnp/AY/2lXZo3T7w2EXg6Keu9Jp4qLpp83Xnc68QmudmxQ13gqVjw3O94CRDeVx/Q3yaBrzO/WimqV1gCj32QFheL6+JlIYjFvOuZSQseO7HPJYHnZ8EDnPvIxg/ruEfpuGh61UUm8ERuUSrobLfC3m+RwAvTghdE4LGLlOyzjSfbLXiqMXilpY7bsawuot81cdEMU+Cx1zPTFjyeggJnX+DPPnOSgvz+e/LCsJ+FjG33pgJP5ELNIxu/VZKsuOTlyRebRQIPEI8xsVhynV3R7iXwwnDR5D939/d0UbXgqRgxgmTR9CqffQZE0UXTSOC9+OKLKCgowMSJE3Ec74uYJlwRtvavIKp27dqhevXqKCkpwbRp09CjR4+U70ybNg0A0KVLF+v1EXVOlSQTKkk+eFjLm2iioGrBU9k/za9D6Ao8r4e5u2G3i6oFr6jI39zuNxH1isVREXjVq3s/rPgJcxgumu53vASeyEVTd5sE1ZWqIAJPlBVVBNteatTQF3hA5gSeX5IVFYGnG4PHx24A6XfRVLHgzZoFsEO4TCz49Xv2XEXnaWLBy8uT70HnBV8vr+ugKvCibMGzJfB0s2jqPgvYc1PdJkHVRXPhwtS+oCPwVF00w4zB87Pg2Y7BY/ETePn5jmvfZ58572fN0hN47FjOu2jy1172rJJlyGYJ4qLJImvHooVbL0Rut5l00eTLAtQteF5zXH4hzCSLZjZb8Ixi8BYvXoyjjjoqY+Ju3bp1mPWX38N+++0HwNl779RTTwUAjBkzJuU7v/32G7777jsAQN++fa3XSdTIVASe+xCsUUN99ZDfl41HV+AFseCxg8mcOfKHh18MnuhvIgvepk3OKp3fRudAOAJv9uzkssrLgQUL/FfxeFHg1m3TJuAvw3IKJha82bO9B0ZTF810CzwTC57OBIPFq566SVb4FciNG+Wuanyb0RV4GzY4fcFFxYLn1osliAWPLysed/qDyGPBXaFVseDx+6jJxIJOvw/iosn2m/x8M1dtlYUiF/Z+i9yjvCZVQZOs8Isk8Xjy/fR6TtWvn6ib7J6Vlia7iNneB090TzPloinaD9BP4IW90bluDJ6fBS9IFk32XEUL3KoCz4W/3joCz89iF8SCt3Wr+LrrCjz2Pq9YkbA66sTWA+FY8Nws1PPnJ/cJFRdNF78M1oCTpXf3bj0L3urVjjtvkCyaInIyyUrNmjXRVJQq0hJz587F6NGjsVOwDLxgwQKcc8452LVrFw477DB0YnK/3nbbbYjFYnj55ZcxYcKEis9LSkpw2WWXoaysDP369cP+stReATC14LkPQVXrHeA/UciUi+Z33wHHHit+4Kns58b/rWHDxGebNzsdtGVL599XXyXXQfSbOi6aXoMiO/k57zzgzDMT7/v1A9q1c+rmBV++e17r1jkJWJjmWoFqDB573Y44ArjwQvmxNmLwVAeydAs8Wb0yZcH77TdnkeKv3VlS8NsHz0vg/fGHUy7r/qUq8FRcF00teLff7vQHUVIY93sqExlVgefnZmNL4LHk5ZmJKBOBV62ad1bIMFw0eYG3e7e6lSs/P5GNWLaw0bcv8PTTife2LXgiMpVkhY+/A/Ri8Gzsg8eP70FcNE0seKL+LrLgiXIQqAi8Aw9MvOfHDT8XSK+xPEgMnghRQjCVGDwW9j536eI8A/78U+6iKYO34LmeHSKKirwXwFlvggEDnMy5N96Y+LtNC94TTwD77usknXGvnaqLZosWjvjk6y37faCSWvCOPvroCgtaGKxduxYXXHABGjRogKOPPhr9+/dHv3790L17d7Rv3x5ffvkl2rdvj7feeivpe126dMGIESNQVlaGU045BT169MB5552HffbZB5MnT0a7du3wLJuv2CKiVVY/gbdrV8IdRjXBCuA/cU6nBY8fTP73P2+3EF2B58YxbtnipEHeutXp+PwebMXFiY54xhnO/2FY8ADg448TK2fvvy//HovMggc4D+CTT079jokFDwAEBuwKdAQeu8rnNZANHOhfr7AEHlsv2QPYpgWvbl3vxRj2tyZOdB6esnoFcdH8979TJ1umAk/FRfOppxKvr7lGXta//y2vg1s//jzdLSRY+AyMpi6abFsVnefRR4vLBeSTy1gsfQJPtnJu6qJ5ySXiz70EXkmJnghy+8eaNamTtM2bgY8+Sv7MdgyeCK9r77fnoAjVGDxVC55uFk3VbRLKylKt6SoC79ZbE6979EiUz6+5x+OJusjuY//+4noByecqshn4tbW8PGfC78J7w+gkWeEJYsG74YbUz0TzIhWRwiLaQP2++/QFXlFRYpGipMTfeue1EMZ6E7hT8iefTPxd5o7tZvdk8bPgucJx6lTHU4T/Dg97vXbtcjKLiuoi+6xqVW+Bxz4HoijwjGLw7rjjDhx22GH473//i8svv9x2ndCxY0f8+9//xjfffIN58+ZhxowZ2LNnD+rVq4cTTjgBZ511Fi655BJUEbTkm266CZ06dcKIESPw448/Yvv27WjZsiWGDRuGYcOGSTdBD0rnzqmf+e0Dxu7BlkkLnhtPIjpWJwbPhZ9gsKtDfjF4bLn77ZcYPHftklvJXBfNn38G/u//Eg+UsAQe4PyW1+SQRxaD54VJDJ5Laan4N3R89dn2K3NFaN7cEd5+9Qoag5dpC15BgfPQOvRQb5cctp6yxCAuOklW+LJ4V6lYTC0WATCz4F1yidNHGjUCunb1/q4Mt0z+Xl5wgbPyW1zsWMSB1IelbRfNoUOBc85JTuTCI7NUmVrwdOIz3fstE3heLpoigdeiBXDbbWqLMXwM3o4diedXfr7/BNJdrCwtdcQiu/0Pv9cVYH8fPBFe117XvY2vk5eLpmgdXDSWFxY6v71rl1zguXunAuoWPMARFqxQUhF4d9wBtG3rzGvcPdV2707tlypJQvbe23kuz5oF3HRT8vfYc2Vj51xUYiILCpzjtm9PnWfpJFnhCRKDd889zvzl1VcT22SIngfudVDNLCzbc499Jqm04VjMqff27U7/No2/Y+ski7tm78FFFzmZQGvVcvY15dGJwXN/T/W5B/hvrs4en5/v/1yNuoumkcDbsmULhgwZgiuvvBITJ07EaaedhpYtWyJPciWOOeYYrfIbNmyIf7A7KWvSs2dP9OzZ0/j7JjCeohX4WfBMMmgC3gIvHk98pmrBc8sRNXhdCx6Q2tFVN+xmf6tjR+dY96Gzc6f8QeqeR4cOyZt5+rloxuNqAk/0EJg5U7w3jQyZi6YXutsksGzZIp686iRZYR+u7D1lr+VNNzkTAL96BbXgqSRZsSHw+P7knmudOsDf/uZdDv9bssB6Fz+B57VNAj/x8WtPMrdF0XtAvCDhuv56ZVT1QmbBq1nTsbp7lStz9zN10bzmmtQ9EHlk1oP8/HAteKWlCRdXWXpy3Y3Ou3cHrr5arW48rAWvuNh7NR9I3SqBFXgii1amLXi61g9AzUVzzRrxwoRsLC8uThV47DlWqeKdnZaldu2EoNi8OVk8yfose+7VqwODByfey9qbarKcHj2cNugKPJEFTyTwVF1mXYHHWyt1YvB4gljwatVy+tuKFQmB52XBUxV4on4aj+snWQGcem/f7m/B89oiAfDvv2wbKSoSW3RdVGLwvL7Dw18vdislv2eHbEGSJeoumkYC77jjjqvY527s2LEYy+4CyxGLxVAaRWlrGdFKEzuBsynwvCakvChQFXi7d4tFjk6SFRd+BVnV1ZC9Hm7gNCvwVB5MLH4r5m5QMPs7IkR1njVLr0N7uWjKMHXRBJyHiUjgiSYzsgmKioumqkVWNiGWPVhMYvDCdNE0WWH1E3h+++DVrJlYtefL4sWhn8DTddH0Ks9LLPIUFyfGPlkMnnsuXuXadtFU6X+qMXiFhWpJV1QFHhur4+eiCaRmRRVZ8PwmfV5/Zy14KhNuPpNmx46J9yKLVqZj8EwEnoqLpiyKRda3atRwUv3LLHiFheoCr3HjhMDjxw7dGDwguMADxNeMPVc2qZqLqsArLnY8omQWvFhMvDARdgyeX6IsWwLPxArt1tsrjADwt+D51d3Glihe6Ag8dislv2eHrsCLoswxEnjHHHMMYn7LeJWItm3Fn+fnO52Ij2FwsWHB4yekqlYf/u8qE3BVgcc/hFSFCosbOM0KPC8XTRFemQP5euoKvJkz9Tq0icAL4qIpExc6kxn2msgsZSouwID/no08UUuyonK/ALsumnl5zurppk3BLXhBXTT5ern7Pvr1gTZtEolg3DL583QXErzKte2iaVPg1arlTMz9UBV4flskAKlimL1ftgUeb8Hzw2urBJsWPB0XTVWBp2r9UHHRFJ0rIO8z7rWVCbwqVcTJi4DUejdpkohRClPg6WSBFHnUsOfarFnqd3QEHl8e4O8CqSPwZM8qL5f9dAk8k0UKt94lJXZcNGWoLggD4Vvw2Hvl9+yQLUjWrZtwY89JC96XX35puRrZDbtCyVNc7HQgUdpw1u1IJ8mK18OK7ahFRd6Nzk/g/f47MGhQ4r2oc4p0vpfAU50ouxY8d7AqKwNWrhQfKxvQ/CwNQQTeTz8Bf/+7/Ds8qi6apaVO/EM8DrCezUEF3tq1wJ13Jic40MmiKXPRVBV4YcbgvfkmMGmSPLmEicCLx4H770+0uTAseH4CD3Aerq7A+/xzYPRoJ9Cc/67fOdoUeG55u3c749rNNzsPzrvuSj2udeuEwPOz4LHllpY69/P2252J8rx58nrwsOVv2+Zcr3r19BeabAs81Rg8FYHHlxW2wHOfXyYCb80ap2106pS8PYJLOix4XtfeROCpuGiyFrxGjRIx96K5AJC4ttu3J6yy7DmqZlIGku9BNljwatQQe5zoCjzX04dPQiQTAV5iSMXTAdC34LnjWtWqiTJVk6yIrrGpwLNlwZPdd3ePZtUFYf7vNix4fN3Y2HVTF82WLRMCz30OvPACEFL+xkAYCTwimeOPl//NdR0QrbylQ+B5dRK/Cfi//pWclUrV+mYag8fiJq1hHzq//SY+Vvbg85tQsYOibgweAPznP/Lv+JUhGxRfeAEYPtx5za4A68bg8Q/1q68GeE9q93syC7SKBS+oi2ZQC97vvwPXXiuvA2Am8CZOdNq/3+97/ZZstd2Fb3MygQc49/PEE53XY8c6iwAstl00VQXe3LnOPwDYZ5/U45o0cc5z587EhEJmwWPLLS11MtQ+/LB3PfxWYW++ObGowZ5TUAsee81q1fIvC1C34LGWXxWBxwsdE4Hnl6TDbTO6Au/334ErrgA+/FB+fKZj8Nw+X1ioPtFWcdH85Rfn/4ICJzHRp58670VbDQDJ13bHDkf0sH21bdtEdtn27ZO/K3LRdOGfBbr74AF2BJ6XBa+4WNzWdQUe4AhkN27Mz0Lm1S9s7IPHnpPrgfSf/6SOa0EseIB5DB7gnJdof0MXvxg8Wd3Lypw2YboIoLJfK/8dv7qxfc/PYCHzOGnVKrF4s2uXs/UCG68aJYy2SSASHH64d/C624lEvvMqsRYivFzfeIHnleHLbwI+alTye9ngwq/cm7povvaaE3d0/fWJ68E+dGQub5lw0dRFxUWztNSx0Liwe+MFteCJwmTdOt16q+MSyyedyKQFjz9fWfJb1w3JC1OBp1OGC3s9vPoekNrmRNfS7QdsH9q2LbXfp9NFky/P5Z13Uj+rVs2xdNesmUhS42fBc+vEb5UgQiSu2LqxFmu2rancz2rVxB4KIgueCmG6aLKI+pRf+8jLk18T1jVeZcK9336J17Nne4s7wG4WTdl4pOKiqWr54Osk6+fuZLJmzeT76GfBAxLCh723V1wBHHmkE6vG9zW+v7LWMH7ybmLBk2Vt1XHRFFk9WQueqK2LchuMHOn0ufvvT3zmt4+gDRdNEwseu+jlCv5XXkk9LhMummy9RXv0ufj1eVn/deuk46LpZcGT9RsvgccvsrLzGL+s8TILHpsxf9cuYMYM+e9nGiML3tdff611vG4WzWxiwgTvyZA7aIpWVU02WAW8Y/BsWvC8fpflzjudjutaPEwFnpsune2wXg8dl3S7aFar5r3iJYJvI6LrsGWLPEOdrRg8Fve61ajhDFLxePI1Y6+rTOCly4Inm+iqbOpsIvD43wuSxlrldwFvCx5PFAWeaKypUgW4917g7rsT5+dnwXPrxJ7ja685lqFevZK/K7o+KvdKZdEmFnPGZX6SEAWBp+py6KJyTYqKxG2B3c5H1YLnuiSqbJdr04InK8u2wFNx0WQ3AGeFiqrAa9w4+RyrVgWmTElNqgN4j5dez2OWsC14bsr58vLEebGuv3xbr1ZN3G6vvdZZVGevQToEnkkMXps2jsDfujXRF0SCMBNJVth6e8WLe50f4C3weCu033l6WfBMBJ6X67yo3vz8GUitc5cuide7dqlb/TOBkcBzs2iqUFmyaMpwB83S0tS9ydgGayrwwnTR5PEawNlBK0gMHt9ZVASeqYumqsDjy2/QIHVDVT/4QUJ0HTZtkg8WQV00RbAPAlGWsfz8hItF0CQrQWPwqlUTZysM2m4BcT15t5QwBB7/IBYNqTL3GL49+1kLw3DR5BHVwe1XbLtWteCx9axVSyx2RJ+p3APV+1Sjhj2BF1YMnoqLpgpFRWL3QdaCp7IvWSzmeAR8/rk8MRZLOix4KoJY1bWNr5Os77ECj23jKi6aIgueew6iZ4RomwQXVYHndR9Ukqyo9ClX4LmJlNy6FRc7YwWbxt6rrfHXQLbnsNtGMhWDl5fnWHy+/dYJMdm4UXxeQZ4vNix4XgLP6/wAed3dOtnKoilKVAh4C6x16+R/UxV4bD3q1Usek3NS4MmyaJaXl+O3337Dir9mv4cffjgKbfi3ZTFsZ9u1K7lRsQ1W5cHpoirwCgvNBV55udPZ2AHc61bK3PkAsxg8UbkiiorkVq+wXDRr1/YXeO6mtS4qAm/zZnsWPL8Mjm4d/aha1WmnmXbRjMWc684P2GFZ8FTulwjVBzWgJvBULXiy1U2XTFnwRP3KxIJXWCheSRYJYNWJpgqihTde4KkuzplY8GQC38s7IYjAE6FrwQOcJFmff652bDZa8FRi8GQWPBmqAk+ElwWPbw+yxQWvNXsVC57K2Jef73ynrEy8wF2nTqK96Sx68zF4Lulw0fSzcB10kCPwAODnn8VtQXU8UonBi4oFzx0jbWXRlAk8r3bn5Xoq+p4oc/nChYnPOndOvr67d/vvC5pJjASeXxbNn3/+GYMGDUKNGjXwySefmPxEzsALH9FKU9Wq5q5dboPctCmRoIA9zkvg8a6eGzc6jbd6dce0zXcwr87iJfBMtkkQlSvCayIaloumSrykn8ATXQcvC14YLpoqK9YigWcy6eCF3IYNTtmqAg9wrjsv8PyEjV8dAXF/4ttwOix4InJR4PHXkn3vJfBEK8kmLpqFheoPZdkkk223fivc7O+6pNtFUwXZPdeNwQMS29yoYDOLporAW7vWsaK59829l+ly0ZQhEngmi2mAmYtmUIGns7BSXi4OUbEh8HRcNG0kWfHr/2xfmDnTvotmeTkwdarzOi9PvSxbFjy/GDxbWTRNLHheqFrwFi1KfNapU6rRRrY3ZRQIxbjYuXNnvPfee5gyZQoe9kuDluN4CR+dvYVY+InCggVO4HXz5smZJnVcNKdOBZo2dVLAbtgg3nfKK6FFpgSe10PZloumicDzS6Ahc9HMRAyeF+w+hC5BLXgzZzp7HrVoAaxaJf6uTODxyAZ9Fr+Jh0iIelmhg/wWi4rADkPg8RNjWy6aomukYsETlcsLvIIC8UqyiYumzj0Sjc2lpcntWdX7Il1ZNEWLJn4uvIBdgeduc6OCqQVP9GxTEXhTpjiZ8Pi9rGwnWZG5aMoIy4KnKvBU+yWLroumey/LysQCj02mpbpwwn4f0BN4BQXy87YRgwck94WZM4O5aIqei2+9lairThtm6+21eO93fjZdNE0seGELPJYDDkgVeDKX6ygQmvdo69at0b17d7z66qth/URWoCLwdNwzgdSJwjXXOI1syxYnA6VLURFwxBGJ91demVwO24D//nensa5fDzzwQPIWDi6XXCKvk6rA05lc8eWKYDO28ei4aHoNjHxH90sbDACPPAKcdVbifatW8rq5ZDIGz6VBA+f/vfZy/vcTeCZJVgYNctrahg3yDFSiuCbRZNdvKwLA/+GpYsHz8uXX+S2WIBY8/qESJAbPxIInmmiIJkAqFjwWWQyeyIKXlycWHH73wLbAYzdoPvlktd/1WjBYtizxulEj8THpdNFks5mqjH2A97jMkw4LHv/5unXAY48lxy/pxODpWvDOOCPxOb/FiYvIu8dU4LHt1ut53KFD4rXXfr7ub8fjyeer66LJWvDYMczt2+x5qCxKuJgKPEA+DrPnFo/L+6yfEGX7wu+/iwVT0G0SRL/lh6rAC2rBs5VF00TgsVsdef2WC9s33PFg2LDEZ336pO45qptwL50YuWiq0rBhQ/z4449h/kTkCcOCx2+TwMZIsBaRoiJngvDFF85E+vLL5eWwbNqUbMHr3BkYMgQ46ih5ndIZg/fEE8DSpc7fLr1U/t2wXDT9JjnPPedkAz35ZODQQ4Fjj00d1GUumpm24P3vf04K7vPOc96LBF7QJCsqCWrYVMQuYVnwVASeSrIIld9iCSLwVM6bxbbAE01SVAWeiqWgrMw/Bq9OHXF/CduCt2dPqgVv2jRg0iTvRTAVC148nsi217y5ePNnIL0umuzihup+ra4brMok3WYMnso2CS7btjnXzq1jmDF4bds6GbfnzUt9DrsEcdHkz0/1efz00473zuGHez/X+PbmthVdF03WgieKG2PPQyc3n0zg+SVZcX9bNEln+6hXXfwsXGy/cuMPeWyFALzxhlo5fL28PECCZNEEMptF89ZbncXiW25J/ZuqBe/WW51xuHt3J0Mw226jbsELTeDt3r0bU6dORXUdO3sOIhtoy8uTUwTrwLuUyR5MbgM97jjnn+zvPHl5yQLvn/8Ezj3Xu07pdNHs1St1o1cRmXDRPPHExKaXDRqIBxa+bi5RiMHbZ5/kFStW4MXjzqQtqIumSjpt0ebrphY8PxcOFYHn5VLHki6Bp3LeLLYFnmhYF12jIBY8ftwoLExkdQXU3BdF6IxBKgKvqMjZyLprV/XflbWn5csTfdcrji2sLJp+sJuY+1FQoNZvbGbRVHHRdKlWzSw5BV8nFRdNAOjd2/knQ5QoRFVA8fdO9XncsKHjveOHrL2ZZNEEnHsn2pxbtBm6CkEseLJ2z14nr2zNOgKIt/67BE2yAjiLyirzIhdVgWeaRdMkyYptC15xMXDzzcBtt6WW55dkxb0+tWsn9xE+yUqULXjWXTS3b9+OadOmoV+/flixYgV69Ohh+yeyCtlAy6r+oDF4fgJPhuzv+fnJAk/loZ5Ogad6vfweFqbbJHitdKq6+YgGFy8Lnle5MmugHzoxeG5aa0B90sH+TUfg7b+/+p5wXjGm7m/5JdRQEXiq2HbRlLU1mwLPJAZP1YInKkc1mYPItZv9XZVNwL1+QwWR+zwv8FTHNBWBx+4b5xXHJvNOKC317xMybAs81euSjiya+fmp7a5aNbP9wwB9F00VbMbg2X4ey8YPkyyagNyCp+rGzCPbJiGIiyZ7nbwWKnTaLz+uiY7xwut++QlNnkxY8DIVgye6x34WPNm1zqYYPCMLXr5Ca4zH46hTpw7uu+8+k5/IGWQDrekm50D4Ao+34Km45bDnya8g247BU41ZzIQFT1XgieqzaZN81VLXgrdli1OWSXA5C99+CwvVLXixWGJfIx2BJ1uFVEluw6PS3mwKPNX2HYupPdSzyYInEniisr0mbl4xeECytcTUgmfbRVO1z6sIvJkzE69VLXjsdVLZF1KGynmoumgC9gSejRg8tz7s9bFlwRMJvPLyRFsNIvDCcNE0eR6rCLwgFjyRwFP1mgDCj8HTqQtPXl5i/78wBZ6us1zYFrwoZdEUueGaJFlxy3KJegyekQUvHo9L/xUUFKBVq1a4/PLLMX36dLRr1852nbMKmfAJIvD4GDyZOAliwWOTrJha8H76yUkA8/33ib/pWvBEg6/q9YqywBO5UW3aJHev0hV4gHfgtOpkRtR+dVwu3LrNnAnccIMTZK5iwROhmuCBxVTgmbq5qU6YqlRRS9WfTTF4opVMkVD2urZuPcvLxaup7Gey9hC2i+a6dcA//pF4r9rnVawTqhY8tqyrrwYmT3Zem7ZbwP88atTQe1aFacGbPBkYM0avLP5veXliN0EV2Enl1KnOPfjpJ+f9s88mu+anw4LH151dwLMREy9ru0GyaIqsp6YWPNN98Njf5lG14KnALlyJFmFsxOAFseB5PU9MLXhDhzoxnmHvg2dqwVN10eRhP//iC6e/RxUjC165qQ9IJSRsC55KDJ4MFRfNKlXEGQ152Dq453n44akDY1AXzcJCMzdI2xudy1Ctm2jiu2mT3HJkIvA2bQLq1hX/zUTguXXTWZFj6/bkk8Avv/gP8occIv48Gyx4qg9q1esv63uZdtEUreqKFhRE9fc6d/b6sSujIoGXDhdNlbHZpgVvzhzn/+rVgb33lpfFnuNPPwE9ezr3VSbwmjf3r5/feei4ZwLq11k38UJ5uXO+IryyCPJj6K5d5hY8dnHm5Zed/197DfjkE+Bvf0s+Nh0Cj7+GsZgzdpeURMtF08+Cx94/NsOnH34WPL8kKyJkMXhsHLAqBQVOGblowZO1y8WLnQX+M8/0P9YlLAueaGwT1aVDB2D6dOc1n/mc/Z5rkQX0YkXTTWjbJBAOMoHHdqig2ySEIfDcPYLq11ezNIjOUzSQBRV4OmLYlgUvjBg8kYAoKZFP0HS3SXDLA8wsNC6i+6rqNiT6ncmT5d8pLgaOPx447TTx38MSeKKJN39/3nvP3u8BiT77wAPONbrzTvFx+flikcQ/7D75RL1eKhY8v34qWtXl63TkkcBJJ6Ue16GDk266Rg3gww/l9WQFnui6mlrwoiDwZBNEN1trs2ZqyWhYdu5MHj86dnSSaBxwgDPR0qmfCB33TL/yTjrJ6QOXXuq/FQ4/6RMtJBQUOFu7jBypXp9du8xj8ESTym3bgHHjxHVTIYiLJgBcd51zDs8957wXZUAGwhN4QbJoun3o9tudBFtNmgBPPaVWN0B87eLxxP3Veb67yCx4uvM1QB5b7NK6tVo5UYzB82uX77+vfmymY/Bee80ZMzt0AG66Sa+8KGJkwSPUCcOCx7to2hZ4sVgiSYfqpNrL558laAyeTYHHPmB0LHheA14QF80dO+QTPxMLnjtBFt0PWxY8nS0IXEQuKvvv77hxetUrUwJv2zazuE8v3PO89VbnQeLVburUSZ3Usg/k9evl6fRF9QorBo9l4EDnYSlbHPrgA6cdiFzLXNh7IGr/snsStosmj4mLpmiSF48nNjn3a+uic9yxI7lvHXww8OKLiS0L/LBtwfO6zpde6kz8VMYhftLHbgTvsnSpUz8dK1cQC55sUimaKKfDggc4HhIPP5w4D/f/MGPwbGXRdOtapw6wcKFTrmk/Za+da2Xxure6Lpo1aojboBd+As8r3pYlExY8mwtmQSx4JtskuKi6aHboAKxc6T9mFhVFO/bOJZDAW79+PV544QV88cUX+P333wEAzZs3x/HHH4/LL78c9evXt1LJbCYdLpqyTmMq8EpKEp3JVODJUken04IXloumTiyEDJkFT+b9bCLwXAuebYEXxIIHiFfiior865QJF81YTO/Bqepqw/6mX5upU8dJny9DRXymI4smS/XqetlLXWQWPFH79/JA8CJTFjy/Badt2xL936+ti86R9wCoUkUvriydAq+wUH0M4id9ogzBRUX+95UfB3fvtuOiySIa21TbW7Vqib0DTQQekHwOMguezRi8IFk0ZdZTNymJDkVFTtllZYlrp/p8102yortIzX6HP28Xr3hbUTkiworB80PnekTdggeojZm6Aj9TGAu8iRMnon///ti0aRPizGx+7ty5mDRpEh5++GGMGTMGJ554opWKZiui2DTAbhZNmQ+wqcBjN3VWnVTz5ynL5pYLLpphCbwdO+TC2MRFMywLnkmSFRaZwPMjExa8qlXVrB86vwfoTSb9ksuo9Kl0W/BMJkH89/wEnuwa2lxxVhHPtlw0WeFiasEzFSxAemPwdJ4D/KRPJPBUxAVvAeAteKZJVrx+A9DLrFujhjM+mrho8rhjt1dW63S7aPpZ8EyJxZy5webN9gSeLAZPV3wC0bfgsWNt1arJC5x+6LTLqMfg5RpGp7hw4UKcddZZKCkpQefOnXHJJZdg778iwpcsWYJRo0Zh5syZOOusszBjxgzsu+++ViudTfAT5D17nP9tCjxZwL6pwGMzaKpOqvPznXq55yfbGySowNPxf+cfShs3OufjDlqmFjyTTVN5RC6aJSXyAdVvNVxEWBY80yQrfL38juPJlMCz/XuA3oTG67xVV7vTkUVT9ns66MTgyeqYDS6aYQg8kQVPB/48XIuIi80YPNNVf5kFT6UP8NfcVpIVliACD3Da27Zt+hudi1CJwTPJ3mgri6ZNgQckBN6CBU75NgUe+zoMgae6eGIzBk9WVrVqiWunMrbZdNEUWfB27Uq2zHp9R4aqi2auYZRk5YEHHkBJSQnuuusuzJw5EzfccANOO+00nHbaabj++usxffp03H333SgpKcGDDz5ou85ZBTuwbN7sBLzXrw989FHi86AxeFEQeEDyA0Xmn5zOGDy2Az/5pHPdzz8/8ZnqA4Cvc5gWPJMsmjK3Ti8Lnmo9RRbooC6aIiulSn2CBLd74eWiqSvwbGfRBLz7YNAVeMBeFk2TevHoxOBFxUVT1cLrF4PHChc/q63oHHkLno5FSnR8mzbJ7227aKpiy4LHYzvJCiCum0l7M3XRZHHHLt7Lx217BQVmbTeMLJq6bVUE21c7d052o7OZZEXHo8PFb5sE1TLDsuCxsNfKtsDT3Qfvzz+BFi2Apk2B+fPNygT0XDRzCSOBN3nyZLRr1w533HGH9Jjbb78d7dq1w6RJk4wrlwuwnWX8eGd1ac8eYMKExOdBY/BkiTn8OqdssFi7NvFaZ+8xVuDJLHi6q0xBBB7/W/E48Pbb4kQaXg8AtpxDDrEj8G67LfWzPXvM9sFr2FD8eTpi8ExcNEWobMURi+mvnua6BS9okgTReyBaFjzWSjlkSOLvvXub/bbOZNJvvCksdCYfKoTtollSYi5YgNTr0r178nudtPWAPYGnYsEzFXimViTZYtOGDamfBRF4Nlw0geTzdNuezj2w5aLpnl9JiZMcysWGBY/dYmHu3MTekICeBY8VYy5svzrmmMTrSy5Rq5uXBc8rW6OsHBFBYvBk5ai0EZsumvxizt13OyKPTTLGi2HbMXgqnHqq+XfTidEprl69Gv369fM9rkuXLhg7dqzJT+QM7MAis7QE3SbBtgWPHXhtW/B0V4GDCDyZS9HOnc41VBV4+fnAd985qeivvNKOi+agQc5DrkYN4M03kx9GuuVWqwZ89RUwaZIjlG6+2fk8HVk0TSx4Ijp1Ujtu+nTgnXecLIzunmFeqAzisVjCHS2owDNJsuKHDQseW69si8Fjz/HOO52MoQccAOyzj9lv64whfsd+8olZhtWwYvBY63hQgffgg87WA+vXO2Jadr116ugSxIInSnBg4jYXJMmKbLxytxdiMRF4u3enLt4G8X7ZuTPRZ90xzobA03XR7NQJ+P575/W0aYnPbQi8J54Avvkm0Y9++CHxNx2BV7euIypkFrzWrR0PrOnTna0pVJAJvHvuSV608iMdFjy2L6k8p3T2BNSNwRMlF2vcOLFPM5AZF82RI53n0GuvmZeRDowewzVq1MBa1swjYe3atahh4leVQ7ADi0yIheWi6TeA2457UrHg6cZxBBF49eo5Awo/AO3cCdSsmZjE5+X5DzyHH+78A5KT0PDoJFy44Qbn9fjxasd7ccwxzj92vzYvC57qwz2oBU/1d1SDzA880Pm3eLGawNPZQJYVeO7EL+oWvEy5aPqtFttw0XQFHvtZrVrAP//pXYbfPdcZQ7weX4MGyTfcFuHnoskKF9MsmuxkR3fSzE+UWrQAHnpIrwyWdMbg2bDg6Sy6NG0KNGgArFuX/LktF03AicOzKfBcbAo8XRdNdpyfOjXx2obAa9PGWeTs1s15byrw6tTxFniFhY4FR8eK414bVuA1buzs+6dDWPvgBTlGJwNnkCyaLo0a6Qs820lW2rRx9mmMusAzctE86KCD8PXXX2P27NnSY37++Wd89dVXOEg1/2uOwg4sog1ageglWWGxbcFr1Ei9PLZMF51rlZcnFpTuwy4MNzyTia3KyptquWxZXhY8mTWZJ10WPN1hQvWeybKS8rj13L3buTYqG+SKyEaBF1ULnnvvdPuUTQteUZFarIoKUc+iKXs+mZINMXhBkqyIxizReGMq8LZts+eiKRJ4pskxgrhoysZ5WxtHd+yYuE5LliQ+14nBc+viJfB0EcXgmcQdpsOCx7Zh2wIvSBZNF34OmQkXTUB/3p4JjATeFVdcgT179qBnz554+umnsY25w9u2bcNTTz2FXr16oaysDIMHD7ZW2WyEHVi2bhUfk6kYvLAE3q5dYgtevXr6Azk/oOleqzAEng0XTRaVlTedvZRcvCx4QQRe0CQrIv5KwquM6j1TdR9x2xkfBxmFJCtecbC5HIPnkkmB53V8EPGfjiyaumMRGz9mkrGWJ50xeCYumkGSrADqXgc6wowXeGFY8GzG4Om6aHbuLP7cRpIVwDnn9u3Fn8vQjcEzqavIRTOIUBSRDRY8kyyaPPycLlNZNPPyzBLupBMjgXf++efjwgsvxJ9//onrrrsOtWvXRqNGjdCoUSPUrl0bN9xwA/78809ceOGFOO+882zXOatgBxbZ3nC5YsFzO1F5uXg1WDf+DkjtQLoev6LfDNOCZzL4q2QkVB1IeAvet98mXEFZZIMnT7qSrOhO0MIUeKqxmSJUJ2HpjsFj6zVvHnDrrcCPPzrvReOHX7npyKJpWpbfg1t3DJEdH6Rt+GXRNHHR3LEjmGBhBV69enrfFZHOffBMJlpTpiTHP+leL9W44SAWPF0XSBZ+7C4pAe67D/jjD+ezTLho1qwpXsyzZcEDxMJbR+CxzwIXWxY8NnuoSTnZbsHTyaI5fLgzf+GxJfBsZNG02W7DwEjgAcArr7yCp59+Gm3atEE8Hse6deuwbt06xONxtG3bFs888wxGjRplsarZid8kID8/2MrLjh3REXjsuYqyienG34nQFcMqAk+3k9oWeDbjmdiytm8Hjjoq8UBnMbHguQ8m2y6aum67fL28UBV4rItmOgSeTpurW1f+NxOBN3asE1t16KHOe9E18jsPsuAF80bws+D5ZS8OYx88dnyWWVp0SGcMng10r1e7dmrH2XDRNMkgzAu8ESOSY74ykUUTELtp2pwoi8o3EXjxeOL62xJ4gDh5lCrpiMFjBZ5KHdks3n7jho4FDxDPIxs08P6OCFH7MrH689iyPIdFoFO86qqrsGjRIqxYsQLff/89vv/+e6xYsQILFy7ElVdeaauOWY3fBHHQIP3Vx9q1ExOA+fPDFXgm2yQA4mxiJhY8HhsCz50EuddNt5PadtG0aQ1hy+ITALBExYJXrVrynpCqpMuCpzvxCMNF88ADga5dxX9TbRte/Ya/Ruef72/lSkcMnmlZlcFFU2UfPN22e889zmStQQPgP//R+66IsGLw2GQ0sRhw2WVq5bz5pvfv6o7dhxwC9Ojhf5xO+2W3i9m8OdFOTPoTP3bzu1qZuskGcdEEgGbNUj+zKfB0y+f7kmjbHHaOFcRFE0hcP9sxeLptxJYF71//cuZZdesCr7/ufaxODJ4MfsHTJMlKfr4d90q+XeXlOVbyqGDBSAk0b94czZs3t1FUzuG61/HB13fcAVxxhZOGWpdYzFkp+eYbYMUKuTXGdB88FlOBJ1p5iYrA45OF6A6MXgNKGBY8nTLZsrwS3QYReLYseG+9BZx2mr5rCV8vHnfLA0D9PNPtoqkzocnPdzLOzZ+fGl+i+nsywcBmDgWcfutlMXRJRxZN07JsZtH0Oj4sF828PP86yix4bJ10J83NmztpyfPy7KxMhx2Dt88+Tqr6mjXVyjnvPOCUU4C2bcWLXyZZRydPBgYPBv77X/lxOs8Xtp9u3pwYv0wEHns+ojhs20lWVBe3RG3bpsATle/VV/nFFtG5sq7PtmLnbMfg6WIrBq9hQ+C335w5rp9o0smiKYN/lplY8GxdR/b69OsHvPyycx3+9S875QdF2YI3depUjB8/HgsXLvQ9dsGCBRg/fjymsRudVFJiMfHgsvfeZuLOhXVD+P138TF+ndNve4CqVfUmMVG04HklWTEVeLGY/DtRsuB5bedgy4IXRODVqWMm7vh6ef0tqjF4uhOaWAyoXz/1c9W2IRN4fJImVZfsdFrwouqiaduC51qm6tTxnyipbHRuMhZVrWrP7chWDB57LUpLEwKvTh11cedSs6a875mIjFgs1WWMx1TgbdqUaCcmCSF493q+Hply0RT1J5uubroCj19s8bPgZVLgBU0Movv7qvelqMjpP35l2rDgRVXg7d6tPx6FjdJprlu3DieccAJq1qyJmTNn+h5ft25dXH311SgpKcGSJUtQx0ZKriymSpXUbQNMV7hd/DJ4uZs3+1FUJJ8E6962bIvBC7I6mp9vln1QRFgxeF4WPFtZNP0GV6/rESTNsJ/A277deZ3uGDxVv37TyTePatuoVUvsScAKvIICdbcVv/qTwEtFNQZPZdwNw0XTNrYseG78mZu8yx27TKcVNgUeYLcvyASeDRdN/pmViSyaQGp/KiiwEw8lKx+IpsAzeQbYzNoYiznnwp+/rosmX6YXujF4InivMhOBZ0sos9eHHXujglK3ev3117Ft2zbcfffdaMhGVEpo2LAh7rnnHmzatAmv+znlVgJEg0vQFSu/fcOKitQGAz8Liw5+FjyTZBo8uhYfmcCLx4M9PNNpwdMps7AwMXh5Zbey4aKp4sfuVXfdbIayenn9TdeCV1aWvBijO4kH1NqTyWQyiMDLy0uO73HZvdtsXyy/+27TRVO3f2aLiybbzuJxPYEXRpIV29iMF3IncewGx7ko8NjJ66ZNwRYh+bHbpgXPzd5tw0XTdju1KfDcZ57NGDzR72QK/lzy8pLnBraTiOhk0ZRRp07ytcukBY8tV5YlP5MoCbxPPvkENWrUwMUXX6xc8IUXXoji4mJ8ZJJBIccIMjGTwW7oKULHtC7DtgUvyITeRbdjygQea8HKtMCzacGLxdSyadlw0VS5bl51D9OC56Ir8IDk/SqjJPBEK92m1gEX3oJni1yy4IWxTcLnnzvuPA884LwvKUncB5W4Z9E55qoFD0g863QS0ciQXRfTyWw6LHhBXTR37ky95qYxeKtXO3GMTZoACxbolxd1gceeR6tWzlwmKjF4tuHbbmFh8HP1woYFr06d5HJMkqyE4aKZtRa8OXPm4NBDD0Whxt0uLCzEIYccgtmzZxtXLlcIQ+BVrQq0aSP/u+rDystnWCfBilsnF5HA69BBrzyXww9PvNaN4xOd386dwTaQBeQP3DAseK1a2S0PAK66Sq0sdnLr7m0YZNLBEpbAYwWuLMMsD3vfggo8letiGu/D10dnHPETeDYf5lEWeLoLTaJ9u4BgLpqAs1AybJjzev36xOcqSW5EbSxqFjyv+6A7dogmcfvso1eGS5QteHySlZIS57XJOBSWBe/xx4GVK51n/HvviY/xgh/3bVuJdAVenz6J18OGpT5vJ06MTgyebUQCb+jQxPuBA+3+nq0YPF2BF5aL5rXXJl5HceMApS65YcMGNDHIkNG4cWNMmTJF+3u5RhgCD/CeIKsOmh07AosXi/+mu0LK1odN8NGvH3Dxxf7B6DLefBN44gmgd299F81YzMk2et55if3gbAi8sC14Z57pDEq1awM33RS8PJfBg52FgUsuUS+ruNhx91yzxvnMteCpDJJeAitIaK7XZCxXLXiAUx930gfYEXgmLpp+RCmLptt+2fc6DBrkxLOOGwfMmZP4XLdtyPpLPJ7oW4DaIpbMghc0yYpNZPfNzSytA3/tOnRQX6TikV2XqAm8desS2T5N4tfDEniy2G7VSTO/wGJ7IUK0gOPVV486CnjuOUe03nqrE7/9zDOJMYPfa9iWi2am+6eoDoWFwPXXOwtFdesCp55q9/dsZNGsWjW57aqMJWG5aF54oTN2l5cDF1xgp0ybKJ1mlSpVsN3NWqBBSUkJqmR6GTEChBGDJyvXhU+mIOOgg4Dx48V/CyLw2AHx6aeDxd+1bOls0mqKO4CffrrzPmoCTyRaL7oI6NtXvyxZeS7/+hfQooVeeU2aAIsWpQo8lesm80uvVi3Ygz3bXTRN+38QC57IIh81F03RBCDoPni1agUTeMXFzh5xjRsnr9iaJOBxk4WwbN6cHFtmKvCiZsGTtU2TtsFP/J54Qt/DxCXKFrxq1RKJLxYuTDzHbQg8fiw0FXhBjgHCd9EsKnLqwp6vX18dPDjxukYNYOTIxCLorl2566LJ16GoyLlWt98ezu/ZsOC5yWFcVJ7xYQm8vDzgllvslBUGSi6aTZo0wc8//6xd+M8//2xk+cs1wrLgeQ1a7ITBC69kLUEEHotKTFjYeD3sMu2iKbo+JsLCq7wg5bpdeNOm5GunMhjLBF7QxLqqLpqq2UJtCrywXDSB1PrYjMHLVRdNPrmMqbjmyzVpG6JzWbMmebxWmcxncxZNG+nhgzxTohyDF4sl+qmu6Ofhn3l80i3TGLwgxwDhC7xYLPU3dPsqW6dduyqXi2aY2IjBA/QFnmij88qA0uU84ogjsGzZMnz33XfKBX/77bdYunQpjjjiCOPK5QqZEHiqeG23QAJPTtgWvCD31suCF0TgAc5kVMdFUybwTFffXVQteKqw982NNTQtK2wXTRabMXi56qIpyh5qAl8PW21j9erctODJ2pNJ2+Anfqb7ZwLy62LaZm1vGSIaG4MKvG3bUjc7t23Bi0oWTdFvkMATk26BZyOLJiDeysKLsCx4UUdJ4A0cOBDxeByDBw/GZnc3Vg82bdqEwYMHIxaLoX///oErme1EWeC1bi3/mw2BV1gYjc4UZYGXLRY8wJmI6giCTFvwVMmmGDyWqMbgRcmCZ2vz2TAFnq0YPFbgZTrGJ6oWPNl1Md1jzLbAE/XToAKPTeLjomPFCNOCF0Y7DSrw+OyIlSkGLyzy8vz7mKoFj99yxg8SeB707NkTJ5xwAubOnYuuXbti/PjxiAuCvOLxOD744AN069YN8+bNw3HHHYcTTzzReqWzjXTF4LVvr1+GV4eyIfCCrLTaJF0umiZlia5RkFVNr2tuUj/WZUzXgifLCBimwGvaNPFaYdtOAMkPNtaCZ3If0umiGVTgsXtZRdVFM+g+eGEJPJN7qOKiqTKZl2XRzIYkKzZi8MKw4JmSDoEXNAbPTdbCwlv0vLAp8MJOsgIEtxLy+5tFPQZP9TnHw7dd22MG25ZtWoF1LXj8glAUrKfpQFEvA2+++Sb2228/LFmyBH379kWDBg3Qq1cvDBw4EAMHDkSvXr3QoEEDnHXWWViyZAn23ntvvPXWW2HWPWtIlwWvaVPgjDOc1w8/rF7Oyy+LP9d1oxMJvCi4ZwLJ12rXrnAseGeeabaqL7pGLVvql+NVHgD072+2Ss1b8HSSrNx2m/jhE6bAu/Za5/pVrQq8/75aeWx/XLUq8bpePf26hZlkhRcrmdwH7913nQdy1672HqBRtuDZiMFTcdFUSUglKmf37sTm6UVF5hYpW0TVgiea7F9xhXl5fueTKQse2+7ZMc2Fj8nzwubknC8rDIHHi0jde5BNLppVqgAffGD23TAseM8/74w9vXoB++6b+FylfYgMDq1bJ/Z9fued1HqqxOB17JhsADnnHP/v5ALKzb5+/fr48ccfce211+KNN97Axo0bMXnyZMT+eoq4Fr28vDwMGDAAI0eORJ2gs7gcISyBxw+MhYVOKu+1a/VW/AYNctLh3nuvkz3KhSx4cvjvTJoEHH+8Wd3cyZhrFG/e3HxLCUB8zWfPdgY5E2QumqoWvOXLnY2d2f2GwhR4tWo5WT+3bVPbUwxIftCtWJF4bTKxCtNFk190yaSLZr9+TnuoW9e5Tq64MCnL63tBBZ6tiVQ6YvDq1FErV3Z93Y3AMx1/B2RPDN7Spd6hCn5E1UWTHStWrkz9O7vdih82LXg86bDg6S52eAm8KLlofvMNcMAB5s/TMATeFVc4i90NGgDHHZf4XEWI8XOK555zspnm5QEbNybmRboWvIIC4OefgV9/deYHunsLZytaXbJWrVp49dVXcffdd+Ojjz7CtGnT8OdfG541bNgQXbt2xWmnnYa2bduGUtlsJV0umu7+QibuHA0bpq6K6g4aov1nomLBYwfsMFw0mzQxXzFnxR3gndlUBdE1b9vWvH4yC57qim3VqqlWiTAFXmGh809V3LnfcWEFnklfYq+Lm/Kcx3RSw1+3oNsk7NqVuJ8mD3f3gcu3uUwKPL5d2rJkheWiycbgqU7kZX1v40bzutkmWyx4QSd7UXXRrF49sV0A63buorPzVbYLPF28YvCiZMErKgr2LA3LRdP12mEXYlSEGL+Q07Jl4jqxi966Ag9w7kGnTmrH5gpGXbJNmza47rrrbNclZxENYGG4aAYtk+/cZMGTw3/HZtCuV2ZTFfhrHosFmxDxMXgmLn18Ww0q8LwmBSb3QtR36tQxm3ywv1+7tjj+xbSvBhF4omtuw+oGpLY5my6aQffBUw3c94M/J5NyReeyeHHCXU51Ii+7Jm6CoEzH3wHhxeBVqRLsnvLXJugCQNhZNGvUMBMs7pYLovEHsC/wdJK2sAtf6UiyogtvwYtqDJ7ttms7Nk133sG3Idl91E2yUlmx9OgjvEhXDF5QkcFPZnUn4SIxFxULXtgCz+a+KrYteMXFwR4ErPXNxIIH2Bd4sZhcfJncT9Ekw3QLT/b3ZSn6TSeo/HULGoPHTvKCjB9RsuDxZdiy4NlYxBGVsWBB4rVqm/OrSy5b8II+U7ItyUqQrYS9xlnbMXg658m2gagLPNaNHbBjgTYthyfqAk93gZ9/Lsruo4kFrzISSYG3Z88eTJ48GTfffDO6d++OOnXqoLCwEE2aNEGfPn3w8ccfe35/0qRJOOWUU9CgQQNUq1YN+++/P/75z39im86IZpF0CbygZbKDWlGRfoxJXl6qm2ZULHgFBYnBIwwXzShb8ESuszpUqZJINqKbZMWFb0tB98ETleli0g9E3zGdWLFtQ3aepg9m2xY8Ng4nyPjBt7lMCjx+khCWBS+MMoK6aLpEQeDJ2oDJ/WC/E/SZQgLPIZMumuw1U4nN0sW2BY8VEbaSstkQtlEXeEEteLK5i26SlcpKJAXeV199hZ49e+KRRx7BypUrcdRRR+Gss85Cw4YN8eGHH+K0007DlVdeKdyq4bHHHkOvXr0wYcIEdOzYEaeffjo2b96M+++/H926dcM6mb9CiKQzBi8I7KBWp47Z4MEPrEHFhS1iscT1iqIFr2vXxOu99w5WFi8qgj7sAKBZM+f/lSv1kqy42Lbgicp0MbkXNgVe8+bO//Xryy14KpkSRQQReKK6sAIvVyx4/Lh1+umJ19dco18n03qI8Lsubj8LWk4UBJ7segke275UJgsen8KgXTu977N4jbPXXqtejugc+PFE10XTJQwLjG2B504ba9QwmxfZdNE85JDE6yDJgYDUtmvb44oseJklkgIvLy8P/fr1w9dff41Vq1bho48+wltvvYXZs2fjzTffRH5+Pp5//nm89tprSd+bMWMGhg4divz8fHz88cf46quv8Pbbb2Px4sU44YQTMH/+fFx11VVpPx/RRNSGS1+YAs/UwsJ3SJPg8LCwKfD4+xf0fr78MnDZZU62yaBl8dkybQg8NziZjUXItMCTTdRMHsA2Bd6//+1kEnv99dRyu3VzMt2apu4PIvAKCoBPPkne+sGWi2aUYvB4TjgBeOIJYMgQ4P77zctJh8BTTQKQzQLPBJsWPNvbR9gWeIcfDjz4IHDKKcCllwJ33GFeN9E4e9RRwN//Dtxyi3o5onNo0cL/GBlhT9BNMtyysPd0/XonThYwz0RtU+C98w7wt785/9evb1aGC992bc/XKAYvs0RS4B1//PF49913cfTRR6f87bzzzsOgQYMAAK+++mrS34YPH454PI5LLrkEJ598csXn1atXx4svvoi8vDyMHTsW8+bNC7X+PLJsl7bLDToRYju76QSc75BB3EtsE6YFL+i179QJ+O9/gZ49g5UDAJ07J7+3IfBEbqOZTLIiKjMINmPw9t/f2QvopJNSH1jPP++kkDYlSAweAJx8cvK+l7lowRN9//rrgREj5BZVFWy4Yfudi2r8rd/iSpSTrJhgU+Cxi1Q2sC3wYjFHfH38MfDii8GyfIrG2bvucvbJ1fGuEZ3DXnslv9dZ8GPLs30/ALuL3VOnJl6bxsfbdNFs2RJ4+mng7LPNvu9VB9sCL6gFT/Z99nqSi6acSAo8Pw4++GAAwAomn/nu3bsrYvMGDBiQ8p1WrVrhyCOPBACMGzcuDbVMwE9EbT18w3bRNCEbBZ6JxSzMJCtBqV07+f7ZcLsQPdh0zjlohlYRNgWeqO/YeNjZtvQG2QfPhb0XuRiDxxOlGDyv69KwYW4lWZHV0WRxkxUBQccz2xNC2wLPJiJPHJMFPxWBp9PPwo7Bs7nYzdbPND4+zI3Og8C3XdvztaAWPNnzkmLw1MhKgbdw4UIAQNOmTSs+W7BgAUr+mq1069ZN+D338xkzZoRcw2RsC7GwyrUh8PhVwWwQeFFw0bTNPvskXrt7bAUhqAWPn9Rlg8Cz0XZtt5MgLpou7EM9G1w0ozARAsxix3i8rvFBB6mLn2wQeDbv265diddBLXi2XbqiLPBE42xYAk9HuIftohn0mufliduvTQteFMa1sAVeUAueDIrBUyODQ48Zq1evxqhRowAA/fr1q/h86dKlAIA6/9/efYdHVaV/AP8OIY0kJEAACSR0gkIEgQAKSFcEBBErgsDPdVdZLIhKs2BDFxQXEJfVRbDAojQFUeoCElCKsAqi9BZ6TaUleX9/vDvJJJkkU+5kJne+n+e5D2HKmXPLOfe895x7blQUIoq4wSX2f4PGrZ8tSoYD00s58hkrfwrw/OUePE8+B88IDRoA27bp39b7B9xxww26L22DRXeCFSOCM18domnL1wO8r77K+9usQzSNYp091h3FrYszkyuV1BDy5QDPlUDZNsBztwePAZ7z6dg737k6URTg+wEeoGWoYN5cfVC2r9ZrvtaD5+hFAgZ4jilTPXhZWVkYOHAgUlJSkJCQgL/85S+576X97wmvYcUMLA//X82Wmppa7O+Eh4eXuMQ4Ot0ZSi/Ac7dSs03PqElWfLEHLytLgzwrX5hF02i2VxrdOREXlSbg/XUui0M03R0uaEQgVVSD1Mghmq6upycmWTGKEcd7cevizL1WBRtCBfPmywGeK4wM8GybCJUquZcWUPJx4WsBniszWxdch/Bw90Zh2DafjNgHBbk6iZWtgvVk/fqup+upxyS4y9fuwXOU7eQy0dGe+Q0zKFMB3hNPPIE1a9agSpUqWLBgAYJ8oYQ4wFP34BU8ibt7Qm3TRu8DCQjIP7W4M8pCDx7g/tA0Tz4HzwjDhul0/eXKAdOnG5OmO7OmAcCf/6z/2lyXcYu9AM/VtO2VHXdnKAOM78Er2LB3twfPVq9ezqdlZdvodmcSKaOudFuPAyMnTb7xRp0FFdAJkVxRcP0GD9ZtVbky8Kc/OZfWvffqv6+8UrietT6qw5uMvAfPNsBzN3gdNkwbhQEBwJIl7qUFlLw+vhTghYXln0XXUfaeT+ZOgDd9utbfoaE6+ZHR7r5bAzKLBVi0yLU0Ch5ncXGu58dXe/AK5sHo9porF2H79dN/i5s9dvRoPY4DA4Evv3Qtb/7Ax5qlRXvmmWcwc+ZMVKpUCatWrUKjRo3yvW8dllnc0Enrg84rljCVmiMPRE9NTXW4F6+sDNGMiAAOHQLS0lzveSsY4PnClWQrIwM8X+/Bi4gA9u0DLlwwrrFXcN86u84zZgCjRgF16xqTH9v9ec89wOTJrj8XqGDZqVDBmAsxnr5X06gA7/33806srrC9UutOg9aohtA//qHHmrvPibJlsQA//gicOOF6Y6/g+nXvro9uiIhwvndg/nzg6FFdx2+/1XxZuXqvkJE81YPn7jmlYkXg8GH3znPO8Oa5oWAQdvPNrvWuG92DV6+eHq8irgWcJQkMBH77DTh7tvC9go4qeJy5Mxu1rwZ4Bc8Fpf2MSHsWLACOHCm+nVCpktZ96em+1Ynga8pEgDdy5EhMnToVUVFRWLlyZe4smrbq/O9MfunSJaSlpdm9D88662adEs76xQ3ztMp24oYMo3varDwROIaFufdwciOm5PcU2/1gG8MbEeAZNVOfkUJDjb2SX3DfujL9d8GH+LrD9vgPDHQvcPTELJ+A5wM8V9Kzd9K96Sb38mHbg+cLAZ7FYtyFBFvly7t3Jb/gugQFOf5w84LKlcsLYAs2cnw5wHPlHjzb+2yMaIS6e54rTnBw/oDUl3rwjJokxN0AD/DM0ExbwcGuB3fW79vyhwDPF9IvV86xutuTZdgsfLBZmt+LL76IyZMnIzIyEitXrixyhsz4+HhU+N9l5G3W2SUKsL7eokULz2S2CKX1mARfGyboazw5RNMfuNuDZzTb/enusV/wZFtWAjzbhqSj7NU/7l6Yse3Bc6fhYm/7mKleK7guRp0LCvZExccbk647PNWA9aVRIfYUHCDkSwGeUdP8GxHg+TpPB3i+cIeRJ55BaMsX1tGf+XSAN3r0aEyaNAmRkZFYtWoVEhMTi/xsUFAQev3vJpK5c+cWev/IkSPYtGkTAKCfO2ORXFBWhmgawYnJRUud7fYyugfPH/hygGfEw7BteSrAM7qn15Xy5okAz9d68HyVpwK8gkGFL2wzI+/Bs8UAz3EFJ0tztQevYD3mDwFewbJpxh68Cxc8m74vrKM/89kA76WXXsLf/vY3REVFlRjcWY0ePRoWiwWzZs3C8uXLc1/PzMzEY489huzsbPTv3x+NGzf2ZNYL8acA73+TmQJw/0RuNAZ47nF3iKbRjAzwCp7MXZ1FtiBP9+D5SoDna/fg+Sp7QzSNcO5c0b/hLf7ag1ew7vBmPVmwXDdt6lo6Bc/l4eHuz2bq6/xhiObFi55Nnz143uWTzdQlS5bgrbfeAgA0aNAA04uYBjA6Ohrvvvtu7v9btGiB9957D8899xx69uyJjh07olq1atiwYQNOnjyJ+Ph4zJgxo1TWwZY/BXh33gl8+KH+PWKEd/NSkO32sn1SBodoOqbgeHdvb4Oy2INnxDZ74IG859c5cN2rEE/34LmzL3y1IWQUT/Xg9esHzJmjf48bZ0ya7jLyHjxbvh7g+VIPnsWiowZycvT/Rt2zFB7uexdwjeYPQzS7dAH+/nf9++mnjU/f9tEvTZoYnz4VzycDvAs2/cbbtm0r8p662rVr5wvwAGDEiBFISEjAe++9hy1btiAjIwNxcXEYM2YMxowZU+RD0D2pYEXhqcckeLtHBdDpiV9+Wa8ov/66t3OTn20FnZKS9zd78Bzjaz14tse/P92DN326NiLj4/XRJs4qaz143j7OjOSpAO+ee4AXXgAyM3UKcV/gqf3GAM85y5frYz2efda4NK2B4urVwMyZwFNPGZe2r/B0gOcLE9L17p3XXpswwfj0o6OBL74AVqzQ36HS5ZOnziFDhmDIkCEuf79bt27o1q2bcRlyU7lyeiK33tBq1BXpgvfz+MKVbovF9wI7K9sK9dKlvL8Z4DmG9+A5zxMBXnQ08PHHrn+/4LpaLO4Pt+I9eI7x1BDNgABg4kRj0jJKUfvN3+7B83Y92b27Lkayngu6dtXFjAoeZ+70fvpqgFca7bVHHtGFSp/P3oNnNkY2RotipoaQJxgZ4Hn7pO0NZg7wSusxCb7wOA2LJf/2Cgtzv9HtyVk0zVSveaoHzxd5qn7w9QDPtiwA5hzK6AvBiad5epKVgscJkdF8oLnhH2wbo546qZupIeQJHKLpHl8boumvPXhGsK2DjGisGdWDZ7EU3kZmqtf8KcAritnvwTP75COAfwR4nhyiGRbmGxf7yNx4iJWS0ujB83aD29dxiKZ7fLkHz5/uwTOC0QGeUffg2fu+mcqap4Zo+hNfD/AKTn5mRgzwnGPvOYJEnsYAr5RwiKb32Vaqtg+I5hBNx5i5B6+0hmj6ynFju72M7sFzd18UPK7MVK+xB6/wPWrOMmomSE/xh8a7P6wjAzwq6xjglRIGeN5XVKXKHjzHFLxnwNvBSvv2mqdy5dy/0b9g2fHUc/B88X4cIxobwcFA5876t7sTOhQsWzfc4F56vsTfA7zy5fMeo+OMWbP03/r1gU6dDM2SIaxPcmrSBGjZ0rt5KQ3+EKAYeQ+evQfFE3maHzZTvaM07sHzx6DDGQzw3FPwngFvB3jVqgHHjulD6+Pi3EurtIZo+orr1/P+NqqxsWIFsHcvcNNN7qVje5zVrWtcsO0L/HmI5t69QESEawH7kCHAbbcBsbG+WfcOG6bPFKtTB9i40du58Txf70U1AnvwqKzzwarSnGwrC0/1tLl787rZGRng+WrDvTT5QkOrcmVd3OVvAZ71kS2AcY2NwEBjHmZ78WLe382auZ+eL/HnHryaNd2bObBRI+Py4gmNG+u/vlAvepo/BCienmSFyNM4RLOUlMYQzexsz6RrFuzBM5avBi+uKLgunhqi6Ss8EeB5QvPm3s6Bscx8f2FJ/GVd/WE9fbnOMErBAM+d2VHZg0fewACvlDDA876irpoxwHONmbZBwXvjjJoJz1cDPNshmr58NdlsAV7But+fpkr31bJgNAZ45lAwwHOnrDLAI2/wo9OLd5XGPXgM8IoXGmp/kgsO0SRPKQvHiS8/t8vsQzT9ib8Es/4Q4PnyRSGjGNlOY4BH3uAnVa73eaoHz7YBVL++cemaUbly9k9MrjS6fHE2xNJ2+bK3c+D7ykKA52v3gdne/1i7ttey4RH+HOD5C7PuY9s2jD8EeEY+b5EBHnkDA7xS4qkAb9Ei4L77gL//HWjQwLh0zcpexcoAzzVXrng7B8ZauhS4+25g3Trj0iwLAZ6vPTj666+BXr2AJUvMV878oXfH1qZNQJ8+wMKF3s5J6THrPt6wQffl3LnmDWJtMcCjss4Piqlv8NQQzXr1gPnzjUvP7IwK8Mh8PXi9e+tipLIQ4PlaD17HjrqYkb/VNbfeCnzzjbdzUbrMGuC1auVf+9LIIcUM8Mgb2INXSkpjkhUqmb2KtSw0wn2F7XFsth48TygLx5avBXhm5m8Bnj/iPjYH24mo3MUHnZM3MMArJQzwfAOHaLqHAZ5zGOCRLdb95ucvk8mYnZEBXsH2gj/cw0jex6qolDDA8w0couke2xkXzTZE0xMY4JEt1jXm568X/8zGyACvIPbgUWlggFdKGOD5BgZ47qlSJe/vshC8eFtZuJpfoYK3c+A/WNeYH+tFc/DkfmSAR6WhDDQ/zME6aUBAANC+vXfz4s8Y4Lnns8/034AA4K23vJuXssBXG3tffKH/Vq0K9O/v3bz4E189Hsg41asDzZvr36+/7tWskBseeSTvkS0LFhibNgM8Kg1s2paSli2Bfft06t3YWG/nxn8xwHPPLbcA+/drL3RcnLdz4/t8tUH/yCNAkya6D335QedmI+LtHJCnWSxAUhKwe7fOPEllU0QEsHcvcOoUkJBgbNoM8Kg0sGlbivicOu/jg87dV7++t3NQdvhqgAfk9TJQ6cnJ8XYOqDSEhQGJid7OBbmralVdjMYAj0oDh2iSXylYsVosZeM+KSqbfDnAo9LHAI+IGOBRaWDTlvxKwYqVwzPJkxjgkS0O0SQiBnhUGhjgkV9hgEeliQEe2WIPHhHx0TRUGhjgkV8xKsC76aa8v1u2dD0/ZG4M8MhW3bp5fzds6L18EBGRuTHAI79infbYytUAr1Ur4NVXgV69gK++cjtbZFK8v5NsxccDEyYAd90FLF3q7dwQUWlZsQLo0gWYP9/bOSF/YRHhXQGuSE1NRWRkJFJSUlCxYkVvZ4cc9NNPwK235v2/alXgzBnv5YfMbcUKoEePvP+ztiUiIjInX4oNeH2Z/EpkZP7/8x48IiIiIjITBnjkV4waoklERERE5IsY4JFfYYBHRERERGbGAI/8SkhI/imKGeARERERkZkwwCO/YrHk78VjgEeeZLF4OwdERETkbxjgkd9hgEdEREREZsUAj/yO7UyafE4ZEREREZkJm7fkd2x78C5f9lo2iIiIiIgMxwCP/I7tsyczMryXDyIiIiIiozHAI78TEZH3d3q69/JB5sdJVoiIiKi0McAjvxMenvc3AzzypNjYvL+rV/dePoiIiMh/MMAjv2Mb4GVney8fZH6NGwOvvAK0bw+sWuXt3BAREZE/YIBHficszNs5IH/y2mvAhg1AQoK3c0JERET+gAEe+R3bHjwiIiIiIjNhgEd+hwEeEREREZkVAzzyOwzwiIiIiMisGOCR32GAR0RERERmxQCP/E7XrkC1avr3pEnezQsRERERkZHKezsDRKUtNBTYuhXYvRvo3t3buSEiIiIiMg4DPPJLcXG6EBERERGZCYdoEhERERERmQQDPCIiIiIiIpPw2QBvz549mDZtGoYMGYKEhASUL18eFosFb775ZonfXb16NXr27Ino6GiEhoaicePGGDduHNLT00sh50RERERERN7hs/fg/eMf/8CUKVOc/t7777+P5557DhaLBR06dED16tWxYcMGTJgwAQsXLkRSUhKio6M9kGMiIiIiIiLv8tkevKZNm+L555/HnDlz8Pvvv2PQoEElfmfHjh0YOXIkAgICsGzZMqxfvx5fffUVDhw4gK5du2LPnj144oknSiH3REREREREpc9ne/D+9Kc/5ft/uXIlx6Jvv/02RARDhw7FXXfdlft6hQoVMHPmTNSrVw8LFy7EH3/8gcaNGxueZyIiIiIiIm/y2R48Z127dg3Lli0DAAwYMKDQ+7Vr10a7du0AAIsXLy7VvBEREREREZUG0wR4e/fuRWZmJgCgVatWdj9jfX3Hjh2lli8iIiIiIqLS4rNDNJ116NAhAEBUVBQiIiLsfiY2NjbfZ4uSkZFR4u858hkiIiIiIqLSZJoALy0tDQAQFhZW5GfCw8MBAKmpqcWmZf0cERERERFRWWKaIZpERERERET+zjQ9eNZhmcUNnbQ+6LxixYrFpuXIA9FTU1MRExPjRA6JiIiIiIg8yzQBXp06dQAAly5dQlpamt378I4dO5bvs0UpbpinVXZ2ttN5JCIiIiIi8iTTDNGMj49HhQoVAADbtm2z+xnr6y1atCi1fBEREREREZUW0wR4QUFB6NWrFwBg7ty5hd4/cuQINm3aBADo169fqeaNiIiIiIioNJgmwAOA0aNHw2KxYNasWVi+fHnu65mZmXjssceQnZ2N/v37o3Hjxl7MJRERERERkWdYRES8nQl7tm/fjmHDhuX+/8CBAzh37hxq1aqFmjVr5r6+ePFi1KhRI/f/77//Pp577jlYLBZ07NgR1apVw4YNG3Dy5EnEx8cjKSkJ0dHRbucvNTUVkZGRSElJKXHSFiIiIiIiMi9fig18dpKV1NRUbN68udDrycnJSE5Ozv3/1atX870/YsQIJCQk4L333sOWLVuQkZGBuLg4jBkzBmPGjCnyIehERERERERlnc/24Pk6X4rSiYiIiIjIe3wpNjDVPXhERERERET+jAEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSpg3w5s+fj06dOqFSpUoICwtDs2bNMHHiRFy/ft3bWSMiIiIiIvIIUwZ4zz77LB544AFs3LgRrVu3Ro8ePXD06FGMGjUKXbp0weXLl72dRSIiIiIiIsOZLsD7+uuvMWXKFISHh2Pz5s1YsWIFFi5ciH379iEhIQFJSUl4+eWXvZ1NIiIiIiIiw5kuwJswYQIAYPTo0WjRokXu69HR0fjwww8BAB988AFSUlK8kj8iIiIiIiJPMVWAd/z4cWzduhUAMGDAgELvt2/fHrGxsbh69Sq+++670s4eEXnbiRPA9u3GpXflCvDdd8D+/calSVQWrF5tbFnyZSLA1av6d2YmsGwZsHOn9/KTnQ0cOADk5HgvD0SuOnwYmDMH+OILLU9GuXIFuHbNuPTKOFMFeDt27AAAVK5cGXXr1rX7mVatWuX7rCGWLgUGDwYGDNCK/9gxwNkewg0bgPHjgUmTgKNHjcnXlSvASy8Bo0fnnZzclZEBfPIJ8PzzwIwZQHq662ldvAi88ALQqxfwl78Ahw65ntYffwDr1umJ2F0imjdfqyiys4FTp4DUVP2/iG6zixddS+/IEWDVKiApSY8VKxHg55/1t7wpPV3zcfEisGQJ8M03ru3fixeBt98Gpk4FmjYFWrYE3n3X9XwdP67bbcYMoEkTPX6bNwf27HEunZUrgbFjgR07gKFDNb3sbGD+fC1f69e7tr6bNwN/+pOuZ5s2wNy5zn1fROuxuXONqzcAPcZmzgRefRX49NO8dTt92rWGak6O1kci+Y9fZ4gAv/4KfPUVcOGC5m/hQtfWW0SD/Sef1Lr8+++BFSuAX34BXJ3cKztbj42oKD3OkpJcSwfQhtSSJcDZs3mvLVgAPPqo5tER16/r8TVxItC9ux5fP/2k+fz5ZyAry/l8XbuWt73T0/X/ly5pmleuaCBTXDk4dUqPg6KcOZN/nZ118SLQrh1QuTJQq5YuvXvruv/+u2tpXroEvPOOHmvOlvHVq7Uea9AAuOkm4K9/1fO8u3ML5OTotjRqdNP27UC/fsDf/qZpnzwJLFrkXNk6eRJ47TVd5337gMmTtc48cwbYuhU4d67kNHJygE2bgLQ03ZfJyZqHX3/Vxd0g+ehR9+pJEd1Wtsfw2bNaJ5086V7ejLZvn+Y1K0vzu3ix8+3VAwf0+B04EBg0SNvNrrbbLlzQevbjj7V+jIgA6tYFfvvNtfRsvf8+cMcdwBtvuN7G8jYxkalTpwoAad68eZGfefrppwWA3HfffUV+Jj09vcTlxIkTAkBSvv1WxGIR0UM0b4mKEvnuO5HDh0VycorP+Jo1IuXK5f9+XJzILbeI9Okj0revyAMPiMyeLbJ7t8iGDSIHDhSfZmamfs+aXo0aIt26ibz4osikSSKffiry++8i6enFpyMikpUl8t57Ir17F17PypVFXn5Z5NKlktNZuVLkww9Fli/X9GJjC6e1apVur927RdatE9m3r+jtd+WKyIIFIv/3f3n7oEcPkUceEalSRSQmRt8rKW/Z2SKbNun61a+v28qap2bNRMaOFVm6VD/niKwskRdeEKlZU+Ttt0Xmz9dtf9ttIu++KzJihMjw4bqujvjjD5HJk0WqVs3LV8OGIpUq6d/h4SKzZpV8nFmlp4v065d/21etKnLXXSK33irStKm+Vr68yKBBIufPF53WiRMio0aJVKumeUpM1G3Ytq3ISy+J/Ppryfm6dk1kyxaRjAzddpMni7RvLxIaWvh4mzSp+LSuXs3bT8eOicyYoXkrmA6g++XECZHVq/VYKyqff/ubSK1aIk8+KfLMM7pd7KUHiDz6qMhHH2n5K84nn9ivNwouvXqVXEb/+1+RkSNF/vpX+2UUELn7bpF//rP4Y/j6df337bfz1xu33SYSGSnStavI4MEiTZqI3HijlonipKWJJCfrdt25M++4si4TJmg5sFhEEhJETp4sPj1bZ86ING+u6YSE6L+33iqyeLHI999reba3P/fuFXnlFa1zv/hCy7e97VWlipbT334rPh979ujv7dghMnBg0fsxPFzrpi++cLycXrum28c2nYAAzdfMmbrfi5KRIfLNNyJHjoj8/LPIwoUiN92Ul06DBiJBQXn/j4zUc0Jxx9rZs/a3V1CQyM0359WXZ844tn4HDujxHRycl5ZtmbA9JyYkiKxfXziNzz7Tz9WuLfLLL1qOk5K0fD39tL5uTeP++3Ud7MnJEdm+XcvutGmaztSpekwVVz6ffNKxdbXauFHkqad0e1vTeOwxkW3b9HyclVX4O+fOibz6qshDD2l9XFReunfX/X74sNZ99tKyXd+dO0WWLdNtsny5SJ06eWl17ap1Z9euIrffrueX4uq0I0dE1q4VWbJEz7kFz+133JG3zv365S8DOTma3x9+EDl1Ku/13bvz58neEh2tnyvOkCHFp9Gkif6+iMjlyyKbN+t5xJ6sLC13e/ZoXfr443ntvdtu0zJ+991a1iZP1jaKtV4taj88/HBeXho1EqlePX95iInR9t/x47p/MzLsp3X1qpb5mTNFFi3SPK5YocfMO+/oOfbsWV2H06e1Liy4nr//LjJ+vJ4TrflbvVqP2Xbt7G+/4GCR118vvl7LydHjY/RorQsLptG4sW6vBx4QadVK2w0lSU8XqVvXfp5iYrStO3hw4fPU+fP6W6+9JjJ0qEjr1nqc3XyzSL16Is8+K/LVV/nTu/HGvO2ekpL/OLW1ebOkdO4sACQlJaXkdfAwi4iId0NM40yYMAHjxo1Du3btkFTElc5x48ZhwoQJuOOOO7BixQq7n7FYLA7/ZgqAiiV9qH594IkngGHDdFjHpk1ASIheAVm1Sq/ku+KRR4AhQ4BmzfRqw/XrQKdOmuY//uFYD1RgoF5xvvNOzUelSnpV5bffgB9/1KuyW7eWfAUjMBCoVw/o0AF48UW9urhmDbBxI1Czpl71/de/HFuvqCi9wml1ww1At276Gzt36nrVqQNs26ZD7krSrJnmKTUVuPVW/T8AnD8PTJig+bL2ipWkYUMgIAAICwPatweqVtWr4leu6FXFiAjN35EjjqUHaE9L27bAAw8A5cvrvsvJAXr00N6cpUsdSyc0VLd7w4ZA375A//66fXbu1HX99lu98rZ7tw6RcFTt2sBbbwE9e+rxkZoK3HefHh+O9OAmJOjV/pgYoGtX/e01a3Rda9XS7f/HH0B0tKa/b1/x6bVvr71lrVoBL7+s5WnjRl235cuBihWB2Fjgv/91fB0B4MEHtRctMlLzM3Wq9mI5emzYat1ar0x+843ul5tu0qv1CQl6rDhT5uvU0SuJ5cvrFetu3XR55hlgyxbtAXPUI4/o95KTtVeiWjXt2Rk6VPOXne14WuXL68iFlBRdx8cf19ELEydqOn/8ofskPFzLhCP1UUSE1pfvvKO9oi+/nHc1Nj1de09vukmvApdU9lu21O199KiWiyZNgFdecb6HokUL/e7OnXqlfsgQrZ+2btWeBWcNH64jNXbv1vWNi9O6+/Bh7UnbskX3z4YNJfc89ekD3Hyzrmvv3lo3LVoEPPecayNBoqOBe+7R7bt/vx4jCQmat4UL9Yp5ScqVA2rU0DLYqBFw9916pb9+fT0uli/XujI52bm8RURoecrO1vz85z/Av//tXBpBQXqlv21bPVcmJwN792oddOCAc2lZvfWW1td9+uj/V6/W/zdqBEyZoueCs2cdq0eqVtXt1bcvcNtt2qN2//1alpxVsaLWGy+8ACQm6rGblKR1yLvv6rndGVWqAB98oHnbs0frjZo1tc7829+0Keyohx4Cnn5a8zNzZv7RD4mJuv0czV9goLYZKlfW80t8vJ6f69bVHroRI0pOo2ZNoHNnPaZOnNB998orwO2363EsoueC557TY9cZFSpo+YyPB0aN0v+PHq3b79QpPXc5IyBAz/FRUVq31qmjx9aPP2r964zoaK2PRozQkRVTp+b1aFasqPW6o+eX/v313Hb2rNYZNWvqvmneHPjoI8fbMYC2+aZN03U8eVLPI6GhwA8/6DETFaXHR8HhneXL2x9FUKmSlqcHH9QeYVfKer162ma3bo82bbQ9GR2dV1//9htSAUQCSElJQcWKJUYHnuXtCNNIb731lgCQdu3aFfmZsWPHCgC54447ivwMAIeXFNsrjNOmFb5K7cxSt672PgUH61KwV89Xlrg47YkbNKjo3oziejlsl06dtEeyZ09j82iv98e6dOsm8v772tNk7/2ICO1BsvYQ+NLStq1IfLz+Xa1ayVeYi1sqVNBeH2tPoCNLvXp6ta24zzi670taYmP1qpptT4Onlxtu0KW4z4SEiAwYoFcjf/xRe2KNWueQED0+//zn/Ff5nV0GDtQrjUVddbUuUVHFv+9IL6MzS9Om+XtVjDpO3KkrY2Ly/g4P154e214lZ5eXX9Yr5s8/LzJunPa8FHdMObKN331X0yvus6GhzpVlX1wsFr2Cf+utxpT78uVFWrQQCQx0L50KFXSkwp//LPKf/+T13HhradRIexnbtcs7HxS3VK6c19Nd3BIfX3SviLeXsDDtCTQirSZNtJwX106wLlWquH/8uLrYjibyhaVmTZHOnY053732msh99xmTr//7Px21ceyYlg1nv1+5ctHb35FjxGZJwf9iAx/owYO3M2AkrwzRDAkRadNGhyhYZWaK/OUvGrzcemvJJ/Bq1XQYwcWL+v1r17T7/8oV7Qo+eVLk2281oHrkEU27pIMuMFAbed9/L9KypTZYRo8WmTNHl/HjdaiEoyfR6tW1gTFlinbvWx06pN3qjhaCjh11mNuUKfmHVmRnazd/lSoiFSvqsJCnn9Zhg7aVq8Wiw5Ss/+/USeTzzzUf48drUDZxom67LVs0WCspTyEhOqxi2rTCQxaOHdMhD9ZhfgEB2ggsaZ82aqRDZgIDtVG7dKlWaN266dCXgkOviluionS445YtmqecHB0uYB0SMX9+yQ31gkt8vA4rExE5elQbCo0b553cn3xSX+/cufh0atfWhs/x49rwWb5ch6ScPCnywQf5h4U5ulSrpulYXbmiQ2fuucf5tKpX1+FNe/bokJQDBzS9f/9bh7p16aLDykran82a6ZDpRx7RIVAF7dunJ5gFCxwLzGJjdUjc4MH6//vv12Pv2rW8NH/9VY9vR06mAwbo8KgnnxR58828YUEXLmi5uP12x7dZcLDI3/+ux9e1a1ov/fKLpnHPPboNhw4tOZ0KFfSCRJ06OgR4xAjdj6mpeRfCmjUTmT5dP1evnv3hO9YlICB/4NWggciuXbqely+L/Otfuq+ffbbk/Vm3rg5/X79e1/PcOR2eZx36fv681lGtWhWfTni47sMbb9T8vftu4WPDWmZnzXKuYRQRIdK/vw5tsjp8WM8Fo0Y5Vw5iYrRuXL1a0zh3TvMzcaLuj8WLdXhZcWkEBuqw/7179dhMS9M0Hn9c66ekJD2PtWxZ9LBo62LdDgkJeo775hvdd8nJeet68aLWK+fPl5ye9bxwzz1at06erLcEWIeXJydrvopLo1MnvfD3/vuaxiuvaJ178qRuL1u//eb4ubNiRb2YGBqq33nmGc1bSooOv584Ubfh3XdrmbGXRtWqWk5uv13r7u3b8+dn1y49Bq3lolcvPZcWl68aNfRCZrlyWh4+/VSP0+xs3a/Nm+uQ8xUrCg/pt7f07atl/O23dZvt26dp7dyp+6VdO/uNb4tFpEMHHapqOwS4RQu9UHLpkg77tQ4ffvddrWMff1zroSZNtI4prmz16qV5+/vf8w9dPXpU22/OlKXatfPql9hYrXevXNH8Wc8D//63nk+bNct/AamoZdgwka1bRfbv12Pj44/zhgSePattvtat9RgNCys6nVtv1eP3lVe07rjzTr3g9N57msadd+r69uql7ZOC26zgMR0erp/997+13rAO8T98WId9p6frcenIdgsO1vNU69aaZlqanvPWrxf58kttR5Z08djeMnhw/rJw5YrI3Lna3urTx/5xUbGitk+2bs0/LH32bK3nrLenXLqk5cJ6ATEmRvNfTHsr5eabxVcCPFMN0Vy6dCn69OmDKlWq4FwRN9/ee++9WLx4MZ5//nlMmjTJ5d9KTU1FZGSkY92wv/0GvP663jQbFKRd4TVr6pClxEQdMujEsFAAOrnG0qU6scjXX+vwtyFD9EbrcuX0xvmEBP2siL5eoULhdPbs0aEHZ89qN/ahQ9oFfcst2v3ctq12jUdFabpFEdGhTx9/rMMKz5/XG2k7dtT1jIrS4RMNGxa/XiKFt8WRIzqsp3p1HeoXFKTDJIKCdEhLcU6f1gkjjh/XIV5ffpl/+GSDBjpcrohJeXJdvKiTYbRurcMiNm/WYXLp6UCXLjqMq1MnXcfr13U4EaBDFkJC7Ke5a5cON6pbVyc7WLYMCA7WbV6lig7LiYgAHn5Yh4kU59w5HY6SmKjDvD75RPdtYKAOZczO1qES16/rEI9HHtHtZ2W73dPTdR2tr69dq8O+duzQYY+ZmXpMLFumw1qKc/UqMH26DntJT9ehEQ0b6n60WHTIV1ycHicnTuj2qls3f95sHT2q+69pU91mkybpsIlWrTT9oUN1iNns2brPnnlGh5qU5OhRHW64bp0O0UxM1GHLfftqPhs0KDkNqx07dAhUgwY6LOfRR3X7V6+ux0yLFjosOjRUh8McOaLbICDAfnrp6TosJS1Ny/D8+TosNT5ef8c6PLok27frkLYDB3QY7K5dWqYbNtThcy+8oOWlTRsd9lOSLVu0PNWvr/n6+GM9BseM0WO2WjUdKmXP5ct6zNaqlb+8Z2XpBDGffqr/79IF+PxzHbJjsej22r5dy0nTpkXXSV99Bfzzn8BddwH33qtDhI4f12F0995b9La25+BBrWurV9e6PClJj7HGjfW4q1JFP1dcWbdauVKHMqWn6z5r3lzzFRSkx339+lrv1q+vx0T58kWn9dFHuj9jY7VM/vqr/lunjk7S07evDgELC3OsDIjocZWcrOeOunV12FFmpq5706Z59ZojMjJ0+Ndnn2mZCg3V73/yiZavAwf0N4KDS05rxQotRzVqaN1Rtaoe/2lpeoyEhOg+jYwsOo0rV3SIp/XWiDNntCxah8N37+74ugE6hHXLFt2X27YB8+ZpmW/bVuums2e1Pvr4Y83b9et6LiyqTABaLtas0ePt8GHdNk2aaH0RF1d8frKy9Pxdv76Wi6tXtRwtWKBlPTJSz+tBQZruG29oGU1P1zwV1wYR0WNq8mQti92765DI3bt1O7zwguaxJFev6jDIffv0nB4crEPmbr457zOnTuk+iYkpOT1bKSlaNlNSdNmwQddtwAC9/aGouiInR7fRyZM6PDY6Wmd33LFDy1dGht6mYK3LBwzQzx48qPu6uDJqlZysdc+OHbqd77lHy8bVq9oWTEhwvA24c6fuhyZN9LdPn9Y6rXZt3Z/O2LVLh43u3at5ePll3Rdz5uj26tev+OPVKilJz98tW2p9MWuW1kOVKun56sABPVf37FlyWrNn63HbpImWm6go/TclRYfMdu2qvzVxov7WBx/osViU9HTdtvPm6XDYkBDgqaeAG2+0//lTp/S4rFQp77WMDM2DtX6/ckUnl8rK0nZWhQp6Hk1ORurttyOyZk2fGKJpqgAvOTkZsf9rCB88eNDuTJpxcXE4duwY5s6di4cfftjl33IqwLM6flwbY84WwpJYG37ONFr8lYhWkMuWaRA6cqQ2Glxx7Jgut97qfIBeVmVn6wk9Kkobfb7A3kUBV9M5e1ZP8MVdzHBWUpLeL/D44/YvsnjL/v3a6CvpIokzjNoXp09rQODtexg84cwZbeC2besfdbb1gpG1qWHWutL22M/K0ka9IxdKypKUFN2X/nDcAnoB8swZDe7cPW6vXtV7yJo2db3NQT7PpdjAQ0wV4AFA69atsXXrVrz55psYN25cvveSkpLQoUMHBAcH4/Tp04gs7mpfCXxpJxIRERERkff4UmxgqufgAcDYsWMBAO+88w622zyE9fz58xg2bBgAYPjw4W4Fd0RERERERL7IdD14APDMM89g6tSpCAwMRNeuXREWFoY1a9bg0qVLaNeuHVatWoXQ0FC3fsOXonQiIiIiIvIeX4oNTBngAcBXX32F6dOn47///S+uX7+O+vXrY+DAgRgxYgSCiprAwQm+tBOJiIiIiMh7fCk2MG2A52m+tBOJiIiIiMh7fCk2MN09eERERERERP6KAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmUR5b2egrBIRAEBqaqqXc0JERERERN5kjQmsMYI3McBzQUZGBqKiogAAsbGx3s0MERERERH5hNOnTyMyMtKreWCA56bjx48jPDzc29nwOxkZGYiJiQEAnDhxAmFhYV7OkX/h9vc+7gPv4z7wPu4D7+M+8D7uA++z3Qc1atTwcm4Y4LktMjKSBckLAgICcv+uWLEi90Ep4/b3Pu4D7+M+8D7uA+/jPvA+7gPvs90H5cp5f4oT7+eAiIiIiIiIDMEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUlYRES8nQkiIiIiIiJyH3vwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQAPwPz589GpUydUqlQJYWFhaNasGSZOnIjr16+7lN7PP/+M+++/H9WrV0dISAjq1q2Lp556CmfOnDE452Xb9evXsWbNGrzwwgtITExEVFQUAgMDccMNN6BPjtehegAAF9pJREFUnz5YtmyZ02mOHz8eFoul2OWPP/7wwNqUXUOGDClxm125csXpdFkOHHP48OESt791+eGHHxxKk+XAvj179mDatGkYMmQIEhISUL58eVgsFrz55pslfnf16tXo2bMnoqOjERoaisaNG2PcuHFIT093OT/79+/HkCFDUKtWLQQHB6NWrVoYMmQIDh486HKavs7ZfZCTk4NNmzbhlVdeQfv27VGlShUEBgYiOjoa3bt3x5w5c+DKXHGzZ88usYwsX77c3dX1Sa6UA0/WKf5WDlzZ/o6eIz777DOH8+GvZcDdtmdZOReUd/mbJvHss89iypQpKF++PLp06YLw8HD85z//wahRo7B06VKsXLkSoaGhDqe3YMECPPzww8jKykJiYiLq1q2Lbdu24YMPPsD8+fORlJSEBg0aeHCNyo7169eje/fuAIAbbrgB7du3R1hYGHbv3o2lS5di6dKl+POf/4wZM2bAYrE4lXazZs3QvHlzu+9FRka6m3VTateuXZHHZkBAgFNpsRw4Ljw8HIMHDy7y/d27d2Pr1q2IiIhAy5YtnUqb5SC/f/zjH5gyZYrT33v//ffx3HPPwWKxoEOHDqhevTo2bNiACRMmYOHChUhKSkJ0dLRTaW7cuBF33HEHMjMz0aRJE7Rv3x67du3Cp59+igULFmD16tVo27at03n1dc7ug4MHD6Jdu3YAgMqVK6NVq1aoVKkSDh48iNWrV2P16tWYN28eFi5ciKCgIKfzU79+fbRv397uezVr1nQ6vbLA1XIAGF+n+GM5cGX7F3eOOHr0KNauXQuLxYKOHTs6nR9/KwPutD3L1LlA/NjixYsFgISHh8vPP/+c+/rZs2clISFBAMjIkSMdTu/48eNSoUIFASD//Oc/c1/PysqSgQMHCgBJTEyUnJwcQ9ejrFqzZo30799ffvjhh0LvzZs3TwICAgSAfPrppw6n+eqrrwoAefXVVw3MqbkNHjxYAMisWbMMSY/lwFh33XWXAJDHH3/c4e+wHNj38ccfy/PPPy9z5syR33//XQYNGiQA5I033ijyO9u3bxeLxSIBAQHy3Xff5b6ekZEhXbt2FQDSv39/p/KRkZEhMTExAkDGjBmT770xY8YIAImNjZXMzEznVrAMcHYf7N+/X7p06SLff/+9ZGVl5Xtv3bp1EhYWJgDktddecyofs2bNEgAyePBgV1elzHKlHHiiTvHXcuDK9i/Ok08+KQCke/fuTn3PX8uAq23PsnYu8OsALzExUQDIm2++Wei9DRs2CAAJDg6WS5cuOZTeCy+8IACkW7duhd5LS0uTyMhIASDLly93O+/+4LHHHhMA0rVrV4e/w4at84wO8FgOjJOcnCzlypUTAPLTTz85/D2WA8dYj/3iGlb333+/AJA//elPhd47fPhw7v75/fffHf7d6dOnCwBp1KiRZGdn53svOztbGjVqJABkxowZjq9MGeXIPijOG2+8IQCkfv36Tn3PXxu39jiyDzxRp7AcKHfKwOXLlyUqKkoAyLx585z6LsuAfUW1PcvaucBv78E7fvw4tm7dCgAYMGBAoffbt2+P2NhYXL16Fd99951DaS5evLjI9MLDw9GnTx8AwKJFi1zNtl+55ZZbAADHjh3zck7IGSwHxpk9ezZycnLQpEkTtGnTxtvZ8TvXrl3LvR/D3vFcu3bt3OGD1uPeEdbPPvTQQyhXLv9puFy5cnjwwQcBsIw4gueJsovlwH0LFy7EpUuXULlyZdxzzz3ezo4p2KtTyuK5wG/vwduxYwcAHdNft25du59p1aoVjh07hh07duDhhx8uNr20tDTs378/93tFpff555/n/jYVb9++fQCAGjVqOP3d7du3Y/To0bhw4QIiIyNxyy234O6770ZERITR2TSNtWvXYufOnUhLS0OVKlXQunVr9OzZE8HBwQ6nwXJgrNmzZwMAHnvsMZe+z3Lgnr179yIzMxNA8cfzhg0bnDqerZ8tLk3bz1HR3DlPADq5wUsvvYQzZ84gPDwcTZs2RZ8+fZy+j8ZfGFmnsBy475NPPgEADBw40KlztS2Wgfzs1Sll8VzgtwHeoUOHAABxcXFFfiY2NjbfZ4tz+PDh3L+LStOZ9PzdqVOnchu3/fv3d/r71htlbUVGRmLq1Kl49NFHjcii6dibfatGjRr45JNP0KNHD4fSYDkwzvr167F//34EBQVh0KBBLqXBcuAe6zEaFRVVZAPW2eM5LS0N58+fB1ByGTl79iwyMjIQFhbmVL79RWZmJqZOnQrAtfMEoBMcbNy4Md9rISEhGD9+PEaNGuV2Hs3GqDqF5cB9hw8fxtq1awG4fhEQYBmwVVTbsyyeC/x2iGZaWhoAFLuxwsPDAQCpqakOp1dcms6k58+ysrIwcOBApKSkICEhAX/5y18c/m79+vUxYcIE7NixAxcuXMCFCxeQlJSE3r17IyUlBYMHD8acOXM8mPuyp1mzZpgyZQp27dqF1NRUnD59GitXrsRtt92GkydPok+fPli3bp1DabEcGMd6ZdaVK6ksB8Yw+jxhm2Zx6VrTdCZdfzRs2DAcOnQIMTExGDt2rFPfveGGGzBu3Dhs3rwZZ8+eRWpqKrZu3YpHH30UV69exejRozFhwgQP5bzsMbpOYTlw36xZsyAiaNWqFW6++Wanv88ykF9xbc8yeS5w+q49k3jrrbcEgLRr167Iz4wdO1YAyB133FFiehs3bhQAAkCuX79u9zMrV64UABIUFORyvv2B9QbXKlWqyJ49ewxL96mnnhIAUrVqVbl69aph6ZpVTk6O9O3bVwBIs2bNHPoOy4ExUlJScmcitZ2tywgsB3lKmtxgzpw5AkBq1qxZZBofffRR7k3yjjh+/HhuGdm3b5/dz+zduzf3MydOnHAo3bLK1QkmXn/9dQEgISEhkpSUZGie3nvvvdxJ1k6dOmVo2r7I3YluXKlTWA7yuLL9s7OzJS4uTgDIhx9+aHie/K0MiBTf9iyL5wK/7cGzdrFmZGQU+RnrQwsrVqzocHrFpelMev7qmWeewcyZM1GpUiWsWrUKjRo1Mizt8ePHIyAgAGfPnsXmzZsNS9esLBYLXnvtNQDAL7/84tAkBiwHxpg3bx4yMzNRq1Yt3HnnnYamzXLgOKPPE7ZpFpeu7QNzWU4Kmzx5Ml555RUEBwdj8eLFuZMbGOWZZ55BdHQ0rl69ipUrVxqathm5UqewHLhn9erVOHr0KEJDQ+1O+uEufysDJbU9y+K5wG8DvDp16gAofuYt63vWzxandu3auX8fPXrU7fT80ciRIzF16lRERUVh5cqVuTMZGaVy5cqoVq0aACA5OdnQtM3qxhtvzP3bkW3GcmAM6/DMIUOGFJpZy10sB46zHqOXLl3KN5zGlrPHc0REBCpXrgyg5DISHR3N+44KmDZtGkaOHImgoCAsXLjQ4fuDnREQEICGDRsCYBlxhCt1CsuBe6zniP79+7v0gPmS+FMZcKTtWRbPBX4b4Fl34Pnz54u8IXLbtm0AgBYtWpSYXsWKFdGgQYN833MnPX/z4osvYvLkyYiMjMTKlSuLnFHIHdnZ2UhJSQEAziLoIOsNwIBj24zlwH27d+/G5s2bYbFYMHToUMPTZzlwXHx8PCpUqADA2OPZ+lmWEedMnz4dTz/9dG5w16tXL4/9lrXuYxkpmat1CsuBay5cuICvv/4agHuTq5TEH8qAo23Psngu8NsAr1atWkhMTAQAzJ07t9D7SUlJOHbsGIKDg9GzZ0+H0uzXr1+R6aWnp+fOPHXvvfe6mm1TGj16NCZNmoTIyEisWrUqd78YbcmSJcjMzITFYvFIAGlG8+bNA6CBW3x8vEPfYTlwz8yZMwEAnTt3Rr169QxPn+XAcUFBQblBhL3j+ciRI9i0aROAvOPeEdbPzps3Dzk5Ofney8nJwZdffgmAZcTWjBkzMHz48Nzgrnfv3h77re3bt2Pv3r0AgNatW3vsd8zC1TqF5cA1c+bMwdWrV1G/fn107NjRI7/hD2XAmbZnmTwXOHXHnsksXrxYAEh4eLj8/PPPua+fO3dOEhISBICMHDky33cWLVok8fHx0qVLl0LpHT9+PHdihI8++ij39aysLBk0aJAAkMTERMnJyfHcSpUx48aNEwASFRUlW7Zsceg706ZNk/j4eBk0aFC+148cOSKff/65XL58udB3Fi9eLJUrVxYAMnDgQEPybgY7duyQb775ptCEKNnZ2fKvf/1LQkJCBIC89NJL+d5nOfCMa9euSbVq1QSAzJkzp9jPshy4z5HJDX7++WexWCwSEBAg33//fe7rGRkZ0rVrVwEg/fv3L/S9zZs3S3x8vMTHxxd6LyMjQ2JiYgSAjB07Nt971sm9atWqJZmZmW6sXdngyD746KOPxGKxSFBQkCxdutThtIuqpzIyMuSDDz6Q1NTUQt9Zv3691KlTRwBI+/btHV+RMqykfeBOncJyUDJnJ1lp3ry5AJC33nqrxM+yDNjnStuzrJ0L/DrAExF5+umnBYAEBgZKjx49pH///hIVFZU7w2bBjTpr1iwBILVr17ab3ldffSUBAQECQNq0aSMPPvig1KtXTwBI9erVi5wpxx998803ubMDtWrVSgYPHmx3KRhkv/rqqwJAOnbsmO/1HTt25AbsHTp0kIceekj69u0rDRs2zP2dzp07S1paWimupW+zXuSoVKmSdO3aVQYMGCA9e/bMnZ0LgDz88MOFAkCWA89YtGhR7knHXmPKFsuB837++Wdp06ZN7hIdHZ17ArV9veBsZZMnTxYAYrFYpFOnTvLAAw9IjRo1BIDEx8fL2bNnC/3W2rVrc7e3PUlJSbkXQpo2bSoPPfSQNG3aVABIWFiY/Pjjjx7ZBt7m7D7YsWOHWCwWASCNGzcu8jwxePDgQr9VVD118eLF3BkC27ZtKw888IDce++9udsfgCQkJJh25kZX9oGrdQrLQWGu1kMiItu3bxcAEhAQIMePHy/xt1gGCnO17SlSts4Ffh/giYh8+eWXcvvtt0vFihUlNDRUmjZtKu+8847d6X5LatiKiGzbtk3uvfdeqVq1qgQFBUnt2rXlr3/9q99MNeso67YsaSm4rYtq2J47d05GjRolXbp0kbi4OAkLC5PAwECpUaOG9O7dW+bOnSvZ2dmlt4JlwMGDB+XZZ5+V9u3bS82aNSUkJESCg4MlLi5O7rvvPlm2bJnd77EceEbv3r0FgAwbNqzEz7IcOM/2RFvccujQoULfXbVqlfTo0UMqV64swcHB0rBhQxkzZozdK+AFf6so+/btk0cffVRiYmIkMDBQYmJi5NFHH5X9+/cbtco+x9l94Ojn7W3nouqpq1evyssvvyx33XWX1K1bVyIiIqR8+fJStWpV6datm/zzn/809SNEnN0H7tQpLAeFuVMPDR8+XABIz549HfotloHCXG17WpWVc4FFRARERERERERU5vntJCtERERERERmwwCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERE5DMsFovTS6dOnQAAnTp1gsViwbp167y6DkaYMmUKLBYLFi5c6HIaKSkpqFKlCtq0aQMRMTB3RETky8p7OwNERERWgwcPLvTaqVOnsGLFiiLfb9y4scfzVZrOnj2L8ePHIzExEf3793c5ncjISIwZMwYvvPACPvvsM7vbjoiIzMcivKxHREQ+bN26dejcuTMAFNsTdfToUWRmZiIuLg4VKlQorewZbvjw4Zg+fTqWLVuGnj17upXWlStXEBcXh/Lly+PQoUMIDg42KJdEROSrOESTiIhMIS4uDo0bNy7Twd2lS5cwe/Zs1KxZEz169HA7vZCQEAwYMAAnT57El19+aUAOiYjI1zHAIyIiUyjqHrwhQ4bAYrFg9uzZ2LNnDx588EFUq1YNYWFhSExMxDfffJP72c2bN6NPnz6oWrUqQkNDceutt2LNmjVF/ubly5fx3nvvoW3btoiKikJISAji4+Px4osv4vz5806vw6xZs5CRkYFBgwahXLnCp+irV69i0qRJaNmyJSIiIhAUFIQbbrgBiYmJePHFF3HhwoVC3xkyZAgAYPr06U7nh4iIyh4GeERE5Be2b9+Oli1b4pdffkHXrl3RrFkzbNu2Df369cOCBQvw9ddfo0OHDkhOTkbXrl0RHx+Pn376CT169EBSUlKh9E6cOIE2bdrg+eefx759+5CYmIiePXvmBmGtWrXCkSNHnMrj119/DQDo1q1bofdycnLQq1cvvPjii9i/fz86dOiA++67DwkJCTh79iwmTZqEo0ePFvpe8+bNUbVqVWzZsgUnT550Kj9ERFQGCRERkQ9bu3atAJCSTlkdO3YUALJ27dp8rw8ePDj3+2+++abk5OTkvjd16lQBILVq1ZJKlSrJZ599lu+7zz77rACQbt265Xs9JydH2rVrJwDksccek9TU1Nz3rl+/LiNHjhQA0rlzZ4fXMzMzU4KCgqRcuXL50rNav369AJBbbrnF7vtbt26Vc+fO2U27T58+AkA+//xzh/NDRERlE3vwiIjIL7Ru3Rpjx46FxWLJfe3JJ59E5cqVkZycjG7dumHQoEH5vvPSSy8BAH744Qdcv3499/UVK1Zg48aNaN68OWbMmIGIiIjc98qXL4+JEyeiadOmWLt2LXbt2uVQ/n777Tdcu3YNtWrVypee1enTpwEAHTp0sPt+q1atUKVKFbtpN2nSBID2YhIRkbkxwCMiIr9w11135QvuAA3G6tatCwB2Z6ysUqUKKleujGvXruW7p27ZsmUAgP79+6N8+cJPHCpXrhxuv/12AMCmTZscyp81gCsqSGvRogUCAgLwySefYPr06U4Nt7Smaf0NIiIyLwZ4RETkF+Li4uy+Hh4eXuz71t6yK1eu5L528OBBAMDLL79c5APYP/zwQwD6XDtHpKSkAAAqVqxo9/369evj/fffx/Xr1zF8+HDExMSgTp06ePjhhzFnzhxcu3atyLStaV68eNGhvBARUdnFB50TEZFfsDcrpTPv28rJyQEAtG/fHvXr1y/2s9bhkSWJiooCAKSmphb5maeeegoPPPAAlixZgqSkJCQlJWHevHmYN28eXn31VWzYsAE1atQo9D1r8FipUiWH8kJERGUXAzwiIiInxcbGAgD69u2L559/3pA0q1WrBgAlPl6hevXqePzxx/H4448DAP744w/83//9H3788UeMHj0an376aaHvWNOsXr26IXklIiLfxSGaRERETrrrrrsAAPPnz4eIGJJmkyZNEBQUhOTkZKSlpTn8vcaNG2PUqFEAgP/+9792P2Od6KVly5Zu55OIiHwbAzwiIiIn9e3bF4mJidiyZQuGDh1q9z67ixcvYsaMGcjKynIozdDQULRt2xY5OTnYvHlzoff/85//4Lvvvss3mycAiAi+/fZbAEDt2rXtpv3jjz8CALp06eJQXoiIqOziEE0iIiInlStXDl9//TV69eqFTz/9FAsWLECzZs0QFxeHa9eu4eDBg9i5cyeys7MxZMgQuzNt2nPPPffghx9+wKpVqwo97PzXX3/FiBEjULFiRbRo0QIxMTG4fPkytm/fjiNHjiAyMhKvv/56oTR37NiB8+fPo3Xr1nbvzyMiInNhDx4REZELYmJi8NNPP2HGjBlo3bo19uzZgwULFiApKQkA8MQTT2DFihUICQlxOM2hQ4ciLCwMX3zxBbKzs/O9d/fdd2P8+PFITEzEwYMHsWjRIqxbtw6RkZEYPXo0du3ahebNmxdKc/bs2QCAv/71ry6vKxERlR0WMermASIiInLb8OHDMX36dCxZsgR33323W2lduXIFsbGxCAwMxKFDhxAcHGxQLomIyFexB4+IiMiHvPrqq4iKirI73NJZ06ZNw7lz5/D2228zuCMi8hPswSMiIvIxU6ZMwbPPPov58+fjvvvucymNlJQU1KtXDw0aNMBPP/0Ei8VicC6JiMgXMcAjIiIiIiIyCQ7RJCIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJvH/mxYVFivF7zcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_norm = (long_noisy - long_noisy.mean()) / long_noisy.max()\n", + "err = np.sqrt(long_noisy.mean()) / long_noisy.max()\n", + "\n", + "long_lc_gauss = Lightcurve(long_times, long_norm, err=np.zeros_like(long_norm) + err, dt=long_dt, skip_checks=True, err_dist='gauss')\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10, 6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue', label='Original light curve')\n", + "ax.plot(long_lc_gauss.time, long_lc_gauss.counts, lw=2, color='red', label='Normalized light curve')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 46520.67it/s]\n", + "200it [00:00, 39276.19it/s]\n", + "200it [00:00, 43715.71it/s]\n" + ] + } + ], + "source": [ + "avg_ps_gauss_leahy = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8, norm='leahy')\n", + "avg_ps_gauss_frac = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='frac')\n", + "avg_ps_gauss_abs = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAASmCAYAAAAzqZ8jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1/8H8HfC3ojIcIED98AW98CN0lq1blsVq63Wqv22tba1tto9ftpph62tWK2ttnXWrQVUHLgXDhzgQBEBGWGT8/sj5pKQAAETEvD9ep77QO489+Ym95PPOfdcmRBCgIiIiIjKJDd3AYiIiIiqAwZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRFQh/v7+kMlkCA8PN3dRdPTu3RsymQyRkZHmLgoR1UAMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiEwuJycHixcvRpcuXeDu7g57e3s0b94cc+fORUpKis78BQUFWLVqFZ555hm0aNECrq6ucHBwQPPmzTF79mwkJiaWu82TJ0/i6aefhqenJ+zs7NCqVSssXrwYQgit+YKDgyGTyfDHH3+Uuq7PP/8cMpkMo0ePNmh/w8PDIZPJEBYWBoVCgbfeegtNmzaFnZ0dfHx8MGnSJNy6davU5WNiYjB69GjUrVsXtra28PLywpAhQ7Br1y6984eFhUntzM6ePYsxY8bA19cXVlZWWLhwIQDt9l6HDh3CE088gdq1a8PFxQXBwcHYt2+ftL7t27ejX79+qFWrFpydnTFgwAAcP37coH0nqtEEEVEF+Pn5CQBi+fLlBs1/69Yt0bZtWwFAeHh4iP79+4vhw4dL6/H39xfx8fFay9y4cUMAEG5ubqJLly5i1KhRIjQ0VNStW1cAEHXq1BFxcXE62woODhYAxJtvvilsbW1Fy5YtxdixY0VwcLCwsrISAMTLL7+stcw///wjAIhu3brpLX9RUZHw9/cXAERUVJRB+7x8+XIBQAwbNky0a9dOuLu7iyFDhoihQ4cKLy8vAUD4+fmJ+/fv6yz7008/CblcLgCIDh06iHHjxolu3boJAAKAWLhwoc4ykyZNEgDE888/L+zs7IS/v78YPXq0GDJkiFi0aJHWsZkzZ46wtrYWHTp0EGPGjBGBgYECgLCzsxPR0dFiyZIlQi6Xi27duonRo0eLZs2aCQDC2dlZ7zEnepQwaCKiCqlI0KRUKkX37t0FADFlyhSRkZEhTSsoKBCvvfaaACD69OmjtVxGRobYuHGjyMvL0xqfn58v3nrrLQFAhIaG6mxPHRgAED/++KPWtD179giZTCasrKzEjRs3pPGFhYXSPh0/flxnnZs3bxYARLt27crdXzV10ARAhISEiPT0dGlaamqqFKh8/PHHWsudPn1aWFtbC5lMJn777TetaVu3bhW2trYCgNi5c6fWNHXQpA4Yi4qKSj02MplMrFy5Umvaq6++KgCI5s2bC2dnZ7F7926t4zNixAgBQEydOtXgY0BUEzFoIqIKqUjQtG3bNgFABAYGioKCAp3pRUVFok2bNgKAOHPmjMFlqFu3rpDL5VpBmBDFgcHTTz+td7lBgwYJADoByeeffy4FdiWFhIQIAGLp0qUGl08dNDk5OYnExESd6X/++acAIPr27as1fsqUKWWWf+bMmQKAGDBggNZ4ddDUrFkzUVhYqHdZ9bEZNWqUzrSUlBQp6Hr99dd1ph87dkwAEI0aNSp1n4keBWzTREQms2XLFgDAiBEjYG1trTNdLpejV69eAIADBw7oTD916hS++OILzJo1C8899xzCwsIQFhaGwsJCKJVKXL58We92hwwZond8y5YtAUCnPdHUqVPh6OiI1atXIy0tTRp/+fJl7Ny5E+7u7nj22WcN2GNtQUFB8PX1Nbgc6v6lwsLC9K5vypQpAIB9+/ahqKhIZ/qwYcNgZWVVZplCQ0N1xnl4eKB27dqlTg8ICAAAg9qSEdVkut9iRERGcvXqVQDAO++8g3feeafMeZOTk6X/FQoFJkyYgPXr15e5TEZGht7xDRs21Dve1dUVAJCbm6s1vlatWpgwYQKWLl2KX375BXPmzAEAfP/99xBCYPLkyXB0dCyzLMYohzqIatSokd7lmjRpIi2XkpICLy8vren+/v6VLpOzszNSUlL0TndxcQEA5OXllbt+opqMQRMRmYxSqQQA9OjRQ7rgl6Z169bS/2+99RbWr1+PFi1a4NNPP0XHjh3h6ekJW1tbAEC3bt1w8OBBnTvh1OTyiifRZ8+ejaVLl+KHH37Aq6++itzcXCxfvhwymQwvvfRShddX2XI8DAcHh3LnKa9MVV1mouqEQRMRmUyDBg0AAEOHDpWyN4ZYu3YtAGDNmjVo166dzvS4uDjjFFBDq1at0L9/f+zevRvbtm1DYmIi7t+/j8GDB5cb8BlLvXr1cOXKFVy9ehVt2rTRma7O3Nnb28PDw6NKykRExfiTgohMZvDgwQCAv/76q9SskD6pqakAAD8/P51pO3bswL1794xTwBJefvllAMCSJUvw3XffAQBmzpxpkm3p07t3bwAo9bl+v/76KwCgZ8+eetuIEZFpMWgiIpMZOnQoOnbsiJiYGEyePFmr3ZJaWloafvzxRxQWFkrj1A2lv/32W615L168iOnTp5usvKGhoWjatCm2b9+OU6dOoUmTJlLgVxVefvllWFtbY8OGDVi1apXWtJ07d2Lp0qUAUKGsnalNnDgRLVq0wJIlS8xdFCKTY9BERJXywQcfoEuXLqUOx48fh1wux4YNGxAYGIgVK1agUaNG6N69O8aNG4cRI0agQ4cOqFOnDl588UWtoGnBggWQyWR455130K5dO4wbNw79+vVD27Zt0bhxY3Tr1s0k+ySXy7UySzNmzIBMJjPJtvRp27YtvvvuO8hkMkyYMAGPP/44nnnmGfTo0QODBg1CXl4eFi5ciIEDB1ZZmcpz/fp1XLx40WTZPyJLwvwuEVXK1atXpTY2+qjvbKtbty4OHTqE8PBwrFmzBqdPn0ZMTAw8PDxQt25dTJ8+HU899RTs7e2lZZ9++mlERUXhvffew6lTp3DlyhU0btwYCxcuxJw5c0waNISEhAAAHB0d8dxzz5lsO6V54YUX0L59eyxatAj79+/H6dOn4ebmhtDQULz88ssYMGBAlZeJiFRkoiINDYiIarj58+fjo48+wgsvvCBVhxERAQyaiIgkt2/fRqtWrZCRkYGzZ89KbauIiABWzxER4c0338StW7ewe/du3L9/H9OnT2fAREQ6mGkiokeev78/rl+/Dh8fH4wZMwaffvop7OzszF0sIrIwDJqIiIiIDMAuB4iIiIgMwDZNVUypVEr9mTg6OlZpHzBERESkTQiB7OxsAICnp2eZz19k0FTF7t27B29vb3MXg4iIiEpISkqCl5dXqdNZPUdERERkAGaaqpijo6P0f1JSEpycnMxYGiIiokebQqGQaoA0r9H6MGiqYpptmJycnBg0ERERWYjy2hmzeo6IiIjIAAyaiIiIiAzAoImIiIjIAGzTZGIKhaLM10RERFQ9MGgyMWdnZ3MXgYiIiIyA1XNEREREBmCmycSysrK0Xmv2B0FERETVB4MmE2M/TERERDUDq+eIiIiIDMCgiSzWueXLETl4MO6dP2/uohAREbF6jixTQXY2vKZMQWshEHXzJoLPnDF3kYiI6BHHTBNZpMxbt1BHCACA0+3bZi4NERERgyayUEV5edL/cqXSjCUhIiJSYdBEFqkoP1/6n0ETERFZAgZNZJGYaSIiIkvDoIkskrKgQPpf9qBtExERkTkxaCKLpJlpsmKmiYiILACDJrJIzDQREZGlYT9NJqZQKMp8TfppBk1WDJqIiMgCMGgyMWdnZ3MXoVrSagjOoImIiCwAq+fIImllmtimiYiILAAzTSaWlZWl9VqhUMDb29tMpak+lJr9NDHTREREFoBBk4k5OTmZuwjVEts0ERGRpWH1HFkkrUyTGctBRESkxusRWSRRWCj9z0wTERFZAgZNZJHYpomIiCwNgyaySJptmtjwjoiILAGDJrJIQiNoYqaJiIgsAYMmskjMNBERkaVh0EQWSTPTZGXGchAREakxaCKLpHn3HDNNRERkCRg0kUUSrJ4jIiILw6CJLJJmpgkAlCVeExERVTUGTWSRSgZNhbm5ZioJERGRCoMmskia1XMAUKTR2SUREZE5MGgii8RMExERWRoGTWSRdNo0lcg8ERERVTUGTWSZmGkiIiILw7u5TUyhUJT5mvRjpomIiCwNgyYTc3Z2NncRqidmmoiIyMKweo4sEzNNRERkYZhpMrGsrCyt1wqFAt7e3mYqTTVSVKT9Mi/PTAUhIiJSYdBkYk5OTuYuQvXETBMREVkYVs+RZWKmiYiILAyDJrJMzDQREZGFYdBElqlEpknJx6gQEZGZMWgiy1QyaGKmiYiIzIxBE1kkGds0ERGRhWHQRJapRNBUsodwIiKiqsagiSxSyUwT2zQREZG5MWgiy6RUar9kmyYiIjIzBk1kkZhpIiIiS8OgiSxSyaCJbZqIiMjcGDSRRWKmiYiILA2DJrJIshJtmphpIiIic2PQRBapZNDEhuBERGRuDJrIIjHTREREloZBE1kkecmG4GzTREREZsagiSySTAit16JEEEVERFTVGDSRRWKmiYiILA2DJrJIJTNNJZ9FR0REVNUYNJFFkpdsCM6754iIyMwYNJFF0gmaePccERGZGYMmskg61XMMmoiIyMwYNJFFsiqZaWKbJiIiMjMGTWSRdDJNbNNERERmxqCpHJ988gmCgoLg4uICb29vjB49GvHx8eYuVo1nxbvniIjIwjBoKkdUVBRmzZqFw4cPY/v27UhNTcXgwYNRyDY2JiVnmyYiIrIw1uYugKXbvn271uuff/4ZjRs3RmxsLNq1a2emUtV8Jds0MdNERETmZvJMU2FhIc6ePYs9e/bg77//xp49e3D27FkUGekiuGrVKkybNg1BQUGws7ODTCZDeHh4mcscOXIEoaGhcHd3h5OTE7p06YK1a9catL309HQAgIeHx8MWncrATBMREVkak2SasrOzsXLlSmzYsAH79+9Hdna2zjyOjo7o0aMHhg8fjmeffRaOjo6V2tb8+fORkJAAT09P+Pr6IiEhocz5IyIiEBISAnt7e4wdOxYuLi74559/MGbMGNy4cQOvvfZaqcsWFRVhzpw5CA0NRf369StVXjIM2zQREZGlMWqm6f79+5gzZw7q1auHGTNmYMeOHcjOzoaPjw9at26Nrl27olWrVvD29oZCocCOHTvw4osvol69enj99ddx//79Cm9z2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eaUGXUIITJ8+HdevXy83k0UPT+fEZKaJiIjMzGhB048//oiAgAB88cUXsLW1xezZs/Hvv//i3r17uHXrFk6fPo39+/fjzJkzSExMxL1797Bp0ybMnDkTNjY2WLx4MQICArB06dIKbbd///7w8/MzaN7//vsPV65cwfjx4xEYGCiNd3Nzw7x585Cfn48VK1boLCeEwIwZM7B7927s2bMHderUqVAZqeJ0Mk0l2zgRERFVMaMFTTNmzEDdunXx999/49atW/jyyy8RGhqKWrVq6Z3fw8MDTz75JL7++mskJibir7/+gq+vL2bMmGGsIumIjIwEAAwcOFBnWkhICADV3XKahBB46aWXsGXLFvz3339o0KBBmdtQKBTlDlS+km2aZMw0ERGRmRmtTdPKlSsxfvx4yGSyihfC2hojRozA008/jdWrVxurSDri4uIAAAEBATrTfHx84OzsLM2j9tJLL+GPP/7A5s2b4eDggDt37gBQBX22trY663F2djZByR89OicmM01ERGRmRguannnmmYdeh0wmM8p6SqO+883NzU3vdFdXV2ketR9++AEA0LNnT63xERER6N27t/ELSQCYaSIiIsvDfprKIUq2rSlHVlZWmdMVCgW8vb0fpkiPhJInpoyZJiIiMjOT9dPUpUsX/P777yiwoGeGqTNMJbNJahkZGaVmoQzl5ORU7kDlsyrxWsYuB4iIyMxMFjTFxMRg4sSJaNCgAd555x3cunXLVJsymLotU8l2SwBw584dZGVl6W3v9DDYELxySgZNbNNERETmZrKg6c8//0SPHj1w9+5dfPzxx2jUqBFGjRqlc3daVQoODgYA7Ny5U2fajh07tOYxFmdnZ62BVXOGsSnxmtVzRERkbiYLmkaPHo2oqCicOXMGzz//POzs7PDPP/+gb9++aNeuHZYuXaq3p3BT6tevHxo3bozVq1fj5MmT0vj09HR8/PHHsLW1xcSJE6u0TKRLqafRt5zVc0REZGYyUdGWzpWUkZGB8PBwfP/997h06RJkMhlcXV0RFhaGGTNmVLpabNmyZdi/fz8A4MyZMzh+/Di6d++Opk2bAgB69OiBqVOnSvOX9hiVhIQELFq0qMzHqFRGyeo4zYbgWVlZbOOkR35WFmxdXLTGHapbF10soIqXiIhqFoVCIXUXVN51ucqCJk27d+/GkiVLsGnTJshkMshkMgwcOBCvvfYa+vXrV6F1hYWF6e3FW23SpEk6jz2JiYnBggULcODAARQUFKBt27Z49dVXMWbMmMrsToVU5M15VOWkpsKhdm2tcYd9fND59m0zlYiIiGoqiw6aFAoFfvvtN3z33XeIjY0FAFhZWaGoqAgymQyDBw/G77///tB3sVkqBk3ly0xMhEu9elrjYry80CkpyUwlIiKimqoi12WTtWkq6dKlS5g9ezbq1auHmTNnIjY2Fn379sWGDRtw//59/PTTT/D398e2bduMXkVmTrx7ruKUerqpYJsmIiIyN5NmmoQQ2LRpE7777jvs2bMHQgg4ODjgmWeewezZs9GmTRut+RUKBdq3b4/MzEwk1ZCsQlmPlWGmSb+UixdRu0ULrXHHPDzweEqKmUpEREQ1VUUyTSbrEfyzzz7Djz/+iOvXr0MIgQYNGmDGjBl4/vnn4eHhoXcZJycn9OjRAytXrjRVsaga0JtpYpcDRERkZiYLmt566y0AQPfu3fHyyy9j+PDhsLLS6bJQR5s2bdCrVy9TFavKlXysCh+jUr7C3FydcQyaiIjI3ExWPRcWFoaXX34ZHTp0MMXqqy02BC/frYMHUa9bN61xZ5yd0TYz00wlIiKimsoiqudK3uZPZKiivDydcbKq7xmDiIhIS5XdPUdkKH1tmqxYPUdERGZmskyT2uHDh7F7927cunULuXraqgCqO8x++eUXUxfFLPT1CE5l05dpkjPTREREZmayoCk/Px/jxo3Dhg0bAKi6HyhNTQ6a1PWkZDi9d88xaCIiIjMzWdD0wQcfYP369XBycsKECRPQsmVLuLq6mmpzVIMwaCIiIktksqDpjz/+gKOjIw4fPoxWrVqZajMWj10OVJwyP19nnBWDJiIiMjOTBU03b95EcHDwIx0wAWCXApXATBMREVkik909V6tWrVJ7/iYqCzNNRERkiUwWNPXv3x+HDx8uswE4kT7MNBERkSUyWdD0wQcfIDU1FQsXLjTVJqoFhUKhM1DZ9GWarBk0ERGRmRmtTdNvv/2mM27y5Mn48MMPsX37djzxxBNo2LAh5HL9cdrEiRONVRSLwi4HKk4UFuqMYy+sRERkbkZ79pxcLodMJtMZr169vmmaioqKjFEMi1PWfvPZc/od/fBDBL3zjta4dABuzDYREZGRmeXZcxMnTiw3MHoUscuBimOmiYiILJHRgiY+oFc/ZpIqTm+bJjOUg4iISBN/wJPF0ZdpsjJDOYiIiDQxaCKLo6/LAWaaiIjI3KrkWnThwgVcvHgRGRkZpfbbVFPvnqNKKKVNk7KwEHJrhk9ERGQeJr0CHTp0CC+88ALOnTtX6jxCCMhkMgZNJNGXaQKAovx8Bk1ERGQ2JrsCXbp0CQMGDIBCoUDXrl2RlJSEa9euYezYsYiLi8PJkydRVFSE4cOHw9XV1VTFMLuSnVmyc0sD6Mk0AaqgycbRsYoLQ0REpGKyoOmzzz6DQqHA999/j+nTp2Py5Mm4du0afv/9dwDAuXPnMHHiRMTFxeHgwYOmKobZsXPLitPXEBwACnNzq7gkRERExUzWEDwiIgJNmjTB9OnT9U5v3bo1/v33X1y5cgUfffSRqYpB1ZAoo3qOiIjIXEwWNN2+fRtt2rSRXltZqW4az9e48Pn6+iI4OBjr1q0zVTHMLisrS2tISkoyd5Esniild/iivLwqLgkREVExk1XPOTg4wFqj0a6LiwsAICkpCQ0aNJDGu7q64saNG6Yqhtmxc8tKYKaJiIgskMkyTfXq1cP169el102bNgUArfZLQggcP34ctWrVMlUxqBpipomIiCyRyYKmzp07IzY2Fjk5OQCAQYMGAQBeeeUVbNmyBWfOnMGLL76IK1euoGPHjqYqBlVHGpkmzfCptK4IiIiIqoLJgqbQ0FDk5ubi33//BQA0adIEL7zwAm7fvo2nnnoKgYGB+Omnn2Bra4sPP/zQVMWg6kgj06SZW2KmiYiIzMlkbZqefvppFJTIDHz33XcICAjAX3/9hdTUVLRs2RLz5s1D69atTVUMqo40uhzIl8ng+KAXeWaaiIjInKq0e2W5XI5XX30Vr776alVulqobjUxTvkwGPAiamGkiIiJz4gN7yfKUyDSpMdNERETmZPJMkxAC27Ztw4EDB5CcnIzOnTvjueeeAwAkJycjLS0NTZo0kfpxItLMNBXI5dJrZpqIiMicTBo0nTp1CmPGjEFcXJz0YN6CggIpaNq1axcmTJiADRs2YMiQIaYsitnw2XOVoJFpKpQXJ0OZaSIiInMyWfXczZs30b9/f1y6dAmDBw/G559/DvGgbYrasGHDYGNjg40bN5qqGGbn7OysNXh7e5u7SJZPqZT+1Qqa2LklERGZkcmCpo8//hgpKSn46quv8O+//2LOnDk68zg6OqJ9+/Y4cuSIqYpB1ZBMM9OkUW3LTBMREZmTyYKm7du3o0WLFpg9e3aZ8/n7++P27dumKobZ8dlzlaCZadJ4FA8zTUREZE4ma9OUmJiIoUOHljufTCZDRkaGqYphdnz2XMXJNBqCF2lkmoRGBoqIiKiqmSzT5OTkhOTk5HLnu3btGjw8PExVDKqONIMmGxvpf1bPERGROZksaGrbti2OHTuGe/fulTpPQkICTp06hccff9xUxaBqSKZRPadk9RwREVkIkwVNzz77LDIzMzF16lRkZ2frTM/Pz8eMGTNQUFCAZ5991lTFoGpIVkqmidVzRERkTiZr0zR58mT8/vvv2LRpE1q0aIFBgwYBUPXdNHv2bGzatAnXr19H//79MWbMGFMVg6ohzaBJaFbPMdNERERmZLJMk5WVFTZv3oxx48bh1q1bWLZsGQDgxIkTWLJkCa5fv44RI0Zg3bp1pioCVVNa1XO2ttL/zDQREZE5mbRHcGdnZ/z+++945513sHXrVly9ehVKpRINGjTA4MGDERgYaMrNUzWlGTQJzaCJDcGJiMiMTP7sOQBo0aIFWrRooXfatm3bkJycjIkTJ1ZFUagakGtUz4GZJiIishAmq54z1Pvvv4/JkyebuxhkQTQzTbCzk/5lpomIiMzJ7EETUUmlBk3MNBERkRlVSfXco0yhUJT5mnTJNYMme3vpX2aaiIjInBg0mZizs7O5i1DtaAZNMmaaiIjIQrB6jiyOTAjpf7mDg/Q/gyYiIjInZppMLCsrS+u1QqGAt7e3mUpTPWhlmjSCJjBoIiIiM2LQZGJOTk7mLkK1oxk0ydnlABERWQijBU3vv/9+pZa7efOmsYpANYT8QfVcIQCZxmNUmGkiIiJzMlrQtHDhQshksgovJ4So1HJUc2kFTdYapyiDJiIiMiOjBU29evVi8ENGoQ6aiqBdPQfNnsKJiIiqmNGCpsjISGOtih5xVg/aNDHTREREloRdDpDFUWealDIZM01ERGQxGDSRxWGbJiIiskRGC5oSExMtaj1UfVkx00RERBbIaEFTQEAA3nzzTaSlpVVq+dTUVMydOxcBAQHGKhJVU+qgqUgmg1yzywEGTUREZEZGC5oGDhyIzz//HPXr18ezzz6LXbt2IS8vr8xl8vLysGPHDowbNw7169fHokWLEBISYqwiUTWlPimV0L57TsagiYiIzMhod8+tX78eu3fvxiuvvILVq1fjjz/+gI2NDQIDA9GyZUvUrl0brq6uyMjIQEpKCmJjY3Hq1CkUFBRACIE2bdrgiy++QP/+/Y1VJKqmmGkiIiJLZNTHqPTv3x9nzpzBrl27sGTJEuzcuRMxMTGIiYkBAMhkMgiNh7Ha2dlhyJAhmDlzJoMlklg9+FuyTRMzTUREZE4mefbcgAEDMGDAAOTl5SE6OhonTpxAUlIS0tPT4e7uDi8vLzz22GPo1q0b7OzsTFEEqsa0GoIz00RERBbCpA/stbOzQ9++fdG3b19TboZqGHWmqUgu1840aTzIl4iIqKqxnyayOOpIvmSmidVzRERkTgyayOJotmmy0qi+ZdBERETmZNLqOQIUCkWZr0mbUCq1Mk1WrJ4jIiILwaDJxJydnc1dhGpFWVhYnGmSy7UzTQyaiIjIjFg9RxalKD9f+l8pl2u1aZKzeo6IiMyImSYTy8rK0nqtUCjg7e1tptJYvsLcXKgr5JhpIiIiS8KgycScnJzMXYRqRTPTJNimiYiILIjJquf27t2L6OhoU62eaqgijecVKq2stDJNcgZNRERkRiYLmnr37o133nnHVKunGqqsTBODJiIiMieTBU21atVC3bp1TbV6qqE0M01CLoe1vb30Wqbx3EIiIqKqZrKgKTAwEHFxcaZaPdVQWnfPWVkx00RERBbDZEHT7NmzceTIEWzZssVUm6AaqGSmiUETERFZCpPdPdehQwfMnDkTw4cPR1hYGEaMGAF/f384ODjonb9hw4amKgpVI8qCAul/IZdDJpejCKpHq8hZPUdERGZksqCpUaNGAAAhBH755Rf88ssvpc4rk8lQWFhoqqJQNaKVabJS9Q1eCAZNRERkfiYLmho0aACZTGaq1VMNpZVpehA0qfsBt2L1HBERmZHJgqb4+HhTrZpqsJJtmgBVpglgpomIiMyLz54jiyI0q2kfZJqUDzKWDJqIiMicGDSRRdFXPcdMExERWQKTB0379u3D6NGjUb9+fdjZ2WHKlCnStF27dmHevHm4c+eOqYtB1YRm9VzJTJMVgyYiIjIjkwZNH374IXr37o2///4biYmJKCgogNC48Lm5ueGzzz7DunXrTFkMqkY0q+d0GoIzaCIiIjMyWdC0bds2vPvuu6hXrx7Wrl2LpKQknXk6deqEOnXq4N9//zVVMaiaUWr0CK7ONBWp2zSZo0BEREQPmOzuua+//hp2dnbYtm0bWrduXep87du35+NWSKLZpqlk0MRMExERmZPJfrwfOXIEnTp1KjNgAoA6deqwTRNJtDJN1qqYXmrTZI4CERERPWCyoEmhUMDHx6fc+dLT06Fkp4X0QFldDjDTRERE5mSyoMnb2xuXL18ud76LFy+iQYMGpioGVTP62jQx00RERJbAZEFTjx49cPLkSURHR5c6z7///ovLly+jT58+pioGVTNamaYH1XNFD3oGN1kDPCIiIgOYLGh67bXXIJPJ8PTTT2PDhg06D+Tdvn07pk6dChsbG8yaNctUxaBqRl9DcGaaiIjIEpgsaHrsscewePFi3Lt3DyNGjIC7uztkMhn++ecfuLu744knnsDdu3exePFitGrVylTFoGpGK9NkYwOgOGiyBiDY/o2IiMzEpF3fvPzyy9i6dSs6duyInJwcCCGQmZmJjIwMtG3bFps2bcLMmTNNWQSqZoRGmyaZOtMkLz5NlSUylkRERFXF5M1EQkJCEBISgpSUFFy7dg1KpRINGjSAr6+vqTdN1ZAoKip+oc40aQRNhbm5sLK1repiERERVV0ny7Vr10ZQUBA6depUrQKmdevWYcCAAfDw8IBMJkN8fLy5i1Sj6cs0iQfVcwBQpHl3HRERURUyWdAUHh6Omzdvmmr1VUahUKBXr154//33zV2UR4NGpklWSqaJiIjIHExWPffcc89BJpMhICAA/fv3R//+/dG3b1+4urqaapMmMWHCBADA2bNnzVySR4NmQ3CZukdwzTZNmnfXERERVSGTZZrCwsLQoEEDXLp0Cd9//z1GjBiB2rVro0uXLpg/fz4iIyNRYIQL4KpVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl370GWhhyc0zgl1pkkw00RERBbAZJmmX3/9FQAQFxeH3bt3Y9euXYiMjERMTAxiYmLwySefwMHBAT169MCAAQPw2muvVWo78+fPR0JCAjw9PeHr64uEhIQy54+IiEBISAjs7e0xduxYuLi44J9//sGYMWNw48aNSpeDjESzeu5Bpkkw00RERBbA5A3BAwIC8OKLL2LdunVISUnB4cOH8dFHH6F3794oLCzEzp078cYbb1R6/cuWLUN8fDySk5Mxffr0MuctLCzE888/D7lcjr179+Knn37C4sWLcerUKTRr1gzz5s0rN+gi09KqnlO3abIq7tayKC+vystEREQEVOHdcwBQUFCAzMxMqa8mdS/h4iEexNq/f3/4+fkZNO9///2HK1euYPz48QgMDJTGu7m5Yd68ecjPz8eKFSsqXRYyAj1tmjQzTbx7joiIzMXk/TSdPHkSu3btwu7du7F//37k5uZCCAFXV1c88cQTUiPxqhAZGQkAGDhwoM60kJAQAEBUVNRDbUOhUDzU9EdeeUETM01ERGQmJguaxo4di//++w8pKSkQQsDGxgZdunSRgqROnTrByqpqnyYWFxcHQFVlWJKPjw+cnZ2ledRSU1Nx/fp1XLlyBQAQGxuL+/fvo2HDhvDw8NBZj7OzswlK/gjRaNMkf9CJpdA4T9imiYiIzMVkQdPatWshk8nQrl07LFiwAAMHDoSjo6OpNmeQ9PR0AKrqOH1cXV2ledQ2bdqEyZMnS6+feOIJAMDy5csRFhZmmoI+yvRlmtimiYiILIDJgiYXFxdkZmbi1KlTeOaZZ9CzZ08MGDAA/fv3R/v27U21WaMLCwurUHCUlZVV5nSFQgFvb++HLFUNpi/TxLvniIjIApgsaEpNTUVMTAx2796N3bt3IyIiAjt37oRMJoOnpyf69euHAQMGYMCAAahfv76piqFFnWEqmU1Sy8jIQK1atR5qG05OTg+1/CNPT6YJmtVzbAhORERmYrK756ysrNC1a1e88847iIqKQlpaGv7991+8/PLL8PHxwZo1azB16lT4+fmhZcuWpiqGFnVbppLtlgDgzp07yMrK0tve6WEoFAqdgcrANk1ERGShqqzLAUdHR4SGhuKLL77Ab7/9htdeew12dnYQQuDSpUtVUobg4GAAwM6dO3Wm7dixQ2seY3F2dtYaWDVXDs2g6UE/Tcw0ERGRJTB5lwMAcPPmTanbgT179iA5ORkApLvqunbtWhXFQL9+/dC4cWOsXr0as2fPlvpqSk9Px8cffwxbW1tMnDixSspC+smYaSIiIgtlsqBpw4YNUnsmdXWYEAIymQxt2rSRuh4IDg5+qLvqli1bhv379wMAzpw5I41T98nUo0cPTJ06FQBgbW2NZcuWISQkBL169dJ6jEpCQgIWLVoEf3//yu+0HiUbhrMheDn0ZZo0G4Iz00RERGZisqDp6aeflv5v0KCBFCT169cPXl5eRtvO/v37dXrxjo6ORnR0tPRaHTQBQJ8+fbB//34sWLAAa9asQUFBAdq2bYvPPvsMY8aMMVq51NgwvGL0ZZpgXXyaaj5mhYiIqCqZLGgaNmyY1MWAsRtXawoPD0d4eHiFlunUqRO2bdtmmgLRw1EqpX/ZpomIiCyJyYKmdevWmWrV1UrJu+V491zZNDNNVnZ2qn80Mk1s00REROZSJQ3BH2V8rErFyMrJNAkGTUREZCYm73Lg/PnzmD59Opo3by7ddt+8eXO8+OKLOH/+vKk3T9VMeZkmtmkiIiJzMWmmKTw8HNOnT0dBQQGEENL4uLg4xMXFYfny5Vi6dCkmTZpkymKYFe+eq5jyMk1s00REROZiskzTsWPH8PzzzyM/Px9PPPEE1q9fj9OnT+P06dPYsGEDhgwZgvz8fDz//PM4evSoqYphdk5OTjoDlU6ur8sB9V8w00REROZjskzT//3f/0GpVOKXX37B5MmTtaa1adMGTz31FMLDw/Hcc89h8eLF+OOPP0xVFKpGNDNN1vb2qnFs00RERBbAZJmmffv2ITAwUCdg0hQWFobHHnsMe/fuNVUxqJrRWz3HTBMREVkAkwVN9+7dM+hBvC1atMC9e/dMVQyz4wN7K4aZJiIislQmq55zd3fH9evXy53v+vXrcHNzM1UxzI5dDlSMXE+mSaaZadJo80RERFSVTJZp6tixIw4cOID//vuv1Hn+++8/REdHo3PnzqYqBlUzcn2ZJo0uB8BMExERmYnJgqZZs2ZBqVRiyJAhmDt3Ls6dO4fs7GxkZ2fj7NmzmDNnDoYMGSLNW1NlZWVpDUlJSeYukkXTDJqsHjx7TsY2TUREZAFMVj0XEhKCt99+Gx999BEWL16MxYsX68wjhMA777yDgQMHmqoYZscuBipGptGfl95ME4MmIiIyE5P2CP7BBx9g69at6NOnD+zs7CCEgBACtra26Nu3L7Zu3Yr33nvPlEWgakarTdODYImZJiIisgQmf/bcoEGDMGjQIBQVFSElJQUAULt2bVhp3BFFpCZ/kGkqAKAOlZhpIiIiS2D0oOny5ctYt24d4uPjYWdnh8DAQIwePRoODg7w8vIy9uaohlEHTUXQCJo0Mk3g3XNERGQmRg2avvrqK8ydOxdFJS5s77zzDrZu3Yo2bdoYc3PVQsl+mdhPU9msHlTPaeaT5JpBEzNNRERkJkYLmvbv34/XXnsNQgg4OTmhefPmyMjIwNWrV3Hz5k2MGDEC58+fh1xu0mZUFof9NFWMZqZJjZkmIiKyBEaLYJYsWQIhBCZNmoQ7d+7g6NGjuHTpEo4fP44mTZrg8uXL2L59u7E2RzWUOmhSymTF45hpIiIiC2C0oOngwYOoX78+li5dqnWbfbt27fD1119DCIFDhw4Za3PVBvtpqhh10KRVPfegvyYAzDQREZHZGK16LikpCaGhobDVvMA90KNHDwDA3bt3jbW5aoP9NFWMlZ5Mk9bdcwyaiIjITIyWacrPz4e7u7veaa6urtI8RGVRB01FmtVzGoG4jEETERGZyaPVKpssnrr3LqXGODkbghMRkQUwapcDly9fxm+//Vap6RMnTjRmUaiakjPTREREFsqoQVN0dDSio6P1TpPJZKVOl8lkDJoIQPEJWerdcwyaiIjITIwWNDVs2BAyjQsdqbBzy4qRMk0a/XlZ2dlJ/zPTRERE5mK0oCk+Pt5Yq6pR2LllxZSXaZIplSAiIjIHNgQni6JuCK7ZpomZJiIisgRGf2AvacvKytJ6rVAo4O3tbabSWD71CSmYaSIiIgvDoMnE2Lml4YRSWZxpYpsmIiKyMKyeI4uh1HiuHDNNRERkaRg0kcUozM2V/leWlmli0ERERGbCoIksRpHGY3a0giaNzi3lDJqIiMhMGDSRxdDMNInS7p5j0ERERGbCoIkshrKgoPh/Kyvpf2aaiIjIEjBoIotRWqbJ2t5e+p9BExERmQu7HDAxPkbFcIZkmmQPHrNCRERU1Rg0mRgfo2K4orw86X/BhuBERGRhWD1HFkPz7jnNoElubQ11qCRnpomIiMyEmSYT42NUDFdapgkACgHYgpkmIiIyHwZNJsbHqBhOs02T0GjTBADqh6cw00RERObC6jmyGFqZphJBk/oBK1YMmoiIyEwYNJHFKCvTxDZNRERkbgyayGIoNRqCo2Sbpgf9NlmxTRMREZkJgyayGAZlmqqwPERERJp4DSKLoRk0oWSbJnWmidVzRERkJgyayGJoVs/pZJoeBE1s00RERObCoIkshigsLH5RsssBZpqIiMjMGDSRxdBqCF5Kpkl7LBERUdVh0EQWQ6tNk7V2v6vMNBERkbmxR3ATUygUZb6mYsw0ERGRJWPQZGLOzs7mLkK1odWmqUSmSR008YQlIiJzYfUcWQxRRpcDzDQREZG58Ye7iWVlZWm9VigU8Pb2NlNpLJuyjExT0YMewm2qskBEREQaGDSZmJOTk7mLUG0IzTZNJYIm8SDTBKiCK7k1T10iIqparJ4ji6HZpklWsk2TxrPoCnNzq6xMREREagyayGKIMroc0AyaijQzUkRERFWEQRNZjLIyTZrVc8w0ERGROTBoIothaPWcVieYVOPErliBY7VrY+/48eYuChGRFgZNZDnKyjSxTdMjI//ll/F4aiq6//EHks+dM3dxiIgkDJrIYmhlmmy0OxdQavTbxExTzZWTmoqW6ekAVH1yXfz2W/MWiIhIA4Mmshxs0/TIu/jbb7DTeC3bvt1sZSEiKolB0yOoMDcXOamp5i6GDlFUJP1fMtMkSmSahFKp3Rkm1Qj3N27Uet3i+nXeLUlEFoNB0yNGcfcu4jw8YF27No4sXGju4mjTqHYrs01TdjYO+fmhwMYG0S+9VGXFI9NzO3lS63VtIXDh99/NUxgiohIYND1ijs6YgZY5ObAB4PHJJ5aVrSkj06TZpuna/PnoevMm7ADU/fnnqiodmVheRgZa3L+vMz555cqqLwwRkR4Mmh4hRfn58Neo/miSn4/jn35qxhKVoBHAyUsETdDINHU7dEj6v1FBARL27DF50cj0Lv7+Oxwe/H/C3V0aX/vIEbOUh2q2guxsRPbujcigIOTqCdaro0t//43jHh7YFxCAc8uXm7s4NRKDpkdIzNtvw69kZumrryq1LmVhIU4tWYKkEtUpD8XANk22JRaL//5745XBBKpjm5zC3Nwqz0Kmrl8v/Z81bBgu26mahLfKykJqXFyVloVqvujBg9E7Kgq9jx3DoZAQrWlCqUT0jBmIGjECeRkZZiphxSgLCyF79lk8lpaGnpcvo/Vzz+GcszOiZ8yAUCrNXbwag0HTI8T5xx+l/7Me/A1KScHlTZsqvK69I0ei/axZkD3+ODJu3jROAcvINGm2aQIAzU4HnKKijLN9I0u5eBEH69dHkZ0dDtWti6tbt5q7SGVKjYvD/uefx6G6dZHn4ID7tra4uGZNlW3f+fhx6f+Gzz6Lm23aAFB1PXBhyZIqK0dlRY0di4P16zPzWUVK+945+uGHONCwIY5//nmpy8b+9ht67N0rve4YE6PVJ9iBmTPR/YcfELxuHU43aVIlN84c/7//Q9TYsbh99Gillo95+20E5OVpjWutUKD7Dz8gqn9/YxSRAEBQlcrKyhIABACRlZVltPVm3r4tDnt5iQt//ql3+ukffxQCEAIQF+3tRcTQodLrqBYtKry9S3Z20vKH3nyz0uVWJCeL+/HxQgghIrp0kdZ54ssvteaLbNNGmiYAEdG7t7hhZSUEIHIBkZWUVOkymMLxRYtEolyuVeaCB8f69rFjD7Xu+wkJ4tCbb0rHTWfaW2+JjFu3DF7fla1bxX4/P1GgUVb1cMrFRSiLispc/u6ZM+XOU558hUJkPthmolwulEVF4thnn0nl2NekyUOt39RiV62SynrJzk7kZWYavGzEk0+Kox4eYv/06eUex5y0NJFx69ZDH29LcfbXX0VEnz6lfm+VJjIwUAhAnHZ2Fhf//lsIIURRQYGI6NVLeh/SZDK93ws5aWkiTuP7S/pOCQoSQghxPz5eJJX47B718BCK5OSH3+FSnPr+e1Gk8T1xoH59cfLbbw1+n5VFRSLWwaF4Xx57TJzXeJ0HiCtbtpis/NVdRa7LDJqqmCmCpoKcHBFTp44QgMgAxJEPPtCZ52DdusUXoClTRPqNGyL9wetsQKRcumTw9m7s36/1hRLZrp3OPEUFBaIwL09nfF5mpoiaMEHsa9xYXLKzE4UP1hFTp4446OsrrfPkt99qLRfZrp007YaVlchOSRFRrVoVB27z5hlcflMqzMsTEV27Sl+A+ob7gDj76686y97Yt0/ELFggTnz5pTi3YoVIiIjQ+dIsKigQp1xchADELSsrcW7FCmla7KpV4taDQDLB2lrcOXGizLJe3b5d7Pf3l96D0oaDr7+ud/nslBQR3bChEIA47+Agrm7fXvED9sCZZcuk7e338xNCCJGbni6yHoxLkstFUUFBpddflpPffivOOTqKvU2biuTY2EqtY1+jRtoX4AEDDFru6Mcfay13rFYtvcfx5oEDIqplS5H3YD4FIK5bW4vj7u6qY1fN3DxwQPU+P9ifIkDsDQgQSadOlbvs8UWLtI5ZPiAiunQRh728dM7dqLFjdZaP6NhRK8DN1jimSadOici2bfV+Do67u4vM27eNfiyURUXipKur3m3ua9LEoMApZuFCaZlYBwehLCoSyqIiEdGpk9a59bDBdmFenojo27fMH+imlHLpkjjx5ZcicuRIvdeXymLQZMFMETTdj48Xp52dtTIaeydOlKZf2bpVuojfkctFbnq6EEKIyA4dpGX2NmsmIgYMENENGojoBg1EYkxMqduLHDNG64MdZ2enNf3Y55+LvAdZipK/ziK6dy/zAq0eTi9dqr3cgAHStANz5gghhDj8zjsPlS0zNmVRkVYgp/6FGr9nj4jo318KUgUg7spk4npUlLRsRGio/i/Nxo21vuiiZ83Smp4NiP0zZojo//1PKEose8HeXtxPSNBb1v0zZojcEvPfk8lExOOPi1Pffy8OvfWWNP6qjY3IVyi0lr934YLWOacO2KNnzqzUsdPc/6hx46TxmhdCU3xJx+/ZI9JkMmkbSXK5iHnvvQqt4/axY1Iwox5yABG/e3eZyxXk5OjNeOQ+eN8juncXkaNGiajWrXXWrznclstF6uXLldr/tKtXxb4mTUTEY4+J9Bs3tKad/vFHcdLVVRz09RVpV69Wav0lZSUliYgePaRApeSQAYiIp54qdfmCnBytLLe+QfNHwGVbW61gWzOjkwuIS+vWaX0PxtSpIy2fBYjo2bPF/RKfZ2Nn+WLee0/rvbyrcT4KQFVLUAZlUZHWZ/Hg3LnSNEVysrhubS1NM+TzeXzxYnHKxUUkyeUiatw4aX8LcnK0At1kmUxc27nzofZdn5y0NBERGioi27YVewMCxH4/P3HUw0PcLpH9e5gfaSUxaLIgWVlZWkNSUpLRgyYhVL/6NbNJAhD7/f3FSVdXrWoXzV/ACRERpWZEYurUKXVb6qyW5qD5C1GdCRGAiBw1Shqfefu21hdQPlQZCnV2RHMomYlJvXxZRHboIKLGjpU+xFlJSSLnwfy3rKwq/GWWefu2iBo/XhyYM8coWQzNwC4fEBGhoVrrvXfhgjjh5qb1hZ56+bKqWqCMi0D0rFlCCFXmJUHjC9CQi8YJNzeRk5YmlUFZVCQiQkJ0g6WQEK1f0cqiIq2yar6P8bt3i2s2NqVuP6p583K/TE99/7046uEholq3FmeWLdMKji5v3izNpxmgX7WxEYfefFN6n1MuXRLRM2eKvZMmlVsdduHPP8WR2rVFRFCQVHWpSE4WF+zt9e5DZJs2BlfHaP4Q0PxiV/+yLyooEKe++07sf/FFrXVGjholzRtnZ6d1cSttSIcq4xFnZ6cVhEc3aKD13u2dPFlEN2wozoWHl1n2/f7+0jrira3FmWXLhLKoSEQ+/bTI11j/YS+vh/qMKIuKRPSsWTpV1vdkMhHZtq3W94IAxIFXX9W7nsgRI6R5zjk6iojgYK2AMkUmE8c++0zr3FVn3jNu3RLxGsc4YtAgIYQQSadO6fzgEIDqcyJUVYiagfX+6dO1ylSYlydOfvut3urykmLee09EPfOMVG1YVFCgVY124JVXRG56uojo3Vsat69xY531pF29Kq3j2OefS/NesrPTeZ80f1zekctL/SF18a+/RIynp+73T4MGIvXyZdU5VmJavLW1uHv2rN71nfjyS3FXJhM3rKxEZJs2Iua997S+i0pTWqav5KD+8WwMDJosiPqN0DcYM2gS4kHq9LHHSj3J7gM6v0hLBlqag75f9pqBitYH68EvmFuHDmmNv25tLQpycoQQ2l94+/38pA9QTlqaiHjqKZHy4IupADC4mkTzQ37xr78MWiZfoRBRY8dqtVuIdXDQaUdVEfumTtXa75JfrGqply+LK7a20nzJJX5VRjVvLiI6d1Z9UWpcCJJOnRKRw4dL4467u4uo5s113oe9TZuKi3//rbXeI7Vri6gJE0TMwoUiqmVLne2V1v7pXHi4NN9dmUyc+u47EdWqlcjQWP62XC5Off+9Vnk1j2nE4MHi3oULWuu9sX+/SC2x35rb0Qx+75w4oTPvSVdXcdLVVSs4POTjU2q6/n5CgripEZhft7YWJ778UitguGpjo/Nj4JKdnYjbsKHM9z07JUXce1C+fEBc27lTamsnAHGgXj2tbV+ysxNXtm4VqZcvS+e7AMSZn38WiuRkEdGli04GUOBBBqZbN63Pb+KRI1rHJnrWLFGQk6OV7cwExKnvv9db9lPffaeznfwHx1ffexPRp4+07L0LF0REz54i4sknpcx1aa5s3aoVxAio2thEPP64lMFKjo1VZYsfTD/h5qaznnsXLmgFL2d+/lkIIcTlzZvFgXr1xEFfXyl7e3DuXGm+GE9PIYTQOkdPOztrnS8lf7hctrXVCsQ1s0FJGoFHXmamOOrhIQRUQVxZgeW+KVN0zoPo//1P6/OiXj47JUXa15wS39ua36OJJTJT6h9YJR3y8Sn+jggI0Ape0q5eFVEtW5bZpCAL2u+dZvB51slJp+2YIjlZ63OguZ5DPj4iavx41bWihAtr1pTaXOCeTCaOu7uLyHbtRNSECeLmgQOlHuuKYtBkQaoyaFKLfPpprQ/AZVtbEfH443ovACmXLomIoCAR0a2biJ41S0T07Fn8AdT49ap2aN48rfVKH8RmzYQQqkatJU/26JkzRWFentYHTd14U9P9hASxd/LkUr/k9e6rxheI+pdhyqVL4lx4uN6L6OH588vMkhzy8RGRo0aJw/Pniwtr1oj43bvF5c2bxcW//hKxK1eK00uXihNffSWOfvyxiP7f/0TkqFEioksXrV/l6l+wpUmIiNBJwRcCImrCBK35NH/ZxXh6ShdnAYjYVatUGYFRo0Q+VIFmxNChUsBx9tdfpYbVpQ0RAwaUm51Tt1nSN1yys9P64to7ebLeX+y35XIpoM3LzBRnnJxKXeeBevV0ynDhzz9LvZBrDlGtWundn70BAWUulwmIuI0bVdWr48Zp7YPiwftS2nHaO3GiNO9+f38hhBAxCxaUub0MqLJQJZdTy7h1S1z8+29x9OOPxb4pU8TesDCdwFN6fzSqa9NkMnGkdm2d7aWjOMBQK8zL08pw6Mv2Cqh+3KgvYkWAiFm4UOybMkX7XHRwKDWzePPAAZ1zPaZOHb3zK4uKtL5T4jZu1JquGfCXd2NAYV6eVuYuIjhY63gkRERozZ8cG6v1eTm+eLHOOjXbXEa2by+URUU6Pxb0LSeEEOdXr9apkswAtDJvRz78UGsZdWN3AYjIYcOEEKrqZH0/WgVUgX9pPxxu7N+vFfjclstFxJNPin1Tpui8PzesrMS+adPEgTlzdDKAOQ/OgVuHDmmV/bCXl/TjWAih1SC/rCHG01MKnEtmtyO6dBGX1q0TCRER4t6FCya9+YFBkwWpquq5ks4sWyb2Tp6s8+VQnuyUFOlDVAjofLlp/ho88Mor0gc4wdpaCCHEOUdHnQ/GBXt7VWPiB6+PengYazdV+/dgvVdsbcVhLy8pgIl1cJDaRmXcuqUK7EqU7WDduloXj4cdItu2NejDfWbZMuninAPtdghq9y5c0PlC03eRvXv2rN5G30c//lhv4JSH0jNh+o5vyfY0mVAFKPqqI24fOyYinnxS5zy4D9UdkZrtRxKsrcXeiRO1vihLa3SuLCoSB+fO1Qp4L9vaiqgWLbQD1n79tJbTrJpIh/4sSsmqoCtbtuhU2x2rVUtETZigVQ2tLCrSal+j2ShfM+DNf3BR0dcWJwsos/2gIfQFtnkPzn/N469ZvqixY6Vp5x0cVFVC3btLP7buo/iu2IiBA6V5S8tGZABi37RpWuXKSkrS+mzFW1urAsoyRD79dPFnSeMGk3MrVkjbTgfKvclBCKFqG6WnrKWd+/umTlUFE8HBeqff2L9f+swWAnqzq/qq0lIvX9aqVs/QU6YTbm463xuXN2/W+m5TFhVpZdbjra2l74cCoNxjGzV+fJnfXRmAiHjiCa0s1PWoKOmznAPtwO7i339rBVX7GjcWRQUF4npUlHRdyAfEufBwcXDuXFVD/xLVs+rv6ZRLl0T07NnSuGs2NuVmMI2JQZMFM1WXA8ak+SUZ1by5NF5ZVCT9usgGhCI5WRx3dy++sGjUrcc6OGhdODU/LBVtaFsezeoufcO+Ro20slwCquotdbupwrw8sXfyZHFHzwe6IsN+f/8K3dFxbsUKEdmhg9bFrCTNagYBVePVG/v2GbyN5NhYEbNggYgaP15E9OwpItu2LbdhaUmRTz8t8h5cXKPGjdNpMFyaazt3amWV8krsR+zKldK8tw4dEle2bi13nXmZmeJceLhWI+v9L76odYwieveWqsA039O9EyeKooICETlsmPSrP6JbN73byU5JEVGtW+u8x0VQddlx1slJK7A66eqqtbwiOVlEhIaKqAkTpCxRVlKS7l12GlVelZV6+bLWr/77UGU8Sn4+cx6co4ffeUeravDUd99J6zqzbJmI6N9f6yYFZVGRVpZFPRyoX1/ns3fYy0tcWLNGFBUUqLKGGhd4Qxqrp129KgUm96HqSiQ3PV0r4IwIDTXouNyPj9f50VDyB0dFabZb1Dwn1GXOArSqu4sKCrSqfc84Oaka35c4D0r7TGq1K2zfXvo/US6XtnM/Pt7gu/piV67U2yTjQL16pQbveZmZImbBAr3fO8cXLdKqTo5s107rXIl4/HGt+YsKCkTsypUiok8frR+EF+3ttbKd5QWAxsagyYJVh6DpfkKC9AsiDxCJR44IIVQpZumkftBQPKJfP2mcZmo9YtAg1S/4Eh/OknezGENE585a27hlZaX3riQB1a+pvWFherNBiuRkcXzRIrF38mQR0bu36s4Nf3+xt2lTEdWihYhs00ZEPPaYiOjcWUT06CEiQkPFvilTRMzCheW2fXkYmneslPwSsnRZSUl6bxzQbFhuDPruPtSsjoipU0frPb979qxBd+MdmDNHb9sMnYuOgY1SlUVFImrsWJEmk4mTrq5G6/vnxFdfifsPPl+a1VpZSUk67YkqE0TcT0iQApd4a2sp45B5+7bY27Spzno1fzClQ7eqrSya1al7w8JERNeu0utYBwedOznLotmoOMHautRG0IbKTU8XV0tU70c89ZRWgL03LEyaP6JvX2l8skwmteNRFhWJqGeeUTWd6NGj1O1Fz5z5UOdbaeI2bhR7AwLEcXf3h/4Re3DuXL3tkO7I5WX+wLqyZYvOHXGa15aqxKDJglWHoEkIofVFFdW6tchXKLS+ANT9n2h2mqk5XI+KEoV5eTpfMCXb7RhDVlKSiGzbVkS2aydOfvutKCooEAU5OSLy6ae10sennZ1F/J49Rt++qd2Pjxf7/fzEfn//CnVaaSnyFQpVGxT1F379+kZvn1CyTxrNIU0me6gORZVFReLcihUiont3rYxH4YMfFQfq1dNqz2EIU/Q5VVRQoHe9mbdvi4igIK3skvoHREWOS3ZKijj1/fd674CKnjVLb7sodTuoijj766/S8jesrKQLch4Mv9lD7eaBA+K2XC6SZTK9faNVxtFPPpGqCtXV8Zo3Taizjmd//VW6c7kQUPUvVUG56ek6N4vEeHpaXOemJW+EEdCtrtUnfvdurRsl8mDcrgQMxaDJglWXoOnu2bNaDRczAK0ARN0AOF+h0KmjP+PkJK0nasIErV9a2SkpVbofSadOiYgePUTU2LEVvrCR8SiLikTUhAkiom9fk/asfGHNGhExeLA4Uru2UEBVDVhaO6lHTW56uoiePVsc9fAQN62sVHduGVFOWpqIHD5cq9rF0Ko0TSV7t5bW1b9/pcpVmJdn0K3uFXHym2/EwblzpSBVWVSkld2++NdfWj8YS2snZQjNzjgN6f/LXDTv7jXkSQJqN/btk9oqlmyTWFUYNFmw6hI0CSFUVUF6frlfsLfXmq9k9UvE0KHStNz0dClVH/XMM1W8B/Qoy8vMNGmARvpl3r4t9k6aJA7MmVPpjIjmjy11dZ+l/+jRrCLWDBzPODlVqEqxpOtRUVKfXBEDBxqxxMa3b9o0EdWihdSkw1C56eni2s6dZsugVeS6LBNCiMo+t44qTqFQwNnZGQCQlZUFJycnM5eodHkZGYh5+WXIIyLQ9MYNeD94Uvbe8ePR6/ffpfkihw5Fb42H/t6OiYFvx47S69z795F58ybqPHgAKxFRWbLu3IHS1xeuAPIA3NiwAU2HDjV3scqUdPIkanfoAGuNcdkAkrZvR6OQkIda99Vt25B+/jw6vPrqQ62H9KvIdZlBUxWrTkGTJqFUIn7XLhTl5qLJkCGQyeXStItr1qD52LEAgFOurmifnm6uYhJRDXFo7lw4LF2KnGnT0OXzz81dHIPEeHuj09270uuoMWMQ/OefZiwRGYJBkwWrrkFTWYRSiX2tW8P/8mWkffkl2s+cae4iERFVuUNz56LL//0fAOBo7dp4/O5drR+YZJkYNFmwmhg0ERGR6gdkVJ8+sLp9G602b0bt5s3NXSQyQEWuy9alTiEiIiKDyeRy9I6KMncxyISYNyQiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAHsEr2KaT61RKBRmLAkRERFpXovLe7Icg6Yqlp2dLf3v7e1txpIQERGRpuzsbOk5dPqweo6IiIjIADJRXi6KjEqpVOLevXsAAEdHR8hkskqtR6FQSJmqpKSkMp/K/CjhcSkdj41+PC768bjox+OiX3U+LkIIqRbI09MTcnnp+SRWz1UxuVwOLy8vo67TycmpWp2gVYXHpXQ8NvrxuOjH46Ifj4t+1fG4lFUlp4nVc0REREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYOeWRERERAZgpomIiIjIAAyaiIiIiAzAoImIiIjIAAyaiIiIiAzAoMnCHDlyBKGhoXB3d4eTkxO6dOmCtWvXVmgdeXl5eP/99xEQEAB7e3vUrVsXL7zwAu7evWuiUpvOrVu38NVXX2HgwIFo2LAhbG1t4ePjgxEjRuDw4cMGrycyMhIymazUITw83HQ7YUL+/v6l7lPv3r0rtK7ff/8dnTp1gpOTE2rVqoUnn3wSx48fN03BTSg8PLzM91omk6Ffv37lrqe6njOrVq3CtGnTEBQUBDs7u3LLmpGRgVdffRV+fn6ws7ODv78/Xn/9dWRlZVV42zt27EBwcDBcXFzg6uqKPn36YM+ePQ+xN8Zj6HEpKCjAP//8g0mTJqFly5ZwdnaGi4sLOnfujB9++AFFRUUV2q4xP6OmUpFzZuHChWV+LuLj4yu07UuXLmH06NHw9PSEg4MD2rdvjx9++AGWeo+atbkLQMUiIiIQEhICe3t7jB07Fi4uLvjnn38wZswY3LhxA6+99lq561AqlRg6dCh27NiBLl26YMSIEYiLi8OyZcuwZ88eHDp0CHXq1KmCvTGOb7/9Fp999hmaNGmCgQMHok6dOoiLi8OGDRuwYcMGrF69GmPGjDF4fcHBwXq/qAIDA41X6Crm5uaG//3vfzrj/f39DV7HRx99hPnz58PPzw/Tp09HZmYm/vzzT3Tr1g179uxB9+7djVdgEwsMDMSCBQv0Tvv7779x7tw5hISEGLy+6nbOzJ8/HwkJCfD09ISvry8SEhJKnVehUCA4OBgnT57EwIEDMW7cOJw4cQKLFi1CVFQU9u7dC3t7e4O2u2rVKkyYMAF16tRBWFgYAGDNmjUYMGAA1q5di5EjRxpj9yrN0ONy5coVjBw5Es7OzujXrx+eeuoppKenY/PmzZgxYwa2bt2KTZs2QSaTGbxtY3xGTaki54zapEmT9Jbf3d3d4O3GxsaiW7duyMnJwejRo1G3bl1s2bIFM2bMQGxsLL799tsK7EUVEWQRCgoKRJMmTYSdnZ04ceKENP7+/fuiWbNmwtbWVsTHx5e7nl9//VUAEOPGjRNKpVIa/8MPPwgA4oUXXjBF8U3mn3/+EZGRkTrj9+7dK2xsbEStWrVEbm5uueuJiIgQAMSCBQtMUErz8fPzE35+fg+1jkuXLglra2vRrFkzcf/+fWn8iRMnhJ2dnWjZsqUoKip6yJKaX15enqhdu7awtrYWd+7cKXf+6nrO7Nq1S/qu+OSTTwQAsXz5cr3zvvvuuwKAeOONN7TGv/HGGwKA+Pjjjw3aZmpqqnB3dxeenp7ixo0b0vgbN24IT09P4enpKTIyMiq3Q0Zi6HG5efOm+O6770RWVpbW+KysLBEUFCQAiLVr1xq8XWN8Rk2tIufMggULBAARERHx0Nvt1auXACC2bt0qjcvLyxM9e/YUAMSBAwceehvGxuo5C/Hff//hypUrGD9+vNYvWDc3N8ybNw/5+flYsWJFuev5+eefAQCffPKJ1i+hadOmoXHjxvj999+Rk5Nj9PKbytNPP43g4GCd8T179kSfPn2QlpaGM2fOmKFkNcfy5ctRWFiIt99+G25ubtL4wMBAjBs3DufPn8f+/fvNWELj2LBhA1JSUvDkk0/C29vb3MUxmf79+8PPz6/c+YQQWLZsGZydnfHOO+9oTXvnnXfg7OyMZcuWGbTNv/76C/fv38esWbNQv359aXz9+vUxc+ZM3Lt3D+vXr6/YjhiZocelXr16mDFjBpycnLTGOzk54dVXXwUAREVFmaSM5mLosTGmS5cuYe/evejTpw8GDx4sjbe1tcUHH3wAoPh6ZklYPWchIiMjAQADBw7UmaauSijvg5qbm4vDhw+jefPmOh8AmUyGAQMGYOnSpTh69Ch69uxpnIKbkY2NDQDA2trw0zguLg5fffUVcnJyUL9+ffTt2xf16tUzVRGrRF5eHsLDw5GYmAhXV1d07NgRnTt3Nnj58s698PBwREVFoVevXsYqslmoA4CpU6dWaLmaeM4Aqv1KTExESEiI3gChe/fu2LFjB27cuIEGDRqUua7yzqGFCxciKioKEydONFr5zaEy3znAw39GLdHevXtx+PBhyOVyBAQEoH///nB2djZ4+bLOmR49esDJyckig1MGTRYiLi4OABAQEKAzzcfHB87OztI8pbly5QqUSqXedWiuOy4urtoHTdevX8fu3bvh6+uLtm3bGrzc6tWrsXr1aum1tbU1Zs2ahf/7v/+DlZWVKYpqcnfu3MHkyZO1xnXs2BF//PEHmjRpUu7ycXFxcHZ2ho+Pj840zXOmOktISMCePXtQv359DBo0qELL1sRzBij7O0c9fseOHYiLiys3aCprXTXlHAKAX3/9FYD+C31ZHvYzaolKtht0d3fH119/bXBgXNY5Y2VlhUaNGiE2NhaFhYUVDlJNidVzFiI9PR0AtKpHNLm6ukrzPMw6NOerrgoKCjBhwgTk5eXhs88+M+jCVadOHXz66ac4e/YssrKykJSUhA0bNqBp06b48ssvMXfu3CooufFNnjwZe/bsQVJSEhQKBU6cOIEJEybgyJEj6NevHzIzM8tdR3p6eo0/Z5YvXw6lUomwsDCDA52aes6oGfP7oqx11ZRz6KeffsK2bdvQt29fhIaGGrycMT6jlqR9+/b49ddfcfXqVeTk5ODatWv49ttvIZPJEBYWhk2bNhm0HkPOP6VSaXHHx3LCNyIDqC98e/fuxfPPP48JEyYYtFzr1q3RunVr6bWTkxOGDh2Kzp07o127dvjmm2/wxhtvwMvLy1RFN4mSv/YCAwPx22+/AQBWrlyJn3/+WWqH8ahSKpVYvnw5ZDIZnnvuOYOXq6nnDFXcv//+i5kzZ8LPzw+rVq2q0LI17TM6fPhwrdf+/v6YOXMmWrZsiQEDBmD+/Pl46qmnzFQ602OmyUKoo+3Sfo1lZGSUGpFXZB2a81U3SqUSzz33HFavXo1nn30WP/7440Ov08fHB0OHDkVhYWGF+n2ydNOmTQMAREdHlzuvm5tbjT1nAGD37t24fv06+vbti0aNGj30+mrKOWPM74uy1lXdz6GtW7di5MiR8Pb2xn///QdfX1+jrLcin9HqoF+/fmjSpAnOnDkjvedlMeT8k8lkcHFxMWo5HxaDJgtRVr3/nTt3kJWVVWrbA7XGjRtDLpeX2nagvDYMlkypVGLy5MlYsWIFxo0bh/DwcMjlxjl9PT09Aaj6rKkpKrJPAQEByMrKwp07d3SmVedzRq2yDcDLUhPOmfLaGlXkvS9rXdX5HNqyZQuefvppeHp6IiIiAo0bNzbaumvCOVSSep+ys7PLnbesc6aoqAjXrl1Do0aNLKo9E8CgyWKob6vfuXOnzrQdO3ZozVMaBwcHdOrUCRcvXtTpnEwIgV27dsHJyQlBQUFGKnXVUAdMv/32G8aMGYOVK1catQGuOltgKR3NGUNF9skY556lSklJwcaNG+Hh4aFTrfAwasI5ExAQgLp16yI6Olrnwq1QKBAdHY1GjRqV2wgcqJnn0JYtWzBixAh4eHggIiICTZs2Ner6a8I5pEmhUODcuXNwcnKSgqeylHXO7N+/X+p41eKYu6MoUikoKBCNGzcus3PLa9euSeMTExPF+fPntTojFKLmdW5ZVFQkJk2aJACIUaNGiYKCgjLnT05OFufPnxfJycla448ePap3/q+++koAEAEBAaKwsNBo5a4K58+fFwqFQu94Hx8fAUBERUVJ4+/fvy/Onz8vEhMTtea/ePFije3c8ssvvxQAxOzZs0udpyafM8bu3FKhUIjz58+LhIQErfGpqanCzc3Noju31FTecdm6dauws7MTPj4+4sKFC+WuLz8/X5w/f15cvnxZa3xFP6OWoKxjk5GRIS5evKgzPjs7W4wbN04AEJMnT9aZfv78eXH+/Hmd8eV1bhkdHf1wO2MCMiEs9AEvj6DSHqOSkJCARYsWaT1GJSwsDCtWrMDy5culRxYAqqxMaGio9BiV4OBgXL58GevWrYO/vz8OHz5crR6jsnDhQrz33ntwdnbGyy+/rDdVO2zYMKlDUPX8CxYswMKFC6V5/P39YWNjg6CgINSvXx8KhQKHDh3CiRMn4O7ujh07dqBTp05VtFfGsXDhQnzxxRfo1asX/Pz84OTkhEuXLmHr1q0oKCjAW2+9hY8//liaPzw8HJMnT8akSZN0niul+RiVESNGSI9Ryc/Pr3aPUdHUtm1bnD17FqdPny61a4qads4sW7ZM6oz0zJkzOH78OLp37y5lSnr06CFVVSoUCnTv3h2nTp3CwIED8dhjj+H48ePYuXMnOnbsiKioKDg4OEjrjoyMRJ8+fRAcHCz1s6Om+RgV9aON1qxZg3v37mHNmjUYNWpUFex96Qw9LhcuXEBgYCDy8vIwduxYNG/eXGdd/v7+Wt+78fHxaNSoEfz8/LSevVbRz6i5GHps4uPj0bhxY3Ts2BEtW7aEj48PkpKSsHv3bty8eRNt27ZFREQEateurbV+dUfLJcONc+fOoXv37sjJycGYMWPg6+uLLVu24Ny5c5g5cyYfo0LlO3z4sBg0aJBwdXUVDg4OolOnTuLPP//UmU+dfdH3ayA3N1csXLhQNGnSRNja2gofHx8xdepUgx4dYWnU+1nWoHkM1F38l3z0xaeffir69Okj6tatK+zs7ISDg4No0aKF+N///qf1y7g6iYyMFKNHjxYBAQHC1dVVWFtbCx8fHzF06FCxY8cOnfmXL18uAIhJkybpXd+qVatEUFCQcHBwEG5ubiI0NFQcO3bMxHthOocPHxYARKdOncqcr6adM+V9Zkq+//fv3xf/+9//RIMGDYSNjY1o2LCheO211/RmhtSPlgkODta77W3btomePXsKJycn4ezsLIKDg8WuXbtMsJcVZ+hxUe9jWUPJ/b927ZoAoPO4lIp+Rs3F0GOTnp4uXnrpJdGxY0dRp04dYW1tLVxcXESnTp3E559/LrKzs/WuX70efS5cuCBGjhwpPDw8hJ2dnWjbtq347rvvtGpKLAkzTUREREQGYENwIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCJ6RPn7+0Mmk5U5fPXVV+YuJhnJiRMnYGVlhVmzZmmNj4yMlN7vssTHx0vzaT5fraLS09NRu3ZtdO7cWedZZESWTvfpp0T0SNF8MGdJrVq1quLSkKnMmjULDg4OeOedd8xaDjc3N7z11lt4/fXX8dtvv2HSpElmLQ9RRTBoInrETZ06VeuJ7VTz/P3334iOjsbrr78OLy8vcxcHM2fOxOeff4633noLY8eOhZ2dnbmLRGQQVs8REdVwX375JQBgypQpZi6Jir29PcaPH4/bt29jzZo15i4OkcEYNBFRudTtn+Lj47Fx40b07dsXHh4ekMlkiIyMlOZLS0vDggULEBgYCBcXFzg6OqJt27b48MMPkZ2drXfdhYWF+Oqrr9C2bVvY29ujTp06GDFiBM6cOYPw8HDIZDKdTNjChQshk8mwcOFCvetUt9Pp3bu33umJiYl49dVX0bJlSzg6OsLFxQUdO3bEkiVLUFhYqDN/WFgYZDIZwsPDce3aNUyYMAE+Pj6ws7NDkyZNMH/+fOTl5ZV6/I4dO4ZJkyahUaNGsLe3h4eHB9q3b4/XX38dCQkJAIDly5dDJpMhJCSk1PUkJibCxsYGDg4OSElJKXU+TSdOnMCBAwfQpUsXNG/e3KBlKkL9XpQ3lKR+T7/77jujl4nIVFg9R0QGW7x4MZYsWYKgoCAMGjQIiYmJsLKyAgDExsZi0KBBuHHjBnx9fdGjRw/Y2NggJiYG77zzDv755x9ERkbCzc1NWp9SqcSoUaOwYcMG2Nraonfv3qhVqxYOHz6MTp064bnnnjP6PuzduxfDhg1DWloa/P39MWDAAOTl5SEmJgazZs3C5s2b8e+//8LGxkZn2ZMnT+Lll19GrVq1EBwcjNTUVERHR+Ojjz7CuXPnsH79ep1l/u///g9vvvkmlEolmjVrhqFDhyInJweXL1/GokWL0Lp1a4SFhWH8+PF44403sGvXLly6dAnNmjXTWdfSpUtRWFiICRMmoHbt2gbt74YNGwAA/fv3r9iBMlBgYGCp7ZIuXryIQ4cOQS7X/X0eGBiIOnXqICYmBrdv34avr69JykdkVIKIHkl+fn4CgFi+fLnB81pZWYmNGzfqTM/OzhZNmjQRAMT8+fNFXl6eNE2hUIhx48YJAGLy5Mlayy1ZskQAEN7e3iI2NlYaX1BQIF588UUBQAAQkyZN0lpuwYIFAoBYsGCB3vJGREQIACI4OFhr/O3bt0Xt2rWFTCYT33//vSgqKpKm3bt3T/Tt21cAEO+9957WcpMmTZLK8vbbb4vCwkJp2pkzZ4STk5MAIA4cOKC13MaNGwUAYW9vL9asWaNTznPnzmnt99tvvy0AiNmzZ+vMm5+fL3x8fAQAcezYMb37rU+PHj0EALFlyxa909XHqrzLwbVr16T5rl27Vu52ExIShK+vrwAglixZoneep556SgAQK1euLHd9RJaAQRPRI0odCJU2aAYc6nmfe+45vev64YcfBADx5JNP6p2emZkpvLy8hLW1tUhNTZXGN23aVAAQP/zwg84yOTk5UpBgrKDpjTfeEADEzJkz9S538+ZNYWNjI+rUqSOUSqU0Xh00Pf7441rj1aZPny4AiPfff19rfGBgoAAgFi9erHd7Jd26dUvY2NgINzc3kZWVpTXtjz/+EABE165dDVqXmjqgu3r1qt7pmkGToUN5QVNaWppo1aqVACBef/31Uud76623BADxyiuvVGifiMyF1XNEj7jSuhxo0aKFzriRI0fqXceWLVsAAGPGjNE73dnZGUFBQdi6dSuOHDmCgQMH4tatW7h8+TIA4Nlnn9VZxt7eHqNHj8Y333xj8L6Up7xy1qtXDwEBAYiNjUVcXJxOFdmTTz6pt31Oy5YtAQC3bt2Sxt25cwcnT56EXC43uAF23bp1MXLkSPzxxx9YuXIlpk+fLk1Tt/2ZOXOmQesCAIVCAYVCAQAGVeeVdft/VlYW/vnnn3LXkZ+fj2HDhiE2NhZjx47FZ599Vuq86jIlJSWVu14iS8CgiegRV5EuB/z9/fWOv3r1KgBgwoQJmDBhQpnrSE5OBgDcvHkTAODp6QlnZ2e98zZq1MigchlKXc6ePXuWO29ycrJO0NSwYUO987q6ugIAcnNzpXHXr18HAPj6+mq14yrP7Nmz8ccff+C7776TgqbTp09j//798Pb2LjVw1Sc9PV3638XFpdz5w8PDS50WHx9fbtAkhEBYWBiioqIQHBwsNeQvjfq4paWllVs2IkvAoImIDObg4KB3vFKpBAAMGjQI3t7eZa7Dz8/P6OUqrTyljR85ciScnJzKXIe+zIy+Bs3G1qVLF3Tq1AkxMTFS8KHOMr3wwguwtbU1eF3u7u7S/5mZmVKQYipvvvkm/vjjD7Rq1QobNmwot/8ldVBXq1Ytk5aLyFgYNBHRQ2vQoAEuXLiAKVOmGJwJqVevHgDg3r17yMrK0pttKu1xHerAITMzU+909W38+soZFxeHN954A0FBQQaVs7LUWanbt28jPT29wtmmZ599FkuWLEH79u3x+++/w9raWqu6zhCOjo5wcnKCQqFASkqKSYOm77//Hp9//jnq1q2Lbdu2aQVspVF3m1BeoE1kKdhPExE9tMGDBwMA1q5da/Ay9evXR+PGjQEAq1ev1pmel5eHv/76S++y6oDr/Pnzeqer2y4Zo5yV5ePjg/bt20OpVOLXX3+t0LKjR4+Gr68vNmzYgI8++ggKhQLDhw9H3bp1K1yOxx57DICqSwhT2bRpE2bPng0XFxds2bKl1GrMks6ePQsAePzxx01WNiJjYtBERA/thRdegJ+fH/766y+88cYbejNAd+7cwc8//6w17n//+x8AVQeJFy5ckMYXFRVhzpw5SExM1Lu9vn37Qi6XY8eOHYiKipLGCyHwzTfflNr25vXXX4e7uzu++OILLF68GPn5+TrzXLt2DatWrSp3nw2xYMECAMDbb7+tt0yxsbF6Az8bGxu8+OKLKCwsxKJFiwBUrAG4pj59+gAADh48WKnlyxMTE4Nx48ZBLpfj77//RmBgoMHLqsvUt29fk5SNyNgYNBHRQ3NycsKWLVvg7++Pzz//HA0bNkRwcDCeeeYZDB8+HK1bt0bdunV1Hhb70ksvYciQIbh9+zbat2+PQYMGYdy4cQgICMCyZcvw4osv6t1egwYNMGvWLCiVSvTr1w99+vTBiBEjEBAQgDlz5uDNN9/Uu1z9+vWxceNG1KpVC3PmzEGDBg3Qr18/PPvssxgyZAiaNm2Kxo0bY8mSJUY5LsOHD8dHH32E3NxcjBw5Ei1btsTYsWMxdOhQtG7dGq1bt8bhw4f1Ljtt2jSpTVC7du3Qq1evSpVh2LBhAIBdu3ZVavnyvPXWW8jOzkb9+vWxevVqhIWF6R1KOnHiBFJSUtCpUyd2bEnVBts0EZFRtG7dGqdPn8aPP/6I9evX4/Tp0zh48CA8PT1Rv359zJkzB8OHD9daRi6XY926dfjmm2/wyy+/IDIyEs7OzujRowfWr1+PEydO4IcfftC7vS+//BINGzbEsmXLcODAATg7O6N79+5Yu3YtMjIy8Omnn+pdrlevXjh37hyWLFmCLVu24MiRI8jLy4OXlxcaNmyIZ599FiNGjDDacZk3bx769u2Lb775Bnv37sW6devg4uKCBg0aYO7cuaVmWby8vBAYGIjDhw/jpZdeqvT2O3TogG7duuHAgQM4f/681D2CsRQVFQFQZeiuXbtW6nwl78xTv36YfSOqajIhhDB3IYiI9AkPD8fkyZMxadKkMm+Hr4kuXbqEFi1awM3NDbdu3YKjo2Ol1/X3339j1KhRePXVV7F48WIjlrJycnNz0aBBA9jY2ODatWvl3mVHZClYPUdEZIHeffddCCHw4osvPlTABKi6WOjevTuWLl1qER1Jfvvtt7h37x4++eQTBkxUrTBoIiKyEJs2bcKUKVPQpUsXrFmzBj4+Ppg7d65R1v3tt98iJycHH3zwgVHWV1np6en49NNP0alTJ0ycONGsZSGqKLZpIiKyEMePH8evv/4KFxcX9O/fH1988YVB/R0ZokOHDlL7I3Nyc3OT+mciqm7YpomIiIjIAKyeIyIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoomrJ398fMpmszOGrr74ydzErRb1v8fHx5i5KhUVGRkImk6F3797mLgrVAL1794ZMJkNkZKS5i0IEALA2dwGIHkb37t3RtGlTvdNatWpVxaUpX1hYGFasWIHly5cjLCzM3MUhIqIKYNBE1drUqVNrXPCxZ88eFBQUoF69euYuChERaWDQRGRhmjRpYu4iEBGRHmzTRDWeZhuhjRs3om/fvvDw8NBqK5GcnIxvvvkGoaGhaNSoERwcHODq6oqgoCB89tlnyM3NLXX92dnZ+Oqrr9CjRw/UqlULdnZ28PPzw5AhQ7B69WoAQHx8PGQyGVasWAEAmDx5slb7q4ULF+otr75tffrpp3jsscfg4uICR0dHtG7dGvPnz0daWprO/Ort+vv7QwiBn376CY8//jicnJzg5uaGgQMH4uDBg3r3KyYmBnPnzkWnTp3g4+MDW1tbeHt7Y8iQIdi9e7eBR98w6uMAAMuXL0fXrl3h5uYmHQfN/VAqlfjmm2/Qrl07ODo6wtfXF9OnT0dqaioAIC8vDx988AFatGgBBwcH1K1bFy+//DIUCoXOdpVKJX766Sd0794d7u7usLGxgZeXF9q3b49Zs2ZVuF1Zeno65s+fj7Zt28LJyQl2dnaoW7cuunfvjnfffRcFBQU6yxw8eBCDBw+Gu7s7nJ2dERQUhF9//VXnuKhpHovSlHYOxcbGYsGCBejevTvq1asHW1tb1K5dG/3798fatWv1rkuznVp2djbeffddtGzZEo6OjjplOHbsGJ555hk0bNgQdnZ28PDwQEhICLZu3VpqWW/cuIHnnnsOvr6+sLe3R0BAAN5++23k5OSUukxZwsLCIJPJEB4ejmvXrmHChAnw8fGBnZ0dmjRpgvnz5yMvL6/U5f/880/069cPHh4e0mf5ueeew6VLl/TOb8j3i+b7uGrVKnTq1AnOzs6oU6cOxo0bh+vXrwMAhBBYsmQJAgMD4eTkBE9PT4SFheHu3buVOhZkAoKoGvLz8xMAxPLlyw2ed+bMmQKACAoKEuPGjRPBwcFi7969QgghVq5cKQCIevXqieDgYDF27FjRr18/4ezsLACIrl27itzcXJ11X79+XbRq1UoAEI6OjmLAgAFi7NixomfPnsLNzU34+fkJIYRITk4WkyZNEk2aNBEARPfu3cWkSZOkYf369TrlvXbtmta2UlJSRGBgoAAgXF1dxVNPPSVGjBghPD09BQDRqFEjnWWuXbsmAAg/Pz8xadIkYWNjI/r27StGjx4tmjVrJgAIOzs7cejQIZ1969evn5DL5aJt27YiNDRUjBo1Sjz22GMCgAAgvvrqK51lIiIiBAARHBxc7vuiSb3OmTNnCrlcLnr06CHGjRsnOnfuLOLj47X2Y9y4ccLBwUEMGjRIDBs2THh5eQkAokOHDiIrK0v06NFDOj5PPvmkcHNzEwDE4MGDdbY7efJkAUDY29uL/v37i3HjxomQkBAREBAgAGi9L+VRKBSiTZs2AoCoU6eOGDJkiBg7dqzo3bu38PHxEQBEWlqa1jJr164VVlZWAoBo06aNGDdunOjRo4eQyWTi1VdflY6LJs1jUZrSzqEpU6YIAKJFixYiJCREjBkzRnTt2lXI5XIBQLzyyis661K/p507dxYdO3YUTk5OYvDgwWLMmDGif//+0nxfffWVtJ7AwEAxcuRI0aNHD2FraysAiPfee09n3efPn5feP19fXzFq1CgRGhoqHBwcRNeuXUXXrl0FABEREVHu8VebNGmSACBefvll4erqKvz8/MTo0aNF//79hYODgwAghg0bprOcUqkUEydOFACEtbW16Nu3rxg7dqz0OXF0dBTbtm0r9ViX9f2ifh/ffPNNad0jR44UDRs2FABEgwYNRGpqqhg9erSwt7cXgwYNEsOHD5eOTbt27UReXp7Bx4BMh0ETVUuVCZqsrKzExo0b9c4TGxsrDh48qDM+NTVVDBw4UAAQn3/+uda0oqIiERQUJACIgQMHirt372pNz8nJEVu2bNEap/5CL6vcpV3wxowZI1287t27J43PzMwUgwcPFgBEt27dtJZRX2DVF9mLFy9K0woLC8Vzzz0nlb+krVu3isTERJ3xBw4cEK6ursLGxkbcvHlTa9rDBk2urq563wfN/WjSpImIj4+Xpt27d08Kctq2bSs6deqkdXyuXr0qatWqJQCI/fv3S+MTEhIEAFG/fn1x+/ZtnW3GxsaKhIQEg/dhxYoVUnCWn5+vNa2oqEhERkZqXfhu374tXFxcBADxxRdfaM2/e/duYW9vb/SgKTIyUly5ckVn/gsXLoj69esLAOLw4cNa09Tvqfrire9Ybd++XchkMuHp6SmioqK0pp0+fVpad2RkpNa0jh07CgBi9OjRIicnRxqfkJAg/cCobNAEQLz99tuisLBQmnbmzBnh5OQkAIgDBw5oLffDDz8IAMLT01OcOHFCGq9UKsWCBQsEAOHu7q7zOTfk+0Vdntq1a4uTJ09K47Ozs0WPHj2kc7fkuZ2cnCyaNm0qAIhVq1YZfAzIdBg0UbWk/qIqbdC8aKvnfe655yq1rYsXLwoAomPHjlrjN2zYIP1CzszMNGhdlQ2aEhIShFwuFzKZTJw6dUpnmZs3b0oX2ejoaGm8ZrCxadMmneVu374tZZtKXujL8tZbbwkA4rvvvtMa/7BB0/vvv693uuZ+lAxEhRDiiy++EACETCYTZ86c0Zk+a9YsnWxHTEyMACCeeuqpCpW1NJ9//rneAKg0H374oQAgunTponf6yy+/bPSgqSxLly4VAMTrr7+uNV4zaFJnTkrq3LmzACD+/vtvvdPXrl0rAIgRI0ZI4/bv3y8ACCcnJ60gV239+vUPFTQ9/vjjQqlU6kyfPn263nNNHaR98803OssolUrRrl07AUB89NFHWtMM+X5R70fJz4sQQqxbt67Mc3vx4sUCgJg8eXKp66eqw4bgVK2V1uVAixYtdMaNHDmyzHUVFRUhMjISBw4cwO3bt5GTkwOh+mEBALh48aLW/Nu3bwcAjB8/Hs7OzpXdBYPs3bsXSqUSjz32GNq1a6czvV69eggJCcHGjRsRERGBbt26aU23trbGoEGDdJbz8fFBrVq1kJaWhpSUFPj4+GhNT0lJwZYtW3D27FmkpaVJbXLi4uIA6B6Th1Xee2RtbY2BAwfqjA8ICAAANGzYEG3atCl1emJiojSuRYsWcHFxwdatW/HRRx9h/PjxaNSoUaXL3rFjRwDA559/jtq1a+PJJ5+Eh4dHqfOr27s888wzeqdPmjQJX3/9daXLU5qsrCxs27YNJ06cwL1795Cfnw8AuH37NoDS31MvLy/07NlTZ/y9e/cQExMDBwcHDBkyRO+y6n67Dhw4II1T7/+gQYNQu3ZtnWWGDh0KNzc3pKenG7xvmp588kmd9mAA0LJlSwDArVu3pHE3b97ElStXAKiOe0kymQyTJ0/GK6+8goiICMybN09nnvLOXQAIDQ3VGac+N8s7tzXPXTIfBk1UrVWky4GyGs7GxcVh+PDhOHfuXKnzZGRkaL1OSEgAoD9AMzb1F3xZF3X1XXeaFwM1X19f2NjY6F3O1dUVaWlpOo3df/75Z7zyyit6G1CrlTwmD6us9whQ7Ye1te7Xljpobdiwod7lXFxcAEBrH11cXLB8+XJMnjwZ8+fPx/z58+Hr64suXbpg0KBBOsHwp59+igsXLuise9GiRfD09ETv3r3xxhtv4P/+7/8wadIkyGQyBAQEoHv37hg6dCiGDBkCubz43pubN28CKP09fZgArjSbN2/G5MmTkZKSUuo8pb2npb03165dgxACOTk5sLOzK3P7ycnJ0v/l7b+6sfupU6fKXGdpSjsXXF1dAWifC+rPTO3ataXpJZX1+QLKP3dLK5P6HCvt3NZ37pL5MGiiR4aDg0Op00aOHIlz587hySefxNy5c9GqVSu4urrCxsYG+fn55V4MLJ3mxdoQx44dw7Rp02BlZYXPPvsMQ4YMQcOGDeHo6AiZTIaffvoJ06ZNk7JwxlLWewSUvx8V3c8RI0agf//+2LRpE/bt24fo6GisX78e69evx7vvvotdu3ahbdu2AFSZxaioKJ11LFy4EJ6engBUgdX06dOxefNm7N+/H9HR0Vi+fDmWL1+Ojh07IiIiAk5OThUqY2UolUqdcbdu3cKYMWOQk5ODuXPn4plnnoG/vz+cnZ0hl8uxc+dOhISElPqelvbeqLfl7OyMESNGGG8nHlJFz4WHVd65C5RdpqouL1UOgyZ65F24cAGnT5+Gl5cX1q9fr/NrT10VVZL6V6O+7IOxqTu6vHr1aqnzqKcZo1PMv/76C0IIzJo1C3PnztWZXtoxqY7c3NwwYcIETJgwAYDqFvhZs2Zh48aNmDlzphQoGfooD39/f8yaNQuzZs0CABw5cgTPPvssjhw5gs8//xzvvfceANX7dOHChVK7NShtvK2tLQAgMzNT7/SCggKpqk3T5s2bkZOTg+HDh+Ozzz7TmV7Z97RBgwYAVJmhX3/91eCLv/o8LatbB3U219TUZUlJSUFGRobebJMxP19UfTG0pUeeun+funXr6k2Pr1q1Su9y6jZCf/zxR5lVWJrUF7zCwsIKlbFXr16Qy+U4efKk3uqK27dvS22s+vTpU6F166M+Jn5+fjrTcnNz8c8//zz0NixVgwYNpMDm5MmTD72+jh07YsaMGTrrCw4OBgD8/vvvepf77bff9I6vU6cObG1tkZqaqrf/nh07dug9v8p6T4UQUp9iFVW3bl20a9cOmZmZ0jloCPX+b9++XSqbpk2bNuH+/fuVKlNF1a9fX6p+Cw8P15kuhJDGG+PzRdUXgyZ65DVr1gxWVlY4c+aMTjZh8+bN+PLLL/Uu99RTT6FDhw5ITEzEqFGjdNqJ5ObmYtu2bVrj6tevDwBltp3Sp2HDhhg1ahSEEJg2bZrWthQKBV544QXk5uaiW7duOo3AK0PdWHbFihVaGY3c3FzMmDED165de+htmNuJEyewZs0avZ0obt68GYD+AKM069evlxrsayooKJCCCc31TZkyBc7Ozjh48CC++eYbrWUiIyPx448/6t2OjY0NevXqBQCYP3++1vZOnTqFmTNn6l1O/Z7+/fffWpmooqIivPvuu1qNtCvqww8/BKDqtFV97DQJIXD48GHs3LlTGtezZ0889thjyMrKwksvvaTV4eSNGzcwZ86cSpenMtTb++CDD7R+mAgh8OGHH+LkyZNwd3fH888/X6XlKkuLFi3QokULxMTEmLsojw4z3bVH9FAq009TWbdfq2/vlsvlIjg4WIwbN07qyHH+/Pl6b/0WQoj4+HjRvHlzqfO7gQMHinHjxolevXppdW6pdurUKSGXy4VcLhf9+/cXkydPFlOmTNHq36W08t67d0+0b99eABBubm5i2LBhYuTIkaJOnToCKL9zy4ocn7S0NGl87dq1xbBhw8SIESOEl5eXcHFxkY7XpEmTtNb1sF0OlKa8/Shvu8uXL9cpr/qWdgcHB9G9e3cxduxYMXLkSOn9tLW11duZYWnUx8TT01MMGDBAPPPMM+Kpp56SOiisV6+euHHjhtYyf/zxh9S5Zdu2baVzRyaTiVdeeaXU43Lo0CGp08hmzZqJkSNHiq5duwobGxsxadIkve9pQUGBePzxxwUA4ezsLJ544gkxevRo4efnJ2xsbMQbb7yh9xga+p5+/fXXwtraWgAQTZs2FU888YQYP368GDBggHQM3njjDa1lzp07J52/devWFaNHjxZPPvmkcHR0FF26dHmozi1L+27Qdy4IoepWYMKECQJQdW7Zr18/MW7cOOl8cHBwEFu3btVZnyHfL2Wd3w9zbqvXW5HjQw+HmSYiAF9++SV++eUXdOjQAceOHcPWrVvh6OiIP//8Ex988EGpy/n5+eHo0aP47LPP0Lp1axw8eBDr1q1DQkICgoODddqOtGvXDv/88w+6du2Kw4cPIzw8HL/88guOHz9ebhlr166NAwcO4JNPPkGjRo2wc+dO/Pvvv/D09MS8efNw7Ngxg+7gMYS7uzuOHj2KGTNmwN3dHdu2bcPBgwcxcOBAHD9+HIGBgUbZjjl16dIFn376Kfr06YPExERs2rQJO3fuhJWVFV566SWcPn1abzcNpQkLC8Obb76JFi1aIDY2Fn/99RcOHjyIBg0a4OOPP8apU6ekTKPa2LFjERkZiZCQECQkJGDjxo3IzMzEjz/+iC+++KLUbXXu3BlRUVEYOHAg7ty5gy1btiA7Oxtff/01li9frncZa2trREZGYt68eahXrx727NmDyMhIdOjQAQcPHqzQvuoze/ZsnDhxAi+88AJkMhn27NmDDRs24MqVK+jQoQO++eYbzJ49W2uZVq1a4ejRowgLC0NRURE2bNiA2NhYzJo1C3v27JGqs6uCTCbDb7/9htWrV6NHjx44duwY/v77b2RnZyMsLAwnTpzA4MGDq6w8ZJlkQhj59hciIjIKdT9D/JomsgzMNBEREREZgEETERERkQEYNBEREREZgJ1bEhFZKLZlIrIszDQRERERGYCZpiqmVCpx7949AJCe40VERETmIYRAdnY2AMDT07PMRwExaKpi9+7dg7e3t7mLQURERCUkJSXBy8ur1OmsniMiIiIyADNNVczR0VH6PykpCU5OTmYsDRER0aNNoVBINUCa12h9GDRVMc02TE5OTgyaiIiILER57YxZPUdERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNZLkOHgQ++gi4e9fcJSEiIuJjVMhCKRRAaChw/z4QFweEh5u7RERE9Ihjpoks04kTqoAJAP77z6xFISIiAh7xoOnLL79E69at4ezsDHd3d/Tt2xeHDx+Wpq9btw4DBgyAh4cHZDIZ4uPjzVfYR83Ro8X/37gBJCWZryxERER4xIMmPz8/fPHFFzh16hQOHDiApk2bIiQkBCkpKQAAhUKBXr164f333zdzSR9BmkGTvtdERERVTCaEEOYuhKXIyMiAm5sbIiMjERwcLI0/e/Ys2rZti2vXrsHf3/+htqFQKODs7AwAyMrKgpOT00Otr8Zq2RK4cKH49cKFwIIFZisOERHVTBW5Llt0pmnVqlWYNm0agoKCYGdnB5lMhvByGgQfOXIEoaGhcHd3h5OTE7p06YK1a9eWu638/Hz89NNPqFWrFtq2bWukPaBKycgALl7UHsdMExERmZlF3z03f/58JCQkwNPTE76+vkhISChz/oiICISEhMDe3h5jx46Fi4sL/vnnH4wZMwY3btzAa6+9prPMvn37MHjwYOTk5MDHxwe7du2Ch4eHqXaJDHHiBFAyAXr0qGqcTGaeMhER0SPPojNNy5YtQ3x8PJKTkzF9+vQy5y0sLMTzzz8PuVyOvXv34qeffsLixYtx6tQpNGvWDPPmzdMbdAUFBeHkyZM4cOAABg8ejNGjR+PevXum2iUyhGZWSR0k3bkD3LplnvIQERHBwoOm/v37w8/Pz6B5//vvP1y5cgXjx49HYGCgNN7NzQ3z5s1Dfn4+VqxYobOcg4MDmjZtis6dO2PZsmWQy+VYvnx5pcusUCjKHagcmkHT4MH6xxMREVUxi66eq4jIyEgAwMCBA3WmhYSEAACioqLKXY8QAnl5eZUuh7oxGT0EdXBkbw9MnAhs3Vo8ftgwsxWLiIgebTUmaIqLiwMABAQE6Ezz8fGBs7OzNI/aG2+8gaeeegr169dHamoqvv/+e9y8eRMjRowAAKSmpuL69eu4cuUKACA2Nhb3799Hw4YN2e7JVNLSgMuXVf936AB07Vo8jZkmIiIyoxoTNKWnpwNQVcfp4+rqKs2jlpiYiLFjx+Lu3bvw8PBAx44dsW/fPrRs2RIAsGnTJkyePFma/4knngAALF++HGFhYXq3k5WVVWY5FQoFvL29DdqnR9Lx48X/BwUBDRoAdeoAycnAkSNsDE5ERGZTY4Kmyli5cmWZ08PCwkoNjkrDfpcekmY26fHHVQFSUBCwbRuQmgrExwONGpmteERE9Oiy6IbgFaHOMJXMJqmpO64kC6cZNAUFqf527Kh/OhERURWqMUGTui1TyXZLAHDnzh1kZWXpbe9EFkYdFDk6Ai1aqP5XB0+a04mIiKpYjQma1I892blzp860HTt2aM1DFurePVX1GwA89hhgZaX6//HHi+c5cqTKi0VmkJkJFBWZuxRERFpqTJumfv36oXHjxli9ejVmz54t9dWUnp6Ojz/+GLa2tpg4caJ5C2lKmzerAg43t+LB0REoKFANubmq6ZcuqYbMTKBJE6B5c9Xg5KS6SBUWAnZ2QOPGgJ8fYK3nFElJAQ4dAk6eVDXS7ttXtS6ZTNVQ+/Zt4MwZ1fYDAgBvb9W03FzVnXGXLwNZWaptqS+M9vbA1avF29DMLtWtqxoSE1VB04svAtevAwoFEBgIdO8OdOummqegAMjPV63XwQGwsSluOK5UqrarUADZ2UBOjmqQy1VldXBQDVZWqnHyEr8pNHspF6J4UCpV+5Kaqgr8UlJUj4LJzFRtLydHdUzV63d1BTw9VYObm2qe9HTg/n1V2QFVma2sVMe3bl3A11e1jYQE1ft4507xulxdVfNnZKgGhQJwcQFq11YNzs7a+5OZqdpeenpx+XJzVUN+fvExdHAAGjZUnQcNGqi2kZ8P5OWptqG5Djs71TZdXFTH0tZWNajHu7mp3mMhVNtPSlIdK7m8eN5r14CdO1XDxYuqZbp1A3r2VAXRzs7F75NSWXxuy+WAh0fxvpa8USA3V3VOJiWpjqmzs+p8l8lUNxjcvasqi7W1aprm4OKi+mtvrzqX9J0Tt2+rPlMXL6reex8foF491WBrqzpm+fmqMquPkbOz6ny5cUN1LqekqPbLyUm1j+ptyeWqbeTmFp+v6psh5HLVfF5eqvPD11c1Xv2+5OSojqGHB1Crluq90JSdrdr+zZuqz4t6n+3tVe9vZqZqsLVVbcPLS7We3FzVsgpF8fF0cVEtV/LYFxWp9jM1Vftzl51dPOTlqcrm6KgavLxUz550d9deV36+qoPbGzdUQ1KSqmxOTqpBiOLPQG6u6pzV/H5LTlZ9bu7cUb1niYmqvzIZ4O+v+s6rX191B+/Nm6pt5OWpylGrlmqoW1c1T926qmOflaV679LTVeNr14ZeRUWq+e7eVZXN2Vn1uXVwUJXn2jXV5/r+fdU+2durBj8/oHXr4vdWCNWxTExUrVP9XZWZCVy5ohri41Xz2dkVf/7q1VOVr1694s+ivb1qefX7oFAUvzc5OcXnhPp8zclRHZu0NNVx8fBQfYepv2fU30OA6rsqMVH1fhUWqo5VycHauvi7QX2dyckpPidzc4u/c5VKVXk0hwEDVNuvYhb9wN5ly5Zh//79AIAzZ87g+PHj6N69O5o2bQoA6NGjB6ZOnSrNX9pjVBISErBo0SK9j1GpaiZ7YO/TTwPr1xtnXWrW1qoPrbu76n8bG9UXT8nnwgGqL6hmzYCzZ1VfZpqcnVVfODdv6j4epTSrVgHPPFP8etgwYOPGiu+DlZXqi7ioSPVlQOajvmg/RD9o5bKxUV2IrK1VQ36+6kJkLHK5ar2agXhBgfHWb0rW1qr3wNZW9Tk05nEBVMdG/cPA3l510UtNVR2jyqhbV/Vj7P59VXBjSU9qkMlU55r6R45a3bpAu3aqHzvqAO3OHVXZH+ZS6+amCkwSE1XH1RJZWakCKRsb1T5X5H13cVEtl5pq+DLR0aofVUZQoeuysGCTJk0SAEodJk2apLPM4cOHxaBBg4Srq6twcHAQnTp1En/++WfVF74UWVlZUvmzsrKMt+K+fTVzH9V7sLMT4vp17f0LDzd/uThUzWBlJURQkBBeXuYvCwcOHCxz2LvXaJfPilyXLTrTVBOZLNO0b5+q6kadmk9PV/0i0UyH1qunygY1a6ZKpcbFqbJGly+rfjFZWakGhUKV5r18WfU3O7u4Gs3GRlVV0q2b6q62+Hjgv/+A/ftV2/PwUE0PDFRlFOLiVENamupXo3r7Hh6qbVlbqz4C6uqH/HxVdV/37tr7JwQQGalaT4MGqsHGBjh8WPWL4/BhVbnVVT1yeXGqWaHQrnpRV4GofxUrlcXz5uaqXqvTwWrqzIJm9YNMVlxNYmWlyqap09Xu7sVpbQcH1bFQbyM9vbgaLz1dNY+7u3YVlhCqDEZSUnFVgpWVKvPn56f6RZufX1wdIYRqeVdX1b5lZKjWn5Ki2qYQqn0SQrU9dRWuunzq7ICtbfH5kpVVXB2YmKjaT3XK38FBex15ecXVOdnZxVV8ubnF1YH376vK4O2tqoKpU0e7ys/FBejTRzW4uqrKevmy6ty+elW76kBdrWdjo0r/q/c1JUW1rsJCVRmsrVXVZXXrqv4KUVxFW1RUXA5Pz+JpWVnF+6IeNKstCwu1zwNfX9U53by5at/Uz0lMTFTtr/qcVH3oVevLyFAdu4YNVUOdOtrVXoWFxe8XoHpv1O+RlVXxtJyc4nPkzh1VudTvi7296rirq1QUiuJjrVSqjon6s2RrW7zvOTna1TJ5eapqpbt3Ve+hvX3xZ0hd5a1ZFa0ebG1V+6U+vurqVfVnT/2/rW3x50OhUFVXxsYC586pMg+2tqpjrK6mb9hQVWZ1lbVCoRqA4upqGxtVldfFi8CFC6r1+/io3h9v7+Iq77p1VefBtWuqc+zWLdV3U4MGquosR0fVPqelqc6txMTi6sG8vOLPu7Oz6lw9c0Y1r5q67N7equPg5aXad/V5pVCoxjVqpKoi9PQsfo+yslTfnepjkZlZXM1Wt65q3ervKXWTiiZNVH/VxzQ3V3UO3LqlyvTfvKnapvr7tqio+L10cir+LlA3U9B8bx0ciqspbW1V701Kiuq7TF0Fm5qqWne9esXH0N6++PNTcsjM1K7yUy/XoIHq/NP8zrW2Lr5GWVkBI0eq5jeCilyXGTRVMZMFTaYmhOoLSh0glJSXpzrx1e2XiIgehhCqC7y6/Vl1IIQqQMnIUAVptWpVn7I/wipyXa4xDcHJxNR1+KWxs1N9SRARGYNMpsrgVCcymSq7QjVWjelygIiIiMiUGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGeCRDpo++eQTBAUFwcXFBd7e3hg9ejTi4+Ol6QsXLoRMJtMagoKCzFdgIiIiMptHOmiKiorCrFmzcPjwYWzfvh2pqakYPHgwCgsLpXnat2+P27dvS8OOHTvMWGIiIiIyF2tzF8Cctm/frvX6559/RuPGjREbG4t27doBAKytreHj42OO4hEREZEFsehM06pVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl1r0PbS09MBAB4eHtK48+fPw9fXF02bNsXkyZNx586dSu8PERERVV8WnWmaP38+EhIS4OnpCV9fXyQkJJQ5f0REBEJCQmBvb4+xY8fCxcUF//zzD8aMGYMbN27gtddeK3XZoqIizJkzB6Ghoahfvz4AoHPnzggPD0eLFi1w69YtvPvuu+jbty9OnDgBOzs7o+4rERERWTaZEEKYuxCl2b17NwICAuDn54dPP/0Ub731FpYvX46wsDCdeQsLC9GiRQvcvHkThw4dQmBgIABV9qhTp06Ij4/HpUuX4Ofnp7OsEAIvvPACoqKiEB0djTp16ugtT3JyMho2bIhVq1ZhxIgRldonhUIBZ2dnAEBWVhacnJwqtR4iIiJ6eBW5Llt09Vz//v31Bjn6/Pfff7hy5QrGjx8vBUwA4Obmhnnz5iE/Px8rVqzQWU4IgRkzZmD37t3Ys2dPqQETANSpUwf+/v64du1ahfeFiIiIqjeLrp6riMjISADAwIEDdaaFhIQAUN0tp0kIgZdeeglbtmxBVFQUGjRoUOY20tLSkJCQAH9//1LnUSgUZa6jvOlERERkmWpM0BQXFwcACAgI0Jnm4+MDZ2dnaR61l156CX/88Qc2b94MBwcHqZG3h4cHbG1t8frrr2PIkCFo2LAhbt68iXnz5qFevXoIDQ0ttRzqFB8RERHVLDUmaFLf+ebm5qZ3uqurqzSP2g8//AAA6Nmzp9b4iIgI9O7dGzdu3MDYsWNx7949eHt7Izg4GCtXroSjo6MJ9oCIiIgsWY0JmiqjvDbwf/75Z4XXmZWVVeZ0hUIBb2/vCq+XiIiIzKvGBE3qDFPJbJJaRkYGatWqZfJy8G44IiKimsmi756rCHVbppLtlgDgzp07yMrK0tveiYiIiMgQNSZoCg4OBgDs3LlTZ5r6eXHqeYiIiIgqqsYETf369UPjxo2xevVqnDx5Uhqfnp6Ojz/+GLa2tpg4caL5CkhERETVmkW3aVq2bBn2798PADhz5ow0Tt0nU48ePTB16lQAqgfrLlu2DCEhIejVq5fWY1QSEhKwaNGiMvtXIiIiIiqLRT9GJSwsTG8v3mqTJk3SeYBvTEwMFixYgAMHDqCgoABt27bFq6++ijFjxpi4tIbhY1SIiIgsR0WuyxYdNNVEDJqIiIgsR4159hwRERGRpWDQRERERGQABk1EREREBmDQRERERGQABk1EREREBmDQRERERGSASnVuef/+fezYsQN79uzB8ePHkZSUhLS0NNSqVQve3t54/PHH0bdvX4SEhMDd3d3IRSYiIiKqehXqp+nMmTP4+uuv8ccffyA3NxdlLSqTyWBvb4/x48dj1qxZaNeunVEKXN2xnyYiIiLLYfTOLe/evYu33noLK1asgFKphKenJ3r37o1u3bqhdevWqF27NlxdXZGeno6UlBScPXsWBw4cwN69e3Hv3j3I5XKEhYXh448/hpeXl/H2tBpi0ERERGQ5jB40ubm5ITMzE08++SSmTJmCJ554AtbW5dfsFRYWYvPmzfj111+xZcsWuLm5IS0trQK7UvMwaCIiIrIcRu8RvFOnTjhy5Ag2bdqEoUOHGhQwAaqH6A4fPhybN2/G4cOHERQUZNByRERERJaGz56rYsw0ERERWQ4+e46IiIjIyEwSNKWnp5d5Zx0RERFRdVOpoOns2bP45ptvcOnSJa3xERERaNSoETw8PODl5YXw8HBjlJGIiIjI7CrVpumFF17Ar7/+imvXrqFBgwYAgJSUFDRu3BiZmZnSfHK5HEeOHEGHDh2MV+Jqjm2aiIiILIfJ2zRFR0ejdevWUsAEACtXrkRmZiamTZuG+/fv47fffoNSqcS3335bmU0QERERWZRKBU1JSUlo2LCh1rhdu3bBysoKH374IVxdXfHss8+iQ4cOOHjwoFEKSkRERGROlQqaMjIy4ObmpjXu8OHDCAwMRO3ataVxAQEBuHXr1sOVkIiIiMgCVCpocnV11QqGzp8/j9TUVHTr1k1nXplMVvnSEREREVmISgVNgYGBOHDgAC5fvgwA+OWXXyCTyRAcHKw137Vr1+Dr6/vwpSQiIiIys0oFTdOmTUNBQQEef/xxdOjQAV9++SW8vLzwxBNPSPNkZmbi5MmTaNOmjdEKS0RERGQulQqaRo0ahYULF6KwsBCnTp2Cn58f/vrrL9jZ2UnzrF27FgUFBTrZJyIiIqLq6KGePZefn4+MjAx4enrqTLt+/TrS0tLQpEkTqf8DYj9NRERElqQi12Xrh9mQra2t3oAJABo2bKjTLQERERFRdcUH9hIREREZoNKZpsLCQvz111/Ys2cPEhMTkZubq3c+mUyGPXv2VLqARERERJagUkFTcnIyBg4ciNOnT6O8JlHsp4mIiIhqgkoFTXPnzsWpU6fQtGlTvPjiiwgICICLi4uxy2Zy69atww8//IBjx44hLS0N165dg7+/vzQ9IyMD8+bNw8aNG5GSkoKuXbviu+++Q4sWLcxXaCIiIjKLSgVN//77L7y9vXHo0CF4eHgYu0xVRqFQoFevXhg6dChmzZqlM33q1Km4dOkS1qxZA09PT3z99dcYMGAAzp8/zzsCiYiIHjGV6nLA2dkZgwYNwt9//22KMlW5s2fPom3btlqZppycHLi4uGDLli0ICQkBACiVSvj6+uLDDz/E888/X6ltscsBIiIiy1GR63Kl7p4LCAhATk5O5UpXAatWrcK0adMQFBQEOzs7yGQyhIeHl7nMkSNHEBoaCnd3dzg5OaFLly5Yu3ZthbddWFiIoqIiODg4SOPkcjlsbW0RHR1d4fURERFR9VapoGnKlCmIjIzEzZs3jV0eLfPnz8dPP/2EhIQEg55hFxERge7du2P//v0YPXo0pk+fjjt37mDMmDFYvHhxhbbt4uKCzp074/3338fdu3dRUFCARYsW4ebNm7h9+3Zld4mIiIiqqUoFTTNnzsSTTz6Jvn37YseOHVAqlcYuFwBg2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eUhISKjQ9letWoWcnBx4e3vDwcEB27dvx6BBgyCXs3srIiKiR02lr/5Lly6Fg4MDQkND4eDgAH9/fzRu3FhnaNKkSaUL179/f/j5+Rk073///YcrV65g/PjxCAwMlMa7ublh3rx5yM/Px4oVKyq0/aZNmyI6OhoZGRlITEzE7t27kZaWhkaNGlVoPURERFT9VeruuRs3bqBnz564ceMGhBAoKCjA9evX9c5bVf00RUZGAgAGDhyoM03dkDsqKqpS63ZxcYGLiwuuXr2Ko0ePYuHChaXOq1AoylxXedOJiIjIMlUqaHrjjTdw/fp19OjRA6+++ioCAgLMfgt+XFwcAFUj9ZJ8fHzg7OwszaOWmpqK69ev48qVKwCA2NhY3L9/Hw0bNsT/s3fncVFV///AX8O+b6IsouCCS6bihhooigvmUrmkaCpoWlpqn7SyTNP2LJcy0zRSXLK0XDI3XAGRVFxzS5EEFwRFkGXY4fz+8Df3yzgDDDDjDPh6Ph73oXPvufe+7507c9+cc+ZcJycn7Nu3D0ZGRmjevDkuX76Mt956C4MGDcKAAQPKjUPf54GIiIh0o1pJ08GDB+Hp6YkDBw7A3Nxc2zFVS2ZmJoBHzXHq2NnZSWUUdu7ciQkTJkivBw0aBABYu3YtQkNDkZGRgTlz5uDOnTto0KABxo4dW2EtExEREdVd1Uqa8vLy0Lt3b4NJmKorNDQUoaGh5S4fPXo0Ro8eXaVt5uTkVLhcLpfDxcWlStskIiIi/atW0vTMM88gPT1d27HUiKKG6fHaJIWsrCw4OjrqPA4OVklERFQ3VevXc9OnT0dUVBQuXryo7XiqTdGX6fF+SwCQkpKCnJwctf2diIiIiDRRraRp7NixeOeddxAYGIhVq1aV+8u5JykgIAAAsH//fpVlERERSmWIiIiIqqpazXPGxsbS/994440Ky8pkMhQXF1dnN1XSp08fNG3aFJs2bcKMGTOksZoyMzPxxRdfwMzMDOPHj9d5HERERFQ3VStpqsozfqvxPGBJWFgYYmJiAAAXLlyQ5inGZPL398ekSZMAACYmJggLC0NQUBB69uyJ4OBg2NraYuvWrUhKSsKiRYukh/ESERERVZVM1CSr0bHQ0NAKR/EOCQlReYDvyZMnMX/+fMTGxqKoqAht27bFzJkzMWrUKB1Hq5mqPE2ZiIiIdKsq9+VqJU3R0dEwNjaGn59f9aN8SjFpIiIiMhxVuS9XqyN4r169MG/evOpFR0RERFQLVStpcnR0hLu7u7ZjISIiIjJY1UqafHx81I6HRERERFRXVStpmjFjBuLi4rB7925tx0NERERkkKo15ECHDh0wbdo0DB06FKGhoRg+fDi8vLxgaWmptnzjxo1rFCQRERGRvlXr13OKwS2FEJDJZBXv4AkNbllb8NdzREREhqMq9+Vq1TQ1atSo0mSJiIiIqC6pVtKUmJio5TCIiIiIDFu1OoITERERPW2YNBERERFpQKOkKTk5WSs709Z2iIiIiJ40jZImb29vvP/++8jIyKjWTtLT0/Hee+/B29u7WusTERER6ZtGSVP//v3x9ddfw8PDA2PHjsWBAwdQUFBQ4ToFBQWIiIjA6NGj4eHhgUWLFiEoKEgrQRMRERE9aRqP03Tw4EG8/fbbuHTpEmQyGUxNTeHj44PWrVujXr16sLOzQ1ZWFh48eIDLly/j/PnzKCoqghACzz77LJYsWYK+ffvq+ngMHsdpIiIiMhxVuS9XeXDLAwcOYPny5di/f79SbZNMJkPZTZmbmyMoKAjTpk1jslQGkyYiIiLDodOkSaGgoADHjh3D2bNnkZqaiszMTDg4OKBBgwbo2LEjnnvuOZibm1fvCOowJk1ERESG44kkTVQ9TJqIiIgMR1XuyxyniYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgD1UqaoqOjcezYMW3HQkRERGSwqpU09erVC/PmzdN2LEREREQGq1pJk6OjI9zd3bUdCxEREZHBqlbS5OPjg/j4eG3HQkRERGSwqpU0zZgxA3Fxcdi9e7e243mitm3bhn79+sHJyQkymQyJiYlKy5cuXYo2bdrAxsYGDg4OCAwMxIkTJ/QTLBEREemVSXVW6tChA6ZNm4ahQ4ciNDQUw4cPh5eXFywtLdWWb9y4cY2C1BW5XI6ePXvixRdfxPTp01WWe3p6YsmSJWjevDkKCgrw7bffIigoCAkJCahXr54eIiYiIiJ9kQkhRFVXMjY2BgAIISCTySregUyG4uLi6kX3hFy8eBFt27bFjRs34OXlVW65rKws2NvbIzIyEgEBAdXaV1WepkxERES6VZX7crVqmho1alRpsqQNGzduxNGjR3H69GlcuHABhYWFWLt2LUJDQ8tdJy4uDvPnz0dsbCyKiorQtm1bzJw5EyNHjqxRLIWFhVi9ejUcHR3Rtm3bGm2LiIiIap9qJU2P9/3Rlblz5yIpKQnOzs5wc3NDUlJSheWPHDmCoKAgWFhYIDg4GLa2tti6dStGjRqFW7duYdasWVWO4ejRo3j++eeRl5cHV1dXHDhwAE5OTtU9JCIiIqqlDHpE8LCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06VKnc+fOOHfuHGJjY/H8889j5MiRSEtLq+4hERERUS1l0ElT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX5RgsLS3RvHlzdO3aFWFhYTAyMsLatWurvB0iIiKq3WqUNB09ehQjR46Eh4cHzM3N8eqrr0rLDhw4gDlz5iAlJaXGQWoiMjISANC/f3+VZUFBQQCAqKioGu9HCIGCgoJyl8vl8konIiIiqn2q1acJAD777DPMnz8fZX98V/b/9vb2WLhwITw8PPDGG2/ULEoNKAbb9Pb2Vlnm6uoKGxsblQE509PTcfPmTSQkJAAALl++jIcPH6Jx48ZwcnLC7Nmz8cILL8DDwwPp6elYsWIFbt++jeHDh5cbh6IHPhEREdUt1app2rt3Lz766CM0bNgQW7ZsQWpqqkoZX19f1K9fH7t27apxkJrIzMwE8ChZU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dOwEAycnJCA4ORosWLTBw4ECkpqbi6NGjaN26tQ6PhIiIiAxRtWqavvvuO5ibm2Pv3r1o06ZNueXat29v0I9bCQ0NrXD4gg0bNlR5mzk5ORUul8vlcHFxqfJ2iYiISL+qlTTFxcXB19e3woQJAOrXr4/Y2NhqBVZVihqmx2uTFLKysuDo6KjzODhYJRERUd1UreY5uVwOV1fXSstlZmaitLS0OruoMkVfJnU1WykpKcjJyVHb34mIiIhIE9VKmlxcXHD9+vVKy129ehWNGjWqzi6qTPFYk/3796ssi4iIUCpDREREVFXVSpr8/f1x7tw5HDt2rNwyu3btwvXr19G7d+9qB1cVffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+/BOJhYiIiOqeavVpmjVrFjZv3oxhw4Zh1apVGDx4sNLyffv2YdKkSTA1NcX06dOrHVxYWBhiYmIAABcuXJDmKcZk8vf3x6RJkwAAJiYmCAsLQ1BQEHr27Kn0GJWkpCQsWrSowofxEhEREVVEJsoOrlQF3333HWbOnAng0ajZeXl5sLGxgUwmQ3Z2NoQQWLZsGaZNm1bt4EJDQyscxTskJATh4eFK806ePKn2gb2jRo2qdhzaVJWnKRMREZFuVeW+XO2kCXjUV2j+/PmIi4tTGtiyXbt2+Oyzz1RqoIhJExERkSF5YkmTwoMHD3Djxg2UlpaiUaNGcHNzq+km6ywmTURERIajKvflaj9Gpax69eqhXr162tgUERERkUGq1q/nwsPDcfv2bW3HQkRERGSwqtU8Z2RkBJlMBm9vb/Tt2xd9+/ZFYGAg7OzsdBFjncLmOSIiIsOh8z5NEydOxOHDh3Hz5s1HG5HJYGRkhE6dOklJlJ+fH0xNTat5CHUXkyYiIiLD8cQ6gsfHx+PgwYM4cOAAIiMj8fDhw0cblclgaWkJf39/9OvXD7NmzaruLuocJk1ERESG44n/eg4AhBA4deoUDh48iIMHD+LYsWMoLCyEkZERiouLtbGLOoFJExERkeGoyn25Wh3B1SkqKkJ2djays7ORlZUlJUpaysmIiIiI9KpGQw6cO3cOBw4cwMGDBxETE4P8/HwIIWBnZ4dBgwZJ/ZuIiIiIartqJU3BwcE4fPgwHjx4ACEETE1N0a1bNylJ8vX1hbGxsbZjJSIiItKbaiVNW7ZsgUwmQ7t27TB//nz0798fVlZW2o6NiIiIyGBUqyO4vb09srOzATx6WG+PHj3Qr18/9O3bF+3bt9d6kHUJO4ITEREZDp0/RiU9PR0nT56Ufil35MgR7N+/HzKZDM7OzujTpw/69euHfv36wcPDo3pHQURERGRAtDLkQG5uLiIjI3Hw4EEcOnQIFy9elJa1aNECV65cqeku6gzWNBERERkOvYzTpHD+/Hn88ssvWL58OfLz8yGTyVBSUqLNXdRqTJqIiIgMh86b58q6ffu2NOzAoUOHcP/+fQCQflXXvXv3mu6CiIiISO+qlTTt2LFD6s8UHx8P4FGSJJPJ8Oyzz0pDDwQEBPBXdURERFQnVCtpGjZsmPT/Ro0aSUlSnz590KBBA60FR0RERGQoqpU0vfTSS9IQA97e3tqOiYiIiMjgVCtp2rZtm7bjICIiIjJoWntgLxEREVFdVqOk6cqVK5gyZQpatmwJGxsb2NjYoGXLlpg6dSrHZiIiIqI6pdrjNIWHh2PKlCkoKiqCuk2YmZlh1apVCAkJqXGQdQnHaSIiIjIcVbkvV6um6fTp05g8eTIKCwsxaNAgbN++Hf/88w/++ecf7NixA0OGDEFhYSEmT56MU6dOVe8oiIiIiAxItWqagoOD8fvvvyMsLAwTJkxQWyY8PBwTJ07EqFGj8Ouvv9Y40LqCNU1ERESGQ+ePUWnYsCFcXV1x+vTpCst17twZd+/exZ07d6q6izqLSRMREZHh0HnzXFpaGlq3bl1puVatWiEtLa06uyAiIiIyKNVKmhwcHHDz5s1Ky928eRP29vbV2QURERGRQalW0tSlSxfExsbi8OHD5ZY5fPgwjh07hq5du1Y7OH3z8vKCTCZTmb755ht9h0ZERERPWLWSpunTp6O0tBRDhgzBe++9h0uXLiE3Nxe5ubm4ePEi3nnnHQwZMkQqW1vFxcXh7t270rRp0yYAys/eIyIioqdDtcdpmjdvHj7//HPIZDK1y4UQmDdvHj7++OMaBWhIXnnlFdy+fRtRUVHV3gY7ghMRERkOnXcEB4BPP/0Ue/bsQe/evWFubg4hBIQQMDMzQ2BgIPbs2aPzhGnjxo14/fXX0blzZ5ibm0MmkyE8PLzCdeLi4jBw4EA4ODjA2toa3bp1w5YtWyrdV2ZmJrZv317uEAtERERUt1Xrgb0KAwYMwIABA1BSUoIHDx4AAOrVqwdjY2OtBFeZuXPnIikpCc7OznBzc0NSUlKF5Y8cOYKgoCBYWFggODgYtra22Lp1K0aNGoVbt25h1qxZ5a7766+/wtjYGC+//LK2D4OIiIhqgSo1z12/fh3btm1DYmIizM3N4ePjg5EjR8LS0lKXMZbr4MGD8Pb2hqenJ7766it88MEHWLt2LUJDQ1XKFhcXo1WrVrh9+zaOHz8OHx8fAI9qkHx9fZGYmIhr167B09NT7b58fX3Rtm1b/PzzzzWKmc1zREREhkMnzXPffvstnnnmGXzwwQdYtWoVli1bhokTJ6Jly5a4ePFizaOuhr59+5ab5Dzu8OHDSEhIwJgxY6SECQDs7e0xZ84cFBYWYt26dWrXvXTpEuLi4tg0R0RE9BTTqHkuJiYGs2bNghAC1tbWaNmyJbKysvDff//h9u3bGD58OK5cuQIjo2p3kdK5yMhIAED//v1VlgUFBQFAuR2816xZA29vb/j7+1e6H7lcXqPlREREZJg0ynKWL18OIQRCQkKQkpKCU6dO4dq1azhz5gyaNWuG69evY9++fbqOtUbi4+MBAN7e3irLXF1dYWNjI5Upq7i4GBs3btS4lsnGxqbCycXFpWYHQkRERHqhUdL0999/w8PDA6tWrVJq62vXrh2+++47CCFw/PhxnQWpDZmZmQBQ7gjldnZ2Upmydu/ejbS0NIwfP16n8REREZFh06h5LjU1FQMHDoSZmZnKMkWT1b1797QbmYF48cUXUVJSonH5nJycCpfL5XLWNhEREdVCGiVNhYWFcHBwULvMzs5OKmPIFDVM6mqTACArKwuOjo413g9/DUdERFQ3GW7PbS1T9GVS128pJSUFOTk5avs7EREREQFVGNzy+vXrWL9+fbWWG0J/oICAAHz55ZfYv38/goODlZZFRERIZYiIiIjU0WhwSyMjo3KfMVfpDmQyFBcXV2vdqtBkcMuWLVvizp075Q5uefXqVXh5eek0Tg5uSUREZDiqcl/WqKapcePG1U6adCksLAwxMTEAgAsXLkjzFGMy+fv7Y9KkSQAAExMThIWFISgoCD179lR6jEpSUhIWLVqk84SJiIiIaq8qPUbF0ISGhpY7ijcAhISEqDzA9+TJk5g/fz5iY2NRVFSEtm3bYubMmRg1apSOo32ENU1ERESGoyr35VqdNNVGTJqIiIgMh06ePUdERET0NGPSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk2V2LZtG/r16wcnJyfIZDIkJibqOyQiIiLSAyZNlZDL5ejZsyc++eQTfYdCREREemSi7wAM3bhx4wAAFy9e1HMkREREpE+1vqZp48aNeP3119G5c2eYm5tDJpMhPDy8wnXi4uIwcOBAODg4wNraGt26dcOWLVueTMBERERUK9X6mqa5c+ciKSkJzs7OcHNzQ1JSUoXljxw5gqCgIFhYWCA4OBi2trbYunUrRo0ahVu3bmHWrFlPKHIiIiKqTWp9TVNYWBgSExNx//59TJkypcKyxcXFmDx5MoyMjBAdHY3Vq1dj8eLFOH/+PFq0aIE5c+ZUmnQRERHR06nWJ019+/aFp6enRmUPHz6MhIQEjBkzBj4+PtJ8e3t7zJkzB4WFhVi3bp2OIiUiIqLarNY3z1VFZGQkAKB///4qy4KCggAAUVFRNdqHXC6v0XIiIiIyTE9V0hQfHw8A8Pb2Vlnm6uoKGxsbqYxCeno6bt68iYSEBADA5cuX8fDhQzRu3BhOTk4q27GxsdFB5ERERKRvtb55rioyMzMBPGqOU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dO3UbLBERERmUp6qmqTpCQ0MRGhqqcfmcnJwKl8vlcri4uNQwKiIiInrSnqqkSVHD9HhtkkJWVhYcHR1rtA9ra+sarU9ERESG6alqnlP0ZXq83xIApKSkICcnR21/JyIiIqKnKmkKCAgAAOzfv19lWUREhFIZIiIiorKeqqSpT58+aNq0KTZt2oRz585J8zMzM/HFF1/AzMwM48eP11+AREREZLBqfZ+msLAwxMTEAAAuXLggzVOMyeTv749JkyYBAExMTBAWFoagoCD07NlT6TEqSUlJWLRoEby8vPRxGERERGTgZEIIoe8gaiI0NLTCUbxDQkJUHuB78uRJzJ8/H7GxsSgqKkLbtm0xc+ZMjBo1SsfRPvr1nGIsp5ycHHYcJyIi0qOq3JdrfdJU2zBpIiIiMhxVuS8/VX2aiIiIiKqLSRMZrDfffBNubm7YvXu3vkMhIiJi89yTxuY5zdy8eROenp4AAD8/P6mzPxERkTaxeY5qvVOnTkn/P3v2LIqLi/UYDREREZMmMlBlk6bc3FxcuXJFj9EQERExaSIDdfr0aaXXZZMoIiIifWDSRAZHCKGSJDFpIiIifWPSRAYnMTER6enpSvOYNBERkb4xaSKDoy5BOnfuHAoLC/UQDRER0SNMmsjglE2anJ2dAQCFhYW4ePGivkIiIiJi0kSGp2zSNGHCBLXziYiInjQmTWRQSktLpV/ONWzYEEOGDJGWMWkiIiJ9YtJEBiUhIQGZmZkAgM6dO6NDhw4wMnp0mcbFxekzNCIiesoxaSKDUrY2qXPnzrCxsUHr1q0BABcvXkReXp6+QiMioqcckyYyKGWTpk6dOgF4lDwBQHFxMf755x+9xEVERMSkiQyKuqSpS5cuapcTERE9SUyayGCUlJTgzJkzAIDGjRujQYMGAP6vpglgvyYiItIfE30HQE9WSUkJbt68iezsbDRt2hQ2Njb6Dkly7do15OTkAFBOlNq1awcTExMUFxfj1KlTKCwsxJ07d5CTk4OWLVvCzMxMXyGTluXl5SEmJgZxcXFo2LAh/P390bRpU8hkMn2HRnVQcXExhBAwNTXVdyhak5ubi9LSUpibm8PExISfHS1j0lRHTJs2DQcOHIC9vT3s7Oxgb28PKysrFBUVoaioCPn5+UhMTMT169eVRtZu2LAhWrZsCWtra5SUlKCkpARmZmZo2rQpmjdvjubNm8PBwQEmJiYwMTHB/fv38ffffyM2Nhbnzp1DgwYNEBgYiMDAQLRo0QIXL17E6dOnceHCBVhZWcHb2xve3t5wcnJCQkICrl69iuvXryMnJwfFxcUoKSkBAFhYWEAul0txlU2aLC0t8eyzz+LcuXO4dOkSLCwsIISQ1uvSpQuee+45uLu7o6ioCIWFhSgpKYGlpSWsrKxgZWWFkpIS5OTkICcnB3K5HLm5ucjLy0NeXh6MjIxgZWUFS0tLWFpawtjYGEZGRtKv9hQU+xRCKE2lpaUoLi5Geno60tLS8ODBA2RlZSE7Oxs5OTnIy8uDubm5tH07Ozs4OzvD2dkZ9vb2yMnJQWZmJh4+fCi9NzKZDCYmJqhfvz7c3d3h5uaG4uJiJCUlITExESkpKbCwsICdnR3s7Owgk8mQlZWFrKwsyOVy2NnZoV69eqhXrx5sbGyk4xFCIDs7G5mZmcjMzIRcLpfOQ35+PgoLC6VrxsLCAo0bN4anpycaNWoEmUyGwsJCFBQUQC6XS9vIycmBhYUFbG1tYWtrCysrK5iZmUmTra0t7O3t4eDgAAC4d+8eUlNTkZaWBiMjI6ncjRs3EB0djfz8fKXz7ubmho4dO8LGxkZ6n0pLS6U4jYyM4OTkJB2vpaUlTExMYGpqisLCQty9exfJyclITU2FsbExbGxsYG1tDZlMhvv37+PevXtIS0uDiYkJbGxslCZbW1vY2NjAwsICZmZmMDU1hYnJ/31tKv4IuXr1Kq5evYoHDx7A1dUVHh4eaNiwoRRDYWEhSktLpXNkY2OD9PR03Lp1Czdv3sSDBw9gaWkJa2trWFlZwdTUVOk9y8/PR35+PvLy8lBaWgojIyPIZDKYmZmhQYMGcHNzg5ubGwBI70t+fj7s7e3h6OgIR0dH2NjYwNzcHGZmZhBC4M6dO7h16xZu376NkpIS6XgVn0XFNWxubo4GDRqgQYMGcHR0RH5+PuRyOeRyuXQ+FcekuMYtLCyQn5+PtLQ03L9/H+np6dLnruyUl5eHgoICmJubS++ti4sLnnnmGTzzzDNo1qwZHj58iOTkZNy9exe3bt2SptTUVJiZmcHa2hrW1tYQQkifgfz8fDRq1AgtW7ZEy5YtYWtri9TUVKSkpCAlJQV3797F3bt3cf/+fchkMnh4eKBp06bw8PBARkYGbt++jVu3biE/Px8ODg7SOXR3d4eHhwcaNWoES0tLPHjwAA8ePEBmZiYaNWqEdu3aoW3btqhfv760r5SUFNy7d0+a8vPzpevA0tISKSkpuHHjBhITE/Hw4UOYm5vD3NwcFhYW8PT0RJs2bfDMM8/A2dkZycnJuHXrFpKTk1FSUgJjY2MYGxsjOzsbCQkJSEhIwP3796XrUyaTwdbWFg0bNoSHhwc8PDxgb28PCwsLWFhYwMjISHovFN8Fivel7DVhY2ODvLw8ZGRkICMjAwUFBXBycoKzs7P0uXNycoKTkxPMzMyk83fnzh0UFxfD1NRU7WRrawsHBwc4ODjA1NRU6ZrMy8uTvnNLS0ul+5NiWrVqFdq2bVuNu2UNCXqicnJyBAABQOTk5Ghtu4MGDZK2WxemiIgIpeN77bXX9B4TJ06cOHEyjOno0aNau39W5b7MmqY6wsLCAvb29sjKypKy88eZm5ujefPmaNGiBezs7BAfHy/9dVwdTk5OePjwIUpLS6u1vrGxMUxMTCCEUKr96tatG3r16qVUdtasWTh27BjS09PRqFEjNG7cGKampjhx4gT++++/au1fl0xMTKS/Ji0sLFBYWCj9FZednV3j7ZuZmZX7LD5LS8sqDc1gZmYm1Q4oalNMTU2Rk5OD5OTkcq8nBVNTUxQVFVUp/vJ4eHigf//+6NmzJ27duoWYmBjExsZq5ZzpmqmpKZydnXH//n0UFxdXaV0HBwepNqkiJiYmMDY2VqrhrM0UNV8FBQVVfrZkvXr1UFxcjNzcXOn6U9S+mpqaVnjtmpqawtXVFe7u7igpKcGNGzeUvgdNTU3RsGFDWFlZ4eHDh8jIyND5cCeWlpZwdnZWqs2t6ueqYcOGaNq0qXRO8/Pz8fDhQ9y5c6fODddS3ftOTclEZd+IpFVyuVzqR5STkwNra2utbr+0tFRqOsnLy1OqCq1Xrx6MjY1V1snIyEBRUZFU1SuXy3H9+nVcv34d//33H3Jzc1FcXCw12XTp0gXdu3dHkyZNkJmZiejoaBw+fBh37txBmzZt0LFjR/j4+CA/Px/x8fG4fv06MjIy0LRpU7Rs2RItWrSAo6OjStz5+fkoKCiAg4NDldrh7969i5MnT0Iul0s3fSMjI6kZITc3V6npRdEEomhKKC0tVaqWLi0tlaqDH49D8Vomk0mTkZERjI2N4ejoKFVXW1lZlRtvcXExMjIypGp9GxsbODg4SNXm4v83+xUVFSE1NVVqXjI2Noanpyc8PT1Rr149CCGQk5MjJcr29vZSU1xhYSHS09Px4MED5ObmSjdZIYTUXGZvbw9ra2u114RCYWGhVM1uZGQkNR1YWlpK2zA3N0dJSQnkcjmys7Olm1hhYSHy8/ORnZ2Nhw8fIjMzE6WlpXBxcUGDBg1Qv359pSY/GxsbNGvWTOWcl5SUIC0tTek9MjIykq7r4uJiqZkkPT0dBQUF0vVqYmIi3RxdXV2lc5aTk4OSkhIpDsX5lMvlyMnJkZpWs7OzkZ2dLTVbFhYWqiQqbm5uaNmyJTw9PWFiYoLS0lLcu3dPakJRND8CUNqmvb09GjdujIYNG8Lc3Fz6HCg+b4r3C4DUnPL4e1VcXIx79+7h7t27SElJgUwmU3pfMjMzpSaV3NxcKTkpLS2Fu7s7GjVqBA8PD5iZmUnnJS8vT6lZpqCgAPfu3cP9+/fx8OFDWFhYSJ+h0tJS6XgU6yomc3Nz1K9fXzq/iuZVxWfPyspK6XhKSkqQm5uLmzdv4vLly7h8+TISExPh5OQEd3d3aWrUqJHSOVNcpzKZTKlvUn5+Pq5fv45///0X+fn5cHV1haurK1xcXFCvXj2V5vesrCzcuXMHTk5OqF+/vsryvLw8qXns1q1bKCgokD7vNjY2uH79Oi5cuIALFy4gKytL2p+bm5t0zTdo0ACWlpbSOZPL5ahfvz6aNGmCBg0aKF37paWl0rm4dOkSsrKypGY2d3d36XOn6L/k5eUFS0tLtZ9jIYTU7CiXy6UEvaSkRHovy743im4KZT8LFhYWUjOlmZmZ9B2WlpYmfdcoPn9lmwMtLCykpvTHp+zsbKUmP3d3dzRu3BiNGjWCra0tgP/7zlXcnxSToolaG6pyX2bS9ITpOmkiIiIizVXlvswhB4iIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wGfPPWFlB2CXy+V6jISIiIjK3osre0gKk6YnLDc3V/q/i4uLHiMhIiKisnJzc6VHqqjD5jkiIiIiDfCBvU9YaWkp0tLSAABWVlbVfkqzXC6XaqpSU1P54N//j+elfDw36vG8qMfzoh7Pi3q1+bwIIaRWIGdnZxgZlV+fxOa5J8zIyAgNGjTQ6jatra1r1QX6pPC8lI/nRj2eF/V4XtTjeVGvNp6XiprkymLzHBEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGOLglERERkQZY00RERESkASZNRERERBpg0kRERESkASZNRERERBpg0mRg4uLiMHDgQDg4OMDa2hrdunXDli1bqrSNgoICfPLJJ/D29oaFhQXc3d3x2muv4d69ezqKWnfu3LmDb7/9Fv3790fjxo1hZmYGV1dXDB8+HCdOnNB4O5GRkZDJZOVO4eHhujsIHfLy8ir3mHr16lWlbf3yyy/w9fWFtbU1HB0dMXjwYJw5c0Y3getQeHh4he+1TCZDnz59Kt1Obb1mNm7ciNdffx2dO3eGubl5pbFmZWVh5syZ8PT0hLm5Oby8vPDuu+8iJyenyvuOiIhAQEAAbG1tYWdnh969e+PQoUM1OBrt0fS8FBUVYevWrQgJCUHr1q1hY2MDW1tbdO3aFStXrkRJSUmV9qvNz6iuVOWaWbBgQYWfi8TExCrt+9q1axg5ciScnZ1haWmJ9u3bY+XKlTDU36iZ6DsA+j9HjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrEq3UVpaihdffBERERHo1q0bhg8fjvj4eISFheHQoUM4fvw46tev/wSORju+//57LFy4EM2aNUP//v1Rv359xMfHY8eOHdixYwc2bdqEUaNGaby9gIAAtV9UPj4+2gv6CbO3t8f//vc/lfleXl4ab+Pzzz/H3Llz4enpiSlTpiA7Oxu//fYbnnvuORw6dAh+fn7aC1jHfHx8MH/+fLXL/vjjD1y6dAlBQUEab6+2XTNz585FUlISnJ2d4ebmhqSkpHLLyuVyBAQE4Ny5c+jfvz9Gjx6Ns2fPYtGiRYiKikJ0dDQsLCw02u/GjRsxbtw41K9fH6GhoQCAzZs3o1+/ftiyZQtGjBihjcOrNk3PS0JCAkaMGAEbGxv06dMHL7zwAjIzM/HXX3/hjTfewJ49e7Bz507IZDKN962Nz6guVeWaUQgJCVEbv4ODg8b7vXz5Mp577jnk5eVh5MiRcHd3x+7du/HGG2/g8uXL+P7776twFE+IIINQVFQkmjVrJszNzcXZs2el+Q8fPhQtWrQQZmZmIjExsdLtrFmzRgAQo0ePFqWlpdL8lStXCgDitdde00X4OrN161YRGRmpMj86OlqYmpoKR0dHkZ+fX+l2jhw5IgCI+fPn6yBK/fH09BSenp412sa1a9eEiYmJaNGihXj48KE0/+zZs8Lc3Fy0bt1alJSU1DBS/SsoKBD16tUTJiYmIiUlpdLytfWaOXDggPRd8eWXXwoAYu3atWrLfvTRRwKAmD17ttL82bNnCwDiiy++0Gif6enpwsHBQTg7O4tbt25J82/duiWcnZ2Fs7OzyMrKqt4BaYmm5+X27dvihx9+EDk5OUrzc3JyROfOnQUAsWXLFo33q43PqK5V5ZqZP3++ACCOHDlS4/327NlTABB79uyR5hUUFIgePXoIACI2NrbG+9A2Ns8ZiMOHDyMhIQFjxoxR+gvW3t4ec+bMQWFhIdatW1fpdn766ScAwJdffqn0l9Drr7+Opk2b4pdffkFeXp7W49eVYcOGISAgQGV+jx490Lt3b2RkZODChQt6iKzuWLt2LYqLi/Hhhx/C3t5emu/j44PRo0fjypUriImJ0WOE2rFjxw48ePAAgwcPhouLi77D0Zm+ffvC09Oz0nJCCISFhcHGxgbz5s1TWjZv3jzY2NggLCxMo33+/vvvePjwIaZPnw4PDw9pvoeHB6ZNm4a0tDRs3769ageiZZqel4YNG+KNN96AtbW10nxra2vMnDkTABAVFaWTGPVF03OjTdeuXUN0dDR69+6N559/XppvZmaGTz/9FMD/3c8MCZvnDERkZCQAoH///irLFE0JlX1Q8/PzceLECbRs2VLlAyCTydCvXz+sWrUKp06dQo8ePbQTuB6ZmpoCAExMNL+M4+Pj8e233yIvLw8eHh4IDAxEw4YNdRXiE1FQUIDw8HAkJyfDzs4OXbp0QdeuXTVev7JrLzw8HFFRUejZs6e2QtYLRQIwadKkKq1XF68Z4NFxJScnIygoSG2C4Ofnh4iICNy6dQuNGjWqcFuVXUMLFixAVFQUxo8fr7X49aE63zlAzT+jhig6OhonTpyAkZERvL290bdvX9jY2Gi8fkXXjL+/P6ytrQ0yOWXSZCDi4+MBAN7e3irLXF1dYWNjI5UpT0JCAkpLS9Vuo+y24+Pja33SdPPmTRw8eBBubm5o27atxutt2rQJmzZtkl6bmJhg+vTp+Oabb2BsbKyLUHUuJSUFEyZMUJrXpUsX/Prrr2jWrFml68fHx8PGxgaurq4qy8peM7VZUlISDh06BA8PDwwYMKBK69bFawao+DtHMT8iIgLx8fGVJk0VbauuXEMAsGbNGgDqb/QVqeln1BA93m/QwcEB3333ncaJcUXXjLGxMZo0aYLLly+juLi4ykmqLrF5zkBkZmYCgFLzSFl2dnZSmZpso2y52qqoqAjjxo1DQUEBFi5cqNGNq379+vjqq69w8eJF5OTkIDU1FTt27EDz5s2xdOlSvPfee08gcu2bMGECDh06hNTUVMjlcpw9exbjxo1DXFwc+vTpg+zs7Eq3kZmZWeevmbVr16K0tBShoaEaJzp19ZpR0Ob3RUXbqivX0OrVq7F3714EBgZi4MCBGq+njc+oIWnfvj3WrFmD//77D3l5ebhx4wa+//57yGQyhIaGYufOnRptR5Prr7S01ODOj+Gkb0QaUNz4oqOjMXnyZIwbN06j9dq0aYM2bdpIr62trfHiiy+ia9euaNeuHZYtW4bZs2ejQYMGugpdJx7/a8/Hxwfr168HAGzYsAE//fST1A/jaVVaWoq1a9dCJpNh4sSJGq9XV68Zqrpdu3Zh2rRp8PT0xMaNG6u0bl37jA4dOlTptZeXF6ZNm4bWrVujX79+mDt3Ll544QU9Rad7rGkyEIpsu7y/xrKyssrNyKuyjbLlapvS0lJMnDgRmzZtwtixY/Hjjz/WeJuurq548cUXUVxcXKVxnwzd66+/DgA4duxYpWXt7e3r7DUDAAcPHsTNmzcRGBiIJk2a1Hh7deWa0eb3RUXbqu3X0J49ezBixAi4uLjg8OHDcHNz08p2q/IZrQ369OmDZs2a4cKFC9J7XhFNrj+ZTAZbW1utxllTTJoMREXt/ikpKcjJySm374FC06ZNYWRkVG7fgcr6MBiy0tJSTJgwAevWrcPo0aMRHh4OIyPtXL7Ozs4AHo1ZU1dU5Zi8vb2Rk5ODlJQUlWW1+ZpRqG4H8IrUhWumsr5GVXnvK9pWbb6Gdu/ejWHDhsHZ2RlHjhxB06ZNtbbtunANPU5xTLm5uZWWreiaKSkpwY0bN9CkSROD6s8EMGkyGIqf1e/fv19lWUREhFKZ8lhaWsLX1xdXr15VGZxMCIEDBw7A2toanTt31lLUT4YiYVq/fj1GjRqFDRs2aLUDrqK2wFAGmtOGqhyTNq49Q/XgwQP8+eefcHJyUmlWqIm6cM14e3vD3d0dx44dU7lxy+VyHDt2DE2aNKm0EzhQN6+h3bt3Y/jw4XBycsKRI0fQvHlzrW6/LlxDZcnlcly6dAnW1tZS8lSRiq6ZmJgYaeBVg6PvgaLokaKiItG0adMKB7e8ceOGND85OVlcuXJFaTBCIere4JYlJSUiJCREABAvv/yyKCoqqrD8/fv3xZUrV8T9+/eV5p86dUpt+W+//VYAEN7e3qK4uFhrcT8JV65cEXK5XO18V1dXAUBERUVJ8x8+fCiuXLkikpOTlcpfvXq1zg5uuXTpUgFAzJgxo9wydfma0fbglnK5XFy5ckUkJSUpzU9PTxf29vYGPbhlWZWdlz179ghzc3Ph6uoq/v3330q3V1hYKK5cuSKuX7+uNL+qn1FDUNG5ycrKElevXlWZn5ubK0aPHi0AiAkTJqgsv3Llirhy5YrK/MoGtzx27FjNDkYHZEIY6ANenkLlPUYlKSkJixYtUnqMSmhoKNatW4e1a9dKjywAHtXKDBw4UHqMSkBAAK5fv45t27bBy8sLJ06cqFWPUVmwYAE+/vhj2NjY4K233lJbVfvSSy9JA4Iqys+fPx8LFiyQynh5ecHU1BSdO3eGh4cH5HI5jh8/jrNnz8LBwQERERHw9fV9QkelHQsWLMCSJUvQs2dPeHp6wtraGteuXcOePXtQVFSEDz74AF988YVUPjw8HBMmTEBISIjKc6XKPkZl+PDh0mNUCgsLa91jVMpq27YtLl68iH/++afcoSnq2jUTFhYmDUZ64cIFnDlzBn5+flJNib+/v9RUKZfL4efnh/Pnz6N///7o2LEjzpw5g/3796NLly6IioqCpaWltO3IyEj07t0bAQEB0jg7CmUfo6J4tNHmzZuRlpaGzZs34+WXX34CR18+Tc/Lv//+Cx8fHxQUFCA4OBgtW7ZU2ZaXl5fS925iYiKaNGkCT09PpWevVfUzqi+anpvExEQ0bdoUXbp0QevWreHq6orU1FQcPHgQt2/fRtu2bXHkyBHUq1dPafuKgZYfTzcuXboEPz8/5OXlYdSoUXBzc8Pu3btx6dIlTJs2jY9RocqdOHFCDBgwQNjZ2QlLS0vh6+srfvvtN5VyitoXdX8N5OfniwULFohmzZoJMzMz4erqKiZNmqTRoyMMjeI4K5rKngPFEP+PP/riq6++Er179xbu7u7C3NxcWFpailatWon//e9/Sn8Z1yaRkZFi5MiRwtvbW9jZ2QkTExPh6uoqXnzxRREREaFSfu3atQKACAkJUbu9jRs3is6dOwtLS0thb28vBg4cKE6fPq3jo9CdEydOCADC19e3wnJ17Zqp7DPz+Pv/8OFD8b///U80atRImJqaisaNG4tZs2aprRlSPFomICBA7b737t0revToIaytrYWNjY0ICAgQBw4c0MFRVp2m50VxjBVNjx//jRs3BACVx6VU9TOqL5qem8zMTPHmm2+KLl26iPr16wsTExNha2srfH19xddffy1yc3PVbl+xHXX+/fdfMWLECOHk5CTMzc1F27ZtxQ8//KDUUmJIWNNEREREpAF2BCciIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmoqeUl5cXZDJZhdO3336r7zBJS86ePQtjY2NMnz5daX5kZKT0flckMTFRKlf2+WpVlZmZiXr16qFr164qzyIjMnSqTz8loqdK2QdzPu6ZZ555wtGQrkyfPh2WlpaYN2+eXuOwt7fHBx98gHfffRfr169HSEiIXuMhqgomTURPuUmTJik9sZ3qnj/++APHjh3Du+++iwYNGug7HEybNg1ff/01PvjgAwQHB8Pc3FzfIRFphM1zRER13NKlSwEAr776qp4jecTCwgJjxozB3bt3sXnzZn2HQ6QxJk1EVClF/6fExET8+eefCAwMhJOTE2QyGSIjI6VyGRkZmD9/Pnx8fGBrawsrKyu0bdsWn332GXJzc9Vuu7i4GN9++y3atm0LCwsL1K9fH8OHD8eFCxcQHh4OmUymUhO2YMECyGQyLFiwQO02Ff10evXqpXZ5cnIyZs6cidatW8PKygq2trbo0qULli9fjuLiYpXyoaGhkMlkCA8Px40bNzBu3Di4urrC3NwczZo1w9y5c1FQUFDu+Tt9+jRCQkLQpEkTWFhYwMnJCe3bt8e7776LpKQkAMDatWshk8kQFBRU7naSk5NhamoKS0tLPHjwoNxyZZ09exaxsbHo1q0bWrZsqdE6VaF4LyqbHqd4T3/44Qetx0SkK2yeIyKNLV68GMuXL0fnzp0xYMAAJCcnw9jYGABw+fJlDBgwALdu3YKbmxv8/f1hamqKkydPYt68edi6dSsiIyNhb28vba+0tBQvv/wyduzYATMzM/Tq1QuOjo44ceIEfH19MXHiRK0fQ3R0NF566SVkZGTAy8sL/fr1Q0FBAU6ePInp06fjr7/+wq5du2Bqaqqy7rlz5/DWW2/B0dERAQEBSE9Px7Fjx/D555/j0qVL2L59u8o633zzDd5//32UlpaiRYsWePHFF5GXl4fr169j0aJFaNOmDUJDQzFmzBjMnj0bBw4cwLVr19CiRQuVba1atQrFxcUYN24c6tWrp9Hx7tixAwDQt2/fqp0oDfn4+JTbL+nq1as4fvw4jIxU/z738fFB/fr1cfLkSdy9exdubm46iY9IqwQRPZU8PT0FALF27VqNyxobG4s///xTZXlubq5o1qyZACDmzp0rCgoKpGVyuVyMHj1aABATJkxQWm/58uUCgHBxcRGXL1+W5hcVFYmpU6cKAAKACAkJUVpv/vz5AoCYP3++2niPHDkiAIiAgACl+Xfv3hX16tUTMplMrFixQpSUlEjL0tLSRGBgoAAgPv74Y6X1QkJCpFg+/PBDUVxcLC27cOGCsLa2FgBEbGys0np//vmnACAsLCzE5s2bVeK8dOmS0nF/+OGHAoCYMWOGStnCwkLh6uoqAIjTp0+rPW51/P39BQCxe/dutcsV56qy28GNGzekcjdu3Kh0v0lJScLNzU0AEMuXL1db5oUXXhAAxIYNGyrdHpEhYNJE9JRSJELlTWUTDkXZiRMnqt3WypUrBQAxePBgtcuzs7NFgwYNhImJiUhPT5fmN2/eXAAQK1euVFknLy9PShK0lTTNnj1bABDTpk1Tu97t27eFqampqF+/vigtLZXmK5KmTp06Kc1XmDJligAgPvnkE6X5Pj4+AoBYvHix2v097s6dO8LU1FTY29uLnJwcpWW//vqrACC6d++u0bYUFAndf//9p3Z52aRJ06mypCkjI0M888wzAoB49913yy33wQcfCADi7bffrtIxEekLm+eInnLlDTnQqlUrlXkjRoxQu43du3cDAEaNGqV2uY2NDTp37ow9e/YgLi4O/fv3x507d3D9+nUAwNixY1XWsbCwwMiRI7Fs2TKNj6UylcXZsGFDeHt74/Lly4iPj1dpIhs8eLDa/jmtW7cGANy5c0eal5KSgnPnzsHIyEjjDtju7u4YMWIEfv31V2zYsAFTpkyRlin6/kybNk2jbQGAXC6HXC4HAI2a8yr6+X9OTg62bt1a6TYKCwvx0ksv4fLlywgODsbChQvLLauIKTU1tdLtEhkCJk1ET7mqDDng5eWldv5///0HABg3bhzGjRtX4Tbu378PALh9+zYAwNnZGTY2NmrLNmnSRKO4NKWIs0ePHpWWvX//vkrS1LhxY7Vl7ezsAAD5+fnSvJs3bwIA3NzclPpxVWbGjBn49ddf8cMPP0hJ0z///IOYmBi4uLiUm7iqk5mZKf3f1ta20vLh4eHlLktMTKw0aRJCIDQ0FFFRUQgICJA68pdHcd4yMjIqjY3IEDBpIiKNWVpaqp1fWloKABgwYABcXFwq3Ianp6fW4yovnvLmjxgxAtbW1hVuQ13NjLoOzdrWrVs3+Pr64uTJk1Lyoahleu2112BmZqbxthwcHKT/Z2dnS0mKrrz//vv49ddf8cwzz2DHjh2Vjr+kSOocHR11GheRtjBpIqIaa9SoEf7991+8+uqrGteENGzYEACQlpaGnJwctbVN5T2uQ5E4ZGdnq12u+Bm/ujjj4+Mxe/ZsdO7cWaM4q0tRK3X37l1kZmZWubZp7NixWL58Odq3b49ffvkFJiYmSs11mrCysoK1tTXkcjkePHig06RpxYoV+Prrr+Hu7o69e/cqJWzlUQybUFmiTWQoOE4TEdXY888/DwDYsmWLxut4eHigadOmAIBNmzapLC8oKMDvv/+udl1FwnXlyhW1yxV9l7QRZ3W5urqiffv2KC0txZo1a6q07siRI+Hm5oYdO3bg888/h1wux9ChQ+Hu7l7lODp27Ajg0ZAQurJz507MmDEDtra22L17d7nNmI+7ePEiAKBTp046i41Im5g0EVGNvfbaa/D09MTvv/+O2bNnq60BSklJwU8//aQ073//+x+ARwMk/vvvv9L8kpISvPPOO0hOTla7v8DAQBgZGSEiIgJRUVHSfCEEli1bVm7fm3fffRcODg5YsmQJFi9ejMLCQpUyN27cwMaNGys9Zk3Mnz8fAPDhhx+qjeny5ctqEz9TU1NMnToVxcXFWLRoEYCqdQAvq3fv3gCAv//+u1rrV+bkyZMYPXo0jIyM8Mcff8DHx0fjdRUxBQYG6iQ2Im1j0kRENWZtbY3du3fDy8sLX3/9NRo3boyAgAC88sorGDp0KNq0aQN3d3eVh8W++eabGDJkCO7evYv27dtjwIABGD16NLy9vREWFoapU6eq3V+jRo0wffp0lJaWok+fPujduzeGDx8Ob29vvPPOO3j//ffVrufh4YE///wTjo6OeOedd9CoUSP06dMHY8eOxZAhQ9C8eXM0bdoUy5cv18p5GTp0KD7//HPk5+djxIgRaN26NYKDg/Hiiy+iTZs2aNOmDU6cOKF23ddff13qE9SuXTv07NmzWjG89NJLAIADBw5Ua/3KfPDBB8jNzYWHhwc2bdqE0NBQtdPjzp49iwcPHsDX15cDW1KtwT5NRKQVbdq0wT///IMff/wR27dvxz///IO///4bzs7O8PDwwDvvvIOhQ4cqrWNkZIRt27Zh2bJl+PnnnxEZGQkbGxv4+/tj+/btOHv2LFauXKl2f0uXLkXjxo0RFhaG2NhY2NjYwM/PD1u2bEFWVha++uortev17NkTly5dwvLly7F7927ExcWhoKAADRo0QOPGjTF27FgMHz5ca+dlzpw5CAwMxLJlyxAdHY1t27bB1tYWjRo1wnvvvVduLUuDBg3g4+ODEydO4M0336z2/jt06IDnnnsOsbGxuHLlijQ8graUlJQAeFRDd+PGjXLLPf7LPMXrmhwb0ZMmE0IIfQdBRKROeHg4JkyYgJCQkAp/Dl8XXbt2Da1atYK9vT3u3LkDKyuram/rjz/+wMsvv4yZM2di8eLFWoyyevLz89GoUSOYmprixo0blf7KjshQsHmOiMgAffTRRxBCYOrUqTVKmIBHQyz4+flh1apVBjGQ5Pfff4+0tDR8+eWXTJioVmHSRERkIHbu3IlXX30V3bp1w+bNm+Hq6or33ntPK9v+/vvvkZeXh08//VQr26uuzMxMfPXVV/D19cX48eP1GgtRVbFPExGRgThz5gzWrFkDW1tb9O3bF0uWLNFovCNNdOjQQep/pE/29vbS+ExEtQ37NBERERFpgM1zRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNVKe1b98eMpkM5ubmePDgQYVle/XqBZlMhsjIyCcTXBVERkZCJpOhV69e+g6FSOt4fVNtwaSJ6qy4uDj8888/AIDCwkJs3LhRzxEZFi8vL8hkMiQmJuo7FCKiWoFJE9VZP//8MwCgYcOGSq+JiIiqg0kT1Um5ubn49ddfAQAbNmyAjY0NLly4gLi4OD1HRkREtRWTJqqTfv/9d2RlZeHZZ59F7969MWrUKACa1zZFRUWhf//+cHJygpWVFXx9fbFhwwa1ZQsKCvDNN9+gU6dOsLW1hZmZGVxdXdGlSxe89957SE9PV1nn9u3bmD59Ory9vWFhYQF7e3v4+flh1apVKCkp0fg4NekLIpPJIJPJpNfh4eGQyWRISkoCADRp0kQqo65PV3JyMmbOnInWrVvDysoKtra26NKlC5YvX47i4mKNYwWABQsWQCaTYcGCBbh58yZeffVVNGrUCKampggNDQUAhIaGQiaTITw8HFevXsWoUaPQoEEDWFtbo0uXLvjzzz+l7Z04cQIvvPAC6tevD0tLS3Tv3h2HDh1Su+/4+HhMnDgRTZo0gbm5OWxsbODp6YlBgwZh7dq1VToOADh48CCGDBkCFxcXmJqawtHREd7e3hg7diyio6NVyufl5WHBggXw9vaGubk53NzcEBISgps3byqdl7LKngt1FO+l4twpFBUVYePGjXjllVfQqlUr2NnZwdLSEi1btsSMGTOQnJysdntl+/UdPXoUQ4YMQf369WFkZKQUQ15eHhYvXoxu3brBwcEBFhYWaNmyJd57770K+w6uX78eXbp0gZWVFZycnDBgwAAcPXq03PIVSUxMhEwmg5eXF4QQWL16NTp16gRra2vY29ujf//++Pvvv8tdv6qfwbLnOj09Hf/73//QrFkzmJubS5+/su9jcnIyJk2aBHd3d1haWuLZZ59V+v75999/MWbMGLi6usLCwgLt27fH5s2bq3Uu6Mkx0XcARLqg+HKaOHGi9O/PP/+M3377DUuXLoWlpWW5627fvh3Lly9Hq1atEBQUhOTkZMTExGD8+PE4d+4cFi9eLJUtLS3FoEGDcOjQIdjZ2aFHjx5wcHDA/fv3ER8fj2+++QZjxoyBk5OTtE5cXBwGDBiA9PR0NG7cGC+99BIyMzMRGRmJ2NhYbN++HTt37oSZmZlOzk3z5s0REhKCP/74A3K5HMOHD4eNjY203NXVVfp/dHQ0XnrpJWRkZMDLywv9+vVDQUEBTp48ienTp+Ovv/7Crl27YGpqWqUY4uPj0aFDB5iZmcHPzw9CCDg7OyuVOXPmDKZNmwYPDw/06dMHSUlJ+PvvvzF06FBs2bIFJiYmGDlyJJ599ln06dMH//77L44fP44BAwbgyJEj8Pf3l7Z18eJF+Pn5ISsrCy1btsTgwYNhbGyM27dvIzo6Gnfu3MGECRM0jn/dunVSeV9fX/Tu3Rt5eXm4ffs2fvvtNzg7O6Nnz55S+dzcXPTp0wfHjx+HtbU1+vfvD0tLS0RERGD37t0YNGhQlc5fZVJTUzFu3DjY29ujdevWaNeuHeRyOc6dO4fvv/8ev/32G2JjY9G8eXO16//+++/48ccf0apVK/Tt2xfp6ekwNzcH8CiJHjBgAC5cuAAnJyd06dIFtra2OHPmDL755hv8/vvviIyMhKenp9I233rrLSxbtgxGRkbw9/eHu7s7/vnnH/Tq1QvTp0+v0fFOmDABmzZtQo8ePTB48GCcO3cOBw4cQHR0NKKiotC1a1el8jX5DKalpaFz5854+PAhevTogU6dOqmUu3nzpjS/R48euH//PqKjozFp0iQ8fPgQfn5+6N+/P9zd3dG7d2/p2g4ODgYA6Y88MkCCqI65evWqACBMTU3FvXv3pPmtWrUSAMT69evVrhcQECAACADiiy++UFoWGRkpLC0tBQCxb98+aX5UVJQAIDp06CCysrJUthkXFyfS0tKk1/n5+cLT01MAEFOmTBGFhYXSsoSEBOHl5SUAiDlz5iht58iRIwKACAgI0Gh+WYpjepwijhs3bqhd7+7du6JevXpCJpOJFStWiJKSEmlZWlqaCAwMFADExx9/XO6+Hzd//nwpnrFjx4r8/HyVMiEhIVKZzz77TJSWlkrLli1bJgAIDw8P4ejoqPJe/u9//xMARN++fZXmT5gwQdre43Jzc0VUVJTGxyCEEE2aNBEAxNGjR1WWpaamijNnzijNe+eddwQA0apVK3Hnzh1pvlwuFy+++KJ0vPPnz1daT3Eu1q5dqzaOtWvXCgAiJCREaX5WVpb4888/RUFBgdL8wsJC8cEHHwgAYuDAgSrbK/sZ+OGHH1SWl5aWCj8/PwFAvPrqq0rXfFFRkZg1a5YAIHr37q203q5duwQAYW1tLaKjo5WWffHFF9I+K7qOH3fjxg1pPU9PT3H16lVpWXFxsZg4caIAIPr376+0XnU/g4pzDUD06dNHZGZmqsRU9vqeMmWKKCoqkpbt3LlTABC2trbC09NT5dr+9ttvBQDRvHlzjc8BPXlMmqjOmT17tgAghg8frjT/66+/rvCLWXHD6NChg9rlihtCv379pHlbtmwRAMSMGTM0im3Dhg0CgHB3d1ebMPzxxx/SF2teXp40Xx9Jk+I8Tps2Te3y27dvC1NTU1G/fn2lL/+KKG4qTk5O4uHDh2rLKBIFX19fle0WFRUJJycnAUC8/PLLKuumpaUJAMLMzEzpZjhw4EABQCWZqS4rKythb2+vUdnc3Fxha2srAIi9e/eqLL97966wsLDQatJUGXd3d2FkZKSS6Cs+A4GBgWrX27t3rwAgfHx8lBIChZKSEvHss88KAOLChQvS/L59+woAYvbs2Wq36+PjU6OkaefOnSrL7969KwAIc3NzpWuhup9Bxbk2NTUVCQkJamNSXN+NGzdWWlehXbt2Gl3bSUlJGp8HerLYp4nqlOLiYqxbtw7A/zXNKYwfPx4mJiaIjo5GQkJCudsYP3682vkhISEAgJiYGKnPQ8eOHWFsbIw1a9bghx9+wN27dyuMT9FfKDg4WGruKGvYsGFwdHREdnY2Tp8+XeG2dG337t0Aym8qaNiwIby9vaWmyKro27cv7O3tKyzz/PPPK/XFAgATExM0adIEADBw4ECVderVqwcnJycUFhYq9a3x9fUFAEydOhURERHIz8+vUryP8/X1RWZmJsaPH4/Tp0+jtLS03LJnzpxBdnY2nJ2dMWDAAJXlrq6u6N+/f43iKc/58+exZMkSTJ8+HRMnTkRoaChCQ0NRXFyM0tJSXL9+Xe16I0aMUDtfcU0MHz4cJiaqvTuMjIykZsnY2FgAjz6TMTExAICxY8eq3W55nzlNmJiYlHteHR0dUVBQoHQt1PQz2KFDBzRt2rTCmHr37g0LCwuV+d7e3gDKv7a9vLwAoNw+Z6R/7NNEdcru3buRkpKChg0bIigoSGmZi4sLBg4ciJ07d2LNmjX4/PPP1W5DcVMub35eXh4ePHiABg0aoFmzZli6dCneffddTJs2DdOmTYOnpye6d++OwYMH4+WXX1bq73Dnzp0K9yGTydCkSRNkZGRIZfXlv//+AwD06NGj0rL3799HixYtNN624uZQkcaNG6udr+h/Vd5yW1tbpKenKyVG7777LmJiYnDw4EEMGDAApqamaN++PXr27Ing4GB06dJFKvvvv//iq6++Utmuv78/Jk2aBABYsWIFBg8ejA0bNmDDhg1S5/jAwECMGzdOKbbbt29XeszlXQ/VJZfLMW7cOGzfvr3CcllZWWrnlxer4pqYN28e5s2bV+G279+/DwB48OCB9F5U9tmqDjc3t3L71NnZ2SEjI0PpWqjpZ1DX1y6AGif1pDtMmqhOUXQAz8/PR0BAgMpyxZdgeHg4PvnkExgbG1drP0II6f/Tp0/HyJEjsXPnTsTExCAmJga//fYbfvvtN8yfPx9Hjx6Fm5tbtfZTUxXVgGi67ogRI2BtbV1h2Xr16lVp2xV1xFcwMqq4Iryy5WVZWVnhwIEDiIuLw759+xAbG4vY2FicOnUKS5YswRtvvIEffvgBAJCSkiLVVj5OkTS1bt0aV69exf79+3H48GHExsbi6NGjOHz4MD755BP8/PPP5daqaFN57+8HH3yA7du3o1WrVvjqq6/QpUsXODs7Swn8c889h7///lvpOi6rvPdHsT9/f380a9aswtjatGmj6WHUSFWuA2140tcuGRYmTVRn3L17F3v27AHw6K/bY8eOlVs2OTkZ+/btU/urpRs3bqhdRzFytoWFhUqS4OLigsmTJ2Py5MkAHtVWTJw4EX///Tfef/996SasGGhT8Re7Oor9K8pWRHETzM7OVrtcMaxAdTRq1Ajx8fGYPXs2OnfuXO3tGJIuXbpItUrFxcXYsWMHxo8fjxUrVmDEiBHo3bs3evXqVW4yUZaJiQkGDhwoNRNmZWVhyZIl+Pjjj/H6669j6NChsLa2lt7HikZeL29Zdd/fLVu2AAA2b96Mdu3aqSyvanOqQqNGjQAAL774It555x2N1qlXrx7Mzc1RUFCAxMREtcnUkxyVXtufQXq6MN2lOiM8PBwlJSXo2rUrxKMfOaid3nvvPQDlj9lU3uNW1q9fD+DRX9nq+nOU1apVK8yePRsAcO7cOWm+YjyXzZs3q62C3759OzIyMmBra4tOnTpVuA9A+QZQWFioslzRB0UdxQ25vLGWnn/+eQD/dwOua0xMTDBixAipGbfs+1QddnZ2WLBgARwcHJCbm4tr164BADp16gQbGxukpaVh//79KuulpqaqnQ/83/t75coVlWVCCOzdu1fteoqxwR7/2T8AREREIC0tTbODeozimvj99981SiyBR+fZz88PAPDLL7+oLVPeGGi6oO3PID1dmDRRnbFmzRoA/9dhuzyKTqe7du2S+l2Udfr0aXz99ddK82JiYqTmm7fffluaf/jwYezZswdFRUVK5YUQ2LVrFwDlG9fLL7+Mxo0bSwNGlk1Ybty4gVmzZgF41OSnriPp4zw9PeHt7Y2HDx9i4cKFSssiIyPx0Ucflbuuh4cHAODSpUtql7/77rtwcHDAkiVLsHjxYrVJ2Y0bN2rFM/1WrFiBq1evqsxPSUnBqVOnAKhPMNTJzc3FkiVL1F47R48excOHD2FsbCydX0tLS7z22msAHl07ZX8skJeXh6lTpyIvL0/tvvr27QvgUVJx+fJlaX5RURFmz55d7gj3rVu3BgB8//33SvOvXr2KKVOmaHSc6rz44ovo0qULTp48iQkTJqg9BxkZGfjxxx+Vru3//e9/UjyKDuIKX3/9Nc6cOVPtmKpK25/BJ0ExblxNOsyTlujlN3tEWhYZGSn9vDg9Pb3S8h07dhQAxKJFi6R5ip9bz5gxQxgZGYk2bdqI0aNHi4CAAGFkZCQAiLfeektpO0uXLhUAhJ2dnejVq5cYM2aMGDp0qPRzfnt7e3H27FmldU6ePCn9tNjT01OMGjVKDBw4UPrZeVBQkMr4OhUNLbB161Yhk8mkn4K//PLLolOnTkImk4mPPvqo3CEHli9fLgAIGxsbMWzYMPHqq6+KV199Vfz7779SmaioKOHs7CwAiAYNGojAwEDxyiuviMGDB4tmzZoJAKJr166Vnm8FxU+yH/9pfVmV/cxe8T4dOXJE7XJ1Qym0b99eABBNmjQRQ4YMEa+88oro37+/NPZWYGCg2p/Qq5ORkSEACCMjI9G+fXsxYsQIMXr0aNG9e3fpffjoo4+U1snJyRG+vr7S+R4yZIh4+eWXhaurq6hXr54YP358uedFMY6TpaWl6Nevn3jhhReEh4eHsLOzE2+99ZbaIQfKXhNt27YVwcHBIjAwUJiamorAwEDx3HPPqT2HlZ1bIYS4c+eONESAtbW1eO6550RwcLAYNmyY8PHxEcbGxgKAyk/u33zzTem89erVS4wePVq0adNGGBkZScdRnSEHPD09yy1T3rAa1fkMajK8Q2XXd3WvbcV2q3J+SDdY00R1gqKpbciQIXB0dKy0vOIvNnVNdEOHDsWBAwfg6uqKPXv24OTJk+jYsSPCw8Px7bffKpUdMmQIFixYgC5duuC///7Dtm3bEBkZCXt7e7z//vu4ePEifHx8lNbp0qULzp07hzfffBPGxsbYvn07jh49ig4dOmDlypXYtWtXlUYDHzZsGHbt2gU/Pz9cu3YNe/bsgampKX777Td8/PHH5a43depUfPnll/D09MSePXvw888/4+eff1aqCenZsycuXbqEefPmwcPDA3Fxcfj9999x7tw5uLi4YP78+fjpp580jlVfPv/8c0ydOhUODg44fvw4fv/9d1y+fBldu3bFunXrsG/fvkqbXBVsbGzw448/YtSoUSgoKMCBAwewY8cO3Lt3D8OGDcOhQ4dUzru1tTWOHDmCefPmwcXFBREREYiOjkafPn1w6tSpCn89tnnzZsydOxdubm6IjIzE8ePH0aNHD5w5c0bl2lIYNmwYoqKi0KdPH9y9exc7d+7EvXv3sGDBAuzdu7fKI7iX5e7ujuPHj+PHH3+Er68vrl69ij/++EMaVmDKlCmIiIhQqaVZvnw51qxZgw4dOuD48ePYs2cP3NzccOjQIbz00kvVjqc6tP0ZpKeHTAgNG6aJiEgnFixYgI8//hjz589Xef4cERkO1jQRERERaYBJExEREZEGmDQRERERaYB9moiIiIg0wJomIiIiIg3wMSpPWGlpqTQar5WVlcqTromIiOjJEUIgNzcXAODs7FzhswGZNOmYXC5Xen3v3j00bdpUT9EQERFReVJTU9GgQYNylzNp0jEbGxt9h0BERERawKRJj1JTU2Ftba3vMIiIiJ5acrkcLi4uAB51m6kIkyYdS01NVXotl8ul5jlra2smTURERAaisn7GTJp0TJG9EhERUe3GIQeIiIiINMCaJh2rqHmOiIiIag8mTTrG5jkiIqK6gc1zRERERBpgTZOO5eTkKL0u+9NGIiIiqj2YNOkYhxQgIiKqG5g06djjj1F5/DURERHVDkyadIyPUSEiIqob2BGcDNaJEyewcOFC3L9/X9+hEBERsaZJ19gRvHoKCwsxePBgpKWl4ebNm/jhhx/0HRIRET3lmDTpGDuCV09GRgbS0tIAAFevXtVzNEREREyadI4dwasnLy9P7f+JiIj0hUmTjrEjePUwaSIiIkPDjuBkkJg0ERGRoWFNk46xI3j1MGkiIiJDw6RJx9gRvHry8/Ol/zNpIiIiQ8DmOTJIrGkiIiJDw6SJDBKTJiIiMjRMmsgglU2UiouLUVxcrMdoiIiI2KdJ5zhOU/U8XruUn5/P4RuIiEivmDTpGG/01fN40pSXl8dzSUREesXmOTJIZX89B7BfExER6R9rmnSM4zRVj7qaJiIiIn1i0qRjHKepepg0ERGRoWHzHBkkJk1ERGRomDSRQWLSREREhoZJUwUWLFgAmUymNHXu3FnfYT0VmDQREZGhYZ+mSrRv3x779u2TXpuamuoxmqcHfz1HRESGhklTJUxMTODq6qrvMJ466ga3JCIi0qda3Ty3ceNGvP766+jcuTPMzc0hk8kQHh5e4TpxcXEYOHAgHBwcYG1tjW7dumHLli3llr9y5Qrc3NzQvHlzTJgwASkpKVo+ClKHzXNERGRoanVN09y5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWLKXyXbt2RXh4OFq1aoU7d+7go48+QmBgIM6ePQtzc3NdHtpTj0kTEREZmlpd0xQWFobExETcv38fU6ZMqbBscXExJk+eDCMjI0RHR2P16tVYvHgxzp8/jxYtWmDOnDkqSdfzzz+Pl19+GW3btsWAAQOwe/du3LhxA7t27dLlYRGYNBERkeGp1UlT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX4Tbq168PLy8v3LhxoyZhkwbYEZyIiAxNrW6eq4rIyEgAQP/+/VWWBQUFAQCioqIq3EZGRgaSkpLg5eVVbhm5XF7hNipbTo+wpomIiAzNU5M0xcfHAwC8vb1Vlrm6usLGxkYqo/Duu+9iyJAhaNy4MW7fvo05c+agYcOGGDhwYLn7sbGx0W7gTykmTUREZGiemqQpMzMTwKPmOHXs7OykMgq3bt1CcHAw0tLS4OLigoCAAGzYsAFWVlY6j/dpx6SJiIgMzVOTNFXHb7/9VuV1cnJylF6z5qnqhBBMmoiIyOA8NUmToobp8dokhaysLDg6OtZ4P9bW1jXextOuqKgIpaWlSvM4uCUREelbrf71XFUo+jI93m8JAFJSUpCTk6O2vxM9eeoSJNY0ERGRvj01SVNAQAAAYP/+/SrLIiIilMqQfqlLkJg0ERGRvj01SVOfPn3QtGlTbNq0CefOnZPmZ2Zm4osvvoCZmRnGjx+v9f2mpqYqTf/995/W91HXMGkiIiJDVKv7NIWFhSEmJgYAcOHCBWmeYkwmf39/TJo0CcCjB++GhYUhKCgIPXv2VHqMSlJSEhYtWlTh+EvV5eLiovVt1nVMmoiIyBDV6qQpJiZGZRTvY8eO4dixY9JrRdIEAL1790ZMTAzmz5+PzZs3o6ioCG3btsXChQsxatSoJxY3VYxJExERGSKZEELoO4i67N69e0qv5XI5mjZtCuDR8AT8tZ2q2NhY+Pn5Kc1r1KgRbt68qaeIiIiorpLL5dLwQJXdl2t1TVNtwOa5qmNNExERGaKnpiM41R5MmoiIyBCxpknHHh8hXC6Xs/apEuoSJA5uSURE+saaJjI46pKmkpISFBUV6SEaIiKiR1jTpGN89lzVldcUl5eXB1NT0yccDRER0SOsaSKDU15THPs1ERGRPrGmScfYp6nqyiZH5ubmKCgoUJlPRET0pLGmiQxO2eTIyclJ7XwiIqInjTVNOsY+TVX3eNJ09+5dlflERERPGmuayOCwpomIiAwRa5p0jH2aqq5sR3BHR0fp/0yaiIhIn5g06RifLVd15dU0cYBLIiLSJzbPkcFh8xwRERki1jTpmFwur/A1qSqbHLF5joiIDAWTJh3jr+eqjjVNRERkiNg8RwanbHLk4OCgdj4REdGTxpomHeOv56pO0eHb3NwcVlZW0nwmTUREpE9MmnSMv56rOkVyZGlpCUtLS5X5RERE+sDmOTI4TJqIiMgQMWkig8OkiYiIDBGTJjI45SVNHNySiIj0iX2adIzjNFWdIjliTRMRERkSJk06xnGaqqaoqAglJSUAAAsLC1hYWEjLmDQREZE+sXmODErZxIg1TUREZEhY06RjHKepapg0ERGRoWLSpGMcp6lqHk+a2DxHRESGgs1zZFAeT5pkMpmUODFpIiIifWLSpKGpU6dCJpNh+fLl+g6lTis7rIAiWVI00TFpIiIifWLSpIFdu3bh77//hru7u75DqfMer2kq+y+TJiIi0icmTZVITU3F1KlTsWHDBpiamuo7nDqvoqSJg1sSEZE+1eqkaePGjXj99dfRuXNnmJubQyaTITw8vMJ14uLiMHDgQDg4OMDa2hrdunXDli1byi0/YcIEzJgxA23bttVy9KQOa5qIiMhQ1epfz82dOxdJSUlwdnaGm5sbkpKSKix/5MgRBAUFwcLCAsHBwbC1tcXWrVsxatQo3Lp1C7NmzVIqv3z5csjlcpX5pDvqkqayHcGFEJDJZHqJjYiInm61uqYpLCwMiYmJuH//PqZMmVJh2eLiYkyePBlGRkaIjo7G6tWrsXjxYpw/fx4tWrTAnDlzlJKuf//9F59++inWrVsHI6NafZpqlYpqmoQQKCws1EtcREREtTob6Nu3Lzw9PTUqe/jwYSQkJGDMmDHw8fGR5tvb22POnDkoLCzEunXrpPnHjx/H/fv30bx5c5iYmMDExARJSUl46623lNYn7aro13MAm+iIiEh/anXzXFVERkYCAPr376+yLCgoCAAQFRUlzXvppZfQuXNnlXKhoaGYMGFCufup7IG8fGBvxSqqaVIsd3BweNJhERERPT1JU3x8PADA29tbZZmrqytsbGykMgDg4OCgcnM2NTWFm5sbmjdvXu5++IDemtEkaSIiItKHWt08VxWZmZkAHjXHqWNnZyeVIf1h0kRERIbqidQ05eTkIDU1FRkZGXB0dISLi0utrJFJTEystMzjD+itjcepT0yaiIjIUOksaYqIiMCOHTtw6NAhJCQkqCxv3rw5AgMD8dJLL0l9inRJUcNUXm1SVlYWHB0da7wfPqC3ZirrCM4BLomISF+0mjSVlJRg5cqVWLZsGRISEiCEkJbZ2NhITWByuRzx8fGIj4/H6tWr0bx5c8yYMQNTpkyBsbGxNkOSKPoyxcfHo1OnTkrLUlJSkJOTA19fX63vNzU1Vem1XC5H06ZNtb6fuqKicZoeX05ERPQkaa1P0759+/Dss89ixowZSEpKwgsvvIDly5fjzJkzKCgoQFZWFm7fvo3s7Gzk5+fj1KlTWLZsGQYPHozExERp1O2IiAhthaQkICAAALB//36VZYp9Kspok4uLi9LEhKlibJ4jIiJDpbWkaeDAgXj48CEWLVqEO3fuYPv27XjjjTfg4+Oj8sw2MzMzdOzYEdOmTcOff/6JO3fu4Ouvv8aDBw8wcOBAbYWkpE+fPmjatCk2bdqEc+fOSfMzMzPxxRdfwMzMDOPHj9fJvklzTJqIiMhQaa157tNPP8Xbb78NKyurKq/r7OyMWbNmYerUqVi6dKnG64WFhSEmJgYAcOHCBWmeYkwmf39/TJo0CQBgYmKCsLAwBAUFoWfPnkqPUUlKSsKiRYvg5eVV5dhJu5g0ERGRodJa0vThhx/WeBtWVlZV2k5MTIzSKN4AcOzYMRw7dkx6rUiaAKB3796IiYnB/PnzsXnzZhQVFaFt27ZYuHAhRo0aVeP4qebKJkUcEZyIiAxJrR7cMjw8HOHh4VVax9fXF3v37tVNQGqwI3jV8DEqRERkqPSSNN24cQP//PMPPD096/xz3FxcXPQdQq2iSIrMzc2lByUzaSIiIkOgsxHBd+7ciWHDhuHkyZNK87/55hu0aNECw4YNQ6dOnTBx4kRdhUC1kCIpKpsoMWkiIiJDoLOkaf369di3bx9at24tzfv333/x/vvvQwiB9u3bw8rKCuvWrcNff/2lqzD0LicnR2l6vLmOlFWWNHFwSyIi0hedJU1nz55F+/btYWtrK8375ZdfAAArVqzAmTNnEBcXB2NjY6xevVpXYVAtoy5p4uCWRERkCHTWpyktLQ0dOnRQmhcZGQlLS0uEhoYCAFq1agV/f39cunRJV2HoHZ89VzWKmqSyiRKb54iIyBDorKYpPz9f6ZEoJSUlOHPmDLp27QozMzNpvru7O1JSUnQVBtUy7NNERESGSmc1TQ0aNEB8fLz0+vjx48jLy4Ofn59Suby8vDr9kNucnByl13K5nL+oK0dRURFKSkoAMGkiIiLDo7Oapueeew7nz5/Hb7/9Jj2qRCaToW/fvkrlrly5And3d12FQbWIutHAH/8/kyYiItIXndU0zZ49Gzt27MArr7wCABBCoFOnTujZs6dU5tatW/j333/r9LAD7NOkOSZNRERkyHRW09SxY0fs2bMHAQEBaN26NUJDQ7Fr1y6lMlu2bIG9vT369OmjqzCoFlH3CBXg0QOeZTKZShkiIqInSacjgvfp06fChGjWrFmYNWuWLkPQO/Zp0lzZMZjK1i7JZDJYWloiNzeXSRMREelNrX72XG1Qlzu5a1t5zXOK17m5uRzckoiI9OaJJE3Hjx9HZGQkbt++DSEEPDw80KtXL3Tv3v1J7J5qiYqSJkVzHWuaiIhIX3SaNCUkJGD8+PE4fvw4gEedwQFI/VO6du2K9evXo3nz5roMQ6/kcnmFr+n/VFbT9HgZIiKiJ0lnSVNycjJ69OiBlJQUWFlZYcCAAWjSpAkAIDExEfv27cPx48fRs2dPxMXFoWHDhroKRa/46znNldcRHGDSRERE+qezpOmjjz5CSkoKhg8fjhUrVqB+/fpKy9PS0vDGG2/gjz/+wPz58xEWFqarUKiWKK8jeNnX+fn5EEJItZVERERPis6GHNi7dy/c3d3xyy+/qCRMAODs7IyNGzfC3d0de/bs0VUYepeTk6M0paam6jskg6VJ8xwAdgav4+7evYv33nsPhw8f1ncoRERKdJY0paenw9/fX+k5c48zMzODv78/MjIydBWG3llbW6tMpJ6mSROb6Oqu4uJiDBo0CN988w0GDBiA06dP6zskIiKJzpImDw8PjTo95+bm1tn+TIaoqKgICxYswMiRI3Hx4kV9h6NE06QpOzsbS5cuRXBwMC5cuPDE4iPd+/7773H27FkAj67V0aNHq4x1RkSkLzpLml5++WVERkbizp075Za5c+cODh8+jBEjRugqDCojMzMTAwcOxMcff4zff/8d/v7+iIqKqvb2zp8/j7S0NK3Fp2nS1KdPH8ycORObN29GUFAQ7t+/r7UYtK2oqAj//fcfCgsL9R2KxgoKCpCQkIDs7Ownut+bN29i3rx5SvPi4+Px1ltvPdE4aqK4uFjfIRCA0tLSSstcvnwZwcHBePHFF3Ht2jWV5SdPnsS+fftq1Wd3+/btaN++Pfz8/DB58mQsXboU0dHR0i/XSQuEjuTm5oru3buLFi1aiL/++ktl+a5du0TLli1F9+7dRW5urq7CMDg5OTkCgAAgcnJytLbdv/76SwwfPlz8/vvvas/nrVu3RNu2baV9KyYzMzOxZcuWKu9v3rx5AoBwc3MTycnJKstLS0vLXffevXsiNjZW7Ny5U6xZs0asWrVKHD9+XMyePVuKa+/evUrrTJw4USV2xTRgwABRUlJS5WPQlVu3bolVq1aJoUOHCltbWwFAmJubi27duom33npL7NixQxQXF6usl5eXJ5KTk8X9+/fFw4cPRX5+vtrtX716VXz55Zdi3759oqCgQJpfWFgoIiIixOLFi0V0dHSF74EQQhQUFIjTp0+L1atXiylTpojnnntOuLm5CZlMJgAIExMTsWDBAlFUVFTuNq5evSrWrl0roqOjKyyniRdeeEF6T1966SVhY2Mjvd68eXONtl2RwsJCERMTI86fP1/pOSvP3bt3RY8ePYSFhYV4++23RXZ2tkbrFRcXi+XLl4uRI0eKhQsXiuPHj4vCwkKVckVFReKff/4R69evFz/99JPYuHGj2Lp1q1bOuz4UFRWJs2fPihUrVoiZM2eKVatWiQsXLmj0OS4pKRHff/+96Nq1qwgJCRFr1qwR//33n7hw4YL49NNPRadOnYRMJhOhoaFqP0Pp6elixowZwtjYWLq+7OzsxLZt24QQQqSlpYlx48ZJy5ydncXbb78tLly4oPXzoHDt2jURFBQkGjRoILp37y4mTZokli5dKu7cuaPR+iUlJdJ3srqpb9++IiEhQSux3rp1S5w9e1Yv111xcbFIS0sT165dK/f7sTqqcl/WWtLUu3dvlcnPz0/IZDJhZGQknJycRMeOHUXHjh2Fk5OTMDIyEkZGRsLPz08EBgZqKwyDk5OTozSlpqbqJGkaOXKktF0bGxvxyiuviNWrV4vPPvtMvPbaa8LNzU1a7uTkJHr16iW9lslkon///uK5554TrVq1En5+fuLAgQPl7mvXrl1KH8gXXnhB6Wbz119/iYYNG4p+/fqJ27dvS/NLS0vF559/LkxMTMr9cCumyMhIpX2++eabSsufeeYZ4eLiIr3++uuvq3S+SktLRUJCgvj999/F7t27RVpaWpXWV7e96OhoMXToUCnpqGhq0qSJ+P7770V6err4888/xciRI4WFhYVSGWNjYzFixAhx48YNaR8//vijsLS0lMrY29uLsWPHivHjxwsHBwel9Tt06CDCw8OVvlwKCwvFvn37RGhoqLCzs6s0TgDCz89PiqGgoEBcuHBBLFy4UHTo0EGpnKOjoxg9erT4+eefxdGjR8WdO3fKTUJu3LghlixZIlauXCkOHTok1qxZI23H1dVVZGRkiPDwcKXj/OSTT8T+/ftFRkaGSE1NFXFxcWLr1q1i586dIi8vr8L3Jzk5Wfz4449i/fr10o2ooKBA/PTTT8LLy0tp3+PHjxcbN24U9+/f1+i9v3r1qtI2AAgPDw+xY8cOUVRUJBISEsT+/fvFjh07lLaZkJAgevTooXK+ra2tRZs2bUSXLl1EQECA6Nq1q9J7/vjUpk0bERERIW23qKhIREREiFWrVomrV69WGHtUVJTo3r276NGjh/j000/FqVOnRG5urti7d6+YOnWqaNmypfDz8xN//PGHSkJTWlqqcZL58OFDsW/fPjFv3jwRGBgorK2t1R6LnZ2dGDNmjHjw4IHa7Vy/fl307NlTo+sWgOjTp4/IzMwUQjy69pcvXy7q1atXbvnx48eL+vXrl7t84MCBIikpSSkmuVwujhw5IrKysio8B6WlpeLEiRMq18Gvv/6q9AdC2cnBwUGcOHFCZTsXLlwQJ0+eFP/++6+4ceOG0h8c5U2WlpZi0aJFapOdwsJCcfz4cfHdd9+JV155RTRv3lzUr19fDB8+XKxZs0YkJSWJ3377TfTr10/6fvP09BRLliyRzu/jkpOTxaeffiref/99sWLFCrFr1y7xzz//iIyMjAqvmxMnTojBgweL9u3bizZt2oiWLVsKLy8vYW9vr3Q8586dq/B8V4VekiaZTFbtycjISFthGJyKLmJtJU3FxcUqX9rlTU2bNhVXr14VhYWFIjQ0tNxyxsbG4vvvv1e5uJOSkoSTk5NK+V9++UUIIcTff/+tdPN3d3cXp06dEkVFReK1117T+MsuLi5Oab8bNmwQAISRkZGYPXu2yMvLEwcOHFCqFfnzzz9FRESEWLFihfj888/Fnj17xMOHD4UQj75ozp07JxYuXCgGDhwonJ2dVfbp7e0txowZI6ZPny4++OAD8dlnn4mvvvpKfPHFF+Kzzz4Tn3zyiViwYIH46KOPxIcffijeffddMX36dDF58mTRuXNntcfh7OwsBg0aJLy9vTU+9scnCwsLMW/ePDF06NBqb8PKykrUr1+/0kTJxcVFdO3aVQwePFjlL3Fvb2+leZpMlpaWYuDAgeKXX34ROTk5Ijk5WbzxxhvC1NS03HUUtUqlpaVi9OjRGu2nQYMGYv78+SIlJUXpusnPzxcLFy5UuSk988wzwtPTs8JtymQy0a1bN/HJJ5+Iffv2iStXrqjU4h4/frzCm/Dj58vIyEj4+/uLt99+u9zEobrToEGDxJQpU1Su7V69eolff/1VKbHMyckR06dPL/e41c1v166d+Pnnn8X8+fNFr169hIWFhXBwcBAjR44U4eHhKude8X0wZMgQYWRkVKVjadeunUhNTVX6jlu2bJmwsrLSaP2y571Dhw5i3bp1Kp9BKysr8cknn4hRo0ap3Ya9vb146aWXhJmZmdJ8W1tbsXLlSpGcnCw+/PBD6fvQy8tLJaFSXMeHDh1SSpAV18HLL7+stG1114Stra2IiYkRQjxK0AMCAso9biMjI7Fo0SKRlZUlTpw4IVatWiUaN26sVMbJyUkEBgaKmTNnio8++kgEBgZqfF7VTba2tuJ///ufuHbtmnS8GzZsEI6OjuWuY2NjI5555hkxYcIEqVY8Pz9fvP/++xpfK0eOHCn/plhFekmaIiMjazTVVRW96dqsaSoqKhL79+8Xr776qkqNg2IKDAxU+iIqLS0VH330kTA3N5fKPP4X7euvvy41FxQWForu3btLy9q0aaP0QYyNjVX7V5qlpaXw9/dXmhcaGio++eQTsWLFCvH999+LkJAQ8cwzzwiZTCZ8fHxUmihKS0tFTEyMiI+PV5o/d+7cCs+xTCYT7dq1U6qV0vXk5uYm5s2bJ06ePKn01/mDBw/En3/+KYKCgtSu5+zsLIYMGSIGDRokgoKCKvyLd8KECeKVV15RSoJsbW3F6NGjxdKlS8tN4spOdnZ2Ijg4WCxZskRERUWp/MUYGxsrmjRpUuE2OnfuLBYsWCBGjhxZaUJmZWVVYY0JAPH8888rJeoPHz6s8Cbx+GRmZia6d+8uRowYIaZPny6aN2+u0Xr9+vUTgwYN0ujmYW9vLxwcHISDg4PSzbldu3YiJiam3Pe3vMnLy0ts3bpV/Pjjj2LMmDHC09NTWFtbKyUvzZs3l5rwfvrpJ7Fs2TKxcOFC0bVrV433Y2xsLLy9vcXgwYNF06ZNNVqnqslO8+bNRXBwsPjyyy9F7969yy3n4eEhRo4cKZYsWSL27t0rvvnmGzFs2DCl2oTWrVuLO3fuiKNHjwofHx+Vc7Z//34RHR0tPv30U9G/f38xYMAAsWzZ3I8xngAAT2VJREFUMpGUlCRiY2PV/nGnmEaPHi1u3bolfbd89913SjXgQ4cOlWokHzx4IJYtWybc3d2VtqEuufT29hZ3795V+gxpWjM2btw4kZ2dLTIzM8WJEyeUWgOsra3FW2+9pfRd/fjk6OioVOOokJWVJaZPn65RDbhiMjc3L/c+0qRJE9GnTx+1ywYMGCAGDRpUpWtGcd20atVKaZ6pqamwtrYW9vb2on79+qJFixaia9eu4vnnnxevvPJK7a9pIvWeVPNcWQUFBWLXrl3i+++/F1u3bhUnT55U+1egQlZWlrh3754oLCwUxcXF4v3331e6eJ2cnES7du2Uvri8vLxEenq6UrNg2Q9lr169hJ+fn8qHw9TUVKqVKi/2qvQrKSoqUtvEUdlUr149MXDgQPHRRx+Jt99+W3Tv3l3lL8qqTh06dBDr169X6mdUnvPnz4uQkBDRunVrMXr0aLFr1y6VRPHhw4di1qxZSl/mTk5OYseOHUrn69ChQ+LAgQNKzXClpaXi2LFjYty4ccLX11e0adNGNGnSRHh4eIiXX35ZbNu2rdImLSGEyMzMFCEhIcLMzExYWlqKDh06iNGjR4uFCxeqJLCFhYXiyJEjYunSpWL69Oli4MCBKjeasjeBOXPmiJUrV4q3335bDB48WIwaNUrphlP2WK5fvy42btwopk2bJvz9/cWAAQPE66+/Lj777DMxatSoSmvAZDKZeO2118TcuXNFt27dpGRgwIAB4u+//5b2lZ+fLw4fPizee+898eyzz2r83vfu3VupVvPXX38Vvr6+on379mLYsGHi3XffFTNnzhQtW7ZUWm/SpEnlNuuUlpaKvLy8Cvt8lpSUiI0bNwoPDw9pm5aWlmLkyJHik08+ES1atKgwbktLS7F06VKRkJAgVq5cKV544QXxzDPPiNDQULFt2zaRnZ0t9uzZI3x9fVXW9fT0LPfG+vjUsGFDMW3aNPHrr7+Kmzdvlns8V69eVToWdYnPG2+8oVGfscuXL4tGjRoprRsQECBOnjyptvyJEyfE1KlTlT5fZWVkZIhXX31VJR4TExPRoEED6XWbNm3EqVOn1NZgtWrVSsyYMUMpQbC0tBRr1qxR+d6Ty+Wif//+as+nl5eXeOONN8TYsWPFCy+8ICZPniyuX79e4fmIjY0VL7zwglJXDcXUqFEjMXbsWLFixQpx+vRp6V5w7Ngx8cEHH4iAgAAxbtw4cejQIekPwUuXLonJkydXmMiNHj1a7N27V4SFhYmPPvpIhISEiMDAQOHt7V3ueqampuLzzz9/on2mmDQZMF11BNe29evXl5tEmJqaSl889+7dU2kOeOaZZ0RGRobIz88XY8eOlebb2dmJw4cPaz3WlJQUMX78eDF8+HAxe/ZssXr1avHLL7+I6dOnCx8fHyGTyYS1tbUYPHiw+P7778XVq1fVJmb5+fni0qVL4sSJE+LQoUPizz//FNu3bxd//vmn+Ouvv8SuXbvE3r17RUREhDhw4ICIiooSJ06cEP/8849ITEysdifiyly5ckWMGzdOhISEKPURe5IKCgqq1dm+pKREREVFiddee004OjoKCwsLMXPmTHHv3j2txnfz5k3x3nvviYYNG6pcrz179hRnz55VKv/w4UON+rElJSWJn3/+WXzwwQdizJgxws/PT7Ro0UKaWrduLd55550qdUq9du2a+PHHH0VUVFRVD7Nccrlc/PTTT2Lz5s1KCUVpaak4cuSICA0NFT4+Pko1aX5+flKTSmVKS0vF3r17xbx588T69eulZqiioiIRExMj5syZI7p3767SL8/b21v8/PPPGv0hofDff/+p7W7Qvn17ER0dXaXzcuvWLTFgwADRo0cPsWvXLq18Rg8cOCBatmwp6tWrJ9577z1x69YtcfPmzQqbe1u2bCl++eUXpR+AXLt2Taxdu7bCDtp5eXli8ODB0naMjIzEzJkza3zvSElJEfv27RNbtmwRiYmJNdrW/fv3xcKFC5WOv0GDBlLH+vLI5XKxceNGERgYKK3XoUMH8c8//9Qonupg0mTAakvSJMSj/hr9+vUTjRs3lvqgyGQysXr1aqVyv/32m3RMLi4uUqdhIR592a5evVq8+uqr4tKlS0/4CB7Jzc2tlb8wqmuKioo0qt2qqfz8fJGYmCiOHTsmzpw5o7NktjYqKSkRN2/eFPHx8To5L4WFheLcuXNi7dq1Ys+ePWp/JaqJmzdvSn2QnJycxMqVK6u9LV1Q1wn++vXrKjWr9evXFytXrqzR909BQYF4//33xfDhw1U6hRuS4uJi8ddff4lvv/22yj+suXHjhjh48KDaX44+CVW5L8uE0O0ADqdOncIff/yBq1evIisrS+14ETKZDIcOHdJlGAZDLpdLD/HNycmpNSOECyHw4MEDyGQy1KtXT2XZwoULERMTgy+++ALt2rXTU5REVFfI5XIcPXoUXbt2haOjo77D0ciVK1cwaNAgJCcnY8aMGfjwww9hb2+v77CoElW5L+s0aXrnnXewdOlSKVGSyWRKSZPitUwmQ0lJia7CqLalS5ciLCwMSUlJMDExQceOHfHll1+ia9eu1d5mbU2aiIiockVFRRBCVPgIMTIsVbkv62xE8N9//x1LlixBw4YNsWrVKvTv3x8AEBERgeXLl6N79+4QQuD999832Adzenp6YsmSJTh//jxiY2PRvHlzBAUF4cGDB/oOjYiIDJCpqSkTpjpMZzVN/fr1Q2RkJC5fvgxvb29MmDAB69evV6pRmjdvHr755hscP34cPj4+ughDq7KysmBvb4/IyEgEBARUaxusaSIiIjIcBlHTdPbsWXTt2hXe3t7llvn444/h5uaGzz77rFr72LhxI15//XV07twZ5ubmkMlkCA8Pr3CduLg4DBw4EA4ODrC2tka3bt2wZcuWSvdVWFiI1atXw9HREW3btq1WvERERFR7mehqw9nZ2WjcuLH0WlFdmZOTI2V0RkZG6Nq1a7UfGjt37lwkJSXB2dkZbm5uSEpKqrD8kSNHEBQUBAsLCwQHB8PW1hZbt27FqFGjcOvWLcyaNUtlnaNHj+L5559HXl4eXF1dceDAATg5OVUrXiIiIqq9dFbTVL9+fTx8+FB67ezsDABITExUKieXy5GVlVWtfYSFhSExMRH379/HlClTKixbXFyMyZMnw8jICNHR0Vi9ejUWL16M8+fPo0WLFpgzZ47apKtz5844d+4cYmNj8fzzz2PkyJFIS0urVrxERERUe+ksafLy8lJKQjp06AAhBDZt2iTNS0lJQVRUFDw9Pau1j759+2q87uHDh5GQkIAxY8Yo9Z+yt7fHnDlzUFhYiHXr1qmsZ2lpiebNm6Nr164ICwuDkZER1q5dW614iYiIqPbSWfNcnz598NlnnyExMRFeXl54/vnn4eTkhIULFyI+Ph6NGzfGH3/8AblcjuHDh+sqDElkZCQASL/iKysoKAgANGomFEKgoKCg3OVyubzC9StbTkRERIZJZ0lTcHAwkpOTcevWLXh5ecHa2hpr165FcHAwtm7dKpXr1KkTPvjgA12FIYmPjwcAtR3TXV1dYWNjI5VRmD17Nl544QV4eHggPT0dK1aswO3btytM8hT9tYiIiKhu0VnS1Lp1a/z0009K84YMGYL4+Hj89ddfSE9PR+vWrTFkyBAYGxvrKgxJZmYmAJQ7OqudnZ1URiE5ORnBwcG4d+8enJyc0KVLFxw9ehStW7fWebxERERkWHSWNJXH3d0dr7/++pPebbVs2LChyuvk5OQovWbNExERUd3wxJMmfVHUMD1em6SQlZWllecbcbBKIiKiuklrv55LTk42qO08TtGX6fF+S8CjX/Hl5ORUOBAnERERPd20ljR5e3vj/fffR0ZGRrXWT09Px3vvvaezxEXx2JP9+/erLIuIiFAqQ0RERPQ4rSVN/fv3x9dffw0PDw+MHTsWBw4cqPCn+QBQUFCAiIgIjB49Gh4eHli0aJH0839t69OnD5o2bYpNmzbh3Llz0vzMzEx88cUXMDMzw/jx47W+39TUVKXpv//+0/o+iIiISPe0+sDegwcP4u2338alS5cgk8lgamoKHx8ftG7dGvXq1YOdnR2ysrLw4MEDXL58GefPn0dRURGEEHj22WexZMkS9O3bV+P9hYWFISYmBgBw4cIFnDlzBn5+fmjevDkAwN/fH5MmTZLKl/cYlaSkJCxatEjtY1RqSiaTlbuMD+wlIiLSr6o8sFerSZPCgQMHsHz5cuzfv1+ptkkmk6Hs7szNzREUFIRp06ZVKVlSCA0NVTuKt0JISIjKA3xPnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVXn/mmDSREREZLj0njQpFBQU4NixYzh79ixSU1ORmZkJBwcHNGjQAB07dsRzzz0Hc3NzXe3eINy7d0/ptVwuR9OmTQEwaSIiItI3g0maiDVNREREhqwqSZPOHthLREREVJc8NYNb6ktqaqrS67LNc0RERFR7MGnSMRcXF32HQERERFrA5jkiIiIiDbCmSccef4CvXC5n7RMREVEtxKRJx/jrOCIiorqBSZOOyeXyCl8TERFR7aCzpCk6OhrGxsbw8/PT1S5qBcXYD0RERFS76awjeK9evTBv3jxdbZ6IiIjoidJZTZOjoyPc3d11tflagx3BiYiI6gadJU0+Pj6Ij4/X1eZrDXYEJyIiqht01jw3Y8YMxMXFYffu3braRa0gl8tVJiIiIqp9dFbT1KFDB0ybNg1Dhw5FaGgohg8fDi8vL1haWqot37hxY12FolfsCE5ERFQ3yIQQQhcbNjY2BgAIISCTySoOQiZDcXGxLsLQu4qOvbKnKRMREZFuyeVyqYKjsvuyzmqaGjVqVGmy9DRgR3AiIqK6QWdJU2Jioq42XauwJomIiKhu4AN7iYiIiDTApImIiIhIAzpPmo4ePYqRI0fCw8MD5ubmePXVV6VlBw4cwJw5c5CSkqLrMIiIiIhqRKcP7P3ss88wf/58lP2BXtn/29vbY+HChfDw8MAbb7yhy1D0hg/sJSIiqht0VtO0d+9efPTRR2jYsCG2bNmC1NRUlTK+vr6oX78+du3apasw9M7GxkZp4i/niIiIaied1TR99913MDc3x969e9GmTZtyy7Vv356PWyEiIiKDp7Oapri4OPj6+laYMAFA/fr163SfppycHKVJXY0bERERGT6d1TTJ5XK4urpWWi4zMxOlpaW6CkPvOE4TERFR3aCzmiYXFxdcv3690nJXr15Fo0aNdBUGERERkVboLGny9/fHuXPncOzYsXLL7Nq1C9evX0fv3r11FQYRERGRVugsaZo1axZkMhmGDRuGHTt2qDyQd9++fZg0aRJMTU0xffp0XYVRY19++SU6d+4MW1tbuLi4YOTIkXxEDBER0VNIJsoOnKRl3333HWbOnAkAsLS0RF5eHmxsbCCTyZCdnQ0hBJYtW4Zp06bpKoQaGzBgAEaPHo0uXbqgoKAA7777Lu7cuYMLFy7AxKTqXcKq8jRlIiIi0q2q3Jd1mjQBQEREBObPn4+4uDilgS3btWuHzz77DIMHD9bl7rXuxo0baNq0Kc6fP4927dpVeX0mTURERIajKvdlnT9GJSgoCMePH8e9e/dw8uRJHD9+HHfu3MG5c+e0kjBt3LgRr7/+Ojp37gxzc3PIZDKEh4dXuE5cXBwGDhwIBwcHWFtbo1u3btiyZYtG+8vMzAQAODk51TR0IiIiqkV0+hiVsurVq4d69eppfbtz585FUlISnJ2d4ebmhqSkpArLHzlyBEFBQbCwsEBwcDBsbW2xdetWjBo1Crdu3cKsWbPKXbekpATvvPMOBg4cCA8PD20fChERERkwndU0hYeH4/bt27ravCQsLAyJiYm4f/8+pkyZUmHZ4uJiTJ48GUZGRoiOjsbq1auxePFinD9/Hi1atMCcOXPKTbqEEJgyZQpu3rxZaU0WERER1T06S5omTpwIT09PtGrVCtOmTcOOHTuQlZWl9f307dsXnp6eGpU9fPgwEhISMGbMGPj4+Ejz7e3tMWfOHBQWFmLdunUq6wkh8MYbb+DgwYM4dOgQ6tevr63wiYiIqJbQWfNcaGgoDh8+jGvXruHatWtYuXIljIyM0KlTJ/Tt2xd9+/aFn58fTE1NdRWCisjISABA//79VZYFBQUBAKKiopTmCyHw5ptvYvfu3YiKiqp0IE65XF6j5URERGSYdJY0rVmzBgAQHx+PgwcP4sCBA4iMjMTJkydx8uRJfPnll7C0tIS/vz/69etXYV8ibVE8GNjb21tlmaurK2xsbFQeHvzmm2/i119/xV9//QVLS0vpOXlOTk4wMzNT2Y6iBz4RERHVLTrvCO7t7Q1vb29MnToVQgicOnUKBw8exMGDB3Hs2DHs378fBw8efCJJk+KXb/b29mqX29nZSWUUVq5cCQDo0aOH0vwjR46gV69e2g+SiIiIDJLOhxwoq6ioCNnZ2cjOzkZWVpY0SriOh4qqESGE2qm8hCknJ0dpohr45BPAxweIidF3JERERLqvaTp37hwOHDiAgwcPIiYmBvn5+RBCwM7ODoMGDZL6Nz0Jihqmx2uTFLKysuDo6FijfXCwSi3Jzn6UNJWUAEuWAP7++o6IiIiecjpLmoKDg3H48GE8ePAAQgiYmpqiW7duUpLk6+sLY2NjXe1eLUVfpvj4eHTq1ElpWUpKCnJycuDr6/tEY6JyZGc/SpgAID1dv7EQERFBh81zW7ZswYMHD9CuXTts27YNGRkZiIqKwrx589C9e/cnnjABQEBAAABg//79KssiIiKUypCe5eX93//z8/UXBxER0f+ns6TJ1tYWQgicP38er7zyCoYNGyYNJKkvffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+vFb3mZqaqjT9999/Wt1+nVU2aSr7fyIiIj3RWfNceno6Tp48Kf1S7siRI9i/fz9kMhmcnZ3Rp08f9OvXD/369avRI0nCwsIQ8/87Cl+4cEGapxiTyd/fH5MmTQIAmJiYICwsDEFBQejZs6fSY1SSkpKwaNEieHl51ei4H+fi4qLV7T01mDQREZGBkYkn9NO13NxcREZGSqNqX7x4UVrWokULXLlypVrbDQ0NVTuKt0JISIjKY09OnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVSuGishksnKXVfY05adadDSgaCr18ABu3dJvPEREVCfJ5XJpjMXK7stPLGkq6/z58/jll1+wfPly5OfnQyaToUTR6beOuXfvntJruVyOpk2bAmDSVKGICGDAgEf/r1cPSEvTbzxERFQnVSVp0vmQAwBw+/ZtadiBQ4cO4f79+wAg/aque/fuTyIMvWDzXDWV7fzN5jkiIjIAOkuaduzYIfVnUjyaRAgBmUyGZ599Vhp6ICAgAFZWVroKg2qrx/s0CQFU0NRJRESkazpLmoYNGyb9v1GjRlKS1KdPHzRo0EBXuzU4j48KLpfLWfukibJJkxBAYSFgbq6/eIiI6Kmns6TppZdeQr9+/dC3b1+1D8glqtDjTXJ5eUyaiIhIr3SWNG3btk1Xm65VFJ3LqIoeT5o4wCUREenZE31gL5HGHk+S2BmciIj0TOdJ05UrVzBlyhS0bNkSNjY2sLGxQcuWLTF16tRqj81Um+Tk5ChNqamp+g6pdlDXPEdERKRHOh1yIDw8HFOmTEFRURHKDgcVHx+P+Ph4rF27FqtWrUJISIguw6DaiEkTEREZGJ0lTadPn8bkyZNRUlKCwYMH49VXX0WzZs0AAP/99x9+/vln/PXXX5g8eTLatGmDzp076yoUvWKfpmpi0kRERAZGZ0nTN998g9LSUvz888+YMGGC0rJnn30WL7zwAsLDwzFx4kQsXrwYv/76q65CodqISRMRERkYnfVpOnr0KHx8fFQSprJCQ0PRsWNHREdH6yoMvWOfpmpi0kRERAZGZ0lTWloaWrduXWm5Vq1aIa0OP1fM2tpaZSIN8NdzRERkYHSWNDk4OODmzZuVlrt58ybs7e11FQbVVqxpIiIiA6OzpKlLly6IjY3F4cOHyy1z+PBhHDt2DF27dtVVGHonl8tVJtIAB7ckIiIDo7Okafr06SgtLcWQIUPw3nvv4dKlS8jNzUVubi4uXryId955B0OGDJHK1lWKsakUE587pyHWNBERkYHR2a/ngoKC8OGHH+Lzzz/H4sWLsXjxYpUyQgjMmzcP/fv311UYVFsxaSIiIgOj0xHBP/30U+zZswe9e/eGubk5hBAQQsDMzAyBgYHYs2cPPv74Y12GoHf89Vw1sSM4EREZGJ2OCA4AAwYMwIABA1BSUoIHDx4AAOrVqwdjY2Nd79og8Ndy1cSaJiIiMjBaT5quX7+Obdu2ITExEebm5vDx8cHIkSNhaWmJBg0aaHt3VFcxaSIiIgOj1aTp22+/xXvvvYeSkhKl+fPmzcOePXvw7LPPanN3VJcxaSIiIgOjtT5NMTExmDVrFoqLi2FlZYUOHTqgWbNmkMlkuH37NoYPH47S0lJt7Y7qMiHYp4mIiAyO1pKm5cuXQwiBkJAQpKSk4NSpU7h27RrOnDmDZs2a4fr169i3b5+2dldrcJymalA3JhOTJiIi0jOtJU1///03PDw8sGrVKqXOz+3atcN3330HIQSOHz+urd3VGhynqRrUJU0c3JKIiPRMa0lTamoqOnfuDDMzM5Vl/v7+AIB79+5pa3dUl6mrVWJNExER6ZnWOoIXFhbCwcFB7TI7OzupzNMmJydH6bVcLmdtU2WYNBERkQHS+ThNTzuO01QNTJqIiMgAaTVpun79OtavX1+t5ePHj9dmKFSbMWkiIiIDJBNCCG1syMjICDKZrHpByGQoLi7WRhhat23bNqxcuRKnT59GRkYGbty4AS8vr2pvTy6Xw8bGBsCjpjvWRKkRHQ0EBCjPc3cH7tzRTzxERFRnVeW+rLWapsaNG1c7aTJkcrkcPXv2xIsvvojp06frO5ynA4ccICIiA6S1pCkxMVFbmzIo48aNAwBcvHhRz5E8Rdg8R0REBkhrQw7oy8aNG/H666+jc+fOMDc3h0wmQ3h4eIXrxMXFYeDAgXBwcIC1tTW6deuGLVu2PJmAqXLqEqT8/EcjhRMREelJrf/13Ny5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrCcUOZWrvFqlggLAwuLJxkJERPT/1fqaprCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06aInoLykiU10RESkR7U+aerbty88PT01Knv48GEkJCRgzJgx8PHxkebb29tjzpw5KCwsxLp163QUKWmsvEemMGkiIiI9qvXNc1URGRkJAOjfv7/KsqCgIABAVFRUjfZR2QN5+cBeDZRNjmxtgexs1flERERP2FOVNMXHxwMAvL29VZa5urrCxsZGKqOQnp6OmzdvIiEhAQBw+fJlPHz4EI0bN4aTk5PKdhRjPfy/9u48Lqqq/wP4Z5B9dUEFRUEU08jEQvTJBXHDzFITRX1UcMktt0wzTcMWS0vTXLKFR7EUwzSXRB9cEn3AXEpcUlQ0JFcSF5ABEZjv74/zm4Fhtjs6wwz4fb9e9wVz77nnnnvnLt8599xz2RMoHxzVrs1BE2OMMatQ5W/PGSM3NxeAuB2njbu7uyqN0o4dO9CmTRtEREQAAF555RW0adMGO3bsMG9hn2YVgyZt4xljjLFK9lTVND2O6OhoREdHS05f8QW9XPP0GDhoYowxZoWeqqBJWcNUsTZJKS8vD7Vq1XqiZfBrUUygfHBU/vvgoIkxxpgFPVW355RtmSq2WwKAW7duIT8/X2t7pyeRnZ2tNvz1118mzb9aKv/0HNc0McYYsxJPVdAU+v8vgd2zZ4/GtKSkJLU0plK/fn21wd/f36T5V0u6bs/p6oqAMcYYqwRPVdDUrVs3+Pv7Iz4+HidPnlSNz83NxSeffAJ7e3uMGDHCcgVkAt+eY4wxZoWqfJum2NhYpKSkAADOnDmjGqfsk6ljx44YM2YMAMDW1haxsbEIDw9H586d1V6jkpWVhcWLF8PPz88Sq8HK44bgjDHGrFCVD5pSUlI0evFOTU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGVlq5mR7K4MjGBnB31xzPGGOMWUCVD5ri4uIQFxdn1DwhISHYvXu3eQpUQXZ2ttpnuVzO7ZoMUbZdcnISgxIHTYwxxiyoygdN1q5+/fqWLkLVowyOHB05aGKMMWY1nqqG4KyKUAZHXNPEGGPMinBNk5lV7CFcLpdz7ZMhHDQxxhizQlzTxKwPB02MMcasENc0mRm/e85IRLobgnPnlowxxiyIa5qYdSkqKvufG4IzxhizIlzTZGbcpslI5QMjJycROGmbxhhjjFUyrmli1qVi0MQ1TYwxxqwE1zSZGbdpMlLFoMnOTvQMrlBw0MQYY8yiuKaJWZeKQZNMVlbbxEETY4wxC+KaJjPjNk1GKv+EnLI9k5MTIJdz0MQYY8yiOGgyMxcXF0sXoWqpWNNU/i8HTYwxxiyIb88x68JBE2OMMSvFNU1mJpfL9X5mFegLmrhzS8YYYxbEQZOZ8dNzRtIXNBUViafobLiClDHGWOXjqw+zLtqCpvIdXHJtE2OMMQvhmiYz46fnjKTr6TmlwkLA2blyy8QYY4yBgyaz46fnjKTv9lzF6Ywxxlgl4ttzzLpw0MQYY8xKcdDErAsHTYwxxqwUB03MunDQxBhjzEpxmyYz436ajCSlIThjjDFmARw0mRn302QkQzVN3OUAY4wxC+Hbc8y6GOqniWuaGGOMWQjXNJkZ99NkJG7TxBhjzEpx0GRm3E+TkThoYowxZqX49hyzLuWDIm4IzhhjzIpw0MSsi7Kht0wG2NuL/zloYowxZgU4aDLgyy+/hK+vLxwdHdGxY0ecOnXK0kWq3pRBkZOTCJyU/1eczhhjjFUyDpr0iI+Px6xZs/DRRx/hjz/+QLNmzRAeHo68vDxLF636Kh80KXHQxBhjzApw0KTH0qVLMX78eIwYMQKBgYGIjY1FSUkJ4uPjLV206ouDJsYYY1aqSgdN69evx7hx4xAcHAwHBwfIZDLExcXpnef48ePo3bs3atasCRcXF7Rv3x6bNm3SSPfo0SOkpaWhe/fuqnG2trbo0qULfvvtN1OvClMyFDRx55aMMcYspEp3OTB37lxkZWXB09MT3t7eyMrK0pv+wIEDCA8Ph6OjIwYPHgw3Nzds2bIFkZGRuHr1Kt5++21V2pycHJSWlmr0qVSvXj1cvnzZLOvDUBYUle/Qkju3ZIwxZgWqdE1TbGwsrly5gtu3b2P8+PF605aUlOCNN96AjY0NDh06hG+//RZLlizBqVOn0Lx5c8yZM8dg0MXMjIhvzzHGGLNaVTpo6t69O3x9fSWl/fXXX3H58mUMHToUQUFBqvEeHh6YM2cOHj16hHXr1qnGe3p6okaNGsjOzlbL559//oGXl5fO5cjlcoMD06GoqOx/DpoYY4xZmSodNBkjOTkZANCzZ0+NaeHh4QCAgwcPqsbZ29ujTZs22L9/v2pcSUkJkpOT8a9//UvnclxdXfUO/AoVPbT1Bl7xfw6aGGOMWUiVbtNkjIyMDABAQECAxjQvLy+4urqq0ii99dZbGD16NF588UW88MILWLx4MWxtbTF06NBKKfNTh4MmxhhjVuypCZpyc3MBiNtx2ri7u6vSKA0dOhS3b9/GnDlzkJ2djeDgYCQlJcHd3V3ncrS9oLfiZ39//8dZhepP2ytUAMDWVgwlJRw0McYYs5inJmh6XFOnTsXUqVMlp6/4gl5XV1dTF6n6Kt+dQPnaJeXnBw84aGKMMWYxT02bJmUNU8XaJKW8vDydtVCskui6PVf+MwdNjDHGLOSpCZqUbZkqtlsCgFu3biE/P19reydWifQFTcrbddy5JWOMMQt5aoKm0NBQAMCePXs0piUlJamlYRbCNU2MMcas2FMTNHXr1g3+/v6Ij4/HyZMnVeNzc3PxySefwN7eHiNGjLBcARkHTYwxxqxalW4IHhsbi5SUFADAmTNnVOOUfTJ17NgRY8aMASDeGxcbG4vw8HB07txZ7TUqWVlZWLx4Mfz8/CyxGkxJ19NzQFnQVFwMlJYCNWpUXrkYY4wxVPGgKSUlRa0XbwBITU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGmqWM2rog4A4udTD09JxSYSHATyVWX9u2AVOmAK+9BqxYAchkli4RY4wBqOJBU1xcHOLi4oyaJyQkBLt37zZPgaoKIkAut77AQ8rtOWU6V1fx2hUHh8opG6scN28CUVFAXh6wahXQogUwaZKlS8UYYwCeojZNlmJ1r1FJTweefRaoWxf4/HMRQFkLqUHTkSNASAjg5gYsX145ZWOVY9o0ETApzZgBnD5tseKwak4uB+7ds3QpTIcIOHcO+Ptv6zq3VyMcNFUXDx6IQZ+DB4GXXgLOnxe3wt55R1ykFArjl5eTA7z7LrB582MVVyupQdNrrwHHj4v2TW+9Bfx/Gzark5cnbjUtWABs2gRcuWK9JzIi4OpV4NAh4IcfgI8/BtauVX+Jsrnt3i22U3lFRcCQIVXjAYBLl4AtW4CCAuPmIxK93TPpiIDMTHEOqCgjA/jxR3GO0qWgAPjgA/Hj0csL+PJL9WPz7l1g+nRR67l7t2hHaW7Z2cCBA48f8MjlwODBQGAg4OsLuLuLH5cTJohtxUxCRmStZ/Hq4Z9//lH7XP41Kvn5+Ro9iD+2L78UQcwrrwCRkeKvs3PZ9Ph4YORI4NEjzXkHDgS+/hrIzxcnizp1gEaNdC+ruBgIDQV++0183rcP6NatbDoRkJIC+PsDDRuqz1tQAKxbJ2q8cnLEUFICPP+8ONnt2iXS7dkD9OhRNt+4ccC332ovj7c3cOqUOAFa2r17QFwcsGOH2AYVL4b16gFdu4o2O+Vf/PzgAZCYCNy4AdjZicHVFejVC/D0LEunUABffCECmzZtgNdfF9tJJgP27gV+/hn480+gbVuxjBYttJfz4UMgKQlITQX++AM4cQK4f18zXevWYt959lnNaRcuiIvTb7+J77pPHyAsTDPglaKgQJzsr1wRn7/9VtyeO3VKfJ44UXw2h//9D0hIEDWXPXsCHToA9vbG5bFlC/Dvf4sgr0kT4KuvxHdnyMWLwOjR4nsICgI6dxZDQIA4fp2dxXd14oT4nk6dEp+dnMRQt66Y/8UXH2vVAYhtbmeneayWlABnzojzQePGj59/RdnZYp/57TdRa3zpEtC8ufhB969/AZ06Afo6Gr54ERg1SmwzFxcxX5cuImjYtk3UtABAgwZiH3/uubJ5iYCffgJmzhTBSXmRkUBsLPDf/wJvvgmUP3c3bCgCqIkTNbfTkyIS5+933ikLAl1dxTE3bpxYV0MyM4F+/XTXyjo7ix9CU6YYfojm0SORT24u0K6dejOOW7eADRvEtnn1VXGsmKPN4b17YlklJSJgLSoS4+7eFcO9e8D48SY758vlctXbOwxel4mZFQCdQ35+vukW1L49kTj8xODiQhQWRhQYSOTurj7t5ZeJVq0iqlFDfXz5YexYoqIi7ct6+231tH5+RA8eiGkKBdGYMWK8gwPRhg1l82VnE7Vtq3uZ5Yf//U/3MmvUIJo7l6h7d/V1Ki2Vtq3u3SPas4fo44+JXn+daNgwohUriH7/nejRI6M3PRERXbhANHEikbOztPUDiF56iWj1aqIhQ4icnLSn8fAgWrZMlOvaNaKuXTXTuLgQublpnz88nGjdOqLt24n27RN/o6I09wl9g6Oj2F9+/51o/XqiOXOIgoK0p3VyEt/LxIlES5YQbdtGlJOjvq0KCogWLyYKCSEKDSV64w2ifv3K8ggLE/vRuXPq26VlS6KRI4m++oroyy+Jpk8nioggGjqUaNcu3d9/SQnRd9+JZb38sijXqVNEBw/q3p6vvCLWOTPT8He/YgWRTKaZz+DBRBs3Ei1YIModGSnKfvWqKOvy5bq/d2MGmYwoOpro+nWxn+zeLT536UL0wQdiedo8eCC+J2U+zz4rjrO4OKIRI4jq1CmbFhFBdPp02bw3bxL9/LNYllyuf/v884/Y/lFRRM2aGV4fDw+ivXs18yktJVq6VOyPUrdNzZpEhw6J+Q8fJurQQX16xXNg7dr683NzE8escl8rKRH7+NixYlvok5lJNG1a2X7w999Ed+8S9e2rf5nvvy+OB6VLl8Qx+NZbRDExRJ98ov5dubkR9e5N5O+vuV+2bUuUmCjOxUrZ2USbNxNNnSquIw4OZent7Yl69CBauFCUs+L2attW7OPFxerrqlCI805goLg+dO4szrOzZ4vtt3On2J8ePlSfr6CAaMYM/dcm5XDsmP7tbYT8/HySel2GyZbKtKqUoKmkhGjSJKJ69QzvaGPHlu3gO3fqv8iHhhLdvq2+rO3btad9800x/eOPNafNmyeCCn9/6Se7ixfVl5uWRuTjQ9SuXdnBcvMmUf36ZfMMHSouFp06ET33HNHw4UTffEN09izR/v1Es2bpvtgrBzs7Ik9PcaAHBhK1bk3UqpX4v2VLomeeIQoIEOvi4yPSurpqz6tpU/G9rF8vTny9eomTuLEXRUAsu/yJ0dSDt7cIFKZNE0Hahg1inU2Rt60tUZ8+4uS6ejVRgwa609rbE50/X/a9f/ON9OW0aCHyv3KlLOBPSSF64YUnK3/LluKC//77RGvWiABt924xVPwB0bixtDwbNlT/XLOm9sDLmMHFRfs+YmND9NprRN9/LwLfvDxxPPj5Gb+M7t2JmjdXH+fgIILzZcvEsam8EF69Ki7EhgJDbceEg4M4PymdPk3UsaN6mkaNNLejTCYCo9aty8Y5Oopjr+IywsNFYL51q/YfEX37EiUkiG1X8SIeGioCuIAA9e2ckKB5fs7MFD8MbG01l1Hx3DF4sDhWKp4rZ80S5+3PP9cfNAYEiHVSundPnJu1pW3QQL38TzL4+Ihzf3a2+HH3yivS5vPwIJowgej4caIjR8QxLHWZSUkGL41ScdBkRfLz89WG7OxsyV+O0YqLRW3CmDFEtWqVnXyaNhW/3r/7Tv0XC5HYWSMixC/uiAhxcSj/S6NJE3HyOnuW6MwZ9RPcjBnqQde0abp3cDu7sv8bNiT673+JMjLEQZ2TIz5/9BHRwIFEixZpX7+KZScSv0if9GJjysHFRQRK5U9c5T18SLR2rWZAUqeOOHnEx4sgKy5OBIDaltGwoagp27mTaNQoESx7eorvbscOolu3RG2Kvouiu7tIv3070Y0b2staUCDWRVcebduK5Vy4IC48o0cTeXk92fb76CPN73z1alErVX4fkjJ4ekpL16yZCIbWrxc1LI+7DrNnixqIuDjjAtxJk4jy80Wtwy+/EL37rjiGhw4VNXD9+okfHlu3itqJ/HzxYyYri+iLLx4/EFcOzs5i+9rYqI93dRWBQ/kfJlIGe3sRtGj7vuztRVAzc6ZYn5s3xfd87RrRTz+JQEaZ1s5O1FZMmqRZtqlTRQ2XQiHOI2vWiLS3bon8HjxQz6v80KKFOE7Kn08uXhQ/tABxPG3apD79xo2yGnR9g62tyJtInNcmT9YeLFUcatdWDxKJRBBaPk3FALHi8PLL4nyqTUqK9IAkIIDo3/8WP7AbNVKf5u0t9vPYWO0/QO3sNGu9H2f/tLcX+/+YMUTjxxNNmSJq1ZYtE9/zL7+IGkwTMSZo4jZNlcyoe6dPoqRE3JOuXdv4e85Hjoj749nZutMMGCDaBqxYAUydqjn9009FO4mZM8VhoPTcc6JhpY+PcWXS5/33gY8+Uh9Xo4buxpsvvCDaQbRrBwQHi/ZER46INhZnz4q2Xfn5YrxCAdjYlA01apT9b28vOuF0dBRtMPr3B954A6hZ03CZiUR7i+PHRVuW8HDt7WiOHxftEI4cEZ/79RPtLurUMbyM0lLRNuz8edFmSC4XbSZeegl4+WXNDkR1+e9/ge+/F21oWrQQQ+vW2tu5EIn2Dn/9BVy+DKSlifZC16+rp+vXD/jwQ9F2LiNDDM7OQN++uvfXwkKR38mTop1F48Zi/j//BJYuFQ866PL886LdSL16og3evn2ibdDw4aKhuW253leIRNuhxETRxu7IEf0PS8hk4inO8l0j5OQA69eLthhNm4qhtFTk+csvon1S48bAf/4DdO+uO28pcnJEo+bVq0UXHK++KtrnPPecKENsrGgrp01oqChD06bAnTuiXdylS6JNXJcuIr+CAtHGbOFCcU6wsxPTO3cW7Ut27xYPEeji5CSOi8hI0fZKXzchxcXiO0lI0D69aVNRXimvvHr0SLQH2rBBfK5fX+xzo0apf9/l0x89KvZtd3ftee7bJ9ZF2fYOEG0Ua9cueyjG3h6YPBlYs0b9yTx3d/HgSni4OC6V+0FoqGijqK0d6ddfi4bc5clk4pw7YIB42CQvT6xb58762ysVFQFbtwLHjolj6ORJcY5TfpedOwPt24t1USISx9fhw2J/7dGjbNsRiYdwli4Fdu5UP88DooH9N9+IB3fkcrGPZGWJv1evivPSzp2aD060bSvahWprR2kmxlyXOWgyM7lcrvFZ2e2AWYOmJ3X1qriApaVpTvP3Fw1TPTzExSQ0VDR6Vho7VhzsMploED10qDhowsLEQauvkefjIBIX9oKCsguUvb04IaWkiBOhu7s44Hv0sI4G48ZQKESAJZOJE25V6+xRoRBP5f34ozjBT5smnuoxtbQ00Wg9M1MECdeviwv2tGniQve4vcjn54s8s7LEcPt22bQaNUQAGhxsXJ7374tGzHZ2j1cmXXkqg/jySkqAX38VF8kLF8RQVARER4sLso3Eh6gfPhTbwddX/SETIvFj48ABEeT//ru4ILq7i0By6lTjjrnSUhHYfP992ThnZ2DuXBF0SA32AbHvrV8vzj/Dh5umb7r8fGDxYhGsjh4tHsgoLQVGjBD7X0XOzsDbb4uy16qlPu3hQxFE6jum16wBxowR2zkwUASN7do9+Xoo63Wkfv/6ZGaKc35srAikhw0TP1LKB2Da5OWJJ2bXrhU/nN56S/zQ1hbUmhEHTVZEpudgsOqgCRC/7H/8UZwAb94UFyJbW/H0VvlfARkZorakoEA8MfTLL+o7/c2b4omW0NBKPxgYYxZQWCiCgce9ICsU4mmy//xHPAm8cKFpa6fNobgYGDRIPMGnFBUluhx50ifu0tJE7e2rrxr/ZGdlKioSwbul+yM0EgdNVqRKB03GOHtW/JIdONC6D2rGWNVBVLVqVouKgHnzxA/MadOMr4FkFsFBkxWpsrfnGGOMsaeAMUET3ysxMw6KGGOMseqBgyYz01bTxBhjjLGqh4MmM3M1xdMajDHGGLM4fmEvY4wxxpgEXNNkZvn5+WqfyzcEZ4wxxljVwUGTmXFDcMYYY6x64NtzjDHGGGMScNDEGGOMMSYBB02MMcYYYxJwm6ZKVr4Ddu6ziTHGGLOs8tdiQy9J4aCpkhUUFKj+56foGGOMMetRUFCgt39Fvj3HGGOMMSYBv7C3kikUCuTk5AAAnJ2dIXvMN3iX7+8pOzubuzb4f7xddONtox1vF+14u2jH20W7qrxdiEh1F8jT0xM2Nrrrk/j2XCWzsbFBvXr1TJqni4tLldpBKwtvF91422jH20U73i7a8XbRripuF6mvPOPbc4wxxhhjEnDQxBhjjDEmAQdNjDHGGGMScNDEGGOMMSYBB02MMcYYYxJw0MQYY4wxJgEHTYwxxhhjEnDnlowxxhhjEnBNE2OMMcaYBBw0McYYY4xJwEETY4wxxpgEHDQxxhhjjEnAQZOVOX78OHr37o2aNWvCxcUF7du3x6ZNm4zKo6ioCB9++CECAgLg6OiIBg0aYOzYsfjnn3/MVGrzuX79OpYtW4aePXuicePGsLe3h5eXFwYMGICjR49Kzic5ORkymUznEBcXZ76VMCM/Pz+d69SlSxej8tqwYQNCQkLg4uKCWrVqoU+fPjhx4oR5Cm5GcXFxer9rmUyGbt26Gcynqu4z69evx7hx4xAcHAwHBweDZc3Ly8P06dPh6+sLBwcH+Pn5YebMmcjPzzd62UlJSQgNDYWbmxvc3d0RFhaG/fv3P8HamI7U7VJcXIwtW7YgKioKLVu2hKurK9zc3NCuXTusXr0apaWlRi3XlMeouRizz8yfP1/vcXHlyhWjln3x4kUMGjQInp6ecHJyQuvWrbF69WpY6zNqtpYuACtz4MABhIeHw9HREYMHD4abmxu2bNmCyMhIXL16FW+//bbBPBQKBfr27YukpCS0b98eAwYMQEZGBmJjY7F//34cOXIEdevWrYS1MY0VK1Zg0aJFaNq0KXr27Im6desiIyMD27Ztw7Zt2xAfH4/IyEjJ+YWGhmo9UQUFBZmu0JXMw8MD06ZN0xjv5+cnOY8FCxZg7ty58PX1xfjx4/HgwQP8+OOPeOmll7B//3506NDBdAU2s6CgIMTExGidtnnzZpw9exbh4eGS86tq+8zcuXORlZUFT09PeHt7IysrS2dauVyO0NBQnDx5Ej179sSQIUOQlpaGxYsX4+DBgzh06BAcHR0lLXf9+vUYPnw46tati+joaABAQkICevTogU2bNiEiIsIUq/fYpG6Xy5cvIyIiAq6urujWrRtee+015Obm4pdffsHEiROxa9cu7NixAzKZTPKyTXGMmpMx+4xSVFSU1vLXrFlT8nLPnTuHl156CYWFhRg0aBAaNGiAxMRETJw4EefOncOKFSuMWItKQswqFBcXU9OmTcnBwYHS0tJU4+/fv0/Nmzcne3t7unLlisF81qxZQwBoyJAhpFAoVONXr15NAGjs2LHmKL7ZbNmyhZKTkzXGHzp0iOzs7KhWrVr08OFDg/kcOHCAAFBMTIwZSmk5vr6+5Ovr+0R5XLx4kWxtbal58+Z0//591fi0tDRycHCgli1bUmlp6ROW1PKKioqoTp06ZGtrS7du3TKYvqruM3v37lWdKz799FMCQGvXrtWa9v333ycANGvWLLXxs2bNIgD0ySefSFrm3bt3qWbNmuTp6UlXr15Vjb969Sp5enqSp6cn5eXlPd4KmYjU7XLt2jVatWoV5efnq43Pz8+n4OBgAkCbNm2SvFxTHKPmZsw+ExMTQwDowIEDT7zczp07EwDatWuXalxRURF16tSJANDhw4efeBmmxrfnrMSvv/6Ky5cvY+jQoWq/YD08PDBnzhw8evQI69atM5jPd999BwD49NNP1X4JjRs3Dv7+/tiwYQMKCwtNXn5zef311xEaGqoxvlOnTggLC8O9e/dw5swZC5Ss+li7di1KSkrw3nvvwcPDQzU+KCgIQ4YMQXp6OlJSUixYQtPYtm0b7ty5gz59+qB+/fqWLo7ZdO/eHb6+vgbTERFiY2Ph6uqKefPmqU2bN28eXF1dERsbK2mZP/30E+7fv4/JkyfDx8dHNd7HxweTJk1CTk4Otm7datyKmJjU7dKwYUNMnDgRLi4uauNdXFwwffp0AMDBgwfNUkZLkbptTOnixYs4dOgQwsLC8PLLL6vG29vb46OPPgJQdj2zJnx7zkokJycDAHr27KkxTXkrwdCB+vDhQxw9ehTPPPOMxgEgk8nQo0cPfPPNN/j999/RqVMn0xTcguzs7AAAtrbSd+OMjAwsW7YMhYWF8PHxQdeuXdGwYUNzFbFSFBUVIS4uDjdu3IC7uzvatm2Ldu3aSZ7f0L4XFxeHgwcPonPnzqYqskUoA4AxY8YYNV913GcAsV43btxAeHi41gChQ4cOSEpKwtWrV9GoUSO9eRnah+bPn4+DBw9ixIgRJiu/JTzOOQd48mPUGh06dAhHjx6FjY0NAgIC0L17d7i6ukqeX98+07FjR7i4uFhlcMpBk5XIyMgAAAQEBGhM8/LygqurqyqNLpcvX4ZCodCaR/m8MzIyqnzQ9Pfff2Pfvn3w9vZGq1atJM8XHx+P+Ph41WdbW1tMnjwZn3/+OWrUqGGOoprdrVu3MHLkSLVxbdu2xcaNG9G0aVOD82dkZMDV1RVeXl4a08rvM1VZVlYW9u/fDx8fH/Tq1cuoeavjPgPoP+coxyclJSEjI8Ng0KQvr+qyDwHAmjVrAGi/0OvzpMeoNarYbrBmzZr48ssvJQfG+vaZGjVqoEmTJjh37hxKSkqMDlLNiW/PWYnc3FwAULs9Up67u7sqzZPkUT5dVVVcXIzhw4ejqKgIixYtknThqlu3LhYuXIg///wT+fn5yM7OxrZt29CsWTMsXboU77zzTiWU3PRGjhyJ/fv3Izs7G3K5HGlpaRg+fDiOHz+Obt264cGDBwbzyM3Nrfb7zNq1a6FQKBAdHS050Kmu+4ySKc8X+vKqLvvQt99+i927d6Nr167o3bu35PlMcYxak9atW2PNmjX466+/UFhYiMzMTKxYsQIymQzR0dHYsWOHpHyk7H8KhcLqto/1hG+MSaC88B06dAhvvPEGhg8fLmm+wMBABAYGqj67uLigb9++aNeuHZ5//nksX74cs2bNQr169cxVdLOo+GsvKCgI33//PQDghx9+wHfffadqh/G0UigUWLt2LWQyGUaNGiV5vuq6zzDj7dy5E5MmTYKvry/Wr19v1LzV7Rjt37+/2mc/Pz9MmjQJLVu2RI8ePTB37ly89tprFiqd+XFNk5VQRtu6fo3l5eXpjMiNyaN8uqpGoVBg1KhRiI+Px7Bhw/D1118/cZ5eXl7o27cvSkpKjOr3ydqNGzcOAJCammowrYeHR7XdZwBg3759+Pvvv9G1a1c0adLkifOrLvuMKc8X+vKq6vvQrl27EBERgfr16+PXX3+Ft7e3SfI15hitCrp164amTZvizJkzqu9cHyn7n0wmg5ubm0nL+aQ4aLIS+u7737p1C/n5+TrbHij5+/vDxsZGZ9sBQ20YrJlCocDIkSOxbt06DBkyBHFxcbCxMc3u6+npCUD0WVNdGLNOAQEByM/Px61btzSmVeV9RulxG4DrUx32GUNtjYz57vXlVZX3ocTERLz++uvw9PTEgQMH4O/vb7K8q8M+VJFynQoKCgym1bfPlJaWIjMzE02aNLGq9kwAB01WQ/lY/Z49ezSmJSUlqaXRxcnJCSEhIbhw4YJG52REhL1798LFxQXBwcEmKnXlUAZM33//PSIjI/HDDz+YtAGusrbAWjqaMwVj1skU+561unPnDrZv347atWtr3FZ4EtVhnwkICECDBg2QmpqqceGWy+VITU1FkyZNDDYCB6rnPpSYmIgBAwagdu3aOHDgAJo1a2bS/KvDPlSeXC7H2bNn4eLiogqe9NG3z6SkpKg6XrU6lu4oignFxcXk7++vt3PLzMxM1fgbN25Qenq6WmeERNWvc8vS0lKKiooiADRw4EAqLi7Wm/727duUnp5Ot2/fVhv/+++/a02/bNkyAkABAQFUUlJisnJXhvT0dJLL5VrHe3l5EQA6ePCgavz9+/cpPT2dbty4oZb+woUL1bZzy6VLlxIAmjJlis401XmfMXXnlnK5nNLT0ykrK0tt/N27d8nDw8OqO7csz9B22bVrFzk4OJCXlxedP3/eYH6PHj2i9PR0unTpktp4Y49Ra6Bv2+Tl5dGFCxc0xhcUFNCQIUMIAI0cOVJjenp6OqWnp2uMN9S5ZWpq6pOtjBnIiKz0BS9PIV2vUcnKysLixYvVXqMSHR2NdevWYe3atapXFgCiVqZ3796q16iEhobi0qVL+Pnnn+Hn54ejR49WqdeozJ8/Hx988AFcXV0xdepUrVW1/fr1U3UIqkwfExOD+fPnq9L4+fnBzs4OwcHB8PHxgVwux5EjR5CWloaaNWsiKSkJISEhlbRWpjF//nx88cUX6Ny5M3x9feHi4oKLFy9i165dKC4uxuzZs/HJJ5+o0sfFxWHkyJGIiorSeK9U+deoDBgwQPUalUePHlW516iU16pVK/z55584ffq0zq4pqts+Exsbq+qM9MyZMzhx4gQ6dOigqinp2LGj6lalXC5Hhw4dcOrUKfTs2RMvvPACTpw4gT179qBt27Y4ePAgnJycVHknJycjLCwMoaGhqn52lMq/RkX5aqOEhATk5OQgISEBAwcOrIS1103qdjl//jyCgoJQVFSEwYMH45lnntHIy8/PT+28e+XKFTRp0gS+vr5q714z9hi1FKnb5sqVK/D390fbtm3RsmVLeHl5ITs7G/v27cO1a9fQqlUrHDhwAHXq1FHLX9nRcsVw4+zZs+jQoQMKCwsRGRkJb29vJCYm4uzZs5g0aRK/RoUZdvToUerVqxe5u7uTk5MThYSE0I8//qiRTln7ou3XwMOHD2n+/PnUtGlTsre3Jy8vLxozZoykV0dYG+V66hvKbwNlF/8VX32xcOFCCgsLowYNGpCDgwM5OTlRixYtaNq0aWq/jKuS5ORkGjRoEAUEBJC7uzvZ2tqSl5cX9e3bl5KSkjTSr127lgBQVFSU1vzWr19PwcHB5OTkRB4eHtS7d2/6448/zLwW5nP06FECQCEhIXrTVbd9xtAxU/H7v3//Pk2bNo0aNWpEdnZ21LhxY3r77be11gwpXy0TGhqqddm7d++mTp06kYuLC7m6ulJoaCjt3bvXDGtpPKnbRbmO+oaK65+ZmUkANF6XYuwxailSt01ubi69+eab1LZtW6pbty7Z2tqSm5sbhYSE0GeffUYFBQVa81fmo8358+cpIiKCateuTQ4ODtSqVStatWqV2p0Sa8I1TYwxxhhjEnBDcMYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhijDHGGJOAgybGGGOMMQk4aGKMMcYYk4CDJsYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhi7Cnl5+cHmUymd1i2bJmli8lMJC0tDTVq1MDkyZPVxicnJ6u+b32uXLmiSlf+/WrGys3NRZ06ddCuXTuNd5ExZu00337KGHuqlH8xZ0XPPvtsJZeGmcvkyZPh5OSEefPmWbQcHh4emD17NmbOnInvv/8eUVFRFi0PY8bgoImxp9yYMWPU3tjOqp/NmzcjNTUVM2fORL169SxdHEyaNAmfffYZZs+ejcGDB8PBwcHSRWJMEr49xxhj1dzSpUsBAKNHj7ZwSQRHR0cMHToUN2/eREJCgqWLw5hkHDQxxgxStn+6cuUKtm/fjq5du6J27dqQyWRITk5Wpbt37x5iYmIQFBQENzc3ODs7o1WrVvj4449RUFCgNe+SkhIsW7YMrVq1gqOjI+rWrYsBAwbgzJkziIuLg0wm06gJmz9/PmQyGebPn681T2U7nS5dumidfuPGDUyfPh0tW7aEs7Mz3Nzc0LZtW6xcuRIlJSUa6aOjoyGTyRAXF4fMzEwMHz4cXl5ecHBwQNOmTTF37lwUFRXp3H5//PEHoqKi0KRJEzg6OqJ27dpo3bo1Zs6ciaysLADA2rVrIZPJEB4erjOfGzduwM7ODk5OTrhz547OdOWlpaXh8OHDaN++PZ555hlJ8xhD+V0YGipSfqerVq0yeZkYMxe+PccYk2zJkiVYuXIlgoOD0atXL9y4cQM1atQAAJw7dw69evXC1atX4e3tjY4dO8LOzg7Hjh3DvHnzsGXLFiQnJ8PDw0OVn0KhwMCBA7Ft2zbY29ujS5cuqFWrFo4ePYqQkBCMGjXK5Otw6NAh9OvXD/fu3YOfnx969OiBoqIiHDt2DJMnT8Yvv/yCnTt3ws7OTmPekydPYurUqahVqxZCQ0Nx9+5dpKamYsGCBTh79iy2bt2qMc/nn3+Od999FwqFAs2bN0ffvn1RWFiIS5cuYfHixQgMDER0dDSGDh2KWbNmYe/evbh48SKaN2+ukdc333yDkpISDB8+HHXq1JG0vtu2bQMAdO/e3bgNJVFQUJDOdkkXLlzAkSNHYGOj+fs8KCgIdevWxbFjx3Dz5k14e3ubpXyMmRQxxp5Kvr6+BIDWrl0rOW2NGjVo+/btGtMLCgqoadOmBIDmzp1LRUVFqmlyuZyGDBlCAGjkyJFq861cuZIAUP369encuXOq8cXFxTRhwgQCQAAoKipKbb6YmBgCQDExMVrLe+DAAQJAoaGhauNv3rxJderUIZlMRl999RWVlpaqpuXk5FDXrl0JAH3wwQdq80VFRanK8t5771FJSYlq2pkzZ8jFxYUA0OHDh9Xm2759OwEgR0dHSkhI0Cjn2bNn1db7vffeIwA0ZcoUjbSPHj0iLy8vAkB//PGH1vXWpmPHjgSAEhMTtU5XbitDl4PMzExVuszMTIPLzcrKIm9vbwJAK1eu1JrmtddeIwD0ww8/GMyPMWvAQRNjTyllIKRrKB9wKNOOGjVKa16rV68mANSnTx+t0x88eED16tUjW1tbunv3rmp8s2bNCACtXr1aY57CwkJVkGCqoGnWrFkEgCZNmqR1vmvXrpGdnR3VrVuXFAqFarwyaHrxxRfVxiuNHz+eANCHH36oNj4oKIgA0JIlS7Qur6Lr16+TnZ0deXh4UH5+vtq0jRs3EgD617/+JSkvJWVA99dff2mdXj5okjoYCpru3btHzz77LAGgmTNn6kw3e/ZsAkBvvfWWUevEmKXw7TnGnnK6uhxo0aKFxriIiAiteSQmJgIAIiMjtU53dXVFcHAwdu3ahePHj6Nnz564fv06Ll26BAAYNmyYxjyOjo4YNGgQli9fLnldDDFUzoYNGyIgIADnzp1DRkaGxi2yPn36aG2f07JlSwDA9evXVeNu3bqFkydPwsbGRnID7AYNGiAiIgIbN27EDz/8gPHjx6umKdv+TJo0SVJeACCXyyGXywFA0u08fY//5+fnY8uWLQbzePToEfr164dz585h8ODBWLRokc60yjJlZ2cbzJcxa8BBE2NPOWO6HPDz89M6/q+//gIADB8+HMOHD9ebx+3btwEA165dAwB4enrC1dVVa9omTZpIKpdUynJ26tTJYNrbt29rBE2NGzfWmtbd3R0A8PDhQ9W4v//+GwDg7e2t1o7LkClTpmDjxo1YtWqVKmg6ffo0UlJSUL9+fZ2Bqza5ubmq/93c3Aymj4uL0zntypUrBoMmIkJ0dDQOHjyI0NBQVUN+XZTb7d69ewbLxpg14KCJMSaZk5OT1vEKhQIA0KtXL9SvX19vHr6+viYvl67y6BofEREBFxcXvXloq5nR1qDZ1Nq3b4+QkBAcO3ZMFXwoa5nGjh0Le3t7yXnVrFlT9f+DBw9UQYq5vPvuu9i4cSOeffZZbNu2zWD/S8qgrlatWmYtF2OmwkETY+yJNWrUCOfPn8fo0aMl14Q0bNgQAJCTk4P8/HyttU26XtehDBwePHigdbryMX5t5czIyMCsWbMQHBwsqZyPS1krdfPmTeTm5hpd2zRs2DCsXLkSrVu3xoYNG2Bra6t2u04KZ2dnuLi4QC6X486dO2YNmr766it89tlnaNCgAXbv3q0WsOmi7DbBUKDNmLXgfpoYY0/s5ZdfBgBs2rRJ8jw+Pj7w9/cHAMTHx2tMLyoqwk8//aR1XmXAlZ6ernW6su2SKcr5uLy8vNC6dWsoFAqsWbPGqHkHDRoEb29vbNu2DQsWLIBcLkf//v3RoEEDo8vxwgsvABBdQpjLjh07MGXKFLi5uSExMVHnbcyK/vzzTwDAiy++aLayMWZKHDQxxp7Y2LFj4evri59++gmzZs3SWgN069YtfPfdd2rjpk2bBkB0kHj+/HnV+NLSUsyYMQM3btzQuryuXbvCxsYGSUlJOHjwoGo8EWH58uU6297MnDkTNWvWxBdffIElS5bg0aNHGmkyMzOxfv16g+ssRUxMDADgvffe01qmc+fOaQ387OzsMGHCBJSUlGDx4sUAjGsAXl5YWBgA4Lfffnus+Q05duwYhgwZAhsbG2zevBlBQUGS51WWqWvXrmYpG2OmxkETY+yJubi4IDExEX5+fvjss8/QuHFjhIaG4t///jf69++PwMBANGjQQONlsW+++SZeffVV3Lx5E61bt0avXr0wZMgQBAQEIDY2FhMmTNC6vEaNGmHy5MlQKBTo1q0bwsLCMGDAAAQEBGDGjBl49913tc7n4+OD7du3o1atWpgxYwYaNWqEbt26YdiwYXj11VfRrFkz+Pv7Y+XKlSbZLv3798eCBQvw8OFDREREoGXLlhg8eDD69u2LwMBABAYG4ujRo1rnHTdunKpN0PPPP4/OnTs/Vhn69esHANi7d+9jzW/I7NmzUVBQAB8fH8THxyM6OlrrUFFaWhru3LmDkJAQ7tiSVRncpokxZhKBgYE4ffo0vv76a2zduhWnT5/Gb7/9Bk9PT/j4+GDGjBno37+/2jw2Njb4+eefsXz5cvznP/9BcnIyXF1d0bFjR2zduhVpaWlYvXq11uUtXboUjRs3RmxsLA4fPgxXV1d06NABmzZtQl5eHhYuXKh1vs6dO+Ps2bNYuXIlEhMTcfz4cRQVFaFevXpo3Lgxhg0bhgEDBphsu8yZMwddu3bF8uXLcejQIfz8889wc3NDo0aN8M477+isZalXrx6CgoJw9OhRvPnmm4+9/DZt2uCll17C4cOHkZ6eruoewVRKS0sBiBq6zMxMnekqPpmn/Pwk68ZYZZMREVm6EIwxpk1cXBxGjhyJqKgovY/DV0cXL15EixYt4OHhgevXr8PZ2fmx89q8eTMGDhyI6dOnY8mSJSYs5eN5+PAhGjVqBDs7O2RmZhp8yo4xa8G35xhjzAq9//77ICJMmDDhiQImQHSx0KFDB3zzzTdW0ZHkihUrkJOTg08//ZQDJlalcNDEGGNWYseOHRg9ejTat2+PhIQEeHl54Z133jFJ3itWrEBhYSE++ugjk+T3uHJzc7Fw4UKEhIRgxIgRFi0LY8biNk2MMWYlTpw4gTVr1sDNzQ3du3fHF198Iam/IynatGmjan9kSR4eHqr+mRirarhNE2OMMcaYBHx7jjHGGGNMAg6aGGOMMcYk4KCJMcYYY0wCDpoYY4wxxiTgoIkxxhhjTAIOmhhjjDHGJOCgiTHGGGNMAg6aGGOMMcYk4KCJMcYYY0yC/wPWC9k+PSFAWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.plot(avg_ps_gauss_leahy.freq, avg_ps_gauss_leahy.power, lw=2, color='red', zorder=10)\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.plot(avg_ps_gauss_frac.freq, avg_ps_gauss_frac.power, lw=2, color='red')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.plot(avg_ps_gauss_abs.freq, avg_ps_gauss_abs.power, lw=2, color='red')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the Leahy normalization, being normalized by the variance, yields *exactly* the same result in the Gaussian and the Poisson case, while the fractional rms (that depends on the mean count rate) and the absolute rms (that depend on the variance and the mean count rate) change." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Pulsar/Phase Dispersion Minimization.ipynb.txt b/_sources/notebooks/Pulsar/Phase Dispersion Minimization.ipynb.txt new file mode 100644 index 000000000..4f875520e --- /dev/null +++ b/_sources/notebooks/Pulsar/Phase Dispersion Minimization.ipynb.txt @@ -0,0 +1,333 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import phase_dispersion_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Phase Dispersion Minimization in Stingray\n", + "\n", + "Phase dispersion minimization (PDM; Stellingwerf (1978)) is a method to search for strictly periodic signals in constant light curves (white noise only). Like Epoch Folding, it relies in folding a light curve at a given trial period, splitting the folded light curve into phase bins, and evaluating the resulting profile. \n", + "\n", + "Epoch Folding evaluates how much the means in each phase bin deviate from the global sample mean, given the variance of the measurements. A periodic signal will generate a maximum in the Epoch Folding periodogram across many trial periods. In contrast, Phase Dispersion Minimization evaluates the *variance* in each phase bin and compares this to the global sample variance $\\hat{\\sigma}$:\n", + "\n", + "\\begin{equation}\n", + "\\theta_{\\mathrm{PDM}} = \\frac{1}{\\hat{\\sigma}} \\frac{\\sum_{ij}(x_{ij} - \\bar{x}_j)^2}{N - M} \\;\n", + "\\end{equation}\n", + "\n", + "for $N$ measurements in the light curve split into $M$ bins, and $\\bar{x}_j$ the mean of measurements in bin $j$.\n", + "\n", + "If a periodic signal is present in the data at a given trial period, the PDM statistic should have a *minimum* at that period.\n", + "\n", + "## Simulate a dataset\n", + "\n", + "Let us simulate a simple data set: we create a sinusoidal light curve and add Poisson noise:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 300\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "\n", + "counts = np.random.poisson(counts)\n", + "\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pulsation search with Phase Dispersion Minimization\n", + "\n", + "Let us assume we have already an estimate of the true period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the phase dispersion minimization.\n", + "\n", + "The first thing we need to do is *fold* the light curve: for every data point, we convert the time of that bin to its corresponding phase. We then split the resulting phase-folded light curve into $M$ phase bins, where $M$ should strike a balance between generating enough bins to accurately represent the structure in the phase curve, but also few enough bins that the number of measurements in each bin is meaningful.\n", + "\n", + "In regular epoch folding, we calculate the mean flux (or counts) within each bin as a useful statistic. Let's do that first, because it gives us a nice visual representation. Note that when using a light curve (rather than event arrival times) in `fold_events`, you need to use set the `weights` keyword to the array of fluxes or counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCOklEQVR4nO3de3wU9b3/8feQbDYJhiUByUVDxApBLrVcPBC0IiWEi4C3ipZKuUlRKzQKWhGRYBUqVaAHvNT+UDgg4LGA1eoBQSXK4aIEsCKIUhGhEKNtSAiEJCTz+4PD1jUJkM18s7vZ1/Px2MeDnfnud74zLJ/hvXOzbNu2BQAAAABwVJNADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChoqqqSocPH1ZcXJwsywr0cAAAAAAEiG3bOnbsmFJSUtSkSe3Hrwhb5+nw4cNKTU0N9DAAAAAABImDBw/q4osvrnU+Yes8xcXFSTq9QZs1axbg0QAAAAAIlOLiYqWmpnozQm0IW+fpzKmDzZo1I2wBAAAAOOflRdwgAwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jN/1apV6t+/v1q2bCnLsrRz585qfZSVlWnChAlq2bKlmjZtqqFDh+rQoUM+bQoLCzVixAh5PB55PB6NGDFCR48eNbdiAAAAAMJeQMPW8ePHdcUVV2jBggW1zr/qqqv0u9/9rtY+srOztXr1aq1YsUIbN25USUmJBg8erMrKSm+b4cOHa+fOnVqzZo3WrFmjnTt3asSIEY6vDwAAAACcYdm2bQd6ENLpe9SvXr1aN9xwQ7V5X375pdq0aaMdO3boRz/6kXd6UVGRLrzwQi1ZskS33nqrJOnw4cNKTU3Vm2++qf79+2vPnj3q0KGDtmzZoh49ekiStmzZooyMDH366adKT08/r/EVFxfL4/GoqKiI52wBAAAAYex8s0FIX7OVl5eniooKZWVleaelpKSoU6dO2rRpkyRp8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvkI6bOXn5ysqKkrx8fE+0xMTE5Wfn+9t06pVq2qfbdWqlbdNTWbNmuW9xsvj8Sg1NdXZwQMAAABo1EI6bNXGtm1ZluV9/90/19bm+6ZMmaKioiLv6+DBg0bGCgAAAKBxCumwlZSUpPLychUWFvpMLygoUGJiorfN119/Xe2z33zzjbdNTdxut5o1a+bzAgAAAIDzFdJhq1u3bnK5XFq3bp132pEjR7Rr1y716tVLkpSRkaGioiJ98MEH3jZbt25VUVGRtw0AAAAAOC0ykAsvKSnRvn37vO/379+vnTt3KiEhQa1bt9a//vUvffXVVzp8+LAkae/evZJOH61KSkqSx+PR2LFjNWnSJLVo0UIJCQmaPHmyOnfurMzMTEnS5ZdfrgEDBmjcuHH64x//KEn65S9/qcGDB5/3nQgBAAAAoK4Ceuv3DRs2qE+fPtWmjxw5UosWLdKiRYs0evToavOnT5+unJwcSdLJkyd1//33a9myZSotLVXfvn31zDPP+NzQ4l//+pcmTpyo1157TZI0dOhQLViwQM2bNz/vsXLrdwAAAADS+WeDoHnOVrAjbAEAAACQzj8bBPQ0QiAQbNtWaUWlkb5jXBFnvcslAOD8mKzVEvUaQMMgbCGs2Latnz63WXkHCs/d2A/d0+L1yp0Z7MABoB5M12qJeg2gYYT03QiBuiqtqDS68952oNDoL7EAEA5M12qJeg2gYXBkC2Fr28OZio2KcKSvE+WV6v7Yekf6AgD8m5O1WqJeA2hYhC2ErdioCMVG8U8AAIIZtRpAKOM0QgAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMhADwCoiW3bKq2odLzfE+XO99lQy4hxRciyLCN9A4A/QrlWm1wO9RrAGYQtBB3btvXT5zYr70BhoIfil+6PrTfTb1q8Xrkzgx04gKAQ6rVaol4DMI/TCBF0Sisqje+8u6fFK8YV4Vh/Ma4IdU+Ld6y/mmw7UGjkF2QA8Eco1mqJeg2gYQX0yNZ7772n3//+98rLy9ORI0e0evVq3XDDDd75tm1rxowZev7551VYWKgePXro6aefVseOHb1trr32WuXm5vr0e+utt2rFihXe94WFhZo4caJee+01SdLQoUM1f/58NW/e3Oj6of62PZyp2Chnd7SS86d4WJalV+7MMHY6jalfXwHACaFSqyXqNYCGFdCwdfz4cV1xxRUaPXq0br755mrzZ8+erTlz5mjRokVq166dHnvsMfXr10979+5VXFyct924ceP06KOPet/HxMT49DN8+HAdOnRIa9askST98pe/1IgRI/T6668bWjM4JTYqQrFRoXG2q2VZITNWAHBSKNVqiXoNoOEEtNIMHDhQAwcOrHGebduaN2+epk6dqptuukmStHjxYiUmJmrZsmUaP368t21sbKySkpJq7GfPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venq6w2sFmMPF3AAQGkzUa2o1EHqC9med/fv3Kz8/X1lZWd5pbrdbvXv31qZNm3zC1ksvvaSlS5cqMTFRAwcO1PTp071HvjZv3iyPx+MNWpLUs2dPeTwebdq0qdawVVZWprKyMu/74uJip1cRqDMu5gaA0GCiXlOrgdATtDfIyM/PlyQlJib6TE9MTPTOk6Sf//znWr58uTZs2KBp06Zp5cqV3iNhZ/pp1apVtf5btWrl08/3zZo1Sx6Px/tKTU2t7yoBfuFibgAIDabrNbUaCD1Be2TrjO//emPbts+0cePGef/cqVMntW3bVt27d9f27dvVtWvXGvuoqZ/vmzJliu677z7v++LiYgIXAoKLuQEgNJiq19RqIHQFbdg6cw1Wfn6+kpOTvdMLCgqqHe36rq5du8rlcunzzz9X165dlZSUpK+//rpau2+++eas/bjdbrnd7nqsAeAcLuYGgNBAvQbwXUF7GmGbNm2UlJSkdevWeaeVl5crNzdXvXr1qvVzn3zyiSoqKrwBLSMjQ0VFRfrggw+8bbZu3aqioqKz9gMAAAAA9RHQn15KSkq0b98+7/v9+/dr586dSkhIUOvWrZWdna2ZM2eqbdu2atu2rWbOnKnY2FgNHz5ckvT3v/9dL730kgYNGqSWLVtq9+7dmjRpkrp06aKrrrpKknT55ZdrwIABGjdunP74xz9KOn3r98GDB3MnQgAAAADGBDRsbdu2TX369PG+P3ON1MiRI7Vo0SI98MADKi0t1d133+19qPFbb73lvdNgVFSU3n77bf3hD39QSUmJUlNTdd1112n69OmKiPj3wxVfeuklTZw40Xtnw6FDh2rBggUNuKYAAAAAwk1Aw9a1114r27ZrnW9ZlnJycpSTk1Pj/NTUVOXm5p5zOQkJCVq6dKm/wwQAAACAOgvaa7YAAAAAIJQRtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGBAZKAHAMNsW6o4Ya5/V6xkWeb6B4BwQb0GgEaHsNWY2bb0Qn/p4FZzy0jtKY1Zww4cAOqDeg0AjRKnETZmFSfM7rgl6eAWs7/EAkA4oF4DQKPEka1wMXmfFBXrXH/lJ6QnL3OuPwDAadRrAGg0CFvhIipWimoa6FEAAM6Feg0AjQanEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwAaDduWKk6Y698VK1mWuf4BIFxQrwE0EMIW4ATbll7oLx3cam4ZqT2lMWvYgQNAfVCvATQgTiMEnFBxwuyOW5IObjH7SywAhAPqNYAGxJEtwGmT90lRsc71V35CevIy5/oDAJxGvQZgGGELcFpUrBTVNNCjAACcC/UagGGcRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jPftm3l5OQoJSVFMTExuvbaa/XJJ5/4tCkrK9OECRPUsmVLNW3aVEOHDtWhQ4d82hQWFmrEiBHyeDzyeDwaMWKEjh49anjtAAAAAISzgIat48eP64orrtCCBQtqnD979mzNmTNHCxYs0IcffqikpCT169dPx44d87bJzs7W6tWrtWLFCm3cuFElJSUaPHiwKisrvW2GDx+unTt3as2aNVqzZo127typESNGGF8/AAAAAOErMpALHzhwoAYOHFjjPNu2NW/ePE2dOlU33XSTJGnx4sVKTEzUsmXLNH78eBUVFWnhwoVasmSJMjMzJUlLly5Vamqq1q9fr/79+2vPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venp6w6wsAAAAgLAStNds7d+/X/n5+crKyvJOc7vd6t27tzZt2iRJysvLU0VFhU+blJQUderUydtm8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvoI2bOXn50uSEhMTfaYnJiZ65+Xn5ysqKkrx8fFnbdOqVatq/bdq1crbpiazZs3yXuPl8XiUmppar/UBAAAAEF6CNmydYVmWz3vbtqtN+77vt6mp/bn6mTJlioqKiryvgwcP1nHkAAAAAMJZ0IatpKQkSap29KmgoMB7tCspKUnl5eUqLCw8a5uvv/66Wv/ffPNNtaNm3+V2u9WsWTOfFwAAAACcr6ANW23atFFSUpLWrVvnnVZeXq7c3Fz16tVLktStWze5XC6fNkeOHNGuXbu8bTIyMlRUVKQPPvjA22br1q0qKirytgEAAAAApwX0boQlJSXat2+f9/3+/fu1c+dOJSQkqHXr1srOztbMmTPVtm1btW3bVjNnzlRsbKyGDx8uSfJ4PBo7dqwmTZqkFi1aKCEhQZMnT1bnzp29dye8/PLLNWDAAI0bN05//OMfJUm//OUvNXjwYO5ECAAAAMCYgIatbdu2qU+fPt739913nyRp5MiRWrRokR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3s/MnTtXkZGRGjZsmEpLS9W3b18tWrRIERER3jYvvfSSJk6c6L1r4dChQ2t9thcAAAAAOCGgYevaa6+Vbdu1zrcsSzk5OcrJyam1TXR0tObPn6/58+fX2iYhIUFLly6tz1BxFifKT0k65WB/leduBACoMyfrNbUaAM4toGELocu2bZ25l2O3x9arVNEBHQ8AoGbUawAInKC9QQaCW2mF+V80u6fFK8YVce6GAIBama7X1GoAqB1HtlBv7z/QR7EXOH9r/BhXxDmfqQYAOH8m6jW1GgBqR9hCvcVGRSg2iq8SAAQ76jUANCxOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMiAz0ANAIVJyQyg18lVyxkmU53y8AhCsT9ZpaDQC1Imyh3mL/0N5Mx6k9pTFr2IkDgEOM1GtqNQDUitMI4R9XrD6samd2GQe3nP4VFgDgP9P1mloNALXiyBb8Y1m6pXy6YlSmvIczFRvl4Fep/IT05GXO9QcA4cxUvaZWA8A5EbZQD5ZKFS1FNZWcDFsAAIdRrwEgEDiNEAAAAAAM4OcthB/bdv76gnKuVwAAR5mo1RL1GkCDImwhvNi29EJ/6eDWQI8EAFAbajWARoLTCBFeKk6Y3Xmn9jz9zBkAgP9M12qJeg2gQXBkC+Fr8j4pyuEdLQ/3BABnmajVEvUaQIMgbCF8RcWevjMX0FBMXYMi8R9HNF7UajQ0k7Vaol6HGcJWqKlLAeAiYCB4mL4GJbWnNGYNO3DTuGkD0Lg1xPWC1OuwQtgKNRUnpJkpgR4FgLoyfQ3KwS2nl8ERAHO4aQPQ+DXE9YLU67BC2KqjUS98IFdM4P5xuKtO6r/q+Jk9rg6a9v92OvoLSpVte//8i4UfKKKJc31/dx1/sfADlTWJDom+TfnumMf9v/dUZjk35krbVoxOqlRux/8e4cvn77HVCsf+Ht32Sf2p4DZJofOdDlXuqpP6r6/N/icslOo1tbo6U/WaWt1wTNVqiXrd2FSUHj+vdoStEFNmufWLxFfPq61t2/r062P65liEdOyo0XGhYZwp0o6Klj6saqcn7HmS2IE3hDIr2rmdbJUz3aBunP5PGPW68XG8XlOrG5yjtVqiXocpwlaosazz3sFXVtn6pqzU6HAucEeKH9jMKrPc+tTVQe0rdhtbxpVNPpNbZTqlGGPLABoTp/8TRr1uHEzXa2o1EHoIW2Gia+vmamLgQswmlmRxgadZlqXpLZ6S2y5zvOvIqlK98M3PHO8XgP+o1yHMUL2mVgOhi7AVJppYFud4h7I6HNGsi8rvXMsBIDhQr0OcgXpNrQZCV5NADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAv8LW9u3b9fHHH3vf/+Uvf9ENN9yghx56SOXl5Y4NDgAAAABClV9ha/z48frss88kSV988YVuu+02xcbG6pVXXtEDDzzg6AABAAAAIBT5FbY+++wz/ehHP5IkvfLKK7rmmmu0bNkyLVq0SCtXrnRyfAAAAAAQkvwKW7Ztq6qqSpK0fv16DRo0SJKUmpqqb7/91rnRAQAAAECI8itsde/eXY899piWLFmi3NxcXXfddZKk/fv3KzEx0dEBAgAAAEAoivTnQ3PnztXtt9+uV199VVOnTtVll10mSfrzn/+sXr16OTpAAMD5cdsnpSrn+y2z3JJlOd8xAIQp6nX48CtsXXHFFT53Izzj97//vSIj/eoSAFBPfyq4zUi/n7o6aHqLp9iBA4BDqNfhw6/TCC+99FL985//rDb95MmTateuXb0HBQA4P2WWW5+6OhhdRvuK3XLbZUaXAQCNHfU6PPl1GOrLL79UZWVltellZWU6dOhQvQf1XceOHdO0adO0evVqFRQUqEuXLvrDH/6gK6+8UpI0atQoLV682OczPXr00JYtW3zGNXnyZC1fvlylpaXq27evnnnmGV188cWOjhUAGpxlaXqLp4zsXN32SWO/vgJA2KFeh6U6ha3XXnvN++e1a9fK4/F431dWVurtt99WmzZtnBudpDvuuEO7du3SkiVLlJKSoqVLlyozM1O7d+/WRRddJEkaMGCAXnzxRe9noqKifPrIzs7W66+/rhUrVqhFixaaNGmSBg8erLy8PEVERDg6XgBocJalMiva+X4NXE8AAGGNeh126hS2brjhBkmSZVkaOXKkzzyXy6VLLrlETz31lGODKy0t1cqVK/WXv/xF11xzjSQpJydHr776qp599lk99thjkiS3262kpKQa+ygqKtLChQu1ZMkSZWZmSpKWLl2q1NRUrV+/Xv3793dsvAAAAABwRp2u2aqqqlJVVZVat26tgoIC7/uqqiqVlZVp7969Gjx4sGODO3XqlCorKxUd7fsLQExMjDZu3Oh9v2HDBrVq1Urt2rXTuHHjVFBQ4J2Xl5eniooKZWVleaelpKSoU6dO2rRpk2NjBQAAAIDv8uuarf379zs9jhrFxcUpIyNDv/3tb3X55ZcrMTFRy5cv19atW9W2bVtJ0sCBA3XLLbcoLS1N+/fv17Rp0/STn/xEeXl5crvdys/PV1RUlOLj4336TkxMVH5+fq3LLisrU1nZv8+pLS4uNrOSAAAAABolv+/T/vbbb+vtt9/2HuH6rhdeeKHeAztjyZIlGjNmjC666CJFRESoa9euGj58uLZv3y5JuvXWW71tO3XqpO7duystLU1vvPGGbrrpplr7tW1b1lluizlr1izNmDHDsfUAAAAAEF78uvX7jBkzlJWVpbffflvffvutCgsLfV5O+sEPfqDc3FyVlJTo4MGD+uCDD1RRUVHrjTiSk5OVlpamzz//XJKUlJSk8vLyauMqKChQYmJircudMmWKioqKvK+DBw86t1IAAAAAGj2/jmw999xzWrRokUaMGOH0eGrVtGlTNW3aVIWFhVq7dq1mz55dY7t//vOfOnjwoJKTkyVJ3bp1k8vl0rp16zRs2DBJ0pEjR7Rr165a+5BO33TD7XY7vyIAAAAAwoJfYau8vFy9evVyeiw1Wrt2rWzbVnp6uvbt26f7779f6enpGj16tEpKSpSTk6Obb75ZycnJ+vLLL/XQQw+pZcuWuvHGGyVJHo9HY8eO1aRJk9SiRQslJCRo8uTJ6ty5s/fuhAAAAADgNL9OI7zjjju0bNkyp8dSo6KiIv3qV79S+/bt9Ytf/EJXX3213nrrLblcLkVEROjjjz/W9ddfr3bt2mnkyJFq166dNm/erLi4OG8fc+fO1Q033KBhw4bpqquuUmxsrF5//XWesQUAAADAGL+ObJ08eVLPP/+81q9frx/+8IdyuVw+8+fMmePI4CRp2LBh3tP/vi8mJkZr1649Zx/R0dGaP3++5s+f79i4AAAAAOBs/Apbf/vb3/SjH/1IkrRr1y6feWe7wx8AAAAAhAu/wta7777r9DiAGrntk1LVudvVqT8AgKOo1QBQM7+fswU0hD8V3BboIQAAzoFaDQA18yts9enT56ynC77zzjt+Dwgos9z61NVB7St2G1vGp64OKrO4tT8A+ItaDQDn5lfYOnO91hkVFRXauXOndu3apZEjRzoxLoQzy9L0Fk/JbZcZW0SZ5Za4vhAA/EetBoBz8itszZ07t8bpOTk5KikpqdeAAEmSZanMig70KAAAZ0OtBoCz8us5W7W5/fbb9cILLzjZJQAAAACEJEfD1ubNmxUdzS9cAAAAAODXaYQ33XSTz3vbtnXkyBFt27ZN06ZNc2RgAAAAABDK/ApbHo/H532TJk2Unp6uRx99VFlZWY4MDAAAAABCmV9h68UXX3R6HAAAAADQqNTrocZ5eXnas2ePLMtShw4d1KVLF6fGBQAAAAAhza+wVVBQoNtuu00bNmxQ8+bNZdu2ioqK1KdPH61YsUIXXnih0+MEAAAAgJDi190IJ0yYoOLiYn3yySf617/+pcLCQu3atUvFxcWaOHGi02ME0ACqbFuVVc6+bNsO9GoBQKNiolZTrwFz/DqytWbNGq1fv16XX365d1qHDh309NNPc4MMIETtPHhUpTrpaJ8XuCPVITlOlmU52i8AhCsTtVqiXgOm+HVkq6qqSi6Xq9p0l8ulqqqqeg8KQMNw9EF7NSgpO6UqfiwFgHoxXasl6jVgil9Htn7yk5/o17/+tZYvX66UlBRJ0j/+8Q/de++96tu3r6MDBGDOd3/B7No6XmWWMw8lr7Jtbf/qqCN9AUC4M1WrJeo1YJpfYWvBggW6/vrrdckllyg1NVWWZemrr75S586dtXTpUqfHCKABRFiWIpo4dPoIB7gbHbd90sjfa5nlljhtCThvjtZqiXrdCJmo19Rq//kVtlJTU7V9+3atW7dOn376qWzbVocOHZSZmen0+AAAQeBPBbcZ6fdTVwdNb/EUO3EAcIiJek2t9l+dTgN+55131KFDBxUXF0uS+vXrpwkTJmjixIm68sor1bFjR73//vtGBgoAaFhlllufujoYXUb7it1y22VGlwEAjZ3pek2t9l+djmzNmzdP48aNU7NmzarN83g8Gj9+vObMmaMf//jHjg0QABAglqXpLZ4ysoN12yeNHS0DgLBjqF5Tq+uvTmHro48+0hNPPFHr/KysLD355JP1HhQAIEhYlqMX43txnQgAOMtEvaZW11udTiP8+uuva7zl+xmRkZH65ptv6j0oAAAAAAh1dQpbF110kT7++ONa5//tb39TcnJyvQcFAAAAAKGuTmFr0KBBeuSRR3TyZPUnl5eWlmr69OkaPHiwY4MDAAAAgFBVp2u2Hn74Ya1atUrt2rXTPffco/T0dFmWpT179ujpp59WZWWlpk6damqsAAAAABAy6hS2EhMTtWnTJt11112aMmWKbNuWdPrJ5v3799czzzyjxMREIwMFAAAAgFBS54cap6Wl6c0331RhYaH27dsn27bVtm1bxcfHmxgfADQs2zZ2q3MAgIMM1GtqNZxW57B1Rnx8vK688konxwKgEaqybSO3jm1inT6q7ijb1qP/nKT0it3O9ouzctsnjXxHyiy35PR3BGjEqNc4G2q1f/wOWwBwPrZ/ddRIvxe4I9UhOc7RHbjbLjO+4/7U1eH0jgVeph6Y+amrg6a3eKpR78QBJ1Gv/41aXR212j+ELQCOa2Kd3rmWlJ0ytoySslOqsqUIQ7V5XKsVRh7m29h/wTtfZZZbn7o6qL3B/yy1r9gtt11m5qHMQCNBva4Ztfo0anX9EbYAOM6yLHVIjlOV7XzfVbZt7NfX7yqzolXWpHEW/qBgWZre4ilj18eZ+gUWaGyo1zgranW9EbYAGGFZlplfMQ2cL44AsSwzv2TyHQHqhHqNs6JW10udHmoMAAAAADg/hC0AAAAAMIDTCAGYYeh5VZW2rRidVKm4SxQAOIJ6DRhD2ALgPNPPP4mWPqxqpyfseZK4WxQA+I16DRjFaYQAHNcQz6u6sslncsv5X2IBIJxQrwGzOLIFwCinn38SWVWqF775mWP9AQBOo14DziNsATDK6eefVNoGHgYDAKBeAwZwGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgFu/AwhZbvukIqosR/sDADiPeo1wRdgCELJ4WCYAhAbqNcIVpxECCCllcuvDqnZGl/Gpq4PKLLfRZQBAY0e9BjiyFXJs21bVeT6QvYont6MxsizdUj5dMSpT19bxirCcOy3ljDLLLRnoF41HpW2r8nyL8XmgXqNRol4DhK1QU2VL2w4UBnoYQIBZKlW0yqxoRTRhJ4uGYX8nEG3/qlClig7gaIBQQb1GeOM0wjBwgTtS1DcAqJ+qBlgG9RoAGheObIWYJpbUPS2+zp+xOMQOAI75UWpzVTSJcbxf6jUANC6ErRBjWZYi2A8DQEA1sSxOiQIAnJNl21yVez6Ki4vl8XhUVFSkZs2aBXo4gDPKj0szU07/+aHDUlTT4O5X0onyU+rwyFpJ0u5H+ys2it+M8D2Gvn8nSooU+2Tr03+e/JViL/A40i9wTgZrKvUaAWPye90AzjcbcM0WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADAj6sHXs2DFlZ2crLS1NMTEx6tWrlz788EPvfNu2lZOTo5SUFMXExOjaa6/VJ5984tNHWVmZJkyYoJYtW6pp06YaOnSoDh061NCrAgAAACCMBH3YuuOOO7Ru3TotWbJEH3/8sbKyspSZmal//OMfkqTZs2drzpw5WrBggT788EMlJSWpX79+OnbsmLeP7OxsrV69WitWrNDGjRtVUlKiwYMHq7KyMlCrBQAAAKCRC+qwVVpaqpUrV2r27Nm65pprdNlllyknJ0dt2rTRs88+K9u2NW/ePE2dOlU33XSTOnXqpMWLF+vEiRNatmyZJKmoqEgLFy7UU089pczMTHXp0kVLly7Vxx9/rPXr1wd4DQEAAAA0VkEdtk6dOqXKykpFR0f7TI+JidHGjRu1f/9+5efnKysryzvP7Xard+/e2rRpkyQpLy9PFRUVPm1SUlLUqVMnb5ualJWVqbi42OcFAAAAAOcrqMNWXFycMjIy9Nvf/laHDx9WZWWlli5dqq1bt+rIkSPKz8+XJCUmJvp8LjEx0TsvPz9fUVFRio+Pr7VNTWbNmiWPx+N9paamOrx2AAAAABqzoH+U95IlSzRmzBhddNFFioiIUNeuXTV8+HBt377d28ayLJ/P2LZdbdr3navNlClTdN9993nfFxcXE7gAIMScKD8l6ZRDfVUq1pGeAADfVddaHeOKOOf/9YNF0IetH/zgB8rNzdXx48dVXFys5ORk3XrrrWrTpo2SkpIknT56lZyc7P1MQUGB92hXUlKSysvLVVhY6HN0q6CgQL169ap1uW63W26329BaAQBMsW1bZ3bB3R5br1JFn7X9+YrRSe1xpisACHv1qdW7H+2v2KigjzGSgvw0wu9q2rSpkpOTVVhYqLVr1+r666/3Bq5169Z525WXlys3N9cbpLp16yaXy+XT5siRI9q1a9dZwxYAIDSVVpi/02yMK8L4MgCgMWuIWh0Mgj4Srl27VrZtKz09Xfv27dP999+v9PR0jR49WpZlKTs7WzNnzlTbtm3Vtm1bzZw5U7GxsRo+fLgkyePxaOzYsZo0aZJatGihhIQETZ48WZ07d1ZmZmaA1w4AYNL7D/RR7AXNnOms/Lj05Ok/hsrpKwAQCupaq0PpB6+gD1tFRUWaMmWKDh06pISEBN188816/PHH5XK5JEkPPPCASktLdffdd6uwsFA9evTQW2+9pbi4OG8fc+fOVWRkpIYNG6bS0lL17dtXixYtUkRE6PxFAQDqLjYqwsFTTYJ+lwkAIcnZWh1cgn6thg0bpmHDhtU637Is5eTkKCcnp9Y20dHRmj9/vubPn29ghAAAAABQXchcswUAAAAAoYSwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AAPDXifJKI/3GuCJkWZaRvgEgHFGvEa4IWwBCVvfH1pvpNy1er9yZwQ4cABxCvUa44jRCACElxhWh7mnxRpex7UChSivM/AoLAOGCeg1wZAtAiLEsS6/cmWFk53qivNLYr68AEG6o1wBhC0AIsixLsVGULwAIdtRrhDtOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGcC9OAAhxtm0bfahnjCtClmUZ6x8AwgX1OvwQtgAghNm2rZ8+t1l5BwqNLaN7WrxeuTODHTgA1AP1OjxxGiEAhLDSikqjO25J2nag0OgvsQAQDqjX4YkjWwBQgxPlZnZWJk/x2PZwpmKjIhzr70R5pbo/tt6x/gDABBP12vTpeNTr8EHYAoAamNppmTzFIzYqQrFRlHUA4cVEvTZ9Oh71OnxwGiEA/J8YV4S6p8UbXQaneABA/Zmu19RqOIVIDQD/x7IsvXJnhpEdLKd4AIBzTNVrajWcRtgCgO+wLItTOwAgBFCvEQo4jRAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwABu4QIAOKcT5WaeNxPjijD20FAACEcm6jW12n+ELQDAOZl67kz3tHi9cmcGO3EAcIiJek2t9h+nEQIAahTjilD3tHijy9h2oNDIQ6QBIJyYrtfUav9xZAsAUCPLsvTKnRlGdrAnyiuNHS0DgHBjql5Tq+uPsAUAqJVlWYqNYlcBAMGOeh2cOI0QAAAAAAwI6rB16tQpPfzww2rTpo1iYmJ06aWX6tFHH1VVVZW3zahRo2RZls+rZ8+ePv2UlZVpwoQJatmypZo2baqhQ4fq0KFDDb06AAAAAMJIUB9rfOKJJ/Tcc89p8eLF6tixo7Zt26bRo0fL4/Ho17/+tbfdgAED9OKLL3rfR0VF+fSTnZ2t119/XStWrFCLFi00adIkDR48WHl5eYqIiGiw9QEAAAAQPoI6bG3evFnXX3+9rrvuOknSJZdcouXLl2vbtm0+7dxut5KSkmrso6ioSAsXLtSSJUuUmZkpSVq6dKlSU1O1fv169e/f3+xKAAAAAAhLQX0a4dVXX623335bn332mSTpo48+0saNGzVo0CCfdhs2bFCrVq3Url07jRs3TgUFBd55eXl5qqioUFZWlndaSkqKOnXqpE2bNtW67LKyMhUXF/u8AAAAAOB8BfWRrd/85jcqKipS+/btFRERocrKSj3++OP62c9+5m0zcOBA3XLLLUpLS9P+/fs1bdo0/eQnP1FeXp7cbrfy8/MVFRWl+HjfZw8kJiYqPz+/1mXPmjVLM2bMMLZuAIDTTpQ7f6viWEd7BABQq/0T1GHr5Zdf1tKlS7Vs2TJ17NhRO3fuVHZ2tlJSUjRy5EhJ0q233upt36lTJ3Xv3l1paWl64403dNNNN9Xat23bZ30K9pQpU3Tfffd53xcXFys1NdWBtQIAfJfTz3CJ0UntiXa0SwAIe9Rq/wR12Lr//vv14IMP6rbbbpMkde7cWQcOHNCsWbO8Yev7kpOTlZaWps8//1ySlJSUpPLychUWFvoc3SooKFCvXr1qXbbb7Zbb7XZwbQAAZ8S4ItQ9LV7bDhQaXw4AwD/U6voL6rB14sQJNWnie1lZRESEz63fv++f//ynDh48qOTkZElSt27d5HK5tG7dOg0bNkySdOTIEe3atUuzZ882N3gAQK0sy9Ird2aotMLZ01IkSeXHpSf/vRwAgH+o1fUX1GFryJAhevzxx9W6dWt17NhRO3bs0Jw5czRmzBhJUklJiXJycnTzzTcrOTlZX375pR566CG1bNlSN954oyTJ4/Fo7NixmjRpklq0aKGEhARNnjxZnTt39t6dEADQ8CzLUmyUid1QUO/aACCkUKvrJ6jXcv78+Zo2bZruvvtuFRQUKCUlRePHj9cjjzwi6fRRro8//lj/9V//paNHjyo5OVl9+vTRyy+/rLi4OG8/c+fOVWRkpIYNG6bS0lL17dtXixYt4hlbAAAAAIwJ6rAVFxenefPmad68eTXOj4mJ0dq1a8/ZT3R0tObPn6/58+c7PEIAAAAAqFlQP2cLAAAAAEIVYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwCAcHOivDIo+wIA/JvT9ZV6HZ4IWwDQwLo/tj7QQwAAnAO1Gk7gNEIAaAAxrgh1T4s31n/3tHjFuCKM9Q8A4cB0rZao1+GGI1sA0AAsy9Ird2aotMLMaSQxrghZlmWkbwAIF6ZrtUS9DjeELQBoIJZlKTaKsgsAwYxaDSdxGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHcagXAaeUngrMvAMC/OV1fqdeAUYQtAKc9eVmgRwAAOBdqNRBSOI0QCGeuWCm1p7n+U3ueXgYAwH+ma7VEvQYM4cgWEM4sSxqzRqowdBqJK/b0MgAA/jNdqyXqNWAIYQsId5YlRTUN9CgAAGdDrQZCUlCfRnjq1Ck9/PDDatOmjWJiYnTppZfq0UcfVVVVlbeNbdvKyclRSkqKYmJidO211+qTTz7x6aesrEwTJkxQy5Yt1bRpUw0dOlSHDh1q6NUBAAAAEEaCOmw98cQTeu6557RgwQLt2bNHs2fP1u9//3vNnz/f22b27NmaM2eOFixYoA8//FBJSUnq16+fjh075m2TnZ2t1atXa8WKFdq4caNKSko0ePBgVVZWBmK1AAAAAISBoD6NcPPmzbr++ut13XXXSZIuueQSLV++XNu2bZN0+qjWvHnzNHXqVN10002SpMWLFysxMVHLli3T+PHjVVRUpIULF2rJkiXKzMyUJC1dulSpqalav369+vfvH5iVAwAAANCoBfWRrauvvlpvv/22PvvsM0nSRx99pI0bN2rQoEGSpP379ys/P19ZWVnez7jdbvXu3VubNm2SJOXl5amiosKnTUpKijp16uRtU5OysjIVFxf7vAAAAADgfAX1ka3f/OY3KioqUvv27RUREaHKyko9/vjj+tnPfiZJys/PlyQlJib6fC4xMVEHDhzwtomKilJ8fHy1Nmc+X5NZs2ZpxowZTq4OAAAAgDAS1Ee2Xn75ZS1dulTLli3T9u3btXjxYj355JNavHixTzvre7cqtW272rTvO1ebKVOmqKioyPs6ePCg/ysCAAAAIOwE9ZGt+++/Xw8++KBuu+02SVLnzp114MABzZo1SyNHjlRSUpKk00evkpOTvZ8rKCjwHu1KSkpSeXm5CgsLfY5uFRQUqFevXrUu2+12y+12m1gtAAAAAGEgqI9snThxQk2a+A4xIiLCe+v3Nm3aKCkpSevWrfPOLy8vV25urjdIdevWTS6Xy6fNkSNHtGvXrrOGLQAAAACoj6A+sjVkyBA9/vjjat26tTp27KgdO3Zozpw5GjNmjKTTpw9mZ2dr5syZatu2rdq2bauZM2cqNjZWw4cPlyR5PB6NHTtWkyZNUosWLZSQkKDJkyerc+fO3rsTAgAAAIDTgjpszZ8/X9OmTdPdd9+tgoICpaSkaPz48XrkkUe8bR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3jZz585VZGSkhg0bptLSUvXt21eLFi1SREREIFYLAAAAQBiwbNu2Az2IUFBcXCyPx6OioiI1a9Ys0MMBANSm/Lg0M+X0nx86LEU1De5+ASAchXhNPd9sENTXbAEAAABAqArq0wgBAKiX8hPB2RcA4N/qWl9dsdI5HvMULAhbAIDG68nLAj0CAMC51LVWh9Bph5xGCABoXFyxUmpPc/2n9jy9DACA/0zX6iDBkS0AQONiWdKYNVKFodP+Quj0FQAIWvWp1SH0gxdhCwDQ+FhWyJxiAgBhKwxqNacRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGRgR5AqLBtW5JUXFwc4JEAAAAACKQzmeBMRqgNYes8HTt2TJKUmpoa4JEAAAAACAbHjh2Tx+Opdb5lnyuOQZJUVVWlw4cPKy4uTpZlOd5/cXGxUlNTdfDgQTVr1szx/vFvbOuGwXZuOGzrhsO2bjhs64bDtm44bOuGY3pb27atY8eOKSUlRU2a1H5lFke2zlOTJk108cUXG19Os2bN+MfXQNjWDYPt3HDY1g2Hbd1w2NYNh23dcNjWDcfktj7bEa0zuEEGAAAAABhA2AIAAAAAAwhbQcLtdmv69Olyu92BHkqjx7ZuGGznhsO2bjhs64bDtm44bOuGw7ZuOMGyrblBBgAAAAAYwJEtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYMuSZZ55RmzZtFB0drW7duun9998/a/vc3Fx169ZN0dHRuvTSS/Xcc89Va7Ny5Up16NBBbrdbHTp00OrVq00NP6TUZVuvWrVK/fr104UXXqhmzZopIyNDa9eu9WmzaNEiWZZV7XXy5EnTqxL06rKtN2zYUON2/PTTT33a8b2uWV229ahRo2rc1h07dvS24Xtd3XvvvachQ4YoJSVFlmXp1VdfPednqNX+qeu2plb7r67bmlrtv7pua2q1f2bNmqUrr7xScXFxatWqlW644Qbt3bv3nJ8LlnpN2DLg5ZdfVnZ2tqZOnaodO3boxz/+sQYOHKivvvqqxvb79+/XoEGD9OMf/1g7duzQQw89pIkTJ2rlypXeNps3b9att96qESNG6KOPPtKIESM0bNgwbd26taFWKyjVdVu/99576tevn958803l5eWpT58+GjJkiHbs2OHTrlmzZjpy5IjPKzo6uiFWKWjVdVufsXfvXp/t2LZtW+88vtc1q+u2/sMf/uCzjQ8ePKiEhATdcsstPu34Xvs6fvy4rrjiCi1YsOC82lOr/VfXbU2t9l9dt/UZ1Oq6q+u2plb7Jzc3V7/61a+0ZcsWrVu3TqdOnVJWVpaOHz9e62eCql7bcNx//Md/2HfeeafPtPbt29sPPvhgje0feOABu3379j7Txo8fb/fs2dP7ftiwYfaAAQN82vTv39++7bbbHBp1aKrrtq5Jhw4d7BkzZnjfv/jii7bH43FqiI1GXbf1u+++a0uyCwsLa+2T73XN6vu9Xr16tW1Zlv3ll196p/G9PjtJ9urVq8/ahlrtjPPZ1jWhVtfd+WxrarUz/PleU6v9U1BQYEuyc3Nza20TTPWaI1sOKy8vV15enrKysnymZ2VladOmTTV+ZvPmzdXa9+/fX9u2bVNFRcVZ29TWZzjwZ1t/X1VVlY4dO6aEhASf6SUlJUpLS9PFF1+swYMHV/s1NdzUZ1t36dJFycnJ6tu3r959912feXyvq3Pie71w4UJlZmYqLS3NZzrf6/qhVgcOtdo8anXDo1b7p6ioSJKq1YPvCqZ6Tdhy2LfffqvKykolJib6TE9MTFR+fn6Nn8nPz6+x/alTp/Ttt9+etU1tfYYDf7b19z311FM6fvy4hg0b5p3Wvn17LVq0SK+99pqWL1+u6OhoXXXVVfr8888dHX8o8WdbJycn6/nnn9fKlSu1atUqpaenq2/fvnrvvfe8bfheV1ff7/WRI0f0P//zP7rjjjt8pvO9rj9qdeBQq82hVgcGtdo/tm3rvvvu09VXX61OnTrV2i6Y6nWko73By7Isn/e2bVebdq72359e1z7Dhb/bZfny5crJydFf/vIXtWrVyju9Z8+e6tmzp/f9VVddpa5du2r+/Pn6z//8T+cGHoLqsq3T09OVnp7ufZ+RkaGDBw/qySef1DXXXONXn+HE3+2yaNEiNW/eXDfccIPPdL7XzqBWNzxqtVnU6sCgVvvnnnvu0d/+9jdt3LjxnG2DpV5zZMthLVu2VERERLVUXFBQUC09n5GUlFRj+8jISLVo0eKsbWrrMxz4s63PePnllzV27Fj993//tzIzM8/atkmTJrryyivD+lel+mzr7+rZs6fPduR7XV19trVt23rhhRc0YsQIRUVFnbUt3+u6o1Y3PGp1YFCrzaJW+2fChAl67bXX9O677+riiy8+a9tgqteELYdFRUWpW7duWrdunc/0devWqVevXjV+JiMjo1r7t956S927d5fL5Tprm9r6DAf+bGvp9K+ko0aN0rJly3Tdddedczm2bWvnzp1KTk6u95hDlb/b+vt27Njhsx35XldXn22dm5urffv2aezYsedcDt/ruqNWNyxqdeBQq82iVteNbdu65557tGrVKr3zzjtq06bNOT8TVPXa0dttwLZt216xYoXtcrnshQsX2rt377azs7Ptpk2beu828+CDD9ojRozwtv/iiy/s2NhY+95777V3795tL1y40Ha5XPaf//xnb5v//d//tSMiIuzf/e539p49e+zf/e53dmRkpL1ly5YGX79gUtdtvWzZMjsyMtJ++umn7SNHjnhfR48e9bbJycmx16xZY//973+3d+zYYY8ePdqOjIy0t27d2uDrF0zquq3nzp1rr1692v7ss8/sXbt22Q8++KAtyV65cqW3Dd/rmtV1W59x++232z169KixT77X1R07dszesWOHvWPHDluSPWfOHHvHjh32gQMHbNumVjuprtuaWu2/um5rarX/6rqtz6BW181dd91lezwee8OGDT714MSJE942wVyvCVuGPP3003ZaWpodFRVld+3a1ef2lCNHjrR79+7t037Dhg12ly5d7KioKPuSSy6xn3322Wp9vvLKK3Z6errtcrns9u3b+xTCcFaXbd27d29bUrXXyJEjvW2ys7Pt1q1b21FRUfaFF15oZ2Vl2Zs2bWrANQpeddnWTzzxhP2DH/zAjo6OtuPj4+2rr77afuONN6r1yfe6ZnWtIUePHrVjYmLs559/vsb++F5Xd+aW17XVA2q1c+q6ranV/qvrtqZW+8+fGkKtrruatrEk+8UXX/S2CeZ6bf3fSgAAAAAAHMQ1WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgCEtQ0bNsiyLB09ejTQQwEANDKELQBAozdq1ChZliXLsuRyuXTppZdq8uTJOn78eKCHBgBoxCIDPQAAABrCgAED9OKLL6qiokLvv/++7rjjDh0/fly33nproIcGAGikOLIFAAgLbrdbSUlJSk1N1fDhw/Xzn/9cr776qnd+Xl6eunfvrtjYWPXq1Ut79+71zvv73/+u66+/XomJibrgggt05ZVXav369T79P/PMM2rbtq2io6OVmJion/70p955tm1r9uzZuvTSSxUTE6MrrrhCf/7zn42vMwAgsAhbAICwFBMTo4qKCu/7qVOn6qmnntK2bdsUGRmpMWPGeOeVlJRo0KBBWr9+vXbs2KH+/ftryJAh+uqrryRJ27Zt08SJE/Xoo49q7969WrNmja655hrv5x9++GG9+OKLevbZZ/XJJ5/o3nvv1e23367c3NyGW2EAQIOzbNu2Az0IAABMGjVqlI4ePeo9kvXBBx9o0KBB6tu3r+666y716dNH69evV9++fSVJb775pq677jqVlpYqOjq6xj47duyou+66S/fcc49WrVql0aNH69ChQ4qLi/Npd/z4cbVs2VLvvPOOMjIyvNPvuOMOnThxQsuWLTOz0gCAgOOaLQBAWPjrX/+qCy64QKdOnVJFRYWuv/56zZ8/X7t375Yk/fCHP/S2TU5OliQVFBSodevWOn78uGbMmKG//vWvOnz4sE6dOqXS0lLvka1+/fopLS1Nl156qQYMGKABAwboxhtvVGxsrHbv3q2TJ0+qX79+PuMpLy9Xly5dGmjtAQCBQNgCAISFPn366Nlnn5XL5VJKSopcLpckecPWmfeSZFmWJKmqqkqSdP/992vt2rV68sknddlllykmJkY//elPVV5eLkmKi4vT9u3btWHDBr311lt65JFHlJOTow8//NDbxxtvvKGLLrrIZ0xut9vsSgMAAoqwBQAIC02bNtVll13m12fff/99jRo1SjfeeKOk09dwffnllz5tIiMjlZmZqczMTE2fPl3NmzfXO++8o379+sntduurr75S796967saAIAQQtgCAOAcLrvsMq1atUpDhgyRZVmaNm2a94iVdPoUxS+++ELXXHON4uPj9eabb6qqqkrp6emKi4vT5MmTde+996qqqkpXX321iouLtWnTJl1wwQUaOXJkANcMAGASYQsAgHOYO3euxowZo169eqlly5b6zW9+o+LiYu/85s2ba9WqVcrJydHJkyfVtm1bLV++XB07dpQk/fa3v1WrVq00a9YsffHFF2revLm6du2qhx56KFCrBABoANyNEAAAAAAM4DlbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADDg/wOZVCSCE2gOPQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 16\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, folding at the correct period (blue line) generates a profile that looks approximately sinusoidal, whereas folding at a different period (orange line) does not. \n", + "\n", + "For Phase Dispersion Minimization, we are not interested in the *mean* in each phase bin, but rather the *variance* in each phase bin, which we'd like to _minimize_, not maximize. We can also calculate that using `fold_profile`, using `mode=\"pdm\"` (the default is Epoch Folding, `mode=\"ef\"`):\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIOCAYAAABOCBf1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFgUlEQVR4nO3de3QU5f3H8c+QbDYJhjWBkosGxIIol1puPwhaEblfvVWk1BxARNSfUBS0IiLBKlSqgAXvBw3l6s8KVquCoIJSLkIAK4IgihgKMVZDQiAkIZnfH5StaxIgm3myu9n365w9J7vz7DPPDLvf5bPPzKxl27YtAAAAAICj6gV6AAAAAABQFxG2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAZEBnoAoaK8vFyHDh1SXFycLMsK9HAAAAAABIht2zp69KhSUlJUr94Z5q/sAFq3bp09cOBAOzk52ZZkr1ixwmf5a6+9Zvfu3dtu2LChLcnevn17hT66detmS/K53XzzzT5tfvjhB/uWW26xGzRoYDdo0MC+5ZZb7Ly8vGqNNTs7u8J6uHHjxo0bN27cuHHjFr637OzsM2aIgM5sHTt2TJdffrlGjhypG2+8sdLlV1xxhW666SaNHj26yn5Gjx6tRx55xHs/JibGZ/mwYcN08OBBrVy5UpJ0++23Kz09XW+++eY5jzUuLk6SlJ2drQYNGpzz8wAAAADULQUFBUpNTfVmhKoENGz169dP/fr1q3J5enq6JOnrr78+Yz+xsbFKSkqqdNnu3bu1cuVKbdq0SZ07d5Ykvfjii0pLS9OePXvUsmXLcxrr6UMHGzRoQNgCAAAAcNbTi+rEBTIWL16sRo0aqXXr1po4caKOHj3qXbZx40Z5PB5v0JKkLl26yOPxaMOGDVX2WVxcrIKCAp8bAAAAAJyrkL9Axm9/+1s1a9ZMSUlJ2rlzpyZNmqRPPvlEq1evliTl5OSocePGFZ7XuHFj5eTkVNnvjBkzNG3aNGPjBgAAAFC3hXzY+vG5XG3atFGLFi3UsWNHbdu2Te3bt5dU+fSebdtnnPabNGmS7r33Xu/908dlAgAAAMC5qBOHEf5Y+/bt5XK59MUXX0iSkpKS9O2331Zo99133ykxMbHKftxut/f8LM7TAgAAAFBddS5sffbZZyotLVVycrIkKS0tTfn5+fr444+9bTZv3qz8/Hx17do1UMMEAAAAUMcF9DDCwsJC7du3z3t///792rFjhxISEtSkSRP98MMP+uabb3To0CFJ0p49eySdmq1KSkrSl19+qcWLF6t///5q1KiRdu3apQkTJqhdu3a64oorJEmXXXaZ+vbtq9GjR+v555+XdOrS7wMHDjznKxECAAAAQHVZtm3bgVr52rVr1b179wqPDx8+XJmZmcrMzNTIkSMrLJ86daoyMjKUnZ2tW265RTt37lRhYaFSU1M1YMAATZ06VQkJCd72P/zwg8aNG6c33nhDkjR48GDNmzdP559//jmPtaCgQB6PR/n5+RxSCAAAAISxc80GAQ1boYSwBQAAAEA692xQ587ZAgAAAIBgQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMCAyEAPAKhttm2rqLTMSN8xrghZlmWkbwAIJyZrtUS9BlA7CFsIK7Zt69fPbVTWgTwj/XdsGq9X70jjAxwAasB0rZao1wBqB4cRIqwUlZYZ/fDeeiDP6DexABAOTNdqiXoNoHYws4WwtfWhnoqNinCkr+MlZer46BpH+gIA/JeTtVqiXgOoXYQthK3YqAjFRvEWAIBgRq0GEMo4jBAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADAgoGHrww8/1KBBg5SSkiLLsvT666/7LF++fLn69OmjRo0aybIs7dixo0IfxcXFGjt2rBo1aqT69etr8ODBOnjwoE+bvLw8paeny+PxyOPxKD09XUeOHDG3YQAAAADCXkDD1rFjx3T55Zdr3rx5VS6/4oor9Mc//rHKPsaPH68VK1Zo2bJlWr9+vQoLCzVw4ECVlZV52wwbNkw7duzQypUrtXLlSu3YsUPp6emObw8AAAAAnBYZyJX369dP/fr1q3L56UD09ddfV7o8Pz9f8+fP18KFC9WzZ09J0qJFi5Samqo1a9aoT58+2r17t1auXKlNmzapc+fOkqQXX3xRaWlp2rNnj1q2bOnsRgEAAACAQvycraysLJWWlqp3797ex1JSUtSmTRtt2LBBkrRx40Z5PB5v0JKkLl26yOPxeNtUpri4WAUFBT43AAAAADhXIR22cnJyFBUVpfj4eJ/HExMTlZOT423TuHHjCs9t3Lixt01lZsyY4T3Hy+PxKDU11dnBAwAAAKjTAnoYoSm2bcuyLO/9H/9dVZufmjRpku69917v/YKCAgIXzsnxkrKzN/JDjCvijK9ZAED1UK8BmBbSYSspKUklJSXKy8vzmd3Kzc1V165dvW2+/fbbCs/97rvvlJiYWGXfbrdbbrfb+UGjzuv46Boz/TaN16t3pPEBDgAOoV4DMC2kDyPs0KGDXC6XVq9e7X3s8OHD2rlzpzdspaWlKT8/Xx9//LG3zebNm5Wfn+9tA9RUjCtCHZvGn71hDWw9kKeiUjPfwgJAuKBeA6hNAZ3ZKiws1L59+7z39+/frx07dighIUFNmjTRDz/8oG+++UaHDh2SJO3Zs0fSqdmqpKQkeTwejRo1ShMmTFDDhg2VkJCgiRMnqm3btt6rE1522WXq27evRo8ereeff16SdPvtt2vgwIFciRCOsSxLr96RZuTD9XhJmbFvXwEg3FCvAdSmgIatrVu3qnv37t77p8+RGj58uDIzM/XGG29o5MiR3uVDhw6VJE2dOlUZGRmSpNmzZysyMlJDhgxRUVGRevTooczMTEVERHift3jxYo0bN8571cLBgwdX+dtegL8sy1JsVEgfmQsAYYF6DaC2BLTSXH311bJtu8rlI0aM0IgRI87YR3R0tObOnau5c+dW2SYhIUGLFi3yd5gAAAAAUG0hfc4WAAAAAAQrwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABgQ0bH344YcaNGiQUlJSZFmWXn/9dZ/ltm0rIyNDKSkpiomJ0dVXX63PPvvMp83VV18ty7J8bkOHDvVpk5eXp/T0dHk8Hnk8HqWnp+vIkSOGtw4AAABAOAto2Dp27Jguv/xyzZs3r9LlM2fO1KxZszRv3jxt2bJFSUlJ6tWrl44ePerTbvTo0Tp8+LD39vzzz/ssHzZsmHbs2KGVK1dq5cqV2rFjh9LT041tFwAAAABEBnLl/fr1U79+/SpdZtu25syZo8mTJ+uGG26QJC1YsECJiYlasmSJxowZ420bGxurpKSkSvvZvXu3Vq5cqU2bNqlz586SpBdffFFpaWnas2ePWrZs6fBWAQAAAEAQn7O1f/9+5eTkqHfv3t7H3G63unXrpg0bNvi0Xbx4sRo1aqTWrVtr4sSJPjNfGzdulMfj8QYtSerSpYs8Hk+Ffn6suLhYBQUFPjcAAAAAOFcBndk6k5ycHElSYmKiz+OJiYk6cOCA9/5vf/tbNWvWTElJSdq5c6cmTZqkTz75RKtXr/b207hx4wr9N27c2LuOysyYMUPTpk1zYlMAAAAAhKGgDVunWZblc9+2bZ/HRo8e7f27TZs2atGihTp27Kht27apffv2lfZRWT8/NWnSJN17773e+wUFBUpNTfV7OwAAAACEl6A9jPD0OVg/nX3Kzc2tMNv1Y+3bt5fL5dIXX3zh7efbb7+t0O677747Yz9ut1sNGjTwuQEAAADAuQrasHX60MDThwNKUklJidatW6euXbtW+bzPPvtMpaWlSk5OliSlpaUpPz9fH3/8sbfN5s2blZ+ff8Z+AAAAAKAmAnoYYWFhofbt2+e9v3//fu3YsUMJCQlq0qSJxo8fr+nTp6tFixZq0aKFpk+frtjYWA0bNkyS9OWXX2rx4sXq37+/GjVqpF27dmnChAlq166drrjiCknSZZddpr59+2r06NHeS8LffvvtGjhwIFciBAAAAGBMQMPW1q1b1b17d+/90+dIDR8+XJmZmbr//vtVVFSku+66S3l5eercubPeffddxcXFSZKioqL03nvv6amnnlJhYaFSU1M1YMAATZ06VREREd5+Fy9erHHjxnmvbDh48OAqf9sLAAAAAJwQ0LB19dVXy7btKpdblqWMjAxlZGRUujw1NVXr1q0763oSEhK0aNEif4cJAAAAANUWtOdsAQAAAEAoI2wBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGSgBwCzbNtWUWmZsf5jXBGyLMtY/wAQLqjXAFD3ELbqMNu29evnNirrQJ6xdXRsGq9X70jjAxwAaoB6DQB1E4cR1mFFpWVGP7glaeuBPKPfxAJAOKBeA0DdxMxWmNj6UE/FRkU41t/xkjJ1fHSNY/0BAE6hXgNA3UHYChOxURGKjeKfGwCCHfUaAOoODiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AoDK2bauotMzxfo+XON8nAIQrajUAnBlhC0HHtm39+rmNyjqQF+ihAACqQK0GgLML6GGEH374oQYNGqSUlBRZlqXXX3/dZ7lt28rIyFBKSopiYmJ09dVX67PPPvNpU1xcrLFjx6pRo0aqX7++Bg8erIMHD/q0ycvLU3p6ujwejzwej9LT03XkyBHDWwd/FZWWGf/w7tg0XjGuCKPrAIC6jFoNAGcX0JmtY8eO6fLLL9fIkSN14403Vlg+c+ZMzZo1S5mZmbrkkkv06KOPqlevXtqzZ4/i4uIkSePHj9ebb76pZcuWqWHDhpowYYIGDhyorKwsRUScKtDDhg3TwYMHtXLlSknS7bffrvT0dL355pu1t7EBYytGxVLJMTn6z11yUjE6oSK5neuzElsf6qnYKOc/aGNcEbIsy/F+AcB/oVuvqdUAULmAhq1+/fqpX79+lS6zbVtz5szR5MmTdcMNN0iSFixYoMTERC1ZskRjxoxRfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59tHv3bq1cuVKbNm1S586dJUkvvvii0tLStGfPHrVs2bJ2NjYQbFt/jZqmjvX2Sk8423WspN3R0pbySyS7j7Od/3g9URGKjeJoVwB1XIjXa2o1AFQuaK9GuH//fuXk5Kh3797ex9xut7p166YNGzZIkrKyslRaWurTJiUlRW3atPG22bhxozwejzdoSVKXLl3k8Xi8beqs0uOnPrgN6lRvr1R63Og6AKDOo14DQJ0UtF9D5eTkSJISExN9Hk9MTNSBAwe8baKiohQfH1+hzenn5+TkqHHjxhX6b9y4sbdNZYqLi1VcXOy9X1BQ4N+GBInjv/tcsfUbONffsQLFPnWpY/0BAE6hXgNA3RG0Yeu0nx6rbdv2WY/f/mmbytqfrZ8ZM2Zo2rRp1RxtEHPFSlH1neuv5KRzfQEA/ot6DQB1RtAeRpiUlCRJFWafcnNzvbNdSUlJKikpUV5e3hnbfPvttxX6/+677yrMmv3YpEmTlJ+f771lZ2fXaHsAAAAAhJegDVvNmjVTUlKSVq9e7X2spKRE69atU9euXSVJHTp0kMvl8mlz+PBh7dy509smLS1N+fn5+vjjj71tNm/erPz8fG+byrjdbjVo0MDnBgAAAADnKqCHERYWFmrfvn3e+/v379eOHTuUkJCgJk2aaPz48Zo+fbpatGihFi1aaPr06YqNjdWwYcMkSR6PR6NGjdKECRPUsGFDJSQkaOLEiWrbtq336oSXXXaZ+vbtq9GjR+v555+XdOrS7wMHDqzbVyIEAAAAEFABDVtbt25V9+7dvffvvfdeSdLw4cOVmZmp+++/X0VFRbrrrruUl5enzp0769133/X+xpYkzZ49W5GRkRoyZIiKiorUo0cPZWZmen9jS5IWL16scePGea9aOHjwYM2bN6+WthIAAABAOApo2Lr66qtl23aVyy3LUkZGhjIyMqpsEx0drblz52ru3LlVtklISNCiRYtqMlQACF62bfaS3q5YiR+WBYCao16HnaC/GiEA1BkmPmRtW3q5r5TzqbP9/lhqF+nWlXyAAwgPpgIR9TosEbZCTXUKAD9eCQQP25Ze6iNlbw70SKove9OpeuLk5chDlan/hFGvgeAQyrVaol4HIcJWqCk9Lk1POaemsYaHAqAaSo+b/fBOaiuNdPjbzJLj0hPNnesv1Bn8Txj1GggSpmu1RL0OM4StMLCl/BK1dvFRDgSNifukKIffkxynb14t/CeMeg0EERO1WqJehxnCVqhxxUoPHjqnpsdLTqrDo2tUJLd28aYGgkdULId4hDqH/xNGvQaCELUaDiBshRrLqsYb/6SKFG10OAAQlhz/Txj1GgDqonqBHgAAAAAA1EWELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYEBnoAQA4d8dLyoz0G+OKkGVZRvoGgHBkol5Tq4HQQ9gCQkjHR9eY6bdpvF69I40PcQBwiIl6Ta0GQo9fhxFu27ZNn376qff+3/72N1133XV68MEHVVJS4tjgAJz6JrNj03ij69h6IE9FpWZmzQAgXJiu19RqIPT4NbM1ZswYPfDAA2rbtq2++uorDR06VNdff71effVVHT9+XHPmzHF4mED4sixLr96RZuQD9nhJmbHZMgAIN6bqNbUaCF1+ha29e/fql7/8pSTp1Vdf1VVXXaUlS5boH//4h4YOHUrYAhxmWZZiozjqFwCCHfUawI/5dRihbdsqLy+XJK1Zs0b9+/eXJKWmpurf//63c6MDAAAAgBDlV9jq2LGjHn30US1cuFDr1q3TgAEDJEn79+9XYmKiowMEAAAAgFDkV9iaPXu2tm3bprvvvluTJ09W8+bNJUl//etf1bVrV0cHCAAAAAChyK+Dii+//HKfqxGe9qc//UmRkRynDAAAAAB+zWxdfPHF+v777ys8fuLECV1yySU1HhQAAAAAhDq/wtbXX3+tsrKKlzUtLi7WwYMHazwoAAAAAAh11Trm74033vD+vWrVKnk8Hu/9srIyvffee2rWrJlzowMAAACAEFWtsHXddddJOvUbEsOHD/dZ5nK5dNFFF+nJJ590bHDB6On39ym6/nmBHsY5KS0r9/497/19ckX4NZFZuZJjuuc/fz6/7ispqr5jXRsdN3ywr2tPZFmRxv7n77nv79PJiJiAjudchOKYTTK5P0KxXlM/ag/7uvaEat0L1XGHshPHCs+pXbXC1unf1mrWrJm2bNmiRo0aVX9kQF1l24osP2Gs+5P1oiXLMtY/UOt4zyBQeO0B5473S434denA/fv3Oz0OILTZtm7+9DalHP2nsVX8K+5y/V/bF+t0QUIY4T2DQOG1B5w73i815vd12t977z299957ys3N9c54nfbSSy/VeGBAKIksP2G0EEnSBUc/UWT5CQ4NQJ3AewaBwmsPOHe8X2rOr7A1bdo0PfLII+rYsaOSk5Nl1dEkWpktX/8gV0xxoIdxTsrKbe/fH+//QRH1nPt3iiwr8v699UCeTkY4N71sctySJNuW23b239Bt/3f7RzdepmIr2tG+X8wdKknasv8HFddzrm/j+xpe7h8dguH0v6MpJsf8475D5T1jcn+EYr0OxVothWa9plbXnlCs1ZK5cYdira4tpUXHzqmdX2HrueeeU2ZmptLT0/15OhA4tq1Hvp+glqW7jK2i2Ip2tmCUn70JEMp4z6CCWqjVEq89oDp4v/jHr8vZlJSUqGvXrk6PBTDObRcb/fD+3NVKxZbbWP8AEA5M12qJeg2gdvg1s3XbbbdpyZIlmjJlitPjAWqN09Phkk59cIfRYbUAYJqJWi1RrwHUDr/C1okTJ/TCCy9ozZo1+sUvfiGXy+WzfNasWY4MDjDJ8elwAIDjqNUAQplfYeuf//ynfvnLX0qSdu7c6bMsnC6WAQAAAABV8StsffDBB06PAwAAAADqFL8ukAEAAAAAODO/Zra6d+9+xsMF33//fb8HBAAAAAB1gV9h6/T5WqeVlpZqx44d2rlzp4YPH+7EuABUwm2fcPR3KcpsWzE6oSJx+WMAcJKT9ZpaDYQuv8LW7NmzK308IyNDhYWFNRoQgKqd/qV1R0VLW8ov0eP2HElc4AYAnOB4vaZWAyHJ0XO2brnlFr300ktOdgmEvWLLrc9drYyuo1O9vXKr2Og6AKCuM12vqdVA6PFrZqsqGzduVHQ0v4UBOMqyNLXhk3Lbzn/ARpYX6aXvfuN4vwAQlgzVa2o1ELr8Cls33HCDz33btnX48GFt3bpVU6ZMcWRgpx09elRTpkzRihUrlJubq3bt2umpp55Sp06dJEkjRozQggULfJ7TuXNnbdq0yXu/uLhYEydO1NKlS1VUVKQePXromWee0YUXXujoWAFjLEvFlvNfZJTZtuN9AkBYM1CvqdVA6PIrbHk8Hp/79erVU8uWLfXII4+od+/ejgzstNtuu007d+7UwoULlZKSokWLFqlnz57atWuXLrjgAklS37599fLLL3ufExUV5dPH+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sRERGOjhcAAAAAJD/D1o+DjUlFRUV67bXX9Le//U1XXXWVpFMX4Xj99df17LPP6tFHH5Ukud1uJSUlVdpHfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59amVbAAAAAISXGl0gIysrS4sWLdLixYu1fft2p8bkdfLkSZWVlVU4DywmJkbr16/33l+7dq0aN26sSy65RKNHj1Zubq7PGEtLS31m3FJSUtSmTRtt2LDB8TEDAAAAgOTnzFZubq6GDh2qtWvX6vzzz5dt28rPz1f37t21bNky/exnP3NkcHFxcUpLS9Mf/vAHXXbZZUpMTNTSpUu1efNmtWjRQpLUr18/3XTTTWratKn279+vKVOm6JprrlFWVpbcbrdycnIUFRWl+Ph4n74TExOVk5NT5bqLi4tVXPzfE1wLCgoc2SYAAAAA4cGvma2xY8eqoKBAn332mX744Qfl5eVp586dKigo0Lhx4xwd4MKFC2Xbti644AK53W79+c9/1rBhw7znWt18880aMGCA2rRpo0GDBumdd97R3r179dZbb52xX9u2ZVlV/07FjBkz5PF4vLfU1FRHtwsAAABA3eZX2Fq5cqWeffZZXXbZZd7HWrVqpaefflrvvPOOY4OTpJ///Odat26dCgsLlZ2drY8//lilpaVq1qxZpe2Tk5PVtGlTffHFF5KkpKQklZSUKC8vz6ddbm6uEhMTq1zvpEmTlJ+f771lZ2c7t1EAAAAA6jy/wlZ5eblcLleFx10ul8rLy2s8qMrUr19fycnJysvL06pVq3TttddW2u77779Xdna2kpOTJUkdOnSQy+XS6tWrvW0OHz6snTt3qmvXrlWuz+12q0GDBj43AAAAADhXfoWta665Rr/73e906NAh72P/+te/dM8996hHjx6ODU6SVq1apZUrV2r//v1avXq1unfvrpYtW2rkyJEqLCzUxIkTtXHjRn399ddau3atBg0apEaNGun666+XdOoy9aNGjdKECRP03nvvafv27brlllvUtm1b79UJAQAAAMBpfl0gY968ebr22mt10UUXKTU1VZZl6ZtvvlHbtm21aNEiRweYn5+vSZMm6eDBg0pISNCNN96oxx57TC6XSydPntSnn36qv/zlLzpy5IiSk5PVvXt3vfLKK4qLi/P2MXv2bEVGRmrIkCHeHzXOzMzkN7YAAAAAGONX2EpNTdW2bdu0evVqff7557JtW61atTIyUzRkyBANGTKk0mUxMTFatWrVWfuIjo7W3LlzNXfuXKeHBwAAAACVqtZhhO+//75atWrlvQx6r169NHbsWI0bN06dOnVS69at9dFHHxkZKAAAAACEkmqFrTlz5mj06NGVXizC4/FozJgxmjVrlmODAwAAAIBQVa2w9cknn6hv375VLu/du7eysrJqPCgAAAAACHXVClvffvttpZd8Py0yMlLfffddjQcFAAAAAKGuWhfIuOCCC/Tpp5+qefPmlS7/5z//6f19K4QPt31CEeWWY/2V2bZidEJFcjvWJwDA2XpNrQaAs6tW2Orfv78efvhh9evXT9HR0T7LioqKNHXqVA0cONDRASL4vfTdb5zvNFraUn6JHrfnSHIuyAFAOHO8XlOrAeCMqhW2HnroIS1fvlyXXHKJ7r77brVs2VKWZWn37t16+umnVVZWpsmTJ5saK4JIsdzaUn6JOtXba2wdnertlVvFOqkYY+sAgLrOdL2mVgNA1aoVthITE7VhwwbdeeedmjRpkmzbliRZlqU+ffromWeeUWJiopGBIshYlm4qmaoYFat9k3hFWM59oxlZXmRmtgwAwpGhek2tBoCzq/aPGjdt2lRvv/228vLytG/fPtm2rRYtWig+Pt7E+BDULBUpWsVWtCLqOXvOFgDASc7Xa2o1AJxdtcPWafHx8erUqZOTYwGAwLNtue1ix7t12ycc7xMAwpqBek2thtP8DlsA6pZy21ZZubPfVNezTh1mHDJsW498P0EtS3cFeiQAUCkTtVqiXgOmELYASJJ2ZB9RkZz9Ru88d6RaJceFzAe42y42/sH9uauVii0ulQ3APyZqtUS9/ilqNZxC2ALCWLV+1dwPhcUnVW5LEaHx2e1jdONlKraiz96wmoottxQi/5kBEBxM12qJev1T1Go4hbCFGiu3bancuf7qcdJ1rfnxN5jtm8Q79mFVbtva9s0R799Ovj5OM33IS7EVreJ6zoctIJCcfD9Sq2uPqVotUa8B0whbqLHTRdopMTohUTNrXYRlOXdVyR99WDv9+jgt1A55AYKBk+9HanVgOFqrJeo1YFhtzEyjDqpnnSqextdjfA0woTZeH6cPeQFwZrXxfqRWhy7qNWAWM1vwi2VZapUcZ6R4uu0TUu5/14PQY/L18eNDXgCcnan3I7W6bqBeA2YRtuA3y7KMnEgbUc6Hdl1g6vVh4nwCoK4z8X6kVtcd1GvAHGb+AQAAAMAAwhYAAAAAGMBhhACAs3LbJxw9JMhtO/+jrAAAZ+s1tbrmCFsAgLN6MXdooIcAADgH1OvgwmGEAIBKFVtufe5qZXQdn7taqdhyG10HANR1pus1tdp/zGwhqHHoEhBAlqWpDZ+U2y42topiyy1x2fCQR60GAsxwvaZW+4+whaDGVDgQYJalYis60KNAkKNWA0GAeh2UOIwQQYdDlwAg+FGrAeDsmNlC8OHQJQAOKbNtlZXbjvWFH6FWA3BIdWt1PevUj3GHAsIWghNT4QD8ZP8oFG37Jk9FcqaWxOiETndlE7xOoVYD8FNNanXHpvGKCI2sxWGEAIC6xcHrNAR0HQBQl4VLHWVmCwBQZ/0y9XyV1otxpC9XeZH0nSNdAQB+pLq1ul6IzGpJhC0Apti2kXM5ymxbMTqhInHSPM6unmUpwqFP5Xp2CH26A9VBvUaAOVmrgw1hC4DzbFuPfD9BLUt3mek/WtpSfoket+dIqpvFGQBqBfUaMIpztgA4zm0Xm/vg/o9O9fbKLXNXQQOAcEC9BsxiZguAUaMbL3P0amWR5UV66bvfONYfAOAU6jXgPMIWAKOKrWgV13Puw5vfOgIAM6jXgPM4jBAAAAAADGBmK8TYtq1z/YHtcr5RAgAjym1bZedajM+xPwBA3UPYCjHltrT1QF6ghwEAYW1H9hEV6USghwEACHIcRhgGznNHhtSPvwFAMKqND0zqNQDULcxshZh6ltSxaXy1n2NZfHoDQE38uI62bxLv6FXbTqNeA0DdQtgKMZZlKYLPYUCS5LZPKKLcuTeE2+awMJybCMtSBFNQwDmjXiNcEbYAhCx+vwUAQgP1GuGKc7YAhJRiubWl/BKj6/jc1UrFltvoOgCgrqNeA8xsAQg1lqWbSqYqRsVq3yReEQbObym23BLnzQBAzVCvAcIWgFBkqUjRKraiOW8GAIIa9RrhjbBVTZ0uSlB0/fMCPQzAEZFlRdK3p/7u1CxBJyNigrpfSSotK/f+1tz/NEuQK4KjofETJcek3FN/dmwaL0XVd6Rbk69r4ExMvvao1wgYQ7W6tpw45taKc2jHqx4AAAAADCBsAQAAAIABhC0AAAAAMCDoz9k6evSopkyZohUrVig3N1ft2rXTU089pU6dOkmSbNvWtGnT9MILLygvL0+dO3fW008/rdatW3v7KC4u1sSJE7V06VIVFRWpR48eeuaZZ3ThhRdWezz/e01zNWjQwLHtAwKq5Ji06dSfY69p7tzx0qb6lXS85KSeWfulJOnua5orNiroyxhq2fHCfGnLqb/HdLtYsed5nOnY4OsaOCOTrz3qNQLEWK2uJQUFBXrwHNoF/czWbbfdptWrV2vhwoX69NNP1bt3b/Xs2VP/+te/JEkzZ87UrFmzNG/ePG3ZskVJSUnq1auXjh496u1j/PjxWrFihZYtW6b169ersLBQAwcOVFlZWaA2CwAAAEAdF9Rhq6ioSK+99ppmzpypq666Ss2bN1dGRoaaNWumZ599VrZta86cOZo8ebJuuOEGtWnTRgsWLNDx48e1ZMkSSVJ+fr7mz5+vJ598Uj179lS7du20aNEiffrpp1qzZk2AtxAAAABAXRXUYevkyZMqKytTdHS0z+MxMTFav3699u/fr5ycHPXu3du7zO12q1u3btqwYYMkKSsrS6WlpT5tUlJS1KZNG2+byhQXF6ugoMDnBgAAAADnKqjDVlxcnNLS0vSHP/xBhw4dUllZmRYtWqTNmzfr8OHDysnJkSQlJib6PC8xMdG7LCcnR1FRUYqPj6+yTWVmzJghj8fjvaWmpjq8dQAAAADqsqAOW5K0cOFC2batCy64QG63W3/+8581bNgwRUREeNtYlu8vktu2XeGxnzpbm0mTJik/P997y87OrtmGAAAAAAgrQR+2fv7zn2vdunUqLCxUdna2Pv74Y5WWlqpZs2ZKSkqSpAozVLm5ud7ZrqSkJJWUlCgvL6/KNpVxu91q0KCBzw0AAAAAzlXQh63T6tevr+TkZOXl5WnVqlW69tprvYFr9erV3nYlJSVat26dunbtKknq0KGDXC6XT5vDhw9r586d3jYAAAAA4LSg/8GDVatWybZttWzZUvv27dN9992nli1bauTIkbIsS+PHj9f06dPVokULtWjRQtOnT1dsbKyGDRsmSfJ4PBo1apQmTJighg0bKiEhQRMnTlTbtm3Vs2fPAG8dAAAAgLoq6MNWfn6+Jk2apIMHDyohIUE33nijHnvsMblcLknS/fffr6KiIt11113eHzV+9913FRcX5+1j9uzZioyM1JAhQ7w/apyZmelz3hcAAAAAOCnow9aQIUM0ZMiQKpdblqWMjAxlZGRU2SY6Olpz587V3LlzDYwQAAAAACoKmXO2AAAAACCUELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGBAZ6AEAAGrGtm0VlZYZ6z/GFSHLsoz1DwDhgnodfghbABDCbNvWr5/bqKwDecbW0bFpvF69I40PcACoAep1eOIwQgAIYUWlZUY/uCVp64E8o9/EAkA4oF6HJ2a2AKCO2PpQT8VGRTjW3/GSMnV8dI1j/QEATqFehw/CFgDUEbFREYqNoqwDQLCjXocPDiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAyIDPQAACCY2LatotIyY/3HuCJkWZax/gEgXJis19RqOIWwBQD/Ydu2fv3cRmUdyDO2jo5N4/XqHWl8iANADZiu19RqOIXDCAHgP4pKy4wGLUnaeiDP6MwZAIQD0/WaWg2nMLMFAJXY+lBPxUZFONbf8ZIydXx0jWP9AQBOcbJeU6vhNMIWAFQiNipCsVGUSAAIdtRrBLOgPozw5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvmxEjRsiyLJ9bly5dfPopLi7W2LFj1ahRI9WvX1+DBw/WwYMHa3tzAAAAAISRoP4a4PHHH9dzzz2nBQsWqHXr1tq6datGjhwpj8ej3/3ud952ffv21csvv+y9HxUV5dPP+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sREc4dJgQAAAAApwV12Nq4caOuvfZaDRgwQJJ00UUXaenSpdq6datPO7fbraSkpEr7yM/P1/z587Vw4UL17NlTkrRo0SKlpqZqzZo16tOnj9mNAAAAABCWgjpsXXnllXruuee0d+9eXXLJJfrkk0+0fv16zZkzx6fd2rVr1bhxY51//vnq1q2bHnvsMTVu3FiSlJWVpdLSUvXu3dvbPiUlRW3atNGGDRuqDFvFxcUqLi723i8oKHB+AwHUyPESZ68U5XR/AIBTqNcIV0Edtn7/+98rPz9fl156qSIiIlRWVqbHHntMv/nNb7xt+vXrp5tuuklNmzbV/v37NWXKFF1zzTXKysqS2+1WTk6OoqKiFB8f79N3YmKicnJyqlz3jBkzNG3aNGPbBqDmuGIUAIQG6jXCVVBfIOOVV17RokWLtGTJEm3btk0LFizQE088oQULFnjb3HzzzRowYIDatGmjQYMG6Z133tHevXv11ltvnbFv27bP+EN1kyZNUn5+vveWnZ3t2HYB8F+MK0Idm8afvWENdGwarxgX53MCQE1Qr4Egn9m677779MADD2jo0KGSpLZt2+rAgQOaMWOGhg8fXulzkpOT1bRpU33xxReSpKSkJJWUlCgvL89ndis3N1ddu3atct1ut1tut9vBrQHgBMuy9OodaUZ/bDLGFXHGL2MAAGdHvQaCPGwdP35c9er5Tr5FRET4XPr9p77//ntlZ2crOTlZktShQwe5XC6tXr1aQ4YMkSQdPnxYO3fu1MyZM80NHoAxlmXxmyoAEAKo1wh3Qf3qHzRokB577DE1adJErVu31vbt2zVr1izdeuutkqTCwkJlZGToxhtvVHJysr7++ms9+OCDatSoka6//npJksfj0ahRozRhwgQ1bNhQCQkJmjhxotq2beu9OiEAAAAAOC2ow9bcuXM1ZcoU3XXXXcrNzVVKSorGjBmjhx9+WNKpWa5PP/1Uf/nLX3TkyBElJyere/fueuWVVxQXF+ftZ/bs2YqMjNSQIUNUVFSkHj16KDMzk9/YAgAAAGBMUIetuLg4zZkzp8Kl3k+LiYnRqlWrztpPdHS05s6dq7lz5zo8QgAAAACoXFBfjRAAAAAAQhVhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAA4L6R40BAMHheEmZkX5jXBGyLMtI3wAQjkzUa2q1/whbAICz6vjoGjP9No3Xq3ek8SEOAA4xUa+p1f7jMEIAQKViXBHq2DTe6Dq2HshTUamZWTMACBem6zW12n/MbAEAKmVZll69I83IB+zxkjJjs2UAEG5M1Wtqdc0RtgAAVbIsS7FRfFQAQLCjXgcn/kUAAAHl9Mncx0vKFOtojwAAarV/CFsAgIBy+hCVGJ3Q7mhHuwSAsEet9g8XyAAA1LrauPjG6fUAAPxDra45ZrYAnFJyPDj7Qp1k8uIbKjkmPfHf9QB1itP1lXqNM6BW1xxhC8ApTzQP9AgQZsydzM1HG+owajVqGbW6ZjiMEAhnrlgptYu5/lO7nFoHAMB/pmu1RL0GDAmPSAmgcpYl3bpSKjV0GIkr9tQ6AAD+M12rJeo1YAhhCwh3liVF1Q/0KAAAZ0KtBkIShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAZGBHgAAhJvjJWVB2RcA4L+crq/U6/BE2AKAWtbx0TWBHgIA4Cyo1XAChxECQC2IcUWoY9N4Y/13bBqvGFeEsf4BIByYrtUS9TrcMLMFALXAsiy9ekeaikrNHEYS44qQZVlG+gaAcGG6VkvU63BD2AKAWmJZlmKjKLsAEMyo1XAShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1GHr5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvG9u2lZGRoZSUFMXExOjqq6/WZ5995tNPcXGxxo4dq0aNGql+/foaPHiwDh48WNubAwAAACCMBHXYevzxx/Xcc89p3rx52r17t2bOnKk//elPmjt3rrfNzJkzNWvWLM2bN09btmxRUlKSevXqpaNHj3rbjB8/XitWrNCyZcu0fv16FRYWauDAgSorM/cbCgAAAADCW1D/iMDGjRt17bXXasCAAZKkiy66SEuXLtXWrVslnZrVmjNnjiZPnqwbbrhBkrRgwQIlJiZqyZIlGjNmjPLz8zV//nwtXLhQPXv2lCQtWrRIqampWrNmjfr06ROYjQMAAABQpwX1zNaVV16p9957T3v37pUkffLJJ1q/fr369+8vSdq/f79ycnLUu3dv73Pcbre6deumDRs2SJKysrJUWlrq0yYlJUVt2rTxtqlMcXGxCgoKfG4AAAAAcK6Cembr97//vfLz83XppZcqIiJCZWVleuyxx/Sb3/xGkpSTkyNJSkxM9HleYmKiDhw44G0TFRWl+Pj4Cm1OP78yM2bM0LRp05zcHAAAAABhJKhntl555RUtWrRIS5Ys0bZt27RgwQI98cQTWrBggU87y7J87tu2XeGxnzpbm0mTJik/P997y87O9n9DAAAAAISdoJ7Zuu+++/TAAw9o6NChkqS2bdvqwIEDmjFjhoYPH66kpCRJp2avkpOTvc/Lzc31znYlJSWppKREeXl5PrNbubm56tq1a5XrdrvdcrvdJjYLAAAAQBgI6pmt48ePq1493yFGRER4L/3erFkzJSUlafXq1d7lJSUlWrdunTdIdejQQS6Xy6fN4cOHtXPnzjOGLQAAAACoiaCe2Ro0aJAee+wxNWnSRK1bt9b27ds1a9Ys3XrrrZJOHT44fvx4TZ8+XS1atFCLFi00ffp0xcbGatiwYZIkj8ejUaNGacKECWrYsKESEhI0ceJEtW3b1nt1QgAAAABwWlCHrblz52rKlCm66667lJubq5SUFI0ZM0YPP/ywt83999+voqIi3XXXXcrLy1Pnzp317rvvKi4uzttm9uzZioyM1JAhQ1RUVKQePXooMzNTERERgdgsAAAAAGHAsm3bDvQgQkFBQYE8Ho/y8/PVoEGDQA8HAFCVkmPS9JRTfz94SIqqH9z9AkA4CvGaeq7ZIKjP2QIAAACAUEXYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMCAy0AMAAMCYkuPB2RcA4L+qW19dsZJlmRmLwwhbAIC664nmgR4BAOBsqlurHzwkRdU3MxaHcRghAKBuccVKqV3M9Z/a5dQ6AAD+M12rgwQzWwCAusWypFtXSqWGDvsLocNXACBo1aRWh9AXXoQtAEDdY1khc4gJAIStMKjVHEYIAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChwrZtSVJBQUGARwIAAAAgkE5ngtMZoSqErXN09OhRSVJqamqARwIAAAAgGBw9elQej6fK5ZZ9tjgGSVJ5ebkOHTqkuLg4WZbleP8FBQVKTU1Vdna2GjRo4Hj/+C/2de1gP9ce9nXtYV/XHvZ17WFf1x72de0xva9t29bRo0eVkpKievWqPjOLma1zVK9ePV144YXG19OgQQPefLWEfV072M+1h31de9jXtYd9XXvY17WHfV17TO7rM81oncYFMgAAAADAAMIWAAAAABhA2AoSbrdbU6dOldvtDvRQ6jz2de1gP9ce9nXtYV/XHvZ17WFf1x72de0Jln3NBTIAAAAAwABmtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYcuQZ555Rs2aNVN0dLQ6dOigjz766Izt161bpw4dOig6OloXX3yxnnvuuQptXnvtNbVq1Uput1utWrXSihUrTA0/pFRnXy9fvly9evXSz372MzVo0EBpaWlatWqVT5vMzExZllXhduLECdObEvSqs6/Xrl1b6X78/PPPfdrxuq5cdfb1iBEjKt3XrVu39rbhdV3Rhx9+qEGDBiklJUWWZen1118/63Oo1f6p7r6mVvuvuvuaWu2/6u5rarV/ZsyYoU6dOikuLk6NGzfWddddpz179pz1ecFSrwlbBrzyyisaP368Jk+erO3bt+tXv/qV+vXrp2+++abS9vv371f//v31q1/9Stu3b9eDDz6ocePG6bXXXvO22bhxo26++Walp6frk08+UXp6uoYMGaLNmzfX1mYFperu6w8//FC9evXS22+/raysLHXv3l2DBg3S9u3bfdo1aNBAhw8f9rlFR0fXxiYFreru69P27Nnjsx9btGjhXcbrunLV3ddPPfWUzz7Ozs5WQkKCbrrpJp92vK59HTt2TJdffrnmzZt3Tu2p1f6r7r6mVvuvuvv6NGp19VV3X1Or/bNu3Tr97//+rzZt2qTVq1fr5MmT6t27t44dO1blc4KqXttw3P/8z//Yd9xxh89jl156qf3AAw9U2v7++++3L730Up/HxowZY3fp0sV7f8iQIXbfvn192vTp08ceOnSoQ6MOTdXd15Vp1aqVPW3aNO/9l19+2fZ4PE4Nsc6o7r7+4IMPbEl2Xl5elX3yuq5cTV/XK1assC3Lsr/++mvvY7yuz0ySvWLFijO2oVY741z2dWWo1dV3LvuaWu0Mf17X1Gr/5Obm2pLsdevWVdkmmOo1M1sOKykpUVZWlnr37u3zeO/evbVhw4ZKn7Nx48YK7fv06aOtW7eqtLT0jG2q6jMc+LOvf6q8vFxHjx5VQkKCz+OFhYVq2rSpLrzwQg0cOLDCt6nhpib7ul27dkpOTlaPHj30wQcf+CzjdV2RE6/r+fPnq2fPnmratKnP47yua4ZaHTjUavOo1bWPWu2f/Px8SapQD34smOo1Ycth//73v1VWVqbExESfxxMTE5WTk1Ppc3Jyciptf/LkSf373/8+Y5uq+gwH/uzrn3ryySd17NgxDRkyxPvYpZdeqszMTL3xxhtaunSpoqOjdcUVV+iLL75wdPyhxJ99nZycrBdeeEGvvfaali9frpYtW6pHjx768MMPvW14XVdU09f14cOH9c477+i2227zeZzXdc1RqwOHWm0OtTowqNX+sW1b9957r6688kq1adOmynbBVK8jHe0NXpZl+dy3bbvCY2dr/9PHq9tnuPB3vyxdulQZGRn629/+psaNG3sf79Kli7p06eK9f8UVV6h9+/aaO3eu/vznPzs38BBUnX3dsmVLtWzZ0ns/LS1N2dnZeuKJJ3TVVVf51Wc48Xe/ZGZm6vzzz9d1113n8ziva2dQq2sftdosanVgUKv9c/fdd+uf//yn1q9ff9a2wVKvmdlyWKNGjRQREVEhFefm5lZIz6clJSVV2j4yMlINGzY8Y5uq+gwH/uzr01555RWNGjVK//d//6eePXuesW29evXUqVOnsP5WqSb7+se6dOnisx95XVdUk31t27ZeeuklpaenKyoq6oxteV1XH7W69lGrA4NabRa12j9jx47VG2+8oQ8++EAXXnjhGdsGU70mbDksKipKHTp00OrVq30eX716tbp27Vrpc9LS0iq0f/fdd9WxY0e5XK4ztqmqz3Dgz76WTn1LOmLECC1ZskQDBgw463ps29aOHTuUnJxc4zGHKn/39U9t377dZz/yuq6oJvt63bp12rdvn0aNGnXW9fC6rj5qde2iVgcOtdosanX12Latu+++W8uXL9f777+vZs2anfU5QVWvHb3cBmzbtu1ly5bZLpfLnj9/vr1r1y57/Pjxdv369b1Xm3nggQfs9PR0b/uvvvrKjo2Nte+55x57165d9vz5822Xy2X/9a9/9bb5xz/+YUdERNh//OMf7d27d9t//OMf7cjISHvTpk21vn3BpLr7esmSJXZkZKT99NNP24cPH/bejhw54m2TkZFhr1y50v7yyy/t7du32yNHjrQjIyPtzZs31/r2BZPq7uvZs2fbK1assPfu3Wvv3LnTfuCBB2xJ9muvveZtw+u6ctXd16fdcsstdufOnSvtk9d1RUePHrW3b99ub9++3ZZkz5o1y96+fbt94MAB27ap1U6q7r6mVvuvuvuaWu2/6u7r06jV1XPnnXfaHo/HXrt2rU89OH78uLdNMNdrwpYhTz/9tN20aVM7KirKbt++vc/lKYcPH25369bNp/3atWvtdu3a2VFRUfZFF11kP/vssxX6fPXVV+2WLVvaLpfLvvTSS30KYTirzr7u1q2bLanCbfjw4d4248ePt5s0aWJHRUXZP/vZz+zevXvbGzZsqMUtCl7V2dePP/64/fOf/9yOjo624+Pj7SuvvNJ+6623KvTJ67py1a0hR44csWNiYuwXXnih0v54XVd0+pLXVdUDarVzqruvqdX+q+6+plb7z58aQq2uvsr2sST75Zdf9rYJ5npt/WcjAAAAAAAO4pwtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAMLa2rVrZVmWjhw5EuihAADqGMIWAKDOGzFihCzLkmVZcrlcuvjiizVx4kQdO3Ys0EMDANRhkYEeAAAAtaFv3756+eWXVVpaqo8++ki33Xabjh07pptvvjnQQwMA1FHMbAEAwoLb7VZSUpJSU1M1bNgw/fa3v9Xrr7/uXZ6VlaWOHTsqNjZWXbt21Z49e7zLvvzyS1177bVKTEzUeeedp06dOmnNmjU+/T/zzDNq0aKFoqOjlZiYqF//+tfeZbZta+bMmbr44osVExOjyy+/XH/961+NbzMAILAIWwCAsBQTE6PS0lLv/cmTJ+vJJ5/U1q1bFRkZqVtvvdW7rLCwUP3799eaNWu0fft29enTR4MGDdI333wjSdq6davGjRunRx55RHv27NHKlSt11VVXeZ//0EMP6eWXX9azzz6rzz77TPfcc49uueUWrVu3rvY2GABQ6yzbtu1ADwIAAJNGjBihI0eOeGeyPv74Y/Xv3189evTQnXfeqe7du2vNmjXq0aOHJOntt9/WgAEDVFRUpOjo6Er7bN26te68807dfffdWr58uUaOHKmDBw8qLi7Op92xY8fUqFEjvf/++0pLS/M+ftttt+n48eNasmSJmY0GAAQc52wBAMLC3//+d5133nk6efKkSktLde2112ru3LnatWuXJOkXv/iFt21ycrIkKTc3V02aNNGxY8c0bdo0/f3vf9ehQ4d08uRJFRUVeWe2evXqpaZNm+riiy9W37591bdvX11//fWKjY3Vrl27dOLECfXq1ctnPCUlJWrXrl0tbT0AIBAIWwCAsNC9e3c9++yzcrlcSklJkcvlkiRv2Dp9X5Isy5IklZeXS5Luu+8+rVq1Sk888YSaN2+umJgY/frXv1ZJSYkkKS4uTtu2bdPatWv17rvv6uGHH1ZGRoa2bNni7eOtt97SBRdc4DMmt9ttdqMBAAFF2AIAhIX69eurefPmfj33o48+0ogRI3T99ddLOnUO19dff+3TJjIyUj179lTPnj01depUnX/++Xr//ffVq1cvud1uffPNN+rWrVtNNwMAEEIIWwAAnEXz5s21fPlyDRo0SJZlacqUKd4ZK+nUIYpfffWVrrrqKsXHx+vtt99WeXm5WrZsqbi4OE2cOFH33HOPysvLdeWVV6qgoEAbNmzQeeedp+HDhwdwywAAJhG2AAA4i9mzZ+vWW29V165d1ahRI/3+979XQUGBd/n555+v5cuXKyMjQydOnFCLFi20dOlStW7dWpL0hz/8QY0bN9aMGTP01Vdf6fzzz1f79u314IMPBmqTAAC1gKsRAgAAAIAB/M4WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAz4f8yKY8XX6ew7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, this looks very different, and not quite as easily recognizeable. What you see here is the nominator of the second term in the PDM Equation written in the introduction.\n", + "\n", + "We'd now like to try calculating this profile for a number of trial periods, and then calculate $\\theta_\\mathrm{PDM}$. Our null hypothesis is that there is no variation in the data except for measurement noise (e.g. Poisson statistics as we have here, or Gaussian noise). This is implemenented in `stingray.pulse.search.phase_dispersion_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used.\n", + "\n", + "Let's do that:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, pdmstat = phase_dispersion_search(lc.time, lc.counts, frequencies, nbin=nbin)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADr80lEQVR4nOydeXxU1fn/P3f2yZ6QnYQQdgQEBGRRRFxAUEtdsfZr3Vu1/bWUVlvcili1aqXUqrgVZXGhlaptXYAKKgiCICL7DoGQkH3P7Pf3x51z5tw7ezJJJuR5v168SGZuZu7M3DnnPOfzPJ9HkmVZBkEQBEEQBEEQBBEX6Lr6BAiCIAiCIAiCIAgfFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEEYauPoGzGY/Hg9OnTyM5ORmSJHX16RAEQRAEQRAE0UXIsozGxkbk5+dDpwutlVGQ1oGcPn0ahYWFXX0aBEEQBEEQBEHECSdPnkRBQUHIY7o0SPvyyy/x7LPPYvv27SgrK8P777+PH/7whyH/5osvvsDcuXOxZ88e5Ofn44EHHsA999yjOmbVqlV45JFHcOTIEfTv3x9PPPEErrnmGtUxL730Ep599lmUlZVh2LBhWLRoESZPnszvv+2227B06VLV34wfPx5ff/11xK8vOTkZgPJBpKSkRPx3BEEQxFlCczPw/PPq2375SyAxsWvOhyAIgugyGhoaUFhYyGOEUHRpkNbc3IyRI0fi9ttvx3XXXRf2+GPHjmHmzJm4++67sWLFCnz11Ve47777kJWVxf9+8+bNmD17Nh5//HFcc801eP/993HjjTdi48aNGD9+PABg5cqVmDNnDl566SVccMEFeOWVVzBjxgzs3bsXffr04c93xRVX4I033uC/m0ymqF4fS3FMSUmhII0gCKInotcDZrP6tpQUCtIIgiB6MJGUQUmyLMudcC5hkSQprJL2u9/9Dv/+97+xb98+fts999yDnTt3YvPmzQCA2bNno6GhAZ988gk/5oorrkB6ejreeecdAIoidt5552Hx4sX8mKFDh+KHP/whnnrqKQCKklZXV4cPPvigza+poaEBqampqK+vpyCNIAiiJ9LcDDz7rPq2+++nII0gCKIHEk1s0K3cHTdv3oxp06apbps+fTq2bdsGp9MZ8phNmzYBABwOB7Zv3+53zLRp0/gxjM8//xzZ2dkYNGgQ7r77blRUVIQ8P7vdjoaGBtU/giAIgiAIgiCIaOhWQVp5eTlycnJUt+Xk5MDlcqGqqirkMeXl5QCAqqoquN3ukMcAwIwZM/DWW29h3bp1eO655/DNN9/gkksugd1uD3p+Tz31FFJTU/k/Mg0hCIIgCIIgCCJaup27ozaHk2VrircHOkZ7W7hjZs+ezX8ePnw4xo4di6KiInz00Ue49tprA57bvHnzMHfuXP47Kw4kCIIgCIIgCIKIlG4VpOXm5qrULgCoqKiAwWBAr169Qh7DlLPMzEzo9fqQxwQiLy8PRUVFOHToUNBjzGYzzNoCcYIgCIIgCIIgiCjoVumOEydOxNq1a1W3rVmzBmPHjoXRaAx5zKRJkwAoDo1jxozxO2bt2rX8mEBUV1fj5MmTyMvLi8VLIQiCIAiCIAiCCEiXKmlNTU04fPgw//3YsWP47rvvkJGRgT59+mDevHkoLS3FsmXLAChOji+88ALmzp2Lu+++G5s3b8bf//537toIAL/61a9w0UUX4emnn8asWbPw4Ycf4n//+x82btzIj5k7dy5uueUWjB07FhMnTsSrr76KkpIS3m+tqakJ8+fPx3XXXYe8vDwcP34cDz74IDIzM/36rREEQRAEQRAEQcSSLg3Stm3bhqlTp/LfWT3XrbfeijfffBNlZWUoKSnh9xcXF+Pjjz/Gr3/9a7z44ovIz8/H888/r+qxNmnSJLz77rt4+OGH8cgjj6B///5YuXIl75EGKPVm1dXVWLBgAcrKyjB8+HB8/PHHKCoqAgDo9Xrs2rULy5YtQ11dHfLy8jB16lSsXLkyouZzBEEQBEEQBEEQbSVu+qSdjVCfNIIgiB4O9UkjCIIgvJy1fdIIgiAIgiAIgiDOdihIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAii27LzZB0abM6uPo2YQkEaQRAEQRAEQRDdku0najDrxa9w/z93dvWpxBQK0giCIAiCIAiC6JZsPVYLADhZ09rFZxJbKEgjugUffleKdfvPdPVpqPi2pBbbT9R09WkQBEEQBEH0WPaVNQAAbE53F59JbKEgjYh7Khpt+NW73+GON7dhy9Hqrj4dAMDRyibc+PJm/N/rW9HicHX16RAEQRAEQfRI9pdTkEYQXUJFg53//OuV36G+tesLQ59bcxAuj4xWpxun62xdfTrdHlmWIctyV58GQRAEQRDdCLvLjSOVzQCAVgrSCKLjOFnTgqv/thH//f40v622xcF/Pl1vw3NrDnTFqXG+P1WHj3aV8d8rGpQgzeX2dNUpdWs8HhnXLt6Ea17aBI+HAjWCIHoeHo+MMw204UcQ0XK4oglu79qBgjSC6EBWbDmBXaX1+MXbO2B3KV+22ha1crbndENXnBrnhXWHVb+XN9iwbv8ZDPvDaqzafqqLzqr7cqq2FTtK6vDdyTrUCAE5QRBET+HB93dh/JOf4fMDFV19KgTRrdhX1sh/tjk9Z9VmLwVpRFyRZDLwn/+7U1GrapuVhXuyWbmv2d61NWCHK5sAAL3TrACUIO3zA5Wwuzz4Ok5q5roTR6qa+M/ssyYIgugpbD5SjXe/OQkA+GRXeRefDUEonKxpgbMbZAjtL1Nv3Ntd8X/OkUJBGhFXOIUdkCVfHYMsyzzdsXe6EhQ1d7FRR4O3Jm5IbjIA4Ey9DSU1Lcp9XdBIsauD1vZy1JtLDvirpgRBEGczDpcHj3y4m/++5Zj/Rl9JdQueW3MA1U12v/uIsxO3R8bznx3CFwcru+T5P91dhsnPrMdL64/w2+JVodpf3qj6/WxKeaQgjYgrRGeePacbsO1ELeq8C/eC9AQAQLM9ui9gi8OFWS9+hcf+syfiv/nqcBVe+vywn5mFLMvcuGSQN0grb7DhJAvSWjs3YFqzpxzD56/Gss3Ho/o7t0fGx7vKUF7f9TUQRyp9SloNKWkEQfQgPt5VhsMVTchINEGSgOPVLX61aYs+O4i/rTvM1Tbi7Gf1nnIsXHsQv3zHV/rRmfzneyWTadORKgDAz9/+Fhf/+fO4dLNmzo4MCtIIooNodai/XFuP1XAlrYApaVEqRztP1mPnyTq88dVxrNkTWSrJ/H/vwTOfHsDOU/Xq83O64XQrgdvgHG+QVm/DyVqlgWJnK2mbjlRDloHtJ2qj+rsvDlbgvre+xaPCDm5XcVQI0uqoJo0giB7EqVplg+/yoTk4Jy8FAPzS5neerAMAlNadXY16AxGvak1n85E3SKpvdeKLA52rpsmyzNsdHa1qhs3pxie7ylBS06LKfIkHqprsqGpyQJIAq1EPwH8d2Z2hII2IK9gOiEEnAVACoFqupClBmt3licpJUQyc/vDvPWiKIMir86plFZodTaaiGXQSijMTAQD7yhvh8OZAd3aQdqJaGTDrokwTLK9X0mb2lXe8CcuRyqaQQaQ46JNxCEEQHc3rG45iyrPreYDUlTTYlPkoNcGI8cW9AABbjtXw+5vsLhytUsZI7XwULff/cyeueemrLlFmIuFoZRNGLVjT5Q7OXU2Lw4XP9p/hv3/43ekQR8eeI5VNqGpS5uLKRjt2ldaDxc6NtvhS0o5U+DwCUq1GAGdXrzQK0oi4ggVpfb0BUHmDjasrLEgDokt5bBD6qpXV2/Dql0fDn4eDOUuqgwYWDKVajchNtQAAD9CU5+rcAeyEN80y2t5xLGWhtLZVdf7R8smuMtzw8qaAO7zl9Tbc9sZWXPrcF7hu8SaVYsZotDlR0eirs4g22BQfh31mW45W4ydLtvIAliAIQuT9HaU4Ud0SdQZCR8Dmp2SzAeP7ZQAAVzEAYE9pPVjW/ZmGttekybKMD74rxY6SOuzSZIi0h+9O1mHh2oMxCfy2Ha9Fg82Fj4UWNz2R9fsrYXN6uFna//adQWMbN4BLqlvw5Mf7omrvsPlojer31bt9GUhtPY+Ogm1g9MtKgtXkVdIoSCOIjsHOgrReSpB2psHG65Syki0w6ZVLNhrzkAbNzs/3p+pCHi/LMv+Sa40sWDCUmmBEr0QTvIIfp9Hm7LR0DbdHxqkab5plmCDN45Hx1Cf7cOeb38Dp9vAg1yODm560hXe+OYlvjtfivzv9d/oe/2gvPhfSNE7V+gdy2tSJttSkNdqcuOBP6zDjr1+i0ebEA6u+x5cHK7F884moH4sgiLOfMm8tblftuD/64W7c/sZWuD0yVyZSrEac31cJ0o5UNmPbcWWhvKvUF1C1p4+azenhqfr7vEYLsZirFvxnD57/7BDW729/64CqZiUILalp6dF9Rz/apcynN0/ogwHZSbC7PPh0d/BSjfoWJ1bvKQ+44fr3jUfx6pdHo6pb16bbrt4rBmnxpaSxzd9+mYmwULojQXQsLDgqzlRMQsrrbVxdSU8wIsGsfAmjqUtjAUxRL+UxT3tVn093l+PF9Yd5E0SGw+3ht2mVNB6kWY0w6HXISjar7vfIQFMnFdaWN9jg8E5kdSGCNFmW8ciHu/HKF0fx2f4K7DndoCr+PV7VdsWp3vv+HDyjVsk8HhmbjygDfYJ3dyvQOR6tUv9dWyz4T9a0osHmwvHqFvzota9xoloJOr+P4W4xQRBnBzanm28G2ZzqRW17sgoipdHmxLLNJ7D+QCVOVDfzFPkUqwHpiSZcPDgLAHDz61vw0fdlqiCtqsne5uBFTMXfX9aA7SdqMeTRT/G3zw61+bV4PDLvUVVa134Tqmpvip3TLfM6756GLMtYv1/Z3LxyRB6uHJEHQKk/D8aza/bjZ8u344PvSv3uY1kuxyKc58V6tH7ejKaTNb7PIpJykc6Eva7+WYmwGpWQhtIdCaKDYDsgLN2xssnOB4X0BBMSvX3UohkoWGA1NFcpyi6tbYUsy3jgvZ14dvUBPK+ZpMRdGG3QIAZpAJCbYvF7vnCqVqwoqfYpYPWtTj8nSofLgyUbj+GHL23CW1tK+O1NNpfq/Tte3Yz6FicOV/inI4aDvR+HKtQWuIcqmlDT7IDVqMfEfr1Ux4owJa1XogmAf1AcCaKqurvUV2O3q7Q+6ILmb58dwkXPrG/XzjRBEN0P0dGWpegdrWzCL97+FoMf+QRvfnWsQ59ftAuva3UK6Y7KnPLizefhsqE5cLg8+PXK7/DV4Sp+vEcGqtvogCuOv/vLG/Gvb0/B4fLgb+sOt9mQpKSmhW+sVjS2fywVMykCpcf3BGxOD39P+2cloX92EoDQpjF7Tivz3skAWTHl3jnuRHVkGTNHKptR1eSA2aDDD0f39rs/7tIdKyndkSA6jVbvzmbvNCv0Oonn4uskJR0kyZuj3RKFnM12EIfkKW6MzQ43jlQ28TTI59cdUk2E4hdcm+7YoAnScgIGaW3baSqta8XP3/4WV/1tQ0Q1ZiU1vp0xt0dGs+Y9+eC7Uiz4717sPFnHjVgAoMnuVL1/x6ubce9b2zHtL1/gsCbYCgcP0s40qVJnWK+fsX3T0StJCcACBa/Mfn9MUTqAtvVJ0wbsGYkmJJkNaHW6ceBMIx7+YBcWrj2oOuZfO0pRUtOCrcfUufehsDndfoFwZ7N27xksXHOgy8+DILorZUKQZnN6UFbfihl/3YD/fl+mOOWW1HXo84uNd+taHKp0RwBINBvwyi1jcPHgLDjcHm7gwDIS2rqxJI6/+8saeKaDw+3BX/93MNifhUS0Pq9sR70co0roAxdvLoKdhZjlYjXqke+tfS+rDx6ksWyYQOUCrI7xRHVLRPPGjhKlTnNkQRrvBSvSGEdKmtPt4eUa/bISubsjKWkE0UGwL1eS2YBsIZUw1WqEXich0ZvuGI2SxoKmnBQLV2y+OuxLHZBl4KH3d/HfW6JR0lIDBGlt2Gn64mAlLnvuC3z0fRl2lzbweoRQaHfGtPb1bJK7bGg2vvr9JZgySEmjabK7Vemi247XYtORanhktRIVDlmWeaDb6nSrdvpYTvv44gykJZgCnh8AHKlQznFsXxaktUFJ876WgnQrLhuajaeuHYFzC1IBAC+uP4wVX5fg+c8O8WvL45FR6k2lqYqwOez2EzUY+uineGHd4ajPL5b88aO9eH7dYXznteQmCCI6xMWuzelGSXUL7EKaY0fUs9hdbny6uww2pxt7ywQlrcXJ54tki4HfrtdJePKaEXxTMj/VgoFeRaWt5iHivNTscHPDBQB4b/spVb/KSBFVQdEAClAW0NHC0h0B/1R4QFGKzqZ6I8aZBhueW3MAZfWtfP1hNeqh00nIS1MM08rrbQFrCOtbnHxzU2u85XJ7+BzXZHdFVPO901uzP7IwFf2yEv3uj6eatJKaFrg8MhJMeuSmWKgmjSA6Gvblshj1KpUq3bvQT/ROWlHVpLGcf4sRvb0OkRu9yhlbzB+vbuEyvirdMYS7I6BW0vpkKDVvbUl3/Pd3p1UK3ukAqQ1PfrwPYx5fy4OhE5rUBq36xhYj5xdnICfFwif8JptaSRMn2mjSXprsLlU938EzyuMoOe1KkDmhXy/+XrGUzL2nG9Bsd8Hh8vCFwcR+mfwYbY1g2PPwThqDcpLx+q3jMH1YLs4tSAMAfLzLV/DMJqgzjb5aPnFREIoVX5dAloHn1h7slLqVYLDP+HQM6j8IIl6IZId/3f4z2Hs6+pYhjTanKkDRKmna1KiOsKd/Z0sJ7lnxLZ74aB/2qZQ0J99EZEoaIz/NikeuGgoAmDwwC9neuaatSlqg7IzhvVNw0aAseGTgf3vPBPgrhW3Ha/DS54f9goT9ZWKQ5juvTYerMPwPq7Hi6+jMm6qbfYHeEY2SdriiEZOfWY/73toe1WN2B97aUoK/rTuMZZtP8LmZKac5yWboJKVOL9Cm4nHBxVi7XqlqckD8amnXDIFgtdwjC9NQmJHgZ47WFEdBGtuILs5MhCRJvj5pzrPHdIaCNCKuYBOm1bszwkhL8KaCmNoQpLX6CrPzU5Ug7WtvqsfIgjRketPxjle1qM4BCOHuqAnSEk16bkyidZOM6By9iwijXhkRtUXYtc0OvPnVcVQ3O7DxkFJUrM0/r9ecKwv08r07cSxIa3a4g7pjBgoOg6Gd9A94g7TDFU2obnbAYtTh3II0vvioa3Him+O1mPn8Bjzw3vc4UtkEl0dGssXAU1FlOfp2AkxVZQE8AIwqTPU7jk1wosskuy3cIjFPUEzXH2i/i1lbYRsI5cJCzeX2YNep+qiD256K2yP7fXcqGm34+VvfYt3+4AtVomPweGRcu3gTpv/ly6AbIEcrm3DHm9vw0+Xbonpsh8uDaX/5Epf8+Qs+tqmUNJfbLzWqI3bhD3s3o/698zQOCJtiZwTzpxRBSWPMHtcH/5t7Eeb/YBjPLGlrr7RAafiT+mdiqHfsLQ/xuI9+uAfPfHoAmzWuf2zMB9RK2sbDVbC7PPjiYORNmGVZVitpmiCNKZBfHa7usD5vdpcbmw5XtUkFbA/MgKu22cHnZmaSZtDr+DrjdL3/ZyQGaVqlTPuZloSpS7M53XwTYWRBGswGPQrSlXWNxWvKEU81adzZMUtRmakmjSA6GB6kGfWqVEI/JS3MRHroTCPe+OoYXG6PL0gTlDSWV903MxH9MpUvOEuvECfpuhaHavdQG6SxhtYDcpL5bW1R0tju1GBvDrg2//w/35/mk/lx70DL0h1Zmow2uGFqS543MGXvXaPNhZYgfeaiUdK0z3fI6/C4w1vTMbowHSaDDmmCknbAW8Pw5cFKvis+NDcFRr2OL1KiteFn7QSSvJMaoOwCamELAHGBXtVkR2WjHeOf/AyP/WdP0OcQlcdV209FdX7BkGUZ//r2VMTqgMcj87QscTf9lS+P4uoXNuLtLdRyIBL+vOYAJj+zHmv2+FTWhWsO4qNdZXjli/A9FInYsvt0PXaU1OHAmcagDnTM4fBUbWvYVPfjVc2Y96/vcabBhoNnGlFWb0NVkx1z3v0Obo+sNg5xevwcHm0dEABUNSpjT32rU7WAZPU0kuTbgNQyIDsZVpMvs6TN6Y7e8VpURib278U3QytCPO5p73wkBgQtDpfq97oWJw+eWHCgVf2avBkUgc/PBZcw11Y12VUKaKU3CHS4PdwoI9Y8+K/duPn1LXhtQ+eOA+yaaLL75uYEo+96YJuEZQHmZ7a5DPinO2rf/3DmIfvKGuB0y+iVaOJ9aVma7Uhvdko8uTty0xDvOoxq0giiA3F7ZD6AW7XpjoksSIvMgv+PH+3DY//Zi3X7K7iylWI1oneaVXVccWYCD7TYAkFckHtkdQ62Nkg7r08a/nrTKDx3w0iuGLWlJq3RrvzN4BzFgVKraImBwfEqxY2Rncvw/FTVuQHKe8kmSvaakyw+FZLt1uk1uQztUdJYumOlV51ig7yY7ljpDZQa7S7853ulFwwLTNMFh8dojDHYa0kSlLTcFAtffLDeeoGVNAe2n6hBRaMdXxwIvusrXm/rD1S0qZ+blu9O1mHuP3bi/vd2RnS8uLgTF5rsut14uAoej4y5K7/Db/+5k8xFgsDMYnZ7F/4na1rwnvf71dZm6kTbYXbjgDoIEDkoKDbh1ICXvziCd7aexEvrD/PPGAC2Hq/BS+sPq1KFbS43/16xzS4WtDndnpipBpVBal9ZkJZsNkCnzSvTkJOiKGln2uiiyMbrc/KVOUavkzCubwafZ7WqC5uLHS4P/16UCmPnoTNNkGXFmZeNsSyQYsEBSy2tb3HiiY/24rwFa/Hj178OeH6sR1qyxVePLqpplYJS920HNSFf9a0yDizZ2LEOn1rYmqPZ7uLGIQnCpiPLhgm0iapNdxTHfa3qeqIm8PeLwVIdzy1IhSQp1+PcaYNw9+Ri3DqpL4DY1KRtP1GLqX/+HJ/ubl/TcraxzmrnqCaNIDoQcffDatIjN9VnHJLO0h1ZXVWYII3lth+taubHplqNfLBj9O2ViOIsdZCm3YWpEfK8te6OkiRh1qjeGJCdhBQLU9ICn9vxqma8uP5wwAGkkStpyq6VuJA4eKYRO4WeX8erW/hgm5Vs5rtsYh+yykY73B4ZBp3Ee7klCaYrbFIY4E0TGJavbk8QCey9YGYshyua4PbI3CCEBV2qIE2YaFkqDEt1ZGrph9+VYvTja/HJrsgG8EDpjpIk4U/XjcCcywZixohcAD7raq2SxoK2ULtv4vXmdMv4bF/70+L2etNKygOksARCFaQJky8LIHedqsehiib8a0cp3tt+yq+QvzshyzKOVzXHPNCUZZm3mmAL55c+P8x38Ota2x98E9Ehpg+fCBKkHSj3mUiUhFloMkOMbSdqueLCFnFvbDrOVSEAsDvdfDxm4w/7/f9e34JJf1oXdfp1ICo130VWb8QCTm09WiCy26ukeQPOS4bk4NIh2bjv4v5IMhsEhc43puwvb8CI+avx7Or9qjoxMUhgzo5D81L4HMPGHDamVTXZ4XR7cPfybXhtwzE43B5sO1EbcA5kmQ69Ek388xJt+MX3cEcHOHCK88I4b1PxzoLNPc12N5+bRWWVrVvKwqQ72l2egPMEm6PDKWk7vYZUYibKsPxUPHTlOXydEYsgbcnGYzhW1Yzf/2tXm3qjMtjrYxvCPEgjJY0gYo/4xTIbdMhJFmvSlEGGW/AHSddjsIFO3IFNthj4lxlQ0j4K0kMraYC6GJcraQn+k2qKVTm3QEpai8OFnyzZimdXH8B720/63e9Ld1SCpfIGG+/x9dH3SrDC0g5OVDfzxcfA7CR+LuJigk2mOSkWrpaJAS4LOm6/oC8GZifhkavOAaCkkZbUtOCGlzeF7RfEnm9Y71SYDTrYXR6U1rbyOj5WR5iWEDhIY+tvZvPLAvEVX5egrsWJRz4Mnn4owoIUUUkDgIsHZ2POZYP4IqSqMXBNGnuvbCEMQdj7xTa7Y6GkMWfLQD3uAiEubMQFFTu30/U2fCQEtpE2L41H5v97Dy7+8+cq4xe3R8Y/vjnZJhc6Rk2zg1+3FQ121Lc48c9tPpWalLTOpabZwd3kAF8qtxZxHA+30GSBz76yBq6a/mLqAKRajahpdqg+Y9E4hI0/LGVvd2k9Gm0ubm/eHpiKbzYoS66x3iCApd0nW8IHaWw+bG9NWlayGX+/bRx+M22w8rgprNbNzsehb47V8JoylqoJqJW0Y940uwHZSchM9j0G4AskZVn5vNjnYDboIMuBx6Zq73vUK8mM4kw21/k+a1GN/LYk9kqauFnAPqfOQpXuyNwdTT4lLS+EDb/2+hTr6NnnwILOcN+d77izY5rffewaba+67BBqFetanHhu7YE2P1Y9N3JT1oesmTUFaQTRAbQK1rOSJCEnUE2ad+BqCmJ8oX0sVieVYNLDqNeplLSC9ASYDDqez3ysUtm5137B2U6PLMtcrUoNsPPpU9L8B7FnPj3AU1v2lftcENmkyHan+mUmwqCT4PbIfFeSTWizRuVDJylB5Lr9yoRybkGaSqlisME8P833HrIgpr7FyVNZrhiei7Vzp2BCv17I8O62vbbhKL45XovXNvgHaS63B3/4cDc++r6MP19GgpEHQpVNNv5+sc+MnV+Lwx1wkhmUo053ZIgtGELRHEBJE2G7iFxJq/VNVDanhysrkShp2d6FUjR9+oLBgg1XgB53gdCmO7JrR0zFFN3UgqkS8U6rw42lm5XX8e43vibsXx+txgOrvsejH+5u82OLtuMVjXYcq27m5jWAdyf6LEqViXe+PFipdp8LcM22OFx87ARCO9TZnG6+u+6RfcYW5xak4dIh2QGPZ9/7NEFJk2UZLd7b26scNAsL78dnDceUQVn4yYQi1TGBTEO0sGCqutnRJodZn8ux+rnYmOZwe/gCn22mldXZUNnkCwpFJY1lTGQmmfhYXdloU20CAr6emSkWA4b3VlLzA220VDX7lDT2fRTHPHGDr6zeFrJvWFtgc6r2eRmnvX1M2+IwGg425rQ4fOmOiaZA6Y7qAF2030/2zn+iMsU288YVK0FaVZNdNV8crmjCPcu3Y19ZA9wema81zslL8TtHdt002V3tynDYeqwGTXYXrx97a0uJykwnUjwemW9ysA1yFtjazqIxnII0Im6wOdU7SLkqC35loZ8QxILf5nTjgfd2YrXXDIBNioe8zZlZAJWeYOSDQ19vcNanVwIkSdnVrGyyo1UTALJBsNnh5g56AYO0IDVp3xyvwZubjvPfD1c0ocXhwmULv8DPlm+H3eX2OXxZjdwwhdWHsf/7ZibywZrVT51bkOoL0oQdNK2zI+AL0kSr5ARVSoXyvEy5K61r9Xst207UYunmE3jy432q+jzWsLqqycGVR/aZibvEWseugnQrvz8jQR2k9fcqh+EIlO4okplk9p6bHS63xy9lhOXhh2pWzZROltYTi506caESSUqVGDzYXR7+N82CqiwqfMeqQu+axiusVhHwGfMAPjWiPe0HjlT43vOKRhsvxB+YncQbvlPKY+fxuVe9GOftk3g8wDXLNtoYoWrSSgIEcAkmPYozE3H5OTl+99ldHj7vsPHK5vLA7vLw4LEtNcYi7Lq1GvW4YWwBlt5xPk+xZ0SS7pieYOLuv8Fq3EKhradmmAw6vpHF0hTZ41c3O1Tq2ZkGGw8QeTuaBDFIs/uZVXztbcfSNzORp9cHCtJqWLpjkpkrWWIwyoI0Nn9/e6IuwlcenlaHmzf3BgJbuC/bfAIffV+GZ1fvj9nzMth6pUlId7SKc7PX/EtrHMJSHbOTzXyuFzN/2GcxKCeJZ7SI35EF/92LT/eU460tJ1DX4rPr76XZMAV8Ne0euX2blP/zlgpcPTIPUwdnQZbVAXIwXlx/GI9+uBsf7ChFq8ONRruLny+7plm6Y0eY/3QVFKQRAalvdeK5NQe4yhAL3B4ZD76/Cx/sKFXdvvNkHdbtP6NydgSURTfbHWIqS7B0x01HqvCPbafwt3WHAPgWtKwInO20SJLEHR6LvZb5is2sctuxyma/BXhlox0vrj+MTd7eaia9jp+jCNtp0takPbtakfNHeVMIjlQ04dsTdThS2YzP9leojk8yG/hgy+x22e5l7zQr+vZSJncW1J1bkKpKJ2RonR3F944pdEa9BJOQ1sEmAjFdQrvDJdpYsxqCVKsRvRK9u7xNvnQitjOt10n8vdGmFg3J9e3YaZU0R4QDbSB3RxExgCyrt8HtkWEy6LihCnvfPLJSbxb4OZiSprzOljBKbjhaHe6Au9Ih/0ZzXTLFIFh9ZndV0t7e4lPPxACU/dyWhucMcXFY1eTgqmp+mpV/jyjlsfNgvbCuO68AgOIiqLVXZ2oYUxZCmR8ESk0cmpcCvU7CRYOy+HjHgh2b02ccwsYft0dWZUO0xa1XhAUXmckmbsaQrtmQSo5ASdPpJK56lbdBReJKWoCAkNeleTfwRKfH3aU+5cgj+wI5tpmRZjXy86potONMvTZIU4Kfvr0S0T9bmb+0PdAAXx15ZpLPiIRdC26PjBrv/RcNUnpqfi+kybaXbSdqVA3NAykxbOzYdKQ65mq7rybNZ+olKml5aSxTxa4KXFmQ1rdXIh+/AqU75qRYeMbK594N3sMVjfjSm3ZY1ejgG3xpCUYY9P6hgdWo56UTbVWXZVnGZ942J5cOzcH4fr0AALtK60L+3eGKRjy7+gCWbT6BOSu/wyMf7ubfS4tRB7NBz88RIOMQogfw752n8bd1h2O6a7TlaDXe3lKCOSu/4wPC4YomzHrxK9zx5jZej8D6cQDAZefkIDvZjKHexXww45CaZuUL29Dqgsvt4UEMQ9w9LGRBmrBLz2z4j1U1++0SvbnpGJ5dfQBzVn4HQJnk2GQrEkhJ23ykGluP1cCk1+G5G0cCUHYn2Q6y2yPztI0kswF6ncSDh9N1rXC6PXw3rHealfdiA4CMRBN6p1lV6Y7Prt6Pn7/9LR+8ewvpjuy98zXLVC8MtKYqgLrRNYCAqUQpViPvNVfdZBeUNN9CRFvDd/XIfADA6D5p/DbtwiXSlB6e7hjEwpopadVNdr4oL0izIjvFP50ymELG0iqyeJDWvkngWFWzKs0rWiUN8C2WtD3v2AK0O9ak7T3dgO+8xesA0GT3vS8sMG5Lw/PSulbUtzhVSq7bI/MFqPg9oiCt82AL/YE5yUg06SHLwMkadQBy0DsGXTxYSVc8XWcL2seK1dwMEFT44fm+uWPyAGWB3ydDGUdtLjdaHcpjieOPyiwqRkpaVpJvvNGmHKZEUJMGgI//rJ41GnjT7ADPxZ0jNUoaAHwvOGQCwKk65T2uE2qP2Vha0Wj3c4lkQWrfXgnoz5S0AJu/onGI2ciCNOWzqW62wyMrNcHneq3g26ImBkNbYxxoHmAmJnaXhweesYI9X6vTzbM2EoQgrVeiCSZvPZ+oVLJgOi/Nwq9ftuFnc7r5vJKTYsENY5SNkBVfn4DL7cEbXx3nj1PdbOfvgTajhSFJEt/oFcflaDhU0YSTNa0wGXSYPDAT53rTX78/VR/67zRq+tHKJv7axOvZ1yeNmlkTZznMZEH75bG73Kq+YdEgBk7vbC2By+3Bb/7psx9ng6BYMPuX2aOwed6lfJHPdpe0C1P2hW1xuHgtgYj4Rf7FJQNw07hCzBrVm98mmoewXS22m8d2o9jCPNUaOBgI1Cdt0f8OAgBuOr8Q/bOSeAD24U5fShdLP2ADIEs7PF3XivJ6Gzyyci6ZSWaupAE+m1z2vKdqW/DS50fw0fdlvDBXVNK0u7XiTh0Av/YEALC/TJ1/L+6S7vc2FxXTHSub7PyzSBcCMzFITrYY8LsrhuAvs0fizguL+e3pmkBOG2gHI1y6Izu3mmYHd/DqnW7l6p+IPcC1I8uyn5LW3p06bbqPthF5ILQLBzZZa1XlaecobpYnqltQ0WjD4//d69e8OV4RAzRAvRnDvn+yHJ26UdloxyV//hyXLvzcb9OBPZ+ipKkXOUTssLvcuH7xJty6ZKsqpbiu2TdWFHnHNq0CzDaDLhyYCYtRB7dHVqXgiTCV7bKhOTwLY1hvX2P7n17UD4UZVtwwthCAkmnBxvsUiwFs761GaKoczK03UriSJgRpBqEvJHvuSGCZB9rrOBwej8yDzUCp+izFns11Yv2XaNoC+MxD2DifZvWlO1Y02oI2xe6bmciDtKNVTX7riCrBOMSnpHlU55ORaOa10+1VOEXYOJPC2zCox1SX26NKExRNRmKBOJ+w9yFB41acrymDAKDaEGVKMAu2WABnMSrX2tUj85GeYERpXSte33gM//rWl9FU3exT0jICpDoy2BqioY1K2tq9iop2Qf9eSDAZ+HfzVG1rSDMuNl8WZlj5a9Q6bQPUJ43oQTA5mzUCBZQLf8ozn+Om1wL3OQmHqIws33wCj/1nL7d8BXyDjzaVUOzllRikJo1NGE12V8AFtJjiMaYoA3+67lxVeh0L0o5X+5S0PEGFEgk0yQG+QLDR7oLHI2NfWQO2eFW0ey/uD8BXZyVOgtqm1PmCksbek7w0C3Q6SaWksV0o5mxU2+Lk6gz7X1THtEFMgub33oLzJVtQBFPSAF/QIKY7HqtqBpt704QduTSr7+esZDMSzQZcM7qA55ADwOg+6UgyG3jahl3YDWuwOfH/3tmB5ZuPQ0swd0cGOzeXoJwUZiQgK9l/MtI2tmWvk72m9ihp9S0+F0dtkFbXBiXtTIOS+sKC2UE5yrX14/F9oNdJaHW68dt/fo+/bzyGJWGcOuMFbYDfZPMP0oDoUh6PVjbB7vKgqsnBU0zZ9c0WXvlpVv6ckXwWRHS8/20ptp2oxRcHK7m7qtPt4Qp1WoIJfTOVsU10eJRlmY9Bg3OTuQIWrJ8aG0v7ZSVy59pLBMOQ8f16YcMDl/D6NNE4xGrS87lHVNICudm9teUEfv72txGpbKw3ZJbGCEkcHyOpSQN8TrjM/j5Smhy++p1AqZU8jbLBBo9H5nM+AK5as/GVfYdUShp3nvSlO4qZKgBQ1CsRBelWmPQ62JweVSsEwGfs1CvJBJM3fc2hCdKyk81hW920BbbRxcYF7YbYydpWVSr8uv0VMW0PIj4fK0fQbqKyDVexplp0Uk7XpGuzuTonxQJJkmAx6nHT+X0AAH/6ZD9anW4hy8TBr3lt2YEIqx9vamOQxlrXXDpU+f6lWo38OgmVvsoyIMYWKQYookuvuB4L1SftSGUTdnSAK2hHQ0EageVfn8DlC79Q7baLkw+zez9V24LyBhu2Hqtp006FmPNd3mDDcsGJDvANPpYA9V6MJB6kqZ+f7arYnIEbkIbbqWQTaE2zg3/B81P9lSUgeJDGJj9ZVibFb44rBdPj+2XwAZYVTouw9z1JE6SV1tn4RMZUrr6ZopKWFvJ8lMfyd3dkaIM2MaCbPU5JjThQ3qiajMoD9OgRlTRWw5hkNqjq3cRzFNN+RHJTLfj+D9Pw5+uVtFAWfMiyjN+v+h7/2Xkaz64+oDofj+CMGExJMxl8u9ZsB3RQdpJqZ5sRqOCYTUg6SdnJBaJX0v7xzUmMXLCG271razIiSXfUKsTlDTbVZsXfbx2Ht+4aj0kDMvn1wmoOukvPNPY+sA2DRuH1iYY+0QRp2vqJZLOB9wVk5KdZ+GYHpTvGFo9HxqtfHuW/7zmtZGeISkiKxRBQSTtdb0Nlox16nYQhucn8mEAGIYC6RmfutMFYO3dKwO85m2PEvlIWo57fLjrkBVINXlh3GB99X4aFaw6Ge/k8wNAGaWLmQKTpjqyn5H7NuBwO9l6bDbqA8yurSatosKGu1RmwNvfcAmVTsLS2VVXLlyqkO1Y12Xkt9SiNjXvfXgkw6HU8GNeOgcyCPzOAcYj4HgZyM24vLDOHqUja9Q3L8unbKwEmvQ6nalvb1QpExOn2qN5vbpCiSd/nrRIE4686UUlL8Clpp+ta8cTH+wBA1Xbo/yYU8XT4S4dkY9kd5wNQ3kumvAUyDWEwdbotNWlVTXbs8G7KXzrUt3HCrqtdIVIej3hT98d6DYYabC4e1IsbHL50R9/n9/mBCtz48mZc+twXeOw/e6M+766GgjQCr284ikMVTdhwqIrfJk6gu7056eJO9um6wOkm1U12zHphI5Zs9N+5t2tqjLKSzXj5/8bgqnPzVI8ZyJSDwRbirU43XvniCK5bvAn1rU5VilJlo/8CLlQgA0BVdMu+4GLQIk44wR7LYtTzyaW+xYlvTyi7Nuf1SefHDAjgWMgWHGyXSqxJY6kl7Fz6ZCTAbNBBr5NwbiFT0tTnw3amEkx61X1mg4472AH+O3ViQHfj2EIY9RKa7C5VXzFtUTigTNJsIcQC7TRN6qI4kGoXKyI6ncQXEWyCfmtLCe+X1WBzqQIOMXAJpqQBvh1S9lrG9s0IOBkF2nwQ0ykTvOYkLc7IJylZlvHaBmWR+r7XNIcFs0wZjSQw0Bazn6m38XMzG3QozEjABd6aG1FxBdTpW/EMD9K817u4Yyu2KahtdqKqyY5Nh6vCLla1i7l+WYl+7R16i8Yh5O4YU9bsPaNqfcA2/ZhimWwxKIv3Xv5K2nbvGDosPwUJJgOKvEpaoH5PDm+fRsD/+tdiEYIAdl1ZjT4lrVoM0jTXj6g0Ldt8nM+PwagSgg+RVEFJi8Q4BAAGZidDJykL8Whqsnj9TpC5KzdVObfyBptf420GmwNL61r5e6LXSUg2G9Ar0QSDToJH9n1mIwt8aabJFgMPgFjK4/bjNfjuZB1kWYZLsP9n9VeAzziEvdasZHPIfqRtha1t2GajdhOOKTnD8lMxpkiZz2PVUFs751QGUdLYvFkljOVssyotwcgVsLL6Vly3eBN2nqxDWoIRcy8fzI/vnWbFuz+diBV3jsfrt47FkNxk3vvzsDfoDK2ktb0mbf3+Csiy8l0WyzBGsLq0IN8jWZZx1Dtfntcnnacks3VToHRHtoZze2Tcs2I7th6vgU5STGm6WyokBWk9nNK6Vj7hMfckQD0ABg7SAuedbz5ajZ2n6vH3AEEa+3Jcfk4O3rprPP736ym4Yngu3wFiC3yrKXiQJhbTPv/ZIWw/UYutx2pUC7GqAJNXuHQSseiWDdCi6cYtE4p4OllakMJa8XkabE586x3EzyuKNEhTBsCCdCv0Ogn1rU5s8TYBZYtWi1GP134yFq/eMoanmJgMOtX78qdrR+D8vhm4ZUKRyuBEkiSV2qQ1DslOtuAXUwfgl5cORFEvX/0ASzdye+SACwNRSWNoTUDEoC3QzraIb4JWgrSFa5XdajaZiDUSbBGv10kqwxkt4vklmvQYkpvMG7CKBEp3ZIFQstmABO8kEE26457TDTjknWS2l9SiwebkO7MsgI/IOMT7/WGNTcsbbHwHWBugalON2uOI2Jk08CBNWWQ3qZQ0dbrj/f/ciZtf38IXhUEfU7OYm9C/l8o0xmpUNjN4ulAzKWmx5M1NylzAamp4kKZpet8nw6uSCUradm82AlsYs0wCpsaJlNa1wiMrNTjheiyKalK997thMeq5YYVaSVNfD/WC0uSRgUc/3B1yoyCYkpYmzEmRpjtaTXpel8xqgiOBpQYG22Bkc8mZBntEQZrYL1SSJBj0Op5WymqLRhSk8jG7b69EPhexeeX5dYfxwxe/wm/+uRPvfHMSgGJ6lJZg8lPSmMoTTkk702DDvSu2hx0TtLCMhF5CuqP4mR6tUsbrflmJfPwNVUMVDdqAkM172nUQmzfFz4d9hxQlTXlftp2oRVm9DdnJZvznFxfy7w5jTFE6LhyYCUmSoNNJfK5mZi6hlDSW7dMWJe2zfUoWy2VD1a0wWEZQsHTHyiY7Gu0u6CRlXmPfG+bkKmZJiRu8bo+MZoeLz+lfPjAVr986LmSmVjxCQVoPR+wNUhWkWHoXD9J8twVX0pTHKK1rVU10gDD4GPW4YEAmNwNhg0uLsKMZDFENYjug1YJZBYCAk0y4dBJfkObkj1uQ4duNnTwoEzeMUYrNhwuF6P7PowwYx6qaefAlqnBikMYCK/ZeslSCBJMB53ldDzd6bf9FU4+LBmXxnG4Gm7iSzAaM7ZuBf9wzEfNmDvU7P3ExnxjAsv630wdj7uWDACjW1YDPPKSqyR7QVU+sSWNolbTUCJU0AKoJWrFeVq6jsX2VfPSDZ5pQ0WDDu1tL+AIq0aQP6LjJEAPD0X3SYfAasWixOd34+8ZjOP+J//F0FpWSZgrcAiIUq749xX92uDxYuOYg7C4PclMsfBexPgL1hn0/2CLtjJDuqE31LOqlDtKCLSjqW50xra2IBKfbg3X7zwTcCdemO7YIvQnF8aeuxcnbQ4RLO2KPefP4PtjwwFT8dtpgvigFFAVZkiSubJCSFjscLg/frJo7TdnRZ5t+9dzCXXnf2RhXJjRq3+6tIWELzckDFaX4m+O1ftc0W7SJAUEwxIUaCzisJj0shkBKmnpByjaqEkx6WIw6fFtSx8dp5dxq8PSn+/HO1hKcrmsNqqS1Jd0R8KU8RtMAOFgjawYzDqlutvMUe/F8jXqJzwen63wmD2KgectEdYPu3mkJfKwX0/Qn9Vds1yVJ2Xj717eleOQDpUH9zy7qD71O8tuoqxQcMtl71eJw+7l8Lt10HJ/sLsfizw+He0tUsLE10xugaNuxsNTMflmJXBGMWZAWRNnRjuk+Jc23vhGNQ9jmMRvOZ47IQ2FGaEUZ8G1gMrVQu8EqktzGIM3p9mDDISX1XhukDctPgU5SNggqApjOMCfTgvQEWIx6rvSx1OZAShqgzOVsE9ek16EgPfx7EY90aZD25Zdf4uqrr0Z+fj4kScIHH3wQ9m+++OILjBkzBhaLBf369cPLL7/sd8yqVatwzjnnwGw245xzzsH777/vd8xLL72E4uJiWCwWjBkzBhs2bFDdL8sy5s+fj/z8fFitVlx88cXYs2dPm19rvLLpiG9yqQ6ye3iqthV1LQ6VenAqWJAmPMbu0/XYfqIGC9ccgM3p5qkLZoP6stMqU6F2OrRqEHtOVZAWUEkLnU7CggqXR+ZBXnFmIu6fPhgLZg1DdrIFd00uxvrfXoxrR/cO+jhsR3Sdd9doYHaSahDJSDTxHeWLB2cBADelEFNepgxS7mMDrmjqEQj2HKP7pKmMVrQkhVDStPTLVNd/MKWT5bSzn61GPdITjBDXRdqBPpogTZygRbMZZpRy6EwjHnx/F37/r114y1vXGCrVEVAraSyvPVO4jZ17q9ONNXvKUdFo50XObKBPshj47makfdKcbg/+43XyZDuwy7zmJz8Ylc8n/EiUNKZEs1SuqiYHX0BqvxPMYMCXxuvwC8bWH6jAqAVr8NfPDkX0WmLFv787jTve3IY/e/sHimjTHQFfkCymO1Y123Gm0d+JLhBigXlhRgKMerXSwlKJ2YLzbKtJO17VjD+vPhCzRWU0HDzTCIfLg2SLAVcMz4UkKfWRlY121DarlbQcb8qd3aWkvjXbXdjnVYtYkFbUKxHD8lPg9shYu7dc9VwsUDonT11vGAi9TuLjGLs+rEY9/37XhjAOYddb7zQrbhqnGDEs/vwIAKX29KZXv8biz49g3r92YfqiL7kLq1bda0u6IwAMzlFe374ozEPCpTtmeBtly7LSBgNQpytmJpmRl2qBXifB6ZZxyJvNILZWuaB/JlfwWWpZrrfWra+QfjppQCY2PDAV3z06DS/9eAz/HG6ZUITfTFM2CM1BjEOyks2q90qbispSEKPt76pV0gB18MQCmH6ZSTxIqO7gIE27Wa1V0mRZVhmHaF0ZpwqGOaFgf8dqwEO5OyaZveZoUQZph840odnhRrLFvx440eyrRz1wxn/jQVQxAV+LAJYBlqIp6WC0Ot3CJmb3Us9EujRIa25uxsiRI/HCCy9EdPyxY8cwc+ZMTJ48GTt27MCDDz6IX/7yl1i1ahU/ZvPmzZg9ezZuueUW7Ny5E7fccgtuvPFGbNmyhR+zcuVKzJkzBw899BB27NiByZMnY8aMGSgp8TVRfeaZZ7Bw4UK88MIL+Oabb5Cbm4vLL78cjY3RWd/GM7Is42tBSasWghs2+LEBdM/phohq0sSUyd2lDbhu8WY8v+4wPtldxt36zJq0tPRE9cQRKt0R8M/Vrmqyo17Y7WTtA0TjinA7lUrRuI4/HqAMkj+fOgA/mdgXgBIgFmcmQhciCGLGIP/y1h6J9WiMV24Zi1duGYMJ3kaOjGThHKcMUg+wgXqYibAgSJvaoCVJmOC076OWHCGtDvD15WLNYdnzsnQXMTDT2umntSlIc6vyx0cU+HqqsPpJVogczDSEISp9zCFK3ClmxdU2p5tf5wfK1UpaktnA1c9gE6uWb47VoKrJgV6JJvx86gAAvqB81qj8gL25Hnp/F254eZNfU18WGIrXwqla1r5B/VlO6t8LT183gheGO92yyoQDAF7+/AhkGVj0v84N0pgzXaA+bkzFykr21aWw919MCzpY3sgVtqow9XaBUr3EdEcWEAZqCn82sHDtQbyw/jD+ue1kpz83a+FybkEqkswGvojfc7qeK1hsk85s0PONk7L6Vuw8VQe3R0Z+qkVVwzJjuNJigtWpAspc9smuMgDAdO/94WCBANu7EOeAajGrRLMgrRLqo+6+qB8MOgmbjlTjzje/wQOrvofbI+OiQVno2ysBjTYXV2RCKmkRpjsC4ZW0Q2ca/erkAtmVi+h0En+P2cbtgOwkPt5lJplh0Ot40MVSVsVxXaeT8OPxStCalawcz1oGjNBknxRmJCDVasQVw3Pxr3svwKLZo/DYD4ZxBVSrpFUJQZpBr+ObcuJn4/bI2OlNmSupaYmq9sjXXsfI5zb29w02J//M+2Ul8nRAlim0/OsT+EpQUqMlmAlVOCWt1enmQWx6okl1PVmNeowvzojo+XtprstILPijrUljzaqH56cGXD8N9GYYHTzjH1yzAJmlybIgmV0bKZprkH2HWx1uPueFWx/EM10apM2YMQN//OMfce2110Z0/Msvv4w+ffpg0aJFGDp0KO666y7ccccd+POf/8yPWbRoES6//HLMmzcPQ4YMwbx583DppZdi0aJF/JiFCxfizjvvxF133YWhQ4di0aJFKCwsxOLFiwEoA/6iRYvw0EMP4dprr8Xw4cOxdOlStLS04O23347pe9CVlNS0cCcmwDcxeTy+Bd0IQb1oERZ5wYM03+T2b6EXWLPdzb9ULKWE4aekGcIEaZovXFWTQ5UuViE0z2REMglq1Z9wwWIg7p8+WJXTfV5Rmt8xIwpSMX1Yrt/ziWrQsPwU1eMwFSYY04flIivZzE1YgqGqSQszcOVyxy/l/WQ7wvmpVn6f+L6K56v9TCNxd2SI6Y7MbdGol/iEv7esgV9LbKESbhBmiz+9TsIobyppqtWIif16YXSfNBR7m5nbnR6++8Zq35oDBGlOtxy0oa4Iq+cb1zcDFw3M4rcPyE7COXkpfCeaBQYej4yV35zEN8dr+UKIwRp0im0KmMqpff2SJGH2uD44tyCNn3NtswNfHKzkyl5/IfU2nBoVS5iFdyBlh/WLS7WaePovUzLF3oh7hf59gc7d7ZH5pkKgpqdZSWK6o7I4Zd/H7lK/FymsPidY/6qOhC3OWN3JsHxlPtlzuoHXgokLfW4zXmfD9uNe4yXNxtOMEcoYt+lIFb9edp6qx+l6GxJMep6FEA5tDavFqPNZ8AvXZpPdBZfwXRdVnd5pVt5v87P9SvbEvRf3x9Lbx+HFH5/HFfoks8FvPhFTwqNR0oZ6x8FDZ5r8AhGn24PrX96MG17ejCa7CztKanHBn9bhzU3HAYTerJzo3TRkC+WsZDNPg2TjJ8vo4EGaZpy/6fw+mDkiF7/wbkg9cvU5+Oc9E/1S3ERGFKTih6N7qxbvodwdAQSsSztQ3siDLY8cvE1DINjYkiC0YWDBEzMAU1Q8n2JV3ezAvrIGPPLBbty7YrvqGomGYEFaQpCatOpmh8poxaiXkGjSI8Vi5DWAFwzoFXHtlbYGLVSQltLGdEdWMnNuQeBSkcHezI9DAZQ0ls6uVdIY2o0H9vnZXe6w7Xm6A92qJm3z5s2YNm2a6rbp06dj27ZtcDqdIY/ZtGkTAMDhcGD79u1+x0ybNo0fc+zYMZSXl6uOMZvNmDJlCj8mEHa7HQ0NDap/8QyrR2M7MNVeFUzsqcL60jTZ1U2iw9WkAcA+YSFl0El8QvFT0vyCo9CXpXZBeqq2JaCFbb9M3yI0nLsj4D/hhKqNC0Z2igV/vmEk/z2UsqUdDMWJWqeTcJF3sZGZZA474N5xYTG+eegyDMhODnmcqLiEU9JytUqa9//cVAufrMX3VUwp1CppYjAXrqif7aI63B5e9Gs26FGcmahypwR8u2nhBmG2+Buen8KPlSQJb989Hv+6dxJ/L2wuN5+wD1U0qjYstAutSMxDmFpUnJWIwgwrV21+OCpf1YicLTZrWhxweRWioxqLajaZW016fu0EC9JE2LGVjXbcu2I7fvnuDtS1OFTXt5j23NEwBz5tkCa+16lWI1d92a6tuJg5I7SCCJTe/Ph/92LCU5/hm+M1AVUEUUljGyCBVM3uTkWDjQfF1Z3k8FnRYMOsF7/CP7456VPSvJt9LNVp7+kGQUnzfS5szClrsPFG49oxtH9WEgblJMHplnlLDaaiXTIkO+LFqVmzGWg16mFmFvyaQF00sNE2p/7VpQMxNC8FVwzLxX//34X43RVDIEkShuWn8nTIQNkDbL6xGvUw6iNfirFxxOH24Atviw1GaW0r6lsVh+Jjlc34eFcZSutauattqLT/qUPUwW1Wspm3oWHnX+Adv9jmmHZeTTIb8NKPx+AWb/ZJktmAcX0zQmafBMIszAF2l08RYe85N+gSgrQdJ9VmIYcCqDLBYDXGiWaDr9eWN13u0Q+VMhcWaLJ5rqbZwcffBpuLq3jREiwrQxukZSSaoJMU5bemxcGVvLQEEzcBYddUpKmO7HFD/S4iGodEU8u8y9ufNFg9/8AcZd2ibZwO+II0pqRlJEUWpLU6PBSkdTbl5eXIyVHvyOTk5MDlcqGqqirkMeXlSmpEVVUV3G53yGPY/6GOCcRTTz2F1NRU/q+wsLANr7LzYJanbPCpaXbA7ZH5wGcy6LgU3qhpEn26Tml6qSVY3UOr06ekaSdH7YI+XHCk/cJpF7MsHSAjyYTpw3IwqjAtrBIV6Dy0g2SkTB2SzdM3QgVNWnONZM0uJ6tZYztIsSApCiWN9c6pb3XC5nRz+/2cFAtPD1QHab6FiNbGlw38Sq+x4JMAAJj1vjQkpqJYjDqYDDpVAbpIuJzziwZl4XdXDMET14xQ3S5JEm/0CXjTHb0Tts3pwcnaFpU5h0mv4+kwkfRK40FapmJm8LsZQzB9WA7+b4JSZM9UhEbvbn2FEHwc1RhitHpt/61GPd/9PFmjLL6SQtQXsvd7b5mSsizLSiAiLg42Ha4O9ucxhwcNzeo6OWXiV35OtRr5tdrk/TyCBcWB3FzZzu3Ok3W8vlbb9JRtimjTHe0uT7ezaQ4GSwcGfJtwHc3qvWew82Qd/vDvPXwxz1KVmfnEgTONPBgWPxdWr1tW14qDFY2qvxEZXagEbqdqW5RUx93KvDxzROhMAhGtkiYah2j7hInmIVpVp0+vBHzyq8l4+ZYxfovQ+6cPxrRzcnDPlH5+z5/pTcHWzjvhkCQJ04cpKZ2f7lavR0T16ERNM45VqVsVaOcYkQsGZKrqjZlSCPjcH9nmHKtf0s5hsYKnOzrdqnGWbaYxRUdU0rSW+IcrmuByewKuU7SolDTvJrHN6cYTH+9DSU0LeqdZMW/mEABQ9SM7I6jTXx5s20ZX8CBNPabrdRLv01nZaBecHX2fwfRhOSjMsOKKYZGl/ALqeVvrFK0l2VuTtvFwFc5/8jMs9Sq0oXC6PXzDXpv2ymDO2YfONKnmhLoWB5/jWJ21VknTqsMWoSShUagn7650uzPXujaxD1RrNa49RntbrI4RmTdvHubOnct/b2hoiOtAjX1xLhiQiX9uPwWPrHwp2ISUYjHyHfpmuwtOve/L63B7UNVsV7mkAb4gTSf5am8AZcEbC+MQwD940taQsILeBKMeT94yNuRjiWgVvfZYtf4whLkII5SSBgBXn5uPBpsL5/eNLLc8EkTFRVvHpCXFYoDVqEer043yepugpJn5xCKmKmWGSHfMS7XgjguKkZlsgiHMrrGotLKifRbYD8pJwuGKJuh1ksppMly6o8mgw70X9w96v0XcfRPS6g6UN/JAMdligCRJSDDq0Wh3RWQewoI0ZsLyg5H5+MHIfH6/qDA22Fw4IzQq1boWBlLSTkagpLHr+nuhWWir063qu/ZVJylpNqeb15CxHlUsGBMNHEwGX90Je/+Dvd+B0h2ZElLZaFcZh4jMGpWPzUeqca7XfTXJbIBBJ8HlkVHX4kRuavctNmeIC9fOUtLKvEE4GyN6JZr4Yp+loJfUtPCNM3GsyPUqN0crm7n6MzBA2xIxTbi8wYaSmhYYdBLf2IoE7fhuMeiDZnGIRlqi02A4MhJNePUngeegYfkp+OlF/YKmgIVi5ohcLPnqGP637wzsLjcfH8X+cSeqW1SNwYHQG6DJFiPG9c3AJm+GTXayBbdO6otWpxs3jC0AoDb0AdTjfyzhxiFuX7Nxo17icwf7Loufyw6vE+j44gxsOVaDw5VNuP3Nb7C/vBHrfjMlZIDKNoASzQb+HtW3OrHS2xrgmevP5cEAq29usrv4+Asogct15xXgk91luGViUVhjLkagzT7WC1VLVrIZVU2K8Q4LQMTvz1PXnhvRc4qI6Y69Ek0h17hisFPZaMfSTcdx66S+IR9fNA8K1r+wODMRep2ERrsL5Q02nvmy0ztnFWcm8tep3QBODbLJrzYO6XahDqdbKWm5ubl+SlZFRQUMBgN69eoV8himimVmZkKv14c8JjdX2YUIdUwgzGYzUlJSVP/iFY9H5rucw3unCCmPDr4wTrEaVHUhrZoGvtpeaR6PzBdHIwXbeUCrpKkvuxSLQTUghasFY4s3rUsQgy3eo1XCxF1BneR/nrFGGxRqgzSdTsItE4p4vnYsSBaVtDCTiCRJyEnxNTllQVpOigWzRuVjUv9euHGcbxNC3JHT7nZJkoRHrz4H9108IOw5moQgji2wWeA2yJsWMa5vumrR3d50BrarXtfqUG0uHKpo8is+9jk8uvHO1hLc/NrXGPP4Wu7ayLA53Vw10vYtYxiFIvj6VicqVUqaJt3R6WthwXZUGyNwr2IB3S4hSGtxuHm9H6A4uJYEaBAca0o1adJik21tMCUWqTtcHj91g9Foc/kpX2yX+UyDTXC2U18jf/zhCHz2m4tV6a+iG+bZAFu4AuENVmKFNhV+REEqX/jlpyk9IB0uD59/xIV+vrc35eaj1ZBl5drVGhsAPiWlodXls4NPMEW8MAbUQZrJoFNMB4LUQ6uCtCB9z6JFp5Pw4MyhuOrc/PAHazivTzqyk81otLlUKriopB2vasYJbxAxb8YQTBmUFbZm+RIhTS4r2Yxz8lPw/I9Gc/c9rctwqJ6h7YEpaU63jGavki5+XimamrT6Fie3yb9hrDInrd9fgQ2HqlDZaA+YRifCFvNiTdqZBhvcHhmS5KvXU57bt17ZJ/Sq++5kHX702td46pP9eN9rHBYJgZS0YEGF2NC6jtvvty9QFjeLQ9nvA/5rlEhqKZmJzYjeqUEDQLNBzzdwRPOQnd5MANFpNENjNBc83dHtM/2KYlyIN7pVkDZx4kSsXbtWdduaNWswduxYGI3GkMdMmjQJAGAymTBmzBi/Y9auXcuPKS4uRm5uruoYh8OBL774gh/T3TlZ24IWh1tJIeuVyCfCqkY7d0wSlbQmu9sv3Ug7Gde1OvkC9+bzlVx8NoDYnG7B3VE9EUqSpJqow6U7sibEUweHzrsOl86nRRygrMbQfbdigcWoV73WzsibFgf/xAgGLpbyeKbBxtMdc1Ms6J+VhLfvnoBJ/TP5sWJNWnvSYHQ6ideescURWzz9eHwRrh6Zj9/PGIrCDN+Cob07ZWwBoFUbDpQ3+uW1s+D/aFUz5v1rFzYdqUZ1swMffV+m+lu2YEqxGEKmePpqodTpMyeqW1RqYatXSbKa9H7F3pHUpB2q8C0obJo0IkDp79TRsHo0hpiCpw3S2PvdaHOFTS0VUx49HpkvYE7X2VTObeE4m+rSXG6PSj2tabZHlPrVXpgZFUtNGyM43Br1Op4qzQyeVDVpQoo1oO4rKSIqKfUBatsiQdyEY+NwsA1CMd0xWN+zzkSnk3AFd7n0jTuikrb1eA0cLg+Megl3XliMpXecHzDgFbl0aA4kb0p6oJ5qWiVNq2LECvGzERV2/ry8Jk35XJgxyoDsJJ55Iq5XQqnILreHbyAnmgx8fcLqXpPNBlVNnST5GkCLBkZuj8w3oU5pxrlQBBrbgq2BmIFLZaMdNc2+RtbtQWxF0ysp9GP17ZWo2pywu8KbpbAxKFiqIyOQeQgP0oRNf/H16nWSX209+w7bnG6eKt+d0x27NEhramrCd999h++++w6AYtjx3XffcSv8efPm4Sc/+Qk//p577sGJEycwd+5c7Nu3D0uWLMHf//53/Pa3v+XH/OpXv8KaNWvw9NNPY//+/Xj66afxv//9D3PmzOHHzJ07F6+//jqWLFmCffv24de//jVKSkpwzz33AFC+hHPmzMGTTz6J999/H7t378Ztt92GhIQE3HzzzR3/xnQCbAdoUE4SDHodX/RVNTt4TVqKpni/WdPAV7vgYvb7yRYDrh9TgN2PTcct3tobsU+athYAUE+w4YK0uyf3w6NXnYO7L+oXchepPUqatZN2XsTFe6h0jFihdncM//6wQv4dJXVodrhh0ElB2wGINvfalIRoYZN0o1CTBig7iX/70WiMKkxDodCcst1KGm9iq06dO3imUWXBD/iujeMaC3lt2u0x3gA1KWTALzqVVQipew63h1vsA74dV0VJiz5IE9fnrQ43fzy2/ugM9chPSWsOrqT5xh4XWrwqvkFodCsiqkSNNhd/rYeFlNFIvl9MGYikuXi8c+BMI1qdbq6ee2Rf4+aOhG3eLbppNOZffQ7uuLBYdX8fTYNdcdzVji2BUh0BwTjC5gxrLx8MUZlhc06wFHe2WeRye3g6fXuVtPbCasm/PhZYSWMBW2F6QtgUc0ZxZiLeuG0cXr91bMAxS/v5dFS6o/gdZ5+vSkmz+MbM0rpWLP5CaV79q0sHone61S8LJlSPQLH/YoJZraQBgZ2h2XqJPa72Oo3GLZeNw+JaJlhmhGjDzxtZt3OuzRDn7TABX6LZgI2/m4r37pkIIDLzLGYAFMw0hDEwW91aQpZl/rejhCBNnPtSvCUIIqLxCzOdonTHNrJt2zaMHj0ao0ePBqAET6NHj8ajjz4KACgrK1P1LisuLsbHH3+Mzz//HKNGjcLjjz+O559/Htdddx0/ZtKkSXj33Xfxxhtv4Nxzz8Wbb76JlStXYvz48fyY2bNnY9GiRViwYAFGjRqFL7/8Eh9//DGKior4MQ888ADmzJmD++67D2PHjkVpaSnWrFmD5OTYpZ51JaxXEbM15/auTXY+ISVbDLxuqdnu5umOrJZAu+Biu1UsrznJbPAVcToEJS1ASok4OFjCBFdZyWbccWExUq3GkDuD0bozqpS0MA6TsaKtNsxtJdkSnZLGdrbX7lUaOw/KSQ66kGE7cswSuD2wSZqnOwa4ZgqE1Jv2Pp+2PxILXI5WNnNVRaukiQEU4G9LfFRTjxYMMUg7o7FJF+vSxJo07Y5nqPrCQBNvi9PN0yfZd1+7CdMR+G/s+AdpbFGUKKRas8VAgkmvWswwNbVKWBSJwSZ7/GSzIWSTdwZ77LNBSdvmtbAf1SeNjzPVAUxWYonY+mB47xTcdkGx3wJJW5eSavVdn6LrJhAiSBMW6YEMSCJB3CxkP/vXS6tdBGtaHJDlyAyQOhqmLpysaeWmX2KNFCNYHVAwLh6cHbC/J6AsgMXgtKPSHQ06ibcvCKyksT5pTvzpk/2wOT04vzgDV52bB71OQr8s9XVTE2IDitW6GnQSTHqdEKTZvc/lf11pP/u5lw9C/6xEXDBASYsUg7S6Fgd+84+dQXupsXFdVGaDbRJnCQ2tY5XumGb1WfdHck2bDXq+4RWuLruy0c7bNWj7wmphpQzbS2pR3+rEqdpWVDc7YNRLKvMgMSgNFEBbhHRHNqcld+MgrUvP/OKLLw5p4/nmm2/63TZlyhR8++23IR/3+uuvx/XXXx/ymPvuuw/33Xdf0PslScL8+fMxf/78kI/TXWGmIcwxhy36qpsc3A44xWLkHeab7C4YvM5PA7KTUFZvw4ZDlahosCHbu5BnCyLxi84UilZBSQtU65WmSTWMlF6JJhxmz2XUcct2IHzNlRaxqXaCsXOVNKNe6vAaOEAdmEWiNLJ0RxaQh0pZKM5MhMmgw8Ds0MpRJLAgzbeL6v/eFAo78kntVCHZwM6u4cKMBFQ3OdBkd/F6BqbssPeNvSeFGVacrGn1V9IEZ8dQiE2UmZLGruWjlc24RDEVC62kReDuKGJz+IxDMpPMqGi0R2SE0l60gW0oJY3Xw9pdKovsVKsRZxrssBh1GJSdjJM1rSob/kCKYKTNglnAUHsWBGms4fvE/r1wuq4VdS1OVDU5MDB4WXW7qWqyw+WRoddJfqZSjKIM9fdB3KhSGlqbeUohs+bWkiKkuwUzhgmHWH9mCZLumJtiQV2Lk5cAsMV3ryRzREF/R5JqNaI4MxHHqpqxq7Qe/TIT4XTLMOqVYIMpRKyeLFb0TrPy96GjlDRJUuZDm9PDP19x85Z9/hUNNt4H8NGrzuHzzvjiDOwra0CfjASU1LSoal+1sIV8gkkpcWDXAFfSAswtWhv4yYOyMGNEHtYfqMBXh6tVQdprG45i1benUFLTjAsGZGofio/rmUlmHKpQNuWCbTqKShpbp7U3UNbpJGQkmlDV5Ih444HNgeE29jYcUlpEDO+dElZ5HlOUDotRh6OVzZj+ly+5CdDQvBTVxnCyYPAU6DtvZc2snb6aNFLSiG4Ha7J7jneHgqWqVTf7lLQUq0GwwfYtlK4emY9UqxFHKpvxgxe+UllqA2r53Jcf7AlqwQ+od4OiCdLE3SfW04URfbpj5GperGAqR7LF2OE1cIA6NzuSgStX07pgRAgnsl5JZqz/7cV456cT2n6CXtg14kt39P881OmOsVHSWNCg9PdRdpOZYQVPd/SeC1OF+noXQdqmt2KPtFCIdVAV3oXB2CKlroIVwzvdPuOMBJN/kBYq3TPQxNvicPkWB8k+tzItXx2uwl1LtwXcoW8LbKxghjQh0x1ZTZrgpGk16fl3Jj/V6lu0qHau/QOsSBfwLEvgZG1sXm9X4XR78PVRJQ1u8oAsnnHQHhv+ZZuP46lP9oXcWGWfb26KJWgQIyo7SWaDX48wsV1KMCVNVFLaGqSJtdFsntIah7BNKmampe2R1tWwTbNdp+p86Y0ZCegjBGZ9o1TSwiGah0S6+dEWmIEUD9KETUz2We88VQ+PrGzWikZiv7tiCD6dMxk3j1dq40OlO7Kxhc2HbK5hRlkBlTRhrZBk9q2TWA9Qttnmcnvw3vZTAHxjuRaupAlBTLAN5syASlr71Uw2R0SaOsneq1anW1U3reXzA0qQFkmD+dxUC966awKKMxNR3mDDu15nzZEFaarjJEni5xk4SBNq0mzhjbXiHQrSeiDNdhcf0AdrlLSqJqEmzWJU2WCzupD+WUn48OcX8C/Te9uUQYgNhKKpgfiF4UFaAFVEHBzCuTuKiGlf2nz5aB4HUA92Ce2w34/uOdVOdh2Nqk9aFEoaI1zxb+80a8Cdx2jRpjsGCtJU6Y4xMg5hjaQTTQa/XU9tuiNzN+0rLIjElMdIlbRUwVGQKUIT+yupIaxXmuheaDHqVfV/QLiaNP/Po9Xps7ZmrROaNUHayZoW/Pj1LfjfvjPcijoSmuyuoAYVLLAd0TsNgG9jBwhUk+ZV8bXpjt7Xk5dm8S1awihpkS7gB3r79RyOohFuPLLzZB2a7C6kJxgxLD+FpyK31YZflmU88dE+vPLFURyu8L0320/U4tcrv+NBfJn3OxGqL6Wo7AT6XNjfplgMQXff2RjT0Orkqmd70h2DGYewzQRmUBErZ8dYwez7d56q5/VofXsloo9gqlQUZvyJFtbQWuvKHGtYEM3THQMoaQ7vmmJIXrJqk9Nq0mNIbgoPPqoDBGm7S+uxavsprgYlajbhmJobLt0xR0jRZddFTbMdbo+MLw9V8rTJmmafI6OIT0kT1h9hlLTKJju/7tub7gj4vpNFGZEF9OL5BcvAcHtkrqRdHMbkjTGmKB0f/3Iy7p8+mAe804b5S/8sSA601mCGcY02F2+n01nrq46AgrQeCKtHy0428x1W3yQuKmk+45BWYVciwaRH38xEbufLdmd5uqMw2LCJ0OZ084VmIJtjMeUlmv5kKiUtTb0wiKTmSkSl5nWWkuYd7DvD2VF8Hr0usvRKUUkz6KSYtgMIBdtFbeB90vzPtUBQ0mIVpDESzHoeKGmfg9ULsIau2clmPmmx861vcfLvQ98w6UaszuD7U/VcLZvQT1HSDpxphMvt4butkrc1RLom8AodpPkvKFsdLp7uyDY6moTUFYfLg1+8s4P/rk3lDEZpXSvGPL4Wv/nnTr/7nG4P351mi0txh9tnAKG8FpWKz4M0A1e881OtfNyqUgVp/ueqtd8PBnMTPFjRGFIxindYquOkAZnQ6SRfpkQba9KaHb5NtqOCYc5zaw7g/R2lmPzMethdbm4aEsxcCFAbhwRyZGRB2sCc5KDZBWyR7pF9RiVRK2kB0h21adWsJpd9r5lBTSQ90jqDc70qw65T9bwnWlGvBFUgHG78iRampHVUPRqDzQFMGQ/k7shgtfVatAYfDLdHxl1Lt+E3/9zJFWeWYsiuAfb1DzR2iJvD4hzZK9HMe8RWN9v9NrcCqWmBatKCKT/smLoWpy/lNAafwx9/OByv3DIGFwZIxwyE2MctmHnI96fqUNviRLLFgNGalkyhsJr0+PnUAdj4u0uw9aFLMXmgvwrHguRASi73V2h2+JQ0suAnuhPfnqgDAFUTzV7Che1rZm1QDRZs8cMueKY8sQGwOoCSJjrthFTS2lqTJgyWeantU9KUlMO2/W1b8aU7ds4g0icjAZcOycYtE4oiSq/MTjbz9ySUaUisYddIqHRHq0nprSJJvsVUW9E+fqLZgKG5KarAPVlTk8bISDKpjAwAX7pcZpI5bAB5frESkLHaioxEE84tUMwe6lqc2Hq8hu+2JnhbQ5gNelUxdKggP9Xqu64ZrU5fnzSfcYjyXsuyjD/8ew+3PwZ86V7h2FNaD7vLg52n6vzuK6+3wSMriy9WJC7ucNe1+vpdAUKfNJsv3THBpOcT/rjiDGR56560hfpaIl3A989KgiQpi6BAu+/dhY1ek4LJ3kUXz5Ro42uqFf5OdDVlJiEA8PQnB3C6XgmY8tKCfx+tJj3fJQ8UpA3wXhuhVHuLt+E54PuuxUJJ80t39C7A2QZCvClpw/JToJOU1DzWhFpR0pRAWK+T/Gzz28sArymHNhU+1rA5IFA2hVZBGRJk8zAjSJC29VgN3zBixhYsxVC7/gh0XYnrFTHbRK+T+KbY4YomfLavAoCvdcFRwQiqosGGykY7H9vFwN8apCY+zWrk7WkCuUK2lZwUC6YPy1W1GgiFJPnMwbQZGIyN3o2iyQMzI3YXFTEZdEHrWjNCpDtytbHR5nNmJiWN6E5sO6H0QxrjrXsBfIFVdZNDpaSZDXpVc2HAF8Cw3XyWXsQs+DOCBWnO4MYhbKDR6yQY9ZGnUIhpX9rJKNqaNL1O4l/6aJ0h28p5fdJh1EsY1zcj/MExQKeT8PfbxmH+D4ZFdLxRr+PvcbhUx1iirUcIFNgDwN9vG4e37hwfcuc+EiyaazLRpIdOJ3E1TVQe/YK0BJNf3x6W/iX2cgvGsPxU1WI1O9kMo16HaecoaR4f7yrzmYYIzy2mCIfKudfrJL8C/0abi6t2PEjzBkJ/33gM72wtgU4CrhzB1PLIFvds19sWYHeVpSRmp5i5AlYTQZ80UUlLNBlww9hC7Hx0Gm4cWygoaQ7sK2tAfYuzXemOFqOeL3DDNcCNRz7YUYrrF2/Ct94m1hcOZEFa+5Q08T0Vbd7FhfOSr45h3X71ojQYTN1Js/qrADeOLcDL/zcGv758UMjHYAt11pOqPRb8XEkLYBwCgBuHHKtSFtnarI2uItFs4OovCzZG90lDP28dbJ+MhIAtK9rDxP698Mx15+LJa4bH9HG18GyKAEGa9rMW3f9ExFp7kf9+f5r/fNT7mbIxVLtBG8qCH/DfIGQbEF8cqITLI6Mww8qbhDMV2uZ0Y/qiL3Hl8xt4IJGaYOTqVLDxXKeTMHmgWu2K9rqPFWzzMZiSxupThwZROdsDS0vvH6DeW3TA1PY47Y5QkNbDkGWZ79iP7euz2WWTeJPdxXcL2SSoHTDYIpXtJtV6myqyeoeMADVp9jDGIWz3PNom0mIet1jQLJ5nNLDX1Ja/bQsjClKxa/50/Gba4E55vraQm+oN0kKYhsQarbtjoGsGUJSPSRGmaIQikJIGABO9zbqTzL5+LNpJPD3RxFNi2AZHCQvS0sPn+Ot1Ei4QmoIzt9SZ3gDp091n+GQjnqf4PQvnZMrTQ7w7iuLOsmgcUtlox1Of7AcAPHTlObh+TAGAyHuoseNsAZqciv2s+A63UCOlteBnu5+NNidfCLD3ntXxsV3TY1XNmPHXDfjp8m1c8RfVjmgWMsysQqy96i788aN92HaiFrKspMyylGBWd1jVxpo0MYX0qJCyxT4z1maC1Tprsxq09PGaWQRqhmw26HHF8Nywnxn7zrG6pGibWYsbM6zliqikGfU+g4JGm1PVt0lrZtCVsPpOnaSkrZ1bkIbxxb0w57KBeHxW7AMpSZJw47hCDMju2NR3s6Yu2aoKqnV8M1cnBW96zkovbE4PV+Ndbg8+2V3OjynxXrNsDNXOBQFr0oKkOwK+cYep2YNzUnjQzJS0wxVNqG1R3HxZP80Ek56rU6EyeRbdNFq1CdIWlSoWsDVSIMMpQNh064CG5z+fOgD//X8X4rrzCvzuY+9/RYOdO5xSkEZ0G05Ut6CqyQGTXqdSRlIsBr4wruBBmrc2RCMVs8GSLbR8ShpLd/R3d2y0ObkpQyAlrTBDSVvLSYkujUTsk6YtVm9LyiKb6DtLSQOiq8HrCm6bVIzxxRmYMTy3056TBWVskA1kwR9L/II074Q9dXAWTAadasdOayqTkehT0rTpjpEoaQBUu6NsJ3ZS/0ykWAyoarLji4PKhC9uHrDdXKtRH7aAn6XkDPHuOLPvqiT5HqfZ7sKp2ha4PTLyUy2444K+fJEaysJahDVLbg2wu8rUiBSLkY8RzQ5frWq9xgBCtOBnQarWmjpTk3b23ck6fq6DBfv2aFzo2OLzUDczD/F4ZK5M/uNnE/HWXT6XVfY+tVVJqwuipLHA+3czhqiOD6c0XTIkGya9LmzvpFBoF8/tUtIM/otjq1HPvxsVjXYcONOI2hYnTAZdUOWmK/jJxCJM7NcLr94yFv83Qen1qtdJmHPZIK6kdkfYHFAfoA2LJPmyXvplJQWdQxNNvkwgtom86Ui1apOKm0UxJU3zWIHGDrVxSOAgjSmbQ3KTed82tsEhbgA12n2p3CyYCFVDlWo14uNfTcZ15xVg/tXnBD2uo/EpaWGCtA5Q+ox6HYb3Tg2YnsmUtEYheOzOFvzd98yJNrHNq6IN763uPSFJEqYMyuJNiwGhqawwYFiNev7F4EpaiwOyLPNgTWUcwqzUhS9MoNS13mlWvHXX+Khri7KSlX41OknZvWVFu3pvY8poYa+ps2rSugPXjyngikpnoQ3kA5nNxBJtEJjgnbAL0hOw7jdTVMXZWtUqI9GkcpsDlAazQGRKGgDVYooFaSaDDtOG5eK97afw/g7FQdUaQEmLZAJ64Ioh+N/eM8hLs2DrsRre3NVq1PO/b7a7+cSalqA0pOeF9xEqaWwx3+p0Q5ZllSrOXWOtBqRYfb1ualscyEm28DEiVaOkKUX43vPVvPfJZgMuGpSFigYbjlY1w+7yYPfpegBKDSXbzW6LknaoonulOzY5XGCmmucWpKoCdzGdvS2Ii9ozDUpPPbNBzz+zsUXpuPycHD5/hEt3nDkiD5efk+Nnvx8N2rqk9gRp3IJfGAcSTAb0yUhAfqoFp+tteGn9EQDA8PyUmKcQtoeRhWkxaXsSb2gdfv2CJ4sRVU2OkAGzJCk9wMobbKhpdqAwI4FfozkpZu68CAg1adp0xwAOgmJNWrB0R8ag3GSV0uz2yAHHFotRz50Jw60/Uq1GPHfjyJDHdDRsXRisV1q94BLemaRYDTDpddzYyxChSVq80n3PnGgT2731aGMD1ED9ZGKR6nf25RJNLRIC1MTYnB5UNNp5jYvKOMSkdkoCgqeuTeqfyXecIiXJbMCi2aPwl9mjYDXp+cCREGXaJIPtAPeKE/eunop2ERSsJi1WaHdixfSIgvQE1e/aCTTNauQbGv5KWmRBWkF6ArfqFyf5S721DCzoU6U7JjFn0PAB7KjCNPx2+mBeA8QW3Rajnu8gNzv8GwOL3/FA6pgWlvoMgKc3M1gqKOsJmC4EDo02Fx8jxLpQFmdUNipF/to0ZEmSsOyO8/HpnIvQ3zt2MLMZ0UwgGiWNmZp0t3RHpkSaDDq/67mXsLsstnOIFK1j5vGqFpWZTIrViHsv7q88l6Ash6I9ARp7zlC/h0NcuPFm1sL7xpobXzJU+Q7+x1vHNLpPOoiOh30+gepxAd/nHcw0hKE1D2G1ptOHqTNDtO6OjEDXslGvw5DcZCSbDTyVkaE1lRmck4zeaVaYDUrgcKq2JeDYYjVGpqTFC2zeEJU0t0fm7VdEb4PORJIk1WeQZDF0Sg/ajoKCtB7GtuOKkjamyH+iuaB/pl/eN6DeqU8QFoRiKsHeMkXaT7UaAxZkM4x6Kea9Va4emY+rzs1XnWtCG5sX/r9LBuLxWcNw7ejeMTs/Ino6X0nT1l0GnyTFQCHVaoRBr+MTUYPNCY9H5mYGkSppAPD/LhmA4b1TMF1IKz1P8z0NlO4YTSoHq70Rd6fZgkCWgTKvWx9L+1WlC0XQCJk5NALwCwYahXRH8fxrmh1chU8w+Vz7JEniixa24x2qVlTb+HiQGKRFsZvbP1tZdFU1OUI2wY03QqUXpVgMvIanLa9J65h5rKqZP1+CSQ+jXofz+qTjjdvH4e+3jeuURVGqYI1uMfoHpuFQKWncgt9fXbt0iGLgwzYRRkVhJ060Hf+NOvXnO6J3KiQJYW3jmbMpU+NZ/0ptqi1TsSKpSQOAVfdOwuf3X4xkzdgiBggGnYTizETovP8DSsrjoUBBmkmP/5tQhAn9MjBJ0/4lHmFzJGvdYne5cfnCL3D9y5sA+KevdyZiGnx3CHhDQUFaD8LmdPPBYXSfNL/7dToJN4/vw39nE62qAbJgDStJEl/M7fXmX/vVhWkGvGAqWqxgwVk4I4Vg5KRYcMvEvt06h/lsQDtBd3Tdnnb3NJQ6ZQ0QKLH6zfpWFyqb7HC4PEoKbhQucNeeV4D//r/JKtOFnBQL8oXvlPjczJUxmvYNzNqZLTgtRp1XMVB+1/acYulCgFolC0adoLi0aoI0Md0RULfwOOatc+qjUR7ZAqiCK2nBX6s2SCvOTOSBSTSmEgkmA2+U3p3UNPb+ap08AXhTV5XrpaoNdWl+Slp1c8CgcOrg7E4LYsTAuy0LQVGdZ+OLuDnENgQm9u+lmscCzZ1E7NFu1GnXEo/9YBi2PXQZRoa53nzjlwPNdhevuR9fnKFqTcJNO/xq0gKPOYlmQ8CMG9FKv19WIp/LmOK2u7SeG+yIJBgNuH5MAd796USVc2+8wpU0b8rz4YomHK1qxrcldWiyu/zS1zsT8TPozo2sAQrSehRst1qvk4I245x7+SBcNjQHD1zhcxsMlerFBkAWpGmt0I16He/rAQQ2DYkl7Fw70/iDiD3aesKOvm5Mep1qwg6tpPnuY5Opz4Lfye3381Kt7U7pAoBRwqJQDFYvGZKNK4bl4q4L+0X8WNrvr9Wb0sV2G0/XKcGQOLHytMQIlDTRBVKbHsmMQ1jgle01CSqta8URbzCkTR1i7q1sYRWq1YDo8GbQSUixGPDLSwbi2tG9URxlQ18WpJV5+351B8IV6rPFSrAaEkAxH3G5/Z05WZ80pgaISlpXWYCLaVRtOQe1auZTb9mGjVVw+7vAq9ZkJZtj3neMCIx2o047p+t0UkRlCRmJPiWNqWi9Ek3olWRWmZwFqkmzGHVRbyxnCzVqgwX7edZmZ+nm43B7ZL+/Y6Uh3QX2fjFzL9H19XhVs1/6emciqpndfcO9e10VRLtgO+HpCcag6SiJZgNev3Us7rt4AL9NDNK0iySupJUFVtIA9WTY0YtttvvZWRb6RMegrUHraCVNkiRVSmWoYEBVl+lVg8SatGidHcMxutCX8ig+d1qCCS/fMgaXefupRYL2e8EWPuz1MiVNXAD30ri4hiIiJc0bLLDarwPljbx/UH9NTSrbJWcTfqjNF9Y7B1DGJUmS8P8uHYiFs0dF3KSVwdTMsnobWh1u/OrdHfh4V1lUj9HZhAua2KLX7gocpHk8Mn7w4kbM+OsGv0CNffZMRTpe1cx7AnZ2zQmjvUqa+H23BkjRF11crzpXaYdx4YDMbl3f0p3wz6Zo29rBl1Zt50FaX+9mA2svAwR2d2yL6YUYIAwWxqQfjMyHQSfxNhjDe6fwmlud5L8xGe9o3R3FIO2It9WAVWg635lQkEZ0S1hdgehUFwniRW41qi94tkvFBr9wQVpHL7aTInRHIuIbk179+XW0Bb/2OUIN7GqHRWUSTxVq0qJ1dgyHqKS1VyHW/r2FB2nK62UNSMX0wPQInQFbHW6VWYjNqV7oN2oKyYfmKUHavrKGoEqaNrUs1OdS1CuRq/bRjnFamK12eb0Nnx+owIffncbLXxxp12N2NOGCNLZB5gjQww5QzG52lzbgUEUTyhtsqvtY8M1MM45Xt3S5kpaqUtKi/7wtAdIdAd93RNzQmDUqHyvuHI/5Vw9ry6kSbUCrYLV17MvwqmU1gpLGFGHRmTFQn7S2XNuJJj0/10FCG5BeSWZcPDib/35OXgrPPIq2P2w8wNJDmTLPmoIDvoCtq8YGMUhLpiCN6C4wG+30KJsLBnN3VB5LPTkGamJqFWT8jt5V4cYhFKR1a/yKxju4lhFQT86hio3Fa4stAEQLfpbuGKmzYziG56fy4KPdQZopcJDGNjcCLbwjVdK092uNQxo0xiHMOvtoVTMOeB3XtEraeRonvVCbL0a9ju+QRzvGacn1pmKW19t4Y/KWCNwtuxJtM3AtPiUtcJC2z5sNAfjSSxnssx2Wr3xmVU12XtvW2RbbDLFWqG01aYE3D7nTo3CtSZKECwdmdkhjXiIwfkpaG+d0Md3xuCZIE3ucMSWtvUGaJEkYV5yBZLPBz/jp+jE+Q7IB2Uko8jZ117YW6Q4k8NYtyrjO1DMAPDOiy4I0oQ1UqKyY7gAFaT0IVvytDazCkRgi3dEvSAtglCCmlWgdmmIN2w3r7o4+PR0/d8dOUdLEdMfIatK4kpbAgjRXzNMdrSY9hnhVp/ZO5togj6c7ah5XVZPGDT5CG4fUacwl/GrSWpkFv/JcuSkWpFqNcHtk/rfaFhx9MhJUjWPDbb4w85D2Kmm53s2m8gYbd+qMpAVBVxJeSVPeu2BK2t4yX++mCqF/lM3p5gFq/8wk/t1kgXWX1aS1O93RN6ZYA6Tk00Zf1xIrh1/m7ljT7ODBQyglTZXu2MZr+43bxuHrBy/l5k6MqUOyeZbCoJxkFHlrZa3drB4NEJQ0hwuyLOOYkO54zKuqBTNd6WhUFvzm7r2x0v2uDKLN1DUzJS26BUxSiHRHrQtRfkAlrfNq0pgrH6U7dm86290RCOzsFgiL0WcywmvSvIGHw+3BnlJFkSjOjK7nXyiuGJYLSfIpGW1F+z5qa9IYaUL6WEaSr6YjFFqbdr+aNJs6iJAkiac8Akpz2SRNcCxJEs4TUh7Dbb6w9CJtr6JoyfWmbZ9psOGUN+gOVssVL0RekxZeSasUHCBZAK3XSUixGnhK+36h7UpXkBpT4xD/n7ujunE24Wcc0sY5nfWdPF3Xynuk8SBNKM9gY4vYJqit17ZeJwXc6DMb9Hj+ptH4f5cMwOSBWSjyZlt0R6MzX02aG2ca7NxABAAP2LpOSfN9rpH0EY1nKEjrQbB0x7TE6L44Kgt+P3dH9WPlBqpJM3RekDahn2KXrO2BQnQv/NMdO36oYosAvU4K+XySJPFJlak8SWYDLwJvtLtgNepxTl77AiqRX1wyEDv/MA0XDcpq1+NoXxt7zdoFhTi5ZiREZsGvtWkX0x0dLg+vURMVkCGC+5k21ZEhNg8Ot1D7vwlF+OlF/XD35MgdLwPBApGKRju3y9bW2MUbkdekBQ42VUGaUJPGUh3TrIoZC0tpP8ZTmrommBFVjmhaLDBUKY4G/59JSetaYlWT1icjAeOLM+B0y1wR7tvLP0hj7XvE8T2lA+zbLxqUhd9MGwy9TuJjXlcFM+2BBbXNdheOCqmOgM/xsatMhTKTxXTH7r3ZQkFaD4LtiGZEq6SJNWl+7o6+x+qVaAqoeFhUSlrHTnyXDs3B7sem4+qR+R36PETHog2SOjpNFvAtzhJN4Yu42cDPgjRJklQT0nlFaTGvv4xV7Y/aYjqCIC1CC36xkTWgDtKYaQigHk/EQFZrGsIYHYWSlpVsxoMzh/Kd8raSmWSGXifB7ZF5ipS2xi7eaGiHktZgc/K0TkBdk8aCNJY1wQJY5iLeVXVaYq10Wxa5ep2E3mlWJJj0PCUO8H0/KEjrWmLl7ihJEh656hye/ZCfauGfsZjuKI4tbFzs6ODp4sFZ+PVlgzBv5tAOfZ6OgK0Fmx0uHKlqDnhMVwWfCSYDFxeSunmftO599kRU8Mk22po0YfBK0CyWxYAvkIoGAFaVi1bH7wvoo7TbJuKPrqlJU54jkp23uy4sxrcltRjeO5Xflmo18o2Q8/vGr5KbYNSjDsp5WjXGIQAgSeoFMG8G2xJlTZoQ1DDTkCSzQfX9HCKkOwZT0kYVpiE9wQirUd8p1wGgjCHZyWaU1fsUJZe3h5ghTq2yuZIWJGgKVZO2X6hHA9RBWh2vZVYeV1t33FXGIUa90oi9xeFu82LwX/dNgs3pVn3nLxuag72nGzC+OH6/wz0Bsz52Ke/De6fi+vMK8M/tp9Bf6KdYkJ6AVKsRiSa9xu1T+bmjlSCDXodfXTawQ5+jo2Drwha7mytpA7OTcKjCp6p1pUKYlWxGk93ll0Lf3ejeZ09EBWtIGm1qiNrdUVOTJgRpgZwdAW2fNNqdJMIj7qJKndRDhvdHimAH/WdT+vvdJi5Wzy/OiN2JxRiLqv7GG5gK3+sUi1HVV4wFaXUtDrg9ctBNEDa+MFodvmBA2yONMSgnGTpJUWW0piGMBJMBa+dOgV6SOtWmOifFogrSAMDm8iAp3oO0MOmOgZQ0lupoMepgc3pQ0eh73TXN6tYt2nG+KxdiGYkmtDhaVeYy0SC6+zFuHt8HN4/v095TI9qJ2CtTktqf8v7wlecgxWpUZdlYTXqs/fVFMOh1qrGFpzt2wzTEziJRUNKY5f644oy4CdIG5SThWFUzT23trsTnbEN0CGwnPNoJTdxl1KY7pgs1afkBnB0BjXNWJ+2EE90bs6aOsTMW51o7+mhhTlZGveTX3yueSAiY7hjcdppt6nhkXyAgYne5UdVkR53mPpvLjeomO9btP8NNQ7SLHotRj0uGZCMzyYxRBWlBzzkzyexnUtTRBOr5GK8pj7Isc7UybE2aO3iQNtFbyyu6OzJDGJY1oR3nu3Ih9uDMobh7cjFGCIo2cXYgbsxZDO3vI5aaYMQjV52DUYVpqtuzUyx+ayK25ok266gnwTb2bE4PDnkNWc7vq96c7Mqx4c83jMR//9+FGKn5vLsbpKT1IGrb3Mzat4DTqgxJZgOMeglOtxyhkkZBGhEeUUnrDGdH5XmY9XbbhkU2IY0sSOu0c24L4qZJoMBUq7Qb9TqkWo2ob3Wiptnht6B54L3v8cmucuSkKi5qGYkm1DQ70Opw49F/78FH35fhuvMKAKhVecZrPxkLl0eGMc4UqkAqS7wGaU12F9zeIrGwNWma12BzurHhUBUAYMqgLKw/UImqJjtXTdnmHjOcyk2JHyVt5og8zByR12XPT3Qc4oZuZ7s1/2LqAKzeU44LB2R26vN2J8QN+9PejINJA9Qpwl05NiRbjKpyhO5KfM2KRIfhdHvQ6N1pjVZJMxv0fFdLa8EvSRIP+oIpaZTuSESLdhe1M2DXZlvdoFhPnPH94jfVEVBbi1sDGIcEmliZjXVJjbpAXJZlrNtfAYfbg5M1ivEEU6BsTjdv7P3loUoAgeuXJEmKuwANCFxjG68Oj0zhNBl0QTcIgilpr284itK6VuSmWHDtmAJI3vRTluaorWXWjvOUEkZ0BCa9kJbdyZtel52Tg2dvGEmtfEJg0utgEFLfe6dZkZ1sUW3E0djQfuJvZiQ6BFb8LUlt291gDjmBurcXe3N+B2Yn+90HaHfu6ZIjwiPuonZWimyg1L9o+OlF/TDnsoG468L22b93NKKRT6A+aYEm1jFFig3+10drVLefqm3lmz8Mpqi3Ot28Fq3Sa0TRnSbt7pTuGK4eDRCVNF+QVlbfihfXHwEAzJs5BCkWI3olKgE5q0ur5f01jfw52HVjDhEUEkR76Io5gIgcSZJUmVVDvU69YgPv7thaIN6gK7+HwOoKUizGNrkf3jqxLyYPzFT1NWI8/6PRePenE3BOkEa7YmBGShoRCV2hpLGef2yRGi0F6QmYc9mgTq+dihYxnZP3SRNuSwswsU7sr6SxbDpSpbp9r9BbiyEqadoatkDpjvFKoHTHeG1oHUmQxsZeu6CkvbOlBK1ON8YUpeMHXkMFppoyh8fSOqaQKsG3JEnc4bE7Bd1E90KcA7pjs+eegJgmz9Z/YqYWBWntp/vMmES7YKkrbXXBCmUTm5tqCWq/D6jzyakmjYgEdU1a51wzs8f2gSwDs0b17pTn6yosAWrSwqU7MkOJPacbUN/i5Dbve0838L9hgQIbC1ocbm5mwegqu/a2ICppSWYDmuwulWNlPBGuRxoQWEljgdjUwVncmCE7xYy9ZUBlgx2yLKPEm7Ja1CuB/11eqgVHK5tpEUZ0GOIcQEFafJIgBmleJa0XBWkxhVbMPQRe/N0FjUdFJYTSFohIULs7ds4EnZpgxM+m9A+54XA2IC54AvVJC1iTlmJB/6xEyDLw9bFqfjtT0n56UT8UpFv5PwCoanJwMwsGc8DsDuSlWtEr0YTsZDP6ZioBSrdOd9T716Qx181kIXj2KWk2VDbaYXN6oNdJyE/zGYYwVY0WYURHYe4C8ygiOhKFDfhhXiWtlzfdMVR9LBE53WfGJNpFXRsbWccCi6nzF9xE90bcRaXAPraoLfj9G3gH28iZ2L8XjlQ246vDVeiflYiC9ASupI0pSsdPJhZBr5Pw9VEliKtosPk9RndS0kwGHVb/+iLoJAn3rNgOQGkrEI9ElO5o9Hd3ZPWEYvCcnaxsUlQ02nHCq6Llp1lU5i753o0MCtKIjqIrHH6J6GCp88lmA9+cy0xS1pg0NsQGCtJ6CDVdGKRZyYKfiBLaRe04rKpm1pEpaQAwqX8mVnxdgmWbT2DZ5hMY3SeN1ysNzUvhagz7vKo1za0BtWLTHWBF8Ow1xZu7oyzL+P5UPW+6HbWS5g3uks2CkpbiVdIa7DhR7U11zFA3hD3PayQzLEgdMkG0F3FDl1wW4xO2uTc0L4WnS7N0RwrSYgMFaT0E5u6Y3hXpjkZacBPRIRaNU2AfWwKlO1qMOui81uvBzCAm9uuFRJMezQ5FidlRUgdAsV4WJ+RQ9SPdKd1RxOK9BuMt3fE/35fhl+/s4L+HMvIwez8XsSbNp6T5/i4ryZfuyOrRCjN89WgAcPHgbGx98FJkJbfNZIcgwqFS0mgOiEuYK7BoGscMl9rqf0Co6Z4zJhE13Ea5C744pKQR0aLTSbxJOgX2scVq8jcOkSQJSWYDGmwupFkDjxHpiSb895eTUd/qxKEzjbj/ve8BwM/VVft5mfQ6rt50p3RHEZ+SFl9BWkm1um9d22vSfEuBPl6DkINnmngdmmgawsgO4H5JELFCXCuQkhafTB6YhfX7K3DF8Fx+29Qh2bj9gr6YPiw3xF8SkUJBWg9B25C0M7FQkEa0AZNeB6fbTb31YgyrSZMk9ffxZ1P6Y29ZAwbnBu53CADFmUra26jCNGw6Uo33d5Rigtf5kaFV0s4tSMW2E7UAupcFvwh7TXZXfKU7MlUzN8UCs1GHyQMzgx7La9KEurqGAErakNwU7ta5fn8FAKBPhn+QRhAdCVnwxz/XjynAdef15qmOgLLe+8PVw7rwrM4uuueMSURNbZemO4rujjTYEpFhNiqpdWQ2E1vY99Fq1Ksm159PHRDV4/z5hpG4ZWIRRvROVd2u3fUuzEhAXpoVJ2ta/NLmugtsoyDelLRWb5B2/ZgC/Hb64JDHciXNG2janG7+sxg863USJvXvhU92l/MgkII0orMRsylo3RC/iHMIEXsoSOshpCcoVtK9kjq/hoD6pBFtgS0qSUmLLUxJa+/utF4n4bw+6X63a9MdU61GzP9B995Zjdd0x2a7ooRFkg5m4UqaEpixejRJApJM6qXApAGZ+GR3Of+9T4B0R4LoaMwGPZxuFylpRI+FgrQewuu3ju2y57aQUx/RBljhuIWUtJjCbJM7qs5DG1SHMrPoLpjj1N2xxat0JUbwWZr0yjFMPWP1aElmA3Q69W74Bf19KazpCcZuW0tIdG9MBh1gB6y0UUf0UChIIzocUtKItsCuFeqTFlvOLUjFlSPyMLF/r/AHtwGT3ucUCZwdVszxmu7Y4lDUsARz+KncHERJCxSAFWcmIj/VgtP1NvTpleh3P0F0BmwOoM1doqdCqx+iw7EY9NziO6mbGgcQnY+JJugOwajX4cUfn4f/m1DUIY8vSZIqPemsCNK8am5rnAVprGYsISIlTfk+uT0yXG6Pr0dagDFZkiRMGqCYkFA9GtFVsDmA3B2JngqtmIkOR6eT8LcfnYcWh4vSZoiIoXTH7ovF6OundlYEaXGb7qioYYmmyJU0QLHhD9QjTeTOC4txqKIJPzq/MAZnShDRQ0oa0dOhII3oFC4/J6erT4HoZrCFZ2IEqVxEfCEuqlLOAvXcEsC+Ph5oaYOSBih1aawmLdjnMzQvBR/+/IIYnCVBtI2cFAsOnmlCXir15CN6Jt1/9iQI4qzkvqn90adXAqYMzurqUyGiRExPSu2Cth+xJl7dHVvsLEgLP5Ub9DrodRLcHhl2lweNPEjr/p8PcXby7PUjcfBMo1+bD4LoKXR5TdpLL72E4uJiWCwWjBkzBhs2bAh5/IsvvoihQ4fCarVi8ODBWLZsmep+p9OJBQsWoH///rBYLBg5ciQ+/fRT1TGNjY2YM2cOioqKYLVaMWnSJHzzzTeqY2677TZIkqT6N2HChNi8aIIgwjKpfyaevGYEkkhJ63acdTVp3DgkvtIdm7lxSGTpYGKvtIZW5W+7a4Nx4uwnN9WCiwZlUS8uosfSpaPzypUrMWfOHLz00ku44IIL8Morr2DGjBnYu3cv+vTp43f84sWLMW/ePLz22msYN24ctm7dirvvvhvp6em4+uqrAQAPP/wwVqxYgddeew1DhgzB6tWrcc0112DTpk0YPXo0AOCuu+7C7t27sXz5cuTn52PFihW47LLLsHfvXvTu3Zs/3xVXXIE33niD/24ymTr4HSEIguj+iDb8Z0WQZog/JU2WZd7MOpKaNECpS2t1umF3uX1K2lnw+RAEQZyNdKmStnDhQtx555246667MHToUCxatAiFhYVYvHhxwOOXL1+On/3sZ5g9ezb69euHm266CXfeeSeefvpp1TEPPvggZs6ciX79+uHee+/F9OnT8dxzzwEAWltbsWrVKjzzzDO46KKLMGDAAMyfPx/FxcV+z2s2m5Gbm8v/ZWRkdNybQRAEcZbA0gONeumsaERr8aZv2uKoJs3h9sDl7XMQrZJmd3nQYCMljSAIIp7psiDN4XBg+/btmDZtmur2adOmYdOmTQH/xm63w2JRF5BarVZs3boVTqcz5DEbN24EALhcLrjd7pDHMD7//HNkZ2dj0KBBuPvuu1FRURHyNdntdjQ0NKj+EQRB9DRYYJZqNZ4VqUo+JS1+0h1ZPRoAJEQYCIu90piSlkw1aQRBEHFJlwVpVVVVcLvdyMlRu/7l5OSgvLw84N9Mnz4dr7/+OrZv3w5ZlrFt2zYsWbIETqcTVVVV/JiFCxfi0KFD8Hg8WLt2LT788EOUlZUBAJKTkzFx4kQ8/vjjOH36NNxuN1asWIEtW7bwYwBgxowZeOutt7Bu3To899xz+Oabb3DJJZfAbrcHfU1PPfUUUlNT+b/CQrIuJgii58GMQ86WVLp4bGbN6tFMBh0M+sim8kA1aWQcQhAEEZ90uXGIdpdVluWgO6+PPPIIZsyYgQkTJsBoNGLWrFm47bbbAAB6vbIo+Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOmT17Nq688koMHz4cV199NT755BMcPHgQH330UdDXMm/ePNTX1/N/J0+ebOvbQhAE0W1hytPZUI8G+NI37XGkpPnq0SJPJzV7Pxe7YMFP6Y4EQRDxSZcFaZmZmdDr9X6qWUVFhZ+6xrBarViyZAlaWlpw/PhxlJSUoG/fvkhOTkZmZiYAICsrCx988AGam5tx4sQJ7N+/H0lJSSguLuaP079/f3zxxRdoamrCyZMnebqkeIyWvLw8FBUV4dChQ0GPMZvNSElJUf0jCILoaTAl7WwL0hxuD9zeOrCuptkRuf0+gzWId7jCN7MmCIIgupYuC9JMJhPGjBmDtWvXqm5fu3YtJk2aFPJvjUYjCgoKoNfr8e677+Kqq66CTqd+KRaLBb1794bL5cKqVaswa9Ysv8dJTExEXl4eamtrsXr16oDHMKqrq3Hy5Enk5eVF8SoJgiB6Hhbj2Rak+eaXeEl5bLF77fejUtJ8TblJSSMIgohvunR0njt3Lm655RaMHTsWEydOxKuvvoqSkhLcc889AJT0wdLSUt4L7eDBg9i6dSvGjx+P2tpaLFy4ELt378bSpUv5Y27ZsgWlpaUYNWoUSktLMX/+fHg8HjzwwAP8mNWrV0OWZQwePBiHDx/G/fffj8GDB+P2228HADQ1NWH+/Pm47rrrkJeXh+PHj+PBBx9EZmYmrrnmmk58hwiCILof+WmKMVNRRkIXn0lsYOmbgBKkJcZB774WpqRFcS5MSbM5PWiyU00aQRBEPNOlM83s2bNRXV2NBQsWoKysDMOHD8fHH3+MoqIiAEBZWRlKSkr48W63G8899xwOHDgAo9GIqVOnYtOmTejbty8/xmaz4eGHH8bRo0eRlJSEmTNnYvny5UhLS+PH1NfXY968eTh16hQyMjJw3XXX4YknnoDRqExWer0eu3btwrJly1BXV4e8vDxMnToVK1euRHJycqe8NwRBEN2V2eMKUZiegPH9zo62JTqdBJNeB4fbA5srPurSeCPrKFocsJq0mmY7ZG/WJilpBEEQ8UmXj8733Xcf7rvvvoD3vfnmm6rfhw4dih07doR8vClTpmDv3r0hj7nxxhtx4403Br3farVi9erVIR+DIAiCCIzZoMfUIdldfRoxxWz0Bmnxku7IjEMi7JEG+NIdq5ocABRlzXIW9LEjCII4G+lyd0eCIAiCiHdYMBNvQVpbjEOqGpVWMimkohEEQcQtFKQRBEEQRBh8vdLiI92xPcYhlU0sSKN6NIIgiHiFgjSCIAiCCIOV90qLDyWtPRb8LN2R6tEIgiDiFwrSCIIgCCIMPN3RFR9BWqvXOKQtNWmnalsAAJlJ5tifGEEQBBETKEgjCIIgiDAwG/54SXdsj5LGGlnnpFpif2IEQRBETKAgjSAIgiDCYOY1afGhpLU42lKTpj42L4WCNIIgiHiFgjSCIAiCCIPP3TE+lDSfu2PkQRpT0hikpBEEQcQvFKQRBEEQRBhYkNYaL0qanfVJizzd0awJ0vIoSCMIgohbyNqJIAiCIMJgMcRHuuP3p+rQZHeh2ZvuaG2HkpZL6Y4EQRBxCwVpBEEQBBEGSxxY8Hs8Mm5dshWNNhdvCZAYhXGItiYtl5Q0giCIuIWCNIIgCIIIA29m7eq6mrQzjTbUtjgBAI1taGYtKmmJJj2SqZk1QRBE3EI1aQRBEAQRBqZctTq6Tkk7WdPqd1t07o6+KZ9MQwiCIOIbCtIIgiAIIgxWb1phSxcGaSU1LX63RWMcIippZBpCEAQR31CQRhAEQRBhYIpVq9PVZedwMkCQ1mYljUxDCIIg4hoK0giCIAgiDMxFsSuVtJO1gYK0tlnwk5JGEAQR31CQRhAEQRBhSIiHIM2rpDETE7NBB71OivjvRXdHst8nCIKIbyhIIwiCIIgwMKv7eDAOuWxojnJOUdSjAeqatNxUa+xOjCAIgog5FKQRBEEQRBh86Y5dU5Nmc7pR3mADANwwthAAkJVkjuoxxHRHUtIIgiDiG+qTRhAEQRBh6Op0x9K6Vn4eFw3MxMv/dx76ZiZG9RgmlQV/dAEeQRAE0blQkEYQBEEQYejqII3Vo/XJSIAkSbhieF7Uj5FmNSHBpEeCyYDMRArSCIIg4hkK0giCIAgiDNYurkljQVpBekKbH8Nq0uPfv7gQZoMOuigMRwiCIIjOh4I0giAIgghDglFR0hxuD1xuDwz6zi3pPlmrpDsWZrTP8GNAdlIsTocgCILoYMg4hCAIgiDCYBWaRrc4O19NK6n2pTsSBEEQZz8UpBEEQRBEGMwGHViGYFekPNY0OwAAWclUS0YQBNEToCCNIAiCIMIgSRISvHVpXWEeYnMpz5kgKHoEQRDE2QsFaQRBEAQRAV3ZK42pdxYDBWkEQRA9AQrSCIIgCCICmIrVFemOTEmzkJJGEATRI6AgjSAIgiAiwGrsul5prQ4PAFLSCIIgegoUpBEEQRBEBHRlQ2u711HSSkoaQRBEj4CCNIIgCIKIAGYc0ursgpo0b5BmMdK0TRAE0ROg0Z4gCIIgIqCrlDSn2wOXRwZA6Y4EQRA9BQrSCIIgCCICuso4xCY0z6Z0R4IgiJ4BBWkEQRAEEQFWb7pjs72zgzQP/9lsoGmbIAiiJ0CjPUEQBEFEAE937OSaNJtQjyZJUqc+N0EQBNE1UJBGEARBEBHQ1emOFiOlOhIEQfQUKEgjCIIgiAiwdpFxCEt3tFKQRhAE0WOgII0gCIIgIiDB2DVKWispaQRBED0OCtIIgiAIIgJYn7QWR1fVpFGQRhAE0VOgII0gCIIgIqCr0h2pkTVBEETPg0Z8giAIgogAbhzi7BrjEKpJIwiC6DlQkEYQBEEQEdB1xiGU7kgQBNHT6PIg7aWXXkJxcTEsFgvGjBmDDRs2hDz+xRdfxNChQ2G1WjF48GAsW7ZMdb/T6cSCBQvQv39/WCwWjBw5Ep9++qnqmMbGRsyZMwdFRUWwWq2YNGkSvvnmG9Uxsixj/vz5yM/Ph9VqxcUXX4w9e/bE5kUTBEEQ3Q5Wk9b5FvyKuyOlOxIEQfQcunTEX7lyJebMmYOHHnoIO3bswOTJkzFjxgyUlJQEPH7x4sWYN28e5s+fjz179uCxxx7Dz3/+c/znP//hxzz88MN45ZVX8Le//Q179+7FPffcg2uuuQY7duzgx9x1111Yu3Ytli9fjl27dmHatGm47LLLUFpayo955plnsHDhQrzwwgv45ptvkJubi8svvxyNjY0d94YQBEEQcQtvZk3GIQRBEEQH06VB2sKFC3HnnXfirrvuwtChQ7Fo0SIUFhZi8eLFAY9fvnw5fvazn2H27Nno168fbrrpJtx55514+umnVcc8+OCDmDlzJvr164d7770X06dPx3PPPQcAaG1txapVq/DMM8/goosuwoABAzB//nwUFxfz55VlGYsWLcJDDz2Ea6+9FsOHD8fSpUvR0tKCt99+u+PfGIIgCCLuYDVhXWccQkEaQRBET6HLgjSHw4Ht27dj2rRpqtunTZuGTZs2Bfwbu90Oi8Wius1qtWLr1q1wOp0hj9m4cSMAwOVywe12hzzm2LFjKC8vV52b2WzGlClTgp4be+6GhgbVP4IgCOLsgClpdpcHbo/cac9LzawJgiB6Hl0WpFVVVcHtdiMnJ0d1e05ODsrLywP+zfTp0/H6669j+/btkGUZ27Ztw5IlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGQAgOTkZEydOxOOPP47Tp0/D7XZjxYoV2LJlCz+GPX805wYATz31FFJTU/m/wsLCtr05BEEQRNyRaDbwnzsz5dFGFvwEQRA9ji4f8SVJUv0uy7LfbYxHHnkEM2bMwIQJE2A0GjFr1izcdtttAAC9Xtlh/Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOifbcAGDevHmor6/n/06ePBnx+0AQBEHEN2aDDmwK6EzzELLgJwiC6Hl0WZCWmZkJvV7vp0xVVFT4KVgMq9WKJUuWoKWlBcePH0dJSQn69u2L5ORkZGZmAgCysrLwwQcfoLm5GSdOnMD+/fuRlJSE4uJi/jj9+/fHF198gaamJpw8eZKnS7JjcnNzASCqcwOUlMiUlBTVP4IgCOLsQJIkJHRBXRrVpBEEQfQ8uixIM5lMGDNmDNauXau6fe3atZg0aVLIvzUajSgoKIBer8e7776Lq666Cjqd+qVYLBb07t0bLpcLq1atwqxZs/weJzExEXl5eaitrcXq1av5McXFxcjNzVWdm8PhwBdffBH23AiCIIizF6vXhr8zgzRydyQIguh5GMIf0nHMnTsXt9xyC8aOHYuJEyfi1VdfRUlJCe655x4ASvpgaWkp74V28OBBbN26FePHj0dtbS0WLlyI3bt3Y+nSpfwxt2zZgtLSUowaNQqlpaWYP38+PB4PHnjgAX7M6tWrIcsyBg8ejMOHD+P+++/H4MGDcfvttwNQdkvnzJmDJ598EgMHDsTAgQPx5JNPIiEhATfffHMnvkMEQRBEPMHMQ1qdnVeT1sr7pFGQRhAE0VPo0iBt9uzZqK6uxoIFC1BWVobhw4fj448/RlFREQCgrKxM1TPN7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Jj6+nrMmzcPp06dQkZGBq677jo88cQTMBqN/JgHHngAra2tuO+++1BbW4vx48djzZo1SE5O7vD3hSAIgohPfL3SqCaNIAiC6DgkWZY7z0e4h9HQ0IDU1FTU19dTfRpBEMRZwDUvfYUdJXV45ZYxmD4sN/wfNDcDzz6rvu3++4HExIifc9YLG7HzVD3+futYXDo0eF00QRAEEd9EExt0ubsjQRAEQXQXEnlNWmemO1JNGkEQRE+DgjSCIAiCiJBEsxIoNdk7M92RatIIgiB6GhSkEQRBEESEcCXN3hVKGk3ZBEEQPQUa8QmCIAgiQhLNSpDW3IlBGhmHEARB9DwoSCMIgiCICEnwpjs2U580giAIogOhII0gCIIgIiTJ1LlKmsvtgdOtmDCTkkYQBNFzoCCNIAiCICKEpzt2kpJmc3n4z6SkEQRB9BwoSCMIgiCICGHujp2lpLFURwAwG2jKJgiC6CnQiE8QBEEQEcKUtKZODtLMBh10OqlTnpMgCILoeihIIwiCIIgI6exm1tzZ0USpjgRBED0JCtIIgiAIIkJ8FvydVJPGGlkbKEgjCILoSVCQRhAEQRAR0tk1adTImiAIomdCoz5BEARBREhiJ1vwU480giCIngkFaQRBEAQRISzdscXphscjd/jztTooSCMIguiJRB2ktba2oqWlhf9+4sQJLFq0CGvWrInpiREEQRBEvMHSHWXZl4rYkbA+adTImiAIomcRdZA2a9YsLFu2DABQV1eH8ePH47nnnsOsWbOwePHimJ8gQRAEQcQLVqMektcJvzNSHm0OqkkjCILoiUQ96n/77beYPHkyAOC9995DTk4OTpw4gWXLluH555+P+QkSBEEQRLwgSZKvLs3RGUoaWfATBEH0RKIO0lpaWpCcnAwAWLNmDa699lrodDpMmDABJ06ciPkJEgRBEEQ80ZkOj9w4hCz4CYIgehRRB2kDBgzABx98gJMnT2L16tWYNm0aAKCiogIpKSkxP0GCIAiCiCd8vdI6PkhrdSg1aWaqSSMIguhRRB2kPfroo/jtb3+Lvn37Yvz48Zg4cSIARVUbPXp0zE+QIAiCIOIJX7pjJwRpXiUtgdIdCYIgehSGaP/g+uuvx4UXXoiysjKMHDmS337ppZfimmuuienJEQRBEES84Ut37ISaNG+QRu6OBEEQPYuog7T6+nqYTCY/1WzAgAEwGKJ+OIIgCILoVnRmQ+sWr1pHxiEEQRA9i6jTHW+66Sa8++67frf/4x//wE033RSTkyIIgiCIeIXVpDV1Rk2ak/qkEQRB9ESiDtK2bNmCqVOn+t1+8cUXY8uWLTE5KYIgCIKIV1i6Y0snWPC3OsiCnyAIoicSdZBmt9vhcvnvHjqdTrS2tsbkpAiCIAgiXunMdMdWpzfdkZQ0giCIHkXUQdq4cePw6quv+t3+8ssvY8yYMTE5KYIgCIKIV7gFf2e4O5KSRhAE0SOJ2unjiSeewGWXXYadO3fi0ksvBQB89tln+Oabb7BmzZqYnyBBEARBxBOd6e5INWkEQRA9k6iVtAsuuACbN29GYWEh/vGPf+A///kPBgwYgO+//x6TJ0/uiHMkCIIgiLihc5tZk7sjQRBET6RNnvmjRo3CW2+9FetzIQiCIIi4pyuaWZOSRhAE0bOIKEhraGhASkoK/zkU7DiCIAiCOBvxWfCTuyNBEATRMUQUpKWnp6OsrAzZ2dlIS0uDJEl+x8iyDEmS4HZ3/KRFEARBEF0Ft+DvFHdHZU5NoCCNIAiiRxFRkLZu3TpkZGQAANavX9+hJ0QQBEEQ8UxnWfA73R443TIASnckCILoaUQUpE2ZMoX/XFxcjMLCQj81TZZlnDx5MrZnRxAEQRBxhs+Cv2MzR2xO3+NbKEgjCILoUUTt7lhcXIzKykq/22tqalBcXByTkyIIgiCIeMVnwe+CLMsd9jysHk0nAWZD1NM1QRAE0Y2JetRntWdampqaYLFYYnJSBEEQBBGvMCXN5ZFhd3k67HlEZ8dA8y5BEARx9hKxBf/cuXMBAJIk4ZFHHkFCQgK/z+12Y8uWLRg1alTMT5AgCIIg4glWkwYoalpHpSK2kLMjQRBEjyXiIG3Hjh0AFCVt165dMJlM/D6TyYSRI0fit7/9bezPkCAIgiDiCL1Ogkmvg8Pt6RwljYI0giCIHkfEQRpzdbz99tvx17/+lfqhEQRBED0Ws1EJ0kRzj1hjc1Aja4IgiJ5K1DVpb7zxhipAa2howAcffID9+/fH9MQIgiAIIl4xG5TAqSOVtBYK0giCIHosUQdpN954I1544QUAQGtrK8aOHYsbb7wRI0aMwKpVq2J+ggRBEAQRbzC3RUp3JAiCIDqCqIO0L7/8EpMnTwYAvP/++5BlGXV1dXj++efxxz/+MeYnSBAEQRDxhsWoTJ8dme4oujsSBEEQPYuog7T6+npkZGQAAD799FNcd911SEhIwJVXXolDhw5FfQIvvfQSiouLYbFYMGbMGGzYsCHk8S+++CKGDh0Kq9WKwYMHY9myZar7nU4nFixYgP79+8NisWDkyJH49NNPVce4XC48/PDDKC4uhtVqRb9+/bBgwQJ4PL4d0dtuuw2SJKn+TZgwIerXRxAEQZx9dEa6Yyu5OxIEQfRYIjYOYRQWFmLz5s3IyMjAp59+infffRcAUFtbG3WftJUrV2LOnDl46aWXcMEFF+CVV17BjBkzsHfvXvTp08fv+MWLF2PevHl47bXXMG7cOGzduhV333030tPTcfXVVwMAHn74YaxYsQKvvfYahgwZgtWrV+Oaa67Bpk2bMHr0aADA008/jZdffhlLly7FsGHDsG3bNtx+++1ITU3Fr371K/58V1xxBd544w3+u+hoSRAEQfRczJ2qpEU9VRMEQRDdnKhH/jlz5uDHP/4xkpKSUFRUhIsvvhiAkgY5YsSIqB5r4cKFuPPOO3HXXXcBABYtWoTVq1dj8eLFeOqpp/yOX758OX72s59h9uzZAIB+/frh66+/xtNPP82DtOXLl+Ohhx7CzJkzAQD33nsvVq9ejeeeew4rVqwAAGzevBmzZs3ClVdeCQDo27cv3nnnHWzbtk31fGazGbm5uVG9JoIgCOLsx9KpSlrUSS8EQRBENyfqkf++++7D5s2bsWTJEmzcuBE6nfIQ/fr1i6omzeFwYPv27Zg2bZrq9mnTpmHTpk0B/8Zut/updVarFVu3boXT6Qx5zMaNG/nvF154IT777DMcPHgQALBz505s3LiRB3aMzz//HNnZ2Rg0aBDuvvtuVFRURPz6CIIgiLMXpqTZO0FJSzCRkkYQBNHTaNPIP3bsWIwdO1Z1G1OlIqWqqgputxs5OTmq23NyclBeXh7wb6ZPn47XX38dP/zhD3Heeedh+/btWLJkCZxOJ6qqqpCXl4fp06dj4cKFuOiii9C/f3989tln+PDDD+F2+ybS3/3ud6ivr8eQIUOg1+vhdrvxxBNP4Ec/+hE/ZsaMGbjhhhtQVFSEY8eO4ZFHHsEll1yC7du3w2w2Bzw/u90Ou93Of29oaIjqPSEIgiC6B0xJs3WCkmYh4xCCIIgeR0RB2ty5c/H4448jMTERc+fODXnswoULozoBSZJUv8uy7Hcb45FHHkF5eTkmTJgAWZaRk5OD2267Dc888wz0emUS++tf/4q7774bQ4YMgSRJ6N+/P26//XZVbdnKlSuxYsUKvP322xg2bBi+++47zJkzB/n5+bj11lsBgKdUAsDw4cMxduxYFBUV4aOPPsK1114b8PyeeuopPPbYY1G9foIgCKL70ZlKGrk7EgRB9DwiCtJ27NjB0wl37NgRkyfOzMyEXq/3U80qKir81DWG1WrFkiVL8Morr+DMmTPIy8vDq6++iuTkZGRmZgIAsrKy8MEHH8Bms6G6uhr5+fn4/e9/j+LiYv44999/P37/+9/jpptuAgCMGDECJ06cwFNPPcWDNC15eXkoKioK6WA5b948VRDb0NCAwsLCyN4QgiAIotvQKX3SHCzdkYI0giCInkZEQdr69esD/tweTCYTxowZg7Vr1+Kaa67ht69duxazZs0K+bdGoxEFBQUAgHfffRdXXXUVr41jWCwW9O7dG06nE6tWrcKNN97I72tpafE7Xq/Xqyz4tVRXV+PkyZPIy8sLeozZbA6aCkkQBEGcPbAURFLSCIIgiI4gauOQO+64A42NjX63Nzc344477ojqsebOnYvXX38dS5Yswb59+/DrX/8aJSUluOeeewAoytRPfvITfvzBgwexYsUKHDp0CFu3bsVNN92E3bt348knn+THbNmyBf/6179w9OhRbNiwAVdccQU8Hg8eeOABfszVV1+NJ554Ah999BGOHz+O999/HwsXLuTBYlNTE377299i8+bNOH78OD7//HNcffXVyMzMVAWUBEEQRM+kM5S0FocLAGAhJY0gCKLHEbVxyNKlS/GnP/0JycnJqttbW1uxbNkyLFmyJOLHmj17Nqqrq7FgwQKUlZVh+PDh+Pjjj1FUVAQAKCsrQ0lJCT/e7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Ji//e1veOSRR3DfffehoqIC+fn5+NnPfoZHH30UgKKq7dq1C8uWLUNdXR3y8vIwdepUrFy50u91EwRBED0P1sy6Y/ukKQFgAilpBEEQPY6Ig7SGhgbIsgxZltHY2KiyuXe73fj444+RnZ0d9Qncd999uO+++wLe9+abb6p+Hzp0aNiauClTpmDv3r0hj0lOTsaiRYuwaNGigPdbrVasXr065GMQBEEQPReLseOVNBvvk0ZBGkEQRE8j4iAtLS0NkiRBkiQMGjTI735JksjZkCAIgugRmDuhmXWL05vuSEoaQRBEjyPiIG39+vWQZRmXXHIJVq1ahYyMDH6fyWRCUVER8vPzO+QkCYIgCCKeYEpah6Y7OrzpjqSkEQRB9DgiDtKmTJkCADh27BgKCwv93BEJgiAIoqfQGUqajdwdCYIgeixRG4cwU4+WlhaUlJTA4XCo7j/33HNjc2YEQRAEEafwZtaujlHSZFnm7o5Uk0YQBNHziDpIq6ysxO23345PPvkk4P1ud8elfhAEQRBEPOBzd+wYJc3h9sAjKz9TkEYQBNHziDpncc6cOaitrcXXX38Nq9WKTz/9FEuXLsXAgQPx73//uyPOkSAIgiDiio5W0mwOX/BH6Y4EQRA9j6iVtHXr1uHDDz/EuHHjoNPpUFRUhMsvvxwpKSl46qmncOWVV3bEeRIEQRBE3MCaWXeUksacHY16CUY91YATBEH0NKIe+Zubm3k/tIyMDFRWVgIARowYgW+//Ta2Z0cQBEEQcQizxe8oJa3V2yON7PcJgiB6JlEHaYMHD8aBAwcAAKNGjcIrr7yC0tJSvPzyy8jLy4v5CRIEQRBEvMGUNHsHKWmt5OxIEATRo4k63XHOnDkoKysDAPzhD3/A9OnT8dZbb8FkMuHNN9+M9fkRBEEQRNzBFK6O6pPGlDTqkUYQBNEziTpI+/GPf8x/Hj16NI4fP479+/ejT58+yMzMjOnJEQRBEEQ8wpW0DuqTxpQ0SnckCILomUSd7rhgwQK0tLTw3xMSEnDeeechMTERCxYsiOnJEQRBEEQ8IjazlmU55o/PlDSy3ycIguiZRB2kPfbYY2hqavK7vaWlBY899lhMToogCIIg4hmL0Td9doSaZvM+psVAQRpBEERPJOogTZZlSJLkd/vOnTuRkZERk5MiCIIgiHjGLARPHRKkkZJGEATRo4m4Ji09PR2SJEGSJAwaNEgVqLndbjQ1NeGee+7pkJMkCIIgiHjCqJcgSYAsA3anG7AaY/r4NherSaMeaQRBED2RiIO0RYsWQZZl3HHHHXjssceQmprK7zOZTOjbty8mTpzYISdJEARBEPGEJEmwGPRodbo7REmjPmkEQRA9m4iDtFtvvRUAUFxcjAsuuAAGQ9TGkARBEARx1mA26rxBWuxt+MndkSAIomcTcaTl8Xjg8XgwZcoUftuZM2fw8ssvo7m5GT/4wQ9w4YUXdshJEgRBEES8oZh6OGHrgIbW7DGpmTVBEETPJOIg7c4774TRaMSrr74KAGhsbMS4ceNgs9mQl5eHv/zlL/jwww8xc+bMDjtZgiAIgogXzEbWKy32Shprkk1BGkEQRM8k4orkr776Ctdffz3/fdmyZXC5XDh06BB27tyJuXPn4tlnn+2QkyQIgiCIeIM3tO4QJY2MQwiCIHoyEY/+paWlGDhwIP/9s88+w3XXXccNRG699Vbs2bMn9mdIEARBEHEIqxezUU0aQRAEEWMiDtIsFgtaW1v5719//TUmTJiguj9Qk2uCIAiCOBvpHCWNgjSCIIieSMRB2siRI7F8+XIAwIYNG3DmzBlccskl/P4jR44gPz8/9mdIEARBEHEIa2jdMUoaGYcQBEH0ZCI2DnnkkUcwc+ZM/OMf/0BZWRluu+025OXl8fvff/99XHDBBR1ykgRBEAQRb7B6sQ5R0qhPGkEQRI8m4iBt6tSp2L59O9auXYvc3FzccMMNqvtHjRqF888/P+YnSBAEQRDxCFPSOqKZNVPnrCYyDiEIguiJRNWR+pxzzsE555wT8L6f/vSnMTkhgiAIgugOMAt+Vj8WS1qZkmYgJY0gCKInQlt0BEEQBNEGOkNJs5goSCMIguiJUJBGEARBEG2Auzt2hHGIg4xDCIIgejIUpBEEQRBEG+B90jrAOMROFvwEQRA9GgrSCIIgCKINdKiS5g3SSEkjCILomVCQRhAEQRBtwGccElslzen2wOWRAfhs/gmCIIieRcTujv369YvouKNHj7b5ZAiCIAiiu2DpIOMQ0S2S0h0JgiB6JhEHacePH0dRURFuvvlmZGdnd+Q5EQRBEETcY+bNrGOb7shSHSXJl1JJEARB9CwiDtLeffddvPHGG1i4cCFmzJiBO+64AzNnzoRORxMIQRAE0fNgSpotxkqa3Zs+aTHoIUlSTB+bIAiC6B5EHGHdeOON+OSTT3D48GGMGTMGv/71r1FQUIDf//73OHToUEeeI0EQBEHEHR2tpFmpRxpBEESPJWoZrHfv3njooYdw6NAhvPPOO9iyZQuGDBmC2trajjg/giAIgohLOqqZNatJs1CqI0EQRI8l4nRHEZvNhvfeew9LlizBli1bcMMNNyAhISHW50YQBEEQcYuFuzvGWElzeIM0UtIIgiB6LFEFaVu2bMHf//53rFy5Ev3798cdd9yBVatWIT09vaPOjyAIgiDikg5T0ly+mjSCIAiiZxJxkDZs2DBUVFTg5ptvxoYNG3Duued25HkRBEEQRFyT4FW6mu2umD4uU9KoJo0gCKLnEnGQtm/fPiQmJmLZsmVYvnx50ONqampicmIEQRAEEc8kmZUpNNZBmt3lTXekRtYEQRA9loiDtDfeeKMjz4MgCIIguhWJLEhzuOHxyNDpYmOXz5U0amRNEATRY4k4SLv11ls78jwIgiAIolvBlDQAaHG6Vb+3B2bBb6YgjSAIoscSdS6FLMvYtm0b3nvvPaxatQrffvstZFlu8wm89NJLKC4uhsViwZgxY7Bhw4aQx7/44osYOnQorFYrBg8ejGXLlqnudzqdWLBgAfr37w+LxYKRI0fi008/VR3jcrnw8MMPo7i4GFarFf369cOCBQvg8fiKv2VZxvz585Gfnw+r1YqLL74Ye/bsafPrJAiCIM4uLEYdmHgWy5RHm7eZNSlpBEEQPZeotv3Wr1+PO++8EydOnOCBmSRJKC4uxpIlS3DRRRdF9eQrV67EnDlz8NJLL+GCCy7AK6+8ghkzZmDv3r3o06eP3/GLFy/GvHnz8Nprr2HcuHHYunUr7r77bqSnp+Pqq68GADz88MNYsWIFXnvtNQwZMgSrV6/GNddcg02bNmH06NEAgKeffhovv/wyli5dimHDhmHbtm24/fbbkZqail/96lcAgGeeeQYLFy7Em2++iUGDBuGPf/wjLr/8chw4cADJyclRvU6CIAji7EOSJCSaDWi0udBkdyEnRo/Lm1lTkEYQBNFjiVhJO3z4MK666ir07dsX//rXv7Bv3z7s3bsX//znP1FQUICZM2fi6NGjUT35woULceedd+Kuu+7C0KFDsWjRIhQWFmLx4sUBj1++fDl+9rOfYfbs2ejXrx9uuukm3HnnnXj66adVxzz44IOYOXMm+vXrh3vvvRfTp0/Hc889x4/ZvHkzZs2ahSuvvBJ9+/bF9ddfj2nTpmHbtm0AFBVt0aJFeOihh3Dttddi+PDhWLp0KVpaWvD2229H9RoJgiCIs5eOMA+xO8k4hCAIoqcT8QywaNEiTJgwAevWrcOsWbMwePBgDBkyBNdeey3Wr1+P8ePH4y9/+UvET+xwOLB9+3ZMmzZNdfu0adOwadOmgH9jt9thsVhUt1mtVmzduhVOpzPkMRs3buS/X3jhhfjss89w8OBBAMDOnTuxceNGzJw5EwBw7NgxlJeXq87NbDZjypQpQc+NPXdDQ4PqH0EQBHH2wsxDmmIYpJGSRhAEQUQcpH3++eeYM2dOwPskScKcOXOwfv36iJ+4qqoKbrcbOTnqBJGcnByUl5cH/Jvp06fj9ddfx/bt23lt3JIlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGX+c3/3ud/jRj36EIUOGwGg0YvTo0ZgzZw5+9KMfAQB//mjODQCeeuoppKam8n+FhYURvx8EQRBE94M7PNrdMXtMGxmHEARB9HgiDtJKSkowYsSIoPcPHz4cJ06ciPoEJEltWSzLst9tjEceeQQzZszAhAkTYDQaMWvWLNx2220AAL1emcz++te/YuDAgRgyZAhMJhN+8Ytf4Pbbb+f3A0ot3IoVK/D222/j22+/xdKlS/HnP/8ZS5cubfO5AcC8efNQX1/P/508eTLi94EgCILofiSZY9/QupWMQwiCIHo8EQdpTU1NSEhICHp/QkICWlpaIn7izMxM6PX/v717D4uq2v84/hmG4SYo3hBUEvBelndLLZUy76bWUUrzhlaW/so6ZVqW5DHLCrMsOWmKZp20smMd8xJ60kwrlPIcTVNTESWIo3lJkduwf3/obBkBhRgE5P16nnke2bP2nrWnncsv37W+y5ovM5WWlpYvg+Xg7e2tRYsWKT09XYmJiUpKSlJISIj8/PxUq1YtSVLt2rW1cuVKnT17VocPH9bPP/8sX19fhYaGmtd56qmnNHnyZN1777268cYbNXz4cD3++ON66aWXJEmBgYGSVKy+SeenRFatWtXpBQC4dlXxKIXpjlmONWkEaQBQWRWruuPu3bsLne7nmG5YVB4eHmrbtq3i4uI0aNAg83hcXJwGDBhw2XNtNpvq168vSVq2bJn69esnNzfneNPLy0v16tVTdna2VqxYoSFDhpjvpaen52tvtVrNEvyhoaEKDAxUXFycWREyKytLmzZtcipSAgCo3EqlcEjOhTVpHhQOAYDKqlhB2h133FHgnmgWi+WKUwEL8sQTT2j48OFq166dOnbsqPnz5yspKUnjxo2TdH76YHJysrkX2r59+xQfH6+bb75ZJ06c0OzZs7Vr1y6naYrff/+9kpOT1apVKyUnJysqKkq5ubmaNGmS2aZ///568cUXdd111+mGG27Qjz/+qNmzZysyMtK8n4kTJ2rmzJlq3LixGjdurJkzZ8rHx0dDhw4t1j0CAK5dVUohSDMzae5k0gCgsipykHbo0CGXf3hERISOHz+u6dOnKyUlRS1atNDq1avVoEEDSVJKSoqSkpLM9na7XdHR0dq7d69sNpvCw8O1detWhYSEmG0yMjI0depUHTx4UL6+vurTp4+WLl0qf39/s83cuXP13HPP6ZFHHlFaWprq1q2rhx56SM8//7zZZtKkSTp37pweeeQRnThxQjfffLO+/PJL9kgDAJguVnd0YeGQC5k0Lw+CNACorCxGQakxuMTp06dVrVo1nTp1ivVpAHANeuvf+/Xal/sU0S5Ys/5yU/4GZ89Kr77qfOypp6QqVQq95h3RG3Xgf2e17MFbdEtYTRf3GABQVooTGxR5wnt6errGjx+vevXqKSAgQEOHDi32OjQAAK4ljjVpZ7JcN90x40J1RwqHAEDlVeQgbdq0aVq8eLH69u2re++9V3FxcXr44YdLs28AAJRrpbEmLYPNrAGg0ivymrRPP/1UCxcu1L333itJuv/++9W5c2fZ7XanPcgAAKgsSqO6oyNI87JR3REAKqsijwBHjhzRbbfdZv7coUMHubu769dffy2VjgEAUN65unCIYRg6RyYNACq9IgdpdrtdHh4eTsfc3d2Vk+O63x4CAFCRuHq6Y5Y9V7kXynl5EqQBQKVV5OmOhmFo1KhR8vT0NI9lZGRo3LhxqpKnStWnn37q2h4CAFBOuXq6Y2ZOrvlnpjsCQOVV5CBt5MiR+Y7df//9Lu0MAAAVSRXP89muM67KpOUJ0jysBGkAUFkVOUiLjY0tzX4AAFDhODJpmTm5yrHnyr2EgZUjk+ZhdZPFYilx/wAAFRO/pgMA4E9yrEmTpLMuKB7iyKR5ujM8A0BlxigAAMCfZLO6yeNCQPVHZnaJr+cI0jwI0gCgUmMUAACgBC4WDyl5Ji0z5/w1yKQBQOXGKAAAQAm4sngImTQAgESQBgBAiVTxcF0ZfoI0AIBEkAYAQIm4cq+0TLNwCBtZA0BlRpAGAEAJOCo8umK6YyaZNACACNIAACgR12bSKBwCACBIAwCgRMwgLct1+6SRSQOAyo1RAACAEnDldMcs+4UgzcrwDACVGaMAAAAl4HuhBL9LpjtmXygcYqNwCABUZgRpAACUAJk0AICrMQoAAFAC3h7ns16OLFhJOK7BmjQAqNwYBQAAKAGvC1MT07NckUmjuiMAgCANAIAS8bmQSTuX7brqjgRpAFC5MQoAAFAC3jZHkOaC6Y4EaQAAEaQBAFAiZpDmiumO7JMGABBBGgAAJeLtwumOmQRpAAARpAEAUCJmkJZV8umOF9eksU8aAFRmBGkAAJSAY7pjBpk0AICLMAoAAFAC3nlK8BuGUaJrZeZQgh8AQJAGAECJOKY75hpSlr1kUx4pHAIAkAjSAAAoEcdm1pKUUcJ1aeZ0RyvDMwBUZowCAACUgM3qJpvVIklKzy5ZGX6zcIiNwiEAUJkRpAEAUEIX90orWfEQx3RJMmkAULkxCgAAUEKu2ivNLBxiY3gGgMqMUQAAgBJyVRn+LNakAQBEkAYAQIl5mWX4XROkUYIfACo3RgEAAErIx8M1a9IyzSCNwiEAUJkRpAEAUEKuWpPGPmkAAIkgDQCAEnNFdUd7rqGcXEMS0x0BoLJjFAAAoIS8PdwllSyT5siiSWTSAKCyYxQAAKCEvC+UzCdIAwC4QpmPAvPmzVNoaKi8vLzUtm1bbd68+bLt3377bTVv3lze3t5q2rSp3nvvPaf3s7OzNX36dDVs2FBeXl5q2bKl1q5d69QmJCREFosl32v8+PFmm1GjRuV7/5ZbbnHdjQMArhlmCf4STHd07JHmZpHc3Swu6RcAoGJyL8sPX758uSZOnKh58+apc+fOeuedd9S7d2/t3r1b1113Xb72MTExmjJlihYsWKD27dsrPj5eDzzwgKpXr67+/ftLkqZOnar3339fCxYsULNmzbRu3ToNGjRIW7duVevWrSVJ27Ztk91+cSDdtWuX7rzzTg0ePNjp83r16qXY2FjzZw8Pj9L4GgAAFZyXR8lL8GfmKRpisRCkAUBlVqaZtNmzZ2vMmDEaO3asmjdvrjlz5ig4OFgxMTEFtl+6dKkeeughRUREKCwsTPfee6/GjBmjWbNmObV55pln1KdPH4WFhenhhx9Wz549FR0dbbapXbu2AgMDzdeqVavUsGFDde3a1enzPD09ndrVqFGjdL4IAECF5mMr+Zo0yu8DABzKLEjLyspSQkKCevTo4XS8R48e2rp1a4HnZGZmysvLy+mYt7e34uPjlZ2dfdk233zzTaH9eP/99xUZGZnvN5cbN25UQECAmjRpogceeEBpaWmXvafMzEydPn3a6QUAuPZ5e7huTRrr0QAAZTYSHDt2THa7XXXq1HE6XqdOHaWmphZ4Ts+ePfXuu+8qISFBhmFo+/btWrRokbKzs3Xs2DGzzezZs7V//37l5uYqLi5On332mVJSUgq85sqVK3Xy5EmNGjXK6Xjv3r31wQcf6N///reio6O1bds23X777crMzCz0nl566SVVq1bNfAUHBxfjGwEAVFSuKMGfZb8QpFkJ0gCgsivzkeDS7JVhGIXOxX/uuefUu3dv3XLLLbLZbBowYIAZXFmt5wfIN954Q40bN1azZs3k4eGhCRMmaPTo0eb7l1q4cKF69+6tunXrOh2PiIhQ37591aJFC/Xv319r1qzRvn379MUXXxR6L1OmTNGpU6fM15EjR4r6NQAAKjAvW8k3s868cK6nrcyHZgBAGSuzkaBWrVqyWq35smZpaWn5smsO3t7eWrRokdLT05WYmKikpCSFhITIz89PtWrVknR+vdnKlSt19uxZHT58WD///LN8fX0VGhqa73qHDx/W+vXrNXbs2Cv2NygoSA0aNND+/fsLbePp6amqVas6vQAA1z4fxz5pZNIAAC5QZiOBh4eH2rZtq7i4OKfjcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379r1if48fP64jR44oKCioCHcHAKhMHGvSMkqUSXMUDiFIA4DKrkxL8D/xxBMaPny42rVrp44dO2r+/PlKSkrSuHHjJJ2fPpicnGzuhbZv3z7Fx8fr5ptv1okTJzR79mzt2rVLS5YsMa/5/fffKzk5Wa1atVJycrKioqKUm5urSZMmOX12bm6uYmNjNXLkSLm7O38NZ86cUVRUlO655x4FBQUpMTFRzzzzjGrVqqVBgwaV8rcCAKhoHNMdS1KC35FJo7ojAKBMg7SIiAgdP35c06dPV0pKilq0aKHVq1erQYMGkqSUlBQlJSWZ7e12u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyMl+/rFardu7cqffee08nT55UUFCQwsPDtXz5cvn5+ZXKdwEAqLjM6Y5UdwQAuECZBmmS9Mgjj+iRRx4p8L3Fixc7/dy8eXP9+OOPl71e165dtXv37it+bo8ePWQYRoHveXt7a926dVe8BgAA0sXqjiWa7phzoXAIQRoAVHqMBAAAlJC3K6Y7kkkDAFzASAAAQAl55dnMurBZGleSSZAGALiAkQAAgBJyrEkzjIvBVnE5zmO6IwCAkQAAgBLyyhNY/dl1aUx3BAA4lHnhEAAAKjp3q5s8rG7KsucqPcsuf5+in3vsTKY+3/Gr/ncmUxIl+AEABGkAALiEt4dVWedyi12Gf+o/d2ntT6nmz2TSAACMBAAAuICjwuO5YlZ4jNvzm9PPHlaGZgCo7BgJAABwAW+PC0FaMTNpzQL9nH72tDE0A0Blx0gAAIALeP3JTFqDms4L2MikAQAYCQAAcAGfP5lJy7E776vmaaNwCABUdgRpAAC4gGNNWnFL8GfZnfdV8ySTBgCVHiMBAAAu4FiTdiYzp1jnZV2y+TXVHQEAjAQAALhANW+bJOnUuexinXdpkObmZnFZnwAAFRNBGgAALuD/Z4O0S6Y7pp3OcFmfAAAVE0EaAAAu4O9zIUhL/3OZtEYBvvL3sanvTUEu7xsAoGJxL+sOAABwLXBMdzz5J4O0mYNuVNsG1WVluiMAVHpk0gAAcIFqPh6Sij/dMfNCkObh7kaABgCQRJAGAIBLmJm0PxukUXofAHABIwIAAC7gKBxyutjVHc/vq0bpfQCAAyMCAAAu4CgccjI9q1jnOao7ehKkAQAuYEQAAMAFHNMdz2bZlX1JWf3LcRQOIUgDADgwIgAA4AJ+XjZZLtT9KGrxkBx7rnKN839muiMAwIERAQAAF7C6WeTneX5nm6KW4c+7kTVBGgDAgREBAAAX8S9mGX7HVEeJ6o4AgIsYEQAAcBFH8ZBT54pWPMQRpLlZJHeCNADABYwIAAC4iLlXWhGnO+bdyBoAAAdGBQAAXMQRpBV1uiMbWQMACsKoAACAixQ3k5ZlZtKspdYnAEDFQ5AGAICLXFyTVrzqjuyRBgDIi1EBAAAX8ff+c9UdCdIAAHkxKgAA4CIXpzsWr7ojhUMAAHkxKgAA4CLVij3d0S6JIA0A4IxRAQAAFzEzacWc7kh1RwBAXowKAAC4iKNwyOniluAnkwYAyINRAQAAF3EUDjmZni3DMK7YniANAFAQRgUAAFzEMd0xJ9fQ2Sz7Fdsz3REAUBBGBQAAXMTL5mZmxYpS4dEswW9jM2sAwEUEaQAAuIjFYpGfp7sk6WxmETJpdjJpAID8GBUAAHAhrwtZsYzsYkx3ZE0aACAPRgUAAFzIy3Z+aC1OkOZJkAYAyINRAQAAF3Jk0s4VJUizk0kDAORX5qPCvHnzFBoaKi8vL7Vt21abN2++bPu3335bzZs3l7e3t5o2bar33nvP6f3s7GxNnz5dDRs2lJeXl1q2bKm1a9c6tQkJCZHFYsn3Gj9+vNnGMAxFRUWpbt268vb2Vrdu3fTTTz+57sYBANckb3O6Y+4V21LdEQBQkDIdFZYvX66JEyfq2Wef1Y8//qjbbrtNvXv3VlJSUoHtY2JiNGXKFEVFRemnn37SCy+8oPHjx+tf//qX2Wbq1Kl65513NHfuXO3evVvjxo3ToEGD9OOPP5pttm3bppSUFPMVFxcnSRo8eLDZ5pVXXtHs2bP11ltvadu2bQoMDNSdd96pP/74o5S+DQDAtaA4a9Iyc863IZMGAMirTEeF2bNna8yYMRo7dqyaN2+uOXPmKDg4WDExMQW2X7p0qR566CFFREQoLCxM9957r8aMGaNZs2Y5tXnmmWfUp08fhYWF6eGHH1bPnj0VHR1ttqldu7YCAwPN16pVq9SwYUN17dpV0vks2pw5c/Tss8/q7rvvVosWLbRkyRKlp6frH//4R+l+KQCACq14QRrTHQEA+ZXZqJCVlaWEhAT16NHD6XiPHj20devWAs/JzMyUl5eX0zFvb2/Fx8crOzv7sm2++eabQvvx/vvvKzIyUhaLRZJ06NAhpaamOvXN09NTXbt2LbRvAABIFwuHFGlNGoVDAAAFKLNR4dixY7Lb7apTp47T8Tp16ig1NbXAc3r27Kl3331XCQkJMgxD27dv16JFi5Sdna1jx46ZbWbPnq39+/crNzdXcXFx+uyzz5SSklLgNVeuXKmTJ09q1KhR5jHH5xenb9L5APH06dNOLwBA5eL1Z9akEaQBAPIo81HBkb1yMAwj3zGH5557Tr1799Ytt9wim82mAQMGmMGV1Xp+UHzjjTfUuHFjNWvWTB4eHpowYYJGjx5tvn+phQsXqnfv3qpbt26J+iZJL730kqpVq2a+goODC20LALg2eRdnnzQ2swYAFKDMRoVatWrJarXmy0ylpaXly2A5eHt7a9GiRUpPT1diYqKSkpIUEhIiPz8/1apVS9L59WYrV67U2bNndfjwYf3888/y9fVVaGhovusdPnxY69ev19ixY52OBwYGSlKx+iZJU6ZM0alTp8zXkSNHrvxFAACuKX9mnzQyaQCAvMpsVPDw8FDbtm3NyooOcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379nU6HhoaqsDAQKe+ZWVladOmTZftm6enp6pWrer0AgBULsXKpLEmDQBQAPey/PAnnnhCw4cPV7t27dSxY0fNnz9fSUlJGjdunKTzmank5GRzL7R9+/YpPj5eN998s06cOKHZs2dr165dWrJkiXnN77//XsnJyWrVqpWSk5MVFRWl3NxcTZo0yemzc3NzFRsbq5EjR8rd3flrsFgsmjhxombOnKnGjRurcePGmjlzpnx8fDR06NBS/lYAABWZJ5tZAwBKqEyDtIiICB0/flzTp09XSkqKWrRoodWrV6tBgwaSpJSUFKc90+x2u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyssC+TZo0SefOndMjjzyiEydO6Oabb9aXX34pPz8/l38PAIBrR3EKh2RmO9akFbxuGgBQOVkMwzDKuhPXqtOnT6tatWo6deoUUx8BoJL4x/dJeuafO3Xn9XW04J7m0quvOjd46impShVJUvhrG3Xo2Fl99FBHdQitUQa9BQBcLcWJDZhfAQCAC/2ZwiGsSQMA5MWoAACACzkKh2QWZboj1R0BAAVgVAAAwIW8ilM4JOd8G4I0AEBejAoAALiQF5tZAwBKiFEBAAAXcqxJK1omjTVpAID8GBUAAHChopbgz7HnKvdCfWWmOwIA8mJUAADAhbyLON3RUTREIkgDADhjVAAAwIWKuiYtK2+Qxpo0AEAejAoAALiQI5OWk2so2174lEdH0RA3i+ROkAYAyINRAQAAF/K0XRxaL5dNu1g0xFrqfQIAVCwEaQAAuJCnu5sslvN/vlzxEDayBgAUhpEBAAAXslgs8rqQHcssQiaNIA0AcClGBgAAXMyxV9plpzuykTUAoBCMDAAAuJijeMi5nKKsSWMoBgA4Y2QAAMDFHGX4My+7Ju18AMd0RwDApRgZAABwMc8i7JXGmjQAQGEYGQAAcDFvc03aZfZJy2FNGgCgYIwMAAC4mGO6Y8Zl1qQ5SvDn3VcNAACJIA0AAJfzLsJ0x3MX3vO2uV+VPgEAKg6CNAAAXKwohUPOZV0I0jysV6VPAICKgyANAAAX8ypWJo2hGADgjJEBAAAXc2xmfe4yQVqGGaSRSQMAOCNIAwDAxczpjjlXnu7oxXRHAMAlCNIAAHCxohQOcVR+JJMGALgUQRoAAC7mZe6Tdpk1aVm5F9oSpAEAnBGkAQDgYhcLhxQ+3ZE1aQCAwhCkAQDgYkXZzPocQRoAoBAEaQAAuFhRMmkUDgEAFIYgDQAAFytK4RAyaQCAwhCkAQDgYo7CIZnskwYA+BPcy7oDkOx2u7Kzs8u6G8AV2Ww2Wa38gxK4kmJl0jz4fSkAwBlBWhkyDEOpqak6efJkWXcFKDJ/f38FBgbKYrGUdVeAcsvzQpD2vzNZ+vrg/3R93aqq5evp1MYRwFGCHwBwKYK0MuQI0AICAuTj48M/elGuGYah9PR0paWlSZKCgoLKuEdA+eXIpJ1Mz9YPSSd06ly2+res69TGUTiE6Y4AgEsRpJURu91uBmg1a9Ys6+4AReLt7S1JSktLU0BAAFMfgUIE1/BWzSoeyrFnSZLOZObka+Oo/EgmDQBwKSbClxHHGjQfH58y7glQPI5nlnWUQOH8vGzaOuV2LY5sL0k6e0mQlmPPVZb9fJBGJg0AcCmCtDLGFEdUNDyzQNF4ulsVWNVLkpSeZZdhGOZ7GTkX90/zZp80AMAlCNIAACglNXw9JEm5huG0sbVjPZokebozFAMAnDEyAEWwePFi+fv7l+gaISEhmjNnjkv6A6Bi8HS3ytP9fKYsPevilMe8e6SRnQYAXIogDcUyatQoWSwWWSwW2Ww2hYWF6cknn9TZs2clSYmJieb7FotFfn5+uuGGGzR+/Hjt37/f6VqLFy+WxWJR8+bN833ORx99JIvFopCQkD/dV4vFopUrVxb7vIKCqYiICO3bt69I5xcW0G3btk0PPvhgsfsDoGKr4ukI0i5mzy7ukcZURwBAfgRpKLZevXopJSVFBw8e1IwZMzRv3jw9+eSTTm3Wr1+vlJQU/ec//9HMmTO1Z88etWzZUhs2bHBqV6VKFaWlpenbb791Or5o0SJdd911pX4vReXt7a2AgIASXaN27doUigEqIR+P84WUz+bJpFF+HwBwOQRp5YhhGErPyrnqr7yL2YvC09NTgYGBCg4O1tChQzVs2LB8GauaNWsqMDBQYWFhGjBggNavX6+bb75ZY8aMkd1+8bfJ7u7uGjp0qBYtWmQeO3r0qDZu3KihQ4deth9ZWVmaMGGCgoKC5OXlpZCQEL300kuSZGbgBg0a5JSRO3DggAYMGKA6derI19dX7du31/r1681rduvWTYcPH9bjjz9uZgOl/Nmx//znPwoPD5efn5+qVq2qtm3bavv27dq4caNGjx6tU6dOmedHRUWZfcqboTt58qQefPBB1alTR15eXmrRooVWrVpVlP8EACqQKheyZemZF//uu7iRNcMwACA/9kkrR85l23X98+uu+ufunt7T/E3vn+Ht7X3Fcuxubm567LHHNGjQICUkJKhDhw7me2PGjFGXLl30xhtvyMfHR4sXL1avXr1Up06dy17zzTff1Oeff66PPvpI1113nY4cOaIjR45IOj+1MCAgQLGxserVq5e5n9eZM2fUp08fzZgxQ15eXlqyZIn69++vvXv36rrrrtOnn36qli1b6sEHH9QDDzxQ6GcPGzZMrVu3VkxMjKxWq3bs2CGbzaZOnTppzpw5ev7557V3715Jkq+vb77zc3Nz1bt3b/3xxx96//331bBhQ+3evZt9x4BrUIGZNDNI4/95AEB+Zf4rvHnz5ik0NFReXl5q27atNm/efNn2b7/9tpo3by5vb281bdpU7733ntP72dnZmj59uho2bCgvLy+1bNlSa9euzXed5ORk3X///apZs6Z8fHzUqlUrJSQkmO/nXXvleN1yyy2uuelrSHx8vP7xj3/ojjvuuGLbZs2aSTq/bi2vVq1aqWHDhvrkk09kGIYWL16syMjIK14vKSlJjRs31q233qoGDRro1ltv1X333Sfp/NRCSfL391dgYKD5c8uWLfXQQw/pxhtvVOPGjTVjxgyFhYXp888/lyTVqFFDVqtVfn5+CgwMVGBgYKGf3b17dzVr1kyNGzfW4MGD1bJlS3l4eKhatWqyWCzm+QUFaevXr1d8fLw+/fRT3XnnnQoLC1O/fv3Uu3fvK943gIrFp4A1aXkLhwAAcKkyzaQtX75cEydO1Lx589S5c2e988476t27t3bv3l3geqSYmBhNmTJFCxYsUPv27RUfH68HHnhA1atXV//+/SVJU6dO1fvvv68FCxaoWbNmWrdunQYNGqStW7eqdevWkqQTJ06oc+fOCg8P15o1axQQEKADBw7kK/bQq1cvxcbGmj97eHiU3peh84P17uk9S/UzCvvc4li1apV8fX2Vk5Oj7OxsDRgwQHPnzr3ieY5plQVVMouMjFRsbKyuu+46M9v11ltvXfZ6o0aN0p133qmmTZuqV69e6tevn3r06HHZc86ePasXXnhBq1at0q+//qqcnBydO3dOSUlJV+x/Xk888YTGjh2rpUuXqnv37ho8eLAaNmxY5PN37Nih+vXrq0mTJsX6XAAVTxVHJi0zfyaNwiEAgIKUaZA2e/ZsjRkzRmPHjpUkzZkzR+vWrVNMTIy5tiivpUuX6qGHHlJERIQkKSwsTN99951mzZplBmlLly7Vs88+qz59+kiSHn74Ya1bt07R0dF6//33JUmzZs1ScHCwUwBWUBVBx9qrq8VisZRo2uHVEh4erpiYGNlsNtWtW1c2m61I5+3Zs0eSFBoamu+9YcOGadKkSYqKitKIESPk7n7l76FNmzY6dOiQ1qxZo/Xr12vIkCHq3r27Pvnkk0LPeeqpp7Ru3Tq99tpratSokby9vfWXv/xFWVlZRboHh6ioKA0dOlRffPGF1qxZo2nTpmnZsmUaNGhQkc739vYu1ucBqLgKyqSdyzq/ZxrTHQEABSmz6Y5ZWVlKSEjIl/no0aOHtm7dWuA5mZmZ8vLycjrm7e2t+Ph4c01UYW2++eYb8+fPP/9c7dq10+DBgxUQEKDWrVtrwYIF+T5v48aNCggIUJMmTfTAAw8oLS3tsveUmZmp06dPO72uRVWqVFGjRo3UoEGDIgdoubm5evPNNxUaGmpmNPOqUaOG7rrrLm3atKlIUx0dqlatqoiICC1YsEDLly/XihUr9Pvvv0uSbDabU5ESSdq8ebNGjRqlQYMG6cYbb1RgYGC+6ZceHh75zitIkyZN9Pjjj+vLL7/U3XffbQb9RTn/pptu0tGjR4tc1h9AxeXIpBVYgp8gDQBQgDIL0o4dOya73Z6vOESdOnWUmppa4Dk9e/bUu+++q4SEBBmGoe3bt2vRokXKzs7WsWPHzDazZ8/W/v37lZubq7i4OH322WdKSUkxr3Pw4EHFxMSocePGWrduncaNG6dHH33UaX1b79699cEHH+jf//63oqOjtW3bNt1+++3KzMws9J5eeuklVatWzXwFBweX5Cuq0I4fP67U1FQdPHhQn3/+ubp37674+HgtXLiw0OIYixcv1rFjx8y1a1fy+uuva9myZfr555+1b98+ffzxxwoMDDSnrYaEhGjDhg1KTU3ViRMnJEmNGjXSp59+qh07dug///mPhg4dqtzcXKfrhoSE6Ouvv1ZycrL5XOV17tw5TZgwQRs3btThw4e1ZcsWbdu2zdzvLSQkRGfOnNGGDRt07Ngxpaen57tG165d1aVLF91zzz2Ki4szM4IFrZ8EULH5XJjSeC4rR7kXpn2zJg0AcDllXjjk0vVJhmEUuGZJkp577jn17t1bt9xyi2w2mwYMGKBRo0ZJkvkP/zfeeEONGzdWs2bN5OHhoQkTJmj06NFOgUFubq7atGmjmTNnqnXr1nrooYf0wAMPKCYmxmwTERGhvn37qkWLFurfv7/WrFmjffv26Ysvvij0XqZMmaJTp06ZL0elwcqoe/fuCgoK0o033qjJkyerefPm+u9//6vw8PBCz/H29lbNmjWL/Bm+vr6aNWuW2rVrp/bt2ysxMVGrV6+Wm9v5xzo6OlpxcXEKDg42s3evv/66qlevrk6dOql///7q2bOn2rRp43Td6dOnKzExUQ0bNjQLjuRltVp1/PhxjRgxQk2aNNGQIUPUu3dvvfDCC5KkTp06ady4cYqIiFDt2rX1yiuvFNj/FStWqH379rrvvvt0/fXXa9KkSUXK4AGoWLw9rLJIMiTt++0Pvbc18eI+aaxJAwAUwGIUd5MsF8nKypKPj48+/vhjp3U8jz32mHbs2KFNmzYVem52drZ+++03BQUFaf78+Xr66ad18uRJ8x/nkpSRkaHjx4+rbt26mjx5slatWqWffvpJktSgQQPdeeedevfdd832MTExmjFjhpKTkwv93MaNG2vs2LF6+umni3SPp0+fVrVq1XTq1ClVrVrV6b2MjAwdOnTIrGwJVBQ8u0AxnD0rvfqq5n99UOkXSvC/0+EetWgSpG2JJzSua0NN7l202QMAgIrtcrHBpcosk+bh4aG2bdsqLi7O6XhcXJw6dep02XNtNpvq168vq9WqZcuWqV+/fk4BmiR5eXmpXr16ysnJ0YoVKzRgwADzvc6dO5t7WDns27dPDRo0KPQzjx8/riNHjigoKKiotwgAgKSLUx4d9qT8IYnNrAEABSvTUoJPPPGEhg8frnbt2qljx46aP3++kpKSNG7cOEnnpw8mJyeba8X27dun+Ph43XzzzTpx4oRmz56tXbt2acmSJeY1v//+eyUnJ6tVq1ZKTk5WVFSUcnNzNWnSJLPN448/rk6dOmnmzJkaMmSI4uPjNX/+fM2fP1/S+Q2Po6KidM899ygoKEiJiYl65plnVKtWrSJX7wMAwKGKp7uOnbm4pvnMhXL8rEkDABSkTIO0iIgIHT9+XNOnT1dKSopatGih1atXmxmtlJQUp/2r7Ha7oqOjtXfvXtlsNoWHh2vr1q1O5fMzMjI0depUHTx4UL6+vurTp4+WLl3qtAda+/bt9c9//lNTpkzR9OnTFRoaqjlz5mjYsGGSzq852rlzp9577z2dPHlSQUFBCg8P1/Lly+Xn53dVvhsAwLWjuo9Nh49LHu7OmTPWpAEAClJma9IqA9ak4VrEswsUw4U1aeey7DpyIl1ZObka7Herznmc/3/nlb/cpCHtKm8lYACoTCrEmjQAACoLbw+rmtTxUzVv570lme4IACgIQRoAAFdJVYI0AEAREKQBAHCV+Hq6yy3PVqCsSQMAFIQgDQCAq8TqZlFgtYtrOb3IpAEACkCQBgDAVVTX39v8M/ukAQAKwugA5DF//nwFBwfLzc1Nc+bMKevuALgG1at2MUhjTRoAoCAEaSi21NRU/d///Z/CwsLk6emp4OBg9e/fXxs2bCjrrhVo8eLFTvvkFeb06dOaMGGCnn76aSUnJ+vBBx8s/c4BqHTqVr843ZE1aQCAgpTpZtbIwzCk9PSy+3wfH8liuWKzxMREde7cWf7+/nrllVd00003KTs7W+vWrdP48eP1888//6mPz87Ols1mK/Lx0pCUlKTs7Gz17dtXQUFBBba5mv0BcG2q5+9j/plMGgCgIARp5UV6uvTqq2X3+U89JVWpcsVmjzzyiCwWi+Lj41UlT/sbbrhBkZGR5s9JSUn6v//7P23YsEFubm7q1auX5s6dqzp16kiSoqKitHLlSj366KOaMWOGEhMTZbfb5ebmppiYGK1Zs0br16/Xk08+qRdeeEH/+te/FBUVpZ9++kl169bVyJEj9eyzz8rd/fwjfPLkSU2aNEmfffaZTp06pUaNGunll1+Wr6+vRo8eLUmyXAhCp02bpqioKKf7Wrx4sdkuLCxMknTo0CEtXry4wH6ePn1aTz31lFauXKmMjAy1a9dOr7/+ulq2bGle8+WXX9brr7+u9PR0DRkyRLVr19batWu1Y8cOSVK3bt3UqlUrp2mVAwcOlL+/vxYvXixJysrK0tSpU/XBBx/o5MmTatGihWbNmqVu3bqZ/Z44caKWL1+uiRMn6siRI7r11lsVGxvrFGguWrRI0dHR+uWXX1SjRg3dc889euuttxQZGam0tDStWrXKbJuTk6P69etr5syZTv9NAbhGPX8KhwAALo/pjiiy33//XWvXrtX48eOdAjQHx5RCwzA0cOBA/f7779q0aZPi4uJ04MABRUREOLX/5Zdf9NFHH2nFihVm4CKdD6IGDBignTt3KjIyUuvWrdP999+vRx99VLt379Y777yjxYsX68UXX5Qk5ebmqnfv3tq6davef/997d69Wy+//LKsVqs6deqkOXPmqGrVqkpJSVFKSoqefPLJfH2PiIjQ+vXrJUnx8fFKSUlRcHBwof3s27evUlNTtXr1aiUkJKhNmza644479Pvvv0uSPvroI02bNk0vvviitm/frqCgIM2bN6/Y3/no0aO1ZcsWLVu2TP/97381ePBg9erVS/v37zfbpKen67XXXtPSpUv19ddfKykpyekeY2JiNH78eD344IPauXOnPv/8czVq1EiSNHbsWK1du1YpKSlm+9WrV+vMmTMaMmRIsfsL4MocmTR3N4s83RmGAQD5kUlDkf3yyy8yDEPNmjW7bLv169frv//9rw4dOmQGOkuXLtUNN9ygbdu2qX379pLOZ4mWLl2q2rVrO50/dOhQpwzO8OHDNXnyZI0cOVLS+UzX3/72N02aNEnTpk3T+vXrFR8frz179qhJkyZmG4dq1arJYrEoMDCw0D57e3urZs2akqTatWs7tb20n//+97+1c+dOpaWlydPTU5L02muvaeXKlfrkk0/04IMPas6cOYqMjNTYsWMlSTNmzND69euVkZFx2e8urwMHDujDDz/U0aNHVbduXUnSk08+qbVr1yo2NlYzZ86UdH4K5t///nc1bNhQkjRhwgRNnz7dvM6MGTP017/+VY899ph5zPHfoFOnTmratKmWLl2qSZMmSZJiY2M1ePBg+fr6FrmvAIqufg1vPdglTDWqeJgZfgAA8iJIQ5EZhiFJV/xHxZ49exQcHGwGaJJ0/fXXy9/fX3v27DEDhAYNGuQL0CSpXbt2Tj8nJCRo27ZtZuZMkux2uzIyMpSenq4dO3aofv36ZoDmapf2MyEhQWfOnDGDOodz587pwIEDks5/B+PGjXN6v2PHjvrqq6+K/Lk//PCDDMPId1+ZmZlOn+3j42MGaJIUFBSktLQ0SVJaWpp+/fVX3XHHHYV+ztixYzV//nxNmjRJaWlp+uKLL8ptERjgWmCxWPRMn+Zl3Q0AQDlGkFZe+PicXxdWlp9/BY0bN5bFYtGePXs0cODAQtsZhlFgIHfp8YKmTBZ0PDc3Vy+88ILuvvvufG29vLzk7e2d77grFdSfoKAgbdy4MV/bolSRdHBzczMDX4fs7Gynz7FarUpISJDV6rxuJW+W69JCJhaLxbxuUb6bESNGaPLkyfr222/17bffKiQkRLfddluR7wMAAACuRZBWXlgsRSrcUZZq1Kihnj176u2339ajjz6aL3g5efKk/P39df311yspKUlHjhwxs2m7d+/WqVOn1Lx58X973KZNG+3du9dcR3Wpm266SUePHtW+ffsKzKZ5eHjIbrcX+3Mv15/U1FS5u7srJCSkwDbNmzfXd999pxEjRpjHvvvuO6c2tWvXdloLZrfbtWvXLoWHh0uSWrduLbvdrrS0tD8dNPn5+SkkJEQbNmwwr3upmjVrauDAgYqNjdW3335rFlABAABA2WDFMopl3rx5stvt6tChg1asWKH9+/drz549evPNN9WxY0dJUvfu3XXTTTdp2LBh+uGHHxQfH68RI0aoa9eu+aYyFsXzzz+v9957z6zuuGfPHi1fvlxTp06VJHXt2lVdunTRPffco7i4OB06dEhr1qzR2rVrJUkhISE6c+aMNmzYoGPHjim9hFsddO/eXR07dtTAgQO1bt06JSYmauvWrZo6daq2b98uSXrssce0aNEiLVq0SPv27dO0adP0008/OV3n9ttv1xdffKEvvvhCP//8sx555BGdPHnSfL9JkyYaNmyYRowYoU8//VSHDh3Stm3bNGvWLK1evbrI/Y2KilJ0dLTefPNN7d+/Xz/88IPmzp3r1Gbs2LFasmSJ9uzZY679AwAAQNkgSEOxhIaG6ocfflB4eLj++te/qkWLFrrzzju1YcMGxcTESDo/3W7lypWqXr26unTpou7duyssLEzLly//U5/Zs2dPrVq1SnFxcWrfvr1uueUWzZ49Ww0aNDDbrFixQu3bt9d9992n66+/XpMmTTKzZ506ddK4ceMUERGh2rVr65VXXinRd2CxWLR69Wp16dJFkZGRatKkie69914lJiaaWwxERETo+eef19NPP622bdvq8OHDevjhh52uExkZqZEjR5oBbGhoaL5sV2xsrEaMGKG//vWvatq0qe666y59//33Tuv9rmTkyJGaM2eO5s2bpxtuuEH9+vVzqg4pnQ88g4KC1LNnT7NICQAAAMqGxbh0UQxc5vTp06pWrZpOnTqlqlWrOr2XkZGhQ4cOKTQ0VF5eXoVcAdcSx95webcbKC/S09NVt25dLVq0qMC1f3nx7ALFcPZs/j0wi7gvJQDg2nK52OBSrEkDKrHc3FylpqYqOjpa1apV01133VXWXQIAAKj0CNKASiwpKUmhoaGqX7++Fi9eLHd3/koAAAAoa/yLDLhKoqKiFBUVVdbdcBISEpJvGwAAAACULQqHAAAAAEA5QpBWxshioKLhmQUAAChdBGllxGazSVKJ9+wCrjbHM+t4hgEAAOBarEkrI1arVf7+/kpLS5Mk+fj4yGKxlHGvgMIZhqH09HSlpaXJ399fVqu1rLsEAABwTSJIK0OBgYGSZAZqQEXg7+9vPrsAAABwPYK0MmSxWBQUFKSAgABlZ2eXdXeAK7LZbGTQAAAAShlBWjlgtVr5hy8AAAAASRQOAQAAAIByhSANAAAAAMoRgjQAAAAAKEdYk1aKHJv+nj59uox7AgAoE2fPSpmZzsdOn5bs9rLpDwCgzDhiAkeMcDkWoyit8KccPXpUwcHBZd0NAAAAAOXEkSNHVL9+/cu2IUgrRbm5ufr111/l5+fHRtUoltOnTys4OFhHjhxR1apVy7o7qER49lBWePZQVnj2cLUYhqE//vhDdevWlZvb5VedMd2xFLm5uV0xSgYup2rVqgwYKBM8eygrPHsoKzx7uBqqVatWpHYUDgEAAACAcoQgDQAAAADKEYI0oBzy9PTUtGnT5OnpWdZdQSXDs4eywrOHssKzh/KIwiEAAAAAUI6QSQMAAACAcoQgDQAAAADKEYI0AAAAAChHCNIAAAAAoBwhSAOugnnz5ik0NFReXl5q27atNm/efNn2H3zwgVq2bCkfHx8FBQVp9OjROn78uFObFStW6Prrr5enp6euv/56/fOf/yzNW0AF5epnb8GCBbrttttUvXp1Va9eXd27d1d8fHxp3wYqoNL4e89h2bJlslgsGjhwYCn0HBVdaTx7J0+e1Pjx4xUUFCQvLy81b95cq1evLs3bQGVnAChVy5YtM2w2m7FgwQJj9+7dxmOPPWZUqVLFOHz4cIHtN2/ebLi5uRlvvPGGcfDgQWPz5s3GDTfcYAwcONBss3XrVsNqtRozZ8409uzZY8ycOdNwd3c3vvvuu6t1W6gASuPZGzp0qPH2228bP/74o7Fnzx5j9OjRRrVq1YyjR49erdtCBVAaz55DYmKiUa9ePeO2224zBgwYUMp3goqmNJ69zMxMo127dkafPn2Mb775xkhMTDQ2b95s7Nix42rdFiohgjSglHXo0MEYN26c07FmzZoZkydPLrD9q6++aoSFhTkde/PNN4369eubPw8ZMsTo1auXU5uePXsa9957r4t6jWtBaTx7l8rJyTH8/PyMJUuWlLzDuGaU1rOXk5NjdO7c2Xj33XeNkSNHEqQhn9J49mJiYoywsDAjKyvL9R0GCsF0R6AUZWVlKSEhQT169HA63qNHD23durXAczp16qSjR49q9erVMgxDv/32mz755BP17dvXbPPtt9/mu2bPnj0LvSYqn9J69i6Vnp6u7Oxs1ahRw6X9R8VVms/e9OnTVbt2bY0ZM6bU+o+Kq7Sevc8//1wdO3bU+PHjVadOHbVo0UIzZ86U3W4v1ftB5UaQBpSiY8eOyW63q06dOk7H69Spo9TU1ALP6dSpkz744ANFRETIw8NDgYGB8vf319y5c802qampxbomKp/SevYuNXnyZNWrV0/du3d3af9RcZXWs7dlyxYtXLhQCxYsKNX+o+IqrWfv4MGD+uSTT2S327V69WpNnTpV0dHRevHFF0v1flC5EaQBV4HFYnH62TCMfMccdu/erUcffVTPP/+8EhIStHbtWh06dEjjxo3709dE5VUaz57DK6+8og8//FCffvqpvLy8XN53VGyufPb++OMP3X///VqwYIFq1apV6n1Hxebqv/dyc3MVEBCg+fPnq23btrr33nv17LPPKiYmplTvA5Wbe1l3ALiW1apVS1arNd9v8NLS0vL9ps/hpZdeUufOnfXUU09Jkm666SZVqVJFt912m2bMmKGgoCAFBgYW65qofErr2XN47bXXNHPmTK1fv1433XRT6d0IKpzSePZ+++03JSYmqn///uY5ubm5kiR3d3ft3btXDRs2LKU7QkVRWn/vBQUFyWazyWq1muc1b95cqampysrKkoeHR+ndFCotMmlAKfLw8FDbtm0VFxfndDwuLk6dOnUq8Jz09HS5uTn/r+kYGAzDkCR17Ngx3zW//PLLQq+Jyqe0nj1JevXVV/W3v/1Na9euVbt27Vzcc1R0pfHsNWvWTDt37tSOHTvM11133aXw8HDt2LFDwcHBpXMzqFBK6++9zp0765dffjF/MSBJ+/btU1BQEAEaSk+ZlCsBKhFHOeCFCxcau3fvNiZOnGhUqVLFSExMNAzDMCZPnmwMHz7cbB8bG2u4u7sb8+bNMw4cOGB88803Rrt27YwOHTqYbbZs2WJYrVbj5ZdfNvbs2WO8/PLLlOBHPqXx7M2aNcvw8PAwPvnkEyMlJcV8/fHHH1f9/lB+lcazdymqO6IgpfHsJSUlGb6+vsaECROMvXv3GqtWrTICAgKMGTNmXPX7Q+VBkAZcBW+//bbRoEEDw8PDw2jTpo2xadMm872RI0caXbt2dWr/5ptvGtdff73h7e1tBAUFGcOGDcu3D9XHH39sNG3a1LDZbEazZs2MFStWXI1bQQXj6mevQYMGhqR8r2nTpl2lO0JFURp/7+VFkIbClMazt3XrVuPmm282PD09jbCwMOPFF180cnJyrsbtoJKyGEaeOSwAAAAAgDLFmjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAAAAAMoRgjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAIBrRFZWlho1aqQtW7a49LqrVq1S69atlZub69LrAgAKRpAGACiXRo0aJYvFku/1yy+/lHXXyq358+erQYMG6ty5s3nMYrFo5cqV+dqOGjVKAwcOLNJ1+/XrJ4vFon/84x8u6ikA4HII0gAA5VavXr2UkpLi9AoNDc3XLisrqwx6V/7MnTtXY8eOLZVrjx49WnPnzi2VawMAnBGkAQDKLU9PTwUGBjq9rFarunXrpgkTJuiJJ55QrVq1dOedd0qSdu/erT59+sjX11d16tTR8OHDdezYMfN6Z8+e1YgRI+Tr66ugoCBFR0erW7dumjhxotmmoMyTv7+/Fi9ebP6cnJysiIgIVa9eXTVr1tSAAQOUmJhovu/IUr322msKCgpSzZo1NX78eGVnZ5ttMjMzNWnSJAUHB8vT01ONGzfWwoULZRiGGjVqpNdee82pD7t27ZKbm5sOHDhQ4Hf1ww8/6JdfflHfvn2L+S1LiYmJBWYtu3XrZra56667FB8fr4MHDxb7+gCA4iFIAwBUSEuWLJG7u7u2bNmid955RykpKeratatatWql7du3a+3atfrtt980ZMgQ85ynnnpKX331lf75z3/qyy+/1MaNG5WQkFCsz01PT1d4eLh8fX319ddf65tvvpGvr6969erllNH76quvdODAAX311VdasmSJFi9e7BTojRgxQsuWLdObb76pPXv26O9//7t8fX1lsVgUGRmp2NhYp89dtGiRbrvtNjVs2LDAfn399ddq0qSJqlatWqz7kaTg4GCnbOWPP/6omjVrqkuXLmabBg0aKCAgQJs3by729QEAxeNe1h0AAKAwq1atkq+vr/lz79699fHHH0uSGjVqpFdeecV87/nnn1ebNm00c+ZM89iiRYsUHBysffv2qW7dulq4cKHee+89M/O2ZMkS1a9fv1h9WrZsmdzc3PTuu+/KYrFIkmJjY+Xv76+NGzeqR48ekqTq1avrrbfektVqVbNmzdS3b19t2LBBDzzwgPbt26ePPvpIcXFx6t69uyQpLCzM/IzRo0fr+eefV3x8vDp06KDs7Gy9//77evXVVwvtV2JiourWrVvge/fdd5+sVqvTsczMTDPrZrVaFRgYKEnKyMjQwIED1bFjR0VFRTmdU69ePaeMIQCgdBCkAQDKrfDwcMXExJg/V6lSxfxzu3btnNomJCToq6++cgrqHA4cOKBz584pKytLHTt2NI/XqFFDTZs2LVafEhIS9Msvv8jPz8/peEZGhtNUxBtuuMEpMAoKCtLOnTslSTt27JDValXXrl0L/IygoCD17dtXixYtUocOHbRq1SplZGRo8ODBhfbr3Llz8vLyKvC9119/3QwGHZ5++mnZ7fZ8bceMGaM//vhDcXFxcnNznnDj7e2t9PT0QvsAAHANgjQAQLlVpUoVNWrUqND38srNzVX//v01a9asfG2DgoK0f//+In2mxWKRYRhOx/KuJcvNzVXbtm31wQcf5Du3du3a5p9tNlu+6zpK2Ht7e1+xH2PHjtXw4cP1+uuvKzY2VhEREfLx8Sm0fa1atcwg8FKBgYH5vkc/Pz+dPHnS6diMGTO0du1axcfH5wtCJen33393ukcAQOkgSAMAXBPatGmjFStWKCQkRO7u+Ye3Ro0ayWaz6bvvvtN1110nSTpx4oT27dvnlNGqXbu2UlJSzJ/379/vlD1q06aNli9froCAgD+1/kuSbrzxRuXm5mrTpk35MlwOffr0UZUqVRQTE6M1a9bo66+/vuw1W7durZiYGBmGYU7DLI4VK1Zo+vTpWrNmTYHr3hyZwtatWxf72gCA4qFwCADgmjB+/Hj9/vvvuu+++8wqhF9++aUiIyNlt9vl6+urMWPG6KmnntKGDRu0a9cujRo1Kt+Uvttvv11vvfWWfvjhB23fvl3jxo1zyooNGzZMtWrV0oABA7R582YdOnRImzZt0mOPPaajR48Wqa8hISEaOXKkIiMjtXLlSh06dEgbN27URx99ZLaxWq0aNWqUpkyZokaNGjlN0yxIeHi4zp49q59++qkY39p5u3bt0ogRI/T000/rhhtuUGpqqlJTU/X777+bbb777jt5enpesR8AgJIjSAMAXBPq1q2rLVu2yG63q2fPnmrRooUee+wxVatWzQzEXn31VXXp0kV33XWXunfvrltvvVVt27Z1uk50dLSCg4PVpUsXDR06VE8++aTTNEMfHx99/fXXuu6663T33XerefPmioyM1Llz54qVWYuJidFf/vIXPfLII2rWrJkeeOABnT171qnNmDFjlJWVpcjIyCter2bNmrr77rsLnIZ5Jdu3b1d6erpmzJihoKAg83X33XebbT788EMNGzbsslMuAQCuYTEunXgPAEAl0q1bN7Vq1Upz5swp667ks2XLFnXr1k1Hjx5VnTp1rth+586d6t69e4GFTUrif//7n5o1a6bt27cXuJk4AMC1yKQBAFDOZGZm6pdfftFzzz2nIUOGFClAk86vdXvllVdcXib/0KFDmjdvHgEaAFwlFA4BAKCc+fDDDzVmzBi1atVKS5cuLda5I0eOdHl/OnTooA4dOrj8ugCAgjHdEQAAAADKEaY7AgAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA58v/IU4x99KRSKgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, pdmstat, label='PDM statistic')\n", + "#plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A dip is definitely there at the frequency we expect it to be. \n", + "\n", + "Unlike the Epoch Folding statistic, which follows approximately a $\\chi^2$ distribution, the PDM statistic was shown to follow a beta-distribution (Schwarzenberg-Czerny, 1997). \n", + "\n", + "We can use this beta-distribution to calculate the significance of a peak found in the PDM periodogram, or to set a detection threshold. In stingray, this is implemented in the `stingray.stats` module, using `stingray.stats.phase_dispersion_detection_level` and `stingray.stats.phase_dispersion_probability`:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTVklEQVR4nOzde3hU1b0//vfMZJLJ/UIgFy4hIFdBQLAI1CptRUE9eGnF6rHev1rt85XyrbZUOIfSVo71wFGr4BUUaI/0KUc9PbUqttYjgtxEucnNhCSEhJAQEnKfy/79kd/arL1n75k9t8wkeb+eh0cz2ZnZc9trfdbns9ayKYqigIiIiIiIiBKCPd4nQERERERERBcwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBMIgjYiIiIiIKIEwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBJIU7xPoy3w+H06dOoXMzEzYbLZ4nw4REREREcWJoig4f/48iouLYbcHzpUxSIuhU6dOYejQofE+DSIiIiIiShBVVVUYMmRIwGPiGqT97//+L55++mns2bMHNTU1eOutt3DjjTcG/JuPP/4YixYtwsGDB1FcXIzHH38cDz30kOaYzZs3Y+nSpfj6668xcuRI/OY3v8FNN92kOWb16tV4+umnUVNTg4svvhjPPPMMrrjiCvX3d999N9544w3N30yfPh2fffaZ5eeXmZkJoPuNyMrKsvx3RETUR7S2As89p73t//5fID09PudDRERx09zcjKFDh6oxQiBxDdJaW1sxadIk3HPPPbjllluCHl9eXo558+bhgQcewMaNG/Hpp5/i4YcfxsCBA9W/3759OxYsWIBf/epXuOmmm/DWW2/h1ltvxdatWzF9+nQAwKZNm7Bw4UKsXr0as2bNwksvvYS5c+fi0KFDGDZsmPp41157LdatW6f+nJycHNLzEyWOWVlZDNKIiPojhwNISdHelpXFII2IqB+zMg3KpiiK0gPnEpTNZguaSfvZz36G//7v/8ZXX32l3vbQQw/hyy+/xPbt2wEACxYsQHNzM/7617+qx1x77bXIzc3Ff/7nfwLozohdeumlWLNmjXrMuHHjcOONN2LFihUAujNp586dw9tvvx32c2pubkZ2djaampoYpBER9UetrcDTT2tve+wxBmlERP1QKLFBr1rdcfv27ZgzZ47mtmuuuQa7d++G2+0OeMy2bdsAAF1dXdizZ4/fMXPmzFGPEf7xj39g0KBBGD16NB544AHU1dUFPL/Ozk40Nzdr/hEREREREYWiVwVptbW1KCgo0NxWUFAAj8eD+vr6gMfU1tYCAOrr6+H1egMeAwBz587F73//e/z973/HypUrsWvXLnz7299GZ2en6fmtWLEC2dnZ6j8uGkJERERERKHqdas76ms4RbWmfLvRMfrbgh2zYMEC9f8nTJiAadOmoaSkBH/5y19w8803G57b4sWLsWjRIvVnMTmQiIiIiIjIql4VpBUWFmqyXQBQV1eHpKQkDBgwIOAxInOWn58Ph8MR8BgjRUVFKCkpwbFjx0yPSUlJQYp+gjgREREREVEIelW544wZM7BlyxbNbR988AGmTZsGp9MZ8JiZM2cC6F6hcerUqX7HbNmyRT3GSENDA6qqqlBUVBSNp0JERERERGQorpm0lpYWHD9+XP25vLwcX3zxBfLy8jBs2DAsXrwY1dXVWL9+PYDulRyff/55LFq0CA888AC2b9+O1157TV21EQAeffRRfOtb38JTTz2F+fPn45133sGHH36IrVu3qscsWrQId955J6ZNm4YZM2bg5ZdfRmVlpbrfWktLC5YtW4ZbbrkFRUVFOHHiBH7xi18gPz/fb781IiIiIiKiaIprkLZ7927Mnj1b/VnM57rrrrvw+uuvo6amBpWVlervS0tL8e677+InP/kJXnjhBRQXF+O5557T7LE2c+ZMvPnmm1iyZAmWLl2KkSNHYtOmTeoeaUD3fLOGhgYsX74cNTU1mDBhAt59912UlJQAABwOB/bv34/169fj3LlzKCoqwuzZs7Fp0yZLm88RERERERGFK2H2SeuLuE8aEVE/x33SiIjo/9dn90kjIiIiIiLq6xikERERERERJRAGaURERERERAmEQRoREREREVECYZBGRERERESUQBikERERERERJRAGaURERERERAmEQRoREREREVGE3G43zp8/j2hsQ80gjYiIiIiIKEKHDx/Gnj170NLSEvF9MUgjIiIiIiKKgKIoOHfuHACgvb094vtjkEaWdXZ2orKyEl1dXfE+FVMdHR2oq6uLSpqZiIiIiMiKtrY2eL1eAFD/GwkGaWTZyZMnUVZWhv3798Pn88X7dPx4vV588cUXOHToEJqamuJ9OkRERETUT8gljtHoJzNII8s6OjoAAOfPn8exY8fifDb+qqqq1HNsbW2N89n0D8xYEhEREXX3jwVm0igmOjo6sGfPHpw+fVpzu9vtVv+/pqYGDQ0NPX1qpjo6OlBZWan+3NnZCaA7iGAgERtnz57F1q1b/T4nRETUMzweDzweT7xPg4jAII16QENDg5otky/+IkhLSUkBgKisXBMtFRUV8Pl8sNlsAC5k/Q4dOoTt27ezEYuB+vp6eL1enD17Nt6nQkTU77jdbuzevRs7duxgG0cUZ4qisNyRYk9E/x6PBzU1NertYsGQtLQ09feJQpQ35ufnA+jOpCmKgvr6enR1dbH8MQbEa5rIC8kQEfVVx48fR0dHB9xuNxobG+N9OkRR0dHRkZDrHgTT3t6uyZ4xk0YxIX+wqqqq4PP5oCiKGpSlpqb6HRdvIsuXmZkJoDtI6+joUEsd4xlQKoqSUK9VNCiKogZpchksERHFXn19vabU3ChIUxQFlZWVDOAoIJ/Ph/LycnXp+HhqamrCZ599pln3oLdMWZFLHQEGaRQj8ghGV1cXampq4PF41C+Ky+UCEF7goygK9u3bhwMHDoQ0UtLV1YWysjLTfSfEuWRkZADoDtLa2trU38czkDhw4AC2bdsWVsZJURScOXNGnWOXKLq6utTXnEEaEVHPKisrA3BhYNIoEGtqakJZWRmOHDnSo+dGvUtNTQ0qKirw1VdfxT0gqqurA3Dh83zu3Dls3bpVU9WVqESQZrd3h1YM0igmxAcrKSkJQPeXRHTEk5KS4HQ6NceForOzE2fPnkV9fb1moY9gampqUFlZiZMnT/r9TlEU9fzS09Nhs9mgKIpmGf54ZdIURUFjYyO8Xm9YJZeNjY04ePAgjh49GoOzC5/8XLq6uuJ+YSci6i8URVEHLMeOHQubzYb29na/QUzRBory//6Ii4cFV1tbC+BC/yyexON3dHTA6/XizJkzvWbuu5iPlpWVBYBz0ihGRPAl5p51dHSoWSCn06kGb+EEPnLWpaKiAs3NzZb+TjyWUUZJPg+n04nk5GQA2pHFeAVpnZ2d6hc1nHMQz1efRo8lEViKxVeMyFnKvljOSURUWVmJHTt2JFwlg5iCAHRXtohOoT6bJtpXRVGiMne4oqIiIV8PMz6fD7t27cK+ffvifSoJq62tTdO/iGfGSj/Q0NbWpgY+ibQGghkxeC2+j8ykUUyID1Z6ejqA7kBBBFdOpxMOh0NzXCjkL5qiKJYzROKxjErrxG0OhwN2u10tx5QvPPEqyYu05FK8XnJ5YSROnDgRsNT01KlT+Oyzz/Dll1/iwIEDpvejzwpG0gHwer3qc/P5fDhy5AgqKirCvj8iomiora1Fe3u7piojEYi2xGazwW63Izc3F4A2SFMURTMIGo3Aqq6uDu3t7THZfifYlIZwtLe3o62tDY2NjSzLNyGyaKK/19DQEHFA39DQgIqKipAzmPpBhtbWVrWvkehBWldXl9/aCAzSKCZEB15k0rq6utQLfLQyaWLxkZaWFkspYfFhN7p4iPMQZZhiiwCjY3paqEFaR0cH9u3bh6qqKgDaL7l8X+E6efIk6uvrDTOYLS0tOHr0qPpeB2os9UFauA2goijqEtIdHR04deoUampqUF5envAXZSLquxRFUasJEmGluaqqKnz++edwu93qtTEpKQk2m00N0s6ePatmHsSqj0I0gjTxuPIAaLRKCaurq1FZWRnSNIhg5P5CNNrPvkZRFHXxmZKSEmRlZUFRFDVwM+N2u1FfX2/6vTh69CjKy8tDrgASJY1iK6WzZ8+qn7lE7w+Iz5fL5VL7oix3pJgQgUFKSoo6AVJc+JOTk6OSSUtLS1PvR6zCWFZWZjpCZyWTJoJHkUkzOqanyYFOsHNoa2vD3r17cfbsWXXuXTSDNJ/Pp77+RnvciQukPApkdJGRV3YUr3m4r6/X60V7ezvcbjcOHz6syaBZLYUlIoo2j8ejXv/010FFUXo0cFMUBVVVVWhubkZTU5PfwGRWVhbS0tLg9Xrx+eef4/Tp037Xz0Dl61aJ67xoPw4cOIDPPvssKvctOvTRuC9BDtK4DY+/8+fPo7OzEw6HA/n5+SgsLASAoPO/ysrKcODAAXWRD5nP51MHBEJ5zcU0CwAYNGgQAGj6g4kepInnmp6eHlEfWY9BGvkRHyyHw6FmpcQFVJ9JC3UUTW5cRDDV3t6Os2fPorKyEgcOHDBcBlbeu03fOMqlmEDiZtLMzuHs2bM4dOgQ9uzZo17c5Ocr35eiKDh//nxYHQT5vgIFaQUFBQHPubOzE16vFzabTa29Drc8Qr6IyQvUAAhYYtTS0oLt27f3ihWfiKj3kYMFcZ3yer2oqqrC9u3b8dlnn/XYXNyuri71Gut2u/0GJm02G6ZMmYLc3Fz4fD4cPnwYp06d0txHpJk0edCupaUFHR0dqK+vR2dnp7rSZLhEuxaN85QxSAtMfI7S0tJgt9vVksdggbJ4r4yqbeT3L5TS1ebmZni9XiQlJal9EPn7FU5/syfJQRpXd6SYMgrSRLAhz0kLZ9UkOaASJY8dHR3q/SuKgoMHD/pdJOQPuz5r0xPljl6vFydOnMCOHTtQX19v+e+CZdK6urqwb98+1NXVwev1ajYK1y/I0draitraWuzZsyesOVvy4+uDNK/XqwZFeXl5ATNk4r1KTU1VF2kJN5Nm9L4MGDAAANQR44MHD/p1OBoaGtDZ2YkzZ86E9HiJuMjJmTNncOLEiYRugIj6G7kNEsHJ/v378fXXX6tBUzSzPoHo51fL5Y6C0+nEJZdcgkGDBmlWNxYDaZEGP/r55KIkH+ieqxbJvD15Pk80FjiR71dgkOZP7usBF6qQAq0GqiiK2gcwavflz1ko1T/i85OTk6NupaR/3EQoOzYjnqtcJcYgjWJCfBEcDof6pRVfWLncEQg9+JEbFzmTJl9A3W43jh8/rvm7QEGaPpMmlzuKQDCScse2tjbs3LkTJ06cQHt7u2YDUT35wub1ejWNuNE5iCDO6XRiypQpmDp1qubv9eWO4rHDaRDl96q1tVVzwTt37hwURYHL5UJqaqr6Whqdswjw0tPTIw7S5NLa4uJiDB06FCNGjADQPbJWXV2NM2fO+M1TEK9bqB2PI0eOYPv27QnVYB87dgwnTpxIqHMi6u+MMmn672gsO41dXV2or6/XZJkAbZAmrtOCzWbD6NGjNW2gKB2LZpAGXFgFUPQHjh07FvZAkzxo6PF4/Dq34b7OVuakdXR0JHTnP9qqq6vVgWZ9kJacnAy73Q5FUUw/L/KK1UYBdaRBWnZ2tqZiS5bIJY9G5Y7R2P6BQRr5McqkCU6nEzabLeyRArlMwyiTNnjwYAD+85Hki6hZkCa+1PI5i1HESFLlZ8+eRWdnpzqZ1Wz0tKKiAp9++qn6ZdUfZxTIiGPS09ORnZ0Nu92uPo7H49FclDo6OtRS0HBGcOXHl/fZAS6sqpSbmwubzeYXpLW1tanvtWhQMzMz1ePCHf2UOxujR4/GyJEjkZaWhqSkJPh8PjVjqB/ZE+ce6uOK7Fx1dXVY5xsL4jXoqVF5ot7Eakfn7NmzYW9VYtQpNcqkiWuguEbHMisv5v3U1NT4BWn6Nk+WlJSEcePGwWazIS0tLWqZNH37JV6TcePGwW63o6WlJWB5m6IoqKysNJzOoH/f5HM9efIktm7dGtbApNw+yNk6+XE/++wzHDt2LOT77o06Oztx7NgxHD58GMCFtkf052w2m9p/MmuPgi2Gpi93tPLdlVcizc7Ohs1mU0svxXnJ55to5M+WnEkDIr9GMEgjP+JDJS9nL4hOebgrPJrNSRNf/IEDBwLwv6DKH3R9x1yfSUtKSlJrgsUiGJGUuYn7F42dUUPk8XhQWVkJj8ejTnYVz0l8YQMFaeK1sNls6murz6TJF7twNifVP748einmo+Xl5QGAJkg7f/48du7cqV7YRYOakZERtXJH+aImz3UTHQFFUTSfNfEeuN1uzTFWH+/06dMJccGXSziMOom9ZT+iRCcGJfSfkTNnzuDAgQMJ8VkgY4cPH8a2bdsCDsiIVXH37dsX1mCcmGd24sQJzX0KYl8y8V0V171YBmlisM8oSDMqd5RlZ2dj+vTpmDJlitrpjnRDa6PvSFJSEgYMGKApkzPT1NSEsrIyw2139OX38v00NDTA5/P5Lc9uhf4zo8+EisDvzJkzPVJu3tbWFtdrumin9dMp5PZX7pcZCRakyd8beYXUQMTiYXa7XS11FFM/kpOT1c9wol6n5ZUdHQ6HGlQCDNIoyuRNMs0yaeJ3gLUP4NmzZ9VVgOQRQHExaGtrU798mZmZfvPg9I8TbE6aGEEEugOrSEdhxN+Ji4c+wwV0d/rFOYrzFv8NlM0TF0I5GBavrVz2IX/pAeORX6vPQxANo9vtVs81JycHwIXX0uPxqB2EhoYGuN1u9ZwzMjIizqSJ56fvbGRnZ/sdKx7D4/FoHk8sB/zpp58GnaMmXgOv12u4MlUkRIYulIBV/lzry6t27dqFPXv2cK5aFJw8eRI7duzQLDTT1dWFw4cPo76+PqR5ptRzurq6cPr0abjdbsMMjCBG4eUsU7D7PXLkiHrdEwNrJ06cUK8h+u+jXM0RzSW2A50j0D0oJj8nK0EacGEp8OTkZLX9iGS+l5wpEETlRbDsi/w7o8ES0caItk9u28T/6+/byhwl8XzF+Znt7+nxeGJebt7e3o7du3dj//79MX2cQOT2Rh4Elj9Hoi8SjUya/ngzIljOzMxUB9hFfysjIyOibZ96glzqCCCiajM9BmmkIV/0jII0MYIYypfm0KFDOHToEDo7Ow0zaeKCLUYhRCMgLyZiZU6afKEZN24cxo8fj6ysLE3AEQ7xdykpKep96UeL5IUtxHmLYEYEaUbnoM+kyc9DDgbl1L+4iIW66ae86TdwIUgTDZXT6fTLlLrdbvWi6/P51OeZkpKC5OTkgHPXrDDKpAEXgjS73a5+5sR56huPzs5ONDQ0wOPxBOzIyQMQQPfG3dEMgE6ePIljx46FtM+P/LmWG7euri54vV50dXWhpaUFXq8XX375pWakn6wTnws5I1FRURFwaw+KPzl4DtTZkzMxVjqF1dXVqKmpQVlZGXw+n+ZzcfjwYb+Mh8/n03xXxXVPXvUxmlk1RVH8AioRaAWak2bEahAVjDyQKtoHUXlhlkmTr7ni+egHGOV9WMV+b+Jn+Vh5z7qTJ09i+/bt+PTTT02fk8/nU7/X4n71nw35PAK1HdFw5swZ+Hy+uO7Xpl8tMVAmzWqQpm9DxWsq7tNKP0WejyYUFhaipKQEI0eOjHqQ5vP5sG/fPhw8eDAqfQB9kAZceP6RDuQwSCMNOXNjs9n8MjwiQLA6SiDvzSVvrpmUlASHw6F2wIELI3Tigy4++PoPebByR3EfYsJ0sL28RJBldpE2WuxEvoA1NTVpRuHEUvniYiZPJNWfQ6AgTW74Rdmmy+VSs12hNrjiscXft7S0QFEUw9dPDr7k11vM5RLnI5c71tXVYdu2bSHtbxYok1ZaWopx48ZpNlUH/C/68iprgT6P8gXeyhyKUIWzhHSgTJrQ3NyMhoYGNDY2oqqqqs9l1vQL7MSC+H6K96atrU0zsMIgLTHJQVqg72qoQZr4PJw7d05dRCkpKQnZ2dnwer2oqKjQXC/kTJrdbtd0wBRFwa5du7B79+6ofTeNOr9isC/YnDQjcsljJOcEdLcNw4YNQ25urjo9wej+vV4vduzYgS+//NLvd/L3Xbx3qampatsvjpUDCXHbkSNHcPz4cXUgy6zdFudrs9nUNk+fLevpIA3wHyzsSXJfyixIk9cKMKL/fumvneI1Fa95KJk0OUhzOBwoLS1Fenp61IO0c+fO4ezZszhz5oy6J20kxHOW+3HRWoafQRppyPPRRMpWfEHkTrzVL41+dUJxkRD3JS4IwIUgTZ9J03/Ig5U76gXLpFVVVeHo0aM4dOiQ4cXTbEVKQay4KPb2EOV4ovGRywL1i3eIL7f8OshBpXi9iouLkZ6ejuHDh2sCxXPnzmHXrl2WAiPxPMTFUzT2ciZNkM9XP+opnpN8nNiMvKurK+hGmEbnpO9s2Gw2lJSUYODAgX6ZNKMgTdwWaNRKztqJ1zCayz2LDkAoHX75fOXXWf6sNjc3q/MxRHatr1AUBQcOHMCOHTv83tdz586Zbm4fCjkIFK+dPthlkJZ4PB6PZh6S1UyalYEXcYzH41FLYDMzMzFs2DAA8CuFljNpDodDM0jpdrvR0dGB9vb2qHUixbVArm4QWSuPxxOXIE2+Vg8bNgyTJk3yW6xLv7JfZ2cnzp07B5/Pp7luye+ReF/lOc7iWH3Zo6IoajAl2kyzMkVxH8nJyX59Cv0xQHegEKvgqaOjQ5Otjdc2MPpyR6NKlkCZNHmqgQhC9GsHBMte6sntt1x1JIt2kCZ/v8vLyyPObhoNdLPckWIiUPpbznpZ/QDKv5cbUv2+HMCFDJo+kxYoSJMbT7MgLVAmrbm5GeXl5QC0G4bKF+tgmTTxBZcnUNfV1amjs/KS9vJFRjQ6NpvN8LWVG6j09HRcdtllKCws1ASKVVVVaG1tNd3UuaGhAUePHtWUfohSRfEYgTJp+vlfgsik2e129fWVy1GsMit3lAUL0jo7O/02ATciZ+2iuY+JuB/x/MOdkyZP7Jdvb2pq0nRW+9JS/SIAVRRFc30QwduBAwciDqDk10t8TsRtoiPBIC3xnD17FoqiqN9VUaGgJ1+3xXGByFUOAFBbWwugu4OYm5uLpKQkv8eRqxrsdrtmlFxfQhYN8lyqiy66CHl5eSguLlZ/L641Vsodxf0A0cmkGQWGRuWU+syZ2SbH4n7lBSKM5qH5fD7N/RQVFQGwFqSJc9a3TfI5yXOzo00/59WojXS73Th06FBYC6RYFUq5o7zUviBen5SUFMOBTrnU0WyhNUVRcPz4cXWfPfH+yf0kvWgGaT6fT30/XC4XfD5fxKt7GiUKWO5IMSHvkSaIC6fVTNrp06dx9OhRv7lkohMmlvEHAmfSxBw2fUdav2gEoJ2oqWeWSfN6vX7Zs9bWVrS3t2Pbtm0oKyvT/J1ZkCYv/iHOXQRNYjlZo0yaXOooLwwiXltxwZM7BeJ48bhGc21kZWVlOHXqFM6ePatpZOXAR24k9eegz6QJ8maT+gtrKBcls3JHmVmQJj4758+fV99DK5m0WARp+n3+rNI/vlzmI3R0dBgOCvQFcqmJ/FqIMulwFsjR0783Pp9P/QyJwQYGaYlHdKSKiopgs9lMs8j6lQGDfT86Ojo013xxzRCLFogSPkDb0ZLbRvn2QPOlwyU+8ykpKSgoKMAll1yiyaoJ8cikGXWkjeak6YM0+b0z2j/U6XT6naf+fEUA43Q61dI4syBN/K3Y+wswD1LEdSBWJY/6Ba2M2p3Tp0+jrq7Ob4/YaDJbOETuOzmdTvX1MlsEJC0tzbBPI39uRfvc2dmpedy6ujqcPHkSZWVlmukWcv9DL5pB2rlz5+DxeNTN34Huz5WV++7s7MSRI0dQXl6OhoYG9TrCTFo/4vF4UF5eHrPR8vLycnUEQ1AUBadPn9bshRUsSAv0ASwvL8epU6fQ3NxsGKQZrSQEXAjOxIpUgHZ/LkGUl5SXl6sX+6SkJL8VEAWzTFpVVRU6OjrgcrnUEfXW1lbU19fD7XarpVZy515fry2XcaSmpvqVVYjRJKNzMJqPJh+rn4AryMGJvMmqPkCRl7+VS3Hk11cO0owyafLvxWuUnJysuaBGEqRZyaTpG27RwRaNtFzqaWVOWqyDtFAaErMgLdB59ZUgrb29XdN50c8BEiLt+Opfr7a2NvU+GaQlLvGdysvL06wErCfaFXE9CLY5sbgPeeALuHCtFnOZgQtVHfpyx57KpOk7rpEGaZHM/bSSSZNL6PRBmVm5o1GQ1tXVBZ/P5xckiFL6tLQ0zfw1o++v/BqK90vec0/83uFwYMCAAQD892eNBo/Ho865CrS/nvi8t7a2xuwabxakyu+pvBaB/vMiB2lG2+/IQZr8forrvNgrT/y/PN2ip4I0cS4DBw5EWlqa2p+y8t6LBYcqKiqwf/9+VFdXawJN+XXknLQ+qq6uDhUVFWoWJ5o6OztRUVGBr7/+2m+Vs6+++gpHjhzRlHQIAwYMgN1uVzvpQOAvjbwXh37kBtA2NOILoh8llIMd/d40Ho8Hx44dQ0VFhZqmDlT2YXSuXV1darA6YsQIzaic+LJ2dXVpsoH6TJocBIm5e/LyxMCFhl8edTp+/DgOHTqk2VtDpi931Acw+uOB7guePrCXOxBiHxJxLnKQFmhOmnjNbDabOudOZAcF/cU1lpk0r9ervi7iPZPfV6tz0mIZpOmX6w5E//ji82T0vRLflb4SpOk3FI9mkCa+D0bfC/H9lr+vDNISjzzCbjanCLgQpIl2KtjeTOI+8vLy1OuOy+VSrzM5OTnq9U88rr7c0SyTFu05aWZb4OjPIxj59Qt33lWgTJo8d90oC9bS0qK5Jppl0uQqG3lBKEFk0tLS0pCUlGS4XY8gd/7l10m/L6U+6xNt8qrK4nyN2gf5OhWrLUGsZNIA83lp8sCy0fY74vfieQ4ePBjAhTnADQ0Nmucp9z96Ikjz+XyaIA240Eezslm6PtHQ2tpquOorwExanyU+sM3NzYZ18ZGQ/16MZjQ2NqrLend0dBh+aQcMGIArrrhC7aTLv9efk9xomS1LLHfIs7KyMGTIEIwaNUpzjDwvTdxHSkqKegEXWS6j7JyeUbnjiRMn4PV6kZmZiYEDB6qP19LSon5Z5aWOxWOIi5eYICuXOsr7swHaTZnFObS2tuLkyZOoq6tTV5cLlknTPzc5EyTTl/3IF1g502ZW7mgUpAmi7Gb8+PG46KKLNL+LRibNapAmZ07l5W6FeM1J0wcCVjv9wcod5ddFNHhi4KKsrMxSw5KoxLmLz79ZkBbOQin19fXYtWsXjhw5or434j2XH1cePOlrq2b2FjU1Nfj00081n2X9qrOBgjQx4JiRkRHwOEFcs9PT09WBHpFRBbqv28OHD0dqaqqaVQu0cEgsyh2tZNKsZtGA7qDGbrfD6/WGvaJtsMVK9B17OeARAyPyYhPi+y6/z/J2AfJcY7ndFc8H8J+/LjPKpAEX2if595Fu0xOIlcFB/WBSrII0K6s7AuZBmj6glm8D/Fc5LC4uhsPhQGtrK2pra/22kDHrf+hFK0iTSx3FAmqij2YlkyYP8ADalVb101I4J62Pki9c8hekpqYGW7dujejLK18Yzpw5g5qaGnz11VfqbfJqgvovrb6U0OxLI39hjTZ9lv9W3O9FF12kKTEBtCN/cuc62AqORvSlhm63W50zNnLkSNhsNnWOVUtLi2FZhvgCyvt2yXOFxEicHKTJS++L85NXPhSvjVmQFui9kOfyiQuGfl6afiRT/K289YHZnDT9BUdsiDpo0CC/0V2RYRUXPf1F6dSpU9i/f7/hZyGUhUPkDUdTU1P9zsPosY0eKxpBmn5j8nCDNP356rcSGDBggLqwjBgk6erqQmVlJSorK2OSce8p+s1xo5lJE5/32tpavyWh5SBNvhYl6kapfZnH48HXX38Nt9utrpILdL//4vslZzz1wZfH41Gv0XKQFigQkUu2Bg8ejOTkZHURCmHw4MGYPn26JpMmX4/FtdFKJs3r9WL//v2aLR+CsZJJCyVIk9s4s/nLgVhZoCvQfDJ5mX39XqP6Trp8P+IYeWl2IPQgTWwpJJ6LfH4pKSlBt+mJhFmZrP5c9duuxCKrZ2V1R8BakBas3BHo/oyKBW+OHDmClpYWOBwO9bPY05k0OYsmPg/ytIlAA3Uej0d9PUSfp6uryzTDHKiPEcrAI4O0OHG73di7d6/fxrfyB16O7MXysJGs/KPvEB45cgRdXV1qh1+eXxWsjMLsA6hfjtXoA2plRSrxJXe73ZqLXDhBmn6UTLyWaWlpasfN5XL5zVEALjT2RvPoxLLL8m1Op1M9Vm5YxG1GFwGzckezn/WPJzrv+sbXaN8tMVoZrNxR/7NRQCQMGjQI3/rWt1BYWAhA+zmrr6/H0aNH0dDQYDjAYKXcUZ5vKO4jPT3d8D23Mict0nLH5uZmfPrpp2qprVxXL39urRCPL56fPpOWnp6OyZMnY/LkyZqGUZTqxqIh7yniOYrrTzSDNH1jnpKSonbs5JIdeXVSljz2vJMnT6rvlXz9kkvEHA6HaZAm2khRrmilJFj8LjU1FXl5eZg5c6Y60KUnrhOKoqjnKZcZWpmTdvbsWXWVXatznqKdSQMuZAvDCdL0FSVG9EGaUUdUfo/a29sN9+mUVx4W9xFpkAZAE1jL5ynmT+mfZ7QYVXDo+2Li/NPS0tTnGotsmlmFgr6PYbbQjFEmTUwLqaioUPuncp9myJAh6mufmZmJyZMnq++b2SCxXjSCNEVR1NdUXhxIDKZ7vd6Aa0GI64Zcfh1oz0KjgLyxsRH79u3Dzp07LZ83g7Q4OXPmDJqamgLOyzBaECFYqUJ5eTn27t1r2Pk0yswMHjwYl156qfqBEh0Yo4BFJn9pTp06hT179qirMcrPJVi5oxn5AmAWpA0ZMsTv+EDnKr5MYgUnEaAB3Z1ko/I58cWUz1lePES/+Ic8Yik3LPrzy8/P97s//fma/Sw/XnZ2tpqu1y8eYtSBF/clN4RmI0Hyz4EuoIA28ybOobW1VZOp1ZdjyvP9Ag0KyEGluMjm5ubCbreHVGoZrUyaqK8/ffo0fD6femF3uVyGpXuBiMfXz4mQG/bs7Gy/lU/F73vrnmlyp1c8d7POrniO58+ftzwfTx9wpaen+w00yAMdRn9DseV2uzWLWMnzlvQdd3nFX/lzor+WByt3lLcU0c8fNiK3g3LgaLZwiNFnSL4OHzlyJGj5k6IofoM+QqAFm4KRq0VCJV87zRbokhcnkbM0+mPkQU59xhS48L0Uq+fJ0waA7vdEHCNPU2htbdVsoRMsSDNaoj+U+cRWWRkcFG1Ienq6uohJLFaalB9X/lzq21/9isqAtgRZLhF1u904duwYysvLoSgKCgoKNH2rlJQUTJ48GRMnTsSll16KzMxMS4PEMrm/GW5Z+rlz5+B2uzWljkB3/0IMYAQaRJHfI6OF1cwyafLn6dChQ+rWIlYxSIsTUfYmRiEEs0ya+HIFW53p1KlTfvsqCeLDkpaWhqlTp+Ib3/gGRo0apRkVkRfCCES+2Jw8eRLnz5/XLPMufhduJk2+AMgdefHlTkpKQmlpqXoewTIxwIWLpbj46Ufn5GXlBREUGy1q0tzc7FfuCACjRo3C6NGjNaM1+uc8ZswYDBgwAIMGDQq6YpfRe1FcXIwBAwaom1s7HA74fD5N58Tos6IvKZGXow43kyboG0Ex7088H33nQP5sBAvcxfsu7ltcZI0WLTG7AEZjTlpXV5caKHq9XjQ3N6sj0/LFO9RMmuhs6BcO0b/3+o6lvtyqt5Bfn2Bz0sRo5d69e/HFF19YauDE/YvvdG5urt9nWF60SH9OFHunTp2C1+tVvzfyXnn6jo/cRskDlWZBmn6hCkEeDbcyWGgWpMkdMP3ApJ7c0W1tbUVFRUXAxxTHy1u3CNHKpIXa0bWyeba8DL+86JW+bF7OpBm9pqLdFO+tHNgB3d9bESjKpdK7du3C9u3bcerUKZw6dcpvwbFAmbRgZc/Nzc04cOBAWJULVsod5RJc8VxjWXoJaFe31AfeRpk0OYCVqzo6OzvVvQZHjx6NsWPH+t1fVlaWWroPQFMqGUq5o6IoYQfRYgPr/Px8v/MzWilaTw7SxLl6vV7TIFPfx5D3qp08ebLl82aQFgc+n08NouQRZUB7gZAbGnG7fo8X/f2KD4HRh01enSozM1PT4Qs1SJOzU+ICI48qiHOONJMmFugQ5y2+HHl5eXA4HOpcAnnid7D7Eh0BeTQFgCaTpt+IUT5nURpz9uxZv3JHcT/FxcWaC4H8Bc7MzITT6cTEiRMxfvx4vwuGlXLHtLQ0TJw4ERkZGZqRIDkQMmpQ9CUlQlJSkl/2NJRMGmA+Uilq0ltaWqAoCs6fP4/6+npN+VCwzK38+PJ8NPFf/cTw2tpabNu2TfM9iEYmraamRvP9O3v2rDqXRmyEC4QepMmdDXlwQ/9dMRr9N8umxXuOldfrRUNDg+FrLL8XRqVG+iCtvb1dLce28rzEMaWlpZg+fTqGDBnCTFqCEW3g4MGD/SbvG41O6+fJeDwedYBEXMszMjKQkpKifvb05M6wFTabTbPYBRD6ZtbiOiyeY1VVld+85/LyclRWVqKxsVGzv5e+bYgkSJMXDwl1Kf5AKzsKcsde7njLbaMccMlBmn4xMXkAVQRR4hj5vXM4HOp7L1b2PHr0qFqKPnToUPVab9Y+iQXJAl27y8vLUV9fH9K8QsHK4KBZlibajCptjPoXchAizlX+/MtVTSJ4c7lc6p6GwYj7F9d1IPBnSz7HcNo1s1JHwcoKj3JJqhzYGlVbAf7ljvJ7blS1ZSauQdr//u//4oYbblA7tG+//XbQv/n4448xdepUuFwujBgxAi+++KLfMZs3b8b48eORkpKC8ePH46233vI7ZvXq1SgtLYXL5cLUqVPxySefaH6vKAqWLVuG4uJipKam4qqrrsLBgwfDfq4y/f5h8pdR/gDKI4tyNG725TXKwp05c0Yd5TBbiAK48AUJ9MWVybX68vMwy6TJH2ArmTS5rEI+p+LiYhQUFKC0tBRA98If06dPN51ToH9sMXHUaOEJEeikpaWpI/BGX0DREZCzGEbL4svk56wPDgOdr9HPRozKfERDLGcIxX3JI5f68zN63HAyafImsTabTZ14u2/fPhw4cED9jFpZRlp+fHkrCHGxlzOZooPW1dVluA9XuHPSFEVRF5wR51BTU4OWlhZ1i4JwM2nyMtFyCar+vRfvZUpKimZPIb3a2lps3bpVPd94qK6uxv79+/32ZQS0I/PieQcK0uROpZXOi3z/YuSdQVr3Z6usrCyi/bKiQQzWAN0dJP18KStBmpjoL5cZi8WNAGgWIhFE4BZoUE9PfD7NMmnByh3lwaqsrCz4fD41m9bY2Ig9e/ao2+58+eWXOHr0KADjgbFAK/AGY7fb1c5hqPPSrGTSjFZl1GfB5ExaR0eHaanYsGHD/O5X/FcfYE+cOBHf+MY3cMUVV2D48OHq7SUlJRgxYoT6s9w+KYqiCYblc9AHAT6fT22rwtm/1qjdkYMleWVHOUsTiyBN/qwG6g/K12XxOhllt2VGGSoz8mrXQPDtJOQgOpwgTQwI2O12w/6XuB60t7eb9glE3yo9PV0zBUPcHiyTFsqgtCyuQVpraysmTZqE559/3tLx5eXlmDdvHq644grs3bsXv/jFL/B//+//xebNm9Vjtm/fjgULFuDOO+/El19+iTvvvBO33norduzYoR6zadMmLFy4EE888QT27t2LK664AnPnztUs4vHb3/4Wq1atwvPPP49du3ahsLAQV199dViTbvXkFf4AaOqo9WU64uIgf3DMGlj5S33+/Hl0dnbi4MGDOHz4sGblRqMPiPjAiaAr2IfI6AulH+WWM2nyyIGVoEMu9ZCze2lpaRg3bpx6odevdGh2X+LCfvz4cQD+pY7itvHjx2P8+PGaUSL9OdtsNs2cMv0+LEbsdrt6AQsWpFnJpOnJpSaAtiZffjyz7JhRgx9pJk1+7cTrX11drX7GxaiVlc+D/Pjy85GDNPnxxedQzixGmklrampCR0cHkpKSMGbMGAAXGq6BAweaLktcW1uLHTt2GDbwckOp3w9O3C7Lzs7GmDFjMHHiRMPVtQRxnRIDNPEgXnujebRyg2/U+Bpl0gQrJUdGI//6z7t+5dX+EKRVVVWhsrISJ0+ejOt5iK1VHA4H0tPTw8qkGc0tBqAupNTQ0OBX2SGCNP1qwoHoM2mBluAPlElLSUlRBxdPnTqFr776Cvv27YPH40FmZqbapojvjdHAWCSZNACGFRcyMcClLymzmkmz2Wzw+XyaUkX5eejnpJmViuXl5althjhe9Ink+WnAhX6B2DrhkksuwYQJE1BaWqoJGuT2Qd5yQ55CAfhfB1paWtT3OJz5fGZbNwhinqXoy8irGYtB+fLy8qhcn4zaO7P+hT5Y1C/woS/HNcpQmZEzdeLnYAFeJEGauK5kZmaa9n/FORm9xx6PR/0ei76seO5mmTR9QG5lkTQjcQ3S5s6di1//+te4+eabLR3/4osvYtiwYXjmmWcwbtw43H///bj33nvx7//+7+oxzzzzDK6++mosXrwYY8eOxeLFi/Gd73wHzzzzjHrMqlWrcN999+H+++/HuHHj8Mwzz2Do0KFYs2YNgO4O7jPPPIMnnngCN998MyZMmIA33ngDbW1t+MMf/hDx8zYL0uT5NGKkXnTsrARp+iyWvCeF+MIDxgGY2SiAGaPRgECZNKPSymD0cxCsbtxpRNRJ6+c06Q0aNAgZGRmG5YAyOUgLlkUDLozwpqenBw3SxDL5QiiZJnllLTHp2mwBk1CCtEgyafKSu3K5iLgYWnl+ZkGa2JA2Pz/fsOMkSizF7UD4QZr4Lubk5MDlcmlG40XZrdFo7OnTp9He3h5wdUt9kGaWSbPZbCgqKtJ8RkVQV1VV5beEf3Nzc9zKHsW5GI0Iy50+o/kG+vdFHhwzG2Hu7OyEoiiaEnL94Ir4HMvf2f4UpInOc7xXBRUDNFlZWZpybTHibRSkyfNogQvlkvrraUZGBtLT06EoiiaTfubMGfh8PqSnpxvOPzZjFKSFUu4ol9Xl5OQgJydHXXhILLQwZcoUTJgwQdPRDZZJCydI0w/+6lVVVWH//v1qEF9TU4PPPvtMDW4DPaacpRBZTH25Y3JyshrMyZVC+vbHZrNh9OjRyMnJUVcNHjVqFKZMmRKwagbobhPk9lk+P0BbjeR0OtXbzTJpcgmcvJesVXK7YzQnTXwnxUCjXEUkFtepqKhAeXl5SI8b6FxkZu2v2WqdRtnc5ORkv+A5kECrlpqJRpAW6BwDLawj2n55/qJ+kNRqJq1XBWmh2r59O+bMmaO57ZprrsHu3bvVF8rsmG3btgHo/qDt2bPH75g5c+aox5SXl6O2tlZzTEpKCq688kr1GCOdnZ1obm7W/NPr6upSPwTyXgvAhTfRZrP5TaaXv1xmKzzqOy9yqZPcmEQjSAP8P2yB5qSFmkmTz8nKCoDBZGVlYfTo0erPwQKlYIt5ZGdnq7cFy+QJ48aNw2WXXRbya2vl9dKPMov/pqSkaM5Pvi/5QhmoQxCsFEEwC9Lsdrt6AZRHaK1sRC7Iq3npA7ZZs2ahsLDQMJMmT0yONJMm16QDF+Ymulwu9fNk1OEXjZxRJs1o5dKurq6ApSiC3EjU1tbi66+/VgdmxP1Gum1HJMR1yiioMip3BIyvd4A2SDMKMM6fP4/t27fjyJEjmtde/z02Ko/tL0Gax+NRv3PxWBW0ra0Nu3fvxpkzZ9S2UQwgOZ1O9T05f/58wEyayDyYzS0GLmTT5CBNBA4FBQWWy7IA/86WfD3UzynXrw4or3IosgUXXXQR0tLSMHDgQFx66aUYN26ceu0aNWqUej00GhiTB0dDLXcELvQ5zp07Z/o9kv9bW1uLjo4O9RoS7DFFkCleA6NyR7n6RTyO0f3m5ORg8uTJ6vVWrHQbynsnMwrS5NfYLJOmX2Ux1JLHQOWO7e3tanWPeO3kDFVXV5d6Ha2vrw97ZUMhGpk0oyAtlFJH8Xfy8VYqdSJZ4VEeFDIj+ihG769cjioEWtQH8J+TZmVPWCO9Kkirra1VL75CQUEBPB6POkptdowo+6mvr4fX6w14jPhvoGOMrFixAtnZ2eq/oUOH+h0jGqf09HTNXhGAtuOi/0DKF34r5Y56Pp8vqpk0o2MCZdJcLhdyc3ORk5MTciYtlHMKpKioCGPGjMHo0aNDmkMGGE8KFUvlWp2EHgr58ULNpMn19vogLZxMmhj5DMas3FGUNOmFkv7Pzc3FqFGjMG7cOL/fiXMzK0ESC/DIgY/RPKhg5Jp0oHuOSV5eHkaNGqWeg76hl9+LYEGavsZdvj8jckMu7ls8rny9MFpAIdY8Ho9m83g9ucE3mm+g70zIHUqj65zcuQy0XHh/zqTJGYF4BGmnT59GS0sLjhw5onZ85U6TXIoXrNyxtbUViqLA6XQaBjMicBMd3I6ODvUxQyl1BPzbS/2KhfrPjXxNkedTi2tORkYGvvGNb+Diiy/26zQmJydj3LhxyMnJMTxPeS5MOEFaamqqGhiL1e5k4tojXjf9VgbBrtX6DJYcpMlZK3FboCAt2owG8YzmZevXBRDfG/F7UZ1hdZVBs3JHn8+HgwcPwuPxICsrCyUlJerfyAGSXJEQTrmlYLbysdV974y+k/n5+XA6neriYFbpSyVDCdJOnjyJbdu2WR589Hg8avsYbiZN9NvlDHywaqs+Ue4YDn2jKz508u1Gx+hvi9YxssWLF6OpqUn9ZzRhXlyU9HtFANoSILkTqe+wBAvSjDI78ghfoIVDBCsTG/Ujfl6vV9OZks89KSkJkyZNwuTJky2PuOi/BJEGaUB3oGblghLsCwh0L1oyYsQIDB48OOLz0gs3SBNz0eT92+QsTShBmugoyJOxA9FPzDbKpIlzkll5fjabDYMHDw5YpiQ/vj5I02/GKl9ArY7K6TNpKSkpuOSSS9RgHfDv8MsBY1tbm99jyaPz8opX4rZA3xWjhtxoJalQ92WJBv1CH/rH189x0QfNgYLnQJm5zs7OgIscDBw4EMnJyQHfs75KzgjEI0iTV2XUr3gIaBc/ChSkud1uTafJ6DtitjdmVlaWpfJ0mdEcYbl91L+WRnv8WZlzIwwYMACTJ082rdAYOXIkhgwZEtLiJzIx+KxfWMXn82mCM7nsVJx7sGAqOTnZb2XGrKwsFBcXaxbxEM/NbPuXWJDbB6O+kFEmra2tDR6PB3a7XQ2aW1tbcfz4cWzdutXSvo1m5Y5NTU1oaWlBUlISxo8fr/lMydckuU/V0NCAtrY2VFZWhlx2aRZUhjsnDehePXPWrFkhlQ/r7x8IrdxRZNr104bMiD63y+UKOG1DDtL07ZUI1M3m9xv9HK1yx9CLmuOosLDQL5NVV1eHpKQktdE1O0ZcmMTclUDHiBro2tpada6J/hgj+kmyRuQgTbyJwTJp+i+jWbmj+PsBAwb4TQyXg7RAC4cIoWTScnNzUVdXB5/P57evRrgpXiD6mbRIHtvoi5WcnKxZhSqajBqPQMR8G7GylpxJA7pXumpsbNR0ioJdJO12O8aPH2/5nPXL4MuL0Ih9Vbq6ujBkyBC1xMPq87NCvijqt7KQRzP1c/68Xi/OnTuH2tpaNDc3IzMzExMmTNB0quQscaDMqTwaK2fRgO4OSXt7u+bvjTJpRts+BHosuSE3CtLECGy4nbpw6K9Rbrdb83nTB1JJSUmaVS3F+Yu5KzKjMi1xf3IAYPSZLigo8LuG95cgTc6kicGDnrym6gcX09PTNZ9xo/2z9HOwkpKSNAuAmC1lrV8eXNyf1dJ0mb69FIMnDofDL2sPGJc6W5nTa9XAgQNDWqTB6O+PHTumbgAtXkP5OytvE5SSkoIRI0bg9OnTmsENM/n5+epnTQSn8lQDwH+grqeDNCFYJk3eU1VcP+Wtd5qamoJW0hhN1/B6L+yvlZGR4fd6iGulvAIm0N0HPXXqFLq6uuB0OjX902Dka6rD4QjaN9OvHmxl0+lQBJtuoadvD60GqVbmowEX5gSKwQrxvsolp2b9J6PzkwNyuSy6T5c7zpgxA1u2bNHc9sEHH2DatGnqB8fsmJkzZwLofmGnTp3qd8yWLVvUY0pLS1FYWKg5pqurCx9//LF6TLhEKlU/8R/QRtriDTdqBDo7Ow1HReQvfXZ2NpKTk9ULsJxdiFa5ozj/rKws00ZInmwdqkQP0mIp1EwaoC1PkDNpADBkyBBMnDjRb2NRo/8Pl1kJkDj/iy66CMXFxSguLg7r+Vl9fKPVufQXSPlcvV4vDh06hPr6enR1daGhocEvkyNGTEVm0oz8vPSjoIC25FFRFMM5aVb3KpQ3E9Vn0sT1QZyPfl5FrOk75Ppsg74TblbuaJT1CJRJA0Kb6yifg7y4Ul/j9Xr9Vibu6Wya+EyIzo9+hd1gmTTgwjVOfJ7NRvD1mxNbWULejNlqu0ZlkOLxBCsb9fY0p9OpBltyNk2fFRKBcFpaGgoKCnDJJZdY6qAPHDhQDQTMnrc+WI5XJs0sewVAXYwJ6B6INgpmrXyHzOakBVoxU7xu4jsrzrOtrU19TLPBejNyW2Ol/ZXbF8B8gYxwhZpJE/MRxWcn2kGazWZT32O55FEMOOgHlaxm0gDt+92ryh1bWlrwxRdf4IsvvgDQvWDHF198oS6Fv3jxYvzwhz9Uj3/ooYdQUVGBRYsW4auvvsLatWvx2muv4ac//al6zKOPPooPPvgATz31FA4fPoynnnoKH374IRYuXKges2jRIrz66qtYu3YtvvrqK/zkJz9BZWUlHnroIQDdb9bChQvx5JNP4q233sKBAwdw9913Iy0tDbfffnvYz1fe5DFQkKZfllrcnpKSon5ZjUaT5QZh8uTJmD59utrJCZZJCycgKi0txUUXXYTCwkLTi7EYBY9GkBbK3hKR0tdM94YgTZ6zIS4ygUaOQ71IBiNnnuSOirh90KBBGD16NOx2u+liJpHQZ6aF9vZ29fsiHkvOpnV0dPh9N8yCtGCjpmJ1LnEfwYI0+dytlNjK5MybfgVL/aqqPZ0lMsqkGf2sD9L05y8HafLCEfrsmnz/4jW2+pnWd+j7IrGnmDxHqCeDNLnKYsKECRg1apRfGbXRZ1X/HRDnLt5/s0yafp5jJB1Ms2BMf12WyzGFWGTSokFk4uR5PWZBWqjZR5fLhYkTJ/oNCuqPkfV0kGaU3dKXO544cQIdHR1ISUlBcXGx4bXfynfIbFXhQAMH4touAgyXy+UXZIS6QqvR3DjxsxE5kyZvDxWvTNrAgQPxzW9+U13rwcq1Wp5TaGX1SaN5aeLv9YNK8jkbrXauD9LCnZMW13LH3bt3Y/bs2erPixYtAgDcddddeP3111FTU6PZu6y0tBTvvvsufvKTn+CFF15AcXExnnvuOdxyyy3qMTNnzsSbb76JJUuWYOnSpRg5ciQ2bdqE6dOnq8csWLAADQ0NWL58OWpqajBhwgS8++67mombjz/+ONrb2/Hwww+jsbER06dPxwcffBBRyZAYFUlPT4fD4VC/BGIPM6MVz/STXB0OB9ra2tDe3u538dTXv8u182Z12IKYZG91nzSg++I9ZMgQ9TEFUVImf4l6WyZNPH4kI7CRCLXcEbhwUW1ubjac86EXiyBNlAvIn1mjuRipqanq9yFar634zIrvgfgedXZ2Gu7JJsqVREAh5oKKEhP5+2W0upMZUZIVLJMmjwSGE6QZvWf6Scrynjs9KVgmTT+KbCWTlpWVhY6ODrV0RH7+8v2bLettRgzIiDk4iZT1iBbRGc/OzlYzrz0ZpInvgRigMerwiu+AOC/93C9A+3mQR76NyN/DaAZp4mf97SkpKWhtbU34TBpwYW6NKAUX/QrgQomxeB7hLIwVbJn8eGfSBLNyx/Pnz6tZtNGjR6vXp7S0NE0wG0qQ5nA4NNfnQJk0fVbP5XKhqKgI5eXlyMzMxOnTp/0e+/Tp02hqasJFF11k2H+TK6lCyaSJaq5oB2mhLhwCaLOAVjJpTU1N8Hg8SEpKstR3F0FaY2Mj3G43nE6naZBmtMqlTO4PRTL1J65B2lVXXRVwQvvrr7/ud9uVV16Jzz//POD9fu9738P3vve9gMc8/PDDePjhh01/b7PZsGzZMixbtizg/YRCLnUEtIGR2+02LHcEtCtEOZ1OtLW1oaamBtnZ2ZqlgI0mdupXEwKMAzDRUZEbyFDIjymeV6RBWiwWDgn18c02Kow1OeNjdcK56MCIEdCMjIygS7gnJydDUZSodSLERUl8Fs2CfbmRjtb7qs+kORzd+7N1dnaqk4yNGicRUMirj4WbSRP3IwI9OVhubm42DNLEHJdQP+9GDYM+E6XfNLSniMBXdLrNyh3lOWmAf5Amf07S0tLUYKqzs1Pz/I2yF6F8Z8X9dnV1WQrEexvx+R8wYIC6EnJPBmly+XWg61laWlrAuS9ykCZvYG9EfA/lapRwOphm5Y7628UgmdHqjomWSRPz5zs7O3H+/Hnk5OSo17jc3FzNogyxWL1YH5DHK0iTPz9yJk2sWTBw4EDNPDzxOg0YMMBvs3Qj+sFxeXsaK5k0ISUlRZ2L2NjYiNOnT2sGAN1uN44cOQKfz4cBAwYYzh00y6SZXSdFQOTxeDT7w0WrrxDuILF+QY5AxLXO6hYBubm5sNlsOH/+PHbu3Ilhw4ap/fZAmTSz8zcK0npVuWN/Iy8aAmiX05U3sBXLUosPoxykiYmiZ86cweeff67ZD0qQPzBGm26aNWxGf2eV/gMrXwSCrVJnJhEyaeJxw92bJVziixzKY4uOgGgIrNRgT5s2DZdddlnUSkn1QY6VIC2WmTT9pvBGjZMcUJgtIhFKJs1oQQ8xstze3u6X7RLnrc8cBHtd9CW5wIVOgbxPEWCeSauursahQ4eiOhdLURS1Uy4+g3JAIA8YGa3uKJ+/vtxRXyIuHs+osxRKwy9ep1DnefQGcvlzXl6e4WsYrrKyMr9FqszOATCeYyiTA4JgQVqwFeXkTnckFRFmmTR9yZjRtSNRM2nAhe9mU1MTFEVRgzR9Bz8WQRpw4b00ypjGglFfyCiT5vV61TJD/ZYCI0eOxLRp09QKomDfIX21hFG5Y6A5aYL8udcvjQ90L3Inrplm+7jJwaLV6RTiPMT1Q7/oViQiDdKCVYcoiqIGaVYWvAG6P+uTJk1CWloa3G43vv76a78ycUHOSAYKdIHIyh0ZpPUgfZAGaCdn6hsSfWYgKSkJAwcOxKRJk+B0OtHa2qpu1imPSMmdevlDEiiTJv5W/E2oQYn+CxeNhSH0QWNPB0r6UqyeJF6zUB5bP1prpQZbZNOiRb94h9l731OZNH3ZTbBMmj6jI/5f3KfVTBoAv0yaw+FQV3gEjFf9MsqCB2L03smdxECZtNOnT+PYsWOoq6sLeWGRQBuKijljNptNvdbpN7kHtA2+2Wq2+iDNqIMiX9tkoXx3Am1k2tuJrEh2dra6yioQeZDW2dmJyspKHD9+XPOe+Xw+HD58WLMoRTyCNLl8LZJSLbMBR7kdlTu+4vOt368y0YjMQHNzM9xut/oeyh1au90es3MXbUBPZNEA4zlpZoNiRn014EJ1RrDvUGNjo7onr3gced6SPLBkdJ0yWzAH8C9DVBQF1dXV6u/NtgUIdeEQ+XHlEvJo9cPE+5+amhrSfVotd2xtbUVHRwfsdnvQ8ltZTk4Opk2bhlGjRqmDsmarqRptbSSTA8p+sQR/b6ZfNEQwy6QB3W9mV1eXJpMGdKdkBwwYgNraWr/lUc1KpoLtkyY/bjijWvpyR/0IUjjE5G+Px9PjWTTgwnOKR5CmD9St0HeArARp0ZZImTSHw4G0tDSkpqYaLmsvXls5kyYCD/1eOUB3g2XlXOUFPeROWnp6Opqbm9Hc3Iz09HTTIE10aK0+lj6wMArS9KOO58+fx5EjR9SfQ+mwd3Z2YseOHRgwYAAuvvhiv9/LHXKjzozcOdFvAi4HaWJbCcHs/szOPZTOX6CNTHs7Uf4sOirRCtLkv29ra1M7tGI7i9raWnV7HKtBmnxdMHr/5M9DsKy2USYt0jlpZgsuyJk0uWRXtLmJnEmTy7BTU1ORkpKiztdNS0uL2eCovMl1T9Dv4wlo30O5vyF+Z7Zoinxd9fl8fisb79u3DwAwceJEzePIjycPDprdvyB/b8Rca7EvbVtbm2YOsNlAU6gLh8jnEepiTFa4XC5MmjQp5O+G1UyayKLl5uaG3H+02+0YPHgwiouL1e0OjCQnJ6O9vd20rU5JSUFbW5tme5mQzyWkoylsYvKhfp6QUZCmT6HqgzT938n/1X/g5RR/KJm0UMUikybfbzyCtHhm0rKzs5GVlRXSPijyZplJSUlh7QkUKatBmhjRN5qLFS45awxceN/kUTSjz6X83THKpIkgzerrKUos6+vrNSuzivOoq6vTnGckmTSjxkM8H7kcQx40aW9vx/79+zXZp1BWf2xpaYHP5/Nb0l2+f6D79QoUpBmtnqovRUpOTobL5VKzaPq9ewKdeygdCtHhb21t7fGNv2PJ6/Wqi4aIDIl+ae1w6YM0o9u/+uordaErIPJMmnzdCLYQgPh7eTXQSDNp+qyafLt+dUB5bmQ82q9gMjIyYLfb4Xa71WuSyGqI9yFWpY7Ahe9cT2UZg63uCGjbB7ON0sVx4nf668/p06ehKAoURVEHfcTjyJnYQAMH+lJ2/WskVxTU1NQAuPD91l/DxEB/qAuHyI8jrvXRHmyQtzawSm7nA12rxeCUvmQ1FGKgMFifOVAQB3S/B71ydcf+RDSU8o7lgPZNNJtMbxSk6evfjRYNkf8m2D5p8t9GI0iTvzyRBDmRBI6REvty6CeM9gSn04lLL700pL+x2WxwuVxoa2tDVlZWj5eHAtbLHW02GyZNmhTV1fTMlsDNy8tTy0ECjSDKC4fIDa8cdFiRk5MDh8OheQ2SkpJQUFCAEydOoLGxUdNoGn2vAeuZNPlv5ayBUQlWZ2cnvvzyS3WBjMzMTE1G3gp5HyEjcvbQKEgzWsTBKJMmOkKXXXaZuoCOHGC0tLQgJSVFswKaPKIcynVHZAzEtgnBgolE5/F4cPz4cTQ1NcHn86mZXCB6mTSjbLN4bPn/Dx8+rL4vwb5DYmERRVFMO6+TJk2Cx+MJet3QzzkVq62FSv6bQFk1/XdN3lsxEdntdmRmZqKpqUnt6Iu2Li0tDefPn4/pIjr5+fkYPXq0OqgVa8HKHYELi80A/qWOMnmhta6uLk0QJRYdAWC48JjdbtdcO82uU/Lq0vogTSxq1tXVpSYASkpKcPbsWfh8PnR0dCA1NRWKomD37t3w+XzqgK/VhUOA7razsrIyooV3ok0+X6/Xa3r+Vt7HSKWnp6O+vt50MEMOpuUkTCirLTOT1kPEnI9AQZr+iyC+SEYdXvF34ndmqyRZXd3R6HFDEatMWiQlmJHKyMjAN7/5TYwYMaLHHztc4qIQj1JHwHomDei+wOm/D5EwGxXNycnRZBjNjpczaZEEaXa7XdPxEO9Jamqq2gk6ffp0VOakie+Hy+VSz13OpOlXwiorK1Mb8EsuuSSsfdTEsWaLjcjXMXkwSV9KKr8XRkGaXCIk3j/xWjY0NGD37t3Yv3+/en/61f5C6VDY7Xb1tegLJY8NDQ2ora1VP7vFxcXqoI3cdkSSNTQL0sTt+fn5sNvtaG5uVj+TwQIWebNas/cvPT3d0sCZ+HtxbuHOpwm33FG0+fEY5LNKbieKi4vVPahKSkowdOjQkCo5QmW321FcXNxjFR9G8/ODZdICMRrsaGlp0Vw/jBasMhocDHT/ycnJhts9ABeWmLfZbMjIyNBsCC/+K/qWclbPav8sJycH48ePV783iRCkydlIs2BH3kIiludcUlKCqVOnoqCgwPD34j2Ur48sd0xAnZ2damNpFqTJpUNmK8YYjbhbLXcMtk8acKETGk75gTzKrS/viEaQFq9ykUQsUwmkuLgY2dnZpheNWLOaSYvlYwtyJ1+UgsgjXkaNpb6jBVwI0kIp/ZEn38vfJ/G+WAnSrGSCxH2npaUZLpwi7kN8/8VzGTFiBFJSUvyuI1bImTSjTr48Yiiej9xoGpX5yPMMzEqRAGjuD+ieTyNGTJOTkzWvdagZ/L60eIh4P3NzczFjxgzNHqDidTdbFTPUxwCMg7T09HR1FTzAv3NoRgR3kQY3+gGXcDtrVssd5QEJt9ttur9SIikqKkJOTg7GjBmD0aNHq88pLS0NI0eOTMi5dOGyUu4of0aCZWCMgjQ5iwZc+F4E+gwFq2wy6o+J28SiQOnp6bDb7Zqybfm/wIU+Zihz0gBg0KBBuOSSSzBgwICYBu2hCLZ4iNw2xXK6ishGmw3+iPdJ3oMw1IQDyx17gLhYZ2Zm+n1gRGmUvNmn0ag/ELjcMZSFQ8w+JLm5uZgwYULYWZiUlBQ19R/pHmlCvIO03kbspRIvoWTSok3/GZF/Hjt2LEaMGBFwVUmjhUPk1RhDGfE1C9IGDhyIY8eOobW1VV3mWX6NQs2kDRw4EG1tbRg4cCCOHz+uOXd9Y2y0yl04pW/ysT6fz+885UyZmP8gVsh0Op1Byx0DTbBOT09Heno6kpKS1I2DxfVVzFcSE7lDzZpkZGTg9OnTfSKTJl5DsRCEzG63a/aFC7cjrs+kiRU95fe3oKAA1dXV8Hq9QfdIE0aMGIHhw4dHfO3QB2XhBmlWyx1FSWlra6vmc5TIQVpaWhomT54c79PoEVbKHeUFu4INyumrmQCoq22LfdSM5iGZlbeb3b9R9ln8TgxQiQEmfZAmX8vk66o4H6urZufm5vZYWaoVYjqBWZAm79Maz76jfjXicNolZtJ6gFmpI9D9JZVHJ4xGl41+1pesBAvS5AuJWeNns9mQn58fdqM9atQojBgxQg08zZ5HKMQFqi+N6PVl8QzSzBpcwHilLiuZNDloCGVuSXJysjoSK3eSnU6n2tiJic2RzElzOBwYMWIEMjMzDTNp8jL3RnvzGHU0gpGPNSp51Adh+kAw0MIh+vM3er6XXXYZpkyZonZM5CBNvNbhdMhFB6cvBGnBskfRmJcmfw7kwQw5SHc6nWoJXSiZ6GhcN/Tfn3BH1K1m0oALS3VXVFQAMA6SKT6sVBWJ70ugRUP0x8rXNdEZ11eymH1uAn0mxfXNaNBc/5kSx+rLHY2qAuTBu946+G22wqN4XxNlDp1ZfzwUzKT1gKamJjgcDtP5N0OGDEF1dTUURTGcpyEYdeZEGZHZfixGCyHEquOclZWlXlCiNSetoKAAiqJEtEIP9Rx9kNaTjUCgQY1gx4sRN7lESu54imWpQzF8+HCUlZVh0KBBmttzcnJw9uzZqJQ7Gj0feRRR3C4CNH3jJXc0RCYkGPla4vV6/RpC/Sq1Zll//WR6sWBEoCBNlpGRgXPnzmk2xhbXv3A65KKj097eDq/X22s7MIC1IK21tTVqQRrQ3TEUm8DKj11SUgKXyxXV+adWxCKTFmhOGtAdpJ04cUJ9DRI5i9bfWCl3FANrVvbV0g90yFu16AckzD43gT6TBQUFyMnJCVjuKBhl0uTVJWV2ux0ZGRkYMGBA3OauR8qo3LGsrAwnT57E1KlTI9q8Ppr0QVo458MgrQd0dHQEnOzscrkwaNAgnD59OuBIur5TI8qI2tvbTUf79QsHhLvCVaiilUlzOBwYPHhwNE6JeoD+s5UomTQj+uBI7JMjeL3esEodhQEDBmjKHgX9dSCShUNkRvvEAf77LQL+WS4x2GOlI6sP0sx+L15Ls86M3JERr73b7VZLeII9f/3Kc8nJyZqALVRiY/euri60trb22g4MEHwkORqZNHkxkI6ODvV91T+2zWZDYWFh2I8TLv33Pxpz0oKVPqalpSEtLU19LRikJQ79AKJ8m5Cfn4+ZM2da+qzov0Mia5Wenu7XDwun3FGs1hzosQURpIktFMQWKUbbbIiFmMQebr2Rvl8LdJea+nw+NDc3q+9rvDNpcmk5EF6QxnLHHpKUlBTwDSotLUV2djaKi4s1fyMzS82LCaFOp9PvmHh1mqOVSaPexWzxjp4QSSZNnvsoZ59D3SPNiszMTNPR+aSkJHVltVAbGH0mTV/SIm/oLTJmcs2+1ZLHUMsdxahvR0cHvF6vGoTpR5tFx0OM/gZr0PRBmtPpxMCBA5Gbmxv2wI54n+Wl/HujYJ0Co/0AjSiKYrqKpz5bJDqpiTKKrV+UoScyaTabTTMnuKezh2ROzqQJZosTWako0JeKy4NPgRZPs1ruaOWxAe3KvjabTf3Mff31137H6s+lt9KXO8oDqkYrpceTnPUM57VnkNZDgs2pcrlcmDJliqY0KlinU3wAxQIERqMuwYK2WIlWJo16l0TKpIUSpOm3kACgZqmB6AZpdrtdk6XRn2dpaSlGjhwZ8v2K+9EvECQacBF46DsGoWRVfD6fpmOvz6TJ8z3E44hR3vPnz6sdebHIh0x09sPNpIlyx0mTJhlmMK3QT/SuqqrC8ePHe90G18HKHfWfFTOHDh3C9u3b/QJ4uWRMdArb2to0tydCBynUOZ5GQgnSgO7V8MRWAom6R1p/ZNQ2RbKXqH5OmpxJA7T9sXDKHQOx2+3q9VO/VYAY6JcXrAu0YFZvpC93lFeXNdpzOJ4imcIAMEjrMeF8GYNl0vTL9ydSkMZMWv8UzyBN/zkLpdzRqDPndrtjEqQB2jKoaL1GZoM64r8i+NFfi0JZPESfedEHaeI+5AVLxDyPlpYWv46MTJ91sBJky+9LNIICcQ3t6OiAz+dT5zkYlQ0lsmAjyUZZBT2fz4f6+nq43W7NFjHAhY6pzWZTBxza2to0n49E6CDJ5xDrJfiF9PR0TJkyBZdccklEQQBFV7TbJv3ibfoybrPtQPSVE5E+vj5IGzBggCYwSE9P73NBmj6TZhakJcJAUSTbwgAM0npMLII0/WadRkFavMrPmEnrn+JZ7thbMmmANkiL1mtkFqTpM2lmCypYyaTpAzl9kCYvGiI6qGlpabDb7fB6vaivrwdgHKQFmqtnRnRQ9PMJwyVn0jo6OtQMmtlSz4lIzmaZvSZWgjSx+AAAvyBV7gSJdkcuOQpnqelYkD/r4XbYbDabpjxYCNTGZWVl9dgmzWRNtNsm+fPU3t6ufkdEkBbLTBpwYVBLXzVgt9s1K4bLm1yL3/d2+jlp8iqWLHeksISzhHywckf9fRoFafqFQljuSLEU73JHuWMYaSZNXpAnFkGaONdYB2lWM2lWgjT9MfpOvn5lR6D7GiSCKXnzVb2UlJSQR3zF/TidzqgEBXImTQQcQPCywEQiB9KRBGly9swsSEtOTobDcWEjZzGfMBE6R0B0MmmA/3cJMA/YKDHprw+Rvmc2m029doptlpKTk/3m4uofKxpz0gBg5MiR+OY3v2m46bYcpKWnp2uCtL7wWdWXO+qDNJY7UsgizaQZ1U/r79Os/t3sAhFLcrlTX7gokDXxzKTJjy+PfpsJlklrbGwEEN7y+8E4HA7k5eXB4Qi+aWoo9ynTz0nTzxUTQil3DJZJM2scRUdCZGaMgjQg9AyjCP6itY+inEmTg7TelEmTR5HNvgORBmkiWBffFdH2iL9JhM4REJ05aYB2OwuBA5G9SywGrMX1oqamBoB2MSSzIC1ambRA1QMulwvjxo3DyJEj+0W5oxykdXZ29qlyx8S4kvYD4XxYxOpUPp/P8Iulv0+zTTPjkUkDuvcaaW5ujlonlBJfPDNpwIU9wRwOR9AgzWzlN3EhFaOjYvPpaJswYQK8Xm/UOrTByh2Fnih31D+GfrTXLEjLyclBbW2t5vwDGTBgAEpKSqL2Holgw+12axr+3phJC/S5CjVI03829J0gl8uF8+fP9/lMmtVyR0pMoj8FROc9Ky4uxpEjR9TvinxdkwfNYzEnLRh5Q21xXvLgeW8mZ9LkFYOB7muaGFRKhOtQJNvqAAzSeky4Hxaxx5HRl9lKuSMQv8Zk/PjxAPzLDKjvineQps8eBSIaLK/Xa5hJE2IVpEVrHpVglsU0m8sqRJJJs1LuCGiDtJSUFNPnLWfSrL6HpaWlQY+zSiyd7fV61SAd6F2ZNCujyMGCNJ/P5zc6HegxRNsjr96ZCMR5RDpHzuVyob29XZORYLlj7xPt96ywsBC1tbXqSopWMmnR2BYiVMnJyRgzZkzEK1omCnlOmliTwel0qvNxxaBSImT0mUnrJcItxwlUMqgf/Tf7AMSj3BFgcNYfxbvcMdQS22HDhqGlpUUzAqr/HsUqSIu2YOWOQiwzaWZZHLF4iM/nM82iAd2d4fT0dLS3t5tWBsSay+VCa2trr52TZmXSfLAgraWlRbPtQKA5acCFIE38TSJ0joAL5xFpZ/jiiy9GR0eH3wIM+fn5cLvdUSu3pdiKdlWRzWbD6NGjsXv3biiKorm2paSkIDk5GYqixCWTpifPU+vt5HJHecVgfZl6IgwWibJz/efAqsS4kvYDkWTSAPNNF4VA+7HEq9yR+p/elEkDgJKSEr/b5O9qenp6r+mABVs4RIhknzR5o2xRaiIzCxDE4iHByp9tNhumTJkCr9cbtwY2JSVFk0UCemcmLZJyR1G+lZmZifPnz8PtdsPn86l/ZzYnTUiEzhFw4bMd6fkkJSX5LXUOdJcsU+8Ri+xneno6xo8fj5aWFr+tVaZNm2b6uHa7nRnYMMnljuJanZaWBkVRNEFaIgwW2Ww2pKeno7W1Nax9E+P/DPqJWARp8n0GevPjlUmj/ifeQVo0FquRL+y9JYsGhD8nTXRkvV6vpiMuE8GXCABEtsnn80FRFJw9exaZmZmm5Y5A9xyJlpYWDBw4MODzCFQV0BOMrqW9KZMWjXJHEaTl5eWp73NnZ6da7mdW7igkQucI6P7+FhcXB/3MUf8QqxLVgQMHGn7GjAb4xOMmykBGbySXO8qZNLnSw+FwJEx/95JLLoHb7Q6rOiQxrqT9QKQbaRpdUGw2G5xOJ9xut+VMGkduKJbiXe5otApbqOTval8I0oLNSROLrCiKgq6uLr9ricfjwY4dO/wGhVpbW+H1enH27Fns378f+fn5pitIAsDgwYMxePDg8J9gDzFqSHtTJi3SckePx6NulZCZmYmUlBR1Hyh9kCY6ofrXLFE6oA6HA6NHj473aVCCSISqoszMTBQXF/vtC0nWyUGanPWXN7VOlGsQ0H2dDLciJzHCzD4uKSkp7AtCoEwaYD6SKWMmjXpKomTSIhnJFxdTm83WqxrScOek2Ww2tZMtN3JCU1MT3G432tra1N+L4+WVtZqamhJqE9Fw9ZVMWrjljmVlZejq6kJqairy8vIMy2H15Y767Gdvfv+p70qEAWsxj01efZFCI19r3G63Wk4f6Z5kiYg99h4QSYMVLEgTI5tG9fICgzTqKfLny8peZbF6/EgaYLES1sUXX9yrLvRWVnfU7xUk5OTkALiwN5xMXopdEIGMz+dTgwIRyAG9u4Hs7Zm0SModz507h1OnTgGAuhqcvHec+BvxepiV3Pfm95/6rkQI0ihy+lUq09PTYbfbA67S3Fuxx94DIvmwDBo0CJmZmRg0aJDh78eMGYNJkyYFHPFPhBQ/9Q/6z1pPB2niuxbpYh9FRUXIz8+Pxin1GP0eOEZZRbMNjvPy8gBALXOTBQrSvF6vZh5AoDlpvYUcbIjPU2/KpEVS7lhZWQmg+/MvAnd9kCYm5jscDs37bPS6ESUS9oX6DvnaI7Z46YtBWu9tSXuRSD4sWVlZmDp1qunvrdS6ctNN6inxbgSHDh2K5OTkPrXccCjsdrua5RDBmMie+Xw+02uRmHvX2tqKjo4OzZLq+pX+7Ha7ej9er1cNCmS9uYGUM2kZGRlobGzslZk0q+WOiqKonxURiMmLIJgFaWlpaZqAn0EaJTpm0voOh8OhXuuMgrTePFAo41BCD4h3g8VyR+op8W4EU1JSMGzYsLh/5+JFLnGUO9DB9otyOp3IysoCoC157OrqQldXF2w2G8aMGYOkpCRkZWWpjyOXO8p6cwNps9mQmZkJu92uvia9JZOmKEpI5Y6A9rkZZUL1QZooaZU3dga0QRo7wJSI4t0+UfTI7x8zaRSReH9Y4p3doP6Dn7X4MlvR0cqyz3l5eWhubkZDQwNyc3Nht9vVLFpaWhoyMjIwffp0OBwONZuiL3cEzOe99SaTJk2Cx+PBuXPnAPSeOWkiMwaEFqTJm8Pq/zZQJk0mgjSzklqieGP71HeIgSS73a5uIi5ft+Ld744WBmk9IN4fFmbSqKfInTOOVPa8YBtYB8pw5eXl4cSJE6ivr0d9fT0cDoc6V01klMS1TFxHjModk5KSen0nXaxWGGw/sUQi9jMDggfKYr6ooijq38gLgsifE3l1R0VRTDNpIvsYaBEronji1I++Q7x/GRkZ6rVOlOK73e5eXc0h6xvPIsElUpDGCxPFkjz/iQMCPU98v81Wegx0LRJ7YomMidfrxZkzZ9TfGd2fUbljvK930STvx5PI2trasGvXLjU4tpLNEvMXRZAmB9tGQZoopTTLpKWkpGDGjBlsYyhhsdyx7xDvn75tSklJgdvtjnjxsETBIK0HxLvTwhQ/9SQGafETLJMW6Fpks9lw6aWXor29HS6XC3v37lUDNrMgDbjQuRcLi/SVEUwg8H5iiUTsVWel1FEwC9L08xntdjtSU1PR3t6OxsZGdY80fSbN6uMSxQv7Qn1HXl4eGhsbNYscAcCIESNw9uxZdXXa3q7vtKYJLN4NF8sdqSdFY68yCo9ZkFZcXAyPxxN0W4GUlBR1DtKECROwd+9eOBwOteZfMLqO5Obm9rkgrbdk0sT5JScnw+FwmG7ZItMHoIGW7s/NzUV7eztOnjypPk5fep+pf2Amre8oKipCYWGhX8VAXl6eWqbfF/Aq2wPiHaRx9Ih6klnJHcWe2WsfTsOVmZmJyy67zHB+k1zWKh530KBBOH36tN/IZm/WWzJpIsDKyMjAJZdcYulvzII0o+BrwIABOHXqlLqQjFEWjSjRsS/Ut/T2uc9WMEjrAfEO0jgnjXoSM2nxE+3XPlBn3OFwqB18p9OJjIwMzJgxIyqPmyh6WyYtlPddH6QF2l8tJydHE5Tr56MR9QbMpFFvw6GEHhDvERuWO1JPkldaop4lOtg90QGR3994D0TFin7T50QVjSAtULmjw+HQzPFgJo16IwZp1NuwF9UPMMVPPYlBWvwMGjQIeXl5KCwsjPljyZ2cvjo/STxHRVF6RZAWyvsQSrkj0F3yKDCTRr2R+MzbbLZ+USpHvV/fbFlJQ963iKNHFGssd4yftLQ0y3OSIiW/v309kwYgoVcsjXW5IwDNnEZm0qg3YttEvQ2DtH7A4XBg3LhxQTc4JYoGZtL6h/5Q7ihG3BVFgdfrTdiMobx8vlWhZtJSU1MxePBguN1uZtKoV2KQRr1NYrY4FHVWlmQmigazZeCpb+kP5Y5iYEveTywRxXpOmjBq1KhwT5Eo7sT2IuK/RImub7asRBQ3Q4YMgcPh6FNLsZO//lDuCHQ/T6/Xm9ArPEYzSOurATdRWloaJk2axHJd6jXiXo+0evVqlJaWwuVyYerUqfjkk08CHv/CCy9g3LhxSE1NxZgxY7B+/XrN791uN5YvX46RI0fC5XJh0qRJeO+99zTHnD9/HgsXLkRJSQlSU1Mxc+ZM7Nq1S3PM3XffrZa6iH+XX355dJ40UR+WlZWFMWPGIDk5Od6nQjHUH8odgd6xV1o0Fg4JNieNqC/Izc2Fy+WK92kQWRLXq/GmTZuwcOFCrF69GrNmzcJLL72EuXPn4tChQxg2bJjf8WvWrMHixYvxyiuv4LLLLsPOnTvxwAMPIDc3FzfccAMAYMmSJdi4cSNeeeUVjB07Fu+//z5uuukmbNu2DVOmTAEA3H///Thw4AA2bNiA4uJibNy4Ed/97ndx6NAhDB48WH28a6+9FuvWrVN/ZqeTiKhbfyh3BHrHXmk9MSeNiIh6VlwzaatWrcJ9992H+++/H+PGjcMzzzyDoUOHYs2aNYbHb9iwAQ8++CAWLFiAESNG4LbbbsN9992Hp556SnPML37xC8ybNw8jRozAj370I1xzzTVYuXIlAKC9vR2bN2/Gb3/7W3zrW9/CRRddhGXLlqG0tNTvcVNSUlBYWKj+k1e3IiLqz/pLuWNvyqTFek4aERH1nLgFaV1dXdizZw/mzJmjuX3OnDnYtm2b4d90dnb6palTU1Oxc+dOtVTD7JitW7cC6G6IvF5vwGOEf/zjHxg0aBBGjx6NBx54AHV1dQGfU2dnJ5qbmzX/iIj6ImbSEkckQZpYFCWckkkiIoqduAVp9fX18Hq9KCgo0NxeUFCA2tpaw7+55ppr8Oqrr2LPnj1QFAW7d+/G2rVr4Xa7UV9frx6zatUqHDt2DD6fD1u2bME777yDmpoaAEBmZiZmzJiBX/3qVzh16hS8Xi82btyIHTt2qMcAwNy5c/H73/8ef//737Fy5Urs2rUL3/72t9HZ2Wn6nFasWIHs7Gz139ChQyN9mYiIEhLnpCUGsT0AEFqAJQI6n8+nZtFCvQ8iIoqduC8cot/1XVEU053gly5dirlz5+Lyyy+H0+nE/PnzcffddwO40OA8++yzGDVqFMaOHYvk5GT8+Mc/xj333KMZYdywYQMURcHgwYORkpKC5557DrfffrvmmAULFuC6667DhAkTcMMNN+Cvf/0rjh49ir/85S+mz2Xx4sVoampS/1VVVYX7shARJTRm0hKDoihQFAVA+OWO8pw2s/aXiIh6VtyCtPz8fDgcDr+sWV1dnV92TUhNTcXatWvR1taGEydOoLKyEsOHD0dmZiby8/MBAAMHDsTbb7+N1tZWVFRU4PDhw8jIyEBpaal6PyNHjsTHH3+MlpYWVFVVqeWS8jF6RUVFKCkpwbFjx0yPSUlJQVZWluYfEVFfJAKCpKSkPt2xT/RMmpwFizRI68sZUSKi3iZuQVpycjKmTp2KLVu2aG7fsmULZs6cGfBvnU6nuhfTm2++ieuvv15TegMALpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvGx4jNDQ0oKqqCkVFRSE8SyKivklcc/t6xz7RM2nivOx2e0jBslGQ1pczokREvU1cr8iLFi3CnXfeiWnTpmHGjBl4+eWXUVlZiYceeghAd/lgdXW1uhfa0aNHsXPnTkyfPh2NjY1YtWoVDhw4gDfeeEO9zx07dqC6uhqTJ09GdXU1li1bBp/Ph8cff1w95v3334eiKBgzZgyOHz+Oxx57DGPGjME999wDAGhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abburBV4iIKDGJxZf6+sawiZ5JC2fREED7vLhHGhFR4onrFXnBggVoaGjA8uXLUVNTgwkTJuDdd99FSUkJAKCmpgaVlZXq8V6vFytXrsSRI0fgdDoxe/ZsbNu2DcOHD1eP6ejowJIlS1BWVoaMjAzMmzcPGzZsQE5OjnpMU1MTFi9ejJMnTyIvLw+33HILfvOb36gjwg6HA/v378f69etx7tw5FBUVYfbs2di0aRMyMzN75LUhIkpkmZmZmDRpEtLT0+N9KjHVWzJpoQZYzKQRESU2myJmHFPUNTc3Izs7G01NTZyfRkTUC1VUVKC8vBxFRUUYM2ZM6HfQ2go8/bT2tsceA6IU3J49exb79u1DRkYGpk2bFtbfDRw4MLLnSEREloQSG8R9dUciIqJEleiZNHllxlAwk0ZElNgYpBEREZngnDQiIooHBmlEREQmEj2TFo0gjZk0IqLEwyCNiIjIRG/JpEWycEhnZyeA7r0+iYgoMTBIIyIiMtEfMmkM0oiIEg+DNCIiIhOJnkmLxsIhXV1dAC7sfUdERPHHII2IiMhEX8+kyT9zThoRUeJgkEZERGQi0TNpkc5JE1wuF2w2W9TOi4iIIsNhMyIiIhOJmklrbGxEUlJS2Jk0fUDG+WhERImFQRoREZEJOZOmKEpCZJs6Ozuxb98+OBwOdR5ZOEGa3W5XM4Scj0ZElFhY7khERGRCDn4SpeSxtbUViqLA4/GgpaUFQOhBmv5vGKQRESUWBmlEREQm5LlbiVLy2N7e7ndbOEGa/NxY7khElFgYpBEREZkQZYFAYgdp4azMKAdpzKQRESUWBmlEREQBJNriIcykERH1fQzSiIiIAhBZKgZpRETUUxikERERBZBImTRFUdQgLSMjQ709kiAtOTnZb980IiKKL16ViYiIAkikIK2jowOKosBut6OgoABAd7AVztYAIjDjfDQiosTDII2IiCiARArSRBbN5XIhNzcXQPiliiJIY6kjEVHi4WbWREREASRikJaamoqMjAxMmDAh4iCNmTQiosTDII2IiCiARAzS0tLSAAD5+flh35cIzuS5bURElBgYpBEREQWQiEFaampqxPc1fPhwDBgwANnZ2RHfFxERRReDNCIiogASKUhra2sDEJ0gzeFwICcnJ+L7ISKi6OPCIURERAEkSpCmKAo6OjoARCdIIyKixMUgjYiIKIBECdLcbjcURQHAFRmJiPo6BmlEREQBJEqQ5vP5AIS/LxoREfUeDNKIiIgCSJQgTTy+WDqfiIj6Ll7piYiIAki0IE2cDxER9V0M0oiIiAJIlCBNlDsySCMi6vsYpBEREQWQKEEayx2JiPoPXumJiIgCSJQgjZk0IqL+g0EaERFRACIo8ng86hL48cBMGhFR/8ErPRERUQBy5kpks+KBmTQiov6DQRoREVEAclAUz5JHru5IRNR/MEgjIiIKwGazqSWGiRCksdyRiKjv45WeiIgoiERYPITljkRE/QeDNCIioiASIUhjJo2IqP/glZ6IiCiIRAjSmEkjIuo/GKQREREFkQhBGhcOISLqPxikERERBZGUlAQgMYI0ljsSEfV9vNITEREFkQiZNJY7EhH1HwzSiIiIgkiEII2ZNCKi/iPuV/rVq1ejtLQULpcLU6dOxSeffBLw+BdeeAHjxo1DamoqxowZg/Xr12t+73a7sXz5cowcORIulwuTJk3Ce++9pznm/PnzWLhwIUpKSpCamoqZM2di165dmmMURcGyZctQXFyM1NRUXHXVVTh48GB0njQREfUqiRCkMZNGRNR/xDVI27RpExYuXIgnnngCe/fuxRVXXIG5c+eisrLS8Pg1a9Zg8eLFWLZsGQ4ePIhf/vKXeOSRR/DnP/9ZPWbJkiV46aWX8Lvf/Q6HDh3CQw89hJtuugl79+5Vj7n//vuxZcsWbNiwAfv378ecOXPw3e9+F9XV1eoxv/3tb7Fq1So8//zz2LVrFwoLC3H11Vfj/PnzsXtBiIgoISVCkMaFQ4iI+g+boihKvB58+vTpuPTSS7FmzRr1tnHjxuHGG2/EihUr/I6fOXMmZs2ahaefflq9beHChdi9eze2bt0KACguLsYTTzyBRx55RD3mxhtvREZGBjZu3Ij29nZkZmbinXfewXXXXaceM3nyZFx//fX49a9/DUVRUFxcjIULF+JnP/sZAKCzsxMFBQV46qmn8OCDD1p6fs3NzcjOzkZTUxOysrJCe3GIiChhVFRUoLy8HEVFRRgzZoz1P2xtBaQ2CwDw2GNAenrI57Bt2zZ0dXVh6tSpyMzMDPnviYgovkKJDeKWSevq6sKePXswZ84cze1z5szBtm3bDP+ms7MTLpdLc1tqaip27twJt9sd8BgRxHk8Hni93oDHlJeXo7a2VnNuKSkpuPLKK03PTTx2c3Oz5h8REfV+iZBJY7kjEVH/Ebcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTAwDIzMzEjBkz8Ktf/QqnTp2C1+vFxo0bsWPHDvUY8fihnBsArFixAtnZ2eq/oUOHhvfiEBFRQkmEII0LhxAR9R9xv9LbbDbNz4qi+N0mLF26FHPnzsXll18Op9OJ+fPn4+677wZwoQF99tlnMWrUKIwdOxbJycn48Y9/jHvuuUcz8rhhwwYoioLBgwcjJSUFzz33HG6//Xa/0clQzg0AFi9ejKamJvVfVVWV5deBiIgSV7yDNJ/PBzE7gZk0IqK+L25BWn5+PhwOh19mqq6uzi+DJaSmpmLt2rVoa2vDiRMnUFlZieHDhyMzMxP5+fkAgIEDB+Ltt99Ga2srKioqcPjwYWRkZKC0tFS9n5EjR+Ljjz9GS0sLqqqq1HJJcUxhYSEAhHRuQHdJZFZWluYfERH1fokQpOnPhYiI+q64BWnJycmYOnUqtmzZorl9y5YtmDlzZsC/dTqdGDJkCBwOB958801cf/31fuUfLpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvq8eUlpaisLBQc25dXV34+OOPg54bERH1PfEO0uTHDVTRQUREfUNSPB980aJFuPPOOzFt2jTMmDEDL7/8MiorK/HQQw8B6C4frK6uVvdCO3r0KHbu3Inp06ejsbERq1atwoEDB/DGG2+o97ljxw5UV1dj8uTJqK6uxrJly+Dz+fD444+rx7z//vtQFAVjxozB8ePH8dhjj2HMmDG45557AHQ3gAsXLsSTTz6JUaNGYdSoUXjyySeRlpaG22+/vQdfISIiSgTxDtLkRUMYpBER9X1xDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTnqMU1NTVi8eDFOnjyJvLw83HLLLfjNb34Dp9OpHvP444+jvb0dDz/8MBobGzF9+nR88MEHXPaYiKgfineQxkVDiIj6l7juk9bXcZ80IqK+obOzE9u3bwcAXHnlldazWVHaJ625uRmff/45XC4XLr/88pD+loiIEkOv2CeNiIiot5AX65AX8egpIpPGRUOIiPoHBmlERERByMFRPEoeWe5IRNS/8GpPREQUhM1mUwM1j8fT448vLxxCRER9H4M0IiIiC5KSutfaYiaNiIhijVd7IiIiC5hJIyKinsIgjYiIyIJEyKQxSCMi6h8YpBEREVkQz0wayx2JiPoXXu2JiIgsiGcmjeWORET9C4M0IiIiC0SAxIVDiIgo1ni1JyIiskBk0rhwCBERxRqDNCIiIgsSIZPGII2IqH9gkEZERGRBPDNpLHckIupfeLUnIiKyIJ6ZNJY7EhH1LwzSiIiILOAS/ERE1FNCvtq3t7ejra1N/bmiogLPPPMMPvjgg6ieGBERUSLhEvxERNRTQg7S5s+fj/Xr1wMAzp07h+nTp2PlypWYP38+1qxZE/UTJCIiSgSJkEljkEZE1D+EHKR9/vnnuOKKKwAAf/rTn1BQUICKigqsX78ezz33XNRPkIiIKBHEM5PGckciov4l5Kt9W1sbMjMzAQAffPABbr75Ztjtdlx++eWoqKiI+gkSERElgnhm0ljuSETUv4QcpF100UV4++23UVVVhffffx9z5swBANTV1SErKyvqJ0hERJQIRCbN5/NBUZQee1xFUZhJIyLqZ0K+2v/Lv/wLfvrTn2L48OGYPn06ZsyYAaA7qzZlypSonyAREVEikLNYPVnyKLJo+nMgIqK+KynUP/je976Hb37zm6ipqcGkSZPU27/zne/gpptuiurJERERJQq73Q673Q6fzwePx6Nm1mKNQRoRUf8TcgvT1NSE5ORkv6zZRRdd1GMNFhERUTw4HA74fL4ezaTJpY42m63HHpeIiOIn5HLH2267DW+++abf7X/84x9x2223ReWkiIiIEpEYjOzJxUO4/D4RUf8TcpC2Y8cOzJ492+/2q666Cjt27IjKSRERESUiESjFI5PGII2IqP8IOUjr7Ow0HEF0u91ob2+PykkRERElonhm0riyIxFR/xHyFf+yyy7Dyy+/7Hf7iy++iKlTp0blpIiIiBIRM2lERNQTQl7p4ze/+Q2++93v4ssvv8R3vvMdAMDf/vY37Nq1Cx988EHUT5CIiChRxGNDa25kTUTU/4ScSZs1axa2b9+OoUOH4o9//CP+/Oc/46KLLsK+fftwxRVXxOIciYiIEoIod2QmjYiIYimsNfMnT56M3//+99E+lz6rq6sLXV1d8T4NIiKKkKIo8Hq96OjosHZd7+qCQxfQebu6AKfT8mN2dHTA6/VCURS2JUREvVgo13BLQVpzczOysrLU/w9EHEcXrFy5Ei6XK96nQUREPczZ1YWZn36quW2bzwd3cnKczoiIiOKlo6PD8rGWgrTc3FzU1NRg0KBByMnJMdxMU1EU2Gy2Hi0BISIiIiIi6mssBWl///vfkZeXBwD46KOPYnpCfdH/+3//jxlGIqI+4PTp0zh69Chyc3MxYcKE4H/Q2gqHbun8mYsWAenplh/z66+/xqlTpzB06FAMHz48xDMmIqJE0dzcjH/7t3+zdKylIO3KK69U/7+0tBRDhw71y6YpioKqqqoQTrP/SE5ORjJLW4iIej2XywWHwwGbzWbtuu52A7oFPxzJyUAIbYLNZoPD4UBKSgrbEiKiXiyUa3jIqzuWlpbizJkzfrefPXsWpaWlod4dERFRrxGPzay5BD8RUf8TcpAm5p7ptbS0cHEMIiLq07iZNRER9QTLS/AvWrQIQHfZxdKlS5GWlqb+zuv1YseOHZg8eXLUT5CIiChRxCOTxiCNiKj/sRyk7d27F0B3Jm3//v2amsrk5GRMmjQJP/3pT6N/hkRERAnC/v8vAiJKEHsCgzQiov7HcpAmVnW855578Oyzz3K1QiIi6ndEoOTz+UzL/6NNBGl2e8gzFIiIqJcK+Yq/bt06TYDW3NyMt99+G4cPH47qiRERESUaOVDqqWwaM2lERP1PyEHarbfeiueffx4A0N7ejmnTpuHWW2/FxIkTsXnz5qifIBERUaKIR5DG1R2JiPqfkIO0//3f/8UVV1wBAHjrrbegKArOnTuH5557Dr/+9a+jfoJERESJwmazqSWOPbXCIzNpRET9T8hBWlNTE/Ly8gAA7733Hm655RakpaXhuuuuw7Fjx0I+gdWrV6O0tBQulwtTp07FJ598EvD4F154AePGjUNqairGjBmD9evXa37vdruxfPlyjBw5Ei6XC5MmTcJ7772nOcbj8WDJkiUoLS1FamoqRowYgeXLl2tGRe+++261MRb/Lr/88pCfHxER9S3yvLRYUxSFmTQion7I8sIhwtChQ7F9+3bk5eXhvffew5tvvgkAaGxsDHmftE2bNmHhwoVYvXo1Zs2ahZdeeglz587FoUOHMGzYML/j16xZg8WLF+OVV17BZZddhp07d+KBBx5Abm4ubrjhBgDAkiVLsHHjRrzyyisYO3Ys3n//fdx0003Ytm0bpkyZAgB46qmn8OKLL+KNN97AxRdfjN27d+Oee+5BdnY2Hn30UfXxrr32Wqxbt079OZRdwomIqG/qyRUe5WwdgzQiov4j5CBt4cKFuOOOO5CRkYGSkhJcddVVALrLICdOnBjSfa1atQr33Xcf7r//fgDAM888g/fffx9r1qzBihUr/I7fsGEDHnzwQSxYsAAAMGLECHz22Wd46qmn1CBtw4YNeOKJJzBv3jwAwI9+9CO8//77WLlyJTZu3AgA2L59O+bPn4/rrrsOADB8+HD853/+J3bv3q15vJSUFBQWFob0nIiIqG8TQVpPlDvKj9ETK0kSEVFiCLnc8eGHH8b27duxdu1abN26VW2sRowYEdKctK6uLuzZswdz5szR3D5nzhxs27bN8G86Ozv9snWpqanYuXMn3G53wGO2bt2q/vzNb34Tf/vb33D06FEAwJdffomtW7eqgZ3wj3/8A4MGDcLo0aPxwAMPoK6uzvLzIyKivqknyx3l+WgM0oiI+o+QM2kAMG3aNEybNk1zm8hKWVVfXw+v14uCggLN7QUFBaitrTX8m2uuuQavvvoqbrzxRlx66aXYs2cP1q5dC7fbjfr6ehQVFeGaa67BqlWr8K1vfQsjR47E3/72N7zzzjua0cif/exnaGpqwtixY+FwOOD1evGb3/wGP/jBD9Rj5s6di+9///soKSlBeXk5li5dim9/+9vYs2cPUlJSDM+vs7MTnZ2d6s/Nzc0hvSZERJT44lHuyFJHIqL+xVKQtmjRIvzqV79Ceno6Fi1aFPDYVatWhXQC+pHBQJuDLl26FLW1tbj88suhKAoKCgpw991347e//a3agD377LN44IEHMHbsWNhsNowcORL33HOPZm7Zpk2bsHHjRvzhD3/AxRdfjC+++AILFy5EcXEx7rrrLgBQSyoBYMKECZg2bRpKSkrwl7/8BTfffLPh+a1YsQK//OUvQ3r+RETUu/RkkMZFQ4iI+idLQdrevXvVcsK9e/dG5YHz8/PhcDj8smZ1dXV+2TUhNTUVa9euxUsvvYTTp0+jqKgIL7/8MjIzM5Gfnw8AGDhwIN5++210dHSgoaEBxcXF+PnPf47S0lL1fh577DH8/Oc/x2233QYAmDhxIioqKrBixQo1SNMrKipCSUlJwBUsFy9erAlim5ubMXToUGsvCBER9QoiYOrJOWkM0oiI+hdLQdpHH31k+P+RSE5OxtSpU7FlyxbcdNNN6u1btmzB/PnzA/6t0+nEkCFDAABvvvkmrr/+es0GowDgcrkwePBguN1ubN68Gbfeeqv6u7a2Nr/jHQ5HwFHRhoYGVFVVoaioyPSYlJQU01JIIiLqG1juSEREsRbywiH33nsvzp8/73d7a2sr7r333pDua9GiRXj11Vexdu1afPXVV/jJT36CyspKPPTQQwC6M1M//OEP1eOPHj2KjRs34tixY9i5cyduu+02HDhwAE8++aR6zI4dO/Bf//VfKCsrwyeffIJrr70WPp8Pjz/+uHrMDTfcgN/85jf4y1/+ghMnTuCtt97CqlWr1GCxpaUFP/3pT7F9+3acOHEC//jHP3DDDTcgPz9fE1ASEVH/wyCNiIhiLeSFQ9544w3827/9GzIzMzW3t7e3Y/369Vi7dq3l+1qwYAEaGhqwfPly1NTUYMKECXj33XdRUlICAKipqUFlZaV6vNfrxcqVK3HkyBE4nU7Mnj0b27Ztw/Dhw9VjOjo6sGTJEpSVlSEjIwPz5s3Dhg0bkJOTox7zu9/9DkuXLsXDDz+Muro6FBcX48EHH8S//Mu/AOhuDPfv34/169fj3LlzKCoqwuzZs7Fp0ya/501ERP1LPJbg11d/EBFR32ZTFEWxcmBzczMURUFubi6OHTuGgQMHqr/zer3485//jJ///Oc4depUzE62t2lubkZ2djaampqQlZUV79MhIqIoOHbsGKqrq1FSUqKZ72yotRV4+mntbY89BqSnW3qsyspKlJWVoaCgAOPGjQvzjImIKBGEEhtYzqTl5OTAZrPBZrNh9OjRfr+32Wxc2ZCIiPo8ru5IRESxZjlI++ijj6AoCr797W9j8+bNyMvLU3+XnJyMkpISFBcXx+QkiYiIEkU8yh0ZpBER9S+Wg7Qrr7wSAFBeXo6hQ4eyPp6IiPolETBx4RAiIoqVkBcOEYt6tLW1obKyEl1dXZrfX3LJJdE5MyIiogTE1R2JiCjWQg7Szpw5g3vuuQd//etfDX/fE+UfRERE8cLVHYmIKNZCvuovXLgQjY2N+Oyzz5Camor33nsPb7zxBkaNGoX//u//jsU5EhERJQyWOxIRUayFnEn7+9//jnfeeQeXXXYZ7HY7SkpKcPXVVyMrKwsrVqzAddddF4vzJCIiSggsdyQiolgLOZPW2tqKQYMGAQDy8vJw5swZAMDEiRPx+eefR/fsiIiIEgyX4CciolgLOUgbM2YMjhw5AgCYPHkyXnrpJVRXV+PFF19EUVFR1E+QiIgokYiAiUvwExFRrIRc7rhw4ULU1NQAAP71X/8V11xzDX7/+98jOTkZr7/+erTPj4iIKKGw3JGIiGIt5CDtjjvuUP9/ypQpOHHiBA4fPoxhw4YhPz8/qidHRESUaOIRpHF1RyKi/iXkq/7y5cvR1tam/pyWloZLL70U6enpWL58eVRPjoiIKNH01BL8iqIwk0ZE1E+FHKT98pe/REtLi9/tbW1t+OUvfxmVkyIiIkpUPbUEv6Iofo9JRET9Q8hBmqIosNlsfrd/+eWXyMvLi8pJERERJSqRSVMURRNIRZucqWO5IxFR/2J5Tlpubi5sNhtsNhtGjx6tCdS8Xi9aWlrw0EMPxeQkiYiIEoUcMHm9XiQlhTy92xKRqbPZbAzSiIj6GcstyzPPPANFUXDvvffil7/8JbKzs9XfJScnY/jw4ZgxY0ZMTpKIiChRyAFTLEseOR+NiKj/shyk3XXXXQCA0tJSzJo1K2Yjh0RERIlMZLZ8Pl+PBGnMohER9T+WIy3RGF155ZXqbadPn8aLL76I1tZW/NM//RO++c1vxuQkiYiIEokI0mK5wqMIAJlJIyLqfywHaffddx+cTidefvllAMD58+dx2WWXoaOjA0VFRfiP//gPvPPOO5g3b17MTpaIiCgROBwOeDweljsSEVFMWK6h+PTTT/G9731P/Xn9+vXweDw4duwYvvzySyxatAhPP/10TE6SiIgokfTEhtYsdyQi6r8sX/mrq6sxatQo9ee//e1vuOWWW9QFRO666y4cPHgw+mdIRESUYHoiSGO5IxFR/2U5SHO5XGhvb1d//uyzz3D55Zdrfm+0yTUREVFfI4K0WM5JYyaNiKj/snzlnzRpEjZs2AAA+OSTT3D69Gl8+9vfVn//9ddfo7i4OPpnSERElGBEdouZNCIiigXLC4csXboU8+bNwx//+EfU1NTg7rvvRlFRkfr7t956C7NmzYrJSRIRESWSnpyTxiCNiKj/sRykzZ49G3v27MGWLVtQWFiI73//+5rfT548Gd/4xjeifoJERESJhuWOREQUSyHtSD1+/HiMHz/e8Hf/5//8n6icEBERUaJjuSMREcUSh+eIiIhCxHJHIiKKJQZpREREIWK5IxERxRKv/ERERCFiuSMREcUSgzQiIqIQsdyRiIhiiUEaERFRiHqi3FEEgCx3JCLqfyyv7jhixAhLx5WVlYV9MkRERL0BM2lERBRLloO0EydOoKSkBLfffjsGDRoUy3MiIiJKaD0xJ40LhxAR9V+Wg7Q333wT69atw6pVqzB37lzce++9mDdvHhsPIiLqd3oik8aFQ4iI+i/LEdatt96Kv/71rzh+/DimTp2Kn/zkJxgyZAh+/vOf49ixY7E8RyIiooTSk0vwM0gjIup/Qk6DDR48GE888QSOHTuG//zP/8SOHTswduxYNDY2xuL8iIiIEg7LHYmIKJYslzvKOjo68Kc//Qlr167Fjh078P3vfx9paWnRPjciIqKEFOtyR0VRoCgKAGbSiIj6o5CCtB07duC1117Dpk2bMHLkSNx7773YvHkzcnNzY3V+RERECSfW5Y7y/TJIIyLqfywHaRdffDHq6upw++2345NPPsEll1wSy/MiIiJKWElJ3c1nTwRpNpstJo9BRESJy3KQ9tVXXyE9PR3r16/Hhg0bTI87e/ZsVE6MiIgoUYnsltfrhaIoUQ+k5JUdGaQREfU/loO0devWxfI8iIiIeg2RSVMUBT6fL+oliVw0hIiof7McpN11112xPA8iIqJeQw6ePB5P1IM07pFGRNS/hTxEpygKdu/ejT/96U/YvHkzPv/8c3UFqnCsXr0apaWlcLlcmDp1Kj755JOAx7/wwgsYN24cUlNTMWbMGKxfv17ze7fbjeXLl2PkyJFwuVyYNGkS3nvvPc0xHo8HS5YsQWlpKVJTUzFixAgsX75cs0qXoihYtmwZiouLkZqaiquuugoHDx4M+3kSEVHfYbPZYjovjXukERH1byGt7vjRRx/hvvvuQ0VFhRqY2Ww2lJaWYu3atfjWt74V0oNv2rQJCxcuxOrVqzFr1iy89NJLmDt3Lg4dOoRhw4b5Hb9mzRosXrwYr7zyCi677DLs3LkTDzzwAHJzc3HDDTcAAJYsWYKNGzfilVdewdixY/H+++/jpptuwrZt2zBlyhQAwFNPPYUXX3wRb7zxBi6++GLs3r0b99xzD7Kzs/Hoo48CAH77299i1apVeP311zF69Gj8+te/xtVXX40jR44gMzMzpOdJRER9j8PhgMfjgcfjifp9s9yRiKh/sykW02DHjx/HpEmTMH36dDz66KMYO3YsFEXBoUOH8Nxzz2H37t3Yt28fRowYYfnBp0+fjksvvRRr1qxRbxs3bhxuvPFGrFixwu/4mTNnYtasWXj66afV2xYuXIjdu3dj69atAIDi4mI88cQTeOSRR9RjbrzxRmRkZGDjxo0AgOuvvx4FBQV47bXX1GNuueUWpKWlYcOGDVAUBcXFxVi4cCF+9rOfAQA6OztRUFCAp556Cg8++KCl59fc3Izs7Gw0NTUhKyvL8utCRESJb9euXWhtbcWkSZPMt6JpbQWkNgsA8NhjQHp6wPuuq6vDoUOHkJOTg8mTJ0fnhImIKK5CiQ0sD9E988wzuPzyy/H3v/8d8+fPx5gxYzB27FjcfPPN+OijjzB9+nT8x3/8h+WT7Orqwp49ezBnzhzN7XPmzMG2bdsM/6azsxMul0tzW2pqKnbu3Am32x3wGBHEAcA3v/lN/O1vf8PRo0cBAF9++SW2bt2KefPmAQDKy8tRW1urObeUlBRceeWVpucmHru5uVnzj4iI+iZR7hjLTBrLHYmI+ifLQdo//vEPLFy40PB3NpsNCxcuxEcffWT5gevr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj171Llxa9euhdvtRn19vXrMqlWrcOzYMfh8PmzZsgXvvPMOampq1Pv52c9+hh/84AcYO3YsnE4npkyZgoULF+IHP/gBAKiPH8q5AcCKFSuQnZ2t/hs6dKjl14OIiHoXEUCx3JGIiKLN8tW/srISEydONP39hAkTUFFREfIJ6Pd/CbTfzNKlSzF37lxcfvnlcDqdmD9/Pu6++24AFxrLZ599FqNGjcLYsWORnJyMH//4x7jnnns0o5GbNm3Cxo0b8Yc//AGff/453njjDfz7v/873njjjbDPDQAWL16MpqYm9V9VVZXl14GIiHqXWC4cwtUdiYj6N8tBWktLC9LS0kx/n5aWhra2NssPnJ+fD4fD4ZeZqqur88tgCampqVi7di3a2tpw4sQJVFZWYvjw4cjMzER+fj4AYODAgXj77bfR2tqKiooKHD58GBkZGSgtLVXv57HHHsPPf/5z3HbbbZg4cSLuvPNO/OQnP1HnwRUWFgJASOcGdJdEZmVlaf4REVHfxEwaERHFSkirOx46dMi03E+UG1qVnJyMqVOnYsuWLbjpppvU27ds2YL58+cH/Fun04khQ4YAAN58801cf/31fg2Zy+XC4MGD4Xa7sXnzZtx6663q79ra2vyOdzgc6shlaWkpCgsLsWXLFnVFyK6uLnz88cd46qmnQnqeRETUNzGTRkREsRJSkPad73zHcE80m80WtBTQyKJFi3DnnXdi2rRpmDFjBl5++WVUVlbioYceAtBdPlhdXa3uhXb06FHs3LkT06dPR2NjI1atWoUDBw5oyhR37NiB6upqTJ48GdXV1Vi2bBl8Ph8ef/xx9ZgbbrgBv/nNbzBs2DBcfPHF2Lt3L1atWoV7771XfT4LFy7Ek08+iVGjRmHUqFF48sknkZaWhttvvz2k50hERH0TFw4hIqJYsRyklZeXR/3BFyxYgIaGBixfvhw1NTWYMGEC3n33XZSUlAAAampqUFlZqR7v9XqxcuVKHDlyBE6nE7Nnz8a2bdswfPhw9ZiOjg4sWbIEZWVlyMjIwLx587Bhwwbk5OSox/zud7/D0qVL8fDDD6Ourg7FxcV48MEH8S//8i/qMY8//jja29vx8MMPo7GxEdOnT8cHH3zAPdKIiAgAyx2JiCh2LO+TRqHjPmlERH1XbW0tDh8+jLy8PFxyySXGB4W5T9rBgwdx5swZjBo1CoMHD47SGRMRUTzFZJ+0trY2PPLIIxg8eDAGDRqE22+/PeR5aERERH1FT2TSWO5IRNQ/WQ7S/vVf/xWvv/46rrvuOtx2223YsmULfvSjH8Xy3IiIiBJWLBcOYbkjEVH/ZnlO2n/913/htddew2233QYA+Od//mfMmjULXq+XI31ERNTvxDKTxtUdiYj6N8tDdFVVVbjiiivUn7/xjW8gKSkJp06dismJERERJTJm0oiIKFYsX/29Xi+Sk5M1tyUlJcVkBJGIiCjRyUvwR3sNLmbSiIj6N8vljoqi4O6770ZKSop6W0dHBx566CGkS6tU/dd//Vd0z5CIiCgByQGU1+tVg7ZoYCaNiKh/s9yi3HXXXX63/fM//3NUT4aIiKi3sNvtsNlsUBQl6kGayKQxSCMi6p8styjr1q2L5XkQERH1KjabDQ6HAx6PBx6PR1NpEimWOxIR9W8coiMiIgpTLBYPURRFnePGTBoRUf/Eqz8REVGY5MVDokVk0QAGaURE/RWv/kRERGGKxV5pDNKIiIhXfyIiojDFotxRBGk2mw02my1q90tERL0HgzQiIqIwxTKTxiwaEVH/xRaAiIgoTLHMpDFIIyLqv9gCEBERhYmZNCIiigW2AERERGGK5eqODNKIiPovtgBERERhYrkjERHFAlsAIiKiMLHckYiIYoEtABERUZiYSSMiolhgC0BERBQmZtKIiCgW2AIQERGFSQRpzKQREVE0sQUgIiIKkwjSRGAVDQzSiIiILQAREVGYmEkjIqJYYAtAREQUJjmTpihKVO6TQRoREbEFICIiCpMcSEUrm8YgjYiI2AIQERGFiUEaERHFAlsAIiKiMNlstqjPS2OQRkREbAGIiIgiEO0VHhmkERERWwAiIqIIMJNGRETRxhaAiIgoAgzSiIgo2tgCEBERRUAEUwzSiIgoWtgCEBERRSDamTRxPwzSiIj6L7YAREREEWC5IxERRRtbACIioghwdUciIoo2tgBEREQRYCaNiIiijS0AERFRBGIVpIn7JSKi/odBGhERUQS4uiMREUUbWwAiIqIIsNyRiIiijS0AERFRBLhwCBERRRtbACIioghEM5OmKAqDNCIiYpBGREQUiWgHaQKDNCKi/ivuLcDq1atRWloKl8uFqVOn4pNPPgl4/AsvvIBx48YhNTUVY8aMwfr16zW/d7vdWL58OUaOHAmXy4VJkybhvffe0xwzfPhw2Gw2v3+PPPKIeszdd9/t9/vLL788ek+ciIj6hGgGaXLJJIM0IqL+KymeD75p0yYsXLgQq1evxqxZs/DSSy9h7ty5OHToEIYNG+Z3/Jo1a7B48WK88soruOyyy7Bz50488MADyM3NxQ033AAAWLJkCTZu3IhXXnkFY8eOxfvvv4+bbroJ27Ztw5QpUwAAu3bt0jSmBw4cwNVXX43vf//7mse79tprsW7dOvXn5OTkWLwMRETUi0VzdUc5SLPZbBHfHxER9U5xHaZbtWoV7rvvPtx///0YN24cnnnmGQwdOhRr1qwxPH7Dhg148MEHsWDBAowYMQK33XYb7rvvPjz11FOaY37xi19g3rx5GDFiBH70ox/hmmuuwcqVK9VjBg4ciMLCQvXf//zP/2DkyJG48sorNY+XkpKiOS4vLy82LwQREfVascik2e12BmlERP1Y3IK0rq4u7NmzB3PmzNHcPmfOHGzbts3wbzo7O+FyuTS3paamYufOnXC73QGP2bp1q+l5bNy4Effee69fg/iPf/wDgwYNwujRo/HAAw+grq4u4HPq7OxEc3Oz5h8REfVt0VzdkYuGEBEREMcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTY3ifb7/9Ns6dO4e7775bc/vcuXPx+9//Hn//+9+xcuVK7Nq1C9/+9rfR2dlp+pxWrFiB7Oxs9d/QoUNDeEWIiKg3kjNp8sIf4WCQRkREQAIsHKLPXimKYlrisXTpUsydOxeXX345nE4n5s+frwZXopF89tlnMWrUKIwdOxbJycn48Y9/jHvuuUf9vd5rr72GuXPnori4WHP7ggULcN1112HChAm44YYb8Ne//hVHjx7FX/7yF9PnsnjxYjQ1Nan/qqqqrL4MRETUS4n2RVEUBmlERBQVcWsF8vPz4XA4/LJmdXV1ftk1ITU1FWvXrkVbWxtOnDiByspKDB8+HJmZmcjPzwfQPd/s7bffRmtrKyoqKnD48GFkZGSgtLTU7/4qKirw4Ycf4v777w96vkVFRSgpKcGxY8dMj0lJSUFWVpbmHxER9W1yQBXpvDQGaUREBMQxSEtOTsbUqVOxZcsWze1btmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9BcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXdd0PNtaGhAVVUVioqKLDw7IiLqL+RFPhikERFRNMR1Cf5FixbhzjvvxLRp0zBjxgy8/PLLqKysxEMPPQSgu3ywurpa3Qvt6NGj2LlzJ6ZPn47GxkasWrUKBw4cwBtvvKHe544dO1BdXY3Jkyejuroay5Ytg8/nw+OPP655bJ/Ph3Xr1uGuu+5CUpL2ZWhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abborxq0JERL2Nw+GAx+NhkEZERFER1yBtwYIFaGhowPLly1FTU4MJEybg3XffRUlJCQCgpqYGlZWV6vFerxcrV67EkSNH4HQ6MXv2bGzbtg3Dhw9Xj+no6MCSJUtQVlaGjIwMzJs3Dxs2bEBOTo7msT/88ENUVlbi3nvv9Tsvh8OB/fv3Y/369Th37hyKioowe/ZsbNq0CZmZmTF5LYiIqPcSQVqkKzwySCMiIgCwKZHOciZTzc3NyM7ORlNTE+enERH1YTt37kRbWxsmT56sHRRsbQWeflp78GOPAenphvdTW1uLw4cPIy8vD5dccknsTpiIiHpcKLEBh+qIiIgiFK0NrZlJIyIigEEaERFRxBikERFRNLEVICIiipAIqhikERFRNLAVICIiihAzaUREFE1xXd2RiIioLxBBWrirO7a2tuLcuXNqkMcgjYiof2OQRkREFKFIM2nHjx9HY2MjUlJSADBIIyLq79gKEBERRSjSIM3tdgMAOjs7ATBIIyLq79gKEBERRSjSIE1fJskgjYiof2MrQEREFKFIV3dkkEZERDK2AkRERBGKdOEQBmlERCRjK0BERBQhljsSEVE0sRUgIiKKkAjSPB5PWH+vD9LE/RERUf/EII2IiChCTqcTQHhBmqIozKQREZEGWwEiIqIIiSBNLKUfCkVR/G5jkEZE1L+xFSAiIoqQnEkzCroCkbNoBQUFcDqdSE9Pj+r5ERFR75IU7xMgIiLq7ZKSLjSnbrcbycnJlv9WDtLGjh0LALDZbNE7OSIi6nWYSSMiIoqQzWZTA7VQSx5FkGaz2dR/RETUvzFIIyIiioJw56WJII3z0IiISGCLQEREFAXhrvDIII2IiPTYIhAREUVBuJk0sdAIgzQiIhLYIhAREUUByx2JiCha2CIQERFFQaQLhzBIIyIigS0CERFRFDCTRkRE0cIWgYiIKAoYpBERUbSwRSAiIooCru5IRETRwhaBiIgoCphJIyKiaGGLQEREFAUM0oiIKFrYIhAREUWBvLqj2PvMCgZpRESkxxaBiIgoCkQmDQhtXhqDNCIi0mOLQEREFAV2ux0OhwNAaCWPDNKIiEiPLQIREVGUhLPCI4M0IiLSY4tAREQUJeEsHsIgjYiI9NgiEBERRQmDNCIiiga2CERERFHCII2IiKKBLQIREVGUyMvwW8UgjYiI9NgiEBERRQkzaUREFA1sEYiIiKIkkiDNZrPF5JyIiKj3YZBGREQUJaLc0ev1Wv4bZtKIiEiPLQIREVGUiM2sGaQREVEk2CIQERFFiQi0ROBlBYM0IiLSY4tAREQUJcykERFRNMS9RVi9ejVKS0vhcrkwdepUfPLJJwGPf+GFFzBu3DikpqZizJgxWL9+veb3brcby5cvx8iRI+FyuTBp0iS89957mmOGDx8Om83m9++RRx5Rj1EUBcuWLUNxcTFSU1Nx1VVX4eDBg9F74kRE1OeIQItBGhERRSKuLcKmTZuwcOFCPPHEE9i7dy+uuOIKzJ07F5WVlYbHr1mzBosXL8ayZctw8OBB/PKXv8QjjzyCP//5z+oxS5YswUsvvYTf/e53OHToEB566CHcdNNN2Lt3r3rMrl27UFNTo/7bsmULAOD73/++esxvf/tbrFq1Cs8//zx27dqFwsJCXH311Th//nyMXg0iIurtRCaN5Y5ERBQJm6IoSrwefPr06bj00kuxZs0a9bZx48bhxhtvxIoVK/yOnzlzJmbNmoWnn35avW3hwoXYvXs3tm7dCgAoLi7GE088ocmK3XjjjcjIyMDGjRsNz2PhwoX4n//5Hxw7dgw2mw2KoqC4uBgLFy7Ez372MwBAZ2cnCgoK8NRTT+HBBx+09Pyam5uRnZ2NpqYmZGVlWfobIiLqvTo7O7F9+3bYbDZceeWVQGsrILVZAIDHHgPS09Uft27dCo/Hg2984xtIS0vr4TMmIqKeEkpsELdhu66uLuzZswdz5szR3D5nzhxs27bN8G86Ozvhcrk0t6WmpmLnzp3qnjRmx4ggzug8Nm7ciHvvvVfdo6a8vBy1tbWac0tJScGVV15pem5EREQiG6YoCqyOgTKTRkREenFrEerr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj17oCgKdu/ejbVr18LtdqO+vl49ZtWqVTh27Bh8Ph+2bNmCd955BzU1NYb3+fbbb+PcuXO4++671dvE44dybkB3gNjc3Kz5R0RE/YcodwSszUtTFIVBGhER+Yl7iyCyV4KiKH63CUuXLsXcuXNx+eWXw+l0Yv78+WpwJRrGZ599FqNGjcLYsWORnJyMH//4x7jnnns0Dafstddew9y5c1FcXBzRuQHAihUrkJ2drf4bOnSo6bFERNT3yG2ElXlpcraNQRoREQlxaxHy8/PhcDj8MlN1dXV+GSwhNTUVa9euRVtbG06cOIHKykoMHz4cmZmZyM/PBwAMHDgQb7/9NlpbW1FRUYHDhw8jIyMDpaWlfvdXUVGBDz/8EPfff7/m9sLCQgAI6dwAYPHixWhqalL/VVVVBX8hiIioz7DZbCEtwy8HcgzSiIhIiFuLkJycjKlTp6orKwpbtmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9xcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXed5vbS0lIUFhZqzq2rqwsff/xxwHNLSUlBVlaW5h8REfUvoSzDLwdpgSo1iIiof0mK54MvWrQId955J6ZNm4YZM2bg5ZdfRmVlJR566CEA3Zmp6upqdS+0o0ePYufOnZg+fToaGxuxatUqHDhwAG+88YZ6nzt27EB1dTUmT56M6upqLFu2DD6fD48//rjmsX0+H9atW4e77roLSUnal8Fms2HhwoV48sknMWrUKIwaNQpPPvkk0tLScPvtt8f4VSEiot7M4XDA7XZ3B2AmpfaCPB+NQRoREQlxDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTmax/7www9RWVmJe++91/DcHn/8cbS3t+Phhx9GY2Mjpk+fjg8++ACZmZlRfx2IiKjv0JQ7hhCkERERCXHdJ62v4z5pRET9z549e3D+/HlMnDgRA1yugPuktbS0YPfu3UhOTg5a6k9ERL1br9gnjYiIqC8KZ+EQZtKIiEjGVoGIiCiKwlk4hEEaERHJ2CoQERFFkcikWdknjUEaEREZYatAREQURSx3JCKiSLFVICIiiiIRcDGTRkRE4WKrQEREFEXMpBERUaTYKhAREUURFw4hIqJIsVUgIiKKIi4cQkREkWKrQEREFEUsdyQiokglxfsEqLshd7vd8T4NoqCcTqfaASUiY1w4hIiIIsUgLY4URUFtbS3OnTsX71MhsiwnJweFhYWw2WzxPhWihBROJo3fJyIikjFIiyMRoA0aNAhpaWlspCmhKYqCtrY21NXVAQCKiorifEZEiYmZNCIiihSDtDjxer1qgDZgwIB4nw6RJampqQCAuro6DBo0iKWPRAY4J42IiCLFViFOxBy0tLS0OJ8JUWjEZ5bzKImMcQl+IiKKFFuFOGOJI/U2/MwSBcYl+ImIKFJsFYiIiKIolHJHRVEAMEgjIiIttgrUp5w4cQI2mw1ffPFFzB9r2bJlmDx5cswfh4h6F3nhEBGEmWEmjYiIjLBVoJDcfffdsNlssNlscDqdGDFiBH7605+itbUVwIUgSfzLzMzExRdfjEceeQTHjh3T3Nfrr78Om82GcePG+T3OH//4R9hsNgwfPjzmz+mqq67CwoULY/44RNQ/iEyaoihBgzSRbWOQRkREMrYKFLJrr70WNTU1KCsrw69//WusXr0aP/3pTzXHfPjhh6ipqcGXX36JJ598El999RUmTZqEv/3tb5rj0tPTUVdXh+3bt2tuX7t2LYYNGxbz50JEFG1ywBWs5FH8niulEhGRjEFaAlEUBV1dXT3+L9hIr15KSgoKCwsxdOhQ3H777bjjjjvw9ttva44ZMGAACgsLMWLECMyfPx8ffvghpk+fjvvuu0/TaUlKSsLtt9+OtWvXqredPHkS//jHP3D77bcHPZedO3diypQpcLlcmDZtGvbu3et3zKFDhzBv3jxkZGSgoKAAd955J+rr6wF0ZwY//vhjPPvss2r278SJEyG9HrJ169Zh3LhxcLlcGDt2LFavXq3+bsaMGfj5z3+uOf7MmTNwOp346KOPwn5MIkosdrtdXWAn2OIh4vcM0oiISMZ90hKI2+3GihUrevxxFy9ejOTk5LD/PjU1Nehy7Ha7HY8++ihuuukm7NmzB9/4xjfU391333341re+hWeffRZpaWl4/fXXce2116KgoCDgfba2tuL666/Ht7/9bWzcuBHl5eV49NFHNcfU1NTgyiuvxAMPPIBVq1ahvb0dP/vZz3Drrbfi73//O5599lkcPXoUEyZMwPLlywEAAwcODOt1eOWVV/Cv//qveP755zFlyhTs3bsXDzzwANLT03HXXXfhjjvuwNNPP40VK1aoHbhNmzahoKAAV155ZViPSUSJyeFwwOPxMJNGRERhYSaNIrJz50784Q9/wHe+852gx44dOxYA/DJVkydPxsiRI/GnP/0JiqLg9ddfx7333hv0/n7/+9/D6/Vi7dq1uPjii3H99dfjscce0xyzZs0aXHrppXjyyScxduxYTJkyBWvXrsVHH32Eo0ePIjs7G8nJyUhLS0NhYSEKCwvD7iz96le/wsqVK3HzzTejtLQUN998M37yk5/gpZdeAgAsWLAAp06dwtatW9W/+cMf/oDbb7+d81GI+hh58ZBAOCeNiIiMMJOWQJxOJxYvXhyXxw3F//zP/yAjIwMejwdutxvz58/H7373u6B/J8oqjfbZuvfee7Fu3ToMGzYMLS0tmDdvHp5//vmA9yfmuckbgs+YMUNzzJ49e/DRRx8hIyPD7++//vprjB49Ouh5W3HmzBlUVVXhvvvuwwMPPKDe7vF4kJ2dDaA7Q3f11Vfj97//Pa644gqUl5dj+/btWLNmTVTOgYgSh9Vl+FnuSERERhikJRCbzRZR2WFPmT17NtasWQOn04ni4mLLQd5XX30FACgtLfX73R133IHHH38cy5Ytww9/+EMkJQX/aFqZS+fz+XDDDTfgqaee8vtdUVGRhbO2RnS0XnnlFUyfPl3zO7nzdccdd+DRRx/F7373O/zhD3/AxRdfjEmTJkXtPIgoMYjMWKAgTVEUljsSEZEhBmkUsvT0dFx00UUh/Y3P58Nzzz2H0tJSTJkyxe/3eXl5+Kd/+if88Y9/xIsvvmjpPsePH48NGzagvb0dqampAIDPPvtMc8yll16KzZs3Y/jw4aaBX3JysqVNZwMpKCjA4MGDUVZWhjvuuMP0uBtvvBEPPvgg3nvvPfzhD3/AnXfeGdHjElFiEkFXoHJH+XcsdyQiIhlbBYqJhoYG1NbWoqysDP/93/+N7373u9i5cydee+010xHj119/HfX19erctWDEXK777rsPhw4dwrvvvot///d/1xzzyCOP4OzZs/jBD36AnTt3oqysDB988AHuvfdeNTAbPnw4duzYgRMnTqC+vl7tOI0dOxZvvfWW5ee8bNkyrFixQl2MZP/+/Vi3bh1WrVqlHpOeno758+dj6dKl+OqrrzQrWP7whz+MS7krEUWflXJH+XfMpBERkYxBGsXEd7/7XRQVFWHixIn4+c9/jnHjxmHfvn2YPXu26d+kpqZiwIABlh8jIyMDf/7zn3Ho0CFMmTIFTzzxhF9ZY3FxMT799FN4vV5cc801mDBhAh599FFkZ2erI9c//elP4XA4MH78eAwcOBCVlZUAgCNHjqCpqcny+dx///149dVX8frrr2PixIm48sor8frrr/uVd95xxx348ssvccUVV2j2gqusrERNTY3lxyOixCWuL4HKssWAkLxkPxEREQDYlFA3ySLLmpubkZ2djaamJmRlZWl+19HRgfLycpSWlsLlcsXpDIlCx88uUXCHDh1CXV0dRhUXY/Af/qD95WOPAenpaG1txa5du+B0OjFr1qz4nCgREfWYQLGBHjNpREREUWZlCX4uv09ERGbYMhAREUWZlTlpXH6fiIjMMEgjIiKKMitL8HP5fSIiMsMgjYiIKMpE4HX+/HmcPXsWbrfb7xiWOxIRkRm2DET/X3t3Hldzvv8B/HU67YuypE6kRSj7kowiNRNlzXLJviTGDBczY5s7Lo1JY4sGU3cYlTGuZYRxQ6SxLxPRDGqUFDI1/SwJaVGf3x9u3+uoKDp18Ho+Hucxzvf7+X6/n8+7M+ec9/ksXyKialaapOXm5iI3N7fclWLZk0ZERBVhkkZERFTNjI2NIZPJXjg3jXPSiIioIpq1XQEiIqK3TZ06deDq6op7GRnIBfDkyZMyZdiTRkREFWFPGhERkQrIZDJoa2sDKL8njXPSiIioIvxkICIiUhEdHR0AT4c2CiGU9nG4IxERVYRJGlElREREwMTE5LXOYW1tjeDg4GqpDxG9GTQ1/zer4PneNA53JCKiijBJoyoZP348ZDIZZDIZtLS0YGtri1mzZuHRo0cAgPT0dGm/TCaDkZERWrVqhalTpyIlJUXpXBEREZDJZHBwcChzne3bt0Mmk8Ha2vqV6yqTybB79+4qH1deMuXj44Pk5ORKHV9RQnf27FlMnjy5yvUhojeXTCaTErXn56UxSSMiooowSaMq8/LyQmZmJq5du4aAgACEhIRg1qxZSmUOHTqEzMxM/PbbbwgMDERSUhLatWuH2NhYpXIGBgbIzs7G6dOnlbaHhYWhSZMmKm9LZenp6aFhw4avdQ5TU1Po6+tXU42I6E1R0QqPnJNGREQV4SeDGhFCoLi4uMYfz8+TeBkdHR2Ym5vD0tISI0eOxKhRo8r0WNWvXx/m5uawtbWFt7c3Dh06hC5dumDixIlKX1Q0NTUxcuRIhIWFSdsyMjJw5MgRjBw58oX1KCwsxLRp06BQKKCrqwtra2t8/fXXACD1wA0aNEipRy41NRXe3t4wMzODoaEhOnfujEOHDknndHNzw/Xr1/HJJ59IvYFA2d6x3377De7u7jAyMkKdOnXQqVMnnDt3DkeOHMGECRNw//596Xh/f3+pTs/20OXk5GDy5MkwMzODrq4uWrdujaioKADA9evX0b9/f9StWxcGBgZo1aoV9u3b99K/DRGpn4qSNM5JIyKiinAJfjVSUlKC48eP1/h1u3fv/lpfEvT09FBUVPTCMhoaGpgxYwYGDRqE+Ph4ODk5SfsmTpwIV1dXfPPNN9DX10dERAS8vLxgZmb2wnOuXr0ae/bswfbt29GkSRPcvHkTN2/eBPB0aGHDhg0RHh4OLy8vqX0PHz5Enz59EBAQAF1dXWzcuBH9+/fHlStX0KRJE+zcuRPt2rXD5MmTMWnSpAqvPWrUKHTo0AGhoaGQy+VISEiAlpYWnJ2dERwcjAULFuDKlSsAAENDwzLHl5SUoHfv3njw4AF+/PFHNG3aFImJiVI9p06disLCQhw7dgwGBgZITEws9zxEpP443JGIiKqq1nvSQkJCYGNjA11dXXTq1OmlScq3334LBwcH6OnpoUWLFvjhhx+U9hcVFWHRokVo2rQpdHV10a5dO0RHR5c5z61btzB69GjUr18f+vr6aN++PeLj46X9z869Kn2899571dPot0hcXBz+/e9/44MPPnhpWXt7ewBP5609q3379mjatCl27NgBIQQiIiLg6+v70vPduHEDzZo1Q7du3WBlZYVu3bphxIgRAJ4OLQQAExMTmJubS8/btWuHDz/8EG3atEGzZs0QEBAAW1tb7NmzBwBQr149yOVyGBkZwdzcHObm5hVe28PDA/b29mjWrBmGDh2Kdu3aQVtbW7qJbenx5SVXhw4dQlxcHHbu3ImePXvC1tYW/fr1Q+/evaXzu7i4oE2bNtI+V1fXl8aEiNQPhzsSEVFV1WpP2rZt2zBz5kyEhITAxcUF3333HXr37o3ExMRy5yOFhobi888/x/r169G5c2fExcVh0qRJqFu3Lvr37w8AmD9/Pn788UesX78e9vb2OHDgAAYNGoRTp06hQ4cOAIB79+7BxcUF7u7u2L9/Pxo2bIjU1NQyiz14eXkhPDxcel56vxtV0dDQQPfu3VV6jYquWxVRUVEwNDTEkydPUFRUBG9vb6xZs+alx5UOqywdQvgsX19fhIeHo0mTJlJv19q1a194vvHjx6Nnz55o0aIFvLy80K9fP/Tq1euFxzx69AhffvkloqKi8Oeff+LJkyd4/Pgxbty48dL6P+vTTz+Fn58fNm3aBA8PDwwdOhRNmzat9PEJCQlo3LgxmjdvXu7+6dOn46OPPsLBgwfh4eGBIUOGoG3btlWqIxGph5claexJIyKi59Xqz3crV67ExIkT4efnBwcHBwQHB8PS0hKhoaHllt+0aRM+/PBD+Pj4wNbWFsOHD8fEiROxdOlSpTL/+Mc/0KdPH9ja2uKjjz6Cp6cngoKCpDJLly6FpaUlwsPD4eTkBGtra3zwwQdlvmSXzr0qfdSrV081gfgvmUwGuVxe44/ykqYXcXd3R0JCAq5cuYL8/Hzs3LmzUotqJCUlAQBsbGzK7Bs1ahTOnDkDf39/jB07VmnZ6op07NgRaWlp+Oqrr/D48WMMGzYMf/vb3154zOzZsxEZGYnFixfj+PHjSEhIQJs2bVBYWPjS6z3L398fly9fRt++ffHLL7+gZcuW2LVrV6WP19PTe+F+Pz8/XLt2DWPGjMHFixfh6OhYqUSYiNQP56QREVFV1VqSVlhYiPj4+DI9H7169cKpU6fKPaagoAC6urpK2/T09BAXFyfNiaqozIkTJ6Tne/bsgaOjI4YOHYqGDRuiQ4cOWL9+fZnrHTlyBA0bNkTz5s0xadIkZGdnv7BNBQUFyM3NVXq8jQwMDGBnZwcrKytoaWlV6piSkhKsXr0aNjY2Uo/ms+rVq4cBAwbg6NGjlRrqWKpOnTrw8fHB+vXrsW3bNkRGRuLu3bsAAC0trTJfio4fP47x48dj0KBBaNOmDczNzcsMv9TW1i5zXHmaN2+OTz75BAcPHsTgwYOlXtfKHN+2bVtkZGS8cFl/S0tLTJkyBTt37sRnn31W7muUiNQf56QREVFV1VqSdvv2bRQXF5dZHMLMzAxZWVnlHuPp6Ynvv/8e8fHxEELg3LlzCAsLQ1FREW7fvi2VWblyJVJSUlBSUoKYmBj8/PPPyMzMlM5z7do1hIaGolmzZjhw4ACmTJmC6dOnK81v6927NzZv3oxffvkFQUFBOHv2LN5//30UFBRU2Kavv/4axsbG0sPS0vJ1QvRGu3PnDrKysnDt2jXs2bMHHh4eiIuLw4YNGyr8QhIREYHbt29Lc9deZtWqVdi6dSv++OMPJCcn46effoK5ubk0bNXa2hqxsbHIysrCvXv3AAB2dnbYuXMnEhIS8Ntvv2HkyJHSr9mlrK2tcezYMdy6dUt6XT3r8ePHmDZtGo4cOYLr16/j5MmTOHv2rHS/N2trazx8+BCxsbG4ffs28vLyypyjR48ecHV1xZAhQxATE4O0tDTs379fmj85c+ZMHDhwAGlpaTh//jx++eWXcu8nR0Tqr/Q9Twih9H7DOWlERFSRWv9keH6onRCiwuF3//znP9G7d2+899570NLSgre3N8aPHw/gfx+C33zzDZo1awZ7e3toa2tj2rRpmDBhglJiUFJSgo4dOyIwMBAdOnTAhx9+iEmTJikNs/Tx8UHfvn3RunVr9O/fH/v370dycjL27t1bYVs+//xz3L9/X3qUrjT4LvLw8IBCoUCbNm0wb948ODg44Pfff4e7u3uFx+jp6aF+/fqVvoahoSGWLl0KR0dHdO7cGenp6di3b5/0hScoKAgxMTGwtLSUeu9WrVqFunXrwtnZGf3794enpyc6duyodN5FixYhPT0dTZs2lRYceZZcLsedO3cwduxYNG/eHMOGDUPv3r3x5ZdfAgCcnZ0xZcoU+Pj4wNTUFMuWLSu3/pGRkejcuTNGjBiBli1bYs6cOdKXtuLiYkydOhUODg7w8vJCixYtEBISUunYEJH60NDQkD7XCgoKcP36dRQWFkrzdNmTRkREz5OJqt4kq5oUFhZCX18fP/30EwYNGiRtnzFjBhISEnD06NEKjy0qKsJff/0FhUKBdevWYe7cucjJyVH6NTI/Px937tyBhYUF5s2bh6ioKFy+fBkAYGVlhZ49e+L777+XyoeGhiIgIAC3bt2q8LrNmjWDn58f5s6dW6k25ubmwtjYGPfv30edOnWU9uXn5yMtLU1a2ZLoTcHXLlEVPHoELF+OjIwMPHnyBDKZDNeHDUOj5s2lH/JcXV3Zm0ZE9A54UW7wvFr7VNDW1kanTp0QExOjtD0mJgbOzs4vPFZLSwuNGzeGXC7H1q1b0a9fvzIfcLq6umjUqBGePHmCyMhIeHt7S/tcXFyke1iVSk5OhpWVVYXXvHPnDm7evAmFQlHZJhIREQH437y00t9FHz58KO2r6uJNRET09qvVJfg//fRTjBkzBo6OjujatSvWrVuHGzduYMqUKQCeDh+8deuWNFcsOTkZcXFx6NKlC+7du4eVK1fi0qVL2Lhxo3TOX3/9Fbdu3UL79u1x69Yt+Pv7o6SkBHPmzJHKfPLJJ3B2dkZgYCCGDRuGuLg4rFu3DuvWrQPw9MPT398fQ4YMgUKhQHp6Ov7xj3+gQYMGSr1+RERElfH8kMbSJO1VVtglIqK3X60maT4+Prhz5w4WLVqEzMxMtG7dGvv27ZN6tDIzM5XuX1VcXIygoCBcuXIFWlpacHd3x6lTp2BtbS2Vyc/Px/z583Ht2jUYGhqiT58+2LRpk9I90Dp37oxdu3bh888/x6JFi2BjY4Pg4GCMGjUKwNMPzYsXL+KHH35ATk4OFAoF3N3dsW3bNhgZGdVIbIiI6O1RuhJu6X9LVyTmfDQiIipPrc1JexdwThq9jfjaJaqC/85JKykpwePHj6Gjo4NTLi4o+e+9EvX09NClS5dariQREdWEqsxJq9WeNCIioneBhoYGDAwMADydn1b4zHYiIqLn8dOBiIioBun9txcN4HBHIiIqH5M0IiKiGvTsMGEmaUREVB4maURERDXo2Z40DnckIqLy8NOBiIioBrEnjYiIXoZJGtEz1q1bB0tLS2hoaCA4OLi2q0NEbyEmaURE9DJM0qjKsrKy8Pe//x22trbQ0dGBpaUl+vfvj9jY2NquWrkiIiKU7pNXkdzcXEybNg1z587FrVu3MHnyZNVXjojeOVw4hIiIXoZL8KsLIYC8vNq7vr4+IJO9tFh6ejpcXFxgYmKCZcuWoW3btigqKsKBAwcwdepU/PHHH690+aKiIukmr5XZrgo3btxAUVER+vbtC4VCUW6ZmqwPEb2dtLW1oaGhgZKSEs5JIyKicjFJUxd5ecDy5bV3/dmzgf/ew+dFPv74Y8hkMsTFxUn3/AGAVq1awdfXV3p+48YN/P3vf0dsbCw0NDTg5eWFNWvWwMzMDADg7++P3bt3Y/r06QgICEB6ejqKi4uhoaGB0NBQ7N+/H4cOHcKsWbPw5Zdf4j//+Q/8/f1x+fJlWFhYYNy4cfjiiy+gqfn0JZyTk4M5c+bg559/xv3792FnZ4clS5bA0NAQEyZMAADI/puELly4EP7+/krtioiIkMrZ2toCANLS0hAREVFuPXNzczF79mzs3r0b+fn5cHR0xKpVq9CuXTvpnEuWLMGqVauQl5eHYcOGwdTUFNHR0UhISAAAuLm5oX379krDKgcOHAgTExNEREQAAAoLCzF//nxs3rwZOTk5aN26NZYuXQo3Nzep3jNnzsS2bdswc+ZM3Lx5E926dUN4eLhSohkWFoagoCBcvXoV9erVw5AhQ7B27Vr4+voiOzsbUVFRUtknT56gcePGCAwMVPqbElH1kMlk0NXVRV5eHnvSiIioXPwJjyrt7t27iI6OxtSpU5UStFKlQwqFEBg4cCDu3r2Lo0ePIiYmBqmpqfDx8VEqf/XqVWzfvh2RkZFS4gI8TaK8vb1x8eJF+Pr64sCBAxg9ejSmT5+OxMREfPfdd4iIiMDixYsBACUlJejduzdOnTqFH3/8EYmJiViyZAnkcjmcnZ0RHByMOnXqIDMzE5mZmZg1a1aZuvv4+ODQoUMAgLi4OGRmZsLS0rLCevbt2xdZWVnYt28f4uPj0bFjR3zwwQe4e/cuAGD79u1YuHAhFi9ejHPnzkGhUCAkJKTKMZ8wYQJOnjyJrVu34vfff8fQoUPh5eWFlJQUqUxeXh5WrFiBTZs24dixY7hx44ZSG0NDQzF16lRMnjwZFy9exJ49e2BnZwcA8PPzQ3R0NDIzM6Xy+/btw8OHDzFs2LAq15eIKqd0yCOTNCIiKg970qjSrl69CiEE7O3tX1ju0KFD+P3335GWliYlOps2bUKrVq1w9uxZdO7cGcDTXqJNmzbB1NRU6fiRI0cq9eCMGTMG8+bNw7hx4wA87en66quvMGfOHCxcuBCHDh1CXFwckpKS0Lx5c6lMKWNjY8hkMpibm1dYZz09PdSvXx8AYGpqqlT2+Xr+8ssvuHjxIrKzs6GjowMAWLFiBXbv3o0dO3Zg8uTJCA4Ohq+vL/z8/AAAAQEBOHToEPLz818Yu2elpqZiy5YtyMjIgIWFBQBg1qxZiI6ORnh4OAIDAwE8HYL5r3/9C02bNgUATJs2DYsWLZLOExAQgM8++wwzZsyQtpX+DZydndGiRQts2rQJc+bMAQCEh4dj6NChMDQ0rHRdiahqShcoev79j4iICGCSRlUghADwv2GDFUlKSoKlpaWUoAFAy5YtYWJigqSkJClBsLKyKvcLiqOjo9Lz+Ph4nD17Vuo5A4Di4mLk5+cjLy8PCQkJaNy4sZSgVbfn6xkfH4+HDx9KSV2px48fIzU1FcDTGEyZMkVpf9euXXH48OFKX/f8+fMQQpRpV0FBgdK19fX1pQQNABQKBbKzswEA2dnZ+PPPP/HBBx9UeB0/Pz+sW7cOc+bMQXZ2Nvbu3au2i8AQvS1MTEwqtaARERG9m5ikqQt9/afzwmrz+i/RrFkzyGQyJCUlYeDAgRWWE0KUm8g9v728IZPlbS8pKcGXX36JwYMHlymrq6urtFKaKpRXH4VCgSNHjpQpW5UvXRoaGlLiW6qoqEjpOnK5HPHx8WWGRD3by/X8QiYymUw6b2ViM3bsWMybNw+nT5/G6dOnYW1tje7du1e6HURERERUvZikqQuZrFILd9SmevXqwdPTE99++y2mT59eJnnJycmBiYkJWrZsiRs3buDmzZtSb1piYiLu378PBweHKl+3Y8eOuHLlijSP6nlt27ZFRkYGkpOTy+1N09bWRnFxcZWv+6L6ZGVlQVNTE9bW1uWWcXBwwJkzZzB27Fhp25kzZ5TKmJqaKs0FKy4uxqVLl+Du7g4A6NChA4qLi5Gdnf3KSZORkRGsra0RGxsrnfd59evXx8CBAxEeHo7Tp09LC6gQERERUe3gwiFUJSEhISguLoaTkxMiIyORkpKCpKQkrF69Gl27dgUAeHh4oG3bthg1ahTOnz+PuLg4jB07Fj169CgzlLEyFixYgB9++EFa3TEpKQnbtm3D/PnzAQA9evSAq6srhgwZgpiYGKSlpWH//v2Ijo4GAFhbW+Phw4eIjY3F7du3kfeatzrw8PBA165dMXDgQBw4cADp6ek4deoU5s+fj3PnzgEAZsyYgbCwMISFhSE5ORkLFy7E5cuXlc7z/vvvY+/evdi7dy/++OMPfPzxx8jJyZH2N2/eHKNGjcLYsWOxc+dOpKWl4ezZs1i6dCn27dtX6fr6+/sjKCgIq1evRkpKCs6fP481a9YolfHz88PGjRuRlJQkzf0jIiIiotrBJI2qxMbGBufPn4e7uzs+++wztG7dGj179kRsbCxCQ0MBPB1ut3v3btStWxeurq7w8PCAra0ttm3b9krX9PT0RFRUFGJiYtC5c2e89957WLlyJaysrKQykZGR6Ny5M0aMGIGWLVtizpw5Uu+Zs7MzpkyZAh8fH5iammLZsmWvFQOZTIZ9+/bB1dUVvr6+aN68OYYPH4709HTpFgM+Pj5YsGAB5s6di06dOuH69ev46KOPlM7j6+uLcePGSQmsjY1Nmd6u8PBwjB07Fp999hlatGiBAQMG4Ndff1Wa7/cy48aNQ3BwMEJCQtCqVSv069dPaXVI4GniqVAo4OnpKS1SQkRERES1QyaenxRD1SY3NxfGxsa4f/8+6tSpo7QvPz8faWlpsLGxga6ubi3VkGpS6b3hnr3dgLrIy8uDhYUFwsLCyp379yy+domq4NGjsvfArOR9KYmI6O3yotzgeZyTRvQOKykpQVZWFoKCgmBsbIwBAwbUdpWIiIiI3nlM0ojeYTdu3ICNjQ0aN26MiIgIaGryLYGIiIiotvEbGVEN8ff3h7+/f21XQ4m1tXWZ2wAQERERUe3iwiFERERERERqhElaLWMvBr1p+JolIiIiUi0mabVES0sLAF77nl1ENa30NVv6GiYiIiKi6sU5abVELpfDxMQE2dnZAAB9fX3IZLJarhVRxYQQyMvLQ3Z2NkxMTCCXy2u7SkRERERvJSZptcjc3BwApESN6E1gYmIivXaJiIiIqPoxSatFMpkMCoUCDRs2RFFRUW1Xh+iltLS02INGREREpGJM0tSAXC7nF18iIiIiIgLAhUOIiIiIiIjUCpM0IiIiIiIiNcIkjYiIiIiISI1wTpoKld70Nzc3t5ZrQkREteLRI6CgQHlbbi5QXFw79SEiolpTmhOU5ggvIhOVKUWvJCMjA5aWlrVdDSIiIiIiUhM3b95E48aNX1iGSZoKlZSU4M8//4SRkVGN36g6NzcXlpaWuHnzJurUqVOj137bMbaqxfiqDmOrWoyv6jC2qsPYqhbjqzpvYmyFEHjw4AEsLCygofHiWWcc7qhCGhoaL82SVa1OnTpvzAv3TcPYqhbjqzqMrWoxvqrD2KoOY6tajK/qvGmxNTY2rlQ5LhxCRERERESkRpikERERERERqREmaW8pHR0dLFy4EDo6OrVdlbcOY6tajK/qMLaqxfiqDmOrOoytajG+qvO2x5YLhxAREREREakR9qQRERERERGpESZpREREREREaoRJGhERERERkRphkkZERERERKRGmKS9IUJCQmBjYwNdXV106tQJx48fr7Ds+PHjIZPJyjxatWollSkqKsKiRYvQtGlT6Orqol27doiOjq6JpqilqsQXADZv3ox27dpBX18fCoUCEyZMwJ07d5TKREZGomXLltDR0UHLli2xa9cuVTZBbVV3bC9fvowhQ4bA2toaMpkMwcHBKm6Beqvu+K5fvx7du3dH3bp1UbduXXh4eCAuLk7VzVBL1R3bnTt3wtHRESYmJjAwMED79u2xadMmVTdDLaniPbfU1q1bIZPJMHDgQBXU/M1Q3fGNiIgo93tFfn6+qpuidlTx2s3JycHUqVOhUCigq6sLBwcH7Nu3T5XNUFvVHV83N7dyX7t9+/ZVdVNenyC1t3XrVqGlpSXWr18vEhMTxYwZM4SBgYG4fv16ueVzcnJEZmam9Lh586aoV6+eWLhwoVRmzpw5wsLCQuzdu1ekpqaKkJAQoaurK86fP19DrVIfVY3v8ePHhYaGhvjmm2/EtWvXxPHjx0WrVq3EwIEDpTKnTp0ScrlcBAYGiqSkJBEYGCg0NTXFmTNnaqpZakEVsY2LixOzZs0SW7ZsEebm5mLVqlU11Br1o4r4jhw5Unz77bfiwoULIikpSUyYMEEYGxuLjIyMmmqWWlBFbA8fPix27twpEhMTxdWrV0VwcLCQy+UiOjq6ppqlFlQR21Lp6emiUaNGonv37sLb21vFLVFPqohveHi4qFOnjtJ3i8zMzJpqktpQRWwLCgqEo6Oj6NOnjzhx4oRIT08Xx48fFwkJCTXVLLWhivjeuXNH6TV76dIlIZfLRXh4eA216tUxSXsDODk5iSlTpihts7e3F/PmzavU8bt27RIymUykp6dL2xQKhVi7dq1SOW9vbzFq1KjXr/AbpqrxXb58ubC1tVXatnr1atG4cWPp+bBhw4SXl5dSGU9PTzF8+PBqqvWbQRWxfZaVldU7naSpOr5CCPHkyRNhZGQkNm7c+PoVfoPURGyFEKJDhw5i/vz5r1fZN4yqYvvkyRPh4uIivv/+ezFu3Lh3NklTRXzDw8OFsbFxtdf1TaOK2IaGhgpbW1tRWFhY/RV+w9TE++6qVauEkZGRePjw4etXWMU43FHNFRYWIj4+Hr169VLa3qtXL5w6dapS59iwYQM8PDxgZWUlbSsoKICurq5SOT09PZw4ceL1K/0GeZX4Ojs7IyMjA/v27YMQAn/99Rd27Nih1HV++vTpMuf09PSs9N/sbaCq2NJTNRXfvLw8FBUVoV69etVaf3VWE7EVQiA2NhZXrlyBq6trtbdBXakytosWLYKpqSkmTpyosvqrO1XG9+HDh7CyskLjxo3Rr18/XLhwQWXtUEeqiu2ePXvQtWtXTJ06FWZmZmjdujUCAwNRXFys0vaom5r6TNuwYQOGDx8OAwODaq2/KjBJU3O3b99GcXExzMzMlLabmZkhKyvrpcdnZmZi//798PPzU9ru6emJlStXIiUlBSUlJYiJicHPP/+MzMzMaq2/unuV+Do7O2Pz5s3w8fGBtrY2zM3NYWJigjVr1khlsrKyXvlv9rZQVWzpqZqK77x589CoUSN4eHhUa/3VmSpje//+fRgaGkJbWxt9+/bFmjVr0LNnT5W1Rd2oKrYnT57Ehg0bsH79epXWX92pKr729vaIiIjAnj17sGXLFujq6sLFxQUpKSkqbY86UVVsr127hh07dqC4uBj79u3D/PnzERQUhMWLF6u0PeqmJj7T4uLicOnSpTLfidUVk7Q3hEwmU3ouhCizrTwREREwMTEpM4H6m2++QbNmzWBvbw9tbW1MmzYNEyZMgFwur85qvzGqEt/ExERMnz4dCxYsQHx8PKKjo5GWloYpU6a88jnfZqqILf2PKuO7bNkybNmyBTt37izT8/4uUEVsjYyMkJCQgLNnz2Lx4sX49NNPceTIEVU1QW1VZ2wfPHiA0aNHY/369WjQoIHK6/4mqO7X7nvvvYfRo0ejXbt26N69O7Zv347mzZu/kz+gVXdsS0pK0LBhQ6xbtw6dOnXC8OHD8cUXXyA0NFSl7VBXqvxM27BhA1q3bg0nJ6dqr7cqaNZ2BejFGjRoALlcXuZXhOzs7DK/NjxPCIGwsDCMGTMG2traSvtMTU2xe/du5Ofn486dO7CwsMC8efNgY2NT7W1QZ68S36+//houLi6YPXs2AKBt27YwMDBA9+7dERAQAIVCAXNz81f6m71NVBVbekrV8V2xYgUCAwNx6NAhtG3bVnUNUUOqjK2Ghgbs7OwAAO3bt0dSUhK+/vpruLm5qa5BakQVsf3rr7+Qnp6O/v37S8eUlJQAADQ1NXHlyhU0bdpURS1SLzX1vquhoYHOnTu/Uz1pqoqtQqGAlpaW0o/kDg4OyMrKQmFhYZnvb28rVb928/LysHXrVixatEh1jahm7ElTc9ra2ujUqRNiYmKUtsfExMDZ2fmFxx49ehRXr1594fh8XV1dNGrUCE+ePEFkZCS8vb2rpd5vileJb15eHjQ0lP/XKX1zFUIAALp27VrmnAcPHnzp3+xtoqrY0lOqjO/y5cvx1VdfITo6Go6OjtVcc/VXk69dIQQKCgpes8ZvDlXE1t7eHhcvXkRCQoL0GDBgANzd3ZGQkABLS0vVNEYN1dRrVwiBhISEd+qHM1XF1sXFBVevXpV+WACA5ORkKBSKdyZBA1T/2t2+fTsKCgowevToaqy1itXE6iT0ekqXJN2wYYNITEwUM2fOFAYGBtJqjfPmzRNjxowpc9zo0aNFly5dyj3nmTNnRGRkpEhNTRXHjh0T77//vrCxsRH37t1TZVPUUlXjGx4eLjQ1NUVISIhITU0VJ06cEI6OjsLJyUkqc/LkSSGXy8WSJUtEUlKSWLJkyTu9BH91xragoEBcuHBBXLhwQSgUCjFr1ixx4cIFkZKSUuPtq22qiO/SpUuFtra22LFjh9KyxQ8ePKjx9tUmVcQ2MDBQHDx4UKSmpoqkpCQRFBQkNDU1xfr162u8fbVJFbF93ru8uqMq4uvv7y+io6NFamqquHDhgpgwYYLQ1NQUv/76a423rzapIrY3btwQhoaGYtq0aeLKlSsiKipKNGzYUAQEBNR4+2qbKt8bunXrJnx8fGqsLdWBSdob4ttvvxVWVlZCW1tbdOzYURw9elTaN27cONGjRw+l8jk5OUJPT0+sW7eu3PMdOXJEODg4CB0dHVG/fn0xZswYcevWLVU2Qa1VNb6rV68WLVu2FHp6ekKhUIhRo0aVuY/UTz/9JFq0aCG0tLSEvb29iIyMrImmqJ3qjm1aWpoAUObx/HneFdUdXysrq3Lj++x9Ft8V1R3bL774QtjZ2QldXV1Rt25d0bVrV7F169aaao5aUcV77rPe5SRNiOqP78yZM0WTJk2Etra2MDU1Fb169RKnTp2qqeaoFVW8dk+dOiW6dOkidHR0hK2trVi8eLF48uRJTTRH7agivleuXBEAxMGDB2uiCdVGJgTHEBEREREREakLzkkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiIiIiEiNMEkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiOgtUVhYCDs7O5w8ebJazxsVFYUOHTqgpKSkWs9LRETlY5JGRERqafz48ZDJZGUeV69ere2qqa1169bBysoKLi4u0jaZTIbdu3eXKTt+/HgMHDiwUuft168fZDIZ/v3vf1dTTYmI6EWYpBERkdry8vJCZmam0sPGxqZMucLCwlqonfpZs2YN/Pz8VHLuCRMmYM2aNSo5NxERKWOSRkREaktHRwfm5uZKD7lcDjc3N0ybNg2ffvopGjRogJ49ewIAEhMT0adPHxgaGsLMzAxjxozB7du3pfM9evQIY8eOhaGhIRQKBYKCguDm5oaZM2dKZcrreTIxMUFERIT0/NatW/Dx8UHdunVRv359eHt7Iz09Xdpf2ku1YsUKKBQK1K9fH1OnTkVRUZFUpqCgAHPmzIGlpSV0dHTQrFkzbNiwAUII2NnZYcWKFUp1uHTpEjQ0NJCamlpurM6fP4+rV6+ib9++VYwykJ6eXm6vpZubm1RmwIABiIuLw7Vr16p8fiIiqhomaURE9EbauHEjNDU1cfLkSXz33XfIzMxEjx490L59e5w7dw7R0dH466+/MGzYMOmY2bNn4/Dhw9i1axcOHjyII0eOID4+vkrXzcvLg7u7OwwNDXHs2DGcOHEChoaG8PLyUurRO3z4MFJTU3H48GFs3LgRERERSone2LFjsXXrVqxevRpJSUn417/+BUNDQ8hkMvj6+iI8PFzpumFhYejevTuaNm1abr2OHTuG5s2bo06dOlVqDwBYWloq9VZeuHAB9evXh6urq1TGysoKDRs2xPHjx6t8fiIiqhrN2q4AERFRRaKiomBoaCg97927N3766ScAgJ2dHZYtWybtW7BgATp27IjAwEBpW1hYGCwtLZGcnAwLCwts2LABP/zwg9TztnHjRjRu3LhKddq6dSs0NDTw/fffQyaTAQDCw8NhYmKCI0eOoFevXgCAunXrYu3atZDL5bC3t0ffvn0RGxuLSZMmITk5Gdu3b0dMTAw8PDwAALa2ttI1JkyYgAULFiAuLg5OTk4oKirCjz/+iOXLl1dYr/T0dFhYWJS7b8SIEZDL5UrbCgoKpF43uVwOc3NzAEB+fj4GDhyIrl27wt/fX+mYRo0aKfUYEhGRajBJIyIiteXu7o7Q0FDpuYGBgfRvR0dHpbLx8fE4fPiwUlJXKjU1FY8fP0ZhYSG6du0qba9Xrx5atGhRpTrFx8fj6tWrMDIyUtqen5+vNBSxVatWSomRQqHAxYsXAQAJCQmQy+Xo0aNHuddQKBTo27cvwsLC4OTkhKioKOTn52Po0KEV1uvx48fQ1dUtd9+qVaukZLDU3LlzUVxcXKbsxIkT8eDBA8TExEBDQ3nAjZ6eHvLy8iqsAxERVQ8maUREpLYMDAxgZ2dX4b5nlZSUoH///li6dGmZsgqFAikpKZW6pkwmgxBCaduzc8lKSkrQqVMnbN68ucyxpqam0r+1tLTKnLd0CXs9Pb2X1sPPzw9jxozBqlWrEB4eDh8fH+jr61dYvkGDBlIS+Dxzc/MycTQyMkJOTo7StoCAAERHRyMuLq5MEgoAd+/eVWojERGpBpM0IiJ6K3Ts2BGRkZGwtraGpmbZjzc7OztoaWnhzJkzaNKkCQDg3r17SE5OVurRMjU1RWZmpvQ8JSVFqfeoY8eO2LZtGxo2bPhK878AoE2bNigpKcHRo0fL9HCV6tOnDwwMDBAaGor9+/fj2LFjLzxnhw4dEBoaCiGENAyzKiIjI7Fo0SLs37+/3HlvpT2FHTp0qPK5iYioarhwCBERvRWmTp2Ku3fvYsSIEdIqhAcPHoSvry+Ki4thaGiIiRMnYvbs2YiNjcWlS5cwfvz4MkP63n//faxduxbnz5/HuXPnMGXKFKVesVGjRqFBgwbw9vbG8ePHkZaWhqNHj2LGjBnIyMioVF2tra0xbtw4+Pr6Yvfu3UhLS8ORI0ewfft2qYxcLsf48ePx+eefw87OTmmYZnnc3d3x6NEjXL58uQpRe+rSpUsYO3Ys5s6di1atWiErKwtZWVm4e/euVObMmTPQ0dF5aT2IiOj1MUkjIqK3goWFBU6ePIni4mJ4enqidevWmDFjBoyNjaVEbPny5XB1dcWAAQPg4eGBbt26oVOnTkrnCQoKgqWlJVxdXTFy5EjMmjVLaZihvr4+jh07hiZNmmDw4MFwcHCAr68vHj9+XKWetdDQUPztb3/Dxx9/DHt7e0yaNAmPHj1SKjNx4kQUFhbC19f3peerX78+Bg8eXO4wzJc5d+4c8vLyEBAQAIVCIT0GDx4sldmyZQtGjRr1wiGXRERUPWTi+YH3RERE7xA3Nze0b98ewcHBtV2VMk6ePAk3NzdkZGTAzMzspeUvXrwIDw+Pchc2eR3/93//B3t7e5w7d67cm4kTEVH1Yk8aERGRmikoKMDVq1fxz3/+E8OGDatUggY8neu2bNmyal8mPy0tDSEhIUzQiIhqCBcOISIiUjNbtmzBxIkT0b59e2zatKlKx44bN67a6+Pk5AQnJ6dqPy8REZWPwx2JiIiIiIjUCIc7EhERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqZH/B5kQnyGaY1xiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.stats import phase_dispersion_detection_level, phase_dispersion_probability\n", + "\n", + "# number of trials (the number of independent frequencies)\n", + "# we searched over\n", + "ntrial = int((frequencies[-1] - frequencies[0]) / df_min)\n", + "\n", + "# number of time bins in the light curve\n", + "nsamples = len(lc.time)\n", + "\n", + "pdm_det_level = phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=ntrial)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(pdm_det_level, label='PDM det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, pdmstat, color='gray', label='PDM statistics', alpha=0.5)\n", + "\n", + "#for c in cand_freqs_ef:\n", + "# plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "#for c in cand_freqs_z:\n", + "# plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's also calculate the significance of the deepest dip:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The probability of the minimum at 0.8313536003155265 Hz is: p = 4.221416326686607e-15\n" + ] + } + ], + "source": [ + "min_idx = np.argmin(pdmstat)\n", + "\n", + "pval = phase_dispersion_probability(pdmstat[min_idx], nsamples, nbin, ntrial=ntrial)\n", + "\n", + "print(f\"The probability of the minimum at {freq[min_idx]} Hz is: p = {pval}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb.txt b/_sources/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb.txt new file mode 100644 index 000000000..9f8ed18fa --- /dev/null +++ b/_sources/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb.txt @@ -0,0 +1,910 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import epoch_folding_search, z_n_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulate a dataset\n", + "\n", + "Let us simulate a pulsar: we create a sinusoidal light curve and use Stingray's event simulator (in `Eventlist.simulate_times`) to simulate an event list with that light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 3000\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.events import EventList\n", + "\n", + "# use the light curve above to simulate an event list for this pulsar.\n", + "events = EventList()\n", + "events.simulate_times(lc)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pulsation search with epoch folding.\n", + "\n", + "Let us assume we have already an estimate of the pulse period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the epoch folding.\n", + "\n", + "Epoch folding consists of cutting the light curve at every pulse period and summing up all the intervals obtained in this way. We get an average pulse profile. In this example, where the pulse was plotted twice for visual clarity. If the candidate pulse frequency was even slightly incorrect, we would have obtained a much shallower pulse profile, or no pulse profile at all." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHlElEQVR4nO3de3wU9b3/8feQbG4ISwgmISVEPGq4eilRCMd6OYmAgqitpRSboiKKVRELVvFS0cMp1iNiBRWlKFXUtFSweDkRUgH1xz1ACxXRVkWohKgNGyEhWZL5/UFZXXPb3ex3r6/n45HHg+x8Z/OdYfLZvGe+8x3Ltm1bAAAAAICg6hTuDgAAAABALCJsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGK4OxAtmpqa9Nlnn6lLly6yLCvc3QEAAAAQJrZt66uvvlJOTo46dWr9+hVhy0efffaZcnNzw90NAAAAABFi79696tWrV6vLCVs+6tKli6RjO7Rr165h7g0AAACAcKmpqVFubq4nI7SGsOWj40MHu3btStgCAAAA0O7tRUyQAQAAAAAGELYAAAAAwICwhq2ZM2fKsiyvr+zsbEmS2+3WHXfcoUGDBqlz587KycnRT3/6U3322Wde71FfX69bbrlFPXr0UOfOnTVmzBjt27fPq011dbVKSkrkdDrldDpVUlKigwcPhmozAQAAAMShsF/ZGjBggPbv3+/52rFjhySptrZWW7du1b333qutW7dq2bJl+uCDDzRmzBiv9adOnarly5ertLRU7777rg4dOqTRo0ersbHR02b8+PHavn27ysrKVFZWpu3bt6ukpCSk2wkAAAAgvoR9gozExETP1axvcjqdWrVqlddr8+bN0znnnKNPP/1UvXv3lsvl0qJFi/T888+ruLhYkrRkyRLl5uaqvLxcI0aM0K5du1RWVqYNGzZoyJAhkqSFCxeqsLBQu3fvVn5+vvmNBAAAABB3wn5l68MPP1ROTo769OmjcePG6aOPPmq1rcvlkmVZ6tatmySpoqJCbrdbw4cP97TJycnRwIEDtW7dOknS+vXr5XQ6PUFLkoYOHSqn0+lp05L6+nrV1NR4fQEAAACAr8IatoYMGaLnnntOb775phYuXKjKykoNGzZMX375ZbO2R44c0Z133qnx48d7pl6vrKxUUlKS0tPTvdpmZWWpsrLS0yYzM7PZ+2VmZnratGT27Nmee7ycTicPNAYAAADgl7CGrYsvvlg/+MEPNGjQIBUXF+v111+XJP3ud7/zaud2uzVu3Dg1NTXpiSeeaPd9bdv2mvO+pfnvv93m22bMmCGXy+X52rt3r6+bBQAAAADhH0b4TZ07d9agQYP04Ycfel5zu90aO3asPv74Y61atcrrgcLZ2dlqaGhQdXW11/tUVVUpKyvL0+bAgQPNftbnn3/uadOS5ORkzwOMeZAxAAAAAH9FVNiqr6/Xrl271LNnT0lfB60PP/xQ5eXlysjI8Go/ePBgORwOr4k09u/fr507d2rYsGGSpMLCQrlcLm3atMnTZuPGjXK5XJ42AAAAABBsYZ2NcPr06br00kvVu3dvVVVVadasWaqpqdGECRN09OhRXXnlldq6datee+01NTY2eu6x6t69u5KSkuR0OjVx4kRNmzZNGRkZ6t69u6ZPn+4ZlihJ/fr108iRIzVp0iQ99dRTkqTrr79eo0ePZiZCAAAAAMaENWzt27dPP/7xj/XFF1/oxBNP1NChQ7Vhwwbl5eXpk08+0YoVKyRJZ555ptd6q1ev1gUXXCBJmjt3rhITEzV27FjV1dWpqKhIixcvVkJCgqf9Cy+8oClTpnhmLRwzZozmz58fkm0EAAAAEJ8s27btcHciGtTU1MjpdMrlcnH/FgAAABDHfM0GEXXPFgAAAADECsIWAAAAABhA2AIAAAAAA8I6QQYQbWzbVp270ef2qY6ENh+eDQDoGOoygEhG2AJ8ZNu2rlywXhV7qttv/G8FeelaOrmQD3YAMIC6DCDSMYwQ8FGdu9GvD3RJ2rKn2q8zrgAA31GXAUQ6rmwBAdhyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMoBIRNgCApCWlKC0JH59ACBSUJcBRCKGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYAAPpAAMq21o9KldqiNBlmUZ7g0AgLoMIFQIW4BhBbPKfWuXl66lkwv5YAcAw6jLAEKFYYSAAamOBBXkpfu1zpY91apz+3a2FQDgH+oygHDgyhZggGVZWjq50KcP6dqGRp/PsgIAAkNdBhAOhC3AEMuylJbErxgARArqMoBQYxghAAAAABjA6R3EJNu2/Rpnz4xTAGAWdRlAPCJsIebYtq0rF6xXxZ5qn9dhxikAMIe6DCBeMYwQMafO3ejXB7rEjFMAYBJ1GUC84soWYtqWe4qVlpTQ6nJmnAKA0KIuA4gnhC3EtLSkBGaeAoAIQl0GEE8YRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMRwdwDwlW3bqnM3ttuutqH9NgCAjvG1JkvUZQDxi7CFqGDbtq5csF4Ve6rD3RUAiHvUZADwDcMIERXq3I1+f6gX5KUr1ZFgqEcAEL8CqckSdRlA/OHKFqLOlnuKlZbU/od1qiNBlmWFoEcAEL98rckSdRlA/CFsIeqkJSUoLYlDFwAiATUZAFrHMEIAAAAAMICwBQAAAAAGELYAAAAAwAAGWSOo/HnuisTN0oFiPwPwFfXCPH/3scR+BuIFYQtBE8hzVwry0rV0ciEfOH5gPwPwFfXCvECfOcZ+BuIDwwgRNIE8d2XLnmq/zwbGO/YzAF9RL8wL9Jlj7GcgPnBlC0a099yV2oZGFcwqD2GPYhP7GYCvqBfm+fLMMfYzEF8IWzCC566EBvsZgK+oF+axjwF8G8MIAQAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMYMochF1tQ/vPGfGlDQAgONqrudRkAPANYQthx/NGACCyUJcBIDgYRoiwSHUkqCAv3e/1CvLSlepo+4GRAAD/BVKXqckA0DaubCEsLMvS0smFqnP7NxQl1ZEgy7IM9Sr8GFIJIFwCqcuxXpMlhlQC6BjCFsLGsiylJXEIfhNDdwCEE3W5OeoygI5gGCEQZgypBIDIwpBKAMHC6SsgzBhSCQCRhSGVAIKFsAVEAIbuAEBkoS4DCAaGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1rA1c+ZMWZbl9ZWdne1Zbtu2Zs6cqZycHKWmpuqCCy7Q3/72N6/3qK+v1y233KIePXqoc+fOGjNmjPbt2+fVprq6WiUlJXI6nXI6nSopKdHBgwdDsYkAAAAA4lTYr2wNGDBA+/fv93zt2LHDs+yhhx7SI488ovnz52vz5s3Kzs7WRRddpK+++srTZurUqVq+fLlKS0v17rvv6tChQxo9erQaGxs9bcaPH6/t27errKxMZWVl2r59u0pKSkK6nQAAAADiS2LYO5CY6HU16zjbtvXoo4/q7rvv1ve//31J0u9+9ztlZWXpxRdf1A033CCXy6VFixbp+eefV3FxsSRpyZIlys3NVXl5uUaMGKFdu3aprKxMGzZs0JAhQyRJCxcuVGFhoXbv3q38/PzQbSwAAACAuBH2K1sffvihcnJy1KdPH40bN04fffSRJOnjjz9WZWWlhg8f7mmbnJys888/X+vWrZMkVVRUyO12e7XJycnRwIEDPW3Wr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAAAAB8FdawNWTIED333HN68803tXDhQlVWVmrYsGH68ssvVVlZKUnKysryWicrK8uzrLKyUklJSUpPT2+zTWZmZrOfnZmZ6WnTktmzZ3vu8XI6ncrNze3QtgIAAACIL2ENWxdffLF+8IMfaNCgQSouLtbrr78u6dhwweMsy/Jax7btZq9927fbtNS+vfeZMWOGXC6X52vv3r0+bRMAAAAASBEwjPCbOnfurEGDBunDDz/03Mf17atPVVVVnqtd2dnZamhoUHV1dZttDhw40Oxnff75582umn1TcnKyunbt6vUFAAAAAL6KqLBVX1+vXbt2qWfPnurTp4+ys7O1atUqz/KGhgatXbtWw4YNkyQNHjxYDofDq83+/fu1c+dOT5vCwkK5XC5t2rTJ02bjxo1yuVyeNgAAAAAQbGGdjXD69Om69NJL1bt3b1VVVWnWrFmqqanRhAkTZFmWpk6dql/96lc69dRTdeqpp+pXv/qV0tLSNH78eEmS0+nUxIkTNW3aNGVkZKh79+6aPn26Z1iiJPXr108jR47UpEmT9NRTT0mSrr/+eo0ePZqZCAEAAAAYE9awtW/fPv34xz/WF198oRNPPFFDhw7Vhg0blJeXJ0n6xS9+obq6Ov3sZz9TdXW1hgwZopUrV6pLly6e95g7d64SExM1duxY1dXVqaioSIsXL1ZCQoKnzQsvvKApU6Z4Zi0cM2aM5s+fH9qNBQAAABBXwhq2SktL21xuWZZmzpypmTNnttomJSVF8+bN07x581pt0717dy1ZsiTQbiJO1DY0dmg5ACC4qMsAol3YH2oMRIqCWeXh7gIA4BuoywCiXURNkAGEWqojQQV56e03/IaCvHSlOhLabwgA8Bt1GUAs4coW4pplWVo6uVB1bt+HoqQ6Etp91hsAIDDUZQCxhLCFuGdZltKS+FUAgEhBXQYQKxhGCAAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGJAY7g4g8tm2rTp3Y7vtahvabwMA6DjqMgBEB8IW2mTbtq5csF4Ve6rD3RUAgKjLABBNGEaINtW5G/3+QC/IS1eqI8FQjwAgvlGXASB6cGULPttyT7HSktr/sE51JMiyrBD0CADiG3UZACIbYQs+S0tKUFoShwwARArqMgBENoYRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMSAx3B+An25bcta0vd6RJlhW6/gBAPGmvBn8bNRkA4hphK8rYDYdlzf5Oq8sbew1RfcnrPn24pzoSZPFHAL7Btm3VuRt9bs8xhLhi27KfGSFr70afV/GnJkv8TqE56jIQ3QhbUabO3ai0NpYn7NuowfetUJ1S2n2vgrx0LZ1cSFGGpGMf6FcuWK+KPdU+r8MxhHhiNxz2K2hJ/tVkid8peKMuA9GPsBVtHGnqd+SZZi+nqV4VKTf69VZb9lQfC29JHAY4FuT9+UCXOIYQX755smvwkSdVq+RW2wZSkyV+p+CNugxEP34To0xqUqIqHris+YKGw9LDx/5ZcU+xlNS51feobWhUwaxyz7/b0t5yxKYt9xQrLSmh1eXfPIaAePTmL0Yq7YSurTfwoyZL1GW0j7oMRCfCVpSxLKuVs1Vfv5aWlCj5eEaLwoyWpCUlcFYUaEP7vyOB1WSJuoyWUZeB6MTU73Eo1ZGggrx0v9YpyEtXqqP1M2oAgMBRlwEgNnGKJA5ZlqWlkwuZ3QgAIgR1GQBiE2ErTrU+HBEAEA7UZQCIPQwjBAAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHciQvAONu2/ZplTWKmNQAwyd+6TE0GAkPYAmCUbdu6csF6Veyp9mu9grx0LZ1cyIc7AARZIHWZmgwEJmKGEc6ePVuWZWnq1Kme1w4dOqSbb75ZvXr1Umpqqvr166cnn3zSa736+nrdcsst6tGjhzp37qwxY8Zo3759Xm2qq6tVUlIip9Mpp9OpkpISHTx4MARbBaDO3eh30JKkLXuq/b4aBgBoXyB1mZoMBCYirmxt3rxZTz/9tE4//XSv12+77TatXr1aS5Ys0UknnaSVK1fqZz/7mXJycnTZZZdJkqZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoISFBkjR+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oUCc23JPsdKSEtpsU9vQqIJZ5SHqEQDEt/bqMjUZ6JiwX9k6dOiQrrrqKi1cuFDp6eley9avX68JEyboggsu0EknnaTrr79eZ5xxhrZs2SJJcrlcWrRokebMmaPi4mKdddZZWrJkiXbs2KHy8mOFYdeuXSorK9Nvf/tbFRYWqrCwUAsXLtRrr72m3bt3h3x7gXiWlpSgtKTEdr7aDmMAgOBpvy5Tk4GOCHvYuummmzRq1CgVFxc3W3buuedqxYoV+uc//ynbtrV69Wp98MEHGjFihCSpoqJCbrdbw4cP96yTk5OjgQMHat26dZKOBTan06khQ4Z42gwdOlROp9PTpiX19fWqqanx+gKiWW1Do2objrbxxfAQAAgl6jIQ+8I6jLC0tFRbt27V5s2bW1z+2GOPadKkSerVq5cSExPVqVMn/fa3v9W5554rSaqsrFRSUlKzK2JZWVmqrKz0tMnMzGz23pmZmZ42LZk9e7buv//+QDcNiDgMAwGAyEJdBmJf2K5s7d27V7feequWLFmilJSUFts89thj2rBhg1asWKGKigrNmTNHP/vZzzxDBFtj27bXbDktzZzz7TbfNmPGDLlcLs/X3r17fdwyIHKkOhJUkJfefsNvKMhLV6qDYSMAYAJ1GYgvYbuyVVFRoaqqKg0ePNjzWmNjo95++23Nnz9fLpdLd911l5YvX65Ro0ZJkk4//XRt375dDz/8sIqLi5Wdna2GhgZVV1d7Xd2qqqrSsGHDJEnZ2dk6cOBAs5//+eefKysrq9X+JScnKzk5OVibC4SFZVlaOrmQZ6kAQISgLgPxJWxhq6ioSDt27PB67ZprrlHfvn11xx13qLGxUW63W506eV98S0hIUFNTkyRp8ODBcjgcWrVqlcaOHStJ2r9/v3bu3KmHHnpIklRYWCiXy6VNmzbpnHPOkSRt3LhRLpfLE8iAWGZZltKSImLiUQCAqMtAPAnbb3qXLl00cOBAr9c6d+6sjIwMz+vnn3++br/9dqWmpiovL09r167Vc889p0ceeUSS5HQ6NXHiRE2bNk0ZGRnq3r27pk+frkGDBnkm3OjXr59GjhypSZMm6amnnpJ0bOr30aNHKz8/P4RbjJhg25K71vf2jjSJs5EAYA51GUAEi+jTKqWlpZoxY4auuuoq/etf/1JeXp7+53/+R5MnT/a0mTt3rhITEzV27FjV1dWpqKhIixcv9jxjS5JeeOEFTZkyxTNr4ZgxYzR//vyQbw+inG1Lz4yQ9m70fZ3codK1ZXywA4AJ1GUAES6iwtaaNWu8vs/Oztazzz7b5jopKSmaN2+e5s2b12qb7t27a8mSJcHoIuKZu9a/D3RJ2rvh2HpJnc30CQDiGXUZQISLqLAFRI3pf5eS0lpf3lArPXxK6PrTFobYAIgH1GUAEYiwBQQiKS06zooyxAbxij9m4w91GYhscVqXCVtALIuHITZxWrzRBv6YRSSjLjdHXY59cVyXCVtAvIimITa+iuPijTbEwx+ziA3U5WOoy7EvjusyYQuIF9EyxMYfcVy84aNY/GMWsYO6fAx1Ob7EWV0mbAGIDXFWvOGjWPxjFogW1GW0JM7qMmErFjX4OE6aMdKIJXFWvBFFfK3JEnUZsYW6DBC2YpKvZ4kYI414xQkJhJI/Z+6py4hX1GXEKMJWrHCkHfuQ3rvB93UYI414xQkJmBZITZaoy4hf1GXEKMJWrLCsY8XHl6lWGSONIKptaOzQ8pDhhARCyZ+aLFGXEVTUZSByELZiiWVRfI7jGR8hUzCrPNxd8A0nJBBq1GRv1OWQoS4DkYOwhdjDMz6MS3UkqCAvXVv2VPu8TkFeulIdCQZ75QP++AXCg7psHHUZiEyELT9d/cwmOVKjuygkNx3Rc//+908XbVJ9p5Sw9ifYkpuO6LkD/j/j46cL1rS5L/zZb5Gyj032uZN17IPaV50sadzT7Q8VaWyyPf/+6aJNSujU+h9apvZzpPz/ITCmjvvExjq98O9/T3quQkcTUoPSX3/7EY2oy4H1IxLqsj81WaIuo2XR+LvaHnfdYZ/aEbYQ0yZllqreauMX2j6ihVXjQtij2GFZlhI44QzAT9Rlc6jLQOQhbCGm1VspbZ8RaQpdXwAA1GUA8YWwBQBom20r2a73uXm9lcx9NgBgEnU5ahC2AACts2098OU05bvf83mV9x39dV/GHD7YAcAE6nJU6RTuDgAAIleyXe/XB7ok9XW/59cZVwCA76jL0YUrWwAAnzCxAQBEFupy5CNsAUCsMDyGn4kNAMBP1OW4R9gCgFjAGH4AiCzUZSjAe7a2bt2qHTt2eL7/05/+pMsvv1x33XWXGhoagtY5AIBvGMMPAJGFugwpwCtbN9xwg+68804NGjRIH330kcaNG6crrrhCS5cuVW1trR599NEgdxMA4CvG8ANAZKEux6+Armx98MEHOvPMMyVJS5cu1XnnnacXX3xRixcv1ssvvxzM/gEA/HR8DH+rX2184AMAgo+6HL8CClu2baup6dgdd+Xl5brkkkskSbm5ufriiy+C1zsAAAAAiFIBha2CggLNmjVLzz//vNauXatRo0ZJkj7++GNlZWUFtYMAAAAAEI0CCltz587V1q1bdfPNN+vuu+/WKaecIkn64x//qGHDhgW1gwAAAAAQjQKaIOOMM87wmo3wuP/93/9VYiKzyQMAAABAQFe2Tj75ZH355ZfNXj9y5IhOO+20DncKACJFsn1EyU3tf8m2w91VAIgL1GVEk4AuQ33yySdqbGxs9np9fb327dvX4U4BQKTwdSrejxP/Q/dlPCyp/QdR1lvJPLASAAJEXUY08StsrVixwvPvN998U06n0/N9Y2Oj/vznP6tPnz7B6x0AhEG9laz3Hf3V14+HUfY5+g89d+AKn9q+7+iv+zLm8MEOAD6iLiNa+RW2Lr/8ckmSZVmaMGGC1zKHw6GTTjpJc+bMCVrnAMQI21ayXe9T00bbVqqOqE7JhjvVBsvSfRlzfOyzrfu/nK4+R//h89v3db+nZLue56oACB8f63JE1GSJuoyo5VfYOv5srT59+mjz5s3q0aOHkU4BiCG2rQe+nKZ8P85GKkXa3HSafm0/Kl+GfxhhWT5/6N7ZY75PfwAk20d8Hv4CAMb4W5cjoSZL1GVEpYDu2fr444+D3Q8AMSrZrvcvaP3b2Z0+ULLqdVSpBnoVZL7+AdBkvisA0J5A6nJU1WSJuoyIEfA87X/+85/15z//WVVVVZ4rXsc988wzHe4YgNgzKbO03Q+/xKY6PfP5j0PUIwCIb+3VZWoy0DEBha37779fDzzwgAoKCtSzZ09Z3EwIhJaPY+2T7SMBvX2yfcSns33+zt5Ub6WovlPbYauRqXoBRBs/7kuNtrpMTQY6JqCwtWDBAi1evFglJSXB7g+A9gRyD5SffB2/zuxNAOJeCGqyRF0GolVAYauhoUHDhg0Ldl+AsGrvrGGgZyODLZCx9u87+h8729mGQKbVNT17U7J9RAlNrf/BECn/JwDMiIa6HOh9qdFYl9urycfbAPhaQGHruuuu04svvqh777032P0BwiYaZyPy5R4oycdhJX5Mqxuq2Zu4TwBeDA+fReSJtrrsa02WorMuU5PRDHW5XQGFrSNHjujpp59WeXm5Tj/9dDkcDq/ljzzySFA6B5gWyFlDX85Ghoov90D5JQJmb6pXsjY3naazO33g8zqR9H8CQ0I0VAvhF811Oeg1WQp7XQ6kJkuR838Cg6jLPgkobP31r3/VmWeeKUnauXOn1zImy0BU8eshicf4e/Mx/GRZ+mHDfUpVvb7bO10JPuxr/k9in6nhs4hA1OXIEkBNlvg/iQfUZd8EFLZWr14d7H4A4ePHQxIRKpbqlKJ6K0UJnfiwhregDp9FZKIuRxhqMtpGXW5dwM/ZAgAgHIwM1QIABIy63LqAwtaFF17Y5nDBt956K+AOAQAAAEAsCChsHb9f6zi3263t27dr586dmjBhQjD6BQAAAABRLaCwNXfu3BZfnzlzpg4dOtShDgEAEA7tPdMpMY6nLgaAcGitLkfTvV9BvWfrJz/5ic455xw9/PDDwXxbAACMi7ZnOgFArGutLv8065WomUSnUzDfbP369UpJiY4NBwDg+DOd/LG56TTVK76mLgaAUAmkLkeygK5sff/73/f63rZt7d+/X1u2bNG9994blI4BsaK9oUnHRdMlccSO9o7P5ACHzvl63EthPvb9eKZTo21r66fVqlOyCvhdjWrUZUSycNflsB/3PtTlaHpWV0Bhy+l0en3fqVMn5efn64EHHtDw4cOD0jEgVvg6NOl9R3/dlzGHD3aElKmhc/68b9iPfR+f6dTYZKtOjN6IBdRlRLJw1+WIOO5j6Fl7AYWtZ599Ntj9AGLK8Uvgff14snpf93tKtutjprggcgVyfL7v6N/umcRA3lfi2EdoUJcRySKpLnPcB1eHJsioqKjQrl27ZFmW+vfvr7POOitY/QKimx9Dk5LtI9yYj9Dy4/g8zqdhJX6+L8c+Qoq6jEgWAXWZ496MgMJWVVWVxo0bpzVr1qhbt26ybVsul0sXXnihSktLdeKJJwa7n0D08fUSuI/3tQBBZWqIhj/vy7GPUKMuI5KFuy5z3BsR0GyEt9xyi2pqavS3v/1N//rXv1RdXa2dO3eqpqZGU6ZMCXYfAQAAACDqBHRlq6ysTOXl5erXr5/ntf79++vxxx9nggwAAAAAUIBXtpqamuRwOJq97nA41NTENUgAAAAACChs/dd//ZduvfVWffbZZ57X/vnPf+q2225TUVFR0DoHAAAAANEqoGGE8+fP12WXXaaTTjpJubm5sixLn376qQYNGqQlS5YEu48AIpiphy8CAAJDXQYiR0BhKzc3V1u3btWqVav0/vvvy7Zt9e/fX8XFxcHuH4AIxzSxABBZqMtA5PBrGOFbb72l/v37q6amRpJ00UUX6ZZbbtGUKVN09tlna8CAAXrnnXeMdBRA5Dj+kER/+PLwRQBAYKjLQGTy68rWo48+qkmTJqlr167NljmdTt1www165JFH9L3vfS9oHQQQgUw9fBEAEBjqMhCR/Apbf/nLX/TrX/+61eXDhw/Xww8/3OFOAYgCph6+CAAIDHUZiDh+ha0DBw60OOW7580SE/X55593uFMAgH+zbZ/OVHPDOwCEgI81WaIu4xi/wtZ3vvMd7dixQ6ecckqLy//617+qZ8+eQekYIogfhUViWEJHtDeDlKcN4oNt64Evpynf/V64e4JIQ10OGWb2gwc1GQHwK2xdcskl+uUvf6mLL75YKSnel6nr6up03333afTo0UHtIMIsgMLyvqO/7suYwwd7AJhBCt+UbNf7/aHODe9xgLocUtRlHBdITZaoy/HOr7B1zz33aNmyZTrttNN08803Kz8/X5ZladeuXXr88cfV2Niou+++21RfEQaBFJa+7veUbNczbtxHx2eQ6ssf1WjDpMxSn36nuIIR+6jL5gVSl6nJ8cXXmixRl+OdX2ErKytL69at04033qgZM2bItm1JkmVZGjFihJ544gllZWUZ6SjCr73Ckmwf4QxgIAKYQUqieMebeitF9Z34QxneqMuGMLMf2kFNhq/8fqhxXl6e3njjDVVXV+vvf/+7bNvWqaeeqvT0dBP9QwRpt7C0c68R2sAMUgACQF02iLoMIAj8DlvHpaen6+yzzw5mXwAAAAAgZgQctgDAtCbb9unMfCfr2HBmIBC2bavJbr9dk+1DIyCG+VqTJeoyOqa9uhxNxxdhC0DE2vrpQZ/anZCcqP49u0RN4UXksG1b7+3/Sofqj4a7K0DE87UmS9RlBM6XulyQl66EKDm0LNvmVJ0vampq5HQ65XK51LVr13B3p2MaDku/yjn277s+k5I6h76tSZHSDwTEtm39cMF6bdlT7dd67z0wQmlJEX7+yN9jM9aP5QioL7UNR9X/l2/6tU5BXrqWTi4M7h+R1GVEqEBrshSDdTnWj+MI+YzypS5HwrHlazaI8N8AAPHGsiwtnVyoOndju21rGxpVMKs8BL1CPNhyT7HSkhLabZfqSOBsPeKGPzVZoi4juFqry6mO9mt1pCBsxbuG2o4tBwywLCvsZ6wQf9KSEiLjuKMuI8JQkxEuEVOXOyC6e4+Oe/iUcPcAAAgY30RdBhBuvtTceKrLHRAxYWv27Nm66667dOutt+rRRx/1vL5r1y7dcccdWrt2rZqamjRgwAD94Q9/UO/evSVJ9fX1mj59ul566SXV1dWpqKhITzzxhHr16uV5j+rqak2ZMkUrVqyQJI0ZM0bz5s1Tt27dQrmJkcORJuUOlfZu8H2d3KHH1gMAE+I9YFCXAUSSeK/JQRQRYWvz5s16+umndfrpp3u9/o9//EPnnnuuJk6cqPvvv19Op1O7du1SSsrXDxmcOnWqXn31VZWWliojI0PTpk3T6NGjVVFRoYSEY+M5x48fr3379qmsrEySdP3116ukpESvvvpq6DYykliWdG2Z5PbjjIQj7dh6ABAsBIyvUZcBhFsgNVmK3bocJGEPW4cOHdJVV12lhQsXatasWV7L7r77bl1yySV66KGHPK+dfPLJnn+7XC4tWrRIzz//vIqLiyVJS5YsUW5ursrLyzVixAjt2rVLZWVl2rBhg4YMGSJJWrhwoQoLC7V7927l5+eHYCsjkGXF3iw6AKILAcMbdRlAOAVSk6XYrstB0CncHbjppps0atQoT1g6rqmpSa+//rpOO+00jRgxQpmZmRoyZIheeeUVT5uKigq53W4NHz7c81pOTo4GDhyodevWSZLWr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAQZMcDhq9ffKADgDn+1mTqcrvCGrZKS0u1detWzZ49u9myqqoqHTp0SA8++KBGjhyplStX6oorrtD3v/99rV27VpJUWVmppKQkpaene62blZWlyspKT5vMzMxm75+Zmelp05LZs2fL6XR6vnJzczuyqQAAAADiTNiGEe7du1e33nqrVq5c6XUP1nFNTU2SpMsuu0y33XabJOnMM8/UunXrtGDBAp1//vmtvrdt217PQGnpeSjfbvNtM2bM0M9//nPP9zU1NQQuAAAAAD4LW9iqqKhQVVWVBg8e7HmtsbFRb7/9tubPn6/Dhw8rMTFR/fv391qvX79+evfddyVJ2dnZamhoUHV1tdfVraqqKg0bNszT5sCBA81+/ueff66srKxW+5ecnKzk5OQObSOCzLZ9G0fMVKQAYJ6vNVmiLgOIW2ELW0VFRdqxY4fXa9dcc4369u2rO+64Q8nJyTr77LO1e/durzYffPCB8vLyJEmDBw+Ww+HQqlWrNHbsWEnS/v37tXPnTs+kGoWFhXK5XNq0aZPOOeccSdLGjRvlcrk8gQxRwLalZ0ZIezeGuycAAGoyAPgkbGGrS5cuGjhwoNdrnTt3VkZGhuf122+/XT/60Y903nnn6cILL1RZWZleffVVrVmzRpLkdDo1ceJETZs2TRkZGerevbumT5+uQYMGeSbc6Nevn0aOHKlJkybpqaeeknRs6vfRo0fH70yE0chd6/+HOlORAoAZgdRkiboMIO6Efer3tlxxxRVasGCBZs+erSlTpig/P18vv/yyzj33XE+buXPnKjExUWPHjvU81Hjx4sWeZ2xJ0gsvvKApU6Z4Zi0cM2aM5s+fH/LtQZBM/7uU5MOHNVORAjHFtm3VuRt9bp/qSGjz3lwEia81WaIuAzGGuty+iApbx69YfdO1116ra6+9ttV1UlJSNG/ePM2bN6/VNt27d9eSJUuC0UVEgqQ0nkUDxBnbtnXlgvWq2FPt8zoFeelaOrkw7j7YQ46aDMQl6rJvwv6cLQAA2lPnbvTrA12Stuyp9uuMKwDAd9Rl30TUlS0AANqz5Z5ipSUltLq8tqFRBbPKQ9gjAIhv1OXWEbYAAFElLSlBaUl8fAFApKAut45hhAAAAABgAGELAAAAAAzgeh/Cx7aPPavFFw0+tgOihS/HNMc9Qs3XusyxiVjU3nHNcY8AELYQHrYtPTMisIdiArHg4VPC3QPAG3UZ8Y66DAMYRojwcNcG9oGeO/TYQzGBaORIO3YM+4vjHqEQSF3m2ES0C6Quc9zDD1zZQvhN//uxh2L6wpEmxdGD8BBjLEu6tsz34bPHcdwj1HytyxybiHaB1GWOe/iBsIXwS0qTkjqHuxdAaFgWxzsiH3UZ8YS6DIMYRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMSw90BAABMqW1o7NByAEBwxVtdJmwBAGJWwazycHcBAPAN8VaXCVswo6G2Y8sBIECpjgQV5KVry55qn9cpyEtXqiPBYK8iAHUZQJjEc10mbMGMh08Jdw8AxCnLsrR0cqHq3L4PRUl1JMiyLIO9igDUZQBhEs91mbCF4HGkSblDpb0bfF8nd+ix9QAgiCzLUloSH3HUZQCRIl7rcvxtMcyxLOnaMsntx1AUR9qx9QAAwUddBoCwImwhuCxLSuoc7l4AAI6jLgNA2PCcLQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAxLD3QEAQOywbVt17ka/1kl1JMiyLEM9AoD45m9dpiYHF2ELABAUtm3rygXrVbGn2q/1CvLStXRyIR/uABBkgdRlanJwMYwQABAUde5Gv4OWJG3ZU+331TAAQPsCqcvU5ODiyhYAIOi23FOstKSENtvUNjSqYFZ5iHoEAPGtvbpMTTaDsAUACLq0pASlJfERAwCRgrocHgwjBAAAAAADCFsAAAAAYABhCwAAAAAMiJiwNXv2bFmWpalTp7a4/IYbbpBlWXr00Ue9Xq+vr9ctt9yiHj16qHPnzhozZoz27dvn1aa6ulolJSVyOp1yOp0qKSnRwYMHzWwIAAAAAChCwtbmzZv19NNP6/TTT29x+SuvvKKNGzcqJyen2bKpU6dq+fLlKi0t1bvvvqtDhw5p9OjRamz8esrK8ePHa/v27SorK1NZWZm2b9+ukpISY9sDAAAAAGEPW4cOHdJVV12lhQsXKj09vdnyf/7zn7r55pv1wgsvyOFweC1zuVxatGiR5syZo+LiYp111llasmSJduzYofLyY1NX7tq1S2VlZfrtb3+rwsJCFRYWauHChXrttde0e/fukGwjAAAAgPgT9rB10003adSoUSouLm62rKmpSSUlJbr99ts1YMCAZssrKirkdrs1fPhwz2s5OTkaOHCg1q1bJ0lav369nE6nhgwZ4mkzdOhQOZ1OTxsAAAAACLawTrZfWlqqrVu3avPmzS0u//Wvf63ExERNmTKlxeWVlZVKSkpqdkUsKytLlZWVnjaZmZnN1s3MzPS0aUl9fb3q6+s939fU1LS7PQAAAABwXNjC1t69e3Xrrbdq5cqVSklJaba8oqJCv/nNb7R161ZZluXXe9u27bVOS+t/u823zZ49W/fff79fPxcAAAAAjgvbMMKKigpVVVVp8ODBSkxMVGJiotauXavHHntMiYmJWrNmjaqqqtS7d2/P8j179mjatGk66aSTJEnZ2dlqaGhQdXW113tXVVUpKyvL0+bAgQPNfv7nn3/uadOSGTNmyOVyeb727t0bvI0HAAAAEPPCdmWrqKhIO3bs8HrtmmuuUd++fXXHHXeoZ8+eGjFihNfyESNGqKSkRNdcc40kafDgwXI4HFq1apXGjh0rSdq/f7927typhx56SJJUWFgol8ulTZs26ZxzzpEkbdy4US6XS8OGDWu1f8nJyUpOTg7a9gIAAACIL2ELW126dNHAgQO9XuvcubMyMjI8r2dkZHgtdzgcys7OVn5+viTJ6XRq4sSJmjZtmjIyMtS9e3dNnz5dgwYN8ky40a9fP40cOVKTJk3SU089JUm6/vrrNXr0aM/7AIgPtm2rzt3YfsN/S3Uk+D2MGQDgO+oyYl1YJ8gIhrlz5yoxMVFjx45VXV2dioqKtHjxYiUkJHjavPDCC5oyZYpn1sIxY8Zo/vz54eoygDCwbVtXLlivij3V7Tf+t4K8dC2dXMgHOwAYQF1GPIiosLVmzZo2l3/yySfNXktJSdG8efM0b968Vtfr3r27lixZ0sHeAYhmde5Gvz7QJWnLnmrVuRuVlhRRpRIAYgJ1GfGAIxVA3NlyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMmIVYQtA3ElLSuCsKABEEOoyYlXYpn4HAAAAgFjGKQQAMaG2oe3ZrNpbDgAILuoyQNgCECMYyw8AkYW6DDCMEEAUS3UkqCAv3a91CvLSlepo/SZsAEDgqMuAN65sAYhalmVp6eRCHogJABGCugx4I2wBiGqWZRmdwcrXewr4YwEAjqEuA18jbAFAG3y956AgL11LJxfywQ4AhlGXEU24ZwsAviWQew627Kn2a9gMAMB31GVEK65sAcC3+HPPQW1DY8zPuGXbts/7IlBMEQ2gLdRlb6brsi/rUZd9Q9gCgBaYvucgWti2rSsXrFfFnmqjPyfW/zAC0HHU5WNCUZepycHDMEIAQKvq3I1+f6D7Oo0zU0QDgP9M1eVAarKv7x3POD0AAPDJlnuKlZbkW4jy5YZ0pogGgI4JZl0OpCb7+t7xjLAFAPBJWlJC0IfwMCwIAAIX7LpMTQ4+hhECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABieHuAAAgOGzbVp270ef2qY4EWZZlsEcAEN+oyyBsAUAMsG1bVy5Yr4o91T6vU5CXrqWTC/lgBwADqMuQGEYIADGhzt3o1we6JG3ZU+3XGVcAgO+oy5Ai6MrW7Nmzddddd+nWW2/Vo48+KrfbrXvuuUdvvPGGPvroIzmdThUXF+vBBx9UTk6OZ736+npNnz5dL730kurq6lRUVKQnnnhCvXr18rSprq7WlClTtGLFCknSmDFjNG/ePHXr1i3UmwkAfvF1CEptw9dtttxTrLSkhDbbFswqD0r/ACCe+DMskLoMKULC1ubNm/X000/r9NNP97xWW1urrVu36t5779UZZ5yh6upqTZ06VWPGjNGWLVs87aZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoIeHYQT1+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oQBi2jc/WIPBtqUfLliv9/bX+LVeWlKC0pIiorwDQFgFsy4HWpMl6nI8C/v/+qFDh3TVVVdp4cKFmjVrlud1p9OpVatWebWdN2+ezjnnHH366afq3bu3XC6XFi1apOeff17FxcWSpCVLlig3N1fl5eUaMWKEdu3apbKyMm3YsEFDhgyRJC1cuFCFhYXavXu38vPzQ7exAGJaJJyVLMhLV6qj9bOnABBPqMsIt7CHrZtuukmjRo1ScXGxV9hqicvlkmVZnuF/FRUVcrvdGj58uKdNTk6OBg4cqHXr1mnEiBFav369nE6nJ2hJ0tChQ+V0OrVu3TrCFoAOSXUkqCAvXVv8HJfvj/49u/77hmnf+sON1QDimem67E9NPt4f6nL8CmvYKi0t1datW7V58+Z22x45ckR33nmnxo8fr65du0qSKisrlZSUpPT0dK+2WVlZqqys9LTJzMxs9n6ZmZmeNi2pr69XfX295/uaGv8vGQOIfZZlaenkQqM3NPNBDQC+M12XqcnwR9jC1t69e3Xrrbdq5cqVSklJabOt2+3WuHHj1NTUpCeeeKLd97Zt2+uXoKVfiG+3+bbZs2fr/vvvb/dnAYBlWVE7Fr+9+xmCfR8aAIQCdRmRImxHYUVFhaqqqjR48GDPa42NjXr77bc1f/581dfXKyEhQW63W2PHjtXHH3+st956y3NVS5Kys7PV0NCg6upqr6tbVVVVGjZsmKfNgQMHmv38zz//XFlZWa32b8aMGfr5z3/u+b6mpka5ubkd2mYAiDSRcD8DAOBr1OXYErbnbBUVFWnHjh3avn2756ugoEBXXXWVtm/f7hW0PvzwQ5WXlysjI8PrPQYPHiyHw+E1kcb+/fu1c+dOT9gqLCyUy+XSpk2bPG02btwol8vladOS5ORkde3a1esLAGLB8fsZ/MEN3gBgDnU5dlm2bdvh7sRxF1xwgc4880w9+uijOnr0qH7wgx9o69ateu2117yuQnXv3l1JSUmSpBtvvFGvvfaaFi9erO7du2v69On68ssvvaZ+v/jii/XZZ5/pqaeeknRs6ve8vDy/pn6vqamR0+mUy+UieAGIev48K0biHgUAMI26HF18zQYRO5h13759nocQn3nmmV7LVq9erQsuuECSNHfuXCUmJmrs2LGehxovXrzYE7Qk6YUXXtCUKVM8sxaOGTNG8+fPD8l2AEAkiub7GQAgFlGXY1NEXdmKZFzZAgAAACD5ng3Cds8WAAAAAMQywhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGJIa7A9HCtm1JUk1NTZh7AgAAACCcjmeC4xmhNYQtH3311VeSpNzc3DD3BAAAAEAk+Oqrr+R0OltdbtntxTFIkpqamvTZZ5+pS5cusiwrJD+zpqZGubm52rt3r7p27RqSnxmP2M/msY9Dg/1sHvs4NNjP5rGPQ4P9bF649rFt2/rqq6+Uk5OjTp1avzOLK1s+6tSpk3r16hWWn921a1d+QUOA/Wwe+zg02M/msY9Dg/1sHvs4NNjP5oVjH7d1Res4JsgAAAAAAAMIWwAAAABgAGErgiUnJ+u+++5TcnJyuLsS09jP5rGPQ4P9bB77ODTYz+axj0OD/WxepO9jJsgAAAAAAAO4sgUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsh9sQTT6hPnz5KSUnR4MGD9c4777TZfu3atRo8eLBSUlJ08skna8GCBc3avPzyy+rfv7+Sk5PVv39/LV++3FT3o4I/+3jZsmW66KKLdOKJJ6pr164qLCzUm2++6dVm8eLFsiyr2deRI0dMb0pE82c/r1mzpsV9+P7773u141j25s8+vvrqq1vcxwMGDPC04Vj29vbbb+vSSy9VTk6OLMvSK6+80u461GT/+bufqcv+83cfU5MD4+9+pi77b/bs2Tr77LPVpUsXZWZm6vLLL9fu3bvbXS+SazNhK4R+//vfa+rUqbr77ru1bds2fe9739PFF1+sTz/9tMX2H3/8sS655BJ973vf07Zt23TXXXdpypQpevnllz1t1q9frx/96EcqKSnRX/7yF5WUlGjs2LHauHFjqDYrovi7j99++21ddNFFeuONN1RRUaELL7xQl156qbZt2+bVrmvXrtq/f7/XV0pKSig2KSL5u5+P2717t9c+PPXUUz3LOJa9+buPf/Ob33jt271796p79+764Q9/6NWOY/lrhw8f1hlnnKH58+f71J6aHBh/9zN12X/+7uPjqMn+8Xc/U5f9t3btWt10003asGGDVq1apaNHj2r48OE6fPhwq+tEfG22ETLnnHOOPXnyZK/X+vbta995550ttv/FL35h9+3b1+u1G264wR46dKjn+7Fjx9ojR470ajNixAh73LhxQep1dPF3H7ekf//+9v333+/5/tlnn7WdTmewuhgT/N3Pq1evtiXZ1dXVrb4nx7K3jh7Ly5cvty3Lsj/55BPPaxzLrZNkL1++vM021OSO82U/t4S67Dtf9jE1ueMCOZapy/6rqqqyJdlr165ttU2k12aubIVIQ0ODKioqNHz4cK/Xhw8frnXr1rW4zvr165u1HzFihLZs2SK3291mm9beM5YFso+/rampSV999ZW6d+/u9fqhQ4eUl5enXr16afTo0c3OsMaTjuzns846Sz179lRRUZFWr17ttYxj+WvBOJYXLVqk4uJi5eXleb3OsRw4anJ4UJfNoSaHFnXZfy6XS5Ka/f5/U6TXZsJWiHzxxRdqbGxUVlaW1+tZWVmqrKxscZ3KysoW2x89elRffPFFm21ae89YFsg+/rY5c+bo8OHDGjt2rOe1vn37avHixVqxYoVeeuklpaSk6D//8z/14YcfBrX/0SKQ/dyzZ089/fTTevnll7Vs2TLl5+erqKhIb7/9tqcNx/LXOnos79+/X//3f/+n6667zut1juWOoSaHB3U5+KjJoUdd9p9t2/r5z3+uc889VwMHDmy1XaTX5kTjPwFeLMvy+t627Wavtdf+26/7+56xLtD98dJLL2nmzJn605/+pMzMTM/rQ4cO1dChQz3f/+d//qe++93vat68eXrssceC1/Eo489+zs/PV35+vuf7wsJC7d27Vw8//LDOO++8gN4zHgS6PxYvXqxu3brp8ssv93qdY7njqMmhRV02g5ocetRl/918883661//qnfffbfdtpFcm7myFSI9evRQQkJCswRdVVXVLGkfl52d3WL7xMREZWRktNmmtfeMZYHs4+N+//vfa+LEifrDH/6g4uLiNtt26tRJZ599dtyederIfv6moUOHeu1DjuWvdWQf27atZ555RiUlJUpKSmqzbbwfy/6iJocWdTm0qMnmUJf9d8stt2jFihVavXq1evXq1WbbSK/NhK0QSUpK0uDBg7Vq1Sqv11etWqVhw4a1uE5hYWGz9itXrlRBQYEcDkebbVp7z1gWyD6Wjp05vfrqq/Xiiy9q1KhR7f4c27a1fft29ezZs8N9jkaB7udv27Ztm9c+5Fj+Wkf28dq1a/X3v/9dEydObPfnxPux7C9qcuhQl0OPmmwOddl3tm3r5ptv1rJly/TWW2+pT58+7a4T8bXZ+BQc8CgtLbUdDoe9aNEi+7333rOnTp1qd+7c2TMrzZ133mmXlJR42n/00Ud2Wlqafdttt9nvvfeevWjRItvhcNh//OMfPW3+3//7f3ZCQoL94IMP2rt27bIffPBBOzEx0d6wYUPIty8S+LuPX3zxRTsxMdF+/PHH7f3793u+Dh486Gkzc+ZMu6yszP7HP/5hb9u2zb7mmmvsxMREe+PGjSHfvkjh736eO3euvXz5cvuDDz6wd+7cad955522JPvll1/2tOFY9ubvPj7uJz/5iT1kyJAW35Nj2dtXX31lb9u2zd62bZstyX7kkUfsbdu22Xv27LFtm5ocLP7uZ+qy//zdx9TkwPi7n4+jLvvuxhtvtJ1Op71mzRqv3//a2lpPm2irzYStEHv88cftvLw8Oykpyf7ud7/rNZXlhAkT7PPPP9+r/Zo1a+yzzjrLTkpKsk866ST7ySefbPaeS5cutfPz822Hw2H37dvXq1jGI3/28fnnn29LavY1YcIET5upU6favXv3tpOSkuwTTzzRHj58uL1u3boQblFk8mc///rXv7b/4z/+w05JSbHT09Ptc88913799debvSfHsjd/68XBgwft1NRU++mnn27x/TiWvR2f/rq1339qcnD4u5+py/7zdx9TkwMTSM2gLvunpf0ryX722Wc9baKtNlu2/e87yAAAAAAAQcM9WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgDEtTVr1siyLB08eDDcXQEAxBjCFgAg5l199dWyLEuWZcnhcOjkk0/W9OnTdfjw4XB3DQAQwxLD3QEAAEJh5MiRevbZZ+V2u/XOO+/ouuuu0+HDh/WjH/0o3F0DAMQormwBAOJCcnKysrOzlZubq/Hjx+uqq67SK6+84lleUVGhgoICpaWladiwYdq9e7dn2T/+8Q9ddtllysrK0gknnKCzzz5b5eXlXu//xBNP6NRTT1VKSoqysrJ05ZVXepbZtq2HHnpIJ598slJTU3XGGWfoj3/8o/FtBgCEF2ELABCXUlNT5Xa7Pd/ffffdmjNnjrZs2aLExERde+21nmWHDh3SJZdcovLycm3btk0jRozQpZdeqk8//VSStGXLFk2ZMkUPPPCAdu/erbKyMp133nme9e+55x49++yzevLJJ/W3v/1Nt912m37yk59o7dq1odtgAEDIWbZt2+HuBAAAJl199dU6ePCg50rWpk2bdMkll6ioqEg33nijLrzwQpWXl6uoqEiS9MYbb2jUqFGqq6tTSkpKi+85YMAA3Xjjjbr55pu1bNkyXXPNNdq3b5+6dOni1e7w4cPq0aOH3nrrLRUWFnpev+6661RbW6sXX3zRzEYDAMKOe7YAAHHhtdde0wknnKCjR4/K7Xbrsssu07x58/Tee+9Jkk4//XRP2549e0qSqqqq1Lt3bx0+fFj333+/XnvtNX322Wc6evSo6urqPFe2LrroIuXl5enkk0/WyJEjNXLkSF1xxRVKS0vTe++9pyNHjuiiiy7y6k9DQ4POOuusEG09ACAcCFsAgLhw4YUX6sknn5TD4VBOTo4cDockecLW8e8lybIsSVJTU5Mk6fbbb9ebb76phx9+WKeccopSU1N15ZVXqqGhQZLUpUsXbd26VWvWrNHKlSv1y1/+UjNnztTmzZs97/H666/rO9/5jlefkpOTzW40ACCsCFsAgLjQuXNnnXLKKQGt+8477+jqq6/WFVdcIenYPVyffPKJV5vExEQVFxeruLhY9913n7p166a33npLF110kZKTk/Xpp5/q/PPP7+hmAACiCGELAIB2nHLKKVq2bJkuvfRSWZale++913PFSjo2RPGjjz7Seeedp/T0dL3xxhtqampSfn6+unTpounTp+u2225TU1OTzj33XNXU1GjdunU64YQTNGHChDBuGQDAJMIWAADtmDt3rq699loNGzZMPXr00B133KGamhrP8m7dumnZsmWaOXOmjhw5olNPPVUvvfSSBgwYIEn67//+b2VmZmr27Nn66KOP1K1bN333u9/VXXfdFa5NAgCEALMRAgAAAIABPGcLAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAb8f4lIUwygpTlNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 32\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/period, nbin=nbin)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/1.1, nbin=nbin)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, typically we try a number of frequencies around the candidate we found with the power spectrum or other means, and search for the frequency that gives the \"best\" pulsed profile. \n", + "How do we evaluate this best frequency?\n", + "We use the chi squared statistics. \n", + "\n", + "We use a flat pulsed profile (no pulsation) as model, and we calculate the chi square of the actual pulsed profile with respect to this flat model:\n", + "\n", + "$$\n", + "S = \\sum_i\\frac{(P_i - \\overline{P})^2}{\\sigma^2}\n", + "$$\n", + "\n", + "If there is no pulsation, the chi squared will assume a random value distributed around the number of degrees of freedom $n - 1$ (where $n$ is the number of bins in the profile) with a well defined statistical distribution ($\\chi^2_{n - 1}$). If there is pulsation, the value will be much larger.\n", + "Stingray has a function that does this: `stingray.pulse.search.epoch_folding_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgRUlEQVR4nOzdd3xT9foH8E92mu49oJQCZU8BWSp7CSIXFefFvVAUgQuX6+9qXaBcBQQUr14FLig48Sqo7CFLoMgolF2gQEspbdORNPP8/kjOaUNbSNu0aZvP+/XK60WSk5NvQ5tznvM83+crEwRBABEREREREblN7u0BEBERERERNTQMpIiIiIiIiKqIgRQREREREVEVMZAiIiIiIiKqIgZSREREREREVcRAioiIiIiIqIoYSBEREREREVURAykiIiIiIqIqUnp7APWB3W7H5cuXERgYCJlM5u3hEBERERGRlwiCgMLCQsTFxUEurzzvxEAKwOXLlxEfH+/tYRARERERUT2RkZGBpk2bVvo8AykAgYGBABwfVlBQkJdHQ0REdaq4GFiwwPWxl14C/P29Mx4iIvKqgoICxMfHSzFCZRhIAVI5X1BQEAMpIiJfo1AAGo3rY0FBDKSIiHzczab8sNkEERERERFRFTGQIiIiIiIiqiIGUkRERERERFXEOVJEREREVCOCIMBqtcJms3l7KEQ3pVAooFQqa7zsEQMpIiIiIqo2s9mMzMxMGAwGbw+FyG06nQ6xsbFQq9XV3gcDKSIiIiKqFrvdjvT0dCgUCsTFxUGtVtf4Kj9RbRIEAWazGVevXkV6ejqSkpJuuOjujTCQIiIiIqJqMZvNsNvtiI+Ph06n8/ZwiNzi5+cHlUqF8+fPw2w2Q6vVVms/bDZBRERERDVS3Sv6RN7iid9Z/tYTERERERFVEQMpIiIiIiKiKmIgRURERETUgDRv3hzz58+v9uuXLl2KkJAQj43HVzGQIiIiIiKf8thjj0Emk5W7jRgxQtqmefPm5Z5v2rRptd4vOTkZXbt2rfLrKgt49u3bh2eeecatfVQUdN1///04efJklcdDrti1j4iIiIh8zogRI7BkyRKXxzQajcv9N998E08//bR0X6FQ1MnYbiYyMrJGr/fz84Ofn5+HRuO7mJEiIiIiIo8RBAEGs7XOb4IgVGmcGo0GMTExLrfQ0FCXbQIDA12ev1EAs3XrVtx6663w9/dHSEgI+vXrh/Pnz2Pp0qV44403cOjQISmztXTpUgDA3Llz0alTJ/j7+yM+Ph4TJ05EUVGRtL/HH38cer1eel1ycjKA8lmm5ORkNGvWDBqNBnFxcXjppZcAAAMGDMD58+fxyiuvSPsAKs50/fTTT+jRowe0Wi0iIiIwbtw46bmPP/4YSUlJ0Gq1iI6Oxr333lulz7qxYkaKiIiIiDzGaLGh/Wvr6vx9j705HDq1d05trVYrxo4di6effhorV66E2WzG3r17IZPJcP/99yM1NRW//fYbNm7cCAAIDg4G4GjBvWDBAjRv3hzp6emYOHEipk+fjo8//hh9+/bF/Pnz8dprr+HEiRMAgICAgHLv/d1332HevHlYtWoVOnTogKysLBw6dAgA8MMPP6BLly545plnXDJr11u7di3GjRuHV199FcuXL4fZbMbatWsBAPv378dLL72E5cuXo2/fvsjNzcXvv//u0c+voWIgRUREREQ+Z82aNeUCkxkzZuCf//yny/3/+7//k+7PmjVLyvaUVVBQAL1ej9GjR6Nly5YAgHbt2knPBwQEQKlUIiYmxuV1kydPlv6dmJiIt956C88//zw+/vhjqNVqBAcHQyaTlXtdWRcuXEBMTAyGDBkClUqFZs2a4dZbbwUAhIWFQaFQSJm1yrzzzjt44IEH8MYbb0iPdenSRdq/v78/Ro8ejcDAQCQkJKBbt26V7suXMJAiIiKfJggCMvONCA9QQ6OsH/MfiBoyP5UCx94c7pX3rYqBAwdi8eLFLo+FhYW53P/b3/6Gxx57TLofERFR4b7CwsLw2GOPYfjw4Rg6dCiGDBmC8ePHIzY29oZj2LJlC2bNmoVjx46hoKAAVqsVJSUlKC4uhr+/v1s/x3333Yf58+ejRYsWGDFiBO68807cddddUCrdP80/ePBgpRmroUOHIiEhQdr/iBEj8Je//AU6nc7t/TdWnCNFREQ+beOxbHyzPwPLdp3H6ewibw+HqMGTyWTQqZV1fhPn/7jL398frVq1crldH0hFRES4PH+jluFLlizB7t270bdvX3z99ddo3bo19uzZU+n258+fx5133omOHTvi+++/R0pKCj766CMAgMVicfvniI+Px4kTJ/DRRx/Bz88PEydOxB133FGlfdyo8URgYCAOHDiAlStXIjY2Fq+99hq6dOmC/Px8t/ffWDGQIiIin5aWVQAAMJitWHP4MtJzir08IiJqqLp164aZM2di165d6NixI7766isAgFqths1mc9l2//79sFqt+OCDD9C7d2+0bt0aly9fdtmmotdVxM/PD2PGjMGCBQuwdetW7N69G0eOHHF7H507d8amTZsqfV6pVGLIkCGYM2cODh8+jHPnzmHz5s03HVdjx9I+IiLyaVn6EkQBUMhksAkCzl4tQqK3B0VEtc5kMiErK8vlMaVSWWn53o2kp6fj008/xZgxYxAXF4cTJ07g5MmTmDBhAgBIzSQOHjyIpk2bIjAwEC1btoTVasXChQtx1113YefOnfjkk09c9tu8eXMUFRVh06ZN6NKlC3Q6XbmSuqVLl8Jms6FXr17Q6XRYvnw5/Pz8kJCQIO1j+/bteOCBB6DRaCr8+V5//XUMHjwYLVu2xAMPPACr1Ypff/0V06dPx5o1a3D27FnccccdCA0NxS+//AK73Y42bdpU+XNqbJiRIiIin5apNwIAmoU7Tk6yC03eHA4R1ZHffvsNsbGxLrfbbrutWvvS6XQ4fvw47rnnHrRu3RrPPPMMXnzxRTz77LMAgHvuuQcjRozAwIEDERkZiZUrV6Jr166YO3cu3nvvPXTs2BFffvklZs+e7bLfvn374rnnnsP999+PyMhIzJkzp9x7h4SE4LPPPkO/fv2kzNLPP/+M8PBwAI61sM6dO4eWLVtW2r59wIAB+Pbbb/HTTz+ha9euGDRoEP744w9p/z/88AMGDRqEdu3a4ZNPPsHKlSvRoUOHan1WjYlMqGrT/UaooKAAwcHB0Ov1CAoK8vZwiIioDo145xeM+HUFhrSLxsa0K1DIZXhuzSdQBQV6e2hE9V5JSQnS09ORmJgIrVbr7eEQue1Gv7vuxgbMSBERkc+y2wVk6h0ZqKahflAr5LDZBZy5yqYTRER0YwykiIjIZ10rNsNstQMAArUqRAZqAADHLhd4c1hERNQAMJAiIiKfdTnfMT8qQKOEQi5DVJCjvCMtk4EUERHdGAMpIiLyWWIgFah1NLGNYkaKiIjcxECKiIh81iUpkFIBAKKDHIFUWmYhbHaf78VEREQ3wECKiIh81uX8EgClGakQnRoqhRxGi40L8xIR0Q0xkCIiIp91+bqMlFwmQ5Dz31n6Eq+Ni4iI6j8GUkRE5LMu613nSAGATq0AAFwr5sK8RERUOQZSRETks65vNgEAfs5AKqfI7JUxERFRw8BAioiIfFKJxSYFS2I5H1AmI1XEjBQRVU1JSQkee+wxdOrUCUqlEmPHjvX2kKgWMZAiIiKfJM6B8lMpoFGWHg5LAylmpIioamw2G/z8/PDSSy9hyJAh3h4O1TLlzTchIiJqfApKLACAEJ0SMkEmPe6ndhwaOUeKqGauXr1a7dcGBATAz8+vwudycnIgCK7LE0RGRlZp/wMGDEDnzp2h1Wrxn//8B2q1Gs899xySk5OrO2QAgL+/PxYvXgwA2LlzJ/Lz82u0P6rfGEgREZFPKjJZAQA6tRIoEzPpVJwjReQJUVFR1X7tokWL8MILL1T4XLt27ZCTk+Py2PWBlTuWLVuGKVOm4I8//sDu3bvx2GOPoV+/fhg6dGi1xky+h6V9RETkkwwmG4DSUj6RH7v2EfmEzp074/XXX0dSUhImTJiAHj16YNOmTd4eFjUgDKSIiMgnFZsdGSl/jWtxBudIEfmGzp07u9yPjY1FdnZ2hdv+/vvvCAgIkG5ffvllXQyR6jmvBlLNmzeHTCYrdxNTuYIgIDk5GXFxcfDz88OAAQNw9OhRl32YTCZMmjQJERER8Pf3x5gxY3Dx4kVv/DhERNSAFDszUuKcKJHOed9gtsHgDLaIqPFRqVQu92UyGex2e4Xb9ujRAwcPHpRuY8aMqYshUj3n1TlS+/btg81mk+6npqZi6NChuO+++wAAc+bMwdy5c7F06VK0bt0ab7/9NoYOHYoTJ04gMDAQADB58mT8/PPPWLVqFcLDwzF16lSMHj0aKSkpUCgUFb4vERGRGCQFXFfap1LIoFHKYYQjK6UL43RiouqoLLvjjoCAgEqfS0tLq9acqJrw8/NDq1at6vQ9qf7z6tHh+g4r7777Llq2bIn+/ftDEATMnz8fr776KsaNGwfAMSkwOjoaX331FZ599lno9Xp8/vnnWL58udRicsWKFYiPj8fGjRsxfPjwOv+ZiIioYZAyUhrXQEomkyE8QI18A3Ct2Iz4MJ03hkfU4FW1k567IiIiamW/nnLs2DGYzWbk5uaisLAQBw8eBAB07drVq+Miz6s3l9nMZjNWrFiBKVOmQCaT4ezZs8jKysKwYcOkbTQaDfr3749du3bh2WefRUpKCiwWi8s2cXFx6NixI3bt2lVpIGUymWAylU4iLigoqL0fjIiI6iVpjpS6fPVCmL8aZwxmLspLRFV255134vz589L9bt26AaheZ0Gq3+pNIPXjjz8iPz8fjz32GAAgKysLABAdHe2yXXR0tPTLmZWVBbVajdDQ0HLbiK+vyOzZs/HGG294cPRERNTQFJdtf36dMH81cNXMhhNEjdTWrVvLPfbjjz96ZN/nzp3zyH6o/qs3Xfs+//xzjBw5EnFxcS6Py2Qyl/uCIJR77Ho322bmzJnQ6/XSLSMjo/oDJyKiBslgdpT2+VcQSIX7awAAOWyBTkRElagXgdT58+exceNGPPXUU9JjMTExAFAus5SdnS1lqWJiYmA2m5GXl1fpNhXRaDQICgpyuRERkW8RF+S9fo4UAIQFOLp5MSNFRESVqReB1JIlSxAVFYVRo0ZJjyUmJiImJgYbNmyQHjObzdi2bRv69u0LAOjevTtUKpXLNpmZmUhNTZW2ISIiqojUtU9TQUZK58hIcY4UERFVxutzpOx2O5YsWYJHH30USmXpcGQyGSZPnoxZs2YhKSkJSUlJmDVrFnQ6HR566CEAQHBwMJ588klMnToV4eHhCAsLw7Rp09CpUyepix8REVFFpK59qooyUmoAjq59REREFfF6ILVx40ZcuHABTzzxRLnnpk+fDqPRiIkTJyIvLw+9evXC+vXrpTWkAGDevHlQKpUYP348jEYjBg8ejKVLl3INKSIiuiGx2URlXfsAIIelfUREVAmvB1LDhg2rtB2kTCZDcnIykpOTK329VqvFwoULsXDhwloaIRERNUZSs4kKSvvEQIqlfUREVJl6MUeKiIioronrSOkqykjpHIFUbrGZa78QEVGFGEgREZFPutE6UsE6R9c+q11AsTNzRUREVBYDKSIi8jlmqx0WmyPTpKugtM9PpYBa4ThE6o2WOh0bERE1DAykiIjI54itz4GKS/tkMpmUlco3sOEEETUsn376KeLj4yGXyzF//nxvD6fRYiBFREQ+R1yMV62UQ6Wo+FAY7OcIpJiRImqcsrKyMGnSJLRo0QIajQbx8fG46667sGnTJm8PrUJLly5FSEjITbcrKCjAiy++iBkzZuDSpUt45plnan9wPsrrXfuIiIjqmtixr6LFeEUhYiBlYCBF1NicO3cO/fr1Q0hICObMmYPOnTvDYrFg3bp1eOGFF3D8+PFq7ddisUClUrn9eG24cOECLBYLRo0ahdjY2Aq3qcvxNGbMSBERkc8pMlXesU8kZqTymZEicp8gAMXF3ru52WVz4sSJkMlk2Lt3L+699160bt0aHTp0wJQpU7Bnzx5puwsXLuDuu+9GQEAAgoKCMH78eFy5ckV6Pjk5GV27dsUXX3whZbYEQYBMJsMnn3yCu+++G/7+/nj77bcBAD///DO6d+8OrVaLFi1a4I033oDVWlpqnJ+fj2eeeQbR0dHQarXo2LEj1qxZg61bt+Lxxx+HXq+HTCaTlgi63tKlS9GpUycAQIsWLSCTyXDu3LlKx6nX6/HMM88gKioKQUFBGDRoEA4dOuSyz3fffRfR0dEIDAzEk08+ib///e/o2rWr9PyAAQMwefJkl9eMHTsWjz32mHTfbDZj+vTpaNKkCfz9/dGrVy9s3brVZdwhISFYt24d2rVrh4CAAIwYMQKZmZku+/3iiy/QoUMHaDQaxMbG4sUXXwQAPPHEExg9erTLtlarFTExMfjiiy/KfU6ewowUERH5HIPJuYZUBR37ROIcKZb2EVWBwQD861/ee/+//Q3w97/hJrm5ufjtt9/wzjvvwL+CbcXyOUEQMHbsWPj7+2Pbtm2wWq2YOHEi7r//fpcg4PTp0/jmm2/w/fffQ6EovTjz+uuvY/bs2Zg3bx4UCgXWrVuHRx55BAsWLMDtt9+OM2fOSGV3r7/+Oux2O0aOHInCwkKsWLECLVu2xLFjx6BQKNC3b1/Mnz8fr732Gk6cOAEACAgIKDf2+++/H/Hx8RgyZAj27t2L+Ph4REZGVjrOUaNGISwsDL/88guCg4Px73//G4MHD8bJkycRFhaGb775Bq+//jo++ugj3H777Vi+fDkWLFiAFi1auP9/AuDxxx/HuXPnsGrVKsTFxWH16tUYMWIEjhw5gqSkJACAwWDA+++/j+XLl0Mul+ORRx7BtGnT8OWXXwIAFi9ejClTpuDdd9/FyJEjodfrsXPnTgDAU089hTvuuAOZmZlSFu6XX35BUVERxo8fX6WxVgUDKSIi8jniGlL+msozUiF+jrWk8lnaR9SonD59GoIgoG3btjfcbuPGjTh8+DDS09MRHx8PAFi+fDk6dOiAffv2oWfPngAc2Zbly5dLAYvooYcewhNPPCHd/+tf/4q///3vePTRRwE4MkZvvfUWpk+fjtdffx0bN27E3r17kZaWhtatW0vbiIKDgyGTyRATE1PpmP38/BAeHg4AiIyMdNn2+nFu3rwZR44cQXZ2NjQaDQDg/fffx48//ojvvvsOzzzzDObPn48nnngCTz31FADg7bffxsaNG1FSUnLDz66sM2fOYOXKlbh48SLi4uIAANOmTcNvv/2GJUuWYNasWQAc5YaffPIJWrZsCQB48cUX8eabb0r7efvttzF16lS8/PLL0mPi/0Hfvn3Rpk0bLF++HNOnTwcALFmyBPfdd1+FAaenMJAiIiKfI64h5X+DOVJsNkHUOImLbMtkshtul5aWhvj4eCmIAoD27dsjJCQEaWlp0kl8QkJCuSAKAHr06OFyPyUlBfv27cM777wjPWaz2VBSUgKDwYCDBw+iadOmUhDladePMyUlBUVFRVLgJTIajThz5gwAx2fw3HPPuTzfp08fbNmyxe33PXDgAARBKPdzmUwml/fW6XRSEAUAsbGxyM7OBgBkZ2fj8uXLGDx4cKXv89RTT+HTTz/F9OnTkZ2djbVr19Z64xAGUkRE5HPERXZvNEcqRCrtY/tzosYkKSkJMpkMaWlpGDt2bKXbiXOdbvZ4ReWBFT1ut9vxxhtvYNy4ceW21Wq18PPzc/MnqJ6KxhMbG+tSpihypzugSC6XS8GpyGIpvQBlt9uhUCiQkpLiUvoIuJYnXt/8QiaTSft157OZMGEC/v73v2P37t3YvXs3mjdvjttvv93tn6M6GEgREZHPMbiRkQrhHCmiqtPpHPOUvPn+NxEWFobhw4fjo48+wksvvVQuwMjPz0dISAjat2+PCxcuICMjQ8pKHTt2DHq9Hu3atavy0G655RacOHECrVq1qvD5zp074+LFizh58mSFWSm1Wg2bzVbl973ReLKysqBUKtG8efMKt2nXrh327NmDCRMmSI+VbcYBOEoIyzaFsNlsSE1NxcCBAwEA3bp1g81mQ3Z2drUDm8DAQDRv3hybNm2S9nu98PBwjB07FkuWLMHu3bvx+OOPV+u9qoKBFBER+RyptO8GzSaCxK59nCNF5D6Z7KbNHuqDjz/+GH379sWtt96KN998E507d4bVasWGDRuwePFipKWlYciQIejcuTMefvhhzJ8/X2o20b9//3Jle+547bXXMHr0aMTHx+O+++6DXC7H4cOHceTIEbz99tvo378/7rjjDtxzzz2YO3cuWrVqhePHj0Mmk2HEiBFo3rw5ioqKsGnTJnTp0gU6nQ46NwLHygwZMgR9+vTB2LFj8d5776FNmza4fPkyfvnlF4wdOxY9evTAyy+/jEcffRQ9evTAbbfdhi+//BJHjx51mbs1aNAgTJkyBWvXrkXLli0xb9485OfnS8+3bt0aDz/8MCZMmIAPPvgA3bp1Q05ODjZv3oxOnTrhzjvvdGu8ycnJeO655xAVFSU15di5cycmTZokbfPUU09h9OjRsNls0ly02sT250RE5HPE0r4bZqQ4R4qo0UpMTMSBAwcwcOBATJ06FR07dsTQoUOxadMmLF68GICjtOzHH39EaGgo7rjjDgwZMgQtWrTA119/Xa33HD58ONasWYMNGzagZ8+e6N27N+bOnYuEhARpm++//x49e/bEgw8+iPbt22P69OlSFqpv37547rnncP/99yMyMhJz5syp0Wcgk8nwyy+/4I477sATTzyB1q1b44EHHsC5c+cQHR0NwNEF8LXXXsOMGTPQvXt3nD9/Hs8//7zLfp544gk8+uijmDBhAvr374/ExMRyWaMlS5ZgwoQJmDp1Ktq0aYMxY8bgjz/+cJl/djOPPvoo5s+fj48//hgdOnTA6NGjcerUKZdthgwZgtjYWAwfPlxqbFGbZML1RY0+qKCgAMHBwdDr9QgKCvL2cIiIqJbN/OEwVu7NwNShrTGpd1z5ds1/+xvOGgQM+mAbAjVKHHljuHcGSlTPlZSUID09HYmJidBqtd4eDtWB5ORk/Pjjjzh48KC3h1KOwWBAXFwcvvjiiwrnopV1o99dd2MDlvYREZHPKXKuI6W74RwpR/vzQpMVVpsdSgWLOIiI6iO73Y6srCx88MEHCA4OxpgxY+rkfRlIERGRzxGbTQTcYB2pIG3pIbKgxIowf3Wtj4uIiKruwoULSExMRNOmTbF06VIolXUT4vDyGhER+RxxQV7dDZpNKBVyBDozVvkGtkAnIgIcpX31rayvefPmEAQBGRkZN1xrytMYSBERkc8pNonNJirPSAFAMFugExFRJRhIERGRzxEzUjdqfw4AwWILdAZSRER0HQZSRETkcwymm7c/B0oX5S1gIEV0Q2wCTQ2NJ35nGUgREZHPERfk1alvXNoX4udoMMFFeYkqplI5LjYYDAYvj4SoasTfWfF3uDrYtY+IiHyKIAhSaV+ARgnAVum2QWJpHwMpogopFAqEhIQgOzsbAKDT6SCTybw8KqLKCYIAg8GA7OxshISEQKG48QW1G2EgRUREPsVktcPurOjQaZSAtfJAKoTNJohuKiYmBgCkYIqoIQgJCZF+d6uLgRQREfmUImdZHwDoVArAWvm2pc0m2P6cqDIymQyxsbGIioqCxcKLDlT/qVSqGmWiRAykiIjIp4iNJnRqBeTyG5cghTgDKT1L+4huSqFQeOTklKihYLMJIiLyKe4sxisK0CpdXkNERCRiIEVERD5F7Nh3s8V4AcBP5djGaLHX6piIiKjhYSBFREQ+pdjsXEPKjYyU1hlIlZgrb0hBRES+iYEUERH5lKpkpKRA6gad/YiIyDcxkCIiIp9SuhjvzTNSUmkfM1JERHQdBlJERORTDM6gyLEY741pVY7DpNHCQIqIiFwxkCIiIp9SJGWk3Gg24dymhIEUERFdh4EUERH5FINZnCPlfmmfxSbAamPnPiIiKsVAioiIfEqxc0HeqjSbAIASKwMpIiIqxUCKiIh8SlWaTWiUpYdJNpwgIqKyGEgREZFPqUqzCZlMJpX3cZ4UERGVxUCKiIh8SrHZ/WYTABtOEBFRxRhIERGRTyldkPfmGSkA0CrZAp2IiMpjIEVERD6ltNmEm4GUlJFiswkiIirFQIqIiHyK1P7c3dI+5xwpZqSIiKgsBlJERORTipwZKXe69gGlLdDZtY+IiMpiIEVERD5FzEi507UPALv2ERFRhRhIERGRz7DbBan9uc6NBXmB0owUAykiIiqLgRQREfkMQ5lgyN/t0j527SMiovIYSBERkc8wOFufy2WlAdLNsNkEERFVxOuB1KVLl/DII48gPDwcOp0OXbt2RUpKivS8IAhITk5GXFwc/Pz8MGDAABw9etRlHyaTCZMmTUJERAT8/f0xZswYXLx4sa5/FCIiqueKnWV9/molZDKZW6/xY/tzIiKqgFcDqby8PPTr1w8qlQq//vorjh07hg8++AAhISHSNnPmzMHcuXOxaNEi7Nu3DzExMRg6dCgKCwulbSZPnozVq1dj1apV2LFjB4qKijB69GjYbLx6SEREpcTFeN2dHwVwjhQREVXMvQLxWvLee+8hPj4eS5YskR5r3ry59G9BEDB//ny8+uqrGDduHABg2bJliI6OxldffYVnn30Wer0en3/+OZYvX44hQ4YAAFasWIH4+Hhs3LgRw4cPr9OfiYiI6i8xkHJ3MV6A7c+JiKhiXs1I/fTTT+jRowfuu+8+REVFoVu3bvjss8+k59PT05GVlYVhw4ZJj2k0GvTv3x+7du0CAKSkpMBisbhsExcXh44dO0rbEBERAZA69rnbaALgHCkiIqqYVwOps2fPYvHixUhKSsK6devw3HPP4aWXXsJ///tfAEBWVhYAIDo62uV10dHR0nNZWVlQq9UIDQ2tdJvrmUwmFBQUuNyIiKjxKxJL+9RVKe1zHCpZ2kdERGV5tbTPbrejR48emDVrFgCgW7duOHr0KBYvXowJEyZI210/IVgQhJtOEr7RNrNnz8Ybb7xRw9ETEVFDU9XFeAEuyEtERBXzakYqNjYW7du3d3msXbt2uHDhAgAgJiYGAMpllrKzs6UsVUxMDMxmM/Ly8ird5nozZ86EXq+XbhkZGR75eYiIqH4rMomL8VYhkFKztI+IiMrzaiDVr18/nDhxwuWxkydPIiEhAQCQmJiImJgYbNiwQXrebDZj27Zt6Nu3LwCge/fuUKlULttkZmYiNTVV2uZ6Go0GQUFBLjciImr8xHWk/KtU2sf250REVJ5XS/teeeUV9O3bF7NmzcL48eOxd+9efPrpp/j0008BOEr6Jk+ejFmzZiEpKQlJSUmYNWsWdDodHnroIQBAcHAwnnzySUydOhXh4eEICwvDtGnT0KlTJ6mLHxEREVBmHSl27SMiohryaiDVs2dPrF69GjNnzsSbb76JxMREzJ8/Hw8//LC0zfTp02E0GjFx4kTk5eWhV69eWL9+PQIDA6Vt5s2bB6VSifHjx8NoNGLw4MFYunQpFAr3rzgSEVHjV1yNjBTnSBERUUW8GkgBwOjRozF69OhKn5fJZEhOTkZycnKl22i1WixcuBALFy6shRESEVFjUWwWF+Rl+3MiIqoZr86RIiIiqksGk7iOFNufExFRzTCQIiIin2FwBkO6KizIq2VGioiIKsBAioiIfEaJs2GEX1XmSKlLu/YJglAr4yIiooaHgRQREfkMMaskzntyh7bMtiYrW6ATEZEDAykiIvIZ4jwnbVUCKWXpoZIt0ImISMRAioiIfIaUkapCaZ9SIYdaIXd5PREREQMpIiLyGSXVKO0DAA079xER0XUYSBERkc8QS/OqGkhxLSkiIroeAykiIvIJgiBIgZC4NpS7Sjv3MZAiIiIHBlJEROQTzDY77M7u5doqzJECymSkzOzaR0REDgykiIjIJ5SUCYKqPkeKGSkiInLFQIqIiHyCWNanlMugUlSxtE/Frn1EROSKgRQREfmE6izGK2KzCSIiuh4DKSIi8glix76qzo8CShfwNTGQIiIiJwZSRETkE5iRIiIiT2IgRUREPqG6i/ECpVksg5mBFBEROTCQIiIin1CT0j5mpIiI6HoMpIiIyCeUlvZV/dCnU4vrSDGQIiIiBwZSRETkE2o0R4qlfUREdB0GUkRE5BOkOVLVKO3TqZiRIiIiVwykiIjIJ0hzpKqRkdKplQAAg9nq0TEREVHDxUCKiIh8Akv7iIjIkxhIERGRT6hJICU1m2DXPiIicmIgRUREPqHEXP05UsxIERHR9RhIERGRTxCzSTWZI8VmE0REJGIgRUREPsFosQOoWWkfm00QEZGIgRQREfkEY01K+1Qs7SMiIlcMpIiIyCeUeKDZhMlqh90ueHRcRETUMDGQIiIin+CJOVJl90NERL6NgRQREfmEmpT2aZSlh0uW9xEREcBAioiIfERNSvvkcpn0OnbuIyIigIEUERH5iJosyAuU6dxnYec+IiJiIEVERD5CCqTU1Tv0cVFeIiIqi4EUERH5BLEkrzrNJoDSjBRL+4iICGAgRUREPsBuF2CyVn9BXgDwc3buY0aKiIgABlJEROQDSqylwU91uvYBgE5alJdzpIiIiIEUERH5gLLleFolS/uIiKjmGEgREVGjJzaa0CjlkMtl1doHm00QEVFZDKSIiKjRk9aQqmZZH1AmI2VhIEVERAykiIjIBxjNNWs0AQA6qdkE50gREREDKSIi8gE1XYwXKM1miUEZERH5NgZSRETU6ImBVHXXkAJKu/YZLcxIERERAykiIvIBYqe9msyRYrMJIiIqi4EUERE1eiUeLO1jIEVERAADKSIi8gEeKe3jOlJERFQGAykiImr0PFLap2LXPiIiKsVAioiIGr3Srn3VP+zpWNpHRERleDWQSk5Ohkwmc7nFxMRIzwuCgOTkZMTFxcHPzw8DBgzA0aNHXfZhMpkwadIkREREwN/fH2PGjMHFixfr+kchIqJ6zBNzpLggLxERleX1jFSHDh2QmZkp3Y4cOSI9N2fOHMydOxeLFi3Cvn37EBMTg6FDh6KwsFDaZvLkyVi9ejVWrVqFHTt2oKioCKNHj4bNxgMdERE5iKV9WnbtIyIiD1F6fQBKpUsWSiQIAubPn49XX30V48aNAwAsW7YM0dHR+Oqrr/Dss89Cr9fj888/x/LlyzFkyBAAwIoVKxAfH4+NGzdi+PDhdfqzEBFR/eSJBXl1aschk80miIgIqAcZqVOnTiEuLg6JiYl44IEHcPbsWQBAeno6srKyMGzYMGlbjUaD/v37Y9euXQCAlJQUWCwWl23i4uLQsWNHaZuKmEwmFBQUuNyIiKjx8kwgJWakrBAEwSPjIiKihsurgVSvXr3w3//+F+vWrcNnn32GrKws9O3bF9euXUNWVhYAIDo62uU10dHR0nNZWVlQq9UIDQ2tdJuKzJ49G8HBwdItPj7ewz8ZERHVJ9IcKQ+U9tkFwGS1e2RcRETUcHk1kBo5ciTuuecedOrUCUOGDMHatWsBOEr4RDKZzOU1giCUe+x6N9tm5syZ0Ov10i0jI6MGPwUREdV30hypmmSkyryW5X1EROT10r6y/P390alTJ5w6dUqaN3V9Zik7O1vKUsXExMBsNiMvL6/SbSqi0WgQFBTkciMiosarxOLIINWktE+pkEOtcBw2DezcR0Tk8+pVIGUymZCWlobY2FgkJiYiJiYGGzZskJ43m83Ytm0b+vbtCwDo3r07VCqVyzaZmZlITU2VtiEiIvLEHCmgtLyPGSkiIvJq175p06bhrrvuQrNmzZCdnY23334bBQUFePTRRyGTyTB58mTMmjULSUlJSEpKwqxZs6DT6fDQQw8BAIKDg/Hkk09i6tSpCA8PR1hYGKZNmyaVChIREQGemSMFOBpO6I0WBlJEROTdQOrixYt48MEHkZOTg8jISPTu3Rt79uxBQkICAGD69OkwGo2YOHEi8vLy0KtXL6xfvx6BgYHSPubNmwelUonx48fDaDRi8ODBWLp0KRSKmh0siYio8RAzUjWZIwWUZrQMZmuNx0RERA2bVwOpVatW3fB5mUyG5ORkJCcnV7qNVqvFwoULsXDhQg+PjoiIGgsxg1TT0j4xECth1z4iIp9Xr+ZIERER1Qajh0r7NCrHYdPEZhNERD6PgRQRETV6JR5qNqFVMiNFREQODKSIiKhRs9jssNgEADUPpJiRIiIiEQMpIiJq1ErKBD1iIFRdGqXj9cxIERERAykiImrUxPlRMllpIFRdYrMJZqSIiIiBFBERNWolZkf2yE+lgEwmq9G+xEDMxIwUEZHPYyBFRESNmtFDjSYAZqSIiKgUAykiImrUPLUYL8CMFBERlWIgRUREjZq0GG8N15ACyizIy4wUEZHPYyBFRESNmqfWkAKYkSIiolIMpIiIqFGrjTlSzEgREREDKSIiatTE0j6tB0r7mJEiIiIRAykiImrUSjNSNT/kaZTMSBERkQMDKSIiatQ8OkdKxYwUERE5MJAiIqJGzZNd+8SMFAMpIiJiIEVERI2aJ9eR0jozUiztIyIiBlJERNSoebJrHzNSREQkYiBFRESNmifnSDEjRUREIgZSRETUqHGOFBER1QYGUkRE1KhxjhQREdUGBlJERNSoGS2O7JFn2p8zI0VERA4MpIiIqFEr8Whpn+OwabbaYbcLNd4fERE1XAykiIioUfNk176y5YFmG7NSRES+jIEUERE1ap6cIyVmpADAZGEgRUTky6ocSC1btgxr166V7k+fPh0hISHo27cvzp8/79HBERER1ZQnu/apFHIo5DIAQImVDSeIiHxZlQOpWbNmwc/PDwCwe/duLFq0CHPmzEFERAReeeUVjw+QiIioJjy5jhRQmpViRoqIyLcpq/qCjIwMtGrVCgDw448/4t5778UzzzyDfv36YcCAAZ4eHxERUY14co4U4CgRNJhtzEgREfm4KmekAgICcO3aNQDA+vXrMWTIEACAVquF0Wj07OiIiIhqQBCE0jlSas9MC2ZGioiIgGpkpIYOHYqnnnoK3bp1w8mTJzFq1CgAwNGjR9G8eXNPj4+IiKjaTFY7BGeXck+X9jEjRUTk26p8ee6jjz5Cnz59cPXqVXz//fcIDw8HAKSkpODBBx/0+ACJiIiqS5wfBXima1/Z/TAjRUTk26qckQoJCcGiRYvKPf7GG294ZEBERESeIpb1qRQyqBQeLu1jRoqIyKdV+aiyZMkSfPvtt+Ue//bbb7Fs2TKPDIqIiMgTxNbnnspGAYDGua8SZqSIiHxalQOpd999FxEREeUej4qKwqxZszwyKCIiIk/wdMc+gBkpIiJyqHIgdf78eSQmJpZ7PCEhARcuXPDIoIiIiDxBnCPlyYyUlhkpIiJCNQKpqKgoHD58uNzjhw4dkhpPEBER1QdiQwityjPzowBmpIiIyKHKR5YHHngAL730ErZs2QKbzQabzYbNmzfj5ZdfxgMPPFAbYyQiIqoWsUU5M1JERORpVe7a9/bbb+P8+fMYPHgwlErHy+12OyZMmMA5UkREVK+IwY6YRfIEZqSIiAioRiClVqvx9ddf46233sKhQ4fg5+eHTp06ISEhoTbGR0REVG2mWshIaZTMSBERUTUCKVHr1q3RunVrT46FiIjIo0ozUp4s7WNGioiI3AykpkyZgrfeegv+/v6YMmXKDbedO3euRwZGRERUU2LXPo1Hm004gjKTlRkpIiJf5lYg9eeff8JisUj/JiIiagjEYEdbCxkpMUgjIiLf5FYgtWXLlgr/TUREVJ+VriNVG80mmJEiIvJlVT6yPPHEEygsLCz3eHFxMZ544gmPDIqIiMgTameOlLO0jxkpIiKfVuVAatmyZTAajeUeNxqN+O9//+uRQREREXlCrWSkVMxIERFRFbr2FRQUQBAECIKAwsJCaLVa6TmbzYZffvkFUVFRtTJIIiKi6pDmSHlyQV6p/TkzUkREvsztQCokJAQymQwymazCtucymQxvvPGGRwdHRERUEyZmpIiIqJa4HUht2bIFgiBg0KBB+P777xEWFiY9p1arkZCQgLi4uFoZJBERUXWUONd68uQcKQ0zUkREhCrMkerfvz8GDBiA9PR0jB07Fv3795duffr0qXEQNXv2bMhkMkyePFl6TBAEJCcnIy4uDn5+fhgwYACOHj3q8jqTyYRJkyYhIiIC/v7+GDNmDC5evFijsRARUeNgsoilfZ7LSGmZkSIiIlSj2URaWhp27twp3f/oo4/QtWtXPPTQQ8jLy6vWIPbt24dPP/0UnTt3dnl8zpw5mDt3LhYtWoR9+/YhJiYGQ4cOdekaOHnyZKxevRqrVq3Cjh07UFRUhNGjR8Nm45VCIiJfJ2akPDlHSlqQ18JAiojIl1U5kPrb3/6GgoICAMCRI0cwZcoU3HnnnTh79iymTJlS5QEUFRXh4YcfxmeffYbQ0FDpcUEQMH/+fLz66qsYN24cOnbsiGXLlsFgMOCrr74CAOj1enz++ef44IMPMGTIEHTr1g0rVqzAkSNHsHHjxiqPhYiIGpfS9ueez0iJQRoREfmmKh9Z0tPT0b59ewDA999/j7vuuguzZs3Cxx9/jF9//bXKA3jhhRcwatQoDBkypNz7ZGVlYdiwYdJjGo0G/fv3x65duwAAKSkpsFgsLtvExcWhY8eO0jYVMZlMKCgocLkREVHjYxLnSDEjRUREHlblQEqtVsNgMAAANm7cKAUxYWFhVQ5IVq1ahQMHDmD27NnlnsvKygIAREdHuzweHR0tPZeVlQW1Wu2Sybp+m4rMnj0bwcHB0i0+Pr5K4yYiooZBzEhpPdlsokxGShAEj+2XiIgalioHUrfddhumTJmCt956C3v37sWoUaMAACdPnkTTpk3d3k9GRgZefvllrFixwmVNquvJZDKX+4IglHvsejfbZubMmdDr9dItIyPD7XETEVHDIXbW03i02YQjKBMENpwgIvJlVT6yLFq0CEqlEt999x0WL16MJk2aAAB+/fVXjBgxwu39pKSkIDs7G927d4dSqYRSqcS2bduwYMECKJVKKRN1fWYpOztbei4mJgZms7lck4uy21REo9EgKCjI5UZERI1PbWSkdGXKBI1mzpMiIvJVbq8jJWrWrBnWrFlT7vF58+ZVaT+DBw/GkSNHXB57/PHH0bZtW8yYMQMtWrRATEwMNmzYgG7dugEAzGYztm3bhvfeew8A0L17d6hUKmzYsAHjx48HAGRmZiI1NRVz5syp6o9GRESNjMnq+QV5lQo51Ao5zDY7DBYbQm/+EiIiaoTcCqQKCgqkrM3N5kG5m90JDAxEx44dXR7z9/dHeHi49PjkyZMxa9YsJCUlISkpCbNmzYJOp8NDDz0EAAgODsaTTz6JqVOnIjw8HGFhYZg2bRo6depUrnkFERH5ntJ1pDyXkQIAnUYBs8EOo9nq0f0SEVHD4VYgFRoaiszMTERFRSEkJKTC+UfivCRPrt80ffp0GI1GTJw4EXl5eejVqxfWr1+PwMBAaZt58+ZBqVRi/PjxMBqNGDx4MJYuXQqFwrMHTSIialhsdgFmm+fbnwOO8r58WFBsYmkfEZGvciuQ2rx5M8LCwgAAW7ZsqbXBbN261eW+TCZDcnIykpOTK32NVqvFwoULsXDhwlobFxERNTzmMo0gPJ2R8lM79mfgHCkiIp/lViDVv39/6d+JiYmIj4+vsJseu98REVF9IXbsA2ohI6V2HD6NFpb2ERH5qiofWRITE3H16tVyj+fm5iIxMdEjgyIiIqqpEmejCaVcBqXC04EUM1JERL6uykeWytZoKioquuF6UERERHWpthpNAGUCKc6RIiLyWW63P58yZQoAx7ylf/7zn9DpdNJzNpsNf/zxB7p27erxARIREVVHSS20PheJpX0Gdu0jIvJZbgdSf/75JwBHRurIkSNQq9XSc2q1Gl26dMG0adM8P0IiIqJqEBfj1XhwMV6RlJGyMCNFROSr3A6kxG59jz/+OD788EO314siIiLyBrHZhKZWMlIs7SMi8nVuB1KiJUuW1MY4iIiIPMrkbH+urYWMlJ9U2sdAiojIV1U5kAKAffv24dtvv8WFCxdgNptdnvvhhx88MjAiIqKaEDNStTNHyhGcsf05EZHvqvLRZdWqVejXrx+OHTuG1atXw2Kx4NixY9i8eTOCg4NrY4xERERVJpX21eYcKWakiIh8VpUDqVmzZmHevHlYs2YN1Go1PvzwQ6SlpWH8+PFo1qxZbYyRiIioyqTSvlrs2lfMOVJERD6rykeXM2fOYNSoUQAAjUaD4uJiyGQyvPLKK/j00089PkAiIqLqMEmlfbWXkWJpHxGR76pyIBUWFobCwkIAQJMmTZCamgoAyM/Ph8Fg8OzoiIiIqqm0/Xktdu1jaR8Rkc+qcrOJ22+/HRs2bECnTp0wfvx4vPzyy9i8eTM2bNiAwYMH18YYiYiIqsxkrc2MlOPwaWQgRUTks6ocSC1atAglJSUAgJkzZ0KlUmHHjh0YN24c/vnPf3p8gERERNUhZqRqI5Dyc2akis0s7SMi8lVVDqTCwsKkf8vlckyfPh3Tp0/36KCIiIhqqrRrXy22P2dGiojIZ1X56KJQKJCdnV3u8WvXrkGh8PxVPyIiouoocZb2aWohI+XPBXmJiHxelQMpQRAqfNxkMkGtVtd4QERERJ5gstRe+3O/Ms0m7PaKj4tERNS4uV3at2DBAgCATCbDf/7zHwQEBEjP2Ww2bN++HW3btvX8CImIiKqhRFxHqhYX5HW8j01qPkFERL7D7W/+efPmAXBkpD755BOXMj61Wo3mzZvjk08+8fwIiYiIqkGaI1UbGaky5YIGMwMpIiJf5PY3f3p6OgBg4MCB+OGHHxAaGlprgyIiIqopUy1mpORyGfxUChgtNjacICLyUVW+hLZlyxaX+1arFSUlJS6lfkRERN4mZqRqo/054CjvM1psbIFOROSj3K53+OWXX7B8+XKXx9555x0EBAQgJCQEw4YNQ15enscHSEREVB2mWmx/Drg2nCAiIt/j9tHl/fffR0FBgXR/165deO211/DPf/4T33zzDTIyMvDWW2/VyiCJiIiqSirtq6WMlNgCnaV9RES+ye1AKjU1FX379pXuf/fddxg6dCheffVVjBs3Dh988AF+/vnnWhkkERFRVZWW9tVuRqrYxNI+IiJf5PbRpbCwEOHh4dL9HTt2YNCgQdL9Dh064PLly54dHRERUTWVONeR0tRCswmgtAW60cKMFBGRL3I7kIqLi0NaWhoAoKioCIcOHUK/fv2k569duwadTuf5ERIREVVDibV2M1I6zpEiIvJpbh9d7r33XkyePBnLly/H008/jZiYGPTu3Vt6fv/+/WjTpk2tDJKIiKiqTJbanSMlrh3FQIqIyDe53f789ddfx+XLl/HSSy8hJiYGK1ascFmUd+XKlbjrrrtqZZBERERVIQhCmYxU7Zb2GThHiojIJ7kdSOl0unLtz8u6fn0pIiIibymx2CEIjn+LTSE8TWp/zjlSREQ+qXYKx4mIiLzIUGaRXD+2PyciolrAQIqIiBodcd6SRimHQi6rlfdg+3MiIt/GQIqIiBodsSW5rpbK+srum6V9RES+iYEUERE1OmJGSuysVxukdaRY2kdE5JMYSBERUaMjzpGqrUYTQNn25yztIyLyRW4HUs2aNcO1a9ek+4sWLUJBQUGtDIqIiKgmjObaL+0Tm1gwI0VE5JvcDqQuXrwIm630YPGPf/wDOTk5tTIoIiKimhBL+2qrYx9Quj5ViXPhXyIi8i3VLu0TxAU6iIiI6pk6yUipHYdQceFfIiLyLZwjRUREjY44b6k2m01olGJGioEUEZEvqtIR5j//+Q8CAgIAAFarFUuXLkVERITLNi+99JLnRkdERFQNYkvy2mw2wdI+IiLf5nYg1axZM3z22WfS/ZiYGCxfvtxlG5lMxkCKiIi8ri5K+7QqR1GHkRkpIiKf5HYgde7cuVocBhERkedIzSbqICNlttphtwuQy2W19l5ERFT/cI4UERE1OtKCvKramyOlLdMR0GRleR8Rka9xO5C68847odfrpfvvvPMO8vPzpfvXrl1D+/btPTo4IiKi6jBKzSZqMSOlLD2EsuEEEZHvcTuQWrduHUwmk3T/vffeQ25urnTfarXixIkTnh0dERFRNdRFaZ9SIYdK4SjnYwt0IiLf43Ygdf26UVxHioiI6iuxAURtZqQAQKtk5z4iIl/FOVJERNToiF37/FS1G0hpnPsX34+IiHyH24GUTCaDTCYr91hNLF68GJ07d0ZQUBCCgoLQp08f/Prrr9LzgiAgOTkZcXFx8PPzw4ABA3D06FGXfZhMJkyaNAkRERHw9/fHmDFjcPHixRqNi4iIGra6KO0DSlugs7SPiMj3uN3OSBAEPPbYY9BoNACAkpISPPfcc/D39wcAl/lT7mratCneffddtGrVCgCwbNky3H333fjzzz/RoUMHzJkzB3PnzsXSpUvRunVrvP322xg6dChOnDiBwMBAAMDkyZPx888/Y9WqVQgPD8fUqVMxevRopKSkQKGo3QMoERHVT6WlfbXXtQ8ouygvAykiIl/j9hHm0Ucfdbn/yCOPlNtmwoQJVXrzu+66y+X+O++8g8WLF2PPnj1o37495s+fj1dffRXjxo0D4Ai0oqOj8dVXX+HZZ5+FXq/H559/juXLl2PIkCEAgBUrViA+Ph4bN27E8OHDqzQeIiJqHAx10LUPKC0dNHGOFBGRz3E7kFqyZEltjgM2mw3ffvstiouL0adPH6SnpyMrKwvDhg2TttFoNOjfvz927dqFZ599FikpKbBYLC7bxMXFoWPHjti1axcDKSIiH1XnpX3MSBER+ZzarXlww5EjR9CnTx+UlJQgICAAq1evRvv27bFr1y4AQHR0tMv20dHROH/+PAAgKysLarUaoaGh5bbJysqq9D1NJpNLKWJBQYGnfhwiIqoHxOYPtd61T2w2wUCKiMjneL1rX5s2bXDw4EHs2bMHzz//PB599FEcO3ZMev76hhaCINy0ycXNtpk9ezaCg4OlW3x8fM1+CCIiqjfMVjusdscSHTpV7V4v1LD9ORGRz/J6IKVWq9GqVSv06NEDs2fPRpcuXfDhhx8iJiYGAMpllrKzs6UsVUxMDMxmM/Ly8irdpiIzZ86EXq+XbhkZGR7+qYiIyFvKtiJnaR8REdUWrwdS1xMEASaTCYmJiYiJicGGDRuk58xmM7Zt24a+ffsCALp37w6VSuWyTWZmJlJTU6VtKqLRaKSW6+KNiIgaB4PF0WhCKZdBrazdw5zUtY/tz4mIfI5X50j94x//wMiRIxEfH4/CwkKsWrUKW7duxW+//QaZTIbJkydj1qxZSEpKQlJSEmbNmgWdToeHHnoIABAcHIwnn3wSU6dORXh4OMLCwjBt2jR06tRJ6uJHRES+pa4aTQClXftY2kdE5Hu8GkhduXIFf/3rX5GZmYng4GB07twZv/32G4YOHQoAmD59OoxGIyZOnIi8vDz06tUL69evl9aQAoB58+ZBqVRi/PjxMBqNGDx4MJYuXco1pIiIfFRdNZoASkv7TCztIyLyOV4NpD7//PMbPi+TyZCcnIzk5ORKt9FqtVi4cCEWLlzo4dEREVFDZDDXzWK8ALv2ERH5sno3R4qIiKgmxMV4xbK72iTNkWIgRUTkcxhIERFRo1KXpX0apdi1j3OkiIh8DQMpIiJqVOqy2QQzUkREvouBFBERNSoGS91lpKSufVZmpIiIfA0DKSIialSMzjlSddlsghkpIiLfw0CKiIgaFbG0T1snzSbEOVIMpIiIfA0DKSIialSMdVjax4wUEZHvYiBFRESNijcW5GXXPiIi38NAioiIGpW67NqnUTIjRUTkqxhIERFRoyJlpOpgjpQYrDGQIiLyPQykiIioUTF4o2sf258TEfkcBlJERNSoFJucGSlNHcyRUjoOo2arHTa7UOvvR0RE9QcDKSIialQKTY6MVKBWVevvVbbFusnK8j4iIl/CQIqIiBqVwhILACBQW3elfQA79xER+RoGUkRE1KgUljgyUkF1EEgp5DKoFDIAbDhBRORrGEgREVGjIQgCipylfQGa2i/tA7goLxGRr2IgRUREjYbRYpOaPtRFaR9QNpBiaR8RkS9hIEVERI2GWNYnlwG6OliQFwC0Kseh1MiMFBGRT2EgRUREjYYYSAVolJDJZHXynlqlI2AzMZAiIvIpDKSIiKjRKO3YVzfzo4Cyi/IykCIi8iUMpIiIqNEQM1J1NT8KKC3t4xwpIiLfwkCKiIgajdLW517ISLG0j4jIpzCQIiKiRqPI5CjtC6jTjBS79hER+SIGUkRE1Gh4p7TPEUixax8RkW9hIEVERI1GgTcCKaU4R4qBFBGRL2EgRUREjUaRFEjV/Rwptj8nIvItDKSIiKjRENufB2jqLiMlLvxrMDOQIiLyJQykiIio0Sjt2ld3gZQYtBWZrHX2nkRE5H0MpIiIqNEQg5m6LO0TOwQWMpAiIvIpDKSIiKjR8EZpnxi0ifOziIjINzCQIiKiRsMb7c/FoE0M4oiIyDcwkCIiokaj0AulfWLQxjlSRES+hYEUERE1GmJWqC4zUlIgxdI+IiKfwkCKiIgaBYvNjhKLHYC3SvsYSBER+RIGUkRE1CiUDWTqstmE2LWvyGyF3S7U2fsSEZF3MZAiIqJGQSyt06kVUCrq7vAW5JyPJQiAwcJFeYmIfAUDKSIiahQKvDA/CgA0SjmUchkAdu4jIvIlDKSIiKhREEv76rKsDwBkMllpeR/nSRER+QwGUkRE1CgUeaH1uUjMghUwkCIi8hkMpIiIqFHwRutzUYDGEbxxLSkiIt/BQIqIiBoFsbQvyBsZKQ1L+4iIfA0DKSIiahTEbFBdz5ECSrNgbDZBROQ7GEgREVGjYDA7259rFHX+3lKzCZb2ERH5DAZSRETUKBjMjjWc/FR1H0iVZqQYSBER+QoGUkRE1CiUOBfD1am9kJFyNptgIEVE5DsYSBERUaNgdGaktF7MSBWZOEeKiMhXMJAiIqJGwejMSPl5ISMVyDlSREQ+x6uB1OzZs9GzZ08EBgYiKioKY8eOxYkTJ1y2EQQBycnJiIuLg5+fHwYMGICjR4+6bGMymTBp0iRERETA398fY8aMwcWLF+vyRyEiIi/z5hwpsVMgS/uIiHyHVwOpbdu24YUXXsCePXuwYcMGWK1WDBs2DMXFxdI2c+bMwdy5c7Fo0SLs27cPMTExGDp0KAoLC6VtJk+ejNWrV2PVqlXYsWMHioqKMHr0aNhsNm/8WERE5AXenSPFQIqIyNfU/WIbZfz2228u95csWYKoqCikpKTgjjvugCAImD9/Pl599VWMGzcOALBs2TJER0fjq6++wrPPPgu9Xo/PP/8cy5cvx5AhQwAAK1asQHx8PDZu3Ijhw4fX+c9FRER1Tyzt884cKUezCZb2ERH5jno1R0qv1wMAwsLCAADp6enIysrCsGHDpG00Gg369++PXbt2AQBSUlJgsVhctomLi0PHjh2lba5nMplQUFDgciMioobNWC/an7PZBBGRr6g3gZQgCJgyZQpuu+02dOzYEQCQlZUFAIiOjnbZNjo6WnouKysLarUaoaGhlW5zvdmzZyM4OFi6xcfHe/rHISKiOiYFUl4s7StiaR8Rkc+oN4HUiy++iMOHD2PlypXlnpPJZC73BUEo99j1brTNzJkzodfrpVtGRkb1B05ERPWC0YtzpMSMVLHZBptdqPP3JyKiulcvAqlJkybhp59+wpYtW9C0aVPp8ZiYGAAol1nKzs6WslQxMTEwm83Iy8urdJvraTQaBAUFudyIiKhh8+YcqQBt6ZRjzpMiIvINXg2kBEHAiy++iB9++AGbN29GYmKiy/OJiYmIiYnBhg0bpMfMZjO2bduGvn37AgC6d+8OlUrlsk1mZiZSU1OlbYiIqHGz2wWUWOwAvDNHSqNUQK1wHFIZSBER+Qavdu174YUX8NVXX+F///sfAgMDpcxTcHAw/Pz8IJPJMHnyZMyaNQtJSUlISkrCrFmzoNPp8NBDD0nbPvnkk5g6dSrCw8MRFhaGadOmoVOnTlIXPyIiatxKrKXLXXhjjhTgKO+7Vmx2Npzw88oYiIio7ng1kFq8eDEAYMCAAS6PL1myBI899hgAYPr06TAajZg4cSLy8vLQq1cvrF+/HoGBgdL28+bNg1KpxPjx42E0GjF48GAsXboUCoV3DqZERFS3xEYTAKBVeue7P8AZSLHhBBGRb/BqICUIN5+QK5PJkJycjOTk5Eq30Wq1WLhwIRYuXOjB0RERUUNROj9KDrn8xs2IaktpC3QGUkREvqBeNJsgIiKqiRKL99aQEunUjkDKUCY7RkREjRcDKSIiavAMXlyMVyS2XS82MyNFROQLGEgREVGDJ86R0nqp0QRQGkgZmZEiIvIJDKSIiKjB8+ZivCKW9hER+RYGUkRE1ODVjzlSjvc2sLSPiMgnMJAiIqIGr7Rrn/cCKT8pkGJGiojIFzCQIiKiBq8+NJvwZ2kfEZFPYSBFREQNntjgwbtzpFjaR0TkSxhIERFRgyfNkWKzCSIiqiMMpIiIqMGrD3OkmJEiIvItDKSIiKjBqw9zpNhsgojItzCQIiKiBq+kHqwjJTab4IK8RES+gYEUERE1eGLwUh/anxeztI+IyCcwkCIiogbPWC+aTTjemxkpIiLfwECKiIgavPowR4rrSBER+RYGUkRE1OBJ7c/rQWmfwWyD3S54bRxERFQ3GEgREVGDVx9K+/w1pe9dYmVWioiosWMgRUREDZ6xHpT2aZWl783yPiKixo+BFBERNXhSIOXFjJRcLpMCOYOJgRQRUWPHQIqIiBo8Yz2YIwWUlvcZLGyBTkTU2DGQIiKiBq8+zJEq+/7FzEgRETV6DKSIiKhBs9sFlFjsALyfkdKpHC3QuZYUEVHjx0CKiIgatLId8rydkdKJpX1mlvYRETV2DKSIiKhBK5v9Kds5zxt0ZdaSIiKixo2BFBERNWji/CitSg65XObVsejUjtI+BlJERI0fAykiImrQSupJxz6gbEaKpX1ERI0dAykiImrQjOb60WgCYGkfEZEvYSBFREQNmpj90Xq50QTA0j4iIl/CQIqIiBo0vdECAAjSqrw8ktKMlJGlfUREjR4DKSIiatDyDY5AKsxf7eWRlFmQlxkpIqJGj4EUERE1aLkGMwAgROf9jJS/mgvyEhH5CgZSRETUoOUVOwKpMF19ykixtI+IqLFjIEVERA1anjMjFVoPSvv82WyCiMhnMJAiIqIGLbfYMUcqtB5kpEqbTTCQIiJq7BhIERFRgyZmpML8vT9HiqV9RES+g4EUERE1aFJpXz3ISLHZBBGR72AgRUREDZrYbKI+zJESM1KcI0VE1PgxkCIiogbLZheQb6w/c6T8NWIgxdI+IqLGjoEUERE1WHqjBYLg+Hd9WEdKp3KU9llsAiw2u5dHQ0REtYmBFBERNVji/KhArRIqhfcPaTpnRgoACkuYlSIiasy8f9QhIiKqJmkx3nowPwoAVAo5gv0cmbHcYpOXR0NERLWJgRQRETVYucX1p2OfKNwZ1OUUmb08EiIiqk0MpIiIqMHKN4iNJrw/P0oUHuAIpMQgj4iIGicGUkRE1GDlGupP63NRuL8GAHCtiKV9RESNGQMpIiJqsKQ5UvWptC+ApX1ERL6AgRQRETVYefUxIxXgzEix2QQRUaPGQIqIiBqs3OL6sxivKMKZkbrGjBQRUaPm1UBq+/btuOuuuxAXFweZTIYff/zR5XlBEJCcnIy4uDj4+flhwIABOHr0qMs2JpMJkyZNQkREBPz9/TFmzBhcvHixDn8KIiLyFjEjFeZfj5pNSHOkGEgRETVmXg2kiouL0aVLFyxatKjC5+fMmYO5c+di0aJF2LdvH2JiYjB06FAUFhZK20yePBmrV6/GqlWrsGPHDhQVFWH06NGw2Wx19WMQEZGXiIFUSD3KSElzpFjaR0TUqCm9+eYjR47EyJEjK3xOEATMnz8fr776KsaNGwcAWLZsGaKjo/HVV1/h2WefhV6vx+eff47ly5djyJAhAIAVK1YgPj4eGzduxPDhw+vsZyEiorpX3xbkBVjaR0TkK+rtHKn09HRkZWVh2LBh0mMajQb9+/fHrl27AAApKSmwWCwu28TFxaFjx47SNhUxmUwoKChwuRERUcNiswvINzrmSIXUp3WknKV9eqMFZqvdy6MhIqLaUm8DqaysLABAdHS0y+PR0dHSc1lZWVCr1QgNDa10m4rMnj0bwcHB0i0+Pt7DoyciotqWU2SCIAAKuUwKXuqDYD8VFHIZgNLSQyIianzqbSAlkslkLvcFQSj32PVuts3MmTOh1+ulW0ZGhkfGSkREdedKQQkAIDJAIwUu9YFcLpNKDXO4KC8RUaNVbwOpmJgYACiXWcrOzpayVDExMTCbzcjLy6t0m4poNBoEBQW53IiIqGHJ0jsCqeig+pONEoX7c54UEVFjV28DqcTERMTExGDDhg3SY2azGdu2bUPfvn0BAN27d4dKpXLZJjMzE6mpqdI2RETUOIkZqeggrZdHUl4EF+UlImr0vNq1r6ioCKdPn5bup6en4+DBgwgLC0OzZs0wefJkzJo1C0lJSUhKSsKsWbOg0+nw0EMPAQCCg4Px5JNPYurUqQgPD0dYWBimTZuGTp06SV38iIio/vv1SCaC/VTo2yrC7ddkOQOpmOD6F0iFs3MfEVGj59VAav/+/Rg4cKB0f8qUKQCARx99FEuXLsX06dNhNBoxceJE5OXloVevXli/fj0CAwOl18ybNw9KpRLjx4+H0WjE4MGDsXTpUigUijr/eYiIqOp2ns7B818eQKBGicPJw246D1aUpXdke+pjRkpsfpHDQIqIqNHyaiA1YMAACIJQ6fMymQzJyclITk6udButVouFCxdi4cKFtTBCIiKqTTa7gLfWHAMAFJqs0Bstbi+um11Yf0v7SjNSLO0jImqs6u0cKSIiavy+3Z+B41mF0v2qZHDEZhMx9TCQkhblLWZGioiosWIgRUREXrH5+BUk/3zU5bGqtAsvnSNVH7v2iaV9zEgRETVWDKSIiKjObUq7gqf/m4ISix0D2kSiW7MQAO4HHgazFYUlVgD1s7RPbIBxOb/EyyMhIqLawkCKiIjq3L+3nYXNLmBMlzh8NqEHYp2Bh7td7sSyPn+1AoFaVa2Ns7riQ3UAHIGh0Wzz8miIiKg2MJAiIqI6pTdYkHLBsZD634a3gUohr3Ip3JWC+tuxDwCC/JQI1Dj6OV3KN3h5NEREVBsYSBERUZ3aduoqbHYBSVEBiA9zZG7EBWzdD6Tqb8c+wNF1tqnzZ8vINXp5NEREVBsYSBERUZ3acjwbADCobZT0WESgo8udu1376vNivKKmoX4AgIt5zEgRETVGDKSIiKjO2OwCtp5wBFIDywRSVS3tE+dI1deMFFA6TyojjxkpIqLGiIEUERHVmT8v5CHPYEGgVonuCaHS45FSRqqqpX31r/W5KD7MkZHKyGVGioioMWIgRUREdcJktUnrRg1pFw2VovQQJM6RcrdrnxhI1cfFeEVNnRmpi8xIERE1SgykiIioTry/7gRSLxUgVKfC30e2dXku3BlIGcw2GMzWm+5LnEsVGdgAMlKcI0VE1CgxkCIiolr37f4MfPZ7OgDgX/d2KTe3yV+tgFblOCTlFN48KyWWAIqZrPpIzEjlGywoLLF4eTRERORpDKSIiKhW/ZaahRnfHwYAPNu/BYa0jy63jUwmK22BXnzjeVIGsxUG5yK3EfU4IxWgUSJU51gsuLrlff/dfQ59Zm/CwYx8D46MiIg8gYEUERHVGpPVhr//cBh2Abi/Rzz+PqJtpduK5X05hTcOpMSMlVYlh79a4bnB1gIxK1WdhhOHL+bjzZ+PIVNfgg/Wn/D00IiIqIYYSBERUa3Zcvwq8g0WRAdp8M5fOkImk1W6bWSAe2tJXS1T1nej/dUH4jypqmak8g1mTP76IKx2AQDw+6kcnMgq9Pj4iIio+hhI+bjUS3rM3XASJRabt4dCRHUk32BGkenmDR084X8HLwEA7u7aBErFjQ854lpS127SAr0hzI8SiWtJncp2Pwj6Ykc6bp+zBWevFiM6SIPbkyIAAJ/9fhaX841YtPkURi/8Hd+lXKyVMRMRkXsYSPm4N38+hgWbTuG31CxvD4WI6oDeYMGQudsx9qOdEAShVt+roMSCTccdi+/e3TXupttHuLmWVEMKpG5zBkG/HMly64LVoYx8vLnmGApLrGgbE4jPJvTA5CFJAIDvUi6i77ub8f76k0i9VIB5G07W+v8hERFVjoGUD7Pa7Dh8KR8AcP4a2/NSzekNFhy+mO/tYdANbEi7gpwiE05nFyFTX1Lu+Z8PXcavRzI98l6/HcmC2WpHUlQA2scG3XT70mYTNy7tE+dIiYv41md9W0agSYgf9EYL1h+7ctPtt5xwBJ6D2kbhl5duR+emIbilWSgGtImUtunUJBh+KgUu5RuReqmg1sZOREQ3xkDKh53KLkKJxQ4AuJTPQIpqRhAEPLlsH8Ys2oktziwE1T+/pZYGSSevuJabnc4uwqSVf+LFlX9Cb6h5u26x9GxstyZuzWWKDXbMJzp4IR82e+WZloaUkVLIZbine1MAjhbwN7P95FUAwND20ZDLHZ+ZTCbDksd6IvWN4Tg76078POk2KbBad5TVBERE3sJAyoeVzRxUtzUv+Y7z14rxztpjSM8prvD5HadzsP98HgDg0+1n63JojYrRbMP5axV/xjVVZLJi+6kc6f7p7CKX579xnujb7AKOZRZg37lcDPjXFuw8nYOqOnWlEHvP5ToCiVuauvWaAW0iEapT4VK+EetvECA0pEAKAO5zBlI7Tufg4g0W59UbLFKb8ztaR7o8J5PJEKBRSsHVsA6OFvLrj2UhLbMA/zt4CUbzzUsHbXYB9hsEqaL953Ix84fDdTaXjogarm/2Z+CjLafd+m5pbBhI+bBDF/XSvy/l1zyQyikyYeo3h/D7qas13hfVP4s2n8Znv6dj7Ec7setM+RPrj7aclv69++w1HM9iyVF1TP/+MAa8v1X6jC9cM6DAQ4u5bj6eDbPVLt0/daU0kDJb7fi+TPOCY5kFWL77PM5dM2DVvptnUq63cq/jNYPaRiEmWHuTrR20KgUe6Z0AAPh8R3ql2zW0QCo+TIceCaEQBGDP2dxKt9t5Jgd2AWgZ6Y8mIX433OegNtFQymU4eaUIoxb8jpdXHUSfdzdh5d4Llb7mwjUDur6xHtO+PXTTMf9r3Qms3JuB79zIonmT2WrH/w5euum8OiKqHZfzjZjx/WH8a90JLN52xtvDqXMMpHxY2YxUZn5Jja8kvLM2Dd8fuIgP1p+s4ch8w6a0Kxg+bztSL+lvvnE9cNgZeOuNFkz4fK90op9vMGPJznTsOZsLlUKGWxPDAABLd57z1lAbrCKTFetSsyAIwIo953EoIx+D527F8ytSPLJ/sawvMcIfgGsnuY1pV3CtzNyktMwCpDgzjMcuV+13tMRiw/cHHEHZQ7c2q9Jr/9o7ASqFDPvP51W6CK3YHj0ioP7PkRK1jAwA4DjpqIxY1nd9NqoiwToV+rQMBwDYBcdnkW+w4B+rjyC3kjlmPx++jEKTFT/8eQl70ysP6ABH6TfgCKjrs1m/pOHlVQcx57fj3h4KVdPhi/l4Z+0xtzKq9YndLtywBBlwzEX3dEOYBZtOYeYPh2/63p50o/f64cBFiD/i++tPYOsJ3yrtZyDlo0osNhzPLD2JMtvs0tos1fHnhTys/tPR5vhEVqFPpnerasnOczhxpRD/+b3+l8EZzFbppPu2VhGw2gW8+NWfmLv+BHrN2oQ3fj4GALi3ezz+NrwNAGD1n5eQb7hx0wBy9fvJqzDbHBmjjceyMfvXNFhsAvam58Jqs9/k1Tdmswv43VnW93z/lgAcJ8viQV4s62sbE+gYy6mrUqb6bE4xDGb3S7zWH7sCvdGCJiF+bgUFZUUFaTG6s6PDn9g6/Xrigr0RgQ0jIwUAcc4MU2WBlN0uYFsVAikA+Med7TCmSxyWPXEr/vjHELSKCoAgAH+cvVbh9mKgBgBzfjte6QnetSKTFIylZVbetv3klUJpzN5w9LIe/919DgAqDbrrK0EQkHeTpiq+4v31J/HZ7+n48o/z3h6K2y7nGzH2453onLwOf/v2UIUVGPkGM4bN3447F+zwSNUP4Dh3m7fxJFbuzZAudNW2N38+hlve2oDNx8s3yxEEAd86KxlaRPpDEIAnlu5D8k9Hyy1jkXI+F+cqmRrQkDGQ8lHHswphtQsI91dLJSTVmSd19LIeH6w/4VIqYrTYcCGXzStuxGYXpAP/puPZMJptmPnDEST/dLTCFslLdqZj2a5zdTvIMtIyC2AXgMhADT6b0AMd4oKQW2zGgs2nYbLa0To6ANOGtcbrd7VHj4RQtI0JhMlqx/8OXvbamBuiDWmlByqzzS6VgVlsAs7X8G/q5JVCFJZY4a9W4K4ucVDIZSgsseJKgQkWmx1/ON9r2jBHIHyloPQgKAio0mKwB5wH+OEdYqCQV33B3MHtogBUXAZXYrGh0Dlvp6GU9gFAbIijvLGyE6p953KRqS9BgEaJPi3C3dpnu9ggLHiwG/q3joRCLkM/Z4ZqdwWBVJHJKp14iRm/zZU0hTlVZu7ciSuFFQbxJRYbHvx0Dx79Yi/SvJC1stsF/PPHVIjX7M5cLYbJ2nAyGh9uOoVub23wuav3FbngnBN6syxpfZGWWYC7P9qJwxf1KDbb8G3KRTz6xd5yFyYWbzuDs1eLkZZZgPGf7PZIEJGRa5CyP9tO1v7vjiAI+OHPi9AbLXjmvylYc9j1mL43PRfnrxngr1bg++f64q4ucbALwNJd59B79iZMXuVoXLT/XC7uWbwb936yu0oX5RoCBlI+Sizr69Q0WAqkqnrFxG4X8NSy/Vi4+TTOXC2GTq1AszDH4pOcH3Njp7OLpEnchSVWTP/+MFbuvYClu85hwhd7XebEnL1ahDd+PobXfzqKDC8FqEecZX2dmwTDT63Av//aHdFBGgT7qfD+fV2wbvIdeHFQErQqBWQyGe7vGQ8AWLUvA5fyjZj1S1qjvBLlSTa7IHU7HNY+utzzp664H8hUZN85x0nKLQmh8FMrkBBeulBsWmYBjBYbgrRKDGwbhUCtstzrq1LiddRZCtixyc1bnlektzOQSMssKHfVXpwLo1bIEVTBOOsr8Xu2opbzAPCjM/s2smMMtCpFtd6jT0vHmlW7zpQPpHafuQarXUBCuA6P90sEAHz1h2M+ld5owcJNp3Dbe5vx5s/HXAIps9WOsznF0BstLhd5fk3NlEpBt3ghGDiWWYADF/Lhp1IgQKOEzS5IzVMEQcBHW07jp0OuJ30HLuTh632VzyEDHJmGrEr+jzylxGLDEmfp88a0m7fEb8zsdgGXnZ/3vnO5DaKa5fX/HcXVQhPaRDvWeZPLHBeeylb1XCkokcrbIwLUuJRvxJtrjtX4vcs2e9p+0lFhcOpKocvc1+pIyyxwlui5fv5nc4qR7+zgarULmPLNIeQWm5FdUIIZ3x3GpJV/AgBGd45DqL8aCx/shhVP9kKX+BBYbAJ+PHgZ/1h9BP9adwKA4/tbnD/bWDCQqmdMVhuOXtbX+iKLhzKcJ8ZNQ9AkVMxIVe0k/cglPTL1JdCpFZg+og2+ebYPejnnxxyv5Or1+WvF+L8fj3gtIKgvDlxwTcn/7Dzgy2SOKzwTPt8rXbXZUGbtmcquIAOO13mqfABwHOxn/nAYc9efwBHnWjUdmwQDAJqG6rB12kDse3UI7u3etFxr67Fdm0CtkCMtswBjP9qJT7efxfvrT1RrHGarvcZBRH0nCAI2pl1BnsGCYD8V3hrbESqF4zMVS+3KNoa4GaPZhuHztuOpZfulx/adc/zO9Wzu+BtNigqQ9rvf+Vz3hFAo5DK0K7PmkxgAHLvsXiBltwtSOVj7uOoFUhEBGml8f6S7BgVl50e501K9vihb2nf993uJxYY1hx3z1/5yS5Nqv0fvFmGQyRwXarILXIMB8er1HUmRuNfZRfD3UznIKTLhLx/vxAcbTuJinhH/3X0Of15XMrT+aBZue28zJny+V3rsyz2lAcnvJ6ve1bGmzjmzGB3igqSAXSxXP3AhD/9adwJ/+/aQdIKZbzDj0S/2Ysb3RyotiSqx2DBqwe8Y8eH2Wm1esTHNUfoKAEfd/Luq764UVC/4zCk2Sf9HeQaLSxBfH124ZsDec7mQyYAlj/fE0PbRaB7umHN6Mqt07As2nYLJakf3hFD859GeABy/lzU9tyu75ueRS3q8++txDJ23vUZzBG12AU8s3Ycp3xwqdxFGrC64pVkI2sUGwWy1Y/3RLMzbeBJf789AdqEJWpUcE/omSK+5LSkC/3uhH1Y+3RsKuQxrj2TijzLZxk+3n2lQ2eObYSBVj5itdnROXo9RC3a4lNXUBjEj1aVpMJo6A6lLVSzt2+S8kta/dSQmDmiFjk2C0TbW9YB2vSU7z2HFngs37MjlC8Qvpy5Ng6XHIgI0+O65PgjRqXAwIx+TvvoTVpvd5YplZYHUr0cyMf7fu/HiVwc8Mj67XcCUbw5i5d4MLNh8Gr86mxR0alI6Xj+1AmplxV8hof5qDO8YAwC46pzP8vupnGpNjp238SSGztsuzZfJLTZ7rItdfXCtyISRH/6OZ5c7GkoMahuF6CAt/vNoTyx++Bbc3dVxYl2VE4w/M/Jw4kohNqZdwakrhRAEAfucBzIxkGodHSjtVzyx7OF8ruziuQ/1cjSLcDcjlZFnQJHJCrVCLjVYqA6xkcL15X0NcX4UAMQ6OxcazDbpJFq05Xg2CkusiA3Woneie2V9FQnRqaX/u+vL+8Sr13e0jkTr6EC0igqA2WbHpK/+xNmrxQj3VyM6SAOrXZCCOjHjt3DzaRSWWLH3XC7OXC3CiaxC7D+fBzGO3X8+t1rlOhabvdoT5jNyHcerpqF+aBvjPO44KyF2nnb87CarXcqOfvb7WRSWOMZ4qJL5VGevFiPPYEG+weLShdTTvt1f2h0zLbPgpp/BrtM5Uka5vhEEAf9YfQS9Zm3CrF/SKt3OarMju7B8sHU53/WxvekVz+9zZxxzN5zEF7V8biHOBb+tVYR0cUT8Lj3hvOB3/loxvnZ2Op0+vA3axQZCKZch32DBZX0Jtp28in+tOw5LNea9nrtuaYxPnF3yvjtwsVr7A4Dtp65KmfId1y118afzb6VH8zCM7hzreK+Ui/jJWbY/e1wn7Ht1CDrEBeN6fVqG44UBLaX7f+2dgJggLa4UmPB9SsXzXxsiBlL1iFopl8ptjmVWv5NbYYkFzy1PwYo9FU/cLDJZcfqq46Ssc9OQapf2bUhznNQPaVdahtTOefW8stI+MS3tjZr6+kTMSD0/oKV0svLCwJbonhCGzx/tAY1Sjk3Hs8tdPd199lq5ExaD2Yq3nCUDqZf0NW5KoDdaMO27Q/jlSOk6PgZnN6VOTct/WVbmYecJeESABoEaJfRGCw6V6RTpLrHc7buUi7haaMLA97dizMIdFc4l85a1hzOxu4JyKnf8dOgyjmcVQq2UY0SHGLwypDUAxwWKkZ1ipczM9Yvn3kjZBgG/pmbhYp4RWQUlUClk6BofAqD04L/tRLZ0tbBHQiiA0kAqIkCN4c71io5nFrp10itmrlrHBEClqP4hRizvu/5zbWitz0ValQLh/o4ug9efPIqTte/u2kRaJ6q6+joD0F2nSz+3cznFuJBrgEohkwLUOzs5TorEgGviwFa4y9nkQ2x4MrKjYxtTmbKhdUezsHzPOQCOEtT4MD9YbII0x85dZ64WYeD7WzHyw+3VCqbECor4MB3axYrHHcfvfdnlGVLO5yGnyCSV0gGotFNq2ZPUL/dccKnSsNrsuO+TXbh70Y5qn7ACQJa+RFoiRK2Qo8Rix9mrlV8kuVZkwqNL9mLC53tRXAtrehnM1ht+/uk5xbhjzhbM21BxN97Pfj8rlYh+uv1shYtOC4KAZ5enoPesTS7dgoHyF3D/qGSe1Dtrj+HBT/egsJKLaMcyC7Bg0ym8ueaYRxYTr4g4XwgAxpXJHLd2nveccJ73zN1wEla7gP6tI9GrRTg0SgVaOb/HUy/pMf27Q/hoyxkpKKsK8Xc09rolJfINlmqt9we4LhR+/Ty1shkp8Ttj//k8FJttaB6uwwM94xGoVVW67xcHJaFHQihigrR4eUgSnrzNUVb80yEGUlRLxBOYsmU0NruAE1mFbqeE/3fwMn47moX/+zEV/y7T0/+bfRlYufcCUi/pIQhAXLAWkYEaqbTvZhkpg9mK3GIzBEHApXwj0jILIJcBA9tGSdu0cX6hnM81VPilLzahOHHF/Z+nvisocUykdMeRi3psSruCM1cdX4Y9m4fhX/d1wfMDWuLhXo7UePeEMHz4QFcAwPcHLsIuOMpX4sP8YLbapautoo+3nJFqzC02oUaLK+85ew2DP9iKHw44vuTeHdcJMUGOL+yoQA2ig9xbDwhwnAh//UxvrH3pNtze2jF3Y9uJm3f4strsmP1LGr7ZlwGD2SoFELvPXMOSnenQGy04d80gXfGrbXa7cMPgNOV8Hl746gAeX7q3Wpmy9UcdGcfpw9vgk792RzPnxRSRGPCczSl2O0gu+/3xy5FM6Wp2R+ccN8BxASQuWIvL+hLkFJmgUsjQxRlkDW0fjW7NQvBc/5ZIjAiAViWH0WIrdzW0wvd2XiTpEOt+0F0RsUz4xJVCZOpLf6dLA6mG0/pcVFHnvrNXi6RM8/ge7i1cfCP9Wjn+1racyJbmm2x3nrh3TwhFgMZx4WaU86QIAEJ1Kjx4azwGlfkuB4C7usRJ/xbju+/2X8Q3+xwnk4/1TcRtrSJd3sMdp7MLcf+/9+BinhEnrxRVqZGJKMP5PRcfqkMbZ0YqLbMQRrMNB87nS9sduJCHz7afhcFsg875u59aSTv/svNPzDY7Fmw6Jd3ffuoq9p3Lw6GL+govagiCewsd/3zoMuwC0LN5KDo7L0zdqLzvYEY+LDYBRoutWheibuTXI5no+fZG3P/v3ZUej38+dBkXcg34cNOpch1mj17WY/avjpKyW53Z7FdXp+LP60rXvz9wCZuOZ8MuOALxsi7lO84JxMBgb3puubGcv1aMz35Px+6z11yyeWWVvXBwpEyg/O9tZ3Dv4l0eCa4OXMjD+WsG6NQKDO8QIz3eRspIFSEts0Camyd2sAUgZWz+d/CSVHG0+kD5YOJqoQl7zl6r9P/jXI7j85rQpzkAQKdWYIizOY+YSa6K3GKzy/SBwxfzpTb0RabS42+3ZqFIjPB3Kfse3zP+puXVaqUc3zzbB7v+PggRARoMaOP4vnD8Xtfsom99wUCqnhH/2Mp+sU779hCGz99e4aKYW05kY9SC312u2pa9KjH71+NYsOkUvt53AdO/P4yZPxyRrh6J2YWyGanK/njzis3oM3szbnlrA7q8sR4PfLobgOPAHOZfekITHqBBZKAGglD+CrrNLkhX+PINFqnkqzrm/HYcL3x1oMbZF094dXUq7v1kt7RGT2UOX8zH3R/twJPOeSvNw3UID9BgeIcYzBjR1qVMbkTHWDzXvzQlPrR9NAa1cXxZlm1BWlhiwWfOg5tW5Xj92RxHqdY/Vh/BztM5bgesRSYrXvn6IHKKzGgZ6Y+vnuqFB25thtfvag+ZzJEhqapeLcIRHaSVXuvOydaPBy/j39vP4tUfj2DP2WtSVy6rXcC/t5ceyD/eevqGWamMXANe+19qjebjWWx23PvJLvR9dzMuXDOgxGLDdykXXX63v9jpKCUpsdjx65GqHcjyDWbsdQY5QytoMAE4Spe0KjnMVrvb3TDLZnyPZxVi0WZHmZJY1gc4SjNn3tlOut+xSbDU5CDUX43VE/vhqdtbQCGXSaVT7mSSxSCuuvOjROEBGulEc/y/d0vvLQYdzZ1rYTUkcc7OfZfLBIZLnd04B7eNQosalEKK+rQMR6BGiexCk5T5rmh9qtbRAdJV8if6JUKnVqJH8zAp0GoS4odbEkKk8r2XBicBcAT0ZpsdtyaGoXeLMNyR5LxI4mYbdLtdwMQvD7jMQfozo+ptnMVjSdNQP7SODoBM5giy1x3NgtlmlwK/vel50rHz1VGO3/fT2UUVrlkkNsQZ6DzZ++HAJSnoLTtB/ugl178DQRBw3ye7MeD9rZVmTETrjzkCidGd49DB+Tdyo7UEy5Yh/nkh3+U5QRDwytcH8cKXB6qc1fv3tjN4/ssDKDbbpDXbikxWbDx2xWX+Stm28m+vTcN/fj8rHVMcxxfH79WqZ3pjWPtomG12PLs8RZozdbXQJFVMAOUzHmJ2dmTHWKiVcmQXmqSmIaKyF82W7zlfYcBatiRNDDhLLDZ8uOkU9p/Pw1YPdLgTy2OHtIuGTl3a6KZNjDjf1PFdKwjAqM6x0pxiANL/9a+ppYHknvRr5ZZDmPz1n3jg0z0Vduk1WW3Sd8d9PZri/fu6YPmTvfDU7S0AOIJUsftvRb8Pv5+66vL/BzjWgLLYBHRsEoTYYC0sNkH63jiUkQ+74PguEC+ijurkCCAVchnuvcW9Cz9yuUzKtLeMDECwnwolFrt0nltYYsHQudvw5NJ9bu2vvmk4LY/qQE5ODkymqp/cBwQEwM+v4lXoc3LcP5EFgFiNGTaDHgdPmVFc3BZbzuil9O/HW0/jvu5NoVTIkZubiwKDCVOW7UROkRnPfJaFlU/3RkSABtsPn4GtxIqh7aKxIe0K/vU/11/OH/caINfo0LlpCIDSq6QGsw1H0i8jQCXDTwcvY3C7KMQEO57bdOwKcq85vkTyDECe87uwb5MoXL3qLFNQqxEcHIy2MYG4WmhCWmYhujVzlArp9Xqcy85HSWG+NI49x9LRp2UEbHYBn24/i27NQtC7RTjOZhdh19kcPNCzGZQKOVQqFUJCQqTXnb1ahI+3OjJt4zuHo3206xV80Yo956BVKTC2axMoKygxUigUCAsLq+CVQHFxMQyGm5+0llhs+HXfCdisdny/Kw3do5WQyWTILFHh0SV7MXVYazzcKwGCIOCtNcdgNZughRlGix2DbgmTPruKPNotFAdPKpFyPg+3NVXjUr4NywBsOJaNt8cKUMhl2HbyKkxWOxJCVGgRLMfGtGwcOnUBG45dwZFLBVi+5QjaxARibNc43NYqArHBfhWWDoWHh2P+hpPI1JegWZgOaybdDj+1AmazGT1ilFj9eEeEB2huON6KhIaGQqlUSidwhzLykVdsRqBGjry88idPNruA+Wv2w2YwwAbg/f/tg81QJjsLQKuUIzQkBFcKTFi19wIec3YgAwC73Y5r1xxX8178734cuJCPtPSL+Pjh7m6NNygoCBpNacnY5zvSccB58vL0p5sQoFVib7pj3H1ahuPBnvFYu/eEdND6alsqBjUv/11Q2XfElhPZMBflo1VkAHR2A65erfh3Lt7PiuP6Quw7fg6BKA24dDod/P1dAwqz1Y7T2UWwGQvRPEyLc9cMOHVBjxCdCiNa+rn8H/aKVaJLuAwHMvLRPixEek6r1SIwMFDark10IA5m5OPklSLk5+fDYqn8ZPHgqQuwGUyI1ZjL/b6I3xEV0ev1MJtdO/S9OrAJXv76Ks5d1GPc3F8xc2Q77Dt+Hiq5HAMSSn8fr/+OKKuwsBAlJTeZCF9cDF2xa7bNcPUqFCZTjb8jygqCETaDHifPXwb6NIfeYJGusIslL0ajEUVF1Z9wHxkZicHtovDjwcv4NTULnZuGYNeZaxCsFnQMk7n8n/xjUBPsPJWDse0Cpcd7xiiwMe0amsYqUazPwwMdg3H+mgHP3J6IbSevSifzk4ckQSaToUezIMhLCnHqvB47jpyVqhIqs/1kNtLSLyFArcDwjjFYfUyPPy/kSxl5kdVqrfA7AnAEY+cuZsFms0NnL0axXkCcxoILuQYs/OUAbIZCjOjeEhtPXJMCtqahfnigZzPMXXcC2Tk52HX0rHQMFJ04dxE2gx6DmjdDXq4MKefzsWBtCib0ScCGA6dgswuQq3VIvazHeMSXvu6KY86YzaDHqu2pGNut4hPMa0Um/JF2DoIA3BIlh6XICptBj5QT52EcnFjhd8TBi3rYDI5Aa+eRsxjfsfTv51BGPr7b6QhSbo9XY3C78hdjKvqOSL2kx7u/HYfNWIioABWyC034YsMhXMg14EBGPronhGDu+K4I0CixLy0dNqMVvVuEYc/ZXLzx7R5sP3wGCx7pJZUQ90wIhVwuw9z7u2Lcxztx/HwWHl+8EUseuxXzN55E7rUcxAZpkVlQgpTjhci43EK6aHPq/GXYDHqEK0vQI0qBHemF+DU1C0nOLI/VZpdKX+2mYpy+oMfPe4+jr7NDJeD4ztuVehY2ZwnqnqPpGN8xGNtPZqMw33GycvD0JWm+6fXc+o4AcODEedgMerQIiJb+XhQKBRLCQ6BWyGEw27DWeTHthQGtXL4j4pzndiKZzLGsxPKth/FEP0cgVGC0YGdqOmx2AW99/wf6tIxw+XsSW5/r5DbYDXr0b6YB4CjNDJUbkZNrxoqtjovqPaMVuLVFOM7lFCEuxHGO9OynW1FosqFbsxB0TwhDvsEszQV8uFcCdp7IxP8yr2DTgVNoHSxg859nYDPo0ba5Vvp5ByRo8aXGjDuSIiEzFeLq1dKLiuHh4ZDLy59rmc1m6PWlP3uHUOD3a3psOXgKTbTNsWrvBRw/dwnHzwGHb4tGbLDr34F4HnG9G31HuCM4OBhqdfnKBvE8orDQzUy5QIJerxcAVPu2aNGiSvcdERFR7f2+9LeZQtc31gkJM9ZItzWHLguCIAjt27ev9n4Duo0SEmasEX4/eVUa54Of7hYSZqwRYtrcUu393nvvvYIgCMJ7v6YJCTPWCK98/ae0/3vvvbfa++3fv7/LZzr7lzTp8xg87pFq77d9+/aV/r+9/vrr1d5vRESE8Pr/UoWEGWuEIR9sFQRBENYeviwkzFgjRI14vka/ax1f+01ImLFG2Jd+TRAEQZj01QEhYcYa4cG/z63Rfn8/fEZoMXOtkDBjjbDl+BXpc9iyZUuN9puamirta+jcrULCjDXCDwcyhNTU1Brtd+ailULCjDVC2//7VUi9lC+9R3Z2do32+3TyAmHnacffxYVrxUKb//tFSJixRmj1j7U12m9l3xHPr9gvyP2Cqr3fv7/6f4IgCMK1IpPw1R/nhbfXHBV2n8kREmasETSRzaq934kTJ7qM87PtZ4SEGWuE51fsF/r371/t/YrfERXx5HdEWRMnTrzp63WA8Pp1Nx1q7ztCGxgiCIIg/HdXupAwY40wfN42wW63C4IgCIsWLarR75ogCMJvqZlCwow1Qt/Zm4Sdp64KCTPWCC3u/78a7Tc7O1v6Pbjvk13SeGv6HRH7xEfCwPe3CIIgCKmX8oVn/rtPGPj+FuHr9TtrtN/kT74Rxiz8XTpWLN56WhAEQbh//m812m/E3X8Xxn280+V3YfHW00LCjDU12u/ChQul/VmsNiEjt1iw2+1ClzfW1eg7YtSjkwSL1SZcyjMIs39JE3acuircu3inkDBjjRDWpEW19zvmwceE4fO2CQkz1ggbjmZJYz+XUyToEjpVe7+6Nv2E4fO2Sftb5/xdvuXN9ULbPkOrvd+YNrfU6Duispv4HSF+Fgkz1gj3OH8/avIdIfcLEobP2ybYbHZpnBuOZgkJM9YI7e+dXKPftSU7zgqCIAiv/XhESJixRhg6d6tgsdqEl2Z9XKP9ZmdnV/j5evI8oqyankds2bKlwv1efx6h1+sr/d0RBEFgaV89tv5oFvIMFrSPDcLzzs4nn24/A0EQYLEJNd5/2cYBb97dASqFDHmGmq+0LtboV6Ws7EbOXi2WVq+32Oz4LqW0RjqvhnXPnhhfRcTU+KnsIlzON+J95xoK/VpVvTyuLHGh0t9Ss2C22qX1W8S5LdU165djsNkF3NkpBgPaRN38BdUgTlz/oYK68Koa3DYKtydFwGix4ell+z3Wqnj1n5fx0sqDsNsFzNtwEiUWO3olhmGxmxmtqiix2NyaM3Yjf17Ix5bj2eg9exNm/nAEn/2eLq3roVFWby2iiohXh09WoQU7VU6sutnvnMh9Z6dYj7Zy7986Ejq1ApfyjdKyA2XnNlTXo32b4717OuHjh2/x6HjPXi3G5zvSMWrBDqw7egVnrxZj5vdHarTPrs2CcYuzeYpaKcf4Ho4Mkic+h2OXXTvteWJR3fScYhSZrM71vLbgtve24K01acg3WFCTT3rH6Rw8vnQfxn60E59sO4OH//MH9p3Lg59KUaPOl5fzjVIJXtky3oRwf0QFuj+X9noymaMc+ezVItjtgtSV7p7uTZFYg3Jeg7MMPFNvrLCss6bKZo7+2iehxvsTP4fTZRqRiHNUw/1r1mjnWGYBTmcXYrmzIVnyXR2gVMjROqrmpcW+iIFUPSa2o/zb8DZ48rZEqJVyHLqox47TOeUWqayqpChHnaqoVVQgni8zJ6cmuieEQqOU40qBCWeuFuF/By8hq5prTABAdmEJXvvfUSzdmY5fjmS6nDTn1uBzOJ1dhFav/oqnlu2TOhYWlljw9ppj0pyC6io7x+399SdwNqcYARolbmtV/dbGgGPuFAD8djQLe85eQ2GJFREBGmkdi+o6cqkA/moFXhvdoUb7uZF7nPXUO07nlFsbqKoUCjkWPXgLWkT447K+BP/5Pd0TQwTgmGeRelkvtZ2fNrwNhlQyf6kmdp+5hmKzDfIanJAeOJ+Hqc61csTufuLcQ00lremro3W0Y9/ncophbQALZtZ34hwPcf5J1xpeCLmeVqWQmgCJpameCCBUCjnu79nMox0Tmzjnjb291lGiNrxDNPq0CIexhl05g/3UGOFsCPDQrc2kubw3Kz28GbXC0XglPcdxgltYYpHWYauJFX+cx5APtuGDDSel46U4/1JRg+6XCrkMv5/KQXahCXHBWiidpd0TB7SU/l0dZ646vguC/VTlOsjFBFc/kBKDhF9Ts/BdykUcuJAPf7UCT/RLhL+m+rNRTBYb/jh7DXfM2YI7/rUF645mVbv1fkXEpkARAWqM6Bhzk61vTukskTuYkY/953LRZ/YmLHZOaQj3r7xLnjuOZRZg7eEs2AVgQJtI9HVe/I5sYEtK1BecI1XPtYoKQP/WkZDLZXi4VzMs2XkOyT8drdE6On1bhuGD+7uWe3ziwFZYEKzF+Ro2Q9OqFOjRPBQ7T1/D/I2nsOZwJq5WsgBiVST/XDphdUi7KGxMy5ZW3K4OQXDMydmYlo1dZ7ahX6sIHM8qQEauEfkXqj9eq01w+YIWMzB3dYmFJrNma5P0bx0JrUqOi3lGac2Ooe2jILfV/POdOqxNjQ6AN9MsXIdbE8OwNz0Xyf87WuP9BetUeHlIEl5edRBbjmfj7yPbYlOZ7kPVER2oQREc6+YUlFgRolPhFuc8v5rYfSYHL1z32HrnWNVKOarb1NhssyO32Iz2sUFY/UJfzPz+CH5wzqn0ZCAVE6RFoEaJQpO13ORoqjq7IOBqoUlaXLPLdXN1PGHK0NZQyWWw2ATEBmvRsgbzrmpTu9hgXM1xfB+3jQnERw/dAqtdQPcjqah6DzJXvVqEY///DUGornQeRIcaNkFpGqrFFQCplwrQKioQO0/nwGoXkBjhj4oXHHGP1SYgq8AxR/WVoUn4Ysc5qfucUi5DdS8Z3nNLU6SF+aFNdBDm3t8F+cUWpGUVYGi7aHxSg/GKVTHtY4PKZSdr8t0TE+z4fD/ZWtpxePKQ1h45Nr3323FYbI6/vWeXp0Auc2TQ4ktq3lZ+TJc4/HIkE0/dnuiRagCFM8g9lJGP30/lSBfWAUcjnpo4mVUEtcKRRS3b5KghLXBen8iE2qptakAKCgoQHByMM2fOuEywdpcnm00AjsYOf/v+MGRKDd57oCcevNWxHk9usRn952xBockKm7EQtzQNwn8e6ym9zmy14621R+GvVmLGiLaV/lFcP5G8LHEi+c+HLuP1n46iXUwgRneOxb/Wn0S/luFY+NAtlY677ETyj7eexpzfTkjP2U3FEGyOL6t/3dsZ//djKkxWO14a3AoLNp1G83AdgrRKHL5UgGZhOgRqFDjqnMgqkyswpGsLbD6eDaVchgFtIvHePZ3R773NMBQVQbBZEKhR4J2/dMJLqw5K7xmqU2HDK/0rbK6QX2xGscUOpS4IyT8dlUpsAEeHmuLiIlzTO048ZDJgfPemOJVdJF3dvaVZCK4UlOBSfgluTQzFG2M6YOSHOyCTAeNuaYof0woRH+YnLRoJAD9M7It2kdoaTyR/bnkKfivTQnbFk73Qs1kgCgoKMHTeNlwrchxylzzWA13iKw4CBEHA5rRs/O/gJew9l4dbWsdj5TN9yjXluH6SaFVdP0n0m/0ZmP7dYQh2G+wljs/h0792x8dbTuPgRT0e6dUMU4Y5WsbuTb+GiV8ewJP9EvH8wFYu+xUnieYbzLjlrQ2wC8CPL/TD/f/eCUOBHvd2b4KZI9tBJpPhwrVi/GXxLgiCo4WzGOP6qxUoNtvQLEyHqcOS0Do6CLsuFGPWutID+F1d4rDwwW4A4FajjQ83ncKyXefQu0UYPn64O9JzinDP4t2QqbTY+9qd0smA3S6g1+xNuFpowodjW0pr/1TF5uNX8LfVJ+Cn02HNpNuQFB2ITL0RA9/fihKLHSsndECryOplKiv6jvjLxzvx54V8aO1GFJeUntYF+ylRUGKF+DUXpFVi45T+FTZ4qWqzCXd5pNnERx+5PGR44QUogoI82mzCbhfQ993NMNvsmDG2J95ffxItIvyxedoAaRtPNJuoiMlkQkFB9dfvu9lE8nM5RZjyzSFoVAq0jg5Aj4QwvP7TUYToVNj4Sn/8ePAS3l6bhhYR/vj2uT7S8WntcT2S1zqOFd882we3OtveP/b5bmw6lI4ZI9ogt8iMz3ako3/rSMy7vyve/Okofjx0Gc/d0RLP9G9R4XhvNJF82ZYjWPnHBaRlFaJ5uA4/TOyHz7afxeJtZ3BXl1i8MaZjpZ/DvG0Z+Gp/Jp6+PRGvjmqP6d8dwjf7L+Lxfs3xRPdwvLTyT+l4opLLsfLpXigoseBkdhGahenQuWmwS8c3wHHsXrE/C4GB/niiXyK0KgX2pudi/L8d3XGTh8YjUKvA5K8PIVCjwOtjOuCjLWdw/loxljx+Kzo1CcaTS/fiz4zS7+pX72yHe7o3hU6ng06nq/B8IDc3FzZbxZm/+ZtO4r+7HKHhzy/2Q5PQ0qZOf/l4Jy7kWyDX6PBEv0S8dld7l9fm5+cjJf0qnlq2H7cmhmGR87zBbhcwZtEOXNaX4L7uTXF7UgReWnUQraMDseqZ3gAAgxV4aNkRqUqkdXQA1r50O1QKOfR6Pf44fQVPLtsPtUIOs80OpVyGefd3QY/mYdAoFfg+5SLecV5kjA3SYtHD3TDntxPYe14PudaRWR/QJhK7zlyD2dmcYkirQMy+29HR8VxOEeZvPI0Hbm2KGd8dRqHJ9fN5ol9zvDgoSbpfk6ZVBUZHtzqLs6z+lyNZuCU+BP95rCc2pl3BzF/Oo31sEDL1RuQZLJjQJwE6tRLP3dYUlpLKL2iJfx8AMKFPAlYfuIhCkw0D20RiX3oujMrSEr6t0wZIHVDF74hzOUV4/aejGNY+Bg/3dr9M0d1mEwCwKe0KPvs9HZ2bBmFs16ZoHxeECZ//gdTLBXjz7g4Y3bl06QVvNpto2bIl9Ho9goIqvwDDjFQZERERN/ywqrvPqhrQNRB+GzIQplPjL91Ku8yE+avx/MCWmPPbCSj8AjHl7p7lDpqfPFWzEiTxZGR0r0C8ufEiThYAOy9ZoNAFo2/HFpUepK93W6sIzEFpICXXlJ7QdWudgM6t9DhwIR9LUnKh0AXj9s7NMLhtFJ7/8gCm3NUJJ68U4rje0eo6IVyHzx/tgaOXC9AsXIcg5+JvbaIDccji+CLs3TYKY/u0w5IDuTh80fEHe0fnWERHVzzfp+yP8c2zffBnRh7+vJAPm13Ag72aobDEijm/HUdciB8eurUZ4sN0uJxvxKgFv6PEYsf8x26H0WzDnHXH8Xz/lujYIhx9OyTij/Rc/JjmCAAf7dMcH248hUKTFS0j/dEtPgQymazSoNtdLw5qhWvFJrSNCcKozrHSwqWRkZFok9AEf6TnQq2Q47ZOLaXOSBV5ICoKD/Tv6OhEJav4apRarXb7/9wdd3aKxZs/H0ORCUhsGosLuQak5go4li+DQheMiSNvQWSY44A9KjISRzq3RIBaWekipSE6NbonhGLfuTy88OUBmKzALW0S8K9HSoPCyMhIjOieI2WA2kYF4FR2EUoAKJTAjL90wxjnejnawEKXQGpAmXbR7nwOzw7zx5eH8rAvywa94IcLBhMUOkfgsOVENkZ2jMG3+y8iKkiDq4UmBGiUGNEjqVpXMMdHREChC0F8qJ80hyk22A/Ln+yFjFwD+rSv+ZpEZSVFBeDPC/kokftBofPDp3/tjpNXCjGqcxzeWnNMaks+rFsTxMZU/XuosgCrpgIDA29+gUynA67rbOYfGVnuMZfn/f3LdUNzx4ierbH2cCY+2uL4Pbt+fqOfn1+NvyMqotFoPPq3LBK/IyIjI/H766UdNC02Oz7YnolCsw05Ng3WnTFAoQvGQ/3bIiqq9Ht5pCYQS/ZkYHiHGCmIAoCOTcOw9VQuLhpVSM8zQ6ELxp7LFsj8gnDNroVCF4y2iU2q/DPJ5XI8PrgLxvRqi+5vb8TFEkAbGIIcmwYKXTA6tIi/4T67JpTgq/2Z0kK/4ppBw9rHID4uHN+9MgJf7EjH0l3n8MLAVujVwXEhdOhNxjXjLte/mVsTw/D07YnYcfoa7u7dFiE6FRS6EHSND0HzCH+M7dMOVwtNaOoMcCaOvAXPrTggvf7uPm0RGXzj36PKAgAAeHFkANacKEZssBZdkpq5HB/u6NxSWkalomUOQkJCMLhbCH5v3gRh/mqXwPGDCXfgkc//wA9phThTpIBCF4zEplEun/m2vw3A3nO52H8uD3d3jZMW9g4ODsagroEIX3sO+QYLFHDMnRrbpzSQe7B/CNLygY5xwfhrnwRoVQp0Pm3E/iuOMkmtSo7FD3eHWinH4Yv5uGfxLmw8XYiJRiVuaRaK6WvSsfOSGbt/PAu7IgARESr4a5TS+ow92zV3+3fuZt8RkQD6d2mJLSeuYt0ZIxS6YIzr1x6RkZG4QxUA/HJeWpcvQKPEP0e3L13kPLDy+UyDb0nCz6cc86n+OrAT4mKi8f76E3hqaFeUbD4tLbnRJMQPCWXWLRS/IyIjI/FLu8QK910dFZ1HPBAZiQfucL1g0b9LK6Tln0FaHvC4G5+xUqmsle80uVyOyMhIlw6+NxyHx0dANRYTrMWaSbchUKssdyL8RL9E7D5zDZEBGmn9jtoQFahFh7ggHL1cIK003q1ZiNuv7xAXjGA/FfRGCx68NR7fpVyUSgGahenw95Ht8PB/9sDgnPTZu0U4BreLxsm3RwJwXG0X1wwa2dExEbvsmgyAo+b/kDNo6tE8FDKZDC8ObIVnlqcAcARz7pDLZeieEIbuCaUHlSCtCh8+0M1lu7gQP6x75Q5YbIK09tbSx2+Vnn9rbEeMWvC79HPemhiGAW2j8POhy3jw1mYeS5t3bBKMb5/rW+FzLSID8Ed6Ljo0CbphEFWWogZ18lUVoFFi1TO9UWC04FhmAd5em4blu8/DZheQEK5DfJhrK/ugG6yYLhrYNgr7zuVJVzBfHNiqXDbkqdtbSIHUP0e3x5Kd6dhy4iraxgRidJmFSVtGBiAmSCvNUejfpmpf0vFhOgxuG42NaVfww4GL0BtLS083H8/G9pNXXdYRGdAmstplIDKZDPd2Lx8s9Wwe5rJelKeIcwAAR6nf0PbRGOacg/JY3+ZSIDWkghbMVOr+HvFYezhTmgPUpWntBJDeplLI0atFODYfz8bHW8/gwIV8KOQy/OUW1xbU0UFabPvbwHKvF0vwDmbkS5PsrXYBP/55SVpP7frvi6oID9CgSYgfLuUbkXqpQFqM92bzTfu0DIdSLsOBC/l4ctl+lFjs6NI0GL1bOP7mFHIZnr6jBZ6+o+JMWVW8Oso10zO2zIVVjVIhBVEAMLR9DJqG+uFinhHtYoPKtZCuqthgP2ye2h8alaLcsat3i3ApkGoXW/lFirLjE92WFIFH+yRg2e7z0hpZ139fKRVy9G0Z4dLivOxzA1pH4seDjgD2uesyksF+5Y/d4jpPgKM8XlyUvFuzUNzbvSm+2X8R76xNw/+NaoctzgZAYuXCwDZR0KgUWLlX/Hk9e7F9ZKdY6T2nDWuNCc5GFXHBWkQEaKQ54X1bhpcGUTdxR+tIhPur0SoqAG2iA9EmOhBP9EuEn1qBzcezpUCqb8vwelXO17tFGD7ZdqbcOmL1HQOpeqrsSUtZWpUCy5/sVSdjmDykNT5YfwJ5BjMSwvyrdHKmkMvw6p3tsPNMDmbe2Q5XC83YmHYFkYEa+KkVuDUxDO+M7YTp3x+GTAb0SnTdd4/mYVDIZbDZBYwqc6JbVtkvNHFV9SHtonFr8zCkZRVgUFvPd5+7UTei1tGBePaOlli05TT8VAq0iw3CG2M6YESHGI9MPnXHgDaRWLn3QqWfWX0gBsQa5wLCBc76dHcD3+sNahsllZG2jg7A4Ar+33s2D8XzA1rCYrXj9qQI5yK3J/DCwFYu2S6ZTIbbkyLwbcpFdG4aXK1J9Xd1icXGtCvYlJbtEqRuP3kV5usWkBYDkYYgqcx30qB2US4H4NuTItCvVTiuFJikleupYv1aRUgn8EDNO27WZ7e1isDm49lYe9gx22l4h2i3O7qJmY7jWa5rufxr3QmYrI6SrhbVLF0VdW4ajEv5Ruw4fVWqZOjU5MaBbXyYzjGfeNMpKRCYNCjJ6yekCrkMLw1OwvTvDmN8D89koyubi9O7RRjUSjm0Srm0qHNV/H1kOwhwzKUa0TGmyvNQ7+7aBD8evIy7usShVdTNp2OUPZ8a1t71O/eVoa3x06HLSDmfhwc/2wPA8XsqBth3dYmD0WLDyr0X4KdS1Lix0/XGdm2Ci7kGdG8e5rLovUwmQ9f4YGxMc1ygur21+9+rYf5q7Pz7IMhlMun3Ugweywa+t9Xixfjq6N0iHJun9q9Rd0ZvYCBFlRraPtplImJVje8Zj/E9HS1nx/doio1pV9CxTBnA+J7x0sm0uGq2KEirwgf3dUGewYyOTSq+AiQeaNVKudTKXS6XYflTt8JmF8rVodeFFwe1Qr7RjI5xwVAp5AjzV2NU57oLaoZ3iMH+/xuCcP/ydb/1TYe4YKgUMimDV91Aqk10oDQf7bn+LSssA5TJZJgxoq10v0VkABY/UnFL87/2ScDus9fw9O3Vu6I8oHUUFHIZTlwphHhuJTZqAICBbSLxSO8EXMg1uGTD6rukMidMQ9q5BqsymQxfPtW7rofUICnkMtzTvSkWbDoFlUJWYWlUY1H2RG1Iuyi8d09nt18bH6pz+bvpkRCKw5f0MDnntSSP6VDj7oGdmgbj19Qs/HeXIyueFBWAZuE3z3K9OLAV1h/NwvGsQrSLDZKWpfC28T3iMaRdNEJ1NevqdjNRgVqseqY31Ap5tTLqfmoF3ry78nloNzOwbRQ2vHKHW/9XgCOQ8lcrYBdQ7v8qNtgPnzzSHRO/PCBVyEwb1gbxYTqcuVqEDnHBKLHYMKJDDLo2C/F4BYdaKZfmBV+vS9MQKZDqn1S1C1SVVaS0jy29UNCnGnNza5NWpUCLyIbXgp2BFNWJYR1i8OVTvcpdvapspXHAtYyhIt2bheLxfs3ROjrQ5cvck+vnVJVWpcDbYzt57f0BeLQ1cW3SqhRo7yzPlMlQYRmHO2QyGRY/3B2pl/Qucwqrq3PTEOyYMajarw/WqdAjIRR/pOdCEBxlcAPaRGLVPkc7zOf6t0SvFvXrAOaO2GAteiSEoqDEUu3/K3J46NZmWLX3Am5rFeHV76va1jo6EDNGtIVKIcMT/RIrnetYEblchnaxQVIZ0sC2UUiKDsCqfRl4fXR7PFKFSfCV6dwkBACkYM3dZQ7USjkWPdQNH6w/ief6t/R6NqqssDq6iOaJbqY1kVRJ1U5F/r+9+w+qus73OP46HBQUEAkUQRAxSkrbVIi7uIpYRCWbOU6bo+YvsF1TbzjOmja21pjlJLq5atBmSmyaWEntvU4xMi4o2jQoSqvhZiBusmGt2aorCgqf+0eXsx5B5fDrwOn5mPnOeD7n8/38OPP2wJvP9/v5enm4a/tvYiX9eF/t9eIH91X2r3+upR8eVdydAba2hwT/mHR4drPqjWlt/yzBW2m4Z/D2Pl7NThpv5e7gXpo4vL/69PJo1fO+8B/s2qf/7Np3q505ALStF//nC7396UndG+KrP88f5ezhtJk395brlY//Jkl6ZGg/TfmvAZq2qUj3DfTTe7+J7VS/eDnKGNOlx9+kixeltDT7skWLbrrZRGu55OfYxhq+HyRp+69/ruiBt+mH6to2+2PRueorunf5LtvrHU+PVFSYcxME4Fr/+/k3iuzn41DiiLbR3NyAB/ICcJonokM10L+nZrfwMrrO6oFrNlwYPqC3Rt/RRzueHqm3pt/X5X957urj7yz4HG+t4bLHblaL7g398bKqtlxx9+3ZTQP//y/9Ad7d2/zByEBrPXpvMElUJ8elfQCc5u7gXipoYseurm5QgJci+/nob6cvKHbQj5fB8ZduwDGjIgLk7eGuMYP7NHsXUkfdE9JbJ7+v1v2RfTt0B1MAroFECgDamMVi0aaZ96nybLVtIxQAjgnu3UMHn0+QezsmOPPG3i5jjP77moesAkBzkUgBQDvo37uH7XljAFqmvVaiGkT266UNU0a0ax8AXJfL3COVnp6u8PBweXp6KioqSoWFhc4eEgAAAAAX5RKJ1Pbt27VgwQItXbpUhw8f1ujRo/XII4/o66+/dvbQAAAAALggl0ikfv/73yslJUWzZ8/WXXfdpbVr1yo0NFQZGRnOHhoAAAAAF9TlE6na2loVFxcrMTHRrjwxMVGffvppk+fU1NTo/PnzdgcAAAAANFeXT6TOnDmjuro6BQbaP5E8MDBQp0+fbvKclStXytfX13aEhoZ2xFABAAAAuIgun0g1uP7hhjd7avxzzz2nc+fO2Y5Tp051xBABAAAAuIguv/15QECArFZro9Wn7777rtEqVQMPDw95eLTd09EBAAAA/LR0+RWp7t27KyoqSnl5eXbleXl5GjlypJNGBQAAAMCVdfkVKUlauHChpk2bpujoaMXGxurNN9/U119/rTlz5jh7aAAAAABckEskUpMmTdL333+v5cuXq6qqSkOHDtXHH3+ssLAwZw8NAAAAgAtyiURKkubOnau5c+c6exgAAAAAfgK6/D1SAAAAANDRSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA5ymedItYYxRpJ0/vx5J48EANDhLl6Uamrsy86fl+rqnDMeAIBTNeQEDTnCjVjMrWr8BFRWVio0NNTZwwAAAADQSZw6dUohISE3fJ9ESlJ9fb2++eYb+fj4yGKxOHs4+Ak4f/68QkNDderUKfXq1cvZw8FPBHEHZyH24AzEHVrKGKMLFy4oODhYbm43vhOKS/skubm53TTbBNpLr169+HJHhyPu4CzEHpyBuENL+Pr63rIOm00AAAAAgINIpAAAAADAQSRSgBN4eHjohRdekIeHh7OHgp8Q4g7OQuzBGYg7tDc2mwAAAAAAB7EiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFJAC6Snpys8PFyenp6KiopSYWHhTetv3bpV9957r3r27KmgoCDNmjVL33//ve39jRs3avTo0fLz85Ofn58SEhJUVFRk18bVq1f1/PPPKzw8XD169NCgQYO0fPly1dfXt8sc0fm0ddzl5OQoOjpavXv3lpeXl4YNG6Z33nmn1f3C9Tgj9lauXKn77rtPPj4+6tu3ryZMmKAvv/yyXeaHzslZ33kNVq5cKYvFogULFrTVlOBqDACHZGdnm27dupmNGzea0tJSk5qaary8vMzf//73JusXFhYaNzc384c//MGcOHHCFBYWmiFDhpgJEybY6kyZMsW8/vrr5vDhw+bYsWNm1qxZxtfX11RWVtrqrFixwvj7+5udO3eaiooK8/777xtvb2+zdu3adp8znK894i4/P9/k5OSY0tJSU1ZWZtauXWusVqvJzc1tcb9wPc6KvYceeshkZmaao0ePmpKSEpOUlGQGDBhg/v3vf7f7nOF8zoq7BkVFRWbgwIHmZz/7mUlNTW2vaaKLI5ECHBQTE2PmzJljVxYZGWmWLFnSZP20tDQzaNAgu7J169aZkJCQG/Zx9epV4+PjY7KysmxlSUlJJjk52a7exIkTzZNPPunoFNAFdUTcGWPM8OHDzfPPP9/ifuF6nBV71/vuu++MJLNnz55mjhxdmTPj7sKFC+aOO+4weXl5ZsyYMSRSuCEu7QMcUFtbq+LiYiUmJtqVJyYm6tNPP23ynJEjR6qyslIff/yxjDH69ttv9cEHHygpKemG/VRXV+vKlSu67bbbbGWjRo3S7t27dfz4cUnS559/rn379mncuHFtMDN0Zh0Rd8YY7d69W19++aXi4uJa3C9ci7Nirynnzp2TJLvvRbgmZ8fdvHnzlJSUpISEhLaZEFyWu7MHAHQlZ86cUV1dnQIDA+3KAwMDdfr06SbPGTlypLZu3apJkybp8uXLunr1qsaPH6/169ffsJ8lS5aof//+dl/iixcv1rlz5xQZGSmr1aq6ujq9/PLLmjx5cttMDp1We8bduXPn1L9/f9XU1MhqtSo9PV0PPvhgi/uFa3FW7F3PGKOFCxdq1KhRGjp0aNtMDp2WM+MuOztbhw4d0oEDB9p+YnA5rEgBLWCxWOxeG2MalTUoLS3VM888o2XLlqm4uFi5ubmqqKjQnDlzmqy/atUqbdu2TTk5OfL09LSVb9++XVu2bNG7776rQ4cOKSsrS6tXr1ZWVlbbTQydWnvEnY+Pj0pKSnTgwAG9/PLLWrhwoQoKClrcL1yTs2Kvwfz58/XXv/5V27Zta5P5oGvo6Lg7deqUUlNTtWXLFrufv8ANOeWCQqCLqqmpMVar1eTk5NiVP/PMMyYuLq7Jc5588knz+OOP25UVFhYaSeabb76xK09LSzO+vr7mwIEDjdoJCQkxGzZssCt76aWXzODBg1syFXQh7R1310pJSTGJiYkt7heuxVmxd6358+ebkJAQc+LEiRbMAF2Rs+Luww8/NJKM1Wq1HZKMxWIxVqvVXL16tZUzg6thRQpwQPfu3RUVFaW8vDy78ry8PI0cObLJc6qrq+XmZv9fzWq1Svrxr2sN0tLS9NJLLyk3N1fR0dHNboftz11fe8bd9YwxqqmpaXG/cC3Oir2G1/Pnz1dOTo7+8pe/KDw8vKXTQBfjrLh74IEHdOTIEZWUlNiO6OhoTZ06VSUlJbb2ABvn5XBA19SwJeumTZtMaWmpWbBggfHy8jInT540xhizZMkSM23aNFv9zMxM4+7ubtLT0015ebnZt2+fiY6ONjExMbY6r776qunevbv54IMPTFVVle24cOGCrc6MGTNM//79bduf5+TkmICAAPPss8923OThNO0Rd6+88orZtWuXKS8vN8eOHTNr1qwx7u7uZuPGjc3uF67PWbH39NNPG19fX1NQUGD3vVhdXd1xk4fTOCvurseufbgZEimgBV5//XUTFhZmunfvbkaMGGG3He+MGTPMmDFj7OqvW7fO3H333aZHjx4mKCjITJ061e4ZUWFhYUZSo+OFF16w1Tl//rxJTU01AwYMMJ6enmbQoEFm6dKlpqampr2ni06ireNu6dKlJiIiwnh6eho/Pz8TGxtrsrOzHeoXPw3OiL2mvhMlmczMzPacKjoRZ33nXYtECjdjMeYm650AAAAAgEa4RwoAAAAAHEQiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFIAAAAA4CASKQAAAABwEIkUAAAdrLa2VhEREdq/f3+btrtz504NHz5c9fX1bdouAKAxEikAQKvMnDlTFoul0VFWVubsoXVab775psLCwvSLX/zCVmaxWPTRRx81qjtz5kxNmDChWe3+8pe/lMVi0bvvvttGIwUA3AiJFACg1R5++GFVVVXZHeHh4Y3q1dbWOmF0nc/69es1e/bsdml71qxZWr9+fbu0DQD4DxIpAECreXh4qF+/fnaH1WpVfHy85s+fr4ULFyogIEAPPvigJKm0tFTjxo2Tt7e3AgMDNW3aNJ05c8bW3sWLFzV9+nR5e3srKChIa9asUXx8vBYsWGCr09QKTu/evfX222/bXv/jH//QpEmT5OfnJ39/fz322GM6efKk7f2G1Z7Vq1crKChI/v7+mjdvnq5cuWKrU1NTo2effVahoaHy8PDQHXfcoU2bNskYo4iICK1evdpuDEePHpWbm5vKy8ub/KwOHTqksrIyJSUlOfgpSydPnmxy9S8+Pt5WZ/z48SoqKtKJEyccbh8A0HwkUgCAdpWVlSV3d3ft379ff/zjH1VVVaUxY8Zo2LBhOnjwoHJzc/Xtt9/qiSeesJ2zaNEi5efn68MPP9SuXbtUUFCg4uJih/qtrq7W2LFj5e3trb1792rfvn3y9vbWww8/bLcylp+fr/LycuXn5ysrK0tvv/22XTI2ffp0ZWdna926dTp27JjeeOMNeXt7y2KxKDk5WZmZmXb9bt68WaNHj9btt9/e5Lj27t2rO++8U7169XJoPpIUGhpqt+p3+PBh+fv7Ky4uzlYnLCxMffv2VWFhocPtAwCaz93ZAwAAdH07d+6Ut7e37fUjjzyi999/X5IUERGhVatW2d5btmyZRowYoVdeecVWtnnzZoWGhur48eMKDg7Wpk2b9Kc//cm2gpWVlaWQkBCHxpSdnS03Nze99dZbslgskqTMzEz17t1bBQUFSkxMlCT5+flpw4YNslqtioyMVFJSknbv3q2nnnpKx48f13vvvae8vDwlJCRIkgYNGmTrY9asWVq2bJmKiooUExOjK1euaMuWLUpLS7vhuE6ePKng4OAm35s8ebKsVqtdWU1NjW31ymq1ql+/fpKky5cva8KECYqNjdWLL75od07//v3tVt4AAG2PRAoA0Gpjx45VRkaG7bWXl5ft39HR0XZ1i4uLlZ+fb5d4NSgvL9elS5dUW1ur2NhYW/ltt92mwYMHOzSm4uJilZWVycfHx6788uXLdpfdDRkyxC55CQoK0pEjRyRJJSUlslqtGjNmTJN9BAUFKSkpSZs3b1ZMTIx27typy5cv61e/+tUNx3Xp0iV5eno2+d5rr71mS9gaLF68WHV1dY3qpqSk6MKFC8rLy5Obm/0FJj169FB1dfUNxwAAaD0SKQBAq3l5eSkiIuKG712rvr5ejz76qF599dVGdYOCgvTVV181q0+LxSJjjF3Ztfc21dfXKyoqSlu3bm10bp8+fWz/7tatW6N2G7YP79Gjxy3HMXv2bE2bNk2vvfaaMjMzNWnSJPXs2fOG9QMCAmyJ2vX69evX6HP08fHRv/71L7uyFStWKDc3V0VFRY0SRUk6e/as3RwBAG2PRAoA0KFGjBihHTt2aODAgXJ3b/xjKCIiQt26ddNnn32mAQMGSJJ++OEHHT9+3G5lqE+fPqqqqrK9/uqrr+xWYUaMGKHt27erb9++LbofSZLuuece1dfXa8+ePY1WihqMGzdOXl5eysjI0CeffKK9e/fetM3hw4crIyNDxhjbJYeO2LFjh5YvX65PPvmkyfuwGlbchg8f7nDbAIDmY7MJAECHmjdvns6ePavJkyfbdpfbtWuXkpOTVVdXJ29vb6WkpGjRokXavXu3jh49qpkzZza6fO3+++/Xhg0bdOjQIR08eFBz5syxW12aOnWqAgIC9Nhjj6mwsFAVFRXas2ePUlNTVVlZ2ayxDhw4UDNmzFBycrI++ugjVVRUqKCgQO+9956tjtVq1cyZM/Xcc88pIiLC7pLEpowdO1YXL17UF1984cCn9qOjR49q+vTpWrx4sYYMGaLTp0/r9OnTOnv2rK3OZ599Jg8Pj1uOAwDQOiRSAIAOFRwcrP3796uurk4PPfSQhg4dqtTUVPn6+tqSpbS0NMXFxWn8+PFKSEjQqFGjFBUVZdfOmjVrFBoaqri4OE2ZMkW//e1v7S6p69mzp/bu3asBAwZo4sSJuuuuu5ScnKxLly45tEKVkZGhxx9/XHPnzlVkZKSeeuopXbx40a5OSkqKamtrlZycfMv2/P39NXHixCYvObyVgwcPqrq6WitWrFBQUJDtmDhxoq3Otm3bNHXq1JteXggAaD2Luf4CcwAAOqH4+HgNGzZMa9eudfZQGtm/f7/i4+NVWVmpwMDAW9Y/cuSIEhISmtwMozX++c9/KjIyUgcPHmzygcgAgLbDihQAAC1UU1OjsrIy/e53v9MTTzzRrCRK+vHeq1WrVrX5FuUVFRVKT08niQKADsBmEwAAtNC2bduUkpKiYcOG6Z133nHo3BkzZrT5eGJiYhQTE9Pm7QIAGuPSPgAAAABwEJf2AQAAAICDSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA4ikQIAAAAAB5FIAQAAAICD/g/+OXq14vok5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, efstat = epoch_folding_search(events.time, frequencies, nbin=nbin)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat, label='EF statistics')\n", + "plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A peak is definitely there. \n", + "Far from the peak, the periodogram follows approximately a **$\\chi^2$ distribution with $n - 1$ degrees of freedom**, where $n$ is the number of bins in the pulse profile used to calculate the statistics. In fact, its mean is $n-1$ as shown in the figure. \n", + "\n", + "But close to the correct frequency, as described in Leahy et al. 1983, 1987 the peak in the epoch folding periodogram has the shape of a **sinc squared function** (whose secondary lobes are in this case barely visible above noise)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Z-squared search\n", + "The epoch folding statistics has no information on the actual shape of the profile. \n", + "\n", + "A better method is the **$Z^2$ statistics** (Buccheri et al. 1983), which is conceptually similar to the Epoch folding but has high values when the signal is well described by a small number of **sinusoidal harmonics**. \n", + "\n", + "$Z^2_n = \\dfrac{2}{N} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^N \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^N \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Where $N$ is the number of photons, $n$ is the number of harmonics, $\\phi_j$ are the phases corresponding to the event arrival times $t_j$ ($\\phi_j = \\nu t_j$, where $\\nu$ is the pulse frequency).\n", + "\n", + "The $Z_n^2$ statistics defined in this way, far from the pulsed profile, follows a $\\chi^2_n$ distribution, where $n$ is the number of harmonics this time.\n", + "\n", + "Stingray implements the $Z$ search in `stingray.pulse.search.z_n_search`.\n", + "The standard $Z^2$ search calculates the phase of each photon and calculates the sinusoidal functions above for each photon. This is very computationally expensive if the number of photons is high. Therefore, in Stingray, the search is performed by binning the pulse profile first and using the phases of the folded profile in the formula above, multiplying the squared sinusoids of the phases of the pulse profile by a weight corresponding to the number of photons at each phase.\n", + "\n", + "$Z^2_n = \\dfrac{2}{\\sum_j{w_j}} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^m w_j \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^m w_j \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Since the sinusoids are only executed on a small number of bins, while the epoch folding procedure just consists of a very fast histogram-like operation, the speedup of this new formula is obvious. Care must be put into the choice of the number of bins, in order to maintain a good approximation even when the number of harmonics is high. As a rule of thumb, use _a number of bins at least 10 times larger than the number of harmonics_." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDqUlEQVR4nOzdeXwU9f0/8NfsfWSzuS8JJEBAbiggigcoh6hIrf7E1rbi0apfTwoWtX5rg7XQ0gpUrFr9qlisxVbFesuh4oECgtw3JJw5yLn3zu7M/P7Y3YGQBLLJJptkX8/HI48H2Z2d+SyEzL7m/f58RlAURQERERERERG1mCbeAyAiIiIiIupqGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSLt4D6AxkWcaJEydgs9kgCEK8h0NERERERHGiKAqcTify8vKg0TRfd2KQAnDixAnk5+fHexhERERERNRJHD16FD169Gj2eQYpADabDUDoLys5OTnOoyEiog7ldgNPP93wsQceAKzW+IyHiIjiyuFwID8/X80IzWGQAtR2vuTkZAYpIqJEo9UCRmPDx5KTGaSIiBLcuab8cLEJIiIiIiKiKDFIERERERERRYlBioiIiIiIKEqcI0VEREREbaIoCoLBICRJivdQiM5Jq9VCp9O1+bZHDFJERERE1GqiKKKsrAwejyfeQyFqMYvFgtzcXBgMhlbvg0GKiIiIiFpFlmWUlJRAq9UiLy8PBoOhzVf5idqToigQRREnT55ESUkJioqKznrT3bNhkCIiIiKiVhFFEbIsIz8/HxaLJd7DIWoRs9kMvV6Pw4cPQxRFmEymVu2Hi00QERERUZu09oo+UbzE4meWP/VERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIi6kPHjx2PmzJlx30eiY5AiIiIiooTz4YcfQhCEZr+mT58e0+O1Nrg09bq3334bv//979t03Gj2QU3j8udERERElHAuv/xylJWVNXhMkiTcdttt+P777/Hb3/42TiM7t7S0tE6xj0THihQRERERJRyz2YycnBz1KzMzEw899BC+//57fPrppxgyZEhU+3vzzTcxZMgQmM1mpKenY+LEiXC73QCAW2+9FWvXrsVf//pXteJVWlqKjz/+GJdccglSUlKQnp6OqVOn4uDBg+o+m3vdmVWm5o7d3OuBhpUqWZbxpz/9CX379oXRaETPnj3xhz/8oUXvLZGxIkVEREREMaMoCrwBqcOPa9ZrIQhCq14rSRJ+9rOfYdWqVa0KUWVlZfjJT36CBQsW4Ec/+hGcTie+/PJLKIoCAPjrX/+Kffv2YfDgwXjiiScAAJmZmdi0aRNmzZqFIUOGwO124/HHH8ePfvQjbNmyBRqNptnXtfTYLXk9ADz66KN48cUXsWjRIlxyySUoKyvDnj17WvTeEhmDFBERJTRZliH6fDAaja3+EEZEp3gDEgY+/kmHH3fXE1fCYoj+o60kSfj5z3+OVatWYc2aNRg6dCgA4OjRo/j5z3+OyspK6HQ6/Pa3v8WNN97Y5D7KysoQDAZx/fXXo1evXgDQIIzZ7XYYDAZYLBbk5OSoj99www0N9vPSSy8hKysLu3btwuDBg5t9XTTHPtfrnU4n/vrXv+KZZ57BjBkzAAB9+vTBJZdc0qL9JzK29hERUUI7evQoysvLcfz4cXg8nngPh4g6UCRErVy5EmvWrMGwYcPU53Q6HRYvXoxdu3Zh9erV+NWvftVsO9uwYcMwYcIEDBkyBDfeeCNefPFF1NbWnvP4Bw8exM0334zevXsjOTkZhYWFAIAjR460+D209tgRu3fvht/vx4QJE9pl/90ZK1JERJTQXC4XrACCwSAqKyuRlZUFS7wHRdSFmfVa7HriyrgcNxqREPXJJ580ClEAkJubi9zcXABAVlYW0tLSUFNTA6vV2mhfWq0Wq1atwrp167By5UosWbIEjz32GNavX6+Go6Zce+21yM/Px4svvoi8vDzIsozBgwdDFMUWv4/WHjvCbDa36/67s7hWpAoKCppcbvLee+8FEOqxLS4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHYvH2yEioi7I5/MBCF19BsCqFFEbCYIAi0HX4V/RtOZKkoRbbrkFn3zyCVavXo3hw4efdfvvvvsOsiwjPz//rO/74osvxty5c/H999/DYDBgxYoV6vMGgwGSdGruWHV1NXbv3o3//d//xYQJEzBgwIAmKz1nvi7aY5/r9UVFRTCbzVizZk2r31uiimtFauPGjQ3+YXfs2IFJkyap/acLFizAwoULsXTpUvTr1w9PPvkkJk2ahL1798JmswEAZs6ciffeew/Lly9Heno6Zs+ejalTp2LTpk3QaqO7MkFERIlFURQ1SNlsNtTW1sLv98d5VETUnmRZxi233IJ33nkHb775JnJzc1FeXt5gm8zMTPVzZHV1NW655Rb83//9X7P7XL9+PdasWYPJkycjKysL69evx8mTJzFgwAB1m4KCAqxfvx6lpaVISkpCWloa0tPT8cILLyA3NxdHjhzBI4880mjfTb0ummM39XqN5lQtxWQy4eGHH8acOXNgMBhw8cUX4+TJk9i5cyfuuOOOFr23hKV0Ig8++KDSp08fRZZlRZZlJScnR/njH/+oPu/z+RS73a48//zziqIoSl1dnaLX65Xly5er2xw/flzRaDTKxx9/3OLj1tfXKwCU+vr62L0ZIiLq9ERRVNZ++KFSMmOGIv7mN0rJjBlKyYwZSqCuLt5DI+oSvF6vsmvXLsXr9cZ7KC327bffKgDO+lVbW6soSuiz56WXXqr84x//OOs+d+3apVx55ZVKZmamYjQalX79+ilLlixpsM3evXuVCy+8UDGbzQoApaSkRFm1apUyYMAAxWg0KkOHDlU+//xzBYCyYsWKs75u3LhxyoMPPtiiYzf1ekVRGuxDkiTlySefVHr16qXo9XqlZ8+eyrx581r83rqis/3stjQbCIrSOdYuFEUReXl5mDVrFn7zm9/g0KFD6NOnDzZv3owRI0ao2/3whz9ESkoKXn31VXz66aeYMGECampqkJqaqm4zbNgwXHfddZg7d26Tx/L7/Q2uODocDuTn56O+vh7Jycnt9yaJiKhTcTqd+P6rr1D45pvIyM7Djn2HkG7VIfUPf0Bqjx7xHh5Rp+fz+VBSUoLCwkKYTKZ4DyemFEXBzTffjP79+6O4uDjew6EYO9vPrsPhgN1uP2c26DSr9r3zzjuoq6vDrbfeCgBqiTU7O7vBdtnZ2epz5eXlMBgMDULUmds0Zf78+bDb7erX2fpdiYio+/J6vQBC86NW7arAzgoPKh0+uFyuOI+MiOLt66+/xhtvvIF33nkHw4cPx/Dhw7F9+/Z4D4s6kU6zat9LL72Eq666Cnl5eQ0eP3PioKIo55xMeK5tHn30UcyaNUv9PlKRIiKixBKZHxVUBJRUOWERtHD6gnA4HHEeGRHF2yWXXAJZluM9DOrEOkVF6vDhw1i9ejV+8YtfqI9Fbhp2ZmWpsrJSrVLl5ORAFMVGK5ycvk1TjEYjkpOTG3wREVHiiQSpY3V+KABERQuXPwin04lO0vlORESdVKcIUq+88gqysrJwzTXXqI8VFhYiJycHq1atUh8TRRFr167F2LFjAQAjR46EXq9vsE1ZWRl27NihbkNERNQcr9cLRVFwsDoUqALQwBeU4XB7uXofERGdVdxb+2RZxiuvvIIZM2ao9/AAQi19M2fOxLx581BUVISioiLMmzcPFosFN998MwDAbrfjjjvuwOzZs5Geno60tDQ89NBDGDJkCCZOnBivt0RERF2Ez+fDsVovHH4ZBp0eRp0WQb8WlU4/HA5Ht5s8T0REsRP3ILV69WocOXIEt99+e6Pn5syZA6/Xi3vuuQe1tbUYM2YMVq5cqd5DCgAWLVoEnU6H6dOnw+v1YsKECVi6dCnvIUVERGelhO8hVVLlhh0CBmbbIEoyyiucqHP6WJEiIqKzinuQmjx5crN96IIgoLi4+KxLTppMJixZsgRLlixppxESEVF3JIoiFEVBvTeAJGiQnWyCGJRxokJApcMPURTjPUQiIurE4h6kiIiI4iGy9HmtCJwHwGbSQafVQIaASieDFBERnR2DFBERJSSfzwdFUVDlCXVFJJv1SDLqIEOAyx9EVb07ziMkIqLOrFOs2kdERNTRfD4ffAEZ7mDovoM2ow56rQbJZiMAoKSyPp7DIyKiTo5BioiIElIwGITDF0AQGlgMobY+ALBbQkGq1umJ5/CIiKiTY5AiIqKEFAwG4fAGIENAsvlUp7vZqAcAuL1+yLIcr+ERETWroKAAixcvbvXrly5dipSUlJiNJ1ExSBERUUKSJAlOXxCSIiDZpFcfNxv1UCDAG5AQCATiOEIiai+33norBEFo9DVlyhR1m4KCgkbP9+jRo1XHKy4uxvDhw6N+XXOBZ+PGjbjzzjtbtI+mQtdNN92Effv2RT0eaoiLTRARUUKSJAkOXwAyNLCZTp0OLQYtgtDAI0rw+/0wGo1xHCURtZcpU6bglVdeafDYmf/fn3jiCfzyl79Uv+8s9ynNzMxs0+vNZjPMZnOMRpO4WJEiIqKEFGrtC4Zb+05VpCwGLYKKFh4xyCXQiboxo9GInJycBl+pqakNtrHZbA2eP1uA+fzzz3HBBRfAarUiJSUFF198MQ4fPoylS5di7ty52Lp1q1rZWrp0KQBg4cKFGDJkCKxWK/Lz83HPPffA5XKp+7vttttQX1+vvi5yb9Uzq0zFxcXo2bMnjEYj8vLy8MADDwAAxo8fj8OHD+NXv/qVug+g6UrXu+++i1GjRsFkMiEjIwPXX3+9+tyzzz6LoqIimEwmZGdn4//9v//Xmr/ybocVKSIiSkih1r4AJOgbtvYZdAhCA68oMUgRtYKiKHGZX6jRaNSg0NGCwSCuu+46/PKXv8S//vUviKKIDRs2QBAE3HTTTdixYwc+/vhjrF69GgBgt9vVMT/99NMoKChASUkJ7rnnHsyZMwfPPvssxo4di8WLF+Pxxx/H3r17AQBJSUmNjv3mm29i0aJFWL58OQYNGoTy8nJs3boVAPD2229j2LBhuPPOOxtU1s70wQcf4Prrr8djjz2GZcuWQRRFfPDBBwCA7777Dg888ACWLVuGsWPHoqamBl9++WVM//66KgYpIiJKSJFV+2TFgOTTW/v0WgQUDTwBBimi1pBlOS4ftC+99NKoWu/ef//9RsHk4Ycfxm9/+9sG3//v//6v+v28efPUas/pHA4H6uvrMXXqVPTp0wcAMGDAAPX5pKQk6HQ65OTkNHjdzJkz1T8XFhbi97//Pf7nf/4Hzz77LAwGA+x2OwRBaPS60x05cgQ5OTmYOHEi9Ho9evbsiQsuuAAAkJaWBq1Wq1bWmvOHP/wBP/7xjzF37lz1sWHDhqn7t1qtmDp1Kmw2G3r16oURI0Y0u69EwiBFREQJyeMPwB+UIUGArUFFSougXwMxGIDb64vjCImoPV1++eV47rnnGjyWlpbW4Ptf//rXuPXWW9XvMzIymtxXWloabr31Vlx55ZWYNGkSJk6ciOnTpyM3N/esY/jss88wb9487Nq1Cw6HA8FgED6fD263G1artUXv48Ybb8TixYvRu3dvTJkyBVdffTWuvfZa6HQt/5i/ZcuWZitWkyZNQq9evdT9T5kyBT/60Y9gsVhavP/uikGKiIgSjqIoqHOHQpLNbIBBd2rKsFGngRLQAgigmveSIoqaRqPBpZdeGpfjRsNqtaJv375n3SYjI+Oc20S88soreOCBB/Dxxx/jjTfewP/+7/9i1apVuPDCC5vc/vDhw7j66qtx99134/e//z3S0tLw1Vdf4Y477ohqxdD8/Hzs3bsXq1atwurVq3HPPffgz3/+M9auXQu9Xn/uHQBnXXjCZrNh8+bN+Pzzz7Fy5Uo8/vjjKC4uxsaNGxN+CXUuNkFERAlHlmXUe0Jte9kpDa+qCoKApPCHijoGKaKoCYIArVbb4V/xmh91uhEjRuDRRx/FunXrMHjwYLz++usAAIPBAEmSGmz73XffIRgM4qmnnsKFF16Ifv364cSJEw22aep1TTGbzZg2bRqefvppfP755/jmm2+wffv2Fu9j6NChWLNmTbPP63Q6TJw4EQsWLMC2bdtQWlqKTz/99Jzj6u5YkSIiooQTWvo8CADIS7EC7obPJ1mM8DkBh5utfUTdld/vR3l5eYPHdDpds+17Z1NSUoIXXngB06ZNQ15eHvbu3Yt9+/bhlltuAQB1MYktW7agR48esNls6NOnD4LBIJYsWYJrr70WX3/9NZ5//vkG+y0oKIDL5cKaNWswbNgwWCyWRi11S5cuhSRJGDNmDCwWC5YtWwaz2YxevXqp+/jiiy/w4x//GEajscn397vf/Q4TJkxAnz598OMf/xjBYBAfffQR5syZg/fffx+HDh3CZZddhtTUVHz44YeQZRn9+/eP+u+pu2FFioiIEk4wGITLF4QEDXJSTI2eT04KfVBxuL1QFKWjh0dEHeDjjz9Gbm5ug69LLrmkVfuyWCzYs2cPbrjhBvTr1w933nkn7rvvPtx1110AgBtuuAFTpkzB5ZdfjszMTPzrX//C8OHDsXDhQvzpT3/C4MGD8c9//hPz589vsN+xY8fi7rvvxk033YTMzEwsWLCg0bFTUlLw4osv4uKLL1YrS++99x7S09MBhO6FVVpaij59+jS7fPv48ePxn//8B++++y6GDx+OK664AuvXr1f3//bbb+OKK67AgAED8Pzzz+Nf//oXBg0a1Kq/q+5EUHiGgMPhgN1uR319PZKTk+M9HCIiamdOpxN/WvYhvj/hwrSxo3HXhrcbPP9IwSTsObATl/TNwMyfTYtq0jZRIvH5fCgpKUFhYSFMpsYXJYg6q7P97LY0G7AiRURECUeSJHhECbKiQYrF0Oj5NJsREjTwcgl0IiJqBoMUERElnGAwCF9AggQBaU0FKasRQUUDD2/KS0REzWCQIiKihCNJErzhIJVqbbw8cJrVgCC08DJIERFRMxikiIgo4QSDQXgDEmRokGppHKTSrQYEoYFHDEZ1PxciIkocDFJERJRwxEC4tU8RkGo1Nno+LcmAoKKBV5QQDAbjMEIiIursGKSIiCjh1IXvDyULAuzmpipSxlBFiotNEBFRMxikiIgo4dR7/AAAs8EArUZo9Hya1QAJAiRZgcPDm/ISEVFjDFJERJRw6t2hIJVkbrxiHwCY9FoY9KHn6lwMUkRE1BiDFBERJRyHNxSkbM0EKQCwWUJzp+rd3g4ZExERdS0MUkRElHBc3tC8J5u58UITETZL6E73DjcrUkTUtbzwwgvIz8+HRqPB4sWL4z2cbotBioiIEo4rXJGyW5oPUvZwkHL7uNgEUXdUXl6O+++/H71794bRaER+fj6uvfZarFmzJt5Da9LSpUuRkpJyzu0cDgfuu+8+PPzwwzh+/DjuvPPO9h9cgtLFewBEREQdLRKOks8SpJKtJpwE4PGLkGUZGg2vPRJ1F6Wlpbj44ouRkpKCBQsWYOjQoQgEAvjkk09w7733Ys+ePa3abyAQgF7feCXQ5h5vD0eOHEEgEMA111yD3NzcJrfpyPF0ZzwrEBFRwvH4QzfZTU0yNbtNitUEQIAvwHtJEbWYogBud/y+FKVFw7znnnsgCAI2bNiA//f//h/69euHQYMGYdasWfj222/V7Y4cOYIf/vCHSEpKQnJyMqZPn46Kigr1+eLiYgwfPhwvv/yyWtlSFAWCIOD555/HD3/4Q1itVjz55JMAgPfeew8jR46EyWRC7969MXfu3Aa/X+rq6nDnnXciOzsbJpMJgwcPxvvvv4/PP/8ct912G+rr6yEIAgRBQHFxcaP3tXTpUgwZMgQA0Lt3bwiCgNLS0mbHWV9fjzvvvBNZWVlITk7GFVdcga1btzbY5x//+EdkZ2fDZrPhjjvuwCOPPILhw4erz48fPx4zZ85s8JrrrrsOt956q/q9KIqYM2cOzjvvPFitVowZMwaff/55g3GnpKTgk08+wYABA5CUlIQpU6agrKyswX5ffvllDBo0CEajEbm5ubjvvvsAALfffjumTp3aYNtgMIicnBy8/PLLjf6eYoUVKSIiSjjeFgSptCQjJAjwiRICgQAMhuYXpiCiMI8H+POf43f8X/8asFrPuklNTQ0+/vhj/OEPf4C1iW0j7XOKouC6666D1WrF2rVrEQwGcc899+Cmm25qEAIOHDiAf//733jrrbeg1WrVx3/3u99h/vz5WLRoEbRaLT755BP87Gc/w9NPP41LL70UBw8eVNvufve730GWZVx11VVwOp147bXX0KdPH+zatQtarRZjx47F4sWL8fjjj2Pv3r0AgKSkpEZjv+mmm5Cfn4+JEydiw4YNyM/PR2ZmZrPjvOaaa5CWloYPP/wQdrsdf//73zFhwgTs27cPaWlp+Pe//43f/e53+Nvf/oZLL70Uy5Ytw9NPP43evXu3/N8EwG233YbS0lIsX74ceXl5WLFiBaZMmYLt27ejqKgIAODxePCXv/wFy5Ytg0ajwc9+9jM89NBD+Oc//wkAeO655zBr1iz88Y9/xFVXXYX6+np8/fXXAIBf/OIXuOyyy1BWVqZW4T788EO4XC5Mnz49qrFGg0GKiIgSiqIo8ImhIJWWZG52u1SLAUFFA29ARiAQ6KjhEVE7O3DgABRFwfnnn3/W7VavXo1t27ahpKQE+fn5AIBly5Zh0KBB2LhxI0aPHg0gVG1ZtmyZGlgibr75Ztx+++3q9z//+c/xyCOPYMaMGQBCFaPf//73mDNnDn73u99h9erV2LBhA3bv3o1+/fqp20TY7XYIgoCcnJxmx2w2m5Geng4AyMzMbLDtmeP89NNPsX37dlRWVsJoDLU5/+Uvf8E777yDN998E3feeScWL16M22+/Hb/4xS8AAE8++SRWr14Nn6/li/AcPHgQ//rXv3Ds2DHk5eUBAB566CF8/PHHeOWVVzBv3jwAoXbD559/Hn369AEA3HfffXjiiSfU/Tz55JOYPXs2HnzwQfWxyL/B2LFj0b9/fyxbtgxz5swBALzyyiu48cYbmwycscIgRURECUWWZfjEUCtNhq35ilSqRY8gNPAFJAYpom5ECbf/CULjm3Gfbvfu3cjPz1dDFAAMHDgQKSkp2L17t/ohvlevXo1CFACMGjWqwfebNm3Cxo0b8Yc//EF9TJIk+Hw+eDwebNmyBT169FBDVKydOc5NmzbB5XKpwSvC6/Xi4MGDAEJ/B3fffXeD5y+66CJ89tlnLT7u5s2boShKo/fl9/sbHNtisaghCgByc3NRWVkJAKisrMSJEycwYcKEZo/zi1/8Ai+88ALmzJmDyspKfPDBB+2+cAiDFBERJZRAIABvQAIgIO1sc6QsBkjQwMs5UkTdSlFREQRBwO7du3Hdddc1u11krtO5Hm+qPbCpx2VZxty5c3H99dc32tZkMsFsbr5CHgtNjSc3N7dBm2JES1YHjNBoNGo4jTj94pMsy9Bqtdi0aVOD1kegYXvimYtfCIKg7rclfze33HILHnnkEXzzzTf45ptvUFBQgEsvvbTF76M1GKSIiCihuHwigrICCRqkJxmBoL/J7VKtegQVDXyBACtSRC1lsYTmKcXz+OeQlpaGK6+8En/729/wwAMPNAoYdXV1SElJwcCBA3HkyBEcPXpUrUrt2rUL9fX1GDBgQNRD+8EPfoC9e/eib9++TT4/dOhQHDt2DPv27WuyKmUwGCBJUtTHPdt4ysvLodPpUFBQ0OQ2AwYMwLfffotbbrlFfez0xTiAUAvh6YtCSJKEHTt24PLLLwcAjBgxApIkobKystXBxmazoaCgAGvWrFH3e6b09HRcd911eOWVV/DNN9/gtttua9WxosEgRURECaXaEertFzRaWAxaoJliU6rFEGrtC0rw+3kvKaIWEYRzLvbQGTz77LMYO3YsLrjgAjzxxBMYOnQogsEgVq1aheeeew67d+/GxIkTMXToUPz0pz/F4sWL1cUmxo0b16htryUef/xxTJ06Ffn5+bjxxhuh0Wiwbds2bN++HU8++STGjRuHyy67DDfccAMWLlyIvn37Ys+ePRAEAVOmTEFBQQFcLhfWrFmDYcOGwWKxwNKC4NiciRMn4qKLLsJ1112HP/3pT+jfvz9OnDiBDz/8ENdddx1GjRqFBx98EDNmzMCoUaNwySWX4J///Cd27tzZYO7WFVdcgVmzZuGDDz5Anz59sGjRItTV1anP9+vXDz/96U9xyy234KmnnsKIESNQVVWFTz/9FEOGDMHVV1/dovEWFxfj7rvvRlZWlroox9dff437779f3eYXv/gFpk6dCkmS1Llo7YnLnxMRUUKpcXsBACaD/qxzJFIsekjQQFEAp6fpqhURdU2FhYXYvHkzLr/8csyePRuDBw/GpEmTsGbNGjz33HMAQq1l77zzDlJTU3HZZZdh4sSJ6N27N954441WHfPKK6/E+++/j1WrVmH06NG48MILsXDhQvTq1Uvd5q233sLo0aPxk5/8BAMHDsScOXPUKtTYsWNx991346abbkJmZiYWLFjQpr8DQRDw4Ycf4rLLLsPtt9+Ofv364cc//jFKS0uRnZ0NILQK4OOPP46HH34YI0eOxOHDh/E///M/DfZz++23Y8aMGbjlllswbtw4FBYWNqoavfLKK7jlllswe/Zs9O/fH9OmTcP69esbzD87lxkzZmDx4sV49tlnMWjQIEydOhX79+9vsM3EiRORm5uLK6+8Ul3Yoj0JyplNjQnI4XDAbrejvr4eycnJ8R4OERG1ow827sWL/12LFLsdS399U+jeM2cu1xxeQvmSx99ChlyNB67+Aa4YG/0VaKLuzufzoaSkBIWFhTCZmp9zSN1HcXEx3nnnHWzZsiXeQ2nE4/EgLy8PL7/8cpNz0U53tp/dlmYDtvYREVFCqXOFWvssRv05tgQsJiPgARyeli/1S0REHUuWZZSXl+Opp56C3W7HtGnTOuS4DFJERJRQ6sNtembTuW+wm2QxQPYALi9b+4iIOqsjR46gsLAQPXr0wNKlS6HTdUzEYZAiIqKE4vaFVuAzG85dkUq2mFAHwMU5UkREAEKtfcXFxfEeRgMFBQWNlmDvCFxsgoiIEoovvAKfuQWtfcnW0L1LPH5/XE7SRETUeTFIERFRQvGJoYqUqQUVqVSrKfwa3pSX6Gx4oYG6mlj8zDJIERFRQvGJoUBkMZ57jlSK1QgJGngDEm/KS9QEvT50QcLj8cR5JETRifzMRn6GW4NzpIiIKKH4w4GoJUEq1aKHpGjgY5AiapJWq0VKSgoqKysBABaL5az3ZyOKN0VR4PF4UFlZiZSUFGi12lbvi0GKiIgSij8Qrki1YNW+VKsBEgT4ArJ6U0wiaignJwcA1DBF1BWkpKSoP7utxSBFREQJRQzPkbKaWjBHymKAHG7tY5AiapogCMjNzUVWVhYrt9Ql6PX6NlWiIuIepI4fP46HH34YH330EbxeL/r164eXXnoJI0eOBBAqv82dOxcvvPACamtrMWbMGPztb3/DoEGD1H34/X489NBD+Ne//gWv14sJEybg2WefRY8ePeL1toiIqJMKhBeNSDK3pLXPABkCfIEggxTROWi12ph8OCXqKuK62ERtbS0uvvhi6PV6fPTRR9i1axeeeuoppKSkqNssWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTedIjIqJGIqvv2VoQpFIsesgQWJEiIqJG4lqR+tOf/oT8/Hy88sor6mMFBQXqnxVFweLFi/HYY4/h+uuvBwC8+uqryM7Oxuuvv4677roL9fX1eOmll7Bs2TJMnDgRAPDaa68hPz8fq1evxpVXXtmh74mIiDq3YDAUiGxm4zm3TbUaICsCJFmBx8+WJSIiOiWuFal3330Xo0aNwo033oisrCyMGDECL774ovp8SUkJysvLMXnyZPUxo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrchIiICgEBQgiyHglRyC4KU1aCFRhM6VdZ7/O06NiIi6lriGqQOHTqE5557DkVFRfjkk09w991344EHHsA//vEPAEB5eTkAIDs7u8HrsrOz1efKy8thMBiQmpra7DZn8vv9cDgcDb6IiKj7c3hE9c82y7mDlCAIsBhDi1LUn/ZaIiKiuLb2ybKMUaNGYd68eQCAESNGYOfOnXjuuedwyy23qNudeT8CRVHOeY+Cs20zf/58zJ07t42jJyKirsbhDVWVNIIGJkPLToEWkx4BP+DyMkgREdEpca1I5ebmYuDAgQ0eGzBgAI4cOQLg1H0JzqwsVVZWqlWqnJwciKKI2traZrc506OPPor6+nr16+jRozF5P0RE1Lk5w0FKp9O2+KahJn0ocHlEzpEiIqJT4hqkLr74Yuzdu7fBY/v27UOvXr0AAIWFhcjJycGqVavU50VRxNq1azF27FgAwMiRI6HX6xtsU1ZWhh07dqjbnMloNCI5ObnBFxERdX/OcFVJp295Q4bREGrt83GxCSIiOk1cW/t+9atfYezYsZg3bx6mT5+ODRs24IUXXsALL7wAINTSN3PmTMybNw9FRUUoKirCvHnzYLFYcPPNNwMA7HY77rjjDsyePRvp6elIS0vDQw89hCFDhqir+BEREQGA2xeqSOm1LT/9mSJBihUpIiI6TVyD1OjRo7FixQo8+uijeOKJJ1BYWIjFixfjpz/9qbrNnDlz4PV6cc8996g35F25ciVsNpu6zaJFi6DT6TB9+nT1hrxLly7lTeGIiKgBd7giZYiiImUOz6XyBYLtMiYiIuqa4hqkAGDq1KmYOnVqs88LgoDi4mIUFxc3u43JZMKSJUuwZMmSdhghERF1F65WBCmLMbStX2SQIiKiU+I6R4qIiKgjefyhIBWZ99QSZqMBAOBnRYqIiE7DIEVERAnDG64qmfQtD1KR+0gxSBER0ekYpIiIKGGoFSljy4OUNbytGJDaZUxERNQ1MUgREVHCiCxhbm7hzXgBwGoKtfYFgqxIERHRKQxSRESUMCJLmEfmPbVEkilUkQoEg1AUpV3GRUREXQ+DFBERJQx/OEhZomntM0cqUjKDFBERqRikiIgoYYjhBSMi4aglbOFtRUmGJHGeFBERhTBIERFRwvCH5zlZo2ztUyAgEGSQIiKiUxikiIgoYQQjFSlTy4OU1aCDDAGiLEOW5fYaGhERdTEMUkRElDAiK+/ZzMYWvybJGApSQUlR51gRERExSBERUcIIhu8FlRTFHCmrUQdZEQAALh+DFBERhTBIERFRQpBlGUE5VJFKtrS8ImXQaSBoQqdLl09sl7EREVHXwyBFREQJweUTEVm93G5teZACAL0udANft5dBioiIQhikiIgoIdR7/OE/CbBGcR8pANDrtAAAt5+tfUREFMIgRURECcEZDlJarQ6CIET1WoM+VJHyMEgREVEYgxQRESWEyPwmXbi6FA1jOEi5OUeKiIjCGKSIiCghOD2hEKQPh6JosCJFRERnYpAiIqKE4PaFWvv0+ujmRwGnKlJe3keKiIjCGKSIiCghRNryjProW/tMhlD48onBmI6JiIi6LgYpIiJKCF5/KAQZWlGRMhtCFSkfK1JERBTGIEVERAkh0pZnbMViE2YjK1JERNQQgxQRESWESDWpdRWpSJBiRYqIiEIYpIiIKCH4w9UkkyH6VfvMxtBrxIAU0zEREVHXxSBFREQJwRcIt/a1Yvlzi9EAAPAH2dpHREQhDFJERJQQItWkyAp80bCaQq8JBBikiIgohEGKiIgSghhofWufNbzYhBhkax8REYUwSBERUUIQw215kRX4opFkNgJgRYqIiE5hkCIiooQQqUiZ29DaF5RYkSIiohAGKSIiSgjBcFuexRR9kLKZDOo+FEWJ6biIiKhrYpAiIqKEEGhDa5/NHA5SsowA50kREREYpIiIKEFE2vKs4aXMo5FsMap/dnjFmI2JiIi6LgYpIiJKCEFJBnBqvlM0jHotNELolOlikCIiIjBIERFRAlAUBVIwUpGKPkgBgFanBQA4vf6YjYuIiLouBikiIur2xKAEWQlVpJLM0bf2AYBeGwpSLn8gZuMiIqKui0GKiIi6vdPb8ZJMrQtSkYqU18cgRUREDFJERJQA3OHwIwgamAy6Vu1Drwu9ziNyjhQRETFIERFRAnD5QvOatNrWn/Z04dY+L1v7iIgIDFJERJQA3P7QPaQiYag1DPpwRYpBioiIwCBFREQJwOMLtePpdK1r6wNOBSlfOJQREVFiY5AiIqJuL1JF0ulaX5HSR4KUyIoUERExSBERUQKIzGvStyFIGcNBys8gRUREYJAiIqIE4BEjQar1rX3G8Gp//gBb+4iIiEGKiIgSQKQiFakqtYZJrwfAIEVERCEMUkRE1O35xFD4aVNrX7giFWCQIiIiMEgREVECiCwQYWzlzXgBwGQIVaREBikiIgKDFBERJYBIO54x3J7XGuZIkAoySBEREYMUERElgEhFytSGOVIWYyhIBRikiIgIcQ5SxcXFEAShwVdOTo76vKIoKC4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHevot0JERJ2YGJAAAKY2tPaZw0EqGJRiMiYiIura4l6RGjRoEMrKytSv7du3q88tWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTIUk80RERUUhkXpPR0PrWPqvJAAAI8vxCREQAWn9pLlYD0OkaVKEiFEXB4sWL8dhjj+H6668HALz66qvIzs7G66+/jrvuugv19fV46aWXsGzZMkycOBEA8NprryE/Px+rV6/GlVde2aHvhYiIOid/uB3P3JYgZQwHKVakiIgInaAitX//fuTl5aGwsBA//vGPcejQIQBASUkJysvLMXnyZHVbo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrdpit/vh8PhaPBFRETdVzBckbKY2jBHyhwKYZIkQVGUmIyLiIi6rrgGqTFjxuAf//gHPvnkE7z44osoLy/H2LFjUV1djfLycgBAdnZ2g9dkZ2erz5WXl8NgMCA1NbXZbZoyf/582O129Ss/Pz/G74yIiDoTMVxFMoerSq2RFGntk2XIshyTcRERUdcV1yB11VVX4YYbbsCQIUMwceJEfPDBBwBCLXwRgiA0eI2iKI0eO9O5tnn00UdRX1+vfh09erQN74KIiDq7yLzZyMp7rWE16gEIkGRFXQWQiIgSV9xb+05ntVoxZMgQ7N+/X503dWZlqbKyUq1S5eTkQBRF1NbWNrtNU4xGI5KTkxt8ERFR9xVZstzShjlSFqMOMkIX6dw+MSbjIiKirqtTBSm/34/du3cjNzcXhYWFyMnJwapVq9TnRVHE2rVrMXbsWADAyJEjodfrG2xTVlaGHTt2qNsQERFJ4da+JHPrW/sMWg0UgUGKiIhC4rpq30MPPYRrr70WPXv2RGVlJZ588kk4HA7MmDEDgiBg5syZmDdvHoqKilBUVIR58+bBYrHg5ptvBgDY7XbccccdmD17NtLT05GWloaHHnpIbRUkIiJSFAXB8JymyBLmrSEIAnQaLRRJgsvH1j4iokQX1yB17Ngx/OQnP0FVVRUyMzNx4YUX4ttvv0WvXr0AAHPmzIHX68U999yD2tpajBkzBitXroTNZlP3sWjRIuh0OkyfPh1erxcTJkzA0qVLodVq4/W2iIioE/EHJUCJBKnWt/YBgFanRVACPKxIERElvLgGqeXLl5/1eUEQUFxcjOLi4ma3MZlMWLJkCZYsWRLj0RERUXfg9JwKPbY2VKSA0L0Pg37A42dFiogo0XWqOVJERESx5vKHgpRWo4Fe17ZuBb0udP2RQYqIiBikiIioW4u04Wm1mnPePuNcIkHMyyBFRJTwGKSIiKhbc4cXhtDFYO6sQR+qSPlEzpEiIkp0DFJERNStRYJULBYhirT2+cRgm/dFRERdG4MUERF1a55w9Uivb/v6SqcqUmztIyJKdAxSRETUrXn9oeqRPgYVKaMhFKT8rEgRESU8BikiIurWIivsRdry2sKoD92Hyh9gkCIiSnQMUkRE1K1FVtgzxKC1zxSuSIkMUkRECY9BioiIurXIfCaDvu2tfSZDqCIlBjhHiogo0TFIERFRtxZpwzPGoCJlNoaDVFBq876IiKhrY5AiIqJuLbLYRGR+U1tYwkEqwNY+IqKExyBFRETdmhgMteFFVtxrC7PRAAAIsCJFRJTwGKSIiKhbiyxVbopBkLKE50hJEoMUEVGiY5AiIqJuLTKfKbJQRFtYTKF9BKUgFEVp8/6IiKjrYpAiIqJuLbLCnjmmQUpmkCIiSnAMUkRE1K1FKlJmY9tb+5JM4TlSksz2PiKiBMcgRURE3VowHKQs4YUi2sJq0EOBgICkMEgRESU4BikiIurWAmpFqu2tfWaDFjIEBGUZwSCXQCciSmQMUkRE1K1FAo81BkHKEg5SigJ4/AxSRESJjEGKiIi6tWC4Bc9qikFFSq+FrAgAAI9fbPP+iIio62KQIiKibktRFEiSDACwmoxt3p9GI0CrDZ063f5Am/dHRERdF4MUERF1W15RggahZcqTYlCRAgCdLrT6n5etfURECY1BioiIui2nTwTUINX2VfsAQK/VAgC8IitSRESJjEGKiIi6LbcvNI9JpxWg02ljss/IfrjYBBFRYmOQIiKibsvtC1WNdFodBEGIyT4N4SDlE7nYBBFRImOQIiKibitSkYosEBELel2ktY835CUiSmQMUkRE1G1FVtbTaWPT1gecqkhxjhQRUWJjkCIiom7LEwlS4ZX2YsGoD63+5xc5R4qIKJExSBERUbcVCVKGGC00AQAGfXiOVICtfUREiYxBioiIui1vOEjpY1mRMoT2JbK1j4goocUsSE2cOBG9e/eO1e6IiIjaLDKPyaCPZWtfaF/+ICtSRESJrEVnlm3btmHw4MHQaJrPXT/60Y9QVVUVs4ERERG1lU9t7Yt9kBIDnCNFRJTIWnRmGTFiBMrKypCVlYXevXtj48aNSE9Pb7DNvffe2y4DJCIiai1fOOwYDbGbI2U2MEgREVELW/tSUlJQUlICACgtLYUsy+06KCIioliIrKxnjGFrn8kQWrVPZGsfEVFCa9GZ5YYbbsC4ceOQm5sLQRAwatQoaJu5J8ehQ4diOkAiIqLW8gdCrX3GcPiJBbUixSBFRJTQWhSkXnjhBVx//fU4cOAAHnjgAfzyl7+EzWZr77ERERG1SaQiZTLEriJlDoeyYJCtfUREiazFZ5YpU6YAADZt2oQHH3yQQYqIiDq9SNUopkHKGNpXgBUpIqKEFvWZ5ZVXXmmPcRAREcWcGG7tMxsMMdunxRiuSEkMUkREiSxm95F69tln8cQTT8Rqd0RERG0WqRqZY1iRskaCVJALLxERJbKYBam33noLS5cujdXuiIiI2iwQCAcpUwwXm4gEKZkVKSKiRBazS3Rr1qyJ1a6IiIhiIhBuv7MYY9faF6lISZIERVEgCELM9k1ERF1HmypSiqJAUZRYjYWIiCimIivrRcJPLFjD1S1JVnhTXiKiBNaqIPWPf/wDQ4YMgdlshtlsxtChQ7Fs2bJYj42IiKhNgmpFKvZBCgDc/kDM9ktERF1L1K19CxcuxG9/+1vcd999uPjii6EoCr7++mvcfffdqKqqwq9+9av2GCcREVFUJFmBLMvQAkgyx661z6TXQRAEKIoCty+ANN4NhIgoIUUdpJYsWYLnnnsOt9xyi/rYD3/4QwwaNAjFxcUMUkRE1Cl4xCA0CLWfJ5liF6QEQYBWo0VQCrIiRUSUwKJu7SsrK8PYsWMbPT527FiUlZXFZFBERERt5fYFIECBIMS2tQ8AdDpN+BhiTPdLRERdR9RBqm/fvvj3v//d6PE33ngDRUVFMRkUERFRW7nCIUev0UCr1cZ037rw/jx+LjZBRJSoog5Sc+fOxeOPP44pU6bg97//PZ588klMmTIFc+fObdMNeefPnw9BEDBz5kz1MUVRUFxcjLy8PJjNZowfPx47d+5s8Dq/34/7778fGRkZsFqtmDZtGo4dO9bqcRARUffg9oXa7nQ6LTSamN02MbzPUGe8h619REQJK+ozyw033ID169cjIyMD77zzDt5++21kZGRgw4YN+NGPftSqQWzcuBEvvPAChg4d2uDxBQsWYOHChXjmmWewceNG5OTkYNKkSXA6neo2M2fOxIoVK7B8+XJ89dVXcLlcmDp1KiSJN0okIkpkkbY7nTa2IQoA9LpQRcrLihQRUcJq1Q15R44ciddeey0mA3C5XPjpT3+KF198EU8++aT6uKIoWLx4MR577DFcf/31AIBXX30V2dnZeP3113HXXXehvr4eL730EpYtW4aJEycCAF577TXk5+dj9erVuPLKK2MyRiIi6noi1aJYt/UBgD68T1+AFSkiokQV+8t0Ubr33ntxzTXXqEEooqSkBOXl5Zg8ebL6mNFoxLhx47Bu3ToAwKZNmxAIBBpsk5eXh8GDB6vbNMXv98PhcDT4IiKi7iUSpHS6dghSkYqUyIoUEVGiilmQmjhxInr37h3Va5YvX47Nmzdj/vz5jZ4rLy8HAGRnZzd4PDs7W32uvLwcBoMBqampzW7TlPnz58Nut6tf+fn5UY2biIg6P58YClJ6XauaL87KoI+09rEiRUSUqGJ2dvnRj36EqqqqFm9/9OhRPPjgg1i5ciVMJlOz2wmC0OB7RVEaPXamc23z6KOPYtasWer3DoeDYYqIqJuJVIv07dDaZ9CHTp9+VqSIiBJWzILUvffeG9X2mzZtQmVlJUaOHKk+JkkSvvjiCzzzzDPYu3cvgFDVKTc3V92msrJSrVLl5ORAFEXU1tY2qEpVVlY2ea+rCKPRCKPRGNV4iYioa/GFQ057tPYZwlUuX5BBiogoUcVtjtSECROwfft2bNmyRf0aNWoUfvrTn2LLli3o3bs3cnJysGrVKvU1oihi7dq1akgaOXIk9Hp9g23KysqwY8eOswYpIiLq/iJBytAOrX1GVqSIiBJei84ukVXzWuLtt99u0XY2mw2DBw9u8JjVakV6err6+MyZMzFv3jwUFRWhqKgI8+bNg8Viwc033wwAsNvtuOOOOzB79mykp6cjLS0NDz30EIYMGdJo8QoiIkos/kA4SOljX5GKBClfgEGKiChRtShI2e129c+KomDFihWw2+0YNWoUgFCbXl1dXVSBqyXmzJkDr9eLe+65B7W1tRgzZgxWrlwJm82mbrNo0SLodDpMnz4dXq8XEyZMwNKlS9tluVsiIuo6TgWp2FekTIbQOUZkkCIiSlgtOru88sor6p8ffvhhTJ8+Hc8//7waViRJwj333IPk5OQ2Debzzz9v8L0gCCguLkZxcXGzrzGZTFiyZAmWLFnSpmMTEVH3ogapdpgjZTKETp9igDd/JyJKVFHPkXr55Zfx0EMPNaj4aLVazJo1Cy+//HJMB0dERNRakWqRsR0qUka9PnQMLjZBRJSwog5SwWAQu3fvbvT47t27IctyTAZFRETUVpGKlNEQ+yBljlSkgqxIERElqqjPLrfddhtuv/12HDhwABdeeCEA4Ntvv8Uf//hH3HbbbTEfIBERUWsEwiHH1A4VKbMxVJEKsrWPiChhRX12+ctf/oKcnBwsWrQIZWVlAIDc3FzMmTMHs2fPjvkAiYiIWiPSdtcuFSljuCIlsbWPiChRRX120Wg0mDNnDubMmQOHwwEAbV5kgoiIKNaC4YqUOTyfKZYsBn2DYxARUeJp02U6BigiIuqs1Na+dqhIWSKtfRKDFBFRoop6sQkiIqKuIBKkIvOZYkmdIyXJUBQl5vsnIqLOj0GKiIi6JUmKBKnYV6SSwkFKAwW+AFesJSJKRAxSRETULUXa7syGdpgjFQ5SAhR4RC44QUSUiNoUpI4dO8Z7RxERUaejKIpakbK0Q2ufTqeFTiNAAwVeLoFORJSQ2hSkBg4ciNLS0hgNhYiIKDb8wVMX+aztEKS0Wi30Wk2oIuVnRYqIKBG1KUhxgi0REXVGvoAEDULnqPZYbEKj0UCvDZ1C3b5AzPdPRESdH+dIERFRt+MRg9BAgVYjwKiP/WITGo0GunCQcvnEmO+fiIg6vzYFqd/85jdIS0uL1ViIiIhiItRup0CnEaDVamO+f0EQoAvv1+NnkCIiSkRtukz36KOPxmocREREMRNpt9NpNNBo2qf5QqeLBCm29hERJSK29hERUbfjFUPhRq/TQBCEdjkGgxQRUWJjkCIiom4nEm40Gm27BSm9LtTU4WWQIiJKSAxSRETU7USClE7Xfqc5vZ5BiogokTFIERFRt+MVQ/d20rfDQhMRhnBFyicySBERJaKog9THH3+Mr776Sv3+b3/7G4YPH46bb74ZtbW1MR0cERFRa0SqRHpd+wWpyLLqfgYpIqKEFHWQ+vWvfw2HwwEA2L59O2bPno2rr74ahw4dwqxZs2I+QCIiomj5AqGKlE4X+3tIRRjCQSpyLCIiSixRn2FKSkowcOBAAMBbb72FqVOnYt68edi8eTOuvvrqmA+QiIgoWr4OaO0zGvQAAL/IIEVElIiirkgZDAZ4PB4AwOrVqzF58mQAQFpamlqpIiIiiqdIu51B335ByhQOUmKArX1ERIko6orUJZdcglmzZuHiiy/Ghg0b8MYbbwAA9u3bhx49esR8gERERNFSK1Lt2NpnMoTnSAWkdjsGERF1XlFXpJ555hnodDq8+eabeO6553DeeecBAD766CNMmTIl5gMkIiKKViTcRBaEaA/mcEUqEGRFiogoEUV9hunZsyfef//9Ro8vWrQoJgMiIiJqK38wVJFqz9Y+szEcpFiRIiJKSFFXpD788EN88sknjR5fuXIlPvroo5gMioiIqC3E8Ep67VmRshgNAIBgkItNEBEloqiD1COPPAJJanz1TZZlPPLIIzEZFBERUVtEgpShPVv7whWpYBPnRCIi6v6iDlL79+9Xlz8/3fnnn48DBw7EZFBERERtIYbb7cyGdqxImRikiIgSWdRBym6349ChQ40eP3DgAKxWa0wGRURE1BaBcLgxtWOQsoZb+6QggxQRUSKKOkhNmzYNM2fOxMGDB9XHDhw4gNmzZ2PatGkxHRwREVFrBMLzlkx6fbsdw2YOBSlFkRCU5HY7DhERdU5RB6k///nPsFqtOP/881FYWIjCwkIMGDAA6enp+Mtf/tIeYyQiIopKIFwlMrZnRSocpDRQ4Ba54AQRUaKJ+gxjt9uxbt06rFq1Clu3boXZbMbQoUNx2WWXtcf4iIiIohYMBymLsf0qUmaDHhpBgKwocHlF2MPBioiIEkOrLtUJgoDJkydj8uTJsR4PERFRmwUlCToAZmP7VaQ0Gg10Gg1ESYLLJ7bbcYiIqHNq0Rnm6aefxp133gmTyYSnn376rNs+8MADMRkYERFRayiKogYpi6H9KlKCIECr0wKSBDeDFBFRwmlRkFq0aBF++tOfwmQyYdGiRc1uJwgCgxQREcWVKMkQFAUQTt3rqb1otVoAgIdBiogo4bQoSJWUlDT5ZyIios7GK0rQCAqA9p0jBZwWpPyBdj0OERF1PlGv2vfEE0/A4/E0etzr9eKJJ56IyaCIiIhayxuQoIECrUaAUd9+c6QAQK8L7Z9Biogo8UQdpObOnQuXy9XocY/Hg7lz58ZkUERERK3lFSUIUKDTCGrFqL1EgpSXQYqIKOFEHaQURYEgCI0e37p1K9LS0mIyKCIiotbyiEFooECn0UCjifo0FxW9PhTUGKSIiBJPi3seUlNTIQgCBEFAv379GoQpSZLgcrlw9913t8sgiYiIWsodDjV6rdDuQcoQbh30igxSRESJpsVBavHixVAUBbfffjvmzp0Lu92uPmcwGFBQUICLLrqoXQZJRETUUm5fJEhp2r21LzIHy8+KFBFRwmlxkJoxYwYAoLCwEBdffDF0uvadwEtERNQaapDSaZtsRY8lgz60KqAvEGzX4xARUecTdc+DzWbD7t271e//+9//4rrrrsNvfvMbiCLvo0FERPEVae3T6dq3GgUApnBFSgywIkVElGiiDlJ33XUX9u3bBwA4dOgQbrrpJlgsFvznP//BnDlzYj5AIiKiaEQWftB3QJAyGkIVKT8rUkRECSfqILVv3z4MHz4cAPCf//wH48aNw+uvv46lS5firbfeivX4iIiIohK5p5OhA1rQTeEgJQakdj8WERF1Lq1a/lyWZQDA6tWrcfXVVwMA8vPzUVVVFdW+nnvuOQwdOhTJyclITk7GRRddhI8++qjBsYqLi5GXlwez2Yzx48dj586dDfbh9/tx//33IyMjA1arFdOmTcOxY8eifVtERNRNeH2hNnNDO9+MFwDMxtAxAkG29hERJZqog9SoUaPw5JNPYtmyZVi7di2uueYaAEBJSQmys7Oj2lePHj3wxz/+Ed999x2+++47XHHFFfjhD3+ohqUFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6j5mzpyJFStWYPny5fjqq6/gcrkwdepUSBKvDhIRJSKPGGqzi9zjqT1FKlIBtvYRESWcqIPU4sWLsXnzZtx333147LHH0LdvXwDAm2++ibFjx0a1r2uvvRZXX301+vXrh379+uEPf/gDkpKS8O2330JRFCxevBiPPfYYrr/+egwePBivvvoqPB4PXn/9dQBAfX09XnrpJTz11FOYOHEiRowYgddeew3bt2/H6tWro31rRETUDfjC93QyhlfUa08WkwEAEAjy4h0RUaKJuu9h6NCh2L59e6PH//znP7fpfh2SJOE///kP3G43LrroIpSUlKC8vByTJ09WtzEajRg3bhzWrVuHu+66C5s2bUIgEGiwTV5eHgYPHox169bhyiuvbPV4iIioazoVpNq/tc9iDIW1IIMUEVHCidlZxmQytep127dvx0UXXQSfz4ekpCSsWLECAwcOxLp16wCgUbtgdnY2Dh8+DAAoLy+HwWBAampqo23Ky8ubPabf74ff71e/dzgcrRo7ERF1Pr5wa5/Z2HEVqaDE1j4iokTToiCVlpaGffv2ISMjA6mpqWe9wWFNTU1UA+jfvz+2bNmCuro6vPXWW5gxYwbWrl2rPn/msRRFOecNFs+1zfz58zF37tyoxklERF2DGF74ITJ/qT0lmULHkCSpRecnIiLqPloUpBYtWgSbzab+OZYnCoPBoM6zGjVqFDZu3Ii//vWvePjhhwGEqk65ubnq9pWVlWqVKicnB6Ioora2tkFVqrKy8qzztR599FHMmjVL/d7hcCA/Pz9m74mIiOLHH65IdUSQshqNAICgJDNIERElmBYFqRkzZqh/vvXWW9trLABC1SS/34/CwkLk5ORg1apVGDFiBABAFEWsXbsWf/rTnwAAI0eOhF6vx6pVqzB9+nQAQFlZGXbs2IEFCxY0ewyj0Qhj+ORHRETdS2QFPUtHBKlwRSooy5AkCRpN1Gs4ERFRFxX1HCmtVouysjJkZWU1eLy6uhpZWVlRLTv+m9/8BldddRXy8/PhdDqxfPlyfP755/j4448hCAJmzpyJefPmoaioCEVFRZg3bx4sFgtuvvlmAIDdbscdd9yB2bNnIz09HWlpaXjooYcwZMgQTJw4Mdq3RkRE3YAYDlImY0csNqGDAgFQFHj8Adg7YKVAIiLqHKI+yyiK0uTjfr8fBoMhqn1VVFTg5z//OcrKymC32zF06FB8/PHHmDRpEgBgzpw58Hq9uOeee1BbW4sxY8Zg5cqVapshEGo11Ol0mD59OrxeLyZMmIClS5e2aQVBIiLqugKSBC0Aqym6c1JrWAw6yBCghQK3LwB7UrsfkoiIOokWB6mnn34aQGjxh//7v/9DUtKps4UkSfjiiy9w/vnnR3Xwl1566azPC4KA4uJiFBcXN7uNyWTCkiVLsGTJkqiOTURE3VMgEIQWgMXU/tUhrUYItfPJMtx+sd2PR0REnUeLg9SiRYsAhCpSzz//fIOKj8FgQEFBAZ5//vnYj5CIiKiFJFmBLMuAACQZ278iBQA6rRaSHITHF+iQ4xERUefQ4iBVUlICALj88svx9ttvN7p3ExERUbx5xCC0CLWgd0RrHwDodVpIAcDtZ5AiIkokUc+R+uyzz9pjHERERG3mESVoBBkaQeiQG/ICoYoUAHgYpIiIEkqrljQ6duwY3n33XRw5cgSi2LAnfOHChTEZGBERUbTc/iA0UKDXCtDp2n/VPiBUkQIAr8ggRUSUSKI+y6xZswbTpk1DYWEh9u7di8GDB6O0tBSKouAHP/hBe4yRiIioRU4FKW2Hrd4aCWxef7BDjkdERJ1D1HcOfPTRRzF79mzs2LEDJpMJb731Fo4ePYpx48bhxhtvbI8xEhERtYjbH4QABXqtpsOClIEVKSKihBR1kNq9ezdmzJgBIHQVzuv1IikpCU888QT+9Kc/xXyARERELeXy+QEAeq3QcUFKHzqOX2RFiogokUQdpKxWK/z+0IkqLy8PBw8eVJ+rqqqK3ciIiIii5PaGqkI6nQ6CIHTIMQ260KIWPlakiIgSStRzpC688EJ8/fXXGDhwIK655hrMnj0b27dvx9tvv40LL7ywPcZIRETUIpGb4kYWgOgIxnBFyhdgRYqIKJFEHaQWLlwIl8sFACguLobL5cIbb7yBvn37qjftJSIiigdveAlyfQet2AcARkPoWGztIyJKLFGfaXr37q3+2WKx4Nlnn43pgIiIiFrLo1akOjBI6cNBihUpIqKEEvUcqd69e6O6urrR43V1dQ1CFhERUUeLLEEeqRJ1BFP4WGJA6rBjEhFR/EUdpEpLSyFJjU8Wfr8fx48fj8mgiIiIWiPS2mfowIqUyRBabEIMsiJFRJRIWnymeffdd9U/f/LJJ7Db7er3kiRhzZo1KCgoiOngiIiIouELhIJUR1akzGqQYkWKiCiRtPhMc9111wEABEFQ7yMVodfrUVBQgKeeeiqmgyMiIoqGL7zgg1Gv77BjmsOhLciKFBFRQmlxkJJlGQBQWFiIjRs3IiMjo90GRURE1Br+8L2czMYObO0zhkJbgBUpIqKEEvWZpqSkpD3GQURE1GaRlfOMho6rSFkYpIiIElKLF5tYv349PvroowaP/eMf/0BhYSGysrJw5513wu/3x3yARERELSWGg5SlQ4OUAQCaXIiJiIi6rxYHqeLiYmzbtk39fvv27bjjjjswceJEPPLII3jvvfcwf/78dhkkERFRS0SClNnYkUEqPEeKQYqIKKG0OEht2bIFEyZMUL9fvnw5xowZgxdffBGzZs3C008/jX//+9/tMkgiIqKWiCz4YDF1XJBKMoUrUmztIyJKKC0OUrW1tcjOzla/X7t2LaZMmaJ+P3r0aBw9ejS2oyMiIopCZAlySwdWpKzh0CYrMudJERElkBYHqezsbHWhCVEUsXnzZlx00UXq806nE/oOXG6WiIjoTJGKlDVcJeoI1tOqX67wDYGJiKj7a3GQmjJlCh555BF8+eWXePTRR2GxWHDppZeqz2/btg19+vRpl0ESERGdS0CSoYRv1ZFkNHbYcU16HTSCAABw+8QOOy4REcVXi5c/f/LJJ3H99ddj3LhxSEpKwquvvgqD4dQVv5dffhmTJ09ul0ESERGdi0eUoIECoGGVqL1pNBpoNVrIUhBuHytSRESJosVBKjMzE19++SXq6+uRlJQErVbb4Pn//Oc/SEpKivkAiYiIWsIjBqERZGg1gnqT3I6i1WkQkAAPgxQRUcKI+oa8dru9ycfT0tLaPBgiIqLWcvslaKFAr9U0utjX3nTh43lEtvYRESWKFs+RIiIi6szcPhECFOg1QtyClNsf7NDjEhFR/DBIERFRtxBZMS8uFSld6HhertpHRJQwGKSIiKhbiKyYp9NpodF07OnNoAt1yjNIERElDgYpIiLqFlzeUJDS6zq2GnX6Mb0iW/uIiBIFgxQREXULXrUi1fE3hzfoWZEiIko0DFJERNQtuP3hipQ+6gVp28ygD1Wk/KxIERElDAYpIiLqFiIVKYM+DhWpcBXMF2CQIiJKFAxSRETULXjDFSmjoeMrUsZIRYpBiogoYTBIERFRt+ATQ/OT4lGRioQ3BikiosTBIEVERN2CPxykTAZDhx/bqGeQIiJKNAxSRETULUQqUmZjx1ekzOGKVIBBiogoYTBIERFRtxAJMWZTx1ekTIZQeBODDFJERImCQYqIiLoFMRCqSFmMHR+kIlUwMSB1+LGJiCg+GKSIiKhbiFSkrHGoSEVa+4JBBikiokTBIEVERN1CMBiuSMUjSIWrYAGJrX1ERImCQYqIiLoFSQpVg2xmY4cf22piRYqIKNEwSBERUZenKAqC4YUerHEIUpbwkusBBikiooTBIEVERF1eMBhEUJIBxKciZTOHgpQky5BkpcOPT0REHY9BioiIujyPX4SsKFAgIMnc8feRsoWPqYEMl5/zpIiIEgGDFBERdXkurwgAkKCBNbyCXkeymIzQagRooMARHgsREXVvDFJERNTlOb3+0B80Gui0HX9q0+l0MIaP6/T4O/z4RETU8eIapObPn4/Ro0fDZrMhKysL1113Hfbu3dtgG0VRUFxcjLy8PJjNZowfPx47d+5ssI3f78f999+PjIwMWK1WTJs2DceOHevIt0JERHHkDgcpnbbjq1EAIAgCdPrQsesZpIiIEkJcg9TatWtx77334ttvv8WqVasQDAYxefJkuN1udZsFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6jYzZ87EihUrsHz5cnz11VdwuVyYOnWquhQuERF1b+5wO51O1/HzoyJ0ulCQYkWKiCgxxOfSXdjHH3/c4PtXXnkFWVlZ2LRpEy677DIoioLFixfjsccew/XXXw8AePXVV5GdnY3XX38dd911F+rr6/HSSy9h2bJlmDhxIgDgtddeQ35+PlavXo0rr7yyw98XERF1LLc/XJHSaeM2BoM+FOJcXgYpIqJE0KnmSNXX1wMA0tLSAAAlJSUoLy/H5MmT1W2MRiPGjRuHdevWAQA2bdqEQCDQYJu8vDwMHjxY3eZMfr8fDoejwRcREXVdHl8AAKA3xK8iZQi39jFIERElhk4TpBRFwaxZs3DJJZdg8ODBAIDy8nIAQHZ2doNts7Oz1efKy8thMBiQmpra7DZnmj9/Pux2u/qVn58f67dDREQdyOMPtfYZ9fELUsZwiHP5GKSIiBJBpwlS9913H7Zt24Z//etfjZ4TBKHB94qiNHrsTGfb5tFHH0V9fb36dfTo0dYPnIiI4s4XDlKGThCkPD4uf05ElAg6RZC6//778e677+Kzzz5Djx491MdzcnIAoFFlqbKyUq1S5eTkQBRF1NbWNrvNmYxGI5KTkxt8ERFR1+Xzh1r7jHFs7TMbDQAAb7jNkIiIure4BilFUXDffffh7bffxqefforCwsIGzxcWFiInJwerVq1SHxNFEWvXrsXYsWMBACNHjoRer2+wTVlZGXbs2KFuQ0RE3ZtfDIUXszF+QcoSPrZXZEWKiCgRxHXVvnvvvRevv/46/vvf/8Jms6mVJ7vdDrPZDEEQMHPmTMybNw9FRUUoKirCvHnzYLFYcPPNN6vb3nHHHZg9ezbS09ORlpaGhx56CEOGDFFX8SMiou7NHwgFKZPBELcxRCpSPpEVKSKiRBDXIPXcc88BAMaPH9/g8VdeeQW33norAGDOnDnwer245557UFtbizFjxmDlypWw2Wzq9osWLYJOp8P06dPh9XoxYcIELF26FFpt/JbBJSKijiOGw4sljhUpq9kI4FR1jIiIure4BilFUc65jSAIKC4uRnFxcbPbmEwmLFmyBEuWLInh6IiIqKsIBIMAALMpfhUpqykUpEQGKSKihNApFpsgIiJqLUVR1CBljWOQsplDxxYDwbiNgYiIOg6DFBERdWmSJCEQlAGcqgrFQ1K4tY9BiogoMTBIERFRlxYMBhGQZCgQYDXFb45UsiUUpIISgxQRUSJgkCIioi5NlmUEJBkyBFgM8VtkyG4NBSkpGIQsy3EbBxERdQwGKSIi6tIkSUJAUiBDgNUYvzWU7BYTAEBWFLi8vJcUEVF3xyBFRERdWihIyZAVTVwrUkkmPRQIAIB6jy9u4yAioo7BIEVERF1aJEhJEGAxxK8iJQgCtLrQ8R0ef9zGQUREHYNBioiIurRgMAgxPEfKGseKFADow0HKySBFRNTtMUgREVGX5gsEoSgILTYRxzlSAKDXh1YNdHoZpIiIujsGKSIi6tLc4YUdZAgw6+NbkTLoQ0HOxSBFRNTtMUgREVGX5vKFgpReq4VWI8R1LIZwRcrt46p9RETdHYMUERF1aS5fAABgjONCExEmI4MUEVGiYJAiIqIuLRJaTAZ9nEdyagweBikiom6PQYqIiLo0jz8IoHMEKbPRCADw+hmkiIi6OwYpIiLq0jzh0GLuBK19FlMozPn8gTiPhIiI2huDFBERdWnecGgxG+NfkbIaDQAAv8ggRUTU3TFIERFRl+YNhxZLOMTEk9Ucau3zBRikiIi6OwYpIiLq0nxiaI6UpRNUpJLMoTAXYJAiIur2GKSIiKhL84UrUlZTZwpSUpxHQkRE7Y1BioiIujR/IFSRspri39qXHG7tE4OsSBERdXcMUkRE1KWJ4dY+mzn+FSmbJRSkAkEJsizHeTRERNSeGKSIiKhLE4ORIGWM80gAezhI+YMyJIntfURE3RmDFBERdVmKokAMt/YlmeIfpFIsBigQIMkKPD7elJeIqDtjkCIioi5LlmWIwVALXbIl/q19VoMOMgQAQJ3HH+fREBFRe2KQIiKiLkuWZYhSKEhF2uriSaMRoNPpAAAOBikiom6NQYqIiLqsYDAIMShDgYBkc/xX7QMAoz4SpNjaR0TUnTFIERFRl+X2BSArCiQISDLq4j0cAIAhEqS8rEgREXVnDFJERNRlRcKKAg0sBm2cRxNiNITmarm8rEgREXVnDFJERNRlOcNhRa/TQhCEOI8mxGQIVaRcrEgREXVrDFJERNRlOcJBKtJO1xmYwxUpN5c/JyLq1hikiIioy3KHg5SxMwYpfyDOIyEiovbEIEVERF2WqxMGKYsptHogb8hLRNS9MUgREVGX5faHg5ShMwWpUEXKy4oUEVG3xiBFRERdltsXCiumcDtdZ2A1hipSXpFBioioO2OQIiKiLssTrvqYO1GQspmNAACfGIzzSIiIqD0xSBERUZcVaZ8zGztPkEoyhypSPlakiIi6NQYpIiLqsiLtc5bOFKTCi02IAVakiIi6MwYpIiLqsnydMEglW0OtfQxSRETdG4MUERF1WZF5SNZwFagzsFtCYwkEg5BlJc6jISKi9sIgRUREXZYvEKpIWU2dpyJlt5gAAAIUuLngBBFRt8UgRUREXZYYDipJnagiZTUZoNUI0EJBvZcLThARdVcMUkRE1GWJAQkAYDMZ4zySU7RaLYxaDQAF9R5/vIdDRETthEGKiIi6rEAwVJGyWTpPRUqj0cCg1wIA6t0MUkRE3RWDFBERdUmSrCAghStSnShICYIAg14HAHCwIkVE1G0xSBERUZfk9AWggQwAsJs7T2sfABh0oSDl9IpxHgkREbUXBikiIuqS6jwiNFBg0Gpg7kT3kQIAoyFckfKyIkVE1F0xSBERUZdU7fQCAEx6LXThClBnYdSHgp3bx4oUEVF3Fdcg9cUXX+Daa69FXl4eBEHAO++80+B5RVFQXFyMvLw8mM1mjB8/Hjt37mywjd/vx/3334+MjAxYrVZMmzYNx44d68B3QURE8VATDlJ6vR4aTee6LmgyhIKU08MgRUTUXcX1zON2uzFs2DA888wzTT6/YMECLFy4EM888ww2btyInJwcTJo0CU6nU91m5syZWLFiBZYvX46vvvoKLpcLU6dOhRSegExERN1TrcsDADAaOldbHwC11dDtZ5AiIuqu4toLcdVVV+Gqq65q8jlFUbB48WI89thjuP766wEAr776KrKzs/H666/jrrvuQn19PV566SUsW7YMEydOBAC89tpryM/Px+rVq3HllVd22HshIqKO5XD7AAAmY+dZsS/CEglSPt6Ql4iou+pcvRCnKSkpQXl5OSZPnqw+ZjQaMW7cOKxbtw4AsGnTJgQCgQbb5OXlYfDgweo2TfH7/XA4HA2+iIioa4kEKXMnuhlvhMUUCndeP4MUEVF31WmDVHl5OQAgOzu7wePZ2dnqc+Xl5TAYDEhNTW12m6bMnz8fdrtd/crPz4/x6ImIqL05PaEgZTGZ4jySxqzhipRXZGsfEVF31WmDVIQgCA2+VxSl0WNnOtc2jz76KOrr69Wvo0ePxmSsRETUcdzeUJCyWTpfRSrJHK5IsbWPiKjb6rRBKicnBwAaVZYqKyvVKlVOTg5EUURtbW2z2zTFaDQiOTm5wRcREXUt3vBCDjZL56tIpYTDHRebICLqvjptkCosLEROTg5WrVqlPiaKItauXYuxY8cCAEaOHAm9Xt9gm7KyMuzYsUPdhoiIuidv+B5NdmsnDFJJoTH5xCCCkhzn0RARUXuI66p9LpcLBw4cUL8vKSnBli1bkJaWhp49e2LmzJmYN28eioqKUFRUhHnz5sFiseDmm28GANjtdtxxxx2YPXs20tPTkZaWhoceeghDhgxRV/EjIqLuyR+ef2RPMsd5JI2lWE0QBECjyKj1BJBp63zth0RE1DZxDVLfffcdLr/8cvX7WbNmAQBmzJiBpUuXYs6cOfB6vbjnnntQW1uLMWPGYOXKlbDZbOprFi1aBJ1Oh+nTp8Pr9WLChAlYunQptFpth78fIiLqOGI4SKUmWeI8ksYMeh1MOi1cooIat8ggRUTUDcU1SI0fPx6KojT7vCAIKC4uRnFxcbPbmEwmLFmyBEuWLGmHERIRUWckyzICgdBCDunJna8ipdVqYdZroRMVVLv9AGznfA0REXUtnXaOFBERUXPq3T7IigJAQEZyJ6xIGQwwG7TQCRJq3Vy5j4ioO2KQIiKiLqfK4QEAKIIWFkNcmyuaZDAYYNZroYWMaqc33sMhIqJ2wCBFRERdTq0zFKT0Bv057y0YDzqdDqZwwKsOj5WIiLoXBikiIupy6tyhKo/BoI/zSJomCAKs5tAS6HUMUkRE3RKDFBERdTn1Lh8AwGTovKvhWcyhsUVCHxERdS8MUkRE1OU4PKFwYjEZ4jyS5iVbQ6sJOty+OI+EiIjaA4MUERF1OU63HwBgMZniPJLm2cNByu1lkCIi6o4YpIiIqMtx+ULhJMnSeVv7UpNCQcrj9cd5JERE1B4YpIiIqMvx+kLhJNnSeStSaeH7W/lE/1lvPk9ERF0TgxQREXU5Xp8IAEi2dt4glZFsBQAIsgSHLxjn0RARUawxSBERUZfjF0NBKjIPqTOyWc0waDXQQ0atW4z3cIiIKMYYpIiIqEuRJAmiGAAApIWrPp2RwWCASa+FXpBQ5eI8KSKi7oZBioiIuhSfzwdfQIIEDdKSOm9rn8FggMWghQAF1U7eS4qIqLthkCIioi7F5/PBF5QhKlqkWPTxHk6zNBoNTIbQ+Krq3XEeDRERxRqDFBERdSm1Tg8CkowAtMhI6rzLnwOAyRQaXy0rUkRE3Q6DFBERdThJknDs2DH4/dHPHaqocwIANFo9rEZdrIcWU1ZzqPWwzuWJ80iIiCjWGKSIiKjD7du3DwcOHEBpaWnUr62qC7XJJXXiFfsiksL3uap3syJFRNTdMEgREVGHqq2tRUVFBYDQfKdo1ThDQcpmtcR0XO0hsjy7yxP9+yQios6NQYqIiDqMLMvYt2+f+n1rWvvqnaE2uVRb5w9SqbZQkHIySBERdTudu7mciIi6DVEUsXPnTni9Xmg0GsiyDFGM7ka1iqLA5Qm1yaUnJ7XHMGMqO8UGAHB62NpHRNTdsCJFRETtThRFbNq0CfX19dBqtRgwYAAAIBgMQpblFu8nEAjA7QsAEJCV2nlvxhvRIyMZACD6/fAFpDiPhoiIYolBioiI2pU/KOHD9buwcvsxlLkkjBw5EhkZGdBoQqegaKpSfr8fbjGIADTITu78i01kpdqg12pgECScqGNVioioO2FrHxERtZsDlS7c/OK3SPEcg0UQ8f5hQJdTjRtH5cNgMMDn88Hv98NkMrVof36/H25/EAFFiyxby14TT0ajEUkmPWrdfhyprEPvzM7fjkhERC3DihQREbULMShj5hvfo87pRoZRRl6KGbWSEb9+cxv+teEIDAZDaLsoKlI+nw9uUYIILbKSO/fNeAFAEARYLaHK2fGq+jiPhoiIYolBioiI2sVf1+zDjuMO9DAHcfOYnvjlhMG49ZK+AID5H+5GEFoA0QUpp9sDX0CCqGiRZev8QQoAbEmhuVwVtc44j4SIiGKJQYqIiGJuX4UTz31+EAAw4wdpSDLqkJmZiUevHoCirCQ4fEF8vr8GQHRB6mT4ZryKVg+7WR/7gbeDNFuona+6nkGKiKg7YZAiIqKYe+GLQ5AV4Mrz09DLJgAAMjIyoNUImDWpHwDgg50n4RWlqO4lVe0I34zXbIIgCLEfeDvITA0Fqdrw2ImIqHtgkCIiopiqcPjw3y3HIUDB1fmhpc3tdru6oMSUwTkYlJcMVwDYfKQ2qopUnTMURlK6wM14I3LT7AAAl8cT55EQEVEsMUgREVFMLV1XioCkYHyuDLs2AK1Wi379+qnPC4KAu8b1QQBaHKx0tThIKYoCh8cHAEhL7jpBqkdWCgDA6/FCUZRW7+dItQe/++8OPLj8e6zZXQFJbv2+iIio7bj8ORERxYzbH8Rr3x5GtsaJS3JDLW3nn38+rNaGN88d3z8TsqBFjUdERa2rRfsOBAJw+0M3481M7jrLiBdk2aFAQECSUOVwIdNui3ofC1fuxd8+P6iGp/9uOYHzc2z4990XIdnUNeaKERF1N6xIERFRzHywrQxWsQYDrF70zrSid+/eyMzMbLRdskmPIfnpAID95XUtqtSIogiPX0IQGmQld/57SEVYjXpo9KGl3o9URL8E+sqd5Xj60wOQZRlX9wjgtv4KUkwa7Cl34n9X7GhTlYuIiFqPQYqIiGLmzW/3I0fjxKDz7OjTpw969uzZ7LbjBuQCEFBa5W5Re9+pm/FqkNlFlj6PsJrD95Kqji5IVbn8ePTt7QCAXwyzYPrgFIwrTMKfr+4JrUbAu1tPYMX3x2M+XiIiOjcGKSIiion9FU6cKCuDRhBwyZDeZw1RADBhQDaC0OBorQf17nMvxCCKItxiEIEucjPe0yXbwveSqnFE9brH/7sD1W4/fpAJjMk+9bglUIcHL+8DAPjtOztwuJorAhIRdTQGqTgrKytDTU1NvIdBRN1MIBCAJEkdeszl6w8jVeNFYYYV5/fudc7t+2YlwWo2QZIVrN9fec7tRVGE0xdEUNEguwu19gFAWnhOV3VdyytSO47X47PtR9BfV4Wf9NNBp9EgPz8fJpMJgUAA0/qZcGHPZJgD9Zi79APs2buvvYZPRERNYJCKI7fbjb1792LXrl3scSeimPH7/Vi/fj22bNnSYccUgzLWbDkALWQMK8hESkrKOV8jCALOz0sFAHxzoOKc25+sd8EbkBAQtOid0XUWmwCA7MwMAEB9XT28Xm+LXvP06n0o1NZiRI4R2XYzevTogd69T1X6SktKcHNvH/oYnaiprcNbX25r8b6JiKjtGKTiqK6uDgAQDAYRCATiOxhKaIqioL6+vsMrGNQ+KisrEQwG4XQ6m5x7JEkSDh8+DLc7du1gq3dXQO+vR5JRh0uGFrX4ZrnDeoUCxqaSk5DPsZz3kZOhtrg0mxVmg7ZtA+5gvbJT4VBMqPeIOHHixDm333XCgS93H4dRE8SYPhm48MIL0bdvXwiCgJycHHUVxGSTHlcNL4Bf0WPT4Vps23+4vd8KERGFMUjFkcNxqleeVxEpnsrKyvD9999j9+7d8R4KxUBFxanqTlNh6ciRIygpKcHBgwdjdsz/fHsAVsGPgXl2nJeX2+LXDS3IhFGngeR1YcuxurNue6LaCQDIT49++fB4659tQ5VsRZXbj7KysnNetHj28wNI1vjQL8uGvj1yYDAY1Oc0Gg1GjRqFSy65BOPGjcOt103Eefk9ICsKVqzj/2Eioo7CIBVH9fWneuUZpKi9HD9+HMePH2+2fVSSJJSWlgIAqqqq4HK17J4+FD2v19vuVT+3293g3/DMf09ZltWKiMPhUKuR69evb/V8zWO1HhwqDVVCLh7cG0ZjyxeC6JGXi4KMJCQJfnyyueSs21bUhd5LYZa9VeOMp96ZVng1JrgCGlQ7vaisbH5OmMsfxMpdFbALPozslYqMjIxG2wiCAJ1Op1b+7p0yAgoE7D1+EttLylBVVYX6+voWt41H015+7NgxHDlypMXbExG1N5/Ph3379sW006IlGKTiRBRF+Hw+9fvT/9xWFRUV2Lt3L2RZjtk+qWvy+XzYv38/9u/fj23btjXZQnrs2LEG7V/8gNQ+nE4nNmzYgO3bt6uPeTyemAer06tRQOOK1ImycvXfOxgMwufz4fjx4/B6vS1qOWvKfzaUIEXwIj/VghED+kT1WpPJhMF9QwtTbN2zv9ntFEVBjSO0sl/f3NRWjTOe9FoN+mTaUK1YUO3ynzW0rtldASUYwHlWICvZhPT09HPuf0RBBgrysqEowD8+WIsdO3bg+++/x8aNGxtctGvK0aNH8cUXX6CqquqcxwkEAjhw4AAOHToU0/NWR5AkCeXl5QgGg/EeChHF2KFDh3DixAls3bq1Q383MUjFyZkntlhVpFwuF/bs2YOysjJUV1fHZJ+JzOFwYMOGDV12ZcXT20dra2uxefPmBh+iKysrcfToUQBAfn4+gND8Go/n3EtRU3QqKiqgKArq6urgdDpRUVGBDRs2xLS9TlEUtdKRlZUFAKh3OHG0xoN1B6ow643vcdffV2HJpwfw0peH8P2RWjidTnW+ptPpjPqYkqxgzaa9EKBgRN9cJCcnR72PK8cMgkYQ4HPVY1tJeZPbBAIBVLv9AID+eSlRH6MzGJCbDJ+iQ5XLf9YT/fvbypAs+NAvOwnJyckN2vrO5ifjBgMADlQ44A4o0Gg08Hg82Lt3b7OvURQFJ06cgKIo2L9//zmD/enBvDU/L/GiKAp2796NPXv24PBhziNLBH6/H/v37+9ygb8piqK0qGrcXguXybKMXbt2qZ8XOtq53r/f78fJkycBhAoV27dv77C1Bxik4iTyAVev1wOITUVKURTs27dP/WFji1bbHT9+HB6Pp8ueeCM/Z+np6TCZTPB6vdixYwdKS0uxbt067Nq1C8FgEFarFb1791avfMfrl2V3dXrAAUJVwEOHDgE4tehMLLjdbvh8Pmg0GvTq1QtHazxY/PF2XLbgU9z8f+vxyZZS6GU/ggpwxKvH2n0n8Y9Pt6rh2u/3t+jGuKf7dHcF4KmFSa/FpFEDWzXurNRk5GSHbpK0ZnPTH/pPVDvhC0iQoEHf7OjDWmfQP8cGv6JDlUts9ne+wxfA2r0nYdf4UJRta1E1KuKCAQXIzslDmWTDVn8mLrzwQgChymdzx/N4POqFPL/ff86K9OnnlbMFKUVRcPLkyU7zIfbkyZNqxe1cFbquIBgMsuvkHCJt7ZHftV1VTU0NvvnmG3zzzTfYv39/sxc6q6qq8OWXX2LPnj0x/9mor69HZWUlDh061OEV3UAggG+++QZbtmxp9vxUVlYGRVFgtVphMBjgdruxYcMGHDt2rNF4fT4famtrYzY+Bqk4ifwij1w1bktFyufz4fDhw9i1a1eDCkRXulrYGUWqB0Do38vn86GmpgZbt25t9j9hZWUlSkpKOs1y9qf/nA0dOhQ6nQ4OhwOlpaWQZRlmsxn5+fkYOnQoBEFQq1IVFRVcSTKGHA4HRFFU57NUVFTA7w9VV2LZ3hf5uUxJScGa/XV4+/syeMUgknQyeqSacU0/G24anY9HrhuNH47pDwD4akcJ1h86Vb2O9vfG6+v2QwcJg89LwXm52ed+QTMuHFQAANh64HiTz+8rqwMAJFstMOm71op9Eefn2CBCiyqXH4FAoMkPJKt3VUCRRBQkKUi3GpCZmdni/Ws0Gtx4xWiUy8lY/t1xBKFRK4TNVdUjnQuRqtfRo0fPGn5aGqTKy8uxc+fOTrGAjSiK2L//VNuoy+XqNL+jW0MUxQ6/vUFXFAkctbW1Xfbf+8iRI9i2bRtEUYQoijh+/Dh27NjRaDtJkrBv3z7Isozy8nJs27YtpoEn8nepKEpMQ0hL1NTUQBRF1NfXY/PmzY3a1U+f99uzZ08MGTIEFotFbUNet24ddu/ejUAgAFmWsWXLFmzdurVFrcwtwSAVB7Isqyeg7PBVWFEUW/1hau/evSgpKVHLmpF9Op3OLvvLozPw+Xzqh10AOHHiBHbv3o3a2lps27at0XwSSZLUtpHO0FYpy7L6oSc5ORkmkxkZPfviSK0PJTUi6ozZyO07GH369FEXB7Db7UhKSlJ/Gbvdbhw8eLDB3wNF7/R2u8iy1aeL1eTYSPAvdQIPvrEFLlmHoqwkfPg/o/HVw1fgJ8PTkWs3o/C8bNw1cRAuLQp9SP/mUDV2HA+F7miCVGmVG1sPlUMQgIv694BG0/pTyjUji6ARNKhzurDtcOOFGA5VhN5bRrKl1ceIt/NzkiFDgyqPhKAkNxlYVnx/HOkaD4qykpCamgqLJbr3e/n5WeiZZoHDF8Q7359AWloagOaDVOTDREFBAVJSUiDLMo4fD4XZyO+BDz/7Gn/7zyf4+2d7sWrrYZRUueH2B9VzTDAYbHD+UhRFrWrX19dHXeWMtciFIavVCq1WC1mWG1zVdzgcTbY11tXVoays7Jz793g8HXrh6cSJEwgEAnA4HPzdfBaR/1+BQKDDFyCIBZfLpVbTcnNzMXhwqHW3qZ+3I0eOQBRFGAwGaLVa1NXVxXS+8+n/XyK/M2J5EbCurq7ZYHN614bP51PvvRoMBrF//35s2rQJoihCr9cjMzMTNpsNo0ePRr9+/WCxWCDLMioqKrBnz54GF4oOHToUk8/IujbvgaIWOfno9XrYbDbodDp10ndTH7LORhRF9epAz549YbfbkZKSgsrKSgQCAYii2OQKWoqi4PDhwzCZTMjJyYnJ++puzmz/iPxS0mg0kGUZ+/btQyAQQK9eoYny1dXVajm9qqqqyZW2Tt+3wWCA2WyO6Zgj/66BQACZmZnwBYI4Wifiv//dg8/2nUSdJwANZMgQABwCcAjD81PQI9UMQRBwQUEqLszJhsvlwtGjR3H48GH1Q1K/fv1aPS6fzwetVqu2siYSn8+nXuSw2FOxpzqInfsPw2A0IiMlCXaNCKfTFfXcoj179qC+vh4jRoyAwWBQK6j13gDmrT0CRRHwg945uLK3AaIvdMKLVKxTUlJgMpkwujAd/qCEDSU1eHuXA1ajFmlpjnMc+ZTXvj0MiyCiIM2KXrktb0FrSnqyGT1z0lFadhIfbtyPob2yGjx/pCr0/zE3restfR6RnWxEikUPn1+LGneovS8p6dSNhQ+edOHL/ScxSOfBwNwM5OXlRX0MrUbALRf1wpMf7MbfvziISXcMBxC6Ki/LcoOwK4pig/ZfvV6Puro6VFZWonfv3tiweQs++u4Ath2vg6IAR6V69NDWQ4ACQQB6pFhQpctCRrASJpMJI0eOhCAIqKmpafDBq7q6Grm5LV8SP9YiY8nMzERtbS3q6+vhdDrV8+3+/fvhdDphMpnUqrzf78e2bdsgyzKsVmuz/z99Ph82btwIk8mEUaNGQatt32rp6VffgdDniZaukinJCk7UeZFrN0Gn7dzX0SVJgizLrT5nKIrSoNOntra2wf+1riAS4jMyMtC/f6iDwGQywefzwe12qzc993q96oWLoqIi9aJuLNvGz/z/XF5ejj179iAjI0MNeK0VCATU/2ujR49u9Dk48j769++P/fv3qyvTVlVVqRd9gNBn4MjvN0EQkJeXh9zcXNTV1WH79u2orq5WL3ILggCPx4OKioo2fwZmkIqDyInLbrdDEASYzWY4nU54vd6og1QkwdtsNvTu3Vt93GKxwO12N/tL1uPxoLS0FBqNBllZWW26ktxdRf7z5ubmory8XL1yMXDgQLhcLpSWlqKkpASCIKBnz54N5sBUVVU1+tBy+nM7duyA1WrF6NGjYzZeRVGwZ89e7Dp4GEdqPDhQI6Ks2oFa2YQSKRTwdBoBvdJtsJv18Adl7CpzYMvROmw5Gnqv7209AaMO+HFPH8YU2GExhH5FVFdXQ1GUFt9k9XSiKGLjxo0wGAy44IILIAgC/H4/dDpdu3/oiCdZlrFt2zZsO3gC247V4YRTxDcfu6AAyBAkuBQJaZoyZGlceP67WkwZOwL3XdEXRt25/04kSVIXr6isrESPHj3gdDrh8Yt4b3sFKrwpGNbDjv+Z1Aulhw7C7XarS2EbjUaYTCYIggCbzYaLektw+2X896gOn+ysQE5qEoa04N+63hPAG98dRa4QwND8zFYtMnGmCwf0QmnZSWzce7TRz9uxqlClrEcXvIdUhCAI6J9tQ8URbZPzpP6xrhTJgh/9M8zIsFvOejHmbH58QU/835clOFztwUvry3Fpsl6tYEQ+fAGn2vpsNhuMRiPS09Oh0+ngdHux8K0vsWHHPviCClyKEYPStTjfrEVQtKLGG8Qxp4yjtR688N5XGJRtwhXnZ8PhcMBut+PYsWMAoF4kbEuQikwyb8s5KvKB2mw2IxgMor6+Xq3Wi6KoVmHr6urUIFVSUqJeGHM4HM3+fEduIRD5MFtQUNDqcbZEdXV1gwqfw+E4689JpcOHCocH2/YfwdLNtdh/0oNUix6XFmUizWpAqsWAHw7PQ0FGdJ892pPX68WWLVsQCAQwbNgw2O3N3+5AFEXodLpGPx9nVklra2vVf9vWUBQFhw4dgtlsbtUFjmhFVpgEgPPOO099PCkpCT6fD06nU/2/fPDgQciyjNTU0K0SIj/vLpcLsiyrK7IWFBS0OpieHqSCwaC6gE1VVRX8fn9Ut7w4U1lZmfp/rba2tsHnYL/fr76fzMxM1NTU4OTJkygrK1MvUBYWFobCkFaHTYdrEJBCn9Xc/iA8ogSNIEDSpcHoqYBRp0VycjIyMjJw6NAhlJSUtPkzMIPUaWLRflBZWYnKykr06dOnyWqDPyihqiZUQYr8YjaZTHA6na2alBv5QTqzj95ms6mpvalfspH/FJEWh652paYjRCpSGRkZEEUR1dXVSElJQXp6OjIyMiAIAkpKSnDo0CH1KiwQqlgFg0HU1dWpbTURgUAA+/btAxBq55IkKSZh4lB5Hf727tc4fPwEglLDUrXdnow7B/fGhPOz8INeqdCfdiWy0unDZ3sq4fZL8IhBvL+tDHvKnVhZKmLPiVKMH1yAQVkG+P1+uFwu2GzRf4itq6uDJEnwer2oq6uDTqfD5s2bYbfbMWzYsFaFs/YmiiLKy8uRl5cHna51vya3HjiKv6/chnKHH27FgArZBgUCCtItuLB3T0iygrKycvirPVACfiz59AA+2lGOP90wFCN7nX15b7fbrQb7iooK9OjRA8crTuKd74/jYL2ANKsRz/5sJGyaAEoB9e8dAFJTU9W/c5vNhvr6elx3QV9sl1zwVlTjvc1HcemFXiRZz95S9uzaA3D5AshP0aBXuqVVPxtnmjC8N95euxlerwvflVRjdO/Q765Khw9HqxywC8CAHmnn2EvnNiA3GUcPa3HS2XDlPocvgDc3HUO2xo3hPTOQk5PT6pN7klGH3183GL/8x3d48csS/OCabBgQQE1NTYMgFbkQF1nQQqPRQDDb8a8vNqHWEzofmuxZ+NXVI4GTp1aXtNls8AtGfLZ5DzYdrsX+ShdO1Png1tlw5egBapdE//79sXPnziarYS3h9/uxfft2+P1+jB49usWrF57p9CAV+X8TCU+ntzzW1dVBURS4XC71QyzQcPXTM53+AfPIkSPIycmByWRSH6utrcWOHTvQt2/fmFTlIlfgI5WJ5sbm9AXw+/d34d/fHUOuxoFsjRMeOQmAHbWeAN7deqqqtXjNPlzSNwPD81MwtEcKLu+f2aqKlSzLEAThrL/TKyoqUFJSgr59+zb52cTv92Pr1q1qy+L27dsxYsSIJi8yR9rs09PTG1VFIv+3BEFQq/XN/QyWlpaipqYGgwcPbvZnrL6+HkePHoUgCMjOzm73i4CVlZWQJAlms7nB/9mkpKQG93usra1FVVUVBEFA37591YvzkYsYbrcbhw4dUv9PFhUVRT2WYDCo/nukp6erF1YjKioq0LNnz1a9z8iqoRE1NTXo0aOH+n3kc1hSUhJ0Oh1ycnJw8uRJnDhxAl5RwsEaPzb5PTj+7W6s3l0Bh6+5eWEKCnV1OD8F6D9wCC5Ns0Cn18Pv9zf5WS0a3SZIPfvss/jzn/+MsrIyDBo0CIsXL8all14a1T7ODB0ejwdGo7FF/2G8ooQjNW7s3LITLo8Xn20vRbUhFwfrgqhxi7BILnj8fuyu12GgtgLpZg10+wX0ynEhQ6mDxuPAftcROHe5ISuAQaeByx9EnUeEVqOBQSugxhNAvcuDbLsF56VZUV3vgef4LsiSAudBA3pkOlGQbkFBhhUpCF11aG6+w+m//F0uV7cOUl6vF4qitGiuQWQi5eltAXa7HWazGQaDAb169VJPEr169YIsyzh8+LC6hHXkl17kasmZ/zkPHjzYILC73e5WX8mvdvnx1YEqfL3tAPYfOABFlgAIqNSkY3C6BuenAIWZVlw+9oIGv4hPl2Uz4abRp34B3nt5X6w7WI15H+zC7vKT2PCdF9N6eTCx0IyqqqoWf1g+cuQIFEVBz549G7RIRk4Obn8ARw6dwPdVAspFA47VemHQaWA363Feihn5aRb0SregZ5oFVmPsfk35AhLe23oC6w5WY/ORWgQlBWaDFvmpZvTLsWHywBz8oGcK9u7di+rqavh8vqhbGhVFwfvbyvDM21/DLPlQr0nGZSMH49pheSjKssFuOXVF0OXqgw0bNuJQtQ/P79HhQKUL/+/5dbh1bAF+fWV/tSJ4ptP/XzudTpRV1+Gp975HVb0PiiED/7j9ApyXYoaimGC329UVlwA0+FnIzc1FbW0tCgt64plCC+57uhQn6r14YsUmzL/5Emg1TX8gKqv3YunXpTAhgEv6psGg1zf48NhaGal29MlJwe7jNfjnl7sxunfod/j728qgg4Rcuwk9M7vezXhPN7JXKt7/Roe9FU44XKd+D/9741HIoheFdhk90yxtvuo9aWA2rhmSiw+2l+HZb8pxz3AzTp48icLCQgiCAEmS1A9XkfPe1qN1eOTDw0j3i0gy6nDZ+TmYMW0ijEYDNm4sV+eZJCUl4Ty7HaIjA32zkvDRzpOoc3ux9NPt2HigHBfnm9G313nIyMiAwWCAKIpRf1hxu93Ytm2b+gGutrZWnf8bDUmS1H2YzWb1fB5ZcOL0ICVJElwuF/btPwB/UEKKLQler7dFQUoQBMiyjEOHDmHgwFOrV5aWlqrVhaaCVOQDaUsuKEUuRgGhD8Tbt29XpwpEXq8oCj7ZWYHfv78Lx+tC57Bcs4wUnQEX97DjlzdMwu4yJzYfqYVHDGLnCQc+33sSX+6vwpf7Q8G6MMOK+y7vix+NOA+aZn4HnPkejhw5gtLSUuTm5p71d+bx48fh8/mwc+dODB48uNGqlLt374bP54PZbIZer4fD4cC2bdvwgx/8oEHVIxAIYPfu3VAUBdXV1QgGgw0uekXO3zabDT6fT21jPfNc6Pf7cfjwYXVeX58+Td8HL1K9VRSlQTXI7/dj586dyMnJiWmlKhIucnNzG/xsRD6rRX5+Dxw4AADIy8tTw2ak26C2tha1tbXqz0x5eTl69+7d6DNt5O+nuc8ikb9LvV6P3NxcVFdXQ6fTISsnF5t37sfOb3fh2MY6HDjpgkGnQZJRB0UBBAHItZvRK92CIefZMfg8e6OFgiLn2eYCb2TsdrsdvoCEbZUBbD3uRFW9B3srnDgSSEKFfGpVxowkA1IsoVb3JKMOJr0WCkIX40qqgZIq4KMvjmHxF8dwvtmJoakKDnlNmHLRMOSltG6qRbcIUm+88QZmzpyJZ599FhdffDH+/ve/46qrrsKuXbuiSsmnfziJ9H+mpaVh6NChjbatqqrCN1t3Y4fTjLWlHuyvdEEvizhfd6q9S0I5Dkup0EFGT20t9ADSkAIdJNR5ZWw76IRy0IV0wY18bR0cSh0OSc2vhpIqeNBLWwsHgN3QQlIEGIUgPIoB+ypqgf2nXmsVRFyYXI/8jFqsq7EgO9mELJsRfbKSkJ1satA77HQ629wjWlZWhoqKCgwaNKhTzYORJAmbNm2Coii48MILzzm2o0ePNlgqNTKHTafTqT3KpysoKIDP51NvgpqVlQW73Y6ysjJUVVWhX79+6i9Bt9utXuU0Go3w+/3weDywWq04dOgQjEYjcnNzmxyjyx9EjUvE4Ro3vjpQha/2V2HnCQfMENFPVwUBCvIyU/HzyWNwQf98BAMivvvuO/U9tJQgCLi4bwbeu/9SvPRVCRZ8sgdfHHHjWFkF+h12444fZaJv1tlDd21trfp3mJ6ergYpRVGwaU8pNh+uwcGTTigK4FfKsUfKgoKmT9aCAFzQw4KL87S4aswQFOVFfyNWWVawq8yBz/dWYvm6/UjxlcGtGHBECu0rVfDieKUOn+014O9rD2FIlhFj7XXomWYFhHL06dOnxVcf95Q78OT7u/H1gUoM0XlwXooZT908AX3yml55zWKxQKvVoG+mGR9M/AEWrCrBW5uP4ZWvS7FqVwX+eP1QXFLU+Krt6b+r3P4g5rz0CRwOB0w6DZ762VgMPi8UNgRBQP/+/bFx40b1A9vpHyTObC+9+ZJ+eOOLbfhy1zH8+s2t+PP/G9ZkmPrLJ/vgD8q47DwzCtKNsNlsMaksCoKAy4f1xu7jNSjZvwdb9vbAsH4FeP/7w7AIAfTPyYz5vMKONmVwDp62WeHx1OGbfWX4wfChqHT68Nc1+5GjdWF4z1RkZ2fH5H0WTxuEDaU12FblxcpdlbhmSDacTieSk5PVKpHJZILVasXKneV4YPn38AWAvmlJuGFYFgb37wujMXSFPiMjo0GQinygy0424clbJ+PlD77G5tIq7D1Sjv1HNRgVzELvIhnp6enq78OWBilFUbBjx44GCynU1dW1KkhFKhOR3+ORNrCTDi9e/XIf9u3cCbdPhCcI6CDhhY1V8DtrEZSBOksPDDfXwG7SYZsvFSMKMjEgNxlJp13cifyd9OrVC6WlpaisrETPnj2RlJQEp9Op/v5zOp1NVkRKS0tx9OjRc7awAacWrUlNTUVaWho0Gg0kSYLH44HFYsFXB6rwzKcHsL4kFA57plmw4IYh8B/bqf7/t+iAi/qk46I+pwLM+h37sX7nIZwQMvDJnmqUVLkx+z9bsXRdKX47dSAuKGz+302SJOzYsUMN5WVlZejZsyeMRiOqq6tht9vVc5okSaitc6Da5YNblLB/zbco6N0b/Xv3RI7dDA1OrZQ7ZMgQ6PV6fP/99/B4PNi2bRtGjBgBnU6n3uolclFSURTU19c3CGWRf3ez2Qyz2YyKigq1q+R0x48fV/9uTpw4gV69ejXZhXB64K6vr1f3c/z4cTgcDgSDwZgFqdPbTQOGZKw7WIWgpKDWI+J4tQPOw9UQhBq8d8AHZ8URGPR6ZHkzkVJRgiSjFkXZNlgtVqC2FseOHVPfnyRJOHnyZIPPe4qiYOvWrfB6vRgwYECT/8ciFwssFgsM1mScUFKwdp8Laz/eg344AQ0UnJRrYBCCqJRtcCuNq3omBJCh9SElOxfDe6ZheH4qhvWww3Ui1Abco0cPlJeXN2pBPl5ZjT1lDvy3VINVrx2Cyx/EeRonMjUuKBCQmZWDyQUZSLUaMLZPOi4oSGs2/B+t8eDL/VX4Yt9JfH2wChU+LfZV1mJLxR48sbYafbOScGnfNPTVVqEoOxn9i/q26N+rWwSphQsX4o477sAvfvELAMDixYvxySef4LnnnsP8+fNbvJ9IqdTtdqvtVzU1Naivr4fZasPG0hpsPlyLrYer4Ti2J7TSHjQoCWZAgh49TQHYtDpIegsykozINAYxxaqD1aiDolhg0GqQZjNBltLghQGB1AIcqHShsroaSpUfOr0BY/N7QKfRQHRWw2xNRqrdBlkJtQQaHcehCxjh8AXg8gVhMWhhNepgz+4BvT0TR6o9KK12o7TKg0MnHah2B1DtPonXDu5EEKc+CA45z47RtnrYdQHk2c2wn7acrSzLKC0tRXp6Oux2OyRJwrFjx5Cdnd3sFedgMIgDBw6o/0nP9sukvLwckiQhNze3Q+Zl1dTUqEuAVldXq79AAoEAvv/+eyQnJ+P8888HELrqUlpaCuBUb39kefrmRD6o+v1+NZAajUbodDoEAgHU1dUhNTX0gT1yEozc0+n48eNwu90NVsk6eKgEgskGt9aKco+Ag9U+fFtSg0MnG684JEDBBale9E1LweA+PfHD8aPVv1Ot0YgLLrgAiqK0qgVBoxHwy8t646I+6Xjyve3wHqvD7qOVuGbRGlw+sAf+Z3wfDMtPafS6SB95RFlZGQ6dqMaO43XYd9ILX/jE51EMyLZqUGDWYkxOMvLz8yHJMmrcARyr9eBojQdHajyo84hwnCjBp2VBvP3dYRgyemLywBxMHpSNIefZm/3w7g9K2H6sHh9sL8N7W8tQ5fJDgIL+2pNINQkYm2vGgD7Z0Moi6us1oROUO4BPj8lwVNVgfY0X60tqYNBqsHyPiAsH98H4/lnNziOodPrw9Jr9eH39EcgKkKkTcVFhCsYNPA+9c5ufv6DRaNT5jFpJxFPTh2Ha8Dz85u3tOFbrxc9eWo9L+mbgl5f1xmVFGer7dTgc8IoSttcA3+89DG9AQpJBh1snDsMPejc8EVosFhQUFKCkpARms/mslaNLB+bDUXMS/95eh7c3H4ckK3jqxmEN2nxeXVeKtzaHTn43Dc+AIEW/UMbZXD56CN75rhQnKquw4rONEMUAKsuOI0sLjCzq0eWr53qtBjdd1BvvrzmOb/eX486ghCfe24WAz4t+qQoG5SW3uk3mTJk2I57/2Uj8+IVvsLE8CJuxCnnnlSM5OVlt60tJTcOSTw9g0ep9UBRgXL+s/9/enUfHUZ154/9WVe/7KqmlVmu1ZFmWbMvGYAM2BA8EzDZMBiYQNpPkEOCN+TGTEELekMlCTkIyyRACM0mI44EESIhh8hI2D2NjY2K8L7KErNXa91ar963u7492FWpLsiVZcsvm+ZyjY6tV6q571V11n7s8F0/esBrR4GjamhKn0ynvp6fX66HX65GVlQWO45CXk4V/WrMYC5zN+LBpCPuHePxqVyfe/XgYD1+eC5PI5CnvZ7oeiSJD04lOdA2OICryUJhz4Os9AQhDmKAv64ykTkNBqcLbtb3YWteH9sYOJCJBeMU+WPkwkuDRLxrg4oMAUg1wr6hD+6gIbTAGDRfE6+21GGWpz45Vp4TDoIZOyaOC74bHqoU6VwU/p0XziW78v+PbETPmwRLrgyLiB8elOoX+NnIYCo0OPMdB4DloFDz0I81w6AV0dHRMOZCS6t1oNKK7fwib36/H6w1BHO9L3cvVCh5fXlOM+9eWIBEJ4mDHJ9OwfD5f2lKAZDKJmLcX1dlqXJ2jx7duWoL/+lsbntvWjKNdPtz6n39DjceCu1cX4u8WZY8bJW9tbYXX6wXP81Cr1fJ6nEQigfbOTviiwKg2B3UDcRzv6AXvPYEYExBkKli4MHCkC6NMgzbRhiITjxUGH9wOE7J9CZRla1FdXS2nvD527Biqq6vh8/kwMDAAjuNgMpng8/ng9XonDKQ0Gg0Uai3qmtvReLARWxrjGA7FMBiIYcgfhsHXimgshiTj4DQo8Up9GC1hLeJJES6LFiaNAkjEYQm0waRVwKRRwid2Q2vNhl2vkv8mUga7s5nyF0+KqOsexZHmDrQ1DqDZm8D2t0+99zNUKbwQICKJYQgQ0S2a0N/RlnaUXYjgUnsYxQ49nCYNss16KLhUopKxgVQwGJQ/Iw0NDdDr9WnX2KTIcKx9AIdOeNEU8ON/Xu1FLPnJHlVJnRFFxiQuMqpgNxig1hmhyCoGB4Z4NIKeoIiWgSCGTzRAjIXQ2cPjxe4AXtzdDgsXRrl6BDaDBrFmJazJEWiTAWzrPICYzoG6zmFw/am2eG0CSEBAjkmDpW4bXIk+LC0rxPpLp748IN+mw+0Xe3D7xR4kkiL2tfRj245dODEcQsuwiKb+AEYG+uAWRsBzHJip+8xPCoBj53l+7FgsBp1Ohz/96U/4+7//e/nxjRs34tChQ3j//ffP+BzSAtl33nkHn/nMZ/C3PXvRM+SDL5yANxhFX1SBd3s08EdTDXIP74WND0HgORTa9ajId+CaNasw0N6I0dFRlJWVIScnB01NTfLwrMPhSJtX6na7UVqainYTiQQ++ugjxONxuN1ueYdmo9GI5cuXA0g1UHft2oVEIoHq6moolUpEIhEkk8kJF8r5QnG8+s776B70wqvKQm9Mjd7RCFoHg2AMWKzogQKpD4PDqEXx4uXIMmmgT/qRGO6CxaDDZZeuwmB3O7q6uuB0OlFZWTmu7hhjaGnrwMfHjyOeFKGzOGDOKUBfbw/CoSA8BUWwGjUwaZTgklEcPXgAPJfqJfLku2EymWA0Gs8YVIkiQzQhIhxPwhuKYTQcTwWY8SQ6vWEMBKIIx5KIiyKEkzcpnuMQG+pA3O9FUhSRUBnA2zwwaBRAyIfoUAcUPIes0ipYDFrE+tsQDY5CZzAjt7gcjIkQBAU4DuA5LnUzROqGCHDguVQgdXJCBTgw8LwAjgN6TrRisL8XapMNakc+fKEYepuPIRwOIap3IRiJQRzphp9pEEwwKKJ+hOIMiWT6/N4keAyKevSKBmiUSjiMKlxUaMOaBU54lH6MDvZCqVRi5cqVczoS+N/v7cKO2hPY2cejX0yNcK0ssuGayhysLrGj2KmHWiFgcHAQ+w4eRr8/io7hEFoGQxgKRBBjCviYBm5VCAuyjLjxipVwW9Q4fvw4OI5DdXW1HHCOdbC+CTv21aJ5IIBObxgNCTuCLDW9w2XWYG2ZE4UOPWx6FRJJhvbhEPafGMbhzhEYkwEkwWOEaaFXCVjrElFpjmOx23ZyGmSKlA6ZMYZIPInm/gDah0Oo9XJQxkZTI77JVMNjiduMdRXZSDKGQCSBQDSBj3v9ONyZymoGANdV5eC2Eg4sMgqPx5OWBGYi9fX16OvrQ2FhYWoT3Y4OtJ7owP/28HjxkBdJkUGFBKrtPK5aaEe2KxeH9+/BsW4fjkSzUK4YgFOvwJc+uxKXLK2Y8KYiZfoymUynDXp8Ph8OHjyIluEontyXREJkWF/lwqOfXQibQYXXDnbhif+uhciAr11TjpUGL4LBIBYvXjzjxAgT2dU4gH/e9D9wKwLIMWvR4Q2j0KbFv264ftJpqmclGASeeir9sa99DZhm8p+p8oej+PKPX0Q4nkTIWorjA2F4hBE8dLEdlSX5E15rz8Yre9vxgy17USwMweMw4fPXX4WB5qNoH/Tjf/q0ONSfSqX8+ZX5+O5Ni9PWUUoYY/J6pZqamnENRum9o1AoEDQX4dv/rx59o1EADJfoh1GRpUHNkiqUFuRBreCREBnCsST6Tt6XPmodxrFuH4YDUSzg+qDiEugWTRgS9ahS9ILjGHzGYpj1auSqYshRhGA36VBRUQGP04RskwY6pQCRMQwFY+j0hvFx7yjqGlsx1N2OJr+AprgFAJDL++BSBJFr1iLPqoXT6UR2bh76muvB8xzsehUuWrkCHaMMh2uPYaC/D90JAz4aVGDA/8komQoJLFL0gYHD4YQLaiRQoRgAwNAtmuHiR1MNSghQIomOpAVD7JP3lIGLolRIBbQqhYCguQilLisqXCZUuEwoyzYg26gBz3MIBoPYu3cvkiKgyluID1tHcKSuASFvHwaSenSKFuhUAm5dkY8vXl4Eu4aDRqMZN8siLy8vbZ2MNPsGSN3PLr74Ymg0GgwGovjZlh043NiFkMgjwNTwCyZ8ZmEWrsjjUem2IsdmxpEjh8EYQ+GCCvSMhHHg8BH0+mPo94UwFIwhKTKI4NCStEPPxeDiR5FQGSGa8mDnA+D8/QhG42iLm8FzDHm8Dz6mRWvSBqXAwa5Xo9SqwBKdFzlGFRZXVSERGEZgZBh5eXmwWq04duwYtDodckoq0dQfQPNAAG3H6zA87MWxkAGdERUWK3ohQERT0oHAyXuIjQvBI3gRYwJ6RRM8ghcJCDiWyE6bJSHNGkqAhwIikuBxNJEDsyKJGp0XJq0SOqUAZXYxjCYTjBoljBoFDGoFonERwVgq6YGU/CAUSyAYSyIUPflvLAGER+EPBHAipkc2H4CLH4VX1KETNhTadVApBFi0SuSYNdAFOoFoAFqVAmadGkJOOTp9UQQiCXhDMdR1j8IXDGOx4pN1fm1JG5YaA8g1a5BfvhhleU4UOw1go/1ob091kCSSIuKcEmbPQtT1+LG7ZQgftQ7DHu+HhQujSzRjQDSg2KnH+ioXrqtywW3gcPToUajVavj9/tSslksvRWdnJ9ra2lBSUgKHw4Hdu3fDH0lglNOjLWHB4fYhxHsbATGBXtGIXtEk/z2ke24u70MWH4DZbEZl1RJcVZGFZfnWKU03naqPPvoI4XAYBaULUTcs4m+7P0J7/whGI3F0hBU48G/3wefznfa+ed4HUt3d3cjLy8OuXbuwevVq+fEnn3wSmzdvljOLjBWNRtOmDIyOpnre/vGxZ9Av2GBhfiQgoCVhw4KT06Yakw5o9SZc6tGgEAPIMWux5uIadLS1IBKJwGQyyfOoL7nkErnXt7+/H5FIBG63G42NjXI6y8rKyrReISmT26mk5woEAti3bx8EQcBll102pQi8paUF7e3tyM7ORkVFRep1AlG8d6wbHx/eh5FgDCeGwxCZiPpENqJQoFAYTvUSATiRtKJA4YNBxYNxPJo5NxQsBqvowyAzIsCUCMUSKOP6oOZSAUCYKXE86USVogc8GEaZBi1JGwAOTi6APOGT9TIcByh4HhwvICLoERL0iEANTuABxhBLMkTiIiLxJKKJyXfp5iFCiSSiJ9eFGbkINFwCg6IOixV9EE4GjCI4HE3kgIGXg2EAaE9akQCPYmEIDBw+Tjjl55opPRfFAmEQSfCoTeRAgzjKFQMQwaE2kQMtF8cCYRAxlgq8lEiiKemAyDhkqSIo1DPYtYBVq4LLokFJjhXVlRXy1Bip0QJg1huxE+nu7sbx48cRSHDYPmzG64e6kBRFsJNb0fEcYNMq4E72AskoBkQDHHwQHBgEnkNRfi6uWVkJfqgVep1Wzt5XV1eHgYEBCIKApUuXpk1DjMVi2LNnDxKJBLRaLbyjAXQFgP1BM7YfH0Q4lgAPhuQp2+FxYMjnR+BWR5Fv12PdFZdhZYEFB/fvk+srGAyitbUVarUaVVVVUKlU6OzsREdHKluc3W5HWVk5/rJ1O04MBnA4YsPf2kNIiJNfLpd5LHj0swuxwmPGhx9+CFEUsWLFijOOoHR1daGxsREcx8Fms8lz8dVqNXJLF+N37+7FseMtci9gkKmg52KIQwCXXYb7LnbhsmIrnI6zSz8OpDp1PvjgAwBA2FqCr/7xqJwBSeA5JEURHBj+aWUBnriuDLt37wYArF69esaJACbCGMPNz3yA4Z522PlUj+z1y0tx381Xzk1yknMcSAHAU//1F+w63ouGhBNhqHBfWQKXF5tRVVU1bt3IbHj9YCd+99q7gJiAV9TByofk65NFp8ITN1TipqW5Z1W/AwMD0Gq1MBgMGI3E8ey2ZvxxXweU4SG4+FEEmBpNSQcABhfvh50P4kTSCj/7ZJRUakwplEp49QWwG7TQ+Fox6g/gRNKKLD4ALffJHjpRpkBz0o7YJBNs3PwIHHwQfaIRCks2rl3swmUlVmTzAQwPDiAajaKqqgo2mw0ffPABkslk2pR+6dpntVqxZMkSjEbi6BwOYyQUQ//gII7V1qJlJIkmloWkyLBY70exPgEFzyOaECEqNYBKj+ToAJjWDNGUiyRjSIpAZLALQ/09GI2kyiM1KAHAwQWg4+IY5ozQaPVwsBGYkiMYiKvQmky9PyxcGIXCMBwWIy6/5CJcvyQPQe8Aent7EQqFkJWVhWQyiaGhIbmNotfrsXTpUvh8PthsNhw5cgQjIyPyGpXc3FyUlZUhEolg9+7dCEYTONLpw8e9o+gM8eDBoOdSMwukTsZhUYvWhBUAwyKhH6qT7YEhUQ+rGig2ATl2M/IdJpiFGJYtrpAz0UnZbzUmG3p8ERxv60RTWIcP+ziEYp90eEmN6jBTQsMloBI4tHE5iIg8ylg3RIg4Gs+RZ99UCKl2iRQ4lapGscAYh92Zjaz8Yli1ApJ9TVAiieKSYlidOdi5628IhSMoKV8Ii9WBbl84Ffz0tsLv88LLWxAY7oU/FMO+oBVWLgQn/8mMns6kBYNMDxUSiEOYdMr6qXiIWKzoBQ+GfmU2qq0iclRxFJWU4MbVVbDq06+tzc3NcrrzsZ3yEsYYWgaD+O93tuNE/wgGQ0l8GLCjQPDCwoXRLxrQLaZGP8sUA7AqEhjgLNDFR6A4JdgEgCXqQRRbFViwcBE+s7QE5dkTT+WWgpLKyko0NjbK+1q5XC55NFun02HlypVoaGhAZ1c3AkkBQlYJQjERvmAYQy1HITJA48iHNtwPj1WDS1Ysm5NrIgAcP34c3d3dcLvdMJvNOHYsNQ12NJLACW8EG++48YyB1AUxtQ8Yv1DzdKmaf/jDH+Jf//Vfxz0ejCdg4VPzUoMqGxbmZqFUrYGdC+Hu/Czc+JnVOHjwAAIBK3Jzc5GXkwWLUY8DBw7IQZTBYEibOjN2alh+fj56enrAcdy4IXyHI5WlSVpDIy3QHRoaQl5enjzP2mQyTflGZ7fb0d7ejuHhYTDGMDg4CMYYrq2wIzvshEqlQpJT4GBzN2rUWRiMqyH2+hCOqhCMJZEPH8BEBKInU8Am/HAJfghcBA4E4UvYYeSSUPMJiOCgETjoFAwVagEupgbHAdaECE0iiMaoASakgtce0QQGwMDFoGNxKJJx8PERGDACPTgwpEZ+RpkG3qTp5A2SwcxFYOXDCCtNUGiMEDjAzIVQpArCqAQUNjsUGh3EgRYwkUNSycDHTRAUSigEHjxL4DJbDoKcFhiIgU+qkRBFFHMahGMJiGENfLwRRUobGANExsBOvpdS/57yfzCczNgpPy4ydvI4FbQIQK9gMBvUMAs8TEkTVEYL1uQUwagC4t0fQ63goVLw0KgUWLFyFcx6NWw6FXg+tXB5aGgITU1N8p4mWVlZyM7OlheYZmdnz3kQJb1Oc3MzDEjim+s8uKlQxN6P23EkYsb+rjD80TiM0X6AiyIBAUpzNsqsYZQYRRQ69KhatPDk+9gKtVotj0BWVFTIUyCbm5uxdOlSAKkRlPr6eiQSCRgMBlRXV+Ojjz5CiTKJ61fn46e3LsXr//s3tHYPoF/lwkhcgC7mg1WIIN+sRLYuCxadEhzHYaFDgZHhVHAipYe12+2wWCzQ6XTySF5xcbGcEcjlckGlUqGy2A2noR/rs7PhzC/GXw51o7bLB61KgEGjgFGtQLZJg8sXOJFjTn3u+/r6IIoitFrtlLYzcLlccjIIKYgSBAHRaBTermaszeNxSXYx6gbjONEzCJExqBUqXLKoCLdcdcmsBhYKhULOBnaJx4Bn/6EMf9xxBHv7gaAo4BJzEEtz9fjSuiJ5apjZbJ7VIApIXc9/cftyvH4wC+HeVmgQwd+vXTYvMzzO1JWVecg1KWF2FcFgMkHsTXX6zeY0ybFuXuaGIVqDN3cfw1AwhmCUg8Vqw/9ZXIa7VhXAYZh5+mLJ2M5Bk0aJb1y7EP/f3y3A1qNd2L17N7q8IbBkHOpkEGYuAgXPw6Fj0GbnYHmBFTUeC4bb6sElHShbUCpPLWxsdOB4ywn4IkmEolqEEoAXRngH++APhqCOjOBQ1A6cbLjyHJBj0qA024hypQCH0oSa6kVYUVGc9h5ipSVIJBLyNcDpdKKvr0/eGxD4ZI3p6OhoKjmQXo9FuanjO9RhWCIO3DxmxkYkEkFtbS14nofRaEReXh5CoRBqa2tPNiJT2eUYY/jooyAiEQ2MFhtOdPUgEOcwairC8RPd8PcMwBeOw8rC8IfVUHIxxCBiRNTCYVDj8gUOXFpsgdF/AmqeQS0M4OMjfWkbtfb398vl9Xg8qK2tRTAYxP79++V9K6U1XuXl5fj444/R29uLgoICOSNwjsOK6kXlaG1tRc9ICMf7/Gjo5zAcSkKFBKKMQ0fiZPBnUMNlzUWRKoA8pwVXXXYxckxqfPTRRydTkYsAFGntH6vVmkrIEfYjT6+ErdiOL1dXw2S2oN8fxYA/isOdI9j5cS/ivQ1QR+OIJhi8CRUGkhwABr+ggI6LwaaIw+awoNSphzsahU2vxKpLVqEw24xEOIDDhw9DEASsXl2MlpYWdMVUUKvVuGhRSWr93NJSdHZ2IssgYtECh7xP0YhDALPbsWLFCjQ1NWFkZATfKynFsYZmDI0GEWIKBAJBJNRmhDkNooPtCIsCRpQ28GojdGoF9CoFdGoBOpUAnUoBvUqQH2dhH0a6U49XlhbIKe6XLSuFWT/+2ip1znEcl5bhTsJxHEqcBlyzrAgDAwPIyspCXuEC7DjagtraWgxHRNTGjegYGoWOxRBNAO0JFdy8Gk5lFKVGHrYsJ6r1PhSYlbCo9OA44OKLF5527abNZkNXVxdaW1vl9WuxWCxtY2BpM+G+vj4IPIe1NdVpswwaXOzkgEMIMBtgNBrPKqPemVgsFnR3d2NwcFBeB5eVlQVuYAClbGqbbJ/3gZTD4YAgCGmpSoHUBWSyhamPPfYYHnnkEfl7eURquRtWswlWox6Xrb4EPM8jEolgz549EMUEPv64HoFAAIIgyHtF6PV6LFq0CEePHgWA00bNOp0OVVVVYIxN2PAoLS2FQqGAyWRCNBpFc3MzBgcHkZeXJy/AnM60FpPJJK/V6erqkhvf0vx7nU4HrVaL6mgIHk+qQX7gwCgEQUAymURCFBGOJRFJAKKYhM2Zg5HBPnmKG89zUAo8VIINhZ58DA4OIBaLwWazYXhYC51OJy9SXLRoEY7V1SGZFFFdswIqtQaxRGq0adjrRX9/P/y+EcRjMTCkghEFz0GpVMBiNkOl4BEc9UEhpKbs5eTkwO/3IxjkAUgXFRFqdRwR69iF/Sbk5qZ6Wbu6upCTY0RhYSF27/5kB21pg13AiosvvnjWFrNLvUYGgwHRaBTxuC5tJPLDDz/ZD8RsNqMkO70BxfM8nE6nfKPp7OyU0+sDqRGLmaQynQlBEJCTk4Ouri7U1dUhmUigxmPBLYUeFBQU4HB9I5pbWqFUCKipWQZ3lh39/f2oq6uTyzf237FlXLhwIXbv3o2RkRF5TxApZTLP8ygrK4NKpYLH40FraytOnDiBUqUSLk0SrmIb7HYDCgoKcODAAeDkSCLP8zCbzfB6vXJWIOCTht5EnRlA6jMxthGVn58v13lRURE2XFYEINXzPjIygpKSknHTUk9dx3AmPM+joqICZrMZXV1dyM/PB8/zqK+v/2QjwtJiXLOuEHV1dfLzFxWd3ejBZKR9SgKBAEzxIdyx1IbPJZKIizz0ylRHTndnhzyqf+rWC7PFY9fhq+vKIYoLEI/Hz2qfkvlIp9Uiz6JFSa4eGo0Sx/o46PX6OZ2ie/myCrgtGnkth8fjmVI207OhVgi4fpkHhcpROfgGLPIIiCAIuPTSZeB5Hl6vF6MsDkGpSMtwZzaboVcrTmbwVKO6uho2mw3RaBS7d+8GYwzVNRcBvAK9vd3IsVths1oAALt370YkEsGCXPu4zwvHcWn1XVZWhpKSkrTHDAaDfE/cu3cvLBaLvG2DdH8b22Eibcw7lpS8IBQKydnlAoEAIpEIeJ7HksWLEAn6YYvHYbEEsVQlIFFUCLVag4ERvzwjQ6NW4dLVq2DVq+WyhEJZOHr0aFqKd4/Hg0AgICdS4HkeNptNvidL10MpiLLZbMjOzkZPT4+c5lvqHM7Ozobb7YbVakV9fT1K85z4l0WLwCuUaOvqg1KdutdbdMpUhjTG0NfXB6vVKn9m8/Ly5Ma0QqFIqy+pnZJIJOT1zEajEQqBR65Fi1yLFkvyLbhrVSGOH7ehu7sb8aSILE8JDBY7lDyPvq4T6O/pgifPharFlSdH01LTzBZ7Un93prbInUT79++X/3bl5eXy38fpdKKzsxNDQ0Pw+/1ps4RMJhP0ej3MZjNGRkZworUFOgWDKcuEBQsWoL6+Xl6m4Msem7wrBJVKhYqKigmnrwNAXZ0X/dbU53BgYECuh8lmM0hr2G0222nXvEpLRTweDww6JdZftAC2xCDi8Tgeq16McDiCw8c04FU6lFRUIRkYQk97K+x2O/Lz83H48GH5uQRBOGNmVimQkupWqUztXycNbEjt0c7OToiiCJVKNe4+vGDBAkQiETl5ydhMyXNBalNLnwlBELBgwQK542QqzvtASqVSYfny5di6dWvaGqmtW7fipptumvB31Gr1hDdlp1EDvVaJ0uJCuXGk0WhQWFiIlpYWuYcmPz8/LRCy2+0oLy+fNL3pWKcLtBQKhTxEGwqF0NzcjJGREXkDQWB8Q/R0pKlC/f39chAFQN4sUafTwWAwoKenB36/X57zbrVa5ZSiFr0ShYWFqfTe0RE4jakMXYIgYGRkRL5AFxUVIhIJY3h4WI7q3W43QqEQOjs70dDQAA6AQa+D05I+LOyx64FSNxhjiEajYIwhkUh8svdBLIh4DFArBfkiJgXOPM+joKAAfr8fg4ODiEQiUKlUyM7Oloe+pT2furq6MDQ0JF+cjEYjYrGY3CC02WyzmhFMOgcpiYlSqUzrWdHr9XIgdboAWXpfZGdno6urC16vF/F4HAsXLpzxHkczkZubi66uLvkiD0De5NU/1Ae7QY3y8nK4slLvcSmpBs/zpx2Z0Wg0MBgMCAQCctAzNDQEnudRVVUl99Dn5eWho6MDoVAI9fX18u8PDQ3JFzyHwwGXyyUHr1IgJW32N93RO6PRCKvVCq/Xi46ODixYsACMMXnagtFoTFu4G4/H03q1porjOOTl5cnTXRhj6OzshN/vh81mk4O70tJSOYHKXI1cSPuU9PX1IRwOg+M4qBUC1Eg10sLhcNrm03MVSEmkRewXGula4/P55GvQdK7vM6FWq+XkOudaQUFBKqmKIECn0yE/Px9Hjx5NS40uJd3JyclJu7aNvT5mZ2fL11G1Wg29Xo9AIIBkNASe59HfeQIj/T245JJLAKRnbzsTnufHdYxwHIfKykp0dXVheHgYIyMjCAaDMBgM8nXnTMGoSqWSG/F+vx9Wq1UOKm02m3yNb2hokDtPjEYjli1bBp/Ph1AoBK1WC6PROC7Q1ul0qKmpQVtbG3Q6nZzISZrSF4lE5Aa+1WqVM8WWlZWhsbERgUAAeXl54DgOBQUFOHLkCLq7u+VrpvT5NhgMWLFiRdq9u7wwD6fiTnZ0jpWfn4+uri4kk0mYzelJgjiOg9VqldtXGo1m0s6E/Px89PX1QavVoqokX/5bWZR5CA73YWhwAAMDA/J7R9p4XHqd/Px8NDY2yg19l8uVdk82mUzybCApiLJarSgpKYFer0/rgBNFEYIgoLS0VB61lFKSS88tzU6IxWJoaGjARRddJLez+vv75e0IpJkIAOT7q16vnzRxhUKhwLJlyyb82Vhmsxk1NTXy91LnbHd3N7q7u1M5BlQKFBbmojDbCL8O6O1ow+joJ50eVqtVDiDPFNBYLJ90kACpGSfHjh2Tp8tyHIfBwUG5DSo9NhbP86isrER9fT0UCsWcTemTqFQquN1ueaprdnY2VCrVyQGB4TM/AS6AQAoAHnnkEdx5551YsWIFVq1ahV/96ldob2/H/fffP63n4bjU4sxTLwJSWsZQKASlUjnhUKrL5ZqVzfYkOp1O7j1qa2tDLBYDz/PTbjxJgdRY0gVSujADqZTV0k3BarXCaDRiZGQEHo8HDodD3icJSJU1JycHgUAg7cNuNBrT3nhWqxVOpxM9PT3yDuN2+/heQYlU/5Lq6moEAgH4/X5Eo1E4nU4YDAZ5hMBmsyErK0vuzTpw4ABCoRDKy8vlD2g8HpcDQ6kRKJXFarUikUjICUHG7h4+G/R6PdxuN4LBoFwXYy+Mer1e7nWZykij0WjEwoULp7XvyGzS6/WwWCxyJkKv14vR0VF4vV4kk0moVKq0z44gCLjooovOuEEjkLpZBwIB9PT0pE01GduDp1Ao4Ha70dbWhng8Dp7nYbFYMDw8jEgkIvckSY1ulUol3xSBmU9By8/Ph9frRU9PDwoLCxGPx+XnlFLJer1eRCIROWmFlNVspqTGmzTNUKo/lUqFJUuWpO1jMtvG7lMCpD6zbrcbo6OjyM3NRV1dnfw5N5vNF2SQcy5kZWXhxIkTGBoakutwrgOpTDIajbj44ovTHpNSow8NDUGv18sNylMzv6pUKmRlZSEUCo1bD2I0GuX7hHRvi8ViGBwclN/LPM+f1fRTm80Gm82Gw4cPy9c9vV6flhb6TKT9jEZGRmAwGOSgUepwyc7OhslkQlNTk5yKWgp+JhvJkCiVynGzEwRBwMKFC9HQ0CDf2woLC2EwGOB0OqFQKFBTU4NoNCoHmdK9X0q9bTKZ0j7fM73nKJVK5Ofno62tbcKOl7GB1Om269BqU+trTw14TaZU5teOjg40NDTIf/dTR1Dy8vLgdDrh9XoRjUbH3fM5joPT6URXV5fcuVFaWpp2LbdarXC73eB5Hm63GyqVSh5Zldo5ZrMZ5eXlKCsrQywWw4EDBxCJRNDe3o6ioiI5sEomkxgeHkYymYRarYbBYJA/A7OxwflEsrOz5alsUpml96A0+ppIJOTO6tzc3Cl3lgmCAIvFAq/XC61WC6vVKs8kycvLkzu8x7YHJ6JQKFBVVXW2RZ2yU68pAKY1nfCCCKRuu+02DA0N4bvf/S56enqwePFivPnmm2lTdKZi6dKlsNvt43qkeJ5HeXk5GhoaJt1jYC44HA60t7fL0ftUstudauybobi4OO0CodPpYDQakZubK/dOSL+j1WrTNjSWghDpQjNRUDf2g6/RaOSLs3QBPfV8zkRK73rqBSUrK2tcb790U5CyOErlHftcCxcuxMGDB9P20+E4Dt3d3dBqtbM+D1faaXwy0nlKKVyn87yZUlFRAZ/PB4fDgQ8//BCJREJeRDpRkDzVVLBOpxOtra3ydBKj0TjhiI40KiWl0He73dizZ4+8+e+pN32bzSbfEGa6lsxqtcojZn19fWllkjogjhw5krbT+2yM0mg0mrT005KJPhOz6dQA0Ol0wmKxyIGbx+OZ0agbSTe2Y0IaNbmQA6mJjA2kpE4Ii8UyYSfE2E1uxzIajfKsirGbnUsLyIHU/Ws2rpvS/lvSnkXS6MFURrvsdjsGBgbkUfVEIgG9Xp92rdBqtbPagLRYLGnBq7ShqoTn+bRzl0alpNGY2RxtLigomHQblbH33jNd2ybruCkqKoLP58Po6Ohpl0JIM1YmIwVSQCroOPW9ONF9neM4GAwGeeaQdF3kOA5qtRqlpaU4duwYOjo64HQ65W1gAMj/Op1O6HS6OQ+kTCaT3J5Tq9WoqKgY1xaROkele+h0SJu8u91ucBwHj8cDt9s9ri0gjUTOV9PpqLwgAikAeOCBB/DAAw+c1XMYDIZJP6RmsxkrV648q+efrtzcXHnaB2NsRiMmKpUKxcXFCIfDcLvdSCaTcsNXuoAuWJBagzAwMACNRjPhhc5qtSIcDsNut0867D72gz/2TSgNx0s3ybkibbY4GbPZDI/Hg/b2dvmCIfV86HS6cx6gWK1W8DwPu91+VntPnEtqtVq+SVgsFgwODsrBz9kMwY8dgQVSN8WJ/h5KpRLl5eUYGBhAYWGh3BMbCAQmDDrsdvtZB1LSVJWmpib09/en9T6Looja2tq0IAo4vwMMjUYj965K78+xzGYzHA4H/H7/nE/ru9CNXf862ZTzC5nVagXHcYhEInJG24lmfJyO1Anl8/nkESkA8hQ8YPK1JtMlBbqjo6NyZ4LUi38m2dnZ6O/vx/DwsDz6UlxcnNGOsYnY7XaYTCaEQqFZ/XxzHDdpwDl2evdM2wjSlLCWlhZoNBrY7fYZBSNmsxlarRbRaFReCz8VUiAldTaP5XA45FkcBw8elN+nZWVlaG9vRyQSkaeUSeYqkJJmOwwNDSE3N3dce04KpIDU53O6bZOsrCx5uqr0emNnLUnMZvM5XZowXUqlckrTJ4ELKJC6EGk0min/IU9n7OaOLpcL7e3taQsHOY5DRUUFjEbjpPNgpQV/EzVWJWq1Wp5KNbanQRAEeW71udiE93QKCwuRTCah1WrlD/Fcz8GdjFarxerVqzNeJzNlNpvTpgecbe+StOGn2Ww+7XOdOiJ5ug2gbTabfGM8m/VvTqcTTU1NqY1wTy7qlm780vfV1dWIRCJQKBRzvoB/Lo3tXR17Qxz788WLF2fo7C4sDocDarUa0Wh0WhlZLxRjpwJJiWWm2+Gh0+nGJAxKjfRptVoMDqYW1ev1+jPu5TZVUtAWDoflUYupBhvSrIh9+/YhFovJyQLmG47jsHTpUoiieE4bupWVlQiHw2e19lMaYTkbHMehpqYGyWTyjMkVxpKSBdlstnHTSDmOw6JFi1BbWyuPWlksFrhcLmRlZSEajcojXx6PB9FodE5nHRgMhkk7F8aOis+083Gy941SqZRHw+bje/9UU+2AoUDqU0aj0aCmpmbcHGOe59MCrlNNNUNcaWkpvF7vuJvLfBlx4Xn+nGW6m4r53CNzJmN7Di0Wy1n/jT0eDxQKxZSz3U2FIAiz0hmhVqthNpvh8/nk9MIlJSVyViOr1Xpe3BimKisrC6Ojo7O+bpCk4zgORUVFaGhoGLc299OiuLgYPT09yMvLm9G6Qp7nU/tWnRwZt1gsyMrKwuDgIEwmE6qqqmYtE6KUcS4YDMprCKcz+qxSqbB48WJ5rcx8DZwnSrox1862s2s2KZXKab9nnE4nFi9ePOn0XKVSiSVLlshJtEpLS+VMdmPbAbMV9M+UyWQCz/PyfoqzraCgAH19fRfU9e78bcWRGZvLno6J1i+RC9PYtMCzccEVBOG0I56Z5nQ65d5Eo9EIi8Ui965NZwrI+SAvL0/eNoDMrZycHGRnZ39q63o21vxJm80CqUDKbDZj9erVUCqVs16vJpMpbcrgdBv/JpOJRnQvQBzHnXEEh+f5066bng8UCgWqq6vBGJuTqcY5OTkXVBAFAOfnnCJCSMZJmwEaDIZPRfA89iYpTYFdunQpVqxYcUEmCfi0Nuwzger67Ey0PlelUs1JvY6devZpuO6RTx+LxTKvE0HMNzQiRQiZsaKiIhQVFWX6NM4JjUYjZ1kbu4/Npy1BACHzjdVqlTezn8sNjYH0NSSUbIUQQoEUIYRM0aJFixAIBC6o9VCEnO9UKhVWrVp1Tkb2tFotCgoKIAjCvFnTQwjJHAqkCCFkiqQdzwkh88u5SmgkJQghhBCA1kgRQgghhBBCyLRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh06TI9AnMB4wxAMDo6GiGz4QQQsg5FwwC0Wj6Y6OjQDKZmfMhhBCSUVJMIMUIk+HYmY74FOjs7ER+fn6mT4MQQgghhBAyT3R0dMDtdk/6cwqkAIiiiO7ubhiNRnAcl+nTmZbR0VHk5+ejo6MDJpMp06dzQaG6nTtUt3OH6nbuUN3OLarfuUN1O3eobudOJuuWMQa/34/c3Fzw/OQroWhqHwCe508bbZ4PTCYTfYDnCNXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3cyVbdms/mMx1CyCUIIIYQQQgiZJgqkCCGEEEIIIWSaKJA6z6nVajzxxBNQq9WZPpULDtXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3fOh7qlZBOEEEIIIYQQMk00IkUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIJVhzz77LIqKiqDRaLB8+XLs3LnztMf//ve/x5IlS6DT6eByuXDvvfdiaGhI/vmvf/1rXH755bBarbBarVi3bh327NmT9hyFhYXgOG7c14MPPjgnZcyUTNRtIpHAt771LRQVFUGr1aK4uBjf/e53IYrinJQxUzJRt36/Hw8//DAKCgqg1WqxevVq7N27d07Kl0mzXbdbtmzBihUrYLFYoNfrsXTpUrzwwgtn/brno0zU7Y4dO3DDDTcgNzcXHMfh9ddfn4uiZVwm6vaHP/whLrroIhiNRmRlZeHmm29GQ0PDnJQv0zJRv8899xyqq6vlzVBXrVqFt956a07Kl0mZuuZKfvjDH4LjODz88MOzVaR5IxN1+53vfGdc+zYnJ2dOygcAYCRjXn75ZaZUKtmvf/1rVldXxzZu3Mj0ej07ceLEhMfv3LmT8TzP/v3f/521tLSwnTt3ssrKSnbzzTfLx9x+++3sl7/8JTt48CCrr69n9957LzObzayzs1M+pr+/n/X09MhfW7duZQDYtm3b5rrI50ym6vb73/8+s9vt7I033mCtra3sT3/6EzMYDOznP//5nJf5XMlU3d56661s0aJF7P3332eNjY3siSeeYCaTKe2Y891c1O22bdvYli1bWF1dHWtqamI///nPmSAI7O23357x656PMlW3b775Jnv88cfZn//8ZwaAvfbaa3Nd1HMuU3V7zTXXsE2bNrHa2lp26NAhtn79eubxeFggEJjzMp9Lmarfv/zlL+yvf/0ra2hoYA0NDeyb3/wmUyqVrLa2ds7LfK5kqm4le/bsYYWFhay6uppt3LhxroqZEZmq2yeeeIJVVlamtXP7+/vnrJwUSGXQypUr2f3335/22MKFC9k3vvGNCY9/6qmnWHFxcdpjTz/9NHO73ZO+RiKRYEajkW3evHnSYzZu3MhKSkqYKIrTOPv5LVN1u379erZhw4a042655Rb2hS98YbpFmLcyUbehUIgJgsDeeOONtOOWLFnCHn/88ZkUY146F3XLGGPLli1j3/rWt2b8uuejTNXtWBdqIDUf6paxVCchAPb+++9P8czPD/OlfhljzGq1st/85jdTOOvzQybr1u/3swULFrCtW7eytWvXXnCBVKbq9oknnmBLliyZ2UnPAE3ty5BYLIb9+/fj6quvTnv86quvxocffjjh76xevRqdnZ148803wRhDX18fXn31Vaxfv37S1wmFQojH47DZbJOex4svvogNGzaA47iZF2geyWTdXnbZZXjvvfdw/PhxAMDhw4fxwQcf4LrrrpuFkmVepuo2kUggmUxCo9GkHafVavHBBx+cZanmh3NRt4wxvPfee2hoaMCaNWtm/Lrnm0zV7afBfKpbn88HAJPe785H86V+k8kkXn75ZQSDQaxatersCjVPZLpuH3zwQaxfvx7r1q2bnQLNI5mu28bGRuTm5qKoqAj/9E//hJaWltkp2CQnQjKgq6uLAWC7du1Ke/wHP/gBKysrm/T3pKliCoWCAWA33ngji8Vikx7/wAMPsJKSEhYOhyf8+SuvvMIEQWBdXV0zK8g8lMm6FUWRfeMb32AcxzGFQsE4jmNPPvnk2Rdqnshk3a5atYqtXbuWdXV1sUQiwV544QXGcdxpX/d8Mpd1OzIywvR6PVMoFEytVrPnn3/+rF/3fJKpuj0VLsARqflSt6IoshtuuIFddtllZ1egeSbT9XvkyBGm1+uZIAjMbDazv/71r7NTsHkgk3X70ksvscWLF8v3uAttRCqTdfvmm2+yV199lR05ckQe7cvOzmaDg4OzV8AxaEQqw04dBWKMTToyVFdXh69+9av49re/jf379+Ptt99Ga2sr7r///gmP//GPf4yXXnoJW7ZsGdeTL3n++edx7bXXIjc39+wKMg9lom5feeUVvPjii/jDH/6AAwcOYPPmzfjJT36CzZs3z17B5oFM1O0LL7wAxhjy8vKgVqvx9NNP4/bbb4cgCLNXsHlgLurWaDTi0KFD2Lt3L37wgx/gkUcewfbt22f8uuerTNXtp0Gm6/ahhx7CkSNH8NJLL81KeeabTNVveXk5Dh06hN27d+MrX/kK7r77btTV1c1q2TLtXNdtR0cHNm7ciBdffHHSttmFIhPv22uvvRb/8A//gKqqKqxbtw5//etfAWDu2mFzEp6RM4pGo0wQBLZly5a0x7/61a+yNWvWTPg7X/jCF9jnPve5tMd27tzJALDu7u60x5966ilmNpvZ3r17Jz2HtrY2xvM8e/3112dYivkpk3XrdrvZM888k/bY9773PVZeXj6Tosw78+F9GwgE5N+79dZb2XXXXTeTosw7c123Y913333s6quvnvHrnm8yVbenwgU4IjUf6vahhx5ibrebtbS0zKAE89t8qN+xrrrqKvblL395imc/v2Wqbl977TUGgAmCIH8BYBzHMUEQWCKROMuSZd58e9+uW7du3Hqt2UIjUhmiUqmwfPlybN26Ne3xrVu3YvXq1RP+TigUAs+n/8mk3njGmPzYU089he9973t4++23sWLFiknPYdOmTcjKyjrtWpXzUSbrdrLnuVDSn8+H961er4fL5YLX68U777yDm266aabFmVfmsm5PxRhDNBqd8euebzJVt58GmaxbxhgeeughbNmyBf/7v/+LoqKimRZj3ppv790L6f2dqbq96qqrcPToURw6dEj+WrFiBe644w4cOnTogphlMZ/et9FoFPX19XC5XFM9/emZk/CMTImUGvL5559ndXV17OGHH2Z6vZ61tbUxxhj7xje+we688075+E2bNjGFQsGeffZZ1tzczD744AO2YsUKtnLlSvmYH/3oR0ylUrFXX301LfWj3+9Pe+1kMsk8Hg979NFHz01hz7FM1e3dd9/N8vLy5PTnW7ZsYQ6Hg339618/d4WfY5mq27fffpu99dZbrKWlhb377rtsyZIlbOXKladda3W+mYu6ffLJJ9m7777LmpubWX19PfvpT3/KFAoF+/Wvfz3l170QZKpu/X4/O3jwIDt48CADwP7t3/6NHTx48IJMLX+u6/YrX/kKM5vNbPv27WnXjVAodO4Kfw5kqn4fe+wxtmPHDtba2sqOHDnCvvnNbzKe59m777577go/xzJVt6e60NZIMZa5uv3nf/5ntn37dtbS0sJ2797Nrr/+emY0GufsfkaBVIb98pe/ZAUFBUylUrGampq0tK133303W7t2bdrxTz/9NFu0aBHTarXM5XKxO+64I20fnYKCAgZg3NcTTzyR9jzvvPMOA8AaGhrmsngZlYm6HR0dZRs3bmQej4dpNBpWXFzMHn/8cRaNRue6uOdUJur2lVdeYcXFxUylUrGcnBz24IMPspGRkbku6jk323X7+OOPs9LSUqbRaJjVamWrVq1iL7/88rRe90KRibrdtm3bhO/tu+++ey6Les5lom4nqlcAbNOmTXNZ1IzIRP1u2LBBfk2n08muuuqqCyqIkmTqmjvWhRhIMZaZur3tttuYy+ViSqWS5ebmsltuuYUdO3ZszsrIMXaa8TJCCCGEEEIIIePQGilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIIYQQQqaJAilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIOcdisRhKS0uxa9euWX3eN954A8uWLYMoirP6vIQQQsajQIoQQshZueeee8Bx3LivpqamTJ/avPWrX/0KBQUFuPTSS+XHOI7D66+/Pu7Ye+65BzfffPOUnvf6668Hx3H4wx/+MEtnSgghZDIUSBFCCDlrn/3sZ9HT05P2VVRUNO64WCyWgbObf37xi1/gi1/84pw897333otf/OIXc/LchBBCPkGBFCGEkLOmVquRk5OT9iUIAq644go89NBDeOSRR+BwOPB3f/d3AIC6ujpcd911MBgMyM7Oxp133onBwUH5+YLBIO666y4YDAa4XC789Kc/xRVXXIGHH35YPmaiERyLxYLf/e538vddXV247bbbYLVaYbfbcdNNN6GtrU3+uTTa85Of/AQulwt2ux0PPvgg4vG4fEw0GsXXv/515OfnQ61WY8GCBXj++efBGENpaSl+8pOfpJ1DbW0teJ5Hc3PzhHV14MABNDU1Yf369dOsZaCtrW3C0b8rrrhCPubGG2/Enj170NLSMu3nJ4QQMnUUSBFCCJlTmzdvhkKhwK5du/Cf//mf6Onpwdq1a7F06VLs27cPb7/9Nvr6+nDrrbfKv/O1r30N27Ztw2uvvYZ3330X27dvx/79+6f1uqFQCFdeeSUMBgN27NiBDz74AAaDAZ/97GfTRsa2bduG5uZmbNu2DZs3b8bvfve7tGDsrrvuwssvv4ynn34a9fX1+I//+A8YDAZwHIcNGzZg06ZNaa/729/+FpdffjlKSkomPK8dO3agrKwMJpNpWuUBgPz8/LRRv4MHD8Jut2PNmjXyMQUFBcjKysLOnTun/fyEEEKmTpHpEyCEEHL+e+ONN2AwGOTvr732WvzpT38CAJSWluLHP/6x/LNvf/vbqKmpwZNPPik/9tvf/hb5+fk4fvw4cnNz8fzzz+O//uu/5BGszZs3w+12T+ucXn75ZfA8j9/85jfgOA4AsGnTJlgsFmzfvh1XX301AMBqteKZZ56BIAhYuHAh1q9fj/feew9f+tKXcPz4cfzxj3/E1q1bsW7dOgBAcXGx/Br33nsvvv3tb2PPnj1YuXIl4vE4XnzxRTz11FOTnldbWxtyc3Mn/NnnP/95CIKQ9lg0GpVHrwRBQE5ODgAgEong5ptvxqpVq/Cd73wn7Xfy8vLSRt4IIYTMPgqkCCGEnLUrr7wSzz33nPy9Xq+X/79ixYq0Y/fv349t27alBV6S5uZmhMNhxGIxrFq1Sn7cZrOhvLx8Wue0f/9+NDU1wWg0pj0eiUTSpt1VVlamBS8ulwtHjx4FABw6dAiCIGDt2rUTvobL5cL69evx29/+FitXrsQbb7yBSCSCf/zHf5z0vMLhMDQazYQ/+9nPfiYHbJJHH30UyWRy3LH33Xcf/H4/tm7dCp5Pn2Ci1WoRCoUmPQdCCCFnjwIpQgghZ02v16O0tHTSn40liiJuuOEG/OhHPxp3rMvlQmNj45Rek+M4MMbSHhu7tkkURSxfvhy///3vx/2u0+mU/69UKsc9r5Q+XKvVnvE8vvjFL+LOO+/Ez372M2zatAm33XYbdDrdpMc7HA45UDtVTk7OuHo0Go0YGRlJe+z73/8+3n77bezZs2dcoAgAw8PDaWUkhBAy+yiQIoQQck7V1NTgz3/+MwoLC6FQjL8NlZaWQqlUYvfu3fB4PAAAr9eL48ePp40MOZ1O9PT0yN83NjamjcLU1NTglVdeQVZW1ozWIwFAVVUVRFHE+++/P26kSHLddddBr9fjueeew1tvvYUdO3ac9jmXLVuG5557DowxecrhdPz5z3/Gd7/7Xbz11lsTrsOSRtyWLVs27ecmhBAydZRsghBCyDn14IMPYnh4GJ///Ofl7HLvvvsuNmzYgGQyCYPBgPvuuw9f+9rX8N5776G2thb33HPPuOlrn/nMZ/DMM8/gwIED2LdvH+6///600aU77rgDDocDN910E3bu3InW1la8//772LhxIzo7O6d0roWFhbj77ruxYcMGvP7662htbcX27dvxxz/+UT5GEATcc889eOyxx1BaWpo2JXEiV155JYLBII4dOzaNWkupra3FXXfdhUcffRSVlZXo7e1Fb28vhoeH5WN2794NtVp9xvMghBBydiiQIoQQck7l5uZi165dSCaTuOaaa7B48WJs3LgRZrNZDpaeeuoprFmzBjfeeCPWrVuHyy67DMuXL097np/+9KfIz8/HmjVrcPvtt+Nf/uVf0qbU6XQ67NixAx6PB7fccgsqKiqwYcMGhMPhaY1QPffcc/jc5z6HBx54AAsXLsSXvvQlBIPBtGPuu+8+xGIxbNiw4YzPZ7fbccstt0w45fBM9u3bh1AohO9///twuVzy1y233CIf89JLL+GOO+447fRCQgghZ49jp04wJ4QQQuahK664AkuXLsXPf/7zTJ/KOLt27cIVV1yBzs5OZGdnn/H4o0ePYt26dRMmwzgbAwMDWLhwIfbt2zfhhsiEEEJmD41IEUIIITMUjUbR1NSE//t//y9uvfXWKQVRQGrt1Y9//ONZT1He2tqKZ599loIoQgg5ByjZBCGEEDJDL730Eu677z4sXboUL7zwwrR+9+67757181m5ciVWrlw5689LCCFkPJraRwghhBBCCCHTRFP7CCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSa/n+Tg6GQYMqD2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHFCAYAAADPBC+gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7gkV30m/FZ17r45zNzJQRoJSaOEJIQCWSTbAgMOYLyA8a4NayzCencdP+O0rO39vF6Dl8/GCYwxeNckmxyMckBhokaa0eQ7c2duDt19O1XV90fVqT5dXeFUru573ueZZ253VzhVdeqE97zv7ycoiqKAg4ODg4ODg4ODg4ODg4ODg4ODwzPEuAvAwcHBwcHBwcHBwcHBwcHBwcHR6+AkGwcHBwcHBwcHBwcHBwcHBwcHh09wko2Dg4ODg4ODg4ODg4ODg4ODg8MnOMnGwcHBwcHBwcHBwcHBwcHBwcHhE5xk4+Dg4ODg4ODg4ODg4ODg4ODg8AlOsnFwcHBwcHBwcHBwcHBwcHBwcPgEJ9k4ODg4ODg4ODg4ODg4ODg4ODh8gpNsHBwcHBwcHBwcHBwcHBwcHBwcPsFJNg4ODg4ODg4ODg4ODg4ODg4ODp/gJBsHBwcHBwcHBwcHBwcHBwcHB4dP9BTJ9sADD+Dee+/F1q1bIQgCvvzlL3f8/p73vAeCIHT8e+lLXxpPYTk4ODg4ODg4ODg4ODg4ODg4Ngx6imSrVCq48cYb8YlPfMJymze84Q2YmZnR/33961+PsIQcHBwcHBwcHBwcHBwcHBwcHBsR6bgL4AZvfOMb8cY3vtF2m1wuh6mpqYhKxMHBwcHBwcHBwcHBwcHBwcHB0WMkGwt+8IMfYNOmTRgZGcErXvEK/MEf/AE2bdpkuX29Xke9Xtc/y7KMxcVFjI+PQxCEKIrMwcHBwcHBwcHBwcHBwcHBwZFAKIqCtbU1bN26FaJobwjtK5LtjW98I37yJ38Su3btwunTp/Fbv/VbePWrX42nnnoKuVzOdJ+Pfexj+J3f+Z2IS8rBwcHBwcHBwcHBwcHBwcHB0Ss4f/48tm/fbruNoCiKElF5AoUgCPjSl76EH//xH7fcZmZmBrt27cLnP/95vPWtbzXdxqhkW1lZwc6dO3H+/HkMDQ0FXexAMT09jdOnT2PTpk24+uqrMTs7i+effx4jIyO4/vrrQz//6dOnMT09ja1bt2L79u144oknIAgC7r777tDPzREvjh07hvn5ef3zLbfcgmKxGGOJkoUzZ87g/Pnz2LJlC6688sqO306ePImLFy8yv6eSJOGRRx4BANx5551IpVKhlJkjuTh8+DCWl5dx1VVXYWxsDI899ljH7+Pj41hYWMCePXscO/0goSgKHnroIQDA7bffjmw2ix88P4vf/scHcdNwA+97w0245ppr9O3r9XpXP0Hq92cfO4sT1Tzed8swbrhyB5rNJpaXl3H11VfbqtHd4Jbf/SauEmbwrpfuwhvueVXoavX3/vHnsV5bx4d+6h7cfvUO222fOXkJf/S5b6CQzeJv/us7Qy0XEyoV4M/+rPO7++4DSqV4yqPhs4+dwX//xvO4dzfwI1cWmer8Pz5xFn/wtefwo7tF/NiVeWzbtg179+4NtFy/+s+H8K+HZvCfXrcPP3eXeuxTp07hwoULzOcjfcP27duxZ88eXLx4ESdPnsTExETHe+QE0l6k02m0Wi39eCw4e/Yszp07BwC49dZbUSgUmM+bVFy4cAGnTp3C5OQktmzZgkOHDiGfz+O2226Lu2iJBhnHDA0N4cYbb4y7OByMWFxcxNGjRwEAxWIRt9xyS8wlSiZIW0eP0y9fvozjx49jdHQU+/fvt93/qaeeQrVaxf79+/Hss89CluXY2kzSVwCAKIq46667Ii+DVzzxxBOo1+soFouoVqvYvXs3duywHi8tLS3hyJEjjnX72WefxcLCAvbu3Ytt27Z1/HbgwAGsra0BAO6++25XY8HV1VXs2LEDy8vLGB4ett22r5RsRmzZsgW7du3CiRMnLLfJ5XKmKrehoaHEk2wDAwMolUoYHBzE0NAQ1tfXUSqVMDAwEEnZi8UiSqUSRkZGMDw8jJI2+E76fePwj1KphPX1df3zwMAABgYGYixRsmB8N2mMjY1hZWUFExMTTO+Koij6uzUwMIBMJhNKmTmSi1KphGazieHhYYyMjOj1gWB4eBi1Wi2ytp9AlmW9LMPDw8hkMmiIq0jlShgayqJUKnWUp1aroVQqQRRF/XtyjMGBEtJSFqlsHoODg2g2m2g2m4FdkywrUNJ5ZNIFDA6qxwybZMsXS2gpQDZfdLyGQqmMTK6AbD6XjD40lQKMY6OhodhJtoHBIYi5IrJ5xbKNNSKVK0HMFVEqpVAq5TE8PBz4PR4aGoKYW9Hq/pD+3fLyctd7YAXSb5DxZ6VSQalUQrHoXH+Mx2k2m8hms2g0Gkz3iKBUKunv9ODgYF8sni0tLaFUKmF4eFgfq+ZyCXnPEgxSF1jrL0cy0Gw29XfYbduxkZDL5VAqlTA6OqrfIzKPZqnzhUIBgiBgZGQEIyMjqNfrKBQKsdzv1dVV/ZkLgtBTz7xYLCKdTmN0dBSCICCfz9uWn9Rvp35tamoKtVrN9H4Ui0XIsgxA7eecbJ9mYBk/9jXJtrCwoKtJ+hFEhEgeNPk/KnGiJEkAgFQq1VHZFEXh8ez6HMY6Rn9uNpsQRXFDK66M7yaNqakpNBqNrpUVK9DHIJ0Cx8YCee6CIHQNBgRBiK29pd97Uq6lSgMKgEKme9Bi9l6Qv3PpFEQoqLekjmsKqj9rSO13JyWKkdwzck+aLef3VrJpMzjaELX7I2vVgqV+NCV1m5RWJb0MqJ2QTavHrFPPmpyHtQ4b3w/Sh5KxFivIcdyeH+jsY3rU6NIFs7Fqv1xbmODjjd4EXbd5PbdGo9EAAGSzWf07N+0DeT9SqRQymQzq9TqazWYIJXWG8Zn30jyclJ08B6d7SI+H7UCEH+Vyues3uk+VZTmUMQHQYyRbuVzGCy+8oH8+ffo0Dhw4gLGxMYyNjeGjH/0o3va2t2HLli04c+YMfv3Xfx0TExN4y1veEmOpw0NSSDbRMGHppZebwxuMdYw0eq1WC4899hgKhQJuvfXWOIqWCNiRbLlcDvv27XN1PFEUIcsyHzBtUNCTZkJAke/inDjS5yNlWKqqA9d8JmVJxpu+F2kRAlSSIiySjZw1nQpnQGVEShS0czuTJLJM7k2oRep5kHsquSLZ1P4prd3bMAbUOY1ka1Akm9s6TPpRUj7yv1uyw/iecZLNfKzKYQ/y/PulHmwUcJKNDYTM8Uqy0e0KcZjERbIZ0UvzcLckm3ERyQpE2VepVLqINLqfkyQJ6XQ4dFhPkWxPPvkkXvWqV+mfP/KRjwAA3v3ud+OTn/wkDh8+jM985jNYXl7Gli1b8KpXvQpf+MIXMDg4GFeRQ4XdhCUK0Cw+Dd6o9z+sJs/1eh2SJKFcLvdUIx8Wgrp+QrLxleWNCbMFFSPxRm8Xdbnosi1VG1AgIJ8RmUg2Qqjl0iJESGiERbK1ZAhQj5WJiGRzpWQjBMsGbzOdkNLrBfs+LY1kI489jH7JTMnmtg4nTcnWL/0NV7J5A3n+/F71LvizswZRspmFYPGiZAPiI9ns3EVJh1clmxPJls/nkUqlIEkSqtVqR0gjo5ItLPQUyfbKV77StuJ861vfirA08SMpSjajXZSj/2GlZKMbKxITxgmNRoNpu15C0AS4V0UDR3/ATOFiNtCIk2QjWKo0NbuoOyVbNp2CgBbqzXBINkJ+pMTo7LUp7dm0JBaSjdtFWSCK7u2iDU32FqaSLasRYmYkG2u7bXw//Lb7XMmmgp4Mc5KNHZxk601wJRsb7OyiTqCdJUlQsnGSrRuCIGBgYAArKysol8sdJFtUi0nRLOdyhIK4lWx2dlGO/oZVg06vDrB0NpcvX8YjjzyCixcvBlvAmMFJNo4gYTX5Jn/HHZONJsUWKbuoEVaxNARBQC4jQoSCRlgx2TQlWxwkW5PJLqr+L4CTbHYgajTZRb0gdtFUmHbRTLdd1K2SLGi7qBclWz9O0LmSzRs4ydb74M/OHLIs6+0CrWRjbR/oNjkJSjYjemmuEBbJBrTjslUqlY7zGe2iYYGTbD2MOJVsjUZDzy6ZyWQ4ybbBwKpkcwJp+MwCU/YyOMnGESSM5BQ9uEhCTDa6ni9rdtFC1lrJZpa8IZsWIQiKHpPNuI9fEPIjFWGiiJTG6jRbzoM4SWEL5rvR4S3xQWdMtlDsoiliF20/a792Ua/vNbeLdoIm2Qj4ONUZnGTrTdDPq1/e4aBBVGyCIHTE42Jtc2liRhCE2Em2flKytVot23rLmvgAME9+YDw2V7JxmMJqIh/Fy/XCCy+g1WphYGCgKzVuL73cHN4QlJKtXwdxQZNsbm1HHP0F46SZrldJiMlGl2dRs4uyxmQjn0NPfNBSEx/Eo2Rjie9CnnGoRep5pHS7qBslm3ZvI1ay+SXZ4lCy9aNdlCvZvIEnPuh98GdnDjrpgVm2c1YlG2lTOMnmDXQ5aUVhq9Vy3IelHy8WiwCgi4KAbuUaJ9k4TGG16hk2FhYWMDs7CwC4+uqr9QkRH7xsHASlZCPH6TfyKCwlG3+3NibslGxxkmzGcimKgmXNLuomJptKsqUgQkHdYBcNCg1Jit4uqqmbWgxKNkIacR2bPUjiAy9KtjDtokTJ1pC8k2xGG4xfJZuXes5JNg6Cfl0E7Xf0o+U7aNglPQDYlWykrY6bZDOiV+ZU9H2mY9uR52MGN3ZRolK0S3TASTYOU8RhF5UkCSdOnAAAbN++3TRzK2/U+x/kGRP7hZmSza6RJOjXQRy3i3IECePKnZFkM24XV7nW6i20ZEW1i7om2UQIUNBoyaEQh3VNyZYWo6Ox0iTxAcN7yxMfsMGY+IAFhGQTBfYVcLfQs4s2k5P4gNtFVdCLATy0CTv6dXzW7zCSbPz5dYNWotFwk/iA3j9ukq0flGysikA3JJtZhm6jko3HZOMwRRyJD86dO4darYZ8Po89e/Z0/MYnBxsHxsm1XyVbr3QIrOAkG0eQYI3JFjWM9Xy5or7z+bSIdKp7eOFEsqlKtj7KLuoiJpscQ3/eiyBKNuLAdaVk06pkGPc4l1YH87SSzS3JZbdw6iV5Ac8u2okwFLL9DE6ycfQrrIgatzHZzJRscbwvnGQzByHZ6GywXMnGwYQ4lGwrKysAgJ07d1quAPTKy83hHVZKNrckmxk51w/gJBtHUKAn2FZKtqTEZFvSrKJDhYxpeZztoiHHZBOizi6qto8thphsRMkmchLAFiQmm5t6QWKykRFLKDHZiJLNR+IDq+yibo5Bb8tjsqmg2x2uZGMHJ9l6E71KuEQJu0zngLuYbAB7PLGo0CtzBT8kG8s4juYpCDHKSTYOJsShZCPnNPOxc5Jt48A4GSCf3SY+4Eo2NnCSjQMwj7+ZJJJtUSfZsqblsXsvchnVLtqUZEiyEl7igwjVLETN12KwI7TtoqEWqedB7KJEMOZGyRamXZSQbGEkPgDctf2cZLMGJ9nY0a/js40GPm7shlXwfK9KNlEU9b/jINl6lVg1lpOFZHOT+IAeH5Pnwu2iHEyIQ8lmJ9PkJNvGQVBKNp74gA08u+jGBf3Mk65kW/ahZMumRJ0EqTblUEg2IFq7KCHZmpLzeyvzmGxM0BMfgJ0AaJNs6ucw7nHWhmTzGpPNLyHk1y7aL/2NVbvDx6r26Jfnv9HQq4RLlPBrFzWL6RZngrJefeZGlTFt77SCG7so0B2XjSvZOJgQB8lmRx5wkm3jwEiyeVWy9asdISwlW7/dJw5nGOX0QPISH5Byra6rK4UD+bRpeexINlEUkNNimK03pOBJNknWsouK0ZFsZGWbiWRjt0BsZJDqznBLdegEq36MEBMftLpJcbd2UXpM52WBhSvZOmHWhhq/5+hGv47PNhr48+uGE1HjVskGJGsOnIQysMCKxwiSZDNmGDUq1zjJxmGKOOyiXMnGAVgP4unGqtFoONaFfrUjcLsoR1Cgn3nSEx+U6yrJVsqmTbd3ioOST6v/VxrBT/QbVHbRRNpFSZvKOTZb6Eo2rVqw1A9CfIlimHZRLfFBAHZRvxM3TrKZgyc+cAdOsvUmelXVFCXsFvxYYKZki3MObDxnr8wVrEIk2N1DrmTjiARJU7IZt+HoX7Ao2RRFcfS688QHbOAk28aFWdDupMRkM5JmhGQr5uztolYWDUKyrTdaIWQXVduiSO2imrpJYnhvZZ74gAkk8YHsol6oxJeCFLpJ6qBgpmTzG5MN8Nb2e+1/FKUzi2m/9Dc88YE30CQbv1e9A06yOSPo7KI0kkCy9coz96NkY+3fjCQbj8nGwYQ4lWx2dlGO/geLkg1wtoxyJRsbOMm2cWHW5iYtJhspT7lGlGydsRqN21utHhM1UIWKyRYUVCVbtNlFM7pd1Pm5SDH0570IQrKRW8qqZBOgIJXqJqmDQhCJD8ze9SjtosZz9Fu/TMBdF87g96Z/wJ9lN8KIyZakdiUJZWCBsc9j6bPcJD4AuJKNwyPiVLJxu+jGhpWSzS3J1u9KtqDASbaNC7M2N6kx2SrELuohJhvQJioq9RBispHsohH6MUn7yBKTjVwmJ9nsoSvZZPZ60WjJENG2moapZGtIclc9d5v4wOz99vIeuN23V9UQTohjrNzr2CiEaz+iX9/jIOEUusJPTLY40G920TASH1hlF+UkG4cprCYsPPEBR9iwWik3Nl5cycazi3L4g5OSLUkx2dYIyZbLMm1PoJNsGU0RF0Lig7qW+ECMUsmmxWSTXCQ+4DHZ7EHstG5jsglQkA5RyUZINnI+wDvJFbRddKMr2eIYK/c6+rUubETwcWM3nNRQvaZk61Vi1csCSFAx2TKZTMf3YYCTbD0Mq8oZJnjiAw76+Vop2UhdYFWy9VudCcsu2m/3icMZLEq2uO2iRiVbMefNLkqIikoY2UU14iOOxAeSzJD4QOZ2URYY7aIsqLck1S6qxeQK0y4KqGo2IFi7qNUxms0mzp07h3q9rn8XlF20XyfnfKzqDE6y9S56lXCJEk52USfw7KLBwIuSjdx71mdllV2UfM+VbBymSFrigyQ1MBzhgX6+Vkq2XC4HQM0wynKsfhvM85hsHEHBrC4lJfGBsWwk8cGgS7sogR6TrR584gPaLhqZkk27HonB2kgC+fPEB/YwJj5gqR/0sw/DKgoA2RSlZGu6J9nM+lX6b6u2f3p6GqdOncKFCxe6jsVjsqngdlH36Ne6sBHBn103WGKysaipkqpk65W5glXbbFX+Wq2GWq0GACiVSkzncFKycZKNwxRBT+RZwJVsHCxKtnw+D4Ar2TjJxuEXZm1uUpVsenbRrLeYbETJtlaXA7+megyJD4iSreUiuyhXstnDrV1UURTUWzJE7dmHRbIJgtARl418B7C12/R1uFGyVSoVAO14M2bH2egkmxH8HXMGV0P1Lvizc4ZTTDYnJE3J1qvP3Lgg5LQwtLCwAAAYHh7WSTInWGUX5SQbhy2iXp2zGgTabcfRfzAj2ayUbKwx2fqVPOIkG4df2MVpAjpXUmMn2bTsogP5jGl5HGOy6YkPwlGyAdAtg1HATUw2nl2UDW4THzQ1X6kQMskGALlUZ4ZR+lmyxvgx7ufU9lerVcvfuV1UBVeyucdGIVw3Aviz64ZVTDbWNjvpSrZeeeZulWyEZBsfH2c+h5WSzWgjDQOcZOthRK1koyu9nZKNo79hZmvxqmTjiQ/YwEm2jQunxAe0ki1qGMtW1hMfpE23dybZ1MHQWqPVtY9fxGEXTadJTDZ2JRu3i9qDZAglMdmc6ke9pSkOhPDj8RElm35OF5l/reyidpMORVGwvr7esb/VcVjQj8SK2eIwJ9mc0Y91YaOgVwmXKMESk83uviVNyWZEr8wVrGKymd3DVquFpaUlAMDExATzOYzZRbldlIMJSVOyJamB4QgPVjHZFEXRGytWJRttF+2nesNJNo6gYLbimsSYbJKsoNpQB56DOXMlm5NFgyjZyrUQEh9IMgAl0sQHWWKnZ4jSr8dk4+lFbUFeA4mxXuiqsiiUbGnvSjar3+0mHevr613kGreLOoOPVZ3Bxxq9i16NzxUlWDJU9qKSrdfaNiuSzazOLi0tQVEUFAoFFAoF5nNwuyiHJ1hN5DnJxhEm6HpHN4h0Q0WUbKyJD4x/9zqCJtncxPbh6C+4UbLFRbKJoogKpT4rebWLZrSYbI1W4ERYoyVDEJKrZGtnFw21SD2PduID9bNTnSfx0TJiZ58VBrI+SDb6PWe1ixIVG/271SIYC/rRLmo3bu2nMUfQ2CiE60YAf3bdCCMmG0GcJJvbNj9uuBEL0VZRN2M4oy3UqGTjdlEOU1hVzrBgNQgk4CTbxgBd7+hnTg/KWJRsRvVaP9WbsJRs/XSPONhgpmRLGskmCAIqmlU0kxJ0RY+xTE5xUMh+ayEo2eotKfLEBxmyguoi8D23i9pDt4syxmQjmT5J3Qrz2RO7c92EZHMirJzeDbP3gMRjs/qdZxc1h909lWUZhw8f7sjWuhHBLYe9C/7snNFvMdkIes31wqpkUxTFUzw2gE3JFtYz4yRbDyMuu6jVIDUJDQxH+LBSstErO9lsFoDamFk19v0saY/CLrq2toa1tbVAjs+RXDgp2ZKS+IAkPSjl0pZqIdaYbORY9D5+QcdkiwoZNzHZOMnGBGKnVRS2MANEyZZLdQ7iw4CZko11XGT1bthNmmiSzUzJxu2i7mOyra6uYmFhAdPT09EUMKHox7qwUcGfXTf82kWTFpOt35RsxvZndXUVzWYT6XQaw8PDrs7hlPiALkfQ4CRbD8NuIh9GhWFplMI6N0dy4KRkE0UR6XRa/81KzdbPg7iwSTZZlnHgwAEcOHCgr8hJjm44KdmslMVRoINk05RsA7m05Wqw03tBSApJAdZb3aSBHxB1UZRKtqyuZHO+Bp5dlA1EyaZAAEvNIEq2bIQkG0l8ALBPvJzsS6xKtiDtov3QJ9uRbHbb98O1+0E/1oWNAq5kc4Zd4gOnNpue75gp2eJAv5BsVuUnKraxsTHXfbgx8YFRyQaEJ/LgJFsPI2q7KFeycQBsSjZBEPRVAiuSrZ8HAmGTbM1mE5Ik2SoFOfoDZnWJHpC4UcuEWTY/JBv5nBYFpEQBCgQ9iUJgSjZJjtwums1oiQ9Y7KI8uygT6MQQMpOSTa1H2XT4JFtOJ9naz9utks1YPlYlmxk55LZd6Gd1OQ27+8JCslUqFRw+fLivleScZOsf8GfXDatFDRpW941+N5KiZCNIil2U1YLJqmRbWVkBoJJsbkFINlImMyVbWHHZOMnWwwh6Iu8EJyUbX4HfGHBSspEGjVhGWZVscXcKQSIKks14Lo7+hFm7S94x8n8SSLYKRbKZbWPcngY9wMqlRCgAKvWASTbKLhpdTDbtvWW4Bs3VyBMfOIDYfRWollEn6DHZNMFBmM/eaBelz+fVLmo16Wg2mx39gNEu6ibpgvEYpF3ph77FrV3UzHZrxOzsLBYWFnD58uUgi5oocJKtd7FRyHI/sFrUAJz7CPp+JiUmW5KUbLIs44knnsCBAwcct2VVshmTFbiBkUyj+7mwScm08yYcSYWdkk1RlMAHk1zJxgF0rgBZKdmAdmNolWGUK9nYYZxoEdkz/R1Hf8KsLhWLRUxOTmJwcNB02zjKtqbFURvIe1eyASpREYqSrSUjhYjtoul24gOnPllRCJnKWTY7pDrqlnP9qJPsohHYRe2UbE7ttJWywmrSQavYAKDelPAn334eDz0/g7fvqmFqpOi6ntOTD0mS+qpPpuFXyWaM7dOP6OfxWb+DPztn2IlGnOay5P03hurgJJuKRqOBWq2GWq3muK0VySYbxkys4arMQJ6Toigd81FRFJFKpSDLMifZOLrhRLKFfT4jOMm2McCqZCMk20ZTspmtnPsF3bEoisKVbBsIZpNvQRBw3XXXdXyOA3TZiJKtZLCL0mAh2XKaxbJcb6GI4Op3vSWjBAXpGEg2QVHjsqVT1ueVuF2UCfQYm8kuqhFeWTGKmGypjnPS5wvaLrq+vg5AfXeev7SK7504j8fLY8iihQfqq/jp23d7TnyQTqfRaDT6ok+264/9kmz93PdyJVv/gD+7bvgh2czisbHsFwWSYBelz+28uMgW9sovyZZKpdBqtTrmTqIo6sfjdlGOLiTVLsob9P4GPRmgG3Rj/XAi2fp1tS1skk2W5Q4lW7/cNw5z2NkaCOK2i4qiqMdkG/QRkw1Q1UAKBJRDsIsCQEoQI4zJpj4zQVDQlOyvQ9bvTejF6ml0JD5gsYtqzz0jhh+7NpvyH5ONNfEBUbKdWm7h64dnsLrexLaRAjIpAdPL67i4vN6xL8t71M92UVbFCfnObpLKYintdXCSrXfRr2ProEC3h2b9AauSzSxpgt1+YSJJSjYjyWYHKyWb8Th+SDag3acRJRuJZxw2KclJth6FXZwJ4+9Bn5Mr2TY2rJRspOPxqmTrl3rjRLI1WjK+dmgG3zg8g0dOzuPUXNnxmHYkWz+oDTiswRKgN26STRAErFFKNqsyOWVQBAjJBlQawa4sqokPoo7JpinZtPPbgZBsXMlmj46YbGBXskViF80EH5PNahJASLYXFtX+9bqtQ/juR16BH7t+CwDg0VOLvuyiLGXuVdjdFxYCzY+SjZXwjBv9Oj7biODPrhP0/bDrD3pJydYvJBvdNpuRbF7HbmYkG/09t4tydCAMtYwTWJlk3qD3N+hGka4LhPgh3zklPrAKbNnrcHo3P/mDk/if3z3e8d3/+Mkb8RO3bLc8Jh1TQJZlbhfdQOgFJVtQiQ8AEpMNWKtLQD6Ya5JkBZKsQBCjzS5KEh8IUNB0Itm4XZQJgiCAhK1jU7Jp2UW11ydMki2v2UVrrTZB7DYmG6s6gpBsC3X1970TRRSyKbzrjl34zaPP4IW5Cp6/1M5+6WTbocsQ9sQjSnhVstm1O36UbAcPHkSj0cCtt94aal30C06y9S64ks0eVtlBCXpRyUZgtijTarU6nEdhIyiSzWyB1q+SjcydyGeuZOMwBVeyccQFMyUb0E2ycbto97tSb0n4+8fOAACu2TKEzUM5AMD9x+ccj0t3BtwuunHgZgUvTpKtXOsk2cz6AyvCsFPJlgIg6PbTIK6JKIuIki0qpFIp/XyOJBsDmcqhgtxTNzHZtFB/od7fYlY9yTqlwnQbk41FyaYoih6T7VJF3W9Qe+92jRexb1JNiPKXD57uOr4d6JhsrPskHWbXwEKyWf0O+FOyLS8vo1qtWiaESgr64dlzqODPshN0W2pnF3Xa36hkI0iSkq3ZbOLRRx/FoUOHIiuLG5LNOL6l55Vmx/Haf5M+zahk4zHZOEzhpJYJ4yVnjcnG0d9wUrIZ7aJWg8mNkPjAiG8cvoT5cgNTQ3l89QN34Y9+4kYAwNELK47HpTsebhfdOHCjZIsaHSSbFkNtIN9JslltbwViF12rBReTjbbvRalkEwQBKUGACAXNlhPJov7PlWzOEAWBOSYbefbpCGKyFTSSrdpot89BxWSj2/n19XUoigJRFDG9RmIhti2et+4ehQLga4dnsFxtdBy/Wq1icXHRtAz9bBd1q2Sz+h3wrmSjtw9rUhcUuJKtd9GvLpGgQBM7/R6TrVarQZIklMvOYWmCLgvgXPfM+j3jNRAHD/2bWxjtouRz2KptTrL1KJyUbGGekyvZNjZYlWxk5YAmhMyOY/W5V2FHgH/60TMAgHfevhOZlIj9W4cAAKfmK1irmSv+COiOh9tFNw5YiKkk2EXLdbVO2sVkY7GLqtlFg1WyEcugKCgQhehISXUhQj2XY0w2mdyb0IvV89DjsinO9cOY+CAKJVu10W0XZV3Rt8ouSu9PVGypbA6rGhk9QJFsm4by2D1egqwAp+YqHfsfPXoUhw4d0o9hVoZ+Itnc2kVZVBhBEGRJJz44yda76NexdVBwWrj0m100ThiVz3FkQvZjFwW6r4E1hp4djHZRo5KNk2wcHbCquGFOtpxsS5xk2xgwNoqkkbJSslmRbP06iLMiEg5NL+OZc8vIpkS84/adAIDxgRy2DucBAM9eXLU9LreLbkywrOAlgWSraEq2wUBINi0mG4Ii2dpqJqvV6zBAlGwCFDRa9hNziQz8EzBQTzpIhlEZznVDt4tGEJPNzC4aRuKDWq2mnkdOQYaAXFrUEzuQ4+wcL0EBMF+udxyPrOSbhXHox5hsduBKNmv06/hsIyEJQfCTCFZXVj8o2chcIcq23C/JZryPTjH0WGClZON2UQ5TWKmJojin14aJoz9gFajS2PEQJZssy6YNWL9K2q0mS59+5CwA4Edv2IKJgZz+/XXbhgEARzySbP1y3zjMEbeSbW1tDSsr5nZmeuGFKM+IXZTANcmmBY9fqwUYk03qzDAZKclGYrI5kGzt/pWTbE4QRUHNLsqkZFPve1obtoRrF1XrfsXELurFNkN/NiNoVmsSFKhxEBWlMz7d1HABgIDZcqddlJTDrDxcyRYdyZb0fpuTbL0LK8KFQ4XfJH69lF2UVrJFVa6glWxOMfRYYJVdlCvZOEzhZkAW9jmjODdHcsCqZKM7IDM1W78O4szek4VyHf9y6CIA4F137OrY/npCsjnEZaM7A24X3TiIM/GBoig4ePAgDh48aEuUi6Kok2ylrPuYbPTnvLY/sZ8GQrLpaibRsmxhQBRFPRNmw2Gl1G+K+o2Etl2UPfFBOgolW8Z74gMnuyjdX5K/l6otAAIG8xn9HOQ8WzSF9GK5AUluf29HEJklPuj1/sWs/HbvGAvJFoQFK+lKNm457H3wOZk5WF1ZVkiiko3Ayi4KRFcuLyQbfS+NC1NOMfRYQOaj5H7wmGwctmBRNwQNv+w/R3/ASslmjMkmCIJtXLZ+VbIR0O/mlw9cRKMl44btw7h552jHdvu3qXHZ3JBs3C66ceCkIAbC6wcURUGr1XJUo9LZRQfz/uyieY2oWA0h8UGcSrZa04Fk0y6T20WdQRIfyAxVox6DXdRLTDYvSrbF9RZktDP6yrKsbzdSzGK4kIGkKFio1HXCzMyCYywDvUDWL/1LkDHZuJKNI8ngSjZ7+HVl9aKSDYiuzWFZqDD+bpf4wG/SA6C9cGQ8B1eycZgiyUo2jv6Gk5KNbgjt4rL16yDO7D351pFLAIAfv2lb1/b7t6pKtpNz5Y6sdEaQ+2rM1pr0wTqHP7AonMJq950mhfogSAHWNRLJb+KDvB6TzfpdcIs47aKENGu27N9TmRAcvB91RErrYtwo2VIRJD4ohECy2SnZFitNKBB0izZ9PwRBwLVbhqBAwNyaSrI5qRrMJo+93i8HbReliUw/JFvSlWz9Oj7bSAibQOhVbKSYbHGQbGZ9lRXs2mfjYoafvttIiPKYbBy2cCK8wnjJ/TZMHP0BJyUb3Zi5UbL1S70x3p/5ch0/PLsIAHjddZu7tt80lMfkYA6yAhybsY7LRo5nJNn65b5xmMOtki3I+uA04STfrVMqrVIuZboNYE0Y0p9JXKtaU9Ztbn6vqd7stAxGSrJpjBArySbwmGyOSAlqTDYmJZtGsKaE8NX/Ra3u0u8Da0w2q/GV2f7k74UqUY9220UFQcC1W4fU5AcayeY0+elHks0Mfkk2u99ZkXTiox/j820UcCWbPfzOZZOoZCPoVbto2Eo247Mix+J2UQ5TsCgCojqn8dy8Qe9vWCnZCOjPhGSzy2Rm9blXYbw/3332MhRFjb22fbRouk87Lps1yWalZOPvW3/DbayusEg2OyXbukZiZVOinrjAjZKNRj6jqXLQDlrvFyQeWjoGAitNyHGHa5FlMjEKvUg9D5IcQoEzAdsmWMNXsrXtou1FJdaJrpOSzexdnK80AAgYKmQ7vifHUZVs0JVsTpMfY0w2lnInHUEr2fxMWntRycaJmt4Fn5OZg3VMxZVs3hBW4oMwSDZuF+UwhVXFDfMl50o2DsBayUawEZVsCwsLegZG4/351lHVKvp6ExUbwf6tznHZuF10Y8Ktki2Mcxv/Nn5HSDY6s6hd4gOrwan6m6DFmBL0eFp+24Z24oNo7aIAdCUbM8nG7aKOUK2fAliqBbEKk14pCrtorSnrzzMMuyiZOM2V1cUrOyUbIGCuXIcsy8xKNvoe9Xr/Ynffo1ayOS1aJAmkrFzJ1nvgSjZ7OI2pnMYHSVSysZBsvaJkM97HMEg2bhflsAWLIiDqc3KSbWPAjZLNTUy2pA86rdBsNnHkyBEcOXIEQOf9Was18fALCwCA1183ZXmM6zQl22EGkq1er3d8z9+3/gZLWx+FXdROyVZpkHhs7YGM15hsgiCglEtBQdti6dsuSjJMRhyTDWiTZk3JwS4ITrKxIiWoBJvMYCWua9ZNEsctXLtou/4TyyjruMjJSm18F+stCZWGus9wMaN/T79jV0wOQBRUsvri8jqzkk0Uxb6boHtJfGDW5m00JRsn2XoPnGSzR1gx2QiSahftdSWbn76bK9k4XMFpshLGSx4WyZb0wQZHJ5xIto2mZKvXVStOs9nsmuT84Pk5NCQZeydKuHLTgOUxiF30xGzZMgsht4tuTLCs4sUVk42UbV0j2QZyma4yeSPZ0lAg6CqkoJRsUcdkA9rPrelkfSUTI06yOUK3i7pRsglk3/CGvfl0u+8jyQ/cKtmsFq2M5M9arQUZAoYLGeQy3YkPACCbFjExmAMAHL+8Zksg0XZSURT7ZtHUTilht73xb4KNFpMtzPeFI1z0yzscNPoxJpsZsaooSk9mFzXGIQ0juyh5djwmG4cp4lCysVZ0Nw3M6uoqHnroIZw5c8ZP0TgihJNdlDUmW7+QbDSBaCTZvkmsovunbN/VLcN5jJWykGQFH/r8Abztk4/gbZ98BAvltmqN20U3JuJUstGwV7JpdlFD0gNjeZhJNi2AfDMokk3qjMsVZb+ZIiSbg5JNkqPv03sVJPGBojjXDUKwioKz7dovRFFAQcuOu24g2bxkWaM/G5VsZY1k2zKcN92GfDc1lAcAHL+0ZksQ0Z9pkq0f+5e4Eh9wJRtHFOBKNns4KaP8ZheNA1aLNHHbRb30e8Z6yxIyxQlcycbhCklWsrlBuVyGoihYW1vzVTaO6ODGLmqnZOsXuyh9bZIk6fenJSv4wXOzAOytooB6L/drarZvHr2Ep84u4amzS/j2s5c7tgH6h5zkYIPdgNBpkugXrHbRapMo2axjshnjRdGwsos2Wp2DLK8wBr+PlmTT7KJOMdmUzu05rEGUbDJL4oNWdEo2gEp+0Gx1nM+rXdSoTADUfmat3oICdYGGnigY37Gp4QIA4MSsvZKN/txPdlGWmD9m21v9HpRdNOnjHU6y9T7CJhB6FU6kTS8q2QiM8TR70S4ahpItrphsaedNOJKIOEi2MBIfGJlqjuTDOBmwS3xgF5OtX8giK5Lt7GIVlYaEqaE8btAINDv859ddjc2DOWwZzuPIxVV8/7lZPH+pTT4nMf4DR/gwGxCu1pp408cfwpWbBvCpd90ae+KDSl0j2fL2dlHjb2afBaGd+KCpDXyCU7KZnz9M6Eq2FtuKrshJNkeo8dUYEx/oSjb1c9jPvpBNAZXg7KJ0eWVZRiqV0pRsTcgQsWWkAEFY149hSbJdtleyGTOTJmHCGATs2h8vSrWg7KJJVrLR9ahfyNaNBP7s7OHXldUL2UXJd3Er2byQbMZ6GwTJZiUG4XZRDlPEYRdlVbJ5eZF5J9A7CFrJ1uurbVYk28XlGgDgtj1jTBPn67cP449/8kZ85HVX40eu3wIAeO7Sqv47S6wejv6DmcLlgeNzOLNQxXePzeIHx+c6fo9FyabHZLNOfGBmZTP7LIoiSpoiriEFcy3tmGyi6fnDBMku2nSYVPPsouxo20VZlGwSAAUpdE9CwgBRshntol4mG0D3pAmgYrIpArZSdlFayUawZUQl2S6v1rBSaYcfsFKyEYKt3+yiXpTATko2t+gVJRtdTq5k6130C1EeNFgFI077J0nJZkWyGcPZRIGwEh/46bsFQeh4XkYlGyfZODrAlWwcccHYmBtVKPRnlphsvT6Io6+NJtlmVtUJzYumBl0fk+zz3KU1S4VDNpsF0Lv3jYMNZs//kZML+t//67snoChK6CSbrZKtYW0XdUuyCYKAoh6TLZj+Ic7EB4TYaznEZFN4dlFmiKJKsskM1aLRkiGgbcMNm2QraHXXqGRzGsQ7ZRelt5FlGeU6iclWMLWUkv3ymRSGCxkIUHByrq2MtlKyGWPV9Hr/ErRddCPEZKOvsdfHZxsRXMlmj7BjskV9v63GVnHZRZ3aULNt7drnoJKw0CSbsZ8Lqz3mJFuPol+UbJxk6z3YKdnogMkAm5Kt1wdxVkq2GU3Jds0W9yTblZsGIArAcrWJ2TWVrDN2MMSK26v3jcMZkiSZDjAepUi2A+eX8eCJ+ViVbIRkK+W6I1AYB0qAcxIHoogLOvFBHPHOUlowMK5kCw5psV3XnZVsMgQokakYSyQmW8NdTDY7u6jx3ZYkCWu1FhSGxAeCIGgkGzC7uq7/bqVkMy6e9WP/EldMNhpJVrIZ4/MB/VkP+hWcZLOHVVtL4NQ+GAUCLPtFBUEQTGN0Ar1nFzUq2fz23XSGUTMlWxj3h5NsPYo4lWxOFZ036P0NY92j64Ox0yGNmizLXYNKY0fldtD5/PPP49ChQ7HXN7Psoi1Z1smxF00NuT5mPpPC7okSAFXNBlgr2ZI8WOfwB5IQJpvN6qTqzMo6Ts9XIArAT926HQDwv753Qt8nKiUbPdgs2yjZzPZ3TnygHqcekJKtriVmSEcUl4tGOyab/TXI+sCfk2xOUIlIASy1oqGRbFEp2YK2iwLdE4EOJdtIwXSiQPfP5H1aXGvbRc3eZ/pcSZgwBgE7pYQZwozJ1mtKNnrC3uv1YCOCPztz+HFl0e9tEpVsdDmMDqI47KJeFNxG9bcTKcoKMyUb/R0n2Th0OKnKwqgsfth/p2PyTqB34KRko0GvHBjVbH6UbIqiYGZmBouLi2g0Gi5KHzzMlGxLlSZaCjCUT2PLcN7TcYll9HktLpvxXed20f4HIdmGhob0509UbNdvH8GvvO5q5NIinjq7hLOL65bH8QonJRtBtc5uFzVayultyd/kOMTmGbSSLQ6SreWkZOMkGzNSul3UXskmyQpasgJR28es7gUNK7uoUx22W8Skj6EoCmpNCU1JNlWyWZFsAhQsVmpd5zN+NpJsvb6IY3bfk2AXTfJ9pcf6/UK2biQY24Ak17U44CfxgZnKkyAJ7wrdxxnnXL2mZAvTLmpUstHnCRI9RbI98MADuPfee7F161YIgoAvf/nLHb8rioKPfvSj2Lp1KwqFAl75ylfi6NGj8RQ2ZDgp2aI8ZxDn5h1478BOyWbW6VjFZfOjZAsqw1cQMIvJNqcpBq7ZMuT5vbh6s6qAs1KyRWUXlSQJ9XrdeUOOwLG6qhKsQ0NtNSSJx3bH3nFsGsrjHS/ZCQB4TPs+KiUb/Q6u6dlF2Ug2I6xisjUCU7LFGJONJD5wyC5K4otxu6gzUrpd1H47QtISJVvYKjYAKGY0JVszmOyi9HdEEb5WUydPw8Uc8pmUbeIDQRB0C+typb0gZfU+91tMNoKgYrIFZRftBSWbWdINjt5Bv73DQYE1JpsZ6HhsUTrJ7GB0CZDnbiVsCBt+STYjORxmTDb6vGG0yT1FslUqFdx44434xCc+Yfr7H/3RH+FP/uRP8IlPfAI//OEPMTU1hde+9rW6GqCfEKddlCvZNjbslGxGuyhgHZfNWJ/c1IE40lJbwUzJNl+uQ4FKsnnF1bqSLV676KFDh/DYY4/FrhjciDCSbIqi6Eq2O68YBwD8/N17AABnF6uoNlqhvQ9Wdm8AWKur74BdTDY3JFtJi8kWFMlGCI9MKgYlW4pNyaaTLJxkc4QotEk2u7phJNmieO4FQ0w2VjUJy/tBAlmv1ZoABEwNqSppsz6UXgQbyKUhAFiuOmcX3Uh20biVbEm9t3Rd6Jd6sJFgJOz5s+uEH1eWVWZRs+NHhSTbRZOqZKP7Oa8hi1jQUyTbG9/4Rvz+7/8+3vrWt3b9pigK/vRP/xS/8Ru/gbe+9a3Yv38/Pv3pT6NareJzn/tcDKUNF06qsjjOyUm2jQE3SjbAmmQzKtm8kmxxw4xkWyjXAQieMosSkH1PzJbRkuSOe5tOpyMbQK2vr6sWpVrNeWOOwFCv13UF4eCgWhfOLVZxYXkdmZSAW3ePAgB2jBWxf9sQZACn5iqhKdnsSLaKpmQbZLSLGhG2XbSmx2SLnmQjAfebjCRLHMkZeg3ELupUL+ot9bmnBEAUwo/HBrRjshG7KGs7baeuoI8hyzLWtHhsW0cLHfs42UVpks1JybYRrGZRK9mMx07quDdMku2LT0/jS89MB3KsXoOiKDh8+DCOHz8eyfk4QWqOIGKyme2bhPudBLuoUxtqti1L4oOgSDajCtF4viDRUySbHU6fPo1Lly7hda97nf5dLpfDK17xCjzyyCOW+9Xrdayurnb86wX0i5KNgHcCvQO3SjZia3Qi2dw0cElXss2VG1AU4EU+lGw7x4ooZFJotGScWah2kWxRdeicCI8HpC8aGBjQ3xGiYrt5x6huqQSA1107BUUBTs2VAy2D3WCJ/lzWlGxmdlHj9mxKNvU4tcBINrL6HJ+STZKcAgBHv3DWqyCJD2QHJVtdqz+5tNBhowkTfhMfsNhFV9ebkAFsHy12/W5FsgHAarXRpQ4g6Fe7qFslm5vEB1bbsCKpBCZN+AbZHq1Um/iV/3MQH/mng5gvb7wQFLVaDQsLC7h48WKo7xVXstmD1S7qVskWV99tZRftJSUb3e8Z73/Q2UWNfSz5vOHtona4dOkSAGDz5s0d32/evFn/zQwf+9jHMDw8rP/bsWNHqOUMCv2mZOPoHQSlZPOT+CApJJsxa6okSViqNFSrkCDgqs0Dno8tiu39n7+01nFvM5lMZEoDq0kZR7iwjcemWUUJXn/dFAABZxerKNc6B1Z+wKJkEwRBzy5aygajZCPHaThk5GRFTVM0ZWJIfJDR7aIOSjZwJRsrUiLUxAewVwORhBe5CMlVr4kPWN4PRVEgSZJKsikCdowVu343O08pm4IAleitWxDX/W4XpWFXD+zaPKB7IuZnvJskRT4NeuIbZD04s1DRiHHgwLll38frNRgXZMMCJ9ns0W9KNiu7aBJisnkJkxC2ks1IkHIlmwuYrZ7bdai/9mu/hpWVFf3f+fPnwy5iIIhTyeY0UOV20f6GnZLNjmTrx8QHZitFZxdUNdHkYL5DbeQFV1MZRun3Lkq7KH9H44FZPLZHDPHYCK7aPIDRUhaSrOCxUwuBlYFFyaagrRQb9Jj4gAYdk60uBaNkI6qiVCyJD9RrcSLZSJPGY7I5gzXxAUl4kUt3qrPChNEuyroYwmIXJYs6K+tNKBCw04ZkoxfB0ikRQ/kUBEFBRVOdbpTsogRhxGSz2sYKVsRm0hCWXfTcYlX/+5nzS76P12ugSQ8jARIGOMlmDjvVsNl2NFiUbBvZLmpc6PGyuGTse1iflxPMMorS33OSzQZTU1MA0KVam52d7VK30cjlchgaGur41wtwmrCE8TI5VXRuF90YsFOyeUl80Msx2YzXJEkSzsyrA8ntWrwcP7h6qp1hNG67aFInBP0IWZb1hD2kT3rs1CLmy3UUsynctHOkY3tBEHRr8oPHZwMrB4uSrUm9ikElPiAx2eot2VKd4wZEvZOOQclGYrI5k2yKtj0n2ZwgCp0x2azqB1GyZbWmM1K7aLPVcU4/dlG6rZdlGas1NSYbIdnMVuKN/fNYKQMRim7t3mhKtqBINj9KNqdjJQVRkGwHzi/7Pl6vISqSzVjn+ditE6xKNjMkWclmFD7EYRd1uwhhp2Qzzj24ki1G7NmzB1NTU/jOd76jf9doNHD//ffjzjvvjLFk4cBJyRblOf2cm6tkeg9ulWysMdl60S5qRrKdXVSVbNu0eDl+QJIfPH85frsof0ejQ6VSgSzLSKfTKBRUsvYzj54BALzl5m3IpbvJbJLJ9uGT83rCAL9gUbLplry0qFsjge7+wE6pYxWTTVaAluyfZDMmPogSaU1FJTm8py3t93Sqb4ZloUFVsgkMSjb1uecy3X1VWChk1HeTJAMJwi5KTwJWKnXUmhJkCNgxxpb4AADGSlkIUPRybZSYbGaIKybbhleyLbRJtoPnVyDJ/Ve37BCXkg3oz/fYK8KOyZZUu2hUSjY352RRsoWR+IAGj8mmoVwu48CBAzhw4AAANdnBgQMHcO7cOQiCgA996EP4b//tv+FLX/oSjhw5gve85z0oFov4mZ/5mXgLHgLitIsGqWTjE/jeQ1hKtl5MfGBGsp3TlGwkXo4fEJLt3GJVV+MA0dlF6UlbUicE/QjaKioIAmZW1vHtZy8DAN51x27TfXaOlVDMplGpS3j8dDCWUTslG/nclNRtBgwqNj8x2QhRoUBAoyX7ruMqyabEZBdlU7KRCWeGk2yOSJFBOLOSLToFIwkR4DbxAQsJLcsyLi6r/Uspl9HP5ZT4AADGilmIACoNeyWbcb9eH5sFrWQLkmRLupKNtp4FUQ/OLlb0v8v1Fk4GnKgn6YhaycZJNnP0W0w24/nJ/0TJFqWiMclKttHRUQwMDOjOR4Iw7aL+AgZFjCeffBKvetWr9M8f+chHAADvfve78Xd/93f4L//lv2B9fR3/8T/+RywtLeH222/Ht7/9bQwODsZV5NDAGt8myPOxKtm4XbS/4VbJ5hSTzQtZlJTBqfGaGq0WLixXMQFgx1jJ9/HHB3KYGMhhvlzHqfn2KnCUdlEC/o5GB0Kykb7rHx8/B0lW8JI9Y3qcPiNEUcAVkyUcPqfg20cv42X7JgMtk9UKZVMjh+jMooB3kk0URYiigFI2BUUCmpJ/km2dKNlSnVa4KEBIMzslm0TUegIn2Vggippd1GE7EpMtG2FMtgKJyabZRd0q2eyyiyqKopNsYwM5/Xe7c5DfRouqXXSjxWSzu+9mbZpbu6ifsiT13tJ1MchxxvnFdQDAYC6NtXoLz5xbwlWb+29+ZgWuZEsG/IQ+SrKSzTgnI3UsnU6j2WwmjmSz4hXCSnyQzWZx6623dn3P7aIaXvnKV+oPhf73d3/3dwDUh/TRj34UMzMzqNVquP/++7F///54Cx0Solay0ccLQ8nG0TvgSrY2yDXlcuqEZ3alCklWkE2LmKAmQX6wa1xVxF1YqenfRWUXtVMycYQHOh5boyXjc0+oCXnedccuy30EQc02KAB4dmY1kHLYPX/yW13LAFqySPJhJNnsVoDpv4lltOGTZFMUBbWmDAExxWRjSHzQpH5LcZLNESkLAteIWGOyuUx8wGoXvaSRbOMDef13s7GXsX8eLWY0u6i5ks34fvabXZRVyUYjaCWbEUlZLDQiDLtooyXj4opKsr1hv6ok2Whx2eKKyUZ/x8FO2vSKks3KLkquk4TsiaJcVos3TrBrn1mTLnoFt4tydCEOJRtBkEo2bhftPbhVsoURky0p2UWNJNuFxSoEKNg0kAtsskwSKFxcruvfRWkXNfubI1zQ9eobR2YwX65j02AOr79uynIfOmHAJYqQ9QO7508+1zQb81AhOLsooNpPFQhotvzFZCM2awEK0qk4SDb1XHZKtgZFsmVSPPGBE4iSzSmkE4lNmInwuRuzi7K0005OAfpduqwRFRODbZKNzS5KlGxsMdnitj4FBTu7qBEsBJqfxAe9omQLg2SbXqpCUdT34zXXqMnonjm37OuYvQZuF00GWGOy2e1rJiggSIpdlIAIHZKoZCOwU7I5KQ/9givZOLoQtZKNrnxe2H8n8A6gd2CnZLOzi4aVXTRRJNtSBQKAzcP5wCZ020Y0ko0iTqKyi3IlWzygJzmffewsAOAdL9npaCUcyKchQMHsWi2QesGiZKtplrzhQqbjd2P9d0uyFXNqu+BXyUYsg6qSLQ67qHodkmR9Dc2WqrQD2mXksIb6GrQTH1jVj3pL7SdITLYo7aLrTQmKojC1005OAXoScHlVI9mG2tmr7RIfEIwUMxAE99lF+7Hdt3omLJ+dtrGDcdteULIR+O1PSGbRnWNFvFjLjn388ppeHzcCoraL0m1AFO/x7OwsTp48mfj5XL/FZLMTPgDxKtm8kGxhJT6wQpgx2fhorkcRp13UClzJtjFg16Db2UUlSepamaD3MRvAWiEpg1MjyXZ5ZR0CFEwNBUiyaUq26eWafsw47KL8HY0ObQJLwg/PLAEAfvq2Hbb7CIKgWzabkoLFSiOwcgA2JFvLnmTzqmQrZTUlm0PCACeQeGwpUdCyUkZMsunZRa3bLJI8QhQEiCJXsjmB2S6qK9nUz9HYRdNamVQC2i3J5qRkm9dItsnBNslmpmQz7jtS0JRsjZZpX9uv2UXtlGxuSTZ63BHE/UnKOMaIMBIfEJJtx1gRm4by2DZSgKwAh6aXfR23lxCHXTRK4ufUqVM4f/48KpWK88YxwWlBA+jdmGzGchAQki0KotXNIoSTks1oF+VKNo7IELVd1KzTNcJPWXp9ILeRYJWFDLBXsgHtgQXdmNGdlReSLc66QxIf5HI5NCUZC+U6RCiYClDJtn1Ui8m2tI5CoQBRFJHP5yO3i/ajoiGpIPf63JI6oR4tZrB1pGC3CwRBJZHGiur7dnm1brs9C1jsousOSjYWks1sP9UuCt/ZRWsayVbIxDPcyaQ1JZuNt5EQiSnRun/laEO3izpsR6zC2VSESrZMuz+rNlpMiyFOJJseyFqSsFBW3+upETYlG/l/uKiqXCVZQb0lbzi7KA2vJJvZuKUf7aK0PSswkm1BJdl2aVnXb9LUbBspLlvUSjYgWrKcjMuTWq8BNleWXyUbDUVRcODAAZw4ccJTed2gX+yiUSvZOMnG0YW4lGx2lZwr2TYG3CrZBEHosoyaKdkA9kYuKSQbrWSbXatDVhSMFlIYyKUDmywTu+iF5XXceOONuO2222Kxi/J3NBrQE+WzWja2PRPOmWpJfRjXEm5cXvUfl41FyUYCvBtJNuN2rpVsASU+qGmWwXy6TR5EG5ONECROMdkUcBEbG1iVbIRk0x59JM89JQrIaSesNiSmdpp+t+zej4VyHbIsIyUKHTHZWBIfpAUBJY1oLtdbzHbRfmn3WZRsThNEMu5IpVK+xrvG4yUNZjHZ/OIssYtqiZxu3jECYGPFZet3JVsvzOec2loafpRs+vhofR3Ly8uYmZnxXGYn9JtdlCaG6XsZFskW5jvCSbYeR1STBRYVgt9BR5IbZo42jA2ek5IN6I7LZiXZ7lW7aCaTweVV1Z63Zywf6ESeJD4o11tYlwQUCurnqO2iSV6d7CfQ9/zMgkqy7Z0cYN5/vJQFAFwKmGSzmpA6KdmM+7OTbCkt8YFfJZtaPkKyRY1synmVtCmpMdm4ko0Nqu23HZPNCoRkIyLGKJRsAJVhtCkxJz4ArAlgcozLK+sQoWAon9Gz1tK/2yU+kGVZt5NX6t2W0X6NyWbX7nhVsgWl8ErqvQ0j8cF5KiYbANysKdn+7blZ/MaXDuPC8rqv4/cC4lCyRUmymYWDSRpYSLaglWxWxwoKSbKLuskuatU20/eWnuuFNTbiJBtHF6JWsrHINftt5ZPDHG6VbECbZCP2Stpy6oVkS1p20XQ6jRnNnrd9RFUYBNUh5DMpTAyoxMn0UnsgyrOL9ic6STZ1YuJKyaaRbEEo2WhYKtmaJLuovV3ULqOXdUw2/0o2orQrZKNPegC07aKKolhaRpstBRDaCi0Oe5DYeuRuWtUPPSZbhIkPgHZcNqOSzaqcTouYpNxzazWVZCtkOvpaFruoJEkoaclESIZRO5KtX2KymcGvXdQr+dTLSjY/9UBRFJxbVON0EZLtph2jeOP+KbRkBf/w+Dm88o//DX9x/0mfJU8uFEXpeN5cyRYPzKzQRtiNEViUbPR5aOIxrPti1eYTxEmysS4u0aA/0+8JV7JxRAanQVlYdlHWCQrr+fkkvvdg16C7VbIZibpetYum02lML2sk27BKcgQ5mactowRmHXrQ4Eq26EHf51PzKsm2NyaSza59Jp+rTXO7qFEJ49SHGNuTUi4NRVFVXkHYRXPpeEk2UYBlEoeGpmTjSQ/YQEg2mzB3ANokWzrihBdEyUbHZLMDa7a7+bUaREHBcD7dsS1L4gOVZFP7YZLRkW5r+tUuatbusI6bjX0ebRe12oelLFbHTwqCTnzw2NOHsEO6BFFQ9EROKVHAJ3/2Fnz+F16KO/aOoykp+NSDp/wXPqEwkmpREaxRvcc0iZTkNsOvYIRVyWZ2L8J+363somT+FSXRavWZhtXCK1eyccQOFgY4SLhpmABOsvUz7JRsrCSb3wF9Ekg2WZb1ciyvS1hab0EQgE2DKtkQ5LtIkh/QSjb6+GF13vz9jB70fT41XwbAZhdtk2xq/bu0Ek1MtmrD3C5qTIvulmQbyKUBCGi2/K0A15vdMdmiRCZF2kRFi73WDT3xQcTx4noVotBJslnVj7pGsEaZXRSg7KKUkg2wbqfdKNkETclGXwu7kk3N2Futd4dt6He7KI24lGxGJFXJZqb28XOdZy9cQkFoYsdQBrl0pwLopXvH8al33woAmC83sFJtej5PkmEk2Vqt7riIQcFMyRble5zksaKdop7Ars67VbJFMYZOol3UbZgEGvRnmtTkJBtHZIjaLsqiZPP7AiS5YeZow07JZmUXJY28lZLN7UAgCYNTetB0ZKYMCQLGilmkEHw9Jqu/F0zsogBXsvUTyH2utWSs1SQIArBLCxZtB/IOjelKtmiyi1YtEh+QtoC8q/TEzQzGtqCYSwVjF42ZZMtqk0oBQLNlT7JxJRsbjHZRKxAlm5ZcNDKSraAr2SSmdpqVgF5YU7NXD9uQbMbvCAjJJkNAudGdBdA4+ew3u6iZks1JWWZl7wwq8UFS+9SgycTlqhqvdvto3vT3gVwaU0Pqbye1haV+A+16ANT7GfbiKB2OJez3OCkhXJwQtZLNrI0NGk7uoijbciMJ6YVkA6iM2tp7E2bfzUk2ji64tW/6hRv2H+BKtn6Gse6lUim9IXeKyWZUsnkd0CdByUYPmg5Or0CBgKmhfCjvZtsuWtW/i9ouyt/PaEDu85K2or91uIB8xvy9MsNoUSW7osguKisK1lvmSjbyThtJNndKtgDsolrMuLjsoqIoqgkNoKApmV9HU8suyhMfsEEn2RzsSfWYY7IZlWxW5XSa+JHvF8ptki3lMvGBJEkYyKVUko0hJttGsItGrWQzLjQkYbHQDKGRbCPWi0VXbFJDIpyc7W+SLZfL6fc0iuQHUdpFzf5OGpwW+8y2pWGnZDPbN267KJmfRXF++hx+STa63wLc9d2KouD7z13GP/3wPJ69uGoZpsN4rjDqbTrwI3JEgriUbGHaRTl6A2Z20RtuuEH/2wzGxAfG+uSm3tKWGNZ9wkAnybYMCQI2D7dXaoO1i6okW5x20aSuuvcbOkk2AXsnneOxAd0x2RYqDTRaMrI+smo6KdnqTRnka2PiAyslm9N7ocdky6rWtkbL30S0RpRsmXhINkEQIAqCqmSzisnW0rKLcoKNCW27qP390pVs2isQ1bMvWMRk86Nka0oyKvUmsgCTXdT4m24XVQSs1a2VbP1mF7WDW5LNr5KNIJVKQZblxN7bIEk2RVGwsq6O+6yUbABwxeQAHn5hASfnKp7Ok3TQ48V0Oo1ms4lWq4VcLhfoeYxqVk6ydcJt6CMaiqIkMiabnV2UbqviINlYsoua3UtRFCFJkmslW70l4de+eBhffPqC/l0uLeJ9r7gCH37tVab7hHl/uJKtRxG1ks2tXdRLI5vkhplDhZUdZWRkBCMjI5b7sSrZWBo54+pvXPWGEIapVBoHzi9DVkTd8gAErGQb7U58AIRv6emVgVM/gbwDi5qSjSXpAUArwFLIaqzC7Jo/NZvx+Rs/11sSFAgoZVNU7DEVfmOyqfGj/NtF41ayCYKgK9msYrI1JDLYjLJkvQtS1RTYK9nI/U6DXb0QBIqa8pQkBXEaxDu9G6IoYmW9CQEKilkB+Uyq41pYlWylrGYXrbcsF6v6Lbto2Eo2L2Uh46GkK9mCIGkURcHqOlFlW5NspJ87OdffSjZCstHfhQlOsnXCT0w2+rOVks24bxT3xc4uSivZwiwDQdB2UdJGWj2vZy+u4vNPnMNDJ+ZxbGYV7/zU4/ji0xeQEgXctnsUg7k06i0Zf/XgKbQsxl9cycbRhaiVbCzsPw1uF+1PWJFsTrCKyeZFyZaUgSm5lkvlBtZqLWzKpjA+0F6VDMMuulxtolxv6Va6sAdQdqtw09PTSKVS2LJlSyjn3qgg93yh0gSQZUp6AHTWt01DOUwvrePyak1PmuGnLASyLHeQZ7WmDAXdVlHAvZLNSLiXcur+zVYwMdly6e4BaBRgUbI19dhh3C7KAreJD4iYM47EB4BaB8xUZgROEz9RFLGqkWyjhbT+HYFdTDaaZCtqdtGWopLPPLtoJ1hjsvm1i7KoPOKEmcLEaz04NbuG+bIaH9SOZLtik9rPneIkmykURUG1WkWxWLTtI+JSsm2EmGz03MMutizd1kcRk40+t7FsRpKNHsOFAWMbF6ZdVJYV/Lu/fhwLlUbH94P5NP78Z16Ml181CUlWcNPvfhtrtRaenVnFDdtHuo4T5oISXzftUcRlF+VKto0NryQbaXCtlGxu5LpJUbKRazk4vQYAuGHHqB4rCAh2Mj+Yz+hExgUTy2jU2UVbrRZeeOEFHD9+nL+3AYM8S5VkA/a4VLIpiqIrKoNIfkDDWB9qGolhtIoC/mOykUyIfpVsxuyiUUMURaQEkvjA/DqakmYX5YkPmNCOyWa/HbGLktsaXeIDdRJNkoI4DeKdwnEIgoBqQ4IAYFAjn+mJkpld1IxkS4siippllKjZjPv1G8lmBr9KNr+JD4wLEElDUHbRbxyewVs/+QjqLRnDhQz2TtrEZNMWk84uVB1jKPUi/JJs58+fxw9/+ENcunTJ1Xmjsgr2imDCqa0FnBOjCIJg21abnY/eP2jY2UXT6bTvubkbRJn44MxCBQuVBtKigCsmS8imRVy7ZQhf+o934eVXTarlEAXcumsUAPDE6UXTcnAlG0cXoraLsirZnFZsjeiVhplDhVeSzWiP8GNNSRLJpigKnjy3CqCIl14xAaC9Chv0u7ltpICV9SYuLFdx9dRgxzmiVrLRz1GSJP35cviHoqgJBcjqHCvJRu9PYgNeWgnOLgp0r1bXmzJkCIEq2dq2V9Xk15T8ZWGr6Uq25NpFeeIDdyAkG7mb1ko2ohDsJDfCRpHKLgo4t9MsdtH1pgQBCgqZzj6T/tvOLkowkMtiod5EtdHS3yv6/YoyJlsU41gnu6iiKMykW1DkU9KVbEFc518/dBq/96/PIgUZ2yYK+JHrt+hhDMwwNZRHMZtCtSHh3GJVJ936BX5JtmpVTXq1vr5uu11cSrZemcu5cWXZKVmtYGcXjSO7KL0gEGYZjMePQsl25OIqAGD/tmF8+Zfu6mjLady2Zwz/9vwcnjyzhH//su5yhPmOcCWbBZLcSADJVLKx/G51XOPfHMmEX5LNaBc1dgq9ZhedWalhttJEKZvCi3eNd/weOMlG4rJRSra4YrJFKYHfaJBlGavrTbRkIJsWdauwE+j6tnmQKNmCJdmslGwjRWuSjUz8nSxx4+PjyOfzKJVUUpEo2WTFmpxiQRJisomiQ+IDEpONE2xMEPX+wn47PfFBxEq2tl1U7e+c+jend0MQBKw3JKQsSDYzJZvxN4LBYgYygEpdMrU0RRWTTVEUHDhwAE899VTkYz+r++xEsvlNfGBmF3XaP45xsd/YcwDw1w+eAgD8u9t34q0v3q4l3bC+FlFsJ/npxwyjfkk242KVFYy/RxVbsVfmcn5isrFkFjXuG6WN1souSpOtvUKysSjZjl5YAQDs3zZkeRwAeMnuMQDAD88smpaHk2wcXYhLycZKsiW5keXwjiDsovSE2zigZ+kAnOKmRIVms4njl9cgQcRrr92MQq6TaAj63dQzjC7HYxe1ItY4yRYsFEXBUrUJBQL2jJcgMloIO+yiw2pswKBJNjMlm+KgZCP7OfVZ+/btw+23365PQEjweKBNVnjBehKUbIKqZLOMyUbZRbmSzRm6ks1ELUCDKNnIQDc6u6i5ks0p8YFV+YiSTRRkFLT3glXJZsRQPgsFgqmSjZ6MhT2WkyQJKysrKJfLoQaAt1Oy0b8D3ePcoJVsRpKNPqYZ1tfX8dhjj2F6epr5HEHAKvEB67XKsoLZNTVUwXvv3k3Zu+33J+q1fswwGhXJRoPHZOuGn+yivapkA6IjW71kF/WuZNNItq3DtmW6fvswsmkRC5UGTs13ty2cZIsBSW4kgPiUbCx2UTfn75XVDw4VXsldMqggA7UglWxx1ZtGs4UTl8uQFBH33ri1a3UrDLsoAEybxGSLU8mWFGVhv0CWZSxXG1DQXtlnAV0XNmsx2S6FrGRTs4uaJz6g+wpJkpjaDvo3URR0YqzW8F7HiF00G2PiA3WSaUOyEcUVj8nGhJRrJRvb+CUo6Eq2pruYbHZKtpquZOsm2cxIIyu76FAxCwWdSjZaoWU8ZlgTQ5Kdmy5zGHC6t2Z9nNXz8qtkI6Dvs13/ubKygnq9joWFBdfn8AP6PnhpLxerDbRkBYIAjFEqZ3aSLflKNrfPPQ4lG7eLdoNlLhukki1Kks1YBqCbZIsqNl/Y2UUVRcGRC227qB1y6RRu0hIe/NAkLhsn2WJAkhsJIHolm1u7KCfZ+hNe6x3dKbVara7VJDcD+qSQbCcuLaPSaCGfy+Bl+yZDJ9m2x2wX5Uq2aKAq2RpQ4D4eG9mfkGyzPhMf+FGyqTbJ9kCJdaGGRk4LIO9HyVbTiJZcKh4lmyiKanZRoU36GEHIN24XZYPoMiabgGhJtkKmM/GBX7toR0y2bKqL/DCLuWNPspkr2czUcWH1LVGRbGawUrI5kWxBKdlEUWSa9JLforw/9CKosZ6xloMoqMdLuY6Fg34h2WZmZvDwww9jZWWFeR+aZDMmAmOBFyUb4I1A8DKm65W5XBDZRb2SbHHZRc3KFRbMiEgvi0tOdtHppXWsrDeRSQnYt9k5fuNte0YBAE+c4SRbIpDkRgKIXsnmJvGB1/Mn/Z5zeCfZBEHosozSx/GT+CAuHDyrri7fuW8TsmkxApJNzcx1wcQuGqeSjZNswUJVsjUhQ3BFstH1bYpSsvmpG05KtlrTWskGmMcecvNeENUOUaN5ga5ki4lkI0o2NfGB+bNoSAoEqOQRt4s6I6MFWXMK1VdvSQCU2GKyuU184GQXBYB8JtW1Hf3Z2B4b69NIMQcFAiqNdj9sZskJu2+JU8nmpGoLS8lGb2tUapghDpLNGJ/PC8lGrKKbBnOuSIYrNrVjsiV5PrC0tIRWq4Xl5WXmfXpFybaysoKHHnrItUW510g2PzHZ3BB0UYyV7dTLUSvZgiLZnOyiRzWr6FWbB5FLOyc0uo2Ky2Z1Lk6yRYgkNxJAfHZR1gkAV7L1J/woKOkMo1ZKNi8kWxz1RlEUHLu4DAB4zXVbAXSvboVlF51bq+vEQRJisiWF9OwXKIqC5WoTCuDbLlptSFire1eBOSrZWqqSbciBZGO1ixqRy3Ta7rxAzy6aic8uqic+sFWyKboNksMeZFDdkrvVAjQaLRmilrUViINk60x84BSTzc4uSt4BomQz/k7gpGQbKeV0u6hRyRaXXTTqhRonJZtVPKGgsovSi45JU7IFQbLNaQrqTUPuSLbd4yUIArBaa+nZtZMIch1uSLKgSDa374rb93htbU1d6HNBIBqPn+S5XBDZRXvRLhp2e04QlZJNt4o6xGMjuGXXKEQBOL+4jksrnWFUwrw3nGSzQJSNRLPZdH2+qO2iYSnZOMnWW2BNgGEGemBhpWTrlcQH8+UGao0mBAG4fe8kgO53I+h3c6SY0SdvM1onEVd20SgGDhsVkiSpKhMIOlnGArrtLWRTGMqr79usz7hsNIzPnRBYVko2M7uom/cir9nu6kHEZBNjVLIJcEx8AAApMfry9SJyWobNlg0JQUhgIQaSzSrxgVe7aFNWdKtxIZMyXdAxrvxbkWyjpZxuFzWqLaK0i9IEQ9RKNrPfge77YDXJpu+TFyWb0UpvhbhJNrpeuSkHsYtuHsy7GuPnMyns0BT7Sc4w6pZkUxRFf85RKdm8uEQAdBHvrOiVuZyTahiwbiu8EHRRjpXt7KJxJT6wO6cfJZue9EDLLOqEwXwG12xRtzWq2biSrY9RLpfxyCOP4MSJE672S6qSjU8Q+ht+yF3aLmq12t4rSrbpxQpSkFHKplHMZwGEr2QTBAGbBtWskfPlesc5oiDZeEy2aFCutyDJChRFwMRAjnk/Y13Qkx+seI/Lxqpkc7KLeiXZCFlRa/qIydZUyxx34gMBcCTZeEw2NpCEGC0L+y0ANLXfRLSztkb17It6LEF3iQ+sJm8r69pqvqAmAzHbzrgab0WyjZVykBU1Xl1NU9rZ2UXtyu0HcdtFzfpOJ7soPYH0axdNqpLNri66tou6VLIBbfV2kjOMkuug67AdaDLNC8lGk3Ru7KKA+zFiv5NsUcdki0Lhl3S7qBcFt7G8xoWNIxdUku06h6QHNKwso2ESkJxks0BUjUS1WoWiKFhdXXW1H1eyccSBoOyixoGcG7luEuyJ5+fV93Ugn0EmoxIMYZNsADCpkWxza50kWxQydCvCLQnPo5+wXFGfbS6TQj7jHGvCCPKcpob9Zxh1JtkkKEqYMdnUNiOImGwkjlfU0BMfoB2I34hGS43JluIx2ZjQtouqn83GDg2pnfQgLQqRqdiATruooijMMdmsnv1yVZ2M5zOpDhUUDeM5rEi2gXwGKS0+4aLW1tjZRe3K7QdxJj4AzMeqRruoVfsXhF2URclmpoYJG2ahPNxe6+ya2ue4jckG9EbyA7dKNrIdIWfdkmxeiBovC9j0ufqdZIsqJttGs4uakfR+lGwE9PFm1+qYLzcgCsA1U2xKNqBNsj11dsn0XJxkixBRNRKkwrOuiBAkXcnGSbb+RBAkm5mSzU/igzjqzcUFjWQrFfVriINki9ouarY6x5VswWK5qsaiGcybE1dWMNY3omS7HCDJRn+WZKJkcybZPNtFdSWbd5KNxLKKK7uoIAhIiwIAxTm7qBht2XoVRMlmpQwEgLr23ElMtjhINqIYc1IROE38ltfV8WEx06lKoMF6fel0GsMFVX1tJNmslGxhtPFxKtnMfqf/DjvxQS/EZPOjZLusxWSbdGkXBdok23OX3AkPooRXko2Mgcn/iqK4Xlh2axeNimTrp5hsQSjZCDaqXZTOoOyFZLMLv0NUbFduGtDdDiy4cYeqenv+0lrHmJKTbDEgqkbCbWNt3I9l4BAEWGNx+amsSW6YOVQ42VrsYJZd1E/ig6g6DTNcXloDAIwMFPXvIiHZBsyVbFGQbPRnTrKFhxVCslkQV1botouqdSVIko1+1tW6Okm2S3xAqzW8xHMkSjY1S6Q31JNgF9VUdHWLfr4pyaqSjavYmJDXYrI1bRIfECVbNtWpHIoCxC4KqJZRJxWBU7+6UG0CEJDPqr+bTfKsFlzNFAFDGsm2rAWXN5s8eo07xookKtmcYrKZKdncgD5e0mOyGe21bspBxiebPdhFb9+rqk0ePbnQFaA8KfBLstHvGcsx3JBsRnAlWyfczGGCVrLFaReNSsnmRu3rhmSjP7tNekCwbaSA8VIWLVnBsZk2ic9JthgQNclGT0Lc7Gc1sAoarA0TV7L1N4Kyi1op2dys6pHjxYH5FdXKMD48oH9njPnTb3ZR+jzcLhoeCMlmRVxZwdj2TmlKthkfExU7JVul3rawZVLm/UJQMdnqHpVskqzoZEsmRiVbSmvfrK5Dzy7K7aJMIHbRpk1MNkKu5tPWxFRYSIkCstp5q03J14o+AD3bcMGFks2eZMtox7VWspmVL0jErWQzu9d2dlFadeRVyUafu5eUbG6uVVGUtl10yJuS7SV7xiArwBd+eN5V2aOCX5LNrWU0CCUb6xix30k2N0SZEX5jssVhFyX1LA4lm1O7YbfwamcXJUkP3MRjI8e8fru6z2FNDUefi3brBAVOslkgarso4M4ymlS7qHF7L+fgSC6Csov6UbIZ48fEUW+W16oAgE0jnSSbVUyboKCTbOXo7aL05ygl8EnCzMwMLl26FOo5VtaJki3raj/jO7RluAAAvtQA9ko2dXIwkLMmu/3GZCtqx/ZKstEKuGwqPiVbWrOBEuLHiAYJ0s8JNiboiQ9kxXJg3FaydVtoogCxjK43Wo4TXSeV52KlARmCLcnmRsk2UiJKNrUfsUp8EOYiTtzZRe1ispmp+Oh74DUmG10WN0q2KGF2D9y0mUvVpk5+Tw64V7IBwM+8ZCcA4As/PAdJTt68gCbZWK7JSLLRf7sl2dzWCa/Ch34n2fopJpvx3GZKtqgTH7DEcvSiZHvwxBx+8PwsAODG7e5INgC4YfsIAODg+W6SLQxwks0CUSvZAHeWUT9khxdEkfiAI/nwU+/M7KJeVtuMSrY46tBaRSXZtox1Bt0MeyJnpWSLimQzW+XcKCSbJEk4fvw4nn/++VCvmSjZhovuSDYCnWQbIUq2dc9lMU64OpRsDXVRqGQTO853TDafiQ9IdkcAyIgx2kW1czcs+vhGS+KJD1yAKNkURY17ZgZCaOa0dY/ISbYMSX7ArmSzKuNipaEq2TTijsUuavW9KIoYLqj9CCH0zRIf0OUJY9E2iXZRO5KNJjr8kmxAcrOL+lWyERXbWCmLbFr0RDK8Yf8URooZXFyp4f7js8xljwpu521BkmxulWxu32Eeky2YmGxRkmzGZ55OpyGKov4//VuYY1d6wYtuI71kFzXrt545t4Rf/Pun0JQU/OgNW3DLrlHXZbxhG1GyLZueiyvZIkIcJBurko2uyElTsrmdIPTK6geHiqDtoqQD8JL4IC6Sbb0hoVFXSa4dk50rKWEr2SYsYrJFJUM3W+XcKHZRQhQpihLqNa9pQc6HPSrZCLZqSrb5csNXTDPAfBW0rWSzJtlotYYTkWAGogZqeCx/rUXisYkgtycWJVvKyS6q2dT4iIwJOS0mmwKgRakkaTS0dzSXjkfJVsh2k2xeJhsAsFhtQIGgZxv2axcdKWkkW7WTZLM6RtB9rCzLkU3K3YyVze6Dsc8jk8eg7KL9FpNtVkt6sElbEPQyxs9nUnjbi7cDAD73+DmmfaJEL5BsBDwmWydYxiFBKtmiaOeMx02lUrjppptw0003eSZb/ZbDTUw2lv5semkdP/d3P0S1IeFl+ybwP3/qJk9juRs09dsLs2U95Akn2WJAkkk2Gr2uZKOR5IaZQ0XQdlHjRMANyRZljB0aF5aryAgSsikRk5Rd1FimMO2i8+U6ZFmJ3C66kZVsUV3zak2d+I4Uc672M75DI8WMbqvzahklxzKzZlcbGsmWd7aLelWy6XZRrySbRmrlKUVFHEoxZ5JN618FrmRjAanXgBp3z6z9qxOCVds0eruoWnfpxAdW7bSThWmp0oCiCDpx59cuOqbZRVc0Qt/MLkrvG3T/YhzrRjXxo2GnZKP7cTOSzWp/1rLQdlG7vsRMDRM27OyiLOUgiXYmfZBsAPAOzTL6/edmcXHZuxo7DCSZZCPwMrYGOsd4XlWaSZ7LuY3JRl9LUpVsxnMDwNDQEAYG2vOTKOyiRku9n1ikxu/+9/2nsFxt4sYdI/j/fvYWPeapW2waymNqKA9ZAY5eXO06V9D3h5NsFoiqkfASk40uW1KVbF7soklumDlUBGUXtVKy9YJd9PzcCgQoGMhnkMt1EiFhk2zjmgKhJStYXm9GbhfdyEq2qJQX5ZqmZCv6S3wgCAK2jqhqNq/JD4wTLvoe1DQr5kDeWnHnOyabRlQ0fNpFC9lUvCSbaK/Ia7Rk3S7K4QxBIIkFBLQs/KI6ydZDSjZHu6gHJZvZdqNaP7LmYBcNSykdJclGYHU/3NpFjdn6vJJsfatk0zOL5rv2cXMdV24awO1aAoR/ejJZCRCSTLL5WcAGvI9zemUu5zbLuZPS1Ygk2EVZyhUG6OsLOibbidkKAOB33nQdSjZxgFlA1GyHppe7zs+VbH0Gt421cZ+oSDbWhomTbP2NoOyiXgcCiqJ0TQiirjcXFtTVj4Fioes+hE2yZdMiRjXyZW6tHrldlCvZuv8OGmsayUYmwm5BP7Mtw/7ishmVHR12UU3JZpcF1beSjZBsLW/3myjg8plUrP1LWgu+b6XII9lFeeIDduTSIhQAkmSR+EBXssVDshV1kq3la7IBdCc+YInJZqdka5NsTciyYjl5DEspHYeSjWWsbEeyBalko4+TtJhsfpVsJJSFH7sowZtu2goAeOrskqv9woZbB1IcSjYCPySbm3FOr8zlws4uShAHyWaHKJVshGALimSrNSUsVNX37IrJku9ytkm2lY7y2pXVKzjJZoEk20XtSLaw4LTSarU9R38hKLuokbRlJYsUpT2hikvJNrO4BgAYGih2/RY2yQZ0Jj+IK7soJ9nCueZaU9IthaMe7aI0SIbRi8vBKNno+lDTSLbBEBMfFAjJJnm73zUt+H0+HbOSTQvUb6XIa8dk43ZRVpDkB45Ktpiyi5a0usuiZLNbxFQUBUtaTDY3dlGr72mSTVZURbTV5DGsiYeRWIhjvGh1r8lvxmsPQslGn7tflWzELhoEyXbFpGp3O7dYdbVf2IhTycYyRgbcj63Nju9mnNMriQ9Y5rJWyqakxmQzntvutyhINtaFCFa76HK1CUURMDmYsx1vsoJkGCVKNpayegUn2SzQqyQbt4tyhIkg7KJ+Eh/Qg424YrLNL5cBAGND3SsqXtPeu4FOspVrkdtFzQb93C4aHBYrDQhQkBIFDNooxMxgVheCUrKZkQTrhGSzKadZ4gM37wWxBTSakqd7rsdky4T/Xtoho8Vks1LkNSVuF3ULXclmEZON3Gvy6KMm2Qa0uluusyvZzMq4Vm+hKSme7aJmJFsuk0Ihk4IABXNrdcfEB71sF3WjZDMqMejv4ojJ1otKtqDsogCwa1xdyJxeWtfjViYB9DNLml3UCLcLsV6VV70yl2NxZfVaTDaWsVWUiQ9YM5qyKtnIItPeCf8qNgC4XsswemahihVNIcdJtogRVSPhtrEG4mnAwkp80CsNM4eKIJRsQLuuu7WL0gGao+g0zLC4psYGMCY9ACJSslEZRqO2i3IlW/ffQWK+XIcABYVMyjUpYEqyjagTnTASHxACy45ko22mbmOhAG2STVYUXZnkBuvNbrtoPDHZ1GfZtCCkyQSSK9nYoWYYFdCyeBd1ki0uJRtFsvnJLrpUUeOmZdIpPYGG38QHgiCgmG2TbFaJD/rJLmqEk13USslmvEde7aJJVbKZ1UV3JJumZBvyr2TbPJhHNi1CkpVEJT+IU8nmdA+tlGzcLqrCT+IDL1bTjWgXDVrJtlRtQAawNwCrKACMlrLYOaYS+IcvtC2jdmX1Ck6yxQw/SjZ6tY0gKUo2P+fgSC78TFRpYqzRaOjf0f87dQBmA92o681qWbUuTI0Odf3W73ZRHpOt++8gsVBuQIAazykIkm1rwHZRs8QHQyHaRUu5tJpxEwpW191n39btojGTbJk0UbJZJz4AwGOyuUAunbJVspH4d1nR2R4UBkjW3XKt5bgYYkdAL2okG4lPCJgrKViVbKmU2raUcmkIUEkRp8QHvUyyEbiJyWZmFzXeI792UTdKNq/n8QI7IoGF4Lm8SmKy+VeyiaKgT4bPLgRvGV1YWEC5XHa9n9t5G4/JlhywCkYIaEWaVTtJI+l20TDL4NahxKpkW642NSVbt7DBK/S4bBeWO8rASbaIkFS76EK5ju8cnYGiKLYvVNDl50o2DsAfyQZ0Zhilj+NWyZZKpWKZLMuygmpVXVHdPmlNsoVZNppki9ouajZw2Ih20bBItjlNyVbMpj3XITMlm1e7KIG5ko0kPnDOLuqVZBNFETmNoFr2RLK17aKxKtm0+9C0tIsqgGYT5ko2NpB6YRWTjRCX6ZgSHwyaKNm82EUJyVbKtclsr0o2Qh4JgoBSNr2h7aJm57Yj2YwLfH7toixKtjjGx36UbKvrLf29mwwgJhsA7CIkW8Bx2Wq1Gg4fPoyjR4+63teNkk1RFFObYb8p2XohJpuiKLZtLYFZW0FfXy9mF+1pJZuW+GdPQHZRALhRi8v2w9OLTGX1Ck6yWSAOuygLyfaBzz2Dj/zTQRy+sOJYMYOEWyUbJ9n6E34nqvRKHsDu3SegV5KiWJkxYq5cg6i0IAjA9onhrt8jJdnKPLtolIhiELlQbkCEPyUbjS1DqpJtqdrUCSc3sFOykQQNdtlF/cZkEwQB+UwKAtTVTLeoJcQu6qRka0oyBAFIcYKNGYRks1aydcZkizqGJ1GyrdX82UV1ki3vjmQz+55WGBRzKYhA39tFrcAak804WY4ju6jb8/iBGeHKeq3EKjpcyCCf6V6Y8XINO7W4bOcWKq73tcP6urrwRFwVbuCWZCOg76lxwdkOvUCy9cJcji6X27ks/QySSrLZIey5An1s1rrHomRTFDU5jwIhMLsoALzy6kkAwMMvLGC11gxtPpl23qQT9XodTzzxBM6cOYNqtYrJyUncfPPN2LNnT6AFixtxKNlarZatQu3Q9DIePbWAHBQcml7BzbvGu7YJq6KwxtOJg/jgiA5Bk2zkOG4TH8RFsp2bX4MABaVcBgPFQtfvkZBsA6o6iWcXjRaRxmTLuldqmr0PQ4U0itkUqg0JMys11yuBxomlPuCUFTQkCSkAwwxKNrNjsUAl2UQIgoTlqvvJECHZCnGTbETJZqJakWVFVWOJQMRiq55GLqPaRVuSvZItE5OSjSQ+qLhIfGAak02r9wMOSjYrFZrZNmpMNk3JVq5DHorWLkrb58i4NyxY3Vuz+0O3UcY2z0ql4QUsSjZadUOXI2zYKdmc0LaKtjNjB6ZkC9guSsg1L2XySrLR9zFquyjLmIW2RLLuY1aupM7/WNVogHrf6HeQfv/d2DKjHCuzKNnCfDZBKtnIMcr1FpqSDFEUsENrC4LAvs2DuHLTAF6YLeP7x2YxFRIJyUyyPfLII/j4xz+OL3/5y2g0GhgZGUGhUMDi4iLq9Tr27t2LX/iFX8D73vc+DA4OBlrIOBAHyUZkxUYiguBTD54GAAhQJ2MzWocWBdxOkLiSrT8RlF2UwO2qsJnsPsp6Mz2nBsksFfKm96Df7aJWSja7xYF+QTQx2dp20SBisgmCgC3DeZycq2Bmed0zyUYnMADQER9tqMhGshnLyQJBEJBPpyCg6dEumqyYbGZ20SZZwAJPfOAGqpJNcIzJlo4ru2iePfGBXTiOBRMlG8t7ZWYXpZVspZya+GB2pQZ5yt4uGpaSLZvNRkayGeE1JlsY2UXN+s+4Fq+CULKRpAfGfTyRbONqn3UuYLsoIdm8jF+CJNlIUiC79okm2ZzqhbGfc0OuWI33WNALczm3JBvQrWRzUkTbKdnCHqfHbRe1Uvt6UXCT75Y0B8OO0ZKepT0ovHH/FD7+/RfwjSMzeO9VMdpF3/zmN+MnfuInsG3bNnzrW9/C2toaFhYWMD09jWq1ihMnTuA3f/M38b3vfQ9XXXUVvvOd7wRayH6G8YFaWUYvLK/j64dnAAD7t6mxoJ45t9y1XS8p2axUMhzJhZcMgTSclGxuEh/EMRm9tLgKABgsma+oBLHK7QRCsi1Vm3o8oqizi/oZjCUJK+tNfOfZy6jU3a0mh6dkayc+CCImGwBsHdGSH3jIMGqlZFtZb0KEgmxKRDZtHwSYRWFjt39O8/ut+LCL5qiYbHGA3KOmJHf3+ZQSi9tF2dGOydZ9TwE6Jpt7BWUQoGOy+VKyaSQbncWXRclGYEaytWOyAfPldrtgpWQLKyZbNqsS9FG8m1YkZBwkG30co2KNwHjPk6BkcybZ1IX/zVrSA+M+3kg2zS66WA30HtBzLa/P0Hgcp+3pe0q/a05xbY2/uymvnzlZ0DHZZFnGwYMHcfr0aebjBgmz95t1H69xyel7sVHsokEq2ZYqDdUquim4pAcEb9g/BQD4wfNzaMrmcxu/YFKyve51r8P/+T//R+8Qjdi7dy/27t2Ld7/73Th69CguXrwYaCHjQFQdmrHCW62K/O1DpyHJCu66chz/8a6t+ON/eAHPzqxiZb2JYZuYOEHAbGBgBT/kAifZko8kKdnisIvOLq8BAEYHzUm2KJRsI4UM0qKAlqxgtaa2F3Eq2cjnqGMeBYHf/soRfPnARUwM5PDB11yJt79kp+VqWRTxcebLdaQExRPJZvU+TA2pE55LHpIfWCnZiKosl3Ymu0VR7Lh3bq9LjcmmYHndg120RdtFO5OtRAlSp0QoqLdkPV4RQKvbFIhcycYMkl3UMvGBpJFs2ue4lGz+Y7Kp79pgPgNA/dtr4oOOmGzZFARBwUK5BqBgetwwLEayLOv9eBQkm5Nd1GwSHBbJRp+b7i/NlExxkWx+lGyXV1XCdjJAJdv20SJEAag2JMyV63rWUr+gY7E5KcloGK/BKcyP1TUTS7Isy2i1WshkrOdxxnkhy/m8xGQzG9exguU5V6tVLC0toVwuxxJiyo1IwKuSjcBKyRam6yNpdlE/2UXJd8tVlWQLMukBwbVbhrBrvIizC1WcmK1gz3Aq8PvD1Kr80i/9kiXBZsR1112H1772tb4KlQREvWpEQFZFFEXBkQsreGG2jJmVdXz+h+cBAP/+ZXuxf+swxktZNCXgy89c6Ng/DOLBaiXGDFzJ1t/wS7JZKdlYV1nMUmhHWW8WVtTgu5Mj5qsqUZBsoihgYoCo2aIl2YwTDoJezDDakmR877lZACq59VtfOYrX/+kDuuXFiGhisqlKtkJAiQ8AYEuASjZy3UsV1daazziTgVbqGBYIgoCcpgLzkvhgvZEMu2iOItXqBstoUyODRAAiJ9iYkcuIgGKT+ECzChPOPGqSrZQlSjbnoMp2KonFiqoOGnSR+MDq7w4lW06Nyba23kBLkk3VHWGMJ2nlDyEW4hj7xW0Xpe+1WX/Sy0q2TQEq2bJpEVuG1T7sXIBx2YwkGyvMroE1Q6zx/WKJy6YoSmRKtrBJNisnRFRgVaMB3c/Kq5LNzz1lBcvYJkolGyvBy6RkqzahANg7GbySTRAEXc125OKqbVm9wteoo1wuY3V1teNfvyBuku1//+AkfuzjD+GeP7kfd3zs+yjXW9i3aQCvvErNiHH9tmEoAP7xiXOmZfVafifZutsGxu+5OZKFsEi2Xkl8sFJWB3mbR4dMfy+VSshmsxgZGQm1HG3LaDuuSBiwUjJFMXAIGwenl7FWa2G4kMHvvvk6jJeyODVXwd89fMZ0+7BJNllWsKiRV6VsOjAl29ZhdcIzs+xOyUYfhzx/8h0hvFgSNPgl2fIZUVOyebCLakq2fLpblRElUqIIQSBKts4JE1FcpWIK0N+ryKdTUCBYKtnWNatwJiaSbVBTstWaMogj2IuSjcSkGaISjJipKcyUR1bbiKKIXFpERhQgAqjUJds4b0G2d2SMm8lkIpn4OY1ZzMgBOhxFWHZR2kpvdv1xLUL7ismmKdmCTHwAtC2jQSY/CJJkY0leYFb/yHjYjqRjqRtmvyVRyUaOF9dcz7hoaAevSjY7u6jZ5yDAckzjHOvi8jp+/M8fxl/cfzKwMgVpF23HZGtADknJBgA/sn8LAOD5S2tomYTz8AvXo47Tp0/jR3/0R1EqlTA8PIzR0VGMjo5iZGQEo6OjgRYuTkRNspFK2Ww2sVCu43//2wsA1Ng8BB+8Zx8EQc148qItQ0inRDx3aQ1Pnl3St/Ezgfj20Ut40W99E3/z0GnTMqrqulV8/7nLlvfHj5KNI/lw00mZIQy7aFRotGQsr6mDvG0T5iRbOp3GHXfcgWuuuSbUshCSbTFAJVu1WsX09LRpJitj/Bhj59iLJNsDx+cBAHdfOYF33bEbv//j+wEA//TktK4uohE2ybZUbUBWoCvEgkh8ALSVbDMelGwEZko2QCU6wifZUhDgLSZbXSNa4layiaKItHYPicKKgMRkywjtbTmcQWL1SZK5kq3aiDfxQSnXXlAiCTi8TDYWtZhsQ0XvSjbjYhb5briQhggFK7WmbZy3IMdqhJCgSbYwx4JuxqphK9mM5ybHMiNZelHJdnFZ7WNIHFDjPl77TZ1kCzD5Aa2o9EomESWmkxINsCfZ7PY3qxssJBuBmzGaH5KNJZxGUpRsXuyiXpRs9FjZWIYwwGIXJef/3OPncOD8Mj72jefw375+LJBnYpwvsCq4rZRsLVnGaq0JRRGwdzIcku2G7cPYNlJAvaXgzEKwcR8BF9lFCd75zncCAP7mb/4Gmzdv7tv4IVGvGmWzWdRqNbRaLfz5v51EpSHh+m3D+Mov3YV6S0a9JWGk2I5fkc+kcMP2ERw+BfzF/adw2+4xAN47/oVyHb/6xcOot2R8/Psn8DO379TjxsyvreP+52fxwlwFD35L7eT+8G3X46dv29l1HG4X7W+ErWRzyvQUp5LtwRNzkKUmhrJpXL11zHK7KNrESc0uulhpYmcpmHtw+vRpzM3NIZvNYtOmTQA6lWzNZlPPhEWQTqfRbDb151JrSvhvXz+GW3aN4s03bfNdpjDxwIk5AMDLr5oAANxz7WZMDOQwX67je8cu4w3aChdB2DHZSBbBYkb0lWWyi2QjSjaXJJu9kk0taz7DFpONwIs6j/RDKz6yixay8ZJsgiCoz1SLyUZDJXSV2GyNvYpcWoQCQLKYtKw3iJItHoVgJiUinxFRa8qoaGVxyi5qrJtNSdbr/XAhh4UV66Dddu8ZWZw1xsoZzqchripYXTcn2cK0i0ZFshFYWWFphB2TzdgG2SnZei0mW0uScUlTsm2zINm8XsPOMS3D6ELF0/5GKIrSoWTzqkbMZDJoNpu2yQ+CItno2KYs5U2yki0uuBkD+FWy0fvSSIpd9FtHL+m/ferB0yjXW3jp3nE8fXYJ5xar+M+vfxGu3WouJrCCVRvpRcEtiiJWqk0oCpBJp/Q5T9AQBAGvu24zHnzsPM4uVOIn2Q4dOoSnnnoKV199daAFSRqiXjUiJNvMUhmffUyNv/Zf3nA1RFFAIZtCWuie4N29bxKfO72M7x67jOOX13DV5kHm8x65sIJNQzk9dsLv/Muz+orpUrWJrxy4gJ++bScURcGHPv8M6heXoUCdKEiygk/82wt424u3I20RJNzL/eMkW/IRNMnmNhsnPeAwlilsfPXABYhQcNXmAWQzrpvOQNFWsjWAUjAdNxko0gM+KyUbARlkkvN/9rGz+Myj6r9yvYV33r7Ld7nCwEq1iYPnlwEAL9unWvAzKRE/det2/O8fnMTnnjhvS7KFMVCaX6sDUHT1cmAx2TSSbWW9iWqjhWKWre7Sz9k4GVzRSTZnxR09KPVGsml20Wrd1b5A2zKYS6egyHEr2QSIArrtoi0ZIhRuF3UJEquvZRGTrdrUFFMxkpcDuQxqzTqqTXObPdDZphrLSGzZggAMFrJYMNmGgKVeG/tbVckmY3U9XrtoFEo2K5ItSiWbcVtjGAYavaZkm12rQ5IVZFJCeHbRgJRsJFkBgRcySRAE5phqZHsjyPNnIdnIgqaiKLbltSJyk0Cyxa1k8zJ/8atkszpekGA5Jl0PTs2VcWK2jLQo4Fff+CL8wdeP4R+fOI9/fOK8vv3yehNffP+dru5V0HZREiphfDAX6rjt1l1jeOAxAbNr9cCfj+tRx2233Ybz5887b9jjiLpDI7LjLz91Dg1Jxp1XjOPuK1WFxfT0NB5++GHMz8937LNpKI/XX6sG7fuL+08BYOsMP/f4OfzYxx/CK/7oB/jE90/ga4dm8NWDFyEKwI/ftBUA8LcPn4GiKPj64Us4cG4Z6ZSAN920HU/+xj0YL2VxfnEdXz3YnUWWK9n6G35JNivrGH08u449LrvoekPCd49dhgAFV00Nxp5Js02ytROl+IVZvDVayUZ+o38n30uShKYkd1jNf+NLR/D5J875LlcYeOTkPGQFuHLTQIe15e2aOvfBE3M4bxjQh06yVdSkB4Rk80JIAd11YTCfwaBmXSN2HhaYkWzkuyWKZHOCb5KNJD7wpGQjdlExViVbOp1GShSQgtylZGtIKskmCpxkc4Oc5gOVrGKyaeqxOBWCJC7buoNdlMBYN8l7NlLI6AuaVn2PlV2U/mxUsg3lM0hBwWqEdlFCsqXTaU9EVVCwI9nCjsnWa0o2ljJc1GJ+Tg3nIYrmah7vSjaVZAsq8QGtYgPiI9ncKNm8ujeSqGSLe67nRslG4CUmm5kbIAl20W8dvQwAuOOKcfz7l+3Fn739ZkwMZHHj9mG8587dyGdEPHNuGfcfn3N1fq/ZRa1U1GSRaWIgmIzCVrhu6xAUqAnQmq1gk7i5HnX81V/9Ff7wD/8Qn/70p/HUU0/h0KFDHf/6BXHYRRfKdTx5WiXS/usbXqS/MCShRLlc7iibIAh43yuvAAB85cAFXDAJbH1heb3j+8dPLeD/+coRAOoq///49nH80ueeBgD8h5fvxe+8aT8KmRSeu7SGHxyfw8e+cQwCFNy6awwv2jKE0VIW//5lewEAf/5vL0A2DHC9rBBYfeZIHoJUspnFiqHPYQY6u2iUA/TvHruMWqOJ4UIGU0P5xJBs82V1sBgkyWY16SCf6Y6U7rj/9dBFXFypYWIgh/fcuRsA8GtfOoyvHOjMgJwEEKvoy/ZNdHy/c7yIl+2bgKIAn/9hJ0EYhZJNgKIrzYKKyQYAW0aIZZQ9+YHdAFG3izIkaKDfFS/XRIi8cq2FlkmsPDvUEhKTLZvNIi0KyEDqjsnWkiFoSjYrKyBHN3IZUU98YFbnVZJNQVqwHsiHjQGN3K7YKNno74zPnrgLRovZromLEU52UaA7+/VQIYMUVEuqnZItLLtoGCSeEaxKNnpSTL+HxsUn4/33UvYkk2xelWxknkFbRY37+FWyLVQaKNedkww4ISiSLaiYbHaJD2hyh+V9MZ7Pj/AhrJhsrOUJGn7son6VbGGSbG7sooqi6FbR112ninTuvXErnvzN1+IrH7gbH33TdfhZzYHyP797wtVzCjK7KADMafObicGC6e9BYedYEfl0CpKs4GxAlnQC16OOubk5nDx5Ej/3cz+H2267DTfddBNuvvlm/X8OdyCVLJvN4tD0ClKQ8bprN+PGHSP6NqQBN06CBUHATTtGcMfecbRkBX/14KmOSn1+sYrX/cn9eNkffh8f+acDeOTkPN7/D0+jJSv4sRu24H+9/SZsHlIn63smSvjwPVdhuJjBT9yyHQBw3+eewfTSOjYN5nDLrlH92D/70p0Yyqdxcq6Cb1K+blImuoxe7gVHchE0yWb2t109iCsm278cvIgUFFy1eTCWpAtGEJKNxPEKouMm95ZVySaKYoeSjahpf+6u3fjte6/Fe+7cDUUBfv9rx7oscnFCURQ96cHLNasojXe8RFWzGRMghB+TjZBswSrZAGBq2H3yAzsl29q6Wu8KWWey2W9MNqJYEqBgteZugqXHZKNItjiQzWaREgWkBbnrXWhKCkQAKUGIhQjqVRC7qGRpF5UgAEiLnQRTlNBJtrr6zM0sRGbvGcESIdlKWdMFKRpulGxtu2gGKUHG6nqrb2OyWR3b7txh20WNzyNJiQ+8xmQjJNvWEEi2wXwGYyU1JnUQk2BjDLWNomRz2i/KmGy9RrJ5UbLR12tHqPsFy70k519db+DA+SUAwOuu3Wy67S++4grkMyIOnl/GD1yo2YK0i56aK+O5y6qw6Kop9lBYXiCKAraNqkT+ydm1YI/tdof3vve9uPnmm/Hoo4/i1KlTOH36dMf//YKoV40gpvHcpVWkIeNdd+zu2MaOZAOgq9k+/8R5zK3V9W0+9o1jqDQkyArwxacv4Gc+9TgWKw1cv20Yf/wTN+LNN23D9/7TK/HHP3EDPvcfbtcVA++5Sz3/mrZi9IFX7UUm1VatDOYz+Lm79gAAPv79FzrulZ9VE47kI0i7qHEQxxL/xayjC7seraw38YPn5yBAwdUJsIoCwMQAUbIFbxf1omR78swCnru0hmI2hZ+9fRcEQcCv/8g1mBrKY26tjq8c6LaWx4VT8xVcWF5HNiXi9r3dCSzuuWYzxktZzK3V8TSVuTl8JZtqFy1kUr4UTWZ1YStJfuDTLqor2XSSzTm+mx+7qHruNtFGFHSsSJaSTUTaxC7alNpKNk6ysYMkPmhZvIvVhgQBCjIpewVYmCAZRkniA8Bewd9tF1Xb99FiW/Vl1f/YXZ8ZySYIgm4XrTRakEy6EJY+2S2izi5KYPXeG0k0sm2YJBuB3cQ7LqeHnZLNDhdDVLIBwVpGg7aLsiQ+MIObmGysJJuVko0FUcVkiwtxKdnosXKY94BFyXZyrgwBwM07R7B5yNyGOTmY03mIP/3OceYyG+cLfki2P/zmc5AUVQB0xaZwSTYA2DGuJlc5NVcO9LiuRx1nz57FH/7hH+L222/H7t27sWvXro5/ceKjH/2o3jmSf1NTU56OFXWH9uT5VdRbMkYLIu64YrxjGyeS7eX7JnDjjhGsNyX85leOQJIVnJ6v4OuHL0EUgD/96ZvwiqtUxcbkYA5/+a5bdAXCQC6Nn7x1B7YMtzvGKyYH9O1v3DGC116zueN8gKpWKWVTODazih8832a6/ZBscTfAHM4IS8lGf2ZRstExU8LGt45eQkOSsW+yiImBXCJINhJYuNyQUG9JoZNsZko2QRD077/89DQANabZcFG1UGTTIn5OI+w/9cCpLmt5XHhQW5m7dfeoaRKAbFrUlcTHL7dXtcIm2RYqdYhQUMw5WzDNYLcPGUxdXnNPshknnIqiYFWb/LMkUfAbkw1QSTIB7uOyJSUmWyaTQUoUkBEk65hsYjxqq14FHZPN2P5JsqInlCAkWxzPncRkq9StFRx2dlESk220mNXrRhAx2cjf+YyIYlr9bWm9W00VZky2pCU+MC4qhEGyGc+dxMQHnpVsS+GSbEEmPzCSbF7ViElUshl/o8/rNG7hSjbrffzEZBMolXpcdlFy/lOzZQhQ8Prr7LmRX3j5XhQyKRycXmFWswWVXfSHZxb1uHF3XzkRyQIZIfFjJ9le/epX4+DBg4EWIkhcd911mJmZ0f8dPnzY03Gi7tC+eUy1L103NQABhgGjwcZltlLxZ2+/CUP5NI5eXMX9z8/iG0dmAADvvH0Xfvzmbfj0e1+C73z45fjmB1/WQahZ4aNvug5vffE2/MlP3Qigk50GgJFiFu98qUqq/sUDJ7v293L/OMkWPOr1um28B9ZjLC4uAghPyUZ/tuuE4ojJ9q+H1HfpnhepxHMS1CalXBrjpSwUCFipNgPpuO0SH9gp2S6v1nDkwjJSooD33r2745jvuH0nBnJpnJgtuw6iGhYOTa8AAF66d9xym32bBwAAxy+3O9ywSba5spb4gCFjpxns3odNWlgAonRmgdkAEQAaLQkVTeUcGcmWTgFQsFJlJ9kURUGt1baLei1DECAx2dKQUWt0TqiakgxRULhd1CVy2jNtmUiwqto9VpVsQqSLMjSIXXSNUrJZkSdmz562i46OjmLHjh3Ys2eP6bnckmyEPN88qC6KLJq8W/1gF7WC8R4ZFYVGgtFqAukGVnZRFpItKtgp2eyeE0mqE4ZdFAB2ESVbCCRbmHZRAjuSjTUmmxtlqdk7H6ZdlIUUDqoueIVXmy3ArmSjz0UvSLM+u3q9jlOnTqFW8+Y6sIIoiqg1JZxfWocAOJJsEwM5vP0lOwCoTjgWBGEXVRQFf/C1YwCAm3aOYXwgFw3JpinZzsxXAhUEuC75vffeiw9/+MP46Ec/in/+53/GV7/61Y5/cSOdTmNqakr/NznZHXOHBVEq2cq1Fh4+tQwAuGbrUFeD7aRkA4Bd4yX86dtvAiDg0IUVXF6pYSifxodfe5W+zb7NgxgfaKfWtsOeiRL+5KduwhWTA5bEynvu3I20KOCxU4s4NL3csQ1XssWPRqOBxx57zDPRTHDixAkcOnQI8/Pzvkk2Wv3kRclm1SiHBVlW8NQZlWC8Y+8ogOSoTXZPlKCgre7xcx8URdEHc05KNqME/vFTixCh4M03bsV2La4BwVA+g3doHfVfPpCMcAJntJguV0wOWG5zlSZPt1KyhVHnZpbXIUDBYN6fks2sbJNauz/rgmSjj0uXZ1mLHScIbHZRPzHZCHIZUVOysdtFm5KiZ57MJcAumhIFCFBQa3SSGdwu6g2qXVQwVbLpmUWFeO/rgKZkK1OxBK3GPWb1kthFR4oZpFIpXHHFFRgeHjY9F0viA6OSDQAmimoZFyrWJFsYdtGosot6UbIlwS7aS0o2RVFCjclGH3fGJMGbWwQVky2oxAdR2UWjUrJZlbGXlGzGbaKyi87MzODcuXO4cMF9wjCn6zo5V4asKNi3qYg9EyXH4735pm0AgO8du6z3qXYwJj5gzS5Kl/sbRy7hwPllFLMpvFpz0UXRf08N55FOCai3JJwOMPmB65K/733vw/T0NH73d38XP/mTP4kf//Ef1/+95S1vCaxgXnHixAls3boVe/bswdvf/nbHOHH1eh2rq6sd/wB3clw/UBQFxy6tQlIEbBktYbSY7egA6MmvHckGAK9+0Wa8V4uVJgD48Guv0oOF+oHxxSHYOlLAm27cCgD4C20C7WfQxEm2YFGr1aAoCqpVfyt/ZEXl8uXLgUxUycDCC8lGd3RRTJZPzVdQaUjIZ0TsGFGJiqSQbLvGi1DQTnPtl2QjcKNkO79cw6n5MkRBwS+9+krTY//cXXuQFgU8emoBhzUVWZw4q8V0IfYTM1y1WSXZTsy2lWz0anPQKoN6S8Ksll10MJ/xNagwV7KpdtH5AJRsS5U6REFBLp1CKuVczqDsogD0us6CGpVgIG67qCiKSGntXq3eSRQ2W4pmF+Ukmxu0Y7KZKdnUZ1/KiF31N0roiQ8aLUtCxWp8BbRjEI4Wncdxdko2AjPiZLyovlskvqfZ9kGOzaJOXmR1bCsSzUhOhGkXTWLiAy9KttVaS8/6GZZdlJBsF13EFbUCUbJ5yfiYdLuoEWaEsRXIfSDl8kOyOW3TKySbWyWbX7soed52cf6MYLkuQRBw5KK6aHzvDVuZjnvj9mFsGymg2pDwg+dnHbcPQsn29cOqc+jdd+7GUCHbcbwwkU6lMDmQgwAFRy4EN09xXXISk8fsn19bml/cfvvt+MxnPoNvfetb+NSnPoVLly7hzjvvxMLCguU+H/vYxzA8PKz/27Fjh+05Ll68iEceeQRra/4zUJAJ67GLq1AA3LBTtS/RDS79txPJBgA/f/ce3Lh9BDdsH8bPanbOIMoJmFf0//DyvQCAbxyewfnFqievu9VnDn8wi7HlBeS9XlhY0OtjECSbF7soXfejGKCTxva6rcOAQdUVN3aPq0q2lar/DKNWK4xGJZuRZCMJDW7fPWqpDNs6UsC9Ghn/v753wnMZg8BaralnZLUj2a7cNABBABYrDcyXVWIqTLvoJS3rZz6jxknyo2QDut8Jko12bq3O/L4Y3zVy/KVqAykoyKdFfSXfDn4THwiCgHxahADFHcmmxWMTBCCbipdkA4BUWr1X9Xon0dmQZAjg2UXdwi676Lr27IlNOK77SmKylesty/7K1i6qk2zO75mbxAf03yMFtYyzlW6VaNB9rLH/iNIuyqpkMyPZjKoUs/1ZYDxHkmOyuSHZSNKDsVK2K+N08CSbfyUbIdlyObVfjCLxgVm/4zbxAQvpbXY+VoLHzLnAil5QshHEQbKxqoLJPiwWZOM+djg5V8b0cg2iIODe69li1QuCgB+7YQsA4F818oulHH5ItsPanOvuKydM1ZhhQRAEbBrMQwBw9OJqYMftqxHdG9/4RrztbW/D9ddfj3vuuQdf+9rXAACf/vSnLff5tV/7NaysrOj/zp8/D8C6UiwsLKDZbGJlxR/TWWtK+NdDF/AvBy9isdpALpPCDTvUTHd0g+2WZEulRLzqRZvw5pu26gF//cJupfWaLUN42b4JyArw1w+d9mUX5QgWZjYIL6BjdRFy2U+j59UuGscAnTT4128b7ogHlwToSrYA7KJWKi1jp0knPri81sCjp5cAAD96vXkqcIJfetUVSIkCvnvsMh45Oe+5nH5BVGwTA1kM5q0nroVsCjs06+vxy2sddQ8Ivs4Rq83UUK7LnskKu30mBtQVwYYkMxNVVpPOpXIdacjIZ1KRkWw5LfHBiovEB/VmOx6bIAixk2zpDCHZDEo2PfEBJ9ncIJdR75VZdlGiZCtkusmlKKHHZKtZK9ns6mU7u6g/JZsZyUa+G86p311ejYZkI4iqD7e6v1Ykm9kEkX5m/W4XNSN9na7VKumBcR9/JJuqxl6rt7Bac5cAx1geQrLl8+oxg1CyuSESCGjFmFUZglB+RqFkcxuTLQ5EqWSj93GjZCO/uxEtsVzX/31qGgoE7BovYnyA3eH2I9erJNv3j83qsU6t4FfJtlxt6GP0/VuH9eNE0X8LgqAvRseqZAOA+++/H/feey+uvPJK7Nu3D29605vw4IMPBlaooFAqlXD99dfjxAlr9UQul8PQ0FDHP8C6Uhitm14wt1bHa/7f+/HBf3wGp+ZV7+97796LwaLa4Psh2fwMWmq1Go4cOdJFINqttALAL778CgDAF354Xk9V7+X8cTfA/QZj5+AVZo19XEo2s/OHSrJp9sb924aZswtFhd1aoM4gSDYvSrbvHpuFrAjYt2kAU4P2sR6v3DSId96+EwDw+/96TI+VFTXaVlHneBRXackPTlwud93boJVsxAIzpSUo8JP4AOiuC7l0CiOaGmauzGYZNfYzpEzL6w2kBYmZZPMbk00QBMouyh6TbV3PLNquu17LEAQyGY3obJqTbFzJ5g75TAoKBLRsYrIVM9EN0s2g20UpJZsbu6iuZGMI++GWZCN/DxGSzcRKHnRGPCNZFaWSzQosSragSDYC4/NIEsnmScm2QuKx5bt+C4pkK2bTuqJzxodllCbEglKyGeuI1fZGkP0Ba1LFb0w2gP099kqysRJqcSvZvIwBglCyuYnJ5kXJZjy3EZKs4ItPT0MBcO2WIVf1/Ybtw9g+WsB6U8K/PWefvMyKZDM7n1HpB7RFDbvHixguZkz7rbCgKtnadtGg6qfrkn/2s5/FPffcg2KxiPvuuw8f+MAHUCgU8JrXvAaf+9znAilUUKjX6zh27Bi2bNkS2DGNSQi84ItPT+PC8jomSlnctnsM/+6lu/Dh115tGkTTLcnmB3Nzc5ifn8exY8dMG0Or89115Th2jxex3pRwbMY5pp3xuFafOfwhaLsojSBINrdKNqsBeliQZQVHL6qN/g3bk0qyCSjXJTQl65VQFjiRbEYlW60p4elzy5Ah4rY9Y0zn/tA9V2Ewn8azM6v456emPZfVD9SkBwp2jTiTQ/s2t5Mf+AkIzAJigSFkZdB2UYBKfrDqjmQzHn+l2kAaMgoelGxeycN8RrOLulCyEbtoPt05uI2NZMuq96rZMJJsCoSYA/T3InLaczWzi5IVd/Ls4ybZyvWW5STLahFTkhVduTni0i5qrOOTk5MoFAr6IjK9TSmrvdc1WY+rZdwmqLEZ3W5GFfKBVclmF5NNlmU0WjIePbWI09rCeBB2UTvyw8v4uFqt4sKFC577J6PSkMBRyWaR9MC4Dz2x9oItw/4to0TEkE6nO0gyVtDPkCa+rEgRu2OTY9jt3wtKNlaSLSjC1Su8KNkIoorJRvbxomSzwgMn5nB5tY58Jo29kwOu2gdBEPCjmmX0a4cv2m7rNW4l2e6QJmq4fvtIx3GiItnGB3LIiGqMyekl/7Z0wAPJ9gd/8Af4oz/6I3zhC1/Afffdhw9+8IP4whe+gP/+3/87fu/3fi+QQnnFr/zKr+D+++/H6dOn8fjjj+MnfuInsLq6ine/+92ujxWmku1rmrf5A6+6AnddOYHxgZylv59+0YzZ/4JWspFrqtVqmJmZ6freqqILgoBbd6tW12Mza8zn5yRbuKBXaL3eW3pfekIdhF3UWJ+cYhbQ1xDFAJ0kPShkUrhiciBxJNtwMYORYkZPfhCUko0mZ82UbIqiYLHSgKSondKmwTzTgGCslMV9r94HAPjjbz+PSt39Sp1fnF2oYEKoYNP6OVy+fNl2W1rJFhXJtmnQu5KNhlld2KSp5ObKbCoAqwkhIdnymWhisgFAXou/5cYuWtPsokYlW1wgSjZj/J5Gi9hF4yODehGEZAPUe0ijHZMtZrsolV3UrV10db0JUmVHCu6UbEbs2rULt99+O7LZ9nFIeXLpFPKZFGQIOL/YmSQp6D6W9BNkkSzsPtyJ4DDb1opke/LMIh49tYhf/eLhrv1Zy2/cLujEB6dOncKJEyewuLjIVB67c5rVJ0uSjdEu6heExLvgg2QjVtFMJsNMfNCg64nVvM1qezN4IdlY4xYTcCVb5zmjsIvS6ka6rQuTZLO6rv/7pLqoff32EaREwfW9/7Hr1ZjK33/O3jJqXKiwU+8Z53NA2zl0w7bhjv2j6L9FUURKFLBtVG1jiMCCoNFoYGlpyfW9c13yU6dO4d577+36/k1vehNOnz7t9nCBYnp6Gu94xztw9dVX461vfSuy2Swee+wx7Nq1y/WxnEg2r0kezi1UcWh6BaIA3HPtJv17QWing/ZjF/UD+prPnj3LROoR3LJrFABw7BI7yWZ3fg7/CKJDo+v55s3tuFthKNmc5NRRr4IfvrAMALh26xBSopA4kg2gkh+sN3zdB/o5mx3HqGRbqjagANg2VtS/Z8G77tyFXeNFzK3V8dnHznour1ecWaiiILQwUsygXC7bbrtvk6Zkm13rau+DrnNk0jA5qE6C/SrZzOBVyWacdK6sN5ASZOQijMmWJzHZPCQ+SIpdNKcRHC3DZKwpyRC4XdQ1cukUyFvYlDrbHz0mWzpmko3EZLNJfGBlF13UrKKDuTSyaefyu7Vl09sM5zO2JFvQdlFjXNYoxn5OSjajopD+vdmS8OzMKmQAT5xe7Ery5XZRmewbdOIDMndwk5nQ6hxulGxkkYiFZPPzrLdpdlQ/SjZCsmWzWd8kG8CWIZTe3gin/YOwi4atZDMjZ5OsZGNBECQb3aa4JTqDsouuVJv4zrPqgvKLd40xlcGI/duGsHOsiFpTxjcOX7Lczo2SzZRkIzGwt6skW6FQ6Pg/TJAy7NbmNE+dXer4/bnnnsPBgwcd5w1GuB557NixA9/73ve6vv/e977nmJkzbHz+85/HxYsX0Wg0cOHCBfzzP/8zrr32Wk/HCkvJ9q+a3PKOK8YxVuxMTxsEyeZn0ELvQ+4hfV67gduLd6ok23OX1iCb2Deczue1zBzWCKJDo8mFqal2RpogSDYrJZtVWY0riMbvg8bhadX6fL22qpJMkq2oK9mCsoua2YyNMdmWKk3IELBjbKBrfzvk0im8+47dAIBHT1lnfQ4LZxcqECFjpJB1HMRcuWkAogAsV5uYXesc1AetZNNJtgHvKcud3olNQ+oEZc4k9hLLcUmZVl3aRYOJySZCAFzZRdsx2ZJhF83lNJKtZZ34IEltS9KRSQkgj7JhIMEJyUaefVz3dcAku6gVeWJ850n8wZGS8zsG2MdkMwN9vqFCGgqA8waLDGscIVZ4tRN5hdlEzvjZSLKZKdkeOzWPcr0FBep3X37mgq8xCItd1AvJZrwWt7C6X6x2UaICsTom4K/vDCLDaNQkm1O/Q/Znicnm9X30o2RzO5ezK2PQ4ya3iFrJRp/PbUw2SZJcK2TNruvp80toSDL2TJSwTUvm5aW9+qlbtwMA/uqh045zNC8k23y5jgvL6xAE4LqtaliDvXv34iUveQnGx8ddldcLSFlftEVdXH/wRGeCNpIV3pgd3gmuR/L/6T/9J9x33314//vfj7//+7/HZz/7Wbzvfe/DBz/4QfzKr/yK28MlFlaVwi/J9rVDqg3zx27Y2vViBKlk80OykWCg586dQ7PZ7HpxzLBv0wAGc2msN2XMV7zF/OEIFvT99Vpf6ZXnUqmEgYEBddKb7w5wywpSz40TH6eBgNUAPSwcoTKLAskk2XbpSrbg7KJmA3VzJZuAnVoCATfKXqJ6PXB+OdI2oNpo4fJqHSlBwUgx41jmfCaFndqq1snLax2/sQ4+WaAoij5pICSb37ptVjZdycZIsllNOlfXG5FnF1XVaAqWqw3IjEkzjEo2P2UIAnmtX5UMk7GmpPDEBx4gCALS2v1qGu2iJCZbKl4l22BOfT8UBSBFtFpcNNbLpQp7ZlHj/m6VbEMFVck2vRSNki0qks0OrCSbLMv41wPqgvNQXn0WX3zmgutFTCeFuBF+SDa/4z3jQqZdfWq0ZL1PcYrJZvbZbPulpSVTNZ5Osq14T3xAjpvNZj3Vb5Z5m932RkSpZGO1KtIJGdzUOyeHSVKUbG7GAEGTbKzPAGAfV9vdy6PaPObG7cOeSGWCd96+C4VMCsdmVvHQC/Ndv5MFeMAbyUZUbHsnShjMZ/Tvi8Wi67J6gU6ybR6EIKiCocur7XbGa4xz1yOP97///fj85z+Pw4cP40Mf+hA++MEP4siRI/jCF76AX/zFX3R7uMTC7EbSFZ61kl64cEFXhJ2er+DoxVWkRAGvv26qSyFG4mUEoWTzAnLcyclJlEoltFotTE9PMynZRFHATTtHAAAzKzXfSrowIcsypqenUalUIjlfXAjSLko6+BtuuAG33nqrL5Jt06ZN2L17d5eN242SjWV7P5BkBUcudkqXk0iy7Z4oQlH8x2Qza9vslGzL1QZkCNg54U7JBgDXbBlCNi1iudrEmYWq8w4B4ZxmhSplReQzKSY5Pkl+cHJWJdncDj5ZsFRtotaUIQjAuKZa8apks3sn9JhsHkk2Uqa19SbSAntMNjpJiVeSLZdWlWyyApQd0sgT1LWYbIWE2EXzmpJNbnW+qw1JhgC1D+UkmztktFh9RpKNKNlyMdtF8xk1zgsA1CVzAsRqfEUyi44wkmxuFaOdSrYMZEXA+cWNo2QzbmOV+KBSa+HBE2pWvbfesgOFTAqn5yt6kG7jeVgQlpKN7OM38YGT6o/G5dUaFEWNkThukgXXLcm2srKCgwcP4vjx412/BalkCyImG9CetzUa5pmv/ZBstLDDT+ID1vfYaOemv7MDK8kWd0w2AreLEDRhxtqX0KQTfV9Y1YSA+7BUZtd15ILqyNm/bdjXosloKYufvk11K/7lA6e6fjdblLc7XxfJRuKxaUkPogYp60AupQsrHjjezqYaGckGAG95y1vw0EMPYWFhAQsLC3jooYfw5je/2cuhEosgSDZJknDixAmcOHECkiTha4dUq+idV4xjrJS1XBGhG2u64SUvOgvJ5ofkEkURu3fvBqDGuSOkn1Pj8uKdo1Ag4NIyG8nmtvMNCktLS3jhhRdw8uTJSM4XF4JYNaIDFQPqgKJUKvkqVzqdxu7du7tWKJw6AKuVpDDqzen5MqpU0gOg+14kAUTJpip8grGLOinZWpKE5fUmFAB7JlUSys1gIJsWsV+Tgz9zbslzmd3izLxKsk1qRBZLmUnyg9NzahwGevAZVL0jQaMnB3JIi97JKBr2SjZviQ/I/+VaEykozEo2oDsGk1ukUyIKGZJ4gc0yWmslKyZbIa8p2SS5YyGNJD7g2UXdI5PSlGyGmGzEKpyNWckmCIIel63e6m5X6c/GMhKSbYwhsyg5l9uyEQzlzZVsfpQPZjD2oVGSbEZYKdmMZXvizAIkScLEQA57Jgfwhv1q2IwvPdPOtOd2vGsk2ewSH/hR3biF1RjL7jlNU0kPzMrqdpxP7Fi1Wnc/tVWLyXZppQaJUdFshJld1E39M/YjxPljZSNz6nfsEh/Q8z0/SjavdlGWfeht+knJRl8HfQ/8xmRjUXISuFWymZJsmljguq3DvhdNfv7uPRAF1Up5bGa14ze6rCwxN43tm55ZVCO4ogZd1pfvmwTQaRmNlGQDgKeeegqf/exn8Q//8A945plnvB4msQiCZKMbzVarhX/VraJbOs5hjMnWarUsgx/SNqWgJwv0cScmJlAqlSBJEi5dusR0vhfvGoUCYGZlPdFKNnJPvQSW7CXQ9zMIu2jYcOoArCb9dvt4BWnwr9OSHgAJVbKNl6BAwFq9hRqjwscMTjHZ6Gczt6oOcFOpFLaNlrr2Z8HNO9uW0ahwdkFVrk4U2+2sE67SlGxnNJLN7eCTBSSezdaRArMlwQp2bXRQSrZqrQZoJBt9P+zgx+JN9hkqqOdaZiTZ1omaKSEx2fKZNFoQ0ZKVDpKtKckQBG4X9YKMRqI1jCQbickWM8kGtJMfkDJaKZS6lWxqHWFVsrm1i9L3ZLigZqk+v1i1XFwJAklMfEBAytCUFHz0q0fxNw+fwam5Mh45OQ8BCq7bOgRRFPGWm7cBAP7l8IxO9Hgl2ewSH9DkittzeL2fXpRsF6n+y+6YVp+ttje7J5sG80iJAlqy4jq2KEHQMdnCVLIZiQuvSiTW94wef7i5N72iZIuLZPNqF2Wdo1rdy+VqQyfBr9XaL1IGRVGwsLDgKknKjrEi3ni9yl98yqBmI3WVrgMs2UXJtiTR3A3bE0CyXaWSbA+9MK+HJ/GqEnY98pidncWrX/1q3HbbbbjvvvvwgQ98ALfccgte85rXYG5uzvkAPYIgSDZ6m3Pza3ju0hrSmlWUPodRyQa0LaNGJtuJZAtCyUZeEqJmY5343bRjBIAanLpcc35x41KyeWWkew1B20XDhlPdjTImG4kPsJ9aVUkiyTZazCCrKXUuLHu3Xtop2egBgqIomNHOMzVU0O1abmOU3axZy585t+y5zG5BrKljRbXMLKuEJMPo2YUyFEVxbaNgAZ2ZzS8RZPcOTQ6oKoDVWkuPV2YHM5KtKclQJHXgN1DIMZMXfpRsOsmmBZFfXjefzBhR0+yiSVGy5TIiWkoKLVnpmJDRiQ84yeYOTnbRuJVsAByVbFaKJZL4wE1MNje2bHqbwXwaMgRUGhLW6q2ubXo1JpsZsWX8bOzv/vXwDP7ukTP46sEZfPXgRUwvVpFNAS+aUiepd105gU2DOdfhDsyukcUu6oZk82sX9aJks8ssarYPK9Fjdg0pUcCUlsDngkfLqF+SzSrMj1+SzWw8Qis/nQgsu/O5VbJ5Jdno0BBOSrY44IdkqzUlnJqvwOkS6GPHbRc9elFVm+0aL2K4kOm4poWFBRw+fBgnTpxwdY5ffPleAMBXD17EJSo2otn8iKUuiKKIy6s1XF6tQxRUMjAO0GW9eecIBnJpLFYauhIwMiXbL//yL2N1dRVHjx7F4uIilpaWcOTIEayuruK+++5ze7jEwuxG0qwyS+WntzmqsbTXbBnSVybNYkAYg2jGpWQDoKvZCJzON1zIYJcWCP3covPgI26Srd8RhDQ7SoukU6fOomRTFAUnT57E5cuXfZXloKawoldVkkiyCYKA8ZKqUJpmeOesQLdVZiQbfa8vaSTbttFCR71w814RQv7YzCoT4RMEiJJtpGAfaJjG3skSRAGo1Fso11uuB58saCsB8oEp2cze96FCGtm0elwWFYDxGIIgoNaUkIGElCiglGeb/APBkGyDOXdKtmpTfb7FTMp2sh0VcukUWhAhGUi2RosnPvCKrIVdVCfZYo7JBrQzjNZa5godo6OBYLGikWyM2UUB877RCvT5MikRJS3Y9GVq4hRVTLY4xmTGtlKWZU25tggAePlVkxgpZAAouOdFm1DIqtkdU6Kgq9l+eGapQ7Hi9twsJJubZ2CnAmOBFyXbhYCVbE5E4TYfcdkURelIfBCEko3VLmoFFiWbG+Wn2W9cydZ5TrcWbFmW8c0jl/DlAzP41IPd8choONlFw0x8YLwukrxt/9ZhvRykDCsr6m9W5LAVbtg+ghfvHEFLVvDtZy/p35u5nlhINkFox2Pbt2kQxSybOyJo0H1RJiXijivUjKYPHJ/reJahk2zf/OY38clPfhLXXHON/t21116LP//zP8c3vvENt4frKXiJyUbw/MwygHZqWsB8cGVMfuCWZAtKyUb+p4PTswxUr982AgA4v5jcpAIbUcnWC3ZRt0o2GmSf9fV1nD9/HsePH/f8fGtNSVey3bprTD9+Ekk2ABgf1FZ2l4JRshnfD8Ew+Z9b1Ui2saJnZde2kQImB3PIKXV8++EnTeOvBI2zmupguNBWsjnVkXwmhf3bhiFCwbnFqqvYGqy4EKCSjcBqoO0mw6iZkq3WlJERZOTSKb2vYkEgSjZiF11nI9nWamrfOZjPJKKtz6VFNJVUF8nWlGQIPCabJ1jHZFOffVa7nclQsnmzi7Iq2QB312k83+Yhlby4vNpuG+i2Loh3KMlKtsVKHd999jIUqLGH/usbr8F77tqD//6W6/FLr9zbUe6fv3sPCpkULqzU8MJs2RUBRqMflGykX90+Gr5dFGjHZZtZcU+ySZKkHzeMxAd212bV99nFZDOOOd2MPfwo2dzYG437sSrZ4iTZWEBfx8HzizizUIEM4C8eOIVK3XqB1skuylr/Af920SOaku26bUMdZZNlGeVymak8NMhzfp3mxvvesVn9N69KNkEQ9LAx18dkFSXlANrlIpbRB07M+yKHXY88ZFk2DXacyWT6SiFkdiP9kGwvXNYquwnJRjeGxuQHXkk2q2uwg9lxSaZRgI1cIPa68z2gZEvCxCtMBKlkizImmxclGwEpryRJrldoCJ45t4ympGDzUA47xgod5waSR7JNaMTJxRDtovS9ntfSWm8bHXAlg6chCAJu3jGCCaGCE2cvhh5qoNaUcHFlHQIUDGvKErJC6YRXXDUJEQrOLlRdr/Cy4GIIMdms3ne3cdnoY9JKtgJjZlECcj1+yI6hnHq+lSrbe72qkXGD+XQylGwZEU2IaMmyiV0UEMVkJVXpBViRbImyi+pKNvNxR1B2UfoYbpVsgiBg87Da111arXV8byynH8RJshlhnAz/2XePo9qUsGW4gP/8+qv13/MZsWtBfNNQHv9Bs009/MI8Gi12+z19bnribby/Xkg2r2oL4/5ulGyn59UF9b2T5gmxglaytTOMul+YI/MpQRA8xzizItkURbFMXkBvb0RYSjb6fKzvmRfllfGc/aJko7f5ay3+mAIBi5UG/v6xs477WZFsYSjZzMoMAEctlGyKoqBSqXSdzw6nTp3CQw89hHK5jNe8aBMA4NFTC6hqsaDtSDa7mJOCIODJs6p6+JZdo0xlCQNGEvQVWvKDp88uYaXaHi+HTrK9+tWvxgc/+EFcvNjOrHPhwgV8+MMfxmte8xq3h0ssgiDZ6G1Ozaok27Vbh7t+NyPZms2maaMdpV2U/H3ttddi27Zt2LRpk+MxCBM9s7yOy6v2nWBcJJvfgUivIEiSLYpJCquSzckuSkA6Ebd44rTa4L9kz7h+DrPMOUnBxCAh2byntTdr24wDJ3IvFsrqeXaMq9lh7TKk2eGmnSMQBQWXV2qu93WL6aUqFAUYzKVQyLSfH8tK4SuumoQgqEo2CKKngbkdLmiTha0BxmSzAlGyzTFkGDVTsq03JWQEyVVmUSComGzqMVjtom0lW0JINgu7qK5k43ZR18ho9uemgeQgiQ/Iqx7nfSU255qDkq07uyhJfOCezHY7iUylUtisxbqix210mYIYL0WdXZTA7n4oioJnZ1bx5JlFpEQB77lrD/KZzkyOZosfv/DyvShm01heb+KLT533VBY7Jbgfki0qJVul3tJJ2b0TA7ZlsvpsVQYrpfkWjWTzEpPNeE+DULKJYnvBycwyGjXJZoYkxmTrFZJNT34iAHddqRIvn3rglE4uWe1nbDdYx430726VbPR1rdWaOKUR4ETcQ55prVbTxyCsdX91dRWyLKNSqeDKTQPYPlpAoyXj4RcWAJjPFVnqgqS0E6Ddtjs+ks1Y1p3jRewaL6IlK3j8ZHeWUVa4Hnl84hOfwNraGnbv3o0rrrgCV155Jfbs2YO1tTV8/OMfd3u4xMKsUtAV3o2SrVJvYaWiBvW7Zstg1znoF4O2i9KEGvk+aiUbAJRKJezbt49pUrVrfADjpSxasox/99ePY6nirDqIaqBFsFGUbL1mF2VVsplNJMxItmrVm7Lrh2c0ko1q8I0BaJOESc0uenHJO8nmpGQj/zdaMqp1dfK3c0wdVNtlSLPDzTtGIULBzMp66CroM/NqXdg9lu94fizk3k07RjCQFVFrSji/tB6okq3WlDBfVgfm2yglm1+SLQglm9nzrzUlpCDHQrINuLaLEiVbZznjI9nMEx80JC0mmygkjsBPOnLEaiV11neiZMtojzoJdtH1pvnintm4S1EUfew0WgpfySaKIjZrbcPlCJRsUWUXZRkrK4qCB0+ok+hdY0VsGy12/W5GhA7k0rh7X3vSveaQ7MtOYQRYk2xuLIJ+7aJOJISxDETFNl7KYtiCDDYe041dzmzbbZpd1Muioh/7pbFMZvM2M/cEK8lml/ggKCVb2CRb0pVsBG5Itq88cwECFFy9eRCvvmYzdo4VsVBp4LMWarYg7aJuY7LRODazBgDYOpzHuLa4Ssq2trZmu68Z6HmzIAi6mu37z13uKCs9hmHJLnp5tYZaU8ZoMYMrJs2J+ihgVm9frrXvj7zQJtlCV7Lt2LEDTz/9NL72ta/hQx/6EO677z58/etfx1NPPYXt27e7PVxiEYSSjWw/u1ZHSlCwd3KgI6ifWcdN20VpUo98H7WSzS1SKRFvumkbBnNpHL9cxnv+9gmULfzrxuvnJFuwCFLJlqSYbGb1MyiSrSXJePrcEgDgtj1j+vdJjccGAJOaAmGhXOuyTbHCKSYboL6ny9UGRMgoZlIY1mxMXkmnG7YPIyUoWKu3sLDmnSBkwRkt6cHO0XzH93QbqyiKaTrzdErEDVpMiyMX1wJtr0h2pmI2hZFixrRPcAOnd4hkGPUTkw1QLVRRk2yDml3UrZJtKCFKtnwmhaaZkq0lQxR4dlEvyGTU+9UwTEbWtWQq6STEZMsTks2cADHr18r1FlqyWmfHQrKLsijZ3NicWGAkjoJWyrkBff0PnZiHAAU7x4pd99BKyQYAN+8cxWgxi6VqA//4xDnb85ldn9X9pSforEo2+veolGynHKyi9D6s/abT4vBWH4kPjGqbIJRsQDAkm5lqiXxn7D9dq2lc3nu3JJuXmGxxgGWO+2/PzeLG3/k2/us/H8LXD83gybOLEKHgtt1jSKdS+MCrrwQA/OUDp7BiMhZJil2UJD24blvbPUfKQLt8WJ+JcY71Kp1km+1oI83sombnIZ/PL6rv8a27x2IVMJiSbFpctkdPtcPZhE6yEbz2ta/FL//yL+O+++7DPffcA0VRcO6cfSfTS2Ah2VgbrLm1GlKQO+Kx0eewsouSBjadTne8oFEr2dxiuJDBO16yA6PFDA5Or+D9n33KtsHlSrZwECTJlqTsonaWGL8k29GLq6g2JAwXMrhqU1t1mmSSbbiQRVoUoCgKZjzEKQHMLUxmSqbFagMiFIyWsl0DVbcDglIujalBdXBKYlaGBaJOvGpT52SALvPx48fx8MMP6wFhaRCS7fDF1UAnnXRmNkEQAmuDw1SyAXCtZJuamsLY2BhTyAErELvoqs/EB3Er2QCgWmvff24X9Q6SXdSoZNPtoqL6rONst3Ulm0VMNjNinRDJubSIQpa97G7qT7eSTSXZLq12tg1B2uOtYrIB4YzHWMbKjZaEJ84sQgCwc7xkamW1Ip/SKRE37xyBAOAbRy6BBcaymPWf9L3wQrJ5vZdW98uSZJtT+8o9E87x2IIm2ZaqTf09Z4WVks1IcK6srFha9czukV2GUac+nXYCGK83KCUby5jFqNjsRyWb07NYqzXxq188hJX1Ji4s13B8dg0CgJfvG8f4QA6iKOItN2/DzrEi5ssNvP5PH8C/PT/bcQwzdSp9X6Kyix65qJJs+6kQVU5zJpZyke1funcchUwKl1frOHpx1TYmm9l5yOezWvz2OK2igPm79dK9Y0iLAi4srusxUkMj2VKpFD74wQ9aVpDZ2Vns2bPH1cmTDCeSDXB+Wcj2c2t1iFC6SDazFUx6RYTsb0WyebkGlu39TELIvuOlLD7z3tuRz4h48MQ8vv3sZct9op5YbBSSrdfsol6UbMZ9/JJsJB7bbbtHIYrdtsIkkmyiKGIon4EgqLHHvMDYtpmRbKIoYqnSjhNE3luvdlEA2KEpy87MdxNbQUGSFTx6Uo0b8eIdnW0wPYhZXVWJvuXl5a5jXKfZ/F+Yq1gqUryAJtnoY/pVslnBf3ZRbyTb0NAQbrjhBj2JjhvodtEssYuyJT5o20XTgfRtfpFLq4kPAKBWa2eiUxMf8OyiXpDR2h5awasoih4vJwlKtkGiZGvYx2Sj6+aSh6QH9DHcKtlokm3WEEs3SOVuEkm2M/NlNFoyJkoZjBYzrpRsgiDgiskBCIKaMMkuDrFVWczIDPpvVpItyPGelZLNiHbSA+d4bF7scmbXMZTP6HEOL7rMMGoVk40e7ywvL+OZZ57BiRMnbMsXtJINME90Z1VeK1gpJp32o+/1Ro3J9v9++zgur9axa7yI//z6q3HnFRN47TWb8P5XXAFAi7+XEvG/3/li7Jko4dJqDT/3tz/Er3/pMGTZmlR0cz+9KNnM7uXRC+p4dv+29pjXrB/0qmTLZ1K468oJAKr6zy4mm9l5yDt3llKyxQmzejuYz+DFu0YhaInPjL+zgHnkoSgK/vZv/xave93rsLi4aLlNP8MryTa7VkcKSgejDISvZHMLv/GAjPtev30YP3+3Srz+j289D0nufsnofaJWsvU7glSyJTEmm9lv9HUaLdcseOIMIdk6G/wkk2yCIGCokIEABdMe47KZWZjMlEx0xjs/lguCqSF1cHrRIznIgqMXV7Baa2Ewl8a+yWLHb3SbTqyiZgkzRosZjJeykBQBJ+fcZWWyA7G8kDgzfskgp7bUi5KNPjYh2QqZVMfkIEzoJJuLxAeSrKCiqRySQrKlUyIUMQVAQEuW9frWbKlKNpEr2VwjSxIfUCRbvSWDDDVSonWfERVKGiFQ1d4dqxV9um4uavHY3CQ9ANwlPqDvSSqVwtRQ20pOj9XCtIuGTbLZgZz7xKy6wHP91uEOxQkryVbKpbF/q7oIY7eYbHV9ZotURsLDbn+z4wcdk81ayaaRbBEq2QDvllErJRt9rvV19ZhWi7TGe/T3j53FR7/2PFbWm7YkmxUEoR2L02qO6SVRiFslG/2bW5t4rynZzHB4egWfefQMAOD33rwfL941hpfsGcPP3L4TY0W1DSf3ZP+2YXz9vpfh5+/eA0EAPvf4OXz/OVXRZqVk8/Ieu52/kHPXmhJe0FSm+03sojRY2wozccprrlGdCd+jSDYrJZvZ4tJStYlyXUIuLXbxI1HDqt6+4qpJiCTxmcnvTmAeeQiCgO985zuYn5/HrbfeiiNHjlgWsh9gdiOtVhmsIEkSak0JK+tNpAQZ11rYRc1isvWqXdRYUX/h5VdguJDBidkyvvTMBdvzRU2y9TspHESHlvSYbMa6atzXjZpNlhU8SUi2PeYkWxInwYIgYCifhgDgvEeyisUuKopih8LCqGTzkiF0shQ+yUayH92+dxww1A/SxipKO5OzGckmyzJ2jZegQMBzl8r6d35BJglbh4NVslm9Q5NaJtr5ct105ZWGuZLNW0w2P9BJtlybZHNqz8q1dl9N20XjHqOQDKN08gNCEHElm3tk0+rzbFEkG20h035OROKDqkNMNjO76JiLpAeAPyXbxEAWoqAS1AuVesdvZuX2AqvsokB8SraTs2QyOtjxPW3vcmqXSYDsbx91toy6UbI5KYNoBEGyuYnJpiiKbhe1iskWFsm2xWPyA7v6R85FtjGLzwp0ztv+7flZ/D9fOYKDFyv4/nOznuyigHVcNuOY16td1K2SzS3JxhKTjR5TOpUlLFg9i3pLwm98+TBkBbj3xq14+VWTjiR7IZvCb/3YtXjXS3cBAL6pvftOJFuYSjZy7qMXVyDJCiYHc9ikjfnMrtt4PpZz0Nu/6mqVZDs4vYxlrc9wYxe9uLwOBWpyMbJgFhes7Lwv3zcJAQrOL1UhyYrrttWVkm3Pnj149NFHcdttt+GOO+7AF7/4RVcn63W4VbLJsqwrBsaLaYwYpP92suNWq6U38m5INj8Ig2QbLmTw/leqUtv/+Z3jqLe6G42oEx+YNRb9iCAGXUmOyQbY20UBdyTbC3NlLFWbyGe6V1WSrGQTRTESJRsgYEmb/I2Wsh3ki9kxWDBeUoma1fWGrpILGo9o6bfvunLcMuYJPZGqVqtd9UiWZeweL0FWgGcvrXUMvPyA2EW3jaokW9hKtgnNLtqSFZ0wZT2mKIp6QHm3dlE/IOcvaXbRhiTrZJ8VVjWraD4jIpsWE9PWq3HZREiyrJNsLUkLbi0mk8RPMjJpYhdtP1+iGMumRJ1UT4JdtNqwj8kWpF2UBcaYbOmUqLcPl1faZAFrLCEW2IWfiOMdrdRbuKxZDskiuJuYbGSbl+1TbVOPnlwwDYZOjkPvQ8BKsjkhiEVVN0q2ubU6Kg0JogDsHAuOZGMhGbZpSjYSNJ0VVjHO6POSbcxUafR2l1dr+OA/PgNFAVpI4exCBQfPzpvuYzyXEaQ8ViSbFyUbDdaYbGTbsJRsccNYvx84PocPf+EAbv297+LQ9AoG82n81o9d07GN3fsPAG+8fgsA4LvHLqvxVannTM+fWNpRIxHp1S564PwKAJW8MlM0Au04gn5ItqnhPF40NQhFAZ6fUc9pJNnsSFeVZBO6nENxwKqc120dwmghjUZLxszKenhKNoJCoYAvfOEL+PVf/3X89E//NH77t3/b7SF6AmY30otdlJBs24ZzXb+bKXPS6bT+mciWU6mUJ5ItCUo2AHj3HbuxeSiHC8vr+Nzj7eQYXMkWLoJYNerlmGyAO5KNxGN78c7RrlWVJJNsbbsocH4xvJhsC5UGmpKMTErESKEdk80ryaYoCjKiGmNFgILnLq057+QS9ZakJz2468qJruskg1p61brVanUNsGVZxtaRPFKpFFbWW1iuNgNSsqkxfIKKyUZg9Q5lUqKujnGKy2Z8/p120XRkJBtBISMipcVJXHFIfkAnPQCC6duCQC6tZhhtSe1MtpKuZGOfUHOoaCc+aL/X61o8tnxGDOx98oMBLStutdEm9GmYk2zt2Jdu4MYuSm9D+jWzDKNhx2QLc/znpGQ7v1SFAODaLUN6nC+3dlFAtftftXkALVnB9583t4xaXZ9Z4gMWZZDd8aNQspGwCTvGipYqFDOSzU3gd6ttSaKFUy5juRrHs2ZkEr3wZkZyKIqCpiTjf3z7OFZrLdy8cwQ/e6cqJPju0Qso15pd25NzWcFKyWZcWI5CyeZlXGck6MzOZdXuxQFBEPDE6UW862+ewJeeuYC1egubh3L4k5+6CZsGOzPQO5Fst+0ew3gpi+VqE0+cXmSyi1pdu/F7FrsovQ8594HzywBUko0GXf7BwUHTc1rBqh68RHP9nNCSlxnnSE4kGwDcGnPSA8C6nKIo4JadIwCAcwvdC/BO8Dzy+LVf+zV85StfwZ/92Z/hLW95C9bWgp8gxYmgSbatQ90rklbKHDJ5IQRBVDHZgpyI0PevkE3hg6+5CgDw1w+d7tqWJz4IB71mFw06JhvATrKtVJv49CNnAHTHYwN6gGTLh69kO7+kTrw2DeYgUtY2r3ZRcs6JgRxEKDg2s+qp7HZ4+uwyak0Zk4M57Ns00FVGK2uI0TIqyzLSKRFXbh6EDAEXPaxoGaEoSlvJNhKsks0OxD7gFJfNTMlY05TIA4VsIP0EC+jzDBfUvtGZZGsnPQASRLJlRMiaXZQMoAnJlk6lYi9fr4FM7luU9ZmQWcVMKhkkm1YHyxaJD8wWj5Yq4Sc+MCrZAFAZRrtJtjBistFljYNkO6cFs37ZvgnTRQVyDBby6fXXTQEAvnXEOi6bWVnM7i8LaWFEECSbGyUbIbis4rEZj8d6HSwk2xVaogUSE44VZuM4K5INMLeMKoqaSOns4jomBnL45DtvwQdfdw2GCxlUak382fee69oe8GcXNZJsri1rLmKy+SHZnJRLdp+jAF3OJ06rYURu3DGC//u+O/Dor74Gr712s74tq5ItJQr6ft88csmRZKPLYVU+ArdjanLugxrJduP2EdPfATUZFV1GJ1jNsch86dSsOn5nIegBYKFcw/J6EwoEvHhX/CSb3WLSizWS7exiiCSbWQPxIz/yI3j88cfx/PPP45577nF14qTD7EZ6iclGJjKbB7tXJK0aX0KyESWbW7uoH2WJ3XFZYOXBfvNNWyEKwPTSur5KaqZki6Lh3SgkWxCDrijtok6DMLsVOgJjZ2gWX8uIWlPCf/jMkzgxW8bmoRx+5vadXdskmWRT7aJqTLbLazVTS7YTWGKyndMIvKnhvH5e+n+3dYxsPzmYDY1k062iV4xDEAT9OZJrMlOyAeYkGwBct20ECgRcWqn5nnQuVBpotGQIQntyG3ZMNqAdl82tkm29JYMcdqCYt9otcHgj2TqVbGbHigO5tAhJESDJCiRJ0lQRap0k1kcOdmTTxGbVHZOtmO2eSMcBEpOtISloyd3Z4c0Wj3S7qMuYbF6VbG2STWsbKJItDLtoVCSbE84tViEICu7eN9FFdtKTLieSDYBOsv3g+GxHXEACq/G1XeIDNyRbEIuqbpRsp+fsM4vS2wetyCMx4E7PVxxji9IIgmRrSjKenVmFogAfe+v1mBrOo5jL4NXXqLbBzz18Cicut0Unbki2IBIf2I2TwyLZWJSXSVCy0ffm4LRqb7z3hi24dfcYRNGcWKb3s+pHXr9fI9iPXoIsK13320iyWd1Ts3Ambt4XQE2aQ4L0X799uOO3IJRsxu2Jku3SShX1lsSsZDt6Qb3/W0YKGMpH64owg927dfN2lZCcXathzWHsaYSrmGxmuOqqq/D444/j+uuvd3XipMNOycaq3FhvNLGoDZYmSt2VyGwFE2iTbLWaOtBxS7J5VZaESbKVcmm8aEqtqE+fXer4nSvZwgF9fX4HXUlQsrEM0Mn/pZI6CKvV7MkQSVbwoc8fwBNnFjGYS+PT732JTniYnTuJJJsgCChkUsinBShK24LICkVRTAd3xvbgjLbqvyUgko2cc2IgB1EIxy768AsqyXanlmqcnJOOfQl0D6aNCkiy33VbR6BADbjsd9J5QSMtNw3mdEVOUEo2u/ed1O8Zh6DRxrIQC1suLaKQczf59wP6moZYSba6+vtQ0pRs6RQkSsnWkhWIUMuWSWDbknTo2UWpd5HEZCtmzWPRRA1CsikAmq3uWI5mdZMkPhh1aRf1qmQj/dqUjZItiPGS2aJdXEq280vrKNdbSItqTCA7ax4L+XTd1iFsGymg1pTxnWPdajar60tS4gN3SjaVZNsTg5Jt+2gRmZSAekvGxRV29b5Z/XNLsh29sIxaU8JIKYtXXT2pf3/tjnHsnRiAoLTwW1850jUm9aNkMyN+rWD2G8t+G03Jdlgj2W4wqL0IWJVsAHDnFeMYzKUxu1bHM+eX9X3NYrIBzm4dGm7m8Sp5uAxAJaLJoqTxmkRRRLFYtD2vsVxWSrbNQ3nsHi9CUBRcXK5ZkmzGaz6ikWxX2JD0UcKufRopZjAxkIOiAM/OLLs6LvPIQ5ZlbNq0yfS3wcFB/Mu//AtOn+62AvYqzBoEUkkICebU+Jy4tApZUTBcyKBIxQcxnsPY+JIJIPk9apLNz4DUriO5WZNcPn1uyXKfKJVsUZ0vLrBc5/r6Oo4ePWpp905SdlG7em/sAHK5HFKpFBRF0RWhZvi7R87gm0cvIZsS8ZfvulUngo1IspKNDGwmNNXDtMtMnfT9JoM9o5KtUm9hZkWdeE0NFzoGU37topODql30+UtrHVkC/WKt1tRXK++yINnIZzK4JddkpWS7YccIZAhYqDRcr2gZcdFgFaXPE1ZMNgDYPa4Ork4v2Ks8je8bIW9HCtlI47HR7QIZNDolyWgr2ZJGsomQ0VayNSUZokD6+eS1LUlHlgQMN8kuWsp0EzlxICUKKGZTUCCg0epWspnaRSNIfGCuZCMx2cLJLpokJduT2mLvtpE88plUVxvhlmQTBAFve/E2AMD/+u7xrr7Mqg0KimRjIaecYLXwb0qyOWQWpbenlTxBXEdKFLBrXIvL5sIyarZYakeymSU/IDbDl++bRDrVrg/ZbBavuHoSpTTw2KlFfPXgRQBsfU8YiQ/M3m8WJZuR0OunmGzknEuVBi6t1iAKamB7M7gh2XLpFF59jcqPfOto2zJqVPi5meMYiTqnayL7HTi3DAC4yYQ8zOfV9n1oaKjjHXBD4Jtte9vuMYhQw5+wK9nUcl652fz+Rw27ZyPLMnZp4+bnZtyJAQJd3tu5U7VZ9QNxYbwGuqKTCZojyaYFAtwzXoIgCI5BLQmME5h+ULIBakB5AHhaawTMrj9qkq2fwbKyOTs7i7m5OczMzHT9Rte1KJQAQSrZ6JUau7hs3zqipt3+z6+/GndcMW65XZJJNnI/JgYJyeYuLht9v61ItkPTK5AhYDCXxkAu7XoAZwZyT4cLGeRSapKCMw7Ejxs8cXoRkqxg93hRJ7LIOUlmJaOSjcSpqFQqpu/P2EAem4fVY5H23StIPLatFMkWhZJtt6Y8ODPPRrIRXNQyDo4UM5EnPSDlGXFrF80lLPFBRoQE4f9n773j5DjK9PGne/LmpF3tanelVZYsybYkW84BG2MMGEwOd6QDzoCPYO5M+h1gc0c+DHyPeBw5nAFzJBvOARsnybayZGVpFVabc57Yvz96qrempqq7uqdnpkfa5/PRR7Mz3VXV3dVVbz31vO+LRCqlJ9hIpEBaNO8uah/BQHpxyonJFkm7i9rJ0JgvlIf8SEFBNJkULjYz3EXTMdnsJj4g76XM+8lTsjVVixMfuEmysRnogMIr2Xak7dDFdWXcY+2SbADwrmuWoqYsgOMDU7h/Zxe3TSKSjZf4wKmSjZ6/7cDK3iO/xxIpnEnbGWZKFCdKNllFHokFR8g+GfDsOJYQMVOyjc3EDTe369c0ZfwWDAZRHQngDRt118F/e+AgxmfjUs/BS4kPOoem8eKv/g2PHxnI+N4MTpRsxQBpw5F+vc8sb6xAeVppzMIOyQYAN6fdxf+SXlMA9olL+j6KiFfROQREyXZRWtRCo7y8HJs2bcIFF1xgS9xiRbJd2lEHVdHQPTKTdY945PrYdBynh/RnsHJhpWndhQL9vHkE8eJ0BuXDvWO2+rLUynnNmjX4xS9+IUxpTHD06FG8973vxRe/+EXpBngVIpJNURRjQDQbfDRNw4m0X/7i9GTAy+BHyqRhRrLRPtolR7KlgxvuOzuWsaNbaCWb1YBxrkBGyUaO4fVl+rtCKtlkJiD2HN4xViTbVDRhqCpvuqCJewyBl0k2cg/q0y7pdjOM8p4zS+bvPjOKlJYdj43+7FTJpigKGiqCUAAcsLlLZAaiYqMTWYiUbDTJpih67DZ6vqONrJVNulGQK8lGlGFuKtlkxu4laQUAcf8VgX3fzqaVjNUFJtl4SrZxC5Jt3KuJD/w+JDXVULLFkinDXZRWRcxDDiGS+CBDyaYvSsr8mQubYqIy5DfcRUWLz0wlm95/62zGZGtvb8eKFSvQ1GQ+n7H1sTHZ+s6RmGyi917TNDzfqc/9bbWZmZ1zIdmqwgHccf1yAMC9Dx81sjGbtSUf7qIyx/Mgq2Q7PTyNZEpDedBnJNIxa5NTd1Ezm4LEgjthsVlEwywmG2mXGcn24L4eJFIaGspDWeQi2bh7yZoGLG0ox8BEFPc+fERq7nEzJhsPMkS5pmnoGpnGD585haP9k/jFc10Zfd8MpRaT7UifTvCIXEXZc2TssmtXLUDIr+L08DSG0+O36PlZCQlonsGuXS1KekBQWVmJQCAg5b7K+5333LZ01EOFhr6JWSSYonj94fmTwwB0pXZteeHi+5rB7P1MpVJoqQnD71MwPhPH0X75dYqU9fHNb34T9957L5qamvCGN7wBX/7yl/Hzn/8c999/P77//e/jzjvvxKWXXoqLL74Y1dXVeN/73ifdAK+C7UiETfb5fFID1tH+SUzMxuBXFWMSt/K3JyALQIJzRcm2pL4MdeVBxBJ64FCCYsVkA85tkk2GTCTf8/oyTSwXYnFq5U5gR8kmQ7I92zmEREpDW13EcD0QoSRItrTqwa6SjRc3glWy7To9Ag0Kl2TjBW62Uy8wl2H0kIvJDw5062XR7gBWSrZgMIhIRB+vaZdRWoGxMu1SfLxffgedh+4iK9mGp2KWijC6TNKviuUuCjhPfOAdkk3NiMkWT2pQoMGnKp4cW7yOUIDYOlRMNqJkC2TGFiomKsJ+aJqCaCJbycbagbPxJGbS5EyNTXfRYDCIRYsWGQs0M/A2SkhMtpHpuJFAx62YbPScUmx30eMDUxia0u1zEmPUDSUbAPzdZYuxqCaC3vFZI2M5ewwNs8QHTskp3t8yECnZWLueqMc6FpSbjqm5kmymSrYF9t1Fc43J9r87z0KBhtXNlVn3yAjzk0zg7ldeAAD48TMnMTSpK8BlSDY3sos6VbK9cHYUf9jdDZKzo3ssit7xuZjGyZSGY/0T3DKcKNmKSrL1E5KtWngsj4Qym0vKgn6jPLKB6lTJpqqq9Dqevo9dI7MYmY4j6FOxutlcIeamkq21NoyqkL55uL870y7m9YfnTg5DhYbW2ogn5mfA/H6kUin4fSpaa8qgYC7Wswykru5FL3oRnn/+eTzwwANYuHAhfvGLX+COO+7AW97yFnzmM5/B0aNH8da3vhVdXV34whe+YLjclDroG006Okt4ifDXg33pTlSGcChTNcGWb6Vk8/l8QoUJD8Uk2XjlESiKgovbagDoyQ+KpWQ7H0k2q0Gddx9EQTvzBSdKNvY3HskmyjD61FE9tsZV6XhdZvAyyUbGo/q06uGMzZhsNIHEI/MBYNeZ0TTJFsmok/5s16injyckm5sZRklZa1vmDCmekk3TNMOYDgQCRtIMHsmmqirWNOvlnRycRDyHGHI8d1G3lGxm41pFyG9kGDVzGWXfty4Sk80DSrZRKyXbDF/JVmwYMdmS6ZhsCV3J5lMVzxibpQSS+IDnLhpKK9m8MGZXRwLQAMzGrbOLkqQHPlUxEnfkA/Q8Su5RdSRg3NP+dFw2t9xF6fOLrWTbemIIGoDm6gh8amb9vAytoizrvLaHAz58+MUrAQDffOwYjg/wF50EvPtLt8Wpks3J87JSshF0GkkPzIOWOyHZZOxWYM5dtNOGks1uTDaaZDszPK2TAwqwamGlUBwRi8Vw9YoF2NJRh5Q2pywys6HzEZONhtU7fKx/Ep/63T7Ekiksb6zAS9ctRAoKDvdOGOf82wMHcONXn8B/P9WZdb5Mf/WCko3Ue7jXWslm110UAC5Oh0TqHstMPsaSbFaiB6fuorvO6OrcNS1VCFmEn3BKfIuObU3bsTvOjGXVw573bKdOsi2q8SbJJtqwaK8vgwINzxwfli7X1tVdccUV+PrXv45du3ZhZGQEs7Oz6Orqwh//+EfccccdqKmpsVNcSYFeZMsYHY8f7gOgYUlDeVYmOwLRrlGpK9nMyBLiMrrzdHFINlb+7JXFVz4gc51mJBvPIMknclGyEdB9qqJCNwCnpqa4fZHsRlxZ4iQbuQe1DpVsItcUci9HZxIYmIhCURXDNcQNd1H6eJL84KBL7qKj0zGDxKJ39FglGxkPaJKNVUCyRlZbXTlCfhXxZNJ2EFQavMQHbm10WI1rHRILFLots/EkeseLE5Mtg2Qrs6tk86C7KBRKyZYm2ZR5ks0JuIkP0iqwiN87Srb68iA0KJiJJ4SLTdI3Byb096yuPJjX/sobwxVFMdRsxGXULXdRerwvtpJt24khAApaayPcDTr6f/o3GZINAG67eBFWL6zE+GwCt3z9SXz3b8eRoDwDaFi5i7JtEMENkk1WyXYsrQRaapJZlC4vP0o23b47OzpjJDuxgpm7KI9ko0NG/HqHHmNv2YJyVIYDWc+R2BTRqP7+3rK+GcBcjCwZks1K5SpzD+0q2WbjSdzxi52YjsbRUh3BP163HK+/pA0agCN9E4gnkjg5OIWfbj0FAPjqw0cy3MnZOr2uZJuYTWB0Jo6AT8EaE7WXI5ItLSI5y9jgskq2XN1F93bpG8sXmSj0eO2yO7awSCaTaEl77G0/Ncqtg1zbZDSB/WfHoEDDohJSsgG6N56CuaQ5MvDG1XkUPCUbTbKJOv/4bBy7T+lMZ0d9eVb8H7Z8KyVbKZFs9Pm8F5MMQrvSQWfJ8YUytLww0BcKVhJf+nszd9FCk2xOYrLxDOVwOAy/3w9N07JcRvvHZ3G4bwKKAlyx7Bwh2SL6pDwwEc2IBWMFnmKRHmdODur3rrW2DAFf9sLVqbsoq2RToKF3fNYI+p0LiDt6e10ZqsJz4ym5VnqMTSaTpko2+t1RVRV+vw/N1RGo0LD9lPyOFo3ZeBJD6evkxWTL1V3UCh319ki2M8PTSGkKQn4VkYCvaIkP5N1FiZLNY+6iATUrJpsCDeo8yeYI/JhshGTLXNgUE3XlIWhQMB1LCg140jfJApaQXfkC/S7Q94jEZetNt8Mtd1HeZg7djkIp2TRNw7NpJVtrbVmWDcQj2QhkSTafquCH77gE16xcgGgihc//+RA+fN9uJDhzpFuJD9xQCsko2TRNw6FefXPJjKSg25APJVtdedBIDCKrZrMi2dhNeGIXjM3E8cOndQXXZR11xjXRoJVsmqbhJelA+CcHJzEVTZjOPSLblyV3nL6LZrb1Z/90AId6J1BbFsDLNjQjEgzgquUNqIoEMR1L4ljfOO595IihFp6OJfHFPx/ittPsObsR0zFXaJqGvvFZaNDViGZqr1yUbH0T0QwvB1l3X5rktqtkUxTFNOkBD7IbKFaCjWQyiUU1EWhQsP30CA71znmksP1h56kRJFMaFlQEUBkOeGJ+BuRIttqyIGoifsTZwHMm8MbVeRT0jbYTk+3po4NIpVJ6UL+KkKW/vRnJpqqq8Y+cY7VgcKoscWshYjYRXNhWA1XRd5+Gp7JjFeSb9PKKZLkQkDFWzJRsIheJfIGnoqJhNyYbrWabmMhUHD19XFexXdBSJRVcutD3wg5ImyJBHyrSmZLsqNno+0q/u+RedqYzfi5rnHMNccNdNCNjs19FW62+qDxITdBOQeKxrW3ODF1Au/3T4zIZm1mSjTW6yaKnpSYMBcAOGztaNIiKrTzoQ1UkO6NrPt1FASrDqEk2V/pd6hycQgp6PDZFUYruLiqrZKvynJJNdxcl2UXjSQ2qMu8u6hTBAHEXzY7JFvIQyVZfEYQGnQAU2SCknYTcImRXvsDbKAGARkPJlh93UVmiyg3w3vtj/ZMYnIwhFFDRVD2naDZTshHYaXtzdQQ/fscl+PJrN6A86MP+s2M4MzwtVLKdGpwy1NdOSLZCKdniiSSOpJO6rV5oHhrILsnGzrdW12BkGB2Ui4/Ks+NoooFdMxGS7QdPdWJiNoGVTRVYl47xKiLZSDkLq8O4uL0GCvQ+54RkY59Hrko2tvwH9vbg58+ehqIAH3jRMpSnM8cHfCpuWKOThI8f7scf9nQDAD5323oAwG93nTWShrF1el3J1jcehQZFKukBOUeWZFtYHUZzdRgpjZ88xo67qKySjZyTTGnYn858K3ttTsYW0VqxvjyIhsoIZuMpvPpbz+Av+3sAZF/zc536xvTK9HrCC/MzIEcQK4qCFY3mLvIsvHF1HoWVkk00ATx2uB8qNCypL4fP5xO+LKIJze/3Gw+bnHuuKNnKQ36sSk/MR3onpM6JRqPo7e11ZSfECwN9oVCq7qKi9pj1Tx7JBuiZdIBsko3EY5NxFdU0rSSUbJqmBxIFgC4bcdno58wjOkn2ruWNcwY1/Qycjjfs+7x6oT55PXvCmTqMxgEjHttcm9nnSNodj8czFG6RSASKMpdhlG6nklYcNVdHoEDDDiq2pB3Q8dh4/TlXJZtVmzoadJdY2Zhsp4amoUEx3DWLnvhg2l7iA15ZxYDuLqor2VKpFGLxBBRgPvGBQxAlQiqlLzIAYCauP/uwl0i28iBSUDATF5NspG/2GyRbcZRsrLtoKZNsPGw9oc/9F7fXws/ZVOLFZCMQjR+itiuKgtdtbsPLN7QA0De/2DJ8Ph9Gp2P42iOHcfO9T2DPmVGh6s8MbpJsZkq2k4NTiCZSiAR8aK8rky7PDkFEYEmykQyjEskP6LWTSMnG2jCJRAIjk1H8IB2H7EM3rjR+4z1Hsl4jLqMvXacTVccHnJFsTmKy8Z4hj9w5MzyNj92/FwDw3muXGeQhOfbm9Xqf7RmdhqYBL9vQjDdvacfrNrUCAD71+/34xbOn8ZX/O4wH93YjmdI8H5NN0zT0T+jj2oZF5i6VTpRsAHBRWw0ABT1jYpJNxlvHrl3dOx5FNJFCQ0XQ0o2bbZcdlaxoragoCt5y2RJctbwB07Ekbv/ZTnz1ocNZ5z3bqY+/yxfoY4cX5mcCmb67fIHcvSXwztV5EDySze/3m7pHpVIaHjs8oJNsDWWmsk+zCY0sYgpFsvF28pzCSoK6MS1lJWlw6QmYh87OThw6dAgDAwM5tcusTbIYHBzEoUOHPCF9NoMsmci6StAoNLFkpWi0G5MNgKFkm5yczDjmqWN6X7p6+QLLdtH3xosLYfp9IyTbmRyVbGSc0TQNp4f1spY3uatkY4+/ND0uPH4k9/ecp2RjFWlkbJ2Z0a+PGDaqqhoZRqenp7MWPKqqYmF1GH4F6BmbtR0DD6DisdVmu4qSupzArpLtxOCU5dgA6GpGDYrhniOTvdAtiJRsZtc45y7qTSUbIYSisQRUaFAVbxmbpYKg4e6jIZZ24SBKtqCXSLYK3V2UuLLyVOakb/YWiGQTKdmIgs7tmGxWJFs+bCree78tTbJt6ajPaJuVko1HeMmOt1uW1kFBdqwmUu7JoWlAS2EimsDf//ezODEwkVWnnYUw728ZyJAJh/v0uXXVwkqoqvl4mivJZrWGIbFFTwxYK9lEdhxNQPFs3v9+8igmogmsXliJmy9YaDqXEDUbUcC95IKFUKCha2QG4zNitz83STaz8olNF0ukcMcvd2EimsCmxbW488Urs0jmC9tqUB0JGNmvP5JO5vEvN69CRciP/WfH8Yn/3Yf/fOwY/ri3G/vOjnleyZZKzbmLWqm96Odrh2S7uL0GGoA+imRj3X1lYrLZdRc9PaxvrF+2tF7azpF1P5ZRsgFARSSIH73jEvzDVR0AgG/89Rh++MwpRBN6mITZeBJ70okRlqY3er20ppIh2ToaymAx7GWg+NaHh+FEybbj9AgGJqKoDKlYVBsxVbKZxd8pNMlGI59KNgDYmPZb39s1Ck3TLCdgMmHRQUgBYHR0FGfOnLE1WOe6m3Lq1Cn09vZieDh3tU0+IWtwke/NBs5CLVLoenjtNZPBWynZJicnjd+OD0yibzyKoF/F5iW1lu2i3yMvTQgE9ETZWqtPXHaUbLyYbMQYG59NIJpIIehT0VI9t2tNPyva7dLO+8SOT5sX6zuLe7tGjbT3ThBNJI3AzLSSjX2O5FnOzurGEK0gpoMY8+KiBHwqWtPurc+ftD8WnE1n6mzhJD0Ach+DLUm2dEy2idkEhgUx8DKVbFOIQ0VzcwuWLFlSULKK7pOE5EukNINMYZFMaZhK/+Y5ki2gQoOCRPrxzMbj89lFcwCJyQbo7z0wR7KFfd4h2erKdXdR0jaeMoC0k7hp5jsmG43MmGx6vb1j+YvJRqMQ7qL030QpffnyRoMUmZ6eNrUveO2mf7dq+6XpOF79E1HEkpnHqqqKM8PTUKEhEvBhfDaBL//lEA73TuD08Awmo8mMTXA712oXZhv/5LsjkvHY2PJk7pVdonDZAvkMo2T+Zzf1eUo2n0+POzoTS+KX24iKbQVUVTGdS9i14eL6crRUh5HSNDyTJnd54K0pecIHGULaqh9rmoavPHQYe86MojoSwDfedDH8PjXr/fT5fFjbXAUVGl6/uc1QDTZWhvG5V6/HhW01eNHqRly7coGu6j85jERKjqjg/V4IDEzMGvbsiiZztz+nSraL22uhQd+Atfv86LnArrsoIdkuX1ZvdngG3FKy0WsIv0/Fv758Lf7jdRci6Fexv3sc9z1/Bt9+7Bhu+I+/IZZMoakqhLq0LeeF+ZlApu+G/CouaDFXQdLwztV5EPSNlo3J9sBe3Q/56uX18KdVbHaVbMDcjgg5l1enHZJN0zQcPXoUPT09ltea60LEyih70epGlAV9ODM8Y0yOZi87S6AQHD16FMePH89QKVkh14GenE8W5l6FXSWbmXKsGMSSrJKNPZ59pyIRnehOpVJG8oP/e6EPAHDJklqEA9bX5sR1o5Dgu4vaV7KxY5umaRia1ONXLF1QDr8/e/cXmCPZaGPETr0EtWUBrGmugqYBTx4dlC6HxdG+SSRSOiHTXD23UGXJRNJu8i7TLpBmJBu530vq9XtNYkzYAS+zqMzYbgXZ88IBH1rS98YsLhspU09+oWDDBauxZMkSR23LFZqmL0IDafJEFJdtcnZunvVc4oP0OxTX9L6ku4vOJz5wioDfB1VRoACIppVsRC0W9BDJ1lBBsotmK9nYvkkUZE3V+XcXbWhoQGVlpTHeAXMkW/+EuzHZRJt2hXAXJXV0jcxgaCqGgE/B+tZqI/7m5OQkd9PbLZKttbYMTZUhpDQNp5jxVtP0TTEVGv77bZtxUVsNpqMJ/Hl/Dz7623245RtP4ht/PYrPPXAAV37hr7j9pzvw060ncXxgMqPefCvZDJItrWRbw8Q75SHfJBvtLmr1DHibieRvUhdLsh3sGUc0Fsea5irctHZh1jWx4F0jccN8ysSm4cXC5Snbc1WyAcBjh/rwvSdOAAC+9NoNhg3C20y8ZEkdXn1xC+6+dW1Gebde2ILfv/9K/ODtl+C7f78J1WE/JqIJPH64X1rJVgxsT2+IXrKk3kjiJYJTkm1dSzVURcFULIGJaCKjLDsx2WSVbICe+Kc7vXF7+VL7JJvVeyarZKPXiq/Z1Ipf/ePlqIoEMDwVwx/3nMXZ0RlEAj7cfu0yW/e0UJAh2TRNwzfeeJF0ma5d3Y033oilS5e6VZwnYFfJlkppeHCfTmJds0Lv6GaMNLuDSUOkZKPLsEOyTU1N4ezZs+js7LS81nwr2WrLg3jr5UugYG5XUYZkY+83GXzsKPZyJdnI8STmgldhl2TziruomUHvRMmmKJnJD6ZjCSO+xqsuWiTVLi/HYwNYd9G0km3Yfkw2npJtaCoGDcDKpkquiyh7noxBQMC+t8lkEteu1N13/5aDy6gRj625KqOvsM+R/E/cRWVJNvL/4vS9zoVka6mZW0jzFiR2YccIJy6jnYP8vkLKiCc1dI/p7V1cby8ehRugr0lRFMNldFQQl2087Soa8qsI+jON2uKTbCRQv/53bF7JljN8ad+NaJy4i+pjkJdINqJkiydTiCdT3ODuWSRbnhMfAMC6deuwcePGjPeCLLrPjswgkUy57i7KzqOFULKROvZ26a5KqxdWIeT3GbYBSXID8EMhsJ/Ztstg/SKdbDnOxA871K/HOCsLqtiytB4/fueluHZlPZqqwqgI6/1G0/SM1GdHZ/CXF3rxr79/ATf8x99w+ef/ijvv243/3dWVkWEXcDcmG/0dUbJZJT1gy3PiLmp1DYvrddetiWgCAxbqd5EdJyLZgsEgukam4UcKr754keEaa5dkI2r650+OYCrKt494Xhx0GaztIXMPeXZyNJHEx36zBwDw9iuWGBlQ6XrpulRVweL6cvhN/OPCAR9etEq32361owvpSAieU7KNTsew58woAOBNW9otj3dKskWCPjRV62MoUQOzJJuMu6gdJVv32CwSmoamqpDhQi0Dt5RsorH9orYa3PWS1VjVVIkXr23E99+6Gbs+9WK848qOkibZFthQmUtd3d69ey0Hu9tuuw1ve9vbpCsuNdAx2XiEFwBsPzWC/okoKsN+XNiqD6xOlWwikk2GDOORbKRuK5mqWbmykDHK3n11B0J+FX0Ts0baYbYd7HeiXS47g/X5omST3RE0U7IVI6Om2aAvE5ONtxtNJz/42bZTGJqKob2uDLddfG6QbPTYsCQd50BmZ5eAfs6skm14MgYNClY2VQh39WmDwA7Jxuuj16WNtSeODCCVcmaEWWUWJc/RTMkWDoeN39j3gPzfWhOGouhxzUgwXVkYiQ+qs5VsubxvTkg2UfIDUkbf+Cw0DagM+VEvkYnXbbDveJVFhlFe0gPPkGzpbJjxlN4OomSbJ9mcQVGU9AJQM9xF55Rs+jFeuK8VIT+Cfp8Rl40376qqitl4EiNp8rhQ7qLsO7GoJoJIwIdYMoVTw9N5dxd1q3wZ7E3bmhtadXcfNpM0kB8lGwCsb+WTbNtP6m1aUlcGn6pvIrzpkja86dJ2/OQftuCxj1yPd129FO+/fhnue89l+OebVuLypfUI+lX0js/it7vO4sP37cHDB3ozys2Hki2aSBrEwaqFztxFzdplV8kW8vuMjUWr5AciIoC2eehjfD4/usdm4UfScPdlr4kF7xoXVARRFQ4gltKEoSV4JBtP2c5ugsqC3P9j/ZMYmY5hSX0ZPn7L6oxjRJuJbFt4uGxpHSIBH86ORvHM8SGjjTSKrWz7+bOnkUilsKAihM1L6qxPSMMuyQbASAjCutzbcReVDfukaVp6U13B5TbisdHtsnoWsipR3hqppjyEl65vxh3XL8eNa5sM76FSJtnsQOrqLr74YgwO6lLXpUuXYmgo27f8/e9/Pz796U/bqtzrsKtke2Cvnub4prULkY656zgmW11dHXw+H2pr9ZhRdnbReIkZikGymXXG+ooQblzTCAD4313djpRsxSDZzlUlm1fcRd1WsgFzJNvw6Lghk7/j+uXwW8jFCbxOstH3oKOhHD5VwUQ0YQTQtoK5kk3v5ysYJRs7Rjgh2egYKeTvTYtrURnyY2gqhn3pdOR2wcssStfHkmzkXbarZAv6FWM3//nOEen2pVIaetLSfjrxgZtEkMy41lFvHs+GlNE9pt+fxQ1lRSGp2He8xpJk07+vCs8lZ/CCqwow5y4aSzcnFotDVebdRXOBT1WgKJS7aNx77qKKoqC+XHcZnY4lubaLoigYSLtoBv2qodgsNFRVwfJGXeF1tG/CNXdR3qLq1NCU4ZZaSCUbIdnoxEhWJJusckmEdek4PqeHpzEbn1sLbDupzx0k/ACQea8iIT8q0hscW5bW444XrcAv33MZ9n76Jvz8XVvwsg3NAIBnT2S6Izq5n1Zz0OBkDICGRTURqf6Zb3dRAFiajstG4rCKILLjaOKDPmZgOoHZeBIVAeACJks5fR6vLPYaCemy9Tg/LhuPhOTZZTLzr6h9iqLgSO8EVGh4zcZWYy4iEIXFoH8Twa8qRsD/X+3o4pKAxVSyRRNJ/OiZkwA0bFxcKzUn8AgxaZItbVvZVbI5dRftGpmBBuCKZQ1S7SOQHb+cuIta1eFlks1sHMoLyVZTU2O4GZ48eTLnybZUYIdkS6Y0PLhf30l62YaFGcc7UbLV19fjqquuQmOjTkQ5Idl4SjYrssWsXFnIsuMvuWAhAj4Vxwemsnb3aPB2dsy+N0OuuynkeK8r2dwg2YpBLtlVshGw10EfQwzpZw51YXAyira6CG7bKKdiA0qHZEulUgj5fYZc/HDarcMKNJlK3/9kMoVhyl3UbFc/FyUbOTeVSiHgU3Hlct1QePywfZdRTdNwsJtPsrGkMfs86YyZMjHZUqkUtqR3uO0kPxiciiKWTEFVMjMIFlrJ1tEgSbKlVXdLiuAqSoO0hyzuxi2VbNkkW9GVbP5MJVs8kYQKzCvZHGJOyZad+CCQftReua/EZXQmPqdkY9UqZGNkYVW4qH2VBAU/2jeZN5JtZCqGl/+/p/CV/zuCWeqeuAm6zFRKw/6zhGSrAQCUlekbB4lEwkiwlS8l28KqEMqDfsRTGnadHgWguzbvThN/7bX8uUBURzjgw5XLG/DRl+iKpCO9ExnkXT6UbIMTUSgAVkuo2Og258tdFJhzWz2Y3lwTQeSZQa9XaFvv6KA+761qLMvYkDWbS3hrH03T0FoXgQbg6ePWcdlIG6w8N2TWcjRm4imcHpmGAuAVF7Zk/c6KPqzCt7B1bmitQVnQj1NDMzjcO+EpJdsf9/SkExL6s2xZEejNXwLZuYR4CfRNzCKWSGWRbKJrd+IuOjUbN+YNO0kPSD1m7WHbJTrWzOtJVEcxPKWsIKNkszuuSl3da17zGlx77bXo6OiAoijYvHkzli5dyv13LoG+0XTiA55SbPvJYf0lDvtx1fIFmdk2HMRkA+R30VhYkWxmBIYbhp3si1sV9mP9ompoAHacGhGewyOC6OvIRclmF6SuWCzmabLZrruoWUy2Qg6CTpVsZseUlZUhpSl4vnMIISTw/uuWWwY9peF1ko2duFdSCyQZ0MYcff/7J2aRSGnw+1S015WZxqexs+tGQO4rUZCRdhCX0ceP9EuXRdA1MoOJaAJBn4plCzKzR4mUbAQ8JRu9+OLFRbkk7XbwrI24bCRAbVNVOKMfukEE2TnXcBcd4rsWk+/Opndji0WysfNJtZWSLZpWskU86C5KlGzpqTmeSLuLzivZHMOnphMfxFNIpjRD0UZy2nhl3K6vCKWVbAlh3KVCxmMzw4pGnUQ50j8p5eYnA5Y0+PmzpzAxm8B0PImzIzN5XXQrioLOoSlMRBMIB1SsSCv1VFVFJBLJOpb3OVeSDUA6MZFixPF8rnMYsSRQFQ6gKuw3VTGJ6mivL8OqpkpompaxYZKPmGyDk2mSTSKzKNtmJ0o2mXjLRGV2QJJkk43JdrBPj1W6oiGzf5itlXjXqGka2mrLoGkKXugex+g0P5s3a/vy6pEh2XjHAsDhvkloGrCupcKY+2nw1qN2SLZwwIc3bVmsk4nHBhGNZz67YinZNE3D95/UPVg2La5NK5+dkWyy9sOCyjBqy4JIpjQc6B6zrWSj3UWtbOrdZ0aQ0jRUhYNoSysmZSE7tlsp2cy8nkpJySYiQa2u3wx+60OA733ve3j1q1+NY8eO4QMf+ADe/e53Gy5Y5zJESjZex3wgnfDgJRcsRNCv5qxkY0F2FXh++ixokk3TNGOnjq5XhpxwCjtG2dIF5dBOjqN3XOwywCOCnMo33YrJBugqF9ZA8wrcULIVw11URslm111UURQcGIxhOpZAR7UPr97YaqtNXifZ2PdtZVMlHtzXi8N9cko2mkylF39nR3Qjc1FtWZZh4qaSjZBbpB3Xpkm23WdGMTIVQ62NOGA7T+tk/cqFFVlEqijxAQFNsvn9fvh8PiSTSSMxAi/T8+YlNQCAQ73jGJuOo7rM2oXm7AhJesA33gulZGuv04NGT8eSGJiIopGJAZWlZLMRUNdNiEi20Rn+YoWnZGPLKhZITDZCsiXSiQ9U1VvGZqlAUZS0yiSBaCJluIoCQECVd7EqBOrLgxjUIIzJBsy5FzUVKB6bCHMbNRPChYdd0PNMNJHEj7eeSv+ioGtkOq9KNkVRjHhsF7RUZyiTKioqjMzjpH0EbpNsi2oj0Hon8GznEIAVePrYIFLQx2JFUZBKpTLmYVkF2IvXNuF3fzuDEwOTRtbPvCjZJqMAglJJD+g206ooGZKN3AOZayCK9UM9E0imNCMRiqhsGZJNVVXs7Z5EFYCOev68aIdkKw/5saShHAcG49h2Yhg3r1uYda6IZBP1x1QqxbVJRe17oUe3B29a25R1jqg+OyQbALx+cxse2N2FiekRPH6oD5s38ttVSBXbC93jONQ7gXBAxYWLqqXPY58lTXjLnHtRWw0eO9yPXV1jSGmAT5GPyUYr2VKpFHfNTrAjbfM6sc94/TUej2NgYAALFizI2gBnjyWQcRdlyyjG+tIKMko23u9mkCLZAODmm28GAOzYsQMf/OAHz1uSze/3c0mfRw/qqotb1i/M+I2Oyca+LHbVY+zkKwLdaclATLPxZkRWIZVsmqahvlzfsR2ZjiOWSEmTbE6ZZbdisgHeJtlkr9OMZCsGuSSa1NkdfwIZki2Z0vDoMX2X81Xr6oyMg7LwOslGG6+apmFVkz42H5Uk2XiTXSqVMsiVttryjHrYz0BuMdnYiby5OoKVTRU40jeJ504OZ2TAssLf0i6mxOWUV5+Mkg3Q1WzT09MGycYLCLygIoSlDeU4MTiF7aeGccMavgFLYy6zaObY4aaSTWZcC/pVLKqN4MzwDDoHp4QkW9fILAAFS+rt7ZK6BfZ+WCrZCMkW8qKSTe870fTwFqOUbF4dX7wOP1GyJZJGZlHyPVD8Z05AYrLNxJNZC2lCppD4ZIVKeiDCyvQccmJgysgW6JaSzefz4fe7uzEwEYWiABqAM3lWsgFz8djWMwttkvyAIF9KNk3TY5lBm8DzJ4fxrh9vx/6zY9CgGAoUM4LFimT7/d+AU0PTSKRS8Kuqo/tpPk4qGJyMQQGwxqaSza67qN/vN7xFzAgGQFdYRwI+zMSTODk0laVgJ7CjZBuaSqB/KonagILmyky7QIZk461VLllSiwOD/dh6fFCKZOMpy+wo2WicGZ7G6eEZhFUYsbBZuEGyhYN+vOOqJfifh3rw18P9eOv4rGFX0OUTAUghQNbm16xYgKB/yrI/iWBnE0xRFKxtqcIzxwcxMh3HXw/148VrmyyJZrpv0f00mUxm2asEO9MxHe1kFSXgtefs2bM4efIk4vE4Fi9enPW7U5JNVIaXNhdFbZUVrfBg++p++MMfnhcEGyBWsrEDz8BEFGdHZ6AowKUd9VnHsy8LW75sJzMLPC46jtTHKtlYuLkIsZOxJBL0oaYsAA3A0FTU80o2+ngvx2WzYuLZ48zcRb2gZLNScJqRbA+90IuT4ymEAz6sq/fZfuZejB1AgzXEVxCSrX8SMhk6Ra4pPYRkS5MrhVKyAcCF6Zg5+20kP0imNDx+RCfZrl+VbUjaUbIBcxlGWZKN3U0mmceek3QZJZlFF+VByUYg28c7GvQFyQlBXLZEMoW+yXTiA6+4i5bpysaxGX5fG08nPvBmTDa9z0WJki2RTCvZ5t1FnUBRFEO5Ek2kjMyikYAPOn1T/GdOUFcRNLKLihbSXlGy0RlGe9JeBm6RbIqiGO5b7756KTToCqkxgRtdLshUsulzyYVtxSPZ6sqDaK6JIJ7U8MjBvnQsJQWL0wtkXr+QqWP9omrUlvkRS6ZwZngmoyxZ0ItJ3rWOzcQRT6YQ9CvSoQPskmxsnFar4wHdXZy4r77QLXYZtYrJRpNshwemkNBUNFWGoSXlPZDMCIXNS/S14dOC5AdsGCKRks3qPvLa98e93dCgYFFNRJghPBeSjX63X7S6Cc3VYcQTKXzlocNZ7XJLGSuLRw/1AQBuWNNoyw5gj7FLsgV8KtYtqoYGBf/91ImMMkT3k76P9LsvsqtHp2M43Kv3+Y4F7inZAD0kEtsu9lgCszUS73nT5XnJ7uHdD7PQRTJw7eq+9a1v4Z577nGrOE+AJiDoXTg2QCWRoS9fUIGKUGb8NRLniJzDI7vsKNkIzM6hWXAeySYb78op7Ero2+vKQXbJvEyysYy2lzOMyjLvNDnFHuOlmGxWSjb2OPr7/3ryBMa0MC5sr0MiNmtkSpZFqSjZAP2+LakvQ9CnYjqWNAgdM7BjFSmHkGyL07vsZvddNkgrr16eJJ1kf7OTYXRv1yiGp2KoDPuxaXGtsD47SjYgm2RjSU2DZJNMfkCuiWTwo8sCCheTDQCWphd3Jway4/dpmoaxmTg0TSesGirk3XbzAYNkk1Wyhb2rZEs3EYlEAqqizSc+yAFG4oN4ykh6UBb0eeaZEzSUh4zsoqJNIRLAuqm6uCQbnWH0xKDuSukWybbv7DiO9E2iIuTHHS9ajpYa/Vpf6JYf62UxZztqRvnrF9VkHEMSIxHki2Qjx3/spWtw33suw2desRZvvKQNn7ttPSrCwXQ77cdk049TjDmTjOVOSDa6nSxISJelDWXSmdndINmkXEbTLrIHJEg2GSXbgZ5JJKCipTaCRCLB9fjg3SMzAmnTkjooip4FtZ+T+V3GXZSuV7bPaZqGP+zuhgZg1cIqS4InFyUbsSGvXrEAgIZf7+gyEnCx5ReCZOsfnzXIdRLrF3BGstmZR8ixF7XVQFEUbDsxjBe6x2zFZAOs7eqnjg1Cg66Sro7Yt8/MlJd2PMfsKtlkwl4VA54m2e6//3786Ec/cqs4T4DcSLqD0yQbISb2GGnBa4zjRKoJuiwn7qIEVueYkWz5VrJZ+Z2zdbbXlelKtkk+acXu7rFl2zEmcpF9ssd6mWRj+5YVyWZWhpeVbFbuojtODWPn6VH4fX7cfOlaAMDp06dtPXevk2ysssrvU4209kckXEZ5Bn0imUT/hG4ILq6vyKon30q2dWmXnn1dY9LP6rG0q+g1KxZwE1tYKdlY0o2QbKxxSC8YUqkULmqrAaBnN0taKAdn40ljU+aSJZlEoN35gAe7BvgyspDmZHfWNA0j03FoULC0obxoxlCWko2QbALli5ezi4bT0fhn0109mUxCgQZVmSfZnIAo2ebcRdNKNg+SbHXlQaQAobsoAGPx3VRZ3MQHAIzkACSYfq6L4kQiiRMDk/jJtjMAgDdc0oaqcABrmvWx/oCNDRW76J2IYjaeQkXIb2wsEIRCoYy5IF8x2cgxoYAPW5bW4+1XduALr9mAN29pz9q4583JVtiwSCeajg3q8e3skmxW6hJCAIvcMXmwS7KR39jQFVZYK5H8QGTP0nM5uf8v9E4iCRWLaiLQNC0jcRx7Hq8sHilRUxY0kjRsPZGtZpNJfCCqgwY77v1+dzcO9eqxFVc0VgjPc4NkI8+5pSaCDYuqoGnAf6TVbOyzLQTJ9tdDuqvohW01aKyc27gohJIN0Df6SPzC/36q03JtzD47q+QHT6Q9N9rrndlnZqSSHVGL2VrRrA4741shYNZWdp0lC9esukcffRQnTpxwqzhPgCXZWFUaoN/sPWdGAWTK0NlOx1uE5kvJRtdbTJLNahAlv7fVl6dJNu8r2WiUgrsoLxMuDTOy0osx2Whjjfc724+/94Q+Jt128SJcsKIDqqpiYmICo6Oj0m0qBZKNnbxXLdTdJ2SSH9Bj1dxiL4pkKoWATzViargZk41eBPCUbGuaq+BTFQxNxdAzJveePX5YN6joHUsaTpVsBLzxN5VKYXE6JsxsPIWTQ3y3S4K9XWOIJzUsqAyhnckEZeaqIwvbJFt6wXlcoGQbSRNZTuJ9uAX2fbdSso3PeNldNK1kSwKp9OJNBeaVbA6hKAr8qgpAzyo6G/eukq2echdl5ys1HUOLEBkLi6xkA2CEHTg+kLuS7S/7e/Cp3+/DH/Z04/TIDCrDfrzjyiUAgNVEhdSTPyXb6SH9GtYtqoKqZpMWtMuoHSUbW49MW3gwUzHRY7pZGSsaKxD0q5iIptAzNmubxLAikE6l3VAJUWSnTLtKNlZVbwU3lGyapiGZTGIymsDZ0SigKGhLh1MgLnS5kGyKouDKZXqs2GeOyZNsdpVs9Pf9E7P49B9eAADcsKYJ4YBPylVR1CYReM/5hjWNUBXgoQN92HNm1NVwGLJ4JB2P7YbVjZbPjoUbJBsAXLpUdxP+094ekLw8VkQnOd9MyaZpGp44MggFGhY7jJdr5sppZ41tV8nm1RA8soRgwZRsVoP+uQIzBUQyOadMuNCGko2+d27HZOPVJ+su6kantysH1gNqKxia9HZMtlJSssnuGpnJgIsxEFop2awk3PRkf7BnHA8d0OMxvOvqDgSDQTQ3NwPQ1WyyKIaizy7Yd26lkfwgmzxhwTNse8f0RUldeRA+X3YsslxJNvo95CnZwgGfoaSQcRntn5hzC7hWkmSjn6ff78/qS2YkG218+lQFK9Ok5kGTnXQAeD7tUnrJktqs+vKpZJucnMS+ffswOZnZH4iS7czIDGKJ7LFxdDoGDXOx24oB9ppqyqzcRQnJlu0uWmyQ7KJJKEimNEPJNk+yOQdRss3GaSWbP2Mu8ALqy0PQAEzHExl2IKC3cXw2gdm4/g4WOyYbMKdkOzowp2Rz8h5tPT6EO36xC0OTswj5Vbzq4lY8+IGr0VqrLwzXNFdBUfSEMEQ97TZODuvzGW2j06BdRvPpLsqWSWAWj0u2//oUXWWW1BQ8cWQAiYR86Aa6Tt5GZpyK9ba+ACSbQil7ZUJQrF5YBVUBBiejwj4kG5Ota3gaKShYs7AKlRH9PSTxqWRJNt76RFEUXL5MJ1yeODpgbAjw2kGfJyLZZMjHT/7vfozNxLFuURWuX92UdQ003IrJRtq3oCKE2y5uBQB85aHDWdeT7zl5Np7E08f00DB0PDbSTrtwSrK11pahpTqMWCKF/Wn7UNZdlOcBR3C0fxK947MI+VS01kRcU7KxG0Bse3nPzWytyOuvxSBcZWDV1oKRbD/5yU+wfv16RCIRRCIRbNiwAT/96U+dFOVpsEo20uHpgeT00BRGpuMI+OaCb9LnsL7VvEXo+a5ka68rBxRgOp7E8FQ2ccUj2czIITPkshtbSko22fgHovtIK428pGSz2tUj/0/Hknj/z3dC04CbL1ho7Mq3tbVBURSMjIxgYkIu+6bXlWxA9n0jJBuJh2EGeqwi97NndBYKNNSXB43v3FSy0UYDnX2ZBokxI5P8gGQVXb+oOsMtgFcnj2RjVWyAHMlG+tva9Nh/qMf8fm9Pk2ybF9dl/ebmRgf7vvf29mJoaAh9fX0Z3zdWhlAe9CGZ0nB6OFOFp5NscWia4iiorlsQuovOxMFL7EHcRas8qGQLpgnrlKYimdKQSibm3UVzgK5k059pNJEysouWBXyuvk9ugCjZEkkNM+l20ovTvrSKrToSMNyKiwkjw+jQtPGe2V0Ynxmexvt+vgOJlIaNbdV419VL8e5rlxvZNAGgMhJEQ3kICoBtJzLjWqZSKZw4ccKW8pwGae/JtMvr+tZq7nFEyWa2ieeWuyhvDKLnb9r2Ygkvs3o0TcOVyxsQ9PvROz6LRw/2CY+1274D3eOIJvXkUW21kazfZcq04y5qV8kWCfoMtbVIzSYbk+34wCRSUHD96gWGXeCWkm1LRz3qy4PoGZvFvz9wUNgO+n+nSraHD/bj4QN9CPgUfPm1FyLgN/dq4Y2XuSjZNE3Dh25cgYBPwZNHB3E4TTAVyl106/EhzMSTaK4OY21zVUGVbOx5ZON3x6kRAO64ixJX0QvbauD3OXO7lHUXtVpvO43J5pW5mcATSravfvWreO9734tbbrkFv/rVr3Dffffh5ptvxu233457773XbnGeBrmRpIPz4jbs69JfmrXNVUbmMMBayeYk8F8uJBsvqymNfJBssoRWKOAzMt6cFMQGYssrhpKN505pJwZVIcFTspk9d95ntoxCQNR3RP2TR7JpmoYvPXQEJwan0Fwdxudevd44PhwOo7FRzzzZ09Mj1abSJNn0nfljA5OWccJoMpWU0zc+AwX6wpDc43wo2VRVFbo0rydx2SRItsfTJNv1q/np6QH+ZglpN49kI9lFCcyMTxJ341CvWUwYDdvTRtYlS8QkmxtKNhZkkcDuiCqKgqXpGDvH+rNJtpG0ko2NY1QMsCRbSgMmY9n9zcuJD/w+FX5VQRIKEikNyXTmunklm3P4fHMk24yHEx+UBX1p11Y9KxyQubAlJNtCD6jYAKC1NoJwQEU0oRmqUTublJPRBN714+0YmY5j/aJqvGFzKwI+lUsatNWVQYGGrcczkxINDw/j9OnTjkPRaJre9tPDM1AU4FLOuAvMkWwiQoP3G/27HZKNB5Zko7+XJdlSKT3m3M0bFgEA/rC7C2fSCj4ZmC189XlLQUt1GHZeJ6dKNiuSTdO0LE+StS26vSCKyybaNKbrmYnF0Tk0haSm4KXrmm2TbLxNbfoeRII+/MfrLwQA/HTbKTy4ryfrXCuSTUYJlkil8PVHjgAA/ulFK9JqUfG6jCZ2c018QD/ntroyvPGSdgDAA/u6oWlawZRsj6RJ5hetboSiKLbrc8tdVFEUXLNCJ9meOzUKQJ5kM3MX/VuaZNu8uEa6XaJ28tbTbsVkM3NJ9dqayhMk2//7f/8P3/72t/HFL34Rt956K175ylfiS1/6Er71rW/hG9/4ht3iPA2Rkg2Y6zgvnB0FkJn0ALCOyeZEukrXb4dkS6VSwheGoJhKNkVR0FSl7451DvJjA7HlFdNdVFEUY/L1qpqNN4hZkWz0vaEH9UIu/kQTsNXOB91H9pwZxV8P9cOvKvjPN29EHZOyvLa2FsBc1kgrlALJxk6WbbVlCAdUxBIpnLKIE8abRHpGp3WSrTyUVyUbTbKxhoRs8oN4MoUnjqZJNoGrKF0+/RzJZx7J5vP5MuK2iWKyAbrLEwAcNFGyHemfwMRsAmVBH9ZQqmcCN3b3RGMvWSTwxv5laZXaCWbsnYnNud8t8UBMNnJN4YAPwXRss7HpbJfROXdR7ynZAD0uWxIKkknNUAj5FO/t6pYCFIUkPtAQpdxFwx4k2RRFQUWa+B1JK/bpNvamY082VhU/6QEAkAyjGoChKZ0UtEOyfe7BgzjcN4EFlSF8762bkOZCuURWa1od9cSRQUONCABTU/rcRdz1nIAk/7mso96IL8qiqqoKFRUVaGhoyGobgRnJZgdm5EwymcwYu+2QbOS3K5YvwKKaCOLJFD75u/3SNq7Z+7L95DA0AM3pRACycEqy0e6ivD7X1dWFrVu3oru72/jOKi6bjJLtWO8YEkkNzbVluKClCsGgbjuyJBvPpZZ8Tx/Hu9brVjXi9muXAQA++pu9hn0mItmsNpZZaJqGY/2TGJqKo7k6jPdetyyjfKt1gF2Sjd6Q5z3nO160HOGAilODkzg+MFkQkq1rZBr/94JOst24JttNNt9KNnbcuGJ5A3yqgtPDM+mM7fxrZ5+5yDaejSfxXOdc6BFee+20Mxclm6Zp54ySzYwQpMdiO/Og7Svs6enBFVdckfX9FVdcIa0MKRWwJBtvwUUyIm1gZOgyMdnYsqzgVMnGLnzzrWSTHUTp31tqdCOLyPrpY6yYdTsd3g2STVVVw5XMq3HZeNJvO0o2nrFTCDhVshEc6hnDk8cGASj4xC1rsGlxbVYd5NnJGu6lQLKx75yqKljRqBM5R0zistETJNk9no4l0pl+NSysDnOVbOx9p10+Zd5HnnqO3cVf01wFv0Tygx2nRjAxm0BdeTBrs4MG7zmaKdmATJdRM+OTJJo4OzojjBX2/EldxbaxvRZ+TvZTN5Vs7LtO5gDejihRsrEZRonrfn1FCBUhf9Z5hQLvfoiSHyRTGqbSRAtNspmVVWiEAj6koCKRShkqU5/f54m2lSKIu+iR3gkjEybtLuql+1oezsyMS8+z/RP6++YVJRsArGysBKBgeNoeyZZKafhzEhYhJwAAzs5JREFUWqXzpdduQHN1xNT9rbW2DBUhH86OzuBdP95uxKsiG2GE5LALTdNwpHcCGhS84sIW4XGqqmLz5s1Ys2ZN1ve8z3TbST0ybaHP4dXDzp9OSDa/34cb1jQhoOouZawLrggiUkfTNGPuaskzyUbbrWZJuwj5evLkSWNOu8Aiw6gVyQYAh9NK9BvWNmdspvNINh7MSDb6nI/ctBKbFtdiIprAx+7fl9GOXN1FAX1jEgDeeEm7kWndjDBj+xz72Ypko9vGtq+pKoz3XL0UCoCnjg4ihfyOx08dHcQr/t9TGJyMoqU6bMTBKxbJpigKqiMBbGyvgQYFp4ampF12Rc/62c5hRBMpNFeHjQRaTuY5M+WlrJLNyuuplEg2q7Y6IYhtX+Hy5cvxq1/9Kuv7++67DytWrLBbnKdhpWRLpTRjUL6orcb4jV4simKyOVGylQrJZldSqSgKmtMk2ylOXCACN9xFeQME/Xl8fFxKylsqJJtVKnQRyVYsYsmuko3ua3891IffbO9CMqXhxWubjOxlLMjupOyzKyWSjX7Gc8kPxOoq3q559+gsVADNVWGEA3OLf7MFB31vZNRsPCUbPVkD6eQH6Wswcxl9LJ1V9NqVC+BTxeOXmZKNzTRKYEWykfZWRwJYlB7DDgmMfCMe25Js4hdw1/Cwp2TTSTY2w6hOtOrp4YsJ3nxSkybZxhmSbXJ2ru950V0U0JVsGhSkoMwp2TxmbJYKFEVBWVB/d7d2DuGn204B8Ka7KABDyTbGcRclSjYvJD0gWJ4OOzA0le0uZ4YXuscxMh1HRciPq5br6jBRcGxFURD0q/inFy1HedCHZ44P4faf7UA0kTRINuKRYRddIzMYmIzCpyp46bqFts8vlLsoTSiJ4rFZlUFvXNWVBw03sr/slxM/8DZmAeDU0DQGJ6PwqSqaKu2pLJ0q2azcRcl3sVjMULMRNXnn4FSGGpLArP8BQCKZwsn0HPiSC/QEWcQucEqy8X4DgIBPxb2vvwgAsK1zCGMz8azrFT0Pq/vYPz6Ls6MzUFUVb7ikTeo8UfgiN0g2APjHa5ehKuzD6Ewcjx8ZNG1/LvjxMyfx1h88a7io/+r2y7PiW8rOB26SbIBun+ok27S0u6jomZF4bMQNlddeO+3MRclm5fV0LpFsBXEXvfvuu/GpT30KN998Mz772c/i3/7t33DzzTfj7rvvxj333GO3OE+D3EheTDafz4fh6RhiiQTKgz5DDQBkdk6rmGx2Xgy3SLZCuYvaCZZJlGynh6ZAB7N2m2QzU7J1d3dj586d6OrqMj1XURQjXpPX3UXtKNl47qKFHgSdKtl2nBzG7T/diaSWwsrGSnz6FRcI+zIhThKJBFfZw6J0STZ9TDpsQrKxY5WqqugenUmnBdffSZ6SjWf4mQVpFdVLK9nY9gDA+kW64WyW/ODxQ9bx2AB+n3ZLyQbAcAE9JEg2sT2tBuDFYwOKqWRLu4sOTGWcR5RsTtPDuwXeNREl2yhDso2nXUVDftVwKQWczbf5QijdLk1RkSTqEw+PLV7HmuYqXL+6EZd31Bsk+7LGCk+SbIT4JQpMuo0kJltTtXdItpVpNXT/hD0l25PH9DH5sqX1hpJGFIeHPJ+lDeX44TsuRSTgw+OHB/DR3+zF9PRcTDEnarZn0tkF17ZUoZYJGyEDN0k2Xpls2TTJRqtZ7KjAyJy2rkV/dv/3Qh94CWJYiMZIEke0ta4Mfp+aVyWbrLsoXcaZM2eQTCaxoDKExsoQNI0ftsEqJtup4WnEkilUhvy4eHF9xrEs8WVFsrHH885pry9DR0M5NA3YcWrYNSXbztP687pmRQMWUmOJDGnJErt2STYREVEe8uOmtNvmH/b0YCaWtNWPZHCkbwL3/OkAUhrwuk2t+OW7LsHCyrl3Ptf5IHeSrREpDTgzMo1Ekn8/2XfQkmRbuSCn+8hbb/FINrP1NrEpRV5PZnXMk2wcvOY1r8Gzzz6LhoYG/O53v8Nvf/tbNDQ04LnnnsNtt91mtzhPw0rJ1jc2CxUa1rdWZygoeJ1OpGSz08nONSUb/fuCqjB8qoJoPIWzozPcY2ilixmzbgYzko0om2jDjndsKSnZrPzIRfexWIEp7SjZEskUnj85jF9vP4OvPnwYsWQKaxZW4iXrFiIYELu3+Xw+47qsXEY1zTzegFfAe8ZkZ3dP16jwPHYHU1eyzUBRNLTXyZNsgL24bLyMpvT3BCT5wd4uPsl2dnQGh/smoCq6USmCpvGz5UYi+jWWlfGJJDr5gVlMNmAu+cFBjpLt7OgMzo7OwKcqGapnGm7GZKOhaZqpkq2joRyKoi/8SewlABhJf15cZCUbAY9kY91FeUkP6HO9YNSRBEkpTTHcRedJNmdQFD0m24WtNfj5u7dg+ydvxG/fdwXedGm7N0k2osCczo7J5rXEB4CeuQ4ABiZjmI3Lq8meTKtVrlk5NybLkAaXdtTh+2/bDFUB/ri7Cz0jc+pauySbpmnYelxfjG5Zyt/YsEI+lGx2STbZeljvhaUN5SgP+tA7Pou9EsmDRGMkUWB3pIUE+STZ6DbQcepExwGZara5OK6jWeeI7DjStmP9el9b3lQFn8DF0q6SzcpjiSTieLbTPsnGexenYwnsT9tKr93cato2GqK63FKyAcBFbdVYUBHCZCyFp48NukqyaZqGz/7pAJIpDTetbcIXX7Me+/fswnPPPSf97Fi4pWQj513QUoXasiBiiRTODPPjJLPvIO9edo/O4Gj/JFQFhkqY11477eStA2WVbFZrRd6arlgiDit4gmQDgE2bNuFnP/sZduzYgZ07d+JnP/sZLr74YidFeRqWJNv4LBQAFzJxgHgdSBSTrRBKNnaSyjfJZtdvWVEU+FUVdWVBAFqGEoQtw2oAsIIZyUZ+E5EE9ADodSUb/TxFz4MmLdnfi+0uaqVkiyVSeN13t+L//fWYTl4oCt6ypR23XtisB8I26ceKoki7jIpiVXgNvPu2cXEtVAU4MzyD7lF+kgeW7IomUuifiEIB0F6bGetBURSUl5cjEAgY94+GHZKNnphpFVyWki09tu4/y09+8Ngh3VV0Y3stasrESgV6DKT79NKlS3HxxRdnBbwmoJVsvMQ3dJuM5AccJdu240MAdEOrXBDfLF9KNvp58IzlcMCHRTURVCqzeG7vIePcEUPJVpF1TiFhpmTLJtn0v6uYeGxeIlxCgfTiESpSxsLYu2OLl0E/T03TUFsexMb2WgQoxY0XnjlBVUQfT0g/pZULfeP6+9bkkcQHALCgMoSlDeVIafrmi4ytNR1LYEda/UQvAmWVOVcub8BL1zUjhLlyAPsk24GecfSMzcKvKtjY7h2SjQeaUDJT3cqowAzvGQW4Lq3u/r8Xei3bJ6r3+TTJtswlks2MsLHrLlpdrZNqRM1GYmPvTSdLokUNZmSABgUn0q6iq9JZSkk76PqsxhTWLrAi2Qj5++yJ4SxS0YmS7Y97uhFLJlETCWBLR6ZNI6MMdBL/jbdRyz9HwzUrFyAFBfu7x/Dzbae4iYuc4PHDA3jy6CACPgWffJkeV3F2dhaxWCxL2FJoko18VlUFly3X3TtPDPDjJLNt5N3LJ9NJvi5sq0F1WSCneY5nx1op2VhYrRWtiCsvQZZksxO6wFtX6FHwBmcNuu+/Ci1LmWAWYJu88PPuotkTcH1FEIqSGdNIxJrnSrLxXm6WVDVrr9eVbPqOqIanjg3ioQN9+O3OLrz6m0/hS385ZClVBorvLmqlZPvxMyex6/QoIgE/Lu2ow3+8/kL8+23rjZCqVv1Y9vmJyBmvgTdZVoT8xs4uMZRZsPf1QM8EUpqGypAP1RF9zKLv5caNG7Fly5aclWxsvaJd69ULK43kB8cHsnf/Hk/HYyOuoslkEocPH8bQ0FDGcaK4ET6fD9XV1cL+YsdddHXaXfRI74ShUAKA5zqH8Zk/vABAX0CK4KaSjW4X/TxEY9uyBRVoU8dwovMkxsb0BcpI2gAuZmZRgP8uV5dZKdkySTYvGXXEXXRn17jRXr/fu2NLqcKbJFtmLMG58VrBwKT3Eh8Aunu7BgVnR2ekFhfPdg4jlkxhUU0EHemxgyY5ZBby77lmKUJKAod7JwxCUjZzNcEf9ujqpo6GckSCzhK3eMFdVLYeVsmWSqVw8wV6HLr/298r7VlC1ztMzbtLG/KvZLPrLtrc3IxwOIxYLIahoSFDebm7axT79u3D1q1bEYvFLONGnR6ZQTSRQnnQn7Gp5KaSjYdLO3SSbf/ZMUSTmQIC0RrRbNP8x8+cAqAr+lQmPm2+lWxWLo6pVAptdWV49zXL4FMVHO4dxy3feBJ7zowKy+Yhnkzhqw8fwau++TR+9HQnxqbj+LcHDgAA3nFlBxbXl3PXh8Um2QDgiuW6G/Lx/gkpsQvvXj5BVMLpeGy5KALdULJZrRXPRZLNDly7whtvvBFLly51qzhPgO1sdIfY3TWOiWgCtWW+rFhAPFKumEq2UnAXVRQFTVVhKAB+9MxJw3VChmSzwyqzz4Y3eIiMOV5Mtmg06qrsWRaapuH5k8N4+EAfYons6+8bm8FvdnThB0+fwq4zYzg9PI3OwSl86/HjeOePt2N8Vk8jPT4bx+HeCUQTSe7A4kUlW//4LL7+6FEAwN9dvhhXLGtAbXrRLduPZTOMitwavQbRfdvSMeeOwAP7nHef0V0NWmsjxjH0dft8PmGSAPK9kzh3IiVbOODDNSt1Y+I//3o047fZeBJPH9PJtOtX6WPwyMgIenp6cOrUKWF9dp6jHZJtSX05wgEVM/EkTg3pC5PHD/fjrT94FhPRBC7tqMP7rlsmrMuNMZjNhsZ+Fo2VS+uCCCoJDE/pO7/9E1EkkikoCtBW5w2SjadkG2V2wiei+t8id1EvvMP15Xqf2nlmDJNRfa4JCd6peZiDVbLR8NIzJ6hOq20nZjMTH3SPzSKZ0lAR8qO+wjtKNgC4pKMOKehuSjK21lNH9UXg1SsauO+ujPvbhW012NhShpSmYdfpUQD2lGyplIY/7tZJNpIAyAkK5S7KS3yQK8mmaRquW7UAQZ+KE4NThjukCDxShygJlzdWGK7O+STZaKLPLLsobbcQNdvs7KzhVXRiYAp9g8NIJpOYmJiwJNmO9uvz9bIF5Rn2Dbv555Rko6+fRmttGRbVRJBIaTjSN5VxbXaVbA8d6MOBnnEEfQouaMneOJRRBjpRsrHkrOgc8vctGxbhDZvbUFsexNnRGbzhe1vx6ME+Yfk0Tg1N4bXf2YpvPHoUu8+M4jN/PIBL/v0RHB+YQn15EHe8aHlW3bKEJw9W77/d865d2aRvGk9GsYtDLlrFZEumhRMADLuYV6fddoqUbLx7JyLZnCjZvCZc4M1FPHWtnb7kGsl222234W1ve5tbxeWEb33rW+jo6EA4HMamTZvw5JNPOiqHVTbRN/jhg7qC4hUbmrOyl8go2UTyXDOcayQbfbyiKFi/qBpL6sswNBXDB365C4lkKmtCyFXJxjNE2N+s3EWJu6GiKNA0zZKocRvPnhjCG763Da/7zla8+yfbce2XH8MPn+7EycEpbD0+hB881Yn/73/3oXtsBuGAD5cva8CL1zbh4y9dhUjAhyeODOBV//k0Xv2tp/GDpzrx5/09+P2ubkTj2YqXQg+CMkq2L/z5ECajCVzUVoNrmYlGth/LuouWQjw2QGxAXdqh75w9e2Io6xz6eHL+zvTEv6g6bHtMyIeSDQDufPFKAMDv93TjUO+cyvW5zmHMxJNoqgoZSQdEscecPkcRycabjH2qglXpBd3+7nF892/H8e6fbMdsPIUXrW7ET955aRb5Q8ON3T3Sr+kFqYySra1Cv57RaX3X/3j/JAAN1eFARgKBYsCMZGOziw6nsyBWRfhKNi8QLp96xVrcdfMqXLOyCcsXVGD9omoj3tE83IMnSbaI/n5OMu6iR9MEyCVLak0zJBcDWzp0JVvfeBTTUeuxnbgzXU1lvjMjOURz/s1r5lQ+s/GkLZJtW+cQusdmURZU0zEnnd3TQruLplIpjI/rcxwdD1Sm/ezCNZVKoTIcwJVp9YyVyyhvTfLMcX1Bf8mSOkeqPfodlFmgyrqLsrY4oM95deVBtNVFoCCFnlE9tvLs7GxWeIrMOjUc7tPfv6WNFVxxhF0lm504YGQjdH/3OPdcmfclldJw78NHAACbFtciEsy2c8w8jNwg2WSUbKSOxqow3nN1B65duQCz8RTe89Md+NXzZ0zruH9HF275uq58qwr78b7rlmFJfRliac+cD794JarS9hWPJMl1PnBDyVZTHsKKpkoo0PCLbaeyzrMiLPd0jWJsJo6qsB8Xpl2jc7kuXp+wo2qjfzvX3UVlNwpYuHaF73//+/HpT3/areIc47777sOHPvQhfPKTn8SuXbtw9dVX46UvfSlOnz5tuyyRku3xwwPoGplF0KfipjXZGe3MYrI59Q9ny/Oyu6gs28vu8vh9Ku588QqUB314tnMYX3/0qJSSzU6HZ5+lE5KNqJqIEUSMokLgM394AW/43jY81zmMoE9FQ0UQPWOzuPuPB3DdVx7Hm/5rG+750wHMxJNorg7jc6/egBvWNOGClmrcdvEi/Pr2y7GwKowTg1PY1zUKRdHJge6xGXzt4SNCYrlQsFKydQ5O4be7zkJRgLtvvSDjOZJ/gPvuol4n2UQG1CVLagEAxwemMDiZfa30c06mNOxOB81tqQ7llWSTVbIBuuvDy9Y3Q9OAr/zfYeP7v6bjsV2/qtFoo4hkc7pz5vP5UF5eDp/PlxGHTjTGkeQHd/1mDz7/50OIJzXcemELvvv3m7I2Y1i4qWSLxWJGeTJKtgVh/fvhqRhSqRQ6B/VFR01Z0DMkBY9kY91FSaiB5Qxp5WRTK19oqYngfdctx1su78DLL2zBDWuaEJh3F3WEUlOykbiRk2klOWnjkfQi/7Kl9UVrmwittRFURoJIaRoOdI+aHts7NosjfZNQFBjkDsB3AyQQLVw6agJoqAhhIuHD3q4xWyTb/+48CwC4rKMO/hziHRZKyUbbPf39+ry2YMEcSenUXRQAXpJ2Gf2LJMlGt++ZtFL8quV8VaIVnCrZZN1FFUXJmPMAYENrDfxIoXdM94aZmZkxteN2d41ifDaJkF9FW20ZN/ZqvtxFgTmX0T1nM0k2O8TXg/t7cKh3ApUhPzYvruW20Wxdlou7qEh9xdbFzsEhv4rvv20zXrOxFcmUhrvu34tvP348q/zx2Tg++D+78ZFf78FULIlLl9Thzx+6BnfdvBp//ch1+O+3bcaXXrsBb7603bReAjvzgVMlm6gMIiYBgAf2dWfZL1aEJckqetWKBmNcc6LQY9vGI5Xoz6K5FZBXsonUYV6CWYy6giY+8DK++tWv4h/+4R/wrne9C2vWrMHXvvY1tLW14dvf/jb3+Gg0ivHx8Yx/BCKS7dt/O44UFKxbVI1IIPsWminZkkndLa+YMdkKpWSTjclGn7OwKozPvXo9AOA/HzuG5zqHuOeYDaJmkHEXlYnJBswZQX19clLnXLGvaww/euYkFAV4y5Z2/O2u6/DUR1+Ef3vVOiyuL0PQr+/aXrW8Aa/ftAiv29SGpupIxvNYt6gav7/jSvzDVR341MvX4F1XLcUrNrRAUYA/7+/Bj585aRwLeEvJNjYdx0+36WT5Gza34cK2GuHxbpFsXpU1sxAZUDVlQaxeqKurnue4jNLXd6RvAhOzSQR8KhoqQrbHKDeUbKIx486bVsKnKnjkYD92nBrGiYFJPJJ2MaDd9clCzK6k3QwkDh3PjYRtL1HUzcZTqAr78aXXbsDX33gRAhILPTcMD7LgAObuBZv4gDdeVvv0Y8dnE5iNxQ2SrbYsUHSSgveO1whisu1LZ9G7IG3IEnhJyUbA60/zcI6SINnKdZItmUxhKpa2BTUNh9Puapcv8x7JpiiKobTcb5KpGoDhyrRhUXVGIhqzsY33fmuahpmZGWxeXIspLYBdp0cwPi2XZGomlsSf9+uE0hXLGjLqsAs3STZemWzZExMTmJqagqIorpFsN65tgqoA+8+O4+QgP6shfTxpS//ELA736Ul8Ll9WXxCSTVbJRh/Hhki4KE2ykZAzNMnGe4YPvdAHDQqW1JfDpyo5kWyixAdm/Y+QbAd6JjK8d2RJtmRKw9ce0UNp/MPVHcLNPJn7ybYzFyUbex5P4BDwqfjK6zbgvekwGl/8yyF8/ZG5sCBPHBnAS7/2JP6wpxs+VcFHXrwSv3zPZVhUE0mXpeCGNU14/ea2jBh0vHWdk/nADXdRtozm6jAaKkKIxpP4351dGedZuYsSku2aFZkePGw9sjAjlejPItEDYG1bWxFXXoKV6s7JGCgVCOTVr361dIG//e1vpY91G7FYDDt27MDHPvaxjO9vuukmPPPMM9xzPv/5z+Puu+/m/saSbD6fDztPj+C5zmG0+1VsbK+1jBdAQBvUhGgDzm2STbYjsoPyKy9ahGeODeG+7Wfw//56FHesy85MlKuSzYxkI3Ex2AGAHQCbmppw+vRpDA0NIR6PZyxw84Ev/uUQAOBVFy3Cv9+23vj+7y5bjL+7bDE0TTPadujQIfT29nJl+k1VYfzry9ciGo1i69YulIf8uGr5AnQeSuKzDxxEY1UYq8u9lV30UM847nv+NPqiIbRU1+NfXrIq43daFQDIu4vKxmQrFZKNNx5t6ajDod4JPNs5jJeub874jZ5Atp8aQQpAc3UYqqoY115IJZtZYP7XbmzFfdvP4E3/9awRhzDoUzOSCeSDZPP5fFnnie73i1Y34btPnMDF7TX4zCsuQKONIOZujMFk0RGPxxGPxxEMBrMUIKlUKuN6UqkUEJ9F0K8ilkjh59tOYteg3oaa8uIr2Xj1N6TjVnWNTBvj3mw8abjdrWdINi8p2Qh4bknzsAezvulFki0SDCDgU6FowNBkFKlUCgMTUUzHkqgM+bE2naHYa1i6oALHzgD7z44Kj9E0Db/errt8XbUiM8GL2aKKtwiLx+NIJpNYubAStWeAmfFePLK/Gxs3rLNs68MH+zAZTaC1NoIVjeXo7h7LG8lG4JaSjWSrr6ury1gzWNnUtP3D2rYNFSFcs3IBHj88gJ9sPYVPvWKtVPu2pjNir22uQl15EIMukWzke959yNVdFNDj+QUUPsnGG2cfOtALH/Q+zh6Tq5KN/Z6HjoZyNFSEMDMVRe/4LCoryjPqFBFf5Pc/7DmLY/2TqI4E8M6rOrDr2R7T88yUbLJ2Dg12buWRbGb9U1EUfPTm1agM+/GlvxzGvY8cwdhMHKeHp/BIOixTW10EX3/jxdjYXitsB+962Daw7bOCGyQbu24narbHRzX8/NnTeNsVS7KeDc9ddGw6jt3pcC50PLZc5jkr5aUdJdv5lPjASkBEQ+oKq6urjX9VVVV49NFHsX37duP3HTt24NFHHzUCUBYLg4ODSCaTaGpqyvi+qakJvb18qfTHP/5xjI2NGf/OnJnzC+cp2b6TlrNesXwBKsJ+7s3mDej0JJNIJBwZ/U5JNvYl8Kq7KP3dP79kFcIBFQfOjuHU0LRxTr5INk3TsP/sKB492IfBySiXKGDvUXl5OSoqKqBpGgYGBqTb4ARPHR3EU8f0FNUkRhUL3uRmxr7Tf29sr8GNaxYgmdLwvp/vxK+eOwVN0wo+CNKD2IHucfxu11l8/sGD+Mwf9mM6nkRbXRn+9/1XGsGhRbtmdpRsZv3nXCDZjLhsHCUbPTY81zkMQEFLepfQ7piQTyUbAHzwxhUIpYmggE/Blcvr8fU3XoSK0NxihM3eTOD2cxRNtu31Zdj68RvwrbdsskWw0WXlOgaz7jNW4QKmpqaQSqXQUq0/9wf2nDWMuVoPuIvyxq/VC6sQDqgYmY4bAb0PpbO61pcH0Vydee/nlWznPkpByaaqKsqCPijQcKhXzzDXNTIDDQouydG1MZ9Y0aiTf4d6xhEXZCe/f+dZPNs5jHBAxRsvac/4za6SbXpat/nKIhH8/ZUrAABPHu7F8JR1/FuiDrnt4kU5P3s3lWxmx7DzUmNjZhgaGZKNLYsmNt5xZQcA4FfbzxjZWlmwz+jptCqRdvu1ug5Ru3gkm9XxZnFaeUo2Mt+tW1SFgJLCZDSByWgCs7Ozwvn/WP8kTgxMQVVVLGkoyzrGLXdRs36oKAq2LK1DSlNwdmQma41jpWT73hOdAPSMvFXhgPDemtlYovvjlpKNPl80173vuuX45C1rAAA/eLoTjxzsh19V8M4rO/DgB66WJtjY+nKJyea2ko28B6ubKxEJqDjaP4nt6eQivDbS9//p44NIaXoSEmKj0+c4gZl4xex7O0o2nq1crHBEVrAi2ZwkPpBSsv3whz80Pn/0ox/F61//enznO9/JIHLe9773oarKG7tw7Esk2jUB9MU2HdyaPQ+Yu8mnh2fwcNpF6daLFiE22mc6YLGkmN/vN3boCqVk07S5wPyBQEBIKri5CHFDQr+gMoS/27IYv3jqMJ7tHMLi+jIoisJ96e2wyjzJ8jPHBvGVhw5j5OxxVCuzODk4hcu2TKN1QTDjXB4x2tTUhMnJSfT19aGlpUW6HXagaZqhYnvLlsVoqyuTOgfING7MBkpFUfChG5ajqnYMP3i6Ew/s7UbPAmD9bDlOxStQHvSja2Qap4amcWZ4GqeGp3F6eBpBn4qrVzTg+tWNuGp5A8pDUkOKEKqqkyj/9cQJPNB91vh+oZrE0sZyvP3Fa9BUlR0Q2KmSTdM0Q/HDQ6mQbGY7LJd06MbJod5xjE3HUV02p7gkxyc14LFD/dAAtDP9ywtKNkCPZfXb912B3rFZbFlan0GuEeRDycaDk8nWCm6prYLBIKanp41xn1WyJZPJDNUtCZHwsg3NONo3iYPjfvz1bAplfh8aK0OeISnoex1MK8mfOT6EZzuHsaKp0nAVXbcoO7Oa15VsXmpXqUFRlLyr892CoihY3liBrpPT+O7fjuNLNzXpakwouNyD8dgImmsiCAd8iM8m8UL3OC5qq8n4fXgqhn9/4AAA4IM3rMyyUcwWVTx7cWZmBgAQiURwQ3szHnoqhK7xBL79+DF88mV8JRYADExE8UQ6u+mrLl6E5Eh3Rh124SbJxiuTV7aqqmhoyFQCWtVDz/s0eU9Uy9esaMCyBeU4PjCF3+zoMkg3GvT7ommakbn7iuWZLrf5JNmcKNlod1FN01AW9GNpXQjxUaBvbBYVIb/Rn9j5nySDWN5YiZDfl3UM3QbaxrQi2ewSO1s66vDo3tM4OTSFK5lMpqI4aZqm4WDPOA72jCPoU/F3WxZz28L+zbv3ViRbrjHZeCQbrx3vvmYp/D4Fn3vwIK5Y1oB/ffkaLG+0nx3YS0o2tj5VVRHy+3DLuoW4b1cffrbtFC5ZUsdtI/3MSHgUnqsorx477RQp2ay+B6xD6vDWBaWuZLMzBtq+wh/84Af453/+5yxXhzvvvBM/+MEP7BbnKhoaGuDz+bJUa/39/VnqNhmwJNsvnz8DTQNevLYJbfW6tJi3KBQNWHRny3dMNvpYmmQD+B3ETYNUVlJppmQDgPdcuxQhv4KesVmcHp7OKNOJko0nWX5wXzfe/P1nsfP0KIKqgvKgHxPRBD5x/24kknxSir5HZMdxbGzMmMjdwGw8iQf39eAnW0/i0394AfvOjqE86DNSVFtBhn1n/1YVBZ96xVp89fUXIuTT02V/94lOvOOHz+P1392KO3+1B19/9Ch+u+ssdpwawcBEFGdHZ/A/z5/BP/50BzZ+9mHc/tMd+MOebuFuqRUmZhP47c4uHOkbR9Cv4pIltXjzlnb84zVL8fILW1AWynTJdUqy8XZAeSgVks3McGmsDGNpQzk0DXj+ZKaajfSTg72TmIwmsKimDC01+SfZnCjZAOCClmrcsKaJS7ABhSfZ7BD8VnBrDGbdZ6yUbIRkCwX8WNtShTuuX4atH7sB/3D1UstkDYWAyLAhsWyIQnN/FyHZsjf7vEi4zCvZ3AXdP+zMBYWEqurkcEBVsPP0KPafHUX3qK5k82LSAwK/34eW6jAURePG9vz3Bw5iZDqO1Qsr8a6rswkcx0q2sjKEQkFcsawBPiWFH289hZ4xsZ31xz3dSKY0XNhajWULKnLeBJEl2WRgNgbRZdfX19tWFPGUbEAmAfL2NLH242dOIpUSb7SrqorTw9M4OzqDgE/BpWkCQPZaeW10QrKZJUPikWypVMqY55c36Eqf3rTL6NTUlFEujYcO6MTFeoo0Fm1+2CHZ7BI7N65pgt/nQ8/YLI73TxjXw2szXcfvdusb0devXoDqsoDpuOdEySazmWh2jewaWqbMd1zZgQP33Iwfv/NSRwQbW7aIKLILN9xF6d9ev7kVAPCnvT04w6xvWZKtf3wWf9itbxjcsn5hRnm52Dbss5BVstGwsq2JnUPCMNHlec3u4Y2zNNnthGSzLTtJJBI4ePAgVq3KjIl08OBBVxccThAMBrFp0yY8/PDDuO2224zvH374Ybzyla90XG4qlcLkbAIP7u8D4Mft1y6Dqma+FOzxQHanozOMOtlZt0uyqaqKVCplLLLoyYhFPkg2q47ImxDo7xorw3jVRYuwa3c/nj0xjPa6Mu5gYIdkIyCB3v9nzwSAarzp0nbc0tKE/sEh/M/zZ7Dz1DC+/H+H8fG0fJk+n75HoVAItbW1GBkZQX9/PxYvztxNcoKZWBJv/v427Do9mvH9u69ZasQisoIVgWn296s3tqJ8aiW2vtCJZqUWJ2fDmErHOGmvK0N7fRna68qwuK4cw9MxPHaoH3891I/Tw9P4ywu9+MsLvVAVYNXCKmxeXIvXbGrN2Pk+2jeB7z/ZiYqwHxvba3FBSxVGpmM4PTyN7z+yF77xWZQHI/ifd1xmSMSPHz+OM2fOCPunXZIN0J9dPB5HNBpFRUUF95hSI9lEY/CWpXU4MTiFbSeGcOPauQ0Hcvzzp0YB6Gomn28wY/OgEEo2M9cQOxCRbG5P6vkg2dxqI0se85RsNAjJVl1djZGRESSTeqY1n6pkLY6KAVH9hGR7rnMImqZhf7dOsrHx2ABvGnXzSjZ3wFOyeZVkUxQF5SE/tnTU4tAR4IdPdUJJpBAJ+rC2xRueIDwoioJFtREo/TF852/HURXx47Wb2jA6HcMvnzuN+3d2QVGAz796PTfJi5nawUrJFggEsLi+DO01IewfTOIr/3cE//H6C7PKmY4l8F9PngCg2zC8OuyCjo3EK8POosvsGPr9Z11FZeoR9Xf6+9dsXIQv/+UQTg5N47HD/bhhTRO3DEVRDBXbxW21hneCzLWeOHEC3d3d2LRpEyKRiG0lG328bOIDn89nrHXi8Tj8fj+W1IVwEDDisk1O6iEF6P53amgKe9JhES5srUV0cjTrGPq5EDUbfS9YOEl8AOgq/Tduacf253rwxJF+/F1KsyTZkskUfr9LJ15uu3iRafn0eWZKNivXVB7YtSx51rRNLqtkI5BJFGUGnhLJS0o2AFjVVIGrVzTgyaOD+N4TJ/DZV63j3ksAeGBvNxIpH65btQCb06Q3QS7koZWSzY2YbPT7lEwmjXeV/c0LyIeSzTbJ9o53vAPvfOc7cezYMVx22WUAgG3btuELX/gC3vGOd9gtznXceeed+Pu//3ts3rwZl19+Ob73ve/h9OnTuP32222XRW5kMpnErjMjiCWDuHRJHTYtrkVPjz5429kVYDOMAvlTspH66fYVSslm15XKjAh686Wt2Ld3N7rHZnCgexwXXJD90svWQ9+L44PT+L8XeqGgDG+/Ygk+/Yq12LNnD5IVIbx4bROO7I7iu0+cgKIo+OANKxAJzt1L9h41NTVhZGQEfX19aG9vz+keJpIp/NMvd2HX6VFUhv24clkDqiMBLKqN4D3XLJUuh26rSFkoGlABoLk6hOtWN2L16tVYuDBz54TFtSsX4NOvWIsDPeN4YG8P/ry/F52DU4aU/efPnsKHb1yJ912/HI8d6scH/2cXpmL6O/Lf6Mwoq0KJ4qIyP950xZKMGAxWBgd7zTIIhUKYnJw0zTB6rpBsV69YgF8+dwa/292Nf7l5leEakUwmEUuksLtrDEAVXrGhBWMnMzP6yt5PehPBCuzzNNu1loWmacKYbG7H5JJV69qB20o2mZhssVjMWNCSzQJ6MeEFiOaGje21CPgU9I1Hcax/EkfSmfDWcUi2eSXbuQuz3Wf6dy+APOerl9fj58dGMTwVQ70KrG6uhk/1TjtZqKqKtc3VaO0dx46RGD56/z58+/Hj6B6dRSyt+H/b5UtwsSBukl0lGxmTysrK4Pf7oSgKrlrRgIeG4rh/ZxduvagF167MdJv6zt9OoGdsFq21EbzhkraMMp32AXKenaDesmXSILa5z+dDXV1d1u9W9bALQbKQpcf6sqAfb7q0Hd994gR++PTJLJKNLoPEY7uCiscmc639/f1IJBKYmJjIItloyFyHnRjSwWAQs7OziMfjiEQiaKvS58Ce8Rg0TTOUkbQd9/kH9RAs165cgJryEPp0Hi4rljaBzLrNqZINAG6/djnev/N5DE1G8ZvtZ9BqYfMe6BlD7/gsqsJ+XLeqMaM+Xp25KNnM7BzeNbIkG289kk8bw8vuovT1v++65Xjy6CDu234G/3TD8qw2KoqC3rFZ7D4zCkWpx10vWS1Vp9122lWy8Ug2s+yiPp/PSMIYCAQ8uekJ8O16Hslmx+63TbJ95StfwcKFC3Hvvfeip0fPYtLc3Iy77roLH/nIR+wW5zre8IY3YGhoCPfccw96enqwbt06PPjgg44URqQjzcQS2Hd2DCkswO3X6USH2aJQxOzylB75JtloFQMdh4pFMZVsZjtcdeVBXNRei+0nh/HwwT5EK07iw7cucKRkI4vHo/2T+PXhQZSnNFzUVo1/ffnajN3wlU2VeNPmenzn+RF852/H8cc93fjgDSswNtSL7lMD8HXFsaBtmRHYvKGhAYqiYHp6GrOzs4hEImbNML0f//r7F/DIwT6E/Cp++PZLsnYt7JQF2HMXFbH3MlAUBRe0VOOClmrcdfNq9I3PYvvJETy4rwcP7OvBfzx8BA/s68HhvgloGnDpkjqsXFiBXadHcaRvAg0VIbTVlmFZjYrLqyvRUMGPh2c2YdntwyQWo4y7qNcmAxZWg/+L1zZhYVUYveOz+OOeHrx2U6txfOfgFGYTwOL6MqxbVIWtp8VEphnYTQSz8/KhZKONYNIf2LHIbSWbm4aiW4YH6y5K/idjHN1HJiZ0YqqsrMw4z+kmUL4gmk/CAR8ubK3B9lMj+MnWU4gnNdSUBbCoJnv8dZtkdQPzJFv+4HWSrSrsx2s2tmLrTt318oKWbGLYS1BVFZGgD/9+2zo81efD1x89ipPphFQbWqvxli3teO2mNuH5dkg2TdMylGyKosczbq6O4C2bm/Cj53vwsfv34qEPX4PKsE5OdY3oMe4A4JO3rHHNzd1Nks1sTI1EIli9ejXC4bC02s+sbB7JBgBvvWIJvv9UJ546Nogdp4axaXFdVhkA8MxxkvRgLjacVRsSiYSRHZXM46ySjSVfWMiSbGx/CgQCmJ2dNWy5+jIf/KqCkbgPp4ansaRez9hJ7u3W40OGx8UnblkDjHUbZbMkGyEIZJRsVsogM9RWhHFpRz2ePDqAex8+hM9dGYLKqYv8/dRRPdnayzY0S/V3Mxsxl8QHvLlVdB9ooiKfMBNhFJtko/v1ZUvrcHF7DXadHsUPnjqJy8uy7+XTxwahQMNtFy3iqp1zsdXYPsEj2cz4AvocMyECTbLR53jN7vGEkk1VVdx111246667DDcTryQ8IHjf+96H973vfTmXQyaD5zuHEEuksLyxCtendwyc7ArQSg/yOd8kG328bIyDXCHL9soYwpqm4cpl9dA0DTtOjeDn206iNx7Ca9qTGcfI4G+H+/CrZ0+jfzKG8VQlOqpDeM/VS40dZLqcN1/Sio2rl+LuPx7A2dEZ3HX/XjSqE2hRxzGciuI3J57AZ1+5Dq+4sAV+vx/l5eWYnJzE5OSkI5Lt7OgM/v2BA3hwXy8UBfj6Gy92TLDR12K2cyRDsjntD01VYbxsQzNetqEZL9rRhX/9/X4c6tUX9H9/2WJ86hVruZLw8fFx7Ny5U6iyM+sndokUQiqcD0q2gE/FW69YjC/95TD++6lOvGajnnktlUrhSN8ENCh4xYaWjP5CYJdkA2DsWImQDyUb6xZJw23SyMsx2Wh3UVrdFwwGEY1GM4hMeg7nJZ/wEkHBG+cv7ajD9lMj+M0OPaPgek7SA/pcLxl18+6i7qCUlGx0W9973TI8t2sPAGBda00RW2UNY5xWgHddvRS3XbwIjx7qx5qFVVjfak0Q2iHZotEoUqkUFEVBOKxvZAYCASQSCfzjNYvx1+NjOD08jc89eAiff/V6ALoqKZrQF603r5tT3ntJyWZ1jJXHgFkZPAUMkD0/LaqJ4HWbWvE/z5/Bvz1wEL997xVZxx4bmMLIdBxlQX0Tg8DqWkncM4BPspH/zUg2+njRHMvbUGU3llLJBFYvrMKjXSn8ZX8v3nhJG2rKglBVFcmUhnv+pCfpeMuWxVi1sBJHJ+aeL0/NlSvJJtP/VFXFhW3V2HNmFPsmZrH1+ASuXFbPVbIlkils7xwGUIFXXTTnKiqjZOPdexFRIrOWEynZ6N9ESjarzVin8JKSzcwFV1EUvP+65XjXT7bjZ9tO4eKrAggF5gjm7adGcGZkGn41jA+/eCW3rlw2eq1IYR5Rzx4ns0by+/2IxWIlT7I52VzP6Qqrqqo8R7C5CU3T8PjhPmw/pe82vv+GFVmTrp2YbDx30XzFZGPr9/v9ph2kGEo2+ngzIkhRFFy9YgGuX90In6LhV9u78MiBueQWVgvdZErDvz9wAHf8fCcGJqMI+Hx43eY2vHZTG4L+zMCmxjnJJG66YCEevvMa3HH9clzQUoVLFtdiY3st2urLMTodxz/9chfe/4udmJiNGzG9aENDBrPxJL72yBHc8B+P48F9+s7aZ1+5LsNQdIJc3UXdHARfs6kVf/qnq/DKi1rw5dduwGdftU4Yc8HMsOK1h6eCtKtkO5dINrN37s2XtiMS8OFgzzi2ntBdQidmojg5NIUUVLz8wuaMsghk7yc9CVm5jIqUbG6SbLz+7JZB50Q2bgW3lWyxWCxjriH9nadko0k2mcVEIWGmdCZx2Wbien/iuYoC80q28w35dEXKBfQ4t6ShHG+7YgmuWbHAcYDvQoG1z+orQnj95jasb61GNBrFyZMnHSvC2bJJOaHQXGZjsnHgRwpffM0GAMAvnzuNt/7gObz9h8/hgX09UBXg06+4wHS8sAs7JJsde9dpO2QUYPT/vOPvfPFKlAV92HV6FH/a22N8r2kaZuNJ/OdjuiLwxWubMuxjqzmaxD2jjxGRf3aUbGbqdrZ/kI2lWCyG61YtQNvCeszGk/jD7m7MxpPw+Xy47/kzONgzjqqw3yAu6Odr5jIpS7Kx90jmmSuKgoDPhyuXN0CFLu544exYVt9TVRXHBiYxE09iUU3EyEwJmPf3XNxFzcrl2eZeUrLlEpONhtM52kzJBgAvWt2IVU2VmIzG8WznkHFO/8QsvvLQEQDAFcvqszI2W9UjA/b5WinZeP1BlmQD4HmSjXd9uSrZvHWFHsPgZBT/fN8uaJq+Q/6yDXM7Bk4GLLqjOXnh7ZJs9PEkrgVgTrK50ell2V4ZtRV9fy9srcEHb9Czaz59dADHByYt65mYjePdP9mO/3qyEwo0XNxWg9uvW47Xb9YJNtHuN3mGZUE//vklq/DAB67GP9+0EtesXID/72Vr8cEbVsCnKnhgbw9e+c2nMRrT208bGlbX/uC+HtzwH3/D1x45itl4Cpd21OGP/3QV/u6yxVJlWJUPmLPvZqSb28qPpQsq8PU3XozXbRa7lABiI0y0SOYZuXZJtnMpu6gZ6VNTFjTcRP/7yU4kkin89UAvkikNLbXlWNWkL/ScKtkA+eQHIiVbLu6ibJ357M9eVrLRu/qEeFRVNWOTh4D8HgwGM56BV0k2FpuX1IEOZcVLesAzEr0Aet7zUrtKDWZKNp4yt5hg27qpvQYbF9d6qo08mI13Z8+excmTJ3H27Fnh+XaUbLw5l5Ao8Xgcly+rx1sv122kJ44M4PHDutvcm7e0Y00zf9M/VyWbFakiAzfcumSVbGbPq7EqjH+8ZhkA4It/OYTZ9AZFIpnCn/f3om8ihra6CO6+9YKM8+hnwANt+5op2UTXwdpwomug/6bdRUnbyPzl96m49y2XozLkx/B0DD/fdgr/8JOd+MT/7gMAfOjGlagrD2aUA+RGsrG2tt1nrqoqVi2sxDuuaAcAPHKoD4+l+zegJw371mPH8dALfVCg4daLWqAKYjma2coscnEXdapksyo3F3hJySZ6DnNjooIP3rgCCjTsPD2C508OI5HScMfPd2FoKo768iBuXJOdDIXAzXHFSslmRrKZ3R/W9vRqGB4rJZsTks22u+j5gtlYEt9+7BjGZ1Q01YZx3apG7gvHWxSKOhDtLupkZz0XJZvP5zNVXxRDycaTNvOUbDSuWt6Ad05H8OyzvXjohV686dJ2NIXmMm5ORRP425EB7O0aw/GBSeztGkXfeBQhv4p/f/kFqJ89i1AoYPoyAXySgBwb8Pvw4Rcvx/WrG/Hen+3AiYEpfOA3B/HWVQqWpXxYm9KEE5+maXjq2CC++dgxbDuhKyRbqsP4+C1r8PINza4Z2zIEptnfxdppcKpkc0KynU/uogTvuHIJfrrtFB491I9rvvQYyia7UaEAL1q70HJBIQMiC7ciywqhZBMtut2Al2Oy0VmkSYycQCDAdcklz4FWOnuZZGPdSypCfqxbVI29XWMAgHWc2Fb09XrheggURY81FY/HPT++lALy+b67BXacc5v8zxfMxmcyf5qN+WZxe+yQbMQu+9eXr8WWjnpMxRJIpTQE/SpuWd+cVXau/UBWyUbqMqvHDbcuq7JlSDYAePc1HfjFc6fQNTKDzz94EJcvq8cz20/h1NAUAr5afPfvNqOmLDMurhXJJusuSn/PuwbSflEICd66gVZvk/b5fD4sqq/EbZuX4JfbTmAimsBIMg4giGtWLsDfXz63me22ki0Xki2ZTOJ913Rg8sxhHOgZxwfv24OOv55Az9gMRqfjaFIn0KxqWL+oCrdfu8zy3vCug0UuiQ/sxmQTtddN8OaCYpFsPCUi28Zb1jfjzhtX4NHHe/D0sUE89V/PYk/XOBaG/HjZhhYEffkdV2SUbKK1pF0lm6aJM+cWG/MkWwHxw62dGPfXozpSi1s2NCMYyLxVxVCykd0dEq/CCsV2F5VdMNshglKpFD5+y2r80+Hd6B2dxO92nUVLfSUeGTqAk4NTePLYIGKJzHobK0P4r7duxpIqBbt2nRVKlum6zEg2cu5FbTX44z9dhff/fCe2dw7gkYO9eORgH/7l8Qmsa63Fdasacd2qBSgP+nFqaBqHesfxP8+fwbF+fccv5Ffxj9cuw3uvXYZI0N1FlkxGFDNlW7EGQbtKNoJclGzxeBypVIp7rTJBPb0A2Xdu6YIK3LC6EY8e6kf32Cw2lqnY0lqPN17KNzjtKkFklGz0s3JTyWZGsrntLuhlJZvP5zMCzZKsavT4zyPZyDnkdy+RFFY735cuqcPerjFURwJoq8uOh+lVJRswl5zIa+0qJZjN5V7ovzRyXYQXC2bzC1GCmy083FSyAXqM0ZdtyCbV3IZdks1OmU7aIaqDvb9W9kBZ0I+P3LQKd/1mL3689RR+vPUUOnzDqFaAO160ghtg3Yxk0zTNFslmFmaHXAdLbvHOJd/RbSP9kXzXsbAWb7ykDSPTcaxZswYXLGtDdSSQ8Rzoz2ZEk5Ud4QbJBuj378Y1TZiNJ7G7N4WDPePpcoBLO+pxVVMNLly5BNURcdxbq7bRyLeSTaQsLgTJxm5o2EE+lGwi2/H2a5dh6vQL2HZiCHu6xgAo+MQta1A10y3V9lzGFdE9Yvu8FQklAo/7sDqnGPAcydbV1YWWlhbP3Sg3oGlAa20Et9+yAamB40JVWiFjspHjnZJsMrtIxVCymQ26vJc+4FNx64XN+NkzJzA6E8dg1yj2n+w0jllSX4arVjRgRWMlljdW4KK2GpSH/BgZGQEgflnskmwA0FARws/etQXffOwY9u2cwOjkNLR4FNtODGPbiWF84c+HssopD+ox4f7hqg5LP3un4MnuS03JRhtWVko2+hjZPkyIh1QqhWg0yk1YUWpKNpnB/1OvWIvKsB9bltajLXEWiVgUoeDcrrWZgWAFGZKNJtLcVLKxdfJcBtzqz3Y3EmTg5jsXDAYxMzNjkGy0ko2+/+Se0SSb15RsNHj9+4Y1Tfj+U524anmD5eaJ166noqIip4zU85hDKSrZvBgrkAez+cUINi+hdrFDsrHhTui6ZJFrP6ipqUFlZaUwKYEdwsBNty6rsmXsgddsbMULZ8dwsHcCmqahamYWGxZU4rrVTdzjzUi22dnZjHnFSUw2ljyjnz/PFqQX/bwQCeS7cDiM+ooQ6itCWNVcnaXQA/KjZHOy8UvqSiQSUFUFL79wEa6/fiUqQn4014SxqCaC0YFeHD9+3FINKCrbTBhi5SliNr+axWTjERX5hNvuonY3m81saDNByZZ0jNkDx334pxctxzWrFmD3bnOSLZdxxU5MNitxipndyvPio7/3CqxINiceLDmRbGvXrsXu3buxdOnSXIrxJN5++RKsW7MSixZVY+eAWPJpZ8DKVclGl5kLyZZvd1G6I4oGZhZmCiUapO3lQRVv3rIYxwcmEUspuLJxKarCAdy4pgkrGsu5g6IVI21FsokM4oBPxYduXIm9jbMYHBxCZEErjkwE8Njhfmw9PgRNA9rqIlhSX46rVjTgtZtajdTz+YLV7oPV38Uy/lmjle2zZhOW3T6sKAqCwaCR+v1cINlkSJ/F9eX42hsvBgA8/fQZAOJMh/kg2Xg70Wbu97IohruoF5VsgL4gmpmZMdQFPCWbpmkZ7qL0u+TmdeUKq4Xs5cvq8eAHrkYrR8UGiOPBeAFr165FPB43VLXzsI9SVbLxFL1ehdl4R8bdQirZZJGrUiYYDGLTpk3C352QbE4gq2Rj51Pe85qcnISmaaisrMTdr1xnfL9nzx6MjIwI+yLtsssq/9lYxLm4i5Jxmi6fro/3btOJD1glG23Xiew4t0k20k674xBNRgB6aJpXXNiSccyY5Aafla1M/27lLkrOkx1rvaRkc4Nkszs+O1GyEfHM5csa8OG3XoWQ34exsbGMtvPg5rjCa5PVWlLmvtLrAq+G7wD4/baoSrZ8vSBeQFnIn3WDaYiIJPocdsDKNSYbXa8Tkq3Q7qJW4A28Mko2cs8rwn5c2FYDVVVxzTVrjON3794NALjooosy2iI7WAD8xb6VQVxRUYHh4WHUhzS8bf0SvO2KJUgk9YHTJ4jRli/wdh+s3EW9pGRj22N1750YNIDuMjo7OyuMy3Yukmw0aJKFoFBKNrpvmimDZSHjLupWf3Y7JpvbC26yi08r2Vgik91RpJ81eX5eMIJk2sBzbyLwKuEC6M96nmDLDU4N/2KAnd+82k4WZrFSZdxFZbOLiuxnpyQbW0c+4QUlG7m/Zs9r9+7dSKVSuPLKKzPusVX7aBshkUgYcwwwF4+NeAaISDazeVPk8speB28up5VspD+S7+yQbLyNGDuxSkUkmyxoJRv9N68Ou+s4M2WglbuoqD5ALiabyP7KF4fAU7KxbbMDu+fQx5upA2nQ73DI7zM91o02suXz+qtIyWZXkEF78RVa1WgHInIYcE6yeXv7rMiQIdkA8QstUrLl6i4K5KZkKyTJZrZoliHZeEaCGVmUTCYxNjaGsbExofuYm+6iNCoqKgBk7ur5fWrBCTYgs62y7qK0wqVYO+xWhpWbSjZgLi4bj2QzMz68BjOVqgj0LlUxlGy8Ot1UsvHGZa8q2eh30Y020oGgAf25sEQm/YzImEjqJs/Ba0aQE6O8WBsG8ygevEpesfNbqbiLiuYX2paVcRc1S3xAl8kem6uSLV/314kqJ58kG6sY4z0vsslPkuIQWI2TiqJkKMZoEJu3srIyoyw7Sjb2XaBtV9ouMFOyaZqGmZmZjO9okk10bXRsWPb52IlVmiuJLkOyyYgleBDZ1vQ5Zko20fvtdSWbqC/KoJBKNpn7yIMb5D0px66STdZu5SnZvGiPseMmGyey4CTbJz7xCdTV1eVShKdhpkoTDT70ZHC+uovmYnjIEEFmJBv9W64km6gtontUXl4OQN/Vy9fkIUIikcgwQHNxFzUjivMNUd8RkX684+30YbMMo16OHcDCCelDj1XFUrIRuKFkY+u0u9tmB26TbG5L6MkCg/6bXbCwrqL0osZrSjYnxg2BVwmXebiDc0HJ5sUFBw3Rwp62OczeTRl3UVKGmyRbISA7NuViE1rVIXIXZY+n53yWZJN5Z0TPgSjZqqqqMuqxQ7Lx3gXePMvrS6o6l42UtIW0NRwOG8dZKdl4vxfSXZSdo3nnyfQ3GSUbAS9GLg+yKkpeG0UqxUKQbDyiTxb5INmsBCVOSTYnsFJeWinZZNeKpUay8TaOaDvUjt2f01V+/OMfR01NTS5FeBpmSjberj+Q+aKw55ABTNM0x4sYpySbz+crmLuoaDCXqVOGZDNrP/2byH3MyiWRfOax+mx7aZSVlUFV9RTcrAGTT2iahu3bt+P555/P2rVx4i7KsveFhGggE/XPXJVsxADjkWxmhLnXwLqvy4AOei8yCgqtZOO9d7KQicmWD3dRNwxFt4lt2pUH4CvZeItZNjmC10iKXJRsXruWeeQPXiXZ2PnNq+1kIdpUoBVNbpNs9LF0PDA7Y0Ah7q9s2W4oTmSJDtHzom0a1uaRGSd5JFsikTDUY7mQbLw+wtt8E91HNkQC+TsQCKCsrAyBQCBrXiTIF8nG+94M+XQXFdnWvPAdVudY1WmmZBO1z03w+kuxSDaRF5xoPWZGVsrWKQt2Lcxb8/JUiHaVbHSoLLPQAcWGGTlMczoFU7Kd6zAj2ejvrHZZCOgBnExSxVCy5Ztk45Vr9ZuV2oqebM2UeLko2cwMEvpYMzl9WZmeLZQNBJtPEOl/LBZDPB7PIpzsuosWOzAlr71Wux9OSTYzd1GahCiVRRAgPwHIBLu1e91s4F4ezIxp+ne7KEbiA8AdNZvb7xy7mKCVbKy7KI9k85KSDcht57tU1ELzcIZSUrIBme0tFQJYtNAulJKNjQcmi0KSbLJjUz5JNpYUYJ8Xfe9Ym0dmnOSRbEQ5FgwGjU1L4kbshGTjERQyJBtpGzmW/K0oCjZt2oQtW7YIlVpkg5y4u9KwQ7LRvzkh0XMl2azAO9cqJIoVseAkJlshlWxecxe1Ej04VbLlMq6QcnhrQt7YbZdkKxUlG9vX3ei33rtKD8GKZOPtslgFeGVTkRcjJlsh3EXtyCrp40Xt4pFsVi+9DMnGq0t0vsw9InHZiOFRCNBkILvTa+ZHbqVkM3su+YQdw4q3c+g2yebFyYCFE9KH9G96AQPkX8nGM+roepyQVqnUXLBlQjDxNj+8SrK5TQSx7qK0ko3nLkog465SDOTSjlIhMuaRG0qFZOMt2r0+x8i4i8rEZJMh2URKZ9Z29gpkF175VLKJFoOFULIRW7eiokIY9kGGZOO9C3aEDOzGEv23z+fLsnNohMNhXHnllVi9enXWb05JNicbv3ZINifrON79tCLZ7BK8vHPskK1uwEzJ5gS5jM/ss7ASPTgl2XJtG0/JxvZhEXnKlsWCR7J5MQRPPshhb8/sRYbbSjZgrmM5VbI1NjaivLxcyk23WNlF6XJkGXhZJZvICOOpsESB0GV9y3Mh2QqpZKMNJzoQMWBOeLJGFXsvimX4m6kMRTHZnKoCCMkWi8Wy+l6pJD0AnJFU+VSy2V1wKYqSRQLZAf2u0kGQCdzu03Y3Eqzg9vgro2QzcxedV7LNo1RgtmHmlf5LI5dFeLFQKHdRerOEnZeckGxeUrK5QSjYVbKJbBrAPSUbsXXLy8szNml4KhcZJZsVyWalZBP9bQWRx4Jdko0XSqIUlGyi5y569wl4/cZLSjYR0SeDfCjZRPfTaUw2UT1220oLWESiFrYO3hqeBzJ2a5pm2reLDVG/zYUc9t5Vegi0dN0uySZamLOGgt0XY+HChbjkkksyMuaIUEx3USuJMfu9qG1WLz1bnoySjUfq0efR8T9E54tAkh8Ui2SjdwoAva1WOydsPy62nNeJks3pgiUYDEJRFGialpUxq9RINrsTQD6UbDJtsCL3nJBWZDylyaR8K1tyaS8Lt985M5KN3P9SchclyIVk89q1zMNdlJqS7eTJk559z1iIxjo33EWBzHlDND94NfmB3Xk3H0o2EclmpmQTZRe1q2Qj8djKy8szNsPpukSLVF52Wrp+O0KGXEk2EewqT/OtZMtFLOEVJRt7rtvwEslmJgygIUNW8pDrXMcjhcmaQDYmm1XddN8i66xSItmsFMJmsH2Vf/nLX/DUU08Zf3/zm9/ERRddhDe/+c0YGRmxW5ynkQ8lG915gfwaV8VyF6XLkWXgZQceEbPOk6/aickmQ7LZUbKRGGmFgKySzereigaWQsOOko2AniDstFtRFIOQYI3OUiLZAPukTz6UbDKTkOhZsiSQHRCjXzTO5WO8dZNkc3v8pRPdAOaJD2iSNRc1YT6Ry853scezeeQXpaZkI/1wYGAAmqbB5/MJA7J7BaJxPZ8km4hEKXUlWz5INqfuonbV3rxnQOymcDicYUtYkWzJZBLbtm3D7t27hfXzbALRfaTfIdpzJ1cU012Ud16+lGxWJJvIzvFiTDae7ce2TQaFVLJZkZWyghW7oOuQVbLZJdkUZS5UVqmQbDz+pyBKtn/5l3/B+Pg4AGDfvn34yEc+gltuuQUnTpzAnXfeabc4z0OGZGNJDtHxQLZqJJ8djdSlKEpBs4vS5VhJjNk6RUQQ/dLTk7EZyWaWXVSGZLOb+ICcS9Rso6OjwuPchCgmGyHYRM+CvbdmO4qFRCFjsgHiDKNejh3Ag13SJx9KNisFKyA26mRcTUWglWy8idAJAWsFLyvZFEUxxjFVVY1/dF285yBj5BcDuRjlXiZc5uEeSkXJtnjxYtTV1aGtrQ1r1qzBpZdeahovygvgqR2ATHdRpzHZ2PLdVLJ5kWTLpQ6rsu0o2VKpVMZGshMlm6ZpBskWCoUy7E26bB7JNj09jXg8jrGxMaGgwam7qJukNc8F1i7JZrcuGffqQinZZL2S7CjZ8j0ue0nJJlqzsPfTjKy0W6cd8PqrrJLNzlqR9K9SINkI2PdQZn3DwvbM3tnZibVr1wIA7r//frz85S/H5z73OezcuRO33HKL3eI8DR6zS4O3KJSNyUaQz8EmEAhg6dKlBsGWy+BsF7ISY6vjeS+9rCKtGEo2AKitrcXU1BRGR0fR2NhoeqxdJJNJxONxgxgi39Gf2YFP1l3Uq0o2M5VaLruGBKLkB6WmZLMrZea5CwLuKNmcqBpyUbKRawkEAkb5+V50e1nJBugLjWg0aqj7WJWambvouZj4wItG3TxyR6kp2RYuXIiFCxcWuxm2wIbmIPfVrpJN9Dx4SrZ5d1H5OkQkG3s8O7dGo9GsGKZ2lGx0LFtCsqmqimQyaUmy0b/H43FuH7GzxqKJNbdcRdk2sIoWHmg7zKmSTfQ3XZbZOk6mbQRWm8myfc9LMdl4pGwuc4Kb7qJWSjaR/U2Pu7zzciXZZGKysba1nc1rv9+PaDRaMiRb0ZRswWAQ09PTAIBHHnkEN910EwCgrq7OULidKxDtrhDwFoWyMdkI8m0Etre3Y9GiRRl1FcJd1A7jSzPkonbR5bnhLsqWL0OyybL2JClFPtynX3jhBWzbts2IgwGIlWxWAwNPJUh/X6xBkJ2ERKpHGvMkm/1dFp67IOCOks2MeCqGki0fRIuXlWzA3KKDVrSRuujFLM9ddF7JNo9SgZlydf6ZuwP6Poq8BczeTSubwsxliUBkl5nBi0q2fJBsIsUFOzex947YPLL2E5lT4vE4NE0zzg+FQkadZhs19HXQfYeUR7dddB3FUrLJkmY8O6xQJJtVfby2ySrZrLySnCjZyPexWAz79u3D4OCg8JrsgGf7eV3JZnYfecdbfW+3rU6UbHbuaSm5iwL8+O9O7FDbSrarrroKd955J6688ko899xzuO+++wAAR44cQWtrq93iPA0rks2Jkq2Q7qIszBbhbrsI2lGy8V5e9jgrH3EeIeMkuyit+HCqZKupqYGiKJiZmcHs7GyG6ixXTExMAACmp6eN5Bdm7qL0/1Y7J15VstHtnleyieHUXdRMXZsPJZvITVWkZCPP1qw/0jHZyGcZwzwXeF3JRhYd5D7TbuEixQj7DLxGUjgxKIvt/j6PwmOeZHMXoo1JmeyiZkp0AjM1BUGpK9lyWQzbVbKJbD52biWunnS5Mko28pzoeGwEZhs1IpItFotJu4sWWslWjJhsor/pspyIJZy4i8oSvGYkm+iZkd9HRkYwNDSERCKBhoYGbj124JaSLR8km5OYbPTvMnXaAU/Awltvn28km5mSzQ5sX+V//ud/wu/34ze/+Q2+/e1vGyqpP//5z7j55pttN8DLcKJks4rJVkh3URa8wZ/AbaPUbCKwahsNu4EYZZRsPOUc/RsZDEQkm9Xg4Pf7UVlZCcDduGypVMowTOi2idxFrfzIvUqy2VGy8SYhpyTb+Zr4wIz4d0qymbWBJsR49bLn7t+/H9u2bTN1I7XKLpoPoqVUlWykPh7ZyW4ceYWkkF3IplIp9PX1cRf/XjTq5pE75pVs+QdtM9ExHXljLAuzTTK6fCDTrhHZynbGWy8p2djj3axDFCLEimSjlWwy7VPVudie8Xg8Ix4bfQxgTbLJuIvaUbLR81gxlWxukmy883JRdfPO9YKSjZTNbnQ7BW8uyOV+2bUdSDKbYDAoPY5ZxWSTJdjtgqci5inZeBstduxEUiax1b24rpIl2ezMQbaVbO3t7fjTn/6U9f29995rtyjPIxclm1fcRUV1aZrGfYFLScmmKErWgpo+30lMNppkEyU+kLlHNTU1GB8fx8jIiGvxV+gJiEfsAuZKNpl7S//vNSUbjxx1Q8kmSnxQaiQbOwFEo1Hs3bsXLS0txmYIjXwo2USxe3j1ypJso6OjSCaTmJmZMbL3isrkuYvK7tLbhdeVbCQBS1lZWVbZyWSS27+LuQlkBtl29Pf349ChQ2hubsaqVasAeI8wnEd+ME+y5Rck1hZ5n0SJpVjQ46PoeZDveRkprc41QyH7gaySLR8kG7sQtorJFolEMDMzY9g8MkQoaUcgEEA0Gs0g2ewq2egNY8Add1FVVeH3+5FIJEpWyWYWH5f9jtcXclGyybhy88B7blZKNpHIgWS8zfV9NSPZ7JRdVVWFnp4eVFVV2apfURRccskl3PpkRQ8sZNbSTsDrr3aVbLIx2Wh4cdOTXCO5F7Ljqhlsk2wPPvggfD4fXvKSl2R8/9BDDyGZTOKlL32p3SI9C9qlxoxk48Vkk3UXLaQRyGOi2b/dao9VZ5T9nn3pgcxJwUzJRgxCdmKRJdmcxmQD9OQHp0+fxujoqCuTBiBHsvESH4jYdyslW7EWKCIlm1l7ciHZyC4scVlgFaqlQrKx9210dBRTU1Po7+/nkmz5VLIB1iQbawiLYrKx5C8PtDqO7e+yu/R24XUlW2NjI8rLyzNINp/PZ4wRPJJVZie9GJDdvSeLvnkl2/kDXh+dJ9ncBzuu0u8Y4A7JRo9JZhtqXoJsu3JptyzRIatkKysryyDZ7MyRNMlGzueRbHZistEJFHgkm+waKxgMIpFIeELJJns8ry7R33RZhVKy2e17vHOsNv7p/2OxWIYy0gl4whe2bTJYuHAhFixY4GgNICJ67bqL0qSPGXJVstGEmkjJxtZhp3/LEMheAH2/3YjJZvsqP/axj3HddlKpFD72sY/ZLc7TsFKyueEuWsiOZiY9LbSSjT1WVm0FyJNsQCZRxhsseIy8lbuozD2qqqqCoiiIRqOYmZlBKpVCT08PpqamLM8VgSbZRO6ivMQHVjsndKwmwLtKNjODgz7ebh+m1U/0wqFUSTZyH0j7Re9gvpVsIvLJjpKNNi5kSDaekk1mkecEXleyKYqCiooKoTLALPGB1yA7n5D3N9/x+ObhPcwr2fILdn6hx1zA2p2Mt0gj4JFsomPsLHAK0Q/stisfSjbZjVUy5hOVM6tkk7H56Nh4ucRkY91Fec/KjpIN0DeWwuGwbeWRGbwak81tJZtTd1EyDjhRsvFsNDdcRt1SsgHu20Si5ycSNzghOe2AHtfN1ttmSjaZuktByQZk3u+ikGxHjx7F2rVrs75fvXo1jh07Zrc4T8OKZHMj8UEhjUC6LhkW3Y26ZP34RfXyXnoyOZuRZeyxdFuslGxWiQ9kBgefz4fq6moAQHd3N3bu3InDhw/j0KFDlueKwCOAeJ+tdo0I2OthlT9ei8nG6yO5GDR0GbzkB1aEudfA3jfSf0UTQiGUbDzYIdl4xiAPZjHZ6HZ41V20UOpRWmVQSu6iBFbGDS/pRbE3DeaRX8wr2QoDdrwj9giZO60IICs3RCB/JFs+IdvHcumTsgttdmPVTMkGzLnn2WkbIdlisRiXZDOLyUbPzTKJD+yusZYsWYLLLrssZyUUDbskG4+0sFuX6G+6bjOSTQS3lWxERADAiEPNO0d033g2mhskG4+U9cqcYKVkE3kT0PdoaGgIR44cyeiTTsEjlWjb3Gy97SQmG4FX7bGik2zV1dU4ceJE1vfHjh0zdkfOJZjFWDOTMns1Jpss4eJGXbx62PqsjuftgvKUbCKXMickmxtKNkB3GQWArq4uTE5OAoAxITmBrJJNNgguO4CUspItF5IN4GcYLVUlG7lfxVCymRH55Dsrck9EspkR9rIx2dxEPpRs+X7n6Dbznr9XSTZZ46ZQmWXn4T3MK9nyC3a8I+8acc0TkQrFJNnYc/MB2XblMg/ZVbNYxWQjJBuJjeZEyTYzM2OUR5NaTtxF3Uh8kC/Q1+M1JZuoP9hRslmtWc3snJGREQA6wUa7R3pJyWYn7EwhYLXWlVGynTx5Et3d3RgYGMg6Lpf28PqCjJLtXInJBsiRbHZsfttXeeutt+JDH/oQjh8/bnx37NgxfOQjH8Gtt95qtzhPIx9KtmIvYuy+4E4hGyDQSm3FC7poR8lGT+S8Z2NGsomyZ8neo5qaGuMzIdwSiUQWeScL2Zhs7MBn9czpPmnV5wuBQsdkA+Z2YukMo6VGsrETgBnJxou/wJbDfpaF2btP9323SDa6z/NisvHGEDdQiko20mZ6XKSfg9djsllhXsl2/mFeyVYYsHYEedesVEMyYxvPtrOqXwaF6Ad2SbZc2iKrFhTNTbSKnJCjRM0m2zZCppCN40AgwN2oseMuahWTrZgkGy8ERqFINjPvDVIHDav6eCRBLko2QrKR9Y3oHJF3De86aBvcKXgbLl6ZE6xEDzIkGzl2bGws5+ui+4SsqMXJPT2XSLa8Ktm+/OUvo7y8HKtXr0ZHRwc6OjqwZs0a1NfX4ytf+Yrd4jwNWZLNTky2Ync03iBLdxi3BiC7O28y5B9Phi5SYRHwlGy8xTaPZKOfP6/NVqiqqsLSpUuxevVqbNiwwSjX6U6NbHZRUXwOGfUiTb4UazKyI0nmKafOdyUbuW9m7qJ0nzGLE+nkXpq9+2aBrc3ihbDf06Bjgvh8PqG7qNtjbSkq2cizpl3Pee45BMU2SAl4xl1/f39WjMt5Jdv5B954M//M3YfIXZQOMi9SL9Pn88Au6NxWsuUTdtvl9pxKf8/afOw4SN9f2uYZHh4GYE2YAtkkG+0qCpi7i8oo2axItkJvmtD18K6JBe/eu6lk44kEZMHbAHVKsmmaZpBsdXV13HOLpWTzsruoSA1lR8lGPpPEem60h17vitbb5xPJRq+F2c0LO7CdXbS6uhrPPPMMHn74YezZsweRSAQbNmzANddcY7tyr8OKZDNzF/ViTDZAbxer0MonyWYVk83qe3rxyd5vN2OysYOLoijGbpvP58soV/ZFUxQF7e3txt+hUAiJRALRaNSRa7WMuyj9m9WuZqkp2cx2t+njzneSTUbJRr9DZrunTpVsdJZbGqLMorz2m32mvyPhC8gzzMUQsINSVrKRBTJLdpYKyTY1NYUDBw6goqICmzdvNn4zU7J55VrmkX94ZUF1LkHkLkoTM7y5RmYDgVWynWuJD3K1sa3OYa+TR6bQY6Lf70coFMLExARmZmbQ1dUFAGhpabFsC5vogiXZZJRsNMFGjuW5l3pByUbXw2uj6Hg3lGyyNi/7t6g+s41Mu+6iU1NTiMViUFU1K9GErJKNt27Ld+KDYkPk6SEaJ82UbNPT01l2by7tYdfbdOzeXGOysf3Lq+sqGSWbHdgm2UhFN910E2666SYnp5cM2E7Hwsxd1GxXwOfzSQ3W+YAZK+5me2QNolyUbGYvPYHIXZSdCOl6yDMirp2hUMiVexQOhzE1NSWUQ8fjcfT19aGpqSmLhNA0TSrxASmHbic7KbP3jN0ZK5SqRgSWoJUdyN1Wslm9y16DHZJNlHyALgfIn5LNrF6Reo2nUt2/fz9GR0ehKAqWLVuWUb/d/mMX54KSzWp30WskBblPZIyjY1zSm0e8RZlXd07nkRvmlWyFATuuypJsbsVkM6vDjWOdwi7Jlo86ZNxF6XlVVVWDHOvq6kIsFkMoFEJTU5NlW1jblFW/ycRkI/OPqqqGzUlsL68p2cjaI5VKSa3beKRFoUg2K/D6kZX3lajvERVbTU2NJTFUTCWb12KyWYke7CjZgLn75fS6RKQSa4/z+p0d26rUlGy08jfvJNs3vvENvOc970E4HMY3vvEN02M/8IEP2G6EVyFLstlRspHzipW5UCQjZ3/PFWZxmejveUSQ6DgnJBut+KKfJVsf2x6/35+xu+ZE+s2CR+TQOHPmDE6fPo14PI6Ojo6M3+iYFex1uU2yeUXJJjOQ09eWS7vZZ8O6VpQC2Heb9BEeCSTjlsN+dtoOGjIkm4hYo/u5pmnYu3cvxsfH4fP5sG7dOiMuiGiXtBTcRQulZCNjhNXuYrENUgLRMyU7rT6fj7uhQn/2yrXMI//wyoLqXAI7L/PcRfNJsjlRsrHn5gN22+X2xhX9PatkI3GWFEXJmPMVJTujemtrq9QcyZJsTtxFSd8JBALGBrIsyVaMd5uQbDJ151vJRiNXJRt9TXaVbKJ4bHT9Vt4EIiUbvU5xAhEhxWtDoSF6l+3EZHNz80DUX2XW23b6d6mQbPQ8R1ziSaKYvJFs9957L97ylrcgHA7j3nvvFR6nKMo5R7IRmLmL8haCZh3I7/cbk0yhX3ge+VUMJZto4CMvOns+UZgB5tlFyfGEJKPjUolINh6ZymYYdeMeEaNGpGQj3/N+Z4k5npJNUXQXVzpGFf0/oN8ntg/QO3U8P/RCw44Sibe74uT5EEORpJKnn3epkGxeUbKZEexm9Zopg9nP0WgU4+PjUBQFF110UUb6eBFJ62UlW6HeOVbJVmoSfgK2L5SVlQlJtnkl27mNeSVbYcASN+R9Ixmd6Q06GjIkN0uyWW2oyaIQ/cCukq0QJBtvY5XdWKMVaH6/H83NzVJtsSLZZLKV80g2dnMY8BbJRqNQJJvI5iXvm4hkk2kbYB6bV3QOoD+P0dFRAHIkmx0lG6DP6Wy/kgV7X/JtB9oFq3Q0Ez0A4vvPIlclG7v2Y989eg1OYOee0mGYyN9eBLmWmZkZxGIxKIqCioqKjN/sQIpk6+zs5H4+n2BXyWa2WKEXmIV+4fPNirP1WC1ArZRsvECMMrHVgsEgEokEN0YP+yx5k2E+SDYyaYiUbOR72i2U/S0cDmN2dtZwjaLbHgwGEY1GLZVs7Gd68KQN5WJNRrkq2RwNhH6/QTRGo9GM99erkwEL9r7JxGTLp5KNVy/pm06UbLzNDL/fn0Gw8erPF4FVyko2kbsobcAXoj2yEO2gAvq1lJWVZYybtAFb7PFsHoXBPMmWX9DjHe2aHQgEjPg9vDFfZlGVbyVbPmGXZMtHHWYBull7gEeytbS0cOdkHtwg2djYrHQCG6+5i/LqskuyyYKdf81cOEWktln7RBux9PpKVBZd1/j4OFKpFILBIDe+tJXiSUTWEORKstHwmrsojwAnn9nf6b+t1uy5kmzs2o+nqhTZ1jJ1K4qeVJAVgXgN5FrGxsYAABUVFcaYxiMarWD7Ku+55x5MT09nfT8zM4N77rnHbnElAdEAxO7skc/0bzzQk1CxSDbRzlC+lGzJZBLbt2/H8ePHs+qk/6d/Y4/jTXQiQoa4MPBc5tjr5JFsbPBWN+6RlbuoDMlGZKtkQKQJXlK+Gclm9dzpgbYUlGw0cllMK0qm+wTrWlEKYA0os+yihYjJ5ra7qKyhzdY/r2SbA0uy8RazxZyfRLAi2YDsYNrs8/eqUTeP3MDro15ZUJ1LoN9Bevyg50jeXGPHXZTgXEt8wDvezTrY62S9F4BsAjMSiRg2dGtrq3RbVFXNeD6imGxs29nPgG4HsKSdV91FaciQbLLupWZ12Y2TZlWfiCQxE4XwPBNoV1FeXW4o2ZxCRPR7ZU7gvZv0ZzskW662Ol0GfY9oJRtdvsgOk7WtSkG8wJJsoqQesrB9lXfffbfhp0pjenoad999t93iSgKizkB3GHZnwMpdlKDQL7yZu6ibbWHrmZqawuTkJPr6+izPFQ0mdph1K5KNrc9KyeaGGoJWsvEmR2K4ypBswFw8ItIuYqzwdgqsnjttGBSbZCuGkg2AkGQrFbCkf7GUbDLuorLZRUVJEMzaz9afLyVTKSrZWJfcUiHZCHhGORkbrUg2r13LPNzFvJItv6DHO9pVFDAngbxAsuUTbOwiq3bkg2Rj5zjWpgOy58xgMIj169fjwgsvzIirJwPy3H0+n63kOey1BwKBLFuAPsYrSjY7sUp5pIXbJJuZjSVTtqhP8MDre4QDqK6uljpHJKrgbZoBuZFsPHvMSySbjKCEdzx9LLlG0f130h7a1pZVstm9p/RY4XWSjYRtKjjJRssbaezZswd1dXV2iysJWA10wFxmM5kJgHQ0N5VjsjBjxd1sC0/JRv/thpLN7KUnRgPrLkrO4RFtdDvYxagb94i0iTZSCRKJhFFXPB4XTjqhUChDZUdPkjKp063uLbubUQywhoBsTLZcyRRCgk5NTZUkycbuoIoMGMBcUZYryWa2IHAr8YGMks3pbpssSlnJRmAWGw8ovkFKkIuSrdibBvPIL+aVbIWBDMlmFpOtGCSbqHw3QdzlJiYmhMfkSvbJKtl4yhaWUKHH/Lq6OkcLdfLcw+Gw5bOzItlYgk+0Oex0Ye8GnLqLyhxvVle+lGx2SDazzU+Ri7GVko1tL/ndyttHBl5XsvEIcEBsp5rZPnQ8PKfXxWuLXSXbuUiyEeRKssk54WNOFqooClauXJlRUTKZxOTkJG6//XZblZcKzAY6EsfJTrB02r+30DB7ufNBsrGDuYi0EtVt5qZpR8nGDmAsqccSNOQ4lhzMZWBQVRXBYNDIpEQbF+ykQlKqs7+HQiH4/X5DxUbaRe8omqVOLyV3UVmSRFEU7jO0i5qaGvT29mJ0dBQ1NTWmdXoRtEHKy6pLwyz2Ta4SdDPyyS13UTPFMNvX82VclbKSTfQ34I4Lgttg20Hfc1l3Ua9cyzzyg3klW35Bj6tsZlEzZY3MvMyz7UTHOFGy5bMfkEXYxMSEUIRAIx9KNt51krUJu9HtxsYhee68uFl2STbe5jnvcyqVgs/nKymSLVclmxVZ5lTJZqdPmCmpZEhA3n0Q2fiRSATRaNR1JRu7Pi822DULIK9kyxfJRm9i2/UcO1dJtkAgkDXG5Y1k+9rXvgZN0/DOd74Td999d8buRzAYxJIlS3D55ZfbqrxUYBVfjcTGMguuT4NWshUahXIXFb2MMoE6nSjZ2PJp1ZjIBZIMdLxJIB9KNkA3SmKxGGZnZzMCttsh2eiEGzTJxk6UVu6i9ABJ38dik2x2lGw0cn1GhFibmJgwjVnlVdD3jZ4wgWwFstlOpFeVbLzPMoqHUnAXLZaSrVTcRc0MTSt30WKPZ/PIL+aVbIUBbUOQmExkAWI25stsUOZbyZZPlJeXQ1EUJBIJzM7OIhKJZB2Ta3+0unbeHOfENVAWtJKNhR13Ub/fz02+wyuLkGzFGM8LSbLJxK1yqmQT9QmZd9OOyy7vHtDHizbNIpEIRkdHDVc9J6DXRLRIwktzAkuAA/Ix2ehzysrKEAqFEI1GpROX8NoCIGvNYNbnnXqJkDbSa3evgW5XZWWl1AaQGaSfytve9jYAQEdHB6688krHD7QUYXZT6Q7K+jSLQHe0QoM3OOdj8BHtmIhILRr0CyxLsrEvPd0/4/G4bZLNKdFjBZEcmkeyEWiaJnQXJeDFxuAZN1YEphuKsFxRLCVbOBxGJBLBzMwMhoeHAZQuycbGh2FJtnwq2XhGGYFMdlFCHiuKIiTZzIxDduxxQ4XKw7mgZCsVd1ECljgF5pVs5zsKZdOc7yDj3dTUlEGyNTc3AzAf870Qky2f/UBVVVRUVGBiYgITExOmJJtTyCrZeBur+SDZamtr0d/fn6GkIbCrZDOL6UY2gGn7rlSUbDSJ4lTJ5pRks2qbHSUbb4PeipwTkWxWSjY6brVTsB46ojYUEzzbUWSnijaNyW/r16/HzMwMd9yRAatkI+vqfLqLennDk74W1lWU/V0Gtq+0srISBw8eNP7+/e9/j1e96lX4xCc+wQ3YXqoQ7aawoBVPtLpChmQrxsvOM4YKqWQj37GTgdkLTH7nvfTsBEAbdHTyAjJo85JO0O0h5YncRd0i2didGvbdoReMdIy2YDCY4RbKi8lGYBafA/Cuuyg7AVnde/bacnlGRM1WiiQbfR94SjYa+VSymbkOyWY15Y0bTpVs+TLKz1UlmxcNILO5QTYmmxeM63kUBvMkm/sg4wIh2Orq6lBRUQHAnARyi2QjkCWsCql4I4ux8fFx0+Ny7Y9WJBtv7s4HydbU1ISrrroKDQ0NWb+5GZON/ruYyuRiuYtakVgynkG8su30Cd67bWZ/seewpBCvTFrJBuhzulO7iu4fuRKe+YKdjSGrdXFFRQUWLFiQc1tEIZMIzEQtsveU9Bcv2pgEdNuKQrL94z/+I44cOQIAOHHiBN7whjegrKwMv/71r3HXXXfZLc6zsEuy0e6iVh2omDHZCu0uyg7m9HeiOnmDiayPOE2WEUl7IpHA6OgogMyXxmwyFLmL5jo4iHZqzJRs5LdgMAhVVTOUbPQkKSO7Fz133mRUrIFQNAFbtcdNks1M6eVV0M/YimQzuz66P+SiZOPtspplFzXL1kx/R3+WiclWCu6ihTIA2ftVKko2th103yLjICHZ2Odf7PFsHvnFvJKtMGDvZXt7u/E515hsMuS/EyUbe26+QEJ/iJIf5Nofza6dt0kMIGOTmf7fLZvGjAASqeHZ6/f7/abZRel6SkXJRr8LuZBstB3GwkrJJnue08QHdtxFybzME5+w67ZQKGQc41S0I/LQ8dKcYHZPZUk2s/5hBzwlG/0/fRxbn9OYbF62xYquZDty5AguuugiAMCvf/1rXHvttfjFL36BH/3oR7j//vvtFlcSkB2AZPzbgfPDXdRMySbaVbBi7HmTrxkhQ+5zPB7H2NgYgDkSha2PbU++JnYrd1FicPBINnIurWSjd5RkdhB5z50mMEtZyebGM2LdH0qRZBO5i9KQzQ6Vi5KNJZ9owsxKQceL4Uifb2YclqK7aKHUVjKJD7xMsvHmE0AfI0mfJ+PkvJLt/MI8yZZf0ONnZWVlRlzmQijZ6GNkiLZCuojRJJuICMsFZu0XXSdraxYyY7qIZGP7QCAQgM/nM1VvlRrJxltXOKlLJkyR3fJFqsB8Jj6YmZkBoKvUrJRsiqLknGGUF2vaaySb1XrM7Fi37RmWZMunkq2USLaysjLLdYoMbF8pvQh/5JFHcMsttwAA2traMDg4aLc4zyKfSrbKykpUVFSgsbHRhZbaA09mnI9FiCgmG/mONzmYqRXY3TFSh9lLT16Q2dlZTE5OAsgk2XjtEZFsbt0jomRj3UXJhELcL8xINrrPmSnZStVd1K6SzU2SLRgMoqyszPi7VEm2XJRsQG4km2jBRerkqVLJeaL3TvTZTMlWKHdRp8Y0jUKprey6i3rBIAXMN2AAGOM7kE2yzSvZzm2YqeG90n/PBdDvT3t7O3cTj7fhIPP+idRLZsd4CWVlZUZQ/qmpqazf861kY48D5sZBYktabay5CdFGDU/JpihKhppNRLKR9p8v7qKyddDIh5KNfbdpTwkZm5ysdegkGaK1nqqqwpA6sqDL8irJxtugtesu6tZ1sO+XjJLN6QZ2KZFsPBUb/bssbF/p5s2b8W//9m/46U9/ir/97W942cteBgDo7OxEU1OT3eI8C1mSje6gMrsCgN7RNm/ejI6ODhdaag+FdhcVKdnY43jn2CHZePEayMRNyN+ysrKM+A+8nVHyHU1k8X53Ctrw4QXvJjuiNMlGPrMkWz7cRWmSrViTkVMlm+hvu6DVbKVEstHvQi4x2QA5Q0+mHTTM4rGx9VqRbGbGoWhMyBfJxrbNCYqlZCsVd1ECkZKNLGwDgYAnlA/zKDzmlWz5BRkrIpFIViyu813JpiiKpctoLu2Qub9A5j0uppJNhmQjBBuQGT5CRLgWczw38xJhwbN/nJBsMu9Lrko2J4kP6DrtKtlE7aftn1yTH/CUbLT3lBdgpmSTJdncIqpYJZuo/7mhZKuurkZFRYWnuaKqqiooiiKMc2f3vtve0vja176Gt7zlLfjd736HT37yk1i+fDkA4De/+Q2uuOIKu8V5FnaVbHTig1JgaQtFsoliK8m4izoJxEifQ4xCnqsoW5+oLrfVEGQRmEqlEI1GEYlEkEqljLgFPJLNzF2UIBd3UZrApMssFSUbi1zbXVNTg7NnzwIoLZJN1l2U3onMh5JN5MpgllmUPTcfSrZ8uYuS9uTSV7ykZPMiySarZOORbKUwL8/DOeaVbIVBfX09lixZgoaGBiER4gbJxttQZY+xS7IVApWVlRgdHcXExISRddWttsgq2Wh40V2U/kwTa6LNb7qs8y3xgROSTXZDOpfEB7QdJpP4wEzJxrPRSL8l5Jxd0GXxvA28MCfwlGyyMdny5S7KlstrR65tCQaD2Lx5c+6NziNaWlqwcOFCSwJZFrZJtg0bNmDfvn1Z33/5y18uqQWpFeySbLTrnpeNed4uSz4GH9boYuszcxcVseS8ic4s/hJZzJPv6BgibH1W7qJu3SNF0WMOzMzMGCQbMYJUVTVcFWmSjUxSPCUbgVvuol4g2YqtZKPJ2FIa0+h3wUzJZhUbjS4rFyWbyF00F5JN0zQoimIrJlu+VGLkvaFJeqcolAFY6u6iBPNKtnmwmFey5ReqqmLJkiXc32SUVjLEBGC9cBfVY4ZC9AMzJVsh3EVpOw6YI668qmSjSTbymd44J/DCeG5nTsyV2Mmnko3eoJdds5rZZFY2uRMlG3HT6+npQWNjY1acZCuIPHS8NCeYrcesYrK5fR1sW/KpZCsV2FFdW5aVa2MIwuEwN2NcqUKWZKMHoFLYMS+Wu2gu2UV5C372O95gzfZHMyWbiGRz210UyN5hpJVqxDBKJBIGqUAWkISAYydKwFrJxiMjvUqy2VWyuU2yBQIBIzZeIeKXuAVZJRv5TaQYIL/R/zttBw2zzKKic9kyZPpEoZRsvPY6RaHmjnMl8QH5n/QlshFBMjADc6RsoVSC8ygO5pVsxQdv0UhgV8nmFslWSHdRYC6Gz+TkpHA+yAfJJrq/tJ0po153E7LuogTE7uXdH9F4XiySzWoeKaSSTWQfieoLhUIIhULQNA3j4+OOlGw0MWeHZKOVbHR72Tm6vr4eCxcuBAAcOHDAdmw2+n3g3ScvzAl21uH5tmdFpJ6ZerMQtrVXkReSra6uzohrVVtbi7q6OuG/cwVOlGyyMdmKCd5knY8XhR3ceIoU+jj2M90u3kvPI9noa6KVbIC+i0KMDrY+3kKMdgOm/3djgGaTHxDVWjAYzIhTEYvFEIvFDDc7QrKJEh+wkx5v902kIGRJNnZXtJDI1ahyo93Lly9HS0tLSY1p9PM2I9lkAiAXW8lG2sgq8tjvZWKy5dMod4tkK4aSzefzcesrJZKNNdxZJVuhF9rzKDzMbJr5Z14YmLmLytiXsvY2W6aXEAqFEAgEoGlaRiIWoHBKNrY9wJydaJXsyE3komQTlcWO58VyF7V6hm6RbGbniN43mfeCePSMjY05SnxghzSnY0+L3EXZOVpRFKxYsQIVFRWIx+N44YUXbNlX9D2fdxe1hkg5arXepv/3wj0tFOxeq5RM49577zWk0Pfee+95cUPtKtnsZBctJsxkqoVSsokmAqsX2OqlZwPA0ot5XlZRGSVbPjLUmSnZFEVBMBhENBpFLBYzDCOSvQrIdBcl7SULZp/Pl6FUYq+VvR7yG0tuFPMdZ+sutJIN0PsLr894GfR1E2KWgKdkkzGsciHZ3E58wPue1ycK5S7Ka69TFGruIO+6WQw5L28Ssc80HA5nuGcFAgGjn9HqcuD8MgTPd5yPxn8x4URpxTsfMFeyKYqStTAXodAEu6IoqKiowMjICKanpzOy0+VKCrIqEvpv0fxGQogkEgnMzMwYbfByTDYZJRuvrHyjGCRbLu6iZvXV1NSgv79fmmQT2VN2iLlQKCS8hzzi1OfzYd26ddixYwcmJibQ3d2N1tZWYX00eIkPvEay2RG75JvYEq2feM8r34RfKcCujS5Fsr3tbW8zPr/97W+3VcG5ALPBhN5lKYWYbIVyFzWLySab+MAOycabgOlJ3IwwsSLZ3B6gCck2PT0NIDuxAU2ykWPKy8uN82l3UVZ5R4wqtq1mz4OejMi5xezDdN2ivkIjHyRbKYK+b2Ykm4ySrbGxEZqmCdNYy7TDiZJNpCAlkAnYyxpWpeAuWkgDkJBsVvH4CtUeGdhRstF9p1jKh3kUDvNKtuKjECQbDbskW6HAzl8sclWyAdkkm9n8FgqFkEgkDDuSbmM+Yddd1EzJxgvJIzo2X3BCsrHzj926ZD2oaMiMe7SSjTwDJ4kP7MStouOxsWWKNsLC4TCam5tx+vRpW0kQ6PfBqyQbz24slruoEyWbVZvPZdi9VttPyefzob+/P+v7oaEhT++A54LzxV20UEo2WZKNZcntKNkURcmYxNmkB+y5bHvoZyhD9NgBIfzGxsYQj8e5JBugS61JPDYSI4xuWyKRyCIb6HabuYvyJNpAdhrnYoA1IIuhZCtF0M+RTpwB8JVsZmRXe3s7LrnkEkdxNkULrlyzi/K+N4vJRtrgdXdRmT7uJnhjBe93wDvvkkjdyoYAoN1F6TmZV8Y8zl2cj8Z/MSFSL9PfmT0LWZLNSsFjVXa+IWqfW+6idstmN3RVVS3oHMO2S6Rkq6iogM/nMzymaIiUbIWEHZItVxdFGeKLl/xMFmVlZfD7/UilUoadKKNkc+IuSsBuhvHWXrzzrEhrHuh7zhuXvDAn8NZjdkm2fCnZeCSbSMmWzw1sr8Lufbcd1Vs0yEWj0Yw0zKUOngqIB94ui5c7HG/QySfJxipP2Lp554gGE95kLZrQFEVBJBJBMBhEJBLhBt3kGS48Qo9+tm7co7KyMlRUVGBychIDAwMZMdno/2mSTaRkY0k2msDg3S9Zd1GvkGy0QlT23nthEi0WVFXNiL9CwFOy5WszQEQ8uekuatZPRSRtMUi2ZDJp6z4XSskGlCbJxs4NJNEBuf+imGxenpPnkRvmlWzFh5sx2WRINhkUow9YkWy5lssry2x+Y0m2QgkA7LqLhkIhXHHFFZZKNh6BUggU0l20oaEBra2taGpqEh6Ti5JNURRUV1djaGgoqzzR8XT5MmsEKyUbXZ7ZMxVdpxnodbhbngZuQxSOCLAm2dy2Z0XuqfMx2fjIG8n2jW98w6jg+9//foayJplM4oknnsDq1attVe5lyJJsvCD0XjboC+UuKhoYyHdmdYpYclklG72IvOyyy4TXxTuXJvQURTEmFbcXa42NjZicnER/f79QyRaNRk2VbACydqJEJBv73L2uZCP3Ph6Pc+8Be7zZ3+cTRNduV8nmRhtE7qJOsov6fL4MZZKZapjuu8V0Fx0dHcWePXvQ0dGB9vZ2YRmFdoEhdZSyuyg91geDQSOJjIhk88p1zCN/mCfZigczhZld5UsusaiKDav2udEfRQSeyF0UKDzJZlfJxp5DwwtCBjsbT7w+YFfJtnz5cstjAHvkEw07JJtIcOC2u6gZwWrnOnmkHX2+F+YEEVkFyMdkK6S7qEjJdj7GZMsbyXbvvfcC0G/ud77znYyXMhgMYsmSJfjOd75jq3IvgyzyATklW6klPsi3QcqSOnaUbKJ2yZJsTgw23j0gSQTysVhrbGzEiRMnMDo6apTJkmyjo6PQNA0+ny/DLYp3TU7dRdn76AWSjdSfTCYxNjYGQJebs65hBPMk2xzY50Zi9NHvXL6VbDy1LGBfyUa/d36/P2Mjw46SrVjuopOTk9A0DePj46ZlODXGnaIU3UUJeDuoZiRbKczJ88gNZht1Xuu/5ypEYz79nZtKNhmSzYtKNqdtMVOyybiLkphWXiLZZDf5vLBpUkglmwxyUbIB2TGqZd9Nep1lR3Eqche1arMTd1Fe4gOvuYvmomTLt7vovJLNHHkj2To7OwEA119/PX7729+itrbWXssKgCVLluDUqVMZ3330ox/FF77wBdtlyZJs9CBQSjHZCuUuSiYaehBJpVLcQIpWL7DVS2+X4beaDPM5uYfDYVRVVWF8fDzD9Yn+nxhG5eXlWfeJTnAAOHcXZe+tF7KL0vWPjIwA4MfUY48V/X0+ge37JNsi+/7xjnW7DSIlmx2SjcDv9yMajWYlIjFLfMCWU2iSjbdLyUOhDcBzyV1UUZQM8n1eyXb+Yl7JVjyYkUvFJtkKCSuSLddyeTC7v2RsLPTaxImSTQSeTVAKJFs+5x9RTDbZflZRUZERZsEJyeZ1JZvIXdQLcwK7HjNrX77VY7ko2fLpJeJV2L1W2/5Cjz32mN1TCop77rkH7373u42/RS5mVpBVQ/ESH3i5wxXaXZSOqUXXx6szF5LNiWpBlmSjn62b96ipqclQudCLQza2Ia8PE5Ud21aRkk3kLsoOnl5SsgG6mg8wJ9lYeGESLRZ4SjYg833Pt6EqWmjkSrLxvhf1U2JAFtNdVJZk47k35BM8Qp6Gl91FCVh3UUC/Lp/PN69kO88wr2QrPkQbK7Iq3VxItomJCZw6dQpLly5FWVmZadmFQj7cRcnGvxMlG0GxY7LRdrsTkq1Yi3qnSjbZc+zCKlaZVX2qqqKqqgqjo6Pw+XyW7ybpe/R6zg5pztoasmq/c13JxluPFVrJJhOTja1rXskmD0dBebq6uvCHP/wBp0+fzspi99WvftVJka6hsrISCxculD4+Go0aMbEAGKSHLMlGTwBeISjMwJsA8q1k4wUv59VlxdiLJmtyjt3rsFLB0QN8Pib3BQsW4OjRowAyjSGWZKOTHhAQZQ9pJ7kWKyVbqZBspD0kI+W8kk0OrHFjRqrn6xnzDBuaqJYh2dhNC/pdpA1L0TXwxp9iKdmsDMRC785bKdkURcnY5fYCzMYvMl6SRdu8ku38QqFsmnmIIaPgypeSrbe3F4ODgygvL0dHR0dW3YXsA1b34Xwh2URKNp/Ph5UrV0JRFOm2eGE8t0OyFUI9JYrJZuf+VFdXGySbFei+Z1fJFolEhO3Jt5KNZ4t6ASJ3UZl1sdv2u4ySbd5ddA55J9keffRR3Hrrrejo6MDhw4exbt06nDx5EpqmYePGjXaLcx1f/OIX8dnPfhZtbW143eteh3/5l38xzXr6+c9/HnfffXfW97KTfqkp2XiDTj5eFHpxzw6QqVTKuG9OlWzsd7KDPw/FcBcFdDKttrYWIyMjpiSbSMlm9Zl3b63cRb0i/6XrDwQC3B1qgnmSbQ4sSVyMBSiP2CMqNivjWqRCEn0vuga6v5eKkq1Q71xFRQUGBgZMVd6hUAgzMzPSaoNCgSUuVVU1xk4eyXY+BuY931Aom2YeYogWs7JJXXIh2XguV8WCDNnodtlmdi9R9xIbPF/Jjnj1ErDvYEtLi62yvKBMduoumi84ybrJoqamBqdOnZKa48mmm2xYJPoesfHY6N/zoWTjqcJ46rZiwkpQ4vTYXNpCIOMuSnA+2ld5J9k+/vGP4yMf+QjuueceVFZW4v7770djYyPe8pa34Oabb7ZbnKv44Ac/iI0bN6K2thbPPfccPv7xj6OzsxPf//73hed8/OMfx5133mn8PT4+jra2NttKNppM8nJMtkK7iwL83RazOkWMvWxMtlyUbIUk2QCgtbUVIyMjGYFIWcOIp2QTEWu0EeXEXZR3bjFAt6eqqsr2Mz1f4QWSjVcn7SpqVi8vxiVLssmMs7mMC3ZQikq29vZ2tLS0mBrX69evRywWEyYbKTTMNmBqamoQiUTQ2NgIwBvuRfMoHHjv4DzJVlhYEUBWi1tZe9tsPmPHWS8p2djf3SzbSgUTCoUKnl3UzZADpaZkMyNK3IJVTDaZ+mpqarB8+XJUVlZaHsvzDLCjZDP73YokBuyRifSYw84NXpkP3FCy5Ytk460JrZRs55N9lXeS7eDBg/jlL3+pn+z3Y2ZmBhUVFbjnnnvwyle+Eu9973vtFmmKz3zmM1ylGY3nn38emzdvxoc//GHjuw0bNqC2thavfe1r8cUvfhH19fXcc0OhkOVCQiYmGzDn2ublDleoRTddFjsRiBadbP1mSjbeS+80JhuvLrqcfMVkA4D6+npcffXVWW0OBoOYmZlBOBzm7j7S39lRssmSbMWejOj7wWZCYiFroJ8PoK+fJrR4O//5VrLR77lMPDb2XB7JJqsY5ilci0WyeU3JpijW8XDKyspM1aOFhmg3V1VVhMNhbNmyxTiWR9QWezybR/7A20CaJ9kKC1FMNlmbTFbJRmCHZCsknBBhuZZtNcYVg2RzM3mOF5TJhCTWNM1TJFsuSjZFUdDa2ip9LOCMZMtFyeaWu2gu9ykfsENW5ZvYEgksCElJh3din9v5OM/ave+2Sbby8nIjFlRLSwuOHz+OCy64AAAwODhotzhL3HHHHXjjG99oesySJUu431922WUAgGPHjglJNhHs7KyRwbeUSLZ87/pakWy8Ou0QQWYkm1tKtnzHZGProUFINp6KjT1HpGTj3VvRzonXlGx0/VZJD3jXeb7CjpIt3zHZREo2M4hiXLqhZPOqu+g8EWQNqw0YGvNKtvMLZu/g/DtVGDglgNjzAXk3NAKrcbYYSjYW+XQXtRrjaBFBqZNsxRzPVVVFMpn0BMlGJ7RKpVJZJLfb9YnsMhFklWxWpB3pR8SOk7kus8QHXpkPvKRkY+87u86m+5doDPLKfS0E8q5ku+yyy/D0009j7dq1eNnLXoaPfOQj2LdvH377298apJabaGhoQENDg6Nzd+3aBQBobm62fa4dko0MvqTjzbuLZt4zN0k20UvvZAK2IuiKKVMncdlEJJtIySbrLspeL3vPir0opdtllSF4nmSbA339dF8ohruoW0o24j7Nfi9j5OX73XXDXXSeCLKGSMkmS7Kd7+PCuQzRggWYf+6FAm/MB+THNrskW6m5i+ZTyWZVNh3j91wh2YrxXpMQLlZ1m6mR3GwLQTKZFCpJ3YITJRsRn7ihZAP065SJKUiPOV51F7Vjz9g5Npe2EJh5jPH6gZttKQXknWT76le/isnJSQC6K+fk5CTuu+8+LF++HPfee6/d4lzD1q1bsW3bNlx//fWorq7G888/jw9/+MO49dZb0d7ebrs8WZINmBt8ZY8vJsyMlHy9KKIMOFZt4w0mLCmUTyUbLVUu9OTe3NyMWCwmzJTrNPGBrLtosfswqb+qqspWW86nwZ4HVsnGW3jmuy/zDD6i8s3VXVRWyVaK7qLne9+VAeumwBsbRH1oHucmRCpt+rd55BeFche1Q7IVAyIijP3dzbJl3EUJSj0mWzHHc3bNIQL7ez7GIFpwkEgkssI/5FPJJpP4AADa2toQi8W4SjYCK9KO/k72/abtqVJTsnnBXZS3Buatt+lx6Hyyr/JOsi1dutT4XFZWhm9961t2i8gLQqEQ7rvvPtx9992IRqNYvHgx3v3ud+Ouu+5yVJ4ddYzXVEBm4O045stdlOxkuKVkA7Il27Rxl4uSzcpdtNCDdF1dHerq6oS/i4i1UCgEv9+flaFUtBDxKslG2mPlKkofy34+H8GSbDyiJ999mbcYkE0KI0Oy2VGyecFdVDbxQbHfOS/DjpuCF2L4zKNwmFeyFR9WBJDV2MZTT8jWU0pKtnyW7SV30XyRbMXckPISyQbMbaLSIoZ83R+7SjYgkyswK8/KVZKIWGTjqtHt8yrJZrUe4x2bL3dRs7Ufuz6kjz1f59mCkGzPP/98Voyz0dFRbNy4ESdOnLBbpCvYuHEjtm3b5lp5NIljdVPZicvLi6VCuYuS8uyQbGx7eMaDGbPuNPGBaCHulVgQPJglPrj00kuFxK9ooDbzyy8GFixYgJmZGTQ1NVkeO0+yzYF+jn6/3zBMeO97vvoyj3iS3f20ItloY0tG8VBMd1Heov//b+/ew6SozvyBf7t7LgwzzDAyDDPcZIBEBRW5hF2MCq4sXoiXh42XaBQF9THKIz7mokZXTRTdiGxcNZpdg0A0EW/ok6AiPCwIumtUhEWDj4qAtxVdg3Jnruf3h79qTtdUdVd116lzqur7eR4fmZ6erqru06dOvfW+5zhhJlth8nsjv9de736b0m9T8Bhk06/YLCv73wP+M9msbSR14YNCry0H2byU2wVBDo6oyGRjkO2bz7K9vT2USf3ltudlTjavrwcUPkdbiRVejzNKmWwmlovmy2STyZ+HKe9rGPy2e9897rZt2xwbe2trKz799FO/L2csq9F4ufNjf47Jc7LlG6SoSDG20pllXlPp85VwOp3wij0OE8tFC3HLZAPQLYsNKJxybFomW3Nzs+e5FBlkO8h+sZLvzn+YmWx+Mxrsq4j6zWSLUrkoA0GFuZUp5MtkAw7OBZj0fiHO3G4gUXicKiTkn8MoF1VRoumXWyAsyH2JQrko0L3qpJTXAfTf7PYaZLOeo3qc5bTCqKptBl2y6zWTDfjmONvb2z2Xi8rfB3k8mW8bYXO7MeQnky3IclG5vXqZk03ed1Pe07Aoy2T705/+lP33iy++mFPG1dnZiZUrV7qu8hlFbhk+TkzLAsrHaTCkOsXYutCx7myVWi4q/1/+nd87LIU6eqfVRU35bN0y2dwU6tRNC7IVy5TPRxd7uWiYQXWLUx/jN8jmZU62uJSLmta3mMgpY1l+3Om5gHmDawpevnMbP/dwuM3J5rXvDSLIFoVyUZWZbG7vcXl5efYiOswgm5VpVep5N2qZbNZzVWeYWZ+lPYlBBafzbyltyU8Fkj1QVoj8fTA1k81P4MzLdXEQ++OncgxI7s1hZUG2s846K7uB6dOn5/yuvLwcQ4YMwbx583xt3GR+gmxyZ+OlvFSnsMtFgYOdY3l5ebcgm9Pz83Um9s+llAsq+Xn5Anq6T+5O7G2uEPuJqlC5aJQ6TmayHWQvF9WRySbvgxDfLLvuNQAuB7blv3GaH9HrxZiuclFmsgXP/nm6BdnsWdR8b+PLT1YAqeEWAPLat5WVlSGdTmcDQn624/VmRhgKBcKCeG27Qu09lUqhqakJe/bsQc+ePUveD6+GDRuGnTt3olevXiW9jtx2gihVLHU/vGayOf07SFHOZLN4zWSztu31Na3Xc8uw1a2UTDYV16Ju7ZWZbN0pC7JZb2hLSwtef/11NDQ0+NuziComyGYy+8WnyrRmeyablX3lVu7jpTOx3usgIuuFLsSdykVN+XzzlYvme75bkC3KmWwMsh3kJZNNdVu2B69TqVRJc7JlMpmiM9l0zskmB9ms98EJgwKFOd35zvd+WUE2ZrLFn/1Cit+n8AURZBs7dqzn7JioZbLZfx/ka3t5jw877LCit1ushoaGQK4TnYJspmeyhTEmta6nwp6TLehy0UKv5xRMzMetAkLerm5+AmdhZbJZ/GaymfKehkVZkM2ydetWv38SSX4y2ewXtiZzugBWfffDHmQrpVx04MCBqKioQH19fbffFZvJ5nbhFqdyUfvdoDgF2WSmfD66mJbJ1tXVlQ142H+X72+FyJ1g1y34Vuh15IGZrnJR699u7zcz2Qpzyjr2MicfM9niT+4zVGeukjO3jBE/F2LV1dWet+MnyBamQplsKoJscW/v8nHpnGPTGm+YEmQLM5NN/n4HvfBBoX3ON8Zyki+TzZTviFsmm59y0SDHNPJr5ctkk5n2nobF7/F6/pT+8pe/4IUXXsh57Pe//z1aWlrQ2NiIyy+/HK2trb42HgVxy2Szl3LJ/w96390y2dzKRb3sV9++fTFy5Mjsa8kdaSlzstkfk1/HxCBb0JlsUZpX0I6ZbAfZg8RObTysOdnk7foNsgG5ARI5aOY3k81pv4LiJ8jmxrS+xUSFso7tTJ3wmIJnD+rz+xS+Uudk88rpMy1Ulm9CJluQ5aJumWxxbe+pVPcJ7Fku6jwnm6rAsvz9jkomm3xtaN+ubn6yr/1kvZW6P0Du51BVVQUA6NGjR/Z59n03PeYRNL/H6/nZt956KzZu3Jj9+a233sLMmTMxefJkXH/99fjzn/+MO++809fGTVZsJpvpDc7pAjisOdnkIJvT/ti373W/Sg2yue2PyXOylZLJ5nQhEuVMNgbZDjKtXNT63gQVZPM7J5spmWz57sKa1reYyG+5CjPZksN+45BBtvCVWi5aynZYLlr6RPSms/fnLBfNH3xSmckW9MIHXjPZSln4wL5d3ew3JfJdu4ZdLir/e8iQIRg7diz69u3b7fdJvYGpLJNtw4YNOOmkk7I/L168GH/3d3+Hhx56CNdeey3uvfdePPHEE742bjI/QTa/WUU6OV0AhxVkKy8vz26v2HLRfNvxe7HqFGRzCpiaOCebfEfBT5ANcL7bzyBbPJhQLirvh5dBhExu13KAxGnhAy9BFtXzlQSZyRal75wuzGQjO/uYhkG28DmNpeSfdQTZdCiUyaYyyBbn84cJmWwVFRU5/8/HrfwuSE5zsqme+ifom5Z+Mtm8fr/l60BTK3TsUxy0t7cDOHiNLAujXNQtky2dTqNXr14sF5X4PV7Pc7J99dVX6NevX/bnl156Caecckr25+985zv4+OOPfW3cZMUGMEw/0VkXsfLFiuqO2eKUyWbfN3l/VGeyWdwy2Uyeky2VSqGiogKtra2eT/rW526t8Gq9jvx/+flRZMrno4ufTDaV75VbiruX/jSdTqOzszM78LBnslnfcy+ZbPlKB4IQRJAtqYMVP5jJRm6siym3LG1Sj5lsyNmWjnLROPdx9qwtHd/tAQMGoKqqCn369Cn4XN2ZbEELujIgyEy2Xbt2YdeuXRgwYED2Gsf6O1Mz2ewVZW1tbQCcA7hhZLL5qcYrNqklLpRlsvXr1y+76EFbWxvefPNNTJgwIfv73bt3O0Zhoyqu5aJAOF9ap9fzu/CB1y9xsemrfspFTRy4H3HEETj88MOz9fKFyCflQnOyRaEdW9zuwiSRPUjsNDAP4+RoDz75uRBwCpA4lYt6mZNN9Z1v+x1JmddyUWayFWYflNofs2MmW7LI53ITz9Vx5zYnW9DnmnxBNrd/mxBks/8+yNfWmd0VFhPKRcvKytDY2OjpRmEY+5dvTjZV13LytoJqy6Vmsr3//vvYvHkzdu3alX1NaxumBtns84j6CbKpnpPNb+VYnPsdJ8qCbKeccgquv/56rF27FjfccAN69uyJ448/Pvv7jRs3YtiwYb42brKePXvm/D+fKGWyAd2/JGEF2QqVi1r8Bv+KTSV3K3Fwel0To/a9e/dGU1OT5+fnC7KZejLyguWiB1lt1gqw5bsoUdlXuQ0MigmyZTKZnIs4+fFC21cdZLEPlmTMZAuO06DcS5CNAcxkMP2GWNwVyuBSmckm97u6S0Z1louaPlVNKUwoF/UjbplsTmOyINoyUPi7Ueg4rYoHK1AljzVNbSdBZLKFUS6a77lJHbf6fd89l4vefvvtmDZtGiZOnIiamhosWrQop0E8/PDDmDJliq+Nm6xv374YMGAAKisrCz7XXqJlOqscS1cmm1PWh/x8v51JsV/6QiVl8h0Uax9M7bS98BNki9JxMsh2kBxkA5wDyWGWi1rb9TM4tmfB2QdLchmp19cIK8gm9//MZAuOU3mJl8/f/vcUT04ZpfzMw2P/fqrKdiiUySb3wSZlsrFctDQmZLL5EcaYNMw52YKuDPCTyVaoXNT6+46Ojm79v6nJA9a+WcdvjWl1lYuWkslmynsaFr/H6znI1rdvX6xduxY7d+5ETU1Nt2DSk08+iZqaGl8bN53fMjwgGie6sMpF3eZkA5y/oPbtq56TrVBnIQ/c49ChOAXZ3IKHUWjHTqL8+QTByha1bg7oLhctZk42+3PsQbZiMtlUtWf7YEnmNZONQQHvvAZRGGRLFmay6SV/33QH2XTSkckWleyuUkQtMzmMhQ+cMryCCOY6CXqOU6ebZoUy2dy+29bj7e3tOcdvcpANQM640cpk87LwgepyUWay5acsyGapq6tzfPyQQw7x+1KxEdUgW9jlonKQzemuhP2Ohd8gm98TsNcgm599MRkz2eKvpqYGI0aMQHV1NQD3gLr8OxXsg6hiykXln1Opg5Obe/meh1Uuau2HXFJu8VsuGqXvXNj83Pl2+h3f23hjkE0vp/IvQF3f5iXIZlImm/33pUhyuajF9O92mOWi8jxpqrap6qZlEJls1uNWJpv8dyYH2azxbFtbW3a/dZWL+gkKq7qBEhXKg2zUXdQWPrDfFdIRZHMKbFm/t04afoNsbj8X+jsvQTa/r20iBtmSobGxMftvt++6/DsVnC56vW7TLUBiDUq8vFZY5aLWtgoF2byUi7LtunO6iGcmG1kYZNOrUJAtqM+iUCabqQsfsFy0NFHrz8MMslnjeSszSsU2VWWyAYX7iHyZbHImnD3IZt2Ydduubta+tLa2Avjm+jffNad1rCrLRb18rmHewDaR3+ONb68cIvkOUhTuJoVVLmp/PXkC83xBNuvL63d1UUuxmWxOHXKcMiLyBdmAcFLcVYvqfqtiQiab32Xf8wXZZCaUi8qvzUw2dZjJRvnI53IG2cLndNEMqFv4QJa0clH76ybh/BG1/jyMIJtT0oIq1jF4marDz+sBhcc/+RY+kI+7o6Mj52fTy0Wt47WCbE5ZbED3fVZZLuonyMZyUW/M7qkiImqZbGGVi7qVfQHOHWaxmWyl3q3I11mYfCfEr0JBNj91+SZhJps7+6DfPggJY7vy96uYIJvVbv0MtMMuFwXyB9mYyRYMzslGTpjJppd8QauyXDTfTSN5e/LvTMhks/8+qNeWjzcKN/iLFbX+PIwxqfye+J1ix6+gSwT9ZLK5ja+A3OtIeU42qz+KQpDtwIEDALwF2VRnsvl5zaQG2fy2/ehcSRssanOy6SgXledVAvyVi3qdiFHelp/9y9dZ2AcuUe5Q/ATZonScUd3vMOjKZJO/534HZl4z2bwE2cK4y89MNvX8DMqB6GU+UGnkMQ2DbHqYFmTTIYxMNrcgW5z7uKj152HsXyqVyjsvW5CCfv/l70GhaoNiMtncMrNMOifYy0WdFj2Qnwd4X13dL7cxdr79SWqQjZlsGrBcNP92gO5f4ijMySbvr9/XNpHXclGnCUNNxiCbu3zf9bAz2YIMshVqo2HPySZvy+I1yMagQGF+ykucfsf3Nt6YyaZfviBQUJ9FVDPZVM3JJmdqx7m9R60/D2tMag9AhTX1T5ABHq+ZbF6CbPYAlMntpJhyURMy2cK8gW0iBtk0YLlo/u0AB08GXstF/XQmKjPZonZyz8drJlsU2rCbKH8+KoQVUHfbbpCZbH5uZoRZJlBquWhSByt+MJON8mGQTT/7eApQNyebW5DN1IUP7L8P6rWTsLIoEL1xeFhBNvs81kEEc534mQ/XCz83zfItfFAok83kclFrX/yUi6o6v/m59mMmG4NsoZPLIKMwmA+rXNQp+Oglkw1wDwQ5KTWTLd/fRS2Amo8cZHN6/6MaZGMmmzv7wDysE6Pcx/hdfMBtQO3nu6jyzqsdM9nU81Ne4vQ7vrfxxiCbfvZxJcByUYvqctGojdn8itpNE12ZbKq2GfR4ys9NM7lfsX+/5eP2kslm0jnB2sf29nYA3oNs9r8PQimZbCa9p2FgkE2TKAXZdJSL2icvd/qCptPp7O+d7kp42Y68DT/757Yd+Y5N1DsTr5lsUTtOBtncuX3XVfdTTuWiXu9+2ue4dAqyFXqtMIMszGQLVzGZbOwX4k0e+DPIpkcYQSCWizLIBpj/3Q47yOZ3ih2/VAbZCo1J5bGefRxl/75bASu3hAGT2o19X9yCbPJzVS1cVkwmWxiLipkolfJXmh/vnjlEVkcQhbRtHeWiXmvk7SWjXv6m2LtcfjPZot6Z+JmTLaqi/hkFTVe5aFALH3j5txPTykWZyVYaP+UlTr+Lcp9GhTGTTT+nC0HVQbZCF91hC7tc1G+WeFRFrT8P67oh36IAQVLx/nsdo8lBDftx2r//VpDNbf9MOifY99Ft4QNAfZCtlIUPTP8uqsAgmwa1tbXIZDLo2bOn7l0pSE6/VbkaV75MNqfnAM5BNlUX1F7uziQpyMZy0fjRVS7qlMlWTJDNbeVmv3OyhV0uKver1s9ukpp274ef8hLA7DvYFDz7mAbgZx62fJlWQX8WfspFdbSDsMtFo3BzvxRR68/DGpO6zclmeiabk3yBMbfFD+w/t7W1Zf/G+r+p1wfFZLLJx6sik43lot74Oeaywk8hL0aMGIGurq5InOzkk7V8wg76y5JvTja3bRaTyRbUCaBQuWjUgk92TkE2pyBi1I7TKRuPvqErk00+EZcyJ5uXgFu+7bv9HCS3TDZZvt+FVcIbZaUG2fjexhsz2fRzmpMtqQsfWNsvlNlWzGuzXNT873bY5aJhZ7IFcZ2bSqU8X39mMpmcuaQt9p/tQTbgm303sbTR/p76KRf1W7JYSDHlogyyeRPvnjlEqVQqEgE2IPdLojLI5iWTzS6IIFuxmWwsF41muaipd6pM4HZRovozdpqs1mv/6KVE1PQ52fzMyZPkwYof9ru5XPiALAyy6ed0rlFVLmoxdeEDwLnPZ7locaJ20yTsIFvU5mTz+5pumWxeykVNPQ/I+1hWVpb3+FUHtvxkslmSPG5lkI3yciqtAMIJshUKbDHIpk5cFz6QRXnfVdCdyVZquWhQc7KFXS5a6I6rjJls/ngZ3NmDsHxv441BNv3sF4Ly2DJpCx/I2w9qX1guepDp3+2w9s+eyaZqHsIwgmxezuf5VhcFnDPZTL0JL+9Lviw2+bmqMvKKmZMtyeNWP8ecvHeHQisXLSZLSg6yFbO6qJ80Wi+dfFxXF3V6b+NQLhr1zyho9hNiWHefVC984HdONmayRZ/9Ip6ZbGRxys7nZx4ue7mo3B/qDLKFya3NBbEv+W7mRG3M5hcz2ZzZ52RTtc0wFj7I95puZbFu5aJuyREmnRPkffQaZFP1ffeTYBHm2NpUgwcP9vxcs3sqUiKsclGni2I/c7J53S8/GS75tl0ok830E3shcmDC6Y4Iy0Xjx4RMtqDmZPPzXYxSuWiS7wj64adkImoXZVQaZrLp53ZDR/5d0Nvw0s+akMkWxL44BRqSWi5q+nc7rAoYuU10dnbiwIEDAAoHbfyyH0NQc7J55TbvrVu5qNN1jd9tqibvS76VReXnqrohW1dXh0wmg/r6+oLPZZANaGpq8vxcLnyQQG4rcYWRyea1XNTqLOW/9bMdv/vn9LP99aLemcjHYgUxmckWb24XJao/Y3lQ4LddxaFc1OtcQVwN0btSMtko3tzGNBSefDd0wgqyxblc1D7/FsByUVOFNSaV28SePXsghEBFRQV69OgR6HZU37RKp9OeykW9ZrJFoVy0mEw2VeWidXV1OO6445jJpgBHognkVC6q4osiv6bfhQ/kIJvfctFi9s/tb+MUZEulUt0GanEIssmi/hkFTVcmWykLH8jP8/JvJ1EpF1Uxb1Fc+Rlo2vtt9gvxxkw2/exBcBWlTX6CbDoUCrKVwinQwHJRM4UdZOvs7MTOnTsBALW1tUoTJoDgy0W9VivZg2zWz9b74HQT2dQgm7wvustF7fvj53mmfxd147uTQGHNX+KlFNEtDdm6I+Fl34rNZLNz+ts4zckGdJ9A1Eu2oelMPYmawK2EJ8xy0SQufOAnk83CtuuN30w2DgLjj0E2/dzmZNMVZNPVDuz7GNS+sFz0INO/22GNSeU52awgW11dXeDbUR1kK/R6bgsfWD9XVlZ6em2T2k0pc7LpPA5msvkT756ZHIVVWuE0J1sx5aKmZLLFYSBjzwCKQyYbg2zudJWL6l74ICpzsqmYHDyu/Aw0TR1Ykxph3Tgkd243dHQH2cLmFGSz/64YTpPcJ7FcNArnSR3lort27QKgJsimeuGDQu9RoXJRe5AtrplsqspF/WCQzR/OyZZAOspFvU6qX2qQjXOy5RfHIJssDp9RkOzfdR0LH5iQyWZqkE3XhWAU+QmyWSWiQohI92fkDTPZ9Asza9ppcQX5caf9Cku+TLZSsFz0G1H4Xoe98IF1vZROp1FTUxP4dtwqjoJ6Ta8LWdm/79Z3wR6kMjWwJpOP2e/CBzq/7wyy+RPvnpkc6SgX9bu6qJ8BWrEnNC+dRVzLRS1On5H1GURFFE6outjfj7DLReVMNq8DsyAy2aJSLioPmth28/P7mUa1/J38Y5BNP/uFoIqsaftnmsRyUbmNm3DRHYaoBdnC2kf7OKhXr15K2oLqOfGCzmRzuyYwqe1EtVzULu59T6midTVNgdBRLup1TjZ7gMfLF5iZbN7lC7INGDAAqVTK1/LEJjD1JGoC+f0I8wLUaeGDMDPZTC4X7ezsxNdff436+noGBHzwewc1nU6js7OTg8AE4Oqi+pk2J5suqspF5bFbZ2cnysrKEjknWxSONawxqf16qba2Vtm2ZGHPyea28IH1fbcHqdzai0nnhGLKRU0IsjGTzR/zeysKnI5yUbc52ezsJw0v+xVWkC0KJ/dC7EE2+ZiqqqowbNiwbneFTMcgmzv5/ZC/76rbclDlolFYXdQ+AALyB9k+/PBDvPXWW9i+fXtiMhFUYCYbWZjJpp+pc7LFJZNNzna2VodPypxsqVQqUv15WGNSa1oEi4r52Jy2o2tOtmIWPjD1+sB6D8vKyjxPf2JCUJ1BNn84sk8gHeWiXjPZ7GVTfoNsLBfNL18mWxzE7XhKJX/fwszykC96/Q4M3AZzpczJFka5aL45eOTBYWtrKwBgz549DAj4UEwmm/x/ii8G2fSz32xQkXVRTJAtbPmCbKWyl80l6SZNlPrzMINs8pheZSabn+k6vAgik836uayszPX1TA2yWftSKItNfi4z2aLH/N6KAhdWaYVTJluhIFsqlcrJZjMpky0OnUkcg2xB32GLKzmrTPXn7pTJ5nVgJt+1DmpONpMy2aznHThwwIhBU1T4DZxGKfOBShPWjUNy5xYACyOTzelGh/1vwqKqXBToHmQzIbMlLFHqz8O8brDaRFVVlaeATbGs47BntZX6evZ/OymUyZbJZFyvG029hrM+q6qqqoLPNTnIloS+pxScky2BwioXdbpA9rKdsrKy7Go5KjPZ8r2OxdQOulhxD7LF4XiCZA2IdK0uKi984OdknMlk0NXVVVImm3Xc8v6o4DeTzbowOnDgQGjlu3HATDZy4zQHJM8F4dI5J5t1vohzuSjwzdi4tbW1WyZb3MtFgWgF2cIck1qfvapSUYvK82mh1yy08EE6nUZ5eXnOKqsWU68PevfujZEjR6JXr14Fn2svFzUpyGbSe2oiBtkSSEe5qNdMNgC+M9mKnTfNS0ReHrzE4WKNQbbkcQqyqW7LpSx8ID+32Ew2ADlBNpXH66U8iJlswfMaZON7G3/y99uEC5EksveDYQfZ2tvbjV34gOWipYvSTZMwx6TW9ZLqRQ+s4wjq/ffzHjktLgXkZnK6XTeaen2QSqXQt29fz88FzPi+M8jmj/m9FQVOR7monxOk3Fn6XV3Uz3GwXDQexySL2/EEIazMVbdtFlPS4tRfZDKZ7JyNXoNsTv8Omt/VReU5i9ra2nJeg9yxXJTcyG2BgWs97BeCYQfZ5G3KvzMhk83+u2KxXDQa3+swAzuDBw9GY2MjGhsblW5HZZCt1Ey2fOWiUWgvhZhcLhqH91clZrIlkPWlaG1txYEDB3IeC5LVMVoXx07bCSKTzU9nnW/bTtuKW2cdxyBb3D6joMmD/rBO0k4Tkfv5blZWVmL//v05q0alUimMGDECXV1d3VYhdtuHMC5CvGQuyBd/8r/37duX8xrkjuWi5EZuC8xk08OtXFTF5+AWZFORPeaXynJRt0y2JJWLRqE/D7PvaWhoQENDg/LtWO97UG2tmEw2Ochmr8xwS86IQ6KESeWidlH4PurEIFsC1dbWoqKiAm1tbdi8eTMANV/aiooKHHbYYSgvL88+pqJcVGUmWyr1zSTsXV1dRnVsxWKQLXmcMtlUnxitbXZ0dGQf8zM4O+KII7Bv3z7U1NTkPO5nMBl2Jpv1/splqnKprkUOsu3fvz/nNcgdM9nIjXyeNvFCJAncsszCXPjAqVzUhEw2FeWiYZ7PTRCl/jyOY1ITMtmc5ra1/l6+zoxCuagfLBeNrvj3zNRNWVkZxowZg549eypPqW9ubs65MPZbLqoyky3f68jc5pOLojgG2WRxO54g6CwXtQ+EvKqsrER9fX0g+2D/d9Dk1/Zy8Se/J8xk846ZbJSPyXf7k8AeXFJZLmqxZ3LJmdNxLhft6Ogo+twaVVEKssUhe8ou6POpn/GZPbgM5I6p8mWyxTHIxnLR6Ih/z0yOevTogdGjR2dXpJHvAqikOpPNb7molw44Sif3QuIYZIvDSVQlHUE2p++5rosdp/1RtR1rEJSvjImZbMFgJhvJ7CVF/NzDZb8Q1DEnm/yYLmGVi9qDDHEXpZsmcRyTBp3JJvN6Lgecg/ipVMr1ujEOAU97n8IgW3SwXDTBysvLMWrUKHzxxRfo3bt3KNv08gUtZXVRv194e2lXvtePQ2fCIFvyyCfosO6E+S3tUyGswZXTANBrkI0BAe/8vkdRuiij0tnnBON3Klxuc7KFHWTr6upCOp02KpMtqH2xxsZykM0KMsRdlMbhcRyT6pyTTd5mZ2dndmoAeb+itrqoHyaMpy0m7UsUMMiWcOl0Gk1NTaFur5BSVhdVWS4a1Q5aJp+s4nA8QDxOoirpnJPNomNiZlPLRZ3mDeJApTD75+m1XJR9QjJ4yZInddzKRYP8HOznsnyZbHFf+MCE+ZnCFKWbJnEck+qck80631ur1ZeXl3db1CoJ5aJuP4fJpH2JAvN7K4oVkxY+sD/fraOP0sm9EHkwGofjsWOH350J5aI62lpY5aLy69vLRe3ZHfZFEJz2lZz5/TyrqqoAfDM1AsUfg2x6uWWZqZyTTd6GvVzV7W9UcwqyBRUQk4NsYaycbZIo3TSJQ2DHTmWQzct7ZF/8wD4fYxIWPnD7OUwm7UsUMJONQqWiXLSUi+kkz8kWh+MB4nESVYnlouEdb75yUesurJOkXCiVwu/3vLm5GbW1taiurla5W2QIBtn0CnNONqD7TaN0Op2T4RXHclGnTDYdWeI6RGkcHod5wOx0Lnwgb9caQ+UrF5X3MQ5jKxPG0xYG2fyJfuujSFG9umgpmWxuf1tRUdFtv6Iqjid/BtnyYyZbeEE2t0w26zE5y8LqV8LYv7jxOo1ATU0N39uE4OBfrzDnZLO2I5/P3DLZwpYvk43losWLUkVJHMekQWeyyby8pj2TLV+5KDPZ1DFpX6Ig+lEDihSTVhe1/63btlpaWtC7d280NDT4em0TpdPp7KShcekcM5kMMplMYiYA9suEOdl0B9nCKhfNVyolB9nS6TR69OiBtra2UPYvDuIwWCZ1mMmml9ucbGFmssnbNSWTTQ62BVUu2tHRkbhy0cbGRuzevRv9+vXTvSsFxbHv0bnwgbxdeyab9TjnZAuffHODnDHIRqGyvpT5BkClrC6qIshWVVWVnd8nDjKZTOyCbGPGjGGQzYWOTDb768d54QP59QutemcPsu3atSuU/YuDMIOmFD0MsullzyTr6OgAoK7vdwuymbbwgZxZx3LR4tXU1GDUqFG6d8OTOAR27FTOyeblNe1BdHsQP5PJZK8tmcmmThzezzBFZqQ6Z84cHHvssejZsyd69+7t+JyPPvoIp59+Oqqrq9HQ0ICrr746mylA5ij0xZSDJX5XF1VRLho3cVot1VJdXR2rQGiQdMzJBuifFyPM0uhCCx9Yj9mDbE77Ss6S2FeTdwyy6WUPLlljb7ksPqhtWNvJl8nm9DdhCCOTLYnlolESx3NV7969kclkUFdXF8jrBZXJJs/VZ42p5EUQ4jBFjgmVIZY4tm2VIpPJ1tbWhrPPPhsTJkzA/Pnzu/2+s7MTU6dORd++ffHyyy/jb3/7G6ZPnw4hBO677z4Ne0xurHJFwPlLmkqlUFZWhvb2diPKReMmjkE2cqcjk82+Dd3lomFnssn9m3V31SmTLaz9i4Mk9tXkHYNsesmZZEII5UE2a1vW46aWiwaZyWZVeSRxddGoidu0LE1NTejXr19gx1NsJpvV7p3a/1FHHYX29nZUVlY6bieqnwUz2aIrMkG2X/ziFwCAhQsXOv5++fLl2LRpEz7++GP0798fADBv3jxcfPHFmDNnDmpra8PaVSrA6+IHxQTZSvnSJ6XDYJAtWXTMyWZtQ+eFgHXcYcwbke8Cz3of5NVF0+m060CQCuOFJdkxyKaXfJ6x+jsg2CCbtR3rXGa/mQHoD7JZ7JlsQZyH5NLQ9vb2bo+ROeTxR1yoOhY/mWz2clG5/ffs2TPva0f1szA1yMZxWGGxeYf++7//G0ceeWQ2wAYAJ598MlpbW7Fu3TrXv2ttbcWuXbty/iO1vHR6fgJBQWWyJaXDYJAtWUzIZNNxIRDmamRuJULyhZV8UZjJZFgu6lMcBsukjkkXIkkkB7msLDZrQSIV2yk0J5sVhAp7Vfh854JSye+ldXw8d5gpjkG2IPm99rJKQK1277VcmuWiweI4zJ/Y9M7bt2/vtupMfX09KioqsH37dte/u/POO1FXV5f9b9CgQap3NfG8dHrWwEh1JlsSOwwG2ZJF15xsugPYYQ5y82VRyL9juWjxdLcnMhsz2fSSg1wqSkUthYJs9oUX5PmZwuBWLhpEn5VKpbLjN65MbbampibU1dVxrmAXfq+97EE2r1UScTgPmHQDKYnXzKXQ2jvfeuut2YsQt//eeOMNz6/n9IHbVxqxu+GGG7Bz587sfx9//HFRx0LeeS0XBbx9iVWvLho3DLIlixzkCbtc1OnfYQkzyOa2sp09w0K+4MpkMtmBIy+UCktiX03eMcimlxxc0h1kE0JkL8Z1BdksQWePW+M3louabfjw4Rg9ejTP7S6KzWSz+havq+vGYdzAIFt0aZ2TbdasWTjvvPPyPmfIkCGeXqupqQl/+ctfch776quv0N7e3i3DTVZZWZkzNw6p5+Xi1wqy+T1BMchWGINsyWKfkBpIViabieWi1j716NHD89yTdBAvXMiOQTa95H7OCgCFFWSTV6Tv6urKZrEB+stFg84etwfZ2BdSFPm99rL6Er/lonG4xjO1XJR9T2Fag2wNDQ1oaGgI5LUmTJiAOXPm4LPPPkNzczOAbxZDqKysxNixYwPZBgVDXnLZTX19Pb744gtPC1ZYF7KFshbd/tbp33FmDdLYQSaDrnJRuX3pnJMtzGO1l4um0+mc39lLHOrr67Fnzx7U1NQo38eoS2JfTd4xyKaX05xsKrLIvGSyWUE2FXPC+dk/+f9B7QfLRSkOSs1k81ouGsc52Uw5DlP2w2SRWV30o48+wo4dO/DRRx+hs7MTGzZsAPBNSm5NTQ2mTJmCESNG4MILL8TcuXOxY8cO/OQnP8Fll13GlUUN46VD7devHxobGz1/ia0gGzPZCmMmW7K4XZSEtV0g/uWifjPZrO9gS0sLBg8eHHq2RRQlsa8m7xhk08uUOdl0lora9w8IPpPNOlcwk43iopg52Vguqkcc3s8wRWZkf/PNN2PRokXZn0ePHg0AWLVqFSZNmoRMJoPnnnsOV155Jb773e+iqqoK559/Pu6++25du0wuvGaY+PkCDxw4EPv27cuZTNyLJHYYDLIli1t5TVjbDWt7btsP81j9LHxg/Z4BNm90tycym0kXIkkkv98qg2yWfJlsulYWtfbF2j/5/0Fnsrn9TBQFfs/nVl/S0dHhOJbysp2onhNMLReN6vsZpsiM7hcuXIiFCxfmfc7gwYOxdOnScHaIiqYiw2To0KElv0ZSOgwG2ZJFVyab7oUPdJSL+ln4gPzh4I7yYSabXvL73draCkBtJhvg3M/K5aJxzGSzB9V4LqEo8ns+lwPm7e3tnsdSLBcNFm92+sN3iEJn0hcziR1GfX09evXqlXdBEIoPe5aV/FgY2wVYLmo9xiBbMPj+kR2DbHo5BdnCnJNNPs8lKZONfSFFkd/xYSqVyikZ9TonWxzOA6YG2eLw3qoWmUw2io8wM0wKSWKHUVVVxcVAEkRXkE33wgdhlou6LXxgv/jzOjCk7pLYV5N3cchYiDL5/Q97dVG3clETMtmCzh5nuSjFQTHn84qKCrS3t+dksnFOtnDF4f0ME4NsFLowM0wKYYdBcWe1ayvAAyRjTrYwg/n5LqycykV5YeSf7vZEZmOQzTyqg2xyKabcz5pYLspMNiJnXtuwvMKo1+9VWVlZ5Oe+5Zxs0RXdVkeRZdKggJ0ExR3LRcPL2vO78AF5x8Ed5cMgm15WX2f1fZlMRsnNBC+ZbNYNJZPKRTknG9FBxZzPiykXLS8vx9FHHx3pG5umZrKx7ymMQTYKnYnlovLFMFGcmFAuqjOTLYzBld9MNg5O/GOQjfJh+9BPDrKpyiLzEmQzMZON5aJEBxUTrLEyY/2UiwLfzEMdZSYF2WSm7IfJONKn0Jn0xTSpdJVIBXuQLawAj/yd0nEh0KdPHzQ2NmLAgAHKt2V/j7nwgVp8/8iOmWz6yZ+BilJRwNvCByYF2YJe+MCence+kKKolEw2P+WiccBy0ehiJhuFztRMNqI4ss/JFlZb151WXlFRgREjRoSyLTlbTf4/Fz4IDgd3lA+DbPrJ73uYQbZ0Op3TB5u0uqjqTDaeSyiKihkfykG2oIPXJjMpk43jMH/i3zrJOCYF2Swm7QtRkOxZVmG1dd3lomFiuah6uoO2ZDYG2fTTFWSLwuqiqhY+YLkoRZ2f1UUB4MCBA9nHkjAWMDXIloT3vlR8hyh0Jn0xrQ7DpH0iClJSM9nC5HfhA14Y+cc7qJQPg2z6ye+76gCXW5Cts7Mze64zKcjGTDaig4q59rK+z62trdnHktD+TQ2y8TxbWPxbJxnHpBJNk/aFSAVdc7Ixk42ZbEFKUtCW/GOQTb8w52QDnG9mtLW1ZX9vUrmoqkw2tnWKomKuvawgmzXnYjqdTkT7twe2GGSLDo5UKXQmlYsyyEZxp6tcVL5TGffvFxc+CFfc2xP5x8G/fmGWi3Z1dTnezLCCbGVlZVraQZiZbEk4t1I8FZPJZu9TkjKOMuncZtK+REEyWigZxaSOkUE2ijsTgmxx53XhAwbZisfBHeXDTDb9wp6TTX7M3gfrKBW19kXeD5WZbJx2gKKqmGsve2ZqUtq/SWMfVhT4w3eIQmdSYMukfSFSQdecbNYJOAkn4nyZbPLFH1cXLR4Hd5QPg2z6yZ+BqiCXva+1HrP3CTpKRa19AcLLZCOKomJuwqZSqZx+JSnt39SxD8+zhZnzaVFisFyUKDy65mRjJlv3TDbr8aTcgQ2SSXdzyTxsH/qFXS4qP2Y/z5iWyRZUm0yn04m6gUXx5vd7IfcrSWn/Jp3bTNqXKEhGCyWjWJ2krkGQjEE2ijtdKxNZA6AkBJS8LHxgTdYLJGdwGCRT7+aSGeTvGs/nesg3VlT1+25BNvtnbkqQzfp/kH2W9d4m4dxK8VRsoDjpmWwmnNt43eydnnxqSrTa2loceeSRqKmp0b0rWewsKK50BdmSmMmWb+EDq1RUfj4Vh/01OUmn0+jq6mL70MR63ysqKpR9BlErF1UxF2omk0F7ezvPIxRZtbW16NOnDxoaGnz9nRxkS0qQ2bQbjKlUCkIII/bFdAyyUehSqZTvjlWVJAUCKJkYZFMvXyab9Tsrk80p64IKM22gSebhHXa9rO+lyiwyp4V8TC4XVZnJxn6QoiqTyeCoo47y/XcsF9V/buN51rtktFAiF+wsKO7sbTusgYk1GKqsrAxlezp5WfiAix6UxrSBJpmH5aJ6yZlsqtkzxEzNZAt64QOA5aKUXCwX1X9u43Wzd8xko0RjZ0FxZx+IhNXWDznkEIwcORK1tbWhbE8n+8IH9iwL4GAmGy+MimPaQJPMwyCbXmEE2Zwy2YDu5zlTMtlULDjETDZKKpaL6v/O87rZOwbZKNHYWVDc6SwX7du3byjb0s3PwgcmDJKiju8hOWGQTS+dQTbTFz4Isk1aWXrsBylpWC6q/9yWpKlgSsV3iBKNQTaKO13lokniZeEDFRkNSWLaQJPMwyCbXlVVVQCA6upqZdvIF2STP3dTykVVZrIlJZOHyMJyUf3nNl43e8dMNko0dhYUd7oy2ZJEvrCyLq6sxxnkDIZpJRNkHgbZ9BoyZAgaGxu1BNmAbz5/a+7LOGeysVyUkiqJQTbArBU9ed3snf5Pi0gjq8PWNSAjUo1BNvXkTDZ7kM0+KDJhkBRFpt3NJfNw8K9XOp1GTU2N0ve/UJDNYkqQzWk/S1VXV4d0Oo26urrAXpMoCuRy0SRlcpp4bjNpX0zFTDZKtL59+0IIgfr6et27QqQEg2zquWWypdPpbu93kgaGQWImGxXCTLb4yxdkky9EdfWzbplsQfZZjY2NaGhoYD9IiSOXgSep/ZsUZOOcbN4xyEaJlk6n0dTUpHs3iJRhuaJ6LBcNlwkDTTKP9d3idyy+vGSylZWVae8jVGayAWzjlEypVArl5eVob29P1HfApCAbb2Z5l5wWSkSUQMxkU08e7FkXVQDLRYPEclEqhIP/+PMSZNM5/UcYmWxESWaVjCapKsCk7LFBgwahb9++LFf3gJlsREQxxiCbevJ7ak287fQ7wIxBUhSxXJQKYZAt/rxmsuki74+c2cw2SRSMyspK7N27V+v3PGwmZbI1NTWxAsyj5LRQIqIEYpBNPadMNqtUlJlswWAmGxVi0oUIqWX1s3J/alImm8VpP4moeEOHDkVdXR369Omje1dCw3NbNDHIRkQUY8ykCpeVyeY2KOL7XxyTyiXITMxkiz8vCx+YEmRjJhtR8GpqalBTU6N7N0LF8U808dMiIooxZrKpJy9wYL/44+qiwbDetySViJA/PXv2BABUVVVp3hNSJWrlosxkI6JSMZMtmjhaJSKKMQbZwpFOp9HZ2dktk43losGorKzEEUcckZ30mMiuf//+qK+vZ5AtxqKy8AHATDYiCgaDbNHEIBsRUYyxXDEcXjPZ+P4Xr1+/frp3gQyWSqWy2WwUT/luGlkB+B49eoS6TzJ5f7q6uhhkI6KSsVw0mhhkIyKKMWayhcMa/DCTjYhIjXzns5aWFtTX16OhoSHs3XLcH+uGC8B+n4iKx0y2aGKQjYgoxhhkCwcz2YiI1CqUydbY2Bj2LnWTSqVy5mOzHiMiKgaDbNHE0T4RUYwxyBYOK3jGhQ+IiNSIwvnM2icrqxngzRUiKh7LRaOJnxYRUYwxkyoc9gsrZrIREQUrSkE2OZONiKhYzGSLJo72iYhiLAoXJXGQr1zUaQU8IiLyJwrnM/sNl3Q6beR+ElE0MMgWTRztExHFnHxi5klaDbeFD+Tf2f9NRETFM/F85nbDhYioGAyyRRNH+0REMccgm3r5LqyYyUZEVLoolN/bzwUm7iMRRYfVh7AviRauLkpEFHMM8qiXL5NN/jcXPiAiKk4Uy0VN3Eciio7+/ftDCIFDDjlE966QDwyyERHFHDPZ1MuXycZyUSKi0kUpyMZyUSIKQp8+fdCnTx/du0E+cbRPRBRzcmCHA3418mUvMJOQiKh0UQqyyQsfEBFRsrDnJyKKOWayqWddSDGTjYhIjSgF2ZjJRkSUXBztExHFHDOp1GMmGxGRWlEMsrHPJyJKHvb8REQxx0w29fJlsnHhAyKi0kUpyMaFD4iIkotBNiKimGOQTT0vCx+kUim+/0RERYpSkI2ZbEREycWen4go5liuqJ71vuYrF+V7T0RUvCgF2ZjJRkSUXBzxExHFHDPZ1MuXycYgGxFR8Ew8nzGTjYiI2PMTEcUcg2zq5ctesC6yeLFFRFQ8ZrIREVEUcMRPRBRzDLKpZwXQhBAAmMlGRBQ0+/nLxD41X1YzERElg3lnJyIiChTnZFMvX4aF9Z5zZVEiouJFKZON5aJERMnFnp+IKOaYyaae/UJK/pmZbEREpYtSkI3lokREycURPxFRzDHIpl6+iz8G2YiIShelIBsz2YiIkisyPf+cOXNw7LHHomfPnujdu7fjc1KpVLf/fvvb34a7o0REhmGQTT0v5aK82CIiKl4Ug2wm7iMREalVpnsHvGpra8PZZ5+NCRMmYP78+a7PW7BgAU455ZTsz3V1dWHsHhGRsRhkU88eQGMmGxFRsKIUZLPKRdnvExElT2SCbL/4xS8AAAsXLsz7vN69e6OpqSmEPSIiigZr0G9l+FLwuPABEZFaUQqyMZONiCi5IhNk82rWrFm49NJL0dLSgpkzZ+Lyyy/PexeptbUVra2t2Z937twJANi1a5fyfSUiCsPevXuxd+9epNNp9m2KWO+xZc+ePdn3es+ePdi7dy/27dvH95+iYe9eQBobAQB27QL+f3YOkQ4dHR3d+tnKykqNe9RdvnMBERFFl9WXCyEKPjdWQbbbbrsNJ510EqqqqrBy5Ur8+Mc/xpdffombbrrJ9W/uvPPObJacbNCgQSp3lYiIiCg6/uVfdO8BERERkVa7d+8uOCVZSngJxSly6623Oga4ZK+//jrGjRuX/XnhwoW45ppr8PXXXxd8/Xnz5uGXv/xlNjvNiT2TraurCzt27ECfPn2Y4i3ZtWsXBg0ahI8//hi1tbW6d4c0YTsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLUtCCGwe/du9O/fv+B8m1oz2WbNmoXzzjsv73OGDBlS9Ov//d//PXbt2oXPP/8c/fr1c3xOZWVlt1Rzt9VLCaitrY3Ul4HUYDsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLEteF1UU2uQraGhAQ0NDcpef/369ejRoweDZkREREREREREpFRk5mT76KOPsGPHDnz00Ufo7OzEhg0bAADDhw9HTU0N/vznP2P79u2YMGECqqqqsGrVKtx44424/PLLjZsUlYiIiIiIiIiI4iUyQbabb74ZixYtyv48evRoAMCqVaswadIklJeX44EHHsC1116Lrq4uDB06FL/85S9x1VVX6drlWKmsrMQtt9zCgGXCsR2QhW2BLGwLZGFbIAvbAgFsB3QQ2wJZktAWtC58QEREREREREREFAf5l0UgIiIiIiIiIiKighhkIyIiIiIiIiIiKhGDbERERERERERERCVikI2IiIiIiIiIiKhEDLIlxAMPPICWlhb06NEDY8eOxdq1a/M+/w9/+ANGjRqFnj17orm5GZdccgn+9re/ZX//0EMP4fjjj0d9fT3q6+sxefJkvPbaazmvMWTIEKRSqW7/ccVXfXS0g46ODtx0001oaWlBVVVVduXfrq4uJcdI3uhoC7t378Y111yDQw89FFVVVTj22GPx+uuvKzk+8i7otrBkyRKMGzcOvXv3RnV1NY455hg88sgjJW+X1NPRFtasWYPTTz8d/fv3RyqVwrPPPqvi0MgnHW3hzjvvxHe+8x306tULjY2NOOuss/Duu+8qOT7yRkc7ePDBB3H00UejtrYWtbW1mDBhAl544QUlx0fe6RorWO68806kUilcc801QR0SFUlHW7j11lu7xRSampqUHF8gBMXe4sWLRXl5uXjooYfEpk2bxOzZs0V1dbX48MMPHZ+/du1akU6nxb/927+JLVu2iLVr14qRI0eKs846K/uc888/X/zmN78R69evF++884645JJLRF1dnfjkk0+yz/niiy/EZ599lv1vxYoVAoBYtWqV6kMmB7rawe233y769Okjli5dKrZu3SqefPJJUVNTI+655x7lx0zOdLWFc845R4wYMUK89NJL4v333xe33HKLqK2tzXkOhUtFW1i1apVYsmSJ2LRpk9i8ebO45557RCaTEcuWLSt6u6Serrbw/PPPixtvvFE8/fTTAoB45plnVB8qFaCrLZx88sliwYIF4u233xYbNmwQU6dOFYMHDxZ79uxRfszUna528Kc//Uk899xz4t133xXvvvuu+PnPfy7Ky8vF22+/rfyYyZmutmB57bXXxJAhQ8TRRx8tZs+ereowyQNdbeGWW24RI0eOzIktfPHFF8qPt1gMsiXA+PHjxRVXXJHz2OGHHy6uv/56x+fPnTtXDB06NOexe++9VwwcONB1Gx0dHaJXr15i0aJFrs+ZPXu2GDZsmOjq6vKx9xQUXe1g6tSpYsaMGTnPmzZtmvjhD3/o9xAoIDrawr59+0QmkxFLly7Ned6oUaPEjTfeWMxhUADCaAtCCDF69Ghx0003Fb1dUk9XW5AxyGYGE9qCEN/crAUgXnrpJY97TkEypR0IIUR9fb343e9+52GvSQWdbWH37t3iW9/6llixYoWYOHEig2ya6WoLt9xyixg1alRxO60By0Vjrq2tDevWrcOUKVNyHp8yZQr+67/+y/Fvjj32WHzyySd4/vnnIYTA559/jqeeegpTp0513c6+ffvQ3t6OQw45xHU/Hn30UcyYMQOpVKr4A6Ki6GwHxx13HFauXIn33nsPAPA///M/ePnll3HaaacFcGTkl6620NHRgc7OTvTo0SPneVVVVXj55ZdLPCoqRhhtQQiBlStX4t1338UJJ5xQ9HZJLV1tgcxjUlvYuXMnALiOLUkdU9pBZ2cnFi9ejL1792LChAmlHRQVRXdbuOqqqzB16lRMnjw5mAOiouluC++//z769++PlpYWnHfeediyZUswB6aChsAehejTTz8VAMQrr7yS8/icOXPEt7/9bde/s0r6ysrKBABxxhlniLa2NtfnX3nllWLYsGFi//79jr9//PHHRSaTEZ9++mlxB0Il0dkOurq6xPXXXy9SqZQoKysTqVRK3HHHHaUfFBVFZ1uYMGGCmDhxovj0009FR0eHeOSRR0Qqlcq7XVJHZVv4+uuvRXV1tSgrKxOVlZVi/vz5JW+X1NHVFuzATDbtTGkLXV1d4vTTTxfHHXdcaQdERdHdDjZu3Ciqq6tFJpMRdXV14rnnngvmwMg3nW3hscceE0ceeWR2LMlMNr10toXnn39ePPXUU2Ljxo3ZrMZ+/fqJL7/8MrgDDBAz2RLCnj0mhHDNKNu0aROuvvpq3HzzzVi3bh2WLVuGrVu34oorrnB8/l133YXHHnsMS5Ys6ZalYpk/fz5OPfVU9O/fv7QDoZLoaAePP/44Hn30Ufzxj3/Em2++iUWLFuHuu+/GokWLgjsw8k1HW3jkkUcghMCAAQNQWVmJe++9F+effz4ymUxwB0a+qWgLvXr1woYNG/D6669jzpw5uPbaa7F69eqit0vh0NUWyDy628KsWbOwceNGPPbYY4EcDxVHVzs47LDDsGHDBrz66qv40Y9+hOnTp2PTpk2BHhv5E3Zb+PjjjzF79mw8+uijrteXpIeOfuHUU0/FP/3TP+Goo47C5MmT8dxzzwGAudeTmoJ7FJLW1laRyWTEkiVLch6/+uqrxQknnOD4Nz/84Q/F97///ZzH1q5dKwCI//3f/815fO7cuaKurk68/vrrrvuwbds2kU6nxbPPPlvkUVCpdLaDgQMHivvvvz/nsdtuu00cdthhxRwKlciEPmHPnj3ZvzvnnHPEaaedVsyhUIlUtwXZzJkzxZQpU4reLqmlqy3YgZls2pnQFmbNmiUGDhwotmzZUsQRUBBMaAeyk046SVx++eUe956CpKstPPPMMwKAyGQy2f8AiFQqJTKZjOjo6CjxyMgv0/qFyZMnd5sfzhTMZIu5iooKjB07FitWrMh5fMWKFTj22GMd/2bfvn1Ip3ObhpVpIoTIPjZ37lzcdtttWLZsGcaNG+e6DwsWLEBjY2Pe+ZtILZ3twO11urq6ijoWKo0JfUJ1dTWam5vx1Vdf4cUXX8SZZ55Z7OFQCVS2BTshBFpbW4veLqmlqy2QeXS2BSEEZs2ahSVLluA///M/0dLSUuxhUIlM6xPYb+ijqy2cdNJJeOutt7Bhw4bsf+PGjcMFF1yADRs2sApCA5P6hdbWVrzzzjtobm72uvvhCj2sR6GzltqdP3++2LRpk7jmmmtEdXW12LZtmxBCiOuvv15ceOGF2ecvWLBAlJWViQceeEB88MEH4uWXXxbjxo0T48ePzz7nV7/6laioqBBPPfVUzlK6u3fvztl2Z2enGDx4sLjuuuvCOVhypasdTJ8+XQwYMEAsXbpUbN26VSxZskQ0NDSIn/3sZ+EdPOXQ1RaWLVsmXnjhBbFlyxaxfPlyMWrUKDF+/Pi8c7uRWirawh133CGWL18uPvjgA/HOO++IefPmibKyMvHQQw953i6FT1db2L17t1i/fr1Yv369ACD+9V//Vaxfv158+OGH4R085dDVFn70ox+Juro6sXr16pzzyL59+8I7eMrS1Q5uuOEGsWbNGrF161axceNG8fOf/1yk02mxfPny8A6ecuhqC3ack00/XW3hxz/+sVi9erXYsmWLePXVV8X3vvc90atXL2PHjQyyJcRvfvMbceihh4qKigoxZsyYnOXQp0+fLiZOnJjz/HvvvVeMGDFCVFVViebmZnHBBReITz75JPv7Qw89VADo9t8tt9yS8zovvviiACDeffddlYdHHuloB7t27RKzZ88WgwcPFj169BBDhw4VN954o2htbVV9uJSHjrbw+OOPi6FDh4qKigrR1NQkrrrqKvH111+rPlQqIOi2cOONN4rhw4eLHj16iPr6ejFhwgSxePFiX9slPXS0hVWrVjn2HdOnT1d5qFSAjrbg1A4AiAULFqg8VMpDRzuYMWNGdpt9+/YVJ510EgNsBtA1VpAxyGYGHW3h3HPPFc3NzaK8vFz0799fTJs2Tfz1r39VepylSAmRJ0+PiIiIiIiIiIiICuKcbERERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIqEYNsRERERKRVW1sbhg8fjldeeSXQ1126dClGjx6Nrq6uQF+XiIiIyAmDbEREREQBuvjii5FKpbr9t3nzZt27Zqz/+I//wKGHHorvfve72cdSqRSeffbZbs+9+OKLcdZZZ3l63e9973tIpVL44x//GNCeEhEREbljkI2IiIgoYKeccgo+++yznP9aWlq6Pa+trU3D3pnnvvvuw6WXXqrktS+55BLcd999Sl6biIiISMYgGxEREVHAKisr0dTUlPNfJpPBpEmTMGvWLFx77bVoaGjAP/7jPwIANm3ahNNOOw01NTXo168fLrzwQnz55ZfZ19u7dy8uuugi1NTUoLm5GfPmzcOkSZNwzTXXZJ/jlPnVu3dvLFy4MPvzp59+inPPPRf19fXo06cPzjzzTGzbti37eytL7O6770ZzczP69OmDq666Cu3t7dnntLa24mc/+xkGDRqEyspKfOtb38L8+fMhhMDw4cNx99135+zD22+/jXQ6jQ8++MDxvXrzzTexefNmTJ061ee7DGzbts0xa3DSpEnZ55xxxhl47bXXsGXLFt+vT0REROQHg2xEREREIVq0aBHKysrwyiuv4N///d/x2WefYeLEiTjmmGPwxhtvYNmyZfj8889xzjnnZP/mpz/9KVatWoVnnnkGy5cvx+rVq7Fu3Tpf2923bx9OPPFE1NTUYM2aNXj55ZdRU1ODU045JSejbtWqVfjggw+watUqLFq0CAsXLswJ1F100UVYvHgx7r33Xrzzzjv47W9/i5qaGqRSKcyYMQMLFizI2e7DDz+M448/HsOGDXPcrzVr1uDb3/42amtrfR0PAAwaNCgnW3D9+vXo06cPTjjhhOxzDj30UDQ2NmLt2rW+X5+IiIjIjzLdO0BEREQUN0uXLkVNTU3251NPPRVPPvkkAGD48OG46667sr+7+eabMWbMGNxxxx3Zxx5++GEMGjQI7733Hvr374/58+fj97//fTbzbdGiRRg4cKCvfVq8eDHS6TR+97vfIZVKAQAWLFiA3r17Y/Xq1ZgyZQoAoL6+Hvfffz8ymQwOP/xwTJ06FStXrsRll12G9957D0888QRWrFiByZMnAwCGDh2a3cYll1yCm2++Ga+99hrGjx+P9vZ2PProo5g7d67rfm3btg39+/d3/N0PfvADZDKZnMdaW1uzWW+ZTAZNTU0AgAMHDuCss87ChAkTcOutt+b8zYABA3Iy9oiIiIhUYJCNiIiIKGAnnngiHnzwwezP1dXV2X+PGzcu57nr1q3DqlWrcoJylg8++AD79+9HW1sbJkyYkH38kEMOwWGHHeZrn9atW4fNmzejV69eOY8fOHAgp5Rz5MiROYGt5uZmvPXWWwCADRs2IJPJYOLEiY7baG5uxtSpU/Hwww9j/PjxWLp0KQ4cOICzzz7bdb/279+PHj16OP7u17/+dTaYZ7nuuuvQ2dnZ7bkzZ87E7t27sWLFCqTTucUaVVVV2Ldvn+s+EBEREQWBQTYiIiKigFVXV2P48OGuv5N1dXXh9NNPx69+9atuz21ubsb777/vaZupVApCiJzH5LnUurq6MHbsWPzhD3/o9rd9+/bN/ru8vLzb63Z1dQH4JlhVyKWXXooLL7wQv/71r7FgwQKce+656Nmzp+vzGxoaskE8u6ampm7vY69evfD111/nPHb77bdj2bJleO2117oFEQFgx44dOcdIREREpAKDbEREREQajRkzBk8//TSGDBmCsrLuQ7Phw4ejvLwcr776KgYPHgwA+Oqrr/Dee+/lZJT17dsXn332Wfbn999/Pyd7a8yYMXj88cfR2NhY1PxnAHDUUUehq6sLL730UrcMM8tpp52G6upqPPjgg3jhhRewZs2avK85evRoPPjggxBCZMtY/Xj66afxy1/+Ei+88ILjvG9Wpt7o0aN9vzYRERGRH1z4gIiIiEijq666Cjt27MAPfvCD7CqYy5cvx4wZM9DZ2YmamhrMnDkTP/3pT7Fy5Uq8/fbbuPjii7uVRP7DP/wD7r//frz55pt44403cMUVV+RkpV1wwQVoaGjAmWeeibVr12Lr1q146aWXMHv2bHzyySee9nXIkCGYPn06ZsyYgWeffRZbt27F6tWr8cQTT2Sfk8lkcPHFF+OGG27A8OHDc8pcnZx44onYu3cv/vrXv/p4177x9ttv46KLLsJ1112HkSNHYvv27di+fTt27NiRfc6rr76KysrKgvtBREREVCoG2YiIiIg06t+/P1555RV0dnbi5JNPxpFHHonZs2ejrq4uG0ibO3cuTjjhBJxxxhmYPHkyjjvuOIwdOzbndebNm4dBgwbhhBNOwPnnn4+f/OQnOWWaPXv2xJo1azB48GBMmzYNRxxxBGbMmIH9+/f7ymx78MEH8f3vfx9XXnklDj/8cFx22WXYu3dvznNmzpyJtrY2zJgxo+Dr9enTB9OmTXMsYy3kjTfewL59+3D77bejubk5+9+0adOyz3nsscdwwQUX5C1ZJSIiIgpCStgn7yAiIiIi402aNAnHHHMM7rnnHt270s0rr7yCSZMm4ZNPPkG/fv0KPv+tt97C5MmTHRdmKMX//d//4fDDD8cbb7yBlpaWwF6XiIiIyAkz2YiIiIgoEK2trdi8eTP++Z//Geecc46nABvwzVxvd911F7Zt2xbo/mzduhUPPPAAA2xEREQUCi58QERERESBeOyxxzBz5kwcc8wxeOSRR3z97fTp0wPfn/Hjx2P8+PGBvy4RERGRE5aLEhERERERERERlYjlokRERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIq0f8Dz052/mBNPmoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "nharm = 1\n", + "freq, zstat = z_n_search(events.time, frequencies, nbin=nbin, nharm=nharm)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, 15])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Thresholding\n", + "\n", + "When can a peak in the EF or $Z_n^2$ periodogram be considered a pulsation?\n", + "\n", + "Since both the EF and $Z_n^2$ of noise follow precise statistical distributions ($\\chi^2_{\\rm nbin}$ in one case, $\\chi^2_n$ in the other), we can use the inverse survival functions of these statistical distributions to find the peaks that are not expected by noise.\n", + "\n", + "In Stingray, the thresholds are defined in `stingray.stats.fold_detection_level` and `stingray.stats.z2_n_detection_level` respectively.\n", + "\n", + "The `ntrial` parameter should be set to an estimate of the statistically independent frequencies in the periodogram. A good estimate can be \n", + "\n", + "$$N_{\\rm trial} \\sim (f_{\\rm max} - f_{\\rm min}) / df_{\\rm min} =(f_{\\rm max} - f_{\\rm min}) (t_1 - t_0)$$,\n", + "where $f_{\\rm min}$ and $f_{\\rm max}$ are the maximum and minimum frequencies of the periodogram, $df_{\\rm min}$ was defined above and $t_0$ ans $t_1$ the start and end of the observation.\n", + "\n", + "Moreover, the `stingray.pulse.search.search_best_peaks` helps finding the best value for nearby candidates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfrA8c9sTyMhISQBAgQpEiBURRAFpIqIYME7hdDOcuhFuiKCNEHxqFIsh4AooqLwO8vRguChggjYAEGBiCUcIiWkbf/9sdmRTd0N2d2QPO/Xa1+vnZnvzDw7Isuzz7coTqfTiRBCCCGEEEIIr2mCHYAQQgghhBBCXG0kkRJCCCGEEEIIH0kiJYQQQgghhBA+kkRKCCGEEEIIIXwkiZQQQgghhBBC+EgSKSGEEEIIIYTwkSRSQgghhBBCCOEjSaSEEEIIIYQQwke6YAdQGTgcDn777TciIiJQFCXY4QghhBBCCCGCxOl0cunSJerUqYNGU3LdSRIp4LfffiMxMTHYYQghhBBCCCEqiZ9//pl69eqVeFwSKSAiIgJwPawaNWoEORohhKh6rHYH7x48DcBdbeMBPLb12uD0NLfaHby79xT2nTsB0AJ3cRr9Y/+AsLCgxFSSws8wWM9MCCGquqysLBITE9UcoSSSSIHana9GjRqSSAkhhB/kWmzM2XocgCFdGgN4bIcagvN1lGuxMWfnz8A16r4hxguE1qhR6RKpws8wWM9MCCGqi7KG/MjfwkIIIQJOoyj0axWvvg9qHM1jsX1/lK3O6KDFIYQQ4uojiZQQQoiAM+m1LL+/fbDDcMVxdwty520m2SyJlBBCCO9JB2shhBBCCCGE8JFUpIQQQgghxBVxOp3YbDbsdnuwQxGiTFqtFp1Od8XLHkkiJYQQIuByLTaSp20B4PDMPkGdbCJ51k4g+N0MhbhaWSwWMjMzyc3NDXYoQngtNDSUhIQEDAZDua8hiZQQQgghhCgXh8PByZMn0Wq11KlTB4PBcMW/8gvhT06nE4vFwu+//87Jkydp0qRJqYvulkYSKSGEEH5n0Gp4dXgH9b3F7ghyREWt0P2AUXFioPLFBkWfoRCVgcViweFwkJiYSGhoaLDDEcIrISEh6PV6fvrpJywWCyaTqVzXkURKCCGE3+m0Gm65Nk7droyJVFdtFqFK5YvLrfAzFKIyKe8v+kIES0X8mZU/9UIIIYQQQgjhI6lICSGE8Dur3cGmg78CMLBt3SBHU7yN9hgMOBioPYc+2MEUo/Az1Ev3PiGECCpJpIQQQvid1e5g4oZvALgtJSHI0RRviq0hALdpz1faROryZyiJlBBCBJf8LSyEEEIIIUQxfv75Z7p160ZycjIpKSm88847wQ5JVCJSkRJCCCGEEKIYOp2ORYsW0aZNG86cOUO7du3o168fYWFhwQ5NVAJSkRJCCCGEEKIYCQkJtGnTBoDatWsTHR3NuXPnfLpGt27dGDNmTMUHF+R7CUmkhBBCCCFENfTRRx+hKEqJr8GDB3u0//LLL9U1s/xNEqKrg3TtE0IIIYQQ1U737t3JzMz02Ge32xkxYgQHDx5k6tSp6v4//viD1NRU/vWvfwU6TFGJSUVKCCGEEEJUOyEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrUCwGw2M2jQICZPnkznzp1LvWZOTg6pqamEh4eTkJDA/Pnzi7RxOp3MmzePRo0aERISQuvWrdmwYYN6fPjw4ezatYvFixer1bGMjIxyfcbS7vXSSy9Rt25dHA7PhcgHDBjAsGHDynW/6kYqUkIIIfzOoNWw7L526nugyHaw4pp+c23s//d/aLVaaoSHYcBR9olBUNwzFEJUDLvdzpAhQ9i2bZtHEuV0Ohk+fDi33HILQ4cOLfM6EydO5OOPP2bjxo3Ex8fz5JNPsn//fnWcFcBTTz3Fe++9x4oVK2jSpAmffPIJQ4YMITY2lq5du7J48WKOHTtGy5YtmTlzJgCxsbHl+lyl3euee+4hLS2Njz/+mB49egBw/vx5tmzZwvvvv1+u+1U3kkgJIYTwO51WU2T9qMqwnpROq+G6Wk7CzL+4duSCpXbtSvnlWNwzFKIycjqd5FntAb9viF6Loig+n2e32xk6dCjbtm0jPT2dlJQU9dinn37KW2+9RUpKCps2bQJg7dq1aqJ1uezsbFauXMlrr71Gr169AFizZg316tVT2+Tk5LBgwQJ27NhBp06dAGjUqBG7d+/mpZdeomvXrkRGRmIwGAgNDSU+Pt7nz+PtvdatW0ffvn1Zt26dmki98847REdHq9uidEH9rmjYsCE//fRTkf2jR49m2bJlOJ1OZsyYwcsvv8z58+fp2LEjy5Yto0WLFmpbs9nMhAkTePPNN8nLy6NHjx4sX77c4w+tEEIIUZL8/HzCcE1zbLPZyM3NJTTYQQlxFcuz2kmetiXg9z08sw+hBt/+aetOorZu3Up6ejqtW7f2ON6lS5ciXd9Kcvz4cSwWi5q0AERHR9OsWbM/Yzx8mPz8fDXRcrNYLLRt29an2Mvizb3uv/9+HnzwQZYvX47RaOSNN97gL3/5C1qttkJjqaqCmkjt27cPu/3PXyy+++47evXqxT333APAvHnzWLBgAatXr6Zp06bMnj2bXr16cfToUSIiIgAYM2YM77//PuvXrycmJobx48fTv39/9u/fL38IhBCikrDZHWw59D8A+rSIA/DY1gWpq5rVZmfXqVwijfUICw8nPzub7uYz1ApKNKUr/AyD9cyEqCrcSdSWLVuKTaIABg0axM6dO+nRo4fHOKbiOJ3OMu/pTso+/PBD6tat63HMaDT6EH3ZvLnX7bffjsPh4MMPP+S6667jv//9LwsWLKjQOKqyoCZShft7Pvvss1xzzTV07doVp9PJokWLmDJlCnfeeSfgKo/GxcWxbt06HnroIS5evMjKlStZu3YtPXv2BOD1118nMTGR7du306dPn4B/JiGEEEVZ7A4eWXcAcP1qDHhsByspyDVbWPKdHWoW/IJcEzr+7z1sNlul695X+BlKIiUqqxC9Vv3/PND39Zbdbic1NZUtW7awfft2jzFMl0tLS2PkyJGsWbOmzGs2btwYvV7Pnj17qF+/PuAac3Ts2DG6du0KQHJyMkajkVOnTqn7imMwGDyKDeXhzb1CQkK48847eeONN/jxxx9p2rQp7du3v6L7VieV5nvCYrHw+uuvM27cOBRF4cSJE5w+fZrevXurbYxGI127duWzzz7joYceYv/+/VitVo82derUoWXLlnz22WclJlJmsxmz2axuZ2Vl+e+DCSGEKEKjKHRMilbfB4vFbObaSND//jvfGlw/7jmcTi5dukTNyMigxSXE1UxRFJ+72AWSw+EgNTWVTZs2sWHDBhISEjh9+rRHm9jYWLRaLd27d2fnzp1eXTc8PJxRo0YxceJEYmJiiIuLY8qUKWg0f/7oERERwYQJExg7diwOh4MuXbqQlZXFZ599Rnh4uDpbXsOGDdm7dy8ZGRmEh4cTHR3N8uXL2bhxI+np6V7F4+297r//fm6//XYOHTrEkCFDilxn6dKlPt23Oqk0f8o3bdrEhQsXGD58OID6BzouLs6jXVxcnDqu6vTp0xgMBmrWrFmkTeH/IS43d+5cZsyYUYHRCyGE8IVJr+WthzqV3dDPnDYLT7bRUG/TF9xiuA2A37PM1MjOpmYZ5wohrk779u1j3bp1APTr16/YNufPnycqKsrnaz///PNkZ2czYMAAIiIiGD9+PBcvXvRoM2vWLGrXrs3cuXM5ceIEUVFRtGvXjieffFJtM2HCBIYNG0ZycjJ5eXmcPHmSs2fPcvz4cZ/i8eZet9xyC9HR0Rw9epT77ruvyDXKc9/qotIkUitXruTWW2+lTp06HvsLz77idDrLnJGlrDaTJ09m3Lhx6nZWVlZAVqkWQghRueTn5wNgc/75nZFttklPBSGqsI4dO3o1nqk8wsPDWbt2LWvXrlX3TZw40aONoiikpaWRlpZW4nWaNm3K559/7rFv+vTpTJ8+vdT7F66eeXMvrVbLb7/9VuJxb+5bXVWKDtY//fQT27dv529/+5u6zz3dY+HK0pkzZ9QqVXx8PBaLhfPnz5fYpjhGo5EaNWp4vIQQQlQ/7kTq14t/dvfONtu4dOmS3/6hJYQQomqoFInUqlWrqF27Nrfddpu6Lykpifj4eLZt26bus1gs7Nq1S11Vun379uj1eo82mZmZfPfdd2WuPC2EECJ4ci022s3aRrtZ28i12IIWx/lLOTzymYPR9W5V95ltDrJy8jzG0gohhBCFBb1rn8PhYNWqVQwbNgyd7s9wFEVhzJgxzJkzhyZNmtCkSRPmzJlDaGio2n8zMjKSUaNGMX78eGJiYoiOjmbChAm0atVKncVPCCFE5XQuxxLsEMjPN3PJCuhN6j6bU8uZS2aysrIwmUwlnyyEqPL69OnDgQMHyMnJoV69emzcuJHrrrsu2GGJSiLoidT27ds5deoUI0eOLHJs0qRJ5OXlMXr0aHVB3q1bt6prSAEsXLgQnU7H4MGD1QV5V69eLWtICSFEJaLXanj+7hT1vdXu3QKX/uR0OjEXdO0DGHr2GxS7HafTye+X8itdRarwMxRC+N+WLYFfWFhcPYKeSPXu3bvEfuiKopQ5wM1kMvHCCy/wwgsv+ClCIYQQV0qv1XBPhz8n9akMiZTFYvH4/rlDOYsGGwedcCbLjMUS/IrZ5Qo/QyGEEMEV9ERKCCGECIa8vDyP7XCTjgitDgcKZy5VvkRKCCFE5SKJlBBCCL+z2R188sPvANzcJDbI0bjk5+d7VKS+DYklUq/BxkmyzTbOXswJYnRFFX6GOuneJ4QQQSV/CwshhPA7i93ByNVfMnL1l1gqQbc+cCVS+bY/Y5moac6D9maEhoUAcPLMxZJODYrK+AyFEKI6k0RKCCFEtWSz2biUby2yv0aIEYDzl3IDHZIQQoiriCRSQgghqiWbzUZWXtE1rEKMegBy8sw4HFL5EUIIUTxJpIQQQlRLdrudbHPRRMpk1ONEIc9qx2otWrESQgghQBIpIYQQ1ZTdbiermK59oXoNNjTkWuyVbi0pIYQQlYckUkIIIaolm83GpeK69hm02Jxaci02mQJdCCFEiSSREkIIUS25uvYVrUiFGHTY0JBnsUsiJYQQokSyjpQQQgi/02s1zLyjhfoeKLIdaO5Z+8Jsefxd+Y0wow4tUEOvwerUkGutXIlUcc9QCFG5DR8+nAsXLrBp0ya/30tRFDZu3MjAgQP9fi/hIn8TCyGE8Du9VkNqp4akdmqIXqspsh0MuWYrVrsDvcPGg8azjNCdIVV3hhoG1xgpi81BTl5+UGIrTmV4ZkJUFcOHD0dRlCKvvn37qm0aNmxY5Hi9evX8GtfOnTtRFIULFy749T6iYkhFSgghRLXjdDq5kONKkiJCDBh0fyYmRp0Gp1ULWPlD1pISosrq27cvq1at8thnNBo9tmfOnMkDDzygbmu12oDEJq4O8pOWEEIIv7M7nHx+/A8+P/4HdoezyHagORwOLuZacDohJCyET20RfGqP4HN7BA4UwkNCALhQiRKpYD8zIaoao9FIfHy8x6tmzZoebSIiIjyOx8bGlng9u93OuHHjiIqKIiYmhkmTJuF0ev6/6nQ6mTdvHo0aNSIkJITWrVuzYcMGADIyMujevTsANWvWRFEUhg8fXu7P9+uvv3LvvfdSs2ZNYmJiuOOOO8jIyABgy5YtmEymIpWvtLQ0unbtWu57VjeSSAkhhPA7s83OX1/Zw19f2YPZZi+yHWiuqc9tOFA4luXgftu13G+9lr9ar8WMhvBQ16/SWTmVp2tfsJ+ZEN5yOp1YLJaAvwonLYE2f/58Xn31VVauXMnu3bs5d+4cGzdu9Gjz1FNPsWrVKlasWMGhQ4cYO3YsQ4YMYdeuXSQmJvLuu+8CcPToUTIzM1m8eHG5YsnNzaV79+6Eh4fzySefsHv3bsLDw+nbty8Wi4WePXsSFRWl3g9cfy++/fbb3H///eV/CNWMdO0TQggRcAoKTWqHq+8DzWazkV2QSNU0aYnOz+Y4IerxGuGh5F+CrJw8nE4nihL4GIW4WlmtVubOnRvw+06ePBmDweB1+w8++IDw8HCPfY8//jhTp0712H7qqafU7Tlz5pCWllbs9RYtWsTkyZO56667AHjxxRfZsmWLejwnJ4cFCxawY8cOOnXqBECjRo3YvXs3L730El27diU6OhqA2rVrExUV5fVnKWz9+vVoNBr+9a9/qX9/rVq1iqioKHbu3Env3r259957WbduHaNGjQIgPT2d8+fPc88995T7vtWNJFJCCCECLsSgZdu44HUfsdvt5FvtoCg8fH0dhu7dRLK5vXo8OiyEM7gmpLDb7eh08nUpRFXTvXt3VqxY4bHPnci4TZw40aN7Xa1atYq91sWLF8nMzFQTJACdTkeHDh3UStnhw4fJz8+nV69eHudaLBbatm17JR+liP379/Pjjz8SERHhsT8/P5/jx48DcP/999OpUyd+++036tSpwxtvvEG/fv2KdG8UJZNvBiGEENWO3W4n12LH4dQQFVr0F+zoCCN2NOQVTIEuiZQQ3tPr9UyePDko9/VFWFgYjRs3LrVNrVq1ymzjLYfDAcCHH35I3bp1PY4VnuSiIu7Vvn173njjjSLH3OO8rr/+eq655hrWr1/P3//+dzZu3Fhk8g1ROvlmEEIIUe3YbDbyrXbsKEQXl0iFGbE5NeQWLMobGhoahCiFuDopiuJTF7uqIDIykoSEBPbs2cPNN98MuP6e2b9/P+3atQMgOTkZo9HIqVOnSpzQwf3c7PYrGwfZrl073nrrLWrXrk2NGjVKbHfffffxxhtvUK9ePTQaDbfddtsV3be6kckmhBBCBFyexU6vBbvotWAXeZbgTDaRZ7VjdSrMSD/B7eZkj+PRYQZsaMmzVK5FeYUQFcdsNnP69GmP19mzZ8t9vccee4xnn32WjRs38v333zN69GiPWfEiIiKYMGECY8eOZc2aNRw/fpyDBw+ybNky1qxZA0CDBg1QFIUPPviA33//nezsbACWLl1Kjx49vI7l/vvvp1atWtxxxx3897//5eTJk+zatYvHHnuMX375xaPdgQMHeOaZZ7j77rsxmUwAfPHFF1x77bX8+uuv5X4e1YEkUkIIIQLOiZMfzmTzw5lsnAR+pi2bzUae1Y4DDb9cNHtMNAEQE2bAhoZciw2r1Rrw+IQQ/rd582YSEhI8Xl26dCn39caPH09qairDhw+nU6dOREREMGjQII82s2bNYtq0acydO5fmzZvTp08f3n//fZKSkgCoW7cuM2bM4IknniAuLo5HH30UgLNnz6pjm7wRGhrKJ598Qv369bnzzjtp3rw5I0eOJC8vz6NC1aRJE6677jq++eYbj9n6cnNzOXr0qPz9VwbFGey5IiuBrKwsIiMjuXjxYqnlTyGEEOVjsTlY9elJAEbcmITN4SB5mms2q8Mz+xBqCGxP85MZPzH2X1s4aw/lF6drYPV47S8YFCcjtP/j6P1/Y/TqnTQMMTM7tQcNGjQIaHzFKfwML19EWIhgyc/P5+TJkyQlJanVDCGuBqX92fU2N5AxUkIIIfzOoNPwUNdr1G2bxRHEaOBCwfpQDkXBXRAbpfsfoYorrpgwo6siZa08XfsKP0MhhBDBJT9nCSGEqHYu5poBCClhQHx0mAE7CnaHk6zcyrMorxBCiMpDKlJCCCH8zu5w8t2vFwFoWTcyyNHAxRxXIhUWYoCCPOlbRygmxUlLJQeTXotBbwA7XMiuHIlU4Weo1cgiwUIIEUySSAkhhPA7s83OHcs+BVxjooItK8+VSEWY9Lj79t1rbQ7AYeN+QoGIUCNcgos5eUGK0lPhZxjocWVCCCE8Sdc+IYQQ1U52nmvcU3hIyYtgRoS6Bh9n5VSOipQQQojKRRIpIYQQ1U52QUUqMrTkRCqyIJHKya8ck00IIYSoXCSREkIIUe24k6OIUipSNcJciVSu2YLDEdxZBoUQQlQ+kkgJIYSodnLNrkUmo8JLTqSiwkyAQr7Vjs1mC1BkQgghrhaSSAkhhKh28goSqZphJS8gGh1uxI5CvsWO1WoNVGhCCCGuEpJICSGEqFacTif5loJEKrzkRKpmqAGbU0Oe1SGJlBBCiCJk7lQhhBB+p9NoeKxHE/U9UGQ7UBwOB/kWV1e92jVCeOzmBth3fwaKghYnuoLp0GuG6rGhId9aOSpSxT1DIYQQwSOJlBBCCL8z6DSM7dXUY1/h7UCxWq3kWe2AQlxkKGO7JsEXG4q0iwo1YEdDXiUZI1XcMxRC+NfPP//M0KFDOXPmDDqdjqlTp3LPPfcEOyxRSUgiJYQQolrJzrdgczixoyEm3Ag2c7HtaobpsTk15FutlaIiJYQIPJ1Ox6JFi2jTpg1nzpyhXbt29OvXj7CwsGCHJioB6RsghBDC7xwOJ8f+d4lj/7uEw+Essh1If2S5FthVNFpMOg3HzuTwvd3E93YTxxwm3OHUDDW4uvbZ7JjNwV9LKpjPTIjqKiEhgTZt2gBQu3ZtoqOjOXfuXHCDKtCtWzfGjBkTtPOFVKSEEEIEQL7NTu+FnwBweGYfAI/tUEPgvo7O5eQBYDLoMdsd9H5pH9BKPX7YuJ9QICpUjx0NTidcyi2+ahVIhZ9hIJ+ZEFXRRx99xG233Vbi8XvuuYe3335b3f7yyy9xOBwkJiaW637dunWjTZs2LFq0qELOe++999Dr9eW+hi/ni+LJ38JCCCGCIjrMEJT7nst2VaRCja5/QESH6nHm5nIez39QGHVa9Do9OOBCQfIlhKg6unfvTmZmpsc+u93OiBEjOHjwIFOnTlX3//HHH6SmpvKvf/0r0GGWKDo6OqjnC+naJ4QQIghCDToOTO3Fgam9Al5ZuXBZIhVq0HFg/I18avym2LahJteCvVm5+QGLTwgRGCEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrkq1WazmUGDBjF58mQ6d+5c6jU3bNhAq1atCAkJISYmhp49e5KTk8Pw4cPZtWsXixcvRlEUFEUhIyMDgM2bN9OlSxeioqKIiYmhf//+HD9+HKDU8wp3zfP13oXPdzgcPPfcczRu3Bij0Uj9+vV55plnyrx+dSYVKSGEENXKxYJueiGmsiti4aEGHLmQnRf8rn1CXC2cTmfBzJiBFaLXoihKuc612+0MGTKEbdu2eSRRTqeT4cOHc8sttzB06NBSr5GZmclf//pX5s2bx6BBg7h06RL//e9/cTqdLF68mGPHjtGyZUtmzpwJQGxsLAA5OTmMGzeOVq1akZOTw7Rp0xg0aBBfffVVqedVxL0vN3nyZF555RUWLlxIly5dyMzM5Pvvvy/z+tWZJFJCCCGqlZx81wx8IYayxwbUCDVxAciuBGOkhLha5FntJE/bEvD7lnfsoN1uZ+jQoWzbto309HRSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblMjMzsdls3HnnnTRo0ADAo53BYCA0NJT4+HiP8+666y6P7ZUrV1K7dm0OHz5My5YtSzyvIu7tdunSJRYvXszSpUsZNmwYANdccw1dunTx6vrVlSRSQgghAi7famfYq18AsGbk9Zj02sDdu2AGvhCj3hXHawexm5sU27ZGWAgXgFyzGafTWe5fu4UQlZM7idq6dSvp6em0bt3a43iXLl1wOBxeXat169b06NGDVq1a0adPH3r37s3dd99NzZo1Sz3v+PHjTJ06lT179nD27Fn1fqdOnaJly5Z+vbfbkSNHMJvN9OjRwy/Xr6okkRJCCBFwDqeTvSfPqe8DKd/iqkiZDHpXHD9dBGoU27ZmmIlTQL7FtSivzHAlRNlC9Fp1ds5A39cX7iRqy5YtxSZRAIMGDWLnzp306NGDDRuKLtx9Oa1Wy7Zt2/jss8/YunUrL7zwAlOmTGHv3r0kJSWVeN7tt99OYmIir7zyCnXq1MHhcNCyZUssFu+XXSjvvd1CQkL8ev2qSiabEEII4Xc6jYYHb27Egzc3QqcJ7ldPvsUGQKjRc4zUCO1pHtRmouPPxC4qzIgdDXlWe9AX5a1Mz1CI0iiKQqhBF/CXLxVju91OamoqW7ZsYfv27epaUYWlpaXx2muv+fTZb7zxRmbMmMHBgwcxGAxs3LgRcHWvs9s9x4798ccfHDlyhKeeeooePXrQvHlzzp8/79GmuPMq4t6Xa9KkCSEhIaSnp5fr+tWVVKSEEEL4nUGn4cl+zdVtm8W7rjL+YC5IiAonUhN1vxKqeMZVM1SP3akhvxIkUoWfoRCifBwOB6mpqWzatIkNGzaQkJDA6dOnPdrExsai1Wrp3r07O3fu9Oq6e/fuJT09nd69e1O7dm327t3L77//TvPmrv9vGzZsyN69e8nIyCA8PJzo6Ghq1qxJTEwML7/8MgkJCZw6dYonnnjC47rFnacp9GNKee59OZPJxOOPP86kSZMwGAzceOON/P777xw6dIhRo0aVef3qShIpIYQQ1YrZWlCR8mLWvpphBuwo5FsdXv0iLISo/Pbt28e6desA6NevX7Ftzp8/T1RUlE/XrVGjBp988gmLFi0iKyuLBg0aMH/+fG699VYAJkyYwLBhw0hOTiYvL4+TJ0/SsGFD1q9fT1paGi1btqRZs2YsWbKEbt26qdct6bwrvXdhU6dORafTMW3aNH777TcSEhJ4+OGHvbp+dSWJlBBCCL9zOJz8esG1qG3dqNL74vubpWCMVJjJc7zTr04DJqeDuopF7fdeM9SAo6BrX7ATqcLPUKORiS+EKI+OHTv6Zdru5s2bs3nz5hKPN23alM8//7zI/p49e3L48GGPfZfHV9J5l1fKynPvwpU2jUbDlClTmDJlSpHzy7p+dRX0Tta//vorQ4YMISYmhtDQUNq0acP+/fvV406nk+nTp1OnTh1CQkLo1q0bhw4d8riG2WzmH//4B7Vq1SIsLIwBAwbwyy+/BPqjCCGEKEG+zc5N8z7mpnkfk28LbkJitbkqUuEhnhWpXpZW3GRpTf5lX42uREohvxIkUpXpGQohhAhyInX+/HluvPFG9Ho9//nPfzh8+DDz58/3KKXOmzePBQsWsHTpUvbt20d8fDy9evXi0qVLapsxY8awceNG1q9fz+7du8nOzqZ///5B/9ITQghR+dgKEqmIkLK79kWF6nGgVIqKlBBCiMolqF37nnvuORITE1m1apW67/I+n06nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPAF5//XUSExPZvn07ffoEfvpNIYQQlZetoJoTEWIss23NMAMOp4Ld4STXHNzJJoQQgdenTx8OHDhATk4O9erVY+PGjVx33XXBDktUEkGtSP373/+mQ4cO3HPPPdSuXZu2bdvyyiuvqMdPnjzJ6dOn6d27t7rPaDTStWtXPvvsMwD279+P1Wr1aFOnTh1atmypthFCCCEArDY7DocrkarhRSIVZtCqs2NdzDX7NTYhROWzZcsWfv/9d3Jzc/nll18kiRIegppInThxghUrVtCkSRO2bNnCww8/7DFfv3sqyri4OI/z4uLi1GOnT5/GYDAUWVn58jaFmc1msrKyPF5CCCGqvqzcPxe4jAgtO5FSFIVQo2tSiou53i+OKYQQouoLatc+h8NBhw4dmDNnDgBt27bl0KFDrFixgtTUVLVd4QXWnE5nmYuuldZm7ty5zJgx4wqjF0IIcbXJynNVlTSKBpNBR5617HFPoSY9VjNk50kiJYQQ4k9BrUglJCSQnJzssa958+acOnUKgPj4eIAilaUzZ86oVar4+HgsFkuRVaAvb1PY5MmTuXjxovr6+eefK+TzCCGEqNwuFSRSOp22zB/k3Ex612+OuRYZIyWEEOJPQa1I3XjjjRw9etRj37Fjx2jQoAEASUlJxMfHs23bNtq2bQuAxWJh165dPPfccwC0b98evV7Ptm3bGDx4MACZmZl89913zJs3r9j7Go1GjMayu3QIIYSoGFqNwtAbGqjvgSLbgXCpoKqkK0iOtBqFoR3qYD9wEFDQKk60eK4vYzTouQTkB3myieKeoRBCiOAJaiI1duxYOnfuzJw5cxg8eDBffPEFL7/8Mi+//DLg6tI3ZswY5syZQ5MmTWjSpAlz5swhNDSU++67D4DIyEhGjRrF+PHjiYmJITo6mgkTJtCqVSt1Fj8hhBDBZdRpmTWwpce+wtuBkJPvqkjptbo/47q1KXz3fyWeYzK4xkjlB7kiVdwzFEIIETxBTaSuu+46Nm7cyOTJk5k5cyZJSUksWrSI+++/X20zadIk8vLyGD16NOfPn6djx45s3bqViIgItc3ChQvR6XQMHjyYvLw8evTowerVq9FqtcH4WEIIISqpnIKKlEHv/ddfiMHVNt9q80tMQgghrk5BTaQA+vfvT//+/Us8rigK06dPZ/r06SW2MZlMvPDCC7zwwgt+iFAIIcSVcjqdnMtxJTHRYa6FcC/f9na80pXKLpRIueNyOlzbigLR2Lg8mlCj65jZEtxEqvAzDNQzE0IIUbygJ1JCCCGqvjyrnfaztwNweKZrofTLt0MNgfk6yjW7EhFjQXe9PKud9gs+A9qqbQ4b9xN62TkhRlfiZw5yRarwMwzUMxNCCFG8oM7aJ4QQQgRSXkFVyaTXe32Oex2pYCdSQgghKhf5OUsIIUTAhRp0ZDx7W8Dvq1akCpKjUIOOjKndyJ03n2Rz+2LPCStoa/FizSkhhBDVh1SkhBBCVBvuKcxDfOgWF2Zyde2z2qQiJYSoHBo2bMiiRYvKff7q1auJioqqsHiqK0mkhBBCVBvuKczd4568EW5yVaSsNhtOp7OM1kKIq8Hw4cNRFKXIq2/fvmqbhg0bFjler169ct1v+vTptGnTxufzSkp49u3bx4MPPujVNYpLuu69916OHTvmczzCk3TtE0IIEXD5Vjvj3v4KgAWD22DSB2a5CnNBIuUe95RvtTNuwyFslqQSzwkLcVekHDidTpktT4gqom/fvqxatcpjn9Fo9NieOXMmDzzwgLpdWZbWiY2NvaLzQ0JCCAkJqaBoqi+pSAkhhAg4h9PJR9+e5qNvT+MIYJXHUjBhhDs5cjidfHTkd7Y6o0s8J6KgrcXuwG6XcVJClMXpdGK32wP+8rVibDQaiY+P93jVrFnTo01ERITH8dISmJ07d3L99dcTFhZGVFQUN954Iz/99BOrV69mxowZfP3112pla/Xq1QAsWLCAVq1aERYWRmJiIqNHjyY7O1u93ogRI7h48aJ6nns5oMJVpunTp1O/fn2MRiN16tQhLS0NgG7duvHTTz8xduxY9RpQfKXr3//+Nx06dMBkMlGrVi3uvPNO9djy5ctp0qQJJpOJuLg47r77bp+edVUlFSkhhBB+p9Uo3NWunvre7ghOFzlzwTinsGK69g3UnEULaPGMLdykx4mC1eZKpPQ+zPhXkQo/QyEqK4fDwX//+9+A3/emm24KWsXIZrMxcOBAHnjgAd58800sFgtffPEFiqJw77338t1337F582a2b3ctYRAZGQmARqNhyZIlNGzYkJMnTzJ69GgmTZrE8uXL6dy5M4sWLWLatGkcPXoUgPDw8CL33rBhAwsXLmT9+vW0aNGC06dP8/XXXwPw3nvv0bp1ax588EGPylphH374IXfeeSdTpkxh7dq1WCwWPvzwQwC+/PJL0tLSWLt2LZ07d+bcuXNB+e9bGUkiJYQQwu+MOi3zB7dWt3ODtLitzV2RMhVNpObofyJUcRTZH2bQ4UDB4nDgcBQ9HiiFn6EQ4sp88MEHRRKTxx9/nKlTp3psP/XUU+r2nDlz1GrP5bKysrh48SL9+/fnmmuuAaB58+bq8fDwcHQ6HfHx8R7njRkzRn2flJTErFmz+Pvf/87y5csxGAxERkaiKEqR8y536tQp4uPj6dmzJ3q9nvr163P99dcDEB0djVarVStrJXnmmWf4y1/+wowZM9R9rVu3Vq8fFhZG//79iYiIoEGDBrRt27akS1UrkkgJIYSoNtwz70WEGMto+adwoyuRstkdmC1WQkPLPkeI6kyj0XDTTTcF5b6+6N69OytWrPDYFx3t2c134sSJDB8+XN2uVatWsdeKjo5m+PDh9OnTh169etGzZ08GDx5MQkJCqTF8/PHHzJkzh8OHD5OVlYXNZiM/P5+cnBzCwsK8+hz33HMPixYtolGjRvTt25d+/fpx++23o9N5/8/8r776qsSKVa9evWjQoIF6/b59+zJo0CBC5S9DGSMlhBDC/5xOJ7kWG7mW4M58ZytYCyo8pGhFKtepIdepoXB4YUYdDqerK112vtXvMZaksjxDIcqiKAparTbgL18nggkLC6Nx48Yer8KJVK1atTyOlzZl+KpVq/j888/p3Lkzb731Fk2bNmXPnj0ltv/pp5/o168fLVu25N1332X//v0sW7YMAKvV+79rEhMTOXr0KMuWLSMkJITRo0dz8803+3SN0iaeiIiI4MCBA7z55pskJCQwbdo0WrduzYULF7y+flUliZQQQgi/y7PaSZ62heRpW8gL0sK2DocDm8NVkaoRWrQi1cHSlmRze/IKfTUadBqUgl+6s/Mt/g+0BJXhGQohSte2bVsmT57MZ599RsuWLVm3bh0ABoOhyGQ1X375JTabjfnz53PDDTfQtGlTfvvtN482xZ1XnJCQEAYMGMCSJUvYuXMnn3/+Od9++63X10hJSSE9Pb3E4zqdjp49ezJv3jy++eYbMjIy2LFjR5lxVXXStU8IIUS1kJ1vUatNkWHed+0D0Ot0YLWQkxe8REoIUbHMZjOnT5/22KfT6UrsvleakydP8vLLLzNgwADq1KnD0aNHOXbsGKmpqQDqZBJfffUV9erVIyIigmuuuQabzcYLL7zA7bffzqeffsqLL77ocd2GDRuSnZ1Neno6rVu3JjQ0tEiXutWrV2O32+nYsSOhoaGsXbuWkJAQGjRooF7jk08+4S9/+QtGo7HYz/f000/To0cPrrnmGv7yl79gs9n4z3/+w6RJk/jggw84ceIEN998MzVr1uSjjz7C4XDQrFkzn59TVSMVKSGEENXCxVxzwTuFMKNvM+/pda6ZwHLMwevaJ4SoWJs3byYhIcHj1aVLl3JdKzQ0lO+//5677rqLpk2b8uCDD/Loo4/y0EMPAXDXXXfRt29funfvTmxsLG+++SZt2rRhwYIFPPfcc7Rs2ZI33niDuXPnely3c+fOPPzww9x7773ExsYyb968IveOiorilVde4cYbb1QrS++//z4xMTGAay2sjIwMrrnmmhKnb+/WrRvvvPMO//73v2nTpg233HILe/fuVa//3nvvccstt9C8eXNefPFF3nzzTVq0aFGuZ1WVKE7paE1WVhaRkZFcvHiRGjVqBDscIYSocnItNpKnbQHg8Mw+AB7boQb/d5A4fOoMT768Ca1Wz7szRhSJS21n3E/opPFw2UDv++a9Q27WeR66vQu3dkz2e6zFKfwMA/HMhChLfn4+J0+eJCkpCZPJFOxwhPBaaX92vc0NpCIlhBCiWnCPb9LpfF9nxqh3JS05QRwjJYQQonKRREoIIUS1cCnXlQTp9b5XcgwF5+RK1z4hhBAFJJESQghRLeTku8ZI6fW+jY+CPytSeRZJpIQQQrhIB2shhBB+p1EU+rWKV98DRbb9zd0tz6j/s2ufRlHo1zwW+/dHQQEtoKHo0GGTwZV85VtsAYm1OMU9QyGEEMEjiZQQQgi/M+m1LL+/vce+wtv+lmd2JUGGyypSJr2W5Xe3gOc/KvXckIKJHfKDWJEq7hkKIYQIHunaJ4QQolpwd8szlmOyiRBj8CtSQgghKhdJpIQQQlQL7mqSoRxjpELUrn0yRkoIIYSLdO0TQgjhd5VhHSlzQTXJdNm9ci02kmftBK5T9x027ie00LkhRtc5Fqvdv0GWQtaREkKIykUqUkIIIaqFfGtB175yTH8eajQAYLZJ1z4hROU0ffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBFwIXot+5/qyf6nehKi933MUnm4q0nuGfjUOMZ1Zrfh61LPDTO5zrFaJZESoioYPnw4iqIUefXt21dt07BhwyLH69WrV+p1s7KymDJlCtdeey0mk4n4+Hh69uzJe++9h9NZdEZQf1q8eDGrV6+u0Gvu3LkTRVG4cOFChV73aiX9AoQQQgScoijEhBsDek+LtWjXPkVRiAkzkKuUniCFFUw2YbEFr2ufEKJi9e3bl1WrVnnsMxo9/16aOXMmDzzwgLqt1Zb8w8+FCxfo0qULFy9eZPbs2Vx33XXodDp27drFpEmTuOWWW4iKiqrQz1CayMjIgN2rupKKlBBCiGrBUtAtzz0Dny/CQ1z/uJKKlBBVh9FoJD4+3uNVs2ZNjzYREREex2NjY0u83pNPPklGRgZ79+5l2LBhJCcn07RpUx544AG++uorwsPDAXj99dfp0KGDeu377ruPM2fOqNdxV33S09Pp0KEDoaGhdO7cmaNHj3rc79lnnyUuLo6IiAhGjRpFfn6+x/HCXftycnJITU0lPDychIQE5s+fX+QzlBZbRkYG3bt3B6BmzZooisLw4cMBcDqdzJs3j0aNGhESEkLr1q3ZsGFDGf8Frn6SSAkhhAg4s83O1E3fMXXTd5gDVOVxV6RCLuvaZ7bZmfqfY8y0lt5dx921z2aXipQQ3sq12Hx+2ewO9Xyb3UGuxUZ+oUleijsv2BwOB+vXr+f++++nTp06RY6Hh4ej0xVMWmOxMGvWLL7++ms2bdrEyZMn1YTkclOmTGH+/Pl8+eWX6HQ6Ro4cqR57++23efrpp3nmmWf48ssvSUhIYPny5aXGOHHiRD7++GM2btzI1q1b2blzJ/v37/doU1psiYmJvPvuuwAcPXqUzMxMFi9eDMBTTz3FqlWrWLFiBYcOHWLs2LEMGTKEXbt2ef0Mr0bStU8IIUTA2R1O1u75CYDJ/a4NyD1tBQlbqOnPRMrucLL2y9+AuFLPjTAZ1Gs4nU4URfFbnEJUFe5ZJn2x7L523JaSAMCWQ//jkXUH6JgUzVsPdVLbdHnuY87lWDzOy3j2Np/v9cEHH6hVIrfHH3+cqVOnemw/9dRT6vacOXNIS0srcq2zZ89y/vx5rr227L/PLk+IGjVqxJIlS7j++uvJzs72iOeZZ56ha9euADzxxBPcdttt5OfnYzKZWLRoESNHjuRvf/sbALNnz2b79u1FqlJu2dnZrFy5ktdee41evXoBsGbNmiJjvsqKLTo6GoDatWur3RRzcnJYsGABO3bsoFOnTuq5u3fv5qWXXlI/Q1UkiZQQQgi/0ygK3ZvFqu8dAR50DWAto2vfzZqLaHGioWhsESEFiZTDgdVmx1COmf+uVOFnKIS4Mt27d2fFihUe+9yJgtvEiRM9qkW1atUq9lruiSS8+ZHl4MGDTJ8+na+++opz587hcLiqcKdOnSI5OVltl5KSor5PSHAll2fOnKF+/focOXKEhx9+2OO6nTp14uOPPy72nsePH8disaiJDrg+a7NmzcoV2+UOHz5Mfn6+mqC5WSwW2rZtW+qzuNpJIiWEEMLvTHotq0Zcr24HoyuOu1teWMFU5oW9qP+RUMVR7LEaoX8OQM/Ks1ArCIlU4WcoRGXnXjPOFwbtn6NO+rSI4/DMPkV+ONj9ePcrjg0gLCyMxo0bl9qmVq1aZbYBiI2NpWbNmhw5cqTUdjk5OfTu3ZvevXvz+uuvExsby6lTp+jTpw8Wi2eVTX/Z4uHuBM2d2PjKmxkDfYntcu6YPvzwQ+rWretxrPDkHVWNjJESQghRLbjHXoSZfJ9swqjXolFcX5nZeSX/g0II8adQg87nl+6yREqn1RBq0GEqtERCcecFm0aj4d577+WNN97gt99+K3I8JycHm83G999/z9mzZ3n22We56aabuPbaaz0mmvBW8+bN2bNnj8e+wtuXa9y4MXq93qPN+fPnOXbsmLrtTWwGg+uHKPtl40WTk5MxGo2cOnWKxo0be7wSExN9/mxXk+D/yRNCCCH8zOl0Yre5K1K+J1IAWp0Wh9XBpTxzRYYmhAgSs9nM6dOnPfbpdLoSu++VZc6cOezcuZOOHTvyzDPP0KFDB/R6Pf/973+ZO3cu+/bto379+hgMBl544QUefvhhvvvuO2bNmuXzvR577DGGDRtGhw4d6NKlC2+88QaHDh2iUaNGxbYPDw9n1KhRTJw4kZiYGOLi4pgyZQoazZ+JqzexNWjQAEVR+OCDD+jXrx8hISFEREQwYcIExo4di8PhoEuXLmRlZfHZZ58RHh7OsGHDfP58VwupSAkhhPC7XIuN5lM303zq5qB067PY7DicropUeEjxXfvam9vQPL8duc7ivxr1BevHZJut/gmyDMF+hkJUNZs3byYhIcHj1aVLl3Jfr2bNmuzZs4chQ4Ywe/Zs2rZty0033cSbb77J888/T2RkJLGxsaxevZp33nmH5ORknn32Wf75z3/6fK97772XadOm8fjjj9O+fXt++ukn/v73v5d6zvPPP8/NN9/MgAED6NmzJ126dKF9+/bqcW9iq1u3LjNmzOCJJ54gLi6ORx99FIBZs2Yxbdo05s6dS/PmzenTpw/vv/8+SUlJPn+2q4niDPQyy5VQVlYWkZGRXLx4kRo1agQ7HCGEqHJyLTZ1Bi/3uInLt/3dNeePrFxGzXsdgPXTRqqL8l4el9th435CJ42HsDCP/UOffYNL2Tmk3dOLW1oH/h8HhZ9hZejOJER+fj4nT54kKSkJk8kU7HCE8Fppf3a9zQ2kIiWEEKLKy8l3VZEURaMmUb7S69zJl4yREkIIIYmUEEKIaiA73zWuSast/9eerqBrX16QuvYJIYSoXCSREkIIUeXlmF1jitzJUHm4147KlURKCCEEkkgJIYSoBnLzXd3xdLryjytyJ1L5ZpnoQQghhCRSQgghqgF3FUmnK39FSu9OpCxSkRJCCCHrSAkhhAgAjaLQMSlafQ8U2fYn97gmfaFESqModGwQieOnn0FR0OBEQ/GT2RoLEilzkBKp4p6hEEKI4JFESgghhN+Z9FreeqiTx77C2/6Ua3EnUp5feya9lrdS28Lz28u8hrFgtj+zNThd+4p7hkIIIYJHuvYJIYSo8twVKXdVqTxMej0QvERKCCFE5SKJlBBCiCov3+JKfgp37fOFuyJllURKCCEEkkgJIYQIgFyLjXazttFu1jZyLbYi2/7mniDCWGgx3lyLjXbzP6Vtfhva5rehXX4bcp3FfzWaDK6KlCVIiVSgn5kQ4uoyffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBEQ53IsnMuxlLjtT+7ueMaC7nkeceVaOY+e8+g5R9HjbiHuRMoWvCQmkM9MiKps+PDhKIpS5NW3b1+1TcOGDYscr1evXqnXzcrKYsqUKVx77bWYTCbi4+Pp2bMn7733Hk5n8RPZ+MvixYtZvXp1hV5z586dKIrChQsXKvS6VyuZbEIIIUTAmXRato69WX3vb+6KlKnQGCmTTsvWh64j79VV3GFtWeo1Qo2uRMoaxERKCFFx+vbty6pVqzz2GY1Gj+2ZM2fywAMPqNvaUhb1vnDhAl26dOHixYvMnj2b6667Dp1Ox65du5g0aRK33HILUVFRFfoZShMZGRmwe1VXQa1ITZ8+vUimHx8frx53Op1Mnz6dOnXqEBISQrdu3Th06JDHNcxmM//4xz+oVasWYWFhDBgwgF9++SXQH0UIIYQPNBqFpnERNI2LQKPx/1TeFqsdAFOhrn0ajULT2mE00ZjLvEZIQSJls9krPkAhRMAZjUbi4+M9XjVr1vRoExER4XE8Nja2xOs9+eSTZGRksHfvXoYNG0ZycjJNmzblgQce4KuvviI8PByA119/nQ4dOqjXvu+++zhz5ox6HXfVJz09nQ4dOhAaGkrnzp05evSox/2effZZ4uLiiIiIYNSoUeTn53scL9y1Lycnh9TUVMLDw0lISGD+/PlFPkNpsWVkZNC9e3cAatasiaIoDB8+HHD9m33evHk0atSIkJAQWrduzYYNG8r4L3D1C3rXvhYtWpCZmam+vv32W/XYvHnzWLBgAUuXLmXfvn3Ex8fTq1cvLl26pLYZM2YMGzduZP369ezevZvs7Gz69++P3S5fdEIIIVzc45qMhpK77pUlzGQAwCbfL0J4xT0e0peXze5Qz7fZHeRabORb7WVeN9gcDgfr16/n/vvvp06dOkWOh4eHoytYfsFisTBr1iy+/vprNm3axMmTJ9WE5HJTpkxh/vz5fPnll+h0OkaOHKkee/vtt3n66ad55pln+PLLL0lISGD58uWlxjhx4kQ+/vhjNm7cyNatW9m5cyf79+/3aFNabImJibz77rsAHD16lMzMTBYvXgzAU089xapVq1ixYgWHDh1i7NixDBkyhF27dnn9DK9GQe/ap9PpPKpQbk6nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPwJVJJyYmsn37dvr06RPQzyKEEMI7FpuDZR//CMAj3Rtj0Pn3dz1zQXe8kEKJlMXmYNmuk1itCWVeI8xYkEhJRUoIryRP2+LzOcvua8dtKa7/H7cc+h+PrDtAx6RojzXUujz3cZGxghnP3ubzvT744AO1SuT2+OOPM3XqVI/tp556St2eM2cOaWlpRa519uxZzp8/z7XXXlvmfS9PiBo1asSSJUu4/vrryc7O9ojnmWeeoWvXrgA88cQT3HbbbeTn52MymVi0aBEjR47kb3/7GwCzZ89m+/btRapSbtnZ2axcuZLXXnuNXr16Aa5/Vxce81VWbNHRrkXBa9eurXZTzMnJYcGCBezYsYNOnTqp5+7evZuXXnpJ/QxVUdATqR9++IE6depgNBrp2LEjc+bMoVGjRpw8eZLTp0/Tu3dvta3RaKRr16589tlnPPTQQ+zfvx+r1erRpk6dOrRs2ZLPPvusxETKbDZjNv/ZjSMrK8t/H1AIIUQRNoeDxek/APBQ10YY/NxBwlZQkQo1eX7t2RwOFn/yE1D0F+TCQkNcSZjdbsfpdKIo/u+SKITwn+7du7NixQqPfe5EwW3ixIke1aJatWoVey33RBLe/L1w8OBBpk+fzldffcW5c+dwOFxVuFOnTpGcnKy2S0lJUd8nJLiSyzNnzlC/fn2OHDnCww8/7HHdTp068fHHHxd7z+PHj2OxWNREB1yftVmzZuWK7XKHDx8mPz9fTdDcLBYLbdu2LfVZXO2Cmkh17NiR1157jaZNm/K///2P2bNn07lzZw4dOsTp06cBiIuL8zgnLi6On376CYDTp09jMBiK9GeNi4tTzy/O3LlzmTFjRgV/GiGEECXRKAop9SLV944Az15lKagihRRUlYrTUslBA2goPrZwd9c+hwOHw1HqoHN/KPwMhajsDs/0vWeQQfvnjyp9WsRxeGafIn/edz/e/YpjAwgLC6Nx48altqlVq1aZbQBiY2OpWbMmR44cKbVdTk4OvXv3pnfv3rz++uvExsZy6tQp+vTpg8XiWWXTXzbLqDtBcyc2vvJmxkBfYrucO6YPP/yQunXrehwrPHlHVRPUROrWW29V37dq1YpOnTpxzTXXsGbNGm644QagaGbvza+AZbWZPHky48aNU7ezsrJITEwsz0cQQgjhBZNey78f7aJuB3pMg3vcrHvmveK8bfieUKXkf6SEGfWAgt3hJN9iJSwksIlU4WcoRGUXariyf2bqtBp02qLV6iu9rj9oNBruvfde1q5dy9NPP11knFROTg5Go5Hvv/+es2fP8uyzz6r/9vzyyy99vl/z5s3Zs2cPqamp6r49e/aU2L5x48bo9Xr27NlD/fr1ATh//jzHjh1Tu955E5vB4PpB6fK5CJKTkzEajZw6dapKd+MrTtAnm7hcWFgYrVq14ocfflDHTRWuLJ05c0atUsXHx2OxWDh//nyJbYpjNBqpUaOGx0sIIUTV5Z6yPPQKJpsINepw4PqRLidf1nIS4mpnNps5ffq0x+vs2bPlvt6cOXNITExUe1wdPnyYH374gVdffZU2bdqQnZ1N/fr1MRgMvPDCC5w4cYJ///vfzJo1y+d7PfbYY7z66qu8+uqrHDt2jKeffrrIzNaXCw8PZ9SoUUycOJH09HS+++47hg8fjkbzZyrgTWwNGjRAURQ++OADfv/9d7Kzs4mIiGDChAmMHTuWNWvWcPz4cQ4ePMiyZctYs2aNz5/talKpEimz2cyRI0dISEggKSmJ+Ph4tm3bph63WCzs2rWLzp07A9C+fXv0er1Hm8zMTL777ju1jRBCCGEv6NoXHlJy176yGLQanIokUkJUFZs3byYhIcHj1aVL+au+NWvWZM+ePQwZMoTZs2fTtm1bbrrpJt58802ef/55IiMjiY2NZfXq1bzzzjskJyfz7LPP8s9//tPne917771MmzaNxx9/nPbt2/PTTz/x97//vdRznn/+eW6++WYGDBhAz5496dKlC+3bt1ePexNb3bp1mTFjBk888QRxcXE8+uijAMyaNYtp06Yxd+5cmjdvTp8+fXj//fdJSkry+bNdTRRnoJdZvsyECRO4/fbbqV+/PmfOnGH27Nns2rWLb7/9lgYNGvDcc88xd+5cVq1aRZMmTZgzZw47d+7k6NGjREREAPD3v/+dDz74gNWrVxMdHc2ECRP4448/2L9/v9f917OysoiMjOTixYtSnRJCCD/Is9jpucA1De72cV1x4lRn9Do8s49fu+o4nU4GTVsJTgdLHruX+rF/LlKZa7GpcdTBjAJsN35HyKTxEBZW5FqDnl6N025h1qjbaZVU9kx/FanwMwwxBLZroRDFyc/P5+TJkyQlJWEymYIdjhBeK+3Prre5QVA7mf7yyy/89a9/5ezZs8TGxnLDDTewZ88eGjRoAMCkSZPIy8tj9OjRnD9/no4dO7J161Y1iQJYuHAhOp2OwYMHk5eXR48ePVi9enXABwELIYQomRMnv17IU98HktlmB6dr7FOYqeSufb/hGhRdWnRanRabHXKDUJEK5jMUQghRVFATqfXr15d6XFEUpk+fzvTp00tsYzKZeOGFF3jhhRcqODohhBBVwaXcP5OeCFP5u/aBa+1DmxlyzdYrDUsIIcRVrlKNkRJCCCEqWrbZlUhpNRr0uivrraDXuX5/lERKCCGEJFJCCCGqNHc3PK1Wc8WL6LoTsTxJpIQQotqTREoIIUSVlpPvSnp0FTB21qB3VaTyS1mcUgghRPUgiZQQQogqzZ1IVcQkRO6uffkBXlBYCCFE5VP5loYWQghR5SgoNKkdrr4Himz7S25B9UivL/qVp6DQpFYojrN/gOL6dbG0aP6sSAW+a19xz1AIIUTwSCIlhBDC70IMWraN6+qxr/C2v+SZXdUjfTEVqRCDlm1/vx6ef96raxkL1rsyB6EiVdwzFEIIETzStU8IIUSV5p5hz90t70oY9a51qMxW6donhBDVnSRSQgghqjT3DHuGYrr2+cpUUJGySCIlhBDVnnTtE0II4Xd5FjsDlu4G4N+PdgHw2A4xXPlEECVxj2cy6IveI89iZ8CKL3Dkt1THSP3bcJiQEq5lMrgqUhZr4MdIFX6G/nxmQgghyiaJlBBCCL9z4uSHM9nqe6DItr+4u+EZi6lIOXHyw9lcIAR3GKVFE2IsSKRs9gqOsmzFPUMhhH/9/PPPDB06lDNnzqDT6Zg6dSr33HNPsMMSlYQkUkIIIQLOqNPy5gM3qO/9yT3ZhHt8U5E4hrYm/823GWFrVua1QgsSKat07ROiWtDpdCxatIg2bdpw5swZ2rVrR79+/QgLCwt2aKISkDFSQgghAk6rUeh0TQydrolBq/HvVN4Wm6sbnnvGvSJxNKxJR222V9cKMRoAsAahIiWECLyEhATatGkDQO3atYmOjubcuXPBDaoU3bp1Y8yYMSVue3OO8J4kUkIIIao091TlpmISKV+FFoyRstslkRLiavfRRx+hKEqJr8GDB3u0//LLL3E4HCQmJpZ63dOnT/OPf/yDRo0aYTQaSUxM5Pbbbyc9Pd2fH6dY7733HrNmzarQa0ri9Sfp2ieEECLgrHYHb35xCoC/Xl8fvdZ/v+u5xzO5J4ooEse+X7HYYr26VqjJdQ2b3YbT6URRZGFcIa5W3bt3JzMz02Of3W5nxIgRHDx4kKlTp6r7//jjD1JTU/nXv/5V6jUzMjK48cYbiYqKYt68eaSkpGC1WtmyZQuPPPII33//vV8+S0mio6MDer/qRipSQgghAs5qdzDt/w4x7f8OYbU7/Hov9wx7ISUkUtM2/8Bse32vrvVnIuXA6ZQJH4S4moWEhBAfH6++YmNjmTBhAgcPHmTHjh20atUKALPZzKBBg5g8eTKdO3cu9ZqjR49GURS++OIL7r77bpo2bUqLFi0YN24ce/bsUdtt3ryZLl26EBUVRUxMDP379+f48ePq8W7dupGWlsakSZOIjo4mPj6e6dOne9wrJyeH1NRUwsPDSUhIYP78+UXiKVw98uac0mIbPnw4u3btYvHixWrlLiMjAwCn08m8efNo1KgRISEhtG7dmg0bNpT6vK52kkgJIYTwOwWFulEh1I0KQSGwVRx3RSrEWHonjDqYqYu51OjCTQVjpOyOgHfvC+YzFKKqs9vtDBkyhG3btpGenq4mUU6nk+HDh3PLLbcwdOjQUq9x7tw5Nm/ezCOPPFLsZBRRUVHq+5ycHMaNG8e+fftIT09Ho9EwaNAgHI4/f1has2YNYWFh7N27l3nz5jFz5ky2bdumHp84cSIff/wxGzduZOvWrezcuZP9+/eXGqM355QW2+LFi+nUqRMPPPAAmZmZZGZmql0dn3rqKVatWsWKFSs4dOgQY8eOZciQIezatavUmK5m0rVPCCGE34UYtHz6xC3qdq4lcLPe2QoSqdCCiSJKst34HaFK6dWxMIMeJwpWuxO73Y6+mJkA/aXwMxSisivt/3ONomC6bG23K20begVjIO12O0OHDlWTqJSUFPXYp59+yltvvUVKSgqbNm0CYO3atWqidbkff/wRp9PJtddeW+Y977rrLo/tlStXUrt2bQ4fPkzLli0BSElJ4emnnwagSZMmLF26lPT0dHr16kV2djYrV67ktddeo1evXoAr8apXr16J9/T2nLJiMxgMhIaGEh8fr7bJyclhwYIF7Nixg06dOgHQqFEjdu/ezUsvvUTXrl3LfCZXI0mkhBBCVGlWtSJ15UlPiEGLAwWbw4HNJlOgC1Ga5GlbSjzWvVksq0Zcr263n7WdPGvxVd6OSdG89VAndbvLcx9zLsfi0Sbj2dvKFaM7idq6dSvp6em0bt3a43iXLl08qkSlcXf39Wbs5PHjx5k6dSp79uzh7Nmz6j1OnTrlkUhdLiEhgTNnzqjnWywWNWkB13ioZs1KXsbB23O8ia2ww4cPk5+fryZobhaLhbZt25b6LK5mkkgJIYSo0twJT1gFJFKhBYmU0wm5Zhvh4Vd8SSFEkLiTqC1bthSbRAEMGjSInTt30qNHjzLH+zRp0gRFUThy5AgDBw4ste3tt99OYmIir7zyCnXq1MHhcNCyZUsslj8TxMIVb0VR1KSmPGM0vT3Hm9gKc8f14YcfUrduXY9jRqPR51ivFpJICSGE8Lt8q53BL30OwNuX/bIcCLaCsUxhptITqcGWa9EAbxuOYCqhTYhei8OpgAK55pL/UeEPhZ/h5V2dhKiMDs/sU+IxTaGqzf6pPb1uu/vx7lcWGK4kKjU1lS1btrB9+3Z1rajC0tLSGDlyJGvWrCnzmtHR0fTp04dly5aRlpZWZJzUhQsXiIqK4o8//uDIkSO89NJL3HTTTa7PtHu3T/E3btwYvV7Pnj17qF/fNVnO+fPnOXbsWInd6Lw5x5vYDAZDkTGiycnJGI1GTp06VWW78RVHEikhhBB+53A6+eaXi+r7QHE6ndjtDjRAmKn0X0W/c7r+0eMoZSIHjUZBq9WAA3LM1ooMtUzBeoZClJcv45b81bY4DoeD1NRUNm3axIYNG0hISOD06dMebWJjY9FqtXTv3p2dO3d6fe3ly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs2aNYmJieHll18mISGBU6dO8cQTT/j0GcLDwxk1ahQTJ04kJiaGuLg4pkyZgkZT8jxy3pzjTWwNGzZk7969ZGRkEB4eTnR0NBEREUyYMIGxY8ficDjo0qULWVlZfPbZZ4SHhzNs2DCfPt/VQhIpIYQQVVaexY4GV9IRXkZFyls6nQ4sFvLMMkZKiKvRvn37WLduHQD9+vUrts358+c9ZtnzVlJSEgcOHOCZZ55h/PjxZGZmEhsbS/v27VmxYgUAGo2G9evXk5aWRsuWLWnWrBlLliyhW7duPt3r+eefJzs7mwEDBhAREcH48eO5ePHiFZ3jTWwTJkxg2LBhJCcnk5eXx8mTJ2nYsCGzZs2idu3azJ07lxMnThAVFUW7du148sknffpcVxNJpIQQQlRZl/ItoCZSpc/a5y29VosVyLMEtiIlhKgYHTt29Os6cAkJCSxdupSlS5eW2KZnz54cPnzYY9/lMRVXBXPPGugWHh7O2rVrWbt2rbpv4sSJHm0KX8ebc8qKrWnTpnz++edF4lMUhbS0NNLS0oocq6pkHSkhhBBVVk6+axyTTqug01XMmCL3dXKlIiWEENWaJFJCCCGqrJx8V9VIp9V5NSWxNwwFiVR+KTNYCSGEqPqka58QQogqy12R0mor7ndDfUEilWcpfs0bIUTV0adPHw4cOEBOTg716tVj48aNXHfddcEOS1QSkkgJIYQIiOgwQ6nb/uCeWU+nLblbX3SoHmduLkAp8/X9yaAmUoEfIxWIZyaE+NOWLSUvKiyEJFJCCCH8LtSg48BUzxXvC2/7Q647kdIV/3UXatBxYPyN8PzzXl/TWLBIptkS2DFSxT1DIYQQwSNjpIQQQlRZ7kTKUEETTQAYChbCzbdK1z4hhKjOJJESQghRZeUVJFL6EipS5WEsWAzUItOfCyFEtVZh3yw9e/bkxIkTnDhxoqIuKYQQoorIt9oZ9uoXAKwZeT2Ax7ZJX3EVo8u5xzEZ9MV/3eVb7Qx77SCO/GagKGhwssZwDFMp1zQWXMtsC2xFqvAz9NczE0II4R2vEqlvvvmGli1botGUXMAaNGgQZ8+erbDAhBBCVB0Op5O9J8+p74Ei2/6Qr3btK/7rzuF0sveni0AN97q9OMqYcsKdSFmsgR0jVdwzFEIIETxeJVJt27YlMzOT2rVr06hRI/bt20dMTIxHm0ceecQvAQohhKh6DFoNy+5rp773l/yCZMdoKL56Y9BqWHZXMub/e59xtmu8umaIITiJlBBCiMrFq2+vqKgoTp48CUBGRgYOh8OvQQkhhKjadFoNt6UkcFtKAjo/JlLumfWMJXTt02k13JZcm77aC15f02RwzdpnCXDXPiGEEJWLVxWpu+66i65du5KQkICiKHTo0AFtCWtyyBgpIYQQlYXZ6uraZyxIfiqCWpGSREoIIao1rxKpl19+mTvvvJMff/yRtLQ0HnjgASIiIvwdmxBCiCrKZnew5dD/AOjTIs5vVSl3RcpkKP7rzmZ3sOXwGcz2KK+vGVKQlNls0rVPCCGqM69n7evbty8A+/fv57HHHpNESgghRLlZ7A4eWXcAgMMz+/gtkXJXjUpKpCx2B4+8exjwbnwUQIjRdS2rVKSEEKJa83n681WrVvkjDiGEEFVcSBCm67YUdO0LMRjKbBuCd4lRqLGgImUPfCIVjGcohBCieBW2jtTy5cs5e/Ys06ZNq6hLCiGEqCJCDTqOzOqrbudaAtMtzl01CimhInW5/cavCFXKnkwpzJ1I2QI78VLhZyiEECK4Kqwvxbvvvsvq1asr6nJCCCHEFbNaCxIpUwVONuFOpBzStU+Iqu7nn3+mW7duJCcnk5KSwjvvvBPskEQlUmEVqfT09Iq6lBBCCFEhrAXd70KNZXft85a7ImW323E6nShK6Qv4CiGuXjqdjkWLFtGmTRvOnDlDu3bt6NevH2FhYcEOTVQCV1SRcjqdOGV1dSGEEGXIt9oZseoLRqz6gnxr4Co57pn13MlPaR62NmaEpQn5ztITo7CC6pbd4QzoorzBeoZCVGcJCQm0adMGgNq1axMdHc25c+eCG1QpunXrxpgxY0rc9uYc4b1yJVKvvfYarVq1IiQkhJCQEFJSUli7dm1FxyaEEKKKcDidfHz0dz4++juOAP4AZ1MrUmUnUp84IvnYEYUD7xIpgByz9coC9EGwnqEQVdVHH32EoiglvgYPHuzR/ssvv8ThcJCYmFjqdU+fPs0//vEPGjVqhNFoJDExkdtvvz0ovbfee+89Zs2aVaHXlMTrTz537VuwYAFTp07l0Ucf5cYbb8TpdPLpp5/y8MMPc/bsWcaOHeuPOIUQQgif2B1OHA4HWiA8pOK69pn0OhRFwel0kpNvJVpWAxHiqtS9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOUJDo6OqD3q258rki98MILrFixgueee44BAwZwxx13MG/ePJYvX86SJUv8EaMQQgjhs1yLDQ2uyk24qeISKUVR0Gpc05AHsiIlhKhYISEhxMfHq6/Y2FgmTJjAwYMH2bFjB61atQLAbDYzaNAgJk+eTOfOnUu95ujRo1EUhS+++IK7776bpk2b0qJFC8aNG8eePXvUdps3b6ZLly5ERUURExND//79OX78uHq8W7dupKWlMWnSJKKjo4mPj2f69Oke98rJySE1NZXw8HASEhKYP39+kXgKV4+8Oae02IYPH86uXbtYvHixWrnLyMgAXEN+5s2bR6NGjQgJCaF169Zs2LCh1Od1tfM5kcrMzCz2D1Hnzp2LZPVCCCFEsOTkW1Fwoijede3zhU6nKbiHpUKvK0RVkmuxlfgqPM7vStteKbvdzpAhQ9i2bRvp6elqEuV0Ohk+fDi33HILQ4cOLfUa586dY/PmzTzyyCPFTkYRFRWlvs/JyWHcuHHs27eP9PR0NBoNgwYNwuH4c1mFNWvWEBYWxt69e5k3bx4zZ85k27Zt6vGJEyfy8ccfs3HjRrZu3crOnTvZv39/qTF6c05psS1evJhOnTrxwAMPkJmZSWZmptrV8amnnmLVqlWsWLGCQ4cOMXbsWIYMGcKuXbtKjelq5nPXvsaNG/P222/z5JNPeux/6623aNKkSYUFJoQQQlyJ7IIkR6/RoNVW7EK2uoLr5ZoDN9mEEFeb5GlbSjzWvVksq0Zcr263n7WdvBImUemYFM1bD3VSt7s89zHncjx/xMh49rZyx2m32xk6dKiaRKWkpKjHPv30U9566y1SUlLYtGkTAGvXrlUTrcv9+OOPOJ1Orr322jLvedddd3lsr1y5ktq1a3P48GFatmwJQEpKCk8//TQATZo0YenSpaSnp9OrVy+ys7NZuXIlr732Gr169QJciVe9evVKvKe355QVm8FgIDQ0lPj4eLVNTk4OCxYsYMeOHXTq5Ppv1ahRI3bv3s1LL71E165dy3wmVyOfK1IzZsxg2rRp9O3bl1mzZjF79mz69u3LjBkzmDlzZrkDmTt3LoqieJQfnU4n06dPp06dOoSEhNCtWzcOHTrkcZ7ZbOYf//gHtWrVIiwsjAEDBvDLL7+UOw4hhBBVQ06+q9udTqdFo6mwZRMLrun6HTJXuvYJcVVzJ1Fbt24lPT2d1q1bexzv0qULDoeDr776Sn0Vl0QB6kzW3iyJcPz4ce677z4aNWpEjRo1SEpKAuDUqVNqm8sTOnDNIHjmzBn1fIvFoiYt4BoP1axZs1Lv6c053sRW2OHDh8nPz6dXr16Eh4err9dee82jy2JV43NF6q677mLv3r0sXLiQTZs24XQ6SU5O5osvvqBt27blCmLfvn28/PLLRf7AzJs3jwULFrB69WqaNm3K7Nmz6dWrF0ePHiUiwjW6d8yYMbz//vusX7+emJgYxo8fT//+/dm/f3+F/wIphBDi6uHudqfTVmwSBaDXub5f8qQiJUSJDs/sU+IxTaFkY//Unl633f149ysLrIA7idqyZUuxSRTAoEGD2LlzJz169ChzvE+TJk1QFIUjR44wcODAUtvefvvtJCYm8sorr1CnTh0cDgctW7bEYvmz0qbXe3ZJVhRF7fpXnuWHvD3Hm9gKc8f14YcfUrduXY9jRqPR51ivFuVakLd9+/a8/vrrFRJAdnY2999/P6+88gqzZ89W9zudThYtWsSUKVO48847AVf5MS4ujnXr1vHQQw9x8eJFVq5cydq1a+nZ0/U/4Ouvv05iYiLbt2+nT5+S/wcWQggROKEGXZGuN1fSFccb7mpRaT+qhRp0ZEztBs8/79O19QXXzLcGriJV3DMUojILNXj/z0x/tS2J3W4nNTWVLVu2sH37dnWtqMLS0tIYOXIka9asKfOa0dHR9OnTh2XLlpGWllZknNSFCxeIiorijz/+4MiRI7z00kvcdNNNAOzevdun+Bs3boxer2fPnj3Ur18fgPPnz3Ps2LESu9F5c443sRkMBux2z26YycnJGI1GTp06VWW78RWn4n+m89EjjzzCbbfdpiZCbidPnuT06dP07t1b3Wc0GunatSufffYZAPv378dqtXq0qVOnDi1btlTbFMdsNpOVleXxEkIIUbW4EymdruJ7J6gVqQoY5C6ECCyHw0FqaiqbNm3i9ddfJyEhgdOnT3u83IlC9+7d1V5Q3li+fDl2u53rr7+ed999lx9++IEjR46wZMkStUtdzZo1iYmJ4eWXX+bHH39kx44djBs3zqfPEB4ezqhRo5g4cSLp6el89913DB8+vNRuzN6c401sDRs2ZO/evWRkZHD27FkcDgcRERFMmDCBsWPHsmbNGo4fP87BgwdZtmyZV0no1erKU/oCPXv25MSJE5w4ccLrc9avX8+BAwfYt29fkWOnT58GIC4uzmN/XFwcP/30k9rGYDBQs2bNIm3c5xdn7ty5zJgxw+s4hRBCXH3yLa5ESq+rsK86lUHv7tonY6SEuNrs27ePdevWAdCvX79i25w/f95jlj1vJSUlceDAAZ555hnGjx9PZmYmsbGxtG/fnhUrVgCg0WhYv349aWlptGzZkmbNmrFkyRK6devm072ef/55srOzGTBgABEREYwfP56LFy9e0TnexDZhwgSGDRtGcnIyeXl5nDx5koYNGzJr1ixq167N3LlzOXHiBFFRUbRr167IBHVVSYV9uwwaNIizZ8963f7nn3/mscceY+vWrZhMphLbFR6w53Q6yxzEV1abyZMne2TXWVlZZa5SLYQQovzyrXbGvf0VAAsGtwHw2DbpK75q5K4W6Uvp2pdvtTNuwyHs5mtAAS2wQH+Ckr+VXAx619enOYAVqcLP0B/PTIjqoGPHjuUaY+SthIQEli5dytKlS0ts07NnTw4fPuyx7/KYdu7cWeQc96yBbuHh4axdu5a1a9eq+yZOnOjRpvB1vDmnrNiaNm3K559/XiQ+RVFIS0sjLS2tyLGqqsISqUceecSn9vv37+fMmTO0b99e3We32/nkk09YunQpR48eBVxVp4SEBLXNmTNn1CpVfHw8FouF8+fPe1Slzpw5U+qCaUajsUoPfBNCiMrG4XTy0beungL/vMf1hVx4u6LlFyQ5pXXtczidfHTkdyCagrV7+Scny7y2oaDKlW8LXCJV3DMUQggRPEEbI9WjRw++/fZbj+kkO3TowP33389XX31Fo0aNiI+P91h4zGKxsGvXLjVJat++PXq93qNNZmYm3333XZkrTwshhAgevVbDzDtaMPOOFuj9MKse/JlIGUrp2qfXapjZtwlPaUue1rc4xiBUpIQQQlQuXlWk3LPmeeO9997zql1ERIS64JhbWFgYMTEx6v4xY8YwZ84cmjRpQpMmTZgzZw6hoaHcd999AERGRjJq1CjGjx9PTEwM0dHRTJgwgVatWhWZvEIIIUTloddqSO3U0K/3MFsLEqlSusDptRpSr6tL7se/M9te3+truxOpfKskUkJUZX369OHAgQPk5ORQr149Nm7cyHXXXRfssEQl4VUiFRkZqb53Op1s3LiRyMhIOnToALi66V24cMGnhMsbkyZNIi8vj9GjR3P+/Hk6duzI1q1bPWZPWbhwITqdjsGDB5OXl0ePHj1YvXq1rCElhBDV3J+JVMVPNmEyuL5jLJJICVGlbdmyJdghiErMq2+XVatWqe8ff/xxBg8ezIsvvqgmK3a7ndGjR1OjRo0rCqbwgDhFUZg+fTrTp08v8RyTycQLL7zACy+8cEX3FkIIETh2h5MvTp4D4PqkaLSa0icRKg81kSpljJTd4eSLjPPk28N9urapYB0bi9VeRkshhBBVlc8/07366qvs3r3bo+Kj1WoZN24cnTt35nkfFzUUQghR/Zhtdv76yh4ADs/sUyELbBbmrhYZS6lImW12/rr2a6CZT9c26vWuewRwsgkhhBCVi88jfG02G0eOHCmy/8iRIzgcjgoJSgghhLhS7oqU0Q9JWoi7ImWTipQQQlRXPn+7jBgxgpEjR/Ljjz9yww03ALBnzx6effZZRowYUeEBCiGEuPqF6LUcntlHfZ8XgC5x1oIkx+TlGKkvDQcJVRyEUPaPgiFGV0XKFsCufYWfoRBCiODyOZH65z//SXx8PAsXLiQzMxNwLTw2adIkxo8fX+EBCiGEuPopiuKX7nulcXe787YiFao4CFW861kRYiyoSNkD17UvGM9QCCFEyXz+G1mj0TBp0iQmTZpEVlYWwBVPMiGEEEJUNFtBRSqkYDxTRQo16D3uIYQQovq5op+2JIESQgjhDbPNzpPvfQfAnDtbltG6Yqhd+7ys4jxpbYAWmKPPwFhG21B31z574BKpws/QWMpshEIIIfzPP8vJCyGEEJexO5y8e+AX3j3wC3aHMyD3dCdS7vFMZdnkqMW7jlrYKXsqdnWMlN2B0xmYzxOMZyiEEKJkkkgJIYSokux2dyJV8eOKwgsSKQ1O8q0yY60QQlRHkkgJIYSoktzd7kIMfhgjVZBIKTjJtchaUkIIUR1dUSL1yy+/yNpRQgghKh2n06lWpEK97NrnC51Oi06joMEZkKnchRBCVD5XlEglJyeTkZFRQaEIIYQQFcNs+/NHvjA/JFJarRa9VuOqSJmlIiVEVfXzzz/TrVs3kpOTSUlJ4Z133gl2SKISuaKO44EaYCuEEEL4It9qR4PrO8rbySZ8odFo0Gs15Fnt5ORbK/z6QojKQafTsWjRItq0acOZM2do164d/fr1IywsLNihiUpAxkgJIYSocnItNjQ40WoUjPqKn2xCo9Gg07q+QrPzLRV+fSFE5ZCQkECbNm0AqF27NtHR0Zw7dy64QZWiW7dujBkzpsRtb84R3ruib5cnn3yS6OjoiopFCCFEFRWi17L/qZ7qe6DIdkVydbdzotNo0GpLvn6IXsv+cZ1xLl0GgKJACGWP/VUUBV3BdXPNgUmkinuGQojy++ijj7jttttKPH7PPffw9ttvq9tffvklDoeDxMTEUq97+vRpnnnmGT788EN+/fVXateuTZs2bRgzZgw9evSosPi98d5776Gv4EXJu3XrRps2bVi0aFGFXvdqdEWJ1OTJkysqDiGEEFWYoijEhHsuc1t4uyK5u9vpNBo0mpI7XyiKQkyYATS+j3PS6dyJVGC69hX3DIUQ5de9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOURAoe/iVd+4QQQlQ5eRZXcqPXaVCUshfYLY9AJ1JCiIoVEhJCfHy8+oqNjWXChAkcPHiQHTt20KpVKwDMZjODBg1i8uTJdO7cudRrjh49GkVR+OKLL7j77rtp2rQpLVq0YNy4cezZs0dtt3nzZrp06UJUVBQxMTH079+f48ePq8e7detGWloakyZNIjo6mvj4eKZPn+5xr5ycHFJTUwkPDychIYH58+cXiadwtz1vzikttuHDh7Nr1y4WL16MoigoiqJOPOd0Opk3bx6NGjUiJCSE1q1bs2HDhlKf19VOEikhhBB+Z7bZmbrpO6Zu+g6zzV5ku6K5kxuNRltqImW22Zn6n2M8aanPk5YGTLXWx+z0LvHS61ydOvIClEj5+5kJUZ3Z7XaGDBnCtm3bSE9PV5Mop9PJ8OHDueWWWxg6dGip1zh37hybN2/mkUceKXYyiqioKPV9Tk4O48aNY9++faSnp6PRaBg0aJDHskJr1qwhLCyMvXv3Mm/ePGbOnMm2bdvU4xMnTuTjjz9m48aNbN26lZ07d7J///5SY/TmnNJiW7x4MZ06deKBBx4gMzOTzMxMtavjU089xapVq1ixYgWHDh1i7NixDBkyhF27dpUa09Ws4kfgCiGEEIXYHU7W7vkJgMn9rgUosl2R3ImUTlf674V2h5O1X/4GxKn7Jut+8eoeen1gE6ninqEQlVlpi1VrFAXTZWP9rrRtqKH8/6S12+0MHTpUTaJSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblfvzxR5xOJ9deW/b/n3fddZfH9sqVK6lduzaHDx+mZcuWAKSkpPD0008D0KRJE5YuXUp6ejq9evUiOzublStX8tprr9GrVy/AlXjVq1evxHt6e05ZsRkMBkJDQ4mPj1fb5OTksGDBAnbs2EGnTp0AaNSoEbt37+all16ia9euZT6Tq5EkUkIIIQJOp9HwWI8m6vuKllfwDy19KRNNqHHc3ADr7s9Z7qjj0z0MBRWpfIt07ROiOMnTtpR4rHuzWFaNuF7dbj9re4mLW3dMiuathzqp212e+5hzOZ6TvGQ8W/KkEaVxJ1Fbt24lPT2d1q1bexzv0qWLR5WoNO5lgbzpTnz8+HGmTp3Knj17OHv2rHqPU6dOeSRSl0tISODMmTPq+RaLRU1awDUeqlmzZqXe05tzvImtsMOHD5Ofn68maG4Wi4W2bduW+iyuZj4nUps3byY8PJwuXboAsGzZMl555RWSk5NZtmwZNWvWrPAghRBCVC0GnYaxvZr67fruKpFeV3oiZdBpGNs1idy977Hc7Fsi5Z5W3SyJlBBXJXcStWXLlmKTKIBBgwaxc+dOevToUeZ4nyZNmqAoCkeOHGHgwIGltr399ttJTEzklVdeoU6dOjgcDlq2bInF8meCWHi2PUVR1KSmPGu5enuON7EV5o7rww8/pG7duh7HjMaqO0mOz4nUxIkTee655wD49ttvGT9+POPGjWPHjh2MGzeOVatWVXiQQgghhC/yra6KlE7nv44XhoJEyn0vIYSnwzP7lHhMU6hqs39qT6/b7n68+5UFhiuJSk1NZcuWLWzfvl1dK6qwtLQ0Ro4cyZo1a8q8ZnR0NH369GHZsmWkpaUVGSd14cIFoqKi+OOPPzhy5AgvvfQSN910k+sz7d7tU/yNGzdGr9ezZ88e6tevD8D58+c5duxYid3ovDnHm9gMBgN2u2f1MDk5GaPRyKlTp6psN77i+PwNc/LkSZKTkwF499136d+/P3PmzOHAgQP069evwgMUQghR9TgcTn78PRuAxrHhaDQVO7Nevpdd+xwOJz+eySHP4fsvpkaD69dicyljO4SoznwZt+SvtsVxOBykpqayadMmNmzYQEJCAqdPn/ZoExsbi1arpXv37uzcudPray9fvpzOnTtz/fXXM3PmTFJSUrDZbGzbto0VK1Zw5MgRatasSUxMDC+//DIJCQmcOnWKJ554wqfPEB4ezqhRo5g4cSIxMTHExcUxZcqUUpd78OYcb2Jr2LAhe/fuJSMjg/DwcKKjo4mIiGDChAmMHTsWh8NBly5dyMrK4rPPPiM8PJxhw4b59PmuFj7/STQYDOTm5gKwfft2UlNTAVcWnpWVVbHRCSGEqJLybXZ6L/wEcP1qfaX/MCrM3d3OUMbCtfk2O71f2gcU3++/NKaCRMpila59QlxN9u3bx7p16wBKLAKcP3/eY5Y9byUlJXHgwAGeeeYZxo8fT2ZmJrGxsbRv354VK1YAoNFoWL9+PWlpabRs2ZJmzZqxZMkSunXr5tO9nn/+ebKzsxkwYAARERGMHz+eixcvXtE53sQ2YcIEhg0bRnJyMnl5eZw8eZKGDRsya9Ysateuzdy5czlx4gRRUVG0a9eOJ5980qfPdTXx+ZurS5cujBs3jhtvvJEvvviCt956C4Bjx46VOlOIEEIIEShqRcqPXftMBcmfuYQB8kKIyqljx47lGmPkrYSEBJYuXcrSpUtLbNOzZ08OHz7sse/ymIqrgrlnDXQLDw9n7dq1rF27Vt03ceJEjzaFr+PNOWXF1rRpUz7//PMi8SmKQlpaGmlpaUWOVVU+f8MsXbqU0aNHs2HDBlasWKEOKPvPf/5D3759KzxAIYQQVz+TTst/J3VX3+f7eR0kd3LjnhDCG9sM32LCgQnvZugKKahIWW2BqUgVfoZCCCGCy+dEqn79+nzwwQdF9i9cuLBCAhJCCFH1aDQKidGhAbuf2eaqSJXVte9ydRULoYp3SRRAiLEgkQpQRSrQz1AIIUTpfE6kPvroI7RaLX36eM7EsnXrVux2O7feemuFBSeEEEKUh6VgJj1fKlK+CjUaALDZZLIJIaqqPn36cODAAXJycqhXrx4bN27kuuuuC3ZYopLweRXEJ554osiUh+CaAcXXGUeEEEJUDxabgzkfHWHOR0ew2Lyv+pT7flZ3Rcr7ROp5W13mWOthcXo3g6C7ImUr5jvRHwL9DIUQsGXLFn7//Xdyc3P55ZdfJIkSHnxOpH744Qd1+vPLXXvttfz4448VEpQQQoiqxeZw8PInJ3j5kxPYHIFIpFzJTYgPswGussfzsj0BG94lUqGmwCZSgX6GQgghSudzIhUZGcmJEyeK7P/xxx+LLDwmhBBCBIO1ILkxVfC06pcLK+jaZ/fzxBlCCCEqJ58TqQEDBjBmzBiOHz+u7vvxxx8ZP348AwYMqNDghBBCiPKwFoxbMun1frtHRIgrkXI67djsUiESQojqxudE6vnnnycsLIxrr72WpKQkkpKSaN68OTExMfzzn//0R4xCCCGET6wFVSKjPytSBYmUBic5FplwQgghqhufv2EiIyP57LPP2LZtG19//TUhISGkpKRw8803+yM+IYQQwme2gkQq1Oi/ilSIQY9GUXA4nWTnWYgsSKyEEEJUD+X6qU5RFHr37k3v3r0rOh4hhBDiitnsdnRAiNF/FSmNRoNOo8Fit5Odb/HbfYQQQlROXn3DLFmyhAcffBCTycSSJUtKbZuWllYhgQkhhBDl4XQ61UQq1OC/ipSiKGh1WrDbyZFESgghqh2vEqmFCxdy//33YzKZWLhwYYntFEWRREoIIUQRJp2WrWNvVt8DRbYrisXuQHE6QflzradS43roOhyvvgqARgET3k8codW6Ys8NQCJV3DMUQggRPF4lUidPniz2vRBCCOENjUahaVyEx77C2xUlz2JHoziBssdIaTQKTWuHgTa/XPdSEymztVzn+6K4ZyiEECJ4fJ61b+bMmeTm5hbZn5eXx8yZMyskKCGEEKK88qx2NDjRahSMev+NkQLQ61zXD0QiJYQQonLxOZGaMWMG2dnZRfbn5uYyY8aMCglKCCFE1WKxOVi47RgLtx3DYnMU2a5IeRY7Ck50GkWtGJUa166T/NNSh39a67LQWgeLU/H6Xu5EKi8AiZQ/n5kQomp5+eWXSUxMRKPRsGjRomCHU2X5nEg5nU4UpeiXzNdff010dHSFBCWEEKJqsTkcLE7/gcXpP2BzOIpsV6Rciw0NTnQaDRpN6V9zNoeDxZ/8xFJHXZba67DYXhcbPiRSeleiFohEyp/PTIjq6PTp0/zjH/+gUaNGGI1GEhMTuf3220lPTw92aMVavXo1UVFRZbbLysri0Ucf5fHHH+fXX3/lwQcf9H9w1ZTXfR5q1qyJoigoikLTpk09kim73U52djYPP/ywX4IUQghRtWg1CkNvaKC+r0g5BUmNXquUmUhpNQpDO9TBeuAg6x1xPt/LUNB1MM8iXfuEuJpkZGRw4403EhUVxbx580hJScFqtbJlyxYeeeQRvv/++3Jd12q1otcXHZtZ0n5/OHXqFFarldtuu42EhIRi2wQynqrM64rUokWLWLBgAU6nkxkzZrBw4UL19eKLL7J7926WLVvmz1iFEEJUEUadllkDWzJrYEuMFTwDXU6+O5HSlNm1z6jTMuvWpkzT/1Kue7nHYJlljJQQLk4n5OQE7+V0ehXm6NGjURSFL774grvvvpumTZvSokULxo0bx549e9R2p06d4o477iA8PJwaNWowePBg/ve//6nHp0+fTps2bXj11VfVypa799aLL77IHXfcQVhYGLNnzwbg/fffp3379phMJho1asSMGTOw2Wzq9S5cuMCDDz5IXFwcJpOJli1b8sEHH7Bz505GjBjBxYsX1cLG9OnTi3yu1atX06pVKwAaNWqEoihkZGSUGOfFixd58MEHqV27NjVq1OCWW27h66+/9rjms88+S1xcHBEREYwaNYonnniCNm3aqMe7devGmDFjPM4ZOHAgw4cPV7ctFguTJk2ibt26hIWF0bFjR3bu3OkRd1RUFFu2bKF58+aEh4fTt29fMjMzPa776quv0qJFC4xGIwkJCTz66KMAjBw5kv79+3u0tdlsxMfH82rBrKz+4HVFatiwYQAkJSVx4403otP5dwCvEEIIUR5qIqXTFtsVvSIZCn7RzbfaymgpRDWRmwvPPx+8+0+cCGFhpTY5d+4cmzdv5plnniGsmLbu7nNOp5OBAwcSFhbGrl27sNlsjB49mnvvvdcjCfjxxx95++23effddz1+vHn66aeZO3cuCxcuRKvVsmXLFoYMGcKSJUu46aabOH78uNrt7umnn8bhcHDrrbdy6dIlXn/9da655hoOHz6MVqulc+fOLFq0iGnTpnH06FEAwsPDi8R+7733kpiYSM+ePfniiy9ITEwkNja2xDhvu+02oqOj+eijj4iMjOSll16iR48eHDt2jOjoaN5++22efvppli1bxk033cTatWtZsmQJjRo18v6/CTBixAgyMjJYv349derUYePGjfTt25dvv/2WJk2aAK75Fv75z3+ydu1aNBoNQ4YMYcKECbzxxhsArFixgnHjxvHss89y6623cvHiRT799FMA/va3v3HzzTeTmZmpVuE++ugjsrOzGTx4sE+x+sLnbCgiIoIjR46o2e7//d//sWrVKpKTk5k+fToGg6HCgxRCCFG1OJ1OzuW41l6KDjNUaMLj7tqn86LS5Y4jz1m+HwdNBRUpi1UqUkJcLX788UecTifXXnttqe22b9/ON998w8mTJ0lMTARg7dq1tGjRgn379nHdddcBrmrL2rVr1YTF7b777mPkyJHq9tChQ3niiSfU4kSjRo2YNWsWkyZN4umnn2b79u188cUXHDlyhKZNm6pt3CIjI1EUhfj4+BJjDgkJISYmBoDY2FiPtoXj3LFjB99++y1nzpzBaDQC8M9//pNNmzaxYcMGHnzwQRYtWsTIkSP529/+BsDs2bPZvn07+fneLxlx/Phx3nzzTX755Rfq1KkDwIQJE9i8eTOrVq1izpw5gKu74Ysvvsg111wDwKOPPuoxI/js2bMZP348jz32mLrP/d+gc+fONGvWjLVr1zJp0iQAVq1axT333FNswllRfJ5s4qGHHuLYsWMAnDhxgnvvvZfQ0FDeeecdNXAhhBCiNHlWO+1nb6f97O3kWe0Ve23znxUpr+JY8BldLK3LdS+jwVWRMktFSoirhrOg+19ZP+AcOXKExMRENYkCSE5OJioqiiNHjqj7GjRoUCSJAujQoYPH9v79+5k5cybh4eHq64EHHiAzM5Pc3Fy++uor6tWrpyZRFa1wnPv37yc7O5uYmBiPmE6ePMnx48cB1zPo1KmTx3UKb5flwIEDOJ1OmjZt6nGfXbt2qfcBCA0NVZMogISEBM6cOQPAmTNn+O233+jRo0eJ9/nb3/7GqlWr1PYffvihRyLrDz7/BHfs2DG1X+Q777xD165dWbduHZ9++il/+ctfZIpFIYQQQeVe08kQgC7opoJEylLByaAQwn+aNGmCoigcOXKEgQMHltiupJmqC+8vrntgcfsdDgczZszgzjvvLNLWZDIREhLi5Scon+LiSUhI8Oim6ObN7IBuGo1GTU7drJdV6R0OB1qtlv379xcZt3p5tajw5BeKoqjX9ebZpKam8sQTT/D555/z+eef07BhQ2666SavP0d5+Pwt43Q6cRRMu7p9+3Z1YFdiYiJnz5716VorVqxgxYoVZGRkANCiRQumTZvGrbfeqt5rxowZvPzyy5w/f56OHTuybNkyWrRooV7DbDYzYcIE3nzzTfLy8ujRowfLly+nXr16vn40IYQQfmLUafm/R25U35tt/ks88vJdXQYNPi7G+5b+CCbFiRHvpxYPMbruYbX5v2tf4WcoRKUUGuoapxTM+5chOjqaPn36sGzZMtLS0ookGBcuXCAqKork5GROnTrFzz//rFalDh8+zMWLF2nevLnPobVr146jR4/SuHHjYo+npKTwyy+/cOzYsWKrUgaDAbu94v7ubNeuHadPn0an09GwYcNi2zRv3pw9e/aQmpqq7rt8Mg5wdSG8fFIIu93Od999R/fu3QFo27YtdrudM2fOlDuxiYiIoGHDhqSnp6vXLSwmJoaBAweyatUqPv/8c0aMGFGue/nC50SqQ4cOzJ49m549e7Jr1y5WrFgBwMmTJ4mL823q2Hr16vHss8+qf6DWrFnDHXfcwcGDB2nRogXz5s1jwYIFrF69mqZNmzJ79mx69erF0aNHiYiIAGDMmDG8//77rF+/npiYGMaPH0///v2LzXqFEEIEh1aj0DoxKiD3yrW4utm513jyVitNLqGKb+szuStS1gB07QvkMxSi3BSlzMkeKoPly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs+ePUlJSeH+++9n0aJF6mQTXbt2LdJtzxvTpk2jf//+JCYmcs8996DRaPjmm2/49ttvmT17Nl27duXmm2/mrrvuYsGCBTRu3Jjvv/8eRVHo27cvDRs2JDs7m/T0dFq3bk1oaCihXiSOJenZsyedOnVi4MCBPPfcczRr1ozffvuNjz76iIEDB9KhQwcee+wxhg0bRocOHejSpQtvvPEGhw4d8hi7dcsttzBu3Dg+/PBDrrnmGhYuXMiFCxfU402bNuX+++8nNTWV+fPn07ZtW86ePcuOHTto1aoV/fr18yre6dOn8/DDD1O7dm11Uo5PP/2Uf/zjH2qbv/3tb/Tv3x+73a6ORfMnn8dILVq0iAMHDvDoo48yZcoUNQnasGEDnTt39ulat99+O/369aNp06Y0bdqUZ555hvDwcPbs2YPT6WTRokVMmTKFO++8k5YtW7JmzRpyc3NZt24dABcvXmTlypXMnz+fnj170rZtW15//XW+/fZbtm/f7utHE0IIUQXkF6zpZAzAGimhJtcES1Y/VtiEEBUvKSmJAwcO0L17d8aPH0/Lli3p1asX6enpapFAURQ2bdpEzZo1ufnmm+nZsyeNGjXirbfeKtc9+/TpwwcffMC2bdu47rrruOGGG1iwYAENGjRQ27z77rtcd911/PWvfyU5OZlJkyapVajOnTvz8MMPc++99xIbG8u8efOu6BkoisJHH33EzTffzMiRI2natCl/+ctfyMjIUIsj9957L9OmTePxxx+nffv2/PTTT/z973/3uM7IkSMZNmwYqampdO3alaSkpCJVo1WrVpGamsr48eNp1qwZAwYMYO/evR7jz8oybNgwFi1axPLly2nRogX9+/fnhx9+8GjTs2dPEhIS6NOnjzqxhT8pzsKdGsspPz8frVZb7sW97HY777zzDsOGDePgwYOYTCauueYaDhw4QNu2bdV2d9xxB1FRUaxZs4YdO3bQo0cPzp07R82aNdU2rVu3ZuDAgcyYMcOre2dlZREZGcnFixepUaNGueIXQghRMovNwapPTwIw4sYkbA4HydO2AHB4Zh9CDRU3nmncqh2cOP4jt7RpTNrdt5TaNtdiU+MYr/0Fg+JkhPZ/GCZN8OpX9fRvMnjh7a1EhYex+on7KyT+khR+hgadz7+FClHh8vPzOXnyJElJSZhMpmCHIwJg+vTpbNq0ia+++irYoRSRm5tLnTp1ePXVV4sdi3a50v7sepsbVNg3V3n/5/n222/p1KkT+fn5hIeHs3HjRpKTk/nss88AinQXjIuL46effgLg9OnTGAwGjyTK3eb06dMl3tNsNmM2m9XtrKyscsUuhBDCOzaHg7n/+R6AoZ0alNH6yuQXdO0LMfr2w958u2ts7VDtGbxdyMNdkbLZ/d+1r/AzNPjeqUQIIaokh8PB6dOnmT9/PpGRkQwYMCAg9/UqkYqOjubYsWPUqlWLmjVrljpd5Llz53wKoFmzZnz11VdcuHCBd999l2HDhrFr1y71eOF7lTSDii9t5s6d63W1SgghxNXFUjDxg3v8kj+Fm1z3sNvtXn0/CSGEqHinTp0iKSmJevXqsXr1anQBmLUVvEykFi5cqE7usHDhwgr9ojAYDOo4qw4dOrBv3z4WL17M448/DriqTu4VisE1L7y7ShUfH4/FYuH8+fMeVakzZ86UOl5r8uTJjBs3Tt3OysryqY+mEEKIystcUJEKRCIVVrCIpc3ukERKCFEtTJ8+nenTpwc7DA8NGzYsMgV7IHiVSF0+68Xw4cP9FQvgqiaZzWaSkpKIj49n27Zt6hgpi8XCrl27eO655wBo3749er2ebdu2MXjwYAAyMzP57rvvSh2AZzQa1RWchRBCVC3uGfRCA5FIFVSkbA4HdrsdjUa62wkhRHXhc91Lq9WSmZlJ7dq1Pfb/8ccf1K5d26f57Z988kluvfVWEhMTuXTpEuvXr2fnzp1s3rwZRVEYM2YMc+bMoUmTJjRp0oQ5c+YQGhrKfffdB0BkZCSjRo1i/PjxxMTEEB0dzYQJE2jVqhU9e/b09aMJIYSoAiwFiZTJ6P+uHaFGHU4UcDrJNVuJDMBMgUIIISqHci3IWxyz2YzB4O3wXJf//e9/DB06lMzMTCIjI0lJSWHz5s306tULgEmTJpGXl8fo0aPVBXm3bt2qdjMEV1dDnU7H4MGD1QV5V69eLWtICSFENWW129ECYSbfvpPKI9Sgw4GCFic5+VYiw/1+SyEqJYfDtzXYhAi2ivgz63UitWTJEsA1+cO//vUvwsP//Law2+188sknXHvttT7dfOXKlaUeVxSlzH6YJpOJF154gRdeeMGnewshhKiarFYbWiDU5P/qkFajuLrzORzkmC1+v58QlY3BYECj0fDbb78RGxuLwWCQsYKiUnM6nVgsFn7//Xc0Go3PhaDLeZ1ILVy4UL35iy++6FHxMRgMNGzYkBdffLHcgQghhKi6jDotbz5wg/oeKLJdEewOp+tXRgXCjWV/ORp1Wt4c2hrHm2+B4lql3ohvv1LqtFrsDhu5+dZyRu2d4p6hEMGm0WhISkoiMzOT3377LdjhCOG10NBQ6tevf0VjW71OpE6edC0C2L17d957770iazcJIYQQJdFqFDpdE+Oxr/B2Rci12NDi6oLuTdc+rUahU8OaoLtU7nvqdVrsVsgx+zeRKu4ZClEZGAwG6tevj81m82msvBDBotVq0el0V1w99XmM1Mcff3xFNxRCCCH8JddiR6M40CiKzwvylpeuoIdGrp8TKSEqM0VR0Ov16GXCFVGNlGtKo19++YV///vfnDp1CovFs0/4ggULKiQwIYQQVYfV7uDNL04B8Nfr6wN4bOu1FTNteI7ZhgYneq3i1YKMVruDN/f9it1aGxTQAn/V/o4v/xTUF3Szy7P4N5Eq/Awr6pkJIYQoH58TqfT0dAYMGEBSUhJHjx6lZcuWZGRk4HQ6adeunT9iFEIIcZWz2h1M+79DANzdvh6Ax3bFJ1Jar2ZvtdodTNv8A9BA3Xe39qxPiZQ7Ycsz23yM1jeFn6EkUkIIEVw+/y08efJkxo8fz3fffYfJZOLdd9/l559/pmvXrtxzzz3+iFEIIUQVo1EU+rWKp1+reDQVOMNXjtmGghO9VuNVIqVRFPo1j6W3cq7c9zQEqCIlhBCicvE5kTpy5AjDhg0DXL/C5eXlER4ezsyZM3nuuecqPEAhhBBVj0mvZfn97Vl+f3tM+oqbgS473wyAXqt4lUiZ9FqW392CRYaT5b6noSB+s8W/FSkhhBCVi8+JVFhYGGaz64uqTp06HD9+XD129uzZiotMCCGE8FFOnqsqVBGzMXnLoHN1BMyXipQQQlQrPo+RuuGGG/j0009JTk7mtttuY/z48Xz77be899573HDDDf6IUQghhPCKe1FcfQDXWTIWVKTyrVKREkKI6sTnRGrBggVkZ2cDMH36dLKzs3nrrbdo3LixumivEEIIUZpci43kaVsAODyzD6GGck0iW0RewRTkei9m7FPjmLUTaF/uexoLYpeufUIIUb34/M3VqFEj9X1oaCjLly+v0ICEEEKI8spVK1IVk5h5w6gvSKSkIiWEENVKuRKpffv2ERPjubr6hQsXaNeuHSdOnKiw4IQQQlQNBq2GV4d3UN9b7A6/3Mc9BbmxHBWuFbofMCpODPgWm6ngXhar3ed7+qLwMxRCCBFcPn/TZGRkYLcX/bIwm838+uuvFRKUEEKIqkWn1XDLtXHqtv8SKVfXPkM5KlJdtVmEKr7HZTK4Jpuw2PxbkSr8DIUQQgSX1980//73v9X3W7ZsITIyUt222+2kp6fTsGHDCg1OCCGE8EW+1ZVIlaciVV4haiLl34qUEEKIysXrb5qBAwcCoCiKuo6Um16vp2HDhsyfP79CgxNCCFE1WO0ONh109VoY2Lau3+6TXzDhg1Gv9/ncjfYYDDgYqD2HL2eHFCRtNj9XpAo/Q7107xNCiKDyOpFyOFzdHZKSkti3bx+1atXyW1BCCCGqFqvdwcQN3wBwW0qC3+5jLljLKcToe0Vqiq0hALdpz/uUSJmMrtZWP1ekCj9DSaSEECK4fP6mOXmy/Ku/CyGEEP7knjnPaPC9IlVeoQFKpIQQQlQuXv+ctXfvXv7zn/947HvttddISkqidu3aPPjgg5jN5goPUAghhPCWpSCRCg1oImUAKHYiJiGEEFWX14nU9OnT+eabb9Ttb7/9llGjRtGzZ0+eeOIJ3n//febOneuXIIUQQghvuBOpEGMgE6mCMVKSSAkhRLXidSL11Vdf0aNHD3V7/fr1dOzYkVdeeYVx48axZMkS3n77bb8EKYQQQnjDPeFDqClwiVS4qaAiJV37hBCiWvE6kTp//jxxcX+uX7Fr1y769u2rbl933XX8/PPPFRudEEII4QP3FOShAaxIhRUkbQ6nQ8ZJCSFENeJ1IhUXF6dONGGxWDhw4ACdOnVSj1+6dAl9OaabFUIIISqKuyIVVlAlCoSwy6pf2QULAgshhKj6vJ61r2/fvjzxxBM899xzbNq0idDQUG666Sb1+DfffMM111zjlyCFEEJc3QxaDcvua6e+B4psXymr3YHT4QAFwo1G7+O6Kxn7/7kWndcqYMDh031Neh0aRcHhdJKTb6FmmMnn2L1R3DMUQggRPF4nUrNnz+bOO++ka9euhIeHs2bNGgyGP3/xe/XVV+ndu7dfghRCCHF102k1RdaPquj1pHItdjQ4Ac8qUZlxJdeGD8+X+74ajQatRovDbiMn338VqeKeoRBCiODxOpGKjY3lv//9LxcvXiQ8PBytVutx/J133iE8PLzCAxRCCCG8kWuxoVEcaDWKukhuoGh1Gqx2yPVjIiWEEKJy8XlB3sjIyGL3R0dHX3EwQgghqiab3cGWQ/8DoE8L18RFl2/rKqCrWo7ZjhYneq2myI99pcZ1+Ax2W03A1bWvj+a8z1+OuoL75VosPp7pvcLPsCKemRBCiPLzOZESQgghfGWxO3hk3QEADs/sA+CxXSGJVL4FBSd6jeJ1ImWxO3jk3cNAY3XfYeP+cidSOWabj2d6r/AzlERKCCGCSxIpIYQQAadRFDomRavvK4J7xjxfKlIaRaFjg0jsP/3Ml9Qo9711Otf98mTWPiGEqDYkkRJCCBFwJr2Wtx7qVHZDH+Tku7rV6XRaNBrvqjUmvZa3UtuSO28Hyeb25b63Qef6OpVESgghqg/pFyCEEKJKyM5zJVJ6nXfVqIrkvmeexX9d+4QQQlQukkgJIYSoEvLUilTgF4c36KUiJYQQ1Y107RNCCBFwuRYbXZ77GIDdj3cn1HDlX0c55oKKlN77a+VabHSZ/ylOc8oV3dugd1WkzFKREkKIakMSKSGEEEFxLqdipwp3V6QMet8qUudyrcCVVbEMBVWwfKskUkIIUV1IIiWEEMLv9FoNz9+dor632h0Vfo+8goqUsZzVrWd0GRhwoMfp87lGd0XKj4lU4WcohBAiuCSREkII4Xd6rYZ7OiSq2/5IpPItrvFJvlak3AZp/yBUKV9c7uTN34nU5c9QCCFEcMlPWkIIIaoEc0EiZTIYAn5vo97/iZQQQojKRSpSQggh/M5md/DJD78DcHOTWL/cw12RCjGWryK1y14Do+LkZs1Fn78cQwoqUlY/JlKFn6FOuvcJIURQSSIlhBDC7yx2ByNXfwnA4Zl9/HIPdxITYipfRervtiYAHDbu9/nL0WRwJW8Wm/8SqcLPUBIpIYQILvlbWAghRJVgsboqUqHGwHftc1fBLFZ7wO8thBAiOCSREkIIUSW4K1Jh5axIXQl31z6bTRIpIYSoLiSREkIIUSXYbAUVqWAkUgVVMKtdJpsQQojq4v/bu/P4SMo68eOfqr670+l07nsymcx9nzDcLJeIIsvuD1ddRWHdVdGFH67Xuqv81MVdEGUVZV0XEWUFL0RFBUbkhuGY+57MJJnJfafvu+r3R6eL9CSZyTmdGb7v12tek+5UVz/1pLuqvs/xfSSQEkIIcVZIpdK9QW6H7bS/t8suPVJCCPF2I4GUEEKIM56u6ySHEz24chBIOYdTrickkBJCiLcNCaSEEEKc8ZLJJMnhRX5z0SPldqQDqZSmkdL00/7+QgghTj9Jfy6EEGLWWUwqX3nPcuNnYNTj6QjH4mi6jo5CnmPi60hZTCpfecdCUlv+BAqYAAuTD4Tcw++pohGMJfFMogwTNVYdCiGEyB0JpIQQQsw6i0nlQ5vrsp478fF0BCNxAFKouKwTv7RZTCof2lgFz/VM6/2ddhsmVQFNxx+Jz1ogNZN1JoQQYnqkSUsIIcQZLxCJpX9Q1ZwsVGs2m7ENv28gHDvt7y+EEOL0y2kg9fWvf52NGzfidrspLS3luuuu49ChQ1nb6LrOHXfcQWVlJQ6Hg0suuYR9+/ZlbROLxfjUpz5FcXExLpeLa6+9lra2ttN5KEIIIU4ipem8erSfV4/2k9L0UY+nKzQcSJlNkxtokdJ0Xm0Z5OWkm5dTbl5NuUlNoTiKomC2pN/bN0uB1EzXmRBCiOnJaSD1/PPPc8stt7B161a2bNlCMpnkyiuvJBQKGdvcddddfPOb3+S+++7jjTfeoLy8nCuuuIJAIGBsc9ttt/HrX/+aRx99lJdeeolgMMi73vUuIxWuEEKI3IolU7zvB1t53w+2EkumRj2ertDw0D6zeXJD6mLJFO/7yS4+kFzCBxJLeF9iCbEpXhrN5nQgNVs9UjNdZ0IIIaYnp3OknnzyyazHDz74IKWlpWzbto2LLroIXde59957+eIXv8j1118PwEMPPURZWRk//elP+Yd/+Ad8Ph8PPPAAP/nJT7j88ssBePjhh6mpqeFPf/oTV1111Wk/LiGEECenoLCwNM/4ebpCseEeKbNp8uUodqL19XMUx7TKYLWkg7hgRIb2CSHE28GcmiPl8/kAKCwsBKC5uZmuri6uvPJKYxubzcbFF1/MK6+8AsC2bdtIJBJZ21RWVrJixQpjmxPFYjH8fn/WPyGEEKePw2piy+0Xs+X2i3FYJxf8jCUcTQBgsU6uR8phNbHl45v4nW3/tMtgHR7aJ4GUEEK8PcyZQErXdW6//XYuuOACVqxYAUBXVxcAZWVlWduWlZUZv+vq6sJqteL1esfd5kRf//rX8Xg8xr+ampqZPhwhhBCnUTiWHtpns8x8tryJsg0HccGoBFJCCPF2MGcCqU9+8pPs3r2bRx55ZNTvFCV72Ieu66OeO9HJtvnCF76Az+cz/rW2tk694EIIIXIuOhxIWedAIBWOxnNWBiGEEKfPnAikPvWpT/Hb3/6WZ599lurqauP58vJygFE9Sz09PUYvVXl5OfF4nMHBwXG3OZHNZiM/Pz/rnxBCiNMnEk9xxTef54pvPk8kPv3ECdFYemifbZJD+yLxFFfc/zrvji2bdhkcNmt6n8PDDIUQQpzdchpI6brOJz/5SR577DH+/Oc/M3/+/Kzfz58/n/LycrZs2WI8F4/Hef755znvvPMAWL9+PRaLJWubzs5O9u7da2wjhBBibtHRaewJ0tgTRGf6qbxj8XTw4rBNLpDS0WnsC0870QSAc/i9I3HpkRJCiLeDnGbtu+WWW/jpT3/Kb37zG9xut9Hz5PF4cDgcKIrCbbfdxp133snChQtZuHAhd955J06nk/e///3GtjfffDOf/vSnKSoqorCwkH/6p39i5cqVRhY/IYQQuWVWVb5w9RLj56Smzej+Y4l0IGW3Wqe8j0+b2rAqOuYpBnaZHqlofHZ6pE6sQyGEELmV00Dq/vvvB+CSSy7Jev7BBx/kwx/+MACf/exniUQifOITn2BwcJBzzjmHp59+GrfbbWz/rW99C7PZzA033EAkEuGyyy7jRz/6ESbT9DNBCSGEmD6rWeUfLl5gPE7GZzaQig8HL85J9kiNdLO5G6cy9XK5HDbgrd6xmXZiHQohhMitnAZSun7qVj9FUbjjjju44447xt3Gbrfzne98h+985zszWDohhBBnikQyCYDDPvUeqely2dOBVHyWAikhhBBzS04DKSGEEG8PKU1nb3t6rcAVVZ4Z3beu60Yg5ZpGILVHc2JXdFYoIaYynsHtSL93PJGcchlO5sQ6NKnTX8hYCCHE1EkgJYQQYtbFkine892XAdj/latmdN+pVIpEMj0kL9MrNBXvTSwFYL9tG84pvD5veGjfbAVSJ9ah0yqXcCGEyCWZrSqEEOKMlkwmSaQ0dBRc9tytI5XvTAdSydTsBFJCCCHmFgmkhBBCnNE0TSOR0tBQcFpzl2TI40oHUqlkEm2GsxIKIYSYeySQEkIIcUZLpVIkUjoaCi5b7oa7eZx2ADRdJxiRtaSEEOJsJ4GUEEKIM1o6kNLQdDWnPVJ5dgs66QQQvnA0Z+UQQghxekggJYQQ4oyWCaRSKDlNwKAoCiZz+v394VjOyiGEEOL0kEBKCCHEGS2ZTBIfniPlymGPFIBlOJAKSCAlhBBnPcmdKoQQYtaZVZVbL1to/AyMejxV0UQSXSedbGKSc6TMqsqtF80j9dIroCiY0DFz6sXix2OxWIhFIwQiMx9IjVWHQgghckcCKSGEELPOalb5v1csynruxMdTFRpO7KCh4LBMrkfKalb5vxfPh9d/OSNlsVrSl9XgLARSY9WhEEKI3JEmLSGEEGe0YDQdSFlMJkyqktOyWC3pdaxCUcnaJ4QQZzvpkRJCCDHrNE3nSG8QgIaSPICsx+o0AqBgNAGAbQqJJjRN50hPCC2VTl2uKtCgRKfcymi3zV4gdWIdTqfOhBBCTJ8EUkIIIWZdNJniym+9AMD+r1wFkPV4Otn2MkGL3WqZWrm+/waw0nhuv20bzimWJVOG8CwEUifWYS4zFAohhJBASgghRI4Uuqwzsp9wLAlMLZACKHRa0MNhBpna60dy2GwARGIytE8IIc52EkgJIYQ47ZxWM9v/9YoZ2Vd4OGhxTKGHxmk1s/3T5xO+6x6WxdZPuyxOezoYi8YS096XEEKIuU2STQghhDijRYaDFodt+j1K0+WypXvZYnEJpIQQ4mwngZQQQogzWmQ4aHHaZmao4HS4HOmhfdGEBFJCCHG2k6F9QgghTrtoIsWNP3wdgIdu2oR9kus/Ze0rnp4j5ZxCj1Q0keLGH+8gFVs45fcfKc+RDuYSEkgJIcRZTwIpIYQQp52m67zWPGD8PB3R4R4pl33ygZSm67x2zAfkT6sMGW8FUqkZ2Z8QQoi5SwIpIYQQs86sqvz9RfXGz0lNm7F9xxLpHimXfXpD+z5i6sKCjpmpB3b5w0P74smZ75E6sQ6FEELklgRSQgghZp3VrPLP71xqPE7GZy6Qig8P7XM7ppds4jPmdpzK9MrldqYDqUQyhaZpqDMY8JxYh0IIIXJLmrSEEEKc0eLJTCBly3FJwDMcSMWSGqmUDO8TQoizmQRSQgghZp2m6bQOhGkdCKNp05sTNZKu68SHh/bl2acXSLXrVlo1K9MpXoHTio5CStMJR2d2Ud7ZqkMhhBBTI4GUEEKIWRdNprjwrme58K5niSZnrqdG0zTiyfRwvHzn9Ib2XRFfyYXx1USncWl0Wc1oKAAMhWPTKs+JZqsOhRBCTI0EUkIIIc5YmqYRT6UDqcywulxSVQWzOT392D/DgZQQQoi5RQIpIYQQZ6xkMkk8qaGjkO/I/YK8ADZLJpCa2aF9Qggh5hYJpIQQQpyxQtEEmq6TQiHPNjcS0VozgVREeqSEEOJsJoGUEEKIM1YmWNFRcVpNOS5Nms2anqsVjEiPlBBCnM0kkBJCCHHGCgwHKxazCUVRclyaNLs13SMVlB4pIYQ4q0kgJYQQ4ozlHw6kMsPp5gLHcI9UaIbTnwshhJhb5s6VRwghxFnLpCp88Nx5xs/AqMdTERoOpGxTDKRMqsIHN1SS2r4DUDApOiamt0aTEUjFEtPaz4nGqkMhhBC5I4GUEEKIWWczm/jqdSuynjvx8VQEpxlI2cwmvnr1Itj7m2mXJcNpT2cPnOkFeceqQyGEELkjQ/uEEEKcsUKx4UDKOnfaBZ32dI9UZIZ7pIQQQswtc+fKI4QQ4qyl6zoDoXTQU+hK99iMfDzVRBGhaDpYsQ8Pp5tquXQtfTlUFCgkyXQGzrls6eOLxGc2kDqxDudKcg0hhHi7kkBKCCHErIskUqz/2p8A2P+VqwCyHjun2KMUHu71cUwxkIokUqz/5ivAWuO5/bZtOKe0tzS3wwZANJ6cxl5GO7EOp1pnQgghZoYM7RNCCHHGygyfc9imFkjNhjxHukcqOsM9UkIIIeYWac4SQghx2jmtZlr+/Zpp7yczfM45xUDKaTXT8q+XEL7rHpbF1k+7PAB5w8km4omZ7ZESQggxt0iPlBBCiDNWdJqB1GzId6WH9kkgJYQQZzcJpIQQQpyxMvOQXMO9QHOBx5kuSyKZRNOmtyaVEEKIuUuG9gkhhDjtookUt/98JwDfvGENdotpivtJ90i57FPrkYomUtz+y30k4/On9PqxeJx2ABR0QvEk7imWTQghxNwmPVJCCCFOO03X+cOeLv6wpwtNn3qvTXy4Rypvij1Smq7zhwO9PK0XTrkMJ3LZrZhUBRM6vogknBBCiLOV9EgJIYSYdSZV4a/WVRs/p2ZoyFs8kQLAbbdNe1/XqX2YABPTK5vJZMJmUglrKXzhGNXe6SRTH7HfE+pQCCFEbkkgJYQQYtbZzCbuuWG18Tg8Q2ssJZLp/bid058jdaflGE5Fm/Z+VFXFajERTqTwhWLT3l/GiXUohBAit2RonxBCiDNSStNJpIZ7pGYgkJopiqJgtaTbKf3hmQukhBBCzC3SIyWEEGLW6bpOZHgYnmOKiSVOFIgmUEn3IHkc0x/aF9bTbYsONKY7cM5qTl9eA5H4NPf0lhPrUFFkeJ8QQuSSBFJCCCFmXSSRYtmXngJg/1eumpF9DoXjqOhYTSqOGVhHakN8LQD7bduY7qwmm3W4Ryoycz1SJ9ah0yqXcCGEyCUZ2ieEEOKM1B+IAGC3mDCb51ZQYbOkA7tQdOZ6pIQQQswtOQ2kXnjhBd797ndTWVmJoig8/vjjWb/XdZ077riDyspKHA4Hl1xyCfv27cvaJhaL8alPfYri4mJcLhfXXnstbW1tp/EohBBC5MLAcCBlsVhQ1bnVLmi3pgOpQFgCKSGEOFvl9MoTCoVYvXo1991335i/v+uuu/jmN7/JfffdxxtvvEF5eTlXXHEFgUDA2Oa2227j17/+NY8++igvvfQSwWCQd73rXaSGJyALIYQ4Ow0GwwDYrHNvwdvMUMNQTAIpIYQ4W+V0LMTVV1/N1VdfPebvdF3n3nvv5Ytf/CLXX389AA899BBlZWX89Kc/5R/+4R/w+Xw88MAD/OQnP+Hyyy8H4OGHH6ampoY//elPXHXVzIzDF0IIMff4Q1EA7La5k7Evw5kJpKKyIK8QQpyt5tZYiBGam5vp6uriyiuvNJ6z2WxcfPHFvPLKKwBs27aNRCKRtU1lZSUrVqwwthlLLBbD7/dn/RNCCHFmyQRSjhlYjHemOe3p4C4Sk0BKCCHOVnM2kOrq6gKgrKws6/mysjLjd11dXVitVrxe77jbjOXrX/86Ho/H+FdTUzPDpRdCCDHbAuF0IOW023NcktFcwz1SkbgM7RNCiLPV3EpzNIYT18nQdf2Ua2ecapsvfOEL3H777cZjv98vwZQQQswiVVF458py42dg1OPJCkXSgZTbOfUeKVVReOfSElIHD4ECJkBFn/L+MvIcwz1SMzi0b6w6FEIIkTtzNpAqL09fLLq6uqioqDCe7+npMXqpysvLicfjDA4OZvVK9fT0cN555427b5vNhs0294aCCCHE2cpuMfG9D6zPeu7Ex5MVGU7k4HZOvUfKbjHxvb9eDnf/YVplOVHBcHA3k8kmxqpDIYQQuTNnh/bNnz+f8vJytmzZYjwXj8d5/vnnjSBp/fr1WCyWrG06OzvZu3fvSQMpIYQQZ77I8BpNHtfcG9pXkJcuUzSeJJnSclwaIYQQsyGnPVLBYJAjR44Yj5ubm9m5cyeFhYXU1tZy2223ceedd7Jw4UIWLlzInXfeidPp5P3vfz8AHo+Hm2++mU9/+tMUFRVRWFjIP/3TP7Fy5Uoji58QQoizU2x4/pEnz5HjkoxW4LKjKKDqGoPhBCVuGQUhhBBnm5wGUm+++SaXXnqp8Tgzb+nGG2/kRz/6EZ/97GeJRCJ84hOfYHBwkHPOOYenn34at9ttvOZb3/oWZrOZG264gUgkwmWXXcaPfvQjTCbTaT8eIYQQYwvHkyz70lMA7P9KemmKkY+d1slfjuLDgZQ3zzm9cn31OWCj8dx+2zamvsc0q8WM3WwiGNcZCMVnJJA6sQ6nUmdCCCFmTk7Pwpdccgm6Pv6kXkVRuOOOO7jjjjvG3cZut/Od73yH73znO7NQQiGEEHORpmkkEulEDkX5c69HymQy4bCYMMd1+kMxwH3K1wghhDizSHOWEEKI085hMbHtXy43fp4sXyiKpuuAQnH+1PuPHBYT224/j8h993NBfPWU93Miq9WKw2rCHI4xGJK1pIQQ4mwkgZQQQojTTlEUivKmPtytzx8GQFdM0xripigKRS4rYSU55X2MxWq14rCYMKHRH4jM6L6FEELMDXM2a58QQggxnsFAOpCyWC2nXFswF8xmM/bhAK9/uKxCCCHOLtIjJYQQ4rSLJVN87YkDAPzLu5ZiM09ueN9QKN3LY7Vapl+OPx4mkaie1n5OpCgKLkc6BfqQBFJCCHFWkkBKCCHEaZfSdH6y9RgAX3jnkkm/3heMAmC3Ti8bXkrT+cmbHUDZtPYzFqcjXbZM0CeEEOLsIoGUEEKIWacqCpcuLjF+1k6SsXUi/OF0cOK0W6ddtoyLVB8mdFSmV7aMfFc6m6A/FJ2R/Z1Yh0IIIXJLAikhhBCzzm4x8eBHNhmPw/HpJXcIhGIAOO32ae1npP+yHMGpaDO2P89wIBWKzEwgdWIdCiGEyC1JNiGEEOKME4ymg5M85/QXup0t3rx0IBWOxHJcEiGEELNBAikhhBBnnEg0HZzkO2euR2qmFQ6vbxWNx066+LwQQogzkwRSQgghZl04nmTpvz7J0n99ctrD+gAi0TgA+a6ZC6TWx9awNLqOsD4zl8bifBcAipbCH53+Mc90HQohhJgemSMlhBDitIgkUjO2r1g8HUhl5iHNhAiTS8F+Km6XA6tJJZ7UGAzF8Timl6odZrYOhRBCTI/0SAkhhDijpFIp4vEEAIXDvT5zkdVqxW4xYVFS9AVlnpQQQpxtJJASQghxRolGo0QTKVKoFObN3TlSVqsVp9WEgk5/QNaSEkKIs40EUkIIIc4o0WiUaFIjrpsocE5/uNxsUVUVuzVdvj5fKMelEUIIMdMkkBJCCHFGGQyESaQ0Epgozpu76c8B7PZ0+QalR0oIIc46EkgJIYQ47VKpqSdN6B4KAKCaLLhscztnksuRHno4FAznuCRCCCFm2ty+AgkhhDgrqIrCOfMLjZ8PHznCYq+KzWZFVZRJ7atvKD1MLm8GMvapisI58zxox1pBUVDRUZm5NZ/yhte58oWm3yN1Yh0KIYTILQmkhBBCzDq7xcTP/mEzAIODgwz19/KFcxx4vV7slsmlHR8IpAMpt8s5M+X60Fq4+0/T3tdYMunZg+HotPc1sg6FEELkngztE0IIcdpomsbhw4eNx7HY5NOC+wLpYXJe9/QDqdnmdacDqcAMBFJCCCHmFumREkIIcVrE43H27dtHJBJBVVU0TSM+vLDuROm6TjCcHiZXlJ83G8WcUWUFbgACYUk2IYQQZxsJpEaIx+OTvqgLIYQ4taFghMvufRld17nnYicNC+fznv/ZDcALq0Lk2SeWxjwejxOIxAGFIrd92ufscDzFpfe8BNE1ACjA8+Yd2OJxsEw/tXqZJ90jFY/F8Icikx7GOKqs33wRgGdvvxCnder7EkIIMb6JXlskkBrhnnvuwW6fu4s7CiHEmSilK3SlXAQSSwB48aWXePGllwgm1gHwzW9+E4uiTXh/HclCEjh57fkt9L88MK2yJXSVweg64K2g6ZVXXmGbniRhtU5r3wC6DirlWJUUd9x1Lx516oHfW2WFb3zjG5OqMyGEEBMXjU5sOLbMkRJCCDFrhjQ7v4iupClVZDx3NFmIGY3rbHu5zrYXM5MLCBKYSOgmnEpi2uUzo/HX6g6+vOfH097XWBQl/R4KOmF9+oGZEEKIuUPRdX3m8ryeofx+Px6Ph97eXvLz83NdHCGEOCvEkxrv/cHrNHYOstbRz2uRMuN3X712KYvNfQQCAZYuXUpxcfGE9tne3s4XfvwMXXEb3/34NSwsnYF5UqEQsXvuZWVyEwB7zK9j+/Rt4HJNf9/Abd/7NR19Pq6/7Fz+5vwlU95POJ5izdf+DMDOf/kLGdonhBCzxO/3U1JSgs/nO2lsIEP7RrBarVhnYCiHEEII+M9nD7KvM0C9I8kNG2t47YW3hrXd/XQj/3NtOSZTGF3XJ3zujcYTRBMacd1EVWHezJyzEwmSJhMk0w9NJlN6vzN0PfC48+jo89HnC0+rvMlMAQGr1YLVKpdwIYSYDRM9V8tZWAghxIw73B3g/ueOAnDjukLyrADpQGpBiYujvSHueqGLKpfCLdUTT4HeO7wYr26y4HFMPxlEPKnx3eebSSQqpr2v8RS6071m/b7ArL2HEEKI00/mSAkhhJhx//1CE5oOVy0pZJ5byfrdp/6iAYA3u5L85miCcGTiayz1+4cX43XYURTlFFufWlLT+M8XjvE9rXLa+xpPiTcdSA0Ol10IIcTZQXqkhBBCzKhuf5Tf7GxHQeedNelEEh6Ph1XV6R6kq5aXs7S8iQNd6R6aeGLimeyGAulgpGAWFuNdoYRQAZWZnTpcUegBIBgOT2s/qqKwqtpj/CyEECK3JJASQggxo370SguJlM6lFRoeUwKTycTKZYv57ca3kjfcdOF8PvOL9DpS8fjEsu/puo4/nO69Ksyf+UDq59aDOGchpXh1aQEAkXAEXden3JPW44+xtqaAoUiCl4/0ccniUkyqBFRCCJErEkgJIYSYMaFYkoe3HqNMDXBBRXpI25IlS3CdkAHvwoVvZenrGQpOaN+JRIJQLAEolOTPQLa+06Su1IOOQiKVos8fpMTjnvQ+vvn0Ib773FFSWrq37Dc7O1hS7ubnH9tM/gQXMxZCCDGzZI6UEEKIGfP73Z244gMsdUWoL3FRX19PSUnJqO1G3vwf7fYxkZU44vE44ViKJCql+WfO4ukumwXVks4AdbzbN+nXP72vi2//+QiapvHO6gQfWaxTYFc52BXgX369d0J1J4QQYuZJICWEEGLG/HJrI+VqgOVVHhYsWEBtbS0AkXiK8//9z5z/738mEk9lveZYf4h4/NTzpGKxGKFYkoSuUuK2zXjZL4+t4PzoKiL6zF8aXQ4HAO39kwuk+oIxvvDYHgA+vNLBa31WfntM5WtXVmNSFX67q4Nf72if8fIKIYQ4NQmkhBBCzIjG7gAdnZ2oisIFK+uNIApAR6d9KEL7UAT9hGQObYMRfKFTJ2KIx+OE4kkSmCjNn/lAqgMb7dhmONVEWr47PbSxe8A/qdd96Td76Q/FWFcCG0qgP6rTH9VxJHzceukCAP718b0c65eMgEIIcbpJIJVjnZ2dDAwM5LoYQoizTCKRIJVKnXrDGfToa8fwqhHmF7tYUj9vwq9LaTqvNfaccrt4PE4gmiSpq5SdQUP7AAqH53T1D028R2pvu49n9xxnsbmP9y0yY1bfumQnEwmuXWTn3Np8HAkf/+9Hv+fgocMzXm4hhBDjk2QTI4TjSczx5Kk3nCGhUIi9+w9gNpvZdO7mGVkTRQgh4rEYO7Zvw263s3rtutPznkmNZ3Y0UoDG8tpirM48wiPOp+P9nPHS4S4uW7vgpO/R3ucjkkiRUEyU59vH3M9kjbWPREpLP2+ZueuB11sIwNDgEAO+APbhoX4n860th5hvGmRFmYPCPBsFxWVAU7qMmkbjkaPcMC/Bz3oCDAxq/OKFXXyivALHBPYthBBifBO9vii6zFLF7/fj8Xioue3nqLaZT6k7nmIlRLVpCIC9yXKSmE7bewuRTcelJIjoZjTpqD7jlapBKtV0z8dY5xYFjVI1xJBmJ8bMZXxbaOrDpcTo1PLp1iaemW6lqYMe3X3K18w3DeBRIrSlCujTXSfddjpueeVRfrjhOiLWme31qjf1k69E6dHy6NA8p9zeQYLF5h50FPYly7L+jgvVHlxqOm18VLegADYlMem6F0IIMZoWC9N67w34fD7y8/PH3U7umHLIpbw1udqmnL6eMCFOVKSEWWjqZd5wYC/ObF4lYvxsH+PcUq4GqVD9VJkmN1/nZOwkcCkxdBT6tck3SLmV2Cm3MZMeqpg4Qy9dfVo6+CtSwyicer2qfDW9ZpZft40Khhu1EnYnK9iZrORgqpRuLT10cOTfXgghxOySHine6pHq7O0/adQ507a98TrRaPpCuXDRYkrLyk7be4u3j86ODkCnvKJyzOGjqVSKbW++QWI4a9rqtevIyztz1ug5k0QjESxWKybT7PU+h8MhdmzbZjyum19PVXW18VjTNN58/TUSiYQxrDjg99N4+DD1DQ14vd5Jv2f7UIS/+8/f4FXC3HL1Os7fuGZ0ueJJNnztGQDe/JfLAIzHf1nhp7k3wPp16/j0u0a/NuPfHvwt+1r72LB+HbdfM/52kzGyXBm7zG9g+fT/BdfM9XolUhrrv7aFRXRz8+Yq1q1aRll5xZjbhmJJzv+PZ6nTu/nwxjI2r1tBWXnFqDp0Wt8anb/reD///qPfoio6X/jQNVTmmTFbLLjd7gkNG5/MQsEd7e1oukZ1dc2EthdCiNkWi0Zpa22lvLJy1LqFU+H3+6koKTplj5TMkRrBaTVnXZhmUzweJ5WIYzENt6ymEjP23t3d3QwNDbFw4UJU9cxsuRUzIxqN0tqSnlMR9A2xbNkyLJbsoVzHjrVDKml8Fvu6Oihdtuy0l/VsFwgE2LNzOx6PhzVr1gAQDoex2WwzGlh1tfW/dV4BUvFo1rmlrb0DPfP31jVULclAbzepRIzB3m6qykav+XQqT+w4ToESocbr5JyVi8Y8lykoLCxNB+gua/ozmHm8osFLc+9e9h0+itO6Ycz30HWdoUA6s9/SqqIZO18qKCwsdqL19YOSHqZhNak4rGaY4etBQ4mb/p4AvkiCcMCPs3bsQGTL/m70ZIKqfKgscFBVXobVah5Vhw7rW5+bzQ1l1FWWcayji1889SLXrCgHwOl0snjxYjye8YcStra20tTUxPLlyykuLh53O0gnMWk71gxAbWUFdvuZk/QjlUrR29tLcXExZrPc/ghxNmk5cpz+3h4CvkHWrVs37XNTcoLnfzmT5IjPl525KRKZmeEYwWCQgwcPous6hYWFYy6EKSbO7/dz8OBBGhoaKCwszHVxJs3vf2vo1uDgINu3b2ft2rVYrVaSySQDAwO0trYCUFNTQ2trKz09PdTV1eF0nr75gm8H3d3d6WBgaIhAIEA4HObAgQNUVlayaNGiGXkPXdfp6UlnvystLaWnpwefP0DrQJjWgTC/3NbKoX27selxXFYT6+Z5WbYswNDQEJAO9iYrpek8s+0QZnTWNlSM23LnsJrYcvvFWc9lHvcM+vn91n1Egz52N3exan75qNcnEgn6Q+nhf4srCyZdzvE4rCa2fHwT3H33jO1zPEsr8vlzdw99wZgxGmEsT+zuJF+Jsqgsj/z8fKxW61tlPaEOR3rfxSv490e6ONLtJ7S4DLfNRDgc5tChQ2zatGnM1+i6TkdHB7qu09jYiNfrPWlgHwq9lWY9EAicMYGUruscOHCAvr4+ampqWLDg5IlNxJkvFotx/PhxampqzpjP6Xgyg8dO1Ws8mZ7lydA0jYMHD+J2u6mpOf090ac6/lgsRm9vL5DuqNizZw9r1qwZ1XA8G6S7IkcyN7iZP/LJLqoTpes6hw8fNj5wwWBw2vt8u2tvbyccDnPs2LFcF2VKMp+zoqIi7HY7kUiEvXv30tLSwiuvvML+/ftJJpO4XC7q6+spKioCMIIrMTNGBjgAbW1tNDWlewozQcxMCIVCRKNRVFVl3rx5tA6EuffJPVx01595//+8xlM7W7BoMZI6HI9YeP5wLz/+8y5jMdxYLDahhXFH+vOBbggPYreYuGLD1HoyS735lA8PbX5m+6Ext+noDxBNpEih0lB2+oZgz6TF5W5iupm+YHzcc74/muD5Q7141CgLy9zGd3IiNi2to6y8ks6Um12xEs4991wg3fM53vuFw2GjIS9z43kyI68rJwu8dV2nt7d3Rq5tM6G3t5e+vj5gdEPmmSiZTKJpp55n93bW3t5Oe3u7ca49Uw0MDPDqq6/y6quv0tjYSDg89pp7fX19vPjiixw8eHDGPxs+n4+enh6amppIJk/vnP5EIsGrr77Kzp07x70+dXZ2ous6LpcLq9VKKBTi9ddfp62tbVR5o9Eog4ODM1Y+CaRyJHMiLy0tBabXIxWNRjl27Bj79+/P6oGYSuuyeEum9wDSf69oNMrAwAC7du0a90vY09NDc3Mzc2Xq4cjP2apVqzCbzfj9flpaWtA0DYfDQU1NDatWrUJRFKOlqbu7m0Qikcuin1X8fj/xeNxoTevu7iYWS/euhMPhGVvvKfO5LCgo4JnGIR7b0UkkniTPrFHtdXDNIjfv3VjD56/byHvOWQzAS3ubea2p39jHZM8bP32lETMpVlQVUFUx9Xme5y6vA2DXkfYxf3+4cwiAfJcTu+XMzHC6pNxNHBN9wRiJRGLMG5I/7e9GT8Wpy9MpclknNapAVVX+z19spEvL59E320miGj2E461X2N+f/ttner1aW1tPGvxMNJDq6upi3759HDhwYMLlny3xeJzGxkbjcTAYnDPn6KmIx+O89tpr7Ny5M9dFmdMyAcfg4OAZ+/c+fvw4u3fvJh6PE4/HaW9vZ+/evaO2S6VSHD58GE3T6OrqYvfu3TMa8GTqUtf1GQ1CJmJgYIB4PI7P52P79u1ZveKQ7i3r6OgAoLa2lpUrV+J0OkkkEhw5coRXXnmFAwcOkEgk0DSNnTt3smvXLqNhZbokkMoBTdOMC1DZcCtsPB6f8s3UoUOHaG5uNro1M/sMBAJn7MljLohGo8bNLkBHRwcHDhxgcHCQ3bt3G1/cjFQqxcGDBzl27Jhxc5JLmqYZNz35+fnY7Q6Kaxs4PhileSDOkK2MioYVLFiwAJvNBoDH4yEvL884GYdCIY4ePZpVD2LyRg63G2sS7IkXhqnKBP4tAbj1ZzsJamYWlubxh49v5KXP/QXvW1NEhcfB/Koy/uHy5Vy4MH2T/mpTP3vb00H3ZAKplr4Qu5q6UBTYvLj6pHMyI/EUV3zzea745vNE4qlRj69ZvxBVURkKBNl9bPTivE3d6WMrzp/ZIaeReIor7n+dy6IruCy2gitiK4jos3NpXFKej4ZKXzhFMqWNGbD8ekc7RWqYhaV5eL3erCG2J9bZWC5dUkptoRN/NMnjOzqMIcnjBVKZm4m6ujoKCgrQNI329nQwmzkP/OHZl/nuL57i+88eYsuuYzT3hQjFksY1JplMZl2/dF03erV9Pt+kezlnWqZhyOVyYTKZ0DQtq1Xf7/fT2Ng46ho8NDREZ2fnKfcfDodPa8NTR0cHiUQCv98v5+aTyHy/EonEjJ1jT6dgMGj0plVUVLBixQpg7M/b8ePHicfjWIeTGQ0NDZ2yd3kyRn5fMueMmWwEHBoaGjewGTlqIxqNsn//fuO809jYyLZt24jH41gsFkpKSnC73WzcuJFFixbhdDrRNI3u7m4OHjyY1VDU1NQ0I/fIMkcqBzIXH8twRiWz2UwymSQajU4600g8HjdaB2pra/F4PBQUFNDT00MikSAejxs3ySPpus6xY8ew2+2Ul4+ejyBGD//InJRUVUXTNA4fPkwikWDevHlAumU3053e19d30knbPp8Pq9U64wtnZv6uiUSCkpISookkrUNxfvObgzx7uJehcAIVDQ2F9MKeTaypKaDa60BRFDbVeTm3vIxgMEhrayvHjh0zbpKmM48nGo1iMplOy3jluSYajRqNHE6Pl4P9SfY1HsNqs1FckIdHjRMIBCedMfTgwYP4fD5jzlumB9UXSXDn88fRdYV19eVcVW8lHk1f8DI91gUFBdjtdjbOLyKWTPF68wCP7ffjspkoLJx4SvSHtx7DqcSpK3Qxr+LkQ9B0dBp7gsbPQNbjonwHteVFtHT28oc3Glk1rzTr9cf70t/HisKZXSNJR6exLww4GC4Ws9X8VJZvo8BpIRozMRBKD+8bmSHzaG+QFxt7WW4Os6yimMrKytFlPaEOT2RSFT60eR5f+/0Bvv/CUa64eQ2QbpXXNC0r2I3H41nDfy0WC0NDQ/T09FBfX8/r23fyxzePsLt9CF2H1pSPapMPBR1FgeoCJ33mUoqTPdjtdtavX4+iKAwMDGTdePX391NRMXaGwtMhU5aSkhIGBwfx+XwEAgHjetvY2GjM98r0ysdiMXbv3o2mabhcrnG/n9FolDfeeAO73c6GDRtmNSMnZLe+Q/p+Yqxr/FhSmk7HUIQKjx2zaW63o6dSKTRNm/I1Q9f1rJE+g4ODZ1w22kwQX1xczOLF6REEdrudaDRKKBSioKAASI9oyjRcLFy40GjUnclh4yd+n7u6ujh48CDFxcVGgDdViUTC+K5t3Lhx1H1w5jgWL15MY2MjoVCIYDBIX1+f0egD6XvgzPlNURQqKyupqKhgaGiIPXv20N/fbzRyK4pCOBymu7t72vfAEkjlQObC5fF4UBQFh8NBIBAgEolMOpDKRPBut5v6+nrjeafTSSgUGvckGw6HaWlpQVVVSktLJbvfGDJf3oqKCrq6uoyWi2XLlhEMBmlpaaG5uRlFUaitrc2aA9PX1zfqpmXk7/bu3YvL5WLjxo0zVl5d1zl48BD7jx7j+ECYIwNxOvv9DGp2mlPpAM+sKswrcuNxWIglNfZ3+tnZOsTO1vSx/m5XBzYz/E1tlHPqPEZmtP7+/ilPYo3H47zxxhtYrVY2bdqEoijEYjHMZvOs33TkkqZp7N69m91HO9jdNkRHIM6rTwbRgWIlRVBPUah2UqoG+a83B3nHeWv55F80YDOfuk5SqZSRvKKnp4fq6up0AotYnN/t6aY7UsDqag8fv2IeLU1HCYVC+Hw+dF3HZrNht9tRFAW3283m+hShmMZvWs08ta+bcm8eKyfwt/aFE/zszVYqlASrakomHQjazCYe+ei5xs8A5y6dR0tnL28cah31eWvrS/eUVRfNbCBlM5t45IOriT7ycz6SXDyj+z6RoigsLnPTfdw05jypH7/SQr4SY3Gxg2KP85QZ9MbzN5tq+Z8XmznWH+aB17q4MN9i9GBkbr7grWF9brcbm81GUVERZrOZQCjCN3/1Iq/vPUw0qRPUbSwvMrHEYSIZdzEQSdIW0GgdDPPfv3uJ5WV2/mJJmbGUSFtbG4DRSDidQErXdXRdn9Y1KnND7XA4SCaT+Hw+o7c+Ho8bvbBDQ0NGINXc3Gw0jPn9/nE/336/37hpb21tpa6ubsrlnIj+/v6sHj6/33/Sz0mPP0q3P8zuxuP8aPsgjb1hvE4LFy4sodBlxeu08p41ldQVz94C15MViUTYuXMniUSC1atXnzTjZDwex2w2j/p8nNhLOjg4OK0kCbqu09TUhMPhGNXAMRtSqRRdXV0AVFVVGc/n5eURjUYJBALGd/no0aNomobX66W4uNj4vAeDQTRNIxKJ0NHRQV1d3ZQD05GBVDKZ5NCh9FzWvr4+YrHYhIP5sXR2dhrftcHBwaz74FgsZhxPSUkJAwMD9Pb20tnZaTRQzp8/Px0MmcxsOzZAIpW+VwvFkoTjKVRFIWUuxBbuxmY2kZ+fT3FxMU1NTTQ3N0/7HlgCqRFmYvhBT08PPT09LFiwYMzehlgyRd9Augcpc2K22+0EAoEpTcrNfJBOHEfvdruNqH2sk2zmS5EZ4nCmtdScDpkeqeLiYuLxOP39/RQUFFBUVERxcTGKotDc3ExTU5PRCgvpHqtkMsnQ0NCoTH+JRILDhw8D6eFcqVRqRoKJpq4hvvvblznW3kEyld1S7fHk8/cr6rlsSSnr5nmzUmP3BKI8e7CHUCxFOJ7kid2dHOwK8HRLnIMdLVyyoo7lpVZisRjBYBC3e/I3sUNDQ6RSKSKRCENDQ5jNZrZvT6cBX7169axkGJqueDxOV1cXlZWVU06TvOtIK99/ejdd/hgh3Uq35kZHoa7Iybn1taQ0nc7OLmL9YfREjO/8+Qh/3NvFf/zVKtbPO/laTqFQyAjsu7u7qa6upr27l8d3tHPUp1DosvG9v12PW03QAka9A3i9XqPO3W43Pp+P6zY1sCcVJNLdz++2t3LhuRHyXCcfQve9548QjCaoKVCZV+Sc9GfDpCpsXpDdi3XZmnoee347kUiQN5v72VifPnf1+KO09vnxKLC0emazZ5pUhc11XsKmIJyGOdRLK/JpPWaiN5Cduc8fTfDLbW2UqSHW1BZTXl4+5Yt7ns3MV69bwUd//CY/eLGZddeUYSXBwMBAViCVaYjLJLRQVRXF4eGRF7YxGE5fD+2eUv7vO9dD71HjdW63m5hi49ntB9l2bJDGniAdQ1FCZjdXbVxqjJJYvHgx+/btG7M3bCJisRh79uwhFouxceNGYx7XZI0MpDLfm0zwNHLI49DQELquEwwGjZtYyM5+eqKRN5jHjx+nvLw8K0Pc4OAge/fupaGhYUZ65TIt8JmeifHKFogm+OoT+/n5m21UqH7K1ABhLQ/wMBhO8Ntdb/Vq3fvMYS5oKGZNTQGrqgu4dHHJlHqsNE1DUZSTntO7u7tpbm6moaFhzHuTWCzGrl27jCGLe/bsYe3atWM2MmeG2RcVFY3qFcl8txRFMXrrx/sMtrS0MDAwwIoVK8b9jPl8PlpbW1EUhbKysllvBOzp6SGVSuFwOLK+s3l5efT19RkNAYODg/T19aEoCg0NDUbjfKYRIxQK0dTUZHwnFy5cOOmyJJNJ4+9RVFRkNKxmdHd3U1tbO6XjzGQNzRgYGKB6xLqHmfuwvLw8zGYz5eXl9Pb20tHRQSSe4uhAjG2xMO1bD/CnA934o+OdxHXmm4dYUgCLl63kwkInZouFWCw25r3aZJw1gdT3vvc97r77bjo7O1m+fDn33nsvF1544aT2cWLQMZk1XiLxFMcHQuzbuY9gOMKze1rot1ZwdCjJQCiOMxUkHItxwGdmmambIoeKuVFhXnmQYn0INeynMXicwP4Qmg5Ws0owlmQoHMekqlhNCgPhBL5gmDKPk6pCF/2+MOH2/WgpncBRK9UlAeqKnNQVuygg3eow3nyHkSf/YDB4VgdSkUgEXdcnlM47M5Fy5LAAj8eDw+HAarUyb9484yIxb948NE3j2LFjHD2avsnInPQyrSUnfjmPHj2aFbCHQqEpLwLdH4zx0pE+Xt59hMYjR9C1FKDQoxaxokhlSQHML3Fx6Xmbsk7EI5W67bx341snwFsubeCVo/3c+fv9HOjq5fU3I1w7L8zl8x309fVN+Gb5+PHj6LpObW1t1hDJzMUhFEtwvKmDHX0KXXErbYMRrGYVj8NCVYGDmkIn84qc1BY6cdlm7jQVTaT43a4OXjnaz/bjgyRTOg6riRqvg0Xlbq5cVs662gIOHTpEf38/0Wh00kMadV3nid2d3PfYyzhSUXxqPhetX8G7V1eysNSNx/lWi2AwuIDXX3+Dpv4o/3XQzJGeIH/9X6/w4fPq+MxVi8ddK2nk9zoQCNDZP8Q9v9tBny+Kbi3mxzdtoqrAga7b8Xg8RsYlIOuzUFFRweDgIPPrarlvvpNPfruFDl+Er/x6G19//wWY1LFviDp9EX70cgt2ElzQUIjVYpmR9MLFXg8Lygs40D7A/754gI316XP4E7s7MZOiwmOntmT81ukzwfp5Xp541cyh7gD+4Fvn4Z+/0YoWjzDfo1Fb6Jx2q/cVy8q4ZmUFv9/Tyfde7eITaxz09vYyf/58FEUhlUoZN1eZ696u1iE+/4djFMXi5NnMXLSknBuvvRybzcobb3QZ80zy8vKo8niI+4tpKM3jj/t6GQpF+NGf9/DGkS7Or3HQMK+K4uJirFYr8Xh80jcroVCI3bt3Gzdwg4ODxvzfyUilUsY+HA6HcT3PJJwYGUilUimCwSCHG48QS6YocOcRiUQmFEgpioKmaTQ1NbFsxDp8LS0tRu/CWIHURNNaA0ZjFKRviPfs2WNMFci8Xtd1ntrXzVef2E/7UPoaVuHQKDBbOb/aw0f/6goOdAbYfnyQcDzJvg4/zx3q5cXGPl5sTAfW84tdfPLSBv5ybRXqOOeAE4/h+PHjtLS0UFFRcdJzZnt7O9FolH379rFixYpRWSkPHDhANBrF4XBgsVjw+/3s3r2bdevWZfV6JBIJDhw4gK7r9Pf3k0wmsxq9Mtdvt9tNNBo1hrGeeC2MxWIcO3bMmNc3Xlr8TO+trutZvUGxWIx9+/ZRXl4+oz1VmeCioqIi67ORuVfLfH6PHDkCQOWIRWgzow0GBwcZHBw0PjNdXV3U19ePuqfN1M949yKZurRYLFRUVNDf34/ZbKa0vILt+xrZt3U/bW8McaQ3iNWskmczo+ugKFDhcTCvyMnKKg8rqjyjEgVlrrPjBbyZsns8HqKJFLt7EuxqD9DnC3OoO8DxRB7d2ltZGYvzrBQ400Pd82xm7BYTOunGuOZ+aO6DP77Qxr0vtLHEEWCVV6cpYucdm1dTWTC1qRZnRSD1s5/9jNtuu43vfe97nH/++Xz/+9/n6quvZv/+/ZOKkkfenGTGfxYWFrJq1apR2/b19fHqrgPsDTh4viVMY08QixZnifmt4V0pujiW8mJGo9Y0iAUopAAzKYYiGruPBtCPBilSQtSYhvDrQzSlxs+G4lXCzDMN4gcOYCKlK9iUJGHdyuHuQWh867UuJc65+T5qigd5ZcBJWb6dUreNBaV5lOXbs8YOBwKBaY8R7ezspLu7m+XLl8+peTCpVIpt27ah6zrnnnvuKcuWWZgyIzOHzWw2G2OUR6qrqyMajdLd3Q2kkwl4PB46Ozvp6+tj0aJFxkkwFAoZrZw2m41YLEY4HMblctHU1ITNZqOiomLMMgZjSQaCcY4NhHjpSB8vNfaxr8OPgziLzH0o6FSWePngleewaXENyUScN9980ziGiVIUhfMbivndpy7kgZeaueupg7xwPERbZzeLjoW4+S9LaCg9edA9ODho1GFRUZERSOm6zraDLWw/NsDR3gC6DjG9i4OpUnTGvlgrCmyqdnJ+pYmrz1nJwsqT99SMRdN09nf6ee5QD4++0khBtJOQbuV4Kr0vrxKhvcfMs4esfP/5JlaW2jjPM0RtoQuULhYsWDDh1seDXX6+9sQBXj7Sw0pzmKoCB/e8/zIWVI6dec3pdGIyqTSUOPj95eu4a0szv9rexoMvt7Blfzf/fv0qLlg4utV25LkqFEvy2Qeewu/3Yzer3PO357GiKh1sKIrC4sWLeeONN4wbtpE3EicOL33/BYv42Qu7eXF/G5/55S7u/uvVYwZT33jqMLGkxkVVDuqKbLjd7kn3LCZSGo+8np53+L5NtVhMKoqicOnqeg60D9DceJCdh6pZvaiOJ3Ycw6kkWFxeMuPzChMpjUfeaCeePD1r7r1jRTnfdrsIh4d49XAn69asoicQ5T+faaTcFGRNrZeysrIZOc47rl3O6y0D7O6L8PT+Hq5ZWUYgECA/P9/oJbLb7bhcLp7e18U/PrqDaAIaCvP4q9WlrFjcgM2WbqEvLi7OCqQyN3Rl+Xa+9uEr+eHvX2Z7Sx+HjnfR2KqyIVlK/UKNoqIi43w40UBK13X27t2blUhhaGhoSoFUpmcicx7PDAPr9Ud46MXDHN63j1A0TjgJZlL89xt9xAKDJDUYclazxjGAx25md9TL2roSllbkkzeicSdTJ/PmzaOlpYWenh5qa2vJy8sjEAgY579AIDBmj0hLSwutra2nHMIGbyWt8Xq9FBYWoqoqqVSKcDiM0+nkpSN93PfnI7zWnA4Oawud3PVXK4m17TO+/04zbF5QlNUb/NreRl7b10SHUsxTB/tp7gvx6V/s4kevtPCv71rGpvnj/91SqRR79+41gvLOzk5qa2ux2Wz09/fj8XiMa1oqlWJwyE9/MEoonqLxma3U1dezuL6Wco8Dlbcy5a5cuRKLxcKOHTsIh8Ps3r2btWvXYjabjaVeMo2Suq7j8/mygrLM393hcOBwOOju7jZGlYzU3t5u1E1HRwfz5s0bcxTCyIDb5/MZ+2lvb8fv95NMJmcskBo53DRhzeeVo30kUzqD4Tjt/X4Cx/pRlAF+dyRKoPs4VouF0kgJBd3N5NlMLCxz43K6YHCQtrY24/gyC1KPvN/TdZ1du3YRiURYunTpmN+xTGOB0+nE6sqnQy/g+cNBnn/yIIvoQEWnVxvAqiTp0dyE9NG9enYSFJuiFJRVsKa2kDU1XlZXewh2pIcBV1dX09XVNWoIcntPPwc7/fymRWXLw00EY0mq1AAlahAdhZLScq6sK8brsnLegiI21RWOG/y3DoR5sbGPFw738vLRPrqjJg73DLKz+yBfeb6fhtI8LmwopMHUx8KyfBYvbJjQ3+usCKS++c1vcvPNN/N3f/d3ANx777089dRT3H///Xz961+f8H4yXaWhUMgYfjUwMIDP58PhcvNGywDbjw2y61g//raD6Ux7qDQni0lhodaewG0yk7I4Kc6zUWJL8g6XGZfNjK47sZpUCt12tFQhEawkvHUc6QnS09+P3hfDbLFyXk01ZlUlHujH4crH63Gj6ekhgTZ/O+aEDX80QTCaxGk14bKZ8ZRVY/GUcLw/TEt/iJa+ME29fvpDCfpDvTx8dB9J3roRXFnlYaPbh8ecoNLjwDMina2mabS0tFBUVITH4yGVStHW1kZZWdm4Lc7JZJIjR44YX9KTnUy6urpIpVJUVFSclnlZAwMDRgrQ/v5+4wSSSCTYsWMH+fn5LFmyBEi3urS0tABvje3PpKcfT+ZGNRaLGQGpzWbDbDaTSCQYGhrC603fsGcugpk1ndrb2wmFQllZso42NaPY3YRMLrrCCkf7o2xtHqCpd3TGIQWdTd4IDYUFrFhQy3su2WjUqclmY9OmTei6PqUhCKqq8NGL6tm8oIiv/W4PkbYhDrT2cM23nuHSZdV8/JIFrK4pGPW6zDjyjM7OTpo6+tnbPsTh3gjR4QtfWLdS5lKpc5g4pzyfmpoaUprGQChB22B68djjA2GGwnH8Hc38uTPJY28ew1pcy5XLyrlyeRkrqzzjL86XTLGnzcfv93Tyu12d9AVjKOgsNvXitSucV+Fg6YIyTFocn09NX6BCCf7cpuHvG+C1gQivNQ9gNak8ejDOuSsWcMni0nHnEfQEonz7mUZ++tpxNB1KzHE2zy/g4mVV1FeMP39BVVVjPqMpFeeeG1Zz7ZpK/vmxPbQNRvjbB17jgoZiPnpRPRctLDaO1+/3E4mn2DMAOw4dI5JIkWc18+HLV7OuPvtC6HQ6qauro7m5GYfDcdKeowuX1eAf6OXne4Z4bHs7KU3nnv+zOmuYz0OvtPCr7emL33vXFKOkJp8oA9IBzJd+sw+Av15fbQw5vXTjSh5/s4WOnj5+/ewbxOMJejrbKTXB+oXVM957nkhpfOnJRmBqQ1Mmy2JSee/mep54pp2tjV38fTLFV363n0Q0wiKvzvLK/CkPkzlRidvGf/3tev7mv1/lja4kblsflVVd5OfnG8P6CryFfOfPR/jWnw6j63DxolLufPd5xEL+rDklJSUlxnp6LpcLl8tFaWkpiqJQVV7K31y0goUlR3nlSD/b+lX+++U2nj44wG0XVpKv6caQ91OdjzRN58ixNtr7hohpKmZPOb6uY2DqZ4y2rFPKNBqaLFae3NvFlv3dHG9sJRkNMah141UjpFDp0fKoUENA+gZ8UHNy3K/hCMWxKyEeP74Xv57+7nidForzbDgtKkvVDmq9DmyVVgKKg6PHOvjd4eeIu6soiHdjjgZQlHSj0KtDuzDbnaiKgklVsJtVXENHKXaZaG1tnXAglal3t9tNR08/Dz1/gMcPhTjcnb6W28wqf39RPR+7eAHJaIgdrW8Nw/L5fFlTAVKpFPHBLlaV2biy3MW/vGc1P361hfufPcqedh83fP9V1tUWcON5dVyxrGxUL3lzczODg4OoqorNZjPm4ySTSY63teGLgd9Rzv7eBIdbu1AHjxHXTYR0KwVKBHa349fttGiFzM9X2ZDno7o4nzJfkkVlDlatWmWkvN63bx+rVq3C5/PR29uLoijk5+fj8/kYHBwcM5Cy2+2YbQ72Hz1O445GHmtMMBCO0xeM0x+IkOdrJhaPk9IVSvIs/OxAhKaIg0RKo6LAQb7dDMkEBcEW8h1m8u0WfFoHDm8ZRS6r8TfJZLCbzpC/REpjf4ef3UdbaWns5ehgkueePPHar7PSPIgJjRQDmNDo0PLpaW3J2qrIFOX8ogj1xS5K8u2UeVyYlXSikpGBVCgUMr4jhw4dwuVyZZ1jU5rOvuO97Dw2yJFggD/9sot46q01qlJON/PdKTa6rRTl5WFzujGX1qOgk4hF6QxpNPWGGDh2CC0epq1T5eGOIA9vPU6BEmGxbYjCPDvxoxa8qSEcqSDPtm0n7ixmf9sASk/6XnxvEpKYKM+3s6a6kIpkN2sW1XHN+ROfHlBT6OT959Ty/nNqSaY03mzq4dkXXubYQJimAY0jPUGGerupNg2hKgp6fsepd8pZEEjF43G2bdvG5z//+aznr7zySl555ZVJ7SsQCJBMJtm+azddvjC+SJLBUIzfHXyOpzvtBGLpG/JadZBCNY5JVVhQ5OQ9NU6uumgzvccb8fv9LFq0iPLyco4cOWJ0zxYXF781rtRsZnF1JQ0N6YtlMpnktddUEokE1dWu4RWawe3WWb8+PZ5V13VefrmPZNLEqlWrsFgsRKNRUqnUmBPlfOEEv3zqeTr6Bqm3euiK2+jyR2nuC7Gn3Ydu7sRM+stQvL+H+g4bpfl2XKkAyYF2CvKcXHD+Zvo6jtPe3k4wGGT58uWj6kzXdY61duAPx0ikNPa2dNEatdHd1UkkHKJ23ny8bjv5dgtKKsaevftRFWg5dpzammry8/Nxu92nDKo0TSeW1IgkUgyG4/gjiXSAmUjRNhihNxgjEk+R0DRMwxcpVVGI97eSCAyS0jSeaQ6jFtaSZzdD2EesvxWzqlDao1KQ5yDe00IsFMCZ56GyajFmXaMtbqa9qR9VUdIXQ9IXRFBQlXQgpQBK0Tw8RTpHB+IoSpyoKY++/i4GdzZiK67BF47TdfQAkUiYWJeFULQPbaiDwI5+QkkdcyxAOKGTTGWP702hEtFcKORht1godlvZWFfIRQtLqLUE8Pd1YbFY2LRp3ag6nImewRVVHh792AX85hmFF/Yeo6M7wpP7unhyXxeb5hdy1fJyzltQRH2JC5vZRH9/P70DQ/QEYrQOhGnaepz+YJS4bsan26m2JllY6ubaSzZRXWDj8OHDKIrOquUFRsA50o4DR3jhzSRHe4OogxEO9fRzX3eQ+549QoXHzsWLSqgrdlHospJM6RwfCLPt2AC72oZwp4KkUBnSHbisJi6u0FjuKWRFdeHwMMgQmMBb4qZW01il61xan+Joj4njA2b2DioQ99N0vI0nm2Pwu/2srvZw+dIyUrpOMJokGEtysCvArrZ0VjOAd64s570LFPSon/KyslOe5PPy8oz5jEVFRcy3R7jzfBt/7nTw8M5BXjrSx+tHulhVpHLZkiLKKirZtaOFfR0+dsdKWWzWKXFZ+eg7NnHumqVjvl9NTQ0mk+mUAU9eXh6Lyty832LlzjdT/GZnes7d596xhMI8K7/e0c7/+106+PnMVYsptQ8SCk2s11NBoWp46ISCMm7WOYvFwgeuvpBPP/gnzB0++p9+nSI1Qo3XwcolE2shnKpKYunv86y+C7z33HqeeeEVApEY1/zn8xzujVBrCnHZ0lLKxkmRD6PrcCLWz/PytetW8G+PvcGO1n76/7Cd96leeo91cLwvwL3b4+zsSadSft+mGr7ynhXpoLYkuxfC5XJRWFhILBYzeiBHDmErKyujoqOD955Tx7s88/nS7w7Q0h/mtscbOdc1wNJSO4PmwzTMq8JmVklqOpF4iu7h69JrzQPs6/AxEIyxUOnGqiTp0PLp16KsNHeh7OngK6+G8bhsVFrjlJvDFOU7Wbp0KbUl+ZTl23FaTGi6Tn8oTttghINdfvY3NtPfcZwjARNHEuk5xZWqQoVZYZVXocpbRElJCWWVVXQfPYCqKhS5rGzctIFWv86uvfvo7emmOunitT4zvYEYg+EEg+EEVpIoZh8HOv3ctXs7NpIsNfcBOh1aiArVn76hxISFFK1NjfTrb/1t85QYDaZ0QGs1txDa0kNDhZelFfksrchnUVkeZW47qqoQCoXS82o1OOJX+PGug+zef5zwYDe9KRdtWgFOq4kbNtTwdxfOp8iuYLeaaO3Ozj47NDSUFUj19vYaSRm6u7upq6vjE5c0cMOGGr712AvsamxnqL2ff/t5G5835fMXS0q5pEplebWX8kKP0eNRU7+IzqEIe4/s5k8Ht9HjC9MfipPSdDSO0pQqwqXEqVBBsTpx5lfhVoMogR5MsRg+LYw/oHMoFOD1riT37HoRi0mhyGWjwWtmtXOI8oEwmrOQZHAAXdeprKzE6/Xi8/noHxjA0h/iSE+Qo71BWg4fYmBgkH3PDdAWtbLC3IUJjSOpMEE9PUSwUAlTa4oS1010afkkfYMkfa0cSJahoxgZMtOjhnwkUTGjkdrXw61P9+Mxp1jnHCTfYcFpMfHn3m248/Nx2y247WbybGZiCY1QPJ30IJP8IBxPEoqnCMeG/48nIeInEAxyLO6iTA1SofoZ1JyY1PS8WqvZRIHDQrnHjjMIxII4rGY8Thum8sW0+WIEo0kGw3H2d/jxhVIcH+jn+EC6N6klVcgad5BKj53XBqwsqiqhviQP3d9rfBbiiSQvvr4DT+0S9ncG2NrUz2vNAxQleihQIrRrHuJaHvUlLq5ZWcE7V1ZQnaewZ88ebDYbgUAgPaplQxVtbW20tHRx+coFFBfPZ+vWIIFoEr/ioiVZwK7j/SS6uoklNXYMmOjqGxr+e/gI6xEOpyJUqj5K1fSwvr9fuYjLlpaytsY7oeGmp2I2qZy7sBxloJpIJMLnGpawf0Dj1a2vcbzHgj+aoLWr99Q7AhT9DF9oqKOjg6qqKl5++WXOO+884/k777yThx56yMgsMlIsFssaMuD3p1ve/s8X7qPHVEiBHiCJiaZkIQuHh001popxuPI5v9ZOHb2UexxcdM46WluaiEaj5OfnG+Oozz33XKPVt6enh2g0SnV1NY2NjUY6y+XLl2edzDKZ3E6U2VcwGOTNN9/EZDJxwQUXTCgCb2pq4vjx45SVlbF06dL0+wRjPLOvg4O73mQoFOfYQARN1ziQLCOGmTrTQLqVCDiW8jLP7CPPqqIrKkeVasx6HK/mo093E9QthONJFind2JR0ABDRLRxOlbDS3ImKjl+305QqBBRKlCBVprdO6ooCZlVFUU1ETS7CJhdRbCgmFXSdeEonmtCIJlLEkuOv0q2iYSFFbHhemFuJYleS9GlOVpi7MQ0HjBoKe5Ll6KjDwXD6BHM85SWJSr2pHx2Fg8kSY19T5VJiLDT1kUJlb7IcOwkWm3vRUNibLMehJFho6iOum1AUsJDiSKoYTVcotUapc+kUOcDrsFJRYGdBuZdVy5caQ2N8Ph87duwAYMWKFVPO7jVRHR0dHD58mGBS4bkBD4/vbCelaejDS9GpChQ6zFSnuiAVo1fLo1gNoaBjUhXm11Ry1ablqP3NuJwOI3vf/v376e3txWQysWbNmqwb8ng8zuuvv04ymcThcDDoD9IehG0hD88d7iMST6KikzphOTwFnRp1iGpbjJoiF5dfcgGb5hWwY9ubRn2FQiGam5ux2WysXLkSq9VKW1sbra3pbHFFRUUsWrSY3255jmN9QXZFC3n1eJikNv7pcm1tAZ97xxI21Hp45ZVX0DSNDRs2nLIHpb29ncbGRhRFobCw0BiLb7PZqGxYwY+efoN9h5uMVsCQbsWlxElgQilbxM3nVHBBvZeS4pOnH5+IZDLJSy+9BEDEu4B//PkeIwOSSVVIaRoKOn+zaR5ffucitm7dCsB555036UQA4XiSZV96CoD9X7kqq6Vb13Wuu+8lBjqPU6SmW2Tftb6Bm6+7dMaTk2SVw7YNpzJ8rvnMZ2CSWVQn4+4f/5aXD3dxKFlCBCs3L0pyYb2HlStXjpo3MhMe39HGj379NGhJBjUnXjVsnJ8KnFa+/O7lvGdN5bTqt7e3F4fDQV5eHv5ogu89e5Sfv9mKJdJPheonqNs4kioGdCrUAEVqiGMpLwH9rV7S9M3UIGaLhUHXPIryHNh9zfgDQY6lvJSqQRzKW2voxHQzR1NFxMdpF65WhyhWQ3RrbswFZVy9ooILFngpU4MM9PUSi8VYuXIlhYWFvPTSS6RSqawh/Zlzn9frZfXq1fijCdoGIgyF4/T09bFv716ahlIc0UtJaTorXAHqXUnMqkosqaFZ7GB1kfL3ojs8aPmVpHSdlAbRvnb6ezrxR9PH06W56dLSjR3FShCnkmBAcWN3uCjWh8hPDdGbsNKcSn8+CpQIdaYBigvcXHjuRt61uorQYC9dXV2Ew2FKS0tJpVL09/cb9ygul4s1a9bg8/koLCxk9+7dDA0NGXNUKisrWbRoEdFolK1btxKKJdnd5uNgl5+2sIqKjktJjyxQFFAVhQHNQXPSC+gsM/VgHb4f6NdceG1Qnw/lRR5qivPxmOKsXbHUyESXyX5rzy+k0xflcEsbRyJOXulWCI9YKy19Ux0koluwK0msJoUWpZyoprJI70BDY0+i3Bh9s9SUvi85kiomqNtosPpZ6E5QVFJGaU09XoeJVPcRLKSoX1CPt6ScF19+lXAkyoLFSyjwFtPhi6SDn65mAr5BBtUCggNdBMJx3gx58SphStS3RvS0pQro011YSZLANO6Q9ROpaKwwd6Gi02MpY5VXo9yaYP6CBVx73kq8ruxz69GjR41059XV1TQ0ZDcw6bpOU1+I3zz1HMd6hugLp3glWMQ80yAFSoQeLY8OLd37ucjci9ecpFcpwJkYwoxm1FnGalsf9V4zC5cs4y/WLGBx2dhDuV977TUikQjLly+nsbHRWNeqoqLC6M12Op1s2rSJQ4cO0dbeQTBlwlS6gHBcwxeK0N+0B00He3ENjkgPtV47525YOyvnRIDDhw/T0dFBdXU1Ho+HffvSw2D90STHBqPc+oFr8fl8J22EPON7pDJO/KOeLFXz17/+df7f//t/o54PJZIUqOlxqSFrIUsqS2mw2SlSwtxYU8q1f3EeO3ZsJxj0UllZSVV5KQVuF9u3bzeCqLy8vKyhMyOHhtXU1NDZ2YmiKKO68IuL01maMnNoMhN0+/v7qaqqMsZZ5+fnT/hCV1RUxPHjxxkYSLfe9PX1oes6Vy8toixSgtVqJaWY2XG0g3W2UvoSNrQuH5GYlVA8RQ0+0DWCseEUsMkAFaYAJiVKMSF8ySLcSgqbmkRDwW5ScJp1ltpMVOg2FAW8SQ17MkRjLI980sFrp5aPDuQpcZx6AnMqgZoYIo8hXCjopFuE/bqdwVT+8AVSx6NE8aoRIpZ8zHY3JgU8Spj51hBuC5gLizDbnWi9TeiaQsqioybyMZktmE0qqp7kgsJyQooDeuOoKRtJTaNesROJJ9Eidnyqm/mWQnQdND3dZq4b/5/wMzrDGTuN5zVdH97OioMgLrOOJ8+Gx6SSn8rH6i7govL5uK2Q6DiIzaxiNavYrWY2bNqMx2Wj0GlFVdMTl/v7+zly5IixpklpaSllZWXGBNOysrJZD6Iy73P06FHySPHPl9fynjqNNw4eZ3fUw7b2CIFYAnesB5QYSUxYPGUs8kZY4NaoK3axctmS4c+xF5vNZvSeLV261BgCefToUdasWQOkh5geOHCAZDJJXl4eq1at4rXXXmOBJcW7zqvhnhvW8PifX6W5o5ceawVDCRPOuA+vKUqNx0KZs5QCpwVFUVhSbGZoIB2cZNLDFhUVUVBQgNPpNHru6uvrjYxAFRUVWK1WltdXU5LXwzVlZZTU1PPbnR3sbffhsJrIs5tx28yU5du5cGEJ5Z709767uxtN03A4HBNazqCiosJIBpEJokwmE7FYjMH2o1xcpXJuWT37+xIc6+xD03VsZivnLpvP9ZedO6OBhdlsNrKBnVubx/f+ahE/f2E3b/RASDNxrifEmkoXH718vjE0zOPxTDmb2ngUReE771/P4ztKiXQ1YyfKX168dk5meJyqS5dXUZlvwVMxn7z8fLSudKPfVJPPnMp1a6vJi63jD1v30R+KE4opFHgL+dSKRXxo8zyK86aevjhjZONgvt3C569ewv+9YiFb9rSzdetW2gfD6KkEtlQIjxLFrKoUO3UcZeWsn+dlXW0BAy0HUFLFLFrYYAwtbGws5nDTMXzRFOGYg3ASBnEz2NdNIBTGFh1iZ6yITF+iqkB5vp2GMjeLLSaKLfmsW7WMDUvrsz5DesMCksmkcQ4oKSmhu7vbWBsQ3upt9fv96eRALhfLKtPbt9oiFESLua6kxBixEY1G2bt3L6qq4na7qaqqIhwOs3fv3uGbyHR2OV3Xee21ENGoHXdBIcfaOwkmFPz58zl8rINAZy++SAKvHiEQsWFR4sTRGNIcFOfZuHBhMefXF+AOHMOm6thMvRzc3Z21UGtPT49xvLW1tezdu5dQKMS2bduMdSszc7wWL17MwYMH6erqYt68eUZG4PJiL6uWLaa5uZnOoTCHuwMc6lEYCKewkiSmK7Qmh4O/PBsV3krmW4NUlRRw2QXnUJ5v47XXXhvu9dIAc9b9j9frTSfkiASoclkorC/i71etIt9TQE8gRm8gxq62IV482EWi6xC2WIJYUmcwaaU3pQA6AZMZpxKn0JygsLiAhhIX1bEYhS4Lm8/dTF2Zh2QkyK5duzCZTJx3Xj1NTU20x63YbDY2LluQnj+3poG2tjZK8zSWLSw21ikaKjahFxWxYcMGjhw5wtDQEF9d0MC+Q0fp94cI62aCwRBJm4eIYifWd5yIZmLIUohqc+O0mXFZzThtJpxWE06rGZfVZDyvR3wMdaSfX94wz0hxv3ZtAx7X6HNrpnFOUZSsDHcZiqKwoCSPq9bOp7e3l9LSUqrqFvLCnib27t3LQFRjb8JNa78fpx4nloTjSSvVqo0SS4wGt0phaQmrXD7meSwUWF0oCpxzzpKTzt0sLCykvb2d5uZmY/5aPB7PWhg4s5hwd3c3JlXh4nWrsuatHarQhzscwuDJw+12Tyuj3qkUFBTQ0dFBX1+fMQ+utLQUpbeXBn1ii2yf8YFUcXExJpMpK1UppE8g401M/cIXvsDtt99uPDZ6pNZX4/Xk43W7uOC8c1FVlWg0yuuvv46mJTl48ADBYBCTyWSsFeFyuVi2bBl79uwBOGnU7HQ6WblyJbquj3nj0dDQgNlsJj8/n1gsxtGjR+nr66OqqsqYgDle9rWx5OfnG3N12tvbjZvvzPh7p9OJw+FgVSxMbW36hnz7dj8mk4lUKkVS04jEU0SToGkpCkvKGerrNoa4qaqCxaRiNRVSV1tDX18v8XicwsJCBgYcOJ1OY5LismXL2Ld/P6mUxqp1G7Da7MST6d6mgcFBenp6CPiGSMTj6KSDEbOqYLGYKfB4sJpVQn4fZlN6yF55eTmBQIBQSAUyJxUNmy1B1Dty0ng+lZXpVtb29nbKy93U1dWxdetbK2hnFtgFL+ecc86MTWbPtBrl5eURi8VIJJxZPZGvvPLWeiAej4cFZdk3UKqqUlJSYlxo2trajPT6kO6xmEoq06kwmUyUl5fT3t7O/v37SSWTrKst4Pq6WubNm8euA40cbWrGYjaxbt1aqkuL6OnpYf/+/cbxjfx/5DEuWbKErVu3MjQ0ZKwJkkmZrKoqixYtwmq1UltbS3NzM8eOHaPBYqHCnqKivpCiojzmzZvH9u3bYbgnUVVVPB4Pg4ODRlYgeOtGb6zGDEh/J0beRNXU1Bh1Pn/+fG66YD6QbnkfGhpiwYIFo4ZUnjiP4VRUVWXp0qV4PB7a29upqalBVVUOHDjw1kKEDfVcdXkd+/fvN/Y/f/70eg/Gk1mnJBgMkp/o5wNrCvnrZIqEpuKypBtyOtpajV79E5demCm1RU7+8fLFaNpCEonEtNYpmYucDgdVBQ4WVLqw2y3s61ZwuVyzmqznwrVLqS6wG3M5amtrJ5TNdDpsZhPvWltLncVvBN9QYPSAmEwmzj9/LaqqMjg4iF9PYLKYszLceTweXDbzcAZPG6tWrTKGGW7duhVd11m1biOoZrq6Oigv8lLoLQBg69atRKNRFlYWjfq+KIqSVd+LFi1iwYIFWc/l5eUZ18Q33niDgoICY9mGzPVtZINJZmHekTLJC8LhsJFdLhgMEo1GUVWV1SuWEQ0FKEwkKCgIscZqIjm/DpvNTu9QwBiRYbdZOf+8zXhdNuNYwuFS9uzZk5Xivba2lmAwaCRSUFWVwsJC45qcOR9mgqjCwkLKysro7Ow00nxnGofLysqorq7G6/Vy4MABGqpK+Kdly1DNFlrau7HY0tf6AqclnSFN1+nu7sbr9Rrf2aqqKuNm2mw2Z9VX5j4lmUwa85ndbjdmk0plgYPKAgerawr40OY6Dh8upKOjg0RKo7R2AXkFRVhUle72Y/R0tlNbVcHKFcuHe9PSw8xW1Kb/7rqtwGgk2rZtm/G3W7x4sfH3KSkpoa2tjf7+fgKBQNYoofz8fFwuFx6Ph6GhIY41N+E06+SX5rNw4UIOHDhgTFPwlY1M3hXGarWydOnSMYevA+zfP0iPN/097O3tNephvNEMmTnshYWFJ53zWl1dTSwWSyc/cVq4ZuNCCpN9JBIJvrBqBZFIlF377KhWJwuWriQV7KfzeDNFRUXU1NSwa9cuY18mk+mUmVkzgVSmbi2W9Pp1mY6NzP1oW1sbmqZhtVpHXYcXLlxINBo1kpeMzJQ8GzL31JnvhMlkYuHChUbDyUSc8YGU1Wpl/fr1bNmyhb/8y780nt+yZQvvec97xnyNzWYb86Jc4rbjclhoqK8zbo7sdjt1dXU0NTUZLTQ1NTVZgVBRURGLFy8eN73pSCcLtMxms9FFGw6HOXr0KENDQ8YCgjD6RvRkMkOFenp6jCAKMBZLdDqd5OXl0dnZSSAQMCZJer1eI6VogctCXV1dOr13bIgSdzpDl8lkYmhoyDhBz59fRzQaYWBgwIjqq6urCYfDtLW1cejQIRQgz+WkpCC7W7i2yAUN1ei6TiwWQ9d1ksnkW2sfxEMk4mCzmIyTWCZwVlWVefPmEQgE6OvrIxqNYrVaKSsrM7q+M2s+tbe309/fb5yc3G438XjcuCEsLCyc0YxgmTJkkphYLJaslhWXy2UEUicLkDOfi7KyMtrb2xkcHCSRSLBkyZIpr3E0FZWVlbS3txsnecBY5DXQ301Rno3FixdTUZr+jGeSaqiqetKeGbvdTl5eHsFg0Ah6+vv7UVWVlStXGi30VVVVtLa2Eg6HOXDggPH6/v5+44RXXFxMRUWFEbxmAqnMYn+T7b1zu914vV4GBwdpbW1l4cKF6LpuDFtwu91ZE3cTiURWq9ZEKYpCVVWVMdxF13Xa2toIBAIUFhYawV1DQ4ORQGW2ei4y65R0d3cTiURQFAWb2YSN9E1aJBLJWnx6ooFUNJHihu+/CsDP/2HzhMuTmcR+OtwQX4IK/Nx6gOkncz+5zLnG5/MZ56BTnd9PrMMTUwmfis1mM5LrnG7z5s1LJ1UxmXA6ndTU1LBnz56s1OiZpDvl5eVZ57aR58eysjLjPGqz2XC5XASDQVKxMKqq0tN2jKGeTs49N73Y88jsbaeiquqohhFFUVi+fDnt7e0MDAwwNDREKBQy5jYCpwxGrVarcRMfCATwer1GUFlYWGic4w8dOmQ0nrjdbtauXYvP5yMcDuNwOHC73aMCbafTybp162hpacHpdBqJnDJD+qLRqHGD7/V6jUyxixYtorGxkWAwSFVVFYqiMG/ePHbv3k1HR4dxzsx8v/Py8tiwYUPWtXtxXRUnUoYbOkeqqamhvb2dVCqFx5OdJEhRFLxer3F/Zbfbx21MqKmpobu7G4fDwcoFNcbfqsBSRWigm/6+Xnp7e43PTmbh8cz71NTU0NjYaNzoV1RUZF2T8/PzjdFAmSDK6/WyYMECXC5XVgOcpmmYTCYaGhqMXstMSvLMvjOjE+LxOIcOHWLjxo3GfVZPT4+xHEFmJAJgXF9dLte4iSvMZjNr164d83cjeTwe1q1bZzzONM52dHTQ0dFBPB7HaTVTV1dJXZmbgBO6Wlvw+99q9PB6vUYAeaqApqDgrQYSSI842bdvnzFcVlEU+vr6jHvQzHMjqarK8uXLOXDgAGazedaG9GVYrVaqq6uNoa5lZWVYrdbhDoGBU++AsyCQArj99tv54Ac/yIYNG9i8eTP//d//zfHjx/nYxz42qf0oioLdbh91EsikZQyHw1gsljG7UisqKmZksb0Mp9NptB61tLQQj8dRVXXSN0+ZQGqkzAkyc2KGdMrqzEXB6/XidrsZGhqitraW4uJiY50kSB9reXk5wWAw68vudruzPnher5eSkhI6OzuNyaxFRaNbBTMy9Z+xatUqgsEggUCAWCxGSUkJeXl5Rg9BYWEhpaWlRmvW9u3bCYfDLF682PiCJhIJIzDM3ARmjsXr9ZJMJo2EICNXD58JLpeL6upqQqGQURcjT4wul8todZlIT6Pb7WbJkiWTWndkJrlcLgoKCoxMhIODg/j9fgYHB0mlUlit1qzvjslkYuPGjadcoBHSF+tgMEhnZ2fWUJORLXhms5nq6mpaWlpIJBKoqkpBQQEDAwNEo1GjJSlz0221Wo2LIkx9CFpNTQ2Dg4N0dnZSV1dHIpEw9plJJTs4OEg0GkXTNHRdN7KaTVXm5i0zzDBTf1arldWrV2etYzLTRq5TAunvbHV1NX6/n8rKSvbv3298zz0ez4SDHE3X2d3mM36ei/YOJwLQZj3dRDrQPnbsGP39/UYdniqQOhPqcDxut5tzzjkn67lMavT+/n5cLpdxQ3li5ler1UppaSnhcHjUfBC3221cJzLXtng8Tl9fn/FZVlV1WsNPCwsLKSwsZNeuXcZ5z+VyZaWFPpXMekZDQ0Pk5eUZQWOmwaWsrIz8/HyOHDlipKLOBD/j9WRkWCyWUaMTTCYTS5Ys4dChQ8a1ra6ujry8PEpKSjCbzaxbt45YLGYEmZlrfyb1dn5+ftb3e6rXHIvFQk1NDS0tLWM2vIwMpE6WuMbhSM+vPTHgzc9PZ35tbW3l0KFDxt/9xB6UqqoqSkpKGBwcJBaLjbrmK4pCSUkJ7e3tRuNGQ0ND1rnc6/VSXV2NqqpUV1djtVqNntXMfY7H42Hx4sUsWrSIeDzO9u3biUajHD9+nPnz5xuBVSqVYmBggFQqhc1mIy8vz/gOTHaB84kqKyszhrJljjnzGcz0viaTSaOxurKycsKNZSaTiYKCAgYHB3E4HHi9XmMkSVVVldHgPfJ+cCxms5mVK1dO91An7MRzCjCp4YRnRSD13ve+l/7+fr7yla/Q2dnJihUr+MMf/pA1RGci1qxZQ1FR0agWKVVVWbx4MYcOHRp3jYHZUFxczPHjx43ofSLZ7U408sNQX1+fdYJwOp243W4qKyuN1onMaxwOR9aCxpkgJHOiGSuoG/nFt9vtxsk5cwI9sTynkknveuIJpbS0dFRrf+aiEI/HjYtafX191r6WLFnCjh07stbTURSFjo4OHA7HjI/Dzaw0Pp5MOTMpXCez31xZunQpPp+P4uJiXnnlFZLJpDGJdKwgeaKpYEtKSmhubjaGk7jd7jF7dDK9UpkU+tXV1bz++uvG4r8nXvQLCwuNC8JU55J5vV6jx6y7uzvrmDINELt3785a6X0mhrvZ7fas9NMZY30nZtKJAWBJSQkFBQVG4FZbWzulXjeRbWTDRKbXZDIjDs4GIwOpTCNEQUHBmI0QIzMEjuR2u41RFSMXO89MIIf09WsmzpuZ9bcyaxZleg8m0ttVVFREb2+v0aueTCZxuVxZ5wqHwzGjN5AFBQVZwWtmQdUMVVWzyp7plcr0xszksN158+aNu4zKyGvvqc5t4zXczJ8/H5/Ph9/vP+lUiMyIlfFkAilIBx0nfhbHuq4rikJeXp4xcihzXlQUBZvNRkNDA/v27aO1tZWSkhJjGRjA+L+kpASn0znrgVR+fr5xP2ez2Vi6dOmoe5FM42jmGjoZmUXeq6urURSF2tpaqqurR90LZHoi56rJNFSeFYEUwCc+8Qk+8YlPTGsfeXl5435JPR4PmzZtmtb+J6uystIY9qHr+pR6TKxWK/X19UQiEaqrq0mlUsaNb+YEunBheg5Cb28vdrt9zBOd1+slEolQVFQ0brf7yC/+yA9hpjs+c5GcLZnFFsfj8Xiora3l+PHjxgkj0/LhdDpPe4Di9XpRVZWioqJprT1xOtlsNuMiUVBQQF9fnxH8TKcLfmQPLKQvimP9PSwWC4sXL6a3t5e6ujqjJTYYDI4ZdBQVFU07kMoMVTly5Ag9PT1Zrc+aprF3796sIArO7ADDbrcbrauZz+dIHo+H4uJiAoHArM2PersYOf91vCHnZzOv14uiKESjUSOj7VgjPk4m0wjl8/mMHinAGIIH4881maxMoOv3+43GhEwr/qmUlZXR09PDwMCA0ftSX1+f04axsRQVFZGfn084HJ7R77eiKOMGnCOHd0/1HiEzJKypqQm73U5RUdGUghGPx4PD4SAWixlz4SciE0hlGptHKi4uNkZx7Nixw/icLlq0iOPHjxONRo0hZRmzFUhlRjv09/dTWVk56n4uE0hB+vs52XuT0tJSY7hq5v1GjlrK8Hg8p3VqwmRZLJYJDZ+EsyiQOhvZ7fYJ/yFPZuTijhUVFRw/fjxr4qCiKCxduhS32z3uONjMhL+xblYzbDabMZRqZEuDyWQyxlafjkV4T6auro5UKoXD4TC+xLM9Bnc8DoeD8847L+d1MlUejydreMB0W5cyC356PJ6T7uvEHsmTLQBdWFhoXBinM/+tpKSEI0eOpBfCHZ7UnbnwZx6vWrWKaDSK2Wye9Qn8s2lk6+rIC+LI369YsSJHpTu7FBcXY7PZiMVik8rIerYYORQok1hmsg0eTqdzRMKgdE+fw+Ggry89qd7lcmWNTpiOTNAWiUSMXouJBhuZURFvvvkm8XjcSBYw1yiKwpo1a9A07bTe6C5fvpxIJDKtuZ+ZHpbpUBSFdevWkUqlTplcYaRMsqDCwsJRw0gza67t3bvX6LUqKCigoqKC0tJSYrGY0fNVW1trrNU2W/Ly8sZtXBjZKz7VxsfxPjcWi8XoDZuLn/0TTbQBRgKptxm73c66detGjTFWVTUr4DrRRDPENTQ0MDg4OOriMld6XFRVPW2Z7iZiLrfInMrIlsOCgoJp/41ra2sxm80TznY3ESaTaUYaI2w2Gx6PB5/PZ6QXXrBggZHVyOv1nhEXhokqLS3F7/fP+LxBkU1RFObPn8+hQ4dGzc19u6ivr6ezs5OqqqopzStUVTW9btVwz3hBQQGlpaX09fWRn5/PypUrZywTYibjXGYBbZhc77PVamXFihXGXJm5GjiPlXRjtk23sWsmWSyWSX9mSkpKWLFixbjDcy0WC6tXrzaSaDU0NBiZ7EbeB8xU0D9V+fn5qKpqrKc40+bNm0d3d/dZdb47c+/ixJTNZkvHWPOXxNlpZFrgmTjhmkymk/Z45lpJSYnRmuh2uykoKDBa1yYzBORMUFVVZSwbIGZXeXk5ZWVlb9u6nok5f5nFZiEdSHk8Hs477zwsFsuM12t+fn7WkMHJ3vzn5+dLj+5ZSFGUU/bgqKp60nnTc4HZbGbVqlXouj4rQ43Ly8vPqiAKJJASQkxRZjHA/v7+t0XwXFxcbCwjkBkCu2bNGhKJxIzNwZhLZuPGvvCExSVPfJwrhU4L+vD8vFyEM5Op67lSZ3PJWPNzZ3qR6Iz8/HxjPtfb4bwn3n5mcy772UgCKSHElM2fP5/58+fnuhinhd1uN7KsjVzH5u2WIGCqnFYz2//1iqznTnycC06rme2fPh/uvjvXRTmlsepQpIfWZhazn80FjSF7DokkWxFCSCAlhBATtGzZMoLB4Fk1H0qIM53VamXz5s2nZXikw+Fg3rx5mEymOTOnRwiROxJICSHEBGVWPBdCzC2nK6FRJkGIEEKABFJCCCFOg2gixY0/fB2Ah25Kr8k38rHdkpvMntFEiht/vAMtuhgUBRWdh6yHmXji49PnxDrMVZ0JIYRIk0BKCCHErNN0ndeaB4yfgVGPc1auYz4gH4aLoeUk5cSpjVWHQgghckcCKSGEEKed1aTy3fevM37OaTn+ahmx3/yO25MLclYOIYQQZx4JpIQQQpx2ZpPKNasqcl2MdDmWlRJ+Yojbk7kujRBCiDNJ7poBhRBCCCGEEOIMJT1SQgghTrtkSuOpfd0AXLW8DHOOhvclUxpP7e8hlirIyfsLIYQ4c0kgJYQQ4rSLpzRu+el2APZ/5aqcBVLxlMYtv9oPyPwoIYQQkyOBlBBCiNPCMcfTdTtI5boIpzTX61AIId5OJJASQggx65xWMwe++g7jcTg+9zI7bLPtxKlouS7GuE6sQyGEELklySaEEEIIIYQQYpIkkBJCCCGEEEKISZKhfUIIIWZdNJHi4w9vA+D+v12f49KM7WOJBkzo3G85gj3XhRnDiXVol/lSQgiRUxJICSGEmHWarvPsoV7j57noBc0DgIaS45KM7UyoQyGEeDuRoX1CCCGEEEIIMUkSSAkhhBBCCCHEJEkgJYQQQgghhBCTJIGUEEIIIYQQQkySBFJCCCGEEEIIMUmStQ/Qh7Mf+f3+HJdECCHOTuF4yvjZ7w9k/c7vD5C05iaV98hyZfhjMZJ+P6RG/y6XTqzDXNWZEEKc7TIxgX6KDKmKfqot3gba2tqoqanJdTGEEEIIIYQQc0RrayvV1dXj/l4CKUDTNDo6OnC73SjK3Fw/ZDx+v5+amhpaW1vJz8/PdXHOKlK3s0fqdvZI3c4eqdvZJfU7e6RuZ4/U7ezJZd3quk4gEKCyshJVHX8mlAztA1RVPWm0eSbIz8+XL/AskbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ0+u6tbj8ZxyG0k2IYQQQgghhBCTJIGUEEIIIYQQQkySBFJnOJvNxpe//GVsNluui3LWkbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ8+ZULeSbEIIIYQQQgghJkl6pIQQQgghhBBikiSQEkIIIYQQQohJkkBKCCGEEEIIISZJAikhhBBCCCGEmCQJpHLse9/7HvPnz8dut7N+/XpefPHFk27/v//7v6xevRqn00lFRQUf+chH6O/vN37/gx/8gAsvvBCv14vX6+Xyyy/n9ddfz9pHXV0diqKM+nfLLbfMyjHmSi7qNplM8i//8i/Mnz8fh8NBfX09X/nKV9A0bVaOMVdyUbeBQIDbbruNefPm4XA4OO+883jjjTdm5fhyaabr9rHHHmPDhg0UFBTgcrlYs2YNP/nJT6b9vmeiXNTtCy+8wLvf/W4qKytRFIXHH398Ng4t53JRt1//+tfZuHEjbreb0tJSrrvuOg4dOjQrx5druajf+++/n1WrVhmLoW7evJk//vGPs3J8uZSrc27G17/+dRRF4bbbbpupQ5ozclG3d9xxx6j72/Ly8lk5PgB0kTOPPvqobrFY9B/84Af6/v379VtvvVV3uVz6sWPHxtz+xRdf1FVV1f/zP/9Tb2pq0l988UV9+fLl+nXXXWds8/73v1//7ne/q+/YsUM/cOCA/pGPfET3eDx6W1ubsU1PT4/e2dlp/NuyZYsO6M8+++xsH/Jpk6u6/drXvqYXFRXpTzzxhN7c3Kz/4he/0PPy8vR777131o/5dMlV3d5www36smXL9Oeff15vbGzUv/zlL+v5+flZ25zpZqNun332Wf2xxx7T9+/frx85ckS/9957dZPJpD/55JNTft8zUa7q9g9/+IP+xS9+Uf/Vr36lA/qvf/3r2T7U0y5XdXvVVVfpDz74oL537159586d+jXXXKPX1tbqwWBw1o/5dMpV/f72t7/Vf//73+uHDh3SDx06pP/zP/+zbrFY9L179876MZ8uuarbjNdff12vq6vTV61apd96662zdZg5kau6/fKXv6wvX7486z63p6dn1o5TAqkc2rRpk/6xj30s67klS5bon//858fc/u6779br6+uznvv2t7+tV1dXj/seyWRSd7vd+kMPPTTuNrfeequ+YMECXdO0SZR+bstV3V5zzTX6TTfdlLXd9ddfr//t3/7tZA9hzspF3YbDYd1kMulPPPFE1narV6/Wv/jFL07lMOak01G3uq7ra9eu1f/lX/5lyu97JspV3Y50tgZSc6FudT3dSAjozz///ARLfmaYK/Wr67ru9Xr1//mf/5lAqc8MuazbQCCgL1y4UN+yZYt+8cUXn3WBVK7q9stf/rK+evXqqRV6CmRoX47E43G2bdvGlVdemfX8lVdeySuvvDLma8477zza2tr4wx/+gK7rdHd388tf/pJrrrlm3PcJh8MkEgkKCwvHLcfDDz/MTTfdhKIoUz+gOSSXdXvBBRfwzDPPcPjwYQB27drFSy+9xDvf+c4ZOLLcy1XdJpNJUqkUdrs9azuHw8FLL700zaOaG05H3eq6zjPPPMOhQ4e46KKLpvy+Z5pc1e3bwVyqW5/PBzDu9e5MNFfqN5VK8eijjxIKhdi8efP0DmqOyHXd3nLLLVxzzTVcfvnlM3NAc0iu67axsZHKykrmz5/P3/zN39DU1DQzBzZOQUQOtLe364D+8ssvZz3/b//2b/qiRYvGfV1mqJjZbNYB/dprr9Xj8fi423/iE5/QFyxYoEcikTF//7Of/Uw3mUx6e3v71A5kDspl3Wqapn/+85/XFUXRzWazriiKfuedd07/oOaIXNbt5s2b9Ysvvlhvb2/Xk8mk/pOf/ERXFOWk73smmc26HRoa0l0ul242m3WbzaY/8MAD037fM0mu6vZEnIU9UnOlbjVN09/97nfrF1xwwfQOaI7Jdf3u3r1bd7lcuslk0j0ej/773/9+Zg5sDshl3T7yyCP6ihUrjGvc2dYjlcu6/cMf/qD/8pe/1Hfv3m309pWVlel9fX0zd4AjSI9Ujp3YC6Tr+rg9Q/v37+cf//Ef+dKXvsS2bdt48sknaW5u5mMf+9iY299111088sgjPPbYY6Na8jMeeOABrr76aiorK6d3IHNQLur2Zz/7GQ8//DA//elP2b59Ow899BDf+MY3eOihh2buwOaAXNTtT37yE3Rdp6qqCpvNxre//W3e//73YzKZZu7A5oDZqFu3283OnTt54403+Ld/+zduv/12nnvuuSm/75kqV3X7dpDruv3kJz/J7t27eeSRR2bkeOaaXNXv4sWL2blzJ1u3buXjH/84N954I/v375/RY8u10123ra2t3HrrrTz88MPj3pudLXLxub366qv5q7/6K1auXMnll1/O73//e4DZuw+blfBMnFIsFtNNJpP+2GOPZT3/j//4j/pFF1005mv+9m//Vv/rv/7rrOdefPFFHdA7Ojqynr/77rt1j8ejv/HGG+OWoaWlRVdVVX/88ceneBRzUy7rtrq6Wr/vvvuynvvqV7+qL168eCqHMufMhc9tMBg0XnfDDTfo73znO6dyKHPObNftSDfffLN+5ZVXTvl9zzS5qtsTcRb2SM2Fuv3kJz+pV1dX601NTVM4grltLtTvSJdddpn+93//9xMs/dyWq7r99a9/rQO6yWQy/gG6oii6yWTSk8nkNI8s9+ba5/byyy8fNV9rpkiPVI5YrVbWr1/Pli1bsp7fsmUL55133pivCYfDqGr2nyzTGq/ruvHc3XffzVe/+lWefPJJNmzYMG4ZHnzwQUpLS086V+VMlMu6HW8/Z0v687nwuXW5XFRUVDA4OMhTTz3Fe97znqkezpwym3V7Il3XicViU37fM02u6vbtIJd1q+s6n/zkJ3nsscf485//zPz586d6GHPWXPvsnk2f71zV7WWXXcaePXvYuXOn8W/Dhg184AMfYOfOnWfFKIu59LmNxWIcOHCAioqKiRZ/cmYlPBMTkkkN+cADD+j79+/Xb7vtNt3lcuktLS26ruv65z//ef2DH/ygsf2D75mioAAACtBJREFUDz6om81m/Xvf+55+9OhR/aWXXtI3bNigb9q0ydjmP/7jP3Sr1ar/8pe/zEr9GAgEst47lUrptbW1+uc+97nTc7CnWa7q9sYbb9SrqqqM9OePPfaYXlxcrH/2s589fQc/y3JVt08++aT+xz/+UW9qatKffvppffXq1fqmTZtOOtfqTDMbdXvnnXfqTz/9tH706FH9wIED+j333KObzWb9Bz/4wYTf92yQq7oNBAL6jh079B07duiA/s1vflPfsWPHWZla/nTX7cc//nHd4/Hozz33XNZ5IxwOn76DPw1yVb9f+MIX9BdeeEFvbm7Wd+/erf/zP/+zrqqq/vTTT5++g59luarbE51tc6R0PXd1++lPf1p/7rnn9KamJn3r1q36u971Lt3tds/a9UwCqRz77ne/q8+bN0+3Wq36unXrstK23njjjfrFF1+ctf23v/1tfdmyZbrD4dArKir0D3zgA1nr6MybN08HRv378pe/nLWfp556Sgf0Q4cOzebh5VQu6tbv9+u33nqrXltbq9vtdr2+vl7/4he/qMdisdk+3NMqF3X7s5/9TK+vr9etVqteXl6u33LLLfrQ0NBsH+ppN9N1+8UvflFvaGjQ7Xa77vV69c2bN+uPPvropN73bJGLun322WfH/GzfeOONs3mop10u6nasegX0Bx98cDYPNSdyUb833XST8Z4lJSX6ZZdddlYFURm5OueOdDYGUrqem7p973vfq1dUVOgWi0WvrKzUr7/+en3fvn2zdoyKrp+kv0wIIYQQQgghxCgyR0oIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghTrN4PE5DQwMvv/zyjO73iSeeYO3atWiaNqP7FUIIMZoEUkIIIablwx/+MIqijPp35MiRXBdtzvrv//5v5s2bx/nnn288pygKjz/++KhtP/zhD3PddddNaL/vete7UBSFn/70pzNUUiGEEOORQEoIIcS0veMd76CzszPr3/z580dtF4/Hc1C6uec73/kOf/d3fzcr+/7IRz7Cd77znVnZtxBCiLdIICWEEGLabDYb5eXlWf9MJhOXXHIJn/zkJ7n99tspLi7miiuuAGD//v28853vJC8vj7KyMj74wQ/S19dn7C8UCvGhD32IvLw8KioquOeee7jkkku47bbbjG3G6sEpKCjgRz/6kfG4vb2d9773vXi9XoqKinjPe95DS0uL8ftMb883vvENKioqKCoq4pZbbiGRSBjbxGIxPvvZz1JTU4PNZmPhwoU88MAD6LpOQ0MD3/jGN7LKsHfvXlRV5ejRo2PW1fbt2zly5AjXXHPNJGsZWlpaxuz9u+SSS4xtrr32Wl5//XWampomvX8hhBATJ4GUEEKIWfXQQw9hNpt5+eWX+f73v09nZycXX3wxa9as4c033+TJJ5+ku7ubG264wXjNZz7zGZ599ll+/etf8/TTT/Pcc8+xbdu2Sb1vOBzm0ksvJS8vjxdeeIGXXnqJvLw83vGOd2T1jD377LMcPXqUZ599loceeogf/ehHWcHYhz70IR599FG+/e1vc+DAAf7rv/6LvLw8FEXhpptu4sEHH8x63x/+8IdceOGFLFiwYMxyvfDCCyxatIj8/PxJHQ9ATU1NVq/fjh07KCoq4qKLLjK2mTdvHqWlpbz44ouT3r8QQoiJM+e6AEIIIc58TzzxBHl5ecbjq6++ml/84hcANDQ0cNdddxm/+9KXvsS6deu48847jed++MMfUlNTw+HDh6msrOSBBx7gxz/+sdGD9dBDD1FdXT2pMj366KOoqsr//M//oCgKAA8++CAFBQU899xzXHnllQB4vV7uu+8+TCYTS5Ys4ZprruGZZ57hox/9KIcPH+bnP/85W7Zs4fLLLwegvr7eeI+PfOQjfOlLX+L1119n06ZNJBIJHn74Ye6+++5xy9XS0kJlZeWYv3vf+96HyWTKei4Wixm9VyaTifLycgCi0SjXXXcdmzdv5o477sh6TVVVVVbPmxBCiJkngZQQQohpu/TSS7n//vuNxy6Xy/h5w4YNWdtu27aNZ599Nivwyjh69CiRSIR4PM7mzZuN5wsLC1m8ePGkyrRt2zaOHDmC2+3Oej4ajWYNu1u+fHlW8FJRUcGePXsA2LlzJyaTiYsvvnjM96ioqOCaa67hhz/8IZs2beKJJ54gGo3yf/7P/xm3XJFIBLvdPubvvvWtbxkBW8bnPvc5UqnUqG1vvvlmAoEAW7ZsQVWzB5g4HA7C4fC4ZRBCCDF9EkgJIYSYNpfLRUNDw7i/G0nTNN797nfzH//xH6O2raiooLGxcULvqSgKuq5nPTdybpOmaaxfv57//d//HfXakpIS42eLxTJqv5n04Q6H45Tl+Lu/+zs++MEP8q1vfYsHH3yQ9773vTidznG3Ly4uNgK1E5WXl4+qR7fbzdDQUNZzX/va13jyySd5/fXXRwWKAAMDA1nHKIQQYuZJICWEEOK0WrduHb/61a+oq6vDbB59GWpoaMBisbB161Zqa2sBGBwc5PDhw1k9QyUlJXR2dhqPGxsbs3ph1q1bx89+9jNKS0unNB8JYOXKlWiaxvPPPz+qpyjjne98Jy6Xi/vvv58//vGPvPDCCyfd59q1a7n//vvRdd0YcjgZv/rVr/jKV77CH//4xzHnYWV63NauXTvpfQshhJg4STYhhBDitLrlllsYGBjgfe97n5Fd7umnn+amm24ilUqRl5fHzTffzGc+8xmeeeYZ9u7dy4c//OFRw9f+4i/+gvvuu4/t27fz5ptv8rGPfSyrd+kDH/gAxcXFvOc97+HFF1+kubmZ559/nltvvZW2trYJlbWuro4bb7yRm266iccff5zm5maee+45fv7znxvbmEwmPvzhD/OFL3yBhoaGrCGJY7n00ksJhULs27dvErWWtnfvXj70oQ/xuc99juXLl9PV1UVXVxcDAwPGNlu3bsVms52yHEIIIaZHAikhhBCnVWVlJS+//DKpVIqrrrqKFStWcOutt+LxeIxg6e677+aiiy7i2muv5fLLL+eCCy5g/fr1Wfu55557qKmp4aKLLuL9738///RP/5Q1pM7pdPLCCy9QW1vL9ddfz9KlS7npppuIRCKT6qG6//77+eu//ms+8YlPsGTJEj760Y8SCoWytrn55puJx+PcdNNNp9xfUVER119//ZhDDk/lzTffJBwO87WvfY2Kigrj3/XXX29s88gjj/CBD3zgpMMLhRBCTJ+inzjAXAghhJiDLrnkEtasWcO9996b66KM8vLLL3PJJZfQ1tZGWVnZKbffs2cPl19++ZjJMKajt7eXJUuW8Oabb465ILIQQoiZIz1SQgghxBTFYjGOHDnCv/7rv3LDDTdMKIiC9Nyru+66a8ZTlDc3N/O9731PgighhDgNJNmEEEIIMUWPPPIIN998M2vWrOEnP/nJpF574403znh5Nm3axKZNm2Z8v0IIIUaToX1CCCGEEEIIMUkytE8IIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJun/Axictv5U3X1UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwkdX0//lcdXX3MvefsBbsLy7EggoAIiKACUYyiaGLEBNBvIgpGECMRTeJiFKIYBEXJTxOBaFA8ozFBWEhEcQWWBRbYi4U92d3Z2dmdo6fvqvr8/qj+1FT39N3V18zr+XjwYHamj+qr6lPvfh+KEEKAiIiIiIiIiIiIaqa2egOIiIiIiIiIiIg6HYNsREREREREREREdWKQjYiIiIiIiIiIqE4MshEREREREREREdWJQTYiIiIiIiIiIqI6MchGRERERERERERUJwbZiIiIiIiIiIiI6sQgGxERERERERERUZ30Vm9Au7FtG/v370dPTw8URWn15hARERERERERUYsIIRCNRrF48WKoaulcNQbZ8uzfvx/Lli1r9WYQERFRmwsEAvjc5z4HAPjSl76ETCbT4i2qz0x7PERERER+2rt3L5YuXVryMgyy5enp6QHgPHm9vb0t3hoiIiJqNVsIrHtuK0ZGRnDKsUuxcsUKAEAmk8Fdd90FANi4cSOWLFniy/3996O/w/fXvYzR4GL8+sY/8uU2K+F9PPtu+BRGEAQALEIK6nWfALq6mrYtAPC3d/8Ye0YmcdkfvQl/8vpjGn5/thA4MJ4CACzqC0JlRQMREREBmJiYwLJly9x4USkMsuWRJaK9vb0MshERERHiaRPXPDgCAPjt2Qvd9UE6nXYv09XV5du6IRiOIBAMIxjx7zYr4X08gWAYb0+dDgDYHNyASG9v04Ns4XAXAkELRrA5z0M8beLttz4OANj8hT9CxOAymYiIiKZU0lKMgw+IiIiISrBt2/25q6u74GWEEL7dn5W9P6VMz4+ZTvY8sSyrxVtCREREVJnZvXojIiIiKiOZTLk/h0LBgpfxM8gmg3qaOrvLFWW5pukJchIRERG1MwbZiIiIiEowTdP9uViZgL9BNue2yk2vmunk4zct/55bIiIiokbqmNXbmjVroChKzn+Dg4Pu34UQWLNmDRYvXoxwOIwLLrgAmzZtauEWExER0UxgV1Cu2IhMNn3WB9mymWwWM9mIiIioM3TU6u2kk07CgQMH3P9eeOEF929f+cpXcPvtt+Ouu+7C+vXrMTg4iIsuugjRaLSFW0xERESdrpKeYP72ZHNuq5LmujPZVCYbe7IRERFRZ+ioIJuu6xgcHHT/mz9/PgBnYXvHHXfgc5/7HC677DKcfPLJuO+++xCPx3H//fe3eKuJiIiok1l2c4M8djZgp2kdtUzznarIwQfMZCMiIqLO0FGzybdv347FixcjGAzirLPOwi233IKVK1di586dGBoawsUXX+xeNhgM4vzzz8e6detw9dVXF73NVCqFVGqqofHExAQCgQAymUzOKHsiIiKandKpJN68VEMoFIJtmkjDCfqYpoljjjkG8Xgcpmn6sm4QQsA0M1BhQ1VEU9cipmnida97HZDJABtfwOXaQQCAjex2BAJN2xYAznMAG2Ym3ZTnwTZtXP76pdmfp15nIiIimt0ymUzFl1WEn/UNDfTggw8iHo/juOOOw8GDB/HFL34RW7duxaZNm7Bt2zace+652LdvHxYvXuxe5yMf+Qh2796Nhx56qOjtrlmzBjfffPO03xEREREREREREa1Zswbj4+Po7e0tebmOqUN4+9vfjve+9714zWtegwsvvBD//d//DQC477773Mvk9y4RQpTtZ3LTTTdhfHzc/W/v3r3+bzwREREREREREc1oHVUu6tXV1YXXvOY12L59O9797ncDAIaGhrBo0SL3MsPDw1i4cGHJ2wkGgwgGgzm/+9KXvoQDBw6gp6fH9+0mIiKizvLKK69g2659WLR4MU494Rj3CzwhBLZs2YKhoSEsX74cK1eurPu+TNPEff/5ENZuPojw0pNwz4fPqvs2KyWEQCKRAGIxhL79HYxll4kDMKFcfx3Q1dW0bQGAr/5wLZ5+aS9OOWk1PvveNzT8/oQQGI075SADkcCsHzxBREREjmg0WnHFY8cG2VKpFLZs2YLzzjsPK1aswODgINauXYvTTjsNAJBOp/HYY4/hy1/+ctW3nclkEAgEYBiG35tNREREHSZtAdc/lgKwE5u/cBwihrN8SqfT+MUvfgEAWLFihS/rBkVRAEWDDRWq3ty1SDqdxp133gkAuA4q3pBy1lSbgxsQMQygyesiXQ/AhgpTKE15HuJpE2/48iMAgM1f+CP3dSYiIqLZLVBFX9qOWT38zd/8Dd75znfiqKOOwvDwML74xS9iYmICV155JRRFwfXXX49bbrkFq1atwqpVq3DLLbcgEong8ssvb/WmExERUQezrPLTRf1qcSuEcKeL6urszqTSso/ftjmAgIiIiDpDxwTZXn31VXzgAx/AyMgI5s+fjze84Q144okncPTRRwMAbrzxRiQSCVxzzTUYHR3FWWedhYcffpgln0RERFQXyy4cZDMMA1dccQV2794NTdN8uS8hBIQABBRoWnNb5xqGgc9//vNALIb4V/65qfddiJp9Tk27I2Z0EREREXVOkO2HP/xhyb8rioI1a9ZwMigRERH56tXDsaJ/8/Zn84M3k02b5ZlsuuoEGZnJRkRERJ2iY6aLEhEREbXCY9sOuj+PJzI5f2tEkE0IwIbiBplmKzUbZLQYZCMiIqIO0TGZbERERETNtmskhq37xwAsAADsOBTDor4wAGcS6G9+8xtMTk5i/vz5vtyfbdsty2QzTRM///nPAdPEHzX1ngvTskFGy2KQjYiIiDrD7P6KlIiIiKiE/++3r0DBVJbaK8OT7s+2bWPXrl0YGRnxraTRKRfN9mRrcpDNtm1s3rwZm196Ce0Q1pI96VguSkRERJ2CmWxEREREBRycSOKnG/ZhFWwsNpIYShvYMVK4P5vfPdkEWtuTTYfAe9URAICG1gwekEG2ZpWLaqqC975uqfszERERUbUYZCMiIiIq4F9/twNpy8LR84J4+yIdd7wgmhJkEwIQAtBbGOgxFIF/Nna27P6B5g8+COoa/vlPX9uU+yIiIqKZiUE2IiIiojzJjIX7n9wDBQJnLh9AUNdgw8T2g9GCl/c/k6355aLtZqpctDWZdERERETVYk82IiIiojz7xhKIpS30GCqOnhNBVygAGwoOjCcRTWamXd7fTDYBtDjIJgQQFyriQoVPD61q7uCDJgXZhBCIp03E06ZvrycRERHNLgyyEREREeU5OJ4EAAz2GsjYCq77TQqAE/Ta7hl+4LepwQet7QuWgIrVqdOxOnU6Ei1aLk6Vi1pNub9ExsLqf3gIq//hISQyzblPIiIimlkYZCMiIiLKMzThBNkWdhvT/vbywelBtkYMPmhlT7Z2oOssFyUiIqLOwiAbERERUR4ZZFvQHZj2t5cK9GXzffABFLdccrbSVA0Ag2xERETUOWb36o2IiIioAFkuOq9AkK1QuWgjMtm0Wb5K0zUnk88WzZkuSkRERFSvWb58IyIiIppOZrLNixQIsjUwk822bWayZTV78AERERFRvWb36o2IiIiogIMTKQDAnIg+7W/7C0wY9TuTDWBPtoDulIsKZrIRERFRh2CQjYiIiCjPwWwm20A4N8g2PzsI4eW8ktHG9GSb3UE2PVsvK5jJRkRERB1i+tezRERERLOYZQsMR51MtoGwhkNjwBuP7kJvbw9GY2kcmjyC7cOTeM3iHhx77LEYGxvz7b5ze7I1N8imqipWr14NmCYCW1/CJeoR5/doTZBLlos2qyebqii45DWD7s9ERERE1WKQjYiIiMjj8GQKli2gKkC3oWJcU/D5C5dg1apVWPPLTfjDjiPYfjAKXV+GSy65BBs3boTqU/+0qSCb0vRyUV3X8Sd/8idALAZsuw3fMl5p6v3nc8tFm5TJFgpo+NYHT2/KfREREdHMxHJRIiIiIg859GB+TxDIZlFpmhPwWbWwG8DUhFElm/Hkf7lo8zPZ2o0sF7V9em6JiIiIGo1BNiIiIiKPoXEnyLawNwTLsgBMBdlWzOsCAOw5EgfQmCCbnQ20zfYgW8DtycbBB0RERNQZWC5KRERE5CGHHsggW8oUOP/uFwG8iF9cey4AYCyeQTqdxh133AEAeOtb3+rLfTtBNgAtGHyQTqdx6623AgCuEypOTTmlk5uDGxBp6pY4tCZnssXTJlb/w0MAgM1f+CNEDC6TiYiIqDrMZCMiIiLykOWig55MNqk/EgAAjMXTsDy9wvwtF3UGHzS7J1u7CWSzB0WTBh8QERER1Ytf0RERERF5DI07k0UH+0KwrGjO32SQzRZAwgQ++tGP+jr4wLZt2AIQUNzpms0SCATwN3/zN0A8Dtx1d1Pvu+D26Nly0WzgUeHETyIiImpzzGQjIiIi8sgvF/UKaCp6Qs53lKOJDLq6umAYhm/37c1k05q8SlMUBV1dXeiKRNAO4Sw9m8mmAGjSgFEiIiKiujDIRkRERORRqlwUAOZ0OUG10Vi6QYMPWpPJ1m7k4AMFAhmLJaNERETU/lguSkRERORxMDtddLAviOFD04NsAxEDuw/HMTKRwCMbf4fh4WEcf/zxvty3O10Uze/JZpomHnroIcA0cV5T77mwgD6VyWYxlY2IiIg6AINsRERERFmxlIloygTglIvuN81plxmQww9iKWx77jkAwKpVq3y5f6dcVGayNTfIZts2nn76aQDAuW1QMKp7MtlMi0E2IiIian8MshERERFlyX5sXYaG7qAO27ahKMD5q+ZBVRWoioIBWS6ayLjX87dc1LktrYWN/jUIvFkdAwCoaE2Ay/Bkspl248tFVUXBm4+f7/5MREREVC0G2YiIiIiyZD+2hX1T/dgMTcF3rzoDWrYR/5zIVE82ye8gmwCgaa0L9AQVgXuM7S27fwBQVRWqosAWAmYTerKFAhru+dDrG34/RERENHPN7o66RERERB4Hiww9UD1DCNxMtnhukM2PQJt38EGze7K1G0VRIBPK0ub03nhERERE7YZBNiIiIqKsofEUAKcfmwyy6bruThEFpqaLjnmCbH6RwToBNL0nW7tRVdUtmW1GJhsRERFRvRhkIyIiIsqSmWzeIFtGqDjx73+NE//+14inTQzIctF4Jue6fmeytbInW1yoODH5OpyYfB3iojXLxWZnssXTZs7rTERERFQt9mQjIiIiyhoal+WiQTfIpmkaEpmpIM+crsYF2WzbdieM6i3syQYACWgtvX9FUbJlunbTMtm8rzMRERFRtZjJRkRERJQlBx8MegYfaFrucmlOVwDA9HJRPzPZAAWaymWawnJRIiIi6iBcvRERERFlFSoXlVNFpf5suehEsjHlorIn22wffABMBdkyFjPMiIiIqP0xyEZEREQEJ8B1KDp98MG0IFs4kL389Ov7sQ2yJ5vawp5s7UJVnKUqg2xERETUCRhkIyIiIgIwmTJhOrWamNNlTAXZ1Nwgm66p6MsG2rz8C7JlM9la3JOtHSjZbD6L5aJERETUARhkIyIiIgIwlh1kYOgqQgENpulMmMzPZAOmhh94+RtkU6CxXNQtF02bDLIRERFR++N0USIiIiIA4wknyCbLQWUmm65rOGvFHABwSzgHIgHsgYKeeYugmQkAPvZkA1rSk01RFBx99NGAZUHb8yrOUiYAACrqf1y1UrPDH6wmlIuqijLtdSYiIiKqBoNsRERERJgKsvXlBdkiwQAeuPrsnMvO6TJgQcWiM9+GpandsCzL10w2oPmBnkAggKuuugqIxYDbbsMDwW1Nvf9CmjldNBTQpr3ORERERNVguSgRERERPJlskdwgW6Fy0YHshNHReNoNBPnBmS7qDD5gT7apTDbTal02HREREVGlGGQjIiIiwlRPtvxMNl2fnvg/kO3JNhqbCrL5kclm27Y7+IA92aay+ZpRLkpERERUL5aLEhEREcFbLuoE0GRgJ20Dr/vHtQCAx//2zYgYOgYiBnRYSD/7CzymCpx11lk+Bdk8mWxqc78LTafTuPPOOwEh8FdCxVtSpwAAHg8+j0hTt2SKmg00ZppQLhpPm3jjl/8PwNTrTERERFQNrh6IiIiIAIwl0gCmZ7JpqoYjsXTOZed0OZdRrTQy2SQrP4JslnCCSQKA1oLm+/F4PPuTgiMINP3+87mDD+zmTBfNf52JiIiIqsEgGxERERGAiSKDD4r1ZDOhYkv/G/CXJ2lQVdWfTDa395gCrck92QKBAD72sY8BiQQC372vqfddjKo4QbaMyXJRIiIian8MshERERGh+OADtUCQbU6XAUDBgbSBnp4IEomEP5ls2YwtWwB6k3uyKYqCBQsWALEY4uUv3hSyXLRZmWxERERE9eDgAyIiIiIUH3xQMJMtO/jgiM+DD6aCSQoHH8BbLsrpokRERNT+mMlGREREBM/gg0j5INuciAEVNo4xd+Oll0awePEin4Jszm20oiebZVn43e9+B6TTOL2p91ycDLKZLBclIiKiDsAgGxERERFyM9ls24adzSrTtOmJ/73hAHRF4LTAAbzyCrBo0aC/mWzKVKlks1iWhcceewwAcCraI4tOY7koERERdZCOLRe99dZboSgKrr/+evd3QgisWbMGixcvRjgcxgUXXIBNmza1biOJiIioY8jBB/3hgJvFBgABXccpS/twytI+qNnsMk1V0BvKnb7py+ADGdhTW7tEUyFwihLDKUoMKlpXqikHHzQjyKYqyrTXmYiIiKgaHZnJtn79enz729/GKaeckvP7r3zlK7j99ttx77334rjjjsMXv/hFXHTRRdi2bRt6enpatLVERETU7kzLRjRlAnAy2dLpNABA13VEggH88uNvnHad/i4DiE39289MtmZnseULKQK/DG5u6TYAU8HGZvRkCwW0gq8zERERUaU6LpNtcnISH/zgB/Gd73wHAwMD7u+FELjjjjvwuc99DpdddhlOPvlk3HfffYjH47j//vtbuMVERETU7iaSpvtzXziAZDIJAAiFQkWvMxAxcv7tTyabcxsyg2u2UzUn2GhaLBclIiKi9tdxK7hrr70W73jHO3DhhRfm/H7nzp0YGhrCxRdf7P4uGAzi/PPPx7p164reXiqVwsTERM5/RERENLuMxZ3Mte6gDl1T3SBbMBgsep2BiL/lokIIN2Or1Zls7WIqk42DD4iIiKj9dVS56A9/+EM888wzWL9+/bS/DQ0NAQAWLlyY8/uFCxdi9+7dRW/z1ltvxc033+zvhhIREVFHcSeLhp3AWSqVAuBksiXSFi683RkI8MgN5yNsONNG/c5kE0K4t9HqnmwJoeLNqZMBAI8EX0S4Rdshh040o1y02OtMREREVKmOyWTbu3cvrrvuOnz/+98vWbqh5DWqFUJM+53XTTfdhPHxcfe/vXv3+rbNRERE1Bnyg2zeclEBgX1jCewbS0B4hgD0NyDIJmNJrS4XFQD2IYh9CLZw7MFUsNFuwuCDYq8zERERUaU6JpNtw4YNGB4exumnn+7+zrIs/Pa3v8Vdd92Fbdu2AXAy2hYtWuReZnh4eFp2m1cwGCxZCkJEREQznwyy9Udyg2wly0W7Ajjo+be/mWwsFwXgTvm02JONiIiIOkDHZLK99a1vxQsvvIDnnnvO/e+MM87ABz/4QTz33HNYuXIlBgcHsXbtWvc66XQajz32GM4555wWbjkRERG1u1LlosX0hwNF/1aLnEy2FpeLtgtNc0o2rSZkshERERHVq2My2Xp6enDyySfn/K6rqwtz5851f3/99dfjlltuwapVq7Bq1SrccsstiEQiuPzyy1uxyURERNQhxuJTmWy2becE2cwi1+kO5i6j/CkXdW5D15jJBgC67MlmsXyTiIiI2l/HBNkqceONNyKRSOCaa67B6OgozjrrLDz88MPo6elp9aYRERFRG5OZbL3hANJpZ9KooigIBAIwM4UnW+Y3xvenXBQAlJYPPmgXcsqqLThdlIiIiNpfRwfZfvOb3+T8W1EUrFmzBmvWrGnJ9hAREVFnkplsfeFAztCDUsOTwgF/M9kAwBZOy332ZHPITDa7CdNFiYiIiOrV0UE2IiIiIj+4gw/CRk6QDQAUKFi1oNv9WYoENYzaIYRUp1+YX+WirQqyKYqC+fPnA7YN9dARrFISzu+bviVTNDXbk60J5aLFXmciIiKiSjHIRkRERLPeeMIpEe0LB9x+bHKyaNjQsPaG86ddpycSwn+mTsbxoQm8TdN8CrIBAkpLerIFAgFcc801QCwG3HYb1gZfbPo25JPPgy0aP/ig2OtMREREVCk2/CAiIqJZz81kiwSmZbIV02U431WmTP8y2eRtaCXKVGcTzS0X5XRRIiIian8MshEREdGsJ4Ns3p5sMpOtGDn4wLQByxY+ZrKxJ5ukq+zJRkRERJ2D5aJEREQ063kHHxzIlovKTLZE2sK77nocAPDLj7/RDa4FFBvvDr6IAGwk0/N9zGRT3OBSM2UyGXznO98BbBt/LlS8N70aAPBLYzPCTd8ah645z3UzMtmKvc5ERERElWKQjYiIiGa1ZMZySz57wzp25pWLCghsH550f5Z0VcGA6lw2Y9kdn8kmhMChQ4cAADYUbBdOaK2VOWRuuWgTerIVe52JiIiIKsUgGxEREc1qslRUUxWEtamsqXLlorqu47dYjVB6HCcLxbdMNiGUlgTZdF3HlVdeCSQS0H/446bffyG6KjPZGPQiIiKi9scgGxEREc1qMsjWG9LdyaKGYUAtU7KpqirixhzEUybMGdCTTVVVLF++HIjFEG/6vRema+zJRkRERJ2Dgw+IiIhoVpP92PojRsWTRSXZt8u/clHZk42DDwBA15znoRnlokRERET1YiYbERERzWpuJls44GaylSsVBQDLsrDcPoBJdQxps9u3IFurMtksy8KGDRuAdBonNv3eC5OZbPU+t5VImZb7czPuj4iIiGYeBtmIiIhoVhuLpwEA/eFAVZlslmXh6PhLQABIm4t86snWunJRy7Lw4IMPAgCOQ3tk0jVzuugTrxx2f37+1XGcfcy8ht8nERERzSwsFyUiIqJZTWay9RUJsilQsKQ/jCX9YShFgk+mj+WiAq0ZfOClAFiCFJYg1dJwm5wuKprQk+1/tx5yf/7PZ/c1/P6IiIho5mEmGxEREc1qEwnZk61wuWjY0PD7z7yl5G2YVv1BIJnJBqDlPdnCio3fh55v6TYAgNGkclHbFnjspakg2/+8OISbLz0ZoYDW0PslIiKimYWZbERERDSrjZXJZKtExvJruqjsycYlGuApF23w4IMX9o1jOJpCl6FhSX8Y0aSJhzYNNfQ+iYiIaObhCo6IiIhmNXfwQVBFJuP8XH2Qza9yUWTLReu6qRkjoDcnk+2RLQcBAOcfPx/vPX0pAOAnG15t6H0SERHRzMNyUSIiIprVxuJOYK1LswETMAwDuj61REpmLPzp//cHAMCPrj67YAmhX5ls8jZancmWFArel3ZmjP7I2ILqQo7+kZlswnaeG0VpTBnt2s1OkO2FV8ex41AMAPD4yyPYP5bA4v5wQ+6TiIiIZh5+T0pERESzmsxkCysmACASieT83RYCz786judfHYddJJBm2v5msrW6J5sNBc+LLjwvumC3cPRBIJvSZ4v6g5jF7D0Sx9ahKBQAe0cT2DoUxRlHD0AI4OccgEBERERVYJCNiIiIZjUZZAtlg2zhcPWZS6bvPdlaG2RrFwFd9mRrXJDt0Wyp6OuOHnB/957TlgAAfvnc/obcJxEREc1MDLIRERHRrCani2oiDWB6Jlsl0j70ZAMAIcAgm4fuZrIBtt2Y4QePbBkGALzl+AXu785cPgcAsOtwrOH94IiIiGjmYJCNiIiIZrVo0slgUywn2FZLkM30bfCBANqgXLRd6A0uF81YNp7ceRgAcP4J893fz+81AAAp03Z79hERERGVwyAbERERzVrJjIW0ZQMQgJkCUFuQzc/BB0Iwk00K6CoElIYF2YajKWQsgYCmYPmcqdc9qGuY2+UE2g6MJ32/XyIiIpqZGGQjIiKiWUtmsQUVC7oCqKqKUKj6WZr+ZbK1x+CDdqGrKgScMlrTtHy//YMTTgBtQU8Iat5zPtgXyrkMERERUTl6+YsQERERzUzRpFMKOMcQUBQF4XAYijI9wDUnm9WUzwiGEE1mkPEpyCZvIz/g0yyRSMSJaMWSmIPWl0nqmgIBBYBAxvK/J9vBbJbawt4ggNzXeVFfCJv2TzCTjYiIiCrGIBsRERHNWjKTrd9wgluFSkUjho5n/v6iab83DAPvuuKj+MA3HsFr1HEfM9nQkkw2wzDw6U9/GojFgNtuwzOh55q+Dfl0VQbZgIzlfybbUDZLbbAvNO11XtjrZLINjSd8v18iIiKamVguSkRERLOWDLL1BYoH2UrpMpzvKzO2f4MPBBRoKpdogNObTj6rDclkm3D68C3omV4ivChbLjrEclEiIiKqEFdwRERENGvJctFu3QnghMPhqq4fMTQIwMdy0dZlsrWjgKpCCOe5aGRPNtl/zWuwz3kvsFyUiIiIKsVyUSIiIpq1ZCZbl+b8v1AmWzJj4crvPgUAuO/Dr0cooAEAMpkM/usnP8CbjMPYb/UgY9aXaSUz2YDW9GTLZDL4j//4D8Cy8F6h4C/TxwEA7jNeQvWjIPyhqgqyMbaGZLINZQNog72haa/zoFsuyiAbERERVYZBNiIiIpq1JpIZaLARUouXi9pC4MmdR9yfJSEEXt27BwtU4IDVjVSdmVZTmWytmS4qhMDu3bsBABYUPCl6AQA2WptVpyoqIACzAT3ZDkaz00V7g7BsO+d1HmS5KBEREVWJ5aJEREQ0a0WTJoIwEdRVGIYBXa/8+0dd1/G+970PT5pHw4aCtA9BNqcnm9OLrNnk43nfO9/ZVt/CymmvZp2ZgoUc9GSyxeNTAw6EJ8gWTZqYTJm+3zcRERHNPAyyERER0awVTZoIKiYMXat66IGqqjjppJMwqs8FoCDtU7moM/ig+UE2+XhOOv74tlogqjLIZvsbZIsmM4ilncDowt4QUsmpjLVMxkR3UEdP0Ak3smSUiIiIKtFOaygiIiKipoomMwgpJgxdrTrIJoWMAAD4kskmq1FbEWRrV0p20qrf5aJysmhPUEdXUEcqnXL/ZppO5prMZjvIklEiIiKqQDtVAxARERE1lcxkC+rhqoNstm1jy5YtWKyMIgbhS082WS7aip5s8vEglcLRTb/34mS5aL2DJfLJwNnCbCAtlUq7f8tknKmzg30hbB+e5IRRIiIiqgiDbERERDRrRVMZhLI92aoNspmmiZ/85Cc4DsBGLETGlyAbWlYuKh8PAFzX4mEHXqqqwgZg+Txd1A2y9QYBIKdc1JRBNnfCaAJERERE5TDIRkRERLNWNGkioFgwdBXBYLDo5cIBrext+dWTDWiPctEw/J/mWQtVVWADyPjck23IDbJlM9nSKRjZl9m0nHLRRZwwSkRERFVgkI2IiIhmrWgig14IBHWt6GTRiKFjyz++rext1VvOKHuytapc1Cui2NgSeqal2yC5gw/qzBTMJyeLyiAbzDS+fVEXAECH81oO9oUBcPABERERVYaDD4iIiGjWmkymoUDA0FVoWvlstVLSdTbmz50uyiWapLqDD/wuF3UGHQz2hiCEQCo1Nfhgqiebk93InmxERERUiaoz2VKpFJ566ins2rUL8Xgc8+fPx2mnnYYVK1Y0YvuIiIiIGiaWcoIpwUD9QTbfMtlE6zPZ2okMslmW8PV2veWimUwGQkzdvhtk63Uy2ThdlIiIiCpRcZBt3bp1+MY3voH//M//RDqdRn9/P8LhMI4cOYJUKoWVK1fiIx/5CD760Y+ip6enkdtMREREVLeUacEyTUAHIqGgO8UyXzJj4WPf3wAAuPvPT0eoSH+2TJ2ZVlM92RSoLQ6ypYSCqzPHAgDuDryMUAu3Rb4upu1zuahn8EEymUTaErjrOSeb7eaLnEmjsifbyGQaKdNCUK8vEEtEREQzW0W1CJdeeine9773YcmSJXjooYcQjUZx+PBhvPrqq4jH49i+fTv+7u/+Do8++iiOO+44rF27ttHbTURERFSXaNKEBid7KRIMFL2cLQT+b9sh/N+2Q+5ggkIypp2TDVWLdunJZkHB/9n9+D+7H3aLJ41qbiabf+Witi0wHM2Wi/aFkEqlIATw/CELzx+ykEo7mWz9kQAM3bn/4YlU0dsjIiIiAirMZLv44ovx4x//GIZhFPz7ypUrsXLlSlx55ZXYtGkT9u/f7+tGEhEREfktmjShKTYMXYURKB5kq1TGcoJsxTLiysntycZyUUlm9dWbKeg1EkvBsgUUBZjXHcTBA4dz/p7JONNFFUXBor4Qdh+OY2giiWVzIr5tAxEREc08FQXZrr322opv8KSTTsJJJ51U8wYRERERNUM0mYEGgaBWfz82YCrIVqupIFvrM9naiezJZtv+BdlkVtq87iACmopkMrfnmmma7s+DvU6QjcMPiIiIqJyqBx94TU5OTlvw9Pb21rVBRERERM3glIs6mWy6XteSCACQsYQPQTbn51b3ZGsnMqvP9DHINpQNmA32Oj3XvJNFAcDMDj4AnHJS5zoJ3+6fiIiIZqaq58Pv3LkT73jHO9DV1YW+vj4MDAxgYGAA/f39GBgYaMQ2EhEREfkumsxAU2wEdc2XIJtp15/JJrLlosxkm6KqTpahnz3ZhjxDDwBMy2SzbRuW5QxamAqysScbERERlVb1ivKDH/wgAOC73/0uFi5cWHPfESIiIqJWmsgOPvAvk82P6aLO4AP2ZJsinws/g2zDbpCtcCYbAGQyGWia5ma7DU0wk42IiIhKq3pF+fzzz2PDhg04/vjjG7E9RERERE0hy0WDuh892RRkzPrLReX1dbXqYoMZS/Zk87VcdGKqXNS2baTT6WmXkX3ZFmUz2diTjYiIiMqpOsh25plnYu/evQyyERERUUeLJjNQK8hkixg6dv3TO6b93jAMfP7zn8eG3aN45js/QcaHclEbyE4XrflmaiYfD2Ix4LbbsCu0vvkbUYDMZPNz8MFQdvDBwt6Qm8UWNjTsvPUSrF+/HvF4HJlsX7bBvjAA4CCDbERERFRG1Uu4f/3Xf8WXv/xl3HfffdiwYQOef/75nP8a5e6778Ypp5yC3t5e9Pb24uyzz8aDDz7o/l0IgTVr1mDx4sUIh8O44IILsGnTpoZtDxEREXW2aNKEptQ/+KArqEHAn+miIjtdVGMmm0tze7LV/tzmc8tF+6aCbMFgEIqiIBAIAMBUkC1bLnowmoJl+7cNRERENPNUvaI8dOgQXnnlFXzoQx9yf6coCoQQUBTFbRLrt6VLl+Kf/umfcOyxxwIA7rvvPlx66aV49tlncdJJJ+ErX/kKbr/9dtx777047rjj8MUvfhEXXXQRtm3bhp6enoZsExEREXWuaDIDDaLuwQeRgA4Bxbfpohx8kMvtyWb7t8Y8mA2yLegJIpmMAwBCISeYJoNsslx0fk8QmqrAsgVGJlNuHzciIiKifFWvKD/84Q/jtNNOww9+8IOmDj545zvfmfPvL33pS7j77rvxxBNPYPXq1bjjjjvwuc99DpdddhkAJwi3cOFC3H///bj66qubso1ERETUObw92UoF2ZIZCzf86DkAwO1/eipCASezyjRN/PznP0cqY0GBQMYSdTXnd4JsTpCuFYMP5OOBaeISoeDTmZUAgNsDO9DKsJKWrZ21fCoXtWyBsYSTpTa3y0BidBQAoGgBXPMfGzAxEcUVxwk3k01TFSzoCeLAeBJD40kG2YiIiKioqoNsu3fvxi9/+Us3o6wVLMvCj3/8Y8RiMZx99tnYuXMnhoaGcPHFF7uXCQaDOP/887Fu3ToG2YiIiGiaqGe6aKnBB7YQ+J8XhgAAX/2TqUw127axefPm7L8WAQASGRPdNW6PDLK1arqo9/FcBAX/Y88BAHwVO5u+LV5y8IFfpZoTiQxkwmF/xMDYkFMuqhtB/M8LzmP9i1URN8gGOL3bDowncWA8idcu82UziIiIaAaqOsj2lre8BRs3bmxJkO2FF17A2WefjWQyie7ubvz85z/H6tWrsW7dOgDAwoULcy6/cOFC7N69u+RtplKpnLHtExMT/m84ERERtZ1oyunJVi6TrRhN0/D2t78dQgBP/9fzAGzE02bN2+P0ZAOEUFoSZJOPB+k0tLX/2/T7L0b2p/Nr8MFo3Jkk2mVoMHQVyaRTOhoKBXMuJ8tFAWfC6HN7gaHxhC/bQERERDNT1SvKd77znfjkJz+JF154Aa95zWvcvhXSu971Lt82Lt/xxx+P5557DmNjY/jpT3+KK6+8Eo899pj79/zSVdknrpRbb70VN998c0O2l4iIiNpXNJFGTwXTRYvRNA2vf/3rnZ//exNg20ima+8bJsshBQCtSe04vNzHE4sh3kZBNl3zO8jmZKgNdBkAMDX4wMgNsnkz2Qb7nBJROZWUiIiIqJCqV5Qf/ehHAQBf+MIXpv2tkYMPAGe0vMygO+OMM7B+/Xrceeed+Nu//VsAwNDQEBYtWuRefnh4eFp2W76bbroJN9xwg/vviYkJLFvGOgAiIqKZbjKZQa8Pgw8AIKCryKSBWB2ZbKZneqahc7qoNNWTzZ9y0bFsJttAxAmyyUy2YCi311pOkC3bh42ZbERERFRK1StKv75F9IMQAqlUCitWrMDg4CDWrl2L0047DQCQTqfx2GOP4ctf/nLJ2wgGgwgGgyUvQ0RERDNPPOUEW4IBze37VQ3btrFnzx4AgK4qyABIpOoJsslMNgUBrflBNvfxJBKY1/R7L05rUCZbfySAWCwGy7KgKAqCQSPncoUy2Q6MJ33ZBiIiIpqZ6vvatok++9nP4u1vfzuWLVuGaDSKH/7wh/jNb36DX//611AUBddffz1uueUWrFq1CqtWrcItt9yCSCSCyy+/vNWbTkRERG0mY9nIZExAByJBo6Zp6aZp4r777gMAGMGVSABI1JXJNlUuGtBaM11UPp7r0Pz7L0b3uSebN5NtZGTE+XlgYNrwi9yebGEAwMEJBtmIiIiouJqCbI899hi++tWvYsuWLVAUBSeeeCI+/elP47zzzvN7+1wHDx7EX/zFX+DAgQPo6+vDKaecgl//+te46KKLAAA33ngjEokErrnmGoyOjuKss87Cww8/jJ6enoZtExEREXWmaNKErjjlh5FQoMylyzOyAZpEpva2GWY2iBTQ1JqCfjOVli3l9aslyagbZAu4Qbb58+dPu1wmk3H7+8py0QPjyYp6/hIREdHsVHWQ7fvf/z4+9KEP4bLLLsMnPvEJCCGwbt06vPWtb8W9997bsMyxf/u3fyv5d0VRsGbNGqxZs6Yh909EREQzRzSZgQobAU2FESgdZAsHNGz+wh+5PxcSyPZQqyeTzcpmsgX0wvfRTGHY2Bzc4P7cSoFskE34FmRzykD7DCAajQIA5s6di0D2dbZtG+v/8HsATjZbIBDAgl6ntUjKtDEWz7hDE4iIiIi8qg6yfelLX8JXvvIVfPKTn3R/d9111+H222/HP/7jP7I8k4iIiNpeNGlCg0CwgsmiiqIgYpS+jAyM1VUums1k09XWZ0kpChBpcXBNkq+PbVuwbbum/nlesly0S8QBAH19fTAMJ2gmX2dd12FZlhtkCwU0zO0ycDiWxo79h/DaFQvrHpZBREREM0/Vq5QdO3bgne9857Tfv+td78LOnTt92SgiIiKiRppIZqDBhqGr03px1UIOKkika8+2mspk42RRLyeYpcAWIqdPWq1GY04mWyATA1C4VFQG0LzDDxb2hjCgxPH8xuewY8eOureDiIiIZp6qV3HLli3Do48+Ou33jz76KJYtW+bLRhERERE1UjRpQlPsijLZUqaFT/1oIz71o41ImYWDaEY2yJbK1BYEEkJMZbL5EPSrV1oo+FR6BT6VXoGUaG1mXUBTYUGBLeBPkC2ehg4LmpkAAMyb58xS9b7OUKcH2Rb1hTBXjWMyaSKRSNS9HURERDTzVJ3n/qlPfQqf+MQn8Nxzz+Gcc86Boih4/PHHce+99+LOO+9sxDZSBRKJBFKpFPr7+1u9KURERG1PlosaulY2yGbZAj995lUAwD+++6SClwkGZLloHZlstjOIwWiDTDYTCn5qO8Gnf8Tulm6LpqmwhArb9ieTbSyeQZ+SRCjQi56eHoRCzlAD7+v8p8csBpAb1BvsUnFYSWEyZfqyHURERDTzVB1k+9jHPobBwUH88z//M370ox8BAE488UQ88MADuPTSS33fQKrMpk2bMDk5iTe84Q3uYpGIiIgKi2bLRSvJZKuELPFM1jhdVAjhBtkCbZDJ1k4CquJ7JtsSNYlQYMDNYsuna9Mz2eZqTvbaZCrj26RTIiIimllqWlW+5z3vwXve8x6/t4XqkEqlAADpdJpBNiIiojK8gw/86MlmyMEHdZSL2kIG2VqfydZONFWBBdWXnmyJtIWUaaNLTyMUUDFnzpyCl9OzE2dlkE0IgS7L6eE2mWQmGxERERVW81e3GzZswJYtW6AoClavXo3TTjvNz+2iKtnZPi4iu0AnIiKi4qLJDFTFGXzgRyZbMBtk8yWTrQ3KRduJrjlBNuFDkG00O1lUV5w+enKqaL5AXpAtGo0irDqv7WTKZCYbERERFVT1qnJ4eBh/9md/ht/85jfo7++HEALj4+N485vfjB/+8IcFJzRRYwkh3MWeDLYRERE1k23bOHjwIAYGBjoio9rtyab5E2QzstlwqRp7sjlBNudnZrLl0lUVlvCnXHQ0noYCgXBAhaIoRbMY5XtC3t/Q0BC6QxqiIoRgKg3LsiCEgKK0digEERERtZeqV3F//dd/jYmJCWzatAlHjhzB6OgoXnzxRUxMTOATn/hEI7aRyvBmrzGTjYiIWmFkZATbtm3Dzp07W70pFXGCbP71ZAsa9ZeLTg0+YE82L93HctGxeAZqNsgGAKpaeCkcCEz1ZMtkMhgeHkZ3MIARO4KUaSNt2sxmIyIiommqXlX++te/xiOPPIITTzzR/d3q1avxzW9+ExdffLGvG0eV8WavMchGRESt4O0N2gkmkpmKp4tWIpQNjKXqKRcVAgJKW0wXbSeaO/ig/iDbkVgaKmyEAhoURSkeZNOdctHx8XGsW7cOQgh0R0KwjW4Ia9QtGfXjvUNEREQzR9UrA9u23T4VXoFAgKWKLcIgGxERtZrM6umU41A0aUJT7IoGH4QDGjb83YXuz1IgEMDf/M3fAADWPvkCACBRR5DNdjPZWhNkcx9PPI7wXd/EhuCzAIAwWru+C2gqTKH6Ui46Fk9nM9m0aa+793UO2E7QWK6xurq6cOyxx2LhE8/DPqKwLxsREREVVHWQ7S1veQuuu+46/OAHP8DixYsBAPv27cMnP/lJvPWtb/V9A6k8b5CNgU4iImoFGfzolONQNJFGN0RFgw8URcHc7mDB33d1dQEAwobzBWR9PdmcTLZW9WTzPh4owFy0xwRNd7qoLdxBBLUajTsZjKECQTbv6yyEgeXLl8O2bSxYsADd3d0AgEV9IRw+rHDCKBERERVU9SrurrvuQjQaxfLly3HMMcfg2GOPxYoVKxCNRvGNb3yjEdtIZXi/Se2UDAIiIppZOm0Az2QyAwXCv55s2R5fSbPeclFn6iVNCWgqLKiwfJouqiqFg2xeiqJg+fLlWLlypRtgA4DB3hBsqMxkIyIiooKqXlUuW7YMzzzzDNauXYutW7dCCIHVq1fjwgsvbMT2UQVYLkpERK3WaUG2eMrpHRcK6EX7ckkp08IXf7UFAPB3f3wigtn+a6Zp4qGHHgIAzFm4xLlsprapk1OZbECgReWi7uMxTVwgFPyTuQwA8Hf6XkzP42seQ1dhQYFl+zf4IBSYXiZc7HX2GuwL4TkomExlGGQjIiKiaWr+6vaiiy7CRRdd5P5bCIG9e/fiqKOO8mXDqHIsFyUiolaTwY9O+LInY9lIZ0xAB8LBQNmAmGULfO+J3QCAmy45wf29bdt4+umnAQB/fKkTkLKFQMp0GutXY2q6qNKyTDbv4zkXCr5nLQQA3KS/2pLtkQxNhSVUX4Jso25PNn1akK3Y6+y1UGayJS2WixIREdE0Fa/iNE3DddddVzSIMzw8jBUrVvi2YVQ5ZrIREVGrdVIm22TShK44x8tI2Kj5djRNw/nnn4/zzz8fIcP53lKBQLyGvmzeTLZWDT5wH8/ZZ6O6EGFjyUw2Oxtkq2et4/Rks8uWixYzr9uABQXJjMVMNiIiIpqm4lWcEAL33HMPLr74Yhw5cqToZaj5GGQjIqJW66TBB9GkCQ02ApqKYIGJ6ZXSNA0XXHABLrjgAhiBAHRNgQIglqo+w0kIAVsICNG6nmzu4zn33DYMsjk92ZwprLW/x+R00ZBRW5BtIGLAFgoSDLIRERFRARWv4hRFwdq1azEyMoIzzjgDL774YsHLUPMxyEZERK3WSZlsE0mnL5eh+TP0AHDWQEa2t1s9mWxo4XTRdmXoKmwoMLNvrXrKNEdjzuCDcIGebJWY02XAgopEhuWiRERENF1VmWwrVqzAH/7wB5x55pk4++yz8bOf/ayR20YV8n6T2gknN0RENPN0Uk82mclW72RRIQSGh4cxPDwMwBlYoEAglq4tk63V5aLu4xkZQTu9ik5mn4K07WxjrcEt07IxkTSzgw9qzGTrMmBDQcq0kGGQjYiIiPJUvYoLh8N44IEH8NnPfhbvf//78fnPf74R20VVYCYbERG1khAiJ5Ot3Y9F0WQGmmLD0GvLZpIymQzuvvtu3H333bAsCwFNhQIgnqqnJ5uCgNaaygD38dx7LzIt2YLCZPmsKVTYovZMtvGE86g02AjptQXZ+sMBWFAgBDART9e0HURERDRz1fxV6U033YRf/OIX+PrXv473vOc9iEajfm4XVYFBNiIiaiWR7ZXl/Xc7czLZRN2ZbF6K4gTHas1kA5zJpK3MZGtX8vmwUN+E0dG4E2SLGCpUVakpyKZrKsKG08dvPJ6saTuIiIho5qp4ZVmo39oll1yCJ598Eu9+97tx4YUX+rphVDlvkI3lokRE1Gz5QY/2D7JlsuWiWkVBtpCu4Xc3vtn9uRBFUdyMq3gd5aKA0rLBB14h2PidsdH9uZWmgmxKXUG2sWzmWW/QeQ3zg2yVvM4A0B02gCgwmWAmGxEREeWqOMhWbMF83HHH4cknn8Tll1+OvXv3+rZhraQEgoinLeg1fhPdbLGUiZTpvD7xtFXT4p6IiKhWiUTaPQ4BwGQyjUAdUzsb7UgsDUUIqKqKjFArOm7O7TYAAElzqhQ07bleyhJQFBVCCIzGMlUfi+MpEylLwBJORlsrjuXex5OEgrmKmf1ZBdIWEGjd+kJV4LxWpo1oIoWeGp6foXEn8ywcUJEyBdL29IBoodc5XyRoIDmh4PBkkmsuIiKiWaCaoVaK8PHr5j179uCoo47y6+ZaYmJiAqfc8rtWbwYRERG1OR0W/iL8LADge4nTYKL2/m7tYKY9HiIiIiK/7P7yH2N8fBy9vb0lL+drPYIMsLV7mQgRERERFceVHBEREVH1KioXPfHEE/H3f//3eN/73gfDMIpebvv27bj99ttx9NFH4zOf+YxvG9lse25/L/bvP4De3p5Wb0pFtr+0HUNDQwCAhQsX4rjjj2vxFhER0WxyeOQwNm/e7P779DPOQCQSLnmdDRueQTwWwwknnoD58+c3ehNzfPJHz2HH5hdw0XH9+ODb3oiBOQMlLx9Pmzjji48CAJ7+u7ciYjjLp3Q6jTv/2cn8+p+PnILvr12P3+1O4Pw3vA43vu2Eqrbp0KFD+ML31mLnhMCNH7gYbzq+uc8JkPt4Hjc24uz06wAATxvPIvLJTwBdkaZvk3Tel/8PWvwwrjurHycfezRWHbeq6tu4fe1L+Nff7cSfH2PivBW9OOWUU9DX3+f+vdjrnO8rv3oeGzZswGnL5+IzV76rtgdEREREHWNiIopFX67sshUF2b75zW/ib//2b3Httdfi4osvxhlnnIHFixcjFAphdHQUmzdvxuOPP47Nmzfj4x//OK655pp6tr/lRCaFiKEVXVy1G0MDgrozmCKoKx2z3URU2MTEBI4cOYKjjjoKqtr6BuhE5UQ9xyEACFVwLNJhIagrCGrNP24l0jYCio1uQ0NPJFjV/UcM3b287hkI0BsJIRJQEVBspC1R9WMK6SoUIaAoQHco0JJjuffxhJWpXLaIYiNiaEAL1xehgIYUFGgKoCt2Tc9PLOX0T+s1FAR1Bd1ho+jteF/nfPN6w9AUATOTQTigFRwORkRERDOHaVTeQqOiFcpb3vIWrF+/HuvWrcMDDzyA+++/H7t27UIikcC8efNw2mmn4YorrsCf//mfo7+/v9btphp5J4qyVJeo8+3YsQNjY2Po7u7GvHnzWr05RGXlT3usZNK1vE4rpmJHkxnoioChq74NaAgEAjA0FTpsxFM1ThcVAgKqO02Tphi6ijhUWKL26aKjsQwAJwgMTJ8uWqm53SEAQDJtwrbtmm+HiIiIZp6qvgY855xzcM455zRqW6hG3hOUVpysEJG/UqkUAKd0i6gTWFbuxKVyxyLbtt3rtCTIlsigGzaCugpd9yc7S9M0BDQVmmIjVsUEKkkIAct2vigLaMyMymdoKiyosOw6gmzxNABRd5BtoDsEQEEiY8GyLAbZiIiIyMWvSmcA78kNM9mIOl8m42Rb1HoiSdRs+UG2csci7+VbEWSLJ51Atp9BtkAggICuQIONeCpT9fVlkE1AYSZbAYZef5BtPJGBgqnS5toz2YKwoCCRtrifJiIiohxcxc0ALBclmjls23ZP2mSwjajdVVsu6n1vtyTIlnKyRMNBw7d+Wrquw8gGbRKp6rNQp8pFnawtymXoKkyhwLJFzfvGaNKEChtB3Xmdas5kixiwPZlsRERERBJXcTMAy0WJZg5vsIIZEtQpqi0X9b63m33cMi0b6bRz/13h4hPTq6UoCoKG098tWWOQzbYFhAAz2QoIaEpOJlstXyrG0iY0CBi6AlVVaw6wzukyYAsVKdNGKs0vQ4iIiGgKx1DOAMxkI5o5vBkazGSjTlFtJlsrg2yTKROa4txnVyhY0XVCuoaHP/km92cpEAjgYx/7mPtzKOgE7WoJvMhMNkBBoEWZbO7jSSTQ89178LDxAgAghNZ/gWfoGiwobt86y7KqLvWNpZwgW0BTC2axFXud8/WFA7CyAbrRWBLz5la1GURERDSDMcg2AzDIRjRzMMhGnajanmytDLJFkyZ02NC1qcyzclRVwXELe6b9XlEULFiwwP13JOQE2dI1BNls2872ZGtdJpv7eGIxQAGOU5It2Y5CDE2FgAIbznvLNM2qgmwp00LGEgjAmSpbKMhW7HXOp6kKgoEAkEljbLJ9niMiIiJqPdYjzAAcfEA0c3gnirJclDqFfK/K8rt2zmSLJp1spqCm+Tb0QHKDbDUEyE3LOX6LFmaytbOgrgJQYGeXrtXuH2MpZ62kKsUz2aoRCToB2tEYg2xEREQ0xbfV5YUXXogdO3Zgx44dft0kVYg92YhmDmayUSeSX/YEAgGk0+k2D7JloCk2jComi6ZNG9/8v5cBANe++Vg308yyLPzud78DAJx33nlu+amwTWQsu6pgWdrzhVmrBh+4jyedxllCwb+YiwAA1+oH4F/3utq4z3nNQTbn8hFdgaooBYNsxV7nQiIhA6lJYDyWqmo7iIiIaGaraHX5/PPP4+STT4aqFl9svOc978HIyIhvG0aVY7ko0czhDazJ5t5+TT8kapTOCrKZ0GAjqKsIBCorFzVtG3c+uh0AcPX5K2FgKsj22GOPAQDOOeccdIWdIJsGgXjaQl+48mBZxnSeh1aWi3ofz6lQcKe1BABwtT7U8iBbQMtmSdYYZJvMBtm6DOf6hYJsxV7nQrqCBkYBjMcZZCMiIqIpFQXZTjvtNBw4cAALFizAypUrsX79esydm9vl9dprr23IBlJpQoicwBqDbESdzRtks20btm3XXdZE1Ggy4CGDVuWORfnv82aKpjLQs0G2estFVVXFGWec4f4cDhrQVAW6bSOeNtEXriyIBwCZbKBSURRoamsC6+7jMU2oz2xsyTYUIwOPJpznptZMti7DuX69+9Xu7GTaaKL6SbJEREQ0c1W0uuzv78fOnTuxYMEC7Nq1iyWJbST/teBrQ9TZ8ktETdNkkI3amhAiJ5MN6ICebIqAodffk03XdbzjHe9w/x0IBBDQVOiW7fYAq5TMZNO01mWuuo8nFkO83YJs2f2gJerLZIvoxTPZqtGTDbJNJpjJRkRERFMqWl2+973vxfnnn49FixZBURScccYZRRcn7MnWXPknJ8xkI+ps+UG2TCaDYDDYoq0hKs87fKdjgmywYegB3wcfBAIBBFQFGmwk0lUG2axskK1Ea47ZzM1kE7VmsjmvRyTgTyZbb8TZL08mmclGREREUypaXX7729/GZZddhpdffhmf+MQn8Fd/9Vfo6Sk/4pwaz3tyAzDIRtTpCgXZiNqZ5SlzlEGreoJsW7duRTwex6mnnlqyF2ytJpKZbJBNq7gnWzFCCMTjcQBAJBKBrusI6Co02IilqwsCmdkgWysni7qPJ/uY2kn9QTbn8mHduX69762+bJAtxiAbEREReVT8Fe7b3vY2AMCGDRtw3XXXMcjWJpjJRjSzyKCaqqqwbbvqE0miZpPvUU3T3MBFuWNRqSDb8PAwbNtGMplEJBLxeWtlJpvwpSdbJpPBV7/6VQDATTfdhEAgAENToSsZxKsMssmebK3MZPM+nuvQXgNXgtkgW8auLcgmy0XDPmWy9XWFAADxFL8IISIioilVr+TuueceBtjaCHuyEc0cQgg3yBYOhwEwk43an8xk03XdDbLVmskmhHD/3ajjmdOTzYbhQ5Atn9uTDdX3ZJOZbHoLM9namZwumqkzky2k+xNkG+h2MtkSbRhkGx8fx7Zt23j8ICKiGSl/+GO78W11+a1vfQsjIyP4h3/4B79ukiogT0IURWn7NxvRbGLbNnbs2IG5c+diYGCg4uvIz3QkEkEsFmMmG7U9GWTTNA2K4gQwSgXIhBBFg2zFfvZTNJGGVuV00aCu4RfXnuv+XIyu6whoChSIqssI02Z79WQLwsYvjM3uz61mZIOP6WyQLb9dRjmT2czCkFY8yFbp6wwAc7KZbMk2DLLt3bsXIyMj6Ovrw+DgYKs3h4iIyFebNm1CPB7H6aef3pYD4nxbyf30pz/Fvffe69fNUYXkSYh8czHQRtQexsbG8Oqrr2L79u0VX8dbKiqHHTATgdqdDJhVmslmWVbOccp7WW/gpFFBNtmovpogm6YqeO2yfrx2WT80tXgZpaZpCGSDM9VOnTTt9spk0xTgtWoMr1VjaOHAU5eRfV4zlvPeqfb9ITPZgtmXvNCivNLXGQDm9DjZxqZlugHSdiE/R9UGIomIiNqdEAIjIyOIx+OIxWKt3pyCfFvJPfroo5ws2gLeMh2JQTai1pOBh3g8XvGJjgyoBQIBtyE7M9mo3Xkz2SrpyZb/nm52Jls86QS/QkbA98EKiqK4n115P5UyzfYKsrUbOfhABtmqXevI8t1gNrZWd7loVwiKAqgQGI2nEI/HsW3bNiSTybpu1w+NLrkmIiJqFe95VTsccwupq1xULnBkeQg1n1xAMchG1F68JzeTk5Po6+sre51CQTZmslG7qzaTrVCQTQgBRVGaFGRLwwAQCRkVXydt2rjn9zsBAB86d4Ub8CnEyH52qy0XlZlsgTYpF00LBfdYCwEAH9IOovJnqzHkc56uMcgmBx8Y2ae3UJCtmtc5ENAR0jUkMhaOTKZxeGyfO7TjxBNPrGrb/MYgGxERzVTedWS7BtlqWsn9+7//O17zmtcgHA4jHA7jlFNOwfe+9z2/ty3HrbfeijPPPBM9PT1YsGAB3v3ud2Pbtm05lxFCYM2aNVi8eDHC4TAuuOACbNq0qaHb1Wr55aIAg2xE7SA/yFYJb5BNBs4ZZCPA2a+/8MIL2LJlS6s3ZZpqe7LJxZEMJANTx61mlIvKRvWRULDi65i2jVsf3IpbH9zqBsOKCRrO40pWG2STgw/09vji0oSCW81luNVcBrMNJo0acvBBzZls5YNs1bzOmqYhHHBuY2QijtHRUQDAoUOHWp6BzCAbERHNVDMyyHb77bfjYx/7GC655BL86Ec/wgMPPIC3ve1t+OhHP4qvfe1rjdhGAMBjjz2Ga6+9Fk888QTWrl0L0zRx8cUX59ThfuUrX8Htt9+Ou+66C+vXr8fg4CAuuugiRKPRhm1XqzHIRtSevCc3le6D0mnnpJzlopQvnU7j8OHDOHjwYNv1WZLv0WrLRWXfQaBwUKARAQLLFkilnSBbVxWZbNUIGs7tJtLVBdkyMsimtl8D33ZQbyZbLO18bgIlgmzVUBQFoaCznx4+POp+IWLbNoaHh2u+3VQqVfd+Xz43DLIREdFM0wlBtqrLRb/xjW/g7rvvxhVXXOH+7tJLL8VJJ52ENWvW4JOf/KSvGyj9+te/zvn3PffcgwULFmDDhg1405veBCEE7rjjDnzuc5/DZZddBgC47777sHDhQtx///24+uqrG7JdrVYoyMZFFVHrMZON/OQNrFmW1VaTlLy9QaspF/VmssnLNzqTbTJlQstOyuwOV57JVg0ZeElVGWSzZJCNPdkKMrLv+Yxd3+AD3acgG+D09QOAQyMjmNs3Nel9aGgIixcvrvr2TNPEk08+iXA4jDPPPLPm7WImGxERzVTeIFsikWjhlhRX9UruwIEDOOecc6b9/pxzzsGBAwd82ahKjI+PAwDmzJkDANi5cyeGhoZw8cUXu5cJBoM4//zzsW7duqK3k0qlMDExkfNfJ5ELKFVVK8ogIKLm8J7cxGKxik52ig0+4GeavMGndstuLDT4oNT73fs+zy8vbXQmWzSZga7Y0FQF4WBjMtnC2Qy9VKq6APlUuSiDbIW4mWxmPeWiAoFs5asfQbZwNqA6MeaUii5duhSKomBiYgLxeLzq20smk7Btu+JjRjEMshER0UyVn8nWjudJVa/kjj32WPzoRz+a9vsHHngAq1at8mWjyhFC4IYbbsAb3/hGnHzyyQCAoaEhAMDChQtzLrtw4UL3b4Xceuut6Ovrc/9btmxZ4za8AeTJjaqq7slKO77RiGYbb1BECFHRiOlCmWy2bfNEido6yOYdfFBNTzZv5luh8rZGHMuiSSeTLairOQOD/CQHKqSrzEJtt8EH7WaqXNR5nmoZfKBAIJDt7eZHkC2SDdQmspNkFy5c6H75W2rtWYz3/V9PFjODbERENFN518FCCLfdTjupeoV588034/3vfz9++9vf4txzz4WiKHj88cfx6KOPFgy+NcLHP/5xPP/883j88cen/S1/0qmcWFbMTTfdhBtuuMH998TEREcF2ryZbJWc3DTKrl27MDk5iZNOOonTZokw/XMYjUbR09NT8jreIJtsIi+EQCaTaavyQGo+74Ki3YJshTLZKunJJoNslmU1rVzUCbIJBHWt4UG2aoMkbiYbP+sFGdky2lQNPdmEEIilnNdeButUH4KZXaHskIuMjUAggK6uLgwODuLw4cMYGhrCihUrqloTed//mUwmp29hNdiTjYiIZqr8dXAymaz5eNkoVa8w3vve9+LJJ5/EvHnz8J//+Z/42c9+hnnz5uGpp57Ce97znkZsY46//uu/xi9/+Uv83//9H5YuXer+fnBwEMD0bw6Hh4enZbd5BYNB9Pb25vzXSbw92VpVLiqEwJ49ezAyMlJTeQTRTCQ/m/IEq5K+bPlldBx+QFKnZLJV25Mt//LNKBfVFBuGrub0hPNTV7bXm2lWF2SzssGjAMtFCzKyU1fl4INq3h/JjA1bACoEApqaMwm3HrLkOGVa6O/vh6IomDt3LgKBANLptDtxtFLez3k938wzk42IiGaqQkG2dlPT17inn346vv/97/u9LSUJIfDXf/3X+PnPf47f/OY3WLFiRc7fV6xYgcHBQaxduxannXYaAGeB8thjj+HLX/5yU7e1mQplsjU7yObNQuCCjsghPwvd3d2IRqMVTRj1BtkAJ2iRTqc5/IDaOshWbU+2UkG5xgfZTOiwq85kC+oafvBXb3B/lnRdx5VXXun+DEwNVDDN6qbAynLRVg4+cB9PIoGuHz6AHwS2AgCCaP2xXQ4+SJvVl4tOZoceaIpTLlosM7jY61yMnFCbMm0MDAwAcNZj/f39OHToEOLxuFs+Won8TLZaCCGYyUZERDNW/jq4HYcfNKZWogGuvfZa3H///fjFL36Bnp4eN2Otr68P4XAYiqLg+uuvxy233IJVq1Zh1apVuOWWWxCJRHD55Ze3eOsbpx3KRb3ftnJBR+SQn4W+vj5Eo1G3kXWxEiVZFgpMBdmYyUZSOwfZ5PZ4s4NqDbI1vlw045QMatX1ZNNUBWcfM3fa71VVxfLly3N+1xMOAQCsqjPZsj3ZWhhkcx9PLAYowNla+S8HmmWqJ1v15aJysmi34ayVigXZir3OxXTLIFtmKsgGTAVcve/nSviRydboQHUn27JlC+LxOE477TRfyoWJiKj55DrSMAyk0+mZk8lWyIUXXogdO3Zgx44dft1kjrvvvhsAcMEFF+T8/p577sFVV10FALjxxhuRSCRwzTXXYHR0FGeddRYefvjhsn2QOlk7DD5gkI1oOvlZ6OrqgqZpsCwL8Xgc3d3dBS/vDZx4M9mA+hpg08xQqiebZVk5x4Bmk8eh/EEGxXqitjKTbaIJgw96upxMNtuyYFk2tAqDZjKTzWhhkK2dySCbaedma1VCZrJ1ZUeL+hVg6Q47QbZJU0EoFHJ/L2+/FUE27/PCQVhThBA4ePAgAKe0KBKJtHiLiIioFnId2d3djSNHjszsINt73vMejIyM+HVz01SyUFAUBWvWrMGaNWsath3txpvJ1qqebAyyEU3n/Wz29PRgbGwMk5OTRYNsMpDmDTwwk42kYplsyWQSTz31FBYsWIATTjih6dvlnX6b3+eqWJCt0Hu9qYMPFBuGrlXVky1j2fjBU3sAAB94/VFutpllWdiwYQMAp5WGpmnoi4Sz1xKIpdLojYQK3eQ0biZbC3uyuY8nncYpQsGPrPkAgA9oh9CYDnaVk0E2AcCyBRSleCA3nzeTDSg+WbTY61xMf7cTqDmUCeRsh7z9at/DfpSLMpOtMK5ViYhmhlkVZLv22mv9uimqQqGTGwbZiFrPG2Tr7u7G2NgYotGoO6QlX36pKMBMNppSLMgWjUZh2zYmJiZasVk526Xres7xp1h5dEt7siXS0OAMPqgmky1j2fiHX2wCALzv9KU5QbYHH3wQAHDqqadC0zREgjoEFCgQGI+lKg+yuT3ZWjdd1Pt4joOCfzCPBgC8TxtpfZBNk0E2BaYtoGvlJ8hLsbTznosEygfZCr3Oxaw4agl2WwOYMIPIWLZ7eXn7LBdtH1yrEhHNDHIdKasVU6lUxeuBZumYnmxUGHuyEbWn/CAbAMRisaKXLxRkkz8zyEbFgmzyvdGqfW+hlgVSoW36zdaD+M8Ne7F6cS/ObVGQDYBv5aKqqmL16tXuz4CTVa9qAQgrjWg8AaCvotsybSdAabQwk819PKYJdev2lm1HIQEt+0UinEw2oPIvFSdTzvs0ki0XLRZkq1Z/Vwijwslmm0hkMLfbKRVuZbkog2yFpVIp92eW0RIRdS65Do5EIlBVFbZtI5lMIhwOl7lm81S0wrzssssqvsGf/exnNW8MVY/lotQqQ0NDSCaT05p+k8MbfJA7/VLpzKWCbCwXpXJBtladNHqz0gAnwKQoSsGeWUIIfPFXL6J7LIZdh+N45Mh6fPjkAEJoXrloLOF8BkOG7ktfLl3X8Sd/8ifTfq/pGkwLmIxXHiiRjzfQwkw29/HEYohv/eeWbUchiqLA0FRkLAFbVBdkk+Wi5TLZqqWpCnqCOqIpExNJ0w2y+ZHJVs90UYlrsilcqxIRdT4hRM7aMxgMIpFItF2QraIVZl9fn/tfb28vHn30UTz99NPu3zds2IBHH30UfX2VfVtL/imUycYgGzXDyy+/jF27drVlHXw78H42ZUPsVCpV9DPCclEqpdjgg3bJZPMGLfKz06TnXx3H3pEoNFWBoqp4avcobnvoJRyJpZqWyRZLOsercNDw/ba9dN35HE9WsX90e7IFOPigGENXa8pkk0G2sM+ZbADQG3Ze6/HE1H7aj55s6XS6pvUcM9kK82ay8Xkhoplk9+7dePnll1u9GU2R36akkkSGVqgok+2ee+5xf/7bv/1b/Omf/in+5V/+JeebumuuuQa9vb2N2UoqqlCpDstFqdG83yJkMpmcqWrk8PZLNAzDTWdOpVIFv2mRnyNmslEhxTLZ5M+t2vfK+88PslmWNW2bfv7sPmgQOHZ+N95y8lLc+TwQPTiGPYfjOL1ZmWypNDQAkVCDg2zZz24sUXkmmwwcGS3MZGt3hq4CKQVWNvZU6XtEThcN6f4H2XpCzlJ6okCQrZ5MNiEELMuquqyZQbbCuFal2UIef6sZ7kOdbdeuXRBCYNmyZQgGg63enIaS605FUXISGToyyOb13e9+F48//njOAkXTNNxwww0455xzcNttt/m6gVRau2Wysc/F7OB9nas9iZgt8j+boVAI8Xi8aDozM9molHbtyeYNJkuFvvDJWDb+a+N+6IqNExb1Ym5PGG86rhu/OrgHo/FM0zLZEsk0ugF0hf1ZhKbTadx6660AgJtuugmG4QTvjOznOJ5MFb1uPqsNerJ5H891aJ8GwpIcfpB9qqrPZGtAkK2vQCabHz3ZAOf1qDfI1m7NoFuFQTaaLZ599lkkEgmcffbZvvQepfbmbc8xG87JvKWi8vwKaL8gW9UrOdM0sWXLlmm/37JlCw9aLeA9wWlFTzYhBBcus5B3Jz4bdui18AbZALgHgUQiMe2ypmni8OHDAJwmnpI3k40B7NktP8NLvr+8Pdla8R4pVS7q3Z7fvnQIh2NpzI1oOHpOBLquY+X8LthQMBpPNy/IlnKer+5QY7/pNQw95/4qIaeLBnRmshUTyAbJrCqDbHLwQVBrXLnoRNLfclGgtuEHhXohEstFafaIxWKwLCvnPU8zl3d/NhvOyfJ7AZc6v2qlqsPbH/rQh/DhD38YL7/8Mt7whjcAAJ544gn80z/9Ez70oQ/5voFUWqsz2fIzbLhwmR28rzNLGacTQkwLspXqGbBv3z6YpolIJIK5c+e6v5cHEBlU8fPEkDpL/sLJsiyoqpqzD25Fxkr++9z7s3c/8bNn9wEALlg1F6rqlMAdM9ANAQWjsakgWyPLRTOWjYyZAVSgJ1JdkM3QVHz3qjPcn8sJBZzPbjJdQ5BNa4+sIwM2vht4yf25HbiZbNnNqTaTLag5ly+2L632dQYKZ7LVWy4qh4fUksWc/7mxbduXIR+djl8I02wh94t8n88Os626SJ53ykSEju7J5vXVr34Vg4OD+NrXvoYDBw4AABYtWoQbb7wRn/rUp3zfQCou/0S+FT3Z8r9l5Q59dpht35pUy3vAK5fJZpom9u7dCwA4+uijc4IkmqblnGwxyDY7yd5MXqZpIhAI5JyEt+JkulAmW/6xaCKZwdrNBwEAbzp2LjA5jEAggKXZTLZoykQ8Nb3s1e/jSTRpQoPz2ewOV9eTTddUvOWEhRVfPphd/CXSlX8JYbvlou3xOdcV4C3aeKs3I4d8buQ7o9L3SDwtg2ylM9mqfZ0BoDeUzWRLTL3W9ZaLhkIhJBKJmjLZCgXZZjtWXdBsMdsCLjT7zsmKZbKl02mYptk2JdJVr8ZVVcWNN96Iffv2YWxsDGNjY9i3bx9uvPFGngA2mfdDpapqS8pFGWSbnVguWlr+ZxMo/k2LN4ttwYIFOX9TFIXDDyjnM+Z9P9i2nfO+aMX+t1wmmxAC//rbHUibNo5d0I1l/U5wS9d19EcMdGcDFEPjiZzby//ZD+OJDHTYMHQVQaOxgw/CQWeRl6omyCacx9suQbZ2JPvVWVVmssnBB0b2bdronmzeTLZq1mTeIBtQWz9OBtmm41qVZgvv/obv89lhtgVW84NsgUDAPccaGxtr1WZNU9dX3r29vZwo2kL5J/KtKBflwmV2Yrload6DnPxcFmrMaVkWXn31VQDTs9gkDj8gbwmZbKxvmua0z1679WTbPxbHB//1SXz9f52x8pe//ij38vJ9vWTA6UE4NBbPuT3A/+PJRCIDDTaCmlr1N50Zy8aPn96LHz+9Fxmr/HbJctFUFZ9buw0GH3hlhIIfm3PxY3MuMqI9SliD2RJO+S6pvFzUuYaRfZsWC7JV+zoDQG84O120QE+2arbRW50gTxj86MnGdRmm9aZinzqaqWZbVlMrmaaJeDze6s2Yda95fpANAObMmQMAOHLkSEu2qZD2WMlRTeSHSo6wZbkoNQsz2UorVMbtzUyQB4j9+/cjk8kgHA5Py2KT5EGEwczZyxvI8r4f2qEnZrFMtuFoElf/+9NY98phhAIq/u4dJ+Kqc5ZPWxwt7u8CABwcT0wb3uD3MIeJZAaqIhAMaDUF2T79k+fx6Z88X1HwJRJygqGpTOWfWzldtF0GH2Sg4NPmSnzaXIlMm0wancpkc56ranuy6UrpnmzVvs7AVCbbRIFMNqDyY6T38+stf6kWM9mm41qVZgtmslUnHo/jiSeewL59+6q+7gsvvICnnnqq5YG2Ts5km5iYwJNPPomRkZGKr1MoyDYwMAAAGB0d9XcD68AgWwfLP7lpZbmot0E7zXzMZCvNO/VX0nXdLfWT2WxyoujSpUuLNqxnkI3ka9+OQbZiPdm27J9AKmPhNUv68Ovr3oS/PG8lVFWZdvmlc5xMtoMTiYKLQz8f00TChAqBoK42vHddV7YMttIgmxDCHXwQbJMgWzuSQyFqLReVQTY/e7ZM9WSb+jwqiuLu0ys96fFejuWi/mKQjWaLTg64tMLw8DCSySR27txZ9fMVi8UAOIGiVurkTLYjR44gkUhgaGio4usUCrL19/dDURQkEom2mTLKIFsHyw+ytbJcVC4IuXCZHTp5h94MhbJ7gNzhB5ZluQdm+Q1MIQyyUSdmsh2OpaFC4C/ecDSWz+sqevmj5jp/OzSRLLj9vgbZkhkozQqyBasPsmWTs9iTrQQ3ky37XFX6/nAy2URDgmx9kek92YCpQHKl2+j9nMuycJaL+iO/XJTPCc1UDLJVJxqNAnDWVHKgYyW8PXFlsK1VOvk1l9s7OTlZ8XUKBdl0XXdbmLVLNltdq8xXX32VB6oWkm/MVgbZ5MIlGAwC4MJltmC5aGnFgmze4QcTExOwbRvBYND9fSEMspG3j1mpIFs79WQ7PJmGAoFVC7tLXl4G2Q5PpmCaU8e0RrQ/mEhksplsWhMy2bJBkqoy2ZzXLxhgkK0YGYCUQbZK3vO2LRBLW9Ag3Ey4hmSyJXNfa+/wg0oUCrIxk80fMlhZbeCTqNM0cnjQTOQN7uzbt6/idZR339zqIFsnJz7IbU8mkxVve6EgG9B+fdnqWmWuXr0au3bt8mlTqFrFMtla0ZNNZuiwmezswHLR0irJZJMTcGSKczGcLkqdlskWT9uIpU0oisCqhT0lL794oAuqosC0LOzPDj/wTsv2O5NNBRAMND6TrSckB1RUuGi0bNhCDj5gkK0YIzv4wKyiJ1s8kw3ewoahqTnvLz94p4t6t0feRy1BtvwpwtVgkG06+YUwqy5opuvkrKZmS6fT7r5B13UkEgm3jUsl15VaHWTr5Nfcuy+u9HksFmTz9mVrh318XasMBlRaq516snHhMrt08rcmzVBJJptMZ+7v7y95W8xko3YOshXKZDsw7vQcXNBtoDuoF7y8/GwEAzr6wwGoENh1KOreVkOCbAkzWy7a+Ey27nA2E6nCIFvaczlmshWXXy5ayXpHDj0IKAKaqhQdelArOV3UsgXi6anXsZ5MNl3X3S9fqi0Zzf/MVLsmnIlre65Vabbg4IPKyVLRSCSCxYsXA3Cq9CrhXX+lUqmWrtE7+ZzMu731Btl6enoQCARgWZb72rYSe7J1sPzm6s0uF7Usy/1wcOEyu7BctLRymWyxWMw9AJTqxwYwyEa5gw/k/r5dgmyF3uv7J5xvhpcNhIpeXj4OVVUx0GVAgcDukUn3dw3LZFOa05OtJ5INsllWRcdkb5BNljTSdEFdZrI5/67k/SGHHvQEnTJkP0tFASAc0NzXbLzAhNFaerIpilJzyWg9Pdksy8L69euxdevWqu6z3ckgm/yii2tVmqk6Oaup2WSpaHd3NxYvXgxFUTA2NlZRf7D8Lz9amc3Wya+5n5lsiqK451SlSkaFEBgbG2v4c1XXSuOzn/2sW/9KzdfqclG5g1FV1V0McuEyO7BctLT8bB1JLvC9pSsy8FYMg2xUrCdb/sl0u/Rk2zfmZLItHZjea7BQBnZ/JABVSWD34UkcsyD3c+N3TzYFoqZyUUNT8c3LX+f+LOm6jve9733uz1Jv2OlTmjad5siy/K+YlBtkU1o6XdR9PKkUIr/4Jb4ZeBkAYKA9ju1T00UrLxeVmWzdhvO6lQqyFXudS1EUBb2hAA7H0phIZrAYzvu+nkw2wGkVkEql6s5kq+YzFIvFEI/Haxq40K6EEMxko1mDPdkqJ7/s7unpQSgUwvz58zE8PIyhoSEce+yxJa+b/+VHLBZDX19fw7a1lE7OZKs2yCaEKBpkA5zEheHhYRw5cgQrVqwoeBuHDh3C5s2bsWTJEqxatarGLS+vriDbTTfd5Nd2UA1aXS4qFy2GYTQk64DaV/4OXQhRsq/YbFMsky0YDEJRFPczWi6LDWCQjYqXi7ZD76VC7/W9o8749CV90wPI+YEEVVUxJ5vJtvdwDFig5QTs/M1kM2sefKBrKt5xyqJpv1dVFSeddNK03/eEAgAU2EIglsygv0yQLZNNzVIVpaX7UvfxxGKAArxDa48pXZKRl8lWyXpHZrJ1BcoPPSj2OpfTF3aCbOPxqROvenqyAag5k62e/YI8zsyk47pcqyqKwiFdVTJN082spM7QyVlNzebNZJP/Hx4ermi9zUw2f3i3t5IMQu/lCx3LZfJXNBpFPB5HJBKZdpl4PJ7z/0ZhuWgHa/V0UQbZZi/vTk4IMSN7uNSjWJDNu8gHyvdjA6YOIrVMmaOZoVxPNvm7dujJJoRwg2yL84Jstm27+wrvl0MDEQMqBPYdibm/a0i5aDyd7cnW+HLRrqAOG84xOZoonxWUcier8mS2FEOWS4tqMtmc57aSIFutesLTJ4zWUy4KTA29aWYmmzy5nEnHdZk57l2rzpTH1kjj4+N4/PHHOeCuw3RywKWZMpkMkkkn676nxxnQVM26Q+6XZRCnlUG2mZLJlslkyh7v5DGq2ACjYDCIuXPnAgD2799f8DbkfTT6vIpBtg5WrFyUQTZqtPzXmVlWufL7TnnJklGguiAbn+PZy9uTrVCQrZXZGfnHoZHJNCZSFhQFGOwNFrwskNtLdCDiZLIdnkwiY9mNG3yQzD5fNQTZTMvGfz9/AP/9/AGYVm45zqZNm7Bp06acbVUUBYHsY4wmywdJMmbhEvNmcx/Ptm1IC+C/rQH8tzUAs01iErVkssWqyGQr9jqX0xtybrNQT7Z6M9mqDbLV05PNe9LRaSdrxXCtWhtZStcODcSpchx8UBmZNRUOh91jQjX7B7mvlBUpk5OTLQved3JgNf+5LhesLFUqKskhFkNDQwWfD/naMchGRRUbfNDsnmyGYTT9vqm18l/nTtupN1qxTDZgqidMJBLJyWorxpulxM/X7FQok807eEa+j5q9wBNCTAsMbD8YhRAK+kIB6Hlv//wgFOB8RsKGhnBAg6bYGI2lG5bJNimDbIHqy0XTlo1r738G197/DNKe4ItpmvjJT36Cn/zkJ9MC4Xq2t9pkRZlscp/R2kw29/H8138hDhXXZo7FtZljkW6T5aIbZMuOF61m8EF2CGjJ6aLFXudy+mQmW6J9ykWrzaQDcr/MmSnHdblWDQaDDLJVQb4X+Fx1lk7OamomGTyWpaJAdefRcr8ivyw3TbNlvSw7+TWX2yuPd34E2ebMmYNQKATTNDE8PDzt795Mtkaum9tj1UQ1aceebDOpxICKy9+Je0tMtm/fjn379rVis9pGqSBbb28vAGDevHkV3Zb3QMJsttmp0OADSVEUt6ys2SdD3n29fK9vOxiFDQVzu4NFg/HeHj/yev2RADQIjCUyDQmypU0bqYzz+Qnqqm89hhRFwdFHH42jjz562m0aAee1qqRcVPZk05TWLsvcx7N0KdqxcNXIDj7I1JDJFtYaVy7amw2y+ZnJVm+5aC1l5DMxyFaoXJSBo/IYZOtMzGSrjMxkk6WiQG2ZbKFQyK1QaVXJaH4mWyedh8vnWr4OfgTZFEVxs9kKlYzK167RyQtVr+Z+/etf4/HHH3f//c1vfhOnnnoqLr/8coyOtleD3JmuHctFvdtFM1exk+dEIoF9+/bh5Zdfruh9YNs2Dh8+PGMW81KpINvg4CBOO+00LF++vKLbUhTFPelikG128p585/ehCAQCLTtx9H5u5Ta8dHASAgrmdBlFe0N5t18et/rCAWiwMZ7INKRcNJp0JosCQMjQfQuyBQIBXHXVVbjqqqumTRANZINssVT5TKS0LBfVWhvach/Pn/0ZSo9qaI2pctHqp4tmKzobEmRzM9mS04NstfZkq7VclEG2XMxkqw2DbJ2pk0sHm6lQJlul+wfvxOJAIODeRquCbO0wBKtW8j0qExD8CLIBwKJFi6CqKqLRKCYmJnL+5j2mNjL7sOog26c//Wl3Y1944QV86lOfwiWXXIIdO3bghhtu8H0Dqbhigw+a8eGKxWLuDio/yNZJEXSqTbEgm9xZCSEqmtqyf/9+vPDCC9i7d6//G9lCpYJsiqKgr6+vqnI1efLOINvslH/y7V1c6LreshNHeX+KorjbsP1gFALA3G5j2rEg/5jlvW5f2IAOGxMNymRzJos6WWx6iXJBPwWzr1Osop5s7ZHJ1u5qCrKls2XV2Ze9IZlsIVkuOn3wQbWZbPK9X2s/Tvmc1FIu6i1N7aQTtVKYyVYbBtk6EzPZyjNNE4mEM6CpUJCt3HHFmy1mGAa6uroAtEcmG9BZwdVCmWylnv9Kg2yBQADz588HkJvNZtt2zjG1kX3Zql5p7Ny5E6tXrwYA/PSnP8Uf//Ef45ZbbsEzzzyDSy65xPcNpOJaUS4qhMD+/fvxyiuvwLZtGIaBvr6+nKwA7tRnvmLlot5vBGKxWM7BqxA52UcugmeKQsGEenD4wezmHXwAOO8H77eorZqYV2iy6LaDUahQMLdrerlosYEgTpAtAE2xMRZ3MtnkbfsWZEtkspNFq+/HVqug4TzOeCWZbO5z2Y5Fmu1DThfN2JX3ZJOZbEHNuU4jM9nGfezJ5u2/WA1msuXi4IPaMMjWmTq5P1ezyFLRYDDoZgwDlWeyyX2KzLpvdZCtU/tke1tMdXd3Q1EUWJaFZDKZMyTOq9IgG+BUDh08eDCn0jI/qNZWQTbDMNwMlUceeQRXXHEFAKfJXH46HjVWK8pF9+zZg507dwJwXvPjjz/ezbJRVZXN2WcJ7yLeNE13h+7dWU1OTmLhwoUlb0fuLGda8KhUJlstGGSb3bw92bz/B1pbLpr/Pj84kUI0aaJfUzHQFaioXFT+uy/bk228YZlsGagQMGqYLFpKOp3GnXfeCQC47rrrchbsweyxsaIgW7ZcVPOpjLVW7uMRAn/V0i0pTGayZbLnEJWsd+TgAyP7spcafFCr3uxUBT/LRb1tAoQQFZc4M8iWSz6m/C8kqnlOZyMG2TpTfiYb3+fTySCZHEQmVRtkk8d7b5CtFc93PROlW8l7jNE0DV1dXZicnEQsFvMlyBaJRAA4r5d8Xdo6yPbGN74RN9xwA84991w89dRTeOCBBwAAL730EpYuXer7BlJxrZgueuTIEQDAsmXLsHLlypwdCYNss4d8jQ3DyAmy5WeylSOvN1MW8xKDbOQXIcS0fX1+kK1V053zgwLbDjotBJb0h6FnjwelLi+pqor+cAA6bERTJiyh+B9kS5hQFIGgz0E2AEVL40OG8zolUpWXizYry66UqcfTfidmU0G26nuyBdTGZ7JN1DH4oNTn3LbtioOD9UwX9Z5wzJTjsnyPKIoyreqiEQHXmYJBts5UKODC93muYoGaStdScj8pk0zC4TAURYFt20ilUtOCd43WqZls3u2WGYEyyFZsOFw1QTbDMKAoittDLxgMTuvB1lZBtrvuugvXXHMNfvKTn+Duu+/GkiVLAAAPPvgg3va2t/m+gVRcKzLZ5Ad3YGBgWqSeafizh3wf5PcKy89kq/R2OuWAUKliZXG1YpBt9sr/pg9o30y2nYecz/zRc7sA2EW/XS2UyRYxNAQ1AWEDh+MZzAs3JpOt1nLRgKbitved4v5cibAhM9nKf24zMpOtwttuhgAEbtN3uD+3g4A7XbTyIFs0mc1kyy5ZSi3Oa3mdAW9PNv/KRb3vU9M0Kz6eyOeEmWwO734nf0gXgw/FMcjWmQoFXPg+z1UsUFNrJpscUOZNOmimTu3J5t03K4riPp+lznWqCbLJ20ylUkilUggGg+2dyXbUUUfhV7/61bTff+1rX/Nlg6hyrejJlt8byItBttnDm8kGoGC5aDqdRjqdzimfyjfTg2x+Z7I18mBA7Ul+NrzDBYplsrW6J9v+cafH4mB/BMBkVZlsiqJgTljD4ZiFgxMpLMiWX/jbkw0IBmrLZAtoKv7kjGVVXScUdF6nZLr85zZjZUv81PbJHgsoAn+iH271ZuQI5mWyVfL+mMhOljWyAbpyQbZqX2egcE+2estFFUWZ1pKhErWWiwohcu5nphyXi2WycUhXcUKInCAbSw47R6eWDjZTuSBbuX2DXIvX0s+tETo1k62WYT/VBNkAp++eDLIBze3JVvVK83/+53/w0EMPTfv9ww8/jAcffNCXjaLKFJsu2oxMNgbZZrdiQbb8NNxKRzF3ygGhUiwXJb8U+mKjXTPZ9o0507oG+yIFt6dUJhsA9IWd/cnBaKphPdkaUS5aTCSbyZZMV5LJJrNf2yeTrR3JwQfVTBcdT2SgwnYDdI3pyea81rG0BdPKzWSuNZPN+3Oxfb8QAqOjozn3UWu5aP59zJTjcn6QjWvV8vJfewYkO0enZjU1U36fW6naTDZZzVPNdRuhU1/z/GNVJcfMWoJswNSAPfnayderrYJsn/nMZwo+eNu28ZnPfMaXjaLKFCsXbeQHvNiOqVn3T60nv9UEipeLyvdHuZJRZrJVhkG22avQPrdde7LtzwbZFvWHCm5PqUw2AOiLOPuT/ePpxvRkq6Nc1LRs/O/Wg/jfrQfdIEo54WA2yFbBIi4tAzNt0JNNMgXwv1Yf/tfqg9km59iyJ1u6ip5sEwkTGgSCAc2dBldMLa8zAPSGpj6TE8ncwHglx7dCvReB8hNG9+zZg40bN2Lfvn3u72rNZMs/2Zgpx+ViVR9cqxY3UwOuswEz2cqrpFy01LGFmWz+yN83lzvXiUajbvKGDJ6Vkx9kk6+dHIrQVkG27du3Y/Xq1dN+f8IJJ+Dll1/2ZaOoMvkLskaXixZbBEpcuMwO3te3WCbbwMAAgPKZbAyyVYZBttmrUGCqbTPZRmWQzVm8VNOTDZgquds33n6ZbGnLxofvfRofvvdpNyBWTlfQ2T+mqslka6MgWxoqPpw5Dh/OHId09cvFhqh28EHatJHIWNCymWzlsthqeZ0BQNdUdBnObcu+bJWesAGFey96fy607xdC4MCBAwCARCLh/s7dpiqDbDMxsCKniAJTXwRzrVpe/nuBz1Xn6NSASzOVC7IBpY8thTLZahk045dOzWTLr8gr9cWUbdvYunUrhBCYP3++GyQrp1gmW1sG2fr6+rBjx45pv3/55ZfdEbbUHM0efFBsEShx4TI7eF9fbyabbdvugUsG2arJZJtJ5Qh+B9nyMwZp9ihVQgbkBtla2ZMtZVoYjjqLmCX9hctFy2ayhWUmW7IBmWxOX65ae7LVoivbDD+dKf+5NWXGIstFS5KDD1IVlotOJLPZ1aoTYG3EZFEpvy+b931e7n3s7b3o7X1VKpMtGo0imUzm/N17P/WWi860tVylQbbx8XH3hGy2munvhZmsUwMuzVRuuihQ+j2fP/gAaI9MNrn9nfKaF5uoXehcZ9euXYjFYggEAli1alXFPSKLZbLJmFVbBdne9a534frrr8crr7zi/u7ll1/Gpz71KbzrXe/ydeOotGaXi8o3vbenhVerTvSoubzfPHhPALw7xf7+fgBAPB4v+n6wbTvnvTqTFnH5387Uq9CBZ/fu3di9e7cvt0/tq1N6sh0cdxYwQV3F3B6nXNSbRZJ/eS/57/5skGLvWMr349lE0oSq1F4uWouubI+5SoJsU4MPGGQrxc1kM0VOdn0xMuDVY6juIIFGkX3ZZGDP+z4rd9LjDUAXCrIVOuk4dOiQ+3OhSZDyupWuyWZiuaj3+aikXDQej+PZZ5/F5s2bS97uTF/nMsjWuVguWl4lmWylnrd2KxfNnyjdKfvu/DVhsUy2iYkJ7NmzBwBw3HHHlRyol69YJps3yNao/XnVq7nbbrsNXV1dOOGEE7BixQqsWLECJ554IubOnYuvfvWrjdhGKqLY4AOgMQuAUkMPvNvBHfrM5v3mwbtD9KZPh8NhaJoG27YRj8cL3k7+TnQmZWk1ulw0nU5j586d2LlzZ8ccTKk2pXqyybHx7dCTTQ49WNIfLrpQLRZ8lv/uDQegKEA8bWM0GxzxfbpoEwcfdMtMNrP8ZzTjNsvnBL9SgtljjoACW5Rf68ggW29w+mRev/XmZbJ5v5CsJsjmVeykQwiB4eHhnOtbtsDwRGLadWd7uahUSSabzAyU/y9kdHQUf/jDHzAyMuLnprYVBtk6FzPZyiuVyVauKsxbtdMugw/kfcrtafVrvnv3buzfv7/s5SqdLrpr1y4AwIIFCzB//vyqtiUUcr70TaVSEEJM68kGNC6brerVRl9fH9atW4e1a9di48aNCIfDOOWUU/CmN72pEdtHRXi/wc3/dk7+3e9x26WGHnjvnwfjmc37vvP2i5E7KdmIvaurCxMTE4jFYgVLyfMPAq0+KPil0GezXt4DjxAiJ3BpWVZDpuVReyh08h0Oh6EoCiKRSEun5Xnf5/uPOCf3i/OCbIUy2YqVi2qqgp5gAHZGwdB4Ouc69WrFdNGekPNtayb7uS11TM5kA3GayiBbKTKTTQCwbFG+XFQG2YwmBNmyQdWJxNQJgvyyqdJy0fzPRrGTjomJCaRSKZiWjc0HJrBr0xE88othJJNJXHFsBuetml/1fkHeh2EYSKfTM+KYXG2QrVDZbb7Dhw8jnU7jyJEjmDdvnp+b2zYYZOtcxaZ605RCFQKSqqqwLKvo8ybPdfIzo5nJ5kilUti5cydUVcWiRYtKrntKTRf1rplkFtrg4GDV2yOz3oQQSCaT7nNjGAZ0XXfPX6vJjqtUTasNRVFw8cUX4+KLL/Z7e6hC3oUDM9momYqVi+b3KOju7sbExAQmJyexYMGCordT7N+dyvvZK/RZORRN4XtP7EY8ZSIYUNEXDuDPXn+Ue4JWiLfsJz87cKY8b1RYof2uYRg444wz3G8t26Enm5wsurg/VLSvSblyUcDpa2VPKjgwkcQg/MxkMzGQnTDZtEy2bLmoAoFkxkbYKB4Ml5Ms2ZOttKkgm1JRkE1mlXUbueUojdAb1nPuU95fJpPxPZNNZrE9uz+O328bRkromLCCCELg6V1HkLaAs86aynCt5ItXeeIZDAZnTJDN26tIPv5Smb/yd6Ueu1zr1LJvikajsCzLbanRrhhk61zMZCtNCFEyaaRckM1btePdp7ZrJlsjkm5KkUHISo47xaaLynOd/ME/3szBSimKgmAwiFQqhWg06t6fpmkIBAI5SSJ+qyjI9vWvfx0f+chHEAqF8PWvf73kZT/xiU/4smFUWqHmtvknNn4vJhlkI6BwuagQwv2mQe4EZfZasQmjM7E0BSjcA0Y6EkvjA995Ai8P5w6E2DeawM2Xnlz0NlXV6SckhIBpmu4kOWDmPG9UWLH9rjc7tB0y2abKRaey6/IzeMoNPgCyQTYo2DeWwmC3P49JTpicqzY3k607ZEBRAFUIRFOZ0kE2mz3ZKqGpCjRVgRCAVUFPtomkc5zpNpz1USMz2QYiTlB1NJ52f1dqWppXNZls3lLRF0edx3Xq0l7c8o5z8Pyug/jPtcN4Zu84PvvzF/HHCwVUVXFPdkzThGmabgmNlzzRCAaDbjCo0+VPFgUqz2QrdoLoPYms1vPPPw/TNHHOOefUdMLYLAyydS72ZCvN+94udDwo136j0NADoD0z2SzLwvr169Hb24vVq1c3ZVu8z69lWSXXW/nlovl9TPODbLUev2WQTQ7jkwHSQCCARCLR2iDb1772NXzwgx9EKBTC1772taKXUxSFQbYm8X6I87+dAxqT0VAqvRZgkG22KFQuCsAN/MgDT7kg20zNZCv02QSccrUrvvskXh6exGBvCJeethiHJ9P4yYZX8eMNr+KGi493p9Plk2npmUwGmUyGmWyzSLn9LtD4oTfFFOrJtrg/VHSbKspkiwQgAOwbT+J0n4JsUdmIHgJGjUG2gKbiC5ee5P4saZqGt7/97e7PXpqmwdBU2KZALGUBPcVvP2Nmv4nWW1v67T6edBqhtY/iC7ozXMV5VdpDQFMgzMoy2WS5aFegsiBbsde5EvN7nAbLh6JTkykb0ZNtbGzMOSlQNWw4aOJYBTh7xQBOO2oAxw7oSOwfxK82jeDnGw9g+ckmTlnaD9u2oaoqnn/+eUSjUZx99tnTThK9mWyVbHMnKBVkK/TeqSQDpNZMNm8/oFQqxSAbNQQz2UqT721VLbwWKHcu622NU831GqlYJtvk5CSSyWRDJ2jm8+47yj0X+eWi8lxHfhlkGAZs2y7brqoceUyTmWzy2Cefr5YG2Xbu3FnwZ2od78mKN8gms11YLkqN4v3mQTZetyzLDbLJnZZsKplMJt0FfqHbKfbvTlXos5lIW/h/967Hi/smMLfLwPf/8iwcu6AbQgi8uG8cW4eieGD9HnzkTccUvV0ZZDNNk0G2WaSSxUUj971bt26FZVlYvXr1tBPOnJ5snsEH8neyr4ZUSSZbf5ezGHp1LAks8ecxyWymSECFWmQ6djkBTcUVZy+f9ntN0/D617++4HVkkC1lmogmSi/iTNt5nrQWZ7K5jycWAx55BFfow+Wv1GSGpkKY1fVki1QRZCv0OldiQTbINhydappf6fCBajLZ5InCETOApKWgu0tHT1B1S2xOGOxFwtbw4vMCG/eO4TVL+tz7j8ViEEIgkUjMiiBbocB+JZls8udC+4paM9m871UZqGtXDLJ1Lm/gwrKsGfE59lOl/cWLHVs6KZNNVhjl9zhrpPxMtlIK7Z81TYNpmjnZeFK9QTZvJhsw9Ro2KshW9WruC1/4QsFpgYlEAl/4whd82Sgqr9iUtkZmNJTbMbUqm4Kaq1ijSjmNy/sNgXyveMsbpdkQZJO+8KvNWL9rFD0hHf/+/16PYxd0A3A+Mx8+dwUA4L51u92+TIXI5zKTyeRMPpspzxsVVu7LDaBxPdls28bQ0BAOHTpUcBHiPQ7tH3Pek4s9QTZ5G97b8/4tf/sBYE6Xkwm354hze348JjfQki3XbFa5qKZpCGR7iEUTpU+q5eAD9mQrz9C1qnuyhbMfn0aWiy7ocd673ky2astF89+bha4vP4vbR5KwoGDpgDMIxVueffryuQgHdIzEMtg3lnD/VujEJf925QmJqKAct91VWy5aaH+Vf3u1Btm8l29mZkktGGTrXPkBF752ucqVHlaaydZOQbZimWwyyOb9XaNVk8lW6LiX/8WSfL41Tas5SCiPafmvXaMz2apezd18881uJNArHo/j5ptv9mWjqLxyJyvMZKNGKdaoUgZ+5E5LURSEw84Jd6HA/EzqyZZOp93Hk3/QeHjTEH7w1B4oCnD3B0/HSYv7cq77rlMXY06XgX1jCTy06WDR+5DPczQaLZgdRDNTtUE2P/f9hfqpFfr7ZNrpeQYAg32hnG2qtifbnG7n+iOxNNKm7fZGqsdEMjebqZYgm2UL/OGVw/jDK4dh2bkTU3ft2oVdu3ZNO/YpigIjW/4ZTaRQituTrcVBNvfx7NmDjAD+YPXgD1YPrPapFkVQVyufLpp97UMVZrIVe50rMd/NZPOvXLRQJps8Idg8FIOAgmVzIu5l5HswYuh492lLYEPB83vHYdt2zm3kH3+9v/P2a+v09Zx38IFUTSZbPjnhu9j1S+nETLZKMzGpfbTTpMl2VG+QzTv4oJrrNVK5TDbv7xrNG7CqNJPNe9zL/2Kp3n5swFSQTZKvXdsF2YqlG27cuBFz5szxZaOovEJvTGBqIdFJQbZ0Ot30qXhUu/wgUv77wXvgkSWjlWSyFVr0dwLTNPHkk09iw4YNAHKDkMPRJD7zsxcAAH913kq8cdW8adcPBTT8+VlHAQC++3unHD9j2UibuZ8j+bzKUiGJC6iZrZqebIC/CzzvbRX6fMr33qFJZ9E5vyeIUCB3EE+1mWyRoI7ekA4bittLre4gW8LZ9rAxvblupVKmhQ985wl84DtPIGVOfeZM08R9992H++67b9pzpCiK22NtMln6pNqUPdlaHGRzH8+PfoQYVHwgcwI+kDkBqeqXiw3jTBhVKhp8IDPZgtnNLzcQqtjrXAlZLjoWz7jXrbdctFgmW8aysXU4DkDBUXN73MvIz4qqqrji7KMhoODlQ5M4OJ4oe/LjneAmP7+dfnzxPh9SpUG2Qn/3PoezIZNNZnwwyNY5mMlW2mzNZGvWOVa95aL5Xyw1IsjWdplsAwMDmDNnDhRFwXHHHYc5c+a4//X19eGiiy7Cn/7pnzZkI2m6YicrjQyyVTr4oJr7Hh8fx7p167Bjx476N5Caoli5qOQ98MhMtplcLhqLxdyedN6x36qq4tM/fh5HYmmcuKgXn7r4uKK38edvOBoBTcGG3aM4+fMPYdXnHsSpX3gY24amAmryADMxMZFz3U593qgyxcr0hyeSSKSnp9o3KshWKpPtYNQJIMlSUe82Fcq6LBVk0zQNi/vDEFAQTZnTtqMWbiabXnuQrRhFUTB//nzMnz+/4BeQhsxALRNks9okk819PHPnovHdW2pjaCpsUWlPtmyfMS33xLMR+iMBBDTnWRvJBp79nC4qH2smk8GB8SSSloJFfSHMzZap5h9/TlzUi6UDEdhC4Gcb9pYMsnlLSQOBQMXb3e5qnS5a7O/eDLTZkMnGIFvnyV+jd/pn2G/lgjaVThdt50w2WQHg3c+0IshWy5dLMymTreItvuOOOyCEwIc//GHcfPPN6OubKnkyDAPLly/H2Wef3ZCNpOnKBdka2ZPNz0w2OXmy2ARKaj/5J8r5Oz7vgadUuehMCbJ5A4ipVMp9/289OInHXkogqKu4889ORbDE1MAFvSG87/Rl+MFTezCZDSzE0xbuXbcTt152CoDiqf+d+rxRZQrtd7cOTeA931yHrqCGez/0epy0uNf9W6PKRUtlsskg25L+qTKz/OOBt5S1VLmoqqoY7Ath69AEJpM+BdlkX66A/0G2QCCAa665pujfjYDzuY0nyw0+kNNFWxtkcx9PLIb4V/65pdtSTEBXgCp7sgXUxgfZFEXB/O4g9o8nMTyRxJL+cMUnusWqE+S/5edHURRkMhm8OhqHCRVvWDkXup5GOp2eFmQDgDNXzsN/bYjil8+9isvPXOzebv7n2ftvXdenNZ/uVNWWi5b7YsGvTLZ2DrIJIRhk62DMZCut0oSRckG2dsxk8x7fLMtqeU+2dslky3+t8jPZGrU/rniLr7zySgDAihUrcO655zZ0oVLMb3/7W9x2223YsGEDDhw4gJ///Od497vf7f5dCIGbb74Z3/72tzE6OoqzzjoL3/zmN3HSSSc1fVsbrVxGQCPLRWtNsS1EXpYHgc6Rv1P0Hqjk+GWpknLRQCCATCZT9QFAZpD19vaWv3ADeQOI6XTafX6e2DkKIISrzl2O4xb2lL2dL1x6Ej541lGIGBp2HY7hw/c+jV8+tx9/947V6Arq0z53wWAQqVSq40+CqDhvHyXvyfYX/mszEhkLiYyF9/9/f8C3rzgDqqrmND736/6lUplsQxPZTLa+6Zlshfbx5TLZFvUFACiYTPtzfHD7cum192SrVTAbZIuVC7Jlh57oLZ4u2gkMTYWNyjLZxhMZKBAIapX1ZKvX/N4Q9o8n3eEH9fZk8/7bNE0YhoFMJoN9owmYogdnr5wLTR12byM/qHTS4n787ws6Xoml8PTOQ5BHomLtGmRz6ZmSBeN3uaj3ZKza58b7Xm3nclHv42KQrfOwJ1tplZaLFjq2eAeftEsmm/cLzFJBtnbMZCs2XRSYnsmW/3xXQ1VVGIYxLQuxbcpFpZ6eHmzZssX99y9+8Qu8+93vxmc/+9mGfzMTi8Xw2te+FnfddVfBv3/lK1/B7bffjrvuugvr16/H4OAgLrroomk9jGaCVpSLNiKTrdYGstQ6pcpFvb1cgKlMNu9gAEn+W6bxVrMQEELgueeew7PPPtvyXm7eAKIMso0nMth20BkQ88HXH13R7QQ0FScv6cPK+d148/ELsHJeF2JpC796fj+A6QuCnp6pPjyNZNt2W58QzGQHDx6EEAKGYbifk4c3H8S6Vw7D0FWccfQAYmkLV93zFLYPO++3ZvVk804ePDDhLOSWDEwF2fKPRd73aakgm6qqWJQdnhBNWtO2oxayZDDUgHLRcoLZiabxVJmebFZ79GTrBG5PNrt0TzbbFogmM9Bgu5nE5Xqy1Wt+d+7wg3p7suUHvIQQSKTSGJpIwspmsuX/HZh6jxsBDUfPjUABsPnVMfd2ix2P5UlHpcHBdleoXLRUxUe5wQezIZNNvhdUVWU2VAdikK20enqyecv22yWTzXu+r6qqezxIJpMtGZJWTSZboeNeIzLZgNyS0fxMNm+7BD9VvZq7+uqr8dJLLwEAduzYgfe///2IRCL48Y9/jBtvvNH3DfR6+9vfji9+8Yu47LLLpv1NCIE77rgDn/vc53DZZZfh5JNPxn333Yd4PI7777+/odvVCjOlXJSZbJ2nVLlo/jcNuq67O7P8bDZ5O/Lv1ezgTNNEJpPJKWtolULloi/uG4eAgvNWzcNRcyNV36aiKHj/mcsAAD94ai+A1gXZXnjhBfzhD39o65OCmUgIgd27dwMAjjrqKCiKgpRp4Zb/cb7k+qvzVuA//uosXPKaQWQsgV89P4TRWLphQbZCPZykfeNOQKFQT7b8fbyqqtN6lxULsk341JNtNO68dxuRyZbJZPCtb30L3/rWtwoGo4PZfWI8VTpQ7fZka3G5qPt47rkH7RpaN3Stoumik2kTtgA0CAR1J2BQqG+enxb0Fg6y1ZrJBuSedGQyGRwYS8KygQW9ESybk1uSmr82dD5PYagQ2D40Nu3+JPnelfc1UzLZ6pku2siebHL90o68J7V+Bw6e3HEYT+084sttdaL9+/fj0KFDDb2P/NJBnl/lqifI5t1PFvuysJVBNu+XMvltejpl8EEjerIBuUE2ea4qM7eBxmSzVb2ae+mll3DqqacCAH784x/j/PPPx/333497770XP/3pT/3evort3LkTQ0NDuPjii93fBYNBnH/++Vi3bl3R66VSKUxMTOT81wmK9e9oZLlovXXshcjtbNfFBk1Xqlw0/5sdoHhftnqCbPUsdP0khJhWLprOmNi0fwI2FHwwOzW0Fpe9bil0VcFze8ewdWgi5wBjGEZNz1stJicnYdt2wZJfapyDBw8imUwiEAhg0aJFAIB7f78Luw/HMb8niGsuOBZBXcM3PvA6nHvsXKRtgYc2DSFd5UTEUkplsnnfd/vGkgCAJSWCbKWCCNPLRZ3bmfApk+1IzNlfRBrQk00IgUOHDuHQoUMFj2Nhw/ncJtKlF7im5Vw30OBMq3Lcx3P4MNr1qGxoKkR2umiptYPsxRfSnYESjc5iA6YmjPpVLur9nWVZyGQy2H0kBgsK3nDsvGmZbvlBJUVRsKg/BAUCu4YnYNvTM0uB6ScyMyXIVqpctNB7p9A0ZC/viZgo8/4rd9vt+tw2Ksg2MpnCX/zbU/jAd57ArpHZ14c5mUzipZdewpYtWxp6zsNMttLKtT4qlaxSbOgB0LogW34rjmJBtlZkslWawd3onmwAEAqF3NuR96coSkNLRqteaXpLRB555BFccsklAIBly5ZhZGTE362rwtDQEABg4cKFOb9fuHCh+7dCbr31VvT19bn/LVu2rKHb6ReWi1KrlCsXzVesL5t8P9VSLurtM9DKAK23B5v89xM7RhBPm+gJGXjriQtLXLu0+T1BXLTauf4D6/dO63XXrJOg/CAJNZ4QAnv27AHgHFs1TcOm/eP4+qPbAQA3/tHx6ApmT4ZVBV/9k9fC0DUMTSTx3cf9m9RcSSabgIJDk9Oni+YvVIsds/J/JwcfAMBYwp9MNhlkCwVqz2TTVRU3vf0E3PT2E6rqmxYKOvvERJlMtnYsF9UhcJO+Fzfpe6G3UcjN0JWcTLZixwA59KA/VHhITyG1vs7SfDfI5gSe6y0XBaZnsu0aicEUKt58/IKc6xTLZJvbZaDbUGFaJkZiKfe2vPLLRSvd7nZXz3TRcuWixW6j3LZI7Zod3qgg2/9tHUbasmHZAv/y2Ct1316nkWtg27aRTCYbdj/5A4Y6/TPsNz8y2QolFLRDJhuAlmayCSHK7kO9CiUM5Z/b5GdZ10qea+afp8rXsi2CbGeccQa++MUv4nvf+x4ee+wxvOMd7wDgZJLlB7haIb8UQE5jKuamm27C+Pi4+9/evXsbvYm+aGWQrdaxx4WwXLTzlCoXrSaTLX96VTUHgHbJZMt/TKlUCo9scoL6566aX/cJsywZ/dkz+2CJqf1YK4JsrS7LnU0OHTqEeDwOXdexePFi7Dg0iSu/+xRiaQtnrZiD975uac7lF/WF8cevXQIA+N66XXhmz6gv21EqyCb/Hcs4lwkFVAxEphYv+dki1WWyOUG2pCmQMi2fgmzC7clWS8mgoau4+vxjcPX5x2R7glUmbDjPSTJdegGXymYghozWZrJ5GYrA1foQrtaHYChtFGSTmWx26Ux42YuvN1h5kK3W11la0OO8d/0sF/Xext6RKA7H0rAVDW86bn7O3739grxBNkVRcPzCbuiwcWA8WXB7ZmomW6G1sl/losUuU25bpHbtddqoINujW4bdn3/6zKvYNza7suO9XzQ3MshWqFyU1UJT6hl80M6ZbHJfL/fd+YkNzVjD599HLYMPGp3J5i0bBRo7/KDqFcQdd9yBZ555Bh//+Mfxuc99DsceeywA4Cc/+QnOOecc3zewUoODgwAwLWtteHi4ZPAvGAyit7c3579OUGy6aKN6snkzGJnJNruVKhctdOCRQTY/M9naJcgmH5N8DvYfieLFfWNQFOD8bJZBPc5bNR+L+kIYT2Swfs+4+/tmBdm8i7NOP9nqJK+++ioAYOnSpRiezOAv/u0pjEymsXpRb3aS6PQg0WuXDeCEwR4IYeNra1/yZTtKlYvKv0VTzvtiSX+4ZLZINZlsXUEdvSEdNoDJpFnXZ1wIgdF4GgqAcAPKRcuJBGWQrfgCN23asLKZbF1G7RO0ZgtDV91MNqB4kE1msvUalQfZ6pVfLlrJftr77X+5TLYnXnECFcvm9aAvnJt1ViyTDQCOX9gNDTaGxgoH2WZqT7ZqMtm869xCfwfqy2TLv+xsymRLmRZ+t93pRbZ0IIyMJfDtWZbN5l0DN7L9RqFJk81aJ3dCMK+eTDb5mW3HTDa5j8sPstVyjlWrUm1F8nn3t83oyTZ37lwsX74cK1euzPl9WwXZTjnlFLzwwgsYHx/H5z//eff3t912G+677z5fN64aK1aswODgINauXev+Lp1O47HHHmtp8K9Rip2wNKonm/eDUi7IVkuPCgbZOkd+sLXU4AMgt1zU24Ovnp5s7VIuKg9ifX19AIDfbxuCAoEVc7uxoDdc6qoV0VQFbznBCdat2zHm/j4cDjctyCZ1+slWJ5EZkvPmzcP/u+9p7BtLYOW8Lvz7/3u9e2KdT1VVnLF8DhQIbNg96pYf1qOSTLbRbLbQ0oHcAR/FerJVEmQDnNJTAQXRVH1BtmjKRMYSUCAQDmhFt6EcyxbYuHcMG/eOucGdSsggWzpTPMgWS039LdJGmWyWADbaXdhod8Fqo3MnJ8hWQSZb0lk0d1eRyVbr6yzN9wTZbFtU1JPNW/JaLpPt6VecQMXJy+a4f/f2XsrvySbv/7iF3dAVGwfGnWNWsXLR2Rxky/93/mMXQvhaLjqbMtme3HEEsbSFBT1BfPm9pwAAfrh+L4ajjcvoajfNDrJ59yXN+Bxv27YNTz31VFvvM7zD0ppVLppOp5uyTs9PfJDvA3kO1opMtlKP2/s8NWO6qKqqWL58+bRkqrYKshUTCoUKnmD7aXJyEs899xyee+45AE6J6nPPPYc9e/ZAURRcf/31uOWWW/Dzn/8cL774Iq666ipEIhFcfvnlDd2uViiWVdaoclH5JlcUpegJCjPZZof8k+VKBx/IfjJA7kmFvE7+t8iltEsmmwyG9Pf3I5rMYOuBMeiwceaKAd+abJ+3yikJ+t3LI+5z1dXV1fQgG8tFm0e+ppuGJrHlwAQihobv/eVZmNcdLHodt/dSUEM8bWHLgWjd2+E9jhTLZDscc36/cn5Xzt+L9WSrpFwUAAb7QrCh1J3JdiTbL67LUKFrtWeypUwLl37z97j0m793Szsr0SUz2UoE2SZTJhQAuqZA19snyJaCikvTq3FpejVS/i0X62Zo2emiZQYnycEH3cb0Y1Uxtb7OkvyMmrbAWCJTUV+kcl9iypOLWDKFrQecUvDTl8+bdp1SmWzHzItAg42xRAbxtFm0XDS/J1s7nzBXoppy0VITlIHck7BaJjfO5ky2R7ccBAC85YQFOOeYuXjdUf1ImTb+6cGt2DkS64gMqHo1O8imqmrFg1f8MDIygkQigVisfYdaeKszaqnKqrZc1DRNPPnkk3j22Wfr2/ASimWySV1dztqsFZlspfYb+QMbJO+xxxsUbVSMSe7LGxFkqygsOGfOHLz00kuYN28eBgYGSvYzOXLkiG8bl+/pp5/Gm9/8ZvffN9xwAwDgyiuvxL333osbb7wRiUQC11xzDUZHR3HWWWfh4YcfRk9PT8O2qVXK9WTzO/BQbuiBd1tqWXTIoEstvXKouaodfKCqKkKhEJLJJBKJBAzDyNkRewNzlmVVdALcLkE2uVDq7u7GM3vGYdkCqxeEsagv7FtJ2tnHzIWqAK8cimHeUasxN6y5zyfATLaZxrsIfHizk7Vy4YkLcyZ3FqIoChRFwUmLerBvZwpP7z6C1yztq3tbpGKZbCOTGQAGVs7LDbLlZzaXKhctlGWyqC+M3VAQrTPIdjg79GButl+cfJ6apSvk7N/SGbPoMc4JsgkYmspjYAWcXmmKOymzXJCtS3ee02aUixq6ijldBo7E0hiOJrFioHypjveLq0KvvzzGvrB3FLAs9EYCOHp+77S/W5bl/pwfZDNUgfldARyOpXFgPIljDD3n/chy0eL7OMl7gq2qKkyzun1TJw8+qOd9MDExgXWbdgMA3nriQiiKgr9+yyp86N71+Nkz+/CzZ/ZhIBLAxy44Bh950zH1P4A2JIRoWpDNm82qaRps227KOlm+R9o5acJ77lHsfLbUeXQlmWze89lUKgXLshCLxRp2jluqhQ/Qvpls8m/5azLvFxjePqONOn43ckBIRVv8ta99zQ1Ufe1rX2vZIvCCCy4o+W2HoihYs2YN1qxZ07yNapFWlYuWepMX2sGU491OBtk6Q/57r9zgA8DJZksmk4jH4+jr68sJ2spv22zbGWlfybcV3sVpq74B9S6akkLDhlejUAGct9I5+fEryNYXDuDUZf14Zs8Ynj2QxPvPPApAbkq4bdsN6TNVzZQg8od8noUQePBF59v/d5yyqOz15Ou/erAHD+9M4endo/jQuSvq2pZKerINT6YBGFgxrzvn795m7EDpL2rkIksI4QmyhWALBbE6y0VHs0G2OdkgWzP7sQFAd7a8V4FAImMhYkw/hsZSJhTFaehP5Rmas04ws7v+Yu8P2ZMtEmhekA0A5ncHnSDbRArHznNOcErtp8t9iSm3e+OeI9AUGyvmdeUcayvJZEun01jUF8bhWAYHxpI4Zn43TNN0j7f5JTnNzIBppHqCbMUy2QKBQE1VGLN18MH//mEDuuL7EdEX4Y3HOhmYFxw/H1+49CT84rn9eGHfOEbjGfzzwy/h8rOORnewOZ/TZsqfRJ9MJht2zuN9z2uahkwm0/DPsbcSpROCbLquF33u681kk9fVNC1nPSd/57dymWytCLLJ9VwlmWz52+v9t2wNVKqKrl6N7KVX0Z7syiuvdH++6qqrfN8Iql65wQeNCrJVkskGoOKdiXc7GxUoIH+Vmi5aLEAWiUQwOjrqBqXy30/y27ZKFgJCiJyebK06oMtFkqqq+I/1B5CwVKzsC2FxT+5Jih/OWzUfz+wZw2+3j0wLsgGN++ywXLT55PN8cDKD/RMZdBkazs9OESxFvv4nLOoBMIKndx2pexFfLpPNtgUOZYNYK/LKRWUQQC5KS2Wyyd97M3EW9YUggLp7sh3Jbl9/RAdQWaasn8JGAIoCqEJgMmUWDLJFUyYAAUNnJlsl5NRP2XaweE8257MUzj7lzQqyLegNYtvBKA5FU9PWRbUE2TRNgxACm/c57QiWz+vKOdYWCrLl92RLpVJY1BfCc/sncWBiKgs6P8g2G8pFi2WqlPu3t+m5DJDVkskmT0A7KZOt1n2wEALbD4wCEDh7eR/C2Z6TiqLgirOX44qzlyNt2vijO36LnSMxrN08hPectrT0jXYgbxN6md2UyWSKfjFdK28rFm+5aKPXyZ1S9VBJf69KpouWymQDpgfZ5H03IshWKpNN1/WWDD4wDMN9nxdTqiJPPneyYqdUUNTrSCyNXz63D7/YuB+TSRPzuoOY1xPEZactwZtPKDyMrpHHuqpXHJqm4cCBA1iwIHdjDx8+jAULFrT1h2smaedyUXn/lexMyk1yovZSqEGzpmk45phjoChK0QOX7Msme5gVCrJV+m2b90RCblMryEVTRtHx70/sxlyh4szlA9NObvzwpuPm4c5Ht+P3L4/AsgU0VXFLi+QQiUacQJZaOO3fvx+appWc3kzVk8/zSwdjAAxcuHohQoHy+1L5fjt2XgS6quDgRAqvjiawbE6kzDWLy3/9vUE727YxkcwgYykI6ioW9YZyrpsfZCt3DJFBNm+5qNOTLeNLuehAuDVBNl3XYWgqVFtgMmliQYHuFbFsTzaWi1bGDbKV6ckmM9lCTQ6yyeEHw9kgW7n9dCWZbCOTaUQTKXRpAssGwmWDbAUz2fpDMIWK/eNpWLaYdgIo7yv/NjuZn+Wi3ky2Wkrj5GWDwSCSyeSMz2RLmzYe23YQm/dPAADOO3ZewcsZuop3vnYxvv7odvzXxgMzOsjW1dUFRVFy2qdUwjRNHDlyBHPnzq04UCODFUDjP8fe22/nc7lqqrIKBd3l9QslFHgz8vMHPgHOaygDXn4qlclmGMa0HmeNXGPIfYc3mFxMqWFYhYJs+YQQ+OsfPIvHth1Cd0hHd1DHrsMxZDxTmrYPTwIA/nfLQfz2xjdjboG+xo0MRFe92iy2mEmlUr5H5Km4ckG2Rg0+KLVz99ZVV/pmzc9ko/ZWrFHlsmXLsHRp8YWRDLLJHWb++ym/tKyU/G9/W/W+icfjsG2BH2w4iGjSxOK5PTjGk83j58n8a5f2oyeoYyyewYv7xt3fN3oBVSzIlslk8NJLL2Hr1q383PpMLoQ2DzmLg0teU75UFJja9wc0BSctcXqxbdg9Wte2lDoJtSwLo/EMbChYMa8Lqpq7cKslkw3IHXwgoGCy3nLRuDfI1vxyUU3TnCAbbMRShT+nk9mMK2ayVUaW1cq1dNkgm+r8vdHDuaSpIJtzvCu3ny51siGvf2A8ARUCRw8EoWtqwSCbt39NoSDbQMSAYQSQsoCRyZR7vPWePOYH2Rq5f5+YmMDY2FjDbh8oHWTLf99UWi5qGEZdg77kifZMzmT79z/swplfegRXf+9pjMbT0FQF5x4zp+jl3/XaxQCA3750yC3xn0lkkC0UCiEUCuX8rhJ79uzB5s2bsX///pKX875O3hK7Rq/TOiXIVk0mW7FM1lIJBcWmqnvv22+lMtmCwWDOtjY62OrNZPNuWyGlhmHJbZZVS4We7w27R/Gr5w8gmjJxYDyJ7cOTyFgCr1nSh5vfdRL+4y/Pwp1/dipOGOxBLG3hW795peB2tEUm29e//nUAzpvrX//1X9HdPdV/xbIs/Pa3v8UJJ5zg+wa2SrtPuin25mx0T7Zy36DIbIRKd7LMZOss3p1QNSer3kWF/EYfqO1bc2+pKNC6900ikcC6HYexaTiDLiOMT1x0DJJHhty/+3kyr2sqzjl2Lh7adBC/234Ir13WD8B53kxz+qQ4vxQrF/VOic1kMg35dm62siwLB8aTGE2YFZeKArmLuzOPHsDGvWN4evcRvPu0JTVvS/5nyzTNnKa0Y/G0G2TLJxdZmUwm5yS+2DGku7sbmUzGDcgvyk4XTZk2JpO1n3Qdzk4X7WtRkE1VVRi6E2SLpgpnrriDDxhkq4iRncBqZt+exY4BcvBBQG1s4+R8C3qc492hqHOsKtffrJJMtsOTaeiwsKDb+VxVm8kmMxiWzunGK0OjGJpIuvfr3bc3K5PNtm1s3LgRQgice+65DSmjkvcDFJ4umt8/uNrBB4UuU8m2yOOlHJxQbJ+USCSwceNGLFu2DEuW1L4fr1axIFulWTC2LfDVh7ZhImliUbeB0+YPYPXiXsztKh7kPnZBN1Yv6sXmAxN48MUhXH7WUf48mAaptkWHDKiFw2EIITA2NlZVkE1WgZQLzHrP/VRVbVomW6ecy9UTZPMG2Uv1c7Msy32+mxFkK5XJFgwGc/pee9dwjSCfo0pKVEt98SofQ6lMtu/+ficA4N2nLsaH37gCEwkTC3uDWLUwt1xgIGLgiu8+he/9YTc+/MYV04aItbwnG+AMPACcF/Nf/uVfpqUjLl++HP/yL//i+wa2SqcE2Zrdk63ch5OZbDOb931XzcmgDLJZlpUTFJL7Efm+qmQhkL/IaNVndcMrQ3h61xGkRT++/L5TsHyBiq0NCrIBTl+2hzYdxG+3j+Djb1kFoPEnQsUGH+QH3Bhk849pmtg+PAkLKi6qsFQUyD1xPGP5AP718Z14eldjM9nG4hkIoGCQLRAIuKUTMtDm3c58J510Uk6PqK6g7vTvMYEjk6mC16nEkZhz3b5QfUE2XVVx3VtXuT9Lmqbh/PPPd3/Op2kaApoKVbGKZ7Jly0UDbVAu6j6edBrB3/8B12n7AAA62mdNFMgOPrDKTBd1MtkEAkrlmWzFXudqLPCUiwLls8Iq6ck2MpmCodiY123klIF5r+f9AqtY24Kj5/dg+9A4Do5PBdm8ZZD5J2qNOrbE4/GcIF+jgmylMtmA3NYm8vXRdb3g5FC/MtnkSXq5L6nGxsaQTCZx6NChpgXZhBBFm8NXGmTbMRLDRNJEKKDioevPwzNPPwWg/HvpXacuxuYDE/jlxn1tHWTbt28fXn75ZZxyyikYGBio6Dr5QTZgKoBQCfnlcrnn0Lsv9GayVfo5zmQy2L17NwYHB3OSacqZSZlsxc5jSw09kEplsjX6y/BimWzydzLI1kiFMtmK7TdKZXCXy2R7dTSOX7/onG999IJjcMJgL4o5b9U8nL1yLv6w4zDufOQlfOV9r835e1tksu3c6UQM3/zmN+NnP/tZxTuWTtWsnYQQAuPj4+jq6qqqlKEde7J5t6eWTLZ2D2xS+ZKvYjRNg2EYSKfTSCaT095P1ezk2qFcNGPZ+OlTOwAAf/y6o/HHpyzG6GhuQMPvk4bzVjn9TJ7ZPYrJlInuoN6yctFCWW3kD8uysOPQJGxoFZeKArn73tOPdspyth2MYjyRQV+4tjK5UkE227YxGk/DhlYwyKYoitv8Np1Oly2J8zZpluZ2h5AZAw5PVn4yku9I3Hl/9oV0IFV7kM3QVXzyouOm/V7TNFxwwQVFr6dpGoK6ChUCk0Uy2dyebG2QyeY+nlgMWLcOnwyULk9qBTl9MGWWDrJNJDNOhqBW+XTRYq9zNWS56EhekK3WTDYZZAME5nYHc4Jh+deT++P8TDbpmIV9eOiFfRiaSLr78UInj40+tsRiMffnRh7DqwmyefstFQqyFcpkq6Unm6o65b7pdBrpdLpokK2W4Qr18r7e+Z+XSrO3ntnjrIVOWdoPTan8i/R3vnYx/unBrXhy5xEMjScx2BcqeflWGRsbgxDi/2fvvOPjuMr1/53ZqlXvsmRbcu8l7nHi9B5CElJIAiGUJECol3YD3Hvpl8uF5PKjBEJCSAIBQiBAeiXVsR333m1ZktV7WW2f3x+zszo7O7s7u1pJa/Dz+eQTS9qdOTNz5pz3POd5n5fu7m5Ta2GxEr1IsqWiZNPbLiQ6lwaRjDfbh9rb22lqasLn8zF//nzT7TtVKtGPpvCBSLIn++54posmU7KBer3jUWVW9GTTEM+jPVG6aDIl2283nCCkwFkzSxMSbKDely9fNof33fcOf97axJ3nTGemYI6bVZ5sr7322j89wQbjN6n19fWxY8cODh48mNL34i1YsiFdNJXzn1aynVpItlBOBE3N5vF44nqynSpKtq31Xfh9PnJsFr505WIgduLNtJKttjSXmqIcAiGFXU29wPh6sokBwmmSbezQM+ihb9hPUJFYM6PU9PfEDZbyfAd1pS4UBbY3pK9mM0oX1aAp2UJITC+PJdlg5J3wer0JA6p4KAmb1GZCyVbgNCYdxhqyLKtKNhQGEyjZQDld+MAkCl0qGeT2q/fTaA7wBoJ4/CGshHCEycuxUkvpEU/JFm+cTvZudAz58QZCyJJESa49ZkNWJKiTkWyzJxURUiR63D76h71R3zEi2TQlQqYhkmxjufCLV13UaENab2qeqPBBOp514mJYTKePB9Ezb7ygnVPrU+J4ZLYd2xt6AThjalFKaYQ1RTmsqC1GUeCZXdlH7mvQrsMsSSaSGzk5ORFLBLPfFyvRJntXtLalq0jV+mOqfoGnmpLNTBG/TCjZ4sXQmYRZJdtYtkGDEcmWbN5LpGQzuuduX4A/vNsAwEfWTjPVrmVTi7lkfiUhBf7v5cNRf0sn9d8s0krMbWpq4qmnnqKhoSHmRbz33nsz0rCJxngNEhpL29/fn9L3srHwgdie0+mi/5xIZ6Gswel00t/fH6VkO1U92dbvPQEo1JQVku9SA6axJtkAlkwp5GTvMLua+lg7o2xcSTZR9i1O1Nlq3nyq4kibWtiiLD+HAqd5BZp+7F1eW0J9l5st9T2cN8e4dHkyJFKyeXwB+j1+QoqLaWXGaSVi8YN0VLCleTm0AT1D6ZNsPUPqoiHfYWUwxfOLCIUUjnSoxShmludFCj0oikJHRwcA5eXlMSSZpmSTUOhzG78rg95g1ijZItczPEypAkcVdXNkpuRJfVd2jFCUo/Yrt0/tU0bxTv+wOkbZJAWHVY5Rf8VDvOecCjQl26A3gNsXGLWS7XC7SkiVuOxYZMlwkaelA8UrfKChrMBFcZ4TxT3MkZZ+5kw3VmiIbRmL6tUTqWQDY/9gPckWb5GdbrqoXskmHtMIE0myac9bSzkMhUIpkGzqxs6yqcVx1fDx8N6l1Ww50cMv3zjKJfOrmFqafnXssUKqJJu2ztP8sbQNZ7/fb8ojy+fzRfqxWSWb/v03++y0558qGXOqkWyjKXxwqirZ9O0ZC+j9HBONG8mqi4oQn9eT207S7wlQW+rigrnmY9svXjKHl/a18dyeFuo7h6gLZ2CMZZGflGOmV199lTlz5nDfffdxzz338Nprr/Gb3/yGhx56iB07dmS8gROF8RoktE7m8/lSUoTEIztO5XTRbB6YT0NFuumiEK1ky0S6qDZ5TES/2Xtc3WWdUzuSzieaBMPYkGyLJxcBsLOxFxhfTzbxZ3Gs+ldSsh08eDBl1XGqOB4uOT41DnEVD3oV8co6VXH+7vHutNuSSMnW1q8aMbucdopdxmSgSLKZnUNElIUN5HvTJNm8gWBYJQZ5DvW86b6XnkCQS/7vTS75vzfxBKIr7f7iF7/gF7/4heG7YLFYcIR99frcxtcxGElrnHiSLXI9Dz/MADKX+BZxiW8R2UOxQVG4vw371Uq8RnOAVlm0wCElrAanR7znnAryHFZyws+8Y8CbVEWQ7N042D5ECIlSg6IHGuLFgvr+brVaqStXU2UOhwl9I7WA2A/HYn7RjNxh4kg2/bm1f4skm0huiCTcaDzZTgUlm/i+pHKtg94Ah9oGADhjSmpKNoDrl09m/qQCOgd9fOihTXSNQsU8VtD6gVbIKxnEVFFQ763Wx8wQdeLGsllPttEq2VKN606VtVwmCh+k68k2EUo2bZzRrne8lGzieigdBbf++VitVpp63PzH33bz7af3AXDbmXUpbYLNqcrn/DnlKAo8+PaxyO/1xV0yiZSjpq9+9at88YtfZM+ePTidTv7yl7/Q2NjIueeeyw033JDRxk0kxmuQEM8jBh2JoFVEguwrfHBayfbPjUykiw4PD2eEZNOON97pokPeAO2dXQCsnjtizisGzjBWJFshALua1MXReCrZwHiX81+FZPP7/bS0tNDS0jKmgUp9p7pAmVaen+ST0dCPvWumq6mmOxp7Gfal1z/0QZDYz9r71MVBdZErLjE0WiVbeYH6jvcNp6eW7B5Sv2eVJXKsxqRDJuByuXC5jBUXkiSpBRyAviFjb7mhLFKyQfh6cnKSf3CCoJFs/hD4g4qxks0T9uJzqM87Fc/b0UKSJCoKRlJGk6kIkpJsrQOEkCkNp0+bIdniKdlsNhszKlQPm2MdagaF0eJRTK/N9PwSDAajyIXxThcVfzZSWonzuPZ3Le7QCNt/FSUbpBbX72rsJaSoqZ8VBc6UFU4uu5WHP7KSmqIc6rvcfPThzbh9Y0sMpAoxFVCfWWEEPckm/ttM8QOxj6RKsk2Eku1U92QTxSri3HKqKNlsNht2u52cnJzIODMe6aKias1qtSZViCWKCfXz2Uv7Ozjvh6/zu40N+IIh1s0q46ZVU1Ju453nzADgiS1NEQJfPFemx9qUo839+/dz2223AepNHB4eJi8vj29/+9v84Ac/yGjjJhLjrWSDaPl8Iohty1ZPttNKtn9OjDZdFBJ7spmZALSgRjveePeb9YdasCp+8p025tVWRf1trEm2RTWFSBKc7B2OUkiMF8kmVoPT8K9EsmkYy0ClsUtVsk2vSGzmqodexVxb6qKqwIkvGErbl007ltavxevu6FcXB5OL46fzjFbJVpGvLkTipVkmg0ayFefa425MjRZ2u50vf/nLfPnLXzYMviVJwmlXA9141zGgVRfNApItcj2f+hTxlxITixybBbtFBiQ8gaBhvKMp2SaCZAMoDxNi7f2jV7IdaBkgqEiUpaBkS0SyzapSN2vqw2mx8RQaYzW/6DeUJ0LJZsaTTfy7vgJrppRs2Uqyif0plWvVih4sqy2O+Y7ZflRR4OTRj62iyGVjZ1Mf//vC2KrHU0Wq4ohEJFuqSrZkz2C0nmza89enUifDqZIuakYwIo6Z4tySrYUP9GSVLMusWrWKFStWRPrBeKSLitcnkmzpbC6JzycUUnjg7RMEQgpnTi/lj3eu4bcfW43LnrqFwZrpJSyeXIg3EOLRDSeA2EI4mUTK0WZubm7kha+urubo0aORv3V2dmauZROMiSDZzCrZxO+Mt5LttCfbvzZGky4q7tyl68kWDAYjn5koku3d/erAPKWyLGZRIpp9jgXJlu+0MaNcTSPc1dSbFSTbv4onW7zCD5lEv8dP16AadM+qTI1k04+9kiSxZrpaZXTjsa602qNPnxL7WeeA2s7JpfHTWrX3IV0lW0W4ulz/KEm20lz7qMau0SLHod6/gTiKvKHThQ9SgiRJFLpsKIDHb0yy9YdJtjy7+rwz7SmWDJVhFWZbv2dUSjZfIMTRjkGCyJTlm1eyJUoXnVVVgCxJDAx7ae3zxF08jpVXjX5DeSLTRcW+Iz4H7fN6iwTtHmVKyZZt6aJGJEQq1xopejClKOY7qVzHjPI8fnj9EgCe2dVCKDT+Ba7iQXyPzZBkmSTZzCrZ9CR7qiSb/t/JcKqQbKmkiwKGSrZ000XHKk43GuNEkgvGR8km3lszGxFmlWyNPW56hoOU5Nr57cdWRbI00oEkSdx5znQAHt1Qz7AvGNXWTD+jlKPNNWvWsH79egCuvPJKvvjFL/K9732Pj370o6xZsyajjZtIZKuSzeMPcqClL2JAbmZ3LhMYq8IH4ucmokrkaaSG0aSLih5qWmCh9SezuyzaJCcGqePdbw6caAVgwbRJMX8bayUbwBLNl62pb9w92f7V00U1jFWgsvdkPxYUCpw2ivKcKX3XaNGoBSMbj6Xny6Yn2cTr1qT2U0uNK4tCdHXRdJRsVYXqQsQXCNLnTr2fRZRsrokl2VxhJdugJ17hg0BWpYueCijKsaEg4fUbGytHSDbbSArNeKK6SH1/T/YOj2pH/1jnIIGQgt1mJd+hzpOpKNn0/clms5HrtFOaa8eCwo7G3riLx7GaX/Sxbraki4pKfT3BqL9HoyXZzCjZtDlnLLyC4sGoL5q9VkVR2B72izVSsqW6Ljl3djn5Diudg152hCuqZwqKonDo0CFOnjyZ8nfF60iXZBPtU5IhFSVbPE+2VNNFIbXY7p+VZNOuRVGUU0bJZoTxVLKZFU8karf4fA63qZtMly2swmoZffx22YIqppa46HH7+ePmhqg2TLiS7d5772X16tUAfPOb3+Tiiy/m8ccfp7a2ll//+tcZbdxEYrwnNEiuZOse8nHtfe9wwy/eYcPRLsOOeaqli55Wsp1aGE26qCzLEaJNCxpS9WTTvqdVaRLbNB7oHPDQ19cLwNr5dTF/1yZfIwI8U1gyRfNlyw4l22mSLXPY29yHjEJFviNl5Y3R+zBaXzZ9uqjYz3rC/mK1CQo0jNaTLddpJ99hRUbhaOdgao1nhGQryRs7ks3v9/Pwww/z8MMPx30Xcp2aks3474Oaki0LSLbI9fzxj2Tzm12URMmmpYvm2tS/jTfJVlOkLqhP9gwnNZ1OFF8daFE9GisLXVGeO3roxwujdFFZlpFlGavVSlWhExmFnU29/5Lpook82SwWS8zf9fdorAsfKIoS1V/Ga00ymnTRE11uuod82K0y8ycVxHwn1X5kt8qcO6ccgFf2taX03WTo7++nubmZ+vr6lL+bSrpoKBSKPGMx02GslWyjTRfV/zsZTgXrH0VRTKWLivG7di2BQCByb7Ot8EG8MU7EeBQ+0JNsydRhiea9SL8NV/sOIvGeRbHChnRgtcjcEVaz3fPSIU50DY3ZXJdytDl9+nQWL14MqOa49913H7t27eLJJ5+ktrY2o42bSEyEks3r9cZ9AbqHfHzgwU3sb+lHRuHd+m52NPXHfG6iCx+kqqQ7TbKdWhjtQlXbvdOQKskmGo+OVV9PhDf3NmAhRHFeDnWTYiXLWhCVDglpFmKF0bGSOGswS7KdqirU5t5hHnr7OO8c7UxKQonXPFb3e8/JPiwolOc7Uu5DRmPvaH3Z4inZet0+PGEzajMkm1gBMpWxQ5ZlinPtSJLC0fb0SbbSMfRkUxSFEydOcOLEibjvQa5TvQ+DnliTbF8ghC8QQpLIinTRyPU0NZHNb3Vhjh0FCU/AWOXT71H7p8sa7UkzXqgJexWOVsl2oFUl2SYJ3ofperJpaTwWi4XKAicWQuxs6EmaLjpWSrbxsHzQe1RpSESyaWSk+Dtt7MuUkk0sfGDUf/XqtfFek6RDsm1vVOeYhdUF2K2xsUk613Dx/EoAXtmfWZJtYEB9r9KJX1JRsomfFe+pRrJ5vd6k90VUOyZTNer7eyr9NBQKRT2vdJVs8cYLRVE4evQora2tpo+bSYgxXKqCEe0ZiEVPjKBXDor3fSKVbOOdLiqeM510Ue0YjT1uPP4gRblOVk0ryVhbb145hZV1xQx6A3z2D9tRGJsswJSjjunTp7N582ZKS6MXmL29vSxbtoxjx45lrHETifGa0PTncbvdFBQU0DHg5S/bmggEQ+TYrfx5axP7W/opy3Nw2ewy9uxq54W9bcza08plC0fM18ciXVRcIGVSySZWSTX7ndOYWIwmXRTUoLqvry/yc6qebCLJNhFKtq2HmgCoq640XAzr/VrGAvMm5WOzSPS4/XQMqUHQRFYXBTUYSyShz0YEgiFuf2QL+1rUzQqbRWLVtBJ+eP0SqotiKyuOh5JtT3M/DilERYEzZZLN6H2QJIkzZ5Ty1+0n2Xisi7Uzy1I6Zjwl29GOQWQU8hxW8nMccb+vqWZSCW713y9x2Tne7eFoh7nCQCKi00VHN3ZZZTni5WFN8Rh5To2kDOLxB3HaRu6B6seGmi6aBSSbCCsKd1paIv/OJiRVsoXTi3PCt9qskm00z1lERMnWOzol28FWdXyaUpoPGCvOjL5r5MkmVpqrLHAiSwp7T/YQmpWDHK6aaXTMTM4vwWAwUlExPz8/yqN1LBCPXE+mZNMvELXxX6/SSFfJJtpdBIPBmHuv7yvjTbKl48m27UQvAMumFkd+N1qF03mzK7DIEofaBjnRNURtAnuCVKCRbIDh/Y8HPcnl8XgIhUJx5xX9fKzBZrMhyzKhkFqhNCdBNWdRyaatm+LNE/r+nso7rO9zmfZkc7vdNDY2YrfbqaqqMvzMWEK7HpFEjwf9Wjqe2lePZJ5siZ5dukhFyaa1R1EUNhzroq401zDeTQeZTBfVvnu4Ta2sfdmiSRlJFdVgtcj8+KYzuPzHb7KzqY/X8hXOqs3L+FyUMslWX19v2Aiv15tWbnu2YiKUbKDu8DUNwu2PbKa5L7q0c1megz/euYZSm597u+rZ0uTmc3/czgMfWsE5s1VJdbrposGQwq/ePMZD64/z4bV1fOr8mSNt8vg41jFIj9vPS937sVlk7jp/ZsTYV0Qq59d/5jTJlv0YTboojI2Sbbz6Tb/Hz4GGZgCWzqwx/Exubi6yLONyxa+4OFo4rBbmTSpgV1Mfh9qHKCMzi6Cenh5aWlqYOXNmhFQRn7dWdEKfxgIjJJuiKLxztIuqQmekQEO24pENJ9jX0k+ew0qew0prv4f1R7q47aF3+fMn1lLoig6mxppkc/sCHO0YZJFldOmi+nF1zfSSMMmWmi+buAmiL3xwpG0ACYWSXHvSYNVut0fdr1SVbEW5diQUjnaMQsmWZycUGkr5/CLsVpmvXTEvre/mOu3IkoSMQt+wP4pkGwyTbHYZZFkaU4I+Vdglha/Zmia6GYYoyrGhKBIev3EVvO5wsQxn+DUyS7KN5jmLqClWFy7dQz584eaNRsk2tSwPvKpSKBnJJvYh/cIe1EVQaa6dHAt4vD46BmRqSvJi+t5YkGyais1ms42Lki2VdFFxvhtrJZt2Di2dMNtItnSUbJvr1TnmjDgkWzr9qNBlY1VdCRuOdfHK/nY+dva0lI9hBJFkCwQCKZFsGiRJQlEUPB5P3JhPfOZiH5QkiZycHIaGhhgeHo5LsgUCgZj7lojU0/f3VPqpUVxnFmZINrFy6UTAjB+bBn08Ja49zHxPI2ONfI0zbV2QjpLt/jeP8T/PH0CW4JL5VXxwTS25Dgtt/V78wRAXzK0g15FaDBovXTRef0hWXTQYUjjaMUQQiSsXVafUFjOoKcrhB9ct5pOPbeP1Q51MzZdZOFFKtqeeeiry7xdffJHCwsLIz8FgkFdffZW6urqMNm4iMd4Tmsvlwu128/b+k3zj9U7cviDTy3JZNa2EYbebHH8fH770DGZW5NHV1cX5cyoYCHazv0lVY9z3gWVcNL/SVArd9oYefrO+nhybhbNmlVFb4uLbz+xj6wk1gPvhi2q57E+dP5MTXUPc9egmbF3NKEjsDKgDzD8OtvO7j62O2VVKVZqc6OfTyD6MR7poop0eI0+28UhVVBSFr/xpJ37PMEVOG+vmTzX8nMPhYM2aNWOemrRkchG7mvo40DrE2SWZCVoaGxvp7u6muLiYSZNU7wPtuHa7neHh4SiiDdTr9Xq9kZSL/35uPw+8dRyAC+dWcMc501k9rSSr1DkArX0e7n1JHee+fuU8blo5hcPtg3zo1+9yuH2QO367hUc/uiqKDBnr6qL7W/pRFIUCh0yuw5oRJRuM+LJtb+xh2Bckx27uuOJx9Omih9tUdU1Jrj1pO+12e8S3Rr/QSAZNySYDR9sHkn5ej64oJdtA5JjjDYvFgsMqIwcVet3+qA0qteiBgtM6MQb9pyoKc1Qlm9dvnD7VMaDOFbnh2zne6aIFTpW8H/QG6BhU+6HRuCEuxPTvUp/bT0uf5n2YT/vJnghBo0cikk0jc0SFgSxL1JbkcKA1xImuIeoqi2OOORZ2BNpYoG1IQfalixop2VJdQBpBT4DYbLbI/KknWSaKZEvXk61z0BshhLWq1vrvpHsNF82vVEm2fW0ZIdkCgUCUl1q63mMulytCkpkh2fRwOp0MDQ1FlJ1G0GJeq9Uaib0SKe/0/X28lGxmnvNEVMsVkYpIIJ4nY6okm35uCgaDGZ/jU1Wy7TnZxz3h+DekwAt7W3lhb3QK77xJBTz8kZWGYpp4yLSSrbFbTRV12nMymioq4vJFk7h51RTe3drJhqNdXHLWBCnZrrnmGkB9iLfddlvU32w2G3V1ddxzzz0ZbdxEYrxJtvz8fLYfa+NPuxtwB0s5e2YZP//AMgpzbOzfv5+2Ng85gUGgNLyLIfGBNXV49qsvyCd+t5Uf37SUtZPVF0JRFNoHPPz3s/tp7fewbGoxi2oKeXpXM8/tHnmZHt/SGPl3nsPKxfMr+ev2k/zwxYM09Qzz7K5mvJ5hluVYmFyaz9mzZvDsrhbqu9xc/8sNPPrRVcwLG5xC6umiIk6TbNmP0aaL6gNJvaRdO0e8AGKi0kUffOs4L+9rYakdrlg0icL8+Eq18UibXDxZ3eTY1zqYMZJNu7diYCV6cg0PDxMIBCJ/lyQJp9OJ1+vF5/Pxraf38fA79eG/wasH2nn1QDvvXVLNPTcuwZZBqfdo8Z1n9zHkC3LG1CLev2IKkiQxuzKfhz+6kht+sYF3j3fzxT/t5Ge3nBEJXMZaybbnZH+k6AGkrhaNp+ycWuJiUqGTlj4P2xp6OMtkyqh4HH266LEw4VWa50hKmolmz6mOG6onmw1QaOx24w+GUupHPYInW2hodBsEoZDCyV7Vf6emKAdZNk8WOp1OnDYLTm+AXnd0NcFBbwArIewWKeKXlS0IKdCoqM++RvKlbuI7hlDTRaW46aIqyaaQk6KSbTTPWYQkSdQU5XCwbYC2AT9WjMfpeJ5NAAfb1PesutBJoctBe4LriEeyaT+HQqGodFFQPRvtrX7qOz1cbDBvjaWSTSTZsiFdVCQ7xXSyZOmiqbRdv6gUSTY9JlrJlmq66DtHuwB1cV6aNzLmm/HqSoaL5lXwnWf28W59N31uf4zKPFUMDkarotNJi9QyFoaGhnC73TEWShqSkWyQ2NdNjHm1Kt2J7uNoCh+MdbqomKo4FmmTyZCKSCCeJ1sq6aLiPbHZbPj9/jGJHc1cl/Y+e3x+/uvxHfiDCpcuqOQLF8/hkQ31vLCnlRybhYoCBw1dbva39PO++97hkY+uZGZFvql2pFv4wKjdHYM+1h9Tx5SFk4uxpDkPm8HnL5rNB7btpLlvmIMt/VRWVmbs2KZjplBILZM+depU2tvbIz9r+eQHDx7kPe95T8YaNtEY7wmt2Q0v7WvFQYD3r5jCbz6yksIc9WXWBmCxnDeA3WblZ7ecwdVLqwmEFD79++1879n9DHoCHO8c5D0/eZu/7Whm47Fu7nv9KJ98bBvP7W5FkuD65ZO5Y9005k0qQJbgrJmlvPD5dfzf+5fybxfNBuAP7zbQ7wmwpCafD6yu5boVU/nypXN54hNrmTdJ9Y17//0b2BEu2Q2jU7Kdqubp2YxM3VO9iWcm0kU1E2aIHmQTBQMTkS666VgX//PCAawEOWd2OZNL8yZ8IbxkShGgkmyhUKwkPR1o44tRsCSSLOJEarPZUBSFn76yn4ffqUeS4PvvW8Q/vngeH1g9FZtF4qmdzXz2D9vxB7ODRH/rcAfP7mpBluC71yyMWkTPrSrg/g8tx2aReHZ3C68f7Ij8bayVbHtOqpVFy/PVdyQdQgpi3wdJkiJqtk3hoMUMxOPoPaWOdaiL/7J8Z9JAWSSd0yEO8xxWbBaZYCjEia7Eldz0yGR1UU8gyLr/fY11//sankBq71t+fj5Om4xL8tGrqzA66A1gIYTdKkeNidkADzLrfEtY51uCJ6soNih02VVPtkAsyaYoCh0DXmQUcsJqVLNKttE8Zz20lNGWAbUfajGzCHG81ffNQ2GSbXZVfqT9Zki2eKotcfEjSRJ1Zbk4pAAt/cP4Q7H9LplxdToQSbaxOL4eZtNF9WTnWKSLGinZwDgtT/+78UqxSzdddP3hTgDOnhlNNmVCyVZbmsvsyjyCIYXXD7WndQwRYqoopKfYslgspiqEJpp3tO+bUbI5HA5T74ueVBYzPpKtBzKVLpqMVBHbOZ7IBMmWipJNJJH02QCJ4PV6U7o/ZpRsWt9582AbR9sHKM938P33LWZOVT7/fe0itv3nxay/+wL+etdZ/O1TZzG9LJeTvcNc94sN7G3ui3tcEekWPtDHhdsberjqp2/T0q9aa6ybkznSywiVBU6W1qpKuad3NCb5dGpIOWo6fvw4ZWWpmSefijAziGUCwWCQfo+fbzx3jGBIYW65k+9cPT9qtz4eySbLMlaLzL03LuXDa+uQJHhhXxuPbKjnkfXHaR/wMqsij+9cs5Ablk9mTmU+ly6o5PnPreNHNyzh61fO5/nPrePQdy/nsdvXMDlcveqzF87ksxfOwmaR+OCaqfz0piXkOUfSl8rzVW+4FbXF9HsC3Prgpkiq6WklW/YgEAiwadMmDh48OKrjHDlyhPXr19PT0zPqharD4YjZYQN1ctAbcxpBlGyPR7poMKRw95O7CYYUrpxfxuKawihlzkRhRnkeJbl2Bn0hTvYOR6VwpgNFURKSbKInl7jYkGQrL+xp5aU9LUgS/O91i7l51VSmleXyvWsXcf+ty7FbZJ7f08qnHtuGLzDx7/gj75wA4ENn1rGgujDm72tnlPHBNWql7D9vHfGjGmsl247GXiyEIn5sqZItid6HZbVqKth2YUMkGaLmmfC7qSgKgx4frWGlT3l+csNcMShNhziUJCmcMpqaL1sopNATVo2VuEZPso0G+fn5OK0WnFKA3sHoCqODngBWKYTdIp9OFU0BRTmaki02XbR/OIAvGMJKiFy7JW6K5VhDK37Q0j+iXtTPb+JCTP/OH9ZItsp88vPzsVgslJQYp80kU7LByDiuKSYLnDZqC60oChzqjCUKxkvJNhHpovpNOj3JlqzwQToEoZGSTTy2iFMpXVRRFN4+opJseqV0Jkg2gAvnqQvt1w5knmRLhUwSn6GWImqGZDOaz7VNZ7Mkmxn1ZDwlW7LvQeaUbPEIPaMsifFEKjFAJgofGKWfJ7unra2tbNiwISWPe7OebIfbBtjR2ItMiB/dsISSXGPCcEqJiz9/ci1nTC2ib9jPXY9tY8CT/B3JRLrom4c6eP+vNtI+4KU0z8lNK6dQUzL2/s4XzlMLcaw/0kH7QPz3MVWYjjY3bdrE888/H/W7Rx99lGnTplFRUcGdd94ZVQHlVEe8AaCpqYn169fHDNKpotft461DHWyt7+Lv20/SOhSkJN/FZQur8HpGBuxgMBh5ufX57JFUO1nim+9dwFOfOpvFk4vwB0OEQgpXLanmb586i1vX1PLDG5bw4r+dw/23rmBuVUFUW8SKHZqE9wsXz2bPty7lu9cswhKeG8TBujDHxiMfXcXqaSUMeAN86Neb2FzffdqTLYugeT10dZlXrxihp6eHYDDIvn37IsFAugtVSZIiJJV+0WMmoBcDwPEI0F/Z38bxziEKnFY+fd40JEnKiiqaFlnionkVhJAixMNo7oOosDDakdSuWUwXDSHxk9ePcbBtAIcc4sfvX8oNK6ZEHfeCuZXc/6Hl2K0yL+1r47aH3qVrcOLmCbcvwFuHVXXaTaumxP3c9csnA/DyvrZIet9Ykmzt/R4Otw9ikRRqinPSIgT0XiAizggrH3c29hIKmSNjxR1xsT2HW/qxSUFcNgsFucn9OkarZJMkieJcGxKkRLL1DfvRLrU4d2JJNofDgcOhFnDo7oveFR7SKdlOwxy06qJeg8IHHYPqPFXkVDciJ4q81JRszb2euAvkRObPh9rU/j6rIg+Xy8XZZ5/N9OnTDc9llN6n/1m8D9r5FlSqbdzdElu9N9Mkm6IoEUWIWdIgE+eE+PdE+7ue7NSPp+OtZDuV0kUbut2c7B2OVOgWYeR5lw7Whcm7d452jXpjVVu/paIu0iD2E02JJvq76RGv/wGmlHCpKtn0pJ5I3ie7Tj2RlK6SLV4bzaSUjiUSEZ566Pu8/v038z2xrySrMK1B24To7+9P2kYNZpRsu0/28/xelaD+8JqpnBsulhgPJbl2fvPhldQU5XCiy83dT+5O+t6lWoFZny6q+Tr7AiEunFvBnefNoshlH5e4aEZFPpMKnYRCIR7b2JCx45qONr/5zW+ya9euyM+7d+/mYx/7GBdddBF33303Tz/9NN///vcz1rCJRrzO1NnZSSAQoLe3N+1jb2/o4ewfvMaHHtrE6wfb6RryUZLr5NZ1s7Fb5chLBtGDr15poh+0F00u5P5bV/DeJdVct6yGn9y0NKXqIH19faxfv54jR46gKAoOazTzrg8Ccx1WfvORlaydUcqQL8iHH3o3YjR9Wsk28dD6yWgDWC0o9vv9kb45GlWAtnuXKsmmKEqkj4hKn7FUsj341jEAPrCmFitqu7JByQZw6YIqlWRrHzSsYpQKxGDKTLpoSFH49foGtjUOYLPIfOa8aVy91Lji6vlzKnjwQyvItVvYcKyLq376NruaetNu62jw5qFOfIEgs4pkZlfE3x1bUF3IvEkF+IIhnt7VEuOvkelFoeZnM7cyF6fNktb7JQZY+ndiTlU+DqtMvyfA8a7YxbQRRFJK9Ao73NaHUwpQkmsnNzc30SGA0SnZtO8Uu8IVRtvNtR1Gih4UONV004kk2SRJwulS+1tff/QGXcSTzXpayZYKinLsqpItEEsqt4eLHpTnqvHPRJGXmpLtZO9w3EVWIpLtcPuIkg3MpQNBfEJJvA/av6cXq+/ntqaBGAI+0ySbqLi22WxZlS6qj6vFaw8Gg/iDIfae7KNzKGD4fTOIp2QzWninQ7J5PB7a2trSjoniFeFIRoZqKrYzphbjske/a5lSsi2rLcZulWkf8KZVaVpDIBCIrKuKiooivzMLo3RRzSst0ecTebKJm5d6GPkQp6JkA0xliWjt0LfLDMTYXEM2k2yppItq91NPICX7nrhxbbFYTJNs2j1KpG7UI9l1NfcOc/ujW/CFYFppLp+9YIap4xa57Pz0ljOwyhLP7mrhsU2JyadUlGxin9E+99bhTg60DuCyW7j3xqXkOu1RxxtLWCwWlk4pRkbhsU0n8I7SKkKD6Whzx44dXHjhhZGf//jHP7J69WoeeOABvvCFL/CTn/yEP/3pTxlpVDYg3gCg7SqkwvCL6HX7+PTvtzPoDVBTYGdGeR4r6kr40yfXUlNWBETviogvWjwlmwiLxcL08jzmVuWlnG7U29tLIBCgqamJvXv3xpA0RkGgy27l17etZMmUIoZ8QZ7Y2hzVxkQ4TbKNLcTnl27QFQqFIn1d7G+jWahqE7h+4EwW0Iu/Hw8l247GXjbX92CzSHx4bV3k3c8GJRuoaRkuu5U+b4j2gfhBnhkYqbTESVCfLnqyZ5hDHW6sNhvXnlHDrLLEaYPnzC6P+Dw093m4/pcbeDvs4TKeeGlvKxXyIOtKBmlpaUn4WU3N9uetTaNKozADbZGyYqqavjoaJRvEvhM2i8zCGvXYO02mjMYopsNtOt7eTw5+SvLGh2STJImS3DDJlsLiKuLHFk6JmEiSDSAvXyXZ9Kbbg94AltPpoilDMz/3B0N4/dFjn1ZZtMyl9tmJVrKd7BmOO7/Fi6+6h3x0hquSzkywIaAhkSdbVVUVBQUFEVJB/HxlvkpCdw4F2NcSrZ7INMkmxhLjMYeLaWtmSTbtmsW/e7w+ntvVwov723n/AxvpGfKl5HUltkdsS6aVbEeOHGH//v10d3ebao8eogo6lXTRd46om0RnGxTVMZNGaAZOm4UVYdsDbVMqHWjjr8PhiKR7pkOyaT5bWhwbT42WbL2m9YF43x+tJ5t2Hkh+ndrfNfLQ7DrXqD1GvzuV0kUzqWQTSbZkY6n291QyAxMp2byBIB97ZAsdA15K83O4bFEVSsj8eL5sajFfuWwOAN9+Zh+b6+OPLakUPhDHAe1zD4RFDe9fOYVC18gmzHiQbLIsM7Mij1KXjc5BH3/dFp2u29DQwLvvvhshvU0f1+wHe3p6oiouvPHGG1x22WWRn1euXEljY2YN4yYSRgOAoigpk2wejyfyHUVR+NITOznZO0xtqYu/3nUmVy2p5pzZFdSV5UUWLMmUbIkGitGoe8Rr7uzsZOfOnfh8PkP5uIgcu4V/D7+EL+xtZcDjz/p0UY/H809P6mVi10jrc5IkMXv27MjvR7NQ1SbwVJVsYlVLUQI/Vs9RU7FdtbiaygJnVJpLNsBps3DenPKImi3TSjZxDNGnix5uGyCIzLo5VVQX5ZgaD2dV5vO3T5/FBXMr8AVCfPfZfeNqfusPhnj1QDs5+JlRnhdDduhx9dJqrLLEzsZeDjb3Rv0tkySboii8EybZltaoqfzpBBXiO2l0X5eGU0Z3pEmyaW063jEQVrI5UibZ0iUPi3NHPNnM9plsI9kK89Vn6xnSkWweVclmO61kSwn5DiugzgFD3ujxRyPZSnISFwsYa0wOK9la+z1IsvFCN575s1b0oKYox1RGQiIl2+TJk1m2bJlhuqhVlplS7CKAzBuHOqK+l2mSLRMpl6nAaCGn/1nvyaYn2YLBIPe8sJ/jXUMEkWnsHubTf9iGKPozu6msJ0AyTbJpMUq61j36jUwNiZ5TKKSw/qjmxxZbYVP/nWR9KRQKUV9fb2jJs3aGevz1R9LfoNOOm5+fb1pdpG8fjCi8k6V8Jpt3khU/MCLZxlrJprUpEAiYmm+N+o3RuU5FJZueZEtFyWZEsplVsnm9XtP3KNF1Pb2zhf0t/ZTk2rl17TQcVkvK4/ntZ0/nonlq3H7bQ+8aFtASU+rN+FbqC/7sa+7nrcOdWGSJj541DYDKykpyc3PjVu7NJCwWCxZZ4pL5FQD874sHoyrBt7W14Xa7U0rjhRRItsrKSo4fPw6oA/m2bds488wzI38fGBj4pwoQ47HwehPEZMfYunUrW7ZsIRQK8eBbx3llfzt2q8zPb1mGyxZd/UVbsIiLP3Hg1ga8eEEZZIZkKyoqwmq10t/fz/bt2yPtSbRAOnN6KaumleANwpb6HtNBR6KfxwoDAwNs3LiRQ4cOjcv5JgqZSG8Ty1ZXVVVRV1dHSUkJBQUFSb4ZH6WlpTgcjpgCKmaVbPpdkrHoN009bp7f0wrA7etUD5xsU7IBXDK/ipCi+rJlmmQT32FRyebx+jjSPkgQmYsWVsd8PxEKnDbuvXEJeQ4rB1oHeHX/6E2MzWLz8W76hv0UOSUmFTmTyvHL8hycN0edcJ/eocrktfsgpgKMFvVdbpr7PNgtMnOrVMVKuumiiYjnJaMk2bQ2NXYN4pT8lJpMF7VarTGVzlKBLMsU5diwSDDgCdBh0tNvhGRTSfGJJtlKitUx0+f1RL2rQ75wuqjltCdbKpBlKUI+DXqMSbbinPHbCTdCWZ4Du0UmpMCgL9bzUvxZ/86PFD0wZ/qciGQzgnhP6spcBBQLrx9sN/xMpjYV9J5PY1FYQYQYG6SSLvragXY2Hu+hpW+Yl/e28Oct9QCcP3cSLruF9Ue6+J8XRgpKpRrvjpWSTV8JNVWIfVG8X4lItn0t/fS6/eQ5rCyeXBTz91Q307u7u6mvr+fo0aMxf1sbVsptPNZN0KS3qB6jJdn0acV5eer7GW/xnWze0TI7jEi6dDwMjXzHzL5n+nRR8XeJIN6TRH3lVK0uKhJm40WyAaZVU/GUbIqi8NDbKm9zx7rplBdEKzeHh4dNjSuyLPHTm5dx9swy3L4gH/7NZjbo1KR6KwBI3O/EfirLckTUcMWiSUwpUdtZUVHBypUrI4rTsYT23M6dXcrsyjy6h3z8QBjjjQrDmTqu2Q9edtll3H333bz11lt89atfxeVysW7dusjfd+3axYwZ5vJ8TwUYdTxxd8jMwOPz+fD7/fj9fo619vCDFw4A8F/vmc/CmsKY4EobrL1eb+SBigtBzS/BjJItnQWg1p7CwkKWLVuG0+lkeHiY9vb2qHYaQZIkPn/hLBRgT3Mffe7kg8NEKdk0pWAis9J/BmSSZNOIpbq6OhYvXjyqhWpeXh5nnnkmVVVVUb9PJmmPl86hT0Ho7OwcdWGS36yvJxhSOGtmKfOrw4vjLFOyAZw/twIkma4hHyc60/cpESdzIy8/kWTbd7IHtz+Iy2Fj7SxV3ez3+00HTUUuO7eeqVbv/OlrR8bU9FrES/vaAJhfmYMsSaY8LyIFEPY0EwwpKQefZqClii6rLcIqxabqpIJE479W/GB/Sz8ef/J7bqRkCwRDdPf2I6NQlu+M7Hgna5M2fqSrZLNaZGqK1Htv1peteyisZsodIUa146UDiyxx65pabl1Ti0WOXoCuWLGCFStWJDx2SUEufix4/IGo8WnAE04XzRIlW+R6li7FhsKtljZutbRhYfwXRcmQ61Tv16A3+l3USLZCR6zhfzLEe87pQJYlqsP9ts9jTIDEJdna1fFc82NLfq7U7BzE89WV5uJHZltDb9S9NJtmZhZ6km2slWzicc2QbF2DXn755nE+8vBmfvTSYR7f3MiftzZiQWHtjFIuXDCJe29cCsBv3jnBlhM9hn5UydqiVwcbkWz6ezXeJJuIRM9Jm7/WTC/BZontd6nG+dp1GxEMi2sKyXNY6Rv2s685NUWJhkwp2bR7pG04p0uyJVKyafdAkiTTHoZG6aJmr1P7u91uT+ndF+9JojZOdLpooiIUeoixVCAQYF9zP09uP8melsRxdiZJNrO+bPH62Kbj3exr6cdpk7l51ZSoZ9rV1cWmTZs4cuSIqXPk2C08eNsK1s0qY9gf5CMPv8uB1pE+r/VVsQ8kVsCOtLmlb5indqpWU3esm2aqPZmG1mZJUfjuNYsA+MO7DWw9oabH6u26zMJ0tPnd734Xi8XCueeeywMPPMADDzwQpeh46KGHuOSSS1I6eTYjGclmRrkhThJ/3HiMQEidqD+weioQO6FZrdbIIk5Tj+l3N/x+f8JBOx2fCA3iQOlyuVi2bBn5+SMBXrIF0pkzSlk8uZhgSOGNg21JzzdRnmz6tNt/VowFyTaWSCZp1xfgMDJ693g87Nmzh507d6b9fFv7PPxu4wlgRMUmpopnk5KtMMdGXYX6jr5l4p2LByNPNqPACWDrcZV0Xz2zHJdTJRxFqbgZfOzsaThtMiebmnjs7y/R09OTdtvNQFEUXtrbCijMKh0JapONkRfMraAsz07fkJcdjT1RgW6mFp5aquhZM8pM75bGQ6KgZnJxDqW5dvxBJcZ7yQhGSrYet58cyYfDKlNWlG/a91N7Z9JVsgHUlqjPzawvW0ufGqBWFjgNU7VShcNq4TvXLOQ71yyMFAUC9VldeeWVXHnllQmfW1GODbdix+MPRZFsQ94AVpSsIdki13PRReRKCt+xNfAdWwMOKQtJNod6v4b0Sraw2jHfHq0YMoN4zzldaL5sPcPGhYjiERtauugskySbWJzEzHspnq8gx0ZlYS7BkMKOht7I78U5ORPKk1Srz40WZpVsiqLw+43H+f27DRzrGibXbmHupALyHVZsElyxoIKVdSXYbDYuW1jFv12kWme8cbiLl/e14fYmXw8kU7Lp769IeGjtTIbRkmzxipwlIk5eO6DGA2tnxPqxiW2K93O8NhitsawWmdXh6qXvHE09ZVQsepCJdFEYIdkGBgaSkglG0NZ8RoSKGHOKFW9TTRdNVclmtVoTEsB6iGOYWSXbqZQu+st/HOSlfa0c7xrmlgc28drB+BkY8Ug2s3GjeI/Mpn3HU7L9Zr2qYnvfsslRVTqDwWDE3ku0p0qEzs5Ojhzcz303L+HsmWV4/CG+/MQuAkH1nhqtFc2kDsuyzP1vqPzImuklhmrY8YD43FZNK+GG8Ab71/+6B69vhHcZMyVbeXk5b731Fj09PfT09HDttddG/f2JJ57gG9/4Rkonz2YYDQDiIJgKyeYPhnhxl9qhb183LUZtIE5ompptcFD1ntHOKZZgjlddVPxcOtAPQHa7naVLl0byoUXCzQiSJPGxMCmx+Xg3tz30Lu8ej2+SOFFKtnQZ6VMNpxrJZjZdVL9LAiPPUmuvtlOTDv7fq4fwBkKsqC3mvHCZa9GbIptINoCFk1Uz4PVH0k+9TJQuqqUASJJEMKRwoEl9p8+dUxUxsNYfIxnK8hzcsqqWfNnLpmOd9PX1pd12M9jb3E9zn4c8m8SUYjWoFVMx4sFulfn3y+ZikUJsPNZNnyeY0RSqYEhhQ9jfYu3MsrgLbrNIlEItSdJIyqiwkI4HIyVb95CPXMlHaa4jMleZwWiUbNqcNjVFkq2xR11MTSl2GapIxhuFOTbcig1vIBhFsg16A1hOp4umhTyner/iebLlhUm2ibyvWoXRnmF1vDCtZGvTlGzm3zOjuTEe9JVGV4TJiy0nug0/kwnFcTwl21ini4qp9BrERdXze1r53QZVvb6guoiXv3Au9960jI+tm87/XreQj6+rRZKkyP347IUz+eZV85EkiX0t/dz56Ga6kqSxi+lRepLNqDr4RJBs8TZ54hEn7f0e3g0boV+yoBIjpBrna22P5wd2pubLlkbxA22+t1qtUUULUold9Osvl8uF1WolFAoZEhZmlWxG6aKiHxskJjs1JPJkS9YvRBI8UeVbPYxItlPVk23YF+S53S1sbeilqcfNI+uPc/8bhwEozHUy7A9yxyNbeGJLo2H/NCLZZFkedyVbY7c7kr3xkbV1wEj/6e/vp7e3N+Z8idDU1ERnZyfugT7uvXEJBU4ru0/28cBbIzZiYFzoKlG66IA3yGObVFHDZy6YZaotYwH9+vOrV8yjyGXjQOsAj6w/FvncmJFsGgoLCw0D5ZKSkqxbfI4GZpRsyXb2tM/vb+nH7/NSW+rivNkVkb8bBVciyeb1elEUJcpcM5mSTRxYUx3EjMg7i8XCokWLOOussygpKUl6jJXTSlk2tRiLrPDGoQ5uvH8DH/7Nu/S5YycxfRWj0yRbZnGqkmzJ0kW1ycqor4vPVEtzTgVHOwb505YmAO6+fG7kHNq7bLPZJmyRHg+LwyTbodb+iA9VqtCTbGIKjEawWSwWGnvcBPw+XDYLy+rUnetEvjKJcOc503HKCid7h9nTGJ+MzwQ0ZeI504uxCiktYhBTX1/Phg0bYtLIr18+mUVVufiDIf6w5WRGSbZ9zSN+NksmF8ZVEphFMmWIVvxgZ1Nv0mMZKdm6h3xYCFFi0o9NQ7yKwmagnX9KkUaymdt5bexWn+OUksyQbIqi0DXopWvQGzX3K4rC0NAQQ0NDCWOCIpc9TLKF6BVSiwa9QaxZlC4auR63m5ACXYqVLsXKBFjoJEV+OF3UrUsXbQ+TbOFM4ZTua7znnC5qilQ/mc4htY1mlGxdg166hsxXFtWQCskmns9ms0UqN249MaIqFj2WMjHexfNkG03VyUQwk/Xh8Qf4zjP7kCWFFbUl3HXBLKqLcqLGUn3BBkmS+PBZ07hpVS1Om4U9Tb184U87E15DPK8s7Tzi/CmSbhrBkixeFX1Cxytd9Pk9rSgKnDG1iMnFsb5JRh7SZtVURsQjqFXVQd3I9wVSi+H12QhGc3kwGOTo0aNJ0z9F1WiilNFUlGz6/qMn2cbSk01vXJ+Oki2ZJ9tEp4smexb7mvu56mdvc9dj2/jJP47y561NvLyvFQsK584u5zMXzuXaM2oIhBS+/OddnP2D1/jPv+2Jqrg52uqi4n0xS7IZEauPvFOPosC6WWURNbTWhs7OERWo2ecgrpsrCpz811ULAPi/Vw5xpH0woZLNaHzXzvv6oU78QYV1s8oi7/ZEQN9vS3LtfO3yeQD84rVDDHjSy4DLrtViFiEZyRZvAhDh8/lQFIWdjb3YCfKhM+uQBY+PZCSbtrPhdDqjqvsZKeA0JKswlwiJjms2SLVYLJwzu5yPr5vOLaunYrfIvH6wg2vvW099Z/Ti6DTJNrY41Ui2dNJF9YU+xGfa1dWVcrB570uHCIYULppXwYq6EVJZH+xkE0rznZTnOZBReOtwR/IvGEAfSOl34UC974fbBpBQmFmZh9Oh9gmtb6RKslUVOlk+RZ38/7GvOa12m8Hupj4e36IqiW9aEe0DKAYxra2teL1eTp6MLt0tSRIfWjMFiyyxrWmAfa3qOJYJ9YVWlW3N9BKsFnnUSrZknpypVBg1VrJpPmepkWxTpkxh+vTpVFdXm/6OBu38k4s1T7bkSrZgSOGkpmQryTFUkaSKYX+Q5d99heXffYVhwdPO7/fzox/9iB/96EcJ34ECpxW3os6jvf2DkbFp0KMSl9lCskWu57776EdmufcMlnvPYDgLw0WNZBvyjdx3fzAU2WwI1z1I6b7Ge87pQksX7RhS22hGyXYorGKbUpKDy26emDbagEr2WVDvz/Jadb7b3tAbZSqfyU2FeEo2GJt4LF4alfi7f+xvo6XPQ2WenTXTSyLPQYxL41UWnFGRz/XLJ+O0SrxxqINHN5xI2hb9At9ok0q812aVbOLfM50uGo84eXZXCwBXLppkeDxxDWLWW06cV43G0zmV+ZTk2hn2B00X8dGgj2e15ykSlB0dHTQ2NhoWXhDbL8syxzoGufPRLXzl74fZ39KfFsnmcDiQJCnKkkRDPFJ6LDzZxPs+GiWb2YqS2VL4IBhSaOx28+Bbx7jmvvUcaR+kLM/BrMp8il12qgrsfO2yWZwxtRinw8Y9Nyzh0+fPVO1Oeof57cYT3PDLDbwQLpQmHlt8n9JRsplNF9Vf14DHz+Ob1Zj3o2ePeJwZbXKajWP1GS7XLavhvDnl+AIhvvLnnQyHY2lxjSSOI0abSx0DXrY3qe/MVy6da6odYwUjIvr65ZNZUVuMz+/njYMdMX83g+yLmrIERgOAvsMne1l8Ph+NPcN0DfnIsyncsGJy1N8TkWxutzuiqMjJyYnaVTCrZEuXZBuNUifiU+C08N/XLuLvnz6L6kInxzqHuOa+9VGMv57UO02yZRb63bl0kM3pohC/Qpj2O3HHJhm21Hfz7O4WJAm+dOmcqL+N531IFRaLhdrSXGRCkYkgVeiDWaMCK0EkjoQJjlkVI34mWjBmthKSiDNq1B3gPY3dtA+Y27VLBYqi8M2n96IocM3SamaVRRv1ayRbMBiM/Lu9vT1mbCjPtbKitoSAIvPXHS34g6GMLDrXa35s4R28sfRkA1gS9rs40eWmJ4nqMZ6SDVIn2RwOB1OnTk2LRNLOX1OoBm/NfcNJCze09XvwBUNYZYlJhTkZmdtGC6tFxuV04FOsUb5sw94AEsrpdNE0kBdRso30h67BsAGzLGEL+8hN5H3VCh+0DxpXJzOa1w63hyuLVpjzY9MwGiXbnKp88h1WBr2BKEPrTJJsekVY1GJ3DFJGE5FssizTPeTjnSPqnPmhNVOxWuSYexgKhWK85MRjlOU5uOtc1Sblv5/bH6kKq0e8MSgRyZaMtBAh3r/xSBdt7fOwOZxafOViY5JN/LxIaCWC2HYjkk2WpUjK6BuHUstWiEeyiefV1nmaZY8ewWAQbyDI7zY1csn/vclL+9o46YYX97by6Bv7GdKpapPNPZIkxfVl078vZhVp2nE1mPmedi7N+y0VJZu4losXg+gLhEy0kq1jwMu1961n3n++wLr/fY3vPrsfXyDEhXMreOnfzuG71y7mtrV1fO+ahZw9Q92AUDNZJL506Ry2/+clPPThFVw8X02TvvvJXbT2eaKes3bvzJJsevFOukq2xzY1MOANMKM8l3NnlUc+J475qVZ21pNskiTx39cuIs9hZVtDL+sPqSSjuEZKlFkXCoXYcLSTkCJx5eJJLJpcaKodYwWjfivLEt+9diEOWeFIxyDHOgZPk2yZQjIlGyQffHw+HzvDOy0rp+RR4IxeYBilZzocDqxWq5qyEPaUysnJidpVGM900VShN5OdN6mAv336LJZMKaLX7ecTv92K2zciB4eRiW68djb+VUi2U1XJZjZdFGKVO/pn2taWvBhAfecQX3piJ+//1UYArj2jhrlVBVGfyWYlm0qyuZBRePNwB6E0StvrxzIjxeyWE714AyGKXXZqinNiSLZUlWzBYJDSXCuTCp3ISpAnwmm6mcTfdzSz9UQPLruFuy+fF0MEakGMmCLq9/vp7o5OXw0EAqysK6a80EXPcJBdTb2jXnR6A8HIpoOeZBsLTzaAQpeN6WUqObYjScqofp5RJJmecNp/eaFr3N4F7R3Pc1gozLGhKFDflThlVEsVrSnOwSJLY0qy2e12vvGNb/CNb3wj6ThZ5LIxjA2PPxjpcx6v2ieddlvazz2TiFzPl75E9m0pRCM/J0yy+UbeRc2PrSzXRjAYvUidCEwOp4u2DvgNMyCMlWypFT3QkC7JZrfbscgSS6cWAdEpo5ks9KJX5ohm7mMRjyWLlV8/2I4SUrhwbgVLJqtzvv4eBoPBGLJDg/aZa5ZO4tzZ5XgDIT73xx14A7HxVjzCz2j+FEk9s/cnkySbGSXbc7tbUBRYUVvMpELjKtN6dZT+d0ZIRrIBXBImNp7d1ZLSukEfz4o+e3qSLRgMGiqJfP4gT+1o5pndrQRCCufPKeeD6+YiSbC/qZNrfvoG+4XCQmbmHo1k0/uy6RWUZvpCup5sYh/Xqpkm+44GM4UP9MeZaJLtgbeOsb2hF19QVZHPrszj21cv4MHbVlCSa49aWxiR7Dl2CxfMreTntyxjUU0hvW4/X3xiR5StghHJJqom47VPg2YZlQj6ok4ef5Bfv636pH3i3BlR2XNi+ydNUolxs2tDo3VzdVEOd50/A4BntjcSCIViSLZ4ZN6uxh6OdQ6BJPHFi2ebasNYIl4751YVcN0Z6r16/WAHHl9qY+tpki0OjFh4bcA1a/R9uLWXY52q8mNpdV7My2I0oUmSFFGzaRX3nE5n1K5CMjIs3UVvonRRszBKV63Id/L4nWuoLXXRNeSL+CPpzzdWvhx6iIPFREiWxwtmSDa3282uXbviGs+fKko27Tlqn9FUNj09PQkVVk/tbObCe9/gz1ubCIYULphbwX9cOT/mc9muZKsuysFllegc9JmqHClCUZTIWKEFFnolm8cf5PVDKiG0oq4YWQhO0x1vtM8vqinCKgX5/aaGqDSl0WLIG+D7z+8H4FPnz6Sq0BlDlmokm96wuLW1NaatVovMB86cRhCJLfU9DLrNSfnjYduJXjz+EOX5DmaFfZfG2pMNiCyktaqm8aBfHBzrdBNSFBxWmUmlhaMqspMKxDllWpggPJ7El60hTLJNLVEJjmxQsgEU5djxKRa8AVU56Q0EI0SQy5l9Y0u2oyBHvWfDgnqkY1B9pyvyRwiRiVSyVRU6kSTwBhXcvmDMYjNRuuisFPzYxGOkWvhAG8NXhFNGt9T3xHwukySbeO6xJNkSKdnePtpNQ7cbmwW+cdWCmOcgKsgSKdm08/zw+sUUu2zsa+nn1gffjfFHTaZkE++vSK6kQ7Klu6maSrros7vDqaJxVGzi5zOtyLtwXiUOq0x9l5u9zebjHaM4Tt+/xXhxcDDWmuBPm09wsncYp83KIx9dxW8+sop/v2IBN6+dRZ7DSltXL9f8fD2PbToR420bD5rndjwlm9ZGM+qjdD3ZIlVdQ/DX7U24/UrU7xPByJMtWVXZiSTZ3P4Qv9/UAMDPbjmD/d++jJf+7Vw+dGZd5L6J73a8dHFQi2P9+Kal5NgsrD/Sxa/XH4/xWRT7PyQXEog/J7v/+qrFf97aRMeAl+pCJ1cvrYn6rEjW1tTURL5vhsiLJ2T4yNppVBY4GHR72N3UF7NGMuoPiqLw8NtqOvbqGWVML09tnhsLJBpnb1xWTYHTRr/Hz7O7Tsb8PeFxM9K6f0Lob7SYpqmRYIkWld5AkL9vPYGiwPxJBRS7bDG7IvFILe34WsdPRckGIxNIqulbmViIxFPSOW0WPnX+TAB+9eYxhn0jJeHF6x+PgVcctP7VSbb29na6u7tjSAXtO9r3sqHwgVEAqB8Ytf/n5uZGzGjjFUDodfv4xt/3EAypppt/+9RZPPThlZTkxl5rtivZLLLEvEnquPHGodRSRsX7rV2f+OxlWebxzY30eoMUOG3MrSrAYrFE3vV0Pdm08Wl2ZR55NomTve6U0z8S4XcbT9DWrxac+VjYl0J7jlrf0H7WSLaioiJA9fMTx0/t2q5YPJmyghyG/UFe2JPaZKtHJFV0RmkUuQlj58kGcNE8VQWgmlYnN+rW3rH1x9SF97Sy3JRSRUcL8R3XVHjHOpMo2cJ+bJoZd9aQbC4bPix4/CE8Hg9D4aIHALnO7Btbsh1adoBb8GRr71ff6QrXyMJ0Ip+73SpTme8kiEy/xx938SluNmoph7NTVLJpihgz85Q+XRTUDRSIVrKZVSCZgV7JBmNbYTQeyeYPhvh/rx4BYFVdMVNLXTGb12aUbCJxVFHg5OcfWEa+w8q79d1c/fO3o1JHU1GypUOy6e1B0omlzaaLNvcOs/VED5IEV8TxYxM/n8wQX4QZJVuew8r5c9Qics+EfeHMQJvTxfcjnpINYkm2329qYP2RDtVS5LK5nDt7JBVv8bRJ3LJ6KmdNzcEbCPH1v+7hs3/cgT98XDNKtmQkm5l3JV1PtpPdg7xxsIMfvnyEf3t8J9945gD+4AjBHAopHO80Lu5jRsmWTSTbC3vaGPQGmF2Zx5WLJmGRjdPJte/Ee/81zCjP47+uUjfnf/jiQQbC9gUiySaqupKRbBaLJXKuZL5sUSm4Ctz/pkpe3XHOdOzW6D5XVFREeXk5s2bNilrTJRt7E1WFzbFb+PxFs7FKQd493o1Pib6XRuT6Pw60c6i1D6tF4j1LpyQ893hBn4UnwiopnDtHfddf29/KkXZjSwDD42auif9c0N9osSqNmUXlfa8doXdwGJfdwnlzK6OOoSHegkoj2TTolWxmjDSNzpcMmUwXhdiX8dozaphSkkPnoI/HNp2I/F2c0MebZPtnThk1Q7Jp12806GsBiSzLaS/6U0GyYD5Ruqi+8IEsy1RUqEFYW1ubYWBwz0uH6HH7mVOZz28+vDJiCm+EbFeyAcyvCpNsKfqyGZVtF4P0EBL3v3GUkCKxvK4YiywZqiBSJfUj57XIzJ9UgJUQj21sSOkY8RAMKfwuXBb8rvNm4LRZotpYWKj6P2gVvTSSrby8nPz8fBRFiSJntfcjx+ng+hW1ALy0pzlScSgdaEUP1goVlcbakw3gvDnlOG0yTT3DCVUA4rukKApvHlaVjDPK8yaOZCsPk2xJlGyN46hkCwQCPPHEEzzxxBNJd50Lc2z4FAsefzBMsgWwEsJmkbHbJ77oAQjX89RTjF67NLYocIWVbL6ROUNLFy0PlxbNhmISU0pyCCoSfW5/UiVb56CPHrcfSUqtsihAbW0tS5YsobKyMuln9emiAEumFCFLcLJ3mJY+lajOlJJNnFPEZzKWnrzx3vvHNp6gvsuNy25hVV1RpH1ie0TSM5mSTTvP2hllPHnXWqaWuGjsHuaqn73Nx3+7hT9tbqQ7rLBMxZMtXSWb0c9mkCxdVFO9PBdWsa2sK6GywBn3eEYkWybSRQHes0Ql957d3Wx6s1xfXRQSk2yiwv2dI51846k9yCicOb2M1dOjKyEWFhbislu5c001X79iHlZZ4umdzTwfvleZSBdNpfCBWSXbsC/ID188wEce2sD2xh7cAZAlONI5zCv72vD7/fS5/XzgwU2c/6PX+cTvttKvi3vMKBb148dEFT4IhhT+ukMttHXHuulxFflmPBlF3LRyCmfPLMMfVNgQ3pDUv09mLXFkWY5LvOoh3sfn9rTS2D1MSa6dm1ZONbymBQsWMGnSpJT8MBORbADXnVFNucvKsD/IY+9GFzHT971gSOF/XziIhRBLpxRTXhBblXgikEjsEwgEmFGex4zyPFAUvvP0ftPHPU2yJYARyeZwOJLmqh9qG+D+1w8hoXDenArKikcWdCLMkmyikk0k2eIRH+mSbJlIFxU9NvQvrs0i86nzVDXb/W8ew+uP3eExm6ueLkKhUNIB458FZki2yMBn8HeRWBqP1LBMFj6wWCxUVFQgyzIDAwMxVZ/2nOzjsTAJ862rF2C1JB4Ks13JBjCnQiUgtjb0xARBiSCqC8RnoN3TLSd6aO7zkJ/jYMEkVQFmRLKlq2QDWFhTiJUQ/zjYHiFIRoM3DrXT2D1MYY6N9y4ZkczrlWxaAKX5Y+Xm5lJVpVYg1dSd4phhtVo5b14VJS47Hp+f36yvT6t9/R4/u5rUFO2zDEi2sfJkA3DZrZEdeK0ilhHEBdL+lgEaez1YZYm6cVayieq8aWXq3KjZMMSDli46pSQn8l0YG5ItFAqxb98+9u3bl3Q+KXJpJFsIr9fLgCegVha1ZEdlURCu59Ahsn121JRsHr+YLhqugJsTvbCZSMypyieERMegN6mSTauYOL0slxx7auOAxWKhuLg47XTRPIeVeeExXksZzRTJJloSJJrDMwkjwqHP7efHrx4mhMSa6aXYZCkqHcoo5dZoQzhe22dV5vO3T53FmuklePwhXtzbxlf+sotbf72JXrcvrpJty7EOXj/YTiikRCln0iXZ0nleydJFtfNolQuvWpK4WrRIGqSTLpooprhgbgU5NguN3cORuTQZEqWL+v2qZ6JRuujTO5v58G824w8qLKkpYGVdccw90mKKwcEBbl83jXtuXALAy3tbOdkznPCdjCfcSEfJlihdVN8nXt7XxkX3vsHPXzuKEgoxuSiHT54/iz/eeSaSZOFg2wDP7Wzi2vvWs+GY6hH+4t423vvTt9lzso8Bj5/WPg+DwyNWStmuZDvYOkD7oI/KAkdMOqWIVJRsoN7vz100C1D9bsUNWO1YZoUEFovF9Dpeu48K8Ms3jgHwkbV1SecOcRxORV1q9NlQMMDaGaUoSPz0jeNc/4t3eGzTCfrc/pj+8NTOkxxsG6DALrGitjhr4p5EpKP2Xp47pxyHRV1jmT5uZpr3zwmxM4mL7ERVV/zBEF/58y4IBplelsv8mmJcLpWpNUuyuVyuqFQsUTqa7emikJgsed+yydQU5dAx4OWlveoCL5n5bWNjI2+//XaMb5hYEdAsRmu+2dHRwf79+8cktSGT0BssJ1OyGd2H8VZviQO+UXuMAsB4hQ9kWcZut0d29JuaRkz1QyGFbzy1l5AC711SzZrppQnbJQZe2axkK8qxMr08l2BIYf1h81VVjUg2bZxRFIUX96mKrisWV0fIyEyQbOLnS3LtrKkrRFHgf54/kNJxjPDoBpVAvWH55EiwIT5Hp9MZCWKGhoYi40hubi4VFRVIksTg4CBDQ0NR7bRardhtNlZPL8WCwgNvHaPXnXpV1U3HugmGFKaV5VJTNEIEjXajw+yC7PKFqgrg+T3xU23Ed+nFva0EkaktzcVmkSdMyRbxZEuWLjoGSjaLLHHdsslct2yyYXqJGRTl2PFhwesP4vP5GPB4sUqq8XK2BJsirChcJ3dyndyJheyzVigMK9l8/hCBoPqMNSVbcY76rFO9r5l4znrMn1RIEJnOAS+BQCCKBNdnEGwJF0NZWVeSkXPHg1G6KKhG9jCSMpopkk1vrK5hvNNFf/qPw/S6/cyoyGNhtboBLm6kJPK1M0OygTqf/eGONTz96bP5/EWzqC11Mejx886RrpjjWq1WjnYM8tBbR/jwbzZzyY/f5JW9qkrar0imLAAgMyRbMiUbwNb6Lg63D5Jjs3D10sQkW6rpovrYL1FM4bJbuWCemq2g+cMla4t2T+Ip2fRrpuHhYR544zCf+cN2fMEQly+s4vrlNVFrlkh7XC4sFgvBYJChoSGuXlrDdcsmAwov7GlhyBu/f8cTbmRKySaSO4qi0Njt5vZHNnPHo1s42TtMTVEOX7l4Jtctn8ySqaWsmlbCZy6aA8DGox0c6xyiutDJj9+/lJqiHOq73Lznp2+z6Jsvseb7r/LFP+1gf0t/1pNswWCIbSd6UJD48NppMemUIsT3LpEnm4iVdSWsnlZCICQZFo9JNpaK8V+qSrb9LQMcaB0g32HlQ2fWJfyOvl2jVbL5fD5mVuSxcHIJsiSx5UQPX//rHlZ+7xV+t6mRI+2D7Grs4cltTfzoxUMAXDqvHKfNkjVxTyIeQnteBU4bF8wpj/luIpwm2RJAvNFaRxeVbEYTwD0vHWJHYy9FDonz51bgcDhiTLY1xEvPlOWRRYz2oo02XTQUCrF7927q6+vjXqtRLn86SDQR2K1ypBrJHzY1sL+lP2oCNlJg9Pb2EgqFYtVIe/awadOmlIi20ZJsDQ0NtLW1xfX5yhYkm+D0v0+mZBsPiBOYUXtSKXyg/V4z9+zo6IikBv74lUORipNfu2Je0naJgVc2k2zBYJDzZqtBZyq+bNr1GSnZWvo8NPf5cNktXLxwJKAWJ0ZxvEnlfdIHtB8/uxaLLPHs7hZe2Ze8Kmw8nOgailz/B9fUxpxPq5ylja1aFWe73Y7NZsNms0W82Xp6emIWh1arldmVedQUOhjwBLjv9aMpt1HzY1s7Y4TgNarElirMkmwXzKvAZpE42jEU5RskQk+y+bEwu7qEwsLCcX0PxHdcI9l63X56hozJTY8/SHuYaJmSQU82h9XCPTcu4Z4bl+CwpkeCFubYCCLjCarjVd+AGwsKdoucFYorPeySwj3249xjP45Dyj6STVOySSj0e9T3VCPZCp3pkWyZeM56zK8uUJVsA94o1RTEzmtbwouz5WGya6wgxl2iQnt5mNzTKh9nqrqokR+bePzxSBdtH/BENmDuvmIBzrAPYldXV0zsoCdSrFZrjAot0XgrSRKLJhfy+Ytmc/+ty5ElONQ+QEN3dEpgSJJ581AHFkJqml77IA+9dZRfv32cO367jQvvfYtfvnGUe148wFU/fZsPPLiRT/5uK3f/ZRc/efUwT25rYm9zX0ZJNv1YJEkjZN/j76qWDlctmRR5/+JBJA3MkKnxSKZ4eE/YD85MlVFx/hevTyQ+RDGF3W5nb3Mf//f8HgA+vLaOn92yDBnjdZIkSZECBtq5vnX1AsrzbAx4A/z4H0fitk2vpoNYBT2YI0WM1nHiO/bL149w0b1v8Mr+dmwWiU+eN4OXv3AOSycXRFUVveXMacybVICFEEtqCvjbp87imjNqeOYzZ3Ph3IrIsWUJQqEgL+5t5dndrXGf80RXF1UUhWd3naRzyIvTZuGW1bHplCLEuMNMuqiGz1wwCwWJPSf7GPJGCwPMpoumqmTzBUK8eUSNYz9z4UwKXebmPLMbHGZINkmSeN/KOjZ89UK+dsVc5lbl4wuG2Hmyn2d2NfPFx7fzhT/t5GTvMJUFDtZOLwKyQ2muwUzfXVVXlFJBotMkWwIYKdmcTmdcku21g+388g11wfXli2aQ77Rht9sjizmznmwwkjKqDdpG50xGsomL2IGBAbq6uqIUPfGudbT+W8kmgptWTuWapdWElBAv7m3l+T2tCYOVeL5hQ0OqCafexyARRusLoH2/t7c3pe+NN8z6c+jTLEWMN8mWKNVY/F2iymR6JVBeXh7FxepipaGxkf/42x5+Eg527r58LlWF8f1ENIx32myqEN83zZzzlf3tEWVHMoiLH3HHMxgMsq+5HwW4ctEkcp2xu7+g3hftOaRCeOtJtilFdu5YNx2A//z7Hga96S3qfrdRLThz7uxy6spGFFeiH4skSZFxubtbXUyK6iyNZOvt7Y0JsLTF1sVzVYLs4XfqOdlrfgwCeCfsx2aUKirLctr9zKzqocBp4+zwuZ+PkzKqHaO138uB1gFkWeaGy89j6dKlabUtXYjveI7dQnX4nY2XMtrUo6rY8h1WisLB5limi6YCNfiVGAqq7egfGlY92axS1uzonkqwWi04rDKgRBSlGsFaYI9V3U4U5lTmgyTh9oeiKozq0xQ9/iC7w6lvK8ZYySZJEnPnzmX27NlRc/yaaSVIEuxt7qex253xdFGxnzf3DtPjHqn2nmnoVT2PvFOPLxhi2dQizp9byaRJKknT0tKScBNP327935O1fW5VAZeEVVfP7I4mhB7f2kLfsJ9ip8yGr17I16+Yx6R8G7IkEVBkAoq6cdA75GX3yT7WH+ni+T2t/HFzI/e+fIgv/GknV/7kbZ7aHh3bZ1LJpl2rxx/kpX3qfHHzqsQkBUSPu2bI1HhpWvFw/twKXHYLJ3uH2dbQm/Cz8eI4UUUmfsbuyOGdI13kSH4+df4MvnHVfCyylFBtrl/75DmsvH/5ZGRJ4h8HO3ntgPHmvNi3tOcmPj99uqgoitAjkSfbzsZe7nlxP95AiDOnl/L859bx75fNxWW3xqi17HY7l8yv5P0rJvOHO1dTEfbeK8618+sPr2TXNy/hwHcu48j3ruDcmWos9Ms3j/PE1pMxGwniPdEwniSboij859/3sPVEN5IEX7l8HoU5iefbVNNFNZw1s5SaEheBkMK2cFphOiRbKkq2LfXdDHqD1Ja6uG1tXdI2ajCrZEuWLiq+N5UFTu48ZwYvfP4cnv/cOi6YV0WB00Zlvp21M0q5edUU7r91BYTUc2ZT3BNvjIoah5QQ37t2oeljnibZEiBeuqiRtLelb5gv/mknAB86s5aVtWp+vkiy6V+WRIN1RUUFdrud8nJ10WwUKCZLFxVJPe3cycgWMC53ngqSvbgWWeLeG5dy+QI1le/37zbybtj/w+gF1o6jrwo6UvXG/GA92t0UrS09PT1ZXZnULMmWTUo2SDwJJUoXNSp8oGHy5MkEgiHuf34bf9hUjyTBd65eYFpSnc1+bBD9vq2dUUpprp3OQa9pNVs8T7Zhn59D7QOEkLh++WTD3V+I3sFNhWTTk1d+v5/PXTiLqSUuWvo8/OjFg6aPpWHYF+RPW9TFxofOrI36m74/a+Oy5sempfXDCMnW19cXszjU2ltb7GTN9BJ8gRD/9/Ih021s7/dwqG0QSYIzhVTleH44qcCMJ5uGkZTRxCTbhmMqCblmegklec5xJ5r1xOG0JMUPRvzYXDHfHQ3JpigKbl8Aty+Q9thfFA7sB/1quwaG3FikEHZL9qRNiFAUcCsybkUmG6c7WZZx2ixIEvQOqyoQTcmWb1fvcar3NRPPWY8cu4VpZXkEkWgf8BrOuxaLhT0n+/AFQ5Tm2qkrHXtD6IqKCqqro1P+KgqcEQL+L9uaMlZdVD/ev36wnfN+9Drff+EAvW7fmKeLDnkD/DasYrvzHDWbQvPf7OnpiaoEqEH8d6IY3Ewc+cE1U7DKEkc6hnh1v0q2NPW4eXC92qYLZpdSke/gjnOm8x9XzOEzF8zkL3et4+nPrOPWNbV8eO1UfvPhlfy/m5bynasX8G8Xzeb9K6awMlwR9vF3T0T6PmTWk0271n0t/QQCQeZNKkhYKEpDqumi+jYnI9mcNguXLlCf4eObExdNMqosCvGVbG+fGGTIF2BynsxnL5xlai4x2iSeVOjgjKlFKMB3nt2H32DzUyQh9SSbWMldLMYRb2wy8mSTJIm2AR9vHlbT/r986Rx+f8dqZlaMVC828n+TZZnqohxkJbbNBU4bTpsFWZa4anEVa6aXEkLi9+828sKeVoZ90c9uokg2RVHtYX63sQEZhYvnVXHl4vhebBq0ZymqC81s2EiSxMXz1T65s7GXph53TDGVTJJszb1utjX0oABfvXxeSurreKSSvm+ZUbJB7Fpx3qQCrl8xlY+ePY37P3gGv79jDd9/32KWTilKibgcLyRLF9X+Nj9sM2DqmJlp2j8nkpFs4gTwlT/vonvIx4LqAr52xbyoTie+LEZeHEYTWklJCWvXrqWsrCzyGXFQN/IE0CAq2bTzaWovox0G8VpHo6LQYEaCKssS7185hTPDA/PbR7oIhozbZkSyiTs5qQRnoyXZtM/7fL6UFHTjjVNRyQbxCVrRY85s4QMNrvxC/r6ni6PtfVRZh/n5Lcu41STBBtldWRSiJ26bReaaM9QA4s9bjVWresQj2bYc78IXCFGen8OqaSUJFxwayZbKO6HdV01B5vP5yLFb+O9rFwHwyIZ69rfEr35phF+9eYy+YT+Ti3M4b05F1N/0ZKk+2BaVbPn5+ciyrFbWCntBiko2UO/Rv182F1AXowdazbX1naOqrH9BdQHFubFl1DNBspkZ1y6eX4lFltjf0k+9gceZdoy3w2kI2mJmvKG/pumR4gfGJFtjOB1LK3ogfnc0JNuwP8j8/3qR+f/1IsP+9AiBorCHWH+YZBtyq0o2u1XKCsWVHsPIzPcuZ753OcNZGC5KkoTDKiOh0Of2M+QLRp6Ny6be41TvayaesxHmVxcSVCQ6B41JNlmWo1JFJ1I1/b5l6hzy5LaTY5Iu+vrBdu787VZ8gRDeALx9uHPM00X/uLmRfk+AaWW5XDxf3eDNycmJKN21eDKekm20JFuJy87SqcUoSNz95C4+9vBm7nh0K0MBmFycw6yK3KhYV5IkcnPsVBbmUJrnoLrQyflzK7h6aQ23nlnH5y6axQ+uX8yfPn4mF82riKTsBeJkfphBourWsiyzp6kPCYVbVk811T9FdXYq6aIiwZEMHwin/f19R3NcCwEwriwKxiSbH5k/71I3Ka9aUBJFXMSz+QFj0iIUCrFqWgmFOQ6OdQxF0pX10Ht9G/mAmakIaaRk6xz08tcdrYQUhUvmlXPXeTNinp+eBBdTR5P1pVAoxJrppXz+4rlIsszBtgF+/PIhGrpGilhpx9BvjI81/r6jmUc3nECS4IqFVcyvLjAVB+j7YKI1tx4LaoqYVppLIKTwtx3Npv0tjdJFfT5fwvHl568eJhBSmFqSy6ULkleVFmG03uro6OCtt96io2NkaHrNcQAAmU9JREFUkz4ZyZZIiGA0RqaagjteMLofiqLE5R7MIPuipixCpGqHoiQsfLCtoYe3Dndis0j87JZlOG2WqIW51vFCoVDUpJHqoireYKuHaCyrtUNkw836XaULsxLUUCjEiroSCnNsDHiDHO8cMp0uKv57PEk28Vw9PeYrjIw3TnWSLdFzMpMuGklf9Ae587dbeadVwWaR+eTyfFZWpTaoZ7uSTbsfGoF+/fLJALyyv43uBEGnhniFDzaEUxrPn1sZUxFOPzHGK0Fv5rwauaX9fPasMq5YVIWiwANvHTN9vENtA/zstcMAfPnSOTGm5fGUbBpEkk2WZQoL1d0qLdjQK9kAFlXnc/lCta33vGROzfbMLrXE+VkzyqJ+n2iBYxapLPqKc+0RJd1zBgUQQqEQg94Ae1tVzzZtYTre0KvzIsUPkijZtKIHkD3polr6aq9XvRb3sCdMsmVn4YNshyRJqpIN6B32RZQ8uXYLtvCjzkRMkwnMn1RACJmOcPEDiM5mkCQpUtFzrIseJMOlC6rItVto6Hazp0VNyx4tyeb1+ege8vHGke4IwbZ2RinIMkc6VGPsTCOyEasoPPT2cQBuXzctam7QUkY1iGNEptJFtbasqC0m32mjc9DHqwfaw57EFi6YV4UkSYYES7JzSJLE99+3mEKnhc5BL5vCyuNUlYFGFVZFNPYM0+324bLJSQseaBCPl0q6qDY36wshGGF5bTHzJhXgDYR4Ymtj3M/Fi2eNCh88t7eTTo9MWZ6D2aW2SD8S71Eikk1PSjisFu46fyYAP37lEF2DsT5bekIrHsmWzBJC78nWMeDlk7/bSq8nSInLzt2XzTYkSI3Ol6jInwjtet+3fAr/e/1SXHYLbX3DvPfnb7MpXJVU+4x2neOhZGsf8PCNp/YC8LkLZjGvSt2gS4Vk06Av2JLsu1cunsTUEhfeIHzk4S1sa+hJqbqoWFk4ni/b+iOdvLy/FUmCSxdOSnljxoj41jzQRUukdJVs2rXojyHOJdkU9xiNtVqxEBGpjK2nSbYE0G60KBcVlWyaOfgvw8bXVy+tiSwAxE6nVToEY7LLbBAodsZEg4QkSTEpo+LiN5mSbbQwa2SrKAoWWeLcORUoSOxt7jOtZEuWIx4PoyHZ9Ax2Nvuy6Xfbkg3qRgrHiUwXTUQS6hWdYJwu2jno5fZHtvDW4U7c1nw+cN4iphTnsHfvXlpbjVPkjHCqKNlA7d/zJhWwsKYAf1Dh7ztOJv2+EcnW3j/M4bZ+JAkuDEvf46WLQupKNnEnS1Syafh4OJ3n6Z3NtPUnT0ENhhT+/S+78AcVLpxbwXuXxC4C9GRpIpINRlJGte9p468Y6AYCAb54iVqF65X9bZGqlvGwvaGHV/a3I0tw48op0deQgY2OeAG43+/n5MmTMcHyexarC8yndxqTbEfaBggpEsumFjGpMCfmM+MBfeCjpYvGqzDaKKSLasgaki2cLtrjVd8Bj8eDRQphs5wm2dLBCMmm0Ov2R0i28nxH1jxzDfOrCwiGix/olWwWiwVFGfHwWV43tkUPksFlt3JF2FT+md1qEZp0SbbGbjef/+N2Pv27LTy6oZ4H1zfgC4S4bEEVj3x0FefMVi1RfrfhOMFQZtUtWh/Y2djHyd5hSnPt4YqPIygrK4t698YqXTQUCuG0Wfj6lfO5/9blfP99i/jypXP49W0rmFSsLv71BIs4JydSUJTnO7h5pXpdm+p72dnUa0oFJkJ8vkZzkGasfsn8iqQFDzQYpYuaUbI5nSO2BMmuQ5KkiDXE7zY2EIrTh8yQbF6vl36Pn6d2d+DFytmzygkFg5EYQLz/8VJq9deo3YNrlk1hQXUBA54A3312f4xnrhklW7xziBCVbM/sauaS/3uDzfU9WK0Wrlw8CUec8MLofGaVbOI4tmRqMbesqmVqsZNet59bf/0uf9t+ctxJNkVR+Ppf99A37GdhTQGfPG965G9m5gQ9YZXK5qcsy1gtMlctqWZKSS6D3gC3P7IFt199NsmUbFqMmaj4gccf5D/+tgcJWFJTRE1x6vYCRmt1I0/AVDzZ9DDqr2JqfrbMz5CYEBTbmUrfzZ6ry0JoN1KsLKqvTHOwuZeX96tByCfOHXmJ46kmxME61SDQrJJNa6t4PnHxazQ4jwXJlozt1SaDi+ZXEUKivmuI9v7YRXq2KNn058lmXzatrVr/M+PFp5fIZlO6qJE/BRiniwZDCk9ub+b8H73O20c6cdktPPyRVVx93qqIB8uBAwei5NCJkO1KNnFM0u7TDctVAueJLclTRrUJz263R46z+VgnMmp1xsowuWImXdSsJ1sgMOJ3pHmhicH0kilFrKorwR9UeOSd+qTHe+SderY39JLnsPLdaxca7ujpPVlEkk1UKGvQSDYN8SqSzazI4+yZZSgK/DGJL8yPXlJ95q5fPpkZ5dEVisbSk62xsZHDhw9z8mQ06XrZwiqs4ZTRI+3RVUZDoRCH2wdRkCIL7omA/h2fEU4XPd41ZLgob8hikq0gTLJ5Qha8gRA+rwcLIRzW7Kwumu2QZRmnVVaVbG4/7QPq+JOVJNukAoLI9A77GBxW5xRxcXqsc4juIR8Oq8zCFDxfxgrXhRXRz+/rwB8MmVIViej3+PnOM/u48J43+NuOZoJB1c5gZlUhn71wFj+95QxsFpnrlk/FYZU50TXEX3QWB16vl82bN3PihHGKXTIoioI/GOLZsO/kbWvrcNqix1dZliNxgT4lLJPpotqYXJzr4NIFVdy8aiqfOn8m582piLKgEdOTRCWbeAwjLKrOZ2F1IT7FwmsH2vnxSwci74MZGKV2athc382htiFkSYqQeWaQauEDcQ5MpKIKBoP09PREjnX10mrynVYaut1xvWiTkWx+vx+Px8vLe9sYCkqsnFbKgqkqATw4OBjT9lTSRQFsVgvfuGoBAH/dfpL3/PRt3j3eHfmc3oYoHsmW7D6GQiFCisL3ntvPp3+/nR63n/mTCvjUBbMpzXPEXQuMRsmmVyzmOa187Kw6rlhUhS8Y4vOP7+DpHU0oijJuJNvfdzTz8r42bBaJH92wBKscu25IBCMlm1lo37VZZG5ZU8ecyny6h3z8ZoMaH5pJFwUS+rLd/8YxjncOUZZr48yZpWnNc0brLe3fRll3kL6SzYjIy7aNRaPxXExrNcttRB0zg+37p4N2o/WLbDFX/TdvH0FR4KJ5lVEmkvFINqMCBJlWsonn9flUQ1lRJTLW6aJmywJr93dKSS7TynJRFHh5b6zCKJNKNv1kkczw0agdWupcIBCITL7ZBj3JFs+Lz2hwhWgSJBsKH8RLpROVO96A6iP22MYT/OS1owx4AiysKeDxO89k9fRSJElizpw5kfSQ5uZmU23KdiUbxN63q5dWY7eoRsV7m/sSflevZAsEQ2w82oGMopZw15m2iufTICrZzBDP2j21Wq2G1ZABPrZuGgCPbWrA7Yu/k9rY7eaH4SIJd18+N67iSu/JIiqMxaIHGjRfNg3i+Ku/31o5+Mc3NxkaG4Mq7V9/pAubReKzF86K+ftYpotq45Q+WCty2SNKEr2abWDYR3PfMCGFCSXZ9Oq8muIcbBYJXyBEs66qq6IoNPWEPdmKs49kc9os5Ngs+LDg9Yciff60ki09SJKEI6xke/NQO8/vVuOHinxnQu+kiUB5voM8px1FgaPtqn+jGHdtqVcX3EsmF2G3TnybV9WVMLk4h35vkKMdqaWMKorCHY9s4ddvH8cXDHH2zDI+c940PnneDH76gZV84eLZ2CzqNRblOlg1rRQZhf/42x7u/suuyPlaWloYGhoyPVfrEQqFeHV/G619XsrzHTHFcDRMmjQJWZYj85iGTKaLJhqDRIJFVKzpSbZkqZYXzqvgiqVTscgS+5p7ufzHbxn6bcb7PsSuARRF4YcvHiSExILqAiaZqMiuP2aqhQ+sVquh97WGEydOsHPnTnbv3k0gEMBlt0Y2Fh/dUG94bDNKtvWHWmjscWO12vj++xaRl6du6AwNDUVdDxgXiNMvwsUCBZIksWpaCffcsIQil40DrQPceP8GfvDCAcBcuiiYU7K9fqCdZ3a1YpHVWONvnzqLqWX5UccVIRLoYj83o2TT+yVr7ZMlhZ/dvIyPh8UnL+1p5tldLQQx/86kir5hP49tOsGNv9zA5x/fAcBnL5jF3KqCpASpHvrPpKpk0+C02/jv96k+w8/tbaepxx33furTtePFxsc7h/j560cA+NR5M3BYLSmniortNFJuxROyGK2ZU00XzUY/NkisZBPH4n95ku2+++5j2rRpOJ1Oli9fzltvvZXWceKRbKDe8EFvgJd2q8oAUYoaDI6UaNerJrRFTqovPKRGsolKNv3CKtuUbJIksXq66k/00r6WKLm3GHCMtZKtq6uLt99+m/Z24zLb4gCoqVyyNWVUT7KJvxMRT8kmkiDjuUiJ13eMAkBFUegc9HO4bYDHNtVz9g9e46kdTXS7fRTm2Pn++xbx90+dzaLJI6oASZKoqVFNnfv7+00RQtmuZINY0qfIZY94aCVSs4VCoSgZv8ViYWdTH26Pn2KXlVmVeZHnb5RGoEFT+YZCoZiAwAgisSeqLcX+eNG8SmpLXfQN+2MUDhoUReFrf93NsD/Iqmkl3LJqatxzGj1HbVzWp4pCtC8bGO/wavfu4vmVlOc76Bz08vK+NsN2akTgB1bXMtlA2j+WhQ+0CqpGz+aqJeGU0V3NUe/D/pZ+FAUWTC6iumhiUkUhVp1nkSVqS41TRnvcfga96jswuTizhQ8yhSKXjQAy3qCCL6C2y2k37/dyGiOQJCmiDtze2Muzu1WiWFSyZYsnG0BNSbgyblg1Gk2yZUeqqAZZlnjfssmAxJ5mlfQyG2v9ZdtJNh3vxmW38MhHV/G721czKd+GLGxQj5xHZumUIhZV5+MLhvjj5kYuuvcNvvbX3bS2qbGY1+s1TfCJeHFvKwdaB5BkmZ/fsixSeEQPl8vF8uXLWbJkSdTvzaaLmrkvWn80es9FQklvtC5+PhnJJkkSly6ezM2rplJTYKdryMfnH98Rd+NHRDwl9VuHO3n3eDcWWWbVtJKULVbAfLqouNGUiGTT1jQ9PT3s2LEDn8/HrWEC9fVDHZzoiiUWk5Fs7f0e1h9W+9tXrljAjPK8SFygzZ96D0U99NdotM67bvlkXvviedwcjlV+8fpRdjf1mU4XTaZke/NQB7tO9iFJEj+9+Qy+cPFs7FY54bosXqqwGSWb2A6RZAuFQsiyxFcvn8f/XrcYuwxHOgb5nxcP0zHgzXgW0Ob6bi669w2+/tc9vFvfTaHs4b1z8vjEeTOi2ilJkqm5NlMkm8ViYXltMR9YPZUQMq/ub8fjM76f+hgwnhH/f/5tD75AiHWzyjhnVqlhe80gkZLNrKglmSAjkTos2zYWjdoaL3Xf9DEz2L6swOOPP87nP/95vv71r7N9+3bWrVvH5ZdfTkND4jQeIyQi2Ww2G5uPd6OEgqysK2Z57YhRrTaYixLpeEq2eIO1EcSXPFngKDLgE0WyJeuI4jmX1ZVgt8q09Q6zIWyUqT+GaEA4FiRbb28vwWCQrq4u/deiziOSbNla/CAQCBAMKRzpcLOvZYDtDT3c949D/ONAW8QLQq9uMyLZxlu9Fa/wgT4APNI+wBU/eZsv/2UXz+5u4dmdzXQMeCl0Wjl7ZhlPfupsbl41Ncb8HlRCxWq1EgwGkyoRQ6FQVDpltsJIAfj+sOfXHzc30NpnnDYiBvQWiwVPUGFLfTeyFOKC2WVYheBYDJSNFkramGPGl03sX+IYKJJAFlniY2erarZfv30cj0Glv79sO8lbhztxWGX+532LkCTo7OyMGfNCoVDk3ojPMT9f3d0VyTQRYspoIiWbzSJz4wo1jeb3m6LnmsZuN996eh87GnvJsVm46/wZhufKRLqokSdbMBiM3A+jYPmieZU4rDL9nW28+NbmyDhwoEVVQF4yf2KqimowCnymh71Pj3VEv79aqmhlgSMqLSyTSu3RojDHBkgc7fYy4FGfh9ORvWNLNkOSJOZNyueieZV8ZG0t588pZ2VdMdcvn5xVxKqGKaWqMuZERyzJplWgW5klJBvADcsnY5UljncP09gdX4Ehos/t5/vP7QfgsxfO4tywUjaeesFisWCRJT59/gz+/IkzuWheJYoCf9l0lCc3HY2khGtEh1nsbOzlt2GrgeuWT2bVtMTFJHJzc2M20jJd+EB/TP2x/X5/FLmiEQJmzqP1JYfDQVmegw+vnUq+08qOxl5++urhpO2Lt5GpWRysnVlGvtOWUrydauEDIyWbUZ8T2zA4OMi2bduoKbBx7uxyFAUefOs43d3dNDU1RdRkersIDRaLhaACz+9pJRhSmFFRwE2r64DYFM5kY4r+GuOJKYpz1U3ga8IFJP7nhf0xMUUyks3oOTy6oZ63NKLw8nlRCvRElS3Fd1NcjyYz6tf/LZ5i8caVU7j97DryHFYa+3w8tukEP331ED9/7Qgne835+GrwBoK8drCdB986xhuHOuge8vHIO/Xc/KuNdAx4qSt1cfdlc/jeeUVcNx0kJfpZmJ0PMpEuCiPP6yuXzaXQ5aDH7eOtQ7EbsRD7Dhrdy6d2NvP2kU7sVpnvXrMw8vt0NukSpXKaTRcVPYvNFgPJVpItmeouHSVbdmn1MoB7772Xj33sY9x+++0A/PjHP+bFF1/kF7/4Bd///vdTOpbWmfSEg6IovLS/k51NvVgpilSN0SB+Xuv42sBuRLKZRTrpol6vN2bRmyhddKKUbDl2G3Mq8zneCHc8uoXPXTiLj5w1DcXAm8tms4268IHVaiUQCBh6J8QjCcRnppV97+vrC+/YjE8g7/EH2XC0iy0nutl6oochb5BFkwtZOqWIqgInQ94A/R4/W3YfoqHhBE0+F8WyGysh9u+T8FJPWZ6D9y6pRkKh52gTbl+QGRV5zFvgpyB8noki2ZIVPrBarfxt+0m+9tfduH1BplhlKvIdzKsoZ80Z8ynsOwpKiEJXfNWZJEkUFBTQ3d1NX19fhGgxgnYfJIMd+GyCUQC1blYZK2qL2XKihx+/coj/uW5xzPfEyU6SJP64+STD/iBlLieLJxfg83ojfVuSJGbNmoXf7zfsFzk5OXg8HlO+bPrz2u12vF4vfr8/yivt+uWTufflQ9R3ufnAg5v41a3LKc1Tn23HgJfvPLMPgM9fNJvp5Xn09PSwZ88eiouLo1QJWiAgy9HeVzNmzKCqqiqSFqKHWZIN4KaVU7nv9aO8faSTLfXd1He5eWFPC68eaEfbtP3EuTOoyDdOt8kEEWS08yyOZ0YkW77TxgUzi2k+0sSWQw2sXDCDoD2X5h51UXvxwolLFQXjQDNe8YNGg8qikCG/O0niikVVkX+L7Zs/f35UWxOhNE99d1451EO+pI4vLmf2qGQj1xMIYDtwiCtkNY1RJvv8RyVJwirLLKwp5Oyz50W92xsa0iPZ4j3nTKC2LJ93gcauaGVYY4+HY51DyBIsm5o9JNuUEhc3r5rK5s1trD/SyZXnJTfT/9FLB+ka8jGzIo+PnqVukugV0yLE93tFXQkP1pXw0t5WvvWHNzjUPkBwt8Lli6oYGhqioKAAM+gcVCsqKqEQMyvzuDzNMSyZki0VZUOiRX60L5gn5nyyLCf1xBNJNoA8m8T3rl3EZ/+wnZ+9doRzZpezIkHVWiO7ghf3trKrqY8cm4VLFk7CO9CTUrxtpGTLlCcbwLRp02hpacHj8dDe3s7Hz53OG4c6+NOWBtYVdmOXQuTm5pKbmxtZbxjFca8f7qLH7SPPYeWqM6bGbCZqbUi2TtKvfcRrNSJBvnjJHJ7b3cr6I13sWlhAHsmVbEb3UVEU/u/lQ/zkH0dYZIXV00q5cUV0YSUzSrZUCD0NerP+eEREVb6Nm1dN5fkGheaGQdr6hvnhiwe556WDXDy/kg+dWcfaGaWG98ntC/DGwQ5e2NvKP/a3M+A1JvuvWlLND65bhE1SWL++KeJvaLVaUybZRlv4QIN2DwtzbHzl8vk8/LcmNh7p4JldzbxncXSBrngkm/b7vmE/33lG3cD4zPkzqS3NpaWlP6XrEpFMyaYoCpIkJSTZkq0VE6WkZtuaKpmSTbvWVFSY/1Qkm8/nY+vWrdx9991Rv7/kkkt45513DL/j9XqjKnf09/dH/q033LfZ1FLO33t2Py/tbadEho+cOZXz51TEtAOiO10iJZtZpFv4IBUlWyZ2+s2SbPoJeM30Uuq9Ht5qDfL95w/wxNYmfnjN3KjvGJFs6SjZ7HZ7DMmmHSceSSBOJrm5udhsNvx+P42NjdTWGnt9ZBLHOga5/ZEtHNMtLHef7ItRz9TIfZTLIfJz7EwrsOCSQ8woruT144N0Dnp5aP1xLIRYZFWP1drv4YUHNvCJS5Zw9dKaCVey6Z+p3x+godvN3/f389cTaurgWTNL+fLaWfS2N1NdXc2sWdW88cbhqOPEQ2FhYYRkmzw5vpGvEWGejTAifSRJ4qtXzOW6X2zgT1sa+djZ05hVGU0oimRXr9vHwxsaqAPWzihGY4bEe6n52RkhJyeHnp6elJVs2vm9Xm9MOqPLbuW+DyzjE7/dytYTPVxz33q+8Z4F9A77eXJbU6Ry1B1h/7aBAVUhoq/GFO85yrKckGTNz8+PEPJ6uwCIvt9TSlycO7uc1w92cP0vN0QdZ92sMm5dUxtJ4TVCJjzZNLJwcHAwQv6LCpB4qbxnV0s8cUThUOsAHb2DvNvWDyhUFTiZXBybSjueMFLnRZRsurHwxbCn55yq6GeaCQLTabNw3weWx/zearVyww03mD7OZy+YRY7NCn0BrB61j8+smnijew2R6xkagoM/5D770YluUlwkMoVPd+Mw3nPOBKaHfXube9SiHZo6/y87mgEb154xOW5K40ThMxfO5MPbttHa7+H1A228b218omZHYy+/26QWKfj21Qsi3nIiUWLGY+qSBVV0rKngyXf7OdgxTGBHMxVVNQnnHw2+QIi7freN5j4Py4sdXLygMO1N0LEofJAoXdTtdkcyKbSNXLPn0VuEBAIB3rukmtcOtPPX7Sf5/OM7+NunzqIsz5jQ14+RHn+Q7z6rLuhvXzeN4lyF1oHUNrXHKl1U+1xeXh5VVVXU19czODjImXNqWDK5kH1NXWw52s7amWV0dnZGjmWktnl5XxtbTvTjkFTVdlH+yAZNPCVbvHlEf42ietHouU8pcXHrmbX8+u3j/PqdBj57hiOGZNMTEfoY2RcIcfeTu3hym2pddOb0EtZMK46b7mikZEtGsiVSsOrvifZ/TUGoXXcwGCTXYeW/rp7P1h0yx3t8FPYVsfFYNy/ubePFvW3MrMjjQ2fW8r5lk+kc8LL+aCdvHurgjUMdePwj/a4i38GSKUUcaR/keOcQVlni7svn8rGzpyFJUtQaTk94pjIWaOQ2jF7JBnDlkhq2byliZ1MvX3x8ByW5dtbOKItpazwl2w9fPEDnoJfp5bncGfa6SzSumG2nEQGmZTpZLJaYdFXxuSZbKxptRGSrJ1ui+5Fu4YPsusJRorOzk2AwSGVl9EKmsrKS1tZYQ32A73//+3zrW98y/JvWKbQOIcsW/uvve/ntxhNUyzLnz6ng8gXlMd9LRLIFg0H8fn9aAWC6hQ/MKNkymVphVlIpDg6SJJHrsPKt985na7eN/3n+AEfaB7n9kXf5/BJLpFKckSljOko2u92O2+0mFArRN+xnW0MPm7Y10dPVwcyKPFaFdz9E6P0Ypk+fzsGDBzl+/Dh5eXmUlpaabkeqeOdIJ598bBt9w37K8hycP6ec5bXFFOTY2NnYy/bGXvqH/eQ5rOQ5rUy32ZmRV8zapfPo7OhgaGiIJUvm8v38Ql4/2M4r+9vIs0HRgPqMttT3UD/g4ct/3sV/P7efq6ZZmJXrxZIfpL3fg80iM+BRVXL9Hr/672E/VovE5GIXU4pdVOQ7kA3SM1OB1WpFURQOt/bxcvNhuoe8dLv9HKuvxzbUQXfIhSQV85kLZvG5C2fR1NhAL7Hl7ZP1Yy09sK+vL2rC0ONU8GOD+AHU8toSLl1QyYt72/jBCwd58LYVUX+PGK/bbPzsH0fo9wYpK3IwuyJPGPfMjQnaGGeGZNOn4CYKqNfOKOPJu87iow9vpqHbze2Pbon8zSJL/OC6xVjDJtp67xQN6T5HWZZZvHgxPp8vajyPF3x+9KxpvH5QrW62sKaAC+ZU8N6lNcysMFbKicgIEeR0RkjBoaEh8vPzo0g2TVEinsPr9VJlHcZmken3+Lnt1xvoVHJZZCHKk2+ioPdkA5gdJou31PfQPuChIt/Jyd5hng9XEbxlVfSmRyYIzExh9fRSVk8v5cSJco4fPw5kl5LtVIWeZMtGT7YppXlYLRKBQIA3D3VQ5whypH2QQ+1DOG0lfPnSORPdxBhU5Ds5Z04lG/ef4JH1R3nv6jmR8VaDoig8sbWJbz61F0WB9y6pjlo86pXLIowWYcPDw9TkSVy9tIYHtg9xoruHHzy9gx9MmmLoZyniW0/v5d36bvIdVj534VRCg10ZIdnGo/CB5vHrcrmYPn3E5znZeUTrD22O0wjcb129gC0numnsHuaDD27iD3esoTg3dkGsV/s+8OYxmnqGqSpw8snzZtBUf8z0tWoQ1znxyBejNpgl2SwWS9TGkiRJfPK8Gfz7Y63sbOplRV0JXV1dkdhcTwS093v497/sohSJtbXFTC11xdgCie1KN100Uf/79Pkz+dOWRg51DLG/xcdyV/RaJxEpHQopfOYP23hxbxsWWeI7Vy+kxnPc8P4mIgjipe+lomTTE0Pa9VsslqjiCDabjRy7hSWTC7jr/WdyuG2ARzec4C/bmjjSPsh//X0v33p6X0zl8MnFOVy+sIrLFlZxxpTiyFqj3+NHliTyHCP3yUiZNVqSbbRKNu0Y584px+0LsLs5wMcf3cofP76GBeFq0vE82UKhENsbengsLKb43jWLcFij+9polGxif9WTYVqRPxHacwXzJNuplC4ajxA8nS4ahn5wSbSI/upXv8oXvvCFyM/9/f1MmaLKbEWSLaQo3PvqUR7f1Y0kwR3nzmSaw204ARh1OovFgt1uj3ikjZeSTVtsgboAE88tYqLTRcXz3rBiCpfMr+LO325hT30rf9vRyqULqphdmZ80XzzZ+USSrd/j51dvHOVPh/YTDClMs3RRKHk42DbAP7re5mvvPSPKNF//zCZNmsTAwADNzc3s27eP5cuXG1YpTBXBkMIzu5p5aW8bbl8AbyDEu8e7CYQUlk0t4v5bV1CePxIIGFX+27t3Lx0dHdgFs8ZgMIjdKnPJgiouWVDF8PAwmzapPjDzJxVw0JPHb7b30zno5fX97eyS3TRv6ac9ZM7P0G6RqSnOYXJxDlNKVOJtSkkOZ0wtpkYwTu8e8vHW4Q4cVgsVBQ7Kch14AkEGPH52HWnjnc0N1A/A4WB35DtVsodau8y50yu46aLVkUlJXIDrvSESIT8/H0mSIu+jvqqYhlOhsigk3qX88qVzeWW/Sqy+e7w7yptGe48OdQzz4NsnAYmzZpYhSVJCDxkjiBVGk0Ek9yB6U8AIMyvy+NunzuJrT+5mf2u/2seKXbx3SXWkL4BxFTDxuOmQpUYpSvHu9zmzy3np386hMMdGZYH5KmzisUbryZafn09PTw+Dg4Pk5+dH7okGn88X1d8bGhqwyLB2RinbTvTQMRwCRcFqkZhdmZ81JJsY+CydUsSSKUXsbOzlJ68e5rvXLOLRd+oJhhTWzihlfnX0M8smTzYNYlp0NpB/pyK0DTqxih9Ekw4T3X9F2G02Zpbn0dvi4+O/28q3zivl7SOdBHFy5zkzqEqhcuN44uKF1ew80sSRniG+88w+3rdsMgtrCukf9rO/pZ/HNjVEik6snlbCt967IOr7idKDjN7vjg51o2LJjBp+NL+Un/zpJXoHBrnm5+/wyw8uM0x7VBSFX7xxlMc2NSBJ8P9uXkqV3EfzYHoqDzBf+CBTSjbtmAsWLDCM9+OdR5zvtDlOewcKnDYe/ehqbrx/AwdaB7j1oU08dvuasDdk7DGsVivNvcOR6oVfu3IeLrvV1LW63W56enqorq6OFEKCaEN87RhGY7E4BybyZBM/p42jQ0NDhEIhLp5fxf1FVrwDIXaf7GN5rUx3txpLinGcLxDii0/spHvIx4LSXM6cEUvEifO8GGOmmi6aaAwqzrVz13kz+fELu3n1QBuSxcLq1eYKH/zkH4d5cW8bdovM/bcu57w55bzxhkqGxiPZjO5nsqIQZtNF9ddqpITSnqv2PsyqzOc71yzky5fN4cmtTTy64QTHOoewWSTOmFrM2hmlXDSvkgXVBYbvToEzdkwxSm9Ml2TTkAmSTZIkbFYrly6ootFmZeOJAT744CYe/ehqFk0ujHsvD7b08e31TSgKvG9ZTaSvwuiUbPr+qn/OWl/R/96IZIsXW4vWVRoXk60kW7LU1nQKH/xTRXZlZWVYLJYY1Vp7e3uMuk2Dw+GI2zkihQ98Pl7a28rfm3KQJRv33LiE1ZUyhw4dMk2ygRpUa4v6dHZZxQ6Z7Hua0ahoep2bmxuXZBuLdNFUCh/oJ/BCl41HPrqKL/1uPU1HO3h+Twv7m/vptldy1erCtNJFQ6EQw74ALX3DvNrgZ9+ReloDuQRDhdSVulhdGCJH8bC7uZe9jV1c9bO3mVuVz7pZZSybWkx3RysdTT04e6Goxs3UUhczZ85kaGiIvr4+9uzZw4oVK9IO6r2BIC/tbeP/vXqYI+2xhvzXLK3mf65bHGXoHQ/iojJZxU4Aq0Xm6iXVfPyyFbxztItnX99Ec5sPR8CO5FMzB3NsFvKdVgpybOr/nTZ8gRBNvW6aez34giGOdw7F+CQBLJlSxEVzK9h1so/XDrQTCBnntOdLHmZYvNgtdq5aWE1tiYsil408byel0iAzptUxXSBVxH4jVg9K9gwsFgv5+fn09/fT19cXl2Q71ZVsoBJUN66Ywh/ebeAzf9jG43eeSV043c7vV5WJv97UBuTxwTW1zCztTYmw1KDdw1Q82cwo2TSU5Nr55a3x07gURYmotmLTjTM7qSe637N1KblmkSkiKC9P9aYbGBhg0qRJMYbhfr8/8qy8Xi8tLeri+KIzZnLG1C6KSkqxFU/i2N7tFORMfJq00eJOkiS+evlcbvrVRv7wbiM3rZzK799VNwO0YhkiMkFgun0B5v/XiwDs+/aluOxqH/D5fBG/169+9aumCXmRZMumYFO8ns8pMku96ju3z7GV0W8hZR4ayab3KNKQ6nwc7zlnAhaLhYvmVeKhlyNNIe77x2FKZT8FrgI+fs705AeYIOTnOFhZV8Lxgx4e2XCCRzacwG6VI9VxAayyxL9dPJtPnDsjpuBQovHXaGGjkWzl5eVUVFRw06op/H1HMwd6h7nx/g3ccc50/u2i2ZFYaNAb4N//vCtC9H3pkjlcMLeSAwfUTcR0xzBxsWvUjzKlZBPHjNmzZ8dUuzZLskmSFDGv1zaVLRYL08py+f3tq7npVxvZc7KfD/16Ew/ctiLKH1Scf/77uf14/CFW1ZVw1eJJptqgKAp79uzB7XbjdDopLS01jPG1cxmNxSLRZ8aTzWKx4HA4YtTbV8wt4tnN7Wxr6GFaWS62NtVoXrvPrX0e7npsK9saenFYZT5y9nRkr2o1YaRk09qRjKjR3yOzxM5Hz65jR30HbUfaeXF3M52uvZxfbJxSpx1r09EOfvyKutb97rULOX9uRUIPuESEWbw4Nx0lm7jxEQwGsdlsMf0TYvtRgdPGh8+axofOrON41xCTCp1pj72ZVLJpSDddVH8+i8WC1RLk3usX8ck/7WNnYy83P7CRhz680lAVuPtkH0/t76MnUMriyYX855Xzo443ms0k/dhrRLLpBQziOWGk78SLexwOR6Q/+Hw+HA5H1nqyJVOy/cuni9rtdpYvX87LL7/MtddeG/n9yy+/zNVXX53y8UKhEO8e7+K37xynY8ADch4/u3kZVyyaFAkCUiXZ+vv78Xg8MXJQM0hFyaaZiWuqEkmSyM3Npaura8zTRUejZBM7t9Nm4b+unMd9T7ayo6mX411DvPn0br7/2kk+NjfEnBJb1G5ZPLT3e/jbjpM8va0BS+dRFCRaQ/lMkhXmV+Xxk6vPZHltCdu2baO/v59ltUW83iLz5CEPB1oHONA6ABynQh6gWu6nOzTE/2wcYnZlHpfMr+LyBVOxuQ9E/DTKy2NTiI0QDCnsa+5n/dFO1h/pZHN9d8R3oMBp5ba1dUwpceGwylQWOFk9rcR0sGiGZNPft2AwiNUic87scvKHaujry2PBggWUlZURDCkxKSIiAsEQLX0eGnvcNHUP09jjprHbzfEuN7uaetnZqP6nYW5VPk6bhY4BL11D3jCBZ6PS6WRNocyyaRWcf84Zkc8fPOinpcUd876Ifk2p9uHCwsIIyVZVZVxBcTQKqPFEItIH4CuXzmFLfTeH2we5+YGNPH7nmUwtdTHs8fH87hb6vDYW1RTyn++Zz7bN76ZFsmmkgVYhLdHOXzwlWyKSLRm8Xm9UQKX3A4HMKZmS3e90kKmURs1jbmBgAEVRInOAthAR73FTU5OqdigooLKykq6uLpRggOlluXQ4jatFjTeMPNkA1kwv5YK5FfzjQDsfeuhdBjxqu/UeqZCdSrZ4i7nTSA1aSo9IrKUzfo0HrFYrVovM+1dUY63MYfN2lQS6ZVUduY7sDcetVitnTC2iqNzJhk4bG491MeBRx766YgeLS+G2C5ewfJpx7JPIg0e/sPF4PBFvzbKyMqxWK2WF6kZRYauTv+zp4f43jvHq/nZW1pUgSbDxWBfHOlRvpv+4ch63ra0DElf0NAOtbfqqixoypWTLzc1l0qRJ5OTkGMYiZkk2zcrEarVG5mFtnJlVmc/vbl/NzQ9sZGdTH+/96Xruv3U5S6YUAeGsF2+AB9+u55kDXmQJvvHe+ZH2JmtDX19fZENH22gTYzItzk9UwMFMuqi46NeeS15eHr29vRH19twyO286rDQM2/ndxhMsqC5gYU0hbruXg9tP8t1n99E56CPfaeUnN59BjdRLc3Msyabdy0AgEOXhHG8eSUfJBuCwWvj5B1fyw0dOsul4Fw+vP0Z9UQ+rpxWzSo4+14A3xOG2Af64T90Yve3M2kiRg0SbC+ko2cys5YzuiSzL4XTWUNT3RUWjPkYb+a7EjPLk9hqJMBYkWypxmXgv9H3FarXi8/lw2SQeu301tz+ymY3HuvnQQxu5a46f+ZPysVgsnOwd5ocvHKT+SBuK4uA9iyfxw+uXkGOPPl4mlWz6vqERy/GsGCB5to8kSTidToaHhxkeHsbhcCScDyYSiQofnE4XDeMLX/gCt956KytWrODMM8/kV7/6FQ0NDXziE59I6Th7m/t4pfkwTx31s8jqwWGV+ekNK7h4gbqrk0jKnIhkAzWdSlMSjFV1UVAnC22Bpe32QPZUFzVXeUjhvLkVLJlaxN7mfoZaZA4PeHlqWxtTCqysnl5CkUchr6WfQW+A+s4hTnS5aev30Dvsp2vQy86mPoIhBSd+5lqh0OVkbk0FC/ILWDlvGvNqS6LOne+08Ymza/jaDVNZf7SLtw51cKhtgHIJioMhesjnZKvEobZBDrUd4WevHWF1WYBFRX52dexk6sx5VOQ7mFLiYlKhE4ss4fYF6R32c6htgL0n+9jV1Mem4930DUcHEGV5Dj64ZiofPXuaoQzaLNIl2TToS3pbLYkHcKtFVlNES1wwI/pv7QMeXtzbxvrDndSWubhu2eS4ap+hoSE2b96MXqwXT4lilC5q9p0qLCyksbGRvr6+uJ9JtkuTLUhG+hTn2vn9HWu46VcbONoxxI33b2BqiYv+lqM4gx7s9lzu+8AyHFZLzP0zez+1wNjv9zM8PJywoEA8JVu8dFEz0KdFBoPBmDEv0yRbKpNtMmSqjdp9HxoaYnh4OFIAQUsjFe+x5gFUU1MTlbKbTal2enN7MZj898vm8vrBdrqH1Gv6yFl1Mb6QosppLII6m83Gl770pci/zULc4c2mYDNyPW43/OwXE92cpND6g7gQSEXVPJ6I+FKFQvzvdYv5udTFYF8PFy6Y2Aq+yaDFAWunF/PRK+YSDCmc6BqiosBJW9MJGhsbKZWGgMQkm5l0US1mdblckTEpNzcXr9fLFy+o49IzpvO1v+7mSPtglOK/qsDJzz+wjOW1IwUDRrMAFdsW7/0U449EtjTi9Rn1R0mSmDMnvh9fKiSb1l6NZBMxb1IBT35yLXf+ditH2ge54f4N3LJqKjl2C+62E+w71sgJfz6Qx2cumBVlxaA9u3hK9ebm5si/tTnGKP1N8wXVQx/DxSPZxHugXa9Isvn9foJ+H+9bPpnnW3NpP7aP3Sf72H2yj5PBPjqUk5F78csPLqO2NJdjx0b6kVHKpLY5ZVbJlg6xY7VaOHt2BWV5dpr2S3QNenhudwuPN2ygotDFoDdA16CX0EA7VfIA3lAuq6aV8B/vGVE2iWNgKkq2eJvJ6SjZtH+LJJsYvyeazzMFo0yndGIasW2ZSBcVfw4GgxQ5rDz8kVXc9dg2XjvQxj8OtLHxWCfPdxTxzJ42HEE3M6xw6bwKvnTzGYb3KpOebEZKtqiMp/C7kArJBkRINm3syNZ0UaP+fjpdVIf3v//9dHV18e1vf5uWlhYWLlzIc889l3L1xzcOdTBgC2GT8llUU8jZsysjBBtEl9zWIxnJ5vF4In9LZUGlkVHaoikZxAEzJycn4YCZyXTRdAofxAsitGMUu+ycPbOMG8+bwpstEi+80kbbgIendjYTwMKe18WUKG2iGRmQlk0t4ur5xZT78igtzKempoYjR45EnU9sr8fjoTTPwXuXVPPeJWqZ5aNHj9LY2MiUKVO4Z9JUXj/UztM7W3jjUDvbOsHb2wN0s3/rEN7wq6WlTehNPDXkO1SicO2MMs6aWcbsyryMTDqppovqf47nB5EOKvKd3LqmllvXJH8H4+22xVP5GKWLmp1sNK8tt1v1VjQa8P9ZlGwA5fkO/nDHGm761UaOdQ7R2u9hjsWP027hq1cujhQX0XtIpNIfc3JykpJsoVAoRi6eCSWbPi1yPEi2TCrZMpHSCOo8owW5muI6JyfH8B5rJLLL5Yry2MhWkk3v5TOnKp/rlk3mia1NFObYuG55bKVgcVwbCyWbphJP53sOhwOPx5NVwaZ4Pe4kn80GJCLZsqH/ihDnN1mWWDezhN5eGZs1exSWRtCPdxZZYnpYbXIkrDpLtEGSCslmlLqWm5tLd3c3Q0NDXLJgFivqSvjr9pMMeQMoCrjsFt63rIZSXeVMkWxNB9p1x1tAmvEZ05CJKoCpkGxgPD/VluTwxJ2r+PJf9vLK/jYefqcegGmWbgqlEDMrC/jltWtYNrU46ntagQH9Zhaoz16ba7SfxfZq7ddM1I2uQ7+Y16ClrOlV6eJxxeIHg4MqYTappIBfXbGGv7wU4rXd9XQP+ahw5FLlKmRlnVpkRFMFif1SH+vZbDY8Ho+pgnXiIjwdX0ibzcasynyeOGsuj7+0nu0NvezocnO0a8TntlKWKM21s3BSGV+4YTk2SzRppSEVT7Z4m8ni2iEeIWYUW+n7q155qMHsWjZVZFO6qJGSDUaeg9Nm4f5bl/Pw20d5660O+j3+cLVpiZVTinjvlFymTSqNO26MpZJNJNn0KkQN+g1zI+Tk5NDT0xPZ9NW+n01xDxiPs0bpov/SJBvAXXfdxV133TWqY9SVuiivLueK1QtwtxyJ8k+BaA8hcfDR8o4httOJnkVaEJsqq65JTc18T1/d1AzJlkklWzw5sNE5k5FsGiQlxMfOnkn18HE2HO2kqWcYf0iiDAdOm0xdiYtpUjtFLjuV0+dS5LKzoLqQaWW5dHZ2smdPe5TsUzyf+G+j3TpxsCl02bh6aQ1XL62h1+3jud2tHNy/h+GBPsqwcMybS1PPML5gtGdJbamLhTWFLKguYEVdCYtrChOmYaaL0SrZMkmypQLtfFqAoids46WLmjGl1cNut+NyuXC73fT39xtWh/1nUbJpqChw8sePr+EPmxqpKXJi7ThEgVNmzfyayGeMgiWzyMnJiaTEx4M2aYn+HGOlZNP/O1tJNn0KzGigFT/o7e2lLexFI6pCxAWQ9m+n0xm1iEm1suxYItlC9iuXzaXH7eeqJZMMPVy0Z5RtqiaAadOm0d3dTVFR0UQ35ZSFUTpxtpJsoh9ROurriUK8BbqiKBFSI9GmaiKSTb+QN4qftXhZG+NLcu2G3ot6jDZdtKSkhNra2riV41Mh2TLpnaSHvh8lel5bt24lGAzyi1tW8tcdLRxoHUBBgS6ozglx1blnUFUVTbDByDPwer0xm5Ktra1RBI+eZBM9psTfi9Daqq0H9ESbdj59aiwYk2za71bMmUqpXf3O0qVLDcda8Vz6WE9c65lNF9WUjak+80g8RIA100tZMb2MW4pmqimxDgsFThsFoQGaG45TXl5Oia5KrBlPNv26LNGaVbyeeP3bKO6OR7IZFcAYC2SaZBP7Wirf074rwmg9ZrPI3Lp6CtODdRzpGGJysJorF03izCk57NixI+F9ytS4YuS9JhLL8Ug2M3OYmMUnxv/ZNu/pn42+Ku7pdNEM4opF1dTW1jCpLIfdLbHBgfizfgLQJhv9d0QlW7rBlc1mM02ypaJkG4t0UUgceIgMfDzfHf3PGrPuslu4cN5IMYtzzz03UrVk/fr1AKxZWhVFjhrlVsfzcRkeHo4hCOM9syKXnVtWT6VrZi67d+/GarWydu1aQKJjUCVpCpw2nDZ5zEzEjx8/TigUYsaMGTFtTVXJJu40jDfJJt7bYDAYeU7J0kXFNqfyThUWFuJ2u+nt7Y0JpEXFVbYr2RLtUupRke/kcxfNCr8rR4Ho6xsNySZOpvEg+rFp74Oosko3hUCvZEs1EEgFmSbZjFJgRgONZNPuSW5ubuRZakGORiCLCxpNKa2RpNlAUuh3vvUoz3fw4G0r4n5/rImMQCDAiy+qRvmXXnppSmNmZWVl3KJME4XI9QQCrJvoxphAork8G/qvCLEP6lUC2Yx4453X6438LtFC0Ex1UYi/4NeqthupqBIhE+mi06bFJ/NEk/dkhEE2KNn8fn9kThgY6OfGlVMif9u6VfXCizd+Wa1WHA4HXq+XoaGhCFmlKEqkeE5ZWRmdnZ1xlWyJFqn6GE+W5YgiWyT1jN4Zl8sV8QHTFHWakr6srIzjx48D8TdLxc0+/ZghWgOZTRfV2pmOkg1G4qc8p4OLltZEfaalxRs5vh6JSGV9bC32Ea2d8dJFte8kItmM4ka9Qkojq4wqQmcSiUi2dMiyVBVXqSjZxHZaZImFk4v5+FnLACLelIlInUwo2bTjGCnZ9M8Oogt7mNnIEAVGeiuibIJ+nBXvR7pKtuyKQLIMoVAorkGfNgFAdPqNqADQv1zaABYKhSKDaKrBldYOM99LR8mWyXTReOfSn1NUGOgHXX2wLL70IrTviX/TL7rFQC+Zkk189vHaokdJSUmkckpHRweyLFFZ4KSywEmOPbWdkFQQDAY5cUL1RdHKJI9GyaYfWMYT4u6Gka+Cvj2jKXwAKskGGPqyiSTEqbIISmQqrId2faLXgHgsSH080CbTRCSbkbxcC2Li+bUkg6IokQWYUVrJWJFs6bZXD7GvZ4IY0HbxNbhcrhiPG41I07zBtGI54t+yhaRItshMhEwpBOMhFAqxZcsWtmzZMmY78+OJyPXs2MGpcDWJ0kWzbdwWVfvBYPCUJ9k01RCkr2TTK1vipYtqx0nFUmC06aJmYHZsyoTiZLQkm3ZvYcSPU3+MROOkXlGoHWd4eBiLxcLkyWq6vs/nM1RyJVqkGp3fyJctHqmjta2/vx8YmQNdLhfl5eUUFxfHrSKvbQ5qZK4I0Roo2RpAluVRxaTaucRiRXokuoeJCBdx7BH7hUaIiuIDDeLaLN77bTTWxvP6Ejfz4l1DJiC2VSSExHObQTJPxmTfA3NKNvHnRPfRCJnwZNPOn8iTzUjJZnZz2EjJlm2pohD7bLS2agSjGY9CPbIjgs5SiESLUYcwKn6QKD9ZluVI4KBNUqkGV+LEkQzpeLJlYlFlpjOKuxiJ0kX1OywiySY+E+084vnikWxG6aJiQKC1XU8UJAvcJUmiulr1bzt58qThZ8YCYuDk8XhiBr5kJJt+d8Jo52I8YdTeeIsRkZxNR72g7cYODAzEBKSiH1u27bjooU+tMAONSNGnwo9Gyaa9p4nSPvWVRbVzGm1amIVWWVSSpEggPZYkm/huZELNZpQCMxro/fCM0kW1cUN8/tlOsqWz852pZy9LEufPKef8OeXIWT4eZAoWFM6Xezlf7kVmbFQHo0WmPdnG+jlr/XD//v2Rd/FUIdn0MUSqJJvRYlXMZAgGg4ZKNovFEhmnUlGzjTZd1AzMEgbZoGQzQ7Il6otGvmytra2AqsrV5l7R11Nsv/46urq6IqSYkUWJEckWL6tBv7Gk/SxJEgsWLGDJkiVx731eXh6LFi1i3rx5MX9LJV1U/NtolGza/Gv0viQivZKRykaxdTLf4WRFnlLxZDOTNpwJZCpdVLuPmSTZEinZ9N81c59GM67oSVT9uyUSy0brZu1vyaw4tHHB7/dHbe5nG+Ip2bS2nk4XzTCSkWxGxQ+SsbQ5OTl4vd60g6uZM2cyZcqUmIWxEfQkmzZwj3W6qHYcI2bcCGYKH9jt9ggLLnZ8zRTVSN6pJ8kSkWzieV0uFwMDA3g8nojSSWxLomdWVVVFfX09/f39dHV1xfXySBeackbsX3qSTdytE1VY8XZOtBRkvZJtoireGSnZxipd1Ol04nQ68Xg89Pf3U1JSEvnbqeLHBiPEtjZRmmnzWJBsZqpuxtuIsNlskUVWvB3neNAI9ZycnJi0EvHfmVrMan5ymrJitOnEmVZbaZsq2nFzcnIi74eRkk1DtpNso1GyjfbZO20WfvORVaM6xqkGh6TwG/vhiW5GQmTak22sn7PD4cDv90fU0+Lma7ZCXBiK6fxmSbZEMYUW/2mkRDx/qNzcXDweT1SqYjKMNl3UDMwuvDKhOEmVZNO3SYwVBwYGolIAzRTe0SvZFEWhu7sbgIqKisjcqyhK1LmM0kU9Hg+7d+/GZrOxdu1aw/MbCRnijeciyWaz2VKK2yRJihuri23QX4cRxGscbbpoJpVs2vH0VWeTxbnJBBNmyCH9szUaszNZaTRT1UUzkS6qP18qSjbxPsa7P6MVyGgWIeJ63el0MjQ0FJMuqj+n2djKarVGKpNqKbDZVFFdg/huiemz+gzC0+miGYLoyWT0kumVAZCcZEu0oDUDSZJMEWygBnNlZWVUVVVF5ROPdbqoeJxkEmMwV/jASMlmdE3pKtnE72mBhJ6kMzOgOByOiGT+6NGjGd+p2bdvHxs2bIgylhf7n97vL5HcW2ubnpSYaJJNHyCKef/6ey+qGNKdbLSAXb+ze6pUFtWQqk/YWJBsZuTURko28We9ki0QCEQF7EbQgv7c3NyUlJCjgdECIF2MBQmoLTo0qwC9792ppGSL59lpBpmq2noa2QkjJVumNw0ziblz5zJ9+nRmz57NwoULWbVqVVYuOEToCxJpMEOyGS1W9BDjsUQkG6SmZMumdNFsU7IpihIhes0W3hGfgVb0wu/3Y7FYKCgoQJblGDWWGIOKi1St72jVyI3ObyRkiNdOkWTLy8vL2DNPJV0Uoq8x3XRRra8kItmM3rdkys1ESrbRkmxmlGzx0kXdbjcbNmygoaHB8BypIlNKtrFIF02mZIsXf8d790e7kSD210jF03BMmCxdNJV5Vts415Sr2axkA2O7sNPpohlGIk82MF4UpkqyjWUQKEkSCxcuZO7cuUB0B9Gn3WQyXVQ8V7KBQWtnOumiIllm5CeWCskmXr9o0ijC7IBSW1uLzWbD7XZnNG00GAzS1dVFKBSKDFQQq2TTD9bJdk60yTVbSLZExKmRNyJEe2OlupjWSLaenp6o359KSjaIJSeDwSAHDx6M7DTrMdYkW7zUPo281qvV4pFsO3fuZNOmTQnTSLV3XTNA1toA0QuITBItmSx+MBZEkJYyqlkL6H3vjLyP9BtH2UJSmF3IDg4OsnHjxkhVVRgbgvU0sgdGqcSZjmcyiby8PKZOnUp1dTVlZWWmN00nEqLXlDZWBQKBqBgp0YZqItIARt5NUVGv39zS5otkGy4ixiNd1Ky6Ids82WBkY9Gst5LL5UKSpMjGlxYzFRUVRdqYaKNGvA6RLB0cHDSdLhpvPNcIQIhNHR0NjNJFzZBso1GyaUiULpqukg2i+4VRHCDCrGDCKG7Ux/D6dFGtvX19ffh8Ppqbmw3PkSqMSLZ0xoJ0STaNkJJlOea7yex7jDzZxL/rMdq5TmyPqGSD+Omi2r1MJbbSxm+NXM92kk1Mn9Wni6ZiW5J9EUgWIVm6qJGSLZ5KQ8NolWyjQaIXNtM7v6ko2RJVF9UTQeJOp1G1D/F8mk+TBpEwTcTIx6uQmIo0dvr06QCcOHECr9dLd3c3R48ejVFLpYL+/v7Iy/3/23vzKLuqMv3/OXeseUjNqaQqCQlkIiEJhA4iQ5tGJYosRFQQA0G6FViGZTshCraKLg20NqJ0N0JIgwKKyM8VBMkXE6aWjgTSGINAyEASk0DIUMOt4da9+/dHep/ss2ufc8+594z3vp+1WFRunbpn2mefvZ/9vO9r5WSTJ+yFOvWwOtn4cYj3Rh48qMJFi3WyiQM9IPpOtoMHD2Lfvn2mq4NmIlsphQ/49laVo8TQThHVgJqvlufzectiClZONvFYvBDZiskhJ+OFENTZ2Ynq6mp0dXXp382fjWw2q7z/sqAcFpHC7uDmnXfewfDwMN5++239M7dCcTOjY5j1jScw6xtPIDPqTlXZsJNhMcwaXohZwwuRYeFoCzJuFz6oxPtcCFVBItHFBphPAsV3qtn94M8375PEHJ3yNk7crH6Gi9oV2cLgZGtubgZwXGSzW3gnFosZKr1ykY1/H3D8HcLf1yqRLZfLGRbB3RDZEomEPqaQc5KWgqq6qFW/Ukq4qPyOcupkKyUnWzFONrEasEocMgsXNZt/DQ8PjzM3FINbTra2tjbU19ejvb3d0f5jsRjmzp2LuXPnmoaL2nGymc2Nc7mc/ny5UUGZf6fKySbeOzNzip33LP9OfrxhFNlkw49ZuCg52VyiGJHNTk42ET9FNlmlFfE7XFTsGOw42cQXgJgU1MrJBhiFMjtOtng8bupkc3KNOjs7UVdXh7GxMfzxj3/EK6+8gt27d+Ovf/1rwb81QxToxBXJUp1sYRPZ5OO1cvmIE6xihWKel00MnwCi62Tj14u3XzOnlSonF+COkw0wH5Tx/doR2URHnJmYxRgzONmsnJBhDxd185mrq6vD6aefjra2Nv0z8Z1l5WTjhKXghxMnG2Avh08xDGVzGMraH2CVA0OIYwjhdQG6XfgAqMz7XAj5/cKfNe4aMnMvi+MJs/6E3yc+XjMrHAY4E9n8cDQ6DRcNg5Oto6MDwPG8bOL7p1CfL1bx5OMlMZetlZNNFF/MnGzF5mQDjuWs7u7uRmtrq+U5OKFYJ1sxC79OnWzy81aMk63QYrKZKAQcK1wxODhoSE8hHyNQuPCB+N2lGBE4bolszc3NWLRoUVGi7YQJEwzPBccsX6JZu1Y9+3/961+xceNGHDp0yDUnmxgNJLYFUUQtdF+tkMf7YU2RIGoKciSj3fybhu9z+fjKijDmZCsFs6qfpeSzMqNQY5RXXMycCuLLnx+7KLJZOdkAY8ionZxsopNtZGRk3OoBYO+eaZqGGTNm6P9OpVLQNA3Dw8OWjhwrRAFIFABlwc2uyCYLmLwdWLV5P5Bf6lYChMrJVswzpcrLFnUnG28XqoG5uELlZrioKJirBmX8mVLllrSq1iz/zMnlcti3bx/GxsagaZpBZFM9226KRmF3sqng1ziTySgHVGF3somLIlu2bBkXjs8nbnaq0RHlgdlKPxCe9lsOyJNDLrLx4lBm7mU7i3b82XRbZKtUJ5tKGBHzcDY2NhoWFnk/amfiy0W2ffv2IZ/PI51OGybQsshmFkYoO9mc5mRT9ectLS2YMWOGq889PwbRdBFkuKhVtEAxOdmKLXyQy+Wwbds2ABhXjM9pTjbxu8MksnmBEycboJ5L85yI27dvLznvpHh/+TGlUimlu7iUnGxm4/2wocpRx4/VbmoAERqBWFAoJ1sxIpvYeAH/B/6qDlNsMH6Fi8ovA7NBhPgQ83ugEtmcONmSyeS41SBRoEkmk+MEPXHVyO49a2xsxKJFi7Bw4UIsWbIEDQ0NAMxfIkeOHMHGjRuVv5fzsJmFi4phdaqKKKrVfrGtih1t0OGiZvkcRMQXSykTK5XIVi5ONtULgZ8br/ojUorIJv696tkX87HJgwLVgNpMcAOAHTt24I9//CNef/11AMdCRGKx8dV0vRKw3HSy+SUE8bYs5sUQ9xlWkU0WUvr6+nDw4EHs2LFD79PEHFFeOdmI8BG1nGxRRX6/cEFbVYFdxM54Qp7QqRa2oiyyiW0zKCebGO6YTqf1Mc9f//pXXWTr7e0teCzcscTHnc3NzYbra8fJlslk9MU2/l1cdFOFiwbZn8fjcf04+bgpyHBRq4gkp042MdzTbDHZzHm1e/duDA8PI51Oj2s3Zk41ft3k97mXIpsq73aQuOFk4z8PDAzo1TrdzMnG58GAOnLMDSdbWEU28fk1m0s7+j73Dq38EN0xVk42J4UPNE0zdGZhE9ncDhcVv7uvr09/SckvAzMLtCh+ySKbKJaZTaj5i1uuniR2SHKooeiy4fsSr5eTzqy+vh4NDQ3QNM00wT5n7969yGQyyuSf/f39hmspXkf+M7+WfPArr2rK56EKEQiDyOYkXFS8F3y7UkQ2HrYgvnCiKrLxdqGa+JjlYwPME6/axUpkM8vHBlgXkpF/Hh4exq5duzA2NoaqqipMmzYNJ598snL/Xg3KvXCyef3M8WvMB2by/Q+ryCYLKWLydd6mxPAjXkEV8O/aEsHgdk42Qo34fhHD/err6w3jBxknIlu5houWupBdrMgmzmH4eICPm/mYh4ssJ510kp6/0wqxwABgzMcGjJ8XqXKy8fdPTU2NnuONL/yIz6xTJ5sXaJpmKBoEBB8uapbD2mlONlF4deJkGxoa0nP9nnDCCQXdV07CRUuJ9gGM8zlx32ER2cTraacitmourepn3czJJi6+W4WLOnnPptNpwzGGVWTj53L06FEcPXoUmqbpfVxRfberR1emiGGWIqpY/UIiG2CcYPr9wFuJbGKSRbf3MzQ0hJdeeglbtmwx7FN2sgFQdjyiyMb/VhUuyjsJHkPPO2uxE5dFNlWoIb9H/O/Fa1TsPROTzaps3jwclA9ARPjqDv8OHu4nTib5Ocsim9nKl3gPVJbhoJ1sTsJFgePPXjGDLzkvm7hiGZXJuRMnm5XIJp6vl042GSfhouLq6+mnn46enp5xlu4oOdn8DhflExp59Vp0DPN/hwGr8BLu8BVFNtGdTE628saLnGzEeMQwp6GhIeTzecTjcVRVVVmG0TgR2cRwJbNtwupks1psEdumn4UPgPGLbrzPb2pq0o9l1qxZtgQ2/vdiX2omssnHLv7Mj6m2tlZ3xqkq0KoW3oII/zeraq+ilHBRea5p9syYpeOxGy7Kr6FYRM5JiOmuXbuQz+fR3NxsyPkq/02hcFF5IYxTiptNlRbHi5RIxSLeU5UYaMfJptrWbSebKsKlFCebnCImrPMqfo67d+8GALS3t+vzlWLm/zQCsYFZMtBkMql/zsUOO/mseEMrRbApFlWH6UX+EpXIJv7fzMkGqG2x8uQPUBc+4P/nglMmkzHcF279Fu+nmPCRfx8fiPCXkBsTtYaGBsRiMYM1njM8PKzva2hoaNzEnQtwLS0t+nUYGRkxVLPlHQH/btGaXei+h0lkK1YkKcXJBhxP3rt79+6CZc3DiCiycTce4FxkK/XFbWaHB44//3z1WvV3ZsKaSnzjuQ5F5D7Bq0G5m042v8NFeZtQ3X9xkhT0gJRjR2STqx3y+0IiW3mjcnWEZUJVTojvFz4JrqurMx1fcJzkZONESWTjaUAOHDhgWv1YPGYvRDZVOJ58T+QxTVVVFebNm4eFCxfqhRDsoGma7marq6sbd6+sRDb5PtfU1BgS5gNqkU1cCA+iP5fnc1b9iipPsJN+SNyX2TNjJmrbDRfl19BO3mEzJxsAdHV1KfclRybZrS7K5zBuimz8s7C8E0Qnop0waHk8KwqGPT09+nal5mQT0w4lEgmlq7IUkQ0wjjfD7mTj90a8xuLv7UIjEBtYhX7y342OjhomW3ZEtiAG/VZONjePR+4Y+AM8NjamXFWQRS/AaPtVKet2nGzc7SXn1pMrmsrXQLyv4nmUco1isZiev0R+iYhFDQCjm010uTU1NRlCWcWBk1wiWRX2Z3bfVckegxbZxJAw8XMR8T6Weo96enoQi8Vw5MgRPWQ3KqGigHESJObsE583jpcimxvhoqqKoionm6qfJSebOfL1Ug2uwyiyWeVwUTnZAHv9hxNimobTp07A6VMnICa8rzRNQ29vL3p7e0NTjbUU9POZNAlxMJyu9eF0rQ8xqAWEoFE52UpZODS7z5UOf7+8++67esJz7mIqVWST75NbOdn8mFh3dHQgmUxieHgYb7/9tnIbUfzww8kGmKePEK9tc3OzLhI6gf+NqnqiPGayGk+oRDazdBXyoomf41P5vWn1LlE52Zzccycim9OcbPLY2k7eYdW+xEVOFaq5lfhdZuGiLS0tANTRPnYRnwUxjD0sIhugXog2m4dbLTBOmjQJdXV1iMViyrG8Hfj38zE176OcONnsXlM+7he/K2yIx9XW1jYuPN7pcYfTrxcCxAtpJZilUimMjo5idHRU/5tCZbDDKrJ56WQTVXIxFp1fJ/5gixVz5DwWViKbPKFOpVJIp9MYGRnB0NCQLprIZab5S0DuLGSbultuv6amJhw+fBiHDx9Gd3e3/rkssvX19ekDWF55KZFIoLa2Ful0GgMDAxgZGdGvXyqVsqwSWei+h8nJZlb4wOx45FWhYu9RVVUVJk+ejF27duGdd94BEF0nm1hxFjh2r8XrYifBNOBuTjbGmL5fK5GNi+uJRKJg6KhqkEc52cyRr1fUnGyq8JLBwUGMjY3pIht/j7g9KatKxvHQPy0Z93kymcQVV1xR0neHCf18BgeBVavwUPq1oA/JErltAKUtHJrd50qHPz/8OWtvb9dX+c3C14DiRDY3nGylhmjaJR6Po7u7Gzt37sTu3bvR3t4+bn+ljrGtzl0u3MVJJpMYGRnB8PAw6uvrXXXn9/b2oqamRumA4/MfVeiifP61tbWWeci4kSGbzWJsbAzpdDr0TrZSwkUBoxHA7BzN2kMhUa8UJ5tqLGYnnJW73sR5htmi2YQJE7B371693arGiYUQ3/difuUwiWzxeBzZbNZWuKhZ6C03GCxYsAC5XK5oQ4DsZOPPr9vhosDx8WZYXWyA8VxUhWDIyeYSTkQ2AAa3VKEGxBPFqkKmvMbvcFE5Vx3fn+plYJZUkX+fnXBR0bXAr++BAwdw4MABAMCUKVOU+zNzsrkdcmSWl010qgFGJxt3vTU2No4ryqBysnEKiWziOYVJZHMqkshtoJR23NPTY3hZlYOTDRg/GOPtRiWyiIM7N51sw8PDYIwhFouZintyzpZSnGxeh5fwfcsJbIuBnGzWmK18c9555x2MjY1B0zSDixmgcNFyh3Ky+YM4Hujo6MCsWbP06+tnuKi4EGtFqSGaTuju7kYsFsPAwICysFWpYatWIpt4zcXryN1mfGzppsiWTCYxceJE0+gCs3eIuL2maaiurkYqlTJsb1ZhM8jwfyc52dwKF7UyaxRystnNyVaMk01cwDKb64rX4NChQwCMOQDNxJpUKqW/v4sNGTWb14TpnaCq/ms3J5vs1IvH4yXNU2SRTZ4Di9uZzdHtPotcNI2CyNbS0jLOZSv+3i7Bt7aQIj6IVoMDVbhooQZfXV2N008/HXPnznXhSJ2hWnH0IlzUysnGQ0bF4xF/VllRVcq6KlxUXMXgIht3sXV0dOgdOGBcTSnkZHPrGtXX1yMejxucF2KOtkmTJgEwF9kAuCayqZxsYhGPoEU2u5Nk+aVZyj2Kx+OYNm2a/u9ycbLJ4ip/Hs0s5nKCWieYDQDFogeqwaP4jPPnThbZ5DDSMDjZgNJDRv3KySYPbqLmZFOFTADAvn37ABwLP5Kr25HIVt6QyOYPTU1NSKfT6O7uxsyZMw19uJvhoqqoBXkbO242sT143Q646ARAr7oo4qWTTbzm4vfz8aIXIlshzN4h4s/V1dX6v/m4XJWnWk7LELSTrVAubbecbHaeF6fhouL4amxsTB8HWs1ZZfebONYxE0vEedm7774L4HgoqHj8crXweDyuGxG2bduGXbt2KfsUK8TvEo8jTO+EQqYHkVLdY3aPRXSyif/nuJGTraWlBd3d3Zg6dWrpB+4REydOREdHB6ZPn678vdP2E3xrCylOnWyiyGZHpRUrMvlJGMJFRZHNyskmC1/iQ89VfPFlI+dwk6u4yg+2lZPNq4mapmn64IevePJBUG1trf6C4UUNRkZG9JUg/pLigySx8AEPjxVRiWxivjuVyCaKM0FNSsWXuippqoxZ4vti6ejo0FeB5Xj8MCNeN7kEujg4t1M51Q0nmyw8WeVj48jitiiyic93GHKyiY6/UkNG/Zo4iINpMaeo2TZhGJAC5uElXCTkedlqa2sNEwlV314smdExLPz2Oiz89jpkRo+37dHRUaxatQqrVq0yvOeiin4+P/kJjrAYFg6fgoXDpyDDwtEWZFSFD0pxNZvd50qnuroaS5YswYwZM8a9c+XxhYhTkU1VzEbexqnI5keuxEmTJkHTNBw5cmRchXg/nGxiDirguMjW399vWHjzW2Qzy7EmRvJwx4h8DoBRGDILjfUa8T1ZqE8pVWQTnWyF9uG08EF1dTWqq6uRz+exZ88eW21CHk/xsY5VXi0xz5dYtE3+vVz5M5FIYNKkSWhoaEAul8OOHTuwcePGcUWNrChXJ5tX41lZ8OTfK4dty3nMxWOxe01jsRhmzJihzOUYFurr6zFr1izTeQo52VxC7KS8ENmCwq9wUbljkKsEqjq8QlZU8aHnP4svG/GcRCcbcMzOL7s2xM7Fyskmi3elwoW0/fv3I5fL6S+hxsZGxONxXdjp6+vD/v37wRhDQ0OD/rmZk00Ow7NyssmhuLLIViivoJfwY+Ev30I5leR2W2o71jQN8+bNw/z58/Xw3Sgg3m85Cbx4v8WiB2b3mLexYgbkdpxsZsir1rJ4JX9eyMnm9rNb6HiLxa+cbKKgnk6nlfdfvOdhGJAC5jnZeF/KqaurM9wTs1CqYjk0OIpDg+OFtEwmM65idJTJZDLI/N/zeghJHEJ4xzRu52QDzO8zocbNcFEzV41YNMCOyOZnuChw7J2pSvchHkupTjZVESOzd0dVVZX+Hj906JC+XVicbOICJhfZVG3Ey/7cLuJxFbqHboaLFjoeeXxUKCebpmm62WD37t36mMxJuKidea6c9qO2ttYw/xKvkXxPk8kkFixYgNmzZ+t5tffv32+6L5lCIlsYihM5cbJ5nf5E/h7etsT7K5tagqz0GzROz5UKH5hQjJON/xw1kS3IcNFinWyyyCbmEuOdAa+6Eo/HlQkMrZxsciiYm0JkR0cH3nrrLQwODmLbtm36Kg1feayvr8fg4CD6+/v1XHI8FAE4PkgaHR3Vj5t/xl9K4rmIP8urIfycVCJbUIjHnc1m9cmrXZHNjXacSCTGTeDDDs9pls/nxznZxPttVVmUM3PmTAwODhrCq+1SSGSzykUpDx5l8SqbzaKqqsqWkw0wDuK8GAhYFT/IZDLYunUrent70dbWZvodfq/Op1IpDA0Nmd7/MDrZzN4NjY2NOHDggP55bW2t3p+KiYXFfH9uk0wm8bnPfU7/Oero5zM0hOQ9a4I+nIJQuGjwuBkuajXhj8VihgmzFYXyU3kBP0enDqNCyC4+8d9W77empibs379fr3oqpljxEjsimzgO4FVORbcTRw5xBAqHbLqNLDhYUap7io+5rMZeYjSLiJ0239bWhrq6Or2gmvh9KkSRx04+NtX+5fsqiuWqe6ppGtrb2zEyMoI333zTkUNcFJ3lcFTVsQWB7GTj1xYwNw0U6x4rhJmop5pvl5qTrRygcFGXsJuTrZjCB0Gishl7GS4qd8yA+ctHXqW0Er74NRYdc/KKXiqVwqJFi7Bo0SLLHB+qnGxiXhBRzHKjM0mlUpg9ezaAY7mE+KqnKLIBx3LJDQ8PI5FIGCbpPJxCvK68HYoTZztONp7vLkwim3g8u3fv1gVsfn1U24uE4SUaFPy+8Rc2f05U4aJWA6tUKoXm5uaiJgVmEy6n4aLic8nbNXeWWjnZ5AmIly4xKyfboUOHMDAwoAvlZoh/68dghR+z2f2PgsjGr1kymTQkpzVzsnl5XfmEQFVVMIro59PaiiicDYlswWOVI8qpyGb1XlKFTeZyORw8eNB1YasYzML43HKyqb7bqo/jYyaeF8uvHLN2Ch+ITrZEIoGFCxcqF8P97s9VOAkXlVPY2PkbkcbGRpx55pmWeasKiWxWbV7TNEPeYcCekw04dk525rny/ZFFNtXcS9U/iCYWu6icbOL8MwzvBCvTQ1A52TiqnGxy+hhystkn+NYWUuw62cTCB1buirDgV7io7DATB8CFnGxySJDdcFFV7i7Zpixi5WQDjBN+tzuT5uZmw0s0nU7rL04usvEXQ0dHh2G/mqYZBktibqViRDbx/2EQ2YDjx8uLVkyZMsX02nvhZIsqch4F3h5U+Yq8usdyoly+f+6gsyuy8fYvngdfzZZFRBE5V2NQTjbVAEqFH24rEVVfISKGiodhQAqY52SLx+N6/sREIoFUKqV0PlRyn1DuuJ2TjXCO2cKK6NAoNVwUUItsu3fvxpYtW/SxgrhvwF+RzSx3WqmCnypUi2NHZOP7D4PIxv+zGgeIiP25X2kVZIrNyVasm7JQuhZ+H+Uq8nbbWXNzsx7aLCa0V8EX4oFjczenTrZkMqm/o+XfF0rnUarIxvcTNpFN5WQD1A5NeQHDbfeY2fxJ5d702lUXBcjJ5hJOc7Jls9nIimxehovm8/lxHaSYk63UcFErJ1shrJxsgLciGwD09PToKzxieeu6ujrDdenq6hr3t+IEWUwUbFdkk89HXoENWmQTHVnV1dXo7Ow03Va8VmLelkpEvG/pdNpR7ge3UO2TDwbjcety4+Lggw+MEomEUnyzGhyKxxBUTjazSpgyfq8GTpgwAbFYzDQcWtM0NDQ0IB6PW4YU+4nVCio/j8bGRsOCg1/Oh1wuhw0bNmDDhg0F73UU0M/n+ecRhbMxE/UBElf9wkxks+vSdRIuCqid2WaCg58TQDMhzA1nZTEiW3V1teF6BiGyiccVi8WwYMECLFiwwPaz6fU43A5OcrKpngW32yB/L8tONrvCMnez8Xd9IcRzciqyTZgwwTTaxMwcwZEL0NnByskWlvlBofmYaltysoUDysnmEk6cbDx0j+cciqrI5uaLQPwuOT/U2NjYOJFM/LnUwgd2H4JinGxuXiNN0zB79mzs378fra2thuOqq6tDf38/GhoaDOFQHHHyKw6cinWymXW0QSEez5QpUwqutKl+rkTE+1ZVVWUaXgP4K7KJRQ+sBjkqMS2ZTBo+t7OYEY/Hx4Wc+u1ksyuy+e226u7uxsSJEy3vw/z585HL5QLvBzhmLudEIoH6+nrMmzdPDz/y2/mQy+Xw9NNPAwDOOOOMyA84xfM5JQIBo7IrgDEWiMBSyZiFSYrPn1V/U4rIxvchL3QEES5qFjbrhquuGJGNV7N/5513AATvZAOgHM9aEYZwUZ63OJfLFdy3qs9xux/i95GPceT3o539NTQ04PTTT7c1X43H4/r1dyqyqfLs2Q0XldOH2DkvcTzF7xX/LCzvA/mdZdWu/Q4X5f/maXvEcaB4LOJ7NupjHieQyOYSdnOy8ZVzMW9X1EQ2LwQk8bvkFcZiCx+oHno5LBWIjpONf193d/e4z1tbW9Hf34+enh7l34mDJZXIJtuOzVZOwiqy8f3X1dWhvb3dcluznB+ViOxkkwVrwHuLdyGRzQrxmRPzbqnEN7sVsYJysjkNF/Wz7Raa7PkVumoXeXAnXzOxJLxXk7KYpmHepEb950ogBoZ52qD+cxgxC70BiuvjKvE+l0ohJ1uh8YT4fDrNySbnaZQ/D1O4qN9ONuBYlESYRDanqBZNghjnJZNJ5HI52042jhfuKe7iz+fzGBkZ0cdVToVlu071RCKBkZER2yKbpmmora3F6Oio4d3MUc29VPdUNLFks1lb7dfKyRaWMY0TJ5vXIpt8TeTc56KwrLpvbh5LFHAc+u3RcUQeUXwodFFTqZQhJDJqIpsXoRWiIKaqdKhyzxVysgHHOgAzZd2pI6SQk020KvsdftLT04OJEyeatiU5XJRTXV2N7u5uQwgpYO5kk8NFOUGLbE1NTTh69ChOOOEEW9Z3TlheokEhO9m4wB10uCjvH62EMcAokKicbGNjY7adbPwY/HCyuREuGvQzF2ZUfTWgvqdihT/eVty491XJOH573Zklf0+UqNIYfpveGvRhWGLmCgCKex9U4n0uFTMHl12RzUsnW5jCRf12sgEwFIzyS2SLx+NIJBIYGxsr+fqHwckGjE9RYwYX1bxsfzwv89DQkEFk80pYVpkZCs1zFy5caPhbEVV1UbPtuIlldHS07EQ2J042O4JcMVjltJbNLOK2YlXYMITg+gU52VyCNyY7gpk4KBArI4YRv8JF+b5yuZw+0edipJmTzSq5NYevqMgPP3B8Ih8lJ5sZYm4hFWZONk3TMGPGjHHby2FtYQ8X7e3txeTJk221SXKyHUd2svFnQrXy74fIxhiDpmm2Ky+L7bRQTrYwOdlKCRetxLwWTlENygH1Oysej+uTHDEXIFGemDnZxITdhLeU6mQTBQw7YWh2nGxhqi4apJOttrZWH3vX1NQUvX+n1NTUoK+vr+S8nmLORf6eDcrJZmffPIrE64iBqqoqDA0NGSKFvGrzTnOyiX+jwm64KHB83mi3+IH4ffznsIlsch7RIHOyiYYY8djEn1UCs3hNK+k9SyKbSzgR2cRtuL01rIgPLJ8Ae/Uy4PsSqwpykc3KySbn3RG3qa2txeDgoD5YEH/n1LVgNyfb6Oho6CbCZjnZzJCr9JgVPuAELbIB9tsj5WQ7juxky2QyAILJycb3lUgkbA/MzBxrovjmxMkmCvpBOdl4/2LWNqkCZmHEd4PYflXvWk3T9DYXlmrJhHeIzyBjzLNFQ8KcUkW2VCqFGTNmFBw/O3GyhSlcNKjCB8Cx858/fz5GR0d9LWQzd+5cg8uqWMS2w/vzIEU2O/dQFC286of4uF8sfuCVe64Ykc0Ks/e5CquFTBVRdrJZ5fPzstiA2F5Vc2AxTxsnSME7SChc1CV4Y7IzOBcdFWEOFQXUE2CvnC28MYr5mI4ePWo7J5vquE466ST09vbqSa75qpEYGuTUycYdN+JngPeFD0pBFNYKheCJ2/PQ17A72ZxA4aLHkZ1sQRQ+EO+BU5FNPH6xkIxTJxs/BnH100uRTTUAlEN0zdomhYsWxsnKN3CszWSzWVedbEOjOSz912MFAf7fF85Gdar8B5dDLIZzR+YCAP5fegtKmy57g9gOzBbwnFCJ97lUzBxcTvLkqnLTyhTjZAtDuKgbDiOz77ZzjWtra/Uxs1+kUilbY9NC8EWTsbGxQJ3JTkU2ThAim1dONjmNR7E4SfMjGwRk8vm8IV+bSmST9xs0opON55sTPxfxQ2Qzy0Hf1taG/v5+vYK7ON+uVJGNnGwuUWy4aNhFNm7t5CsIosjm1eoH/37uPhNzsjkpfMC/Ux4sxOPxovLv8O8VJ8gqFT+bzYauiko8HtdzbtlZKZQTpYa98IETKFz0OGYim5852UT7uWzXL9Q/xmLHq3iZiWxOnGx8W68s7aLzjjuDObKwaXa8YXPJhhG7iZI5/Dlwc1LGwLD3yJD+cyXAAOxFWv85jPAiHXzCVuqCWCXe51Ip1clml0Iim9gHB1ld1E8nmxuiR9hJJpOBi2xtbW04cuQIWltbC27rR3SFSmTzOiebuK9Snmmn4aKAucj2l7/8Be+++y4WL16Mmpoag2gnX/uwiGz8enLndX9/PwB15V2znGxunov4PIk/t7e3jys8RyKbs/MNR4sLIbyxNzQ0FNxWFNncWLnxGnlA5HW4KIeLQYXCRa2cbCpk14pTJ5u4Aiq+nOTy0XaOxU9OPvlkzJ8/31YIgKZphpdV2AsfOIGcbMcRcygkEgmlw8APV6bcxziZCPBt+IBaFNny+bwhx2Oh/buZ+F4Fv95i2ANHdc1VkMhWGDEnm53rxdsLXdvKQAwZpXBR/5HzcHL8ENlUC0jiNkGIbHJ/76WTzc6iU9Th7SfI8P+mpiacdtppaGpqKritH042Pu5X5WTzai7HFz75on2xOHmfFxLZBgYGAAB9fX3jwk/D6mSTI8q4yFZfXz9uW7/CRTl2i9Twvj0s19QvKFzUJVpbWzF58uSyc7IBxx4occXXaycbR0y6KlYmkbd3WkVFjrsv1skm5/gRJ/ZhFNmchgCk02kMDw8rnWzyvY+SyEY52Y5TW1uLWCymVxSTX9BiziIv23IikdBzGTLGbFek4tsMDw/rA0YuFnIHLh9oO3GyeZl/TnTRiM+N2eRPhnKyFUbM4WLnesn9F13b8ob3N6LIRvfcP8T3bj6fH5dzyA8nG9+fuPAhH5vXkJPNG6K2aFJu4aKyM7zUtuYkXNQqJ5sYajk0NDSu8nhYRTYx2mN4eFi/rionm9eFDwBncyjVvLmSoHBRF7HbkciFD8KOLGZ5NSiVvy+dTusTZVUiSv7S4Ksldh03xQpEhRR5cQJttq8oIb6U5XsuhtwA0WjHHAoXPU46ncaSJUvGVQOSn3XA22sl9jFiDkanhWT4v8VS7pwwONmA4xP8bDZrcJU6dbJFSdj2G6fhonIbomtb3qgKkET5XR01ZGeGXyKb7CAW73+YwkW9crI5XcCKKlFbNPEzXJQbJuLxuOc52dwW2YDCfYSVk000QGQyGUNfEGaRDThe/fTIkSMAjkV6qa6ruMDo1SI5/65EIlGw7ZDIRuGivhNFJxvgfbio/KKJx+N6R8o7TPGB5uGkXGSz25nIvy/FySbCJ/bFfHcYUYWLqgYDPLllVKBwUSNihTazVTDAv3BR8fmys095sMWfQflzq4mbnyKbmJdNhMJF3UPlZLO6/1GblBGlIYpsYStSVAmIYwaV6OWlyCYi9sFBhIuaFYDwyskmunuiMPcolqiNw/1wsonpQLibzeucbG4twovXpJBYYyWyiZ8NDQ2NqzweZpGNH9vhw4cBqENFgfEuYS/DRe18Z6WLbE7bUHhaXIQRJ7VReNGZOdm8DBdNpVJ6lSBAXVKZi2w8zMzuYLnYfGLyoFC1H/F+Rk18khGdbKqO2slqRpggJ5s5VvkcvLzHspMNKM4ZDBx/nsXPeX9SaP9+FCwxqzBK4aLuId5rO9crapMyojREoZtysgWDSmDyWmQzK7QAhCtc1CsnmxgqGqUxm1Oi1p/7IbIBx8f03GHmdU42ThAim1iATv5b4JiTTR4bhFlk433i0aNHAdgT2bxKhyDO/QpR6TnZKFw0AMRQpiiLbF6Gi8puFL5vOQeaWKrbaeED1X6tkAclqr8T72fYX+yFEEU2VTlyJx1tmCAnmzlmlYm8bssqJ1sxIpuYYNdJWH6x7tZiICeb9zgZlAPeTMo0aJjRXqf/rH+uaWhra9N/jjr6+eTziL1zCDO0Y87yMJ+Z6GSTXbxOMbvPhDXxeBzZbNZXJ5ssZoU1XNRrJ1sU5h2lEDVnsl95gquqqpDJZHQnm9fhopxS25umaXrqIN6ezfoIcV/ZbNYQOSaKbPl8Xo+CEtPgiIRpfiAvSpiJbNzcIVb0FP/eDfh1ISdbYZyabaI1mw4xnZ2dePfdd00flDAhToDz+bwvqx+8Y5Q7UvllUF1djf7+/nHWX7v7Ue3DDDsdcDmJbKLtWlXwIKoiGxU+MMcsXNTr6yTm5HE6ERDbn/iz7GSzoljhvRhU+aB4/gwO5WQrDfE9YWdw5yS02C7VqTjWfeHscZ8nk0lcc801JX9/WNDPZ3AQWLUK69Jbgj6kgojPoNkEyy5m95mwRl68BYJ1sgVZXZSPq/m+/XCylTPkZFMjFz/wS2Rz43nmIpvZPsTtkskkstksRkdHTUU2AHqVTv5dokDF/x0W5GuoKnrAkUU2LlK6RTFOtkoV2QBnzzTNSF1i2rRpOO200yIxUZJFNo4fIlsh+y5PHC6KbE4LH9g9DzsTcfHlHnUBx6rwgfhzFNqwCIWLmmMVLuolbjnZ7PxstX+zf7uJqvqV1eRPhpxshRFXD4NyshHhhXKyBY+qyE4hl0qx+3DiZAsiXBRQV0At5VhUImaliGxRc7IFJbJ5nZON40Z7c7IQapaXTRbZBgYGxn2XX/fCKeJx1dTUWPaRqrGPFyKbEydbJY9bnZxzeFoc4Rt+iWzi95klL1c52YBj8fV28ymJv3eST6xSnWz5fF5/KZeDk43CRc0xqy4adZGtkJPNT5FN5WSTJ39mTjYxkX/U+xev4c85b09U+IDgiM8g5WQLBlkEEvtDt56/qISLAuOrgJZ6LPydx8duwHHRodxFtqhVixbbgZftT8zJxiOAABiqnLuBWTGqUpCvkVV/bVdk40428XjDKrKJx1goAs5r9xh30dmJxPMzSiSsTJ482fa24e6pCE8QB0Piqq+Xqx9m4aLyA8tFtsHBQdNtrPbjSGG20VmIk/modybxeFzPeccHauXmZAvTSzQMmIWL+imy8QlGMeGiUXCyqQof2BXZxO2i9tz5TSwWG1et1gzZgezGu21oNIcL7ngOAPDb685EderY/rPZLO666y4AwNVXXx35Ca9+Pvk8PsVi+OjobADAb1NbUR3wsZmhEtmKfebN7jNhjZnI5mYhpWLCRf12ssm5ptw6Ftm1BFSuky3s4zy/hB0upo2MjGDnzp0AgPb2dtdFNq+dbIWcWWLxAxH+71QqhdHRUeWCZVhFNvG4rEJFxW29EtlaWlrwnve8x1G4qNm/K4Guri7b29KovgJROdm8eFCKzckGOBPZxN87mahWmpMNODZQGxsbU4ZSlIPIVg73yE3kHDF+iWxigRO+z1KdbGK7DJOTTVX4QJ78mYls4ueVOFhxgpPVXNnd7AYMDG+8PaD/rH/OGN555x3956gjnk8eGt5gx97JYT4zN51sZveZsEZe0HE7HxsQficbcHwxQCWylXIsosjG871Visgmj8PDlFtLhV8Lv7xNDA0NIZPJAACmTJni+n78ENms4Pszc7I1Njbq7yz5+8IqspXiZPPiPOzeUzsFA4njRGs2TbiCSmTz4kFRVRctlJONi2yiGFDoheqlk62ccrIBx17KZgJmQ0MD9u3bh4aGhiAOrWgoXNQcOXwlCCcb72OKrS6q+jzKTra3334bb7zxBubOnWvoF8M+cQgaJ2EKYrJkPwTl5cuX6z9HHf18hoaQePBXQR+OLShcNHisnGxu4cTJFiaRzY38cFxQyefzGBsb0/s3oPxFNrPwv7Did0423r46OjpQU1Pj+n7kc3CjvYnPZaE+olC4aENDQ+RENvG47Ips/PyDfAYoXNQZ0R8REo4xCxf1aj+AfSdbKpUyVIOxc1xuOdkKiWzl0JnIDiDxnLq6utDe3h658yQnmzni9RBFNr+qi+ZyOX3iY3dgxgUnxlikcrKJEz4rke3gwYPIZrPYu3evntuB2m1hnK6gJhIJX0S2WCzmiXsgKPTzGRxEJuiDsYkodFPhg2AIQmSzcrIFJbbKeVDFYym1uigX1kZGRgwiW6H3YdTRNE1PdRKFd6Vfwo6YAkbTNM/eQ5qmIR6PO45KsMLJuN1MZOP/rqurM8wboyCy8X6xpqam4PmHqaIniWzOCE+LI3zDr3BRO4UP5P1qmmbIJ2DnAXbLyVYp4aIi5dBhkpPNHLHUd1BONqer7XxALf+NEyebnEjXy/Pl32238AG/HocPH/ZkIlquyM92oWtm5p4myg/eFvzs4wgjsrjkp5ONT8LD4mQD1IUPSh2fyHnZKsXJBhxvR1F4rv3ME8znSx0dHXokkBeI6WTceKbcENlEkVk89yiIbM3NzZgwYQJ6e3sLbut1TjYnUE42Z9DIvgLhD2hfXx927Nhh+MxN+EuRh+6In3FUnXV1dbWeX8DOA1xs/p1KdLLJIls5nBMVPrCGh694HR4uIgpPxUwE0uk0stmsYYU+kUggnU4jn8+Pa8cqzFY23UblZLPKycavRzabxdGjRz0/vnLB6YKAX5OyXC6HTZs2AQAWLVoU+Xupn8/oKGYFfTA2Ed/7fCJG7wJ/CdLJlk6nDYnPxd+FQWRz61jS6TQGBgb0vGyVJLIlk0kMDw9Hon/1U9iZNGkSDhw4gKlTp3q6H35ObrU1JxFIfJ9iSg6xMnsymURNTY2eCsfs+ofpnZBMJjFv3jxb25KTLbqQyFaBNDQ0oKGhAX19fXrJYy86n3Q6jalTpyKVSumDC7siG8fOA1ysY0Xet+oaiDb1MHXQxSKHFZTDOVG4qDXc5h+Ek01ceXQy2ZoxYwaOHDmCxsZG/TNN03DqqacCsC++q6pNuQ3/bl5RThb3xLB8wDhQ5HlEqN0Wxungzmxhx21yuRwef/xxAMApp5wS+Xspns+JiEaeQDGcibt8yuHdFiWCLHwgOtl4UQC33GNOka8D4I2TrZh8p1EmSk42P0W2zs5OdHZ2eroPwFuRzYmTTS76wY9JnDea5fCL6juBRLboQiJbBZJIJLBgwQL09/dj3759OHjwIFpaWjzZl2yFLVT4AHAushXrZOMhZYXcLslkMjK5IAohO4DKIdk6hYtaI05M/BbZ+OQikUg4ujeNjY0GgY3jZIBXbBi5U8TvzuVyhj4llUphaGjIVGRTrbwSapyGKbg9KdOgobupWv+5EtAAdGNE/znMJBIJQw7IYt8FlXif3SDIwgfiuCaXyyGRSIQqXNSttCyiyCZWGqyE94dfiyZuEFb3VCmoUniUgvhc2l0wA6BHOPD2z8NXoxYu6gR+3LxPI5EtOoS/t/o/brnlFjz22GPYvHkzUqkUjhw5Mm6bt956C9deey3+8Ic/oLq6GpdeeiluvfXWsk8KWgyapumOtpNOOsm3/Tp1sjktfOD0gbdTZIFPlMuhMxEHo+VS0ZCcbNaIuXL8LnzACWKl3S+RTRTrc7kcksmkIUHw0NCQ7rDI5/Pj8rUB0Zg4BI08KC/Ud9XV1QGAa9XWqlNxPP/Vv3flu6JCtZbH81WvBH0YtkgkErqLDSj+ma/E++wGfopsjDG9P+X74H3w2NgYEolEqMJF3VrcUolsleBiA6KVY7MchB2ZIMNFxaIfo6OjBpGNH4/4ni9XkY0TJpEtqtfULyIzsh8dHcXHPvYxLFmyBHffffe43+dyOSxbtgxtbW147rnn8O6772L58uVgjOHHP/5xAEdMqChU+ADwz8km799sX7W1tTh69KgnpbH9JplM6qEU5dI58vsmJ7snjiGGr/jtZOOUs8jGv1+8vnIYE/+MTzx5gZehoSFfjq8ccCqmd3Z2orGx0dNk0ER4kPsYehf4iyyyiU4TtxDvqVwtm/fBvI8NKlxUFtkYYySyuQBP8G8nH2vQlIOwIxNkuCjfbzabNeS0BY6PscrZySZfHxLZokNkRLZ/+Zd/AQDce++9yt8/+eST2Lp1K3bv3o2JEycCAG677TZcccUVuOWWW9DQ0ODXoRIWxGIxg3tMtcqYTqcdCUGlTKbt2LqnT5+OyZMnl8VkTdM0pFIpjIyMlM3EPpFI4MQTTywbZ57bBBEuGovFDHlxKkFky2az+gRPlStHrrQ6YcIE7N2715fjKwecrHwDx/q6clgYIexhZwGP8A65uigvXiVWi3drHwAMruB4PI5EImHog4MOF+XXQUwV4IXIVimROt3d3aipqUFTU1PQh1KQckxhwp9jt+ZBTkW2VCqFTCaj5/mVReZkMqkLceIzUQ4iW1idbDTnKkxkRLZC/PGPf8TcuXN1gQ0A3v/+92NkZASbNm3Cueeeq/y7kZERQ4hBX1+f58da6SQSCcsKYLFYDOl02nYlIaeTL7O/NdtXLBYrC4GNw0W2qL5wVIjPPWFEHPT7VV0UgD7pAYIV2fxwOMoVRmWHBQ/VFd0dzc3NushG4aKFCTosfDibwyX/8UcAwC//aQmqkuUvjA4zDRePHqsx+svUq3BPLnEft0S2SrzPbiA62UZHR/VxNQ/bdgNN0/TFG9nJxu8/F9lKzc1XLGZ549x4D3HxIJfL6S7oSnGyxWIxz3JHu41YiKVcxtm9vb1obGxEc3OzK9/ndN7G2z7vV+SxpaZpmDNnDoaHhw3CPols7hL0OCxqlM3Ifv/+/ejo6DB81tzcjFQqhf3795v+3fe+9z3dJUf4g50Hs7q62rbI5rWTrdxIp9Po7++nDrJCCCJclO8jDCKbHwKWHColipkqkS2ZTKKpqUmfMNKzWBgniZK9IM8YXtlzVP+5EshDwyusVv85zLglslXifXYD8T3Dq9bX1NS43v/GYjF9wUh2sgHHK4xyEcpvN6tcXVR855bq+kgkEnq1+4GBAQCVI7JFjYaGBgwMDLjq5AySeDzuqsjpVKyprT32HuLFolRjS5XLsRzmeGEK0SSRzRmBtrhvfvOb+sqU2X8vvvii7e9TvcB4uV8zbrjhBhw9elT/b/fu3UWdC2EfPhji91gF71DtDCBKmXxVYofBQw6i+sIhnBFEuKi8jyAmAvy8/TxXWWQTK7/JIlsikdArqNJEqTCV2FcT9pHFHGoj/iL2c1xkq6+vd30/4vtM7GdFkW1kZAS5XG5c1UE/kJ1s3FHnVnvk4zcS2cLNvHnz8Hd/93fkUjfB6byNO2J5u+fRUIXafzk42cKaky2q19NPAn36r7vuOnziE5+w3GbKlCm2vquzsxP/8z//Y/js8OHDyGaz4xxuIul0OhKJNMsJ/tKxekB7enpQVVVlee84fCA1PDzs+F5WYofBbdeVcr6VThDVRYHSCpK4uf8gRDY5XJR/Jq++nnjiiTh48CBaW1s9P8aoQyIbYQXlZAsWlZPNzVBRjtmikSiy8XxwNTU1gVcXdXthK51OY3BwUA+bI5EtnPCQUUKN03BRbrzIZDLI5/O2oyTKQWSjcNHoEqjI1tra6trkYsmSJbjllluwb98+dHV1AThWDCGdTmPRokWu7INwB9HJZkYqlcKkSZNsf+f8+fMxNjbmeMARdAhSEPDVZUoKXhmIIg9PBl0JTrYgRTY5XJT/TlV2vqenx/PjKwdKyb1JlD9ym6CEzP4iPp9Hjx4Ltw3KycZDyoIY4/ghsomQyEZEEadiTTqd1kOlBwcHixLZovpOIJEtukRmpPrWW2/h0KFDeOutt5DL5bB582YAxyo/1tXV4bzzzsPs2bNx+eWXY9WqVTh06BC++MUv4uqrr6bKoiHDjpPNKcXmPahEJ1tzczMWL15cVsUcCHN4u+aDEoBENq/2JVcXLeRkI+xTiQsihH1EkY1XNyb8Qxw/8X7Qa5HNrPAB/zxIkU12Nbu1MEAiG1EOOBVrNE1DXV0djhw5goGBAdtjqVQqBU3TkEwmI/tOIJEtukRGZLvpppuwZs0a/d8LFiwAAKxfvx7nnHMO4vE4HnvsMVxzzTV4z3veg+rqalx66aW49dZbgzpkwgSx6l/Q8A6jkgblmqaRi62CkEU2P6ptAsGLbHwy4kc6gELVRflnfPJJEyPn0OCOsEIUMah9+I9YURE4JnB5cR9UTjY5XJTna+IhZn7it5ONp/8giChRjDO9GJEtkUhgwYIFkX4nUE626BIZke3ee+/Fvffea7lNT08P1q5d688BEUXjhZOtWESRjSDKEf5C5oMSv17QQYtsra2tmDNnjl5cwEvsFD4YGxsjJ1sJhEFkm1CrntCW26JFTU0NwBgwOIwJyBb+gxAgO9lKwew+E9aIIpsXLjbAnpNNzMnmN3J1Ua8KH3DoXUJEEdHUYLe/5jke+/r69OfLjsgc9Wg2crJFl8iIbET5YCcnm1/4WYGQIIKAt3G+ul8pIpumaWhra/NlX8XmZCPsE/TgriaVwEvf+Idxn6dSKXzpS1/y/Xi8Qj+fwUFg1Sq8VLU56EOyhVsim9l9JgojPpd+iGwqJ9vQ0JAubFVCTjbKT0lEEXHuZXcuyEU2XlglFotVhEFCPEdN0wKdOwc9Dosa5d86idARRpGtEjpqojKRw0X9auv8OU8kEqF41r3EyskmhpLye0ATI+eIbYiuHyHjppONKA5x0uVFZVHg+L0dGxvTC/mI/SyvulldXR1IOzAT2bzIyRblPFNEZcOfEyfPhVwtuFLavyxskcgWHWgkQvhOGMNFqbMgyhU5Kb/fTrZKcG3J11iVky2bzeqfV8I1cRsa3BFWiJMPah/BID6jXjvZeF8LGJ1snKBCuL12sonuaHqPEFGlmLlXLBYz5FmslPYvXqOg322iky4Mc/iwQ8vBhO80Nzejvb3dt1AuK8jJRpQ7QeVzqKSJgJ1wUe6wAMiJVQxBi2zD2RyW37MRALBmxWJUJY+Lpz//+c8BAJdddlnk27t+PrkcPso0fGb0RADAmtTrKK6Gtz9omoZEIoFsNlvS+9zsPhOF4c+lV0UPALXIxu+9SNAim1wEx63roWka0uk0MplM5PsaonKpr69HbW0t2tvbHf1dXV0dBgYGAFTG2BIIfuwjE4vFkMvlQnEsYYdG+oTvxONxzJ49O+jDAEBONqL8CUpkq6+vh6ZpaGpq8mV/QSJXF1UVPhgeHgZQOSEObhP0QDPPGP5nxyH9Zw5jDLt27dJ/jjri+eSg4X/YsaTReYS/zbohspndZ6Iw/Ln0ysUGqNMfqES2ICqL8uMBvCt8AIBENiLyJJNJnHbaaY7/TgxDr5T2H7aKniSy2YdENqKiIScbUe4EVf67rq4OZ555ZkW8iEUnG2NMGS7KnWyVMjB0m6BFNjMSiQQuvvhi/eeoo5/PyAgS/1+0qrWHKRVFJcLzhXlZ0Vl2svG+gIttXOgO2snmVbgocPw626msSBDlRCWGi4qLsmEY+5A5xT7RHxESRAnwwYpcsYkgyoUgy39XyktYFtnEz+VrUCkDQ7cJa+GDWCyGOXPmBH0YrqGfz+AgMoimyFYp/U7YmDp1KpqbmzFhwgTP9mFWyEcMFwaCE9l42/Oq8AEANDQ0YP/+/Z4VlyCIsFKJTjZN0xCPx0PjHiORzT7hGakSRAC0tbVh3rx5aGhoCPpQCMITZJGNXB7uI06s+KQKMDrZOJUyMHSbsDrZiPBATrZgSSQSaG1t9XQfZk42vv9sNot0Oh2YEO+Hk62rqwsTJkygxWGi4kgmk0in0xgZGakoJ2eYQjRTqRSGhoao/7EBiWxERaNpmqerrgQRNEE62SoF8ZqOjo7qP/MVSBES2YojbHlJOPl8Hq+++ioAYNasWaE6tmLQz2dkBL1BH4xDSGQrf2SRTbzX/P4H5WIDjh8PYwyMMU9ysmmahqqqMJchIQjvaG5uxv79+wPLuxgEYXKPzZo1C4ODg+SktQGJbARBEGVMUDnZKgkxHxAPV4rH40qRLUyhjlGCX7dUKhWqwhFjY2N4+OGHAQA33HBD5FfXxfNZGYFiByJceKAV9vJFDheVnWxAcEUPAKPol8vlPHGyEUQlc+KJJ2LKlCkVJTSHSWSrqqqqqGtfCjTaJwiCKGPIyeYPPFSJO9n4dZdFNXKyFUc6ncbMmTMDFVCqk5X37FQjV3ijkDBp0iTU1NSU7E6vxPscFeRwTPH9xid+XlY3LYR4PPl8Xj9Oeu8ShDvEYrGKE3nCJLIR9iGRjSAIoowhkc0f4vE4stnsuITcFC7qHp2dnYHtuyaVwKvf/kBg+w+CGi2PV6teCvowbBOPx9HW1lbSd1TifY4SVjlGp02bhpaWFrS0tPh9WDqapo1zNQPkYCYIonj4OJLG79GCElcQBEGUMSSy+QO/rrKTjU+6OCSyEQRBFIfV+yyZTKK1tTXwcHL5XSC/AwiCIJxATrZoQiIbQRBEGaNpWmiTxpcTfPAj5wqS87KRyEYQBFEcUaiWrcobRyIbQRDFQk62aEL+ZYIgiDInFotRbhiPMXOy8d/xKnMkskWT4WwOn7t/EwDgzk8tQlUF5O0aYRr+KTsdAHBnchsqIQtOJd7nKBEFZzY/Rv4uCOMxEgQRHXp6epBKpdDa2hr0oRAOIJGNIAiizBFFHhrwe4PsZJNFNg6JbNEkzxjWv/aO/nMlkIOG9fkmAEA+YpVGi6US73OUiKKTjfKxEQRRCo2NjWhsbAz6MAiHhO/tRBAEQbiKmeBDuAefSMnhovLPNOEiCIIojig52VTvAoIgCKIyIJGNIAiizCGRzXsKhYsCxwQ2ys1DEARRHFFyslG4KEEQROUSvrcTQRAE4SpmrirCPfh15WG5KpGNQkUJgiCKJwoim1kRHIIgCKJyCN/biSAIgnAVqi7qPfJESiVskshGEARRPBQuShAEQUQBmm0RBEGUORQu6j3ydRWvOc/DRiIbQRBE8UTBySaHi1IeToIgiMqDen4J9n/VpPr6+gI+EoIgCHcYGhrC4OAgYrEY+vv7gz6csiSTyWBwcFD/9+DgoP4e4b+rq6ujd0tEyYzm9J/7+voxljKGhAFAf39/5IVU8XwGRkb0n/tGRjDW1wfkcqo/KxvM7jMRDrLZrKGfzWQyoetT5XdBGI+RIAiCcA7vy5mN6uMas7NVBbFnzx5Mnjw56MMgCIIgCIIgCIIgCIIgQsLu3bsxadIky21IZJPI5/P429/+hvr6eqoCJ9DX14fJkydj9+7daGhoCPpwiICgdkBwqC0QHGoLBIfaAsGhtkAA1A6I41BbIDhRbQuMMfT392PixIkF0xVQuKhELBYrqExWMg0NDZF6GAhvoHZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4UWwLjY2NtrYLX8ZQgiAIgiAIgiAIgiAIgogYJLIRBEEQBEEQBEEQBEEQRImQyEbYIp1O4+abb0Y6nQ76UIgAoXZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4ldAWqPABQRAEQRAEQRAEQRAEQZQIOdkIgiAIgiAIgiAIgiAIokRIZCMIgiAIgiAIgiAIgiCIEiGRjSAIgiAIgiAIgiAIgiBKhEQ2giAIgiAIgiAIgiAIgigREtkqhJ/+9KeYOnUqqqqqsGjRIjz77LOW2//85z/H/PnzUVNTg66uLlx55ZV499139d/fddddeO9734vm5mY0Nzdj6dKl2Lhxo+E7pkyZAk3Txv137bXXenKORGGCaAdjY2P4+te/jqlTp6K6uhrTpk3Dt771LeTzeU/OkbBHEG2hv78f119/PXp7e1FdXY0zzjgDf/rTnzw5P8I+breFRx55BKeeeiqamppQW1uLU045Bffdd1/J+yW8J4i28Mwzz+DDH/4wJk6cCE3T8Oijj3pxaoRDgmgL3/ve93Daaaehvr4e7e3tuPDCC/Haa695cn6EPYJoB3feeSfmzZuHhoYGNDQ0YMmSJXj88cc9OT/CPkGNFTjf+973oGkarr/+erdOiSiSINrCN7/5zXGaQmdnpyfn5wqMKHsefPBBlkwm2V133cW2bt3KVq5cyWpra9muXbuU2z/77LMsFouxf/u3f2Pbt29nzz77LJszZw678MIL9W0uvfRS9pOf/IS9/PLL7NVXX2VXXnkla2xsZHv27NG3efvtt9m+ffv0/9atW8cAsPXr13t9yoSCoNrBd77zHdbS0sLWrl3LduzYwX71q1+xuro69qMf/cjzcybUBNUWLrnkEjZ79mz29NNPszfeeIPdfPPNrKGhwbAN4S9etIX169ezRx55hG3dupVt27aN/ehHP2LxeJw98cQTRe+X8J6g2sLvfvc7duONN7Jf//rXDAD7zW9+4/WpEgUIqi28//3vZ6tXr2ZbtmxhmzdvZsuWLWM9PT1sYGDA83MmxhNUO/jtb3/LHnvsMfbaa6+x1157jX3ta19jyWSSbdmyxfNzJtQE1RY4GzduZFOmTGHz5s1jK1eu9Oo0CRsE1RZuvvlmNmfOHIO28Pbbb3t+vsVCIlsFsHjxYvbZz37W8NnMmTPZV7/6VeX2q1atYtOmTTN8dvvtt7NJkyaZ7mNsbIzV19ezNWvWmG6zcuVKdsIJJ7B8Pu/g6Am3CKodLFu2jK1YscKw3UUXXcQ+9alPOT0FwiWCaAuZTIbF43G2du1aw3bz589nN954YzGnQbiAH22BMcYWLFjAvv71rxe9X8J7gmoLIiSyhYMwtAXGji3WAmBPP/20zSMn3CQs7YAxxpqbm9nPfvYzG0dNeEGQbaG/v5/NmDGDrVu3jp199tkksgVMUG3h5ptvZvPnzy/uoAOAwkXLnNHRUWzatAnnnXee4fPzzjsP//3f/638mzPOOAN79uzB7373OzDGcODAATz88MNYtmyZ6X4ymQyy2SwmTJhgehz3338/VqxYAU3Tij8hoiiCbAdnnnkmnnrqKbz++usAgP/93//Fc889h/PPP9+FMyOcElRbGBsbQy6XQ1VVlWG76upqPPfccyWeFVEMfrQFxhieeuopvPbaazjrrLOK3i/hLUG1BSJ8hKktHD16FABMx5aEd4SlHeRyOTz44IMYHBzEkiVLSjspoiiCbgvXXnstli1bhqVLl7pzQkTRBN0W3njjDUycOBFTp07FJz7xCWzfvt2dE/OCAIQ9wkf27t3LALDnn3/e8Pktt9zCTjzxRNO/4yF9iUSCAWAXXHABGx0dNd3+mmuuYSeccAIbGhpS/v6hhx5i8Xic7d27t7gTIUoiyHaQz+fZV7/6VaZpGkskEkzTNPbd73639JMiiiLItrBkyRJ29tlns71797KxsTF23333MU3TLPdLeIeXbeHIkSOstraWJRIJlk6n2d13313yfgnvCKotyICcbIETlraQz+fZhz/8YXbmmWeWdkJEUQTdDl555RVWW1vL4vE4a2xsZI899pg7J0Y4Jsi28MADD7C5c+fqY0lysgVLkG3hd7/7HXv44YfZK6+8orsaOzo62MGDB907QRchJ1uFILvHGGOmjrKtW7fi85//PG666SZs2rQJTzzxBHbs2IHPfvazyu1/8IMf4IEHHsAjjzwyzqXCufvuu/HBD34QEydOLO1EiJIIoh089NBDuP/++/GLX/wCL730EtasWYNbb70Va9asce/ECMcE0Rbuu+8+MMbQ3d2NdDqN22+/HZdeeini8bh7J0Y4xou2UF9fj82bN+NPf/oTbrnlFnzhC1/Ahg0bit4v4Q9BtQUifATdFq677jq88soreOCBB1w5H6I4gmoHJ510EjZv3owXXngBn/vc57B8+XJs3brV1XMjnOF3W9i9ezdWrlyJ+++/33R+SQRDEP3CBz/4QXz0ox/FySefjKVLl+Kxxx4DgPDOJwMS9wifGBkZYfF4nD3yyCOGzz//+c+zs846S/k3n/rUp9jFF19s+OzZZ59lANjf/vY3w+erVq1ijY2N7E9/+pPpMezcuZPFYjH26KOPFnkWRKkE2Q4mTZrE7rjjDsNn3/72t9lJJ51UzKkQJRKGPmFgYED/u0suuYSdf/75xZwKUSJetwWRq666ip133nlF75fwlqDaggzIyRY4YWgL1113HZs0aRLbvn17EWdAuEEY2oHI+973PvaP//iPNo+ecJOg2sJvfvMbBoDF43H9PwBM0zQWj8fZ2NhYiWdGOCVs/cLSpUvH5YcLC+RkK3NSqRQWLVqEdevWGT5ft24dzjjjDOXfZDIZxGLGpsGdJowx/bNVq1bh29/+Np544gmceuqppsewevVqtLe3W+ZvIrwlyHZg9j35fL6ocyFKIwx9Qm1tLbq6unD48GH8/ve/x0c+8pFiT4coAS/bggxjDCMjI0Xvl/CWoNoCET6CbAuMMVx33XV45JFH8Ic//AFTp04t9jSIEglbn0D9RnAE1Rbe97734c9//jM2b96s/3fqqafisssuw+bNmykKIgDC1C+MjIzg1VdfRVdXl93D9xffZT3Cd3ip3bvvvptt3bqVXX/99ay2tpbt3LmTMcbYV7/6VXb55Zfr269evZolEgn205/+lL355pvsueeeY6eeeipbvHixvs33v/99lkql2MMPP2wopdvf32/Ydy6XYz09PewrX/mKPydLmBJUO1i+fDnr7u5ma9euZTt27GCPPPIIa21tZV/+8pf9O3nCQFBt4YknnmCPP/442759O3vyySfZ/Pnz2eLFiy1zuxHe4kVb+O53v8uefPJJ9uabb7JXX32V3XbbbSyRSLC77rrL9n4J/wmqLfT397OXX36ZvfzyywwA+9d//Vf28ssvs127dvl38oSBoNrC5z73OdbY2Mg2bNhgeI9kMhn/Tp7QCaod3HDDDeyZZ55hO3bsYK+88gr72te+xmKxGHvyySf9O3nCQFBtQYZysgVPUG3hn//5n9mGDRvY9u3b2QsvvMA+9KEPsfr6+tCOG0lkqxB+8pOfsN7eXpZKpdjChQsN5dCXL1/Ozj77bMP2t99+O5s9ezarrq5mXV1d7LLLLmN79uzRf9/b28sAjPvv5ptvNnzP73//ewaAvfbaa16eHmGTINpBX18fW7lyJevp6WFVVVVs2rRp7MYbb2QjIyNeny5hQRBt4aGHHmLTpk1jqVSKdXZ2smuvvZYdOXLE61MlCuB2W7jxxhvZ9OnTWVVVFWtubmZLlixhDz74oKP9EsEQRFtYv369su9Yvny5l6dKFCCItqBqBwDY6tWrvTxVwoIg2sGKFSv0fba1tbH3ve99JLCFgKDGCiIksoWDINrCxz/+cdbV1cWSySSbOHEiu+iii9hf/vIXT8+zFDTGLHx6BEEQBEEQBEEQBEEQBEEUhHKyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEARBEARBEARRIiSyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEESgjI6OYvr06Xj++edd/d61a9diwYIFyOfzrn4vQRAEQRCEChLZCIIgCIIgXOSKK66Apmnj/tu2bVvQhxZa/vM//xO9vb14z3veo3+maRoeffTRcdteccUVuPDCC21974c+9CFomoZf/OIXLh0pQRAEQRCEOSSyEQRBEARBuMwHPvAB7Nu3z/Df1KlTx203OjoawNGFjx//+Mf4zGc+48l3X3nllfjxj3/syXcTBEEQBEGIkMhGEARBEAThMul0Gp2dnYb/4vE4zjnnHFx33XX4whe+gNbWVvzDP/wDAGDr1q04//zzUVdXh46ODlx++eU4ePCg/n2Dg4P49Kc/jbq6OnR1deG2227DOeecg+uvv17fRuX8ampqwr333qv/e+/evfj4xz+O5uZmtLS04CMf+Qh27typ/567xG699VZ0dXWhpaUF1157LbLZrL7NyMgIvvzlL2Py5MlIp9OYMWMG7r77bjDGMH36dNx6662GY9iyZQtisRjefPNN5bV66aWXsG3bNixbtszhVQZ27typdA2ec845+jYXXHABNm7ciO3btzv+foIgCIIgCCeQyEYQBEEQBOEja9asQSKRwPPPP4//+I//wL59+3D22WfjlFNOwYsvvognnngCBw4cwCWXXKL/zZe+9CWsX78ev/nNb/Dkk09iw4YN2LRpk6P9ZjIZnHvuuairq8MzzzyD5557DnV1dfjABz5gcNStX78eb775JtavX481a9bg3nvvNQh1n/70p/Hggw/i9ttvx6uvvop///d/R11dHTRNw4oVK7B69WrDfu+55x68973vxQknnKA8rmeeeQYnnngiGhoaHJ0PAEyePNngFnz55ZfR0tKCs846S9+mt7cX7e3tePbZZx1/P0EQBEEQhBMSQR8AQRAEQRBEubF27VrU1dXp//7gBz+IX/3qVwCA6dOn4wc/+IH+u5tuugkLFy7Ed7/7Xf2ze+65B5MnT8brr7+OiRMn4u6778Z//dd/6c63NWvWYNKkSY6O6cEHH0QsFsPPfvYzaJoGAFi9ejWampqwYcMGnHfeeQCA5uZm3HHHHYjH45g5cyaWLVuGp556CldffTVef/11/PKXv8S6deuwdOlSAMC0adP0fVx55ZW46aabsHHjRixevBjZbBb3338/Vq1aZXpcO3fuxMSJE5W/++QnP4l4PG74bGRkRHe9xeNxdHZ2AgCGh4dx4YUXYsmSJfjmN79p+Jvu7m6DY48gCIIgCMILSGQjCIIgCIJwmXPPPRd33nmn/u/a2lr951NPPdWw7aZNm7B+/XqDKMd58803MTQ0hNHRUSxZskT/fMKECTjppJMcHdOmTZuwbds21NfXGz4fHh42hHLOmTPHIGx1dXXhz3/+MwBg8+bNiMfjOPvss5X76OrqwrJly3DPPfdg8eLFWLt2LYaHh/Gxj33M9LiGhoZQVVWl/N0Pf/hDXczjfOUrX0Eulxu37VVXXYX+/n6sW7cOsZgxWKO6uhqZTMb0GAiCIAiCINyARDaCIAiCIAiXqa2txfTp001/J5LP5/HhD38Y3//+98dt29XVhTfeeMPWPjVNA2PM8JmYSy2fz2PRokX4+c9/Pu5v29ra9J+TyeS4783n8wCOiVWF+MxnPoPLL78cP/zhD7F69Wp8/OMfR01Njen2ra2tuogn09nZOe461tfX48iRI4bPvvOd7+CJJ57Axo0bx4mIAHDo0CHDORIEQRAEQXgBiWwEQRAEQRABsnDhQvz617/GlClTkEiMH5pNnz4dyWQSL7zwAnp6egAAhw8fxuuvv25wlLW1tWHfvn36v9944w2De2vhwoV46KGH0N7eXlT+MwA4+eSTkc/n8fTTT49zmHHOP/981NbW4s4778Tjjz+OZ555xvI7FyxYgDvvvBOMMT2M1Qm//vWv8a1vfQuPP/64Mu8bd+otWLDA8XcTBEEQBEE4gQofEARBEARBBMi1116LQ4cO4ZOf/KReBfPJJ5/EihUrkMvlUFdXh6uuugpf+tKX8NRTT2HLli244oorxoVE/v3f/z3uuOMOvPTSS3jxxRfx2c9+1uBKu+yyy9Da2oqPfOQjePbZZ7Fjxw48/fTTWLlyJfbs2WPrWKdMmYLly5djxYoVePTRR7Fjxw5s2LABv/zlL/Vt4vE4rrjiCtxwww2YPn26IcxVxbnnnovBwUH85S9/cXDVjrFlyxZ8+tOfxle+8hXMmTMH+/fvx/79+3Ho0CF9mxdeeAHpdLrgcRAEQRAEQZQKiWwEQRAEQRABMnHiRDz//PPI5XJ4//vfj7lz52LlypVobGzUhbRVq1bhrLPOwgUXXIClS5fizDPPxKJFiwzfc9ttt2Hy5Mk466yzcOmll+KLX/yiIUyzpqYGzzzzDHp6enDRRRdh1qxZWLFiBYaGhhw52+68805cfPHFuOaaazBz5kxcffXVGBwcNGxz1VVXYXR0FCtWrCj4fS0tLbjooouUYayFePHFF5HJZPCd73wHXV1d+n8XXXSRvs0DDzyAyy67zDJklSAIgiAIwg00JifvIAiCIAiCIELPOeecg1NOOQU/+tGPgj6UcTz//PM455xzsGfPHnR0dBTc/s9//jOWLl2qLMxQCu+88w5mzpyJF198EVOnTnXtewmCIAiCIFSQk40gCIIgCIJwhZGREWzbtg3f+MY3cMkll9gS2IBjud5+8IMfYOfOna4ez44dO/DTn/6UBDaCIAiCIHyBCh8QBEEQBEEQrvDAAw/gqquuwimnnIL77rvP0d8uX77c9eNZvHgxFi9e7Pr3EgRBEARBqKBwUYIgCIIgCIIgCIIgCIIoEQoXJQiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgS+f8Bv9KnmU9JJM4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import search_best_peaks\n", + "from stingray.stats import fold_detection_level, z2_n_detection_level\n", + "\n", + "ntrial = (frequencies[-1] - frequencies[0]) / df_min\n", + "z_detlev = z2_n_detection_level(n=1, epsilon=0.001, ntrial=len(freq))\n", + "ef_detlev = fold_detection_level(nbin, epsilon=0.001, ntrial=len(freq))\n", + "\n", + "cand_freqs_ef, cand_stat_ef = search_best_peaks(freq, efstat, ef_detlev)\n", + "cand_freqs_z, cand_stat_z = search_best_peaks(freq, zstat, z_detlev)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.')\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, (zstat - nharm), label='$Z^2_1$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.', zorder=10)\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray', zorder=10)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', color='gray', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, ef_detlev - nbin + 3])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the side lobes of the sinc squared-like shape are producing spurious candidates here. For now, we do not have a method to eliminate these fairly obvious patterns, but it will be implemented in future releases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fit peak with Sinc-squared and Gaussian functions\n", + "\n", + "As we saw earlier, if the pulse frequency is stable during the observation, the peak shape is a **Sinc squared function**. Therefore we fit it to the peak with the function `stingray.pulse.modeling.fit_sinc`. \n", + "We have two possibilities:\n", + "\n", + "+ if `obs_length` is the length of the observation. If it is defined, it fixes width to $1/(\\pi*obs length)$, as expected from epoch folding periodograms. The other two free parameters are `amplitude` and `mean`.\n", + "+ if it is not defined, the `width` parameter can be used.\n", + "\n", + "On the other hand, if the pulse frequency varies slightly, the peak oscillate and the integrated profile is a bell-shaped function. We can fit it with a **Gaussian function** (`stingray.pulse.modeling.fit_gaussian`) with the standard parameters: `amplitude`, `mean`, `stddev`.\n", + "\n", + "We also provide the user with the constrains `fixed`, `tied`, `bounds`, in order to fix, link and/or constrain parameters.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_sinc\n", + "\n", + "fs=fit_sinc(freq, efstat-(nbin-1),amp=max(efstat-(nbin-1)), mean=cand_freqs_ef[0], \n", + " obs_length=obs_length)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/sElEQVR4nOzdeXhTddrG8e/pkqQ7lKWlUhYVVAQVUVFcAGVTURlnBh2dUUcddVwZdXAc39G6weiMgOLuKDio4O64C6jgAgqi7Pu+tZSldE2TNDnvH+fk0ACFFrrn/lxXL9vkJDlBaHLneX7PzzBN00RERERERESqLaahT0BERERERKSpUZASERERERGpIQUpERERERGRGlKQEhERERERqSEFKRERERERkRpSkBIREREREakhBSkREREREZEaUpASERERERGpobiGPoHGIBQKsXXrVlJSUjAMo6FPR0REREREGohpmhQXF5OVlUVMTNV1JwUpYOvWrWRnZzf0aYiIiIiISCOxadMm2rdvX+X1ClJASkoKYP1hpaamNvDZiIhIfSorKOK0cbMBmOP+hUTDhNtvh6SkBj4zERFpCEVFRWRnZzsZoSoKUuC086WmpipIiYhEmbggxLgTAUh1e0g0QpCaqiAlIhLlDrbkR8MmREREREREakhBSkREREREpIYUpERERERERGpIa6RERERE5LCYpklFRQXBYLChT0XkoGJjY4mLizvsbY8UpERERETkkPn9fnJzcykrK2voUxGptsTERNq1a4fL5Trk+1CQEhEREZFDEgqFWLduHbGxsWRlZeFyuQ77U36RumSaJn6/n+3bt7Nu3Tq6dOlywE13D0RBSkREREQOid/vJxQKkZ2dTWJiYkOfjki1JCQkEB8fz4YNG/D7/Xg8nkO6Hw2bEBEREZHDcqif6Is0lNr4O6u/9SIiIiIiIjWkICUiIiIiIlJDClIiIiIiIk1Ip06dGDdu3CHffuLEibRo0aLWzidaKUiJiIiISFS55pprMAxjn68hQ4Y4x3Tq1Gmf69u3b39Ij5eTk8NJJ51U49tVFXjmzp3LDTfcUK372F/ouuyyy1i5cmWNz0ciaWqfiIiIiESdIUOGMGHChIjL3G53xM8PPfQQf/rTn5yfY2Nj6+XcDqZNmzaHdfuEhAQSEhJq6WyilypSIiIiIlJrTNOkzF9R71+madboPN1uN5mZmRFfLVu2jDgmJSUl4voDBZgZM2Zw2mmnkZSURIsWLTjzzDPZsGEDEydO5MEHH2TBggVOZWvixIkAjBkzhh49epCUlER2djY333wzJSUlzv398Y9/pLCw0LldTk4OsG+VKScnhw4dOuB2u8nKyuL2228HoF+/fmzYsIG//OUvzn3A/itdH374Iaeccgoej4fWrVtz6aWXOtc9++yzdOnSBY/HQ0ZGBr/5zW9q9GfdXKkiJSIiIiK1xhsI0u3+L+r9cZc+NJhEV8O8ta2oqGDYsGH86U9/YvLkyfj9fubMmYNhGFx22WUsXryYzz//nOnTpwOQlpYGWCO4n3rqKTp16sS6deu4+eabGTlyJM8++yx9+vRh3Lhx3H///axYsQKA5OTkfR77nXfeYezYsUyZMoXjjz+evLw8FixYAMB7773HiSeeyA033BBRWdvbJ598wqWXXsp9993HpEmT8Pv9fPLJJwD89NNP3H777UyaNIk+ffqwa9cuvv3221r982uqFKREREREJOp8/PHH+wSTe+65h3/84x8RP//f//2f8/OoUaOcak9lRUVFFBYWMnToUI466igAjjvuOOf65ORk4uLiyMzMjLjdiBEjnO87d+7Mww8/zJ///GeeffZZXC4XaWlpGIaxz+0q27hxI5mZmQwYMID4+Hg6dOjAaaedBkB6ejqxsbFOZa0qjz76KJdffjkPPvigc9mJJ57o3H9SUhJDhw4lJSWFjh070rNnzyrvK5ooSImISFSraTuQiBxYQnwsSx8a3CCPWxP9+/fnueeei7gsPT094ue//vWvXHPNNc7PrVu33u99paenc8011zB48GAGDhzIgAEDGD58OO3atTvgOXz99deMGjWKpUuXUlRUREVFBeXl5ZSWlpKUlFSt5/Hb3/6WcePGceSRRzJkyBAuuOACLrroIuLiqv82f/78+VVWrAYOHEjHjh2d+x8yZAi/+tWvSExMrPb9N1daIyUiIlHt6+Xbne/XbC9pwDMRaR4MwyDRFVfvX+H1P9WVlJTE0UcfHfG1d5Bq3bp1xPUHGhk+YcIEZs+eTZ8+fXjzzTfp2rUrP/zwQ5XHb9iwgQsuuIDu3bvz7rvvMm/ePJ555hkAAoFAtZ9HdnY2K1as4JlnniEhIYGbb76Zc845p0b3caDBEykpKfz8889MnjyZdu3acf/993PiiSeye/fuat9/c6UgJSIiUW3FtiLn+88X57JuR2kDno2INGU9e/bk3nvvZdasWXTv3p033ngDAJfLRTAYjDj2p59+oqKigieeeILTTz+drl27snXr1ohj9ne7/UlISODiiy/mqaeeYsaMGcyePZtFixZV+z5OOOEEvvzyyyqvj4uLY8CAATz++OMsXLiQ9evX89VXXx30vJq7Bg1S+5vPbxgGt9xyC2C1W+Tk5JCVlUVCQgL9+vVjyZIlEffh8/m47bbbaN26NUlJSVx88cVs3ry5IZ6OiIg0QduKfBE/r1VVSiQq+Hw+8vLyIr527NhxSPe1bt067r33XmbPns2GDRuYOnUqK1eudNZJhYdJzJ8/nx07duDz+TjqqKOoqKhg/PjxrF27lkmTJvH8889H3G+nTp0oKSnhyy+/ZMeOHZSVle3z2BMnTuTll19m8eLFzv0kJCTQsWNH5z6++eYbtmzZUuXze+CBB5g8eTIPPPAAy5YtY9GiRTz++OOAtZbsqaeeYv78+WzYsIH//ve/hEIhjjnmmEP6s2pOGjRIzZ07l9zcXOdr2rRpgNXrCfD4448zZswYnn76aebOnUtmZiYDBw6kuLjYuY8RI0bw/vvvM2XKFL777jtKSkoYOnRotdK7iIhIXqE34uf8Yl8VR4pIc/L555/Trl27iK+zzjrrkO4rMTGR5cuX8+tf/5quXbtyww03cOutt3LjjTcC8Otf/5ohQ4bQv39/2rRpw+TJkznppJMYM2YMjz32GN27d+f1119n9OjREffbp08fbrrpJi677DLatGnjhJvKWrRowUsvvcSZZ57pVJY++ugjWrVqBVh7Ya1fv56jjjqqyvHt/fr14+233+bDDz/kpJNO4txzz+XHH3907v+9997j3HPP5bjjjuP5559n8uTJHH/88Yf0Z9WcGGYjWmU7YsQIPv74Y1atWgVAVlYWI0aM4J577gGsTw4yMjJ47LHHuPHGGyksLKRNmzZMmjSJyy67DICtW7eSnZ3Np59+yuDB1VvoWFRURFpaGoWFhaSmptbNkxMRkUZp0COfsNIuQt0yawoeQtz08fPEp6Y07ImJNAHl5eWsW7eOzp074/F4Gvp0RKrtQH93q5sNGs0aKb/fz2uvvca1116LYRisW7eOvLw8Bg0a5Bzjdrvp27cvs2bNAmDevHkEAoGIY7KysujevbtzzP74fD6KiooivkREJPqEQiZ5RX7n5/jYGIIhU0MnRETkoBpNkPrggw/YvXu3M2IyLy8PgIyMjIjjMjIynOvy8vJwuVz77EJd+Zj9GT16NGlpac5XdnZ2LT4TERFpKnaW+vFXhJyf2yS7AVi6VR+wiYjIgTWaIPXyyy9z/vnnk5WVFXH53qMsTdM86HjLgx1z7733UlhY6Hxt2rTp0E9cRESarK27I9dHtUm12juW5SpIiYjIgTWKILVhwwamT5/O9ddf71wW3n1578pSfn6+U6XKzMzE7/dTUFBQ5TH743a7SU1NjfgSEZHos0+QSnYBqkiJiMjBNYogNWHCBNq2bcuFF17oXNa5c2cyMzOdSX5graOaOXMmffr0AaBXr17Ex8dHHJObm8vixYudY0RERKqyZa8g1TbVau1blltMMNRoZjGJiEgjFNfQJxAKhZgwYQJXX301cXF7TscwDEaMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx4MGDCgoZ6SiIg0EVt3l+PBRzlWS19agov42Bi8gSDrdpRydNvkBj5DERFprBo8SE2fPp2NGzdy7bXX7nPdyJEj8Xq93HzzzRQUFNC7d2+mTp1KSsqekbRjx44lLi6O4cOH4/V6Oe+885g4cSKxsbH1+TRERKQJ2rrbyxWxX/EsvwIgxjBI9cQDkFdYriAlIiJVavAgNWjQIKraysowDHJycsjJyany9h6Ph/HjxzN+/Pg6OkMREWmuthZ6uSZ2gROkCHhJdFkfxO0s1ca8IiJStUaxRkpERKQh+Aq20p0Ney7YtY4EO0jtKPFXcSsRkdqVk5NDRkYGhmHwwQcfcM011zBs2LCGPi05CAUpERGJSuWBICeWzyHGqNQVsXPVnopUiSpSIs3VNddcg2EYzlerVq0YMmQICxcurLXHyMnJ4aSTTjroccuWLePBBx/khRdeIDc3l/PPP58nn3ySiRMnOsf069ePESNG1Nq5Se1QkBIRkaiUV1jOgJifIy8s2ECStUSKnapIiTRrQ4YMITc3l9zcXL788kvi4uIYOnRovZ/HmjVrALjkkkvIzMzE7XaTlpZGixYt6v1cpGYUpEREJCoVlxRzdsyiyAtDftpUWPsXao2USPPmdrvJzMwkMzOTk046iXvuuYdNmzaxfft255gtW7Zw2WWX0bJlS1q1asUll1zC+vXrnetnzJjBaaedRlJSEi1atODMM89kw4YNTJw4kQcffJAFCxY4Va/KFaawnJwcLrroIgBiYmIwDAMgorXvmmuuYebMmTz55JPOfVU+B2k4DT5sQkREpCGE8peRYPjZarSCSt19KRU7Aa2REjlkpgmBsvp/3PhEsINITZWUlPD6669z9NFH06pVKwDKysro378/Z599Nt988w1xcXE88sgjTgtgTEwMw4YN409/+hOTJ0/G7/czZ84cDMPgsssuY/HixXz++edMnz4dsLbt2dvdd99Np06d+OMf/0hubu5+z+3JJ59k5cqVdO/enYceegiANm3aHNLzlNqlICUiIlHJLLIrT7GtIbTnck/IegOoipTIIQqUwais+n/cv28FV1K1D//4449JTra2OCgtLaVdu3Z8/PHHxMRYDVtTpkwhJiaG//znP06laMKECbRo0YIZM2ZwyimnUFhYyNChQznqqKMAOO6445z7T05OJi4ujszMzCrPITk52Wnhq+q4tLQ0XC4XiYmJB7wvqX9q7RMRkahkFG8FoDiuZcTlrgo7SKkiJdKs9e/fn/nz5zN//nx+/PFHBg0axPnnn8+GDdYkz3nz5rF69WpSUlJITk4mOTmZ9PR0ysvLWbNmDenp6VxzzTUMHjyYiy66iCeffLLKqpI0T6pIiYhIVIotsSpSJXGRLTKxFSUAlPmDlPkrSHTppVKkRuITrepQQzxuDSQlJXH00Uc7P/fq1Yu0tDReeuklHnnkEUKhEL169eL111/f57bh1roJEyZw++238/nnn/Pmm2/yf//3f0ybNo3TTz/98J6LNAl6dRARkagUX7YNAK+7FRTvudzwl+COi8GLVZVKTNdLpUiNGEaNWuwaC8MwiImJwev1AnDyySfz5ptv0rZtW1JTU6u8Xc+ePenZsyf33nsvZ5xxBm+88Qann346LpeLYDBYK+dWm/cltUetfSIiEpXc3nwAvJ7IipThL6Vtkr2XVKna+0SaK5/PR15eHnl5eSxbtozbbruNkpISZ4relVdeSevWrbnkkkv49ttvWbduHTNnzuSOO+5g8+bNrFu3jnvvvZfZs2ezYcMGpk6dysqVK511Up06dWLdunXMnz+fHTt24PMd+rrLTp068eOPP7J+/Xp27NhBKBQ6+I2kzilIiYhIVEr0WUGqwtO60qUxgEmnhPA6KQ2cEGmuPv/8c9q1a0e7du3o3bs3c+fO5e2336Zfv34AJCYm8s0339ChQwcuvfRSjjvuOK699lq8Xi+pqakkJiayfPlyfv3rX9O1a1duuOEGbr31Vm688UYAfv3rXzNkyBD69+9PmzZtmDx58iGf6913301sbCzdunWjTZs2bNy4sTb+COQwqV9BRESiUrLf2ismmNh2z4XuJPB66ewuBlI0cEKkmZo4ceJ+93XaW2ZmJq+++up+r0tNTeX999+v8rZut5t33nnnoI8xbNgwTNOMuGzvc+vatSuzZ88+6H1J/VJFSkREok+gnMRgEQChpErjhOOtUcjt463rdmgEuoiIVEFBSkREok+xNaK43IwnNrHSInK3tUC+XcxuQCPQRUSkagpSIiISfYqt0ed5ZjpJnvg9l7tTAGhDAaA1UiIiUjUFKRERiT72ZrzbaElCfOyey+OtilTL0E5AU/tERKRqClIiIhJ97IrUNrMlia5KQcquSKUErCC1Q619IiJSBQUpERGJPkV2RcpsSVJEkLKGTSSUW6PR1donIiJVUZASEZHo46yRaklC5SDlsoKUy2uNRt9V6t9nLLGIiAgoSImISDSyp/ZtM9NJdFXaUtEOUjH+YhIopyJkUuoPNsQZiohII6cgJSIiUccsCgepliRUDlKxLohxAdA+thCAQm+g3s9PREQaPwUpERGJPqXWGqjtpEUOmzAMcFmT+zp6SgHYXaaBEyLStLz44otkZ2cTExPDuHHjGvp0mi0FKRERiS7BCgx/CQDe2BTiY/d6KYz3AJDhsgZNqCIl0jzl5eVx2223ceSRR+J2u8nOzuaiiy7iyy+/bOhT26+JEyfSokWLgx5XVFTErbfeyj333MOWLVu44YYb6v7kolTcwQ8RERFpRsoLnW9DrrR9r49zA5AR7wWgsExBSqS5Wb9+PWeeeSYtWrTg8ccf54QTTiAQCPDFF19wyy23sHz58kO630AgQHx8fLUvrwsbN24kEAhw4YUX0q5du/0eU5/n05ypIiUiItGlfDcAxWYCbrdr3+vjrIpU6zgrSO1WRUqk+kwTSksb7quaUzZvvvlmDMNgzpw5/OY3v6Fr164cf/zx3Hnnnfzwww/OcRs3buSSSy4hOTmZ1NRUhg8fzrZt25zrc3JyOOmkk3jllVecypZpmhiGwfPPP88ll1xCUlISjzzyCAAfffQRvXr1wuPxcOSRR/Lggw9SUVHh3N/u3bu54YYbyMjIwOPx0L17dz7++GNmzJjBH//4RwoLCzEMA8MwyMnJ2ed5TZw4kR49egBw5JFHYhgG69evr/I8CwsLueGGG2jbti2pqamce+65LFiwIOI+//nPf5KRkUFKSgrXXXcdf/vb3zjppJOc6/v168eIESMibjNs2DCuueYa52e/38/IkSM54ogjSEpKonfv3syYMSPivFu0aMEXX3zBcccdR3JyMkOGDCE3Nzfifl955RWOP/543G437dq149ZbbwXg2muvZejQoRHHVlRUkJmZySuvvLLPn1NtUUVKRESiix2kikgkybWfl0E7SKXHlgFq7ROpkbIy+Ne/Gu7x//pXSEo64CG7du3i888/59FHHyVpP8eG2+dM02TYsGEkJSUxc+ZMKioquPnmm7nssssiQsDq1at56623ePfdd4mN3bPm8oEHHmD06NGMHTuW2NhYvvjiC37/+9/z1FNPcfbZZ7NmzRqn7e6BBx4gFApx/vnnU1xczGuvvcZRRx3F0qVLiY2NpU+fPowbN47777+fFStWAJCcnLzPuV922WVkZ2czYMAA5syZQ3Z2Nm3atKnyPC+88ELS09P59NNPSUtL44UXXuC8885j5cqVpKen89Zbb/HAAw/wzDPPcPbZZzNp0iSeeuopjjzyyOr/PwH++Mc/sn79eqZMmUJWVhbvv/8+Q4YMYdGiRXTp0gWAsrIy/v3vfzNp0iRiYmL4/e9/z913383rr78OwHPPPcedd97JP//5T84//3wKCwv5/vvvAbj++us555xzyM3Ndapwn376KSUlJQwfPrxG51oTClIiIhJdvLsBKDKTSHLH7nu9HaRaGFaQ2q3WPpFmZfXq1ZimybHHHnvA46ZPn87ChQtZt24d2dnZAEyaNInjjz+euXPncuqppwJWtWXSpElOYAm74ooruPbaa52f//CHP/C3v/2Nq6++GrAqRg8//DAjR47kgQceYPr06cyZM4dly5bRtWtX55iwtLQ0DMMgMzOzynNOSEigVatWALRp0ybi2L3P86uvvmLRokXk5+fjdlstzf/+97/54IMPeOedd7jhhhsYN24c1157Lddffz0AjzzyCNOnT6e8vPyAf3aVrVmzhsmTJ7N582aysrIAuPvuu/n888+ZMGECo0aNAqx2w+eff56jjjoKgFtvvZWHHnrIuZ9HHnmEu+66izvuuMO5LPz/oE+fPhxzzDFMmjSJkSNHAjBhwgR++9vf7jdw1hYFKRERiS52RaqQJJLcVVekUrGm9qkiJdK8hDfZNgzjgMctW7aM7OxsJ0QBdOvWjRYtWrBs2TLnTXzHjh33CVEAp5xySsTP8+bNY+7cuTz66KPOZcFgkPLycsrKypg/fz7t27d3QlRt2/s8582bR0lJiRO8wrxeL2vWrAGsP4Obbrop4vozzjiDr7/+utqP+/PPP2Oa5j7Py+fzRTx2YmKiE6IA2rVrR36+NWE1Pz+frVu3ct5551X5ONdffz0vvvgiI0eOJD8/n08++aTOB4coSImISHSxh00UmYmRo8/D7Kl9yaY12a/Qq/HnIs1Jly5dMAyDZcuWMWzYsCqPC691Otjl+2sP3N/loVCIBx98kEsvvXSfYz0eDwkJCdV8Bodmf+fTrl27iDbFsOpMBwyLiYlxwmlYILDnA6hQKERsbCzz5s2LaH2EyPbEvYdfGIbh3G91/myuuuoq/va3vzF79mxmz55Np06dOPvss6v9PA6FgpSIiEQXu7Wv0DxwRSoxFA5SqkiJVFtiorVOqSEf/yDS09MZPHgwzzzzDLfffvs+AWP37t20aNGCbt26sXHjRjZt2uRUpZYuXUphYSHHHXdcjU/t5JNPZsWKFRx99NH7vf6EE05g8+bNrFy5cr9VKZfLRTAYrPHjHuh88vLyiIuLo1OnTvs95rjjjuOHH37gqquuci6rPIwDrBbCykMhgsEgixcvpn///gD07NmTYDBIfn7+IQeblJQUOnXqxJdffunc795atWrFsGHDmDBhArNnz+aPf/zjIT1WTShIiYhIdKnc2neAYROeimJAa6REasQwDjrsoTF49tln6dOnD6eddhoPPfQQJ5xwAhUVFUybNo3nnnuOZcuWMWDAAE444QSuvPJKxo0b5wyb6Nu37z5te9Vx//33M3ToULKzs/ntb39LTEwMCxcuZNGiRTzyyCP07duXc845h1//+teMGTOGo48+muXLl2MYBkOGDKFTp06UlJTw5ZdfcuKJJ5KYmEhiNYJjVQYMGMAZZ5zBsGHDeOyxxzjmmGPYunUrn376KcOGDeOUU07hjjvu4Oqrr+aUU07hrLPO4vXXX2fJkiURa7fOPfdc7rzzTj755BOOOuooxo4dy+7du53ru3btypVXXslVV13FE088Qc+ePdmxYwdfffUVPXr04IILLqjW+ebk5HDTTTfRtm1bZyjH999/z2233eYcc/311zN06FCCwaCzFq0uafy5iIhEl4NWpKxF166KIus4VaREmp3OnTvz888/079/f+666y66d+/OwIED+fLLL3nuuecAq7Xsgw8+oGXLlpxzzjkMGDCAI488kjfffPOQHnPw4MF8/PHHTJs2jVNPPZXTTz+dMWPG0LFjR+eYd999l1NPPZXf/e53dOvWjZEjRzpVqD59+nDTTTdx2WWX0aZNGx5//PHD+jMwDINPP/2Uc845h2uvvZauXbty+eWXs379ejIyMgBrCuD999/PPffcQ69evdiwYQN//vOfI+7n2muv5eqrr+aqq66ib9++dO7ceZ+q0YQJE7jqqqu46667OOaYY7j44ov58ccfI9afHczVV1/NuHHjePbZZzn++OMZOnQoq1atijhmwIABtGvXjsGDBzuDLeqSYe7d1BiFioqKSEtLo7CwkNTU1IY+HRERqUtvXQ1LP+CBwNW0Pvc2rjs5g26PfQvAUvc8Er07IG4ioaRkjix+iRR3HIseHNzAJy3SOJWXl7Nu3To6d+6Mx+Np6NORepCTk8MHH3zA/PnzG/pU9lFWVkZWVhavvPLKfteiVXagv7vVzQZq7RMRkegSbu0zk+iwv4pUfAKYEBMoJY4Kin1QEQwRF6smDhGRxigUCpGXl8cTTzxBWloaF198cb08roKUiIhEl3BrH0kk728fqVg3VFjfplLGLlIpKq8gPclVf+coIiLVtnHjRjp37kz79u2ZOHEicXH1E3H08ZqIiEQXuyJljT/fz4ttTAy4rJG8WW5r08ndZRqBLiICVmtfY2vr69SpE6ZpsmnTpgPuNVXbFKRERCS62PtIWRvy7qciBeBpAUA7j886VgMnRERkLwpSIiISPUKhPUHKrGL8OYAnDYDMeLsipSAlIiJ7UZASEZHo4S8GMwRAEVWMPwdIsIJUW5cVpIoUpEREZC8KUiIiEj3sapTPjMeHi0RXFa19bitItY4Nr5FSkBIRkUgKUiIiEj0qTewDSK6qImW39rWMLQMUpEREZF8KUiIiEj0qTewDSDxIa19LoxTQsAkREdmXgpSIiESPvSpSifFVtfa1ACAVK0jt9mr8uUi06NevHyNGjKjx7fLy8hg4cCBJSUm0aNGi1s9LGh8FKRERiR6VJvYlumKJiTH2f5wnFYAks8Q6Xq19Is3KNddcg2EY+3ytXr2a9957j4cfftg5tlOnTowbN+6g9zl27Fhyc3OZP38+K1eurMOzl8aifrb9FRERaQzs1r5Ckva/GW+YvUYqIVgMQKm/oq7PTETq2ZAhQ5gwYULEZW3atCE2topK9UGsWbOGXr160aVLlyqPCQQCxMfHH9L9S+OjipSIiEQPu7WvyEysejNecDbkdVdYQcobCNXxiYlIfXO73WRmZkZ8xcbGRrT29evXjw0bNvCXv/zFqVrtT6dOnXj33Xf573//i2EYXHPNNQAYhsHzzz/PJZdcQlJSEo888ggAH330Eb169cLj8XDkkUfy4IMPUlGx5wObVatWcc455+DxeOjWrRvTpk3DMAw++OADAGbMmIFhGOzevdu5zfz58zEMg/Xr1zuXzZo1i3POOYeEhASys7O5/fbbKS0tjTjvUaNGce2115KSkkKHDh148cUXI57b5s2bufzyy0lPTycpKYlTTjmFH3/8kfXr1xMTE8NPP/0Ucfz48ePp2LEjpmnW5H9Hk9TgQWrLli38/ve/p1WrViQmJnLSSScxb94853rTNMnJySErK4uEhAT69evHkiVLIu7D5/Nx22230bp1a5KSkrj44ovZvHlzfT8VERFp7CpVpKrcjBecYRPxAStIlfuDdX1mIs2GaZqU+Svq/asu3ri/9957tG/fnoceeojc3Fxyc3P3e9zcuXMZMmQIw4cPJzc3lyeffNK57oEHHuCSSy5h0aJFXHvttXzxxRf8/ve/5/bbb2fp0qW88MILTJw4kUcffRSAUCjEpZdeSmxsLD/88APPP/8899xzT43PfdGiRQwePJhLL72UhQsX8uabb/Ldd99x6623Rhz3xBNPcMopp/DLL79w88038+c//5nly5cDUFJSQt++fdm6dSsffvghCxYsYOTIkYRCITp16sSAAQP2qepNmDDBaZ1s7hq0ta+goIAzzzyT/v3789lnn9G2bVvWrFkTsUDv8ccfZ8yYMUycOJGuXbvyyCOPMHDgQFasWEFKSgoAI0aM4KOPPmLKlCm0atWKu+66i6FDhzJv3rxDLs+KiEgzVGmN1AErUm5rjVS83zq+vEJBSqS6vIEg3e7/ot4fd+lDgw/csruXjz/+mOTkZOfn888/n7fffjvimPT0dGJjY0lJSSEzM7PK+2rTpg1ut5uEhIR9jrviiiu49tprnZ//8Ic/8Le//Y2rr74agCOPPJKHH36YkSNH8sADDzB9+nSWLVvG+vXrad++PQCjRo3i/PPPr/ZzA/jXv/7FFVdc4VTXunTpwlNPPUXfvn157rnn8Hg8AFxwwQXcfPPNANxzzz2MHTuWGTNmcOyxx/LGG2+wfft25s6dS3p6OgBHH3208xjXX389N910E2PGjMHtdrNgwQLmz5/Pe++9V6NzbaoaNEg99thjZGdnRyTZTp06Od+bpsm4ceO47777uPTSSwF49dVXycjI4I033uDGG2+ksLCQl19+mUmTJjFgwAAAXnvtNbKzs5k+fTqDBw+u1+ckIiKNmB2kikms1hqp2EAxYOJVRUqk2enfvz/PPfec83NSUlKdPM4pp5wS8fO8efOYO3euU4ECCAaDlJeXU1ZWxrJly+jQoYMTogDOOOOMGj/uvHnzWL16Na+//rpzmWmahEIh1q1bx3HHHQfACSec4FxvGAaZmZnk5+cDVrtgz549nRC1t2HDhnHrrbfy/vvvc/nll/PKK6/Qv3//iPfzzVmDBqkPP/yQwYMH89vf/paZM2dyxBFHcPPNN/OnP/0JgHXr1pGXl8egQYOc27jdbvr27cusWbO48cYbmTdvHoFAIOKYrKwsunfvzqxZsxSkRERkD7+1NqDUTKh6M14Al/WGyjBDePDjDWhxuEh1JcTHsvSh+n//lVDVdgZVSEpKiqiu1JW9A1ooFOLBBx90igSVeTye/bYo7t0mFxNjrc6pfGwgEDldNBQKceONN3L77bfvc38dOnRwvt97+IVhGIRC1rrQhISE/T6nMJfLxR/+8AcmTJjApZdeyhtvvFGtCYfNRYMGqbVr1/Lcc89x55138ve//505c+Zw++2343a7ueqqq8jLywMgIyMj4nYZGRls2LABsGb2u1wuWrZsuc8x4dvvzefz4fP5nJ+Liopq82mJiEhj5bOn8OGhjesAb7riE51vkymnMOCp6zMTaTYMw6hRi11j53K5CAZrryp98skns2LFiipDXLdu3di4cSNbt24lKysLgNmzZ0cc06ZNGwByc3Od98Dz58/f53GWLFlyWGHxhBNO4D//+Q+7du2qsip1/fXX0717d5599lkCgcB+A2Jz1aDDJkKhECeffDKjRo2iZ8+e3HjjjfzpT3+KKLPCvincNM2DLmA70DGjR48mLS3N+crOzj68JyIiIk2D39oXqsT0kHSgilRMDListRNJhpdA0KQiqMl9ItGoU6dOfPPNN2zZsoUdO3Yc9v3df//9/Pe//yUnJ4clS5awbNky3nzzTf7v//4PgAEDBnDMMcdw1VVXsWDBAr799lvuu+++iPs4+uijyc7OJicnh5UrV/LJJ5/wxBNPRBxzzz33MHv2bG655Rbmz5/PqlWr+PDDD7ntttuqfa6/+93vyMzMZNiwYXz//fesXbuWd999NyLYHXfccZx++uncc889/O53vztoFas5adAg1a5dO7p16xZx2XHHHcfGjRsBnMV6e1eW8vPznSpVZmYmfr+fgoKCKo/Z27333kthYaHztWnTplp5PiIi0sj5rCBVSsKBh03AniBFOQDlFQpSItHooYceYv369Rx11FFOJehwDB48mI8//php06Zx6qmncvrppzNmzBg6duwIWG1777//Pj6fj9NOO43rr78+Yj0VWO14kydPZvny5Zx44ok89thjzmj1sBNOOIGZM2eyatUqzj77bHr27Mk//vEP2rVrV+1zdblcTJ06lbZt23LBBRfQo0cP/vnPf+4zzO26667D7/dHDNWIBg1adz3zzDNZsWJFxGUrV650/iJ17tyZzMxMpk2bRs+ePQHw+/3MnDmTxx57DIBevXoRHx/PtGnTGD58OGCVORcvXszjjz++38d1u9243e66eloiItJY+cNBynPw1iN3MpTsCVJef/DA66pEpMmYOHFildfNmDEj4ufTTz+dBQsWHPQ+w3s8VVbVSPbBgwcfcB1/165d+fbbbw/4eGeeeSYLFy484OOdeuqpTJ06tcr7qLznVNjeLYIdO3bknXfeOeC55Obm0r17d0499dQDHtfcNOgrwl/+8hf69OnDqFGjGD58OHPmzOHFF190NgIzDIMRI0YwatQounTpQpcuXRg1ahSJiYlcccUVAKSlpXHddddx11130apVK9LT07n77rvp0aOHM8VPRESEUBACZQCUmp6DhyK7IpUe54cAlAc0uU9EpLKSkhKWLVvG+PHjefjhhxv6dOpdgwapU089lffff597772Xhx56iM6dOzNu3DiuvPJK55iRI0fi9Xq5+eabKSgooHfv3kydOtXZQwpg7NixxMXFMXz4cLxeL+eddx4TJ07UHlIiIrKHPbEPoIQEEg80bAKcINUyzqcgJSKyH7feeiuTJ09m2LBhUdfWBw0cpACGDh3K0KFDq7zeMAxycnLIycmp8hiPx8P48eMZP358HZyhiIg0C3ZbX5AYfMQfeNgEWK19QFqs3dqnICUiDaiqNsGGNHHixAO2STZ3DTpsQkREpN7YgybKjATAOHiQcoWDlLVdRnlAwyZERGQPBSkREYkOfmsPqTKs0bxJB2vtsytSKTFWkFJFSkREKlOQEhGR6BAefW5am+sedGqfXZFKMewg5VeQEqlKY2w7EzmQ2vg7qyAlIiLRodJmvEC1p/YlG/Y+UqpIiewjPj4egLKysgY+E5GaCf+dDf8dPhQNPmxCRESkXthT+4pC1j6CiQfbkNdu7UvGCyhIiexPbGwsLVq0ID8/H4DExEQMw2jgsxKpmmmalJWVkZ+fT4sWLQ5ryreClIiIRAeftUaq1FkjVb2KVKIdpLRGSmT/MjMzAZwwJdIUtGjRwvm7e6gUpEREJDqEW/vwEGOAJ/4g3e1ua79CBSmRAzMMg3bt2tG2bVsCgUBDn47IQcXHx9fKfrMKUiIiEh2cYRMJJLniDt5+ZFekPGZ4jZTGn4scSGxsbK28ORVpKjRsQkREooNdkSrDc/D1UeCskfKErAXJWiMlIiKVKUiJiEh0qDS176Cb8QK4kgBwh+zWPo0/FxGRShSkREQkOoRb+/AcfNAEgMtaI+UKWhUprZESEZHKFKRERCQ6OMMmEkh0Vb+1Lz5YBphq7RMRkQgKUiIiEh2cYROeg2/GC86wiRhCJOBTkBIRkQgKUiIiEh38e/aRSqxOkIpPBKzJfkn41NonIiIRFKRERCQ6OBUpN0nVae2LiXEGTiQZXo0/FxGRCApSIiISHfylgFWRqtbUPnDa+5Ip19Q+ERGJoCAlIiLRwRk24aleRQqcgRNJeLVGSkREIihIiYhI8xcKQsAaY15qVnONFDgVqSSjXGukREQkgoKUiIg0f3Y1CsL7SFW3ImXtJZWsipSIiOxFQUpERJo/e9BEBbH4iCexOhvygjNsItHQ1D4REYmkICUiIs2fXZEqNxIAg4TqVqScYRPW1D7TNOvoBEVEpKlRkBIRkebPDlJeIwGAhPiaDpsoB8BXoRHoIiJiUZASEZHmL7yHFB4APNUNUs6wCS+ARqCLiIhDQUpERJo/f3gzXrsiVcNhE6mGD0DrpERExKEgJSIizZ9vzx5SUIPWPrsilRprtfZpcp+IiIQpSImISPPnLwagKOQGahKkrKl9yapIiYjIXhSkRESk+fOXAlBsBylPfDVf/uzWvhRDFSkREYmkICUiIs2fvwyAMtMOUtVdIxWfCFj7SAF4/ZraJyIiFgUpERFp/gJWRaqsxmukrCCVgBWkVJESEZEwBSkREWn+7IqUFzdxMQbxsdV8+Yu31kgl2PtIaY2UiIiEKUiJiEjzF9jT2lftahQ4FSmPqWETIiISSUFKRESaP3+4tc9d/fVR4KyRcptWRcqnICUiIjYFKRERaf4Ce1r7alaRslr73GY5BiFVpERExKEgJSIizZ//EFv77IoUgAc/ZX4FKRERsShIiYhI8xc4vNY+gER8qkiJiIhDQUpERJq/8NQ+00NCdTfjBYiJgbgEABIMH15VpERExKYgJSIizV94al9N10iBM7kvEZ9a+0RExKEgJSIizV+lqX0JNWntA2cvqURUkRIRkT0UpEREpPkLT+0z3XgOsSKVYPgo81fU9pmJiEgTpSAlIiLNW7ACgn7gEFv74sOtfeVq7RMREYeClIiING/2xD44hH2kwNlLSlP7RESkMgUpERFp3uyJfSFi8BF/CGukKrf2KUiJiIhFQUpERJo3e32UP8YDGIe8RkrDJkREpDIFKRERad7siX0+wwNwCGuk9rT2adiEiIiEKUiJiEjzZleknCBV09Y+l1r7RERkXwpSIiLSvNkVKe8hV6T2tPb5KkKEQmatnp6IiDRNClIiItK8hfeQwg1wCGukrNa+BMqt+9HkPhERoYGDVE5ODoZhRHxlZmY615umSU5ODllZWSQkJNCvXz+WLFkScR8+n4/bbruN1q1bk5SUxMUXX8zmzZvr+6mIiEhj5d+zGS8cQmtfuCJl+ADU3iciIkAjqEgdf/zx5ObmOl+LFi1yrnv88ccZM2YMTz/9NHPnziUzM5OBAwdSXFzsHDNixAjef/99pkyZwnfffUdJSQlDhw4lGNQLnYiI4OwjVRoOUoc4tS85xtrUV5P7REQEIK7BTyAuLqIKFWaaJuPGjeO+++7j0ksvBeDVV18lIyODN954gxtvvJHCwkJefvllJk2axIABAwB47bXXyM7OZvr06QwePLhen4uIiDRCdkWq1HQBhz61L9mwglRZQJP7RESkEVSkVq1aRVZWFp07d+byyy9n7dq1AKxbt468vDwGDRrkHOt2u+nbty+zZs0CYN68eQQCgYhjsrKy6N69u3PM/vh8PoqKiiK+RESkmbLXSJWE7CDlquFLn12RSopRa5+IiOzRoEGqd+/e/Pe//+WLL77gpZdeIi8vjz59+rBz507y8vIAyMjIiLhNRkaGc11eXh4ul4uWLVtWecz+jB49mrS0NOcrOzu7lp+ZiIg0GvbUvmI7SNV42ESlqX2g1j4REbE0aJA6//zz+fWvf02PHj0YMGAAn3zyCWC18IUZhhFxG9M097lsbwc75t5776WwsND52rRp02E8CxERadTsilRx6FDXSO3ZkBdUkRIREUuDt/ZVlpSURI8ePVi1apWzbmrvylJ+fr5TpcrMzMTv91NQUFDlMfvjdrtJTU2N+BIRkWaqlqb2eZwgpTVSIiLSyIKUz+dj2bJltGvXjs6dO5OZmcm0adOc6/1+PzNnzqRPnz4A9OrVi/j4+IhjcnNzWbx4sXOMiIhEOXtqX1l4H6m4Q6tIeUx7HylVpEREhAae2nf33Xdz0UUX0aFDB/Lz83nkkUcoKiri6quvxjAMRowYwahRo+jSpQtdunRh1KhRJCYmcsUVVwCQlpbGddddx1133UWrVq1IT0/n7rvvdloFRUREwhWpMty442KIiTlwe/g+7IqU2ywHTLX2iYgI0MBBavPmzfzud79jx44dtGnThtNPP50ffviBjh07AjBy5Ei8Xi8333wzBQUF9O7dm6lTp5KSkuLcx9ixY4mLi2P48OF4vV7OO+88Jk6cSGxsDT9xFBGR5imwp7UvwX0Irw321L4YQrgJ4A0oSImISAMHqSlTphzwesMwyMnJIScnp8pjPB4P48ePZ/z48bV8diIi0iz497T21XjQBDj7SAEk4NMaKRERARrZGikREZFaFwi39nkOLUjFxkGsNTo9ER9ef6g2z05ERJooBSkREWneKk3tq/EeUmH2OqkEw4c3oIqUiIgoSImISHNXaWpfjUefh1XaS0rDJkREBBSkRESkuas0te+QWvvAqUgpSImISJiClIiINF+hEFR4gcNs7XOFW/vKtY+UiIgAClIiItKc2YMm4DBb++Irt/ZpjZSIiChIiYhIc1YpSJXjIiH+EF/27IpUoqHWPhERsShIiYhI82XvIRWI8WASc9hrpBLwaUNeEREBFKRERKQ5sytS/pgEADya2iciIrVEQUpERJqvgDVowhfjATj8qX2GT8MmREQEUJASEZHmzG7t8xmHG6SsipYbP2X+CkzTrJXTExGRpktBSkREmq9wRQoXwGFM7duzj1TIBF9FqFZOT0REmi4FKRERab7sNVLluAEOfx8pfABq7xMREQUpERFpxuyKlNcOUoe7Riopxg9AmSb3iYhEPQUpERFpvuyKlNe0W/sOc41UUkzAuj9VpEREop6ClIiINF92kCo17YrUYa6RSjLU2iciIhYFKRERab7s1r4yuyJ1yGuknPHndmufv+Lwz01ERJo0BSkREWm+7IpUSSgeOPzWvgQ7SJVrap+ISNRTkBIRkebLrkg5QeowW/s89tQ+n4ZNiIhEPQUpERFpvuyKVHGwdipSHtMKUqpIiYiIgpSIiDRf/nBr32GOP3clAeA2ywFVpEREREFKRESas732kXLHH+LLnl2RcqsiJSIiNgUpERFpvirtI2UY4I47vCAVS5A4KlSREhERBSkREWnG7IpUOS4S4mMxDOPQ7sceNgGQiA+fKlIiIlFPQUpERJqvSq19h7w+CiDWBYZ1ew9+VaRERERBSkREmrFAKWC19h3yZrwAhuFUpRIMVaRERERBSkREmjOnIuU59D2kwsKb8uKnXBUpEZGopyAlIiLNV3jYhL1G6rA4QUoVKRERUZASEZHmLFyRMg9zjRQ4e0klGD5VpEREREFKRESaqWAFBP2AVZHy1FprnypSIiKiICUiIs1Vhdf51prad5gveeFhE1ojJSIiKEiJiEhz5bfWR5kY+IivvTVSmtonIiIoSImISHNlD5oIxHgAoxam9oUrUgpSIiKiICUiIs2VPWjCClIc3j5SoNY+ERGJoCAlIiLNkxOk3ABq7RMRkVqlICUiIs2T3drnM2o3SHlUkRIRERSkRESkuXKClNXad9hrpOx9pBK1RkpERFCQEhGR5soOUuVYFanDXyO1Zx8pVaRERERBSkREmid7jZSX2mrts4dNGH5VpEREREFKRESaqXBFynQBtdDa56yR8uGvCBEKmYd3fyIi0qQpSImISPNkV6TKwkGqlipSifgA8AdVlRIRiWYKUiIi0jz5rYpUiVlba6T2tPYB+AIKUiIi0azGQerVV1/lk08+cX4eOXIkLVq0oE+fPmzYsKFWT05EROSQ2a19paF4oPZa+xLsilR5hQZOiIhEsxoHqVGjRpGQYL2YzJ49m6effprHH3+c1q1b85e//KXWT1BEROSQ2K19JaFabu1TRUpERIC4mt5g06ZNHH300QB88MEH/OY3v+GGG27gzDPPpF+/frV9fiIiIofGrkiVBO2K1OEGKVe4tU8VKREROYSKVHJyMjt37gRg6tSpDBgwAACPx4PX663dsxMRETlUdkWqyG7t87gOc1lweI0UqkiJiMghVKQGDhzI9ddfT8+ePVm5ciUXXnghAEuWLKFTp061fX4iIiKHxq5IeWttat+e8eegipSISLSr8cdzzzzzDGeccQbbt2/n3XffpVWrVgDMmzeP3/3ud4d8IqNHj8YwDEaMGOFcZpomOTk5ZGVlkZCQQL9+/ViyZEnE7Xw+H7fddhutW7cmKSmJiy++mM2bNx/yeYiISDNhB6myWpvaZwWpOILEUaGKlIhIlKtxRapFixY8/fTT+1z+4IMPHvJJzJ07lxdffJETTjgh4vLHH3+cMWPGMHHiRLp27cojjzzCwIEDWbFiBSkpKQCMGDGCjz76iClTptCqVSvuuusuhg4dyrx584iNPcwXTRERabrs1r5y3MTHGsTHHm5rX5LzbSI+fKpIiYhEtRq/qkyYMIG33357n8vffvttXn311RqfQElJCVdeeSUvvfQSLVu2dC43TZNx48Zx3333cemll9K9e3deffVVysrKeOONNwAoLCzk5Zdf5oknnmDAgAH07NmT1157jUWLFjF9+vQan4uIiDQj4dY+XIdfjQKIjQfDuh8PfspVkRIRiWo1DlL//Oc/ad269T6Xt23bllGjRtX4BG655RYuvPBCZ2hF2Lp168jLy2PQoEHOZW63m759+zJr1izAaicMBAIRx2RlZdG9e3fnmP3x+XwUFRVFfImISDNjV6S8pvvw10cBGEalTXlVkRIRiXY1bu3bsGEDnTt33ufyjh07snHjxhrd15QpU/j555+ZO3fuPtfl5eUBkJGREXF5RkaGs/FvXl4eLpcropIVPiZ8+/0ZPXr0YbUiiohIExAOUrVVkQJrnZS/mARVpEREol6NK1Jt27Zl4cKF+1y+YMECZ/BEdWzatIk77riD1157DY/HU+VxhmFE/Gya5j6X7e1gx9x7770UFhY6X5s2bar2eYuISBPhLwXAixtP/GGujwqz95JKpFwVKRGRKFfjV5bLL7+c22+/na+//ppgMEgwGOSrr77ijjvu4PLLL6/2/cybN4/8/Hx69epFXFwccXFxzJw5k6eeeoq4uDinErV3ZSk/P9+5LjMzE7/fT0FBQZXH7I/b7SY1NTXiS0REmpnwsAmzNitSVpDyGKpIiYhEuxoHqUceeYTevXtz3nnnkZCQQEJCAoMGDeLcc8+t0Rqp8847j0WLFjF//nzn65RTTuHKK69k/vz5HHnkkWRmZjJt2jTnNn6/n5kzZ9KnTx8AevXqRXx8fMQxubm5LF682DlGRESiUCgIQWu/pzLcuONqqSJlj0BP0NQ+EZGoV+M1Ui6XizfffJOHH36YBQsWkJCQQI8ePejYsWON7iclJYXu3btHXJaUlESrVq2cy0eMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx77DK8QEZEoYlejINzaV7sVKa2REhGRGgepsK5du9K1a9faPJd9jBw5Eq/Xy80330xBQQG9e/dm6tSpzh5SAGPHjiUuLo7hw4fj9Xo577zzmDhxovaQEhGJZvboc4ByXLjjajlIaWqfiEjUq1aQuvPOO3n44YdJSkrizjvvPOCxY8aMOeSTmTFjRsTPhmGQk5NDTk5OlbfxeDyMHz+e8ePHH/LjiohIM2MHqUCMBzBw19awiYjWPlWkRESiWbWC1C+//EIgEHC+FxERadTs1r6KWGsqrKe2K1L42R5QRUpEJJpVK0h9/fXX+/1eRESkUYqoSFF748/DFSlDFSkRkWhX41eWa6+9luLi4n0uLy0t5dprr62VkxIRETksfitI+Q0rSNXeGqlKrX2qSImIRLUaB6lXX30Vr9e7z+Ver5f//ve/tXJSIiIih8Vu7fPXdkXKlQRYrX2qSImIRLdqT+0rKirCNE1M06S4uBiPx+NcFwwG+fTTT2nbtm2dnKSIiEiN2K19PsMNUIvjz/dUpMpVkRIRiWrVDlItWrTAMAwMw9jv2HPDMHjwwQdr9eREREQOiR2kygkHqdpaIxUef66KlIhItKt2kPr6668xTZNzzz2Xd999l/T0dOc6l8tFx44dycrKqpOTFBERqZG9glRdrJFSRUpEJLpVO0j17dsXgHXr1tGhQwcMw6izkxIRETks9hqpOqtIaR8pEZGoV+NXlmXLlvH99987Pz/zzDOcdNJJXHHFFRQUFNTqyYmIiBwSO0iV4QJqc41Upda+gIKUiEg0q3GQ+utf/0pRUREAixYt4s477+SCCy5g7dq13HnnnbV+giIiIjXmLwWgzAy39tXuPlIefJRXqLVPRCSaVbu1L2zdunV069YNgHfffZeLLrqIUaNG8fPPP3PBBRfU+gmKiIjUmF2RKjWtipS7litSifhUkRIRiXI1/ojO5XJRVmYt4p0+fTqDBg0CID093alUiYiINCh72ERpKB4AT20Nm3Dtae0rrwhimmbt3K+IiDQ5Na5InXXWWdx5552ceeaZzJkzhzfffBOAlStX0r59+1o/QRERkRqzK1IloXBFqnaHTXjwYZrgqwjV3vorERFpUmr8yvL0008TFxfHO++8w3PPPccRRxwBwGeffcaQIUNq/QRFRERqzK5IFQftYRO1Pv7cD4DXr3VSIiLRqsYVqQ4dOvDxxx/vc/nYsWNr5YREREQOmx2kSsKtfbVWkbKCVLwRJJ4KygJBWtbOPYuISBNTrSBVVFREamqq8/2BhI8TERFpMHZrX3FFOEjVVkUqyfk2AR9ef0Xt3K+IiDQ51QpSLVu2JDc3l7Zt29KiRYv9bsZrmiaGYRAMqs1BREQamF2RKgqvkaqt8eex8WDEghnEg59Sn17zRESiVbWC1FdffUV6ejoAX3/9dZ2ekIiIyGHzW0HKa9byhryGYQ2c8BeTYPgo0xopEZGoVa0g1bdvX+f7zp07k52dvU9VyjRNNm3aVLtnJyIicijs1j4vtbwhL1jrpPzFJOLDG1Brn4hItKrxK0vnzp3Zvn37Ppfv2rWLzp0718pJiYiIHBa7ta8cF3ExBnGxtRikwntJoYqUiEg0q/ErS3gt1N5KSkrweDy1clIiIiKHxa5IlZme2t/nKbyXlOGnTGukRESiVrXHn995550AGIbBP/7xDxITE53rgsEgP/74IyeddFKtn6CIiEiNhIIQ9AHgxVV7o8/DnL2kfJRpap+ISNSqdpD65ZdfAKsitWjRIlwul3Ody+XixBNP5O677679MxQREakJu60PrDVSrWtrM94wuyKViI+ygCpSIiLRqtpBKjyt749//CNPPvmk9osSEZHGyW7rMzHwEY+71itSau0TEZEaBKmwCRMm1MV5iIiI1A5/KQChuATAwFPrFanKrX0KUiIi0arGQQpg7ty5vP3222zcuBG/3x9x3XvvvVcrJyYiInJI7IpURaw1AKn210iFp/b5KdL4cxGRqFXjV5cpU6Zw5plnsnTpUt5//30CgQBLly7lq6++Ii0trS7OUUREpPrsIBWMsYKUu44qUonakFdEJKrVOEiNGjWKsWPH8vHHH+NyuXjyySdZtmwZw4cPp0OHDnVxjiIiItVnD5sIxFqBp9YrUvY+Uh58lGqNlIhI1Krxq8uaNWu48MILAXC73ZSWlmIYBn/5y1948cUXa/0ERUREaiQcpGLCrX11M7UvAT9etfaJiEStGgep9PR0iouLATjiiCNYvHgxALt376asrOxANxUREal7TpByA+COq8t9pFSREhGJVjUeNnH22Wczbdo0evTowfDhw7njjjv46quvmDZtGuedd15dnKOIiEj12Wuk/EYdV6QMH14FKRGRqFXjIPX0009TXl4OwL333kt8fDzfffcdl156Kf/4xz9q/QRFRERqxK5I+eo6SOGn1K/WPhGRaFXjIJWenu58HxMTw8iRIxk5cmStnpSIiMgh81tBqtxwAXXb2qeKlIhI9Krxq0tsbCz5+fn7XL5z505iY2v5Uz8REZGaslv7yrHXSNVZa59fa6RERKJYjYOUaZr7vdzn8+FyuQ77hERERA6L3doXDlK1vyFv5LCJUGj/r4siItK8Vbu176mnngLAMAz+85//kJyc7FwXDAb55ptvOPbYY2v/DEVERGrCrkiVhYNUbW/I60oCrCAFUF4RJNFV4055ERFp4qr9m3/s2LGAVZF6/vnnI9r4XC4XnTp14vnnn6/9MxQREamJQCkAZSF7jVRdVaQMv/U4fgUpEZFoVO3f/OvWrQOgf//+vPfee7Rs2bLOTkpEROSQhStSphWkar0i5UztsypSGjghIhKdavwR2tdffx3xc0VFBeXl5RGtfiIiIg3GDlIl4SBV68MmIitSGoEuIhKdqt3v8OmnnzJp0qSIyx599FGSk5Np0aIFgwYNoqCgoNZPUEREpEbsYROlwboaf25VpOIIEk+FJveJiESpar+6/Pvf/6aoqMj5edasWdx///384x//4K233mLTpk08/PDDdXKSIiIi1WbvI1USigfqbkNe0F5SIiLRrNpBavHixfTp08f5+Z133mHgwIHcd999XHrppTzxxBN89NFHdXKSIiIi1Wa39hUHw0GqlitSsfFgWOHMg59Sn1r7RESiUbVfXYqLi2nVqpXz83fffce5557r/Hz88cezdevW2j07ERGRmrJb+4qc1r5arkgZRqVNeX14A6pIiYhEo2oHqaysLJYtWwZASUkJCxYs4Mwzz3Su37lzJ4mJiVXdXEREpH7YQaqwripSAC7r9S7R3pRXRESiT7VfXX7zm98wYsQIJk2axJ/+9CcyMzM5/fTTnet/+uknjjnmmDo5SRERkWoLV6Qq6miNFOyZ3KcgJSIStao9/vyBBx5g69at3H777WRmZvLaa69FbMo7efJkLrroojo5SRERkWqz10gVVlgvcXUTpKyKlMfwU6Y1UiIiUanaFanExEQmTZpEQUEBy5Yt4+yzz464/uuvv+aee+6p0YM/99xznHDCCaSmppKamsoZZ5zBZ5995lxvmiY5OTlkZWWRkJBAv379WLJkScR9+Hw+brvtNlq3bk1SUhIXX3wxmzdvrtF5iIhIMxGsgKC9v5PpBiDBVccVKa2REhGJSnXQOF597du355///Cc//fQTP/30E+eeey6XXHKJE5Yef/xxxowZw9NPP83cuXPJzMxk4MCBFBcXO/cxYsQI3n//faZMmcJ3331HSUkJQ4cOJRjUC5uISNSx2/oAyrGGTSTUYUUqUePPRUSiVoMGqYsuuogLLriArl270rVrV2eD3x9++AHTNBk3bpwzXr179+68+uqrlJWV8cYbbwBQWFjIyy+/zBNPPMGAAQPo2bMnr732GosWLWL69OkN+dRERKQh2G19JgY+4nHHxRAbY9T+41Rq7dP4cxGR6NSgQaqyYDDIlClTKC0t5YwzzmDdunXk5eUxaNAg5xi3203fvn2ZNWsWAPPmzSMQCEQck5WVRffu3Z1jREQkitgVKTM+ETBIrIu2PlBrn4iIVH/YRF1ZtGgRZ5xxBuXl5SQnJ/P+++/TrVs3JwhlZGREHJ+RkcGGDRsAyMvLw+Vy0bJly32OycvLq/IxfT4fPp/P+bmoqKi2no6IiDQkuyIVjLWCTqKrjl7mwvtI4Vdrn4hIlGrwitQxxxzD/Pnz+eGHH/jzn//M1VdfzdKlS53rDSOyJcM0zX0u29vBjhk9ejRpaWnOV3Z29uE9CRERaRzsilQw1gPU0aAJ2LOPlOGjzK/WPhGRaFTtINWhQwd27tzp/Pz000/XSiXH5XJx9NFHc8oppzB69GhOPPFEnnzySTIzMwH2qSzl5+c7VarMzEz8fj8FBQVVHrM/9957L4WFhc7Xpk2bDvt5iIhII2AHqQo7SNV1a59HwyZERKJWtYPU5s2bIybh/f3vf2fHjh21fkKmaeLz+ejcuTOZmZlMmzbNuc7v9zNz5kz69OkDQK9evYiPj484Jjc3l8WLFzvH7I/b7XZGroe/RESkGbBb+wJ2a1+dTOyDiNa+8kCobh5DREQatUNuHjdN87Af/O9//zvnn38+2dnZFBcXM2XKFGbMmMHnn3+OYRiMGDGCUaNG0aVLF7p06cKoUaNITEzkiiuuACAtLY3rrruOu+66i1atWpGens7dd99Njx49GDBgwGGfn4iINDF2RSpgWHtI1cewifIKVaRERKJRgw6b2LZtG3/4wx/Izc0lLS2NE044gc8//5yBAwcCMHLkSLxeLzfffDMFBQX07t2bqVOnkpKS4tzH2LFjiYuLY/jw4Xi9Xs477zwmTpxIbGwdvXiKiEjj5beClN8JUnU1bCIJgATDR7mm9omIRKUavcL85z//ITk5GYCKigomTpxI69atI465/fbbq31/L7/88gGvNwyDnJwccnJyqjzG4/Ewfvx4xo8fX+3HFRGRZsquSJXH1PGwCacipdY+EZFoVe0g1aFDB1566SXn58zMTCZNmhRxjGEYNQpSIiIitcpeI+Wj/lr7vKpIiYhEpWoHqfXr19fhaYiIiNQCO0h57SBVdxUpe9iE4ccfCBEKmcTEHHhrDhERaV4afB8pERGRWhMoBcBrugBIjK+jNVKu8NQ+a3N3X4Xa+0REok21g9QFF1xAYWGh8/Ojjz7K7t27nZ937txJt27davXkREREasSuSJWZdd3aFxmkNHBCRCT6VDtIffHFF/h8Pufnxx57jF27djk/V1RUsGLFito9OxERkZqwh02U2hWpOh82YfgBNAJdRCQKVTtI7b1vVG3sIyUiIlKr7PHnpaF4oD4rUmrtExGJNlojJSIizYfd2lcStCtS8XVdkfIBJl6/KlIiItGm2kHKMAwMw9jnMhERkUbDbu0rCtV1a59VkYojRDxBtfaJiEShao8zMk2Ta665BrfbWsBbXl7OTTfdRFKStbt75fVTIiIiDcKuSBUHw619dTS1zw5SYLX3adiEiEj0qfYrzNVXXx3x8+9///t9jrnqqqsO/4xEREQOlV2RKqywXt7qbI1UbDwYsWAG8eDHpzVSIiJRp9pBasKECXV5HiIiIofPDlIFFVZFqs5a+wzDqkr5i0k0ylWREhGJQho2ISIizYfd2lcYqOOKFFTalNePV0FKRCTqKEiJiEjzYVekSuxhE4nxdbRGCvZM7sOn8eciIlFIQUpERJoPex8pb11vyAvOwAmP4Vdrn4hIFFKQEhGR5iEYgFAAgDLcxMUYuOLq8GXOrkgl4tP4cxGRKKQgJSIizYO9PgqgHHfdVqPAqUiptU9EJDopSImISPNgBynTiMFPXN0OmoCI1j6fWvtERKKOgpSIiDQPgVIAQrEJgFF3m/GGVRo2oal9IiLRR0FKRESaB7siFYyzA058/VSkEvFp2ISISBRSkBIRkebBDlIVMR6gjveQgj37SBl+rZESEYlCClIiItI82HtIBWKtIFX3wyasypdHFSkRkaikICUiIs2DvYdUoL4qUs7UPj/lFapIiYhEGwUpERFpHuyKlN8IB6n6GTaRaKgiJSISjRSkRESkebDXSPkMNwCeOh82kWQ9jlr7RESikoKUiIg0D3ZFqtwOUnXf2hcef+5XkBIRiUIKUiIi0jyEgxT1HaR8mtonIhKFFKRERKR5sIdNeE0rSNX51D6X1dqXaJSrIiUiEoUUpEREpHkIlAJQGq5IaUNeERGpQwpSIiLSPPjtIBUKt/bV8dQ+V7L1OIZP489FRKKQgpSIiDQPdmtfUThIueu6tS9ckSrHXxEiGDLr9vFERKRRUZASEZHmwV8CQGEwHoAUT3zdPl54jRQ+AHwVau8TEYkmClIiItI82FP7CgLhIFU/rX0eI0AsQU3uExGJMgpSIiLSPNhrpMJBKrWug5Q9bAI0cEJEJBopSImISPNgr5HaaQepZHcdt/bFucGw1mElKEiJiEQdBSkREWke7DVSJfawiTpv7TMMZ51UklGu1j4RkSijICUiIs2D3dpXhocYAxLrekNeiBg44VVFSkQkqihIiYhI82APmyjFTbI7DsMw6v4x4/eMQPcpSImIRBUFKRERafpM06lIeU1P3Y8+D6vc2qfx5yIiUUVBSkREmr6AF7A2xC3FXffro8LsEejWsAmtkRIRiSYKUiIi0vTZ1SgTg3JcpNZbRcpq7bOGTagiJSISTRSkRESk6bMn9lXEejCJIbneKlJWa58qUiIi0UdBSkREmj570EQg1qoQ1VtrX7y9RopyTe0TEYkyClIiItL02a19/hgPUI9BKlyRMrQhr4hItFGQEhGRps8OUuVGAkD9T+3T+HMRkaijICUiIk1fOEjhBiDZXb8VqUTKKfMrSImIRBMFKRERafrsIFWG1dqXWs+tfYmGjxJfRf08poiINAoKUiIi0vQFrCBVaobXSNVTa1+8Pf4cH8UKUiIiUaVBg9To0aM59dRTSUlJoW3btgwbNowVK1ZEHGOaJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr86mIiEhDsitSJaYLqM/WvvCGvOWUlCtIiYhEkwYNUjNnzuSWW27hhx9+YNq0aVRUVDBo0CBKS0udYx5//HHGjBnD008/zdy5c8nMzGTgwIEUFxc7x4wYMYL333+fKVOm8N1331FSUsLQoUMJBtWvLiISFfzW+PPioLVGqv6m9oU35PVRXB6on8cUEZFGoZ5eafbv888/j/h5woQJtG3blnnz5nHOOedgmibjxo3jvvvu49JLLwXg1VdfJSMjgzfeeIMbb7yRwsJCXn75ZSZNmsSAAQMAeO2118jOzmb69OkMHjy43p+XiIjUM3tD3qKQVZGq76l9iZRrjZSISJRpVGukCgsLAUhPTwdg3bp15OXlMWjQIOcYt9tN3759mTVrFgDz5s0jEAhEHJOVlUX37t2dY/bm8/koKiqK+BIRkSbMbu3bXWEFqPqrSFmtfYn41NonIhJlGk2QMk2TO++8k7POOovu3bsDkJeXB0BGRkbEsRkZGc51eXl5uFwuWrZsWeUxexs9ejRpaWnOV3Z2dm0/HRERqU8Bq7WvsL5b++xhE4lGOcUKUiIiUaXRBKlbb72VhQsXMnny5H2uMwwj4mfTNPe5bG8HOubee++lsLDQ+dq0adOhn7iIiDQ8u7XP22D7SPko8VcQCpn187giItLgGkWQuu222/jwww/5+uuvad++vXN5ZmYmwD6Vpfz8fKdKlZmZid/vp6CgoMpj9uZ2u0lNTY34EhGRJsweNlFqekh0xRIXW08vb3aQSjD8GGaIsoCGHImIRIsGDVKmaXLrrbfy3nvv8dVXX9G5c+eI6zt37kxmZibTpk1zLvP7/cycOZM+ffoA0KtXL+Lj4yOOyc3NZfHixc4xIiLSzDkb8rrrr60PnCAFkIAm94mIRJMGndp3yy238MYbb/C///2PlJQUp/KUlpZGQkIChmEwYsQIRo0aRZcuXejSpQujRo0iMTGRK664wjn2uuuu46677qJVq1akp6dz991306NHD2eKn4iINHNOkPLUX1sfQJwHMADTmtxXXgFp9ffwIiLScBo0SD333HMA9OvXL+LyCRMmcM011wAwcuRIvF4vN998MwUFBfTu3ZupU6eSkpLiHD927Fji4uIYPnw4Xq+X8847j4kTJxIbG1tfT0VERBpSwApSpaan/kafAxiGNbnPX0ySUU6RBk6IiESNBg1SpnnwRbmGYZCTk0NOTk6Vx3g8HsaPH8/48eNr8exERKTJsCtSXty0rs/WPrDa+/zF1sAJ7SUlIhI1GsWwCRERkcMSHjaBh9T6rEgBuOwR6OHWPhERiQoKUiIi0rSZ5p7x56a7ftdIwZ4R6IaGTYiIRBMFKRERadoqygGrVbwUD4nuel4fG19pLym19omIRA0FKRERadrs9VEAXlwkxNdzkLIrUkmUU6zWPhGRqKEgJSIiTZvd1uc3PJjEkOhqmCCVYPgUpEREooiClIiING32oAlfTAIAngasSJX4tEZKRCRaKEiJiEjTZrf2lRseABIaqCKVaGiNlIhINFGQEhGRpi08sS8cpBqsIuVVa5+ISBRRkBIRkabNDlJlWK199b9GKgXQsAkRkWijICUiIk2brxiAEhpojZTbClIphletfSIiUURBSkREmjY7SBWbDdTa504Gwq19GjYhIhItFKRERKRpCwepUAMNm7ArUsmGlxK19omIRA0FKRERadrsIFVkB6l6XyMVDlKUU+oPEgyZ9fv4IiLSIBSkRESkabOHTRTaQar+95EKBykvgNZJiYhECQUpERFp2uyKVEGwodZIhVv7ygEFKRGRaKEgJSIiTZvPqkiV0lBrpKxhE8mGVZHSwAkRkeigICUiIk2brwiAEtMefx7XMBWpeCpwEdDACRGRKKEgJSIiTZu9RqqYBDzxMcTEGPX7+K5k59tkvNqUV0QkSihIiYhI02avkSo1E+p/fRRATCzEJwGQZHgp8wfr/xxERKTeKUiJiEjTZgepEhooSIGzTioFL6V+VaRERKKBgpSIiDRt9rCJEjx46nvQRJi9TiqJcryqSImIRAUFKRERabpCQQiUAtawiXrfjDfMtWdyn1r7RESig4KUiIg0XfagCYDSBm3t27Mpb5la+0REooKClIiINF32+qhgTDx+4vE0dJBSRUpEJGooSImISNNlr48KxFpT8xq6IpVEuYKUiEiUUJASEZGmy65I+e0g1WBrpOwglWKotU9EJFooSImISNPlt4KUL1yRauBhE0motU9EJFooSImISNNlV6R8MQkADb9GSsMmRESihoKUiIg0XXaQKjMSgYZfI6VhEyIi0UNBSkREmi572ITXsCpSDb1GKlkb8oqIRA0FKRERabrsilQpVkWqwVr7Km3IW6rWPhGRqKAgJSIiTZc/HKQ8QAMOm3DGn3tVkRIRiRIKUiIi0nTZFali02rta+g1UilaIyUiEjUUpEREpOmy10gVm3ZFqpFsyBsKmQ1zHiIiUm8UpEREpOmyK1KFoQZu7QuvkcILmJRXqColItLcKUiJiEjTFQ5SQTfQ8BWpeCOIm4Da+0REooCClIiINF32sImCisZRkQJ7U16fgpSISHOnICUiIk2XXZHa1dAVqZgYJ0wlGeWUBTQCXUSkuVOQEhGRpsseNrGrwgU0YEUK9kzuw0upKlIiIs2egpSIiDRd4YpURQNP7YM9FSntJSUiEhUUpEREpGkKVkCFF4ASs4HXSEGlvaTKKPOrtU9EpLlTkBIRkaapvND5tphEADxxDRikPGkApFKmqX0iIlFAQUpERJqm8t0AhFzJBInFEx9DTIzRcOeT0AKANKNUQUpEJAooSImISNPk3Q1A0GVVghp0fRSApwUAaZSqtU9EJAooSImISNNUXgBARWMJUqpIiYhEFQUpERFpmuyKVCA+FQBPQw6agD0VKQUpEZGooCAlIiJNk71GyhtnTctL9cQ34MngVKRSKcWr1j4RkWavQYPUN998w0UXXURWVhaGYfDBBx9EXG+aJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr8VmIiEiDsCtSpYa1f1N6kqsBT4aIilSpKlIiIs1egwap0tJSTjzxRJ5++un9Xv/4448zZswYnn76aebOnUtmZiYDBw6kuLjYOWbEiBG8//77TJkyhe+++46SkhKGDh1KMKgXMRGRZs2uSBXZQapFYgNXpOzx52mUakNeEZEoENeQD37++edz/vnn7/c60zQZN24c9913H5deeikAr776KhkZGbzxxhvceOONFBYW8vLLLzNp0iQGDBgAwGuvvUZ2djbTp09n8ODB9fZcRESkntkVqULT2kMqPbGBK1KVhk2UqrVPRKTZa7RrpNatW0deXh6DBg1yLnO73fTt25dZs2YBMG/ePAKBQMQxWVlZdO/e3Tlmf3w+H0VFRRFfIiLSxNgVqV1BK0i1bCStfdqQV0QkOjTaIJWXlwdARkZGxOUZGRnOdXl5ebhcLlq2bFnlMfszevRo0tLSnK/s7OxaPnsREalzdkVqe4UdpBpJRSrR8BHwlTfsuYiISJ1rtEEqzDAid6k3TXOfy/Z2sGPuvfdeCgsLna9NmzbVyrmKiEg9sitS+QE3AOlJDbxGyp2GifXaE+MrbNhzERGROtdog1RmZibAPpWl/Px8p0qVmZmJ3++noKCgymP2x+12k5qaGvElIiJNjNcKK7l+D9AIKlIxMYRc1ij2eL+ClIhIc9dog1Tnzp3JzMxk2rRpzmV+v5+ZM2fSp08fAHr16kV8fHzEMbm5uSxevNg5RkREmim7IrXFawWoBl8jBYTsdVLxAa29FRFp7hp0al9JSQmrV692fl63bh3z588nPT2dDh06MGLECEaNGkWXLl3o0qULo0aNIjExkSuuuAKAtLQ0rrvuOu666y5atWpFeno6d999Nz169HCm+ImISDMUCoLPCiuby63WvgavSIE1cKJoI+4KBSkRkeauQYPUTz/9RP/+/Z2f77zzTgCuvvpqJk6cyMiRI/F6vdx8880UFBTQu3dvpk6dSkpKinObsWPHEhcXx/Dhw/F6vZx33nlMnDiR2NjYen8+IiJST8r3tM7tNpOARrCPFGDYAyeSQiUEgiHiYxtt44eIiBymBg1S/fr1wzTNKq83DIOcnBxycnKqPMbj8TB+/HjGjx9fB2coIiKNkt3WF4pLpII4UjxxjSK0xCRaU2TTjFKKyytIbwTthiIiUjca/lVHRESkpuzR5xWuNIBGE1hiEqzzSaOUXaW+Bj4bERGpSwpSIiLS9NgVKV+81erdKNZHgbMpb5pRyo4Sf8Oei4iI1CkFKRERaXrsipQ31tq+omUjWB8FOJvyWhUpBSkRkeZMQUpERJoeuyJVGpMMNI7R50BERWpniVr7RESaMwUpERFpeuyKVDHWxL70xtLaF65IqbVPRKTZU5ASEZGmx65IhUefN7aKVCql7NSwCRGRZk1BSkREmh67IrUrmAA0omETdkUq1ShjpypSIiLNmoKUiIg0PXZFaocdpNKTGsmwifAaKUoVpEREmjkFKRERaXrsilR+wApSLRpNRcrakDfZKKegpLSBT0ZEROqSgpSIiDQ93l0A5Po8QOPZkBdPGiYGAMGSnQ18MiIiUpcUpEREpOkp2Q7Aep81bKJFY9lHKiYWM7EVAG7fTvwVoQY+IRERqSsKUiIi0rSEQlBqBantoTRiYwxaJbkb+KT2MJLbAtDaKKSgTOukRESaKwUpERFpWrwFYAYB2EkabZLdxMYYDXxSexhJbQBoTSE7tCmviEizpSAlIiJNS2k+AIH4NALEkZHaeKpRAFSqSGlyn4hI86UgJSIiTUuJFaTKXOkAZKR6GvJs9pVkBalWRpE25RURacYUpEREpMF9tiiXWat3VO9ge31UYaw1ajwzrZEFqWSrta+NKlIiIs2agpSIiDSo71fv4M+v/8yNk+ZhmubBb2BXpHaRBjTeipS1RkpBSkSkuVKQEhGRBhMMmTz88VIAin0VFHoDB7+RvUYqP5QKNMIgFbFGSq19IiLNlYKUiIg0mLd/2sTyvGLn52pVcOw9pLYEUgDIbGxBKjy1zyhkZ6kqUiIizZWClIiINIivlm8j56MlEZdVa1y4XZEKb8abmdY4p/a1ooidxd4GPhkREakrClIiIlLvvly2jT/9dx7lgRD9jmlDzw4tgOoGKasitdmfDDTC1r7E1gDEGSFKdldzgIaIiDQ5ClIiIlLvXpi5lmDI5OITs3jpqlNoZ0/eq9aUO7u1b4eZRpIrlhRPfF2eas3FuQh5WgAQU7Ydrz/YsOcjIiJ1QkFKRETqVWFZgHkbCwD46+BjiI+NoVWS1Z530IqUaTqtfTvMtMZXjbIZlQZObNld1sBnIyIidUFBSkRE6tXMVdsJhky6tE0mOz0RgNbJ1QxS5YUQtKpWO2jEQcoegd6GQjbt0jopEZHmSEFKRETq1dfLrYrSuce2dS5rneICqjG1z14f5YtNxoer8W3GG5a8Z3Lf5gJVpEREmiMFKRERqTfBkMmMFVaQ6l8pSFW7tc/ejLckriXQCAdNhCXtae3bVKCKlIhIc6QgJSIi9eaXjQUUlAVI8cTRq2NL5/I2TkXqIEHKXh9VYLQAICO1kY0+DwtXpChk0y5VpEREmiMFKRERqRe+iqCzb9SA4zKIj93zEhReI3XQqX32xL7tZirQCDfjDbMrUq2MIjarIiUi0iwpSImISL349xcrWLyliJaJ8fzt/GMjrmtlB6kyf5Ayf0XVd2JXpPKCVpBqk9JYK1L2sAljN5u0RkpEpFlSkBIRkTr39k+beOnbdQD86zcn7rO2KckViyfeeknaUXyAqtTujQCs87cA9lSyGp209gC0N7azuyxAcXmggU9IRERqm4KUiIjUqc8X53HPuwsBuPGczgw4Jn2fYwzD2DMCvfQA66R2WWFsdYW9BqmxVqRadgIg3SghhbJDa+8LBfnvrLWcMfpL5m/aXaunJyIih09BSkRE6oyvIsjf3ltIZ7Ywq8X9/G1OH3ikLXx4GwQjqzTh9r4dxQcIUgVWkNpgZuCJjyHJFVtn535Y3CmQZIW9Dsa2mg+c+OU1gqM7ctXUnnxYfg3fffBCHZykiIgcDgUpERGpM18v386R3iW8536QrPLVGJhghuDn/8Lk34F/T8Bok3yQvaR8xc4+UhvNDFonuzEMo86fwyFr2RmAjsa2mlWkvhsL/7uF2EAxAG2MIm7dOYr8qWPr4ixFROQQKUhFucVbChkzbSXlgWBDn4qI1JPdZX5KfAcY6FCLvvppES+7/k0aJXBEL7j9F7h8MsQlwOpp8PWjzrHhvaR2VjUCvWA9AH5XC4pJbLzro8LSw0Eqn1X5xdW7zZqvYXoOAM9VXMTg+Ff4InkYAG1n5bDz5//x9FerGDr+W96Zt7kOTlpERKpLQSrKPfTRUp76chWfL85r6FMRkXpQWBZgwJhvGPbM95imWaePVVQeoN/af9PSKMHbqhtc/RGkHwnHXgC/nWgd9OMLsHMNAK0PtpeUvT6qKMEa5NDog5RdkepgbOPTRXkH/8AqFMT78d8A+G/FQP7X+gb+dfV5tP7NGF6pGAKA/38jeGHqfBZvKWLstJV1/v9QRESqpiAVxSqCIRZu2Q3Ahp0azyuHr7AswMLNuxv6NOQApi3bxo4SH6vzS8gtLN/n+o8WbOWzRbm18lgLp73BBTE/ECQGz6+fBVfSniuPGQJHD4BQAKY/AFBp2EQVrX32+qidriOAPZv4Nlp2RaqrazuF3gBTl2478PG/vEZCwXJ2m0nM7fxnPr39bE5o34KTO6bzQ+dbWBfKoJ2xi8fT3iUhPpYtu70s3lJUD09ERET2R0Eqiq3KL6E8EAJgy24FKTk8pmly3atzufjp7/l6eX5Dn45U4fPFe0LSym2R7War80u4bfIv3Dr5FwrLDnNcdzDAUfP/CcD87D9gZPXc95hBj4ARA8s+gi3zaJeWYB2/cTfB0H4qLXZFKjcmE2g6Faku8TsAawR8lYIBmDEagKcqLqVPjy7ExFjrvwzD4IVrzybjDy8BcL7vc67oZP2/+2KJuglERBqKglQUq1w5OKTRvBJVNuws5dFPlrJuR+l+r/9u9Q5+2lAAwIvfrK3PU2tWvP4gG3bu/8/4cJX4Kvhm1Q7n59X5JRHXv2W/0Q+GTJbmFjF3/S76/etrvl+9g5ra9u0E2gW3stNMpf3FD+z/oLbHQY/fWt//+AL9jmlDy8R4tuz2MnV/AcGuSG00rc1uG3+Q6gRAim8bLgJ8t3oHm6vanHf5J1Ccy3YzjUnBgZzTtU3E1YZhkNilL3QbBphcH3gNgKlL81iWW8T/5m/B6z/4WtdgyCS0v5C6l5/W7+Le9xbW21o6EWm63vppE898vbpav1uaGwWpKLZgc6Hz/Zbdhx+kdpT4uOutBXy7avth35c0Pk9/tZqXvl3HsGe+Z9aafd9YP/P1auf72Wt3sjxPLUeHYuS7C+n37xnOn/HGnWUU1dJmrl8tz8dfEXJ+XrVtT5DyV4R4t9LwgqW5RUyavYH1O8uYMvcAlZT9qfDhnvUEANNbXUlGm1ZVH9v7Ruu/i9/DU76D35/eEYCXv1u377F77yHV2INUcluIT8LAZPARfkwTfli7a//HzpsAwJRgfzq0SeOIFgn7P+7c/wMjlnZ5MzgtdiUrt5Vw4VPfcseU+Zzxzy+ZPGdjlaezcWcZJz04lbvfXnDQU//XFyuYPGcT7xyoitYI+CtC/G/+lqrX1YlIndq628s97y7kX1+s4LmZaxr6dOqdglQUq1yRyt1dftifJDz6yTLe/XkzT0xdeZhnFh2+XLaNwWO/YfGWwoMf3AgstIN3oTfAVS/Pcd7o7y7zM+H7dfywdhfxsQandbY2W534/fqGOtUmq8RXwReL8zBNeO2HDSzYtJvzxszgz6/Nq5X7D7f1dW5trVWqPElu+rJt7Ky0NmlZbhHz7Arj0q01+zsamPsqLfx55JktyTz35gMffEQvaH+qtVZq3kT+cHpH4mMNftpQELkJbTAAhVbQW1beGoDWyY18jZRhOFWpnsm7AetNxz52roG1MwhhMKWi/z7VqAitu0DP3wPwUPI7gEnItP4sdpcF+Pv7i9hVxRqzjxZupdhXwXu/bGHOuioCnW2VXa1cmtu4PxAZ9eky7pgyn8c/X97QpyKHaOHm3Tz6ydJqVVQbk1DI3H8LciUVwVCtD4R56stV3PvewoM+dm060GO99/Nmwk/x31NXMGNFdLX2K0hFqfJAkOW5e95E+YMhth/GJ3q/bCzg/V+2ALAirzgqy7s1NeH79azYVsx/vm38bXBl/grnTfdZR7emImRy6xu/MGbqCnqP+pIHP1oKwG96ZfPXwccA8P4vW9hdVsXQANmvb1duxx+0KkbTl+Yz+rNlBIImc9btoiIYOsitDywYMvnWbuv7c9+jAOvNcvhFPtzWd2xminUuq7Y7leq1O0op81ezxSvgJTjzcQBei/8tZ3XLPvhtTrOrUj+9QtvEGIaekAXA/+Zv2XPM7o1gBiHOw4rSRABapzTyihQ4Ayc6x1pvLvYbpOxq1OyYnmyhzYGDFEDfeyDOw7G+xdxz1GZevfY0fvz7AI5um4xpwo9rd+73Zt+s3NMt8Pjny6t8g7ezxOeEsWW5VY9tX7mtmJkrG64DYcnWQv47ez1AZOhuAkzTpKCqoSpR5t9TV/LSt+t4/ccNDX0q1bZ1t5dhz37PCTlf8Ne3F+y3A2N3mZ9B477hgqe+q5WuH7Deu42dvpLJczY5H3TVtYc+WsrJD0/jq+X7DssxTZO37U6GI9skYZpw7cS55Hy4ZJ9tLOZt2MX6KpYGNGUKUlFqeV4xFSGTVkkup4XkUNZJLdlayBNTV0S0ingDQTbu0vCKAwmGTOeF/8vl+Xj9Qe59bxE5Hy7Z74jkCd+v49VZ6+v3JCtZlltEyIQ2KW5euuoUjs9KZVepn6e+Wo2vIkTXjGTuHtSVBy7qxikdW3JsZgq+ihD/m7+1wc65KZq2bM8LlT8YctrAAkGTDYf5b2rltmKKyytIcsVy0YlZxMYYFJdXsK3IRyAY4kf7se4eZAXhbUV7XgRN0/qApFrmvoynfDubzdb4elxJbEw1NsztdgkkZ0BJHiz7kPOOs9ZARbTB2SPSQy06UuSzQmWjb+0DJ0i1D1mhcJ83VBU++OV1ACaU9yfZHccZRx6gFRIg7Qg47QYA/lzxGn2PbkVsjMGZR1m3m72fIFXiq3DeeIUrfl9VMRRmVaW1cyu2Fe83xJcHgvzuxR+4+pU5LGuAqlUoZPKPDxYT/sxuzfZSfBVNp6Lx5Jer6PnwtKj79H5/NtprQg9WJW0sluUWcckz37NwcyGl/iBvz9vM1a/M2eeDiedmrmHt9lKW5RYx/PnZtRIiNu0qc6o/M1fW/d8d0zR575fNFHoD3PDfeXy8MPI1fc66XWzYWUaSK5Z3b+rDRSdmETJh4qz1nD76S0ZMsQYX/bR+F79+bja/eX529T+UayIUpKJUuK2vR/s9vfg1/cQkFDK5/tWfGP/VatZsLyXRFUuHdOuTYq2PObDV+SXOIu7i8gpGvruQyXM2MnHWeq56ZU7Empi120t48KOlPPDhEjY1UEBdZLf1nXBEGgmuWF74Qy8yUt2kJcTz79+eyBcjzuHWc7vgiY/FMAwuO9WqQkyZu4ktu72M+nRZs/wkqjYFQ6Yz7XBQt4x9rl+1rZpBpgpz11tvUk7u2JIEVywdW1n/VlflF7MstwhvIEiqJ47+x7YlxRO3z+2r1eLlK4bvxgDwZMWlHJfdunonF+eCU661vv/xBU63g8Sy3KI9n9pvnAWAt3UPAFyxMaTu5zwbHXtaYbvCXwD2HTm/9EPw7mJ3fFu+Dp3E+d0z8cTHHvx+z/oLuNNg2yJY8h4AZxxl/XnPWrNvkJq9ZicVIZOOrRL545lWuHvjR2s9VaE3wPgvV3HWY1/x0EdLI4KUvyLE2h2lFHoDER/yfLY412kF/boBwsDS3CJ+3ribhPhYkt1xBEOmMzzFNE2e+Xo1Hy6IfNP388YC3pxb9RoysCoNefvZFqA2lQeCTLBbn6cvO8hI/GYuFDLZav95z12/q0l0szzwvyVsL/ZxTEYKL111CjGG9cFT5a6ebUXlTnt762QXW3Z7eejjpYf92JWHPX2z0uowWLWtOGLt66FYlltkt+hF/vmv3VHKbnuCa0XI5M63FrCr1E9+UTn3vLOQ2yZbv9eGnpBFyyQX43/Xk9eu682J2S0IBE0+mL+Vv7+/iH99sQKw1tJPntO4113WlIJUI+OrCLJka2Gdb7K4YJP9xrh9C45oGa5I1exN+qItheQWlpPoimXkkGN468Yz6G2vj1lexafXG3aW8n8fLGqwQNBY/LwxsiT/kf2CbxjWJzxXvTzH+dRmWqW9Z6r6BBms29VW+wBYL/b3vreQMVNXsMjeq6b7EWkAtG+ZyIy7+zP3vgH8pld7DCOy6jDspCNwxcawLLeIYc98z4vfrOXfU1cc0nn4K0KHHSIaO9M0mb5sGwVlAdIS4nl4WHfiY60/03CrXeXBEAfj9QcZPPYbrn/1J+eyueutv3OndrL+jfZP28YjcS/T7X8XctyE45jh+guvJowldvVUumUmO7cLf9CydGs1gtR346BsJ+vNdrwXPJtuWanVPmd6/RFi4mHzHFoXLqFLW+scflxnh4J13wKwo+0ZgPXmZO+/d41Sp7MBSC5YRguK2brbG/n7/adXAHg90I8gsfzq5COqd7+J6XDmbdb3Xz0MFX5OPzIdw7A+qMkvigwD4U+vz+nSht/0sjY0/nbVDgrWzeebMVcyYOav+LTsCq756RJ6fH8bg2PmYmC9OZu6JI+zHvuKq16e49zf6z/sCSTfrqz5VMfDtd6uYhyflUr3I6y/Z+F29Z83FvCvL1bw17cXOG8wd5f5ufqVOdzz7qIqW6LKA0EufOpbhjz5TZ0Or5i+bBuFXuvN6ZLq/LtqArYVHVr43FHqc/4fFZQFIkJ8Y7RxZxlz1u/CMGDCH09lYLcMOrWy1pyuzNtz7k99uQpfRYheHVvyn6tPBay/l4f73q7ynp+LthTyz8+WM3DsN4e1RjAYMrl24lzufGvBPh/C/Gz/Wzm5QwuOa5eKvyLE1CV5jJ2+kjd/2kR+sQ9PfAxX9eno3OasLq353y1nMvlPpxMbY/DJolx+rFRtfPGbNU2qenwwClKNiL8ixAk5U7nwqe8i2mrqQrgidWL7NNrbQWpLDVv7vrQ/SevbtQ039zua7kekcWy7yBe0vU34fj2v/bBx/xO5okj4l9OJ7dOcy1onu3nnpjNokRjP/E27ue2NX6gIhiI+sawqSH22KJfhL8zm1jd+rpXzC4VM7nxrPpPnbOKpr1bzmT2koMcRe843wRWLK27/v0JaJrkY3N3a62d7sfV3+dtVOw5pcezY6SsZOPYbZ73MrlJ/rU2xawx2lvg4/8lvuXGSNVDi3GPbkpHq4T9Xn8pzV57MJSdZb6xr8gbjl00FrNhWzPRl21i1rRjTNJlrv5Cd2aYc3ricf2y+gd/HfUmrkhXEB8voFLONnt7Z8MZwniy8nW7GegCu6N0BqEZFavcmmP00AKMDlxMbG89RbZIPfJvKUjLg+F9Z3895kTPsNrUf1u6C8iLYan3yuTGlF9BE1keBNbmvzXEAnB6zjDJ/0HkTTf5y2DiLkBHLf8vPoV2ah9M7H6Str7Lef4aktlCwHn75Ly0SXXSzfwfv3d4X/vT6nK5t6JqRQs82Jv+KeYqWr/blosAXHBeziVTDSwcjn5OKZ/KCayxfeu6ht7GM8V+tpri8gjnrd7Fmewkr8or5aUMB4Rz704Zdh9SuEwiGDnnB/KZd1utV+5YJHJtpv+7YnRDfr7aeu68ixBJ7UMpL366luNw6xwVVrKdau72UgrIAu8sCEVNIa9vbP+2Zjrkst+igfwazVu9wKsqNjWma/P39RfQe9SWjPl1W5XEVwRD5xfuGra27Iy+bs27/6/uqcx5jpq3klTp+bxFeC37W0a3Jsj9k6pphfdi1wv7Ab8POUt60J52OHHwMx7VLIS7GYHdZgK2F5cxcuZ1/fbGcwCGse12/19YYz9tT8t75efMh3R/AN6u2O5Xy7/ba6uIX+9/KKZ3SGXpCO+ux5m3mQ7ttf/SlPZh73wCOz0pjb2cc1Ypb+h3l/PyH0zuSmephW5GPd+dt2ef4pkpBqhFxxcU47TZLcw99kltxeYCbJs3jtR/2v3CzxFfB6u3Wm7IT2rc45Na+acusN/UDjtvThnSc/el5Va194bJ0Q/TUNybhitSf+x3ltCfd0v8oenVM5+WrT8EdF8OXy/P3+fR09tqd+7xhKfNX8LDdMrB4S+FhDyUo9Aa4+50FfLpozz4+ZfY0pR7t9/1lWZUr7TfgrZPdpLjjKPQGWFBpUmR1hdvd3pm3me3FPvr/ewYXj/9uv2vJGsonC3OZvZ92qur4cMFWlucV44qLYcjxmfxlQFfA+oDi/B7tnMrM3pvnHkjlAQGfLc5jc4GXvCIvv4n7jpM/uQBWfoZJDB8FT+dvcSP5bew4LvP9g63d/gTuNDK9q/nA9Q/uSPyCwd2s9UrLc4sP/IZv+gNQUc7O1qfyRegUumYmEx9bw5eY3jdZ/138LudY8yasP9eNs61BEy07s8W0gkaTWB8V1vkcAPq7rU+NnTePPzwDwPyE09lGOpecdISzCW+1uJOh70jr+5mPg6+YPnYAnbV6z9/H9TtK2birjPhYwwqoG2YxyTeCS2JnETQNPg2extQTn+T549/gd/77eLbiYgrNRI5kC5Ndj/BXXsWN1cb3xZI8Jv2wHrBaULPTEwgETWeNXXWt2V5C/3/P4PwnvzmkMBXuoMhOT+S4duHXHevvfeXtGeZtKGBHic9ppQOqnJRa+U3q6z9sjOjSqAiG+O3zs7jk6e8O+Q0rQF5hubNFiCs2hvJAiLXbq/6QZGeJj6snzOGql+dQWgd7epX5Kw74579uRynnPP41Y6ftfxrvS9+udVpEX/xm7X43nTZNkxsnzeP0UV9GTAuGfT/A/bGKdVKPfrKU3734A8VVfIi2NLeIp75cxUMfLz38zcSrEF4vBHBppcpxV/t9zwr7fc+YaSupCJn07dqG3ke2wh0Xy9H27/HFWwoZ+c4Cnvl6jRPKaiL8d7Rdmifi8t1lgUPa7w8iNwrfe51a5YrUBT2sIPXThgJK/UE6tUrk8lOzSfHEV3nft57bhVM6tiQz1cMdA7pw3VlWW/GHCxSkGp1nn32Wzp074/F46NWrF99++21Dn9IhCX+aWLmNJhgyWZFXXO2S8P/mb+XzJXn83weLeaHSTP+35m5i8pyNLN5SiGlCVpqHNilup7XvYBWpMn8Fu0r9mKbJlt1eluUWEWNA/2PbOsccY/9C2bCrbL+/9MNDKFZsq/7zaeyKyq2FlNWxaHMhXy7bxprt1i/DUzul86/fnsif+x3Flb2t0nivjuk8eflJALz782ZCptW+kp2egL8i5HzaGvbs12ucHvNA0DyszZV/WLuT856YwXs/W7/k/nlpDzJTrV/YbVPcZKR6DnTzCKcf2Yo3bzidT24/i7O7Wms3Zq44+ISvimCI0Z8u4625myjzVzgBYvaanUz4fh2F3gDrd5Y5n/jVtVDIPGA4nbehgFve+Jk/TpxzSJWyqUusiuM9A4/k+bO9dFj6PLx3I7w+HF4fzumLc7g29jPcOxZTUc12iMq/Pz5dlMuCFat5Ln4c/457FsNXBEf0wnfD94xOHMmUkpOYW9qWn2O6kf6rx+D2n/EffQEuI8hfQq9y5Hd3kRZfgTcQ3OfTUMeid2Dxu4DBp1m3AQbHt6t+6Ha072WNQw/66bP7I8D6XVGy/Evr+s7nOC1XjX70eWWdrfa+M2KWAPbkvsLNMH8yAI8WDABg+Cnta37fJ19tjVgv2QafjuTMo61/a1+vyHfWm3xjv3Hv1bElyQtfhVcvItm/nTWhdvzK/xD3xf+Vsy78PSf07M3s0PE8XnE5Z/meIu/oy4gxTK6P+4yPXffRw1jLOz9t5q251pvJa/p05qyj20Q8RpXCz/eTuyn57+Vse/ZCRpY8zrCd/2Hr7LfAW7MJZJvs33PZLRM5xq5ILcstxusP8vOG3c5xP28s4KVv1lLmD5LostaeLa5inH/l9Sf+YIinvlzl/PzNqu3MXV/Ags2F+/1QwzSrt9HxRwu2EjLh1E4tOcH+YOpA7X3zN+0mEDTxBoKH9EHUgXy2KJdTH5nOZS/MrvL1+KMFW9m4q4wnv1y1z4TZJVsLGf2Z9eHAaXbL8H3vL+aXvVrX3/15C18uzydkWkG8si27rfcE4WAwZ92ufc5lw85SXvp2HbPX7oyo5lVW+YODRZWC8gsz1/Cb52bVSrj6eWMBG3aWkeiKZfDxmc7lxzgVqRKW5RY5a/PCE2wBp2Lzv/lbnI6j93/eN0xsL/bxw9qdVf7/WL/D+vO66oxOACS6YhlgD+f5eGFujZ/TrlJ/xPKBhZt3O2PoS3x7Xn97dmhJ59ZJHNduT7v28FOzD9pe7YqL4a0bz2DW386ldbKbfsdYvy+sv9eH96FvY9EsgtSbb77JiBEjuO+++/jll184++yzOf/889m48cCLShuj8D+2yr9Y7357AYPHfbPfTTG/XpHPhU99G/FpeOVPJUZ/tpynvlzFm3M3MvLdhdz73iLn06NwdaFyRaqqf7wFpX7OGP0VJz88jRMfnMrlL84GrBfm9KQ9b2haJbtpk+LGNPf9BD0YMp1P+HaXBZyWr0Px+OfLueWNnw+7+lIb7nt/Mb95frazR09VFm7ezSXPfMd19rqVTq0SaZXsZvDxmdwz5NiINrkh3dtxU989JfGB3TI49xjrl2XlEaTF5QFesl/cPPHW7dfuKGHehgL+/v4ivl+9o9qBtcRXwV/enM+OEj9HtUnijet7c/lpHXjgom4YhlUhqaneR7YiI9Xj3Pagb7aAD+Zv5YVv1nLfB4v4Ye1OZypXRcjkhW/2vJA/O2P1AatSm3aVcf//Fh/WerxAMMTvn53OtaNfYvuPbxGY+yo/v/tvcr+ZACunws41TPzOagEqD4T4bFHNXsh2l3gxNnzHqLj/cM3swTDxQvjyQVg4BVZ9Aau+IHnpG9wfP4n/xd2LOf5k+ObfUHTgaYiVK77Z+V/TZ+pQzo+dS9CItTZ0vXYqnqxu3HvBcc5x3Y9Is4YcJLXGdeUbcP6/wIglZtFbvON+mAx27b+SvGstfDTC+v6cu5lRZJWSarQ+qjK7KpW48FV6HmGtPdj6yzTrus7nOO2tney9sJqEjmcCBh2Cm2jDbrYWeuH7pyAUYF1yT+aZx3DesW05siatkGFxLrjkWTBiYMEbnFk6jRR3HPnFPqfy/c3K7cRTwf/xEnxyJ4QqMI+/lDvSnmSheRTXntmZRFccp3RKJ9ltVchTW7QidfizXBv4K/lmC7rEbOF91/1cvPtVQkE/p3VO5/Qj0zmni/0hyf7GoPvLYMEUmHABjD0ePrgJ5r5E8trP6GPO5+LY2dwc9yHZ026Af3WByb+zQrn/4INpwq8l7Vsm0DUjGcOwFrJ/sSSPuGAZvWOWc3HMLLLXTME/ZwIXx8xi3Ble2rCb1fkl+92zKDwQp7/9Zu+9n7c44+orL5BfsiXy34Fpmvz2+dn0+/eMKismYVOXWkFi6AlZHG//GznQXoKV2xB/2bg74jrTNPnLm/O55fWfa1zVe2HmGv78+s+U+oPOnm0lvgqmL90WsX6l8lj5Rz5Zxn++Xeu8plivL1a76JQbTmdQtwz8wRA3TprnrJnaXuxzOiZg34pHuDp7fvd2uOJiyC/2OUNDwip/aDbphw37DayVW9LCgbM8EOTJL1fx04YCZtTChLtwe+yA4zJIdO0ZdHOMvaZ01bZinv5qNaYJF57QzllTDDj/rz9bvCdI/rBu5z7bIYx48xcuf/GH/U7p9VUErd8dwG9Pac+/f3sik67rzfVnHwlYITU8/Xd/fx++XbU94v8fWHtABYIm3Y9IpV2ah0DQdH5vLNi0m5BpvUcMf4h6YQ8rQMbGGPzm5Op98BMTYziV9qPaJJOWEE95IOS8zy0uDzBwzEyumzi3WvfX2DSBkUcHN2bMGK677jquv/56AMaNG8cXX3zBc889x+jRoxv47Gom/OYjvB7h44VbnfLvszNW89te7Ymz22VKfRXc885C8ot93PLGz3x6+9m0SXE7iwUv7NGOTxblMmavknz405IT2rcAcPp8y/zW2PKWSS7e/mkz53fPdK77Ye1Op6+/qLyCIrvXvPKnMmHHZqawvdjHstxienZo6VyeW+glENzzD3h5XjFtUz0EQyZPfrmK0zqlc1aX1qyy9ya5pk8n57lWtnZ7Cc/OsCptf+zTiVPsT8L29p9v15LgiuWyU7L3ez+1oTwQZJr9wvjZ4jyGdLdK34s2F3L1hDncNagrV/buiGmaPPzxUkKm9QlSmT/IxSdmHfC+7x7UleV5Rfy4dheXnHQEG3eV8ersDUxbms8jw0xiYwxmrtyOryJkf1KUwqeL8li7vZRPFq3ml427eePHjRyflcplpxzBuZ2TyPL4rV9oRgwYsRDvAXcqGAbjpq0kt7CcDumJfHzb2STYn96e36Md3/y1P20OtCYlFALvLijOhdIdUFFuf/kg1sVAl5s3jZUUbU6iYNcxtGzZCvbzSVYwZPLsDCuYBIIm47/as04hjgqOMHdwTHw+x7i206JsK5tfmcjRLQzrjZcZhISWkNgKMyGdTxb4WZGfwuPbujH+T+fv9/H2EfDCtiWw5WfY+jPFq37gtdL1xBgmfGYdcvJeN/mXGc9Vrs4sCB3F1u9PgqN/By06VP14wQprAt3SD3Ev/IA34u03oOVAYmvodBa0O8Fa+2KGoDiPud9PpZt/EUmF663BAl8/CkcPhJP/AF0GW2+mbf6KEKvzSzjW2EhO4jucHvwJTFhFB5Iue4msY093jh16Qjsmzd7AnPW7nI2UAevce98AbY+Ft66mi3cVH7vv44clJdDjpj3PLXchTLkC/MXQoQ/0/RtLHpsJHEaQ6jYMvrgPinN58YyfGFtcQVe/FaA/Lz2anzduwRUb4wxMaBIS0yGzB+Qt5I64d/FvSYLlrwLwcOEFAE7LyyHpdCb0/RvMGEX8JyO4t91f+Pv6E/lscR4ntG9B/ppfmOJ6ke5bVwEGnPcPjLPu5JHNhXy9PJ8/nWO9EXPFxXBO19Z8uiiPo9smk+iK48gzLuWRbaczNnkSccs+YETce1wUM5tA139gmKfR5+jWuGJjWLu9lKVbi+jWLsVaz/bLJCsU+cKhw4AjerEh+QT+szhEKC6RPkfEUbhxEeclrSXDtwFWfGp9xSVAl4HWWPyug8GdEvF0Q6E9lffsFi4Sdy3jltTvOaJ0KSd+vI5F7g3EGvZrTfizNhfwIwzyQJ7ZEt9rp5BwdG/IOtmarJiY7lRcf3Vye7yBID+s3cXL363jxnOOdAK8Gz/5a36GxJ+sDxFKd1C0M49bt64hjgoKJ7QlJaMtuJIhNQtadISWHaFFB3bQgp/sVqmB3TL4bpX1O/ZAFakFm3bRht20NXYTWLYOMjpAqALMEOt2eslfsIXdZjLfzjXpd3I3iE846F+XxVsK+ac9nCAz1UNeUTlT5mxi3Y5S5qzfxemdW/Li77qRYpaQt2ElbTA55cgMZqwt4pFPljJ3/S6evbKX00J8aseWxMQYjLnsJC599ntWbivhptfm8e5NfXhh5hoKvQGOaJHAlt1eFmwqpDwQdCZThv8/dm6TxFlHt+ar5fl8tjiPLnaVpyIYcvYpAqtq+O3qHREf7PkrQhEBLRw+v1+9w2lLr/b2DQcQ/iDpxOwWEZd3bJWEKzaGMn+QT+wP027pd3TEMeEgFc4whmF9/8H8LdxsH1voDThbPoz6bDlnHNXa6fKBPaPPk91xtEpyOb8DgyGTtilu8ot9TJ5jfVA+qFsGfY5uzdrtJbRvaS0ZueX1nykqr6Bnhxb06pjO7jK/sxbwyt4d+XHtTj6Yv5Uf1+7kzKNbO3+mPTvseb6/6ZXN2/M2c96xGbStQYdKWEyMwSkdW/Ll8nx+Wr+Lk7Jb8N7PW1iVX8Kq/BK27PY6H+43FYbZxPur/H4/iYmJvP322/zqV79yLr/jjjuYP38+M2fOPOh9FBUVkZaWRmFhIamph/jiX0u8Ux/h1W+WESSGK844isk/baXYbxD4//buOz6KOn/8+Gu2Z1M2vfcCgdATSuhdEAuHHhwioqB3qNzh8T3bT0899fRsp2e9syGnHNjQO/FAkA4WepMeCBBISCM92WyZ3x+bLFmSCAmBAPd+Ph77CLs72ZlZJjPz/nzen/cHLQ403JweQ1q4GRw21h/IY8uRfPQ40OIg2k9H71g/vt19ApNOZXzXUI4WlLHnRDEKKt5mLwqqVGpVLTZ0jOwSQ1SQH2j1fLotjyPFVuJDLVidGg4V1tA1woebe4aBw8ba/XlsP1pA13Az3SO9Ka+sxGmrJc5fj8ZpA0ctOFw/s4pqOFBUS1iAH70Sw0FrAJ2RE+UOFu0swF63/sGdIumXHMae3DK+2JyNxaBy98BYPv7xMBVVVQxP9iU5QAe2uptyWzXYa8gpKuNkWS0OVUt8iC9Bfmb2F1QTHmghxN8COiPFVg2f7SzEih5/X196JIYTGehHkJdSd4NfCw6r66e92tVyaqt71FaBrdK1PhTQ6FwPbf1Po+tipfcir1rDikPlVGNA1XkxY3gXNAYzS3bnsu1IPhE+Wu7oG8GRk/l8v+84vhoro1J80Tuq0drr1lVbUbfeulZYncn10HuhGn1xGnzRellwGHxZsKOEIoeJCf06EhPoyxfbTrD7ZCmDE3wwOyrIOn6CzgFOKkqL8KUSf6UKXyrxperMjcXZNDrsRn+OVBk5rfqQGBNDcEgYmPzBy9+1LfWcdlcKTnUxVJ2Gynwoz3M9nC1IndB5gW84+Ea4igz4RoA5iL2nqvj39hMogEWpIEw5TTinSTaVEFCbh05pXQ+kQ+eFNjARghIhMBG8Al375bBCdQmUHseZvxfy96JRG7dUF6gWctQQilVfHIoOL2oIppR4JQ8vpYlJNb1DXClqYV1c36HqhKpiKNgHOZug6kwPcqlq5ljoCLqOmeGq8KZt3L71+4+3s3RbFq92O8rwqm/Q5vxw5k2DL7WxgzioRpFrNZLmW0XRTyvposkGwKZqWaC9ngF3vkhSZONexfyyGj7edJypmXH4m5tIlzudTfF7NxNYUZfmFJXhCvbKTsK+xa5jNzAJpn1FsS6EXk+5eo92PTH6Z3Pnf9b6V1xjrgBVo0dx2vjQPpI/2l0l0m9Od7XGtpWq02V0fs6VDr7HuAWz4oT77wfvNuz12vdf1IW3oKBiR4cOO6cC0umbO4fUcD+WzB50YVUInQ74bDrs+RKAdY4uZBlSuT6iBMvxlegUJ6rBF+Wmd6HjmGY/5vusIu7652aeuCGtUbC68rO36LbrGYKVuht/n3DoMJovsg0cPlXCyIhqutt2QmmD7An/WOg5FXrcApZoJv79ezZmF/ObIYn0TQhk+gebSQzxZuXUMAq+/xfqrs8ItTfocdUaITrDFYj6hILOi4qy03y1bhMpmhOkG3NQbI17natM4WQ5QsitMaCgkhakEEkhzpLjaGjiPOIfx6rSMA7bghiX2Y1yh46Pf8wmQGelt38FztNHiVYKiKTI1bDSCnaNkaP2QEqMEaR378Epgpj7/XGMeg33jUhBsZZDZT7OinzspafQVxfgKM9D19T2NsfkT6kumIPVvlQZQ/ALCqNbfAQVTj0/5lSTHGRg44EcikrK6BqsoVOAk12HjmJRKrFQiV/dT4PSdG+/XdVQgRdGnwBO1BgotBlJio4kJDgETBZKVC/e3VhIpV1hcq9QVu7OwWGr5oZOFnYcOo7WXklmtBF/rRWs5eQXFmF0VuKjteNUtFTbFZwaHf6+fmDwptRh4KdCBzatGX9/f/YUOggKDGB0jyQweIPOi2MFJXzywyGMig0jNgIMDn7ZLZgdR06SX1yCGSvhZidJ/lrX+UrRuO5LNDrXz7p7FAzeoDe7ftb9e2e+jTKbwoDEAN5afZCyqlom944iLsDkvifBXsPyHdlYa6owUkuol0r3cJPrell3/2BXdKw5VIIdLbXoiAkN5KdTVsxmM+MzElH0Jg4U2fh42yn3+SHKV8vt/aLROO3gqOVYfglr9uYQZlYY3TGg7r7L9cgpsXKosBo0WipskBRmweJtZnVWKfGhAcSG+vOf3YXUomNQaiTpieH896dCNmcXEeGrYXq/aPbkFLN23wliLHrGdQ7miy1Hsdba6J/oT0KA0bU/9Q9FcTXGKhrQaM80zipK3fOz39O4n285Vsr6w6dJCvFlXFown248TGVVNQbsDEjwI75TBvSf1aq/sbZ0vrHBFR9InTx5kqioKDZs2ED//v3drz/zzDPMmzeP/fsbl1y2Wq1YrWfSysrKyoiJibksAimeT4KqS19KVvxvsKlanCjoFCcaVBTa+M/fO8TVq1IXaKI1uE70NWWUlhSh1JTgp7Q+1a5G1aMGJmIMTWHJSRO7inXovHz5zahu+JqMUH0ataqQbzbuxlyZQ4I2n0g1v/kgsgnF+BGQ3JdlJZF8fDIEXXQ6E4emc+c/N+Nj1DFvem9CfU386as9rNibS4KSx2uDHJz8aT2h5T/RRXsUbRPBmAevAOwdrmXWthhW1nbi03uHNmrlbOj99Ud4cvEejDoNiSE+WPP2MVG7hqle3+Fta7rIhR0t2s7Xsyry16R1S2/R+LazrdtznK3/eoy7dV9hwDNgVpOGU3bd21gCQliyK5e752913Rj/39BWrw9VhVXPwNrnAaiOH8mA7DsprnHdUC6ZPcgjV/9CXZJACvhp0V9I21mXJZEwhAd19/PxrjLmjOrA70akXPgKnE5Y8xys+Uujt3b6DqLbjDddgU0r2RxO/vPjPsaWfYJ5+/tQ03RKmqo1stE0gAX2ITz225kE+riOva3HTjPhze/QaxXWPzgcvVbjDrz/eF3nuhQwlTTlKDcYNjHNsg1TWfa5N8zoR21Yd360JvBpXhj7tCksmDOe11cdYu6GbAw6DT88PIJAbwOvLtnGurUrmRZXxHXBeXByOxRnnXMVDZWq3vhFd0YJTgafMD7aVcH2Ii02VYu3YuWBYdH4a6rIO55FWW4WcdoCjFV5rgaVVnCqCoVYyFf9SYwIocap4Gc2suNoEWZnOQFKBQFUYFTatsiCAw02VYtBsaNp62uFEM1JGgFTF7X3Vpx3IHVVpPYBjVryVFVttnXv2Wef5U9/+tOl2KyW6/sbvtlygBPF5ehwoMPOsJRAArwUVuw+gaqq9EkK5VipnQMF1QT7+TCqaxRHimtZsrcQOzrsqobhnSPpGR9ypjdFUcBh46ecQpZsP0a4t4Zbe0e4e5Fw2tl9vJD9uSXocGBQnNhUhf4dwgnw8ebTbXnUODWMT4/H39e7rhVHf6Y1R6t3zQGj1WOz1fLMf3agcdZy96BoCkvKMWCnsLScn44XYTGo2GprCTErDE8JYM2BfAprwKbqsFH/0GIwmenbIYrPdhRhRc+YHvGYzN68uyEHBRUtTpKCjJh1kJVfihEbYWa4s18E3+w4Sl5xKRlRZrTOGsrKK6ioqsKq6qhVddSix6k1UO3UEhEUyLBu8Vh8/ahWTCzeW4pda2JCnxSMei07jxby7tqDlFdVc9eAWMorKli+MxsfTS3+OjtqbRX+ejuKvZreUSY6BmpZsjsPK3pqVS2xIf7sKrBj13rx65HdMHr5uNI+DHUtX/q61i+Dq/vd1QNX7Wrtspa7Sj9bS6GmjKycPDb8dJhQYy09Yyx8l1WEUadlTPdYCu1ezNtWShlmSlVvOsRGMWtcbzBZwGTBrvdl1aEy/t+XP1FYYUWnUZg5MAp/tYLP1u8kUl/JS9fHEkA51JS4empqSlzHSD1F4+qpMge4enW8Q1zpK77hrlQ0XRM9GnVKi6oY/MIqvBQr798Uw9tff0e/EBu/6WmGijy27s3iUH45Rr2Ga9LC+XR3GcdtfpwikGemjabUFEOu05/0eFdVsoFVNl56cwOHCyuxFyfx0NhUAN5bd5inS/ZiNmj55K5Mxry1lhDHKd4Y40+QNYdl678nydfJgHhvcithV6GTw7X+bKsIZKczkVwC+c/Qgdz/7o+UOe18em0/escHsmT2IAK9De6A5J3b0vl2bz6nK2vpnBHN/vDruOuTHSRYtHx7SwDak1tcN2g1Za7vzcvf1XMT0Q2i0ll38DRLf9xEmJ/Ro6x8Uyb3iWX9oUJW7stnb24ZOk0Uf7FP5s3aKXTVZpNm3UGauRS1poRTagCH1CiC03/BgxP6M7x1ZyIPyVHBTLXfzGfO4XxzfS2bNnyL3i+UroPGc+8GE+uf38i/7urH8rpS/fXj+VpNUWD4IxDeBU5uw2vw/Tx3yJUuNKxjaJsGUZeSNeM3PLwlnzhTNTOn/I0fXt4AQI+fCaJbRKOBYQ9Dl5v47JO5kLebg84ovnOmMePGCXTzP885qpqh12q4qX9n4AkY+TBkrYQTW3CU5PDvnac4bvcnscdQ5p6IZGuuq6c2c28+k3q7grd/1o37uLFHlPvvKD7ITHZRFU9/7RpHc01aOGXVwTx7OJ43yn7Fj7+OwSt/B+TvdfWE26o5Uq7hP1kOCO7A7CkTICgFg0bDIKCP3YHT6ZqeYUxaOHM3ZHNLn1j3WN4OMRH8VU2luNKbvlMyXSnL1SUc2fUdH/x7KcmGYqZ2t4CtivwqJz/kVFNrjsA/KoUhvdMZ9v5Rcmw+fHvjEJJDfSmvsfHEquXYnSpJId5kFVQSRgcmpccwau0aymvsKAoMTLBw4uhBwtQC/jo6gAjnKSjP5fusQo4XV6PTgF3nzVGrD0X4UahaOKUGcEoNIDo6FkWrY8vR0/id0lFWYyfMz8ipGisBZj39k4P5eudJJnezMKO7F4/P/5YYXSk3JWvYeSgbvdOKWbHir7dTbtNSrerpFBtGz+RoMPmz+lgt/9pZRmBwKE//aiCL9lbyxPKTVGEEFO4YEM/j41LBVs03Ww/y/H82EWaworeVE2aw8tx18Sg1pa40zpoyKsuKWLknt+4aqKNDVDAZHWLZmmdj0Z4yokJDuPuaHlQrXkz6YDcVePGf+0biY1C4/+MtbD9ayF2ZEYQYbHy4dg+Bulr+ODoOi7aWD1bvprqyjGtSfInwcrA/J59jZQ4q7FoykiLYkVfDyUqVrnHhrM2uxKE1UWrXU42ROdd2509LD+Nr1PHrATH0ivJGq9bdA9lqXJko9dkptZUcyS1gy6ET6LAT4mcmt6wWk17Hdd2jXD0tOi9XerzOxHdHK/nmQCk6oxcPXd8DvdHsuvdy2l3XUKedf244xL4TxfSONvOLrsF8ufkwOYUlZMZ6kx5l5uttR7BZq+kXb+FgQQ15FQ56JYbhazax8uBpapw6Sm0aeiaEMbhTlKu3Vld3D6aq4LRTXFHFK8v2YlSc6BUHGqcNg2LDgAMDNvTYCfNWiPHTkZV3miBfLzJTwkGjQ9UaWHGgmMPFtdjRYkNLv6RQ+iaFnrmXrO9tAlfDgOpw/XQ6GjxXz3re8H0ndoedhT9k41RVfMxe5Fe5MqbyK514m83M7DXigs5Tl9oVH0gFBwej1WrJy/OsBJOfn09YWFiTv/Pwww8zZ84c9/P6HqnLwpAH2G3d7x4bkhzqw6+mDkajUdjs9RNzN2STVOTN8eJqah1OPvllJkpCIIlA4Vc/uUu8TrhmKDQxGLuzqrI7/rirqMVZN2/JNgefLdlHargvK7KK+M+Ok8wKTWZ0WhgP/bgBi5eeaeNHnXOsiR44sOMHNhwq4lRxBIt35qJRoFdsAJvtp7k1I5aPfjiGsUrDd2OHM23Lt01/UAV0z7eww+Fq9Zy/pf6NCEZ2CmXp3ny8SrQoClQ5HPib9ZSU2yisiOOT0zlU2x0sGX+m5bqowsqnW3JYsiuXnSdKUeuLCuaBuVjLgORg9uWVcbzYH4APCyDIR8u6g1rAdZP+449aHM4QrI44cAA20GsVHhyRytNf76Wn6s8DGan8dluD1Ku6+gOTe8VgHNTtZ7+7c4msdfDMnmXUVDpJLfFln62cyT1juHZ8N7xqbLyxeZl72f/XORVizhSs0AGju3iTkRDEH7/czde7cnl9bX3ueSwTR3cmoPcFjNM4h9ggM30SAtl4pJipiwqwO5NZm6Mw9c7RrD9YyK9XuP6D507tjaljKFvs2/hy+0mSQ33w7jAEb6DhqDKLWc/skSnMXridVfvyeWhsKkt25fLnurlM5ozqQJcoCzf1TuCf32t48XAIPqYkvqpNgSKY/4u+/HbBNoorXTd8Bp2G6EAvKKzktZWHKKux42/W06tunN/ZN++KojCq85lzzLVdI3hq8R6OlNpYWRnPqMy+ALyx6hBmg5Y7Bnh+t8vqKiWN6hx2zpLXXgYt79yWwcvLD7BiXz5/uiGNx/69m3155WwgltMRXfi/e/vz8Oe7WFQ3pvK5mLYbQxTuZ8LXqOO4NZBXTifydmE4FILxWA1We5V7P+sHzY/s3PS5t8U63+h6AKM6e/P9Q8OxmFuZLngZiPL3YoFjBNpqhZuqVffkmt3rxqu2mZAO9Jz4CK+tOIjNodLXYnKXLm4zOiN0HAsdx6IFtii7mP/jMdgMcCbddf2hIib1jqWsxuYeaH9rvzOTd/aKDSC7yDX2IzXclzdu6YXdqTLwuVUUVljZY4ugQ2oH5hZlM2lYDGF+Jr5eeZCX9x/g5qhoCOnosVlGndb9776JQWx+dCQBDVJW6yvlZRVU0u/ZFTw8NpU7ByWy29iDeQ6VjNAApo53ZbeEAjectduhEU5yjpWw+0QZyaG+bDhUiN2pkhDszb3DkpnzyQ7+sTaLb37Ko7zGTpC3gaLKWtYdLgVCMUYkEz5koPs62qPWwT/mb2H1/gKohdhAM78flcL767Pd1efGxgRi0GnYcvS0e3xyfeW3sV0jmNw7lq935vLp7nJ05gA2OLsyMimU3rf1RnO0mPs+3k7HMD/+Oqk7JZU29uaV0b1TGNSddwb2dVKQfIKhHUPR+RoZF2TnqXUroG5dPWMDXDfQRh96pnUi698nyapL6smMDELJ6EdD3sDiDzfzTV1F0hU3D4EQH7zzyvlo11q8CrVMSxxJzulqdqrV+Jl0+IS5zo+9emn4NHsXT23RAUbKnb14ZGQnLANd4/jySvbx9zVZ7DdGcqrEyvf5rh75YB8DS24ezOZv9vPx5uMoh1338xO6RfH9oUIKyq0U7fRnq10Pdli+DDSKjbggb+bdMYzYuqlnGnp5wTb+Y6tLM63r+B+eFMp1N/ZutGxMcRWbP9rCnYMS0Pds+tzbyVLMv5fsY+r4LhDhh8Mrhxc/3UFKhQ/v9svg3nWr0WkUtt86mvUrDvKPtYeZEhBLWY2dryrPpLu+1KM7NDNGNBBY9eNK9zxrWo2Co25sulaj4HCqGCo0dLH4sdVWwp+HdCGzrmKwAvSpsfHMGxs4XFDpmmh34gjwbr6BtDV0wBfHvnNN7VLmmgZgwZR+PPGP73GUq1wfNZwLa/K5tK74qn0Gg4H09HSWL1/u8fry5cs9Uv0aMhqN+Pn5eTwuJ50b3LDNGJjgvsn67fAUfI06sgoqqXU46RMf6DFA/OGxnZjQK4rbMuOIb+KkAK6bv0m9Yz2qydQz6bU8cUMav+oT6x7IueZAgXsegZ6x/uedw19fgre+HKdTxT3IdmByCCa9Bqv9zCDSpBBvetUNaEwI9nZPVLsjx3UhGV5XYl2nURjZKZTnbuqGSa+h2uagqtaBn0nHyxN7ADDv+6NU2xwEeRvcZUnBVVFw5pAk/j1rIFsfHcXqPwxl8W8HkhEXQFWtg+V7TnG82DXQMcjbwJ7cMtYdLERRYFpmHH0TAqmqdWC1O+mTEEhMoGtAZJ+EQMbVTVS3/XgJX+10nfDq36/3y4wLD9a9DFqGdqib16du8Oy4rq7wwtek9ygIkR4X0PgDgEBvA6/f0pO3pvRiWMcQjDoNfRICuS0zrsnl21L9mAt7XUUhh1NlZ04pb9dV47tzYALD6nozJvaOQaPAtV0aFzSpN6RDCBrFVSJ7+/ESfv/JdlQVbu0X6x68P31AAooCq/YX8PXOMxej33y4heLKWhKCvXn/9gzW3j+MqXXfQX052EEpIWjPc14fk157puX9+2zANVfOC9/s509f7SGv9MzEk06n6p5oeVTn5vevIa1G4Q/XdGTJ7EH0SQjk96Nc800ZdRr+9qseGHVa7h/T0V29sVsb3pwrikJymKsy1fwG89NZ7U78zXoUxTXh8ukqGxYvPRnNHHsXKtTP5HGjfKUJ8TFi1GlwOFU+3uQaFJ4Y7H1RgsOkEB9e+VVP3pjSi0ev69zs5NltZcbABJJCvEmL9OPm9GheqhvDtuFQIU6nytc7c7HanaSE+nhMRN5wIPuTN3ZBp9Vg0ms9SoO/s/Ywf11+gEe/3A2cmYw3JqDp61xDwT5Gj7/hSH8v/jqxO12jLDicqntwfn3FvnNVg6y/dtZP9FtfhGJoxxCu7RpBZmIQVbUO9uSWYdBqWPjrfnw2M5Onxnfhoxl9+fzuTI/rqJdBy9tTM/jd8GQeGNORZb8fzC96RvPH6zq7l+ke40+/RFdPvJ9Jxz+mppMc6oNGgYkZMXSNttA7PgC7U+XDur/P4amuxoz0uEDW3j+Md6dl4GfSExtk5pq0cI/GG51Wwy8zYtzXD2+jzj0RN0DPBj2moX4mEkPOfEfN9Q7/ZkgSOo3CkA4h7om5U0J9iA7wotrm4Nn/7nNPuRLV4P9xbJdwovy9KLfaKbfa6RDmw+0D4t3vj6gr9b1kdx7fHy5Cp1H44I7ebHhoOCG+RneKtFpXbe7e4cnu+4CtdVUPh3YMwaDT4FRdxSv+svTMRMKHCyq4c95m1h0sYPX+xpX+6ucsO1tMoJmvfzeIXzQTRIFrupPP7+7v/s5Gdg5Dr1U4mF/BK9+6xqD2ig3Ax6hz78e2YyWsr6t2e1tmHDOHJHFd959vFOmfGOz+94yBCe65Kkd2CsXXqKPW4XR/FwOSgj1+18+k593bMugZ68/916QS0MZBVL27BiXSKcKPW/vF8vnd/UmPC3BnZvx4uOl09cvVFd8jBTBnzhymTp1KRkYGmZmZvP322xw7doyZM2e296a1Ss/YAAw6DYFmA7/oeSYuD/Q2cPewJJ5f6hr3de9wz6owBp2Gv9YFExeqft6fXSdK3XNv9Io9/5ujgcnBPE/j8WngCpQ6R/ix9ViJe56OvolBjEgN5e75W5k1LJkDp8rdQVRckJn3pmXw08kyYoPM+NUNYO8Y5uteJiM+kKEdQ+gWbWFn3WuZSUHNtvQHeBvcJ4hPfpPJtuOn2XasBIdTZXLfWMpr7Dy/dB+R/l7c0ieWmEAzJ0uqGffqOmpsTp67qRvVtQ6e/2Yfdw9JIsLiRd+EQH48UuwuLz8tM56/fXuQcqudpBBvj4vRhZg1PJmiSiup4X6M6xbhvsCC66asoNyKQatpcqbxeoqiMLZrBGO7RuBwqmiUxumxF8O1XSN48qs9VFjtxAaaOVZcxbqDBe7Z06f1j3cv2z8pmO2Pj8bH0Pxpyt9sID0ugE3Zp7l3/lZqbE66x/jzxPVp7v2JD/ZmVKcwlu05hVN1XcwP5ldQUTfP2e9HdXDfdAxK8byoDG1hyfcpfWP5x9os1h0s5FB+hUfp4FX78xnbJZxPN+cQ6mekoNyKj1FHv8Smq06ey+jOYbz4y+7EBHi5K1xFWLz4cEZfjhdXtXn6W0qoD9uOlVBZVwXr7anpHDhVzrhukTy1eI/7hnJ4auhFq5J5pdNoFEZ2DuPrnbm8sco1LufnxsZdSRJDfFjRYFyczeHksX/vpriylr15Ze5JP29Oj/Y414xOC+fd9Ue4Ji3co2Gwc4QfK/fls+dkmXt+p1X78imssHK8Qenz1pjQK5ohHUJIf/pbDhdWUl5j40hdxb6EcwVSdefV+ol+66vgju4cjkmv5aM7+/L++iN88F029w5Ldv9tNlddFlzX7jmjPXvW+iQEctegBNYfKmJYx1D8zXpemdSDHjH+xAd7M7RjCAXlVndFthkDE9iUfWb+pmGpZ85drTm3394/noUbjxNhMTX6nvslBnG4bi7E5qpz9ooNYPX9Qz2mR9FoFP4yoRu3vvcjH/5wlJ11PW5R/mfGb/qbDay5fygbs4vZnH2aG3tEekzs3TPG35V9Ujcv1PieUQxtkEo8rlsEPx4pokukhamZcZj0WjqE+brLo5v0Gt6ako5Bp2FnTgk3vfUd/92Vx9Zjp+kVG8BTi/ewan8BK/e5rhcBZj3eRp27umBbnlctXnoGJgezan+BuzpzfaNs/XmhvoKzj1HHH6/rfF6TnGcmBfFx3d/bhF5RWLz0vLhsP1P6xnG60sbGunkvo/y9iGui0T0xxIcv7hlwwfv3c8Z0CWfMWY2k/RKD2H68hB8OFzHhPEurXw6uikBq0qRJFBUV8eSTT5Kbm0uXLl3473//S1zcxW9hvxjCLSYW/3Ygviadu0RovekDEvg+q4gQH6N7/o6LIdTXRFqkHz+dLHPPNN6w5fBc0iItWLz0lFbbmNwnhs+25LhLn8cGmnlobCemvPuDuzRpv8QgRnQK48DTYwHXXEn1cwaN7RKBoiiNetE6Rfg1CKQCUBSFWcOS+fWHrhSxgcnn9/1oNArpcYGkx5250PmZ9PztVz09lov09+Kb3w/G5lDd5Tk/uKOP+/2nxndh3Kvr3PvZJyGQoamhfLXjJJP7xLZZoNIlysKnM5vubU0M8eHHI8WkRfk1Onaac749Lm3Bx6hj4a/7UVZtY09uGU9/vZcPvz+Kw6kSF2QmJtDzpO53HlXfhqWGsin7NCfq5uOYNSy50Y38nYMS3al0f7yuM3M3HGHV/gJSw325rkHKU1KIj7scMMCQji0LpGICzYxIDePbvadYtDXHPWUAuFqu1x4o8JhHZGjHkFb3sCiK0mQJ8N7xgfT+mZu21urQoHc33M/EqM5hjK6b/uD2/vHuQGpkpzZK67tKTcqI4euduVTXzYHWsHfmaqLXauibGMTKffm8uTqLrcdK0GoUftHLM2knzM/EmvuHNfr9+nLR24+XuMuS250qX2474Z7Y/ezzRUsE+RjdJbl3nzgTrMUH/XwglZkUhE6jsPVYCTPmbXY13kRb3A0iWo3CXYMT3SXlL8Qj4zp7PB/foGHVqNO6gyhw9WxHB3iRc7qaThF+RFgurIR0hMWLlf83BKNe2+ja1S8xyN1g2FwPDeCxffUGpgQzLTOOed8fdZcpP/t8pdNq6J8UTP+kxtdwnVbD0A4hfLndFcDOHOL5PVu8Gl+76+d5AlcWQ/3UHj1jA7g5PZpPNufw56/38ui4TqyqmzS+fhqmYR1DMeq17p7Ltm6gGts1wr3OP4zu4M4MibSYCPYxuicg758UdF5BFLjm9QryNpAc6kPHMF86hvkyfUACXgYtK/fluwOp/klBl6QB9Xz1Swzk72uyGs0jdrm7KgIpgHvuuYd77rmnvTejzTS8aWnIpNfy4Yy+l2Qb7hvZgZeW7ed0VS1xgd4tujnTahQeubYTG7IKefjaThSU1/Lt3lOE+BrxMmjpkxDIn8d35YHPd7qmrEnw/OyM+EB3Pu+4ZnL7G57Q6mdVH9kpjD7xgezNK3OnA7alUN/mK591CPPlN4OTeH3VIbz0WjpF+PGnG9IYk9a45eViGdoxhAUbjzX7nV0O6gNiY10KWn3O//kGvmcbnhrq7qXtEObDiCb+33vHB3D30CRsdieDUoKJDvDCpN/PvcOSPXotFUVhUEown27JoVu0hWCfn5k7qxnXd4/g272nWLE33yNIXXuggNqzJpAe3cQ8bJerlAbnpOGdQj0uwINSghmQHMSpMqt75nrRtAHJwe4beLh6eqSaUj8v0Nd1Kd7XpIX97Dm0ofqejn1nzf/zwjf7sdqd6DSKR4pZa3SLtnCipJr1hwrcmQznKvwSE2jmnmHJvLrioDsQ+O3wlHa/IdVqFH43IoUHPtvJxIy2ac0Paub81y/RNWbLpNOQHNrySaQfGtsJFVda8pgu4S3KdgFXsZIvt5/k+u6RJIc2H8jVa3g/NfqsVOrfj+rAf3acZMvR00x+xzW2+Zq0MHeAfX33SKptDhZsPIaXXnvOQLulxveIIqe4ivT4QI+5sRRFoUeMhW/3uhqoBrUgOyLQ28CGh4ajURT3cVkfPDYMfAdexMb41uiXGMTK/xtyzl7hy81VE0iJtjeqc5jHYPqWmtg7hom9XeOCJmZE8+3eU3RpkAYwsXeM+2b67NLMfiY9L/2yO6eraukS1XQLUP2F1qDT0LWuVVejUfjwzj44nKrHzOOXyqzhyZRU19Il0oJeqyHQ2+Duqr8UrkkLZ/OjIwm6SHnNbSkt0oJeq7h78FobSHUM8yUm0IvjxdXMHJLUZDqnoig8OCbV/TwxxIe3bk1v8vOmZsbx/eEi7hrUuhbloR1C0WoU9p8qd9dl8TXqKK9LJRzWMYRb+8VxrLjKozfscpfS4IZpZCfPYFVRFObf2e/sXxFN0GoUbkqP5tUVB9FrldZPXHwFaHijVj+29XzFBJg9/m4y4gLYeaIUq93VGPHEDWmtauhoqGu0hSW78/jnd65e8ZRQnyaLDpxt1rBklv2Ux768cjpF+LnH7bS3iRkxjOwURsBFLsgS6mti4a/7YdBqWtWj7mXQ8uSNXVq9/mGpoSz//eDz+r8CVyDlbdDiVGn0fxVh8eLvt6Zzz/yt7gyZP4zuSEygmayCCtIiLdTYHIxJC6dHrH+bZ3A0ldZZr3u0vzuQGpLSsgaq5jJSOkecaSjITApqcpn2YtJrSQxpeWDe3iSQEpfE6LRw5t/Zt1Hr1Y09mq/N0jCNoSnpsQHcMSCeDmG+Hifz9hyMbtJreXp813ZbP3DBNxeXikmvpXNdeqai0GQax/lQFIW3pqSz+0Spx5jC1uoW7c/6B1tfNNxidhVb+PFIMarqSoMb2jGEhZtcOeszhyTRN/HyuoCdjwiLiYy4AMpqbK3+vxIut/SJZeHGYwxMDr6ii2ecS4cwXx4ck4peqzB9QMI5q1M2pNEodIrwc6chDUsNJSXMh4WbjvP4dZ09Kv+1VrcofwB3sHa+1SYNOg2v39KTl5YdYOaQpHbvjWoo8BI1orW0F6mtpTSTtdMUb6OOj3+TCdDkpONDO4ay8Nf9eOSL3QzuEOz+7Ppxxia9lr9Pbbrh7WKqHzOYFOJ93kHjuXSO9GNCzyhC/Izn3Tssfp4EUuKSGdDKHofmaDQKj1+f1qafKS6tnrEB7MgppVuU5YIql3WJsjRZibK9jOgU6jG2cFy3CBZuOk7v+ACPAfVXEkVR+Ozu/j87R584P+EWEz/+vxH/E9/j3UOTzr1QMzpHngmkMuICmDkkif8b3bHNGovOTuNryfi+5FDfZnu1xeXnXNeHbtH+fPXbgZdoa85P38QgXpvck9Tw8w8az0WrUfjrpB5t9nniKih/LoS4ck3MiCE+yMydrUyju1yNaHBD1jPWn0EpIXx+d3/eva33FX/zfKVv/+VCvsdzq0971GsVuse40qrassfdYta7pwoJ9jG03cTIQrSR67tHtqj3TVx60iMlhGg3nSP9WN1Exa4rXWKwN6nhvuzLKyezbk6P5ub1EkI0bWByMD5GHUM6hpx3FdKW6hrtT3ZRFcNTQy9pBVMhxNVBAikhhGhjiqLw3u29ySmuchdCEUK0TKS/F5sfHYnuIgY49w5LQlVVfjs85aKtQwhx9ZJASgghLoIofy/3fGNCiNa5WD1R9VLD/Xj9ll4XdR1CiKuXjJESQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkjX3htwOVBVFYCysrJ23hIhhBCXWlVZGU5rFQBl1GBXVCgrA4ejnbdMCCFEe6iPCepjhOYo6rmW+B+Qk5NDTExMe2+GEEIIIYQQ4jJx/PhxoqOjm31fAinA6XRy8uRJfH19URSlvTdH/A8oKysjJiaG48eP4+fn196bI/5HyHEn2osce6I9yHEnWktVVcrLy4mMjESjaX4klKT2ARqN5mejTSEuFj8/Pzm5i0tOjjvRXuTYE+1BjjvRGhaL5ZzLSLEJIYQQQgghhGghCaSEEEIIIYQQooUkkBKiHRiNRh5//HGMRmN7b4r4HyLHnWgvcuyJ9iDHnbjYpNiEEEIIIYQQQrSQ9EgJIYQQQgghRAtJICWEEEIIIYQQLSSBlBBCCCGEEEK0kARSQgghhBBCCNFCEkgJ0QpvvvkmCQkJmEwm0tPTWbdu3c8uP3/+fLp3747ZbCYiIoI77riDoqIi9/vvvPMOgwYNIiAggICAAEaOHMnGjRs9PsNut/Poo4+SkJCAl5cXiYmJPPnkkzidzouyj+Ly09bH3aJFi8jIyMDf3x9vb2969OjBhx9+eMHrFVef9jj2nn32WXr37o2vry+hoaGMHz+e/fv3X5T9E5en9jrn1Xv22WdRFIX77ruvrXZJXG1UIUSLLFy4UNXr9eo777yj7tmzR509e7bq7e2tHj16tMnl161bp2o0GvVvf/ubevjwYXXdunVqWlqaOn78ePcyt9xyi/rGG2+o27ZtU/fu3avecccdqsViUXNyctzLPP3002pQUJC6ePFi9ciRI+qnn36q+vj4qK+88spF32fR/i7Gcbdq1Sp10aJF6p49e9RDhw6pr7zyiqrVatWlS5e2er3i6tNex94111yjzp07V929e7e6fft2ddy4cWpsbKxaUVFx0fdZtL/2Ou7qbdy4UY2Pj1e7deumzp49+2LtprjCSSAlRAv16dNHnTlzpsdrqamp6kMPPdTk8i+88IKamJjo8dqrr76qRkdHN7sOu92u+vr6qvPmzXO/Nm7cOHX69Okey02YMEG99dZbW7oL4gp0KY47VVXVnj17qo8++mir1yuuPu117J0tPz9fBdQ1a9ac55aLK1l7Hnfl5eVqSkqKunz5cnXIkCESSIlmSWqfEC1QW1vLli1bGD16tMfro0eP5rvvvmvyd/r3709OTg7//e9/UVWVU6dO8dlnnzFu3Lhm11NVVYXNZiMwMND92sCBA1mxYgUHDhwAYMeOHaxfv55rr722DfZMXM4uxXGnqiorVqxg//79DB48uNXrFVeX9jr2mlJaWgrgcV4UV6f2Pu7uvfdexo0bx8iRI9tmh8RVS9feGyDElaSwsBCHw0FYWJjH62FhYeTl5TX5O/3792f+/PlMmjSJmpoa7HY7N9xwA6+99lqz63nooYeIioryOIk/+OCDlJaWkpqailarxeFw8Oc//5nJkye3zc6Jy9bFPO5KS0uJiorCarWi1Wp58803GTVqVKvXK64u7XXsnU1VVebMmcPAgQPp0qVL2+ycuGy153G3cOFCtm7dyqZNm9p+x8RVR3qkhGgFRVE8nquq2ui1env27OF3v/sdjz32GFu2bGHp0qUcOXKEmTNnNrn8888/z4IFC1i0aBEmk8n9+scff8xHH33Ev/71L7Zu3cq8efN48cUXmTdvXtvtmLisXYzjztfXl+3bt7Np0yb+/Oc/M2fOHFavXt3q9YqrU3sde/VmzZrFzp07WbBgQZvsj7gyXOrj7vjx48yePZuPPvrI4/orRLPaJaFQiCuU1WpVtVqtumjRIo/Xf/e736mDBw9u8nduvfVW9eabb/Z4bd26dSqgnjx50uP1F154QbVYLOqmTZsafU50dLT6+uuve7z21FNPqR07dmzNrogryMU+7hqaMWOGOnr06FavV1xd2uvYa2jWrFlqdHS0evjw4VbsgbgStddx98UXX6iAqtVq3Q9AVRRF1Wq1qt1uv8A9E1cb6ZESogUMBgPp6eksX77c4/Xly5fTv3//Jn+nqqoKjcbzT02r1QKu1rV6L7zwAk899RRLly4lIyPjvD9Hyp9f/S7mcXc2VVWxWq2tXq+4urTXsVf/fNasWSxatIiVK1eSkJDQ2t0QV5j2Ou5GjBjBrl272L59u/uRkZHBlClT2L59u/vzhHBrvxhOiCtTfUnW9957T92zZ4963333qd7e3mp2draqqqr60EMPqVOnTnUvP3fuXFWn06lvvvmmmpWVpa5fv17NyMhQ+/Tp417mueeeUw0Gg/rZZ5+pubm57kd5ebl7mWnTpqlRUVHu8ueLFi1Sg4OD1QceeODS7bxoNxfjuHvmmWfUZcuWqVlZWerevXvVl156SdXpdOo777xz3usVV7/2Ovbuvvtu1WKxqKtXr/Y4L1ZVVV26nRftpr2Ou7NJ1T7xcySQEqIV3njjDTUuLk41GAxqr169PMrxTps2TR0yZIjH8q+++qrauXNn1cvLS42IiFCnTJniMUdUXFycCjR6PP744+5lysrK1NmzZ6uxsbGqyWRSExMT1UceeUS1Wq0Xe3fFZaKtj7tHHnlETU5OVk0mkxoQEKBmZmaqCxcubNF6xf+G9jj2mjonAurcuXMv5q6Ky0h7nfMakkBK/BxFVX+mv1MIIYQQQgghRCMyRkoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghLrHa2lqSk5PZsGFDm37u4sWL6dmzJ06ns00/VwghRGMSSAkhhLggt99+O4qiNHocOnSovTftsvX2228TFxfHgAED3K8pisKXX37ZaNnbb7+d8ePHn9fnXnfddSiKwr/+9a822lIhhBDNkUBKCCHEBRszZgy5ubkej4SEhEbL1dbWtsPWXX5ee+017rzzzovy2XfccQevvfbaRflsIYQQZ0ggJYQQ4oIZjUbCw8M9HlqtlqFDhzJr1izmzJlDcHAwo0aNAmDPnj1ce+21+Pj4EBYWxtSpUyksLHR/XmVlJbfddhs+Pj5ERETw0ksvMXToUO677z73Mk314Pj7+/PBBx+4n584cYJJkyYREBBAUFAQN954I9nZ2e7363t7XnzxRSIiIggKCuLee+/FZrO5l7FarTzwwAPExMRgNBpJSUnhvffeQ1VVkpOTefHFFz22Yffu3Wg0GrKyspr8rrZu3cqhQ4cYN25cC79lyM7ObrL3b+jQoe5lbrjhBjZu3Mjhw4db/PlCCCHOnwRSQgghLqp58+ah0+nYsGED//jHP8jNzWXIkCH06NGDzZs3s3TpUk6dOsXEiRPdv3P//fezatUqvvjiC5YtW8bq1avZsmVLi9ZbVVXFsGHD8PHxYe3ataxfvx4fHx/GjBnj0TO2atUqsrKyWLVqFfPmzeODDz7wCMZuu+02Fi5cyKuvvsrevXv5+9//jo+PD4qiMH36dObOneux3vfff59BgwaRlJTU5HatXbuWDh064Ofn16L9AYiJifHo9du2bRtBQUEMHjzYvUxcXByhoaGsW7euxZ8vhBDi/OnaewOEEEJc+RYvXoyPj4/7+dixY/n0008BSE5O5vnnn3e/99hjj9GrVy+eeeYZ92vvv/8+MTExHDhwgMjISN577z3++c9/unuw5s2bR3R0dIu2aeHChWg0Gt59910URQFg7ty5+Pv7s3r1akaPHg1AQEAAr7/+OlqtltTUVMaNG8eKFSu46667OHDgAJ988gnLly9n5MiRACQmJrrXcccdd/DYY4+xceNG+vTpg81m46OPPuKFF15odruys7OJjIxs8r3Jkyej1Wo9XrNare7eK61WS3h4OAA1NTWMHz+ezMxMnnjiCY/fiYqK8uh5E0II0fYkkBJCCHHBhg0bxltvveV+7u3t7f53RkaGx7Jbtmxh1apVHoFXvaysLKqrq6mtrSUzM9P9emBgIB07dmzRNm3ZsoVDhw7h6+vr8XpNTY1H2l1aWppH8BIREcGuXbsA2L59O1qtliFDhjS5joiICMaNG8f7779Pnz59WLx4MTU1Nfzyl79sdruqq6sxmUxNvvfyyy+7A7Z6Dz74IA6Ho9GyM2bMoLy8nOXLl6PReCaYeHl5UVVV1ew2CCGEuHASSAkhhLhg3t7eJCcnN/teQ06nk+uvv57nnnuu0bIREREcPHjwvNapKAqqqnq81nBsk9PpJD09nfnz5zf63ZCQEPe/9Xp9o8+tLx/u5eV1zu248847mTp1Ki+//DJz585l0qRJmM3mZpcPDg52B2pnCw8Pb/Q9+vr6UlJS4vHa008/zdKlS9m4cWOjQBGguLjYYx+FEEK0PQmkhBBCXFK9evXi888/Jz4+Hp2u8WUoOTkZvV7PDz/8QGxsLACnT5/mwIEDHj1DISEh5Obmup8fPHjQoxemV69efPzxx4SGhrZqPBJA165dcTqdrFmzplFPUb1rr70Wb29v3nrrLZYsWcLatWt/9jN79uzJW2+9haqq7pTDlvj888958sknWbJkSZPjsOp73Hr27NnizxZCCHH+pNiEEEKIS+ree++luLiYyZMnu6vLLVu2jOnTp+NwOPDx8WHGjBncf//9rFixgt27d3P77bc3Sl8bPnw4r7/+Olu3bmXz5s3MnDnTo3dpypQpBAcHc+ONN7Ju3TqOHDnCmjVrmD17Njk5Oee1rfHx8UybNo3p06fz5ZdfcuTIEVavXs0nn3ziXkar1XL77bfz8MMPk5yc7JGS2JRhw4ZRWVnJTz/91IJvzWX37t3cdtttPPjgg6SlpZGXl0deXh7FxcXuZX744QeMRuM5t0MIIcSFkUBKCCHEJRUZGcmGDRtwOBxcc801dOnShdmzZ2OxWNzB0gsvvMDgwYO54YYbGDlyJAMHDiQ9Pd3jc1566SViYmIYPHgwt9xyC3/4wx88UurMZjNr164lNjaWCRMm0KlTJ6ZPn051dXWLeqjeeustbr75Zu655x5SU1O56667qKys9FhmxowZ1NbWMn369HN+XlBQEBMmTGgy5fBcNm/eTFVVFU8//TQRERHux4QJE9zLLFiwgClTpvxseqEQQogLp6hnJ5gLIYQQl6GhQ4fSo0cPXnnllfbelEY2bNjA0KFDycnJISws7JzL79q1i5EjRzZZDONCFBQUkJqayubNm5ucEFkIIUTbkR4pIYQQopWsViuHDh3ij3/8IxMnTjyvIApcY6+ef/75Ni9RfuTIEd58800JooQQ4hKQYhNCCCFEKy1YsIAZM2bQo0cPPvzwwxb97rRp09p8e/r06UOfPn3a/HOFEEI0Jql9QgghhBBCCNFCktonhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC30/wHG+7bFMIkjUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyDUlEQVR4nOydeZxcVZn+n1t7V/W+dyedpLMHsrElbLLI4gajMrihM4I66oiOgKMj48xvcGaEcWcUcVxRQRRFUFT2PUAgIZB9TzpJJ+l976qu/f7+uPc999StW1t3VVd15/1+PvnQdFdX3a66955znvO8z6uoqqqCYRiGYRiGYRiGYRiGYZhJYyv2ATAMwzAMwzAMwzAMwzDMTIdFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKOIp9AKVGPB7HyZMnUVFRAUVRin04DMMwDMMwDMMwDMMwTJFQVRVjY2NobW2FzZbeq8Yim4mTJ0+ira2t2IfBMAzDMAzDMAzDMAzDlAidnZ2YO3du2sewyGaioqICgPbmVVZWFvloGIZhGIZhGIZhGIZhmGIxOjqKtrY2oRelg0U2E1QiWllZySIbwzAMwzAMwzAMwzAMk1WkGDc+YBiGYRiGYRiGYRiGYZgpwiIbwzAMwzAMwzAMwzAMw0wRFtkYhmEYhmEYhmEYhmEYZoqwyMYwDMMwDMMwDMMwDMMwU4RFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKsMjGMAzDMAzDMAzDMAzDMFOERTaGYRiGYRiGYRiGYRiGmSIssjEMwzAMwzA5EY7G8Y/3bcEvXzlS7ENhGIZhGIYpGVhkYxiGYRiGYXJi2/FhPLazG9975kCxD4VhGIZhGKZkYJGNYRiGYRiGyYkhfxgAMOAPYyIcK/LRMAzDMAzDlAYssjEMwzAMwzA5MTwREV+fGJ4o4pEwDMMwDMOUDiyyMQzDMAzDMDkxEjBEtuNDgSIeCcMwDMMwTOnAIhvDMAzDMAyTE8MTYfE1O9kYhmEYhmE0WGRjGIZhGIZhcmI4wcnGIhvDMAzDMAzAIhvDMAzDMAyTIwmZbCyyMQzDMAzDAGCRjWEYhmEYhskROZONy0UZhmEYhmE0WGRjGIZhGIZhckLOZDM3PojH1ek+HIZhGIZhmJKARTaGYRiGYRgmJ+RMtt6xEELRGADgk796HZd++3lMhGPFOjSGYRiGYZiiwSIbwzAMwzAMkxNyuaiqAl3DQQz5w3hydw+ODgRwqG+8iEfHMAzDMAxTHFhkYxiGYRiGYbImEotjLBQFANT6XAC0XLY3O4fEYwb9YcvfZRiGYRiGmc2wyMYwDMMwDMNkzajUWfS0lkoAWi7blqOGyDYUYJGNYRiGYZhTDxbZGIZhGIZhmKwZ1kW2So8D8+q8AIATQxN44+iweAw72RiGYRiGORWZUSLbiRMn8JGPfAR1dXXwer1Yu3YttmzZIn6uqipuu+02tLa2oqysDJdccgl27dpVxCNmGIZhGIaZXVDTg2qvC3OqywAARwcD2No5LB4zxCIbwzAMwzCnIDNGZBsaGsIFF1wAp9OJxx57DLt378a3v/1tVFdXi8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGyseAfOMAzDMAwzixjWS0GrvU7MrdFEthf292EiYnQUHeRyUYZhGIZhTkEcxT6AbPn617+OtrY23HPPPeJ7CxYsEF+rqoo777wTX/nKV3DNNdcAAH75y1+iqakJ999/Pz71qU9N9yEzDMMwDMPMOsjJVlVmiGzDUrdRABjyR5J+j2EYhmEYZrYzY5xsjzzyCM4++2y8733vQ2NjI8444wz85Cc/ET/v6OhAd3c3rrzySvE9t9uNiy++GK+88koxDplhGIZhGGbWQZls1V4X5tZ4E362sMEHgDPZGIZhGIY5NZkxItvhw4fxwx/+EEuWLMETTzyBT3/60/inf/on/OpXvwIAdHd3AwCampoSfq+pqUn8zIpQKITR0dGEfwzDMAzDMIw1I1QuWuZEQ7kbLrsxnbxihTYP4+6iDMMwDMOciswYkS0ej+PMM8/E7bffjjPOOAOf+tSn8A//8A/44Q9/mPA4RVES/l9V1aTvydxxxx2oqqoS/9ra2gpy/AzDMAzDMLMBw8nmhM2moKXaAwBQFODS5Y0AWGRjGIZhGObUZMaIbC0tLTjttNMSvrdixQocO3YMANDc3AwASa613t7eJHebzK233oqRkRHxr7OzM89HzjAMwzAMM3uQM9kAiFy2ZU0VaKvVykeH/BGoqlqcA2QYhmEYhikSM0Zku+CCC7Bv376E7+3fvx/z588HALS3t6O5uRlPPfWU+Hk4HMYLL7yA888/P+Xzut1uVFZWJvxjGIZhGIZhrJEz2QBgbrUmrJ0xrwa1+vfCsTj84Zj1EzAMwzAMw8xSZkx30Ztvvhnnn38+br/9drz//e/Hpk2b8OMf/xg//vGPAWhlojfddBNuv/12LFmyBEuWLMHtt98Or9eL6667rshHzzAMwzAMMzuQM9kA4IYLF2B4IoxPX7wQZS47PE4bgpE4hvxhlLtnzFSTYRiGYRhmysyYmc8555yDhx9+GLfeeiv+8z//E+3t7bjzzjvx4Q9/WDzmS1/6EiYmJvCZz3wGQ0NDWL9+PZ588klUVFQU8cgZhmEYhmFmD3ImGwAsb67Ej/7ubPHzWq8LJ0eCGPSHRfkowzAMwzDMqcCMEdkA4KqrrsJVV12V8ueKouC2227DbbfdNn0HxTAMwzAMcwpBmWwkspmp8ekiGzc/YBiGYRjmFGPGZLIxDMMwDMMwxSUWVzEapMYHLsvH1Pq07w/5WWRjGIZhGObUgkU2hmEYhmEYJivGghFQ01DqLmqmRm9+MMgiG8MwDMMwpxgssjEMwzAMwzBZQaWiPpcdLof1NFI42bhclGEYhmGYUwwW2RiGYRiGYZisMJoeWJeKaj/THG6D/si0HBPDMAzDMEypwCIbwzAMwzAMkxXDujstVakoYDjZhtnJxjAMwzDMKQaLbAzDMAzDMExWjEyk7ywKcCYbwzAMwzCnLiyyMQzDMAzDMFlBmWzpRDZzJtvLB/tx/T2b0DkYKPwBMgzDMAzDFBEW2RiGYRiGYZisIJGtqix1JpvhZNMe+8PnD+H5fX14bGdX4Q+QYRiGYRimiLDIxjAMwzAMw2TF8ITmTsvWyRaNxfHmsSHtdwPcCIFhGIZhmNkNi2wMwzAMwzBMVoxQuWiaxgckwMXiKl4/OgR/OKb97gSLbAzDMAzDzG5YZGMYhmEYhmGyYjiLxgcepx0+lx0A8PTuHvH90WC0sAfHMAzDMAxTZFhkYxiGYRiGYbJiWG9mkC6TDQBq9JLRZ/b2iu+xk41hGIZhmNkOi2wMwzAMwzBMVmTTXRQwmh909PvF91hkYxiGYRhmtsMiG8MwDMMwDJMVvWMhAEBDhTvt48jJJjPKIhvDMAzDMLMcFtkYhmEYhmGYjIyHohgPablqTZWetI+tlZxuboc23WSRjWEYhmGY2Q6LbAzDMAzDMExGekaDAIBytwPlbkfax8pOtvMW1QHQykVVVS3cATIMwzAMwxQZFtkYhmEYhmGYjPSMaCJbU2X6UlEAqPUaIttblzcCAKJxFYFwrDAHxzAMwzAMUwKwyMYwDMMwDMNkpGeMRLb0paJAopPtgsX1cNgUAMBokEtGGYZhGIaZvbDIxjAMwzAMw2Ske0RretCchchWq4tsNV4nFtb7UFWmZbRxh1GGYRiGYWYzLLIxDMMwDMMwGaFMtsYsRLaz5tdgTnUZPrx+PhRFMUS2AItsDMMwDMPMXtKn1jIMwzAMwzAMDJGtOYtMtqZKD17+8lvF/1foIttoMFqYg2MYhmEYhikB2MnGMAzDMAzDZIREtmwy2cxwuSjDMAzDMKcCLLIxDMMwDMMwGekZ1TLZmqpYZGMYhmEYhrGCRTaGYRiGYRgmLfG4it4cuouaqfRoCSUssjEMwzAMM5thkY1hGIZhGIZJy2AgjEhMBQA0VmTOZDNDTrZRFtkYhmEYhpnFsMjGMAzDMAzDpIXy2OrLXXDac58+ssjGMAzDMMypAItsDMMwDMMwTFqm0vQAACo5k41hGIZhmFMAFtkYhmEYhmGYtIimB5MU2YSTLcgiG8MwDMMwsxcW2RiGYRiGYZi0dI9MzcnG3UUZhmEYhjkVYJGNYRiGYRiGSYvRWTT3pgcAi2wMwzAMw5wasMjGMAzDMAzDpIWcbM2TzWTzUOODaN6OiWEYhmEYptRgkY1hGIZhGIZJS74y2SYiMYSj8bwdF8MwDMMwTCnBIhvDMAzDMEyeUFUVm48MzrqyyKl2F63wOKAo2tez7b1hGIZhGIYhWGRjGIZhGIbJE68eHsT7/m8jvvLwjmIfSt4IR+MY8IcBTD6TzWZTUO52AGCRjWEYhmGY2QuLbAzDMAzDMHniQO8YAOD40ESRjyR/UNMDl92GWp9r0s9DJaOjQRbZGIZhGIaZncxYke2OO+6Aoii46aabxPdUVcVtt92G1tZWlJWV4ZJLLsGuXbuKd5AMwzAMw5xS9I9p2WUT4ViRjyR/UB5bY6UbCtV8TgLuMMowDMMwzGxnRopsmzdvxo9//GOsXr064fvf+MY38J3vfAd33XUXNm/ejObmZlxxxRUYGxsr0pEyDMMwDHMq0TeuCVL+8OzpojnVPDbC6DDKIhvDMAzDMLOTGSeyjY+P48Mf/jB+8pOfoKamRnxfVVXceeed+MpXvoJrrrkGK1euxC9/+UsEAgHcf//9RTxihmEYhmFOFfrGtOyy2eVk00S25imKbKJclEU2hmEYhmFmKTNOZLvxxhvxrne9C5dffnnC9zs6OtDd3Y0rr7xSfM/tduPiiy/GK6+8kvL5QqEQRkdHE/4xDMMwDMNMhn7dyRaYRSJbr14C21AxuaYHBJeLMgzDMAwz25lRIttvf/tbvPHGG7jjjjuSftbd3Q0AaGpqSvh+U1OT+JkVd9xxB6qqqsS/tra2/B40wzAMwzCnDH2UyRaJIR5Xi3w0+WFwXHPn1ZdPvukBAFR5DZFtJBDBlx7chlcO9U/5+BiGYRiGYUqFGSOydXZ24vOf/zzuu+8+eDypyxXMgbyqqqYN6b311lsxMjIi/nV2dubtmBmGYRiGOXVQVVU42QAgGJ0dbrYBv/Y31fqm5mSr9DgAAKMTUfzs5Q787vXj+OHzh6Z8fAzDMAzDMKWCo9gHkC1btmxBb28vzjrrLPG9WCyGF198EXfddRf27dsHQHO0tbS0iMf09vYmudtk3G433O6pTRoZhmEYhmHGQ1GEonHx/4FwDF7XjJlqpWTArznZ6qbqZJPKRV/tGADA+WwMwzAMw8wuZoyT7bLLLsOOHTuwdetW8e/ss8/Ghz/8YWzduhULFy5Ec3MznnrqKfE74XAYL7zwAs4///wiHjnDMAzDMKcCVCpKzJbmBwN6uWidb2oiW6Uusr3WMYCjAwEAmjDJMAzDMAwzW5gx26sVFRVYuXJlwvd8Ph/q6urE92+66SbcfvvtWLJkCZYsWYLbb78dXq8X1113XTEOmWEYhmGYU4h+XYwiZkvzg0HhZJtiuagusg0FDPeaPzQ73iOGYRiGYRhgBols2fClL30JExMT+MxnPoOhoSGsX78eTz75JCoqKop9aAzDMAzDzHLkPDYACIRnvksrGIkJt1ntFJ1sVC4q42cnG8MwDMMws4gZLbI9//zzCf+vKApuu+023HbbbUU5HoZhGIZhTl1mY7koudicdkU0LpgsssjmdtgQisYxHo5mbFLFMAzDMAwzU5gxmWwMwzAMwzCljNnJ5p8FIhvlsdX6XFMWwio9hsh21epWAICqzp6yWoZhGIZhGBbZGIZhGIZh8sBsLBcd8Gt/U61v6p3Yq8qcIJ3uQ+vaxNdcMsowDMMwzGxhRpeLMgzDMAzDlAqzuVy0vnxqeWwA4HLYcOs7lmNkIoKz5teg3OXAWCiK8VAUjVN+doZhGIZhmOLDIhvDMAzDMEwe6NNLKz1OG4KR+Kwog5TLRfPBJy9aJL72uTWRjTuMMgzDMAwzW+ByUYZhGIZhmDzQrzvZ5tV6AQATkZkvHg3oTra6PJSLmvG57QAgupcyDMMwDMPMdFhkYxiGYRiGmSKqqqJvPFFkmxWZbPrfVJeHclEz5W6toIJFNoZhGIZhZgsssjEMwzAMw0yRsVAU4WgcANAmRLaZ72QbFE62AohsHk1k48YHDMMwDMPMFlhkYxiGYRiGmSLU9KDc7RCC1GxofNDvz28mm4zPxU42hmEYhmFmFyyyMQzDMAzDTBHKY2uocKNMF49mh5ONykXzn8lG5aLsZGMYhmEYZrbAIhvDMAzDMMwU6de7cNaXu+B1aYH+s0Fko+6ihSgX9XEmG8MwDMMwswwW2RiGYRiGYaZI31gQAFBf7pZEtpktHk2EY0IoLETjAxbZGIZhGIaZbbDIxjAMwzAMM0XIydZQ4UaZc3Y42Qb0UlGX3SZKO/NJBTc+YBiGYRhmlsEiG8MwDMMwzBTpH9cEKc3JpolHM73xgegsWu6Coih5f36f7vjzh2b2+8QwDMMwDEOwyMYwDMMwDDNF+hIaH+hOtsjMdmhRHlshOosCXC7KMAzDMMzsg0U2hmEYhmGYKZLoZNNEtpnuZBvwF1ZkK2eRjWEYhmGYWQaLbAzDMAzDMFNkNnYXHZCEw0JATjbOZGMYhmEYZraQ/xRbhmEYhmGYU4h4XBXlovXlbrid2h7mRCQGVVULkmc2HQwW2snmYScbwzAMwzCzC3ayMQzDMAzDTIGesSDCsTgcNgUtVR749MYHqgoEI/EiH93kGZAaHxSCcnayMQzDMAwzy2CRjWEYhmEYZgp09PsBAG21XjjsNpQ57eJngfDMFZCoXLSuwI0PuLsowzAMwzCzBRbZmJLhpQP96BkNFvswGIZhGCYnjg4EAADz67wAAJtNgUcvGZ3JuWxULlrnK0wmW7nu+AvH4ghFZ+77xDAMwzAMQ7DIxpQE248P4yM/ew1f+N22Yh8KwzAMw+TEkQHNybagzie+59UFpInIzBWPqJlDbYHKRX1uw/HHbjaGYRiGYWYDLLIxJQGV2pwcnijykTAMwzBMbhzRxzBysgEQJaMzOW+MnGz1BXKyOew24fibye8TwzAMwzAMwSIbUxIM6RN5/wzOrmEYhmFOTahcdEG97GTTRLaJGVouGghHhQuvUE42wGh+wB1GGYZhGIaZDbDIxpQEg4EIACDA5SIMwzDMDEJV1RTloprINlMz2Qb0UlGXwwafy57h0ZPHxx1GGYZhGIaZRbDIxpQEspNNVdUiHw3DMAzDZEfPaAjBSBx2m4I51WXi+2Ukss3QTDZy582tKYOiKAV7HZ+eXTfGIhvDMAzDMLMAFtmYkmAwoIlscRUIReNFPhqGYRiGyQ5ysc2pLoPLYUyrROODGRqD0KH/Xe2SO68QlLOTjWEYhmGYWQSLbExJQE42gCfaDMMwzMzhKJWK1ieKUWUzvFyUmjmY/658U+5hkY1hGIZhmNkDi2xMSTAoiWwzdUHCMAzDnHocoaYHUmdRAPA6WWTLBp9ofDAz3yeGYRiGYRgZFtmYkmAowCIbwzAMM/MgMWq+qaySxKOZ2l10+spFNTFyPMhONoZhGIZhZj4ssjFFR1VVDPkj4v/9MzS/hmEYhjn1SOVkm8nlotFYHJ2D+t9V783w6KlBjQ947GcYhmEYZjbAIhtTdALhGMIxo9lBgEtGGIZhmBmAqqopM9moXHQiMvPEo5PDQURiKlwOG1qryjL/whQwykVn3vvEMAzDMAxjhkU2pujIeWwA72YzzHShqiqe2dOD3tFgsQ+FYWYkfWMhBMIx2BRgbk2iGEVONv8M3DiiUtH5tV7YbEpBX6uCGx8wDMMwDDOLYJGNKTpyHhsABFhkY5hp4dm9vfj4L1/Hv/1xZ7EPhWFmJFQq2lpdBrfDnvAzr14GORPLRaer6QFgONlYZGMYhmEYZjbAIhtTdJKcbDNw159hZiKbjgwCALZ2Dhf3QBhmhnKESkUtmgN4XTO3XLRDF9nap1FkG+PGBwzDMAzDzAJmjMh2xx134JxzzkFFRQUaGxvxnve8B/v27Ut4jKqquO2229Da2oqysjJccskl2LVrV5GOmMkWdrIxTHHYfXIUANA7FsJoMJLh0QzDmDEcX8nNAWZy44N04mG+oe6iHBXBMAzDMMxsYMaIbC+88AJuvPFGvPrqq3jqqacQjUZx5ZVXwu/3i8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGysiEfOZGLQn7i4Zycbw+TO60cGcdX3N2DL0cGsHq+qqhDZAOBg73ihDo1hZi3HhyYAAG01ySKbcLLNRJEtjXiYb0R3UR77GYZhGKag/OLlDjy5q7vYhzHrmTEi2+OPP47rr78ep59+OtasWYN77rkHx44dw5YtWwBoC8Y777wTX/nKV3DNNddg5cqV+OUvf4lAIID777+/yEfPpGPIz042hpkqf9x6AjtPjOL2R/dm9fie0RAGpGuPRTaGyZ0BfwgA0FDhTvqZd4Y62SKxODp18XA6ykXLPdxdlGEYhmEKzYGeMdz259343G/e5PV2gZkxIpuZkZERAEBtbS0AoKOjA93d3bjyyivFY9xuNy6++GK88sorRTlGJjsG9XJRh97BzD/DFiQMUwoM6Y7QLUeHsPPESMbH7zqZ+JhDLLIxTM70j2njV315sshW5pyZjQ+OD00gFlfhcdrQVOEp+OuVc+MDhmEYhik4h/q0uX4oGseGA/1FPprZzYwU2VRVxS233IILL7wQK1euBAB0d2u2x6ampoTHNjU1iZ9ZEQqFMDo6mvCPmV7IydZSrU3mZ2JpDcMUG7mByL0bj2Z8PJWKkrjNTjaGyR1ystWVu5J+ZpSLzizxSJSK1vlg0+8PhYQaHwTCMcTiasFfj2EYhmFORTr6A+LrZ/b0FPFIZj8zUmT77Gc/i+3bt+M3v/lN0s8UJXFCqKpq0vdk7rjjDlRVVYl/bW1teT9eJj0kDsypLgMwvbvZW44OoWtkYtpej2EKhdxA5E/bTmDY1FDEzC5dZLt4aQMA4GAfi2wMkwuxuCrGrwYLJ5tXD/QPRGJQ1ZkjHnX0T1/TA8BwsgHc/IBhGIZhCsXRASPL/tm9vYjzxlbBmHEi2+c+9zk88sgjeO655zB37lzx/ebmZgBIcq319vYmudtkbr31VoyMjIh/nZ2dhTlwJiUkDszVg6Onq7TmQM8Yrv2/V/Dpe7dMy+sxTCGh66jc7UAwEsfvXz+e9vG7urRy0XefMQcA0DkYQDDCLlKGyZahQBg0P63xWTnZNPFIVbXSjJmC6Cw6DXlsAOB22Iy4CC4ZZRiGYZiCQJtoANA/HsbW48PFO5hZzowR2VRVxWc/+1k89NBDePbZZ9He3p7w8/b2djQ3N+Opp54S3wuHw3jhhRdw/vnnp3xet9uNysrKhH/M9ELdRefW6E62adrJ3nh4AKoKHB0MZH4ww5QwqqpiKKBdR9efvwAAcN9rR1PuUI1MRNA5qDk4L17SgEqPA3E1cfBlGCY9A+OasF3jdcJpT55OlTnt4uuZJB7RfaB9GjqLAloFgo9z2RiGYRimoBwd0Na882q18Z1LRgvHjBHZbrzxRtx33324//77UVFRge7ubnR3d2NiQlsoKoqCm266Cbfffjsefvhh7Ny5E9dffz28Xi+uu+66Ih89kwpVVUVZm3CyhabHTbP12DAATXBguywzkwmEYwjrTpmPnr8AFR4Hjg4E8MaxIcvH7+nSSkXnVJehyuvE4sZyAJzLxkwfP3nxMK794SsYDUaKfSiTpn+c8tiSS0UBwG5T4HZo06yZ1Pygd1T7u1r1CIfpgEpGx1OM/9s6h/HjFw8hGps5jkAm/+w4PsJCLMMwBWcmRTxky0Q4hu7RIADghgsWAACe3t1bxCOa3cwYke2HP/whRkZGcMkll6ClpUX8e+CBB8RjvvSlL+Gmm27CZz7zGZx99tk4ceIEnnzySVRUVBTxyJl0jIWiiOoCl8hkmyYn25udwwC0Up4xnrTNWPyhKJ7b1ytEplMRKhV1OWyoL3eJnLUX9vdZPp7y2E5v1Zy7LLIx083PXurA60eHsOWotRA8EyCRrd6i6QEhmh/MoFJsup/UeFP/XfnGp+fXjQetx+JbfrcVtz+6F691DE7bMTGlxcsH+3H1XS/hX/6wvdiHwjDMLOaBzcew+qtPYvOR2TXeHB3UXOpVZU6894w5sNsU7OsZQydXdBWEGSOyqapq+e/6668Xj1EUBbfddhu6uroQDAbxwgsviO6jTGlCnUW9Ljtq9Uyb6djxH/KHE0rjRgIz101xqvP9Zw/ihns244HXT908xSG95LrG64SiKLhkWSOAdCKblsd2emsVAElk4+YHzDQwHoqK3dSxFKLKTKBfLxdN5WQDjFy2meJkU1UVwxPa/aSqzDltr+sTTrbk8+FIvx+H+rTxesCfvqELM3t5cpeWucyxBkwpMx6KcnXMDOfF/f0YC0axIcUceqZidA73otrrwlnzawAAT+zqTvdrzCSZMSIbMzuhzmw1XpfY8Z+OUgBz0OPIBItsM5XDujC0r3u0yEdSPMzOk4uW1AMAth8fEW4bIh5XseO4JrKdZnay9bDIxhSew5KYOzbJctFbHtiK9//fxqKWDw7o15ZVZ1GiTB/XAjOka+ZExCg9t2rmUCjqfNp7+JftJ5PKdJ7bZ5SzcKngqctLB/sBYEaXmDOzm+6RIM7+76fwud+8WexDKRlC0Rhe2N83o6pNqLqJNgNnC0f0PDZqanTV6hYAwF3PHUTv2Oz6W0sBFtmYokLiQK3PJXayQ9E4YgXeBXpTz2Mjhid4d3ymQs6GE0MTRT6S4mEW2RorPTitRRPQNhwwduK2dQ7jvXe/jAO947ApwKo5mpNtSaNWUt/R7+fMI6bgHEoQ2XIXTWJxFQ9vPYFNRwaL2riGGh/UpRGjRLnoDHGyDeuubqddgc9lz/Do/PHpixfCYVPwl+1d+NXGowk/e26fcQ8rJZFtU8cg/vfpAwWfrzBA18iEcDNy5QFTqhzoHUMwEp91ZYZT4euP7cNHf74Jn7z3dUSynF9GY3H85MXD2N8zVuCjs2ZcF/K7R0MZHllcekaDeOf/bsBvNx3L6vHkZJtfp4lsH1o3D6e1VGI4EMF//GlXwY7zVIVFNqaoUGfRGp/hZAMKv+v/pikQnp1sMxdyQ54cPnV3YajsulZa7F+8TM9l0xeov3zlCN5z98vYdnwE5W4H7rhmFZqrPAC0PESP04ZwLI7OU1isZKaHQ71GuddknGyjExGQ2WmwiOWDmRofAEaHUasyyFKEBPuqMhcURZm21z17QS1ufecKAMB//3W3aNoSCEfx6uEB8bhSeR9D0Rg+8+st+O7T+/HigdlVUlSKvHSgX3w9xuV4TIni1xu3DPjDLL5DGyN//Zq2afL8vj78y4Pbs7p2/7qjC197dA/+8b4tRWlAQONMz0hpryue2dOL3V2j+J/H9yKYRe7rkYHEzuFOuw3ffN9qOGwKHtvZjb9u70r5u/5QVDQqZLKDRTamqAhxwOuE22GD3aZN6guZXxOPq9imNz2gZgvDvDM6Y6GF7onhiVnZDSgbBgMkVhsZSpfozQ9ePNCP7ceH8d9/3Q1VBd69thXPfuFifOCceeKxNpuChfXc/ICZHmQnW6qg+3QMSRO9gfHi7TT36+NXusYHlXqu2b89vBNff3xvUvl2qUFjYY13+vLYiI9dsADvWtWCSEzFjb9+A8OBMF45OJBQZlQqTrbHd3aLTL6jOWSE9YwG8dMNh6d1Y6+j349//v22hOtupvHyQUNkU9WZneWYT1RV5TKvEoIMArG4mjBOnarc83IHQtE45lSXwW5T8NCbJ/D1x/dm/D2qNjrU5y9Ksxual5R6uSjNf4YDkaxy1Y70a85/crIBWjbzZy5ZBAD4f3/aieND1tUB1/3kVVz6redZaMsBFtmYojJIZW4+bdd8OnLZDvf7MRqMwuO0YX17LQB2ss1UQtGYmGyPh6IYPUUn3sMW3QDPnF+DcrcDg/4wbrhnMyIxFW8/vRl3fmAtGis9Sc+xSM9lOzyDF2KMNT947iDefueLRXV9yeRSLhoIR/H3P9+EX208Ir43LN2vixmE3z+W2cn2j5cswtKmcoyFovjh84dw9fdfKmmHA4ls1UUQ2RRFwdevXY2F9T50jQTxL3/Yjmf1PDZ9/w3jodIou73vVaOk9cRw9u7fHzx3EP/91z0Jv19ofrXxCB7cchz3bpy+18wnqqripYMDCd/jXDaN/33mANZ97Rk8s6en2IfCINEgUOobKoVmLBgRpf//ftVp+PrfrgYA/OjFwxm7We44MSK+/vVr2ZVC5hPKZBuZiGTlECsW8vznNxlKRifCMSEatksiGwDc+NbFWN5cgQF/GB/88atJY1rvaBDbjo9gKBDBVt2kwmSGRTamqBhONk0c8E1DJzYqFV09pxp1ugOBRbaZiVk0OFVz2eQGIoTTbsMFi+sAaANxU6Ubd1yzKmUJWLsehEp2cmb28NvNx7C3eyzBDVIsorG42E0FkFEYf/ngAF7c34efvdQhvifvpA6OF0dkU1UVA/7MjQ/OnFeDxz9/EX7y92fDYVPQNRIs6d1xcl9Ue6ev6YFMuduB733oDDjtCp7Y1YPf612jz1+kNXMpBSfb3u5RbD5iRE4cz2HcIafwdDqGj+ph1ydzEANLiX09Y+gfD6HMaXSh5zmbxmuHNZePLEowxUOOuukbO7VFtl+/dgxjwSgWN5bjytOacO1Zc8U8sytNGWY0Fseuk8b5/PjOrmkVLFVVTRhnuku4ZFQW2V49PJh2k/zooDa3r/Q4kjbR3A47fnHDOiyo8+L40AQ++OONCeOFfH/Z212cnLyZCItsTFER4oA+cfK6C+9kIxX+jHnVqNJLeThId2YyYFpg5+IoIDYeGsB//GnnjOn+Z4VofOBLHDgvWdYovv72+9am7RZIGQ2H+1hkm01EY3F06XmFx4rYJIA4PjSBsBR+nCmTjXa8ZTFNLu8vlpPNH44hGNH+jro05aKAVo59xWlNaNXjCUp5M4DEi2KUixIr51ThX96+HAAQialwO2y4fIV2LysFkY1caPQe5TLudOqlONO5mXFUf62eEhZ300F5bOvaa0WTERbZNOiz5ciT0sAvOW1PZZEtGImJjbFPX7wINt2KTPEJo2mu30N9fgQjcfhcdqyZW4VITMXvXz9e+IPWmYjEIJvNS3lTjMpF3Q5Nznlgc2fKx9LmZnu9z3KzvbnKg9988lzMr/Oic3ACn/+t0SF354lR8fWertGk32WsYZGNKSpyd1GgcE620WAE33piH67+/ku4X7fUrm2rRpW+W8/dRWcm5gU27byMBCK4/p5NeOiNzAPzt57ch19uPIqn9/QW5BingyFqIGJyn1y1ugVvXd6I/7j6NFy4pD7tc7TrmWzsZJtd9IyFENVnjEelz1ZVVRwfCkx7jqE5FypTuSi5hMZCUYSi2rgwVAIiG01uy5x20Rk7E5QBmirzpBQgd3mxnGzExy5ox0V6ruT5i+pESW6xGx+MBSN4+I0TAIAbL10MIHsnWzQWFw16yF1WaOJxVTSzSeceKWXIgfuWJfViYzTdIv1UIRiJoUsXADgnqTSYiHC5KKA5n/rGQqgvd+Hda1vF9ys92liZTiTffnwYAHD6nCp85Nz5AID7Nx2dtmYn5pzYUt6cIKPKB89pAwA8uOV4QoapDM3/5ptKRWVaqsrwq4+tAwBsPjIk5gMJTrYudrJlC4tsTFExl7mVUSZbnl1F9248irueO4gdJ0agqprAdqE0YeNd0ZmJOfScHAV/3dGF5/f14T8e2ZXR+UAL3lJe+GZiyCKTDQAqPE78/PpzcMMF7RmfgzIaekZDJeEWYfKD7Jo6Ii3sf7OpExd+/TncO43ZUIAhsrXqnW3HQhmcbNJ1SW6NkRJofECh95lcbDJza0rfyTZUxEw2GZtNwfc+uBY3Xb4E/+/q01GuC5n5nhvkymM7uuEPx7CwwYf3na0tbAb94ayc0F0jQZHHN+gPT8u8o2csKBZdfeMhRGLWC7BShkpzz1tUx3M2CW2TRPt6iJ1sJYE8dzqVnWxH9GYwy5sr4bQbUkM21+9OXdBZNacKV61uRaXHgc7BCbxyaCDl7+STMdP8t5TLRWkecu1ZbWiscGPAH8aL+627XdMG+oL61CIboIlwS/SM5tc6tPdcLt891DcuNjyZ9LDIxhSVIVNXRJ8usgXyHG5MN/xrz5qL1/71MvzxxgtQ4XGiWr/hs9V+ZpKqXHSnPiCMBaN4+M0TKX8/EoujV58IUUndTMTsCJ0MVV6n+H12s80eZPH4mCSyvXxIc4dMt/X/UK92bq2dVw0geycbYFzvcuODYjVzIJdCfZo8NjNzSGQr4WysEd3VXV1WXCcboLnpbrp8KdrrfcIt6C9y4wNabFyxoglVZU7hzMhGODWXax+bBjeb/BqqOvMW/uFoXLgX51Z7RbkZi2xIyLZkJ1tpMBHmclHAcOou0GNICFEumiYmglxTq+dWocxlF1UYB3qnx0FldrKVarloXOpg21TpxvmLtAzmgxa5bIf6xrFBL7tfUOdN+rmZ8/Tn2nhoAP3jIXSNBKEoWmZqNK5Oa6boTIZFNqZoxOOqmBhQ4wNvgXarqUzi/EV1aJI6K3LpwcyGSsXmmLKOdknW5l9tPJKyJK5nNCh2grtGSnfhm44JKRsqXeZaNtDg29HPIttsQRapukeDolPWgR5twjrdi1Vysq1tqwagiWyprk9VVXFcEiZIUJNdG/1FanxAgl99Tk427frKJSh/uhEbX0V2spnx6XmtxS4XpQUMdWOek8NnahbZKIg6F1RVTVjIZ+Ko6TVLdcGYCtkh6HXb2ckmIW+GsZOtNJDXLsUam0oB4ZoylSZmun6jsTh26xt/K+dUATAqNKbrHDePMcUoF/3DluP45hN708Z5jExEhDO6xueS5hfyxoqK+187hqu+9xKOD02g1ufCW5Y0ZHz98xZqItsrhwaEs7C93oeVcyoBAHu4ZDQrWGRjisZoMCLCJatFd1HdyZbnTDbK6qLgaYJKYoZ5wjYjoVKxVfpgfHJ4ApFYHHv07jcOm4L9PePYeNjaZi5n1JycoU422sly2hVx/UwWkcvGItusweyw6RwMIByNiwYXxRPZagAAsbgqRGIzoxPRhNIN6uYpuzaGAuFpy2qRmZSTrbr0nWzDRe4umgpRLlpkkY2cmIsatHsllQBnEzfQaRbZJuFku+OxvVjz1Sextzs7B6r5NXtKuPTJClrwuhw2OO22rJww+SQUjeG2R3bhmT090/J6uSCfP0PsZCsJAuxkA2Ccm+b8L8PYYH0fP9g3jmAkjnK3Q0SYkMg2XW5Ns7t+ustF43EV//6nnfjBc4eSMmxlaD5UVeaE025DW602FnUOGvOLZ/b04l8f3oGJSAwXLK7DX//pQjRUZJ6znKuLbAd6x/H8Pq38dNWcKixv1kS2vdz8ICtYZGOKBrkSKtwOuPTOKF7R+CB/E2lVVcWiprUqUWSjG34gHEsZFsmULuRkW92miWy9YyHsPjmKcDSOCrcD79fDQH/5yhHL35dbVJ+coU42OdfQqmNQLixs0CY1h1lkmzUcH05cZB8ZCKCj3y+aIUynyDboD4vd6JVzKqE3HEvZYbTTJFzQuS6X98fi6rQtuGVI4J9sJlsxhMFsGC6RTDYzVC4aCMeK9t6NBSPCCbbYLLJlIZySk43mHZPZzNh8ZBDhWBxbjw1n9XizkDfTmh+QaEEiq+GEmR6xdVPHIH7xyhHc9udd0/J6uSC7FMeCUURnYN7ebCNBZDtFGx+oqio52Uzlop70TrbtxzXX1OmtlaIjqTBDTJOTjTZyKvQogJ5R7XMMR+P4/jMHEvLJCkH3aFCcR/TaVphzYa2cbJSpdvWaVtz7sfVoMa2BU1Hjc2FFiyao/e51rWPpytYqrGipAADsyXKT51SHRTamaIiwdqnEjUpC8pm7MugPIxSNQ1GApqpEBb/C4wTpEtkuNntGg0m7w0xxoIXu4oZyeJza7eyp3dqO82mtlbj+/AXie1ZOA9m9NhyI5FSGU0we3HIc//z7bQhFY2LiYW56MBnI2k+Lv76xEG767ZvYcnRwys/NFAcqY6Pdy6MDfuzrMaz+qXaUC8FhfVd2TnUZvC6HWDiPpshlM1+z1OnK3A26GGU5/aJcNHsnW3OVBzYFCMfiJdl5TlVV4erOx/0kn5RLHVyL1fyA3J/15W5U6Qs/o2NsZpGNunxeuFjLGJqMk41cFoNZujpI2KPjLOVOeVaQk43mhtl0J8wn9DqdgxNFy39MxVFTdipXZBQf2Wk76A/PyEYjU2XQH8ZYMApFAdpqE0W2TBE9O6U8NqJalItOz/VH95zFeiRAz2gQ8biKB7ccx7ef2o/bH91T0NeXN1/SuSHpflTnI5HNGIuozJSiX9a11wrRMluoZJQEv5VzqoTwtqdrbNo7089EWGRjisagn5oeGJP5QjjZaOe2odwNtyOxnM5uU1Dhzn7Spqoq3n3Xy3jn9zaIbCOmeIiFboVbLCKe3N0NQBsQljZV4PxFdYirwO9fP570++YctpngZgtGYviPP+3Eg1uO45k9vWKxRc1DpkK73nWIBub/e+EQ/rj1JH74/OEpPzcz/cTjqnBrUijuscEA9ncbItt0Otmo9IEckxX6rnZKJ9tg4vVIztVhfexw6JPGYix++4WTLXuRzWm3oVnPBO0swVy2sVBUZLyUmpPN7bDBrn/exWp+QOfv4kajBCqXnD3anHuLHuQ9mQYzdK0MZiksk8i2rr0WwAx0sumftc+V6GSbrhxdOQR9x4nCOlhyIRKLi3OONoq5gVfxMUfdlJowOx1QF/OWSg88zsQ1V2UZbayld7JRHhtg5INO1/lNIlt7vQ+KAkTjKgb8YbyiN4vq6CtspcfhLEU24ab3aXOQlqoyKAoQisbF2oieq91UtpsN1PyAOH1OJZY2VcCmaOf1qVwOnS0ssjFFg1wJtdJknjKl/Hl0FFGpaEu1tU2WdklGJjIPhoFwDN2jQYwFo+hNY+Nlpgd5J4fy9vb3aAshCui89qy5AIBHtp1M2nkx57Bl22H0ub29WH/703ghRavsQvLywX5xfbx+ZEjkVOTFyaZ3ghoKRDDkD+Ov27sAzNymEKc6vWMhRGIq7DZFLLKPDgQSnWzBSN7K73rHgvj0vVuw4YD1dUGiGTkmqRwjVYdRcrLRRgg5AyinbZ5eijJQBFcYCX65ND4ADFGmFHPZSLz0OG1Ji6NioyhG5mSxmh9QRzXKYwMSS4DTMR6KivGKuuX1joVy3lDMxck2FoyI1zxngXb9z7TGB4aTrUgim3Sube8cnpbXzIYTQxOIxVV4nDa06fcU7jCaHf3jIfQW6Dowi2ynohBBDktzHhuQvvFBJBYX3c5Xz60W36c1mtnBXijoHlvjdQmnes9oEK91aBUdXaPBgsYLJTjZ0sxtzOWiLocNLWITL4BoLC42dtobchfZ1rXXikiPBXVeVHqc8DjtYjN+Tzc3P8gEi2yznHs3HsH7f7QRv9l0rNiHksSgRbkodRcN5HESTU6OOdUey5/n0q1KtoJzd6viEghHMaG7CevK3WKxQ6xs1XbCrjy9GR6nDR39/qSdaBKPnHZtJDmZ5cL3gc2d6BkN4bm9vVP6GybD4zu7xddbjg4amWxT7CwKaE5Sctr84Y3jYkFWqODXUDSGHcdHSjafaqZDIlVLlQcL9aYWRwf8orMoAKgqEpoLTIUnd/Xg8V3d+MmGDsufk4umuUo7xyqFk8369cntRbvaA/6wuO8qirE7O1BEJ1su5aIAMCdLUaYY0CKm1EpFielufvDnbSfxkZ++JhbkhpMtWWTrHw+ldbfTYqfG68TcGq+Yd5g7jqYjGouLRfxQFuc8PXetzyWOebpDvKcKfdZeXWCtzDBfy7T47RsL5VTmJN+btpeQk43y2ObX+sTYzx1GMxOMxPCu723AO/53Q0GyPEk0pw2kU1FkIycbbdrKpBPJD/SMI6TnKc+XykyFk80/XcK69jo+tzEf3nhoQHyWqpr9WmEydEgiW386J5ufnGzGeC07q08MTyASU+GWxLdcqCpz4nR9HSU7C5eLklHOZcsEi2yznONDE9jUMYhDvak7lBQLw8kml4vm38lGCztz0wMil1DNcRbZSoYBfRfH7bDB57InfL4epw0LdbdBuduBy1c0AQD++ObJhOeggZIGkmzKRVVVxetHhwCkFgcKRTQWx1NSl7NdJ0fF31Cbp4UxTYx+/KJRIjrgDyMUzX+J1nee3I+r73oJf9nRlffnZgy31NyaMsyvMyZftECjMqN8uUJI8O1OcR11j+quYl1kKxdONuvXJ5FwTVu1eH66T1d6nGis1ASugWnOZIvE4uI4chXZculGOd3QIp0WQqWGb5pFth+/eBgvHezHfa8eBWDtZKsqcwrxL13JKAlelFFEgeBH+rM/D8ZNeU+ZOKYvdufVesU11z0anFFZOiRaJDc+iCT9HVuODmHlbU/gh88fsnyuv2w/iXO+9jR+siH7+IMEJ9vx4VwOvaCQW2henRfV+nvCHUYzs/HQAHpGQxjwh/HsnvxuksbjqhDBabwtZPODrZ3D+NlLHSW3SZnOyUYba/5wLCmvjvLYVs6pSsgPIyfbWCg6LRl3VCJe4XagSRen/rTtRMJjzE2Z8klHlk42UckjzUHk+QU9z4I6X855bMTfrGkFALGGAoDTWrjDaLawyDbLoXDeUgxEtXLg+AqQyZapXDTTzqiMnAXDIltxkZ0kiqIIhwigDQJ2aVB5z9o5AIA/bz8pMocmwjGxqDxrfg2A7MpFjw4ExGunEgcKxWsdgxgORFDrc6Gxwo1oXBUlq/nKUGrXHU+9ph20QpRHU9liobs1narQon9OtRfNlR64HDZE4ypUVXO3NOiTs3zdy2iRl8otY3aypSsXVVVVlJeu0UOQh/xhUdZf7XWiVh87Bv3T6xagscumQCxws4WyI0uyXDSPpeeFgES26SgXjcdV4Vx7YlcPIrG4aFQgO9kURTFKRtN8pp0mkY0WoObw+nTI10k25aIk7M2r9QpBOhyNz6jsrnHKZDOJbNG4KpzsxKuHBxCOxkV2kpkX9mljJeU+ZYMs6PaMhkqmcQSJswvqvFJmFYtsmZA3KR/N8+ZeUNqIpOu7kE62rzy8A//1l91i07dUEE62umQnG435QPLm3vYTwwCAVVLTA0C75s0N6k4OT+Bjv9iMFwsQ2ULjS7nHgWa9Wd7OE4mCkjkvNl9EY/EEd3O684fKRWsTnGxG8wMS2ai8czJ8/MJ2bPjSpXj32lbxvSX6+HeowNl0swEW2WY5NFkuxcGXFmS1vmQnWyCPwcaZykVpkcROtpkFLXTp/GmVRFTZ2gwAFy1tQLXXib6xEDYe0lpaU6moz2XH8matLXU2TjZ5QjPd2UBUKnrlaU0iY4dafNfmoVwUANoli3+lx4FWXRApRGA2fYbmbDwmP5Bbam5NGWw2BfOkEoylTeV5zzcid/JoMJrUqVdVVSG+UQmGENksrqNBf1gsoul6HgqEhWut2utCrR74O93loiSy1/rcOe8Q5xKUP93QGFhqTQ8IUS46Dd1FT45MCFfKvp4xvLCvD9G4Cq/LLlxhhNFhNLW7oVMSvADJyZZDh1FZZBvKonRKlBTWeeF22MUYMZOaH9CGK+XxeV120fDEPAejst5UztY93dpCORfHl/nelItAV0hkt5DRfZHnpOlQVRXPSCLb8/v78jqHo014RYHIySukyEb3lFLLWaRzc4GFuOOw21J2Fd+hC1mrTPN3u00RDjhayz66owvP7u3Fz16yjqaYCkJkk8pFCRKYCuVkOz40gajkTMyq8YGUCzu31phfCCfbFEQ2m01BW60XimLMc8jdV4od0ksNFtlmObkISNONcLJJu+a+AkyiyZ3UkqJclDPZZiYDptDPObLI1po4SLscNrxzVQsA4E9bNds3LTRaqsuEQJfN4mPL0UHx9XSWi8bjKp7YpYlsb1vZLNx3RL7cJ+RkA4C3nd4snBeFaH5An2FXCbp6ZgMk5NDuppxzsqypIqd7XzbIizzzxH8sFBWiheFkS91dlPLYmird4vFxFcJNVF3mFE0HprtclFwkTZW5lYoCiZlspVa2R+JDdck62ajxQeG7ix40RWzc/fxBAFqpqLzgABLdA6kQ5aI1U3GyGdfJeCiasYTf7J6jBWOpuLGywdz4QFGUlNUHdM8ZsHC2RmNx0RQpG4FSvL4+xrsd2nJpR4mUjJKAuqDOV9Kb6aXEzhOj6BkNweuyY16tF+FoPOtc3V9tPIIP//TVtNULJAiXOe1orNDGhkIJEcFITIhU2eQzThfDASPSQd7Uk7Gad8hND8wiG2Bs/NAcg+5hudw/s0V2sjVJIpvLbhPlk505ZGnmQof+91AMxWAgjGiKEtlB0XzJolx00CgXXTgFkc2K+gojpqPU5jClBotss5zpLBcNR+M55TbRzdLSyZanTLZILI6eMT2TLWV30RxEtjCLbKVCvwj91G74zVUeUSJ6Wmtl0uPfrQ+Oj+/sRigaEw7HliqPcCacHM688N18xHCyTWe56JudQ+gdC6HC7cD5i+pw9gKTyFYAJ9u7VrcYWT4FdLLNJGfFTILC9UnYkTNSljYbIlu+AqDlRZ75fKH/rypzwqvHAqQrFyVXUFuNF067DZX6Yw/3awvlmoRy0eldZFCJyrkL6zI8Mhm6niYisZJzntDiqKZEnWzTmclGIhs1xXnj2DAAYJFFlzbRMTaNyEai8TxRLqr99+gknWxAZrGInpvE9eYCupILhd8ksgFyeHri+0Gu7kF/8uLvcL9fNEXIxclGC24ab7dlcLLFpiEfKxZXRd7e/DovanyT30y/d+MRXHP3yyUl1BSKp3UX21uW1OOq1dqm62M7M5eMxuMqvvvUfrx8cEBUQlhB6xavy4EGXYjIxsmmqipufWg7vvj7bVmLFnJ8x3SPf+kgZ25TpVuM82asRPL9PWMIR+Oo8DjEvVFGuDX1v5Wu9eNDE3nPaZMz2Zol1/LatmosadKdbIUS2fQSzDPnVcOmaE0WrD7faCxuuYamTZzjwxM4rD/XZDqLpoMaLYRj8SQ3IpMIi2yznOna4QqEo7jw68/i/T96NesQTqPcz5jQ00QqEI7lRSHvHglCVTUnU10KESIXNweXi5YO5F4hN4vTbsNNly3Bh9a1iWBOmXMW1KKp0o2xUBQbDw2IEsXWKsPJFgjHkibuMsOBcILDYTqdbPe8fAQA8NYVjXA77FjRUokyp138PF8L4/l1Pixs8GF5cwUuWFyP5qrsXX65MBGOiXLA7tFgwuKEd8emTjyu4rguJBvuGblctCKnPMpskEUjs1vGXCoKZHCyDSa68Cjc91CvNnGs9rqEwG7lXCkUqmrkIF68tCHn3/dILodSa34wLJxspSmyTWd3Ucpj+9sz50I2rsl5bMScDM0stHxBcpUlCt4nRyay3pwcCyVeJ+kW19FYXGTEzatLFNlKrbwsHdQEi8pFgdQ5ulQuGompSYs/uROelQiXClpwn7+oHgCw48RIyt/9wXMHsearTxY8Y7R7NIhwLA6nXUFLlUcqF819nv/r147hjWPDeCWNeDRbIJHt8hVNorLhub19GTOg9/eOibGtP41rWpQ2u+3CXZRN44P+8TB+s6kTv99yPOusTjIPAKXV8CJd0wOCNszkmApqerBqTlWSUxiQOozqv0P3sGhczXunz4RMNmm+sn5hrdhQ6SxQ3MMR/f1b1Fgu5jzmfGTAyORUlMQqluYqD2yKZnqhc2lBms9iMnicdlToYzGXjKaHRbZZjtw5s5AL10O9fvSOhbCtcxivdmQerKOxuJggVVt0F43FVYQytGLPBlESWOVJmZ1TVaa9fq7lovnKMWImh9FZxzh/PnfZEtxxzWrLz9pmU3CZ3iHnqd09ovyxpdoDj9PIq0mXy7ZFz2OjAcYqS6oQvHFsCH/Z3gVFAT510SIAmqi4Vu+6COTPyea02/D0zRfjkc9eCKfdVjAnmyyMxOIqevVJ48HeMZz5X0/hB88dzOvrnWr0+0MIR+OwKcbiep4ssjUWoFxUWvSbF/LdpqYHgDHZTutk0104dH2Sk62qzCmu/UF/eNo6rO3vGUf3aBAepw3r2msn9RxyyWgpMWwxJpcS09n4gDZTzltUhzOk+6zcWZTIVC7aNxZCSL8WaUOnvtwFr8sOVc3+PDBfJ4YTeAK3/G4rdkguq5PD2saFy2FDU4V2zYly0VniZJPvW/G4mrAYHTAt/nZLIlsoGk9qmpAKOtfOWVALp13BoD+c8nN+fGc3xkNRvH6ksEH0JGTMrfHCYbdJjQ9yv49TnuV0N4/JB/5QFO++6yX8z2N7Mz62a2QCu06OQlGAty5vxOmtlWirLcNEJCYaYqRCdq+lExUok63MaRdOtv4snGxyN0lzmXoq5E2s6c4kTYfckCMVVtcvZR1alYoCyYaRXunvzyXXMhvoPlvudqBJmq+sb68T85FBf7ggmz2iWUGdTzSmshJqhUnF60po8qbN2Y2qrQq3QxgR8kldkaI6Zhosss1yqnUBKRpXxY5gIZBv+H/YciLNIzXk8lW5O5tsL85HySjtcLSmyGMDjBt+Nm4/OQtmeIJvLsVEDh/PlitO00S2p/f0iF0eWvS0iFKa1AseKhW9cIm2q51rifRkUFUV//2X3QCAa8+cm1AKSyUsDpsihL98YLMpcOkZNKLEKM/uB7MLg5yFz+/rw1AgIrLzmMlBC8HmSg+cdu2zPL2lEk67ojU98Drz6mSLxOIJorNZlJU3PIh05aKdpjw5mmSTk6DG6xTfi6vT10H7+X1ahs95C+vgkZykuVCqzQ/IrZFrx9TpYrqcbKqq4oC+2F3cWI63nd4sfmblZCOnaO9YCEEL8Yby2Fqry8S1qCiKlJGWncCRJLLpc5YHXz+Oh944gf978ZD4GWX7zK/1ik0ner1838sLiZXIRuK8fN8a8IcTAsPNwsOerrGE/8+2xI5EtlqfC8v0Bkk7TiQ71eRutIXOQD6R4t6Yq6NJVVWxMVJsoSaud0rPJbpgy9EhbDs+gp9sOJwkqpp5eo923z5zXg3q9I7071ypudke1RtKpeLVw9mJbLRm8bmNctHRYNTyniBzZFIim3EcpVTqm5WTzSKmQjjZ5lqLbLROG9INI/LffyyPuWzanF4zeJS7HahwO7BuQS0WNfhw9oIaVJU5xf2nEM0PhMjW4Esr1A5YdBYl6L5Az2PlDJwq5NRkJ1t6WGSb5ZS57CKwtZA3Ytm6/NjOroyTYBK0qsqccNiN09BuU+Bxav+fj4m0WUixwshky/x640EuFy0VzI0PsuG8hXXwuuzoGQ1hU4fWwIAEWNr9OZGm0yU1PbhkmVEmVuiS0Ud3dOONY8Moc9rxz29blvAzan5Q43MVZCAF8ud+eGTbSXz3qf3CUWue1JO4SZPMw33+gguYs5FXDvXjB88dxE83HAZgCDoA0FjpwWOfvwj3/8O5AFJnG00G88IyqVx0VBf9EkS21OWiciYbgKRy/2qvCy6HkdU2XU6MqZSKEtSkJdvSoOmCxuV8uWLzDZUM+gvc+GDAr4V3K4rmXHv7ymYoiua0n2eZF+QUgvExi6wec9MDgkK1e8eyu7eaBQia09HzH5IW6B264LNQyuOha29mOdkM4YKw6opsvt+YHRZyuSiQnRCmqqoQ2So8DqyaUw3AEARkukeDQmQp9AYsbVjQ3EUOhc+lYmV0IiqEyWLnet39/EF89Oeb8J0n92f9O3TMsbiKR3ekz1Z7TRfKLpXmbm9bqYnnz+/rFXl9ZuJxFa91GM2u0ots2rniddlR6XHApa9tMgkRHZJIdKAnO5FNvmek+uxGJiIFyw5LBZU7pitRNDvZwtG4EMEzO9kiGAtFE5yo+XSyyetOn9sBRVHwu0+fh6duvlhsqpGbjSIt8kUwEkso8RS5fhbnT79FZ1FCnvPlu1SUMJxsLLKlg0W2U4Bcgv0ni7yrEAjH8LjFztATu7qx+6Q20Rn0Jwc2EuRmy4eTjRburdWelI8xbviZczq4u+jUSdUpJ1eo3LA+Byebx2kXi2ParWrRz405+n9TdboMRWMi9PicBbViwTdeQJEtEovj649rpRCfunhhQqcjALhgcT2uPWsuPn/ZkoIdAzmPeseCk/7sYnEVX/7DdvzvMweEQ2Rw3Oxk0953cgNE46rI35pNBMLRvGeIEEP+MP7+Z5vwzSf24dEd2j14oSn0dnFjudiFtHKETBazEzhluah0DpMzyUqopmBnKteoLTeLbNp9m3JLpqNswR+KYvMRbcF18bLGST8P5XLJZUKlwExpfFDoclES+ufWlMHjtGN+nQ8/v/4c/Pz6c+B2JLsXFUUReYfHLBZ8tBgzd9uj7rTZdvs0jzW0uCZH5JEBvyibFo4IqVt0cxZu7VKDmk2Vu4333arczCxUynEE/eMh9I2FoChGLmU2olIwEhdZoeVuB5brTrb9FkKI7EAaKbCTTY66AIzy7nAOZbBA4ntUzLKvkUAEP3pR2xTankP3Vnmj7pFtJ9M+lj7vNukaXDu3GvXlLowFo2LT1cze7rEEQbZ/LF0mGzU+sENRFMOJlOG9lZ1sB3rH0jzSQG58kMrB+Pc/34RLv/V8QmlloaGSbXkzzYxZJN/fM4ZwLI5KjyNlR1KjuUc46e/J1GH0SL9fbI5lgsYWj9MmXMcAEiJoaLMk3wJm52AAqmqUeIpcP6tMNhGXk7z+SXCy5bmzKGFkDpaOi7IUYZHtFCCdlfzxnd1467eeF+LXZKGdUVr4/OGN4wk/33J0EJ+6dws+8+stAIwbhNVknnLZ/BnCSM0cHwokdZkR4fZZONkiMTXjBGVc7i5aYp3hZgLfemIf1nz1SRzoyW4iYWY4EEZHvx+qqlpmsmUDlYwSwslWnT7g/0DPOMLROGq8TrTX+yQXTuEWfNuPj+DYYABVZU588qKFST932m341vvW4CPnzi/YMdSVu+GwKYir2YX4WnFkwC8moORQSlUueqjPmDDt65nafakUuf6ezbjoG88VxMV0uH8c0biKCo8DN1ywALdcsRQ3X7E05ePzmclm7pRpdst0WWSyiXJRk2gSjMTEZJcmc1ZONvn701HutPHQACIxFfPrvFOavFJjll0nU4eoTzexuCqcUpRTWmpMV7koCSZLGivE9y5d1pi2mywtDo+mc7LVJs5DaNOkeyS3clHa4KF7KJUtBSNxkSl6WF+4L6xPdrKNBqOYKGB8SD4hJ5scJVJp4WQzv4fyJg652NrrfMJFmk1pJTWaIBfj0ibtfLAal2hzKNvnngonhhOdbD6XXXTBzaVjsTwGT2fzGDM/2XBYnNu5uJJk9/LmI0Npx1Qa46qkUnibTcFly40IESs26g442pBKNwcSjQ/0c7U+yw6jHQki23hWY4IszA/5kx2MsbiKXSdGEI2rec8sS8dIFhs1RuMD7f3aIZWKpqrIMMpFw0nl9Zn+vs8/sBUf/fkmUYmSDtH0wJ36+Ok+nu9yUbpnL6j3JYi0VuePqOTJVC5aIJHN2NxkJ1s6WGQ7BTAyx5IH359uOIzD/X48/ObxpJ+ZmQjHUk7MqFz0789bAEAbmOROW+RsOzIQwGgwIiYhVk42GqACOZSEPLu3Bxd+/Tlc/I3ncM/LHeI4T2ZRLlrmNCYomUoI5Mn9WCg6bWHbs4Vn9/bCH44l2O9z4SM/ew2Xfut5fPXPuxGJae+91TmUjkuXNYqg0GqvE2X6goUcW6lcRuQWmF+nDYBGnlThxNY3j2kZcOcsqEnZDr3Q2G2KWAxOtsOoLOKTmEaiCGW/dY1MYNAfTpj47+2anBhbqkRjcbx5bAjRuIptncN5f35azJ/eWon/uPp0/NNlS5LcjzJWZVeThT43w/kYSrg/krMtIZRXF6rN2YZ0bjjtipiQm69zmsTXTqPI9vx+LddnKqWiALCipRJ2m4L+8bBl57BiMDoRAa3TSrW76HQ72azy11Ixr1ZbzFjlA3WamngQjVSKn2W5KI018/QSoMFAGNFYPOG+TJsUcrYPUeF2iE3MmeJm84tFb/rGB0nlotL9gMafFS2VYtM5GycbOQfLXVrZGGWydQ5OJAm9spOt0PmQ5LYnJ5uiKGLTIZtsYUJ+D4pVLjroD+OelzsS/j/bTR/zMf85jZuN5vZVprxJ2nR9anePpbhFTQ/erpeWpmtkIARh3XXZoG8ApxPZ4nFVlFgCmpCezZggn+/hWDwpc7tnNChKgaerSZucy5queU6VqbqKyq9XpigVBRLLRckVv0ByD8fSrMUO6pv6z+i5fOmQy8NTUahyUcN9rN2zDSekhcimC8x1FpU88jhTKJGNzm2rY4vE4vj1a0envVS5FMmLyBaLxbB161YMDRW2ow4zOapNrY+JQDiKrfpCb1+GHIBQNIa33fki3vW9DZbZBbSzcOa8apy3sA6qCjz0hhZcrqoqntpt7BId7B2XnGwW5aLu3J1su05ok6iTI0F89c+7ccHXn8X3nzkgAmJb01iXFUXJusOoPLFS1cLncaUbOGYiNDHItjxGpn88hJ365/yLV44A0CbeuYaP1/hcOFvPMpMbYrRmcLLRLinthNMgPFrAc+DNY8MAgDPm1RTsNbKheYodRuU8HHoO2oVeobt6ukaCONyXeB/a2z27RLbOoQkhDpv/1rw8f4qytFRYBRBPFlrcLWmqgKJo5b600A1GYmKRY1UuCiTeS2l3tM7nFjvb5pwwauozHTuq+3vG8MXfb8MDmzsBTF1k8zjtWKx3qbTKdyoGtPFV7nYklMmUEiSy5epyzxVyJS226CSaClEuarGwoMVGqnLRbMu56BqZrz/PkD+MrpFgwjzhcN94QraPvMhSFEWMc6WWB2hFLG5UF5A4CEibA9J9i8pF6Wfy4o/GnxUtFaLsLBvHF4km5ZLQTwvfA6aAetnJVvhy0eQKjcl0GE1wshWp7OtHLx6CPxzDyjmVwrWcqfyPoGMmZ/AjW1OLbCMpOidfsLgeHqcNJ4YnkppjxOIqNnVoItvVa1oBaJvrqRoZGOeqdr40VFBjk9TXd89YEMFIHHabIu4P2eSymYU4c+a2fH1PV7SNLOZVphGpKj2J1y/9vSuaK1P+jiyy0abE2rZqOO0KwrF4UjwFMR6KCgHypYP9Gf+G8WCyqG+GRCwykqiqmpX7MBKLY+OhgZTnz359vksRHw1pykVF4wPLTDbjvrCg4E625PvGozu68JWHd+Jrf91TkNeeSUxqJnXTTTfhZz/7GQBNYLv44otx5plnoq2tDc8//3w+j4/JA+LmZLoJbz4yJHY69mdYzO48MYpjgwEc7vcLd40MDSJNlR68/5y5AIDfbDqGSCyOQ33jCXbegz3jYkBI52TLpZyBFnNnz69BW20ZBv1hfPup/WJXpSWNkw0Aqsq018w0QRk3uesKOXg9/OZxrLrtCTy3L/Puy0wgGImJz2kyjigSnOp8LjEATrY1Ne1KynlVhsg2YelQJIfbHH0AK9cnCrKrYvvx4Zx2kjPxhn6tnVkiIttknWyyyEblTDTBX6l3Sz05PCEWKrRQ2jfLRLaOfmPyLJfF5otjKRbzqZAdIVMtW6RFq5wlQuMCCatlTjsqy4zJq92mWOayWTU1kcsibIohctP3C+XEeHxnF6787ov4/ZbjiMRUXLa8EW9ZMjWRDQBOn6Od97RxUGxEZ9ESdbEBcrloYUsdadG3KCcnm3W5aCgaEwtAs5OtaZLdReVcMXOH2sN9fhyjbB+PI6mciI7TSgwsNQKSmGrV+GAkoVxUe49JcJHvBySerGipRC3Fp2Rxv6ByUXnBvYxKRrsTr9uDUn5oIctFR4MRMeeQNwmrJ9FhVHb7DQXC016Z4Q9F8atXjgIAbrliKdrrtXMz26xK+ow/cu58OGwKdneN4qBFplkkFhfvmblzcpnLjgsXa/dzc8nonq5RjAajqHA7cN7CuoyNDGgTngRhEjvSCdr0t7bVlGFFi3ZuZcplC4Sj4l5AYpbZyX1iaPpFNjJyVHgcCQ3tzJiv34N9mZ3DRnOPsMija6kuE/loR1OcM7LAuePESMbrfszCOWtGzmTrGpnA2+/cgA/++NWMc6jfbjqGD/3kVfzfC4csf07z/TVt1QCAhorUTkj6vOst1tBzqsvwoXVt+ORFC5Ocm/kiXXdRcg4XovvqTGNSItuDDz6INWvWAAD+/Oc/o6OjA3v37sVNN92Er3zlK3k9QGbqVKVwspENGtBKedLtvsnC2oYDibsBoWhMDHZNlR68c1UL6std6BoJ4sldPXhyd+LAdaB3TLSet+piNplMNrrhvGNVC577wiX43w+uFZOh1ipP2hsmYExQcnGyZfP4qfDkrh4EwjG8Kn1OMxk5qDWdIypVuD4NQJetaMRfPnch3rmqGZ+5dPGkjuXvzp2Pr713Jb78juXie00VbthtCiIx1TJ3w+yKNJeL7u8Zw9/c9TLe/YOX81LO1DUyga6RIOw2BWvaUtvop4MWkR00OffDbklk6zKVi1I3qf7xsFgMXamXcHSPBvMqWhabw5KwVggnm5H9lJvIlk0eZSboc6r1uoRbja5zEmdbqjxJmStWZdd0bsihvvKGTFWZUwQRG12uCnOe/PzlIwCACxfX46HPnI+fXX+OKHGeCitbtfN+58nScLKNTKR2l5cKPt3lXshy0bFgRIhiuZWL6u6GwYkEZ9mJoQmoqjavMQteonPzaDArkZuukflULuoPJ8RyAFouI91bFurZPlbHORNENhJTHTYFbumaIydMYrmoNmafpm/a0P0gFI2JzZsVLZVizjmYxbgiXC2SK0fksnUnOtfkxebIRKRgghWNn3LUBWA42SabyRZXM5e57jwxkjFfLBfePDaMiUgMc6rLcOmyRtEJ8Uh/ducmHf+iBh8u0t3F9248mvS4BIeVhehA8w2zyEbNEM5eUAOH3SY2dVM1MpAbHwCGyGa+RmXob22v94kMSLNL0gzNpcucdjHWp3Oy5cOpng3DWW7UyCKbHBFibtIkQ88ZisZFeW1zpUdsOKTKZZOzYVUVeCXDeoqueV+aNSN9rv5wDB/68avY1zOG1zoGM64Hd+vzWysReWA8JP6GM9u0TfWGciND0+x+E25/i8YHiqLgjmtW41/fuSLt8UyFdPMuKp3P571ipjKpmWJ/fz+amzUnyKOPPor3ve99WLp0KT7+8Y9jx44deT1AZupQWY3ZpbXxUKJYtj/N7skbCSJbYpcWupBcdhtqvE64HXZct14LYv/FKx14WhfZTtcnP/tlJ5vFhJ5yetJ18TFjlBe54LDb8O61c/DY59+C3/zDubj3E+sz/r7cYTQdJLJRplchRTa6Eedi/y9l5AyYVNbuf//jTpz5X09ZinBvHDVcXQvqfbj7w2fh/We3TepYHHYbPrx+fkKra4fdJvKkrCZF5MCao/9OpSfRgbNfz304OhDA1/66e1LHJfPG0WEAwPLmiqLlsRGiXDRLx4XMwHgowanRZXKyLWwoh8epDUVk51/dVi3CZXMtGQ1FY3jojeMFz22aDIcSRDZ/3kPvU5WlpcLrssORp3uZiADwuUQZHF3n3aPaZ26VD1fhsXKyGfdzQs4ekUt+jEy2/E/ohgNhbNHvO3dcsyqvjlLKn9lVKuWi/pnjZAtH40lNjvIFXaMNFe6cXACt1WVw2LTSJdk9IYTvGm+S4EWlh6FoXISAp8PsZBsKhNGpb/7QpuLhPr8I0LbK42mTxMB8sbVzGN96Yl/ePxPaaKVujYSRJWm8Z1QuSk42uh909PsRjauo9DjQUuUxGoFlk8lm4WoxOowa49Ih3aFM96u4mtzMxUw4Gp+UEEfzEDnbEkhdsZIOs/s3Xcl9R78fV33/JXziV69n/fyZoHvr2QtqoCiKKG2Ty0VfPtiPvd3Wbl9jM8aFj1/YDgD49WvHkjawZIeV3ZYcrH/p8kYoitZoqjsh31B7ntP1DZFMjQwC4nzVzhcSY9Jld5G7fUG9D0uaNFH/YIZyUaNyyC3GP/NnKc9hp8vJRuun6gyNc+TGJSTIzKkuSzvPLXc7xFyFKq+aKt1iw+HoYAonmynv8qWD6buMjoeMcyUVHqcdjfq5IIt7mbL0qBrGak1HlTqLGnzCGFNZ5hDuSbNTkf4/10zqfEFONqvyabpu+sdDsy7yKFcmJbI1NTVh9+7diMViePzxx3H55ZcDAAKBAOz23PKRmMJjZDUYF+loMCI6utCkIV1pFi34AWC7yXJLC+jGSiM/5yPr58FhU7D5yBDe0G8en754EQA9k4060FjcIFbpZTRbTGWpA+OhlJM4q06TNpuC8xbVYVEWuSrVWXbZo0kX7UBbPf6+V49m1UgiHfG4aohsGYQ/GVVVsfPESEKIeKkgC2upnGzP7+/FaDCaIOoCmrtt+3HtfD1zfuFKJylvzVyCA0hONj1s2Chz084BeUfnN5s68exe625V2VIqpaKAMaGfjJON3GllTgrc1lwb1P2t1ucSZS804VrU4MOyJu0+sLcrt3K6n73UgVt+tw3ffWp/zsdaaORy0bFQdNLdWq0IRoyytGxFNkVRxIR3qhNxudywSXLoAEbnvxaLbEyjS6+Fk00aH8pcdiHGykKQnNWSb57f14dYXMWypoqs3YHZQo6bkyPBkujQRW4HK6dHqSC7CwrVYZQWcLnksQHaxhstqo9KCy8SwazOH4/TLs7lTM0P4nFVdDen6zsSU0Up/sXLNCdP10gQu/Rynfb65L8h3042VVXx+d++ibueOyg2VPOFVdMDwBDZJiIxIbiSu4iuq0G/Vv54SC/jXNxYDkVRxJwzG8eXlci2VJ8vy5s/NG6taKkULqZ0DuxAOIqLvvEcrvvpqxmPwYxo5mW6lxrlotnfB1Mt3K3YpTtudxwfTpkplSuv690eKSOXnGwdush2qG8cH/nZa/jgj19Nes1ILC7GrFqfGxcsrsdblzciGlfxP4/tTXhsJodVQ4Uba+ZWA9BEPaJD6vYIpC+RAwwnGzluaRO3ezSYskKjQ3KykXN2f+9Y2g04EnMaKz1CZDGXCctz2GwE/HyQq5MtrmoRK0Dm0ny5ucdJff3QWOkRzQ+OpnA/0tyDPrsNB/rTvrcUCZSp+onu55Ueh3ju3gyb0EJks5hrWc33U3UYHQtGxIYL/Xy6qfRYC4DBSEyMLXG1eA1VSoVJiWw33HAD3v/+92PlypVQFAVXXHEFAOC1117D8uXLM/w2M91YNT7Y3DGIuKp1Z7lkWSOAxJ05mZPDE+ge1crWFtR5oarAy5ILTs5jIxr1slFi9dwqvGVJPQDNxnxC32Wp9SXfjNe11wEAthwZFAPTlqODWH/7MymDFPvHp6bq08073SQjEosjpDd9IDHGvDAd9Ifxb3/ciS/+fntCptyvNh7BtT98JevSt+7RoHitXBaPrxwawFXffwkf/8XreXfJTBVZWBsPRS27cpJ70RwUu7d7DBORGCo8jpwXP7lAkyKzyCbnyc2t1h5TYcpko4UyCQFfenDHlAYYMejOr570c+SL5iptIJ9MJhstAs9fpF3XoWgcPaMhsdNf53Mldf9d3FhuiP8p7kupIMfjq4cLX2a94UAfNh/JvlMulYuSKeNwHnPZTgxrZWk+lz2n+6CVK2Qy0L2txqJclMTZZkuRLdnJ1p+iFILcbHKuTrU3PyKhFVQ+dNmKxrw/d7nbgYX64m3nyeLnslG5cFmOjWSmE6fdJkp18+FU3do5jFt+tzVB5KTree286pyfj7p+HpNcFZncpU0V1k1lgpEY/vXhHbjtkV0ANFcXDekNFW7xOe04bnTmow3VF/drbg2r8qt8i2xvHBsWouJkMztTQZ+x17TgrfA4xD10ZCIiRAenXRGbqlT+SK6Khfr3c8lksxTZdLdR/3hInDf0GosafOLelG7edrB3HN2jQbx6eDAhdy4bqFzUPGZabaZnYtDk/k03XyE3VlzNLpg/E7G4iq36BjxtnC7QM9mO6OLWSwf6oarae/nojq6E3ydRyaYY48Gt71gOu03Bk7t7Esb/bBxWFFshl2qauz2KctEUjiUShcuceuODcjdcDhticTXltUGljwvqfFjUUA5F0f7edGsRec2VqltuMRof0OtkcgC7HTYh0JCbMZt5vVm8a6r0CCfbkRTNMui9eteqZjjtCo4PTSRsgpixKhG34gPntGF5cwXuueEcMVdN1+BCVVUhso1YXKM03z/LZCKwck/u16+/psrc3Nb5RFEUYWqRr4ejAwHI5rVTvWR0UiLbbbfdhp/+9Kf45Cc/iZdffhlut3YS2O12fPnLX87rAU6Gu+++G+3t7fB4PDjrrLOwYcOGYh9SUbFq7U116ectqseyZu3mlsrJRhf/ipYKXL5Cyy7YsN9KZEtcEF1/wQLx9eUrmlDtdUktiVPnvyxrrkCFxwF/OCaynB7cchzRuCoyEmTicVUMuPUW9enZ0Kgfe1+anQh555xap5sHL5ooR+NqwiT25y914PWjQxnzAAi5Zj+XAZI61b10sF90dy0VzJMM86IiEI6KhZ65nJTOwbVt1SKLqRDMqbF2stGExecygtvN3UX79UnODRe0Y0ljOfrHQ/jH+7ZYduPNRCgaEx1zz2grvpOtWXea9YwGcy5xIZFtTVu1uD53d2nnqd2moKrMmeBwqvA40FDuxnI9BNjc8Svz62mP39s9llPzlFzpGpnA9fdsxt/97LWsFvxjQWMxSLuV+RTZ5Dw2c1laOvLnZNMXMl4nmkR5cXImm5lsGx8AxiaKPG6kikOYKuFoHC/oYsXlemZPvjldX9iVQofRUES7T9EmQamSz+YHX39sLx564wR++lKH+B6JbOsW1Ob8fPP0End57D82QNeldfMlmnvIC7SxYAR///NNuP+1Y/jFK0fQOxoU14fTruWT0bVA19jcmjIhJNFjrctFjQ3CfHTB/OObxjwj3yXbgRA5gxIXvDapYcrIRES8d40VHrgcNrHwHBgPSQKY9t5Qd9HBQDjjRqTVgtvrcgihkha7h3qN4PYqmm+nuZ/Kc6F0C34rRLlotdnJZp29nA5yk9OmSDpHrRxividF+WYu7O8Zw1goCp/LLkqdyck2FNDOTVko+63e2ZkYkNYQNCdc0lSBD56jRYh87a97xOdrdBZNLUiIUk09NmciHBOfE22GGOuX7JxsNpuCuWmqI2JxVdwf2ut98DjtWXUYFU62Crelk00WdIDpz2TLJPzIDnqa22eTf1lj+vwayt2idP7oQMDyeqYy8vZ6n5h3mSOPZMYtmp1Y8f6z2/D4TRfhrPm1onRULhc9NhDAn7edFMc0OmF0OTW7TaOxOLZ1WlfqNJQnNz8gQwzlQxYLkcsm3fcPmvIE81mtMROZ9Gzq2muvxc0334y5c+eK7330ox/Fu9/97rwc2GR54IEHRAOGN998E295y1vwjne8A8eOHSvqcRWTaovW3huFyFYnLtT9PdYWZSoVPXNejQgX3XCgTzxWlItWJA76Z7RV40K9PfZVqzVX2xLTjdTKcWG3KThHn+Bu6hhEPK7i6T29+msl7xSMTERE3fdkQ5tJIExXU08LaZfDJhwV5oWpfEMhoSwcjYuSkVSDs5nDksiWy+JRPv6vPbonq93a6cIsqpmFNLnc0my7lvPYCkmqblByZ1ESMIwyN11k09/71uoy3HXdmahwO/BaxyC+/ND2nF2Fu06OIhyLo9bnEpOIYtJY4YaiaOVJ6XZYrSCh/LSWSlFqSx0Va7xagL3c/VfbzVUSsm+yFfZGAhHx2cXiqihxKQQbDvQjFlcRjMSzcrPR/aC+3ChNyWfzg1zz2AirTn2Tge5TtT5XQqC7/F/rTLbE6wgwJm3m7sE0XlRJk236eiISy1sZE6CJLWPBKOrLXVirf175hqIRCnmeZktQjxhwO0rXyQbkr/lBMBITkRTk/OodC+LIQACKMrlYgvm1lCkll4umvy7pWqGxe9AfxnU/eS1hQ/HE8IS4Pio8TiiKkjR3mltTJsQAwkpk87qM8qapdn8LR+P48/aT4v/z3XyEMtnK3cnnpHDgBiPoNW30Gou/sNjIWKS7+miOGI7GhSiSCjrHKkwLbnnODBg5fosayiUnW+r3ojtBZMtto0U42UyZbLl2F1VVYywngSnd2N4pCcf56PpNDqYz5tWITpQ+t0MIWR0D/gSRbVPHYMJ4OZgik+rmK5bC5bBhx4kRkZdFY1O6UngSecjJRs6oaq9TlBgb5aKZGh8Y58ucNM0PTg5PIByLw2W3CWcirZGsuqQSsrGhxiKTbcAfRjBibO6OTrOTLZtczyp9s5rWj9mIbHIWa53PBZfDhrk1XtgUbfy3ck3RtdZU6RHVVObmfTLims/gZJNpEOtH47r+8kPb8bnfvImXD2rnsLkRhZxVlq5Sx0rYpetvWZFFNnE9SPnpSSLbKe5ky/os+t73vpf1k/7TP/3TpA4mH3znO9/Bxz/+cXziE58AANx555144okn8MMf/hB33HFH0Y6rmIid/okIVFXFcCAiFr7nLaxDhccBm6Kp631jITSaFkJyrfi69lq4HDacHAniUJ8fixvLxQ3fXAqkKAp++tGzMRGOiYFgSWO5cHPZFKNLlJl17bV4dm8vNnUM4qz5NeJCHfCHEYrGEhYCNDGo9Dgm3fWNSjbS2X39Uq1+qoVpX4JtVhukjw0GxA01lc3cTIfkcMklk00W2Qb9Ydzx2B5849o1Wf9+ISFRzaZoJQdmZ5s8iJgFuTdMZQWFwth1TJwQGXlsxsSWdrrGKZNNaqm9rLkCP/jwmbjhF5vx0BsnMKe6DDdfvjRrF54hKlbn5EoqFE67DQ3lbvSOhdA9Esw6ByIUjRl5Na2VaK70YDtGhHOHJshyvgw5DhbU+eBy2BAIx3B8aALzshAbzTvsWzuHcfYkHCnZ8JI0UXvlYD8uXZa+pJBEtoX1PlHGdThF2/nJQDviuYps1MAjV5Ftx/ER/Hn7SXzurYvhcznE4q7G64JNP2eTu4smu3kqLbqLksNCbnYAGJM6uWFOhdsh7imjExF48lTuSKWily5rLJh7VnQYPVH8ctGZ4mTzucjJNjWRbcvRIeEy3nVyFH1jIbx+RLvvLmuqmFQZDt2jEpxsGTr+mvML/+exPdhxYgR1Phe8bjs6BydwcjgoBCRa/Ml5tm6Hdn9eKC3QmirdKTvkzastQ/94CMcGA6IBx2R4YX9fwiZgtpuI2UJzLqtA9KoyJ44PTWBkIpKwkAa0BfjhPj/6ZSebvoj3uuxwOWwIR+MY9IfTdhFMVTq2vLkCT+/pwd7uMYSiMTHXW9xYLpxy6TZH5blPqq6IqX+XGh8kzrdzzaYMhGMikmRJYwU2HOhPWy4qO7GsGhGoqoqndvcgHItjYX052ut9Cd1Pw9E4fvnKEVy6vBGLG8uFyGae07XX+dA3FsKTu7oxFIigzGnH2QtqsOFAPx54vRO3vkPrmJgq+L2+3I25NWU43OdH90gQ7fU+IysszTVNnT2PDQYQjMSMPLY6Q6im8Sdz4wPj76YIkk4LJxu9xrw6r2jIsLixAk/v6U3bYVTetHLYtPu1/NmdML1WIcpF43EVt/xuK+bUlOGLb9NiokhYztT4AEgWPLMS2aTfoWvd5bBhTk0ZOgcn0NHvT1q/GpnhHjFvpXxnK2gzI5OTTYbWj70WJZ27To7gwiX1CY3fVFWb75Bo+GaaSp0Gi3NOONmai+xk0+dn/ZKT7VAfi2wyWZ9F3/3ud7N6nKIoRRPZwuEwtmzZklSyeuWVV+KVV16x/J1QKIRQyDgJRkeLP9nNN7SrEIurGAtF8WandkEvavCJm86Ceh8O9/mxr2cs4SYVjMTELvsZ86rhcdqxvr0WGw70Y8OBvgSRzVwuCmjBvvKiZ7GkvFdLNm8z5GTbfGQQi3Yn3nx7R0MJE9Z0rYyzpbEys8hGOxw+t13swph3iOQbCu2EyaWf2Vpn5YD0YCSOYCQGj9OO/vEQPvCjjXjP2jn43GVLkn6PdnQ/et58/HLjUfzu9ePwuhz4zKWLkpyG0w1NhJc1V2JP12iSkCbvDsoh0LQYALRBqJDQhOjE0ARUVRUCl3CySSKbubsonYeUoXDR0gb817tX4l8f3oHvP3sQT+3uwRfftgxvXd6YUTijTkNnlEDTA6KlyoPesRBODE9g1dzsFmYHe8dFZ7fWKo8QKSmYW4hsspOtUZvUOuw2LGksx66To9jdNZKdyGZqkvBm53BWx5kr8biaEJAsl4Hf9ewBPLqjG9963xoRwg0YboeFDYbIZp6QTIVMi/lUVEmdvrLlYO84PvzTVzEajKKxwo33ndUmcjiqvU5xzx8NRjEajIj7XjaZbKqqitJrc7no3503H4FwFO85Y474nk0vOR4KRDA8EUmaZE8GVVXxjO6eLlSpKGB0rTs2GMBIIJLg0JtuyAXoKXEnm1EuOjWR7RVTd/UNB/rE4mtd++SEeXPe2UjACKhuq0klsiWWi5J4/633r8HDb5xA5+AETgwHxMKdrpda6VyZqzus5Qw2KxebfJxvHBueci4bNXhqr/eho9+f0uEzWVI1PgAkB24ggh593mWIbNp7uuvkKALhGBw2RXw2iqKg1utC92gQw4EI2tJ81GNizmdyskku6wM944irmtivdaTNLHbJC+5cnGyqqorQ91SZbNk62UiUcTtswsGfyokYi6sJG497usYS5kcA8PrRIXzy3i3i/10OG+65/hxcsFhzD/385Q78z2N7cc/LHXj85ouMzqImkW1+nRebjgzi91u0c+vsBTX4u3PnY8OBfvxhy3F84YplcDlsGBTz/mRBp7HCjcN9fuEsysZhVV/uQrXXieGAluMnb4oZj8myXFQSheemcbLJeWwEXcMdaTbgjHJRY6xLENn0+Wqtz4VBf7ggTrbD/X78cetJ2BTg5suXwmG3iVLlbMYxeROj1ufKKkdW3liQ15vza33oHJxA59AE1kuPV1VVnAPNVR5RUTLoDyedv4RVDmMmzHFDwUhMnCO0yXzSVB0zHDBENmEisJjvWzU+IJFteZFFtvoKymRLdrItbizHwd7xBHffqUjWW5YdHR1Z/Tt8+HAhjzct/f39iMViaGpKnBQ3NTWhu7vb8nfuuOMOVFVViX9tbW3TcajTiiZ0aR/1SCCCfd3aRXBaq7FQJtup2Qa+6+QIIjEVdT6XmKSQ5ZbyaoTIloWIs1TarTDX18usmlMFj9OGoUAE97+WWOprLjMUnUWn0MqYbpKjwWjKHCea8PlcDjGIpHOy0SApC2bZqvrm3U16nVcODeBQnx//98Ihy9IoGnzfsaoFn9Bbmv/ilSO46BvP4a5nDxStGUI0Fhc3WxLKzE42OQ+kR/oZubqWNJYXPOSzucoDm6KF88sLhuPDyU62pHLR8eTz8Lr183Db1aehwu3A3u4xfPyXr+Orf96d8ThKqbMoIVql57Ao2K2Laae1VkJRFLH7TpNAWgy1SvkycjfgM/Tw8ZcOprb3y5DIRhN3ClaeLLG4annN7O0ew4A/DLfunN3dNYohfxjDgTC+9+xB7O4axYd/+qr4+wGjNHRhg0+UBHQOBvLWCZh2ygtdLjowHsINv9gksgi3HR8RCzuvyw63w45Kj0MEs3/wR69C1RehVvdocR3pWSjjoahwGJmdbGvbqvHDj5yVJCRW57nD6KuHB3FsMACXwybGu0JQ5XWKjKxdXcUtGRUiWwk3PgAMwWOq5aIkjNMi+IX9RhOTcybpfqVrbzgQwchERIhYDRXuBFePjLHBF8LJ4QmcHNGaTK1bUCvGm5PDQZGrVOHWrpda6dqg62FRgsiW2hmSj+YHIxMREePxMX2ukW8nm7yxaYY6Pv5m0zExXyCRrVYXXjbrJbfz6rxw2o3ljiixyyBIpRL5aL68tXMY7/nBywA0p5zWATGz2JXgZEvRFdGKAX8Y4WgcipJcek/3QDk+JR3yvNkqW0mmZzSISEyFw6ZAUbTfNW8YU4ZYhduBSo8D4Wgc39E7fEdjcdy78SgArTPkLQ9sw7FBrSzb3GCEPleaK5+7sA6XLm9EQ4Ub/eNhPKM7jFOViwKG+ETPIUS2NA4rRVGwVHezHewdF2XGsljdoIsKVpvl8bhqlIu6ZSdb6kw2o7GCMZ7NFdd86k7uvcKdJWeyGWMfOdlOa9E2+fzhGCIpuptOFjq+uGrMfbNxDBJyFdMiiwYtVsgiqXz+pxIyB/1hRGLatdBQ7hbziXAsnnL8GJ+Ek43ONzIHyKWhtJF6YjhxvSPfH4wmZ6lFti593ds/HkL/eBiKkp37r5DU6+8n3TficRWH9fXuuQu1MfRUd7KVdl3AJDGr06kUawC49dZbMTIyIv51dnZaPm6mI1vJD5DVVLpAzRkTBOWxnTGvRryH1I1046EBBCMxccNvsnApmFkiOdnS7Vy4HDYhMIxMRGC3KWJik+SASjPYZkuF21gUplLe/VKtfspyUWnwpVyWRCdb5l3GSCwuJr9kIafXoXJTfzgmcvVkekUAsBtfedcK/PoT67G2rRrBSBzfenI/vv/swYyvXwj6xkOIq4DDpmClnkNkdg3KeSD+cEwMgtv0Ft/TITi5HDYxeMsDNk0oaDAHZAdOBMGIcbxmR+X1F7Rjw79cik9dvBAA8MuNR9JmmnSNTKBLX2itaZt8KU++oclmuh1WM1QWukKf7JmdTHTNymWE8sThrcu1e81ze/uyEoipDP7957RBUbTJzmQH+XA0jmvufhnv+N8NossxQS628xfVYWlTOVRV62b6hzdOCIFoKBDBdZLQZkyoy9FQ4Ua524G4apR5TgVVVUVmTiGdbKFoDP/wq9fROTghnDU7jg8nlIoC2hhMn/XurlF4XXZ8/drVls5ls5ON3BRelz2lMJHqb8ils14qqKsjAFx71lzLUrV8Qjle5nFtugnOkHLRfDjZxoIR4Vr7wpVLAQDP7+sTIv1kRTaf28g7OzYQMNyl0rhhhsab3tEgXj9qNJnyuR0iz+nE8IThsCAnmy/RyQYA82p9Ys5gzmeToXtE5xREtmf39iAcjWNpUzku0oXofGeyUfmdz+Ia/Mwli+Bx2vBaxyCe2KVtopO7pV4fV+gzXmTKORKurwz5oqnymRY2+FDudiAWVxGNq1jU4MM/XbY44bnTbVpMNpON8tioa6UMCRCqmuiUI1RVxeM7u4VTkkSqGp9LiA+pPj86T+bUlKFd32wzz2Fo8/tv1rbi6Vsuhstuw5ajQ9h8ZBBP7+nFieEJlLu1rrBUir+sqSIpMsbswDxvUR2cdhuu0d3Lz+3ThF2jXDS5gsUcRE/jQqZN2sV6Nt2BnnHhMmuXBKCGcu1aHQtGkza5g9JmmVwuSteauYQTMNZbcpk35dN2jQQt5zzjoag4L5sqPVJ5cliIqyTyyE4nOfM0H8jnMM3lDcdg5rWY/FlkKxbJmduNliJb4ntMpaL15Vp+W5nLMJwM+a2vT7/pPpsN4nwbDUFV1YTjONg7ntSIAjAalPSPh8Ra0apS57QWbQ2w68QIRiYi4pyZV+st+NwkE8LJpq97TwxPIBiJw2lXRJdUFtkmyfHjx3H33Xfjy1/+Mm655ZaEf8Wivr4edrs9ybXW29ub5G4j3G43KisrE/7NRuiGNhQIY78eqCkLXsv0m/E+U0ebrXq51Znzq8X3ljSWY051GULROJ7Z0yss9Vah1mZqfS7hZsjUpEAu2Vi3oFZY9M2LEZHfM4VyUUVRpLIN65vCuFQ6IBZ1pry0Pkmg6xoJYiIcS+ggaM5ks9px7NQz3MqcdjE5px0ieaf4yd2J57k/ZHSvaaz0QFEUXLC4Hg9/5nz827u0HIvvPLUfv37tqOXfV0jkzJRWaRIhY94Fp9+h92/ZNFmjrZofnLAoF6VB2B82AldddpsoI5Wp9rpw6ztW4J2rmqGqwLee3Jfy9UnYXt5cUfRBVIYmv7nkiG3Qxaj1+rVsLnEhkc3nduBD69rwttObxCQeAM5bWA+3w4YTwxPY15M+bDkai4scjHULaoVbbNskS0Yf2XYS246PYG/3GE6adiHp77pgcT3OX6QtMF8+1I/79WvrS29fhjVt1RgOaF0Ce0eDRvlJgy+htOtQHjqMDgUi4v40N82C3opU3UUP9Y3jXx/ekTBJemp3D944NoxKjwP3fnwdAM11S5PEGmnhT+fLqjlV+MvnLsQ7V7VYvj452cgZR7uiVmVAqZhMZ71U3Pn0AXT0+9FU6caX37F8ys+XCcP5Mj3h1KkQjQ9K3smmHZ8/x87Bw4GwWOhs6hhELK5iQZ0XV61uRbnbgZGJCOKq1n3Tqqw5W+QOo5maHgCJjQ9e1510Z8/X7pdzdIfviSG58UFyJhvFHLgcNtEoh8rurY9x6k42ErAuXNwghMWJSEwIY/lgPEV3UUD7m2+8RBO26FwQ5aLlhmMFsBDZLMLiLV9fuFoSxRmn3YafX38OvvbelXjhi5fgmS9cgrcu19YYRrdj6+dWVTVhDntyJJh1wxajs2jyPd5pt+GcBdrCVu74CmgbB196cDs+fd8WfPyXmxEIRxMyzehem+r9IJd0W41XdP3ea+r63S1lxTVWevC3Z2mi2P89fwi/eEXr3vv3583Hxy5oF79zloVzR2705HXZsUrPDFytN5+hMT5dBUuDED209znbMsYlovnBmLQpZlxHlWUOuHRHpLlJBOUHKkpiyT2Nx10jEwluslhcFU57WVwht38gHMPoRPK1RH+Tz2VHudsh1lGUSQoYYtP8Om9CF958clIScklgHZY6jGdCFtnM12cqEjPZkp285k0DueswQYJyKhfr2BTKRSf0zXZ5g340GEX/eDhJZKPOzuQAXVDntRSB59V5saSxHNG4ihf292F/d2l0FgWQJM6Ta29BnU9snHN30UnwzDPPYNmyZbj77rvx7W9/G8899xzuuece/PznP8fWrVvzfIjZ43K5cNZZZ+Gpp55K+P5TTz2F888/v0hHVRrIFnaqmV7alOxkO2Dq5Ed5bKvnVIvvKYqCS5ZpXUZ/u1kr5aQbfjbQrkUm59k6aTf5itOaxOCT1JWSFmVTcLIBmXPZ/BYi24hpYWRW7Y8NBhKdbGMhsTv17N4eLPnKo3hQz54g5MHdKIPSbmKyEPXU7p4EkY527cyfhaIo+MRbFuJzb9UmpP/+x50iS6WQPLLtJB56Q3sdQ2RzG5+jabfVnOdCkwnxfmRpKZ8qc0wt12NxY1KcWC5qvMckMtSVu9Lmrd1yxTLYFO2zo0wSM6VYKgoYk80jWYpsx4cCONznh92m4Hw9l8Uc1iwLKXdcsxo/+ruzE9xOZS67yHR5dm9v2tc73O9HOBqHz2XHvFqvmLhunYTIFo+r+NELh8T/y+7WUDSGTR2ai/QtSxpw/qI6AMAftpzAoT4/ypx2/N2583Hvx9dhWVMF+sdDuP6ezUnZQAuFaDn1XDZaLDdXenIu95O79Ml88/F9uP+1YwnvAwXDX3PmXJw1v1aUOlK3Lnnj5L/esxL/+8G1+MM/np+wU2+GriNqINKfoulBOqpT3I9zZcfxEfxkgxZ58bX3rErZmCef0Hs2kgcX3lSYzeWiqqri2v/biIu/+Rye3t0jSkXPW1QPp90mrmFg8i42gsrqNx7uFy6ldO7S+nIXFAWIxrXgeMAQH+ZUa793cmRCNAahc1Ke78h5b//vqtPwiQvb8ZYlDSlfk/ItTwxNJLl0s4VEluUtFfBKDhE5n4fY2jmMezceyaqMUYbmXN4UjtZ/uGhhgoApykVNc8GFprlDrTe9EEakW3Cva6/Fh9fPF583UZVB8B/whxGOaSWfPv3vytZR2EWxFSlE4A+eMw8A8MDrnWIe3zMaxAd+/KrIOAtF49jTNYpBad5cJ0oOw5afkZH3WYZlTZoRwdxkqMtUsvvJixZBUYBn9vbi1cODsNsUfOTc+fji25aJz4M2qGTkfLKzF9SKMl/qgErOoIEUuZ2AIXr0JpWLZhLZtHXQlqPDQsSTj0dRFPF65rm+aHrgtCfMYRrK3XA7bFqzL2mzbn/PGPzhGHwue4Jg4nHaxfl70sKR2GvKH3TabWIMJeFIbArXlIlN33znssl/S+9oEPG4mvX7DGiCJZGtk012yDVn5WRLzgunjcBBi9JoVVWTHMPZ4HU5RAfi3rFQ0nEc6htPynWme4+cGZeKt67QKjqe3dMjjDDF7iwKJGcUkrawqKHcMkvuVGRSItutt96KL3zhC9i5cyc8Hg/+8Ic/oLOzExdffDHe97735fsYc+KWW27BT3/6U/z85z/Hnj17cPPNN+PYsWP49Kc/XdTjKjY0kd9xfATBSFzf8TQGjwV1XtHJjwZUfyiKo/rXK1oSL2jqpEdZSdm42AgqHcsUUH3GvBqUOe2wKZrIRq+RLLKlHmxzwdzlywztlpa7HML9MRaKJoiSdEOhG+7OEyMJHWfCsbjYnXpmTy/iKvDTDYk5hrKoZHZoyEJU/3gYWzsNoUbs2qR4X2+5Yik+tG4e4ipw8wPb8O0n9yUcez4ZGA/hpt++iVt+tw2dg4GE7oItldogMxSIJOzgDpidbPrAbRVAW0jk5geA9plGYirsNiXhPHc77KJko0NfTGU6Bxc3luN9Z2m5j994fK9lOQB1GjrDlFVSbCgrpXcslNUCl4SXM9qqxcKwqdIDWYPMpsT7UlEyml5ko1Kv5S2VsNkUkfViFtlODE/gu0/tT5sf9OzexO5e8jW85egQgpE4GircWNpUjvUL60QLeQD4mzWtqPA4Uelx4gcfPhNel12Usc6rNbKBSHg6nAcnG92zc81jA6wz2WJxFRsPa0LEJt1dAyRnh9Dmy4YDWj6nPAmeU12Gd6+dk7HjM50b5OSiXdH6nJxs1EF7akLVHY/tQSyu4uo1rQVteCBTMk42KhedZIfu6WIy5aJdI0Ec7B1HJKbiM79+A3/aehIAhLh28TJDkFo3RZHtbN1NdN+rx/DbzVr8SDqRzWG3icUKjZMkslFW5XAggu4RfW5BTjbpWpPdq5csa8S/XXVaQgaZmaYKD1x2G6JxNclRng2qqgqR5bQWLW/TqtMcYJSY//ufduGelztyeh0SLlJt4HqcdvzH1acB0LqW02LaPA6ndLJlENkmk89ULUrXra9n2rCrL3eLjcOjWUYGpGp6QLxzVQsqPA50Dk7g5UP9CEVjuOGezdjWOYyqMqdwam0/PpJQbknvR1y1Fh6P6+PL3LROtsQO0u31PrxjZbP4+ZWnNaG1ugwepx2//eS5uOu6MxJ+TvjcDlF+R7lOgCZ2OWwKxkNRdI0Es8pkEyIbZYVlqJ4hIY/mBlYdeoWwkCSyaeN/man6QFEUUfYtO5youdWatmpR4k3QZqRV2S/N8+UO7yKXTX9PTuivM6fam9KpPlXMTraxUFQ0PzJ3DrViUuWiklM+MZPNK45D3jSgqiRZwKLy4kGLctFAOAaakle4c9tgayBhdzRZZNvXPSbWrdQMi8Z7ka+XJtP88hXaXOS5fX1iLjldlT3pqJccsLG4KqoyFjcaIptVafWpxKRmU3v27MFHP/pRAIDD4cDExATKy8vxn//5n/j617+e1wPMlQ984AO488478Z//+Z9Yu3YtXnzxRTz66KOYP39+UY+r2NBEnoJ9FzWUJ9zYHXabCMmkDKy93WNQVa3e3FyKef7iOrjsNnFDykVk+8dLFuELVyzF352b/jMpc9nxq4+vwy9uWIe2Wq/YuehJEZg/lUw2AGgy5TiYoXIN2cmmtWLWvh+MxETJ01n6RJvyI+rLXWJHieyzZMHf2z0mdgAAoxxvYb0vyaFh/luf2NUjfo+OWx58ZRRFwX+/ZyU+dZGWDfb9Zw/iup++in/+/Tbc/MBW/GnrCcvfy0QoGsMPnjuYUJa35eiQGHCf3dsrBpjmKg8qyxxi11sWNGlxLZftdo0GEYpqNf5zUkws8415QkS7gs2VnqTJEImpHfrgUp9FyfLnL18Cl0PLknl+X1/Cz0LRGHae0AbRUnOyVZU5xaBKbjbKArMSC1/UG6PIjgqn3SZakgPZXbOUy7bl6FDaDB2afNCGADnZth0fThCTf/j8QfzvMwfSLvj+T3JvAYarEjDy2C5cXA9F0TpbUkkLoDW7IBY3luP2964S/y+XnuSzw+hk89gAa5Ft98lR8f87T4xgPKQ1hKF8uTN1AXOl/nfTvSddM5tUtNf7YNPDtHtGg5LDInsnW5XFwnbjoQHL3Mp07NVLMegeOR3Qwi/broCFIhSlTLbZ52STx6ZwLC4W0efpIttF0j3q7CmKbB88Zx6+8s4VqPA4xPwoVWdRQnZayF2YNbFe+3v39Yzq36NMNmuRLRtsNkX8zmRy2XpGQxgOaFm5tECmrtpm8eGv27vE5uN3ntqfNtDdjBzRkYrLVjThq39zOu64ZpUoPTffO8zB6kYmW2rhIRqLi42TXFwtJFilcskZG44esdF9xCKX7a/bu0SmKUHvndkRTpS57Hivnl32202d+M6T+7G7axS1Phce+ewFuHpNKwBts92IWXHBabeJe6hVyahc9ryiWVsnHOwdTxA0SGSTBY1PX7xIfP3R8xeIrxsrPLhqdatlRiegjfk+lx3vWGlEDLgcNjF+7u8Zk8pF02SyjWq5ZqJcNIP401jhTqhQsOrQS3Mg8yadyA+0aNJBIpAsvqSrWCCh0hyWf6hvXDit5feZBPcBfxhjwYhYh8ypKROCFznVx4IRPLu3J2dXqZnETLaQcMqVOe1ZjSG0uVbmtKO1Krv7l9y4olG6Z1JGYcy0adBtUS5KXZllJ9sTu7px17MHxDlltyk5Z5MaOYBBSeTU/q5XDvUjrgJOu3G/pPkVOdnkMcDMGW3VqPY6MTIREWNZKYhstZI4PxQI4xA52Rp9qHA7RGOwU9nNNimRzefzIRTS3rTW1lYcOmQsSPr7s+sCV0g+85nP4MiRIwiFQtiyZQsuuuiiYh9S0aG24jv1RZJcKkqsmastmChrY49YtCbn1HldDqyXdpnS3SDMNFV68LnLlqQUg2TOWVCLi5ZqE+DmqsTdXsJwPkw+k42OC0hcUMsYnaa0DnqiY6sUYAlok4HV+uKTOrC21/vEJJRuOPKu1qM7usTXR6zKRSeoXFT777VnzQWgDQ4kcPQKa3RqwdNuU3DrO1fgW+9bA5fdhlcPD+LBLcfx8Jsn8IXfbcsp1J74v+cP45tP7MMXH9wmvieXQj6zt1fa5fToXSaTc9mo7JfE3p7RoBCv5tV64UizM59PzJlssvXeDE3IqCwoG2GgtboMN+gTzq/+eVdCd8ldJ0cRjsVR63MlZJOUCuZctge3HMdbvvEcfvRiohszGosLl+tFSxNLQuQ8mWzerznVZVjeXIG4Crx4oC/l4/boO+t0v1rWVAGP04axYDQhR4524HdJnT8D4Sg+/9s38el7t+DWh3bg9aNDcNltYqddFt4pM++8hUaJ2Xl62cvprZVYPTexWcV7zpiDD63ThDe5exRNtqj8ZSpQ84TJONlosiuLbK8cMsbxuKpdz9uPDyMaV9FU6RaTR/Pfmk3gsZkyl128FzuOjxjlolPIZAuEo7jhF5vwkZ+9lvWifiIcE5PsTKJIPqEFf746o06W0AwrF83FybZNn9Nce9ZcXK6X3qxoqRRzhrZaL774tmX43FsXZ93pLhV2m4J/uGghnv/nS3D9+QvwrlUtltlTMnJn9rNMIh8JbpTdQ/lgc2rKUOFxoK22bFIbjG0WuWyqquIHzx3E1/66O+09ieaGC+t94nyhZgNyVpWqqvi5vpnh1islvvrnXVkfI7mDrIQLmY+evwAfOMfY3JDvHfXlrqT7Um0WmWxy5l+m15epljYtrCoFKCajudKDBfoYb3aybT8+jBvvfwMf+NFG0ZUaMOZLqZxsgFEy+sSubvxYF2T+55pVmF/nwyqa458YSXKC1Vl8fkTnoJ7JVuvF3Joy+Fx2hGNxMV8cD0VFaa0s/qyeW42vvHMFbrliqchlzYbb37sKW/79iiSRi5xm+7rHxKZEOifbaFDLniNBKVNWmKIowu0HWHfoNZfIEZTJVmZx/2yzcLIZrvDqpMeTg7VLGrt+93on3vW9Ddh5YhSVHgdukLLtZCcbzVerypwodyc3afv+swfxsV+8jv95bE/yG5ADXabGB6KzaJYbbSQwr55blVJsNVNfrs2LFzb4RGdLQN800K+JTuk9tloTWTnZbn1oB7715H78w69eBwC9QUd2x0QI96TkZKNYJYonaKkqSypVp7llOiebw24T1WOAJtYtqJvaOJUPHHabmL8cGwyIvPfFDRVQFMXIRmSRLTfOPfdcvPyy1rb6Xe96F77whS/ga1/7Gj72sY/h3HPPzesBMvmBLgQabKxCEylYdLvuZEsnsgFGl1EgNyfbZGnWhZnesWDC5CWdbTwXGk2ND0aDEXz055vwu9e1kg+/aVfVPHiReNZQ7haldeRyW1hfLhw8feMhxOOJHWj+ut0Q2WjisqDel+DQUFVVuOD+9sy5cDlsODoQEGVtfeJmnVm4uPasufjTZy/AF9+2DP/y9uU4a34NonEV33xib9Jjo7E4frrhsKUrpH88hB+/qIns+3uM3AFZZHv10IBw69B5Qq5EEt9icVV8jqe3ahPBntEgOvS8KqsdxUIhZ7LJXYGsnHS0c07lotmWuH3usiVoqnTjyEAAP5EEqjeO0u5mdc6D/HRAAzsJwdTVTRasAM09NhaMotrrFPcVQs6TyVZIoZLRZ/akLhk1369kdy653FRVFdeL3B3tiV3d+NPWk3h8Vzd+s0nLmbzmzDlJTi3AEF0XSOfkxy9sx3vWtuJr711l+bl97T0r8ccbL8A/vMVwSC2sL4fDpmAsGBVlQJNFlIvW5e72pHtMMBIXgu/L+rVOO5GbOwbxhl7ecqbUaXpla6LIVjsJJxtgOOJ2nBhJCOTOFprYk+O3aySIYCSOWFzFw6YQ8FRQaY7XZU/Iiyk0NSXiZDMy2Uq9XFRvfBDKvgSF5jRnz6/BXdedif+4+jR8+31rEh5z46WL8YUrl+XtvltX7sZtf3M6fvDhMzOWTMsRD2ebBDkad8hpSBs7XpcDz3zhYvzls2+Z1DFbNT/4zaZOfPOJffjJho60JYxUKirPDUl8kGMfXj86hJ0nRuF22PCLG9bBblPwxK4ePL27B9kgnGw5NgCq8bpELMFCC6Ekm2uOXtvlsMHtyF5ko0y2uGrd0VEu+UzlZKO5lj8cw433v4lgJIaDveM4oDf/SeVkA7RytNVzqxCNq1BV4EPr2nDl6dpmETmuD/WNi8+d7rP034HxMF452I/1tz+Nx3Z0IRiJCUdQW00ZbDZFNCHbo4+hNI+rcDuSSmv/4aKF+KfLluR0jtpsiqXYT5lpm48MCpeolXu6sswhrjmqEnE7bFltINBrAEB7ffJmS6qsKUMQtm7SARhOtuFAWMREnNGWLMCbm4P1jAZx60M7EIzEccHiOjxx80UJzRJqpfJnijmh+4Z5E43mSfe8fCShgiYXRoORBCdxz2hQGAEyuQWJ01or8ftPn4fvX3dG1q/rsNvwxE0X4bHPvyVJmJtjkcvWI/LO5OqJRCdbIBwVaw9ysudSHk7QuqtzKCDmixfrBhG6D7RWe8T9gcpFjZif9Os2qugAtHtapjFluqD7/sd/sRnDgQiqypxi05Rz2SYpsn3nO9/B+vXrAQC33XYbrrjiCjzwwAOYP38+fvazn+X1AJn8YN5dWGJRA7+mzVjoRGNxadFqbUu9VMoxyZSvlg8aK9xQFCASU0WWRixufJ23TDb9xvzUrh68sL8P//e8JiKZSxfIujxiykurr3AnLMABLV+tQSqn6B8PIRyNw6ZouxL7esZwoGcMgXBUDKwL6xMz2cZCUYT1ifb8Oi8u0EtdXtBLDo1OOtk5+la0VOLGSxfjHy9ZhNvfuwo2BXh0R7fYYSPuffUo/vuve/Cpe19PKtH5/jMHEnZ8X9zfh1A0hu16mUOFx4FwLC5EGJocNovMCe2YhwJhxFWtMxNlfnSPBoUDaTpFNprgBMIxDAUiSZMWGVrwUMlNtudguduBf32n1vH1rucOit+nnI4zSqxUlKAMmY5+P2JxFZs6tPJzc57eC/uN7pvJeSPa+6gomTsME5fpE4wX9vdZugN6x4LoGwtp549ko1+uLwL36veyvvGQuF67RoJClCH37rkLa3H9+Qvw/rPn4gtXLkvaiYvHVSHG0G4zoE0m7vzgGZYt2AFt0bC2rTphYuRy2ERWEB3fZJlKJluFxyEWpKMT2j1ms/65Uunrpo5By/KWKq9TuDGAxI6HuUCLv10nR8S5lIszWXT00yf6cinLH7Ycz8op2GVy204X1SXiZAvqY0sugkIxIMEl23LReFzFDv36Xj23Gh6nHTdc0C6ycUoBOcTb7HozO6jlcrbGCk/GjompMItsO0+M4DbJZZbOfbBHanpA1IkyOkO4opL8954xB+ctqsMnLtTcN+m6a8uYNzazxW5TxNhi1WW11peFyEbdXHN8bbfDLho1WGVEymWVtGllFjQ3HzHmYHu6RvHJe7fgvT94GaPBKBbUeVNufBMf1u/b7fU+/PtVp4nv15drLmRVhdhsIgeb0WE0hDufOYCe0RDueGyvcF95XUYg//LmxHHVqlS0EJA54DV9fKr2Oi0rHBRFEfNgEiazdVgtacrWyZb42YrGBxZNOkRp9lDiPK+93mc5ZtI8mTZ4d50cQSyuYlGDD/d+bL2YQxFWTja6b4jGRnoWNP08Glfx33/dnfTa2dBlKmOl8nH59bLhnAW1aR1cVnicdssxyqokl3IsE8pFTU42OnddDpu4FipyKA8naP1IGcBelz0peqC1ukzcl4ZFuWhmJxsAXLS0AQ59Lr20BEpFCbpvDAUiqC934efXn4My/Rqga/BU7jA6KZFt4cKFWL16NQDA6/Xi7rvvxvbt2/HQQw+d8tlnpYrZLm/lZFtYX45ytwPBSBz7esaEqn9aigG9vd4nStrmVBdeZHPabaK8jG6Mw4GwtKM1RSebyHHQbgg7dKGocyiAWFyF3xTCm9bJZrLyttf7xODcNx4Sg21LVZnIrPrz9i785MUO/W9xotrrSnBoUNZJudsBj9MuFrvk0jF3HcqFZc0VIpD/jkf3iEXpkD+MO58+AECz3v9Wd/kAWonkr1/T/v+CxZrg9+KBPuw8MYJwNI46nwt/e+bchNdpNolsJAxSyW+N1yXErN7RkNRpNbtg1HzgcdqFuHJiaEJMdKxKNOhciMS09ysXYeBv1rTi3IW1CEbi+Mofd8IfipZsZ1FioVQuuqdrVGR/DJgmnBSEf9GS5O5hNIGsLnMmCXCpWD23GoqiXWtWYdUv6qLeiuZKeCXXAy1GaMPgYE/izu1e3ZFBi/D3n92G2/7mdHzj2jVoqHAbkwT92ur3a00wtJDtqd/zRIi05KqTGRgPZcxOicTiQvibTCabzaaI83jQH8bWzmFMRGKoL3fhI3pu5tbOYbyu53may1tWSU7FyZSLAobItuPEiDiXctk0qTIJVbLIdrjfL1x46Uh3nRcSdrLlRq6NDw73+zEWisLjtFnGZJQCFLfhddkTNgmA5POxIk8db+le8cyeXtzyu6248f43xCYekFwOJ2NV5WAuozs+FMDjOzWnM5W2Udn8sSxz4AKh1O6gTNCC2dz0AJCajfgjKQX48VBk0q+drvkB3atbqoxy0eNDAfHeq6qKLUe1e+3Nly+Fomibl2OhKNYtqMWD/3h+RkfW+85qw/c/dAZ++8lzE8ZDAAn5oYCxMULiw5ajQ2Lz7NhgAPe8fASAVkJPmw/L9Otovz6e0t9UaJGNBDByBqVzO9PYTceYrfizOKFc1CKTLYVwQJvN6UQ2EoAyNbcyO9lofnB6q3VpJY0h/eNhPLZDu+ZIRCdX9shEJKEyAwCe39eXsaGUFfR501x9ZCIi5vLZipn5hjqdU5OOSCwuImgSGx8kOtnIpTm3pgy///R5uGhpA66X8gOzhZxolFs7t0Yr45fP0daqMmlNp5eLUuODDE62qjKn6HxtHiOKyfxa7Ro5raUSf/rshQmbROxkm6TIxsw85JbKbofNcjFmsyliAP7r9i4EwrGEsFEziqLgG3+7Gp+8aCEuWzE9ndjI9kuLKCotqvY603bTygZy442HohgPRUXobCSmuVfGTRM+c9eePqnxQI3XCCwGNHFCvuHQYNtWW4Z3rdLCXe969gC++/R+AMZkVHZomLOKTp+jl8KdTBTZsnWymbn5iqXwOG3YfGQIv9p4FKqq4s6n92NkIiIWXj97qQORWByqquJ/HtuLaFzFxUsb8M9XLgOgdZR89bA2QTtrfg0uW2FYnBXF2K0xd08i90qdz5XQ5ZXKTKfTyQYYk6LfbD4muixauYTMCx5zg5B0KIqC/3r3SjhsCl7c34dLvvU8ukaCsNsU4SotNUjs7Ogbx6uHjfLhASlEdiRghLNSnqJMiy7I51IO6HJIHfhMu6gARPmRuSPkiuZEEeuAqTxiX88YYnFVOC3NGWN0vvbp7taTw0aQ7lTvN4ARXrvPQmQ70DOGc772dELWoRUnhycQVzVxpGGSuZS0sPjvv+4WAul5i+qxUN8cCMfiGApE4LLbRDk3sVpatE2m8QGgLdYVRdsR78gh35AwN4gxd6B+cMvxjM8hO9mmE5p0B8KxhHzG6URVVUlkK3EnW44iG5WKrmytmrZcz1yha+ripQ1Jx2h2UFdOwmVhxTkLajCnugwTkRgeeuMEjg4EMKe6TGRNphLZgpGYyAmjEHxAdrJpv/fItpOIq1oHV7rPkaATCMcSOs5FY/Gkz1NVjY3NXDLRCHrNMy3y8GjsCcfiCU58mbFJdBYlqtII58L1VelBQ4UbZU474qrhMDrU58dQIAK3wyaahNkUzZ123yfWZ7WRZ7MpuHpNq+VG0CrTGFdnymT7sx5dQq4Zik+Q1wzkpNnfk1guWuh7J3UYJerSzCFovn1Az4mSQ/PTQeeNy26znPOlanwwQeeqRWmz3P1yIhxLiF6wgt7H7hEtGofmB6nC7kk4+uv2Lmw8PIAyp12sIaqkxgcD/jCCkTgUBbjhggUAgC8+uB23PrQD9248kjajUIbGyqVN5SKDjo4x2/c535idbH1jIaiqdh7XSpt/JCabyzWbKjxY2FCOX31sHT64bh5yhc63qL4pSsezWBL5W6vLDAF+IgK/vtYEstu0/X9Xn4br1s/DR9aXjpnpC29bim+/bw0e/MfzksaqhvLE+fOpyKRmHDabDXa7PeU/pvSQHQaLG8tTOkhW64v73+uLkmVNFWknpusX1uFf37kiLwvObGiu1C7ibpMDaqp5bIA2maIJVffIRELO1LGBgNT4IIWTbdxora0oiigZVRRgXp3XKBcdD4nywLk1Xlx+WhNcdptYKP/PNavwxbdpopXs0DCXUZ3Won1WB/vGEYzERMhnph2RVDRXefDJi7RuUP/xyC7c8IvNuE93qv3ww2ehvtyNrpEg/rztJL779AE8trMbNgX4l7cvx+q5WvebsWAU9716FIAmsq1rr4VP39mr87lFuVyTKZONdgXryl36+6cNVhS4u3CKYdS5QgPk/a8dQyAcwwWL6xLayRNmW3m6SZ8VS5oqcM8N52BerVeItMubK5J2n0uF+XVeKIrmaiSXAmC08Aa0vJ64qgnI5rIGQGsYsKSxHNeYXI6ZaE3R1j4YiYmGCFeYxH5aDHSNBDEcCIsJN03U93aP4VDfOCYiMXhd9iTHJF2zA/4worG45HbKz2JieRqRbceJEcRVI6cvFXKp6GTLHO+4ZhXKnHZsONAvOquev6gOiqIkBFafPqcySYRZmSCyTe4+7HM7hOOEHB3Z5hsCxvg2FooiEouL+wrtqv5l20kEIzEEwtE0Xf/IYTK9TrZKjxM0HI8UqWQ0ElNFN2hPiZeL0j131CLvygoS/M3ZkKXEqrlVeO6fL8F33r826WeFcrLVlbvxwhcvwW8/eS4+dkE7Llhchx/93VmivDKV++BAzzjiqiaoN5k6/AHGnGyX3iX7EilWpNLjEHNP2eV1wy8249w7nklY5AcjcXFO5prJBgDfvHYNnrr5Iksho8xpF3mTqTpWU+ZfLp1FCdpskJvJAJpwKDcvUBRFVINQLhu52Nbo8QKffesS7Prq2/G1967KSw6TvJFktykis4tEUhrH//2q0+CwKeIzIKcQoK0LAK3KIxCOGt3jCxwbY970T+9k046FGoZkW1bdUlWGr//tKvzvB9davt+i8+fQRMKmCJ0vXgtBuL5cczSpKvDeu18WTrZUIltTpQeKondC9ofE/CCVg4nG3bDe7fVr710pNs6MctGImL80VrhxyxVLMae6DP3jIfxm0zH8+5924Z9/n35Dj6CGDC3VZeIesC/Hstx8M9fUXEKOz5HdfyRI0nqKSkqn6sI0l3vS8cjl6nIm28hERFw3Xpc9KzF/RUslbn/vqklHBBSCxgoP/vasuZZrFnayTVJke/jhh/HQQw+Jfw888AC+/OUvo6WlBT/+8Y/zfYxMHpAdBsssSkWJNfpElC6KVHlsxYKcbKLMUHfQ1OfgekgHCVQbDw2I9u0AcCQbkU1ysgFGSPzcmjK4HXaj8YHkZJtbU4aqMic+f/kSXLi4Ho989kJ8cN08sViWHRr9QmTTBtSmSjdqfS7E4iq2Hx8Ri46p5ON9/rIl+OLblsFhU/D8vj7E4iquPK0Jly5vFDtftz2yC997Rish/erfnI7TWithtym4cLFWGkiTyLMX1MDtsItyWHmXU+zUmcTS+nJ3QlkwoA1Ak3XnTRZ5R+bas+binuvXWYrNZpEtm465Zt6ypAFP3nwRbrp8CarKnKJzbCnikdqtvy6JP3HV6JZE12aqtux15W48dcvFuPHSxTm9drPpnCE2Hh5AIBxDU6UbK+cklrZXepxisrO3e0yUjrxFL2Pd2zUqSkVXtlYlbT7U+Vyw2xSoqlaKke+SwmW6E+RQ33hCqRZgNHTpGgmmzRSbSh4bsby5Et98nxYBQaXPF+gdU89ZYCwErBYFK+dUwuWwaZkmU8jFTFXGlA2yu2d0IiLuQe9Z24o51WUYC0Xxnh+8jLVffQpn/tdTlqImuRStshcLic2miLFkqEgiW1BaLLpLvFzU7DjPBHUWLVV3MNFe7xNZNjLm83Eyok8qHHYbzl1Yh/939Wn49SfOxco5VcJ9kMrJRk0PljdXJoj65OKm6oJdJ7X3nTYDAc29TXNRWVDbfGQQY8GocB0CRuaeoliX4GWizGXHkhRzXUVRhEDz3af2Y1PHYFLWJ5WL5prJBqTOWRwKREQDC5prilw2PRrjdT2PTW6AYXVeTJZVpk0REiBkwaq+3IXr1s/DO/UqCyCx43JduRv15ZpodLB3XMpkK/y9U85Mq00z72+sSDwfq3PICvvAOfPwDulvl1lQ50Wdz4VQNC6yXAE5ky35fFEUBd/9wFrU+lzY2z0Gf1jb1EvlTHPabUaQ/mBANChI7WQzPrsPnN2WsIFJIurohJEv3FpdhgqPE4/+01vw/Q+dIcojra4DK4RQXOURG+a5ipn5huZ5XaNBhKNx0cCuySSe0TkzGtQ25HosOpBOBrO5ge7bcrn6nOoy4fSjaycfr12qsMg2SZHt3e9+d8K/a6+9Fl/72tfwjW98A4888ki+j5HJA5XSAJNq4gEkl0tlClidbminjG7y+eosSjTpuxFPm7oYHh30S40PtAlPukw2ACJvg7pbyTccymSjicuNly7GfZ9Yn5SVJzs0SFwgJ5uiKCIv7/l92vF6nLZJTQoJu03BjZcuxh9vvADLmytQX+7GV96lBfR/5Nz58LnsQsy75Yql+LvzFojflUsDXQ6bcLhctUabrMjZfiJ3bSyk29gTXXpyN6D2et+0d9p82+lNmF/nxRfftgzfvHZ1yh1ks8g2WSePx2nHTZcvxdb/d0VCa/ZSRN5J9rns4j2gyazocpvniQPtIJ80lYuKUtEVTZbniZzLRpOaq1a3AtDyWmhhZy6jATQBhETt3rFg3oWY1ioPKjwOROOqKI0m6P0MReNpQ/GPSa7YqXDV6lZ8+mLNyTqv1iucC+va68RjzKHsgOas+cX15+BnHz17Sg5M2RGXa/m/w24T5+GwlA/TUlWGvz1zDgBNZA3HNHeMubkLIDnZpiFf1Eyxc9modE9RjI6ypUq52yE+azl7z4pwNC4yS9eUsJMtHY0Vbjjt2n3NpkA4wwtFfYV2LqZaGKXqOm8EYIcxEojgiB7mb24wIYK/9XM9EI4iGNGEJ8pgBaSmBy5HQcZ/upc99OYJvP9HG/G537yZ8HNRLjoJUbOqzPp6pntMfblLhLfP1ztYbtIzL2nz6uwF1i6nqVLtdYkNGdl5L29s/u2Zc+G02/DxC425iDlihrpw7usem9ZSe7n7Z7rKAbPokUsgfzoURcF6varh1UNGZEYgTSYboJWCP3HTRbhcd9ufv6gubSYtzXdeOjCAaFxFhduRct6xpKkCtT4XzphXja+++/SEn8nOKdEUQX+eKq8TV69pxb+9awXKnHaMh6I43J+542iXJKqSQESmhGKVizaUu+F22KCq2nUml4HKVJU5RaOn4UBEKt+e2kZ+hdshSmcBYz62SMr4a6kug8thE/dwasoxmc35mQCLbHnOZFu/fj2efvrpfD4lkyc8Tru4AaQL/51TXZYwcJWayCbndQFIyimb+vMbTjYA4j070u+3cLLpZSuiXDTRyfaOVS1Y3FgunEly6ZmxME6/WJcdGod6tQmonMlBE9jn9Q6jjRX56Yy3ck4VHr/pImy89a2izXxVmRMf0yddH7ugHZ97a6IT6WJJZFs9p0pMIq9a3Yrffeo8/Ksu1gHaTuj8Oi9UVQvaFWHn+rknD4zTnccGaN09X/jipbjx0sVp30+5dKeqzDnlco7pFhMng/x5nL2gVuy4kvNBNODI88TByCkxykVVVcXTe6zz2AjKZXv54AAG/WEoCnDF6U1w2hWMh6J4UhfpzE4qgsoAekdDeXeyKYqSsmR0UGom0ZVGTOjMg5ON+OLbluF/rlmFH1x3pjgXlzdXYG5NGbwuuwjeNXP+4nrhWJ0s8vs/mU0T2T0iypeqPPjkxYvw6YsX4barT8PbTtfOEStxhgTU6S4XBeRjL47IFopQZ1HbjLgHyZlF6djXPYZwNI6qMqcoy5tp2GyKcPGWuwsjOMkYDZqsz8W9emdRc5VDjdcFm6I5NF4+pDWiaanyJF3LJLJRAxu5ac4RWWRL060xH9z5gbX41cfW4eo12obLSwf7E35u7iafC6mcbFZdON+1qgWK3tn9kW0nhdB41jzre20+oA0l+bOR59DvP0drgrWmrRrvXNWMOp8LZ5pC+slVdaB3POF+W2jkjehsykWJfJYxnqvnFlKXU8AQ2dKVNjdUuPGTvz8Lf7zxAnznA2vTvgYJYc/pG+jLmitSXvtVZU5svPWtePDTyU0xhJMtGBUVNOaOxQ67TYy/b1o0CRr0h/GZX2/BK/p1fZI6rFd5kj7zYpWLKoqS0GCC5oXm7sJ2myJcjYP+cN7OXUVREoRdOpbTWyrhsGnHRmtHMk/s65ndTja5u2g2Hd5nI3kT2SYmJvD9738fc+eWbqnTqc7atmqUux1Y21ad8jGKoiS42eRg21Kg2TS5pg4xuQTOp4NudpRtQMH9+/UcEsCYdFGXoUN941BV1XDw6N9f0VKJp2+5WEziaEIQk7LGMnUDlB0aB3Wni5xVdLoustFufdMUd2PMmN0kN1++FC9+8VL8v6tPSxrwmyo9QjA4y7QLu669NmknkRbsmzoGhUBDn6Ns8V5YBJEtW2QnWy4ZUjMZWWQ7d2Gd+MzIVdozxWzAVDSLTDZjYb3zxCh6RkPwuuwisNvMcn2j4IX92mR1bk0ZKj1OYeOn57NysgFS1+GxUEJnuHyxzNScgRiQyqm6RxNz6GTyUS5K2G0KPrhuXsJ7YbMp+P2nz8NfPndhQXdcT2utFDvMkyn/px30/vGQuJ80V3lQ7nbgy+9YjusvaBela72mIN7RYEQsqvOVt5cLhpOtOOWilC1U6k0PCCpLM+czmtmmu1RXz62aEeJhKmjBna88tnSI7FgL94GqqqJc1LwBa7cZJZgv7tc2/aw609f4Ekuj5fvc4QQnm56JNgVnfjocdhsuWtqAr/6N5vwZmYggEjNK9sd1J9tkKgNSZbKdHEkW8lfPrcbf6V2cKRNraVN5QcvuztDXALKwsLSpAu9c1YxPXrQwocTtrg+didf/7fKkOTaJXduPD4uxv9CZbNrrGseWbnPdPFZVTbLKwAoS2V4/OihiHmgTPlNpr6IoWNtWLcSvVNAcg+5hqUpFCbfDbumMkytuyMk212KTkMrpt0kl28TvXu/Eozu68R9/2qXlCtKGVHVZUpRLLmW5+YbcY0/t7sGGA/3afOac5CYGdJ8a9IfzVi4KJDadI5GtsdKDB//xfNz38fXiZ/SZ7NfnfNMdhzNd0PUZialpqzFmM5MavWpqahImLKqqYmxsDF6vF/fdd1/eDo7JL7/6+DpMRGIZb+5r2qrx3L4+zKkuK6mARSB5B9vsgJoq5hK3q1a34C/bu8TuopwPcv6iethtCvZ2j2F316goeUjV/clpt6HW5xITEqddyerGTg0Fjg5YONlMk1jz7l2+sdkUzEvjCLjx0sX44fOH8IGz2zI+17r2Wjy45Tg2dQyKsF2RNyc72aa56UEuyAuAfAm9pY78eZy7sFaUW9K1KFqS5/lcNLe1B4Cn9N3Ki5Y0pBQISPilrDEqN1neXCGErXK3A+111ucZiYW9Y0GcGDZCq/MF5bLt6x5N+P6g1LE1nZPtmF6Wle66nCrT4e4qdzvQXu/D4T7/pJzJtIN+oGcMqqrdX2tNCyvahKC8FoIWDVVlzqI0HakWJXRFymTTx65Sb3pAtJga5wDAPS934OWD/fjyO5ZjcWMFDvaO43/17NAzUgSMzxRahchW+HNTZMfq7gN5rt83FsJwIAKbYnQklqkvd6N/PCxEttNbLUQ2EpT1eZB8n6Pwf8AQLayC5PMJlY+pqlbeSeMWOekmI/KJrvAmZ2p3ik2af37bMjyxq1vcl86aXzgXGwB8cN08TIRjYgMY0ETSuz98VtJjbSlKGpc1a5//Fr281e2wTYuLab7eYTQaV9N2oDZv8uVT/FnSWC7m8tuPD+PsBbWiXHIynXCtaNGveTIApWp6kIlKveImFldFeaLV/GVtWw2ADmzrHEn62V59E/9A7zhePTwo/tYWKZONKOaakSIu7tWbr71jZbOlkaHW58KhPj/6x0Oi8iIfLky6d5Q57QkuS7OxhTYaqDQ33+aIUsHtsKPa68RwIIK+8VBOObuzhUmN2N/97ncTBl6bzYaGhgasX78eNTUzezIzm3HabVnl3Fy+ogl3PXsQV6QovyomdEMfC0XhD0XFLmi+y0UB7UZ58dJGMQEDEvNBan0urG+vxSuHBnDfq1oXzgq3I+1OVkO5W4hsrdVlaTMZiOoyFzoxIUSCemnXo73eB7fDJsJ0i13bf/Wa1oSJWzqoa+H248NikVlnmcmWury52MjOglPFybasqQJ2m4IKjwMr51SJa4+6NfWMFcjJJi2safFHi7lUpaKANikvc9rFxHCJvjhc3lIJbD0JQFsMplpMNOgTp+NDE8Ihlc9w/OUpnGxyMHiqsriRQERkJLZNMZOtFFg1p2rSIhvtDu/R38emSk/SZ9qUoszwZAEcirlQ7HJRymTzlHjTA4IWRCelz/H7zx7EoD+MDQf68ZlLFuPeV4+ifzyE5c0V+JjetGemQvebTBuk+YA28cLROMZC0YTXJDf9vFqv5aYGXbf0uZjz2ACjoQnllfVL5aLUsdHtsAuRazKdRXPBblNQ49UEk0G/IbJNKZPNa93IpMuiXBTQPtfbrj4d//jrNwAkNpspBOVuBz532ZIpPQdlO9O8tKUqP1ElmXA5tGYdm48Mpo2+qfO5YVMgKlDylckGQHTdfmxnN149PICzF9QaonCeztdW0zmyfJLRPWVOO5x2BZGYiqO6691cLgoYTrY9XaMIRmIJ17c8N6Hu4zVeJzxOu0W5aPHmweRko037T1600PJxJIAd6BlDLK7CphibC1OB1l9zasrSXgskwtO1U2hzRDFpKHdrIttYKClz/FRgUneD66+/Ps+HwZQSK+dUYcu/X1HwgN3JUOFxwueywx+OoXs0KBb2+Wp8IN/sTmutRJlL66ZINmvzLtXbTm/GK4cG8Mc3TwDILHLVV7iwTzPfZMxjI8y7g7KTzWG3YXlzheigNpNq++fVetFY4UbvWEiU2pJQJTsKUzmMSoHKhHLR2bkbZaa1ugz3XH+OCKen3eR+anxQICeb3NZ+wB9GrdclcszOMOXFyNhtCpY2V2Bb5zAAw4Ehl1+YG77IkJWfHHtlTnted+xp4tE1EsRIICIWaHIZVSonG5WKNlS489qBrlhcc+ZcbO4YxBWnNef8u/SZ0DlhVbpEDllzuWhXARyKuVAjFuXFEtkok21mnEPmfMaRQESI0qFoHN99ej8Azel93yfWF3Xhlw8W6u7h6dhEK3PZUe52YDwURf9YKEFkO9SnOc3kckIZ8xh4emvyfVWc68LJZpzzcVXLmFzcWJGUgVtIyJUk52COT+H1ya1nLhcVZXYWYv7bVzbjuvXzsLljEJcua8z5NaebSo8TLVWelMJhIfn59efAH4qmdcbYbQrqyt1ibplvl925C+t0kW0Qn31r5sYHudJiGosmK1Aoita9un88LMwCVpuEc6rLUF/uQv94GLu7RkUn8XA0LhpGAcAL+sYmudutGgsUC3lNta69FqtTNLuh9eJuPV+yvtwNRw6NllJB669Mm7Bmt99sLRcFtDHrQO/4Kdv8IOvRY/v27Vk/6erVqyd1MEzpUMwbZSaaqjw43OfH7pOjYiGaL4FDdrJREOi8Wq8ksiVeMlee3oT/eGSXcMnUZ7hZyrsl2TpPzJ+F2TF1WmuVENlm0s1aURSsa6/FX7Z3ie/R5zhft3g3V3pKrmRZRnaypStdmG3InWTrJSdbIBzFmL44ybcF3uWwoV6fNHePBOEPRTERicHlsGFBBiF2hSSy0Q68XH6xKk3nQbqmDugTzZbq/O7YV5U5MadaE/L39YxhXXut5iLRnRRAaidbPvPYSoGLlzbglVsvm9Tv0u4wlfY3WSz66JzsHw8jEosLZzdlexUjjw0wdv+Llck2U51stMCnMsOGCjduvGQR/ufxvVjWVIFf3LBuVpSovHNVC0YCEVy6fHrEl/pyF8ZDUfSNhbBQEtQO6ffARRalokDiGFjhdlhuJJrzB2WRDQAO9/l1kU0XLaZJZAOMZgyAkck2qXJRC2eqqqrYr5frWY1XiqLg9veuyvm1isnSpgpDZJvGDV6XwwaXI/N13VghiWx57npJuWxbjg7hUJ/R/KEQTrbWKs+U1mSVHqdwjFZ6HJbZjoqiYM3cajyztxfbOoeFyHaob1x0NwUg5nc0VsoVCw6bUlRzhrym+uRbrF1sgHG9U6fkfAnEV57ehMd2duFD69LH5ZhLl80xRbOJq9e04sx5NZbxAqcCWd8N1q5dC0VRRIeIdIuMWCw29SNjmBTMqS7D4T5/Qsv1QjjZVuoi2/w6LzYe1rqNmidcLVVlWNtWja36Aj7TTnODRTBmJuTB1e2wJR2DXJKR7xK9QrNeEtk8TpvYBVzYUI47P7A2Y2OIYiOXkuSrZHmmQSW+A+NhkcdW5rQXxIHQUuVB31gIXSNBnBimjLXyjGXXckg3DfbNlR7MqS5D71gwqXOaDE2A0u0CT5VlzRWayNY9inXttUmOJjng/QfPHUQgHMU/X7kMnUOzS2SbCrSwpVKRFouJa63PJUpnesdC4rMsZmdRwBAeilYuqjc+cM+Qxgf0OdHClkS29jofrr+gHR84Zx7cDlvKEvCZhtthx/UXtE/b6zVUuHFkIJBQygloC24AWJzKyVYhdaZvrbRcJxgiG5WLJjoc6LM0nGyFPyfrpCB0QjjZJlEuWi2FzcfiKuw2Rau88IdhtylJTSNmKsuaK4SzqblI9850NFa4sUv/Ot+btXIu2zvu3IBwLI76cnfGBgXZUl/uFmPVVJ+zUlpDzEmzub+2zRDZCHKGL2+pwII6H36/5TgAQ5jyOI3crWqvs6gNZpY1V2BBnRfNVR68Nc2GBN2DyDyRrwqgRQ3leOSzF2Z8XI3JWT3T1m258KF1yY0nTiWy3rbs6OjA4cOH0dHRgYceegjt7e24++678eabb+LNN9/E3XffjUWLFuEPf/hDIY+XYXDjpYtx9vwauBza6dtc6Um6aU2WMpddCGEUVjlf2nW0Eg7evtIobcpU1y877rIVkGSbe325O2kQk5sfzLTa/nPajYDfOl/i3/aeM+bgrPmlnfHoc9lB67hTpVzUDC1QBhI6NSWfp/mAdsu7RibE5C+bCSh1y5xf5xXXsKIouPfj6/D7T58vsjysMLtDWwuwmFikl4N19Gui2cC4WWTTcuj6x0P45hP78IPnDuHVw4PCyVbqYvR08P/bu/f4qOo7/+PvmUlmcr+QQEggEDAqICoYikVQwCKIeGHtesMiiLIPqqy4rnhZrfrogmwFfnXFaq2rlEqrttVt+8BKod4AV6WgWBSVgiAgiQjkRi6T2/n9MTknM7kRMmduyev5eMzjkUzOnPkO4UzOfM7n0vpKf3tXpx0Oh/Ueaf5flaTDZZHNZMvsoIdTuFiDD2IkyGb+bsuq61VT12hlLxZk+46DRLerxwTYIsH8W/Ztq7Lqlky29jOH/acCtzf0QGrbk631ZErzd3kiTD3Z/Nfk/75bGUQmW1aKRymeODUZLUGKT7/2Zc2c3i8lZo6zk/EvYYxUP8vOmO/1Dkf3psR2xul0WH2F6xqbdN6gDP3h9gtsu7jodDqs97nu9mMzBQTZOvkbd27zZ54dfkE2c5rwsP5pmjl6gHW//wUp89iNdAVUQrxLb909Sb+59budvv+3viAezixMKTDgmxjvsv3/JqJHl3+zgwcPtr6+5ppr9MQTT+iyyy6z7jvnnHOUn5+vH/3oR5o5c6atiwT8fXdoln7/wwvkbWjUFyWV6p+W0KUBAl315A2jVVJRa2W8DPab2te6XFTy9WX7r9c/lxSaTDb/NPf2musPz02V2+VUo2EoN0IfErvrjH6pSk+MV3lNfUwODnA4HErxxKmitiEm128HM5PNf1JTqIK9/hNGzamaXZm6dd6gTK245tw2KetDO8jI8Nc6eBqKvl0tGVW+YI/5wXNgZqIOldaouq5Rld4GfXq4ZQLpmv/bbzUHJ5OtbcPljq5O56R59HVZjY74BdmKrcEHkcnGyIh0JptZLhoXG+WiaQlxSnK7VN3cm3W/FWSL3v6dsSQ7paWs2lTlbbAGGnTUk83/w2vryeemlp5svoCyGdgqKsjUa36T3KvDWC7aXiab2U8trRuBA5fTodGDMrT5H0e1/UCpRuSl6ZPDvpYe7Q2DiFVn+gXZwtmTravMDKH0xPiQBN2vHZOvv+0/ruu+k687p5zRpcFyp6IgK1kHj9doZDu9DU9FekCQreO/cWZv2v3HqlVWXaeMJLc+L27JZPvu0Cz1bS7B9d9Pv7QEfV5SGRW9Lx0Oh052fbd1Uka4/+/6l4v2C9EFaUSHbr0j7Ny5U0OGtE1dHzJkiHbt2hX0ooCu8MS5dM7ADNvr2c8fmqWrRrVcsfH/ANveVaoh2cnWycbJroj4B9m63JOtVSZba0nuOD1zU5F+Nuu8sEwfs5PT6dB3CnxXA2M1E2zimf2Ul55gW5lArDGDi5W1DTpU6gtWhCr9vb/fdMgvmvvbdLUh8D8XDWwzSr0r3HFO64OhpJAEss0SDrN8wewNNCAj0TpBLimv1afNH9QkacOuEu382vc9Qba2ja07yqww/w9901zabBiG1VcoFFmKXdHSw6neaskRTuZ06ljJsHE4HH592Wq0rzngHs1DcmKJeZ7iX8r5ZfPQg+wUd4cfpv3/hrc39EBqae1xwtuguoYmK7A1pjlr3Qyymdk0dvf27GxN5loqa+utctHulpKZPa227z8uSfqkOZMt2IBJNCnsl2IFNMKdDdQVZhZ66x5Ydpk8rJ+2PXiJFk8bZnuATZIeunyEHrp8hKad1fH09K7wH9DV3mRRU0aSW0OaL1SYx9/nfplsLqdDS2eO1JXn5ukSv4nuOSH+d7Zb6/7J4R4Y5//+2XpwBHqWbr0rDB8+XEuWLFFtbcuVYK/XqyVLlmj48OG2LQ6IBoGZbO1/CFn2/bM194ICXXZ2bqf7MjN8PM1N3LvC/w9XR4+ZfGa/gLLVWDLxjGxJsZuF8MT1o7T53ovbbSbbG6QlxCuu+SqxeUIWqkw2M3Cy/1iV9WFsWP/QZwb4v55Q9GRrk8nW/OE2K8Vtvebi8lork83h8E3iK2suLyTI1vYEv6MTZ/N3afbzOl5VZwWZctIjE+g3r6w3NBnWh/twirXBB5L/hFEy2ezWUi7aEmTb863vokZn2b+5Vp8mZ4eNrtMS4q0WC2XVdTpW5XsOszXENxVe/W3/ce38ulxul1PTR3Z+TmWHPlbLA2/zGnzvDakJcd0u/xtT0BxkO1AqSdYFErPXb0+Q6HbpqnPzdGZOalReZDSzzmP1Au7pOamaN2FI0JMvAzPZOj9XMEtgX/3wax2vqrMuRpm/36ln9dcTN4wOqOoxL3hE85Ayf5nJrVpLhDnI5n/Rtm8P7seGUygX9ffzn/9cV1xxhfLz83XuuedKkj7++GM5HA6tW7fO1gUCkZaaEK+sZLeOVdW1Wy4q+a5amlcuO3N6vxTdMDZfp/VN6XL6uv9VD//Gwj3F9WMHaWBmUkB/tljicDjk6sXZ3k6nQ32S3TpS6bWmNYUq+8As5/v7oXI1NhlKT4wPS6ZDvzSPlTkXynLRY1V1qqlrtDIq+iS7VV3XqM9LKlVSXqNdzUG2H5w/WC+8/5UkX6ZdLE0VDpXWJ/gdl4sG9mQzs9iyUzzyxEUmkyvR7ZInzilvQ5PKquvDHrD3WkG22Mhkk6T+ab5j5rPiCqu0z/+CGLqvvUy2vUd8gczOpsT1S0vQY98/R32S3VbP3NacTocyknwN4w+V1Vj9AIf2TVFmUrxKq+ut9htTz8qxbahVZ8zMFrOE1XxPCKbP2Kj8DDkd0sHjNfqsuMLaZ08qF5Wkx68fLcMworLk7aIz+mrR907XxDP7nnzjHsy/5PlkfUdnjxusl/52UK/tLNaFp/sugA/qk9RpsPmqUXna/lWprhvT+VTNaNE6k61/mC+u+Z+rcO7Ws3UryDZ27Fjt27dPa9eu1eeffy7DMHTddddp1qxZSk7mSiJ6nkFZSTpWVaeUIJvwOp0OLbv6nFN6jH8ZVOs/Dj1BvMupyZ1MAkL0y0rx6EilV3ubS4pCVS5qfugxJ0iemZMalpN7/zLvUDR4Tkv0ZUyc8Dbo67IaHbOCbB7rtf7jmxNW9t6/fq9Qb35+RF+X1Sg/M5Em7wq8Wp+d0vGHfDMoa07CNbMHO2sIHQ6ZSW6VVNSqtLou7IMsamOsXFRqOQ7f/9JXjpeT5lFSGJrk9wZmCwD/nmzmZNGO+rGZrv3OyT9oZyTF63hVnfY0D1LwxDmV7HZpSHaySg+UaftXvuyvcE2mMzNbzPddMyAWzMTM1IR4ndk/TZ8VV+hX7/kuiAzNTg7J1O1Ii8YAm+Q7t/y3S86I9DIiLiCT7SS9oM/KS9f4wiy9u+eYFew+Wd/bwn6p+s387wa/0DBJdLuUEO+0AvzhLhf1/32E+7kRXt1+t09KStK//Mu/2LkWIGqdlZemjw6UnfQPVCgElIty1QNRyGwcbQaEQtVnovUJSbhKVMwSw6xkd0gCEQ6HQ3kZCdr9zQkdLquxMtmykt1yNX+AefOLI5J8wYV+qQm6adxgLXv9c53eL/rKdCLBE+eymuF3duJqloaUtMpki9TQA1NGUnxzkC38E0ZjbfCB1FKiZJbhFdCPzTb+5aJmlpIZEOssk62r+iS59aWqrGmlWcluORwOFWQn68MDZZJ82TPjhmYF/VxdYWWyVdepqclQifmeEOQH4KLBGfqsuEJ/+OhrSdJZPahUFLHDDOq445wBE4A7Mv/CoXp3zzEr6BzsdNNolJXsG4CU7HaFPXPc/1yFTLaerctBtj/96U+aPn264uPj9ac//anTba+88sqgFwZEk8XThmnymf100RnhTztPa5WhAUSb1iPRQ5XJ5m7uZWiWMZ0RtiCb7/WEolTUNCAjUbu/OdEqk82txOagntl4/KzmcqNbJgxRWmK8JhRmh2xNsSYjMV7VdY2dZhv2a1Uu+vdDviDN0L6RDdJkRnDCqBlk88RgJltzXN9q2I3gmZm7dY1NqqhtULLbpf3HfO8/p9lwnJgtMMzsuD7Nfz+G+v0Or/tOftgydM1MtsYmQxW19X6ZbMEF2cYM7qO17x9QTfPxdVYPKxVFbDBLrrua9T7xjL46MyfVapExPAr77QUrMzleX5fVKCdCU3Ezk9yqrqshk62H63KQbebMmSopKVG/fv00c+bMDrdzOBxqbGy0Y21A1EhPjNf3hgc34ae7EuJdVilZqBrKA8FoXcZs98Rff3kZCVaQ7WRlDHYZPShDDoesSbihYGbJfl0amMnWkBg4bXJE83S6OJczbOVUsSI9ya3D5bWdnria5aKVtQ2qrmvQ+18ekyR9N0xZMx0xP+iXRSSTzVc244mhTLbWmYcMPbBPQrxLqZ44VXob9G2lV8edDtU3GkqMd9kygbdP8//1PVYmm++YNH+HLqdD1xQNDPp5usoT1/J6j1XVqaTcV0IebGsAc5iDqSdNFkXsGDM4Uz+cdFqXM0MdDoduvXCIFv/+75J6ZiabeVErUlNxb71wiDb/42ib9wj0LF0OsjU1NbX7NYDQe3DGcO0/Vm3LVWTAbv6ZbAnxTqWGsO9M/7QE/V2+7KMzcsIVZMvUhw9eEtAf0W55fhNGrcEHKS3loqaRZEN0yCyt7+zEOTUhXslul6rqGrX9q1J9XVajOKcj4ie76Ym+Y6g0gplssdiTzVTA0ANb9U31qNLboKMnvKqs9U28Hdo32ZbsMvMD7oHj1ZJa2g1MKMzWsP6punhYv5BeqGlPnxS3Kr0NKq2qsy2TbWBmovql+vqVSmSyITLiXE7de+mwU3rMlaPytPaDA3K7HD1yern5nhOpINvN44fo5vFDIvLcCB/bPgmVlZUpIyPDrt0B8HM9GSuIYv5lzDlpCSFthGx+uM5NTwhoIBtqmSGecmdOGD1YWm0FWvzLRU309enYmf1T9d6XxzRyYOf/RjlpCfryaJX+8NFhSdI5A9M7nBwdLplJEcxki8HBBxlJ8dZEVolMNrtlp3j05dEqHT3h1aFSX2bXyYYedJX5XmqW+poXaTKS3Fp/50W2PMcprynJra+OVetYVZ1VSh5sn0aHwxe8f/2TEg3ISAz53xDALp44l/54+/hILyNkzMqBwfTyRAh1qzbgJz/5iV5++WXr+2uuuUZ9+vTRgAED9PHHH9u2OABA9PMvFw11I1cz4ytcQw/CZWDzSd9nxZUymj98Zia5lZoQb02ky0iKV16EeojEggdmDNdf77pIk07SO9PsGfiXT0skSeNOi2ypqNSS3RPZTLbYKRd1OBwB2WyD+/BhyU7Zqb7/j99WerVtv2/apx1DD6SWgLKpTxRMTTczWw6X1VjDR4LNZJNa3lvOoywMiBq3Thiqpf80UnPHF0R6KejBunVG9cwzzyg/3zeme+PGjfrrX/+q9evXa/r06Vq8eLGtCwQARDf/ctFQl/lcOSpP00f21w8nnhbS5wk3M3h4wusrzUpPjFe8y/cn2vywd1ZeWkizBGNdvMupwn6pJ/03MktEzH/rSPdjk2SVIkdiuqiZDZYQFzuZbFLLcZGbnqBEd2ytPdr1bZ4w+qv3vtJfP/tGDodsG/xkBpRNWVGQ4WU2h991uEKSlOR2KS0h+OzWG8YO0qP/dLYenDE86H0BsEdmsls3nj84rNUQ6H269RekuLjYCrKtW7dO1157raZOnaqCggKdf/75ti4QABDdslPCl8mWm56op39QFNLniIR+qQmKczrU0FxD5f/BMzc9QXuOnKBxtk38ByPEuyLfj02K7HRRbwz2ZJNayvkKKPmxnfmevu+ob6rofZcO06j8DFv23bpssvV06kgwJ5x+2hxk659uT9uDeJdTs86n3QcA9DbdymTLzMzUwYMHJUnr16/XlClTJEmGYTBZFAB6maxWPdlw6lxOR0B5Uh+/D6KTzuynhHinLhkRmQnHPY1/tuW5AzOU5I5sPzapZboo5aJdZ5ZYn9aPIJvd+vpdLPmn0QP0LxcNtW3frTPZ+kRBJpt5UeMfRyolBT9ZFADQu3XrzPLqq6/WrFmzdPrpp+vYsWOaPn26JGnHjh0qLCy0dYEAgOiW5I5TYrxLNfWNIc9k68kGZCRaTcb9P3jeMmGI5owbrDhXbAVBopX/RLFoKBWVfE3fpQgNPqiPvcEHkjT7u4NV32joRjKFbDeyecDKqPwMLbv6bFvL1Fv3ZPPPhI4UM/BX3+jLJO6fFtzQAwBA79atINtPf/pTFRQU6ODBg3rssceUkuJrhlpcXKzbbrvN1gUCAKJfdqpbB4/XRGwkek8wIDNR2uf7unUJFQE2++SktXyoj4ahB5KU0dwbprK2QQ2NTWH9fdc2xGYmW7+0BN03fVikl9EjjRyQrs33TFb/9ASrN6Rd0hPj5XDIGvASFZlsrd5vyWQDAASjW0G2+Ph43X333W3uv/POO4NdDwAgBt35vTP07t6jGlPQJ9JLiVkDMlqyJ6Lhg2dPNTAzSQ6H5HY5dd6gyPdjkxTQgLmspj6s2T1muagnxgYfILTy+ySFZL9xLqfSEuJVXlMvT5xTSVEwtKL1hFM7JosCAHqvbl+eeuGFFzRhwgTl5eXpq6++kiQ9/vjj+uMf/2jb4gAAseH7RQP1/64dJXdcbGXDRJPAIFvkS6h6qv7pCXr8ulF69qYxUTOV0hd48F33DOfwA8MwrHJRT4xlsiF2mRcRslM8UTExufWEUzLZAADB6NYZ1dNPP6277rpL06dPV1lZmTXsICMjQ48//rid6wMAoFfI8wuytf7QB3tdNWqALjqjb6SXEcCculgaxr5s3oYm6+tY68mG2JXR3JctWjJ2W088JZMNABCMbgXZVq1apWeffVYPPPCAXK6Wk7IxY8Zo586dti0OAIDeYkAm5aK9mTn8oLQqfJls3nq/IBvlogiTPs3/11v3QouUZLcrIAub3qIAgGB0K8i2b98+jR49us39Ho9HVVVVQS+qtf379+uWW27RkCFDlJiYqNNOO00PP/yw6uoCT0QPHDigK664QsnJycrOztYdd9zRZhsAAKIRPdl6N3PqYjgnjHqbhx44HVK8K/Jle+gdzIBytLzPORwOK3vY7XJGzboAALGpW4MPhgwZoh07dmjw4MEB97/++usaPny4LQvz9/nnn6upqUnPPPOMCgsL9cknn2j+/PmqqqrSihUrJEmNjY2aMWOG+vbtqy1btujYsWOaM2eODMPQqlWrbF8TAAB2Soh36ewB6frqWJUKspMjvRyEmTlhtKwmfBcHzX5sCfGuqOiNhd4hL8OXKeZ/YSHS+iS7VVxeq/7pCRwLAICgdCvItnjxYt1+++2qra2VYRjaunWrXnzxRT366KN67rnn7F6jLr30Ul166aXW90OHDtUXX3yhp59+2gqybdiwQbt27dLBgweVl5cnSVq5cqXmzp2rpUuXKi0tzfZ1AQBgp9//cJxq65uU4unWn2fEMKtcNIyZbLXNmWz0Y0M4zb2gQOmJ8fqn0QMivRSLmb1GPzYAQLC6dRZ/8803q6GhQffcc4+qq6s1a9YsDRgwQKtWrdKFF15o9xrbVV5erj59+ljfv/feexo5cqQVYJOkadOmyev1avv27Zo8eXK7+/F6vfJ6vdb3FRUVoVs0AACd8MS55KE3Vq+U2RxkC+d00dr65iAbU4ERRlkpHt164dBILyOAGWRjsigAIFjdPquaP3++vvrqKx05ckQlJSXaunWrPvroIxUWFtq5vnbt3btXq1at0oIFC6z7SkpKlJOTE7BdZmam3G63SkpKOtzXsmXLlJ6ebt3y8/NDtm4AAID2ZCb7ykVLq8KYyeZXLgr0ZuZ058F9kiK8EgBArDulIFtZWZluvPFG9e3bV3l5eXriiSfUp08f/exnP1NhYaHef/99Pf/8813e3yOPPCKHw9Hpbdu2bQGPOXz4sC699FJdc801uvXWWwN+1l4PBcMwOu2tcP/996u8vNy6HTx4sMvrBwAAsENLuWj4M9k8BNnQy80bP0T/cdkwzR0/JNJLAQDEuFMqF/2P//gPbdq0SXPmzNH69ev1b//2b1q/fr1qa2v15z//WRMnTjylJ1+4cKGuv/76TrcpKCiwvj58+LAmT56scePG6Re/+EXAdv3799cHH3wQcF9paanq6+vbZLj583g88ng8p7RuAAAAO0ViuqhVLhpPuSh6t76pHv3LRadFehkAgB7glIJsr732mlavXq0pU6botttuU2Fhoc444ww9/vjj3Xry7OxsZWdnd2nbr7/+WpMnT1ZRUZFWr14tpzPwhHDcuHFaunSpiouLlZubK8k3DMHj8aioqKhb6wMAAAgHqydbOKeLNjSXi9IHEAAAwBanFGQ7fPiwRowYIck34TMhIaFNyWYoHD58WJMmTdKgQYO0YsUKffvtt9bP+vfvL0maOnWqRowYodmzZ2v58uU6fvy47r77bs2fP5/JogAAIKqlJzb3ZKuuP2mrC7u0lIuSyQYAAGCHUwqyNTU1KT4+3vre5XIpOTnZ9kW1tmHDBu3Zs0d79uzRwIEDA35mGIa1ltdee0233Xabxo8fr8TERM2aNUsrVqwI+foAAACCkdk83bCuoUk19Y1KcndrAPwp8ZLJBgAAYKtTOoMzDENz5861epjV1tZqwYIFbQJtr776qn0rlDR37lzNnTv3pNsNGjRI69ats/W5AQAAQi3Z7VK8y6H6RkOl1fXhCbLRkw0AAMBWp3QGN2fOnIDvf/CDH9i6GAAAgN7I4XAoI8mtbyu9Kq2q04CMxJA/Z8vgAzLZAAAA7HBKQbbVq1eHah0AAAC9WmZSvL6t9IZtwmhtfXO5KEE2AAAAW1AfAAAAEAUymieMllaHZ8Iogw8AAADsxVkVAABAFMhonjBaVhOmTLaG5nJRBh8AAADYgiAbAABAFMhszmQrqwpXJhvlogAAAHYiyAYAABAFMpJ9mWylYevJxnRRAAAAO3FWBQAAEAWsTLaw9WQjkw0AAMBOBNkAAACiQGaSmckWniCbt7knmyeO00EAAAA7cFYFAAAQBVqmi4anXNRLJhsAAICtCLIBAABEAbNctDzc00XpyQYAAGALzqoAAACiQEaYy0WtwQdxZLIBAADYgSAbAABAFDCDbOU19WpsMkL+fObgAw/logAAALYgyAYAABAFMhJ95aKGIVWEoWTUymSjXBQAAMAWnFUBAABEAXecUymeOEnhKRltCbKRyQYAAGAHgmwAAABRoqUvWxgy2RqYLgoAAGAngmwAAABRwpwwWhbiTLamJkN1ZpAtjtNBAAAAO3BWBQAAECXMTLayEGey1TU2WV+TyQYAAGAPgmwAAABRIqM5ky3UPdmq6xqtrwmyAQAA2IMgGwAAQJTIbM5k2/5VqTbu+kZffnsiJM9T3jy9NNUTJ5fTEZLnAAAA6G3iIr0AAAAA+GSneCRJr39Sotc/KZHDIb199yQNzkq29XnMIFtaYryt+wUAAOjNCLIBAABEiWvGDNT+o1U6UunVRwdKVVXXqL3fnrA9yGYOVkgnyAYAAGAbykUBAACiRG56ov7fdaO09tbzNXpQpqSWrDM7mfs0By0AAAAgeATZAAAAopCZZRaKSaNmkI1MNgAAAPsQZAMAAIhC6c1ZZiHJZKsmkw0AAMBuBNkAAACikJllFoogWxmDDwAAAGxHkA0AACAKZZhBthCWi2Ykum3fNwAAQG9FkA0AACAKhTSTrZqebAAAAHYjyAYAABCFzH5pZSEIslUwXRQAAMB2BNkAAACiUFpIe7LVSSKTDQAAwE4E2QAAAKKQ2S+tLIQ92QiyAQAA2IcgGwAAQBRKby7lrKipl2EYtu6bnmwAAAD2I8gGAAAQhczponWNTaqpb7Rtv7X1jfI2NElqCeQBAAAgeATZAAAAolCS26U4p0OSvX3ZzH25nA6leuJs2y8AAEBvR5ANAAAgCjkcDqucMxRBtrSEODkcDtv2CwAA0NvFXJDN6/Vq1KhRcjgc2rFjR8DPDhw4oCuuuELJycnKzs7WHXfcobq6usgsFAAAIEhmOaedww/MIFtGktu2fQIAAECKuRqBe+65R3l5efr4448D7m9sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVodUCAAB0Xygy2cyAXRpDDwAAAGwVU5lsr7/+ujZs2KAVK1a0+dmGDRu0a9curV27VqNHj9aUKVO0cuVKPfvss6qoqIjAagEAAIJjDj8oD0UmG0E2AAAAW8VMkO2bb77R/Pnz9cILLygpKanNz9977z2NHDlSeXl51n3Tpk2T1+vV9u3bO9yv1+tVRUVFwA0AACAahCaTrS5g3wAAALBHTATZDMPQ3LlztWDBAo0ZM6bdbUpKSpSTkxNwX2Zmptxut0pKSjrc97Jly5Senm7d8vPzbV07AABAd5l908pq7OsxW2H1ZCPIBgAAYKeIBtkeeeQRORyOTm/btm3TqlWrVFFRofvvv7/T/bU3IcswjE4nZ91///0qLy+3bgcPHgz6dQEAANghLRSZbM37IpMNAADAXhEdfLBw4UJdf/31nW5TUFCgJUuW6P3335fH4wn42ZgxY3TjjTdqzZo16t+/vz744IOAn5eWlqq+vr5Nhps/j8fTZr8AAADRwOybForpogTZAAAA7BXRIFt2drays7NPut0TTzyhJUuWWN8fPnxY06ZN08svv6zzzz9fkjRu3DgtXbpUxcXFys3NleQbhuDxeFRUVBSaFwAAABBCoZwuSpANAADAXhENsnXVoEGDAr5PSUmRJJ122mkaOHCgJGnq1KkaMWKEZs+ereXLl+v48eO6++67NX/+fKWlpYV9zQAAAMEy+6bZGWQjkw0AACA0YmLwQVe4XC699tprSkhI0Pjx43Xttddq5syZWrFiRaSXBgAA0C2hyGQrtwYfuG3bJwAAAGIkk621goICGYbR5v5BgwZp3bp1EVgRAACA/UIZZCOTDQAAwF49JpMNAACgp0n3Kxdtamp7gfFUGYbhl8lGkA0AAMBOBNkAAACilJltZhhSpbch6P2d8DaosTlYRyYbAACAvQiyAQAARClPnEuJ8S5JUnl18CWj5mRRT5xTCc37BQAAgD0IsgEAAEQxO/uy0Y8NAAAgdAiyAQAARDGzd1pZTV3Q+6IfGwAAQOgQZAMAAIhiaWSyAQAAxASCbAAAAFEsozkgVmZDTzaCbAAAAKFDkA0AACCK2dmTzQzUpSe6g94XAAAAAhFkAwAAiGJm/zTKRQEAAKIbQTYAAIAoZmWy2VIu6huewOADAAAA+xFkAwAAiGJ2louSyQYAABA6BNkAAACiWHqSr39aWXMWWjBKq3xBNjLZAAAA7EeQDQAAIIq1ZLI1BL2v0mqzXJTBBwAAAHYjyAYAABDFMqyebMFnspnTRTPJZAMAALAdQTYAAIAoltYcZKuotS+TLZNMNgAAANsRZAMAAIhiZrnoCW+DGhqbur2f2vpGeRt8j6cnGwAAgP0IsgEAAESx1IQ46+vKILLZzCy2OKdDKZ64k2wNAACAU0WQDQAAIIrFu5xKdrskSeU19d3eT8tkUbccDoctawMAAEALgmwAAABRrqUvW/eDbGVWPzZKRQEAAEKBIBsAAECUM/uyBZXJVm1mshFkAwAACAWCbAAAAFEuLaE5k60m+J5sGUwWBQAACAmCbAAAAFEuzYZMNspFAQAAQosgGwAAQJRLS/RNAw2mJ5tZLppJJhsAAEBIEGQDAACIcvb0ZKNcFAAAIJQIsgEAAES5lp5swZSLmplslIsCAACEAkE2AACAKEcmGwAAQPQjyAYAABDlzMEHFbXdny5KJhsAAEBoEWQDAACIcnZmsmUmk8kGAAAQCgTZAAAAolxagm+6aGU3g2yNTYYVoMsgkw0AACAkCLIBAABEufSk4DLZKmrqZRi+rzMSyWQDAAAIBYJsAAAAUc6aLlpbL8OMlp0Cs1Q0xRMndxynfwAAAKHAWRYAAECUM3uy1TcaqqlvPOXHl1ZTKgoAABBqBNkAAACiXJLbJZfTIUmqqDn1CaPlNc1DD5IoFQUAAAgVgmwAAABRzuFwtJkwuvwvn2vO81vV0Nh00seXVpHJBgAAEGoE2QAAAGKAOWG0orZeTU2Gnt28T+/s/la7vzlx0seaPdnIZAMAAAidmAqyvfbaazr//POVmJio7OxsXX311QE/P3DggK644golJycrOztbd9xxh+rq6iK0WgAAAPtYmWzV9TpS6VVdgy+D7YT35OWjZfRkAwAACLm4SC+gq1555RXNnz9fjz76qC6++GIZhqGdO3daP29sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVwZUDAAAELy2xZcLowdJq6/4T3vqTPtbMZMsgkw0AACBkYiLI1tDQoEWLFmn58uW65ZZbrPvPPPNM6+sNGzZo165dOnjwoPLy8iRJK1eu1Ny5c7V06VKlpaWFfd0AAAB2SfPvyXa8JchWWdv1TLZMMtkAAABCJibKRT/88EN9/fXXcjqdGj16tHJzczV9+nR9+umn1jbvvfeeRo4caQXYJGnatGnyer3avn17h/v2er2qqKgIuAEAAESbtISWINuB4/6ZbCcPstGTDQAAIPRiIsj25ZdfSpIeeeQRPfjgg1q3bp0yMzM1ceJEHT9+XJJUUlKinJycgMdlZmbK7XarpKSkw30vW7ZM6enp1i0/Pz90LwQAAKCbzJ5sFTUNOni8xrr/RBcy2UrpyQYAABByEQ2yPfLII3I4HJ3etm3bpqYmX2PfBx54QN///vdVVFSk1atXy+Fw6He/+521P4fD0eY5DMNo937T/fffr/Lycut28OBB+18oAABAkNISfV0+ymta92TrSrkomWwAAAChFtGebAsXLtT111/f6TYFBQWqrKyUJI0YMcK63+PxaOjQoTpw4IAkqX///vrggw8CHltaWqr6+vo2GW7+PB6PPB5Pd18CAABAWKT7DT44RLkoAABA1IlokC07O1vZ2dkn3a6oqEgej0dffPGFJkyYIEmqr6/X/v37NXjwYEnSuHHjtHTpUhUXFys3N1eSbxiCx+NRUVFR6F4EAABAGJg92Y6e8Kq4ota6/2TlorX1jaqt91UFZCRTLgoAABAqMTFdNC0tTQsWLNDDDz+s/Px8DR48WMuXL5ckXXPNNZKkqVOnasSIEZo9e7aWL1+u48eP6+6779b8+fOZLAoAAGKemcn2RUmlDKPl/pNlsplZbHFOh1I9MXHqBwAAEJNi5kxr+fLliouL0+zZs1VTU6Pzzz9fb775pjIzMyVJLpdLr732mm677TaNHz9eiYmJmjVrllasWBHhlQMAAAQvrTnIVl3XGHD/SYNsVS1DDzrrUwsAAIDgxEyQLT4+XitWrOg0aDZo0CCtW7cujKsCAAAIDzOTzRTndKihyVDlScpFzaEHGfRjAwAACKmIThcFAABA16QlBF4bLeyXIqkr5aK+TLbMJPqxAQAAhBJBNgAAgBiQ1iqTbXiur+fsyQYfFJfXSJJy0hJCszAAAABIIsgGAAAQE+JdTiW5Xdb3w3NTJZ08k+3A8WpJUn6fpNAtDgAAAATZAAAAYoV/XzYrk83boKYmo6OH6KAZZMskyAYAABBKBNkAAABiRFpC2yCbJFXVdZzNdrDUVy6a3ycxdAsDAAAAQTYAAIBYYWayZSbFKyvZrTinQ5JU5W1sd3vDMHSolEw2AACAcCDIBgAAECPSEn0TRvP7JMnhcCileeLoCW99u9t/e8Kr2vomORxSXgaZbAAAAKFEkA0AACBGmBNGzay0FI8vyFbZwYTRg8d9paK5aQlyx3HaBwAAEEqcbQEAAMSInLQESdJpfZMltQTZOpowapWKMlkUAAAg5OIivQAAAAB0zbzxQ5SV7Nb3zxsoSUo1y0U7zGQjyAYAABAuBNkAAABiRN9Uj269cKj1vVUu2kEmm1kuytADAACA0KNcFAAAIEalJPh6tHWUyXbAymRj6AEAAECoEWQDAACIUSfryXaQnmwAAABhQ5ANAAAgRqV4XJLaD7I1NDapuLxWEuWiAAAA4UCQDQAAIEaleHzlopXtlIsWl9eqscmQO86pfqmecC8NAACg1yHIBgAAEKNSmqeLVrWTyWZOFh2YkSin0xHWdQEAAPRGBNkAAABiVGonPdnoxwYAABBeBNkAAABilJnJ1t500YPHayQxWRQAACBcCLIBAADEKHO6aGVnmWwMPQAAAAgLgmwAAAAxyspk89a3+ZnZk41yUQAAgPAgyAYAABCjrJ5s7ZWLljaXi5LJBgAAEBYE2QAAAGJUSyZbgwzDsO6va2jSt5VeSdKATHqyAQAAhANBNgAAgBiV3JzJVt9oyNvQZN1/vKpOkhTndCgjMT4iawMAAOhtCLIBAADEqGR3nPX1Cb/hB0dP+LLY+iS75XQ6wr4uAACA3oggGwAAQIxyOR1KdrskBfZlM4Ns2SmeiKwLAACgNyLIBgAAEMP8+7KZjp7wlYtmpbgjsiYAAIDeiCAbAABADEvxtBdk82Wy9SWTDQAAIGwIsgEAAMSwlATfYAP/ctFjZrloKkE2AACAcCHIBgAAEMNS281kay4XTaZcFAAAIFwIsgEAAMQws1y0sp1yUQYfAAAAhA9BNgAAgBhmDT6oZfABAABAJBFkAwAAiGEtgw/qrfuOkckGAAAQdgTZAAAAYpgVZGvOZGtqMnSsypfJRpANAAAgfAiyAQAAxDCzXNTsyVZeU6/GJkMS5aIAAADhFDNBtt27d+uqq65Sdna20tLSNH78eL311lsB2xw4cEBXXHGFkpOTlZ2drTvuuEN1dXURWjEAAEDotc5kM4ceZCTFK94VM6d6AAAAMS9mzrxmzJihhoYGvfnmm9q+fbtGjRqlyy+/XCUlJZKkxsZGzZgxQ1VVVdqyZYteeuklvfLKK/r3f//3CK8cAAAgdFKbM9mq6nxBtm+bg2xZyWSxAQAAhFNMBNmOHj2qPXv26L777tM555yj008/Xf/1X/+l6upqffrpp5KkDRs2aNeuXVq7dq1Gjx6tKVOmaOXKlXr22WdVUVER4VcAAAAQGmYmW0WNL8h27AT92AAAACIhJoJsWVlZGj58uH71q1+pqqpKDQ0NeuaZZ5STk6OioiJJ0nvvvaeRI0cqLy/Pety0adPk9Xq1ffv2SC0dAAAgpAZkJkqS9h+tkmEYVrkoQTYAAIDwiov0ArrC4XBo48aNuuqqq5Samiqn06mcnBytX79eGRkZkqSSkhLl5OQEPC4zM1Nut9sqKW2P1+uV1+u1vifrDQAAxJLT+qbI7XKq0tugQ6U1fplslIsCAACEU0Qz2R555BE5HI5Ob9u2bZNhGLrtttvUr18/bd68WVu3btVVV12lyy+/XMXFxdb+HA5Hm+cwDKPd+03Lli1Tenq6dcvPzw/JawUAAAiFeJdThf1SJEm7iiusTLYsMtkAAADCKqKZbAsXLtT111/f6TYFBQV68803tW7dOpWWliotLU2S9NRTT2njxo1as2aN7rvvPvXv318ffPBBwGNLS0tVX1/fJsPN3/3336+77rrL+r6iooJAGwAAiCnDc9O0q7hCuw5X6Cg92QAAACIiokG27OxsZWdnn3S76upqSZLTGZh453Q61dTUJEkaN26cli5dquLiYuXm5kryDUPweDxW37b2eDweeTychAIAgNg1PDdVkvSZXyYb5aIAAADhFRODD8aNG6fMzEzNmTNHH3/8sXbv3q3Fixdr3759mjFjhiRp6tSpGjFihGbPnq2PPvpIb7zxhu6++27Nnz/fyn4DAADoiUbk+s51PiuhXBQAACBSYiLIlp2drfXr1+vEiRO6+OKLNWbMGG3ZskV//OMfde6550qSXC6XXnvtNSUkJGj8+PG69tprNXPmTK1YsSLCqwcAAAit4c1BtoPHa/RNRa0kqS9BNgAAgLCKiemikjRmzBj95S9/6XSbQYMGad26dWFaEQAAQHTITHarf1qCSipqVd9oSJKyKBcFAAAIq5jIZAMAAEDnzL5skpQY71KyJ2aupQIAAPQIBNkAAAB6ALNkVJKyU8liAwAACDeCbAAAAD2Af5AtK5l+bAAAAOFGkA0AAKAHCMhkY+gBAABA2BFkAwAA6AGGZCcrId53apfN0AMAAICwI8gGAADQA7icDp2Z4xt+QCYbAABA+BFkAwAA6CHGnZYtSRrmN2kUAAAA4cFsdwAAgB7i36eeoe+fN0CF/VIivRQAAIBehyAbAABADxHvcur0HLLYAAAAIoFyUQAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA0AAAAAAAAIEkE2AAAAAAAAIEgE2QAAAAAAAIAgEWQDAAAAAAAAgkSQDQAAAAAAAAgSQTYAAAAAAAAgSATZAAAAAAAAgCARZAMAAAAAAACCRJANAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIMVFegHRxjAMSVJFRUWEVwIAAAAAAIBIMuNDZryoMwTZWqmsrJQk5efnR3glAAAAAAAAiAaVlZVKT0/vdBuH0ZVQXC/S1NSkw4cPKzU1VQ6HI9LLAdCBiooK5efn6+DBg0pLS4v0cgB0AcctEHs4boHYwjEL2M8wDFVWViovL09OZ+dd18hka8XpdGrgwIGRXgaALkpLS+MEAogxHLdA7OG4BWILxyxgr5NlsJkYfAAAAAAAAAAEiSAbAAAAAAAAECSCbABiksfj0cMPPyyPxxPppQDoIo5bIPZw3AKxhWMWiCwGHwAAAAAAAABBIpMNAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA1ARDz11FMaMmSIEhISVFRUpM2bN3e6/a9//Wude+65SkpKUm5urm6++WYdO3bM+vmzzz6rCy+8UJmZmcrMzNSUKVO0devWgH00NDTowQcf1JAhQ5SYmKihQ4fqxz/+sZqamkLyGoGexu7j9tVXX9WYMWOUkZGh5ORkjRo1Si+88ELQzwugRSSO22XLluk73/mOUlNT1a9fP82cOVNffPFFSF4f0NNE6m+tadmyZXI4HLrzzjvteklA72IAQJi99NJLRnx8vPHss88au3btMhYtWmQkJycbX331Vbvbb9682XA6ncZ///d/G19++aWxefNm46yzzjJmzpxpbTNr1izjZz/7mfHRRx8Zn332mXHzzTcb6enpxqFDh6xtlixZYmRlZRnr1q0z9u3bZ/zud78zUlJSjMcffzzkrxmIdaE4bt966y3j1VdfNXbt2mXs2bPHePzxxw2Xy2WsX7++288LoEWkjttp06YZq1evNj755BNjx44dxowZM4xBgwYZJ06cCPlrBmJZpI5Z09atW42CggLjnHPOMRYtWhSqlwn0aATZAITd2LFjjQULFgTcN2zYMOO+++5rd/vly5cbQ4cODbjviSeeMAYOHNjhczQ0NBipqanGmjVrrPtmzJhhzJs3L2C7q6++2vjBD35wqi8B6HXCcdwahmGMHj3aePDBB7v9vABaROq4be3IkSOGJOOdd97p4sqB3imSx2xlZaVx+umnGxs3bjQmTpxIkA3oJspFAYRVXV2dtm/frqlTpwbcP3XqVP3f//1fu4+54IILdOjQIf35z3+WYRj65ptv9Pvf/14zZszo8Hmqq6tVX1+vPn36WPdNmDBBb7zxhnbv3i1J+vjjj7VlyxZddtllNrwyoOcKx3FrGIbeeOMNffHFF7rooou6/bwAfCJ13LanvLxckgL+JgMIFOlj9vbbb9eMGTM0ZcoUe14Q0EvFRXoBAHqXo0ePqrGxUTk5OQH35+TkqKSkpN3HXHDBBfr1r3+t6667TrW1tWpoaNCVV16pVatWdfg89913nwYMGBBwonDvvfeqvLxcw4YNk8vlUmNjo5YuXaobbrjBnhcH9FChPG7Ly8s1YMAAeb1euVwuPfXUU7rkkku6/bwAfCJ13LZmGIbuuusuTZgwQSNHjrTnxQE9UCSP2Zdeekkffvih/va3v9n/woBehkw2ABHhcDgCvjcMo819pl27dumOO+7QQw89pO3bt2v9+vXat2+fFixY0O72jz32mF588UW9+uqrSkhIsO5/+eWXtXbtWv3mN7/Rhx9+qDVr1mjFihVas2aNfS8M6MFCcdympqZqx44d+tvf/qalS5fqrrvu0ttvv93t5wUQKFLHrWnhwoX6+9//rhdffNGW1wP0dOE+Zg8ePKhFixZp7dq1AefNALqHTDYAYZWdnS2Xy9XmityRI0faXLkzLVu2TOPHj9fixYslSeecc46Sk5N14YUXasmSJcrNzbW2XbFihR599FH99a9/1TnnnBOwn8WLF+u+++7T9ddfL0k6++yz9dVXX2nZsmWaM2eOnS8T6FFCedw6nU4VFhZKkkaNGqXPPvtMy5Yt06RJk7r1vAB8InXc+vvXf/1X/elPf9KmTZs0cOBAm18h0LNE6pjdvn27jhw5oqKiImu/jY2N2rRpk5588kkr+w1A15DJBiCs3G63ioqKtHHjxoD7N27cqAsuuKDdx1RXV8vpDHy7Mv/YG4Zh3bd8+XL953/+p9avX68xY8Z0eT9NTU3dei1AbxHK47Y1wzDk9Xq7/bwAfCJ13JrfL1y4UK+++qrefPNNDRkypLsvA+g1InXMfu9739POnTu1Y8cO6zZmzBjdeOON2rFjBwE24FSFdcwCABgt48mfe+45Y9euXcadd95pJCcnG/v37zcMwzDuu+8+Y/bs2db2q1evNuLi4oynnnrK2Lt3r7FlyxZjzJgxxtixY61tfvKTnxhut9v4/e9/bxQXF1u3yspKa5s5c+YYAwYMMNatW2fs27fPePXVV43s7GzjnnvuCd+LB2JUKI7bRx991NiwYYOxd+9e47PPPjNWrlxpxMXFGc8++2yXnxdAxyJ13P7whz800tPTjbfffjvgb3J1dXX4XjwQgyJ1zLbGdFGg+wiyAYiIn/3sZ8bgwYMNt9ttnHfeecY777xj/WzOnDnGxIkTA7Z/4oknjBEjRhiJiYlGbm6uceONNxqHDh2yfj548GBDUpvbww8/bG1TUVFhLFq0yBg0aJCRkJBgDB061HjggQcMr9cb6pcL9Ah2H7cPPPCAUVhYaCQkJBiZmZnGuHHjjJdeeumUnhdA5yJx3Lb391iSsXr16lC+VKBHiNTfWn8E2YDucxhGJ3mkAAAAAAAAAE6KnmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAECSCbAAAAAAAAECQCLIBAAAAAAAAQSLIBgAAAAAAAASJIBsAAAAiqq6uToWFhXr33Xdt3e+6des0evRoNTU12bpfAACA9hBkAwAAsNHcuXPlcDja3Pbs2RPppUWtX/ziFxo8eLDGjx9v3edwOPSHP/yhzbZz587VzJkzu7Tfyy+/XA6HQ7/5zW9sWikAAEDHCLIBAADY7NJLL1VxcXHAbciQIW22q6uri8Dqos+qVat06623hmTfN998s1atWhWSfQMAAPgjyAYAAGAzj8ej/v37B9xcLpcmTZqkhQsX6q677lJ2drYuueQSSdKuXbt02WWXKSUlRTk5OZo9e7aOHj1q7a+qqko33XSTUlJSlJubq5UrV2rSpEm68847rW3ay/zKyMjQL3/5S+v7r7/+Wtddd50yMzOVlZWlq666Svv377d+bmaJrVixQrm5ucrKytLtt9+u+vp6axuv16t77rlH+fn58ng8Ov300/Xcc8/JMAwVFhZqxYoVAWv45JNP5HQ6tXfv3nb/rT788EPt2bNHM2bMOMV/ZWn//v3tZg1OmjTJ2ubKK6/U1q1b9eWXX57y/gEAAE4FQTYAAIAwWrNmjeLi4vTuu+/qmWeeUXFxsSZOnKhRo0Zp27ZtWr9+vb755htde+211mMWL16st956S//7v/+rDRs26O2339b27dtP6Xmrq6s1efJkpaSkaNOmTdqyZYtSUlJ06aWXBmTUvfXWW9q7d6/eeustrVmzRr/85S8DAnU33XSTXnrpJT3xxBP67LPP9POf/1wpKSlyOByaN2+eVq9eHfC8zz//vC688EKddtpp7a5r06ZNOuOMM5SWlnZKr0eS8vPzA7IFP/roI2VlZemiiy6ythk8eLD69eunzZs3n/L+AQAATkVcpBcAAADQ06xbt04pKSnW99OnT9fvfvc7SVJhYaEee+wx62cPPfSQzjvvPD366KPWfc8//7zy8/O1e/du5eXl6bnnntOvfvUrK/NtzZo1Gjhw4Cmt6aWXXpLT6dT//M//yOFwSJJWr16tjIwMvf3225o6daokKTMzU08++aRcLpeGDRumGTNm6I033tD8+fO1e/du/fa3v9XGjRs1ZcoUSdLQoUOt57j55pv10EMPaevWrRo7dqzq6+u1du1aLV++vMN17d+/X3l5ee3+7IYbbpDL5Qq4z+v1WllvLpdL/fv3lyTV1tZq5syZGjdunB555JGAxwwYMCAgYw8AACAUCLIBAADYbPLkyXr66aet75OTk62vx4wZE7Dt9u3b9dZbbwUE5Ux79+5VTU2N6urqNG7cOOv+Pn366MwzzzylNW3fvl179uxRampqwP21tbUBpZxnnXVWQGArNzdXO3fulCTt2LFDLpdLEydObPc5cnNzNWPGDD3//PMaO3as1q1bp9raWl1zzTUdrqumpkYJCQnt/uynP/2pFcwz3XvvvWpsbGyz7S233KLKykpt3LhRTmdgsUZiYqKqq6s7XAMAAIAdCLIBAADYLDk5WYWFhR3+zF9TU5OuuOIK/eQnP2mzbW5urv7xj3906TkdDocMwwi4z7+XWlNTk4qKivTrX/+6zWP79u1rfR0fH99mv01NTZJ8waqTufXWWzV79mz99Kc/1erVq3XdddcpKSmpw+2zs7OtIF5r/fv3b/PvmJqaqrKysoD7lixZovXr12vr1q1tgoiSdPz48YDXCAAAEAoE2QAAACLovPPO0yuvvKKCggLFxbU9NSssLFR8fLzef/99DRo0SJJUWlqq3bt3B2SU9e3bV8XFxdb3//jHPwKyt8477zy9/PLL6tevX7f6n0nS2WefraamJr3zzjttMsxMl112mZKTk/X000/r9ddf16ZNmzrd5+jRo/X000/LMAyrjPVUvPLKK/rxj3+s119/vd2+b2am3ujRo0953wAAAKeCwQcAAAARdPvtt+v48eO64YYbrCmYGzZs0Lx589TY2KiUlBTdcsstWrx4sd544w198sknmjt3bpuSyIsvvlhPPvmkPvzwQ23btk0LFiwIyEq78cYblZ2drauuukqbN2/Wvn379M4772jRokU6dOhQl9ZaUFCgOXPmaN68efrDH/6gffv26e2339Zvf/tbaxuXy6W5c+fq/vvvV2FhYUCZa3smT56sqqoqffrpp6fwr+bzySef6KabbtK9996rs846SyUlJSopKdHx48etbd5//315PJ6TrgMAACBYBNkAAAAiKC8vT++++64aGxs1bdo0jRw5UosWLVJ6eroVSFu+fLkuuugiXXnllZoyZYomTJigoqKigP2sXLlS+fn5uuiiizRr1izdfffdAWWaSUlJ2rRpkwYNGqSrr75aw4cP17x581RTU3NKmW1PP/20/vmf/1m33Xabhg0bpvnz56uqqipgm1tuuUV1dXWaN2/eSfeXlZWlq6++ut0y1pPZtm2bqqurtWTJEuXm5lq3q6++2trmxRdf1I033thpySoAAIAdHEbr5h0AAACIepMmTdKoUaP0+OOPR3opbbz77ruaNGmSDh06pJycnJNuv3PnTk2ZMqXdwQzB+PbbbzVs2DBt27ZNQ4YMsW2/AAAA7SGTDQAAALbwer3as2ePfvSjH+naa6/tUoBN8vV6e+yxx7R//35b17Nv3z499dRTBNgAAEBYMPgAAAAAtnjxxRd1yy23aNSoUXrhhRdO6bFz5syxfT1jx47V2LFjbd8vAABAeygXBQAAAAAAAIJEuSgAAAAAAAAQJIJsAAAAAAAAQJAIsgEAAAAAAABBIsgGAAAAAAAABIkgGwAAAAAAABAkgmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAEKT/D6cEChxA6XkvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fs(freq), label='Best fit')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fs.mean[0], label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fs(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the other hand, if we want to fit with a Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_gaussian\n", + "\n", + "fg=fit_gaussian(freq, efstat-(nbin-1),amplitude=max(efstat-(nbin-1)), \n", + " mean=cand_freqs_ef[0], stddev=1/(np.pi*obs_length))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3sElEQVR4nOzdeXhU5d3/8feZmcxMNhLCFiJhUcGFRRFXbAUVFBWVYotLW7Vq1bqVqg/Wx1ZjW7Hyq4qCS7UKilV8qmLdBVxQRGWTfRXCnhCWkHX2Ob8/zsyQEAJJSDJJ5vO6rlwwMyfn3MOSmc987/t7G6ZpmoiIiIiIiEid2eI9ABERERERkdZGQUpERERERKSeFKRERERERETqSUFKRERERESknhSkRERERERE6klBSkREREREpJ4UpEREREREROpJQUpERERERKSeHPEeQEsQDofZsWMH6enpGIYR7+GIiIiIiEicmKZJWVkZOTk52Gy1150UpIAdO3aQm5sb72GIiIiIiEgLsXXrVrp161br4wpSQHp6OmD9YbVr1y7OoxERkebmr/Ty4j/eAOC3916NM8Ud5xGJiEi8lJaWkpubG8sItVGQgth0vnbt2ilIiYgkIL/DiduVDFivBQpSIiJyuCU/ajYhIiIiIiJSTwpSIiIiIiIi9aQgJSIiIiIiUk9aIyUiIiIiR8Q0TYLBIKFQKN5DETksu92Ow+E44m2PFKREREREpMH8fj8FBQVUVlbGeygidZaSkkLXrl1xOp0NPoeClIiIiIg0SDgcJj8/H7vdTk5ODk6n84g/5RdpSqZp4vf72bVrF/n5+fTu3fuQm+4eioKUiIiIiDSI3+8nHA6Tm5tLSkpKvIcjUifJyckkJSWxefNm/H4/bnfDtrxQswkREREROSIN/URfJF4a49+s/tWLiIiIiIjUk4KUiIiIiIhIPSlIiYiIiIi0Ij179mTixIkN/v6pU6eSmZnZaONJVApSIiIiIpJQrr/+egzDqPE1YsSI2DE9e/as8Xi3bt0adL28vDxOPvnken9fbYFnwYIF3HzzzXU6x8FC15VXXsm6devqPR6pTl37RERERCThjBgxgilTplS7z+VyVbv9l7/8hd/+9rex23a7vVnGdjidOnU6ou9PTk4mOTm5kUaTuFSREhEREZFGY5omlf5gs3+ZplmvcbpcLrKzs6t9tW/fvtox6enp1R4/VID58ssvOf3000lNTSUzM5Ozzz6bzZs3M3XqVB5++GGWLl0aq2xNnToVgCeeeIL+/fuTmppKbm4ut912G+Xl5bHz/eY3v6GkpCT2fXl5eUDNKlNeXh7du3fH5XKRk5PDXXfdBcDQoUPZvHkzf/jDH2LngINXut577z1OPfVU3G43HTt2ZPTo0bHHnn32WXr37o3b7aZLly78/Oc/r9efdVulipSIiIiINBpPIMSJD37a7Ndd9ZcLSXHG561tMBhk1KhR/Pa3v+WNN97A7/czf/58DMPgyiuvZMWKFXzyySfMnj0bgIyMDMBqwf3000/Ts2dP8vPzue222xg3bhzPPvssgwcPZuLEiTz44IOsXbsWgLS0tBrXfuutt3jyySeZPn06ffv2pbCwkKVLlwLwzjvvcNJJJ3HzzTdXq6wd6MMPP2T06NE88MADTJs2Db/fz4cffgjAwoULueuuu5g2bRqDBw9m7969fP31143659daKUiJiIiISML54IMPagST++67jz//+c/Vbv/pT3+K3R4/fnys2lNVaWkpJSUljBw5kmOOOQaAE044IfZ4WloaDoeD7Ozsat83duzY2O979erFX//6V373u9/x7LPP4nQ6ycjIwDCMGt9X1ZYtW8jOzmbYsGEkJSXRvXt3Tj/9dACysrKw2+2xylptHnnkEa666ioefvjh2H0nnXRS7PypqamMHDmS9PR0evTowcCBA2s9VyJRkBIREQEwTQiUW7+KSIMlJ9lZ9ZcL43Ld+jj33HN57rnnqt2XlZVV7fb//M//cP3118dud+zY8aDnysrK4vrrr+fCCy9k+PDhDBs2jDFjxtC1a9dDjuGLL75g/PjxrFq1itLSUoLBIF6vl4qKClJTU+v0PH7xi18wceJEjj76aEaMGMHFF1/MpZdeisNR97f5S5YsqbViNXz4cHr06BE7/4gRI/jZz35GSkpKnc/fVmmNlIiICEDxRihYCqvejfdIRFo1wzBIcTqa/Su6/qeuUlNTOfbYY6t9HRikOnbsWO3xQ7UMnzJlCt9++y2DBw/mzTffpE+fPnz33Xe1Hr9582Yuvvhi+vXrx9tvv82iRYt45plnAAgEAnV+Hrm5uaxdu5ZnnnmG5ORkbrvtNs4555x6neNQjSfS09NZvHgxb7zxBl27duXBBx/kpJNOYt++fXU+f1ulICUiIhL0QHmR9ftN38R3LCLSag0cOJD777+fefPm0a9fP15//XUAnE4noVCo2rELFy4kGAzy+OOPc+aZZ9KnTx927NhR7ZiDfd/BJCcnc9lll/H000/z5Zdf8u2337J8+fI6n2PAgAF89tlntT7ucDgYNmwYEyZMYNmyZWzatInPP//8sONq6zS1T0REZP1nYEbeaOxeE9+xiEiz8Pl8FBYWVrvP4XDUOn3vUPLz83nhhRe47LLLyMnJYe3ataxbt45rr70WINZMYsmSJXTr1o309HSOOeYYgsEgkyZN4tJLL+Wbb77h+eefr3benj17Ul5ezmeffcZJJ51ESkpKjSl1U6dOJRQKccYZZ5CSksK0adNITk6mR48esXN89dVXXHXVVbhcroM+v4ceeojzzz+fY445hquuuopgMMjHH3/MuHHj+OCDD9i4cSPnnHMO7du356OPPiIcDnPcccfV+8+prVFFSkREZNWM/b/fuQbC4fiNRUSaxSeffELXrl2rff3kJz9p0LlSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954g5NPPpknnniCxx57jH79+vHvf/+bRx99tNp5Bw8ezK233sqVV15Jp06dmDBhQo1rZ2Zm8uKLL3L22WfHKkvvv/8+HTp0AKy9sDZt2sQxxxxTa/v2oUOH8p///If33nuPk08+mfPOO4/vv/8+dv533nmH8847jxNOOIHnn3+eN954g759+zboz6otMcz6Nt1vg0pLS8nIyKCkpIR27drFezgiItKcvCX4xx/HMxsvAOD2nu/jvHsxZPWK88BEWj6v10t+fj69evXC7XbHezgidXaof7t1zQaqSImISGJbPwvCPkhKBmekS9bOlfEdk4iItHgKUiIiktj2bbZ+dbWDJAUpERGpGzWbEBGRhGZGuvWZtiQMe5J1Z5GClIiIHJoqUiIiktB27tgCwI6yIOWmM3KngpSIiByagpSIiCS0QMlOADwhO2v3Rrr17d0I/so4jkpERFq6uAapnj17YhhGja/bb78dANM0ycvLIycnh+TkZIYOHcrKldU/JfT5fNx555107NiR1NRULrvsMrZt2xaPpyMiIq2Q07cbgKDhIICDClsmmGHYsz6+AxMRkRYtrkFqwYIFFBQUxL5mzZoFwC9+8QsAJkyYwBNPPMHkyZNZsGAB2dnZDB8+nLKystg5xo4dy4wZM5g+fTpz586lvLyckSNH1mkXaBERkRT/XgBcLqv97W4yrAcqdsdrSCIi0grENUh16tSJ7Ozs2NcHH3zAMcccw5AhQzBNk4kTJ/LAAw8wevRo+vXrxyuvvEJlZSWvv/46ACUlJbz00ks8/vjjDBs2jIEDB/Laa6+xfPlyZs+eHc+nJiIirUHQT7ppfTiXnpoCQFEw2XrMUxyvUYmISCvQYtZI+f1+XnvtNW644QYMwyA/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIiknjCkY59AdNOeoobu81gr5lmPVi5N44jE5FEkpeXR5cuXTAMg3fffZfrr7+eUaNGxXtYchgtJki9++677Nu3j+uvvx6AwsJCALp06VLtuC5dusQeKywsxOl00r59+1qPOZhHH32UjIyM2Fdubm4jPhMREWkt9u3aDsBe2uG020lzOiiJBimPgpRIW3X99ddXW5/foUMHRowYwbJlyxrtGnl5eZx88smHPW716tU8/PDD/POf/6SgoICLLrqIp556iqlTp8aOGTp0KGPHjm20sUnjaDFB6qWXXuKiiy4iJyen2v2GYVS7bZpmjfsOdLhj7r//fkpKSmJfW7dubfjARUSk1dpbZAWpEiMDw4BUl4N9RDblVUVKpE0bMWJEbJ3+Z599hsPhYOTIkc0+jg0bNgBw+eWXk52djcvlIiMjg8zMzGYfi9RPiwhSmzdvZvbs2dx0002x+7KzswFqVJaKiopiVars7Gz8fj/FxcW1HnMwLpeLdu3aVfsSEZHEU7HHClKepCzAClLFqCIlkghcLldsnf7JJ5/Mfffdx9atW9m1a1fsmO3bt3PllVfSvn17OnTowOWXX86mTZtij3/55ZecfvrppKamkpmZydlnn83mzZuZOnUqDz/8MEuXLo1VvapWmKLy8vK49NJLAbDZbLFCQNWpfddffz1z5szhqaeeip2r6hgkflpEkJoyZQqdO3fmkksuid3Xq1cvsrOzY538wFpHNWfOHAYPHgzAoEGDSEpKqnZMQUEBK1asiB0jIiJSG+8+68O6QHIHAFJddkoiQSqsipRIw5gm+Cua/8s0Gzzk8vJy/v3vf3PsscfSoYP186CyspJzzz2XtLQ0vvrqK+bOnUtaWhojRozA7/cTDAYZNWoUQ4YMYdmyZXz77bfcfPPNGIbBlVdeyT333EPfvn1jVa8rr7yyxnXvvfdepkyZAhA77kBPPfUUZ511Fr/97W9jx2hZSsvgiPcAwuEwU6ZM4brrrsPh2D8cwzAYO3Ys48ePp3fv3vTu3Zvx48eTkpLCNddcA0BGRgY33ngj99xzDx06dCArK4t7772X/v37M2zYsHg9JRERaSXCZdZmvGZqJygBt8OO17Dan/tKd5Ecz8GJtFaBShifc/jjGtv/7gBnap0P/+CDD0hLsz44qaiooGvXrnzwwQfYbFadYfr06dhsNv71r3/FKkVTpkwhMzOTL7/8klNPPZWSkhJGjhzJMcccA8AJJ5wQO39aWhoOhyM2y+pg0tLSYlP4ajsuIyMDp9NJSkrKIc8lzS/uQWr27Nls2bKFG264ocZj48aNw+PxcNttt1FcXMwZZ5zBzJkzSU9Pjx3z5JNP4nA4GDNmDB6Ph/PPP5+pU6dit9ub82mIiEgrZKu09oqyp3eO3edM6wBetEZKpI0799xzee655wDYu3cvzz77LBdddBHz58+nR48eLFq0iB9//LHa+04Ar9fLhg0buOCCC7j++uu58MILGT58OMOGDWPMmDF07do1Hk9H4iDuQeqCCy7ArKUUaxgGeXl55OXl1fr9brebSZMmMWnSpCYaoYiItFUu3x4AkjP3r6u1p2aBFxy+fXEalUgrl5RiVYficd16SE1N5dhjj43dHjRoEBkZGbz44ov87W9/IxwOM2jQIP7973/X+N5OnToBVoXqrrvu4pNPPuHNN9/kT3/6E7NmzeLMM888sucirULcg5SIiEi8pAetIJXe8SjAWpvgTO8AeyApWA6hANiT4jhCkVbIMOo1xa6lMAwDm82Gx+MB4JRTTuHNN9+kc+fOh2xMNnDgQAYOHMj999/PWWedxeuvv86ZZ56J0+kkFAo1ytga81zSeFpEswkREZHmVuYNkGWWAJDV6ajY/clpWYTNyBYanuKDfauItAE+n4/CwkIKCwtZvXo1d955J+Xl5bEuer/85S/p2LEjl19+OV9//TX5+fnMmTOH3//+92zbto38/Hzuv/9+vv32WzZv3szMmTNZt25dbJ1Uz549yc/PZ8mSJezevRufz9fgsfbs2ZPvv/+eTZs2sXv3bsLhcKP8GciRUZASEZGEtLO4jPZGOQAp7fdP7evQLpkS7SUl0uZ98skndO3ala5du3LGGWewYMEC/vOf/zB06FAAUlJS+Oqrr+jevTujR4/mhBNO4IYbbsDj8dCuXTtSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954o8Fjvffee7Hb7Zx44ol06tSJLVu2NMYfgRwhw6xtgVICKS0tJSMjg5KSEu0pJSKSIJavXk3/N88kiI3wvdt55tHXAOh68Xmc/uklHG0rhN98DD20nYZIbbxeL/n5+fTq1Qu32x3v4YjU2aH+7dY1G6giJSIiCSlYZnXsKzXagW3/y2HHVCf7opvyqiIlIiK1UJASEZGE5K+w1kd5bNUXxXdIdVFsRtodexSkRETk4BSkREQkIYW8VpDyHRCkstL2V6RMVaRERKQWClIiIpKQQpVWkPI7agapYtMKUr7S3c0+LhERaR0UpEREJCGFvWUABBxp1e532e1UOjIA8JUpSImIyMEpSImISEIy/KUABJPSajwWcmVav5bvac4hiYhIK6IgJSIiiclnVaRCzvQaD4WTswCtkRIRkdopSImISEKy+63NeM2DVKRskSBl9ypIiYjIwSlIiYhIQrIHrYoU7poVqaR2Haxf/fuacUQiItKaKEiJiEhCSgpUAGBz19y13pXe0fo1WNqsYxIRaQwvvPACubm52Gw2Jk6cGO/htFkKUiIikpCcoWiQyqjxWHpGewAcZhCC/mYdl4g0j8LCQu68806OPvpoXC4Xubm5XHrppXz22WfxHtpBTZ06lczMzMMeV1payh133MF9993H9u3bufnmm5t+cAnKEe8BiIiIxIMrEqTsyTUrUpntMvff8JeDI6uZRiUizWHTpk2cffbZZGZmMmHCBAYMGEAgEODTTz/l9ttvZ82aNQ06byAQICkpqc73N4UtW7YQCAS45JJL6Nq160GPac7xtGWqSImISEJyh60glZRasyKV1S4Vj+m0bkS6+4lI23HbbbdhGAbz58/n5z//OX369KFv377cfffdfPfdd7HjtmzZwuWXX05aWhrt2rVjzJgx7Ny5M/Z4Xl4eJ598Mi+//HKssmWaJoZh8Pzzz3P55ZeTmprK3/72NwDef/99Bg0ahNvt5uijj+bhhx8mGAzGzrdv3z5uvvlmunTpgtvtpl+/fnzwwQd8+eWX/OY3v6GkpATDMDAMg7y8vBrPa+rUqfTv3x+Ao48+GsMw2LRpU63jLCkp4eabb6Zz5860a9eO8847j6VLl1Y759///ne6dOlCeno6N954I3/84x85+eSTY48PHTqUsWPHVvueUaNGcf3118du+/1+xo0bx1FHHUVqaipnnHEGX375ZbVxZ2Zm8umnn3LCCSeQlpbGiBEjKCgoqHbel19+mb59++JyuejatSt33HEHADfccAMjR46sdmwwGCQ7O5uXX365xp9TY1GQEhGRhJRiVgLgTMms8VjHNCcVuK0bke5+IlJHpgl+f/N/mWadhrd3714++eQTbr/9dlJTU2s8Hp0+Z5omo0aNYu/evcyZM4dZs2axYcMGrrzyymrH//jjj/zf//0fb7/9NkuWLInd/9BDD3H55ZezfPlybrjhBj799FN+9atfcdddd7Fq1Sr++c9/MnXqVB555BEAwuEwF110EfPmzeO1115j1apV/P3vf8dutzN48GAmTpxIu3btKCgooKCggHvvvbfG2K+88kpmz54NwPz58ykoKCA3N7fWcV5yySUUFhby0UcfsWjRIk455RTOP/989u61Opb+3//9Hw899BCPPPIICxcupGvXrjz77LN1+nOu6je/+Q3ffPMN06dPZ9myZfziF79gxIgRrF+/PnZMZWUl//jHP5g2bRpfffUVW7ZsqfYcn3vuOW6//XZuvvlmli9fznvvvcexxx4LwE033cQnn3xSLXh99NFHlJeXM2bMmHqPt640tU9ERBJSqlkJBrhTM2s8lpXqpMR009EoJVBZiibAiNRDIADjxzf/df/3f8HpPOxhP/74I6Zpcvzxxx/yuNmzZ7Ns2TLy8/NjYWTatGn07duXBQsWcNpppwFWtWXatGl06tSp2vdfc8013HDDDbHbv/71r/njH//IddddB1gVo7/+9a+MGzeOhx56iNmzZzN//nxWr15Nnz59YsdEZWRkYBgG2dnZtY45OTmZDh2srqOdOnWqduyB4/z8889Zvnw5RUVFuFwuAP7xj3/w7rvv8tZbb3HzzTczceJEbrjhBm666SYA/va3vzF79my8Xu8h/+yq2rBhA2+88Qbbtm0jJycHgHvvvZdPPvmEKVOmMD7ybyUQCPD8889zzDHHAHDHHXfwl7/8JXaev/3tb9xzzz38/ve/j90X/TsYPHgwxx13HNOmTWPcuHEATJkyhV/84hekpdXc4qKxKEiJiEjCCQf8JBtWEwl3+kGaTbiT2EEyABXl+8hszsGJSJMyI5UrwzAOedzq1avJzc2NhSiAE088kczMTFavXh17E9+jR48aIQrg1FNPrXZ70aJFLFiwIFaBAgiFQni9XiorK1myZAndunWLhajGduA4Fy1aRHl5eSx4RXk8HjZs2ABYfwa33nprtcfPOussvvjiizpfd/HixZimWeN5+Xy+atdOSUmJhSiArl27UlRUBEBRURE7duzg/PPPr/U6N910Ey+88ALjxo2jqKiIDz/8sMkbhyhIiYhIwqko30d096jU9PYQrv643WbgtVlBylNeoiAlUh9JSVZ1KB7XrYPevXtjGAarV69m1KhRtR4XXet0uPsPNj3wYPeHw2EefvhhRo8eXeNYt9tNcnJyncbfUAcbT9euXautVYqqS3fAKJvNFgunUYFAoNp17HY7ixYtwm63VzuuarXowOYXhmHEzluXP5trr72WP/7xj3z77bd8++239OzZk5/+9Kd1fh4NoSAlIiIJxxsJUh7TidvlIuDx1TjGb0+BEPgqtJeUSL0YRp2m2MVLVlYWF154Ic888wx33XVXjYCxb98+MjMzOfHEE9myZQtbt26NVaVWrVpFSUkJJ5xwQr2ve8opp7B27drYup4DDRgwgG3btrFu3bqDVqWcTiehUKje1z3UeAoLC3E4HPTs2fOgx5xwwgl89913XHvttbH7qjbjAGsKYdW1SaFQiBUrVnDuuecCMHDgQEKhEEVFRQ0ONunp6fTs2ZPPPvssdt4DdejQgVGjRjFlyhS+/fZbfvOb3zToWvWhZhMiIpJwvOX7AKgwkmud3hOwW2+ufBUlzTUsEWkmzz77LKFQiNNPP523336b9evXs3r1ap5++mnOOussAIYNG8aAAQP45S9/yeLFi5k/fz7XXnstQ4YMqTFtry4efPBBXn31VfLy8li5ciWrV6/mzTff5E9/+hMAQ4YM4ZxzzuGKK65g1qxZ5Ofn8/HHH/PJJ58A0LNnT8rLy/nss8/YvXs3lZWVR/RnMGzYMM466yxGjRrFp59+yqZNm5g3bx5/+tOfWLhwIQC///3vefnll3n55ZdZt24dDz30ECtXrqx2nvPOO48PP/yQDz/8kDVr1nDbbbexb9++2ON9+vThl7/8Jddeey3vvPMO+fn5LFiwgMcee4yPPvqozuPNy8vj8ccf5+mnn2b9+vUsXryYSZMmVTvmpptu4pVXXmH16tWxtWhNSUFKREQSjr9iHwCVRkqtx4STrMcCHrU/F2lrevXqxeLFizn33HO555576NevH8OHD+ezzz7jueeeA6ypZe+++y7t27fnnHPOYdiwYRx99NG8+eabDbrmhRdeyAcffMCsWbM47bTTOPPMM3niiSfo0aNH7Ji3336b0047jauvvpoTTzyRcePGxapQgwcP5tZbb+XKK6+kU6dOTJgw4Yj+DAzD4KOPPuKcc87hhhtuoE+fPlx11VVs2rSJLl26AFYXwAcffJD77ruPQYMGsXnzZn73u99VO88NN9zAddddFwuZvXr1qlE1mjJlCtdeey333HMPxx13HJdddhnff/99tfVnh3PdddcxceJEnn32Wfr27cvIkSOrdf0DKxx27dqVCy+8MNbYoikZ5oGTGhNQaWkpGRkZlJSU0K5dzY0ZRUSkbVk95z+c8MVNrLUdw3EPLsZf6eWZR14F4PYHrsWZ4uaLp27g3OK3WdrzBk66/sk4j1ikZfJ6veTn59OrVy/cbne8hyPNIC8vj3fffbdaq/eWorKykpycHF5++eWDrkWr6lD/duuaDbRGSkREEk7QY6178tprb4trOK3HTK8qUiIiLVk4HKawsJDHH3+cjIwMLrvssma5roKUiIgknJDHWvfktx+82xaAzW319TO1Ia+ISIu2ZcsWevXqRbdu3Zg6dSoOR/NEHAUpERFJONEqU8BRe5CyR4KU4a9oljGJiLQGeXl55OXlxXsY1fTs2bNGC/bmoGYTIiKSeHzW1L6go/apfUnJ1rx4e1AVKRERqUlBSkREEo/PqkiFnLUHKVeqFaSSgkfWYlhERNomBSkREUk49oAVpExneq3HuFMzAHCGFKRERKQmBSkREUk49oA1Xc901d7WNiXdClJuU0FKRERqUpASEZGE44gEKZu79iCVmt4egBTTQzic8FsuiojIARSkREQk4TiDVic+4xBBKq1dJgApeCnzBptjWCIi0oooSImISMJxhawg5UiuPUg5k631U04jxL5ybcorkiiGDh3K2LFj6/19hYWFDB8+nNTUVDIzMxt9XNLyKEiJiEjCcYetIJWUUnuQokpHv7KSfU08IhFpTtdffz2GYdT4+vHHH3nnnXf461//Gju2Z8+eTJw48bDnfPLJJykoKGDJkiWsW7euCUcvLYU25BURkYTjNj0AJKVk1H6Q3YEXF258VJTta56BiUizGTFiBFOmTKl2X6dOnbDb7Q0634YNGxg0aBC9e/eu9ZhAIEBSUlKDzi8tjypSIiKSWEwTF34AklNq30cKwGdLBqBSQUqkzXG5XGRnZ1f7stvt1ab2DR06lM2bN/OHP/whVrU6mJ49e/L222/z6quvYhgG119/PQCGYfD8889z+eWXk5qayt/+9jcA3n//fQYNGoTb7eboo4/m4YcfJhjcvxZz/fr1nHPOObjdbk488URmzZqFYRi8++67AHz55ZcYhsG+ffti37NkyRIMw2DTpk2x++bNm8c555xDcnIyubm53HXXXVRUVFQb9/jx47nhhhtIT0+ne/fuvPDCC9We27Zt27jqqqvIysoiNTWVU089le+//55NmzZhs9lYuHBhteMnTZpEjx49MM2236RHQUpERBJLyI+dMADuwwUpewoA3oqSJh+WSFthmib+YLjZv5rijfs777xDt27d+Mtf/kJBQQEFBQUHPW7BggWMGDGCMWPGUFBQwFNPPRV77KGHHuLyyy9n+fLl3HDDDXz66af86le/4q677mLVqlX885//ZOrUqTzyyCMAhMNhRo8ejd1u57vvvuP555/nvvvuq/fYly9fzoUXXsjo0aNZtmwZb775JnPnzuWOO+6odtzjjz/Oqaeeyg8//MBtt93G7373O9asWQNAeXk5Q4YMYceOHbz33nssXbqUcePGEQ6H6dmzJ8OGDatR1ZsyZUps6mRbp6l9IiKSUEx/JdGX95TU2jfkBQjaUyAAvko1mxCpq0DI5Jkvfmz2695+7rE4HXV/8/7BBx+Qlrb/w5SLLrqI//znP9WOycrKwm63k56eTnZ2dq3n6tSpEy6Xi+Tk5BrHXXPNNdxwww2x27/+9a/54x//yHXXXQfA0UcfzV//+lfGjRvHQw89xOzZs1m9ejWbNm2iW7duAIwfP56LLrqozs8N4P/9v//HNddcE6uu9e7dm6effpohQ4bw3HPP4Xa7Abj44ou57bbbALjvvvt48skn+fLLLzn++ON5/fXX2bVrFwsWLCArKwuAY489NnaNm266iVtvvZUnnngCl8vF0qVLWbJkCe+88069xtpaKUiJiEhC8XnKcQMB005qSvIhjw0lpYIXApWlzTM4EWk25557Ls8991zsdmpqapNc59RTT612e9GiRSxYsCBWgQIIhUJ4vV4qKytZvXo13bt3j4UogLPOOqve1120aBE//vgj//73v2P3maZJOBwmPz+fE044AYABAwbEHjcMg+zsbIqKigBruuDAgQNjIepAo0aN4o477mDGjBlcddVVvPzyy5x77rn07Nmz3uNtjRSkREQkoVRWWkHKg5O0pEMvKjeTrE+rg14FKZG6SrIb3H7usYc/sAmuWx+pqanVqitN5cCAFg6Hefjhhxk9enSNY91u90GnKB44Tc5ms1bnVD02EAjUuM4tt9zCXXfdVeN83bt3j/3+wOYXhmEQDlvTn5OTD/1hk9Pp5Ne//jVTpkxh9OjRvP7663XqcNhWKEiJiEhC8VZY0/R8uGhnO8wbL5cVpExveVMPS6TNMAyjXlPsWjqn00koFGq0851yyimsXbu21hB34oknsmXLFnbs2EFOTg4A3377bbVjOnXqBEBBQQHt27cHrOrRgddZuXLlEYXFAQMG8K9//Yu9e/fWWpW66aab6NevH88++yyBQOCgAbGtUrMJERFJKD6P1bHKZ7gOf3BkLymbX0FKJFH17NmTr776iu3bt7N79+4jPt+DDz7Iq6++Sl5eHitXrmT16tW8+eab/OlPfwJg2LBhHHfccVx77bUsXbqUr7/+mgceeKDaOY499lhyc3PJy8tj3bp1fPjhhzz++OPVjrnvvvv49ttvuf3221myZAnr16/nvffe484776zzWK+++mqys7MZNWoU33zzDRs3buTtt9+uFuxOOOEEzjzzTO677z6uvvrqw1ax2hIFKRERSSg+jxWK/HUJUi6rGUVSqLIphyQiLdhf/vIXNm3axDHHHBOrBB2JCy+8kA8++IBZs2Zx2mmnceaZZ/LEE0/Qo0cPwJq2N2PGDHw+H6effjo33XRTtfVUYE3He+ONN1izZg0nnXQSjz32WKy1etSAAQOYM2cO69ev56c//SkDBw7kz3/+M127dq3zWJ1OJzNnzqRz585cfPHF9O/fn7///e819tq68cYb8fv91ZpqJIK4T+3bvn079913Hx9//DEej4c+ffrw0ksvMWjQIMCa+/nwww/zwgsvUFxczBlnnMEzzzxD3759Y+fw+Xzce++9vPHGG3g8Hs4//3yeffbZaov0REREAAKRaXoBm/uwxxpOa22DgpRI2zJ16tRaH/vyyy+r3T7zzDNZunTpYc8Z3eOpqtpasl944YVceOGFtZ6rT58+fP3114e83tlnn82yZcsOeb3TTjuNmTNn1nqOqntORR04RbBHjx689dZbhxxLQUEB/fr147TTTjvkcW1NXCtSxcXFnH322SQlJfHxxx+zatUqHn/8cTIzM2PHTJgwgSeeeILJkyezYMECsrOzGT58OGVl+1vRjh07lhkzZjB9+nTmzp1LeXk5I0eObNT5rCIi0jYEvFYoCtgPH6Rsbqsi5VSQEhGpoby8nAULFjBp0qSDNrVo6+JakXrsscfIzc2ttpFX1XaJpmkyceJEHnjggdjCtVdeeYUuXbrw+uuvc8stt1BSUsJLL73EtGnTGDZsGACvvfYaubm5zJ49+5BpX0REEk/QZ62RCtUjSLnCClIiIge64447eOONNxg1alTCTeuDOFek3nvvPU499VR+8Ytf0LlzZwYOHMiLL74Yezw/P5/CwkIuuOCC2H0ul4shQ4Ywb948wOqRHwgEqh2Tk5NDv379YseIiIhEhWJB6vALoh3J7QBwK0iJSJyZpsmoUaPiPYxqpk6dis/n480336yxbioRxDVIbdy4keeee47evXvz6aefcuutt3LXXXfx6quvAlBYWAhAly5dqn1fly5dYo8VFhbidDpjrR8PdsyBfD4fpaWl1b5ERCQxhH1WKDIdhw9SSW6ra5/T9DXpmEREpPWJ69S+cDjMqaeeyvjx4wEYOHAgK1eu5LnnnuPaa6+NHXfgJmSmada470CHOubRRx/l4YcfPsLRi4hIa2QGPNavdQpSVrMJNz4CoTBJdjW7FRERS1xfEbp27cqJJ55Y7b4TTjiBLVu2AJCdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZgD3X///ZSUlMS+tm7d2ijPR0REWj7TH5mml1SHIJVsVaSS8eEJqIGRSG1q604n0lI1xr/ZuAaps88+m7Vr11a7b926dbE++r169SI7O5tZs2bFHvf7/cyZM4fBgwcDMGjQIJKSkqodU1BQwIoVK2LHHMjlctGuXbtqXyIikhiMSEXKcKYc9tgkt3VMsuHH61eQEjlQUlISAJWVWkcorUv032z033BDxHVq3x/+8AcGDx7M+PHjGTNmDPPnz+eFF17ghRdeAKwpfWPHjmX8+PH07t2b3r17M378eFJSUrjmmmsAyMjI4MYbb+See+6hQ4cOZGVlce+999K/f/9YFz8REZEoI2gFKVsdgpThtCpSKXjZp4qUSA12u53MzEyKiooASElJOezyC5F4Mk2TyspKioqKyMzMPKImGXENUqeddhozZszg/vvv5y9/+Qu9evVi4sSJ/PKXv4wdM27cODweD7fddltsQ96ZM2eSnp4eO+bJJ5/E4XAwZsyY2Ia8U6dOTcjuISIicmi2UCRIuQ4fpKLT/9z48QbCTTkskVYruhQjGqZEWoPMzMzYv92GimuQAhg5ciQjR46s9XHDMMjLyyMvL6/WY9xuN5MmTWLSpElNMEIREWlL7EGv9asz9fAHJ1lhy2UE8fh8QPqhjxdJQIZh0LVrVzp37kwgEIj3cEQOKykpqVEKLnEPUiIiIs3JEbaCVLQj3yEl7a9a+SvLgY5NNCqR1s9ut2s2kCQU9XEVEZGEsj9I1WFqn8NFGGu9R8Bb3pTDEhGRVkZBSkREEoozEqSckdbmh2QY+Aw3AAFvRVMOS0REWhkFKRERSShO0weAK6UOQQrwGy5AFSkREalOQUpERBKGPxjGjRWk3HWpSAF+m9W5L+RTRUpERPZTkBIRkYRR6Q+SjB8Adx0rUkGbVZEKK0iJiEgVClIiIpIwKvwhkiMVqTp17QOC9mhFqrLJxiUiIq2PgpSIiCSMCq8ftxHZ5yapDl372B+kTL8qUiIisp+ClIiIJIzKiioNI5KS6/Q9YUfkuICnCUYkIiKtlYKUiIgkDG9llSDlqG+Q0tQ+ERHZT0FKREQSRjRI+XCCrW4vgWZkCqChipSIiFShICUiIgkjuheUP9KJry7MyBRAW1AVKRER2U9BSkREEobfYzWMCBjuun9TpCJlC6oiJSIi+ylIiYhIwghE9oIK2usepIxIkLKHFKRERGQ/BSkREUkYQa8VpEL1CFI2l7XflCPkbZIxiYhI66QgJSIiCSO6qW7IXreOfQA2l1WRcqgiJSIiVShIiYhIwgj7rSAVdtS9ImWPVKSSwqpIiYjIfgpSIiKSMKJBKtrSvC4ckSDlVJASEZEqFKRERCRh2KKb6ibVfWpfkjsNAJfpa4ohiYhIK6UgJSIiCcOItjCvR0UqyW1VpFx4MU2zKYYlIiKtkIKUiIgkDFukYYRRnyCVnA5AMj4CIQUpERGxKEiJiEjCsAetdU7RTnx14Uq2KlLJ+PAEQk0yLhERaX0UpEREJGE4Ig0jbM56NJtwR4OUH6+ClIiIRChIiYhIwohuqmuvR5AynFaQSjF8eHyBJhmXiIi0PgpSIiKSMKJ7QdkjVaa6fdP+0OX1VDb2kEREpJVSkBIRkYThjLQwT3LVJ0jtb5Xu95Q19pBERKSVUpASEZGE4A+GcRMJUvWpSNns+HACEPBUNMXQRESkFVKQEhGRhOAJhPYHqeR6BCnAZ7gACPjKG31cIiLSOilIiYhIQvAGQiTjB8BRj/bnAH7DDUDQq4qUiIhYFKRERCQhePwhkiMVKSOpfhUpv01BSkREqlOQEhGRhOAJhEg2rIpU1QYSdRGIBKmQX0FKREQsClIiIpIQrDVSDQtSIbsVpEyfgpSIiFgUpEREJCF4fMHY1L6qe0PVRdBuBa+QT/tIiYiIRUFKREQSgtfrxWGErRv1rEiFHdbxZkAVKRERsShIiYhIQvBXbRRRz4pUOHq839OIIxIRkdZMQUpERBJCILK+KYQN7En1+l4zUpEyApraJyIiFgUpERFJCKFIRcpvc4Nh1O+bo1MBg95GHpWIiLRWClIiIpIQgpGKVCCyuW59GJGpfbagKlIiImJRkBIRkYQQjHTcC9pd9f5emysapFSREhERi4KUiIgkBNMfDVL169gHYHda32MPK0iJiIhFQUpERBJCOBKkwvb6T+2zu1KtX0MKUiIiYlGQEhGRhBCtSIUaUJFyRIJUkoKUiIhEKEiJiEhiCFh7QJmO+lekktzWGqkk09eoQxIRkdZLQUpERBKCEem4Z9ZzM16AJLdVkXIqSImISISClIiIJAQjUpGK7QlVD87kNABcpo9Q2GzMYYmISCulICUiIgnBFl3f1IAg5Uq2KlLJ+Kn0BxtzWCIi0krFNUjl5eVhGEa1r+zs7NjjpmmSl5dHTk4OycnJDB06lJUrV1Y7h8/n484776Rjx46kpqZy2WWXsW3btuZ+KiIi0sLZglZFynDWf2qfMzK1z2348PhDjTouERFpneJekerbty8FBQWxr+XLl8cemzBhAk888QSTJ09mwYIFZGdnM3z4cMrKymLHjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSC52IiOzniFSkbA0IUtHwZVWk9PoiIiLgiPsAHI5qVago0zSZOHEiDzzwAKNHjwbglVdeoUuXLrz++uvccsstlJSU8NJLLzFt2jSGDRsGwGuvvUZubi6zZ8/mwgsvbNbnIiIiLZcjspmu3ZnagG+2pgO68VPhCzTmsEREpJWKe0Vq/fr15OTk0KtXL6666io2btwIQH5+PoWFhVxwwQWxY10uF0OGDGHevHkALFq0iEAgUO2YnJwc+vXrFzvmYHw+H6WlpdW+RESkbUuKBil3/StS0XVVDiOM16u9pEREJM5B6owzzuDVV1/l008/5cUXX6SwsJDBgwezZ88eCgsLAejSpUu17+nSpUvsscLCQpxOJ+3bt6/1mIN59NFHycjIiH3l5uY28jMTEZGWJilstS6Pbq5bv2/eH768norGGpKIiLRicQ1SF110EVdccQX9+/dn2LBhfPjhh4A1hS/KMIxq32OaZo37DnS4Y+6//35KSkpiX1u3bj2CZyEiIi1dIBTGFdkDKronVL3YkwhFXjL9nvLGHJqIiLRScZ/aV1Vqair9+/dn/fr1sXVTB1aWioqKYlWq7Oxs/H4/xcXFtR5zMC6Xi3bt2lX7EhGRtssbCJFsHEGQMgz8hguAgE8VKRERaWFByufzsXr1arp27UqvXr3Izs5m1qxZscf9fj9z5sxh8ODBAAwaNIikpKRqxxQUFLBixYrYMSIiIp5AiGT8QAODFBCwRYKUV0FKRETi3LXv3nvv5dJLL6V79+4UFRXxt7/9jdLSUq677joMw2Ds2LGMHz+e3r1707t3b8aPH09KSgrXXHMNABkZGdx4443cc889dOjQgaysLO69997YVEEREREArz9MMlZFykhqQLMJIGBzQwiC3srGHJqIiLRScQ1S27Zt4+qrr2b37t106tSJM888k++++44ePXoAMG7cODweD7fddhvFxcWcccYZzJw5k/T09Ng5nnzySRwOB2PGjMHj8XD++eczdepU7HZ7vJ6WiIi0MJWBIOmGVZGKduCrr6DNbf2qICUiIsQ5SE2fPv2QjxuGQV5eHnl5ebUe43a7mTRpEpMmTWrk0YmISFvh8YfoHKlI0cCKVMhuBbCQX1P7RESkha2REhERaQpV10jhbFiQCjusNVJhv6exhiUiIq2YgpSIiLR5Xn+A5NjUvgYGqUhFygxoap+IiChIiYhIAvB7qoSfBq6RMqPfp4qUiIigICUiIgnAX7VluaNhQSoWwIKqSImIiIKUiIgkgKC3HAC/4QRbw176jEiQMgLeRhuXiIi0XgpSIiLS5gV9VkUqEGlh3hBGpEmFLaSpfSIioiAlIiIJIOSzws+RBClbpEmFLaggJSIiClIiIpIAQpGKVOhIgpTLClKOkKb2iYiIgpSIiCSAaMvyoL3hQcrhSrV+DStIiYiIgpSIiCQAM9KyPNzQjn2AI1qRCvsaZUwiItK6KUiJiEibF61IhR0Nr0g5k62KlMv0EQqbjTIuERFpvRSkRESk7YtUpMwjqEglua0glWz4qfQHG2VYIiLSeilIiYhImxfrtBfpvNcQ0SDlxkelP9QYwxIRkVZMQUpERNo8I7r3U1LDK1LRDXndBBSkREREQUpERNo+e6QiFd1Ut0Ei1axkfJraJyIiClIiItL22SN7P9mOKEhZFalkw49HFSkRkYSnICUiIm2eo1GClPW9bnx4AgpSIiKJTkFKRETavOgmuvbIproNO4nVOj0ZP75AuDGGJSIirZiClIiItHlJkSDlcB/51L4kI4TP722MYYmISCumICUiIm1aKGziMn0AOI6kIlWldXrQ6znSYYmISCunICUiIm2aNxAiGT8ATveRTO1zEcYAIOivaIyhiYhIK6YgJSIibVqlP0SyYVWkko4kSBkGAcMFQMhb2RhDExGRVkxBSkRE2jRvIIQ7UpE6on2kgIAtEqQCClIiIolOQUpERNo0TyBEMlZFquo6p4YI2qzOfWGfgpSISKJTkBIRkTbN4w+RbFgVqWjnvYYK2q0gZaoiJSKS8BSkRESkTfMEQrgbqyJljwQxv7r2iYgkOgUpERFp0zxVuvYdaUUqbLfWSKGKlIhIwlOQEhGRNs3r9ZJkhKwbRxykIt8f1Ia8IiKJTkFKRETaNL+nyp5PRzi1z4wEMSOgqX0iIolOQUpERNq0oNcKUmFsYHce0bnCDitI2YIKUiIiiU5BSkRE2rSgzwpSfpsLDOPIThapSNlCClIiIolOQUpERNq0UGTPp0BkD6gjEqtIaY2UiEiiU5ASEZE2LRSpSAUbIUgZTitI2cMKUiIiiU5BSkRE2rSQ36pIheyNEaSsZhWOkIKUiEiiU5ASEZE2zYwFqSNrfQ5giwSpJFWkREQSnoKUiIi0bZFW5WHHkVek7NGKVNh3xOcSEZHWrd5B6pVXXuHDDz+M3R43bhyZmZkMHjyYzZs3N+rgREREjljAqkiZjiOvSEWDlFNBSkQk4dU7SI0fP57kZOvF6Ntvv2Xy5MlMmDCBjh078oc//KHRBygiInIkjMieT9HNdI+E3Z0KgNNUkBIRSXSO+n7D1q1bOfbYYwF49913+fnPf87NN9/M2WefzdChQxt7fCIiIkfEiEztIynliM+VFAlSbnyEwiZ22xHuSyUiIq1WvStSaWlp7NmzB4CZM2cybNgwANxuNx6PNigUEZGWJbp5rtEIFSmHywpjbnz4g+EjPp+IiLRe9a5IDR8+nJtuuomBAweybt06LrnkEgBWrlxJz549G3t8IiIiR8QeaVVuOFOP+FxJ7miQ8uMNhEh22o/4nCIi0jrVuyL1zDPPcNZZZ7Fr1y7efvttOnToAMCiRYu4+uqrG32AIiIiRyK655PNdeRT+xwuK4wlG368wdARn09ERFqvelekMjMzmTx5co37H3744UYZkIiISGOKBil7I1SkouuskvFRHNDUPhGRRFbvitSUKVP4z3/+U+P+//znP7zyyiuNMigREZHG4gxba6TsjVCRIrLOyo0qUiIiia7eQervf/87HTt2rHF/586dGT9+fKMMSkREpDGEw2asVXm0494RiexF5TKCeH2BIz+fiIi0WvUOUps3b6ZXr1417u/Rowdbtmxp8EAeffRRDMNg7NixsftM0yQvL4+cnBySk5MZOnQoK1eurPZ9Pp+PO++8k44dO5Kamspll13Gtm3bGjwOERFpO7zBEG78ACQlN8bUvv2d/wLeiiM/n4iItFr1DlKdO3dm2bJlNe5funRprPFEfS1YsIAXXniBAQMGVLt/woQJPPHEE0yePJkFCxaQnZ3N8OHDKSsrix0zduxYZsyYwfTp05k7dy7l5eWMHDmSUEhTLkREEp3HHyLZiFSkXI1RkXLHfhvwVR75+UREpNWqd5C66qqruOuuu/jiiy8IhUKEQiE+//xzfv/733PVVVfVewDl5eX88pe/5MUXX6R9+/ax+03TZOLEiTzwwAOMHj2afv368corr1BZWcnrr78OQElJCS+99BKPP/44w4YNY+DAgbz22mssX76c2bNn13ssIiLStngCIZIjFSlbYzSbsNnw4QIg6C0/8vOJiEirVe8g9be//Y0zzjiD888/n+TkZJKTk7ngggs477zzGrRG6vbbb+eSSy6JbewblZ+fT2FhIRdccEHsPpfLxZAhQ5g3bx5gtVwPBALVjsnJyaFfv36xY0REJHF5AyGSsSpSNMKGvAB+wwlAUBUpEZGEVu/2506nkzfffJO//vWvLF26lOTkZPr370+PHj3qffHp06ezePFiFixYUOOxwsJCALp06VLt/i5durB58+bYMU6ns1olK3pM9PsPxufz4fP5YrdLS0vrPXYREWn5PP4wWYZVkWq0IGVzQ6iMkIKUiEhCq3eQiurTpw99+vRp8IW3bt3K73//e2bOnInb7a71OMMwqt02TbPGfQc63DGPPvqo9r0SEUkAnmoVqUZofw4EbC4IQdivICUiksjqFKTuvvtu/vrXv5Kamsrdd999yGOfeOKJOl140aJFFBUVMWjQoNh9oVCIr776ismTJ7N27VrAqjp17do1dkxRUVGsSpWdnY3f76e4uLhaVaqoqIjBgwfXeu3777+/2vMoLS0lNze3TuMWEZHWw1tljVRjVaSCNuvDPwUpEZHEVqcg9cMPPxAIBGK/bwznn38+y5cvr3bfb37zG44//njuu+8+jj76aLKzs5k1axYDBw4EwO/3M2fOHB577DEABg0aRFJSErNmzWLMmDEAFBQUsGLFCiZMmFDrtV0uFy6Xq1Geh4iItFxef4Dk2NS+xqlIBe1WkDIDClIiIomsTkHqiy++OOjvj0R6ejr9+vWrdl9qaiodOnSI3T927FjGjx9P79696d27N+PHjyclJYVrrrkGgIyMDG688UbuueceOnToQFZWFvfeey/9+/ev0bxCREQST8Dn2X+jkSpSoUhFyvR7DnOkiIi0ZfXu2nfDDTdU28cpqqKightuuKFRBhU1btw4xo4dy2233capp57K9u3bmTlzJunp6bFjnnzySUaNGsWYMWM4++yzSUlJ4f3338dutzfqWEREpPUJ+qpsmttYQSq6l1RAQUpEJJHVO0i98soreDw1Xzw8Hg+vvvrqEQ3myy+/ZOLEibHbhmGQl5dHQUEBXq+XOXPm1Khiud1uJk2axJ49e6isrOT999/XeicREQH2tygPGElga5wP2ML2SCBTkBIRSWh17tpXWlqKaZqYpklZWVm1TnuhUIiPPvqIzp07N8kgRUREGiIcqUj5DTdJjXROM1LZMoJaIyUiksjqHKQyMzMxDAPDMA7a9twwDLUUFxGRFiUcqUhFO+01BjPSbMIW9DbaOUVEpPWpc5D64osvME2T8847j7fffpusrKzYY06nkx49epCTk9MkgxQREWmIaIvygL3xglR0rZWClIhIYqtzkBoyZAgA+fn5dO/e/bCb4oqIiMSbGQlSoUYMUtGpfbaQ1kiJiCSyejebWL16Nd98803s9jPPPMPJJ5/MNddcQ3FxcaMOTkRE5EhE93pqzCBlOK39qBwhVaRERBJZvYPU//zP/1BaWgrA8uXLufvuu7n44ovZuHEjd999d6MPUEREpMEinfVC9sZpfQ5gRDb2dYQVpEREElmdp/ZF5efnc+KJJwLw9ttvc+mllzJ+/HgWL17MxRdf3OgDFBERaSgjaAUp09F4QcrutM7lCPsa7ZwiItL61Lsi5XQ6qay0pkrMnj2bCy64AICsrKxYpUpERKQliAWpRtqMF8DuSgUgSRUpEZGEVu+K1E9+8hPuvvtuzj77bObPn8+bb74JwLp16+jWrVujD1BERKShbE1QkbJF1kg5VZESEUlo9a5ITZ48GYfDwVtvvcVzzz3HUUcdBcDHH3/MiBEjGn2AIiIiDWWPtihvxIqUw21VpJymgpSISCKrd0Wqe/fufPDBBzXuf/LJJxtlQCIiIo3FHrYqUtFOe43B4bLO5VKQEhFJaHUKUqWlpbRr1y72+0OJHiciIhJv0Rbl0U57jSEpUpFyoSAlIpLI6hSk2rdvT0FBAZ07dyYzM/Ogm/GapolhGIRCoUYfpIiISENEg5TN1XhT+5zJVpBy4ycQCpNkr/cseRERaQPqFKQ+//xzsrKyAPjiiy+adEAiIiKNJcmMBClnaqOd05WcBkAyPir9ITKSFaRERBJRnYLUkCFDYr/v1asXubm5NapSpmmydevWxh2diIjIEYh21ou2LG+Uc0am9rmNAPt8ATKSkxrt3CIi0nrU+2O0Xr16sWvXrhr37927l169ejXKoERERBpDNEhFG0Q0BqNKB8DKyopGO6+IiLQu9Q5S0bVQByovL8ftdjfKoERERI6UaZqxhhDRBhGNokqQ8nnKG++8IiLSqtS5/fndd98NgGEY/PnPfyYlZf+ne6FQiO+//56TTz650QcoIiLSEL5gGHckSDkaM0jZ7PhJwkkAb0VZ451XRERalToHqR9++AGwPuFbvnw5Tqcz9pjT6eSkk07i3nvvbfwRioiINIA3ECIZP7B/XVNj8RkunGYAv09T+0REElWdg1S0W99vfvMbnnrqKe0XJSIiLZo3ECbZiK6RatwgFTBcYJbj91Q26nlFRKT1qHOQipoyZUpTjENERKRReQMhsiIVKRpxQ14Av80FYQh4tUZKRCRR1TtIASxYsID//Oc/bNmyBb/fX+2xd955p1EGJiIiciSqrpGq2iCiMQRtVnOloE8VKRGRRFXvrn3Tp0/n7LPPZtWqVcyYMYNAIMCqVav4/PPPycjIaIoxioiI1JvX58VphKwbjR2k7Nb5QgpSIiIJq95Bavz48Tz55JN88MEHOJ1OnnrqKVavXs2YMWPo3r17U4xRRESk3gKeKo0gGnlqX9jusn5VswkRkYRV7yC1YcMGLrnkEgBcLhcVFRUYhsEf/vAHXnjhhUYfoIiISEP4I9WiEDZwuBr13GFHpCIV8DTqeUVEpPWod5DKysqirMzaN+Ooo45ixYoVAOzbt4/KSk1xEBGRliHotapFfsMFB9lI/kiYkSCFX697IiKJqt7NJn76058ya9Ys+vfvz5gxY/j973/P559/zqxZszj//PObYowiIiL1FvTtD1KNu0IKzMiaK1MVKRGRhFXvIDV58mS8Xi8A999/P0lJScydO5fRo0fz5z//udEHKCIi0hDhyNQ+v+Fu/JNH1lwZClIiIgmr3kEqKysr9nubzca4ceMYN25cow5KRETkSIV81h5PAXvjro8CsCVZ4cwIKkiJiCSqeq+RstvtFBUV1bh/z5492O32RhmUiIjIkTL9VsiJ7vnUmAynVZGyBb2Nfm4REWkd6h2kTNM86P0+nw+n03nEAxIREWkMZqQRRNDe+EHK7kq1fg0pSImIJKo6T+17+umnATAMg3/961+kpaXFHguFQnz11Vccf/zxjT9CERGRBjADkfbn9sZuNQF2l1WRcoQ1tU9EJFHVOUg9+eSTgFWRev7556tN43M6nfTs2ZPnn3++8UcoIiLSEJFGEKEmqEglRYOUKlIiIgmrzkEqPz8fgHPPPZd33nmH9u3bN9mgREREjlikIhXb86kRJbmtqX1Jpq/Rzy0iIq1Dvbv2ffHFF9VuB4NBvF5vtal+IiIi8WZEGkGEmyBIOSNBymn6CIVN7LbG3fBXRERavjo3m/joo4+YNm1atfseeeQR0tLSyMzM5IILLqC4uLjRBygiItIQtmhr8qQmCFLJ1oeHyfjxBEKNfn4REWn56hyk/vGPf1BaWhq7PW/ePB588EH+/Oc/83//939s3bqVv/71r00ySBERkfqyh6JBKqXRz+1MtipSyfio9Acb/fwiItLy1TlIrVixgsGDB8duv/XWWwwfPpwHHniA0aNH8/jjj/P+++83ySBFRETqK9aavAkqUkbknC4jQKVPFSkRkURU5yBVVlZGhw4dYrfnzp3LeeedF7vdt29fduzY0bijExERaSBHpCJlczZ+RSpa5bIqUgpSIiKJqM5BKicnh9WrVwNQXl7O0qVLOfvss2OP79mzh5SUJnixEhERaQBHyOqo1zRByqpIJePX1D4RkQRV5yD185//nLFjxzJt2jR++9vfkp2dzZlnnhl7fOHChRx33HFNMkgREZH6SgpbU/uasiKVYvio9ClIiYgkojq3P3/ooYfYsWMHd911F9nZ2bz22mvVNuV94403uPTSS5tkkCIiIvWVZEaClCu18U/u2L/Jr9db0fjnFxGRFq/OQSolJaVG+/OqDtxfSkREJJ6cYWtqn8PVdFP7AHweBSkRkURU56l9IiIirYmLSJByN0FFyp5EMPJZpF8VKRGRhKQgJSIibZLLtIJUUlMEKSBgs6b3BRWkREQSkoKUiIi0OcFQGHekIuVKTmuSawRsLutXTe0TEUlIcQ1Szz33HAMGDKBdu3a0a9eOs846i48//jj2uGma5OXlkZOTQ3JyMkOHDmXlypXVzuHz+bjzzjvp2LEjqampXHbZZWzbtq25n4qIiLQglYEQyfgBcCc3TUUqZLcqUiG/p0nOLyIiLVtcg1S3bt34+9//zsKFC1m4cCHnnXcel19+eSwsTZgwgSeeeILJkyezYMECsrOzGT58OGVlZbFzjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSBokiIonK4wuQYlgVKWcTVaSiQSroU0VKRCQR1TlIde/enT179sRuT548mdLS0iO6+KWXXsrFF19Mnz596NOnD4888ghpaWl89913mKbJxIkTeeCBBxg9ejT9+vXjlVdeobKyktdffx2AkpISXnrpJR5//HGGDRvGwIEDee2111i+fDmzZ88+orGJiEjr5ancH24MZ9NUpMIOq3Of6a9skvOLiEjLVucgtW3btmpVnv/93/9l9+7djTaQUCjE9OnTqaio4KyzziI/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIi0nZ4K6v8XE9qgvbnVAlSAQUpEZFE1OCpfaZpNsoAli9fTlpaGi6Xi1tvvZUZM2Zw4oknUlhYCECXLl2qHd+lS5fYY4WFhTidTtq3b1/rMQfz6KOPkpGREfvKzc1tlOciIiItg7+yHAAvTrA10Sz2yKa8ptZIiYgkpLh37TvuuONYsmQJ3333Hb/73e+47rrrWLVqVexxwzCqHW+aZo37DnS4Y+6//35KSkpiX1u3bj2yJyEiIi2K32MFKZ/hbrqLRDflDXqb7hoiItJiOepz8L/+9S/S0qxFu8FgkKlTp9KxY8dqx9x11131GoDT6eTYY48F4NRTT2XBggU89dRT3HfffYBVderatWvs+KKioliVKjs7G7/fT3FxcbWqVFFREYMHD671mi6XC5fLVa9xiohI6xFoliBlTRm0B1WREhFJRHUOUt27d+fFF1+M3c7OzmbatGnVjjEMo95B6kCmaeLz+ejVqxfZ2dnMmjWLgQMHAuD3+5kzZw6PPfYYAIMGDSIpKYlZs2YxZswYAAoKClixYgUTJkw4onGIiEjrFfRa3V39tuQmu4bhtM5tCylIiYgkojoHqU2bNjX6xf/3f/+Xiy66iNzcXMrKypg+fTpffvkln3zyCYZhMHbsWMaPH0/v3r3p3bs348ePJyUlhWuuuQaAjIwMbrzxRu655x46dOhAVlYW9957L/3792fYsGGNPl4REWkdoi3JA/amq0jZIhUpR0hT+0REElG9pvY1tp07d/LrX/+agoICMjIyGDBgAJ988gnDhw8HYNy4cXg8Hm677TaKi4s544wzmDlzJunp6bFzPPnkkzgcDsaMGYPH4+H8889n6tSp2O32eD0tERGJs3AkSAXtTVeRsjkjQSrsa7JriIhIy1XnZhMXX3wxJSUlsduPPPII+/bti93es2cPJ554Yr0u/tJLL7Fp0yZ8Ph9FRUXMnj07FqLAmiqYl5dHQUEBXq+XOXPm0K9fv2rncLvdTJo0iT179lBZWcn777+vLnwiIgnOjASpkL1pWp8D2FzRIKWKlIhIIqpzkPr000/x+fZ/6vbYY4+xd+/e2O1gMMjatWsbd3QiIiINYAYiQcrRdBUpRyRIOcPeRtsSREREWo86B6kDXyT0oiEiIi2W39ok12yizXgBHO5UANz48YfCTXYdERFpmeK+j5SIiEhjMwLNEKQiFSk3frwBBSkRkURT5yBlGEaNTW4PtzGuiIhIPBhBK0jRpEHKqkglGz58gVCTXUdERFqmOnftM02T66+/PraRrdfr5dZbbyU11Xohqbp+SkREJJ6im+QaztQmu0b03Mn48ChIiYgknDoHqeuuu67a7V/96lc1jrn22muPfEQiIiJHKBakXE0XpKLVrhR8mtonIpKA6hykpkyZ0pTjEBERaTRJIStIOZoySEUqUimGjyJVpEREEo6aTYiISJuTFLaClN2d1nQXiQSpVLya2icikoAUpEREpM1xRjbJjbYob5qL7F8j5fUHm+46IiLSIilIiYhIm+M0rSCV1JQVqcgaqSQjpIZLIiIJSEFKRETaHHckSDlT0pvuIlU6Aga9ZU13HRERaZEUpEREpE0JhsIkY1WIXE1ZkbInESAJgJC3vOmuIyIiLZKClIiItCmVgdD+IJXahBUpwGdLBiCkipSISMJRkBIRkTbF4wuSQmRqX3ITVqQAvz0SpHyVTXodERFpeRSkRESkTfF4KrEbJgCGswm79gHBSEXK9Glqn4hIolGQEhGRNsVbWWWaXVLTBqlApCJFoKJJryMiIi2PgpSIiLQp/kiQ8uMAu6NJrxVypEQuqiAlIpJoFKRERKRN8XmsaXY+w93k14oGKcOvNVIiIolGQUpERNqUgMeqSDVHkAo7rKl9tqAqUiIiiUZBSkRE2pSg1wo1flvTBykz0szCCKgiJSKSaBSkRESkTQn6rCAViHTUa1KRZhb2kIKUiEiiUZASEZE2JRwJUkF7MwSpSEXKEfQ0/bVERKRFUZASEZE2JRakHM0RpKxmE0mqSImIJBwFKRERaVPMSCvycLQ1eROyudIASAp7m/xaIiLSsihIiYhImxJt/BBuhopUNEg5VZESEUk4ClIiItK2RPZ0MiONIJqS3W1dw2mqIiUikmgUpEREpE2J7ulkOJt+al+S26pIuRWkREQSjoKUiIi0KbZoB72kpg9SDnc6AMmmuvaJiCQaBSkREWlT7JEgZY+sX2pKSclWkHLjIxQ2m/x6IiLScihIiYhImxLdHNeR3PRBypViBalUvHgDoSa/noiItBwKUiIi0qY4QtZ6JWczBKnoNZLx4VGQEhFJKApSIiLSprjCVkUqWi1qStH25y4jiNerhhMiIolEQUpERNqMcNjEHbbWSLlSM5r+gs79VS+/p7zpryciIi2GgpSIiLQZFf4gqVhBKjmtGYKUw0kQOwD+yrKmv56IiLQYClIiItJmlHmDpBrWFDtXSjMEKcCDG4CAV0FKRCSRKEiJiEibUeYNkkZkrVIztD8H8BpWkApqap+ISEJRkBIRkTajvLISlxGwbjibJ0j5bMkABH0VzXI9ERFpGRSkRESkzagsK9l/w9X0XfsA/DarIhXW1D4RkYSiICUiIm2Gp2IfAH6SwJ7ULNf0RypSIVWkREQSioKUiIi0Gb6KUutXW0qzXTNot4IUfq2REhFJJApSIiLSZgQqrSDltzdnkLKuZform+2aIiISfwpSIiLSZgQ81jqlgCO12a4ZdEQrUpraJyKSSBSkRESkzYg2fAg5mq8iFYqENiOgICUikkgUpEREpM0I+6wgFU5qntbnACRFgpTWSImIJBQFKRERaTt8kTDjbL6pfbitNus2BSkRkYSiICUiIm1GrCrUTHtIAdjc7QBwBBWkREQSSVyD1KOPPsppp51Geno6nTt3ZtSoUaxdu7baMaZpkpeXR05ODsnJyQwdOpSVK1dWO8bn83HnnXfSsWNHUlNTueyyy9i2bVtzPhUREWkBbJF1SjZ38wUpe3I0SGmNlIhIIolrkJozZw6333473333HbNmzSIYDHLBBRdQUbH/xWjChAk88cQTTJ48mQULFpCdnc3w4cMpK9u/g/zYsWOZMWMG06dPZ+7cuZSXlzNy5EhCoVA8npaIiMRJNMzYmzFIJUWClCukICUikkgc8bz4J598Uu32lClT6Ny5M4sWLeKcc87BNE0mTpzIAw88wOjRowF45ZVX6NKlC6+//jq33HILJSUlvPTSS0ybNo1hw4YB8Nprr5Gbm8vs2bO58MILm/15iYhIfCRFwkxSSrtmu6YzNQMAV0j7SImIJJIWtUaqpKQEgKysLADy8/MpLCzkggsuiB3jcrkYMmQI8+bNA2DRokUEAoFqx+Tk5NCvX7/YMQfy+XyUlpZW+xIRkdbNNM1YmHE2Y5BypWYCkGwqSImIJJIWE6RM0+Tuu+/mJz/5Cf369QOgsLAQgC5dulQ7tkuXLrHHCgsLcTqdtG/fvtZjDvToo4+SkZER+8rNzW3spyMiIs2swh8iBS8ArkiVqDkkp2cCkGJ6mu2aIiISfy0mSN1xxx0sW7aMN954o8ZjhmFUu22aZo37DnSoY+6//35KSkpiX1u3bm34wEVEpEUo9QRINawglZTcfGukUtKt0JaGB68/2GzXFRGR+GoRQerOO+/kvffe44svvqBbt26x+7OzswFqVJaKiopiVars7Gz8fj/FxcW1HnMgl8tFu3btqn2JiEjrVuYNkhqpSBnN2P48Nc2aEWEzTMrKSprtuiIiEl9xDVKmaXLHHXfwzjvv8Pnnn9OrV69qj/fq1Yvs7GxmzZoVu8/v9zNnzhwGDx4MwKBBg0hKSqp2TEFBAStWrIgdIyIibV+ZN0CaEZle50xrtuvaXKmETGsGhKdcQUpEJFHEtWvf7bffzuuvv85///tf0tPTY5WnjIwMkpOTMQyDsWPHMn78eHr37k3v3r0ZP348KSkpXHPNNbFjb7zxRu655x46dOhAVlYW9957L/3794918RMRkbavzBvkmEhFqjmDFIZBhZFCOyrwlBUf/ngREWkT4hqknnvuOQCGDh1a7f4pU6Zw/fXXAzBu3Dg8Hg+33XYbxcXFnHHGGcycOZP09P3TNp588kkcDgdjxozB4/Fw/vnnM3XqVOx2e3M9FRERibNSb4BUIhUpVzMGKcBjpNDOrMCripSISMKIa5AyTfOwxxiGQV5eHnl5ebUe43a7mTRpEpMmTWrE0YmISGtSUVmJ04hsxN6cFSnAZ0uBEPgqFKRERBJFi2g2ISIicqR8VatBzR2k7KkABDwKUiIiiUJBSkRE2oSg19pc3W+4wN68Ey4CDitIhTza4F1EJFEoSImISJtgessBCNhTmv3awSSrAhb2KkiJiCQKBSkREWkTwv5IkIpUh5r12pEgZSpIiYgkDAUpERFpEwyfFaSCcQhSZmRNlhEJcyIi0vYpSImISJsQDTGhpOYPUrjTq41BRETaPgUpERFpE2wBK8REp9k167XdGQA4AgpSIiKJQkFKRETaBHugAtg/za5Zrx2pSCUFK5r92iIiEh8KUiIi0iY4oiHG2fxT+5JS2lm/hhSkREQShYKUiIi0Cc5gZFpdZJpds1471bqmO1zZ7NcWEZH4UJASEZE2wR22gpQRhyDlSs0EIFlBSkQkYShIiYhIm5AcCVL2lMzmv3aaFd5SqSQUNpv9+iIi0vwUpEREpE1IjWOQSklvb40BL+W+YLNfX0REmp+ClIiItHrhsEmqaTV6SEpt3+zXj07tSzF8lHu8zX59ERFpfgpSIiLS6nmDIdphrU9ypjV/kKJKy/WKsuLmv76IiDQ7BSkREWn1PP4Q6UYkSMVhah8OJz6SAPCW7Wv+64uISLNTkBIRkVav0heMVaRs8QhSgMdIAcBbXhqX64uISPNSkBIRkVbP563AZUSaPMSh/TmA12YFqYCnJC7XFxGR5qUgJSIirZ6/wlqXFMJWbb1Sc/LZU60xVCpIiYgkAgUpERFp9fzl+wCoIBUMIy5j8NrTATA9++JyfRERaV4KUiIi0uqFIuGlwpYatzH4HVaQwrsvbmMQEZHmoyAlIiKtXrhyHwAeW3ym9QEEnNbaLJtPU/tERBKBgpSIiLR64UhFymOPZ5BqB4DdryAlIpIIFKRERKT181rhxRedXhcHYVcmAE4FKRGRhKAgJSIirZ4RCVL+eAYpdyYASQHtIyUikggUpEREpNWz+azwEnDGL0gRCVIuBSkRkYSgICUiIq2ePRJeQknt4jYGW2p7AFJCZXEbg4iINB8FKRERafWS/FZ4CbviGKSSI0EqrCAlIpIIFKRERKTVSwpGKlKujLiNwZFmBanUcHncxiAiIs1HQUpERFo9V9AKL4Y7fkHKldYBgGS8EPTHbRwiItI8FKRERKTVc0fWJcU1SKVmEjYN64Z3X9zGISIizUNBSkREWr3kUKQilZwZtzGkJLsoI9m6EdkgWERE2i4FKRERad1Mk5TIuiR7SmbchpGSZKfETAUgWLk3buMQEZHmoSAlIiKtW9BLEkEAklIz4zaMFJedEqwg5S/bE7dxiIhI81CQEhGR1s1bAkDINHClxK/9udNuo4Q0APzlxXEbh4iINA8FKRERad0iQaqMFNxOR9yGYRgGFTYrSAUrNLVPRKStU5ASEZHWLRKkSs0UUuIYpAAqbekAhBSkRETaPAUpERFp3TzWNLoSUklOssd1KF67FaTCHk3tExFp6xSkRESkVQuW7wJgr9mOZGecg1RSZI2WpySu4xARkaanICUiIq1aoLQIgD20i3tFyp9kbQhs04a8IiJtnoKUiIi0auHy3QAU044kuxHXsQQiFSm7b19cxyEiIk1PQUpERFq1cIUVpMpt7TCM+AapkCsTAIdfU/tERNo6BSkREWndKqzNb8sdmfEdBxByWVP7kgKlcR6JiIg0NQUpERFp1QyPVZGqbAFBynBbY3ApSImItHkKUiIi0qrZPdaeTT5n+ziPBEixxuAw/RDwxHkwIiLSlOIapL766isuvfRScnJyMAyDd999t9rjpmmSl5dHTk4OycnJDB06lJUrV1Y7xufzceedd9KxY0dSU1O57LLL2LZtWzM+CxERiSeHN7L5bUqH+A4EcLjb4TcjnQMja7dERKRtimuQqqio4KSTTmLy5MkHfXzChAk88cQTTJ48mQULFpCdnc3w4cMpKyuLHTN27FhmzJjB9OnTmTt3LuXl5YwcOZJQKNRcT0NEROIl6CMpWA6ALa1TnAcDKe4k9mCtk6KiKL6DERGRJuWI58UvuugiLrroooM+ZpomEydO5IEHHmD06NEAvPLKK3Tp0oXXX3+dW265hZKSEl566SWmTZvGsGHDAHjttdfIzc1l9uzZXHjhhc32XEREJA4qrWpU0LSRnJ4V58FAitPObrMdXY29ENkoWERE2qYWu0YqPz+fwsJCLrjggth9LpeLIUOGMG/ePAAWLVpEIBCodkxOTg79+vWLHXMwPp+P0tLSal8iItIKVUb3kEojM9Ud58FEg1S0IqUgJSLSlrXYIFVYWAhAly5dqt3fpUuX2GOFhYU4nU7at29f6zEH8+ijj5KRkRH7ys3NbeTRi4hIs4isQ9prtiMr1RnnwUCq01ElSGlqn4hIW9Zig1TUgZsrmqZ52A0XD3fM/fffT0lJSexr69atjTJWERFpZpXWHlLFpNO+BQSpFKed3dE1UpraJyLSprXYIJWdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZiDcblctGvXrtqXiIi0QpEgtcdMJyulBQQpl4PdZuQ1RRUpEZE2rcUGqV69epGdnc2sWbNi9/n9fubMmcPgwYMBGDRoEElJSdWOKSgoYMWKFbFjRESkDasyta99alKcB6M1UiIiiSSuXfvKy8v58ccfY7fz8/NZsmQJWVlZdO/enbFjxzJ+/Hh69+5N7969GT9+PCkpKVxzzTUAZGRkcOONN3LPPffQoUMHsrKyuPfee+nfv3+si5+IiLRdZuUeDGAv6S1ijZSm9omIJI64BqmFCxdy7rnnxm7ffffdAFx33XVMnTqVcePG4fF4uO222yguLuaMM85g5syZpKenx77nySefxOFwMGbMGDweD+effz5Tp07Fbrc3+/MREZHmFSzbRRKRilQLmNpXtdmEWVHEoVf0iohIaxbXIDV06FBM06z1ccMwyMvLIy8vr9Zj3G43kyZNYtKkSU0wQhERaclC5VaQqrBn4E6K/wdoKS47e6JT+yr3QigI9ri+1IqISBNpsWukREREDsessJpNBN3x34wXwOWw43NmEjINDMxYMwwREWl7FKRERKTVsnusoBJO6RDnkeyXlZ7MXiJT0NW5T0SkzVKQEhGR1ikcxuHfB4AtpWN8x1JFh1Tn/s595QpSIiJtlYKUiIi0ThW7sJkhQqaBvV3neI8mpmOaiz2xvaR2x3cwIiLSZBSkRESkdSrdDsAuMslITYnzYPbrkOba3wJdU/tERNosBSkREWmdSncAUGhmkdUCNuON6pimqX0iIolAQUpERFqnSJAqMLNo3wI2443qmObaH6QqtCmviEhbpSAlIiKtU2RqX6GZRVYL2Iw3qkOas8rUPgUpEZG2SkFKRERap9ZQkSrfGd/BiIhIk1GQEhGR1im2RqoDWS0qSDkpMCMbBJdsi+9gRESkyShIiYhIq2RGpvbtMLPITGk5zSY6pLrYbkb2tfIUg68svgMSEZEmoSAlIiKtj2nGKlJFRkc6pLriPKD9MpKT8NpS2WemWnfs2xrfAYmISJNQkBIRkdanci9GyAeAmdYFu82I84D2s9kMslKd+6tSJQpSIiJtkYKUiIi0PqXW2qNdZgYdMtLjPJiaOqa52GZ2sm7s2xLfwYiISJNQkBIRkdanSse+rhnuOA+mpg5pVSpSClIiIm2SgpSIiMSVaZr8c84G3llcjw53VfaQ6tKu5QWpjmkuTe0TEWnjHPEegIiIJLb3lxXw6MdrcDpsjDr5KGx1We9UpSKV3QIrUh3TnGzR1D4RkTZNFSkREYkbjz/E3z9aDYA/GKa40l+3b6yyh1TLnNrnYltsap8qUiIibZGClIiIxM1zX/7IjhJv7Pbu8joGqchGtwWtYWpfRREEPPEdkIiINDoFKRERaXamaTLps/U8/fmPADgi0/l2lfnq9v178wHYanYiuwUGqQ5pTvaRRiXJ1h0l9Vj/JSIirYKClIiINLuX5ubz+Kx1ANw65BhO65kFwO7yOgQpXzlGpP35BjOnRa6ROiozGTDYgTr3iYi0VQpSIiLS7P5vobVu6J7hffjjRcfTKd0F1DFI7bGqWLvNdpCShTvJ3mTjbKhu7a1K1JZQB+sOde4TEWlzFKRERKRZbd1bybqd5dhtBtee1ROw1hQB7KpLkNq9HohUo1rgtD6AFKdDm/KKiLRxClIiItKsPlu9E4BTe7QnIyUJgI7pTgB2l9Wh2cRua0rghnDXFtloIio3K5nNZmfrRiT8iYhI26EgJSIizeqzNUUAnH9C59h90YpUnab2RYOUmdMiW59H5bZPYa3Z3bqxc2V8ByMiIo1OQUpERJpNuS/I9xv3AnDe8V1i93eqT5CKrJHaYOa0+IrU2nCudWPvRvBXxndAIiLSqBSkRESk2XywdAf+UJgeHVI4plNq7P46V6TCoViQ2thCO/ZFdc9KYRcZlNoyABN2rYn3kEREpBEpSImISLPYtLuCv36wCoArT8vFMIzYY9E1UnvK/YTDZu0nKdkKQS8BHGwzO9GlnatJx3wkctunAAYbjMj0vqJVcR2PiIg0LgUpERFpcpX+IHe8sZgKf4jTe2Vx80+PrvZ4h1QrEAXDJvs8gdpPFGnasJkcwtjolNZyK1K5WSkALAscZd2xU0FKRKQtUZASEZEm5QuGuGXaIlZsLyUzJYmnrjoZh736y4/TYSMj2ergd8jpfZFGE+vCXQFi+0+1RF0z3NhtBitDkXVSO1fU+xzlviCfrd556CqdiIjEhYKUiIg0qfveWsbX63eT4rTz0nWn0jUj+aDHxTblLTtEkCpYCsC6sFXl6ZDmbNzBNiKH3UZOpnt/w4l6Tu0LhsJc//J8bnxlIS/NzW+CEYqIyJFQkBIRkSazrbiSd5fswDDgxWtPZVCPrFqP7RgJRYfclHfLdwAsCvehfUoSSfaW/TKW2z6FdWY3TAyo2AXlu+r8vc98sYGFm4sB+NfcjfiD4aYapoiINEDLfgWSZqEXZxFpKv9dsgOAM3t14OxjOx7y2P2d+2rZlLesEPZtxjRs/BA+NnZ8S5bbPgUPbkrc0XVSh5/eV+EL8swXP/L059Z6MHeSjZ2lPt5bav1Zevwh5qzbRUnlIdaSiYhIk3PEewASXxM+WcPL3+Qz47azOaFru3gPR0SamGmavPDVRjJTkrjytO5Nfq13Fm8D4GenHHXY4w/bAj1SjSpN7025J6VFr4+K6t0lDYBVHM1gtsHW7+GYc2s9vtQb4NJJc9m8x9pz6opTunFM51QmfLKWpz9bz6LNe/lkRSHFlQEuOLELL1x7arM8DxERqUkVqQT3/rIdeANhvt+4J95DEZFmsHx7CY9+vIb731lOpT9Y4/FAKIxpNk5jg+XbS9iwqwKXw8ZF/bIPe/xh10ht/R6A7eknAbSKitSlJ+VgM+C9sj7WHRu/POTxX6wpYvOeSjqmOXnyypOY8PMB/PKMHqQ67WzZW8kb87dSHKlEfbG2iJJDdTgUEZEmpSCVwPaU+9i61wPAtmJPnEcjbcEb87dw7cvzD7+pqsTNh8sLAAibsKGootpj3kCIi576moue+ppQI3SJe2fxdgAu6JtNujvpsMdH10jtKKnl51GkIrXe1Rdo2R37orq0c3Pe8Z35JmyNmW0LwFdW6/Fz1lprqH4+KJefDeyG3WaQkZzEc78axG/O7smd5x3L878aRO/OaQRCJp+v2dkcT0NERA5CQSqBLdtWEvu9gpQcjmmaFJV6a318d7mPh99fyVfrdvHiVxubcWRSV6Zp8lEkSAGs21n9Df3HKwr4saicNYVl5O8up9If5N/fb6bUW/+qh8cfik3r+/mgbnX6nlO6twfg2w172BKZ2hbjr4h17FtmOx5oHRUpgCtP685Wswvb6AzhIGyed9DjwmGTOeusIDX0uE7VHjunTyceurQv91xwHCP6ZccqfJ+sKGySMXv8IX4sKm+Sc4tI21LiCbAnQT9AVZBKYEu27ov9ftu+ytoPrIcV20soa8CbLmn5Xpqbz+njP+PuN5fgDYRqPP7i1xvxBqzGJa/P30KFr+a0MTm895fu4LevLmRvRS0NF47Aiu2lsSo0wLqi6kHq9e+3xH6/ckcpkz//kQdmrOCZz3+s97XeX7aDUm+Q7lkp/PQwTSaiendJ55w+nQib8PI3B7T73jofzBC0O4p13kygdVSkAM49rhOd0118FYxUpTbOOehxK3eUsqfCT5rLwaAe7Q95zgsjQWrOul38+qXvOe2R2Tz2yZpDftgRDIX5x6drmbt+92HH/MhHqxj2xBy++fHwx8ZbY01FFZH68wfDjJz0NedM+ILVBaXxHk6zU5BKYEu37Yv9vjEqUv+3cCsjJ83lwf+uPOJzJYLd5T6mfbf5oKGkJfp8TREA7/ywnatf/K5alWJvhZ9p324GINVpp8wb5K1F2+IyztbMNE0e+XA1s1btZOo3+ZR6A9z86kKmHhgqGig6rc8ZaRm+fuf+isP6nWUs2FQcu71yRynfRtZOLt5STH39+zvr38M1Z3THZjPq/H03//RowPp5sq+ySphc+Y716zHnsbvC+rfXsQXvIVWVw27jtF5ZfBPub91RyzqpL9da/8fOPrbDYdu6n9i1Hd2zUvAGwny9fje7ynw89+UGxvzzW4Khg3di/XB5AZO/+JHfvbaI4sME9Xk/Wn/3X9chdMXT1+t3cfJfZvHv7zfHeyjSQN5AiPzdFYc/UABrJsEPDfiZ3FQ+X7OTrXs9VPitjder/dxOAApSCco0TZZWqUjtqwxQfgQVhBJPgL9/vAaA79S4ok4mfLKGP7+7gue+3BDvoRxWOGyyfLs1FdTlsPHDln2Mnb6ELXsqufv/lnDOhC+o9Ifom9OOcSOsaVdTvskn3AjrbBLJ8u0lFEYqCm8v3s6/vtrIzFU7eeqz9Y3yqfvMVdY0sKtOtzaIrTq17435WwGr1TbA4s3FrIj8na/aUVqvv8vl20pYuq0Ep93GL+o4rS/q7GM7cHx2OpX+0P4wHvDCyv9avx8whl2RZhStpSIFcFRmMvPCJ1r7SRWthOKab/yj0/qG9Ol82PMZhsGvz+wBWBWviVeeTLrLwaY9lSzbXnLQ74muvyrzBZn8Re1VRm8gxKY91hvbVYf4hDnelaAKX5D73lpGiSfAf3/YEdexSMM9+tFqzv3Hl3WqlLYUpmny7+838/D7K1m0ee9B/y+Ypsnzczbw6rebGu3/Sjhs8st/fc+V//yObcWNM5PocOZt2M34j1bXut3Cmwu2xn6/ZW8l1748P/bakQgUpBLU1r0eiisDOO020l1WF/ztDahKhcMm+bsrePSj1bGpSAUl3oT7RKIhvtu4F9hfJViwaW+1cFvV1r2VbN3bPD80D2bTngrKvEFcDhvTbz4Tl8PG52uKGPqPL3hn8XbKfUFyMtz8bVQ/fnFqN9Ld1hu6bza0nhfGlmDWqv2NA7bv8/BsJGQXVwZq31upjorKvGzcVYFhwI0/6QVYlejoFMxPVlj/Dm8dcgwACzcXEwhZL/4V/hCb6/Hv77NIA4ThJ3ahQz3XMRmGwS9OtYJerBqyfib4SqDdUYS6n83eikiQaiVrpAByMtwU0441yadYdyyaWu3xghIPiyKfMg85YH1UbW76aS+WPDicl68/jVEDj4rt0zXvINPxqq6/Apj27eZaf6Zs3FVBNDev2lF7kPrtqws569HPDlvdaipPfbaeHSXWBw+rC0vjHuzqY37+Xm56ZSEFtTVWSSDRSvgnKwsOc2TL4A2EuOc/S3lgxgqmfLOJK577lt++uqjGcR+vKOTvH6/hwf+u5I9vL2+UBj47y7zsKvPhD4X5Ym3dN/c+En9+dwUvfLWRK1/4lqKy6lOHC0u8sZ8rz/7yFNJcDpZtK+GyyXO5ZdpCvl5vPban3MfwJ+Zw+78Xt6r/p3WhIJWgotP6TshpR4+OKQAN+nTjt68u5Nx/fMn0BdU/zT7Up5hivandEnkT82NROf9dsp0x//yWUc9+U2MaV6k3wMhJc7ls8twjqhoeiWg16sScdgzs3p4JPx8AWJ3fTu+Vxdu/O4u5953HwO7tSXE6+NlAa8+gN+ZvwTRNVmwvIVDLdCPZLxqkuma4AQhWeeFdv7P2Tm91sSDferNyfHY7enRIjTVq+LGonO37POwo8eKwGVx3Vk/sB5mKt3JH3T9hXBl58324dT61GXxMB2vMm/ZaG4Yve9N6oN8V7K0MEjbBMCArtXVM7QM4qr31c3aGY4R1x+JXIbh/cfaMH7ZjRv4/HZWZXKdzGoZBZooTw7D+vs4+1vpz++bHmrMCVuwoYU+Fn1SnnTN6ZeEPhfnX1/ubwuTvruDxmdb6qfVV1s7tLvfVePMEsHTrPmavLqKgxMtnkWm/zamgxMNLc62flYYBZd5gtSnqPxaVUVhSfdzeQKhFLIg3TZMH/7uC2at38u/vthz+G9q47fusv7foh4st3SMfruadxdux2wyGnWBVjz9bs7PadhKBUJj/9+na2O03F26tdruhqk6BnLO28f7f+YKhgzYV2lvhZ8Mu65prCsu45sXvCYTChMMm8zbs5q8frIq9D7i4f1dm3X0Ol56UQ9iET1fu5NcvzWfad5t55osNrC8q58PlBczb0LZmLSlIJaho5eOkbhmxF+36rpMqrPICekynVO4bcTzn9LY+SV1dcPA3fb5giHkbduMLto51QU1l8eZ91W7/z1vLME0wTch7fxUTZ6+LPfbFGmuvmOLKAHPX1/4JVFNMo1u4aS9rC8tiHR4HHJUBwOUnH8ULvx7Es788hem/PZNBPbKqrYO5KrLR68yVO7nt34sZOWkukz5b3+jja0u27KlkTWEZdpvBY1cMiN2f6rQDNTvsHYppmkz6bH21dWoLNllvUs7olQVAn8hGset2lrEw8ljfozJon+qkd+e02Pc5HdbLxMpDVCYOtDISvPvmNGyT7+O6pJOV6qTSH2LNmpVWRQpgwJWx1vpZKU4ch1lH1JLkZFrh+N2KAdDuKKjcDaus6YqmafJ25O/q56fUbypkVYMjFalFW4prrL2MTus7+9iO3DrUqjp+uLyQUNjkL++v4vzHv2TS5z9y1/Qfavz8Xry5mDteX1xtGvK07/ZPTfxqXfN8Ml7V6oJSQmGT47qkc1yXdMB6owfWh4KXPD2Xq1/8LvbpdzhscvWL33H2Y5/H3rgfKBw2+e2rC7nplYW1rjNrDMu3l8TGuqIeH1C0ReW+YGwvtB+LymPTdluqCl+QtyPdSJ+5ZiD/uu40OqY5Mc3qa07fXLCV/N0VdEh18ueRJwL7q/5HomqQmrdhD99t3MOIiV/x4bIjO/dtry3m9Edms3lP9bVq0bVYXTPcZKYk8WNROfM27OHlb/K55sXvYzNqrjotN3JcMpOuHsinY8+JTet+5MNVvFbl58XTbey9QOt5FUoA/mCYm19dyE8nfN7kne+iFamTumXSrX3DKlKzVlufnp/SPZPP7hnK74Yew/FdrTdOtXVu+dfX1n++l+duatjA24jo4v32KdbeOv5gGLvN4PrBPQGYOHt9rDI1s8p0r9mrD/4J1IZd5Zzx6Gfc/86yRhvj9Plb+Pnz33LZ5LmxRhMDumXGHr+gbzYX9+960EYCJ+a046TcTIJhk48j7Zk/WN6wH/QfLivg/Me/POQUo9YsGAozcfY6fvWStdns6T2z+Gnvjlx9ei4X9cvmV5F1MGt31r0V9aqCUh6ftY773l4Wm3b1fb4Vlk7rGQ1S1pvP9UXlzI8+Fqkgndh1fwC67KQcoO5BqrjCH5tudWIDg5TNZnDW0VZ1xTXnLxDyQ4+zIbtfLEi1ltbnUdEPrIoqQwQGXmfdOW8ShIIs21Zl4+L+h9+4uDZHd0wlu50bfzDMwiqNQwC+jLVV78zZx3QkIzmJ3eU+Jn2+npe/ySdsgt1msLfCz7s/WPt/Rf9rP/rxGj5YVsDjM9dSUhmguMLP+0v3r0n6ev2uRpm2VB/R7pM9OqTE/r1GX3fmrNuFLxgmf3cFmyJt9N9ftoMftuzDGwjzbS2fiG8r9jBr1U5mr94Ze7PcFKquKVmxveSwU50qfMGDbp7dUsxcWcjPnv2m2tTRujpwSUH0Z1FDLN5S3OSvEx+vKKTSH6JnhxQu7Gv9X43+LF0bCceV/iBPRcLCXef3ZnRkhsamPZWUegPsKvNV65pcH5uqBKlKf4gbpi5gTWEZE2eva/CUufU7y/hsTRHeQLja9HLY/17lJ8d2ZOSAroDVWTb6Qcp5x3fmH784iVEnH1Xt+47LTuexKwZw9rEd8AbC+ENh+h+VgdNu4/v8vW1qLb2CVAvidNhYtq2ErXs9tVZ06sI0Tf5v4dZapwIFQ+HYVK2TcjPp1r5hFanof7jhJ+5/4T+xq/UDpbYgFV2AuGhz6yjhN5VFm60fTrefe2xsGtWYU3PJu6wvdw/vA8DDH6ziv0u282WVaTNfrCmq8YbFNE3+/O4KdpX5+HBZQaPMP/5g2Q7+d8ZygNgbEoAB3TLqfI6rI59QGYb1hmzjrooGrfN65dtNbNhVwUtz8/EFQ9w4dQH3vbWsRc2zLipt+LrAmat2MnH2erbsrcSdZOM3Z/fEMAweHT2A5341KBZG6jO1Lxp6QmGTmasKKakMsKbQuu+0XlZY6h2pSC3YtDdWrTo1ErKi13Q5bIyJrFeq6xuU6LV7dEip0ya8tTnzmA4MMtZy3K6ZgAEjHgVolY0mADKSk0iJVBd3HD0GXO2gcBnMezpWObywjhsX18YwDAZHp/dVWZ+4r9If+2R5yHGdcDpsjIi8CZw423rDd80Z3bmkv/VGKdrwJLrmanMkjATDJrNX7+StRdvwBcMcn51OustBcWWg3ovLvYEQD8xYzqMfrW7Qc43+LMnNSuGEA4JU1ZbtCzftJRAK88Ss/VX+2sa6cff+DyuenLUej796Ve+5LzcccWXd4w/x3pL9IXR3uZ+dpbVXYbyBEBc8+RWXTprbpFWy2lT4guS9t5Lva3nju2DTXu54/Qd+2LKP3722qNbX/qnf5DPqmW9qtOfffsDWK7W9wf5iTREvzc2v9ed+YYmXq/75HVe/+J01HbiJvLXICsE/H9QtNqX2uOzqFdGX5+azq8xH96wUrj69O+1TnbEPUlbtKOXW1xYx6plvGhQm8ndbf16uyEyBysi/0fVF5axt4PTvqsH+wOmV0fcqg3q055L+1odqM37YzuY9laS7HEy+ZiA/H9TtoB+o2mwGE35+EukuB4YBf7m8L7841apSRbv8tgUKUi1MdCpMfdYjHGjWqp2Me2sZo575JvYGCWDjrnLW7yxj3c5yvIEw6S4HR3dMrVKRqnuQKvMG+DbyQj38xC6x+6MvaOt3lh/0h37008HoD5xEEwiFqfAFY0H2/BO68KszunNs5zR+f35vAO4871iuPasHpglj31xChT9E53QX6W4Heyr8NT7Jem/pjtic41Jv8IiaEhSVefntqwu54/UfCJvW3220VXaK087RndIOc4b9Rp/SjZt+0ovJV58Se4P+ZR3ndM9dv5s1haVW6I9MK5y9eicfLivgszVFvLlwa4M+/WwK2/d5OO/xOfzs2XkNeqMT3VD1ilO6sehPw7mgb/WKRO/O1ov0up1ldQ6PVUPPh8sLWbh5L6ZpVSw6p1tTzIYe1xlnpAPjuki167SeVsj6ae9OOGwGw07oQv+jMrAZkbUyh9ijKCr6s6uh0/qifto1zISkFwAInvwr6HoSQJWKVOtZHwVWyIm+mdriT4OLHgPA/GI8KxfPBYi9yTgSP4mEny+rLESf++Nuwib07pwWG8MlkU+XwapE/W7IMZx/QvVugQd+ygzw7pLtvBhZW3X94J6x4Faf6X2V/iA3TF3Av7/fwj+/2tig9blbI9+T2z65WpAKhc1qazAWbS7mPwu3xcIg7F/zeaCq06YKS71Mmbd/veqqHaU89skaHp+1ruZm0fUwc1UhZb4guVnJsSm0hwqhy7aVsH2fhw27Khr8Rrk2W/dWcsPUBdVC5oHeWbyNqfM2ce3L82NTgKOKyrzc/OpC/KEwKU47lf4QN72yMPZ/dP9z2MdfPljFkq37+O+S6t0VoxWp5CTrQ4bv82uGi1JvgNv+vZi/frCq2gyNqr5evwt/KEyJJ1AtzH2/cQ9Pf7a+Uaa+b91byXcb92IY8LMqU3CPjwSptTtL2Vvh5/k51v+Pey7oE5sa3e8o69/oF2uLYuGkaoCp6lBLH6LdNKPrkAF6drDew723pP6dK33BEO9EKtAA8/P3xD6sDYTCLN1q/dsc1KM9p/fKolO6K/b45QNzSHE6Dnn+ozKTmXH72bx161kM7N6eUZFxf5+/p0V9GHok2kyQevbZZ+nVqxdut5tBgwbx9ddfx3tIDbI/SO3/QTDt202c+rfZBy15b95TwfiPVlfr/BPt5FLhD3Hdy/OZ9+Nulm7dx0VPfc2lk+fGWiAPyM3AZjOqVKRqf3HwBUP8Zsp8Lnrqa3732iL++PZyAiGTozumcmyV9RS57VNIddrxh8JsPGBfCNM02RL5IbCt2HNE0xc/X7Ozxewb8tTs9Rz3p48P+4lsUamXwX//nJMenok/GCYr1UnPDik8fHk/Zt89hOxIgwHDMHhw5ImcdXQHoj9nLujbhSF9rPVnn63e/0ISDIV59KM11a6zYVc5RWVePli2o9Z2pQcTDpvc9tpiZq3aicNm8Nuf9uK5X57CLUOsfX0Gds88aBOC2jgdNv408kQuGdCVc4+z3qDVpcvQ/Py9/Oql7/nVv+azuqAMT2StR4knwN8+3P/p9ZOzD90S3BsI8fHygiNej/ePT9dy5xs/xKbWbCuurPaJ59Rv8in3BcnfXVHvPXf8wTBfRCqO15yRS6qr5ovS0Z1SsRlWSC6q4/qBqkFq3o+7YxvtRqf1gfUCd+s5R1e7TrTD3nHZ6cy97zz+8YuTSK4SoOsyvS96TN+culcvaygvoseH13CMrYAdZhb3F4+KNVpZGgnW2Rl1a8jQkuREQsyOfR446WrocxFGOMC/jL8yusOWWAg6EkOP64zdZrC6oDQ2DSgaqoZW6QY4+JgOsanFPxt4FLlZKQzt0zn2fzwzJYlz+uw/Prqo/uv1uykq83FUZjI/O+Wo2DH1+WDjD28uqRZ2Fm/ZV+/nuSUyta97hxROiMyE2Ly3kgWb9rKvys+9BZv2xppq/PIMa+3mqh2lB52KGP3zir4xffGrjbH/92/M398U4mDrmp6YuZb73lp22A9TPl5uvf5eftJR9I9U+GsLdgBLtu6forl4c829g/5vwdYGvRZ+t3FPbNr2pM/Xx17/o+uVohZGrukLhrnxlYXV9i+avaqI4soAvTun8dk9Q+jZIYXt+zz87rVFsZ+7/mCYcW8ti3WBPDAoRT/AvbCv9YHsup3lNZqb/PeH7bHXgVfmbTro85lbpQoZXboQDpv8fvoSnpi1ji8aoTHDpyutv7vBx3So1hDmuGzrfdvawjL+OWcD5b4gfXPacemAnNgx/SI/D6s2F/lkRWGNBlJ/enc5p/xl1kGrVaGwGQvxN/20F5f078r/XHgc91xwHGBNX31v6Y7Yh3MHKijxsKzK/qFgffC+t8JPl3Yu0l0OSr3BWBBdE3n9bed2cEynNOw2g4v77f+gL7oW+nCO7ZzGoB7Wa8+Abhk4HTZ2l/tjH1wEQ2Hy3lvJi19tPNRpWqw2EaTefPNNxo4dywMPPMAPP/zAT3/6Uy666CK2bGl93XD6RhbzR9+MrNhewsPvr2J3uY8Jn1R/wxwOm9z5xg+88NVGbnplId5ACNM0Y58M5mYlU+kPcd2U+fxm6gJ8wTDeQDjWUjm63uWoSJAqrgxQ4gnE9piqulh5fv5evli7i9UFpXy8ojC2wLBqNQqsUm5t66T2VPipqDJVouri+a/X74otAC71Bg45f7i4ws+try3mgRkrDrkAf9WOUn4satrKVzhsMu27TfiCYf6zcP+nS0VlXm6dtqjadIgJn65lV5kv1ontJ8d2jE0NOJDDbmPSNQNj3dtGDshh2AnWn3XVOczzN+2lsNRL+5SkWKezDbvKeWDGCu54/QcG//0z8t5bWacK5/QFW1m4uZhUp50P7voJD1xyIg67jbvO782jo/vzt1H96/mns1/0Ddy8DbsPuwFxdCHq7nJf7JPvqL0VfmyG1R1y6dZ9h3xxfOi/K/ndvxfzl/dXNXjcM1cWMvmLH3l/6Q7+9O4K/t+na/jJY1/wk8c+Z9Jn6ykq9TJ9/v6/97fqua7i2417KPMF6ZTuYmDuwTvcuZPs9OyYCtSt4UQ4bMa6ZmYkJxEMm3y2pgjDgMtPzql27O+GHht7Q3Baj6xqj2VnuEmOTEXb/4nr4a+/4kgqUp598N3zMPlUjKJVeN2duDb4J/6z1scvnv+WdTvLYm8Somu3WpNokNq+zwuGgX/kJFYax5JllPP/PH/G+PQBKD2y/ZCyUp2xnwUfLi+o1va86v5UDruNey44jkE92vOHyHTijJQkTo2sk+vTOZ1O6S5Oys2kQ6qTR37WPxYwwKqcuxz22Ac8i7cUs7OOFctPV+7EZhBbB3ewgHAopmmyLTq1r30KHdJcdE53YZrEQtMp3TMB2LCrgo27K0h3OfjjRceT6rTjCYTYsKvmmsPoh3+3DDmGnh1SKK4M8Mb8rVT6g7F1Y1Az+BSWeHn68x95c+FWvjpEQyCPPxT7uxjRLzv25vpQP5+jFQHYH2qiNu+pYNzby3hgxopat844mKJSLze9spDiygCGYTU5+r+F23j4/ZWc/JeZ/P3jNbEKTnSNTOd0FyWeAL94/tvYn/Gqgv0zK7pmJPOv604j3e1gwaZiHnx3JWA1JVlTWBarzHyfv7daiN0Wed3vd1RGbOr4zJX7X+Os/Zr2v5ebt2FPbC1S1WOqTudcEgnmS7fti01TrW3KYX1E35ed2atDtfv7dEnDMKxpmtG1Q38Y1qfadLe+kYpU1eDkCYT4qMraYX8wzDuLt1PhDzF2+pIa2wrs2OfBHwrjtNvo1TGNZ355Crefeyznn9CZ5CQ7W/d6uOuNH7j1tUWxqdxRpmnyq399z8+enRf7tx8IhXkqMrV3zKm5nBZpRBQNcQsjSzBO6dE+9lyuGNQNu83g9F5Z9Duq/h+WuRx2To6894zOmJq9eidT523i0Y9X1wjyrcGha3KtxBNPPMGNN97ITTfdBMDEiRP59NNPee6553j00UfjPLr6OTlpCwOMDdiLDMrznTz31nJONCvBAP8WWLXQF1tY+9mqnbD9RwYYQAG8+MYORg/qRoeSFWQ7bEwZfSrPzymwfsBUwonJDsq8QQgBBpyTkgTbKmgHXNx+O9v3eXjrv5WYWIsJRw7I4bc/tT6x3r5iCycbW+h3VAZn9MqioMSDNxDm18cWw7aF1Z7DhRlbCRmFFK2ugI77P/HeVVjKycb+TSB3rQ6BrSsrC0p5YsZycrOSeeqqgTz14SoWb97Hg5eeeNA3l18t3U7f0CYwYPty6OHpwKcrCji9Z4dYVWdXmY+81xcTDIe5sG82lw7IIbud+6DzeA+qjiXnH4vK6F6xgu4G7Fq1BXNgOQYGn83fQtGqbby39wfO+Fl/1heVkr94OYMM+J8Lj8NuMzghuwK2fFfruTsCH41KYtu+AP0d6ylPC3KGYx2hXWG2LQ3SLTOF1d9t5FSjkHO7dybNtQe/sQPfhhK8G3ZxqhGEAKz4diUrvoXMFCe57ZO5sG82Zx5d9YXApLjSz8yPl3CaEeL603pyvG8FRD7kTAKu7gJUbIO6bD5/kD+74zEZkbaBvRV+Vn8XqjU0rN1Zhn/DCk6P/DUVLV/NGQYc3TmVjUXWxQd2z6Bb+xTeX1rA2+9s4JSf9Sczufq6km3FlWxevIwzDNi4cDUFR++0Qulh/l5XF5bRMc1JpzSX9eZpxjLOtFkvZjuWrGIHcKYNqIB5ny1m4Zc2+oXCpKckUeYNULpqNeWr95HmrtuP1vXf53OWbSfnd++CbdNXtR53adp65u8ppmx1OWFbF95evI19niC/GdwTh83AxGTzHg87S73kZiXTP7AMZxJc1jeHtxdvx24Y/G7oMQy2rYAq2TQZeOmcCt5etI1f9TCglvbDw5zbKLZtw9xQAN1q/4DKEwiRs2chXW1wciAJNtSy3scMg7/cCk7efVZ42LnS+v8QjryQZvfHfcXLPFbZiVumLWR1QSk/f24eobDJT3t3bHAji3iKVv93RN48fpof4H88D/Bc8vOcG/4evnvG+sruDzmnQPuekJIFrnRwpkNSsrXoEAMMW83fR27/Kncv+37cyLofdpKftYPs8tX0dNo43dUFtu//+/tVLvwq1w0Vq2P/t2/otY/KTRu5vHMAti/mP5e6CISSSC1bxXU9i3ln73ay27n5edds2L6bbsCVObtYVVDG3Dlhrjil5nTAqj6cuZb+xm7O6dOR03s6KM/fSNmGItjui7yxLLQ29TyrBx1qaW9f7g3S078ODMj1doHtNi7uUMCi8n3sXLOR/gZc37MXncsKrNAKXHp8V9L3LOfSTjtZuaOUrSvs9AlWn8roLFpKf8PHAFsq95/kZfIXG/n6y21kFufQ078JIj+XKvL3wvb9MziWrtxJf8P6jzX/mxLOSz/+oONesnEPxwbX07mdi75swHCX0t/YSHDrNthuP+j3eDcvpL9hVaLL87fD9v0/w75dsJX+hvX3+emsUk660KpMrCwo5bPVO+mY6qJftwwGHJWBP2Q1IDm+azqvfbOJXv5d9OmSxkX9s3nqsx/5fu5mKv0h+gHffLWRiUVLuH5wTzKLV9LeBv/6+alMmbuLuT/u5r8fbeAnqf+/vTuPi6rc/wD+OefMPgPDMizDvgoqKAJq4IriSql5UzNztzK1NNtvZbd9sW67duuW2aZtVvdnZZK5ZZkr7ksiKgqKys7ArM/vj5k5MgLKIDho3/frxesFZ86cjWfOme+zfJ8uqDt+FMlcNTKUUuCUAXEAPhoswdMrD2P/9qM4EleOrb8fQjJXh7t6xeCTzcdhMFpRsFuJOEcrt6JkF5K5anRiUvhGGvHRqWM4sO08EJ4EwP5MkJ7ZjTQJh86hWuw8UY7cX2qQkBUnXodj52ugrzkIveP/YzheBJyyIe/PY0jm7AGw4VglcMr9itXDZ6pRbbQgNcIH5hM7kcwZ0FMhd9mWCsAgbRGKK+oAs70SaoD3KeDUheA7hTeJZQSwB/o7TpQjb/M5jNXbKykPnCpHrPkvezmrAhZ9fhqPDe8ovudcYTmSuaMI0yogFO902f+cRHslkzMwPrDNBkmYFk9+vw9j0sOQFKqF6twedAJwNI9DbKcg/JB3Coqzx9BLKcGdsQHINZ3BWe4Yig+UgcWUI29zHpK5GtykswGndgAAunDAhgk+8FEJ4jJ33RhwGrXHT6L4QDUQcg4b1+1FMmcPyg9uX4+eiVGALu7SG2lHOHaNd1I0mUxQqVT46quvcPPNN4vL586di7y8PKxfv77Be4xGI4zGC11kKisrER4ejoqKCnh7e/bhzBbGgatpH2M/CCHkqtMlAD3vBNKmArz9y+WWglKMf3+zWJP98bQeLt3OWoPJUId3nvsYADD7sUmQqRStun0A+HbnSdz3xS5kxPhj2Z034NEVu7FsSyHu7BONfyYUARteBU783ur7JYSQa0bsQGDiCk8fBSorK6HVai8bG1zzLVLnzp2D1WpFUJBrF7OgoCCcPt14P9EXXngBTz311NU4PLdx3iE4W8e7jOvwVckgk/Bit4lALwVqzVZU1Zkh4XkEectRVWdxmUzNWyGFt0Iq1qA5VdVZUG4wQ+A5cV4Tp/M1JhiMrt2ugrQKSAUOp8prwWz2v2WXmbvFxoCT5QaA2buy2BgDwKHWZJ8vguc52GwMcqmAIG8FTlfUwegYc+KsTQEAqYSHr0qKkkojOM6epYvjOJypN8miQiqA5+yZaxg4KKQ8grwVOFdtRI3RCpVcgM3GYLTYXBojBJ6DRODAGKCUCdAqpeABMNizFAGAWiEFB8BsZThXbYTJYkOQtxwWG8PZKiMEngPPcTBbbeA4Dowx+Kll8FZKcfy8QRy/46OS2TO6cRzCfVWQuDHO6GJVRgvOVhkhkwjQeclxqqwWPAdE+qthtFhRVH7h2qhkgtg10MYYTFYGg9GC8lozGAMkPAd/jQwcgNOOrFFhvioxG9AVaaTLYp3ZipNlteA4e3eckiojlFIB/o6kAeUGM85V2//XYb4qnCwz2OfWAodonRomqw1Giw0+Svv/xWS1obDMAJvNnnjAV2XfTo3JIl6HYK0cpyvs5xbhpwLP27tVqWUSBHjJYbTYUFlnhtlic+lyEaVT42RZLSxWG/Q+SmjkElTWmiEROKgdg2ttjKG0xgSLDQj0lqPcYE9rK5fyiPRTX/zRa6DWbMWJUgN4nkNsgBo8uEavG2DvQ36i1ACT1bXeSypw4DgOJovN5bMD2Lv16VtpHJHJakP+2WpwHIcOQV44V22EXCLAWylBSaURVXX2wfNljtTYWpUUIZfbt9wLUGgBhQ+gCQACOgJh6UBAQoNVe0T74cEhCXjxp4PoqPdGn/grH0vkCc5rUuQY07rT0QUpNdIPiOsExGUD1SXAsY3A2UNA2TGgrgIwVgOmKsBcB8Ax4RyYvWWvwe9256qNqKs3ls9HKYWmkTF4rcHGGIor6sAA+KtlqDVZYXB04fVTycRsheW1JlQbrVBIeOg0cjAwnK6og5XZxxnYYL8vgQEWxiDhOQR5y8Fd9GmqNVtxvsYEucAhwOvCc4yBwez4jMgEHgaTBaUGs7g/AOIymcDZnymObZutNpypMoIHoPdRgAOHGpMFZQYzBM4+5tNHKcPpSvt5BnvLIeF5MMe52wAIHGBl9mutkgkocXTl5jlAJZPAYLTABiBAI4NcYr8mZ6vqYLQySDhAEHjxWQjYH98MgJTnAM7+LJLyHMw2BrnEvi7nOFej1QaNXAKNXMDpSiM42BM4GOp1pXZuD7DPT+e8Z1bUmlFltEDggCBvBarqLKiqdz+sv26N0YKyWrN4rvWvl5PJYkNJvYQTzvdX1ZlRUWeBUsrDXy0HYwynHM9zvVYBgeNQUlUHk5XBRymFhOdwrsYEDvbnv1TgxPKiU8sgl/CoNllQY7TCYmPQKiUuv1fUWsRz5mDvnniu2giJwMNHKYX0Mt9l6sxWnHN0r3Mm0xA4e4vTxWWystaMSqMFPOyv843cy52fSef5n60ywmi1iZ9N57n7qaSoNlrE32USHuUGM6w2BrONwUsugVbZeGu/yWpDiaMcg4M4Nq3+/14u8FDIeFTUWlw+BwwMJVVG8TMEABqZAB9V6yb2qX+/UEh41Fls4B3HKhU4BKlbt5KsrV3zgZTTxWNNGGNNjj959NFHMX/+fPFvZ4tUu3DXBrz3w368v9GeLSjAS47f7s+CVCLghc924Ic9xegR4ocDxZWoMlqwaEIqhifrobExzPt4mzjfz8o7ezfaf1VisuK9Hw8gM9YfIcl61xerjbjvk+3oqPfGqfJa/HqwBA+lJSC7YxAGv7YBSqmAPfMGA5e5+fAA7nlnE3YVluOujjH4YGMB5BIeN8T4Y83BEoxMCcH3eUXw4iTYPHMgej+1Whw35MIEDIwIxJpz9nOSW3lIeA41Jiu6hGmx+2QFtIIUPAeUmcyQ8BwsJoYHeyfg/Y1HUW4y45vpGUiL9IPZasOWglIs23ICvx4sgaGuXsBoACJ4FXK66JF3ohx/FNv7Bw9LCkaQtwJfbC0UB7oGGeUwWxlKTRf6LnMccFffWLy7Ph99InW4f3ACRr2z6cI1t3Cw2BiGJQVj8e1pl7x2l2OpMWHQc7/AamLoGxaADWfOIqeLHu/clgpDtREDn/1FXHde33jMy+4g/k8Ujp9TJytw/1d59kxt9YY0TO8dLU4c2BbkjGH26xtx6EwVfCqlKDeYIZPw2PvAEOwrqsCYd/+Axcbw1IjOmJwZhec/2oo1B0sQ6qPEpnsHQAJ7FwYnGYDf/ziGJ77fh1SND1bM6oW8wnKMf28zas1WTMqIxNMjk/CI43MzWh8KL4UES4uOg6sFVk/tixkfb8PxeklWfFT245oQHoHPik5AIeWRd89gcFIBF3+aeNi7XzpxNSaMeGENjDU2fD0xQ8xU+NOeYiikArISXbsRvfbjAby34ShGpoTgjVu7XfLaSQD4G8yY+8VO/H7kPJ64qRMWrT1i70oCIMhbjh/u7YN7Pt+JPxz9258aar+OrUGwMYxasApGiw2PdE7Eiz/Zx2tG+atwzHH9RgWEYEtBKYpMdfjvrekIuWj85JW6q28MEoO9kBDs1eS9vb1zjkctLq9DVZ1ZHPPWzTGeBwCgCQSS/nHF+zqcfw5Pfr8PZqsNwVoF3r09DWjlL0ROPIAXPt+BlbuLgYvyodzaJRwv/qML6sxW9Ht+DSqMZnx0W3f0TwgEB+CpT7ZjlWMQf7C3Ar/c3w9VdWYM+/cGVNVasHJGbyQEeyF3/xn0TwiASibBx+vz8cJPBxt8djjY7wtOSsZw5PBZpEb6Ao608kUl1cj+t72nSqAgx1MjOmNYsh6/7juNuz7Zji5hWvxvTm8AgBoAM1qglglimbvzzY3YV1SJd4ekYmiSHr/9dRYTP9iCQC857uoXi2dW7kewXIEkf2/8UlJyoYLDca8N9lZg0/0DxEm6TOW1mPTBnzh61t63UiHlMaFnJFbtPS2OGx6bHgaZhMen9RIVOK9zThc9bkkLw9QlW6GBBHf1jMGruYfRM9oPX9yVgdytJ/DYt3sR6qvEB5O7I/9sNfaeqsCdfWPEawKDGe/nHsI/0sKgD/OBsaoOA15cC5MjccZLNyZjnCOxQMm5GmS9sk48jG4RPvh2Vi+X/7kMwH3v/o6tjrnMvpmWibRIXxw5UYabF/0OLS/F9nuzUVhWi6xX1kElE7DvviEAx+G7Dfl4/seDCFUqARtwyliLqb2i8ORNnQEA73y3B59uPoEJKRGoqrPgf475zCQ8h9x7+uG13MP4364iqJmAGpMV2R2D8GfBeVTVWZAdE4RfztnHX0nrOET6qxGjU+PFf3SBXyPdSJ9asUdMMiIx25/jveL88dmMGxqse/xkBW5etAmz+sdi/uCGlUEAsCnvFB7+ZjfeHZOG/gmB+GFTAf71f/uRGuSD/0xMR4/n7M/vbQ9m461f/sInm49jevdoGEwWLKs3FvfZYUni/IIXk9gYRj73C87XNJ29Vy0TkB7mh/WHz+Kx4R1xhyPpEAfAVGrAiLd/Q5nBDJ4D1s/Ngo+fqslttQQP4I43NtrH8jrK8Vvju+GeZfbuijuGDIJf029vd675ZBM6nQ6CIDRofSopKWnQSuUkl8vh7e3t8tOe1M92NSUzSqy5emhoAqQChy0FpaiqsyA+UCPOBcLzHP49tis6h3ijZ7Sfy4Sa9SllAp4ZlYRhFwdRAPw1cnx9dyaeGZWELEdygHWHzooDgbuEaSG5TBDl1MeRfeo/64/CYmOoMVmxxhHkDUgMhFTgUGW03wQtNoYQrULM/qfTyBEbYB9c73xPfKAGRosNNSYrIvxUeHVMV0h4DhW1ZpQZzFBKBTw7yt6n+o01f6HcYIZGLhETakgFHr3idHj7tlTsXDAIy+64AYsnpOLlW7og2FuBE6UGLF6Xjz+OnodSKkAqcPhp72l89Psx1JqtyIjxR0yAGmcqjSitMSEmQA1vxziYrmE+uMUxg/efR0vFrHrOjFjOIHFs9ysP1n3VMnGAtjOpyPAk+//STy2Dj+pCLVV6ZOO3ouQwLf7vnt64d2A8QhwtVhF+KnH+qrbCcZyY3tmZVctksWFfUQVe++UvWGwMOcl6TMqwPyCcaVIv1YUr2/FlfWdhOY6fr8GMpVtRa7aib4cAMSh0Zh38364ifOFICMIYMGXJVhw/b4C/WoYHhyTg8xk9xTGBzodnr1gdFNLGxy5czFctE1PSLnFklioqr8Wsz3fgjo+3ucwzxRgTM0ANrjcP26VoVVJ8NLUHdv9rMCbeEIl7BtjT5XMc8O+xKdBp5HhyRCdxElVnut3WIPCc+Pn878YLKaGPnTeILazf7ypCUUUdlFIBvdugxYjjOPRPCGy1VjZPCPJWQOA5mKw2/G9XEWwMCNEqEOTd+t0IM2N1yJ3fD+sezMLyOzNavVb5YlN7RUPCc5BJeCSHajE7KxaAPcsfYwy5+8+gotYMvVaBPvEXPtNpkRfGSz5+Y0do5BLotUoxo92+ogos/f0YZn22A09+b09gcKJeoolLcZYZ73pzc8UGqDGzXyy8FRKUVBnx5q/2cbvODGLRjsQuThq5xCVwdyaI2HvKPpjfWXnZPyEAt6SGIcJPhdOVdeLk6Z9M64lnRiXhtp4ReGx4R3x+R0+X7KehPkp8PTMTgzsFYWRKCHLv64cnbuyER4dfGGeVEu4rZtyU8BzmD+og3utvSQtD/w4BiA/UoNpowZu/2pMHOJMTjesegS2PZSP3vn6IC9RgSOdg3D84wWW+Mq1KiqdGJonPy0AvBUbXG+uWGnHhfxTlrxJ7OgBNJ5W5s6/9/58Y7CUm/kgK1cJHJUVFrRnvrs8XU5+H+ijFa3xT1xAopDxOldfiVHktgrzlLs+mgY7zWrm7GP+32x5EPTIsEWvu74donRop4fZ91ZiskEt43OmogAHsSQ0A+//YbGU4UlKN1fvP4N+5h8Ttn60y4rkf9uPwmSr8erBehlzHc7yp71bJYVocfGaomLilMSNTQnHwmWHo78hiOyxZD46zZ61csqnAcY28odPIxfPYeaIM6x1ZN3vH6TAgMVCcGLcxPM8hI/bCGOjR3ULFXiYZMf6QS3jUmKzY6EiK0uuiTKHhfiosvj0NXnIJbusZgfBWDqKcxqSHQcJz6B7lizduTcFNXUPQwTG3YVNzlrVX13yLlEwmQ1paGnJzc13GSOXm5mLkyJEePLKWSwn3AccBapkEt/e8UOsQ6a/G5Iwo/Pc3+wduzoA4l+QJPioZVt7Tu1Vqa+0f9H3YfrxMHMhf/4F3Ob3jdXh77ZFGX4sN0CA+0Av7iyvx6mr7/BU3xPqjR5QfHlmxB9N6R+FMRR3yHTV0gV5y/G9Ob6zaV4zYAA2SQuxp2+MCNeJ8VN0i7MHMu+vzxbmqbojxb7TpXi4RXG40w5KC8cPuYuw6WQ6LlWF2VhxKDSYs+H4vQrRK3NYzAv06BOBAcRVGLdoEs9WGV8d0RWWdBY9/twcz+kQjNkCNxGAvHDxdhXcc5z05Mwrvrs9HndkGvVaBvvGt01x9R98YHCiuRIcgLwzvosdQRzpSjuMQG6DB9uNl4DkgpX4tdyPXYP6gDrgvOx7Hzxvgq5Y1mnq7td3cLRQvrToIs5WJrT9/HD0v3jjnZce7PFDD/VTiXCuN0WuV6BzijX1Flbj70x04V21CtE6NxRNSxf99lzAf9Iz2w58FpbDYGAK95CipMoq1vfcOjBdbbrwUUiz8+ZDYHaL/Ra1IlzM5MwrLtxZi1d7TKCqvxbbjZWCObkrrDp3F0KRg/HqwBP5qGY6fN0Am4V1SUjeHM7Abmx6GwjIDYnRq8WGYGOyNV8Z0Rf7ZapcvP62hQ5AX9hVVinPE/HN4IvYVVWJc93D8e/VhMaNY3w7NDz7/bqQCj95xOqw/fBav/Gz/8napz+m1JC3SF3ufGgKpwEPgOdSarHh/QwFOldfi6LkafLntwkSm9QOJgR0DsXD1IfTvECBOCAzYv3T/nn8ee09V4rgjcPq/3UV44qZOKHR8AQ/3cz+o5jgOjwxLxMSMSPR68VccPlOFWpMVBWcbD6QulhSmxRfbCpFXWI6qOjNW7LAnFMjuGAStSoof7u2N5388gGVbCjGzXyx6x+suW7Hgp5bhvUnpLstykvX4vlMR/sg/j/4JAdBp5PgrqxqZcf7IjNVhbHo4Dp2pErMmzugTjYcd05IAcJkTrLHWlsuZ0Sca3+w46ajYvHAP5jgOGTH+4txDnfSNZ24b1CkIn07vidhAtXhPlwo8nsjphPu/2oXXf/lLPHZnSy1gv6eveyALq/efxvbjZZh4Q6RL0JcR4w+VTBCzu2V3DMTMfrHi6yNSQvDzvtOI1qkxNzseeq0SCcFeYuuYhOfw3exeKK0xYduxUjz4tX2c4pTMKMQFeuG5H/bju7wifP7nCdSYrFDLBChlEvG+d6kkN82taHYK8lage5QfthSUitmUnRVrzlbqnYXlYMw+Ae9/J6c3697aK05nbx0GMOGGCHtPjD+OY1z3cBhMFuw6WQEbs3eJdwaZ9d0Q44+8Jwe7Nd2Ju6b2isaUzCiX76sZMf44fKYafxw932hlf3t1zQdSADB//nxMnDgR6enpyMjIwHvvvYcTJ05g5syZnj60FonSqfHh5O7QaeTQqlz7wd4zIB5rHF/EbuzSMP1va3V5CfdTITZAjfyzNeIEeO58MUuN8BX7FGd3DMKag2fE7vuR/ircMyAOd3+2Q7w5ZcT4Y0x6OPp0CECIVoFVe09jqWPm6+HJeihlAm7u5jpZZacQbzGQ6hHtB4nAY86AeDzw1S4AQO841xSlTfFSSHFrjwjc2uPCnAhRUGPlPX0a7G/F3ZkwWqzo5rgWGx8aIL7+zKgkjHn3D/FLeO84HfacrMCagyUYkx7eajelfh0CsP2JQY2+FhugxvbjZeio927WeAiO48TU2leDv0aORRPScLbKiDKDCQt/PoSPNtnTxwd7K1zmJAMg1spdysDEQOwrqhRTfs/JimsQFN7ZNwZ/OuZhe/KmzvhwUwG2Hy9DmK8S4+v93zuHeMNfLRO7RQxwM5DqqPfGDTF+2Hy0FF9vP4nSet0r1hwswR/55/HFtkJxKFSfOF2LA1iJwOPhoQ2zg41ODWtk7SvXIejCA9dXJcW0XtHiF4fy3mYxkGpuC9vf1fge4Vh/+CzKHK2yTWWwvBbV/5KnlAlIj/LF7/nnsWRTgTjPz5g015b5mAAN8hYMglwiuDy/nC0du09VIL/Enq65zmzDyl3FLqnPWypEq4BOYx8zs7+4oskWqYv1dKSI/u3IOcxbnoeKWjNiA9RiS4mXQooXRnfBghs7i9MHtATHcXj39jTYGBMrhR4YcqHLWLBWIWapBeytHQt/PoRz1SbE6NRuTZ7emLhAL/xvTm9o5JIG2W5viK0XSF0isGgsgBydGoo1B8/gxz2nxR4nF7fyBGsVmJQRhUkZUQ3er5AK6BOvw8+OFOmzslyzu+k0cnxxV4bLMuc8TwCQGaeDVimFVilFtE6N1fvPIHf/GTz3wwE8ltNJ7CronKqlX0IAFFJBDJibChxbKidZL84RektamNiDIlqnhlYpFQPGnjH+za6gsneBFRDmq0S3cF90DfPB+J4RSAz2xp8FpeJcfJmxuiYzGbdlEOV08ffVjFh/LP3jeKNzprZn13zXPgAYN24cXn/9dTz99NNISUnBhg0b8OOPPyIysvE+pNeCrMRAsWtDfVqVFGsf6I+v785s84J+V99YcUBjhJ8KPWOa32tVJuExOysO3aN88cLoZHGiST+1DF4KKYYl6/HA4AtN4M503M4m/p710nMPb6Jmov7Nt4fj4TYqxd48LJfw4oOtNSWFasWJ5S7WPcoPt99g/1IuE3gkhWrxrxGd8c/hiZjVP7bR97S2no75Ldri3FvLoE5BuK1nhFjj5pxktk980/NqXUr9cw3zVWJESsMKhqyEQIxMCUFOsr0Fb8GNndA1TIsXR3cR5zcB7N0inA//hCAvl0kXm2u0I+DP3X/GZfLKXw+cwTeOeaaclQpDOl87QYez2wUADEgMcql9HdwpCB319i4p2e247LUHAxKDoNNcaCG4XlqkGuPswvfp5hNgzP4Zj/BvGPyoZJIGzzNnF/ddheUuiWBe/vkgjp6rAcfhioIFjuOQEm7fx+9HziPPMVHp5eY/6xDkJXY/dgYC9wyIb3D8VxJEOQk8d9mECE4KqYC7HN3pRqZcOgV9c3XUezfatatXnE6cz6+xFo1L4TgOz41KxsDEQAxPDsYbt6ZcsjtcY5yVyH3idc2q4E2oVwk09KJ77qPDEiHhOaw9dBZj3v0dNgbcEOOHCMd5D0vSi71JZBIeMQGtW/F4S1oY/pEahpf+kYyFt3QRh3JwHIeu9SoS+7mRpVSvVSJ3fj98eVcGeJ6DROCR6Agm65fv1pgAvDVlxunw0dTu+ObuTE8filuuixYpAJg1axZmzZrl6cO4roztHo6x3cNhsdrAc1zz52BymJ0Vh9mO2qJb0sKw8a9zLjfd2VlxkEl4CDzf4Gbtp5bh8ZyOOF9jEieIvJizJkwqcGKtrkTg8dXMTFTVmRF2BbWVLfXw0EScrTKiS5gPFFIB4X4qsa/41TA6NRQJjgH57V3XMB8IPCemtG7puJrkUK3YXW9mv9hGv3jwPOcyKL1ruA++dwwov9j4HhH4ed/pFidqyEoMBMfZJ+10frlSSHmxhrNntB9GpoSisMwgjgO7FtRvkRrUybWlTiLw+HZWJmyMQSW7bh4rbUIm4fGPtDD8Z/1RCDwnjrm5HvWJ1+GlVfbfUyN88OrYrs1+b7RODaVUEBP9JIV642BxlTi+8r7sDi4tMi3RJcwHvxwowYebCmCy2BDlr3LpxtaUh4cmYt2hszhRau9ae1M7mRx6Rp9o9IrTuVR6tIVQHyXem5gOpUxoUTdeX7UMH0zp3uL939hFDx+V1CXQuJSEYC/IJPYMi4MuSoITE6DBwjFd8OBXu8VW4n8O74gwXxXyCsuQlRCIaqMFaZG+SI3waXZg21xquaTJz0VKuI84FrpfB/eej01VAtYPpHq1s+yn3gqpOH7sWkJPPHJZ7vb7bcyIriHgOA5d6mUS5DjukkHGjD4xTb4G2FuAbu4Wig5BXi61f85me0/wUkjxn4npl1+xjXAc16LZxj1BLZcgMdhLnC2+pbVjziBpZ2EZbm2FhB43xPjj4DPDWvz+AC85uoXbJ1u02hh0Gjn6dtCJXUNmZ8W1+hxIV0OojxKJwV6oMVlckgU40bio5ru9ZySWbylEz2i/Vmm5aK86h3jjzr4xEHgO87Ljxdr25hB4Dh31XtjhSBE/uFMw4gI0+C6vCHMHxuPegfFXfHzOL+LOL9CDOgU1q1VcLZfg7du64bkfDmBudsPWKE/hOO6qTVSd3cpZOd3BcVyj96CmaJVSfDSlO+CYRuViN3cLQ6CXAg99vRtZiQFi0o0BiRe6a3qilaR7lL2COMxX2awAvzmSQrXISghAoJeiRT0uSEPX/IS8raG5k24RQlrXgu/34uM/jiMp1LvBmLRr2eJ1+XhplT1F+OBOQRjXPRzTl25DlzAtvp/d65pN32222mC1sesyaLoaE/LWV2uyOlrkr82ycDU47w8A8PkdPZEa4YviirrLjmNqrrIaE7o9kyv+/eVdGWI3cfL34/w63F7uz4wxfL7lBJJDtWJwR66e5sYG18UYKULItWlMWjiCvRWY1iva04fSqup3fUuN9MXAjkH4ZHoPfDile7t5SLeEVOCvyyDKE5QygYKoy3B2Q5LwHFLC7d2lWyuIAuxdzCIdY7b81DK3MtOS6w/Hce3q/sxxHCb0jKQgqp2jrn2EEI9JDtNi8z8HevowWl1sgAYJQV44dKYKmY5U++50RSGEAL3jA6CWCejbIaDNxt51DfPB8fMGDEwMpMCWEOI2CqQIIaSVcRyHD6ako7C0lmoTCWmhUB8ltjyW3eoD/OublRULG2OtMuaKEPL3Q4EUIYS0gTBflUcyRxJyPWnricITg73x9m2pbboPQsj1i8ZIEUIIIYQQQoibKJAihBBCCCGEEDdRIEUIIYQQQgghbqJAihBCCCGEEELcRIEUIYQQQgghhLiJAilCCCGEEEIIcRMFUoQQQgghhBDiJgqkCCGEEEIIIcRNFEgRQgghhBBCiJsokCKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3STx9AO0BYwwAUFlZ6eEjIYQQ4gkmQx3qjLUA7M8CmcXk4SMihBDiKc6YwBkjNIVjl1vjb+DkyZMIDw/39GEQQgghhBBC2onCwkKEhYU1+ToFUgBsNhuKiorg5eUFjuM8fTjkb6CyshLh4eEoLCyEt7e3pw+H/E1QuSOeQmWPeAKVO9JSjDFUVVUhJCQEPN/0SCjq2geA5/lLRpuEtBVvb2+6uZOrjsod8RQqe8QTqNyRltBqtZddh5JNEEIIIYQQQoibKJAihBBCCCGEEDdRIEWIB8jlcjz55JOQy+WePhTyN0LljngKlT3iCVTuSFujZBOEEEIIIYQQ4iZqkSKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUJaYNGiRYiOjoZCoUBaWho2btx4yfU/++wzdO3aFSqVCnq9HlOnTsX58+fF199//3306dMHvr6+8PX1RXZ2NrZs2eKyDYvFgscffxzR0dFQKpWIiYnB008/DZvN1ibnSNqf1i53K1asQHp6Onx8fKBWq5GSkoJPPvnkivdLrj+eKHsvvPACunfvDi8vLwQGBmLUqFE4dOhQm5wfaZ88dc9zeuGFF8BxHObNm9dap0SuN4wQ4pbly5czqVTK3n//fbZ//342d+5cplar2fHjxxtdf+PGjYznefbGG2+wo0ePso0bN7LOnTuzUaNGievcdttt7J133mE7d+5kBw4cYFOnTmVarZadPHlSXOfZZ59l/v7+bOXKlaygoIB99dVXTKPRsNdff73Nz5l4XluUu7Vr17IVK1aw/fv3syNHjrDXX3+dCYLAVq1a1eL9kuuPp8rekCFD2JIlS9jevXtZXl4ey8nJYREREay6urrNz5l4nqfKndOWLVtYVFQU69KlC5s7d25bnSa5xlEgRYibevTowWbOnOmyLDExkT3yyCONrr9w4UIWExPjsuzNN99kYWFhTe7DYrEwLy8vtnTpUnFZTk4OmzZtmst6o0ePZrfffru7p0CuQVej3DHGWLdu3djjjz/e4v2S64+nyt7FSkpKGAC2fv36Zh45uZZ5stxVVVWx+Ph4lpuby/r160eBFGkSde0jxA0mkwnbt2/H4MGDXZYPHjwYv//+e6PvyczMxMmTJ/Hjjz+CMYYzZ87g66+/Rk5OTpP7MRgMMJvN8PPzE5f17t0ba9asweHDhwEAu3btwm+//Ybhw4e3wpmR9uxqlDvGGNasWYNDhw6hb9++Ld4vub54quw1pqKiAgBc7ovk+uTpcjd79mzk5OQgOzu7dU6IXLcknj4AQq4l586dg9VqRVBQkMvyoKAgnD59utH3ZGZm4rPPPsO4ceNQV1cHi8WCESNG4K233mpyP4888ghCQ0NdbuIPP/wwKioqkJiYCEEQYLVa8dxzz2H8+PGtc3Kk3WrLcldRUYHQ0FAYjUYIgoBFixZh0KBBLd4vub54quxdjDGG+fPno3fv3khKSmqdkyPtlifL3fLly7Fjxw5s3bq19U+MXHeoRYqQFuA4zuVvxliDZU779+/HvffeiwULFmD79u1YtWoVCgoKMHPmzEbXf/nll7Fs2TKsWLECCoVCXP7FF1/g008/xeeff44dO3Zg6dKleOWVV7B06dLWOzHSrrVFufPy8kJeXh62bt2K5557DvPnz8e6detavF9yffJU2XOaM2cOdu/ejWXLlrXK+ZBrw9Uud4WFhZg7dy4+/fRTl+cvIU3ySIdCQq5RRqORCYLAVqxY4bL83nvvZX379m30Pbfffju75ZZbXJZt3LiRAWBFRUUuyxcuXMi0Wi3bunVrg+2EhYWxt99+22XZM888wxISElpyKuQa0tblrr7p06ezwYMHt3i/5PriqbJX35w5c1hYWBg7evRoC86AXIs8Ve6+/fZbBoAJgiD+AGAcxzFBEJjFYrnCMyPXG2qRIsQNMpkMaWlpyM3NdVmem5uLzMzMRt9jMBjA864fNUEQANhr15wWLlyIZ555BqtWrUJ6enqzt0Ppz69/bVnuLsYYg9FobPF+yfXFU2XP+fecOXOwYsUK/Prrr4iOjm7paZBrjKfK3cCBA7Fnzx7k5eWJP+np6ZgwYQLy8vLE7REi8lwMR8i1yZmS9YMPPmD79+9n8+bNY2q1mh07dowxxtgjjzzCJk6cKK6/ZMkSJpFI2KJFi1h+fj777bffWHp6OuvRo4e4zksvvcRkMhn7+uuvWXFxsfhTVVUlrjN58mQWGhoqpj9fsWIF0+l07KGHHrp6J088pi3K3fPPP89Wr17N8vPz2YEDB9irr77KJBIJe//995u9X3L981TZu/vuu5lWq2Xr1q1zuS8aDIard/LEYzxV7i5GWfvIpVAgRUgLvPPOOywyMpLJZDKWmprqko538uTJrF+/fi7rv/nmm6xTp05MqVQyvV7PJkyY4DJHVGRkJAPQ4OfJJ58U16msrGRz585lERERTKFQsJiYGPbYY48xo9HY1qdL2onWLnePPfYYi4uLYwqFgvn6+rKMjAy2fPlyt/ZL/h48UfYauycCYEuWLGnLUyXtiKfuefVRIEUuhWPsEu2dhBBCCCGEEEIaoDFShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3ESBFCGEEEIIIYS4iQIpQggh5CozmUyIi4vDpk2bWnW7K1euRLdu3WCz2Vp1u4QQQhqiQIoQQsgVmTJlCjiOa/Bz5MgRTx9au/Xee+8hMjISvXr1EpdxHIfvvvuuwbpTpkzBqFGjmrXdG2+8ERzH4fPPP2+lIyWEENIUCqQIIYRcsaFDh6K4uNjlJzo6usF6JpPJA0fX/rz11luYMWNGm2x76tSpeOutt9pk24QQQi6gQIoQQsgVk8vlCA4OdvkRBAH9+/fHnDlzMH/+fOh0OgwaNAgAsH//fgwfPhwajQZBQUGYOHEizp07J26vpqYGkyZNgkajgV6vx6uvvor+/ftj3rx54jqNteD4+Pjgo48+Ev8+deoUxo0bB19fX/j7+2PkyJE4duyY+LqzteeVV16BXq+Hv78/Zs+eDbPZLK5jNBrx0EMPITw8HHK5HPHx8fjggw/AGENcXBxeeeUVl2PYu3cveJ5Hfn5+o9dqx44dOHLkCHJycty8ysCxY8cabf3r37+/uM6IESOwZcsWHD161O3tE0IIaT4KpAghhLSppUuXQiKRYNOmTfjPf/6D4uJi9OvXDykpKdi2bRtWrVqFM2fOYOzYseJ7HnzwQaxduxbffvstVq9ejXXr1mH79u1u7ddgMCArKwsajQYbNmzAb7/9Bo1Gg6FDh7q0jK1duxb5+flYu3Ytli5dio8++sglGJs0aRKWL1+ON998EwcOHMC7774LjUYDjuMwbdo0LFmyxGW/H374Ifr06YPY2NhGj2vDhg3o0KEDvL293TofAAgPD3dp9du5cyf8/f3Rt29fcZ3IyEgEBgZi48aNbm+fEEJI80k8fQCEEEKufStXroRGoxH/HjZsGL766isAQFxcHF5++WXxtQULFiA1NRXPP/+8uOzDDz9EeHg4Dh8+jJCQEHzwwQf4+OOPxRaspUuXIiwszK1jWr58OXiex3//+19wHAcAWLJkCXx8fLBu3ToMHjwYAODr64u3334bgiAgMTEROTk5WLNmDe644w4cPnwYX375JXJzc5GdnQ0AiImJEfcxdepULFiwAFu2bEGPHj1gNpvx6aefYuHChU0e17FjxxASEtLoa+PHj4cgCC7LjEaj2HolCAKCg4MBAHV1dRg1ahQyMjLwr3/9y+U9oaGhLi1vhBBCWh8FUoQQQq5YVlYWFi9eLP6tVqvF39PT013W3b59O9auXesSeDnl5+ejtrYWJpMJGRkZ4nI/Pz8kJCS4dUzbt2/HkSNH4OXl5bK8rq7Opdtd586dXYIXvV6PPXv2AADy8vIgCAL69evX6D70ej1ycnLw4YcfokePHli5ciXq6uowZsyYJo+rtrYWCoWi0ddee+01MWBzevjhh2G1WhusO336dFRVVSE3Nxc879rBRKlUwmAwNHkMhBBCrhwFUoQQQq6YWq1GXFxck6/VZ7PZcNNNN+Gll15qsK5er8dff/3VrH1yHAfGmMuy+mObbDYb0tLS8NlnnzV4b0BAgPi7VCptsF1n+nClUnnZ45gxYwYmTpyI1157DUuWLMG4ceOgUqmaXF+n04mB2sWCg4MbXEcvLy+Ul5e7LHv22WexatUqbNmypUGgCAClpaUu50gIIaT1USBFCCHkqkpNTcU333yDqKgoSCQNH0NxcXGQSqXYvHkzIiIiAABlZWU4fPiwS8tQQEAAiouLxb//+usvl1aY1NRUfPHFFwgMDGzReCQASE5Ohs1mw/r16xu0FDkNHz4carUaixcvxk8//YQNGzZccpvdunXD4sWLwRgTuxy645tvvsHTTz+Nn376qdFxWM4Wt27durm9bUIIIc1HySYIIYRcVbNnz0ZpaSnGjx8vZpdbvXo1pk2bBqvVCo1Gg+nTp+PBBx/EmjVrsHfvXkyZMqVB97UBAwbg7bffxo4dO7Bt2zbMnDnTpXVpwoQJ0Ol0GDlyJDZu3IiCggKsX78ec+fOxcmTJ5t1rFFRUZg8eTKmTZuG7777DgUFBVi3bh2+/PJLcR1BEDBlyhQ8+uijiIuLc+mS2JisrCzU1NRg3759blw1u71792LSpEl4+OGH0blzZ5w+fRqnT59GaWmpuM7mzZshl8svexyEEEKuDAVShBBCrqqQkBBs2rQJVqsVQ4YMQVJSEubOnQutVisGSwsXLkTfvn0xYsQIZGdno3fv3khLS3PZzquvvorw8HD07dsXt912Gx544AGXLnUqlQobNmxAREQERo8ejY4dO2LatGmora11q4Vq8eLFuOWWWzBr1iwkJibijjvuQE1Njcs606dPh8lkwrRp0y67PX9/f4wePbrRLoeXs23bNhgMBjz77LPQ6/Xiz+jRo8V1li1bhgkTJlyyeyEhhJArx7GLO5gTQggh7VD//v2RkpKC119/3dOH0sCmTZvQv39/nDx5EkFBQZddf8+ePcjOzm40GcaVOHv2LBITE7Ft27ZGJ0QmhBDSeqhFihBCCGkho9GII0eO4IknnsDYsWObFUQB9rFXL7/8cqunKC8oKMCiRYsoiCKEkKuAkk0QQgghLbRs2TJMnz4dKSkp+OSTT9x67+TJk1v9eHr06IEePXq0+nYJIYQ0RF37CCGEEEIIIcRN1LWPEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3PT/dolDrKOWAtoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV33u/3YOk2c2zCatVtIqS6AAAgkQYCSQARtzAf8MXGMbMFzAtowvsmXse2UuCAO2kIk2JhiDMcJEYUAggoRyXmmVdlfaHGZnJ/d0DvX7o+qcOlVd1V3dXR1m+v08jx5JM9091d1Vp855z/t+vwFN0zQQQgghhBBCCCGEEEKaJtjtAyCEEEIIIYQQQgghZKVDkY0QQgghhBBCCCGEkBahyEYIIYQQQgghhBBCSItQZCOEEEIIIYQQQgghpEUoshFCCCGEEEIIIYQQ0iIU2QghhBBCCCGEEEIIaRGKbIQQQgghhBBCCCGEtAhFNkIIIYQQQgghhBBCWiTc7QPoNSqVCo4ePYqhoSEEAoFuHw4hhBBCCCGEEEII6RKapiGVSmHjxo0IBmt71Siy2Th69Ci2bNnS7cMghBBCCCGEEEIIIT3CoUOHsHnz5pqPochmY2hoCID+4Q0PD3f5aAghhBBCCCGEEEJIt1haWsKWLVukXlQLimw2RER0eHiYIhshhBBCCCGEEEII8VRSjI0PCCGEEEIIIYQQQghpEYpshBBCCCGEEEIIIYS0CEU2QgghhBBCCCGEEEJaZEWJbEeOHMFb3/pWTExMIJlM4rnPfS4eeugh+XtN03Dddddh48aNSCQSeOlLX4onnniii0dMCCGEEEIIIYQQQvqBFSOyzc/P47LLLkMkEsFPfvITPPnkk/jHf/xHjI6Oysd8/OMfxw033IDPfOYzeOCBBzA5OYkrrrgCqVSqewdOCCGEEEIIIYQQQlY9AU3TtG4fhBf+6q/+CnfddRfuuOMOx99rmoaNGzfi6quvxl/+5V8CAPL5PNavX4+PfexjeNe73uXp7ywtLWFkZASLi4vsLkoIIYQQQgghhBDSxzSiE60YJ9vNN9+Miy++GG984xuxbt06XHDBBfjXf/1X+ft9+/ZhamoKV155pfxZLBbD5Zdfjrvvvtv1dfP5PJaWliz/EEIIIYQQQgghhBDSCCtGZNu7dy8+//nPY/v27fjpT3+Kd7/73fjTP/1T/Pu//zsAYGpqCgCwfv16y/PWr18vf+fERz/6UYyMjMh/tmzZ0r43QQghhBBCCCGEEEJWJStGZKtUKrjwwgtx/fXX44ILLsC73vUuvPOd78TnP/95y+MCgYDl/zVNq/qZyrXXXovFxUX5z6FDh9py/IQQQgghhBBCCCFk9bJiRLYNGzbg7LPPtvzsrLPOwsGDBwEAk5OTAFDlWpuenq5yt6nEYjEMDw9b/iGEEEIIIYQQQgghpBFWjMh22WWXYdeuXZaf7d69G1u3bgUAbNu2DZOTk7j11lvl7wuFAm6//XZceumlHT1WQgghhBBCCCGEENJfhLt9AF758z//c1x66aW4/vrr8aY3vQn3338/vvCFL+ALX/gCAD0mevXVV+P666/H9u3bsX37dlx//fVIJpN485vf3OWjJ4QQQgghhBBCCCGrmRUjsj3vec/D9773PVx77bX40Ic+hG3btuHGG2/EW97yFvmYa665BtlsFu95z3swPz+PSy65BD/72c8wNDTUxSMnhBBCCCGEEEIIIaudgKZpWrcPopdYWlrCyMgIFhcXWZ+NEEIIIQ0xny7gz7+1A2+6eAt+87wN3T4cQgghhBDSIo3oRCvGyUYIIYQQ0uv87Mkp3LbrBPLFCkU2QgghhJA+Y8U0PiCEEEII6XUOzmUAAIVypctHQgghhBBCOg1FNkIIIYQQnzgwq4tsJYpshBBCCCF9B0U2QgghhBCfOGQ42UoVlrwlhBBCCOk3KLIRQgghhPiEiIuWyhTZCCGEEEL6DYpshBBCCCE+sJQrYj5TBAAUK4yLEkIIIYT0GxTZCCGEEEJ84KBRjw2gk40QQgghpB+hyEYIIYQQ4gMiKgoAZdZkI4QQQgjpOyiyEUIIIYT4gCqyFdldlBBCCCGk76DIRgghhBDiA6rIxu6ihBBCCCH9B0U2QgghhBAfUGuy0clGCCGEENJ/UGQjhBBCCPEB1mQjhBBCCOlvKLIRQgghhLRIqVzBkYWs8v8U2QghhBBC+g2KbIQQQgghLXJ0IWdxrxUrjIsSQgghhPQbFNkIIYQQQlpEREUnBqIAAE0DKoyMEkIIIYT0FRTZCCGEEEJaRIhsp6wdkD+jm40QQgghpL+gyEYIIYQQ0iIH5tIAgFPWDMqfsS4bIYQQQkh/QZGNEEIIIaRFDjk42SiyEUIIIYT0FxTZCCGEEEJaxIyLKk42xkUJIYQQQvoKimyEEEIIIS2gaRoOzOoi28kTSQQD+s9LbHxACCGEENJXUGQjhBBCCGmBXcdTSOVKSERCOGkiiXBIn14Vy3SyEUIIIYT0ExTZCCGEEEJa4K5nZgEAz9s2jlg4hIhhZWNNNkIIIYSQ/oIiGyGEEEJIC9z1zAwA4EWnTQCAdLIxLkoIIYQQ0l9QZCOEEEIIaZJiuYL79upOtstOWwMACAsnGxsfEEIIIYT0FRTZCCGEEEKa5NFDC0gXyhgfiOKsyWEAQDjEuCghhBBCSD9CkY0QQgghpEnuNKKiLzx1AkHDwRYOMi5KCCGEENKPUGQjhBBCCGmSu42mB5edukb+LCKdbIyLEkIIIYT0ExTZCCGEEEKaIJ0v4eGD8wCAF51mimwhw9FWZFyUEEIIIaSvoMhGCCGEENIE9++fQ6miYct4AidNJOXPI7K7KJ1shBBCCCH9BEU2QgghhJAmuOfZ6qgooDQ+YE02QgghhJC+giIbIYQQQkgTHJnPAgDOnByy/Fw2PmBclBBCCCGkr6DIRgghhBDSBIvZIgBgJBmx/DwcZOMDQgghhJB+hCIbIYQQQkgTLOV0kW04bhPZjLhokXFRQgghhJC+giIbIYQQQkgTLBlOtuGEVWQTjQ/KbHxACCGEENJXUGQjhBBCCGmCpVwJQLWTLWTERYusyUYIIYQQ0ldQZCOEEEIIaRBN08yabAl7TTY2PiCEEEII6UcoshFCCCGENEimUEbZqLk2nAhbfhcxarIxLkoIIYQQ0l9QZCOEEEIIaRDR9CAcDCARCVl+FzZqsjEuSgghhBDSX1BkI4QQQghpkKWsUY8tEUEgELD8LmzUZCvRyUYIIYQQ0ldQZCOEEEIIaRC3emyAKbLRyUYIIYQQ0l9QZCOEEEIIaZAlQ2QbjoerfifioqJmGyGEEEII6Q8oshFCCCGENIioyTbs4GQTjQ9KZcZFCSGEEEL6CYpshBBCCCENIp1sDiJbSMRF6WQjhBBCCOkrKLIRQgghhDTIomh8EHdysjEuSgghhBDSj1BkI4QQQghpEDMu6lCTTTY+YFyUEEIIIaSfoMhGCCGEENIgZuMD9+6iJXYXJYQQQgjpKyiyEUIIIYQ0iHCyjTjUZBPdRUsVOtkIIYQQQvoJimyEEEIIIQ2yWKPxQThEJxshhBBCSD9CkY0QQgghpEGWZOOD6ppskaBwslFkI4QQQgjpJyiyEUIIIYQ0SK24aIiNDwghhBBC+hKKbIQQQgghDbJUIy4aYVyUEEIIIaQvochGCCGEENIAlYqGVF7ERWs1PqDIRgghhBDST1BkI4QQQghpgFS+BM3Qz4YT1TXZwkZclN1FCSGEEEL6C4pshBBCCCENIKKi8UgQsXCo6vfsLkoIIYQQ0p9QZCOEEEIIaYBFUY/NISoKAGHZXZRONkIIIYSQfoIiGyGEEEJIA4jOok5NDwA2PiCEEEII6VcoshFCCCGENMBSVm96MOIisoUMJ1uRjQ8IIYQQQvoKimyEEEIIIQ0gnWzx6qYHgFqTjXFRQgghhJB+giIbIYQQQkgDiMYHrnFRw8lWppONEEIIIaSvoMhGCCGEENIAS/UaHxhOtiKdbIQQQgghfQVFNkIIIYSQBljK1a7JFg4acVE62QghhBBC+gqKbIQQQgghDWDGRd1qsunTK3YXJYQQQgjpLyiyEUIIIYQ0wGK9uKh0sjEuSgghhBDST1BkI4QQQghpANld1K3xAZ1shBBCCCF9CUU2QgghhJAGWMrWrskWCrLxASGEEEJIP0KRjRBCCCGkAaSTzSUuGjG6i5bZ+IAQQgghpK+gyEYIIYQQ0gCLHhsfFCmyEUIIIYT0FRTZCCGEEEI8UixXkCmUAbjHRWXjA8ZFCSGEEEL6CopshBBCCCEeSeVK8r8HYy5ONkNkq2hAhW42QgghhJC+YcWKbB/96EcRCARw9dVXy59pmobrrrsOGzduRCKRwEtf+lI88cQT3TtIQgghhKwqloyo6GAsLGOhdtSflyiyEUIIIYT0DStSZHvggQfwhS98Aeeff77l5x//+Mdxww034DOf+QweeOABTE5O4oorrkAqlerSkRJCCCFkNSHrscWdXWyA2fgAAEoVRkYJIYQQQvqFFSeyLS8v4y1veQv+9V//FWNjY/LnmqbhxhtvxAc/+EG8/vWvx7nnnouvfvWryGQy+MY3vtHFIyaEEELIamEuXQAAjCSjro8JBU2RrVimk40QQgghpF9YcSLbe9/7Xrz61a/GK17xCsvP9+3bh6mpKVx55ZXyZ7FYDJdffjnuvvtu19fL5/NYWlqy/EMIIYQQ4sSzJ5YBACdPJF0fEwkqcVE2PyCEEEII6Rvcsw49yDe/+U08/PDDeOCBB6p+NzU1BQBYv3695efr16/HgQMHXF/zox/9KP7u7/7O3wMlhBBCyKrk2RNpAMCpawddHxMMBhAM6I0PyqzJRgghhBDSN6wYJ9uhQ4fwZ3/2Z/j617+OeDzu+rhAIGD5f03Tqn6mcu2112JxcVH+c+jQId+OmRBCCCGrC+FkO22du8gGmM0PihTZCCGEEEL6hhXjZHvooYcwPT2Niy66SP6sXC7j17/+NT7zmc9g165dAHRH24YNG+Rjpqenq9xtKrFYDLFYrH0HTgghhJBVw15DZKvlZAOAcDCAAhgXJYQQQgjpJ1aMk+03fuM3sHPnTuzYsUP+c/HFF+Mtb3kLduzYgVNOOQWTk5O49dZb5XMKhQJuv/12XHrppV08ckIIIYSsBhYyBcws640PTlk7UPOxYaP5QYlONkIIIYSQvmHFONmGhoZw7rnnWn42MDCAiYkJ+fOrr74a119/PbZv347t27fj+uuvRzKZxJvf/OZuHDIhhBBCVhEiKrpxJI6BWO0pVMSIi5bYXZQQQgghpG9YMSKbF6655hpks1m85z3vwfz8PC655BL87Gc/w9DQULcPjRBCCCErnGenjaYHdeqxAUA4pDvZioyLEkIIIYT0DStaZLvtttss/x8IBHDdddfhuuuu68rxEEIIIWT18ozHemwAEA4aTjbGRQkhhBBC+oYVU5ONEEIIIaSbPDttiGwNONnKFTrZCCGEEEL6BYpshBBCCCEeeFY62Wo3PQDMxgdF1mQjhBBCCOkbKLIRQgghhNQhVyzj4FwGAHBaI3FRimyEEEIIIX0DRTZCCCGEkDocmM2gogFD8TDWDsXqPl42PmBclBBCCCGkb6DIRgghhBBSh2eVpgeBQKDu48MhfYpVppONEEIIIaRvoMhGCCGEEFIH2fTAQ1QUACJGTbYSnWyEEEIIIX0DRTZCCCGEkDo8YzjZTvPQWRQAQmx8QAghhBDSd1BkI4QQQgipQyOdRQEgIuKiFYpshBBCCCH9AkU2QgghhJAalMoV7DnemJNNNj4oMy5KCCGEENIvUGQjhBBCCKnBnull5EsVDMXCOHnCm5MtHNSnWCU62QghhBBC+gaKbIQQQgghNdh5eBEAcM6mYQSD9TuLAkBYND6gk40QQgghpG+gyEYIIYQQUoOdR3SR7fzNo56fI+KidLIRQgghhPQPFNkIIYQQQmrwmCGynbdpxPNzROODEruLEkIIIYT0DRTZCCGEEEJcKJQqeOrYEgDg/M3eRbaQERctVhgXJYQQQgjpFyiyEUIIIYS4sPt4CoVSBcPxME4aT3p+XkTERelkI4QQQgjpGyiyEUIIIYS4IOqxnbd5BIGAt6YHALuLEkIIIYT0IxTZCCGEEEJceOywqMc22tDzZOMDdhclhBBCCOkbKLIRQgghhLjwuOws6r0eGwCEg+wu2sscX8rhWw8cQq5Y7vahEEIIIWQVEe72ARBCCCGE9CL5UhlPT+lNDxrpLAoAYXYX7Wk+fssufOfhwwCANz1vS5ePhhBCCCGrBTrZCCGEEEIc2DWVQrGsYSwZweaxREPPjUgnG+OivYgQT/fPprt8JIQQQghZTVBkI4QQQghxQNRjO3dTY00PANPJVqSTrefQNA0HZjMAgBOpfJePhhBCCCGrCYpshBBCCCEOPDO9DAA4e8Nww88NBdn4oFeZWS5gOV8CAExTZCOEEEKIj1BkI4QQQghxYD5TAACsHYo1/NyI0V20zMYHPYcaEaXIRgghhBA/ochGCCGEEOLAXFoX2UaT0YafGw4acVGKbD3H/hlTZDuRynXxSAghhBCy2qDIRgghhBDigHCyjQ9EGn5uOMS4aK+iOtlm0wV+R4QQQgjxDYpshBBCCCEOzKeLAICxVpxsbHzQc+yfycj/1jS9RhshhBBCiB9QZCOEEEIIcUA42ZoS2WRNNrqkeg3VyQawwyghhBBC/IMiGyGEEEKIjVyxjEyhDAAYG2hcZBOND0qsydZTaJoma7INxsIAgGnWZSOEEEKIT1BkI4QQQgixsZDRo6KhYADD8XDDzw/JuCidbL3EzHIB6UIZwQBwwUmjANhhlBBCCCH+QZGNEEIIIcSG6Cw6lowgEAg0/PxIUMRF6WTrJURUdONoApvHEgCA6SWKbIQQQgjxB4pshBBCCCE2WqnHBgDhEBsf9CL7jKjoyRMDWDsYA8C4KCGEEEL8gyIbIYQQQoiN1kU2UZONcdFe4oDhZDt5TRJrh+MA2PiAEEIIIf5BkY0QQgghxMa8iIsORJp6ftiIi5boZOsp9s9kAOhOtnVDwslGkY0QQggh/tB4JV9CCCGEkFXOvNH4YLyJzqIAEDYaH7C7aG8h4qLb1gzI75ZONkIIIYT4BUU2QgghhBAbovHBaJNx0YiIi7K7aM+gaZqMi26dGEAiGgKgi2yapjXV4IIQQgghRIUiGyGEEEKIDVGTbbxJkS1kxEXZ+KB3OLGcR7pQRjAAnDSehAb9uymUK1jIFDHWpGuREEIIIUTAmmyEEEIIITZEXLRZ4SVidBctMy7aM+w7obvYNo0lEA0HEQuHMJrUa+6dWGZklBBCCCGtQ5GNEEIIIcSGbHyQbLLxAbuL9hx3PjMDADhnw4j8mWx+sESRjRBCCCGtQ5GNEEIIIcTGnOwu2lrjA8ZFe4cf7zwGAHjVuZPyZ+uG4gCA6VTO8tjbd5/A1d98BMv5UucOkBBCCCErHopshBBCCCE2FlqsyRYOsvFBL7HneArPnkgjGgri5Wetkz+XTjalw2iuWMb7b9qB7+84ip89MdXxYyWEEELIyoUiG+kJcsUy/vd/PYqfGLvMhBBCSLfIFctIF8oAgLFmRTYZF6WTrRf48U5dLHvx9jUYjpsR4LUOcdH/evAQZg0no6jNRwghhBDiBYpspCe4f98cvv3QYXz2tme6fSiEEEL6nAVDWAkFAxiKN9eIXTQ+oMjWG/zk8eqoKKCIbEZctFSu4At37JW/XzQcjYQQQgghXqDIRnqCVE6veZI1nAOEEEJWN5rWu+LTvCGsjCYiCBqxz0YRcdFyRevp99oP7JtJ4+mpFMLBAK44e73ld+uG9ZpsJ4y46I92HsOhuaz8/WKWTjZCCCGEeIciG+kJMgVdZCuwdg0hhKx6rv/xU7j073+J2eXe7Og432LTA8BsfACw+UG3ES62S09bg1Fb/FfUZDuRykPTNPzz7XstP6fIRgghhJBGoMhGeoKM4WArlCiyEULIaudnT0zh2GIOO48sdvtQHBF1uJptegCYNdkA3c1Gusctj+v12K6yRUUBU0w7vJDF73zubjx1bAnJaAjvfPEpAIAFimyEEEIIaQCKbKQnECIbd/sJIWT1I4SLXLE3N1bmRFw0GanzSHdUka1Y6c332S/smkoBAC49daLqd6ImW6FUwY5DCwgEgA+88gycNJEEQCcbIYQQQhqjuWq+hPhMVsRF6WQjhJBVTaWiSeEiX+rNOpwiLjreQlw0osRFS9xA6hqFUgV5Y24xmqj+PofiEbzjRdvw5LElXHn2evzmeRuwbjiOe/fOAqDIRgghhJDGoMhGeoI046KEENIXpHIliD4AuWKPimyZ1muyBYMBBAKApgElOtm6Rjpfkv896NIp9m9ec3bVz4SLcTFDkY0QQggh3mFclPQEsiZbucIubIQQsopZyBbkf/dqXFQ2PmghLgqYbjY62bqH6F6ejIYQaqBT7EjCENmyRc5LCCGEEOIZimykJxBxUYB12QghZDWzoDiDetXJNmcc41gLjQ8Asy4bRbbukcrr3+VgrLHwhhDZShVNbgQSQgghhNSDIhvpCdLKBLZQ7k1nAyGEkNZRuzX2qpNtIdN6TTYA0jnFxgfdY9lwsrlFRd1IREKIhvRpMjuMEkIIIcQrFNlIT5BVRTbWZSOEkFWLWkg+16OND+bSortoayJbxBBpyhU62brFslGTbahBJ1sgEMBwgnXZCCGEENIYFNlIT5CxxEUpshFCyGplMaPWZOtNkc2P7qIAEBZONt7XuoYU2eKN19cTzQ/UOoKEEEIIIbWgyEZ6ggydbIQQ0hdYa7L13nifL5VlCYNxn5xsrMnWPZZEXLRBJxtg1mVbYlyUEEIIIR6hyEZ6AlVky1NkI4SQVYta3ypfx8lWKldw3c1P4NYnj7f7sCRCBAwGgKEG63jZETXZSqzJ1jWarckGWDuMEkIIIYR4gSIb6QlUkY2xGkIIWb1YnGx1arLdt28O/3b3fvzjz3a1+7Akaj22oCGSNQu7i3af5Sa7iwLAqCGyLbAmGyGEEEI8QpGN9ARqTTbGRQnpDHPpAv7o3x7AT3Ye6/ahkD5iMavWZKs93k+ncgCAVK5U83F+IkS2iRbrsQFAJGjERdn4oGsIJ1szrsRhOtkIIYQQ0iCt5SAI8QFN05BVIkMFOtkI6Qg/f+o4fvn0NJayRVx13oZuHw7pE6w12Wo72WaXC54e5yczy3kAwMRg6yKbcLLRod09Uj7UZKPIRgghhBCv0MlGuk6uWIGmbPIX6WQjpCMcX9RdQicMUYGQTqAKFtl6IpvhKlNLCrQbIexNDMZafi3RXbRMJ1vXSPnSXZQiGyGEEEK8QZGNdJ10wRoDynPHn5COcNyI4p1IUWQjnUMVLOrFRecMwStbLEPTOiNUzab162GND3HRsNFdtMiabF3Dj8YH7C5KCCGEEK9QZCNdJ2tzKLAmGyGdYWpRFxMyhTLS+c7VvCL9i6ZpWMx47y4qBC+gc52n2+FkY3fR7rEsnGyMixJCCCGkA1BkI13HHgOiyEZIZxBF5QG62UhnyBbLlrqbdWuypc0mCfYNmXYxY4hsa/wQ2dhdtOsIka0ZJ5uMi7K7KCGEEEI8QpGNdB17XJQFognpDMeXTJFthnXZSAewixW5OpsqwlUGAJkONT8Q7jlfGh+wu2jXSeX0c46NDwghhBDSCSiyka7DuCghnadUrljca3SykU5QJbLV7S5qnpedc7IZNdl8ENliYX2aVa/BA2kforvoUBNOtmFRky1XRIVCKSGEEEI8QJGNdB17LagCnWyEtJ3ZdAHqmpEdRkknWMjqzrRhQ/DI1WhokCuWkVaEtXqCnF/ImmwDrcdFRdxwMVOo80jSDgqliqzlNxRrvLuocLJpminWEUIIIYTUwheRrVwuY8eOHZifn/fj5UifYd/hp5ONkPajRkUBOtlIZxBdGidH4gCAiubeeVOtxwZY7xVz6QKOLGR9P75MoSTrhPoRFx0zOpTOs6ZXV1A38QZioYafHwuHkIjoz2NklBBCCCFeaEpku/rqq/GlL30JgC6wXX755bjwwguxZcsW3HbbbX4eH+kDqhof0MlGSNuZWqTIRjqPiIuuH47Ln+VKzg61uWWryKbeK17/ubtwxQ23y6L2fiFcbNFwsKkaXnbGkkJko5OtG4jzIxEJIRxqbl+ZddkIIYQQ0ghNzTi+/e1v4znPeQ4A4Ic//CH27duHp59+GldffTU++MEP+nqAZPVTFRelk42QtnPcJqqx8QHpBAuGULF2MIaA3njTNQY6k7aek6ImW7miYf9sBplC2XdxWLjn1gxEERAH2AJjRlx0Pk2RrRssiaYHTdRjE8gOo9nuf4f37p3F337/8ap5EyGEEOKFE6k87yEdoCmRbWZmBpOTkwCAH//4x3jjG9+I008/HW9/+9uxc+dOXw+QrH7Y+ICQ1rlt1zQu/egv8OvdJzw9ftqIi24wYnt0spFOIJxso8ko4mE9hpcvOo/5diebEOPUjtR+N0MQjRYmBluvxwbo7xNgXLRbLIumBy24Eod7yMn26V/uwdfuPYDbdnkb5wkhhBDBYqaIl3z8V3jjP9/T7UNZ9TQlsq1fvx5PPvkkyuUybrnlFrziFa8AAGQyGYRCjde8IP1NxuZiKDIuSkjD/OrpaRxdzOE/7z/o6fEiLnrOxhEAFNlIZ1g03ECjyQjiEX0K4uZkm7U72YzHZfLlqp/5hWx64EM9NsCMiy4wLtoVRFy0mc6iglFDZFvIFJHOl/DpX+zBobmML8fXKEI0XM53X/AjhBCystg7s4xssYwnjy31xMbRaqYpke0P//AP8aY3vQnnnnsuAoEArrjiCgDAfffdhzPPPNPXAxR89KMfxfOe9zwMDQ1h3bp1eN3rXoddu3ZZHqNpGq677jps3LgRiUQCL33pS/HEE0+05XiIf2QYFyWkZUS9qnv3zqJScS4kryLiouduGgYAzCwXXLs8kpXN7HIeDx2Y6/ZhAFCdbBHEjYLyORcnm73xgTjH2+lkExFVPzqLAsD4gBEXpZOtKwiRrZW4qFqT7fO3PYt/vHU3/vSbj3RlvBTXit/nPSGEkNXPnDKvemY61cUjWf00JbJdd911+OIXv4g//uM/xl133YVYTJ+MhkIh/NVf/ZWvByi4/fbb8d73vhf33nsvbr31VpRKJVx55ZVIp9PyMR//+Mdxww034DOf+QweeOABTE5O4oorrkAqxZOolxELJ9HBi40PCGkc4QidzxSx63j9MU/ERYWTrVCuYCnLGg2rkatv2oH/8fl78MTRxW4fihTZRhKKyObS+GDWLS6qbMy0y8m2xicnm4iLLuWKKPHe1nFShvOrlSYWqsh286NHAQCPHFzAXc/MNvV6sy3UvxTXStZFmCaEEELcUDcvdx9f7uKRrH6annW84Q1vqPrZ2972tpYOpha33HKL5f+/8pWvYN26dXjooYfwkpe8BJqm4cYbb8QHP/hBvP71rwcAfPWrX8X69evxjW98A+9617vadmykNYQ4MJqMILtYRqFENw0hjaI6G+55dhZnbRiu+fgpQ2Q7aTyJ4XgYS7kSTiznMGIU+Sarh30z+mbU3hNpKap2CxFPGE1GEQvXiYsaYkQiEkK2WJbneLqtcVFRk80nkc0QaDRNf+9+1Xoj3jBFtubHNdH44M49MzioxET/6Re7cdlpEw01yPjynfvwof9+Ep/+vQvw2udsbPhYxLXi93lPCCFk9aM2YdpDka2teBbZPvWpT3l+0T/90z9t6mAaYXFR35EfHx8HAOzbtw9TU1O48sor5WNisRguv/xy3H333a4iWz6fRz5v7iouLS218aiJEyIuOpqM4thijk42Qpogo0To7tk7iz960TbXx+aKZekoWj8cw9qhGJZyJUyn8jht3VDbj5V0liVD2JrrgQ6XUmRL1I+LiuPdPJbAnullKSyoTrac340PjL/pV1w0HApiKB5GKlfCfIYiW6cRtctaqckmnGxPHtPnh5dsG8cjBxfwwP553Lt3Di88dcLza+08os9dHzow36TIVjH+TZGNEEJIY6jzwD2Mi7YVz7OOT37yk54eFwgE2i6yaZqG97///XjRi16Ec889FwAwNTUFQG/KoLJ+/XocOHDA9bU++tGP4u/+7u/ad7CkLiIuOpLQT8eCS3TIb4rlCt7/rUdxybZxvPUFWzvyNwlpF6qT7b69syhXNISCzg4L0eQgFg5iJBHB2qEYnj2RZvODVUiloiFliFK9ILKJBgBq4wM3V87MslVkc6rJporLfjDjc+MDQG9+kMqV2PygC8juoi2IbKK7qOAPLzsZp6+fxdfuPYBP/3JPQyJbKqeLfkcXsk0di3SysSYbIYSQBrHGRSmytRPPs459+/a18zga4n3vex8ee+wx3HnnnVW/s9v2NU2raeW/9tpr8f73v1/+/9LSErZs2eLfwZK6iAXWaEJf1BTLnYmLPrB/Dj989CgePjBPkY2seDLKomspV8JTx5Zw7ibnaKCIiq4fjiMQCGDtUBwAO4yuRlK5EkR99m6LbIVSBWm5qaI62ZwFA9PJlrQ8Tj3X/a5NJeKia3x0nI0NRHFwLsPmB11ACMyt1GQTdfUAYCAawkvPWIfzNo/imw8cxN3PzuLJo0s4e2PteL5gyRD9jhndnRtB0zTkjcZQjIsSQghpFHUeeHwpj8VsUbq1ib801figm/zJn/wJbr75ZvzqV7/C5s2b5c8nJycBmI42wfT0dJW7TSUWi2F4eNjyD+ksIvozZnRh61R30cPz+k4yJ6tkNSCEByEO3POse1Hu41JkixnP0ReRM8t02qw21Bbtc112UoljCQSAoXgE8bAusuUdxuBMoSTH5k1jCQBQarK1p/FBpaLJCai/TjbRYZTXV6eRNdl8iIsCwBVnr0c8EsKm0QTOMzYx1DptXo/n2GLjTra8MjfqRyfbYqaId33tQfz0ian6DyaEEFKFvWs7O4y2j6ZnHYcPH8bNN9+MgwcPolCwfmE33HBDywdmR9M0/Mmf/Am+973v4bbbbsO2bdZ6Q9u2bcPk5CRuvfVWXHDBBQCAQqGA22+/HR/72Md8Px7iH2KyKCIZnRLZjgiRrQ8nq2T1IcSGl5+5Ft968DDu2TuLd77kFMfHHl/S3Trrh3UH29ohXWyjk231sZRTRDZFRF3MFvHjncdw1bmTFqdOO1nM6n9/OB5BKBiQcVGnmmyiy2csHJTCsVmTTXGy+RgXXcoVUarotj+/arIBelwUsBYcJp1h2cfuogDwmvPNOmpDcf3ny3nv56CojzizXECuWJZuTi+ojs9+3Bz82ZNT+OkTxzGfKeKV50x2+3AIIWTFMZfW5/miVuzu48u4aOt4l49qddLUrOMXv/gFfuu3fgvbtm3Drl27cO6552L//v3QNA0XXnih38cIAHjve9+Lb3zjG/jBD36AoaEh6VgbGRlBIpFAIBDA1Vdfjeuvvx7bt2/H9u3bcf311yOZTOLNb35zW46J+EPGFhfNd6jxwZEF08lWL1ZMSK8jalO9/Mz1+NaDh3H/vjmUyhWEQ9WG5eNKXBQA1hoixollimyrDdXJpjqpvnr3ftxw624cW8ji/Vee0ZFjEc02RLfGWnFRsdu6ZjCGZFR/nNgQUeuw+Sk2CCfncDyMaNg/o/+odLIxLtpphADWSk22yeE4JgaiiEdCePHpa+TPhTtuOef9e00pj51azOHkNQOen6uK0f24OXjIcAz243snhBA/EJutzz95HL94epp12dpIU7PIa6+9Fn/xF3+Bxx9/HPF4HN/5zndw6NAhXH755XjjG9/o9zECAD7/+c9jcXERL33pS7Fhwwb5z0033SQfc8011+Dqq6/Ge97zHlx88cU4cuQIfvazn2FoiN3yepmM4UoQkZpix+KiZsQj36G/SdpDp9yPvUqloskF2EVbxzAUD2M5X8Iul5unPS5KJ9vqRRXZ1JjA/tk0AGCmg+4qtbMooIhsDs1uRG208YEoEsbjhKCmOoeyBf+u/Zk21GMDgHHDycbGB53HFNmarzmTiIZwy9Uvwc3vuwyxsOk8GzLccV6dbJWKZnns0QYjo/3uZDvEEh+EENI0uWJZ1sV9wSl6w549x5e7eUirmqZEtqeeegpve9vbAADhcBjZbBaDg4P40Ic+1LZopqZpjv/8wR/8gXxMIBDAddddh2PHjiGXy+H222+X3UdJb1IqV1AwnGsiklHosJMN4M7oSuab9x/Euf/3p7h994luH0rXUBcdg7Ewztqg15Z026GyO9mEqECRbfWxpDrZ0gVoRheEaSMy7NZ0oB0IJ9uIITrFasVFldpocZvIZm184F9cdLYNnUUBYHTAiItSZOs4KR/iooC+ETFhE1/Fa6Y8imzpQgkVpa/TsYXGmh+oYnQnr9te4SCdbISQDjC7nMf3Hzmy6sZZMQcJBwO4cOsYAGAPa7K1jaZEtoGBAeTz+gR948aNePbZZ+XvZmZm/Dky0hdklAFsJNm5mmzlimaZ4HJndOVy3745FMoV3L/PvdD/akeIDoEAEI8EccZ63b27a8p5h8pek22d4WSbS+dRrnSmuy/pDKqTrVTRZHdDIbTmfe7OWYsF41jEhkqiVlzUELzGB6JI2OKilsYHPi64Z41aJX7WYwPUxgeMi3YaEc9sVWRzQtZky3kT2VK2xzXa/MASF+3DOYuIi662hS9ZXTx8cB7Tqca7B5Pe4dO/fAZX37QD33/kSLcPxVfEvGpsIIrT1w8CMDuMEv9pSmR7wQtegLvuugsA8OpXvxp/8Rd/gY985CP4oz/6I7zgBS/w9QDJ6kZERUPBAIZiRly0A06240s5WeAa6M8J62pBLLj7+SYhalQlIiEEAgGcPqmLbE5OtlSuKBd3QmQbH4giEAAqmrW9N1n52K8LUXx/OtV5J5sQPIaNWlZmTbbqMV8U57XUZBOND9pck81vJ9sY46JdoVCqyFIQrdRkc0PWZPPoZLOLbEcXG3SyqXHRPnNz5YplOWZxvkZ6lWeml/H6z92N933jkW4fCmkBkeo4utB4F+heRnZPH4hiKB7BhhF9DbCHddnaQlMi2w033IBLLrkEAHDdddfhiiuuwE033YStW7fiS1/6kq8HSFY3QhxIRkKy0HQnnGyH560DJ3dGVy7CxbWY9S82ttIQn4EQI05fp+9Q7ZqqvnF+4qe7kCtWsHUiiZPGkwCAcCiICSPSxsjo6sIuss2m9a6G4udO9dDahRDEhasoboz5zjXZFCdbxO5kU+Oi/t0vRB04eyywVUTjg7l0/24EdAPV8TjQDiebiIt6dLIt2RokNLqA6+eabGoNXdGsipBeY8oQzg/PZeo8kvQyeWNOsuRxbF8pCJFt3JjvbzdSL3umWZetHTQ16zjllFPkfyeTSXzuc5/z7YBIfyHFgVhnRbYjC9YbIEW2lYtwtfSzS0RcRyJWd7px4zyykMVyviRFjQf3z+Fr9x4AAFz/O+chFDQ76q4ZjGFmucAOo6sM+yRxPl2Q9dgAZxdZu1g2xDEheAgnW75Gd1HR1REwF9eW7qIF/2uyrfHZySYmtAuZAjtZdxDhMItHgog4dFluFbO7qFcnm1Vka7gmWx93Fz00ZwqSmqY3qxLjAiG9QqGsX5de6zSS3kQ4oO0bIysdMa8aM+Ykp68bxK93n8Bjhxfxe8/v5pGtTvyfdRDSAKYDJ4xISF945DsQFz08Z91B9rNDHekswq2w1MdxUbHgSkb0Rd/YQFTWWRM28FyxjL/8zmPQNOBNF2/GZaetsbwGO4yuTuxOtrl0AceVejGd3GAQ16pdZHNufCBcZWZNNvFYq5NtJdRk0ye0JVt3ydVMLziNhMOslc6itWi08YE4HjE2N9pdNK84PksVrSOlNXqFQ/PWjdFO1pIkxCuFkj7upfOlnhgDVzJTizmUujTGCZHNq0t5pTAn5zj6nOTFp68FANzy+LG+up90iqZEtmAwiFAo5PoPIV6RcdGo6WQrlittvzkdscU0+i16sZoQC+6FPhbZZE02RYw4w1aX7Ut37sOzJ9JYOxTDB3/z7KrXEDddcRMmqwMhsomaVHOZgmx6AHR27DPjovp5GpfdRauPYU7GRWMyLgrox2upyebjBsmc3OX1V5SJR0LyvS70QfOD99+0A6+68Y6uO8SFc2yoDVFRQK3J5u07Fa5S4TRO5UoNia72z7Of5i0HZ60iWz+9d7JyKBhCRUXjOSr4xVPHcfGHf45bHp/y/Jwdhxbwgo/+Atd+d2cbj8wdU2Tr7fv1/pk0XvLxX+HLd+7z9HhRskK46y87dQJrBqOYzxTx690n2nac/UpTItv3vvc9fPe735X/3HTTTfirv/orbNiwAV/4whf8PkayiskqtaRihkCrabA0JWgHFNlWD0Jg6ufGB+L8TSoi2+lKh1FN0/BfDx4CAPzlq86UnXxVxg33jojMkdWBcHhuWzMAwHCyKXHRTjpClm1OtphwsjnUZBPuoOF4GKFgQG7CZItlW3dR/3aaxf1oIOq/KCPcbPN9EGv/yeNT2HU8hWdPmHVe9hxP4aM/fko23ugE4nwbbEPTA8AU77zGRcW1uGEkLpt/HGugLpvd8Znro8io3cnGORvpRdRyN/3iWq7HN+47iJnlPP7m+497/kx2HJwHAPzi6emuOAJFCYulHq/1fP++ORycy+Dr9x3w9Hi7ky0cCuK1z9kIAPj+jqPtOcg+pqmZx2//9m9X/ewNb3gDzjnnHNx00014+9vf3vKBkf4gLWtJhREJm3VqCqVKW2qoCETjg2Q0hEyh3FeT1dVGWjY+KKJS0RAM9l+9I3vjAwA4Y73pZHvi6BL2z2YQCwdx1bmTjq8hOirOsrvoqkIV2R47vIjZ5QLUK6SjcdGCLS4ado6LappW1SQhEQmhUKpgKVtEsWztDO1XnTOxcFcdoX4xmozi2GJu1XfvLZYr8nNcVFx7n7/tWXz3kSPYNJbA77/w5I4cy7LtHPIbtbuol3NQja9uHE1gaSqFo4s5WXy6Hv3sZDtUVeKjf947WTmokbt0vgx4u7RXLaVyBfftmwMAzCzn8dlfPYO/fNWZdZ93zGggMZcuYP9sRm4SdgohlqY8upS7hbjH7T2Rxly6IB1qbpiND8ySGK977iZ85a79uPXJKUsNZ9I6vqoYl1xyCX7+85/7+ZJklSNcCAPREKKKqNbObHilokkn22lGF8Z+mqyuJorlirwZalr/FpvNKGK14HQjLrrreAo/3nkMAPCyM9a5dtkz46KrWwToJzRNkw7Pkyf0Sep8poDplNr4oJNxUf1vye6iLnHRXLECYWZOKiIboE/UVSqaGdFpFSmytaGg+rgRQV3tcVHV1TWvvFdxzi128P0LUattIpvxusWyJuNFtY/HjG5vGIkDaKzDqF2M7pd5i6ZpOGR0axQ6Zr+8d7KysDjZVlk9r2Z4/OgSlvMl2WTrS3fsk9dyLY4umiUtHj4w37bjc2Ol1GRTm0A9crD+5zRr6y4KAOdvHsEpawaQK1bwsye8R3pJfXwT2bLZLD796U9j8+bNfr0k6QPUrojhUBDChNTODqMzy3kUShUEA+bCkxO2lUnGtpvdyQVcLyHE6qQiDmw3BOQTqTy+/dBhAMCrz9/g+hripjvL7qKrhkyhLKP3Yid4Nm2tyZbrQDdngYyLRu2ND6zXsVpzTZzTwqUpRLaw4lj1w9VSqWhSxGiXkw1Y/XFRNQ60kDXfq3jfnbzXtrvxwUA0LEUfLzEoUZNtOBHBhtEEgAbjorZYtdfz/omji/ifX7oPOw8vev5bvcRitig30LaMJQGwIzzpTVSDAOOiwD3PzgIAXn7mOrzotDUolCv46E+eqvs8dVx8yIN45DeqyNbLDSzSyj3gIQ9i5JyDyBYIBPDbz90EAPjeI0dcn3toLoPHj6zMe0i3aEpkGxsbw/j4uPxnbGwMQ0ND+PKXv4xPfOITfh8jWcWkbTE3ERH1sivcLIeNwXtyOC6LgXPCtjLJ2Oox9WtdNlWsFgzEwtg8pi/kplN5xMJBvPzMda6vMTFo1GSjk23VIK6HcDCATca5MG8T2cod7FJoj4C6dReVXUijIRn/Fo8VNQOHExHZkdoP4UYVMNrhZBsz6iDOr/KNgCWlULTq2hP/3UmRTTQkGGpTTbZgMIDBqPe6bKqTbaNwsimOjXo0Gxf9zkNHcMeeGXzn4cOe/1YvIaKia4diGDMWh4yLkl5EXbukKbLhnr26yPbCUybwN685C8EA8OOdU3XdbMe67mTTx5dyRavazO8lMso5Vk9kK5Ur8j5sj5W+7gK9Lttdz8xgyuWe9JYv3off+dxdVWkC4k5TM49PfvKTltoTwWAQa9euxSWXXIKxsTHfDo6sfsy4qH4qRsNB5EuVti76RD22zWNJuZiik21lYp/EqM6JfsKpJhug12UT53utqCjAuOhqRAgeI4mInFTNpa012QB98d7OGpiA7hQT5+lAne6iwgGQVM7XhHSy6ednMhpCsVxBsVzyZcGtvkZ7RDb9819Y5U42NV6jbnpIJ1sHFyxC+BLnWzsYjIeRypc8xYrEY4bjYYSDhpNtsYW4qMfPUiyKlnq8U54bB40F+ZaxhKUBCgHufmYG//Lrvfh/v30uTppIdvtw+h462UyK5Qoe3K/XY3vhqRM4c3IYG0YSOLKQxVy6gC3jzudruaJhStkI3HU8hVSu2DZHshOqWJrKlWrOnbuJ6mR79PACimX3eubqBt+YrfnZ1okBPH/bOO7fN4dP/3IPPvI751l+nymU5Di8fyaNNYMxkPo0ddb8wR/8gc+HQfoVuwMnFg4iBf9q7DhxxBAdNo0l5N9l44OViajxJOhXJ1vWRWQ7fXIIv3h6GkDtqCgAjBuNDzKFMrKFclsic6SziPj0SCIiRVSniX+uWMFQvL3HokZA7Y0PShUNpXIFYWNyaK/dBlTXZBuMhVEoVZDKlXzZaRavEQsH29I8RcRFV7uIrTq6hKCYL5Xl59tJcUTcD0YS7VuciXPUS4Fs0YRkOB7BSEI/H44teHey5Zt0ss0aHeV6vb6QG6Kz6EnjSfmdMn2g8x/3HcTtu0/glieO4Y9fcmq3D6fvYXdRk8cOLyBTKGN8ICobcYmNtVpj14lUHuWKhlAwgMnhOI4sZLHj0AJevH1tR45b0zTL97iUK2JypM0TpCZRjQa5YgVPHl3Cc7aMOj5WbHSNJiNyrqXyF1ecjt/9wr345gOH8PYXbcMpawfl71RnoSqAktp4Ftkee+wxzy96/vnnN3UwpP+wO3BE84N21mQ7bEzYNo0mZASJu6Irk7QtLqrGk3719DTO3jiM9cO9eXP0k4zsimgd0sXEpl5UFACGYmFEQ0EUyhXMpvPYHOWu+EpHLEiHEhEMxyMIBQMoGzXaBqIhlCp6wfZOLFiFcBYKBhAz3ChxxTGWK1UwKES2QrUDKWGryZaMhpArOtd0a4ZcGzuLAv3T+EAVm8R7VWtldjJ60xGRLd5IXNSsETec0J93dDHruTtuszXZZlIF4++vzHNPRMu2jCeRn14GQJFNIMZD+4Yj6Q50spnc/YweFX3BKeNVZR9qXb9HDXfv+qEYLj55DEd2ZPHwgc6JbPZyRb08bqZt94CHDsy7imyi1IZbB9JLTpnAb5y5Dr94ehr/+LPd+OxbLpS/UyOkx5cYF/WKZ5Htuc99LgKBgCwAWGtCUC5zsCfeEDW1koY4EAm3X2QTnUU3jyXkAJUtdq74N/GPjIuT7e5nZvCH//YAXrx9Db729ktqvsaB2TTu3zeH11+4WXZAWmnIxgc2geClZ6zFc7aM4oqzakdFAX1MHx+IYmoph7l0AZvHKLKtdESh9ZFEBMFgAGPJiIxbrh+OYzZdQL5UkfVH2smyUmdNzB+E2Abok27hCkrbGiQAppNNTBQHYmFf3VHiNZJtiIoC/dP4QHVLLRjjsRpT6aQ40kknm5cFtVqTTTgjcsUK5jNF14WPij0u6vWzXPlONn3OtmUsKZMI3BjVEc5Yio69QYE12SRqPTZBwqUOq4pw924YTeCirWP4wY6jHW1+YE9SLfXwuClqsp27aRiPH1nCQwfn8UfY5vhYMVZM1LjXfOBVZ+CXu6bxo53H8M5DC3iuIdipXbCP08nmGc9FWPbt24e9e/di3759+O53v4tt27bhc5/7HB555BE88sgj+NznPodTTz0V3/nOd9p5vGSV4epka0NcNJUr4h9+ugt3G91uNo0lzJpsjIuuSOxONrGo2nU8BQC4b+9c3cnndTc/gQ98+zHcsedEew6yA7jVZBtNRvGD916G9718u6fXMTuMrm4hoF+wiwzqQn7dcEypidb+TQZ70wNALxwvaiyp16kU2WrERQeiYek682P8FtdQvE1ONrMmW+/uivtByiEuqgqL3XCyDbdRZBNNFeqJbKVyRW7qDSciiIVDsi6O147O4hpppOFHuaLJxdWKFdkUJ1tcXvPcGAXMhXMvF2fvJwp0sgHQSwSIQvwvPNUU2bw42USdyg0jcVx4kl7n/ZGD86hUOtPlM2+bDy31cBkacU95ieHyq9UkYs7YbBFzESfOnBzG6y/YDAD45K275c+PWZxsFNm84tnJtnXrVvnfb3zjG/GpT30Kv/mbvyl/dv7552PLli3427/9W7zuda/z9SDJ6qVKZGuTk23n4UX8wVful50Tn79tHBdtHZMLNu4CrkzsE0sRSxLW5kK5gp1HFvG8k8ddX0PcPNw66qwEZG3DFl04E0ZdNnYYXR2YIpt+q1cnV+uH4/Lc74QrxEk4A4B4OIhCqWIR+pbz5arHCkFNCMDJWAiJnH9xf/Ea7Wh6AKjdRVf3tWUV2YrGv8333MkNrcWs6eRsF7ImWx0BS11wC2FuNBnFfKboueOsOEdHk1GcSOU9CU0LmQLE2rSXY0+1OKqkD9isyqRS0eR4QpGtNyiUTCHIS4R8tbLn+DLypQrGB6I4Vant5SkuajjZNo4mcObkEBKREFK5Ep45sYzTjRIo7cTu7O/lzQmRBnvhqRP4l1/vxbHFHI4uZLFxNFH1WDGvF/N8N97x4m34zsOH8dCBeVnKwFKTbQWvlTpNU+3Edu7ciW3bqu2I27Ztw5NPPtnyQZH+wRTZjLhom2qy3fLEMcymC9g8lsC//M+LcNMfvwDJaFixLnOCshJx6y6q3hAeMLobuSGEiJXaeQ1QGx+01gHJ7DDKmgurAbXQOmCdXK0fjsvGA50Y/5bdRDaHMTgjXW/VNdmEU2AwFpabM34INzkXN6hfiLhoplD2NZ5748934x1ffRAlF/d3paJ1zAEAWIWchWwRmqZ1JS6qaZo8/9srsumvXc+1IhZq8UhQznPEcXntOCuEaCHYehGaZhRXcipXkiVfVgoVo24koF+bnLOZLGSLUkDl59EbqE42e9KinxAGhsnhuKW8lJfGB6qTLRwK4vzNIwB0s0QnsNdk6+W1gVgDrRmM4awNugC549CC42OF67VeaYJtawYQCOj3NCHMqV2wp1NcH3ilKZHtrLPOwoc//GHkcuZCNp/P48Mf/jDOOuss3w6OrH7staSEk61Y9nciKHbUX3/hZrzynEk56LPxwcpGFPsdMhbuQjBTd1oe3F+7loN4zkruTJop6tdRq0Xbxwf0ttyMi64O7CKD6mRbN9ThuGihOi4KmGOwKjwt22p1AtUOs2Q07Ov4LeOibXKyDSjXpp9urn+7ez9+/tRxPD2Vcvz97/3rvXjljb/uSN09wCo2CYdiN+Ki2WJZLnhHa8RjWmXIY+ODJVmPzRT8Rg2xbMHjvSevONkAb8KKGkUtVbSOXOt+oooW0XDQ14j4SkftVJzpY0GnlyiWqh3Z/YgY8+2CjpeabEeN+fuGEd2NtWZQn5d2yolrj4v2spNNrIEGomGcNK7XUT7hIoKZIlus5mvGIyFsND77/TNpANY11dRibsVt1nSLpmwP//zP/4zXvva12LJlC57znOcAAB599FEEAgH893//t68HSFY3Ik8uJk6iEHbB5+YZagFwFUYPVjZiYrlxNIFdx1NSTD2q7Lo8uH8OlYomuxupFMsVuehbyvbujbQeWZ9cOIyLri7sNdkmLDXZ4p6iG35hRkCt56iT0FerJptgQHG1+CHctDsuGg4FZffeTKGMUZ/6igjXt1MMNVcs4759upN3z/FlnLtpxJ8/WgP7gmQhW7DUoevUvVac+6FgwCJw+o0Q2eotAMX9ZThuntNC9F50iYv+9IkpaJqGV527AYB5nQonmxdhZcY2lqdyxbZ10G0HdpGNG6MmqsjGz6M3sNRk62EHVLsRG7VjNpHNy/V7zIiHbxzVm8NIYb1DGwT2muC9GrMvVzSzYVMshJFE7bqvQnyr1fhAcPKaJI4sZLFvJo2LTx63ND7IFstI5UsyIUHcacrJ9vznPx/79u3DRz7yEZx//vk477zzcP3112Pfvn14/vOf7/cxklWMEAdEF7lom+Kibl3GxOCd467oikS4YzYYN+OlbBGViiYLcwYCusC6Z3rZ8fmqe62XLeH1cGt80ChmXJQi22rAXvhdnfCuH4p1VGRzrcnmcAxid1aNi9obEgwocVE/jl+8RrviooB5v/HTzSXulU7XrDq+7T7u7HTzG/uCZCFT7EpNNvWer8aV/MZrd9GUg5NNxkWz1d/dsyeW8a6vPYQ/+c9H5LWTK4m4qH4de1l0zthcDb3cKc8JdS4YDQUZF1VQyzrQ2dcbFNW4KJ1sGE86r7nyLtdvoVTBCcN9K5xsZoO6zoxd9mPr1Q14VagcjIWlM9ppw+07Dx2WG25qjTw3Tp4YAAAcmM0gnS/J+4ZIm02z+YEnmi7gk0wm8cd//Md+HgvpMzRNkzuxYmHTrppscrEZt57ydLKtbDLGJEYU+VzMFjGbLqBY1hAIAM87eRz375vDA/vncMZkdcFUtWtQL3cQqoWmmbtZrcdFq51sovApWXnU6i66fjhuush8Hm+dcOouCqgiW20nW9LuZIuFlE6D/sVF2+nySUZDWMwWfVsQVyoaSkZRJqfda/Vnu487bzT4TZWTzVbYv1CuoFSuIBxqao/XM8Id1s56bAAwGPfW+ED8fkiZg5iLourv7st37gOgl86YSxcwEAtLYUnERb2cR7O2+pq96spwQ8wFo6EgAoEAElH3mk75Uhk37ziKF29fi8mReEePsxvMpjsfwya1yVvior0pznSCubQ+ztijifFw7Zpsx5dy0DT9ehebvrL2aofWafaabL06ZoratcGAngIbNe519tI3dz0zg7/8zmMAgHdffirO21zf0b5tjS6y7ZtNyxrXQ7EwJkfi2DO9jKnFPE5b1/4mFCsdzyLbzTffjKuuugqRSAQ333xzzcf+1m/9VssHRlY/+VJFFm1N2LuL+lyTLeXiZGP0YGUjnGybDJEtXSjj0HwGALB2MIYXnjKB+/fN4cH9c3jrC7ZWPd/qZFuZE6JcsQJRHqHlxgeDoiabvjB79NAC3vql+3DNq87E/3T4/EhvI9yZTiLbumHTyea2q+wnjTQ+ENf1QLS6u6hgIGY2rsn42F20XTXZANXJ5s9YU6yYiwGn3WvVQbanY042Y8fbiMYuZgtVhf1zpQoG2y2y2Vyc7cKrk01ci+rxyEWRTWSbSxfwnYcPW56raVpVXNRbTTZ7XHRl3eekyGbMDWs1a/nJzil84NuP4X9cuBn/+KbnVP1+KVfEdx46jFeftwHrhle+CDe3zLhor1GgyAYAmJf1v6zjb6yOE1UIOpMjcVniJe5jWQgvVItsnf8eT6TyWMoVa7rO5JwqGkYgEJAOZ/V+e3A2g3d/7SGUKhpe+5yNuOaVZ3j6+8LJtn8mLZseTI7Epch2nE42T3hekb3uda/D1NQU1q1bh9e97nWujwsEAij7XE+LrE7UAVOIA1Jka5eTzUVkyxUrrnW7SO8i7Pjrh+MIBABNA3YZBcA3jMTxvJPHAQAPuDQ/UEW2ldr4QF2wt1pPyh4X/fHOY0jlSrh91zRFthWI3ckmCggPx8N644AOdhd1dbKFhZtOaXwg67fVqsmmxEX9qMnW5u6i6mv7IQoC1vvkfL246HRn46KbxhLYN5PGvM3JBuhjlv088Bu3EhF+IxsfeOwuOmxxshmLIltc9D/uPWBxdi5lSyiWNbkpKWLfjXYXVY9jpSDqI0mRrYarRSzQp1POC8Bv3n8Q1//4aRyay+L/vPbsdhxuR1GdbIyL9gbWuGipb5MAYg5pr8lmpoec13hqZ1FB551strhoF5xsb/nivdg/k8G9f/0brt1AZZkYo6zGiEMjnVueOIZUvoTzNo3gH954vuc17slrFJFtwWhEMZrAWmMOOUWRzROetxIrlQrWrVsn/9vtHwpsxCtCHIiFgwgZF3474qKaplU5OgSqO8K+e0F6H+F4GYqHZYfRp48tAdB3XZ570ihCwQCOLGQthTsFi6sgLiputOp11Cyi8UGmUEa2UMbjR/WW6b1ak4K4ky+V5UJdFKg9c3IIf3TZNvzNq/UFZke7i8ouWPbGB9WRz4x0vYWqHidIKo0P/Jh8i7/frsYHAJCMhC1/q1XULtxOkUN1sn1oLtv2DoSapkmxafOY7i6212QDgFyh/edbp0S2wZj++vW6izrWZBOLIuW7y5fK+Oo9BwBAjudLuaJFhB5rIC46Y7iSxa2hV6NPbqhxUUCtz1T93pfz+ntzc7zsm9Fd7vYIbS3ypTKu/e5O/PSJKe8H3SG60bWX1EZdu5QqWt+uK+ZkTTbnxgduG3tHDUFHlIAB0PGOwgVZ+1Ifn8XGRKWi4eZHj0ohsF2UKxr2TC+jUK44rlsE6bzV8e/kjBabLJdsG0cs7H1us2U8gWBATwftPKKvAzYMxzE5ootsrMnmDd/8+gsLC369FOkTnIq1i+6ixbJ/N6ZssSwXI1Vx0bB5CbCQ7sojo7SvFq6Ap6WTLYHBWBhnbxgGADx4oNrNtrQKGh9kfSzYPhgLy8XMzHIejx/RBcuV+tn0M0IYDQRMt00gEMD/ee3ZeNPztgCoP+H1E/e4qH6+qYsR++QRcI6L+hn372xc1C+RrXZc1B5D3NPmumyZQlm6rTaP6e1TFzKFqnpxmWL7RfslKbK11zEna7I14WQz4z3m53PzjqOYWc5jcjiOS0+dAKALhuIaDQTMeYz42dNTS3jNp+/AL58+XvV3haC0yRA9V5qTLW+LiyYcajgKhNCZdvkupozFcSPX34P75/Gf9x/EJ366y/tBdwh7d1FN87fMCmkc+9qlXyOjMi46aHOyRcXGnltctNrJ1una2WLMEc5/MWb+/Knj+NP/fATX3fxEW//+QqYgS8DUOn/EOCbmVGINpM4FRLkAUQrGK7FwSAqd9+ydBaA3mFtvxOzpZPNGUyLbxz72Mdx0003y/9/4xjdifHwcmzZtwqOPPurbwZHVjSmymZNOsyabfyKb2NEOBQNVQkQ4FJSiAmtarDyEk01vX60vPITIJgofP3fLKADgcWM3RkV1suWKlSqb+ErA6TpqlkAgIK3pjx1elJ/PSluYEfPcHoqFXSMCsj6KT+f93hPLePk/3IZvPXCo6nf1Gx+ocVGHxgeO3UX13/shWplidftEGRl78clRZomLOtVks8UQ291hVHxvoWBALpIOz2dlcwaxaOmEI0Gc/6MJ56iNXwgBu1Cqff9YcnCyCeeB6vT7+VO6UPaWS06SY/FStoi8ISrFwsGq+NRPdk7h8SNL+O7DR6r+rlhkbVuj1/ZZsU42IbLViI6J+1Ta5foScdJGNhXEuHVkPttzIpa93l4nHMmkNvYUTj2H62qkUtGU7qI2J1udEhVHlWiiwM/7vBdEjVpxv1rOl1CuaHJtcaSGu8wPVPG81vmTtjUOFI10FrNFVIx7rthkmXCJnNZCND94ZlrfnNswYopsx5e8u4H7maZEtn/5l3/Bli36Tvitt96Kn//857jllltw1VVX4QMf+ICvB0hWL/bOogAQCemLQT/josLRMZKIONZGEE4KimwrD7mTEw1bbjCAuRN2zkbdyfbE0doiG7ByYpGapskFnbiO/OqKKCKjt++elj+jk23lIeNySfe4nBz7fIrv3f3sLPbOpPHDx45W/c5r4wNN05A2ruvBmjXZQnV3xRtBxkWj7SvI77eTTd2Mmk/X7i4KAHum2+tkMyORYRm12T+bBqCfa+JnnRDZFjoUF1XdliIS7USt7qLpQlnOeaYMIejMDcMy5r2UK8lzPB4JVRUCP2FEQu33s0yhJB+zbSIpX2slIWuyeYiLCjeh2/cgRLZGrj/haskWyz1Xt3XOVoeRc9juY2/a1o9OtsVsUTqaR+0iW9TdiQqYTraNqpPNx/u8F6STbch0fy3nSvJe5nSv9RO11qLbhgGgJHmMeZK411U0cywUY8TEYOMim2h+INgwklBENjrZvNDUbPLYsWNSZPvv//5vvOlNb8KVV16Ja665Bg888ICvB0hWL2KAUEW2aEj/73Y42dwm243m/ffPpNvuCCDeSCu1m+xNLTaM6Dth52zU21U/fmSpaifaLqqtFDHp/d96FBd/+Oc4vpTzvWC7cE/cvvuE/NlyviR3xsjKQMTlhuM1RLawv042MQl2WozKjqFujQ+MSXe+VEHZONdq1WSzxEV9dLIlIu1zsiV87pJWNy5qfA+nrdNdTO2+bwkBZzAWxoixuNo/oy9MxpLRjhaw7lRNtlAwIOsM1nKJLUmRzTyeoXgEYt9PHK9wCKwfjmHYiLouZYvy+oiHQ1VurhOpvHycinA6xcJBTI6szLhoVXdRxX1rv5/XiotmCiX5GTcjsgGmy6YX0DStSmRrd81FUp+CcS8V5nG36PJqRtRjG4qF5XUrEHMOt3uAEMLF/B0w78md7i46GAvJjcilXBEHZ/WajvYao36jXte1xmsh4Ir7ajxi1qkVpSLEPcCteUItthobM4INI3FMGiLbdCrPNYEHmhLZxsbGcOiQHge55ZZb8IpXvAKAPuiz8QHxSsYhntOO7qKys2jcefGUaKAukaZpeMM/343XffYudnPqMqVyRd4MB6LhqsWUcLKdPjmIcDCAxWyxyuZd7WTrfZGtXNFwy+NTSOVKePjAvJx4+FWwXdjKVTu4pgHLnMCvKNyavaiIxXreJ9FDnIt2BxVgukvscdGYbfxVFyXJGjXZEsqE0pe4qHSytb+7qF8ik3qfzBTKVfcwMb6JLsvtrsm2rAhJIgopXIkjiYivNfTq4dZRvB3Iumw1FkQph3lIKBiQIvhitoByRZOutPXDccXJZjY+iEeC8rwvGIK0ENns9zPR9GDNYEw66FZLXFTTqptVpYzGB/lSBSXbRq1wCAKNxbXVCHC7C543wnK+JDejRS1jzkm7j6j/LBxc/ehkc6vHBpjXr9N6K1csS4Fp42i86jmdbnwQC4fkpshSroj9hsimOo/bgepkq12Trbp27ajsMFowXkvERRuryQaYcVHBhtEE1gxGEQzo65CZBhrI9CtNiWyvf/3r8eY3vxlXXHEFZmdncdVVVwEAduzYgdNOO83XAySrl6xDXLQdIttSncl2IxP/fKmCmeUCMoVyVb0b0lnSyg03GQvJRZ1g3bB+U4mFQ9i+fggA8MTRJctjqkQ2j7v8mUIJP31iqiuT2n0zaXmuHprP+O5kcyuQutIcEP2OmKzWEtn87i4qzkunnd5lh46h+jEIZ4p+DEKMS0RClm65qoicjIYQDAakCOdLXLTor1jtRELWlvHnWrIX2baLm+L/n3fyGAC9lkw7F31qJHLMFhNSnWydcCR0yskGmMJxrc/WyckGmB3sFjJFzKbzKFc0BAP6Zoc49iWl8YHqVgD0c99NZBMuhjWDUUVkW1njeKFsds8GajerUusXpW3n2DFFZGvIyaaMjUcXe8fJJiJr8UhQbowxLtp9hPAprut+FNnE3MN+DwDUOUf1uSqu0UQkZBm3O+mABkxhPRYOyk2R40s5uWkBVNc79ZM5pdZiLSekGOPUdID43OYzRWQKJTm3ayouqohsQ7EwBmNhhENBWatumnXZ6tKUyPbJT34S73vf+3D22Wfj1ltvxeCgHkU4duwY3vOe9/h6gGT1IhdTlrio/zXZ6k22G4kcqTun3DXsLmKhGg4GEA0FLd/vmsGopV21WZettsjmtebKl+7Yh3d97SH82937mzn0llBryx2ayyq1Df2Juam28nAwIBdn7XD5HZrL4J9vf3bFuSt6nVyxLM/N7UZU0Il6RYgbRYyJS7mSjHwCuhhUkBEM5+6i4hjcareFggG5CSN+52fXMb/Faif8FpkKJWtcwx4ZFQuBrRMDWGfUl9nTxsiorMkWM2tkCsYGIjVdDH6z1EmRzRDOahWpVuvVqYwoHUaPL5rOs3AoKDcGl7LmYikWCUnBCdDPJbUmmxrhEYvCicGYdMUJt9dKQTrZjJps4VBQ1u61X/eqoGEXslWRrZHxQp3zHWtzwfNGUB0q8Q6K16uBYrlStUHhB+WKJu97Yh5Vq07jakU2PXCIKNbqDiyurw2jcUv97Fp1GNtBvmQ6RMWmyONHrGsHJ7e+X8wpDrFamyIZh41L6WTLFCzlApqZ12wZS8rY8wbFWSg7jPbQpkOv0tSqLBKJ4H//7/9d9fOrr7661eMhPvP4kUXsmU5h+7ohnLtppNuHY0FMdAYc4qJ+3gBFbMrNyZawOSlqoYp/7OTUXdJKTb9AIGBZ1E0qRVMBXWT79kPAk7bmB0JUWz8cw/GlvGchSXQZ6kbxzycVofDQfEbe/HxrfKBMjLavH0K+WEYqV2qLA+Kzv3oG33zgEAaiIfzPF57s++v3K5/+5R4cmM1g/XAM73zJKa6PU+sb+YEqnixlixiTCw3z3KmuyWYVXsTieDBWfT4nIiEUShVZAyseNZvWaJrm2NjGK1nFKdQukj7HXuy1S+dtNZrEQmA0GcHp64cwncpjz/FlXHDSmC9/344QOYbi4aqGG6PJqHQFtVsM0DTNU+MPvxiq42TLl8py4Wafh4xK54H53Yn7lyUuKs7PcBDBYACJSAjZYhnTqZycl1SMWL94nogdTQysYCebLS4K6NdosVyquo7U92Z3gEwpUc9Grj9rXLR3FpXCLTQ+EIUGXdihk60+5YqG1376ThTKFdzyZy+pqhnWCuq6xYyLrixR2w9mazrZ3DfGhFN0o1KPDbB2FK5UNNdu6X6RVzY0xHj92GHr2qGdIttMujEnm7rBLj7zxWxRfg9rBmNNzY2i4SA2jSVwaC4ra3oCusi288gijqd6ZzzsVZoeXb72ta/hRS96ETZu3IgDBw4AAG688Ub84Ac/8O3gSOt89+Ej+PObHsWPdh7r9qFU4dQVUcZFu9D4IOdh4qUeFyc03SVjK6Sufr8bbDdp0fzA7mQTotqWMdF5zduN89C8Xpsh75M40Qjqezg019646Hmbhttay0dMAtgO3D92TaXwL7fvBQD83W+dWxVPU4m1KS4KmN0dAVN8iIaDiIRshZAjoi5cxfJYJ2em2BAR17x4jFN9poaPvQM12fx03gFA0fae55WJf7miSdFhNBHB9vX+Nz9Yzpdw5Sdvx4d++CQApfFBPIyhWNgS9x1LRmSXuHY7ErLFsqyN1Mm4aMplQaSKP3Ynp9oVWyxa1g0ZIpul8YFVBBbn6aG5jOX1FpVzQHWyiXFgpYlseQeRzek6KpQqljHA7iBSo56liuY5LWFtfNBLTjZTZEsaheGZrqjPgdk0np5KYe+JNPZM++vqVc+VcSmy9d93ImuyDVSPvWL8Kle0KjOFdLLZNskt8fgOzLnFvD4aCsr57+NHrCKbU6Mhv1DjorXixumaTraidMQ10/RAIDqMqt1e1xuleI730KZDr9KUyPb5z38e73//+3HVVVdhYWFBNjsYHR3FjTfe6OfxkRbp1KS2GdIO3UXFAqzVBZOK2figtpPNU0025TF+FQsnzZGual9t3kjsN+mzNug12Y4t5uQOcLmiyUXR5jFdlLN3G3VDLGzyHXYzappmiYsens8q15H/cdFzN41YCr/6jRBKvcZ0SW00TcMHv7cTpYqGK85ej1edO1nz8dLJ5nPjA8Bal82t6YF+DIbQVyrXfay4Vwj3s1qfqZV7XKlckRsoybY62fztkmZfpMwpn7nqyh1O6E42ANg97V/zg6ePLWH38WV868FD0DRNiURGEAgELALXWDLaUJOhVhDjSVjp/NlOROMDt7hoSum6GrK5MISTTY+L6osWsYgxmyIUpdNeXC/iszwwaxPZlO/duSZbsaorZy8jrsuoIs47xY7ti9FqJ5t1Qeh1vFDv8b3qZGNc1DtPHTOFtV1T/opsFifbQP0I+WplzqgXOO5QbF+MX0D1mksI4RtGbU425Z7cibWsjItGzJpsU7bUSjs7jM55bHzg5GQT66CFTBEzLXQWFQiDwmlK2RHRYZSb4/VpSmT79Kc/jX/913/FBz/4QYRC5sl/8cUXY+fOnb4dHGmdTmfZGyHrULRRTKR8jYsawkndmmweJv50svUOchfHmGCq3689LjoUj+Bkox21EKnUReiWce9OtuV8STpGOrGrpjK1lMN8pohQMIBgQJ8MHDQEP9+cbDaRTbgp2uGAEIsCimz+MJ3K48ED8wgFA/i73zqn7uPNqKY/422ujpPN3vQAqBb6nHZn7Y9NGr8Lh4LyntHKeKw+tyPdRdsUF11QJufi8x+MhREJBWWnsIOzaV/+NmB+bsv5EmaWC0p3UX3MUJvRjCQiSuOHzohsI4lISxFir4j36xYNE+KjU4dzEStbyBbkokXUvBlWOrSK60JcA2KxesDuZMtWO9nU7qLFsubrJma7cYqLmvNa833YxYxajQ8A7+OF6lafWsxZat51kzmLk62zheFXMk9PLSn/7a/IptYPFAJ5rbhfq3z2V8/gqn+6w+Je7QXMmmzVa65oKAgxJNs3W0T33o22+XswGJB1KMW9o1Su4Fe7ptsydywoNdns5gwx32hnXNRzd9F8dWkNtSabGCOaaXogeO/LTsVn33wh3nLJVvkzWZOtC+VyVhpNiWz79u3DBRdcUPXzWCyGdNq/CRxpHTGp7cWbb8ahm1s7u4u6x0W9u/3UXc1e/Ez7ibSt4L9ak83uZAOqI6NCUEtGQ3Knx8sN+/C8uajptJPtCaP46mlrB2UkVsS//BLZ1g3HEI8EMRAN4azJYQzFzA53fpMxXEsLFNl8QUxux5IRbLTtBjshFup+uXLVMVSd+JuCeA0nm3EtyevawckmBDB1Yybhg4tDjOWBACxF5f3GPFZ/Fl72+6TqZBM77eK+d5KxkXB4PmtpStEKqji7fzZtdheNVY/JqpOt3fdOce51IioKmO/XbSNCbPQ5RbfVeI+Ii5pONvM8Fx1EE/Xiog5OtonBKAaiYbm4bYcruV241WQDbDUgbe+puvFBtubv3VAFyUK5YlkAdxOLyCbF+8bHlUpF66tNrqeOLTn+tx8Ic0AkZDpol30a6534zkOH8dSxJTxyaL5tf6MZatVkCwQCpqO5YI+LOjvZAHN+K675W56Ywh9+5QH8/U+e9u/ADczGB6GqRjVnGU3U5tskslUqmiWK2mhNNumMzhYxK8oFtOBkG4pH8OrzN1g2H9cM6a831yNjYS/T1Gxy27Zt2LFjR9XPf/KTn+Css85q9ZiIj3RqUtsMGVl7R+0u6r/IJuOiCec4XSMRFtU5wMYH3SUjnZAOTrbh6pv02bYOo6rbYSThXUg6NGdO1jvtCBDHfs7GYRlxFU42vxw4yWgY//GOF+Ab73wBEtFQe51sRcZF/USIC25NXuz43fjAUpPNYaLoHBe1Ck/ysbVqsinnuh8RRDHZT0RCbXU++e1kE3XHBOruuhCuhYizfjiOaCiIUkXzrbaU+n3vO5GWnSuFmDSqLLLGBiK+v383FrKNXQetUj8u6txZFLCJbDYnWzgUlOf6tCGyyZpsxr8P2kQ29RwQHSjXDMYQDAbM2nErKMJW08lWIy6q/n+2UJafS6Mdfu33eLtY1y3mlKYWcXldNT4f+avvPoaLP3wr9p7wL0bey6hx0bY52cJBuRHUzrioqIHZa0ml+XTtmKLbvOOoi5MNMK95cd2Kce+Aj85sgXCvqt1FBRdsGQXQvrjoUq5o2QSrdf6YdalVJ5uIixbMxjeD1bHdVhCbpe10aa4WmhLZPvCBD+C9730vbrrpJmiahvvvvx8f+chHcO211+Kaa67x+xhJC/RyTTYxWKqOhXY0PhA7nH7ERelk6x3StgLpyWhIumKEAKVyjhTZ9LioKrKZXdzq3zRUJ1u7awvZEcd+9sZhGXEV+OVkA4CLto7hOcZkYqiBz6ZRhJPNLm4uZAorqm5Qr7BQx7VrR0xci2UNJR/G3HqND+ydRQFTUJhNF5AvlWWhaKfHCiFZ3blVO481ixB7E22sxwYoC3yfxo2CbZGi7oDb3VyhYACbx/Vx0e5+ahZ1/Ns3m64ZFx3tpJOtweugVQYNt2+9xgeOIltCjYsKJ5u5yBRC4bTxO9GsRMxbjsxbRR/x3ssVrSouNLwCmx+IuWDMoSabRWSzvaeMUnBexJoGoiGsG4pVPbcWdpfv0YXeiEjNOsRFxTjWCI8dXkSxrPkuOPUiS7kijigbDCdSeen28UK9qLAQZCNKwfx2ChEinm6PRnebeiKbUxmj5bzZwd7JyWa/5sVj2+GmUputqOaMwVgYp6zVyy60Ky5qd8p6aXxgcbIlTSfbXJ3voVkG6nTTJiZNVcr+wz/8Q5RKJVxzzTXIZDJ485vfjE2bNuHTn/40XvziF/t9jKQFEpHej4smHeKi9q5prVBvwh1voG5doczGB72C3ckWCATw4dedh+NLuSoBCjDjovtm0sgUSorDMSIXMqkV42QbqeqeJq51vxGTxXZEjEQ0UN0VfOzwAl732bvw+y88Gdd5qCtGTBoVF+LK2JsrVTAYai0qmbU0PqiOizo52SYGoohHgsgVKzi2kJO7s4MONdnE5Fx9nXikMWdKreOOt1lk87smmXCyDcXDSOVKcnEDmOeCGtk8aTyJvSfSODCXwaU+/H1VZNs/k7YU+AeAEXtc1Oe4rBv1SkT4TT0nmxg7nZx14jOaXsrLRZFFZItHcGwxJ+Oioo6iuBZKFbOL6mK2KL/3+UwBQhMQnQ7b1Sl6IVPAnullXLx1zHcnaC0nW63GB+r/C/fZ5Egc0XBj44V9w7eeC1TTtI7UARSdAycGzeuqmc108Tn0gyvlacPFtnEkjkg4iAOzGeyaSuHS0+o7ff7ffz+JH+w4gh//6YuxbrjaaQWYcVGLk61Nn2uxXJFpmmZiwu2iUKrIzQY3ccfsam6er6Kz6FA87DhPsJ/jYqxtR5dPYaaIhUMYUk6Nk8aT0inWru6i4h6QiISQLZaxnC+5jimy+ZuDyLaYKWI2arpd/UR8P/0wZrRK0zPqd77znThw4ACmp6cxNTWF+++/H4888ghOO+00P4+PtEgrN9924xgX9dnJVixX5CSiXnfRnAfBRI2x9uJn2k8IgUa9wbzhos1478ucx6C1QzFMDEShacCz02mrk83YrfISWzzUJSfbQqYgd2F1J5t1t89PJ5tKu9wP5YomJ4lLuZJ0rj16aAEVDXjwwJyvf68faFRcUOuP+XEuq5s56rWUtgniKoFAAJvHzHphYlHiVJNN1FrcMGoucvyIIIrjbtc1JBAbSoVSxZe6aOI+KUQZtU7MgnSymRPsrcbmgz1i2CwWJ9tMWrpdZVzU+NuBgNH4QDrZ2rs50Wkn21CdBfVSTSebIbIZIlokFMCYIk6Ke5NwucnmH7ZzdbvR/W0xqy+sRNODsWQEYUM8N0U2f8fyD3z7Mbzxn+/B/fv8H7OdRDaxSFevebtwqAq5stbTSAIJh+fWQiy4hQOuVlz0K3ftw/M+8gtZJ7WdzMnOgTFfRLaV2pn07mdmPDtzRdODMzcM48xJvdvyUx4dfD967Bhmlgt47PCi62PUxgeNimylcqUhN7kq6PeSk02IT8FA/TWXOl8QnUU3jjjXkk3aDCPiep9P+98tWbpnI0HLmH3ymqQcm9vmZDOu661Go7aK5lyaqFzR5GdhiYtKZ7RSk83vuKgQ2QrlnmkE06s0JLItLCzgLW95C9auXYuNGzfiU5/6FMbHx/HZz34Wp512Gu699158+ctfbtexkiboZE22xUyxoYWaU1w0YkwG/XIIqTE0t/osjUxQ1OPqRXdgP5GusRh3Y/t6fSGy+3jKuSZbrv4N+/B8d5xsTxouti3jCYwkIm2Ni6pIJ5vPddPU66dc0eRkVNjlpxbZHrxRGhUXgsGAXLz6IrIVXES2GnFRwIx3H57P1Hzse152Gv75rRfif1y4Wf7Mj5ps4rjb2VnU/vp+uLnEok4IAPOW7qL6f6tONjFmHJz1R2RTa0DpjQ+stcfE3x6ORxAKBuT7z3Wwu2gnkE4217iotVadir04+LqhuMW1IN5DWrot9evVfq6Ke5t471OL1dHTIblh4t9YXq5ouOfZWQDWe6Nf5MumcCFwmtfao7rLDnHRyZG4jFZlPUYrRX2mk43uvEcX3eOitzw+hZnlPB7Y394NolyxLM+H8aQaF21GZNM/h5UY/XpmOoU3f/E+vPvrD3l6vGh0cNaGIZw5qZcPedpD84NcsSzPoXSNcVs4i6PhoBTevbh9KhUNr/3MXbjqn+7wvPmiCuW9JJDOKU0PgkFnR6fZuMS8fwgnm7qBZnmOrZaieP+FcsV3kVGklGLhoGXduHViQI7X4v7qN+Lz2zSakI1qUg5dq9WxT50riXtuuaLhmHHOtsvJBvhX+mK10pDI9td//df49a9/jbe97W0YHx/Hn//5n+M1r3kN7rjjDvz4xz/GAw88gN/7vd9r17GSJuhUoeF0voSXfOJXeN1n7/K8q5ApODjZjIlU0Scnm5hwDsXCCLkM+I0s0lRRhY0PuktGWqW9L4y3r9N3L/dML5tx0bhZk61Y1mp+r5qm4bCya5r3qWC8Fx41dlDP3qBPDreMWUW2dgkE7ViYAdUig9gZFDt5s+m8rw1Q+oFmxIW4FNla+6wrFc0yPnptfACoIltWRiCc4qIjiQhede4GS6zTl7hosTNx0Vg4CHEb8uOeXLQ52VL5kvyZqMk2alskAP452dSJfq5Ykd+/XWQT/5Zx0SZqRzWCU1S2nZgNBZzHSNFd1MnZYd/8m7QV/bY/R5yj9nP11LVWke24IiwJ2uFke2Z6WQo07YgBm0626mYnTjXZxMLU4mRTCqo32o1YnNPbjGvnWI24qFggt3u+LdxC4WAAw4lw0062SkVTnGwrT2QT9fGePLbkScwSTQ/OnDSdbF5q0anjZa1rR5STaTQuOpcp4KljS9gzvSxj4fVQhZdMDwmkYqNnrIawI65fdf4sxOsNrk4255ps6t/0C7fuolvHk/KeMp/x30EHWGPgg7LBQPV1Lb7zoK0jejxi1qYWh+d3TbZ4xJzH9NK514s0JLL96Ec/wle+8hX8wz/8A26++WZomobTTz8dv/zlL3H55Ze36xhJCzRS1L8VjixksZgt4umpVM2dPhVxc1eLTYvBwq/FtYhp1Ooy1lDjAzrZegaxo9iMk+2Z6ZRc+Iwk9K53QoStVXtsMVu07Jh3Umj90c6jAIAXnbYGgO5eUXf3kw7dGP2gXd1FM7aJg1gcioWKpgHTqd4oMu0nz0wv4xdPHW/LazclsvngBAOqO4VZGx+4NzMAoMRFM+Z17fF8TvrQ+EAsTtsdFw0EAvJ9+eE+EILamsGoFBfEAtypCcZJhpPNr45sbueMEJ22Ge4f8W+z4HVn4qKd6i4qPuPFrPPCq1Z30VAwgGHl5+uHrdEe+3uQTjZl3hQKBuRnLN77MblorRbZ/Gxi8/DBefnf7YitOdZkc3BEivvTGiMapS5MRVx0ciTR8MazmPMJJ9uxGvNb4cJut7NIbESNDUQRCARkrcdGRTZ1zHZayPc6QhjUNDMK6kalomGXIaidtWEYZxqblbuPp+q6xw4ozt9aYl6hpL9OJBSU7tZiWau7GasW75/x2IhBjYv2kptoLlO/2H7cIbItxGunzqKAmjjS37c6T/e7+YEpslU72URNtkKp0pY1oNnQJFaz1qdsJhUNV9VrG1VKRMQjQd/nNYFAQJbpWYkO2E7SkMh29OhRnH322QCAU045BfF4HO94xzvacmDEHzpVk03dwX300ELdx5cV18OAQ1y0osGXbndeJtuNfEYFi5Otd25s/YhsfNCEk2338WWlfpV+kxILnVp12UQcRtzTOuVke2Y6hcePLCEcDODV528EoEf9NildVNtdk83vxgf22IX4PtRJpnBjrCbe942H8favPohnppd9f+1mxIW4w65yM9gXlosOjQ/qx0WzdV1vdnyJixarN3zaRaNOmlqI+1E8EpJCj3CEujU+AHSRZdGHmjJOn3kiEpI1wM7fPIrv/K8X4oY3PReA6qzvjJOtU3FR8RkXy5rjwqtWd1H9+eaiaN2Q3clmfY698QGgx4GEc0R8/06dStvhSn5EEdna4WpwEtmc4mZisSdESlUMUQXHxkU2/XHb1ujXzvGlnOPctFzRpMDd7g1Y2TXW+M4TTcZFVWFtJTrZ1OMXTaHcODCXQbZYRiwcxMkTSZw0nkQiEkK+VMH+OpsO6qZETZFNiTartYLrCZjqnMezk00V2XpI6JAdLZO1RLbqe7a8Rh06iwLqOk3/jNX3P+dzEwJxzUfDQQxGw3LsOWXtAAaiIURC+gKgHXXZhIA+MRCV8yWnuKjZ+M2hzqdyz58YiLWlEYusy7YCxflO0pDIVqlUEImYX14oFMLAwIDvB0X8QxZabrCoZqOoO6M7PIhs6g3dqfEB4E/zg0VFSHEj3kBNInUhSpGtu9RbuDshnGyH5jNyESK6uwlholbtMVFgV4gCuWKlLZZxO99/RHexXX76WssO4WZFZGtXXFSIbLlixdf4pn2Rs2BzsgGrry6bpmnYN6NP2A/P+xPZU2nOyeZPXNTp+xTXRrpGx1AAlsYH6TquNzt+bCRlHVzV7cJ03vlQk61sOifEokZcPyKuqzY+SERDWGvUbzsw17qbTdwDw0opBruQdNHWcTlmqTG/do6bnRbZEpGQdBU7LbzEIslN/FYXRettnQurnWyGyKaM92uHYhY3HVDbyeanK/mRgwvyv9viZPNak814T5PG56fOMdWabPEGBSnR+GDzWBKRUAAVzWxSoTKfKch4Vrs3te0u1WSTtQ7V41yJi2X1O36yjsgmaq+dMTmEcCiIUDCA0435oOg66oYlLlpD0Coa86NIWH99cZ66dR0WqHOeE16dbMpx9GRNtppOtuoGOEcX6zjZ5HWrv291o8DPuGilosnaerFwEMFgAJ94w/n4yO+ci/XDer3MdnYYlSLlQFTp4ln9/Zo1qZ3LaggmBv2NigpEswU62WrTUL5I0zT8wR/8AWIxfZKWy+Xw7ne/u0po++53v+vfEZKWUCdiuVIFg6GGdFXPpBoU2cTNPWDLk6siW7GkAS2OD0tK3S03Eg3EjQqMi/YMppPN+zC2ZjCG8YEo5tIF7Dyi1zgTNyS1+YEborPoaWsHcWhOnxQUyhXEwu1bnGuahu/vOAIAeN0Fmyy/U5sfJNskEAwqi+ZUruhbpyL7gsweFwVqd3JbiaTyJeng9TviAHQ5Lqq4wbLFsmxmMRSPWKINTgix+HgqJ89jN0HOjh/OMOlka3NcFFAWCz7GRaPhoBRqhLjmVpfspPEkTqTyODiXwfmbR1v6++JzO3XtIHYZHRUHXdxagPn5VrT2jpuLmc6KbIFAACPJCE6k8ljIFLHR5sYwa7LVd7JVxUVtcxfRWVOtyaaKbKlcCeWK1pHGB4vZIvYojtx21mSLOcRFLTXZDCFTvF8x5uSKZTnWbmwhLhqPhLB+OI7D81kcW8xWfcfCgQK03xVmH+ebrXWouslrFfTvBLliGV+/9wCuOm8DNrm4meyoc4h6TjbRRVTUYtP/exiPHl7E01NLePX5G1yf6zkuahOEB+NhZIvlukKEeu54jYuq13AviWzzUiSqseayzTk0TTM7ALt896qQrGma5TP1cy6lmjtixnH+9nOt8+7RhDnW+42Miw6aIttyLSebw5xKvef7XY9NMNhAY49+piHF5W1vexvWrVuHkZERjIyM4K1vfSs2btwo/1/8Q3qHWDjoWAjWb9Sdmp2HF+u65tQBQrWyhoMBM4pXbv3G4WXR2Xzjg965sfUjyzV2cmpx2jp991J8l+LckLHIrPt1IuKi4jWA9tdle+jAPA7PZzEQDeEVZ623/E40P4iGgjKi5TehYEBGcv10QNgjY4vZIsoVzWL9X21xUTUK0g6RbakZkS1cHb1qBrHgHUtGpDtOTELrRUAnBqKIR4LQNHPh5LUmmx8dtDvpZGtHXDQSCsrJtCjIvOAiNG2Vddlad1KKc+bMDebC1amDpkAVhtrl9tE0reNONsBsMOHUda5Wd1H1uYDpxBK4OtlUkW0wZnmvS9midG+phcSHfXayPXZ4wfL/7XBDOdZkc5izVTvZ9N+Je0g8EsRwIqzURGysu2gsHMRG47MUBfdVZtPm2J5t85xgySagm7UOG/v81THIXiO103zpzn348I+ewj/9fLfn56gxyV1TqZoN0/ae0MXg09crIpsxbj3VgJOt1jlunqv6IkYKEXXOtVlFWJtJeZsXpCxONufX1xtbdFYEmTPuO+MD7puxpnte/ywXs0V5/97g4mRTGxylC2WoZfT8dJTllWtXFfZVZIfRNohssvHBgCqyOTjZHBoH2o8PaJ/IJsbRbovzvU5DTravfOUr7ToO0iYCAd2ynCmUkWtjsWF1VyVbLGPP9DLOMgqLOiEuTLtzIBAIIBIKolDyJ5q25KFGUSOND6xONnY+7CbNONkAYPu6Qdy/b07+vxTZEqIodP246LY1gwgGdEeGPglv32Lue4/oLrZXnbuh6nrZMq5P+tvtwBlORJAulH0V2eyT1YVMEQtK5AYAppZWV1xUFdn8jho0Ky7Eo943GWohFnjxaAijWhRTxRwWs0VsAepGQAOBADaPJS116jzHRf2sydYBJ5ufHb+lky1kRljm0gWkC2WUjFWI3ckm3K+HfOgwKj63szcM4wc79Ei7m1sL0MXASCgga5eNtnwE1WSU995Rkc34nO217jRNk+Omm6Ne/Y7WVYlszjXZkra4aCQUxEA0hHShjOOpnFwATg63Ly4qoqKhYADlNi3oC+VqkS3uICqZNdmsTjbhDFozGJPzYcCbyK1pZu3gWCSIDaP6azs5rFU3UqdrDjY7pmR6yMl2x54TAPQmal5RnWyFcgXP1Fh3iI0edS1whiG47Zl2F9lK5YqltEPNuKjNySYjdXWut9kmGh9YarK5fO9v/+oDeOjAPO645uWyLEq7ESJRLSeb3T0vROvxgahrh2+1wZHdiTuX9k/sEqJ6MGAtg6Bidhj1fw6nxkVlh1qH86dWuRz1u17jU/LEDmuyeaM91gfSU/ix018P+6TNKTKq1mDJSoGkekCNGTcokYtvBSGY1HSyRU0nR6VOlyFL44Mesmj3I7ImQYMLY3UnEzAnXWIBVKsg+CHDybZlPCGjTvk2iq2FUgU/2nkMAPC6CzZW/V446ibatFslMLvSNT+Z+erd+/HX39sprzF7TZzFbNEy2QSA4x47Fa8UrE42f3dBs8WyHDMbc7IZu8otNj5QmweY0UX9PS57qJ+o1hcEvDc0MZ1hzS8SpZOtI3FR/7qLqi6fcVn4viAjo9FQsMqdt3XCPydb3vjOT1k7aEak6oijfsZlnRACRCQUaHu3WBVR+27BVtMzWzRFP9fGB8r1Wi8uKlwgcZvIph+D/ljRRTERCVlEOr/joqLpwQVbRgG0pz6PPMdDqshmdCdU46LGHHT9iOlk0zQNJwxnkFhsJhvYVCiWNbnpEwuHpIA37bD5ozqT2x3fs8eh1cYHjdQ6VI+zm7GvbKGMhw8sALCKlfWwj/m16rI5Nbc53YiOHpzLuN4/ji3mLGuRWp9TXnEWA1CcSN7jol4bHyx7ENkePDCPpVwJ+3zqJu0FMa8Z9dD4QHwnQrR2c7EBVremfb3pZ022vHJPdWsYYC/N4BepfEmeaxMDMXm/cDrnam1cqt1F2xcXDbkeGzGhyNYHmDbb9l0MYtIWMpR/e4fRxWwRL/nEr/CX337MOBaxqKkeIMSOpR9OtkbiooA1DuqEpfFBhzpLkmpK5Ypjd1ovbFeinoC5iKlXk03TNLmjuWUsKWvjtLPD6N6ZZSxkihiKh3HpqWuqfn/m5DA+8Ybz8Yk3PqdtxwCYn1GzizNN0/DxW57GN+47iGeM2Ia9I9ZStlg1wT62tLpqslmcbD7HRcVYFw42Ji44uUKaQY1cDivROU3TPHUMVUW2eMR7/NncRGr+fpFxWIC1i6QPoqBAuHwiIbMm21y6aN73kpGqhYLoMHrQRyfbQDSEkwzxzk1IErS747l6z29HVzU37MKyQCwIQzWuyxFjQZqMhqquEfvcxSkuKjqSitcRItuGkbjlM/DTyaZpGh4x5nmXnabfm9ohLuVrxEVrNT4QHexVJxvQWFxbvbfHwkGsM8TM4w5CiBr5a3e9XreabJpWfw6rYnWydW8+++CBOTmWNVJGQQgNQoCtVZdN3B/U62bNYAwTA1FoGly7fds3I2qJCkWb69KryDbXhJNtuU5ctFwxHbSdLG0jHYM17gP27sBHF6uj7XYStZxsfsZFZQ1I97nAWNIszeAnc8b8NxkNIREN1WwuIL5zp81Ia3fRdjU+8HZu9zsU2foA1WbbLoSFWuxo2p1s9++bw6G5LG55YgqAOUA4TTrFLpA/cVFhEa8/4AP1PyNLXJROtobRNK2mU6we2UIZ06mcxQU10GhNtvWmyBYLB+X3b3YXdb5pzCwXkCtWEAgAG0cTvtWyqsXBWRFPHZACtp03XrwFF20da9sxAIqTrUa9ulqk8iU5iZd1uoz/F6+9kC0oBar1hdLxpXxHurd2CrVzmN9t55sVF+JSLPanJlsiGjLrU2WKyJcq0slT61oVHUaBxiLgpmjT/GQvV+i8yOZnXDQSCip1YgpyjB112FwSYtixxWzL91gx9sUiIZw8oTfAqlWTDTBrubRrPrLooUREO3CrySYWhIOxsLszwniu6F6nUu1kc6jJJp1s+mcrRDZ7p1LTydb6wmj/bAYLmSKi4SAuPlm//7TD1VAwhK6oQ+MDcd3mS2Up0gghTByP2LhZO2TtcOtNZLPWZ1onnWxONdnUuGi7u4vqf2vY5mRr9G+rUS/7plcnueuZWfnfc+mC53u+WEect1mvBf7E0UXXx+Zc3Moi2bD7uIvIZnRhFo6gWteOvX6g1+LwM0o9P78aHywpjtpONmkTf8st9glUi+THjIjwxtH6TrZMoYylBp1sqVzRVUS1o9ZgdGO0TTXZZpWoKAAMxvTr20nIqlW7Vr3vt6u7KBsfeIMiWx9Qa+d4ZjmP/3rwUMuTAnHjedF2fUdz9/GU5eLbNaXvMC1mi8iXyvKm4CSySSdbneYJXvDiZAsFA/Jv1rsZ5S012SiyNcrf/fBJXPjhW2tOhmrx+1++D5f9/S/xfaNOWTgYsMRIvLB2MCZ3etTzYrhOJFJ0a1s7GEM0HOyIk024TbYoAkQ3EIuzZuOi6qJEXJNCFBHFpPW4qD7BFHVVCqWK77uF3aSdjQ+a7ajoV3dRp7joYrZouQ/UEs9UJ1sj7lSziHLz94uOdhf1cdNLXdQJke3IQlZeM07nwtrBGOKRICpaY/WPnFC/cyH0n7J2oNZTfHNOutGNpgeAe022RQ8bfaIA+3mbqhuHDcXDUHU3cb4nasRFn1acbPbXAvS5VavXu0grnLtxWMaT2uFks3dsBJQ6jMb5r0bnhhMRy4Lc7mSTIm8DIpuIjq03PudpRydbB+Oixjklvu9wKCg/H3sZhlqon0G6UK5bLqVd3P3sjPzvUkXzvJknRMLnnTwOAHjy2JKrQOc2xp9ubLruPu5cl01sdJ5tzElq1a6z12QblJuTtecw6lxgPlOs2cBBYK/JZv/uFpW/me/gWiVXQ/wR2BsfiCYtkzXiouL1ckUzLirO/3q10d799Ydw5Sdvl80vaqHWYHRjrE1xUXEeTEiRzb2mX0aW4HBysqlx0fbUZDMbH3AdXAuKbH1ArcL+N/58Nz7w7cfwXw8daulviF2VU9YOYsNIHBUN2HnEFFLEpA/QHUGeRLYGdtmPLWbxv77+EL71wCHLTdbrhFvUJao38VKPqZ21uFYrOw4toFzR6rZbd6JS0bDj0AKKZQ3/5wdPANDPn0YjQYFAQEZGLSJbwhQGnBC7x2IxG+9ATbbDsgZcd0U2sylEc7tWU4vmokR8vuLmLCZWi0pcdP1IHGuMHbipHq7LNrWY81xDBehMXLRRB49vIpviFBhVXFViB3lyOI6gixsTsDnZGhHZwq0ff6YLTjY/FuKifks0FMT5m0cQDQfx9FQKX71nP4DqpgeAPv75FRnNSddCEO988Tb85M9ejN973kk1n5NwqKflJ90S2UYU96aK7Cwacz+eczaO4M6/fBn+wSH2HwwGLBFScb47OdmE2CXE0/W2Retg1BTsWnWzib9xytpB2eG7PU42Ed9yb3wgaz5GQ3o3bCVm5RYX9XL+CXFC/O1aTjZVKPHy2o8dXsCBJmtlmd1FzcV0MzFsu2DUjY3jxUxRrhUiIf3kVJ1dtRBOtudsHkE0FEQqV5JzpurHOo/xoi7brilnkU3ERc/ZaIhs+ZKrkGd3sonr0W1OCejCnH3M8FKXzn792svXLHbZyVbrXmpvViTmRWtrFOlPRA0RuWDGRUV90flMsaZA/Ox0GhXNuVa4HTGfrxUXbVfjA7NphCGyiZpsDsJuTSdbR+Kitcf81ZRAaQWKbH1ArXiKaF29f6a1ybYY8IfiYTzXiIyqddnUG9hMKq/ERasHCBkXbcDJdsvjU/jJ41O45juP4Q//7QHZtl04b9y6egnM5gfenWyFcgXlLu38rVTE91FvZ8+J6VS+qhlGo/XYBNuNiIDVyVbbraXWOQKgONnaGBc1FsEndVlka7Vg9nFHJ5t+rYmIwELGdLKtGYjKqNNUj9ZlyxRKuOKTt+O3PnOn53HA3l3UT+dAs+KCbHzQolicUybXquDwkFEc/cKtozWfb3GyNeAoi0lXS/MLiVwHnWyNOGnqocZFN44mcPUrtgOA7J48knCeYAtB82iLTjb1cwuHgjhrw3BNIRXw9/07sdQtkU0Iy1VxUXNuVIvNY0lLJFJF3JuioaD8fNcO6Y7sU9YMyOvF3kHQ7mQLBgMYjIq6bK05hIXQtG4oJkVA0WzAL0rlCsQQ6RQXzRqF/sVnLBalA/J4TJFNxKaaiYuKBbeIoqYL5aoIlyoM1Tu359IF/I/P3423fPG+usfghNNYn2jCIWp/bL0OoyUf0iV27tk7C00DTl07gI2j+j3Aq8tbCA0jyQi2G440t5REzkX8OUPGRV1ENmMOdrYhshXLmuucr2DMT8UaRtZprDHfFZttgYApBHuJjNrPv6pu7crfbGdJE5Vi2SwNUUtks9dkE6LimqEaIlvELDMgrncxL1brzzkhxrq9J+qL2iKZUishIzcRm1jH1MKMi+qfw4Acq927iw46Otm6Gxd9ZjqF533kF/jSnfva8rdXEhTZ+oBa3UX3zeiDzok6g7qmabj2u4/h//zgccffmy3qTZHtwQP64ipfKsu/A+gLTb+dbKqd9rZdJ3DFDbfjuw8f9jzhtu+suGE/pnYWFH3k4Dze9uX7scfl5r8SETGAZnbRjyzok53J4Theec56AKarrFHExErtvFOvJpt9YhsLWy3v7aBXRLbhFmv5TCkim7gmxc1ZFLtN5UqYSZk1KUQBa9UF10vsPZFGKlfCscUcjrjsnttRx9mK1lq3VjvNimwxn5xsYkyPq91Fs0XZNe7Ck2rXDZwYiMoYSSPiecI2YW8GcW/sRDdKtRNgq9idE3/84lMskUMnJxtgjnutRJZL5Yrc9IjX2PW3U8tZ7wcLTcamW2XU1ckm4qLNH494rhphikdC+NVfvBQ//JMXSTe3/T3ba7Kpr1XLXeOF40aHzXVDMXndlCqaL2U+BOprOTU+AHQhTIpsxrgho0z5srmAt3UX9VLDMW9z0Q3EwvJv2N1s1u6i7m4nQBe3i2UNh+eznqKBKqVyRQos6vfdTO1lu6iWybs/dz5dwAs++gu8/1s7Gjja+oio6GWnrZGum1mPdcmESDgQDePcjfq498jBharHaZrmGhcVG67HFnNV92NN03DQcBuKuCjg7t6xj8du7lYVKawko1LErbceA6pFcrtgumgR2TrjZFPPvXjUXV6wu+eFqFjbyaZ2F9Xf25rBmNxgcKtxW65oUox91kNctOApLmqtyZYr+hO1FmOVEMYGa3UXreFkmxyO4xVnrcPrL9xUM7bbCrUaH9z1zCxmlvP4xVPH2/K3VxIU2foAtx2uxWxRTgyc7O8q06k8/vP+Q/j3ew44xqPEhTYUj+D52/T6CA/sn0OlomHvibTc3QD0G0i2hsgWM3YQGpl8iAHnFWetw3M2j2ApV8L7v/Wo3AWtN8H1OvG3199qpw37pgcO4fbdJ/DDR4+27W90Gulka0JcEDGAk8aT+NTvXYAP/uZZ+H+vO6ep43jdBZvwB5eejPe9/DT5sxEZiazjZDPOJXHOiIm4pmn44h178bDh3GmVSkXDoR4R2YY81hZxw6kmmxBlVLfFfmNCOz4Yk1GnqTpjk51SuYJHDs770jilFoeUqN0zJ+oL4eWKVrV48LMuW7MOnritvlGzqEKVjMlkivJ6uLBOc45AICAdVrW6kNqx13dpBlUgbDeNLPLrYXYX1UWWcCiIj7/hfISDzqKLQIhsrUSW1fOlEQegn3FZJ7pek802Ror7ST0nWy1EvVD7+Tk2ELUI0vb3bHeyAeZ332rR7umU4WQbjlsWcrWEmkZRx3DVWWJpVqW4yoTjWiy80/mSFCzsIlumWN91Z4+LAsC6YaPD6JI5ltsjfxWtdhJD3axqNHKmlmxQOziaXVO9jyv2a7BWp8Anji5hZrmAXz097fn1vXDXM7rIdumpa6SDZ9azk82sS3XpaRMAgNt3n6h6XLGsSbe5/RoaSUTkdWLf0J5NF5AulBEI6A1jkvK8cj7H1W7PgDfHkyqsCCfXTJ0SFJqmVTvZbN97N+Kioh5bMFDbCRZXSgZUKpr8vmu5rlQRWXUHj9XZMFINGN6cbNXxdDujSk22hUwBr7zx13j1p+/05OKtNU85tqivccQGc63utLVqsgUCAXzxbc/DDW96bt3jaRbpZHMYb8Q8l51HKbL1BW41KPbb3GW1ODxvLijtuwG6Xd/soHXuphEkIiEsZIrYM71cVetgJpWXF2bCQWVvxskmJhZnbxjGd/7XpfjfV54uFx5RpYOkG17rWdht4u3sIiV2d9pdRLdT5Ipl+Z0252TTb0CbxhKIhUN450tOwUVbx5s6lpFEBNf91jk4f/Oo/JmMi2ad6zvUc7I9dGAeH/7RU3j7vz3gy3lxYjmPfKmCUDCADTW6LnUCsUD008kmrtnhREQuivYaY9KagSg2GBON4w3WZPvPBw7hdz53N/7l9mebOlavqPWsvHSumksXUNH0WMgmIxbjZ02PpuOiPohU6vPVxgdPHlvCXLqAaCgoa9rUQkRGG+kYLMXuFpxsXoo1+0XC15psVucEoDcN+eCrz8JYMoIXG42I7Iid+FY63KpjXK0FiR3VNZ4rlnHDrbubboTjRNdEtoSzeJXyWLKiFsNyY6f252x/z5MOTjZxbbYq8Ivi/+uHYwgFA/LY6kUOG0HMF4IBXUAW2JtVLeetQqYQHucyBXnPWmuryaZp9Us95EvV19c62fzAvC+pkT9BrTmAupE3n25M7BTF1gdjYctn0kxc1C6I1hqTxL1qPlP0bQNrPl3As4bw8cJTJmQd1jkPNckA8/iT0TBesn0tAgG9/rMQKwTq2sdpY1+42XZNWe/joh7bxhF9zinOq1Te+Tsr2muyyWYo7u9nVqnDJc7Rek62fMl0EQvR3P7dqX+zU3FRtR5brVrJZnmeChayRSmATtQo0i+eU1ZEuaF4uO6GkXqt7ZtN1y3tYY+IOyG+14oGfOKnu3BgNoOnji3VbQLw8yeP49z/+1N860HnGujCSCDmQbVEtlpOtk5QS3A+YVy/FNkosvUFbjdfNcLp1C1JRS0mal9QqgP+UDyMSCgoO43dv2/W0vQA0G8gGWnzrh7IhDjWyI1cXOgDxsTjfS/fjh+890W47LQJ/P4LttZ9fq1IrYp9d7KdnSXFjWS1dDFVb3bNOKKO2G5AfiMWMhUNSDncHOzdG2M2J5v4vuYzRXy7xUYigCnibBiJy53RbiGjtE3XZDPHF/EaGSXqIT5Tcc2PD0alk+1Yg062J42mGk8ea7y5RiMccBHZvnHfQfz+l++vqqsiNjImBswd67kGF1i1aFZc8BqVr4fa+EAcg5hknbtpuOakVSCu7UYmjkJka6VGppdizX4h3psfIpuMJ9nGhz+8bBse/tsrcIFLRHd8wCjc3IqTTWl60EjzGdVxc/OOo/jUL/bgk7fubvo47HSt8YGx8MoWy5Z5gVpKo+nXFiJbnWtIfc/hYAATDvEruShtQWDVNE3OGdcN6eP0gI/ntcBJ5BLEFZHNHhcVIr24h0ZCAdm8J2FzwdXCjI6Zz1kvmx+Y4/us0hVQzF9rfQ7q/GfWY5F/gdv53UzXYntkvZZAqnZS9FIzzAvi+5kcjmMkGZHnpupk+9YDh3Dnnpmq5xZKFTkfH4jqjiZRqua2XVY3m/iew8GA41zqDJcOo6IxhUgSmHWoajvZRBpHRsg9OdliWDOkv39RNsMNcb4HAqZ4bHcwdiMumlHmALVQmxWJc2kkEXGtSQlYr1uRjBiKR+puGKkbw4VSpW5pDzF219o4ioVDUmT6xv0H5c+duoCq3L9/DqWKhof2O6ddTJHNer4tOzTbyBTcnWydYKBGTTbxndb7PPoBimx9gNvNVxXZlvOlmjZzVWSzO9nEojkQMCdalxiR0Xv3zWHXlL7YPc3o6HgiVTsuKp1sDcRFZSMFJTpx9sZh/Mc7XoC/ec3ZdZ/vdaFpd0tkC+3bIRI331Ujsim1zlqJiwoXkN/EIyF5HjiJgPWcbOrN5ot37mu5KUavREUBc4HYrJOtVlw0EQ1VxbknBmLShdGok03sYh9rc1fSQw4im6ZpuPHnu/Hr3Sfw+dusTjo1tjQu3ST+1Ztr3snmT5fcrBRdQlXHcFGdqKjg9RduxgUnjeK1z9no+e+q7p5mFhOFkrdizX5RqxFRoxRthbZVaglf5sKkeZE3p3zfjWC6xit47MgCgOa7FjvRLZFtKBaG6PmgLnDFvWSoFSdb3FqiwA21Bt+6Id1hZkd+9y0IrEvZkhSgRGfTdnQYFXNAp+iZtUaTTWQz5qEHjIZeEwMxeT2EQ0H5evXqIjpFx4STTW3mI+Zq4wNRT6VH1PO9USebq8jWQEMHQcb2XdWsyaaMFfU25b1id+7YRbZnppdxzXcew//6+kNV5WPU8VOcCy87Yx0A4LZd1khrvU2U012aH4g5hN1Z5HaOy0Y0YSOur0TI3Wp2zSkC7VqPjQ/E5tVgNCxFlionWxdrsnlNDqki25o6BfojoaAUsMX558XJZq9d9+xM7dSBmAfVEvwAU0BVta9lF4ejQGzUO40N6XxJngubxPlmzLs1rfr7Tcu4aHecbLWuBcZFTSiy9QFuUUhVZAOsO3N2ajnZlpUJjuh8Jeqy3b9vTsZFX3SaHl2ZWc5Lq6tzXNRwJjTiZKvhjPNC3OPCxy78tdLRrh5iwO3UDbLdqMJaq3HRdlGrUK2YtIiFjHDmiIm4ahU/MJvBT5+YaulYeqXpAaA2Pmh8UV6paJZJ+aItLjoQqxZlxpIRTDZZk+3Ygv54e2TEb+xxUU3TcHQxJ9/rf9x3wFKDTbapH4opdUT8d7I1WmBdxkVbHMukaKrERQX1mh6oj/veey7zLMoBVndPM2OlOuHtRHdR6eQq+leTrd6CwI7TwuT4Ug5/8p+P4MH9c55eQ0SQGhUmVdf4E4br1M/6id3qLhoMBuTfXMxU3+taqsmWEDXZvMdFJx3qsQH+ONlEVHI4HpYL6oFobZdPM5iF5KvPsYR0kjvUZDMWgMJtLBxC8rke6yI6uVqkky2lOtmESznmSURX76ONRrbdRLZmxHsxZxHiRS2BVD1f6tVw9oooQyNELFE3T9w3xYZ+Kl/CUzZnunDdRUNBOf699Iy1AIA798xYxhTxmcRdxvczJp1FNrMzrdHt0RC0nJIOgOK8DOmPExFyTXOf86rnjtfuoimlzqPpjK5Rk61DJWdyhdpipkDcs0sVTYrVa2o0PZDPM173eJNONqB+XTbpRqzjGh5Vmq6J86/eukZ8J04im1hjD8fNZEciEpIbN/ZrU6a3uhQXlU62QnXThxlj0yFTKLdsNljpUGTrA9y6mYki44Jau1NqTTb7ICUnkYqi/pwto4iGgziRyuOosRt0mSGy6U42Y4HtcNMTk9FGJoFiAGo2ny4G/WwdN4e9EG67bl65ojlx7NQNst2o7jA3J9u//novfvuzdzl2eTrSZicboLZcrz737CKGWPCIibg4B8VN8V9+vddTIVQ3hIizpQdENrF4WcrV7prmxGy6YGl8IhyNssNwJGwRZUaTEYRDQblIXMwWG7oGhLg2nco33LnNK6WyNXawlNMLbD+iNL3IFSuWFuaqyDbhw0LXTtNOtnDjizMnZE22aAiDsbDFRVOv6UErBJX6TM00bxDHHQoG5GKznfjlZNM0TS4kG42TjzmIbD989Ch++OhRyzlbi2YjtmYtlxKePqYvauvVxmoEeR24dFZtJ06Fzk2Rrf1ONi8iW71C4V4Q8X+1e6n8XttQk80puiUdY4WKWRM4LrqLGnFRY45rX8B7bb7hVJ9pbS0n22DUUxxcdfU3Gtl2E5HFhnUjyQcxDxe1sGrHRdvpZNPnOPauxwdnzXXH/fus4r+ZXjG/m3M3jmDNYBTpQhkPHjAfX2+sEimbmeWCZWNMdZkBDTjZlHrQYo3jNKcUfxPQzx2vIps0NsTDruey+n212tTIK167dKudRw/N6eeAF5EtKR1w+vvRnWy1Sx/Y6+ftrdNhVDjZanUXBcxz9cqz1+OUNQMA6ju3pMjmMDaINbY63w8EAkodQPO1S+VKRzuiO6E2p7JrC+r56+f9YCVCka0PkFFI5cLWNA37DLFMLHBrNT9QF5RHFrKWm4zTJDIeCcn6CIBec0GNi9bK7m8xbrhqHKse6RqdVryQiJr1PWohdjnEBKddUU51Arxq4qK56nPGzk0PHsKjhxaq3BTzmaL8HDa2UWSTTgRPcVHrDV9EL646dwNi4SAePbSA+/Z5c4U40UtxUSF8lytaw+ejWIwElChVpaKZIpvNySYmtEMxcwLp1c2WzpfkeaZp9Ru6NMuxxRxKFQ3RUBBbxvXz8ZnpZTxycAEA5KTr3+85IF0tzk42P0U2/X03KrKJekOtOtmyisgWCARknGLTaMKyGG8HcVt0uxFUB14jtcWaJRnxp3aVKlzX6uTmxLghBqXyJbkwnDI2w2Y9Fh0Xn3WsQZFNiCNPHluS50zBJ0e4pmldi4uqf1Nd4IoNI+FGa4YzN+hOm1PXDtZ83FA8IsfZyWHn+6T47huNKaqYnUXNhbFYDDbS3bIetZyaahmUZdtGr+qyAKoX8J4bXclzvNrJpt5bxDi+xnNcVHGyNXgP8DMuKj4fIRzWeq56nP6JbFYnm+guKeKiqlv8QVsdKycnTzAYwOWni8ioWZctV0eQSEbDcp61+7gpwoj3PO5RZCs41BCUwrtLNF89d8T3UG/esqSkh6TIZnOQ9nJcNBoKynFKnAP14qJAtUg6bOku6vz5irWG2POzlzuy46UmGwC89QVb8eLta/C3rznbc2MwL042e81pp3NOXB+hYEA6+TpNPBJ0dNllCiXLONLvddkosvUBTjXZZtMFpPIlBALARUaUR+2WpKJpmozqCXeCGjVNubSoF3XZAN2OLW4g6UJZTuSdnGdbJ/Sb3YEGRDa5YG/SyVariKNA0zS5sykmOE43rwOzaRxdaC2qZhHZGlyMaZrWkoOqXSzZdvedjlF8/vablRB51wzGGq4B1Ahe4qIjbk4243vaMp7EGy/eDAD4+5887VqLox69FBdNRkPy2ld34b0gRDYhnmeLZcsiQ218AJi76oFAQNZlm/JYX80eEW1XZFQIoJvHEzh9nb4AfnZ6WTrZ3vuy03Dm5BCW8yX82937AZg12dYOxpSFrj8im6ZppsOhQQeP2V20xZpstqiIOI52utgEYkxoKi7qsVizX6j341bGadWl2WhcdDgRkRNk4aYUC2ev8TXTHdLY3xaLQrXshF9OtkyhLMXHbohs0gmtfIZ+ONkuPXUN7rjmZfjbOvVlQ8GAFJomR5ydIWOG86OVzrL2pgdA7W5zzeLW2AOwxo7NuKioyWa9lqtENpd0hx3PNdlkh0g1Lup+n1TnQs2KbPZIvunyacTJZhXZas1/1XPar80ru5NN3Pvn0gVUKpplDfDA/jnLeCkcMnbhTERG1bpsYn1Qa+54ylp9Y+zgnLm2UR2KgLlOcHMsOZ2vck7p0vxgVomkCqFpPlOs6cJX49HJmPOmzVI3RDaP99JAICAd9I042ezlhYbiEXMuVScuKuru1YuLeukuCgCvOncSX3v7JdgynpRjez1ByYuTTVwLAtn8QHltUdppzWBUlmjqNIFAQCkRoAiAtk26fq/LRpGtD3Da4RIi2caRhLSnuu1OnVjOI1+qIBgAnrN5BIB1guxWc+T5ish25uQQBqIhuaATzhSnnSUhKqhOtkpFww92HHEVr1rttOKl5lSposkil24iW65Yxqs/dSd++7N3WcSVXzx1HNd+9zHPN7vZJp1sz0yncM7//Sk+88tnPD+nU6jCSllxMqmIwdpeCPvIgn4utLMeG6C0XLdNiMoVTZ7nbk426aaMhvCnL9+OgWgIOw4t4AePHmn4OHLFsozk9EJcNBAIKLt1jTkgxPs41ZjEAub1HwjoIo9a32JC2dEUkSevorW92UG7mh+oAqhw6D55LIXHjRpTF20dw/tefhoA4Kv37EepXMEJYxPD4mTzKS6aK1aqXLZeaUWgsh8DYN5vxA7rhSeNtvS6XjDfQ+NiTSc7iwLmPU/TWhM21ZpDjcZcQ8GAvOaEo0lssnkVfptufODweL9qsomFbCQU6Nj3qTLq4IRectmEbJQt40nHRgZ2hLg9OeLiZKtTKNwLYpEnBCdA7S7qf1zUSUSWLufFrNn4IG51sgnsLhmvkW2nBfc6Y+MnXTDFPbNDZNRTFFXdRGy0ZIDYALTX3lS79npB0zQpVImC+7Vrspnn9AmXDflG0DTNtfFBuaJhKVe0rAFm0wXL5r5wbiVt3/VLtq9FMKA70sSY5mWMF+fyjCISuMVF3cSUooPz0kl4V5lV3HJjyai8xmuJr2o8Ohlx/t674WTLNXAvFefr4QVRN9GDyGbb0BmMhR1LH6iI8fd8Y+06ncrXnMOKTfNGNq4GHSKdjsfSjJMtXi3sTitzyW5imlPM93PCFnVutlnaaoEiWx+QcNjhEjerbWsG5IXq1vhAXPyTw3GcMTkMwGq5FQPLoG2n9sKTxuQN44zJIQQCgapBwVFkM5xsM8sFObD87Mnj+LNv7sCHfvik4zG2WgRysM4OFWDdbZdxUdtEamY5j+V8CSdSectN7oZbd+M/7z+Ee56d9XQ8al2IRkS2e/fOIVMo44t37vO1mLQf2B1QTnXXhBvMfhOUN6A2RkUB97iouitY7WSzNj4YiIWxbjiO97xMF1k+9pNdDS88xPsdjIUx1oXaQk4MK3XZGkEIahtGE3KhKcSvpBHRUxcMYqINmLvLe2zNVtwQTQ/c/t8vDjiIbLc8fgyFUgVjyQi2TiTxqnMmMT4QxVy6gPv2zVniovbaM60iztdQMNBw8xe/uouKc1zcb37/hVvxotPW4Lca6BTaLKYbrwUnW4dEGVWUakWQEKJqIABP4oudMdnh1upkm88UPLlvG1lQqTi5HPxysolo9kgi2pHorx17NKxS0eScYrgFJ1sjnLNhBMEAcN6mEcffq86PZl3WTos8s7uofwv6fA2R7cXbdcfSl+/cL4WKwZibyGaPi3qLbDtFxwZjYTnGigYAs4oYk1ghcdF8qSI3jdWUiRuWxgc+ONnm0gVki2UEAsCGUV24jIaDco4wncpXxUkfUMqIpF3qOo8kIxgfEA0UjOZhHhxW4hwR92lN09zjoi7jtnNc1L0ESb5kdsYVriTxt2q5BYXINxwPOzrZiuWK5bvsVMmZRjasRIkHMUfzVpPNvK5DwQCS0ZA5l6rjZNs4mpB/o5abrVYdSDekEFZjblyuaHKt7Oxks7o65Ws7rE1PODiJu4EwtajHNmM7b/3sNr0SocjWByQd4qKqyCZ2cNziokeUi18sKK1ONued2oFYGK88Zz0GY2G88NQJAOaOmXls1aLYcDwib0xiJ+vRwwsAnONfap2oZotAesnUq6KVEAXsBUXVCabqRhODolvBfzvWuKj3BYg4/sVsEXc9O+P5eZ3A/t7tn3W+VJGdaKrioh3oLAqoiyTrDVtMkAaiIVlkXHYXLVobH4gbz9tftA2bxxKYWsrhn2/f29BxHFKaHnRjseiEuEa8nsMCsRCZHI7LhYGYWInFjlNNNgA40xD1n56ydhZz42hVXLRzTjax03/BSWMIBAIIh4K48uz1AICfPH5MmRjFzI5YPotsI4lIw+eLmOwWypWWOkHZJ9i//dxN+Po7LpGd2dpJS3HRYv0FmJ+EggE5gW+lLluxrH9Xen2bxscIe5fJE8YmW0Xzdo0LF14vOdnM66A7HdfMaJj+mS4XSlLIaNXJ5pVPv/kC3Hvtb2DbmgHH34t7nNfv2Ylph8YHba3J5hAX/d3nbcGGkTimlnJyPjrk6mSzzTtl04Q63UVdiqCL9y1c2tLxNBjzVO9N/dwbdRTW6y7qdQxUF7/CPe723RXLFcuczG1DvhGEqLB+KG5xCorv6omjiyiW9bqnrzlf36h5QKnLVqtEzJDN/eNF/LHXQ1vOl+T5J2KsZlzU+TMuGGNyxBIXda/JNqfU1hIivBT7ajQ/EO9LrcmmCn92Qa/VUhBeEWsVty6uKuIxIt4/4aEmm3qvGYyFEQiYNckWs0XH+UtKqV8nNm33zrhv2jpFxOsxJM8L83N/9sQyvvXgIbmRoW7UO4meh2yCssCpJtt0qtpJ3A1q1YsTMC5KVj1xhx2u/YbIdvKaAWl/d9s5ETfDTWMJGfmyONlqtKj/p//vAjzwwVdgw4i1Rbcg6RLv3GpE5A4Y3YV2T6Usf0tFHbDskyuvSLuvB5EtHAxIIcU+kVIHWXED1TRNLmS8WmdVy3ojC0f17//osWOen9cJlmq4wwDYmmlYf9eJzqKAu5PNaWIbs3U0tHe4jUdC+OvfPAsA8M+3PYuv33vAcw0mU8Rp7/tthHqxBzeEk239cExOJKcMMUxcR6OqyKaMEWdO6nU0dhnXfz2EeCcEhKml9tZkO2k8iVPXWYuRX6A0fHnVuZMAgJ/snJIOwLWDcXl8qVzJlw6orRR7Vyeu+SYL0FcqmhkX7UK3q7gtut0InY6LAs4bX41Sq16VF1ShN1soW6Iu9omyE16LXNtxOj8KPnUB7mbTA0AdI/XjEPf7aCjY1lqiKpFQUM7pnIiGg3JR2KzILxsfOMRFa7mhGqVWXDQeCeFPXr7d8jNRG6mqJtuQS1zUc0026+uttW1Mz8i6Wt7ioqqrfzZdaKg2o6uTzWPHVIFZpyxo1pRyEY/sAtHMcr5pF6TALR4n7o2iidDmsQQuOUUvPWNxssn5VvV1JR02OZvIVuPeZBfZxLWRiITk88y4qLM4XXCIGtrHBBVZ823ArK0ljsPuCFJZUuo8DjiIuvb5a6udrL3SmJPNdk010F0UMNeb4vPVNGe3oFhLDMcjsnFMLSebKax7H6+d3GZ/+/3Hcc23H8M9e/X00mINkS2VK8rzw349OHUX7bm4qCLw2s9bNj4gqx6n7qLCyXaKxcnmJrKZCrtwbeybSaNkTIzVQcxOJBS03Niq4qIuA9kWW122p41FttPOq+jqqDoEGmXIQ002NasvP9OSXWQz/1/cpJdyJek68Krqz6WtcVGvkzBVxPvpE1NNL5rbgV1gtP+/6gJ0c7LZb0B+49b4QNwg1VijGbPTj1tMWtXW1ledO4lXn78BhXIFf/P9x/HebzzsOBGw00tNDwTjsihxczXZ1qtONhEXdXCyqXHR0w2R7dhiTkbBanHMEPREHbCjbYqLyu9nIonheATrlS57F5xkFvq/9NQ1GIqHpWgRDQUxnNAbPdgLz7eC0/npFXXxr4pUT08t4ZpvPyqvvVqocb9u1MKKN+jiUMnaYq6dIOkxrlYLIc5GmrznqbW57C52L+4asyZbc40PAFOkKVc0OZ9ohaUui2z2TZqUD51F28GYzcXYKNJJoYh5ZpfD6jnO7HIejx9ZbPjv1BLZAOCNF2+W3Z0B895rdzfZN3fjHgUpt06Dwsk2vZS3RP70uKj+t90EPE3TLPPMfKnSkNjudo57iamqiPc+EDXjr07fHWBurOnuId191Go9UXsUVDBhE9lOmkjiwpPGEAjom+7CGS+P32Gj3l4jK+OhJMBam4Ns1hYVBcxYoFskWnUXC0Zt7laVWVvNN8CsHzhTo8uz6mRLOIjb9vlrp9YB8l7aQE02gafGBxFVZNM/10goiOG4+6aBagJxMonY8dpdVGVQpjzM60fMccV5rs77CyVrakDMsUaTkaoGOU5usRM94mQT46wlLmpzYNLJtgr53Oc+h23btiEej+Oiiy7CHXfc0e1D6iriQhA330pFw/5Zxck2ZHb0cXJVqALHxpEEEpEQimUNh4ydKHXAr4cqskVDQYRdduHNDqNppHJFeQxO9aDS0jYeajpa10hcNBY2d6Vzdieb8nwx4Kv11bzm09WbRbmiyZt3PdS/n8qVcOee3omM2gVS+/+ruyHdi4v64WQzJwKBQACf/v8uwN+8+ixEQgH8eOcUrv3uY3WPoydFNlnDqbGoyHHpZHMS2YxOlBYnmznhHI5HpHvRS2T0mHGeCKHLa1fSRljMmruOomOq2HwIBIDzt5i1kKLhIK44a738/7VDMQQCAcfC860eE9CcuBAKBuSiQBWpPvurZ/GtBw/jvx48VPc11IVdpxw7KnF5LfZ+d1H1b7VUk61FJ5s4/+YyhaoNNi8Op2YdgOr5cYHSFMMPN1uvOdmEY6mVzqLtQDZeaWLsWc6XpGhhcbLFnJ1smqbh9798P177mTsbFtqcnEEqkVAQf/Ybp8v/F4tddS4aDJiuTYEZF228uygAS4kVMX6HjchfIhqs+drpQhlifS02WhpxFLp3Fw3X/Lt2xNiTjIVkXS83F6IohbBmMCpr+tmTL3PpAl732bvwt99/3NPC2q0Glbj/P3VMv9+fNJ7ESCIiS0eIyKjZXbR63TEY0z8bMSfLNeNkU5pZCOp2F63R+MBpk1DMpdS/IcQ+u1ihopboMZ1s5jEJIVY4VjvuZPMSF1U2ZwaiIU/PSTg42YDq0gcq5mcVMeOitZxszdRkc2iIIYRpIZZWuQuVOdPhOXcTgWN3UaW+bzcZjAlx3nwvM4yLWlh1IttNN92Eq6++Gh/84AfxyCOP4MUvfjGuuuoqHDx4sNuH1jXEJLhU0VAoVXA8lUOuWEEoGMDmsQTGklGEjbu908Au46KjSQSDATlQiToYteKidtTdCreoKGCKCwfnsth93Nx1KJQqVW4Fs6tj87vF9hoOTqhFeOMuu4bWuKjVdg40FxdV/87xpRxe/PFf4p9+vsfxeUKEFDs7vRQZFTd+UXDbLpiqAqQaJU3nS3LR0u646GjCrO+gsuCweLM72WQhXpvYHAwG8I4Xn4Kv/tHzAQA/f3K6rtgqHJybe0lka8LJli+V5fm/fjguHR2itqIQ2dQFg6h/Ijhrg+5me9pDZFSIdxcaItt0KueLQ0ZFfDdrBqPyuz7NiCFsXzdY5egVkVHA2kHLXni+FVoVF2IOjQMePbQAwL2zq+rIEAu2aDjYVBH+Vmmlu2hGOLLCnRPZvHY3rEVBOtma+7zHB/RzZT5dqKqx5MXhlG+yJpu6KFZdn6023gC6L7LJ+ktZUR7Cn86ifiM2TJrpMCqcRIOxsOVel3QRju9+dhZPHF2CpgF3PdPYpp84x2M1hOTXPXcjXnP+BvzuxVvk2KvOLccHolVjkpdIJ+AeHVNrsok585gR+UvW6bIq5jaRUEAWLve60aIWtK+OizZW51HWNIuEzcWyyzGL8WA0GVWistYx4/59s9hxaAFfu/cArvqnX+P+fXNVr6Pi7mTTX1/U6hJrgYu36mPFIwd1kS0jm51Vjz9DtkL0WRmNrS+y6SJyqarpAWCKCk7rhHJFk+4kp5psTmOq7EqrzHnsDRicWFbWXEJ4Ut11Yhxcb3Rnt9eO9osv37kPP3z0qPz/bAP3BHVzxktnUcAqsg0rY6rYNJh1cP+p69PJYf1cq+USbKbxgRm31v9WpaLJ70CMDws1IrzyWhitnu+b3UWVDp5SZOt24wMHJ5txbBuMc48i2yrjhhtuwNvf/na84x3vwFlnnYUbb7wRW7Zswec///luH1rXiEfNrzlbLGP/jFFUfSyBSCiIYDAgB3b7ZFtvs229GYpcu7DcqvUB6mHpRlVjID5pXBfyDs6msfu4dXFtF6rkZKGGaFcPceyZQtl1Ua7W50i4LOqWHRofqPVtmnGy6X9Hf92HD8zj0FwW33JxlwiR73cu2AQAuPXJ4x1r310PcZ4IN1pVTTblpqN+x8LFNhwPt90R4BYXdYpoxGzdReWkz8XR+cJTJrB1IolCuYI7ajgMNU2z1PzqFcSivBEnm5gMRENBjCUj8vObsjnZhuIRJCIhhIIBS/QS0DsTA/VFtlSuKG/o520eQTgYQEVrrRPa//3B43j/t3ZY4tpqUwrBpaetAQD8huJaE7zk9LXyfap1R/zsMNpqwXd73c6FTEG6Kd2aR1x38xM477qf4f59c013mvSLVrqLNrJJ5BeNRrucKBrjTqTVmmyZYlVc1IuQ3qwDUD1Hzt80IgWQ1eRkW7TVZOtUZ1GvjNXpyFcLEf+3R5UGotWLQQD4yl375X8/fHAejVAvLgoA4VAQn3nzhfjYG86XP1OdbE4xtIQt3eGGW3Rs3bDpZJuzRf7qdflcUpw14h4w6/Geqm7+2edC9WKqdqTzPhaSwqDb/FS4csYHojIiLMRWgVpn7tBcFr/7hXtwn1GPCgD2nljGZX//S3zxDr0JlJuTTRW1AHMOJNItU7a4aNJhvmWPi3px3Q7GwvI+MpMqOMdFbQ45FTUF5FiTzaFMiNPfqOXKEqTUmmyx6u9dnCeTxnelp2H8FdqmFnP40H8/ib/8jpnMyCqponqowvWE7Tt3I+kQFwXMe5l9TQFY7+8DdcRkwL0OYy3som4qV5JuVVcnm0Vkc3eymUKW/nxN03q68YEQFcX16tVYslpZVSJboVDAQw89hCuvvNLy8yuvvBJ3332343Py+TyWlpYs/6w2oiHTXZArlmV8SzQjANRJQ7UFPFesWNps2zuMNrJbq4pstSbnJxkX6OH5LJ48av1OqmKGPjjZ1EmZW70FtSabq5PNIS6qLqK912Sz3mDFhEI8/8hC1rF+nPj95WesxeRwHKl8CZ/55TMNFdZtF+IGKNxobt8jYK2NJ0TeTWPtF5xGjAlRtli21LFwimiIiXfeqJnn1lJeEAgE8Btn6iLMz5867noMc+kC0gW9tX27nXuNIJxsjcQbxVizbliPSYrFrxBUxTUbCgbw+bdeiE//3gUyxiY4w2OHUSEGjSQiGIyFpdug2Q6jx5dy+Oo9B/Ddh49YOn0dMMSnrYrI9spzJvGLv7gc77/i9KrXiUdCeNmZ6wBYx7+xZPMLXTut1qLaYkzunjQiOo8dNmNdTpHbO/fM4Kv3HAAA3PPsrOwq1mx351ZppbtoN4QZr06aWjjV/2kEa002+32//qJf3PsarYMaj+iCezwSxDmbRuTx++lka6Y2oR+I+ktLuRLKFU0RVHrNyWZ+943iVnQ7KaNDqtiSwS+eNu91Dx9caGgu4kVkcyIWDsoopqPIFqkd6RS4x0X1e8vB2Qw+8dNdAMxNFzGvdRuLUkrawIugoiLO76F4uMqd56WrqYq4fpPRkNm0wmXuK0T30WREbhTZxwxxrr/irHW4/PS10DTgB4rL6XuPHMGRhSz+6Rd7kCmUXIUFe5fJrRP6hrsU94y/m6kx3xqwRezU9+pGIBAwI6PLOTPKqQhAAzWcbGpdUktNthpxUVFKZo1aIkMZQ9yw1GSLCCebGlU0nGxKzcRWNnScEGJKplCW53ojm20WJ5vHDuRucVG3unfliiY/q6F4xLxGimXXxh1N1WSzObrU4xDfsV0AVL8Pt86igBn5FdfmUrYkx8Vux0WdGh8I4fhk47r1aixZrawqkW1mZgblchnr11vdBOvXr8fU1JTjcz760Y9iZGRE/rNly5ZOHGpHCQQClt01WTRRcYyss3VLEogb4bqhmFT2hci2xxDZxI3MU002ZTCt1Ql0cjiOaCiIUkXDbbunLb+rKpgvazM0v8CLhoNyUHVra6/aiIU1vyq6WqgW2dSabF5EtlyxLB8Xt00G1QFLfP4q6s75e19+GgDgM796Bn9/y9NdFdpyxbKchIidy+rGB8412TrVWRTQb2hi7qruPIkJkmNctFRBrliRO1e1zutXnK2LLb96etqx3Thg1mObHI53pb6VG2OGk83rrjtguh7Ejqp98atOml56xjr85nkbql7jLMPJtnsqVbOjmYg1Cpu6+LeIpjaKKLwMWHfp3erlnbp20NVV9P4rTscrzlqP//mCrfJnqsjRKq0KRZeeqjvx7nlWdx7sPOIusmULZfz193bK/z+ykOlKh06VlSeytV4rp1CuXa+qHmOKk1KI4WYB6fpCupc6R04EAgF8610vxHf+16UYSUSkI1i8n1ZYkJsh3pwRfqOeQ0vZYldckl5opfHBCYemB4C5YaIKx1+79wA0DXj+yeMIBwM4kcrjaAObHnlR46pBITkQCMjjWTNYfS7Ui3TKv+/iahFz56OLOew8soiJgSiueeUZxmvXcbIpQnCjtfFqjVVqx1S3uV6uWJbzDrFoT0ZNh09W+b2KcLKNJaPyvdvjjOJ9bRxN4C2XnAQAFifbvcZ/p3IlfP3eA8gWy5bNe4G9XIRobCFrlRl/16zFXH1tDcWtDhvpuq1zf1qrRDVNl5l5PGKNky9Vqpxh6v9HQqYAOioj5MWq70XMj1SRSXy3Tq4sgdiEHoybkW2n7qJ6DVj9Z34nWtR1UsomZnqZt6o12ZqJi6pj6ohLB1d1vaXXr9Ofo2nu9VvlNd9AQ59BWdO7WHUcQoysWZPNWONscUiuiHNOPP/Esnmv7vb6QIw5wr1cLFfkez95zYDxO4psqw578XtN01wL4l977bVYXFyU/xw6VL/I80pEOq8KZXMnUhnYRbbbHhd1snSfvt5wsh1PGXV5vEci1JtJrRueqBcH6NZzwLxx2W8+9WJ6XqlXl81Sky3svKhTxSFRH2C2QSebEOciIXNnTQzIaqRyt0N8Tgqe8TD+5wu24m9fczYA4F9u34sP/+ipun+7XYjPJRAwxY+quKjy2SwXSlJQEZPyTbbJWDsIBgNSCFJ3Hms2PlBEUaD2ef28k8dlt8kdh5yjMwcd4oi9wISsyeZ9YSYEGrGjal8ceLlmT14zgGgoiHShXLPTpXCsSZHNEGWbbX6ww6hJBliv2yMuMZdanLp2EF9828U4e+Ow/NlYW+KizYpsEwCAu5+dgaZpsh4boEduVGfpjb/YLc9RQHfVNjK5bget1GTrRkfKhA9OtkKpuv5PI0g3U6YgF8yiuLgX8aUVYXX7+iGcs1FvECKdbD7UDep2XDQcCkrnwUK2aIkG9hLjLTQ+cIsqCaFGbDRmCiV88369FvIfv+QUnLVBP7cePuA9Mtqsk00/HiGyOcVFG+wualtwqw6h8YEo/uOdl2D7en0zyGtcdDgekS4prxstbk0PAPM9lSuaY/R6MVPEK264Ha/+1B2oVDSz8UE0ZLkPOzme5qXIFnHdkF9S1gHP3zaOQAB49kQaJ1J55IplPHrI3Lj5/G3PAgDWD8WrBEw1Orl2KCZFNHvaRjgma3UXXbaJbPE6GwJq8wN7DFj/W2rixTqXVxvRqOtN8V2priqBcDCpcz1Rt9ZNZNM01Z0VlkJHulCSIp56nsi1SsHfuKh6fGJ+0EgJgaacbC5xUVXIVBGfUzSkp4/U57smlorie2wgLqqcb5qmWY5DrAPtTkbnuGj1nFKcG/tn0npUdMl5k6MbiOtMXIvivarr92XGRVcPa9asQSgUqnKtTU9PV7nbBLFYDMPDw5Z/ViPmLlepppPthK3xwZGFahvr1okBREIBpAtlHJwzXQxedmsT0ZAckOo5z0RkFNDFmbONSVo7nGyAOWi7ZcjVm2hc2TW0HItyE3WKi3qxzoqBanwgiqRRZ0OIeeqxqQ0hBGqtBgB4+4u24SO/cy4CAeBLd+6TRWM7jZhYDsbC0mVQ/T2an6Wm6UIbYDoBO2WNFtZzi5PNIYakOtnUCWuwRuH3SCiIl52hu9l+/tS042Nkza8OxGMbQUx+F7JFVxeeHTUuClQ72bxcs5FQULpnRccxJ6TIZohrppOtWZHNvFZUkUlMoOy1YxplogU3iZ1WxYULt44hGg7i+FIee2fSlrgoYAqVz55Yxhfv2AdAXzgDuugoOpt1skOnSis12bohspmND5qfgBabdPkIhMibKZTlmHOm0WTEi/DbbOMDO/balq3Qje/SjumqKPRuTTbR+MBh7Pm3u/bhoz9+ytUNNS27RdviosIdZixef7xzCku5EraMJ/CyM9fhQqOTrOoQrkcrIpuIr044LOCTdSKdAtn4wPb3B2NhPGfzCNYNxfD1t18ixWmgflzU7DgbbrhkQK3zWxUQMg4CwhfueBaH57N4eiqFmXTerGkWDVvitU5zVNFddDQZlVFZ+4a8OUfS53hnGKLj/fvm8PDBeRTKFYwmIwgFA/L1nOJxqvNQdYvbGxPUcrI1U5NN/RuqyKbe5yMhM/FiF8zEeKy62AB9fBTPUR1OlYpmOpiUuZ4YK5Zy1c43QB+vxfRrKBaR53JFM8dQdT4g741NdN6uheruF+NcI3FR9b6x1sFt6kTSLS6qjLkq9lJGwaCZ6nJzkctmK0042Sqa/v2oxzGXKaBUrjg42fTPbClXlL/b5HA9bFszgHAwgFS+hKOLObOzqEdhsp3YGx8I1974QNRcT9PJtnqIRqO46KKLcOutt1p+fuutt+LSSy/t0lH1BubAUnFs/yt3iVycbGpULxIK4pQ1+qJXLWQ76DESIazBTgVLVdQb7MkTA/J47bXIMrb6Ts0yaCswaUfGRSO1Gh9YRTZN0ywdb7yo+rOyFkTMFPMc4qL2hhD5UlneINTo7lsu2Yr/ceFmAMDHb9nVldiojEjEI/KGV6smG2DeuOccbPvtxKn5gVN3UTFxKlU0OeHw4sx6xdlGXbYnneuyucURu42YyGha9WTGjX0zeqt08V7si02vwviZRmR0V43mB8cMl9tGQ1ybHG4+LlquaNipCE2qIJzKWiduzSIXWD462ZqtRRWPhHCR0enxBzuOYmoph2DAXAQJofLevbMoVzRcsm0cv/9CPfp6dCEnd4W7FhcVu/VNCDXdqOPlj5NNdBdtbho3rNR1EnUGRZORdjvZVIRIWFgFTjbAWuh8yaexwm/GXGqyLeWK+NB/P4l/+fVeV9ew2fjAOS5aKFdQKFVkLd1Xnj2JUDAgO8k+4uLgdqIVkW1QOtmqF/Berz+54Hb4+999z2W44y9fZnEnA/XjoinFySabCTl0O9Q0rao8woJD2QpBJBSUwqd9bngilceX79wv///IfFYR2UKWeK2TyOYYF112jouKY7tk2zgA4L59s7hvr95p9CXb1+I3jPqkgLPINqaIWmrd0yGlMcGJVN6syebgZDNrsunH5FX8kZ09l/PmZrft/HFLvNQ6V2VdNkVomU7lUShVEAoGLJFZ8fkVy5qjM1vMRcLBAOKRoEVkFN/polETbCQRqSsqNUutuGijIpuTEF7vORYnm0tc1Cmub3fc2sk3UWtUNO0C9PNCPQ5N00Xq6sYH+ncrkhGjyYhjyaVoOIhT1urRy91TKUeTTLcYtNVkm1k2489OTRH6kVUlsgHA+9//fnzxi1/El7/8ZTz11FP48z//cxw8eBDvfve7u31oXUV1XsmLVJkkif8+YbOAy3pYtpvhaUZk9CHD+h+PBD3HVoQCX6u7KGAVGc5YP2TZ4VFRuyS1wpDM1deJi4aClvitinrjLZQrWM6XXOOidz8zg+d95Oe45fFjlteQNvXBqFmgt1gtsu2q0XXVPlhf/YrtiIaCuGfvLO58xr2zpZ+UymbdChklSETk91irJhtgTtpmlqt3FNvJSLLaeu7YXVSJOQhh1K3pgcrlp69FOBjAnullHJhNV/1exKNPmuidpgeAPokX79+r++oZowOxcKLZFwdOu9BOCIdNrQ6jQgiaNBq6bBxt3sm2Zzpl63arnAs5f0SZRote18IPcUFERv/9nv0A9O9MdJIWTra9J/Tz9ZyNI5gcjiMUDKBQrkhhuHtOthVWk81wKGda6S4qnWzuztlaBAIBKbaIfRchZjst+u2Iz7qRHX8nxDjaqpNN07TeENmM6NJipndrssm4qG3seejAvHTJ2BeFAhETtMdF1flXtlCWUTiRSLjAcLI9cWTJ0lSoFq24NZ9/8jjikSAu3DpW9bt6kU6B6WSrHtdCwYDjz0WXT/e4qJgLhV27vM6nC3jeR36O937jYcvP653fFxnv9UFbJPezv3rGkro4spCtahwghCmn4xZz0rEBJS66lLds2KoxWAC45BT9fnLf3jnct0+vx/aCUybwe88/ST7HKR6nzjPUGKWlMUEqb6kpZ8esyaY/Roo/nuOiBce4KKAUe7eLbNLJ5iCyiTijIr6I62PDSNzynGTUFGycrkFhAhiMhxEIBIzzUH+++E6tTrbm7421UI9NxkXl51z/eo03ERdVv2tLTTaHjXH1uFRBrp7A3kx30UAgYLonc6Wq45hZzsvPSzhGxWcl5n+1PgPR/GvX8ZTr+NsNzGtBfy9irbZmMFq3/FK/sOpEtt/93d/FjTfeiA996EN47nOfi1//+tf48Y9/jK1bt9Z/8iomKScVJceaGmadBevu1NSStc6R4PR1+mT84QMLABqrOSJuZHXjosoN9vTJIVcRzG8nm3tc1FxUJFxuXHan2ny6aOnUJjL7AHDb7hM4kcrje48csTxHjYvKXaiitbsoYLW0q397QLlJCzaPJfFmoxjtJ37afjdbpaLh1Z+6E6/85K9RLFcUJ1vYdLLZa7LZbnp2J5u961S7qBUXVQtqqztd4kbpRTQaSeg1SwDgVgc3W6862QBzcTbrYRFeKFVwYFZ/L+4im7eJjJcOo8KxJp1shth2bKFxkW2HLdKkjgmqYNwKYw18lvXwQ1x4oSGyiQnieZtGqyK3ew3R9JS1AwiHgtItKMTU7jU+aC4uqmma/D67Exf1QWRr0skGQDppAD3mJBzqqXyprrPMNydb2B8nW7pgFm3vnbhod7uduiHGnsVsESWlftf9++bkf7vNg6ZdnBSRUFB+l2mH7pEnjScxPhBFoVzBE0fdx3GVWk6yevzNa87Gjv9zpdwoUJGNR+rFRZvoNFgviqq6+t26vD50YB4zywX85PEp2V0dqO+6vWirPq9Q694dWcjiG/fptfHEnOKw4mRLGJ+FEEmdnWz63x1LRi11gtX5qHDzi2MTc5xdx1NynXDJKeN4yelr5T1aNDWwI4StrRPWOZCMqqpOthpxUXF88r16bHxwSCmDY9/cFX9v2RbJreVkk2OC0nXSrSxIIBCQDWicmrAtObqzrAKpo8jmg1PYchwWkc36OTfc+MDj3F79/oYtcVFzPFNxdLLVaHpSKldQMu4hjY456jln73I6u1ywNKMAzLHHy0bMGYapZddUyjGJ1i3MxgfVTjZ7h99+ZdWJbADwnve8B/v370c+n8dDDz2El7zkJd0+pK4j1PvFbLHqYlf/+0Qqb7Goi2jAeluRRdH8QCx6G9mpFQu3kTodwETrbkDfYZetrV0K5rfe+KB2TTa5wxEKui7q7BbkmbRVCKtoZsRUWPAfP2KdcM7KHbRYVX0P++ursQC1VbUT73v5aUhGQ3js8CJ+8rhzt12/mFrKYdfxFPbOpHFgNm1x/4gFUD0nm1igONXGaCfi+BaN76dkOBLV3wF6fQexwy6EEi8ddgHgledMAkDV91AoVaRY1GuND4DG3FcHZtMoVzQMxsJKd1Hr5+PVySbqu+ybSVsWhQJN06pqsomJ/HQq5/icWtjrBi0pNUfEZHq4RXeKmFjOLhdaEr3VY2pFXDh/86hF9HzOlhFMGp/h1JJ+Tor4r4gvCIfzs9PdFtma263vljAzUGdDxwviftRs4wPAjA0C+gJ2JBGRO+31IuE5n2qyiUWpV3eTG2JeE1Xuz91AbNJ884FD2GPUTe01J5s4Rk2zLkzriWy5Yln+fK0tLgqYrqh0voTDNhEhEAg0XJetlbgo4H5umpHO5rqL1iKhvLbTuK4uqkUU0X4/3a843G9R5ghenWwPHZyX8/jP/uoZFMoVXHrqBF77HL17tx4XtcYtZVy0UEK2UMbX7j2AxUzRUsh9LBlFMhqW8xx1U97uZFszGJOba4VyBWsGYzhlzQBCwQA+9obz8foLNuHV5290fB8vO3MdRv//9t48TJKqzvo/kXtlZu1bV+8rNNA0TTc0O3QLsjXb4IKC7DI/FBXHVwRHBV8H5VXQcUTAZRQZF3BjHIcRBkR2RaTZZe2mG2h632rPPX5/RNwbNyIjs7IyIyszq87neXykq7IyIzMjbtx77vl+TzQo3XACIYJtG0hY5a5uwQeOtMdEiQ35xTpovblpFPL78uZ04rmd4oHas9lJm4vTqthmaqG1jvq68bDiznI4M9WyYjEWel0uqo4bAwmjT6/4DEqZB9iCD8pKF1WDD9x7srkJkjIowqVvoRoYMt4xp1k5L5whBzuHkvK7FHNh0Y/V+j4L3yP26bXapbhVotWK/OADIbKF5O9S2VzF9/ZGZlKKbCQfMaCJ3ZNQwGe7UYubSyanyxt+OpuTZXBOkU0kKckGnONwsl189Dx8fNUCGfNdCHWXa5/eEpxsnpWLjtWTzWdzmKkTKTFgil2Qt3eNIJ21T7QGk/aY53f3jtp2MoXzrTMekpNE8R7F7pm4kasi24AS6+1GVzyMjx49DwDwpd+9JJvSV0omm8P3Hllv62Glpg+u2z5k7XIqPdlG01lb7LnTVjyYyCCZsXZLnbb9aqH21AGsGzWQL6yIUikhBJZasixEtrVv7bGlX27eO4qcbuzy1UNjUydiUb6rhD5i60zhZUF3TKZthQN+2wK4VCebcDHmdPfF38BoRl4jYhLTGQ8j4NOQ0/P7x4yFSBYViwQxJohrTNMqd86K8oBUNmdrIjxexGTX79NKFnndCAV8OHRuh/z30pltmN5q9WRLZXJ4x3SnCHfITFPQFGWktSoXLdQjcyxqJcxY6Y7jOy9VxH2l3OAD9TgAYw7g82klN2MfT5PrYoQ9crKJhU1LU7BgmvxEMN28Jl7dOiibPtdbiE3ApfQ/kc7ihU175WPcetPuUpLP3TYZxKbJlv6EfO9qqxHZl63EAKZkhSJbIazNy1xe3zO31x9PSbR4brURvYq64Wgl/KZtxyEc4IC7yCbKD50cML0FkaAPe0fSeHPnEBLpLP77uc0AjE1WUZ65ac9IXrmlKj58/9H1+NLvXsKN97+KgURGbkSIuZFaMuo8NnUjTfRlA4DD53fI6/KYRd341jnLCt6vvnTa/lj7xffaekEDlntS/Xzc7sPOtMfxBh8IN1NHLJQ3lhTqNSXH4xJ7som2IG5uvlaXagpBsT5jI8kMEumsPO9ao0F5PgqhY89wCr979l3b3Lsc1HnxkPm6glLmAWJtE1ISmcfCLrLlBx8Mp7K2+4hbuajlYs2fc6l/W66TbTCRlmOqOHW2D1rjodi4FD3ZxPqmWDiOCFZZt2NIrhfqwckmy0VTWeRyulIuGrZd24WSXKcCFNmmCGJwEjen7njYdvMI+n3yohWOkB2DSei6MaHqcLjO5nZGbZP7UgdJwAhR+NzJi/OEOyfRUACfes9CfOTw2VjQHZMDZV5PNpnsWKmTrXgNua0nmzKRUkU08bfChfTGdkMEiympqmLAUXe11PIJW7pogeAD0WxXbQQ/VILt+OOrF2LxtGbsGk7hU3c+O26Hjxt3P/Mu/t+9r+La378kf/a2Mgl6Y9uQMrEM2AZfVTARIokodR1MpKV45fdpE5bQ5pzgiP+PhwMIOBa0YodbHGepbspprRG56/y/f7cm0W8ru/+1XCgWQiZimu93z3AKtzy0zjVcQIpsPfZyHVXcL1UYD/p98lpwK6EQO/9d8ZAc6/w+TY4xm5WS0Ydf247jv/kw1r61O+95AOMaft28bo9e2AXAOk9lMlw4UDRFthQiQb+8VncMlS949yul2JWeM6IvW8CnYfG0ZsvJ1p/A27sNZ2Is5JeLLLGAFjvAlbqayiVcYrnoQ69ux2d//bwcpy1hpvLPbjwI0bgUsboQMs2uAgFCbTIuvlPZJ2qMYxOfdcXpotLJVqHIJkv6a1ua+ZHD5uALp+6Hfz51Mb7+vgPxX1ccVdeu5N3Dxuf27Nt7bXMZt82MPYqr3O16EeO5mJd0xUO2edmyWW0AkJdeXAjLHeTtuKJu7hRKXcxkc1JcGm8TdPncLuORWi4qytyyOd12X1OdbGvf3iM3RMdysgX9Phw0s834u7f24OHXtmMwmcH01ggOn9cpRat3947KOaX4LKQrJZXB3zYa98Yn1u2S7qCmoF9e692yvYxxXOlsTs7f1GNTnWhOV9pYOFueAJaTTfSy1TS4bo6IeVhON8QgIZqNJf44+2K5VU84ExUFqay5Ae4qsomebEq5qFkG7DY2FOo/bbyuKRwpc80mWQKZleeXTwPioYAMBRLf960Pr8Onf/kcvvfw+rznHg/OclG19DpSgvNTXCddcfexxA21j7cqnDVHglLQ6ncpYy3VySbuQX6fljfXHwvpnkxm5Aa9uN5EBQCgONlkuai1vijEzPYmREN+pDI5vGk+Vz30ZFOPeSSdleWinfEw/D7NKiedwiWjFNmmCGJAE4t4NxV8unIDBiBv7D3NkbwFZcBvJZ4A1SuH+MyJ++L6sw40+xSIG4/DyZYUPdmqG3xgRTv7bTcRMVimszk5SItUJFEu0hEP5dnM1br9F9+1Jp27lIarzt5vQmRbbu4Iq062wRJsx5GgH7ectxyxkB9/3bAb1/7+7/jWA6/jgh8/he8/Ut5NV4hEr28dlK4+m5Ntx5BtYhnw++R3pd6oxXvrNc/NgURGCo7t0VDFokapOJuoiomR28RWTPDEdzaec/CUJaJk1Aq+qOd+bIDSR8x8vz998i3c+L+v4YePbsh7rCi5cPbEaXHZVSwFef27uL5e3mKI1Pv12ZPe1DJ4wT0vbMH6HcO490X3kukXNu2FrhvlpgscTjaveyyJRcOOwfLFFi+bvZ+wfy/CAR+OWdSFSNBv68m2focoFY3LSbHTaVDzctExyhK+9odX8Ju1m/DQq9sBeBdiMV6kwFFBP75i5Uml0q4IUsIlIkvCh90d3YBxr5ML14pFNuPvK3ayjRYepyeS1mgQlx07H/947AKcc+hsHGQKS/WG+O6FmKqWigLu86BdYyR9i/FcBNQ4G9uLTY9CoQpOrGby3t771fnbWA3QgfGViwb9Pnm8bs+t9vQMBSwXjypqC5EtFvJD1605llsAkxMZfrBxD/7LdLGdvmw6fD5Nboq8u2dU2Zw23ltUKWF/4R1jPrph57AUTFXBqadFBKUl5d8I1Pnn4aqTTfnvcnE62WIh980RIzEVtmMExh6rIkG/zaHp1ge4kJMtlTHGQ7fyfbfG/LInm2u5qOhbnH8Nivcet/UZsxIz1fmAz6dJQ4BYQ4g55n+/sDnvuceDM/hgVPZj85U0V1/YE0fAp2GZWUJeCm3RINYs7cPZB8+wnWfqJny/sq5yc7IJkVQtn/3rm7vw66ffscJ8KkgzVstFxdx3/XbrehbHIspFhcOtUAUSYLSmEdVjgnooF40EfbK9xHAyYws+AJS2GC6u6KkCRbYpgtjBEQOsmwo+o024PhwiW4Go4IWKQ2Uieo4UapgvdpSiFZRKAVaPg4I92dJWqWbQr8mdNqcABqhONlNki4XzdsDUG+5Lmy2RzZ4u6h58sHxOGwBjx1gIW6XYjgFj4P/a2QcCAH7x17fxnQffwKOv78DX73tV1tSXynAyg8fMtNLhVFb28HvLWS7qaBYv/l/9rMWkT7hnBhOZgglP1cTZRLVYs2FxM5blouMQjUTJ6FMbdsvPvdjEqx7odLhcxATcrezNmSwqUBcIpZaLAsrE02V392XTCbq/Q2QT45xaLir6yDhDXgDjGhLi27LZbXLCLZ1sidKusVIRO+c7x3ndqfSPeCeyLeiO49HPrcYt5y0HYF2L/aNp6bad12VtrjgX0eP5Pr1ELJrVctFHXt+BR1/fIf+9dyQlx2Px3dcqjbLLFCkGk5my+5V4EXzg7MkGQLrWi5Wyqg6dStNFvQo+qIdk0UbC2V/zqY1GAqQQfdzGWXFOqIEZKtLJts0YK2Y6UunHG/hRaU+2Qvh82pi9qlSRbbyvXyy91Fr4G59zu+N7SGVyeNcsyz/vcCOw7d4Xt2JL/6isMil2jh8y1xDZnli3Ew+amwlnHjQDgLUpMpzKynm+mLMIoebFd/vlwh8A7jMFPtUh2uPYvBoo4PbvaYngcyfvi0+sXpg3DygHsWkmXGCF7jdq2qM4Rr9PK0msVQ0Ibk62eNje7F2QKpKE62xBksxkZaicWyl5a4GebGvf2o0fPPomAOAo02UP2K+rvY5xUDrZzHujGCdf3zYkqw3KQR0fBhOZcbcPmNURxVNfOAHf+dDBJb+mpmm45dzl+NY5y/J+Jz/jEftxAfY2L02KICn4zK+ex1W/eQG3P7ERQHkim1oJJb4Dcc6/udP4nFubrPLd8QQfAFb4AWCMR87+xrVA0zQlCCRjCz4AlLJtOtnIZMd503cTzkT/HUtkMy6YaQXKOvdRlPXx9GQrFzdhBgCcUeTlMmZPNiXpStO0PJeZOK5wwKfsuJllbLGQLX1GbSYLAH9XnWzCchsLy12o0ZTR+00IeUtntMHv0zCQyMjvqRTbseDMZTNwxeoFmN8Vw1nLpmNuZxQ5Hfjfv+enXfaPpPHB7/0F//bHN/J+98jrO2yLI5E+qDrZ1u8Ykjd28RlLwVT5rIV9u888D9Vy0YkKPQDy+2dYfVDcRDbj+xFlNOPpiTWrI4oDZ7QipwP3mymjYvJY70428b0It5ozGTaX0+XuXXGRrRwnm4vIZjrZRBm1QDrZlP6D283/FqUugCEWf+xna7H8Kw/gp0++BcBwizrdrQOO87hSupqNz7MikW2MxLnx0tsSkd9LcyQoz+m/rDfEdNXBPMOxiI7USmQT5aLmeZhIZ/GP//E0LvnJ3+Qia62SuLejxiJbS1MAAXOTZqyyzEJ44fLpKFouWnj3WSwQNK28BYlK2OPgA4pspSF77w2nkMrk5PVx7D7dANwXRlYri+JONuHgd24WiTlTKpsrqVVFtUQ2YOyEUXE+qhuq431uZ7morut5KZzOst139owgpxvz2fNNke2vG3bh1H97DP2jaSNAQBmDnYgqh81mH81FPXHs12fM1SNBv1wA7zHFCCHQiE3gP6/fZXu+P5pzE1WQF88hNq/UlgVOPr5qIT570r6elOOLjQBR1lysPYdY4ItjbAr6SzqGsUS2QuWi6Uzh8n3x2YkNsc17E9B145jckjUtV5Y1Bu8YTOLjP38GmZyO05b24QMrZsrfRWVoRTZv080Z0qaKUPcpVRTjxVmWWU7adEcsNO6yzEK4hUu4p4va18K6rktDyU/+vBFAeeNNszI/FdUvYu4rHF4tStqrED1LCT4A7OttZ7unWiKuh3f3jMq5jBgfhDvPGdg3laDINkVw9iLojucLZ6JcVPQvEjsthXqn7aMo65U03C4VN2EGsBb4lfZkizt6sg0lM/joHU/j7mc2Achvwit3Qh3Jn82RgHT8iF62HYrINpzMIJHO2cSpjbtGMJBII5HOyvfT4XCyJdI5+XztsSDmmvHmr5klo6XYjlWuOmkx/vTZVfj2hw7GOYcaIRT/82K+hfy/X9iMpzbuxm2PrMubNN7/d3vJ3XqzX8A7isiWSOfwqimCiMlDi0xydSkXNc+3gUTGKk8pMeLbCyxrv/HaxUo0nOWipQYfCE450HCz/eFFY7JT7+WiqpMtl9NlWYszpW1z/yhG01kE/ZosnRa0lOlkk7u7jus/m9Pxinl+HTDd6WQzy1oUEWuHi5PtsTd24t6XtiKVzWFuZxSXH7cAH1o5W06cxJjgdXmhJ062KosLws0mEgHnK+W/opxUUC/loruHU0hmjJJG4WZ7WhHZxOddSvlVNdA0zSq9LrNkVNw/KkoXVRaRYtwVLqViCcJJkSwaKG3hWgw62WpDh9Jf86XN/Uikc2iPBnGwWb7l2pNtpLizXCxgxVzJ6WRT56GFxC0VdWPTa4q5zQDrHB9Pqah87pD7cyczOfmehCDlDEERG7NzOmOY1RHF0pnGRtyekTQOnNGK337siKLiUls0ZNvYOnPZdNs1WshdKL47cX+cbzqWhXtbdbI52zBMVNm9s81NsfmDmAeLYyy1d6Samut2nhcsFy3mZBNzSrOUUfbe7WhyHT9bHHMdXddx5V3PYttAEgt74vj6+5ba/s5ysmXyNt2cZgB1k9KZbl8qyUzW5hq3lYvWaKOtVfS9c5SxAnYTiNW/TiTGW60PBOVc8+K82DKQkOs0Z6uU1qZgnpu31AokEX4AFK4uqwXCvfyVe15GNqdj395m9JrHFw/bN6mnIhTZpgjOxY/bRSpcCZtKLBddZHOyTZzINpTM2JKYRHxwpemiztKwR1/fgT++sk3as/NFNsdgqexItDuCIjqUSGOjMaZxsw34NGnhf3nzgC29qzkcsN0g1Z2zWCiART3G57/etHyXajt2Y82BRrT7X9bvyisZ/eMr28xjyOEZZaGayuRkOcJyc2K+fvuQzYEm3psQNITF2Sr9NY45o/Sz65PlomkraXUinWxK8EEupxddvImbsRqOMB5OWWJ87n9evwtr39ojAyNmd9anyKYuzDb3j8qJlrOJrChDmNsZy9upVD/H8YgyLU35u7uAsSgZSWURCfowr8s+qel2pKAZicnGublDSUYT7t0T9+/FQ59dhWtOWYx4OGBLjDL+v0rlonXSk80NcT2Kieh8pVw0EvTbFj61EtnE66azel4T8YdeM8aotRsLO9kmKlRFxVl6PV68KBdVA43E96g6nAohXQseLKi8Dj6Y6P56jYp0LI6k8L/mYvvQuR2uG2ACcU445zcCZ8sOZymcUQVg/HdJIluVgg8A63x3bhQKZLJoGdeXJeDZF5dqU3pRZmVdb8bvNuw05gBzu4zP7vzD5yDo13DRkXPxm48dgTmdhV1sgkPMvmwAcIZZKipwuo+FYOf87i4xk+gFdiebcGCLjUi7O69adMZCUDWpYiKbeF9iQ6XUDT3VWebm2IwXcrLJ8ThfNGt1lDK+owRcuSFFNvNz3bRnFH9evwtBv4bvfWRFnshqc7LJABjjfUQcIps6f/r75gFbSFmpOEWTcp1sXtLm2BwXxwUUcLKZc1Y1MV48rpKebJvM77Yp6Mf0NvsmZGtTUDFOmD3ZRAXSGOu2faZZc9vueP2IbOJ9izn/185eIgXgQtfKVIIi2xQh38nm1pPNXi66fYxy0TkdVsLoRCxSxGvoOjBkTl5yOR0jaY+cbGG7a0V8DmqvDMASVqyblz2KORYO5DVM7VJ7siUysql0WzSEJTOMHYqX3u3HG9usJrOaptnq98XOWTTkh8+nSeehcByWajt2Y3anVbp4nzLpHE5m8Od1VvmA6L8GGCUMg4kMuuJhvH/FLADAmzuH5S5dZywk08QE0snm2KlTRZpel55sE1kuKo4tZ55nUsRwSa1zJluN9xyc1xXDGQdNRzan4+M/Xyt3jZ27zfWC+B52Dafw5g4rMcm5mBA3XLc+LOLzFedxqbQ4hFmBKBXdd1pLXlmPsyeb6hgbTGbkcYt01Fkd9lRXyz1rLxf1qh+GWOjVtZPNMf6rPdkA+7naFKrNlEJ1KSTSVskMYLgUR1NZPLdpr/xZrZ1sgJowWt5370Xwgb2Zedh2XMWcbGJjyYsFVcgzkc24RulkKw0hsP7hxS34vrmRePx+PUVT1mW5aAFnubNlh7Nc1NZmI1XbctGPrVoAAPjhY2/KNhcqoly0nAW3EHSczv8BZY4m7n3COermZAOADxwyCy9/5WR8+YwDSnbYHG4mea6Y0563YTfTGVbjcLIJVu3bjcXTrI101fVa0MlW5XVAwO+zbbgWm2+JebBYx5Q6VpVbLlpsPG5TXFa6rhdNFgWsuY64twvDw/S2Jtc5la0nmwzqMp6jKWStU9LZnKyUEf1r7y2jZNS50TlQRk82r3G2eQFUkU2pnpApuvZ0z+ZwANeftQRAeZUkQiTbZPZTbIsG89JqW9VyUfn6pa3buuNhGVZTX04267jPO2w2VsyxAk7UMIipCkW2KUIpTjYh2uwYTNoacxYqFw34fTJ9byJ2jyNBv7yBiYEpkcnC7PtfsZNN7cmm67osm90zbPzb6WRz2rDFTTceDuTtgHXEQvL5hxUnW1s0iCXTWwEAT765G1/6r5cAAKv37bG9xmgqaxPxAGBaq/Ea4gZcqu24EGuWGq6q/3nBuuk+9sYOaYMHgMffsEQ2kXj13v175Y1//fYhuTM2qyMqzw+BWAA5k2JFqW3Qr8lJ1GAiLSf1E+lkiwT9UjzrH0mX5GQTlNMX8Kv/sARzO6Oyt15XPFyxYFwtxKQzmcnJRvhAvpNtfYHQA8CaQI63Sb5TmBWI43CWigL5TrbtA3ZBQ/xbNJR2lj+KyVkqk0Myk5Wv7VUPykYoF1U/k2ktkbxddDVhtClYm/NWXQgn0llbAnX/aBo/e/ItWzlirXuyAUbPTaD8clHRl6iSctHu5jBam4LoaQ7L4xGOlWLHJVPYKgw9ACyXkldONrfemSQfIZok0jn4NOD/vHcffGDFLLlYdCvxGSuISL1vaRrynBzGY0wnSXrshVc1RbYT9+/Fqn27kc7quO73f5cBUgLpZCtDNChULupWVjnbFNOeNxM9N5rzp3mKY2281/gZB03H1993IL7t0iA+r1w0aO/JBhhurhltTThMSQRtdykX3T2cNJzDHm8+FUMt5yw25xfzbbHBVmoZo2pAcE0XlfP4/FJgwP1cFWNSKpNDIp0bM+DKOdcRc0O3wDrAalOiBpHNNc8fcW8cTWdtAtQ5hxob4394cUveuT8W4vsWm5qDibQ8171wN5eDW0+2AUfICGCd72LNoYaynblsBu698hh864PLxv36ogegqJRoi4YQCfpt4pmtXNRhzhirAknTNOxrit71kCwqEGN+d3MYnzt5se13cWXNO1WhyDZFyBPZXC7S9mhQigtb+xNSvOktopp/7qR9cc4hs3DMoq6Cj/EScRMfdDigNK3yHRQxyKWzhqAm3C0pc/cn5djZdIpswzaRLb9cNKakEgmnRVtTEEtmGCLbH1/Zhnd2j2JmexP+ec1+xmsokzX1+QFL/NxqCgSl2o4LIUpGn3xzl1z0P/CyUWp1minAvbS5H3uGU0ikszIk4cQDerHAbMS7uX8Ur5tNj2d3RPNEFiGuOZNihxUB0SpXUZ1sE7tz09ZkJYzuLZLe6FxkFuuVUojmSBDfPXe5FJBnd9Sniw0wFkhiErn2rd3y54WcbM6eFID1OY5XSCwUfFAoWRSwNhN2DiWRy+l5iaLi30Jkm+7Y5VcnSIOJjFUW41XwgTmJ3+GSdFoq1e/JZn0mbg23Z9icbLWZYPt8mjwvE5lc3k77rQ+vAwAcNNMYa3eZPQVrKbJ1VFgumvKgXDQS9OO+Tx+Dez55tFwwOVMn3fCyNEiMoezJNrEs6olD04yF+y8uOxyfPH4RfD5NbiC4imwjxZ3lqujR2xxxdV45nRzFSHpwjhdC0zR8+fQDEPL78NgbO+WmoXzttBflog6RzaU8/fjFxobq397ajZ1DSWzcKZxs5beM8Pk0nHPobFcRRx2vQwGfbOeg3o8PmtkGTdNwmOmIA+zloh1Ro2wzpxvj10SW3atOs1KcbOLe2lTihsDY6aLFy0XdBNFoyDIIvLylH+/sNp3zBSoWrE1ou5Otp4DhQQhHL2zqx7Nv74Xfp+GMZdMBqE42S2RrjgRwypJp0DTg+U39OOnbj+LOp97Oc14WQjyPcLknMzl5bpfa+85r2hw92XI53VXAEmPUiMNJJsa9/fpaXKtWxsK57hKinyrU2tJFU6JctPQ2P6ctnY7mSABHLewc87ETxdELOxEN+XHDPxyYd+9VWyRNVSiyTRFU14imue/QaJpVgrhu+5C8+As52QBg9eIefP39S8sSF8rBSnAxjs1KFg1U3IDZeA7jvwcTGWzut9IH95iNtAFrwhd2BB9I228kgJZIwJb61hkL2cpR98q+CUEcMMMSB/w+Df/2oWXyJqsKeWLnRdwkxPcibsCV9GQDYGuy+6un30E2p+NPrxpC2nmHzcE+vXHoOvDE+p2486m3sWMwib7WCI5a0IWOWAitTUHoOvDoG0aj8TmdUSx0iCziRuRMihUW9lgoYEt0rEW5KKCGHxR3skWcTrYy3ZRLZrTi2tP3BwAcquwe1xuaZjkN1UbyznTRYuWirUq56HgQAvuAY/FXKFkUsNxCmZyR5qsmigJWwugWszR8msPJ5vdptuat1Qs+SI17N1nQr4wl1UB1srmJbDNtTrbaTLABICJENmUxIcZqkaR34gFG0Eg2p2PPSKqmfbzEdVTL4APASHNWF29qT7ZC56RokeDFgkosPlMlpE0WY6CG32UjMrcrhkevWo2HPrtKlhcCxVPWx7ofq/PAQi0PmkoU2XRd96Qkuhhzu2L4/46bDwD4twfX2X5XzXJR1fE1va0JB85oha4bjeg37RE92cbuvVYOM9os4U113qtzl4PMNh8rlbmIen9RyzZ3DCYnLPgAsLu5ilUOiPm2JbKNv1y0WPCB8/oo5rrUNE2GXF392xdlSXCh3rsy5Mlc52wz5ym9BRxMogRShKC9Z3GPNFKIOarqZGttCqKnJYJrT9sfsZAfr28bwufvfhH/fPeLrs/vRJzHqotdbFiOd17nFW2y750xRg2nMrLKSRV/ozL4wFEuWuHGqbPcUxyPWjLaGlV7smWh66oQOPa185HD5+CF6060lWTWmouOmocXrjsRJ+zfm/c7GSbIclEy2VGt0h3RUMGJuRg0RZJcNOQvq8dXtWhxTACFk82Lgd3n0xAPWc8verIBxq5+ytEIVx0s1WOJhQ3BT93564yHERdOtkRGcUeF0NMckQvZT75noW0AjSivMZS0hCjA2kXaNpCErusl1/YXQ8SC3/i/r+HLv/879oyk0doUxKFz23H0wm4AwP1/34ZbHlpnHu8ihAI+aJomF+DPvm2IL7M6opjfHZPCZXM4IN0SzqTYYSW8Qu0JI6z+bqJwNRE7WVv6R2WCppuI4XSyVVLm+ZHD5+DJzx+Pz520eOwH1xBxXqu2/FQmJ3dydw+npKjhJsqsnNeBJTNa8H4lgr4U3Jxs2wcT2DGYhE8D9puWL7KFAj65INw+mHAtF83mdGwzJ4jTW/MXhuqi0+vgAzGhT2VzeeLh7uEUzrrlCfz0LxuLPke1hSJVeJzflS+azlSaN9dUZFMW7+IceY9Zdi84fH6nPB92DqVcF70TRac5+d5VYfCBupnjBWpJeKHm9F723xFjaLJEF0UhxIZbrRZ5jcisjmjeBmmz4tRRRdZMNifH/IIim3L/K1QKZ5VLFf++RTk0UB0nm+D0gwzHz9b+UdvPk44evOOhybGQF7ilHQJG6SoA3P7EBuR047oqVBpYKaqTTZ2vqOeBENm64mEsm9UGTcsf+9VWB147vIthc7IVmeuK+bbodVfq3GxGWxMCPg3NkYDrfV7M1XcOpWwO/nSRdFEAuO70A9DdHMa67UPyvlM4+MCaH+dyugxpKlRV5Bzzzjlklvxv4ZxKpnN5G3IXHzUPf/nn43H5cUZ/wueVvqXFEPfX9phV/jheMdNrnD3ZxFwt6NdsQrksV3c4ySo9d53XtDgeVah19mQbTWeRNQOlSl23VWomqQbOcDOBTOJNUWQjkxx14HPGYKsIke0ZUyiZ1hKpq4u62WGjlk42j4RAobzvGUnZ+iTtdnGy5QcfWA00AftEtDMWsurTU/aebADwrQ8uwxfX7IdPrF5oO54mpaGps1xULH5HzR5E49kRKcR5h83BRw6fDV0HfvrkWwCMXbGA3ydLgn///GbsHEphdkcUHzjEEkpEaaAIfp3TEUUk6JdNRFURwJlgppaLqscvboAT7WQTVu+b7n8N2waSmNYSwfLZ7XmPczo5KhWkp7VG8pr31xuFBE+xoBC7tH2tEdeJbVs0hHs+eQw+esz8cb1uq6NPCWCVis7rihUsVRQ9VnYMJl3LRXcMGkKb36e5jo2qs9Iq9/FmvFF7djj7sj21YReee2cv7vrbO0WfYyJ7so1VLhqpUfABYF2LyYy1Yz+/O4alZoloKODDkhktthLd+igXLa9UWCzqynHaFEMtCS9UyipENmfwSzl45WTz0l03lRH335xudyiLjRNNK5IuqozBhUrhIi6llLc+vA7/+B9Py3MasJ8PXp/jKtEC/dOkk62Mc7xwuaj7Js1JSwyXkwgTmtMZrdq8Ox4OyHmn+n3FbOWirfK/b7/oUNz/6WPzXFdq+IG4J0/EOFqyk828R4v5aKnjQls0hDsuWYn/uGSlazBTWzQk+9Nt3Gklc47VP7AjFsLX33eg7d+F1i3OkDfhZCvU8F797rqbw1i1b7f8d0SpuOl3aX3SEgniQ2Z/ts17EyU56tXyYDE/EnOrWo2/rU32zV+1DFS9lpxOtoFRd+F7vDidcOJ4upTztUXpyZZI56TDy6dNzs0htQpkqkKRbYqgXsDFRDZRLvr8O3sB1FeKCWBf8ALWJNCrAUo8/7rtQ1DvNXYnm/FahYIPxI1TiBHRkB+RoF/eCAcTGewV6aLmze6IBZ346DHz83YEmhQhb9jx/JGgX94st/YnSm6gWQyfT8O/nLkE5x8+R/7shP2MXdbD5nfYXBOfPmGRzRHpXICLSZkoGVWPy+rJZg8+iIUCCAV8tkl1sUl9tRCfq2g4e+MH3EuinZP/yXijdKJ+F23RoFwki/NT7NK2efydOWPtAbVUtNX1bwB7+MEOc7IqhN/tAwlsNh0Mvc1hV4GzWRGEq1EWI0SfnQ4BcNgRMV+IagtFrU1BtEeD0DTIxrsqYuc/4NPQHK5dqZ46Vqrf0yrTzXbQzFaEA37pwNgxlKht8IFMF61tuagTtSS8kMg2KkU2L5xsltOiErwU/qYykaAPAaWhuUD06GtrChbcCLKXi5buZPvRYxtw/8vbbGE6ao++apWLGsdjHHMyk5OuEqCynmyFy0XdAwIW9cQxVxGxnAnOXiNKeVUn2JzOKBZ0x3DKkmm2e3d7LIRFvfnjfrfiZJvIsvvSe7LZj2U8yddHLezCwS6bqgJRyiuqHAAgVUIQzXsW9+LDKw1Bq9h3HAn65Xk3MJqW89BC5aLqBuP7ls+0rSNEuWjCUS6qom7YqxUKhVBFVTE/EiJbzYIPHOWihcpApaieHH9PtGI4N9iFENvlcLKJeUoqm5Ntg+Lhytsd1SOF+hdOJeqnDpBUFdXJViyZRIhsQrwq1o+tFjhLxqTw5FEaoxgUXts6ZPv5nuF0frloyCmyZW3PIZr1i8WUmrQinWxjOLTUAVm8Z3Ui29sSRv9oGht2DssJYqU3C03T8JUzD0BnPIQ3tg/h+P2MRWo0FMDy2e3464bdWNQTx5nLZtj+Ti0nCAV8ckKwsCeOB1/dbneyiZ5spvtPlsKaFv/mSBBJ09lTbFJfLdTS0PMPn4NjFnW7Ps45AZ+o3oS1RHUVzu+K4c2dw0iN5KSrVOzONXv8WTibAQOWk80tWVQgdr53DFlOtiUzWvD27hFsH0zK4JC+NnfnhVXanCnoRKiE7uYwNu4awU5Hby7xeaqiopNEOivHpWoJRZqm4QcXHIJdQyn0uZTTxsIBfOfDByOdzdVsgg1Y4koibZWLtjYFcc4hs7Bpzwg+vHI2AGuRtmn3aNU/u2JIIavcnmwepIsWoj0awpb+RBEnW331ZFPTv+lkqwxN0xCPBLB3JG2M5eb+hegd2F5kzqJuMs0sEODjnDcBVmNs1dUprs2AT3N1FHmFeswjqYyVKJ2tpFzUXpImcAs+AIzP/MQDpuEHj74JAJjTWV2RbUZbE156d0A2zAeM6+aPnzmu5MV+l+pkm8Dgg54S00Wdjei9LGOc1xXDs2/vxYadishWYhLul07bH70tERy3j/ucUtDSFJRu67GCD9T1zweV6hLAahWUyKgim/0ajgSNzaedQ0m8u3e06DUO2PtfyhRXcwOzZuWistIhg2xOLyieiSTWEbMnmlc92aIhPzQN0pwhe7IporAafABY6fZepdXXG+zJRpFtyhAp2clmH8Sn1ZnIludkMydn0TIbzuc/vzHYvW42EBXsGUnJ8oG84ANTkBxKWLsSgLWIEmJbsxp8MGJ3shVCHZB3mJPcuJrg1RLB69uGsH6HIQr6fZonNzlN0/DpE/bJ+/nFR83Du3tH8X/PPCBP+FrYY00MZ7U3yYnx0pltAOwN0lscTrYRh1jaEgnI8rmJLhUFrGtkbmcUnz+1cI80dUHn92lVLWupF2wiW3cc2waS2DuSls4rryYtTsTu/0gqi3Q2h6DfJwMW9nXZaReoTjYxqTlgeiv+8OJWbB9MyN6LztADgRgT9o6kpPvCyx5eam8blWGlMW8up7suNMWkWQ1oqAaHzi3eaPdUM5m4loQVJ5taztIeC+FbH1wmHyc+bzFm+jTvNmnGgwjlGExmkMxkx72YT1cxeVGIjs6UVoGn6aLm8Yv7azkkFdcTRbbKaTZFNrVPpBBc3ZrBC9RNpkL9ppzloulsTgoUu4ftfT6B6vZjA4zzTyyOR1NZOd5XI120mGvmpAN6pcg2t4Jk0VIQ4QdOkWo8bhrZhmEoOaG9LUt3stnfm5fiz3zThSbKe4Gxe7IJoqGA69zaSUskYLS4GEgqIXTua7d9psWxcm4HFvc1Y74jbEwGH6RySi/o/HXHjLYIdg4lsXnvKJbMKFwZAMDWg09cL8KRXSuRTX1PA6NW1YHTXS/u9bpuzBW86rOracYcTDyfEDLFfV4cozre7BgyhEmv58r1guzJRicbmezYnWxj92STj60zkU2WjMmebPYwgEoRyvtrDpFt93DpwQfiOYQYISalYkIzlMyUnAioDshiEa5OZIUIut4UG6ptOz55yTScbPYPcTK7Iwa/T0M2p8tyPPE3P7zgEKyYY9nvxQ1oMJFGOptfCqvedNSb1ETx/hWzsHckjfevmFl0IudsqDoZLd9O7CJbTJaWD5cRST4eVBFpYDSNznhYOtP62gqPU2JSvm0wIa8hMYlUnWzTC4psxuu+u8dqjO2loNWl9IxTEcKz0Rsp47rb2a/0iJsK514xIkr5vlgEuC0mxPmw3lwgtTQFq+qUKURLUwABn4ZMTsfuYXeXYDGqVS4K5G9mOUl6WJopxlC1PHC8qKWmU2Gjo9oYC9NRW7mocJkV2/QSC9WgX7P1clSJKn1mAWAkaQlRNidb1r6pWS00TUMsFMBQMmMTxZybquNh7HLR/HHp4Fnt6Gk27mlu5ZleIlK/i224j0VXswiQmWgnm9KTrZiTLa9c1Lt7tmu5qBiPPTpfxTkiNhKbgoVD6MIBP351+RGuv7OCDwqXiwJGFdPzm/ptgW+FkOWiUcvJJhxckRq52QN+H5rDAQwmM9g7mi44D1XXwsOpjBSIvXCTNSsim5Uuai8X1TTDCDGSyspN33oKF/QS2ZONIhuZ7AT9PgT9GtJZvWifNaebo16dbAOyJ5u3iWIt0vqclP8eMNNAncEHag8gwBpIhFC0fHY7NA1SXFLLRa3+JsVdWuqALAQCdUAW39cbishWK0IBH2Z3RLFh57Ct3MHv0/BeR7xzVzyEcMCHZCaHzXtHrd565qRJnYTWwsnWEQvhcyePnfIZVm7Yk/VG6aTTVi4al31dRhxONme5RqUE/D7Ew8ZiaCBhiE7CXVGsBF4sJF7fOohMToemAfv3GeWle0fS2LjLaF5cSOSQItteQ4yLhfwF05TKoZCTbUhZfIr366SWPcXqjUhAafAsy1nyz0Gnk61Wn52maeiIhbB9MFmwFLcYpTonysHqQ+g+OfbSyRaSTrbyRbaEKYj4fVpVRMephizzSapOtuLJooAxH/k/790HPS3hgmOkc3NySCmpVPsTyvnWBHyfTSG/i8hWgZOtQJhCfxExyufT8L3zV+CVLQNYPrtt3K85Hs5ePgM+DVi9uGfsBxegO27cc9/dMyo/q9YxNo29IBYOIBoy5sTFnWxOccW780j0U7OVi4ryYo/OV3FfElU1vS3hsjbSbMEHRTb3Raugzeamo5OhZAYxcyNZPY+dIVC1TBhvjQYNkW0kZTnZHNeaz6z2GU1nMZrKelp5EY8EgH7jv0XvYnFfb20KynuTFNkGRbno5Fw7qPcRXden5EYwZyNTCLHTL2zeboQD9ujwQvbkWtHs6Mk2Int5eduTTXCA2VB9x1ASGbPnmSjrUZ0TAPLSP49e1IXnrzsRV5iJoeLnOd0S8cZysgHWTUv8jfpehdNQLBhrPViLHdKxyh00TZNut7d2jVifXSjfydZRIM2yHnCLBp/sqP06FnTHZMKXdLJ5kHJbCKvMOI0dpigV9GuyyawbQoAT10hHNISueEgu7l8wY+sLOS/Egkjs8Hrd3Fl1BKio/XwGCpTtuaWFTVXU8biY+ChEV7EAruVnJwSLcsIPqlkuKsTJQqEb4p4X9qRc1Ow7WonIJpx1dLF5QouLk7EUJxsAfPL4RTjn0NkFfy8cRcLJppYS7VGug4kqFwXUhFHrWKTIVsY5XqhcVDhXCjnIls9ux3mHzan6YjQS9ONDK2dX1HNZvIe3dxubVJpmzd+qzX59LfBpwKyOwvPMPAeTh/OzueYm8u7hlLwHi/E4GPDmuxPzDrGBXm5VkTgXMzkdu8xruJCTDQDedXGyPbVhNw76v/fjWw+8DsDZk83hGKyhyCbDD0bTeHGToXa5rUWEA3I4lfG08kL9LMSxzO6M4trT9sfX37dU/i7iWNPFJ2lPNlGqq+v5Y+FUgTOSKcSBM1rRHA64JsSpTFdKRusv+MCZLircY972ZBOIhurbB6zdHaeTbdSRLqoKdeqOZVPQD1GVJEKsStn5EwNysXJRMYDVWmT7zHv3wWXHzMM/HDxzzMfOMW9+b+8eyUtmVfsoFOsBU2vU/j9TIfQAsL4Pn2ZMIJyR6NUqFwXs5eKyGXBzpOiiRCwGxDXX3WzsCIvNBqvk1N1JJK5nMfn0uiTGSru0Cy3DyqSkoMg2galu9Y4Yj4eSGTkmuy0muhyifS1FNhGKo5bJlUpSlot6vyBXE3XdGDXd21462SoT2Rh64CVu378QgjsqbN+Q32Yjv+8bMLEim5soJkqiy0sXNe4ZarloLqdju9kcvlD/z0ZCjKPivtocDkxY2f2PLzwUD3zmuLz2NirODXMvx4ZYOCANCBvMklHLeelRVY250SHKRYu1+SmG+r6FyFuoJxsAbHER2Z5+azeyOR0PvLwNgFVJ1NoUzHcMjiPF1WtEZdDuoRT+vH4XAOCoRV15jxOC63AyW9DxVg7qZ6F+xpccPc/WZkeI+mI8mKxVMJGgT655p2pftsn5zRJX7rhkJRLp7JiDyYy2Jjxn9lkqVlpaC6STLWF3shWzjY/v+R1OthmGyLZVEdnEpEsskITDRYpsBcQFTdMQU2r2/T6tpARGK43LuIk3u4hsgloP1vv1teALa/Yv6bFiF/Lt3SNWbz2ZLqo42epYZFMn4LVonl4L5nfHceL+vZjXHUM44Ld2BWUkumg4W0WRbTQjX28st61zDBM7wj0tYduu7Vg92YqVIFaCLBct0JNNfW0nLBe1EGUx25XP0e1e53SRTEQfoUKIfpO7ykgYraqTzRFM40SIB164Q8JelIvKHnEU2bxAzCPUVDjR4qLSTa8mR2DUsFIWrzo6U1Ush3YiNsiqWS66eySFtJkIXKyapFFoj4ZkD15gYjd6WqPBMTeonZueXjus5nXFsG0giQ07h7BsVpvlZPNo00Pc04fkPKc8YVY9f4WoU8zJtnlvfrnoNrOEdN32IZtTvCUSdOl5Vrt5sDgn/rx+F/pH02gOB7DUJcQhprhpreADj8pFYcxFit2LmqTIZrUlmoyIMIiBRAaDyQzKL05vXCbnN0tcMfqyjT1hEAmj7dFgWfHl1UQscPOcbB5ZwZ0i1f59xgAtBC5NMyLlAWCx2ddp3fYhDCczcue1mGXe1hjTbII5Fs7JgTp56G21T9YaKQp6jhDZdrk42ZT3Ud8im+pkq69rpVr4fRp+cMEh8t9OJ9tQVctFLZFdXG9jTT6bwwHZ/w+wdoTVneGAT0NngYWP8314/b7EcewcStr6Vgyr5aIFemNRZLMQk1rhOm4OB/ISkAGjXFiEyQC1dQFWVi5qvIFqiBAtYzjZEh4GH3jhZLNK+1ic4QXO3reAJQS3V3g/FvcL6WRLFXeyTUSQhQxjSLuUi5YxB3ZzxgnntdqqoJHx+TR0mj0lgdpuVrgRCvgQCvjkeeTVRrxgXlcMT765GxvMAB2vnZfOz7Pc1j2apiES9CGRzsl7RjGRbdtgQqa3C4TJIJPT8dw7exVhNZBfLlrDtilt5vu6/+WtAIDD5ne49oYUxziUzHg6XxUby2P12s4rF52kTjbA+FwHEhnbhs1UovFHeuI5YrCtt1JRIH/yPyIb5nvlZAsq/x2wpWQCIu3TWLhNb42gORJAJqfjebOvE1BcbFEFslKbxDpvWurzd8bCtoWk183mq4kIR3hr94jshRJz6clWi3TRUlEXmVOlXNRJXOlvAVS7XNTqySYWLWONU5qm2dxLQtRS/663JeIqyAD578PrXUfhZEtmcrZG4yPjKBelyGb1TpKLvgKfScDvs7lxalouGrPKW8ZDNqfLhU4t0kUTVQg+SGVzyInas3Eie8TV2aZgo+IWfCEEsEqdbBFH/7N6KhdVXXUiXbQc4dYtXbTU+1Ujod5X6/EepLrpvS5jlOEHZnCS185i5/2rkvPG6apyW3t0xgzxV9chE9cF2wYsd/hfzDLMoN8IECiW3jnRiD5oYtw6ckF+qShgrTN2DSflfdST4AMhso2xthOfUTXnyvWCdEVP0XJRimwkj4NnG2mYS2fm22xrjRiMEukcUpmcnKB5VaqnDnbTW5vQFPLbhBTVNaBpGvabZrjZnt64B4AhuhRLHlRFsLYSJyXOm5a66+H3aTZHTiMN1qJc9J3dI3JyaznZGqVc1PpuvN4pbRSkky1p78lWjd051cm2bYwm0io9LiKb+rNCoQeAi8jm8WKiKeSXTtyditiiLj4LNaAfoMgmEeO0WCAU+5664vWxOBTuyfE62cSCDqhW8IG9LYOTUU+DD6zjT2XLc7N56awj1jxFbGbqui7LRSu9H0dlTzbju1bHucGEVRGQqmI5dN4xCSebrSdb+U46NUhBNy2zW/uN+5WzxUcjo957vW6j4AXqfNvrUvJ5XUbI14adRs+0lMdpuM77UinznEKoawhfgYAKTdNkj7vNjr5s25R2OUJka4kYlTh1JbI5HGRHu/RjA6zrU5TB+n2aJ8Fl4nwbS2RzvtZkDT4ALFMIRTZCTJbNasMT17wHX/uHA2t9KHmoC/fBRFpxsnkVfGA9f58sm7UGbueiYnGfESLx9Ft7zOMrPliqx98WLW2yWqxcFLDvcFWjD1a1mNneBE0zBl/RG0vcfFRHYWcdp4vanGxTJF3USX5PtiqWi5oTz/7RtOwvUsoOr83JJnqyNVt/Vyj0AMgv26hGWUyXeXw7lH5idicby0XHIhKwB8S0Fln01YsDwyoXHV/wgSpG1cLJJsQIL51sQPl92RLm30XoZPME4dYVC6PBZEaWmlUqsskes6InmyN1Toh5SY9Fi2JEi/ZkG/85JRbbOd0quZVBPZNIZFM3K+qtXBSwz7e978lmbBJv2DGM/pG0LKf2SszLLxf1xsnW2hQsGFAhWgVt7rdENiOww7o/PfuOsdYRczHncUZqGHygOvS6m8NY1BN3fZxYZ4gy2OZIwJNEXzGXaB9jbVfMODHZEAIiy0UJUZjR1lTUkVUrAn6fFDMGEhnPnWzqYCfKZtUB0znhW2w62Z6VIlvxG6xNZCvVyebc9cgT2VQnW/1NdAoRCfrlrq7sZ2e+N3VXdKwbVi1RRdepWi4qnGxWuahIa6qGk81qyC6SskrpVaIKasLB1q38XaHQAyD/fVTjfcnwgyFrMluKk40im4UYJ0XFYbFFn21xWEMHhpUuOj4nm9q/rBrpotIxOlaqrQf3G/WeWqwvWyKdxcadwwV/B9DJ5hVOkVWUM0dD/opFBPH3I+n8clHAuhYmslw06jgmQCkXLTNdVIwxb5vlhEJkm7xOtvq7B8Vs5aLeimyzOqLwaYZI/E+/eg6DyQzmdcWwT2+zJ8/vvC95KbIVYnprfvjBTqWkErB6gYrvu76cbNZ7O3JBZ0HhTIjqW805pFdzulOW9GHN0j5cfNS8oo+LOM7FyRp8AABXnbgvfvmPh+O4fbtrfSg1gTMS0nCIwX0wkZYLey+svoBdpBILb3Xn1jnhEk62wTGSRQWxMpxs6g3S79PyjkGdtDXajoiz5534fMTirSUSqOsmwbZ00SkSfOBEvO+RVBapTE46AKqxs92qlLFtK9fJ1iycbNbPphUR2ZzXVDUWE12m2CJENl3XC/Zku++lrfj985sBUGRTcQosxT6TenGylduTLa0kL3qxA+9ELDqGU1nbAku8tihrLrcZt4qmaXKMF8KGG//0y+ew6qaH8drWwbzfJZku6inCkS82TEQ5sxetG6zSTOMcdpYR5Yts1f9OZXln0sXJVqZwO7fTmNts3GUIw8I1M6218mumXqh3J5ta2RH1OPUyHPBjRrshSv3p1e3QNOAb719aleCDWMhf0dxevTcWFdlMY4Gaui42M7viIZuAJoQh58Z+LcdgdU11VIF+bIBVdWKFJHlz7k5rjeCWc5dj5byOoo/Lc7JNYpHtwJmtOGx+p22smErU7+qVkAI0K26WEUcvL6+eGwD6zF0dNU3LeQN17lqN5aizl4uOvydbLOTPW1T1KgJBI/VkA9xENuO9Lp7WjDVL+/Dx1QtrcVglE6GTzXKyJTO2NMJqiI5C4NoxmMTeEeO1epvHFtlUQa3bJfhAXOtuBPw+m4hflXJR6WQzF5jZHDKKuCHEtEQ6i0/d+Sw+deezWLd9yHIUUWTLKxUs3pOtXoIPjO99MJkpKjA5SWdE6IH3AhtgXzg5yzxESXPQr3nmMg6XkDAqxLU3dwzl/U4IIhTZvKHZUS7qVegBYM1nRs0NUlXYAixBL5WduHLRJkdCNqD2ZCvvnBLBTsJ9uU06ryenk61YeX6tsPVkq0IZo+jLBgAXHjEXh84tLq6MB/W+VGmJsU0cK3K/c+vJJnqc9rU2Yb8+a73T6uJkC/q1qrQvKBV1TXVUgX5sgHW9q+WiE4nTFNJIFUhkfFBkIw2HWOT+5c2d0snmVT+scMAnFy5WuWjQ9nuVeNieQDrWYF2WyKZMDtx2s2xOtgYT2eZ0Wp+dplmTgYDfh1vOXY7Lj1tQq0MrCZuTbYoGH8SUBYpYlEVD/qqUm4trf7250A4HfCWV+4nFQHM4IMtGOqIhBHziWi8+iVWv62qUF0qHnimaOReeoq/P9oGkXHz+13Pv0smmkJeg1gBOtpamgDwHx1Mymsoa50ewSi7fUMAn3Q/OUmXZW6o5UrC3z3gJKwmjhRDn+kgqX4y00kU5pfUCuZFpjjt7zHOz3QuRTTjZ0lnouo6hlF3E3VOLclF5TN6UiwJWz66NjnLRSSWyxeu7XFTMl31adcTa+WbC6OyOKD538r6ePrc65+ipIPQAsN8bi1XQTHcT2ZTz9oDpVhie+L6DfuteUetNjjmdUSzqieOE/XqkYOiGWC+KjdqJFrmcn1OjVSCR0uE3SxoO4dy65aH18mdRjwYpTdMwtzOGjbuGsdBsmmkLPnDZ1Vw8rRlv7zYmUmO5mVQRrNTFnZpa6fb86qStHi37xZht7vYChlhTjdKnahL0++D3acjmdM9KlhsNEToynMpUPZJcCFwJ02XQ0xIu6ZzZd1oz/D4N+01vkT/z+TSctrQPr24dHLOPSnMkKJ0I1Qx0ECLbsGPhKX4uSmQB4DdrN0kHT2uJgv1kxlnWVazPSb2ki2qaho5YCNsHk9g1lCrqqFRJmU62arp8miNBJNJJF5Gt9F6IpSLuq8I95ETXdUVky2+gLMaDWi/yJguifMoo/896Wi6q9k5MZXMYMTdmwgEfkpmc5WTLlJ/uOV6sNFBvgg8Axcm2axjJTFaK6JOrJ5t1PtTj3FOIF03B/AoQL7jgiDnYNZzC5cfN9zxdXvSfHk5lKxZm7eWihY9TbDa+u2cUuq5D0zRZUtnbEsYByvxJ/b7FvaLWc+BwwI/7/+nYMb9r53FOdE80Z7loo1UgkdLhN0sajutO2x+z2qN48JVteGP7EOZ2RmXjWi/42UcPQ/9oWrodOoqUiwLA4r4W3P/yNgBj70hU2pNtLJGt0XZEVBdgo/Y0Cwd8GEllG+6z9wrpZEtm5YK8Wp9FXuJWCaWiADCzPYqH/s8qdDiSar/9oYPlZLIYNidbFSZEaq85IN+tI34u+qMAwBazjMOnAfEp6qJUyXOyFREeVSdbrUs1pMg2Dieb6MlWzdKclkgAOwaTecm21XDkhMZwso2ksrJ8uqiTjcEHnqBuBg4lMthtpt96WS4KGCm1w6Zrd1ZHFOu2D8nXkuWiEyKyWfcweWwVnlPzTJfTW7uG5bgdCvhKrmBoBLrjygZvHTvZvA49EMzvjuPmDx9clecGjHnBcCrrqZOt2KaS2OQZTmUxkMigtSlo9RJsiWDJDMvJpj5Ps3mv4NVFNAAAMW9JREFUqGXogaAUMdUpiE70uauej0F/fp9tMnngzJw0HD0tEVxzymJcc8pibN47iuZIwLOyFcBYPKgLiPYiwQcAsN80ywUzlrigNmItOV1UuXG5los2cE+2OarI1qBCgRDZvHJTNhpiV3A4lZH9m6olXDgnQ+NZ6M/ujLr+vJRJmfp+qjEhE+KhcOuIxL1I0IdEOoehZAa5nI7tipNNPR4vx79GxTnBL7aYmNsZQ19rBDPbm+Cv8WcnFt2FkjzdmAgBQpzzgwXKRT0V2UyxsJCTba/y2Qy7iWxmaZ+zLx8pD79Pky6awURGCsBelIsG/UZLjnRWx2jaajEw2xTZ9gwb37UsF52AHk/SyWaWi+q6Ll3Z5Tq0xP1m51AK68z2BtNaIg3n1i9GS1MAIb8PqWyupinNhRBicbVEtmrT0hTE5v6EB042pVy0qfA13BTyoyMWwu7hFDbvHUVrk+Xg722NYFFvHAGfhkxOt33fYl3TKE5i54Z+LXuyxcONV8FDSofyKWloprc1Vd2JoPZkK+RkE4zHyVZq02i1J5ub2yseDuBjqxbgoiPnorPBElzaokF5g27U4IAjF3ShtyWMBd2xsR88CRHnfCKdk4vhak1amsMBqPORHg9L1oq+rvJ+qvHerJ5sZjNwU0gQO8u6bjTHFxPeRT3xvL+d6jgn+MUWx5GgHw9ftQp3/eMR1T6sMRHXjzNlsRjpCRAgxHk+mHA62Yxz0MtrT7iFRK85J/0jlsg2ynLRCSGufP/rtxsiUbE+R+NBfE8jqaws/51lJjXuMp1syQnsydbkKBcdSmZkqm6542tLJCidf399czcAb0us6wFN03DBEXNwzKIuLOyOj/0HE4xaLtqIiLYGIsW0XJpKdLIBVsmo6MumbqqEA37ZWkNdv4g1WKOImU2ODf2JFtnU+1StnfSkujTmqpaQCcTeky1/wje7I4qmoB+j6ezYPdmU35faR6mphATLq09eXNJz1RuapmF2ZxR/3zzQsOWi3z33YGRzelUa/TcCUeV7217ltCafT0NzOCAbck9UE2khBIcDvrJ79BRD7Ao7nWxt0aB0sw2MpqWT7ayDZ+Anf96IHYNJimwmEUdZ11ifSzW+x3IQY/rwOEQ24WQLBqq3A97iKGEWiHOw1FLtUhjLydY/hpPNShedmmNwNRB9KN/dO4IX3+0HABw2r9OT524K+jGYyGA0lcWQUi4KWAEgO4cMsW0i2jAIF/2oeW6J+0tIaepeDnO7Ytg1nMJTG3YBmFyhB4IvnrZ/rQ+hIJb405hL3atPXowVr2zD8fv1VPQ86jk8lhN/VnsUL707gPU7hnD8fr1SZBO9BK85ZTHufWkLjt2nW/6NmO81ipjpDMqbaKFrrOokMnngjISQMRirJ5vfp2Efs2S01HRRn2YvHS1GZJIPyCJhtFHLRTVNm7ICG2AsRERCooxED1dv0qJOEifKGSCu62r17ijUky0WCthKSXcMGgvPaS0RnHnQdNvfTnWcpYL12CPIjVgZTjZRSlftnmyAm5PN+3JRy8lWSGSz+tWNFk0XbYxFXiMgxrw/vrIdOR2Y3x2ztaaohKiSMCrEZafI9sKmvQBg6wNVLZxONuGcbGkKVlTKJeY2L2wyRMrJFHrQCBy5sBOr9u3GxUfOrfWhlMWBM1vxT+/dp+JxbTxOtmWz2gAAf9u4B4l0FnvMa0HMtY7dpxs3nL3UthZpNJHN2ZOtluWijdbih4wPfruEjMFY6aIA8PFVC/DLv72DVfsW33Ga1hqB36dhdke05D5KpTjZGhkxuZ6M720qoGkaoiE/BhIZbO0XCZzV+y4N0ckoZejx0E1TDLHTWa0UKiGkjaSySGdzMl00GvKjpSmI7YNGyqMQOHpawjh60Xxs3DWM8w6bU5VjajTygg8aRGSLl+FkS2erny7aUrAnm/fpotLJlinByebyOQmRjU427xDn5R9fMUKdjlzgjYsNsK7VoWRGBgzMajfmAXtG0tjSP4ptA0n4NGDJjJaCz+MVVrqocW6J863SPmNzzYRREdoxGZ1s9UxLJIifXLyy1odRc2w92caooFk5rwMA8LeNu+V8IxzwFb2fivlRpEHKRZ3pohPtZLOXi3LdM5nht0vIGDSF/LJkq1B/kJMOmIaTDpg25nN1N4fx248diY4S+7EB9l2XyehkO3H/Xvzm6U1YtW/32A8mdUnMLOEUk7J4NUU2ZeEzWZxs6kRrYDQtU+5i4YAU9gZGM9g+KAQOI5zl3y88tCrH04iopfyhgK9h+nMJB+9Q0r0fmRvpCQk+sM47QSKdlQJEj5dONnPzqhSRTYgyKkn2ZPMcIbLuNZ0sRy3o8uy5xSJ395DlUJzZYfSdyuZ0PPb6TgDAPr3Nea6TaiCOJ53Vkc7mpKO4UqF+bpe9T2uvR05AQsZDqemigOEcbQr6sXckjcfeMK7Daa3FAzvEc0YbZPyN1jj4oCk0uauTiAW/XUJKoCMawub+hCeLGmHHLhVb8EGD7BSNhxVzOvD0F09gwk4DIxYpsly0ijuDakN7Lxf6xRCOuZ7m6oh6Ab8P8XAAQ8kMBhKZPCcbYPQoEgveah1HI+PzaQgHfEhmcmUnAtYC0YtyXD3ZJqBcVKaLJi2Ba7vpYosEfZ66OsV9NVVAZNs7MoaTLUMnm9eoC09NAw6f752TTSwyRd81v9lrszkcwGAygz+9uh3A+OdK5aIKeSMpS0iuWGRzJFqzXJTUgvGIbEG/DyvmtOPxdTvx++c3Axi7/+aapX1Y+9YefPDQWZUf7ATgbE1TrQqFQjQx+GDKwBkJISUgouvdgg+qTWSSl4sCoMDW4IjzUiyaqlouak4Sm4L+kvsaVsoJ+/fgy6fvX9WAETH57R9NWz3ZwlZPtnVmwl9ojNKNqYwYK1srLPOaSMopFxW9y6paLtqU72TbNmj1Y/NyzBYiWzJTIF1UcbKNFOnJ5uzLR8pHHcP372uRcyAvEItMcb+IhfzQNA0dceM1Hl9nOGiWzmzz7DWLEQpYfUVHU1kMiHLRChfAczrtTjaKbKQWiM2HoF/LK5V0Qy0ZBcZ2YC7ojuOOS1bi0LkdFR7pxODsHTfRm3Lqd1DNqg9SeyiyEVICoi/bRMTJO2ESDal3xKRBN1rPVHVnUAhMvS3hCRNnwwE/LjpqHuZ3x6v2GlZ5XloKLoaTzfj5+h2GyNbTPHHvu9EQi4lGCT0Aygs+SMt00So62cL5Pdlk6IHHvRDDYzjZxhbZjL8LN0i5UiMQV8JrjlroXakoYKU97jTLRcU1IEKmxLVw0Kzqhx5Yx2Q6SlMZKbJVupnR2hS0BWf1TFB7A0JUmuTmU2lBHkJkE/O53knmnPf5tJq6ydiTbepAkY2QEhCpWrVwkKj1+5PVyUYaG6f9Pl7NdFFzQjRRpaIThauTLZTvZGOpaGEiymKiUZBOtlQ55aLVE1uFUKmmi4rQA6/FAsvJVp7IlmS5qOeoi78jPAw9AIAm83uSTjYhsim9aiNBH/bpbfb0dYshE089LBcFrITRtmiQPQNJTYg7ROyxWDarzeaS9ipVuJ4Q13vAp034fSMc8EFonRNVjUFqA79dQkrgU+9ZhHldMZx+0PQJf221BIYiG6lHoo7zspq7c9NajQX+7I7oGI9sLISoMZBQnGxhP3K68fMt/VapHnFHjJWN1JNNlIsMlxF8UM32BdJZmVB7slXnHBTBB6U52dzSRcXnQRHDK8T3H/BpWOlxGZjogbZj0CoXBewiwJLprVXtOejE2ChK2nqyVZouCgDzOmN49u29LBUlNWPFnHZcctS8khOCI0E/DprVir9t3ANgcs45omE/dg0b49xEVwZomuGkG0ll2ZNtksMVOyElMLsziitWL6zJa6sNvVkuSuqR+ASmNZ1x0AykMjkcv19v1V6jFhRysvkcE0A62QojdqQbyclmpYvWW/CBENlUJ5sQ2arlZCutJ1sup8Pns64L2ZONTjbPmNFmpH2unNfh+eZeRPZkc5SLxi2R7aAJCj0QiIqBkVRGnvPeONmMvmyTUaggjUHA78O1p+8/rr9ZOa9jUots4r5bK5ErGjJENq7pJjeckRDSABw2vxN9rZFJ594hk4Oos1y0iiJbU8iP84+Yi+nmInCyINxXA6OOdFHHJHCylcl6SbiRy0XHFXxgNMupbvCB8RmmMjkpYolyUe+dbKWniwJWmigA6Louy0xZjucdh8/vxI8vOgT/es4yz59b9EPaPVy4XHTpzInrxwZY5WNeposCwHv378WMtiasWdpX8XMRMlGsnGe53iajC1OI6rXqiVbr1ycTA79dQhqAn1x0KLK6PqHlE4SUSixU27SmyYAoTeofTWMkaaWL5kT3YRM62QojFu9elHlNFLGwtbjP5nT4fWOXrmzpHwUAhKvo3IqHAtA0o/n1YCKDSNAvnWw9Exh8kMvptpJVwCitFcK+2seNIpt3+Hwa3rO4Om5hIWjlzKHNrVx02YQ72YzzyV4uWvl9bP/pLXjimvdU/DyETCQr5rSjORKA36dNysAOy8lWm7nCPx4zH4+v24lls9tq8vpkYmicmSghUxifT4MPTBQk9Ynaky3o16raK2qy0qr2ZFOcbHnlopNwV9krhNN3QRVTYL1GLcUbTmXGFKhf3zaI/35+MwBg9b49VTsun09DPBzAYCKDwUQa3c3hCSgXzRfZBpMZmXIX8vuQyuYwqoQfCJcdAEQ47jQEEcemjLgGOs1y0bZocMJd+zEZfJCxRDZuFpEpSjwcwN0fOxKaNjk3L4TQX6tr/Pwj5uL8I+bW5LXJxEGRjRBCSEWoTrZ4eOIbyU4GrHJRpSdbOJDnXqWTrTD/fOp+eN+KmThogkvNKiEc8CHg05DJ6RhOji2y3fCHV5DTgZMPmIZDPG5I76QlEsRgwuhRNZTMYNg8L70Weos52frNUtGmoB+xsB87h1K2JFYhzAV8GgJ0ejcEUceiXZRMHzK3A8tmteHEA3on/B7SpJSLDnhYLkpIo7JoAtN9J5qoLNfkNU6qB0U2QgghFaH2ZOOkpTykk21USRcN+WUJpGAyNiH2iqaQf8LLzCpF0zTEwgH0K997IR5/Yyceem0HAj4NV5+yuOrHJkppBhNp6WKLhwOeN2su5mRT+2MZj0tJERqwnGx0zzYOTQ4nm7h/tESC+N0VR9XikOSie/dISp6HrVHeywiZjIjqC/ZEI9WEZxchhJCKiCnpopy0lIfo/6Mu8mKhgK2cMOjX0M6F36QjbopsQ0n3dE0AyOZ0fO0PrwAAPnL4HMzrilX9uNQwDr/P7MdWhf484YAxfrg62UyRrU0570cUJ1sizdCDRsO5cRAL1/67E0Lftn7jPNc0oy8hIWTysU+P0VJi8bTJ69YjtYd3EEIIIRWhOtkYSV4ewsm2rT8pfxYN+xEK+NAU9GM0nUV3PMxS3EmIEBmKOdm+9cBreHnLAJojAXzq+EUTclyqky2dNcSsXo9DDwArJTWZyRcZ946mABgidMY8BjcnG0W2xsHpZKuHe4Zwsm0xRbaWSBC+EkJICCGNx4VHzsXx+/ViZvvkSqkn9UXt72yEEEIaGruTjU6rchCJmKms1WNKiA+tTUGMprMMPZikCLfiUAGR7d4Xt+CWh9YDAK4/a4kthbGaCHflYCKDPWZvNK9DDwArJXWsclEReGB3smVtz0HqH6eTLVpHIpsoi2Y/NkImL5qmYdYEh6uQqQdnJYQQQipCdbK1sFy0LJyLumjIL11rQoBj6MHkRDh53Jxsr20dxP/59fMAgMuOmYczl82YsOMSTraBRBqPvbEDALDvtBbPX0eIyUJgVlFFtqjSnF6QMIW5SIBOtkYhmudkq/1312Tew4STjSIbIYSQSuBqiBBCSEXEbMEHvK2UQ1PQL1MmAdh6sYneWNXoh0Vqj7h+3ES2637/EkZSWRy5oBNXn1z9sAMVcS2/uXMYT765CwBw2tI+z18nbDqbkunC6aJtarmo0rsuKctFuWfcKDhLe2N10PtMJJ4KN6XY2CCEEELKgbMSQgghFaGWi8YpspWFpmk294Tq9hBle9Xoh0Vqj7hm3IIP3t41AgD47En7IuCf2CmbEHcf+Ps25HTgoFltVSmxKdnJZgrPbk62MJ1sDYOzJ1usDspFneELdLIRQgipBIpshBBCKkJdJLEnW/m0KAs79TNdMacdfp+GQ+Z21OKwSJUpVi46bApKtSjDFteyEL9Or4KLDQBCAbMnWzpfZJQiWzQo3UZuPdnoZGscnOWi9SCyNTncdBTZCCGEVELt72yEEEIamnDAB58G5HSWi1ZCSwEn2xWrF+Lio+baet+RyYNw0bgFHwhBqRbfvbNk7tQDqyOyhQOFnWx7R4o72ZJMF204nP3znC6yWuAU/lq4WUQIIaQCuPVHCCGkIjRNk3114nXgSmhUVLeSs08RBbbJS6F00VQmh3TW7NFXg+9fdaUeOrcd09uaqvI6QmRLZnLQdd32O7fgg2Gbk80MPqDI1jD4fJrNeVgPPdmciactdLIRQgipAIpshBBCKiZquhHoACgfm5ONYuWUoVC5qFoW6exjNRGortTTlk6v2uuIfmq6Dhn8IVBFtphIF1V617FctDERopam5bvIaoGzZJXlooQQQiqBsxJCCCEVM63VcLlUy+0yFVAXdrE6WHiSiUE4eZxONtGPLeT3yb5lE0l7NAQA8GnAKQdOq9rrqO9NpDsK7E42s1w0rQYfGP/N4IPGQohssVAAmqbV+GhcykUpshFCCKkAbpUTQgipmG+fswzrtw9h32nNtT6UhkV1AbI8dOoQK+RkM/8drVHPqrmdUVx+3AL0tUbQU8VkW1VkS2VyQNj470w2J4XHtmhICiEjyueUNMtFw3SyNRTCmVkPLjYg3ylKJxshhJBK4CyeEEJIxczrimFeV6zWh9HQ2JxsddAMnEwMVrmoPV1TONlq1bNK0zRcc8riqr+O36ch4NOQyemGyGYykLDEtJZIwDX4QDjZnM30SX0jRK166eEZDVJkI4QQ4h3c+iOEEELqADXNkU62qUOhdFErWXTyC0ghGX5gCWh7R1IADCEm4PdZTjYGHzQ80aAxvjl7odWKgKMkmyIbIYSQSqDIRgghhNQBdLJNTaSTLeUsFzUEp6kQgiESRlUnm9qPDYAisjH4oNGJ1Fm5KGA/FjXpmRBCCBkvnJUQQgghdQB7sk1NCvVkE6LbVAjBsJxsxUQ2l3JROtkakiZTFK2XclHAXjLK4ANCCCGVQJGNEEIIqQOYLjo1ESJbOqvbyiWFmDQVBFeRDlpMZIsp5aK6rpuPp5OtERHndD25NEWfuFjIj6Cf5xMhhJDy4V2EEEIIqQNU90Q9LT5JdVEFVTX8QDjbpkLpsFtPtq39CQCWyCZEkJxuiXEiXZTBB42FcB7G6+jcFmI3XWyEEEIqhSIbIYQQUgfQyTY1Cfh9aDJFB7VkdGo52ew92XI5Hb98+h0AwMp5HQDsn4P4bES6aJhOtoai2ex51hypH0FLXIMMPSCEEFIpk3/mRgghhDQAzRGmi05VYuEARtNZDCYskW0q9mQTItufXt2ON3cMozkSwAcPnQUA8Ps0hAM+JDM5DCcz6IiFrOADOtkaivevmIl3947iAytm1vpQJCL4gE42QgghlcKtP0IIIaQOCPp96IqHoWlAVzxU68MhE4gom1MTRqdSumjI7IE1aopmP3jsTQDAeYfNsTXHFyV94nEi+CDM4IOGYp/eZtxy7nIs6m2u9aFIxMZGSx256wghhDQmk3/mRgghhDQI3/vIcmwfTKKnJVLrQyETiBCPhpJT08nW12qc7//v3leRSGfx1IbdCPo1XHTkXNvjnGW10snGclFSIcLJxnJRQgghldIQs5KNGzfi0ksvxbx589DU1IQFCxbguuuuQyqVsj3u7bffxumnn45YLIauri586lOfynsMIYQQUq8cMrcDpx7YV+vDIBOMENlsPdmmkJPtsyftiwXdMWzpT+Dq374IADjjoBmY1moXm0UIxKjoySZFtskvRJLqQpGNEEKIVzTEzO3VV19FLpfD97//fSxcuBAvvfQSLrvsMgwPD+Omm24CAGSzWaxZswbd3d14/PHHsWvXLlx44YXQdR0333xzjd8BIYQQQog7cReRbSo52Wa2R3H3x47C5T9bi7+8uQsAcNmx8/Ie12SW9A2bIptIGaXIRirl+P168eCr23HCfj21PhRCCCENTkOIbCeffDJOPvlk+e/58+fjtddew2233SZFtvvvvx8vv/wy3nnnHUyfPh0A8M1vfhMXXXQRvvrVr6KlpaUmx04IIYQQUgyrXDQrfzaV0kUBoDUaxB2XrMSPHt+A9mgQi6flz9uE4DiSykDXdSmyiXRSQsrl2H268fjV76n1YRBCCJkENOzMrb+/Hx0dHfLff/nLX7BkyRIpsAHASSedhGQyibVr12L16tWuz5NMJpFMJuW/BwYGqnfQhBBCCCEOZPCB6mQz/1uUSE4FQgEfPrZqQcHfR6XIlpUCG0AnGyGEEELqh4bc+lu/fj1uvvlmXH755fJnW7duRW9vr+1x7e3tCIVC2Lp1a8HnuuGGG9Da2ir/N2vWrKodNyGEEEKIk1jIpSfbFHOylUJU+ZxEPzYAiNDJRgghhJA6oaazki9/+cvQNK3o/55++mnb32zevBknn3wyPvCBD+CjH/2o7XeapuW9hq7rrj8XfP7zn0d/f7/83zvvvOPNmyOEEEIIKQG3dNGR1NRzso2FGnyQSBtOtoBPQ8BPkY0QQggh9UFNt0c/8YlP4EMf+lDRx8ydO1f+9+bNm7F69WocccQR+MEPfmB73LRp0/DXv/7V9rM9e/YgnU7nOdxUwuEwwuHw+A+eEEIIIcQDXIMPzP5sMTrZJE1BK/iAyaKEEEIIqUdqOnPr6upCV1dXSY999913sXr1aqxYsQK33347fD77ruURRxyBr371q9iyZQv6+voAGGEI4XAYK1as8PzYCSGEEEK8wBl8kM3pGE2LclGKSALLyZZBIiNENrrYCCGEEFI/NMT26ObNm7Fq1SrMnj0bN910E3bs2CF/N23aNADAiSeeiP333x/nn38+brzxRuzevRuf/exncdlllzFZlBBCCCF1Szxid7KNKv3GhABHgCZTcBxOZZFMi2RRipCEEEIIqR8aYuZ2//33Y926dVi3bh1mzpxp+52u6wAAv9+P//mf/8HHP/5xHHXUUWhqasK5556Lm266qRaHTAghhBBSEiJdVPRkGzH/36cBYTb1l4jS2VGlXDRMJxshhBBC6oiGENkuuugiXHTRRWM+bvbs2bjnnnuqf0CEEEIIIR7hTBcdTln92IqFN001LCdbBomM4WSL0MlGCCGEkDqC23+EEEIIITXEmS4qxLYok0VtCDFyxBZ8wKksIYQQQuoHzkwIIYQQQmpIc8Quso2kmCzqhgiBGEllmC5KCCGEkLqEIhshhBBCSA3pjIcBGOLacDKD4RSdbG5YIpsVfECRjRBCCCH1BEU2QgghhJAaEg8HpIC0fTCJkaTh0orSyWZDfB5DiQwSGTP4gMEQhBBCCKkjODMhhBBCCKkxPc2Gm237QEI62WIhurRU2qJBAIYQ+Z0H3wBAJxshhBBC6guKbIQQQgghNaanJQIA2DaYxIgMPqCTTWVmexOuOWUxgn4NO4dSABh8QAghhJD6gjMTQgghhJAaY3eyieADurRUNE3D5cctwH9/8mgsmdECAJjZHq3xURFCCCGEWHCLlBBCCCGkxvSaTrbtg0kE/RoA9mQrxOJpLfjPjx+FV7YM4IDprbU+HEIIIYQQCZ1shBBCCCE1RnWyjQgnG9NFCxL0+7B0Zhv8Pq3Wh0IIIYQQIuEWKSGEEEJIjRFOtm0DSYQDhrhGJxshhBBCSGNBJxshhBBCSI2RTrZBposSQgghhDQqFNkIIYQQQmqMSBfdPpCU5aJMFyWEEEIIaSwoshFCCCGE1JieFsPJNpjMYOdQEgAQY7koIYQQQkhDQZGNEEIIIaTGNIcDaAoa5aEbdg4DAKIMPiCEEEIIaSgoshFCCCGE1BhN0yw3W0L0ZKOTjRBCCCGkkaDIRgghhBBSB/Q2R2z/jjL4gBBCCCGkoaDIRgghhBBSB3SbTjZBjMEHhBBCCCENBUU2QgghhJA6gE42QgghhJDGhiIbIYQQQkgd0ONwslFkI4QQQghpLCiyEUIIIYTUAT3NTpGN5aKEEEIIIY0ERTZCCCGEkDqgt8UqF40EffD7tBoeDSGEEEIIGS8U2QghhBBC6gDVyRaji40QQgghpOGgyEYIIYQQUgf0KE62aJj92AghhBBCGg2KbIQQQgghdUBLJIBwwJia0clGCCGEENJ4UGQjhBBCCKkDNE2TfdmYLEoIIYQQ0nhQZCOEEEIIqRNEX7ZYmE42QgghhJBGgyIbIYQQQkidQCcbIYQQQkjjQpGNEEIIIaRO6BZONvZkI4QQQghpOCiyEUIIIYTUCUtmtAIA5nfHanwkhBBCCCFkvHCblBBCCCGkTnjf8hk4aGYr5nfHa30ohBBCCCFknFBkI4QQQgipEzRNw6Le5lofBiGEEEIIKQOWixJCCCGEEEIIIYQQUiEU2QghhBBCCCGEEEIIqRCKbIQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKCdT6AOoNXdcBAAMDAzU+EkIIIYQQQgghhBBSS4Q+JPSiYlBkczA4OAgAmDVrVo2PhBBCCCGEEEIIIYTUA4ODg2htbS36GE0vRYqbQuRyOWzevBnNzc3QNK3Wh0MIKcDAwABmzZqFd955By0tLbU+HEJICfC6JaTx4HVLSGPBa5YQ79F1HYODg5g+fTp8vuJd1+hkc+Dz+TBz5sxaHwYhpERaWlo4gSCkweB1S0jjweuWkMaC1ywh3jKWg03A4ANCCCGEEEIIIYQQQiqEIhshhBBCCCGEEEIIIRVCkY0Q0pCEw2Fcd911CIfDtT4UQkiJ8LolpPHgdUtIY8FrlpDawuADQgghhBBCCCGEEEIqhE42QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKochGCCGEEEIIIYQQQkiFUGQjhNSEW2+9FfPmzUMkEsGKFSvw2GOPFX38z3/+cxx00EGIRqPo6+vDxRdfjF27dsnf//CHP8QxxxyD9vZ2tLe344QTTsBTTz1le45MJoMvfvGLmDdvHpqamjB//nx85StfQS6Xq8p7JGSy4fV1e/fdd+OQQw5BW1sbYrEYli1bhp/+9KcVvy4hxKIW1+0NN9yAQw89FM3Nzejp6cFZZ52F1157rSrvj5DJRq3utYIbbrgBmqbh05/+tFdviZCphU4IIRPMXXfdpQeDQf2HP/yh/vLLL+tXXnmlHovF9Lfeesv18Y899pju8/n0f/u3f9PffPNN/bHHHtMPOOAA/ayzzpKPOffcc/VbbrlFf/bZZ/VXXnlFv/jii/XW1lZ906ZN8jHXX3+93tnZqd9zzz36hg0b9F//+td6PB7Xv/3tb1f9PRPS6FTjun3ooYf0u+++W3/55Zf1devW6d/+9rd1v9+v33fffWW/LiHEolbX7UknnaTffvvt+ksvvaQ/99xz+po1a/TZs2frQ0NDVX/PhDQytbpmBU899ZQ+d+5cfenSpfqVV15ZrbdJyKSGIhshZMJZuXKlfvnll9t+tnjxYv2aa65xffyNN96oz58/3/az73znO/rMmTMLvkYmk9Gbm5v1O+64Q/5szZo1+iWXXGJ73Nlnn61/5CMfGe9bIGTKMRHXra7r+sEHH6x/8YtfLPt1CSEWtbpunWzfvl0HoD/yyCMlHjkhU5NaXrODg4P6okWL9AceeEA/7rjjKLIRUiYsFyWETCipVApr167FiSeeaPv5iSeeiD//+c+uf3PkkUdi06ZN+MMf/gBd17Ft2zb85je/wZo1awq+zsjICNLpNDo6OuTPjj76aDz44IN4/fXXAQDPP/88Hn/8cZx66qkevDNCJi8Tcd3quo4HH3wQr732Go499tiyX5cQYlCr69aN/v5+ALDdkwkhdmp9zV5xxRVYs2YNTjjhBG/eECFTlECtD4AQMrXYuXMnstksent7bT/v7e3F1q1bXf/myCOPxM9//nOcc845SCQSyGQyOOOMM3DzzTcXfJ1rrrkGM2bMsE0Urr76avT392Px4sXw+/3IZrP46le/ig9/+MPevDlCJinVvG77+/sxY8YMJJNJ+P1+3HrrrXjve99b9usSQgxqdd060XUdn/nMZ3D00UdjyZIl3rw5QiYhtbxm77rrLjzzzDP429/+5v0bI2SKQScbIaQmaJpm+7eu63k/E7z88sv41Kc+hWuvvRZr167Ffffdhw0bNuDyyy93ffw3vvEN3Hnnnbj77rsRiUTkz3/5y1/iZz/7GX7xi1/gmWeewR133IGbbroJd9xxh3dvjJBJTDWu2+bmZjz33HP429/+hq9+9av4zGc+g4cffrjs1yWE2KnVdSv4xCc+gRdeeAF33nmnJ++HkMnORF+z77zzDq688kr87Gc/s82bCSHlQScbIWRC6erqgt/vz9uR2759e97OneCGG27AUUcdhauuugoAsHTpUsRiMRxzzDG4/vrr0dfXJx9700034Wtf+xr++Mc/YunSpbbnueqqq3DNNdfgQx/6EADgwAMPxFtvvYUbbrgBF154oZdvk5BJRTWvW5/Ph4ULFwIAli1bhldeeQU33HADVq1aVdbrEkIManXdqnzyk5/E73//ezz66KOYOXOmx++QkMlFra7ZtWvXYvv27VixYoV83mw2i0cffRTf/e53pfuNEFIadLIRQiaUUCiEFStW4IEHHrD9/IEHHsCRRx7p+jcjIyPw+ezDlbjZ67ouf3bjjTfiX/7lX3DffffhkEMOKfl5crlcWe+FkKlCNa9bJ7quI5lMlv26hBCDWl234t+f+MQncPfdd+NPf/oT5s2bV+7bIGTKUKtr9vjjj8eLL76I5557Tv7vkEMOwXnnnYfnnnuOAhsh42VCYxYIIUS34sl/9KMf6S+//LL+6U9/Wo/FYvrGjRt1Xdf1a665Rj///PPl42+//XY9EAjot956q75+/Xr98ccf1w855BB95cqV8jFf//rX9VAopP/mN7/Rt2zZIv83ODgoH3PhhRfqM2bM0O+55x59w4YN+t133613dXXpn/vc5ybuzRPSoFTjuv3a176m33///fr69ev1V155Rf/mN7+pBwIB/Yc//GHJr0sIKUytrtuPfexjemtrq/7www/b7skjIyMT9+YJaUBqdc06YbooIeVDkY0QUhNuueUWfc6cOXooFNKXL1+uP/LII/J3F154oX7cccfZHv+d73xH33///fWmpia9r69PP++88/RNmzbJ38+ZM0cHkPe/6667Tj5mYGBAv/LKK/XZs2frkUhEnz9/vv6FL3xBTyaT1X67hEwKvL5uv/CFL+gLFy7UI5GI3t7erh9xxBH6XXfdNa7XJYQUpxbXrdv9GIB+++23V/OtEjIpqNW9VoUiGyHlo+l6ER8pIYQQQgghhBBCCCFkTNiTjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgipKalUCgsXLsQTTzzh6fPec889OPjgg5HL5Tx9XkIIIYQQNyiyEUIIIYR4yEUXXQRN0/L+t27dulofWt3ygx/8AHPmzMFRRx0lf6ZpGn73u9/lPfaiiy7CWWedVdLznnbaadA0Db/4xS88OlJCCCGEkMJQZCOEEEII8ZiTTz4ZW7Zssf1v3rx5eY9LpVI1OLr64+abb8ZHP/rRqjz3xRdfjJtvvrkqz00IIYQQokKRjRBCCCHEY8LhMKZNm2b7n9/vx6pVq/CJT3wCn/nMZ9DV1YX3vve9AICXX34Zp556KuLxOHp7e3H++edj586d8vmGh4dxwQUXIB6Po6+vD9/85jexatUqfPrTn5aPcXN+tbW14Sc/+Yn897vvvotzzjkH7e3t6OzsxJlnnomNGzfK3wuX2E033YS+vj50dnbiiiuuQDqdlo9JJpP43Oc+h1mzZiEcDmPRokX40Y9+BF3XsXDhQtx00022Y3jppZfg8/mwfv1618/qmWeewbp167BmzZpxfsrAxo0bXV2Dq1atko8544wz8NRTT+HNN98c9/MTQgghhIwHimyEEEIIIRPIHXfcgUAggCeeeALf//73sWXLFhx33HFYtmwZnn76adx3333Ytm0bPvjBD8q/ueqqq/DQQw/hP//zP3H//ffj4Ycfxtq1a8f1uiMjI1i9ejXi8TgeffRRPP7444jH4zj55JNtjrqHHnoI69evx0MPPYQ77rgDP/nJT2xC3QUXXIC77roL3/nOd/DKK6/ge9/7HuLxODRNwyWXXILbb7/d9ro//vGPccwxx2DBggWux/Xoo49in332QUtLy7jeDwDMmjXL5hZ89tln0dnZiWOPPVY+Zs6cOejp6cFjjz027ucnhBBCCBkPgVofACGEEELIZOOee+5BPB6X/z7llFPw61//GgCwcOFCfOMb35C/u/baa7F8+XJ87Wtfkz/78Y9/jFmzZuH111/H9OnT8aMf/Qj/8R//IZ1vd9xxB2bOnDmuY7rrrrvg8/nw7//+79A0DQBw++23o62tDQ8//DBOPPFEAEB7ezu++93vwu/3Y/HixVizZg0efPBBXHbZZXj99dfxq1/9Cg888ABOOOEEAMD8+fPla1x88cW49tpr8dRTT2HlypVIp9P42c9+hhtvvLHgcW3cuBHTp093/d2HP/xh+P1+28+SyaR0vfn9fkybNg0AkEgkcNZZZ+GII47Al7/8ZdvfzJgxw+bYI4QQQgipBhTZCCGEEEI8ZvXq1bjtttvkv2OxmPzvQw45xPbYtWvX4qGHHrKJcoL169djdHQUqVQKRxxxhPx5R0cH9t1333Ed09q1a7Fu3To0Nzfbfp5IJGylnAcccIBN2Orr68OLL74IAHjuuefg9/tx3HHHub5GX18f1qxZgx//+MdYuXIl7rnnHiQSCXzgAx8oeFyjo6OIRCKuv/vXf/1XKeYJrr76amSz2bzHXnrppRgcHMQDDzwAn89erNHU1ISRkZGCx0AIIYQQ4gUU2QghhBBCPCYWi2HhwoUFf6eSy+Vw+umn4+tf/3reY/v6+vDGG2+U9JqapkHXddvP1F5quVwOK1aswM9//vO8v+3u7pb/HQwG8543l8sBMMSqsfjoRz+K888/H//6r/+K22+/Heeccw6i0WjBx3d1dUkRz8m0adPyPsfm5mbs3bvX9rPrr78e9913H5566qk8EREAdu/ebXuPhBBCCCHVgCIbIYQQQkgNWb58OX77299i7ty5CATyp2YLFy5EMBjEk08+idmzZwMA9uzZg9dff93mKOvu7saWLVvkv9944w2be2v58uX45S9/iZ6enrL6nwHAgQceiFwuh0ceeSTPYSY49dRTEYvFcNttt+Hee+/Fo48+WvQ5Dz74YNx2223QdV2WsY6H3/72t/jKV76Ce++917Xvm3DqHXzwweN+bkIIIYSQ8cDgA0IIIYSQGnLFFVdg9+7d+PCHPyxTMO+//35ccsklyGaziMfjuPTSS3HVVVfhwQcfxEsvvYSLLrooryTyPe95D7773e/imWeewdNPP43LL7/c5ko777zz0NXVhTPPPBOPPfYYNmzYgEceeQRXXnklNm3aVNKxzp07FxdeeCEuueQS/O53v8OGDRvw8MMP41e/+pV8jN/vx0UXXYTPf/7zWLhwoa3M1Y3Vq1djeHgYf//738fxqRm89NJLuOCCC3D11VfjgAMOwNatW7F161bs3r1bPubJJ59EOBwe8zgIIYQQQiqFIhshhBBCSA2ZPn06nnjiCWSzWZx00klYsmQJrrzySrS2tkoh7cYbb8Sxxx6LM844AyeccAKOPvporFixwvY83/zmNzFr1iwce+yxOPfcc/HZz37WVqYZjUbx6KOPYvbs2Tj77LOx33774ZJLLsHo6Oi4nG233XYb3v/+9+PjH/84Fi9ejMsuuwzDw8O2x1x66aVIpVK45JJLxny+zs5OnH322a5lrGPx9NNPY2RkBNdffz36+vrk/84++2z5mDvvvBPnnXde0ZJVQgghhBAv0HRn8w5CCCGEEFL3rFq1CsuWLcO3v/3tWh9KHk888QRWrVqFTZs2obe3d8zHv/jiizjhhBNcgxkqYceOHVi8eDGefvppzJs3z7PnJYQQQghxg042QgghhBDiCclkEuvWrcOXvvQlfPCDHyxJYAOMXm/f+MY3sHHjRk+PZ8OGDbj11lspsBFCCCFkQmDwASGEEEII8YQ777wTl156KZYtW4af/vSn4/rbCy+80PPjWblyJVauXOn58xJCCCGEuMFyUUIIIYQQQgghhBBCKoTlooQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUyP8PYZbTWVhfgxMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fg(freq), label='Best fit')\n", + "plt.axvline(1/period, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fg.mean[0], alpha=0.5, label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fg(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Phaseogram\n", + "\n", + "Let us now calculate the phaseogram and plot it with the pulse profile. \n", + "We do that with the functions `phaseogram`, `plot_profile` and `plot_phaseogram` from `stingray.pulse.search`" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABO4AAATCCAYAAAAKFqn+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWOElEQVR4nOzde7xVdZ0//tfmnMM1OALGLRG1jFSwDJRLlhkIZkTWmPW14atlXma8ljZlV238RTWTNmGlOY6WaDSWNloNCnlp/AJeUEqTMctLkCBWeBBBrvv3R+OejiBwzlmcs+A8n4/Hfuhe67Pf57M46+z9frz2ulSq1Wo1AAAAAECpdOnoCQAAAAAAWxLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2FVs3rw5Tz/9dHr37p1KpdLR0wEAAACgg1Sr1Tz//PMZMmRIunTZecfFCe520NNPP52hQ4d29DQAAAAAKIklS5Zkr7322mn1BXc7qHfv3kn+8gvp06dPB88GAAAAgI6yatWqDB06tJYX7SyCux300umxffr0EdwBAAAAsNMvp+bmFAAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJdWhwd+GFF6ZSqTR7DBo0KEmyYcOGfPKTn8zIkSPTq1evDBkyJP/3//7fPP30081qrFu3LmeddVb23HPP9OrVK1OnTs3SpUubjVm5cmWmTZuWxsbGNDY2Ztq0aXnuuefaazMBAFqtWq1mzfqNhTyq1WpHbw4AQKt01p6ovqMncNBBB2Xu3Lm153V1dUmSNWvW5IEHHsjnPve5vPGNb8zKlStz7rnnZurUqbn//vtr488999zccsstmTVrVvr375/zzjsvU6ZMycKFC2u1TjjhhCxdujSzZ89Okpx66qmZNm1abrnllnbcUgCAlqlWqznu8vlZ+NTKQuqNHtY3N5w+LpVKpZB6AADtoTP3RB0e3NXX19eOsvtrjY2NmTNnTrNlM2bMyGGHHZbf//732XvvvdPU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fv/I0EAGiFtRs2FdagJsn9T63M2g2b0rNrh7eAAAA7rDP3RB0+w8ceeyxDhgxJt27dMmbMmHzpS1/Kfvvtt9WxTU1NqVQq2WOPPZIkCxcuzIYNGzJp0qTamCFDhmTEiBGZN29eJk+enPnz56exsbEW2iXJ2LFj09jYmHnz5r1icLdu3bqsW7eu9nzVqlUFbC0AQOvc/9mJ6dm1rlWvXbN+U0ZfPHf7AwEASq6z9UQdGtyNGTMm3/ve9/L6178+zzzzTC6++OKMHz8+v/71r9O/f/9mY1988cV86lOfygknnJA+ffokSZYvX56uXbumb9++zcYOHDgwy5cvr40ZMGDAFj97wIABtTFbM3369Fx00UVt3UQAoB1Uq9Ws3bCpkFo9GupKedpEz651u8S3wgBAxymyJ0rK2Rd1tp6oQ7f0ne98Z+3/R44cmXHjxuW1r31tvvvd7+bjH/94bd2GDRvywQ9+MJs3b863vvWt7datVqvNdqyt7WQvH/NyF1xwQbM5rFq1KkOHDt3uzwYA2ldnvuYJAMBLiu6JEn1RGXToXWVfrlevXhk5cmQee+yx2rINGzbk+OOPzxNPPJE5c+bUjrZLkkGDBmX9+vVZubL5TrlixYoMHDiwNuaZZ57Z4mc9++yztTFb061bt/Tp06fZAwAon511zRMAgF1J0T1Roi8qg1IdW7hu3bosXrw4b33rW5P8b2j32GOP5Y477tji9NlRo0aloaEhc+bMyfHHH58kWbZsWR5++OF89atfTZKMGzcuTU1Nuffee3PYYYclSe655540NTVl/Pjx7bh1AMDO1tmueQIAsDVt6YkSfVGZdGhwd/755+fd73539t5776xYsSIXX3xxVq1alRNPPDEbN27McccdlwceeCA/+clPsmnTpto16fr165euXbumsbExJ598cs4777z0798//fr1y/nnn5+RI0fW7jJ7wAEH5Oijj84pp5ySK664Ikly6qmnZsqUKe4oCwC7mc52zRMAgK3RE+0+OvS3uHTp0vyf//N/8sc//jGvfvWrM3bs2CxYsCDDhg3Lk08+mZtvvjlJ8qY3vanZ6+644468/e1vT5Jceumlqa+vz/HHH5+1a9dmwoQJueaaa1JX97/J8nXXXZezzz67dvfZqVOn5rLLLmuXbQQAAACA1ujQ4G7WrFmvuG6fffZJtVrdbo3u3btnxowZmTFjxiuO6devX2bOnNmqOQIAAABARyjVzSkAAAAAgL8Q3AEAAABACQnuAAAAAKCEBHcAAAAAUELuDQwAsBNUq9Ws3bCpTTXWrG/b6wEAOpqeqG0EdwAABatWqznu8vlZ+NTKjp4KAECH0RO1nVNlAQAKtnbDpkIb1NHD+qZHQ11h9QAA2oOeqO0ccQcAsBPd/9mJ6dm1bQ1mj4a6VCqVgmYEAND+9EStI7gDANiJenatS8+uWi4AoHPTE7WOU2UBAAAAoIQEdwAAAABQQo5RBAA6TLVazdoNm9pUY836tr0eAKCj6Yl4JYI7AKBDVKvVHHf5/ELvNAYAsKvRE7EtTpUFADrE2g2bCm1QRw/rmx4NbbtTGQBAe9MTsS2OuAMAOtz9n52Ynl3b1mD2aKhLpVIpaEYAAO1PT8TLCe4AgA7Xs2tdenbVlgAAnZueiJdzqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoITcY7gg1Wo1azds2qGxPRrqUqlUdvKMAACK15KeZ3v0RAAA2ya4K8jaDZty4Odv3aGxo4f1zQ2nj9OoArDLKiK8WbO+mPCH9lOtVnPc5fOz8KmVhdTTEwGwq9MTsbMJ7jrA/U+tzNoNm9Kzq39+AHY9RYc37DrWbthU6O9dTwTArkxPRHvQJRWkR0NdHvni5G2OWbN+U0ZfPLedZgQAO0fR4c3oYX3To6GusHq0j/s/OzE9u7bu96YnAmB3oCeiPQjuClKpVHxbDECn05bw5iWuc9a+2nI6zl+/tmfXOr0PAPwPPdGuZ0d6ojL8TnRbALALKOsNAYQ3ux5HugGwK9MTUZQd6Yke+eLkDv+92qsAoOTcEIC26tFQl9HD+ub+Avchp/IA0N70RLRV0T1RexDcAUDJuSEAbVWpVHLD6eNKeYQCAOwoPRFt1dKeqAxfVNo7AWAX4oYAtJbr8QKwO9ET0Vq7Wk+068wUAHD9FACA6InoPLp09AQAAAAAgC0J7gAAAACghAR3AAAAAFBCHRrcXXjhhalUKs0egwYNqq2vVqu58MILM2TIkPTo0SNvf/vb8+tf/7pZjXXr1uWss87KnnvumV69emXq1KlZunRpszErV67MtGnT0tjYmMbGxkybNi3PPfdce2wiAAAAALRKhx9xd9BBB2XZsmW1x0MPPVRb99WvfjWXXHJJLrvsstx3330ZNGhQjjrqqDz//PO1Meeee25uuummzJo1K3fffXdWr16dKVOmZNOm/7217wknnJBFixZl9uzZmT17dhYtWpRp06a163YCAAAAQEt0+C1Y6uvrmx1l95JqtZqvf/3r+cxnPpP3ve99SZLvfve7GThwYK6//vqcdtppaWpqylVXXZVrr702EydOTJLMnDkzQ4cOzdy5czN58uQsXrw4s2fPzoIFCzJmzJgkyZVXXplx48bl0UcfzfDhw9tvYwEAAABgB3X4EXePPfZYhgwZkn333Tcf/OAH8/jjjydJnnjiiSxfvjyTJk2qje3WrVuOOOKIzJs3L0mycOHCbNiwodmYIUOGZMSIEbUx8+fPT2NjYy20S5KxY8emsbGxNmZr1q1bl1WrVjV7AAAAAEB76dDgbsyYMfne976XW2+9NVdeeWWWL1+e8ePH509/+lOWL1+eJBk4cGCz1wwcOLC2bvny5enatWv69u27zTEDBgzY4mcPGDCgNmZrpk+fXrsmXmNjY4YOHdqmbQUAAACAlujQ4O6d73xn/uZv/iYjR47MxIkT89Of/jTJX06JfUmlUmn2mmq1usWyl3v5mK2N316dCy64IE1NTbXHkiVLdmibAAAAAKAIHX6q7F/r1atXRo4cmccee6x23buXHxW3YsWK2lF4gwYNyvr167Ny5cptjnnmmWe2+FnPPvvsFkfz/bVu3bqlT58+zR4AAAAA0F5KFdytW7cuixcvzuDBg7Pvvvtm0KBBmTNnTm39+vXrc9ddd2X8+PFJklGjRqWhoaHZmGXLluXhhx+ujRk3blyamppy77331sbcc889aWpqqo0BAAAAgLLp0LvKnn/++Xn3u9+dvffeOytWrMjFF1+cVatW5cQTT0ylUsm5556bL33pS9l///2z//7750tf+lJ69uyZE044IUnS2NiYk08+Oeedd1769++ffv365fzzz6+depskBxxwQI4++uiccsopueKKK5Ikp556aqZMmeKOsgAAAACUVocGd0uXLs3/+T//J3/84x/z6le/OmPHjs2CBQsybNiwJMk//MM/ZO3atfn7v//7rFy5MmPGjMltt92W3r1712pceumlqa+vz/HHH5+1a9dmwoQJueaaa1JXV1cbc9111+Xss8+u3X126tSpueyyy9p3YwEAAACgBTo0uJs1a9Y211cqlVx44YW58MILX3FM9+7dM2PGjMyYMeMVx/Tr1y8zZ85s7TQBAAAAoN2V6hp3AAAAAMBfCO4AAAAAoIQEdwAAAABQQh16jbvObM36TW2u0aOhLpVKpYDZAAB0DD0RAMArE9x1kNEXz217jWF9c8Pp4zSqALRYW8KSIoIWeImeCICOpCei7AR37ahHQ11GD+ub+59aWUi9+59ambUbNqVnV79GAFqmiLAEWktPBEBZ6IkoO91NO6pUKrnh9HFZu6Ftqfya9Zu8uQDQYkWHJaOH9U2PhrpCatG56IkA6Eh6InYlgrt2VqlUfBsMQIcoKix5ieuK0RZ6IgA6ip6IXYluCQA6EWEJAICeiF1Hl46eAAAAAACwJcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBJyCxUAgJdZs35Th74eAKAs2tLX6InaTnAHAPAyoy+e29FTAAAoBX1Rx3KqLABAkh4NdRk9rG+hNUcP65seDXWF1gQA2NmK7ov0RK3niDsAgCSVSiU3nD4uazcUd0pHj4a6VCqVwuoBALSHovsiPVHrCe4AAP5HpVJJz67aIwAAfVE5OFUWAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp4AAJRNtVrN2g2bCqnVo6EulUqlkFoAAO2pyJ4o0RdBawjuAOCvVKvVHHf5/Cx8amUh9UYP65sbTh+nSQUAdilF90SJvghaw6myAPBX1m7YVGiDev9TKwv9phoAoD0U3RMl+iJoDUfcAcAruP+zE9Oza12rXrtm/aaMvnhuwTMCAGh/bemJEn0RtIXgDgBeQc+udenZ1UclANC56Ymg4zhVFgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJlSa4mz59eiqVSs4999zastWrV+fMM8/MXnvtlR49euSAAw7It7/97WavW7duXc4666zsueee6dWrV6ZOnZqlS5c2G7Ny5cpMmzYtjY2NaWxszLRp0/Lcc8+1w1YBAAAAQOuU4rYw9913X77zne/k4IMPbrb8Yx/7WO64447MnDkz++yzT2677bb8/d//fYYMGZL3vOc9SZJzzz03t9xyS2bNmpX+/fvnvPPOy5QpU7Jw4cLU1f3ldtUnnHBCli5dmtmzZydJTj311EybNi233HJL+24oAJ3SmvWbOvT1AABl0Za+Rk9EZ9Thwd3q1avzoQ99KFdeeWUuvvjiZuvmz5+fE088MW9/+9uT/CVwu+KKK3L//ffnPe95T5qamnLVVVfl2muvzcSJE5MkM2fOzNChQzN37txMnjw5ixcvzuzZs7NgwYKMGTMmSXLllVdm3LhxefTRRzN8+PB23V4AOp/RF8/t6CkAAJSCvghapsNPlT3jjDPyrne9qxa8/bXDDz88N998c/7whz+kWq3mjjvuyG9+85tMnjw5SbJw4cJs2LAhkyZNqr1myJAhGTFiRObNm5fkL+FfY2NjLbRLkrFjx6axsbE2ZmvWrVuXVatWNXsAwI7q0VCX0cP6Flpz9LC+6dFQV2hNAICdrei+SE9EZ9KhR9zNmjUrDzzwQO67776trv/GN76RU045JXvttVfq6+vTpUuX/Ou//msOP/zwJMny5cvTtWvX9O3b/A1g4MCBWb58eW3MgAEDtqg9YMCA2pitmT59ei666KLWbhoAnVylUskNp4/L2g3FndLRo6EulUqlsHoAAO2h6L5IT0Rn0mHB3ZIlS3LOOefktttuS/fu3bc65hvf+EYWLFiQm2++OcOGDcsvfvGL/P3f/30GDx681SP0XlKtVpv9EW/tD/rlY17uggsuyMc//vHa81WrVmXo0KE7smkAkOQvnz89u3b4VSkAADqcvghap8P+ahYuXJgVK1Zk1KhRtWWbNm3KL37xi1x22WVpamrKpz/96dx0001517velSQ5+OCDs2jRovzzP/9zJk6cmEGDBmX9+vVZuXJls6PuVqxYkfHjxydJBg0alGeeeWaLn//ss89m4MCBrzi/bt26pVu3bkVtLgAAAAC0SKuucffAAw/koYceqj3/j//4jxx77LH59Kc/nfXr1+9QjQkTJuShhx7KokWLao/Ro0fnQx/6UBYtWpRNmzZlw4YN6dKl+RTr6uqyefPmJMmoUaPS0NCQOXPm1NYvW7YsDz/8cC24GzduXJqamnLvvffWxtxzzz1pamqqjQEAAACAsmnVEXennXZaPvWpT2XkyJF5/PHH88EPfjDvfe97c8MNN2TNmjX5+te/vt0avXv3zogRI5ot69WrV/r3719bfsQRR+QTn/hEevTokWHDhuWuu+7K9773vVxyySVJksbGxpx88sk577zz0r9///Tr1y/nn39+Ro4cWTuV9oADDsjRRx+dU045JVdccUWSv9yddsqUKe4oCwAAAEBpteqIu9/85jd505velCS54YYb8ra3vS3XX399rrnmmvzoRz8qbHKzZs3KoYcemg996EM58MAD8+Uvfzn/3//3/+X000+vjbn00ktz7LHH5vjjj89b3vKW9OzZM7fcckvq6v73DjPXXXddRo4cmUmTJmXSpEk5+OCDc+211xY2TwAAAAAoWquOuKtWq7XTVefOnZspU6YkSYYOHZo//vGPrZ7MnXfe2ez5oEGDcvXVV2/zNd27d8+MGTMyY8aMVxzTr1+/zJw5s9XzAgAAAID21qoj7kaPHp2LL7441157be66667azSOeeOKJbd7wAQAAAADYMa0K7i699NI88MADOfPMM/OZz3wmr3vd65IkP/zhD93wAQAAAAAK0KpTZd/4xjc2u6vsS/7pn/4p9fWtKkkHqVarWbthUyG1ejTUpVKpFFILAKC96YsAgLJpVcq233775b777kv//v2bLX/xxRfz5je/OY8//nghkyujb97+23Tv9aoOncOGTZtr/3/Z7b9NQ12rDpxMtVrNDQuXZlnTi4XMa3Bj97x/1F6aVGCXVtR7LLDzFfn3qi8CaE5PBNv24gur2+XntCq4e/LJJ7Np05bfRq5bty5Lly5t86RoHxs3VwtrTpNkWdOLWbthUyFv6PVdKhpdAKDdlLUv0hMBQOfWouDu5ptvrv3/rbfemsbGxtrzTZs25ec//3n23Xff4mZHuznlrfu2urHcsGlzrvyvJ5Kk9t+28i01ANBRytQX6YkAoHNrUXB37LHHJkkqlUpOPPHEZusaGhqyzz775Gtf+1phk6P9NNR1aXWDWt+lksGN3Qv/lnrj5moa6jSpAED7KlNfpCcCgM6tRcHd5s1/Ocd93333zX333Zc999xzp0yKXUulUsn7R+2VjZurba71199SAwDsaorqi/REAEDSymvcPfGEJoLmKpWKb4IBAKIvAgCK06rgLkl+/vOf5+c//3lWrFhROxLvJf/2b//W5okBAAAAQGfWquDuoosuyhe/+MWMHj06gwcPdrFcAAAAAChYq4K7yy+/PNdcc02mTZtW9HwAoNWq1Woh15UCANiV6Ylg99Gq4G79+vUZP3580XMBgFarVqu5YeHSQu9wDQCwq9ETwe6lVfe5/+hHP5rrr7++6LkAQKtt3FwttEEd3Ng99V1cCgIA2LXoiWD30qoj7l588cV85zvfydy5c3PwwQenoaGh2fpLLrmkkMkBQGuc8tZ901DXqu+mauq7VFzDFQDYpemJYNfXquDuV7/6Vd70pjclSR5++OFm6/xBA9DRGuq6tLlJBQDY1emJYNfXquDujjvuKHoetFJbLhjqYqMAwO6irX2NvggAKKNWBXeUx5X/9URHTwEAoMPpiQCA3VGrgrsjjzxym6fE3n777a2eENtX36WSwY3dC7vgqIuNAgC7oqJ7okRfBACUS6uCu5eub/eSDRs2ZNGiRXn44Ydz4oknFjEvtqFSqeT9o/bKxs3VQuq52CgAsCsquidK9EUAQLm0Kri79NJLt7r8wgsvzOrVq9s0IXZMpVJJQ52mEgDo3PREAMDurNDby/zt3/5t/u3f/q3IkgAAAADQKRUa3M2fPz/du3cvsiQAAAAAdEqtOlX2fe97X7Pn1Wo1y5Yty/3335/Pfe5zhUwMAAAAADqzVgV3jY2NzZ536dIlw4cPzxe/+MVMmjSpkIkBAAAAQGfWquDu6quvLnoesIUNmza3uYY7wwEAuzo9EQB0Xq0K7l6ycOHCLF68OJVKJQceeGAOOeSQouYFufK/nmhzjcGN3fP+UXtpVAGAXZaeCAA6r1YFdytWrMgHP/jB3Hnnndljjz1SrVbT1NSUI488MrNmzcqrX/3qoudJJ1HfpZLBjd2zrOnFQuota3oxGzdX01CnSQUAdh16IgAgaWVwd9ZZZ2XVqlX59a9/nQMOOCBJ8sgjj+TEE0/M2Wefne9///uFTpLOo1Kp5P2j9srGzdU21dmwaXMh304DAHQEPREAkLQyuJs9e3bmzp1bC+2S5MADD8w3v/lNN6egzSqVim+DAYBOT08EAHRpzYs2b96choaGLZY3NDRk8+a2XzwXAAAAADq7VgV373jHO3LOOefk6aefri37wx/+kI997GOZMGFCYZMDAAAAgM6qVcHdZZddlueffz777LNPXvva1+Z1r3td9t133zz//POZMWNG0XMEAAAAgE6nVde4Gzp0aB544IHMmTMn//3f/51qtZoDDzwwEydOLHp+AJRYtVpt84XTX1LfpZJKxbWcAIBdj54I2FlaFNzdfvvtOfPMM7NgwYL06dMnRx11VI466qgkSVNTUw466KBcfvnleetb37pTJgtAeVSr1dywcGmWNb1YSL3Bjd3z/lF7aVQBgF2KngjYmVoU3H3961/PKaeckj59+myxrrGxMaeddlouueSSVgV306dPz6c//emcc845+frXv15bvnjx4nzyk5/MXXfdlc2bN+eggw7Kv//7v2fvvfdOkqxbty7nn39+vv/972ft2rWZMGFCvvWtb2Wvvfaq1Vi5cmXOPvvs3HzzzUmSqVOnZsaMGdljjz1aPM8z3vG6rW4/5bJm/cZ8687fJUnOfMfr0rNrqw4uBbZhzfqN+cbtvy2s3rKmF3P621/b6r9Xf/cAW/LeCDufngg6p1WrVuXT7fBzWvQX/Mtf/jJf+cpXXnH9pEmT8s///M8tnsR9992X73znOzn44IObLf/d736Xww8/PCeffHIuuuiiNDY2ZvHixenevXttzLnnnptbbrkls2bNSv/+/XPeeedlypQpWbhwYerq6pIkJ5xwQpYuXZrZs2cnSU499dRMmzYtt9xyS4vnyq5nzfpNba7Ro6HON16wDfd/dmJ6dq1r1WvXrN+U0RfPLXhGALycngh2Pj0RULQWBXfPPPNMGhoaXrlYfX2effbZFk1g9erV+dCHPpQrr7wyF198cbN1n/nMZ3LMMcfkq1/9am3ZfvvtV/v/pqamXHXVVbn22mtr19ebOXNmhg4dmrlz52by5MlZvHhxZs+enQULFmTMmDFJkiuvvDLjxo3Lo48+muHDh7dovux6ivjwGz2sb244fZxGFV5Bz651vs0FKDk9Eex8eiKgaC26q+xrXvOaPPTQQ6+4/le/+lUGDx7cogmcccYZede73rXFjS02b96cn/70p3n961+fyZMnZ8CAARkzZkx+/OMf18YsXLgwGzZsyKRJk2rLhgwZkhEjRmTevHlJkvnz56exsbEW2iXJ2LFj09jYWBvD7qdHQ11GD+tbWL37n1qZtRva/i01AEB70hMBwK6tRV8FHHPMMfn85z+fd77znc1OV02StWvX5gtf+EKmTJmyw/VmzZqVBx54IPfdd98W61asWJHVq1fny1/+ci6++OJ85StfyezZs/O+970vd9xxR4444ogsX748Xbt2Td++zZuRgQMHZvny5UmS5cuXZ8CAAVvUHzBgQG3M1qxbty7r1q2rPV+1atUObxcdr1Kp5IbTx7W5sXS4OgCwK9MTAcCurUXB3Wc/+9nceOONef3rX58zzzwzw4cPT6VSyeLFi/PNb34zmzZtymc+85kdqrVkyZKcc845ue2227YIAZO/HHGXJO95z3vysY99LEnypje9KfPmzcvll1+eI4444hVrV6vVZofvb+1Q/pePebnp06fnoosu2qFtoZwqlYrD1AGATk9PBAC7rhZ9gg8cODDz5s3L3/3d3+WCCy5ItVpN8pdmYPLkyfnWt76VgQMH7lCthQsXZsWKFRk1alRt2aZNm/KLX/wil112WV544YXU19fnwAMPbPa6Aw44IHfffXeSZNCgQVm/fn1WrlzZ7Ki7FStWZPz48bUxzzzzzBY//9lnn93mXC+44IJ8/OMfrz1ftWpVhg4dukPbBgAAAABt1eKv3oYNG5af/exnWblyZX7729+mWq1m//333+J01e2ZMGHCFtfL+/CHP5w3vOEN+eQnP5lu3brl0EMPzaOPPtpszG9+85sMGzYsSTJq1Kg0NDRkzpw5Of7445Mky5Yty8MPP1y7ocW4cePS1NSUe++9N4cddliS5J577klTU1Mt3Nuabt26pVu3bi3aJgAAAAAoSquPme/bt28OPfTQVv/g3r17Z8SIEc2W9erVK/37968t/8QnPpEPfOADedvb3pYjjzwys2fPzi233JI777wzSdLY2JiTTz455513Xvr3759+/frl/PPPz8iRI2s3uzjggANy9NFH55RTTskVV1yRJDn11FMzZcoUd5QFAAAAoLRKfbGL9773vbn88sszffr0nH322Rk+fHh+9KMf5fDDD6+NufTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1+/YAAAAAwI4qVXD30pF0f+0jH/lIPvKRj7zia7p3754ZM2ZkxowZrzimX79+mTlzZhFTBAAAAIB20aWjJwAAAAAAbElwBwAAAAAlJLgDAAAAgBIS3AEAAABACZXq5hQAdG5r1m/qkNcCAJSJngh4ieAOgNIYffHcjp4CAECH0xMBL3GqLAAdqkdDXUYP61tYvdHD+qZHQ11h9QAA2oOeCNgaR9wB0KEqlUpuOH1c1m4o5rSOHg11qVQqhdQCAGgveiJgawR3AJ1QtVptc1NY5PVTKpVKenb1kQQAtC89EVB23hEAOplqtZrjLp+fhU+t7OipAAB0GD0RsCtwjTuATmbthk2FNqiunwIA7Ir0RMCuwBF3AJ3Y/Z+dmJ5d29Zgun4KALCr0xMBZSW4A+jEenatcx0VAKDT0xMBZeVUWQAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASqi+oycAwI6pVqtZu2FTm+usWd/2GgAAHamIvkhPBOwKBHcAu4BqtZrjLp+fhU+t7OipAAB0KH0R0Jk4VRZgF7B2w6bCm9PRw/qmR0NdoTUBAHa2ovsiPRFQZo64A9jF3P/ZienZte3NZY+GulQqlQJmBADQMYroi/REQJmV5oi76dOnp1Kp5Nxzz93q+tNOOy2VSiVf//rXmy1ft25dzjrrrOy5557p1atXpk6dmqVLlzYbs3LlykybNi2NjY1pbGzMtGnT8txzz+2cDQHYyXp2rUvPrvVtfmhQAYBdXRF9kZ4IKLNSBHf33XdfvvOd7+Tggw/e6vof//jHueeeezJkyJAt1p177rm56aabMmvWrNx9991ZvXp1pkyZkk2b/vdCoyeccEIWLVqU2bNnZ/bs2Vm0aFGmTZu207YHAAAAANqqw4O71atX50Mf+lCuvPLK9O3bd4v1f/jDH3LmmWfmuuuuS0NDQ7N1TU1Nueqqq/K1r30tEydOzCGHHJKZM2fmoYceyty5c5MkixcvzuzZs/Ov//qvGTduXMaNG5crr7wyP/nJT/Loo4+2yzYCAAAAQEt1eHB3xhln5F3velcmTpy4xbrNmzdn2rRp+cQnPpGDDjpoi/ULFy7Mhg0bMmnSpNqyIUOGZMSIEZk3b16SZP78+WlsbMyYMWNqY8aOHZvGxsbamK1Zt25dVq1a1ewBAAAAAO2lQ29OMWvWrDzwwAO57777trr+K1/5Surr63P22Wdvdf3y5cvTtWvXLY7UGzhwYJYvX14bM2DAgC1eO2DAgNqYrZk+fXouuuiiHd0UAAAAAChUhx1xt2TJkpxzzjmZOXNmunfvvsX6hQsX5l/+5V9yzTXXtPhiodVqtdlrtvb6l495uQsuuCBNTU21x5IlS1o0BwAAAABoiw4L7hYuXJgVK1Zk1KhRqa+vT319fe6666584xvfSH19fe68886sWLEie++9d239U089lfPOOy/77LNPkmTQoEFZv359Vq5c2az2ihUrMnDgwNqYZ555Zouf/+yzz9bGbE23bt3Sp0+fZg8AAAAAaC8ddqrshAkT8tBDDzVb9uEPfzhveMMb8slPfjKDBw/O5MmTm62fPHlypk2blg9/+MNJklGjRqWhoSFz5szJ8ccfnyRZtmxZHn744Xz1q19NkowbNy5NTU259957c9hhhyVJ7rnnnjQ1NWX8+PE7ezMBAAAAoFU6LLjr3bt3RowY0WxZr1690r9//9ry/v37N1vf0NCQQYMGZfjw4UmSxsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTptTqAAAAAEDZdOjNKYpw6aWXpr6+Pscff3zWrl2bCRMm5JprrkldXV1tzHXXXZezzz67dvfZqVOn5rLLLuuoKQMAAADAdpUquLvzzju3uf7JJ5/cYln37t0zY8aMzJgx4xVf169fv8ycObONswMAAACA9lOq4A52Z9VqNWs3bCqkVo+GuhbfbZmOU8Tvfs36YvYdAOhoRfZEib5oV1LU715fBHQmgjtoB9VqNcddPj8Ln1q5/cE7YPSwvrnh9HGa1F1A0b97ANiV7YzPRX3RrkFPBNA6XTp6AtAZrN2wqdAm5f6nVhb6TTU7T9G/+9HD+qZHQ932BwJACRX9uZjoi3YVO+N3ry8COgNH3EE7u/+zE9Oza+sajDXrN2X0xXMLnhHtpS2/+5c4HQiA3UVbPxf1RbuuInqiRF8EdA6CO2hnPbvWpWdXf3qdkd89APwvn4udl989wI5zqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJ1Xf0BADKqlqtZu2GTW2qsWZ9214PANDR9EQAHUdwB7AV1Wo1x10+PwufWtnRUwEA6DB6IoCO5VRZgK1Yu2FToQ3q6GF906OhrrB6AADtQU8E0LEccQc7qC2H9zs1YNd2/2cnpmfXtjWYPRrqUqlUCpoRAHQcPVHnpScCaH+CO9hBoy+e29FToIP07FqXnl29XQJAoifqzPREAO3PqbKwDT0a6jJ6WN/C6jk1AADYFemJAKBj+LoEtqFSqeSG08e1+S5aL3FqAACwK9ITAUDHENzBdlQqFacEAACdnp4IANqfU2UBAAAAoIR8ZQadVLVaLex0l8QpLwDArqvIvkhPBECRBHfQCVWr1Rx3+fwsfGplYTVHD+ubG04fp1EFAHYpRfdFeiIAiuRUWeiE1m7YVGholyT3P7Wy0CP4AADaQ9F9kZ4IgCI54g52UWvWt74h/OvX3v/ZienZta5NtUZfPLfVr98ZijjdpS3/vgBA+ypDX6QnAmBnENzBLqqoxrBn17rS3CGuiOayWk3ef/n8PLJsVUGzAgDKbnfri/REALyk4z+VgB3Wo6Euo4f1zf0FXoOlR0Prj7Yr0s647l4RyvRvBAD8r921L9ITAfDXBHewC6lUKrnh9HG75V3Pir6+zIGD+/zPhaHbVqdM/0YAwP/aXfsiPREAf01wB7uYSqVSilM4dqa2Xncv0VwCQGewu/dFeiIASnNX2enTp6dSqeTcc89NkmzYsCGf/OQnM3LkyPTq1StDhgzJ//2//zdPP/10s9etW7cuZ511Vvbcc8/06tUrU6dOzdKlS5uNWblyZaZNm5bGxsY0NjZm2rRpee6559ppy4CWeun6Mm15aFABgF2dngiAUgR39913X77zne/k4IMPri1bs2ZNHnjggXzuc5/LAw88kBtvvDG/+c1vMnXq1GavPffcc3PTTTdl1qxZufvuu7N69epMmTIlmzb97yHzJ5xwQhYtWpTZs2dn9uzZWbRoUaZNm9Zu2wcAAAAALdXhx5WvXr06H/rQh3LllVfm4osvri1vbGzMnDlzmo2dMWNGDjvssPz+97/P3nvvnaamplx11VW59tprM3HixCTJzJkzM3To0MydOzeTJ0/O4sWLM3v27CxYsCBjxoxJklx55ZUZN25cHn300QwfPrz9NhYAAAAAdlCHH3F3xhln5F3velcteNuWpqamVCqV7LHHHkmShQsXZsOGDZk0aVJtzJAhQzJixIjMmzcvSTJ//vw0NjbWQrskGTt2bBobG2tjtmbdunVZtWpVswcAAAAAtJcOPeJu1qxZeeCBB3Lfffdtd+yLL76YT33qUznhhBPSp0+fJMny5cvTtWvX9O3bt9nYgQMHZvny5bUxAwYM2KLegAEDamO2Zvr06bnoootasjkAAAAAUJgOO+JuyZIlOeecczJz5sx07959m2M3bNiQD37wg9m8eXO+9a1vbbd2tVptdhHWrV2Q9eVjXu6CCy5IU1NT7bFkyZLt/lwAAAAAKEqHHXG3cOHCrFixIqNGjaot27RpU37xi1/ksssuy7p161JXV5cNGzbk+OOPzxNPPJHbb7+9drRdkgwaNCjr16/PypUrmx11t2LFiowfP7425plnntni5z/77LMZOHDgK86vW7du6datWxGbCgAAAAAt1mHB3YQJE/LQQw81W/bhD384b3jDG/LJT36yWWj32GOP5Y477kj//v2bjR81alQaGhoyZ86cHH/88UmSZcuW5eGHH85Xv/rVJMm4cePS1NSUe++9N4cddliS5J577klTU1Mt3AOKsWb9pu0P2gmvBQAoEz0RAEXpsOCud+/eGTFiRLNlvXr1Sv/+/TNixIhs3Lgxxx13XB544IH85Cc/yaZNm2rXpOvXr1+6du2axsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTprijLBRs9MVzO3oKAAAdTk8EQFE6/K6yr2Tp0qW5+eabs3Tp0rzpTW/K4MGDa4+/vhvspZdemmOPPTbHH3983vKWt6Rnz5655ZZbUldXVxtz3XXXZeTIkZk0aVImTZqUgw8+ONdee21HbBbsdno01GX0sL7bH7iDRg/rmx4NddsfCABQInoiAHaGSrVarXb0JHYFq1atSmNjY5qamppdZw/4y81e1m4o5rSOHg1127xxDABAWemJADqP9sqJOuxUWWD3UalU0rOrtxMAoHPTEwFQtNKeKgsAAAAAnZngDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACih+o6ewK6iWq0mSVatWtXBMwEAAACgI72UD72UF+0sgrsd9Kc//SlJMnTo0A6eCQAAAABl8Kc//SmNjY07rb7gbgf169cvSfL73/9+p/5C2H2tWrUqQ4cOzZIlS9KnT5+Ong67IPsQRbAf0Vb2IdrKPkQR7Ee0lX2Itmpqasree+9dy4t2FsHdDurS5S+XA2xsbPRHTZv06dPHPkSb2Icogv2ItrIP0Vb2IYpgP6Kt7EO01Ut50U6rv1OrAwAAAACtIrgDAAAAgBIS3O2gbt265Qtf+EK6devW0VNhF2Ufoq3sQxTBfkRb2YdoK/sQRbAf0Vb2IdqqvfahSnVn37cWAAAAAGgxR9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFOG9x961vfyr777pvu3btn1KhR+a//+q9tjr/rrrsyatSodO/ePfvtt18uv/zyLcb86Ec/yoEHHphu3brlwAMPzE033bSzpk8JtGQfuvHGG3PUUUfl1a9+dfr06ZNx48bl1ltvbTbmmmuuSaVS2eLx4osv7uxNoQO1ZD+68847t7qP/Pd//3ezcd6LOpeW7EMnnXTSVvehgw46qDbGe1Hn8otf/CLvfve7M2TIkFQqlfz4xz/e7mv0RPy1lu5DeiK2pqX7kZ6Il2vpPqQn4uWmT5+eQw89NL17986AAQNy7LHH5tFHH93u69qjL+qUwd0PfvCDnHvuufnMZz6TBx98MG9961vzzne+M7///e+3Ov6JJ57IMccck7e+9a158MEH8+lPfzpnn312fvSjH9XGzJ8/Px/4wAcybdq0/PKXv8y0adNy/PHH55577mmvzaIdtXQf+sUvfpGjjjoqP/vZz7Jw4cIceeSRefe7350HH3yw2bg+ffpk2bJlzR7du3dvj02iA7R0P3rJo48+2mwf2X///WvrvBd1Li3dh/7lX/6l2b6zZMmS9OvXL+9///ubjfNe1Hm88MILeeMb35jLLrtsh8briXi5lu5DeiK2pqX70Uv0RLykpfuQnoiXu+uuu3LGGWdkwYIFmTNnTjZu3JhJkyblhRdeeMXXtFtfVO2EDjvssOrpp5/ebNkb3vCG6qc+9amtjv+Hf/iH6hve8IZmy0477bTq2LFja8+PP/746tFHH91szOTJk6sf/OAHC5o1ZdLSfWhrDjzwwOpFF11Ue3711VdXGxsbi5oiu4CW7kd33HFHNUl15cqVr1jTe1Hn0tb3optuuqlaqVSqTz75ZG2Z96LOK0n1pptu2uYYPRHbsiP70NboifhrO7If6YnYlta8F+mJeLkVK1ZUk1TvuuuuVxzTXn1Rpzvibv369Vm4cGEmTZrUbPmkSZMyb968rb5m/vz5W4yfPHly7r///mzYsGGbY16pJruu1uxDL7d58+Y8//zz6devX7Plq1evzrBhw7LXXntlypQpW3z7zO6jLfvRIYccksGDB2fChAm54447mq3zXtR5FPFedNVVV2XixIkZNmxYs+Xei3gleiKKpieiLfREFEVPxMs1NTUlyRafT3+tvfqiThfc/fGPf8ymTZsycODAZssHDhyY5cuXb/U1y5cv3+r4jRs35o9//OM2x7xSTXZdrdmHXu5rX/taXnjhhRx//PG1ZW94wxtyzTXX5Oabb873v//9dO/ePW95y1vy2GOPFTp/yqE1+9HgwYPzne98Jz/60Y9y4403Zvjw4ZkwYUJ+8Ytf1MZ4L+o82vpetGzZsvznf/5nPvrRjzZb7r2IbdETUTQ9Ea2hJ6JIeiJerlqt5uMf/3gOP/zwjBgx4hXHtVdfVN+Cue9WKpVKs+fVanWLZdsb//LlLa3Jrq21v+/vf//7ufDCC/Mf//EfGTBgQG352LFjM3bs2Nrzt7zlLXnzm9+cGTNm5Bvf+EZxE6dUWrIfDR8+PMOHD689HzduXJYsWZJ//ud/ztve9rZW1WTX19rf9zXXXJM99tgjxx57bLPl3ovYHj0RRdET0Vp6IoqkJ+LlzjzzzPzqV7/K3Xffvd2x7dEXdboj7vbcc8/U1dVtkW6uWLFiixT0JYMGDdrq+Pr6+vTv33+bY16pJruu1uxDL/nBD36Qk08+Of/+7/+eiRMnbnNsly5dcuihh/pGZzfVlv3or40dO7bZPuK9qPNoyz5UrVbzb//2b5k2bVq6du26zbHei/hreiKKoieiaHoiWkNPxMudddZZufnmm3PHHXdkr7322ubY9uqLOl1w17Vr14waNSpz5sxptnzOnDkZP378Vl8zbty4LcbfdtttGT16dBoaGrY55pVqsutqzT6U/OVb5ZNOOinXX3993vWud23351Sr1SxatCiDBw9u85wpn9buRy/34IMPNttHvBd1Hm3Zh+6666789re/zcknn7zdn+O9iL+mJ6IIeiJ2Bj0RraEn4iXVajVnnnlmbrzxxtx+++3Zd999t/uaduuLdvg2FruRWbNmVRsaGqpXXXVV9ZFHHqmee+651V69etXuIPOpT32qOm3atNr4xx9/vNqzZ8/qxz72seojjzxSveqqq6oNDQ3VH/7wh7Ux/+///b9qXV1d9ctf/nJ18eLF1S9/+cvV+vr66oIFC9p9+9j5WroPXX/99dX6+vrqN7/5zeqyZctqj+eee6425sILL6zOnj27+rvf/a764IMPVj/84Q9X6+vrq/fcc0+7bx/to6X70aWXXlq96aabqr/5zW+qDz/8cPVTn/pUNUn1Rz/6UW2M96LOpaX70Ev+9m//tjpmzJit1vRe1Lk8//zz1QcffLD64IMPVpNUL7nkkuqDDz5Yfeqpp6rVqp6I7WvpPqQnYmtauh/piXi5lu5DL9ET8ZK/+7u/qzY2NlbvvPPOZp9Pa9asqY3pqL6oUwZ31Wq1+s1vfrM6bNiwateuXatvfvObm93i98QTT6weccQRzcbfeeed1UMOOaTatWvX6j777FP99re/vUXNG264oTp8+PBqQ0ND9Q1veEOzDw52Py3Zh4444ohqki0eJ554Ym3MueeeW917772rXbt2rb761a+uTpo0qTpv3rx23CI6Qkv2o6985SvV1772tdXu3btX+/btWz388MOrP/3pT7eo6b2oc2np59lzzz1X7dGjR/U73/nOVut5L+pc7rjjjm1+PumJ2J6W7kN6IrampfuRnoiXa83nmZ6Iv7a1/SdJ9eqrr66N6ai+qPI/EwQAAAAASqTTXeMOAAAAAHYFgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AACd3J133plKpZLnnnuuo6cCAMBfEdwBAHQCJ510UiqVSiqVShoaGrLffvvl/PPPzwsvvNDRUwMA4BXUd/QEAABoH0cffXSuvvrqbNiwIf/1X/+Vj370o3nhhRfygQ98oKOnBgDAVjjiDgCgk+jWrVsGDRqUoUOH5oQTTsiHPvSh/PjHP66tX7hwYUaPHp2ePXtm/PjxefTRR2vrfve73+U973lPBg4cmFe96lU59NBDM3fu3Gb1v/Wtb2X//fdP9+7dM3DgwBx33HG1ddVqNV/96lez3377pUePHnnjG9+YH/7whzt9mwEAdmWCOwCATqpHjx7ZsGFD7flnPvOZfO1rX8v999+f+vr6fOQjH6mtW716dY455pjMnTs3Dz74YCZPnpx3v/vd+f3vf58kuf/++3P22Wfni1/8Yh599NHMnj07b3vb22qv/+xnP5urr7463/72t/PrX/86H/vYx/K3f/u3ueuuu9pvgwEAdjGVarVa7ehJAACwc5100kl57rnnakfY3XvvvTnmmGMyYcKE/N3f/V2OPPLIzJ07NxMmTEiS/OxnP8u73vWurF27Nt27d99qzYMOOih/93d/lzPPPDM33nhjPvzhD2fp0qXp3bt3s3EvvPBC9txzz9x+++0ZN25cbflHP/rRrFmzJtdff/3O2WgAgF2ca9wBAHQSP/nJT/KqV70qGzduzIYNG/Ke97wnM2bMyCOPPJIkOfjgg2tjBw8enCRZsWJF9t5777zwwgu56KKL8pOf/CRPP/10Nm7cmLVr19aOuDvqqKMybNiw7Lfffjn66KNz9NFH573vfW969uyZRx55JC+++GKOOuqoZvNZv359DjnkkHbaegCAXY/gDgCgkzjyyCPz7W9/Ow0NDRkyZEgaGhqSpBbcvfQ8SSqVSpJk8+bNSZJPfOITufXWW/PP//zPed3rXpcePXrkuOOOy/r165MkvXv3zgMPPJA777wzt912Wz7/+c/nwgsvzH333Ver8dOf/jSvec1rms2pW7duO3ejAQB2YYI7AIBOolevXnnd617Xqtf+13/9V0466aS8973vTfKXa949+eSTzcbU19dn4sSJmThxYr7whS9kjz32yO23356jjjoq3bp1y+9///scccQRbd0MAIBOQ3AHAMB2ve51r8uNN96Yd7/73alUKvnc5z5XO5Iu+ctpuI8//nje9ra3pW/fvvnZz36WzZs3Z/jw4endu3fOP//8fOxjH8vmzZtz+OGHZ9WqVZk3b15e9apX5cQTT+zALQMAKC/BHQAA23XppZfmIx/5SMaPH58999wzn/zkJ7Nq1ara+j322CM33nhjLrzwwrz44ovZf//98/3vfz8HHXRQkuQf//EfM2DAgEyfPj2PP/549thjj7z5zW/Opz/96Y7aJACA0nNXWQAAAAAooS4dPQEAAAAAYEuCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBKq7+gJ7Co2b96cp59+Or17906lUuno6QAAAADQQarVap5//vkMGTIkXbrsvOPiBHc76Omnn87QoUM7ehoAAAAAlMSSJUuy11577bT6grsd1Lt37yTJ4Tkm9WloU60Xjj20iCml14/vK6TOqYt+V0id77zptYXUKdKzp40ppM6rr7inkDp0Xl16dC+kzua1LxZSJ0nq9927kDobn/h9IXWKsvnwNxZSp8vdvyykTpE+8auHCqnz+YtPLqTOytcXcwT6ftctK6TOskmDC6nT8EK1kDpJsmZAMf9GB73zsULqPPHd1xVSZ4+Z9xZSp2w9UbL79kV6IsqiqJ4oKa4v0hNtm55o+3bXnigpri/aHXuiTetfzEP//o+1vGhnEdztoJdOj61PQ+orbQvu6huK+bBq6zxe0rN3XSF1ippPkeq6levfms6rS6VrIXU2VzYVUidJ6rt0K6ZQyf4+NtcX83ffpWTblSS9Cnq/rutazL9RXfdiGrCi9sWi3vPrNhQX3NV1K+bfqKFXMe8hRf3ui/pcLFtPlOy+fZGeiLIoqidKiuuL9ETbpifagTq7aU+UFNcX7a49UZKdfjk1N6cAAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQfUdPYFfz3N8elrqu3dtUo/+ipkLm8pZfrSukzmWv27+QOmXUa9nmjp5Cp1F3wOsLqbNp8W8KqVOU3XW7kmTj408WUmfJ58cXUqdhdSFlMuiSeYXU+f0PRxZSZ+/jHiqkTpLs0WVtIXX6XDe/kDr9hgwupM7Gp5cVUmftgCGF1HnDB4v7e/3zW/5USJ0Frz20kDpvmLWokDp/+vC4QuqUrSdKdt++SE/UfnbX3mF33a5ET7Q9RfVESXF9kZ5o24rqiZLi+qLdsSfaWF3f9onsAEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2NXs8eia1NdvblONzd0aCpnLfx3crZA6u7M+v/5zIXU2FVJl97Zp8W86ego7xe66XUUa+sV5hdTZfMSbC6lTlH3+v2L+8jePfWMhdZLk/H2KqVPXr28hdRZ/Zu9C6gw//7lC6nQ/eGUhdVZN611InST502nDC6kzYv8nCqmzaZ+hhdTpu3hNIXX0RO1HT9R+dtfeYXfdriLpibavqL5IT7RtRfVESXF90e7YE1U2rUseLWAy2+GIOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEL1HT2BXU39H1elvsu6NtV4/Ku9C5nL3scVUqaUVn1oXCF1+lw3v5A6wCtb9+7DCqnT7ZZ7C6lTlM0PPlJInS6HHFhInSTZeMSbC6kz5ds/L6TOpgNXFlJn5IPFfI+47pO9Cqnz53F7FFInSfpfMa+QOr/vNb6QOoMWFzOf+v32KaSOnmj79ESw69ATbV9RfZGeaNuK6omS4vqi3bEn2lTdUMBMts8RdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQq1Wq12tGT2BWsWrUqjY2NOfgjX0pd1+5tqnXpJ79dyJwu3u+NhdShExtb4D604JfF1SqRLoccWEidzQ8+UkidItX161tInTVv2b+QOiv3ry+kzqBL5hVSp36/fQqp8+dxgwupkyT95i8rpE7TmwcVUqfX0rWF1Pns9d8rpM5zm3sWUueyvz2ukDpJUtdUzL/Ri0P7FFKn4bb7C6nzp9PGF1JHT0SpFNUX6Ym2SU+0fbtrT5QU1xfpibatqJ4oKa4v2h17oo3VDbkz/5Gmpqb06VPMvLbGEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACVWq1Wq1oyexK1i1alUaGxtz5t3vTbdXNbSp1i8P2VzQrMqlS48ehdXavHZtIXXq+vUtpM6mP68spE7ZrPzwuMJq9b16fmG1ilB3wOsLqbNp8W8KqVNGXQ45sJg6TWsKqbN52TOF1HnufW8qpM6zhxbz8bjH4uK+I+t/xbxC6rzxwWLm9MN5hxZSp/G/6wqp88JexfzO9r2pmH06SZ56V69C6lz5oW8XUueCfzitkDrjP3NvIXV2154oKa4v0hO1n6L6Ij3RrkdPtG1F9URJcX2RnmjbiuqJkuL6ot2xJ9q44cXc9+PPpqmpKX369ClgVlvniDsAAAAAKCHBHQAAAACUkOAOAAAAAEqoQ4O76dOn59BDD03v3r0zYMCAHHvssXn00UebjTnppJNSqVSaPcaOHdtszLp163LWWWdlzz33TK9evTJ16tQsXbq02ZiVK1dm2rRpaWxsTGNjY6ZNm5bnnntuZ28iAAAAALRKhwZ3d911V84444wsWLAgc+bMycaNGzNp0qS88MILzcYdffTRWbZsWe3xs5/9rNn6c889NzfddFNmzZqVu+++O6tXr86UKVOyadOm2pgTTjghixYtyuzZszN79uwsWrQo06ZNa5ftBAAAAICWqu/IHz579uxmz6+++uoMGDAgCxcuzNve9rba8m7dumXQoEFbrdHU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fvpC0EAAAAgNYp1TXumpqakiT9+vVrtvzOO+/MgAED8vrXvz6nnHJKVqxYUVu3cOHCbNiwIZMmTaotGzJkSEaMGJF58/5yi+j58+ensbGxFtolydixY9PY2Fgb83Lr1q3LqlWrmj0AAAAAoL2UJrirVqv5+Mc/nsMPPzwjRoyoLX/nO9+Z6667Lrfffnu+9rWv5b777ss73vGOrFu3LkmyfPnydO3aNX379m1Wb+DAgVm+fHltzIABA7b4mQMGDKiNebnp06fXrofX2NiYoUOHFrWpAAAAALBdHXqq7F8788wz86tf/Sp33313s+Uf+MAHav8/YsSIjB49OsOGDctPf/rTvO9973vFetVqNZVKpfb8r///lcb8tQsuuCAf//jHa89XrVolvAMAAACg3ZTiiLuzzjorN998c+64447stdde2xw7ePDgDBs2LI899liSZNCgQVm/fn1WrlzZbNyKFSsycODA2phnnnlmi1rPPvtsbczLdevWLX369Gn2AAAAAID20qHBXbVazZlnnpkbb7wxt99+e/bdd9/tvuZPf/pTlixZksGDBydJRo0alYaGhsyZM6c2ZtmyZXn44Yczfvz4JMm4cePS1NSUe++9tzbmnnvuSVNTU20MAAAAAJRJh54qe8YZZ+T666/Pf/zHf6R379616801NjamR48eWb16dS688ML8zd/8TQYPHpwnn3wyn/70p7Pnnnvmve99b23sySefnPPOOy/9+/dPv379cv7552fkyJG1u8wecMABOfroo3PKKafkiiuuSJKceuqpmTJlijvKAgAAAFBKHRrcffvb306SvP3tb2+2/Oqrr85JJ52Uurq6PPTQQ/ne976X5557LoMHD86RRx6ZH/zgB+ndu3dt/KWXXpr6+vocf/zxWbt2bSZMmJBrrrkmdXV1tTHXXXddzj777NrdZ6dOnZrLLrts528kAAAAALRChwZ31Wp1m+t79OiRW2+9dbt1unfvnhkzZmTGjBmvOKZfv36ZOXNmi+cIAAAAAB2hFDenAAAAAACaE9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAlVqtVqtaMnsStYtWpVGhsbM+wrF6dL9+5tqrXH4mLy0heOer6QOt3v6l1InT1/9WIhdZKky10PFFJn8xFvLqROUfOpHzK4kDobn15WSJ0i1fXrW0idTX9eWUidsulyyIHF1GlaU0idJHn2iGL2x75Xzy+kTlEK2xdfv3chdep/v6KQOknywqihhdTpsm5zIXW6PVvM/vjbT3QrpM7Qa+oKqdPjt38spE6SnH7bnELqfOv97ymkzn/+9PuF1Hndv59WSJ2y9URJ+foiPdH2la0v0hNtW1E9UVJcX6Qn2raieqKkuL5IT7RtRfVESXF90e7YE616flP6vv7xNDU1pU+fPgXMausccQcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUUKVarVY7ehK7glWrVqWxsTH7fvH/S5fu3dtUa6+fbyhkTg233V9Infr99imkTpE2Pv5kR08BaGddevQopM7mtWsLqdPlkAMLqfPsYXsUUidJ1gwsps6gBesLqVPU59CVv7+7kDqnDT+qkDqVfYYWUidJ/vvMvoXUee2/F9M7FOWpY7oVUqdsPVFSvr5ITwSdz+7aEyXF9UV6om0rqidKiuuLdseeaOPGF/OLu7+Ypqam9OnTZ6f9HEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEqpUq9VqR09iV7Bq1ao0Njbm7XlP6isNHT2dvxj7xkLKbO5WV0id+nsXF1InSTavXVtYLdid/Om08YXV2njMykLqvOZjxfy9bnz8yULqFGXVh8YVUmePR5oKqZMkmx98pJA6v7ny0ELqTH7jrwup85umVxdSZ82GroXUaTzmsULqJEn9kMGF1Km++GIhdSrduxdSZ+PTywqpU5iCeqKkfH2RngheWVF9kZ5o24rqiZLi+iI90bYV1RMlxfVFu2NPtHHz+sxddkWamprSp0+fAma1dY64AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJVTf0RPY1az64WtT16tbm2o0HvNYMZNZ8MtCyhSV3i4/a3xBlZIBM+YVVgt2J/2vKO5vY/N/v7mQOhsfX1xInbLpN39ZIXV+9+EhhdRJkmEPFlOn2/KGQur8YsmbCqkz9IvF7NfP/WMxn0OrP/XqQuokyWu+XMy2PfGVcYXU2f9fniykTtPP9i+kTtl6oqR8fZGeCF5ZUX2RnmjbiuqJkuL6Ij3RthXVEyXF9UW7a0/UHhxxBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQpVqtVjt6EruCVatWpbGxMQec+aXUdeve0dNJkgy6ZF5HT6HTWPL58YXUGfpFv7POqn7I4ELqPP03+xZSJ0kGzChmf6zfb59C6mx8/MlC6myYNLqQOg233V9InS49ehRSp0ib164tpM5j3xxTSJ29ZxfTijx9eF0hdfb95PxC6iTJb648tJA6DX+uL6TOxldtLqRO798V829dFD1R+9ET0VZF9URJcX2RnmjbiuqJkvL1RXqi7SuqL9ode6LNa1/MkvM+l6ampvTp06eAWW2dI+4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlFCHBnfTp0/PoYcemt69e2fAgAE59thj8+ijjzYbU61Wc+GFF2bIkCHp0aNH3v72t+fXv/51szHr1q3LWWedlT333DO9evXK1KlTs3Tp0mZjVq5cmWnTpqWxsTGNjY2ZNm1annvuuZ29iQAAAADQKh0a3N11110544wzsmDBgsyZMycbN27MpEmT8sILL9TGfPWrX80ll1ySyy67LPfdd18GDRqUo446Ks8//3xtzLnnnpubbrops2bNyt13353Vq1dnypQp2bRpU23MCSeckEWLFmX27NmZPXt2Fi1alGnTprXr9gIAAADAjqrvyB8+e/bsZs+vvvrqDBgwIAsXLszb3va2VKvVfP3rX89nPvOZvO9970uSfPe7383AgQNz/fXX57TTTktTU1OuuuqqXHvttZk4cWKSZObMmRk6dGjmzp2byZMnZ/HixZk9e3YWLFiQMWPGJEmuvPLKjBs3Lo8++miGDx/evhsOAAAAANtRqmvcNTU1JUn69euXJHniiSeyfPnyTJo0qTamW7duOeKIIzJv3rwkycKFC7Nhw4ZmY4YMGZIRI0bUxsyfPz+NjY210C5Jxo4dm8bGxtqYl1u3bl1WrVrV7AEAAAAA7aU0wV21Ws3HP/7xHH744RkxYkSSZPny5UmSgQMHNhs7cODA2rrly5ena9eu6du37zbHDBgwYIufOWDAgNqYl5s+fXrteniNjY0ZOnRo2zYQAAAAAFqgNMHdmWeemV/96lf5/ve/v8W6SqXS7Hm1Wt1i2cu9fMzWxm+rzgUXXJCmpqbaY8mSJTuyGQAAAABQiFIEd2eddVZuvvnm3HHHHdlrr71qywcNGpQkWxwVt2LFitpReIMGDcr69euzcuXKbY555plntvi5zz777BZH872kW7du6dOnT7MHAAAAALSXDg3uqtVqzjzzzNx44425/fbbs++++zZbv++++2bQoEGZM2dObdn69etz1113Zfz48UmSUaNGpaGhodmYZcuW5eGHH66NGTduXJqamnLvvffWxtxzzz1pamqqjQEAAACAMunQu8qeccYZuf766/Mf//Ef6d27d+3IusbGxvTo0SOVSiXnnntuvvSlL2X//ffP/vvvny996Uvp2bNnTjjhhNrYk08+Oeedd1769++ffv365fzzz8/IkSNrd5k94IADcvTRR+eUU07JFVdckSQ59dRTM2XKFHeUBQAAAKCUOjS4+/a3v50kefvb395s+dVXX52TTjopSfIP//APWbt2bf7+7/8+K1euzJgxY3Lbbbeld+/etfGXXnpp6uvrc/zxx2ft2rWZMGFCrrnmmtTV1dXGXHfddTn77LNrd5+dOnVqLrvssp27gQAAAADQSh0a3FWr1e2OqVQqufDCC3PhhRe+4pju3btnxowZmTFjxiuO6devX2bOnNmaaQIAAABAuyvFzSkAAAAAgOYq1R057I2sWrUqjY2Ned2nvpS6bt3bVGvYPz1YyJyWnHNIIXUGz3+xkDpd7nqgkDpJsvLD4wqp0/fq+YXU2V1tmDS6sFoNt91fWC0og1UfKuZ9qM915XsfWv7xYm7M1PBCIWWyqWsxdVaPW1tInbrf9SikTpJs7L25kDp7/2xjIXXq1hUznz8c0bZe6CVl64mS8vVFeqL2U1RfpCdid1NUT5SUry/SE21fUX3R7tgTbdz4Yn5x9xfT1NSUPn36FDCrrXPEHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFKtVqtdvQkdgWrVq1KY2NjJvQ9MfVdurap1hPf2auQOe193EOF1ClKlx49Cqu1ee3awmpBGax792GF1Ol2y72F1Cmj+iGDC6nz7OR9Cqmzrm+lkDrPv3ZTIXWSpNp1cyF1Xn/KfYXUqTvg9YXU+ePY/oXUWbVfMb+zTa8t32dQ413FfMZuPGZlIXWGfHh5IXV2154oKa4v0hOxuymqJ0p2375od+2JkuL6Ij3RthXVEyXl64vK1BNtWrMuj3zwq2lqakqfPn0KmNXWOeIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp7ArqbPv3dJQ6+25Z11t/QuZC51/foWUqe69sVC6mw87IBC6iRJl7seKKbQ2DcWUmZzt7pC6hS2Xbuzgn5n9SuaCqmz8fEnC6nT7ZZ7C6lTpJUfHldInb5Xzy+kzsanlxVSZ88FxbzHblr8m2LqfGp8IXWS5JgP3FdInVs/XsycBl0yr5A6fRcXUibFfCoWa3lB/9avenpjIXXW/HiPQuo03rKikDpl64mS8vVFeqJOTE/UbvRE21ZUT5QU1xfpibZTp5gyhdode6JN64vpGbbHEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCE6jt6Arua+3+3d7r06N6mGr3XFzOXTX9eWUyhgjQ89ERhtTYVVKeuaW0xhRb/ppg6JbP5iDcXVqvLXQ8UU2jBLwsps7GQKsWp32+fQupsfPzJQuokSd+r5xdWq0w2Nfbo6Ck085o7Xyis1i+/vLmQOv0nFfNB9Ng1owqp029+t0LqrBlYSJnsc9niYgolGXTJvELqPPbNMYXU2ef1TxdS557H9imkzu7aEyXF9UV6ovZTVF+kJ9q2onqipLi+SE/Uforqi/RE21ZUT5QU1xftjj3RxhfWJTMLmMx2OOIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBC9a150ZIlS/Lkk09mzZo1efWrX52DDjoo3bp1K3puAAAAANBp7XBw99RTT+Xyyy/P97///SxZsiTVarW2rmvXrnnrW9+aU089NX/zN3+TLl123wP5XnvVxtTXb2xTjfoVfypkLm2bxf9a8vnxhdQZ+sV5hdRJklUfGldInT7XzS+kzgvHjS2kTq8fLiikTlG63PVAYbU2H/HmQuoUOacy2fj4kx09hc5jwS8LKVPXr28hdSormgqpkyTPfriY98a+i9cUUqf7470KqfPngzcVUqcom/68srBahb03bqgUUufpBa8ppM7+P32hkDpl64mS8vVFeqL2U1QPoifaNj1ROypZT5QU1xfpidpPUX3R7tgTbXrxxQJmsn07lLCdc845GTlyZB577LF88YtfzK9//es0NTVl/fr1Wb58eX72s5/l8MMPz+c+97kcfPDBue+++3b2vAEAAABgt7ZDR9x17do1v/vd7/LqV796i3UDBgzIO97xjrzjHe/IF77whfzsZz/LU089lUMPPbTwyQIAAABAZ7FDwd0//dM/7XDBY445ptWTAQAAAAD+osUXo1u7dm3WrPnf88CfeuqpfP3rX8+tt95a6MQAAAAAoDNrcXD3nve8J9/73veSJM8991zGjBmTr33tazn22GPz7W9/u/AJAgAAAEBn1OLg7oEHHshb3/rWJMkPf/jDDBw4ME899VS+973v5Rvf+EbhEwQAAACAzqjFwd2aNWvSu3fvJMltt92W973vfenSpUvGjh2bp556qvAJAgAAAEBn1OLg7nWve11+/OMfZ8mSJbn11lszadKkJMmKFSvSp0+fwicIAAAAAJ1Ri4O7z3/+8zn//POzzz77ZMyYMRk3blySvxx9d8ghhxQ+QQAAAADojOpb+oLjjjsuhx9+eJYtW5Y3vvGNteUTJkzIe9/73kInBwAAAACdVYuDuyQZNGhQBg0a1GzZYYcdVsiEAAAAAIAdPFX29NNPz5IlS3ao4A9+8INcd911bZoUAAAAAHR2O3TE3atf/eqMGDEi48ePz9SpUzN69OgMGTIk3bt3z8qVK/PII4/k7rvvzqxZs/Ka17wm3/nOd3b2vAEAAABgt7ZDwd0//uM/5qyzzspVV12Vyy+/PA8//HCz9b17987EiRPzr//6r7W7zAIAAAAArbfD17gbMGBALrjgglxwwQV57rnn8tRTT2Xt2rXZc88989rXvjaVSmVnzhMAAAAAOpVW3Zxijz32yB577FHwVAAAAACAl+zQzSkAAAAAgPYluAMAAACAEhLcAQAAAEAJCe4AAAAAoIRaFdxt3Lgxc+fOzRVXXJHnn38+SfL0009n9erVLarzi1/8Iu9+97szZMiQVCqV/PjHP262/qSTTkqlUmn2GDt2bLMx69aty1lnnZU999wzvXr1ytSpU7N06dJmY1auXJlp06alsbExjY2NmTZtWp577rkWbzcAAAAAtJcWB3dPPfVURo4cmfe85z0544wz8uyzzyZJvvrVr+b8889vUa0XXnghb3zjG3PZZZe94pijjz46y5Ytqz1+9rOfNVt/7rnn5qabbsqsWbNy9913Z/Xq1ZkyZUo2bdpUG3PCCSdk0aJFmT17dmbPnp1FixZl2rRpLZorAAAAALSn+pa+4Jxzzsno0aPzy1/+Mv37968tf+9735uPfvSjLar1zne+M+985zu3OaZbt24ZNGjQVtc1NTXlqquuyrXXXpuJEycmSWbOnJmhQ4dm7ty5mTx5chYvXpzZs2dnwYIFGTNmTJLkyiuvzLhx4/Loo49m+PDhLZozAAAAALSHFh9xd/fdd+ezn/1sunbt2mz5sGHD8oc//KGwib3kzjvvzIABA/L6178+p5xySlasWFFbt3DhwmzYsCGTJk2qLRsyZEhGjBiRefPmJUnmz5+fxsbGWmiXJGPHjk1jY2NtzNasW7cuq1atavYAAAAAgPbS4iPuNm/e3Ow01JcsXbo0vXv3LmRSL3nnO9+Z97///Rk2bFieeOKJfO5zn8s73vGOLFy4MN26dcvy5cvTtWvX9O3bt9nrBg4cmOXLlydJli9fngEDBmxRe8CAAbUxWzN9+vRcdNFFWyx/4TU9Ut/QvU3b1ec3v2/T62tzOW7s9gftgM0NhZQp1B6PNBVSZ3MhVZJeP1xQUKXdV5e7HujoKUCSpH7I4ELqbHx6WSF18ueVxdRJUjeumG1beUDPQuoM/eIrfwHWEn86bXwhdTb0KqRMobpfVMx+VHl662cftFSfX7ath3nJC3v1KKRO2XqipHx9kZ5o16MnoixK1xMlhfVFeqJt0xNtXxE90ab11QJmsn0tPuLuqKOOyte//vXa80qlktWrV+cLX/hCjjnmmCLnlg984AN517velREjRuTd7353/vM//zO/+c1v8tOf/nSbr6tWq6lUKs3muL0xL3fBBRekqamp9liyZEnrNwQAAAAAWqjFR9xdeumlOfLII3PggQfmxRdfzAknnJDHHnsse+65Z77//e/vjDnWDB48OMOGDctjjz2WJBk0aFDWr1+flStXNjvqbsWKFRk/fnxtzDPPPLNFrWeffTYDBw58xZ/VrVu3dOvWreAtAAAAAIAd0+Ij7oYMGZJFixbl/PPPz2mnnZZDDjkkX/7yl/Pggw9u9ZTUIv3pT3/KkiVLMnjwXw6LHTVqVBoaGjJnzpzamGXLluXhhx+uBXfjxo1LU1NT7r333tqYe+65J01NTbUxAAAAAFA2LT7iLkl69OiRj3zkI/nIRz7Sph++evXq/Pa3v609f+KJJ7Jo0aL069cv/fr1y4UXXpi/+Zu/yeDBg/Pkk0/m05/+dPbcc8+8973vTZI0Njbm5JNPznnnnZf+/funX79+Of/88zNy5MjaXWYPOOCAHH300TnllFNyxRVXJElOPfXUTJkyxR1lAQAAACitVgV3f/jDH/L//t//y4oVK7J5c/NL3Z599tk7XOf+++/PkUceWXv+8Y9/PEly4okn5tvf/nYeeuihfO9738tzzz2XwYMH58gjj8wPfvCDZjfBuPTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1ZtMBAAAAoF20OLi7+uqrc/rpp6dr167p37//FjeBaElw9/a3vz3V6ivfhePWW2/dbo3u3btnxowZmTFjxiuO6devX2bOnLnD8wIAAACAjtbi4O7zn/98Pv/5z+eCCy5Ily4tvkQeAAAAALADWpy8rVmzJh/84AeFdgAAAACwE7U4fTv55JNzww037Iy5AAAAAAD/o8Wnyk6fPj1TpkzJ7NmzM3LkyDQ0NDRbf8kllxQ2OQAAAADorFoc3H3pS1/KrbfemuHDhyfJFjenAAAAAADarsXB3SWXXJJ/+7d/y0knnbQTpgMAAAAAJK24xl23bt3ylre8ZWfMBQAAAAD4Hy0O7s4555zMmDFjZ8wFAAAAAPgfLT5V9t57783tt9+en/zkJznooIO2uDnFjTfeWNjkAAAAAKCzanFwt8cee+R973vfzpgLAAAAAPA/WhzcXX311TtjHgAAAADAX2nxNe4AAAAAgJ1vh464e/Ob35yf//zn6du3bw455JBUKpVXHPvAAw8UNjkAAAAA6Kx2KLh7z3vek27duiVJjj322J05HwAAAAAgOxjcfeELX8hHPvKR/Mu//Eu+8IUv7Ow5AQAAAECnt8PXuPvud7+btWvX7sy5AAAAAAD/Y4eDu2q1ujPnAQAAAAD8lRbdVXZbN6UAAAAAAIqzQ9e4e8nrX//67YZ3f/7zn9s0obJrvGdJ6rt0bVONp049oJC5vObL8wqp0/unPQqpkx4F1Umy+cFHCqnT5ZADC6lT1HygTLoU9De7uWSXUdj49LKOnsJOU/3QHwups/K5VxVSp+/VhZRJ/yuK+Tz7/Q9HFlJnyavGF1InSf5uwE8LqbPs+/sWUudVf1hfSJ0eD/+hkDpl64mS8vVFeiLY+fREux490bYV1RMlxfVFu2NPtHHjhgJmsn0tCu4uuuiiNDY27qy5AAAAAAD/o0XB3Qc/+MEMGDBgZ80FAAAAAPgfO3yNO9e3AwAAAID2466yAAAAAFBCO3yq7ObNm3fmPAAAAACAv7LDR9wBAAAAAO1HcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcA/397dx/ddXnfDfwTSEgCkggiBCwgKMXHOkXLQ63o4UF8QNvO2c6WI61uzk690Tpr67bSbtPO06obtK71dtLVqm0VbE+1iB4VdYgVxHYqVSs4tEKpLSQSw2O+9x+9/R3DQyLkMrkgr9c5+SO/35U315dcfPPxnZ8JAABAhso7ewN7m6YjBkZ5eVW7MhoP2ZJkL83jj0uSEwufSRKzZfLxSXIiIv5wVI8kOQfNWZ4kh66re98+SXK2/XFdkpxU+4lIt6fy4QcnyVn5mUFJcgZ/bVGSnO6HfzBJzuqJ/ZLkRES89VJzkpwPfu3FJDkbHxyaJKfqssokOWW/6p0k5+DZ6b523BxnJMmp6JUkJioWLEmS05Toa352M1FEdnORmYhc5DYTReS3JzNR21LNRWai1qWaiSLSzUX74kxUVqSZY9riFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGyjt7A3ubk/55cVTtV9GujLvuOCXRbrYlSel++AfT5LzWkCQnIuKAqEmWlZNUf9fblr+UJIe2bfvjus7eQgsp99N4zpgkOW8NSfM9oMFfW5QkZ8UdxybJGTyne5Kc/rPSXFdERP9EOcWxRyTJqb7o7SQ5v5vUL0lOqjNUNmhgkpyIiK29iiQ5g7/2ZJKcVP/up/zjwiQ5uc1EEfnNRWaitpmLOkZuM1FEuj2ZiVqXaiaKSDcXmYlal+oMRaSbi/bFmWjrlo0R9/4kwW5a5xV3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABkqK4qi6OxN7A0aGhqitrY2To6zo7ysorO3ExERL91yQpKcYT9OcwQqFixJkgPsXRrPGZMkp9fdi5PkpPK7nxyeJGfA2cuT5ERErLliXJKc3quak+RsmFafJOegy5uS5Pxhdpqvz7Wnv5wkJyLillVPJMmZ8n+vSpJT+0qar/k1P3gySU4qqWaiCHMRsOfMRG1LNReZiVqXaiaKSDcX7Ysz0bbNG2Ppj66J+vr6qKmpSbCrnfOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIENlRVEUnb2JvUFDQ0PU1tbGn33mX6J7j6p2ZfW57clEu0qjW3V1kpyygwcnyYmI2FabZk+x+JdpcjLT8OmxSXJqfpDXWUypfPjBSXKKyh5JcrYtfylJDu/BmGOSxJSvWpskZ+sbq5PkZCnR3/Wacb2S5Aw5a2WSnObPVSbJiYh4/WODkuQ0DUgzrh0y89kkOX/41J8lycltJorIby4yE7XNXNQ6M1EXltlMFLEPz0X76EwUkW4u2hdnoq3F5ni46YdRX18fNTU17d/ULnjFHQAAAABkSHEHAAAAABlS3AEAAABAhjq1uHvsscdi6tSpMWjQoCgrK4t77723xfNFUcTMmTNj0KBBUV1dHSeffHI8//zzLdZs2rQpLr300ujXr1/06tUrzjrrrHj99ddbrFm3bl1MmzYtamtro7a2NqZNmxbr169/n68OAAAAAPZcpxZ3jY2Nccwxx8Ts2bN3+vz1118fN9xwQ8yePTuefvrpqKuri0mTJsVbb71VWjNjxoyYN29e3HXXXfHEE0/Ehg0b4swzz4xt27aV1px33nnx7LPPxvz582P+/Pnx7LPPxrRp09736wMAAACAPVXemX/4aaedFqeddtpOnyuKIm666aa45ppr4hOf+ERERHzve9+LAQMGxB133BEXXXRR1NfXx6233hrf//73Y+LEiRERcfvtt8fgwYPjoYceilNPPTWWL18e8+fPj8WLF8fo0aMjIuKWW26JsWPHxosvvhgjR47smIsFAAAAgN2Q7c+4W7lyZaxZsyYmT55ceqyysjLGjx8fixYtioiIpUuXxpYtW1qsGTRoUBx11FGlNU8++WTU1taWSruIiDFjxkRtbW1pzc5s2rQpGhoaWrwBAAAAQEfJtrhbs2ZNREQMGDCgxeMDBgwoPbdmzZro0aNH9OnTp9U1/fv33yG/f//+pTU7c91115V+Jl5tbW0MHjy4XdcDAAAAALsj2+LuHWVlZS3eL4pih8e2t/2ana1vK+dLX/pS1NfXl95ee+213dw5AAAAAOy5bIu7urq6iIgdXhW3du3a0qvw6urqYvPmzbFu3bpW1/zud7/bIf/3v//9Dq/me7fKysqoqalp8QYAAAAAHSXb4m7YsGFRV1cXDz74YOmxzZs3x8KFC2PcuHERETFq1KioqKhosWb16tXx3HPPldaMHTs26uvr4xe/+EVpzVNPPRX19fWlNQAAAACQm079rbIbNmyI3/zmN6X3V65cGc8++2z07ds3hgwZEjNmzIhrr702RowYESNGjIhrr702evbsGeedd15ERNTW1sYFF1wQX/jCF+KAAw6Ivn37xpVXXhlHH3106bfMHn744TFlypT4q7/6q/jOd74TERF//dd/HWeeeabfKAsAAABAtjq1uFuyZEmccsoppfevuOKKiIg4//zzY86cOXHVVVdFU1NTfP7zn49169bF6NGjY8GCBdG7d+/Sx9x4441RXl4e5557bjQ1NcWECRNizpw50b1799KaH/zgB3HZZZeVfvvsWWedFbNnz+6gqwQAAACA3depxd3JJ58cRVHs8vmysrKYOXNmzJw5c5drqqqqYtasWTFr1qxdrunbt2/cfvvt7dkqAAAAAHSobH/GHQAAAAB0ZYo7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyFBZURRFZ29ib9DQ0BC1tbVxcpwd5WUVnb2diIjoVl2dJGfrhw9PktNt4TNJciIiXv7W6CQ5I/72qSQ5+6ryQQOTZW19Y3WyLHZty+Tjk2VVLFiSJKd5/HFJclLdQ3579bgkOYMfWJ8kZ/0RtUlyIiLeHlCWJOegn7+ZJKes/q0kOb+9ef8kORt/1SdJTtnhaa4rImL4ZWn+rn9/6sFJcrbsl+YM9Z+1KElOKqlmooj85iIzUcdJNReZiTpOqrnITNS6VDNRRLq5yEzUulQzUUS6uWhfnIm2bdoYz3/ny1FfXx81NTUJdrVzXnEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkKHyzt5AV9T98A8myVk9sV+SnP6zFiXJaR5/XJKciIi+v+qeLItd2/rG6s7eQpexZfLxSXIqFixJkhMR0b1vnzRBC59Jk5PIQY82JslpXvZCkpyaZUliIiJi/2OPSBeWQFHbO03OwjRnccRZK5PkbD453b1xa6KcX/zL/CQ5w+67MElO/yQp+c1EEfnNRWaijmMu6hipZqKIdHORmah1qWaiiHRzkZmodalmooh0c9G+OBM1N21JsJO2ecUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQofLO3sDe5vcXjY7ulVXtyui1ujnJXvrPWpQkp/GcMUly1h+argce+qM3kuQ0TT4+SU7VkleS5Gz747okOeWDBibJ2frG6iQ5OepWXZ0kp7mpKUlOxYIlSXJSSnUeU91Det29OElO95dWJcn59ZxRSXJGTF+aJCci4pVP1SbJ+cBxae6xm7+T5l70F9MfSZJzzy2nJMkZNLwySU5ExNUP/SRJzhnHT0mSc8DUiiQ5ay8dlyQnt5koIr+5yEzUNnNR68xEbTMTtS7VTBSRbi4yE7Uu1UwUkW4u2hdnom2bt8XrCfbSFq+4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMhQWVEURWdvYm/Q0NAQtbW1Mfg/vhLdqqvalTVi+tIke3p5zqgkOVUrKpPkbBywLUlORMQhP9qSJKfbwmeS5AB7jzVXjEuSc9Cc5UlyXr3k8CQ5ERHNFWlyhl27LEnO0IVlSXJWfvjtJDmppDpDERHVE3+fJOfAnhuS5Kz66bAkOW99aFOSnNxmooj85iIzEbCncpuJItLNRWaijpPqHO2LM9G2TRtj+ewvR319fdTU1CTY1c55xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJCh8s7ewN6mbn5FlFdUdPY2IiJixPSlSXIaPj02SU7P33VPkhMR0W3hU8myoD269+2TJGfbH9clyelWXZ0kJyKiuakpWVZO6hY1Jsn5zRcPS5LT/+nmJDkppfrcr7zsmCQ5r9yU5lwf+HRZkpy6GxYlyYmIiBvSxCy/aUySnEMSXVvvc9LsJ5VUM1FEfnORmYhc5DYTRaSbi8xErUs1E0XkNxeZidqWbC7aB2eircWWWJ5gL23xijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADGVd3M2cOTPKyspavNXV1ZWeL4oiZs6cGYMGDYrq6uo4+eST4/nnn2+RsWnTprj00kujX79+0atXrzjrrLPi9ddf7+hLAQAAAIDdknVxFxFx5JFHxurVq0tv//M//1N67vrrr48bbrghZs+eHU8//XTU1dXFpEmT4q233iqtmTFjRsybNy/uuuuueOKJJ2LDhg1x5plnxrZt2zrjcgAAAADgPSnv7A20pby8vMWr7N5RFEXcdNNNcc0118QnPvGJiIj43ve+FwMGDIg77rgjLrrooqivr49bb701vv/978fEiRMjIuL222+PwYMHx0MPPRSnnnpqh14LAAAAALxX2b/i7uWXX45BgwbFsGHD4lOf+lSsWLEiIiJWrlwZa9asicmTJ5fWVlZWxvjx42PRokUREbF06dLYsmVLizWDBg2Ko446qrRmVzZt2hQNDQ0t3gAAAACgo2Rd3I0ePTr+67/+Kx544IG45ZZbYs2aNTFu3Lj4wx/+EGvWrImIiAEDBrT4mAEDBpSeW7NmTfTo0SP69OmzyzW7ct1110VtbW3pbfDgwQmvDAAAAABal3Vxd9ppp8Wf//mfx9FHHx0TJ06M++67LyL+9L/EvqOsrKzFxxRFscNj23sva770pS9FfX196e21117bw6sAAAAAgN2XdXG3vV69esXRRx8dL7/8cunn3m3/yrm1a9eWXoVXV1cXmzdvjnXr1u1yza5UVlZGTU1NizcAAAAA6Ch7VXG3adOmWL58eQwcODCGDRsWdXV18eCDD5ae37x5cyxcuDDGjRsXERGjRo2KioqKFmtWr14dzz33XGkNAAAAAOQo698qe+WVV8bUqVNjyJAhsXbt2vjnf/7naGhoiPPPPz/KyspixowZce2118aIESNixIgRce2110bPnj3jvPPOi4iI2trauOCCC+ILX/hCHHDAAdG3b9+48sorS//rLQAAAADkKuvi7vXXX4+//Mu/jDfffDMOPPDAGDNmTCxevDiGDh0aERFXXXVVNDU1xec///lYt25djB49OhYsWBC9e/cuZdx4441RXl4e5557bjQ1NcWECRNizpw50b179866LAAAAABoU9bF3V133dXq82VlZTFz5syYOXPmLtdUVVXFrFmzYtasWYl3BwAAAADvn73qZ9wBAAAAQFehuAMAAACADGX9v8rm6O0B3aJ7Zfv6zm2fHptkLzU/eDJJTp+f/zpJzquXHJ4kJyLigGRJefnt1Wl+m/FBX1+UJIe2bfvjus7eQgvNTU2dvYXsrRnXK0nOsC+m+XfWvW+fJDkR6c5j8/jjkuR0W/hMkpzyM9LcG2t+kOZz1q26OklORMT6T/xZkpxDZqT5mp/qc984MM33fnObiSLym4vMRG0zF3WM3GaiCHNRW3KbiSLSzUVmotalmoki0s1F++JM1Lx1Y8QTP0mwm9Z5xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhsqKoig6exN7g4aGhqitrY0Pfe7a6N6jql1Z/+eKHyfZ0+0jD0qS03jOmCQ5bw1J1wNXrktzLPvc9mSSHNrWrbo6SU5zU1OSHLquVGfxjYuPTZJTd8OiJDkREfX3j0iSU3v6y0lyXrkpzdePQ2YsTpLz8rdGJ8k5+CfbkuRERFQsWJIkZ9XdRyfJ2fJ6ryQ5+y9P8zU/t5koIr+5yEy09zETkYvcZqKIdHORmah1qWaiiHRz0b44EzVv3Bj/+8W/j/r6+qipqUmwq53zijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBD5Z29gb3N/i9tjPJ2/q3ddcrxaTYTq5Ok1D6zJklOr7tfTZITEdE8/rgkOd0P/2CSnG3LX0qS89ItJyTJ+eBfPZ0kJ6XmpqbO3gKd5A8XjUuSc8AvG5PkNC/+ZZKcukVp9rPmijR/PxERg65ZnySnOUlKRNWaNN//a/j02CQ5Q+ZvS5JT0bAlSU5ERLdjj0iSs2lDjyQ5PRN9zvr8emOSnNxmooj85iIzUdtym4vMRF2XmahtqeYiM1HrUs1EEenmon1xJtq2qWNeC+cVdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIbKO3sDe5s3TqyK7pVV7croNnZYkr0MfqBPkpyty15IkpNSt4XPJMlZe9G4JDkHLH8pSc7hN9QnydmWJAXSOOCXjUlyGj9QnSSnevxxSXJ6vPbHJDkRvRLlRBz9n79OkvPceR9MkrPfSb9PkvO7lX2T5HTvsyVJTq9em5PkRER84bCHkuR8bemZSXK2JjqOvx3fvlnoHbnNRBH5zUVmoraZi8iFmei9SPOFyEzUulQzUUS6uWhfnIm2dW9/xnvhFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGSrv7A3sbfZ7vYjuPYp2ZVx69d1J9nLXjz6SJKc5SUrEKzeNSZQUcciMxUlyNvZJEpPMtuUvJclZc8W4JDl1NyxKkkPbNk39cJKcXs+vTZITEbF1xatJcn57cq8kOQd9Pa/z2FxdnSSncUhdkpyIiCVvDk6SU5HoXrR25egkOYf9Q5r9rP704Uly6v7vr5PkRETc3nRQkpzhsSxJzstzRiXJ6bewR5Kc3GaiiPzmIjNR28xFe5dUM1FEurnITNS6VDNRRLq5yEzUulQzUUS6uWhfnImamzYl2EnbvOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEPlnb2BvUVRFBERsW3zxnZnNW3Y2u6MiIitzZvS5BRbkuQ0b2z/3807Uu1p26Y0e0q1n1T21eval23dkuhzlujffYR/Z23pVnRPkpP03tiY5vNfluq+35TqXG9OkpPuLKbZT0REc2bnOtXnbNvm5iQ5uc1EEfnNRe7VbduXr21flGomisjvv4f21bOYaiaKSHhvNBO1KtVZjEg3F+2LM1Fz05/O4Tt90fulrHi//4R9xIoVK+KQQw7p7G0AAAAAkIlXXnklhg8f/r7le8Xde9S3b9+IiFi1alXU1tZ28m7YGzU0NMTgwYPjtddei5qams7eDnshZ4gUnCPayxmivZwhUnCOaC9niPaqr6+PIUOGlPqi94vi7j3q1u1PPw6wtrbWP2rapaamxhmiXZwhUnCOaC9niPZyhkjBOaK9nCHa652+6H3Lf1/TAQAAAIA9orgDAAAAgAwp7t6jysrK+MpXvhKVlZWdvRX2Us4Q7eUMkYJzRHs5Q7SXM0QKzhHt5QzRXh11hvxWWQAAAADIkFfcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABnqssXdt7/97Rg2bFhUVVXFqFGj4vHHH291/cKFC2PUqFFRVVUVw4cPj//4j//YYc0999wTRxxxRFRWVsYRRxwR8+bNe7+2TwZ25wzNnTs3Jk2aFAceeGDU1NTE2LFj44EHHmixZs6cOVFWVrbD28aNG9/vS6ET7c45evTRR3d6Rn7961+3WOde1LXszhmaPn36Ts/QkUceWVrjXtS1PPbYYzF16tQYNGhQlJWVxb333tvmx5iJeLfdPUNmInZmd8+RmYjt7e4ZMhOxveuuuy5OOOGE6N27d/Tv3z8+9rGPxYsvvtjmx3XEXNQli7sf/vCHMWPGjLjmmmti2bJl8dGPfjROO+20WLVq1U7Xr1y5Mk4//fT46Ec/GsuWLYsvf/nLcdlll8U999xTWvPkk0/GJz/5yZg2bVr88pe/jGnTpsW5554bTz31VEddFh1od8/QY489FpMmTYr7778/li5dGqecckpMnTo1li1b1mJdTU1NrF69usVbVVVVR1wSnWB3z9E7XnzxxRZnZMSIEaXn3Iu6lt09Q//2b//W4uy89tpr0bdv3/iLv/iLFuvci7qOxsbGOOaYY2L27Nnvab2ZiO3t7hkyE7Ezu3uO3mEm4h27e4bMRGxv4cKF8bd/+7exePHiePDBB2Pr1q0xefLkaGxs3OXHdNhcVHRBH/7wh4u/+Zu/afHYYYcdVlx99dU7XX/VVVcVhx12WIvHLrroomLMmDGl988999xiypQpLdaceuqpxac+9alEuyYnu3uGduaII44ovvrVr5bev+2224ra2tpUW2QvsLvn6JFHHikioli3bt0uM92Lupb23ovmzZtXlJWVFa+++mrpMfeirisiinnz5rW6xkxEa97LGdoZMxHv9l7OkZmI1uzJvchMxPbWrl1bRESxcOHCXa7pqLmoy73ibvPmzbF06dKYPHlyi8cnT54cixYt2unHPPnkkzusP/XUU2PJkiWxZcuWVtfsKpO9156coe01NzfHW2+9FX379m3x+IYNG2Lo0KHxgQ98IM4888wdvvvMvqM95+jYY4+NgQMHxoQJE+KRRx5p8Zx7UdeR4l506623xsSJE2Po0KEtHncvYlfMRKRmJqI9zESkYiZie/X19RERO3x9ereOmou6XHH35ptvxrZt22LAgAEtHh8wYECsWbNmpx+zZs2ana7funVrvPnmm62u2VUme689OUPb++Y3vxmNjY1x7rnnlh477LDDYs6cOfHTn/407rzzzqiqqoqPfOQj8fLLLyfdP3nYk3M0cODA+O53vxv33HNPzJ07N0aOHBkTJkyIxx57rLTGvajraO+9aPXq1fHzn/88LrzwwhaPuxfRGjMRqZmJ2BNmIlIyE7G9oijiiiuuiBNPPDGOOuqoXa7rqLmofDf2vk8pKytr8X5RFDs81tb67R/f3Uz2bnv6+b7zzjtj5syZ8ZOf/CT69+9fenzMmDExZsyY0vsf+chH4rjjjotZs2bFv//7v6fbOFnZnXM0cuTIGDlyZOn9sWPHxmuvvRbf+MY34qSTTtqjTPZ+e/r5njNnTuy///7xsY99rMXj7kW0xUxEKmYi9pSZiJTMRGzvkksuiV/96lfxxBNPtLm2I+aiLveKu379+kX37t13aDfXrl27Qwv6jrq6up2uLy8vjwMOOKDVNbvKZO+1J2foHT/84Q/jggsuiB/96EcxceLEVtd269YtTjjhBN/R2Ue15xy925gxY1qcEfeirqM9Z6goivjP//zPmDZtWvTo0aPVte5FvJuZiFTMRKRmJmJPmInY3qWXXho//elP45FHHokPfOADra7tqLmoyxV3PXr0iFGjRsWDDz7Y4vEHH3wwxo0bt9OPGTt27A7rFyxYEMcff3xUVFS0umZXmey99uQMRfzpu8rTp0+PO+64I84444w2/5yiKOLZZ5+NgQMHtnvP5GdPz9H2li1b1uKMuBd1He05QwsXLozf/OY3ccEFF7T557gX8W5mIlIwE/F+MBOxJ8xEvKMoirjkkkti7ty58fDDD8ewYcPa/JgOm4ve86+x2IfcddddRUVFRXHrrbcWL7zwQjFjxoyiV69epd8gc/XVVxfTpk0rrV+xYkXRs2fP4vLLLy9eeOGF4tZbby0qKiqKu+++u7Tmv//7v4vu3bsXX//614vly5cXX//614vy8vJi8eLFHX59vP929wzdcccdRXl5efGtb32rWL16delt/fr1pTUzZ84s5s+fX7zyyivFsmXLis9+9rNFeXl58dRTT3X49dExdvcc3XjjjcW8efOKl156qXjuueeKq6++uoiI4p577imtcS/qWnb3DL3jM5/5TDF69OidZroXdS1vvfVWsWzZsmLZsmVFRBQ33HBDsWzZsuJ///d/i6IwE9G23T1DZiJ2ZnfPkZmI7e3uGXqHmYh3XHzxxUVtbW3x6KOPtvj69Pbbb5fWdNZc1CWLu6Ioim9961vF0KFDix49ehTHHXdci1/xe/755xfjx49vsf7RRx8tjj322KJHjx7FwQcfXNx88807ZP74xz8uRo4cWVRUVBSHHXZYiy8c7Ht25wyNHz++iIgd3s4///zSmhkzZhRDhgwpevToURx44IHF5MmTi0WLFnXgFdEZducc/eu//mtxyCGHFFVVVUWfPn2KE088sbjvvvt2yHQv6lp29+vZ+vXri+rq6uK73/3uTvPci7qWRx55pNWvT2Yi2rK7Z8hMxM7s7jkyE7G9Pfl6Zibi3XZ2fiKiuO2220prOmsuKvv/GwQAAAAAMtLlfsYdAAAAAOwNFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwDQxT366KNRVlYW69ev7+ytAADwLoo7AIAuYPr06VFWVhZlZWVRUVERw4cPjyuvvDIaGxs7e2sAAOxCeWdvAACAjjFlypS47bbbYsuWLfH444/HhRdeGI2NjfHJT36ys7cGAMBOeMUdAEAXUVlZGXV1dTF48OA477zz4tOf/nTce++9peeXLl0axx9/fPTs2TPGjRsXL774Yum5V155Jc4+++wYMGBA7LfffnHCCSfEQw891CL/29/+dowYMSKqqqpiwIABcc4555SeK4oirr/++hg+fHhUV1fHMcccE3fffff7fs0AAHszxR0AQBdVXV0dW7ZsKb1/zTXXxDe/+c1YsmRJlJeXx+c+97nScxs2bIjTTz89HnrooVi2bFmceuqpMXXq1Fi1alVERCxZsiQuu+yy+NrXvhYvvvhizJ8/P0466aTSx//93/993HbbbXHzzTfH888/H5dffnl85jOfiYULF3bcBQMA7GXKiqIoOnsTAAC8v6ZPnx7r168vvcLuF7/4RZx++ukxYcKEuPjii+OUU06Jhx56KCZMmBAREffff3+cccYZ0dTUFFVVVTvNPPLII+Piiy+OSy65JObOnRuf/exn4/XXX4/evXu3WNfY2Bj9+vWLhx9+OMaOHVt6/MILL4y333477rjjjvfnogEA9nJ+xh0AQBfxs5/9LPbbb7/YunVrbNmyJc4+++yYNWtWvPDCCxER8aEPfai0duDAgRERsXbt2hgyZEg0NjbGV7/61fjZz34Wb7zxRmzdujWamppKr7ibNGlSDB06NIYPHx5TpkyJKVOmxMc//vHo2bNnvPDCC7Fx48aYNGlSi/1s3rw5jj322A66egCAvY/iDgCgizjllFPi5ptvjoqKihg0aFBUVFRERJSKu3fej4goKyuLiIjm5uaIiPi7v/u7eOCBB+Ib3/hGHHrooVFdXR3nnHNObN68OSIievfuHc8880w8+uijsWDBgvjHf/zHmDlzZjz99NOljPvuuy8OOuigFnuqrKx8fy8aAGAvprgDAOgievXqFYceeugefezjjz8e06dPj49//OMR8aefeffqq6+2WFNeXh4TJ06MiRMnxle+8pXYf//94+GHH45JkyZFZWVlrFq1KsaPH9/eywAA6DIUdwAAtOnQQw+NuXPnxtSpU6OsrCz+4R/+ofRKuog//W+4K1asiJNOOin69OkT999/fzQ3N8fIkSOjd+/eceWVV8bll18ezc3NceKJJ0ZDQ0MsWrQo9ttvvzj//PM78coAAPKluAMAoE033nhjfO5zn4tx48ZFv3794otf/GI0NDSUnt9///1j7ty5MXPmzNi4cWOMGDEi7rzzzjjyyCMjIuKf/umfon///nHdddfFihUrYv/994/jjjsuvvzlL3fWJQEAZM9vlQUAAACADHXr7A0AAAAAADtS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABk6P8B9lixg7hZNuMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import phaseogram, plot_phaseogram, plot_profile\n", + "from matplotlib.gridspec import GridSpec\n", + "\n", + "# Calculate the phaseogram\n", + "phaseogr, phases, times, additional_info = \\\n", + " phaseogram(events.time, cand_freqs_ef[0], return_plot=True, nph=nbin, nt=32)\n", + " \n", + "# ---- PLOTTING --------\n", + "\n", + "# Plot on a grid\n", + "plt.figure(figsize=(15, 15))\n", + "gs = GridSpec(2, 1, height_ratios=(1, 3))\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "mean_phases = (phases[:-1] + phases[1:]) / 2\n", + "plot_profile(mean_phases, np.sum(phaseogr, axis=1), ax=ax0)\n", + "# Note that we can pass arguments to plt.pcolormesh, in this case vmin\n", + "_ = plot_phaseogram(phaseogr, phases, times, ax=ax1, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examples of interactive phaseograms\n", + "\n", + "### First: shift the rows of the phaseogram interactively" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def shift_phaseogram(phaseogr, tseg, delay_fun):\n", + " \"\"\"Shift the phaseogram rows according to an input delay function.\n", + "\n", + " Parameters\n", + " ----------\n", + " phaseogr : 2-d array\n", + " The phaseogram, as returned by ``phaseogram``\n", + " freq : float\n", + " The pulse frequency\n", + " tseg : float\n", + " The integration time for each row of the phaseogram\n", + " delay_fun : function\n", + " Function that gives the delay (in seconds) for each row of the\n", + " phaseogram\n", + "\n", + " Returns\n", + " -------\n", + " phaseogram_new : 2-d array\n", + " The shifted phaseogram\n", + "\n", + " \"\"\"\n", + " # Assume that the phaseogram is repeated twice in phase\n", + " nbin = phaseogr.shape[0] / 2\n", + " ntimes = phaseogr.shape[1]\n", + "\n", + " times = np.arange(0, tseg * ntimes, tseg)\n", + " phase_delays = delay_fun(times) # This gives the delay in units of time!\n", + "\n", + " delayed_bins = np.array(np.rint(phase_delays * nbin), dtype=int)\n", + " phaseogram_new = np.copy(phaseogr)\n", + " for i in range(ntimes):\n", + " phaseogram_new[:, i] = np.roll(phaseogram_new[:, i], \n", + " delayed_bins[i])\n", + "\n", + " return phaseogram_new\n", + "\n", + "\n", + "def interactive_phaseogram(phas, binx, biny, df=0, dfdot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(biny))\n", + " tobs = tseg * phas.shape[0]\n", + " delta_df_start = 2 / tobs\n", + " df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** df_order_of_mag\n", + "\n", + " delta_dfdot_start = 8 / tobs ** 2\n", + " dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** dfdot_order_of_mag\n", + "\n", + " pcolor = plt.pcolormesh(binx, biny, phas.T, cmap='magma')\n", + " l, = plt.plot(np.ones_like(biny), biny, zorder=10, lw=2, color='w')\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Times')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " sfreq = Slider(axfreq, 'Delta freq x$10^{}$'.format(df_order_of_mag), \n", + " -delta_df, delta_df, valinit=df)\n", + " sfdot = Slider(axfdot, 'Delta fdot x$10^{}$'.format(dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=dfdot)\n", + " spepoch = Slider(axpepoch, 'Delta pepoch', \n", + " 0, biny[-1] - biny[0], valinit=0)\n", + "\n", + " def update(val):\n", + " fdot = sfdot.val * 10 ** dfdot_order_of_mag\n", + " freq = sfreq.val * 10 ** df_order_of_mag\n", + " pepoch = spepoch.val\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " new_phaseogram = shift_phaseogram(phas, tseg, delay_fun)\n", + " pcolor.set_array(new_phaseogram.T.ravel())\n", + " l.set_xdata(1 + delay_fun(biny - biny[0]))\n", + " fig.canvas.draw_idle()\n", + "\n", + " resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " def reset(event):\n", + " sfreq.reset()\n", + " sfdot.reset()\n", + " spepoch.reset()\n", + " pcolor.set_array(phas.T.ravel())\n", + " l.set_xdata(1)\n", + "\n", + " button.on_clicked(reset)\n", + "\n", + " sfreq.on_changed(update)\n", + " sfdot.on_changed(update)\n", + " spepoch.on_changed(update)\n", + " \n", + " spepoch._dummy_reset_button_ref = button\n", + "\n", + " plt.show()\n", + " return " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# f0 = 0.0001\n", + "# fdot = 0\n", + "# delay_fun = lambda times: times * f0 + 0.5 * times ** 2 * fdot\n", + "\n", + "# new_phaseogr = shift_phaseogram(phaseogr, times[1] - times[0], delay_fun)\n", + "# _ = plot_phaseogram(new_phaseogr, phases, times, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIcCAYAAADhfaE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB900lEQVR4nO3dd3hUVf7H8c+kTRJSSCENQhOkBRBBqQpKdylW3EURVuyCAqJrXVl3F1ZWBYUFyyJgxf0pKBYiIEURqYLSRKRISyBACCSkz/39gYxGkpMyySQzvF8+8zxmvufcOfdm5pDvnHPusVmWZQkAAAAA3MSnuhsAAAAA4MJCEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3A+B5HA6HDh8+rNDQUNlstupuDgAAqAEsy9Lp06eVkJAgH5/q+Z47JydHeXl5Lh8nICBAgYGBldAilIQkBOV2+PBhJSYmVnczANQABw4cUL169XTw4EH6BQCSfu0X3C0nJ0eNGtVVauoJl48VFxenvXv3kohUIZIQlFtoaKgkaUGHu1XLL6DYMs0apBmP8d2eOGP8irmtjPFPb9lpjEvSj6f9jfH7++42xr/bGGuM/9+BEGO8wGEZ413rOIzx7ELzt0hpuaWPQi06au6Ixzc1n0Mde04pbTB3zheFnTbGT2TbjfFCy3yOF8WkG+OS9PmeusZ4g2DzOV7x7iXGeNaERcZ40EXmbnbvl7WM8cSWJ43xwjPGsCTJP8p8Hf37mj9vZ97ZWmIsJjhIkhQdEKLFnUYXW4b+gP5Aoj+QvL8/OJ2Xr2ZvL3D+neBueXl5Sk09oX175yksLLjCxzl16owaNvqj8vLySEKqEEkIyu3cFKxafgGq5Vf8PxphAcUnJ+eUVM9ZP9TceQT7mutLUqCvuQ1hdtfaGOBj7ph8ZP6jI9i30BgvbclWoG/pQ91+NvM5lHYdQ/zM55BVUFr9XGM8t5RrXNofHaH+5t+hJAWVco61SjnH0t6LvqW814MCzd1sSAmJvPP1S3mfFhYYw5Ikf3spf3TUMr+X/QzneK4/sKnkzwz9Af3B2fr0B97eH5xT3VO1w8KCFRZmTuhQ/UhCAAAA4D0cjrMPV+qjypGEAAAAwHuQhHgEbtELAAAAwK0YCQEAAID3sKyzD1fqo8qRhAAAAMB7OCwXp2ORhLgDSQgAAAC8B2tCPAJrQgAAAAC4FSMhAAAA8B6MhHgEkhBUWFKLIyVuQpZWyu7BV/23oTH+6Q3bjHH/MozhRQaY53TmpJkPsvSIecfXpqVsCHtRSJ4xnu8wb+Z0WcxxY/y5rTHmBkjqERVtjDePSDXG39lj3iW6YS3zBmtv7TG38a+3mXepdmSZj//1V+bdjyXp9iezjPHFz5t30rZK2QDtnfUXGeNdfzbvUr3vtPmzclEdc/vtN7YwxiXpm0eOGuOdGv5sjG/fUfLvsW2+jwIk+fs71LZV8e8n+gP6A4n+QPL+/iCzwLwhpduQhHgEkhAAAAB4D8vFJMQiCXEH1oQAAAAAcCtGQgAAAOA1bJZDNhdGM1ypi7IjCQEAAID3YE2IRyAJAQAAgPdwWK5tOMhmhW7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEdgOhYAAAAAt2IkBAAAAN7DslzbcNBiYbo7kISgwk6mBqnQP6DYmJ9fobHuHb2OGOMtatuN8fwy9C0xdnOhY0dDjPHDZ8ydUGRt8+u/u8/88Qr1Nw9Ezthlbl+WTpgbIKlnYLQx/uqPscb4opN7jPG7AxoZ41fFZBnjM95rbIzf3Hy/Mb43K9AYl6TGc8zvtVax5vfqon7rjPGOUWeM8ZY35Bnj2fNyjHHfFubf0Y9Pm6+RJLW75KQxbru4hTEeEXSoxJiP7eznxFFoU3pKULFl6A/oDyT6A8n7+wO/AvP5uQ3TsTwCSQgAAAC8B7fo9QisCQEAAADgVoyEAAAAwHswHcsjkIQAAADAe1guJiGuLGpHmTEdCwAAAF7D5nC4/CiPL7/8UgMHDlRCQoJsNps+/PDDIvHMzEyNGjVK9erVU1BQkFq0aKGZM2cWKZObm6vRo0crOjpatWrV0qBBg3Tw4EFXL0WNRhICAAAAVFBWVpbatm2r6dOnFxsfO3askpOT9dZbb2nHjh0aO3asRo8erY8++shZZsyYMVqwYIHmzZunVatWKTMzUwMGDFBhofmObZ6M6VgAAADwHpbl2l4f5azbv39/9e/fv8T4N998o+HDh6tHjx6SpLvuukuvvPKKNmzYoMGDBysjI0OzZs3Sm2++qV69ekmS3nrrLSUmJmrp0qXq27dvhU+lJmMkBAAAAN7j3MJ0Vx6STp06VeSRm5tboeZ069ZNCxcu1KFDh2RZlpYvX64ff/zRmVxs3LhR+fn56tOnj7NOQkKCkpKStHr1atevRw1FEgIAAADvUUlJSGJiosLDw52PSZMmVag5L730klq2bKl69eopICBA/fr104wZM9StWzdJUmpqqgICAhQREVGkXmxsrFJTU127FjUY07EAAACA3zlw4IDCwsKcP9vt9god56WXXtKaNWu0cOFCNWjQQF9++aXuu+8+xcfHO6dfFceyLNlstgq9picgCUGFncmxy6cgoNjYxXcGGuu2+cm1D9Wm9NIXar08YK8xfs8njYxxfx/znNBCyzyQGOpvjn+U+YUx/kS9nsZ4kG+QMS5JsYE5xvi+rOJ/f+c8HN7AGK8XlG2M78o0t/HWNubf0fYDdYzxyIACY1yS3t8bb4zf2CjFGO9Q74gxHvOvzsb4W0P2G+PDZkcb48cmbTLGExJLvwZfrKtvjPcO3mGM/9++piXG7i/0VZjOTqHOyi7+H2j6A/oDif5A8v7+IKfQ/B5zm0raMT0sLKxIElIR2dnZevzxx7VgwQL94Q9/kCS1adNGmzdv1nPPPadevXopLi5OeXl5Sk9PLzIacvToUXXp0sWl16/JmI4FAAAA71FJ07EqQ35+vvLz8+XjU/RPbl9fXzl+eZ327dvL399fS5YsccZTUlK0detWr05CGAkBAACA93BYLu6YXr5RlMzMTP3000/On/fu3avNmzcrMjJS9evXV/fu3fXwww8rKChIDRo00MqVK/XGG2/ohRdekCSFh4dr5MiReuihhxQVFaXIyEiNHz9erVu3Nk7X8nQkIQAAAEAFbdiwQVdddZXz53HjxkmShg8frjlz5mjevHl67LHHdMstt+jEiRNq0KCB/vnPf+qee+5x1pkyZYr8/Pw0ZMgQZWdnq2fPnpozZ458fX3dfj7uQhICAAAA7+HmfUJ69Oghy1AnLi5Os2fPNh4jMDBQ06ZN07Rp08r12p6MJAQAAADew9V1HZW4JgQlY2E6AAAAALdiJAQAAADew3LxFr2uTOVCmZGEAAAAwHswHcsjkIQAAADAe5CEeATWhAAAAABwK0ZCUGH1mp5UWEBAsTGr+yBj3eahm1x67csi80sts3pbPWP8tkbmYzz24zFj/OqAeGP8h8xMY3x99+bG+F/WmL+JaRdV+r3DswuL//2cM6BBqjG+6WiUMX48z3z8jlEnjfHSXN41xRifs6hJqccYWC/NGI+KyzLGDx8IN8YD//6lMX51fbsxbiUkGeNRz5s3qjp8/wpjXJKaR5w0xk/t8zfGu9c5XWLM7nP2fernZ6l+s+Jfh/6A/kCiP5C8vz/IKsiVfiox7D4OF9eEuFIXZUYSAgAAAO9hOc4+XKmPKkcSAgAAAO/BSIhHYE0IAAAAALdiJAQAAADeg7tjeQSSEAAAAHgPpmN5BJIQAAAAeA+H5eJICEmIO7AmBAAAAIBbMRICAAAA78F0LI9AEgIAAAAv4uI+IWJhujswHQsAAACAWzESUkNMmjRJ8+fP1w8//KCgoCB16dJFzz77rJo1a+YsM2LECM2dO7dIvY4dO2rNmjXOn3NzczV+/Hi9++67ys7OVs+ePTVjxgzVq1fPWSY9PV0PPPCAFi5cKEkaNGiQpk2bptq1a5erzYHD2iswJKjY2EtX7TDWvTSiwBjffqpWKfVzzY2T5O9j/iYj0m4+xk0x9YzxJiGnjfG+ceHGeET8UWO8caj547kyNccYl6Qpl580xr84GGuM78vyNcabhpp/j7WDzW08djzEGN9zOMAYH3rZbmNckoLbBBrjeT+Zh923p5t/jxdPvtgYD/tmu/n1n11ojPsn2I3xsnyX1LBHtvkIt/c3t2H8JyXH/H75nNUKUODIy4stQ39AfyDRH0je3x+cysuT1pQYdh+mY3kERkJqiJUrV+r+++/XmjVrtGTJEhUUFKhPnz7KysoqUq5fv35KSUlxPj777LMi8TFjxmjBggWaN2+eVq1apczMTA0YMECFhYXOMkOHDtXmzZuVnJys5ORkbd68WcOGDXPLeQIAAFSpc0mIKw9UOUZCaojk5OQiP8+ePVsxMTHauHGjrrzySufzdrtdcXFxxR4jIyNDs2bN0ptvvqlevXpJkt566y0lJiZq6dKl6tu3r3bs2KHk5GStWbNGHTt2lCS99tpr6ty5s3bu3Flk5OWc3Nxc5eb++i3hqVOnXD5fAACAKsFmhR6BkZAaKiMjQ5IUGRlZ5PkVK1YoJiZGF198se68804dPfrrEP7GjRuVn5+vPn36OJ9LSEhQUlKSVq9eLUn65ptvFB4e7kxAJKlTp04KDw93lvm9SZMmKTw83PlITEystPMEAADAhYckpAayLEvjxo1Tt27dlJSU5Hy+f//+evvtt7Vs2TI9//zzWr9+va6++mrnKEVqaqoCAgIUERFR5HixsbFKTU11lomJiTnvNWNiYpxlfu+xxx5TRkaG83HgwIHKOlUAAIDKxXQsj8B0rBpo1KhR+v7777Vq1aoiz998883O/09KSlKHDh3UoEEDffrpp7r++utLPJ5lWbLZbM6ff/v/JZX5LbvdLru9tMVwAAAANQAL0z0CIyE1zOjRo7Vw4UItX768yB2tihMfH68GDRpo165dkqS4uDjl5eUpPT29SLmjR48qNjbWWebIkSPnHSstLc1ZBgAAwGOdWxPiygNVjiSkhrAsS6NGjdL8+fO1bNkyNWrUqNQ6x48f14EDBxQfHy9Jat++vfz9/bVkyRJnmZSUFG3dulVdunSRJHXu3FkZGRlat26ds8zatWuVkZHhLAMAAABUJaZj1RD333+/3nnnHX300UcKDQ11rs8IDw9XUFCQMjMzNWHCBN1www2Kj4/Xvn379Pjjjys6OlrXXXeds+zIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOydsQAAADyKZZ19uFIfVY4kpIaYOXOmJKlHjx5Fnp89e7ZGjBghX19fbdmyRW+88YZOnjyp+Ph4XXXVVXrvvfcUGhrqLD9lyhT5+flpyJAhzs0K58yZI1/fXzeZevvtt/XAAw8476I1aNAgTZ8+vepPEgAAoKqxJsQjkITUEFYpWXdQUJA+//zzUo8TGBioadOmadq0aSWWiYyM1FtvvVXuNv6e4+vtcgQWv4PtXVebd2QNvLL4vU7OuWzNT8b4yX2lL5TfnhJtjMdFmnc4Dk2rbYyH2fOM8Y9Tjxvj+cuaGuM3JJ4wxvecDjPGJWnTsShjfN7P5t/Ta13Ne8Lk5pu7kDqJmcb44o0NjPFv082/59J2wZak6GNZxvjJrEhj/Momh4zxY5MOG+NZmeZzaDDs/LvVFTn+gnRjPCs7yBiXJJ9bexjj+/+8zBhP/PjPJcZstl92M8/Nl2PllmLL0B/QH0j0B5L39wfWqSzpvXmltqHKkYR4BNaEAAAAAHArRkIAAADgPSwX73BlcXcsdyAJAQAAgPdgOpZHIAkBAACA93DIxSSk0loCA9aEAAAAAHArRkIAAADgPZiO5RFIQgAAAOA1LIcly4VEwpW6KDumYwEAAABwK0ZCAAAA4D0s6+zDlfqociQhAAAA8B6sCfEIJCGouALH2UcxMo/6G6u+OiHUGO9XN6fCzTrnYLbdGF+1pb4x/uGxg6W8Ql1j9OGm+cb4lgzz0f+9PcwYH3lRrvkAkrafCjLGb6wfbIwfPmW+T+GiFHMb07ZHG+OXRZk7+kF1T5by+hHGuCT9Kdj8XrqoxQlj3K+OrzF+cpvNGH/1hwRj/O8DOxjj+2YuNcYjgsrwWfn4K2M4MND8Xk276a0SY3VebSPfKLski/7AgP6A/kDy/v7gdH5e6a/vDiQhHoE1IQAAAADcipEQAAAAeA9GQjwCSQgAAAC8B0mIRyAJAQAAgNewLBf3CeHuWG7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEcgCQEAAID3IAnxCKwJAQAAAOBWjIQAAADAe1jW2Ycr9VHlSEJQYcsX1FEtP3uxsYPZAca6NzQ5aIz7+TmM8QPHws2Nk7Qs1WaMd65j7mRebFnbGJ9/0Hz8qADzQGO+w1w/0Ndcf+2JYGNckpqH5hnjJ/LMXcDSI6HG+OP9fzTGA3vVM8Z//E+mMf7tsQhj/GiOMSxJiorLMsaP7Akxxg9vNsc7Dc82xv85vpYxrm/WG8MdHjX/nj+dEGg+vqScD8zXuaDQfAw/35I/j1EOH/lKys321cr/iym2DP0B/YFEfyB5f3+QWVAz/qy0HGcfrtRH1asZ7xYAAACgMrAmxCOwJgQAAACAWzESAgAAAO/BSIhHIAkBAACA12BNiGdgOhYAAAAAt2IkBAAAAN7DcnE6FrfodQuSEAAAAHgPxy8PV+qjypGEAAAAwGtYDkuWCyMhrtRF2bEmBAAAAIBbMRICAAAA78F0LI9AEoIK6/mYr8KCfYuN3TrCPJS5NaOeMX5T4mlj/NLLU82Nk3RjTmCpZUze3lfLGI+024zxLRn+xvj645nG+HGfdGO8V1ycMS5JR3PNbTiRZz6H2EDz77Hnm5HG+PzDacb49nTzOYT6FxrjXaKNYUnS4QPhxvhFV2eZ638aYow7jp0xxq1F3xvj739Y3xi/acghY7xP7wJjXJLWrjBf5y7XnTDGdywyfxYkyR4m9Xma/qAk9Af0B9KF0x9UO+uXhyv1UeVIQgAAAOA1WBPiGVgTAgAAAMCtGAkBAACA92BNiEcgCQEAAIDXsBxnH67UR9UjCQEAAID3YCTEI7AmBAAAAKigL7/8UgMHDlRCQoJsNps+/PDD88rs2LFDgwYNUnh4uEJDQ9WpUyft37/fGc/NzdXo0aMVHR2tWrVqadCgQTp48KAbz8L9SEIAAADgNc5Nx3LlUR5ZWVlq27atpk+fXmx89+7d6tatm5o3b64VK1bou+++01NPPaXAwF9vHT5mzBgtWLBA8+bN06pVq5SZmakBAwaosNB8a2pPxnQsAAAAeA9Lrk2p+uUOvadOnSrytN1ul91uP694//791b9//xIP98QTT+iaa67R5MmTnc81btzY+f8ZGRmaNWuW3nzzTfXq1UuS9NZbbykxMVFLly5V3759XTiZmouREAAAAOB3EhMTFR4e7nxMmjSp3MdwOBz69NNPdfHFF6tv376KiYlRx44di0zZ2rhxo/Lz89WnTx/ncwkJCUpKStLq1asr41RqJJIQAAAAeA3Lcv0hSQcOHFBGRobz8dhjj5W7LUePHlVmZqb+9a9/qV+/flq8eLGuu+46XX/99Vq5cqUkKTU1VQEBAYqIiChSNzY2VqmpqS5fj5qK6ViosLyvflaePaDY2OsjzHXXfR1vjBdaNmP8/nebmF9AUoMQ8zH8S0nBp921xxhf9lmCMf7D6UBjfFgjc3xTej1j/PU9Wca4JN3V5Pxh4986eMbfGB9Y77gxPrz3CWN8zHvm39PYlseM8e9PRBjjPS4qfdHe/B0NjPFTi4p/D5/j72Me0/+//5l/TzffmWaM92l2wBi3+fsa44uXJBrjknTNnRnGuGUOq+UNeSXGbEG//GudW6i8FfuKLUN/QH8g0R9I3t8fnMrOl1aW2oQqV1m36A0LC1NYWJhLbXE4zh5s8ODBGjt2rCTpkksu0erVq/Xyyy+re/fuJbfDsmSzmfsuT8ZICAAAALyHoxIelSQ6Olp+fn5q2bJlkedbtGjhvDtWXFyc8vLylJ6eXqTM0aNHFRsbW3mNqWFIQgAAAIAqEBAQoMsuu0w7d+4s8vyPP/6oBg3Ojsy1b99e/v7+WrJkiTOekpKirVu3qkuXLm5trzsxHQsAAABew907pmdmZuqnn35y/rx3715t3rxZkZGRql+/vh5++GHdfPPNuvLKK3XVVVcpOTlZH3/8sVasWCFJCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3YiSkhpg0aZIuu+wyhYaGKiYmRtdee+15WbNlWZowYYISEhIUFBSkHj16aNu2bUXKlGWzm/T0dA0bNsx5t4dhw4bp5MmTVX2KAAAAVa6yFqaX1YYNG9SuXTu1a9dOkjRu3Di1a9dOf/3rXyVJ1113nV5++WVNnjxZrVu31n//+1998MEH6tatm/MYU6ZM0bXXXqshQ4aoa9euCg4O1scffyxfX/M6IE9GElJDrFy5Uvfff7/WrFmjJUuWqKCgQH369FFW1q+LDSdPnqwXXnhB06dP1/r16xUXF6fevXvr9OnTzjJl2exm6NCh2rx5s5KTk5WcnKzNmzdr2LBhbj1fAACAKuGwuf4ohx49esiyrPMec+bMcZa5/fbbtWvXLmVnZ2vz5s0aPHhwkWMEBgZq2rRpOn78uM6cOaOPP/5YiYml32jAkzEdq4ZITk4u8vPs2bMVExOjjRs36sorr5RlWZo6daqeeOIJXX/99ZKkuXPnKjY2Vu+8847uvvvuMm12s2PHDiUnJ2vNmjXq2LGjJOm1115T586dtXPnTjVr1uy8tuXm5io3N9f58+837wEAAADKg5GQGioj4+w98iIjIyWdnV+YmppaZCMbu92u7t27OzeyKctmN998843Cw8OdCYgkderUSeHh4SVuiDNp0qQim/V4e2YOAAA817k1Ia48UPVIQmogy7I0btw4devWTUlJSZLk3Kzm97dq++1GNmXZ7CY1NVUxMTHnvWZMTEyJG+I89thjRTbrOXDAfB9zAACA6mJZNpcfqHpMx6qBRo0ape+//16rVq06L/b7TWvKspHN78sUV950HLvdLrvdvMkVAABATeDuu2OhYhgJqWFGjx6thQsXavny5apX79edV+Pi4iTpvNGK325kU5bNbuLi4nTkyJHzXjctLc2rN8QBAABAzcFISA1hWZZGjx6tBQsWaMWKFWrUqFGReKNGjRQXF6clS5Y4bwGXl5enlStX6tlnn5VUdLObIUOGSPp1s5vJkydLkjp37qyMjAytW7dOl19+uSRp7dq1ysjIKPeGOD7BvvIJLP7WcZu/iDLW7dij+Klf55zYEWCMX5fvb26cpKva7TfG135f1xif8V5jY/xMoTGsr45kG+Nz+5yfDP7Wum8aGuPtImuZGyDpi1TzfQb7xuca49N/iDTGb8kxj5C1CDeP0u07FWqM1w0yX8NFP5a+PmnoZbuN8fU7EozxVceCjfG/XLfLGM/dbgyrlvnl5VPX/Dvod12K+QCSrCxzV39inflrv8KC/BJjdYZY8g2RZJN8atEflIT+gP5A8v7+4HR+yTF3siwXR0LKeYteVAxJSA1x//3365133tFHH32k0NBQ54hHeHi4goKCZLPZNGbMGE2cOFFNmzZV06ZNNXHiRAUHB2vo0KHOsqVtdtOiRQv169dPd955p1555RVJ0l133aUBAwYUe2csAAAAT+Lqug7WhLgHSUgNMXPmTEln7zX9W7Nnz9aIESMkSY888oiys7N13333KT09XR07dtTixYsVGvrrt0dTpkyRn5+fhgwZouzsbPXs2VNz5swpstnN22+/rQceeMB5F61BgwZp+vTpVXuCAAAA7uCwySrnXh+/r4+qRxJSQ1hlGPuz2WyaMGGCJkyYUGKZc5vdTJs2rcQykZGReuuttyrSTAAAAMBlJCEAAADwGpbl2roO1oS4B0kIAAAAvAZrQjwDt+gFAAAA4FaMhAAAAMBrWC4uTHdpUTvKjCQEAAAAXoM1IZ6BJAQAAABegzUhnoE1IQAAAADcipEQVNiOr2orxM9ebKzDKHN++/6zDY3x70/6G+OD6p40xiXpsw2NjPEdp8xv//xS5oReGpFrjB86E2SM374k3hgf2rDAGN93pvSPb90g8zl8czzAGP/nFXuN8U9/qG+MNw/NMcYXHCz+/XPOqOZZxvgNrVKNcUnyCzfHewzLMMf9M43xJf9NNMYvqm0+fnzDU8Z44b50Y9y3YYQxXhYhMUeN8cBe9UoOBp/dCDU/10fblxffFvoD+gOJ/kDy/v4g6Eyu9LHLTXCZw2GTw4V1Ha7URdmRhAAAAMBrsCbEM5CEAAAAwGuwJsQzsCYEAAAAgFsxEgIAAACvwUiIZyAJAQAAgNdwWDY5XEgkXKmLsiMJAQAAgNdgx3TPwJoQAAAAAG7FSAgAAAC8Brfo9QwkIQAAAPAaDrm4JkRMx3IHpmMBAAAAcCtGQlBhrZ+OV1itwGJj+Z9uMdZtGhpljDesZc6PE6MzzI2TtOBgbWP8vqQDxrifn8MY/+5QjDHeLz7XGN+SYTfGN500hvVA64PmApKyss2vcTy7+N/fOct2JRrj/jbzmHW3S8zXeO2Jpsb4qdwAYzxlX5gxLkkpmbWM8Y7+qca4/42XGeM9dq0zxlesNF/Do9uCjfGc732N8bUnzPUladzgXcb4mWPmfwoci0p+rwVdWShbkOQf5qu2ExOKLUN/QH8g0R9I3t8fnMnLK/X13YFb9HoGkhAAAAB4DcvFW/SShLgHSQgAAAC8BiMhnoE1IQAAAADcipEQAAAAeA3HLw9X6qPqkYQAAADAazAdyzOQhAAAAMBrOCy5tk8ImxW6BWtCAAAAALgVIyEAAADwGkzH8gwkIQAAAPAaZ6djuVYfVY8kBBW3+5AUVPwOvFa++RP88q7axvgtDbOM8dQToca4JDWoZb6/RU6uvzH+zo5YYzw20HyOB8+YZzve3/ZnY/y+FfHG+Lxd9YxxScov5RYfzUPNu9u2iUw3xufvr2OMv7W6iTHeOtz8+jtOmXc3rh9Z+k7Zx46bd1k+usW8S/S2pSnG+KUNzO+jPveZ38s5608Y4351zDskRy6PMMYlaf6SRsb4zXemGeO2pob3YtAv/4wUFEq7it9Jmf6A/kCiP5C8vz8oyMqRZpfahCrHSIhnYE0IAAAAALdiJAQAAABewyGbHHLh7lgu1EXZkYQAAADAa1jW2Ycr9VH1mI7lggMHDujgwV/nQK9bt05jxozRq6++Wo2tAgAAuHA5LJvLD1Q9khAXDB06VMuXL5ckpaamqnfv3lq3bp0ef/xxPfPMM9XcOgAAAKBmIglxwdatW3X55ZdLkv73v/8pKSlJq1ev1jvvvKM5c+ZUb+MAAAAuQNYva0Iq+rBYE+IWrAlxQX5+vuz2s7eoXbp0qQYNGiRJat68uVJSzLfxAwAAQOVjTYhnYCTEBa1atdLLL7+sr776SkuWLFG/fv0kSYcPH1ZUVFQ1tw4AAAComUhCXPDss8/qlVdeUY8ePfSnP/1Jbdu2lSQtXLjQOU0LAAAA7sPCdM/AdCwX9OjRQ8eOHdOpU6cUEfHrLqV33XWXgoODq7FlAAAAFybLxXUdrAlxD5IQF1mWpY0bN2r37t0aOnSoQkNDFRAQcEEkIYc/ytFpf0exsazs2sa6h87kGeOd+hw1xpd9lmCMS9LQy3Yb45NWNDXGH+n6kzG+aGuDUlpgHmh8dHU9Y3xGj4PG+Hs/1C/l9aVN6YXG+Ol8uzGeUxhhjHevc9oYP5JjPv7RXH9jPMzP3P7P95X+PmgfmWGMZ2Wb29jtkgPGeHpKkDFesM/8+vaWIcZ4ac4UlN6NX9XosDFu5Znfq44N+0qM+V5eIAVKhdmWUj/ILrYM/YFEf0B/IHl/f1CYY/4su4vDOvtwpT6qHkmIC37++Wf169dP+/fvV25urnr37q3Q0FBNnjxZOTk5evnll6u7iQAAAECNw5oQFzz44IPq0KGD0tPTFRT067cf1113nb744otqbBkAAMCFiTUhnoGREBesWrVKX3/9tQICAoo836BBAx06dKiaWgUAAHDhYk2IZyAJcYHD4VBh4flzVA8ePKjQ0NBqaBEAAMCFjTUhnoHpWC7o3bu3pk6d6vzZZrMpMzNTTz/9tK655prqaxgAAABQgzES4oIpU6boqquuUsuWLZWTk6OhQ4dq165dio6O1rvvvlvdzQMAALjgMB3LM5CEuCAhIUGbN2/Wu+++q2+//VYOh0MjR47ULbfcUmShOgAAANyD6ViegelYLgoKCtLtt9+u6dOna8aMGbrjjjsqlIB8+eWXGjhwoBISEmSz2fThhx8WiY8YMUI2m63Io1OnTkXK5ObmavTo0YqOjlatWrU0aNAgHTxY9N7y6enpGjZsmMLDwxUeHq5hw4bp5MmT5W4vAABATcTdsTwDIyEuOnTokL7++msdPXpUDkfRjfseeOCBMh8nKytLbdu21Z///GfdcMMNxZbp16+fZs+e7fz593flGjNmjD7++GPNmzdPUVFReuihhzRgwABt3LhRvr6+kqShQ4fq4MGDSk5OlnR2d/dhw4bp448/LnNbAQAAAFeQhLhg9uzZuueeexQQEKCoqCjZbL9mzjabrVxJSP/+/dW/f39jGbvdrri4uGJjGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fbVjxw4lJydrzZo16tixoyTptddeU+fOnbVz5041a9as2GPn5uYqNzfX+fOpU6fKfF4AAADuZP3ycKU+qh5JiAv++te/6q9//asee+wx+fhU/cy2FStWKCYmRrVr11b37t31z3/+UzExMZKkjRs3Kj8/X3369HGWT0hIUFJSklavXq2+ffvqm2++UXh4uDMBkaROnTopPDxcq1evLjEJmTRpkv72t7+d93ytsFyFBBT/UT12qpbxXN4ccNAYtwX4GuNlcTzV3IZIu7mb2bIn1nz8PHMbN5/IMcZ7xduN8bd21DfGO0ZmGuOS1DzU/BF/ZZfDGD+V72+MRwaY49H2PGN8d1aAMX66wNz+fgnHjXFJ+vZ4bWN812nzazySmGGMR8RnG+MfLmxkjA/ovNcY9wk2hnUiL9JcQFLnBxubCxw2X8czK46WGAsqlGySfHwshYTnFluG/oD+QKI/kLy/P8jNyy/19d3BkmtTqliY7h6sCXHBmTNn9Mc//tEtCUj//v319ttva9myZXr++ee1fv16XX311c4RitTUVAUEBCgiIqJIvdjYWKWmpjrLnEtafismJsZZpjiPPfaYMjIynI8DBw5U4pkBAABUHkclPFD1GAlxwciRI/V///d/evTRR6v8tW6++Wbn/yclJalDhw5q0KCBPv30U11//fUl1rMs67xpYqWV+T273S673fwtHQAAAFBWJCEumDRpkgYMGKDk5GS1bt1a/v5Fh6JfeOGFKnvt+Ph4NWjQQLt27ZIkxcXFKS8vT+np6UVGQ44ePaouXbo4yxw5cuS8Y6WlpSk21jzVAAAAwBNYlk2WK9OxuDuWW5CEuGDixIn6/PPPnWspShtxqEzHjx/XgQMHFB8fL0lq3769/P39tWTJEg0ZMkSSlJKSoq1bt2ry5MmSpM6dOysjI0Pr1q3T5ZdfLklau3atMjIynIkKAACAJ3N1ShXTsdyDJMQFL7zwgl5//XWNGDHC5WNlZmbqp59+cv68d+9ebd68WZGRkYqMjNSECRN0ww03KD4+Xvv27dPjjz+u6OhoXXfddZKk8PBwjRw5Ug899JCioqIUGRmp8ePHq3Xr1s67ZbVo0UL9+vXTnXfeqVdeeUXS2Vv0DhgwoMRF6QAAAEBlY2G6C+x2u7p27Vopx9qwYYPatWundu3aSZLGjRundu3a6a9//at8fX21ZcsWDR48WBdffLGGDx+uiy++WN98841CQ0Odx5gyZYquvfZaDRkyRF27dlVwcLA+/vhj5x4hkvT222+rdevW6tOnj/r06aM2bdrozTffrJRzAAAAqG7ndkx35VEepW04/Vt33323bDabpk6dWuT5smw47W0YCXHBgw8+qGnTpumll15y+Vg9evSQZZX8rv/8889LPUZgYKCmTZumadOmlVgmMjJSb731VoXaCAAAUNNZsrl0m93y1i3LhtOS9OGHH2rt2rVKSEg4L1aWDae9DUmIC9atW6dly5bpk08+UatWrc5bmD5//vxqahkAAMCFqSKjGb+vXx5l2XD60KFDGjVqlD7//HP94Q9/KBIry4bT3ogkxAW1a9c23h4XAAAAnunUqVNFfq7olgUOh0PDhg3Tww8/rFatWp0XL8uG096IJMQFs2fPru4mAAAA4DcqazpWYmJikeeffvppTZgwodzHe/bZZ+Xn56cHHnig2HhZNpz2RiQhqLDDqeE65Vf8NwItux431l217Pz5kL8V+nO+MR5pzzU3TtInP8cZ4zc2SjHG39gVb4wHl/LpCS5lDmdCUIEx/sye/cZ4l6g65gZIWnUsyBhvEm4ec37x4ExjvMBxjzE+8iLz7ynQx/z6sYGFxviWE+HGuCTF2s3vpfQ88+8p5MYG5hfIOGMMx23NMcY3bTa/TzsX/2+WU99ah8wFJFnxVxjjuf+3wxg/k+5fYizwl3tZFhb66ODh2sWWoT+gP5DoDyTv7w+y812YA1WJKms61oEDBxQWFuZ8viKjIBs3btSLL76ob7/9ttzbN5S2mbSnIwkpp0svvVRffPGFIiIi1K5dO+Ob49tvv3VjywAAAFBZSUhYWFiRJKQivvrqKx09elT169d3PldYWKiHHnpIU6dO1b59+8q04bQ3Igkpp8GDBzsz4WuvvbZ6GwMAAIAaa9iwYc7F5uf07dtXw4YN05///GdJZdtw2huRhJTT008/rdtvv10vvviinn766epuDgAAAH7D3bfoNW04Xb9+fUVFRRUp7+/vr7i4OOdG0WXZcNobsVlhBcydO1fZ2dnV3QwAAAD8juXiRoWGbduKZdpwuqzKsuG0t2EkpAJMmwoCAACg+jh+ebhSvzxK23D69/bt23fec2XZcNrbMBJSQd58twIAAACgKjESUkEXX3xxqYnIiRMn3NQaAAAASJJl2WRZLqwJcaEuyo4kpIL+9re/KTy89HuSAwAAwH3cPR0LFUMSUkF//OMfFRMTU93NAAAAADwOSUgFsB4EAACgZqqszQpRtUhCKoC7Y50VE5mpUP+8YmN+Dc07jLaMP2aMf7M/zhjv1viwuXGS2nQ6aozvWBdtjLcIKzDG6waZb9O8Pi3IGN+U7m+MXx7YyBj/KbP0AeNu0eY2xpZyDhEB9xrj/ePTjfGFhyKM8ZsbphnjjbudNsbXL6ljjEtSTK0zxnj3rgeMcceP5t/jlg9rGePdJpinbe5+7ogxXrAjyxjfttx8jSWplb4yxn2CzfWX7qpXYmxwga+CJfn4OBQbVfzvi/6A/kCiP5C8vz84U5hb6uu7g/XLw5X6qHokIRXgcDBbEAAAoCY6OxJS8VkrjIS4B7foBQAAAOBWjIQAAADAazAdyzOQhAAAAMBrsDDdM5CEAAAAwGuwT4hnYE0IAAAAALdiJAQAAABew7LOPlypj6pHEgIAAACvYckmhyp+i17LhbooO5IQAAAAeA1GQjwDa0IAAAAAuBUjIaiwqEfbKywkqNhY/jurS6kdYIy2jko3xjMyin/dIvaVXsSkblC2MR5T64wxfmMDcxvf2JNjjN/UwPzx3HW69I/vD6fMZfrHFxjj/qV8TbH2eG1j/IFOu43xoHjzPUiWfZZojPcZk2uMS9KxBebf438/b2KMH842X4S7mh82xn+cnGaM1292yhj/cGEjY7xF7QxjXJJ8apnfBy/Oa2yM39Gh5N9joH/h2dcIC1D005cXW4b+gP5Aoj+QvL8/OJWXJ31fahOqHHfH8gwkIQAAAPAa7BPiGUhCAAAA4DXYMd0zsCYEAAAAgFsxEgIAAACvwXQsz0ASAgAAAK/BLXo9A9OxAAAAALgVIyEAAADwGtyi1zOQhAAAAMBrsCbEM5CEAAAAwGtwi17PwJoQAAAAAG7FSAgq7Nk/pSnQN7DYWMfIesa6ve84ZYz7LjljjP/3u4bGuCRdWjvHGA/2KzDGt5+qZYwfTAkzxj88sdsYf6VVHWN8UUrx1/aclmH5xrgkbTpp/ogfPGN+jfVp5muUUMt8/DFLGhnjU3vvNcYPZgcY4/+aYG6/JD36rPkYUX8rNMbv/MNPxnh2ivm7nPAbEozxH/9jDOvGv5u/k1v1T7v5AJJ0Tz9j+MGs94zxnJ9L/17w9HGHpl57tNgY/QH9gUR/IHl/f+BbQ24rxXQsz0ASAgAAAK9hySZLNpfqo+qRhAAAAMBrWHJtNIOBEPdgTQgAAAAAt2IkBAAAAF6DNSGegSQEAAAAXoNb9HoGkhAAAAB4DUZCPANrQgAAAAC4FSMhAAAA8BrWL/+5Uh9VjyQEAAAAXoPpWJ6B6VgAAAAA3IqRkBriyy+/1L///W9t3LhRKSkpWrBgga699lpn3LIs/e1vf9Orr76q9PR0dezYUf/5z3/UqlUrZ5nc3FyNHz9e7777rrKzs9WzZ0/NmDFD9erVc5ZJT0/XAw88oIULF0qSBg0apGnTpql27drlbvPo7rsVFhBQbOyzDY2Mdb+eE2yMB/rajfGbGh4xN05SoD3fGP98X4Ixnu8wH79NbfPxH+luPsDwDwON8ea1za//9bHSP76jm6cZ474+5jYuTY0xxq+sk2eMh/sXGOPvbW5sjDcNyTbG+zY8YYxL0rZpQcb4ppNRxvjxT5sY4w1rma/BJa+bfwcN25nPUbXijeGY4JPm+pIKnnnHGPeLMX/efvgpvMRY2wIfBUgKsRfooat3FVuG/oD+QKI/kLy/P8gsyC319d2Bu2N5BkZCaoisrCy1bdtW06dPLzY+efJkvfDCC5o+fbrWr1+vuLg49e7dW6dPn3aWGTNmjBYsWKB58+Zp1apVyszM1IABA1RYWOgsM3ToUG3evFnJyclKTk7W5s2bNWzYsCo/PwAAAHc4Nx3LlQeqHiMhNUT//v3Vv3//YmOWZWnq1Kl64okndP3110uS5s6dq9jYWL3zzju6++67lZGRoVmzZunNN99Ur169JElvvfWWEhMTtXTpUvXt21c7duxQcnKy1qxZo44dO0qSXnvtNXXu3Fk7d+5Us2bNin393Nxc5eb++u3GqVOnKvPUAQAAKo1lnX24Uh9Vj5EQD7B3716lpqaqT58+zufsdru6d++u1atXS5I2btyo/Pz8ImUSEhKUlJTkLPPNN98oPDzcmYBIUqdOnRQeHu4sU5xJkyYpPDzc+UhMTKzsUwQAAMAFhCTEA6SmpkqSYmNjizwfGxvrjKWmpiogIEARERHGMjEx58/pjYmJcZYpzmOPPaaMjAzn48CBAy6dDwAAQFVxVMIDVY/pWB7EZrMV+dmyrPOe+73flymufGnHsdvtstvNC9UAAABqAm7R6xkYCfEAcXFxknTeaMXRo0edoyNxcXHKy8tTenq6scyRI+ffRSYtLe28URYAAACPZP26LqQiD26P5R4kIR6gUaNGiouL05IlS5zP5eXlaeXKlerSpYskqX379vL39y9SJiUlRVu3bnWW6dy5szIyMrRu3TpnmbVr1yojI8NZBgAAAKhqTMeqITIzM/XTTz85f967d682b96syMhI1a9fX2PGjNHEiRPVtGlTNW3aVBMnTlRwcLCGDh0qSQoPD9fIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOKdsQAAADyJq+s6WBPiHiQhNcSGDRt01VVXOX8eN26cJGn48OGaM2eOHnnkEWVnZ+u+++5zbla4ePFihYaGOutMmTJFfn5+GjJkiHOzwjlz5sjX19dZ5u2339YDDzzgvIvWoEGDStybBAAAwNNwi17PYLMsLjXK59SpUwoPD9fLrf+ioBJ2Mn5zb47xGBPbmnfOTYzOMMb3HI0wxiWp09BMY3zYBPPuv0kRvsZ49zqnjfFv00OM8R5x5t19H9lo3kW6fi3zDsuSlBBsvnFB8tHjxvjYJiXvjCtJPS46aIwv/KG+Mf6HJub6n/5UzxgfNnCPMS5JhzfVMsaj4rKM8YBocxd54LswYzynwPxdT6vR5t9z4Q7zbuC+F5l3eJakba+Yd3Fu1MT8XvQ1XEL7Uy/KVjtSWUcy9EG/F4otQ39AfyDRH0je3x+cys1T7H/+p4yMDIWFma9FVTj398ntCY8pwKf0z0RJ8hw5ev3wpGo7jwsFa0IAAAAAuBXTsQAAAOA1LMuSKxN9mCTkHiQhAAAA8BrsE+IZSEIAAADgNVzd6oMcxD1YEwIAAADArRgJAQAAgNdgOpZnIAkBAACA1yAJ8QxMxwIAAADgVoyEAAAAwGucXZjuwi16K68pMCAJAQAAgNdgOpZnIAlBheU7bPKz2YqNzeyUaaxbr9UpY/zbdXHGeOOYdHPjJOVuzzXG72kaaowvSjHHX/whyBjvElP8tTln3+kQYzzUz9cYbxdpDEuSNp0w96Qtgs0H6XHRz8b4D4eijfH2kRnG+Fc/JxjjO0+bZ4we3RJojEvSR/vizQX2mcODG6aU+homgX4Fxnje6oPGeMAfWhjjr4/OK7UNjWqZ30stZow0xm2vv19y0P/c+9ymfAf9QUnoD+gPJO/vDwKyS399d7Cssw9X6qPqsSYEAAAAgFsxEgIAAACvYcmSw6U1IQyFuANJCAAAALwG07E8A0kIAAAAvIbjl4cr9VH1WBMCAAAAwK0YCQEAAIDXsCxLlgtzqlypi7JjJAQAAABe49w+Ia48yuPLL7/UwIEDlZCQIJvNpg8//NAZy8/P11/+8he1bt1atWrVUkJCgm677TYdPny4yDFyc3M1evRoRUdHq1atWho0aJAOHjTfstnTkYQAAADAazh+uTuWK4/yyMrKUtu2bTV9+vTzYmfOnNG3336rp556St9++63mz5+vH3/8UYMGDSpSbsyYMVqwYIHmzZunVatWKTMzUwMGDFBhYaFL16ImYzoWAAAA8DunThXdSNVut8tut59Xrn///urfv3+xxwgPD9eSJUuKPDdt2jRdfvnl2r9/v+rXr6+MjAzNmjVLb775pnr16iVJeuutt5SYmKilS5eqb9++lXRGNQsjIQAAAPAaln69TW+FHr8cJzExUeHh4c7HpEmTKqV9GRkZstlsql27tiRp48aNys/PV58+fZxlEhISlJSUpNWrV1fKa9ZEjISgwob02KMwe0CxsZw0c367dFV9Y7xbM/M8yOD6pQ+V7l1X2xhvXveYMR7qn2+Mf3Ag0hjvGW8+/tdHzfVHNcsyxs8UlP7xvTQi1xg/khNojP97fUNjvFmo+UaGF4eeMcZ7t/zZGM/eYn79Y6dqGeOS9MBfjhvjf/5LhDE+6nbz+8Cnrfm9nPHGbmM8YHhXYzx31tfGeLfY2sa4JDV960pjfHufBcb4RS0ySowF3mBJtaRge4Fu6VX8udIf0B9I9AeS9/cHuXl5pb6+O1RkStXv60vSgQMHFBYW5ny+uFGQ8srJydGjjz6qoUOHOo+dmpqqgIAARUQUff/FxsYqNTXV5desqUhCAAAA4DV+O5pR0fqSFBYWViQJcVV+fr7++Mc/yuFwaMaMGWVohyWbzVZpr1/TMB0LAAAAqEL5+fkaMmSI9u7dqyVLlhRJbuLi4pSXl6f09PQidY4eParY2Fh3N9VtSEIAAADgNdx9d6zSnEtAdu3apaVLlyoqKqpIvH379vL39y+ygD0lJUVbt25Vly5dKrUtNQnTsQAAAOA1HJaLa0LKuVlhZmamfvrpJ+fPe/fu1ebNmxUZGamEhATdeOON+vbbb/XJJ5+osLDQuc4jMjJSAQEBCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3IgkBAAAAKmjDhg266qqrnD+PGzdOkjR8+HBNmDBBCxculCRdcsklReotX75cPXr0kCRNmTJFfn5+GjJkiLKzs9WzZ0/NmTNHvr6+bjmH6kASAgAAAK9h/fKfK/XLo0ePHrIMoyem2DmBgYGaNm2apk2bVq7X9mQkIQAAAPAaliTzDaNLr4+qRxICAAAAr1FZ+4SganF3LAAAAABuxUgIAAAAvIZlubgmpJx3x0LFkISgwuytI2QPshcb+/a1AGPdP9yfaYwX7DPvEOpbJ9jcOEnhodnG+K7DUcb4P7aaPx4HbLuN8VxHY2N83YkMY3xia/NA5RdHA41xSeoXZ54V++4+8zlGFP/rdZr1c7oxnuNj/h0MT7/IGM8v5d+BFpcfMxeQ9N3saGP8tXv3GeNWvvn3sOHv5t9jh+faGuNv3pJijB/KbmqMjxu8yxiXJNvG743xVn81b4aV9+mJkoPnLo+/j+xtI4stQn9AfyDRH0je3x/41JAbOTEdyzOQhAAAAMBrkIR4BtaEAAAAAHArRkIAAADgNaxfxkJcqY+qRxICAAAAr8F0LM9AEgIAAACvQRLiGVgTAgAAAMCtGAkBAACA13D88p8r9VH1SEIAAADgNSybJcvmysJ0pmO5A9OxAAAAALgVIyEAAADwGpaLC9MZCXEPkhBUWMbyDFkBAcXGdpxqZKy7cmKoMT6qa7ox7peWaW6cpG/2Nyi1jImvzdwJBVrBxnj9YHN9P1ttY/zpLeZzvCLGGJYkvbKr+N/POY8lnTLGVx6NMMaHNzJ3Id+fTDDGH933qTE+v3V3YzzthyBjXJJaDzhtjJ/+rrR/bAqN0XyHeUD50D9+MMZvGWF+9TPf5xjj676ONx9Aku9q8zE63njEGH/5k6Ylxm4f66fQcMnKdejU0pPFlqE/oD+Q6A8k7+8PcgrNx3YXhxyysSakxiMJAQAAgNdgs0LPwJoQAAAAAG7FSAgAAAC8hsPmkM2Fu2MxHcs9GAnxIBMmTJDNZivyiIuLc8Yty9KECROUkJCgoKAg9ejRQ9u2bStyjNzcXI0ePVrR0dGqVauWBg0apIMHD7r7VAAAAKqEoxL+Q9UjCfEwrVq1UkpKivOxZcsWZ2zy5Ml64YUXNH36dK1fv15xcXHq3bu3Tp/+dSHemDFjtGDBAs2bN0+rVq1SZmamBgwYoMJC82I7AAAAT0AS4hmYjuVh/Pz8iox+nGNZlqZOnaonnnhC119/vSRp7ty5io2N1TvvvKO7775bGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fYt9zdzcXOXm5jp/PnXKfAcVAAAAwISREA+za9cuJSQkqFGjRvrjH/+oPXv2SJL27t2r1NRU9enTx1nWbrere/fuWr16tSRp48aNys/PL1ImISFBSUlJzjLFmTRpksLDw52PxMTEKjo7AAAA15y7O5YrD1Q9khAP0rFjR73xxhv6/PPP9dprryk1NVVdunTR8ePHlZqaKkmKjY0tUic2NtYZS01NVUBAgCIiIkosU5zHHntMGRkZzseBAwcq+cwAAAAqh0OFLj9Q9ZiO5UH69+/v/P/WrVurc+fOuuiiizR37lx16tRJkmSz2YrUsSzrvOd+r7QydrtddrvdhZYDAAC4h/XLnumu1EfVYyTEg9WqVUutW7fWrl27nOtEfj+icfToUefoSFxcnPLy8pSenl5iGQAAAKCqMRLiwXJzc7Vjxw5dccUVatSokeLi4rRkyRK1a9dOkpSXl6eVK1fq2WeflSS1b99e/v7+WrJkiYYMGSJJSklJ0datWzV58uRyv35gtEOB9uK/aRjSYY+x7iebGhrju/dEGeOtrko3xiXph9MBxrh/KSl4VAnnds4HIzON8Y+So43xrSfNr98uspYxHhtY+jc1X+XnGuPTdtY2xnvFFRjjCw6a63evk22MP514jTE+fad5SPyN283Hl6SVH9Q1xiPt5mu063SoMX5Fg8Pm+kcijfG47GPG+PSvmxjjvWIzjHFJat4kzRhf9I55ndfNzfeXGAv2P/sesflIgXXoD0pCf0B/IHl/f3A6P0+P7iy1CVWOfUI8A0mIBxk/frwGDhyo+vXr6+jRo/rHP/6hU6dOafjw4bLZbBozZowmTpyopk2bqmnTppo4caKCg4M1dOhQSVJ4eLhGjhyphx56SFFRUYqMjNT48ePVunVr592yAAAAPJlDhbK5MNmHNSHuQRLiQQ4ePKg//elPOnbsmOrUqaNOnTppzZo1atCggSTpkUceUXZ2tu677z6lp6erY8eOWrx4sUJDf/3mZsqUKfLz89OQIUOUnZ2tnj17as6cOfL19a2u0wIAAKhErt7hipEQdyAJ8SDz5s0zxm02myZMmKAJEyaUWCYwMFDTpk3TtGnTKrl1AAAAQNmQhAAAAMBrOKxCuXLvpbP1UdVIQgAAAOA1XN1wkM0K3YNb9AIAAABwK0ZCAAAA4DUsFcpy4Xt2i7tjuQVJCAAAALzG2X0+2CekpiMJAQAAgNewZLm4JqT0zT/hOtaEAAAAAHArRkJQYVa+ZNmKj9X6q3kH9sibfzDGGyaeMMYdWaV/w/FAj13G+OKNDYzxQ2cCjPEe0yOM8X+0zDPG6wTWMsYH1T1pjJ/O9zfGJSnU13wO6bkFxnhsYL4x/smhEt4AvzgSZm7jpRGZxvhnh8xd1PdrYoxxSep6xSHzaywzvw9u/Lv5G7HnH6pvjI+9+6AxvuideGP8Lw+mGOPHV+Qa45K0cmuiMf6H8eb3quNwyd9X+QT88h6wJKuEw9Af0B9I9AeS9/cH9hwf6eNSm1DlLKtQlszvx9Lqo+qRhAAAAMBrsCbEM5CEAAAAwGucvTuWCyMh3B3LLVgTAgAAAMCtGAkBAACA17AsF3dMt5iO5Q4kIQAAAPAarAnxDCQhAAAA8BrcHcszsCYEAAAAgFsxEgIAAACvwY7pnoEkBAAAAF7j7MJ0V6ZjsSbEHZiOBQAAAMCtGAlBhZ1KscvyDyg2dmzkRmPdI7m1zfHUMGN834+hxrgkta171BhvHZVujM/bF2WMr3rOvHDtzr8GGeP+PuZvWlYfCzfGj+SU/i1PauGxUsuY5DtqGePNwn1LqW8+x3aXpBrjr0aar+He47WNcUlK+8F8jGuu/tkY/3l6iDHeJcocL0zLMca7Jx0wxtO/NF/j3Bx/Y1ySkqJPmAtkF/85Psd0Dj6Os9MWHA4p47C92DL0B/QHZ+vTH3h7f1CYm1fq67tHoYsTqliY7g4kIQAAAPAaZ6dTMR2rpiMJAQAAgNcgCfEMrAkBAAAA4FaMhAAAAMBrOOSQzZWREHZMdwuSEAAAAHgNpmN5BpIQAAAAeA3Lcu3uVq7WR9mwJgQAAACAWzESAgAAAK9hyZJcWNdhubjLCMqGJAQAAABew9U1HawJcQ+SEFRYZFKBwgKLn9EXmWfefThkk3lX1Sc2xBjjA+qW/i3Fd4fMx7jyMvPOtJftjzXG97xvbsOAuvnG+DfHzbvSbjph7gS/zz1sjEvSpozZxviAiEeM8X1nzG3cc9rcxksjzNfg+H7z7sUh4bnGeFO/Unb+lZRx2vwadZRtjDf4Z0tjvODRH4xx/64NjHG/feZdrEMigo1xBZl/R5JkXdLCXOCb74xhnxDDPxW/rP308Zei2hYUW4T+gP5Aoj+QvL8/8PGrGX+8k4R4BtaEAAAAAHArRkIAAADgNVzd54N9QtyDJAQAAABeg+lYnoEkBAAAAF6DJMQzsCYEAAAAgFsxEgIAAAAv4upIBiMh7sBICAAAALyGZTlcfpTHl19+qYEDByohIUE2m00ffvjh79pjacKECUpISFBQUJB69Oihbdu2FSmTm5ur0aNHKzo6WrVq1dKgQYN08OBBVy9FjUYSAgAAAFRQVlaW2rZtq+nTpxcbnzx5sl544QVNnz5d69evV1xcnHr37q3Tp087y4wZM0YLFizQvHnztGrVKmVmZmrAgAEqLCx012m4HdOxAAAA4DXcfYve/v37q3///sUfy7I0depUPfHEE7r++uslSXPnzlVsbKzeeecd3X333crIyNCsWbP05ptvqlevXpKkt956S4mJiVq6dKn69u3r0vnUVIyEAAAAwGtYluXidCxLknTq1Kkij9zc3HK3Ze/evUpNTVWfPn2cz9ntdnXv3l2rV6+WJG3cuFH5+flFyiQkJCgpKclZxhsxEoIKy0stVF5A8cOEQY/1NtbNvXO9MR4T5GuMDxle+jzJRe/UMcZ9w23G+JkC8/EfWBtmjC+462dj/P05jY3xaxMtcwMOJZjjkm5q9pQx3iTEfJJXN91njPc4HmKMLzkcbYz3aZ1jjN/7+kXGeFSg+XcoSTclZhjjfglB5gMcSzeGf0ivbYw33nfMGP/+f4HGePNLjxrjWzbEGOOSdCRnpzEe7OtvjF91T2jJQd+z32VZhVLeYfqDktAf0B9I3t8f+GaX/4/0qlEoqfT3Q8nOft4SExOLPPv0009rwoQJ5TpSamqqJCk2NrbI87Gxsfr555+dZQICAhQREXFemXP1vRFJCAAAAPA7Bw4cUFjYr18w2O32Ch/LZiuaFFmWdd5zv1eWMp6M6VgAAADwGpV1d6ywsLAij4okIXFxcZJ03ojG0aNHnaMjcXFxysvLU3p6eollvBFJCAAAALyIoxIelaNRo0aKi4vTkiVLnM/l5eVp5cqV6tKliySpffv28vf3L1ImJSVFW7dudZbxRkzHAgAAgPewHHJpTYhVyhqs38nMzNRPP/3k/Hnv3r3avHmzIiMjVb9+fY0ZM0YTJ05U06ZN1bRpU02cOFHBwcEaOnSoJCk8PFwjR47UQw89pKioKEVGRmr8+PFq3bq1825Z3ogkBAAAAKigDRs26KqrrnL+PG7cOEnS8OHDNWfOHD3yyCPKzs7Wfffdp/T0dHXs2FGLFy9WaOivi/ynTJkiPz8/DRkyRNnZ2erZs6fmzJkjX1/zjTk8GUkIAAAAvIal8o1kuFq/R48eztv6Fsdms2nChAnGO2sFBgZq2rRpmjZtWrle25ORhAAAAMCLuDgdy8UkBmVDEgIAAAAvYrmYR5CEuAN3xwIAAADgVoyEoNzOzXs8nZdfYpn809nGY2QW5BnjuQ7zzrmncsz1JelMoXnn1lO55mPkFJrbkG+5dvx8h7n+mULzNzF5jtK/Q8gpLGUX6MLid7g+53S++RxK+z1ml3INS7tGeaW8D3IdpQ+3ZxaU8nsq5b3kk2Vuw5lCc/1T2aVdQ/M5lHaNSjs/STpTyvvAsszvg1OGXZBDLUs2ne0XTuUV31b6A/oDif5A8v7+4Nz5mdZHuIfl8roQVD2bVf3vFHiYPXv26KKLLqruZgAAgBpo9+7daty4sdtfNycnR40aNTpvY8CKiIuL0969exUYGFgJLUNxSEJQbidPnlRERIT279+v8PDw6m5OtTh16pQSExN14MABhYWFVXdzqgXXgGsgcQ0kroHENZC4BpKUkZGh+vXrKz09XbVr166WNuTk5CivhFHZ8ggICCABqWJMx0K5+ficHfYPDw+/YDvac8LCwrgGXAOugbgGEtdA4hpIXAPp178TqkNgYCDJg4dgYToAAAAAtyIJAQAAAOBWJCEoN7vdrqefflp2u726m1JtuAZcA4lrIHENJK6BxDWQuAYS1wDlw8J0AAAAAG7FSAgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEGjGjBlq1KiRAgMD1b59e3311VfG8itXrlT79u0VGBioxo0b6+WXXz6vzAcffKCWLVvKbrerZcuWWrBgQVU1v1KU5xrMnz9fvXv3Vp06dRQWFqbOnTvr888/L1Jmzpw5stls5z1ycnKq+lQqrDzXYMWKFcWe3w8//FCknDe/D0aMGFHsNWjVqpWzjKe9D7788ksNHDhQCQkJstls+vDDD0ut4239QXmvgTf2B+W9Bt7YH5T3GnhbfzBp0iRddtllCg0NVUxMjK699lrt3Lmz1Hre1h+gapGEXODee+89jRkzRk888YQ2bdqkK664Qv3799f+/fuLLb93715dc801uuKKK7Rp0yY9/vjjeuCBB/TBBx84y3zzzTe6+eabNWzYMH333XcaNmyYhgwZorVr17rrtMqlvNfgyy+/VO/evfXZZ59p48aNuuqqqzRw4EBt2rSpSLmwsDClpKQUeQQGBrrjlMqtvNfgnJ07dxY5v6ZNmzpj3v4+ePHFF4uc+4EDBxQZGambbrqpSDlPeh9kZWWpbdu2mj59epnKe2N/UN5r4I39QXmvwTne1B+U9xp4W3+wcuVK3X///VqzZo2WLFmigoIC9enTR1lZWSXW8cb+AFXMwgXt8ssvt+65554izzVv3tx69NFHiy3/yCOPWM2bNy/y3N1332116tTJ+fOQIUOsfv36FSnTt29f649//GMltbpylfcaFKdly5bW3/72N+fPs2fPtsLDwyuriVWuvNdg+fLlliQrPT29xGNeaO+DBQsWWDabzdq3b5/zOU97H/yWJGvBggXGMt7YH/xWWa5BcTy9P/itslwDb+wPfqsi7wNv6w+OHj1qSbJWrlxZYhlv7w9Q+RgJuYDl5eVp48aN6tOnT5Hn+/Tpo9WrVxdb55tvvjmvfN++fbVhwwbl5+cby5R0zOpUkWvwew6HQ6dPn1ZkZGSR5zMzM9WgQQPVq1dPAwYMOO+b0ZrClWvQrl07xcfHq2fPnlq+fHmR2IX2Ppg1a5Z69eqlBg0aFHneU94HFeFt/UFl8PT+wBXe0h9UBm/rDzIyMiTpvPf1b9EfoLxIQi5gx44dU2FhoWJjY4s8Hxsbq9TU1GLrpKamFlu+oKBAx44dM5Yp6ZjVqSLX4Peef/55ZWVlaciQIc7nmjdvrjlz5mjhwoV69913FRgYqK5du2rXrl2V2v7KUJFrEB8fr1dffVUffPCB5s+fr2bNmqlnz5768ssvnWUupPdBSkqKFi1apDvuuKPI8570PqgIb+sPKoOn9wcV4W39gau8rT+wLEvjxo1Tt27dlJSUVGI5+gOUl191NwDVz2azFfnZsqzzniut/O+fL+8xq1tF2/vuu+9qwoQJ+uijjxQTE+N8vlOnTurUqZPz565du+rSSy/VtGnT9NJLL1VewytRea5Bs2bN1KxZM+fPnTt31oEDB/Tcc8/pyiuvrNAxa4KKtnfOnDmqXbu2rr322iLPe+L7oLy8sT+oKG/qD8rDW/uDivK2/mDUqFH6/vvvtWrVqlLL0h+gPBgJuYBFR0fL19f3vG8gjh49et43FefExcUVW97Pz09RUVHGMiUdszpV5Bqc895772nkyJH63//+p169ehnL+vj46LLLLquR33i5cg1+q1OnTkXO70J5H1iWpddff13Dhg1TQECAsWxNfh9UhLf1B67wlv6gsnhyf+AKb+sPRo8erYULF2r58uWqV6+esSz9AcqLJOQCFhAQoPbt22vJkiVFnl+yZIm6dOlSbJ3OnTufV37x4sXq0KGD/P39jWVKOmZ1qsg1kM5+4zlixAi98847+sMf/lDq61iWpc2bNys+Pt7lNle2il6D39u0aVOR87sQ3gfS2bvI/PTTTxo5cmSpr1OT3wcV4W39QUV5U39QWTy5P3CFt/QHlmVp1KhRmj9/vpYtW6ZGjRqVWof+AOXm3nXwqGnmzZtn+fv7W7NmzbK2b99ujRkzxqpVq5bzjh6PPvqoNWzYMGf5PXv2WMHBwdbYsWOt7du3W7NmzbL8/f2t999/31nm66+/tnx9fa1//etf1o4dO6x//etflp+fn7VmzRq3n19ZlPcavPPOO5afn5/1n//8x0pJSXE+Tp486SwzYcIEKzk52dq9e7e1adMm689//rPl5+dnrV271u3nVxblvQZTpkyxFixYYP3444/W1q1brUcffdSSZH3wwQfOMt7+Pjjn1ltvtTp27FjsMT3tfXD69Glr06ZN1qZNmyxJ1gsvvGBt2rTJ+vnnny3LujD6g/JeA2/sD8p7DbyxPyjvNTjHW/qDe++91woPD7dWrFhR5H195swZZ5kLoT9A1SIJgfWf//zHatCggRUQEGBdeumlRW7BN3z4cKt79+5Fyq9YscJq166dFRAQYDVs2NCaOXPmecf8v//7P6tZs2aWv7+/1bx58yL/GNVE5bkG3bt3tySd9xg+fLizzJgxY6z69etbAQEBVp06daw+ffpYq1evduMZlV95rsGzzz5rXXTRRVZgYKAVERFhdevWzfr000/PO6Y3vw8sy7JOnjxpBQUFWa+++mqxx/O098G5W62W9N6+EPqD8l4Db+wPynsNvLE/qMhnwZv6g+LOXZI1e/ZsZ5kLoT9A1bJZ1i+rhgAAAADADVgTAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAEARK1askM1m08mTJ6u7KQAAL0USAgAXoBEjRshms8lms8nf31+NGzfW+PHjlZWVVd1NAwBcAPyquwEAgOrRr18/zZ49W/n5+frqq690xx13KCsrSzfffHN1Nw0A4OUYCQGAC5TdbldcXJwSExM1dOhQ3XLLLfrwww+d8Y0bN6pDhw4KDg5Wly5dtHPnTmds9+7dGjx4sGJjYxUSEqLLLrtMS5cuLXL8GTNmqGnTpgoMDFRsbKxuvPFGZ8yyLE2ePFmNGzdWUFCQ2rZtq/fff7/KzxkAUDOQhAAAJElBQUHKz893/vzEE0/o+eef14YNG+Tn56fbb7/dGcvMzNQ111yjpUuXatOmTerbt68GDhyo/fv3S5I2bNigBx54QM8884x27typ5ORkXXnllc76Tz75pGbPnq2ZM2dq27ZtGjt2rG699VatXLnSfScMAKg2NsuyrOpuBADAvUaMGKGTJ086Rz7WrVuna665Rj179tS9996rq666SkuXLlXPnj0lSZ999pn+8Ic/KDs7W4GBgcUes1WrVrr33ns1atQozZ8/X3/+85918OBBhYaGFimXlZWl6OhoLVu2TJ07d3Y+f8cdd+jMmTN65513quakAQA1BmtCAOAC9cknnygkJEQFBQXKz8/X4MGDNW3aNG3fvl2S1KZNG2fZ+Ph4SdLRo0dVv359ZWVl6W9/+5s++eQTHT58WAUFBcrOznaOhPTu3VsNGjRQ48aN1a9fP/Xr10/XXXedgoODtX37duXk5Kh3795F2pOXl6d27dq56ewBANWJJAQALlBXXXWVZs6cKX9/fyUkJMjf31+SnEnIuZ8lyWazSZIcDock6eGHH9bnn3+u5557Tk2aNFFQUJBuvPFG5eXlSZJCQ0P17bffasWKFVq8eLH++te/asKECVq/fr3zGJ9++qnq1q1bpE12u71qTxoAUCOQhADABapWrVpq0qRJhep+9dVXGjFihK677jpJZ9eI7Nu3r0gZPz8/9erVS7169dLTTz+t2rVra9myZerdu7fsdrv279+v7t27u3oaAAAPRBICACi3Jk2aaP78+Ro4cKBsNpueeuop5wiHdHaq1549e3TllVcqIiJCn332mRwOh5o1a6bQ0FCNHz9eY8eOlcPhULdu3XTq1CmtXr1aISEhGj58eDWeGQDAHUhCAADlNmXKFN1+++3q0qWLoqOj9Ze//EWnTp1yxmvXrq358+drwoQJysnJUdOmTfXuu++qVatWkqS///3viomJ0aRJk7Rnzx7Vrl1bl156qR5//PHqOiUAgBtxdywAAAAAbsU+IQAAAADciulYKBfLspSfn6/CwkL5+vrK39/fedccAAAAoCxIQlAm+fn5OnLkiA4dOqTs7Gzn80FBQapbt65iY2OL3M4TAAAAKMkFtSZkwoQJ+vDDD7V58+bqbkq16dGjhy655BJNnTq1zHVOnDihbdu2yeFwKDo6WnXq1JGfn58KCgqUlpamY8eOycfHR61atVJkZGTVNR4AAABeocavCRkxYoRsNptsNpv8/f0VGxur3r176/XXXy9yO8iKHvvaa6+tnIZ6qRMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDAIAqNGPGDDVq1EiBgYFq3769vvrqq+puEjyQR0zH6tevn2bPnq3CwkIdOXJEycnJevDBB/X+++9r4cKF8vPziNPwOPn5+dq2bZsiIiKUlJQkH5/ic1a73a6kpCRt3bpVW7ZsUURERIllAQBAzZGUlFSu8u+9957GjBmjGTNmqGvXrnrllVfUv39/bd++XfXr16+iVsIbecRfina7XXFxcapbt67zPvIfffSRFi1apDlz5jjLZWRk6K677lJMTIzCwsJ09dVX67vvviv2mBMmTNDcuXP10UcfOUdaVqxYIUn6y1/+oosvvljBwcFq3LixnnrqKeXn55fYvn379slms2nevHnq0qWLAgMD1apVK+fxztm+fbuuueYahYSEKDY2VsOGDdOxY8ec8R49emjUqFEaNWqUateuraioKD355JP67Yy59PR03XbbbYqIiFBwcLD69++vXbt2FXmdr7/+Wt27d1dwcLAiIiLUt29fpaenO+MOh0OPPPKIIiMjFRcXpwkTJhR7XkeOHHFuLlZaUuHj46NmzZrJsizl5uYaywIAAM/0wgsvaOTIkbrjjjvUokULTZ06VYmJiZo5c2Z1Nw0exiOSkOJcffXVatu2rebPny/p7F2b/vCHPyg1NVWfffaZNm7cqEsvvVQ9e/YsdorQ+PHjNWTIEPXr108pKSlKSUlRly5dJEmhoaGaM2eOtm/frhdffFGvvfaapkyZUmqbHn74YT300EPatGmTunTpokGDBun48eOSpJSUFHXv3l2XXHKJNmzYoOTkZB05ckRDhgwpcoy5c+fKz89Pa9eu1UsvvaQpU6bov//9rzM+YsQIbdiwQQsXLtQ333wjy7J0zTXXOJOkzZs3q2fPnmrVqpW++eYbrVq1SgMHDlRhYWGR16hVq5bWrl2ryZMn65lnntGSJUuKtMOyLB06dEjR0dGy2+1l+ZXIbrerTp06ysnJ0QW01AgAgAtCXl6eNm7cqD59+hR5vk+fPlq9enU1tQqeyqPnMTVv3lzff/+9JGn58uXasmWLjh496vyj+bnnntOHH36o999/X3fddVeRuiEhIQoKClJubq7i4uKKxJ588knn/zds2FAPPfSQ3nvvPT3yyCPG9owaNUo33HCDJGnmzJlKTk7WrFmz9Mgjj2jmzJm69NJLNXHiRGf5119/XYmJifrxxx918cUXS5ISExM1ZcoU2Ww2NWvWTFu2bNGUKVN05513ateuXVq4cKG+/vprZ8L09ttvKzExUR9++KFuuukmTZ48WR06dNCMGTOcr3Nuh+Jz2rRpo6efflqS1LRpU02fPl1ffPGFevfu7SyTn5+v7OxsNWrUyHjOv1enTh2lpaXJsixu3QsAgBc5duyYCgsLFRsbW+T52NhYpaamVlOr4Kk8Ogn57R+6GzduVGZmpqKiooqUyc7O1u7du8t13Pfff19Tp07VTz/9pMzMTBUUFCgsLKzUep07d3b+v5+fnzp06KAdO3Y427d8+XKFhIScV2/37t3OJKRTp05F/njv3Lmznn/+eRUWFmrHjh3y8/NTx44dnfGoqCg1a9bM+TqbN2/WTTfdZGxnmzZtivwcHx+vo0ePFnnu3MhJedfbnCvPSAgAAN7p918y8sUjKsKjk5AdO3Y4v6l3OByKj48/bx2GJNWuXbvMx1yzZo3++Mc/6m9/+5v69u2r8PBwzZs3T88//3yF2njuQ+lwODRw4EA9++yz55WJj48v07FK+sP+tx/+oKCgUo/z+/08bDbbeXca8/X1lSQVFBSUqW3nnCtPZwQAgHeJjo6Wr6/veaMeR48ePW90BCiNx64JWbZsmbZs2eKc/nTppZcqNTVVfn5+atKkSZFHdHR0sccICAgoslZCOruou0GDBnriiSfUoUMHNW3aVD///HOZ2rRmzRrn/xcUFGjjxo1q3ry5s33btm1Tw4YNz2tfrVq1ij3GuZ+bNm0qX19ftWzZUgUFBVq7dq0zfvz4cf34449q0aKFpLOjHF988UWZ2mvi7++voKAgpaWllateWlqafH19SUIAAPAyAQEBat++/XnrSJcsWeKcJg6UlUckIbm5uUpNTdWhQ4f07bffauLEiRo8eLAGDBig2267TZLUq1cvde7cWddee60+//xz7du3T6tXr9aTTz6pDRs2FHvchg0b6vvvv9fOnTt17Ngx5efnq0mTJtq/f7/mzZun3bt366WXXtKCBQvK1M7//Oc/WrBggX744Qfdf//9Sk9P1+233y5Juv/++3XixAn96U9/0rp167Rnzx4tXrxYt99+e5FE6MCBAxo3bpx27typd999V9OmTdODDz4o6ez6jcGDB+vOO+/UqlWr9N133+nWW29V3bp1NXjwYEnSY489pvXr1+u+++7T999/rx9++EEzZ84scheusrDZbKpbt66OHTtW5rtd5ebmKi0tTYGBgSQhAAB4oXHjxum///2vXn/9de3YsUNjx47V/v37dc8991R30+BhPCIJSU5OVnx8vBo2bKh+/fpp+fLleumll/TRRx85pw3ZbDZ99tlnuvLKK3X77bfr4osv1h//+Eft27evxCHCO++8U82aNVOHDh1Up04dff311xo8eLDGjh2rUaNG6ZJLLtHq1av11FNPlamd//rXv/Tss8+qbdu2+uqrr/TRRx85R2ESEhL09ddfq7CwUH379lVSUpIefPBBhYeHF7n97W233abs7Gxdfvnluv/++zV69Ogii+pnz56t9u3ba8CAAercubMsy9Jnn33mnGJ18cUXa/Hixfruu+90+eWXq3Pnzvroo48qtJdKbGysfHx8tHPnzlI3hnQ4HNq5c6dsNluZ76YFAAA8y80336ypU6fqmWee0SWXXKIvv/xSn332mRo0aFDdTYOHsVmsIHbZvn371KhRI23atEmXXHJJhY/To0cPXXLJJZo6dWqltc1V53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgAAwFN49MJ0VL3IyEi1bt1a27Zt05o1axQdHa06derIz89PBQUFSktL07Fjx+Tj40MCAgAAgDIhCUGpIiMj1alTJx05ckSHDh0qslg9KChIF110keLi4io05QsAAAAXHqZjoVwsy1JBQYEKCgrk5+cnPz8/FqEDAACgXEhCAAAAALiVR9wdCwAAAID3IAkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3AwAANYtlWcrPz1dhYaF8fX3l7+8vm81W3c0CAHgRkhAAgCQpPz9fR44c0aFDh5Sdne18PigoSHXr1lVsbKz8/f2rsYUAAG9hsyzLqu5GAACq14kTJ7Rt2zY5HA5FR0erTp068vPzU0FBgdLS0nTs2DH5+PioVatWioyMrO7mAgA8XLWuCenRo4fGjBlT6ce1LEt33XWXIiMjZbPZtHnzZre+PgB4khMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDqEYzZsxQo0aNFBgYqPbt2+urr76qlDqllamMY6DmKPd0rBEjRmju3LlnK/v5KTIyUm3atNGf/vQnjRgxQj4+Fc9revTooUsuuURTp06t8DEkKTk5WXPmzNGKFSvUuHFjRUdHu3S8ym7fl19+qX//+9/auHGjUlJStGDBAl177bXnlZsxY4b+/e9/KyUlRa1atdLUqVN1xRVXnFeuffv2ys3NPe/5xYsXKyEhochzhw4d0l/+8hctWrRI2dnZuvjiizVr1iy1b9++XOfQ8NFPy1UeQM0U7CdNuaqWYqMjlZSUVGIfbrfblZSUpK1bt2rLli2KiIhwqb8HUDMkJSWVq/x7772nMWPGaMaMGeratateeeUV9e/fX9u3b1f9+vUrXKe0MpVxDNQsFfoXpF+/fkpJSdG+ffu0aNEiXXXVVXrwwQc1YMAAFRQUVHYby2337t2Kj49Xly5dFBcXJz+/mrX0JSsrS23bttX06dNLLHPug/TEE09o06ZNuuKKK9S/f3/t37//vLIbN27U1q1bz3v8PgFJT09X165d5e/vr0WLFmn79u16/vnnVbt27co+RQAeomtdPwX4Si2aNys1qfDx8VGzZs1kWVaxX3wA8H4vvPCCRo4cqTvuuEMtWrTQ1KlTlZiYqJkzZ7pUp7QylXEM1CwVSkLsdrvi4uJUt25dXXrppXr88cf10UcfadGiRZozZ46ks1OiJk+erMaNGysoKEht27bV+++/X+IxR4wYoZUrV+rFF1+UzWaTzWbTvn37lJycrG7duql27dqKiorSgAEDtHv3buNxRo8erf3798tms6lhw4aSzv7hf9tttykkJETx8fF6/vnnz6ubm5urBx54QDExMQoMDFS3bt20fv16Y/t+Ly0tTXFxcZo4caLzubVr1yogIECLFy+WJPXv31//+Mc/dP3115d4HlXxQXr22WeVmJio2bNn6/LLL1fDhg3Vs2dPXXTRRRU+JgDP1rtBgOpE15Hdbi9Tebvdrjp16ignJ0csKQQuLHl5edq4caP69OlT5Pk+ffpo9erVFa5TWpnKOAZqnkobS7/66qvVtm1bzZ8/X5L05JNPavbs2Zo5c6a2bdumsWPH6tZbb9XKlSuLrf/iiy+qc+fOuvPOO5WSkqKUlBQlJiYqKytL48aN0/r16/XFF1/Ix8dH1113nRwOR4nHeeaZZ1SvXj2lpKQ4k4iHH35Yy5cv14IFC7R48WKtWLFCGzduLFL3kUce0QcffKC5c+fq22+/VZMmTdS3b1+dOHGixPb9Xp06dfT6669rwoQJ2rBhgzIzM3XrrbfqvvvuO++DUZKq+iAtXLhQHTp00E033aSYmBi1a9dOr732WoWPB8CzhfhLMcE2xcTUKVe9OnXqqLCwkCQEuMAcO3ZMhYWFio2NLfJ8bGysUlNTK1yntDKVcQzUPJU6T6l58+b6/vvvlZWVpRdeeEHLli1T586dJUmNGzfWqlWr9Morr6h79+7n1Q0PD1dAQICCg4MVFxfnfP6GG24oUm7WrFmKiYnR9u3bi53HGB4ertDQUPn6+jqPk5mZqVmzZumNN95Q7969JUlz585VvXr1nPWysrI0c+ZMzZkzR/3795ckvfbaa1qyZIlmzZqlhx9+uNj2Feeaa67RnXfeqVtuuUWXXXaZAgMD9a9//assl1BS1X2Q9uzZo5kzZ2rcuHF6/PHHtW7dOj3wwAOy2+267bbbKnxcAJ4p0O/s3h/lnbJ6rjxJCHBh+v2+QZZllbqXUFnqlFamMo6BmqNSk5Bzv+jt27crJyfH+Qf/OXl5eWrXrl25jrl792499dRTWrNmjY4dO+YcAdm/f3+ZF1Pt3r1beXl5zoRIkiIjI9WsWbMiZfLz89W1a1fnc/7+/rr88su1Y8eOcrVZkp577jklJSXpf//7nzZs2KDAwMByH6OyP0gOh0MdOnRwThVr166dtm3bppkzZ5KEABegnIKzSUR51/KdK88/7MCFJTo6Wr6+vud9IXr06NHzvjgtT53SylTGMVDzVOqtTXbs2KFGjRo5E4VPP/1Umzdvdj62b99uXBdSnIEDB+r48eN67bXXtHbtWq1du1bS2YSmrMrybd25MpX1h/+ePXt0+PBhORwO/fzzz+WqW1UfpPj4eLVs2bLIcy1atCh2sTsA75eZLx09Y+no0bRy1UtLS5Ovry9JCHCBCQgIUPv27bVkyZIizy9ZskRdunSpcJ3SylTGMVDzVFoSsmzZMm3ZskU33HCDWrZsKbvdrv3796tJkyZFHsWtozgnICBAhYWFzp+PHz+uHTt26Mknn1TPnj3VokULpaenl7ttTZo0kb+/v9asWeN8Lj09XT/++GORMgEBAVq1apXzufz8fG3YsEEtWrQotn0lycvL0y233KKbb75Z//jHPzRy5EgdOXKkzO2tqg9S165dtXPnziLP/fjjj2rQoEGFjwnAsy35OU9px9LKfLer3NxcpaWlKTAwkCQEuACNGzdO//3vf/X6669rx44dGjt2rPbv36977rlHkjR9+nT17NmzXHXKUqYyjoGapULTsXJzc5WamqrCwkIdOXJEycnJmjRpkgYMGKDbbrtNvr6+Gj9+vMaOHSuHw6Fu3brp1KlTWr16tUJCQjR8+PBij9uwYUOtXbtW+/btU0hIiCIjIxUVFaVXX31V8fHx2r9/vx599NFytzckJEQjR47Uww8/rKioKMXGxuqJJ54ocjvKWrVq6d5779XDDz+syMhI1a9fX5MnT9aZM2c0cuTIEttX3C0tn3jiCWVkZOill15SSEiIFi1apJEjR+qTTz6RdHaNyk8//eQsv3fvXm3evNn5utLZD9KwYcPUoUMHde7cWa+++qrLH6SxY8eqS5cumjhxooYMGaJ169bp1Vdf1auvvlrhYwLwbF8fKtCNF9u144edatO65H1CpLNTOnfu3CmbzVbmu2kB8C4333yzjh8/rmeeeUYpKSlKSkrSZ5995vxC89ixY+fdxbS0OmUpUxnHQA1jldPw4cMtSZYky8/Pz6pTp47Vq1cv6/XXX7cKCwud5RwOh/Xiiy9azZo1s/z9/a06depYffv2tVauXOks0717d+vBBx90/rxz506rU6dOVlBQkCXJ2rt3r7VkyRKrRYsWlt1ut9q0aWOtWLHCkmQtWLCgxDZOmTLFatCgQZHnTp8+bd16661WcHCwFRsba02ePPm818/OzrZGjx5tRUdHW3a73eratau1bt06Y/t+b/ny5Zafn5/11VdfOZ/7+eefrfDwcGvGjBnOMueu4W8fw4cPL3Ks//znP1aDBg2sgIAA69JLLy1y7Srq448/tpKSkiy73W41b97cevXVV10+JgDPdvz4cWvFihXWd999Z+Xk5BRbJicnx/ruu++sFStWWMePH3dzCwEA3sZmWdzeBAAudCdOnNC2bdvkcDgUHR2tOnXqyM/PTwUFBUpLS9OxY8fk4+OjVq1aKTIysrqbCwDwcCQhAABJZ9fBHTlyRIcOHVJ2drbz+aCgINWtW1dxcXHlvp0vAADFIQkBABRhWZYKCgpUUFAgPz8/+fn5sQgdAFCpSEIAAAAAuFWl7hMCAAAAAKUhCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFv5VXcDAAA1i2VZys/PV2FhoXx9feXv7y+bzVbdzQIAeBGSEACAJCk/P19HjhzRoUOHlJ2d7Xw+KChIdevWVWxsrPz9/auxhQAAb1Gt07F69OihMWPGVPpxLcvSXXfdpcjISNlsNm3evLnSXwMAvMmJEye0Zs0a7d69WyEhIWrZsqXatGmjli1bKiQkRLt379aaNWt04sSJ6m4qAMALlDsJGTFihGw2m2w2m/z9/RUbG6vevXvr9ddfl8PhcKkxlZWUJCcna86cOfrkk0+UkpKipKQkl49Z2b788ksNHDhQCQkJstls+vDDD88rM2PGDDVq1EiBgYFq3769vvrqq2KP1b59eyUlJZ33OHz48HllZ86cqTZt2igsLExhYWHq3LmzFi1aVNmnB8CDnDhxQlu2bFF4eLg6deqkVq1aKSYmRpGRkYqJiVGrVq3UqVMnhYeHa8uWLSQiwAWurH+flLdOaWUq4xioOSo0Hatfv36aPXu2CgsLdeTIESUnJ+vBBx/U+++/r4ULF8rPr3pnee3evVvx8fHq0qVLiWXy8vIUEBDgxlYVlZWVpbZt2+rPf/6zbrjhhvPi7733nsaMGaMZM2aoa9eueuWVV9S/f39t375d9evXL1J248aNZX7devXq6V//+peaNGkiSZo7d64GDx6sTZs2qVWrVmU+TsNHPy1zWQA1V7CfNOWqWoqNjlRSUpJ8fIr/bsputyspKUlbt27Vli1bFBERUWJZAJ6jvF/Ulufvk/LUKa1MZRwDNUuF/gWx2+2Ki4tT3bp1demll+rxxx/XRx99pEWLFmnOnDmSzk6Jmjx5sho3bqygoCC1bdtW77//fonHHDFihFauXKkXX3zROdKyb98+JScnq1u3bqpdu7aioqI0YMAA7d6923ic0aNHa//+/bLZbGrYsKGks6Mso0aN0rhx4xQdHa3evXuXqZ1ZWVm67bbbFBISovj4eD3//PPGEZu0tDTFxcVp4sSJzufWrl2rgIAALV682Plc//799Y9//EPXX399scd54YUXNHLkSN1xxx1q0aKFpk6dqsTERM2cObPEcy+LgQMH6pprrtHFF1+siy++WP/85z8VEhKiNWvWuHRcAJ6pa10/BfhKLZo3KzWp8PHxUbNmzWRZlnJzc93UQgA1SUX+PilLndLKVMYxULNU2tdYV199tdq2bav58+dLkp588knNnj1bM2fO1LZt2zR27FjdeuutWrlyZbH1X3zxRXXu3Fl33nmnUlJSlJKSosTERGVlZWncuHFav369vvjiC/n4+Oi6664rcerXiy++qGeeeUb16tVTSkqK1q9f74zNnTtXfn5++vrrr/XKK6+UqZ0PP/ywli9frgULFmjx4sVasWKFceShTp06ev311zVhwgRt2LBBmZmZuvXWW3XfffepT58+ZbqWeXl52rhx43nl+/Tpo9WrV5fpGGVRWFioefPmKSsrS507d6604wLwHL0bBKhOdB3Z7fYylbfb7apTp45ycnJkWVYVtw5ATVKRv0/KUqe0MpVxDNQ8lTpvqnnz5vr++++VlZWlF154QcuWLXP+cdu4cWOtWrVKr7zyirp3735e3fDwcAUEBCg4OFhxcXHO538/VWnWrFmKiYnR9u3bix1CDA8PV2hoqHx9fYscR5KaNGmiyZMnO38urZ3t27fXrFmz9MYbbzhHTubOnat69eoZr8M111yjO++8U7fccosuu+wyBQYG6l//+pexzm8dO3ZMhYWFio2NLfJ8bGysUlNTy3yckmzZskWdO3dWTk6OQkJCtGDBArVs2dLl4wLwLCH+UkywTTExdcpVr06dOkpLS5NlWdy6F7iAVOTvk7LUKa1MZRwDNU+lJiHn/kHavn27cnJynH+4n5OXl6d27dqV65i7d+/WU089pTVr1ujYsWPOEZD9+/eXex5jhw4divxcWjt3796tvLy8IqMEkZGRatasWamv9dxzzykpKUn/+9//tGHDBgUGBparrZLO+8e9sv7Bb9asmTZv3qyTJ0/qgw8+0PDhw7Vy5UoSEeACE+h3tj8p7zq+c+UZCQEuTBX5+6QsdUorUxnHQM1RqUnIjh071KhRI2ei8Omnn6pu3bpFypR1yP+cgQMHKjExUa+99poSEhLkcDiUlJSkvLy8crevVq1aRX4urZ3Hjx8v92ucs2fPHh0+fFgOh0M///yz2rRpU+a60dHR8vX1PS9zP3r06HkZfkUEBAQ4F6Z36NBB69ev14svvuicogbgwpBTcDaJKCgoKFe9c+X5hx24sFTk75Oy1CmtTGUcAzVPpa0JWbZsmbZs2aIbbrhBLVu2lN1u1/79+9WkSZMij8TExBKPERAQoMLCQufPx48f144dO/Tkk0+qZ8+eatGihdLT0yuryaW2s0mTJvL39y+yaDs9PV0//vij8bh5eXm65ZZbdPPNN+sf//iHRo4cqSNHjpS5XQEBAWrfvr2WLFlS5PklS5YY7/hVUSwyBS5MmfnS0TOWjh5NK1e9tLQ0+fr6koQAF5iK/H1SljqllamMY6DmqdBISG5urlJTU4vconfSpEkaMGCAbrvtNvn6+mr8+PEaO3asHA6HunXrplOnTmn16tUKCQnR8OHDiz1uw4YNtXbtWu3bt08hISGKjIxUVFSUXn31VcXHx2v//v169NFHXTrh3woNDS21nSNHjtTDDz+sqKgoxcbG6oknnij1DjJPPPGEMjIy9NJLLykkJESLFi3SyJEj9cknnzjLZGZm6qeffnL+vHfvXm3evFmRkZGqX7++xo0bp2HDhqlDhw7q3LmzXn31Ve3fv1/33HOPS+f8+OOPq3///kpMTNTp06c1b948rVixQsnJyS4dF4BnWvJznuoEpyk3N7dMI9W5ublKS0tTrVq1SEKAC1Bpf59Mnz5dCxYs0BdffFHmOmUpUxnHQM1SoSQkOTlZ8fHx8vPzU0REhNq2bauXXnpJw4cPd/6B/ve//10xMTGaNGmS9uzZo9q1aztv51uS8ePHa/jw4WrZsqWys7O1d+9ezZs3Tw888ICSkpLUrFkzvfTSS+rRo0eFTrY4pbXz3//+tzIzMzVo0CCFhobqoYceUkZGRonHW7FihaZOnarly5crLCxMkvTmm2+qTZs2mjlzpu69915J0oYNG3TVVVc5640bN06SNHz4cM2ZM0c333yzjh8/rmeeeca54eJnn32mBg0auHS+R44c0bBhw5SSkqLw8HC1adNGycnJ562LAXBh+PpQgW682K4dP+xUm9Yl7xMinZ3CunPnTtlstnJPrQXgHUr7++TYsWPnbaVQlr9pSitTGcdAzWKzWFlYbj169NAll1yiqVOnVndTAMBl53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgC8RfVubQ4AqHaRkZFq3bq1tm3bpjVr1ig6Olp16tSRn5+fCgoKlJaWpmPHjsnHx4cEBABQKUhCAACKjIxUp06ddOTIER06dEhpab8uVg8KCtJFF12kuLi4ct/OFwCA4jAdCwBQhGVZKigoUEFBgfz8/OTn58cidABApSIJAQAAAOBWlbZPCAAAAACUBUkIAAAAALciCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCu/6m4AAAAAUFEOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JQ83kESAgAAAI91+PBhJSYmVncz8DsHDhxQvXr1SoyThAAAAMBjhYaGSpL27l2i0NBa1dwanD6dpUaNejt/LyUhCQEAAIDHOjcFKzS0lsLCQqq5NTintKlxLEwHAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAwAUjRz6pgIA2Cghoo6Cgdrrooj4aNervSk8/5ZbXf+aZGerQ4Sa3vFZl4e5YAAAAgIv69u2q1177uwoKCrRjxx7ddddfdfLkab311uTqblqNxEgIAAAA4KKAgADFxUWrXr049e7dRTfd1E9Ll37jjM+d+6Fatx6s0NAOSkoapJdfnueM5eXl68EHJ6p+/asVGtpBTZv207PP/tcZz8g4rXvv/Zvq1u2uqKjO6tNnpL77bqck6Y03PtI//vGyvv9+p3M05o03PnLfiVcQIyEAAABAJdqz56A+//xr+fuf/VN71qz39cwzMzV16mO65JLm2rz5B917798UHByk224brOnT39Ynn6zQO+/8W4mJ8Tp4MFUHDqRKkizL0uDBoxQREaaFC2coLCxE//3v/6lfvzu1bdvHuummvtq2bZc+//xrJSe/JkkKD6/5+6WQhAAAAAAu+uyzLxUR0VGFhQ7l5ORKkv7974clSRMnvqpnn31I113XS5LUqFE97dixR//97/u67bbBOnAgVU2a1FfXrpfKZrOpQYME53FXrFinrVt36dChFbLbAyRJzz47XgsXLtf8+Ut0xx03qlatYPn5+SkuLtrNZ11xJCEAAACAi3r0uEzTpj2pM2dyNHv2fO3atU/33/8npaWd0IEDqbr77gm6996/OcsXFBQ6Ryxuu22Q+ve/W61aDVLfvl11zTVXqnfvLpKkb7/drszMM4qLu6LI62Vn52r37gPuO8FKRhICAAAAuCg4OEhNmtSXJE2Z8qh69x6pv//9Zd13358kSTNnPq3LL29dpI6v79nl2e3atdSPPy5ScvIqLVu2RkOHPqyrr+6o9957QQ6Hpfj4aC1Z8vp5r1m7dmgVn1XVIQkBAAAAKtmTT96jgQPv0913D1HdujHau/eghg79Q4nlw8JCNGRIPw0Z0k/XX99bAwbcqxMnMtSuXQulph6Xn5+vGjasW2zdgAB/FRYWVtWpVAmSEAAAAKCSde9+mVq2vEjPPvtfPfXUvRo79lmFhdVS377dlJubp2+/3a709FMaM+Y2vfjim4qLi1bbts3l42PTBx8sVlxctGrXDlXPnp3UqVMb3XjjGE2cOEYXX9xQKSlpWrToKw0efLXat2+lBg0StG/fIW3e/IPq1YtVaGgt5/qRmopb9AIAAABV4MEHh2nWrA/Uu3dXvfzy03rjjYW69NIb1KvX7XrjjY+cIxshIUF67rnZ6tz5j+rSZah+/vmwPvroP/Lx8ZHNZtPChTN0xRXtddddT6tVq4G69dZH9PPPhxUTEyVJuv763urTp6v69BmphITueu+9RdV52mVisyzLqu5GAAAAABVx6tQphYeH69ix1QoLq/m3pvV2p05lKjq6izIyMhQWFlZiOUZCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbsU8IAAAAPNa5G72ePp1VzS2B9OvvobQb8JKEAAAAwGOdPn1aktSoUe9qbgl+6/Tp0woPDy8xzj4hAAAA8FgOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JS88oMkBAAAAIBbsTAdAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEAAAAABuRRICAAAAwK3+H9wGuSBGjivaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interactive_phaseogram(phaseogr, phases, times, df=0, dfdot=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Second: overplot a line with a pulse frequency solution, then update the full phaseogram\n", + "\n", + "This interactive phaseogram is implemented in `HENDRICS`, in the script `HENphaseogram`" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "class InteractivePhaseogram(object):\n", + " def __init__(self, ev_times, freq, nph=128, nt=128, fdot=0, fddot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " self.df=0\n", + " self.dfdot=0\n", + " \n", + " self.freq = freq\n", + " self.fdot = fdot\n", + " self.nt = nt\n", + " self.nph = nph\n", + " self.ev_times = ev_times\n", + "\n", + " self.phaseogr, phases, times, additional_info = \\\n", + " phaseogram(ev_times, freq, return_plot=True, nph=nph, nt=nt, \n", + " fdot=fdot, fddot=fddot, plot=False)\n", + " self.phases, self.times = phases, times\n", + " self.fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(times))\n", + " tobs = tseg * nt\n", + " delta_df_start = 2 / tobs\n", + " self.df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** self.df_order_of_mag\n", + "\n", + " delta_dfdot_start = 2 / tobs ** 2\n", + " self.dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** self.dfdot_order_of_mag\n", + "\n", + " self.pcolor = plt.pcolormesh(phases, times, self.phaseogr.T, cmap='magma')\n", + " self.l1, = plt.plot(np.zeros_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + " self.l2, = plt.plot(np.ones_like(times), times, zorder=10, lw=2, color='w')\n", + " self.l3, = plt.plot(np.ones_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + "\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Time')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " self.axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " self.axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " self.axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " self.sfreq = Slider(self.axfreq, 'Delta freq x$10^{}$'.format(self.df_order_of_mag), \n", + " -delta_df, delta_df, valinit=self.df)\n", + " self.sfdot = Slider(self.axfdot, 'Delta fdot x$10^{}$'.format(self.dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=self.dfdot)\n", + " self.spepoch = Slider(self.axpepoch, 'Delta pepoch', \n", + " 0, times[-1] - times[0], valinit=0)\n", + "\n", + " self.sfreq.on_changed(self.update)\n", + " self.sfdot.on_changed(self.update)\n", + " self.spepoch.on_changed(self.update)\n", + "\n", + " self.resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " self.button = Button(self.resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.recalcax = plt.axes([0.6, 0.020, 0.1, 0.04])\n", + " self.button_recalc = Button(self.recalcax, 'Recalculate', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.button.on_clicked(self.reset)\n", + " self.button_recalc.on_clicked(self.recalculate)\n", + "\n", + " plt.show()\n", + "\n", + " def update(self, val):\n", + " fdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " freq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " self.l1.set_xdata(0.5 + delay_fun(self.times - self.times[0]))\n", + " self.l2.set_xdata(1 + delay_fun(self.times - self.times[0]))\n", + " self.l3.set_xdata(1.5 + delay_fun(self.times - self.times[0]))\n", + "\n", + " self.fig.canvas.draw_idle()\n", + "\n", + " def recalculate(self, event):\n", + " dfdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " dfreq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + "\n", + " self.fdot = self.fdot - dfdot\n", + " self.freq = self.freq - dfreq\n", + "\n", + " self.phaseogr, _, _, _ = \\\n", + " phaseogram(self.ev_times, self.freq, fdot=self.fdot, plot=False, \n", + " nph=self.nph, nt=self.nt, pepoch=pepoch)\n", + " \n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + "\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " \n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + "\n", + " self.fig.canvas.draw()\n", + "\n", + " def reset(self, event):\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + " \n", + " def get_values(self):\n", + " return self.freq, self.fdot" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIiCAYAAADfDcfpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvoElEQVR4nOzdeXyU1d3//9eQbZKQTBbIJiEEiQEEEVEhaAVUNuuCeheplkrr7VK3UvV2vaux3xbU+1Zppbfbz4rWhdqqWKuCWCFqWaWAiBhRwiZZWLKQkMl6/f74XDM4ggsEApm8nz7mMcx1neuczznXmcucuZbjcRzHQUREREREpJ10OdIBiIiIiIhI56JBiIiIiIiItCsNQkREREREpF1pECIiIiIiIu1KgxAREREREWlXGoSIiIiIiEi70iBERERERETalQYhIiIiIiLSrjQIERERERGRdqVBiIiIiIiItCsNQo4Sjz76KCeccAKJiYkkJiZSUFDAW2+9FVzvOA6FhYVkZWURGxvLyJEjWbt2bUgeDQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqvaoooiIiIgIoEHIUaNHjx7cd999fPjhh3z44YeceeaZXHDBBcGBxgMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cH85g6dSqvvvoqs2fP5oMPPqC2tpZzzz2XlpaWYJpLL72UVatWMXfuXObOncuqVauYPHlyu9dXRERERDovj+M4zpEOQvYvJSWF//mf/+HnP/85WVlZTJ06ldtuuw2wsx7p6encf//9XH311VRXV9O9e3f+/Oc/c8kllwCwbds2srOzefPNNxk7dizr1q2jf//+LFmyhKFDhwKwZMkSCgoK+PTTT8nPzz9idRURERGRziPySAcg+2ppaeGvf/0rdXV1FBQUUFJSQllZGWPGjAmmiYmJYcSIESxatIirr76aFStW0NTUFJImKyuLAQMGsGjRIsaOHcvixYvx+XzBAQjAsGHD8Pl8LFq06BsHIQ0NDTQ0NAQ/t7a2smvXLlJTU/F4PIehBURERKSjcRyH3bt3k5WVRZcuR+ZiG7/fT2NjY5vziY6Oxuv1HoKI5JtoEHIUWbNmDQUFBfj9frp27cqrr75K//79WbRoEQDp6ekh6dPT09m0aRMAZWVlREdHk5ycvE+asrKyYJq0tLR9yk1LSwum2Z/p06dz7733tqluEn62bNlCjx492Lp1K9nZ2Uc6HDlC1A8E1A8kVKA/tDe/309u7jGUle1qc14ZGRmUlJRoIHIYaRByFMnPz2fVqlVUVVXx8ssvc/nll1NUVBRc//WzDo7jfOeZiK+n2V/678rnjjvu4Kabbgp+rq6upmfPnhRPvpCdm2xglHdqJQAvz+sFwA8HbgTg4UXHAjA6vRaAU8fsAOB/n8+x5Rk1IWW9sDERgMRoi+euyZbP66/bwayqcf+/rGR4mwHYtCcquOzq5zIAqJy+NCTtS2ut7A93tAJwcU+7ZybNWw/A+9sthuomT0jsD31qX5fjEmMA+OWJoTf9f1GR7G4X7eZjsVycbXXsnrAHgMc+sbhiIiz/mka7InJTnZ1tuuN4e29oiQDg5S3xlm+jxdsn0dqgpsnKPTvdb+ubrbzimohgTDnxrW7etk2ShUa538quqLf1Z2fau7eLm95tx0C6gBcqPwDg3PjTiI9IACCuSwJrxv7M1q+3ug1KsuCO774TgH9usX4S2E+BthmYZOWtqbL4Am366nrb3zFdrG3y3bbzxdivW8t2JFm8EYG26xJSbkyXvfdBLdtl/wNJ91raU7tVAfBRpS+k7MtyrQ8fO9D+5/Wbv1vfzUtw3LYLtGWEG5OVVbw7KuRzoB89+llXAH5+rH0eNGD/A/2dW23/bq1KcPOLA+CEJLvfK/CdmH7pBgAqi20n/vtLa1NfVGNI/r972+IO9C+Auwstry0vWl/+1zb7MeLDnVb3uwrsx4zaWuvbK8q7WyxuXzqje11IbBf02wzA0pIsUqKsnplxsSw64xprMx0PdDxAxwPofMeDPS0N/Hz1IyQkJOy3fodbY2MjZWW72Fgym8TEuIPOp6ZmD71yJ9HY2KhByGGkQchRJDo6mj59+gBw8skns3z5cn7/+98H7wMpKysjMzMzmL6ioiJ4diQjI4PGxkYqKytDzoZUVFQwfPjwYJry8vJ9yt2+ffs+Z1m+KiYmhpiYmH2WJ0RH0RBpyxNj7EAYG+F+jrbPMV3syxsfaQfkRK8t90bY8q6Rey/zAoh208d08YSkj3PzbYiIYH/iIprcfKODyxK7xgLQHBUdkjZQdpT7P6a4iBY3ltaQ9f4WT0jsUZ7IkDolfC3feLctmloDdY8OqWNCVHPI9oE6Rrv/Y41y/x/R1f1WRnoiQtokEK/XbYOGlkC5tn2TE+Wu3/u1jo0I3cbrNt/esltD2iDwR0egHQPpArq4bWAxBdZ5gm0RaLu4iC4hbRQbXB74oyCwvMX9HBGSPpCP122b+MjAPvKE5OeNCMQbEVKuN2LvHx2BvGLdP1C6uvsp0FcDZXf9Wl8O7KfAdsE2ctt3b1nRIZ8D/SiqS4wbu30OfCe+rtGtc3wwrsB3w/6YCOz/QFyB/hz4TsS7bfL179xX911inOWV4P6BEqh79Nfa3fO1vAN1jY9sDokt4SvpPG4/8Hg8+7Shjgc6Hlh+Oh50luNBwJG+VDsxMY7ExPgjGoN8Nz0d6yjmOA4NDQ3k5uaSkZHB/Pnzg+saGxspKioKDjCGDBlCVFRUSJrS0lI+/vjjYJqCggKqq6tZtmxZMM3SpUuprq4OphERERHp0Fpb2/6Sw05nQo4Sd955J+PHjyc7O5vdu3cze/ZsFi5cyNy5c/F4PEydOpVp06aRl5dHXl4e06ZNIy4ujksvvRQAn8/HFVdcwc0330xqaiopKSnccsstDBw4kLPPPhuAfv36MW7cOK688koef/xxAK666irOPfdcPRlLREREwkNbBxIahLQLDUKOEuXl5UyePJnS0lJ8Ph8nnHACc+fOZfTo0QDceuut1NfXc+2111JZWcnQoUN5++23Q667fPjhh4mMjGTixInU19dz1llnMWvWLCK+csnC888/z4033hh8itb555/PzJkz27eyIiIiItKpaRBylHjqqae+db3H46GwsJDCwsJvTOP1ennkkUd45JFHvjFNSkoKzz333MGGKSIiInJ0cxx7tWV7Oew0CBERERGR8NHqtPFyLA1C2oMGISIiIiISPnRPSIegp2OJiIiIiEi70pkQEREREQkfOhPSIWgQIgettiKGqgabpOi1ub0AGNP7SwDmrbHPgRls/e5sv9Nm5QJwYbbNQlu2xyYQO66bzU47tJvNKjuih02quOB1m3F3Ybl11ZkvWfqGv30EwAOv5wEwNsdmXi4pyQrG95MzbLbdCdnZAAxKtTIHJ9kssf0SLKbZm2zCpXyf1aW42nFjsfd1NTbh0TV5NrFWfnIFAC8V9wRgVLrlW9Vo26+ssvfFVTY78IQeNoHTZztsEskcqyK5cQ1u+RbHBdkxbls1h7RZID21oROz5SdafIGJuJaUWtuMy6wPpin1WyyX528DYFlpmrsm0t3WJpSavsFm1x2XbG3VNzE0hoBfZowAYHzWrq9M5ubwnNvug5Ns8qu5pVbuwgpbPijZYly8M8aN0WY8Toq29M+UWDnvbwrkU+umt8qvrLL34uqQcJiUY3Udlmb5JXa12aK37PAF01w3xOoWmP133iab8HN1pdV9Qg/LIyvNMv/NnOMAuDrf+uDqnSkAXHyl9bHfPmh9sldCrVv/2JCYHltvMxoP7W75D3/vHADqrvgTAEs/PQaAdbttO787j9oot/ylVgwF3W3FrSfavvvVMzaR6aBk2+/J0ba+zG/998Y5tn5clu27ysa9++7jx6zv9s63mY4ndCsBoN+G7iFtc0yB9cnK2RFuTLVunWJD6uRNtjJOSN9BlDtBnNOKjgfoeKDjQec+HuxuauSooEFIh6BBiIiIiIiED6eNgxBHg5D2oHtCRERERESkXelMiIiIiIiEDY/TiqcNZzPasq18fxqEiIiIiEj40D0hHYIGISIiIiISPlqdtk04qMkK24XuCRERERERkXalMyEiIiIiEj50OVaHoEGIiIiIiIQPDUI6BF2OJSIiIiIi7UpnQkREREQkfDhO2yYcdHRjenvQIETaZFBeGQBJm1MAuK4oE4BnJ5YAUPlBHwAW74wFYFRaLQAbd3cFID+5CoCPyrsBMDilGoBlpWm2fWMEAOm2OY9cWQ/Apto8AMrqWwC4aXF3AIZ23xvbpBxb542w99U7LcbZG+3gMqW3vSdFewCY0LMCgMeLreyqJstn9S7b/tFzNgMwb00vAPy2mLe2Wb658c0AVDfacn8Xi7WqMQGAhRXRVudEK7eyyeqW74sIKa+kzir7l422oJc1FZ/urnXTd+WryvzekHwfW//Vr7UdhF/bEmgYSzMiwz6V14dkxdzKLVZm/DEA/LS/1fmJNT0BKK4OtGkKuS1diAJaHQ9l9daGZfUx7nujm66L2wb2Pi6rya1rFAArq6yuveLcfRHld9NbW22yKjOhhwXq7WJ1zY23dJPWrgBgzgknApCaUgfAupq9bVRWb2UE2nvG1s8AeLy/1XFBRVc3VmujuyfY+j+8aX1scJKV/dsHM9y2sTaY9YXt93tGfQ7A7BXHAnDbwO0ANDTbfrgx5z0A0mPtu5BkVSPTa/2lr6/G4twT66YLPUG9uTIRgN//wr5Tf5rdC4D/uM3i+sn1cQAM7W77oNRv5U7M3xzMY8sOHwCLVvYAYPjgrQD4W6xNGhptm18+mgXAuEzbfz2TLbapfVtC0re4+/uzHcmkt3YJ/o9ExwMdD3Q86NzHg7rmBo4KuhyrQ9DlWCIiIiISPgKP6G3L6wB9+eWX/OQnPyE1NZW4uDhOPPFEVqxYEVzvOA6FhYVkZWURGxvLyJEjWbt27aGsdYejQYiIiIiIyEGqrKzktNNOIyoqirfeeotPPvmEBx98kKSkpGCaBx54gIceeoiZM2eyfPlyMjIyGD16NLt37z5ygR9huhxLRERERMJHO1+Odf/995Odnc3TTz8dXNarV6/gvx3HYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx98rB2YzoSIiIiISPhwWvcORA7m5d7UXlNTE/JqaNj/PS9///vfOfnkk/nRj35EWloagwcP5sknnwyuLykpoaysjDFjxgSXxcTEMGLECBYtWnR42+IopkGIiIiIiIQNT2trm18A2dnZ+Hy+4Gv69On7LW/Dhg08+uij5OXlMW/ePK655hpuvPFGnn32WQDKyuyhHenp6SHbpaenB9d1RrocS0RERETka7Zs2UJiYmLwc0xMzH7Ttba2cvLJJzNt2jQABg8ezNq1a3n00Uf56U9/Gkzn8XhCtnMcZ59lnYnOhIiIiIhI+HCctr+AxMTEkNc3DUIyMzPp379/yLJ+/fqxebM9Gjkjwx7p/PWzHhUVFfucHelMNAgRERERkfDRlvtBDuKm9tNOO43i4uKQZZ999hk5OTkA5ObmkpGRwfz584PrGxsbKSoqYvjw4W2vbwely7FEREREJHy089OxfvWrXzF8+HCmTZvGxIkTWbZsGU888QRPPPEEYJdhTZ06lWnTppGXl0deXh7Tpk0jLi6OSy+99ODj7OA0CBEREREROUinnHIKr776KnfccQe/+c1vyM3NZcaMGVx22WXBNLfeeiv19fVce+21VFZWMnToUN5++20SEhKOYORHlsdxnAOfFlI6tZqaGnw+HyvOvJKWZvvyzPi0KwBTejcCsHhnLAAZXute3ojQXxVy4+sBOGVoKQDLl2aGrPe3RIS8l+yJBiApqsVdblcS/teGvwLwt4HnhaQHqGyyfxeVW9r02NCrD6sbLbZxmY1ujC0h73npuwC4a3G2m7fVYUS65VNcYzeTldVb+nyflVduVcMXbeuTokO/Yhne0DoUlVu+VY1NAFyTZ8sXVlidh3VrBmBlZZSVW23xvtf0NgC/zv4hAKt3Oe72NcGyHluf6MZsZWR6bdu5pbZ/RqbZ5xmf2fs1fbwAnHNqCQAPvpPntpXlNyjZYp+3DR5ZeRMpWT4aK6oo/nEhALO+SAmJudRvv3MUlVndxmbZ5/PztgDwPyt6hrTNuMx6t22sLQP7MGBEj3IANldavd4qtf7XK97q52/1uPVsDm7TK74OgNtXW173DWoJyXPxTh8A/RLqQ9omJsLyyoh1+3AXey/oXglAVYPtnzlbre/n2BsFqdXA3rZ//PqNAET0sM8fPGHXFCfFWKPm9LR+NmdVbkhcgf4R+O4EvjPp8XsAOOZYK6el3uLcU2PxBNp0Qo/ar+Tlfo/qvCF12Li7a0iZGbFWxn1r44C9+2tk5nYAVu+0/Xumu/+eWpXLLxZMJSEjkabtlaz6j98COh6Ajgeg4wF0vuOBv8XPPeunU11dHXJDd3sJ/H1S9a//IbFr7MHnU1tP0mn/dcTq0VnoTIiIiIiIhI92vhxLDo4GISIiIiISPlqdNg5CdJFQe9DTsUREREREpF3pTIiIiIiIhI+vzPVx0NvLYadBiIiIiIiED90T0iHociwREREREWlXOhMiIiIiIuHDcdp2c7kux2oXGoSIiIiISPjQ5VgdggYhIiIiIhI+NAjpEHRPiIiIiIiItCuP4+jCNzkwNTU1+Hw+7s27g6RoLwCj0ncBULYnFgBvRAsA/pYIAEr90QBM+mEJAMWLUwBIjPMD0C27DoB/f5QJQEmd5VPVZNuX1XsAmNKnHIDHi9Ps87FW7spdPre8veNqf6ttU5BaDcCCCkszOKk+JKZ+ibUAzN5k6322mF7xLSHrV1YmujFZvklR9tWZt63ZLdvSD+1ubbKp1tYP7RYaj7eLLS8qt19aMmIDdQxsb59z4xrd7bq4bRIZEv/indZGo9IC8Xd149j7lU6PtW3vnvAZABf/Kdtij44CIKdrpPvZtsnwtrh1tBgyvVa3dTWWrrja1j99ZQlR/zUDjy+FxooqXjvnIQB+kLMNgJs/OAaAsVm4de0SEs+FParcOlsd1u2ODin/h303AxDlfi7bZm2/sLS7xVHjcfPDbQPbx2mJ1o8qauKDbfDq1iQA+iZaXWIjrK5LdlidRqZZOwf6bOA90AczvY1um0S5MfpD1idHtbht2MhXBfK5b20cANfkWfk5ibsBOOZYi3nRyh7A3u9KYH/39dUAsKDcvisT861Nup9udfev94eUF/juBMod9IPtwXX+L+090I6zPk93Y7a2+HqfmpRbAUBDs7XRp9W2nbdLoM/WB/Me9NdfE52WxO6yGp4+ewag44GVreOBjgd7dZbjQW1zA2cu+iPV1dUkJibS3gJ/n1S9dQ+J8d6Dz6fOT9L4e49YPToLXY4lIiIiIuHDabVXW7aXw06DEBEREREJH61tfDpWW7aV7033hIiIiIiISLvSmRARERERCR96OlaHoEGIiIiIiIQPXY7VIWgQIiIiIiLho9Vp45kQDULag+4JERERERGRdqUzISIiIiISPnQ5VoegQYiIiIiIhJE2zhOCbkxvD7oc6ygxffp0TjnlFBISEkhLS2PChAkUFxeHpJkyZQoejyfkNWzYsJA0DQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqsNdRRERERERQGdCjhpFRUVcd911nHLKKTQ3N3PXXXcxZswYPvnkE+Lj44Ppxo0bx9NPPx38HB0dHZLP1KlTef3115k9ezapqancfPPNnHvuuaxYsYKIiAgALr30UrZu3crcuXMBuOqqq5g8eTKvv/76AcU8OrOSHfWpACwoTwFgyimfA5BwTjoA7zxkaUf0KAdgxst9AHisfAUAy8fadj99qRcAz1++EQD/oh4AVDXFAlBc3QhAtT/G1rdYvo99ZtsPSrZTp5nepmB8i3da2uxu1QBk1HQFoNRvbVbmj3C3sc/5iZaHNyL0F5CyeothcHKN1bXCB8DSHbZ+Ui8PAPUtUQAkR1msVw0sA+CuxdkAjMtqBiApymL0Zlm587a1uOWG/iaQn1wFQHldnLudxXvfOkufFGn59Iq3+B44bz0Ad7+Zx9ed+ZS106QeXmBv++XGu7F0sTonRTe6beMN2T7J7WYZsRbDa3N78cMbIojzwZ6WLizZYYeSheU9rZwcy6fUb22SHmt165tobeDzNgB7902vKts3hasTAKhqygUg09scEl/AyDTLf85Wy398VkvIen9LRPDfF/aosjq5+9EbYWlvHFgBwObKRABK6mx9oK/2z94OwDZ3f5+UZvvzjysstuJqy2faqdYRfrMiE4ApveusnEhb/8Ro+xHgjU+tbc6caHV/9yXr48d1qwSgW7Zt9/Li3gAs3p4MwMT8zQC8VGzbXxZdAsAnW6y8U4aWhsTfL7EWgMIX9/aDXvHWflf8zGLJeMr6+mUDLa+X1/YC4Fa3D71eZHUcO3CjtcUJFtsXc+07tXqn9acz87YQ4X5fvBGt5MbZftHxQMcD0PEAOt/xYHdTI0cFXY7VIWgQcpQIDAgCnn76adLS0lixYgVnnHFGcHlMTAwZGRn7zaO6upqnnnqKP//5z5x99tkAPPfcc2RnZ/POO+8wduxY1q1bx9y5c1myZAlDhw4F4Mknn6SgoIDi4mLy8/MPUw1FRERE2oEGIR2CLsc6SlVX2y9CKSkpIcsXLlxIWloaxx13HFdeeSUVFRXBdStWrKCpqYkxY8YEl2VlZTFgwAAWLVoEwOLFi/H5fMEBCMCwYcPw+XzBNF/X0NBATU1NyEtERETkqBSYrLAtLznsNAg5CjmOw0033cTpp5/OgAEDgsvHjx/P888/z7vvvsuDDz7I8uXLOfPMM2losNO5ZWVlREdHk5ycHJJfeno6ZWVlwTRpaWn7lJmWlhZM83XTp08P3j/i8/nIzs4+VFUVERERkU5Il2Mdha6//no++ugjPvjgg5Dll1xySfDfAwYM4OSTTyYnJ4c33niDiy666BvzcxwHj8cT/PzVf39Tmq+64447uOmmm4Kfa2pqNBARERGRo5Mux+oQNAg5ytxwww38/e9/57333qNHjx7fmjYzM5OcnBzWr7ebxzIyMmhsbKSysjLkbEhFRQXDhw8PpikvL98nr+3bt5Oenr7fcmJiYoiJiTnYKomIiIi0Hw1COgRdjnWUcByH66+/nldeeYV3332X3Nzc79xm586dbNmyhcxMeyrGkCFDiIqKYv78+cE0paWlfPzxx8FBSEFBAdXV1SxbtiyYZunSpVRXVwfTiIiIiHRYuiekQ9CZkKPEddddxwsvvMBrr71GQkJC8P4Mn89HbGwstbW1FBYWcvHFF5OZmcnGjRu588476datGxdeeGEw7RVXXMHNN99MamoqKSkp3HLLLQwcODD4tKx+/foxbtw4rrzySh5//HHAHtF77rnn6slYIiIiItIuNAg5Sjz66KMAjBw5MmT5008/zZQpU4iIiGDNmjU8++yzVFVVkZmZyahRo/jLX/5CQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YF5wgBeP7557nxxhuDT9E6//zzmTlz5uGvpIiIiMjh5jj2asv2cthpEHKUcL6jw8fGxjJv3rzvzMfr9fLII4/wyCOPfGOalJQUnnvuuQOOUUREROSop3tCOgSP811//Yp8TU1NDT6fj8/Om8yxP7SZbVe8YLOzBmamDcza+tK7NttrbMT+u1lgBtaybTZLbWJXv23nzgZ73RVbAGjZaY8hvuM5m2F5Uk51SD6Ld9ostlVfmax16mk2W3Pxhu7A3ll5711ls7yPSA+9JWpsjsVcUWMz1AdmQs6Nt1l6KxutbmV+e4pYQWo9ACV1Nptwv8Q6d719XlcTGZJuzlZrI1+0bV/dGNomK3fvBGBKT5sbJjDbc2Cm58Ast/7W0KeYjUrfZfG6s1TP3rozuG5kajcAkqKtrMFJFsvKKoul3D4G2zPQjkVlVra/xWb5HZHhdetS6y6P4Aev3Y43zUd1aQ0f/ei3ITG9VZrgprc2D8xKPLTvlwBEp1g889/PAWBuqU3BPLSbpVu6IyLkc6bXduy63RZ3Wb0npE0C+yQwk3NgVmGA9zdl2bbu/vC6JwV/2n9zyPqAwGzMJ6TbzMfXfmDtevvxzSHpAn090Jaj0qwNA7M+r9nWPaTugX4RyN/fav3vvBE2S/Ef3Jmt+yU0hqwflGr7t+cAy/eB1y1dhnffWcGtDWz7pJi9X4aNu7uGpBk/wfbDn2b3AmBkps0GnZpifXjnLvsObKpJCNkuUJfAe37v7XR9cAZdUlJo2bkLz9/+G9DxAHQ8+CodDzrP8aCmsZHsF/5CdXU1iYmJtLfA3ydVT15LYtzBP1CnZk8DSVf+3xGrR2ehG9NFRERERKRd6XIsEREREQkfThufcOXo6VjtQYMQEREREQkfuiekQ9AgRERERETCRyttHIQcskjkW+ieEBERERERaVc6EyIiIiIi4UOXY3UIGoSIiIiISNhwWh2cNgwk2rKtfH+6HEtERERERNqVzoSIiIiISPhwHHu1ZXs57DQIEREREZHwoXtCOgQNQuSg/fvLdNKXlAPQO6segD+uyLWVSzMBSI5qAaBXQi0AG3d3Dclj0+YUAKoaogG4f013AEak23YTf5cBQOGg3QBMyqkGYPFOHwCDkyzforImAG4/fk8w7yZ/BABvlVra1bsszQXZtr7M7wGgINXNY2t6SGxFZX4Ayn1eABbUbAVgao7VraTOlv9lcx0AfROsbuMyGwHI8NpBLCnaPuf7Yq3OtbbcF23l94q3ZwGmx6ZanZKtjvetjQNgUIqln7et2c0n2s3Xlr+6JcX9bHHPGtoSrMOSiuaQOlU1RQEwKs3KKPwoxupWYW00u9zqeG+fNKvjHqtjoJ0DSv3RtLjH6C4eWFnV1W2zQBtbuZVNtg9WV1hwMz7tAcDtxze7+dvysnrbbmNdlFtHyzvQfxbvtLbrl2jbFaTWhcQT2McFqVav5Vsygutmb7RAh1rXIinKPv+/ZT0BeHDiegDeX2SxBfZrpdsfnjrzSwC27LAyfN4GADbVJABwSZ9tAHy2I9liLbZ8LxtYAuz9TgRi97faVbATV0wHoPbUSQAMTrLv0FlTrA6tO+3z4jct8OL3kwC4+WyL98F38mx5jbXhuExLv64m3tou2htsA28X62OBvnj3U70BuGvsZwBEpVhfLF4c+n0MtIU3wrbfWGf7M9C3+8dWgG1KY3METUusn+h4oOOBtZmOB53teBARcZT88a5BSIege0JERERERKRd6UyIiIiIiIQPnQnpEDQIEREREZHwoUFIh6BBiIiIiIiEDcdp4zwhejpWu9A9ISIiIiIi0q50JkREREREwocux+oQNAgRERERkfChQUiHoEGIiIiIiIQPDUI6BN0TIiIiIiIi7UpnQkREREQkfDiOvdqyvRx2GoTIQUvz1jPjX30A8Ld4AOib2BySZt3uaPdfXUOWz94UAcDQ7ikAXDV2vbs8D4BhaTvdfLsDkJVWDcDLa3u5yy0fb4T9IyM2CoCqxkB5EOW1dcXVLSFlb6yzsqee9jkAd7zTx93W0k3KsfcRGV4Arhlm6QatygXgmZJ6AO4bZOmSo+MBmLvNDlpztlos6bF2orHM77N8cyusvBXJbv6WLjfe70Zm5V2+pgyA23P6uG1R4dY53fKv/BSA8Yn5btxWbnW07YPVO1OCdV26w+r6m9NLAFj0xTFuG1jMGbG2vtyqxKT0HgBUNlndvF0s78U7bf9luG3qb+mCg5XX1ApXnGH7r99K235lVSwABam1tjzRtjv5Cusf/5iZ4K63/bqp1uems/WDUnfZ8hpLV1RR65ab4MZhcafH77G2yLR8HlufCECS2xYAVc22rTfC2ntwcg0AVz6eAcAjV+a5MVj6cZnWGKV+60txiY0A9I62mN74tCcAn9bY4bOqKcqNyfZjWb2VnXJlb6vjRotxYNZ2AKKirS1e4g77nLIxpM3O3LMDgLfm2L468+RNALS4+caNsriT3iOkzQLbB/bllGNrgm2weLv1uZI9VqeMWNuvn6xNszq435vFOy2PQHsG+mZGnGUaG2HtW9lo7f/uhzmc3RhBLBDhcfgfHQ90PNDxwI2pcx4P9rQ0cDRwWu3Vlu3l8NMgRERERETCh+4J6RB0T4iIiIiIiLQrnQkRERERkfChMyEdggYhIiIiIhI2dE9Ix6DLsUREREREDlJhYSEejyfklZGREVzvOA6FhYVkZWURGxvLyJEjWbt27RGM+OigQYiIiIiIhA/H2XtJ1sG8DuIRvccffzylpaXB15o1a4LrHnjgAR566CFmzpzJ8uXLycjIYPTo0ezevftQ1rrD0eVYIiIiIhI+Wt1XW7Y/QJGRkSFnPwIcx2HGjBncddddXHTRRQA888wzpKen88ILL3D11Ve3IdCOTWdCRERERCRsOK1Om18ANTU1Ia+Ghm+eB2X9+vVkZWWRm5vLpEmT2LBhAwAlJSWUlZUxZsyYYNqYmBhGjBjBokWLDm9DHOU0CBERERER+Zrs7Gx8Pl/wNX369P2mGzp0KM8++yzz5s3jySefpKysjOHDh7Nz507KymzC0fT09JBt0tPTg+s6K12OJSIiIiLh4xBdjrVlyxYSExODi2NiYvabfPz48cF/Dxw4kIKCAo499lieeeYZhg0bBoDH4wnZxnGcfZZ1NhqEyEHLzaxkR0MKAGMHbgSgbJt9We9dlQpATlf7gnkjWgC4rXgnAFOyegBQ1Wh5zX8/B4CNtX4AFpZ2B6BfYh0Atxb1AuDuIaUALCtNA2BlpZX3y/4VABxzbHUwvjeX5QLwhzM3A3DVfCuz2i1zzipbnx5rn/N9EQBkxNYC4G+1E4UjX/MC8Mxgy3veNp9btq0vKrej1ZTeFvuCijgAVu+qB+D245utvM1pbv5WXlFZk5vO8i+rt9O89+dZXLM3Wboyv233zK6FVteMERZHqcV5Sc94izPT2mB2SVqwDfItVLZV2D8W77QDaEOLnWpOirb1E3rUumV2tRgtJJbusPe7h2yzGIqzANhU6/AfLYFSHG59PQ+AqkZbGNjvAVWNVtA/Zsa6bWBt81apxTUyzXbKnK1RAHi7JAGwssq2u72fpZ9banEH+tOmmgQASv3Rbj2aQuoJMCLN6jTuGGufJRXWN6tu2gXA4CTL67KB2wF4eW0vAMbmWF9r8lu/CPSfC7It38HJVtYF4zYCsHF5ohublffOXRbzwCzLd8sOX0ibeLtYv5n9Rm7I8k/+Ee/W1eq0boG17dSLPwfg48es3Eyv9av6Fmvrn/bfvN9yLK1tU+q39q1qCt0/Z060HV36rO3fdTVWh+Qod3/2tLaaMS8ZgKRo2/7i478kOtLSRES00i/RYtLxQMcD0PHAYutcx4PdTY3w732KbH+O+2rL9kBiYmLIIOT7io+PZ+DAgaxfv54JEyYAUFZWRmZmZjBNRUXFPmdHOhtdjiUiIiIiYeNQ3RNysBoaGli3bh2ZmZnk5uaSkZHB/Pnzg+sbGxspKipi+PDhba1qh6YzISIiIiIiB+mWW27hvPPOo2fPnlRUVPDb3/6WmpoaLr/8cjweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLz3SoR9RGoSIiIiISPho50f0bt26lR//+Mfs2LGD7t27M2zYMJYsWUJOjl1aeuutt1JfX8+1115LZWUlQ4cO5e233yYhIaENQXZ8GoSIiIiISNhwWu3Vlu0PxOzZs791vcfjobCwkMLCwoMPKgxpECIiIiIi4eMITFYoB043pouIiIiISLvSmRARERERCRvtfTmWHBwNQkREREQkfDi07ZKqtj2hV74nXY4lIiIiIiLtSmdCRERERCRsOI692rK9HH4ahMhBW1qSxYhe2wAo25YIQEZWDQAPdvUD8PaGY0K2eXygPRN7xqctANw+oBqABeUpAFyQbd/8SUO+sHT/6gPAIFvNA6uybH1OLQCPfW7LN9alA7B6WWKwrMIT6iyWZb0BGJFhea/eZe9Ld0QAMC6zEYB1u6MB8HkbLIO6eACm5mQCkJW22fJJT7Z8Kj0hdfi02soen7kbAG9EV7euTQBMH1IBwL2rUt06RQEwOMnKL/XHuO9WvL+lGYDZ5aUAbPqvngC88NcWvsobYeecpyx165P2lXVdrK6PfWYNOCnHYpu9qWtIHj2Tbb+lV9jyTG+jW1drk4oaa4tNtY4bu4do9zxqXCT8+lRrm7hE2+7Hc3q4OYc+A31U2h63TaycsVktbp2tLW4buB2A8ro4tw2sTeaWxgJwdb61YbXbVut22/LBSbUh5dx4Ylnw389+Yu22qcZiuW+TdZr3x1rdrppvsU5ptL5a0L0SgNdKrK/1S6gHICk60m0bvxuzbT/7jdyQNgvIiLPtEtKtPy34xAfA+KxdACyssO1/d/F6ANZ8aDsu0I9+2d/qmppi/Xje21aP/OQqAJbssHhGplm5T6yx9b3irU2Hpe0MxnJC+g57J1TXrhbbmy9a3X/Y1/bjy2t7AfDYRuu7Z55s+/0PE6ztdmyx/vDgst7c1hiJD2hsjuAHOToe6Hig48FX2yygsxwPGlr9HA10T0jHoEGIiIiIiIQPPaK3Q9A9ISIiIiIi0q40CDlKTJ8+nVNOOYWEhATS0tKYMGECxcXFIWkcx6GwsJCsrCxiY2MZOXIka9euDUnT0NDADTfcQLdu3YiPj+f8889n69atIWkqKyuZPHkyPp8Pn8/H5MmTqaqqOtxVFBERETnsApdjteUlh58GIUeJoqIirrvuOpYsWcL8+fNpbm5mzJgx1NXVBdM88MADPPTQQ8ycOZPly5eTkZHB6NGj2b17dzDN1KlTefXVV5k9ezYffPABtbW1nHvuubS07L1u+NJLL2XVqlXMnTuXuXPnsmrVKiZPntyu9RURERE5HAI3prflJYef7gk5SsydOzfk89NPP01aWhorVqzgjDPOwHEcZsyYwV133cVFF10EwDPPPEN6ejovvPACV199NdXV1Tz11FP8+c9/5uyzzwbgueeeIzs7m3feeYexY8eybt065s6dy5IlSxg6dCgATz75JAUFBRQXF5Ofn9++FRcRERE5lFo99mrL9nLY6UzIUaq62p6wkpJiTzEpKSmhrKyMMWPGBNPExMQwYsQIFi1aBMCKFStoamoKSZOVlcWAAQOCaRYvXozP5wsOQACGDRuGz+cLpvm6hoYGampqQl4iIiIiIgdLg5CjkOM43HTTTZx++ukMGDAAgLIye8Rgenp6SNr09PTgurKyMqKjo0lOTv7WNGlpaXxdWlpaMM3XTZ8+PXj/iM/nIzs7u20VFBERETlMdE9Ix6BByFHo+uuv56OPPuLFF1/cZ53HE3qK0HGcfZZ93dfT7C/9t+Vzxx13UF1dHXxt2bLl+1RDREREpN05jqfNLzn8NAg5ytxwww38/e9/Z8GCBfTo0SO4PCMjA2CfsxUVFRXBsyMZGRk0NjZSWVn5rWnKy8v3KXf79u37nGUJiImJITExMeQlIiIicjTSmZCOQYOQo4TjOFx//fW88sorvPvuu+Tm5oasz83NJSMjg/nz5weXNTY2UlRUxPDhwwEYMmQIUVFRIWlKS0v5+OOPg2kKCgqorq5m2bJlwTRLly6luro6mEZERERE5HDS07GOEtdddx0vvPACr732GgkJCcEzHj6fj9jYWDweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLw2mveKKK7j55ptJTU0lJSWFW265hYEDBwafltWvXz/GjRvHlVdeyeOPPw7AVVddxbnnnnvAT8ZaXRXFxUPs0b8vvWD3mWTutBvpM7x+AKqaIqzcxEYA/C32eWh3e89KsxvwrzpxJwDLl2YCMG9NLwC8lozcONs+09slNJ/UOADGZ9pjigtSo4PxBdLceOIma+Miy3tslnX7onKLPT+5CoBeCbZ8YWl3t+xWNx8rc+Jbtvz2fn43Fst/xjq7ByffZ6dve8Vbvptq7Rl/K1s/AuD+NScBMO3UUgCWlVqbrdttMU/oWQHAarcNS1rtjNW9fSzd1TOjAMjpGnqaOBDfhMxUa6v45uC6xz63WK/p4wVg8c6u1m7dWtw6WLv+YU0WAAtqtrp1yAxZ/9h6O/s1Ir3VLaOeqC727+ZWD+9vsu1nfWFlT+1rdS/12+cyv7VVRly921axAFQ1WZxJURZPtT8GgNmburp1tXwC/WBTTYKbr7XZvC+tfgWptn1Voy1/e8MxwTa44sQSAF5e2wuA+/vYAH/RF7Y+0B8qm6w+izdaOwb61LqaeL7qpF723Xzj054AxEZYjAOztgOwssqWr9zlszZ50/bn/VdZHIvftH50db7t72fn9wFg0hAL6OT/sLb5839bHMPccjNire2WVKSGxBPov2eebN+lqBTrH8WLU/i6QPslRdt+/ai8W8j6nbtC61p4QgMAt76eB8CEHvUh24/P3B38njQ5HrrpeKDjgY4HQOc9HtQ1N/DQxn2KaneO07azGXpEb/vQIOQo8eijjwIwcuTIkOVPP/00U6ZMAeDWW2+lvr6ea6+9lsrKSoYOHcrbb79NQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YRERERTPP8889z4403Bp+idf755zNz5szDW0ERERGRdtDW+zp0T0j70CDkKOF8j2G3x+OhsLCQwsLCb0zj9Xp55JFHeOSRR74xTUpKCs8999zBhCkiIiJydGv14GiekKOe7gkREREREZF2pTMhIiIiIhI2HKdt93XonpD2oUGIiIiIiIQN3RPSMehyLBERERERaVc6EyIiIiIiYcNp443pbbqpXb43DUJEREREJGzonpCOQYMQEREREQkbuiekY9A9ISIiIiIi0q50JkQOWn5iC4vf7A7AdVdsAaDuowYAyrYlArB0fSwAuXH2XrIn2tbX268Mn2yx7Us+tfV/2dgEwJRjrQx/i70PP/ZLAG4t6gXA3UMqAJi1wfJbVxMPwODkmmB8b5X6LO86y3tEhs0av3SHnWcdlGKf52xOs/fSnQCMTLWxed/EVgAmDfkCgOKaPgAkRVcDsHin5Z/T1cqravS4dbPy5ta/B8A92We45Vq6P6zJ4qvGZdZbnZdaPJN62Nfy/vxUtxyrY74Vx6g0K7+oIiIkn6Xbm9x/RQWX/ekH1h6vlViQq3dZg3q727ZVTRarz4rgmh7HAJAbX2d18XtteV5NSJ1L6mI5yfEQA0R4HCobLb++vsiQNiqps+0zvFbu1BVW0AhrcnLjGi2d2y8C+2z62Z8DcMc71ua3nrgNgJo9lp83wvK7pFesG5ctvyDX0iW5/QFg0RdWp/PzrI8++0lPq9MwK6N4g/VBn9f67g/7Wt3/uCIXgDunlABQ8E+LLdBnl+6wOl9z3C4A/meF5Xt1vvXN+9dYuruHWEwv/NXWJ0dZ7ENHlgFQ9pI1xqbNKQD4H7D+0M++QiypsH4w8cwNAKycbyvuv8riWufG9eYyi3fswI0A5J24M9gGy5dmsj8ZsVZWYL+OON7289joZgA2V1pZE3pYupN6WcxPrbKycuObaXF/MYz0ODoeoOOBjged+3iwp+XoOIPQ2uqhtQ33dbRlW/n+NAgRERERkbChe0I6Bg1CRERERCRs6J6QjkH3hIiIiIiISLvSmRARERERCRs6E9IxaBAiIiIiImGj1fHQ2oaBRFu2le9PgxARERERCRuaMb1j0D0hIiIiIiLSrnQmRERERETChh7R2zFoECIiIiIiYaOVNt4Tgi7Hag+6HEtERERERNqVzoRIm1Q1RgPwyvOZAJxzagkAC0u7A3D7gEoAXt2SAsCotFoASqJiASjzewHYWBcBwAXZNi7u66t0S0gEIMrbAsCgFPt14qPybgA89ZMNAFzxXG8A/K2+YGxLt/vdMpsBWFnVFYChtimDk6tD6jChp5WxqWYPAHO2Woz+FccC4LNkeCMtXVJUi7u9xd430crxRtjy6b1Otzh2WMxJ7vaTcqzcX6629CPTEgAYl5bKV62sig35PPXizwGY/UYuAJf0tLbK9DYB8PR5mwEoWtszuM2P348B4Fd9rKx8n33lC1JD6z4wazsALxXbtrM3dXXTWz694t26d3HcOkVwXquHeKDZ8ZAbb21d1WQxpyXWAdCvxdpmxqcWR98Ey7ef21YnpO8AoKQkC4DqRitn6afHuG1l/SWwv7/O32JtMDjJ0v1mhfXDKb3r9km73d3/BamWdtbyPgBckLsNgJ4/tf3wyL1pANw5xfpyw1aLdUG59eGJ+dbOU9z9/NY2W351fgUAq3fa5xHprQA8/onVJSPW2i7Z7TeB/ZjhdULyL6u3/jI42fZrv0SL94HX89y6WiP9aXYvAKqaLP34rF0ANPmtzYvePyZY98U7rf0v7FHlfrYdW+W291UDrU7RKRZLTI3V+bH1tj+nnVrOV9181RYAvpgbQ1SX1uByHQ90PNDxoHMfD2qbGzka6BG9HYMGISIiIiISNpw2PqJXg5D2oUGIiIiIiIQNnQnpGHRPiIiIiIiItCudCRERERGRsNHqvtqyvRx+GoSIiIiISNjQ5VgdgwYhIiIiIhI2Wh3aNk+IJitsF7onRERERERE2pXOhIiIiIhI2NDlWB2DBiEiIiIiEjbscqy2bS+HnwYhctB6xtXRO8VmUn2m2Ga4TVrZAwB/q/2K8NhnNutrYKbdOVu7huQRmC14YbklmJRrM/VuqrHZanvF20y3s91Zivsl1ANwzzqbxTgj1mazndrXZpFdULF3huQRGV53mX0en2ll5fe2Msa9mmx5xiW6sVi6jDgrI6erzQ4bmIE2MOPy+EybgbbMnYk2MKvvX7bbjLYXZHvd9bbdL/uHzpy7sc6mG5411Ga0vX9NlKWv97vb22y2/hbb3mvFULzYtn9tS2vIcohw26K7u7wl2Ab94mybpCi/m6eVFZghNzDj8cpPerrp7PNvTt8IwBuf2vJ1NbbfArMxF0dEE/idyAOs2+3OJu0W/cAq6w/XHLfLjc22H5dpjVXqtziWlaa5dbfcfNFOSB0Cs1oHZkAOzOi8bne0u7w+ZHlgVuLAzNsAZ+bZbL63FvUC4O4hpcDevviXzy1W771um7l97OqZlv4PEz5328Zien9TVki+Pm8DAHO/tLrkxlkdzxuxyWLbaPtz+ZaMkLoNTrA6Ld5u/TCwL+6esB6A8s+sn1TU2HugP1Q22f4+3y3/on/Gu/HZvi5w6x1oY4Af99oJ7J3NOdB3fv3ftvzjZ6wtEuob+Ko/nGkzJ9/9gc3mPPOh3QD8eVocABPP3ECk22ciPU5wxmsdD3Q8sPxtmY4Hned4UNPQCO9yxOlMSMege0JERERERKRd6UyIiIiIiISNVjy0cvBnM9qyrXx/GoSIiIiISNhwHHu1ZXs5/DQIEREREZGw0ep42jhPiM6EtAfdEyIiIiIiIu1KZ0JEREREJGw4bbwnxNE9Ie1CZ0LaqLm5mXfeeYfHH3+c3bvtcXXbtm2jtrb2CEcmIiIi0vkE7glpy0sOPw1C2mDTpk0MHDiQCy64gOuuu47t2+158w888AC33HLLEY5ORERERNrT9OnT8Xg8TJ06NbjMcRwKCwvJysoiNjaWkSNHsnbt2iMX5FFCg5A2+OUvf8nJJ59MZWUlsbGxweUXXngh//znP49gZCIiIiKdU+DG9La8Dsby5ct54oknOOGEE0KWP/DAAzz00EPMnDmT5cuXk5GRwejRo4NX0HRWGoS0wQcffMB///d/Ex0dHbI8JyeHL7/88ghFJSIiItJ5OXja/DpQtbW1XHbZZTz55JMkJyfvjcVxmDFjBnfddRcXXXQRAwYM4JlnnmHPnj288MILh7LaHY5uTG+D1tZWWlpa9lm+detWEhISjkBE7cvnbWRzZRIAm2rtAsoMrxeAsnr7Ao/LbADgsfWtAPT1ed3l9QB4I639hnaz916n1ACw8O/dLZ+ddoZpfGY1ABvr4gH4/SDruutqugKQG1+/T3y58c0ALNlhaRfv9AFw39o4AF45qxSAqGgr848rcq0OdV63LhZTVVMEABdkxwCwoMLWj0qrdutqMX5qHymusbqPTGu0z24bXbt+HgDnx5/j5m9x5HS19LcNtDgamt14t9tBbHWlrb/935b+vpN2h6wvKre2nbXBt08bTOlt9yb5WyJCls/eutNiTO0GQEGq7adSfxQAT62ytrikzzYrY2t6yHpfNHRxj9FdPA7eLrb/N7m3Qk3tVwlA4Wr7HozIsOXeCGvT5Gj7/WNdTaS73LbvFW/ry/xeNy5r1NmbQus2KDmwbyyelZX2fnV/G/wvK00Lpq2tjXHbwNrpsx3WbpNyqkPapqTO9uNJvcoASIpOsbZ4Lw+ATK/1p8pGS79zl/XF8jrbL5cNLAHgjU97ArB+VSoAiXF+a4PjNwOw9NNjrI57rLzLTv88pJwn5tn7lFM+36cuAMPSbN/V1FobvT7e+s2/N1oc3ZNsJxR9vLfN+iXaDyU/7b85ZNt/zEwCYN1uWz/YjWlg1vaQtpvS29qqabUt31jXB4C7Xs7j17dEkpQEHo/D5spEQMcD0PEAdDyAznc8aGj1czRodezVlu0BampqQpbHxMQQExOz322uu+46fvjDH3L22Wfz29/+Nri8pKSEsrIyxowZE5LPiBEjWLRoEVdfffXBB9rB6UxIG4wePZoZM2YEP3s8Hmpra7nnnns455xzjlxgIiIiItIm2dnZ+Hy+4Gv69On7TTd79mz+/e9/73d9WZkNZNPT00OWp6enB9d1VjoT0gYPP/wwo0aNon///vj9fi699FLWr19Pt27dePHFF490eCIiIiKdzqGarHDLli0kJiYGl+/vLMiWLVv45S9/ydtvv43XPfu7Px5PaDyO4+yzrLPRIKQNsrKyWLVqFS+++CL//ve/aW1t5YorruCyyy4LuVFdRERERNrHwd7X8dXtARITE0MGIfuzYsUKKioqGDJkSHBZS0sL7733HjNnzqS4uBiwMyKZmZnBNBUVFfucHelsNAhpo9jYWH7+85/z85///EiHIiIiItLpHap7Qr6Ps846izVr1oQs+9nPfkbfvn257bbb6N27NxkZGcyfP5/BgwcD0NjYSFFREffff//BBxkGNAhpoy+//JJ//etfVFRU0NraGrLuxhtvPEJRiYiIiMjhlpCQwIABA0KWxcfHk5qaGlw+depUpk2bRl5eHnl5eUybNo24uDguvfTSIxHyUUODkDZ4+umnueaaa4iOjiY1NTXk2j6Px6NBiIiIiEg7O1SXYx0qt956K/X19Vx77bVUVlYydOhQ3n777U7xJNVvo6djtcHdd9/N3XffTXV1NRs3bqSkpCT42rBhwwHl9d5773HeeeeRlZWFx+Nhzpw5IeunTJmCx+MJeQ0bNiwkTUNDAzfccAPdunUjPj6e888/n61bt4akqaysZPLkycEnPUyePJmqqqqDqb6IiIjIUSdwOVZbXm2xcOHCfZ6eWlhYSGlpKX6/n6Kion3OnnRGGoS0wZ49e5g0aRJdurS9Gevq6hg0aBAzZ878xjTjxo2jtLQ0+HrzzTdD1k+dOpVXX32V2bNn88EHH1BbW8u5554bMpfJpZdeyqpVq5g7dy5z585l1apVTJ48uc3xi4iIiBwNjtSM6XJgdDlWG1xxxRX89a9/5fbbb29zXuPHj2f8+PHfmiYmJoaMjIz9rquuruapp57iz3/+M2effTYAzz33HNnZ2bzzzjuMHTuWdevWMXfuXJYsWcLQoUMBePLJJykoKKC4uJj8/Pw210NERERE5LtoENIG06dP59xzz2Xu3LkMHDiQqKiokPUPPfTQIS1v4cKFpKWlkZSUxIgRI/jd735HWprNnrpixQqamppCZuTMyspiwIABLFq0iLFjx7J48WJ8Pl9wAAIwbNgwfD4fixYt+sZBSENDAw0NDcHPX59BVERERORo4bivtmwvh58GIW0wbdo05s2bF/zj/es3ph9K48eP50c/+hE5OTmUlJTw61//mjPPPJMVK1YQExNDWVkZ0dHRJCcnh2z31Rk5y8rKgoOWr0pLS/vWWTunT5/Ovffeu8/ylOQ6vthoZ2byfVbf5Ohm990uAcuIrQfg4VNtELN6p3W5Un80AP6WCAAmnFgCQNE/jwGgoHslACt3+QBYUGHvm2qt7Ak9bPt+ibUhMfn3XnnGuhorK6crIdu+eM0mAGa/kQvAjE2lANyfb7Eu3mlzvEzK3QnAnM3WZqt3EZLfW6UW09LtfgBGZNgkRbPLt7rpegAwOMkK/l3OOSGxLqjo6tbB2mzW5/a88IJUaytvhD1tbWg3Sz8y3eozY53t46n9rI38rSkhdR+VVh0s4761cW5eXULyvCY3CYAyvx1qS/ZEu3W0z+OyLKZ5mzJDtqtq8rjpmmhyL5qNiWxhdaUtf3js5wAMe82Cube3PV99nTtu9UbY8tLdsW7Mtl1StOX1qbvP+rptsq7G2mjKsdb4i7cnu9t1ceP3uPmG/i9jzpa937+kKNsm32d9bWVVYA4fe++X0Ajs7YOzlvcBIDfOll9xxnoAfjfvOADGZ+4GoLgyyWLcbW1XUmf5JUdZHV/dYvvlwmyLffN6a4uTetl37eW1vQAYWm+xTszfDMCzn/S0/Dd0B+Cxz61/XWNhsanGbmQ8rpvt/4RjrTzvFnvfssP65Yj0vZeJJsVYXboNsTQNi619T0jfAUCpP7Cfbf3f12cDcPHxGy19o+2XeW/3dNNZvv26NRPdxdq+SxeHMr99B3Q80PEAdDyAznc82NPSAls44hzadknVob4xXfZPg5A2eOihh/jTn/7ElClTDntZl1xySfDfAwYM4OSTTyYnJ4c33niDiy666Bu3+/qMnPsbHH3XrJ133HEHN910U/BzTU0N2dnZB1oFERERkcOu1X21ZXs5/HRjehvExMRw2mmnHZGyMzMzycnJYf16+1UmIyODxsZGKisrQ9J9dUbOjIwMysvL98lr+/bt3zprZ0xMTHDW0O8ze6iIiIiIyLfRIKQNfvnLX/LII48ckbJ37tzJli1byMy006ZDhgwhKiqK+fPnB9OUlpby8ccfM3z4cAAKCgqorq5m2bJlwTRLly6luro6mEZERESkI3McT5tfcvjpcqw2WLZsGe+++y7/+Mc/OP744/e5Mf2VV1753nnV1tby+eefBz+XlJSwatUqUlJSSElJobCwkIsvvpjMzEw2btzInXfeSbdu3bjwwgsB8Pl8XHHFFdx8882kpqaSkpLCLbfcwsCBA4NPy+rXrx/jxo3jyiuv5PHHHwfgqquu4txzz9WTsURERCQs6HKsjkGDkDZISkr61vsxDsSHH37IqFGjgp8D92BcfvnlPProo6xZs4Znn32WqqoqMjMzGTVqFH/5y19CZtt8+OGHiYyMZOLEidTX13PWWWcxa9YsIiIigmmef/55brzxxuBTtM4///xvnZtERERERORQ0yCkDZ5++ulDltfIkSNxnG9+KNy8efO+Mw+v18sjjzzyrZeIpaSk8Nxzzx1UjCIiIiJHu7bOet7WGdPl+9EgRERERETChoOnTY/Z1SN624cGIQfopJNO4p///CfJyckMHjz4Wx9t++9//7sdIxMRERERnQnpGDQIOUAXXHABMTExAEyYMOHIBiMiIiIi0gFpEHKA7rnnHn7+85/z+9//nnvuuedIhyMiIiIiX6HLsToGDUIOwjPPPMN9990X8mSqzih5dAJz7rYv6oTsZgBK/dalkqJaAHhsvU1sePeQUgDOObUEgAffyQMgM7URgHsX9AHgv4ZsBiAhvQGA21+MA2BQiuU7Mr0pJIaVlZb/xjqb8ubGEzcF1y3fkgHAPZ9XADAlqwcA971kZSVFE7K8pM4JWR4TbXWaV1oLwNBU29/VjaHnaS/ItjNjr23xAzAuxWaTL6u39WVeLwC58bb+vnXWNo8O3WPlL7Wnl+XGJLnlWwCj0qoBWFDhA6BfQqNboqVfucsXEkdVo+2LdTVdg8sm9bJY52xxY6m3dv20JhaAhTt3ABCL1cHrCRwS7H11peXpdZ+w5nPbJt8XTaR7KWJDcwRDu1mdKnfY/qp2bBLNUn++Wyfbrn/2djfGeADGZ1rbFn5s6+8bZPkE9mtxjZWRHNXVjcMenJgbb41b5re2XVhu8W52txuUsveJcCV1lsbf4nHfbfnNp24AoKnR0u6psSBz4xr5qk/WpgEwpY9N9HnMsbZf3lyWC0CG1zKMjbC29reGTr8U2E/D0nYC8OCy3gD8dqFt/9z5oXUK7Pe0xDq3TeLduP3uu8Xbtavty9LV1uaBtq2ttX15frfqYAwNjdY+f5rdKyS2SUO+ACC51OqwoMLaeXCStcE2t++V7bH+UtlkZXvd5h2UuouoLhZ/F28X5mzR8UDHAx0PoPMeD2qbQ9vrSNHlWB2DBiEH4dueYiUiIiIiR44GIR2DZkw/SN92Q7qIiIiIiHwznQk5SMcdd9x3DkR27drVTtGIiIiICOiekI5Cg5CDdO+99+Lz+b47oYiIiIi0G6eNl2Ppqvv2oUHIQZo0aRJpaWlHOgwRERER+YpW99WW7eXw0z0hB0H3g4iIiIiIHDydCTkIejqWiIiIyNHJcTw4ThvuCWnDtvL9aRByEFpbdaJORERE5Giky7E6Bl2OJSIiIiIi7UpnQkREREQkbGiywo7B4+gGBzlANTU1+Hw+PjtvMv66FABW7rLHFW+siwBg6mmfAzBreR8A+iXU7zev2Zu8AOT7Qq+/vKTPNitrj61PjPMD0C27DoAvv7Dy5n5pTyjL9DYDUFK3d1zdL6ERgIxYK/v21Rbbo0P3ALB6p8Xu7WInXtftjrblu1qsDn1rASirjwWgssm2f6ykCoBxaakAJNlmeLvYV2l1pdUl3Taj2sIgp6u9V7mfV+9qAqBX1yhrg0TbfmxOKQB3Lkt387dyByXb+jK/5d8r3uLMjbf6rauJB+Di4zcG2+CpVbkAFKRaXd4qTXBjsrym9K62Oq1PBGBCD4vJG9HCVy3eaZXJ8Np287Y188RHt5Ca5aOuvJqXxz3k1t1iHdbN9sfcbfb57iFWp8D+fGubtf1P+2+2OvZqAGDNh7Y/F1T4QtY/saZnSJ0Hp1jci7cnA9Avsc6Ns6vbJs3B2C8YZ+2x+v3uAFQ1RofUbWDWdit7m60/qVcZANMWW9v53OQXZtu8P2V7YkO2P3PiDgC+mBsDQEx0c0hdAzEW19h+m5RjsftbrG0CbZ3dzZa/veEYK8dv64urrc1vG2hxJna178L2KqvrrC+sLW8caN+Z7HPtBPcbT6UEY8xPrgKgvC4OgPvW2vdkRIbFOD7L6lbVYJUtqYsNiSGw3t9snzfWWV87M28LSTMfJCI1hZadu/hk4m8AHQ8sHx0PdDzofMeD3U2N5L78AtXV1SQmJtLeAn+f/OH424mNiDnofOpbGrhx7X1HrB6dhc6EiIiIiEjYsDMhB39zuc6EtA/dEyIiIiIiIu1KZ0JEREREJGw47qst28vhp0GIiIiIiIQN3ZjeMWgQIiIiIiJhQ/OEdAy6J0RERERERNqVzoSIiIiISNhwHHu1ZXs5/DQIEREREZGw4eChlYN/RK/Thm3l+9MgRERERETChs6EdAy6J0RERERERNqVzoTIQdtd5+WD8hQAqhptWYbXfj4o3tAdgFHpuwCIiWy292h7X1aaFpJXQWotAIt3dgWga9cGAJ4pzgJgfGY1AB992A2AU7LLAMj0Wn4lddaV+yU0BvMs2RNtMcXWAzBjiK37/SdW9qBkx83DnoOxyULg9gHVIbF5I1oA2Fhl+U3qkeqWZfkuqIgDYPUuv+WbEgtAeb3lPy7Tys1PrgJgYam1jd9n+TW0OG45FsdrJVbnnK6hp4Nnbd4JwK/6+ABYWRnlrrHyVlda+sHbUoLblFuIJMU0hpRVVt9kMbREADCld53Fnmft+uM5PULq0iveYhuZud3aoi6dSI+V19Tq4eKCDQBc2sP2w8p5Ke72FutnO5IBWLc7NqRO72+yulautziu+NlWABY/Zdttr7L+MCm3AoDUFIvz3fXZAPRLtM8ldZZvVaPFtK7lK4e2ub3cNLbMa0Wxepe1xYKKHGu3ZGuTT7bY/hmUbPt9WJq1+9wvrd94u4T+RPbmi+kAJEVbGyc12/vi7Vbn5GjL57+GbAPg5g+OAWDaqeUA3LTYyiscZOkmnFgCwOwVxwJ7+0FxZRIAZx67CYC/u22Q7jZpt2xrix/dZfW9IHvvb0z3rrI++4czNwPwcHw8ADHR9v38qNy+VyvdPn55/raQ5b3zd4bUeeOyXKvrqZF0ibb4Wls9LNDxQMcDHQ+ATnw88LfCyxxxejpWx6BBiIiIiIiEDc0T0jFoECIiIiIiYUMzpncMuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNvSI3o5Bl2OJiIiIiEi70pkQEREREQkbekRvx6BBiIiIiIiEDd0T0jFoECIiIiIiYUOP6O0YdE+IiIiIiIi0K50JkYP28NpURme2AHDV2A0APDEvD4DeWbsA+GRLdwBOm9gIwP/OyAJgvLv+4c/t94aSuiQANtVa3n9ckQvAhdmWrnuSrXhscaKl39MTgCrLFn+Lx95b946rB7vbeCMtxsXbkwEYlGxlFpXbVZ+DUqIByOlq2836IsXN29Jdk1cDwOwdmwEYFZ8PQHF1LABDuzUDUN3oBeDq/l+GtNNNi7u75aQBUF5vy9NjLf/Bybb9kh2Rbnwt7pYRAOTGWSUbWlKtPl0a3bZqdpdbOl+0tUF2t+pg2b5SHwCvbkkJyXtYN0t731orMyM2xmIqzXO3rHfrZDH6Yy39Mcda3kmb0+hii/A7zTz7nm1XVNZkbdI9CoBrhn0OQOWOuJA2SYq2Ojy2PtH9bJn98anskHRTV9i++dMP/AA0NVpdS/0W9wXjyiyGfx4DwOAUi69wdUIwj8FJob9p9UuwuhWkWgxl9bYfhx9r++35Ndb3rhq7HoD3F/UI2T433mI5rlslAB+VdwPg9N9YmU9OtX6VHG1tneG19Mu3ZAAwIdvi6ZZdB8A1O6xfxkTa/py1vI8bn9Vl8U7bh5VNVvdP1lo/uux0a9uYHtYWO1bYPnxi9FZL5373AB49x9pp9opjrc5+a+9JuRUhdRufaWX+5XP7nlY1WrrSDywmf6t9vmxgCQAPPpHLL34cQUIC7G6KIClKxwMdD3Q8gM57PPC3+Dka6HKsjkGDEBEREREJGw4eHDxt2l4OPw1CRERERCRsOLTtbIZOhLQP3RMiIiIiIiLtSmdCRERERCRs6J6QjkGDEBEREREJG3pEb8egQYiIiIiIhA2dCekYdE+IiIiIiIi0K50JEREREZGw4bj/tWV7Ofw0CBERERGRsKHLsToGXY51lHjvvfc477zzyMrKwuPxMGfOnJD1juNQWFhIVlYWsbGxjBw5krVr14akaWho4IYbbqBbt27Ex8dz/vnns3Xr1pA0lZWVTJ48GZ/Ph8/nY/LkyVRVVR3m2omIiIiEp0cffZQTTjiBxMREEhMTKSgo4K233gqu/z5/w3VGOhNylKirq2PQoEH87Gc/4+KLL95n/QMPPMBDDz3ErFmzOO644/jtb3/L6NGjKS4uJiEhAYCpU6fy+uuvM3v2bFJTU7n55ps599xzWbFiBREREQBceumlbN26lblz5wJw1VVXMXnyZF5//fUDjtkX7aFfYi0AVzzXG4ApvesBiPK2APBWqcXGn+0tw13ub7Z4xqX5ALi4YD0AG9/JA6BXvKVbvD0ZAO8un5t/HQBJMY2WfndXAFZWRQOwrmZvl15ZaWWPz9wNQFWTzYCaG99sebpt4reiWL2rCYCnz9tkn9dnAPDY+kQA3h1VbXWLLgHg3xtt/X3rLIMRaRbLtR+kADC1r/2UMiIjys3fcctrBWBSjrXV7E22XVWj5TOsm6VbXYmb3up2dX4FANX+GAAGpfjceli6C3K/BGDLDl+wDQLr+iVYe80ttbx80R53fWhM4zOtffsmxro5WEyxbro3l+UCkBTl4HEnlPVFRFCQam2zqdYXUt69C/oAsLHW2vb5yzcC8MQ828/jsmxfzN1mgU5IqnPbwuK8vZ8t/6i8GwDrdtvywD7cuNz2TVK0lffYZ9b2pc07g20we1MSAJNyGt06W50WVFis5bYbWLc7120L+/zSu9anx/S2dk36SrsCbK60sgNtuu46x20Da5iZD1nGu17ZAez9TkSnWLrXi6y8DK/ftqux/jruGNvPC0u7h5T3qdu3f9h3FwBffmHxNBTb8vs+ts9/OHMzAAXnbA9uu6HIYi3zW2z9Eq395mxOs7Sp9j3O7713GwCftwGAJRWpABSVuyvWWOz9EhqJ9Fh9unjQ8QAdD3Q86NzHgz0tTRwN2vvpWD169OC+++6jTx/r48888wwXXHABK1eu5Pjjj/9ef8N1RhqEHCXGjx/P+PHj97vOcRxmzJjBXXfdxUUXXQRYB09PT+eFF17g6quvprq6mqeeeoo///nPnH322QA899xzZGdn88477zB27FjWrVvH3LlzWbJkCUOHDgXgySefpKCggOLiYvLz89unsiIiIiKHSXtfjnXeeeeFfP7d737Ho48+ypIlS+jfv/93/g3XWelyrA6gpKSEsrIyxowZE1wWExPDiBEjWLRoEQArVqygqakpJE1WVhYDBgwIplm8eDE+ny84AAEYNmwYPp8vmGZ/GhoaqKmpCXmJiIiIHI0cp+0vYJ+/fRoaGr6z7JaWFmbPnk1dXR0FBQXf62+4zkqDkA6grKwMgPT09JDl6enpwXVlZWVER0eTnJz8rWnS0tL2yT8tLS2YZn+mT58evIfE5/ORnZ3dpvqIiIiIHO2ys7ND/v6ZPn36N6Zds2YNXbt2JSYmhmuuuYZXX32V/v37f6+/4TorXY7VgXgCF926HMfZZ9nXfT3N/tJ/Vz533HEHN910U/BzTU2NBiIiIiJyVGp1X23ZHmDLli0kJiYGl8fExHzjNvn5+axatYqqqipefvllLr/8coqKioLrD+ZvuHCnQUgHkJFhNzyWlZWRmZkZXF5RUREcWWdkZNDY2EhlZWXI2ZCKigqGDx8eTFNeXs7Xbd++fZ8R+lfFxMR86xdPRERE5GhxqO4JCTzt6vuIjo4O3ph+8skns3z5cn7/+99z2223Ad/+N1xnpcuxOoDc3FwyMjKYP39+cFljYyNFRUXBAcaQIUOIiooKSVNaWsrHH38cTFNQUEB1dTXLli0Lplm6dCnV1dXBNCIiIiIdWlvvBzkE84Q4jkNDQ8P3+huus9KZkKNEbW0tn3/+efBzSUkJq1atIiUlhZ49ezJ16lSmTZtGXl4eeXl5TJs2jbi4OC699FIAfD4fV1xxBTfffDOpqamkpKRwyy23MHDgwODTsvr168e4ceO48sorefzxxwF7RO+5556rJ2OJiIiIHIQ777yT8ePHk52dze7du5k9ezYLFy5k7ty5eDye7/wbrrPSIOQo8eGHHzJq1Kjg58A9GJdffjmzZs3i1ltvpb6+nmuvvZbKykqGDh3K22+/HfJ86YcffpjIyEgmTpxIfX09Z511FrNmzQrOEQLw/PPPc+ONNwaf0nD++eczc+bMdqqliIiIyOF1qO4J+b7Ky8uZPHkypaWl+Hw+TjjhBObOncvo0aMBvtffcJ2RBiFHiZEjR+I433z+z+PxUFhYSGFh4Tem8Xq9PPLIIzzyyCPfmCYlJYXnnnuuLaGKiIiIHLW++pjdg93+QDz11FPfuv77/A3XGXmcb/vLV2Q/ampq8Pl8/CT9dvLcmXQDM64GnJm3BYBbi3oBMKGHzaJ6zo/txvjfPWpP17ow22Z7XVBuM9tusolamZRjM+4u3mmzvt7wst3M9Y/JNnvxwgqblTY9MJGvq7h63+6c5M4GPCjZZqitarIzQ5lei7lXvM3K++rWJAAKUhvcsu1m/FFpe9zPVli1TbTLyLTQGXfX7Q4NJjfO1t/2uc2o/Pv8ngCsrLJ0q3e1uNvbrVk5Xb/9KRmB2Y7HZ1mbXb7S4pqU3gOA2eVbAbijd0ZwmzlbLM8J2dYu3i72+86sDbZ8Sm9bXrLH2nNUuuXdO99mGH7+A7vJLjfeZvGds9ViT4+Fqe9NJTEjkdryGtZNvBfYO7Nxqd/e/S1d3Nit3I11VonADNgBgZm20xJtXzQ02u8jX5/B198S4ebntnlNPAA/HW2XMq750NKvrNx7I2FgZuxAe4/NsuUTTrT9En+C7edbf2998jfn2GzdT71nszgnRdl2r22xOgRmvA60VVaa9dXaWsunx5mW/t9zEkPaZMRZNtNy6eo4y6/EAvl6Pzz5Ptt/j1xpMyx7u4T26cC+mFtq++LGgdsAOKbA+u2GoviQtoO936txmaF99qReZSGx/+VziynwPRraLbTMQN8N9MXXttYye+2ddD8miV3bapg5cgag4wHoeAA6HkDnOx40Ow28V/MHqqurv/cN3YdS4O+Tn2fdQXQX70Hn09jq50/bph+xenQWujFdRERERETalS7HEhEREZGw4TjOt17i/n22l8NPgxARERERCRuHap4QObw0CBERERGRsNHWqT40BmkfuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNjQI6Rh0OZaIiIiIiLQrnQkRERERkbBhN6a34RG9hy4U+RYahIiIiIhI2NDlWB2DBiHSJr3iWwDo66sBICayGYAN21IAGJTisXQJtQA8+EQ2AOMzqwFIjPMDUFTWBMDtx+8BwN8SAcDE/M0AvDOl3pa3RgEw5dhdAHxanQhAUlST++4NxjZrs6W5v3cMACV1sSFlTeplsa2r6QrAplqLvbja4+bQ6NbR8szw2lGpvN7WVzZZjJ/utPwLUhssXWx9SL79uvR262TbzyndCcDghFRro2RbPjjZ2uStUp8bh7XttFPLAfjDmiwApq6IBmBUUoobj0XbLyrT6v1FU7ANnh1XCsDLa3sBcH7eNjf2Y9wUVkaZW6eNuy3mspXWVsU1Hjc2a4sJPWyrdbtjg9dyenBYUOFz62jLBidZ+lN6fwnAkHdLAHgsrwCAuaVWhxwrjtiI+JA2m3jmBsuvJA2ABRW2PCmaEBfkWn1++JTVvXCALV+6Y2+a2wZWAOCNsLw21rlpPrU2GFizHYCRaRbz8x/0AaBfgjXsnK3WFk+fZ3W4d4Gt3xhnMQ34reXzxrXWxzc+GuGWZ+XcNNm2W/xmBgBVjVaJKad8DkDljjgAPirvBsC551QCe/fdG5/2dOO2DKuaLJ78ROs3NXusfyavt+9O3mWWbtRT1cE2yO5v/25otEN+0dZ0AJJOtc9PPWF9q6jMvo+DUqyMTK/16R8M3wpAyfw+7nLrY8+ftYsUb2uwHB0PdDzQ8aBzHw92NzVy3OsccY5jr7ZsL4ef7gkREREREZF2pTMhIiIiIhI2HBxa23RPiE6FtAcNQkREREQkbOhyrI5BgxARERERCRut7qst28vhp3tCRERERESkXelMiIiIiIiEDcdxcNpwTVVbtpXvT4MQEREREQkbmiekY9AgRERERETCRmsbn47Vlm3l+9M9ISIiIiIi0q50JkREREREwoZDGx/Re8gikW+jQYgctLMzWxmcUg3AY5+lADAusxGAXgm1APRLqAfgxY2pAFzYowqAt0p9tr4uHoCpff0ApCXWAXBMQQMA6/5p6R5bb131jyO2AbBmW3cATs2sAOC1kiwAkqJagvFN6Wkxlflt2Yge5e5nSzvrCyuz8IQGd7nP3TICgHILnStv2QnAIw9YHby2mjK//SMpOvRw9erWJAAKUi3fXl2jAchPtlgnZKaF5NPPrfOCCit/cJK14fhMC+APayze/ETHfbc2S45utny62MMEV1ZZOaPS6oOxTFuca2X2sP3x9/XZABSV2zZVjfY+9hjLe/ixXwLw4LLeIesD++u6ISUAlKztBR4rw8GD28SMSrNyBuWVAdDkttHlKSMBqGyymAclW3llfk9IHQInZ//wZh4AVw3cDEBcorXJnFVWn4sLNgDw05d6AXBBjygA7ltr+3REhifYBg3NkW5dCKnDzl3Wjt2GuP0j0cqq3BEHwDPF1u63nmh9bvaKYwEY5+4Xf4vVbfcTa9zPtv7XD1tBu/9m+X252PLrmVxjdS61/b9ps/XPjbu7WhtEWByDUiz9oi+OASDTa/mN6b0dgPRJyQCs//8sjmPHWT/73aN9AFj9ehMAhYN2B9tgyw5fSMxVTfa+6GXLa0JP65uDkxLcdJZnUrSVXf5ZvBtLU8jyl4p78vOmSLoC3ghHxwN0PNDxoHMfD/wtfo4GuhyrY9AgRERERETChuO07WyGHo7VPnRPiIiIiIiItCudCRERERGRsKHLsToGDUJEREREJGy0Om0chOh6rHahy7FERERERKRd6UyIiIiIiIQNx/2vLdvL4adBiIiIiIiEDQdo/c5U3769HH4ahIiIiIhI2NCN6R2D7gkREREREZF2pTMhIiIiIhI2HKeN94To6VjtQoMQOWjjT9vI/f84HoDfnF4Ssm7nrngA5myNBeD3v9gAwMp5KQBUN1q6pKgmAE6/qgGAzX+15a++kg2At4td1Vk4aDcA72/KClmeflwdAI/9qxiAe3sfG4wh0+u3deutmy/ZYdturLUye3X1Wt4fWfqh3e196XbbblCKxf63P/jc5S1uuggAVu+yg1S+zwNAqT8KgGd2LQSgb+Lplk+ybbd6p9Xda5sz70srp1+CLfBbMhbvjAHg6v47AMjpauWX+a2cfonNAJTUWb2qGm15UrTFM2tDfLANFvutXWJK+wIwOLnJrZttmxvvuG1j6a+a38Pq0mwLJmSmAlBcbel+OjfTbTsPP3IvuG1qhV7xFvycrV3dmHq6dbXl1Y22/dIdVtd0a1om5VYAkHeZLf/zw0khbRHY30t2WLzjMusB2FBscY3NctvAqsVLP94CQEu9J9gGZdsSrW4DN9u222w/rKy05eVvxtnnKos9N846Z6BOAefnWd5R0bY80MdnLe8Tku4f99p7qd/64oytnwHw+3xrk3U1FnNSlDVCUrSVt3inlT8qbQ8AJ/UqC8k3EHfCAlve0Gxt8O851l9+/ZjV+YO77btU1RAd3DaQ93Wj1luZbvuV7bEYeo+w79HsWWnA3v2SmmLLn1+TC4C3i+3HyibbX4OTaolyv4uxMS3M+sJi1PFAxwPQ8QA63/GgrrmBo4Eux+oYNAgRERERkbChQUjHoHtCRERERESkXelMiIiIiIiEDcc9F9KW7eXw0yBERERERMKGLsfqGDQIEREREZGwoUFIx6B7QkREREREpF3pTIiIiIiIhI1W97+2bC+HnwYhIiIiIhI2HI+D42nLjem6HKs96HIsERERERFpVzoTIiIiIiJhw2njjek6E9I+NAiRg/bY28eyoGYrAIM+7QnA4JRqAD6tTgTgl/0rAHjhr7Y+N74egHtGfQ7AL97MBeC4v1YC0LVrAwArK6Msv+QmAF7dkgJAv8RmAHol1AKw+WMfAJO6pQHw8Oc7g/ENTkgFYErvRgDmbLWDir+lxcrYXWMxxSQBsKnW1o89xgvA6l12Kndho31Npp26DYCireluvlaXGZ/GhLTLPdlnALB0hwcAX7S994q3/GZtszabckwPAErqrNyl2/0AXNLL6v74J8eEbFfdaPks2WHxDEq2elS58Y3P2gVAhtcXjGVClLXvjM92A3BhjxY3TQQA/bO3AzB9g5V5b580d8sE973RLcPqOCjF2mbel35aWvcepKuaLL9VVbZfPq22mMYeEwtAvhtSbpzlV+mmL65MAmDh/wb2t7tP4m19XrrVqdRv/WdglsXb4Nb5stOtH728uDcAX35hBf3+k0A9IKervRekWmxJMRbDyEzLq7wuDoCyemvfccdUAfB4seXxaY3th6v7fwnA+5uyAOjrq+GrRrmxHj/R8v/nLDeWfIs9I876y1VuHf7fsp4h8fVLsO1WVlmbJW2zPu9viXCXW0LfF/YdeXFjqlsv+7zryQ1um1n6Ndu6B2ObXW59ruCjzJA8S+psfx632PZv4PsVaJNZn1tfD3wP19VYu0/Kte/ZHSuSeaLZQwxQ64/U8QAdD0DHA+i8x4Omo+RWilZa8eiekKOeBiEiIiIiEjY0WWHHoHtCRERERESkXWkQ0oEUFhbi8XhCXhkZGcH1juNQWFhIVlYWsbGxjBw5krVr14bk0dDQwA033EC3bt2Ij4/n/PPPZ+vWre1dFREREZHDotXT2uaXHH4ahHQwxx9/PKWlpcHXmjVrguseeOABHnroIWbOnMny5cvJyMhg9OjR7N69O5hm6tSpvPrqq8yePZsPPviA2tpazj33XFrc66JFREREOrLWQ/CfHH66J6SDiYyMDDn7EeA4DjNmzOCuu+7ioosuAuCZZ54hPT2dF154gauvvprq6mqeeuop/vznP3P22WcD8Nxzz5Gdnc0777zD2LFj27UuIiIiIoeabkzvGHQmpINZv349WVlZ5ObmMmnSJDZssCdglJSUUFZWxpgxY4JpY2JiGDFiBIsWLQJgxYoVNDU1haTJyspiwIABwTT709DQQE1NTchLRERERORgaRDSgQwdOpRnn32WefPm8eSTT1JWVsbw4cPZuXMnZWVlAKSnp4dsk56eHlxXVlZGdHQ0ycnJ35hmf6ZPn47P5wu+srOzD3HNRERERA6NwNOx2vKSw0+XY3Ug48ePD/574MCBFBQUcOyxx/LMM88wbNgwADweT8g2juPss+zrvivNHXfcwU033RT8XFNTo4GIiIiIHJVaacHDwd/r2tqGbeX705mQDiw+Pp6BAweyfv364H0iXz+jUVFRETw7kpGRQWNjI5WVld+YZn9iYmJITEwMeYmIiIgcjZzgnOkH+9KM6e1Bg5AOrKGhgXXr1pGZmUlubi4ZGRnMnz8/uL6xsZGioiKGDx8OwJAhQ4iKigpJU1payscffxxMIyIiIiJyuOlyrA7klltu4bzzzqNnz55UVFTw29/+lpqaGi6//HI8Hg9Tp05l2rRp5OXlkZeXx7Rp04iLi+PSSy8FwOfzccUVV3DzzTeTmppKSkoKt9xyCwMHDgw+LetA+KIcpuZkAlDVFAHAp9V2lmRQ6i4AllSkAlDmt/WDUxoB2LQ5BYB7TtwJwAOrsgC49cRtAIxK2wPA4p2xAHhtc+ZsscvGhvpt+6Xb7ZTp0O62/t5+ccH45rjTn/zyc3uMcWHOiQDERkS6Mdq2qSmbAXh3vV1i5u3S6r5HAZDptZgrauIBWF1pwczbZrENSrHPm2odN30TAH5fNADF1e7yVFvubbXtqhoDkVqdrsmz3wQWVlh+vmjbbtZma8uCJGvLYd2aAahstHTl9RbvY59Zm/hb9v6CM6V3PQCX9LTYF+/0uLHa+nVunUYl2vLKJmuTwP4cnGQJqxutLn0Tbf2UYyOJi9wbfW6cVeaCHl3dOhNSTo4tZmFFtFt3i/G2gbb/qUwCYGOdxXPeiBIALv6T7ZMLsi39+nKrY1KMlVe02M7gJUdZXMVuPr85vSTYBs+vyQWg8GP7PPU4C6bUH8X+ZGTZgxfyS61TJUdbe79WkhVSp4suqwOg7CV3fzZY3f71Z3vPiLO2D+yXfJ+lw61DwKg0ayxvpNXBG2HpFlT43M+WbtwxFQBU+2Pc7ew7sm63pV+8rLdl7/aH2wZuD5bx6mnWt5K72ZnS2SuOBWBjnS3vcaaV/ZcnAv9L8AJw19jPAGipt/7x8Kt2P9ngpCQApvZtoGuk7RuPBx0P0PFAx4POfTyoa27g9aUcca2eVjxtmOtDT8dqHxqEdCBbt27lxz/+MTt27KB79+4MGzaMJUuWkJOTA8Ctt95KfX091157LZWVlQwdOpS3336bhISEYB4PP/wwkZGRTJw4kfr6es466yxmzZpFRETEkaqWiIiIyCFj94Qc/MU+uiekfehyrA5k9uzZbNu2jcbGRr788ktefvll+vfvH1zv8XgoLCyktLQUv99PUVERAwYMCMnD6/XyyCOPsHPnTvbs2cPrr7+um8xFREQkjLT1yVgHdiZk+vTpnHLKKSQkJJCWlsaECRMoLi4OSeM4DoWFhWRlZREbG8vIkSNZu3btIaxzx6NBiIiIiIjIQSoqKuK6665jyZIlzJ8/n+bmZsaMGUNdXV0wzQMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cfwciPLF2OJSIiIiJho9VpoS2/s9v239/cuXNDPj/99NOkpaWxYsUKzjjjDBzHYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx90rB2ZzoSIiIiISNg4VJMV1tTUhLwaGhq+V/nV1faAgZQUe/BASUkJZWVljBkzJpgmJiaGESNGsGjRokNc+45DgxARERERka/Jzs7G5/MFX9OnT//ObRzH4aabbuL0008P3pcbmMPt63Oypaen7zO/W2eiy7FEREREJGw4tOC04Xd2x3061pYtW0ImaI6JifnOba+//no++ugjPvjgg33WeTye0HIcZ59lnYkGISIiIiISNloP4glX+24PiYmJIYOQ73LDDTfw97//nffee48ePXoEl2dkZAB2RiQzMzO4vKKiYp+zI52JLscSERERkbDh4LTxnhDnuwv5anmOw/XXX88rr7zCu+++S25ubsj63NxcMjIymD9/fnBZY2MjRUVFDB8+/JDUuSPSmRARERERkYN03XXX8cILL/Daa6+RkJAQvM/D5/MRGxuLx+Nh6tSpTJs2jby8PPLy8pg2bRpxcXFceumlRzj6I8fjOM6BDfek06upqcHn83F/3zuY0LMGgNU77QkQlY028/rqSrvG0Rdt74U/Xg9A0T+PAeC4bpUAVNTEA+CNtOsvy/bEApAU3RiyPCvNnjRxa1EvAIZ2s1i8EXbKNDbCuvG6mr3j6tW7mgCY0tvWVTZZbEXldgLQ32LbDkqx5Uu3W/oRGVHuekLex2daDCsr7dRsVZPVrarR3gtS7akZc0ujLdYTtwHwhzVZAEzoUQvAW6U2g/2Pe+0E4MWNqSHbr6yy7cvrrdxByRb/0h2BeELjDpTf0GLp8hP3fqUDMY7P2gXAq1tS3Haz9Rleq9xjJVUAjEtLDWm7fJ/FcnX/L63tttpp4zJ/BL9YMJWEjERqy2r409kzALggN7TO7uZBgToF+kXfxGZg3/3Xz11+3ogSAJ6d38faqHtlSD0CcT4xeisAL6/t5W6/99nsSTHWl/ILrA2WLswIWb54e7JbJ4up2hYH9/uU3tXuZ2u0U4aWArD5Yx8AczanAXvbeOPuriF1XlhhjTAu0yqfk2jPhM/Isu/OnFWhv5iN6W1t/VJxTwC8XaxtimssvhsHWhvX7PFafj2t3OgUJ6St9tcG/uZAn4kOiaWh2do9JtLafUmF9YPceIt5UJ79D7V4Q3cATr7evkP/c3dCSD/YdvmdgI4HoOMB6HgAne944G/xc8/66VRXVx/QZUyHSuDvkyzfSLp4Dv539lanmW3VC793Pb7pvo6nn36aKVOmAHa25N577+Xxxx+nsrKSoUOH8sc//nGfSaU7E50JEREREZGwcajuCfm+vs/v+R6Ph8LCQgoLCw8yqvCjQYiIiIiIhA17OtbBP3Uq8HQsObx0Y7qIiIiIiLQrnQkRERERkbDhOHtnPT/Y7eXw0yBERERERMJGe98TIgdHgxARERERCRuO08Z7QhzdE9IedE+IiIiIiIi0K50JEREREZGwEZgxvS3by+GnQYiIiIiIhA27Mb0tl2PpnpD2oMuxRERERESkXelMiBy0mC4OczanAZAb3wzA2JxSAKqastxUdkpz4/JEAErqvO57JgD9EusAeKvUB0BStG111ditALz0bm9bvy0FgD/+eD0AVzxnywelRAAw9eLPLd+X+wTj69U1CoBZG5rcz5Y2p6utn3paCQBl2yy2S/pYHV4rsdirGu1XlAt7VAFw9ZrdFnOUZZDvs/xGpe0BYManHrcOdkPbH9ZYPlfnVwAw90trq4U7dwBQXG3lTu27222TWAC8li1VjZbPrM1W/jW5SQCsrowISVdeb7/YbNxjbVlWHxtsg0D7fOqWNSnXYimviwNg9iary6QeqZb3Lttftx9vdVpQYW34wCqry7jMRsuvJpJW92y1N7IFbxf7UFETD8A9o2x/zFvTy62bHWpuPXFbSH5lfotvcFI9AP0sTE7NtDjfX9TD2qLJ2jYxzg/Ahdm73PS2QXyW7bvixZZubE5NsA02V1qa2W/kApAbb2U99pn1qQk97HNytNU1Kcr6yy+LNwPw627Wnt2G2P5Y8HoPvuqKE60fTVuc67aR5Td8sPXhpI8y3TawfPwtSQAsqbA2j41wQsrdssO+C4E2zY33u21g2wfaeGOdveel7ASgxYplZOb2kPwBynbafg6085kTrQ/+8alsAPoluG2y3vbTX39necx8JAOAlcvte1WQWg3A/9yd4G7XSKTH7QgedDxAxwMdDzr38WBPSxNHh5Y2XlClG9PbgwYhIiIiIhI27HIqXY51tNMgRERERETChgYhHYPuCRERERERkXalMyEiIiIiEjZaacXTljMhmjG9XWgQIiIiIiJhQ5djdQwahIiIiIhI2HCctj3dqq3by/eje0JERERERKRd6UyIiIiIiIQNBwfacF+H08ZZRuT70SBERERERMJGW+/p0D0h7UODEDloSdGt9I6vBWDOVpuBtbLRZoMtrrZfEXK62o1hgdmBy+rtc0FqAwD3rbUueEkvu/5yWJrN9vp6kc02u3SHzaCbb5PGEtXDZliekG35l9rkscx7u6ebb20wPn+LbRuY9bWs3sqYcqzN8nrHO33cGC39NcNsVt/c8kZ3++iQfO7obbPFzt1mVzEGZihet9tmrh2UEnoTXFK0xRiYRdr/tUtM832W/8oqm5l33pd+dztbX9VoM8+ubf4nAK9tuRCAjNiIkPz8LXawTIqMcePae5VlvwSrS68Ea5dZn6eHxDa0m2USmKk4MMvySndW4XJ31t10d9LlhRUW3P/+sQGSLA9/cwSDk21G4lkbbEf9upu1cWBm5FFp9jkw+/Qj/10GwA2/tTYtSHUr02Rtcecyi3PaqeUAlPqt3GWl1pZ9fVbeuhrLv3RensX1ohvo+phgG2R+ZmWlu7N0B/ZHoO4BpX7LKzA78zPRFttLxVanCxptduecRJvROu/GJAA2P2ZlBWZG/rrAzMiTZ9vMyn+7bAsA8yw7rsmz/d7TbcPMQTY79cD6ipB8Bm60choaA/3Z8g3MIj0wa3tI+kxvY/Dfk374JQCt9bbPfveotVe/RJtZesRZtj4pujsA/5xldS623cYfPj0FgFuPXw7AoGRru1Oyy4iOtH93wQl+/3Q80PEAdDzYn3A/HuxuaoR/77fq7UqDkI5B94SIiIiIiEi70pkQEREREQkbbZ3nQ/OEtA8NQkREREQkbOhyrI5BgxARERERCRsahHQMuidERERERETalc6EiIiIiEgYaeuZDJ0JaQ8ahIiIiIhI2NDlWB2DLscSEREREZF2pTMhIiIiIhI29IjejkGDEBEREREJG47j0Jb7Omx7Odw8jlpaDlBNTQ0+n49ZJ97KSSkNACTG+QF4rSQLgKXbWwCYkG3da2VlVEgehT9eD8Dq97sD0P/4CgAmvpgNQEZsDAAPjNgIwCdbLF3P5BoAumXXAXDr63kATMqpBWD2pq7BMgLL7ltrY+1LelkMf9nYFBLLNXl2VeLinVbmqLQ9AJzUqwyAd9dbTElRTW66WACqG237HLfI1btCv0pDu9l7QfdK2257MgBF5a1ufNZGMz6zjG7vFwHAY+st3l5dQ9tsyrG7AHhxYyoADS1WXlWjvT9+/UYANhTFB7dZvTMFgCU7It0yqwHwt1hZQ0daHe97qQ8AGV7La2OdtcngZKuzt0urG1urG0skP3zjZuLSfdSW1/DKuAcB+GHfzQA8vybXLQc33xY3Xyu3vN6We+0j+YmhbZccbennbrMEg1I8AIw7xvpJTHSz1fmTYyyePuUAJHa1ftj9dE8wry/m2n5dUmHtdnHBBovxgz4hdS1IbQiJwd9qy88bUQLAE/Osr1011vpui1uHp97LC9nO28XdL00Ww0/7W5u8v8m+G3191odX7vIBEBth6QP9q9Qf7W4f4S63tkh23+eW2vprjtsVUm4gv3nb7PPQ7hHBdTfcb33sb/dYnc7M2wLs/V6dMrQUgDUfpgHwVqnlNT4ztL/0z95udUy29v/dvOO47YNf4stMZE95NV9ceg+g4wHoeAA6Hlhbda7jQUOrn4c2TqO6uprExETaW+Dvky5dEvF4PN+9wTdwHIfW1pojVo/OQveEiIiIiIhIu9LlWCIiIiISNuzpVm07EyKHnwYhIiIiIhJG2jYIAQ1C2oMGISIiIiISPtp4JgSdCWkXuidERERERETalc6EiIiIiEjYcNp4OVVbt5fvR4MQEREREQkjuiekI9AgRERERETCiNPGcYQGIe1B94SIiIiIiEi70pkQOWCB52fXtzRQ22yzynqabAZWf4vNUNvUajPp7nFn8W1obQnJo6bB0ge2r2m0z02OfW5ste12u/nWuekCn6Pd9I2t/pD1ja17u3RgWZPT4sbb6n4OnSF5T0sXN0Znv2XtabHPUZ4mt44eNz3uZ0JiDqh3lwfqWB9sG8fN1xI0O4E6RrjrW9z8Q9sskE+DW+dAvIFya/yBNt07s3Ig9obW5tA83BlvA/shsN/qg/uri7u9bdfqBNousF9bgr8TOY5DfUtomwXyC7RNoO39bls3um0XmNA2UG5AjJu+0Y0j0Oa1ze5+9zSHtEVgeaAfxvj3noavbfa4ZYT2tcD+2FvXxpAYAjMkf72NAp8DyQPLAwLfj0DMX+9He/uDvQeuPQ70r0BbBNqq3p2dOqZLi9smrSH5BATyawr2y72/MdXsaXJj6BISU6Cvf/37GKjT1/tLYLvGxr3tH4jf+Up6HQ90PAAdDwLt8dWYw/140NDaEFLvI8fRfR0dgMc58j1FOpgNGzZw7LHHHukwRERE5Cj0xRdf0Lt373Yv1+/3k5ubS1lZWZvzysjIoKSkBK/Xewgik/3RIEQOWFVVFcnJyWzevBmfz3ekwzkiampqyM7OZsuWLSQmJh7pcI4ItYHaANQGoDYAtQGoDQCqq6vp2bMnlZWVJCUlHZEY/H4/jY2N353wO0RHR2sAcpjpciw5YF262Clcn8/XaQ+0AYmJiWoDtYHaALUBqA1AbQBqA9j7d8KR4PV6NXjoIHRjuoiIiIiItCsNQkREREREpF1pECIHLCYmhnvuuYeYmJgjHcoRozZQG4DaANQGoDYAtQGoDUBtIAdGN6aLiIiIiEi70pkQERERERFpVxqEiIiIiIhIu9IgRERERERE2pUGISIiIiIi0q40CBH+7//+j9zcXLxeL0OGDOH999//1vRFRUUMGTIEr9dL7969eeyxx/ZJ8/LLL9O/f39iYmLo378/r7766uEK/5A4kDZ45ZVXGD16NN27dycxMZGCggLmzZsXkmbWrFl4PJ59Xn6//3BX5aAdSBssXLhwv/X79NNPQ9KFcz+YMmXKftvg+OOPD6bpaP3gvffe47zzziMrKwuPx8OcOXO+c5twOx4caBuE4/HgQNsgHI8HB9oG4XY8mD59OqeccgoJCQmkpaUxYcIEiouLv3O7cDseyOGlQUgn95e//IWpU6dy1113sXLlSn7wgx8wfvx4Nm/evN/0JSUlnHPOOfzgBz9g5cqV3Hnnndx44428/PLLwTSLFy/mkksuYfLkyaxevZrJkyczceJEli5d2l7VOiAH2gbvvfceo0eP5s0332TFihWMGjWK8847j5UrV4akS0xMpLS0NOR1tM7ieqBtEFBcXBxSv7y8vOC6cO8Hv//970PqvmXLFlJSUvjRj34Ukq4j9YO6ujoGDRrEzJkzv1f6cDweHGgbhOPx4EDbICCcjgcH2gbhdjwoKiriuuuuY8mSJcyfP5/m5mbGjBlDXV3dN24TjscDOcwc6dROPfVU55prrglZ1rdvX+f222/fb/pbb73V6du3b8iyq6++2hk2bFjw88SJE51x48aFpBk7dqwzadKkQxT1oXWgbbA//fv3d+69997g56efftrx+XyHKsTD7kDbYMGCBQ7gVFZWfmOena0fvPrqq47H43E2btwYXNbR+sFXAc6rr776rWnC8XjwVd+nDfanox8Pvur7tEE4Hg++6mD6QbgdDyoqKhzAKSoq+sY04X48kENPZ0I6scbGRlasWMGYMWNClo8ZM4ZFixbtd5vFixfvk37s2LF8+OGHNDU1fWuab8rzSDqYNvi61tZWdu/eTUpKSsjy2tpacnJy6NGjB+eee+4+v4weLdrSBoMHDyYzM5OzzjqLBQsWhKzrbP3gqaee4uyzzyYnJydkeUfpBwcj3I4Hh0JHPx60RbgcDw6FcDseVFdXA+zTr79KxwM5UBqEdGI7duygpaWF9PT0kOXp6emUlZXtd5uysrL9pm9ubmbHjh3fmuab8jySDqYNvu7BBx+krq6OiRMnBpf17duXWbNm8fe//50XX3wRr9fLaaedxvr16w9p/IfCwbRBZmYmTzzxBC+//DKvvPIK+fn5nHXWWbz33nvBNJ2pH5SWlvLWW2/xn//5nyHLO1I/OBjhdjw4FDr68eBghNvxoK3C7XjgOA433XQTp59+OgMGDPjGdDoeyIGKPNIByJHn8XhCPjuOs8+y70r/9eUHmueRdrDxvvjiixQWFvLaa6+RlpYWXD5s2DCGDRsW/Hzaaadx0kkn8cgjj/CHP/zh0AV+CB1IG+Tn55Ofnx/8XFBQwJYtW/jf//1fzjjjjIPK82hwsPHOmjWLpKQkJkyYELK8I/aDAxWOx4ODFU7HgwMRrseDgxVux4Prr7+ejz76iA8++OA70+p4IAdCZ0I6sW7duhEREbHPLxAVFRX7/FIRkJGRsd/0kZGRpKamfmuab8rzSDqYNgj4y1/+whVXXMFLL73E2Wef/a1pu3TpwimnnHJU/uLVljb4qmHDhoXUr7P0A8dx+NOf/sTkyZOJjo7+1rRHcz84GOF2PGiLcDkeHCod+XjQFuF2PLjhhhv4+9//zoIFC+jRo8e3ptXxQA6UBiGdWHR0NEOGDGH+/Pkhy+fPn8/w4cP3u01BQcE+6d9++21OPvlkoqKivjXNN+V5JB1MG4D94jllyhReeOEFfvjDH35nOY7jsGrVKjIzM9sc86F2sG3wdStXrgypX2foB2BPkfn888+54oorvrOco7kfHIxwOx4crHA6HhwqHfl40BbhcjxwHIfrr7+eV155hXfffZfc3Nzv3EbHAzlg7XsfvBxtZs+e7URFRTlPPfWU88knnzhTp0514uPjg0/0uP32253JkycH02/YsMGJi4tzfvWrXzmffPKJ89RTTzlRUVHO3/72t2Caf/3rX05ERIRz3333OevWrXPuu+8+JzIy0lmyZEm71+/7ONA2eOGFF5zIyEjnj3/8o1NaWhp8VVVVBdMUFhY6c+fOdb744gtn5cqVzs9+9jMnMjLSWbp0abvX7/s40DZ4+OGHnVdffdX57LPPnI8//ti5/fbbHcB5+eWXg2nCvR8E/OQnP3GGDh263zw7Wj/YvXu3s3LlSmflypUO4Dz00EPOypUrnU2bNjmO0zmOBwfaBuF4PDjQNgjH48GBtkFAuBwPfvGLXzg+n89ZuHBhSL/es2dPME1nOB7I4aVBiDh//OMfnZycHCc6Oto56aSTQh7Bd/nllzsjRowISb9w4UJn8ODBTnR0tNOrVy/n0Ucf3SfPv/71r05+fr4TFRXl9O3bN+R/RkejA2mDESNGOMA+r8svvzyYZurUqU7Pnj2d6Ohop3v37s6YMWOcRYsWtWONDtyBtMH999/vHHvssY7X63WSk5Od008/3XnjjTf2yTOc+4HjOE5VVZUTGxvrPPHEE/vNr6P1g8CjVr+pb3eG48GBtkE4Hg8OtA3C8XhwMN+FcDoe7K/ugPP0008H03SG44EcXh7Hce8aEhERERERaQe6J0RERERERNqVBiEiIiIiItKuNAgREREREZF2pUGIiIiIiIi0Kw1CRERERESkXWkQIiIiIiIi7UqDEBERERERaVcahIiIiIiISLvSIEREREIsXLgQj8dDVVXVkQ5FRETClAYhIiKd0JQpU/B4PHg8HqKioujduze33HILdXV1Rzo0ERHpBCKPdAAiInJkjBs3jqeffpqmpibef/99/vM//5O6ujouueSSIx2aiIiEOZ0JERHppGJiYsjIyCA7O5tLL72Uyy67jDlz5gTXr1ixgpNPPpm4uDiGDx9OcXFxcN0XX3zBBRdcQHp6Ol27duWUU07hnXfeCcn///7v/8jLy8Pr9ZKens5//Md/BNc5jsMDDzxA7969iY2NZdCgQfztb3877HUWEZGjgwYhIiICQGxsLE1NTcHPd911Fw8++CAffvghkZGR/PznPw+uq62t5ZxzzuGdd95h5cqVjB07lvPOO4/NmzcD8OGHH3LjjTfym9/8huLiYubOncsZZ5wR3P6///u/efrpp3n00UdZu3Ytv/rVr/jJT35CUVFR+1VYRESOGI/jOM6RDkJERNrXlClTqKqqCp75WLZsGeeccw5nnXUWv/jFLxg1ahTvvPMOZ511FgBvvvkmP/zhD6mvr8fr9e43z+OPP55f/OIXXH/99bzyyiv87Gc/Y+vWrSQkJISkq6uro1u3brz77rsUFBQEl//nf/4ne/bs4YUXXjg8lRYRkaOG7gkREemk/vGPf9C1a1eam5tpamriggsu4JFHHuGTTz4B4IQTTgimzczMBKCiooKePXtSV1fHvffeyz/+8Q+2bdtGc3Mz9fX1wTMho0ePJicnh969ezNu3DjGjRvHhRdeSFxcHJ988gl+v5/Ro0eHxNPY2MjgwYPbqfYiInIkaRAiItJJjRo1ikcffZSoqCiysrKIiooCCA5CAp8BPB4PAK2trQD813/9F/PmzeN///d/6dOnD7GxsfzHf/wHjY2NACQkJPDvf/+bhQsX8vbbb3P33XdTWFjI8uXLg3m88cYbHHPMMSExxcTEHN5Ki4jIUUGDEBGRTio+Pp4+ffoc1Lbvv/8+U6ZM4cILLwTsHpGNGzeGpImMjOTss8/m7LPP5p577iEpKYl3332X0aNHExMTw+bNmxkxYkRbqyEiIh2QBiEiInLA+vTpwyuvvMJ5552Hx+Ph17/+dfAMB9ilXhs2bOCMM84gOTmZN998k9bWVvLz80lISOCWW27hV7/6Fa2trZx++unU1NSwaNEiunbtyuWXX34EayYiIu1BgxARETlgDz/8MD//+c8ZPnw43bp147bbbqOmpia4PikpiVdeeYXCwkL8fj95eXm8+OKLHH/88QD8v//3/0hLS2P69Ols2LCBpKQkTjrpJO68884jVSUREWlHejqWiIiIiIi0K80TIiIiIiIi7UqXY8kBcRyHpqYmWlpaiIiIICoqKvjUHBERERGR76NTDUIKCwuZM2cOq1atOtKhHDEjR47kxBNPZMaMGQe0XVNTE+Xl5Xz55ZfU19cHl8fGxnLMMceQnp4e8jhPEREREZFvctRfjjVlyhQ8Hg8ej4eoqCjS09MZPXo0f/rTn0KexHKweU+YMOHQBBrGdu3axZIl/397dx5XVbX/f/x14DApiCCjSGIOKCCgkIlDYoZDV9OyspvjI7KbTQ6pt9LuNevhWKlUUs7avd/0fsvpmpL+HCr1YuKQqKSFIqaIIGRCyHh+f/jgfC+BMkgH0Pfz8eDx8Oyz1tqffXBx9mevtfaOJzk5GUdHRwICAggODiYgIABHR0eSk5OJj48nKyurrkMVERGRP9jixYtp1aoV9vb2hIWF8e2339Z1SNIA1fskBKB///6kpaWRkpLCtm3b6N27N+PHj2fgwIEUFRXVdXh3tKysLBITE3F2dqZr164EBgbi4eGBq6srHh4eBAYG0rVrV5ydnUlMTFQiIiIicgdbt24dEyZMYNq0aRw5coSePXsyYMAAUlNT6zo0aWAaxHQsOzs7vLy8APDx8aFz58507dqVPn36sGrVKp599lkArl69ypQpU9i4cSPXr18nPDycBQsWEBISUq7NGTNmsHr1auD/ngS8e/duIiMj+etf/8qGDRv4+eef8fLyYvjw4fztb3+76XSjlJQUWrVqxWeffUZMTAyHDx+mdevWfPTRR0RGRprLnTx5ksmTJ/PNN9/QuHFj+vbty4IFC3BzcwNuTJUKCgoC4B//+AfW1taMGzeOt99+2xxjdnY248eP59///jf5+fn06tWLmJgY2rZta97Pvn37eOONNzh48CB2dnZ06dKFtWvX4uLiAtx44vHUqVNZtmwZtra2PP/888yYMaPccRUWFnLixAlcXFwICgrCyqrinNXOzo6goCCOHz9OYmIiLi4uNy0rIiIi9UfpeUdVvf/++0RHR5vPvRYuXMhXX31FbGwss2fP/iNClDtUgz1TfPDBBwkJCWH9+vXAjQXTf/rTn7h06RJbt27l0KFDdO7cmT59+lR4dX7y5Mk8+eST5lGWtLQ0unXrBoCTkxOrVq3i5MmTLFq0iKVLl7JgwYJKY5oyZQqvvvoqR44coVu3bjzyyCNcuXIFgLS0NHr16kVoaCgJCQnExcWRnp7Ok08+WaaN1atXYzQaOXDgADExMSxYsIBly5aZ3x8zZgwJCQls3ryZ//znP5hMJh5++GEKCwsBOHr0KH369CEwMJD//Oc/7N27l0GDBlFcXFxmH40bN+bAgQPMmzePmTNnsmPHjnLHk56ebn64WGVJhZWVFf7+/phMJvLz8yv9rERERKRhKSgo4NChQ/Tt27fM9r59+7J///46ikoaqgYxEnIz7du359ixY8CNUYzExEQuX76MnZ0dAO+++y4bN27k888/57nnnitT19HREQcHB/Lz882jLKWmT59u/refnx+vvvoq69atY+rUqbeM56WXXmLo0KEAxMbGEhcXx/Lly5k6dSqxsbF07tyZWbNmmcuvWLECX19fTp8+Tbt27QDw9fVlwYIFGAwG/P39SUxMZMGCBYwdO5Yff/yRzZs3s2/fPnPC9M9//hNfX182btzIE088wbx58wgPD2fx4sXm/ZQ+HKxUcHAwf//73wFo27YtH374ITt37iQqKspcxmQyceHCBdzc3MyfZ2Xs7Oxwd3cnKysLe3t73TVLRETkDpKZmUlxcTGenp5ltnt6enLp0qU6ikoaqgadhJhMJvOJ7qFDh8jJyaFZs2ZlyuTl5ZGcnFytdj///HMWLlzITz/9RE5ODkVFRTRp0qTSehEREeZ/G41GwsPDSUpKMse3e/duHB0dy9VLTk42JyFdu3Ytc/IeERHBe++9R3FxMUlJSRiNRu6//37z+82aNcPf39+8n6NHj/LEE0/cMs7g4OAyr729vbl8+XKZbYWFheTl5dGqVatKj/u/ubu7k5GRUeZ3IyIiIneO33+/6ztfaqJBJyFJSUnmk+SSkhK8vb3Zs2dPuXJNmzatcpvx8fE89dRTvPXWW/Tr1w9nZ2fWrl3Le++9V6MYSztlSUkJgwYNYu7cueXKeHt7V6mtmz3c/r87v4ODQ6Xt/H5ti8FgKHensdLpW0Zj9f6LlJa/WawiIiLSMLm5uWFtbV1u1OPy5cvlRkdEKtNg14Ts2rWLxMRE8/Snzp07c+nSJYxGI23atCnzU7rw+/dsbW3LrJWAG4u6W7ZsybRp0wgPD6dt27acO3euSjHFx8eb/11UVMShQ4do3769Ob4TJ07g5+dXLr7GjRtX2Ebp67Zt22JtbU1AQABFRUUcOHDA/P6VK1c4ffo0HTp0AG6McuzcubNK8d6KtbW1+Tiqo7S8roiIiIjcWWxtbQkLCyu3jnTHjh3maeIiVdUgkpD8/HwuXbrEhQsXOHz4MLNmzWLw4MEMHDiQUaNGAfDQQw8RERHBkCFD+Oqrr0hJSWH//v1Mnz6dhISECtv18/Pj2LFjnDp1iszMTAoLC2nTpg2pqamsXbuW5ORkYmJi2LBhQ5Xi/Oijj9iwYQM//PADL774ItnZ2TzzzDMAvPjii2RlZfHnP/+Z7777jjNnzrB9+3aeeeaZMonQ+fPnmTRpEqdOneKzzz7jgw8+YPz48cCN9RuDBw9m7Nix7N27l++//54RI0bg4+PD4MGDAXj99dc5ePAgL7zwAseOHeOHH34gNjaWzMzMan3mNjY2ODg4kJGRUa16GRkZWFtbKwkRERG5A02aNIlly5axYsUKkpKSmDhxIqmpqTz//PN1HZo0MA0iCYmLi8Pb2xs/Pz/69+/P7t27iYmJYdOmTeYr9gaDga1bt/LAAw/wzDPP0K5dO5566ilSUlJuOkQ4duxY/P39CQ8Px93dnX379jF48GAmTpzISy+9RGhoKPv37+fNN9+sUpxz5sxh7ty5hISE8O2337Jp0ybzKEzz5s3Zt28fxcXF9OvXj6CgIMaPH4+zs3OZO0+NGjWKvLw8unTpwosvvsjLL79cZlH9ypUrCQsLY+DAgURERGAymdi6dat5ilW7du3Yvn0733//PV26dCEiIoJNmzZVe1qVwWDAx8eHzMzMKt/tKj8/n4yMDC1KFxERuUMNGzaMhQsXMnPmTEJDQ/nmm2/YunUrLVu2rOvQpIExmDR5/7aVPifkyJEjhIaG1ridyMhIQkNDWbhwYa3FdjsKCwuJj4/H2dn5ls8JgRtrXo4fP052draeEyIiItJAVPc5ISK1pUEvTJc/lo2NDYGBgSQmJnL8+HH8/f0rvF1vfn4+p06dIjs7m44dO+Lq6loH0YqIiIhIQ6EkRG7J1dWVjh07cuLECeLj43Fzc8Pd3R2j0UhRUREZGRlkZmZiZWWlBEREREREqkTTsaRKCgsLSU9P58KFC+Tl5Zm3Ozg44OPjg5eXV7XXnYiIiIjI3UlJiFSLyWSiqKiIoqIijEYjRqNRi9BFREREpFqUhIiIiIiIiEXpFkYiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERizLWdQAiIlK/mEwmCgsLKS4uxtraGhsbGwwGQ12HJSIidxAlISIiAkBhYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RZ1Ox4qMjGTChAm13q7JZOK5557D1dUVg8HA0aNHLbp/EZGGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljixcvplWrVtjb2xMWFsa3335bK3UqK1MbbUj9Ue0kZMyYMRgMBgwGAzY2Nnh6ehIVFcWKFSsoKSm5rWBqKymIi4tj1apVbNmyhbS0NIKCgm67Tai9+L755hsGDRpE8+bNMRgMbNy4scJyVe1IYWFhBAUFlfu5ePFiubIXLlxgxIgRNGvWjEaNGhEaGsqhQ4du+5hEpOHKysoiMTERZ2dnunbtSmBgIB4eHri6uuLh4UFgYCBdu3bF2dmZxMREJSIid7F169YxYcIEpk2bxpEjR+jZsycDBgwgNTX1tupUVqY22pD6xWAymUzVqTBmzBjS09NZuXIlxcXFpKenExcXx+zZs+nZsyebN2/GaKzaLK/IyEhCQ0NZuHBhha9r6sMPP2T+/PmcO3euWvuvbrw1tW3bNvbt20fnzp0ZOnQoGzZsYMiQIWXKrFu3jpEjR7J48WK6d+/OJ598wrJlyzh58iT33HNPjfabnZ1Np06d6N27N+PGjcPDw4Pk5GT8/Pxo3bp1tdrye+3LGsUgIvVLIyMs6N0YTzdXgjsGYWV182tTJSUlHD9+nOzsbFxcXG5ZVkQahupeqL3//vvp3LkzsbGx5m0dOnRgyJAhzJ49u8Z1KitTG21I/VKjbxA7Ozu8vLzw8fGhc+fOvPHGG2zatIlt27axatUq4MaUqHnz5nHvvffi4OBASEgIn3/++U3bHDNmDF9//TWLFi0yj7SkpKQQFxdHjx49aNq0Kc2aNWPgwIEkJyffsp2XX36Z1NRUDAYDfn5+AOTm5jJq1CgcHR3x9vbmvffeK1c3Pz+fV155BQ8PD+zt7enRowcHDx68ZXy/l5GRgZeXF7NmzTJvO3DgALa2tmzfvh2AAQMG8M477/DYY4/d9Djef/99oqOjefbZZ+nQoQMLFy7E19e3TMeqrrlz5+Lr68vKlSvp0qULfn5+9OnTp9oJiIjcObr7GLG1hg7t/StNKqysrPD398dkMpGfn2+hCEWkvigoKODQoUP07du3zPa+ffuyf//+GteprExttCH1T61dxnrwwQcJCQlh/fr1AEyfPp2VK1cSGxvLiRMnmDhxIiNGjODrr7+usP6iRYuIiIhg7NixpKWlkZaWhq+vL7m5uUyaNImDBw+yc+dOrKysePTRR2869WvRokXMnDmTFi1akJaWZk4ipkyZwu7du9mwYQPbt29nz5495aYhTZ06lS+++ILVq1dz+PBh2rRpQ79+/cjKyrppfL/n7u7OihUrmDFjBgkJCeTk5DBixAheeOGFch3jZv6ojrR582bCw8N54okn8PDwoFOnTixdurTG7YlIwxfV0hZ3N3fs7OyqVN7Ozg53d3euX79ONQfSRaSBy8zMpLi4GE9PzzLbPT09uXTpUo3rVFamNtqQ+qdW747Vvn17jh07Rm5uLu+//z67du0iIiICgHvvvZe9e/fyySef0KtXr3J1nZ2dsbW1pVGjRnh5eZm3Dx06tEy55cuX4+HhwcmTJyscQnR2dsbJyQlra2tzOzk5OSxfvpw1a9YQFRUFwOrVq2nRooW5Xm5uLrGxsaxatYoBAwYAsHTpUnbs2MHy5cuZMmVKhfFV5OGHH2bs2LEMHz6c++67D3t7e+bMmVOVjxD44zrSmTNniI2NZdKkSbzxxht89913vPLKK9jZ2TFq1KgatysiDZOjDXg0MuDh4V6teu7u7mRkZGAymXTrXpG70O/7fVX+FlSlTmVlaqMNqT9qNQkp/UWfPHmS69evm0/4SxUUFNCpU6dqtZmcnMybb75JfHw8mZmZ5hGQ1NTUKs9jTE5OpqCgwJwQAbi6uuLv71+mTGFhId27dzdvs7GxoUuXLiQlJVUrZoB3332XoKAg/vWvf5GQkIC9vX2126jtjlRSUkJ4eLh5qlinTp04ceIEsbGxSkJE7kL2xht/T6q6jq9UaXmNhIjcXdzc3LC2ti53QfTy5cvlLpxWp05lZWqjDal/anVVYVJSEq1atTInCl9++SVHjx41/5w8efKW60IqMmjQIK5cucLSpUs5cOAABw4cAG4kNFVVlS/K0jK1deJ/5swZLl68SElJSaUL5H/vj+pI3t7eBAQElNnWoUMH3TVC5C51vejG372ioqJq1Sstr6uLIncXW1tbwsLC2LFjR5ntO3bsoFu3bjWuU1mZ2mhD6p9aS0J27dpFYmIiQ4cOJSAgADs7O1JTU2nTpk2Zn4rWUZSytbWluLjY/PrKlSskJSUxffp0+vTpQ4cOHcjOzq52bG3atMHGxob4+HjztuzsbE6fPl2mjK2tLXv37jVvKywsJCEhgQ4dOlQY380UFBQwfPhwhg0bxjvvvEN0dDTp6elVjveP6kjdu3fn1KlTZbadPn2ali1b1rhNEWm4cgrh8m8mLl/OqFa9jIwMrK2tlYSI3IUmTZrEsmXLWLFiBUlJSUycOJHU1FSef/554MYdSvv06VOtOlUpUxttSP1So+lY+fn5XLp0qdwtegcOHMioUaOwtrZm8uTJTJw4kZKSEnr06MGvv/7K/v37cXR0ZPTo0RW26+fnx4EDB0hJScHR0RFXV1eaNWvGkiVL8Pb2JjU1lddee63a8To6OhIdHc2UKVNo1qwZnp6eTJs2rcydYBo3bsy4ceOYMmUKrq6u3HPPPcybN4/ffvuN6Ojom8ZX0d1kpk2bxtWrV4mJicHR0ZFt27YRHR3Nli1bgBtrVH766Sdz+bNnz3L06FHzfuFGRxo5ciTh4eFERESwZMmS2+5IEydOpFu3bsyaNYsnn3yS7777jiVLlrBkyZIatykiDduOcwW4N8ogPz+/SovT8/PzycjIoHHjxkpCRO5Cw4YN48qVK8ycOdP8LLatW7eaL2hmZmaWu4tpZXWqUqY22pD6pUbPCVm9ejVwY16wi4sLISEhPP3004wePdp8Um4ymfjggw9YvHgxZ86coWnTpubb+T7wwANA+edunD59mtGjR/P999+Tl5fH2bNn+emnn3jllVc4c+YM/v7+xMTEEBkZWeGzNUotXLiQhQsXlrmFbk5ODuPGjWP9+vU4OTnx6quv8uWXX5bZ//Xr15k6dSqfffYZ165dIzw8nAULFnDffffdNL7SWwCX2rNnD1FRUezevZsePXoAN9avBAcHM3v2bMaNG8eePXvo3bt3ubhHjx5tvsUx3HhY4bx588wdacGCBebPrqa2bNnC66+/zo8//kirVq2YNGkSY8eOrXY7ek6IyJ1BzwkRubvV1gOdRaqr2kmIiIjcWUqfmO7i4oK/v3+FIyL5+fmcOnWK7OxsOnbsiKurax1EKiIidwolISIiQlZWFidOnKCkpAQ3Nzfc3d0xGo0UFRWRkZFBZmYmVlZWBAYGKgEREZHbpiRERESAGzfjSE9P58KFC+Tl5Zm3Ozg44OPjg5eXV7Vv5ysiIlIRJSEiIlKGyWSiqKiIoqIijEYjRqNRi9BFRKRWKQkRERERERGL0q1NRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUpCREREREREYtSEiIiIiIiIhZlrOsARESkfjGZTBQWFlJcXIy1tTU2NjYYDIa6DktERO4gdZqEREZGEhoaysKFC2u1XZPJxF/+8hc+//xzsrOzOXLkCKGhobW6DxGRO01hYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RbWnY40ZMwaDwYDBYMDGxgZPT0+ioqJYsWIFJSUltxVMZGQkEyZMuK02AOLi4li1ahVbtmwhLS2NoKCg226ztn3zzTcMGjSI5s2bYzAY2LhxY7kyixcvplWrVtjb2xMWFsa3335bYVthYWEEBQWV+7l48WK5srGxsQQHB9OkSROaNGlCREQE27Ztq+3DE5EGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljVT0/qW6dysrUZL9Sf9VoTUj//v1JS0sjJSWFbdu20bt3b8aPH8/AgQMpKiqq7RirLTk5GW9vb7p164aXlxdGY/kBn4KCgjqI7P/k5uYSEhLChx9+WOH769atY8KECUybNo0jR47Qs2dPBgwYQGpqarmyhw4d4vjx4+V+mjdvXq5sixYtmDNnDgkJCSQkJPDggw8yePBgTpw4UevHKCINQ1ZWFomJiTg7O9O1a1cCAwPx8PDA1dUVDw8PAgMD6dq1K87OziQmJioREbmLVef8pDp1KitTk/1K/WYwmUym6lQYM2YMv/zyS7kr97t27aJPnz4sXbqUZ599FpPJxPz58/n4449JS0ujXbt2vPnmmzz++OPmOv89HWvMmDGsXr26TJtnz57lhx9+4J133uH48eNYW1sTERHBokWLaN269U3j++92WrZsSUpKCpGRkQQFBWFra8uaNWsIDAzk66+/rjTO3Nxcxo0bx/r163FycmLy5Mn8+9//vuk0soyMDDp27Mgrr7zCG2+8AcCBAwfo2bMnW7ZsoW/fvuXqGAwGNmzYwJAhQ8zb7r//fjp37kxsbKx5W4cOHRgyZAizZ8+u+JdTQ66ursyfP5/o6Ogq1/F77ctajUFE6kYjIyzo3RhPN1eCOwZhZXXza1MlJSUcP36c7OxsXFxcbllWRBqG6s4Wqcn5SVXqVFbGkudFYhm19g3y4IMPEhISwvr16wGYPn06K1euJDY2lhMnTjBx4kRGjBjB119/XWH9RYsWERERwdixY0lLSyMtLQ1fX19yc3OZNGkSBw8eZOfOnVhZWfHoo4/edOrXokWLmDlzJi1atCAtLY2DBw+a31u9ejVGo5F9+/bxySefVCnOKVOmsHv3bjZs2MD27dvZs2cPhw4duunn4O7uzooVK5gxYwYJCQnk5OQwYsQIXnjhhQoTkIoUFBRw6NChcuX79u3L/v37q9RGVRQXF7N27Vpyc3OJiIiotXZFpOHo7mPE1ho6tPevNKmwsrLC398fk8lEfn6+hSIUkfqiJucnValTWRlLnReJZdXqwvT27dtz7NgxcnNzef/999m1a5f55Pbee+9l7969fPLJJ/Tq1atcXWdnZ2xtbWnUqBFeXl7m7UOHDi1Tbvny5Xh4eHDy5MkKs3dnZ2ecnJywtrYu0w5AmzZtmDdvnvl1ZXGGhYWxfPly1qxZQ1RUFHAjkWnRosUtP4eHH36YsWPHMnz4cO677z7s7e2ZM2fOLev8t8zMTIqLi/H09Cyz3dPTk0uXLlW5nZtJTEwkIiKC69ev4+joyIYNGwgICLjtdkWk4YlqaYu7mzt2dnZVKm9nZ4e7uztZWVnY29vrrlkid5GanJ9UpU5lZf7o8yKpG7WahJhMJgwGAydPnuT69evmE/dSBQUFdOrUqVptJicn8+abbxIfH09mZqZ5BCQ1NbXaQ4jh4eFlXlcWZ3JyMgUFBWVGCVxdXfH39690X++++y5BQUH861//IiEhAXt7+2rFCpT7ci/9fG+Xv78/R48e5ZdffuGLL75g9OjRfP3110pERO4yjjbg0ciAh4d7teq5u7uTkZFRa3+TRKRhqcn5SVXqVFbmjzovkrpRq0lIUlISrVq1MicKX375JT4+PmXKVPVqW6lBgwbh6+vL0qVLad68OSUlJQQFBdVoYXnjxo3LvK4szitXrlR7H6XOnDnDxYsXKSkp4dy5cwQHB1e5rpubG9bW1uWy+8uXL5e7ClATtra2tGnTBriRmB08eJBFixaZp6iJyN3B3njjy7uim3fcSmn5ai4pFJEGribnJ1WpU1mZP/q8SOpGra0J2bVrF4mJiQwdOpSAgADs7OxITU2lTZs2ZX58fX1v2oatrS3FxcXm11euXCEpKYnp06fTp08fOnToQHZ2dm2FXGmcbdq0wcbGhvj4eHOd7OxsTp8+fct2CwoKGD58OMOGDeOdd94hOjqa9PT0Ksdla2tLWFgYO3bsKLN9x44ddOvWrXoHWQWa3y1yd7pedCOJqO5dDUvL6wqkyN2lJucnValTWRlLnxeJZdRoJCQ/P59Lly5RXFxMeno6cXFxzJ49m4EDBzJq1Cisra2ZPHkyEydOpKSkhB49evDrr7+yf/9+HB0dGT16dIXt+vn5ceDAAVJSUnB0dMTV1ZVmzZqxZMkSvL29SU1N5bXXXrutA/5vpXe7ulWc0dHRTJkyhWbNmuHp6cm0adMqXbw5bdo0rl69SkxMDI6Ojmzbto3o6Gi2bNliLpOTk8NPP/1kfn327FmOHj2Kq6sr99xzD5MmTWLkyJGEh4cTERHBkiVLSE1N5fnnn7+tY37jjTcYMGAAvr6+XLt2jbVr17Jnzx7i4uJuq10RaXhyCuHybybcLmfg4eFR5XoZGRlYW1srCRG5C1V2fvLhhx+yYcMGdu7cWeU6VSnzR50XSd2pURISFxeHt7c3RqMRFxcXQkJCiImJYfTo0eYT9LfffhsPDw9mz57NmTNnaNq0KZ07dzbftrYikydPZvTo0QQEBJCXl8fZs2dZu3Ytr7zyCkFBQfj7+xMTE0NkZGSNDrYilcU5f/58cnJyeOSRR3BycuLVV1/l6tWrN21vz549LFy4kN27d9OkSRMAPv30U4KDg4mNjWXcuHEAJCQk0Lt3b3O9SZMmATB69GhWrVrFsGHDuHLlCjNnzjQ/cHHr1q20bNnyto43PT2dkSNHkpaWhrOzM8HBwcTFxZVbFyMid4cd5wpwb5RBfn5+labL5ufnk5GRQePGjZWEiNyFKjs/yczMJDk5uVp1qlLmjzovkrpT7eeESNnnm9yt9JwQkTuDnhMicner7k1+RGpLrS5Ml7tHypw/1XUIIlJLSp+Yfvz4cfz9/SscEcnPz+fUqVNkZ2fTsWNHXF1d6yBSERG5UygJERG5y7m6utKxY0dOnDhBfHw8bm5uuLu7YzQaKSoqIiMjg8zMTKysrJSAiIhIrdB0LBERAaCwsJD09HQuXLhAXl6eebuDgwM+Pj54eXlV+3a+IiIiFVESIiIiZZhMJoqKiigqKsJoNGI0GrUIXUREapWSEBERERERsSjd2kRERERERCxKSYiIiIiIiFiUkhAREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUZ6zoAERERubWSkhIuXryIk5MTBoOhrsO565lMJq5du0bz5s2xstL13Lqm/lG/VLV/KAkRERGp5y5evIivr29dhyG/c/78eVq0aFHXYdz11D/qp8r6h5IQERGRes7JyQmAs2d34OTUuI6jkWvXcmnVKsr8e5G6pf5Rv1S1fygJERERqedKp5g4OTWmSRPHOo5GSmnqT/2g/lE/VdY/NJFRREREREQsSkmIiIiIiIhYlJIQERERqXVt2/YnJubTWmsvOno6Q4eOr7X2RKRuKQkRERG5w0RHT8fWNhhb22AcHDrRunVfXnrpbbKzf63r0CwmJeUCtrbBHD36Q12HIneBuu5zM2cuJjz8CYvsq7ZoYbqIiMgdqF+/7ixd+jZFRUUkJZ3huef+xi+/XOMf/5hX16GJ3JHU56pHIyEiIiJ3IFtbW7y83GjRwouoqG488UR//t//+4/5/dWrN9Kx42CcnMIJCnqEjz9eW6b+zz9fYvjwqXh69qBp0y507foU3313DIDk5PM89tgrtGgRiYvL/URE/JmdO+NvGc8vv/zKuHFv0aJFJE5O4YSGPsqXX34NVHwVNybmU9q27X/T9r76ai+RkaNxd++Ol1dPhgx5ieTk8+b327UbAECXLk9iaxvMQw89U+VjF6mJ2+lzBQWFjB8/i3vueRAnp3Datu3P3LnLzO9fvXqNcePewsenF82aRdC3bzTff38KgDVrNvHOOx9z7Ngp82jMmjWbLHfgNaSREBERkTvcmTM/89VX+7CxufG1v3z558ycGcvCha8TGtqeo0d/YNy4t2jUyIFRowaTk/MbDz30DM2be7B+fQyenm4cOZJESYkJgJyc3xgwoCdvvfUS9vZ2fPrpZh599GWOH9/MPfd4l9t/SUkJgwa9wLVruaxaNZt77/UlKSkZa+uaXwvNzc1j/PiRBAW1JTc3j7fe+ognnphAQsL/YmVlxf79/0O3bk8TF7eEgIA22NraVOnYRWpDdfvchx/+ky1b9vA//zMfX19vfv75EufPXwJuPIF88OCXcHFpwubNi2nSxJFly/6X/v3HcuLEv3niiX6cOPEjX321j7i4pQA4O9f/WxUrCREREbkDbd36DS4u91NcXML16/kAzJ8/BYBZs5Ywd+6rPProQwC0atWCpKQzLFv2OaNGDWbt2q1kZGSzf/9nuLo6A9CmzT3mtkNC/AkJ8Te/njnzZTZt2sWWLXt44YU/l4tl5854Dh48zrFjG2nXzg+Ae++9vSeNP/ZYVJnXS5a8hY9PJCdPJhMU1BY3NxcAXF2b4uXlZi5X2bGL1NTt9Lnz5y/Rps09dO/eGYPBQMuWzc3t7tnzHceP/8iFC3uws7MFYO7cyWzevJv163fw7LOP07hxI4xGY5n/6/WdkhAREZE7UGTkfXzwwXR+++06K1eu58cfU3jxxT+TkZHF+fOX+MtfZjBu3Fvm8kVFxearp99//wOhoe3NCcjv5eb+xttvf8zWrd+QlpZBUVEReXn5pKamVVj+++9/oEULT3MCUhuSk88zY8aHfPfdMTIzf6GkpASA8+cvERTUtsI6VTl2kZq6nT43atQjDBjwFwIDH6Ffv+48/PADREV1A+Dw4ZPk5PyGl1fPMvvLy8svMwWxoVESIiIicgdq1MjBPHqxYMFrREVF8/bbH5tHKmJj/06XLh3L1CmdHuXgYH/Ltl977X127NjPnDmv0rq1Lw4O9jz11KsUFhZWWL6y9qysrDCZTGW2FRYW3bLOo4++jK+vF7Gxf8fb24OSkhI6dXqMgoKKYwDM08ludewiNXU7fa5TpwBOn95GXNxedu2K5+mnp/Dgg/ezbt37lJSY8PZ2Y8eOFeX22bSp0x98VH8cJSEiIiJ3genTn2fQoBf4y1+exMfHg7Nnf+bpp/9UYdmgoLasWLGerKyrFY6G7N17mJEjBzNkSB/gxhqRc+cu3nTfHTu24+ef0zl9OqXC0RB3dxfS0zMxmUwYDAYA86Lbily58gs//HCGxYvfpEePMAD27TtcpkzpGpDSERIAT89mlR67SG2pTp8DaNLEkSef7M+TT/bnsceiGDhwHFlZV+nUqQOXLl3BaLTGz8+nwrq2tjYUFxf/UYfyh1ASIiIichfo1es+AgJaM3fuMt58cxwTJ86lSZPG9OvXg/z8Ag4fPkl29q9MmDCKp556mLlzl/H44+N5553xeHm5c/RoEs2be9C1awitW9/Dxo07+dOfemEwGJgx48MyJ/u/98AD4fTsGcawYZOYP38KrVv7curUWQwGA/369eCBB+4jI2MW7767kscei2L79n189dVemjSpeIqUi0sTmjVryrJlX+Dl5c7582lMm7aoTBkPD1ccHOz56qu9+Ph4Ym9vi7OzU6XHLlJbqtPnFi36FC8vN0JC2mNlZeCLL7bj5eVG06ZO9OnTla5dg3n88QnMmjWBdu38SEvLYNu2bxk8+EHCwgJp2bI5KSkXOHr0xtRHJ6fG5vUj9ZXGHkVERO4S48ePZPnyL4iK6s7HH/+dNWs207nzUB566BnWrNlkvspqa2vD1q2f4O7uyiOPvEjnzo8xf/4K89SRd9+dgouLE716jeKxx16mb9/udOrU4Zb7XrfufcLDgxg58q+EhDzK668voLj4RuLSocO9fPDBND7+eC3h4Y9z8GAiEyeOvmlbVlZW/OMf8zh8+CSdOj3G5MnzmTNnUpkyRqORBQv+yrJln9OyZR/z09afeWboLY9dpDZVtc85Ojrw7rsriYh4im7dnubcuYts2vQRVlZWGAwGNm9eTM+eYTz33N8JDBzEiBFTOXfuIh4ezYAbN2ro27c7fftG07x5L9at21aXh10lBtPvJ2GKiIhIvfLrr7/i7OxMZub+m44OiOX8+msObm7duHr1Kk2aNKnrcO566h/1S1X7h0ZCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJQeVigiIlLPld5N/9q13DqOROD/fg96ykH9oP5Rv1S1fygJERERqeeuXbsGQKtWUXUcify3a9eu4ezsXNdh3PXUP+qnyvqHHlYoIiJSz5WUlHDx4kWcnJwwGAx1Hc5dz2Qyce3aNZo3b46VlWa21zX1j/qlqv1DSYiIiIiIiFiU0ncREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRf1/6O69usheWdAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "times_delayed = events.time + 0.5 * (events.time - events.time[0]) ** 2 * 3e-8 / cand_freqs_ef[0]\n", + "ip = InteractivePhaseogram(times_delayed, cand_freqs_ef[0], nt=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "An evolved implementation of this interactive phaseogram is implemented in [HENDRICS](https://github.com/stingraysoftware/hendrics) (command line tool `HENphaseogram`)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb.txt b/_sources/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb.txt new file mode 100644 index 000000000..1f1b783fe --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb.txt @@ -0,0 +1,223 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inverse Transform Sampling\n", + "\n", + "This notebook will conceptualize how inverse transform sampling works" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import numpy.random as ra\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below is a spectrum which follows an `almost` bell-curve type distribution (anyway, the specific type of distribution is not important here). " + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 2, 3, 4, 5, 6], [2000, 4040, 6500, 6000, 4020, 2070]]" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[2000, 4040, 6500, 6000, 4020, 2070]]\n", + "energies = np.array(spectrum[0])\n", + "fluxes = np.array(spectrum[1])\n", + "spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, first we compute probabilities of flux. Afterwards, we compute the cumulative probability." + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.08120179, 0.2452294 , 0.5091352 , 0.75274056, 0.91595615, 1. ])" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prob = fluxes/float(sum(fluxes))\n", + "cum_prob = np.cumsum(prob)\n", + "cum_prob" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We draw ten thousand numbers from uniform random distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.49834338, 0.31993222, 0.35882619, 0.15837646, 0.22595417,\n", + " 0.85575223, 0.85203039, 0.78380252, 0.04170078])" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N = 10000\n", + "R = ra.uniform(0, 1, N)\n", + "R[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We assign energies to events corresponding to the random number drawn.\n", + "\n", + "_Note: The command below finds bin interval using a single command. I am not sure though that it's very readble. Would\n", + "we want to split that in multiple lines and maybe use explicit loops to make it more readable? Or is it fine as it is?\n", + "Comments?_" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[3, 3, 3, 2, 2, 5, 5, 5, 1]" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = [int(energies[np.argwhere(cum_prob == min(cum_prob[(cum_prob - r) > 0]))]) for r in R]\n", + "gen_energies[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Histogram energies to get shape approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 825, 1652, 2626, 2466, 1589, 842], dtype=int64)" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = ((np.array(gen_energies) - 1) / 1).astype(int)\n", + "times = np.arange(1, 6, 1)\n", + "lc = np.bincount(gen_energies, minlength=len(times))\n", + "lc" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0VNXXxvHvDoROQgnSiRQpiihgAREMJaEX6UGqoqiI\nYgcLYEHUH/gqRSnSBWkiIDWAhN5BRKmCgDSlhg4h2e8fGWLADEwgk5uyP2vNyszcMs8MYXbOPfee\nI6qKMcYYEx8fpwMYY4xJvqxIGGOMccuKhDHGGLesSBhjjHHLioQxxhi3rEgYY4xxy+tFQkTqiMgO\nEdklIm/Hs7yRiGwRkc0isk5Eqni6rTHGGO8Sb14nISI+wC6gJnAYWA+0VtUdcdbJoqoXXPfvB6ao\nahlPtjXGGONd3m5JPALsVtX9qhoJTAIax13hWoFwyQZEe7qtMcYY7/J2kSgI/BXn8UHXc9cRkSYi\nsh34CXg6IdsaY4zxnmTRca2qM1S1DNAE+NjpPMYYY2Kk9/L+DwFF4jwu5HouXqq6QkSKiUiuhGwr\nIjYAlTHGJJCqyq3W8XZLYj1QQkQCRSQD0BqYFXcFESke534FIIOqnvRk27hU1W6q9O7d2/EMyeFm\nn4N9FvZZ3PzmKa+2JFQ1SkReAsKIKUgjVXW7iHSJWazDgWYi0h64AlwEWt5sW2/mNcYYcz1vH25C\nVecDpW54blic+58Dn3u6rTHGmKSTLDquTeIJCgpyOkKyYJ/Dv+yz+Jd9Fgnn1YvpkoqIaGp4H8YY\nk1REBPWg49rrh5uMMe7dfffd7N+/3+kYJhULDAxk3759t729tSSMcZDrrzmnY5hUzN3vmKctCeuT\nMMYY45YVCWOMMW5ZkTDGGOOWFQljTJIpW7Ysy5YtS/LX7dSpE7169Ury102oiRMnUqdOHadjXMeK\nhDHmpoKCgsiVKxeRkZF3vK/ffvuNatWqJUKq1KlNmzbMnz/f6RjXsSJhjHFr//79rFixAh8fH2bN\ncjt0mvFAVFSU0xFuixUJY4xb48aNo3LlynTs2JExY8Zct2zu3Lncd999+Pn5UbhwYb744gsATpw4\nQcOGDcmZMye5c+fmiSeeiN2maNGi/PzzzwBcunSJDh06kCtXLu677z7+97//Ubhw4evWHTBgAA88\n8AA5c+YkNDSUK1euxC6fPXs25cuXJ2fOnDz++ONs3bo1dtnmzZupWLEi/v7+tG7dmkuXLt30fY4a\nNYp7772X3LlzU7duXQ4cOBC7zMfHh2HDhlGyZEly5crFSy+9lKBtv/76a0qWLEnJkiUBCAsLo3Tp\n0uTMmZOuXbsSFBTEqFGjABg7dixVq1aN3X7Hjh2EhISQO3duypQpw9SpU2/5+Sc6p0ciTKTRDNWY\nlCi5/+6WKFFChw4dqhs3blRfX1/9559/Ypflz59fV65cqaqqp0+f1s2bN6uqas+ePfWFF17QqKgo\nvXr1qq5YsSJ2m7vvvlsXL16sqqpvv/22BgUFaUREhB46dEjLlSunhQsXvm7dRx99VI8ePaqnTp3S\nMmXK6LBhw1RVddOmTXrXXXfp+vXrNTo6WseNG6d33323XrlyRa9cuaKBgYH61Vdf6dWrV3XatGnq\n6+ur77//frzvccaMGXrPPffozp07NSoqSvv27auPPfZY7HIR0YYNG+qZM2f0wIEDmidPHl2wYIHH\n24aEhOjp06f10qVLevz4cfXz89MZM2ZoVFSUfvXVV5ohQwYdOXKkqqqOGTNGq1atqqqq58+f18KF\nC+vYsWM1Ojpaf/nlFw0ICNDt27ff9PO/kbvfMdfzt/5+9WSl5H5L7v/RjHHnlr+7vXvH/De98da7\nt+fru1v3FpYvX64ZMmTQkydPqqpqmTJl9Msvv4xdHhgYqMOHD9czZ85ct12vXr20SZMm+scff/xn\nn3GLRLFixXThwoWxy7799tv/FImJEyfGPn7rrbf0hRdeUFXVF154QXv16nXdvkuVKqXLli3TZcuW\nacGCBa9b9thjj7ktEnXr1tVRo0bFPo6KitIsWbLogQMHVDXmi37VqlWxy1u2bKmfffaZx9uGh4fH\nLh83btx1RURVtXDhwvEWicmTJ2u1atWuW7dLly764Ycfqqr7z/9Gd1ok7HCTMclZnz7xlYiY5z1d\n3926tzBu3DhCQkLImTMnAKGhoYwdOzZ2+Q8//MCcOXMIDAykevXqrFmzBoC33nqL4sWLExISQokS\nJfjss8/i3f/hw4cpVKhQ7OO4h5quyZs3b+z9LFmycO7cOSCmr2TAgAHkypWLXLlykTNnTg4ePMjh\nw4c5fPgwBQteP9NxYGCg2/e5f/9+Xnnlldh95c6dGxHh0KF/5zi7WY5bbRv3PR4+fPg/7zPu8htz\nrVmz5rr3OHHiRP7++2/A/eef2GzsJmPMf1y6dIkpU6YQHR1N/vz5Abhy5QqnT59m69at3H///VSs\nWJEZM2YQFRXFoEGDaNmyJQcOHCBr1qz079+f/v37s23bNqpXr84jjzxC9erVr3uN/Pnzc/DgQUqX\nLg1w3bH8WylcuDDvvvsuPXv2/M+yZcuWXfclfW3fJUqUiHdfRYoU4b333iM0NNTj14+b41bbivw7\n8kX+/Pn/cwLAwYMH3e47KCiIBQsWxLvc3eef2KwlYYz5jx9//JH06dOzfft2tmzZwpYtW9i+fTtV\nq1Zl3LhxXL16lYkTJ3LmzBnSpUtH9uzZSZcuHQBz5sxhz549AGTPnp306dPHLourZcuW9OvXj9On\nT3Po0CGGDBnicb5nn32WoUOHsm7dOgDOnz/P3LlzOX/+PJUrVyZ9+vQMGjSIq1evMn369Nj14tOl\nSxc++eQTtm3bBkBERATTpk3zKMfzzz+foG3r16/Pb7/9xqxZs4iKimLw4MGxLYMbNWjQgF27dvHd\nd99x9epVIiMj2bBhAzt27CAyMtLt55/YrEgYY/5j3LhxPP300xQsWJC77ror9ta1a1cmTJgAwPjx\n4ylatCg5cuRg+PDhTJw4EYDdu3dTq1YtsmfPTpUqVejatWvstRFx/6ru1asXBQsWpGjRooSEhNCi\nRQsyZswYuzzuujeqWLEiI0aM4KWXXiJXrlyULFky9lCYr68v06dPZ/To0eTOnZupU6fSrFkzt/tq\n0qQJPXr0oHXr1uTIkYNy5cpdd63CjTniPk7ottfyvPnmmwQEBLBjxw4eeuih6973NdmyZSMsLIxJ\nkyZRoEABChQoQI8ePWLP8HL3+Sc2GwXWGAfZKLD/Gjp0KJMnT2bJkiVOR0kyqkqhQoWYOHHidacK\nJyYbBdYYkyIdPXqUVatWoars3LmTAQMG0LRpU6djeV1YWBgRERFcvnyZvn37AlCpUiWHU7lnHdfG\nGEdcuXKFLl26sG/fPnLkyEFoaCgvvPCC07G8bvXq1bRp04bIyEjuvfdeZs6cGe/hpuTCDjcZ4yA7\n3GS8zQ43GWOM8RorEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxphE1a9fP5577rlEX/dWfHx8\n2Lt3b6Lsy/zLioRJdc5ePsvL815m8LrB7Dy+004xvQNjxoyhXLlyZM2alQIFCvDiiy8SERFx0216\n9uzJ8OHDPdp/Qta9lZsN47Ft2zZq165N7ty5yZUrFw8//LDXpwmtXr167GRCKZkVCZOqqCrP//Qc\nB35ZyuYD6wgeH8zdX91N51mdmfzbZI5fOO50xBRjwIAB9OzZkwEDBnDmzBnWrFnD/v37CQ4O5urV\nq/Fu4+QUnTf7Y6Bhw4bUrl2bv//+m3/++YeBAwfi5+eXhOn+K8VMZ+rJpBPJ/YZNOmRchm8YrmV7\nBej5+0urRkZqdHS0bj+2XQeuGagNJzZUv35+WvGb8tpjYQ9dvHexXoq85Gje5Pq7e+bMGc2WLZtO\nmzbtuufPnTunefLk0dGjR6uqap8+fbR58+batm1b9ff315EjR2qfPn20bdu2sduMHTtWAwMDNSAg\nQD/66KPrJh6Ku+6+fftURHTs2LFapEgRzZMnj/bt2zd2P+vWrdPKlStrjhw5tECBAvrSSy9pZGRk\n7HIR0T179vznvRw/flx9fHw0IiIi3vcaHh6uhQoV0k8++UQDAgK0aNGiOmHChNjlly9f1tdff12L\nFCmi+fLl0xdeeEEvXfr392bGjBn64IMPqp+fn5YoUUIXLFig7777rqZLl04zZ86s2bNn127dusVm\nHDJkiN5zzz1arFix2PccFRUVu7+goKDrJiGqUqWKvvrqq5ojRw4tXry4rlq1SseMGaOFCxfWvHnz\n6tixY2/yL3nnkw45/gWfGLfk+h/NJK1fjvyiAR/76fay+VSPHYt3nStHDumykhn1/dZ5tdI7d2n2\nDzJpnW+q6IAV/9Nfj/6q0dHRSZo5uf7uzp8/X319fa/78rqmQ4cO2qZNG1WN+ZLPkCGDzpo1S1VV\nL168qH369NF27dqpqurvv/+u2bJl01WrVmlkZKS+8cYbmiFDhuuKxLV1r31hPvfcc3r58mXdsmWL\nZsyYUXfs2KGqqhs3btS1a9dqdHS07t+/X++991796quvYnO5KxKqqiVLltQGDRrojBkz9O+//75u\nWXh4uKZPn17feOMNvXLlii5dulSzZs2qu3btUlXV7t27a+PGjfX06dN67tw5bdSokb7zzjuqqrp2\n7Vr19/ePfT+HDx/WnTt3qur1X/ZxM8adznTfvn3q4+Nz0yLh6+sbO4Xpe++9p0WKFNGXXnpJr1y5\nomFhYZo9e3Y9f/6823/LOy0SNnaTSRXOXj5Ly4lP8n/zlNIjfoSAgHjX881XgKq/RlD111/5cO1a\nTq1fxpKlK1i4vj9DHviGi5EXqVWsFsHFgqlVrBb5s+dP4ndyPfnglqMmeER7J6xf5vjx4wQEBODj\n898j0vnz52fTpk2xjytXrkzDhg0ByJQp03Xr/vDDDzRq1IjKlSsD8OGHHzJw4EC3rysi9OnThwwZ\nMlCuXDkeeOABtmzZQqlSpahQoULsekWKFOG5555j6dKlvPzyy7d8P0uWLOHTTz/ljTfe4M8//+Tx\nxx/n22+/jZ2ISET46KOP8PX1pVq1atSvX58pU6bw7rvvMmLECLZu3Yq/vz8APXr04KmnnqJv376M\nGjWKZ555hho1asR+NtcmaXLnnXfeid2XJ4oWLUr79u0BaNWqFZ988gm9e/fG19eX4OBgMmTIwB9/\n/EG5cuU83mdCWJEwKZ6q0mVmZ6ptjaBt60/gViNqZswIDz8MDz9MTl6iKdD08mXImJG9p/aycM9C\nZuycwSvzX6FQhgCCz+cluHR9qlXvSJbc+ZLkPV2T0C/3xBIQEMDx48eJjo7+T6E4cuQIAXGKcHzT\njl5z43SdmTNnJnfu3Dd9bXdThe7evZvXXnuNDRs2cPHiRa5evUrFihU9ej8FChSILU6HDh3i2Wef\npUOHDqxcuRKAnDlzXlfgAgMDOXz4MMeOHePChQvXvU50dHRs/8dff/1F/fr1PcpwjbvpSt2J+3lk\nzpwZ4LrPP3PmzLGfkTdYx7VJ8UZsGsFvJ7YxsOYA6Nr19nbiGoWzWM5idHmoCz+0/IFjbx5jRMUP\nyHk+mk9W9CPvF/mp+WI2Pu3+EBtnfE20Rifiu0heKleuTMaMGZk+ffp1z587d4558+ZRq1at2Odu\ndlbRtSlKr7l48SInTpy4rUwvvPACZcqUYc+ePZw+fZq+ffve1plrBQsWpGvXrvz222+xz506dYqL\nFy/GPj5w4AAFChQgICCALFmy8Pvvv3Py5ElOnjzJ6dOnY8/wKly4cOwsfDdy97nEfT5r1qwAXLhw\nIfa5o0ePJvg9eZMVCZOibTm6hXd/fpcpLaaSuW1HuMkXVkKl80nHo9VCea/fSpZ9GcHhnid4teHH\nHC6QnbY7PyVv/7y0ntaakZtGciDCNbfwhQtwG19cyY2fnx+9evWiW7duLFiwgKtXr7Jv3z5atWpF\nkSJFaNu2rUf7ad68OT/99BNr1qwhMjKSPn363HT9m33pnz17Fj8/P7JkycKOHTv45ptvPMpw+vRp\n+vTpw549e1BVjh8/zqhRo2IPgV173d69exMZGcny5cuZM2cOLVu2RER49tln6d69O8eOHQNiWiJh\nYWEAPPPMM4wePZolS5agqhw+fJidO3cCMS2AW123ERAQQMGCBfnuu++Ijo5m1KhRbouOJ5+RN1iR\nMCnW2ctnaTG1BV/W/pLSAaW9/nrZs+WiQd3uDHxrCdvfPsCm5zYRUjyERX8uouLwipQeXJpuHzzK\nrEo5OdOkLnz8MSxcCKdPez2bN7z55pt88sknvPHGG/j7+1O5cmUCAwNZtGgRvr6+Hu3j3nvvZdCg\nQbRq1YoCBQrg5+fHXXfd5Xb+hJtNFdq/f38mTJiAn58fXbp0oXXr1jfd9poMGTKwb98+goOD8ff3\np1y5cmTKlInRo0fHrpM/f35y5sxJgQIFaNeuHcOGDeOee+4B4LPPPqNEiRJUqlSJHDlyEBISwq5d\nuwB4+OGHGT16NN27d8ff35+goCAOHIj5g+GVV15h6tSp5M6dm+7du7vNOGLECD7//HMCAgLYvn07\nVapUuelnerPPyBu8Pp+EiNQBviSmII1U1c9uWN4GeNv18Czwoqr+6lq2D4gAooFIVX3EzWtoUldX\n4yxV5anpT5EtQzaGN0yci7HuRLRGs+XoFsL2LGDhttms/XsjD0bmJnh/eoJX/8PDQ2eRvkat/2yX\n1uaTOH/+PDly5OCPP/4gMDDQ6TgALF26lHbt2sV+uac2dzqfhFc7rkXEBxgM1AQOA+tFZKaq7oiz\n2l6gmqpGuArKcOBaz2M0EKSqp7yZ06Q8IzYO57cjW1jbZYPTUQDwER/K5y9P+fzlefvxHlyIvMCK\nAysI2xPG85XCOLC+BdWPVSe4WDAhxUMonqu405GTzOzZs6lZsybR0dG8/vrrlCtXLtkUCHNr3j67\n6RFgt6ruBxCRSUBjILZIqOqaOOuvAQrGeSzYITFzg1+O/sK7c15nxY7KZH4ps9Nx4pXFNwshxUMI\nKR4CwNFzR1m0dxEL9y7ko2UfkSl9JoKLBTucMmnMnDmTdu3aAfDQQw8xadIkhxOZhPDq4SYRaQbU\nVtXnXI/bAo+oarwnNovIG0DJOOvvBU4DUcBwVR3hZjs73JRGnLl8hoe+uo/eP53hqQlboUgRpyMl\nmKry+7HfWbhnIa899lqaOtxkkl6yPtyUECJSHegEPB7n6SqqekRE8gALRWS7qq6Ib/u4Z00EBQUR\nFBTkxbTGCarKc1PaEbTpBE+9PyNFFgiI+c9Z9q6ylL2rLK/xmtNxTBoRHh5OeHh4grfzdkuiEtBH\nVeu4Hvcg5lLwGzuvywE/AHVUNd7zv0SkN3BWVb+IZ5m1JNKAYWu/5uupb7Em+6tk7v2R03ESRVrr\nuDZJ705bEt4+3r8eKCEigSKSAWgNzIq7gogUIaZAtItbIEQki4hkc93PCoQAv2HSpM1HNvPeop5M\n2VuBzO9/4HQcY9IMrx5uUtUoEXkJCOPfU2C3i0iXmMU6HHgfyAV8LTEn/F471TUv8KOIqCvnBFUN\n82ZekzyduXyGltNaMrDRUEr1aAnxjCeUUgUGBnr9PHeTtt3pmWRev04iKdjhptRLVQn9IRT/jP4M\nazjM6TjJTsSlCJbsW0LYnjAW7l3ImctnYgcoDC4WTEG/grBhA9StC/PmwUMPOR3ZJBOeHm6yImGS\ntaEbhjJ0w1BWP7OazL7J83TX5GTf6X0s3LOQsL1h/Pznz+TLlo/GpRrzQUR5fLt1h9WrU2yHv0lc\nViRMirf5yGZCvgth5dMrKZm7pNNxUpyo6Cg2HdlEr/Be5Mqci/GnquNT7QlwDTdh0rbk0nFtzG05\nc/kMLUbXYWCJblYgblM6n3Q8XPBhpreczqEzh+iWbzPqmj/BGE9ZkTDJjqry7Ljm1Np8htAyLZ2O\nk+Jl9s3MrNBZrD20lveXvO90HJPCJJuL6Yy5ZuiyL9j521LWNBsJpb0/umta4JfRj/lt51N1dFVy\nZsrJ64+97nQkk0JYS8IkK5sPbaTXwneYmq41mVp7NmeB8UxAlgAWtlvIoHWDGLlpZMy8F7eYu8AY\na0mYZCPiUgQtvg1h0LZA7pkU7zBd5g4V8ivEwnYLeWLME/ifuUTzlh/AggVQvrzT0UwyZWc3mWRB\nVWk1rRW5j5/nm4bDIIHzAJuE2XJ0CyHfhTAu4Dlqvz8m5tRY+8zTFDsF1qQoX6//mhGbRrD6mdVk\nSp/p1huYO7bywEqenPwkM64257Epq2H5csiWzelYJolYkTApxqYjm6j9XW1WPb2Ke3LbOfxJacEf\nC2g/oz1he6vwwIErMHMmpEvndCyTBOw6CZMiRFyKoOXUlgyuO9gKhANql6jN4LqDqVd8LbuL54CT\nJ52OZJIZ67g2jlFVOv/QgZDiIbQq28rpOGlWi/taEHE5gpDlfVme8TLWM2HisiJhHPP1nD7sWT2H\n8e/udTpKmte5QmdOXTxFyPgQlnVaRkCWAKcjmWTCDjcZR2zcs4I+q/oypfT7ZMpf2Ok4Bnizyps0\nKd2EOt/V4czlM07HMcmEdVybJBdx8TQV+ham34nytPx6Kdh8CsmGqtJ1ble2HdvGvDZzyXzhCuTI\n4XQs4wV2dpNJllSVFp9VJO/v+xky9ABkzep0JHODaI2m7fS2nN2/m+kTo/Bdutz+nVIhO7vJJEtD\nVv0fe49uY8A74fbFk0z5iA9jm4xF8+WlU/UIotuEQlSU07GMQ6wlYZLMhsMbqDehHqs7Lqd4nlJO\nxzG3cDHyInXG1+b+NXsZlL0lMuALpyOZRGQtCZOsnL50mlbTWjGk3hArEClEZt/MzGrzE6sfDKDX\ngXEwdKjTkYwDrCVhvE5VaT61Ofmz5WdwvcFOxzEJdOz8MaoOr8Rz2zLz2tAtdkV2KmEtCZNsDF43\nmH2n9zEgZIDTUcxtyJM1DwufDmfgfecY9etYp+OYJGYX0xmv2rB5Dh8teIfVL/1CxvQZnY5jblNh\n/8KEtQsjaEwQfhn9aH5vc6cjmSRiRcJ4zekz/9ByUjO+zt6U4rmKOx3H3KGSuUsy96m51P6uNv4Z\n/QkuHux0JJMErE/CeIWq0uy9eyh4KopBg/eAjx3ZTC2uDTE+s+V0Khd+zP5tUyjrkzCOGjTsafaf\n/Yv+H6y2L5FUpkqRKox7chxNRtfh155POx3HeJn97zWJbv3KqXz851imNJ9Cxjz5nI5jvKBOiToM\nrPMldfmOP77p63Qc40XWJ2ES1elLp2m19g2+ue8tildr7HQc40WtKnXmzKmjBC/qxYrZxSjYINTp\nSMYLrE/CJBpVpdmUZhTyK8TAugOdjmOSyOfjn2fMhm9Z1iGcgAqPOx3HeMjTPglrSZhEM3DtQA5E\nHOD7Zt87HcUkobfaDeXUyUPUndqExfftxS+jn9ORTCKyloRJFOsOraPBxAas6byGYjmLOR3HJDFV\n5cU5L7DjxE7mPTWPTOkzOR3J3IKd3WSSzKljB2g1rRVDGwy1ApFGiQiD6w0hX7Z8tJrWisioSKcj\nmURiRcLcEY2KotPHD9MoshhNyzR1Oo5xUDqfdIxtMpbIqEienvU00RrtdCSTCKxImDvy1ccNOJT+\nAp+/NMvpKCYZyJAuA9NaTmP/6f28Mu9l7DBwymdFwty2dT8M5JOLYUx5bhEZM9kEQiZGFt8s/BT6\nEyuXT6T36PZOxzF3yIqEuS2ndm+l1apXGfZQH4qWetTpOCaZ8c/kz/ygb5n86/f838weTscxd8Dr\nRUJE6ojIDhHZJSJvx7O8jYhscd1WiEg5T7c1zlBVOo1pTOOclXmy+ftOxzHJ1F21m7Kw7Gd8uWIA\no5fZdTMplVeLhIj4AIOB2sB9QKiIlL5htb1ANVV9APgYGJ6AbY0DvlzzJYcDc/N5j8VORzHJXJHO\nrxOWsTPvzH+D6VsmOR3H3AZvtyQeAXar6n5VjQQmAdeN1aCqa1Q1wvVwDVDQ021N0lt7cC39VvRj\ncospZLD5IYwHSn04hLmHqvP8jM4s2rvI6TgmgTwqEiIyXUTqu/66T4iCwF9xHh/k3yIQn87AvNvc\n1njZyYsnaTWtFcMaDKNozqJOxzEphY8P5YfP4od2swn9IZQ1B9c4ncgkgKdf+l8DbYDdIvKpiCT6\nTPYiUh3oBFjfQzKkqnSa2YknSz/Jk2WedDqOSWkyZqRqsSDGNhlL40mN2fr3VqcTGQ95NHaTqi4C\nFomIPxDquv8XMAL4znU4KD6HgCJxHhdyPXcdV2f1cKCOqp5KyLbX9OnTJ/Z+UFAQQUFBN39TxnOq\n/N8nDTmS6zBTW0x1Oo1JwerdU4+BdQZSZ0IdlnZcSolcJZyOlGaEh4cTHh6e4O08HrtJRHIDbYF2\nwGFgAvA4cL+qBrnZJh2wE6gJHAHWAaGquj3OOkWAxUA7VV2TkG3jrGtjN3nRmv97jUbHBrG2268U\nzV/G6TgmFRi+cTifrviU5Z2WU9DPjiI7IVHHbhKRH4HlQBagoao2UtXJqtoNyOZuO1WNAl4CwoDf\ngUmqul1EuojIc67V3gdyAV+LyGYRWXezbT3JaxLPyWULaH3wK4aHDLICYRLNc2U70GW3PyFjanLi\nwgmn45ib8KglISL1VHXuDc9lVNXLXkuWANaS8A795x8a9wikxEMhfPHiTKfjmNSmRw/e/vs7llTO\nz+IOP5M9Y3anE6UpnrYkPC0Sm1S1wq2ec4oVCS+IimLAM2WYUuQcy3vvI0O6DE4nMqlNdDTaqiXP\nF9rC7gcLM/epuTbEeBJKlMNNIpJPRCoCmUWkvIhUcN2CiDn0ZFKp1QdX81nxo0x+eZkVCOMdPj7I\nuPF8vSond/35D62nteZq9FWnU5kb3LQlISIdgI7AQ8CGOIvOAmNUdbpX03nIWhKJ6+TFk5QfVp6B\ndQbSuLRdv2i87OhRrjz2KE1ezU9AoZKMaTIGnwRfkmUSKrEPNzVT1R8SJZkXWJFIPKpKo0mNKJmr\nJANqD3A6jkkrDh/mQm4/ak+sS/l85fmqzleI3PL7y9yBRCkSItJWVb8TkdeB/6yoql/cWczEYUUi\n8QxYNYCKby9MAAAb50lEQVSp26ayrJMdZjJJ7/Sl01QfW53GpRrTJ6iP03FSNU+LxK0uprs2SYDb\n01xN6rF65yI+X/U56zqvswJhHJEjUw7mPzWfqqOrkjNTTl6p9IrTkdI8jy+mS86sJXHnTowbSoXt\n3RnUcQqNSjVyOo5J4w5EHKDq6Kp8EPQBHR/s6HScVClRWhIictNB4FX15YQGM8lP9G9b6bDkZVrU\nCrUCYZKFIhczsCCiEdUX98Q/o7+NF+agWx1u2pgkKYxzzp7li/dqcuLRIvRr/a3TaYyJ4edH6dlr\nmNPoSerM7kL2jNmpVayW06nSJDvclJapsqpjTZ4MXM2613YQmCPQ6UTG/OvIEahUiWW9OtD85FBm\nhc6iUqFKTqdKNRLr7KYvVbW7iPxE/Gc3JYtjE1Ykbs+JpfMpP68RQ9p+T8OyzZyOY8x//for1KrF\nnBFv8vTu/ixqt4j7897vdKpUIbGKREVV3SgiT8S3XFWX3kHGRGNFIuGiNZpG3zeidM576F/3/5yO\nY4x78+ZBp058P603b67ry7JOyyiWs5jTqVK8ROm4VtWNrp9LRSQDUJqYFsVOVb2SKEmNIwasGsCJ\niyfo1+pHp6MYc3N168LcuYSWL09EJiF4fDDLOy2nQPYCTidLEzy94ro+MBTYAwhQFOiiqvNuumES\nsZZEwqw8sJKmU5qy/tn1FPEvcusNjElG+i3vx4StE1jacSm5s+R2Ok6KldjDcuwAGqjqH67HxYE5\nqlr6jpMmAisSnjt+4TgVhlVgSL0hNCzV0Ok4xiSYqvL2ordZun8pi9otsiHGb1OiTjoEnL1WIFz2\nEjPIn0lBoufPo8OohrS6r5UVCJNiiQif1fqMB/I+QJPJTbh09ZLTkVK1W3VcN3XdDQYCgSnE9Em0\nAA6o6oteT+gBa0l4YN8+Pu9Slhl1i7K02yZ80/k6nciY27dnD1Hbf6fNpQlcibrC1BZTSe9zq8u+\nTFyJ1ZJo6LplAv4GngCCgGNA5jvMaJLKpUusfLYOA6oIkzrNsQJhUr6zZ0n3dGfGF3iJS1cv8cys\nZ4jWaKdTpUp2MV0acPyFDlTINZWv20+mgR1mMqnFnDnw7LOcX7qI2sufo2L+inxZ50sbYtxDid1x\nnQl4BriPmFYFAKr69J2ETCxWJNyLHjeWBitepGyjznze4Cun4xiTuAYNgqFDOf3zXIJ+bMyTpZ+k\nd1Bvp1OlCIndcT0eyAfUBpYChbCO6xThf1HLiLi/JH3r9nc6ijGJr1s3qFmTHG07syB0LhO2TuCr\nNfbHUGLytCWxWVXLi8ivqlpORHyB5aqaLAZSsZZE/FYcWEHzKc1Z/+x6CvsXdjqOMd4RFRVz6KlR\nI/af3k/V0VX5qPpHdHiwg9PJkrXEmnTomkjXz9MiUhY4Ctx1u+GM9x07f4zQH0IZ2WikFQiTuqVL\nB41ihpELzBFIWLswqo+tjn8mf5qUbuJwuJTP0yIxXERyAu8Ds4iZqe59r6UydyRao2k/oz1tyrah\nfsn6TscxJkmVDijN7NDZ1J1Ql+wZslOzWE2nI6VodnZTanP+PJ9uHsRPu34ivEO4ne5q0qyl+5bS\nfGpzZofO5tFCjzodJ9lJ1I5rEcktIoNEZJOIbBSRL0XEBk1Jbv7+m+U1ivPlygFMajbJCoRJu37/\nnSfkbkY3Hk3jSY357Z/fnE6UYnl6dtMk4B+gGdAcOA5M9lYocxsiIznWvhlt6l5gVNOx1g9h0raf\nf4YGDWiQtypf1P6COt/VYe+pvU6nSpE8PbvpN1Ute8NzW1U1Wcz+keYPN0VHc7VDOxrkWciDdTvy\nafDnTicyxlmq0LUr7N0Ls2fzzeYR9F/dnxWdVpA/e36n0yULiX2dRJiItBYRH9etJbDgziKaxKJv\nvcmLmRYTVa4sH9Xo63QcY5wnAgMHxvzs1o0XHnqeZ8o/Q/D4YE5cOOF0uhTlVgP8nSVmQD8BsgLX\nBkfxAc6pqp/XE3ogTbckjh6ld89KzHkkB0ueXm7DJhsT15kz8Pjj0LEj+uqrvL3obZbsW8Li9ovx\ny5gsvr4ckygtCVXNrqp+rp8+qpredfNJLgUirfv6r+lMrODL3PZhViCMuZGfH8yeDXnzxg4x/lD+\nh2j4fUMuRF5wOl2K4PEpsCLSCKjmehiuqrO9liqB0mpLYtq2abwy/xWWd1puc/4a46FojabDjA4c\nv3CcGa1mkDF9RqcjOSKxB/j7FHgYmOB6KhTYoKo97yhlIkmLRWLJn0toNa0VYe3CeDDfg07HMSZF\nuRp9lZZTW+IjPkxqPilNzkWR2EXiV+BB1ZgB20UkHbBZVcvdcdJEkKaKxNmz/HJ+DyHjQ5jcfDLV\ni1Z3OpExKdLlq5dpNKkR+bLlY3Tj0fiIp+fxpA6JfXYTQI449/0THsncsYMH2Vu5NPXH1mZIvSFW\nIIy5XWvXkvGPP5necjp7T+3l5Xkvk2b+0EwgT4tEP2CziIwRkbHARsDOtUxKJ0/yT6Oa1G55mXdr\n9KbFfS2cTmRMyrV7N9SsSda9fzE7dDZrDq7hncXvOJ0qWbplkZCYaZ5WAJWA6cAPQGVV9eiKaxGp\nIyI7RGSXiLwdz/JSIrJKRC6JyGs3LNsnIltEZLOIrPPoHaVGFy5wtkk96jWIILTqi7z4cLKYWtyY\nlKttW+jXD2rWxP/Pw8xvO59Zu2bRb3k/p5MlO7fsrVFVFZG5rqurZyVk5yLiAwwGagKHgfUiMlNV\nd8RZ7QTQDYhvTN9oIEhVTyXkdVOVq1e50roFTSvvp8JDDfkg6AOnExmTOrRvH3OxXc2aBCxaxMJ2\nC6k2uhrZMmSj26PdnE6XbHjapb9JRB5W1fUJ3P8jwG5V3Q8gIpOAxkBskVDV48BxEWkQz/ZCwvpN\nUp3ovw7QsdR2sj74MF83+Mbm7zUmMbVrF1Mo6tShwPbtLGq/iGqjq5E9Y3Y6PtjR6XTJgqdF4lGg\nrYjsA84T8+WtHpzdVBD4K87jg8QUDk8psFBEooDhqjoiAdumeKrKazsH8te9BQlrPjlNnqZnjNe1\nbQvVqkHWrNxNVsLahVFjbA2y+ma1vj88LxK1vZrCvSqqekRE8hBTLLar6gqHsiS5z1d+zuI/F7Os\n4zIy+2Z2Oo4xqVeRIrF3SweUZt5T8wj5LoSsGbJS7556DgZz3k2LhIhkAp4HSgBbgZGqejUB+z8E\nFInzuJDrOY+o6hHXz2Mi8iMxrZB4i0SfPn1i7wcFBREUFJSAmMnP6M2j+WbDN6x8eiU5M+d0Oo4x\nacoD+R5gZuuZNPq+EVNaTCHo7iCnI92x8PBwwsPDE7zdrQb4m0zM/NbLgbrAflV9xeOdx1x0t5OY\njusjwDogVFW3x7Nub2IGDRzgepwF8FHVcyKSFQgDPlDVsHi2TT0X0/31F7MvbqHzrM6EdwyndEBp\npxMZkzZFRvLzweW0mtaKOW3m8EjBhBwpT/4S5YrruHNGiEh6YJ2qVkhgkDrAV8R0QI9U1U9FpAsx\nfRrDRSQvsAHITszZTOeAe4E8wI/E9EukByao6qduXiN1FIn161n9dAiNnvJhdtu5NuWiMU45dQoe\nfRSmTWN2pgM8M+sZFrZbSLm8yWKQiUSRWEViU9yicOPj5CJVFIldu9jWpArVn4pkTMvvqXtPXacT\nGZO2TZ4M3bvDggVM9tnOqwteJbxjOCVzl3Q6WaLwtEjcquP6ARE5c22fQGbX42tnN9lw4YnhyBH+\nalqLum2i+V+DgVYgjEkOWrWKOT22dm1aLVjAueofETw+mGUdlxGYI9DpdEnmpkVCVdMlVZA0KyKC\nkw1rUafFZbrV6En7B9o7ncgYc03LlrGF4pn58zlb6VVqja/F8k7LyZctn9PpkoSdeO+wC8cO07Dh\nOepWassbj73hdBxjzI1auK6V+PNPujfpztnLZwkeH0x4h3ByZ8ntbLYk4PGkQ8lZSu2TuBp9lScn\nP0mOTDkY22Rsmhuq2JiUSFV5e9HbhO8LZ1H7RSl2GtREnU8iuUuJRUJV6TyrM4fOHuKn0J/wTefr\ndCRjjIdUlRfnvMi249uY99Q8svhmcTpSgnljPgmTiN77+T22/rOVaS2nWYEwJoUREYbUH0IR/yI0\nm9KMK1FXnI7kNdaSSGobNzIwcgVDNnzNik4ryJM1j9OJjDG34+efueqXjRZ7+pFO0qW4aVCtJZEc\nTZvGpFeD+XzFZyxou8AKhDEp2ZkzpK/fkElF3+LM5TN0ntWZ6JgZnlMVKxJJJTycRZ905uW6MLfd\nfO7OcbfTiYwxd6JJExg2jIwNm/DjPe+z59SeVDkNqhWJpPDLL2x68UnaNBemtZmRqi7tNyZNa9IE\nhg8na6NmzC71IasPrubdn991OlWiSjkH0FKqvXv5I7Q2DdoKw54cSbXAak4nMsYkpsaNQQT/Vu1Z\nsGkFT0ytR/YM2elZtafTyRKFtSS87GjkKWq3g961+/FkmSedjmOM8YZGjWDzZgLyBLKw3UK+3fwt\ng9cNdjpVorCWhBeduXyGuuGd6VClK10e6uJ0HGOMNwUEAFAgewEWt18cO192Sp8G1U6B9ZLLVy9T\nb2I9SuUuxZB6Q2xuamPSmB3Hd1B9bHUG1R1E83ubOx3nP+yKawdFRUcR+kMo0RrN5OaTSedj4yQa\nkxb98udqav/QhNGNRye7aVDtOgknqKIzZ/LK/Jf55/w/fNf0OysQxqRVp07x4BOtmHHfR3SY0YGl\n+5Y6nei2WJFITP368cmELqzYt5yZrWeSKX0mpxMZY5ySMycMHUrlDu8xuUwvWkxtwbpD65xOlWBW\nJBLLt9/ybfgXjKyUkXntFuCfyd/pRMYYp9WrB2PHUqPTh4ws+QYNv2/I1r+3Op0qQaxIJIaZM5k5\n8k3er+nDgg6LyJ89v9OJjDHJRd26MH48DZ/tz1fFulJnQh12ndjldCqPWcf1nVq1ihXP16NpqA9z\nO4TxUIGHnMlhjEneFiwAYGSeg3y47EOWd1pOEf8ijsVJrDmuzS38ljOSZq19+K7lJCsQxhj3atcG\n4Bng7JWz1BpXi2WdliX7aVDtcNMd2H96P3Xnt+X/Gg4mpHiI03GMMSlE90rdaVeuHcHjgzl58aTT\ncW7KDjfdpuMXjlN1dFW6VOxC90rdk/S1jTEpn6ry1sK3WLp/qSPToNp1El50/sp5GkxsQONSja1A\nGGNui4jw+eVqVCQ/Db9vyIXIC05HipcViYSIjCRy8EBaTm1B6YDS9KvZz+lExpgUTLJkYcg7Kyl8\nMUOynQbVioSnoqPRpzvReef/EIQRDUfYeEzGmDtTsyY+kyYzpvdmMp06R5sf2nA1+qrTqa5jRcJT\nb79Nj3RL2HV/Aaa0nIpvOl+nExljUoOaNUk/aQqTPtrOmaP7k900qFYkPNG/P1/8MZ5ZFbIyu+1c\nsvhmcTqRMSY1qVGDjN9P4ceBf/PHsZ3JahpUO7vpVn78kQkDn6Vn/YyseHa1oxe/GGNSuXPniEgf\nRY1xNahdvDaf1PzEay9lZzclkrBiymt1YF77MCsQxhjvypYN/0z+LGi7gJk7Z9JvufMnx1iRuIn1\nh9bTNux5pofO5L677nM6jjEmjQjIEpBspkG1YTnc2HViF40mNeLbRt9SpUgVp+MYY9KYAtkLsKjd\nIqqNetzRaVCtSMTj8NnD1P6uNh9X/5hGpRo5HccYk0YVlZwsHBlJ9cuvky1DNkemQbUiEdepU0T0\n/5i6hRbxbIVneabCM04nMsakZTlyUHr4dOY914gQ7UwW3yxJPg2q9Ulcc/EilxrXp7HPFJ64uxo9\nH+/pdCJjjIHHH+fBET8xc5LQYUqbJJ8G1U6BBbh6lahmTWlZ8hfSP1KJ75tPwkesfhpjkpGVK1nc\nrT6hzWB2xzAeKfjIHe0u2ZwCKyJ1RGSHiOwSkbfjWV5KRFaJyCUReS0h2yYKVbTLc3QtsJmIsiUY\n9+R4KxDGmOSnShVqDp7LyHt7Juk0qF5tSYiID7ALqAkcBtYDrVV1R5x1AoBAoAlwSlW/8HTbOPu4\n/ZbEN9/wwYq+zHw8gPCnlyX5cL3GGJNQk36bxOthr7OkwxJK5i55W/tILjPTPQLsVtX9rlCTgMZA\n7Be9qh4HjotIg4RumxiGlrvC+MsZWNlugRUIY0yK0Lpsa85dOUfw+GCvT4Pq7eMqBYG/4jw+6HrO\n29t6ZPr26Xy45jMWtF9I3mx5E3PXxhjjVZ0rdObVSq9Sa1wtjp476rXXSTWnwPbp0yf2flBQEEFB\nQTddf+m+pTw/+3kWtF1A8VzFvRvOGGO8oHul7pzZuIrgryuxtNsmcmXO5Xbd8PBwwsPDE/wa3u6T\nqAT0UdU6rsc9AFXVz+JZtzdwNk6fREK2TVCfxJajWwgeH8yk5pOoUbTG7bw1Y4xJFnTNGt76tAZL\nqxRi0csbPD5snlzObloPlBCRQBHJALQGZt1k/biBE7rtre3ezZ/Pt6b+xPoMrjfYCoQxJsWTSpX4\nvOcSKqz7i4aDH0v0aVC9fp2EiNQBviKmII1U1U9FpAsxrYLhIpIX2ABkB6KBc8C9qnouvm3dvMat\nWxJHjnCsRiWqPHWJbsHv0e3Rbon1Fo0xxnHRa9fQ/qsgTj5clhkvryJDugw3Xd/TlkTauJguIoJz\n1atQo/FpQqp25OMaHyddOGOMSSKRa1fTYkQw6WvUYlLraaT3cd/tbEXimkuXuFI3hIaP7aPwo8GM\naPitzU1tjEm1Ll84S8MfmlEgewFGNR7l9uLg5NIn4bjozz/j6Qf3k6nsgwxtMMwKhDEmVcuYJTs/\ntvqRP07+wSvzXrnjaVBTdZFQVd6oeIJ9ZQsyqfnkmza9jDEmtciaIStz2sxh1cFVvPvzu3e0r1Rd\nJPqv6k/Y/p+Z1WY2mX0zOx3HGGOSjH8mf+Y/NZ8ZO2bQb06P295Pqv3TetyWcQxeP5iVT6+86QUm\nxhiTWuXJmodFTaZTdUBZsh86zkvPfZvgfaTKlsTc3XN5a+FbzH9qPoX8CjkdxxhjHFOgYGkWNZ3B\nZ7tHM/bbhJ/6n7paEuHhrBn3CR3L/MKs0FmUyVPG6UTGGOO4oo83YKFOo/pPzck6KiPNn+7v8bap\np0j88gvbuzSlSQcY0+Q7KhWq5HQiY4xJNkpXfZK5UROoPb8NWcdm8ni7VFMkDrWoQ91O6fms3v+S\nfA5YY4xJCcoHtWamXqHRmlc83ibVXExX9qMCtKv+Cm9VecvpOMYYk6wt3ruYWsVrpa0rrl+d/yoD\nQgbYxXLGGOOBNDcsR1R0lM1NbYwxHkpzw3JYgTDGmMRn36zGGGPcsiJhjDHGLSsSxhhj3LIiYYwx\nxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLG\nGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIi\nYYwxxi2vFwkRqSMiO0Rkl4i87WadgSKyW0R+EZHycZ7fJyJbRGSziKzzdlZjjDHX82qREBEfYDBQ\nG7gPCBWR0jesUxcorqr3AF2Ab+IsjgaCVLW8qj7izaypRXh4uNMRkgX7HP5ln8W/7LNIOG+3JB4B\ndqvqflWNBCYBjW9YpzEwDkBV1wL+IpLXtUySIGOqYv8JYtjn8C/7LP5ln0XCefsLuCDwV5zHB13P\n3WydQ3HWUWChiKwXkWe9ltIYY0y80jsd4BaqqOoREclDTLHYrqornA5ljDFphaiq93YuUgnoo6p1\nXI97AKqqn8VZZyiwRFUnux7vAJ5Q1b9v2Fdv4KyqfhHP63jvTRhjTCqlqnKrdbzdklgPlBCRQOAI\n0BoIvWGdWUBXYLKrqJxW1b9FJAvgo6rnRCQrEAJ8EN+LePJGjTHGJJxXi4SqRonIS0AYMf0fI1V1\nu4h0iVmsw1V1rojUE5E/gPNAJ9fmeYEfXa2E9MAEVQ3zZl5jjDHX8+rhJmOMMSlbij691JML9dIC\nERkpIn+LyK9OZ3GaiBQSkZ9F5HcR2SoiLzudySkiklFE1rouRt3q6tdL00TER0Q2icgsp7M4KSEX\nKqfYloTrQr1dQE3gMDH9H61VdYejwRwgIo8D54BxqlrO6TxOEpF8QD5V/UVEsgEbgcZp8fcCQESy\nqOoFEUkHrAReVtU0O3qBiLwKVAT8VLWR03mcIiJ7gYqqeupW66bkloQnF+qlCa7Tgm/5j50WqOpR\nVf3Fdf8csJ3/XpuTZqjqBdfdjMT07aXMvwoTgYgUAuoB3zqdJRnw+ELllFwkPLlQz6RhInI38CCw\n1tkkznEdXtkMHAUWqup6pzM56P+AN0nDhTIOjy9UTslFwhi3XIeapgGvuFoUaZKqRqtqeaAQ8KiI\n3Ot0JieISH3gb1crU1y3tKyKqlYgpmXV1XXIOl4puUgcAorEeVzI9ZxJ40QkPTEFYryqznQ6T3Kg\nqmeAJUAdp7M4pArQyHUs/nuguoiMcziTY1T1iOvnMeBHYg7fxyslF4nYC/VEJAMxF+ql5TMW7K+j\nf40CtqnqV04HcZKIBIiIv+t+ZiAYSJMd+Kr6jqoWUdVixHxX/Kyq7Z3O5QQRyeJqaRPnQuXf3K2f\nYouEqkYB1y7U+x2YpKrbnU3lDBGZCKwCSorIARHpdKttUisRqQI8BdRwnd63SUTS6l/P+YElIvIL\nMf0yC1R1rsOZjPPyAitcfVVrgJ9udqFyij0F1hhjjPel2JaEMcYY77MiYYwxxi0rEsYYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxriISJTruopr11e8lQSvOVxESnv7dYy5XXadhDEuInJGVf0SeZ/p\nXBd+GpMiWUvCmH/FO6yJiPwpIn1EZKNropaSruezuCZ8WuNa1tD1fAcRmSkii4FFEuNrEdkmIgtE\nZI6INHWtu0REKrjuB4vIKhHZICKTXfO8IyKfishvIvKLiHyeJJ+EMS5WJIz5V+YbDje1iLPsH1Wt\nCAwF3nA99y6wWFUrATWA/q4xkgDKA01VtTrQFCiiqvcC7YHKN76wiOQG3gNqqupDxEyW9JqI5AKa\nqGpZVX0Q+DjR37UxN5He6QDGJCMXXMMnx+dH18+NwJOu+yFAQxF50/U4A/+OTLxQVSNc9x8HpgKo\n6t8isiSe/VcC7gVWiogAvsSMxxUBXBSRb4E5wOzbemfG3CYrEsZ45rLrZxT//r8RoJmq7o67oohU\nAs4ncP8ChKnqU/9ZIPIIMdP0tiBmUMuaCdy3MbfNDjcZ86+EDrW+AHg5dmORB92stxJo5uqbyAsE\nxbPOGqCKiBR37SuLiNzjGso5h6rOB14D0vQc5ibpWUvCmH9lEpFNxBQLBear6ju4n+7yI+BLEfmV\nmD+49gKN4lnvB2L6LH4nZsrdjcQcRuLavlX1uIh0BL4XkYyu598DzgIzRSSTa/1X7+gdGpNAdgqs\nMUlARLKq6nlXR/RaYqaP/MfpXMbcirUkjEkas0UkBzEd0h9agTAphbUkjDHGuGUd18YYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxq3/BwqGCBVMuSBSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot1, = plt.plot(lc/float(sum(lc)), 'r--', label='Assigned energies')\n", + "plot2, = plt.plot(prob,'g',label='Original Spectrum')\n", + "plt.xlabel('Energies')\n", + "plt.ylabel('Probability')\n", + "plt.legend(handles=[plot1,plot2])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb.txt b/_sources/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb.txt new file mode 100644 index 000000000..396e24edf --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb.txt @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Light Curves from Power Law Power Spectra\n", + "\n", + "In this notebook, we will show how to simulate a light curve from a power spectrum that \n", + "follows a power law shape." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The power distribution is of the form `S(w) = (1/w)^B`. Define a function to recover time series from power law spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate(B):\n", + " \n", + " N = 1024\n", + " \n", + " # Define frequencies from 0 to 2*pi\n", + " w = np.linspace(0.001,2*np.pi,N)\n", + " \n", + " # Draw two set of 'N' guassian distributed numbers\n", + " a1 = np.random.normal(size=N)\n", + " a2 = np.random.normal(size=N)\n", + " \n", + " # Multiply by (1/w)^B to get real and imaginary parts\n", + " real = a1 * np.power((1/w),B/2)\n", + " imaginary = a2 * np.power((1/w),B/2)\n", + " \n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r,i in zip(real,imaginary)]\n", + " \n", + " # Obtain real valued time series\n", + " f_conj = np.conjugate(np.array(f))\n", + " \n", + " # Obtain time series\n", + " f_inv = np.fft.ifft(f_conj)\n", + "\n", + " return f_inv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start with `B=1` to get a _flicker noise_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4FMW5/7/v4QAKCoILKggYUVyCa8QtMSeJUbxXRRPN\nRXMVl5vw05jrjUtQs4DeJGquGmPcl+ASo0ajBo1RNOa4xAXcNxSMirK7Iohs57y/P6rLqamp6q7u\n6Z6Zc+b9PM88M9PTtXRPd337feutKmJmCIIgCEKRtNS7AoIgCEL3R8RGEARBKBwRG0EQBKFwRGwE\nQRCEwhGxEQRBEApHxEYQBEEoHBEboekgovFE9GiGdGcQ0VWB+04iohvT165rQ0QvE9HeMb//g4iO\nrWWdhMZAxEYAEb1NRMuJ6BMimk9EU4ioT73rVTDOAWZENIyIOomo4t5g5nOY+fvVlhGV8xYRfd3a\n1pOIJhPRLCJaSkRvEtE1RDQ0RZl1hZm/yMyPAJ8L7g1Z8yKirxJRR3RdfkJE7xLR5Ix5nU1ELxLR\naiL6edY6CdkRsREA1Sj+OzP3A7AjgJ0AnFHfKoVBRD0KyLZeI53/DOAAAOMA9AewA4CnAXwjbUYF\nnZd6MI+Z+0XX5pcBHEdEB2XIZzaA0wDck2vthGBEbAQNAQAzLwZwP5ToqB+IehHR+UQ0h4gWENFl\nRNTb+H0sET1HREuIaDYR7Rtt34SI/kJEH0RP6/9lbF9OROsZeexERO/pRpKIjiWiV6O0fzOf7iPL\n4wQimgVgVrRtayKaFu0/k4gOM/YfSERTo/o9CWCLTCfIco0R0VGRVfgeEf3UYa30JqLro6fyl4ho\n5yjdDQCGArg7+u1UIvoGlKgcxMzPMnMnMy9l5iuYeUqUrix/sz6GRXYsEc0B8HciupeITrCO4Xki\nOjjpnFlp2ojoReP7A0Q03fj+iBYAXUci2g/AmQD+I7LSnjOyHE5Ej0XHfh8RDQw5/8w8B8DjALYN\n2d9KeyMz3w9gWdq0Qj6I2AhlENEQAPtDPQlqzgMwAsD20ftgAD+P9h8N4HoApzBzfwB7A3g7Sncr\ngHcAbAzgMAC/IqI2Zl4A1Wh82yjjcAC3MXMHEY0FcDqAgwFsCOBRADdbVR0LYDSAbSOX3zQAfwCw\nAZRlcBkRbR3texmA5QAGATgOQDV9Bhwd97YALo3qvQmUJbKpte+BAP4Y/XZ3tD+Y+Sio83JA9NR+\nPoB9AExn5vlZ6mOwN4CRAPaDOmdH6B+iOg8FcI/nnF1qnDOTJwGMiES7FcAoAJsQUV8iWgvAlwA8\nUlYp1bD/CsCtzLwuM+9k/Hw4gPFQ/21vAKeGHCgRbQlgLwBPGNteIKIPo9dH1vslIfkKtUHERtDc\nRUSfQDWCiwBMNn77HoAfMfMSZv4UwLlQDQagGu5rmfkhAGDmBcw8KxKtPQBMZObVzPwCgGsAHBWl\nK2sIoRq7m6LPEwCcw8yzmLkzKm9HItrM2P9XzPwxM6+Ecj29xcw3sOIFKJfUYaT6Xr4F4GfMvIKZ\nX4ESx2r5NoCpzPwEM69BJL4WjzHz/awmILwRSqxNyPi8PoAFVdaJAUyKjnMlgDsB7GCctyMA3BHV\n13XO7oB6KCjPlHkFgBlQQrYLgBcA/BOq4d8dwCxm/jhFPacw87+iOv4JhhXtYHAkHEsAvAYlfP80\n6rYDMw+MXgOs9xNT1EkoGBEbQTM28ot/FcDWUE+7IKINAfQB8Ix+ggTwN6jGEQA2A/AvR36bAviQ\nmZcb2+ZAWUWAEoPdiWgQEX0VQAcz60ZkGIDfGuV9ANWQDjbymmt8Hhbl9fkTLlTDOgjq6bnV2n9O\n2CmJZVMA7+ovzPxZVE+Thcbn5QDWIkfgQcQHUBZStXx+nMy8DMC9UEIOqAeEP0SffedsY0++jwD4\nGpTgtEevNqjr5eGUdbTPyzox+86LhKM/gPUArACQOehAqB8iNoJG99k8CvXkf0G0/X2oBmE74wly\nvejmB1SD6+oDmQ9gIBH1NbYNBTAvKudjKDfOOKhG8BZjv3cATLCeWNdh5ieNfUz30bsA2q39+0VP\ntu8BWA0limY9qmUBgCH6CxGtjZIAh2C7vx4EMJqIbFecyadQwq9xCYOd780AjiCi3QH0Zub2aLvv\nnP3AU/bDUOLylejzI1BCszf8YpNroAUzL4VySx6gt5EKtf7Eei2N3i/Ls3yhOkRsBBcXAfgmEY2K\nXEBXA7gosnJARIMpCgIAcC2AY4joa6TYlIhGMvNcqH6Zc4ioNxFtD9VfYo49uRnKrfZtqEZEcyWA\nM6M+BhBRfyI6NKa+9wDYioj+k4haSYUQfymqRyeUe2gyEa0d5Tk+4fgJygrpbbzI2ud2AAcS0e5E\n1BPlbse4fDULAXxBf2HmvwN4AMCdRLQzEfUgonWIaAIRHR3t9jyAcdExfgmAfU7sOgLKshkG4Gyo\nPjSN75y5+mwA9V+OhOonm87Mr0b57garv8ZgEVQwgKteoXyelojWgXoweVlvi0Kt+1mvdaP3E4y0\nrVH/UguAntF/Ku1fDZGTLQDWEygzvw9l3eh+iNMBvAHgSSLSFslW0b4zABwDJVBLoNwr2nI4AsDm\nUFbOn6H6Tf5hFDUVwJYAFjDzS0b5d0H109wSlfcigDEx9V0GYF8oK2l+9DoXqvMZAH4IYF0oa+T3\n0SvpfCyFsug+i96/ZpX5apTvrVF5nwBYDGBlQr6acwH8LHJhnRxtOxRKHG4F8DGAl6D6SB6Mfv8Z\nVIDGhwAmodTH5cpf13MVlNh+A4agx5yzXs6KK3foMwBejvp8ANVR/3Z0vbjqcBuUWHxARE/76pjA\nJtpiAfAWlCvtP1PmAagHpuVQx3tm9DlLPkJGiOu8eBoRjYFqqFqgOprPs34fCWAKgJ0BnMnMFxq/\nvQ3VwHUCWM3Mo2tVb0EwidyFHwMYEYXoCoJg0FrPwiMz9hKop675AGYQ0V+Y+TVjtw+gniAPdmTR\nCaCNmT8qvLKCYEFEBwD4O9SD0gUAXhShEQQ39XajjQYwm5nnMPNqqE7iseYOzPw+Mz8DYI0jPaH+\nxyA0L2OhHpLmQgVJjIvfXRCal3o31INhhI9C3bSDPfu6YAAPENEMIvperjUThASY+XtRFNcAZv4m\nM89OTiUIzUld3Wg5sBczL4iipB4gopnM/Fi9KyUIgiCUU2+xmYfyMQ9Dom1BsJr2BMz8HhHdCeWW\nqxAbIqpvFIQgCEIXhZmrCV3/nHq70WZAzbk0jIh6Qfm8p8bsb8bc94ni7nUk0L4w4u9tmLnbviZN\nmlT3OsjxybHJ8XW/V57U1bJhNeniiVDjNnTo80wimqB+5quIaBDUNOvrAugkopOgZn3dEGoAHEMd\nx03MPK0+RyIIgiDEUW83Gpj5PqiRyea2K43Pi1A+1YhmGeIn8BMEQRAahHq70YQcaGtrq3cVCqU7\nH193PjZAjk8oUfcZBGoBEXEzHKcgCEKeEBG4mwQICIIgCE2AiI0gCIJQOCI2giAIQuGI2AiCIAiF\nI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAI\nhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIg\nCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOHUXGyIaQ0SvEdEs\nIpro+H0kET1ORCuI6OQ0aQVBEITGgJi5foUTtQCYBeAbAOYDmAFgHDO/ZuyzAYBhAA4G8BEzXxia\n1siD63mcgiAIXREiAjNTHnnV27IZDWA2M89h5tUAbgEw1tyBmd9n5mcArEmbVhAEQWgM6i02gwG8\na3yfG20rOq0gCHXk9dfrXQOh1tRbbARBaEK23hqYO7fetRBqSWudy58HYKjxfUi0Lfe0kydP/vxz\nW1sb2traQusoCEIBrF5d7xoINu3t7Whvby8k73oHCPQA8DpUJ/8CANMBHM7MMx37TgKwjJkvyJDW\nGyDw2mvAAQcAb7yRzzEJgpAMEfDmm8Dmm9e7JkIceQYI1NWyYeYOIjoRwDQol961zDyTiCaon/kq\nIhoE4GkA6wLoJKKTAGzLzMtcadPWYfp04F//yu2QBEEQBAf1dqOBme8DMNLadqXxeRGAzULTpqWz\ns5rUgiAIQggSIODg2WeVmS/Ulscfr3cNBEEoiqYXG1dXzpw5ta+HAOy1F7B0ab1rIQhCETS92Igb\nLZxzzgGef77etRAEoSvS9GLjsmxkZhs3Z54J/Pa39a6FIAhdEREbEZZUFN2XJf+HIHRPRGykcRME\nQSgcERsRm4ZCogAFoXsiYiNikwoRAyEv5N5rLppebCQaLR8WLlTTjwhCGjo6gEcfrXcthFrQ9GIj\nT1fp8Fk2++4LbLFF9fnL/9FcPPggsPfe9a6FUAtEbKRxy4VqB2N25f/h00+BE06ody26Jh0d9a6B\nUCtEbLpwI1cPiuqz0f9DV/w/Xn0VuPzyetdCEBobEZsu2Lh1RxpVbB5/HDjppPh9Gq3OjcoVVwA/\n/Wn5Ngk4aR6aXmwkQCAf8mpwG63hvvpq4OKL612L7sHZZwO//GX5g4WITfPQNGLT2Qn83/9Vbm+0\nxq3RKdqNVjQrV6Y7hpB6yTWUjjix+eCD2tdHqA1NIzbvvw/8+MeV27v63GhEwB131La8IqiVG+2j\nj4rNX/Cj/9tPPin/rpk7F9hgg9rWSagdTSM2PndZVxIWHy+9VO8aVE+txGbZsmLzF/zo/3bAgNJ3\n8+FF/pvujYhNisbtzjuBXXbJpz4+VqxI3+DWUjB9lk1X6bORBq1xkD6b5qJpxMbXiKVp3O69V63i\nWSRrrw0cfzxw/vnFltNoNKJlc+CBatChkA/2f9sdvApCOK31rkCt8Fk2aaLRanVzXHmlej/11NqU\n1wjU6txqsUl6qp49G7jnnrA8G6HRXLwYWLUKGDKk3jXx4xKbWlk2118PLF+uHuSE+tA0lk0eotII\njUq9abQAgTvuAHbYIXz/xYuTy3n1VWCrrdLVo97svTew2Wb55DVvXm2GBNhiU+T9dfzxMstDvWl6\nsREBSUejLZ52//3Aiy+G7z9njnqPa0xXrEhXh0a4hj78ML+8hgwBfv/7/PLT1NOyEepP04tNI7rR\n6sFnn6nQ06xUe26yWjZpG6uFC5PLKaIBXLSoJHRFkHed338/3/wA6bNpdppGbNK4xprhaWvNmvLv\nP/pRfm6YLGQVm5aUV7A+7lqLTVsbMHx4/vlq8q5zEUIglk1z0zRik+RGu+KK2tVFs3QpcPvt1efj\nahhWrgT228+fpmdPYNq00vf33gsrq9FmEEgrNvo6iLNo0+YZgs/NtWwZMHNm9fl3BbFxlVGrPhux\nouqPiE10EYZEqeR9wV53HXDYYfnmqVm8uFxMXLz9dklk6v2EWSvLRl8HeVo21Uxpc9ppwLbbpivP\nRa3F5sYbqz9PtRQbof6I2NRxuppGuLk22gh47LHqG6siBnWGWFtpxUavnxJn2dRSePPq2K/1w8L0\n6enTSJ9Nc9M0YpNHOHOj3hxnn10ZPRTS+OjjMSc/fOed+DS1Cn2eP18JYRJp6xNi2aSlGstm9er8\n6pEnScdk9/kVUYbQvWgasenu0Wg331z+Xdc15PhMd8Z228XvWyux+eyzsHRZLRvXf3n99arxL6LP\npmixybvORYiNBAg0N3UXGyIaQ0SvEdEsIpro2ediIppNRM8T0U7G9reJ6AUieo6IYg37Rly3pkjx\n0o1q3LK7LkGq19xhjRAgcPTRwIwZ+TWAN97on+FYk1ZsbrsN2HPPyu1F9dlcfLE6LzZZlnOuZ59N\nIz8oNgt1FRsiagFwCYD9AGwH4HAi2traZ38AWzDzlgAmADAX4O0E0MbMOzHz6LiyTPfJypXAK6+U\nvsfx978XOz6iKPSTZ8gTaJobsdEGdebtRkvztH3eefEDQI86Crj11vg8Vq0KK0szdSrwxBPq8+uv\np0ubhcsuUxafTZzYDBwYds90NcuGSIm9kI16WzajAcxm5jnMvBrALQDGWvuMBXADADDzUwD6E9Gg\n6DdC4DGYT7IXXQR88YuV213ssw/wgx+oz2YDtXSpP82MGfk38lddpTryQwkRmzSutlA+/jhbuizR\naO+9514Qr73df9whAQKhnH468MILYfvmZdnoxvmNN4CtjceyotxovvMYd1199BHw2mv+PF3fG0l0\nPvtM/S/MwFNPlf8WNxHvppuqlUgFN/UWm8EA3jW+z422xe0zz9iHATxARDOI6HtxBZm+eu3a0N9t\nkqJmFi4E+vXzlzV6dD5PQOYNO2GCCpP1YddRH2+I2GR5wuzsdD/Vf+c77v07OoBLLil9f/xxf11C\n8TX0X/uafxLNEMsmTR1aWuoTIGD/r0W50bKIjZk+blujWjaDBgHHHAPMmgXsvnt4ugUL1IOO4Kar\nz/q8FzMvIKINoURnJjM7n/+vumoyAGDyZOCtt9oAtAEI70A33z/9NDlNiHskqZHaZhsVKTZwYPq8\n0rrR9E2fdPPr3085Bbj88krB8YXyzp8P/PCHwIknqvL22kvVrUcPd/1DGiGd1oX+X5cvBx5+GNh/\nf/U9LkBAb8/TrZgkolnFJi9LpqPDfR51fX3usryi0Rqxz2bpUuD557MdY6NGF4bS3t6O9oIUs95i\nMw/AUOP7kGibvc9mrn2YeUH0/h4R3QnllnOKzbHHTsa11wKTJgFnnOGv0JgxlSPvs9wEed04nZ1A\na/QvpXkKTCM2aVxKug633676vny/f/KJetIbOVJ9X2st9c5c2eD/6lelgY1pzltrwNV73XXKDWq7\nDOOiE7NaNnFP6nm70WyxyWIhLF6snuLjjjfJHekji2UTV4/77lMPX8OGxZebF77/Jek85yHC9aSt\nrQ1tbW2ffz/rrLNyy7vebrQZAEYQ0TAi6gVgHICp1j5TARwFAES0O4CPmXkREfUhonWi7X0B7Avg\nZV9BZgNn3ij2BX7//aUOWJt6RbRkifwxxebmm4G//c2/r33TP/lkeZkLFlTeZHbfjH1uxo9XfQrP\nP6++6/QrVlTOT/aTnwC//rU7nzjiLBvfPiHjbNJaNnF56uP25Zk2QEDnZx9XFrEx3ck2M2cCf/lL\nZeM5Z446XvP6GD4c+Oc/k8tziY25Le46339/4OSTk8vIiyTR8NW1q1s2RVJXsWHmDgAnApgG4BUA\ntzDzTCKaQETfj/a5F8BbRPQGgCsB6FUpBgF4jIieA/AkgLuZ2TtBi9kgmE+1ridc+8a9777y+at8\nN/a0aX531Pz5auZfk2p8/UmYfTZHHOEOX/W5ePbYQy2Brfnoo8q0vnOgt+vZlS+6qLyMzz4r3cjm\nufe50+IIsWzsfZICBLK40UICLXx5Zn0SzkNs4o7zttuAgw+urN/w4cAtt5RvnzOnMnglS19okosz\n5P82eeWVSoHabLPKvr6ODuDNN8u3+f4XfZ5bW933hYiNn3pbNmDm+5h5JDNvycznRtuuZOarjH1O\nZOYRzLwDMz8bbXuLmXeMwp5H6bQ+zCcRn2UTd/P5rB2TuAkVBw9WnY5pMRuwpAbltNNKHe9xbrQF\nC9S72UjaImneNKbLJrRPx+5g1t+XLy/lbZ5vXUaahv6OO5L3sRuokACBNG7FlpZ01tKcOeVhwdVa\ny7psfd7TRAOGlO26fpYudW+//fZ0omcLe5Lw9uwZnjcA/OEPwG9+UyoLUMto2FPtXHcdsMUW5dtC\nHgJcA49FbPzUXWxqhdkgmGJjNixJjUXSzekyrc3pX+yn0ZCbPY0L7fzz1bgIIF5sNt20sh5xjUQ1\nEUMusXFN85/2qRVQ41x86DrbDVRSn001lk3c07x+33775Fkaksoz89PncskS9f6f/xmeV9brr0cP\ndzTcM8/E553kRkta/iHtNeJzs9rXsz53JllFQ8TGT9OIjWmi+9xocU+oIRaQ3YCtWqU6NEPWUPFh\n3tQhjf6aNWq/NKHPSa5E8/OUKcA66yS70TS2a8QUmxA32tlnZ5v0UeNzozED776rlkA2yRL6nGa+\ntWXLwqIZfdhi09GhrjM9aWmaiT2zWjatrZXb33sPODfWt1C92DzxhIpiDCWkT89HkhvN/qwRsfHT\nNGKTJDBA6SJPG1GksZ8C9fdqVj1MGxygjyfP0GfTjbZkSWVjOXVqKQTaTm8Li9lnE+JGmzSp1O+T\nhTg32pZbArvsUv573pbNlClqvIbv2kr7AOKybMz/OM31klVsevSoLGf+/PR52/vomQp8aWfNqhyf\nFUdoeLjrms/alyZi46dpxMYXjZbGjaYnu/Q1LuYFalpQdmBASHl2vUPReeqLXtcpzipKqocrrblt\n7NjymaPNPG1hWb06fYCAq/zQRtp2o5kBAitXKvFcvjxb3oDbslm9uhRl9uSTalR5XmJjp1uzJr7f\no0+fSiFIU7bLxdqjR2XakIY9ybK57jr3fhOtGRNDLV3Tsok7Vp/YZHEfp40ubCaaRmxC+mxsd9Ks\nWaXP5sW6xx6V24BKYdD5addGUjSOCzPPkItfl6nFRr/rtDvvXFl+kZOUxomNefxFiU1SgMCKFUDf\nvuX5phnoO3t2pXjut1/leU6q74MPJpfpKn/NmvL62mLz2WfAv/7lziO078h2R7n6Tnwuq87OUmRi\nktiY2++/v3Tt6rB4zW67qYi4tPXW2NdTVnfY3XdXLoMhlo2fphMbINyy8U29ot1idqNkfl+4ENh1\nV/d+aQi1bGzhcEV8AcBzz1WmdZ2bpMF2oX02trCsWhVv2bjyySI29ngU+/xUO6hTn6eDDgKuvrq8\njOnTSxO92nX1WTah7iGXGy1ObOwy77knvTVl/zdpLJspU4BNNnH/Fic2Y8aoIQc+zjnH/1tSnUL7\nPl0eDNNt+sgjlQv8xU3M2uw0jdiEBAjYF1fSmip2g2UKw3PPlWblzeoqsfOMw25MQ4ISzON13YCr\nVgEbbJCPWCZZNnfd5a+vq25p66TLTBrLkfSbq3wdzcQMPP10ZZ+W2aiaDeBPflIKgw69Rlxi4wrr\n9y0VceCB6ZeR6NWr/Htra7LY6N8XL67c5vtub682QlKLpGtS0BBcgR9z55b+b/sa7Nu30iUrlGga\nsUnjRtMXsik2rhvDvth8nYpplqS2SdtRqcsKaVTNerhu3k8/VX0xaSybJ55QA+neeEN9ty0sn9iY\ndQkpK+m4jj8e+MpXKvuwQsbZzJ0bnzfgvoaYS9asr77msZhT9//hD35LOi6/jo7y62vBAjWaf911\n/WnTRmnZebksG58ryhz3k8aNllTPNGKzzTbhfTZPPln67LKCr7sO+O53y+upGTIkuU7NTL3nRqsZ\naSwbjWkih4iNzwqpZinirH02aQYa+hp4/bSa1orQA+mAcDeaXSeTlhY1tYq2tELqtHChepkTcvbp\nEzaDwKGHxudtp09zrs3/0Jxb7o03SgIdR5Jl88knwJe/HJ8m7jpyLZ1hi42rz8YlJCefXJrp257i\nBlCh53/9qz+vlhbg5z931zPkXrCDVnyYeZnBPD6Xqw64sI85biZ4oQktGyC8z8b0v7oaksWLy10m\neSw9bZM19DmNu8icQcBEb7v8cv9vSbjcaL7+JN82ItXpPnx4aZt9TnU6exkGvV1PURJi2YTgs2zW\nW8+dZ5LYpMV0l4ZeXyHXhKvB1GLj6s/TuPI0AxNc1/Fll6lZB3x5tbQA//u/7nqGXH++tWVCr12f\n2NhWctp8m5WmEZs0gzpduG6mMWNUZIxdhr1/NQ1bVsvGblji0iaJ5O9+l1yuD9uKSbJsXBABL79c\nLuz2udN5/eMf5dv1fnqKnpAZBEJwXTednZX9G3a+Zt9GFrFJsmxMtMDqND6xSTrmddZR72Yj6zv/\nvjxddUz6D7K40ebPT+6T0mkXLFBTSPny+ta33PXU4c0iNuloGrHx9dmEiIKPZcvKo46S+mwWL04f\nh2/fpEnRLnagQDV9NnFikPbpMLTP5t573WXZDYjPhelrBHXDHrKeTQguS5nZHQHls2yqGZNhnk+f\n2BxySPn3pHPko0+fUll6/5A8zH1c90bSfxA3dsd1/b3/vpqD8Kij4stavlyt8Prgg6oPxhd5qaea\nChUbIZ6mERvfRJwu4Ql17+g1Wlx5mRewviifeQb48Y/V58ceU9FIaeoNAGuvXR7hY5PFjeYSG3Pq\n/Gqwz6lvUKdGD+Az663rpp+w7d+B5Kd2s4FwRVPF/fc2zOVRR6agphGbtLz3XuVxdnb6/ye7Llkt\nG52P+ZCQh2WTVG5ay+brX1fvcfcHoO69H/+4MiDIh8+NFhIkIZRoGrHRkwSGRKO5CImS8vX/mJ9f\nfVW9n39+5Q348MOVZbjmRotzE/gCBLLMIBAawROH3YibbrQQITTLMjuq0wZnaLHp6FBi42scQwT2\nxhvVVPV2GXFio0nbID3+eMkq22gj4Npry/O0r2dXuWbkml0f13cbXWfz2kprHdXCsrHHvPjQ3oEs\nVizg77MR4mkasdGzIdt9Ni5RSNNxbRIiYjpG3zWGR0/X4cvT5tZbK+uXNUDARR5uNLusJDeaRoeX\nAqVGZ+21K/PThFo2Wmx8+4U0IPYTd5IbzSTkvDEDF1ygPu+1F3DNNe59gHjLxm4Us7rR7DLffrvy\nN5d4m+WksWyq6bMBVP9e3Eh+LTZZLRvps8lG04iNiS8yLW2fjd2wmE9v5sVulqdXRzT7Xu6+219+\nnNiMG1e5Les4G9dCUHk8ub30EvDii27LJi7/p54qfdY3ce/e/rqF9tmsXq3yqcayMd15ZpoQsQlZ\nb2bVKuDUU0vfXQ1niGWj0+nf9bsdMaej/JIsJM1JJ1VaEVksG1+akAjMuOjJJUtKszpo7D4bs/y8\n3GhCPE0nNiFuNNdFFDebgO2mAMo7f80lmXVjZOann2JdN19aX3fcOBs7L/3b1VerJYBNzGk5XNiu\nlTjefddv2bjKsCda1GWZkV5ZLZvVq1U+PlEKOR5f2hA3WhpCrdJHH3Xvo+cks8XGt5/PGnBZ/PZ4\nnDz7bHTvSiO5AAAgAElEQVQ9Zs92/w6oa+Koo0ozT9j84Af+tDqqMfRhSiybfEgtNkQ0gIi2L6Iy\ntcB2o5mf9RxOrpvAnnkWKDWaLS3qacq8ocyw1t//vvRZD4gzxUYPPrvxxsoy8gp9BiobE/2bnlbH\n/i3kZgwdB6TzsgMEXOnNcHIgnWVjR3i5xMZl2djnLQ5f2s7O8Gnt4wgJVjDFZsKE+PySxAZQc7y5\n3GO++iTNlG3366Tps9HXqSuqzOTGG0uDQjs6SuHtSVRr2fgscxGbeIJuDSJqJ6J+RDQQwLMAriai\nC4utWnH4LBtN6JOoeQNtsIHfsjGJExsXLrFhroxk03XWy1e7LJu0M9LmKTa+AIGQ6XhcYuN7crbn\nwbIDBHyWjT13WhxxLrw8LBv7v3Ol17NKh+R96KGqHyPu2O6+G2hvd//mqod9LfkEWJNmnE3Idaqv\nic039+fvI61lc/zx7n0lQCAdoc9h/Zn5EwDfAnADM+8GYJ/iqlUccW40c58QzJvCHlznExvd6WmK\nTdzKjb7G+Lbb4uvmGtSZZlxHaOhzWrGxLZuQhuXpp9V7nGWTNEDQ7LPp1atyjaE0YhPnRqtmOQQ7\nv5DzH7LP0qVq2piHHorfzzfINMTSsge0+qwBV742aR5AdJlJ59j8Xd9vIZGagHLV7b9/fJ4h+TQ7\noWLTSkSbAPgOgHsKrE/hmGKzZo2act21Twh2Q+lzo5loy8ZM+8kn/sGaLmF0NTCPPOJOV41lE9Jn\nEzpRqGnZHHdcaVtIeh0sENeYhYY+azeave58mpVNfUKXxrKxZzpw7Z+l/8jHlVcCxx4bn873MBLX\nl2m6H+PW8MnSZxOHvYREGivDjtILEYlp0yq3iRstHaETcZ4F4H4AjzHzDCL6AoCY7rvGJunJMYsb\nDUhn2djccYd7u0tsOjrS+5lddUrqEyjKsjG3pRHAkAABX7mrVpXChF0TSZoPID7efFP9f3FiEzqj\nsh6AaPPyy6U1h/KybELTZbFszPNmrooaYtnk4UbLMllsFrFxIWKTjlDLZgEzb8/MJwAAM78JoEv2\n2ZiNaMgFqlfldGHfFHpFTiDZsrFvXHv5Yo3ZSWo+8SZd2CGWzcsv+9PHjd8AKufbisOMbDPrsPXW\npSlBkhg6tNxqsOs2YkT8+I+ODlV2a6vb+kiybGbMALbYAthll/g+m2rdaKecUvrP4yyKLHmbuI4z\nSWxcEV5m4Icp4iGWZ6NYNlnx1f+dd6qbZLW7Eio2rqkYq5iesX6YT9NJrhcAOPdcf172DfvYY6XP\nvkWUdL+DfaH6JnB01SuNZWP6pe2b2BX9pvGFJduEuJ3MvGzrSk8WmcR22wFvvVWep81vf+suu2dP\nVc/Vq9VnV3+UjmTyHY9eNXLFivjopGqj0bbaqvQ5RGyyNpiua99njevyXWHGpmVjWnV2NFoasdFj\n0eKwz00WsdGu56RVaZPqYKcdNgz42c/C82kWYt1oRLQHgD0BbEhEJxs/9QOQcgmmxuDss0tjBEIW\nO4trPNasAUaNUgMXbfTS0TY6v1DLxlWvNO4ts5w0AQKhlk2oG8xl2QClMR5JrLWWci8984zbugDc\nVhKzEnJTbFpaKv97veiZ75rQDanLjaaDDXx9NmkwZ0ko0o3mevJOGmfjQl9nui/MV6/RoyvT+uqu\n14uJwxT4X/6ycpxYCLZ4Xn11ab2kEOLGFoVOndNMJN0avQCsAyVK6xqvTwAELDHVeFx6acnd4rNs\n9PbeveMtiDVr/Asm+fJeswaYPLnc5QaE+frTWDbVBggkiY1m2LDkfUxLwq7DT38aVh/dkOkR+KED\nbzs7S5aN7ldwWXka3/+mXUQtLfF9fdWGPse5onxlZsElNnEPX766mP+rbdkkYVqqJiHjZUyxueEG\n5ebMiq7rgw+mS6fP/fjx5d/NPIUSsZYNMz8M4GEiuo6Z59SoTjXD1+DoC+XWW5Mb9bRL7HZ0lKan\nMQl5Iq7GjQaks2ySAgSyzo2WdVp97WZctUot26zHE5m4xEZbNnrRNm3Z+P5733b9/2QRm1D23LNc\nbELOVdZGzRX9GGfZ+GbQMAfT2n1qWYUwxI1mhqr7XNbbbVe+BEhSXi6rNQ697w03qCW+RWziCY1G\n601EVwEYbqZhZk9MTddg9Wo1k7Bv6g2ifMXm6qtVP8mzz1b+tu++yelNN1qo2Bx8cGlbGstm8eKw\n0OcQOjqqFxt9nleuVMekZ/E2cTU6xx2n1jix3Wi+evie7vUKoEVaNnak3MYbJ6fJ2qCnFRuftaHF\nZsWK+ACONIRcp6Zl4xPCUOHXde3RI2xJcDudxvwvsv4v3ZnQ57DbADwH4KcATjNeVUNEY4joNSKa\nRUSOSWEAIrqYiGYT0fNEtGOatD5691YNl+uCNMUm6YJN8yS71VaV4zvSoG/sPfZIH/q8ZAlwwgnh\nZZ16KvDf/53P9Ctr1pRuPnsA66BBYXlosVm1yj+tiu8J1+6zaW31d+AmRdfFPf36xMY3f5eN7yHi\n44+BfaIh1HHLWgBq5clttkkua+XK8j4WwC+0zMDXvuavM6DOfV5iE/JAoiMp8xSbtNe6PYefKTA3\n3ZQur2Yg9PSuYebLmXk6Mz+jX9UWTkQtAC4BsB+A7QAcTkRbW/vsD2ALZt4SwAQAV4SmjaNvX3VR\nuywTc631NJaNXkY2bt+4qWmSCB1ACVQ2mkuXhrkUTNrb/ZZbVsvGFptQS0fXY/Xqyv4ujU9sdJ/N\nRRepIILWVv+sDUnnOM6yqTYarbPTLXYffqhmzgb8sxdoevQIC0dfsQLYcMPybXGWja/DW5f12Wf5\nudHSWOAdHX6xCfU6pF2m3MXq1eUzlQuVhN4adxPRCUS0CREN1K8cyh8NYDYzz2Hm1QBuATDW2mcs\ngBsAgJmfAtCfiAYFpvXSq1eln1kTGo0GlF/QIfvGiU1SerMhTLox9MDAaknbJ+VCi02vXpWNfOh4\nBH1uVq70C52v0dFic+mllSG6Nklik8WyCcWeSkmzalV8WPLuu5fXz8xj5Eh3uhUrKs+DPQuFprMT\n2N4z9a4uy2XZZBWbNK7W55/3lxP6X6SZqsjHJZeI6yyJ0FtjPJTb7HEAz0Svp3MofzCAd43vc6Nt\nIfuEpPXSs6daNdPVcGXtswnZN26pAtutYWM2hEkXdl5PWXlYNtqN1ru3WmV00KDSsYY2LOZaJb6y\n49xojz9e+u6aQcCsaxxFBgj4LJvVq+OnkjHT2GLjO9bXXqv8b+fOde/L7B/crM9FvSybOBfl04Et\nVB6WjWvmdKGcoAABZt686IqkIOOkEJONz21obW3DEUe49zTdaGksm2qDCXr1ihcj34JsWdlhh+RB\nlXlZNp2dJbFZf/2w6WFMdMM1Z042y8akGsumKLEZOTJebOJG95t1DhWbZ5+NF127DF/5vhmvi+6z\n0aRxLfvQy6y76jx4MDBvXnIevnF1XY329na0+6b/rpKgy42IjnJtZ+Ybqix/HoChxvch0TZ7n80c\n+/QKSGswuexb3CBK86Lr08e9T1tbZZ9GtWIzcGB8AEHeYhMykDQPy+ahh5TA9O6tbsrQfgUTfbzz\n5vnL9jU89uwM1Vg2cbNhVyM2V10FnHii343mK/PRR8sHxtpuPt+x+vorXTD7J4r1uZz/+Mdwy8Im\n1LLZaad83MVvvKHeXec+5B7pTrS1taGtre3z72eddVZueYfeGrsar69AtdwH5VD+DAAjiGgYEfUC\nMA7AVGufqQCOAgAi2h3Ax8y8KDCtl7gGR190LS3qifOQQyr30RdhnmLTv3/84DR7EstqCXmy9dU5\nTfnXX68i4XSD1dKSfdr9NWv859nXIKexbFyNqrmY21tv+ceBhD4AmC49s06+Ppu4fq2LLioPS25p\nCbNsXH02PuLExizLFBuX0JhLNR9+uL+8UMvG1x+VFj3zhOvch1p/QjJBYsPMPzRe3wOwM9TMAlXB\nzB0ATgQwDcArAG5h5plENIGIvh/tcy+At4joDQBXAjghLm1o2SGWjW7URoyo3MccUa6pVmzWXjt5\nehyNr7EOGa8TWh/Af7O9+657u4933ikFR2R5+j/gAPUeMsbIJo1lY66qqvnCF8q/+yLZVq4ME1FX\n/0drq9+N5mvoTf78Z/Ue6kb761/j11Ey6exMLzY2W2wBbLRRcr2AcMsmZD7BEFwBAv37pytDggOS\nyarbnwLIpR+Hme8DMNLadqX1/cTQtKGEWDYh6fO0bPr0iQ8SCBGbNA15yFNbXB9SVrKIjTlbdlqx\nsY8zbT+U/aTtuz6WLMnu3qxWbLQgtraGic3SpZWDmX1kcaPZ2FM/+eo1cGC4ZZOX2OjzZR5Lv37q\n/2w2N1qRhC4LfTcRTY1efwXwOoA7i61asaSxbFwUJTbrref/PaTPJk1DbtfHXmoaqG4QKgAceWTl\ntizrfqSZPcHGflJO6xqx0/v6dcaP9y+tnITua3GJje7AjkM3vKGWTRqeeaZyuW1NR0f5VD4+bLHx\n3Qs9eoRbNnkJgT5f5gBjPeehuNHyI7RpOh/ABdHrVwD2ZubTC6tVDQixbPTN4WrcihCbTz4pFxvT\n7QCEzb2UVIe99gL+67/UZ/sc+Bb0Atz9Vj4uv1y977+/ezndLJZNNWJjhkSfemr6BsR+0vaJTchs\nxT7ixCbEAjH7EEMCBNIyxzMzYkeHGiANxP+vthUSF3hSazeaOXO1Zt118y1DCO+zeRjAa1AzPg8A\nkHGGq8YhNBrNRzVi41qECgAefrg8+k3fvP37qylIdtqp9FsWN9r666sVQc2n4NC0WWYu/t3vSr5v\nk1pbNpsZsYznnFO9Gy2PcFub1lZ/gEAasQkNEMiLTz8tXU9x14+ebTupXnGTpNrk3WdjPpToa0Tc\naPkR6kb7DoDpAA4D8B0ATxFRl1xiQOO6iHSjpKexj2vUzJtbQwTsvbc/jb6A7Q5nE7NMnfcuuwAn\nn6wakQ03LH96Pf748vRxN/xWWylrSQuHfbPGHW8WsWlpcTfsWfo1dJqHHw7rwzDp06fkImxpSd8A\n2/1WLrFZp8pwGf2fuvIOmQXZtGxMsYlbaTYP9t47LPCjV68wN1o9xEYPyHQtzS5utPwIdWj8BMCu\nzDyemY+Cmiqmy65FN2SI+yLSEVaLF6v3kD4bM59Qy8a8Sd58s/RZRxRp9M2rZzJYs0ZZJ6bY/PKX\n7jQuzEW+gPKFuszt1ZIkNlksg29+E/j3f1dCk3aMjrkkg1mne+8NS2+LzcsvA5Mmlbs5tSsplNMt\nJ3RcgEBIkIavz0avtVILkiwbkzjLJnTsTJFWh75ezKmAhOoIFZsWZl5sfP8gRdqGYv31VYdnyIUa\nJx66wbItm5A0Ztnm/gOt2ebMjlftHtHjMczlnl1pXGhh00Jli01cR3S9LZt111XWXRZscXOFrcdh\nN/bTp1eu9pmXZZN1fi5fn00es3aHkpcbLZQixebLX1bvv/hFcWU0G6F/7X1EdD8RHU1ERwP4K4DA\n58LGYtQo9UQaYh7HBQi4ttk3ysSJ5dP6J4mNrpNe78YsX1s22rfvmxY9pD/DZ9mEhsImkSQ2Wfps\ndH5ZsBtwXafQergsC1ts0lo2rvx8fTYh1FJsfHnGPZDY95vv/ktz/P/6V/i+aTjkkJKlGHqN+Ja9\nEErEXopENIKI9mLm06AGVG4fvZ4AcFUN6pc7ugO+2jm/XDecfWH27w+stVbpe6jYjBoFXHhhueuH\nSHVU9+xZPsmhXWYasbGn4gnpGwjBtPrymFtNk5fYVGvZ6LTVWDZ2w9zSoibCzLp2vW9GiyL6HC68\n0L09zj2qr2Hzu4vQWcCBbMLsW8fIJMt15loQUSgn6bReBOATAGDmO5j5ZGY+GWqMzUVFV64IdOMf\nckHFNdwhYmN/DxWb1lbgRz8q/aZdEAsXqtUbmYEvfcldjzTr1tuWzTe+kZwmhCTLJitZxcZuBF0u\nUED1C7k45ZTyFU912rwtG0AFQGTBJaA9egAbbFBdvVz4/tO4wZghM6gD6cQmdPCnvleAsOuxR4/s\n1rfGt9hcM5N0+w5i5pfsjdG24YXUqGD0TRlyMcXt43KxJfWfJIVL2zeC/q1HD5XXp58qc51ZNSLX\nX19Zph6MFoevz2bECGCsZ0WgNONskiwb5myNc1qxGTVKvdtl+a4BM0TaZOJE4IILKuuSp9hU27iZ\n6/1o9Lm3r4lqBSjLfHmhFngasQmdbsec2y50PsBq/w891kwokXT7xoxnx9oxvzUsvtHOOqpr/fVL\n2+L6bEItG5eY+MTGdyO0tpb20wMv9chtux4hDbJuFFxT4/gajB12APbbr/Rdd6C6MM+xr2G67jpg\nwoTEqjrzDWXMGPU+YED5cfncaHFWoWtMkrl/tWKTl7tLTyoJlI7PPq4NNoifqSKJLNaqfS/4GvM0\nywskrYzrIuQ82y6/LFSbvjuSdPs+TUTfszcS0X9BLaDW5TD7QUy02atHDgNq8sCkfOK2EZXfmL4I\nNo19I5iWjf783e+qz1psslzUvv4e8zeNHqdBVP5bXMOfZNkQAYce6h/c6sNV5le+ktyADBjgr59J\nGlehnbba8SymtWEKV9r/98ADS5/1caaN/tMDce+7D5gypbRdn2ff+BZ9/lz9V1n6FpPIEtZdKzda\nLaMAuwpJp+R/ABxDRO1EdEH0ehjAcQBOKr56+RNnrQwdqsZyAGoVz8Ex636GiI1peVxzjbts28fu\nwrRstMCsWeMWmzQBAq4bwm5w9aBRex2XuJspxLIJrWvS/n36+ENgmYFzz1XT87hEPY3Y2J3RdtoN\nN/SnTcIcxNi3b7l4pg3vNcf+6HN/2mnl+yT1n+gQ/C9+Ud0Tdl3ixGb+fDUGyUWIZWPjmu6oGkLE\nJu4hzh6eEJeHUE7sKWHmRcy8J4CzALwdvc5i5j2YeWFc2kbF50YjUvM/nRRJaNxN/utflw+4NPOw\n89QX93HHufNK60bTN4LPjRZyE/vCpl2YYcJmYxwSPJEkNmlvSJ/rMq4uEyeqQbxm3X2hz3EWgC02\ndiSf7zj/9jc1c0Mcvr46oLqxJDrfyZPTpdPWPXN5f4+ui3a/Dh9eno4Z2GQTt3s21I0GlN8rafoK\nbVxLo4fcH77rcurU8HBrcaNVEjo32j+Y+XfR66GiK1UkcZYNULqh4m7y3XcvXZBxDTBRcoMa4kZr\nbS0XNz3As1rfcohlY3amV+NG22absPLjMPe/6qpseQDZLJsRI9TqrBrbVeSqx847q34jHajgI846\nrUZsfOfGzP+cc8qjtfTvm26q+nW+9CW19g1Qsmh0nfR5tPveqn2qN62zLbeM3/eUU9T7V79a+Zvr\n3PnqZvbV+txo666rzskTTyhPRRxi2VTSdKfEZZGYuMTG3rdnz7AAgZDQ37R9NqZlY4tZ6AWexo1m\nCkc1bjTXjZ9WKM0ydaBElpva12cTZ9kQlfeHaLFxBX1obr89Wx2rERuXBRfH6acrYbHLnzevdIy6\n79Iey6PLuuKK8u9ZLFCTvn1LYejrrqtWI/Wh57xzWVOuevj+i002KX22z5ueJV3Xf/fdS9PY2NNF\nJZXTzDTdKfGJjTmmBYjvdDan3khyo6WxbOL6bMwGnEjN67VqVVh6G7tRMMfX+MSmWjeaaw65aiwb\nnzs0BF/oc5oAAd0QuyZktcdyVdM3VY1l4xs3lfa47bVdkkKfQ8RGuyVd4eZ9+wK/+pU/LxP9+5ln\nusvUTJtWuc3EDCKxPQa/+U1lXXwPGVokxY1WSdOJTVJDF2LZ2DPY+vazo9E0vkY7xI1m1tsebR4X\n0GBiLw5n3vBFudFc4p232OyzT1g+WaPRzN/t9U7M//nss8vzD4n6MzH3Tzuzsc53gw2Am24qbbfD\n7c0ykqLVdHRa0r0TJza29aSnd7HPzbhxyoIMFWq937Bh/t/M6Z18511HAB55pJqDz/UQ5wrssa9r\nHRwhlk0lTXdK9AXjm8Y8pM8m1I1WbZ+NpkeP8gZSPxUutEI0pk/335xmY2M3CmaaOMvGbJTizk+S\nZRMXeh2H68nSbDjN9X7Mcmx8fTbaXRKCbpxca7nEnd8QzHpntWzsWRNefrn0OSkwwv69Tx+1Yqvp\n1nXhE5tXX1WWipnvPvu4BxDffLNy2yX1rWriLFzXf5L0QDF+fHn5gFtsfJZN2qmQmommOyX6grGt\nAtuNlofYpO2zCXWj6YbkUGtFobjwW5fY6G3m2KJQyybu/Lgsm5DO2gce8Odp7+9qZEJvcNuNduCB\nwNNPuy0jsyPYdfyuOclCxCauETVn33ZZNnvu6U+ry46bp4xIWT66DiFzjPXrV3nOQxfwGzSo8jiO\nPBK46y7/eTDFZuut/fVKKzY+tPXmmpXAZQn7LJu0k7w2E00nNvoiWbLE/Xton42rIXGFIfsawEsv\nrUzv60fS09WYZbS0qGinUFw3ns7fXMzNNUGk3jdUbOzIOcB9Pu3jTXKD+cQmbR+Q2XjcdZdaUXSX\nXSr3W3/98jBcV+e7y41mh5anfcpduTJepH/wg1J/zAEHuPOwxcb+Xx99tDTbQOigz6yWTRbRNf/T\n/fYrjwR05V2t2EyZovraRoyorJcrb7Fs0tN069Dpi+imm4CDDgJeeKF8e0uLWrwpbrnnavtsgFJj\noZ8y33+/MqImrs8m7fQmcY3hkUf6fdo+sYkrv6WllE6Xe9hhavbkxx+vzDsUlxstzrLxNWRmg+By\n5Ywfr1agHDTIXxedhytAoBo3mt53nXXUA1FSI+oTijixISoPL7YtmyQBsMcY2WX4HprSiI197pKs\nqDhPw8YbJ/fZrL12+ezerodAV5+lb+kEEZtKmu6U6Atn6FC/ZbDjjvF52AtB2XlrzEbXty8RMHu2\nmt4/tM8GSC82cY3hwIFqlmnzN1c9zd/iOq5NS8wc1PrPf5bnmUeAQNITqCZkUKdm002BY48tzSYR\nl4fLstH76ai0NAECert2bbrStrSokN9f/MIvNmmm308rNrvsArzySuXvWRb082ELVFaxWbQIOOOM\n8D4bu3wTl9jYD5O+4BOhCcUmi4/fJk2AgC8azbyZ1luvvN/Exh7Uqbe5SBMgUFTHtcuyyWMRNZ/Y\n+MQrbYBAGnQe2ho189Lb4sRGc8MNldtuvrlyuzlDd0uLmsvvJz+pFBt9bdnHHhe2HipM5jW77bbJ\ngulK58szriyg5N6ySXJV6oUS084P56qXmYfvus4aFNIMNJ3Y+PpI0lwcphstqc8lxLJJqqurzyZP\ny8Yk7skvi9jE3XzVWDYuwcjSZ+PC95/Yls2MGaWBmzrPMWNKU9q7XGw2Rx5ZWfa4caWJYYlUv5I5\nKWySG811bcT9r2n7bJKwXXhZGl77AeLyy4GPPvLvl1RGUZaNfa6z9tM1A013SsyLIM4nH0eoZQNU\nPvlccQWw777hNwlQXJ9N0hgg+7vZKOnyzdHeZlkhN53vt512Uucobn9TMNK65ZIsm5D/pEcPNZWL\nnqhS12fbbSvXZKn2KXfsWODb33bnZ/4nI0YAm2+efG3Yx22vb2NO3WIS2qDby4tXEyCg33v1Kg0u\nPfHE+Hq48s7DsnG5UX2WjYhNJU13SsyL4Oc/V0vxJqHDIjVmY2piX6DMlftNmKAa6LSWTWifTVKH\nq66Xb98414jLspk4sTKSy7Rs1lpL9UmlqavpZrTz1VRj2aRZQM+uly8PXTYzsGJFeTq9j23FhKDT\nTp5cCtf3WTazZ6v+N5fVaV7D9nm68UYVmfbmmyqPW2+Nr4sPn9jkESAQUn5c3mktGxeu6ZqyrO3T\nrDSd2JgXYK9epVH3cRfySSepiSR79gT+9Ce1zV7l0pWHXlEzrh5ZLZu0g/3ixoGYxN2Uett55wH/\n7/9V5qsnZLTFOMnf7ivHxjxXrk7+0BkUsrrRXHmYDwQan2WT1NDtuqtan8eHvuayuNE226y0MJl9\n3P37q98331z9V76F1UL7xHxik4Y4N3VaKwVILzKhlo3rngey1bG7UzexIaIBRDSNiF4novuJqL9n\nvzFE9BoRzSKiicb2SUQ0l4iejV5jwspNtx1QovTssyo8+bDD1Lbjj1cDAceNKw2utPNYs0a5QN59\n119eyNO46bZLeqJKY9mk6bMxp/z48Y9LfQhmHuedp0LJ46LwXHX13bA2LivGdKMddZR6+n/22fh8\nsrrR4hqbOMsm1OJ64gngnnv8dXFdM65j9Fm9IX1IcdTDjeaqq6shd0VHutxo1fTZuCwbV/023tj9\nMNrs1NOyOR3Ag8w8EsBDAM6wdyCiFgCXANgPwHYADiciczzxhcy8c/S6L6TQrDfaWmuVr+3Ru7dy\nH+2+O/DHP+r6lqdZs0ZtGzKkMr9aBwi4+mzSuNF8v5nns39/YPvtw8XG1wj53GgmRModaa6QSaQs\nSXvaGpuk0OdQa9Pc10xjT4UU+mTvc89qXA2cK5Is6drI6voJFZtJk4C//MWf7uKLS59PPTW+rKRG\nH1AWW1w0p5mmGjeaK0DAZe0tWFDdBKrdlXqKzVgA10efrwdwsGOf0QBmM/McZl4N4JYonSa1gV5N\nA5OUpxmGCyRPGZJUrv6ttbXS9WMPAP3iF8PqCGSPRnPt36OHez61asUmhGXL0s1npnG5o0xCrgU7\nrZnmP/6jtAaM+VuWhs7M19XAhbrRTIq2bAYNKl+Owb7WzT6+738/vo4hUYy+hr2aPpvQ0Oes124z\nUk+x2YiZFwFAtOrnRo59BgMwnVBzo22aE4noeSK6xueGs/HdMK71MELxCUe1YqNxWTam2+CQQ4An\nn4zPw+V6SfOEy6xCcLWLypWvZsAANaVKEr5zkNbffdFFwIUXxu9jirFe2jdtoxs3VsV0o629NvBv\n/+bfF1B9XhdckK58VwPcSGLj29eud8h1F+dizfJgmEefTZwbTY+LEveZn0KnqyGiBwCYAcYEgAH8\n1LF72meCywCczcxMRL8AcCGA4/y7TwagRrG3t7ehra3t819eew0YOTJl6QZFi41rUKcpjnfcEV5H\nQL4mmTwAABDQSURBVI0DeeKJ9G60oUPL16S/7z7gy18uTamv6d07bCniOL93mrodfbR7u5nH4Yer\nF1BauyRPKzcujWu1yc03V1PZp8m32j4bTV5iExcmH5fOFpt+/dQMGq40oX02LsxpdfKwOFx9drp+\nAweq/kJfQFBXob29He3t7YXkXahlw8zfZObtjdeo6H0qgEVENAgAiGhjAIsdWcwDYDRvGBJtAzO/\nx/z53381gF3jazMZwGTsvffkMqEBqhMaoFw4zAvSt4yBnSZpH5dl47PEfPmZroazzvLPu5Xmptxv\nv9JU+2nQddQj7EPrkNb6TMpn+XL37yEBAr40rn3+53+Uy6/aBi+vPpui3Wia7bd3p7fFZsEC4Lrr\n3PuG9Nlo3noLODhyxn/6afn8b3afzTHHqPfBg93TU9nlnn46sNde/t91f2FXp62tDZMnT/78lSf1\ndKNNBXB09Hk8gL849pkBYAQRDSOiXgDGRem0QGm+BeBlR/oKqumbScK+ieMsmziftE1In00S998P\nvPiiuw4m116rVgEtEntafh2SC6ibeuLEyjSACsnN6/ofN65yQS+N7z8ZP77UmIWmAdR57tu3+j4b\nVwPcKG60009XQwRM7rrLnd4Wmz59/CPx04jN8OGlFVTtyULtPpvf/169H3OMmnjXxi73nHMqx9uZ\n+QnJ1HPW5/MA/ImIjgUwB8B3AICINgFwNTMfwMwdRHQigGlQwngtM8+M0v+aiHYE0AngbQATQgot\nQmyKDhDYbbfSOhtZxcZ0f9n5m2y9dfn6IXqNnLRRanHEReqcc4561+OZbHR/S7XcfLP/N99/MmQI\ncNpplY0oUNyI8aTrNYvYZL0H4o5R/28hhMxcEXd/uFbl1Fx8sTvCzXeN+oQr7TmSGQOSqZvYMPOH\nACpWMGHmBQAOML7fB6DC0cXMR2Upt5YXRZzYpGGzzYBZs9TnrGLjIulcrFhRKkc/MeZBSNh2tU+M\nRGo6maxpfST1S+Qpyr66mNtcUy7Vq8/GxicgaQIEXHU988xKK0ozYECpT87EF/oc2s/kI+ukts1I\n061nU7TYjB6tzPIlS+L7bNJSbZ+Ni113BX74Q//vuoxly+L7ZvK0bJIIPb6iRnBX2zilJSlQ4vbb\nK1eXvO22yiXDTWoRjRZHNdFoOr055i0E3/UgYlM7ms74K/qiOPdc4MMP1edqLRuzrnafja9zPQ39\n+pUPsPORJQggjkYf8BZ3jSS5XfL04R9wQCmCzke/fsAmm5RvGzpUPfT4yGtQZ9Zw4mrFJgu+cTbV\n/l8iNuE0jdgccYR6L9Ky0X02uow8xca2bJJGTNcS31xaPkyxmTtXRbXZ1PPmjSvbd959q1eapG3Y\n7r4bOOGEdGlCqJVlk8aNZu+bJoAmBNe8ef/4h1pYzYX02eRP05yim25S77VqxPr3L61rkgf2k56v\nD6UejfRppwFvvBG+vyk2oZNnNgo77QTMm1e+7f33sy9XkYVq/+Na9dn4CFlvJ67PJgv7718Zft7W\n5o4wA9Sg3ONiRu1pxLIJp+n6bGp1UXz8cfV5uMJeNb4n7B/9CNhuO/XU9pWvAKNGqZuqSHr1Kl/c\nKwnbjdZo4aNJ14gdMu1b/6VRqVefjU4f4kbN240GpAs/HzoUuOaa5P0a7dptZJpObLqquRsqNl/4\ngpoKRS8B8NRTxdYrCyHRaI3qRksi72i0IqiXG01TL7Epkq5Sz3rSRZvebJxyipoksauz0Ublo5nj\naMSbwDfgzsXw4YVWxUlRYtMoZBUbO13afkN9XkPcaHn32RSFrvfmm9e3Hl2BprJszj+/2PzT3Bgh\njdL3vgc89ljl9kWLwstpNJ5+ulJA4s7FoEHA22+Xvh9yCDBnThE1U2y0EbDnnsXl3wjkZdn8/e/A\nZ5/59/f1w6SxbPL2ROT9MGCvYCv4aSqx6Wocf7x6VUOjPRnaS0gD7nBiX70HDwb+7//yrZNJtULe\nFRqerNeEnc4OubbxRei5xCbNDALVUITYCGGI2NSJtIufZWXnnYE776xNWVn54Q+Bbbetdy2Kp1Ea\nplr12QweDHzwQel73DpKvrIaXWyEcERs6sSGG1ZOjBnHwIFhYzlsevTwTx7ZKBx8cOPXsZFolNDn\nEMy57PS4s5B8ukqAgIhXOCI2OZL2xhg1KnzfPn0qpyXpzjR6I9OVKWpZ6CTiBjn7AgTy7rP5/veT\n3X9pELEJR8QmR6SBzI+0y/g2CrUIfa4mn0suAb7+9WxpixQbX1l531ODBmVbSlyoHhEbQciJvfZS\n85n5aAThDFmu20d3EJu8MZdnF+IRsREakkZvZFy4wtSLoF7nplqXVho3WlcQm2eeca/yKbhpqkGd\nQtdjjz2AjTdO3q8rkIdls+uu9Yvcq7bhT7PkRlF9Nnmy886NXb9GQ06V0ND85jfA/Pn1rkXjMH16\nafXUWlPLAIGuYNkI6RA3Wo7IjZE/3emcHn10Pius1gvpsxGqQcRGaEi+9S3go4/qXYt8OfBA9eqq\nVNvw77OPWlzQxejR5ctNiNh0P8SNJjQkRx8NPPpovWshmFTb8PfvD0yc6P5t1Ci1kJ5dlohN90HE\nRhCEIDbYoHZltbQAf/pT7coTikfEJkfkKUzozlx6KfDWW7Upiwg47LDalCXUBumzyZGQqdMFoauy\nzjr+5cgFIQmxbHJExEYQBMGNiE2O1GrZAEEQhK6GiE2OiGUjCILgRsQmR8SyEQRBcCNikyNi2QiC\nILipm9gQ0QAimkZErxPR/UTU37PftUS0iIhezJK+lojYCIIguKmnZXM6gAeZeSSAhwCc4dlvCoD9\nqkhfM8SNJgiC4KaeYjMWwPXR5+sBOFehZ+bHALhmyQpKX0vEshEEQXBTT7HZiJkXAQAzLwSwUY3T\n545YNoIgCG4KbR6J6AEAg8xNABjATx27V7u0VN0X3RXLRhAEwU2hYsPM3/T9FnX6D2LmRUS0MYDF\nKbNPlX7y5Mmff25ra0NbW1vK4pIRsREEoSvT3t6O9vb2QvImzmOt2iwFE50H4ENmPo+IJgIYwMyn\ne/YdDuBuZh6VMT0XfZxEwMyZwNZbF1qMIAhCzSAiMHMuUwzXU2wGAvgTgM0AzAHwHWb+mIg2AXA1\nMx8Q7fdHAG0A1gewCMAkZp7iS+8pq3CxWb1aLBtBELoX3UJsakktxEYQBKG7kafYyAwCgiAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELh\niNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC\n4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAI\nQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4dRMbIhpARNOI6HUiup+I+nv2u5aIFhHRi9b2SUQ0l4ie\njV5jalNzQRAEIS31tGxOB/AgM48E8BCAMzz7TQGwn+e3C5l55+h1XxGV7Aq0t7fXuwqF0p2Przsf\nGyDHJ5Sop9iMBXB99Pl6AAe7dmLmxwB85MmDCqhXl6O7X/Dd+fi687EBcnxCiXqKzUbMvAgAmHkh\ngI0y5HEiET1PRNf43HCCIAhC/SlUbIjoASJ60Xi9FL0f5NidU2Z/GYAvMPOOABYCuLDqCguCIAiF\nQMxp2/icCiaaCaCNmRcR0cYA/sHM23j2HQbgbmbePuPv9TlIQRCELg4z59Jd0ZpHJhmZCuBoAOcB\nGA/gLzH7Eqz+GSLaOHK/AcC3ALzsS5zXyRIEQRCyUU/LZiCAPwHYDMAcAN9h5o+JaBMAVzPzAdF+\nfwTQBmB9AIsATGLmKUR0A4AdAXQCeBvABN0HJAiCIDQWdRMbQRAEoXno1jMIENEYInqNiGYR0cR6\n1ycLRDSEiB4ioleiAIv/jrZ7B8US0RlENJuIZhLRvvWrfRhE1BINzJ0afe82xwYARNSfiG6L6vwK\nEe3WXY6RiH5ERC9HgT83EVGvrnxsrkHkWY6HiHaOzsksIrqo1sfhw3N8v47q/zwR/ZmI+hm/5Xd8\nzNwtX1BC+gaAYQB6AngewNb1rleG49gYwI7R53UAvA5ga6i+rh9H2ycCODf6vC2A56D644ZH54Dq\nfRwJx/gjAH8AMDX63m2OLar3dQCOiT63AujfHY4RwKYA3gTQK/p+K1T/a5c9NgBfhnLPv2hsS308\nAJ4CsGv0+V4A+9X72GKObx8ALdHncwGcU8TxdWfLZjSA2cw8h5lXA7gFaiBpl4KZFzLz89HnZQBm\nAhgC/6DYgwDcwsxrmPltALOhzkVDQkRDAPwbgGuMzd3i2AAgekr8CjNPAYCo7kvQfY6xB4C+RNQK\nYG0A89CFj43dg8hTHU8UXbsuM8+I9rsBnkHrtcZ1fMz8IDN3Rl+fhGpfgJyPrzuLzWAA7xrf50bb\nuixENBzqqeRJAIPYPSjWPu55aOzj/g2A01A+zqq7HBsAbA7gfSKaErkKryKiPugGx8jM8wFcAOAd\nqHouYeYH0Q2OzcI3AN13PIOh2htNV2p7joWyVICcj687i023gojWAXA7gJMiC8eO7OhykR5E9O8A\nFkWWW1x4epc7NoNWADsDuJSZdwbwKdS8gN3h/1sP6ql/GJRLrS8RfRfd4NgS6G7HAwAgop8AWM3M\nNxeRf3cWm3kAhhrfh0TbuhyRi+J2ADcysx6PtIiIBkW/bwxgcbR9HlQ4uaaRj3svAAcR0ZsAbgbw\ndSK6EcDCbnBsmrkA3mXmp6Pvf4YSn+7w/+0D4E1m/pCZOwDcCWBPdI9jM0l7PF3uOInoaCh39hHG\n5lyPrzuLzQwAI4hoGBH1AjAOaiBpV+T3AF5l5t8a2/SgWKB8UOxUAOOiqKDNAYwAML1WFU0DM5/J\nzEOZ+QtQ/89DzHwkgLvRxY9NE7lf3iWiraJN3wDwCrrB/wflPtudiNYiIoI6tlfR9Y/NHkSe6ngi\nV9sSIhodnZejED9ovdaUHR+p5VlOA3AQM6809sv3+OodHVFw5MUYqOit2QBOr3d9Mh7DXgA6oKLp\nngPwbHRcAwE8GB3fNADrGWnOgIocmQlg33ofQ+BxfhWlaLTudmw7QD38PA/gDqhotG5xjAAmRfV8\nEarzvGdXPjYAfwQwH8BKKDE9BsCAtMcDYBcAL0Vtz2/rfVwJxzcbamD9s9HrsiKOTwZ1CoIgCIXT\nnd1ogiAIQoMgYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBROPVfqFIRuB6lFAf8O\nNaXJJlBjpBZDDaL7lJm/XMfqCULdkHE2glAQRPRzAMuY+cJ610UQ6o240QShOMomFyWipdH7V4mo\nnYjuIqI3iOgcIjqCiJ4ioheiqUFARBsQ0e3R9qeIaM96HIQg5IGIjSDUDtONsD2A70MtUHUkgC2Z\neTcA1wL4YbTPbwFcGG0/FOVr/ghCl0L6bAShPsxg5sUAQET/gppzC1DzTbVFn/cBsE002SEArENE\nfZh5eU1rKgg5IGIjCPXBnF230/jeidJ9SQB2Y7XSrCB0acSNJgi1I26BOBfTAJz0eWKiHfKtjiDU\nDhEbQagdvtBP3/aTAHwpChp4GcCEYqolCMUjoc+CIAhC4YhlIwiCIBSOiI0gCIJQOCI2giAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIXz/wFRfJZMiFR6wwAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(1)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=1')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try out with `B=2` to get _random walk_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYHGW5t+8nJDPZJwkJgSRkgwAhQgBlRwybRhDCAUEE\nDEEFVEQUQRaPEPQooOIHshwR2ZFFQSAoCgYI4GGHAAESwpYJZF8nyUwyE2be74+nXqq6p5fqnu7p\nZZ77uuaq6urq6rd6uutXz/qKcw7DMAzDKATdSj0AwzAMo3owUTEMwzAKhomKYRiGUTBMVAzDMIyC\nYaJiGIZhFAwTFcMwDKNgmKgYVYuInCIiz+TxugtF5I8x971ERO7IfXSVjYi8KSIHZnj+SRH5ZmeO\nySgPTFS6ECKyQESaRGSdiCwWkVtEpHepx1VkUhZiicgoEWkTkXa/AefcZc650zv6HsH7fCgiBydt\n6yEi00VkvoisF5EPRORPIjIyh/csKc65zzjnnoZPhfX2fI8lIl8Qkdbge7lORD4Skel5HGeIiNwl\nIotEZI2IPCMie+U7LiM/TFS6Fg44wjnXH9gN2B24sLRDioeIbFGEw5aq8vd+4CvACUAdMBF4GTgk\n1wMV6XMpBYucc/2D7+YBwLdE5Kgcj9EXeBH9Xg8Cbgf+0QVunMoKE5WuhwA455YDj6Liok+I1IjI\nb0WkXkSWiMj1IlIbeX6KiMwWkQYReVdEvhhs30ZEHhKRVcHd97cj25tEZEDkGLuLyAp/MRSRb4rI\n28Fr/xm9Ww8sie+JyHxgfrBtJxF5LNh/rogcF9l/kIjMCMb3PLBdXh9QkktLRKYGVt4KEfnvFNZH\nrYjcFtxlzxGRPYLX3Q6MBB4OnjtXRA5BxeMo59yrzrk259x659wfnHO3BK9LOH50PBEL65siUg88\nLiKPiMj3ks7hNRE5OttnlvSaSSLyRuTxv0Xkxcjjp/2F3o9RRL4EXAR8LbC6ZkcOOVpE/hOc+79E\nZFCcz985Vw88C+wcZ//I6z50zl3lnFvulBuBGmDHXI5jdAwTlS6KiIwAvgy8G9l8BbA9sGuwHA5c\nHOy/F3Ab8GPnXB1wILAgeN29wEJga+A44FciMsk5twS9OBwbeY+vA391zrWKyBTgAuBoYAjwDHB3\n0lCnAHsBOwd3nI8BdwKD0Tv960Vkp2Df64EmYCjwLaAjPn0XnPfOwHXBuLdBLYthSfseCdwVPPdw\nsD/Ouano5/KV4C78t8ChwIvOucX5jCfCgejF8kvoZ3aifyIY80jg72k+s+sin1mU54HtA3HuDuwC\nbCMifUSkJ/A54OmEQTn3KPAr4F7nXD/n3O6Rp78OnIL+b2uBc+OcqIiMA/YHnotse11EVgd/a5KW\n16Y5zm5AD+C9OO9rFAYTla7HgyKyDr3YLQOmR547DfiRc67BOdcIXI5eGEAv0Dc5554AcM4tcc7N\nD8RpX+B859xm59zrwJ+AqcHrEi546EXtz8H6GcBlzrn5zrm24P12E5FtI/v/yjm31jnXjLqMPnTO\n3R7cib6OupKOE42NHAP8zDm3yTn3FiqCHeVYYIZz7jnn3CcEIpvEf5xzjzptpHcHKspRJLK+JbCk\ng2NywCXBeTYDDwATI5/bicDfgvGm+sz+hop/4kGd2wS8hArWZ4HXgf9DL/D7APOdc2tzGOctzrn3\ngzH+hYhVnILhgUA0APNQgfu/yNgmOucGBX8Dk5bfTz6YiPRH3V/TnXPrcxiz0UFMVLoeUwK/9ReA\nndC7V0RkCNAbeMXfEQL/RC+CANsC76c43jBgtXOuKbKtHrVyQC/6+4jIUBH5AtDqnPMXi1HA1ZH3\nW4VeMIdHjvVxZH1UcKxP71jRC+hQ9G64e9L+9fE+kowMAz7yD5xzG4NxRlkaWW8CekqKBICAVajF\n01E+PU/n3AbgEVSwQW8E7gzW031mW6c57tPAQaiwzAr+JqHfl6dyHGPy59I3w76LAoGoAwYAm1BR\nyJnAqpoBPOuc+3U+xzDyx0Sl6+FjKs+gd/JXBttXoj/8CZE7wgHBjxz0wpoqRrEYGCQifSLbRgKL\ngvdZi7pfTkAvdvdE9lsInJF0B9rXOfd8ZJ+o2+cjYFbS/v2DO9UVwGZU/KLj6ChLgBH+gYj0IhTa\nOCS7rWYCe4lIsgstSiMq8J5UApB83LuBE0VkH6DWOTcr2J7uMzszzXs/hYrI54P1p1FBOZD0olLQ\nhIfAsrgLtbKAT1OY1yX9rQ+W10f2qwEeBBY6575TyHEZ8TBR6dpcBRwmIrsErpsbgasCqwURGS5B\nMB64CThVRA4SZZiI7Oic+xiNm1wmIrUisisaz4jWbtyNusOORS8WnhuAi4IYACJSJyJfzTDevwM7\niMjJItJdNDX3c8E42lC3znQR6RUc85Qs5y+oVVEb+ZOkfe4DjhSRfUSkB4nuwkzH9SwFxvoHzrnH\ngX8DD4jIHiKyhYj0FZEzRGRasNtrwAnBOX4OSP5MkscIaqmMAn6Oxrg86T6zVDEV0P/ljmgc60Xn\n3NvBcfcmKZ4SYRkalE81rrh8+loR6YvegLzptwUpzP2T/voFy+8Fr+uOWsZNwLQOjMXoACYqXYuE\nO0rn3ErUWvFxggvQoObzIuItjB2CfV8CTkWFqAF1i3hL4ERgDGq13I/GNZ6MvNUMYBywxDk3J/L+\nD6JxlHuC93sDmJxhvBuAL6JWz+Lg73I0CAxwFtAPtS5uDv6yfR7r0YvQxmB5UNJ7vh0c997g/dYB\ny4HmLMf1XA78LHA9nRNs+yoqAvcCa4E5aAxjZvD8z9BEidXAJYQxqFTH9+NsQUX1ECLCneEzq0k5\ncHVjvgK8GcRkQAPmC4LvS6ox/BUVhVUi8nK6MWZhG2+BAB+iLrCTczzGfsDh6Pk2RCyZ/XM8jtEB\nxNkkXYYRm8DNtxbY3mnqq2EYEcxSMYwsiMhXApdaHzQG9YYJimGkxkTFMLIzBXUbfYwmK5yQeXfD\n6LqY+8swDMMoGGapGIZhGAWje6kHUEhExMwuwzCMHHHOdSQdPIGqs1Scc1X5d8kll5R8DHZ+dn52\nftX3V2iqTlQMwzCM0mGiYhiGYRQME5UKYdKkSaUeQlGx86ts7PwMT1WlFIuIq6bzMQzDKDYigrNA\nvWEYhlGOmKgYhmEYBcNExTAMwygYJiqGYRhGwTBRMcoW52Dlyuz7GYZRPpioGGXLo4/CkCGlHoVh\nGLlQVb2/jOpg6VJYtw7Wry/1SAzDyBWzVIyyY/Jk2HFH6NVLH7e1lXY8hmHEx0TFKDuWL9dlS4su\n164t3VgMw8gNExUjKxdeCPff33nv19ioy6YmXZobzDAqBxMVIyuXXw7XXFPc92hthblzdT1ZVPzS\nMIzyx0TFiMWWWxb3+HfdBTvvrOutrdC9e3txMQyj/DFRMWLRv39xj79xY+Lj3r1DMfHiYhhG+WOi\nYuTMX/4C555b2GP26KFLH5SPiopZKoZROZRcVERksojME5H5InJ+iudPFJHXg7//iMgupRhnV2L4\ncHjjDaivh2uv1W2treHzl18OV16Z+rUrV+aXAtw9qJgaOFCXvXub+8swKpGSioqIdAOuBb4ETAC+\nLiI7Je32AXCgc24i8D/AjZ07yq7FunWweDEcdRSMHg1nnaXbFy6Eq66CTz6B+fNTv7a1VSvgH320\n4+Po08fcX4ZRiZS6on4v4F3nXD2AiNwDTAHm+R2cc89H9n8eGN6pI+xirFihy/r6xO1PPaV/Bxyg\n9SNbbKG9uUTavzafFOB0MZWoG8wwjPKn1O6v4cBHkccfk1k0vg38s6gj6uKsXp35+Q8/hHHj1F21\naVPic4sX63LDhtzfNyoq3/++ilVjIwwerJbPs8/mfkzDMDqfUlsqsRGRg4BTgQMy7Td9+vRP1ydN\nmmRzS+dINlE5/ng4/HD4+GNYsyZspQKhpZKru+rmmzUWM3Uq/OIXsGwZPPecWihDhsADD8CoUbDf\nfrkd1zCM9syaNYtZs2YV7filFpVFwMjI4xHBtgREZFfgj8Bk59yaTAeMioqRO+laohx6KMycqeuj\nR8Mjj8Cf/wznnRfu462NXC2Vb31LLZOLL4aRI1XYNm/W+M7QobrPRx9lPoZhGPFIvtm+9NJLC3r8\nUru/XgK2F5FRIlIDnADMiO4gIiOB+4FvOOfeL8EYuxTNzam3R2MnI0bAz37WPtbhRSWfwLpzodXT\no4eKyqpVKjKgllEhaGqCiy6CRe1uXQzDKAQlFRXnXCvwfeAx4C3gHufcXBE5Q0ROD3b7GTAIuF5E\nZovIiyUabpdg8+bU27tFvil1dZr6uybJZvQxllwsFefC9aioNDerS2zUKN1WKEvlF7+Ayy5TK8sw\njMJTavcXzrl/ATsmbbshsn4acFpnj6ur4jsDJ7PFFuF6v34qAK+9lrjPpk26Xy6WSjRA70Vl5Ej4\n4ANdHzFCl0uWqOD5Isl88R2Qt9qqY8cxDCM1pXZ/GWVGOksl6v7q3l0tleT4y8aNmq2Vi6XS2Bi2\ngOnZM3G5zTah+8s5FZaOsmwZbLttfhlqhmFkx0TFSCBqqdxzT3jBj7q/WlvTu78GD9bX3XJLvPdr\nbIQBA3T9k08Sn+vfH8aODR9ni6t861uamZaO1laYMwe2397a6RtGsSi5+8soL6KWyl576QX41Vfb\ni8qAAalFxXcz/uY34dRTs7+fL3CERFfYuefChAkwbJg+7tkzrINJx4wZGodJZtkyePddtVDWrIFJ\nk0xUDKNYmKgYCbS0wDe+AXfcATU1YYbXSSfphf3kk+GQQ7QmJZX7q7Y2fNzWlihG6d7Pu7uiovKb\n3yTu16NH9hkgo+8d5Yc/VOtp7lx1qdXVpRYfwzA6jomKkcDmzbDddrreo4fe1ffpA8cdp3+eVO6v\npqawrgQ0gytaHJmK5mYVrwcegIMOSr3P7Nlw663t3y8ZLyr19Zow4IP8vsFlY6NaRf36maViGMXC\nYipGAlHLobUV/vd/4eWX2+/Xt6+6u6LusvXrtUjynXf0cXI/r3TvV1MDRx+tFkQqdttNYzXZLJWa\nGl2OG6euO49PMrjrrlBU/BhfeCExrdkwjI5homIksHmzXpz/+U/Yeuv0+4mEcZWGBnjwQc2o6tsX\ndthB3UzJvcFS0dyc3m0VZcAADdRnOqYXlc2bE9OavagsWqSWU9++2gZm9mzYZx+YN6/9sQzDyA8T\nFSOBlhZ1e02enJhGnAqfVvzII/Bf/6Vxir599bmePeOJirdUsjFgANx+u8Z00hEVp+7d269v3KiW\nSp8++ti7xdKlURuGkTsmKkYC3lKJg7dU+vXTx888E64XQ1RAM7nSERWVaJHk5s0a61m0SEXFp017\n91y6gk/DMHLHRMVIwFsqcfDB+mghobdUevUqvPsLwuB7KtJZKg0NMGaMTjTWpw9MnKjbTzhBl378\n69bFiwMZhpEeExUjgVwslbo6vWBH4xdR91ecybXiWio+iyxTe5XocaLC6EVlxQqN9QwZosF/31TS\nZ4Jtt50mDBiGkT+WUmwkkIul4kUlapF499egQdnnZvHvF0dUfGPJTPGPqHUSPYd168LX+7FGq/fX\nrdPlypXwyivZx2IYRnrMUjESyNdS8ZaEt1SGDNECyiuuyHyMuO6vwYPhppsyu6eiQrF+fZgq3NAQ\nntOZZ+oyepxXXtEsMNBzeecdSzM2jHwxUTESyMVSGTBAL9gbNsDwYBJoX+MyZAjcdx9ccEH294sr\nYr16pReV1lZNg/asWRPWtTQ0wJQpmjk2ZoxuGz063PeOO7ReBdSS2Wknjb8YhpE7JipGArlc5Lfa\nSrOxGhvDALpPQx48ON4xfEV9HDKJio/r7LuvLnv21LYsra363MSJKh6ee+/V5Q47pK7U9y4xwzBy\nw0TFSCCXOUtGjtQ7+sZG2GOPxOeGDIl3jJaWeO4vyJxR5jskT56sjxsaYP/91Q3Wp0/ifDAQNr7s\n0SP1+zc0xBuTYRiJmKgYCeRiqQwfrvGIxx5TUfHFhJBoqWS66y+U+2vTJrVOLroosVlkQ0P69i+g\nYpMqS80sFcPIDxMVI4FcLJUBA3QeeV//Ea3Aj1oqqeZBefZZTfHNxf3Vs2d6UWlu1ue7dw+tENC4\nSjZR2XZbbbEfTSowUTGM/DBRMRLIxXKIXqx91pfHi0r//qkbQe6/P5x9du7ur2yWiufnP9cOyytW\nZK5t6dYNnn9e54w56qhwu3UxNoz8sDoVI4FcUop9TQq0b3Hv3V9Dh6a/69+8ufDuL89nP6vW0LJl\nie34o/zv/4ZWCoRusG7d1PIxDCN3TFSMBHJJKfYTcE2dCvvtl/icF5y6uvR3/a2thcv+ShaV2lo9\n9vLl6S2V73wn8bEfx6BBJiqGkS/m/jISyMVS8fTo0b6jsYjOtjhhQmipJBcUtrXll/3V0ABvvpn4\n3KZNicfxorJmjYpEHPzrBw2K17fMMIz2mKgYCeRiOXiWL0+9/Wtf02C+t1R22gl++9vw+ba2/CyV\nc86BXXZJfC6dpbJ2rTa+jENUVMxSMYz8MFExPmXtWhWI5KB7Jq6/Hn760/TP9+sXWirz58O114bP\nPfxwbjGVnj11/1TFig0NmhTgiVoqvsNxNryofPazJiqGkS8WUzFobdVsLR8j6d07/mu/+93Mz/fv\nn2jJrFiR+HwuloqIilSqwsRkN1fUUokrKjU1WnPz1luwYEH75737LtvkZYbRlTFLxeD739eL8qpV\n+rhbAb8V3lLx1kpy/GTJksx1JMn4fmPJrFmT6ObKx/0FcNhh+tpUMZUpU+Dzn49/LMPoipilYrB0\nafGO3b+/xlRuuEEfJ7dLef31+H3CQAXIt9R//XVNErjzTm0V49vbg1od3lUW11Lx9OyZ2v31+OPx\n5ogxjK6MWSpG7OyrfPCWSkuLNnv0FkDv3nDggboet08YqED4KYV3203jH5ddBvX1ibGgfNxfya9N\nphLcXm1t1rbfKC0mKkbKNiqFwlsqixZpNlhTk170+vULuwbnctHv1y/RWvAi9dBDqVOKc3V/+feY\nNw9+8Ytw28aNiTNclitTpoRt/A2jFJioGHz0Ubje2lrYY/frB08/rdXrAwdqby7vlurTRwUm2SWW\niT590j+XLCpNTSosmV6TisGDYfZsuPjicFul1K2sWgWLF5d6FO154gntam1UPyYqXZylS8PeXGPH\nFjZID4lpvn37qtvrrrtUWKJ1JXFJJRC+mj8qKn5q4ba23N1WqWI8lZJi3Nxcnm37//nPxJsXo3ox\nUenivPJKOLFVoQUFEvuD9emjAvbNb6rA5GpBQJiSHH2t70ocFRUvJNF2/HGJtnXxFkoliUo5dlhO\n1VTUqE5MVLo4y5fD1lvDLbeoi6rQRC2V7pFcw1xcXlGWLNHldtuF23x9Sj6WTyrq6uDII3Xd3/VX\nivurpaU8LZVUBatGdWKi0sXxDRenTYNDDy388aMX+rY22GYbXc83duPvwqPH9YH4XNvLZGLGDHUH\nbtigjyvJUmlogPfeK/VIEjFLpetgdSpdnOXLwwt9MRAJ+3KNHq1+9e7d8xeVb38b3n0XPvkEXnxR\nt/kOAKlSaa+6Kr/3AXXRJYtKvhZWZ9HcDHPmwLhx5ZVanK4/nFF9mKXSxcnUGr5Q1NbqBW7cuPCi\nnE+sA+AnP4Ebb4Qddwy3+YvnJ5+0378jGUeLF+v7gQrjNtuUfwZTc3NxU8TzYeVKFTqja2CWShdn\n6dLii0oyt9wSf86WdET7k3mrJznR4PHHwwLLfFi5UnuBgV6sBwyAuXPVesml6WZn0tISphTnMjV0\nMXnnHS1SnT1bbwAqoYjUyB+zVLowq1fDzJkwZkznvu+0aXDSSR07RlRUhg3TKYGT+3IdfHBickC+\nPP54KCoA3/tex49ZLKIpxeXSUqa+XhMrRMrPijIKj4lKF2bpUp3jJOpKqhT89MV33qlxlr33LnxK\ndH29Lo84Qt1fXlTuuANOPLGw71UIWlsTY1XlIipNTWrZtbaWv/vQ6DgmKl2Uk06CiRPDGo9Kw7tQ\nTjopv3qXOPgLYHOz/kW7KT/6aHHesyMkZ6ilm3q5s2luLm5/OaO8MFHpojz9tAa24061W250dt1I\n8syShUxfLhQtLYnZaeViqZiodC1KLioiMllE5onIfBE5P80+vxeRd0XkNRHZrbPHWI14MalUS6Wz\nROWss2D33dtfGMtRVJqbE5tnlouoJAuyUd2UVFREpBtwLfAlYALwdRHZKWmfLwPbOefGAWcAf+j0\ngVYh0fnYK5ETTgjnaCkmJ5+sd//NzXph9EH6chUVf/Hu1auwojJxIvztb/mPq7ZWE0PKIRvNKC6l\ntlT2At51ztU75zYD9wBTkvaZAtwO4Jx7AagTkaGdO8zqw/+4K9VSGTQITj+9+O9TWwsffAA/+pGu\nH3GEbs9lyuXOoqVFx3jXXbD//oWLqVx4IbzxRphenSteVOrqNM1548b8Bcoof0otKsOBaO/Sj4Nt\nmfZZlGIfI0d8hXMxmkhWE/4OG9Q6+fKX4eyzYcKE0o4rFf7i/fWva8+1Y44JheCTTzSO1tICCxfm\nVnx6+eW6zLebgHd/deumKd733QfHHgvXX5/f8YzypuqKH6dPn/7p+qRJk5g0aVLJxlKubN6s7VKu\nvVbnZDfSE3VzrV2rWWcHHAB33126MaUjGvfp1Usv5g89BF/8Ilx3Hfzwh3DaadqR4MUXYc89czt+\nvq11ouOqqQnjYQ8/XN41P9XKrFmzmDVrVtGOX2pRWQREM9dHBNuS99k2yz6fEhUVIzX+QnnmmaUd\nRyUQDc4vWhRua26GK6/U1jNHHVWasSUTvXh799zWW+vST0Fw443hvnG45ZZwff36jo+rpibsWLx4\nsQpVufdTqzaSb7YvvfTSgh6/1M6Pl4DtRWSUiNQAJwAzkvaZAUwFEJF9gLXOuWWdO8zqo1zbjJQb\nUVFpaQm3bdoE554LV1xRmnGloqUlvGHw1oC/XojAbpG8yThB/NZWnfsGNH6Vr6isWhVmpa1dC+cH\nOZ5vvAG33prfMY3ypaSi4pxrBb4PPAa8BdzjnJsrImeIyOnBPo8AH4rIe8ANgBnMHcBfGIdaqkMs\nvKg88kh4AYx2Lx49uhSjSk3UIvAxE++yamkJe7xtuWW8IL6fEA3U8lm/Pmze+ZvfJD6fifffh+23\nT9w2ZIguV62Kdwyjcii1+wvn3L+AHZO23ZD0+PudOqgqxv+IC9ETqyvgL9K77x5OMzxiBLzwQrhe\nLkRF5YortOp/5Up9vGlTKCpDh8azVKLT//bvr219unWDP/5Ruzf36wff+U7mY7S1afbc2LGJ20eN\nUlHKt1u1Ub6U2v1ldDJ+siTzY8fDp15HZ7AcNixczzd4XQwaG0O35vDhsOuu4XM//GGYxTZ4sPYu\na2zMfLyXX9bl0KFwyikwb54+/tWvdBnnO7RkiX52ye5WH+uplMnPjPiYqHQxvNvDRCUeIvDqq4l1\nKd27qwVwzTXlNc1wckv+u+7SpZ9nxv/vvUA+8UTm43lLZfz4REtjwQJdxklHr69PdBHedJMufbA+\n3ziNUb6YqHQx/EXwrLNKO45KYvfd22/bckutvShnURk6VJtt+imY/WRpvureu8bS4S/46W5A4loq\nUcvOj+/gg8MxG9WFiUoXY9MmmDRJ6xWMjlHuogJar7Jkia57V922QYK+txbS4UXFWySXXBK6vqLb\nM7FkSeJ01X58xx0Ht99uolKNmKh0MTZtCuciMTpGOYpK8jQAUVHZvFmXP/+5Fr1mEpU//hFuu03X\nvUUyfXpisWI2UVmzBh58MLWo9OypgX5zf1UfJipdgNbWMMvGOsYWjnIUlWRLpU8fbcsCYWylb1+Y\nMiWz+8sH6SHRzeWLKCEUqXTcdZfOmumD8v69QT+7aGq2UT2YqHQBDjxQLyKgwVoTlcJQCaKy++7w\n73/relQERo4MZ7ZMhZ+QbNw4nf7ZE7VOfM1TOrzV5MUMEkVl0KCwB51RPVi1QpWzeTM8+6zOEQ5m\nqRSSShCV0aPhsst0/Sc/CbePHQtz52rg3s+iGcVXwM+Z036CrXXrdEqAbOnAGzbA5z4HU6eG26Ki\nMmGCFkY2NZVn12cjP8xSqQJaWvSOMhXen77vvrq0mErhqARRiT4+5phwfeed9Ybj/fdTH6tnT23R\nkmrGxn799PuWzVLZsEGzvKKCERWV2lqtrDdrpbowUakC1q+H994LW2h4zjkH9tlH130FvVkqhaOS\nROWggxK3i6iLK934oxX4qfD9zzLR2Ng+ccA/9t/HwYOzpzYblYWJShXgfdbJd45//3toqfhaBYup\nFI5KEhXvAotSW5ve2sg2r3xdHTQ05D6eLbZIdLkNHmz9v6oNE5UqwPu2k5sEer94nz46095Xv2qW\nSiHp2bNwsysWgkyikmr645qa9HGRbKIyaFDY9iUdr7wSxvLSseWWMHly2ALGqHxMVKoAf2FIbhLo\nxcP3r7r/fvjlL01UCkUlWSqpBCKdpTJnjjakzFQxP3Bg5jqX9eu1vc3kyZnH7L+zVq9SPZioVAE7\n7KDL5LtmX5uy//6J2y1QXxh69tS79XKJCaQqfswkKuksFT8b6MyZ6d9r0KDMre8//FAzzzJZOxCK\nSragv1E5mKhUMA89BK+/Hj7euFF/6D5g70XliCMSW4xn+6Eb8fDi/OMfl3YcoP/fVKm5+Vgq/kJ/\nySXp32/XXXWSrXRdmlevVtdWNvx4TVSqBxOVCubooxNn87vuOs3YeeABfezFZfBgDYx+97v62NqN\nF4YttkicbreUbNyoIpfsssonpuJdUckWbpQtt1QhS9c+f/VqtWaycfPNMGaMfSerCROVKuLmm3Xp\nM768v99XR/tJprIFWI34DBgQzlFTSlLFUyCzpTJ7tiZvJBM35ta9e2K1fJTVq8NEkUwMGgSf+YxZ\nKtVEzqIiIgNFZNfsexqdje887Ntx+DtO76Y5/XRdRiecMjpGuYjKww+nzkTLJCp+XpRkdt4ZXnop\n+3v26JG+/9eaNfEsFcichWZUHrHatIjILOCoYP9XgOUi8n/OuXOKODYjR7xl4n/ovlmfr7YfMUJr\nArzlYnQ8lhtBAAAgAElEQVScAQOyt5DvDNJNZeAD96ncX562tsSeXo2N8dqmZBKVuO4vyFwvY1Qe\ncS2VOufcOuAY4Hbn3N7AocUblpELzsEdd4Si8pOfwFNPqaXS0JDYJXbQIJv1sZAMHFgelko6tthC\nkzdStan/wx90GXVhrV4N77zTPossFYVwf4FZKtVGXFHpLiLbAMcDfy/ieIwc2GKLMPsruWbimms0\niyfOxcHIn3Jxf2XCx9KSOeMMdY1GheG3v9VlnO9NJkvl3XfNUumqxBWVS4FHgfeccy+JyFjg3eIN\ny4jL+PG67NkzMRNn4UK94JlVUlz69dPPPd0de7nTvXuiMHi3Vz6iMm+efg5tbfDkkzrlQhzMUqku\n4orKEufcrs657wE45z4Afle8YRnZ8BNv+cZ8PXsm3jEvXJi5IaBRGLp108QH31stFVOnwnnndd6Y\nciHZheVFJU4GWPJrx4/XGSO9hRyd8TET5daZwOgYcUXlmpjbjE7iyisTG/P17JkYMF671kSls8jW\nsuSOO+Cee4o/ju23z/01PXokCsP69fCzn6WeYyXVa5PdXytXpk9vTkffvnDBBYkFukblkjH7S0T2\nBfYDhohINNOrP2COlRJy552Jj3v3Vj+2p7lZ3V9G8YkTV8nlf3HvvXqhPeKI7PuuW6f/+/7946UB\nJxO1NpqbNbFj2LB4r40Kkk9nbm7OXVS8td3YmDhdsVGZZLNUaoC+qPj0i/ytA1KUTRmdRfId4vjx\n7e/0bDa9zqHQwfoTToCvfEXneM92915XBz/8Yf6zJ0ZjKj17wrJl8XvD+dc+9VT43k1NuYuKF6Z0\n1flGZZHRUnHOPQU8JSK3OucyzGhtdDbJBYz+QrDDDjBpkvq2rXFk5xBHVNJlSWXipJO02nzXLKXG\nzzyjF/hMtSjp8NaGH9+aNfF7w3n313vvhdsWLzZR6erEnaO+VkT+CIyOvsY5d3AxBmVkp6kJXn45\ncduLL8K22+qP3ESl8xg8OHPHXsg/ZTZOB+T6+vy7JHTvri4rP/61a+OLk3edRQV13jxYujR9GnMq\nfFKAL9Y1Kpu4gfq/ArOB/wbOi/wZJeDZZ+HNN2HChMTte+6phY7+R2qi0jmMGwfz52fep7k5fiA6\nekHOJlagcZB8uyR0765B8uHD9fHq1blbKgsX6uNJkzSu9/rr4XQMcfjRj9SyMVGpDuKKyifOuf91\nzr3onHvF/xV1ZEZajj1Wl+nSPr2YWEylc9huO/jgg9TPeSFZvBh23DHe8erqwv/t4sXxXvPxx/H2\nS8XfI+XM+YjKhx/qYxEYMgSuvhoOOij++/fqpR2RswmzURnEFZWHReR7IrKNiAzyf0UdmZGWb3xD\ng7Pp8GJilkrnMGRI6KZ66SWtSwF1ea1cGRagRmMPmWhpCV1QyS7OQvPWW4mPV6+O7/7q21dTkD/8\nEI4/XtsDjR+v28aOzW0cX/oS/OtfVllfDcQVlVNQd9ezaEPJV4Aif92NZF59Ve8GW1pg1Kj0+/n0\nVROVzmHwYI1nicDvf691KaANPI89NvfU7pYWzQADjU/E4XcFKkVubY1vqYwcqZ2OFyyAG2/UqYO3\n3Vaf81NYx2X77eEvf4FjjsntdUb5EUtUnHNjUvzleC9idJS339Zl9E42Fd6/Hrehn9Exhg4Ns6ei\n9UMrVsBrr+U+02ZzM1x+OTz/PDzxhE7Glo1C9Hjzwf644x01Sgslo6/18aBcRcUX6v7jH7m9ziOi\nqc1G6YklKiIyNdVfsQdnJOKnbm1pyfzD9x1pLabSOaRqnOhjKRs26AX24ov18ciR2Y/nbxp8Wu5D\nD2V/Tb7/6699TZeHHhpaR3HdX/5cohaxF5Vc05sL0f1h5syOH8PoOHHdX3tG/j4PTEfnVzGKxGmn\nhdP/eryoNDfH+9GOGFH4cRmpSf5/RDOZamrgsMN0/aOPsh+ruVlvGnKp9cjXUrnnHth3X5gyJTxG\nXEvFi2l0nH5bvpZKPrU2ftrsOJ+tUXxi1ak4586KPhaRAUAndDPquvzpT+2DnbmIytq1NhlXZ5Kc\nLuxn3QS9wCbHt557DvbYo/0F3DcK3WKLsGVJnIt8R9xfzz6rS+/KihuL22ef9tv8a3MVFT/+fLo9\nNzToMl0GntG55DtHfSMwppADMdrTowd87nPhY19x3NCQXVRMUDqXqKgkdy2uqUm8UN92G+y3H1x/\nffvjvPhi2CjUi4q/mUgm2i4+F6smHf4YQ4fG2z9V00l/nvlYHKCZdLniBTxTp2ij84g7nfDDQGBk\nsgUwHvhLsQZVLFasgEsuSf1jLkfeeUeX69frBWbVKn382GPwgx+UblxGe6Ki4hy8Eqni6tEjseJ9\n2jRdLlvW/jg//Wni677whfSi0tAAW26pbp9CZvrlUp1/xRVhxheE9TW5Wiqgn9m3v5376zZu1Dii\niUp5ELdNy28j658A9c65DpRbdT5tbaHfthxExbnQzZHquSjz58NnP5tYXZ1qelijdNxwA8yerVP0\nrl+vtUSemprUc4usXt1+W3Ic7Oyz4fbbU79nQ4OmKxdKUCZP1my1OG3vPT/5SeJjb6Hk8/2sqcmv\nTmXjRrWuTFTKg7gpxU8B89AOxQOBiitRKrcWEDfcELb8TiZ5rL7SOCoqcXpCGZ3H6afDt76l69/9\nrrq3ohfnVDcPq1fDrbcmptFusw2cf374OHqhff99ePrp8LlCx80mToS77+7YMToy02i+otLUpDeM\n0TiWUTriphQfD7wIHIfOU/+CiHSo9b2IDBSRx0TkHRF5VETa/TxEZISIPCEib4nIHBHJ2+kTvVAn\nWwKlYPbs9M95N5fHByBXrAhTR8eNK864jPzx6bTHH6/Bb/89Szer4eLFcOqpcOaZ4ba1a2H06PBx\n9EJ70knqDvN4S6WcSHejFIeOWCoDB+rnbdMSl564RupPgT2dc6c456YCewE/6+B7XwDMdM7tCDwB\nXJhin0+Ac5xzE4B9gTNFZKd83ix6F1OKqUsvvxx+/OPwcaYsl1WrEt0HflbBFSvCIGqqzBujtIwe\nrRe25LoVn53k8Vl9zz2ny/r60PJcty4xphG90CbHVsoxw68UlsrGjeoCzDats9E5xBWVbs655ZHH\nq3J4bTqmALcF67cB7eqGnXNLnXOvBesbgLnA8HzeLCoqpfji/f73ia00Ms2vsWoV7BRI58CBYWvx\nlSttiuBKYNddE4UhOXaSSgimT9elv0B6amrCu+/kWEc5Wiod+X7mIyqrVmlWpBcVc4GVnrjC8K/A\nRTVNRKYB/wAe6eB7b+WcWwYqHkDGr6OIjAZ2A17I9Y1WrNC28J5SxCP8Reb113WZ6cezZAnssouu\nDx6sF4+2NrVYcpmnwigd0Qp3LypvvKHLVNlV110Hs2bBjBmJolJbG35Xkl1L5WipjBmTX60J5Ccq\ngwfDr3+tn3e/fmaplAMZRUVEtheR/Z1z5wE3ALsGf88Bf8x2cBH5t4i8EfmbEyxTVeOnjXSISF/g\nPuDswGLJCZ+a64nbTryQ+JqD44/XZaYf3oIFYcyke3e9eLS06Ho+qZpG5+OtigsuCF2V/kbBF/od\neGDiaw46SN1n0SkNevUK65OiorJokX6Py3FO93xdYLW17V3Tn3ySPqXa88ornef+8paRkZ5sYbWr\nCGIdzrm/AX8DEJFdgueOzPRi59xh6Z4TkWUiMtQ5t0xEtgaWp9mvOyoodzjnsnZBmu79CMCkSZOY\nNGlSO7dBKUTF37n69964UZezZmnBV3TCrQUL4IADdL1nz1BUamq0xiHdPCpG+eBjYpdd1v65MUHZ\n8MyZcMstcMYZic9HLZUBA8KYjK+FaWkJU49/+cvCjbnU1NaqGG/aFH7Hd99dLfdk78L99yd2NO4s\n99fw4frbrOQ+Y7NmzWLWrFlFO342URnqnJuTvNE5NydwR3WEGcA04Aq0tX46wbgZeNs5d3Wcg0ZF\nxZOcEVIKUfGtNnwev/+f+smMohlpCxbAySfreq9eOgHTpk362ilT9M8ob9LVeixfrv/r665Tq3Pr\nrdvvkywqy5bBI4+E3+Noj6tqu8Goq1MR9ef15pu6XLcODjlE56tpa4OvflVnmfT06tU57q/mZpjT\n7opYWfibbc+ll15a0ONni6lkCgN2tOTqCuAwEXkHOAS4HCCYCOzvwfr+wEnAwSIyW0ReFZHJub5R\nNJ145MjSiIoXE79sakq/74IFYVppr146XeuBB7ZPNTbKl3SiMmSIBrP9TcR222m8L1ocGRUKv/6H\nP4Suoe23D5/Pta1+ueNFxbPddrr84AOdsKy5OUxyiXYt6N278wL1lgyQmWyi8rKInJa8UUS+jU7U\nlTfOudXOuUOdczs6577onFsbbF/inPtKsP5/zrktnHO7Oed2d87t4Zz7V67v5b8Ee+yhbSWWLOnI\nyPPDi0mPHpkF5RvfUFHxrS/8RSM5LmSUN8Nj5ihOmKD9vqLZgFFR8eI0erSKSnKlejnUXBWSujqd\nOdMLqHfz+cnK6uvDYP68eeHrUsVUmpoy/9byQSR0XRupyeb++iHwgIicRCginwNqgP8q5sAKic++\n6dNHv3ilCLT5YGNrq7ozBgwIU4Wj+EmevAjFbe5nlBe33Za5wDWZaNZTctuVH/xALexNm8LZFj3J\n3ZErncGD4dFHdYri8ePVaqmtDb0LO+4Yxleyub9OPFFrgVL1WMuX3r0tUJ+NjKISpPzuJyIHAZ8J\nNv/DOfdE0UdWQD78UJfNzfqlKMWdhveH19Vp8dvYsYmi0traPmtm0SIVn0GD4MorO2+sRsfZYQf9\ni4u/M29tbW+N9O6t359Nm9SyiYpKtsyoSsNbJj47csMGFdJFi8J9vABHxaJ3b7X2Fi4Mt61dqzGs\nQtKR4s6uQtzeX086564J/ipKUCAMbLa06B1NKURl0yb4n/8JaxSS579IFWAcNkx/LIVoa26UNy0t\nGm9J1YixtjYUlWOP1c7EnnxrQsoVf24rVsB99+lvtbY2nDkTQlGJurEHDNBYVTReWoymq9bINTtd\n4iPyftWWFr1IF9rPGofmZhUHbzr36qX+8Msv14uJF76amvZdaQsx/7hR3vzjH5rhlQpfVd/UBN/7\nngbtPdXm/vKicsghcNxxKhw+A8wTFZXx43V9zBjtQvHOOzB3rt6Q5dJtOS5mqWSnS4iKdy2U0lJp\nblafr89s8f2hzj9f77AmTlSXWEtLWKPiMUul+jn88MQJ2aLU1mo3hZ499aLmL5YHHqhzy1cTRyWV\nRacSTf/7Xb1aBeTXv1a34LBh6hJ79VUVnGJYFSYq2alqUdljD03D9aIyaJCKSqkslaionHRS+Jy3\nRHzsJzlQa6LStamt1eB08vfgqad0np1qYqed4JprErsHPPNM4j7LliVmyJ13nlpz/ftrlthbb+l2\ns1RKQ1WLyuzZWnn77LPw8MPwz3+WNlDft6/GTsaODYsbof0dVXJBmxedX/yiuGM0ypOaGr058i1Z\ninGxLCeOPDIxAWG//XR55pnq7qqvD5MgRo4M9/NdK3wXA/85zZ1buLGZqGSnqkUFwhYYY8aElkop\nRQXaWyL+y+9npExnqUTn3TC6DrW1iaJS7WyzTWL9jb/pmjhRn6uvV6tk4kSt8fGkE9srrijc2ExU\nslO1opJcFObv/n3X185OxfTuL0g//asfU3KVtL8Dy2XucKN66NNHYwT+5mKXXRK7IFcbvkYryj33\nwCmnaN3WRx/pb+S11zLXcT32mC4L+bvxN6Q2GVh6qlZUklto+wu5iK539kRdmzaFX+7kC4KP8aTr\nW+QF0u6SuibDhydaKuPGdb0CvK99TcWmXz+tpB82LPV+yc05oXDTRbz+elj3UsR+jBVP1YpKcn+e\naOCvFC6w5ubwh5BcSb/ffnD00emL5bqK28NIjW/ZY98D/QzeeisxlhLlt79NfLzvvoX73HyrpL32\nsj58mejAjNLlTfKdzMCB4Xpn16o4F7auh/ZtI3wsxe+bzG67lWZiMaM8GDJEl10xCzDZqu/fX6vs\n/WeSTN++mmF57bXw05/qfoVyVS1eDGedpW5qE5X0VKWlsnFjYoO+q65KnNyqsy2VlhZ9fx9wzCee\nE62iNroWPsbW1aq5u3Vr7+bzVkemguD+/bVHGKjrq1Cu7g0bVLT+8x/tx1btWXj5UpVf0+Q7k+S7\nnc62VDZuTBxDtfVrMjqHamvJko1UIuqLhrN1mfA3YYMHF85SaWxUUTnnnMIcr1qpSlFJvjNJ/gJ6\nS+XttztnPE1NJipGx0nn8qlWUonK5z+vy7iisuWWhbVU+vQJpwSHRI+IoVS1qJx4oi6TLZVevXT2\ntgkTOqd3komK0VGuvhp+9KNSj6JzSeVe8kkL2Wa89PGnPn0Ka6n06ZNYElCK7hzlTlWLig+Mp3J/\nffyxrv/ud8Wf6KipKfGLWG1NAI3i84MfJM4OWe185jM6I2YyPjaazfoYPRr+/e/CtmXy7i/Qxp4A\nF11UmGNXE1UtKv4LmMpS8XNSnHde4vSlxSBqqTz+uE5CZBhGel56CWbOTP+8n247HSLabLOurnDz\n1nv3F8B11+nSCpLbU5UpxV5Upk6F+fPVzRWld+/EWePWr9f5GIpFVFQOPrh472MY1UIm91YunoXk\nOe+jHHigdob+3e/iHStqqXhMVNpTlZbKf/6j7eMPOEArX6M1KqCWSnTO91TT+haS5JiKYRidQypR\nWb9eM+meeQZmzIh/LB9T8ey6K3zpS4UZZzVRdZaKc+rSykSvXonFS53p/jIMo/Ooq9OpiF9+OZyv\npn//MC04l6SZqPsLtG2L0Z6qs1TipPglX+CLbakk16kYhtE5DBigc6wkB/19O/wNG8Jt6dxqv/kN\n7L13aveX0Z6qExVfKX/BBen32X13XfoviFkqhlGd1NWl3t7SonU/69ZpUP/UU7Uu5vnn2+/75z9r\ni/1kS8VITdWJyqZN2jxy+vT0+xxzDPz+9zpZFoTzwxcLExXDKA3J00h4Wlpg663Dbua33qrL5L58\nEGaR+jYtRmaqTlQ2bFA/aao5GTwi2hjOdy6+8EL1uRaL5DoVwzBKS0tL+wQegPPPb7/Nu9R79Mhe\ndGlUoag8+aRaBXGavUV9qMXsOmqWimGUF01NqcsIolmh0X2h67XJyZeqE5XTTovfeC9qGhez46iJ\nimGUnttuC28k58zR9eTCyFQT4flOydYpPB5VJyoQv8nbPfeEk/oUs1XL+vXmizWMUjFvni6nTUvs\nA/aPf2gr/ejMkN27t58Ww0/4Z66veFSlqAwfHm+/UaNgzBhdnzateMKydm1q/61hGMXHz60CcPjh\n4bpvTnnqqeqpWLhQg/dLliS+3nfo6Grz2eRLVX5Mu+wSf18frF+6NLF1SyFZu7a4bWAMw8jMDTfo\n8sknw20vvKDLX/9am7xuu6027YyKSmtr6E43UYlHVX5M48bF3zeax/7BB4UfC8CaNSYqhlFKRo1q\nv23o0Pbbhg1LLDHYuDHM3DRRiUfVfUwffACXXx5//wMPhPHjdT1aXVtIzP1lGKUlbtHi7rvDK6+E\nj6OiYtMHx6PqRGXMmNwCaiKw8866XkxRMUvFMEpHXFHZZZcwsA+JomKT68Wj6kQlH3waYTFEpa1N\n0xbTtYswDKP4jBgRb78xYxLd4FFRWb688OOqRkxUCH2lxRCVdes0nThV/rthGJ3DkCFw7726fsMN\n8OGHqffbdlvtauzxonLQQbD//sUfZzVgokJ4wff56IVk7VqzUgyjHPCdirfaKv3MkQMGaINZP31G\nY6MWLj/xBPzpT50yzIrHRIVQVLLNe50P1i7bMMoD30EjUx8+H4y/7z5dmus6d0xUCEXFdywtJM3N\n6TulGobRefgEnjgi8eUv63LdOpsyOFdMVIBDDtFloUXl44/V+rH2DoZRenwGmJ9PKR2//GUoPOvX\nm6jkiokKcNJJcPPNhRWV+noN+j33nFkqhlEO1NZqK6Zsv8fa2vBasG6d9gcz4lN1c9TnS01NYUXF\nN6U791zrUGwYlURNTdh40txfuVMyS0VEBorIYyLyjog8KiJpPZ0i0k1EXhWRGcUaT/SLVAh8u2wI\n52MwDKP8SbZUTFRyo5TurwuAmc65HYEngAsz7Hs28HYxB5PKUnn3Xa2izad+JSoqhmFUDrW1Zql0\nhFKKyhTgtmD9NuDoVDuJyAjgcKCoWeLRuxOABQtghx3gwQfh29/O/XjFavliGEZx8V6Lpia46SaL\nqeRKKUVlK+fcMgDn3FJgqzT7/T/gPKCI02i1t1T8PCsLF8LKlbkfzywVw6hM/A1mfb0+thvE3Chq\noF5E/g1EG0wLKg7/nWL3dqIhIkcAy5xzr4nIpOD1GZk+ffqn65MmTWLSpEmxxhoVlba2cPvSpflV\n2jc2wtSpOj9DtOupYRjljXd/LVyojz/zmdKOp9DMmjWLWbNmFe34RRUV59xh6Z4TkWUiMtQ5t0xE\ntgZStWvbHzhKRA4HegH9ROR259zUdMeNikoueJO3rS2xT9fSpe3nsY6Dr6TPpQ2/YRilx18L1q6F\n446DffYp9YgKS/LN9qWXXlrQ45fS/TUDmBasnwI8lLyDc+4i59xI59xY4ATgiUyC0hFqa+Hll+Hi\nixO33357aKk88gg8/ni8423YEL/dtmEY5YN3f1k3jPwoZZ3KFcBfROSbQD1wPICIbAPc6Jz7SmcO\npqZGl7/8ZfvnvKgccYQu48xl39hoomIYlYh3f5mo5EfJRMU5txo4NMX2JUA7QXHOPQU8VazxeFFJ\nxfr1KiRDhsCKFfGO19io8RTDMCoLH181UckPa9MSkEpUvvY1XToXP5urXz9YssS6ExtGpWKWSscw\nUQlIJSrnnhuuz5oVr43Lhg3w/vvm/jKMSsVEpWOYqASk+vJsFamcOfLI+G1cXnwR7rzT3F+GUYmY\n+6tjmKgERC2VUaN0OXBg4j7ZLJXWVl3++Me6HD++MGMzDKPzqK3VaSsWLTJRyQcTlQAvKocfDvvu\nq+s+JjJhgi7b2sL57FMRbRy5554wfHjhx2kYRnHxQnLTTSYq+WCiEuALHk8+ObRIRNRq8fNVQ+Ys\nsWgwv9qqcA2jqxD9jZuo5I7NpxLg56bu2zcxdrJggWZ//e1vMGNG5hqVqKhkmgfbMIzyJSok3kth\nxMcslST69m0fOxHRGhXQ59IJS2Nj+CXMZNEYhlG+dOsGW2+t6xYXzR0TlSQGDEid5dXQoMs+fdJ3\nLd1zT3jrLV03UTGMyuXoYCKOnj1LO45KxEQlwvPPw267pc7yGjtWzeIBA2DNmtSvj77ORMUwKhcv\nJiYquWOiEmHvvdXVdc45iYWPAJddpt2KBw5MLypRTFQMo3Lp0UOX9jvOHROVFBx3HPzmN4nbunXT\nL1hjY7z5USyd2DAqF5+4I1lncDKSMVHJkS23hL/+NXMW2KJFMG1apw3JMIwCE6cTuZEaE5UcOeMM\nzQTr1g1eeCH1PsOGZS6SNAyjvLHfb/7YR5cjtbWwPJij8qOP2j//7LOdOx7DMAqP9e3LHxOVHKmt\nDedUiQbsP/lE726qbepRw+iKHHYYDBpU6lFUJiYqORIVldWrw+1r12q6sQX2DKPy2XlnWLWq1KOo\nTExUcqS2NnR7RS2V1avtzsYwDMNEJUeieetr1sDf/65pxiYqhmEYJio5E202t3q1Tt51990qMAMG\nlG5chmEY5YCJSo74FvkQur9699a5VGz6YMMwujomKjmycaMuH300UVQ2brR294ZhGCYqOeLjJttv\nH2aB1daqpdK7d+nGZRiGUQ7YJF05suuusHkzrF8fZoG1tpqlYhiGAWap5EX37lBXFz7evNlExTAM\nA0xU8ibaG2jzZnN/GYZhgIlKh/BTjpqlYhiGoZiodIBRo3RplophGIZiotIBpk/XpVkqhmEYiolK\nB5g8Gb7zHZ2b3iwVwzAME5UOU1NjlophGIbHRKWD9OhhMRXDMAyPiUoH8aJilophGIaJSofxzSRN\nVAzDMExUOkz//rBunQqLiYphGF0dE5UO4kWlsRH69Sv1aAzDMEqLiUoHqatTUdmwAfr2LfVoDMMw\nSouJSgfxloqJimEYholKh+nfH+rrNQMsOn+9YRhGV8REpYP07w/vvVfqURiGYZQHJRMVERkoIo+J\nyDsi8qiI1KXZr05E/ioic0XkLRHZu7PHmon+/Us9AsMwjPKhlJbKBcBM59yOwBPAhWn2uxp4xDk3\nHpgIzO2k8cXCi8q//lXc95k1a1Zx36DE2PlVNnZ+hqeUojIFuC1Yvw04OnkHEekPfN45dwuAc+4T\n59y6zhtidvr00eXYscV9n2r/Utv5VTZ2foanlKKylXNuGYBzbimwVYp9xgArReQWEXlVRP4oImVV\nYigCN98M221X6pEYhmGUnqKKioj8W0TeiPzNCZZHpdjdpdjWHdgDuM45twfQhLrNyopTT02cXtgw\nDKOrIs6lupZ3whuLzAUmOeeWicjWwJNB3CS6z1DgOefc2ODxAcD5zrkj0xyzNCdjGIZRwTjnpFDH\n6l6oA+XBDGAacAVwCvBQ8g6B4HwkIjs45+YDhwBvpztgIT8YwzAMI3dKaakMAv4CbAvUA8c759aK\nyDbAjc65rwT7TQT+BPQAPgBOdc41lGTQhmEYRkZKJiqGYRhG9VEV4WURmSwi80RkvoicX+rx5IOI\njBCRJ4ICzzki8oNge9oiURG5UETeDQpDv1i60cdDRLoFWXwzgsfVdG7tinSr7Px+JCJvBok2fxaR\nmko+PxG5SUSWicgbkW05n4+I7BF8JvNF5KrOPo90pDm/Xwfjf01E7g9KNvxzhTs/51xF/6HC+B4w\nCnWRvQbsVOpx5XEeWwO7Bet9gXeAndCY00+C7ecDlwfrOwOz0bjY6OAzkFKfR5Zz/BFwJzAjeFxN\n53Yr6polGHddtZwfMAx1PdcEj+9F46AVe37AAcBuwBuRbTmfD/ACsGew/gjwpVKfW4bzOxToFqxf\nDknFLRMAAAQfSURBVFxWjPOrBktlL+Bd51y9c24zcA9aWFlROOeWOudeC9Y3oJ0DRpC+SPQo4B6n\nBaELgHfRz6IsEZERwOFofMxTLeeWqki3gSo5v4AtgD4i0h3oBSyigs/POfcfYE3S5pzOJ8ha7eec\neynY73ZSFHGXglTn55yb6ZxrCx4+j15foMDnVw2iMhz4KPL442BbxSIio9G7jOeBoS51kWjyeS+i\nvM/7/wHnkViPVC3nlqpItzdVcn7OucXAlcBCdKwNzrmZVMn5RUhXkJ3ufIaj1xtPJV17volaHlDg\n86sGUakqRKQvcB9wdmCxJGdSVFxmhYgcASwLLLFMad8Vd24ByUW6jWiRbsX/7wBEZAB6Fz8KdYX1\nEZGTqJLzy0C1nQ8AIvJTYLNz7u5iHL8aRGURMDLyeESwreIIXAv3AXc453zdzrKgCJTAHF0ebF+E\npmN7yvm89weOEpEPgLuBg0XkDmBpFZwb6B3cR865l4PH96MiUw3/O1Bf/AfOudXOuVbgAWA/quf8\nPLmeT8Wdp4hMQ93QJ0Y2F/T8qkFUXgK2F5FRIlIDnIAWVlYiNwNvO+eujmzzRaKQWCQ6AzghyMIZ\nA2wPvNhZA80F59xFzrmRTjsjnAA84Zz7BvAwFX5uoEW6wEciskOw6RDgLargfxewENhHRHqKiBAW\nIVf6+QmJlnNO5xO4yBpEZK/gc5lKiiLuEpJwfiIyGXVBH+Wca47sV9jzK3WWQoEyHSaj2VLvAheU\nejx5nsP+QCuavTYbeDU4r0HAzOD8HgMGRF5zIZqpMRf4YqnPIeZ5foEw+6tqzg2dluGl4P/3NzT7\nq5rO75JgrG+gQewelXx+wF3AYqAZFc1TgYG5ng/wWWBOcO25utTnleX83kULzV8N/q4vxvlZ8aNh\nGIZRMKrB/WUYhmGUCSYqhmEYRsEwUTEMwzAKhomKYRiGUTBMVAzDMIyCYaJiGIZhFIxSzvxoGBWL\n6CRzj6OtPLZBa4yWo8Vmjc65A0o4PMMoGVanYhgdREQuBjY4535X6rEYRqkx95dhdJyEJpkisj5Y\nfkFEZonIgyLynohcJiInisgLIvJ60BIDERksIvcF218Qkf1KcRKGUQhMVAyj8ETN/12B09GJkL4B\njHPO7Q3cBJwV7HM18Ltg+1dJnHPGMCoKi6kYRnF5yTm3HEBE3kd7SoH2U5oUrB8KjA+a9gH0FZHe\nzrmmTh2pYRQAExXDKC7RbrBtkcdthL8/AfZ2OnOpYVQ05v4yjMKTaSKyVDwGnP3pi0UmFnY4htF5\nmKgYRuFJl1KZbvvZwOeC4P2bwBnFGZZhFB9LKTYMwzAKhlkqhmEYRsEwUTEMwzAKhomKYRiGUTBM\nVAzDMIyCYaJiGIZhFAwTFcMwDKNgmKgYhmEYBcNExTAMwygY/x/mMNGYLMmcywAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(2)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=2')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb.txt b/_sources/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb.txt new file mode 100644 index 000000000..cbceef802 --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb.txt @@ -0,0 +1,289 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1a67952", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "params = {\n", + " 'font.size': 7,\n", + " 'xtick.major.size': 0,\n", + " 'xtick.minor.size': 0,\n", + " 'xtick.major.width': 0,\n", + " 'xtick.minor.width': 0,\n", + " 'ytick.major.size': 0,\n", + " 'ytick.minor.size': 0,\n", + " 'ytick.major.width': 0,\n", + " 'ytick.minor.width': 0,\n", + " 'figure.figsize': (6, 4),\n", + " \"axes.grid\" : True,\n", + " \"grid.color\": \"grey\",\n", + " \"grid.linewidth\": 0.3,\n", + " \"grid.linestyle\": \":\",\n", + " \"axes.grid.axis\": \"y\",\n", + " \"axes.grid.which\": \"both\",\n", + " \"axes.axisbelow\": False,\n", + " 'axes.labelsize': 8,\n", + " 'xtick.labelsize': 8,\n", + " 'ytick.labelsize': 8,\n", + " 'legend.fontsize': 8,\n", + " 'legend.title_fontsize': 8,\n", + " 'figure.dpi': 300, # the left side of the subplots of the figure\n", + " 'figure.subplot.left': 0.195, # the left side of the subplots of the figure\n", + " 'figure.subplot.right': 0.97, # the right side of the subplots of the figure\n", + " 'figure.subplot.bottom': 0.145, # the bottom of the subplots of the figure\n", + " 'figure.subplot.top': 0.97, # the top of the subplots of the figure\n", + " 'figure.subplot.wspace': 0.2, # the amount of width reserved for space between subplots,\n", + " # expressed as a fraction of the average axis width\n", + " 'figure.subplot.hspace': 0.2, # the amount of height reserved for space between subplots,\n", + " # expressed as a fraction of the average axis height\n", + "}\n", + "mpl.rcParams.update(params)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d515146e", + "metadata": {}, + "outputs": [], + "source": [ + "def find_inverse(real, imaginary, N):\n", + "\n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r, i in zip(real, imaginary)]\n", + "\n", + " f = np.hstack([0, f])\n", + " # Obtain time series\n", + " return np.fft.irfft(f, n=N)\n", + "\n", + " \n", + "def scale_lc(lc, mean, rms):\n", + " \n", + " lc_mean = np.mean(lc)\n", + " lc_std = np.std(lc)\n", + "\n", + " return ((lc - lc_mean) / lc_std * rms + 1) * mean\n", + "\n", + " \n", + "def timmerkoenig(pds_shape, mean, rms):\n", + " pds_size = pds_shape.size\n", + "\n", + " real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary[-1] = 0\n", + "\n", + " flux = find_inverse(real, imaginary, N=2 * pds_size)\n", + "\n", + " rescaled_flux = scale_lc(flux, mean, rms)\n", + "\n", + " return rescaled_flux\n" + ] + }, + { + "cell_type": "markdown", + "id": "3730fb8c", + "metadata": {}, + "source": [ + "Let us start with a standard light curve simulation with the [Timmer & Koenig](https://ui.adsabs.harvard.edu/abs/1995A&A...300..707T/abstract) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "44483c14", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABggAAARJCAYAAAAc8YkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd7xkdX3/8fe5ZffusguINEUFIyACtljAXqIxURNNYk+MKaaaXozGJJYYyy8xcWMUBVyxYEUFVtoCwtJ2WWCXrcAWtvd2e5s78/39MfdeZu+d+c4p33PO98y8nnn4yDJ35pzv99Tv+X7O9/MNjDECAAAAAAAAAADtpSPvAgAAAAAAAAAAgOwRIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA115V0AuBcEwUmSXlPz0S5J4zkVBwAAAAAAAABQ3xxJT6/572XGmL6sVk6AoDW9RtJ1eRcCAAAAAAAAABDJ2yRdn9XKSDEEAAAAAAAAAEAbIkAAAAAAAAAAAEAbIsVQa9pV+x/XXnutzj333LzKAgAAAAAAAACoY8uWLXr7299e+9GuBl9NhTcBgiAIzpH0RlXz5z9X0jMkLZA0IGm3pOWSvmuMWRZj2S+R9PuSXivpaZMf75Z0p6RvGGMeSFZ679Z/3ITE5557ri666CLHqwAAAAAAAAAAODbe/Cvu5B4gCILghZK+KumlDb7ypMn/PVfSHwdBcKekDxhjdoZY9hxJ/ynpLyUFM/78nMn//WkQBIskfdgYU4pVCU/XDwAAAAAAAABAI7kHCCQ9W7ODA5skrZd0WNLJkl6uJ968f62k5UEQvMoY83iTZV8h6Xdr/vtxSSsm/32ppF9QteP+bySdKOkP41TA4/UDAAAAAAAAAFCXDwGCKVskXSnpO8aYPbV/CIKgQ9LvSfqSpPmSnirp6iAIXm6MMfUWFgTBH+iJzvmKpL+X9L/GmErNMv9K0hdUnaz5D4IgWGaM+ZaLyuS9fgAAAAAAAAAAbDryLoCkfarm57/AGPP5mcEBSTLGVIwxiyX9Ts3Hl0r65XoLDIJgrqRP1Hz0/4wxX5zqnK9Z5hdVTQE05VOTaYESyXv9AAAAAAAAAAA0k3uAwBizzBhzlTGmHOK7P5W0suajtzT46q9Levrkv/sk/btlsZ+S1D/577Mty4wi7/UDAAAAAAAAAGCVe4Aghntr/n1Og++8vebfPzDGDDda2OTffljz0W/ELpk/6wcAAAAAAAAAwKqIAYLaOQc6G3zndTX/vjPEMu+o+ffroxbIw/UDAAAAAAAAAGBVxADBc2v+vWvmH4MgOEnSU2o+WhVimbXfOSsIghNjli339QMAAAAAAAAAEEahAgRBEDxDx79hf1udrz17xn/vDLHomd+ZuYwo8l4/AAAAAAAAAABNFSpAIOm/9URaoZ2SltT5zpNr/t1vjBlpttDJeQAGaj46JXYJ81//tJ6eHi1YsECSVC6X1dvbK2OqGZr6+/s1Pj4uSRoZGdHQ0JAkaWJiQr29vdPL6OvrU6lUkiQNDw9reLg6nUKpVFJfX9/093p7ezUxMSFJGhoa0shItdrj4+Pq7++fqqd6e3tVLlfnox4cHNTo6KgkaWxsTAMD1U1QqVTU29urSqUiSRoYGNDY2JgkaXR0VIODg9SJOlEn6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfq1DJ1ykthAgRBEHxA0m/VfPRRY8xYna8uqPl30875Bt9d0PBbzeW9/mmXXnqp3vGOd0iSDh06pEWLFk0ftIsXL9bGjRslScuWLdOSJdVYy+7du7Vo0aLpZVx22WXaunWrJGnp0qVaunSpJGnr1q267LLLpr+3aNEi7d69W5K0ZMkSLVu2TJK0ceNGLV68WFL1hFq0aJEOHTokSbrmmmu0YsUKSdLq1at19dVXS6qeNIsWLZo+Sa+++mqtXr1akrRixQpdc8011Ik6USfqRJ2oE3WiTtSJOlEn6kSdqBN1ok7UiTpRJ+rUMnXKjTHG+/9JerGqHehm8n/ftXz3/TXf2xlhHTtrfvc7Ccqa6/onl3WRJNPT02MWLFhg1q9fbyYmJsyxY8dMpVIxxhjT19dnxsbGjDHGDA8Pm8HBQWOMMaVSyRw7dsxM6e3tNePj48YYY4aGhszQ0JAxxpjx8XHT29s7/b1jx46ZUqlkjDFmcHDQDA8PG2OMGRsbM319fcYYYyqVijl27JiZmJgwxhgzMDBgRkZGjDHGjI6Omv7+fmOMMeVy2Rw7dsyUy2VjjDH9/f1mdHTUGGPMyMiIGRgYMMYY6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfqRJ2oE3UqdJ3Wr19vavqFjaSLTIZ974GZHOrgqyAIninpPklnTn60VtKrjDH9Db7/Tkk/nPzPA8aYM+t9r87vDkg6ffI/32GM+XHM8ua6/sllXSRp/dR/r1+/XhdddFHcxQEAAAAAAAAAUrBhwwZdfPHFtR9dbIzZkNX6vU4xFATBUyTdqieCA49L+pVGwYFJgzX/nhdhdbXfHWz4rebyXj8AAAAAAAAAAE15GyAIguDJqgYHnjX50T5JbzDG7Gvy0yM1/z4xCIKeEOuaL2lhzUdHo5TVs/UDAAAAAAAAANCUlwGCIAhOlHSLqrn0JemwqsGBbSF+/tiM/z47xG+e0WQZUeS9fgAAAAAAAAAAmvIuQBAEwQmSbpT0osmP+lRNK7QxzO+NMX2qjjaY8sIQP/vFmn/vaZLCyOv1AwAAAAAAAAAQhlcBgsl0PNdLesXkR8OS3mKMeSjiou6o+fdrQ3z/NTX//nnEdfm4fgAAAAAAAAAArLwJEARB0C3px5JeP/nRmKS3GWPujbG4a2v+/e4gCBpOFjz5t3c1+G1cea8fAAAAAAAAAAArLwIEQRB0SvqupDdPfjQh6V3GmNtiLvJ6Sbsn/32ypI9Zvvuvk9+RpB2SfhZznT6tHwAAAAAAAAAAq9wDBEEQBJK+Lukdkx9VJL3fGHN93GUaY8Ykfbzmo48GQfBXQRBM1zcIgo4gCP5K0j/VfO/fjDHjlrLeGQSBmfzfnVmvHwAAAAAAAAAAV7ryLoCkP5P0gZr/3irplUEQvDLMj40xf9Hg88VBELxW0vtVDYQskvRXQRCsmPzKpZKeVfOTbxhjvhWt6NZy5bp+AAAAAAAAAABsfAgQnD7jv8+b/F9YdQMEkz4oqU/ShyQFqnbIP2vGd4ykL0n6hwjrDCvv9QMAAAAAAAAAUJcPAYLUTKbr+csgCL4t6Q8kvVbSWZN/3iPpTklfN8Y80IrrBwAAAAAAAACgkdwDBMaYT0j6RMrrWClppYPlvDbP9QMAAAAAAAAA4ErukxQDAAAAAAAAAIDsESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANdeVdAAAAAAAAUAxrdvXqZ2v3anBsQm94zhn6peeckXeRAABAAgQIAAAAAABAU8s2HdIfffNBjZcrkqTvrdylj735OfqjV/9CziUDAABxkWIIAAAAAAA09T+3bpoODkz571s3aWyinFOJAABAUgQIAAAAAACA1WiprId39c76fKRU1m0bD2ZfIAAA4AQBAgAAAAAAYFWaMXKg1t7ekQxLAgAAXCJAAAAAAAAAAABAGyJAAAAAAAAArIzlb0GQWTEAAIBjBAgAAAAAAAAAAGhDBAgAAAAAAICVsQ0hAAAAhUWAAAAAAAAAWBkiBAAAtCQCBAAAAAAAwIr4AAAArYkAAQAAAAAAsKpYIgQBsxQDAFBYBAgAAAAAAIBVxTKCgPAAAADF1ZV3AQAAAIpmZLysL962SfdsOaynnDRP73/Z2XrN+aflXSwAAFLDHAQAALQmAgQAAAARGGP0wW89oHu3HJEkbdjbrzsfO6iv/95LCBIAAFqWbQQBAAAoLlIMAQAARLDpwOB0cGDKRMXoOyt25FQiAADSZ5uDAAAAFBcBAgAAgAi+tmxr3c9v3Xgg45IAAJAdW3iAOYoBACguAgQAAAARHBwYy7sIAABkrmLJMUR8AACA4iJAAAAAEIGxvkMJAEBrIsMQAACtiQABAABABHSQAADakW0OgoAcQwAAFBYBAgAAgAgIEAAA2hGTFAMA0JoIEAAAAAAAACvCAwAAtCYCBAAAABEwBwEAoB0Za4qhDAsCAACcIkAAAAAAAACsKsTHAQBoSQQIAAAAAACAlXWS4gzLAQAA3CJAAAAAEAFzNAIA2lGlkncJAABAGggQAAAAREB8AADQjpiDBwCA1kSAAAAAIAr6RwAAbcg6go5ZigEAKCwCBAAAAAAAwMo2BwEAACguAgQAAAARkGIBANCOKpbbH+MHAAAoLgIEAAAAAADAihEEAAC0JgIEAAAAAADAyhAgAACgJREgAAAAiID+EQBAO7Ld/5ijGACA4iJAAAAAAAAArGxzEAAAgOIiQAAAABAB/SMAgHZkm4MgYJpiAAAKiwABAABABORgBgC0IyYpBgCgNREgAAAAiIDuEQBAO7LFBwgeAABQXAQIAAAAAACAlS0GQHgAAIDiIkAAAAAAAACsbKMESL8HAEBxESAAAACIgD4QAEA7sgcIMiwIAABwigABAAAAAACwsqYYIkIAAEBhESAAAACIgC4QAEA7so0gqHBzBACgsAgQAAAAAAAAKyYpBgCgNREgAAAAiII0CgCANsQkxQAAtCYCBAAAABHQBQIAaEe2NELEBwAAKC4CBAAAAAAAwMo2SsAQPgcAoLAIEAAAAETAW5IAgHZkG0HAJMUAABQXAQIAAAAAAGBln4Mgw4IAAACnCBAAAABEQBoFAEA7st39bMEDAADgNwIEAAAAAADAyjYHAQAAKC4CBAAAAAAAwMqeYojgAQAARUWAAAAAIAL6QAAA7ahSsfyNeyMAAIVFgAAAAAAAAFgxSTEAAK2pK+8CAK1qZLysHz64S2t29+rCp5yod7zoaTp5/py8iwUASIhOEABAO2KSYgAAWhMBAiAFI+NlfWDxSq3cflSS9BPt0Y9X7dH3/ugSggQAUHB0gQAA2pFtngHujQAAFBcphoAU/PzRg9PBgSmP7OvXdQ/vzalEAABXmIgRANCOrPMMeHBv3HV0WJfduVWfXLJBdz52MO/iAABQGIwgAFLwqZ9tqPv5Z296RB94+TnZFgYAAAAAErKlEcp7kuLH9g/ovVes0NGhcUnSN+7drr95w3n6mzecn2/BAAAoAEYQACk40D9W9/PRUiXjkgAAAABAcrYggMk5ydD/3r55OjgwZdHtm3VsxmcAAGA2AgQAAAAAAMDKOgdBRvEBY4y2HBzQvVsOa2S8PP35Dev21S3T9x7YmU3BAAAoMFIMAQAAAAAAK1sQIIsUQyPjZX3wWw/o3i1HJEnz53Tqyg+8WC9/1qkNf/PIvoH0CwYAQMExggAAACACD+ZhBAAgc7Y5CLJIMfSFpY9NBwckaXi8rA9+80GNlsqWXwEAgGYIEAAAAAAAACvrHAQZBM+vvGfbrM+Gx8u6deOBhr+xpUUCAABVBAgAAAAiyHsiRgAA8mCfgyC/e+P1a/bmtm4AAFoBAQIAAIAIeBkRANCOrCmGuDcCAFBYBAgAAAAAAIBV3pMUAwCAdBAgAAAAiIA+EABAO7LOQZDj3ZHRCwAAJEOAAAAAAAAAWPmbYogIAQAASRAgAAAAiCDPiRgBAMiLr5MUAwCAZAgQAAAAOEIHCQCgVdlTDAEAgKIiQAA4Zusc6u4MMiwJACANdIIAANqRfZJi5iAAAKCoCBAAjpXKjVuoczo55QCgldFJAQBoVb7OQWBbNbdlAACao7cScGxsotzwb3O6OOUAoPBIsQAAaEO2kdK29EMAAMBv9FYCjo1NVBr+jQABABQffSAAgHZkDwJwdwQAoKjorQQcI0AAAO2LSYoBAK3K1xRDAAAgGXorAcfGSpYUQ8xBAACFRxAAANCObCMI8p2kmPsyAABJdOVdAKDV2EcQdGZYEgBA1uiiAAAUyWP7B3TvlsN6ykk9euV5p2phT3fD7xrLXc7XSYoBAEBzBAgAx0gxBADti5cYAQBF8Z0VO/Qv166f/u9zT1+g7/7RJTp9YU/d79vucUxSDABAcdFbCThmG17bEWRYEABAKugDAQAU3bGhcf3rdeuP+2zLwUF98bbNDX9TsUQBbKMLAACA37wKEARB0BkEwfOCIPjDIAguC4LgwSAIxoMgMJP/uzPCskyC/13loC7nxFjvlqTrRf54exQA2hcdJACAIrjmod11n1u+e//Ohr+xjhLIM8UQt14AABLxJsVQEARvl3S1pPk5F0WS9uddABQZLVQAaGV0RAAAiu6uzYci/8Y2UjrXSYpzWzMAAK3BmwCBpJPlNjjw5QjfvUjSa2v++zsOyyFJA5K+FeJ70Vtp8A4dRwDQ2nydpBEAgLx4e/vztmAAAPjDpwDBlAOSHqj535sk/XXUhRhj/iLsd4Mg+FHNf64yxqxv+OV4jkYpD1oXHUcAUHxcywEARRfnXmYbJcC9EQCA4vIpQHCzpLONMcclPQyC4JI0VxoEwZMk/VrNR99Mc31ofbSNAQAAALQab1MMpbDu8YmK5nR5NWUjAACp8SZAYIzJK+//eyTNnfx3SdJ3cyoHWgRvzwBA++IeAAAoAlu6vEZskxS3yu3vxw/t1pd+vlm7jo3o+U87SZ/7refp/DMW5l0sAABSRUhc+kDNv28wxhzOrSRoCbY3WFql4QwA7YwgAACg6OLcy6zPOTneHF2NXrjjsYP6h2vWaPuRYZUrRqt29uq9l69Q7/C4k+UDAOCrtg4QBEFwvqTaFEakFwIAALHFeSMTAICsxQsQuF1eFqLcl5c8vHdWPY4MjeveLUcclwoAAL94k2IoJ7WjBw5LuiGl9XQFQfBGSS+WdKqk0cn1PShppTFmLKX1Igeeto0BtJG+kZLW7u7Vs89YqNNP7Mm7OAAAwDPxUgz5OUmxq3X/ZPWeup9/7Np1esvznuJmJXBqT++IJsoVnf3kE/IuCgAUWtsGCIIg6JD0/pqPvmuMKaW0urMkLW3wt2NBEHxF0ueMMYMprR8Z8vXtGQDt4Tsrdujfrls/nSf4919xjv7trRcqCIJ8C9YmuAcAAFqVbQ6CPCcpTnvdpYlKqstHdL3D4/rgNx/UgzuOSZIufMqJuur3X8KLMQAQUzunGHqdpKfX/Hde6YWeJOljkh6cTHkEAEAsG/f261+uXX/cA/w37t2uJWv35VeoFpRnnmUAAFyIcyuzjiBIUJakbIGLQLwg0Yr+8Zq108EBSdq4r19/fvWqHEsEAMXWzgGC36359zpjTBp3kwFJV0l6j6RnS1ogaa6qgYl3Srqt5rvPlnRzEASnuVp5T0+PFixYIEkql8vq7e2d7tTo7+/X+Hh1sqWRkRENDQ1JkiYmJtTb2zu9jL6+PpVK1YEVw8PDGh4eliSVSiX19fVNf6+3t1cTExOSpKGhIY2MjEiSxsfH1d/fL6naodLb26tyuSxJGhwc1OjoqCRpbGxMAwMDkqRKpaLe3l5VKtU3NQYGBjQ2Vs3CNDo6qsHBQa/rND5erVO3ypqnankCGS0IxqRKuZB1asX9RJ2oUyvW6YfLN0uSOlWpXnMmfeeuRwpbJx/301SvyjyNq1vV38zRhOapJFPQOrXifqJO1Ik6USfqZK/TfI2rq+Y+1qOStU7GSHNV0tzJ73WqrBMm2xtTZU2zTjPvuZLUoYq6J0Y0FaKYWadgYizSfqqtkyQtCMbUGZhc91MrHntJ6jQyXtbPN+6dtZ9W7ziiQwNjhaxTK+4n6kSdqFO8OuWlLQMEQRAskPRbNR+lMXpgn6SnGmN+3xjzA2PMJmPMkDFm3Biz2xhzjTHmjZL+RE+8cPFMSZ91VYBLL71U73jHOyRJhw4d0qJFi6YP2sWLF2vjxo2SpGXLlmnJkiWSpN27d2vRokXTy7jsssu0detWSdLSpUu1dGk1U9LWrVt12WWXTX9v0aJF2r17tyRpyZIlWrZsmSRp48aNWrx4saTqCbVo0SIdOnRIknTNNddoxYoVkqTVq1fr6quvllQ9aRYtWjR9kl599dVavXq1JGnFihW65pprvK7TzkfWSJLO6zysN86tdtadEIzrnT3r1F0ZK2SdWnE/USfq1Ip12rnmHknSaR2DemfPuumynntkeWHr5ON+6lG1rG+cu1nndR6WJF3YdUCvmbNVxphC1qkV9xN1ok7UiTpRp8Z1MpLePPdRndNZfQv7Bd179fI5O6x1qhijl3Tv1ku6q+U+q6Nfb5tb3SbGpF+nmfdcSTo5GNX5h+/WnMmgwMw6LTy0JtJ+qq2TJL2zZ51OMQO57Sep9Y69pHXafmSo7n46rWNQD+04Wsg6teJ+ok7UiTrFq1NeAt+HyQdB8AlJH5/8z2XGmNc6WOYHVH2zX5ImJD3dGLM/6XITlOc/JP3z5H+WJZ1ljDmQYHkXSVrf09Ojrq4urVixQhdccIEGBgZ00kknKQgC9ff3q6enR3PmzNHIyIgqlYpOOOEETUxMaHBwUCeffLKkajRu/vz56u7uno7EzZ8/X6VSScPDwzrppJMkVaNxCxYsUFdXl4aGhtTR0aF58+ZpfHxco6OjOvHEE2WMUV9fnxYuXKjOzk4NDg6qq6tLPT09Ghsb0/j4uBYuXKhKpaL+/n6deOKJ6ujo0MDAgObMmaO5c+dqdHRUExMTWrBggcrlspd1enBnn37vWw+rW2V1qawRzVEgoxOCcT3zKadqyV+9unB1asX9RJ2oUyvW6YWfvEWj6lanKpoXlDRo5kqSTgjG9PCnfq2QdfJxP/3qlx/UvoExzdO4JtSpkjo1RxPqlNHKT7xF87s7ClenVtxP1Ik6USfq1I51Ojw0rmtXbtWOY2N66bln6A3nnyJTKc+q07svX6H12/ZrXJ2amLyPdchoVN3a8uk31a3T31+zXresqQYRxtStTpXVE0xoyMzV6y84Xf/99vNS3U+/+B93HHfPHVG3OlTRpU+fr/t2jUgKNF/jx9Xpjc85TV/+wMtD7acLP3XHcXWSqm+mB909WvepN3PseVKnx4+V9LYvLZu1n0ZMt77y/pfolecsLFydWnE/USfqRJ2i1WnPnj26+OKLVeNiY8wGZaRdAwS3S3r95H/eYIx5a9JlJizPAkkHJc2b/Oj9xpjvJFjeRZLWT/33+vXrddFFFyUrJEK7d8th/faV99f928Vnnaif/eWrMi4RgHZxzkduaPi37Z97S4YlaW2XfuZ27e8frfu3tZ/4ZZ3Y051xiWarVIy+/8Au3bPlkM48cZ7e+eKn6TlPOTHvYgEAUrSvb0TvuXyFdhwZnv7sN194lv7rnc9XR8fxufjf9dXlWrn9aN3lNGoz/MV3V+lnDeY1eu2zT9NVv//SmCUPp1E750VnP0kP1eSjr/Xm556pr/z2ixItf8HcLq3/5JvCFRKpW7e7T7/2f/fU/dsVv/tivfHCMzIuEQAkt2HDhlwDBG2XYigIgmeoOkHxlLwmJ55mjBmUVNuj/Jy8yoLkbDE3z+NxAIAQTK5TMYbzTz9eq3/+6TrduG6/Ft+7Te/86nI9vKs372IBAFJ01X3bjwsOSNJPVu/R+r19DX4RTZ7PObYXG22TJ6P1lC37u7PtergAwI12vHy+X9LU6xPHJF2fY1lq1b6KcWpupUBito4j2q4A0Np8uM7vOjqsHz20+7jPBscmdMXdj+dUIgBAFr62rP51/it3bJ31WZxgt60jPu1Oel7CwpRypfEOD4Kg4d8AAI21Y4Dgd2v+/X1jzFhuJTneCTX/HsqtFEjM2njNrhgAgJTE7Yh4cPtRve+KFXr+J5fq/V+/X4/tH3BbsElX3be97uc3NEgLAQBobfVSCcW5l9k6ZvNkKxXBg9ZjG03SSYAAAGJpqwBBEASXSjq/5qPc0wvVeGHNv/fmVgqkyvc5PwAACTW4zG8+MKAPLF6p+7YeUd9ISXdvPqx3fW259vWNOC/CpgPpBB4AAO3NFh9IPcWQ9Y88Y7UT23HY2UGAAADiaKsAgaQP1Pz7UWNM/ZlkMxYEwRskPb3moztzKgocoHkKAK3N+qZig7/+bO0+DY2Xj/usb6Skm9fvd1gyAADCifPMkuc8APZ1p7pqeMaeYijDggBAC2mbAEEQBHMlvbvmo9RGDwRBMCcIgjkhv3uapK/WfPSIpFWpFAyZsDVeebkFAIovzrV80e2b637+ySUbE5ZmNu41AIBa9fpM44xstk0Om+cIgjjzKaC4SDEEAO61TYBA0q9LetLkvyuSvhNnIUEQbA+CwEz+76oGX3uqpK1BEHw4CIKzGywnCILgLZIekPSsyY+NpH8wxlTilA1+oPEKAO3Lh8557jUAgGbi3Clsb+qnPYLA5tF9jVPruegvpsvZL7bjsIMUQwAQS1feBagVBMGNqnau1zqz5t8vDoLg4To/fbMxplne/trJiW83xuyOUcQonibp85I+HwTBdknrJB2WVJJ0mqRLNLuuHzbG3JhyuZAjHzqOAABJ+X0xr/CaAQAgBdaR0qmvu/HfJiw9xi6ev/y+67cf20gW4gMAEI9XAQJJF0qq+8b9pBMkPb/O59Z0PkEQnC7pV2o+uipyyZI5Z/J/jeyR9OfGmOszKQ3SZZu8K7tSAEBdmw4M6Ker9+hg/5heff6p+vXnP1UBw7Gd8eE6zwgCAEAzcTrOraMEUk8xxL0NVbbjsIM2LQDE4luAIC2/rSfq2i/ppymvb4ek50p6maSXS7pI0qmSnixp/mQZ9qmaXugmST81xpRSLhMyYmu8xsn1CQCurNnVq9+58n4NjE1Ikn68arfW7u7Tv771wpxLVizW/hEPrvMeFAEA4BFXfaa2yWHTn6Q41cVb0eXsF1tbi5deACAerwIExphzUlru/0j6H0fLOifEd4yk9ZP/u8LFetEa6LMBkKev3LllOjgw5ev3bNOfvuZZOm3h3JxKBQAAsuZ6DgKec5CVsiWVog8vagBAEbXTJMVAJqxtEtorAHJ0y4YDdT+/+v4dGZekdcW5zN/+SP39kkYZeHAGgPZT99If435gu4fkOUkx2ovtWOMoBIB4vBpBALSCHFNzAkAsWw4O5l2EQnF9Lf+nH6/Tq8/bp5FSWa867zS95yVPV0eSWfYsBSxXjLo6GX4PAIjOlmIo7fhA3OUPj5fdFgS5s06WzQM3AMRCgABwjDc3ARQNV6Zo4jyYzu3q0NhE/THxhwfH9JPVeyRJN63fr3V7+vTZ33xu/PJZ9mjZmMwaf8YY3brxgO7efFinL5yrX3v+U3XOqSdktHYAgE3RUgzFnaR42aZDGhkva96cTsclQl5sKYZo1QJAPKQYAjJEcwWAl7g4RRJnc82P0DHx/Qd2avOBgRhrqbLFoivWh2q3/vOWx/TH335I316xQ1+4dZPe/pV79ci+/uwKAACQ5G6SYnuA3N/GxG2OU/khX9YUQ/4ehgDgNQIEgGM+N44BoJ64b+Vhtkbbcv6c8O/tGyP9z22bEpShsXJG96hDA2P6yp1bj/usd7ik/7tjSybrBwDYxbkdWEcQeJpiSJI+c+MjyVZOZj6vMAcBALhHgABwzJ5iKLNiAADy0OA6H2UEgSTduG5//CJYbja2/NEuNZr4+oa1+zJZPwAgvkb3EescBCl3zSZZ+r6+0fxWDucYQQAA7hEgAByzT1JMiwWAf3iYiibO9ooaIEjCVrxKRgGCDXtJJQQAPrM9lzS6z9k6ZtNOYccobUyxHWscJwAQDwECIEO0VwD4iGuTO4025Qlzs5oa2L4/s0oxlFUgAgDgXqMruP1FqBZGiiGvkGIIANwjQAA4x5BHAGhlcd5O6+zIrnfBVr6sOu6zCkQAAMKYfQ+Kc5m2XdvTfnObuwqmkGIIANwjQAA4RqMEQNGQ/swdH+4BPkxSnNVcBwCAeOwTDtf/Y54dsz7cX+GHsi3FEG1aAIiFAAHgmH2SYhosAPxDX240cTZXlpd/a4qhjHa2rRMJAOC3OCmGHjswoPsfP5JKeaorT2/RKBbryw4cJwAQCwECIEO0VwCgBcSYjD7LN9ps60p7Esms1wMAiMf24lKjPzULMn/gGyu1ZldvglL5iZi3X2zpEtlVABAPAQLAMesLDbRYAHiIa5M7jbalNyMIskoxxEEFAIXVKNDcbHTYaKmiH6/anUaRck0dMzg2oZItrw0yNWELEND8AIBYCBAAjtkar+REBOAnrk1RkGKouawmQwYANBfMnqPYKkmw+1vLd0RbWUh5d/x+f+XOfAuAafYRBLQ/ACAOAgRAhvJu2AIA0tUwb3OmKYYay2puAEYQAEDryXN+mbzvKv93x5acS4ApjCAAAPcIEACOMWcSAB/FyTWM+uJMOJ/tCILGK8tukuJMVgMAiClOWtSs7iE+OtA/lncRMMkWqGrfIxQAkiFAADhma5TQCQcgLwQvs9Goc96XbUyKIQBAM43nIMi4IDXiBOfRmmxtGY4TAIiHAAHgmL1RQoMFQD7swUuuTVHE2lqezEGQWYohAgQA4I1Kxejo0Phxn1nnTWs4B0H7phiCP6wphjIsBwC0EgIEQIbogwOQlzzzBreThp0qmc5B4EOKIY43APDFkaFx/eK/36p3f2259vSOSIo3sjDP+WW4rWCKdZQixwkAxEKAAMgQ7RUAeSHFkDtxOimynYOg8d+y6rgnQAAA/rl/21H96bcfUqlcsX6v0UgB0sfBB3kGqgCgVREgAByzT/hFYwZAPuKkEkB9cUYDZLmJbetq0ifkDCmGAMBP6/b06cZ1++ypB+t8tmrnMfWPTqRVrKayHIkHv1nnIOA4AYBYCBAAjlk74TIsBwDUYgRBNnwIttje3s8uxVAmqwEAxPCP16y1/n3mbWT3sWG9/8r7UyxRCNxXMMk+SXGGBQGAFkKAAMgQDRYAeQk7uskYo+2Hh3TTun3aO5mnGMeLl2IouxuALQUEkxQDAMYnKpHuS7dtPKCh8XKKJWqOuwqmECAAAPe68i4A0GpIMQTAR2GGXFcqRp9cskHfXL5j+rO/ecN5+ps3nJ9m0VpKo+2c5dV/wvLgnFXHPQECAPCb9So944+fWLIxzaIAkdhTDAEA4mAEAeAYMQAAPgpzbbplw/7jggOS9MXbNmvF40dSKlUxxbnMZ3lvsD04ZzWxHwFxAPCcNfWgf9dwbiuYYmvL0P4AgHgIEAAZorkCIC+21DJTf7rynm11//6TVbvTKFJLarSZfRlBYEs/5FJWgQgAgHs+XsJ9DFogH7a2DEcJAMRDgABwLMpwXQDIiu3yM/XQ/dCOY3X//sMHCRCE1XA7Z9jbYhtBYAseuC1DJqsBAMRkbxf4x8egBfJha8twnABAPAQIAMdswxpprwDICw9MDsWZpNh9KRqasPTOZzWCIKvJkAEA8VifWbiGw2P2tgzHLgDEQYAAcMzaXKGxDSAn9o6ADAvSAmxpDhpt5zjbOO49w4c5COwprTjgAMBnPl6lfSwT8mGfgyDDggBACyFAAGSI9gqAvNgemHiYiiZWZ3+MO0Dc/WIbem8LHrhkWw/HGwDkz/5SU2bFCI3gMqZYUwxlWA4AaCUECADX6IQD4CEuP9lotJ3jBRXisXXOZ5X6hwkEAaC4fJwQmOcoTLG2MThOACAWAgSAY9bUEx42tgG0B2vKF65NzjTazFk+sNpHEGRTBvvwf443AMib9VLMZRoes45S5OAFgFgIEACOkcYDgI9s159mWWe6OwO3hSm4OJfyWL+JcdNo9pvsJilu/DduhQDgN67T8BlpDAHAPQIEQIZorwDIi/WNqiYXpzmdNBfCazRJcYzO/hhrb9b/n9kkxTy8A4DXrKOePbxOJy3Tt5ZvP+5eXK4YPbyrV2t29WY2Pw/csI5SzLAcANBKuvIuANBqrI0SWiwA8pLg+jO3u9NdOVpAVily4qym2RwDmU1STEorACgsH6/TScv0b9dt0JHBcf3tG8/X7mPDet8V92vn0WFJ0tlPnq+rP3iJi2IiA/YRBP4duwBQBLwSCDhmTTHkYWMbQHuwp3wx1gcqRhCEl/ccBM0CBFlNUky6PQDwWztep6+6b7vKFaO/+f7D08EBSdpxZFh/+4OH8ysYIsmqLQMA7YQnfsCxog3XBdAeml2bxiYaz147p4vmQq14cxDESTEU/TeVJpMQk0YBACAV77nERXn7Rkq649GDenDHsVl/e2D77M/gJ+YgAAD3eOIHMkR7BUBemj0wjZbKDf9GgOB49pFi0X8TZz2N+JJiyIaHdwDwm4+XaVdlWr+3z9GSkBfbyxCM2AeAeHjiBxyzD9elwQIgH7aOY6MmIwhIMRRawxRDGa3flxRDNjy8A0D+rO0CD+4VM7kq09wu5lUqOvuxm2FBAKCF8MQPOGZrk9BeAZCXZsFL2wiCud00F5KK07ERbwSB/e/lJimIssDDOwDkr107WRkVWXzlNj12ASBN3B2BDNFgAeCr0RIjCFxo9HZ8Vpf/ZoEIP0YQAADy5kHGuUhcFXduggDBl+/YogkfIu1trmKbgyDDcgBAK+nKuwBAy/Gg8wUAZmqeYog5CFIVZw6COJMUNx1BkP89ysfUFYALfcMlLVm7V5sPDOgXz36S3vzcp6ibACs8ZbsW+3iZdlWmJG2a/7zlMW05OKj/efcL3BQGsdhHEHh48AJAARAgABxr1iQxxigIgkzKAgBT7CmG7CMIyNcbnss5CFp2kuK8CwCk4OjQuN53xQo9un9AkvTN5Tt08/r9+tJ7X6guggTwkO124OdcMW7K1JHwOeynq/fon9/8HJ22cK6T8iA6+yTFAIA4aK0CjjXr0OGlBgB5aDY/im0EAX1bycWagyDGegoxSXH+RQCc++GDu6aDA1NuWr9f9287mlOJALt2nYPAxWtaP3xwl4OlIC5rW6aFj10ASBOP/AAAtAH7w5TRmGUEgQcvnReGyxEELtc/xYcRBDy8oxV97qZH635++V2PZ1wSIJw087inkebF1SI7HPSAHB4cS74QxGZry/g5+gUA/EeAAHCsWYOYJguAPDR72apd3yR0reEkxXHmIIjxo2YBAB/iAz6MYgCysmzTobyLANRlTTFUc52OE1hO4zLvapGBgzEELpaB+OxzEGRYEABoIQQIAMfCzEEAANmzP0yF7ShAPHHeaEsjxZAPb9blXwIAgPXFgJp/l8qWhO8xlh2XT00RppPLFxmGAMA9AgSAY03nIMimGABwnObzo6SXaqCdNEwxFGsEQQq/8WBnEnBCO5nTxeMWshH12hp25OBEjBEEPoxWa8RF5z7xgXxZUwx5fOwBgM9osQIZo9ECIA/WEQIyjCBIWaxNGOM3hZikOO8CABmawyzvyEjUy7u9E/+JP074MoLAo7sHIwjy5cV8SgDQYrryLgDQapq/vEmDBkD2bNceY+x/5zmsOJrtKw/iA16UAcgKIwgQ1tZDg7rzsUOa192p119wus48qSfS76NeWq0jB2v+VCp7MgeBR/eOgAhBruzpsTw6UACgQAgQAI41naSYNguAHDS79thHGCCpOKMw4jzkNp+DIH88vKOdMIIAYSzdsF8f+u6q6c74k+d36+oPXqKLnnpS6GVETzEU7nsTFU9GEDhapIuyER7IV9j0WACA8GixAgDQBpo9TNnfJORpK6yGcxA4XJb9NwUIUvtQBiAj3V10JcKuUjH66E/WHfemfu9wSZ9csjHScqJeWq153Gv+PRFjBIEP6ewacVI0Tutc2bJe+XvkAYDfGEEAZMzj9jKAGA70j+pHD+7S5oODetHZT9K7Xvx09XR35lKWIIg3Sa4Rb2O50ujt+Fid/THW3+yNUB86bfIvAZCdbkYQoIkV247oyND4rM9XbjuqkfGy5s0J16ZweXk/PsVQnBEE7soyxdXoMxdl6yDFUK6sbRkP2jkAUEQECADHmrVJSK0AtI79faN619eWa+fRYUnSdQ/v1a0bD+jrH3hJofJOG2OaBBC4bhWFDwGAZgpQRMAZUgyhmcf2DzT822gpQoDA4b26dlkTMXrU0xh5SIohTAk7+gUAEB4tVsCxZo1zOkaA1vG9lTungwNT7t58WPdvO5JTiRpr9kBse/6PkX64bTVOMZRNB4vtoTnuMl0j4IRWYzvv5hYoWIx82C7bUd5Ub/URBM74XDaEUsRRr6Olsu7adEg/enCXdh8bbv4DAMgYIwiAjHnaZgEQw6LbN9f9/D9veUyvOu+0jEtj12w0tvVhiytXYlmlGEoyGXVWfH14B+Ian2jcgUqKITTjQ+B2ptoiNQs81+PzaDYXZSPFUL4qthEEHh57R4fG9b4rVujRydFCHYH0xfe8UL/+/KfmXDIAeAItVsCxpimGPGy0AHBr7e6+XNZre1xteuWxjSDgshVao02V1STFzTo+fAj25F8CwK2xiXLDvxEgQDOuAvRORxDUrDeNe1Ec7lIMJV8G8YF8la3njH++sPSx6eCAVD0G/+4HD2tgtJRjqQDgeLRYAceaNUp8bLQAaH3NOiDsE76lUKAW1SgIHG8EQZy3NpssM4N92SwQTqAcrcY2gqBI89EgH9YUfzldLmsv03E6+9O4zLsKcPsQKEcyttSXPjYxrr5/56zPJipGP1u7L4fSAEB9pBgCHGs+giCbcgBoP0EQNLzINE8xZPl7mz9Mj09U9L2VO7Xi8SM6+8knxFxKNtuw+QiC9HEfRLsZI8UQErBdt6N0zqd1r46z1NYfQcAQgjzZX3opjjsePaj3vvQZeRcDACQRIACyV6RWC4AWYn+YsndQpFCcgihXjD703VW6deOBUN9vmGIoVo6hxn/acnBQdz52UCfO69brnn26Tls4d3I9vL0PZG3cMokrkxSjGdtlOVKAIKVJiuPcN3xuN/SPJE/rQnggX9YUQwVq5xBnAuATAgSAY83e3mn3N3EBpMf2nNE09YztbwV62HJt7e7e0MEBG5fxgRvW7tNffX/19MSRpy6Yq+/90SU674yFfqQYavb39j2c0KLskxTTAwQ7+4Sr4Zfj8tKadA6CNNoNrpb4n7c8lngZ3MbyY4xpmXYEk10D8AmvtACOkVoBgI/sKYaM9WG+nS9bX75jS6TvN9qMcTpL6v2kVK7oIz9eOx0ckKTDg2P69A2PSLJ3NNnK51LTUQxtfUShFTEHAZKwz0EQZQSBu2vrcSMIEv7eFZ9eVijbkuAjVWUP2jmuEB8A4BNGEAAZK1CbBTH0jZR052MHtevosF72rCfrRWefkneRAEn2B2sje8eyz6kC0rZ+T7+T5bjahHc+dkgDYxOzPl+26ZCMMSFGiqS/MxlBgHbDHARIwlWKP7cjCGrKEKMRkMocBM6XGJ8lqxhS5kM7xxXmsgDgEwIEQMZ8evsFbh0aGNN7r1ihLQcHpz/7uzeer7/6pfNyLBVQ1ezKY33g4roVQfRJohsvafaPNuzta/x907xTJotgT9ORdOkXAciUbQRBVwcdQLCzPRtE6Zx3OwdBTYqhGL9P417jU1MkjQAIwmm27Yu0a7g7APAJr7QAjhEAaF+X3bn1uOCAJP33rZu0+9hwTiVCu7G9iGR9oDL2DoB2HkEQ9eWutFMMWb8vPx6cm87Fw30SLWa8XG74N452NGOfcDXCglI62OJcslu9A71Zmhukp2mKoYzK4QIjCAD4hAAB4BhvTravxfduq/v5t5bvyLgkQB2Wi0+56RwE7XvlcvXo5nKS4obf9yXFEPfBQjg0MKZv3rddn1qyUbduPEDgJgHbCAI2K5pxNgeBw6tr7ZLiBbjTOPD9OZkIEOTHFlCTinXNJTwAwCekGAIcI/cyZrpr0yH985ufk3cx0AYCBWqY4sbyu4ox1k4IrlvhNdxUcVIMRdzwvowgaMaHMrS7vb0jes/lK7TzaHWE2+J7t+l3X3a2PvnrF/FGYwy2OQjaOcCKcOxzEOSVYqjm3zF+bzsn4vLp3kGAID+myaFVpGsut1sAPmEEAZCxIjVa4IZPDzRoX9YOiIr9OG3n52BXnaVZbEJjmgcV/HhL3IcytLcr7942HRyY8q3lO7T10OCs746WGqfPQRWdhUjC1f3X7VH4xNLipAv6959tdFkYSX7dOZq9xY70MIIAANJBgABwrGmjpECNFt/t6xvRjx/arWWbDtGBATRhnYKgSWoaPzqViyHtOQiaLabS9M269DVNMcThlLtGKfGuvPuJzx/YflS/8sW7dMG/3qzXf+FO3bJhf1bFKxz79TO7cqCYbAGmKPcOl/fq40YQxFjsisePtnTboVxu3br5rmgBWdt50MEQAgAeIcUQ4FjTyRkzKkeru2XDfn3o6lWamGwknnf6An33jy7VaQvn5lyy2Rg1Ah80m4SYFEPpyqRjXvZUUZInkxSnXwTEtHLbUUnSrqPD+sDilRoerwbfHz80pA9dvUo/+tOX6YXPeFKeRfSS9fqZYTlQTLbj5x+vWatr/vRl6ups/l6fy2PNNPh3FP2jEzppXreL4lTL4dHJxAiC/DRv55jp/79qZ69WbjuqXzjtBL36vNM0b05nFkWcUR7LH4kPAPAIIwiAjNGeTG60VNZff3/1dHBAkjYfHNTnbno0x1I1xj6HD5rlOGaS4vqivtzVaDvGuQ5E/Y0xzdNRxEkVERUjCIpratfc9siB6eDAlImK0U3rGUVQj/X6yfGOJmzHyMO7erXo9s2JlxNV7bLi3je6Otz2fvo0IqFSsLfYW0mYFyGMMfrPWx7Tb112nz5/86P6k28/pPdduUL9o6WMSvkEW3kDIgQAPEKAAHCsacdIG3e0uXLz+v0aLc3Oo/HjVbtzKA3gEdtzRpMcx/YURLFLVHiRAwQNP89mIzadgyCLMjT9exsfUAXxySX184dfftfjGZekGOgrRBLNOjx/tnZfqOW4vLYedy+JudiP/mSd03QwPp1mjCDIT7Njykh6dP+AvnLn1uM+X72zV1fduz29gjVgKy4ZhgD4hAAB4FjTjhHak4ndvflw3kWIhF0OH9hTCNnnIMjirXNfuXq7K9YIgohXD2NCdFpkkWLIgzRHQJbs10gOeNg1u8duOzwUbkEuRxAc9+94C75+zV4tum2TmwJ5ZoKoYG6azrVkpG8t3173b/99a/bHo30EAQD4gwAB4JoHb2/CLz4NiUZrsz1oNAsAkEO7vugphhp8HmPdkVMMyR7okTJKMdTs7+18QKElMUkxknDV1+x0DoLaFENNOmRtbnY4ublP5xIphvLT7EUII6MbQo66yYKtuIwgAOATAgRAxugsBpAH+xwE5NBOXawRBBG/32Q/Tn0nb6QYQsvx4cRCYbl6NnA6B0HNdTpJCs9NBwZdFEeSX/cOl6mTEE2YOQg6HM9/kQRzEAAoCgIEgGO8OZk+nx4QwihWaVFktjeRbB0QFWM/q9o5sBn10a3Rloxz3Yq63Y1CPDhncEVikuLiaudzPQlGECAJV53NTq/vk4vadXTYn8nJPTqX2jn1Yt6ajd4wkjo8ejXfNuKhg944AB7hkgQ4RnsRs3BMwAPWFEMVUgylLYt7gzEmVG7e9AuSwTqAkMoVo93HhlMNftivn5wQsPPxZfSpIl3zUPzRA62MOQjy03yuJSOPBhDIWNplgUeBDADoyrsAQKtp9iBIAAFAHpqlGGKS4voiP7y5nIMgxveb7ass+jS4D8IXP3xwlz5z4yPqHS7p1AVz9ZnfuFi/fNGZztfDCAKEdd/Ww1q64YB6ujv1luc+Rc992knO7rFOUwxNLuvr92xzt9CEfDqVSDGUn2bb3sivjncmKQZQFAQIgIzxJpkDBduEBSsuWlSzAICtY6GdO7iipxhq8HmMjRh5kmIT5jcepBjiquitsJ0qj+0f0M8fPaj5czr1hgvP0Fknz0u5ZNHd//gR/dOP104fj4cHx/TnV6/SjX/9Kp1/xkKn6yI1E8L43sqd+uhP1k3/9+J7tulrv/siZ/fYNI5Cn45tj4rS1i9O5C3MpvdpBIE1QOBROQGAAAHgGLmXMZNPD1dobbbJzmw5W5tNbsshnFy8TRg1QhBu8r60MRdPcYW5X92wdp/+6vurp9/i/MLSx3T1By/Vc592UtrFi+SGdftmHWsTFaMb1u7T+W90GyAgRRuaKVeMPnvjI8d9Nl6u6L9ueUznnr7AyTpctjenArk+vSjvU3CZEQT5aTqCwPg1+a+tuD6VEwCYgwBwrGnHSCalAIDj2VMMNZmDoJ17dKNmGGqUYiij1D7N+iwymYKg6UTJKLKPXbvuuA6a/tEJ/fsNG3MsUX3fWr6j7ueLbt/sfF2kGEIzy7ceUf/oxKzPN+zt15HBcSfrSCPFkE+d8j4hQJCfZnMQGHk2BwEjCAAUBAECIGNt3dHmSNG2YNrlrVSMNu7t176+kZTXBN/ZHjSapRiydnDFL1Lh5fnsVu920WxfNHtw9iEtAvfBYusdLs36bOW2oxotlXMojR84pNHMXksbrX909jmVt6lD2qdj26eyECDIj21ErDQ5gsCjnnf7CAIA8AcphgDHmudeRrtJ84Fm84EB/d43HtCe3uqD56vOO1Vfe/+LNH8Ol3ccz/ZAVWmSu96HTuW8RH3IrPe2ZdwO8ciTFDdJFTX1nbQxkq49jZUq6unuzLsYubCnGOKIh6wBtPGJipN1uB1BUF2YT0evT2Up+1SYNhNmpGSnR0MI7HMQ+FNOAGAEAeBYswfBNu5ng2PGmOOCA5J09+bD+vQNj1h+hVZme8xo1slvTzEUs0AtIPIkxfXe+o+5/SJPUqwQb9bFK0q0cjAXT1sK2vipwhqY43hva7uODus3v3Kv/u26DQ2/M152FCBweLCZWf/In0+jz8oVN/sM0YWZg8Cj+ACjTQAURhs35YGU0AZInU8PCGGk9fbghr39xwUHpnz3/p2prA/F1uz5ZMLysFusM84/cbdf1GuHaZIqauo7aWtebo4oXyXZMx71x2SOFG2op1Su6D2Xr9Cqnb3W7/k4gmDqwGUETH2OYjqIodkLL9U5CPy5I9mK61M5AYAAAZA5GtrtJq3+uJvW72v4t2ZvEaP9NHugsr3hVLSgnEtRn91S31LWVCbN9/PmA4Pp709GEKDNtHMaNjS2emdv3Rc5ZiqF6G0Oc912Gx+oLs2n5qRHRaGdnaNmb+Tf8ehBDY/7MyeOPcVQhgUBgCYIEACONX1vkvYkHOnqaHwJdzVcHa2jWeeCPUDgujTFETh4Lzr2HARRUww1mUtCkvb3j+rX/u8eHR0aj1WmUOVI+HcUUzvnUraOIGjnC2ib++Jtm0J9rxQioX2Yw8jlsTa1KK+OX4+KUvZpu7SZZgHZTQcGtb9/NKPSNGcNEGRYDgBohgAB4FjTCSIzKkcrYxtWzekiQIDj2TromqYYsnRQ8HZsePXuAbFTDEWeg8CE2lfr9/Trw9esjVmqEOVgBEFb8qojMWO2urfvVkHYe2eYFENhluR0BMF0iiF/+JTuiLzy+Slam9R2qLRxXB2Ah7ryLgDQaugYwUxp7fMuywxcY6WK1JPOeuGX0VJZX7lji1ZsO6rBsYmG32v2QDVhG0EQu3TF5+LhLfYkxVG3vAmfDuK2Rw5otFRWT3dn9IIl1M4dyb5Lsmvaea9ySKOesMdFqACBMWr2vrHL43BqURzb9REgyE/R3oGytXmYgwCATwgQABnz6e0XFFtXJyMIIP3Zdx7SHY8davq9Zg+ztuHydBCEV29TZXXdDzMHQa39faM659QTUigHI+nQXmznHdfP9hV214dps4VblssUQ/4duD4ViQBBfoq27a3FJT4AwCOkGAIcYw6C9LENq+Z0Nm5VhnkbDcX34PajoYIDUvPzpkyKITfqbKrYIwhizEEQZeLEtPYqI+naUzvvV+scBNkVA75x+UZ/qDkIHK7P3aJ035bDOuAgJ7xP1xjaRflJGrzKOvhln4OACAEAfxAgAByjYwQzpdUQ7baNICBA0BY+c+Mjob/b7GH25g37G/+xja9bRZp4tToHQYTvp3Rtaj5JcRsfUK2sjXerdQ4CGn5ty+W1LkyHdBpzELjwvivv1yWfuV3/eu36SEHsWWVyV6TE9vWN6q+/v1oHPZoMt10knSA66wEIthEPBWpiAmgDXgUIgiDoDILgeUEQ/GEQBJcFQfBgEATjQRCYyf/dGWFZ59T8Luz/tqRYt18KguBbQRBsCoJgKAiCo0EQrA2C4D+DILggrfUie81TK/jUvEWRESDAqp29ob+b5IGond+Ui/rsVu8an+kIggg/Wr2zV6UU0pE17RBt38OppbVz+6adr5FoLOvDwvfD8Nsrduiah3bnXQxnrnt4r95zxQqNjJfzLkpbSZpiKOsURbbz0jKdHABkzpsAQRAEb5fUL2mNpCsl/amkF0nqzrFYiQVBcGIQBN+XdJuk90s6T9J8SU+S9FxJ/yBpbRAEH82vlMiS7433IijaJkyrvF22FENlHlZwvCQdWEU751xyMklxzC0Y9XdG0d5W/vsfrdHLP/dzPbq/P2LJmpSD+EBbauf2DSmGUE/Wb/S7DdKlc+R+/Z5tsX/r42icxw8N6f5tR/IuRltJGpDNOqBLiiEAReHTJMUnq9pxnoYBSd8K8b1wiZxDCoKgW9JPJb2+5uP1klZJ6pH0KklPUTUI8pkgCLqNMZ9yWQZkz8O2K3KW1jHR1dE4xjvGCALMkOTBup2va1EDBPW2VVZ5oY2JlmJIkg4NjOmD33xQd3/4dZmlU2rn4wmtydrhxPHetlx2aIfp/Hd6r0npuH3swEDs3/p6Kv37zzbqtc8+Pe9itI1KwkecrEcQWAMExAcAeMSnAMGUA5IeqPnfmyT9dcJlHjXG/EXSgsXwr3oiODAq6feNMd+f+mMQBHMkfVrSP05+9IkgCJYZY5ZlW0xkiY6RdBljCpUzPC2kGGp9UTsekmSSIX1GMnG3XpzNHmdf7T42orW7+/T8p58cfYV1NB9BwPHUitp5r3KJRD2+zgkQan3Zri4UX8+zI0PjeRehrSRtkyadwyAqWzyCJ1YAPvEpQHCzpLONMTtrPwyC4JKcypNIEASnS/q7mo/+pjY4IEnGmHFJHw6C4BmS3q3qPeKzkl6eWUGROTpGkvNxiLFNWvvc1kAmQND6op4GpBiKJ+rw7/ojCOKmGIr4fRN/rok7HjvoLEDQTMEu4QipaPdml6yTFLf1FbS9ZTV6LJX1cdiGxrbKVtLtnWSi7Dis90ZeagPgEW/mIDDG7J8ZHCi4D0g6YfLfmyRdbvnuhyVN9ea9LAiCF6ZZMKSr2QMyjch0+bh90yqTNUCQwsSj8Ev0zuMEB6KH51VWIqcYCvlZqGXF2Gdx9/NEOdlOHh6fmH7obtYh2saHk/eSdGa38361zkHQzhumzbkdQRAixZDDNfoZ2PKxTO0dHM1D4hEEmacYavw3wgMAfOLTCIJW8/aaf19lLC0HY8zOIAh+LukNkx/9hqTVKZYNKWrW5KAJmS62b9VYiQBBq4v6gJRkSDUphpLJavNVRxDEDBDEfGDe3zeqv/nBaj2w/ZhO7OnSb19ytt7xoqdZf0NnSmtq591qO+/aebu0PadzEGS6Oi+PWx/LJPHskbWk/fvZpxhiDgIAxeDNCIJWEgRBj6RLaz66M8TP7qj59+sbfgvea5p72dfWbYEUbQumVV5GELS3qB3BSR6oinbOuRT12e0nq3br0MDY8R/G3ICRR4nIxJ5rohxj1r9Kxei3r1yhFY8fVblidGy4pP+7Y4suv/vxJuUEWkvGL6SiIFweF8xB4GeZJHlcsNZUuBEE3CAAFES7jCDoCoLgjZJeLOlUVScMPizpQUkrjTFjth/H8Gw9EXwxCjcaYFXNv5/juDzwCE2EdFUDMH69jpHWQ51tucxB0PqiHldJjsO2HkEQ8fWum9bv1/3bjurqD16i5zzlREnxUzXE2cdZjiDYuK9fWw8Nzfp8yZq99h+28eHUyvxMSZIN5iBA6kIcRm5HEHDcwk9Jj80tBwf1lJPmOSpNc6SgA1AU7TKC4CxJSyV9RtWJg/9Z0n9LukvSviAIPh0EwQKH63t2zb8PGmNGQ/ymdv6FU4IgOM1heZChprmXaQikqp02r63BSYCg9UXvPE6QW7ydTiwHjg6N69+uWz/93/G3X7QfGmU7B8EVDUYKDIxOWH9Hh2mLauPdSooh1JP1nABFubbGvU/5ei55WqyWlfSF/I/8eJ2bgoRkvT9kWA4AaKZdAgQ2T5L0MUkPBkFwvqNlPrnm3wdC/mb/jP8+xVFZkLHmjVeaAokVbhOmU2DbAxYphlpf5DkIEj5RtevbhHHHIz2w/Zj6R0uSkkxSHPX7JvaD80SMFENxj6k2PZQKgbnM4+GYRj1ZzwlQlDkI4rZRfQ2AtGv7KC9JR7Xu6R3RyHjZUWmaa+tRuAAKpdUDBAOSrpL0HlXf6l8gaa6kp0t6p6Tbar77bEk3O3pzv3Y0wkjI38z8XuIRDT09PVqwoLqYcrms3t7e6QZMf3+/xsfHqyseGdHQUDVFwMTEhHp7e6eX0dfXp1Kp2sExPDys4eFhSVKpVFJfX9/093p7ezUxUX1jcGhoSCMj1eqMj4+rv79fUrXx1Nvbq3K5ekMeHBzU6Gh1cMXY2JgGBgYkSZVKRb29vapMdlYMDAxobKyaBWp0dFSDg4Ne18mUq2XoVlnzVP13IKMFwZgCGRlTvDr5tp86SsPT31sQjKlT1TL0qKTh4XzrNEcT6lG13J2qaEEwNv2Q5Xo/jQ0NqGOy7vNU0hxVf9OtskaGB3PfT6147M2sU+2xN7X9u1TW/MlzP806GUnzNa4uVZdd79ibckIwpnK5Wr65Kmnu9PfKOqHmezPPp9o69fUVdz8lOfY6zUTda7kkzdO4umu2/7zJ7doxuf17h6q/G+jvC72fOie/N1cljY+O1K1To/00XhpXZWwq5U+1rI2uETPrNDFRjryfNHlMRanTXJVkTPtcI3ytk20/DQ8Px7pGDHi2n+ode1N1cr2fzHj1N/WuEaqUnNWpFY69dqpTxcS/5061I6au5RMh6jQ00B/6/jQV0mvUjiiXS6HPp6h1Gi2VY+2nseGhRHUKc3+KU6ep0Xs+HXtS651PU3UqjY3G2k9V1fOpb3gsszoZYzn2jGnZ/USdqBN1il+nvLRygGCfpKcaY37fGPMDY8wmY8yQMWbcGLPbGHONMeaNkv5ET7z09ExJn3Ww7p6af483/NbxZs6DkDgx3qWXXqp3vOMdkqRDhw5p0aJF0wft4sWLtXHjRknSsmXLtGTJEknS7t27tWjRoullXHbZZdq6daskaenSpVq6dKkkaevWrbrsssumv7do0SLt3r1bkrRkyRItW7ZMkrRx40YtXry4WsGxMS1atEiHDh2SJF1zzTVasWKFJGn16tW6+uqrJVVPmkWLFk2fpFdffbVWr65O47BixQpdc801Xtep89AWSdJ5nYf1xrmbJUknBON6Z886nRCMF7JOvu2nU3Ytm/7eO3vW6bSO6gX45XN26J6778q1Ti/o3quXz9khSTqtY1Dv7HliGKvr/bT1zh/p5KB6w3rNnK26sKs6YOm8zsMa3rgs9/3UisfezDrVHnsv6K7mXT+n85jePPfRahAnxTpVjNGb5z6qczqPSbIfe2+bu1GmrzpQ7SXdu/WS7uq+OKujX2+bu3H6ezPPp9o6XXXVNwq7n5Ice08e3dvwWv7GuZt1XudhSdKFXQf0mjnV8pwcjOqdPes0Pl6t04+//53Q++msjv7p/bTxwXvq1qnRftqxZZO6t1avgXNU1jt71jW8RsysU2VsJPJ+mjOwN3KdXtK9WyaF/dSKx16adbLtp6VLl8a6Rlz3w6u92k/1jr2pOrneT/N3LZdU/xoxv3+3szq1wrHXTnUyxsS+57557qOSnriWHzncvE63/ugboe9PcyY7xhu1I4aOHgp9PkWt08DgSKz9tHX5zYnqFOb+FKdOxvh37Emtdz5N1alv84Ox9pP0xPnUf+xIZnWqGNPw2DMtvJ+oE3WiTvHrlJfA9yFxQRB8QtLHJ/9zmTHmtSms4z9UnZdAksqSzjLGhE0NVG95/yjp/03+5/3GmEtD/GaepOGaj15sjHko5vovkrS+p6dHXV1dWrFihS644AINDAzopJNOUhAE6u/vV09Pj+bMmaORkRFVKhWdcMIJmpiY0ODgoE4++WRJ1Wjc/Pnz1d3dPR2Jmz9/vkqlkoaHh3XSSSdJqkbjFixYoK6uLg0NDamjo0Pz5s3T+Pi4RkdHdeKJJ8oYo76+Pi1cuFCdnZ0aHBxUV1eXenp6NDY2pvHxcS1cuFCVSkX9/f068cQT1dHRoYGBAc2ZM0dz587V6OioJiYmtGDBApXLZS/r9B83PabvPbRf3SqrS2WNaI4CGZ0QjGvIzNEP//TluuDJ3YWqk2/76W+vvl8/e7QaDV4QjGnEdKusDvWopBUfe4NOXrgg8zrNnTtXz/74bZqjCXXIaFTd6lRF84KS5sxfqFX/+kbn++nbyzbqEzc/roo6NE8llRVoXF3qVlm/85Kz9PHfelHhzyffjr2ZdXrR5+6ePvYqk9u/S2XNUVlr/+Nt6uwIUqtT/8iEXvapn2lcnZpQZ91jb9DMlVR9U+m3XvoL+tb9e6bfkBtTtzpVVk8woaHJ7808n2rrdP8/vVpPftLJhdxPYY+9sWCOyibQiV3l6Tq988t3af2uI7Ou5UaB5mlcE+pUaXL7d8poRN3qUEXzg5Ju/Ic36RlPPkHb9h7SG/93eaj9NGq6VFan5qqkr3/gJXrlc846rk5fWPqYvnHHhrr76aa/vFTfvHuLvv/wYVXfkhvXsOmue42YeX963XPP1pfe96JI++mffvqIbnrkcKQ6SdKX3n+pXnf+k9viGuFrnZ71kSV199NTnrRAS//yUr3wU0sjXyNu+otLdd7TTvdmP1300Z/MOvam6rTqo69xup8+8qNV+un6o3WvEa989hm64vdfzrHXhnX6tS8v17b9R2Pdc+eorGHNmb6W3/6RX9EZJ8231um+R3bp/d9eF+r+NGjmSAo0X+N12xH/+ZsX6Y3nn6wXfO7ehtfyuHW6+8Ov1cKOUuT99OMVm/WRax+JXacw96c4dap09+iRT/2KV8deK55PU3X61n3b9Lnbtic6n+746K/qtBPnZVKn+3YM6k+/tbLusfdnr3u2/vxVT2/J/USdqBN1il6nPXv26OKLL1aNi40xG5QRAgTVdSyQdFBPvLX/fmPMdxIs788kfWXyP9caY54f4jenSDpS89EFxpjHYq7/IknTsyOuX79eF110UZxFIYaP/mStvrdyV8O///BPXqaXPpMpJpL486sf0o3rZk7bUfXov/+Kero7My6RVKkY/cI/31j3b0+a363V//bLztd59f079LGfrq/7t9+59Bn69Nuf63ydON45H7mh4d82ffpXNacrvYF6vcPjesGnbg39/d+59Bn6zoqdsdeXdn3yNDg2oT/7zkO6e3P1zcTnPe0kXfm7L9bpJ/boty67Tw/tOBZruXd/+HV6+inzdXBgVC/9j9sj//4Hf3ypLvmFJx/32ReWPqYv/XxL3e/f+rev1hV3P64fPrg78rre/Nwz9ZXfflGk3/zxtx7U0o3R36f42vtfpDdddGbk38GdRteupz1pnu75p9dbr22N3PeR1+upJyceAOuMrQ6/ctGZOmFul37jhWfpleedmnhdf/W91bp+zd66f3vDc07XlR94SeJ1oHh+5Yt36dH9A06W9cDH3qDTFs61fuehHcf0W5fd52R9X3jn8/VbL3parGtBM7f93Wt07unRs+le9/Ae/fX3H3ZenqTmdnXosU//at7FaBtfXbZVn7vp0UTLCHM+uXLLhv36k2/Xf+/zQ697lv7xTRdkUg4A/tuwYUOuAYLWfNKPyBgzKOn+mo+ek3CRtR39Z4T8zcwn5aMJy4CcNIu5+R6UQzx57FXboTRWYpLivKU9KVnU+WGTFsfXyQFd+OhP1k0HByRp7e4+/dnVqyTFn6RYqtnmGW06o+jHxZSJcvQfxl0Xt0F/tcskxTdv2K8fr9qt3118v25cty/x8mzXe4739uWyHRDuHuxyfekZm8hugtgscIpny8V5leXzeMXSWOL+AMAnBAieUPt0kPRVoto3/08PgqCn4Tef8Iyafx81xhxKWAZ4inZAcj42pmwNzbSKa1tn3I47uJN+gCDa8pOWx8fzzoXxiYqW1Hnz96Edx3Swf9TJOuJuunq/a7Yf4u7niVgXDZc1gw/29I7odf91Z6zfFvEFiIqRvnJn/RE5UdiqXrytktx9Ww7rczc9qivvflx7ekfyLk5unJ4SIZblcn1pns9jEy32Eks7nuQ5cnFoZvmcZFsXhw4An3TlXQCPnFDz76GEy3pMUkXVAEwg6QWSVjT5zS/W/PuRhOtHjpqPIMimHO0qr+1rW21aZbItNu3OaTRXTvnpI3KAIOHzeKseUnstnVf3bj2sIMEQgqk3PuNuu6i/Myb+ukrl6AcIIwha07bDSZvBxbJ+T79GxsuaNyd+esJWHmEV1Vfu3KL/d/MT70pddudWfe+PL9X5ZyzMsVT5yDg+kPn64oo7ypV7ByT7G/lhlbMcQcAIMwAFwQiCJ7yw5t/1k4iGZIwZ1fEBgdeG+Nlrav798yTrR76aPSTyEJmuvLZvHg08WwOZAEH+knbINxVxFyceQdCi1y7bdgkm/y+uqUXH3XZRf2dkYr/1GSegFfeYas0jCUW+7SS9Ptqu90UcWRFX33BJX1i66bjPjgyNa9Ftm3MqUb5c7vswi8p6xEJccVMM+doO8bVcrcrF+zcuggyh12UdZc6xA8AfBAgkBUHwBklPr/noTgeLvbbm37/XZP1Pl/RLDX6LVkM7IDEfn7VtDby+kZL+59ZN6h0ed7zOxkgxlD/f5iBI+rZUqx5TtmolGT0gVY+B8YmKlm890vzL9cQZQRBvTbFSDDGCoJjaqcM6rPGEKU/sHUDt44cP7qobbLzBwTwPReRy34dpUzgNSKR45MZNMeTrpcvXcrUqN3MQOCiIi3Vx7ADwSEsGCIIgmBMEwZyQ3z1N0ldrPnpE0ioHxfimnkhV9OwgCD5o+e7nJU2Na15ujHGxfuSkaYqhbIrRtnJLMdRkvYtu36z3XXG/+kdLztZp65xjBEH+0h6+HHUfJ56kuEWPqabVShAkGBid0HuvWKG/++Ga+AuJwJj4nfZxRhDEPSZ4Yy5fqaW9K/Bu/Y2v3KujQ/GD+NYc0wXeLlE9vKs37yL4xeWcANmuLtXjttXmIGijU9wLLtqj3qQYyqwUANBcSwYIJD1V0tYgCD4cBMHZ9b4QVL1F0gOSnjX5sZH0D8aYhq2WIAi2B0FgJv93VaPvGWMOSvrvmo/+NwiCd81YVncQBJ+T9N6ajz9qqxj81+xG304PinnwefNu3Nevnz9y0NnyrBMjc6DlLu0gTdSlJ06h0aKHlO1c6QiSJBiSvvTzLXpox7HYv4+6yZOkGJqINQdBzABBix5LRZHW5i9y4Gf7kWF9/qZHY/+ee25VnLlMWpnbDvswIwgcrs/domYZLcVMMeTpacb5ny0nKYYyDRA0/hvHDgCfeDVJcRAEN6rauV/rzJp/vzgIgofr/PTNxpiZ8wY8TdU38z8fBMF2SeskHZZUknSapEvqrOvDxpgb45W+rn+X9ApJr5c0T9IPgiD4F1VHKPRIerWkp9R8/+PGmGUO148cNB9BQEMgKR+3Ydj23b9cu15vf+FZqa8z9fz3aCrtfRA1f2riByr/TjsnbNulIwgSpRm67ZED8X+sbCcpjpNiKPbky/F+BkfS6pAoej/HDx7cpc+/43mxfssbolVxriOtLOs5CFxKc31xRqxJ7XUuoTEXb/+7vg/uODKk+7cd1dmnzNcvnv0kdXc+8R4ukxQDKAqvAgSSLpRU943/SSdIen6dz5ulEzpn8n+N7JH058aY65ssJxJjTCkIgt+UdLmkqdEDz538X62SpE8YYz7jcv3wEw2BdOX1JkbYoMXg2ISzddoanFkOnUV9qY8giLh4Jimuz1avIFCiSYqTirPN4+6niXKcOQjijiBozWOpKNj67vGGaBUjCI6X9Z53eZ9O854fZ8Sa5O+55GepWpeL9rXLWOa3l2/Xv163Yfq/X/rMU3TV779E8+dUu9qynBAZAJLwLUDgyg5VO+FfJunlki6SdKqkJ0uaL6lf0j5V0wvdJOmnxhh3icFrGGP6JL07CIIrJH1gskxPUTUosEvSLZK+box5JI31I3vNGtQ0EdKV1/bN45nFOueVpw9R7STuG3JhRX14T3pMtOrzjW2zBEo+UXGWko0giJNiKN66kK/U5iBIZ7GF0M51rxUn0NjKnKb8yXgSgjSbka020qSVmtwPbD+q76/cpQP9o3rVeafqD1/5THV1+pWV2sX2dtVG39M7clxwQJJWbjuqry57XH/3xvMlNQkgOykFALjhVYDAGHOOo+UYSesn/3eFi2XWLPucmL+7TdJtLssCTzVLMdRKrcic+LgJ8yiS7Q2aFnv2KqS0RxBE3cdJUx616rXLtp+CnKMDkVMMycQ+7mJ12MRNMdSah1JhpPVmcKteI8Jo57rX8nUEwYPbj+rm9ftVMdKvPvdMveScUzJZb9Zv9Dud88DhsmYixZCf7tt6WL/3jQc0PjmJ9D1bDmvdnj793/t+MeeSHc/FG/mu2ujfu39n3c//9/bNNQECUgwBKAa/wsFAC2h2n6cdkK68Glp5dA5Y5yCgxZm7tEcQRN3HSdNOtWrQybZZOoJ8RxBE3eSJRhBkmWKIO2GuGEHgHh1AVSUPbxRL1uzVu762XFfes02L792md39tua5fM3PqunRkPYLA6bGW4oEbewSBf4dXS1l8z/bp4MCUn63dp11Hh3MqUX0uLjOuDu/r1uwJsS7L/YGDGoBHCBAAWaMdkK68AgR5rJMRBF4rpZxqIfoEtsxBUI81xVDuIwgippFS/GtRnOMj/hwEsX4Gz7XzfrWN0GrVa2c9cXPLp8UYo8/f/OhxbaKKkT5/06OZvNjhNEAQ6jsuRyykJ/4IgvY5l/Jw2yMH6n7+9Xu2ZVwSOxcvQbl6icd27Z8oV/TQjqP6zor6owyk9r5vAvCPVymGgFbQ7IGDxm1yPm7BXOYgsOW0pMWZibldHRqbqP90MFoqp7ruqPs48bNQix5S1kmKlfckxRG/b0ym5378YITTYiAitr97jNqrso1EMsZkHnTdfHBQu4+NzPp8T++INh8c1PlnLMy0PEmEubYX5TBkropi2ds7+xzKk4t2jqtrtm05f371Ki3dWD/oAgA+YgQB4FjTFEO0iVOVWwAmh9XaOnzTTm+DqrldjW+jaQcIIs9BQIqhuqwphjr8m6S42TUu7m6O8zOyRBRTevfJ9t2z9oB9duXIW8nyOm0e2+HwwFjDvx0bGk99/S4DtuFGELiT5v4qx5wUqZ3OJTTmoj3qqk1rOybDBAd4oQuATxhBAGSMdkC6cpuDIIeOEfskxRxoWejsaNx7vL9/VPduOayLn3qSTprf7XzdUY+5pA9DrTr6yedJiqNu8mQphuL8Jm6KodY8looirWBfO+9W5iCosk1SXDFGHRmPyLLluu/qTL8sWXfYOw1IpDwHweqdx3TLhgPq7JB+5aKn6LlPO6l5mVIrEWx82+4unnGyGEEQhm/bFkB7I0AAONasnUBDIDkfH7ZzSTFk+Vurvu1dJH/9/YclVSe6/ec3P0cffNUvOF1+1Bfwkj7st+oxZatX3oMHogZljMk2OBh/kmLkKa2Ov1bYr3HT4LRC3V2wpY7J4x5iG03ZkUEA2O31OESKoUzXFt91D+/VV5dtnT4mLr/rcV322y/SGy48w14mTjTI0QgCV3MQJH35hmO6LY2Ml7Xj6JDOPW2BujpJ6gJ/cDQCjjW7z/Nmd7ry2rp57FdbJw9v6GYjzFauGOnTNzyih3YcdbruqMdc0rRTrXtM2UcQ5DmKIPomNwlSDEX/YcwsEfSm5iy1BEMtsF/r5asPwzqCoI0O+JI1QJD9drDd97o6ivUYHGrzOdzExrjrRJ1pT+/IcR2rpbLRZ296JJV1ofW4mYPAQUGUvCztdH9A1Zfv2KLnf2qpfuWLd+uFn7pVt2zYn3eRgGnFahkBBdCsoZBWYxtVeXVi5rFWW1U5zLIR5XD73spddT+vVIzW7+nTzev362iKOZGTBwgcFcQz1jkIAv8CI81ynWeZYij+CAK/tmm78eyQ9srbvnyvth4ajPw72+W1nbb3hGdzEJQtK80iPuCyzuHiA27nPLBtP9e2HhrSrqPD1u9w74DUYimGOKTbys3r9+s/b3lM4xPVe+XA2IT+/OpV2n54KOeSAVUECICMZdnYbl3+bcM8dqutUbq/bzTDkiCMax7aPeuz4fEJ/c7X79dbv3SP/vQ7D+ml/3Gbblq3L9Tysh9BkOjn3rKnGMo3yVDUbW6UYF6AWL+KJ04RxybKWru7V0NjE+4L1G7SmoPAw3tzVEeHxvXN+7ZH/p11RF+C8hSNPcVQ+40gyH4OApfrM4nbDVEdafKSRKu2Q3yXxnYfLZV13cN7dOXdj2vzgYFIv3UzSbEnKYaclAJFcUOdZ7xyxWjJmr05lAaYjQAB4FizG33Wje12k9fWzaNjxLbGPb0j+q3L7tORwbHMytOOkr5d/n8/36L7th6Z/u+JitFffm+1eoebjySIeilJGpxshc6/emz7sDqCIMPCzBB11cZkW96s5iD46erdev4nl+rX/+9ePf+TS/Wl2zfHWi+q0jqXW6XzbuW26OngSB9Z1WyS4qzZJinOIu2z00mDw8xB4HgTZ73Pmq2Ps6w1HOwf1Vu/dI/++vsP69M3PKI3/s9d+vo920L/3s0IgsSLmFwOL98gvEaBgC/cuinjkgD1ESAAXGtyo+chMl25bV7PRhBI0kM7jukvvrs6o9K0p6S7/St3bp312UTIN0miXkuSpjdr1UuXdbME+QZGonYuGWNilzdeiqFYq4q0rsf2D+jvf7hGo6Vqx+NExegLt27SrRsPxFs5UjuXW+Ua8ej+aG+zSk3m42iR7RKGPUCQYUGm1mlZaRbzy7h9oz/Ed9ytbnLSe4cLDLXONjpZ2tii2zdry8HjU7l9+oaN2tcXbg4YF4eJq5S/HLLxjE2UQ+9vANkhQAA41qxzxvLshJB8bIz5NgfBlOWPH0k1rz3Sce3DzQMEUc+DpCMIWjW4abtmdwRBsUYQKMHEwTGuYnE7c/75p+u0+J5toUbKXPvwnrqdVD94oP6cHmgurUO6VUcZhcEkxVX2uRj8SjFUtFtauBRDbkcsZD3qudkz0taD0ecHgV/KFaOr798563NjpAe3Hwu1jFaag6CtIsiqXqM+e+Mjev4nl+pln/25Xv9fd+qRff3W39yyYb/e/uV79YJPLdUff+tB7e0lsACkhQABkDEmKU5XXg/ieTxohn0QjJMuASHl2XkceQ6ChOtL9nNvNduMRQqMVCcpzm4EQZJN86mfbdQ7v7pchwbsadAuqzPKRpJue4QRBHHxli7ykEfzN++0nk7f6A+TYsjl+kz2zyzN7rdXxZgfBC64Ow427O1r+LfHQo7ecjMHQfJlSMmf/9rtdvzN+7bra3c9Pj0q9PHDQ3rfFSs0WirX/f69Ww7rz69epYd39ap3uKSlGw/oPZev0PA481EBaSBAADjW7EbPJMUpy2nz5hGYONDP/AJ5y/NsjjwHQfxXyyW1bqeirVpZ5/Svt/5Zn9m+L5OovDuPDOtfrl2n3/jKvfrE9RuaTnaeNHiy+eBg3cm7ka7URhC05iUiFOsIgjbeLrV8m4Mgizu4yzpnPkmxsn9msW2vHUeGMiwJ0vLQjsajBE5bODfUMlppBEG73R9+unrPrM+ODZd075bDdb//41W7ZwV6dx4d1v2P8/IbkAYCBIBjTQMEjCBIzMctmHUDr3+0pOtD5KlHutLqNA+TGTn6CAIeYupplhrEt/dPrfshQUDjyNC43n35cn1nxU6t3tmrq+7brvdcvlzHLCnKXGybz9/8qIOlIIpWPZfzZE2tk10xctXsnpRHgMDWwZ1FcbKeg8Dl0ZbHCAJbHVfv7M2sHEiPrU3RHXLmcBdtb1/mIMi7lZm1NbvrjyD5vzu21P38J6tmBxSk6ihUAO4RIAAcaz4HQXs1BLKW19bNer3LHjsU+rsZzMOHHES9lCS99LTqlatpp5V3IwhsAY1kD5v7ZowY2H5k2DoZcJHSL+EJaXVItPPhYB9B0B4b5vZHDtq/kMNmsHUCZlEc13MCZGnD3r7M00JxT2l99mBquP2fcEBs03JEWw4v37gQdTsMjJbSKQjQ5ggQABkjQJCuvBpaWXcAfPz6DZmuD/WltdfDBHWiHnMTCZ+oWvXBvekb+b6FRjJOifRPP1nb8G8uHtKRg5QOae/OlQy16OUxkpXb7SkfBseyzxltTzGUPtdzArj4Tlg/W7tP6/c0zhefBtvu4mWX/Lg8rlykY2upFENOSlF8bAfADwQIAMdaacJLX/n4Nl7WRTpqGaKL7OSanz7i95N25np42jlhTzHk3z5uVhzX9xj7HA0telC0OPaae82uI+1gqEkA4C++uzqjkjzBNvdOJpcvx3MCZLg6SdLV9+9wvES7rFMaIXtN3skIxc0kxa4CBMl+TzMKgE8IEACONbvPM4IgXe38BmMjvHTVmqI+3CS99rRqcNO2XYzJt3Ovboohj+ZMcDZEn/tiptI6lVvpEhH1eskkxc2vlRv39atvONu0EGVLYDyLq6XbEQTNl+b6WLsjQjpLF1q1nSFJB/pHtad3JO9i5M5FOjYncxB4cqzx3ArAJ115FwBoN7YJ05BcfimG8lkv8pVnwz5qn2rSa0+rHuPNtmOeb8nXO77sb/Rnu59cPWAPjU9oYU+3k2WhubQ6RlrpElEqV9TZ0Rn6+616fXTt5g379O6XPCOz9eU9gsDtHARhvlPsA9GeYqiYr7v0jZT0J99+UCser6bgev7TTtKVH3iJTls4N+eS5aRJGyYMJymGfEmRWOxT1p2I+5R7LpAORhAAjjVNMcSbkon5uAWL/lCGeNJqoAYhxn1E7Xjg2lOfT2/kz1p/vREEtu8r24CGqzX1j2afm7ydpXWEtFLKqai5662Bu4RlKYowuz/r2xBzEBSLbeROMcMD0oevWTMdHJCkNbv79KHvrsqxRNG5PKxcjCBwcVr78sKeH6UoHrYbkA4CBIBz9luWbbgzksurweBJOxNtJOoxl/RhyJfh2K7ZHjSzfiM/jGZzAmRZXFcdwlmnHWl3aXXke3aqJDIRsbFmvT76dhHJUUfGvby2wHg2IwicLs3BN/zWSkFGSRoZL+uWDQdmfb5y21EdHhzLoUT5s7a5Qi8j+XHiy7HmSzkAQCJAADjX7D7vyxsLrSqvhhZ7tT3lud8jz0FQJsVQPc0nKc4zxVC9z5qVN7XizOLq5dz+UQIEWWIOguZKEa+XTFIshalp1mlibG3ubOYgcJhiKNQIgmIfbbbSFzHD0LbDQw3/9uD2YxmWxB+2QzRsm8JJiiFPTpWpYgyMlnTf1sM60qaBI092B9D2mIMAyBhpPpLz8fnH54eyouZtLYQcdzsjCNxoVq98UwxFm4NAJtv95GwEwQgBAvhlImKCapp24aTZGtm4t1+3bNivijH65QvP1HOfdlL+KYYcrr4dDjF7iiHasq3ASYohB6Pxo05EnxZjpKvv36F/u27DdJn+7LXP0off9Gye3wBkjgAB4Fiz5kbeDyutLrdJivNZLVpViGeCyCMIEl57WvXS1exhtUhxEaNsy+vqmBgeZw6CLKV3jBToZGliIuIIAutcJq2zWazC1PPY8Hgq677j0YP6k28/pPHJ1FCX3blVX3rvC60j5zJJMeRyWW0wB0GrvohQdL69BNVKKYY27O3T9Wv2HvfZZXdu1fPOOkm/+tyn5FQqAO2KFEOAY80aHDR+WxO7tT3lOYVt1M7Z5Nee1jzIbW+iGfk3AXmzjsgsS+vqfsb1M1tpHdO+7cckL1+WIs9B0Phvvl1D0hJm/3/mxkf1K1+8S1sODjhd96dv2DgdHJCqL+N8+oZHck/r6bITMsyyin6s+XYNSVdbVXaard0Qtk3h4jjx5aWXrYfqp6H69oodGZckX1H3qS8BHqDVECAAHGt2u/JlSGOR+bkF/SyVlO6Q/naXVvs0zD6L2jhOeu2J+kZtUdgnF823w6Leuq0Zhky2D008nxVTanMQpLPY2JLc+6KO9mQEQXiP7h/Qey6/X6OlspPl7To6XLeTbU/viDbs6W/4u6LtlzDFLVqdZrK1U4r4ghUZYmazj9pMvoywfH8ev2/rkbyLAKANESAAMuZ7g6TocksxlPF6eegovqQduVF/nfTS8+7LV+gDi1dqf99osgV5xh4fyDfFUL23QZvEMzIrb6ViNDjmJjVQAft9Ci2tze3bfuxIcKN0OYKgXUR5e/3w4Jge2H7UyXoPWyb13NM74mQdcTmdg6DNUwwVMUCA2Zq1YcJwM0kxxxP8wqgI+IAAAeBYs2s7DZJ05TW8OspaXTQAknR8wJ0kezJph1Ie15Jlmw7pXV9bHrnzzGfNUlDkecWuP4KgyZwJGZX4rs2HnC2Lu2K22uUhNMltMurLHC7eim03X/r5FifLsU3kaZtsOotrpdM5CEIsreiHmu1cabUXrIp0XXBZVGs6ttAjCJKXo0jbvx0UPT2aC+Mt9GyF4iJAADhGiqH0+di5EaVILo6BDuIDXkhyLCbt4M/rUrLz6LCzNz990KxjL8/rTd0AQZO377I6Lr613F1+XB+v6a0svREEfu3HIEGSoVLkSYotf4tdimKJuvuzaMbY+luyOFydBvJDjSAo9tFm215FfH7iXZ56XMxB4CDFUMHPFbSeqO0OIA0ECADHmKQ4X7mlGIrQBRA1t3E9tjfmUAxJrwV5dgQsum1zbut2zcXbbFlqVqSsjoufP3owk/XAvbaZgyDBbXIicooh32rfPmy7uWwdQZC+jOMD3p2DUdnux5xjrcFySoZfhoNDgeMJvhmfYAQB8keAAMhYEd+AKZK8tm6UdqaLRmmUEQTEEtKTKMWQpR0YZp/l+WzTO1zKb+WOWScXVc6TFNf7rElAo4h3mCKWudjS2eK+9bckChA4TTHk2YZJSdRa3r/tqD5x/QYdGmg8h0BSEy30Rmaow6jg1bW91e3i5Rrkr1maxDBcPEe1yWW5MKLuj1bcfa2UvhXF1ZV3AYB2w7U/uvGJihbfu033bjmspz1pntbt6cu7SLNkn2KIXn8fJHnAsD3ghEmNkefbT63UiK00OR/zzIta/2HZVp58J1WOrW4qJUOHUErSG0Hg1/5ikmL/XXXfdt2z5bB+8ucv14k93c6Xb7uGFC1wE24OgmLVaSbbPml2ry6aItXG5aliHyWSfBmhy9FixxOKobszaJhKiBEE8AEBAsCxZo0o23BnzGaM0Ye+u0q3bjwQ+vt5iPJQRoAAkosUQ44KEkMrTaRle8HUGJNrx1+sEQQF6/SaqVIx+sKtj+mHD+7W0NhE3sVpScU+QsJLcpeM/OZ5wVKVpSFuPbccHNQdjx7U215wVqzf25pDtjfSi7Zbwmzfoh9rtk7bIo7ATjIPStayaju4mNCdOQhQVF0dHSqVy3X/NkaAAB4gxRCQsRYa7ZyJTQcGQwcHpGKkGEr6kPPY/gENRug4I5bgp6TPuowgcKN5iiG/LtrNJkP1q7Th1AZY//fnm/XlO7bq0MCYhsfrP0QhmdSuHZ4dfEnm6pmI+DJHKwVN8/CJ6zfE/q2tE9Y2l4Rnl/am2iFnuu0ZieendGV2eFnbMNmlGCpgvKmltcHlTZLUZckRXMQgKFoPAQLAsWaNG4Y0RnPZnVvyLoJzSRoA92w+rF//v3sclgZxJe04Tv77RD9PpJXyOjd7my3XmtZLvWPN31vMTqTaIl+7ek9+BWkTbRIfSBQcb5QCoJ5H9/db/170tC9hJannsQTz2tj2cys1udtgCoL2SjHkWXWyKo6LEQQuDgXfXv5Ae+iwBAiivpjQyKGBsZa7XiI7pBgCHGueYogLdhTbDg9F+n5e7b1IIwgSFPIzNz7CEERPJD3Wkl4K8ux0aqU8mU33Q64phmav3HbcffqGjdrXN5piidIxVSVjjLYfGc61LO0gtQCBZ82bRCmGIjyoX/fwXuvffdsumFKwHdMOKYYsFSAlTH5cbnnrLEoZTlLM8zjy0JniCIIHtx/V3/9ojXYcGdaT5nfrr3/pPP3eK56ZaJloP4wgABxrGiCggZuy1p2D4NDAmDbus7+piOKwTlIcomcrz2ebVkqnYX/QzPfd33pFs5WniMGBWjyvZyOto9q3N+Vtb+o1E2UEwb7ekdjraSl+7f6mitYcb4dJim1NiyJ26BYpxWd2cxBYyhByGS6KWsDDqaVF3R1Fu35Psc0h+PmbH9XX79mm3ceivyhzsH9UH1i8UjsmX7I5NlzSJ5Zs1NIN+2OXFe2JAAGQMYZ8taYs5iDoG4k/BB/uJT2Tk74BxRwEbtiuyXlP+ltvzUV9KLKZqhND/rPRLps5q0mKJ5rc09tkcxeunoUrb7uPIOD5KVXFSjGUvLS0N5AH23sL9245on//2Ub92pfu0fo9fZGWe8djBzVUZ96uG9bti1pEtDkCBIBjzd7eYQRBunJLMRThu1k/5Ngm8EN8SR8ukqaazPNS0krP6c3eZvOtqkV/Q7SeqTq1Xs3ai2/NG9ubes1ESTHUrLOKjqh0Fekt7SRCBQjSL0ZuWi1A4Nu9vN0mKW614wnFEKZdcmy4pP+5dVOk5f7Tj9fV/bxZCkRgJgIEgGPMQZCvvLZulA6AIk4iCveSHgd0OrnRvHMvo4KEXXcL73aujdlgkuLmoqQYajbawLftkpai3ZMKVtxwx1HRKjWD7RmJ+0N+XJ7btv0Y9hHZxVyuPI77pWj3j7jCBsFuf/RgyiUB6iNAADjW7LJPAzeaomytKOVslo7AzVpqtMnbdVlLM8WQ73MQtBLrCAKT71t+dScpzqEcaXsixVC+5WgXqc1B4N0OTDCCIEIaNdp1+Yo7StK/49UuTHmLVaPZWi3FUJEOsazaOrZtEnZ7uTh3uW4jD1EOu7GJ2SmDgLQRIAAyVsQGbpHklmIogzkIaMv6Jen+sP0+TIdH0To3fGXbjkbGuxEErbjfY4dMW3BbZKFdRhAkmKM4UiC/6Xd92zApyW0EZ8w1F223hClv0S+JtlMpbNv5vS99ui44c6F+84Vnqac7364O39II2WR17FjnIAidYijdcgBpiXLUDY8RIED2uvIuANBySDGUq/wa4xFSDLXO/K5IIPkkxY4K0uZs1+TqJMUZFiYEz4rjVNRzomKkTkZIRdbKx1CtJCmGorTVmn23XbZ3Xny7Rqcl3CTF2W+Mc548X9uPDDtZVsVyLoU9Jz/7m8+b/vfWw0Nas6s3abFic/G2fKtpNmoz3DIYQdDuivqCSJRyD45N6EknzEmxNMBsjCAAHGvWQT02Qe9wK4rSWRtl8kP4K2kwKmkHf94PN7YH+SJp+vJvjtu57hQEHmx259tkcnlRF0vAPZ7UjmnPdkdXR/zHnCgjCDgOq4owgtPF7/LjZ4qh73zwEmfLsqYYKt4OK+AxlgXbSxlZjiBIvgwgqijXhOFxRhAgewQIgIyt3d2n/176WGEj374rwgNq3I5djhi/JD3Wkk9SnGz9SY1HyNHtM3uKoZzPuzpl8+E64LpD1Mz4/2HlHSQrqrS2mm/pNBLEB1SOEMhvOoKA4zRV8VMMFWu/hBtBkH45al1w5kI97UnznS3PdirFeSkh7wFmRTrG0j52KhWjkfGykxEETuYgIELglXa5TUap5uDYRGrlABohxRDgWJgb3P/+fIvOPGme3nfJM9IvUMFFbTDkFyCIkGKoTRpBsEv6gFOkB0+fWfPhmpznIKj3mQdPUa6DQ1NVip5iKP9tUUSpDSBood3hcgRBC20Wq9wSPLbJBg5TzaJfE233tzgjCJKkGXPBmmIou2KEkubk9f95y2P67sqdGhqbUKlsfykjDBejSYp+rqCYohx3w+MECJA9AgSAY2Ev+9c9vMdJgGBgtKSv37NNa3b16vwzF+r9l57t9G2evBWlEzRKKeO+tRK3LZv3G1SoL2kfa96BplZ5tmo+v2iOKYbqrDqP0hhjFNT0tIynlCqPFENZSasjKJXF5qJs6cSa9d0mFW+l7ZKWJB25sTv6CrZf2uE4sl3TW2TQorfSOr4uW7ZVX7lza6jvhj2XXbz9T/MBeYhyng0xggA5IEAAOBb27c77tx1NvK6R8bJ+58r7tWZ3nyTpjscO6Wdr9ulHf/oyPfXkeYmXX0R5deZFueEXMY8qZkszxVCYzpK8334qSvCumebpQTIqSEh5jCAoV4y6OtMLEEzXKWLVeMCPp02mIEhUT+YgiC7JtakjQYQg7lqLttfC3HPzbhckZWsfR0n7NSXvF2SKvj+mJKnG9Q/vdb4eF5uVFEN+aZVnimaiXBOGxpiDANljDgIghL7hkq57eI+uuOtxPbq/P+/iTFu26eB0cGDKnt4R/WTV7pxKlL/cUgxFaNhkXcYg7zHWqKvocxC0yrOVdQ4Ck28nUr2y5bHfZ3bajLkOEEz+/8gphlrlIMwYm625KJ3+zVMMscGb6UwSIIg7gKBgu8XHOQhcr892TQ8zguCpJ/Uc999Ztn+j3q99a5mndeg8un/A+TJdBF5aJXjTrgq79yIUnBRDyAMjCIAm9vaO6D2Xr9DOo8PVD26UPvubz9V7X1o/PVCWN6xPLtlY9/P/WrpJf/H68zIsCaLs+HqdCSu3HdV3VuzQnt4RveLcU/Xnr32Wujs7VK4YzenqmFxFYZtDLSnp/kj6bJJ3Lvq81++KdcI8+TgHQebF0MwXN0sp5XqIWjUe8ONJ69z17ZrgywgCzzaLSuWKvr9yp1ZuP6Zznjxf73rx0/X0U5KnpkxSzST9uL4dd2kJNwdB6sVIlW0EQZjr/Ufe/ByXxYnEmNnHsa3Evu0qH86jsGVwcZwX/VwpIh+OsbxF2QKDjCBADggQoG2Mlsqa29UR+W2SLyzd9ERwYNK/XLteb3neU3RiT/es72d579vXN5rdynJSlLZEpDkIZlTq/seP6P2LV06n7XhoxzH97+2bdWJPlyYqRq+74HT9v996XmG2RbuIsz8qFaOOjuo1KGnnZt4PN61yONonKZbyrGn9OQiyL89EpSKpc/q/05qkOOrDI+na4klrq7XS3oiSzqRIKYYqFaMPXb1KSzcemP7sBw/s0g//5GU659QTki08wWbIJ8VQcfabFO76WLQ6zWS7tTQ7z1513qn65QvPOO6zLN/SrxijjhlrLFKHqA8lDXspzXIEwU9X79Y379uhh3f1SpK+/oEX63XPPn26LY/wrJN2+3AAZoBJiuE7Ugyh5T1+aFC/ddl9uvDfbtYrPvdzfXv59ki//3GddD3litG1q/fU/X6b3N+8lVuKoQjrndk4+NbyHXVzevePTmh4vKwb1u7TX39/ddIiwgO1+z5pn1Lejem81+9Ks8a6b/X0YQSB8zkIptYTsW4xUlJDKc5B4Nm5kkSrjiBYu6fvuOCAJB0cGNM3I7aNXUvS19YuKYZsyhWjNbt69fihoUzX6zogYU0x1GSHXfG7L1ZPd+dxn2WZYbNe0VvlEMsq8BR2PU7mIAixkJ+s2q2//cGa6eCAJP3hNx/Uh3+8tlCBYV+wxaIdu4NMUowcECBASxsen9C7L1+hh3YcU8VIe/tG9a/XbdDP1oafMKmRlQ4mGUbriNJ4ntmpdcO6fU1/8/NHD6pvpBS1WEhRnIZu+bgAQeMlhBnplHt6lRZp6ds6mXOfgyDkZ2mb2THjOsXQ1FuWUTshcj8HCiq9zh6/9keSt3cjzUFQoONw0W2b6n7+jXu3J152kuMq0QiCmNu/OHutqlE1Nx8Y0Cs+93O97cv36pqHij0HmXWS4rJ9j80MDmSt3v3I/sa0X0egD8UJWwYnIwhCNGO+s2JH3c+veWi37tt6OHEZ2o1vx3xSA6Ml/fCBXfrkkg267uE9oV6eiXLsjoyTYgjZI8UQWtqKx4/o0MDYrM+vf3iv3vq8pyZadsMOvBa7+RVNXsOro+z2OJ0JFSPdsmF/5N8hPXEaurU/SdpQzruhXfRUBlOsKYaa/D1tvkxSPDHjSTq1F+ciLpc3+GJiszUVZQTBRJOOy7yv1bVq34T1SZI3vdvlMlC/A9roD7/5oPb3t0bKUdv9Nk7bOch9KuACHZweFDXLFENhjqdVO3sb/u1LP9+iV557auJytBPbFo+8R3M+XvtHS3r/11dqTc099WcX7tOX3/eL03MH1hOl2B41HdBGGEGAlvbpnz1S9/OZw6vjaNTk5Fqer9xSDEX5bsxCxn1rN+/Ho1YVawRBzdNP4hRDyX6eWKs0XK2TFJt8JymuL/sCzXzTzpYGItF6Ii7Wv31TDKnFdzzbH0mK0+xt5VpFGskSJfARVZLN0Jkgx1DcYLVPgZsw6hX30f0Ds+ZJy9JbnpvsZauZbPeWWPedTFMM+RHQj8uPlz7ClcHFZSzpvlm57Wih9q8PijSippmfPLT7uOCAJN268YDu2XLI/sMI1fTjnES7YQQBWprriRTDKNj9zXuutufDu3r1vft3am/fiF5x7qn6w1c+U92d7mKkURo2cQ/LHA5nOFb7AJn07ee8O6Va5VLX7Nz17aElj+LMfNPOdRGmJymOuOQipXbxSWpzEKSz2FxEGkHQbA6CpIVxyNdRN0lSDMXdwH5uicbqlffOx5p0RqXs3S95utPl2eJytuv9Jc88xWk54ij6HAQ+TCAbZj3u2mTZjEJAa/rEko11P190+xa9/oIz6v5NivbsxuGFPBAgQEtL6y1HKdmEakjP1+7aqq/89ouO++yhHUf1O1eu1Eipmsvv7s2H9fDOXl32O78YKtd7GFGOtLgdu+WYM3JmOUlbO4mzG2svSdbUNiEWnnc/j28d53HZHvCMcp6DwJMOh5lvU6cVnIq6WF87O32X1ltpvl0SkpQnyv22WVvTp+3SLB1SEknqmaQtFnu1Hu2XMOrdcx2+5xLZf/zGxTrzpB6ny7ROUmz52/sueUbdz7Ns/hZ9BEEaorYTw3zd1W3fxb6hDRKNre3RKlty5qiCmVqlnmhdpBhCS0szst/oYYbhYPm6cd3+WZMELb53+3RwYMrNG/br8cND7lYcYbfH7VyLmxqg3R9QUhMnQFCzD5Pul7z3a6scVtbTKucIQb37SR6BmVn3UsdFmKpn1GtjqwSpspbeCAK/9keS8rgcQeCTmfOJ+CLJSzd5j6ZrxPX1qd7SOjvyeZQ/48S5+u1Lzna+XFuHq+1vv/78+qmOsnxBxtQ5tYp0j0qjpFEvjWHOZVfnu4vlFGj3eoHtFe2awOZCHggQoKXl8czGzS9/P3/0+Dkmbli7r+73Ll/2uLN1RumIiD+CgIOr6Gr3vX0EQfNl5f3g2SrXOvskxfl2eXozgmDGtcf1pWg6xVDUEQStchBmjK3WXJQ37ZuOIPBoi6fZjEhSzyQphuJeBtLeLyXXozXqLK4rp+HM5zz5hFSWa7umN2oD/9Xrz3U2GjiJuiMIcihHXGm0KSMH/VNYZpJ1NUMbBFFFuQdzeCEPBAjQ0tJMMeRBW7QtxNmD+/tGQ31v+xF3Iwii3MTjziUQewRBvNWhiTidC+XjAgSNv5flW1Rx+dTplYTPcxDUW3MucxDMOFhd7/u4S/P0ZWjvpXVM+/YwmyzFkLsRBL5tFx8lm6Q45u9S3i8lxxNH1bvuJtluSSSaM8LCOklxgx1mG0URZJhkqOgphtIoatT6h3s5Jl5Z0lgOL25FY93mUY+VRCXJR94vdgFhECBAS0s1xVCDRmea1/5KxWh0RqocxOdyX0VZVuwRBCnmDkZ0cXZj7W9sx0GYYyT3dmbe63fE1slsjH/VbMURBE8sN9qC8w6SFVVaW62V9kaUVDzN2pqttF1skpyOSTLlxL0OpH35mJnuMql65c0tQJBSD0KcEQS2eRiyfJmr/iTFyUaK+iJuWdNIG+jTCIIJx0HAVtcqLxbFFTlg1ubbC/lgkmK0tDxGEKTzBobR//18i765fLt6h0v6xWc8Sf/znheksCb/xIm2h/2Fy86lKEuKe1zGDXjxxoI/ysfNQWALEDRfVt4vLrXKUdV0kuIcK1o3xVAOBZp5rXSeWztmiiECBDGltNl8u9ckKU2UN0Ndv0U6Wirr+of36uHdvXrOmQv19heepYU93U7XkYYkWyHRG+l+HXbTxp2PIJit1UYQWOcgaPCnjpy2wUx1r38JR4pmyYfihEsx5GhdDio8PM5Le1H4cIzlqc2rj4IgQICWlmYHWqPmaBoPyN9ZsUNfuHXT9H+v3H5U77l8ufP15KF3eFxrdvfp2Wcs1Jkn9ThZZtj97jRAEGFZcY/LuJ0QNEjSEWe7HjcHgfXN9QKkGGqRA8u2rasjCPJMMeTHRp6ZQsX1vp+qZ9TFMrw/Hl+Oq7QlOU7DpvQzxjQ9DqOUY7RU1ge/+aDu2XJ4+rMfPbRb3/7DS3TSPP+DBHElmoMg5vGc9lmQyQiCnPKdphUgsJ0rjV6usW2DLDdPvZcNrBlVPLsMp3FfcD2CYF/fiD55/cYkRapZV/JlDI1PJF9IG3GYYaiQIvcRtcNGgXcIEKClJe08sF3Is2x0Xr9m76zPdh0dya4AKfnmfdv1iSUbphtpf/CKZ+pf3/qcxJONhb0Bu+xbirKouCMB4s5BgHTEGt1S8xPbcRBmV+f9tm7eAQpXmm1r/0YQZF+O2SmG0ikEKYaywdwNzYVtP4b7Wvjj9OePHjwuOCBJa3f3acmavfqdS88OvZw8JDkdEw0giLnetO+h7kcQzC5vV2deAYJ0lmu7pjdqA9tGUWQ5B0G9a4btEPPu7pVCgaI+tti+3jdS0nsvX6HtR4YTlemJdSWv8NAYIwiiyPu5JW8uzwcgLcxBgJaWtPPA9vMsG50PbD+W2bqysn5Pnz5+/YbjtvHie7dpydp9mZXBZUMlyqLirrcct1eHFoY3wqYYCnOM5L1b816/K9b9INMWb/k1MzvFkNvlx08x5LYc7SKtzebbuZKkpmED8q5HsVx59+N1P//49Rucrsc3Sd5Ij7sL0j5cnU9SXKfAab3J30weIwjGJ+p3xnbbJiHIUL0muu1+XaQAd+xROpGD/o3/tmzTIWfBAcnRCIIxRhBEUZwjPh3tMnoTxebHHRVISdLGl+33Decg4Nofyvcf2Fn3828v35542WH3gdvn+vALi9uhMBFzkmIaJOlInGLINpQ+xMLzfrhslTeBmqUA8O38yWOzz0ztkN6xF225pBiKJ61z17dzJYmwx1aY70XZ3Kt29iYqT77ilzHJG+m+3oucpxiq81lXbpMUZ7/e0VL97TlvTmfD3+SeYqhAOVXSKE7kN6YtG+xffrouYWmO56IdM0yKoUisI2pSmNDaN5EzDBWwjig+AgRoaYlTDFn+1niS4vwv5nM8eZvG5jsr6gcIZo6WGBiN3vgKuw9cPnBHuYdnPQcB0hGn3XZ8gCDZCIK8D4dWabc2SwGQb4qhiB0OKZl5rPnyBnreQbKi8mX/pS3ZHAThOnfDpAz0bLN4KdkcBDF/l/KOcT2CoF6B85qgN63V2trvI6X6IwjmdTcOEGSpboohy/d9eF6slcr54DClSn+M50HrupyMICDFUCR+HfKpsF0bmYIAReB/LyKQQNIONHvnQz6N8jC6c8pJ6tJEuaIPX7NGe3qjz7UQfgSBwwBBhO82mmitmbhzEPjWadPOandh0hEE7Nds5LmZD/SPzep0yKNTYWagwvVbTVPLi3qJI5d+PGldO3y7JiUpTjnkiL0w32uXtwDzqmb89aZb4LFWHkGQQ2qjkXG/AwT1ninsqSTTLE10PkxSnGXzxsWqmKQ4Gt+CYmmwzYnSDvVH8REgACyscxB4nGKou6v4p/b/3r5ZP3xwd6zfht0FLvdVtBEE8VbM27J+idPQCzsHQZh9nXenU6scjtZqGJPrdv72ih160adv1VX3bqstUuZmjSBwXIbpOQginlNcE+NKK8VQ6wg9BwHHYO7iXqPT3nXOUwzVKW9ucxCkFJhotE+MMY1HEFhTDOU8SbHl+3mPAo0i7rkS9R6d6T2dEQSZG7TM2VCg08HKdk2OnnIrYWGAGLryLgDgM/skxQ1+k0pJounM6YHBpZs37I/927ANTLcjCMIvK26HQuw5CHw4KFtRqimGoi0rD63yJox9kuL8r+m9wyV9YslGnfWk+XrjhWfkUp6Zx5rrjo2pxUU9pOmcjaddNluS4F7YlH5hUhFFKUV3Z6BSzHt93pKUOsn9zNet5Xo/1k05l1Pt0wpMbNjbr/+85VGNT1T0yxedqZecc4ok+2iMHssIgiyfhupeMyy7x7c2VBr3haiLzDY+YF9ZmPsHcxCEM1oq6+9/tEY3rN2Xd1FSZx1B0C6NLxRa8V8zBlIUb5Li/C/++ZcguU0HBmP/NuwucNm5FGVRcVcbdw6CVjgeWkXtvrf1K4UbQeCgQAnkvf4sGONPPW9aP/lglUN5Zl4r0+rYiPy2YZFewfRIWlvNh/aPK2FHEIRJcxVls/R0Ne7sbKXtO1OSUznuZkl7a2YxSXFeh0RamY0Gxyb05Tu26oq7t+ldX1uuHz24S1Lj9EKSPymG6u0L273St9M5jeJEvadnGTRpds0JU3TbG/F4wieXbGyL4IBkf0kzcsAsWVGAWAgQABa2hk1ew3rDaOWHSJecphiK8N24Hf1hJ01ENuLsxdp9n3wEQYwCONQqV5miXC5/smqPJD/mIHA+gsAc///DyvscKKrU5iBIZ7GxJSmPyxEEUfRY0qWMlvxuAyRpeyYZQRD3t0WbpLhuB3RuAYL0n4GMkT5706OqVBqnF5KapRhKo2T11XvpyLZ/vLtepnAw+XxPd1HfYVIMNVWpGP1kVfOUwR5PVxGJLf2aiXhLoD8HeSBAAFjYGio+pxhq906TL962KdT3nKYYirCsuOuNPYKABkYq4mzWsCmGwhwjuacYaoPjysc65jIHwYyHGueTFMe8c8a9Jra71IJMnu2OJIdp2I7/cCMIwhfE9jb0wFgp9HKKJsm+8uywm5bJCAKnawgvq5ekjg6Na8W2I9YAwXxbgCCNQjVQdw4CW4DAwX20UslmnqS4a4jc6ZtpiqFkf5ekQVIMNdU3UnI+YbvPmKQYRcccBIBNnOs41/7clcpGj+7v1wVnnmj9Xl4drHHTYoRNeTATh2Q64jT0jg8QhPteI3l3jrbKcWXbjz6mAs+jSDOPx7QunZHTEXgYwCmC9EYQtM7+CPu2vus5CHq6G7+7NTRWlhZGWFjGkuz9RHMQxB1BkPLxOu58BEG9Duh8zrm0UgzVs693VCf2dDf8u20OgizVO4ZteyfJriuVK/r3n23Ujev2KQgCveW5T9HH3vIcdXfGf/czjUMp+nmd3fHcrGhhzq1RS+ortCenkxQnLAsQByMIAAv7HASkGEqLi/J/a/mOpt9xmRkgSpHj9uuSb7v4jpuDIGGKobwnaC34ZWZa2m/4uZZHmWZeelx3rJFi6AlDYxOp7+MW3Gx1Jd2Oa3b1Nv1OqA6wCMWwdXYOjvr9tmqSzZ3HCxtpr9L5CIJ6KYacriG8LNOsGlUnOW3ENuomy2e1+iMIbO28+HvvYz9dp28t36HDg+M6NDCmq+7brn+7bkPs5aUlcnigYCmG8m6Ht5JWecHAFqPz8ZkCmIkAAWARa5LiCMtfv6cvlU7fot9/XGySMPkOnaYYirDn4zYoY48gKPjx4Ks427X2J7bdGWbR+QeM8l6/G7b9mHcap3ryKNGsOQgcjxY3M/5/+N/5t3/i2nZ4SL/xlXt18Sdu0Uv+43ZdftfW1NaV1kOqh6dLItc81LwdEfe+3IhtkuJWnhAzyTUl9hwE8VcZivMRBHVKnNscBBkOIaiYxnMQdHYE6u5sXJYsX+Wq1yaz7Z64l46xibKWrJk94euSNXsTBaVSGUEQsZJZtrlcpBjKeyQv/ONykuIWauKiQAgQABaxMgxFaNy89Uv36K1fukdHh8ZjrMlSBqdLy56LSf+CEI8FbucgCP/d2vVGOV5oiPol3vWh9t+Nl1CMOQhyXb0ztk5mH+uYR5lmBjVdF+F/b9+sj/10nQ70j0b6nY/7J47RUlnvuXy5Vu/slTHS4cExfebGR/WjB3flXbRIfNsdScvz7RXNRyKGuS+72i5DngcIktQzSdDK1+tAKYMRBHmddVmmGJKRRhqkcpnX3enNiO6sJiles6uvbsBkcGxCa3b3xlxqEzEL6/PEs81TDCVfBpIp4hv3tuBp5DSa3rWq0A4IEAAWtgt5o+G1US/lG/f161+vXR/xV3Z5dxwm5frt1IbrcbiZIgUIalYc5Xfx31Qs9vHQSowx2ri3X1++Y4u+e//Oht8LNweBy5JFt+nAYEu80WofQZBdOcLKo0gzt0Ma95ir79+pP/n2Q5F+4+HuieWB7Ud1oH9s1ufXr9mbyvpSm4OgVXZIBKECBFFeBLB81/VoBZ8kCy7E/V2629P9CII6n+U1giDTFEONRxA0m38gy9jBF5ZumvVZGimGbL8bCzl3St3lpnBHjbrMbCcpTr6yoj9vZyHsOejzhNYz2UbG2CYpbplGK1oakxQDFrabT6PLf5wb1g3r9ul/K6bhTWVed2fDxnErcjKCIESDxOXDYZQl1bYrovwu7ggC2q/piHP8fHflTl33cPNOvzCnQN4PJh/67ip1dQT6nUvP1r+99cJMUw5kJe9tXFcuubqPX6ctH3SWivh2WT3/fevsjiVJunvz4VTWl9Zx7d3bbhkUx/XIPlsQwMvrUY0k52OiSYpj/zJd7icprvOZ0zWEl+Xt3pjG95x5c5q965hdQR/e1auD/aM6/cSe6c/S2D9dliTnpQTPT+lMUhyxDO6L0FCzTRXmfsbI7nTZR+Dkt+1tgXynkxRzeCEHjCAALOLNQRDvam7LGxm1IV70G0pWDS63IwjipQqK8lDsInACd+KcZ2GCA9VlF+PBZKJidNV92/XN5dvzLkpstq3oYwd0PiMIqms1xmjRbZu9nAyxyLI+lz08rFORRTVdpxgqW+7zrTyCIEnVYs9BkPLmdD5JcYIj+ikn9ejk+d3OypLlCwFG0rAlxZBPvrvy+JGhacxxNMcSIJgo+xVoi9qGyrLN1WxNYYrSytdkH/i6dW33fdsIAp9H1ABTCBAAFtYRBI1SDMW8mNsailEX6ftbZs246CwJ8+iS1xwEtQ3gaKmJIhSodn3xfoYaj+7v19//cI1+7Uv36OPXrdfhwdnpQFwKs898Os9/8ECxcqUfp2gphnIo09S15/o1e/U/t9V/2z0PHp0CiWSdQzutzdYq+yOKcCmGwi/P1sGXdGJ6HwOeUxKVzdNqlbIYQRCy7q8+7zSnaYEyTTFkpL29I3X/trDHHvTIenqCh3YcO+6/05jjqMsyKbPrY25K3OCUz29Mu7geprW921H965ufF3drgCAINDZR1n1bD+vGdft0rGaeSU+rAxyHFEOAhXUEQYPPY+dCjfez1JeVh8xGEDhcT5TGc+3QxCi/YwRBPrYeGtR7Ll+h3uGSJGndnj4tf/yIFr3nhamtswiTFNd6dP9A3kWIrXCTFOdwhZ861n7o2aS53qW0iSnr7FxpPXT7tjey6FwIN4IgfDls1/WkbSOf33ZNUrS414G0rx+uRxDUE7YOQeA22U6mKYZktO3wUN2/nf3k+dbfZp34cGbgJI1JirtTChCkcb2MPILAslWCwL82WRbneDvzbHdPs6UYOjo8rrf+7z3afHBQktTT3aHFH3iJXn7uqUxSjEJgBAFgYb2OO251WkcQRL0/5Hg/GS2VdffmQ1qyZm/st6yzeoh12dCMNBKg5rtxfxeFbw3qovnxQ7ungwNTNh0Y1N2bD6W2zjD72ocUQ60gjRQAacqjSFPrvHfLkexXbuHh7okly7dxpRSbCK2yQyade/oCSdV2zX1bD2vltqOzOuBsHQVx2No/iQMECdKPhJFkUyS51vraNio53t71OlvD1sH1KKVMUwwZ6fFD9QMEzzptQWblCGPmZrHtnjTaF96lGIr4fdt7UK6PuGabP8zuIUCQLl+bFGXLeXZoYGw6OCBJo6WK/vQ7D2miXPG2PkAtRhAAFvYRBI1SDMV8k8nSxoicsy6nCMHB/lG954oV0w35nu4OXfm7L9Erzzs10nKcpBgK8TDkNMVQhO/WjlzIorHAGwjJfOXOrXU//8yNj6a2zjDXEQaUuGHb0j4Ob86jSK47QV3xtFiRZT69d0rbzbfdkbQ8xhhtOTio912xQgcHqi88PP2UefreH12qpz1p/uR3wiwn/Dpt7Z+k52GSCUzTlmREZ+yRuykfsK6D+EkmKXYdg8wyqDlRrmjn0eG6f/uFU0+w/jbrFEOzRxC4H6Fo+12yEQSxf9qQyzemO4LA6XNbs2WFeXYaI0CQmzzbf1FfZOwfndDdmw9Pv3QQVqu0cVEsjCAALOxzEDT4Tcx1uRxBkNcN5ZM/23jcWz6jpYo+9N1VmojYYC3mJMVR1hsvxRDaR5hj08e321uNj4M08igSx1q6sh9B4M/+3H1sWI8fGkwpvUWy35crRn/5vdXTwQFJ2nV0RP/wozXT/x3m3IhSDGuAwPcRBAmOq2RTEPhzPNdyHVitt7Sw543rF/6zTDHUO1Jq2CH39FOapRjK9tqaxcgK2x4vpdRoySoIF+e5Oy4XW4o5CJpLcg76em2P0yZe/viRGAGzcDYdKG6aV/iHEQSARZZzENgeJCIP0cypM+eGtftmfdY3UtJdmw/p9RecEXo5Wb2t6nI9keYgqGlPZtEBSd9e8YQ5h319q7tobB0sPnaM5zGqwcdAieTfG+txZf2Wa1qHUJTl9g2X9MFvPaAHth+TJJ1/xgJ98w9eqqecNC+dwsWw/Uj9t5ZXPH5UfSMlnTSvO/ExuOPIkO7ZclhPPmGOXn7uqakGCHy8nk1JUjYf5v6qu3zXAYIEiwsUOL3OzAxqnr5w7nGBNJdsx/3cLr/edZyVYsiyz2KPOLf8LOoLWTOWnOC39bnsEK12NDt8bms2giBMiiECBKny9ZYVNxVyWvX5/kq/5gdDsREgACxs1//GIwjiXf2tjaiob2DEKkF6lm89Ei1AkNkcBC4bmvHWm0Vnn2/HA5oLc1i4nGS7ndm2Ipu4ysdUS5K/5Yoq8wBBWsuNsD/+6cdrp4MDUnVelz/9zipd96FXuCtPine/PcdGdNK87nAbs8F3bli7T3/1/dXTbZ5nnDJf+/pGGy7G1jZavvWIrrpvm44Nl3TJM0/RX7z+XM3t6jy+GCmfLsnmIEiy3ridNeluEOcphuocSGGr0OF4gteZAYJ/feuF+svvrXa3ghrWl7WaXDxzTzFkuUDEnjvDssxEcxCkcDpEH0Fg29cJCzNzXQn/LjEHQRhh78NFas/Fff6KHDAL+fXF926LURqgPgIEgJVtBEGjOQjircllaljf7rFRX7BIexj8FKcphiJ8t/bNb892FTzBCILspPGGX5ryeAvY12CUn6WKzpZiqFIxztNWpHUI7T42om+v2KFA0usuOF1nnVx/NMBoqaybN+yf9fmaXb3a2zuipzb4nU+mdlmYzo963xktlfX3P3r4uE7kRnnWpzQ695dvPaLfXXz/9KS4K7cd1T1bDuu7H7xU8+Y8ESRIO11DXpMUx50MOO3rh+vLZv05CMKtxPkkxTOW90vPOV0vOvtJemjHsQa/iC/Oy1pTsr5dzrxW29sX8dZh+12SN9rT2FRR61gbNJ7JeYDAQYVJMZQuD5vgkuKNIIg3/sXTDYCW5te4PMAz8UYQxF1X41/mnYNvaGxCN6zdpy/dvlkrHj8SudMs6oOfiw6wMO1Ipx1tEZZVe1zZJqd2xcdOTtiFG0GQfjnagX0EgX/nTh5F8jQ+0DLPTraOjzQCgWm1Ka68Z5v+9dr1+pdr1+uX/3uZHtpxtO73bG/J37/tiLPypHmuTO2zMNfheuW4ef1+jZaiXcQbdUosvnfbrE7y1Tt79d+3PjajIJFWl6n4naVGn/rZRreFccR1YLXe0sJutyBw28E6M2Y5f06XvvkHL3W3ghq27disSlk/P82epLjxd+OWzZ5iKJ36pvFs28g9mw/HXFs0zVMMNS973OBkO2nJ+WViPoB5+EgBzEKAALDIdA4CSwM4zxtK33BJ771ihT703VX6wq2b9J7LV+g/bngkUqfzRMQbadzcflE5jQ9E+G7tw46vjR/kK8xDlY+d163Gx02cR5F8PdZa5fppG0GQRsq9LHbn0HhZ//yT9XX/ZuvUy+u+HNXUKNK464gTCGl0LGzc21/38yvuzjbtQJLzMe41ZtvhodjrTPvy4fy6WWd5oQMEjifrrTeqacHcdBIT2LZjswnes751zSyNbfXx585o/MOoz1vHLTeFbRXnHLjmofr51Jvt66ialaw1Whf5C7sdo27vPPdP3IEjUV/Y87TpjRZHgACwsLWzlm06pJHxcp2/uH8jJM/7w1X3bdfa3X3HfXblPdv0yL6B4z6z3fSi3kjjRuaP4/Gkj7UNZm7+qCdUiiFvX+suGNu1y8MTNI8RQZ++4RFtPTSY+Xqb8XD3xGLr+EgjYJ7VZnvswID29I7M+tyaUqkg+3Q6xVCIg7DeN+I0cxq9SV1vG9f7jc+bNm5nepIgSNoBRtcvF9cdQRDyt67Ts7jurLVJlGLIbVGamj1Jse3lL/fPi8lSDPlxr7n24b11P3d9xLVK+6GV+bqPYgXiAr/vwcAUrwIEQRB0BkHwvCAI/jAIgsuCIHgwCILxIAjM5P/ujLi8JwVB8M4gCL4SBMF9QRAcnFxefxAEW4Mg+H4QBL8dBEF3SvUxEf83kUY5EJ+tsbRmd5/e8dX7dGxo/PjfxB1B4LgR6aoT6X9u21T38yvveXzG+hovI+ow6yKmdIyyvWs7drN4M9fXBhYaC7PPfOy8LiLbVvQxCJNXid711eU5rbkx//ZOPNYUQ2mkMMjw2nGgf3Y6IVt9nQbA0kwxFGEVruoUJ1hU+4tWnKQ4SeAy/e3hOMVQncWFXYfjaUycL8/GPprbrxEEs+YgsHw3jaL5N0mxu4W6nkej2fMXTWw3wh4D9edY8VPcZ4PIk3bHWguQjDcBgiAI3i6pX9IaSVdK+lNJL5IUufM+CIIFQRAskbRf0g8l/Zmkl0k6bXJ5CyX9gqR3S/qOpE1BELw6eS3QappdyDfs7dei2zc7WZc1xVCM5aXdsLll/fETDFo72SIWJskQ2bxESjFU82Vu/skYY7Tl4IBuXr9fhwbG8i6OM+HmIODoccGaz9fHbZxTkY7MCIb7oFUe4O0jCNzfD7PcbFG7dIqyS5OOIIjztm6cFwpqy+d7Sq44nYkZDxaNxHWAud7+Cz+CIN1JitNknYOgaTGyPeZnbRfb6PC4KYZsbZaU3rBKY7RDVJlPUuz35bIt+DqHXtxre9R7uK/1R2tLJ1lgPCdLmu9oWQskvXXGZwckPahq0KBb0gskPW/yb+dIuj0Igt8wxvzMURlm+nKI79TLV4MchbmQX3Xfdn3i1y+a/u+4l3Lnbxo5XdpsM++N9hRD0UpTwPiA1ymGfO8UiGuiXNHf/OBh/WztvunP/uM3LtZvX3J2jqVyI9wcBBkUpA3Yzo9U3t5OyL8S5adVrm22t3HTGMWSZXAxcsek0wEEadZzcg6CFDr5GolzLGR5hiRdV8VInRn2+Mct75I1e3Xdw3s0NlHRr1x8pt730mfUPc5djxCtu7iQq6gWz93GrTcHQVoSpRjKegTBrPhA4wLEPT5syxz3bASBy1uNz8FANJbkEPC1hRfnXhwoaJmXWtDafAoQTDkg6YGa/71J0l/HXNYxSd+S9A1jzJqZfwyC4JWTf3+mqtvi6iAIzjfGHIi5voaMMX/heplw49jQuG7esF/bjwzpkmeeotc9+/Tphn6cC3ncjn57iqHoy6sYo84Um1MzG6gu03S0/giC2gBB+q2FVm2QXH3/zuOCA5L0sZ+u1yXPfLLOPX1BTqVygzkIsmPb1CUPr0W8UdSKGt+rSwWeg0CK36nTN1LS8q2HVSobveLcU3XKCXOcliup6REEIb7rKnVCrACBqf9vH1WvbdGOmCRvFcfZHt9ZsUP/cu0Tk2/fvfmw9vWO6h/e9OxZ33V9+6i3+8MGwZxPUpxhb63t+ahZADLrQ75zZooh2wiCmOtIawRBGgFVl0Ey16NgmrWlWuUFhKKoO0LK012Q2QiCWGsBkvEpQHCzpLONMTtrPwyC4JIYyxqX9ClJXzDG9Df6kjHmniAIXq9qWqMTJ//3N5I+GmOdKKCD/aN6zxUr9PihIUnS15Y9rt97+Tn6+K9dqCAI4g3njlkW9w8S6d5WZo8gaPzdqCmGXHR8Zv2mSdw5CLj5x/e1ZVvrfv6DB3bqY2+5MOPSuBXmFMhi/op2lySfb1r8K1F+WuUUsI4gSOEYzHK7RR9AYLT5wIDee8X9OjxYTRu3sKdL3/7DS/SCp58cbVkp1nN6DgLvRxBk2N5IuII4Tb8kHd9xOgAvv+vxWZ99495t+qtfOk9zuo7P3Ot8BEGCDjT3cxBk18q2ta+blSLrgPrMTmzb2mNfOyx/S5IWMZ05CNwty/Ux3KxordK+yFvY7Rh5e+e4f2KNIGAIDArCmzkIjDH7ZwYHEizrqDHm47bgQM13t0v6as1Hb3FRBhTD1+/ZNh0cmHLVfdu1+WB10rM47ay4DYpGDxI+5H2sv4KZ/2kZRht5kuLWbpXV7hsmKY5vb9/syS+l6jncCpqd+61+nmTFGtz0cBu36vkcR6tsitaegyBa6hVjpI/8ZN10cECSBkYn9Hc/eDjyutOs51RHYBppQhqJMzH98SMI/D5jfA967+8b1c6jw7M+Hxova9mmQ7M+j7O/rBKMRHHdOZVpiiHLJbBZoCLrI2pWiiHrCAL3pRtPaw6CuL/zeASB79cbyNtGXpxAXKDo7XcOUeTBmwBBzu6t+fc5eRUC2ftanTeBpCfeEIrTsInbGGocIIi1uNRvKjPL67KT7fBg8skwn0gTlc3dNcpqjhtBwM3fuVbZps3q4WHfdSHZ38bzMMWQr09MeWiRk93W75FGkCrLjuJ6dbOt/sjQuB7acWzW548fHtKWgwMOS5bM9AiCkN+ftc1j7IKlG5xnQHUq6bUpzmGZZYqhkqXztW+kNOsz16duvcWFH0FQ3BRDto5c3+Yg6Jw1gsAeDI3Ddv0uTfjVZvH5Dt1s+/tc9iIJe1+oe33zdC/EDf6SYghFQICgqvb868ytFHAqySR89245LCnehTnuWht1AsRdXvophsIvP2oHxz//dF3U4jTUrJi//42V+v7KnYk7TKI0Yo6bgyDRWsNptwZGq9S32TnG209u2M59L1MM+Vek3LTKprCPIGiVWj7Bdu060F9/ZJgkbT4wGGk9aQZCppYcdh0O4gPa0zuiK++u/2JLmPX6fu3I+p4WdW22zuh6x4HrycDrrSP8HARuRxFkmWLIOgdBk99mfcjPSjFkG0EQ43i/cd0+/cZX7mv4d99SDLk8p7NPMeT5BbMoEmxGX3dB3NSPnlYHOI5PcxDk6bk1/96VxgqCIHi1pJdKOkNSWdJhVec+uM8YM2T7LeJJMrR3qkETq3Efc7Wu+wDSftCauXSXcxBk6Y7HDumOxw5pb9+o/u6N58deTpQq1u4b1w+Q9dDILaaJilGXJWTtY/qbVuNj5yyn8xNaZVuEGUFQqRh9+Y4tumHdPnV2BPq15z9Vf/LqX4iVdiHL7VavI9F2WhVln0a9r85uM8Wr6P/cukm/+7JzZuW7b7ze7DZo0n0Xp92aZV5nW6d4vaI7n4MgweJcp2fJcgSBtd5NRxBke0GZuZlta49atFU7j+kvv7fa+h3bKJdm0pmk2OXSXE9S3OTvTteGOHzdB5mNIChKgwgtpe0DBEEQdEh6f81Ht6W0qmUNPh8OgmCxpH83xhxMad1tKUnn2dRPwy7CGPNESpvY62wwgiD2TShmQUKa/TZc4xXm0cc21UgPu+rF92zTh173LM219chaRKniA9uPaeW2o3rpM0+JtS7YtUqDqukIAg87r4uoaHMQ4Amtcq6HGUHw6Rse0eJ7t01/vmFvvwZGS/rHN10QeX1ZdhrXTzFkay9Y3haOPOFxeqaWHbcTOO6lZWi8rHu2HNLrLzgj1PezHEGQdPFZT1IcdYPYztN6x4Hr+0e9pYWtgvM5CDKMzNjOsSzLEcas8tjmW4m47JvX7296TCUJENikkQ4pKte7ulXaD74Lu5Xr7Q5f91HcSYo9rQ5wHFIMSX8uaerpqiLpsozXP1/SX0h6OAiCSzNed0tL8ubO1A0p7EN05bgHsJgPi45TDGV9U7XdK/PsyAy7HQbHJrTssdmTzIVfT7Tvv+try7Xots2ZNBbarT3SKvUtNRnCSoqh9KX1sJ2Erw9MeWiVLWF7G7dcqahUrugHD+yc9bfvrdwV6/6a9yFkHUHgcD1p1nNq2WHX4fK8PdA/1vxLU+t1ttb0ZX1ti7o2WwdlvWPa+RzF9dYR8rfu5yDIrmP+uof3Nvxb0xRDGZ8AM8tjW33UNtzlDebNq5UkLWIa28rlMrNPMeR2fXArz/kJ4j9/cVDBf20dIAiC4CJJn6356OvGmA0OVzEm6YeSfk/SxZJOlDRH0pmS3irpGj1xpXiKpBuCIIif42SGnp4eLViwQJJULpfV29s73fju7+/X+Hh1ItiRkRENDVWzHE1MTKi3t3d6GX19fSqVqhNvDQ8Pa3h4WJJUKpXU19c3/b3e3l5NTExIkoaGhjQyMiJJGh8fV39/v6Rqw7+3t1flclmSNDg4qNHRaq7ZsbExDQxUJ5+rVCrq7e1VZXJyyIGBAY2NVR+GRkdHNTg4GKpO/QPV73WqogXBEw9TJwRj6lS1DHNV0lyVJr9X1gmT3ytXzHF16lFJc1T9d5fKmq+pSXSNFgRjGh0vTdepa/J73Spr3uT3gsnvBZO7e57G1T1Zhjma0DyVVDambp3Gxsanv9czXdbmdTLGzX6aV1P3mXU6bj/198+qkyR1qKKO8eG6+ylqnWbuJ0laEIypU5XZ+8mU1d/fr6lQz4JgTB2T32tUp0P9o7GPvUo5ep2+ctsG7T42HL5OdY69ZnUKZDQ+PJD4fPLxGmE7n1zWKfKxF3M/zbxGjIyMWvdT2RjN17i6auqe2vkUsk5pXMvTPvaqDxn161SumEjX8kueNl9X/O6L9Xe/9KzJ7V/9nsv9ZBzsp6j3J6l6LU+rTopZp4nRkVTbEVld9zpLIw330+DAgB7YdlTD4xOz9tPA0Ig27uuPXCeT4X4KgtnX8qHB6n6qd+yZiep66x17UfdTmsfeyHC1TsaEO5+Mjj/2jIl/PnVNlqH22GtUJ2PM9LFnZKx1StouV6Wc6BpRMdHPpyBI0jYajHSNCCx1mpgozbpGmEp1va6OPVOZ3TaqlMZCXcvNxLjmmur3XFzLK6XRhvspy/vT8PDQrP0kPXGNMDKZ3p8qY0PHtWEnJq9T9epkIt6fwuynijGx709jY6MN91Ng4l0jprZ/1HZEvXtu52QZXJ1PqnM+1dapPHk9y7tt5GMfS5S2kTHh99PMOvX19Ta9Rvhep9pjr1yJdt0Le42Icz4VtX/Px/6ItOqUl7YNEARBcLKkayUtmPxos6S/c7yas4wx7zbGfNMYs8EYM2CMKRljDhhjbjDGvFPSr0uampHtFElfcbXySy+9VO94xzskSYcOHdKiRYumD9rFixdr48aNkqRly5ZpyZIlkqTdu3dr0aJF08u47LLLtHXrVknS0qVLtXTpUknS1q1bddllTwy2WLRokXbv3i1JWrJkiZYtq2ZU2rhxoxYvXiypekItWrRIhw5V39K+5pprtGLFCknS6tWrdfXVV0uqnjSLFi2aPkmvvvpqrV69WpK0YsUKXXPNNaHqdOvNN0qSTusY1Dt7npj09m1zN+qsjuqyX9K9Wy/prpb7rI5+vW1u9fcVU61T76H9kqSXz9mhF3RX32A5p/OY3jz3UUnSHJX1zp51Onjw4HSdzg+qvzmv87DeOHezJOmEYFzv7FmnE4LqxeCNczfrvM7qRMgXdh3Qa+ZslTH16/TII9UyvaB7r14+Z0foOlWMcbKfXjNnqy7sOlC3TrX76afX/GBWnSTp5GBUzzp0V939FLVOM/eTJL2zZ51O6xictZ+eqiNavHixjHliP50cjFrrNDw0EPvYGz24M1adrn14T+g61Tv2mtXphGBcW+/4UeLzycdrRKPz6dXdW53WKeqxF3c/zbxGrFv3sHU/VSrSm+c+qnM6j0lK93wKW6c0ruVpH3u2a0SpYkJfy1950jH96oIdeuOFZ6gy0q939qzTnMmGusv9ZEz6x16ja3ladZLi1enw+rtSbUdkdd078fFbG+6nB3++RGPlSsP9NF6uRK5TuWIy20+BglnX8rtu+qmk+sde57Htkuofe+XSeKT9lOaxd8/SG7RixQoZhT+f7r73vun91DEW/xoxcqRavtpjr1GdjJ449oyx1ylpu3xueSjRNaJiTKzzKe51b889P458jWhUp9HeQ7OuESdNHJXk7tgzI/2z9lP/ni2hjr2xvY/pF8uPSXJzLd+3cWXD/ZTl/emWn11Xdz9NXSOMyfb+ZNbfeFwbtn/HhoZ10ni1YyrpsVdbJ6P496fHVt/fcD/1lIem6xTlGvHd+3fGakfUu+eepl5n++mdPeu0UCPWOg0ODHjRNvKxjyVq2yjcfjKz6vTtK7/a8Brxuq5NudXJhK7TE8deoECl8fFI172u8mioOsU5n4rav+djf0RadcpL4PtQ9SAIPiHp45P/ucwY81oHy+yRdIukV09+1C/pVcaYtUmXHbM8fyTp8pqPXmyMeSjB8i6StL6np0ddXV1asWKFLrjgAg0MDOikk05SEATq7+9XT0+P5syZo5GREVUqFZ1wwgmamJjQ4OCgTj75ZEnVaNz8+fPV3d09HYmbP3++SqWShoeHddJJJ0mqRuMWLFigrq4uDQ0NqaOjQ/PmzdP4+LhGR0d14oknTkaC+7Rw4UJ1dnZW37bv6lJPT4/GxsY0Pj6uhQsXqlKpqL+/XyeeeKI6Ojo0MDCgOXPmaO7cuRodHdXExIQWLFigcrlsrdOBvmG99osr1KmK5gUlDZq5kqoR+1HTpa2f+3U9+yPXSpLG1K1OldUTTGjIzNWJPV26628u0ap9I/qDb65Sj0qqKNC4utSlsuaorGHNUfUthHHd9c9v1ikLezQ4OKiXff4ODZQ61K2yulTWiOYokNEJwbiGzBwZBZqncU2oUyV1ao4m1Cmjr/3BK/SKZ50yq05BV7ee+6mfa44m1CGjUXU3rFNZndNvINzzsV/VyT0diffTcz5yrcqTdZ9Zp9UfeeX0ftpz8Khe+9/3HFenEXWrQxW99Gnz9b0Pvf64/XT+v90auU4z95NUjdiPmG6V1XHcfnryvA7d8bevUM/8BTr/X27UgmBcw6ZbFXVUR2zUqdM/vel8vfeFp8U69r61co/+67bHI9fp5BMX6HD/cKg61Tv2mtUpkNGnfvWZ+u1XPSfR+eTjNeKFn7un4fn0yOfe7qxOL/zU0kjHXtz9NPMacdPfvk7nnHFyw/107sdu0tzKmMbVqYnJuqd1PoWp06bPvS2Va3nax95vXrlaWw4O1K3T+Wedosf2HAt1Lb/gtLm65k8u1YIFC/R/tz+mr962QYNmjqRA8zXuZD9t+Oxv6qX/cZuGB/tTPfZmnk9T1/L5Qcl5nZIcex99wzn6wCuflVo7Iqvr3t995z5dt+Fo3f305fc8T3Pmzdfvf2Nl3f30/T97lS46Y16kOi1esVdfvPXRTPbTjX/zGj1tQcdx1/K1Ow7rnYsfrnvs/foLn6EfrN5f99j7z/ddql997lND76eLPvqT1I69a//4RbrgqSfr+vWH9LFrVjc9n848ZYEOHB3QuafO0z+/7Rf1vZXbtWz9zljn0+ff9RK99YVPnz72LvzUHQ3rtOrjv6Kuyrg6Ojq0f6iiN/7X7Q3rtP5fXpOoXf6bX75bm3Yfin2NWP6xX9aCzkqk8+mPv7tWyzcfiHXd+9gbztYfvP6i0NeIgwNjet1nbqpbp0+89QK9/eInH3eN+I2vPaDHj445O/beccl5+sTbn3tc2+gbd23S/7txQ9Nr+d//0jP1g/u3a/egcXIt/5/ffI7edPGZs/bTOR+5IfW2Ue396c6/e7WeevqTGl73PnDVKj30+IHM7k8ve9o8/f1bnq8XPOMUjY4M6wcP7tG/37ylbp1+85Jz9am3Py/0/enCj/y06X564TNO1lW/fXGs+9P6vf1699dX1d1P5551mq79i1dFenYPOrt08eTza9R2xJZPv2nWPfetX1mpXX3jzs6nzrnztOYTv9qwTvt7h/WGz9+ca9to++fe4mUfS5S2UV8p0Cs/e2vT/XTigvm678OvOa5OW/cc1C//38q614h5nRWt/Y+351KnWzcd0999/6FIx94fvO5CvfLcJ+uDV94V+rr3/F84U1f/0cub1ukFn7sn8vlU1P49H/sjXNdpz549uvjii1XjYsdZbqzabpLiIAi6JP1ATwQHRiX9el7BgUlfl/Qvkp4x+d+/Kun/s3fe8ZJUZd7/VffNc+9kJgNDGBjikKMCEgwYEBQVw5pzWF13XXV1zWH1NYwJRUVYFxRFRVFEchAY0gwwMMAEGCbnuTN3bu7uev/o232ru6tOnXPqhOdU1/fzgenbXXVyfs7zPNICggoVVRgAyOfz1Q4EABMnTqx+7uzsrH5uaWmpea7SmYByJ6vQ2tpa81vwnQkTJlQ/t7W1oa2tDQDgeV7NcxXzRwDQ3t6O9vbyAJvL5Wqe6+npqX7u6OjgzlPLUFn4VUSuOhkDqA7kQHkirlBEHv1+2UGt75fzlNtavjUwFHiuMDbwlvGwz2+H73m489lt+NPSjegbLSvmjI4tIgDAH3uuwiDaqp9HxrphyfdD8zQ0Wqx5jjdPvu8rqafBQN7r81Rbnz3V34JpLSGHIa+j6sQ5WE+ieSo/N15PAGreCdZTyctj4sSJGC4UgYbyD8/TSBHybS+3VSpPna157jyFtb24PPnw0NbVg1wuJ56nMaiOEf6Ytdew/qQyT5W60l1P9WNEvrWcr6h6Kvn+2GanMe+q+xNvnnSM5RV0tb3yRYnwPBWKPvdYXvRaq23Wy+VrnlNZTyVff9sLS2upLq0U2l6+vbPallxse0B53BvNd6I0ptRbX08tHZ3wPI9RT75wnoq+b6yefL9xLO/o6h5LeWOeSrlyWwpre56Xi8wTUFtPvu9rbXsdXV3lcvf5+tP6XYMAWrBixyjeffXDOGj6BOn+1NFefjbY9iLz5AfaXn8/M09J1+W+l2yM8H25/iQ77uU7u4XWRr4fnSd4uYYxopImVW3PH1tHB+vJy7dW2xhrLG9pbcew1wZgWMlY3tbRWa2r+noyOT9N6CmXRdS458M3Oj89sGEIr//Zg5gzqQPXvPc0eC1tkXnyIbYu56kn35efn1rbR0LzVG575bSKjBG3rWjcF/G2vbA5t+Sp7U89YOfJy+WYbU80T7Jtj+IZSwWetdGePYPc9VSfp4kTJ0WujSrHmDby5Pu7pdpe43jGHvf4x4jy3CDSn+rzBLhxvtcMedq4cSNs0lQmhrzyzuIqlM36AEABwKW+799tLVEAfN8vAbgj8NURttKSJuIcfLIoVpwUcwbxp2Ub8a6rHsZfHo92pBWHaoejpnWDWM6CbDpTFYm6LEwwS2ebfjktcUUx0tjUsmM5yPV9P6tXAxQEHMAGfTbq9N9IXfMzQxxWlRaKPtM5o0xzkHFsLEtY+kysCXRHUXVSLLHaGi6U8MyWPum4W1vK2zeeegymT/fYkTR402tF0ejY69zG74qK+1lYaLwxeF68Q18RVDuMlSVurrU1XW7aM4QPXbOUWT82nayGobqs1u7sVxugamgVf2rhbVdJnLCbRqbveh69Pp+REUZTCQgA/BTAW8Y+lwD8i+/7f7WYniCbA5+nW0tFihgpRB+uxVHZpPBuVn505+rkG6OI5MqGS2mjpXqTxENFY2H1tn3c7wwnaDOyxd3Zqn8YzpYj8thouzxx20xX2mCVZIEhpGHhKT2KGefRF3ZjZ/9I/INNQlpkJaz5uljyme3p0p89gIfX7hKKr2iw4MLyxsqvK1VaFRBYSPCewVF86JpHsehLt+Al/+8u5rPB9FEvW5lpzdMpja2DVddhbVq1QCbs0gBvFKoP9HNEJAS5mPq32eaf3rwXLzAOyXWMHcmCpD1C5BRvl+JyS2F98efHNjp/KURX6m0Wi2zcwkJpt6s+w1GaRkDged73ALw38NX7fd//ja30hDAh8Jm4yN0NWLdv46gMyLybld6BUem4KkRt2GWlzSbPD33fx7dveTbyd5uHmR+/7jHuZ+1oEOTjH8qwhsmDtHpYt9dtpit1sG5vi2gQBA5xdZ1Zve7y+/UE7ChpuY3FmiMLpXgNgrdf+RBWb+O/kS7SrnXAip49tPGnW3cOK23PRlF+7DfLcNPyLegbLuD5HewtQzB52rUqEr4vo9mSZKgVjY15GzxMg0BxgYftNbg1CBQLreMO5k0RmwrLU8Sydb2Rv/E0d9/3sXJrH57l1DjSdphMYM2pug3HlRWF9cW//vYxfP+2VbaTYQ0CzS4UYwICAm0wo/loCgGB53lfA/DxwFef8H3/F5aSE8Xxgc/ydmoyqowkEBBUbgKZlNpHxSWtQWBw13rV/Wtx7YPrIn+3okEAYP2uATENgtEEQiXJ9zpbMxNDlInS7DFBgWEmTVWdtrfULgMOmNqFhbN6Ip5OJ6yiFBm7akwMyScnQ4C0jG2sZlYs+bENamCkiJuWb+GPz7KJIdbaypUNcRITQyZx6fap6aSKlo1ou1XdzcK0x3jzoPo8n4gCQbyJIcv9k63NzU7btr1DePn378VLv3cPXvb9e7jiS9KHqA8VqtuwK4q4l9+9puqP0EV4x6iwp2z33yhkUuWBbn4yMoKkXkDged5/Afhs4Kv/9n3/+5aSE4rneQsBnBH46i5LSUkVLBNDLTEr28qiweTiIYE8IxSTC70bY3wv2Lrt/NSmPULPJxEqyZJpENDGrgZBdHtUJXT79btPxdmH7Ye5kztx0XFz8Nv3nYauJmuTrM2LrC8bIpcrU09atlqsNljWIIhvUN+9dSV3fCanOuGDU2al8ncsUwfj1A/VfMZf6iNLFr6MaUyTYy3bxFDId4o3EbsTmJdTbYrJGRNDlvunvLZUWQP62a1ivkqSmJclPpQpv3gRd1g7WqBRIiOFEv7xFP8FgDRhu/9GIdvPRKcEqvnPSDf6r65axPO8fwXw1cBX3/J9/yuG4u72fT/26rLneV0oO06unMjsAHCzxqQ1DSwTQ3ELShsaBNEmhuQwKaVeylChBczeVgwi6lMgkQaBZBbjhCsqyG4syGPTPJYJE0OnHDQVpxx0Ss13zdZa2BoEtHwQZNSSls0Tqz/LtkEWJn0UiWoQPPLCbo2pUce4BgFtgnVN3cSQ7K1MCoj62pBh90CYBgHfux7UClOomBiKw3b/ZI11rPbROzCC+9fslIhP+BUl75pAdZtj5bdvaBRvvOIBpfElYeveIdtJkCZRm1SXDLVImxgim6OMjCqp1SDwPO9dAL4X+OrHvu//p4Jw7/I8zx/77y7Go2s9z/vymHZAVFhnAngAwKmBrz/PI1jIiIclIIg7MLWx8Ys2MWRGSq0TW/aORW//2vBBYIJsPSKPLeEWwDYxpDNdWXsZR8gHQWDz6sjZifOkRfjJamb/+YfleNMVS5TGZ1LwGRYTK/p1uwa0xauSStsjv+H3Qz+SxKTgClDrMDLUB4FqDYKB0Ya5n3cMVO6kmMgcF2tiyHL/FG0zFVZulTsKSKRBQN15vOI2x8rTj+5Yjc176BzKuyKQS0JY+7Pdf6OQXXuKZufB53dx+x/JyFAFKQ0Cz/NuAjCn7utZgc8neZ73WMirF/q+X72G63neMQB+jvGppL/8tfcjzqQs9n0/qUeYaQA+D+DznudtAvAEgK0AhgBMBXAigIPr3vmx7/s/TRhvxhgjClQDTW5WojYSsikwvdFiYeuQVdRRtajGQZC0HFRl1GLTxBDrcEHnAV+ztWRWFdvUIFHBG06ah989ssF2MrRBaJpLhOk50uS4ZmvTr/22vF/7L1XMXnRJ+r6MiSH5gzPRdRvr+bA+rLptFEs++oYKmNTVKhyHchNDRA4s47T1bHdP1l6MlTaqB6M2UW5iiFHGP7vnOcWxJSNPRSJHCJs9RKp7ep7UWcFlP1+CWz5xFqZ3t0tEmpEhDikBAYAjARzI+H0CgEUh37fV/T0NtdoREwB8SCAd1wNQ6TJ+DhoFH0F2A/gUQcfJTsOyJ887sJvcs0fFJbtGpLS4tHHI6nlmBQSUodMS3MOmBsEow7SI1mQRGjtMwFqws7Q46glu31Qfxshw3sIZ+K8Lj0y1gCAtmBbomxzXQm2zp2CIqWSB0lorjGDy4pLq+77Vsct0u1CpQRCWdh1r310DI7UCAs731GsQ2J/jgPh82e6eTAGBhrSl2geBQRND1GhWAQHVOpJNlkx+dvWP4J6V23HJCfMkY83IECO1JoYIcBiAtwP4KcpmhFYD6AVQGPt3JYDfAHg3gHmZcEA9o4zDXt7x2eTGL3LDLi0gkE+Laiz4/gXAdlQdRhITQ5TKO0MdVjUIWCaGNKbr0Bk92sKmCKsoWUKaeoJ7VwpbOc/zaCREI9QPZ3kxLSAwqxnTGJeJ/OrW6qu0PeotMFgOvOY1VcQlg5ST4kQxisG88W2onffW+SHgjkK5BoHS4KSJOzS23T9NawkkGdpVJqdQLCm/dKXeSbE7ULh0Igtvu3KpPkw5Ka7wqeufkHsxI0MCUhoEvu/PVxTOXdC0ZvR9/xzO51ahrIXwvzrSkRGP6O3xMEzu2VVvJCjd0LNl7oilRRL6fEo1CDLphTx2nRRHt0ed6Xr/2QfjD0ub59a5rI1gFhT2cjmPRjoy4tHgh5iJWRNDjd/JrgkotedKDiittcIQ0iDQm5RYZPpBkjYhml+2w9mQ7zT06/p4rPkgICIhiE0FZR8ErPek40uiQZBc26FQLOGLNz6FG5Ztwr7hgnRawlA9/rt0wSBPafIThHeMMmGmTRUy6fIg3+Zs+XLMaE5ICQgyMlTCdFLMOUAb9UEQ5aRYcplIyQdBwYIKge8Do4J+KJL5IKAL5bRRx/TBXRDWglCngGDBjG5ceMws3LR8i7Y40gg1DYKc55ExA6ELQtNcItJsYigsJhOxm/NBQLsRiqSunJcENv0TFgV5J8XMsCxpynBGEWerXxQqc0usk2IzyYiEbWJIfep0NTnWXvTmJ7fgl/98Dut3DWLLXn2OfVW3OZfOXFuICOR0Er5WoFlJ0gI8panIyNBDJiDISC2sw17eAdplHwSUBAQ2FmEl38dIUcxk0PBoSjUIMqRh3eLXDUsIoLN7e56HxW86HifPfwH3rd6J257eqi+yFBE8gKGgDp7L0RBU6ITOLJcM4yaGDEYXqkHg0slMJG7kIXgISWhZGIpc+pI5KX5my15cff9arNnWjxPnT8GHzjkEPR2t4c8z0hfWh/Vo6siFmfPUCgmonFfGmhiy3OZlnRTLkihMCW3KO5/dhg9d86iWfd4dz2zF7U9vQ09HK16ziOXKMf1Q0diRgbsPhjxnu/9GIpkw6hcKMjKATECQkWJGFeyAKfggkFczlU/LeBhq8m/DTEux5Au3gUSHNIQnfcJJI49NQRur/ao4eDj/iBmRv7Xmc3jnmQfhnWcehPmf/lviuCijY5wnIB+A53kk0qGTtIxtJg/sAcMaBCGV9D83P2Msfl2MaxDYTUccNSaG4nwQKIxLBikfBAnGuFVb9+Fndz+HPYOjAICH1u7CA2t24rr3n4b2lnzIG/wmhnzf19I26sPknb9UzwUUNAh4kqDqBnJLzpMy88G6Y8IKzsblMLaGTPj3v39kvRbhwE/vXoNv/n18nrjq/ucxpOESl23H7Lzkm8BrqGjbtXnYLhOz59FfL2RkAJmT4owUwzYxxBcGBR8EshOgGgFB8jAAO45efV/cp0Ba5+3sxoI8thxsl+PW64PgTScfkDiMIK62M1WppmZiKO95ys1KUIOq+rkopvrOpt5BfPEvT+FvyzcbiQ9oPATb1jeElVv3aY9Xu4mhsX8paWvGEeuDgPBtax38adnGqnCgwmPre/HQ87uEw6pPuy4ZnGywqg9BSQgIOJ5R1aR03OCmZmJIxl+CLlOU37t1Zc3fOoQDgP0xjxcK/U2WBAoEZFd4spcsUqE8mZF6MgFBRmpR4XDWqA8CxRoEKtKuKv82zAkUfV/YUXUy514ZacSmk2KWBoGKvnn8AZMThxHElY1WPVrSTWAz1wxOil1tc/Wo6M9tLewl/fa+Ybzxigdw1f1rE8clQr0Q57cPrZcOi1JzrmoQ2E1GLOd99258+x/PcPmCSipwS1oWMtOtjjYRpeEi4tBe1/6hUYOA7z3V5ZQjcILAc2iqqhpkncSaNjGkr92ZHemS+IQTgfr4XSHvsIkhXsKaGNWLR9LWHZxpcRnNTGZiKCO1iB4Oh2HybFD1HKhGQKAgIbCjQVA2MSQqINCUGMukNFtGsHk7lCWcUJEu1TcKXW1nqhbsXsRnW7h844wXV9tcPSo0ldpjBAQ3Ld+M9bsGk0ckSl0lrdi011C0eltH5eCC+rphpFDCj+9cg139I3jLqQcyn7WdFyqHQc9s7gv9npW6+oswpi4X8Maiej6gML/wmRhSg6yTWLZQiZgGQWpmVH5Kvo88iRUbG1kBFQV423nYvoZqi5TpZx4863NsRgYPBOT/GRl6GInZcfNMWCYXS1GH6PJ2KBMkphqGmvzbmBB9X9wPRZJkUp70v3TjCrzmR//EtQ+us50U57CpQcCyd6siXaq3Gy6Z2tBCYANHYS/XDD4ISA+8Aqg4KAq3mT7OF/7yVOI4ZKjPmambx6ZMDLlyqPaHpRsxMFLUGkfSdkzF/ELU3Mt2Usz/bBLqy5hbg8ADZkxsV5YOEgICjlWMqkP4fF6DBoGGNpJIE1pAQyYtuJIvl50U8xJqYoho/di07pCRoZtMQJCRWuJuj/OM0SY3K5E+CCSnIRWLYpfnsaLvxwqJ6qFye00HT2zYg8/+aXkmJBDEhvZLBZZJCJbjO15Ub/Bd7T460k3B9n/Oo3GIo5O4qts3XMDqbfvIj+0qBH5xGgS2qC96FxxC8uCKk+IKI4USbn96q+1kMDHtpFgU1nq8Pu261g71ofLuEXKeh0+9bKGydFBwmmqy7uVNDEX/xrb5L7n3k3or/l1XBKGiuJIvpzUIEj1Is36orykzMpKQmRjKSC0qfBCYnAAi7fRLJkFFynk2a1QnyZLvC7eBJGc0riwyf/PQOrz5VLXOadOMDf8ZFZgaBCr6neL9hit9oB5Vqa4xMURgL5fzKIgp9BLVDUolH1+88Slc++A6FEo+Zk5sx0/feiKOP2CK2QRyYsIHgS3qxwVTQivdo1ElX1TXQGH0DReYv9vOCvXblSLJI+eDwANOPmgKFszoxqptyZ2EUxD0cZkYUlQNsje4WeODjjWTqXaXFlzJl8s+CHjLWLTt2qw6eesOjjS4jKaG5m4iI0MBceZleIZok+O4YvmAkoNNnomMikp4Pb4vLiRyaaMvy/KNe5T452gWrJoY0uykWPV+w9XuoyrdwcMKClu5XM4jcYhjgyvvex7/+8ALVSHb1r3D+JdfPoT+mANSW6hog65oECQZdyi1Z9c0CABgNGZNlNhJccKykLXrbAq2iaHaH01dLuCNxfM8tLfk8Zv3naYkXgraaVwmhhQdI8qOW6y1mo4mksgHgWGHyhRwZfx29QKOCG6ZGJLTdqNmViwjIwyau4mMDAWo8EFgUtIbdRBp1wcBzzN0J6ahUTF7u4lUc+kWQwP//vvHbSfBGWyaGCoy7AipOHygdNhmF/V1TKFocx4NQYVOojZp1z+6oeG7vuEC7np2u+4kSaFinKGqQVC/RjCmQaB57K4KCLTGopbhOAFBpkHARMTEkC75QEMaOMus0uumd7dj/rSuxOmgcKHZpAZBi6TzFKbZHrZNHymSaUIzfiPeN2Vx5eDd7eLnS3xYG6Oabdn60FGPVC9qZrgLzd1ERoYC4m5K8WBy0FW9+FLjg0CPEMXUQjNuM9xAk0yyf3l8E3oHRmwnwwlU2PqXRbeT4kyDoIwyDYKaz/ZPT3JN4KQ4qu6e2dIX+v1P716jMTXyKDExRMEoeAj1OUtLm6wcLFE/1A4Sp1WZNCc2NBBMlj+r/OqnZG3ah/XyAc7XgoI5FSmjoEHAkwZVtSDrXJ19mUNHG9EjIXBnlBPDoeE79YR1Far1I23dQUOGXFqDZLhB5oMgI7XELc75TAwZ1CBQ7aSY87m7nt2Gu1dux/TudrzymNmYP31C9be4/Y3v+1KTt6lildUg2DM4igfW7MBo0ceZh07H1Alt3O+6gO8Df35sE95+xnzbSSGPVSfFmn0QqD7EduUmli48YjaGcl76tUREWxzVjZQKQWR7K00BQX0lpcYHgYMmhlRo1upEpn+avMjzkWuXRf5WX3a6yrI+VBEfBKLvsJC1ya8SnhSoqgfZcUtGg2C4UMS/XveYVHza+oND45wIrmTLpXmmnkRmr4jWkJw5PPn2xhp+XG4bGTTJBAQZqSVuo8EzoJocdKP2bTod4fz4ztX49j+erf59xT3P4Zr3nIqj507iCqNY8iU3dDQ1CHzfx6qtfbjs5w9ix75hAEBPewt+/Z5Tcdz+kzWk0B77iNripoZVJ8UMHwRKfBQ7pEEwNFrEA8/txPpdAzj94GlYMLNHWdg6km3/6CT9wgEgPRsjFXOirAkM3TQ6KTYUr+a24df96wK6/Q/Z8EFgSqixdkc/NvYORv5eL+QzdbmA9wAt2O1UHLoRkA9wTbSqaiEvOZ+y1pBR4/5X/roC2/uGpeJL0h9Y7cKlcU4EqpcG6nEjlcnxfb9m7Uq1eqTbjeRrrNHHlTac4Q40dxMZGQpQMVyaHHSjFnXyamzs3/cOjeK7t66s+W7P4CgW374qEEaMgMD3pW6rmDpzFdUgKPnAp/+4vCocAMp2qz/BcZPHtfmZgnq4C1h1UszyQaBCg0C1gEBtcFX2DI7ijVcswTt/9TD++89P4YLv3YMr//m8svBVHTDVmBgi0L+aoY+LHnRRHacpOh1XRaOTYvmEUspiddyg2qhCiPVBYCgdUVC+cPLLmDmnfizSZmGo3sQQtwaB2kM32QNzlXCNJYrqQVZjgtUOwn7yfR83P7lVKq64+OJgtQvb2kW6cCVbLpe/SMpF2q9rReJ52WF+hhtkAoKM1BJrHodjyjJ5NhjtpFguEXGT0B8e3RAa560rxhemcVFT1yAQvS03OFrEoy/sbvj++R39WLk13Ka1qxA1V00OqiaGVIxNyk0MaSqrn969Bo+v76357st/XcG8zSmCqlQTszDUHH1csPKobs7S7GSuvsiNCc8MaRC4VHe6nRQnLQrKF04272HPN/Xp0KV9WL934Y1FtYkhCkJwg/IBeQ0CRmGH/TQ0Wqq5pCRKIg0CQWFGKnAkY44kMzGNptosJSQGmX7meV4CE0PR4w/VdW2GuzTD9jGjSYkbvLlMDBmckqP2EtJabDEvPrM5/sCbx8SQL6GxbmouU7k/W7V1H/N3qnYSo2iG28UqsGliqMgwMUTxxrGukrr8rnDHsr97eL2S8HWMRxS6VzP0cbdG3WhUjDNUy6J+rKKq6SBMRYGAbMk3MhpndtFyVljz2ra9Q/jNQ+vws7vX4Jkte7neUUlcNPXp0JUuWQ0C1fMBhX5s0geBbPGxtFB1tBFd3SGtZ5CujN8ul79I2uu7C9X60Wn+OQzW8ONy28igSeaDICO1qBgwTQ66qheKccGp0KAoliSdFBua8FWah6G6SJGFwu0vF7CpQTDKMDGkYtOrug2YLqqbn9yCT1xwWOJw1JkYGi9PCt2rGfq4aN1RvWmlIl1Es9Ywc5pzUqy3QCrhUy33MOK0KpOWWdKxNOr9lVv78OafL8GOfSMAgP+5+Rl8743H4aLj5hq8cCJ26ciUeUIpHwRKLhjYn1940qCqFlrycvkVXUMmnQuSvM1614U9UM4TvxgWVtw0zfmU03T1/Wvxx6UbsH73II6aMxHvftFBOOfwGZbTxkak7RRKJbQF7i+TrArI9zMd+aG6rs1wl0yDICO1qFjMmLw9rHqAV5H0uPzLmhh6ZosZcz17BkeNxAPA+s07USjc/nIBmz4IWHGrGC6UtwHDRSVrE1gbNSaG7KeNWvHoQLQfUN1HqRhniGYtxAeBnXh1hU+13MPQbWIoKVHd4Os3PV0VDlSe++wfl2O0WDJ2OBLXRRs1CPSkoyFYXg2CwI5fRdIozL9cJoYU1YOsiSG2Xf/G75K25yTvsw7GbY8NPFx2ygHC74SVF8W8+j7w83uewxf+8hQe37AHu/pHcO+qHXjP1Y/gvtU7bCdPGcOjEmYJLCDbz2SbFmv4IdhcMxwnExBkpJbYG/QcIyoNHwRy4YnedpJ5piwgEEjUGL+6b634SxlK0XH7a8WmvfjG35/Gf17/BG5+covy8G1gc7Gq3QeBag0Cw8tUVecTOlJN4HIliRueuhGtO6obKYoHEuqozVxaNFsqdebS7b2ROBNDCUlaElFledez2xu+6x8p4vantxoUEIitqXXdQm6w0c35XlBoTdFEoRw8GgSKNAQ1jFthadPVh3hgahA4MMzJ3KQPyxbFMd0H8JuH1zV8Xyj5+PUDL5hPkAAixTlSp+VGsCoA6DP/LBWmGzKVDIfIBAQZqUWJyr7B44RtfeFOqWTToGISiivDvUMFqXhufHyTbJLIQnQNE4nqzd1Dz+/C6y6/Hz+7+zlc98h6fOD/HsX3b1upNhILbNg9YC9yRqNKOr7pOKMzrWyh7ABcUbpJnJcEoHGAo5df/vN57OofiX9wDJqmA1SZGKKZt0YNAvmGKfKq7tLwGz7Qp/7wpZ7EWUkYQNgcwmrXKzb3GZt3RH0Q6DJPWB8qb79X7aSYggDaqAaBhgk1zIpk0sM+otOAdo7bf7LUGizUxFDi1KhnuFDEc9v7Q3+7+al0XMgC3NEgMG1iiKWV7IL5rwy3yAQEGanFhA1+ldy6YiuuuKfRGae8lDrmd44w4g4ttu4dMn4omKEG1behfnD7KgyOFmu++9Edq7FvuKA0HtOs22VPQMAao5IeBurY2ps+oFRl4kCPBoH9wxMKJiBM8J6rH+Z+lup0ZdPXiW7qc5aWZlkZ71yquTgnxbaFTGHxM9eYvm8szXF7hvpkMFwIKYU3+8E5SUWJ6TgwF4UnCbzl89O3noC3nBptokbWxBCLsDaV2AdBgtfZ5pBoj3SeJ3fxRUcd6KBQpJcmXkSKc7hQu48ke/gt0Ub8JPMVo21n5zAZqskEBBmpRYWJIdMLoq/f9AweW99bmwbJsJJMGJV8x4Wxec8QyYWUDagvnutZum630vD+GWIDs1Dy8adlG5XGYxqrAgKmBkGysHXc/jPdAyR9Bjago+/aPzqhccPTBEvX9WJT7yDfw0SH6TRv8OrXCKYEV7rn5EroLs39w5o1CHSYR4krX119p94HV9yBf6MPAk0JqzdlxPlarZPi5MmgML2o9PVz+sHTcelJ+0f+ntNwYrJ3sIDP/mk5zvn2nXjzz5fglqe24Lkd+xKFmexAlXEpJUGoJsh5npyAIFRrKXl6VNMse+16PzlUsy2TLN/XM1+5tAbJcIMW2wnIyNCFEifFFgbd6x5eh+P2n5w4nLgbiXGOszwvftIpaxA0x8SUtmz+celGnLVgP7z2+Lla41m3M1wl1hXW7eI8eNQAW0BAz8SQ6T5C7QA8WCcUkkbggqcx/rRsIz78kkNjn6M6X6nY4BHNWkO6kvQNkTxqNzE0FoFLwp04HwS221DYITyrfH3o69MjxRI6cvlAOuIEFWYEBNJmRxl/yUBh/uUzMaSmHrT47dq8Fys27wUArN05gPvX7EwcZrLLYXK/UcCDnMDIHQGB7RTIIzJmNQgIVCdGETLjuw/5/LBatsttI4MmmQZBRmpRYWLHxiLhNw+tr0uDXCLqbz8JvcutQTBIciGlg7hsulgO3/z7M9nNAwa+72Nnf7hvECPxM1pd0gWhypt3FYw7KSZmYihYJzrKVxQKZo5MwTuOUR3tigp2eD58FEt+orlfB/WpSXLQtvj2VXjP1Q9j8W2rsFvA94QeyjlL0xSadAxPup4IO3RhHcT4frK1Lot6W9jxPghq/07Sp886bD+0RqjINTpD5gszWI4q2qwOkzui8Iwl3Fn12IdwFEwq8aDNOTbZ2bNMzoupwAhcMTGkYo3gAg0mhgjWBSA3hvq+nvxQ75sZ7pFpEGSklrgJ/g+PbuAIQ1Vq5JFNQiEm8TyHj3FluGXPMMmFVAYfW/YO4cmNe3HMvEmJwmEteFw+pCz5dg9/mDcnCWoQmF6jqjqgUFXH9DQICCSCGFTnKxVrjftW78QJX7kVLTkPr140B5975RFoyYvdAzp0RjdWb0tm4qKe+rEqyTnb8o17sHwjcNvT23DzU1vw2/edhkmdrRHxysfDQyX8bHOuDpk607VOHy4WAYy3rbixo8EHgUC6Dpo+ARcfPxcrt/bhpAOn4E2nHIATvnIrRovF2Hd521+wH6ooMlemF34fDew8uTKfJtIgYP1GfJiTlA+E5oviOoFimngRSXq9lpupXC9dtxvfu3Ulntq0F4vmTcKnX3EEDp/VE/m8TLp8+PJOihmN2+GmkUGUTECQkVrixssv/OWp+DAIjLqySSgm8JA2rkEQIyDYO9g0txricLUUdii4IU+gm2jBdtt2zsSQ+iCZqLIJrOqAL3iTlcJRgiMXHo1CcaxSuc7YMzgKALjq/rUolnx85bVHC73/qZcdjl/dtxYPPJfc1EUUqg7ant68F7c8tYVpN1wnlVqj2KakSZiXpEUhrEEAH/3DhYSxhjNa5xQ0XkAg9nyQmRPb8bHzFnA9K61BENgSqBhzKFz+4DIxJNAqWZp/rmgQAOX6lakfpomhBOkxQVnAI57n8DFHRYrUQk0zUBf1JoZMsHrbPvzLLx/CvrG55M5nt+PxDXvwt4+9CLMndYa+I61BINmTWGNTqtYgGSTITAxlpJLRYgnL1vUmDofGmCuXihhfdMxgqzfjYqIuaxDwpYeCsCVDDy7fbGFhW0Bw29NbI39LIP8DoMlJsYbiYo0bqvKgToNg/DOBsxOnDjSSwluHFIcqXePMXx7fJBx2Pucpd8bZ6INAXbv8/J+fjI5X8wpufJ1EsFFJYjsnYc2VVbwDI0U8t0OPn6MGJ8UxhVPv90vkQC/s0aheIltHNSaGJMOgBp8PAs6wYn53RYMAkJ/nWGMm9WEu58kZdgzNF8G8FgmmiUWhWMKjL+zGoy/sxmjsgcQ4DRoEBvL9tyc2V4UDFXb1j+C2FdF7MJn1hQ89wqe07sEz7JFpEGSkjpFCCR++dqmSsFyW2JvQINixb7jBXmAUFcfHaaWZ52dWN3G5ygtJT+EVcMOyjQ2OpIcLRXz6j08kClePhSH1nYB1wKnqAFxVqmvHS/stn8INT1O4PPzqWmbsGRzF6m37mGry9eRynnL/GfXjgkq51dAoY4zWbWKo4oNAbzRGSbqOSfq+qAbBjY9vThahAHGCoPq5ql5gwA688auo8bs+HbwCqmDyku5tqEwtKn0QeJ4XY2KIMyAC6BmTaI90cSaiRKB44OrSecT6XQN48y+WYP2uQeF3GzUI9Of7e7etDP3+839+Cm87fX7ob1JNxNdkYkguyIyMSDINgozUcfvTW3ErQ+rLyw3LNmpVs+dFdjKJ90EQDa+TYgDYuneIKz0UF1wipOmWoGpcr9soCMgH8JuH1jV896nrn2gwfyCKKxoErHGMgpPEIMEDIgpJc+lAIyn8GgT0xiqd46do2PmYQzKpNNSNo9T6rSy8mpYuYdufguhl3h37kptIjKK+78SVjKzpn3LYjQ/zahDwRqPaBwEFeEYSVRoELmnkyc4pTBNDxBtNWYNAjVklinsaIYGjZT5x3WNSwgEgzEmxihSpR2YtWdYgkDUxFA2P8Iji2jeDLpkGQUbq+H+3PKsknI9f95iScJIiO6QnMVvA66QYADb28gkI0j412d5Y24TZTNzZU9Wwelsffs/hyFw3Dz6/q+bv/uEC/r58S/KAHfFBwBrHlN2QV5TwYD+g0OxdMolgCoqjtA2bu1Hkc57ydlNf5jlDB22669qv/kuxVcmRWIMgYVmEHWL4lrpHo9NhQQ0CQzd+uX0QBJ9LSZPlWwOoyaxLAgJ5E0Nyv1FBZuoKG7Mo5tW2yVNedveP4JEXdku/b8tJsSiyPghskXYrDhlqyQQEGaljzXY99khtIe+kOEaDgOX4bew3Honz5l6+WwKZ8Dq9uHSzhYfbn96KD/zfo4lv6evgn6t3YETAnmcUWkwMaWgHrLalar+uzElxIK0UzPs4dJ6RGN46pHgzcHCEz0yfCXIaNAjqxwUCXUMJlXw5cm7Dhe2shN2EtNVn6+ON0yisn6tEDvRCsxjRTxo0FSTGPtv1rAqlPghiTNS4JHCX1yCI3xdSxZP0QRDWTSmuE1wxMfTcjn2J3q+/MEGwKgDIjaE+fOl+xNpTUGyvGW6TmRjKyCCO7OFVnIkhFuMaBPHP1jv2iSJNt+zCaOb5mbU4UW3PWje+7+O//vQkSeEAoO62sY5bvDr6QJFRD8p8EChKd/CAiEKrpyCkMIWok2Lf97FlzxCJW3kDI3xzqAyibduIBoGhdql7Tk6jiaGkJPdBEBJmsiClqY837hCm/gBPRJAfFnZ0L6kzfcStQRAQEKSk0arUH/DANlHTTAL3MMLKkVI7ynmQWniFai3RyVYVVy5i5XPJjhbrNQioIqtBILvkZDVtnrS40XoyqJAJCDIyiKNNg4DxW9UHAcdMxiuIcGRtkyEBywSAa2eUT2zYgy2cfjVsoOoWkSvVwhpfVAk5VA1NNSaGCBSwSyYRTOEDePC5nXjxt+7Ead+4Hcd/+Rb86r7nraZpgJAGQT6n4SCsroOlpVWOX3pIz+Im6YGfaSfFOml0Bsx+vv4AryBwySBUgSDSSXH8uzLxqeJ9Zx2sMfRaeITgqg6xTZlGU4GOPhMWJKV9nbQPgrDvCOWrgisaBC0J+0mjDwJ5awg6keljPhK0LUaxZhoEGarJBAQZGSklmQ8CftV51g3fINn8RRMVWx62BoFbrNs1YDsJTFTdeNZxi1fHIpWVX1V5ULXByJwU2yNYg6z63N43jHf86mFs2F02jbd3qIAv3bgCt67YqjmF0QyO0hEQlPuUag2CuoNWpaHzx6s8/BRqENjOC6VDSFFTPvUHeIU4m0SMuETgfTc4P+ks05cfPcuYcFqpBkGMiSGXnKtL+yBgvBd6014uGi188JxD5HwQuGJiiF6SQmnJJxQQjIr5ICBYVZH4vvy6pG+ogLf98kH84t7nGvZFPCFS0vbJoE8mIMjIII4+HwTxv/FMKNwaBKSWkhkqobiYTiuq1Ix17HV1NAPWIUvCfYhyanwQEBCNNZOJoWDji5uSwg7k//rEJtUp4qaf00yfCcomhtSGWV8fpqYLUyaGsvlPHWFlae+GKPvvuOdFTGWEaxDwPstXPsH06VyPn3DAFPzgTcdrCz8IzyUBkebDFBA4JHGX9kHAaBfUTQwdv/9kqVWX7/solnz0DoxUv6M4prtiYiipBkG9aba4bNsqFZm278NPJOi5d9UOfPVvT+M/fv+4cFrcaD0ZVMgEBBkZxNHlg4DLxBCPBgHnLSlXbj9EEbtIcWTxpgNW3bp2RkndEZ0yE0Ma8qmjBzA1CAibGCIgHyDfllUSLHqZzf2fH7MnINDppFh0/ZDzNPggELyJ7QqVXKRp6redl3CHoebTATS207hxpX6uEvIDJuCDoKE/cUazcFaP8DuyvPLY2fjuGxbpjQS8TooVaV06JCDQUr2E+mY9rzthHlryckdaP7xjNU74yq047su34hWL78WqrX3Wx8EwKAotwki6fmjUIIi77GinXKRi9aFk8P3jso3YvGdwPFg3mkaGQ2QCgowM4shrELAP7lmT6riTYoUaBNkMllrSVLfUz1SVaRAoCaUWHe2A6YNAmYkhJcHUmhhSE2QiHDrPUIprwxEtHwSe8jGwwcSQKQ0C3eGPZcSx5sYkqfAm6RwQqkFgqYTrl9BxWatPe0HISXHjd5E+CCT609zJnThqzkShd5JCZS3Fm1XPY2v+uTSfsvyCMd9jaZaHfkdj9DtoehcAuYsvf3l8E/YMjgIAnt68F5f9/EFSc3KFuMtBVPZhSS8f1fsgiGti9jQIJN6BOqHaVfevrX7mCZNI88hwhExAkJGRUgT2Jg1UFho8AgJem+jBpyZ3tcokizTNPPcyNQhIHJWmB8qOykxrEFCzCRwU3lAw7+OSSYSkBKcqV27aVRgg5IOgbGJIrwZBWkijBoFtwg65qGgQxB3A1c9VI0JOiuUzGfduV1se33vjcTVzkomDXRNrP66xijOrHtjC0SR7KtPI1q+wDwJiY5+KqWvHvmE8+PzO5AEpJq79UamLpIKKUcEB30S++4cLVSFSBSknxb6vbOzd1Ds0Hm5Tn0Bk6KDFdgIyMjLYaNMg4IiTJ25+DYLxz5QPOTPEce1AjgX1I1VVTop11JiOZqDbxJDKW1fBsCi0IwpCClO4vEEaHNHng0C0ebdo0SCo+9vQfKE9nuo6yd22V0/SrCQtibDh3poJibpo46beeu0+EQ2CsCwmNTHU0ZrD1y8+Bi9aMB0zejq43lGJielHoXwglvYWd+5Uyi4TmfvCsO+IDH2VtY6qJvetm59VFJI64vZZJd9HjsDKM3GTqB/fYh/X2wj/60/Lcf2jGzBcKOHYeZPww8uOx4HTJkjF6vvq+kxwXuSx9OzyGjnDPO7MdhkZGUII2T+tY9wHAYeJIc5NUHAyc3GaireDaCghBEmTgIA6ApcSmeipMvWBMgUE9vdCNdSYGCKQNmrlYwrXxqP+YToaBN3tLep9V9TVR2qcFCONJobsEu6k2EJCQuKNG1fqfxZZg4cKCDidFEfFcuHRs3HJCfMahAOsd3hpk7T3rhqVPgjKJoaimdzVWuPHgTI65sCwIKkdOqqauiguneIuB6Xl3p2oCbUPX7Os0SyRQq55cB2GxxzOP7FhD9511cMolXzrJob8ms8pqfwMMtCY4TMyMiKRHfhjbxozfh73QRAfj4wGgWPnNxkxsOqTwkGpCNTTS1n7Rke/1u2DQGWag0mlYFqrqZwUBzXU6HaRUAYJmRjqam/Rr0GgNnhrjGtapiVHyfOStCjCNQiShSlLg5PimIGlfs19dcBGdHxcYUT4IOAVuDH6cdJ67mzLJ3pfFSrnWQ/x679PXHCYE6b7ZKuX1S7C9qL05lr6dSNLnP8xKhcjEmuhNWgQsAO87emt+MZNzySLVIA12/vx4PO7ILOS8X2Fh/mCZypEmkeGI2QCgowM4sibGDKjQfDUpr1cYdZIu1M4UzWzBJ/KwlQN9DYYwf6iykmxjmM6Ha2AZSpNxUZdZZqD/YDC2bwD5xhacG1+GdBoYuiD1zyKIQEBRFdrXrlgqXKwumXPEH738Hr8YekGpeHbwq/7Nw3Yzku4DwI7qapfQseaGAo8sGLTXmzrG+aOK8mYFbX2ZB2eJy3RjpZ4AYEJE3c8c5yq1uPBw8uOmoXfvu80vP30A/Gmk/fHu190kKLQ1SLbnlhvhWoQEJlrK02NwrpLF3ECSjr7MLVCZp5s3fDYxkRxivLDO1ZJahDIaR5EhVX9TKXqM1JD5oMgI4M4suN+nICAdaBdWfTxLP529Y9wpafGXl42maUKVltL8XrdGCUfyI8VpCofBDrQokHAsKmkRoNAXaKDGzgK7T5NPghm9LQzD9yCtShtf9n38ct/Po+blm9GPufhNcfNxVtPPUB7OQ6M6NMgWL9rEF+/6Wl8+aKjuZ7PafJB8PDaXXjHlQ+hX2NeTVMZOggPycIk90GQLICwQy5bB18NN/Vj8hZM59+Wb0ocP3c/jEgW6/2kRdrRGn+/0Mjsw1FI7zvrYHz/tlUcQXlgpboS1cnzp+Lk+VMBAPev2YFf/vN5rqSaRLp6BV+kMvRVhGHpWfE04oqJIdVzCE9wvQOj8Q8pZOXWPsyb0in8XtkHgZqKqtWaJVL5Gakh0yDIyCCO7GSSzAdB7b8qCIaVxtv2zTw/M9uJY4eUFJNbGQPuW70D3/6HGudpOtqrjn6tWyCiVoMg8AeBdpSn2Jgl2X9qF/ezsnPm/9z8LL76t6exdF0vHl67G5+/4Un85K41UmGJIHLDX4brHxW7sa/aPJbvA5+6/gnjwgFjPgiaefKvQ4uJoWRBSpNEg+DHd4qNG0mcFNugo5VHg0B/OniiuOT4eVyaBjwmhuqhOsdq8UEQ9h2/H24jqBLm9w3r0+qTxRkTQ0nfT3DBwxQ79o0kSKeaNATrmydIXcXj+z4GU3TxI6NMJiDIyCCOtAaBoEO1ICImhngJHh5SuemQoQbWwozm9ikaiukt+cCTG8vOsShj2geBCoGEWh8EQQ0C+y0pl6IVXtxtLRU+bv5vyQsN3111/1rtG0+GFS0liGooqDZNtWrbPjy/o19toBzovohQ9UGgNRbT2M1NuJNiW2mqu8mq8YAurK1GOynmu2GrcwbiERCYgGesOmBaF77zhkWJTRKGvZ0jasdP+vCS1f9DhXc0Rr+qiSG7ydBKXJ1SEdYk1yCoD48vQNPThEx0vu+rc1IsqEHwp2Ub8anrH8eP7liFDbsHlKTh6vvX4vRv3IGjvnAzLv7JfVizfZ+ScDPsk6LtY0ZGOlB1IaXIMM0RR+XAQulBvh/x2RFiF2dmkkGSTOCjl5Lv48bHN2G4oG4HoKPKdCzQWRoERC5MVaHmgyAtJoaOmD0RnTEHUrUCaLmGsS/k1uD2vmGs3qZ302PikEXkkFW1D4Lnd6Rz0+g3fHAf1Yc7KgKwNc6LahAkWQeFaxDw9cOovq1z+OczMaR//uGd4y4+fh6W/fcFmNTZyghL/IBZ9VipCtk58KHnd0f+RtlJcaUWiFaHEuLqlI4Ggdp08IZmOvdyPgjUlU/NkQpHkJ/903L87pEN+H+3rMQlP7k/8aWNGx/fhC/85Sls2TuEkg8sW9eLy65Ygn6C2jcZ4mQCgowMYtSvb2Tn/DgTQzwaBErtcwtKu6nhYJKNwapP1xbsVA9Vf3bPc7aTEIuOg84kptJ4UJnmYFIptCKqhxeivO+sg+LHET/0oxJUCubCMDG3iMSh3AeBpblTe7waNC1tYzsn4T4ILCQEje0nbj2cxByeSBtqSFfEczoP6OMEtgAdE0MVJna04qzD9osOy/OY67+wn4gqEMgdXvo+04F82FqMmnk1Cpqbuoj3QUCjLhILmRtUCHjfM5t/mb1D2QeBovhrtGbFAt3WN4wrE/pO+cvjjX52tvUN46G1uxKFm0GDTECQkUGMxkMdudmkmMBuwbjzPT0mhmgsY9RCZG1mBSoL07SixZ6sljCVB8ncFKkoF20mhggczlM9vBDhkuPn4uLj50HkKEh1f9FdlSZGT5E4VLfdtM4OlXylafpTfrgjSNhwb2t9UYl3pFDCht0D8Qd0gd9Fx95LTpjX8F2kiaEGwUX4c3o1CDgEBPqiH49DMJK4x0XTnNRskS5kuszTm/tiw6zvA1SGvqqJIZrVoYS4cTDOrLA71Lcxvny5oUHgK9x7JTtT+XWISU0Rbl2xNfT7b9z0dKJwM2jQYjsBGRkZtdQvcGTnkjgLQ6xJt+qDQOHFSVF7eRlmUHEYxKpO1270UEytHofCGsI0LCCgNowE00Nho5oGDYJXHDMbQHx5iqpbU8KMBgF/JETPvIQxpEBAxg63CmznJdwHgYWEjMX7oztW4fK71nA52A4e0LXmc0KaR68LExBEpSvm7+r7GvsxGQ0Cg3NcWFxU51iZfrxqG1tAAACjxRLyufG6p7KXc22fIUOcgJJIVSgXMvOGZ9wHgUSEvg/4ipqq7wN7Bkexec8gCglMSquGitmxjGRkAoKMDGLUL0Jlx9okGgR6nBQHPqdyAkllprigsklQAcX9nivlq8fEUPQ4Rs1JcRAKzYjq4YUIlcPquJwEN8+q61Tn4cPeoVGug5mkiGkQaEtGqqgcEDgyPBsiWWGElaWt+e+GZRtx3SPruZ8PjkEiAoIXL5iOWZM6Gr7nPfyOPqjS15HbuZwUG/BBIPp8zAuiYx/VOVbmkI5HG2K0WKrVHiE29hGtDiUUY4YTKvuEpOty2bdNC7dlY1NVT7c/sw3Hf/kWcgfyKe6CTUUmIMjIIIYyHwQxEmW2D4JkcYeGWapsponNZhmJYS1Q0rxgNwW1BWAU5k0MJQ9f16aCQrtPw03w3Fgm4soz2E6obJRZlEo+/vsvT+I3D61PZLucF5EiUX7oZe0GuN6IK6G7Mj7zYLvrUOq7Nz25Wej5YNJb8/x96PUnNmoPsOPhM/Ni20mxCdSbGBILkK6JIfF+xDPujxb52p5pqiaGUnw8Ge+k2FBCYkiuQVDXxohqEMiUt1/9n7006Iaq0DRDjExAkJFBDFWDa5JDB1+DBsF42MqDNEJcsm3mK5/zjBwyRUFpU58UkmsbR4pXRzJZToppNzv7DalyuD5vSic27B60nBo5KvNh3MY/OAa54IPgyvuex/8tWac+4Ah4yuSblxwDID0bPFMmhpwZoDmw74OgMQBb64u+oYLQ80ETQy15/gN00f7WUBoRxaOzF1MxMWRyrHLJSbHMdoAnL6N119iprf1TMnWFIuIDxWV4TajZRsZKg++DwtZAK9G+c3zcs2oHHlizE3OndOLlR83Cfj3tZhOXwQ2NKwAZGRlVGn0QyE2PcQ6LWL9W1hkq1xs6HB9nAN3tLfjJW06wmoY0aYVQvIHkiqBORztgb4oImxgi1IzeccZ820mQhvcARquJIQ11+bflYreTTXD+kTMBqM+vbbv2uqjkKkXTn/W6ChvuXSnf4BjUJiAgiOpvkf3Qr/8zvIB0zkHzp02IfYakk+KYF4RNDFGVEEj0Yz4NgtpDUWp9k9K6SzVx+wAqdaHeBwFfgKbzL2f3X6WTYppEjSPf+sezePuVD+Gnd6/B5294Ehf/5D5s2D1gOHUZvGQCgowMYtQPrrJTSZIb5Tp8EFTCSuvUaGvOv/6Dp+NlR82yE/kYLNuYzq3XCSbYlT5Tn85HX9iNf//943jLL5bgJ3etxoiA08YKujUIdJUthWZU2cy/88yDcNFxcyynRo6qBkFMgQbnKhd8ECxb16s8TBZxZbJwVg+md5dvc6nOr00ns3rDT9+aJvHhTuL46WgQyFC5xStiYiiqv/EedkYVj67LDu0tObxq0ezY50w4EBbNY5IUhcVFVdtKnw+C2oCp9E2TzqptEbenj7sUaArVPgh4QzMt3JZp+75PR5Cji1zIyfKG3QO4/K41dd8N4qd3r2l8OIMEmYAgI1XU325wEVU+CEYKJTy3fR/2DYerSbOk2NXDfA1OitM+OZqGwo13KpsEJRDMih4NAr1aCQ89vwtv/vkSXP/oBty3eie+dfOz+Mi1S4XjLTLGdBXlkubbPJUbTvmch/936SLLqZFj3LYwG9d8EJgmbvN8xOyJ1c+qL8WmtTYyrUj1hFltcMlyRuWQrlXIxJBYHPV9OVJAoGlp+IGzD0FXW7yFYooaBKrjyhM9mJYZklzWIPCq/9KsDxXE+yBQVxmrt/XhI9cuxTnfvhMfuXYpVm/bx/2uLR8EpucJ1uWlKHw/up5sDCU69j9h48iv7lsb+qxJM5sZYmQ+CDJSxY/uWG07CYlpMDEkub1+Zksfzv3O3WhvyeFdLzoIn3rZ4TW3LFhzW2XOUDl16PRrQAFbqvkU9idpqlOKedEiIFAeYm2ov7rveQzXaQzcsmIrntvRj0P26+YOkaXFS1qDgEDHLARO2+ynRo5xDQJ2DoLnFqrrlEBVJiaurwTzSNdshih6x/LKnE9wyrBG0gOH8LnOnQIulny05sV8EESaGIoYtRtMcESZGOJOAR+vPW4Ozj1iJl6ziE8bzUStqZ5nxU0WKY1eGTJrRp5xX0YL1ATViwRE60MFcefRqg57N/YO4k1XPIgd+4YBAGt3DmDJc7vwl4+ciTmTO5XEoYMPXbMUX73oaBwwrctIfDJWGnz4keuFnOcZ1wIplHwhbTcewkJ7YM1OpXFk6CfTIMhIFX9/kp5dX1EaFrwJ54vhQgmX37UGv390Q833rMltXIMgWdxB3NniNR9Do0XcumIrfnLXajy8dpfwQpP1uGv1TvKwh2KaQgiW3d+f3BL6zC/ufQ6lko+7nt2G7926En9fvhmDI8XIMFmOwCgXC4V96khhvIQoCCxk4DXhoNNJcRqIK5HgYaSbLaUR/SaGxv7VG41RmHO572P1tj7sHRqNfiZh/GHLUpc0CCrlJ3boImZiqMEER6QGgbqefOC0Lnz/TcdzCwdMIZzDmBdEy4zHLI8NZMY+Hm2I+lvT1OZamrWhhjgnxKrGyb8v31wVDlTYsW84ck1fj63rTPes3I43XfEAdvePKE9BGDIWK3w/Ojc2hhIdVjfCxtA0WPdoNjINgoxUsXIrvxocVXSd49y2YivecNL+1b9ZCzsdqvOuaxDEHZrbylbS5tI/XMDbfvkgHl67u/rde150EP7rlUdwb5Z42pIrUGyfWg5INITJE+TzO/rxn394okZgecr8qfjVO0/Gyq19+MU/n8f6XQM4/eBp+Mi5h+r3QaCpuimcxwcX5UTPMWLJcd4M1OmkOA3EzV/B8nVVmGSacbOJ6WlwUbfRH1vfi/f/+hFs3TuMfM7DG0/eH1+96Gjl2iZhZelS8ao0MRTpo7hBg4AmFE0MJTFBE/YmXR8EEhoEHFkhb2KIZnUoIe52uaq9y1f/9nTo91/56wq8+0UHxb6fdD5sdFLM/+6mPUO4a+U2XHz8vERp4EFOg4BlYsiD6dF8tOADbWrDDBtHMgGBe2QCgowMYjT4IFAU7i0rttb8zVpMaNEg8Gv/dQ2qyU66IP6/JS/UCAcA4Bf/fB6vXjQHi/afzBUGa51E8cCdBcXU2jJfJUqlqncxbvA8vHY3ljy3q+a7h9buwmf+uBz/eGpL1SzRExv24JEXduNFh05nxEfXxhAFW7gnzZ9S/ezqoW8l3XHlGdw8qz6wdW0MCyNuLxvc1Cn3QWCp/HTH6vqaJoywvAyMlC8R9A2V/VkVSz6ufXAdDpjahQ+cfUjs+yKE9TWX+l/l0EhIfyDh2GzCBwHV2UP1Ab1oaGEOOSkg5YOAx0lxnYkhKn1zvA9RbanJidUgIHIGm7RFNPhYEXz/8zc8ZURAIOuDICpDNvyZjGg4uA8bk6maJsuIhujUlpHRvNQPrrrWXyzptxYfBGP/UllQqsbVXN0fYRvwyvue5w6DqUEgnCK7UGyeOjQItCgl+D7+/NhGnPTVWyOfiRp3/vL4pgafBY++sBtL1+0OfR5QkwddwhcK5/GzJ9G1F8sLrwZB8BBadX+hOCYIE5OHGhNDmZNiLqo+CFKUw7Cc3LNye1U4EOS6h9crjz/cxJA75Vs5xBM5PIrqblGCg8b2FnEjVeFhab0giAqqp1nW2OeUk2KJMYnHXNJoXbum1jOJVocSTGkQJCW5k+Jk4e0bbpyrdCDtgyDiNxttt6BBqhQqIGA5k8sgSSYgyEgNhZSoMKlyUhwHz61vlTf/qmEqCzGjjJ5VxY2Pb+J+ltVOXDO/QDG9FNMUxra+YXziuseUHtDeu2pH5G8qysWRohXmq6892nYSlFB1UhzzXI2JIcWzDJWNdxLiyiR4E1b1rVxbxWfMB4H7zaNK2Jj683vDLws8v6Of630RQvuaQ+VbOcQTGTOinRSHw3uAxurGh83sjk1XhY7WHF521Czu501i0qlwmMCFrokh8Xe4TAwViJoYqlwksJsMrcQdcdBZpyg2MUR0AijIHHr70fVkYywZLagv27BsZCaG3CMTEGSkhqGUqDDV3xrSNeez1BV13FjuH5Pq++mopgas+SDQtKYQUXtnXUIgs2blpM/Q7RMRdJShDqHDn5ZtNOpQUjSuJzfuwft//QjO/vad+Phvl2HdzgFtWw/b5wYHTuuymwBFVAUEsT4Ixj+rvhTl2hgWRnweghoE6ThmMXWwkIb2QYW/PrG54TuXnBRXDn9EDo8iD4Z4nRRHhMvqxf/58oUxqSozqbMVV779ZEyZoNhQtSJEx6q4p0W1LlT74FCFzPqOpywbfRDQ6JzjPgho1ocKTDkpTkpiDQKiAoF6ZH0QmDAJx4sOE0NJBQS7+0ewZ3BUYYoyZMh8EGSkhsGRou0kKEGXD4L2llp5oGkfBB/7zWO479PnOjP5NzsiaxWetkSdDbsH8PHfPoZHXog2aWMLkTI8d+EM3PHMNo2picZ0vCIta832fbjs50uqpjJe2DmAh9fuxtXvOllL2mz7IKBq+kAU3mwE+4jqMceRIYxJXBaC51yqW04Kii8UX+K2OHWS5kRFSWzsHcTcyePm0VxaM1aEk0KHRwk7XNQhLWvsPJPh2wcArn3PqZjY2YqFs3rQIuBw2TS2TQwRlQ9oOywmb2LIdgI0ImNiyPd940KTxHNIQhNDppAxz+P7Pi0NAkM+CHji2TM4io9cuxT/XF3WGj/7sP3ww8uOR09Hq/I0ZsRDd9bPyBBkaDQlAgJNc0RQQFAs+Vi6rjfy2cqGY9W2PmXxb+wdxN6hUTK3HET5zUPrcPFP7sN537kLX7/p6QanO7Y2sRQWxKw6daG6iyUfb/zZEpLCAUBsgTxzYgfedeZB8WEmSA8VRG6v/fmxTQ12tDf2DuL2p/UINWyfz6flJt24BkGMk2KNE4tLB5RRxPWVYPFSNZshijETQ3qjMUp9mS3fsAePGp4Xb35yS83fLq0ZK4d4cYd5QSJ9EES9wBk2a8zsaM3jtcfNifx9Ulcrjp47KZFwwMQwYtLEUBg8dvvtIHG7meMVqiaGwKlp6DJxgujgHL92Rz/e+auHcOwXb8ElP7kPdz5r59KQDLwaUraR1iCI+M3GUGJOQBBfVp+47jHcu2oHfL88rtz17Hb8x++fUJ6+DD4yAUFGakiLgKDRSbGa6TGoCvu5G5Yzny35wPWPbsDvHtmgJO4Kdz27nYxKqijL1vVi2bperNnejyvueQ6f+N1jtpMEQN9BoEiwrDqlfruyb2gUZ3/7TmzsHbSdlEhEypB3kUm8WrgQycIPbl8V+v03/v6MmsTUYXujSvfgQoyKbfy43OjUIHDpgDKKeA0CL/BZb1pU88SGXivx+g0f0sB4Zh5euwtv+NkDsq9Lc8U9a2qDdGiyqpgBETk8ihLIRTspZv/NS2dbtBEB2xpwvIimM+550VxTFabKzVnxL9UfKFJZ31dNDDnSbmXgNTHUOzCCN12xBHc+ux19wwUsXdeL9/3vI3j0hV0GUqlgb9GgQUCjjdUj4oi+gs+QENjRIDDjgyCO/uEC7lm5veH7m5/aYszpdEYtmYAgIzUMjabDuL0uE0OVyad/uIDrH2Uf/O8bKuAzf1QvuS2r1ykP1go3Ld+M3f0j41/Y8kGgLVz+kFm35Yiu7ap84P8exYbddoUDR86eyPxdpAhznmf9cNoUVDcOgP2NKmGrEEJUTSXF+iAYbwuqmwXldsZL3EFOsHiV29XWXH5v+cWD2LZ3yHS0AQ0C99tHhWCZ/ezuNRi0cPGmvSVf87dL3a8oISDQ5qSYOwUh7zqyhsipnucE801VQKCrzzSYGCLWN4lWhxJiTQyN1c29q3ZgS918OFr0ccOyTdrSFiTpesmV+VRWgyBqLWZD69eUBkEcj2/ojRS4PLlxT9IkZUiQki1kRgasbGR00DBJKJorK3v+m5/cEis1vuGxjVoky4A7k38cvg/8YalaDQtSCMzxTBND1HYQAbbsGcJ9q3faTgY6WtlTsUgZcmsQpKAfEm5a1jeqVA8uRKnMh3ECl+BmLdMgCCEmD8F1h+qmo7v4+oYKuDvk9pluKmNoKtrHGMGs3CZhfk1FUYj4y6JG1cSQiIAgoTA5MqaYYEXt7VNEtOxefBjb9wIzrpBCoaqpJ9NnZEwMUembrrTXJMSZvK+MPZ/9U7iFgF8veUF1kkJR3SKINLEGZM5IfN+PzI+NSz2yAgLWnlRmSKyf84MMF9Jx+dc1MgFBRmpIi4mhRvmAIhNDFQ2CkXh1rSXP6Ts0pTrZyzAQcIxtK1u6FsYiwbJNDCVPiy5ueGyj7SQAiD/MFfJ32Aw7pTEojyW2a4HqwYUolWzENetaE0OqU0G4oXESl4Ng+bro4Po/rm/UeNQtBK1qEFAeiAShkJX2OoE5hTTxUmkLIg4sIzUIIr6vb2+RTooTzEK2NeC4EUzmBUfORFdbvuH7S06YOxZcdIBhv1CdZmX6DM8rOm4cq6BSbw5OXdzE+yAo/1vva8s0ScdrV8b7ooyTYkSvS2yMubL9mbXGltmD1msNBknL2Z5rZAKCjNSQFg0CXTc/q84eOZ7VeajryuTvChQ2cqyFK+X6LhDZ7MSZ9BApQ97hg3K98ELl9loYtjeqadEg4J23am/sZhoE9cR1lWB7US1cstVNtZsYqvs3Q42wpP6wgPI4X09lSSGytIg2McTng0A0XN3vmkR0nmtvyeOHlx2PtsB13QUzuvHZC48AIOP0mKZJR11Cy3ozINS6ZpovyMRpJVEZJ5MK5h95YTded/n9+Obfn0Hf0ChZbWcZHwTwo9eTNoSNIwW5smW1tUyDIB1EeyjKyHCMtEgZGzQIFJsYsg2VRYxq0nSLEBDbKLEuUlCu7xYihtrjbuyKOSkm0tENQLdlAbZ1CNKjQcB3MzCo7a36QJ/wEMZN3Ca7xgdBE40hiRhrGGloHxWS249OTlvdvOxS8Y77IBDQIIiYK6I1CGr/jtr7JPJBkODdahgGhhGZKM47Yib++emX4IE1OzFtQjtOy57/1wABAABJREFUmj8FHa156fBynhdrH940MqnhycIIcRNDaZ654sq6su7xPMtzkoK4H31hNx59YTcefH4n3nTy/skD1ECc0+gwfESbGHLJBwFLWCWzfmTlfTglZ3uukQkIMlJDagQEdX+rmugp3Kzwfbc2ey6gz8QQf8BUNgmitBA5RI1ztCdSvDmP74DUzRqrhXKzsz3cpkVAML7xjxGiBX0QKJYQuDq+BYnVIAi0F+UaBKkYbRqpahCkoH1UoJCTRhNDFFLFR2WsUOGkOA7f9/H921bh4bW7pcJNwwwhW3Yzejpw0XFzlcRFsRzlfBDEv1N/oEilZ1bqwPa6Sye8GgQe7NaLyriXrevFwdO7hd4x1QZkNAh8P7qfKXe4zoGIKbwgrKFCrvyjA8w0COxA4/pkRoYChkbTMYjUH+Srmmyrk4/lFZTqwxsqpC1XIs2EtVigfLjWSkSDIN4HQaZBEA7dtsVTC8cfMFlb/GlpB5WD61gNgsC8orpVEB7CuIn1QRD4HGfyTDjuFJRfGFUfBHaToRQK9qM7GkwMJQ/TFOMaBPrm7ErINzy2EYtvXxX5XJxQNR1OihWHx8h41C8Uy0rXmNtoYsihzuk4cWNKpS4oXAZUyR+WbhB63lTupQUEEb/ZWLOPajExJJ4P1jCSCQjsQON0JCNDAWnxQdBoYkjNAiwtB0YZZhBpLa76IGjJ0+gTcX1TzAcBrxMC/jCpQvngiKce3vfig9HZGu2cKwlp0SCoOimOea7WSbHahhE3BxeKJTy5cQ/2DI4CKN+ypHZwEiuY1+ik2FY/1e+DIIUmhjRNDIfO4L8F2tbirpPiqgaBQKKjnRRH+CAYC/vPj22SCpczVUleNgaFfQ0FP2D1SGkQcDwzUihhaLSIr/1tBc7/7t14w88eEE+cBng1DV0mbh6tKHfYXvrZHq9NCUhEhMAVyiaGIjQILIxlI7ImhlQLCBi/pcU6iGtkJoYyUkNaBpEGE0OKwq1s+m0vn2wvHlQSLEtb+SKwP2IuXElrENjQ6QwhbkEvcmjDuzlIg9kPFYewLTlP+CbQp15+OL5187MN33/5oqOqn+Oq4R1nzMfLjpqFr19SxCeue1wofh5UH/Im5cULpuMdZ8zHB/9vqdCmhHezUaNBoNoHAeO3e1Zux0euXYq9Q4Xqdx2tOfR0tOKyk/fHJy44zIkbfbVOitWGbUtYonuMG9cgcH8srZIwK1EXdQ7ZbwJWb9vHFUa9w0LKa4h6pEwMCX5f4a5nt0uFy4MDQ1YZg+mMHMcJlpUuHwSjxRI++ptluHXFVokY9FERDDjTbiWI90FQMTFk18iQ7fnQtoCEhe9H75dttF1ZHwQ+4zWZfGQaBPSgcTqSkaGAtGgQ6JIiU1g4+fCd2uzFQSEnug6fRMJlahCoSIwEP717DZ7evJf5DBUNgrjb3iLn1xRu1JmCt1hYt6frb6vy8Opj52BGT3vNd7MndeDlR82q/h1XDV949ZHI5Tycd8RMLJzVI5yGOIjIvqr8/F9OwnlHzMRnL1wo9F61HGMKNHijSfUUEzW+be8bxnv+95Ea4QBQNne4vW8YP7hjNX5y1xq1iZEkrkyCpZtX3HjSNOcHqeRK0oxvqugdGMGbrlBzm7jBB4GSUM1QOW8RETpHaxAkTEyCAFxZRai+MS4jzKRYVjL54DnY3bB7kJxwIAjFulAFv4khfWm4f80O/PjO1bhtxVYMF8LPXGxP95S1SHxEz2c2LvXICgiUmxhi+iBIx9meaxDbQmZkyDOcGh8EtX+rmmwrg7bt80OXNnsipC1fIs2EtRmxdXv0m39/Bhf+4F787uH1kc+0OOKDQKQMuTUIUtBgec9gWDfWZfxQzJrUgevefzped8I8HD6zB68/cR5+897TMGNiR/WZePvP5d8ndrTit+87DUfNmSicDhaUBEWXnXIAOsZMKYkKNHOcmm81ToqVmxgK//7mp7ZgJOZ2058f26g0LbLEHf4Eq0X1sJhaE0Np9EEg+d4nrnsMS57bFR2uQMDtdT4IqJnrYlEs+SiVfD1mAcfgDTsuVNYcpeLiiYmDOtW3hVlFq02QowFdXebulWytFWt4df+mkHgNgvK/Otd+b/75g/j2P57Fe/73Ebz7qkcwONJ4eGt7tKbYHyuwnBTb0SCQqy22iSHZ1ISTlrM916BxOpKRoQiZ26DUaJzcbU+3aknrbUJbaFtTCATMOgCyWd2+D3zuhicxMFII/b2ViC5qvJNi/rA8j/L9GbXwHhyxFpgyc0bO83DQ9An4zhsW4R+fOAv/79JFmD99Qs0zIov9yV1t+ORLDxNOB4swrZTLTtlfaRy8JOlmnAoEtRoE8tGFEjVn/YDhILTCyq2NZlVsmEOM1yAYL2DVBwxpnfMr449LB9hxVIUeAnnaN1zAvat2KEtDvYkhl4q35PtC/gcAcee3vCY8knRjV9YQJg/Vok1B0SstKaGsQ/2snnH5AL26UEWcBkHVxJChIvjn6h24PsSBsO35kNLlmHr2Do1GzmeU010Pa01XL1zmaQ9sE0OZBoEN3D9NzcgY44uvOQorv/oKfO3io20nRSmq5loKa7+y9Nx2KtRR64PATsZ0rSlEgmUtXG0fDo0US5Eq0bocub78qFm47JQDuJ+PT4eIBgFfnlLUDWNhLTDbJK5L62g1qje2Ye3gky89HIfPVG/OKI5gUkTHq3ENAvaLwZv8yjUIFIWzbe8Qjv7CP7Dw8zcrCpEfkTyoHhdtTQG6o03jGCrjeHntjn5hPy4s6rW6bK8hRCiWfGHnlVG39aPGPH4NggQmhhw5q6JwIEyxrORMDLkPxbpQRdywUvndZBF886anG76z3Y4ot4GHnt+Ff64OF6bb8FUle27Beq0+GzxaCkwBQaZBYIVMQJCROlqI3AqWpf5gx/Zkqxrbtwsy1MPawNsyLxFk2bre0O91JS2XE1uk5pT6IFCfrzefyi/sMAnvUMJyciXjh4KnboXX+oqnrbBD3und7bjhw2fiqneerDayGIKHOKLZ5DWN1z88LgRSPceoCO+eldtxytdvx77hcG0m3YjkQbUtXBMHvGFJ1r3WqITv0gF2HJWsiOSp/sZ/GCJNqj5mCmsIXkq+uIAgavpP2g2TaRC4sY9SfabGbPaRghx6uNRnVOBVLxI0LxUziyZvoveHmBiyfWihUlhtEhtHV7JFxZrj6tsfz1qCpRU3lGkQWCETEGSkDlcWtlHo8kFA5WCeRirU4Ed8Nkmlvf/Hyw5XG67AIpPVtCg0u3qnhxV09QlRMz9xC0OWk92GsDhXmSJ5f8NJdkzTxMF7iKVcg4Cjb4jeBlI9a0Ud8na25XHO4TNwxGy1Pg9YJNqvejX/RNI/UgiYfEkQXwhJwxsplPCha5aqSYwkIge+vGOIjrhdYtwcj910qKSSFZGDAx6TOkJlVPcwlbUrDyXfFz6gEt2z8IYe64OA8QDlW7hBVN+6ZR1URZuColdYlT4zMFLA7U9vxa8fWIvV2xrN3dW+YyJlehg3RUivLkxRnWctFwGvCTRdjBRKkWZlKaNLo52FbJ9nOynmf5YnHZkGgR0yAUFG+nB8faBrfVMZf20LUHQeFrx60RxtYVOl0l4uPWmelnB5YNUphc19Z2s+9HtdSct7npgGQZyTYoG4dYwfx+0/GV+56Cj1ASeEt/6GFPog4C1f0bW+6o1tLiZbJmeBmrhEBSde7b9R+D4wMHabTfUFsqjweHNy17PbrGkOVBApE+UaBAb2d2EpNmViyP4Mpx6RdVpB0tFhFPWhEVhCcFMsiQn0AYbz24jnuU0M2d4LGYjfeh5Bc8vpA9jVP4JLfnI/3n31I/j8n5/C+d+9G9c+uI7xjkMdLQKKdWEKE06KXeHn9zxvOwnC2Kg12T7PmoMaNQikoqjC0gDP0EcmIMhIHa5PjfUDbxoWbUF0bfauftcpOGK2WfvaNW3NcjXN6OnAsfMmKQtPpB8xnRQnTklyOiIEBLo0UXOemCAu3kmxmA8CHWPg206fryHUZPCOjXev3B75W7296zh4N1+it4GUaxDExG/UuWMgMnkTQ/Fv9o8dwiv3QZAwPJUOXGURKRP1PghMmBiyd/uOghBcFTJaOKNFvRt4l9bAxZKEBkH01fTQr/mdFDeDDwLFyDQ1gmVV8n0svm0lntnSV/P9f92wHLv6RyylSh+8FwnSjGknxVFQmA4vv3u17SQIY3MNIwrLxFB9PhJrEGQmhqyQCQgyUofrKoYNAgJVk21F+9By8ag+vGnL5/DZCxfi7MP2s64dYYNgjqdNaFMXrkBDYfsgsL9ajLKRrOvgISesQRDzgKAPAh5kct7T0SLxlj54m9bi21dF/tYq6IOA9+mWuCv89eEqHroo3SJL4qRY5PHKLX3VQ46jJm1rWLujn/tZ9SaGlAYXSqgGgeZ4ZRz6UmfcxJCABoHiCq6P2qX+V/J94TVP1Lo1qQZBElzZR6me5yZ3Ra+hTzt4Wuj3FEvK94GrH3gh9PvfPbI+8h1XqQoISNaGGSrCXdtrPwrtiKU1TBUbPghkq4o1xzWYyeaoCtZePNMgsEMmIMhIHa4vDxrUqzWFa4OSr37x8PgXXor3nXWI2kAlsHbLLdDgbdUx6wYlhcWiaRNDoj4I4m7sijkp1jcC2t541MNbfyOMBaZoG+AtAlHnx6o3tqQ0CBLkTeRmYMVRsfob3eHh8ZYhhW7zgf/j94GQFifFuqlqEJiPWh9jmeGts7df+RDW7xqIfU7MSXFt3BQuGfAi44NA19oxrsxZPxMYsrhQ3e/bWnJ4+VGzGr4/dEY3Dp3RHZEGeqXF6jN3PrMt9Ht3ehkDelVhjMqwY7oIHlizs+bvVLQjC9jYX+3cN4zL71qDj/92Ga6673kMhjmdDoE1xan2QeDQ9J8qaF0HzMhQAMG1mhD1hxuqDztsFk+p5Csf7Dvbxg9/Xa/7pKgsW1UmhuIWB5v3DOK+1TsxubMVpx8yDRPa1U9LUU6KdR085HNim8a4G7si6eSNVybrNm64sFBxsCIaAm/5toiaGFJctnGHvCZv2tVoEAjGK7Jp6h9zTKe6Vye9wezCBidYzKpNDBkREFjxQjAWiwsVzEllTOVt83ev3M404VYNV6CItGnRGqBY8lEU9MkQ5cPB5nrWlbW0jmR+45JjsLF3EMs37gEAzJnUgSvedmJ0GhwpqwpRrdPlcawy/rtWFyqxZWLonVc9hL997MU4ZL+yAM3ldmQTGwKCawI+SW54bBP+8dRW/OqdJ0ea5a3AdlIsYWIo9okM02QCgozUQe2Wqyi65lYKk3bJ97XetLdZ87aKV9dBnzInxYz3bn96Kz74f0sxMmbD+MBpXfjNe0/DnMmd/JFzYHpMEI0v7jxOpGnpzCm1sVVFnxM3B8GHbR8EcUInsxoEyePlGef0+SBQGhx5VAsIduyzY/Nau4mhir1+vdEYhYJfhQYtWoc6YMn3URRMb5QPh2gTQ5w+CJJobjlyFVvH7f0pE9rwl4+ciTXb92FgpIij5kxijokUS4o5B7rTnbgZNzHUvFSco5vWaBkaLeGWp7big+eMCQiMxp4eKGyvHnhuJ+5dtQMXHDmT+ZyYgEBJ0jIMk5kYykgdFAbZJOg2VWOzfIq+n00WignWpy1dE6aT4oiFxGixhH/97WNV4QAAvLBzAF/92wrueHmJWsxoNTEk5INAnQaBzlv+qm2TJ4W3XFibe20mhgR9EKR5Z5tkzhExMbSvKiCQjy+MqHbmyiGaKIJ+u2lg0X6vSyZweKG0TiOUlFiKJaBYErOZPBqpQRDeqHmbm4pxNwkmuqSu/YzneTh0Rg+OnTeZw1wfvXmALR+IWA9rSotJKNaFKSpjto1l+v/c/Ez1cwqnQyNQuYD1vVtXxj7DdlJc+zePQNulSwDNgovbgIyMVKNLvZrC8Fv2QaBRg8Di/EphflNZtkI2gyV8ENz17PbqgV6Qm5Zv4Y+Yk6j9uk4TQyLEHiaL+CDQuDsgJh/gLhZWukX7DO8iXrSsTB82m4wtWGai8VZNB3A8W/FBsHPfsGAsbJKOEtb80wgQ7AZUNqoi2DAwNH7bXnNEBqnkxabQo8FJMSVpRQylko8IhYBIojQIkpKkF7syAlAQ0tpPQSNss58RP7jTzSKhWBemqJoYsl4KKWhIFlCtuSnLis17Y59hLQ9kNAiyFkOPzMRQRupw/QZBg3q1oqGzMqDbXDyUSpkGgWp01uaNj2/CH5ZuwEihhPOPmIl3njk/tH+xDhOifnt47a5EaRM52I22uZooCZHkPE+on7XGOLTV4YNABmoHh7zFolLbnrcEROvBeNFasjEkGm1lz8TnpLiAvz6xCV+6Ua0WUlLBq2sHyFQ2qiJYcVI8Nnq4Vr8sKGhF1K95XSrespNisQP/qPxFmhjiDDfWSTHrAUeGAApLEgppqIclVEvjbd1KW6ZYF6awqUGQkRyX2i7bxFDt3zwm91iPuFQuaSITEGSkDtfHkkYnxZYSooGyWpq+W+42hR+2bonqOhDe3jeMj/5mWfXv+9fsxPrdA/jCq49qeJZ1AS6q/Zo8dIs0MZQoBdHkBE0MtcQICETyqtXEELGVGm+xsJ4T9kGgqQxolaxaEtnCrmz8OcLY2DuIbwZU3VWRpjk4imCzptbPeQhrH/p9EOgN3wZVvwo281avQeBQORd9P1JjMYy2lhxOPWhq6G9R3ZDbxFCqZ5UyNA5DSSSiBtYt4GgFAoc6Wh30asA8lbHb9iXJNM6LJrBdbyKwTAw1aBBwTeBZo6FGZmIoI3U4NMaG0uigTVW49gfgku8rXTz896uOrPnb9bpPiu6F2TUPrkPf0GhIvCwNgvDvTS4io9Kn65ak54ltWPIxJobEfBBo1CAgtmLgFTLJmMCKQqfNY5OYjC2YNdFDq8rTPMXzx6UbmBsXWSJ9EKR0vnFRgyAM3TdlKdy2V42uPImE1rgGdqd8SyUxDYILj56FjtZ86G9RYyXvWj6RDwJHjlwpHKoRSEIDDz0fraEbfWlHU2IM4kq71QGVeYhGKtzDpWUXc5nd4IMgPjwiTTcjAKntvud5ec/zjvU8792e513ued4jnueNeJ7nj/13V4Kwz/M87389z1vpeV6/53m7PM97wvO8b3uet1BhNkjG30w4v0Co90GgKlgCA3BJ0knx+UfMaPiurSWHlx89S0Gq1GCrfE229pFCCX8P8RHAWphGbe6T2/UWeNawzdW8qAZBzMpQpM80lQYBr4khBWFU0FUCpovWkoUh4QIUSefeoUafJipIOra7dAMaSI+AQDdp9kFAKU+U0hJHseQzhZSXnXIApk1ow6TOVrzp5P3xP68/1mDq+CE21UdCIZkU0lDPM1vENQhcptJeXWm3OqhoctsuA5fGa0pQ21+xYAntG30QcJgYSpyiDNWQMTHked5rAVwDoEtxuBMBXAHgjXU/dQGYAuAYAP/qed4XfN//hsq4KcTfjLi+t03zQCnrpPhVx87BcftPxo/uXI2h0RKmd7fh+288HrMndWpIJT8U5vNgGkxoiazfPdDwHesAjEJ7Dqbv3lXbcc/K7ZjR0xGqDaECUUfBcSaGREqxqXwQcJYLa8hpVhNDzjgprtoWtug7p8l2vNT6OQ9hSdZfa2PmeEjMcmqx66S4Nm6X+l/RZ5tf+Oprj8bXLz4aJZ9DEJfUxFBMP9btgsDImE1gqKI4XMoIpR3qZg04fzFQAZVx0vb8ncb50AQunV2xTQzV/s0lIGD5IOBNVIZSyAgIAEyGeuFAK4A/ATg38PWTAJYC6ADwYgCzAbQC+Lrnea2+7385LfE3KxQXayI0+iBQM9lWg7FYPkVJJ8WeB3zk3AV471kHY1PvEA6c2iV8CKuDYNVQWBKZWOD3DjQeqss4KU6KSL+opOGHt6/Cd25dqSU9QTwPQg2iNdbEEH9YOjcH1MZWQV+QoYg2T13DDrWyVYls3mpNE9kjqomktcpc1CCwkWKKt+2To8cHgUj91MftUvGWYjQIcl754Dz2TgAUOCnmfC70XUcmpPaWcPNMJnHucNqwTy6TONJsteBXBQS202E3fldxZcwF2HvS+vGQZ//qkhnBZoGSgKDCVgAPB/57GYB/lQzr8xg/nB8C8E7f939b+dHzvDYAXwXwH2NffdHzvLt9379bMj5q8Tcp7gyyYTTYX7WSCj34vp/odkF7Sx4HTZ8Q+btLE6wqgpOxiTl2z2CYD4Lo52Xsnfq+r7QufQC7+kfw3dv0CweAsomhokA7jzuQo+KkOE+sf/EUS9zCk4oGgcp56zWL5sTHZrAugzGJxGv7JlyF5JsXt2bxOJNnFAlrV6acFLtmQorFeJ7o+CBwSYOg5PsoRqS3JecJjX+Rj3KWRzIfBG4wscP+MQaRaYobd3oTP1UTQ860XPWMmxhKVgael2zuTGP7MoFLyy7Wmri++cWtnz/5u8dx0/LNKpKVoRD7M+s4NwM40Pf9dcEvPc87VSYwz/NmAPi3wFcfDx7OA4Dv+yMAPuV53gEomwDyAHwDwBkycVKKv5lxbbFWT8NYavEml2qKJbmFB++Cx7iZjqB5H1urIsOZDhMQqNYg8P34fizmg8DH7x5Zb6yOcp4ndGgUZ2JIpAwntOub1qkc2FbgObiNe0S0SVDXIJg2oQ0ffsmh8fGpiY4PSRNDtYIFZakRxqHzSSVQ0M4TJSzFuk0djIefngZSyYlNoUd9f9sTorVIFR9AIaLwRPtV0sPOZBoEiaI2xsSOVttJcO5IOvrSjrvjWKUOXGm3OiiOqdQmLQNBBegGXG5HNnFJczNKCA40ji9xa4k/LN2gIEUZqiHjpNj3/S31woGEvB1A5arxSpT9AETxKQAVYwWne553fArib1rcGWLDqT8MVLXJpTBpF31fTkCgPimpxITtx15BAYEMqnNRKvlYvnGP4lCjKZsR4H8+bmHIW76drXmceOAU/ogFcXHzFVdy4m2Xpg+CI2dPxKdefjhu+PCZOHxWT3x8ButSNioqJoaSHpYSmHqFoKYpRJU0mhjSpUEgZGKobtT+2T3PKU2LTnwfKBajNQiUxMH5XKwPAkatuHITe2Kn/XuOrmkuR/XtNAxjtmti9qQOXHjMLCtxj44tVFhlwHMOQO0iULPgypgLiK2JXdIAzBiHjIBAA68NfL7KZ4yKY4KJOwJfXZyC+JsW1xZr9TTYX1U0tlZdEFgsH9/3pSYL3iSbzlptVuxMgqa1GPaGCgiin4/ejLBuICS/GV4bl1k8T2ypF+eDgJf/euURmN7drq0fUNs48Iwlsc8INg5dRZB0XP7qxUfjQ+cciv2nKnXlpISag36BbAbLxOq8lXAEcW1/pGg4Mku4CoFW0qc/MN7WKVwoAYD1uwZsJ0EIlokhUcFb1OP8ToqFoqt7OcG7BukhoEGgmgltev0qyJj9pE7VxJDlNer+U7rwmVccYSXuQrGiQRBdBjx1TG2d3yy4VOysfVX9ejmpgMDhYclpXNwGxOJ5XgeA0wJf3cXx2p2Bz+dGPuVA/M2OQ2Ns01EsyR21uCRZN43pkukdGGn4jnWYILM24LItL9CSTJtLEFUVVWFi6P9dughvPe1AoXhFoaYCy9O24p4RXbxqMzGU8H3R26kmx9RczUE//3tUTAylycY8Dy5qENhI8bgGQXoaCAW/CsHi/OPSjfYSIkmUk+I8j2fiAJECAs61j20TQyb6JAkTQ4oz+qpj56CzVZ+QID2jVRAv8H+7tLfaOVobHdNcYi0FWaZhKiRtzymaDo3ikmCmJLBASNoentiwB+t2unVRIA2kUkAA4HCM580HsIzjnaWBz0nFv7bjb2qcvP0WoH6zqWqurQRr21SDVg0C4ZCTQcIHQQATSRgcLTZ8VyqFPFj5LUqDwGB5mT7AUW1iiCf5rzthLn+EkhCTDygRJIkbGNJkYihhsMLCG0smhkTKj4qJoagOyHtb0YTpt6QEc0JNEMiD53kYGi1ixaa9GCmUJyTdpV6ZV+jXrjhUzAaOFhmLC4KUSn6kgMC4EDfBpOLKCNCTQifFh83qwdXvOgWnzJ+qNuAxotfD7o9k1s9YPaC9Ra8GSBSFsY0Y66CZZ1xPLCBIQTuygUvLLpZ8oNEHQfL28MYrHsDmPYOJw8ngx/Gj1EgOD3ze5vv+EMc7Qf8HUz3P28/h+Jsa12+bB4fSPzy6AZ/543JF4dqftEu+L7UGdbtG9VJzSGWpipnqhjIaBApuhgcxbQOxbGKIv9W2xEg14y5reF5tO9CVXdvq2/Xw1KtqDQJtJoYSjnJxbcgmsmVWs9G12PaaTYPARSfFewZHsehLt+DCH9yLRV+6Bb834JS+amIoRe2jkhWW0F97GgIF6pqwyke0BoGqG6LcJobifmc8QG2uj2JiJwENAsU7FA/AKQdNxe8+cDredeZBSsNm4fI4RsXEkAegw5IGQSHC90kQEyaGXG5HNnFKg0CgklWsnzfvGcLfnticPKAMbujuKJMxLfB5K+c7W+r+TiK6tx1/c+POGBtKZdz91X3P45O/f9xuYhRTKun2QWDTTrUdTOc4rPpYeZczMaT49qIPoxWUz3lC55lJTQyZMglC7qxGQZ2KHoTpWsSb1iAwWZW1vgQE3ov4bJo0mZDhwUUTQwAwPKY5MDhaxKf+8ASe2NirNb6qBkGK2kclLzYdCwZjVuXY1xS+DxRUaRBEmhhK9j7Xu/KvGiWNGgS65eIpGq6qUGqvbXm7JoZY+2CecT0TENjBtnCrAs80xTIxVP+LqrXEV//2tJJwMvhIq4CgO/CZVyel/rnu0KfciB8A0NHRge7ucjDFYhG9vb3Vxf/evXsxMlK2JT44OIj+/n4AQKFQQG9vbzWMPXv2YHS07JR0YGAAAwNlO2Cjo6PYs2dP9bne3l4UCgUAQH9/PwYHy9kZGRnB3r17AZQ3Hr29vSgWyyZK9u3bh6GhsnLF8PAw+vr6AAClUgm9vb0ojZ3c9PX1YXh4GAAwNDSEffv2MfPkAWhDAR0opzuPErq94WpaJ3jDyKOchnaMor36XBETAs91e8PIo5yGDoyiDeX8taCILlTssPvo9oaRG3uuM/BcK4roHHvOG3vOGxs6OzGC1rE0tKGAzrE05FBChz+IUqmEX9z7PLowgpbAc0ny5PvlevJLBeN5Kqe17LxtqH+fcJ5Gh4e42l5pZNBonoJtzxsrV9Ntr1Qa709eaURJPQGIbHs5lBrGCL9YiMxT5bC/fozwR4cj81QoxI8Re3p7ufNUudGnsj+x6gnFUfjDFZuJ8W2vJecx66k4Msysp7bc2MHY2Fjuefx5EhnL2/1KePrGCJF6aisNxc5Pvs/uT8J5GpvHeOYnVp6i5lzZtlccGarWE8+cm/cLxuqpONRfrafC8BB/f/KK1TwVh/vF6klhnkp++Noo5/PVkz9W/jbmXN568jG+3svnPJJrI5E8+T5ww7KNWtd7KAxhaGgIvsF6AvSuYUeHBsp58u3lCYXh6lju+W61vcJgX/XwpKGevHIaeOdcr1QIzZPvl8fyuDx58Jjzkz/cH5mngYHke8JiUe9eo6M1h+LoSOyeENC7z23x1bY9vzBazRNK6seI1tL4cUMwTyNDZvdPKvM0PNBXfa4nZ2+M8ODD8zwrY/loodz+84w8lfz4M5YObyRRPQ0P7iNxxiJybmSynqLylPNo9KdWrxQ77pV8dp6Ce42R4WGleUrbmWVcnmyRVgFBR+Bzo0fNcIbr/u50OH4AwGmnnYbXv/71AIDt27dj8eLF1UZ75ZVXYsWKFQCAu+++GzfeeCMAYMOGDVi8eHE1jMsvvxxr1qwBANxyyy245ZZbAABr1qzB5ZdfXn1u8eLF2LBhAwDgxhtvxN133w0AWLFiBa688spyBoeHsXjxYmzfvh0AcP3112PJkiUAgGXLluGaa64BUO40ixcvrnbSa665BsuWLQMALFmyBNdffz0zT57n4bjWTTij7QUAwH65fbi0Y9xMz0XtKzA3Vw775NYNOLm1nO65ub24qH1F9blLO5Zjv1y5Y5/R9gKOa90EAJif340L258BALShiEs7lmOyVx40zm5bgyNbykojC/I7cEH7KgDABG8El3Ysx4SxifeC9lVYkN8BADiyZSvObiuX8WRvCC8pPIq12/dgY+8gLmx/BvPzuwEgcZ78sXoa2L3deJ4u7ViONhRRKvlYfucNwnlat3wJV9vbseIBo3nyi+WJ6Morr0RX/2Yl9QSItb0dO8b707T+dUrqCUBk25vm7WsYI/L92yLzVLloUD9GeFue5spT1Bjx05/8iDtPxcIIM0+q62l4x3oMPHV7TZ5Yba8ln2PW087nn2LXU66cp+BYHpenU9vLzh9FxvKDdz3MnSdAfdurz9NJg4/Ezk8+fGZ/OmXkcaE8dWCYe35i5al+zq1cHpJte088sqRaTzxz7uTBjcbqqXfp36r1tPGpB7nzdJS3oZqnDUv+LlRPKvPkI3xtNK20m6uecoO7qnkyPeeK1FNlvZfzPJJrI9E8rdy6T+t6r3vTo+X+5JutJ515WvvIHViyZAlKvm8tT97G5dWxvNi7xam2t2/pjVUNgvp6OrzwPAD+ObdnaGtknq6//vrYPHkee37yn7wpMk+3/P0mAMn2hHt3bNVaT93trVx7QkDvPndGcYfStte3bkU1T8WBPcrHiOP3PRyap7XL7iHXn3jz9Pit11efe327vTEi79sby4uFESxevBidpf7IPJV8P/aM5TRvdaJ6WnP3n0icsYicG5msp6g85XMekf7UFzvulXw/Mk++X7vXWLdqhdI8pe3MMi5PtvCoq8Z6nvdFAF8Y+/Nu3/fP4XjnPwB8a+zPB33fP43jnU4AQTfZJ/m+/6hYasnEfxSAJzs6OtDS0oIlS5Zg4cKF6Ovrw6RJk+B5Hvbu3YuOjg60tbWVpYGlEiZMmIBCoYB9+/Zh8uTJAMrSuK6uLrS2tlYlcV1dXRgdHcXAwAAmTZoEoCyN6+7uRktLC/r7+5HL5dDZ2YmRkREMDQ1h4sSJ8H0fe/bsQU9PD/L5PPbt24eWlhZ0dHRgeHgYIyMj6OnpQalUwt69ezFx4kTkcjn09fWhra0N7e3tGBoaQqFQQHd3N4rFYmielqzdg/dceT9y8DGEVuRRQqc3in1+O4Cy1HTIb0ER+arEdBityKOIDq+A/rHnur1hDPqtKCJXvkUIDyNoQQuKaEMRA2hDWWo6ggG/FSXk0IlRFMeea0URLShiEG3w4GOCN4J+vw0+PHRiBAXkMYo82lBAHj4G0YocSpjX7eGq95+Dc79zN7owghHkURh7Lkme9utpx60fPgm3r+7FJ69/ymieurxR7PPb8LbT5uPkuR34tz+sEMrTj99wJF6ycGZs27vqrqfx9ZtXGsvT+88/Gh897zDs3bsXH//9k7hj1e7E9STa9pb896vQ3dmGffv24V1XP4qH1u9LXE+AF9n2OlqAJf9+Zs0Y8aWbVuGPj28NzdNh+8/Enz50ZsMY8T83P4v/fXhzbJ6ixohtO3bj9O8+wJWnD1xwDJ7e0oc7n3hBWX9i1dNnX3Yo+voH8cN/buRqe794z4vx1l8siaynr776MHztxqci66m1rQ2Pf/mV1bH8+3e9gCvvXcPM01dfezQuPe1QobH8Xb+8D/98YUDrGMFqe/X1tGByDjd98nzm/NQ/XMCpX/xLZH+a19OCtX0+d54OnNKJP7//BK75adHn/hyZp2WfP79mzt00kMOFP7hXuu39/RNn4aCZU7nn3Lf89J9Yuna7kXr6wsvm460vOgytra3440PP4TN/fIIrTxM6WvHoF1+JkZER/PaBNfjvvz9npe39+yuPxTtOP6BhbfTqyx/Cut6R2Hp62aL5+MNjm63Mubz19NFzD8V7Tp2Frq4u5PMtOOKzfya3NpJpezrXe685aiq+denxOOkbd2N4eDgVefrWRQvwmuMPwNPbBvGGn9yrLE/nHDEH9zy9kStPbz1pJj574ZHo6urCFXetxOJ/POlM2/vAGXMwa8Z0fP6GJxvqaf70CfjHv1/APee+/Rf34+HVWxvy9N6zD8VHX7w/Tvjq7cw8feOSY/HKI6ZEzk9fu2Eprnx4a2ieHvj0SzBt8sREe8LHtgziHVct1VZP0yZOwF3/dmbsnlD3Pvf8b9+OTTv3Kmt7X3zlArz++Dno7u7Gp363DDcte17pGLFwejv+9u8va8jTDQ8/h0/9YTmp/sSbpx+8/ki88qRDAQDHfvZP6C+1WBkjjj1oNq593+k48tN/iszTo59+MV59xVKs3zWodCy/4IgZ+PZFC/Av//sEntjUF5qnB/77lZjY0cI8Yznnf27DlkFPuJ6e/MYlAIBr730an//bKutnLI996ULuc6PD/vtWa3NuJU+vO+UgXP/QWuv9qavFxwP/8WLmuHfLs7vwyd8+Gpqn9529AB958bzqXuO+ZzbjPVctUZKn1d98TerOLKPmp40bN+Loo49GgKN9338KhrBvvE8P+wKfeW/i1z+3L/QpN+IHgKoqDADk8/lqBwKAiRMnjkfcOR51S0tLzXOVzgSUO1mF1tbWmt+C70yYMKH6ua2tDW1tbQDK9tWCz1XMHwFAe3s72tvLg1Yul6t5rqenp/q5o2NcOSMqT54HjASadhG56oAIoDqQA+XBcPy5PPr9fPXv4DtDgecKYwNvGa/mucHAc6Njgx4A+A3PtVU/B9NaQg4DaK/aohuIeE4mT75frqdcfp/xPFWeK/o+2jonVOPizVNbR1e1/bHaXr69sxqmiTxV6mnixIko5VqE8qSq7bW0lP/u7u5GMdeaOE8VotpeCbmGMcIfy3tYnioy6IYxoqUtMk+5MRuerDFi0uTJ8OFx5amSBpX9CYiup1xLK/IdFUOO8W2vJecx68lraau+F1ZPPWPlHxzLWXnq6e7GuUfvD0BsLC+1VOTY+saISp7CnqvP01CuHa2t5bij5icf7P5UjmuYO0/IedzzEytPlbKtzLmbB8u3T2Tb3oTOcv5551w/31KtD931NHHipGo9tbZ3VPMVl6d2r7Wap9bOSls03/Z8P3xtVPLKccXWUy5fzVMFU3NuVJ7Kaa19LjgO8La9iT3d2NY3TDZPOtd7pXw7Ojo64Pt+avLU2tGFjo4OlPxBa3ny8+3V8byttbXmN1vrct48ee3dKBZLDXkaRiv8fPk93jkXuZZAXIG0+uWxvBI3K0+s+SnXPgEV6+1x81MFkT1hfnv50ElXPeVzHteeENC7zy3l8uH1JJEnAGhpba/O1YNFKB8jhrzx34J5amnvMLp/Upmn9q7xdj6AdhTHTJMYHyM49u6TJ09GxbG1yrG8UPLLYedykXkq+fFnLCO5dgAj0vXU0tmNIjjXRjF5SlJPlf0i7xhh+9zI8zwS/cn3WmLHvZLvR+bJh1+z18i1tinda6TtzDIqTxs3boRN0mpiaGfg80zOd2bV/b3L4fibmsrE6y60tXqS4Pu+lAMj7ho17OSHilOhCrY0wlhOiGTSxPOKiCNjhj8lLfi+2DgU56Q4rjxEHNSeMn8qfvu+0zCtuz3+4Tp0OeiVhaudxDwk2jZ0lUDSohUdi0SdGiehs218AyXkpDjorFFhekRJ6mRNtdN1HciWr2tOZFXi1/2bBipNXfVaQqTfB2POW3L4KYsPH8WIosvnxPJi1Umxgm594oFTtC7JqSxHVCcjuM4aGi0qDj26/RA3KMGETFvgTIeO9FZMmyV3UpwwIQ63I5tQWUrxtM0xGTgX1C3VZITj1sqLn2cDn2d4ntcR+eQ4BwQ+7/J9f7vD8Tc1VAZZWfSNpfYH6WJJ7qiEe9ElEXYSghNf08yBIflk5V1mM8JTlCLl7cM33vxFNgAtMQcHcQusvEBk//vuU3DojO74B0OgsgmrwCdISv5EEF1CkqSCbdF5z6Rws7M1H/9QCMGyttn2mmVolyEfI9xMNdXDdLvJUEklL6aF6mFpAMTmNgqUfKBYCj89EZV1ROWc98AlyZyi4qJVV1sLXnok7x05cahcWFA9lwaD0yEgiJrQXB7Gai4TWGwWvP1GRxJHx05tWfkv+T56B0bwpRufwsU/uQ+fuv5xPLulr+aZpO3ZhQsRFKEynvEIkZjP1P2kci3x0d8sUxdYBpM0CwgqKzQPwHEc75wQ+Py04/E3NzTGWGl0Ta2V8dymhkXJl7uNSWTeJEmwbEwsy8IWf6x4o+qbtYhUfePA5mEHD3EaBHHpz7kuFZWEp53EPSLc1DQVddIxTnRzYfJct0aDQKAAvZrPNuct4gOIRVw7wFVJZQ5L04FIJSdU2rxrZev74zd56xHVIEhMTNc00XW/84bjcIEmIQGVZY96DYLxz4Mj5jQI0oILVgR0XNAojKkusdaCA8NFvPFnS/Cr+9Zi2bpe/O6RDXjTFQ/gue3jVq2T9isKU4fspRSbUBEQFKJU4AKI7NFVriXueHqrsrAy2KRSQOD7/hCAJYGvzuF47ezA5ztcjr/ZcWFxwILKxkwHpZKsiSHOWxlNfsvURNMphmx+WYuFqJ+SplXkddMqjn7VOwIfJjUIkvQRKgvYCly1GvOQ6HirT4Mg4fuCARg1MdSa3MSQzWk9qolw54XC5KAJk+2IGuPmeOymQyWVuUb1OlQsuPGHS9Sl+3X4vh+ZZlGhbNQhIm9Zxs1VrENKVdNcd3sLfv4vJ+Ge/3iJmgADUFmPqE5GcL8zVNAgIIi6tOPwQFazR7SpQWBR2320YmKI8cydz27Ds1trNQZ2D4zi949uCKQtqQaBfVw8RyEynKFQ8mPHApaJofo3VdZFM683TZNKAcEYNwQ+v4P1oOd5+wM4L+JdV+NvWqgMsrLomtcqwdosn6Lvy00WROuUgg+C4GLOxJKo5DduJNgaBOJxqM6H6cWi74v1szjTA3FlKLJoSmR2wH5zryGqWvcMjuLhtbswMFKIvYFKxwdBspBF3zdqYqhN7jZXMI02m17SgxP3tqr8tDpmI14lVQGB3WQoxW/4YCENgbijbuNTxUd0muMuAtQTaWKI8/0kZymqx9sJ7epv9FJZj6i+lBbMV6ZBwAkN+QA/OnwQcJgY+tKNK0K/v/yuNdXPadAgIJAEYagIPIH4eVdkT62yPbQ08XrTNGku6asB9I99PtzzvPcwnv0foOqK+wHf95emIP6mhc4QK4euWxwUbofI7vV469S09kitDwI75VuzpjCUhnotArYGgXiaVDifFQ1PNbwHsOXDffazcckXOXdIkwZB2CL1B7evwvFfvgWX/vQBLPrSLbjmwXXMMETbp64iSG5iSOx5k6ZhajQIBN6rUSCw2PbCmsiTG/dg/a5BrvdHRTy6OQa1McEkVeGj/aWVclSfyws5KQ7EHaaxSBmmBoHgIB3ppFiRBgE7btWH3urHCSpjj3INghonxernDgJbQa1Y9UHAGbleHwRmL5vUQ8EsHIXzDlEoXY6PMzMksudXeUGPypjfDKRWQOD7/jYA3w189QPP894QfMbzvFbP874J4LLA159hhet53lrP8/yx/64yHX9GPBRudSfBvWmNn1JJToPA9TpNG8V6DQJGlUaaGGJFoLgTlHyQlRzmPS92YajUxBD3k41M6mxN8LZ66kvljme24ru3rqwebo0WfXz7H8+ywxBsa3RNDImFYNIcdo0PAkkTQza7b/153/1rduD1P72f+/2/PrFZcYro0Mwq3+MaBClatY1lRbXWXXd7i0ASAiaGHDvoKTF9EJjtK0mmKtUp1ZHztB4W1fgg0OCkOGq8cqyr1VBrjdB+u3j5UbNCv7/khLkA2Os12WFi3AeB3PvV+FNwMuhiW6Y0no2W2IJJEcG9SiF/SxOvN03Dv2IzgOd5NwGYU/d1cJQ9yfO8x0JevdD3/U0h338FwJkAzgXQCeA6z/M+B2ApgA4AZwGYHXj+C77v3y2Z/DBsx9+UEBpj5dBsYsgmJV/WBwHnc4brnoLgokaBwFCcjRoE0c/KHJ7wvEPbBwF/W8zl4ttR3CFJvZNiXe1y9qQOLeHKUl8s1z64XjgMKgdQSetMdN1scjMi6zAumEa7/mVq28gPb1+t5WanizTzfq3SKogMIUqotHXV4+JFx83BDY9tFC4r15RvfD/6QERcQBDhg4Bz9RM3p7B+VT3e6phvCCy/AejQthj/rEOoFH1ph+5A1pr3MMq41ewRWStUon7b6Qfi5qe2NPz+2uPmxoaR8zyp8bdyqJtUQJK0r1KYDwkkQRgK5wkV4jQIWGf+9fWvUgmwmS+kmIaUgADAkQAOZPw+AcCikO/bwh72fX/U87xLAFwBoHJ7/5ix/4KMAvii7/tfF0suG9vxNyuujx8+9BxaUZi0iyVfarKw6fiJOsFFhak6fuj5XfjlP5/HM1v6sGjeZLywsz/yWSkfBIrz4Vf/Zw7eRXrei38yrjxEFvRJFqGzJ3dKv6uH2oK57emtCUOIR9ciPmmoops6kwKCjhoBgZy2i829U3AM830fDzy3015iiEFpU2uaVPog8Gv/VcWUrja86tg5uPHxsLtc4WkAgGLMTUZqlHw/Uqhh2sRQkp6pvF9rGCao3LhVnYpgvj574UJ84rrHlYZPYS8oyrwpXXh+R/Q+I4jNVlGpujMOmYZ/u+AwfPfWldXfPnbeApx12H7l5xhhlOtfvJIqh7rJzVUmNTFkHyoXf0SgdHZViJHMi/kgUKhBkCdUSCmHmoBAOb7v7wHwRs/zfg7g7QBOR/nW/iiA9QD+AeCXvu8/ncb4mxO3BxDfj/cgnwSbG/qSZN4oqIzGQWE9YuoG0Dt+9XD1c9yhbFR9s7UO4hEp7yibwDrh7Wb5nBf7bKyT4roAWH0sSU+aQ0yDQEW1ipsYSh5nGKaHZZM3cYJxiZkYCrxncw4INBLXbKLrhtKm1jzltuCiveMoKjlRfcDiecB3Ll2EOZM6cOvTW9HT0YrH1/cy0wC4p0EAqDMxZFporBMdSaFiCkVnMb94wX7o6WhB31BBWZgya3KbtOVz2K+7nSkgqL1MYL/de56Hj523AJedcgCe2rQHR82ZhP162gO/s96Vi3O0amIooQ+CRG+DREMikARhKI3XowmcFNf/kmkQuAkpAYHv+/M1hn0bgNsUhDPfZvwZ8RAaY6UoaxBoCJfAjFny5SZubg0Cx+teBupZlqlvrrYqIiAw3PR9n//gLJ/zYg8/RU0MsUjSR2YRExCoGNNED8K0OSk2rBZuazMiEiuV8Tw4frDMHDiNZGFTOIyxRZo1CHTMmW0tOXzmwiPwmQuPAAD82+8ewx+XboxMAwA8tNYtbR3fj76mIWo/OWnXotQ1dcw3VA7UdJpjmt7djv991ym4+Cf8Pm/iiGqfBLaIocye3BErDKLir6g+7v162nHO4TNCnotOpWy7LlRMDFkeN6g0I9/3nVqfiOzjdBOnQbBy6z7usFReNhDxt5eRDCLy94wMdbg+fPi+JhNDY//aLJ9iyZe65e5Cndqy3xmcLyku8KPbMv8NhKSYrhsfvloNgpjTGpF1ZZIF8yH7dUu/qwMVtSraZ0QO8kUOhJKrhet93gY1Y5vFbWcw7jjnbc2GC+1IF7c/sw1fv+lpkvNuUpRrEISMm1FjaaW//eHRDbhvtVsCApaTYlUHQLyC8djoDPZdHVFROfxTrd1Wn63jD5iCmRPbwx+WINoHAU06W/OxZVzzu8VmwdsmWY8ldVKclDT4IADopIMXGqNZGdZFGN/3cffK7dxhKRUQNPOC0zCZgCAjdVBZNMriw0dazyBKvpwPAt6Z0wVTRDqhuCDSdVtJ5MDQRrnwtsWcp8DEkCEnxR2tebz2uDlawpZBhemoEUEbFiLrU5M3gkTr3NZCWySdwT5k09RIjQZBIaWTsySur7eScsU9z9lOglIq86oJjVNW0ymVfHz9Jvcsr/rwUYw4XBHWIIgUoHC+H9M3D54+QSg9SdBiYojI0GPCoTMVbQkbeBxr5Jrn9SXFSNyydT06tkhK2laSCwhobETX7RqwnQQhKPXxAuMQqndgFNv7hiN/r69+lc0h80FgjkxAkJE6XB8+dGkQVHYVdp09+nImhvglBNawtSaifkAj05ZVlyVlh1UtOS+2Dosx6TfZBr7w6qOMxRWHlVoVKOsZPfy3/kxrEJhqM5ecMLfmb5G+GMyTDT8iFYJJTq2Jobp6efvpB3K9Rnv2EafZb6jpMjEkNNz4wCMv7MbO/hG1iTBAyY+er0XNI+h2UvzqRXPQlm88BnjRodP5IhBAx+EXFXMTqlMRFp7K8ou6XEPlYLceD/H5rzExRKRdsGClUTb5Fc0lmSksOA6kxcTQp65/wnYShKC09BgtRNei6KUqtRoE2bG1KbKSzkgdDqwNmOiaXCvh2lwDlkpyk4XrdWoKKguzIJHqzEwnxfE5EWlGptu87/O32VwuXvwVt3EzubCcMqENpx401VyELKxohvDzxQhhymWn7N8YblLHcsIaBImi4+Ztp9UeNIs4+Q3mKU5IppNg/xt10WuqBO8962DMm9IZ+xylW28qCOubzYQuJ8VhRLUcH8DmPYPa49eB70ePccJOihMLjdkBdLW14N9eeljdd3l8/PwFySI2BJmxR3E6wuZyledirpkYyuXiizj4s81mwe0vj/GbrOZpseSjVJKzu9/dMe6S1AUBCw8Prd2FfcPxzr2pCMYo+SAYLhQjf4tbG9Tv31VeNhDVwsuQh5ST4owMFZBZNMqiS4OAAEWGAzcWvDVqs+YpVBmVhU4QqSQ1kQYBjw+CuENV02MelTHWRq2KrE/POHQa5k/rwtqd46rObfkcXnfCvIZnTZeoqduXxx8wpeZvkb4YTKHNPhyMOa0CgmPnTa75e96ULvzxQ2fgpic244s3roh8L20Xur78mqNx4NQJ+JqD5m2UMNbPTCjsRN+Qpztfx+NHzteqzCPwrqJ5hvgPnH0IFs7qwR3PbMPkzla8atEcHDazJ2EK5dJCIUwZlGsQhASoVoPALURNx9ptFip8EMjnYLRUkrow1NEyPpEnPYOlNHxv2zuE7hjfaVTSS2U8A4Ch0eh1rmh5ZT4I3CQTEGRkEEPaTn8MlU2XVRNDJV9q85eWGw2qcaFYouqbtcnlaSEirciGdRLeNpv3vNgNQdzt6fo1k+4DFirtzsahschY1NXWguvefzq++ren8cjaXThkv268/+yDcdL8Rg0M02Vqa0wV0yAY/2zTxFAw7jSaGGpryeGcw/dr+H5GTwfeceZBTAFB2vz+5HIe3nvWwRgtlfCtm5+1nRzj+AC29w3j+kc3KA03bLhJamOfIqVS9BgnevAXWT6cBcQb3zmHz8A5h8/gTZYUOi4VULmo4JoPgsj2Q7Tj5TyO9YpzJoaif0tyBlp2VCweQHtrvvo5uX84t6CSXirjGZBQg6DBB4FCAQGhMko7mYAgI3W4Pn740HPwRWESlPZBwKu2abHy5XQjkuFCU5c511Pd/G3cSOStmzyHiaG4w9Gm1SCwMKiJbt5mTuzADy87PvY50wettm7iCGkQBE0M2fRBEPicRg2C77/xOLRI2pwiMhQoJ22CD16e3LgH37llJfYMjmqPK6mNfYr4LA0CYUcxUXFwvk6oCetIChXtJRM+CNTWpfilHat48aNx8AmbzZ7fxBDrQfkcFIq+VFtpVej81W0NMHtQuhyfRIPgwed34bu3PIs5kztxwZEz1ZoYypwUGyMTEGSkDtc3dr4vd8veBYqS5pOomhgaGi3irme3YVvfMDbvGTIceyMUm43MpoPPBwF/uOZ9EPAv0vM5L7bhxp1J1h/Yv+yoWfj5vc/zJUACKgcPdoRyejJvukxtbUYKAjfwg0m0eXE/OGelUUBwwZEzpd+lIixUTUqzFcvvHlGrOVBBdNykuJbhoeSPOwutR9TGdNImSOkmtY60UBl7VOctLDiVN2ctytqlyHm0Dk9ZcO9VNWkQyJoYCvYlx5oHEy5tdCKTDZXxDGBrEMQV19Ob9+LpzXsBAD++azVes2iOsnRlJobMkQkIMlIHoTFWirIGgYZwCcyBvmYNAtP88I7VVuOntAGMIqotM50Uc7QRMRNDdDUIcp4Xe3gSl/76m3QnHDAFsyZ2YMveWqFV2hxwWtnoaupypnuyLYdoYhoEgfdsahAEok6jiaEkLcGBKUiKlGaLFJEaBGaToZSyk+JwIaIqB4v8JoaURKcEHWmhsv5VnQr9JoYiNAiIdjwP8XUd/NkFJ8UsktR1oehLvR+s+6QH5lTbURRUkktlPANiNAgESmz9rkH8+M41KpIEIHNSbBIiCnoZGeogNMZK4ft6JtjKoG5z8i6WZO/88lWq63UvSn12KaoIy7Q31bkwfbZ40vyp/D4IOJwUxwoI6gLI5Tz86p0nY7+e9up3px88DZ975ZFcaYqDzE0XB0wMcWNcg8CWDwL+Z4NpjLqVa4LghrmQQg2CJG2BzFigmJRmyxrh5RllY5/eOoYXH36ktpOwBkFkI+R0UkxIzKVHg0B5kFIoz1pIeCrjcMwFwdglGjYe4y+KsFKYSINAcn2i8hIVxX0oCyrTDZXxDChbR4jCpgZSpkFgjkyDICN1UFoUy2LjxrMJitJOijUkJoVQbDZRbTlpUkXyanLBOr27DafMn4qVW/u4ns/n4p0UiwoIAOCI2ROx5DPnYfnGPZjS1YoDp03gSg8PVPpjqkwMmfZBYE1AYH8DK0ow5pEUCgiSNAUiQ4Fy0rCOpE6mQcAmUjzgoAaBDqgIJ1WPFcUQCZMRJ8VE8TyxOcqqBgFvW2AkMokwTdbPn8omQal98Wmj00gwlfEMAIYLLB8E9sorExCYIxMQZKQOQmNsla62PAZGoiWy9egwp1AZ021OhSPFkpyJId7nCNa9TurzS2OZU0uUwz62iSG1OTG1nulqy+MnbzkRuZzH7VSVx0lxvA+C6LCP238yVzpEoLKQtbFO1ZV14z4ILC20RZwNBzfKNk0M1fogoDjKJiPJgQQltfgMuoQ1k8iW43AX8/1oJ8V5Qa+6cV3L89hzYNr7JpmzIsXpCBNCq3TI7JyJIc/jMDE0/rvNZsHvpDiaJHUtsr4KElzjUG0HuqCSXzLjGShrEGSGb0yRCQgyUgelQbaCaJKKVGYsxRSKvpyT4pRvdGRx4ZajzIJV9a0PU7eP7//0uZjc1QYA6B8ucL2T9zhMDMWUoekDeyqtzsatcl1lbdwHgaVKFDlfD6bR5pwYjDqNJoaSQHG9pYJsyaEfVhlTudUpSsmPXvOo0tqqjEce2LKUtLdhKvsC1akIcxCqUuMv2sQQzT7nIb6Mqfgg4IXtpDiJBoFkPQZ9ECRsB5RakUvm6mxd2gmDpUFgs4bzdIoo9WSimIwUQm8EEV3I6rC3XAnR5oQ5WixJTS3cGgQE694kFBdDhQh1e5ObEVPFUhEOAEA/p8ZQLhffbuMOwk1vlKlswKz4KNamQZCZGKqHipPiYNRpNDGUhNZ8to3IiEdkbUb1oJIHH9Hr9xbB041oDwTl8OPmDCqafrqgcp6muphHQg7nlK4PIroXwe0DgDEfBCImhizuA5VoEFgwMaTUBwGhdsSzbKSSXkrnF1Q1CNI+p1EiW9lnpA6K44dokn79wAvqE0FgEhwtyi1euBddBOteKw6bGGLB1UYEgrVx05xXg6ClLCFgEnd72vQZHZWbe1QW9iowrkFg6XRFZDgIbpjsatWNx71i816L6aDH/OldtpOgBSpjXJqJOhBxeVz3fT9SmCl6uBHVBnnLJ+1NmMphkeqDvbDbu6qn6219Q85ow3lefBkHf3XBBwFrfkmSflkTQ8G3ko6/lAS8POVBJb1UBJ5AnA8CgwnJsEZmYigjdRAaY8cRTNQdz2zTkw7LlDUIJEwM0axV67hQKpHaMCwfBIoXbL6s2m0C9nEKCHI5L35hGJP0ZjUxBJQPZEwe5mkzMWTaB4E1DQL+fhjsFzZvLVWUHnzfx8/ufs5eQghy4oFTbCdBC5TGuDQQ6oMgopBdPoDwfYYGgSonxWP/5jyApadI6cBJB2QEBAY0CFTmtW+4gFO+djt62lvwvrMOxkfOPRSe5xE5Jm0k53mxdvlrTAzpTQ4byxoExZLcTqfGB4F07GPvE2pIPJfDqKSXyngGAMNMDQKLBUaniFJPpkGQkToo3vyikKLKssHm2F6QdVJMoQBdgMhCJ4jvi5sH4fNBwI+NBc3AMJ+JobwXP2bFpd/0wpLSQnbP4KjR+LSZGDI8S9iyDCM0FhBxUlyZO5/d2mctDbqYPakj0fvH759SAQGdIS4VhBVnnAkdF/HBclKstlHF3qpOeSOmYrNbdTF3tTXe3dSx5uobLuA7t67E9Y9uKH9B5aS0Dh4NgtrnabQLFmwfBPLh+r5cNQbfoWiqVhYuAYGBdPBAqdkOhfhBqZCi5pHBIBMQZKQOQmMsKSgM6qMiHiozYqlfUFAtXVGfGqrzYaPt949wOinO5WLHrLhuY3phSWkhW93cGkJb1hkBt7WoX6rZEvKIjAXBFMqqzqugEvVtK7ZaS4MuvvDqoxK9P7mrVVFKaEFoiEstLhzkiVIqMZwUi578JdSwSF/p1kJEPqBcuH/hMbMavou7QZ+EGx7bqC9wBXhlCUHcUyaSEosKf3lJ2pOsKUaVeyRKAgYuE0NE0kvp4tXwaLSJIZsaBJk1CXNkAoKM1EFojK1CaSNk83bWaKkkNRnz+yCgU84mcGWyDFuksVoBTxsRaUYl3zdeVkfMnsj1XD4X377veJp9MGncxBChZnfV/WuNxmfDxNDHzj0Uv3nvaUrjs7UZEbmxHjwAarHoDLcy1oTd7HSdpAf8aZ1z05ovW4gUp+wtWAqo1CCI9NFQWT3FBEfpwAkALjlhrtLwqORPdTImd7U1fKczr/et3gmA7gUjD/EH7zUmhmz6IFDgpThJ+l/74/twW8x+IYzgnitdJobin6GSXJ1CQFFYGgQ2ITLkNwWEmmNGhhqoLBqDUEgShUnQ9wEZv1jcjp/Eg3aaBg0CSiuzAIVSY6UnTauIoMvG5eM3nDSP67mc58W27/4R9mJNtemCOCgdnm3YPWg0Pn0mhqJpzedw+iHTlMZn6/blqxbN4X422M4uO2V/HcnhojJW9XSkT0BApyfTgtAQ13TQXMXw4fvRt3iFBQRxTghk37fE5155JBbO6lEWHrX8qeAjLzk09HsT+1qi2wfkOMxwBnGhXejyQSBLzR6JaDuQweZt97MP20/oeUpnV3Q1CDJMkQkIMjIMQGFQqxxy2F4EjhTFJdOE5k3SUF3XiZoHUZ8P8yVzyH7deA3HYWgu5yVu38ZNDJmNjhS6zKSx+oiO2/OmhUoVuttbuDdOwRQeOG0Cjj9gspY0xVGpmYmd6TOnQ0nYR4msVFTTWKJpdFJc8oFCxByhasytmmmLKSdKB04AMHVCG2786Ivw+w+criQ8KvlTOYa2Rsz1RLJqBc/zYi80eDWf7RWWipht3CRXeehLafjmMzGkJ+5ZE8X8O1EZz4DMB0FGJiDISCGExtiMEGQO2PhNDAkH7TSuZDfM7jjbxFB8mGImhvifVYXnefjuGxbFPpf3kgsImtlJsWkGOH1LiMISAsyb0qk8PpsHw5+5cCHXc/Xt7FfvOBkvO2qmjiQxqWyeW/Ppa/dN3JXZZAWjneiDPN/hQwg/8rCtRdjEUDh/eXwT1u8acNKZc2s+h5PnT8WnXn544rDo+CBQGFZEYGY0CGi2pxyHC4LgesauiaHkz9lYX6tUIKDUjLgEH5rSO72nTehSC6UlR5SQG7CsQUCojNJOJiDISB0Ub8TpcDIpSmVItz15jxTEbQy5YmvfNPVt3XbdRiHuYFRtRkq+b2UzzXPzu7z5Sda+TW+UCQ6xxugf1mObs7u9BUfPbfRb0dPegnMXzlAeny0NAqAsFOOi7rHJXW342dtOwvvOOlh9ohhUxtUQS2nO08RdmUlWLmoJ6/IsDQKbhxBJKPnRjtiVmRgC8InrHotd71EW5L/rzIOwaP/JicKgkj+VyYgKysR8TbfHeWImhjSmRFXcTCfFNgQEQR8E0o6Ox6wUEGpJPGs2Xen14OHzrzoSkzg1T6mMZwD7LIFO7WboxP6pZUaGYugMseMsmKHO7qYsVPZbIxJOCPjPkyjWvjkoLcyCjIbUOXMBovjSB5W2H4YKE0PGfRAYjY0WujQIAOCTFxzecEv9ky89LNLsQBK4D+k1kONsr1FPid7ETUrlsNLVQ0sWhPakpMjKRT+sIna1r/m+j5JmJ8UA8MgLuyMFERUoOb2sp6M1j6vecXKiMKhcBlOZiqi50cSUR7XLcWkQBD8TaRcs2BoE5tJRQUXdVy2fEWpHUf5gguhM7wkHTMHf//XF+M+Xx2vNUtGIAthnCTY1jZr9jMck6fO4ltH0UFwbnH7INPxz9Q7byQBgX/o7KqFBwAvFuteJK9m17YOg5NM1WZDzvMQ3R0xviCjddDGdlDiH0Ul4ycIZ+P0HzsBfH9+EwdEiLjhyJs45XL32AGB3rORtP1GPmU67X/dvuqDTlymRbUTVIlKaPuyYBVSBD4YGgeDAldg3EfE23JLQZBuVAzUT6y8XDr114Xnx+Q/+bFWDIOHaBrDlpDigQZAgjDw8UuskHkGzrvRWqnHO5E588JxDcPisbrzrqkcYz7vRx23upR0polSQCQgyUoeNRfHMie3Yunc48vdLT5qH79zyLIlNj207k2G3yXW80xTUNXWqh+BxN93q4fNBwB+m79Mtm7yXfMQyvlEmtEjjVd9VRf+wPg0CADhu/8k4LqHpBR5sCnl4D8qi0mh6jq+qzlMdRBKgohnkPHcPdKPINqL6iTYx5EuYJaRByY++EGFa04/KAXoUSQ/EqFxUMOODQGEkEVDtcTlBP11WbaRzPxf9pBUNguBnyeKrljuhdVKUNlcQXeu6+mo8YOoE5vNUxjOAXYU2p2ZCRZR6CCsgZmTIYXoA+fm/nIS3nHog85kZPR24+Ph5hlIUDYUDDhkTQ7x+C5p97iBQvaGEbZiZTooVb1V82PFBwEMul3zMMr2wpHQzUYcDXxYDGjUITGLT/ARv3GQ0CCo+CGgOIYlQUZSdrXkFodCCzgiXDsIOg6MOiH3QWKvKwBJuiN6YT6xBQLwRO3cxIgKV5Ry1lmtmJ8Uel4mh8SdcmKdZ1WnjJnnwIF12r1SVD6hIkCJ42oKp9MZVK5XxDIjZnxMdJzLUkgkIMlKH6bn13IUzuBa6X7roKFx2yv7obm9BV1veyC3RMGwP7SMF8RSMFm2nmiaE1hNMCoL1x6dBwB9eqUR30+B5Yg7YwjAtIKC0kKUkrHAJE23m/WeHOxPmNjEUUbemN9ClqgaB0Wjx4gXTtcehoiw729KnjEzpcPX8I/SYGbNNVBH7jFv41GGlXXzMdcv0oGno5E9dOqJC4vXbk0Y8Dg2C4O9W/Zco0sgzjYoSo+g3hmceMZXsuPGfkgYBC0en5gxBMgFBRuowfWDkIe42QPnf7vYWfOOSY7H8iy/FE194Kb5xyTFG0hfkb8s341PXP2E83iAyGgS8JoYcmV+VUb9BoirZD9UgMJjWsg8CmmWjwlmscQ0CQv3M1YOktJPzgIuPnxv6G6+pjUgNAtlESTKuQWC2rfE4tkuKirLsakujBgGdQe7Npx5gOwmJCS1NRhG7Oqz78CMdY7YIqm25plkoSlrypzIZ0SaGaOTVBh7ExmO78gHetU30czbmnmCZyZsYSva+Dvh8EGhKcF0dx9UqJSEga79sVxufThmlnUxAkJE6TK+j4hwo1f/ieR5a8jkrh2wfuXaZ+UjrkHFSPKWrTXk63n9W+O3WDPUUSo11zlZhVBu/7wN7BkfVBqoIFWtC0+tKSptVireWXEBnHXa15fG9Nx6HhbMmhv7OG3XUvGq6+ZUsCQjaW3La+7aKsjx5/tTkgVCDzhBHaryVRSQLZSfFbo7rpRJDg8Dwjtv9VsOGynmaymREmxhSGEkEVLtczvOE+o5VHwS8axvGbzbMPwYPhJP6IKBkzpWrLeiSD9T/HacFoycZUpjcn4uQgqWQM6RPLzij6TE9fsSpuUb9noZNnwyiDodnTmzHEbN7OJ/mK9OJHS143Ynz8LN7nhNKCzXqmxCdZVktore8eRaYIouUR17YRfZGoopbI6ZvnlAaukQdYGeU0VGHV77jJMyc2IEFM3rQ1hK9y+XVmol6yvwNOzttzEQ/U1GWHzznYPxh6QYFqaEDoSEutUS1PZedFLPSLaxBkDAt1PcYScce006fozBRzNTrUiflrMfts8c/uyBcZFWnjbpWMdz6Y1t7SsXPZWJIU9z11eiUiSFGoThuwSuDk0yDICN10LFLWSb6kKM5EREQ5DzgsxcewV2nvFV/7XtPw2EzeYUOdKnPLqWFWZDQQ1yDCxDKZw0qFoXmhzw6o1eJcuUSRsdmpKM1j6PmTGIKB0Tijjr/aRYNAiC5f5LYGBQEf+iMHrz+xHnJAyIEtXWk64QdBrOKmOqwfvjMHpy3MNonxGiItmSFvOCOO/VOihPnj0YG4wQdkzpb8apjZ/OFZVFrjtLN7yA5Hh8ERJwU81YT6zkb7VpF3VfCoNSKqO6JwyAi74zFBQ2djORkAoKM1GFy/KgMVjw+CHi/TzvDAiaGrnv/6bjouHA71rK05j0cPXeS0jB5mTu5U+utJ6oLfB23AanmVRQV7cH0jWpKC9koe89JeeNJ+4d+/7HzFmiJzzQ2q5BX4yXysERlYjioqN+b3he5tEb41uuOxXffsMh2MpThUNE7S1QZ+z7dW8BtLTn89G0n4rSDw81qFYrR6c4LaxAka4UujR8yUFqHRPHb952Gx/77AvzozSdwPR+VJRW+quIg2uXGfBDwY9PfmIpqstGug1s02fKj6IPAppPi+vE73tE2nQGNaWLIWCoybJIJCDJSh8kx1qv+y/JBkOkQBBHRIBC1bcxTojadDx4xuwc/eNPxmNLVqiQ8SgsKFss37mn4jnXAT2mBqRsVVWjD7woVdJmieNWi2Q3Cm5ach5ceOVNLfKaxOXZwOymO+t6aBoHZeEUPRqTiUBRBLufhkhPm4dWL5qgJ0DKUxrg0EFaeUWXswyerGZbzgNZ8DqcfPD30d9b6tsXwyR8pkxUacCF/HsTm2qgm4kJeteHF57/WxJDm9CiA1Sas1LWCMqPog4DnApGu9IqaGKJiMg1gC4moCu8z1JIJCDJSh8mDj0pczCgzDYIaRgR9ECjHarl7eOWxs/Ho5y7A3f9xjoLQaqE6b3/z788IPa/aBwFlVNwMM92kKW1WdR0kHTl7In721hMxe1IHgLL2z4/efII17SPV2NyL8MYdbW7BbOIrLcz0xsjjMK2QOA7FowedkSEZhIa4pkSXZlhixhpG1BjG8okjOm+m3cRQUqicp7HWq6L+oSJ91hk4rSHa4/hMDNUICNg5OWxmt4JURaRDwQxoR4Mg4KQ4aRiEGhKPNoSpqUakDZPGqgkvVwrJfTInxRmpw44GQfwzvN+nndGCvtmF5+CIQrnnch4OnDZBebiE1mUNPL+jHwdN58sz1bMBHbjog4BCH6qg6yDJ8zycf+RMnH/kTOzuH8HkrlZnNHZ40JEX3sU7b5unYp7Pt7TxNZFN1WWZli5CaSOapnEnSLSTYrq3gKtr/igBAUuDIC94WCz0dCOUBPlhpMUHAQvRFEbPeZmJIV7iLo2876xD8O+/fzxRmqJQoxFsvl3XCAgk2wHF9sNzH1Gbk+KGv9n1SkXgCbDLxKYGQXdHdmxtikyDICN1mBxjk/kgIDQbGETExJAo1Eu0mQ9j6s0MsdYYPMsPgmtRKSqLwhMPnCIdhunDLEpjl67hJLhYnzKhjVSeVaBjM8JbRNwCgsjvzdZFZUNkXoNAf15T1qyVkZWLfiJNDPn6nc/PndyJy045QPi98TV/eOJHGT4IxDUIkjVC6k046dhGXQACiI8jkRoEBrJKyTRMkLIGQYyJoUBbipumX3/iPBXJCk+HgnqycVDs13yW9UFAz0kxl4khbZeMav+Oq1dK4xlzf26xgt8sMWdnyJEJCDJSh42DHBkfBHSmArPYNjFkcw7WcWc3CMUbHBXaW2qnm6RptemITCUVFfR/Of1A6TCa2QeBrkPbtAkE6rGZPV5bq1EbJtNpHymU5yzzPgj0ZzQzMUSfNMx1oT4IIp714WsXxuVywNcvPhq3f/JsnH8Ev1+ZWA2CEh0fBGmfwyjduI1GjdaI7sPDlVv7tIafBJ6si5gYoo6Ng2IVRTbupJhO+VMyMRQ3FLgyXtvsX/tP7bIWd7ORCQgyUodRDYKx2OQ0CDQkyAEqhy064FpIpvoIg87CrJ62Fv7phtICUzeVzcBFx83FhLa8VBimWzSlPsQy6ZCEtI/PNjcj/D4IIr5XlxQu+oeLAMzfsPREbStIoPqQzZVNbhxpyQdpIsrY9/X7IPBQvpV8yH7deM1x/I61q37HIjpmgaFBYNoJJfUD9KRdTNS+vw3ENQgivk+eFCb/+YcnyF4w8jxP6NCcJcifP033AWPymrJ1k7yy75JtBxWtL0rtqGjRVl39GsItE0PR5WarRL//xuMsxdycZAKCjNRhdG7lOpCO+p7QbGAQnSaGeLCqQaDZxNCZh05XG4FCGjQIEi5ACK1BExE8NHjVsfwHFTUYbtSUFrK61v+U1H11YDN/vIevVITrAyMFAHTtoidB+ZykNjhrpCUfVAjr86wy1m1iKIjIfFZ5Nuod1vpWVEDQDDb6k+BC9kSTGK01pzezy9b1Ynf/iNY4ZPG8+LoO/sy64fyKY2arSVRUOlRUk6V2XdUAkHyfoI9irjWbKYFGekwM2anhLskLdBlyZAKCjNRh8uCdJ6aohR2hucAoOvd9fBoE9tBtzuG9Lz5YafgqEVn8ULqBoptgsciOCaYP7CmNXbpuCFESgujAdvYO3i/eYXnk3Gk49fsqGgRWfBBoj4V0cLagNMal4aBXJAc+9AvjgkUqsjaJ0xreO1SIfFfUxFByG/2JXtdO0uRROlCLQrTv2szRtr5hi7FHk+OYB4PFzJqm338W3T1SBdsaBLKUEmog6OArf12BE79yK977v4/ghZ39oc+Y0gyN9aNBaDij6IPAhfE+TWQCgozUYXIMiXNYBqRmv5wa0ngLtMJRcyY2ON7rbKUhda8/yGUvMgjZjdRMPjB2yI5dTe2kWJcPgpSP3DoW2yIhXnzcXOnwbGkQmB5zPM/Tnlee8OdN6Qz9/vgDJjeGl5J+k5Z8UCay7fn6TUMExz+hg/TKml+ifZg2iUO9DSddR1AXgAC1c9g7zpgf/7xFrTlCy7oayubA+J9naRDoNvOlInRb7Xrch4Dc+371X1qbs539I7h1xVa86YoloVoyutZ19W02rlpNm6CTxdYZCtXxKa1kAoKM1GFUQFC5TcR+KBQX7Ge6Bs+GSLdtWxa6TQx5noevvfZoXPG2E/GeFx2Er118NP704TPURiqJyIY/LYf/PKg4qG1qJ8WaVquU8qgD2/n7yLmH4rSDpzKfoSKIGhgpolTS7zi1HhO554nj4+cfFvr9R15yaGN4NKosgxjhTorDG4sPX7u2jsf4i+c9mXYurEGQ1MRQynf4LtwoDSbx3S86CHMnhwtbq89HtEUzDutpkvN46nr8d9YeT3ebURG8NQ2CwBG/DBQ1CIJs3jOEe1Ztb/jeVHLj6pW6QLeCLQGQC+N9mkj58iGjGTFqYsir/Tf0GcHvMxLAUagmbdvWo97ec2OAuZyHlx41C5971ZF4y6kHYnp3u9pIJRESECh8ijq1gkI3RgVKC9lidVOitj2kfS1qO3+e5+GTLz2c/UzE9zY2CoOjReM3p3Kep72v8QhhXr1oNs4/YkbNd5ccPxfnHD6j4dm0dBvb/SNImKZGGogq45Gij6sfeMFY3CLn9jxaw1EI+yAQjkHt+7pJnD9KnTSC4Pi9/9Qu/OGD7As7djUIaJanx2Frj9fEkH4NAvcu/FRIuoS2ZZtehM/d8GT189BoEau29mnTVmtoCzH1SunOKKsurR2hECqfZqDFdgIyMlRjVoOg9t/QZzIfBKSwqUFgA9Fba7poMDHEeLaZqihYPa74ICDSpACU24rv+8rbTNpvq1AS8kQR1c5sVE3/SMGKDwLtcXA8096Sx0/eciLuX7MDT23ai+P2n4zTDp4WetiSlm5DKRsTO1oxvbsdO/bRtBHOQ9h4E1XGj6/v1ZoWoN7EkIgGgTf2jnicpp0Up30OyzuQvfoqmDWpA52teQyOFiOej9Ig0A/V4izLB9SkjkqfYK0l7PkgqP1XFBfM9/aN+Yj54e2r8KM7V2O4EO1UPin11Rg3/FMV0NVjSxBEpe82C5kGQUbqMDmEVAZ0pg+CqEMOsssxd+EpUZuHz8qdFHMER8WuoYhghmcBkhYhQnDRI1tTpheW1NZpRQ3mX9K+GKUwLMQaDbB4WFJP/3DRvA8C6O9rvOG3teRwzuEz8OGXHIozD51OZl7RBbXuv/hNx9lOQqqo0SAQ2AlXNQgk4hQXECRrhNTnsMQCEEfHIFayI7XmTOSVaHHy+CDgTbp2DQIlJoaShyFD1URQ0veJb87+9sRmfOfWlVqFA2HEjeeUhjOKF/golU8zkAkIMlKHycOyqgaBjImhbLBrPpSbGIqHykGOmJPieKgtQd9/9sFS7wU3fq6MCdSEm4WSr/z2Eq0cqofC4Yrspt/GTav+4YJxHwQmGqFyoXVqeg6tfEzqbLWdhESE+iCwWMQ1gnmBhOQ4LgVFkW9yQX49ScdxF27chrf76HRHCavo51QfZR8E7Gd424LuZY+K4O35IBj7V3KdUyrVhkOV3z+63kg89bUYV6uUBLqsJmB8HTxGetaWbpAJCDJSh9EhhOM2EaVbkGnHhQ2DaagKCFjLSOoLzHqzTR2tObxm0RypsGpMDEmOCqabPZEmVaXk+8odZ6V9KNGRvQUze5SGR8k838BI0fi4pN8DgfqyTEu/SUs+KENlvSZkYsirvCMej3EfBDSKVxvU1iFhiJjWino+9qWUo9LEEJUxh4WtNCY9+KXupBgoj8F3PdvoqFgHjSaG4jQI6LRN1n4q0yBoDjIBQUbqsOGDgBVp5C/ZYKcc0SI95aCpWtIRheoq51lImr61FoWQk2KOR20uQq97/2l4yeH7YXJXK04/eBqueucpOGrOJKmwVNSP8ZsVRNpUhWJJvQ8CFzaSSVCdv1MOmoqpE9pEU8H+ldBZSf+IeQ0Cz3OvHTqW3EhSkg0yUCvPWh8EEgEINvScTF9OWGhpv3FJ6UAtClHNGZsmaake7OY8dSaGdKNivrZ1EOon1ACo+jAgfMXL5oW52DZMpRHHYEuDgEwnbxIyJ8UZqcOoiaGKujHzmYjvs9HOOh8/bwHe/IsHjcVn47CHqgYBa41BeYEJAIfO6MGv3nmKkrBqTR3IhqEkKdzQaFHjlEpAKUe7zVAj6VB04LQuvLBzAAAwf1oXvvfG45SnIVq4br4FDljyQaA9DuWRUBsd5KAmmCGWHCXYzFMwbpG1eKVdiM65LSKODipxJexLRJZ+2nAhf6ImhkTCUY3IJR6jePGzSprGR3smhpJpADihQWDUBLVYXFT26kDc/twOLgiE00QmIMjISEDVYRlz3KJjJiHtiJap6xoEXHESaWj1mw/mLQQeDQKLQgSVRVrjg0AyDPMmhmi0qQpF30fep5Um6iSpw2kT2nDHJ8/BU5v2wIOHI+dM1LK5iUqjjZoeHC0ad77neSZMDKmNgdjQIE1KskEHYgUqq0HgVf+lf/hDbZ5WDZW1LYuwdsJqCjbnPGs3g2PIlVXpbCeDC7edFCd9P5mTYxOYHIdFTQxRauJsJ8V2ajjt8xk1MhNDGRkJ4BmuKJlJyKilJZ/DNy85xlh8zWzvuVi3qGAuQPQmJTEqFyo1PggcqVBqySyWfLKbW6ocst8E6Xc9r7zROnbeZBwzb5L0pkv2VqCNjUKxVFLuCDsOIxoExMOzBbUxLo0apzbzJDvv8l0KakRmjEzaBqm14WYkrA5Y81fkftFAXVJdQnngcFKcovHR1j7Ar2oASDopJtp+gti8pB9Xra4cgFuzMORG8aSGTECQkZGAcRNDjAVfzLsZ6pBZJLbk3R0GXWpCjRoE0c9S90GgsthVLApNb44IacICGHNS7MDmhBI9Ha0467D9Gr4/ef4UC6kJx+ZhST0FDX4u4vA8aD9xb2ahNYu05IMKoc5abZaxpAZBZb4WnQOlBATCb9S9n/JGXHLgRDKsBlj1ErWWM7HGo3rJIud5sfmn0tRV1JOtvFS6k3wrcMDEkE0fBHG/E2nDALsObQ271Padacfdk7GMDAJUxivWwEVp0E87MmVtsnqauSk0+iCIXmVQ90GgVIMgaGJIMljTYwy1g4eyk2LabYYi333DIhw9d2L178NmduOHl51gLP64dhT1u43WZ0NLxcShkOo4ZMI7d+EMpWlQAbUbqcSGXGFCbbGbT0aV4Jo9J3DyYNLEkOt1rpt6rVRbsJIRrkEQ/XzUbybaAlUBgUMWhhSZGLKkQYBkEoLxLR7NdgQAeQlfMLLUr1/j6pWWBgHF/Tml8kk/mQ+CjIwE8KgbR20kyDqEIsKnX7HQSDwG1wvq7T07NGGKtHfyGgQKi13FrQhqB/amKR/e2k6Fe0zvbseNH3kR1u4cQLFUwiH7dXO2JTXtLfZGVdT3NjQIihaEUJ7+cY7C0EHJOV8VgklKG1adFAc+C/kgMGhiKIONC3N+2HwqZ2LIhAaBvrDb8jkcf8BkPPj8LuF3TfjioYStsSLpWqOi0UNUzgQAsGkwwCUTQ5kGQUYmIMhIJZ6BjfVYTGPxiS/4shuv0XS05nDBkTOF35OZP1xeehJaT8Qi5KSYg7Q4Kc4HApNti6abAaWFLJD5IEiC53k4aLq8PwKdRPvvMd/+iiXzI47nAQMjBb1xqA6PuBYfL9TSRGzIFSbU1IpVHwRBzT2RdMSv+cNokTIx5Hila8ZVE0PsA2B7WnO6yvMvHzkTC2b0oLMtjxO+cit29Y8Ive8hXsuHyvioIhnWNAgSmhiqvEd5Kd5iUoOg/u9YDQJ9aVFK5qS4KchMDGWkkreeeqCReKq3iVjPGElJOvA84MjZE/Grd5yCQ/brNhanKZQfxigOTycNTopZPgg0pyUpKjfuXs1BhWwYihJDNL44ipkPAqOoqn/pG1UW2l/Rt2FiyL1IZIKjuPGjppWVHRarJVi9Iu2PZ80fhkwbJ9YEyeGCFnbYOMKq1zSaGOpqa0FnWx4AMKWrVfh9ivNDFLxJZZW0jDBRBZX6l728OC5goNsvTVoMEIXSHM+qQVvDrkPDQCrINAgyUslnLzwC63YN4O6V27XGUxmv2Cqj4b/t19OOSZ2t2DM4qiFl7vGaRXPw7UuPRXtLXj4QmduLLksIHKLRB0H0szwLVJsHwirX78HbZLLBmtcgMBxhDKXMB4FRTFV/pIkhQ/EHsWHGyvM87Vtt5T4IUnIQSjBJTiN6UKqbGsG8yHtj/4oeNLXkZTQIMli4oDUYVocy+0UTh4e6SjNpP+fRpKMi0FWRDmsmhlSFQ7hb5g22E+GoaDRhADE+AjMNgqaAsCwtI0OezrY8rn7XKbj/0+dq3YTI2iMtv+PhjSfvrzZBjpNIOCCJySmHwmGMLURMDBFeXwJQW+7BvYC8BoHZdkDppgtQud1tOxUZosS1o8jDEgvjXtkHgdk4PTSHDwIKaaiHWpqopcd1apwUS2kQiFWIyYOpZoHyQWSFsGpnHQBHCsUNNB9dGhlJk57zgL2DMQKChHFQwpoGQcWHgOT7Fc0Byt1SxCF9UoTlA4404myv1RxkAoKMVDNncieOnD1RW/iVTYKM0ykA+PeXHq46Sc6iYnKUObh0WSrtUsobNAhYDxNfgKhcYwYXrLIHn01vYijzQeAksu3Ixv65WCoZvzllop8pN3snc1mC4EymIk1nH7afgpSkg7DStHnBIVi/IsmorBeNOCmmNtESo95sJUXCxhFWtdq0qqerOJPusTzPc0bTXkU95SW0jVQi3Q7od0drwhfXYFWlrWp2+azGRTIBQUZGAng0CFi/ZZPVOCpKQk6TQ0HEnLzuxLnmIiNGo4khlgZB/BLkmS19idMki1oNguRhmR5FqGmulEpumBtwhbedxvbhY6r6o/qGjeZXsCCEMnFwrrovy6SZ2HACQE2afnDZ8XjtcXPQ3d4iZXu7Jj3Jk0MOm3kKmgiS0iAQbCAyAoI01rlK3PBB0Pgdq73ZnPN0zW8qTAztHWILCMjMIQrSYdsHgSwuOCk2ecgsOkdQacJAchPAOqDsPyKNZD4IMlKPzvmgMk6yJgLWhpnMooYAtg4dTa3F9utpx6kHTVMbqEPtR8hJMcf640s3PpUwRTSoMTEkG4hxE0O0yJwUq+XiE+biuofXY6RYspqO6NuU5ltgsWTBxFCzaBAQXAipSFFXWx7ff9PxKBRLyHkevnbT0/jlP59XELJ7UKvi4BgicvBQeU80O1ICAmJlRo2SAwKCMJhNIWrOM9AYtAkIarR1ZARlHvbGaBBQ1EKTxdZNaVVOhik7KZbxBSNLWsdvW3utNPVxF8jkMRmpR+egUpkIWQs+tnaBR87hpy2UaBBYi5nNnEkd+PW7T1HufMqlpiNiYihuATI0WkTfENsmqSvU2CZ2xOQKtTHLxuFtmjnhgCn4xdtPivxd1Zwat4GK+tmeBoH5eHWjuixlgiM2nJRRYvKwTEs+h1wuWa9J42GDXSfF45+FDuQ8iXeQaQvrwIXxWFSDwGYrKWm6D5C0n+c8YG/Mep/K+KhibWRbg0B2LV19j3C/pOwLhtJFCZaWgC1t7WwKNUsmIMhIPUY0CFhaAjFhZHbVxrBUDLqL/11nHoT7Pn0uFs7S5wvDBVQ6KR4etXuzWSXBRaHs5sL0zQpKC1kg80Ggg7MY9tONmRgitCMolnzjN+PMaBDYL2NC1VxFRbnUj5OU2rNpQm2xW0hHNe5A3YhUS+VR0b4pU/cU+iZlnPBBENJQZEwMmdgnUjYx9PbT2WYPqaCimvJ5O0dzpaoGgRyZk+JaRGOiNNpT9EFAbNuZejIBQUbq0XmYVRko2RoE7PgzAYE6ZOpad/kvmNmtrQ1SO6hl0eiDwFJCEvLSI2cqDS9f46RYLozMSXEmIHCRuAOwaA0C8w2wUCqZNzFkYsuoWoNA0sTQe198kNqEJERFE6sPIlmYxAZdBdhcv9Su2fnTUUmz6DmTzK1gavMsNVwwMRRWhSyTVpFm9Qy0BX0CgmSJz3kezjl8BjuORDGoQ0U67GkbJTQtVBEwEF6LGy1blwdwRhXa2mu5dN6RBjIBQUbq0WlybtwHQfQzsRoEWS8EoOrGnky8etEZvkvTpZCT4rgFiKWMz53cic+/6kilYbp4qZTaQq3kp9P8Cy/EqkMdUYclZlMBoKy1ZNxJsQn5gHIBgcxNaeATFxyG0w9W7KMnASqKpb4okqxxnO/jIem3mafgxRCROXj8WbHEy1xEcb3KdXPeEexDYwqImxgK/81EW9C1hlKR9v2ndmEyy9F7ijqLalO0vFTrP2E7oLwUp3whk3DSarDngyDDJJmT4ozUo3OyrRxkMjfFMdFTnrBMYqsYKApoPM/dG/ZRNDgpZjxLMetvOfUAfOrlCzGpk7FJkSCo8irbBUx3HWojVln4RLHVmMHV+o8b822aW6jn949uwGWnHGA0ThO5VB2HVHge0NXWgmvfeyqe3dqHzXuGcNKBU/DAmp14368fVZxCziQpaGMNJoaoDZwGCStOqyaGAp9FxhNZE0MmnWM2A7MmdmDRvMm2kxFL2IE/28RQRDgGmo+um9/JfRCUA3jnGQfhe7etVJAifaioJ1saBEmdFFflC4SX4iaFLy6P+GwfgbZ8ELhcou5B8GgsI0MtOgeVcRNDrBshbLJBr4ySG3tS7+gtf5nq5W0TLjWdYpHfxBDFBeYrj52tXDgA1Na1bH2aHkOotbti02sQmK5/NfG55KQYAG5avtlofCbqVfnYkWC+8zwPC2dNxEsOn4Gejla89KhZatMmgI6iT1LWxIZc56n1QSBjYkisRvISN1GozbM2OXn+lOrn6d1tuPIdJzvh0yNcg4D1QtTX+vOqaw2VdI6pvN7eGt2HqPjrUJEOexoESU0M0V+EGxUQCEZFpQ0DcRr+BhMSIDsrM0umQZCReoxoECQIw4E1rhGsjf0Eyz/nAUWO53gXFEfOnogVm/cmS1RC6jUI2IvRmBWIhQWKrsVbsP9Lx2G4DVNbqJWa3AcBrdpQR6Q9ZrPJqLJncNRofCbWBurlA2pNqeQ8fQdXLJIWS+iN+bR2VA5Cs26xQIJRiyTDq/uXFxkFAmqm/Gzx9YuPwWWn7I/nd/Sjd3AUx86dhBZLjlxFCatBKRNDBppCvRlQVXgRn3mplFdna15JeijAWq7aEhCM+xBIGE7ypGjDVtny4Mpwb+sylivlkxbcmGEzMhKgVUAw9i/b6RQ7fhduwZjAlg8C3YedUgcmitP0jjPnKw1PBhEnxXELVBuHwbq6qQoNAtMjCLURq1jyUSrZToU9XF04x42NUWOzq/kVxcQBoWrBp5yTYtZvdio7abRhryfJSxoPi23mKDifC63Bvco7YvHJaBBkAJM6W/GShfvB8zwcvF83TjhgijPCAQDCvjdsdnNt6+qkY+nY+x0MDYKRIo0FoMsmhir1L9sKxk0M0RUR5A12MEoaAaKwr+/ZclJsJdqmxaFZNiNDDq0mhipOihkTQVzsJies9KP29qIteNeHvE3n9SfMk0+MIuoFBKzNSNzyw8byRNcBTY2AQDIM04dH1DQIik2vQUCrPniRNTFEc9R2EwIWhhKtn/SR1CxG4/vNfBckrDxsTiPBNicmH/Aa3udB5kyb2DRrnBMOmIxr3nMqZk/qtJ0UacLaCavtRAvF9TcGffIBNWMpy8RniYiNSRW15Kww0a/5hySUNQgowRoL7GkQZHVnEkdHoYwMfsw4KY5+JvYQJBv0ANjbDGk/7CSg1ZDLefjouYcqDVOUehNDLChqEOhqJirGp1bTDhCJDVmjRDaHGYppYg0CV/Mok27WjTRb5aBFgyDBwOloc2BiU7AZPIMTWW9Vp2vBpLe4euhnkT9+6EwcPXeS7WQkQtgOecTzJnqKrnV10iVu5fVzDp8RqkUwo6cd86YQESIpmLCsaxBItgPfAQkBaR8EhCZ5ppaANSfFVqJtWrIVS0bqMeGkmHXIH29GQWGCHEZFNak2b2CLBTN7lIdpO5tCTopjVpg21if6TAwF/pBojC05D+cunKEuQRzYbkv1jBRKza1BYFo+pCi+uGCi+hy19qcDU3mkMP+xum6atGOaea1HLevBNbtI2iqviTspltFupVZq5jB+6UET4abGxJ4HzIwdIpd4REh6Ca7S1zpa87j0xP0bfn/raQfSuWinoAyt+yBIGg5hCYFJk85EWqRybN3Hoqa5nnYyAUFG6tFprrIyobLmnLgxLVN5q2CmHF5x9KzaWC0qELwzwjfAf77scL6whbzr2W1nYk6K2dixcanJxFBO7qCiwsuOmoWejmjVax1QW6iNFkvWFq0UcFVAEBtPpMNGWu1PB6byqNwHgUR4zK5rS4Mg8fshJoYSrPXS2OTtmhgKfBZIyLiJITFk1vnNLfR2p8GzailsrSTjc8VtE0OBzwkvcX3xNUfh4+cvwMJZPThqzkR87pVHWNeODqKiCG2dCYxrEMi9r8rJsU4om3SmJBBOcoFPF3RKpzlosZ2AjAzd6PVB4CeOg9phmy2UaBBwPHNJnT1+m+X/5lMOwJ+WbUTvwGj1u5MOnIKT5k/FJcfPxR+XbWS+L3TzTTKNqmhwUsx4Nm6BaWN5QtVJ8XfesEhhavigNmQ1uwaBq8Sb3wv/vhlk6q5qEFDwaaAkXg02hpIESenwQIawvNvMUXDeFfJBYFCDoFBs3jmN8kGeCMpMDBkoDl0Xb4Jpl4ki2HXyOQ8fP/8wfPz8w5InTAMqitCaBkHC95/YsAcHTO0iLSAwab7J5SGMVYWZD4LmIBMQZKQenSplVRNDjGfiBrVszDPHf114BC44cmbNd7oFBKz6XzCzB9e973T8eslarN62D6fMn4r3n30I2lpyuOSEebjhsY3KJmPb7axBQJDASbEdHwR6CjC4ERY9BJrU2YqO1rzqJMVCTag5WiyR3pToxvThobr42OFEmhii1fy0YE5Lw354TBNDzmoQhH3XBA1XAJG6/dU7TsYTG/bge7etVB63yHxWeVS0XcoceBdLJeF30kJahMCiToqjfjFRHFRNDLk0bqrYm9jyQZBUQLT49lVYfPsqRanRhMGiPWh6t9Dzrqxrbe21XCmftJAJCDJSj86bKJWBku2DgE1mYqiMilKIW4hefMLchu90mqDi4fBZPfjqa49p+P5FC6bjJ285AR/4v6WR7wpZGLK8yG4UEEQ/G7dQtbFA0VV6wTp0xakVtYXacKFkyewUDajVhyoizS04dGAgi6k8Khd8SoTHUlm3JYxMrEAQ8n6SpZ7rfVz0oLThWU9tGdRqEIjrYgqbGJKwqa/rwNYFqF1CkEZQkygy3wbKQ5c8KskaV/YdW7hsYsj3bZlvNYih7E3vbsfJ86cIvUOqmSfYn+siNXOCI2Q+CDJSj87JtrKxTTJuZYNeGRMmhsLtgWrWIEjw7suPno23nnZAdNgSqvG2EDExFIcNDQJd/TSZ2YkMoGJiyHYq7GG6HShzUiwbTjM0/CbSIGBNBtZMDCWMOdQHgUSDtz1vUyGfUysyC4blCeyExzUIxFIjcyu40MSTmklnojoJNa3FyFqkfEBNcphoMzGU9H2HBkE1GgR2juaaYbgxkcXWvIevX3y0U+22HtalDVvNJCVTgjNkGgQZqUevD4L4OOIGU4fnEKWYuDEZNsFQF9CoKhfbuRRxUhzrg8CGBoGmAgwuIkWjsLUApdZnyk6Km2B3E4HpdmAqNpuHJbaxXcZ0wkuPBgGxYdMooXkXKI+c5yk9NA62K5H5rJIE0bqUmTOLTeyDIC2HQeHNnqVxHqE1Z6A8dB0QJx3DnWoLDvsgKPm+M6Y621tyGC6Iq7zovv3+zjPn482nHIAFM3uE33VFoFCyJElqBs1hSmQCgozUo9OETNUHQYJxKy3OuJKiRIMgJozwW33J42XGqeGgofqboIq+TYRMDMWsstMkIAi2P2ETQ2qTwh8vsSGr2Z0UE6sObmQ0vgB3NlJJMOaDQHFEMps4Vs81WdPvP+tgZWGFHgxKlHWbbRuIGhEy7KO4IdTMuyLpGHta9MA/0yAQIy2mV8P6vJwGgf7y0GXSKmlVujTdq1iHWjUxZCVmcf79pYfjouPmYPnGPThqziTct3oHPvn7x2Pf052/D5x9CGZO7NAci37Y+3M7iGj6ZSQnK+6M1KPVxNDYKMqKIk5iTe02ri1MlELYBEO9/FmpEzMxZDefjSaGEmgQWFii6NqgBcMVraNMg6DMaLHkzs4mo0pc+436lVbr04Ort6VkhgbmGklDMRx/wOSGg/ecB7z86Fnj0SY+1FJzGeFbrz9WSXooIjJ/5T1PaRkYd1IsUfn1a6ZmwvZ6VRXiWqFi36tEn4mhpBoEYu+//fQDQ79/94sOSpQOHlQUoT0Bge+MDwLPA2ZM7MB5R8zErEkd3GWmO3tJak5nrU/vbhN63gcwXCji4bW7sH7XQM1vti5jpWNGcIdMgyAj9ZgwMZRkMZsWW5sUiFuIhvsg0JUaNeGnZaNUv9llOURrJhNDLjqupNYiR4pN7oPAcIWYGpNsHpbYxkQeXShHHUk8ZL9ufOy8BfjvPz+J9bsGMXtSBz574RE4/oApgXiTxZzQog4AYEpXK168YL9E6aBCqMklgfdzOU/pWj4YltBFi7p/eZESEDhyWKeDtGyLwk2NiZsYMlEe+kwM6Qk3ilctmoOrH3ihIQ2vPW6u9rh5i5D1nIy2kQpcGm3q5wIq5yhJz4JOO3gqljy3K3E6jpg9ESceOBkbdw/i9EOmYdG8yXjjFUu43y+WfJz01dvQN1QAAJy3cAZ+/JYT0NGat2aGitrFtLSTCQgyUo9eJ8VlksRAZF5TyikHTcX6XQPYvGeI+x0Vh05xQTjpg4CljqwoHBOoVJdPk5PiYCU2k4mhVxw9C39/ckvygAAMN7uJIdudW5K4VEf1OepjtgqMaNQRCZNpYkhTXb/k8Bm491PnYlf/CKZ0tTbEkzjasLWG4GLv2veehqkT2sbS43abDzv4FMlSzlPbXuU1CLyaf3mREhA0sQ+CtJheDW33rOejhOIGZoS0rKFOnj8V37zkGHztb0+jb7iAno4WfPmio3DMvEna43bZxFDJt6GbLUd9EfEKVXTnL2nV/cfLDse//PIh9I8UE4Vz9JyJ+Oprj6n+vXTdbuEwKsIBALj9mW34/m2r8OlXLLSmZdIM635KZAKCjNSjV4OgYmIoOo64sTSNg97v3n86vnvLs/jBHattJ6WGsLLWXf7JbyKyJAQCG1vL977rFxVMJ8VxYSlIjyj65APyAVvTIEgY8SkHTcXcyZ2KUgOMFv3UbG5dQFWzk21G6ZsxGzFxIKwjDjkTQ2rDi+OoOROrnysH8KrjDddWFAv0iNnj6XS5zS+aNwltLcks2nqeWg2CWifFMu+LPS9z6NfMPghcF4hVEHVWHtnGTWgQaGpvNdo6hkayN51yAF5/4jy8sGsAB07tQoshXy4qlqEteUsaBL4d7WwZ6oXtvHODbge7ScetEw+cij9/5EX4+/LN2Ds0ip/f+7xkOmr/VjF3Xn3/2rKAIHFIcqRkSnCGzAdBRurRKiAY+zdJFFRU45QjbE9dUzpi4qBe/KrKhdrkynSCFLNKtXGDQVc7qXWWKNhnLB0bicZ68PQJmDu5Ez3tLXj1ojn4xdtPUtoeRwpFZzY2OjDetw3FF7nZIjaW6cDIfKgjTImEm3RSnM95uOSEebHPJRbshx0MJgrRTVrzHj5+wWGhv4k0FeU+CAKfRfYIlWdNOCkusuwwppy0OCkOQ06DQD+61lDBPL30qJl6IgmhJZ/DIft1GxMOqMKW9oxLl2zqx1/e8UJ3HlUMW4fO6MZHz1uA/3rlkckDG0NFixocLWs1WPNBkN4pgSSZBkFG6tG5NqiMk0wNghh5a1rXwaL5MnHYqeJWnyjJbyIywhZJR7JkJKZ+TcF0UiwYlhnkStDz2OkN3qwUNjFkqVJFD0f+7aWH4ZXHzEbJH1/Iq+x3o0XfiuNqKtju27LE+4yRey8NmMihCxsu1fPzv7/0cEzqbOWIN1k8Ya8nuaziQl3Vc8pBU/GZVyys8e0QRKQfq77oI+2DYOxZ0dTIXARqYgtDqdkXifsgiApHf4Ho8nkRTPllpxyAH4Zolp88fwoeXituBoUaKi4vWXNSjPjzCirUzwe8Aljdjt+paD69/sT9a/5WmSxbcqRmWPdTwi2xakaGBNRv6KfRxBAgni8VxRDvg6DxAeLNg72ZkNjY2qJ+4clcp8UsQGxo3usyddHTMX5YJRqFrSoVLYvzFs6E53naNj53PLMNX/jLU1rCpsT5R4TfvvvvV6u7aUSJ6MMSo8mwghETQxpGEDkTQ9EDusoh49r3nIoPnnMI17NJow2rP+prDdV86TVHRQoHAPH1i1onxcGw+bUTKo+JJiXTIBCD+r6NF3EfBOG/migNXTeDg3maM7kTn3vlETW/Hz13Ij78kkMj39eRrDedvH/8QxKo2Ju05Owczfm+74wmbv3wwDte6L79TmFtOqOnHSceWDvvqlzr2bJ8l5IpwRkyDYKM1GNCXS+JD4K0OOOqh2KuwtJEXZVZVepsS98bNAhYJoZiJAQ2brnIHk54iJZ3fOy8BbXPCmsQ2KlTkWgXzupBZ1u+MQyF6QGA9bsGFYdIj1cvmo3bnt5a811PewvOPmyG0XQoG5NiArJ5WGIbI9OShjhk5hn2aK4mkZ4HnHHodKHnE8UX8l0iDQIHW73K6Smn2sRQXWCsebr2vcrzYomRqftCE6sQpGVfJOqDINLEkIHi0HXwVz+XvefFB+NFC6ZjyZqdOGBaF04/eDpWbu3TE3kErzluDn73yHrleVaxN8lb9EHgCrIaBLoPt21f+Jw3pRNXvuPkhnMNtcmyZWIoHXOCK2QCgozUY+IAmCXwjxtK0zrmid4AUlEMcZu2cB8ExCuAtZkQCYZYNlm3RuMWqjYu1skWn8ewMfSyo2bJJ8giIgu1r19yTEQgihLTRFx03Fxs6h3CT+5ajb6hAg6c1oXvv/G4SEerrhNpYojaYKYBMxoEGsJUHKiq8MTn+WQRh0YnEOQlx89NFD8FVAo18jm1IpIwJ448t0sr/XKkKLYIkdMgcOjETjHk1+WciIq4bWrN6fLtFTaXLZw1EQtnBZywM/Kn40LQGYdMxw8vOwEfvnap0nBVFKE9HwRWopVC1gmvdhNDWkNnc/snz8bB0ydoXzvaUmwjfpczdWQCgozUY2KhmWTrQv0Guyw27KnL3EjV3TySTtas9isStu1DtfplWQILQ05pEIgg7KTYUpWKRNtqSV06rXzwnEPw3hcfhF39I5gxscNKGoyNJVEaBOmcMmswokCgRYOAZnjC4oHEETcGIDKHvPnUAxSnxzyyGkJh5Dy1Zmfq59py3XAICMb+HRUUEOQlnKEVXDqxU4xLJoZYKRXdc0RrzekvD5vNzYZA6JXHzsaOfUcpNU+pogxtjfVumRiqLSQ6TortjVuH7Ncd+ZtSHwSZBkFTkAkIMlKPEQ0C1u2HmAkpLTdl6hH3QWCnHKiXv60DEtXU94MkGgQ2FrGyzUSnloc1AYGQYCrie+st0l1a8jlrwgHAoImhiO8dOjuSxlUfBFIwxnNbGgRJow3XVuR77zOvWIiT5k9NmAL7xGVXbG5U21rr64K7eYw9N1IQFBBINOTm1iCwnQI1iCoSRWvNqUgNG92HpyyIb8MESF6Gtsqi5DvkpLhO3kpFQEC1Has852jiaampyAQEGanHhIAgydhLdUJJilmF/rEwJALRLSDQcdAgE7btdla/pmAtMmJ9EDi0QNFZ7rYO+ESGVJs2dTNoE3cIHj02q2s8OY/mhsdE/9CiQSARJmu8VzXGmfbvEnowGBPkj998As44ZBqmhJgMS+NwKVLE+ZyntMHKmqioPCcqIJAxMVRoZifFKVkgCPsgiDJKZKA8bK6rXahvhrXQKirK0Na6XpeJKR3IahBoNzFEtBkr1SBwp5lkJCC1uv+e553jeZ6f4L93JIz/HRJx/kJR9jMCGDENwogjbixNq4khFxZ8AP2bSqzFokgRW89mg5Pi6J7xjZuewW8fWofegZHQ323cdDKh8i66CbRnYkjENESUynxGBhsTwqUWCdMfJjAxL+mIQvXhhqq6FhYQaIgvbk101mHTQ4UDShJkgXgNIZF5RG2fqK8L3rArj01oF7tfJ7N+aGL5gFMmhlir0VATQxJrendKQw7W2EjhQHLhrB5c977TY59TIiCwVNk+aJQ1D/X9ildDS/eYSkYrsw6V6XJJkJQhD82dEQ222E5Ahhp415mHzujGdy5dhP162oXjSDL0unKQXuEDZx/C9Zxhn4BjQYgHovtmTtLgWe1XJL/U7Pexlhj7hgv49B+X49KfPoDtfcNC7+pCtvSE6kgwbFtjh8je3bXxLSMeZYe2kr+rbFEyN3tNYGKjqWNOkNIgYJkYkk9KDeImD5PFF1Z/ceVNbY5OjkpNH09pn6gva972UXns5PlThOIzrUHwymNnS79LAaLDshLYPgjE30kD1POX8zyuNPJeXmIdstoqipLvioGhxvGBW4NA8+E22fWkSg0CdUFlECbNJoY2AvixwPMvBbBg7PNWALcpTMszAG7neO5+hXFmjMEzcZx92H64+l2nAACue3h96KEkC+bmImY0JTqfhPLzfzkJFxw5E4vmTcIHr1nKfFbc5m/ygpAzMZQ4Wr0omtltL8AbnBRzrDJWbduHq+9fi39/2eE139vQIJAtv2+9/lh8/LrHGr6/+Pi5yRIEi7fKRDRXmnTDm2ZM3ZKK1D5R2HioavAZMTGkPwoumAICRQVhej2ytW8oJMy4OPWlxwbxTorFwlLZJxrC4tYgKD/Yks9h5sR2bN3Lt1eQGWfaW/LC71S4aNEc6XcpIOOzIQ3YdFJsE6LTcJVcjm+IULEzsSUoduliOFknxUQbsspU2fRVkmGO1AoIfN9fBeAjPM96npcHsCHw1TW+7xcUJudB3/e50pKhHp6NYVDq++IF0/HQ2l3K4ogbSl26YdvVVt6wvOKY2ThwWhde2DkQ+awrDlf1+yBIFj7zbZENdqJUJEfESXGQH925ukZAsHdoFLeu2Ko0bTzItpMXL5iOno4W9A3VTikXHtN4w8+G1o0MoqYhkoZR4cULpuPeVTuE38ugSWx7N2BuoZWoiSETXVuPDwLbM004ptcjYdNb3BxCtOikSSIQqSef8xSbGKr/W0yDAAA+eu4CfO6GJ7nekxEQfOy8BXjguZ3C733i/MPw0qNmCb9HCZf2RaKw8hapNZfe4gBAd96owKtBoMYHgR1Kvu+M+ZhGDQK+90oUHU4ZIPNBkCEKzZ2ReV4GILiautpWQjLUI7owf8PJ+wvHkWTwdWkhLJJS8Rt7yZEJg3r5q3NSbDefIk6Ko3h8fS/O/OYduPyuNUrSJIJs6U3rbsc17zkVh83sBgBM727HV157NC44cmbiOGzVqJiTYjWpnN7djlcc7bbZhLSgzsRQzIGp5vgByhoE+tOlxcSQxDsswwY5RbsU07Uc1qzimpoqf0NUiDepxB+WchNDdWGJ+iAAxNMvygkHTsa8KZ3C773rRfOF36GGi+2dG9aa3oBQnCLUfRDwzpUqDthttn0CRc1Fgw8CzoVCk8oHlK71Mg2C5iC1GgSCvD3weZnv+09YS0mGcnhUvoJjZ2ebuFov08JQzGCqagNshEA+Tz1oKlODQPTcxZrDVc3ln9wHgZqCsb3hqu8GotYufd/Hh65Z2nAT3xRJFljHzpuMWz5xNvYMjGJiZ0u0GrmwnWw7lSoSb9JD3gOmduGYeZPwifMPw/pd0eNNRvowYW6hWU1ZALo0CMTfYfsgUJNIUdX/pGUTdhCh0uSOC3CsvPnD8oQej0Veg2D8OZG1mUzdtrfk8dv3nYYX/c+dQu/ZvgyigvOOmGE7CVaINqtnOCGGISqnr1JOX3wiXTYx5NLBb4OJIc4yKzaphEBli2rOEmw+XDqa1ILneZMBvCbwVaY9kDL4Jg65RX/17QQTOvUb7EGCm/X3vPjg0Gfeeeb88rMW8iUTJfUDIlbqhGz4EruDJLoWXb5xDzb2DupJDAcqmsmkrlZmvxA2g5EwPbKocFLME8T33rgI93zqJfjxm0/AoTO603+NrsmIa++R5qkIahB85aKjMHtSh5KwTKGjO8lpEDDCU5RIcSfFGrQrEoSZxqFPpDjynqd2rVwXFm/dBB8zUSfzpnTh/WeFr7WjcKmtvP30Axu+y3nApSeKa3K7goyJIbdqVRxq+5N6+E0MuXt86vs0tDV4aBDw8poYciWDilG5nnG5jWfw0/QCAgBvAFDZ1Y0CuNZiWjI0wGObLumin3XGkCYfBMF8LpjRjTefekDN7/OmdOLdLzoIgMxhp4pyEA9Dvw+ChO+z1JFFb+BZpF5jQHSNsWxdr7rESGCi+ETjsKZ1o9m0QjUe4pvGjGTE1W6kuQWVN4kVrII/84qFeNvp85W2VhN924WbxqpSKDy2Koo3iEtrPRUo7aee2tmgUYNAJgz+l5KcqYhrFsrHZZp/Pf8wHDF7YvVvzwO+ecmxmDKhzWKq9MKsnogfqd+wTzs5j29OcPmCesmHM9fD68feFs6FXKZBkJxMPtAcZCaGas0L3eT7/nYNcUz2PO9SAEcBmARgL4BNAB4AsNzPxHFaEd2USWkQJBh+qdpADiO4UfE8D1977dE4a8F0PLBmJw6cNgGvWjQbM3rK8jbxG3tKk0o+Xl5UHeLYzmZSE0O2oXi4Y+8AXYFgSmqczaCAqYPlqPatst2r6NcUxwYetGgQSJQF08SQMhN79tcjsgKx8m/utTFZHyNh5DxPqTnO+j4r1YeFXpFf7zi0RRBm6oQ2/PGDZ2DJczuxsXcQZxwyDQfv1207WVphNbVoE0MpbgQxUNgpeJ7HVQcu31D3fd+ZfVl9VWQaBGxUDh/NWobNRlMLCDzPWwDgjMBXV2uK6qKx/8JY5Xne/wC4MhMU6IHnAD74hMxAytQgiKlVl9Z99Wn1PA8vP3o2Xh7iPFTYB0GCdI2nR/wd7RoECYNnHxqYS0dS6vuB6EUO28OjkfIjcIjFg5iT4ojvJd5t5k1yKompTiMaBAoCqwThWvuk4oOAdQSkKomi6xEd003cIQbTSbHitJgg3ueCgKA5p1YwWB8Sb1KCaTAlGBS+bONYa+lsy+MlC5vT50A9kfcpjKbCPNSnTl4NAuqHOAtn9eCZLX2hv7l0AiXrg6BJFQiUzgnNWobNRrObGPqXwOedAP5mIQ0LAPwCwF88z5ugMuCOjg50d5dvYhSLRfT29lYP2fbu3YuRkREAwODgIPr7+wEAhUIBvb291TD27NmD0dFRAMDAwAAGBspOIkdHR7Fnz57qc729vSgUys5D+/v7MThYthU+MjKCvXv3Aigf8PX29qJYLAIA9u3bh6GhIQDA8PAw+vrKk1apVEJvby9KpRIAoK+vD8PDwwCAoaEh7Nu3TyhPnl9EtzdcTesEbxh5lNPQjlG0YxSeN56nysTT7Q0jj3IaOjCKNpTz14IiujAyFppfk9bOwHOtKKITI/DhM/OUK42iE+UyzqE0ltZynrowgpaxtLahgI6x5/LV56LzVH6uiAmB53jz1O0NI4fGPBVGRrjrqTg8KJQn3y8lbntDAwPMPIW1vdGRYXSOPeeNPeeNpbUTI2gNpFWmnob7xxdjMnnyR4Yj89RaHOTuT5VZXUWeZNpehz9UM0a0+qOR9RTW9kqFEa31FD9GeNrHvcJgn3CebIzlACLrqTLuVeqpv29v6BiB4ghXPQXzVCoWjI17puYn6nNuWNt76ZEzlOWJVU/F0eHQPA3s28PV9njGiLyCMaI0OlzNk6o5tzVBnnjHvdxY++CpJ962Vxzqj8xTVD3lRgci+1OrPyKUp6h68jzBPA0NctUTq+3V58nzPGY99fVF96e9e8brydR6T0XbY40Rw/3j80lcnvJjNsBV5SmX82rGvZznCefJA/8YMTI0JD2Wl4Vb/PW0d0/zzE8U8uSVCkLriLK5rPD+5HleaJ6o7gl5x4i4ehodq6ewPFWe09H2/FKRK085+PA8jnGvJNb2TNbTZy+Yj5s/fhYOnNIZWk8+fAwNDhk9jzjjoMk4aPoE4TzlPK9mjMiNhRc3P5WKRa154ts/RddT/bj3+ZceyD3nssY9z1MzRvT398MrjHDXE6BuDdus85MtmlZA4JWvrrw18NW1vu+PRD0vyToA3wFwIYD9UfZ1MAHA4QA+BOCZwLOvAnCt53nK6uS0007D61//egDA9u3bsXjx4mqjvfLKK7FixQoAwN13340bb7wRALBhwwYsXry4Gsbll1+ONWvWAABuueUW3HLLLQCANWvW4PLLL68+t3jxYmzYsAEAcOONN+Luu+8GAKxYsQJXXnklgHKHWrx4MbZvL1txuv7667FkyRIAwLJly3DNNdcAKHeaxYsXVzvpNddcg2XLlgEAlixZguuvv14oTwO7t+PSjuXVtF7UvgJzc+WwT27dgJNbN8CDV81T5abZpR3LsV+u3LHPaHsBx7VuAgDMz+/Ghe3lqmtDEYsXL8buXTsAAGe3rcGRLVsBAAvyO3BB+6rYPHXseg5nt5XLeLI3hEs7lqNtbMC8sP0ZzM/vBgAc17oJZ7S9AADYL7cvNk8AMDe3Fxe1r6g+x5unSzuWY7I31JCnDatXcNfTxmV3CeWp1LcjcdtbcvctzDyFtb0nHn+sWk8TvBFc2rEcE7zyUHBB+yosyJfr9siWrVL19NjNv0mUp76VSyLzdPDWe7j7U2G4X1meZNreWSMP477Hn8Uv7n0OP7/m9zi2Razt7du0Rms9xY4Rnv5xb909fxDKk+d5Vsby4uhIZD0Fx70J3gh++6ufhY4Rw5ueja0nz/Nq8tS3c6uRce+j5x5qbH6iPOe+76yDQ9ve6xbNVJKnDS+sZdbTlmeWhebpr9deydX2eMaIHgwkHiP2rn4Ut9xyCzxP3Zx7QGGjdJ54x72p6FPe9jY99PfIPEXV09yNd0X2pyOHVgjlKaqecp4nlKdlD97PVU+stlefp5znMevp11dfFdmfrvr5eFpNrfeStj3PY48Rj9407vItLk+5MRMfKvMUHPc8j78/VfLkefxjxPrlS6TH8rJgib+efvqTHzXF/EQlT539myPbXliePET3p5wXnqfS2KEctT0h7xgRV09r16yMzZOOtjfSv4crT22lYXjwYscIvzhazRNP2zNZT3uW3wkA6MBwaD2VfGDZow8bPY+Y2zqIv370RfjwIXvwkSNGMKWrlStPOa92jOjv38s1P/X17tKaJ562x6qn+nFvw71/wIz2IjNP/5+9+47XpCrsx/85T7/97t7tvbN9ge27LAtLURApCioWRMTeYoxGTTRojDHGb5L9Jl9JYoLlJ2oSYiOxIJpgXSsoRQTBBigssnf77fP747n37nOfcuacmXNmzsx83nkR7z7PPDPnTDnnzKkT10mW7glhJo249dZb0dVffTaiKkdMXKes5k9xEXFP2xAXIcQ5AP6n5qMtnuf90OD+ewEc8TxvTLJNCcA/AnhJzccv8jzv4yGPvQ7APZVKBYVCAQcOHMDq1atx9OhR9PT0QAiBI0eOoFKpoFQq4eTJkxgbG0NHRwdGRkZw7Ngx9Pb2Aqi2xrW3t6NYLE62xLW3t2N4eBgnTpxAT08PgGprXGdnJwqFAo4fP45cLoe2tjYMDQ1hYGAA3d3d8DwPhw8fRldXF/L5PI4dO4ZCoYBKpYLBwUEMDQ2hq6sLY2NjOHLkCLq7u5HL5XD06FGUSiWUy2UMDFR7IXd2dmJ0dFQpTrfe+Ru87d+/j2NeGUC11XTAK2AU+ckW033rF+L/PncjTpw4gc6ubix/+xfQKQZx0itiFDlUMIwxCAyhgAJGUcIoTqAEwMNdbz0Lw7kytr73a2jDMEbHtytiFAWMom9aD77+5nNaxult//EDfPaHj+AkishhDO1iGMe8EgBRbTVFHiPIV1vN4WEAReQxhmu2zMaHf3CwZZwGUUQeo6iIERwfj7tqnDrFEE54RYwhNyVOn3rpZqyb06F0nT77w1/jrbc+qByn15+7DNdtnxvq3rv3V0/gihu/0zROXbkh3PXnlzXcewMDAzjjhi/iJEoQ8NAhhnDcK8FDtUfZCPIYHg9rHp72dfqbK1bjsu0rA8fpg1+5F3/31Z83jdM5Szrwry87W+l5+sqDR/Dm/7zbSJzaxLD0eTJ97z3wvstw0x0/w19/8T5r18kvTj+44Rmo5GE13fv/7vgpbvjyL5TjtHZuDz71kk2Rp+U/+U0/nv/BrzVNIybSvYnrdNtrtmL5/JkNacTffule/PP/Pii9Tn9z9RZcsGraZJzuuP93eM1Hv2393vv8687Gkp58JPmTy3nuwGgO1/7LN3H/Y4cnr9OfXLgU1527zkicfnvoGM5//20tr9NfXbkJl21Z2hCnO3/+KK781zt97z2VNGLN7A785omnQqUR73jaMly9fTEu/PsD+O2hY0bSvbnTOvC1P74AK9/6ee04qaZ7czqL+NJrtxm99z7x7Z/jhi/9QlqOqL9O56/owj9dt6fp83TFP3wdP31yOHRaPqe3E195/Q7lOP3u6CDO+7vvKJeNmt17P/mLy6fE6bu/OoLrb/p2y+t051vPQkd7W9Pn6bGDT+Hs/d+PtLwX5HmqjdO33noeunLDLdOIL9/1C7zmlgeU4vTDd1+Gr9z3ON72qQNG4vT6p2/EK85eOpnunfOBO3DwqX7fOP3hBafh2q2zUalU8IV7D+It//YDpTRi/5VrccHa2YHS8g9/73H87e0/U75OB960EzP7pqU+f3IlTi//yAF88/7fNr337vnTvQ1x+rMvPITP3PlI0+fpB++8COXcaEOcfvTbQVz30R84VS5XTSMefN+lvtfpyRNj2Pd332oapz979lZctWWhlXvvs/f8Hjf81/2+cTpj+Vz88UVrcdXff02aRpy1ZhH+8Zotvvfe6/7zZ/jGg082vU4/e9/lWP7Wzxu/Th941lpctm0F9v31/+CJpw41XKd3XXE6zl3Ri31//bXI3gkv3LgYf3P15snrdNW//AD3P3rIN04ffdlZOHNB52QacWxgCDve9V+RvhM2i9Ndb90tvfc2vvcbLeP0wPsua5ru/eLwGK648Tu+cbr7vVe0TPf6h3M4+323h04j7n3HOXjDp+7C7Q/2R1aOmLhOd737GZnKnx599FGsX78eNdZ7nncvIpLlNQhqFye+x2TjAAB4ntevsM2QEOJ6ACsA7Bn/+I8BhGogmDAxFAYA8vn85AMEAN3d3ZN/t7W1Tf5dKBSmbDfxMAHVh2xCsVic8l3tbzo6Ts2UVCqVUCqVAFTnG63dbmL6IwAol8sol6uJUS6Xm7JdV1fX5N+VSkU7TsViYTJBBDCZ6AHVxLA+ThONZrW/GajZbmQ8M6mqxunQ8fFhQjXbDY8nen5xEoXy5O/GkJty3GrCWzVU87iOIodn7zwNM2dMxz/+70M4cupST4nTKPI47uUn/60ap9rtauNULpcnw+53ncrj94tqnHJ11zPIvdfe0TG5z/o4nUAF+Xz137X3XqVSwYAoAR7gNcS9eVh1rlOl89R5CRKnYrmtZZxGi+1N49TsecqN9wAwESeV58n0vZcrlCbDbuM6+cUpJwSKxYLVdK/U0QVvfK5IlTjlcvGk5blc6+tUm+55EOjp7UFufPLt2jQiXyz5pnuiLk75vFpaHvbeWz//1PkA7OZPLue5ZQCffNXZ+O4vnsKvnzqBncv6sGLWqX2YiFPtNay/TsVypWmcurp7MDY+AFZ276mkESKXD51GFCttaG9vhxDm0r3RXCFwnFTTPa/uupu494ptE/9WTyNG8m1N04hKpYKRXBnAsJG0XCdO5aFqOqyaPzW7TvVxygkhvU493d3IjQ9hrX+eenqmNY2TzTw37L0nIE8j2jpPfecXp9z4FEOm4iTE1HQvnxPacRJC/d4rlCqT959uWl4sPKEUJ6B6nXqn9bZ8niakIX9yJU5erlCTHk29Tk3jJCTPk2geJ/H4EwDcK5erphF+1+nwyAnfONm490SuXylOuVy+IU7N0ghPnIrTBNm9F+V1KrePnwvR/DqNeR5K5WD1EYHvvfHzOnGdBIRSnHJiahpRLOS18ycbcVK59/zqWOrTvTN6gX9/xU4855++I43TxJo+ze69w/0njaQRHR0dGMlVt42qHAFUr9PE+ctK/vToo48iTplsIBBCtAN4ds1HH40rLJ7njQkh3gXg9vGP1gshFnie90hcYUoblQW+ajcJstCg7Bh+g3RUF9dpdsxXn7MCrzh7Ob5w92/xuk/eGWg/OrQWlUP0C6vJ9iBbpDAnBEYdHU1lavEu1xcB8xP31XHx/MW1GKHW4tghwti4SHHgXSn7z1fttH+QBKkU89i7aqaVfftdzpYLNhq8EfwWjlUxER6bi6jaYCP9ML1PUwvBmrjOocPgExUX8xibdO6VfE4YXRS4/lroLmIN6KVD+SAHGFfK6928SVukOGuki5G3+CrLVzTusj+gnj44+ho5bryc0iIunudFf64DlvFzdRckaD1KUoSNnsnT4/Y9TqY4UGSOxbMATDTxjAK4OcawAMDXgfHxPVVr4gpIGqkUzEMXqEP8POh7w0SCn88JzOgsyzc2RCeouhmS7fxddo1DvLspHNcNKS8/WWeycqIV3SPEdU110stWz5bKHuqPE0V0Ny3ojeAoBPhXsLX63uR9b+LF0sZ9abIRpPUx3Nin7H3TVBh1028rL8G+DQSSDRKYf/ueco045YTZU1B/PwTJ31V/UcwL7Fk5Q3v/p36v2UCQwHslS2TXp9V9GEV+ECfXozcxgsnPWAIqT1vdSx6ir/wNWsavf68I0wCbBGFjZ6rR2PM8jLGFIBOy2kBQO73QbZ7n/Ta2kADwPG8YwJM1HwUvSVKD+pbmpkKmnWHyJqXwNT3mqd9FVbjSOY7uC5eJKEgPGaBQ7gLZi4HNER2uyUKZRLtRzU4wfOn0xm39whvgwJYj/OeXrUNBszKGggvao9poRaGBF8uJe9zhbKQpV4IbRdruQlxdLmfY4Ffm0OtwolZBF1SQCibV8Fy4bg46ysEH7Os2EJDbgrympLz+E13lYsvvFk5rb/ldVIQQiu9Q7r6oTKRXre6lj3zrl4h9XVLFRLX+3VcIkepnJGzeZ+rcxH17UHQyV+oQQiwAsK/mo4/EFJR6HTV/H48tFCmk0kMwbNopn2JInqIGfWmsTfCjyhf1eg67lVvLQmMzrGF7/pjK2B27HIkTxfnTbsSJ6aLqhDNMEBumGLKc0s3urvhvRMYErUA02ZvSxAiCiTTa5N0ZxZNto1dqkD3KRxCYCaML5ZEwYXAg+NpMhXmi8t7o1GIBRxDUbub3m562Ip6zZQH+z1WbtMNXq5iPvrMN2SO7b1o3iqf7qva0F7FpQU/D530dJWxfOj2GEE2VE2rpmcsVqBPBb3X/Pfzkcbzjc/dEFyA0K+OraVZuS/cogpBxM9VAAHAEQUZkcQ2CF+JUw0g/gM/HF5QqIcQyAN01Hz0WV1jSKIpMI8x7S9gphqp/R5Mxas09HkNdZ5C5PQG3e+cEHBTRuG0SaxgcEkkFU0JGEOilA61GEOg33FqfhozPSKSETxeVlqNPDIbBxHM9sQuj909Cb0XTj5Cp3bnwaLsQhij5RVf1ebHSAFe3s0AjCCTf7VzWh49fv93I+0epoDvFUMZutIQJNsWQpcA45O0Xr8G1H/4+Tg6PAqg+93926Tojo/zCUp9iyN3KU5V04cv3Ph5BSFpTXoOgyYbVz9w9/2GEXoPA4BRDDt/iZFAWGwhqpxf6N8/zBmILySnX1fx9GMBdMYUjldQWKQ7by1sygsDvtwELP7VhdnOKId19m6uoaUZ2jayOIAj7+wC9jWyEI25xl0ki6dGru31MF1Xn2Q7zbhd1/JL+jCSNX7rbsjelyXp4Ew3TCa29sbIGQYCnSDbKMq41CGwIlRaaC0Z0fAKtGqfJRcCtjiDQC4tfePI5YaxzkvYaBEaOSi7JwjXdvqwP//X6s3DbvY9jYHgU56+ZjQ1NRhXEIZdTy9vifk9R4UJeOKGhE5Dq75psWMgJDIYNkKPC1yMYCUYs61RQPDLVQCCE2AZgdc1HH7F0nE7P844pbrsLwJtqPvqU53kjNsKVVREsQRBK8CmGal5UTAXGh97UIu4UQgCfnvhuBXUKU2FzOY5J4FKhekJ8IQqfDgQ5nbbjq7O2AoXn38O41e/M3QkmRxi6l0LIWUnSTI8giCn/m9ZRMnPgKWEIHhnXylMqfKcQU+4tOvV/Tag/dpCOOrLwm7xcBQd6UFNruhVmge6bjNwCy2d24lXndMYdjAaqa6CYqjy9dtcSfOTbvzSzs3ETwXc5K1EfVdZkBEGK08mw+b+pM+N5gJeIZjAKK2uvw7WjBx7wPO+Azo+FEEuEEF7Nf9e22PRKIcT3hBDXCCGaNn8LISpCiNcDuB3AxMTH/QDepRMm8qdSARB+ARjJCAKftDTwFEO1fzs5gkAvULbjIB1BYLFgEXpooGwEgc5+svKGYUkkMwxpPzPxXNORsTHlbcM9WlN/bDu+fEai5TuCoMX1MHkbmGggeOLI+EBUkxWY5nYlOYb5o5jeo6kw6pZHOssF43NfM3WZSvXaTsw3bXbk0NSdBVmLJKrrWdSeYshSQMgQybtIy2n1eFHjpJp/mKo6ffaZC1Apmq2im4iCS52dgq5B0KwzT7rXIAjH1LuTBw9jbB/IhMw0EAghSgCeV/PRRy0fcuv4MZ4UQtwthPgPIcQ/CyH+VQjxJQCPA9gPoG18+5MALvM877eWw5U5UbQqh0l7gy6SODWTjyZjtDmljfUCsGT3LhWY6slHPuj05A4fliyLojJe/5mJh9ZIolaVvAr7aHh5sB1hPiOR8rue0UwxFH5njx8xP7A9kvTGwiGChFvWicLcCAL9Hf3lszZgdnfZTAAQcpFiY6GITtDnu97EeTNZRqx/LQhybaKatrKkO8UQC3uRai/ltbaXjiAI8BuyLyfU0mDZdHk6NizowUdfsg3nnDbTyP5quXwvhVmDwPZIq9fvW4F/eP4ZVo/RStiYmTo1nodkzKNFoWVpiqFLAEx0BxoD8LGIjlsAsH78v1a+B+Baz/N+Gk2QskWlAj5sni5fg0C+86CF+dqfRTaCQCObimO6jiAFb8DuIsXhRxAYCoeZ3cTGVMHbZbrXOq6C/opZneiuFHBkwH82vDCVvPWbsH0gXfwrEFuNIDB3pfIGdrV3VfUlPmn3j43wBtmnrIxkKoxB9rNsZidu/8O9OPDwUxgYHsXvjw3ihlvvCxwGlzsi2GDs2omp/2tkn3WhC1JejWqKId01CChar9i7DJ//8WMNn+9Y1nwEUpBOP9lKOdyjukixydeU7cv6sH1ZHz74vz/H+7/0s9D7O5WOunM31afDqnUMzd7Z509rx5PHhkwEq/kxcwKXbJyH137izqbf2zytoesRDKUg/SeG8b1fPmVkX+S2LJU6aqcX+prneY9YPNYnAewG8GYA/4nqosOPoDpKYBDAEwC+i+oIgj2e521n44A9KsPOfnv4ZKhjyA7hP8VQwBEENQeNKrvXqUjXny5FMzCa5Iv9ulNgqifL2HVC7XIcqUq7gSCm18Z8TuBle5YpbWuyUizOacjIPP8phvQ+txEGP4WcwNbxqWhMprFR3Ik28oQgu5SPIDATxqAdFroqRVywdjaeuWkepneGG00QJipJTJr8rp1qlCbK8DbLMKrTU9QGQZZ2mAxp0UQrJlmzZk431s3rbvj8ys0Lm24fbAQB74E4VU+/QmdDC92rTZXzJ/bj0p3UcFsrBq7Z87B7eV/4AEn4lRVtvj+EvgcMBe35H9KamZ0SLDMjCDzPu8zAPn4JhcfM87xBAN8e/49ippJoL5zWHuoYYQpvQTsH1R4xqsKj3SmGwpM3ArT+ndURBCFjJgub1vVwqVRIZsR4TV+7bwX+z1ce8N2u5QgChWNE/VLMZyRafqe7Vd5tcih52CkI/+a5p6OnrQjA7OMYyZon9g+hZFp76wWBTZ0HEy/vYfeQtfTFN7qK52Pi2pksp9VX5AW6P6RlM3OB5QgCt+VyAh9/6Xb86efuwTcffBJzuiu4ZtdiXLl5QdPtpZ1+WnzF6dXjpTqCQGN5Lo1ju70/k1SD1iy9PmPRNLOBaTim/Pug00WrcGUmgoefPG5mR+S8zDQQUHap9AxaM7ex94cpfv0JTLxIRJffqx8pjkWKZbuIar5Y0zjFUHboNibFWdAXQmD9/G7c8+gR6XYtF91TCHvjJnYjzIUAo+U7gqDF1yYXowvzUrd6Thcu3TTPWFhqRXIvWjhEkNP56nOXt95fiLCY3k/YvDjcGgTJS5t8pxBTjNNEGdnmOVC9NrVhkJc3QwaoRklzkWKK3rSOEv7f88+E53n+I2cCNCw5/IqSaKpTl6quQbB6bpficZU2A2Dw2ouJ/blzM9UHRX0NgsbPOjTXAtHl15nEodPawOGgkaNY6qDU8+t809NWxNPWzYkmME0ErewYrVlKPrI1CDSOo91AYL3yrzWrDQShRwbKdqC+c5cKhdRcUqYYmqBSuRqmoiToy4Op45Fd/hWIzRUMLnATZlezuytT/p20+8dGcHXTpDMW9WLNnNYdNEzlW2Y6YoQdDZiwGyQkv/OlejpsrEFQX0EXpBwuv54cQZBFKulMsDsjW2mHa6ojCPyvwXW7l1o5tgkTe3F7BIFa4JqdE9vvuH7XwWTHlXrhRxA4fNHJSRxBQKmX96kB+LdX7MCivnBTDMn4r0EQbL8jtQ0EERUedY6iGy8jIwgCDvmOY0FlZdI4GdlNImRgjWJtcZf5lF6GWy66p/Lb+t/YlfRnJGn8e1o2/75gcE7uMC/f9S+EcTfY6YpzDYKF09tw1ooZeNvFa6Q980yF0MS7e5zD/ONO6+M0ce1sngPlEQSi+d+y7cLiGgTpEiTdzfLzb5PqtRDCP3e/etsiLJxury4hrChGYumrK0NpNhrXst3wEesUQxanKk4Cpn/RYwMBpZ7ffMWrJb3XohC0gqI2M4puBEFya6TlaxDYzNjDMdZ7xLHroUN1GHDSubawt58wPWYCTflsOcLsZeOWSKYYCrEvq2vXRHArxnW3//srdmLb+MLOfoxNsefAs530l3RtAUcINW5nv2IrSCf9qBYpLnEEQeZlLemIis4UQ37+4vL1IUPT6thmr74DWWFL6lMMuTeCwOpEBGE7JziUgnRVCjg6MKL1G3dCnx0sdVDq2Rz2pUZeAAmS+c/tqWDh9LagAQpM51TGMZxeuviX9HfuMhVulwuFfjyvcVHBNNK9RHEX+mz2mAEa42d9BEGCn5GkkvbCbfG5yUWKw9zD9Xlc0u4fG+FVeUnXuXym0jgTewm7DxcaKaLkO4WY4vmwMYKgvjQRpLwq+4XJ8i+nGEoXFztHkJzKIsV+c9QHP7aZ/UzsxqVbqXGUsGqe0Lid/REE8gO4PcWQmXCE9ZwtC3DnOy7Q/h3Tv+ix1EGpF3cDgY0phl561tIpCWZkIwisLlIcPhJBh3yPWax7DhsvU8PYk5zBjmVkBIGuuC+p9am5Io5fcp+QdGr1wm0yTw+TLsY9p/yiJtMZbF0yTfn3NhoYVfYYx0hEE9cqfC+++I4dB78gq08nUd3Q5vOmWrknWv6jbjuDQS1ykeJUCbLmXQIf/0TQaaSMq0OOuXV4qv8bd7lFRn0EQbPf2h5BIP/eagNBSlKAnBAosME7EXiVKPXibiDwo9vr4P3P3ojr9yyb8llkaxBojSDQ3Lfe5tpk52jUZgtBSMamWFDYZrHFtTjCcPjyGOVwub2pcFMM+f+2fgvb5yfJjWhp1OpqmLxOYYoH9Q2XJsOlsq9PvGw7zlzUCyGqw7Zfdc5yvKyubCA/RpgQBt+n3ggCQ4zsKNxOXK6YscF3jRHt/QUPS4O6Z1d1JFHtZlFdT65BkC7blkzHzK5yw+dXb1vY8jcZSzoiozrFkFAYQWCL6SoMl/KhoCFplrdYH0HgcwCb7w9pGUEQNByOBD9TuAYBpZ7J6QiC8Ct+6GTWH7pmCy5YO7vhc1cS/1q6YTIRB/mQ79bf2WwgCBst+Ty36ntXKbz8/dVn4LqP/ABPHhtU3m8UsjKCQLehL+4K7TAvGkF+absh1PG25MyJ4vYO08gVd8Plgmnt+PSrd+PowDDainkU8jncft/jyr+3skixwjOqk25E2UDuu4+QOwmXXiYvcTI1gmBipJrNMxAkHYjqihStD9WjKOVyAh++ditefNP38PvjQwCA7Uun40+esbblb5L4/KdJrJXqpkYQTKzl4tCt1DDFkOa0c0F+G5TvFEMOr2XoTvoRLBwu3bNZwQYCSj3nRxBopHytohLZFEM6Pf8cS9Fl4RmJu6YnINMzNWyY34Ovv+Uc/Pg3h1EqCAyOjOH5H/pu4PCZkpkGAsdG3fixnbbWP7P2RxDY3T81EmjdiB5FHhLmGA0jCMIGJuC+uirFyb916hLjut110g1TFTO2OyBEFYYkMde4M1GxZe4E1qc5QXZta87xZsfJ54TTI11Jz/r5PTjw9vPwk0cOY3pHCUv62qX3d9bSjqhoTTFk8Bos6msHfq62rbE1CMTE/7p7M6mGLKlrELzr0nX4s8/f2/D5n1+2Tvo7jiBwJAIZwm4JlHqFmHvf+A1h1JmOrVXiGt0UQ/Ze7OOcAWB0bMzE0ZsKn7GbeWlQ2VYIgfZSATuX92Hz4unODEUd8/zX8kiDWKdcCCBMjxml+zHAftuK+QC/CnNEsiWKqxFmOtTGKYZCBsbAvvRGlQU7Rth9ms63lPZj4G6yuZ6Qzd+6Sy1Spyq2zB25vjyhPMVQTZijvCRxj4Qm84r5HDYvnoalMzr8p+Pi5bdCdYqhXE4YrVi//qylTT9/xoa5DZ+Zfr936Vaqj5v6GgTNGgjiHWGsUtV00YY5WDCtbcpnC6e34enrG6/7VOHi5sq7fGAJD34SsYGAUs/1EQQ6hY5WBYWo0n6dU6m9BoGJRQQluYgs83Z5BIGx3iMBclhXKuU5gqDF9naCoSxMD0qVXzYOP5Zvf+aiXlx31pKgQeJLuGOi6OkWppGrvkevC/dPHJXvU/apsI3WFEOGUjkXRhAk/iVdk9+1060Msnn2Ak0xFOHlZANBtrEHbbyEMJv+LJ3RgYs3TF2sulLM4SW7lzRsa+4d0Oz+bFANmmjyPm87PfZ731EpS87qquDfXrET1+5agjMX9eLaXUvwqZfvbLomSa3QHQ3D/dwY1Qa5eq6EP0s4xRClXtwFa5NrELRKJaOKoVbvRO351HVDo0cWnjGraxCE7HUo+X3cvUWj4o35P0dZFPdQ4TBJq5X5z4XAmy44DV+853d4+OBx/d8bDxH5EUK0bImMIusOcx/abLcMPIJA44dPHh0KdhDp8f23iWMNAhcq56NesyVuftFVrgwa/1+T17C+oiJIOiD7jem0wfWOTmSXA8lXKqlPMWR2kWIhBPY/7wycvvAX+ObPf4/5vRU8Z8tCnLFoWpNtTR301LFdEXwNgsbt7K9RJt+/aoep+b1tuOFS+ZRC9cLGzJVLHjRfdCX8WcIGAkq9qOYJbcUvQdSaYqjV5xGlnjZ7J5qIgeyYsu9GHe6hLj2PBq9Hs+89R6rlszKCQPcpiLvOwPoaBPXDj/16pKKa3r/tojV42cd+oH08FyoR6ZQoek2GuYcbRhAYDG/Qfen86vjgSKBjhA1BHOmWkREEIfcR5l5zqVLHFOU4TVZs2QuLajm8NgxRXpFimLnQKPFS+Pg7QXmKIQvnv5jP4eVnL8fLz14u3c5U2j9Rpoj7vaFWfZlbNWjN4mB7NmnfKYYcfkhdKT9wHZ3kYImDKGZ6ixQ33zaqtF/nMNphshwJ2d5tZlquDA1UqVx1VVYaCPTvlbhHEISp8NLfxu83E+Ep5ANWrrr8EGRQFNcjzMuyzTUIgjIxIjEM1bVu1PfnwEkdFzYocY9mjZrp0R9GRxDU/TvIVGNRVghxBEG2cYqheOWEiO0aWBhra3yPQVXq1gxzew0C+f7DTFfpx6VyUBhBq1qY/kWPDQRElvn1UNB7WW7xuU6AwtA40PBo9JW6suDJMneX1yCQLlKstZ8AB3fktHCR4hbbJ3gEgcov67fxje/498WAXYlYCI1e3Gc8zAhDmw2XwacYUt/WxtR6KofXOeXGGsgtr3GkImjDZfXYyWOqU0IUcQ+SDnANAopK3GW9rBOGpxjSYarie2I3LiUlbXUNBKqpfbNTYjtefnmEzfvDxK5dSEOCzkrgQtizhg0ERCH8xRXrQ+9Dp9W59SLF0aSeOgWVpTM6tPZtPQaSA1idSzrs7yU70Fvg2u84jVu4UicfdGGjpNF9juMuM/mlXZdsnGv0eKoVThxBkA5R9NAN0+urvn7dZGiD7ksnOkOjYwGPEk4caxAY2U3oEQTZeuUKMq2hbDuTyUF9kSJIWiPLj0xPz5gP0bhEycerb4f6nPfxXQPTeaBL5dy20tQ8McwIAttXyK8BwuYoLxPXzIUpkAKvQWA2GKQgW6VVIoMWTGvD09bN8d3Of5Fi9WPGPYJA5zg9bUW9fRuIhKne9i6Jqgely3MDjnqeM+sh2JS0EQR+PWpef97K1l8qzUWi95OJ74tsIEiFaKYYMjiCwIEbSKeXu41RfirZiFYDQYiwTNmPifJFyN+HW4Mg5MEdpHqv2phiqJ7qtaktR0U7goCv61mWxuffBeprEMTXQmA63XOhonhC/QgC1ZA169hhfQSB3xRDNhsIDNx8Llz1oKNu0zLFUpKwxEGkacP8Hrxg+yJ86uU7MKOzHHp/JnqBR7YGgeaBXnWOfPGlKfu2nAHGVigKedg4pxhypeO+w20XsYp7ShxZ7+uOUh6rZne1/F4l5Lrxm9g+aGVK3Oczi4IuLB/F8f3YHEEQNGBxTx+gUuGitUyCoZvARP4fNixZmybGf9Si5v4snr5AIwhkaZfhvCRr9w5NxQqyeFVHEMRzDYyNIBjfkUu3UtA1CJpPMWR7BIHPCGaraxC4sY+wOIIgOQpxB4AoaW593Vl6P/BJEHVanVtlQFEVXHSPMq1dfRSB7czLhcwxCNntEfN6lJGxMVe2i1yqMFEhG0GwcHp76P3Xx88vuhPtApxiKB1sv/AJEe6lzsV0Ke6KJKURBBplHlP1oi482mHWu4j7ugZhKsyTFVvKIw7878OGRYoDtCnL0ifjUwyxgSDTePXtUE2j4lyDwFw6anZ/JrSV6kcQ6I/kmmC/gUD+veuzwFXPbbxl1sDrdjl+btOIIwiILItkiqHIRhDobR/1VAJR9uhSFfa4pnuP6HBlWh9XRjLYlrQGAlmlit/9FiTsvlMMjT9rxSC1PQr7p2jZvhw5ES51rn/ZMXn/BN1V3PWIKi+AemE0WzkSah/hd5Epps7XxP2iet8EqUxXLavWbhXpFEOu1z6RVS5V6qaJzhRDcV0B03m6y1MMhWE7Wn7nbceyPmvHNhI3By57Vt7l04ANBEQx0+lVFnf6rltEcqnXk0NlIi2yc64TpaTGHwjR6yBhgk6pExfZFEO+00sohL1xC7VGh6DTMcR9Pmkq66PKQh6jft0Wk8ENGq6403m1BgKdUZNhQjNlT+H3wORBS1yLFKtUptZXDCo3ENRsFmV+kecaBJnGpCdecb7KmkpnRN3/uqB+iqEw73rWGwjGk+Dnb1/U9Ptrdi6xdmwTDYQuXPeg19elRq2sYImDyDK/Hgp6L8vNt41sBIFmiqE3fZJmYJrtw4kscKrQ8ZKNirA8QmNuT1uAX5k35nnZ6Hmge5Fivt1l959ffYbSGsV1G6ne7kFHEDjUnpkZ0gbQCOaUDZNnuJgmxd3TVOWcJHeRYvWd/NGFq8IfsP74CUuffEeRqU4noVm1FSQdDzbqQP84QRWZOWVa0p79pFDNL3NCxJa3GptmT3MkVhQaGwiC7yuqNQhee+4KLKqbQvUPzl+JOT0Va8c2ETMXKtmDL1JsOCDki2sQEMXMzBRD0aSeukfRqwiwOweAC5ljELJwm1i/QmbFrE4sndGBXzx5XPu3Jjk41bcVCWsfkN5/RhYd19zFxLPCNQjSwfrlECFHEDRMMWQuxEH3FPctbHqKIWNT7JnYh+JOyoUcnr15gYEjppvuCALV+yZIWS9IA0GU+UWY9Sso+Vzs/JQGqlMMCRFf3mo6nYm7E0Gt+imGVK9HM1E1EMzrbcNnXr0Lt//0cTxy6CR2LZ+BncvtTS8EGOrg4MBlz8q7fBqwgYDIMr/0UDZNR71W7whRpfu6BQutqT5sTycRU+ZocQAB5nSr91gIGo53X7YO13/0BxgcGQu4h/DCFBrTLO6CvqxSxe/RDxJyv9+cmmIo6OBIB0rQNMn2/S0QrjddwxoE4YIzdV8B4x53Q7j5EQRm4mPivKju4T9ftcvK6DuBuJcYNEt3yiCd3r62wjL1N9E9a0GnzaN0cKFyL8tyKVikeCIHc+leql+k2OkphmoO0NdZxnO3Np9qyAYjHa4MhCMsrlGcHJxiiChmepl/820jm2JIc/uo11eQnYe4K06CkgV7Xq96JUTQ6O9ZORNffMMe5e1ftmdpsANJZKXXge6LQNx3tPSZMrBIcf0m/lNWVBU5giAVbNeJhZ02YKx+DQIH7p+4w+DqGgRRLvK3YJobU/PFycaC3aq7DHJs1Y46osXftrm0nhdRWqjm/9URBPE8g8aaB8TE/txJS+pHEIR514tqDYI4mBlBEP91D9rZz4WwZw0bCIgs80sPjUwxFFGGr5tG64yOsC2pvT9GJCWmeb06IwiCh2PZzE6l7RZNb8eu5TMCH6eV6hoE6W8l0G6Ai/nxkk31byJs9Y+O/wiC6haFwGsQuJNekd/6BAb2H3IfNhsugwYt7ntYpYFAZy0jlxoIlOfMZzqidKbUz2f1f1XvbZXt6jtXBFuDoPVvTBdXOIIg25ik2KH6XpGLcY4hU3n6xF5cSkoaGwjcn2IoDhH2b7Aq8BoEhsNB/thAQGSZ5zMoXGse+VafRzaCQO9AtufIb9hHwO9c9sSRgZbfzY9gBIGKGZ0lXLR+Dv7tFTvQXjdk1ITRjAwh0L1GcVdEyRoAfSvzFauQpvzL5ycTXwetTElqGpFoAQehmHphCrUGQf0IAoN3UFIrhFSS6jimGIqy16St3t5JygZV8ibV22DiflHfXv59eymP89bManoMP7XxivIZDdroTekQd8Nv1uVEnJ3M3N5fGJXS1HQtTMNqmhsI0tJCELQM49I9mxVcg4AoZjqVfK0yqKjSTu1FQyOfYihgbZNFYQ/bXSm2/G6uIw0EP/jTCyb//s1TJ43vPwODBwDoV2LFXWaSPd++6VqAwPudn8kRBEEbCOI+oTRFFHPKhqk4buh96MD9E3dFkulFis3Nr2BgF4r7cGnkZFz0m3/DbzfBr4HmDy9YhXJhakeGIFlGlI1OHEGQbUxS4iVEfBPzGBtBML6fuMsItUp1DZ9hOoPZjlWcbbQm7j4XrnuYESIULXZJILLMLz3U62Xf6gv18IRhc4oh23lX/FljMDuX9zU9N6fN7kJnWb2N16V5J3VVpxiKOxQOivmSyp5vG1MMqW4ftAdvkp+RNJI1Mhl52RHh7tOlMzvCh6GFoPdi3O+AphcpNvVSG+UixXHOVewKpTVmFE/o5BRDig+rLN1oK+Zx/Z5lDZ+r5hm1u47yWeMaBNnGskm8Et97vGY3cZcRatWn1S5PMRTniG0XptQ0IfjldSDwGcNiLJFlfumh1hoErRYpjmoNAqtTDOmGpsk+JN/F9X4V9rC97SU8b+vChs9fsbfxJVcaDkcbkVRkpdeBdoV4zIUm6QgCv97+Cvuv30Z1UELQgrwLBeiskZ1y6XcGrlV1keLgv3/9vpVT/u23q/NWz/LZIry4e4mpzOmsE0SHBhAopyscQaCWN+lO66PcQCPZ8NzVM5v/JkABMdIphthAkGlMUuJVnWIonotgOk+Pe2rSCbtX9DV8pvKqt69FOUpnbaMg4i5bheVC6P2m3G4l4ac+kTjFEJFtvosUh69Ed7XyV299hfS2/of1nss3YElfB26773FMay/iqi0L8bR1c7T2Ed06FeYlae7lMHTPXdy3tCzt8q3MV5qjWi+CYc9H3OeTprI+qkyEy3fOXDytYX8ysgXnGwQMVtz3sPE1CEz1noywB17SKxKiUlScs2HibJpcpNj2b0wXWbgGQbYxRYlXLsYphow1kguz+wvrpWctbfhMpTPYtbuWNP3c/hoEVncvFWUHB5vGxoL9Lv6QZw8bCIhiFuXQ96iPE/U7jexUxjaCwMBx8zmBV+xdjlfsXR48HFGNMrFwGJVeqTY964z50RxIewRBvGTPt4klCOqvu98+w6alLhSg6RR5A5RA2Go4geDp1Y5l0xsqOP3S2KER9bejoHdi3B2N1dYg0Ok4YIaRF2zF7YL0Rk8dhVNQKig2EIip/+snSD6gOuqjdiuOIKDI8PLHSoj4Gt+NrUEwfhO50IB98/XbsXvFjIbPR33KDy/bsxRnr2o+Csx2rOI8bybeTeK/6sFnA3Dgls0cdkkgssxvSJXOfLUtFymOKPXUzSDj6CnYcv+S7HG5xbmkXRFdBmv+QGOe+R55qgo5gSu3LIjkWNqLFDs8gsBEYbq+N7JfOhd6BEG4n1MAsmsmux4mrlWYe1Rn/ZcJQ6MBu09pifcuVhtBoL4/U2UbIy/YTCCUqZwq1UrviedU9fQHuU7KjTo1O5fl16ZvFa5BkG1xTyeZddURBPFcA9OPftz52PVnLW3aOAD4lx92tfgdEMUIghgbCEzsw4EkJGhfP6Z/0WMDAVHMjEwxZCgsQY/fStQvNdJMRPLV689b2frL0NzI2KK6FGlYg+BZZ8zHvJ4Kdi3vw4eu2YJdy1sXSk1K2hoEsufbf4ohlSPUjSDw2Trs+XChAE01bDcaizAvfY2/89uV1giCgMHS+d3V2xrXtglLbQ2CZI4gcCUvTwKVS1zUHkGg16DQdF8trmGQ0a6yMpXxKYbYQJBpLJvEK5eL8RoYOu5E+OOq6O5pK+LFOxfjrRetbrmNX/khzLSmYel05jTNzBSJ8SciHEGQHJxiiMgyv/QwWWsQ6B1Ib5Fiuz38ZHt/2ro52LtqJu544GDoMLgruTls1A0Ef/Pc0yM9XlBxF5pkz7dfuqYSdu0O1yHPhwtDr7NG1qhje4SKEMEXKW72O6MNBAFvZp3zcqHmOjYqjKfVxipHsvNsz+wq4+DRwVjDoHL/lpTXIJiYGkPt2EHq0gOlJxHeUvk4a6codtlJvdwUZ9nQ/CLFRnen5CMv2Yo9K2f61gn4lR9kP7d9jVSnobPBRGcwF9KQqN/lKTiWOIgs80sOtYbbt0ji4+5J3IpOhmo7BrKgVIp5/NOLNuODLzgTr9y7HPufd3okx41Skhcp9rzgQxOTRPfcxX1v2S6Q1xcmTaxrIMMGArfIroaRHlU+x/D7ra4ophhSCVdXpYAbnrkW5542y/jxTS8ob6psE+UixXFa3NeOd1+6Lu5gqI0gUG0gGN+XaocTm4sU124VZX5RzCfg5iNrWDaJV5jOBKGPbWo/EyOxYqgv2LigVyn99isixTmCINZOBikpvwQtHjoQ9MxhAwFRzIzM0+9o6qk3gsBiQOB/nivFPC7eMBdvvWg1Ltk4z25gYhDVLWKjEDVqutbJUfrnLt4HXz7FkM8IAoWw1zcK+f0m7Es0Z3Fwi+weet7WRQb2Hzy9ajqCwOAixUHJnoFrdy3BN95yLu58xwW4dvdSK8c/SzJHcBCyy3PNzsXq+zERFgP7sKm3vYj/9/wz8fT1c/C6fStiTc9UDp3PCaUwTjyjqs9qkEc6yHSYUZ5eLnydbS5U7gWxben0uINgRE7E1xHP9LMfR1KiumaT3xRDsufA/hoEVncvZaZDTPyJSNBX+SyNAHUFGwiILPPL8HReTFpt6mra6dJLjc45MhlqV85AVBmsjaOMeZ7vYt8TTpvdZSEE0dC9RHE/XrIRQn5hU4lrfdppZl2D1thLzy2ye+j528M3EOSEWgWlKr/bZzDmNQiEABZOb0chyITritbN68aCaW3G9ic7DTM6y+r7MdIDz9304c8vW4dvv3Uf1s/vgRACb7rwNNz5zgulv/n/XroN0ztKEYWwOZVRBBNn3cgIghZfBUn7o7wfuAZBtrlQuRfEtbuWxB0EI5K+QG11PxMNrYZ2qKiQEygprjfjP8VQ8HeOsOJcKN5IBwcHkhCVNarIDWwgIIqZXqLdfGMH0v2m9KYYCh8L+XuhO6MZ4hDdCALz+1QtUyyb2YF187rNByAi2uMHYr5PZQ2AJoJW39vEb59hj+lSgybJ0+wVszrx9otbL3antn8EfoiC5FdDI6Pq+7fRQBBBLiCEwIeu2WJsf/IFZ4HnblFbaDktc/i2sm/NbLSXpvbS7GkrSn+zZ+VMa5UqqpXnKusQTIRRfQ0C/Uip7rt219JFig3Xg8RZOUUOSODlv/6spbhovfl1buKQE/GVt003REbd2DGi0W3cb7S4fIohu/GKs5HOyBqNBsIRVtB8Me533SxiAwGRIa2G1r/94jXS35lZpNjN1DPqKYZkGbjWCAKD59OVa+NIMAIZ8zylgsWqWV2JruTVvUZx9yqT1e2YeAlp6E3kO4Ig3DETfOsklvSS+VyPl5+9HF97094Qxw7+BAW51XTWIAgaMhfymzVzu3HxBjMVQ34jIt7y9NOURo2lfQ2CoAsoqi4UrEs1NEWFnqUT97TyOgEBToVqWbX2uYwy/1Vdr4HSyeW0p9b5a2bhpmu34Dtv24c/vWStE/mRCWHKCuGPbXqHhvdnkN97nomRyUHFuU68mREE8V/4oNMFOxD0zGGJg8iQq7YsaPislM/hog1zpb/TaiDQ/DxuWg0EFsMB6GeOacuQouo1YqMYrVqmyOWCV5QkUdxRDbNgmMrz6DfcWPeYfthL0y0ql2PZzE48fV3ryuj5va2nuxEhegU2XYPAZ2fRrEFg/RBKCobepv2uT19nGZ977W6F/ZjogefIyW0i6HVXnfpBm2J4VBbfndhCtQwTaARBkDUIInyDZt6UbUm5+jO7yti3ejbm9pibZs4FOSFiq2A1/e7m8lSafmV+v2tgM26xTjOVkg4Ouu90E1wue6UVGwiImgiSkF66aR7ecN7KyR5Zve1F/NM1m6UVFIDei12rDMqFhL+ZyEcQSKdX0GOqMODopbHGxr2oWqgQEIkeQaB7t8Qd0zDDfVXCXn/V/QqJYQuRLr84ZZHqC7msLrqjnJfsP0RP/Sa/89uTTuepwA0XsacKVeZmWPFPYyrFPDbM75HvxY3TYk3QfM/WehTKIwhU1iAYv3jKaxBIdtlqD0E6FkR5S21ePC3Co5FrXOj9qyYp4dRTXaQ4Hn7HXTW7U2k/E+u4uXyF/MpIflmAzde/eNehMNDBweULT85hAwGRIUIIvPGCVfjxn12I2954Nn74pxfg3NNm+f5O58Wu5RRDjmb5LlW46U/fki4OXQptqgsbCSGf9sZ12vdozBdVVmFjImRRL1Kc5GckqWSnXPVyyPI/WU/2UIsUB/jdn1+2LuDB1MniE+X9/bytzdcG6K4Umn7eimqYfdMGraMGO0acgo6cszV1jWrepNZAUP1f1Wc1yLkIMn1RlPnvlsXTMLtbfVFuSheHk54pEt0/R6I6giC+Y7dy0fo5uO2Ne/GJ67f77meiOO3Se3m9MGsQAHbT5DhPm+0pmKPygh2LA/0uremKyxJclUKkbtMCee+yemHSorZSHqtmd6n3djKwkK+r+b3esGgTUwC0plsoMjaCwJFrE9XLrJ0RBKrHFomeYihpIZc9I/4Fef/9j9XNyOL3k7DnL8n3ThqZSIMLkilMBMymV377Okehw0D4QNg/hIptS6djRmep4fMXar4gShuQaitr/fbjyHmxJeizUlKY4icI1eDoTDEkFCvpgpR1gsyIFWWlhRACf3/1mSiwpiSTkpJ+uVz5HEZ1OsJ44qZyWJW1XHT2Fxe/zmB+95fN5NHl86Yi7vAX8wLP8Jlyu5W4O8NlERsIKBPedOFpTT9/89Oafx5lYqSToSUtjdSpcLMdN+3dJ+xc+0lydMY8T2nKCoHgUy24IGnrZEhHEPj26PUPfP3UUr7TFoU8H2l9uU0qE5dDVqFWXXgw2EGa/cpvTwunt6vvP2DkpdN+BdpjMMV8Dh+7bjvm9VSqxxbVaRjfeMEqrf0onwbfKc3SPUQ/6JIPcS9+q3L82ntaJY0OUgQINsVQtDfEtqXT8c0/3hfpMckNSSmbJLj4LeX6/PM66XjUla2v3LtceVu/zmAm3iuCivMeCDh1/xRxPpqlQg4ffMFmTO9o7DRCbtIb60uUUDuW9WHf6ln42v1PTH62fGYHnrOl+TD4KBNSI4vnOVooy2v0TjMzBUDwCst6pgq6LgzrA6K7R2JdpFgkuxe4bsjjvrdk7yQmCtP1191vj2GPmeTGpaQy8rIq2YVsiiEh5L+VHrJJuGVxOX+N3uiBoGfFpTt47bxufOut+/DzJ45hRmcZ0wK8HMrSuNrv/NMG7UNrhSVuQRextTbFkMHj1z5WeSEw6tNdIMjaOKrnr3YredJlbhWOWqxgIZclradvZ6WotJ2r889PBEtnZFHUMblg7Wzlbf3Wm4tzBEGsDQQ++clbL1rtu4+ow3/triW4bvdS/PqpEzhjUS86ysGrnJOVqqQDGwgoE0qFHG584Zn4zI8exY9+fQirZnfh8jPmY0Zn8zk9o0xHtRYpbrGxqy+ueiMIDDSUGNy/q+c0qKgKB1amGBrzlLpQCCECV5QkUdzvYtJ7yq+nj0LYdS9l3OeDzIpkiqGA+9VuzIvo5nStp6kQAitnd4X4vdp3/uuTuNERI58TvvMsBxH0uutMTaFD9XyXNBsI1PKNAKMBFH+iGxYiE5JyryUlnBMuWj8Hb/v0TzA86lcxHVGAmh1bIYnWaeiNqoyQE8DbL16jtcC6bwOBTzRtxi3Oe6CtmEdXpYCjAyNNv1eauifi8OdzAov62rGoT33kbEsJS1fSgFMMUWaUC3k8b9sivP/KTbh+z7KWjQNAtJXDOhWarbZ0tVCmM+zddhR0929sBIEj1yaqYNhZg0B9keIk9wLXPXdxxzTMIsUqYT9r5Yypv/H9UdxnhEwyVSHbSnWR4mAHafYz2Z6CJkuv2Lus6ed/fvn6pp+7kt+YohqdKKJt5H60dIECNxBYyi+VRxAU/LesbWxQKS8HabdWbdCY29NWs6/oH7a0Pd+kJikdllxroPbTUS7gys3NZxKoFefICJVzKusIUS+qqNz5zgtx/Z7m5ZdW/NrO/fJPm3GL8x4QQuDy0+c3/e5D12xRmr4y6tCb7KyXrFQlHdhAQBQzrUWKW2zqauIZ9XQvqr0N1fbl6lkNKKLoxDnFkEDSFynWHOUSc1Rl57q3XW3odiud5QLaS1MHOfqdn7jPB+mTjvoysH9Zz7rqwoPB9tvsZ7J96VacTGx+yYZ5Db2suysFnLe6+ZRFJqfZc4E0PorbVb83EBYDd2TQtQL8ODfFkGJwlKYYqvlbbQ0C/XOh8puetiJ2rzjVaB1HX4QEPsJkQFLS7iT2z3nP5esxo1M+dVec8VI5dFEhY5noZxVFXFbN7kRPm/47gF9nMP98Pp0jCADgTy9Zg8tOn4fieGNQRymPA287T3kKp6jrNEw2FqauPiYB2EBA1EyEaZFOutfqBdXVxFNrdITlKCSt8tW0pPRAakZ1keJc1kYQxHyTDo2OtfzuzEXyYcV+Qf/AVRub/Ej+mwRfempC9f6WbSUf5SIiS+cnXpYqRbVi90SwNizowYdevAUb5veglM9hy+JpuPn6HZjX29b8dyl7BpSnGPLbT0T537POaN7Lb8K+Fg07YQVuILA0xZBqIVptDYJT+7KVxqvs9+0Xr55ynuPOfyk7knKnJW0EAVBNO1977grpNnG+V8gbyavf6Y0gcPcajfn0Bou1oSbm81Yu5LH/eWfgrndeiB+94wLc++6nY05PRfn30Y8giPiAZBTXICBqIsqE1MQIAlcrxnQKVUZ6+BnsPenoKQ0sqrKNjeN4GlMMJXkEga64oyqbpu2sFTNaflclD3y5mG/8hU98k9wIRo1M5GtF2RoEIvg90zyv8c9//ujC0/Ce//6p1rH2rpqJvatmYnTM860IDrJAq8uUFyn2SxuMlC/k3xdyAlduWSDd5lV7V+ALd/+u4fPX75NXUNkiez7CUD3fSmsQ1PytUqYMcq390oFtS6fjuVsXTflMFhTFIou2JD7DFF5SrntSwlnPL9y2nmcVKqfUpc54YfiNFverL1GdjjYIV+pZOsoFdLR+9Wop6utudASBsT2RKrbvEDURZUJqZIohIZSHmUWpoLW+gt2TrptZmeox4kphLKpg2DiO4hrFyAmR6F4L+o1Y8d5cq+d0obvS2M9gz8oZmNUt79niX9mv9pnOPilZlEcQSLbLS4beCxF8BEHT+1Oyr4n854U7Fis0njWPk9L8675bJIvq9fFLC01k5367+OdrNmPXcvm1XTevG8/bOnXO65WzOnHNriXhAheQytQUtf7wglVmj6/QQFF77cJ2AGhdhpb/bvvS6U1+E/3T5nfE63YvjSQcFC3ZdXel4hJwKyw6/B7lp44PRROQJlTeXVVO+8Q4bJdHefguUhxjQ47L501F1O+LZqcYMrYrUsQRBERNRJmQ6hSoZOG64dJ1uP93R/Cbp04aCJUZWhmE7VOe+REE0cTIxmGyskixrrgLTYV8DvufdwZe9rEfYGS868+8ngreccna0PsOcr9m58qniOWLJluENSdCpItNfqZSiVMp5nHTtVvxg18+hXseO4z3fuF+1d0rSfpLbD1ZbKZE1XcEQfjzItvF6/etwL7V/p00cjmB916xAeetmY3v//IpLJ/Zgaetm4Pedvkc2LaoLBJcSzV7Vd2r7hRDKtcxyKX2e250d2nrMfTb7yvP0VsUlJJBdt3zOYGx0Ri7uNdIavbjF+xVszsjCUczKqe02YjbehOvUS5fIv81CML9Poyk3tsTog6/2UWKE37yE4gNBEQxm+jFqJKvyRL4+b1t+NIbzsZ3f/F7XPeRH5gLYAhawx4thgMIskikoREEjmRs0dWbmz+Q8iLFQm2R4rVzu3Hfb4+EDJV5rtwrOs5dPQvffus+3P7TJ9BRzuPc1bPQXfFfnMx3NECzz2JcoIySSTY3b3WKoWB0n9Xa/KdUyGHXihk4c/G01g0EQdstUvYIqDb4BklP9LXei061RC5XHfHpwqjP6ZpzFaiP6lHbX0FziiGVEYJB8lHf8Go+WHFNSTKrS31OakoO+fSpAnopkD2JbaD2CffSGR0RBaSR9JyOf9XTVlR+r3H5Go21XtYMgH95wO4UQ+6eNxVRvx8ZbSBI9qlPpARPxkBkj6tztflt1VEuYN/q2ZjfYgHDqLk0H7xuSNLWET2qyudY1yCAWqHk2pimc/Dj0OOiZVZ3Bc/fvgiXnT5fqXEAUKnsb/KZ7z5P/f3+ZzdZ5JhSSXZfSKcYCrFIcdP7U9rdXXN7C5KYvEgXmZ7Ss9xnRwYin9T0Wea5ddMd+TE15dOEksIUQ1MXKbZzEUyPILCFjeBUz6n3LIfCokMW6medMT/WeKke+g/OXyn9fuItyuVL5D/FkN/vDQam4dgOnzgFUYc+6ecr69hAQNRE9Amp2nZJK3zpLVJsN276uzfU59CVS+ZKOAIYUyz15YTwLZQ8f/siXLlZvpBkXJy5VxzQrILJf92CUxucc9pMtJf8h11TvGzf8rI5znPCbMOpbF/N0iUbjbZpeylTXcfI71yaONfpOrNVup1JVM+j6m2oNsXQqb+V5uP273DbwO82S9ljRSniUmcml8KiQ/Z8n76oN7JwNKOa9ly4bg5ec+5yhf25e5HCr0GQ/kWKg4q+46u5fbl8z6YVGwiImog6MVI9XhIzKPUXfLsyP4IgZHzedtHqpp+/9twVU48T7jBNeTi1wJaMEP4jCN57xQZn1ylI4hRDQQWZ0cG3ErDm61ndFXzsum1YNL0dADCtvYgbnhl+bQRyj9/8zLIfmlykWKZZMOTHDhYw3VEMritIR4DU/B1BBW9aX1Lfc/l65W2Nr0FQ0JtiSHNNZWW+I9qS+PBQJtgsz7YpzG1fK6kN1LLnW5YHRUEn39myuHEx9Yb9hQmMZX59wfxOxajFIQRJz/+TvAYBRY9rEBA1EXWypjpE1HTvrSjkckJp3J/tMOtm7qbC48q1CBuM89fOxt/e/gAGhk9NElnMCzx9/Zypx4kxwjkhpC9LXeV0ZXlxzXNsgv9ogPC/2bJkOr7+lnNx8Ogg+jpKyOUEbrj1Pp1gUsLJeijnRPCGYN0phvTXwNEMkMJxkljJ6beGRLO/m+G7amsdZfVKQOUphhQ3VOlAUntP25pOxfRuE5w1U8LYrJRfMasTj/WfxO+PDymGxVpQrJKdQtkoRJXfhyXt42B4f67zu9dttQ+48h4fRtTlP5PpUgpOf+JwBAFRM64OxVJ+OQscFONMN34EpXtOktoTppWwFffLZ3biphdvxWmzuwAAy2Z24MYXbMb6+T1TjxPqKM15nnpluOx+c/2Suh4+k2zMGd6qcWhmV9nZUSNZZ7tBUTqHfc3/16U7BVazeNqIedruclkF8pQRBJxiKDCdso7pcpHulEGxrUGQ1otPiWezp24+J3D1tkXK2ye1l7XsFKpMg2aTqXfjiel3knqNgPjey9NQHxD1KxAXKU62dHWnJEoo5UWKE5hIujLMTLeQZSrUrvTaNBGKXStm4MtvPBsnh0bR1mJ+dyuLFCtuV51iSPa9G9eiFbdDF60gzw3PH9Ur+ixya3SRYukaBM2P33L/QQKFZJYRZAqKlTPRTDEUfh8u0skXTeehKiMIpjQQhCxPdlaav/b6rkGgeZyU3irkIJuvWPmcwJsuXIXOSgGfu+sxeJ6HSjGPu37T33T7pKaRsrw77gYCreursK0jr+RNvXLvcvzjHQ+1/D6usLt8zpRF/HDK8uobnrlWazR3UtOVJOMIAqImok6LVBM/5YYEh15P1BdgdiMcE1yvTNZlsgdEq8YBm1QaCfwWKXa9kJeyW05KZz0B2Wd1O6UMkl32vGT+4OoixQGPaXlEWvCGi3Q9BNIRBDoV2wbCIkuzkjzdm06+aLo8p1LhX3udVY4vhMC2Jc3n4r5u99Lm4TA8giDBtwMljM3ezXkhIITAK/cuxxffsAdf+oOz8cYLVsUSFqskwZZNcxcJQ4efTJMiuEZB88Nnnzlf+n1c5Zs0lKuijoEsrz5/7Wx0tWisb8alOq2sYAMBURNRZwaqvaJUQ+VSXqY6gsB2kHXPSerWIIgoHDYyck+xtCkgv9/cf3lxPXwGBeixGcU0IpQu0jnsIczm9ZJdNR1BYO7ISqa1FyM+YnjqaxDYH0LgfPYRkE6+aLoMqjSCoOZvpSmJADx368KGz7ctmY6lMzrUAla/z7RefEo8m+XaZu3rskfW9U44rciCXYp9BIGZ9HniNcrla7RydhfmdFdafs8RBMFFvkix5IALprXj5uu3K++L2W/02EBA1IRLCWmtJCaSsh6cU1iOm27lofuVyW6K87TlckI+57jj19Tx4MWOC5Gmj+17XloBKcLcM40/lO2q6RoE0qAFPzGbFvQ0fCYEcNWWxkpT1xUl5QfR4m+/bWkqrREEyh0+1LZT6UASZA2CZ29egPc/eyM2LujBnO4KnrNlAW56ydaWZQCuUUNJZXuKocbjJbkTTnOydwOVEQQ2Yy07p/XhVnnHiaIjTZjb4HnbWpdTuAZBcJGPIPBJmDYu6HWmAyk14hoERE2oVtibolpxqZqxu5SYKg9Jd2yRYlO3wJgjcw+koHzjS8Dv5SW6sJCcb4VegEVds3CPkx7Z/ME5EWYqH73tm6VL0jUIQtzLL961BH/47z+e8tllm+Zhekcp+E5jovwC6dt4yBEErdiYqkl1lyrXt/ba6TQoPGfrQjynyUiC5sdQ2ozIOTY7vjTPt6wdzkkqaxDYvAY6e+6WTNvSWa5+l+S0jg0EwUXdQS7qejQyiw0ERE38+eXr8eqbf9Tw+TM2zrVyPFfm6bfBlQWYbc8Z3crYmJHdhBbV9CtWFilWbGMRQj6CwPVCntuhM8uvsBrkUnGKoWyS3UvFgqwHugh8zzT7lSwc+mvg6G1f61lnLkAxn8O//+A3OHxyGOeeNguv27ci+A5jJO29WXOS2HgYnNYUFsqdWdQoVfjX/G2rcsv0GgREUVFtRDW1b50e7UkxKnlRK8a8BoFO+rxpQS9mdJbw5LGhKZ/P7alg1exO7f3FQVYmU52QwDS3z5iaqBuGVNKl0THF6YMdv2fTiA0ERE3sXjEDve1F9J8YnvL5JRtsNRCYrUR3KTF1pbeC7jkxFWzPkeXqHLolAlFpJBDC7+XFYIAscOm5jZtuBWz1ezthIXtsX7KS5OU+lwsegKaLaEu2j3oKk2dumodnbpoX6TFtkPXerD2jvmmDgbCkNX3WuTVNnwK1EQGntlFa1DhAOHwbmDT3qrpuElFYS2Z04NdPnbCy72a9gF2vYA5ieLT186oygsAqjdOdywm85twVeNet9035/LX7VpxKRyO4fGGSP9ntFde9l4ZbPuoOVEaX90rB+U8aNhAQNdHTVsQnrt+BN/3Hj/HT3x7BzK4yXnvuClxkrYFAbbskTjFkusdZ4HBY/0FzrrwnRnVP2KhEUW1kyYlkL1LsdujMCtLj178Sh7JIdt1LkhEEnmf2npGuKcCbMxD5mjI1f/vsx8T5T+sl1MkX1TuzqG2nMg2B7hoEQcogbHwm151z2kz8788OTvlMCOAF2xfh6w8cbPGrcJo1yLnS6cskWU/mQlzd1sf5LKPU4CW7l2JOdwX/ffdvkRMCl2yciwvXzanZn9sXsK2YjzsIDVKxRo2DIwjIXWwgIGph7bxufPENe3BkYBhd5YLdeR4NzbPrIldGPbSX9AodpgpRrjQQRFUotHEUz1NrJBAQkHX2cf35cT18JvnHtXEDv9+ktYcvBSfr/Tc65gVOF5s11ptcvJHTZVWZmt7BRNrgavISNlw6v1d951feTmlEwKltbM1r7BcMRy89Zcirz1mBAw//HgPDp6bDuXbXEszotLe2TLPnLY3lrOHR1lMMlQrxxjfI+b5ow9yWHRqjiE2YW+SKM+fjL77w04bPl87oiG00h+uNKiqijsHs7oqxfSX/7CcPGwiIfHRXitaPodwrS3WHDqWmUa9BsHFBD37yyOGGz6/ZuURrP6ZOYdYWKY6zHJUTZivpoqY9jYEj01cF4RfXpiMI2MszdWxXNpR8GghMLlIsH72kewDN7VMqL+m9WZuG+KWEZkYQtN5JnGlxIWRPPa1FihW3Vc1rVcI+ZaSIwm6DnI00VnpSumxbOh23vHIXPv2jR/HksUHsXTUTzzpzPu78Tb+1Y+abNNCmsWNw2BEENk+J6fMdxYCIMK+9MzrL2Ld6Fr52/xNTPr9y84KQoQouDfd8lFlcqZDDhvk9xvbH/Dl6bCAgcoD6IsVuTNejQ336JDOu2rKwoYFg57I+LJzerrUfY4sUO9NAENUIAhtTDKke3G+RYiPBoQgEquRxKuWjyEguu2yKoVHPM7pIsayy0/XGSVcVFacY8mMibXD1EoadAkNrDQLlfSpOMaRw8NpNbE1b4DuCwNFrT9myfn4P1tdVvNm8NXXXIEjq2hsjkgaCoqQMEQXT5doklJP/3/PPxA2fvxdfvf9xdFWKuHLzArz6nOWxhScNFdRRXvdNC3pQMThVVPLPfvKwgYDIAaovU0ms4Ix6BMGLdizG6OgYPvm93+D3x4dwzmkzccOl67T3Yyo8knIn6VA4jzkhn4KgtpD3nsvX408/e0/DNnH2UklBGVSZjemCsnT+SI20gSDUCILGHxYk0+Ho3s+8lasKPiNAVKV5DYKwIwjsrEGgtj/tRYo11yxQ5b/IdfPvF0xrwyOHTjZ8/uJdS/QDQRSAzcbnZs9nGhu7R2SLFMf84m16baMkXL62Uh5/deVGeJ7nROV8Eute6kW5lEZvu9lpz+obRck+NhAQOcD0PP0uZKiTYgjKtbuX4trdS0Ptw9w5zFYLgY1bT7VTkoCQzmlc+825q2ehrZjHyeHRKdtcstHOQuQ0ld9t0up7IVrfD2koxGeN7Utma4qhZmQ9uXlvBiOrQNZqIDARGEevoaxhSoXWSAzFbZVHEKhU+NfuV+lB0j8fQUcQPG/rQnzgtgemfDa9o4Sdy/u0w0AUhM3XvWbPsUuvl6aMjrVeg0Bl3nub58T0vp2qH/DhSliTMOrCT5RxMF3efelZ4epzSF+846aICID5HhkuZWXqcXMp1CbXIDC0o4SwcRU9xRmehZBXKNXeivN72/Dhl2zFovGpp/o6SviLK9bjnNNmhQxtcI6UhZ3Q6lzITpErLxPkDt8RBAZTLPn0ZpojCHgvA5AvUlzbQOA3tUWaT6dsnQYVOvem6hQ/qkHSH0Ggtl9dQZ+3V52zAldvWzgZj/m9bfj4S7ejXDA3vQKRjN0RBM0+S19iOixbgyBkA2xYsusbJGQpvHzWpeGcRVkGMpkmvWjHYu0poik8jiAgcoDpApdLL8Pq6yvYDYcuU8PxxthCEBm/RYpLdS/tO5b14etvORcHjw6ir6Ok2DvRHu1KiiTfWn49NltsIGRDCCiTZJX8st5/I4YXKZZVJOgmLY5lh7GRjcrQG0EQ/oy62otQ1oiiwsYUQybXIKjdlUrSH+SZ9h9B0HyDfE7gL5+1EW+/eA2ePDaEJX3tbNyj1MjKFEOyvERpBIHFvMH0nl3Nx1zGNF2PiTTi6m0LsWv5DI7qjwkbCIgcYDrzcakAoDxnreVw6DJ1DrPXPmD+Snqe2uJnwmeR4la9iWd2lQOHzSTXngGb/O6TYCMIgoeH0kk2gmBszAv8zDW7f2VzwfMFMxhZo4tsYcl6RtYgcPQShu1govNz1fUOVO93pQaCmr/HLDUOh63Q6KoU0VUpGgoNkTqbFfbN9i17ZJPad0O6BoFCA4FNpq9vGnrDRy3K+fttibIMauJQf/msjeF3QoGl4JYnSj7TGbarL7IyrlWgmLomapPjpEecl1EI+ZzG5ZgL+mSXSw2jpMZ2eiFbg6A6giBYAJr9TDbVi/4UQ7ohSidZhbRs3uh6JsoXrl6SsBVYOudGdZSdavlJt3FDaQSB1h7Hf+M7oo3ITTbzimbPp2vvaibI8pK4p1QyvwaB2f1lQRpGzUQZgzScr6xjbQkRWZXYwqShcCe1R41r1CoGhLSnR7Hg9r2ofcu5HR0p3wqZViMIJL9jzyiq57cGQdB7ptnPitI1CMLvP4tkUwxpjSAwEBZZWSbOfD7KEQQqiwpX92luBEEtlREEQYpuQUe0EcXNpREESSVbgyBuxmcYYGKmLQ0V3lE+t2lMI7KGDQREDjD9culSZqYaEndCXGUqPFlrILBxHT1PbRxGTsgrHGS9iV2QpR7wfjFtuQaB5JcOJXsUIdl1l/WuHjW8BkFeMh0O781gZFMMTVmk2Gc/RqYYCr8LK1Sn/WlFa5FixfUOlEcQaF4Ye1MMyb939doTRT2CwKX3S1NmdJTiDkJk0nf17EvDLR9lw1Aa04iscbu2hCgjTL/yJDFtdi3MOu/cq2Z3oq2Yb/i8VMhhy5JpBkPlPluFENXFCWUVDrLexC5w7RmwKfB9IvlZlhpY6BTZVZct4FrtgW7unpFV1OpPMcR7GTC4BoGBsLh6SWTnSIVWA4HqmlLWRhAoHDvA1fY7B3weyVU2e+tmpYHgedsWNf18x7LpajtI0ClJ4/WzLQ3nLMoYML9MPrdrS4gyQmUBVh0upc2qYXGtck8ngysX8njautkNn1+wZjYqTRoO0szOCAK1tRxyQkjnSC4V3L4W2ucuxaNTuEgxmSCbombMCzOCoPGHsmPpvjDxVq6SndNRrUWKw59R18ooE2RrX6jQOTWqFfr21iCwk+kx76DkinaKoTQ+K/N62/D0dXOmfCYE8OKdS5R+H9cpCZKvpWHB3ail4ZaP8rnlFEPJx2SCyAGmh0271NqtGhaHggxAL4MTAnjfszfi8tPnoa2YR7mQwzM2zsUHrtpkL4COsnEdPahP1SQdQeD4FENZYmMNAvZaSSK710x2S4yMjgU+erPfyXpy84UpGNUphvyk+fyftaKv5Xcv2b2k6ecbF/RM/q1TXlTd1t4aBP7bBFqDwHcEgf4+iaJgdwRBk+NJDqg2Gaib/u/VZ+B1+1Zgw/we7Fs9C//0ws24aMPcuINlXBQN3S/Y3nxERlK5VKcSnHtTDK2Z29308z0rZ5gMDgVQiDsARKT3oqvCpawsqfmqTiFKAKgU8/i7552BwZFReB4yN3LABTkh5GsQOD7FkFMPrmV+UQ3yEpOh00eKZPlPdZFic1NdydIe7ePwZgYAFBVHEPg2IKdgEYIX7liEjx/4dcPn10h6uT5ny0J8+Fu/bPj82l2nfqPTo1R9BIGdBgKVsnLQS50TrRsg+DiSq2x2jGjW4Ub2yCZ5zbVSIYc3XXga3nThaXEHRVmQK2/7nbyQE3jmpnl2DxKxpNZj1IoyDqrHum73Erz5lp80fP6Ks5cbDhHpcry2hCgbjBeqHMrN3AmJHq1TWLNxuZDPdOOAjd4pnqc2tYAQ8t5NZccbCFydwiIOracYan2OHEr2KEKy6y6rqBwNM8VQk/tQVpmd5h7sNskqkEfGxpT3k4Y1CF577kos6Wuf8tkfXbgKs7srLX+zZm43/uKK9VPuv2t2LsYVZ8yf/LfWGgSKN7LqLm1MMXTVloVa+5wgPQ9xX3yiFmzmLc3K0+noTZ1dtkfafvAFZ6Kvs2z1GFFLwz0fZRlU9R677PT5uHDt1OmZr962CLuWtx4VSdHgCAIiB5huH0hiZYRr+a9OeBwLerwsnQyVZyQnBBcpTgjfKYYC/C5Dpy81bN/zst2PjnmBG+WahVtW2am/BgHvZkC+8LPeGgThwyLbRRQdZ+f0VPDZ1+zG7T99Ao8eOoldK/qwdYn/Ipov2L4Yl2yYh7se6ceq2Z2Y29M25Xud8qLpEQSy69uMyiXfvTzY9ATMWyiJbOYVzUcQ8Gmol6RTYrN+4HX7VuDCurUc0iAN6zZEWaZUvcdKhRw++IIz8f1fHsJ9vz2CTQt6sHnxNE4X6wA2EBA5wPQaBE4lraprELgVaq1CMPOyU+ysQeApjbKpjiBo/X3a1iBI8Ghu+KVSQRYplo0eofSS5R2ydHxkLPgIgmbkaxDoHWjV7M6wwUkF2TM9MqrRQGCgfOHCS2tvewlXbl6g/bue9iL2rprZ9DudeKkmserb+W9Ye5X9ysqv27cicEeA6nlovn8HLj1RUzbvzeYjCOwdj+yz+a7dWU5ntWIaGsWiXaRY/WCFfA47l/dhJ0cNOCVdtSVECWW8gcChzEw1JKbPQVg6pzANhQdTbJwJz1Nb/EwkfASBY49AzJpfR1naxqeQ6smS5jDPW7PdFgJMMXT+mtkNnwkBPHdrsGlSsmTKGgQ+26ZgCQJrdOJlepFi2TPTjN8IgvXze+QbSLDik5LI5utHsxFDfN9xSIBLYXVKqpTeGy7VqQQVbQNBdMciO9yuLSHKCI2pdJW4lDirZkrDo4ZPQkhaIwgshoPUCcinQHC+gSDhYwJ0+E4xFGAEAbt5Jo/tK+b3Yhf0hVZ3iqFWx3n9eSvQVZna6+51565Ab3spULiyZERjiiETZaK0Ji86z4DqtqoVKirtA7V7UlmDIChZ3Fwb4Uo0wWalrO4UQ9kpwbrhjEXT9H9kMSlLax6ZhmhFmYeloUEl69I5FogoYUy/9Lj0MqMaEp2XfdcwLzzFRsHAg1pvX79Dp22KoSTzu0uC3EV8DEmX0UWKJVMMtTrOxgW9+OxrduPWHz+Gg0cHsXfVTFywtnFUATXSWoOAqUNLNhYpVm2QURlBoDPFUJirLPsty3jkqqhHEAgWoxvYzl+euWkebv3xY1M+K+QELj99nva+dEdt6UjrCAKXOl0G5ugUQ+QmNhAQOcB41bhDabNqhXGyRxA4dMJjZuVMeGp963NCoFzIt/x+9Zwuc2GyQTMhSPJd55cutPxe8jOWSZPHyNQvIfYRuIHA0AgCAFg+sxN/cP6qYAHJsI0LNKaTMTLFUDoTGL3pFFW3MzeCoJZfm1CYDgryEQREbrI6goBTDCmxfUredMEq/OCXT+G3hwcmP/uzS9ehq1LU3lelaLOBwNquY5WGez7KGKT1PsgSNhAQOcD0/PsuJc7KIwg0FhyMglZ5wKHzHTdb5SilEQQA2kp5bF0yDd//5aEp383oLGHHMi6ClBStbiPZ7RWmEJ+C8n8inbloGr54z+9iO37QSl/tNQjY6zKwy06fh8/d9VjD5zqL9Zp4vNOaRugs7m5y6iAgwBoEFkeayqKW1mtPyWfz1uQixW5YMqMDt77uLHzt/idw8Oggzl45Ext0GshryDpRhaWTlyRJGhoIooxDWu+DLOErC5EDTL/zuNTTTTVPGjG9EENIbB8Ixsa959X8f5mJAtA7L1mH7pp5vYt5gfdcvj51hRa3mtT0+E4x1GoAgaVenum6M5Lj1eesaPr5S89aGsnxTb4zFSRTDFFwr9u3ErO6ylM++6MLV6Gv89RnftM0ck7c1nSyRdVtVc93sznOZWxOMZS28gFlg820rdnz6dL7ZZbM6CzjOVsW4jXnrgjcOADYHUGQ1nw2DdGKMg5pOF9ZxxEERA5QWYPg6evmKO/PpcRZtTBpc17EILSmGHLofKeV0iCb8euwYUEPvvzGs3H7T5/A4PAozjltJlbMcnx6ISS7wl+X7yLFLdINW7080/pi47p187px6aZ5+HzN/Lpzeyq4dtcS5X2EuXSB6wSbHLQg2Zlj7d+JsmJWJz732t340j2/w++ODGDvypnYtWKG1j5sL1Jsce1c6+ysQRDPFENhSNcgYKUoOcpmu5busl1JTgezwuoIgpiTyT0rZ+AbDz5pfL9pGEEQ7RRDyT9fWZfqBgIhxLUAPqz5s3/1PO96w+EoAXgugKsBrAMwG8AhAL8A8GkAH/E8z3yKRomh8tLzsrOXKe/PqcRZMSjbl023Gw5NOqeQL4+n2Lj1PE/txaP2vp/b04YX7VhsPjAW8eXqlABLEIR6DuN+scmqXE7gb56zCXtWzsB3f/EUls7owBVnzMe83raIQmBuiiFZ5anpaQSzZm5PG16yO/ioEiNrXaQ0n9dbg0C1gUBtf9pTDPmOFNHa3RTSuKXz0lMK2Ozc0OyZkOVzi/varYWFzLC7BkG8CeU1O5fYaSBwq/9iIFF2guL7VPKluoHABUKI1QA+CeD0uq/mjP+3E8CbhRAv8TzvCxEHjxzhN4Lgxhecic2LpynvL4HtA1Z7NQShk5m6dL7TyBv/Pz9Jvwy97foLjiWVjcq2UCMIEn/3JFchn8NVWxbiqi0LA+4h+rUnmv2uKOluyQaCeJl4vtOaz9sYLWlrBIHfY2RrFFlKLz2lgN0RBI07LxVyTdf5ai/lcd6aWfYC47AkpQ8237V1p4wz7fw1s3DtriX4yLd/aXS/aXg/4AgC0pGlBoL7AXxVYbtvmzqgEGLB+DHnjX/kAfg6gIcAzARwPoA2ALMAfFYI8XTP875m6viUHH4jCNbNCz7fYBLc8My1cQehgdYaBMwLJ8W5SHHSe3lUinlrQ2RdE7xiVlKJE66FgBJq44IefPJ7wX4beIahJr+UjyAIeCAywswIgnTSeZlX3VZ1l6ZHEIQhn74urVefks5m5WWrPO1NF56Gl3z4+zg5PDr52R8/fbVzHb2oUblgcw0Ca7tWPL7Anz1zLXYsm45XfvxHBvdrbFfxiXQNgjScsGzLUgPBdz3Pe23Ex/wETjUO/ArAZZ7n/XjiSyHEDACfAnAegCKA/xBCLPc8rz/icFLMxnxqD3TTWpcSZ5Wg5HUnuoyAVq+61FYd6LOySLGnNj9/Gq7DXz5rA67+0AH85qmTAKovaKMt0geVtUuSKtgUQyGOF+K3FK9LN83DOz93D4ZHpz4PF62vrtszt6eC3x4eaPjd3lUzjeaVRckixRxBQK6y0QPZ9FREE/wXKbYzzRzzB3KVsPj61Oo53rGsD595zS584e7f4ejAMC5YM1t7XRiKh83F2F3oOS6EwLKZnUb36UK8wooyDpxiKPmy1EAQKSHExQD2jP9zCMAzPc+7u3Ybz/OeFEJcBuAnAJYBmA7gLQDeHmVYKX6mKw9cSpxVXtgcCu4krTUIXIxAinhQG0GQhuuwYFo7vvLGvfjhrw7h5NAoNizowfb3qgx+S5dWFbf2FikO/luKV0e5gHdeshbv+Ny9k5/N6CzjTReuAgC88YJVeMstP2n43XVnLQ2cVza7X/KS3tB+nQDILhMNQS51vDDJRrxUnyvdY/s+RrbWICBylM27VjYqbvWcbqye023x6MmR1rxBlyujuE1fDZfqVILiFEOkgw0E9rym5u+P1jcOTPA877gQ4p0APj7+0SuEEO/0PG/EegjJGX4vPdojCIIHxTiVAoOLeQkzuGDiPG1pKaRXinnsHu+NdWIonVmB36UKMhs01yDIrhftXIINC3pxx88Ooq+zhAvWzsbs7goA4LLT5+G2ex/H7T99fHL7521diD0rZuCRQycDHa/Z3VLgFEPOMvGCn9YUIs4RBLpsjpqThTklRQtKIZvvKnwPIh2u3C+mg+FKvMKIMgppaFDJOjYQWCCE6ER12qAJH/b5yX8C+EcAnaiOIjgbANciyBC/BVh1Kz5dqihVG0HgTngnaY0gcDD8MbFxJqpTDPlXDKSxUOLks2GAX7xaTjEk+VmYQjwf4eQ7fWEvTl/Y2/B5uZDHjS88E9/7xVO477EjOGNRL85cNA25nDC6SHGBUww5i4sUt2aj8sNWmehPn7EWf/Bvd7U+rpWjpvfaU/LZvDdlIwjoFJ6lqrS+C6chXlG+S6bhfGUdGwjs2AWgPP73cQDfl23sed6AEOI7AC4Y/2gf2ECQKb4jCDT3l7QynYt5id4aBDTBWsFAZYqhFF4JF5+NKER9LdPQQ4haK+Zz2L1ixuTInLCapXOyypRW64iQGX7tL0YWKZbsRKUB21U6aV93W1Fxn0FD06j22p69aqa5HdeRjXZNY9mC0sFm2cXB5eHIYa7UPZjuj+FKvMKIdgRBCk5YxmWpgaBXCHEVgHUAegAcAfAYgO8AuNszO251Tc3fdytOF/QjnGogWCPbkNLH7/bTT2vdSZxVwu5OaE/RCRPzwlOsjCBQrH7hdUgO3ymGWo0gkP4mxAiCwL8kqirI1iDgCIJY8fluTTXZ3LZ0OjrLaq+NtioIpneUsLivHb/6/Ymm34fJAzjFENFUrOgjHa7cL6ZLW67EKwxOMUQ6stRAcNn4f808KIT4KwA3GWooOK3m718p/ubXNX+vNhAGShD/EQS6UwyFCAwB0MvgeLpPsXLveWpzD6exUJKGgmkzQdcgkC5SHDg0YX9MJJ9iaHQswoBQg5Qmo0ao5DEzOkt4z+XrNfYZJkRT1Qdv8+JprRsIQhwnrXktpZvdEQR8JkhdWm+XNGQNUU77w7w0+Th4rGolgH8B8HkhRIeB/fXV/P14y62m+l3N39MNhAGVSgWdnZ0AgNHRUfT3909Wsh05cgRDQ0MAgJMnT+L48eMAgJGREfT390/u4/DhwxgeHgYAnDhxAidOVAvlw8PDOHz48OR2/f39GBmpDpQ4fvw4Tp6sLvw3NDSEI0eOAKhW8PX392N0dBQAcOzYMQwMDAAABgcHcfToUQDA2NgY+vv7MTZWfaM+evQoBgcHAQADAwM4duxY6uJU9qrhzmEMnWIQE+3f7RhCAaMQQi9OhbHq/vIYRYcYnNyuUwwij2oYKhhGCdX4FTCKdgyNb+WhUwwiN75dW812Qa6TGN9ffZwAoIQRVDAMIdy7TkIItGEIxZqwtmG46XUqjA4k5t6Txcnk82T63vNGh9E2vt3EPSXGz/+pOInUpRFCyO+9JMYJAIYGB1rGqR1DGB5uHqd279Q91SEGkR+/l8sYxujQoG+cnrFmWtN7792XrmP+lNE4+eVPAJCfvEerxgaPN8SpkBMt070xz+N1shin/Ohg0+t0Ko0QRuIky5+Sep0OH+5vGqciRtGGIeRzAl96wx7MKo8qlSOqeTO04lSflpcnn7tRjA0cnxInMSYvRwS998pjgy3jNHjiaOzXqTZOza5Tszi5fu8x3QsfJyFk6V7j86RTLs8Lweuk8P4kDL8/2Y5T8/cn+buGStlICOHEdTpx/JixOAFAYeRk7HEK+zyJsVEraUTV1LLR2NDJzKYRpuMUlyw0EPwawP8BcDGAhQAqADpQ7eX/agD312x7CYBPCCHCnpfOmr9PKv6mdrvOlltp2LFjB6688koAwMGDB7F///7Jm/amm27CfffdBwC44447cOuttwIAHnnkEezfv39yHzfeeCMeeughAMBtt92G2267DQDw0EMP4cYbb5zcbv/+/XjkkUcAALfeeivuuOMOAMB9992Hm266CUD1gdq/fz8OHjwIALjllltw4MABAMCdd96Jm2++GUD1odm/f//kQ3rzzTfjzjvvBAAcOHAAt9xyS+ridHaxGp5eMYCrKnejNJ5oX1y+H0vyhyCEXpy6f/9TAMD83BFcVr5vcrurKndjZq6aWO0q/QqnFx8DACzJH8LF5eqjUMIorqrcjV5RTQj3lh7C2sLjga9TefhY0zgBwOnFx7Cr9CsICOeukwBwQflBrMw/CQBYW3gce0vNr9Oc3x1IzL0ni5OJ5+krX/kKALP3ngegfPjXuKD8IACgQwzhqsrd6BBDU+KUE+lLI0ST61R77yUxTgDwwN13tozTxeX78fCDP2sap3NGfjAZ1svK92F+rrrvrcVH8Mg9B3zjtHLwgYZ7r6tcwI7F3cyfMhin/qee9M2fAGBmrpqPTTj0g/9uiFM+J1qme57n8TpZjNOs/nubXqeJNCInzMSpVdlo7OAvEnudPvgPf980TivzT+KC8oO4dNM8FEYHlMsRV1Xuhhgb0YpTfVq+tVgN9/zcEQzd8+UpcSoOPAWgeTlCiOD33obBu1vG6adf+bfYr1NtnJpdp2Zxcv3eY7oXPk45IVqme0Dj86RTLs/lBK+TQrrXLU4mKk7N3p/q4zSRlj/ttD7sWTkDz6jcj53TT2LBtLaWZaOcEE5cpzu+8Bmld3fV8t7039wRe5zCPk+5k09ZSSOAxnf3p+79RmbTCNNxioswO/W+W4QQvQCOeJ7XcnC3EKIE4B8BvKTm4xd5nvfxEMf9KqoLDQPAn3ue906F3+wD8NXxf456nhd4+ichxDoA91QqFRQKBRw4cACrV6/G0aNH0dPTAyEEjhw5gkqlglKphJMnT2JsbAwdHR0YGRnBsWPH0NvbC6DaGtfe3o5isTjZEtfe3o7h4WGcOHECPT09AKqtcZ2dnSgUCjh+/DhyuRza2towNDSEgYEBdHd3j/dUOoyuri7k83kcO3YMhUIBlUoFg4ODGBoaQldXF8bGxnDkyBF0d3cjl8vh6NGjKJVKKJfLGBgYwMjICDo7OzE6OpqaOJ1xw5dwEkXkMIZ2MYxjXgmAQDuGMIQ8vvMnT0NnYUw5Tn/0Hz/GF376FPIYRUWM4LhXXTO7UwzipFfEKHKoYBhjEBhCAQWMooRRnEAJ1ZbgIZzwihhDDm0Yxuj4dj971/na1+namw7gBw8+1hCnEeRRwghy8PDuKzfjWafPdeo6vfmWu/GFHz2MEeQxPB7WPLym1+lpK7vw9y/a4fy9t+ztX0QbhlrG6Udv3WPkeVr77v8xeu+9eM9KPH7oGL5yz6M4iRIEPHSIIRz3SvAgJuP0wWu2Y8+ynlSlEYViCWve/vmm997L9izD6/YsSFycyuUy7vn1QVz1wW+1TPduf8v5mDe9qyFOF77/y3i4Wg5DhxjEgFfAKPIoYxh/feUmXLplqW+cPn7g1/jgN3+D4ycHsGJ6Ge+7ejs2Lehh/pTBOP3y4FFc8jdfkeZPAygijzG0iWEcG0/P3nzuQrx835opcapU2rDy7bc2Tff+5nln4vyVvbxOluL0io99D1//xbGG6zSRRvzjNduxe0lX6DhtePtnmpaN/uWFm7B9cU8ir9OhQ/3Y8v5vNsSpiFEUMIqLzrtPxf8AAGBPSURBVFiKD1y1Ubkc0S6G8dxdp+Edz1ynFKc//Le78OW7Hp6SlgPAIIrIYxTX75iPt12+eTJO773tYfz7j37btBzxTy89C2etmBHo3nvGB27DA08ONI3T+y9dhWfvXOXE87T8T77U9DqdRAkPv/eiRN17TPfCx6mtrR0r3/5fTdO9Zs+TTrn8o6/ciy2Lp/E6jcdpzVs/0zTd66nkcMcf7ExMnDb+yWcb3p9apeXP230a/vSSdejvP4z29jb83dcexr/878+alo3+9cVbsGVeJfbrdNdDv8VVH/p+0zi9Zd9ivP9/fo0xT728d/naXvz11dsSm0Z0dHTgHZ/+MT7z/YeMpxHN3t3/9MKleOGuZZlMI0zF6dFHH8X69VOmdVzved69iEiq1yDwPK9fYZshIcT1AFYA2DP+8R8DCNxAAGCg5u+S4m/KNX+rjjqQB2LgVDDy+fzkAwQA3d3dk3+3tbVN/l0oFKZsN/EwAdWHbEKxWJzyXe1vOjpOzdJUKpVQKlVPgRBiynYT0x8BQLlcRrlcPQW5XG7Kdl1dXZN/VyqVVMbpJIoAgDHkJhNvAOMJb3X+O504iUJ1H6PI47iXn/yudt8D48cEgJHxDLJKTNnuZM12Qa4TRPM4AcDQeBIkFOI0IarrJARwsklYgcbrNFponzyW6/eeLE6mnichgFHP7L03litMht1r2K76eU6kL40YG/Ok914S4wQApbI83Su3eJ4GRAUTWezxmt8MoojS+LX3i9MrzluD689djaeOD2FmV7npdsyfshMnv/wJAEbr7tFCpQPFYrEhTpuXzMT3fvnU5L+PeWWUCzk8bd0cVIqn0kNeJ7NxGs2XARxruE4TaYQwFKdzNy7FrT+u9qCbSL9624s4d+38yfm6k3adpk3rxdj4gPLaPHd4vNIIQq8cccwrI5/PKcfpVecsx6fvfHTyu8GaMIwiD1E+Ffbe3l6IXPV4zcoRAiLwvTeSr2B4vKKkPk6Vzq7JOZxdeJ6aXqcmcXL93mO6Fz5Onue1TPeAxudJp1yeE8GfpzRep1bpnmfw/SmKODV7f6qP00RaPpHu9fb2NN2u9t7LCeHEdWrr6JxME+vjtGjuTAjxCOB5yuU9lNqblveSkkYAgKgr65pKI8b3PmW7YqV9MoxZSyNMxenRR0+VieKQhSmGfI2PMHhXzUfrhRALQuzyWM3fbS23mqp2u2Mtt6JM0l7uxaH1YVQWq4ly8RxVWosUuxf8WJk+HZ43MWOkz3FTeB1kcUryAEC/S9UqTZCnFeo3QD4npjQOUDYFTTNa/e4Pzl+JcmFq0foPL1g1pXGAomcqb3jnJWuxctapF8W2Yh43vmBzohfztFH+0tnlytld+Nxrditvn5O8uYaJiuy3wqVCNVENm+9PSU7XbCjlmyc+V25eGHFIwrn89HnK29bfX9J00pHbxfN5Y9QNZhoW3Y0yBkw2ki/VIwg0fR3AMDDZPLYGwCMB9/X7mr9nK/5mTs3fT7XcijJJtwDoUtqsEhaXwjtB54XQxfA387p9K/D3X/t53MEI5K5f9/tu42JDU1hpjBPg/yIRJNYslFLcdq2Ygf981S7c+pPHcHRgBOevmYV9q1WLgRSUX2OpqWR0ZlcZ//36Pbjz14dw6MQwdi7rQ0970f+HCRakcly3QmVxX7v/RpPsJPRpzWsp/XICGLPQYaTAQtUUb7xgFf7qS/c3fP787YtiCE1wz9++GJ+96zGlbevvAFl+4EpFuqw8IKBfHkhD3hBlHNJwvrKODQTjPM8bFkI8CWDu+EczQuzuZzV/L1b8TW3u0pj7UKrN6CzjyWODLb93obX77RevDvQ7laC4mJfIeqnVczH8zbzqnOWRNBAIIYx2b//iPb/Do/3+M68l5DIQAL+r1eqZkvde4h1AeoLeM7KX5PXze7B+fk/L7yl6JnuAlwo5bF/WZ2x/rgvyiOjWK2p1yJD29A9OFmZmLeQy02XuCa5U+LriJbuX4NsPPYlvPPjk5Gd/+ow1WFEzqiwJti2djo5SHseHRrV/K7slknC/BAliAqLlK8o4JOE+IDk2EEzVUfP38RD7+WnN3xuEEAXP80Z8fnNmi99TBtxw6Vq89hN3tvxev7U7ZIDqzOmu4Jmb1IckTqUyxVDAXVulM4LAyQg0aC9Fk+SbPhsqjQMACyVp0uqZslU5RKSDSU2y8HrJma5f1M6LZVPp1U0XYetSMm+hpMoJQL+q1x+nGJqqUszjw9duxY8f6cdDTxzH1qXTsXRGh/8PHfSys5fh725/0H9DjVtAp2NdnKrvF+oZXhoegyjrKdJwvrKODQTjhBDLAHTXfKQ29qq5bwMYRHXh4Q4AWwAckBy7DGBHzUdfC3FsSqA9K2dKv9dN2E2mzfmcwL+9Ygfm9qgup6HPxQp2rkEQXFzng9chOQLP/S5JK3j9iagZji6Sk1WXBDlzuudbp7wlbXwIcZll++XtQy7TrfBUxQaCRoV8DpsXT8fmxdPjDkooNt67E9NJSzOYiYmXBEcQkI6EtPVF4rqavw8DuCvojjzPOwbgqzUfXevzk2cBmFj2+ilU10OgDOlpK2Lf6lmtN4gxM3vP5euxuC94D4mkTjGkEyYXwx+nuBp8WChJDt8rFWhaC15/0hP0jmGFc7LwasmZvp+1pxiSVc7XXT1biwnLzwHvIHKXreyIDQTppXrP1KepspFmrpTBTc+2lYbyXpQxSMHpyrzUNhAIIZQnhBNC7ALwppqPPqUwJZCfD9b8fa0QYl2LY7cDeHfNR/9s4NiUQPN7W/fQ105sHUqcHQqKFp2CjosjILIorVdhZle56edXbVkYcUiiE2QNgtTeAOQc3mpuiWqR4iwKtgaBuREEUU0xxLpQSipbFbNcpDi9VK9s/a1Vnx7XcuV2kYUxyBu7K/EKgyMISEdqGwgAXCmE+J4Q4hohRNPV4oQQFSHE6wHcDqAy/nE/gHe12H6JEMKr+e/aVgf3PO+/AXxj/J9lAP8lhNhYt78+AJ8FsGL8o6cA/JVK5Ch9pAukae7LZIV12D0lNZ/QCXZS42hNbFMMpfNCPOvM+Q2fLZ/ZgVWzk7UwWi2/a9XqW7YPkEmdFc60mQVsxJeTp6v6587mIsXS/YTYjfQc8PYhh9nq6c8RBOkVNE0bk9S9J+EdTAj9uKehwjvKOCRlLQpqLe1vRlsBfBTAiBDifgD3AzgEIA9gPoCdmLruwEkAl3me91tDx38+gO8BmAtgCYC7hBB3AHgIwEwA5wNoH992BMBzPM/rN3RsShjpEGuL87n6CZunqGRKLhYqdMLkYvjjFNfZSOtlePOFp+HQ8SF89s7HMDQ6ho0LenDjCzcn+r7zC3mruJlMJ4m6K0WcsagXd/66f8rnhZzAiORNmLdasvB6yZk+P7ppsc60QfLpiIKTrkEQYr9Ettmqx+cIgvRSTaPrt5JPMRQ8PCb5jijUTNFdiVcoHEFAGtLeQDChAGD9+H+tfA/AtZ7n/dTUQT3Pe0QIsQ/AJwGcjurjec74f7UOAniJ53lfBWWWyZcTk2lz2J5dSmsQhDqCHVprENgLRiLFtkhxPIe1rpDP4f1XbsK7Ll2PY4MjLaccShK/e4QjCCgqf/bMdXjRv34XRweqszsW8wLvvWID3nzLT1r+hvdasvB6BRfFFEOyzeXTRZgjX6SYdxC5iyMIyBa9KYbcv18E9PO0NKT/UY6iTMP5yro0NxB8EsADAHYB2AFgOYAZAPpQnVrpMIBfADgA4BbP875pIxCe590vhNgO4HkArgawDsBsVKcyehjApwF82PO8J20cn5JDlp5qv2yZzAgiSOddzEt0zqGL4Y9TbIsUp/xlpq2UR1spH3cwIhFFpRQRAJy+sBdffMMefO3+J3ByaBT7Vs/C7J6KvIGA95pToqpETqtqnt38HAZLi4McP7wwz6V8FAORu/KW5vQocK6Q1AqcVCZgkeKetmLL72Z0lXHd7qX4h//5ufL+HIlWKNGuQRDdsciO1DYQeJ43CODb4/+Z2ucvEaCc6HneEICPjf9H1JTJ+U9dysxUXvxcnB9YJ4NzL/TZxOuQHH7PfMvvZZU4vAEooAXT2nHNziWT/z4+OCLdnvdasrD5wIfh+9nkIsX1bD170gYCPu/ksLylevx8njd+Wqm+d9dvNyaZv8eVdHLh9HYsm9mBhw8en/L5zK4yzljYi76OklYDgSsNH2FEGYM0nK+sY9MwkSNM9n422bsx9J5UphhyMC/RmmLIxQjEKLYphngdEsN3iiH99gE2EJExfi84vNcoTUzf7TancJBVbIUpArBSg5Iqb+ne5RoE6aV6yzRMMZSAEQQA8MdPXz3l/hUCeNtFqyGEwOK+Dizpa5f8eqo0PAYcQUA62EBA5AiTvZeMrkEQcmcqv3YxL9F7YU2Ov7ii+VIsrz5nubFjxHU+HCqbkiXS55LXnwxhWkIUnP60mGaE2Y8szC5VfBHVszW9JtcgSC8LMwzBpRmpnrZuDv7jlTvx8rOX4brdS/FvL9+JZ525YPL7525dpLyvNKT/UcaBnfWSL7VTDBEljXyR4nhetkzsSyWjcDEv0QqSg+Fv5bzVs/GB9p/h0Inhyc8qxRwu2TjP2DHiKhykoRBHVVyDgOLkey/xXqMUMT29jvYaBA5MMSRTLjhU80VUx1ZPf1sjEyh+yiMI6v4tm2LItTL4GYum4YxF00LvJw0V3pxiiHSwxEPkCFn5TjetTV7i7GB4tdYgcDD8LczpqeATL9uBs1bMQGe5gK1LpuGma7di7bxuY8eIbQRBTMclfb71ry2upieb/zRMgIhq+NW38F5zi2zaA/InnbYnwP50ezSbGrEZpug7MjbW8rtyka/L5C5bIwhs7Zfip/zeWpeoyqcYChEgh6UiXlGOIIjsSGQLRxAQOUI+gkCP2SmGQv4+gmPYoFPp72L4ZdbM7cbHr98Oz/Ps9IyI6Xwkr2GMWglyKdPQy4fc4LsGAW81ShHT97PNtNjWrodHW9d8lQt5OwclMoA9/UmXlVe/BN2HOkFNw7tlpCMI2J6eeLyERI6QZay6ma7RKYZC7kyl5d3FrFenx4CL4VeRpMKcipRFJ9X87r0gl5LXn0wJOsKFKG2imGJIZk53RWPr4AceGpGMIOAUQ+QwrhVAulRH3SV5iiFT0hCtKOPA8nHyscRD5AjpsGndfRnMCcIm9GprELiXmbg+J67LuEgx+fG7VK3SBNk7DS8/mSKEMD4vO8WHUxDJycuf+jd7kIqirUsa54rO58SUhSUBv8402oedJGsgqBQ5goDcxQYC0jUaMFOUNxAEDU30dILqYh2Frkgr7ZN/ujKPDQREjti6ZHrL73TzpqRNMeQirSmGEhtLO+IqTPE6JId/D+0WZPOfJunthJyX1t5wacT6/3BM59lBkuJXnbO8YbHVa3ctQU9bccpntp7K4VGOIKBk8msgYNGI6skq+mvVZw3yNQjSeaOl4fmJMg4pOF2ZxzUIiByxc3kfpneU8NTxoSmfn79mdoAphpKVPLsYWo4gCC6u88F5D9NP9lLDeXjJpLwQGG1R9cw7jdLE9MK/QRoc9q2ejY9fvx2f+dGjOHRiCPtWz8Jzty7UO672UU8ZkjYQcAQBucuvYvbKzQvw7z94JKLQUBKMjSk2ENSlqrJfJamTTubWIIgwCmk4X1nHBgIiR+RzAn9/9Rl46Ue/j4Hh6ovKwulteNdl67T35VQerbIGgUvhHac3/NBaMBIptimGWG2XGH7XqtUzJRsWzWH2ZBKnGEoPXq9oBa0g2LGsDzuW9ck3kj6XwS+0dARBkb0PyF2yss95q2fh6evnsIGAppAkd1LyEQTB9um6NLxbRDmyn+Wt5GMDAZFDdq+YgW+8ZR++/dCT6K4UsX3ZdLSX9B9Ts1MMhVyDQKHS1snMRCtQLkYge5y8j6gp3ymGWmwwJnmpSUMhntwhq+RkY2SycA0CH7JK9wC7s5kU23r2ZGsQlPJsICB3yco+V25ekIo51Mks1TUIGqcYSscixTr5SP3UdySXpPuAmmMDAZFjZnaVcdnp80Ptw+wixSF/rzKCwMHKFo4gCC6ulxGW4dJPOsUQbwAySHo78VajFJFPMRTNIsUmhDnq8Kik4ot5CzlMNr1iLufiGxbFTX2Koalk7QppfRdOw7tFkLUsg3asSP7ZInaJIEohlzJppaA4FN4JWmsQ2AtGIgU5H8tmdsR0ZIpD0Cs1KnmpYa8VMon3U4JwhIBTbD46tvYtG0FA5DJZBWZeCOZl1EB1BEE9T5LZpvU+S0UDgeZbV5hryRFLyccGAqIU0skIXrJ7Cd5xydrW+wqZzquNIHCPzjlkXjhVkPNxyYa5WDCtLdRxU1CGy46A10rW6YnDgMkk6RoE0QWDyDrTL/Q2K4pML6g8QbZIMZHLZCNc8jk2EFAj2WjcWo1TDLXeNkn3mU5Q0/BuoT2CIMJjkXvYQECUQqqJ8/+5ahP+7Jnr0FVuPdtY2MGpamsQuJeb6I0gcC/88dI/H0IIbFk8LdxRHbyPyCzZ/Kdp6OVD7pBVujCtoTQxvSB3fFMM8bmk7JFVYOZyghV21EB5iqG6m0f2s7QWwdMwxZxuFMLk4UlqKKLm2EBAlELaeZnhl0Pd37uYlXANgmjlhAhd6ZaCMlxmBK3IkQ2LTkMhntwhX6SYKD1M389WFynmw0c0hSyvygs2m1GjoAOmZFMMpbXjRCpGEGimAk9bPyf4sZJ/ujKPDQREKaSaEUwk4jbXYlRqIHAwM9GpbHQw+LEKcj3zOQP3Gq9EYgR95mVrEKShEE/ukN1OLuZZWSartKBwguSrNiuKZOHhc0lZlJfU5uRy4EsKNVCdYqhBBkcQ5HPJry7VzRuv270k8LHSeh9kSet5RYgosVQzgskGAqtvVQpTDCW89JrWXhNBBTkbJs4hL0NyBL1UaZn/lNwnS5N4qyULGxDkzK9BYHR3U/DZI5pK9g6VF4KpHzWQdbap1bAGgWTbtJbBZQ1wafS6fSuwanZXiD2k8z7IEjYQEKWQ6sveRKHS1qJvJn4fl6SG2wWB5yzO6L1G6mS9nrgGAZmUZ4JCGWG6DJjWiiKipMnnhHJlMGWHbLpOGVkZPK3pfjpGEMivzTsuWYuhkTFsWzodZy7qxcnh0cDH4qtY8rGBgCiFtJcgkP7AfkrvYplCZ1SDi+GPU5ARISYKFGktnKZR0B6rshddNhCQSdIphthDilJEukhxgP3ZrE+x2aGFKIlk930uJ6QLy1I2KS9SXJfiytoVkpT+6ryDpGH6Ur8YPH39HMzvbTNyLL6LJ1/ym8SIqIH+FEPh99Xy94a2iZpOvFlZFF5OiNDnkWWS5LAxxRAbCMgkTjGUHEGnUyY7rE67yIePSFleCD4y1CDoqJIsTjGUhnj5vR7Vfx/mfTwFpyvz2EBAlEK6CbvNCm6ljMLBzEQnSMwMpwpyPoQIfx7TUIgjOdmwaE4JQyalYFQ5kSKzjWFx5cVhyrJnLupt+nlfRynwPonils+xCxM1Up1iqGENAukUQ2FCFC2doKZiBIFPnlyfSoTJwvkunnx8/SFKIdW8bCLDMD28fGpYkrlIsd4IAqoVaEoCE4sUh94DRSXo5eYUQxQVWZrEhekpTXRu57981gbfbawuUiz7LsRxX372sqafv+3iNcF3ShSzHEcQUBOqo+7qbx3Z79JaMZzPJz9efpeGr09Uiw0ERClkMo8OWxGiNIDAwYyJaxAEF+SeKeTDNxOx0i45bDQKsoGATJI2EEQYDgpvSV9H3EFIrPp89fw1szG3pyL9jc2KIlu7Pm/NbDxt3ewpn+1ZOQPP2DDXzgGJDJE9E/mcYNmYGsgWGw76u7TeZmkYnewbg/ophjiCINO4SDFRCqkWBqOY/UclLC5mJTr5GzPD8IyMIOBlyDS2D5BJTE/S4bTZXVg4vT3uYDhN2iu/7t8zu8r41Mt34Mp//A4OHh1s+pu41oQI88wW8zn8/dVn4n9/9gR+/Eg/1s3rwb7Vs1Ap5s0FkChi+Zyb71gUL9U1CBqnGJJtm5w7TSeoaZhiyC/CJusxEnQbUAtsICBKIf1FiuNNzeM+fmgJD75pQS5ntZdTyOOG+zlFycLFSnw6Qk6RTzEUYUDIl6yq4/88Z1Nk4Ugq3ft5cV8HPnTNFlz+/77V9PvBkVEDoWrO5pSUpUIOF66bgwvXzbF2DKIoVacYYoZFU6mOIKhPb4OOPEiyNIxO9otB/fdh8ll2mkw+TjFElEKqCfvEdrbmdFXlYl6iU6B2cQ2FpKkupBbuPLJQkhy8VOQ62Tsh0/zkWD+/J+4gOE96P7f4qk3Ss/7EkL0GAhk+l0RTcZFiakZ1BEG9tDQP6DwTaWgg8Hs/rv8+zDsa3++Sjw0ERCmkmzhLFykO26tb4fcu5iU6YWJmOFWgEQScYihTeKnIdRxBQNS60l3WQHBy2OIIAovlVaIkkjUBcJFiambBNLVp93SmGEqrNDQQ+KUB9d+HiXHyzxaxgYAohVTzsskphiTJedi+Jyq/d7HwqlMecDD4sQpyzxiZYsjFG4mIEomLFCfH0zklTChBss5KqfUrZNDeqSr47BGpMzE6l9LnxTuXBPxl9loIUtFA4Pc91yCgGmwgIEoh9SmGxv9XZ4U63bAo/d693ERriiH3gh+r2NYg4HVIDDbmkOtykhIyb1+3PHvzgqaN+teftTT6wCRQkGkmZ3SU0ddRavrdeatnhQ+UZngAF0uSRPEyUbam9FnU145nbJyr/TuLbb/OSkUDgU8U6qMY5h2N73fJxwYCohTSXqTYXlAS+8Kmk7+xd85UQc6GiQIY1yBIDl4pch3Tk+SY3lHC+6/cNCXfPn1hL15//sr4ApUgQV7oczmBS5pUMG1bMh2zuismgtUUKx+I6kgeCeZj1MrfPfd0vPlpp0m3qU9vvZTMMaSTjxRkvUUSwq+eov58cIqhbCvEHQAiMk/3BcpmjyylNQgczE24BkG0qi8xYaezIiIyQ56PMrVxzZWbF2DHsuk48PBTmN/bhjMX96JcaD1PPqmR3el/8oy1ODk8is//+DEMj3rYtbwP//d5Z0QWtnosixFNlRNsJKDmivkcXnPuCvzLNx7GoRPDTbepv3PS0TygJ5/89gHfImvjCILgh2J6k3xsICBKIY3JcXx/Eba3lsrvncxKdKYYshiMJApyzxQ4giBTeKnIdbIkifevmxZMa8eVm9UWXyQ1snu9VMjh/Vduwnsu34DBkVF0VYrRBawpPphEtTjFEPnRGcGdkgEEWs9EPgUjCPzej+tHGISbYijwT8kRbCAgSiHtKYZsjiBQCod7uYlWiBwMf5yCTjHENQiyg9Nykeu4SDFlRdi8s1TIoVSIphKF+TyRulzAsvXOZX3mA0NOkr2D1381lpYWAg0mOrDFzX+RYnPHYme95Et+kxgRNVBNnP3HD4S3fn6PcjhcorcGAU0R4ITkcuGrjFkmISJT5CMImNhQNiSpMZePJWWR7LbPCxHoGX7deSuCB4gSJc/OEFK5NDQQ+ETBZN5ZLrJ6Oel4BYlSSDeh1+k9oOvCdbPRVpTPA+ziS51OgdrF8Mcp0AgCAycxSRUZWcdnhlwnzRcjDAeRbdJRpAm62RMUVKJIBBmd+6wz5mP7Uo4gyIpMTjGksW0qRhD4rkFgJo7LZnZgVlfFyL4oPmwgIEoh1WRebX2AcJlGuZDHX1yx3uoxbNAbQeBe+JPGxBRDKSjDEZEjTDRaEiWBrAzj2lPA8haRupzQf2L++qpNWpXGlGyyKfbr6wm8DC5TnIZnwS8VMNVA8Kq9y43sh+LFNQiIUkh1+gOVKYZM5BnPOnMBPvLtX+Injxy2dgzTdILkYvjjFGT6jXwu2DDosMelePBSkevkL83RhYPItiTdz/LRDgmKCFEEgnS+SUOFKKnT6QwxNmYxIFHSiHMaOov4TjEUcL+vOHsZHjp4HJViDpedPh8XrJ0dcE/kEjYQEKWQS4sUTzhtdlfLBgIXcQ2C4IItUhzPcYmImpEuUszEhrLCsZvdrdAQxU/WMFat6+dTQ63plHU2LuzBdx7+veUQ2bd35UzlbfP55D8/fo3nQbP5KzcvwMrZXcF+TM7iFENEKaTbEzuK9z/ZoETH3j8B6PVEczH8cQpyPvK5XOjzyOuQHJwmglwnX4OA9y+lh3QUaWShCC9JYSWKghCC02+SlGwR3vpvrtm5pOl2V21eYC5AEVjU1461c7uVtk3FGgR+3/MFmmqwgYAohbRHEMiyjgjyDBcrW/SmGHIv/HEKcj2NLFLM65AYvFTkOuk7Ie9fShFpY5hj93paFlQmMoWVfxSGzvvX/N42vGzP0imfzewq45XnJG/u+X++ZjNWzOr03c7U/PxxkkUhTPtHCk4NNcEphohSSDWxn6zIlbYP2E/9XcxgWKCOVi4Xrs4tBR08iMghaeg1RqRC3hbm1nPgWniIXMcnhmRkIwiavaC//eI12LpkOr718ycxr7cNl2yah/m9bRZDaMeCae34yhvPxi+ePI4//Pcf467f9DfdLg1lQVm+Ga6+I/nnhhqxgYAohZRfoBQ2y2o9ORcpDi7YFEMiVCGFDTrJIrta5QIHN1L8CpJVipnaUFYkKWtl4wFlkd8zOi+BlbcUHWn7QLPPhMCF6+bgwnVzrIUpKkIILJvZidnd5ZbbpGHRbo4gIB18CydKI80EO+703cUMRm+RYgcjkDBhe2ikoPyWKbIGne62YoQhIWquIFmYjg2SlCrxzjKphY8ekZ5SIYfLTp8XdzDIUWmYQies0bHW36WhvJekUYIUPzYQEKWQamavspWpbMOTrFLsYuak1UDgXvBjFaQwFbaA6uI9RMF0Vzi4keJXzHMEAWWDtPIgQTd7ksJKZMr2pX2+27z3ig3Yt3oWnxFqwHVdAE9WSZECttYZysjtkTlsICBKIdUEW6UiN4qWcxcLIDoVzg4GP1ZBzkd1iqEQx+RFSBTZ5eIIAnKBbFQT0xtKE3nlAW92Ipddevq8pvnVs86YP/l3R7mAm67dijvfcQFueeXOKINHjmPvcmA09Q0Erb8L00GP5YN0YgMBUQqpptcTm8myxSjSfhezF44gCC7oGgRRH5PiI7te3RU2EFD8CtIRBExwiOLACgmiqTrLBbz3ig1TylWLprfjTU87rWHb3vYSZndXIgwdOY9pKkbHUt5AIPuOIwioDsfxE6WQyfkEjU0xJGmGSHrZhJVF4eVzItR55ByaycI1CMh1RckaBERpkqQphpIUVqKoPGfrQpy+qBdff+AgZnVXsHflTPS0Ny9L5bhoF9WQLlKckVsl5QMIpO9cfH+memwgIEoh5REE49vFnzXEH4J6Or3UmLdOFaSwkQ+9BgGlBdcgIBfIRjUxzac0kc5BzdzVKctmduDhg8cbPj9/zawYQkMuWTW7C6tmd/lux/YBqiWfYigbMj2CIMx+s3KDZAynGCLKMJUXP2OJv2yRYgczGAeDlBhBrmcu5BoEYacoIncsndERdxCIuEgxEdwrn8kX1HQssBa89twVTT+/7qylEYeEkoo9hqlWFtJNP1legyDcFEO8d9KIDQREKaRa+FPbLIJFiq0fQZ/eGgQuxiA+Qc5HIReumCGbL5zcdPrC3obPCjmBKzcviD4wRHVkixQ7mWkRBSTLfV271bPe2/XSTfNw2enzpnz28rOXYeeyvphCREnDVxaqxWnbAC/lDQSyeqEwdRhZuT+yhuP4iVIoaQm2ixXsOj1s3At9vIJ05g87JypHECTPK/cuw6tv/hFqR/a+YPsi9LaX4gsU0TguUkxZ4WARrCUXy4tRKuRz+NvnnI6XnrUU9z12BGcsmoZVszszf15IXdgpPSldOKIk/VMMyYqsfH2memwgIEoh1cqLia2ieLGQZb0u5k06YWLmOlXQNQjC3IbS3r7kpKevn4sPv2QbbvnhIzg2MIxzV8/Ci3YsjjtYRADkaQrfpykrknSvJymsYeRyAhsX9GLjgt64g0IJxAphmoJr0GBOTyXuIFglu4pMD6geGwiIUki5rtSRPMHFvIlTDAUX5GzkcyLUeeQIgmTau2om9q6aGXcwiBoU8kxTiFyrIOKCykThsEKQaknvhozcKq/auwJfuPt3DZ8/Y8PcGEJjnuz9OtQaBBm5P7KGkzYTpZBqgs2XKRmNKYZ4GqcINIIgZAU/RxAQkUnSEQQRhoPINluVBzY4FhyixBGs/aEarqXxcVg3rxtbl0yb8lkxL/D87YtiCpFZ8nUmwqxBwJsnjTiCgCiVkpVgu9hQoTWCwF4wEilIeSEvwt0FHEFARCblc5I1CPhSRCmSlruZjyWRP44goFrSBWwjDEeccjmBD79kG/72Kw/gWz9/Egunt+PFO5dg94oZcQfNCPnIO6Kp2EBAlEKqdaVqZUQzC/d4Xuv9uFhW1QqSixGIke7LhxDhFykuSCrzKD3eeP4q/O3tDzR8fsMz18YQGkozrkFAWSGtPHDtZnctPEQJw/40VCtR6b9FneUC3nFJOt8lZF3wwjQYZufuyBbWqBClkGqGzoS9NZ1CEc/jVLpljfzED0KcSI4gyIZnbJyLzvLUvg297UVcsG5OTCGitJKlKUxtKCtcu9elUyVEFgqi5OIIAqrl4ih+Mkv2isw1CKgeGwiIUkh5jWJHUnZHgjGFTpBcDH+cdF8+JkYPhCmksoEgG1bM6sRHr9uGs1bMwLT2IvaumolPvmwH5ve2xR00ShmOIKCskPcgjS4cRGQfn2mqxelnMkByIdlgSPU4xRBRCpmdbcVMxiGbqMiVhopaemsQuBf+OAUeQRACGwiyY/Piafj49dvjDgalXCHPPjSUDbIyjGs5q6y4YGZCTKJ0Y4Ug1UrSIvUUjK16CtZ/pBPffohSSDXBjnINAhkXsxetBgIXIxAj3ZePiZ66Yc6jrLcvEZEueZrC9IaywbUOHLLyrWSpKyIaxwYCqsW7If1sPfJMStKJDQREaaS6SLHe5qHIXtxczGB0WsUdDH6sdOvqwy5QDHAEARGZJV2DgMkNpUiSphhyLTxEScPiMtVKUvpPwUi7u4RZgyD4T8lhbCAgSiHVBLtUcCMJcHGIGkcQBKfb4zA/uQZBcIU8LwIRmSNdgyDCcBDZxrEyRNnh2qggipc8/ee9kgacRop0uFE7SERGqQ4frRTzlkOixsXMSacAzQLUVLq9k/IGphjKm114g4gyTj6CgGk+pUiCupDKQuNxFQIiIi2ccir9rI0a4q2TSqxRIUoh1by+UoiugUC6SHFkoVCnFSYXIxAj7REEBgqnXIOAiEziqCQi94o30kWK2T5ARKQlQe3DFJC1NQicKyGQCWwgIEoh1QS7UvRPAiJ54XIwf9GaYsheMBIp8AiCEGeSaxAQkUkFyaik0bGxCENCZBdzTyKirGIOkH52rjEbkNKJDQREKaRaV1oen2KICXwjrUWKeQKn0K3on6iHC3MaOYKAiEySNTqOjLKrMqVHknqQysoXfCqJiPS4lsaTedI8ng1EVIcNBERppDrFkMIIgii4mDlxBEFwussByHrqquIIAiIySZamjI6xKpLSI1GLVEqnGOJzSUSkQ/b6xA5w6cAlCEiHG7WDRGSU6gtdKe9GEuBi+UMnSC6GP066BcqJwmmY08gRBERkkixNGWEDAWVEkso3bB8gItLjXCMwGSd7Lw+Tx7MBKZ3cqB0kIqNU60qjTNhlPbuczF50RhA4GYH45HQXKTZQuZ83MAqBiGgCRxBQVkgrDyIMhwrXwkNElGTy6WcoDWz1oeP9kU6sUSFKoaS16LoYXq01CJhFTqF7NvIGFiHgCAIiMkk29dnwKBcppvSQTjHkWNbaUS60/I5TDRIR6UnSGjQUDOspSAcbCIhSyMUMXdbf0sHg6q1B4GIEYqT7jm5iiqF8nheBiMwpSNIUjiCgrHCtYmHf6lkoFRpfX+f3tmFuTyWGEBERJZeLnfTILFujRHjrpBMbCIhSKGmdqFzMYBwMUmLEMcUQRxAQkUlcg4CyQpplO5a1Vop5PGfLgobPX7hjMSu6iIg0JWqRenIK7490aj1Ok4gSzFyCHUU1iIsZjM6LJl9Kp9I9HxNbhzmNuo0SREQyXZViy+/6OkoRhoTILlkZzMWc9V2Xrsesrgq+dM/vUC7mcPnp83HNzsVxB4uIKHFsLWBL7pBPIxVmleLgPyV3sYGAKIV00/pIKugTNseQTod0B4MfK93O/BOFkzD3IUcQEJFJc3oqWDGrEz9/4tiUz3vaiti+rC+mUBFZYKvywJJ8TuD1563E689bGXdQiIgSzb0UnkxzsSMmuYtTDBGlUNJ6U7sYXK5BEJzu+TBRt881CIjItD84f2VD+vTG81dyMVTKDN7pRETpJSvOMP1Ph5ylGl/Wf6QTRxAQpZCL6bUnGULgYnh1QsWW+al0G6gmtg9T0OAIAiIy7ZKN89DXUcZ/3/0YBofH8LR1c3D+2tlxB4vIKOkc1MxaiYhSi1MMpZ+tegreHunEBgKiFEpahu7iEHaOIAhOew0CEyMIbHWPIKJM27m8DzuXc0ohSi/5/MTRhYOIiKLFJD79pHl8qP3y7kkj1qgQpZDJKYY8Q6sUJ62XvU5okxUz+4KvQRAcRxAQERHpky9SzLyViCi1pEk80/804CUmHWwgIEqhYl7v0Y6iAThpUwzptIqzAX2qoGsQhDmPnBOciIiIiIhITdLWLSR9ti4x75x0YgMBUQpViv6P9pufdtrk36ZGCQTlYtlEc5IcS6FIpqBrEITBEQRERET6OMUQEVE2cQ2aLJCNEgyxV94fqcQGAqIUaivmpd+X8jk8bd0cpX2ZSvxljRAuDmHXiTfrpqfSrfAXkyMIgp9IjiAgIiLSx5d8IqJssjU/PbmDr8ikgw0ERClUKckbCP712i1YMatTaV9RjC5w8eVUp9GCi/RMpT/FEEcQEBERxUG6BgHLN0REqeViJz0yy1Y+znsnndhAQJRCfiMI9qycOeXffP9rpHNOePqm0h9BEP4M5jXX3SAiIiI5lm+IiNIrJ3l9YgNxOti6irw90ok1KkQppLtI8eK+9pbfLZzeFjY4AHymGEp4BpP08JumezpMLFLMEQRERET6uAYBEVFW2Zmfntwhz+N5lWkqNhAQERZMa8eaud0Nn6+d2425PWYaCGRcHKKm0wueeetUOc3KehOnj2sQEBERmeVi+YyIiMzgO2z6SacRjDAclAxsICAiAMAHrtqI3vbi5L+ntRfxgas2Gdu/h9ZDCFwsnOhNMeRgBGIUdA2CMOeRIwiIiIjMcrF8RkREZsiSeKb/6WDrOvL+SKdC3AEgIjesm9eD//2jc/Dth34PANi9fAZ6ahoMbHIxf9HK9FyMQIyCrkEQpqDBEQRERET6ZFMMMGclIkov2TsbK4DTwVoDAUsIqcQGAiKa1NtewsUb5lrZt3wNAvcyGJ1Mz73QxyvoGgRhsIGAiIhIH3uQEhFlE9P49LNVz8J7J504xRARxc7F/EVriiHmkFPojyAY/98Qx+QUQ0RERPrkWTbzViKitJI2EDP9TwV2AiAdbCAgokgkLQPiDEPB6dbV5wxMMaTbKEFERERyzFqJiNJL2smN6X8q2JtiiNKIDQREFAn5FEPRhUOV3ggCe+FIIt0RFSYq9znFEBERkT55D1IiIkorvsOmn2wkSJhRIpxBIZ1S30AghFgihHiZEOLjQogfCyEOCSGGhRBPCSF+IoT4JyHEXgvHPUcI4Wn+d7vpcBAlgZsZjM4aBC6GPz66l/PUFEPBz2OODQRERETa3CyDERGRbfLKY0oDjiAgHaldpFgIcQaAfwSwrcUm08b/2wDg5UKI/wXwYs/zfh1NCImyRTKAwEkcQRCc/hoEBkYQ8CIQERFpk89PzLyViCitpDMMMf1PBa5BQDpS20AA4DQ0Ng48AOAeAE8C6AWwC8CC8e/OAfAdIcQez/MeNhyWxwB8RmG7+w0fl4gC4hoEwemvQVD93zCFFE4xREREZBZzViKi9GIan362GnrYuJBOaW4gmPBzAP8C4OOe5z1a+4UQIgfgWgB/D6AdwDwANwshdnmebMZ0bQ96nvdag/sj8rVzWR++8/DvGz5fOqMjhtAkj1ZmygxyijjWIGAhhYiISJ+8B2l04SAiomjJpmhl8p8OQfLxq7ctwie/J59YhSNM0inNaxD8FsBLAKz2PO+v6hsHAMDzvDHP824C8MKaj3cAuDCiMBJZ89p9K5p+fv2epRGHpMpok1sE9EYQMIOspT/FUPhjcoohIiKiICQVRMxaiYhSi0l8+gW5xi/Yvsh4OCgZUttA4HneHZ7nfcTzvFGFbT8D4Hs1Hz3DXsiIorFjWR+eu2XhlM/OXjUTzz5zQYtfUC2dSm6+QE+lvUjxeNElTE8ETjFERERkFjtAEBGlGEeQpV6Q9+v183vwwRecaSE05LosTDGk6ls4tWbBkhjDQWREPifwvmdvwGVnzMOPf3MYa+Z2YdfyGSgV4moXTNYQAp28NGmjI2wLugZBqGOygYCIiEibtLzDrJWIKLVkjcBsIE4H+SLFrb/dML/HfGDIeWwgOKW2ii8fWyiIDBJCYNfyGdi1fEbcQUk1L2GNH7bpTjE0sX2YYiinGCIiItLH9gEiomxi/6r0C/qKzNH52cQGglM21Pz9G8P7bhNCPBPAJgDTARwH8DiA7wK40/O8EcPHI6KQWN8cnPYixbmJ3wU/pomFjomIiLJGvkgx81YiorTiIvXpFzQf57t1NrGBAIAQYhGAfTUf3W74ENsAfL7Fd48JIf4WwH7P84YNH5eIAtLKTDmAYAr94kT4AkgutSvqEBERxYPVA0RE6SWfYojSQNoIJPkd362ziZe96m9walqhXwO4NcJjzwPw1wC+LoSYbXLHlUoFnZ2dAIDR0VH09/fDG58s/ciRIxgaGgIAnDx5EsePHwcAjIyMoL+/f3Ifhw8fxvBwtd3ixIkTOHHiBABgeHgYhw8fntyuv78fIyPVgRDHjx/HyZMnAQBDQ0M4cuQIAMDzPPT392N0tLpu9LFjxzAwMAAAGBwcxNGjRwEAY2Nj6O/vx9jYGADg6NGjGBwcBAAMDAzg2LFjjFMC4zQxUX87hlBAdd8ljKCCYSfjJAC0YQjFmrC2jYc1hzF0ikFMtAycPHEsNdfJxL2XE0Aeo+gQg5PbdYpB5FENQwXDKKEavwJGkRuungd4HjrFIHLj27XVbFfEKNpQDY9AdTsxfv7bMISxkSGrcUrjdWKcGCfGiXFinBgn4U3kpY15rhDJjFMarxPjxDiZjFOrcnmS45TG62Q7ThithqHZe25S45TG6xQmTqMjI+P1FlUdYhD58fqNwthQyzgdP3K45bt7+/g7Oa+TvTjFJfMNBEKIFwN4ds1Hb/M8b7DV9poOAvgggCsALAPQDqAy/veLAXy/ZtsdAG4VQrQZOjZ27NiBK6+8shqQgwexf//+yZv2pptuwn333QcAuOOOO3DrrdU2kUceeQT79++f3MeNN96Ihx56CABw22234bbbbgMAPPTQQ7jxxhsnt9u/fz8eeeQRAMCtt96KO+64AwBw33334aabbgJQfaD279+PgwcPAgBuueUWHDhwAABw55134uabbwZQfWj2798/+ZDefPPNuPPOOwEABw4cwC233MI4JTBOGKsmxheX78eS/CEAwOnFx7Cr9Csn4yQEcEH5QazMPwkAWFt4HHtL1fD0igFcVbkbpfHM9Qe3fTo118nEvZfLCczPHcFl5fsmt7uqcjdm5qoZ5a7Sr3B68TEAwJL8IRQf+joAwBsdwVWVu9Erqpnw3tJDWFt4HACwMv8kLig/CADoEEO4qnI3OkQ1c72g/CB++bP7rMYpjdeJcWKcGCfGiXFinIrD1ZfdZnmugEhknNJ4nRgnxslknFqVy5McpzReJ9txGjn4MIDm77kj452vkhanNF6nMHH63WOP4arK3ZNhvax8H+bnqvteNPDzlnH62L/8Y8t394vL9/M6WY5TXMRES0YWCSG2APgGqpX2APBJz/Oeb2jfnQCGPM8bkmwjALwLwDtqPn6H53nvCXnsdQDuqVQqKBQKOHDgAFavXo2jR4+ip6cHQlQL+5VKBaVSCSdPnsTY2Bg6OjowMjKCY8eOobe3F0C1Na69vR3FYnGyJa69vR3Dw8M4ceIEenqqq5v39/ejs7MThUIBx48fRy6XQ1tbG4aGhjAwMIDu7m54nofDhw+jq6sL+Xwex44dQ6FQQKVSweDgIIaGhtDV1YWxsTEcOXIE3d3dyOVyOHr0KEqlEsrlMgYGBjAyMoLOzk6Mjo4yTgmK05s+8wC++rODaMcQhpDHCPIoYQQ5eLj/fZc7F6cnjg7h3L/8IkaQx/B4WPPwcBJF5DCGdjGMY14JgMC/XL0OZ6+Zl4rrZOLe+8+fHMQNn/0xKmIEx70ygGpPpZNeEaPIoYJhjEFgCAUUMIoXbJ6Dd121DR/51i/wgf+6Eye8IsaQQxuGMTq+XRGjKGAUJ1GCgIcOMYTjXgkeBNowhE+/7mysmd+XmeeJcWKcGCfGiXFinEzE6e3/9SC+cM8TTfPcf7l+D3Yum564OKXxOjFOjJOpOC1563+3LJc/8O4LEhmnNF6nKOL0oW/+Gv/3jl82fc/955eejV0rZiQuTmm8TmHidPj4AHa/5ws4Nv5O3iEGMeAVMIo8Ns2p4JMv39k0Tr95/CDO+dsDTd/dSxjFfe+7gtfJQpweffRRrF+/HjXWe553LyKS2QYCIcRSAN8GMGf8o58A2ON53pEYwnIzgImGiUMAZoVZuHiigWDi3/fccw/WrVsXLpBEIb30I9/HV+9/oul3v3zfMyIOjb/Hjwxg+3u/qrTt//fSbdizcqblECXHzd/9Ff7kM/f4bzju2l1LcMOl6/Cx7/wS7/xcsPzvf/7oHCyd0RHot0RERFn16pt/iC/c/bum333i+u3YtWJGxCEiIpuWvPW/W37n4jsZ2fN3tz+Av7v9wabfffJlO7BzeV/EISLTTgyNYO07v9z0u/Xzu/Ffr9vT9LvjgyNY92fNfwcwrbDl3nvvjbWBIJNTDAkh5gL4Ck41DjwM4OlxNA6Me2fN39NQnW6IKFWS1hTJhZmCky141XR7Ayc7b2InREREGaObZxMRUfrx1SodcgEvZNDfUbJlroFACNGHauPA8vGPfgvgfM/zfhtXmDzPewjAL2s+WhNTUIhogkaemNGBWC3lNMsTEwWQMMWQXOZyMyIiIgNkmS/rB4iIMonJf7bx3TqbMnXZhRDdAL4MYGK+nSdRbRz4RXyhmlTbQMGxvJQ6SZvOTKfVPFkxs0+3x8Fkg0KIngp53VYJIiIikuLoAiKi9GIan35BX69lo/MLfO9Orcw0EAghOgB8AcDm8Y8Oozqt0H3xhWqK2smzj8cWCiICwF4TYegWRISBIYycYoiIiMgsZq1E6fO0dbO1Pqf0kqXxJt7PKH6yRiDZd7LOd+VCZqqRMycTV1YIUQHweQC7xz86AeAZnuf9ML5QnSKEaAdwWs1Hj8UVFiKqYqEoON1zN7F5mDPO60VERGQWc1ai9HnRjiVNP3/B9sXRBoRixzQ+/eSNQLLvWn9ZYgNBaqX+ygohigD+E8C+8Y8GAVzmed634gtVg+cDKI//7QH4eoxhIbIiadPwsMAUXOA1CEKcdE4xREREFICkgMbGd6L0OWvlDLzx/FVTPnvDeStx9qqZMYWIXMTkPx1sXEY2EKRXIe4A2CSEyAP4BICLxz8aAfAcz/Nut3zcdgADnueNKWy7EsD7aj66zfO8J6wFjoiU6BSKkra+gm2B1yAIgVMMERERmcWslSid3nD+Sjx/+yLc89hhrJ/Xg5ldZf8fUepIe5BHFwyySPe9XAUbCNIrtVdWVLu8/CuAK8c/GgPwIs/zPh9yv17Nfze02GwbgHuFEK8SQsxqsZ+8EOKFAL4DoG/84yEAfxwmfERkhs6iTWwemEp7DYLxcx1moaxcanMzIiKieLCCiCi9ZnaVce5ps9g4kGEcJZZ+Ni5xuZA3v1NyQppHELwKwItr/v0QgLOEEGep/NjzvNeGPP5qAB8E8A9CiJ8DuBfAU6g2VMwBsBPAjJrtRwFc43nej0Mel4hMYHkpMN3CppERBJxiiIiIyCjWHRERZRPT/3SQvZcHvcRcpDi90txAUN9zf+X4f6rCNhBMyAFYNf5fKz8DcJ3ned82dEwi5yRtFh6tQlHC4mabbl29MLAGgY3hk0RERGnnSQsxzFuJiLKJ6T81xymG0ivNDQRx+gaALaiOEtgF4DRUpxHqQ3Ux4sMAfgPguwA+D+BLHicxJ3KKXvsAH99a+msQTEwxFN0xiYiISI5ZKxERUUoFzOQ5giC9UttA4HneDQBusLBf36fI87xRAD8c/+8fTIeBiOzjnIzB6Y8gCH9MTjFERERkFnNWIqL0ki5SzAwg9YJe4hLXIEgtNv0QUSSS1sdeawRB0iJnWdA1CMJNMRT8t0RERNSInSWIiLKJqT+1ctH6OXEHgSxhAwERURM678RsIJhKt0A5uQZBiKIoKzGIiIj0ycowzFmJiNIrzLsXpd8Ldyxq+KyUz+GZm+bFEBqKAhsIiCgSSVtmQ2dO+2kdJYshSZ6gaxAQERERERFRvNj5iv7owtOwfn735L+LeYG/fe7p6Cyndqb6zOOVJSIKYUZnCWcs7I07GE7JaTY9T5Y/WQ4lIiKKFOegJiLKJmn6H10wKCZ+eXxvewmfftVu/PBXh/DE0QFsX9qHOT2VaAJHsWADARFFYlZXsjIT1ZfiN16wCjlOgD9F0DUIiIiIKFryKYaYQRMRpRVTePJTKuSwc3lf3MGgiHCKISKKxCv2Lmv6+flrZkUcEjV+L8XP3bIQH37JVrxg++KIQpQcuoXN3OQaBEREROQKjiAgIsompv/px0tM9TiCgIgisXJWJ85aMQPf/PmTk58VcgIv3OFmBbtfoeivrtwYTUASSHdNgclFilkSJSIiIiIiso6vXkRUiw0ERBQJIQQ+dM0W/N1XH8C3fv4k5va04YU7FmPvqplxB60plpeC024gsBQOIiIiCo6VR0RE6SUbMc8p5oiyhw0ERBSZtlIeb7toTdzBUMLe7MHprikwsT3POBERUbS4BgEREdXjq3D6sb6D6nENAiKiJphdhqDbQJCbmGLIQliIiIgoEObLRETpxTSeiGqxgYCIqAkWmIILugYBERERuYPZMxERUToxi6d6bCAgImqCldbBBV2DgKeciIjIHZxiiIgom/heRpQ9bCAgIiKj9NcgYAmUiIgoDh5aL0LA7JmIKL3YIY6IarGBgIiIjNItbJ5apJiFVCIiIlcwVyYiyia+lxFlDxsIiIjIKN3OKBMjCNiJhYiIyB3Ml4mI0kuWxDP9Tz9eY6rHBgIiIjJKf5FiSwEhIiIiKa/1DEPgGAIiovTiOxgR1WIDARERGaVb1uT8l0RERERERG7g61n6cRopqscGAiIiMmpU3h2xge6ixkRERGSGrBKIFURERNnEyuMM4CWmOmwgICIio4ZHxrS2P7UGAUspRERErmCuTESUXkzjiagWGwiIiDQV2OVdanhUbwTBRLsAzyoREVG0ZIP+2HBPRJResjSeyT9R9rCBgIhIUzHPpFNmeExvBAErIIiIiNzD3JmIiIgoG1jLRUSkqZjnK7OM/hRD1f9lOwEREZE7mC8TEaWXdA2a6IJBMeE1pnpsICAi0lQqMOmUWTKjQ2v7yTUIWEwhIiJyBvNlIqL0kqXwbCAmyh7WchERaeIUQ3IrZ3ViwbQ25e25pAMREVE8ZKsGsYKIiCjFmMhn2sUb5sYdBHIMa7mIiDQVOMWQlBAC73/2RlSKqlnM+AgCnlYiIiIiIqKY8cUsLa4/a2nDZ/mcwOWnz48hNOSyQtwBICJKGo4g8LdrxQzc/od78T8/O4hSXmDMA9726bubbssRBERERO5hwz0RUTYx/U+PN5y/Ej/89SHc+et+ANV377997unoaS/GGzByDhsIiIg0ldhAoGTBtHa8aMdiAMD//uyJltudWoOAiIiIouRJ5hgSrCEiIkotpvDZ0FUp4t9fsRM//k0/Hu0/iR3L+jC7uxJ3sMhBbCAgItLEEQT68pJhArnx08l6CCIiIncwWyYiSi/ZuxfT/3Qp5nPYsmQ6tsQdEHIaa7mIiDQVuQaBtpykBCpYBCUiInIOG+6JiLKJI8iIsocNBEREmjiCQJ+sgeBU+wALokRERK5gAz4RUXoxjSeiWqzlIiLSVCow6dSlshBx0I4qr9u3ItgPiYiIiIiIaAo2HRBlD2u5iIg0cQSBPtkaBJAskOinvZTHJRvnBd8BERERNcUZJoiI0ks6wJvpP1HmcJFiIiJN566eFXcQEicnaSDwxlsIdMuhO5f14Q8vXIXT5nSFCBkRERE1w/ohIqL0YhpPRLXYDZaIqIWrty1q+KyYF7jijPkxhCbZZGsQeAFGEFyzczE++fId2LpkeohQERERUUusPSIiyiSuT0CUPWwgICJq4Y8uXIXVNb3T8zmBD1y1CZ1lDr7SpbYGgXpBlEVWIiIiE1q30rOCiIgovTjFEBHVYi0XEVELfZ1lfPY1u/HdXzyFxw8PYOfyPiyc3h53sFJnYgSBTjlUpzGBiIiI9DGrJSJKLzYCE1EtNhAQEUlUinnsXTUz7mAknqwAGmKNYiIiIrKEVUdERERE2cAphoiIyDpZL0RvfAiBTk9F9mokIiKyi6P1iIhSjEk8EdVgAwERETlBq4GAJVoiIqLQPMkwPua0RERERNnABgIiIopVkCmG2KmRiIjILua1RETpxSSeiGqxgYCIiKyTTzE0vo1GMZUFWiIiIrs4Wo+IKL04jRwR1WIDARERWSevZOAyxURERHGQ5sCsOyIiIiLKBDYQEBGRdSojCHQqItjhhYiIyC7mtURE6SXtvsX+W0SZwwYCIiJygk49BIfEEhER2cWclogovaQduDjCmyhz2EBARETWyQugAfYXOCREREQ0gfkpEREREbGBgIiIrJOtQTC5SLHOqADWaBAREYUma6TnaD0iomziFENE2cMGAiIism7BtLaW352xqBeA5hRDbCEgIiKyijktEVF6mR7hTUTJxgYCIiKyrqNcwDmnzWz4fMP8Hszrbd140Ao7NRIREdnFvJaIKL3Y4YqIarGBgIiIIvHXV27C6jldk/9eOL0NH3zBmZP/5gxDRERE7mDlERFRNnmcY4gocwpxB4CIiLJhZlcZX3zDHjzw+DEMj45h7dxu5HLBKh/Yq5GIiCg8WSUQ81oiovRiGk9EtdhAQEREkRFC4LSaUQRTvtPoqchejUREREREROZx/ABR9nCKISIicoLWFENsHyAiIrKKeS0RUXoJSSLPGYaIsocNBERERERERBkkqwPiaD0iIiKibGADAREROUGnGoJVFkRERHZxBAERUVZxCAFR1rCBgIiIEifo4sZERESkhjktEVF6bVsyveV383vbIwwJEbmADQREROQGjZqIciFvLxxEREQknZ+aiIiSbU5PBWcs6m34/Pw1s9BW4rsWUdawgYCIiNygMZK1UmT2RUREFJZsIUo2DxARpdsHX3AmVs7qnPz36Qt78ddXbooxREQUl0LcASAiIgKAMY0GAo4gICIisosDCIiI0m1uTxtue+PZeOjgMRTzOSzu64g7SEQUEzYQEBGREzyNIQTlAkcQEBERhcVGACKibBNCYMWsrriDQUQxYw0LERE5QTbNQb0ypxgiIiKyimsQEBEREWUDa1iIiMgJYxotBBVOMURERBSaTuM8EREREaUTGwiIiMgJHEFARERERERERBQt1rAQEZETdEYQcJFiIiIiIiIiIqLw2EBARERO0BpBwEWKiYiIQuMMQ0RERETEGhYiInKCTiUFpxgiIiIiIiIiIgqPNSxEROQELlJMRERERERERBQtNhAQEZETuEgxEREREREREVG0WMNCRESO4CLFREREUfJ0WueJiIiIKJXYQEBERE4Y4yLFRERERERERESRYg0LERE5QWuKITYQEBERERERERGFxhoWIiJygs4ixYU8sy8iIiIiIiIiorBYw0JERE7gLMhERERERERERNFiAwERETmBCyUSEREREREREUWLDQREROQEtg8QEREREREREUWLDQREROQET3GSoa1LplkOCRERERERERFRNrCBgIiInKA6guCZm+bZDQgRERERERERUUYU4g4AERERAIz5NBB0lgu4bvcSvGjH4mgCRERERERERESUcmwgICIiJ8gWKf7ca3Zj3bxuFPIc+EZEREREREREZAprWoiIyAmyKYb6OktsHCAiIjJMdXo/IiIiIkov1rYQEZETOiutB7WV2DhARERERERERGQca1yIiMgJ+1bPQqnQmC0tmt6OWd2VGEJERERERERERJRubCAgIiInVIp5PH/boobPr921JPrAEBERERERERFlABcpJiIiZ7zzkrWY01PBl+/9HdqKeVx++nw8Z+vCuINFRESUSh64CAERERFR1rGBgIiInJHLCbxy73K8cu/yuINCRERERERERJR6nGKIiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsogNhAQEREREREREREREWUQGwiIiIiIiIiIiIiIiDKIDQREREREREQZ5Hlxh4CIiIiI4sYGAiIiIiIiIiIiIiKiDGIDARERERERUQbtXjEj7iAQERERUcwy00AghCgJIV4khPiCEOJXQogBIcRvhRDfFkL8kRDCWuk4zmMTERERERE189ytC5t+/vztiyIOCRERERHFJRMNBEKI1QC+C+BjAC4CsAhAGcAcADsB/DWAe4UQF6fp2ERERERERK3M6CzjnZesnfLZshkd+IPzVsYUIiIiIiKKWiHuANgmhFgA4KsA5o1/5AH4OoCHAMwEcD6ANgCzAHxWCPF0z/O+lvRjExERERER+bnurKXYtnQ6vvnzJzGvtw17V81ET1sx7mARERERUURS30AA4BM4VUH/KwCXeZ7344kvx6f3+RSA8wAUAfyHEGK553n9CT82ERERERGRr/Xze7B+fk/cwSAiIiKiGKR6iqHxaXv2jP9zCMAzayvoAcDzvCcBXAbg4fGPpgN4S5KPTURERERERERERETkJ9UNBABeU/P3Rz3Pu7vZRp7nHQfwzpqPXiGECDu6Is5jExERERERERERERFJpbaBQAjRierUPRM+7POT/wRwbPzv6QDOTuKxiYiIiIiIiIiIiIhUpLaBAMAuAOXxv48D+L5sY8/zBgB8p+ajfQk9NhERERERERERERGRrzQ3EKyp+ftuz/NGFH7zoxa/T9KxiYiIiIiIiIiIiIh8pbmB4LSav3+l+Jtf1/y9OqHHJiIiIiIiIiIiIiLyleYGgr6avx9X/M3vav6entBjT6pUKujs7AQAjI6Oor+/H57nAQCOHDmCoaEhAMDJkydx/PhxAMDIyAj6+/sn93H48GEMDw8DAE6cOIETJ04AAIaHh3H48OHJ7fr7+zEyUh0ocfz4cZw8eRIAMDQ0hCNHjgAAPM9Df38/RkdHAQDHjh3DwMAAAGBwcBBHjx4FAIyNjaG/vx9jY2MAgKNHj2JwcBAAMDAwgGPHjjFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDgxTowT48Q4pSZOcUlzA0Fnzd8nFX9Tu11ny63cPvakHTt24MorrwQAHDx4EPv375+8aW+66Sbcd999AIA77rgDt956KwDgkUcewf79+yf3ceONN+Khhx4CANx222247bbbAAAPPfQQbrzxxsnt9u/fj0ceeQQAcOutt+KOO+4AANx333246aabAFQfqP379+PgwYMAgFtuuQUHDhwAANx55524+eabAVQfmv37908+pDfffDPuvPNOAMCBAwdwyy23ME6ME+PEODFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDilJk6x8Twvlf8B+CoAb/y/dyv+Zl/Nb0aSeOzxfa0D4FUqFa+zs9O75557vJGREe/QoUPe2NiY53med/jwYW9wcNDzPM87ceKEd+zYMc/zPG94eNg7dOiQN6G/v98bGhryPM/zjh8/7h0/ftzzPM8bGhry+vv7J7c7dOiQNzw87Hme5x07dsw7ceKE53meNzg46B0+fNjzPM8bGxvzDh065I2MjHie53lHjx71Tp486Xme5w0MDHhHjhzxPM/zRkdHvUOHDnmjo6Oe53nekSNHvIGBAc/zPO/kyZPe0aNHPc/zGCfGiXFinBgnxolxYpwYJ8aJcWKcGCfGiXFinBgnxolxYpwSHad77rnHq6kX9gCs8yKsRxdetUI5dYQQ/w3g4vF//pXneW9V+M1FAL4w/s9jnud1Je3Y4/taB+CeiX/fc889WLduXdDdEREREREREREREZEF9957L9avX1/70XrP8+6N6vhpnmLoWM3fbYq/qd3uWMut3D42EREREREREREREZGvNDcQ/L7m79mKv5lT8/dTCT02EREREREREREREZGvNDcQ/Kzm78WKv1lU8/f9CT02EREREREREREREZGvNDcQ/LTm7w1CiILCb85s8fskHZuIiIiIiIiIiIiIyFeaGwi+DWBw/O8OAFtkGwshygB21Hz0tYQem4iIiIiIiIiIiIjIV2obCDzPOwbgqzUfXevzk2cB6Br/+ykAX0/isYmIiIiIiIiIiIiIVKS2gWDcB2v+vlYIsa7ZRkKIdgDvrvnonz3PG0nwsYmIiIiIiIiIiIiIpFLdQOB53n8D+Mb4P8sA/ksIsbF2GyFEH4DPAlgx/tFTAP6q2f6EEEuEEF7Nf9dGdWwiIiIiIiIiIiIiIpNUFs9NuucD+B6AuQCWALhLCHEHgIcAzARwPoD28W1HADzH87z+FBybiIiIiIiIiIiIiKil1DcQeJ73iBBiH4BPAjgdgABwzvh/tQ4CeInneV+FIXEem4iIiIiIiIiIiIhIJvUNBADged79QojtAJ4H4GoA6wDMBtAP4GEAnwbwYc/znkzTsYmIiIiIiIiIiIiIWslEAwEAeJ43BOBj4/8F3ccvUR0FEPmxiYiIiIiIiIiIiIhMSvUixURERERERERERERE1BwbCIiIiIiIiIiIiIiIMogNBEREREREREREREREGcQGAiIiIiIiIiIiIiKiDGIDARERERERERERERFRBrGBgIiIiIiIiIiIiIgog9hAQERERERERERERESUQWwgICIiIiIiIiIiIiLKIDYQEBERERERERERERFlEBsIiIiIiIiIiIiIiIgyiA0EREREREREREREREQZxAYCIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsqgQtwBICtKtf/4+c9/Hlc4iIiIiIiIiIiIiKiFJnW3pWbb2SI8z4vyeBQBIcSlAD4XdziIiIiIiIiIiIiISMtlnud9PqqDcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGcYqhFBJC9ADYW/PRbwAMxRQcIiIiIiIiIiIiImquBGBhzb/v8DzvcFQHZwMBEREREREREREREVEGcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiL6/9u78yDNqvKO49+fbCOLUCAIyBqMYNApg4iKcQmShNKUe0AxCFPRiAmpWInG0sRAmahYqSIVLZRFBaICalTKKAYBAY2OS8QIlsAoKBJFthEIqDDokz/uHftOZ7r7nel36bfv91PVVeeee86dZ/7o9719nrNIkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQItC0m2TnJckouT3JzkF0luTfLlJK9P8shJxyhpOJLsl+TVST6U5FtJfppkXZK1Sa5JcmaSZ006Tknjk+S0JNX5+cGkY5I0XEkOSXJqkv9q3/MfSPLjJFcn+UD7t8Duk45T0uIleVqS97S/32vbd/17k3w3yUeTHJtkm0nHKWluSbZIsjLJnyR5b/v9/WDnff3KRTz7OUn+NcmaJPd3xgL+KclBQ/xv9EaqatIxSIvS/vJfADxxnma3A6uq6uKxBCVp6JL8NnAGcNiAXa4Ejq+qH44sKEkTl+QwYDUbTny5uar2m0xEkoYpyW7AacArBmh+elWdNOKQJI1Ikl2A9wMvGKD5jTTv+l8abVSSNlWSFwIfBradp9lVVfXsTXzuI4CzgGPmabYOOLmq3rEpz+67LScdgLQYSfYCLgf2bKsK+ALNy8KuwJHAw4HdgIuSHFVVn59ErJIW7UD+f3JgDfBt4E5gJ+BwYK/23rOB1UmeUVU3jSlGSWOUZCvgfbgqVlqWkuxDk/Dfv1N9A3AtcBfNwMMBNBOF5huEkLTEJXk4cBkbTvy7A/gm8D80f98fDPxGe+8A4HNJjqiqr44xVEkL24khfy+37/2fBI7oVH8buBpYATwD2APYCnh7kq2q6q3DjGE5M0GgaXc+M8mBm4EXVNW31t9stxa6EHgOzYfEx5IcUFV3jztQSUPzPZoBwQ9V1Y+6N5I8DDgBeDfNC8mewIeTHF4umZOWozcCT2jL5wPHTjAWSUOUZEfgCmaSA1cAr6uqazbSdmuaAYMdxhehpCF7IzPJgQLeApxWVT9f3yBJaGYOnwHsSPO+fzawcqyRShrUbcDXOz9/APzlZj7rLcwkB35Bs0vIhetvtu8C/wi8oa06JclVVXXVZv57veIWQ5paSZ4LfKa9fBA4tKqu3Ui77YBrmJlp8I6qevN4opQ0LO25AvsDH6yqXy7Q9kXAJzpVR1XVJaOMT9J4tVsM/jewDc0S5suAc9rbbjEkTbkkZwOvai8/Arxioe9/SdOrPT9o3/byX6rqdfO0fSnwsU7Vyo2NBUiajPZMoK1nb/eb5BTg5PZy4C2G2u0GbwK2a6tOrKoz52h7ITNbEK2uqsM3Lfp+cjm2ptmfd8rnzfVCUFX3A3/fqXpNElfPSFOmqq6qqnMHGRyoqk8CX+tUPW90kUkat3YG4ftokgM/Bf5qshFJGqYkT2QmOXAL8GqTA9Ly1e4rvm+n6oIFulwE/Kxz/dhhxyRp81XVT4Z8FuDxzCQH1tCcQzCXvwF+1Zaf1p5lqAWYINBUSrI9zbZB650zV9vWx4H72vLOwDNHEZekJaV7YNl+kwpC0ki8Fnh6W35DVd0+yWAkDd2JnfLpVfW/E4tE0jhsP+v6p/M1rqqHgHs7VY5tScvbCzvlc+fbPrhNTHTPHn3RqIJaTvwQ1bQ6nGbWIMD9NHuZzamqfgGs7lQdMVdbSctG96Vhi4lFIWmokuwNnNpefhH4wATDkTRkSbYAXt6p+vikYpE0NnfQ7Cm+3sHzNU6yK7Bbp+pbc7WVNN2SrACe2qm6coBuV3TKjv8NwASBptXjOuVr2xkEC7l6jv6SlqcndMq3TCwKScP2HpqDSB8EXuMB5NKy83jgEW35HuDGJFsmWZXk8iQ/SfJAkh8l+WyS1ybZZp7nSVriqmod8NlO1d8l2XaeLu9kZjzr8qpaM7LgJE3agcz8vhfwzQH6OP63iUwQaFod2CnfPGCf7v5nBw0xFklLTJJ92HCmwGWTikXS8CR5GfCH7eU7q+q6ScYjaSSe3CnfAuxFs23gB2i+2x8FbA3sCRxFkzRck+TJSJpmb2ZmW+BDgGuSHJ/kMUlWJNk7yfOSfBFY1bb7TqcsaXnqjv/d3u4QspDu+N/O7aojzcODWjWtdumUbxuwz0865Z2HGIukpec0ZrYV+iHw7xOMRdIQJNkFeFd7uQZ42wTDkTQ6e8+6/iwz241cT7O16C+BlTSDiAD7AFcmeWZVfWMsUUoaqqq6PsnTad7b9wEOAM6do/ndwAeBv/WMEmnZW+z4HzRjgHcMJ5zlyRUEmlbdQ4x+PmCfbrvZhyBJWiaSHA+8pFP1pqp6YFLxSBqafwbWz/450d9radnaqVN+PE1y4GfA0VX1uKp6ZVWtqqon0awouLNtuy3wkSRbjzVaSUNTVdcAjwVOojlrcC6XABeYHJB6YbHjf7OfoY0wQaBptaJTfnDAPt2BhIcPMRZJS0SSQ4EzOlUXVNX5k4pH0nAk+X3guPbyvKq6Yr72kqbadhup++Oq+tjsyvaz4PnAr9qqA4BXjDA2SSOU5JHAe2kmBWxHMwv4E8BZwEeZ2V74GODLSc5sDzaXtHwtdvwPHANckAkCTavunmODzhLqHl42aNZR0pRIsj/NkuT1LxDXACdOLiJJw5BkO+DM9vIu4PUTDEfS6M3eW3h1VX1yrsZVtZpmAHG9Y0YSlaSRSvKbNIePrqJJ+p0E7F1VL6mq11TVMcD+wLHAvW23PwXePYl4JY3NYsf/wDHABZkg0LS6r1MeNBPYbXffnK0kTZ0kewCXAru3VTcBR1XVvXP3kjQl3gbs15b/uqrunKetpOk3+z19zuTAHG0OH2IsksYgyZY0ib692qoTq+r0qnqo264aFwAv7VS/NslhYwpV0vgtdvxv9jO0ESYINK3u6pQfNWCf3TvltUOMRdIEtQeXXkqzrQDArcCRVXXr5KKSNAxJDgH+or28oqrOm2Q8ksbirlnX3xmgz3Wd8g5JdhhiPJJG7yU0Z44A3ADM+31fVZcCl3WqVo0oLkmTt9jxP3AMcEFbTjoAaTPd0CnvO2CffTrl64cYi6QJSfIImkPKDm6r7qRJDnx/clFJGqKVzExo2SfJV+Zpu2unvMestv9QVZ8ZenSSRmH2e/ogs/5mH1S6w0bqJC1dR3XKV1RVDdDn88CRbfnQ4YckaYnojv/tlmRFVc3ejnC27vjf2qq6YwRxLSsmCDSturOEnpBky9nLDzfikDn6S5pC7b7kFwNPaqvuodlWaJCZhpKmzwHMrBRayNbAUzrXu87VUNKS8+1Z19sP0Gf2ioF7hhSLpPF4dKc8exXRXLpbDu44xFgkLS030JxL8jAgwBOB+SYNgeN/m8wthjStvszMqeTbscCMgSTbAE/tVH1+RHFJGoMkK4BPAU9vq34GPK+qvjG5qCRJ0mK1qwC7KwF/a4Buj+uU11bV/cONStKIdQ8Q3XnAPrt0yncPLxRJS0m7WqCbEHj2AN2e1Sk7/jcAEwSaSlV1H3B5p+qEBbq8mJmZRWuBL4wgLEljkGQr4OPAEW3VA8ALqupLk4tK0ihU1blVlUF+2HD/4Ztn3T93Qv8FSZvnE53yCwdo323je740fX7YKf/ugH2O6JS/N8RYJC09F3XKJ8zXMMnewHPm6Ks5mCDQNHtPp3xCkoM31ijJtsBbO1VnDbAdkaQlKMkWwPnAc9uqh4Cjq+qyuXtJkqQp815gXVs+PMnz52qY5DCayUDrnTvCuCSNRvdd/qAkx83XOMkRwO91qi4ZSVSSlorzgPWrAw9M8qp52r4T2KItr66qq0ca2TJhgkBTqz1s8Ivt5TbAp5Os7LZJsgtNtvAxbdVamg8LSVMmSYD3Ay9tq34FHFdVn5pcVJIkadiq6kY2nAx0fpIXz26X5FnAp5kZCPgKzRaEkqbLZ4A1neuzkpzYTg76tTSOZsNVRrcAF44hRkkTUlW3A6d1qt7Vfhb8WpKtkpwKvLxT/aZxxLccZLDD4aWlKclewNeAPdqqAq4CbqQ5kPBIYNv23kM0B5hePvs5kpa+JH8GnN6p+i7wuUH7V9VJQw9K0pKR5ATgnPby5qrab3LRSFqs9gyxS4FndKqvA74O/BJYCTypc+9W4ClVdcvYgpQ0NEmeQrNX+Lad6ltpzh+8k+Yg4qcC+3XuPwAcWVX/OaYwJQ0oycXAnrOqdwce1ZbvZ+Pbgz23qn68kedtBfwHG24vdi1wNbACeCYzY4MAJ1dVdzcRzcMEgaZekoOAC2hOMp/LHcCqdtWBpCmU5BTg5M3t3+5RLmmZMkEgLT9JdqTZbujlCzT9KvBHJgek6dZuGfZB4LEDNP8+zWpizyGTlqAkPwD23Yyu+1fVD+Z45o7AWcDRG7vfWgecUlVv34x/u7e2nHQA0mJV1fXtbIOX0fzxcDBNRvJu4Caa5YfnVNWdEwtSkiRJ0iapqnuAY5OcAbwS+B3g0TRbCt1Gs6XQR4GLyplv0tSrqq+1Zws+n+bw8UNpZiBvTzPb+DbgGzRbif1bVa2b41GSlqH2veCYJGcDxwNPo1k1sI5mu7FLgPdX1XWTi3I6uYJAkiRJkiRJkqQe8pBiSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB4yQSBJkiRJkiRJUg+ZIJAkSZIkSZIkqYdMEEiSJEmSJEmS1EMmCCRJkiRJkiRJ6iETBJIkSZIkSZIk9ZAJAkmSJEmSJEmSesgEgSRJkiRJkiRJPWSCQJIkSZIkSZKkHjJBIEmSJEmSJElSD5kgkCRJkiRJkiSph0wQSJIkSZIkSZLUQyYIJEmSJEmSJEnqIRMEkiRJkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB76P73oL1SqEQt4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from astropy.modeling import models\n", + "\n", + "pds_model = \\\n", + " models.PowerLaw1D(x_0=1, alpha=1, amplitude=1)\n", + "\n", + "nyq = 100.\n", + "freq = np.linspace(0, nyq, 1000)[1:]\n", + "\n", + "pds_shape = pds_model(freq)\n", + "mean = 10\n", + "rms = 0.3\n", + "\n", + "dt = 0.5 / nyq\n", + "\n", + "flux = timmerkoenig(pds_shape, mean, rms)\n", + "times = dt * np.arange(flux.size)\n", + "\n", + "plt.plot(times, flux)" + ] + }, + { + "cell_type": "markdown", + "id": "de32c52b", + "metadata": {}, + "source": [ + "## Simulating event times with the inverse CDF method\n", + "\n", + "Given a positive-definite light curve (generated, e.g., with the method by Timmer & Koenig), we treat it as a probability distribution: we calculate the cumulative distribution function by calculating its cumulative sum and normalizing to 1. Then, we generate random numbers uniformly distributed between 0 and 1 (horizontal lines) and take the event times at the corresponding values of the CDF (vertical lines)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27458926", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAStCAYAAAClVIT2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXwU9f3H8fckIQkJEMJ9BAiKKIeKotVaFdSqrYonWqv1vq1HtO3Po7ba1trTClLBG8X7wgOEgoqgIDcil6BiEkgIJEDIQc7Nzu8PkpjAzt6zO7v7ej4eeTw2M/P9zmd2ru/OZ74zhmmaAgAAAAAAAAAAABC/kqIdAAAAAAAAAAAAAAB7kRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJwTAzDCPZMIwjDMO4zjCMKYZhrDAMo8EwDLP5b34EYkg1DOMKwzBmGYZRaBhGnWEYJYZhfGEYxm8Nw+hhdwwAAAAAAAAAAABwDsM0zWjHEDcMwzhf0iuSMrxMtsA0zbE2xnCYpNckjfIyWamka0zTnGVXHAAAAAAAAAAAAHAOegqGV1d5TwjayjCMHEmf6IeEoClpgaTnJc2QVNs8vJek9wzDODXSMQIAAAAAAAAAACDyUqIdQJzaIWl5m78zJd0Zgfm+Kqlf8+dCSeeZpvlVy8jmx4a+Luk0SR0kvWUYxsGmae6JQGwAAAAAAAAAAACIEpKC4fU/SYNM09zSdqBhGMfZPWPDMM6SdFLzvw2SxpmmubbtNKZp7jQM4zxJayQdJKmbpP+TdL/d8QEAAAAAAAAAACB6eHxoGJmmuX3/hGAE/brN5xf3Twi2ME1zr6Q/thl0k2EYJIcBAAAAAAAAAADiGEnBOGAYRifteyRoi6k+irwjqbr5czdJJ9sRFwAAAAAAAAAAAJyBpGB8OEFSWvPnvdr3HkNLpmnWSVrcZtCpNsUFAAAAAAAAAAAAByApGB+Gtfm81jRNlx9lVlmUBwAAAAAAAAAAQJwhKRgfDm3zudDPMm3ffXhYGGMBAAAAAAAAAACAw6REOwCERfc2n3f4WWZ7m8/dQg3AMIwsSWPaDNoqqSHUegEAAAAAAAAAAKIgVdKANv8vME2zIlrBhANJwfjQqc3nWj/LtJ2uk+VU/hsj6f0w1AMAAAAAAAAAAOA050n6INpBhILHh8aH9Daf/e2dV9/mc8dwBTJ27FhdffXVkqQ+ffrooYceUnr6vvDy8vI0atQoSdLPfvYzXXrppZKk3NxcPfTQQ6113HvvvTrssH1PND3//PN1/vnnS5IOO+ww3Xvvva3TPfTQQ8rNzZUkXXrppfrZz34mSRo1apTy8vIkSenp6XrooYfUp08fSdLVV1+tsWPHSpKOP/543XzzzZKkrl276qGHHlLXrl0lSTfffLOOP/54lollYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimRJ4meKKaZr82fwn6SFJZvPffBvq/7BN/X/3s8zP25SpCkMM50oy09PTzU6dOpmSzOTkZLNr166mYRimJLNLly5mamqqKcns2LGjmZmZaUoyU1JSzK5du7bEYmZlZZkdOnQwJZkZGRlmRkaGKcns0KGDmZWV1Tpd165dzZSUFFOSmZmZaXbs2NGUZKampppdunQxJZmGYZhdu3Y1k5OTTUlmp06dzPT0dFOSmZaWZnbu3NmUZCYlJZldu3Y1k5KSTElm586dzbS0NJNlYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimVimxF2mlngknRvtfFOofzw+ND5Ut/nsb6+/ttNVW07lv62SVFdXJ0l67733NGTIkDBUCwAAAAAAEDmTJ0/2ODwlJUU33nhjhKMBAADhUF1drTfeeENPPfWUampqVFVV1TquJa8hSU1NTdqzZ4/6Spoi6fzKyrbVbI1UvHYhKRgfdrX53NvPMn3afN4dhhjaPbZ0yJAhGjFiRBiqBQAAAAAAiJxevXp5HJ6amsq1DgAAYkxjY6OefPJJPfjggyovL/e7XPdOnTSk+oD+VP6+vs2xkqIdAMJiU5vPg/wsM7DN541hjAUAAAAAAAAAACBqXC6XXnjhBQ0bNkx33HGH3wnB9PR03XjjjZo3b57NEUYHPQXjw9dtPh9uGEaKaZouH2WOtigPAAAAAAAAAAAQk5YsWaKrr75amzZt8j1xGz/96U/13HPPaeDAgVJBgUptii+a6CkYH76QVN/8OVPSMd4mNgwjTdLxbQbFZ8obAAAAAAAAAAAkhLKyMt1www064YQT/E4IJiUl6fzzz9fcuXM1d+7cfQnBOEZPwThgmma1YRifSDqredDVkpZ4KXKhpM7Nn3dL+sy+6AAAAAAAAGKfYRjRDgEAAHjgcrk0efJk/fGPf1RFRYVfZTp37qzbb79dN910U9wnAtsiKRg/JqtNUtAwjEmmaa7ffyLDMDIk/bnNoKf9eNQoAAAAAAAAAACAYzQ1NWn69On6y1/+orVr1/pVJiMjQ7fffrvuvPNO9e3b1+YInYekoIMZhpErKb/NoGtM03zB07SmaX5oGMbnkk6SlCZppmEY55mmuaZNfd0lvSZpSPOg3ZL+YUPoUnGxlJlpS9UAAAAAAAB2ySov9zg8LS1NKiiIbDAAAOAALpdL77//vp544gl9n78vhTJIUrKkvpKWS2rYr0xycrKuvPJK/fnPf1ZOTk5kA3YQwzTNaMcQVwzDmCWp336D+0jq3fx5r6TvPBQ9yzTNbfvVlSs/k4LN0+dIWqZ9270kmZIWSNosqaekn0rKaB7nkvQz0zQ/8b5E/jEMY4SkdS3/r5M0IhwVAwAAAAAAAAAA+OlESYva/H/ppZfqr3/9qw466CD/Kyko0PrBgzWy/dCRnp7QGEvoKRh+w7UvKW0lU9KRHoanhjpj0zSLDMM4Vft6A46SZEga2/zXVpn2JRjDkhD0aM4caehQ26oHAADOVV5erk2bNqm6ulqDBg3SkCFDeAcPAACIGRMmTPA4PC0tTbfccktkgwEAACosLNQHH3yg1157TdtKSiyny5G0UFLLFAcffLAmTJigc845JxJhxgSSgnHGNM2NhmEcJ+lSSb/Uvg57vSXtkfS9pOmSppqmudPWQPr3l3JzbZ0FAABwnu3bt+vFuXNVV1cnSVpUXKwfm6bOOOOMKEcGAADgn4rsbI/D09PTudYBAEAEffrpp7rnnnu0fPnygMqlpqfrr3/4g+6+++5952+0IikYZqZp5oaxrgLt6+0XaLkGSdOa/wAAACJm4cKFrQnBFosXL9YJJ5ygTp06RSkqAAAAAAAQK3bu3Kk//OEPevLJJ4Mq/8knn6jfCSeEOar4kBTtAAAAABA/1q/3/Gj9QO/qAwAAAAAAiWPLli16+eWXdcUVV+iggw4KKCGYnJysK664Qh/OnClJ6tevn11hxjx6CgIAAMB2ZWVl0Q4BAAAAAAA4RG1trT777DO9//77mj17tgoKCgKuIyUlRVdddZXuu+8+HXzwwVIQdSQakoIAAAAAAACAD4YR8BteAADAfrZs2aInnnhCzzzzjMrLy4OqIy0trTUZmMv7fgNCUhAAAAC24yIaAAAAAACJa+HChZowYYLeffddud3uoOo4+uijddlll+nqq69W9+7dwxxhYiApCAAAAAAAAAAAgLAyTVMffvih/v73v2vRokVB1zNw4EA988wzOuOMM8IYXWIiKQgAAAAAAAAAAICwKCkp0VNPPaXXXntN33zzTdD1ZGdn65577tEdd9yhjh07hjHCxEVSEPYoLpYyM6MdBQAAiLAsi/cBZJSW8sJvAAAQE6zaM+m1tbRnAADwoqmpSS+++KL+/e9/q6a2VpI0qM34ZEl9JS2X1GBRx/DhwzV27FidddZZOvXUU0kGhplhmma0Y0AcMAxjhKR1Lf+vkzQieuEAAAAAAAAAAAAHOlFSy8NEu3TpolNOOUUXX3yxzjjjDPXs2TP4igsKpMGDpfx8KTc3tCALCrR+8GCNbD90pGma60OrOLroKQh7zJkjDR0a7SgAAECETZgwwePwoUOH6qyzzopsMAAAAEGwas907NhRN910U2SDAQDAoerr6zV//nwtXbpUy5Yt07r1vnNlOZIWSiqRdNhhh+mOO+7QFVdcoU6dOtkdLpqRFIQ9+vcPPRMPAABiTkV2tsfhNb160TYAAAAxwao905iRQXsGAJDwTNPUc889pz/+8Y8qKSkJqo6pL76ok664QoZhhDk6+JIU7QAAAAAQ/2joAwAAAAAQ24qLi3XOOefohhtuCCghmJSUpAsvvFDvv/eeJOnkk0/mOkGUkBQEAAAAAAAAfODiJQAgUdXX1+vvf/+7Dj30UM2aNcvvcpmZmfr73/+u4uJivfPOOzryyCNtjBL+4PGhAAAAAAAAAAAAaMc0TX344Ye6++679e233wZU9txzz9V///tfDRgwwKboEAx6CgIAAAAAAAAAAKDVmjVrdPrpp2vcuHEBJQR/8pOfaMaMGXrvvfdICDoQPQUBAABgOx63BQAAAABAbJgyZYruuOMOuVwun9OmpaVp/PjxOvbYY3XeeecpNzfX/gARNJKCAAAAAAAAgPY9Jg0AgETV0NCgO++8U08++aRf0x999NF6+eWXNWzYMJsjQ7iQFIQ9ioulzMxoRwEAACIsq7zc4/CM0lKpoCCywQAAAATIdLst2zOZDQ20ZwAAcWvFihV64IEHtHHTJg2SlCypr6Tlkhr2mzYrK0t//vOfdeuttyolhTRTLGFtwR5nnhntCAAAQBTkRTsAAACAECTJR3vmkUciEwgAABF2jKT/eRh+oqRFbf6/9tpr9be//U29evWKTGAIK5KCsMecOdLQodGOAgAARNiECRM8Dh82bJjO5KYhAADgcC6XS//97389jsvMzNQNN9wQ4YgAALBHdXW1nnzyST3zzDOqb9i/L6CUI2mhpJLm/8eMGaNHH31Uo0ePjmSYCDOSgrBH//4SLxQFACChmKapiuxsj+NqevWibQAAABzPbGy0bM80depEewYAEPNM09TMmTN10003qaSkxOf0SSkpeuqJJ3TDDTfIMIwIRAg7kRQEAABAWJimaTmOHw4AACAW0J4BAMQr0zS1YMEC/elPf9L8+fP9LvfKK6/oR5dcYl9giKikaAcAAAAAAAAAOIG3pCAAALHINE299957OvbYY3XKKaf4nRAcd845kqQf/ehHNkaHSKOnIAAAAMKCi2gAACDW0Z4BAMST0tJS3XLLLZo+fbrfZQ499FBNmjRJpx9yiDRzpo3RIRroKQgAAAAAAACIpCAAID64XC49+uijGjZsmN8JwZ49e2ry5Mlau3atTj/9dJsjRLTQUxAAAABhwTt4AABArCMpCACIdevWrdPVV1+tlStX+l3mjjvu0F/+8hd16dLFxsjgBPQUBAAAQFhwEQ0AAMQ6bnICAMQql8ulRx55RKNHj/Y7IXjKKado+fLlmjhxIgnBBEFPQdijuFjKzIx2FAAAIJIaG5VVXu5xVMcdO6SCgsjGAwAAEKi9ey3bM51dLtozAABH2rBhg+69916tWbtWfSUlS+orabmkBg/Tn3nmmbrvvvt08sknc9NLgiEpCHuceWa0IwAAABHWQVJetIMAAAAIQaZ8tGcefjgygQAAEIDhkj7wMPxESYva/H/44Ydr6tSpGj16dGQCg+OQFIQ95syRhg6NdhQAACCC6uvrNWXKFI/jRowYwYvKAQCA41VVVem5557zOK5Lly669tprIxwRAACeVVVV6fbbb9f8BQsOGJcjaaGkkub/MzMz9dvf/lb33Xef0tLSIhkmHIakIOzRv7+UmxvtKAAAQCTV16siO9vjqNrevWkbAAAAx3NXVFi2Z5SVRXsGAOAImzdv1rmXXqoNGzZ4na5J0llnnaWnn35a/fv3j0xwcLSkaAcAAACA+GCaZrRDAAAACAntGQCA082dO1fHHHOMz4SgJP37X//SzJkzSQiiFUlBAAAAAAAAQN6TgoZhRDASAADaM01TEyZM0M9//nPt2bPH67SnjB0rSRo/fjznL7TD40MBAAAQFlxEAwAAsY6eggAAJ2pqatJdd92lSZMmeZ2ua9eueuaZZ3TR6NHSQQdFKDrEEpKCAAAACAsuogEAgFhHewYA4DR79+7VZZddpg8++MDrdIcccohmzJihQw89VCooiExwiDk8PhQAAAAAAAAQSUEAgHOYpqnXX39do0eP9pkQPP3007VkyZJ9CUHAC5KCAAAACAsuogEAgFhHewYA4ATr16/XmDFj9Mtf/lKbNm3yOu1vf/tbzZo1S926dYtQdIhlPD4UAAAAYcE7BQEAQKyjPQMAiKba2lo9/PDD+uc//ymXy+V12pSUFD377LO66qqrIhQd4gFJQdijuFjKzIx2FAAAIIKMvXuVVV7ucVzHHTt4pwEAAHA8o6zMsj3T2e2mPQMAsM3ChQv1wAMPqKCwUP2bhyVL6itpuaSGNtNmZWVp+vTpOvXUUyMeJ2IbSUHY48wzox0BAACIsExJedEOAgAAIAQ95aM98+c/RyYQAEDCOVHSfC/jFjV/HjRokGbNmqXhw4dHJC7EF5KCsMecOdLQodGOAgAARFB1dbWeffZZj+OOOOII7mAEAACOV1paqldffdXjuKysLF1zzTURjggAEM8WLFige+65R9t37PA4PkfSQkklzf9feeWVevTRR9WjR49IhYg4Q1IQ9ujfX8rNjXYUAAAggtyVlarIzvY4rrZ3b9oGAADA8VypqZbtmeRu3WjPAADCoqqqSr/73e/01FNP+TX98SecoBnPPEPvQISMpCAAAADCwjTNaIcAAAAQEtozAAC7rVq1Spdccok2b97sc9ru3bpJu3fr5ZdfljF4cASiQ7xLinYAQDTs3r1ba9euVWlpKQ1+AAAiwDCMaIcAAADgE9cIAAB2MU1TkydP1o9//GO/EoLXXXedPvnkE0n8pkb40FMQCcU0TS1YsEALFixoHXbEEUfovPPOU1ISOXIAAELBRTQAABDraM8AAOxQVVWlG264QW+88YbPaQ855BA9++yzOvnkk6WCAvuDQ0IhC4KEUlxc3C4hKElr1qzRmjVrohQRAAAAAABwinhKCpqmqfr6+miHAQAJ7/3339ewYcP8SgjecccdWr169b6EIGADegoioSxZssTj8FWrVmnUqFGRDQYAgDjj7SIajzoBAACxIF7aM4sXL9YXX3yh6upq9evXTxdccIF69OgR7bAAIKG43W799a9/1R//+Eef0w4aNEhTp07VKaecEoHIkMjoKYiEsn79eo/Dt27dGuFIAACIP/F0Zz0AAEhM8dCeWbNmjebOnavq6mpJ0rZt2/TCCy+ooaEhypEBQOJYtmyZTjrpJL8SgpdeeqnWrFlDQhARQU9B2KO4WMrMjHYUB8gqL7ceyfOZAQAISdKePZbn2o47dnCuBQAAjpe8datle6aTacZEe6Zg/vwDl6G8XMWLFmnw4MHRCQoAEkRBQYEeffRRzZg5U5I0SFKypL6Slktqe3tGWlqaJk6cqBtvvDGmeqMjtpEUhD3OPDPaEXiU523kxIkRigIAgPjUVT7OtQAAAA43QD7aM3/6U2QCCcG5ViO47gEAtsuVNKn5b38nSlrU/Pnggw/WW2+9paOOOipSoQGSSArCLnPmSEOHRjuKA0yYMMFyXF5eXsTiAAAgHu3evVvTpk3zOO6oo47SmDFjIhwRAABAYAoLC/Xuu+96HJeVlaVrrrkmwhG1Z5qmFi5cqJUrV7YOO+qoo3TyySe39jKxuvaRnZ2tq666KhJhAkDCqKmp0eTJk/Xcc8+ptq7O4zQ5khZKKmn+/7bbbtPDDz+srKysSIUJtCIpCHv07y/l5kY7igNUZGdbj3RgvAAAxBJ3p06W59ra3r051wIAAMdrdLks2zNG165Rb89s/u47zfv+e6lNjPMLCtT3xz/W0Oabs63iT+nePerxA0A8WbRoka666ipt3rzZr+lT09P1ziuv6MILL7Q5MsBaUrQDAAAAQHwwTTPaIQAAAITEW3vGCW2dpUuXehy+ZMmSCEcCAIkrPz9fv/zlL3XiiSf6nRCUpNmzZ5MQRNSRFAQAAAAAAADk/KTgd99953F4fn5+hCMBgMRTVFSku+++W4cddphef/11v8qMGDFCL0ydKknKpbc2HIDHhwIAACAsvF0oa3nHDQAAgJM5PSkIAIis3bt365lnntH777+vZcuWqampya9ygwYN0p///GddfvnlSt661eYoAf+RFAQAAEBYcKEMAADEOtozAABJampq0ssvv6y8vDzt2bPH73I9evTQAw88oJtvvllpaWn2BQgEiaQgAAAAAAAAIHoKAkCiy8/P1zvvvKMpU6bo+++/D6jsVVddpQkTJqhr1672BAeEAUlBAAAAhAWPDwUAALGOpCAAJB63263//e9/euKJJzR79uyAj/cjR47Uv//9b5155pk2RQiED0lBAAAAhAUXygAAQKwjKQgAiWP37t2aOnWqJk+eHHCvQEnq27ev/vKXv+jqq69WcnKyDREC4UdSEPYoLpYyM6MdRTumaSqrvNx6goKCiMUCAEA8Si4ttTzXpm/fzrkWAAA4XkpRkWV7pmNdXdTbM/5c17CapnObaQAgkW3cuFHTpk3T9OnTVVdfL0ka1GZ8sqS+kpZLavBQfsiQIcrLy9M111yjjIwM+wMGwoikIOzhwK7ShqQ8bxNMnBiZQAAAiFO95ONcCwAA4HCHNv9Z+vvfIxSJZ3neRjZf1/A6zUMPhSsUAIhZh0l6pPnPmxMlLWr+nJycrP/7v//T5ZdfruHDh/OKDMQskoKwx5w50tCh0Y6indraWj311FMex6WlpemWW26JcEQAAMSXHTt26LXXXvM4bvTo0TrppJMiHBEAAEBgvv76a82ZM8fjOCdcO5gwYYLluLy8PK/TZGdn66qrrgp/UADgYDU1NXrzzTf17LPPqqi42K8yOZIWSiqRlJKSossuu0z33nuvhg0bZmeoQESQFIQ9+veXcnOjHUU7jZWVqsjO9jguMzPTcfECABBrXB06WJ5r6/r04VwLAAAcr6GiwrI9k5aWFvX2jFVsklpjs5ompXv3qMcPAJGydu1avfjii5o6dap2794dVB133nWXzs/L08CBA8McHRA9JAWRMBobGy3HpaSwKwAAECrTNC3H8WgVAAAQC7y1Z7yNAwA4w6JFi/SXv/zFste3NykpKRo/frzuvvBC6ZJLdMcdd0gkBBFnyIQgYbhcLstxJAUBAAAAAACJPwCITd9//71uu+02zZ49O+Cyffv21c0336wbb7xRffr0kQoKwh8g4BBkQpAw6CkIAIC9uIgGAABiHT0FASC2uFwuPfbYY3rwwQdVW1sbUNmf/OQn+vWvf62LLrpIqampNkUIOAuZECQMbz0Fk5OTIxgJAAAAAABwIrfbbTmOpCAAOMvKlSt1/fXXa/Xq1X6X6dChg6644grdddddGjlypH3BAQ5FUhAJw1tPQd5zBABA6HinIAAAiHXx3FMw1uMHgBY7duzQX/7yF02ZMsXrzRxtdenSRTfffLPuvPNO9evXz+YIAeciKYiE4a2nIA1jAABCx/kUAAA4gWma2rVrl4qKitSrVy/17dvX7xuUaM8AgHO53W5NnjxZ9913n6qrq/0qc9xxx+mmm27S+PHj1blzZ5sjBJyPpCDsUVwsZWZGO4p2jMJCZZWXexzXKTWVF8gCABCi5KIiy3Nt+vbtnGsBAIDtTNPU4sWLtWzZstZhhx56qM4880wlJSX5LN+huNiyPZOUlBT19oxVbJJaY7OaprNpRj1+AAjW1q1b9bvf/U5Lli5Vd0ndJSVL6itpuaSG/aY/7rjj9PDDD+u0007jyTVAGyQFYY8zz4x2BAc4rPnP0v33RygSAADiU46kvGgHAQAAEpoh6YTmv2Ac1fxn6bHHgqw5PPK8jZw40fc0f/pT2GIBgEgaIOl1i3EnSlrU/LlLly76+9//rptuusmvm0GARENSEPaYM0caOjTaUbTz9ddfa86cOR7H9erVS5dddlmEIwIAIL5s3bpV77zzjsdxP/rRj3TCCcFengMAAPDPrFmz9M033xwwPDs7W1dddZXP8qtWrdJnn31mOT4vLy+U8EI2YcIEy3EtsVlN07VrV1199dVhjwkA7FJfX6///Oc/eurppz2Oz5G0UFJJ8/8XXnihHn/8cfXv3z9SIQIxh6Qg7NG/v5SbG+0o2mmoqFBFdrbHcR27d3dcvAAAxBqXaVqea2t79+ZcCwAAbLe8rEzy0B6pkPxqi9Rt22bZnpGfddjJn9ispknu1i3q8QOAPxoaGjRt2jT99a9/VYEfjz3u3bevHp08Weeff77tsQGxjqQgAAAAwsI0zWiHAAAAEBJf7RnTNHk3FQDYpKKiQi+//LL+9a9/qbCw0Of0HdPTpbo6ffrpp0o79NAIRAjEPh6qi4ThrWHPRUwAAAAAAOBPUhAAEF6FhYW64YYb1K9fP912221+JQRPPPFEzZ49W5KUlpZmd4hA3CApCAAAgLDgBhwAABDraLMAQOTU1dXp4Ycf1rBhw/Tss8+qpqbGr3J/+9vftGDBAuXySGQgYDw+FAmDC5UAANiL8ykAAIh19BT0ze12yzAMHqMKICSzZ8/W7bffrs2bN/tdpnfv3nr66ad17rnn2hgZEN9ICgKiUQ8AAAAAAEgKelNXV6cZM2bou+++U2pqqo466iidcsopJAcBBOSrr77SPffcozlz5vhdJiUlRdddd50eeeQRdevWzcbogPhHUhAAAABhQa98AAAQ60gKWnvjjTdUUFAgSWpoaNDnn3+u5ORkjRkzJrqBAYgJTU1NeuSRR/TQQw/J7Xb7VaZDhw669tprdd9992nQoEE2RwgkBpKCsEdxsZSZGe0o2ulQXKys8nKP4zoZhtTcsAUAAMFJKSqyPNemb9/OuRYAANjOqi0iya+2SFpJidc6zPx8KTU1iMjCw5/ls5qms2kG3R6rqqpS+ZdfKmu/4fmffqoxXKgH4MOuXbt05513auGiRRogKVlSX0nLJTV4mL5Pnz669tprdfPNN2vAgAERjRWIdyQFYY8zz4x2BAcY2fxn6cEHIxQJAADxabCkvGgHAQAAElqet5ETJ/os/+Pmv1DqsFOet5HNsXmd5k9/Cmq+nb3VG2SdABJHd0kvexh+oqRFbf7Pzs7Www8/rBtuuEEdOnSITHBAgiEpCHvMmSMNHRrtKNpZu3atPvnkE4/jsrOzddVVV0U4IgDA/lwul5YvX66tW7eqc+fOOvzww5WTkxPtsOCnzZs3a8aMGR7HHX300Tr55JMjHBEAAEg0EyZMsByXl5fns/yiRYu0fPlyy/G33HKL0tLSgogsPPxZPqtpunbtqquvvjqo+S5evFhLly71OO7OO+/kvYIJrqioSBs3blRDQ4MGDx6sww47jG0Camho0NSpU/Wvf/1LrqamduNyJC2UVNJm2PXXX69HHnlEPXv2jGSYQMIhKQh79O8v5eZGO4p2GnbtUkV2tsdxKd27Oy5eAEg0pmnqjVdf1XfffbdvQG2tVs6fr1/96lfK5RgdE1z19Zbn2ro+fTjXAgAA21m1RST51Rap/e47r3WYgwZJ6elBRBYe/iyf1TTJ3boF3R6ry8+3nndurkQCKGFt2rRJb376aes74paXlemktDSdeuqpUY4M0bRq1Spdd911Wr16tdfpmiT95Cc/0aOPPqrjjjsuIrEBiS4p2gEATpDILwoHAKcoKyv7ISHYrKmpyeud2nAWzqcAACDW+WrP0N4B2vv8889bE4ItvvjiCzU2NkYpIkTTsmXLdO6552r06NE+E4KSNOnxx/X555+TEAQiiKQgEgYNdwBwtkWLFnkcvmHDhghHgmB5O9dyHgYAALGANkvg+M4Sl9vtVnFx8QHDm5qa+B2XYNavX68zzzxTxx13nOUrJdoaPmyYJGncuHE8ahaIMJKCgGjAAoATVFRURDsEAAAAJLh47ikYy7HDmZr2e09cW1VVVRGMBNHidrv12GOPafTo0Zo7d65fZa6//npNnz7d5sgAWOGdgkgYNH4BALAX51oAABBOVVVV+uabb1RdXa2DDz5YOTk5ts8znpOCduE7SVze1j29v+JbQ0OD3nnnHT322GN+v/IjMzNTkyZN0jXXXCMVFNgbIABLJAUB0YAFAMBusXiudbvd+v7771VUVKQ+ffpoyJAhSkmh+QwAQCTs2rVLL774Ymtvo/nz5+tnP/uZ7e+dIinoWaIuN7wjKZh4duzYoaefflpTpkxRSUmJ3+XGjh2rl19+Wf3797cxOgD+4KoGAAAAwiKeLha53W699957Wrt2beuwgw46SJdeeqk6dOgQxcgAAEgMn3766QGPH5wzZ45GjRqltLQ02+ZLUhDwn9vtthyXlMRbq+LJ2rVr9a9//UtvvPGGGhoa/C531FFH6Z577tHFF1/MNgE4BHsiEoa3hjuNegCIPu4kjX3xdD79/vvv2yUEW4atWbMmShEBAJBY1q9ff8Aw0zT11Vdf2TrfeGrPhJO3tjrfWeLylhTk913sM01TX3zxhc4991wdccQReumll/xOCJ5wwgmaNWuWVq5cqV/84hckBAEHoacg7FFcLGVmRjuKdlK3bVNWebnHcV2amniWNQBEWWZZmeVxmmN0bOhQXGy5DtO3b/d7PbpcLhUVFammpkY5OTnq0qVLGKP0z+r33vO4LCvfeUeju3ePeDwAACQaqzbFntWrpV69Ai4nya+2SFpJie86Onf2WY9d/Fk+q2k6u91Bt6vTt2/33lbnEesJyayuttwu0kpK+B0Xo8rLy/XMM8/o/fffV/G2bZKkQW3GJ0vqK2m5pP1ThJmZmXrsscd0/fXXkxgGHMrgbh6Eg2EYIySta/l/naQR0QsHAAAAAAAAAGCTEyUtavP/mWeeqf/+978aMmSI78IFBdLgwVJ+vpSbG3wQ4arH7npDqS/YsuFYBju+X7vWmR31FxRo/eDBGtl+6EjTNA98nEEM4TYe2GPOHGno0GhH0c6XX36pBQsWeBzXuXNnXXfddRGOCADQ1ttvv62ioiKP4/Ly8iIbDILy9ddfa86cOR7HjRo1SmPHjvVZx9y5c7Vhw4Z2wzp06KAbb7wxou/ymzBhguU4tkcAAOxndS4ePny4zjjjjIDLSf6dwz21Rdq69tpro/IUgxb+LJ/VNFlZWbrmmmuCmu8XX3yhZcuWeRz361//mncuJ6iKigpNnTrV47jTTjtNhx9+eIQjQrDy8/N13333acnSpT6nzZG0UFKJpI4dO+qKK67Q7bffrpEjR/ooCcAJSArCHv3725PpD0HDjh2qyM72OM7dubPj4gWARLO3Z09V7N3reSTH6JjQWFlpea6t7d3br/W4uKRE8lDHuupqHXXUUaGG6Der5ZDE9ggAQARYnYtrevXyei4O9Rxe06uXKkpKLMe7Bw6Uunb1WY9d/Fk+q2mSsrODbsfUff+99bxzcyWSggnJtWuX5XbR6MBrg2jP7Xbrk08+0VNPPaX3339fLpcroPL33Hefxv/2t+rWrZtNEQKwA2/4RMLgUbkA4Gy8byD2eTvXhnoe3rRpU0jlAQAA/OGrzcK1hQPxnSQut9ttOY7fd87V0NCgiRMnaujQoTrjjDP0zjvv+J0QPProozX5iSckSTfeeCMJQSAG0VMQEA1YAACcrqFh/1fYAwAAhF8sJwXr6uqUnp4e7TCQQLztD0lJ9EVxoqVLl+r666/XunXr/C6TnJys0047Tb/5zW90+umnyygstDFCAHYjKYiEYWfvBQAAYO/5tL6+3ra6AQAAWnjr+SQ5+/rBP//5Tx1zzDHRDgMJhJ6CsaGkpESLFi3S66+/runTp/t9HEtNTdXvf/973X777cr29uhiADGFpCAAAIg5pmlq586d2rVrlwYMGKDMzMxohwTZewMOPQUBAEAkxHJPQdM0tXz58qjMF4mJpKAzmaaplStX6u2339b06dP17bffBlzHmDFj9NRTT+nQQw+1IUIA0URSEBANWACIJU1NTZo+fbo2bNjQOuy8887TqFGjohcUbEdSEAAARALXBwD/eUsK8vjQyDJNU0uXLtXbb7+tt99+W4VBPuJzyJAhuv/++3X11VeT2AXiFElBJAwa9gDgbP7+4Fi2bFm7hKAkvf/++xo0aBCPNIkyO8+1dXV1ttUNAADQIpYfHwpEGj0Fo880Tb333nu6//77tXHjxqDqSElJ0fnnn6+bb75Zp5xyCgldIM6RFIQ9ioslhz3KLa2kRFnl5R7HpdfWSgUFkQ0IANBOZlmZ5XG67TF6/YcfKqu6+oBJNv7vf/rxj39sU3TwR+q2bdbn2u3b/TrXWm4Dkuo3bVJaWlqw4QXEWxy0GQAAsJ/VuTijtNTruTjUc3hGaanXOozCQmnvXp/12MXr8vnQ2e0Ouh2Tvn2797Z6hNpocJakoiLL7SKtpETKyIhwRIll3bp1evjhh7Vk6VJJ0qDm4cmS+kpaLsnX81Z+8Ytf6D//+Y/69etnX6AAHMXgDieEg2EYIySta/l/naQR0QsHAAAAAAAAABLWiZIWWYw75JBD9O9//1vnnntu4BUXFEiDB0v5+VJubnDBhaOOcNZjd72h1BdsWSetJ7vrtKv+ggKtHzxYI9sPHWma5vrQKo4uegrCHnPmSEOHRjuKdlasWKGFCxd6HJeWlqZbbrklwhEBANqaPn26tmzZ4nFcXl5e6+cJEyZ4nIZjefStWbNG8+bN8zju8MMP12mnneazDqv1K0lZWVk6/fTTtWTJElVVValnz5466aSTlJWVFWzIQcXRdnsEAAD2sDoXDx8+XGeccUbA5ST/zuHvvfeeCrz0prv88svVs2dPn/XYxdvy+SPYdswXX3yhZcuWeRx38803Kz09PYSoEKsKCwv17rvvehx3zjnnaMiQIRGOKL5VVlbqqaee0vPPP69aL69XyJG0UFLJfsO7du2qn/3sZ7r++ut5TCiQwEgKwh79+9uT6Q9BXVGRKizeNZWenu64eAEg0dT06qWKqirPI9sco62O5WlpaRzLo6xh507L9VPTq5df68eqvCRVSHpxwQK5XC4pKUlbdu3Sd59+qltvvVWpqalBRh14HE7bzrZt26Z169apvr5ehx56qIY67MYsAACCYXUuru3d2+u5ONRzeFX37qqoqLAc3zRggNSnj8967OJ1+fywprJSRxxxRMDlajdvtpy3OWiQ1LFjSHEhNjU0NlpuFw39+jmu3RyrXC6XnnzyST344IPavXu33+WM5GT97PTTNX78eJ199tnq3bs373oEQFIQkHhROAAA4RCJ86nL5Wr3f0VFhVasWKETTjjB9nk70ebNm/Xaa6+pqalJkrRq1SqdfvrpCft9AAAQKl/tmVi/frB48eKgkoKAJ263O9ohxL2lS5fqhhtu0Nq1a/2a3jAMnTJmjDR/vlasWKGuo0bZGyCAmEMfYQAAAIRFtC6SffTRR1GZrxPMnz+/NSHY4tNPPz0geQoAQCyJZuIt3pOC27dvV2NjY1jrjPXvBMHzlhRkuwjNihUrdNlll+nHP/6x3wnB0047TatXr9bUqVMl7XtcKADsj6QgEoa3xggNFQCIfRzLnc3u9ePtMV/xqqmpSUVFRQcMd7lc2rRpUxQiAgAg9vnq+RQPbc5gloFHDsITegqGl9vt1nvvvaeTTz5Zxx57rF577TW/9tehQ4dqxowZ+uijj+gJDMAnHh8KAACAsIjmRbLS0lJlZWVFbf7R4K03YCImSQEA8cPJPQUTFd8LPKGnYPjMnTtX//d//6evvvrK7zI9e/bUH/7wB918883q0KGDjdEBiCckBZEw6CkIAPGNY3liS8THZXrb5rmbHwCA4MT740PtwHeSuOgpGBrTNDVv3jz99a9/1aeffup3uYyMDP32t7/Vb3/7W3Xu3NnGCAHEI5KCAAAACAtuwIksbxdhkpJ4SwAAIHY5uacgbRrgB7T/g/fVV1/prrvuCigZKEkXX3yx/vOf/ygnJ8emyADEO5KCsEdxsZSZGe0o2kkrKVFWebnHcSkpKVJBQWQDAgC0k1lWZnmcbnuMtpqmQ4cOHMujLHXbNsv103HHDr/Wj+U24ENKUZHUsWNQZQOOwynbWU2NZZxpJSXOiRMAgEA1NQXdpgj1HJ5RWuq1jqQtW6SmJp/12CXYtlI7BQVSampARdK3b/feVnfYNSBERkpRkfXvs+JiiV5sB3C5XJo0aZImTZokt2lqkKRkSX0lLZfUYFHukEMO0aOPPqpx48ZFLFYA8cngrg2Eg2EYIySta/l/naQR0QsHAAAAAAAAAGLGiZIW7Tds7Nixuuuuu3TOOef4/zSQggJp8GApP1/KzQ1vkOGqP1wx2rWs4a43lPqCLeuk9WR3nXbVX1Cg9YMHa2T7oSNN01wfWsXRRU9B2GPOHGno0GhH0c6SJUu0ZMkSj+OSk5N1++23RzgiAEBb7733ngos7t7Oy8tr/TxhwgSP03Asj76VK1fq888/9zhu+PDhOuOMM7yWN01TEydODGreZ599tg455JCgynpitZ1J7bfHaKqsrNTzzz/vcdxpp52mww8/PMIRAQAQHi6XS//97389jvPVpgj1HP7KK6+orKzMcnxycrIuuugi9evXz2dddvC2fP665ZZblJaWFlCZRYsWafny5R7H3XDDDcqkp2BCWr16tebPn+9x3Jlnnqlhw4ZFNiCH2rhxo5544gnNnDlTnrrn5EhaKKmkzbCLLrpI999/v44++ujIBAkgYZAUhD3697cn0x+CuoICVWRnexyXlJTkuHgBINHs7dlTFRUVnke2OUZbHcuTk5M5lkdZXXGx5fqp7d3b5/ox3W7L8r409OsX1vXvNQ6HbGeu3bst43Tl5DgmTgAAAmU2Ngbdpgj1HF6Rna0Kl8vrNC8uWKDrrrtOvXr18llfuAXbVmrLHDRISk8PqEzd5s2W83YPHMhjIhNU3fbtlttFuNvnsai0tFR33XWXXn31Vb+mb5I0ZswY/eMf/9Bxxx1nb3AAEpaffY4BAACA4PnzyHqnPNbeVxxOidPtdluO8/vRQgAAoB1/zvMNDQ1avz52nxwW7rbMihUrwlofYoe39qhT2szR4Ha79cILL2jYsGF+JwQl6c033tD8+fNJCAKwFVcLACV2QwUAnMIwjJDKcyyPvmiug3DOOx6SgqHuTwAARFMstCk+++wzmyOJHZ999pmKioqiHQaiwFt7NFF99tlnOvbYY3XNNddo9+7dPqfPzs7WfydNkiT96Ec/sjs8ACApiMThlAt4AADAM6ecq31d3HDKxQ96CgIA4lUsJAVjmR3LuHr16rDXCeejp+AP6urqdPfdd2vMmDFatWqVX2VOPvlkffXVVzrnnHNsjg4AfsDVAkCJ11ABgHjEsTz6vK0Du9dPOOtvamqK2LxCQU9BAEAisvsc55Sbf+xkR1tm5cqVYa8TzueUdnG0rV69WqNHj9Zjjz3m1/TDhg3Tyy+/rE8//VQDBgywOToAaI+kIBIGDRUAiF0cw2NDqOvJKeuZnoIAAEQXPQWB2JDoPQVN09SECRN03HHHacOGDT6nHz58uN555x2tW7dOl19+OW12AFGREu0AAAAAACeJh6QgPQUBAAhOoiQyIlEG8c8p7eJo2Lt3r6677jq98cYbPqft0KGDHnjgAd17771KTU2NQHQAYI2kINDMNE0uoAFAFHk7BvtzjOZCRfSF+vjQUNZhONe/r4sbTtnW6CkIAIhXvs61VVVVcrvdysrKivi840EiLCMiI1F7Cn7zzTe6+OKLtWbNGp/TXnDBBXrkkUd02GGHRSAyAPCNpCDsUVwsZWZGO4p20kpKlFVebj1BQYFEUhAAoiazrMz6OF1QIDUnOXweyxE13s61GaWlvtdPQ4P39etFh+JiqUuXoMruz6ys9BqHmZ/viHaOUVhoGWfy1q0SdyEDAGKUUVdneY77ft48fT9vniQpJydH55xzjtLT01vHh9pW7LRzp5JqavwLNAptz2DbSm0ZhYVSp04BlUnfvt33vGmLJ5zUbdsst4vUbduk7t0jHJG9TNPUq6++qocffli1dXUa1Dw8WVJfScslNTQP69Onj55//nn9/Oc/j0qsAGDFiOe7NhA5hmGMkLSu5f91kkZELxwAAAAAAAAAiJgTJS2SdNFFF+mpp55Sd3+TogUF0uDBUn6+lJsbeiDhrs+O+sMVo13L6qR1EmxZJ60nu+u0q/6CAq0fPFgj2w8daZrm+tAqji56CsIec+ZIQ4dGO4p2Fi5cqBUrVliOv+OOO3jUFgBE0QcffKDvv//e47jbb79dycnJkqQJEyZY1pGXl2dDZPDX4sWLtXTpUo/jDj30UJ93ydbX12vKlClBzfuMM87Q8OHDgyq7v927d2vatGmW46+99lp1CVOvxFBs3rxZM2bM8Dhu3LhxOvjggyMcEQAA4VFbW6unnnrK7+kvuOACDRq0r89OKG3Fb7/9Vh9++KHf841G29Pb8vnruuuuU+fOnQMq4+uaikRbPBHNmzfP8hGap556qo444ogIRxR+pmnqlVde0Z/+9Cc1ulwep8mRtFBSeWqqnp08Wddeey2vKALgWCQFYY/+/e3J9Ieg7rvvVJGdbTneHDRIar7gDACIvL09e6rC4tEz5qBBUsq+Zou3Y7nTzj2Jpi4/33L91PTq5XP9mHV13tevFw39+oVt/Td27Og1jqYBA6Qg4wynhtpayzgbHdgWAwDAX+69ewNqE3yyebOuHTNGUvBtxbVr12r6F18Edo6Pwrk22LZSW+6BA6UA38fo65qKJNoeCaimVy/L7aK+b9+Y3yYaGxt122236emnn/Zr+jenT9eIs8+2OSoACA3dogAAgCNwJ2XsC/Wx9E55rL3b7Q5pfKR4i8Mp3yUAAJFQXFwcch3Lli0LQySxgXYCwsUp7WI77Nq1S2eccYZfCcExJ58sSRoxgpcpAXA+egoiYfhq9NIoBgDnCvYY3djYqAULFqigoEBdu3bVscce2/poKYSft/UUS+dZkoIAAERXoOexcJybi4qKQq4DSDTx2h79+uuvNW7cOG3evNnrdOnp6frXv/6lX599tnTQQRGKDgBCQ1IQAADEJdM09eqrr6qgoEDSvjvIN23apF/96lckBh0qlAsH4bzo4OvColMucDglOQkAQKxzyrk9UhJteWGfeEwKzpkzR5dccokqKyu9Tvfzn/9cjz76qIYNGyY1/+YEgFjA40ORMOgpCACxK5hjdElJSWtCsIXL5dKKFSvCFBX2Fy/n0qamJq/jnZKMi8eLMAAASJE/jznl3A7Emnhrcz777LM666yzvCYEU1NT9eSTT+rDDz/clxAEgBhDUhAAAMSlBQsWeBy+bt26CEcCyb8LBrHSU9ApFw6dEgcAALEu0c6p8ZbIQfTEy01q9fX1+r//+z/dcMMNXpepZ8+emjdvnm666SYZhhHBCAEgfHh8KNAslhorABCPvP2oCuYYvWvXrlDCQRDi5VwaK48P9daj0SkxAgAQjEifx3w9JSDe0E5AuMRDQn3NmjW64oortGbNGq/TjRw5UjNmzFBubm5kAgMAm5AUhD2Ki6XMzGhH0U5aSYmyysstx5v5+VJaWgQjAgC0lVFaan2cLihoPUZ7O5a3fZdDRmmpXFaPfeGdD7bwdq7NKC31/b3v3et9/XrRobhY6tYtqLL7MwoLvcZhFBZKjY1hmVcoOhQXW8bZobhY6tQpwhEBABAeRlVV4G2CggKZpul3W7Etd01NcG2QKLQpg20rtZW0ZYtUVRVQmfTt233PmzZ2wum4Y4fldpG6bZujt4mmpiY9++yzevTRR9XQ2KhBkpIl9ZW0XFJDm2nPOeccvfrqq+rcuXNUYgWAcDK4OwjhYBjGCEmtz2NbJ2lE9MIBAAAAAAAAgICdKGlR8+ff/OY3+sc//qHk5GTrAgUF0uDBUn6+FExPwlDL212fHfWHK0a7ltVJ6yTYsk5aT3bXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7SxYsEBffvml5fhbbrlFafQUBIComTFjhjZv3uxxXNtj9IQJEyzryMvLa/08ZcoU1dfX+5wO4ePtXDtkyBCdc845XstXV1fr2WefDWrep556qo444oigyu7vm2++0axZsyzHjx8/Xjk5OWGZVyiWL1+uRYsWeRz3s5/9TIcddliEIwIAIDwqKyv1/PPPB1QmLy9Pbrdbjz/+uNdpPKmoqNDUqVMDmp+3+uzkrS3sryuuuELdu3cPqMzChQu1YsUKr9PQxk4806dP15YtWzyOO+mkkzR69OgIR+TbzJkzdf/996vSQ2/ZHEkLJZVo3+stJk6cqNtvvz3SIQKArUgKwh79+9uT6Q9B7caNqsjOthxvDhokpadHMCIAQFs1vXqpYvduj+PcAwdKHTtKktdjedtzz67OndWUkeFzOoSPt3NtTa9ePr93s6rK+/r1oqFfv7Ct13ofcYRzXqGo3bLFMk6nxAgAQDDce/YE3ibIzZXZ1OR3W7Gtxp07g2uDROFcG2xbqS33wIFSz54Blan77jvf86btkXCqundXhcWjaOv79nXUNmGapv7xj3/ovvvu8zlt127dNGPaNJ199tkRiAwAIoukIBKGr0fl8ihdAIguwzDCWl9TU1NY60No/DnPOuVc7Ha7QxofKd7icMp3CQBAMII9jwVbzinn9kgJ5nuibQFPvG0XTtpmqqurdd111+nNN9/0a/o5c+aoxzHH2BwVAERHUrQDAAAA8MVJPyhhLdT1FEr5cG4j8ZAUBAAgEQXbHuBmMiA4sdAe3bRpk4477jifCcHOnTvr3//6lySpR48ekQgNAKKCpCDQjAvOAABAip2nC9BTEAAQryLdUzDRkoKxkMhBbHB6e/Tdd9/Vscceqw0bNnid7ic/+Ym++uorjR8/PkKRAUD0kBREwnBCYwQAEBqO5c4W6uODnNJT0FddTrmQlmgXMAEA8IWkoH+eeuopffDBB2psbDxgXF1dnb7++mvl5+fL5XJFITrEEqe0i/f39ddf6xe/+IUuvPBCVVm887DFn/70J82fP1+DBw+OUHQAEF28UxBoxoVmAHCulmM0x2pni5f1EytJQaffmQ0AQLCCfecdSUH/ffnll6qpqdGll17aOmzLli165ZVX1NDQIEnq3r27rrzySnXp0iVaYcLhnNYe/eyzz/SXv/xFn3zyic/5p6en69lnn9Xll18eoegAwBnoKYiEwcUxAACcLVZ6CjqlTeGU5CQAAE4QSlIwUc+pmzZtUm1traR939+bb77ZmhCUpF27dul///tftMJDDHBKUrCpqUl33323xowZo48//tjnvAcPHqzFixeTEASQkEgKAs2ccoEPAHAgegrGhlAfH+oUvi4MOuXCoVMuwgAAEG70FIycjRs3StrXS3Dv3r0HjP/6669pV8CSE7aN0tJSjRs3To899phf05911llauXKlRo0aZW9gAOBQPD4U9iguljIzox1FOx137FBWebnleKOw0HExA0AiySwrszxOtxyjTZfL67FcBQWtH/2dDuHj7VybWVbm83s39uzxvt68SN22LWzrNXXbNq9xpBQVSQ54jFZaSYllnB2Ki6Vu3SIcEQAA4ZG0e3fgbYKCAqm+Pqg2YNKWLcG1QaLQpgy2rWQlpahIys7W9qVLLet2f/+90rdv9z1v2tgJJ7OsTI179ngcF872uSemaeqDDz7QQw89pPI9ezSoeXiypL6SlktqaDO9YRh68MEH9Yc//EFJSfSTAZC4DCfc0YHYZxjGCEnrWv5fJ2lE9MIBAAAAAAAAkKBOlLSo+fPIkSP12GOP6ac//an3QgUF0uDBUn6+lJvr/8yCLReu8nbXZ0f94YrRrmV10jqJ1nYZrjoiUadd9RcUaP3gwRrZfuhI0zTXh1ZxdNFTEPaYM0caOjTaUbTzySefaO3atZbjr7/+enXq1CmCEQEA2vrwww/17bffehzXcoxubGzUE088YVlHXl5e6+cJEyb4NR3C56OPPtL69Z7bxgcddJDOPfdcr+XLy8v14osvBjXvMWPG6Kijjgqq7P5Wrlypzz//3HL8aaedpsMPPzws8wrF7NmztWnTJo/jTj31VB1xxBERjggAgPDYtWuXXnrppYDK/PrXv1Z9fb2effZZy2ms2oAbNmzQ3LlzA5qft/rs5K2NG4yf//znOvTQQ7V8+XItWrTI4zS33nqrli5dqpUrV3qtizZ24nn++edVWVnpcdzxxx+v448/Pqzzc7lceuONN/SPf/xDlVVVHqfJkbRQUomkESNG6IEHHtAll1xC70AAaEZSEPbo39+eTH8Ianr1UkV2tuV498CBjngUGAAkqppevVSxc6fHcS3HaLOhweuxvOXc09TU5Nd0CK/a3r1VsW2bx3HVPXr4/N7dnTt7X29e1PXpE7b1Wldc7DWOcM4rFNU9eqiitNTjuIZ+/RwRIwAAwWjKyAi4TWAOGiR3XV1QbcDaXbuCa4NE4VwbbFvJinvgQCk3Vw1e2j/moEGqKyz0OW9z0CAZhhHW+OBsFdnZqkxO9jgunG1ml8ulmTNn6oEHHrC8CXF/z02dqjFXXcU2CQD74RYJAAAQM/x97LnL5bI5EngS6mPpnfJYe7fb7XV8LMTplBgBAIgU0zR9nv+sxvs698ezlJR9/QW8JU78/X7+85//aNmyZWGJC7HB7vbozp07df/992vgwIG64IIL/EoIHtr85LKxY8eSEAQAD+gpCDTj4hkARJe3H2wtx2h/j9WNjY1hiQmRFcq5OJzncV91OeXCoVPiABCYqqoqrVixQqWlpcrJydExxxyjtLS0aIcFOEow5/VQ2gJNTU1Bl411yc29vHy1xf35fqurqzV79mx17txZw4YNC1uMcC67rqU1NDTo5Zdf1j333KOdFk+T2V9KSop+//vf6/7LLpMOPdSWuAAgHpAURMIg6QcAiYOkYHR4O9fG0nk4HpKCsfR9A4mkqqpKU6dOVXl5uSRp48aN2rhxo6688kp16NAhytEBsc3fnoKekl8kBcPTU7DFunXrSAomCDvao0uWLNGVV15p+b55T44++mhNnTp13zu1CwqCmi8AJAoeHwo04+IZADgXPQUTAz0FA+OUOAD4b82aNa0JwRZFRUX67rvvohQR4EzB9hQMtj2QyEnBFv48tcNfGzZsCDUcxIhwtsF37typG2+8USeccILfCcG0tDT97W9/09KlS/clBAEAPpEURMII9t0CAADn4J2CzhYv59JYaTPQUxCIPR9//LHH4Z9++mmEIwHiU7Dn8EROCrZ8J756CvJuNngSjvZoU1OTnn76aR166KF65pln/C532WWXadOmTbr33ntb340JAPCNIyYAAHC8QBMcJESiI9THhzplvcVKUtDbBUynxAjAP2VlZdEOAXCUSPcUpPe976QgbQt4Eup2sXbtWt1www1aunSpX9N37NhRF110ke68804dc8wxIc0bABIVSUHYo7hYysyMdhTtdNyxQ1n7PaqnLaOwUKqoiGBEAIC2MsvKLI/TSVu27DtG19R4PZa3vD8iqaTEr+kQXhmlpZbfe2ZZmc/vPcnLNuBL6rZtYVuvqdu2eY0jnPMKhbfvO62kxBExAmiPcxPgnyQfv989KiiQUV/vtZyZny956FHUobg4uDZIFPbbYNtKVlKKiiTtaztY1W0UFip9+/bA5s0xLSF03rXL8kY1X+3R559/Xo888ohcTU0a1DwsWVJfScslNbSZtkOHDrr33nv1m9/8RllZWeEJHgASlMGdPggHwzBGSFrX8v86SSOiFw4AAAAAAACAGHSipEXNny+99FI99NBDOvTQQ/0rXFAgDR4s5edLubmBzTjYsqHMMxzl7a7PjvrDFaNdy+qkdRKt7TJcdUSiTrvqLyjQ+sGDNbL90JGmaa4PreLooqcg7DFnjjR0aLSjaGfu3LleX3Z91VVXKTs7O4IRAQDamj17tjZt2uRx3NVXX62uXbuqurpazz77rGUdeXl5kqTi4mK99dZbltPdeeedvBfFBt7W4cCBA3XhhRd6LV9WVqZXXnklqHmfcMIJ+tGPfhRU2f199tlnWrVqleX4448/Xscff3xY5hWKV155xfKRgyeffLKOPvroCEcEwJcJEyZYjms5hwGQtm/frtdffz2gMtddd53q6+v18ssvW07z61//Wh06dDhg+CeffKK1a9cGHGc02pTejiPBuOiiizRgwACtW7fO8r2nV1xxhdavX++1fbQ/jmmJwdv2OHr0aJ100knthtXV1emuu+7S7P/9z2OZHEkLJZVIOuigg/T444/r7LPPDlu8AACSgrBL//72ZPpDUNOrlypKSizHuwcOlLp3j2BEAIC2anr1UkVpqcdxTQMGSN27y6yqUoW3Gziazz0uw/A9HUnBsNvbs6flOtzbs6fPtoErLc37evOivm/fsLU9ajdt8hpHbe/ejmjnVHbrpgqXy+O4uj59HBEjgPasji0pKSnss0AbTR06BNwmcA8cqKa6Ot9tQA9JweoePYJqg5iDBslISgq4XCiCbStZaWy+ftNYXm5ZtysnR3W7dgU2b45pcc80zYDazLt27dJ5v/qVFi1aZFmmxR15ebrpb39Tenp6OEIFALRBUhAJw9ejcnmULgBElz93Wft7rPbnmE9PwfCL5rk0nPOOlTaDU+IAELrk5ORohwAEbfv27dq4caNM09Rhhx2mvn37hlxnMOc40zSDPoe73e6A5+etvljkrW0cT8uJ8Alku8jPz9fPf/5zy6eKtBg7Zoy0YIHuvPNOiYQgANiCpCAAAHC8lh+c4UwKIrL8+c6dsl6CvTDoJE75LgH4JyWFn+aITd98843efPNNNTU1SZIWLlyo8ePHa9iwYRGPxZ+koJWW+APldrvjJqnvLSkYD20jhJ+v7cI0TblcLj3zzDP6wx/+oF27dllOm5KSoieffFLXnnqqdNBB4Q4VANBGZJ9xADgYF88AwPlICjpbqN+rU9ZLrGw/TokDQOhICiJWzZ07t11Cze12a86cOVFpE4TSUzDYpGA8nItbloGkIALla7v49ttvdeSRR+rWW2/1mhDs3LmzZs2apeuuu46nuQBABPDLAwkjHhrrABAIl8ulrVu3qqqqSrm5uerSpUu0QwpaoMfwWEnqIHwS8fGh3sRCjAB+EC89jZBYysvLPV7or6ioUGlpqXr37h3xmII9//H4UB4fisB52y42bdqk6dOnq76+3msd/fr106xZs3TkkUeGOzwAgAWSgkAzGrkA4klNTY2mTZumHTt2SJKSkpKi9iincPL3XYEc06PD2/ceS48PJSkIwA7ekg70FEQsqq6uthxXVVUVUlKQnoKRR09BBMpqu1i+fLlmzZrlc/8YMWKEZs+erQEDBtgRHgDAAo8PRcKIp8Y6APjy8ccftyYEpX0/2KZPn67GxsYoRuWdP3cn+3uhJx6SOrEomt9rJHsKOkWsxAlgH5fLZTmOnoKIRd7OQ9F4BGA03ikYD+fiWLpxC86y/3ZhmqY+/vhjffjhhz63mbFjx2rhwoUkBAEgCrgdEfYoLpYyM6MdRTsZpaXKKi+3HG8UFko1NRGMCADs8/28ecryMPzbjz7S8OHDIx6PP7wdp5O2bJFqamSUl3s9lpv5+VJyspK3bvU9XVpayDGjvcyyMsvvPTMzUyoo8Fo+ads2r+vNm/Tt233WH0hd3uJIKykJ27xC0XnXLrks4kzdts0RMQL4QVNtreWxpWvHjuyziDlJRUWW23Tqtm1SCMlub3VbMQoLlVRX571cQYGUnn7A4I47dgTXBikokDp2DLxcCIJtK1lJKSqSUlLUobjYa1vcV/voABzT4p65d2/rNtHU1KSPP/5YWzdu1CBJyZL6SlouqaFNmfT0dP32t7/VH/7wB6WmpkY+6ADt2LFDCxcu1Pbt29W/f3+NHTtWXbt2jXZYABASg7t9EA6GYYyQtK7l/3WSRkQvHAAAAAAAAABRdKKkRc2fL7jgAk2YMEEDBw60LlBQIA0eLOXnS7m5wc00lDralN3dpYueffZZ1dbWto7OysrSDTfcsO+Gx3DGHY7ltrM+O+oPV4x2LauT1kmwZZ20nuyu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2pk1a5a++eYby/GXX365evbsGcGIAMA+EyZM8Dj8kEMO0dlnnx3ZYPw0Z84cff311x7HtRyjd+/erWnTplnWceuttyo1NVWbN2/WjBkzLKe75ZZblEZPwbB7//33lZ+f73FcTk6Oxo8f77V8cXGx3nrrraDmfdxxx+nHP/5xUGX3521blKSjjjpKY8aMCcu8QvHCCy9oz549Hscdf/zxOv744yMbEACv9uzZoxdeeMHjuMGDB+u8886LbEBAiLZs2aLp06d7HDd+/Hjl5OQEXXdRUZHefvvtgMpcfvnlqq+v91rupptuUkcPPftef/11bd++PeA4PSYHbGbVzg/Weeedp8GDB2vjxo363//+ZznNli1b9OWXX/pd7x133KGkJN5aFM8qKyv13HPP6eOPP9b6DRvajcuRtFBSSfP/9913nx5++OGY2ibWrVvXLiEoSRUVFdq0aZOOPvroKEUFAKEjKQh79O9vT6Y/BDW9eqmirMxyfNOAAVKfPhGMCADsU5Gd7XH43p49HXd8blHTq5cqLC7GtByjmzIzLZdNksxBg6S0NDXU1nqdzj1wYMQf9ZQI9vbsqQqLJFXXHj18bntNSUle15s3tb17h23b3tuzp+W2GO55haKyWzdVWLyzqb5vX0fECOAHDaWllse4uj592GcRcxqbmiy3affAgZK33kA+uGTdnrXSNGCAGn20Ac1Bg6SMjAOGV/fooYr6+kDD3LecnTsHXC4UwbaVrLhycqTcXDVWVVnW3di/v+oaGgKat3vgQCWlcNkxntWXlemlzz/Xl/slBNsyDUNTJk/WzTffHMHIwuPTTz/1OHzGjBkkBQHENM7OSBi+HpXLo3QBJAInH+sMi+RGIFqWj2O+/UzT1Pr16/Xdd98pMzNThx9+uNfv1Z/v3Cnrxe12ex3vlDi9iYUYgUTjcrksx6Vw4RwxyNu5JtR2XTDnMdM0g24DBnvejIfzrT/tZ19tI2/1Ij7t3LlTF154oc/eo08//bR+ev31EYoKAOAPfnkAzWiwAkgEsXqsCzTZR1LQfp988okWLVrU+v/y5ctj5nFA5eXlKisrU05OjjI89BaIle0n1CQsgMjylhRMTk6OYCRAeHhLFIXjZq9gRDq5F0/nW2/HqGCSgsGUQWxYtWqVLrjgAm3ZssVymrTUVKmhQT/96U8jGBkAwB8kBQEASCCx/uOcpKAz1NTUtEsISlJjY2PI9YayXvwp63a79cEHH+irr75qHTZu3LgDHv/D9gHADt4uuMfKTRVAW3aeL+kpGDm7du3S1KlTvSZ4/Plu9xfrvztwoPr6ek2ePFn333+/6urqLKdLSUnRuHHjpHfeiWB0AAB/kRREwuACMQDE/rHOV/wtFx9ifTmdbvXq1QGXccI6WbVqVbuEoLTvnSADBw5Ujx49WofFSpuBnoJAbPGWFGSfRSyy8zxkV1Iw3CKd+LJj+ebOnetzGnoKJjbTNPXmm2/q3nvvVUFBgddpk5OT9ctf/lI53bpFJjgAQMC4HREAIogLPoi2WN0G/Y073NPBs127dtlSr909BRcvXuxx+P7vQomVpCCA2OItKQjEIm9Jn2icK0N5f3Ei9xT0Bz0FE9eePXv0y1/+UpdeeqnPhGBGRoauuOIKHXzwwZEJDgAQFHoKImFwgQ/RVFtbq9mzZ2vz5s3q3Lmzjj32WI0ePTraYQExh8eHxje718vu3bs9Dl+8eLFOP/301v9j5SIWPQWB2EJSEPHG27km1HMpjw91FnoKJqbPP/9cv/rVr7w+WrZF7969demllyo7OzsCkQEAQkFSEABsZpqmXn75ZW3btk3SvndxzZw5UykpKTryyCOjHB0STaz+OA802UdS0Hns/s7DWT/bDwA78PhQxBun3ZwSyuNDYyUpGK1jRTDfLce12NXY2Kg///nPeuSRR/z6/Thy5Eide+65Sk1NjUB0AIBQkRSEPYqLpczMaEfRTkZpqbLKyy3HJ23ZInH3Lmyws6xMe9evV9Z+w7/96CMdmbX/UCA8rI53GZmZko/HvkSLt+N08tatUmOjkrZv93osNwoLpS5d1KG42K/pEBxf51RPOqWn+9z2krduDbjeFunbt/us36puwzDalfW1fP7MKxI679olo7ra47i0khJHxAjgB0lbtlifn0tL2WcRc7xt08lbt0qGEXTdwbQJkrZsUUp9vfdyBQUe24Cddu5UQxBtEKOwUNq7N+ByQXO7g24rhSKlqEgdd+4MbN4FBVLXrnaFBJsUFhYqLy9PX65erQHNw5Il9ZW0XFJDm2k7duyok08+Wccff/y+9jQAICaQFIQ9zjwz2hEcYJyvCSZOjEQYSEA9JeVZjfzd7yIXCBJKnreRDt3uzmj+86j5GN1HPpatebrhzX++pkNwTmv+C9i993odPUg+1m+IvNY9YULrxwtsjCGcro92AAACMqr5D4gXXttbIba1BiuINkHzPL2Ws4jrykDn5aM+uyTJ3raSpeblPCWIMogtgyS9azHuREmLJCUnJ+vGG2/UNddco1mzZkUuOABAWJAUhD3mzJGGDo12FO3MmDFDmzdvthx/8cUXq3///hGMCIli5syZ+u677zyOy8vLi2wwSBgT2iQ42urfv78uvvjiyAbjp7lz52rDhg0ex/3iF79Q3759VVJSojfeeMOyjquuukrZ2dlat26dPv74Y8vprrnmGmXRUzdo8+bN05o1awIq06dPH1166aVepykoKNB7770XVExHH320Tj75ZK/TWO0XhmHozjvvbP3/nXfe0datWy3rGT58uM44wzKFHTHPPPOM9lr0Thg9erROOumkCEeEaKmsrNTbb7+tysrK1mEHH3ywzj77bCUlJUUxMrS1dOlSLV682OO4YcOG6UwH3lgJeLN27Vp98sknHsedf/75ys3NDbru77//Xh988EFAZcaPH6/a2lp9+OGHltNce+216uKhp+CLL76o8iB64J133nkaPHhwwOWC1dTUpEmTJkVsfi3Gjh2r3bt3B9T++9WvfqUePXrYGBXCZf369Xr44Ye1eMkSj+NzJC2UVCJp6NChevXVVzV69GgV0MMdAGISSUHYo39/KYQfAHao7tFDFbt3W45vGjBAGjgwghEhUdT06qWKXbs8j3TYfoL4UWHxgvcu3bs7drur7d1bFSUlHse5cnKkAQPkSk62XDap+Vjeo4fqd+3yPV23biHHnKhqe/f2+v160qlHD5/bnsvlCrjeFnV9+vis36puwzDala3u0UMVFo/llPYd152wH1V266Zqi3e31Pbu7YgYERnLPv5YW5OTpTbb+Krdu3VkSooG0r51jNqCAsvjkFOOK0Ag6srKLLfpxhCvCbgaGgJuEzT276+Gmhqv5dwDB3p8pGVlt26qCDRISdM++0x/HDs2Yo9ONENoK4Wirk8f1XboENC8XTk5Up8+NkaFUFVVVemee+7Rk08+6dc7IC+59FI98Oyzymx+XRDvjQSA2MRto0AzGjOxo7a2NqbWF8/Wh5PE0r7jia/4W8b7Ox2cJZT1Es516na7w1aXndiO0WLRokUehy9YsOCAYY2NjZo3b56ee+45vfPOOyosLLQ7PDTzts+yPyMWNTU1WY4LdZsOprxpmkG3AUOJd7eXm4/jhT/fracycK7Fixfr8MMP15QpU3yuq67NT1j529/+1poQlGKnzQwAaI+kIBIGDdLYV1xcrMmTJ+uf//yn/vOf/2j58uXRDgmIObF6LPQ3bn+TgghNMDc7xNI6iYekcizECPtt2bKl3f+maeqNN97Q559/rqKiIq1bt04vvfQSj/+KEPZLxBtvCYG5c+eqpqYmgtEEl7gKh9WrV0d8npEWTPKHhJEzmaapCRMm6OSTT/brxqBTTz1V//vf/yzrCkZjYyPnRACIIpKCQDMaJM62d+9evfTSSyorK5MkVVdXa9asWdq4cWOUI/ONnoJwklg/1tFTML45padgrGw/TokDsaO0tPSAd2w3NTVpxYoVUYoosbDPIt54S/rs2rVLL774ourr64OqO5Z6Ckby9160jiPBJFxJCjpPQ0ODrr/+et11111yuVxep+3YsaMef/xxffTRR+pj8RjYQNfxrl279Pzzz+tvf/ubJkyYoGXLlgVUHgAQHiQFbWIYRqphGFcYhjHLMIxCwzDqDMMoMQzjC8MwfmsYhm1vWzYM48eGYUw2DGOVYRi7DcNoNAyj0jCMbw3DeNMwjMsMw0iza/6AHTZv3uzxB+WGDRuiEA0Qu5x8QdLbBZVAk32xktSBM8XD9hEPy4DQ7X9cXbhwocfp1q9fH4lwEh6PD0W88fb4UMnzjQh2CqWnYCj74KZNm9TY2Bh0+VhAT8HYt3v3bp155pl6/vnnfU578skna/Xq1br99tuVlGR96TiQ/aahoUEvvviitm7dKtM0VVlZqdmzZ2vdunV+1wEACA+SgjYwDOMwSUslTZP0c0kDJaVJ6iPpx5L+JWm9YRhnhXm+3Q3DeE/SF5JukXSUpGxJKZI6Sxoi6WJJrzTP/yfhnL/TcYE4tn3wwQceh69duzbCkQCxLdaPdb7ib7n4wDHfXnbdEU9PwcA4JQ441/7bSEVFRZQigcQ+i/jjT9Jn7ty5QdUdSz0FS0tL9eqrr0YkMUhPQQRj1qxZOuaYYzR//nyv0w0cOFDvvfee5s+fr6FDh/qsN5B1XFhYqKqqqgOGkxQEgMgjKRhmhmHkSPpE0qjmQaakBZKelzRDUm3z8F6S3jMM49QwzbejpI8lnddmcJmkuW3m/X2bcQdLmmsYxnHhmD8AIDbE6gVJ3ikY+/xZJ05Zb74ucDglTm9iIUYg0Xg7trDPIhb5kxCI5M0I0dyPCgoKtGbNmqjN3270FIxN3377rc455xydffbZys/P9zrtNddco3Xr1um8887z+wbAQPa5Tz75xOPwTZs2+V0HACA8UqIdQBx6VVK/5s+Fks4zTfOrlpHNjw19XdJpkjpIesswjINN09wT4nzvUftE5B8k/cc0zZYkpIx9Z/VfSHpSUpakDEnPSDoixHkfqLhYyswMe7WhyCgtVVZ5ueX45K1bJd795lhZ5eXWj6cpKIhoLIHKLCuz3vYcHjtil9U21yk52bHbXccdOyzjTikqkrTvWO3tWJ60ZYvU2KjUbdu8TmcUFko1NaEFnMB8nVM96dShg89tr0NxccD1tui4Y4fP+q3qNgyjXdlOO3d6jcOfeUVCl927lVpX53Fc+vbtjogRkWF57ExJ8X/bZnuxXfr27Zbff0ZpKesAMcfv83YQ23ZKUVHAbYKUoiJ1qKvz3Qb00FsppahIWT4eh+rLN3PnanT37iHV4VNDQ9BtpVCkbtumjjU1Ac07eetWKTnZxqjgzVtvvaUHHnhA9Q0NGtQ8LFlSX0nLJTU0D0tLS9OTTz6pq6++OuB5BJL49fW4YQBA5JAUDKPmx4Ge1Pxvg6Rxpmm2e7ahaZo7DcM4T9IaSQdJ6ibp/yTdH+Lsr27z+XHTNP+6/wTmvlt4XjcMwyXprebBhxuGcfj+cYbszDPDWl04XOBrgokTIxEGgnS7t5EOX3c/b/7zyOGxI3bleRv5hz9EKIrAnN7851HzvjJQPpatebrRzX++pkNwxjT/Bez3v/c6+mD5WL8h8lr3hAmtHy/3p7LbbgsplnC4OdoBwDHyvI189NHWj5d4m47jou2CPnYCDnVy859PQRxfDlEQbYLm+YwIIhavvzcDcX+ol3a8S5W9bSVfLNvqnnBeiaqLm/88OVHSIkk9e/bUe++9pxNOOCGoeQTSU9Cu1w8AAAJHUjC8ft3m84tWiTbTNPcahvFHSS83D7rJMIw/mqbpCmamhmF0kVpv/JGk13wUeU9Sjfb1FJSkoZLCmxScM0fy4/njkfTuu++qsLDQcvwFF1ygQYMGWY5HdE2aNMnyzrK8vLzIBhOg//3vf9q4caPHcU6PHbFrQpsER1vdunXTlVdeGdlg/PTRRx9p/fr1HsdddNFFGjBggAoLC/Xuu+9a1nHxxRerf//+Wr58uRYtWmQ53WWXXaZevXqFHHOiWrBggb788suAyvTs2VOXX+493fbdd99p5syZQcV05JFH6pRTTvE6jdV+kZSUpDvuuKP1/5deekm7du2yrGfIkCE655xzgooznKZMmaL6+nqP44444gidempYnlKPGGC1baekpOi2NgnsN998U9u2bfM4LW0S+3366af66quvPI475JBDdPbZZ0c4IiA03rbptoI5vnzzzTeaNWtWQGXOOecc1dbWWj6mUJKuuOIKdW/Tm6++vl5PP/102Hox2X0sra+v15QpU2ydhydHH3206urqtGHDBr/LjBs3TgcffLCNUWF/O3fu1O23367FS5Z4HJ8jaaGkEkkjRozQzJkzlZubG/T8AukpmJTEG6wAwClICoaJYRidtO+RoC2m+ijyjvY9xrOT9vUWPFnSvCBn32m//70+z8E0TZdhGJX6ISkY/jNz//5SCA0LO1T36KGKykrL8Y0OjBk/qMjOtv6h5vD1VtOrlyp27PA4zhw0iDvmYIuK7GyPw1O6dXPsPlPTq5cqLC5WtxyjG10uy2WTJFdOjjRokOq2bvU9Xb9+luPhXd2mTV6/X0869ujhc9trqKkJuN4WNb16+azfqu6kpKR2ZSu7dVOFl4sce3v2dMR+VJGdbZkUrO3d2xExIjIsj/kpKe22g+oePVRRW+txWrYX+9X06mW5rvw5hgFOs7dnT//O20Fs2w3V1QG3CRr69VO9j7aEe+BAqWfP1v/Xr1ql3V26BByfJZv3Y7OuLui2Uihqe/dWXV2dKkpK/C5T37cvx7UImjFjhq6//nqVlpb6nHb8JZfo9888oy4hbvv0FASA2MRtGuFzgqS05s97te8R3ZZM06yTtLjNoFBu5S6T1PaFMl6flmEYRk9JbbtH+L61D4AtAmlEA+EQ69ucr/hb7laN9eVEdMXD9hMPywCEU3Fxsd5//31NmzZNn332mVyuoB7SEhJv+yX7LJystrZWZWVlB2ynTntHmD/70f7TrFu3zq5w4orb7Q74OBVILzIEr7y8XFdddZXOPfdcnwnBo0aNkiT94x//CDkhKAW2jkkKAoBz0FMwfIa1+bzWz0eBrtIPj2Qf5m1Cb0zTbDQMY7Z+eG3eA4ZhzDFNs8aiyD/0Q0L4E9M0vwl23rHEVwOWH+LOFsvrh8YvIi0eLzq2xO3vsZxjvr2COa4Fc6Eu3PX7y9cFDqdsP06JA/HJNM24acMUFRVp2rRpamxslCTl5+dr69atuuyyyyK6jOyziDVut1sffPCB1qxZI9M01blzZ/3yl79U3759W8f7Euw+Fsz+YppmwOVibb+MVryJ8N3Govfee0+33nqrSnz04ExOTta///1v3XHuuVIYH+lKT0EAiE0kBcPn0DafrV9c196WNp8PC3H+92tfgrGTpKMlrTEM4y/a9+7gIkk9JR0h6V7te6ewJG2QdE2I8wUQAn4oIdLi/Y5dkoIIh3jYfmIhRtgvmO1g7969mjVrlvLz89W1a1cdf/zxOuKII2yILnKWLVvWmhBs8d1336m0tFS9e/eOWBzsl4g1n3/+ebt3BlZVVemll17S3XffrZSUFL/alZF8j5g/iSs798OOHTvaVne0rV69+oDjqC/x/rsjmrZt26bbbrvN67vWW3Tv3l1vvvnmvndNFxSENQ56CgJAbOLxoeHTvc1nzy8PO9D2Np+7hTJz0zQ3SvqJfkg0HizpBUnfSqptHj5T+xKCeyRNknS8aZpbQ5lvPOFHOqKB7Q6RFqvbHD0FE4NT1kusbD9OiQPxw+1268UXX9SGDRtUW1urkpISvfvuu/r666+jHVpI1q5d63H4559/HtE44rEnP+Lb6tWrDxhWW1ur77//XhI9BfcXz0nBQBOCEklBO7jdbj355JMaNmyYXwnBUaNGafny5fsSgjagpyAAxCaSguHTqc3nWj/LtJ2uk+VUfjJNc42koZJu0773GlqZI+k10zSrQp3n/tLT09Wp075FaWpq0p49e1obCZWVlWpoaJC074fE3r37QnS5XNqzZ09rHRUVFa0NzpqaGtXU7HsKamNjoyoqKlqn27NnT+u7QPbu3ava2n1fZ0NDgyorKyXta6Ds2bNHTU1NPhsr1dXVrY3Wqqoq1dfXS5Lq6upUXV3tyGVqibuubt8rJevr61VVtW+1ut1u7dmzJ66WyRsnL5O3xm9LrPG0nuJx24u1ZSovL5eVlmV14jJ5u9hQXV3t17G8qqrKr3eeVFVVRX09xfK2F8y7uFrKeFumlpiD0bLs3pbJW9m268mfdyQ5YT15284bGhricttjmTwvky/7L5OVwsJClZWVHTD8q6++iun1ZGXnzp0RXSZf338sbnvxuD+xTD8sk9XxZfny5a3z8iUpKSmoZWpZnkDU19f7LNdyzm9ZT+FMXGVkZERkPcUKrrGEd5k2btyoMWPG6L777msdl5mZ2ZqMTk1NbX1PoGEYuueee7Ro0SINHjy4/TKlpamquXxAy9S16wHL5Gv/qcjKUmOb3wBW2q2n2lrVNi9T0Oupulru5l7KQa2njh21t9b3pd1268nlUkVWludl8nfb69RJdc0xhGXb69JFDc3bVNj3Jyesp7bLlJKiPc1lgl6m/ddTc91hO0Y01x30MaLN/hSz62n/Zaqutu9YHub9KRzvYXUSkoLhk97ms79XtNq2oEO+pcwwjB6Spkh6TFKm9vVEnC7paUlv6ofHmv5C0heGYTxlGEZyqPNt6/jjj9f48eMlSWVlZZo4cWLrjvX8889rw4YNkqQFCxZoxowZkva942PixImtdUyZMkWbN2+WJM2dO1dz586VJG3evFlTpkxpnW7ixIkqKiqSJM2YMUMLFiyQJG3YsEHPP/+8pH07/cSJEz1e3NjfjBkzWg8kr7zyir788ktJ0pIlS/T22287dpnefvttLVmyRJL05Zdf6pVXXpG07wA8ceLEuFkmXxdRnL5MVioqKqK6noqKilRVVcW2F2fLNGnSJFlpaTw5cZm2brXuvP7++++rrKzM57Hggw8+UGVlpc/p3nrrraivp1je9lo+B6KlUe9tmb799tuA692ft2WyYppmu/XU8qPF2/ROWE/eLq5s2bIlLrc9lsnzMllp+VHcsky+jo0tMe9v06ZNMb2erFRUVER0mbzd+GCaZkxue/G4P7FM7ZfJk5ZjSX5+vuU0LZKSkoJapmXLlvmse3+bN29u97hTK23Xkz+JTX+lp6fbvp6efvrpsMVrt3nz5rE/hWGZNmzYoMcee0xHHnmkFi5cqLy8POXk5EiSxo0bpzFjxkiShg8frmuvvVaHHHKI5s2bp44dO7bG2m6ZjjpKr3z8cWDLVFGhiXl5qm++eN+yTL6SglNuuUWbt22TpHYX+PfXbj0tXqwFzcsU9Hp65x1VNl/AD2o9jRmjGYsXe102ab9tb9s2TbnlFs/L5O+2N368ljTHEJZt79prtaFw36XgsO9PTlhPbZcpJ0cT33kntGXafz3Nnr1vmRobw3OMaK67rPk6YMDHiDb7U8yup/2X6YMP7DuWh2t/aj7uXXvttYonBo8pCQ/DMD6UdFbzv/8wTfNeP8r8XNKs5n+rTdPsHML8D5E0T1KO9iUbfyPpKdM0XW2mMSRdKulJSS3p7Smmad4a7Hzb1D1C0rr09HSlpKRoyTvv6LCDD1ZVba2yMjNlGIYq9+5VemqqUjt0UG19vdxutzI7dpSrqUnVtbXq2tzDsKK6Whnp6eqQkqKa5rsUMtLT1ehyqaauTlnN0+2prlanjh2VkpysvbW1SkpKUse0NDU0NqquoUFdMjNlmqYq9u5V544d9e6772pLcbEMSYZpypRkGoaSmj+fevrpOnzYMCUlJamqpkapKSlKS01VXUODXE1N6tSxo5qamhy1TMnJyaqurVVKcrLSU1NV39CgBpdLnTMy5Ha7VVlToy4ZGXGxTM8/84zcpikzKUmG2y1DktswZJim7srLc/QyffLJJ1r39dcet72bbrpJ9U1NEV9PBYWFmjl7tlzNw3KHDNHPzzhDaampbHtxsEy7Kys1berUH/aTNttex8xM3XzDDY5cpg9nz9amb75pPS63PUb/9MwzNXzoUOXn5+uDDz/0eSz/4osvtGzlShmmKaN5GlNqne5nZ5+tw4YMYdsLcpmWLl2qNatXH/D9H3CMbrOesrt319VXXOF1mb5au1afzJtnXV/z+nQ398BuO93hw4bp9NNP97pMk554QknNbV93m7qVnKybbryxdT09N3Wq6mtqLJcpd+BAnXX22VFfT5P++181NjV5XKZDDj1Up556atxte/G4P4VjmaY+++wB+4lpGEpKTtadt93WukxzPvxQJSUlHvenu++8U6+8+qp27NyppOaLfG2nu/Hmm2N2PT3+xBMel6lbjx4aP358xJZpycKF2rhx4wHryZR0yEEH6ayzzoq5bS8e9yeW6YdlmvzEEx7Pubk5Obrwwgv1xjvvaNvWrZ7Pzc3tg44dO+oXl18e8DKt+uorLZg/32N7z6p9MPbUU1VTW6tlixdbTnf5ZZepc1ZW63p6/Y03tG3HDo/HCKtl2v+c2zLdwbm5+vlZZ9m6nkp379brr7ziV9soHMvkqV3urb3Xdrof/fjH+vGxx7I/BblMO3ft0vS33tIbb72lyr17tbeiQsmSBnftqi+qq1XrcikzM1Nut1u1tbVKS0vTbbfdpj//+c/q2LGjKioq1Llz533LVF2tlJQUpW/frvrDDlPDqlXqPHz4vmWqrFSXLl32LVNVlVJTU5WWlqa6ujq5XC516tRJTZs3q+qYY5S1apWMwYNVWVmp9PR0LV++XB83Jxj3l1VermteeEEZK1aow5Aheu655yxv1LnzzjvVqVMnpaSkaO/XXytp9Gh13LBBDf36qa6uTl26dNm3njwtU3q66uvr1dDQoM6dO+9bpg0b1OXII5W0ebOqunf3vExNTaqqqlJWVta+9dS8TKnbtql2+HC5V67Uv99802O8kvTggw+29mrKyMhQ43ffqeaYY5S1erWUm6s9e/b8sEx79+7b9jp2VENDg+dl2rpV1YcfrpSVK5U+dOiBy+TPemq7TIWFqjzySKWvWKHUQw5RbW3tvm0vM1Mul0vV1dXq2rXrvm2vokIZGRnq0KFD+2VqbFRNTY2ymntAtlumaK+n1NQflqmsTK5DDlH1l1+q68iRwS/T/uvp22/VZeRImd9/r4rsbP+Wydt6ys9Xp+HD1fTdd6rq3t37Mu2/ngoKVDFqVOv+FJPrqe0y7dkjDR6sirVrlXHooaGtJ7v3p/JybTjoIJ3QpUtrIlHSSNM011seIGIAScEwMQzjDUmXNP/7uGmad/pR5kJJLbcxbDdNs2+Q806R9KWkkc2DrjFN8wUv058uqe1twMeZphn4bXjt6xwhaV3L/+skjQilQgAAAAAAAADtnChpUZv/R40apWeeeUbHHHOM94IFBdLgwVJ+vpSb6/8MLcp9/vnnmjdvnsciWeXlyps4sbXMtGnTLHsX//GPf/zhtSvBxuhHvIGW/dOLL1pO9uCDD4ZvnuEob3d9dtQfrhjtWlYnrZMw77sRmXek67Sr/oICrR88uDXp0izmk4Ip0Q4gjuxq87m3n2X6tPm8O4R5X6QfEoKbJFmftSSZpvmRYRgfS/pp86BrJIWUFDzAnDnS0KFhrTJUb7/9ttfHB40bN04HH3xwBCNCILw98iovLy+ywQRo7ty5lo/fufnmm5Wenu5xnF2+++47zZw584DhGRkZuvHGGyMaC+zR1NRk+QjR9PR03dzc28Np5syZo6+//trjuHPPPVcHHXSQvvnmG82aNcvjNJJ09tln65BDDtFnn32mVatWWU530UUXacCAASHHnKgWLlyoFStWBFSme/fuuuKKK7xOs2HDBsvHF/oyfPhwnXHGGV6nmTBhgsfhSUlJuuOOO1r/f/LJJ72+k2jgwIG68MILg4oznCZNmmT5/kN/vg/ED6ttOzk5Wbfffnvr/2+++aa2NT92aH95eXl69dVXVVpaajk+Vll9Pz169NCvfvWriMUxe/Zsbdq0yeO4gw46SOeee27EYgE82bRpk2Y3Py7Nm5ycHI0fP15vvfWWiouLvU6bmZmpG264IeBYgmkT/PSnP1VdXZ0WLlxoOc0vf/lL9e79wyWbN954QyUlJQHH50lubq7OP//8sNRlpaamJmYeIXrSSSdp9OjR0Q4jZtTV1enFF1/U5MmTVfFDb5R2ciQtlNSyxaanp+tPf/qT7rrrLnXo0CFSobYKpKNJa9LPoh5v4wEA4UVSMHza/rob5GeZgW0+bwxh3j9r8/lT07+z8jz9kBT0cStREPr3tyfTH4Kq7t1V4eUdQQ39+jkuZvygIjvbusHp8PVW27u3Kix+aLoHDpQyMiIaz8L581WRnX3A8ArJ8d8l/GO6XB7XsSTVp6c7dj3X9Oqliu3bPY5rbD6vNFRXWy6b9MOxvHbTJq/TuXJyHPs9xIL6zZu9fr+epHbv7vM7b6yoCLjeFrW9e/us36rupKSkdmUrsrO9JgWre/RwxPazp2tXy3e51PTq5YgYERlW23ZycnK77aC6Rw9VNL9b9gC5ufvay83vzfA0PlZZfT+p3bpFdLmqe/RQhUXSdW/PnjH9HSM+LF+40K/zcFbzOb2yWzdVND/uy4rZpUtQ23Z9eXnAbYL6vn1VV1vrtVzTgAFSv36t/1d1764KL+f8QESifeD20RZ2En/aZpAKCws1efJkPfvss9q927/+Ak2STjvtND311FNRvbnd1zsF2/KVFIwlJDABxDqSguHTtmvD4YZhpLR9n5+Foy3KB6p/m8+7LKdqb2ebz1khzBtACKLR+E1OTo74POEcsfaDK1Aty+drOeP9e3Aif75zp6wXX3Hk5+dr9uzZOv7445Xt0AtzTvkuAfzA237JPgsn2Lx5s1/TtWyv/iQEkpKSQoopEMG0Ndj37BNIwigRlZWV6e6779arr74a8Hf173/9Sxf95jdRT075s/+89tpr6v+Tn3id1u12c50CACIocq2z+PeFpPrmz5ny0fvOMIw0Sce3GeT5Idz+aXu7bzc/y3Rv83lPCPOOGVwgjm2xvH6cdkdcSgr3gyQyJ+9L4UgakRREOPizfSxbtkwvvPBC25eNRxzbMRCaSO9D7LOIFy0JDKtHWLcVbFIwmP3FNM2otgEjsY/H0nGEpKC12bNn6/DDD9fLL7/s9/eUlpama66+WpI0fvz4qCcEJf/W8Y4dO/Tpp5/q+++/D6keJ3HCdw8AoSApGCamaVZL+qTNoKt9FLlQUufmz7slfRbC7Le0+XyKn2VObfP5uxDmDSAE9BSEHWKxJ0K4kn3+/qB06vcQK+z6IRzKegnnOvV3O6qsrNTatWvDNt9wYhtHMBJtuyEpCAQnkJ6Ckbx47k9S0FMZ2IPv9kA1NTX69a9/rbPOOks7duzwq0zPnj3173//W9u2bdODDz5oc4SBCdc6jrVthaQggFhHd5HwmizprObPVxuGMck0zfX7T2QYRoakP7cZ9LQfjxr15mNJtzV/PswwjCtM03zJamLDME6VdHqbQXNCmHfciLVGCGKH03oKeksKut3uiD7iB5HnpGNdXV2d5s6dqw0bNkiS6uvrfZQIX/IQkRdL6ySQWD/++GP95Cc/sTEaa7F4AwAii+3AOyclBVlXiCWRSAoGu08E2lMwnPsePQXbi7XeX3ZbuXKlLr/8cm3atMmv6Tt16qTf/e53uuuuu9S5c3Ofgig+ocKTcK1jJ24rsbSvAUCguPIbRqZpfijp8+Z/0yTNNAzjiLbTGIbRXdJ7koY0D9ot6R+e6jMMI9cwDLPN39UWs/5Q0jdt/n/aMIybDcNod+Xf2OcSSdPbDN4q6XWfCxcHOKHDiZyWFHS5Qrk/AU4RKxcdP/zwQ3355Zeqr6/3mRD0N24eHxoZ8d5TkO0DiSrRtn0nJQWBWNJyAd+J7xRkP3MOJyZ6Is3lcmnRokW6+eabdfzxx/uVEMzKytJvfvMbff/99/rjH//4Q0LQgcK1vzlxW/G2bPQUBBDr6CkYfpdJWiapr6RcSasNw1ggabOknpJ+KimjeVqXpEtM09wTygxN03QZhnGl9r2XMENSuqQpkv5oGMYXknZKytK+dxjmtilaL+ky0zR9d81IAPx4QDQ4MSmYmpoawWgQaU451u3evVvr1q0LuBzvFEQkxMP2EQ/LgNAFetEq0bYbJyUFE+27R2xr2V6d+E7BQKcJ901FLpdLlZWVys7OTvjEgRMTPZFQU1OjRYsWaebMmXr55Ze1e/duv8odcsghuuuuu3TFFVeoU6dONkcZHonaUzDR920AsY+kYJiZplnU/HjO1ySNkmRIGtv811aZpGtM0/xEYWCa5lLDME6R9JKkoc2D+0q6yKJIvqQrTNNcFI75xwIuEAP70FMwsTnlWLdoUWCnn0CSfTt37tTKlSv9qg/BCeaHcDAX6sJdfzTqskssxIjoYztxFtYH4kVLe6vSj0cZRjopGM13ChYUFOgf//iHXC6XOnXqpPHjx2vQoEFhq1+KrePIkiVL5Ha7dcwxx6hnz57RDsdWpmnq008/1RNPPKGZM2eqoaEhoPK/+c1v9PDDDys9Pd2mCO0Rz+8UJCkIIJ6RFLSBaZobDcM4TtKlkn4paYSk3pL2SPpe+x7fOdU0zZ1hnu8ywzBGSDpX0vmSjpHUT1InSXsl7ZC0UtIHkt42TbMxnPNvp7hYysy0rfpgdNq5U1nl5ZbjOxQXSw5+LEOi87buVFAQsTiCkVFaahm/UVgo7dkT0Xgyy8os43F//73UtWtE40H4mfX1jt9ntn3xhbJqa/2evkNxsZSRodRt27wuW8M332j6O+8oq6bGa30pRUVSWprf80d76du3e9/GPOhsmj63vQ7FxQHX2yKjtNRn/VZ1Jycnt5Y1TTPwGKKxT/mIs+OOHY7Y1xEZVttCUlJSu+3Aa3u4oECdd+1Sg5fxscpqmTs3NUV0uby1CTPLymL6O0Z88Pf8l1Jfr7f//W9l1dX5nLZzWlpQ27avNp9VGV/t4KQtW6Q2vZI679ql+iDbHl6Vl2vGpEm69tprlZGR4Xt6PxmVlUG3laJh05w5KlywQBdffLG6d+8e7XBssWrVKv31r3/VylWrJO27O7+t5OZhyyXtnyrs37+/XnzxRZ122mn2B2qDRO0pCACxzuAgh3BoTka2PgdunfZlQgEAAAAAAIBEdqKkts9KueSSS/Tkk08qOzvb/0oKCqTBg6X8fCk3N/Aggi1vUW7GjBla1ZwM3V9WebnyJk7UhDvvVIWPZbztttt+SBqHuoyh1tFctmHTJv3ttdc8TpKWlqZ77703fPMMR3m767Oj/nDFaNeyOmmdhHnfjci8I12nXfUXFGj94MEa2X7oSNM014dWcXTRUxD2mDNHGjrU93QR9Nprr2nHjh2W488880wNGzYsghEhEBMmTLAcl5eXF7E4gjFv3jytWbPG47irrroqsB8BYbB48WItXbrU47hf/vKX6t27d0TjQfjV19drypQpluOdsM9426c9OeusszR06FCtXbtWn3wS+pO3zznnHA0ZMiTkehLVkiVLtGTJkoDKZGVl6ZprrvE6zVdffaVPP/00qJgOPfRQ/fznP/c6jdV2l5ycrNtvv13SvvcjTZo0KagY0tLS9Itf/ELdunULqnwg3G63Hn/8ccvxQ4YM0TnnnGN7HHAGq207KSlJd9xxR+v/b775prZt2+Zx2ry8PE2bNs3y3UdOOHcEy+r76dSpk66//vqIxfH222+rqKjI47iBAwfqwgsvjFgsgCeBts/80b9/f1188cUBl1u9erXmz58fUJmf/OQnqq+v14oVKyynGT9+vHJyclr/93bcC4fU1FTdeuutYauvsrJSzz//fNjqi6RYPo+0qKys1JQpUzR16lTV1df7VSZH0kJJJc3/9+7dW//+9791+eWXx/xjKBO1p2CsrzcAICkIe/Tvb0+mPwTVPXqowstz3Rv69XNczPiB1zvLHL7eanv3toy/acAAqUePiMbTuGWLZTz1fftKAwdGNB6En1lX5/h9xtfdovtrOUbX79wZcFlv9SE49YWFAa+HpOxsn995Q1lZ0Ou3plcvn/Vb1Z2cnNxa1t3YGNI2tqayUmOPPjro8n5zu73GubdnT7bxBGK1LSQlJbXbDqp79FCF1aObc3NV2a2bKqwugsXw9mTZDuvUKaLLVd2jhyr27rUcF8vfMeJDONpY+8v24/zsSf2OHQHHU9enj+rr672Wc+XktIvH63EvDPY/DofKvWePLespImL4GOd2u/XSSy/pd7/7ncrKyoKqY+ypp+qRG2/U+eefrzReY9COE59i58SYACBcSAoiYXBChxNFY7v0dleby+WKYCRA9HBOcKZQ1ku41mmo9SxYsEBjx44NSyzesA0DsYf9FokoKSkpovPztZ9Fej8Mdw8ojiORVVpaqmnTpumpp57Sd999F1DZbt26aezYsfrFccdJ99yj5557LqYTo56Ea3ukpyAARBZJQaAZjWtEg9O2O5KC8cFp29X+gomvpYzTly1RhLIOnS5W4vQlXpYDsFOk9xP2SySiYC+eB9vWCLQc+yX2l5+fr/fee0+zZ8/WvHnz1NTUFFD5M888U7/73e90yimn7EuKFxRI99xjT7BRlqiPDwWAWEdSEAmDEzqixdsP4Whsl97mSVIQTueU3mCwRzz0FLSLy+VSSsoPTXenxonYlmjblZOSgon23SNxRLKnoD9JwVjf12I9fif76KOP9Le//S3o91sfffTR+vvf/67TTz89zJE5Fz0FASA2kRQEmtG4RjSQFEQickJPQY75oYnn789py7Zy5UotXLhQFRUVysnJ0bnnnqsefryL1mnLgehgO/DOSUlBINrs2j7pKQin27Nnj+68805NmzYt4LK9evXSTTfdpIsvvlgjR45MuGRRPP8285aoTLT1DCD+kBQEAJvRUxCR5sQfVW05IT4nxBDLgvn+qqqqVFJSot69e1v2GqCnYHtff/21Zs6c2fr/1q1b9eKLL+q2226L+DuakBictP3HI3oKwsns2gYj3VMw0Glibd+LtXidbsOGDTr33HO1efPmgMqlpqbqd7/7ne655x517tzZpuicL1F7CgJArONqAhJGvD9GBLHJaUnBQN+XAATDCT0FEXlNTU16+umn9Z///EfFxcXRDseSky5KrFu37oBh1dXVKigo8FmWfQVS4HeyJ9p2Q09B4Ad2bZ/B1hupnoJITKZpavLkyTruuOMCSgimpKTo4osv1po1a/Twww8ndEJQCt9xw5+2rZPQUxBArKOnIOxRXCxlZkY7inY679qluvJyy/Gp27ZJ3bpFMCIEIsvLupPDG5AZpaWW8Sdt2SI1NEQ0nvTt2y3jSd66VerZM6LxwAY1NY7eZ8zGRu/xedChuFjKylLqtm0Bl/UkpahI6tIl5HoSVVpJSfDrobxcHzz+uG688UYlJye3GxXK+s0oLfW5bVse+5KTfyhbXR36Nhamfax40SJleRi++LXXNPiyy7zGmVlWFvV9HZFjtS0YhtFuO+i0c6f1dlNQoM67dsmsrLQcH6usljktLS2iy5VZVmYZS6fMzJj+jhH7TJcrLG2s/QV7PgqmrZFWUiKjocFrueStW6U27Q+vx71wCeO+nVRebst6igiHHOOqqqp0zz33aNbs2eouqbukZEl9JS2X5OnX+ZAhQ3TllVfq+uuvV9++fSMZrqOFKyk4f/58/ehHP1LHjh3DUl848E5BAPHM4C4qhINhGCMktd7Ovk7SiOiFAwAAAAAAAPjtREmLmj+PGjVK559/vs4++2yNHj06+ERQQYE0eLCUny/l5oYWYKh1BVveotzrr7+uTZs2eSySVV6uvIkTNeHOO1WRne1zFuPHj9eIESPC832FUkdz2T1ffqmJ77/vcZLOnTvr7rvvDt88w1He7vrsqD9cMdq1rE5aJ2HedyMy70jXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7bz88svauXOn5fjTTjtNhx9+eAQjQiAmTJhgOS4vLy9icQRjwYIF+vLLLz2Ou+SSS9SvX7+IxrNo0SItX77c47jjjjtOP/7xjyMaD8KvpqZGTz/9tOX4aO8z9fX1mjJlSkBlzjjjDA0fPlwrV67U559/HnIMp59++r4fnQjKwoULtWLFipDqGDJkiM4555x2w0JZvwcffLDGjRvndRqrc0lycrJuv/12SVJlZaWef/75oGJoEa59zCreLl266PLLL/e6Hw0aNEgXXHBBWOKA81ltK4Zh6M4772z9/80339S2bds8TpuXl6fnn39elRY9ZqJ97giF1ffToUMH/frXv45YHN5+j/Tv318XX3xxxGIB9tfQ0KDJkyeHvd6DDjpI5557bsDlVqxYoYULFwZU5phjjlF9fb3Wrl1rOc15552nwYMHt/7/3HPPqaqqKuD4AhHO4+fu3bs1bdq0sNUXSdE8j3z++ef6/e9/ry1bt3ocnyNpoaQSSYcccoieffZZnXzyyZEMMSaF87H78+fPd9TvM2/LRk9BALGOpCDs0b+/PZn+EFR1764KL+9Lq+/b13Ex4wde7yxz+Hqr3bjRMn5XTo40cGBk4/nuO8t4qnv0cPz3Cd/c1dWO3mfMujq/7hZtq+UYXVdcHHBZb/UhOLXffhvyeqjp1euAdRDK+t3bs6fPdWpVd3JycmtZ9549oW9jYdq2rOJIys6WcnO9xunP94H4YbUtGIbRbjuo7tFDFbW1Hqc1Bw1SZbduqtjvsb6tYnh7svp+OnToENHlquzWzfL3SJfu3WP6O0bsM+vrw9LG2l+wvy/qiooCjqe2d2/V19eroqjIchpXTk67eCqys1WVYvOlsTDu202Zmbasp4iIwjFu9+7dysvL00svveTX9Kecdpr+M326uvCaAb+E8+lz+79WINp4fCiAeEZSEAmDR+UiWpzWYPS2L7hcrghGgkQVyvGYYzns0PY4HY47nk3TtPXYbxiGz32BfQXBSLTtJtLLm2jfL2KLXdtnJLd70zQDPj+yX8avjz76SFdffbVlD/m20tPSpPp6Pf3000oiIei3cO4/SUlJYasrHDg2AIhnzjriAlHECR/REI3tjqRg/HP68SyY+MK9TE7/jpygsbFRe/bs8TjOiRcOwxVTOOpp8vJkgnBw2s0miA+JeFwkKQj8wGnbZ7DtRactByKvrq5Od911l8444wy/EoKHHHKI3n33XUnOS0w5HT0FASA20VMQCYM76hEt3hqMJAWRiOIl8ROvTNPU7NmztWrVKjU1Nalbt276xS9+oV69erWbJhzzcaJwxOVyuZRi46PI6CkIuyTadmOapjZu3Khvv/1W6enpGjlypPr27Wvr/IIZB0SC0274sSspGOs9BWMt3khbu3atLrvsMq1bt86v6a+44gpNmjRJWeXlNkcWn+I5KegNSUEAsY5bYADAZk67AERSELGoZbslKWi/RYsWafny5a293Xbv3q1p06ZF5PgQrfXSdr7hSgraiQsRsEMiHhfdbrfeeOMNrVq1Sl988YWef/55FRQU2Da/RPyOETviYft06jLY/QQB7Fv3kyZN0rHHHutXQvDaa6/Vpk2bNG3aNGVlZUUgwvgUz0lBpx5PACAc6CkINOOEj2hw2nbntHgQHKevRyf0FIS11atXHzBs7969Kiws1MEHHyzJmT0FnZQwjkRSkJ6C8IdpmnK73Vq6dKkKCwu1devWaIfkaC6XSwsWLFBubq4t9TvtRrF44Ha7tWPHDmVlZSkjIyPa4cQ0egrax+VyhS3hwbHiQGVlZbr22ms1c+ZMn9Medthhevrpp3XSSSdFILL4F8/vFPT2nnFu0AMQ60gKImHQeEa0OO0CkNPiQeSZphnVHzK8U9DZdu3a5XH4kiVLWpOCdnHCeomVpKAvTvgu4QzvvPOONmzY4HM63sW1j509Bb1dYETgCgsL9cYbb6i2tlaSNGrUKI0bN85xF5ZjhdOSgsHOK9D5RSK+xsZGpaWl2T6fRPTxxx/ryiuvVElJic9p77jjDv39739Xx44dIxBZYgjneS2WegqSFAQQ62gtA824CAK7OC0J522eXKxKDNFez07oKcgxP3Btf/w68ftz0rbhhJ6CQAt/EoIt2K7sxfcbPg0NDXrllVdaE4LSvp7uX3zxRRSjim1O2z7tuoksWj0Fw8Vp6yla6uvrdc899+iMM87wmRDs06eP/ve//2nixIkkBMOMx4cCQGyipyDsUVwsZWZGO4p2Ou3cKdeePZbj00pKJBvvDEZovL742+HrreOOHZbxG4WFMpOTI3qnWfr27ZbxZJSWOv77hB8qK73uM2Z+vpQSxSaAj/g86VBcLPXoobSSkoDLepK6bRvbugWr77fTzp2t35m344i/MsvKDlgHqdu2BV2vp/raMk3Tsu6UlJTWssllZSEvm5mfL9XVhVSHZL0uOnfoIKOw0GucmRkZbOMJJBzHRTM/X11271ZKTY3nCWJ4ewr4+7FpWTvv2qWkvXs9jstMTY3p7zjSNn/99b52634KFyzQiTk5UYgoDgTRPvNHRmZmUNt2MG2Njjt2KKWx0Wu5lKIiqU1iqMvu3Uqrrw84vkA0bd4sde8elrrC0U6JmjAd4zZu3Ki77rpLX2/cqIHNw5Il9ZW0XFJDm2nPP/98PfPMM+rRo0dY5o32EjUpSE9BALHO4M4HhINhGCMktb7NeZ2kEdELBwAAAAAAAAnkREmLJHXs2FETJkzQDTfc4F8Cp6BAGjxYys+Xwv1e2XDWHWpdwZa3KPfMM89o27ZtHotklZcrb+JETbjzTlVkZ/ucxahRo3TeeeeF5/sKpY7mskWff67nPvnE4yQ9e/bUrbfeGr55hqO83fXZUX+4YrRrWZ20TsK870Zk3pGu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2nnhhRe0x0tPwZNPPllHH3105AJCQCZMmGA5Li8vL2JxBOPTTz/VV1995XO6U089VUcccYTt8Xz88cdat26dx3GDBg3SBRdcYHsMsFdlZaWef/55y/G33HJLVN9rUlFRoalTpwZUZuzYsRo1apS++OILLVu2LOQYOOZbszreHnzwwRo3bpwkad68eVqzZk1I8znooIN07rnnaseOHZo+fbrqQ7xL39fxy+126/HHH/c4LiUlRbfddpskaceOHXrttddCiuX8889Xbhh+3Fitiz59+mjcuHF65plnLMv269dPl1xyScgxwPlM09TEiRNDrufWW2/V1KlT2z2OsS2nt7e88daOtHLEEUfo1FNPDWscTz31lOX326tXL1122WVhnV88e+mllyzfgRvL22o0BdM+80dOTo7Gjx8fcLnFixdr6dKlAZUZMWKEGhsb9c0331hOc9ZZZ2lom2sVkydPVkNDg+X04XDxxRerf//+YamrtLRUr776aljqirRg902Xy6WXX35ZEyZM0J6KCo/T5EhaKKlE0pFHHqnXXntNw4YNCzZU+CmcHU2c9j5YOtEAiGckBWGP/v3tyfSHoLJbN1V4uUOsrk8fx8WMH3i9s8zh662mVy+/7oxbuWuXjojAsniLp6p7d8d/n/DNvWeP123OHDRISk+PYETtNe3e7dc+0VZDv35Sbq5qN28OuKwnHPOtWX2/Nb16tX5n/h7XvNnbs6eUm6v5S5eqNCNDysgIqb7qHj28r1O32zLmlJSU1rKuDh1CXrZwbV9WcXTu2VPugQO9xtnF1/eB+GGaYTkuKjdXld26qcbq8aExvD0F8/18vnWrjsrKUnY4vts2cdRanH8z2GcDsqdrV1VYvSOZ7zEowbTP/JEV5O+L2u+/Dzieml691NDQoIqyMstpGve7VlGRnW17UrC+b9+wbZdNaWm2rKeICOI72Lx5sy7/1a/8ThBfefXVumfKFKVH8bdOIiEpCACxyVlHXABIYFu2bInIfLw1bmn4Jga31UW0CAllOwvXNsq2Hji73p2xceNGW+rdXyTXucvlsrV+f9YF23jiCOdxke2mvcWLF4e1Pr7f8Glqaop2CHEnUbbP/ZczEssdzu01UdZTU1OT/vnPf+qII47wKyHYvVs3SdKDDz5IQjCCYjUpWFNTo/z8fNV5eQc4100AxDN6CiJh+Dppc1KHXWJp24qlWGHN6ce7YObfUoakYPS0TUSF4/tz6joIR1yRSAo69ftD5LEt2KekpCSs9XGBMXxICoafXdtgsPUG21504r4U7RvyYs2WLVt0zTXXaN68eX5Nf9555+nZBx6Qjj3W5siwv3Bu25HYd03T1IIFC7RgwQJJ+9rUZ5xxho4//vioxAMA0UJPQQCwmdMak1yQQrQvTLCdxSa7egqGS7iS4bGSFPSF/QyBcurF9GgK9/fB9xs+0W7LxKN42D79OY5Fo6dgrCVOosU0Tb300ks6/PDD/UoI9u3bV9OmTdO7776rHj16RCDC0O3du1dr167VunXrrB/XHUPCuT1GYtv+9ttvWxOCLfOcM2eOtm7dGlA88bwfAkgM9BQEmnFSR6KgcRv/6CloTwz4QSz2FCQpiHgVqXVtmqbjbw5wOtpg4RPrPQVdLpeqqqrUtWtXx+xXidpTMNaSgrHM23mkrKxMN998s6ZPn+6znoyMDP3ud7/Tb3/7W3Xq1CncYdpm+/bteuH111VfXy9J6tixo6688kr16dMnypEFL9aSgitWrPA4fPXq1RowYEC7Yey3AOIZSUEkDH5oI1qctu15i4eGb2KI9jbJOwVjU7gfHxpuToopHElBb8vD40NhB3oKHoiegs4Vq0lB0zT18ccfa+nSpWpqalLXrl118cUXq1+/ftEOLS62T6f2FIzV7TXcrJKCM2fO1PXXX68dO3b4rOPUU0/VCy+8cEACJxbMnTtX9W22t9raWn3wwQe68cYboxhVaMK5/0TiWsS3337rcfiqVas0btw4v+uJh+MlgMTG40OBZpzUkSi4Sx1292LyhZ6CzuUrERXLItlTMBx1eLswQk9BtMW6jh2sq/CJ1STL8uXL9cUXX7TGv2fPHr300kutPYeiKV56CjoRjw/dZ//Yq6qqdMMNN2jcuHE+E4JdunTRpEmT9NFHH8VkQlCSdu/efcCwkpISVVdXRyGa8Ii1noKBcFo8ABBO9BSEPYqLpczMaEfRTuddu6SqKsvxaSUlUkFB5AJCQLLKy61HOny9pW/f7j3+Nsz8fNsvvGeUllrGk9mhg+O/T/hmlJd73ebc33/v9XhotyQv26CVlmN0xx07Ai7rrT60Z7rd1seHsrLW7ywc66GlvnCsT0nKzMz0vk4bGiznlZKS0lo2uago5JjCsX2ZLpdlHJ127pRRWOg1zk4czxOG6WXbDoRRWKguu3eroaHh/9l77zirijT//3M75xzpprsFDAQF0SEojqgDKiNGxADiKCYMY+/+Nn5nvt+d2Z3ZMDuzSxvGcQxkQSQoOapIlKyNZOic4+0c7r3n90cHb3effKrOqXNvvV+v+4I+lZ5T+dRTT5V4OgUFcATYc0+p3vwhPS+Kqa+XVA5EBQbyNquBGJHF9X4YzsfLe/aI1sfSAwcwcuRICyT6ET3zMzVEhoToKhMt31B9hFdVIVhm/ASAoNJSICam/++Y+nrqi/9BpaVAXByRuAIrKqiUkxkIBQVAUM8y5NGjR/G3f/u3KC0rQ3aveyCAdADHAHiPRFOnTsWKFSssbyO0cDqdtjoG1RtfUwq63W6czc/HjQC+/fZbSX8syMrhcDhG4EpBDh3uvddqCYawUMlDXp4ZYnB0kivnyHjZzez9qcKEd7m/9yfJr35FXQYOXeLBdptJgYJ8YvTKfGfvzzCM9xtWEQB1ZaOpX5Pjb/5Ge12Q4+//XtIpBArv9qc/AQAylfypgUD9ClIhh5I778/9A8W6rZa8PLyq4G5Xco0EJtiOfqnk4f/+X2Jp+Tq5co4M19WnpRwYkFnX/Ewt/+f/aA5yR++POIPy+k0aaSikaYR0UCwn2njlwyQAByS8TQNwEEBwcDB++9vf4h/+4R8QGBhogoAcrfiSUtDj8WDdunWoOHwYN6LnnkvEx1sqE4fD4dCCKwU5dNi5E7juOqulGMBHH32EZhnLmKlTp2Ly5MkmSsTRwuLFiyXdcnNzTZNDD7t27cLZs2dV+X399dd7LFYosnXrVsmz9JOSkjB//nyq6XPo09DQgGXLlkm6P/bYY5Yeu1NZWYk1a9ZoCnPHHXfglltuwVdffYXvvvvOsAyTJ0/G1KlTDcfja3R3d+Pdd98VdRszZgxmzuxRBe7cuRPnzp0zlFZ2djYeeeQR2f5dC5mZmZgzZ46ke2dnJ9577z1Rt6CgILz++usAgJKSEqxfv96QLCTmFHLyXnPNNZg+fTqWLFkiGT45ORnz5s0zJAPHHsjVFS28/PLL+Pjjj9Hd3S3q/sYbb9h2UVZvP0O6HcnJkZiYiGeeeYZYWr6OXb8NpOROS0vDk08+aa4wg9AzP1NDSkoKnn5aUh0qyb59+3Dq1ClNYUaNGoXu7m4UFRVJ+pk5cybGjBkDoEcJkWeCQvbOO+/EzTffTCSu8vJyrF27lkhcZjNq1Cj8z//8D64WFIi6Z6JHUVgBYNy4cVixYgUmTJhgooQcrfjS0bhlZWU4f/48YlX4tVpWDofDMQpXCnLokJEB5ORYLcUAnPHxaJZRtnSkpTEnM+dHnHI7tBgvt7aUFDgrKlT59WRlASEhVOVpTU6Gs7ZW1C0kIYH5/OQo446Kkm0z7ampELKz0dLSgqioKNPvinMHB8u3aRH6+uj21FTNYcVoT03ldV0EoatLMn+986wtJQXOykpDabUmJwM5OUTKEwBiExNly1To6JBMKygoqD9st8djWCYScwo5edtSUuDJypKVM0whPzg+RGcnkXbUV6eklILIyQFsqhTUmz8k25EgCLJyhPA2qwm7fhtIyR2TkmK53K6gIGJjsjcRSUm63q3jwgXN8rQmJ6OrqwvOpiZJP13DhvXLIxAY89XQNy/o6urClStXUFdXh+zsbGRmZmqeh7sDA02RmSTd3d3YsmULvlOpgH3hpZfwt2+9hdDQUMqScYxCUjlGUsGoh/3791uaPofD4ZgJVwpyOL3wnT4cWmipW2ZMhOXk4e3AP7h48SK2bdsGp9OJ8PBw3H333bj11ltNS99IPSNVR3ldF0cuX7wXreyYf3Z7NyV5leRk5T049DHr6C5ep4zB848jRwAD93XSqqN649UTTk0Ybz9mKSE8Hg/a29uxcuVKlJeX9z+fNm0a7r77bk2KQbv1JY2Njfj0009RoWKT7PDMTKC0FP/8z/8McIWgLfCl40NLSkpU+7VaVg6HwzEKVwpy/Aa+eMaxA1wpyCGBUjmeOHGi///t7e3YunUr4uLiMGrUKNqiATC2yMPrKF3MzF/SafmawlitEpPD8bW6zxJOpxOCIBBpc/xbhCMHC/06a0pBvWlpSc8s2TweD44cOTJAIQgABw4cwE033YTk5GRT5DCboqIirF27Fq2trYp+X3jhBfzvm28CN95ogmRsYef+35eUgiz0wxyOEpcvX8aBr7+G0+nENddcg5kzZyIsLMxqsTg2xPrtaBwOI1g9AeH4Lqx9mHKlIEeMH374wbS0uKUgu8htTGDRmk4LdlN4KpUFVzBwzMYf61RHRwc2bdpEZNOWP+YfRz2+bCmoF72byLSMj2ZZCrrdbnzzzTeibkeOHNEUF2vlJMWxY8ewbNkyRYVgamoqNm/ejA8++ABRUVEmScchhb8qBa2WleO/bN26FUVFRWhsbMSpU6ewYsUKXh85urB+5snhmIRSJ2n1+eUcDmC9pSBvB/7L6dOnFf1cvHgRa9aswUcffYR9+/bB7XbrSsuIpSCpOsonzuLY7YhNb3xNYcwtBTlqIVn3Wan/LHH69GkcP37ccDxckW8edsxLX1YKmlkeHo+HuasblNI5f/68KTKYhcvlwubNm7F161bZ9w4ICMCCBQuQn5+PBx54wEQJOSTxpTsF+fyaYwcGt7ny8vIhVugcjhr48aEcTi9WT0A4vguLH6ZSNDY24syZMxg1ahQ/gsDG0Fh8OX/+PNauXdsfd2lpKWpqajBnzhzNcXFLQXbxZUWU2jInUTdox2GWpWB3dzcuXLiAiooKDBs2DNdffz2Cgvjng7/iz/3mpUuXMGnSJENx+HP+cZQJDAy0WgTm6qgZloJmHh+qx00M1srJm5aWFnz66aeKd7NlZmZi/fr1hvtVjna6uroQAuDTTz+Fe/hwTJkyBSNGjNAdH7cU5HCs55tvvsFTTz1ltRgcm8G/6jmcXqxWxnB8F9aUgkryrF+/HklJSXj22Wf5ES6cfr799tshdeeHH37AzJkzERMToykuFu4U5B9y4phpKcjvFJRH7VGutOju7saaNWtw9erV/mfXXnst5s6dyxWDjMEtBemj5j4sJXjemgepeyBJw/rGG1+xFKTpXy9y6fhK31BXV4dly5ahqalJ1t+0adOwbt06pKammiQZpw9BELBp0ybMAVBRUQFnRweuXLmC+fPn45prrtEVJ8k2ZHVbYKEf5nD00NLSYrUIHBvCv+g5dCgrAyIjrZZiANF1dQhqb5d0D6usBAoLzROIo4nYhgZpR8bLLaK6Wl5+bwoLAafTcnm6Gxpw7LPPcNddd1GVhUOHgNpa9XXOG5m21HDqFGJFnp/ZsgW33XabpmQCS0o0yxdaUQEUFiK8qkrfuw2C9/kSNDdL5m94VVV/nmnq1ySIjIoCCguJlCcARIWGypdpa6tkWsHBwf1hg0pLDctEon45nE5JOSJrauAoKpKVMwowJMOls2dRd+LEgHZfffQoriYl4brrrtMdL4cCMnVbC46iIsTU10svyhUWAiEhhtOxAqP509bQYHzM6OyUb7OCwMcllXg8Htm89Fy9igAGNy+4XS5JuaNqay0vfz3zMzVEORy63i2sslKzPBERERAEQTZccFkZkJjY80dLC5V3HkxIeblkOiEhIZryh8Q8hTSNjY34ct06xLe2Ih5AIIB0AMcAdHn5e/755/Hee+/1vDPHdK5evYrS0tIBzzweD44ePapbKehLx4dqwWoFpp1xu92orq5GUlISgnWEZ3Xjj5XovdaF49+wN1Pm+Ab33mu1BEN42WoBOIbIlXPMyzNJCn3M6v2pwoR3eYR6ChyrSYJCm5FCpv7pik+CLD3x9cp2X++PQ4doqCubn5NK8O/+jmjdwj//s6RTJBTe7Y9/BACMVPJnErFQlkPJHb/5je70x/T+hsD4mOuPKNZtteTl4U0Fd7uSSyISg+8fqkaO3/7WUBr+QgDs+W0QBAW5X3/dHEEkyAbF8e9f/kVzkLt7f8Txqh9RMG/Mny7n+N//rTqeTLAxTxnMb0SeTQNwED33B86aNQv/8z//wxWCFrJt2zbR51VVVbrj5MeHcrTw/fffY8uWLeju7kZgYCDuHz0at6gM29TUhC1btqCwsBCxsbGYMmUKbrlFbWjfhisFOXrgSkEOHXbuBBjbRf6Xv/wFHR0dku7jxo3Dz372MxMl4mhh8eLFkm65ubmmyaGHrVu34tKlS6r8zps3D8nJyVTlWb9+veI9D32wnrcccWpqarBq1SrN4eTKW6oNjh07FjNmzNCUTmFhIT7//HNNYaZMmYIpU6Zoak9yTJgwAdOnTzccj6/hdDqxZMkSUbebb74Zd955JwBg8+bNuHLliqG0hg8fjscee0y2f9dCamqq7F0KLS0t+PDDD0XdgoOD8dprrwEALl++jC1bthiSZdKkSZotaAdTX1+P5cuXi7qNGTMGEydOxMqVK1XFFRwcjNmzZyMrK0t1+nYed/0Nubqtheeffx5LliyRXOhatGgRQkNDDadjBUb7mZiYGDz//POG4mhvb8f7778v6R4bG4vnnnvOUBr+glJevvrqq0wqHjo7O/Hee++Juo0ePRr3WryxtqCgAF988QXxeOPj4/Hss89qDrd3717k5+drCpOWlgYAqKyslPRz1113Yfz48QDk5z0kGTduHM6cOSPqFhgYiDfeeENVPIIgII8hpXdFRQU+//xzdHZ1DXieCeAAgAoAkZGRmDt3LrKzs7kixUIEQUB9fb3oyS8NBixP/VUpyNFOZWUlNm7c2P+32+3G/v37VSkF3W43li1bhvr6egBAbW0ttmzZgtDQUIwbN46SxPaBKwU5euBKQQ4dMjKAnByrpRhAU0IC2mWOD21NTmZOZs6POOPjpR0ZL7fW5GQ4a2tV+XVlZgLp6VTlKQTQIpef3jCetxxx3GFh8m1GCpnyloqvPTVVcz3p7u7WLF9HWhqQk6OpPcnRlpLC67cI7vp6ybLpKwOgJ/+cvR9leolPSgJycvTVVREie+OTwtPUJJlWcHBwf9iutjbDMvW1C7fbjfPnz6OsrAxpaWkYPXp0T1oqcEdGyrY7T1aWJjn3XL6M53/6U9X+7Tzu+htCczORduTJykJjXJx0OtnZQFiY4XTMRhAEw/kjxMQYrvee1lZZOQLi43nbUkm3TH8O9NZVBhXYLpk64D3GWkV3VxexMdmboMREXe/WnpoK56CjDpWISEhAQEAAnJ2dkn66hg3rl0du3kOS1uRkyXQCAgJU509Zaakp8qqhuLgYKzZuRHd3t6SfxORkPDR/PmJje1RRdjoe0tdobm6mEq8vHR/KLQXponWThzdlZWX9CkFvvv/+e64UBFcKcvTBlYIcTi98UOewAO2JcGlpKb+EmEMUPTsqjfS3vK+mi1z+epc1i+XAmkxutxtr167FxYsX+5+dPHkSTz/9tCoLFqX30fq+JSUl6OzstK2lF0ca1uq+L0JisYWXEznkTn8B2M1ruXl+QECAiZKIQyvf9MarJ5wgCJrGT7OUEHLpaHnPwffBWcWlS5fw2WefySoEAWDOnDloj/3RNo3VtukPtLW1SboZsZDjloIctRw6dEh32K+//lr0OYkThHwBrhTk6MH6mSeHYxJKEwyrdyVxfBctk1vaE2GpyRSHYyZ6F3kAcn211R+drCKXv6SVgmaXgdr0SMl18eLFAQpBACgqKpI8PmwwastCC3ILQhz7QqrOklZE+xJmKAX9OX+1snv3bll3VvNSrh5xpSAZPB6Ppu9+s2QjpRRkQWlx9epVrFmzBl2Djgz1JmPYMAAYsgmK1bZpNWbki1waak+x0BInC/FphVsKsovSBgR/hysFOXqwfubJ4TACH9Q5tNBSt2grp43eAcaxB6x/oLFgKcj7fHHsnC8s1Q1BELBv3z5RN6XFbDVyOBwOXXIqWddwOL4IiTZNYn5m5/6VNeTuiwPYzWt/tRTUix551CgFd+7ciaampn7/ZuALC7aCIGD//v1YuXKl7Ptce+21ePjhhyXj4FgDjbwnHafVG/VZULpzOHqwuu1w7In1M08OxyS4pSDHDvB6yGERFpSCfWFYUvz4ImYeH1pUVGTqIpnZloJVVVWiz9Uq5tSWhRbk7lbm2BduKUgfbinIFkpH4e/fv98kSbThr0pBM+u2muNDAWDjxo39/s2A1DeeVUoLj8eD7du3Y+/evbLvMm7cODz55JOSlme8n7MOOygFra4f3FKQY1d8YeMJx3ysn3lyOIzAlTEcWrBkKcjxD1j/QDMSHz8+lC40FFFyfPrpp8TjlMLsRUmjKB0fyi0FORzzcLvdhts1H3fM48iRI6itrbVajCH46/GhetFrKaiGwsJCdHR0aEpj7ty5uPnmmzXLpEUuFunu7sa6detw9OhRWX+jR4/GI488gsDAQEk/rNUxf4IrBZXhloIcu8KVghw9WD/z5HAYweoJCIcD2PuDkeO7sPDBR9pSkCOOmXcKAmQvh/c1K1JuKchRC7cUlIeVvsGu+WdXTpw4YbUIQ+CWgvRRc3xoH42NjZpkCw0NRVBQkG657EhTUxOWLFmCs2fPyvqbOHEiHn/8cVmFIKCtLnR3d6O4uBitra2qw3DMhYVvRJJwS0EOh+NP6JvRcDg2hB8fyrEKbinIsTssffSwsrjrq5h5fKjZmH18qFG4UpDDYQu3221IceOrSldWOXPmDO69916rxRiAvyoF9aJ3Exmtby8jVkR2tOIoKSnBp59+qnhc76233opZs2apqsNqy+bSpUtYu2oVXC4XAOAnP/kJ7r//fm7JZQAa7Zv02oWVayEOh4PXLw6H41dwpSCHDmVlQGSk1VIMILahAV1dXZLu4VVVQGGheQJxNBHb0CDtyHi5RdbUyMvvRWBJCRASQkUOQRBUy9EP43nLESegslJ7WQOS5S10dUnGp6fvDCot1SxfaEUFUFioqT3Jwft8cQIqKiTzN6yysj/PSJUDSaICA2XLNKCxUVLm4ODg/rDBZWWG3y1UJh8BqKp7ATLtJKK6GgHFxZrl9Fy9CmRmqvJr53HX33DI1G0tKNUpR1EREBFhOB3TcbuJ5I/n6lUgNFR3eEdDg6wc0S4Xb1sqUDufjeruZi8/ZcYXFuYleuZnatBbtyOqqzXLE9nVhdDQUHSpCBdYUgJPd7fqNILLynTJBAARERFExlXF+QUhioqK8PXmzUh0u5EIIBBAOoBjAPpWVAICAvDQQw9h/PjxquNVq5jatm0bXHFx/X8fO3YMaWlpmDhxouq07IQZCnl+fKg8WpWCrG2i4HA4HK1wpSCHDoztygSAV9V4+tu/pS0GRye5co55eSZJoY+HtHim+C4OKOSjGIznLUecNOgoa0CyvEP0xifB9b0/PcwhKAdnKOlQV9aPUJZDN//3/0o6xUHh3f74RwDAmN6fUX4q56iib82EclkouRtBNm4+NjBFHAjVhbw8nyz3QJDLHyPEq5Hjd78zlIY/oGk++/vf0xNEBxmQkZ2B9jW690cFHXV7Zu+PGr15nqvBfyaA6RRlUWJ8788M/lfk2TQABwGEhIRg7ty5GDVqlKY4jZzacOzYMZ9VCpoBVwrKwy0FORyOv8GVghw67NwJXHed1VIM4N1330V3d7eke2ZmJubM4cvNrLJ48WJJt9zcXNPk0MPGjRtRVFSkyu+sWbNwHaW24/F48NZbb2kKw3recsSprKzEmjVrNIeTKu/Ozk689957om433ngj7rnnHk3pnDt3Djt37tQU5pZbbsEdd9yBTz/9FBUVFZrCijF69GjmjhVjgdLSUqxbt07UbcqUKZgyZQoAYMOGDSguLjZTNEUSExPxzDPPSLo3NDRg2bJlom7BwcF47bXXAAA//PADdu/ebUiWm2++GadOnZJ0V9O3FhcXY8OGDZLxX3/99Zrb+ciRIzF79mxVfu087vobcnVbCwsWLMDy5csl3V988UVEMnYSiBpcLhfeeecdw/G88MILiIqK0h2+rq4OK1askHSPiorCCy+8oDt+f0EQBOSpUKBER0dj4cKFJkiknqKiImzcuFHU7bbbbsOkSZNMlmggZ8+exa5du4jHq7du79y5E+fOndMUJiwsDOHh4WhQYU33zDPPoL29XXLeM5g5c+bgypUrsuO7FKmpqaiqqpJ0Vzuufv/99/jyyy81p6+Wb7/9FoePHBnyPBPAAQAV6GlbTz/9NNLT0zXHb0TpU1lZqTssxx5KQTsdH8otBc2FK2w5HPJwpSCHDhkZQE6O1VIMwBkfL6sUjE1MZE5mzo844+OlHRkvt9bkZDibmlT57UxPp/Y+gtstn49iMJ63HHFcQUHayxqQLG9Pe7tkfO2pqZrrSZfTqVm+jrQ0ICcHzYmJcHZ0aAorRmtyMq/fIrgg3d92DRvWn2ctSUlwNjebJ5gKQhTGcXdUlOS7BQcH94ftrK/X13686EhLMzxudcv02e2pqXAPH65ZztqoKNX13s7jrr8hV7c1xaNQpzxZWUB0tOF0TMflIpI/rsxMwOs4O624IyLk8zc6mrctNQiCuvKMjbU0Pzs6OhAWFjbgWVd3t6TsffMcK+lsaCDSVgbj1jD2eNOanAynRkVQR2gouiMj4VTh15OVhe6WFtXv7MnKQkdrq648CouPh1PmKhO1+dNVW0unjNxubN26FSdPnpT1l5qejkeefhrROscCrkjxLbilYA/V1dU4ePAgWn/4AfMBNDU1IYaseBwOh0McrhTk+A1KEwwrdyVxfBtal91zOGbB0gcfqTbCFyXEMXKsk9UoySTnTnr3KYn8UarretLoIKBQ53DsBqn+yu12U5WDxX6VRdTmk1VWBRcuXMDOnTvR0NCAhIQE3Hfffbj22msBsD/P94U66PF4VL/Hxx9/rGlcNKI0YLnsOzs78dlnn+Hy5cuKfh977DG0GNgc4gt1zK7YwVLQ6vqhx1Kwvr4ey5YtQ1tbW/99n+vXr8cTo0Yhwo73MHM4HL8hwGoBOBxWYHmizpHH6skjSWjWQ1/KJ448rB/loke+vjC8HtOF5y87eSAnh14ZWXk3DllIlStXWsljdCz09/wzm8bGRpw4cQK1tbWmpVlZWYm1a9f2H11ZX1+PTz/9FNXV1QDkFcss1A9aMpg5ZmlRCmrdKGNE0czqWkNTUxOWLl2qqBC8ecIEAEBgYKCh9Fio5/6KHeaVVh8fqof8/Hy0tbUNeOZ0OnHx4kUSYnE4HA41uFKQ4zfwhQ6OVbBiKcjrOEcvLO0CNWvx219Ru2Bgx/yzmxUkjXkLK+/GIQsvV3PgloL2Y8uWLXj33XdxROSONBqcO3duyFze7Xbj/PnzANhVDPXBmlJQb1q00mPBUpDkuxUXF+P9999XvKv73nvvxZ133kkkTd7PWQeNvGdh4yip+AMCAnRZCn799dei7ps2bdIkG4fD4ZgNVwpyOL2w/pHG8Q94PeSwCAtKwb4wJBdVjC7w+iJq85fFRR2WFMZmHB/K4ZDGV5VWrBwfyts0GfSU586dO1FfX09BmoF88803os+/+uorAPJ1gIX2xYIM3ui1FKSFEaUgqTknqTnK0aNHsXTpUrS2tkr6CwwMxOOPP46pU6caTtM7bc5QrM4XViwFrVQKGmnfWtPicDgcFuB3CnI4vfAPdfsiCIJl94aogVsKcsyG9Q80FiwFz549i3PnziE5ORkzZ87EyJEjicRrd2gcLcQKdpN/3759su52ex8OPXhdMAfaloIcuhw/fhwzZ860VAbWNyP5gqUgQO97ioXjQ0kcY7x7924cOnRI1l9YWBieeuopZGdnG0pPLH2ONdjh+FDa9UOu/WhVCvK6zOFw7A63FOT4DUqDNlcKcmjBilKQw9ELCx98NO4UFAQB1dXVWL16NaqqqojFa2fsdsSmN75kKdjY2ChbJ1lZvOH4Fr5qKUgK2ncK+nv+0iY/P99qEZif57NWB/XKQ9taUA+sKAW/+uorRYVgbGwsFi5cSFwhCLBXx/wJGnlvtzsFzbQU5JCFlw1f0+aQh1sKcuhQVgZERlotxQBiGxpkO8koQQAKC80TiKOJ2IYGSTehoAAweOk5TaJqa2Xl9yakvJxaPRQ6O1XL0Q9vE7YkoLRUe1kDkuXtcDol4wuvqtJcT4LLyjTL15dOZE0NXE6nprBquLJ3L1Jvu414vHYjSKbuhFZU9Je1ln7NLKIVxvGAmhpJmUNCQvrD6qmfgwmvqpKPQ6HNnD10SDZ8eFUVAmJiNMsZrSLtPozIzzEXubqthcCSEtl4AoqLgcZGw+mYja75jwiOoiJD4QMU+pbwjg7etlQguFy6yjOyq4t6/ir1m3JtzHuMtYqQ8nIqY3toW5uud4uortYlT2hbG4I6OzWHUyKotFR5fJeRKVhOJpX5Y2SOcuzYMRQdOoRsAIEA0gEcA9Dl5SczMxNPPPEEoqOjdaWhBF+0tg5uKcgtBTn2RhAEyNVQl8vV803L4aiEKwU5dLj3XqslGMIv1Xj67W9pi8HRSa6cY16eSVLoY44WzxTfJRQK+SgG43nLEScTOsoakCzvWL3xSTCh96eH58iJwRFhJNSV9VzKcuhGZhxPhsK7/fd/AwBu7v0Z5S45R4W+9bbenxK56sX5kd/8RpU32bj52MAUinVbLXl5PlnuuuY/Yhh8/ww1cvznfxpKwx8IgoHy/Pd/JyeICLlyjnl5huY/ZkBq/BPlD3/QHOTnFMQwRF4ekqFufNYTtxp+0vsjxTQAB3v/P3HiRMyaNQtBQfSWCbkiRRwz8oUrBbmlIMe34UpBjla4UpBDh507geuus1qKAeTl5clOAqKjo7Fw4UITJeJoYfHixZJub7zxBgIZthT87LPPUFZWpsrv1KlTMXnyZCpydHZ24r333tMUJjc3l4osHLqUlpZi3bp1msO9+eaboh9DDQ0NWLZsmWiYG2+8Effcc4+mdE6dOqV4X9pgJkyYgOnTp+Pjjz9GU1OTprBq4fUduHjxIrZt2ybqNnnyZEydOhUAsGbNGlRWVpopmiKxsbF47jlptXF1dTU++eQTUbeQkBC8+uqrAPTVz8HcdNNN+P777yXdleraqlWrUFNTIxv/ddddp7mdx8XF4Re/+IUqv3LjLm8rbCFXt7Xw9NNPy8bz3HPPITY21nA6ZqNn/iPGAw88gFGjRukOrzQ2h4WF4ZVXXtEdv7/gcrnwzjvv6Ar78MMPIz09HaGhoYSl6kGp3zxx4gT2798v6j5p0iTcZvGJBXLyGSE0NBSLFi3SHG7Lli24fPmy5nCBgYFU7m+cN28eLl++jG+//Za4TGrH1SNHjuDIkSOa0j58+DC+PXp0wLNMAAcAVAAICAjAz3/+c9xyyy2a4tUDVwqyCStKQdqWpNxSkGNnlOoc6/cWc9iDKwU5dMjIAHJyrJZiAI1xcbLu7qgo5mT2Z9xuN9rb2xEVFQUAcMbHS/oVsrMBijsajdKcmAhnW5sqv+2pqdTqoae9XTYfReFtwpa4IN9mpBCys+EIGHrdsDsqSjI+PXW2o6JCs3xtKSlATg6c8fFoorUJgNd3dLW0qCrrlqQkOCkczWWEgPh42TJ0hYRIvltISEh/WD31czDtqanycSjUtebERDhdLtn4XZmZmuUMTEhQXc+NyM8xF7m6rSkehTrlycoCCKRjNkJHB5H86UxPN1T3uwVBVo6u8HDettTgcukuz2X79iEgIACPPPIIxo0bR1gw5X6zraRE0k9HWprl5d9RVkakrQzGe4zVQmtyMpx1dcTl0Yt7+HB0trbqyiOHwyG/oKsyf9oLCjSlv3//fuwdpBD0xgPgsccew9ixY1XHaQSuSBHHaktBvZBW4nFLQQ5HGqX24ZL5duRwxGB3FZ3DMRk+QWUDQRCwd+9eHDt2DF1dXUhJScGcOZoO4LQ1NHfH8TrOUUKqjrB0NAy/i4QuasuGxf6ElEwk4jEah5pFCT1pyIVxu90oKSlBWFgYUlNTNcfN8X1YbPdmYnQHtlL++Xv+qsVoPnk8HmzYsAFZWVmIiYkhJJX6tFmG10F6kMpbLXXo5MmT2Lt3r6yfmTNnYphJCkGA1zEpWFAKCoKgWSnG0jeiGkhaCnI4ZsOVghzScKUgh9ML6x9p/sLRo0dx8ODB/r+rq6uxfPlyCyUyjpbJLa+HHCvxeDyiR/GysAu0LwxfTKCLXFnbPe/trPAcDGkZKysrsWLFCrT1WrWnp6cTjZ9DF5YU4r4MbaUgxzwEQcCZM2dMP65Trg6xUD9oycDK0YRGYUFpoHZO/t1332HTpk2K/kaPHg2nUaE0wFqZ+hM08t5ux4eSthTk9ZnDEvz4UI5Whp4RxuH4KVwZwwb5+flDnrW0tMiGYX0yxoJS8OLFi6o+DDm+AenFF5baGEuy+CJ2VpyxKBNNSCqC1qxZ068QBICKigoicXPMway6b9c2Rkpuo4stzc3Nsu52zV+7oudeOKOw/r3JWh1kTR5AnSU/TdTkSX5+Pj7//HNJd4fDgXtnziQolXpYLFMWYMVSkHSceqCZF9xSkGNnlNoG63MMDntwS0GOX6BmYsEnqGxQVlZmtQiWQmMgP3r0KLZv3048Xo7voUcpqOfjychHJ5/s0kWubLzd7DhmmqnwNOP4UD2IyVVeXg6n00w7AQ6r2LFdm4nR8Wfz5s2EJPFvSNVTKxZ/WbfGZ81SkDMUpX7o7Nmz2LBhg2yeP/LIIxg9fDiwaxdp8RThdYFdWFIK0uqduaUgx84o1TealoI02yXHOrilIIfTC19oti+sT8a0yEfjCI6vv/6aaJwc9tFbj6T6QZbui6DZ3lnvS8zAznlgZAe0w+FAd3c3du/erXj/DgmM5rMgCMTK6urVq0Ti4VgHtxQ0ByOLLS6Xi39rMIYVSkHWj/ZiTSnIWp/DgiWRXD9y/vx5rFu3TjbfZs6ciZtuuomGaKpgrUxZgQVLQV+Osw9uKcjxZWjNMw8dOoQlS5YAAD7//HPFky849oErBTmcXviHOocFSNfDoqIitLe3E42T47uYdXwoq3cKdnd3U4vbLtj5+FAj9B2heejQIWLxGXGnha+VG4csvlo/WDg+VM1czFfzn1VYsxRkAV4HlbFaaSBVhy5cuIC1a9fK1rG7777b9Hs0B8PrmHXw40O5pSDH3ijVN5fLheLiYtTW1hKrmydOnMDu3bvR1NQEACgsLMTy5cuZn89w1MGPD+XQoawMiIy0Wop+BI8HsQ0Nyh4LC6nLwpFHVTkNprAQCAkhLgspImtqVL9XaEUF0XrYeeGCvjztg7cJWxJUWqq/LUVEDHkcUFEhGV94VZXmehJSXq5Zvr50ouvq4HK5NIVVS/elSwhhaOyyArm6490/RdXWosNI30KBaJdLti4GlJXJ1ru6qirEEpIlvKpKNi3P1asICJKehkfV1sqGD6+qQmB0tOZ2FON2D8mjUJn2LQkfG5hCqW6rJbCkRDYeR1ERoHDPM4s42tuJ5E9Qaanuui80NSnKEBISwtuWCoTOTiLlGSMIxPNbVq7CQtn+lvQ3gB50jQcqCAgI0PVuEdXVVOTRS0BxMbU8Ups/YZWVQ9I/e/YsDu/ejeEAAgGkAzgGoMvLz5133omf/vSnZGQ1AFeiiMOCpaAeGWgoBmgqG+TeMSAgwHKlP4djhJUrV/b/Pzs7G08++STCwsIMxZmfnz/kWW1tLSorKzFs2DBDcXOshysFOXS4916rJRhAAIBcNR7z8ugKwlEkV08gxsvtaQvTvqH3pxvG85YjThbItqV0vfFJMKX3p4fXCcoxBF7fMb73p8R82oLo5Xe/k3TKANl6rMQMOUeFuqZ23MhV6W8A//ZvA/6c1PvTBG8rTEGsbuflycdj03IPB7n80UuMWhn++791p+EvhIJgX/7b35KKCYCCXHl5+BmAnxFNkSy39f6o8L//qznIw+SlMEZeHpIA/IRS3GpQW4emATjY9/9p0zB9+nR9chGGKwV9C7tZCiodH6oVXp/NgytstdW3oqIi7N69G7NnzzaUZlFRkejzAwcOYO7cuYbi5lgPVwpy6LBzJ3DddVZL0Y/b7cbbb7+t6O+NN95AYGCgCRJxpFi8eLHmMIsWLUJoaCh5YQixatUq1NTUqPI7ZswYzJw5k1ja586dw86dO3WHz83NJSYLxzyKioqwceNGzeEWLlyI6OjoIc/Lysrw2WefiYa56aabcPfdd2tK5/Dhw/j22281hRk7dixmzJiBt956i9oO0nnz5iE5OZlK3Hbh1KlT2Ldvn6jbxIkT+3eZr1ixAnV1dWaKpkhUVBReeOEFSffS0lKsW7fOFFnGjBmDs2fPSrorjVurV69GVVWVpPvYsWMxatQofPHFF5rkio6OxsKFCwc8O3r0qOZjU/nYwBZm1e1nnnkGiYmJ1NMhTVtbG/76178ajufWW2/FtGnTdIVtaGjAsmXLZP0EBwfjtdde0xW/P9HZ2Yn33nvPcDyJiYl45plnCEj0I3LfMbm5udixYwfOnz8v6u49xlrFgQMHcPz4ceLxOhwOvPnmm5rDbdy4UXJB0gqeeeYZFBYWYv/+/cTjVjuu7tq1q39+ceHCBWzfsWOAeyaAAwAqev+eOnUq7rnnHmYW1LkSRRy7WgraTSlI+vhQDsdMtLaNkydPGlYKSsH6HckcdXClIIcOGRlATo7VUvyI2w1nfLyiNyE7G5A5zotDHzXlNIScHIBhpWBzYiKcKo87bElKItp2upua9OVpHyy1Y45qul0uXeXuycoCYoceoOhyOCTja09N1VxP2q9e1SxfaVAQkJODxrg4ah+L7ampQFYWlbjtQmdlpWTZdKSl9Zd1c2IinIzdJeCOipKti26Zekya9tRUOCsqJN09WVlAeLike3NiIpxdXZLu7ampcGVman4fISZmSB51lpRozxc+NjCFCzrnTxpxDx8OpKRQT4c0QmsrkfxpTU7WXfddkZGKMgQHB/O2pYbOTiLlGUp4zg0otMOcHLQmJ8MpseHDe4y1ivZLl+j1JTrerTU5Gc7ee4xYwJOVhU5C9W8IKvOnJSkJzvh4HDlyBDsGKQS9caNHIThz5sx+RUdQUBCSk5NRITM/oQ1XCorDlYJ04+xDaWMpv1OQwzJ66pvb7QYNsxeuQPcNAqwWgMNhCX5Zqj3xpckYr4McK5Gqf6TbmJ74iouLcfbsWartvUtGCeMvqO2D7NjvsiSzUj4r7b7U+y4s5QGHYzeM7IpW07fy9qkOUvnE2oIWC+XPggzesCZPeHi45fWmu7sb27dvl1UIAsB9996LFStWID09HQ6HA2lpaXj66aeRYvHGDtbK1J+wi1LQqjsFrW7bHP3wfkWazs5Oq0XgMAw3ieL4BWoHCa6Q4dBAyySF10GOlUjVVbl6aeYHpJ4jUbXAlYLyZePtxuLHF43FDr0opaXU17tUWJdbWQaCIPDFE4Ywqy6w2O7VQEpuI3M0Pr9jDyv6MNbbEOvyWUlqaiqioqIsHftaW1vxxz/+UdURr08++SRGjhyJkSNH9liK9F6R8t1339EWUxZex8RhwVLQl+Psg98pyLEzeupbZ2cnIijIwr8DfQNuKcjheME/2DlWQ7oO8omqf6K33PVYCpqpFFSjKDECVwryPsMsSCgFrYTXE44/QlspyNuVufAFraFYdZcXyTA0CAoKInrnux527NiBCRMmKCoEb5s6FcDA+t2nEBz83ApYKVPOUFhpo1beKag1bV6f2cBfykGvUpDDkYIrBTl+gdrO018GE1+D9XLjloIcuyBVV1lRCtKGKwW5paBZGD0+FLC27bGUlxxuKWgW3FKQDfjxob4tA4u8+OKLGDFiBADz601JSQkee+wx3H///bh8+bKs3zvvvBOTJk0CAAQEsLnUx+uYOCxYCuqRgcbYRnO8lIub1TbD4fTBklKQtTkURx+81+NwvFi1ahXKysqsFoPjx/APJY6V+LtSkHXrLDPgC9dkMLrwwnpdZLUN+yu8POThx4dyxLBiAZj1tsotBcXxvofPzIXQTZs24aabbsKGDRtk/QUEBOChhx7CXXfdNeAZi/C+0DrsYtVnZT/ELQXtCS8HafimZ44c/E5Bjl+gdpCoqKjA8uXL8cILLyA5OZmyVBxSsD4J4JaCHLMx8/hQPbDeZv0ZO1sKKsGSzEaPDxUEgdgCq54FTj5W+ScstSErUGPBKwU/PpQ9WNvlzkL5c6WgdXjf1etyufDrX/8a//Vf/6UYLjQ0FE888US/JWMfrNXvPvypTLVAI18aGhpw8uRJ1NXVYfjw4VRksJtSUG4s5nWT44t0dnYCwcHE42V1jOFogysFOZxBdHV1IT8/H3fffTf1dBoaGpCcnMzsTj4OGbRMMLnyhWMl/m4pyKpcZmLn47ZZkklJFqVFCSPKBzNgKa85vDzMglsKsoGdjw9lva2yJh9r8gD06o3H40FgYCBKSkrwzDPPYN++fYphYmNjMW/evAGWjH1IrS9YvZDLYpn6IvX19ViyZAlaWloAAOfOnVMMw8o3Hc3xklsK+ib+Ug66jw+NiqIgDccX4EpBDh3KyoDISKul+JGuLsQ2NKj2/v2mTbh70G47UgiCgAMHDuDkyZMQBAFhYWGYNWsWsrKyqKRnN7SUUx+OoiIgPJyCNGSIrquDS+V7RURGAoWFxNIOKS/Xlaf9EJSFYx6BJSW6yj2guBgQOXc+qLRUMr7wqirN9SSsstJYvaREaEWF39f50IoKVWUdXVcHoanJRMmUCWtvly0/ve1ClywKddxRVAS0tYm6uV0uRTkjqqsRFBWl+X0iOjuH5JFcmUshFBQAYWGawnDoIddHk0RqjGCe5mYi+aNnvOsjoLhYUQaHw+H3Y5AaHO3tRMozmvCcG1D4jiksRER1NdH5FGlozs+EggIgSNvyU2RNDRvzRa9y0TNmqkEoKMDm7dvxq1/9Ck3NzcjufR4IIB3AMQDeh8DdfPPNmDFjBiIiIkTjs1r5J4W/LN5rhXS+HD9+vF8hSFMGbinIMQu5Ps1fyo7fKcghDVcKcuhw771WSzCAEAC5WgPl5ZEXBIADwB29v35UHA3iL+TqCUSprEjxrNYAf//3xNIe0/vTDeN5yxFnJMi2Jd3xSXBX7485eH3Hbb0/JZ6nLYheZMbTHJCtx0rMknOUqWtBUC+nWn8D+I//GPDnT3p/muBthSlyYFLdtmm5R4Ng/rz5pq5g16iVYfFiXfH7E+EgWJ4E59yAglx5eXiAaGrk+Vnvjwo6+o+5FMTQhZfsN/X+aKQxG8BsCedpAA4CyMrKwowZMxSPgwymcFwcCfxl8V4rpPPl8OHDROOTwm5KQW4pyLEzLCkFOb4BVwpy6LBzJ3DddcSjFQQB586dQ0lJCSIiInDDDTeouvuvs7MT7733nqa0cnNzdUopz6effoqKioohz2fOnIkxYwypb3yCxToWQ1566SXJXZIssHTpUjQ2NqryO2zYMMydS+4T+OzZs9i1a5fu8LTaAYcuV65cwebNmzWHmzt3LoYNGzbk+aVLl7B161bRMNdffz3uv/9+Tel8+eWX+P777zXLR5vbb78dP/mJZvWIT7F//36cOHFC1G38+PG4664ede5HH32E5uZmM0VTJDQ0FIsWLZJ0LygowBdffGGKLCNHjsSVK1ck3Z944gmkp6eLurW2tuKDDz6QjX/06NEYMWKEZLuUIjw8HC+//PKAZ8eOHcPBgwc1xfPiiy8ikqUTIfycq1evYtOmTdTTeeqpp5Camko9HdI0Nzfjo48+MhzP8OHD8dhjj+kKe/nyZWzZskXWj8PhwJs6lY7+RHt7O95//33D8RgpTynkvmNyc3OxefNmybHBe4y1il27duHs2bNU4n7ttdc0K6qkvpvNxvt7KD8/H3v37iUWd1lZGXbu3IkmiTlVJoADACoA/OpXv8Lw4cNRWVmpGO/1118v+txq6w6uRGEXf7cU5NgX3q9Iwy0FOXJwpSCHDhkZQE4O8Wh3bN+Oo8eO9f99oLQUCxYsQEZGhmw4oaMDzvh4bYlRkB8Aznd0ACKybD93DmNmydoV+AWaywmAkJ3N1nG1g2hKSIBT5aAZlZAgW/cKCwtx4MAB1NbWYvjw4ZgxYwZiYmL676AKGnQsT2dDg6487YdSO+DQpVtPnwfAlZkJiBxl3NnSIhlfa3Ky5nrSlpJirF5SoiMtze/rfPvFi5Jl05aS0p8/TQkJaNJ4DBhtQkNDZcuvu6vLtHrXnJgIZ329tCwZGaJtDQBcTqeinG0pKejOyND8Pl3h4UPyqLO0VHM8nqwsIDpaUxgOPVwm1W1XZmbPHN9meFS0KTXEJSbqHiM6W1vVyWDTMaimpgbffvstamtrkZWVhdtvv72nT6aAR21eKpCUmko8v2Xlysnpmf9IjA3eY6xVtKWkwElJCSdkZwMhIZrCNCcmwtnRQUUeTXiVS3d9PZH619zcjH379uHEiROqFrQ/WrIE03/xC/z1r39VFT+rG3f44r04LOSLHhloKNmsulNQEARuKchhGm4pyCENW6s5HI4Mzc3NOHr06IBnXV1dOHjwIFHLKqsIDAy0WgTbwvpkTIt8cn7LysqwatUquFwuAIDT6URZWRlGjRqFH374AZ2dnbjmmmvw8MMPM/shyGEbqY8wpQ8orbDaZlmVy0zU5gHPK3mUFjTk8q+vj1cKb2UZ8J3WbMHbozkYqfe+3GZqa2uxZMkStLe3AwCKiopQUFCAZ599dshmNZawYpc7622VNflYkwcgU2/Onz+PjRs3qlqsvWXiRODkSUyfPh2Acp7ccMMNhuWjCYtlytEPK5aC1dXV2LdvHwoKCtDZ2Ynbb78dk1JSEDXIny+Pxf6Mv/QrLCkFuaWgb8DuLJ1jewRBwL59+/DDDz/A4/FgzJgxuOuuuxAQEKArvmNeFoLenDt3zoiYzMDyRzPHPOQmqqdPnx6yWNzQ0DCgbVy+fBmrVq3Ciy++yAdqP0bvxFgqnL8oBTnky5olzJRfadFBzl2NUtBq7F4XOPrw93LnSkFxTp482a8Q7KO0tBSFhYUYNWqURVIpw+fJQ7HyLi9vXC4XgoKCfK7P8Xg8OHr0KHbu3Kn4boGBgfiXf/kX/PNTTwHXXjsgDjnuu+8+WXer672vlSkpWMgXVr7ptMbZ2NiIZcuWoa2trf/Z/v378X1Dw5B7XrmlIMfOmK0U5PXb9+FaCA41du/ePeCC4wMHDqCzsxOzdB6RWVtbq1sWO3RmXCmoH9bLl5Sl4PHjx1XFUVFRgbq6OiQlJalOl8MBuKUgq3KZidqFaxbziiWZlGSRy2e3200kDVJhaMbDIQMvD3lI5Y/atimGLysFvb/3vPnqq6+oKAVJlafVypHBsNCOrZahrKwMW7duRUVFBRISElAvcwy3VeitN+3t7Vi3bp3sfcN9jBw5EqtWrcLkyZOBwsIBbnbvS6yuYxxpWPmm01rHf/jhhwEKwcEIggCH1/85voedyrWrqwshAJqamhBjUno0YG0OxdGHPpMtDkcBj8eDU6dODXn+3Xff6f6gtlNHrwd+fCgHIFfP1SoQORxvuKUgx5ePD7WLpaAaOa3Of7svSvoaZtUHq+ud1ZhhKehLeVxdXW21CLLw40OHYqWlYFNTE1asWIGK3jsNWVQIAvrqTXV1NT788ENVCsGFCxfi9OnTPQpBEew+/rLeBqyChXxh5ZtOa5x79uyRda/wuidVaf7NLQXZRa7vtUs5nDt3Du+//z4A4OOPP8bGjRs19elmt1G75CtHP1wpyKFCTU0NOkQuBe/q6kJJSYnp8rDSmcnJwS0FfRct9Y/Uh16f8p2Vus8xF358qD5YlctM7Hx8qJJ8vqQU1OKPBqzXBQ6HBvz4UG3ovTLCLFjb5c5Cv2qlUvDy5cvU7j4ygpGNu4Ig4NSpU/jggw9QV1cn6zczMxMbNmzAhx9+iKiowTeh/YjRvsTqes9CPeeQgwWloBLeG1R4/eNYRXNzMz777LMBRjLff/89jh49aqFU8si1F6vHEg4ZuBaCQwU5a0C9E1lfGMDl7gniSkHyiozBdHd3QxAEhISE6ErHDPjRbhwr4ceHsimXmdhBIWUHzFAK6oFU3P6o4GAZbikoDwv1XouloK8stNBSCvrq8aEsYGUb37x5s2Vpy3HvvfcO+FttvWltbcWmTZtw4cIFRb+333471q5di2HDhin6tWs/3Ifd5acFC/niS9903njLqDQWc0tBe2KHcsjPzxeV8/jx45gyZYqqOMx+TzvkK8cYXAvBoUJAZSViGxpE3YLLygAdH4mRNTWScQ4+a38wjvZ26bBSKMSpB5eMHDH19VTStBWCoL2cALSdPYuYtDRJ9+7ubuzevRtXrlyBIAi45pprMHPmTISGhhqRVjXRdXVwtLSo8hvp8UjWAy15E1ZZCRQWIqS8XFee9iEUFPBFExsSXFamq9yDSksBkXYhF19EdbXmviuiutpQvaRFX7vxZ0IrKiTLxjt/YurrEdzebqJkygQFBcmWX1BpqWn1LiIoSDatwJISIDxc1C1ARfsNr6pCUESE5vcJDQ0dkkdyZS6Fo6gIkLm/hWMuevt8rQSWlAA2VAgHOJ1E8ifS7dY9Rqguo8JCXd9JViI5P4iIoDKmOlpaiJRneFUVcflk5SoslJ3/sDAHCa+qoteXFBZKjnuAtu8csxg2bBhuiokZUC5qvq2ampqwe+NGdDQ2IhtAIIB0AMcAeN/uFBgYiPvvvx+33nqr6k2rckqNSZMmKYa3+ruOLzKzi56yobFJjHQd8ZbRzieicOzNoUOHRJ8rWZF7w9LxoVaPJRwycKUghwppCxbgHinHvDxdcc6Wc1SIMxxArtYEdcppSI5cWVefxwEd5QQollUwgFl64iXEC1oD/Ou/ij7O1ZH2uN6fbii0Aw59rgXZtnRj70+Sv/kbTcnc1/vjsMfM3p8SL9MWRC9/+pOkk+52QQOZvjUD6uUcrSftP/xhwJ8/6f1pgo8NTGFa3bZpuceCYP7827/pCjax96eIDfM4V87xP/6DeHpRSmlq4Ze/JBUTAAW58vLwENHUyCP7vW0UhbqdSzNtI/zjPw7484benxL/T+TZNAAHe/+flJSEJ598EklJSQDUK1fk/N1+++0Ao3cx9sEVL+LYNV/scHyod5vhloK+iR3KgZ+ywmERrhTkUKF8yRLsPn1a1G3u3LmqjsYYzBdffIGCggJRt1wFZVpbWxv++te/akpPKU49NDQ0YNmyZaJuN9xwA+67z7+Xyd1uN95++21dYaXqldvtxl/+8hd0d3cPeO5wOPDKK6+YYi34wQcfoLW1VZXfmJgYPP/886JuixcvVp3mmDFjMHPmTOTn52Pv3r2qww3mzTff5LuAbMjFixexbds2zeFmzZqF6667bsjz7777Dl999ZVomKysLDz66KOa0tm2bRsuXryoWT7aTJo0CbfddpvVYljKzp07ce7cOVG3sWPHYsaMGQCA9957j7m7fwIDA/HGG29IuuttF3pISEhAvczC3L333ovRo8VVeqWlpVi3bp1s/Ndddx1ycnKwa9cuTXKFhITg1VdfHfDs2LFjOHjwoEQIcZ566imkpqZqCsOhx4ULF7B9+3bq6cyZMweZmZnU0yFNY2Mjli5dajieiIgIvPTSS7rCqm1nb7zxhqE7zKxAan4qN6c1QktLCz788EPD8YwYMQIPPvggAYl+RG6unpubi88//xyFEtaA3mOsVWzatAlXr16lEvdLL73UYz0qgZbvHDMYN24cfvaznw15LtfflpSUYNu2bWjv6BjwPBPAAQAVvX9ff/31eOSRRxAWFtbvR+2ittTC8qxZsxATE+PzSkFfOmLZGxaUGr56fCi3FOSwAIn6xY8P5ZCGKwU5VHClpsIZHy/q5snKAnQsKLQmJ8PZ2CjumJMjG9bT0iIpjyQKceqhMyxMUo7O9HQqadoKt1t7OfXyVUEB5oks5ldXVKBW4rL2AkHADSbkuTM+Hq1qj4SJjpasB1rypi0lBcjJQVddne48BQAhOxsOmx1jxQG69PR5ALqGDROtfx1VVZLxtSQlae67WpOT4ayp0SwfbdpTU/2+H25NToazslLUra9fAYCmhAR0DFr0sprAwEDZ8utubTXUH2qSJT4eTpkPKbkxv1sQFOVsTU5Gd0aG5vcJCQkZkm5naanmeFyZmUBGhqYwHHp06+zzteIePhzIzqaeDmk89fVE8qczLEz3GNFeXKxOhpwcwGZKQan3CoiPpzKmepqaiJRnc2Iicflk5crJ6RljnU5RZ+8x1iqaEhLgpHSMp5CdDURGSrqbNT6rpSMtTbQ8xPpbj8eDgwcP4ssvv5RfRA0IwL0zZmDKlClDFFta7h0VI0rie3cwVivU+CIzu7CiFBQEASBYT/mdgr6PHcqBhKUgPz6UQxquFORQQa7D09t52KGjV8Llckm62W1XMA2MlLHb7RZ9LlffWKxTpGTixxNw9CBV/0jvqmSx7QHsymUmavPAjnllpsxKfbCcO80y4GOMb2JW3bZjuyeJkXpvdMHfjrD+beNLeU0KuW9Voyjld0BAAFNjS4DKTZGdnZ34/PPPJU9Z8Oapp55C8LXXiroZPT5UrbxWwy0FxWGhP2Llm460UpBbCvo+dig7q5SCdkqPYz5cKcihglznYZcJKw0GH2HpDesfzmZAYxcLC0pBLemQ+hjmAzhHD1L1z1+Ughx7KwWVZLKLUtAOsFj+HI4ULCjD7d7m9cD6N58V/RjrfSdXCv6IGsVTS0sLVqxYgaqqKll/aampQFUVkpKSIG4navz4UNbbWx9Gy5j1NuRv2O1OQamN5HrT5vWRoxY71hVuKej72GPmwLEdrFkKmt0BNzY24quvvsL69etx9OjR/smHnFKQQwcWlIJaICVTXzwkdmNy7IfecuOWgmzKZSZ8By0ZaFsKkm7jWmFp4ZbD5iYnX8QuSsHm5ma0tLSYlp4UtDY8kp4rswIL8igtmNOEtQ2ySmsWTqcTy5YtU1QIXnPNNaru3jbLUtDqhVwW6jmLsJAvvvRN5413m2HtPnQOGexWD/XC0vGhHN+AWwpyTEfvLja7dEgNDQ1YsmQJmpubAQBnzpzB5cuX8dRTT8nuvrTL+9GExoAlV99YXETz1YUOjj3gloIcOx9xx5KloFJaVh0fSgoWy9+f4eVhDh6PR/fRdWb0re3t7fj0009RVFQEAMjKysITTzyBiIgI3XEqYefTYbil4FCsthRkCTl5amtrsXz5cjQ1NcnGMWXKFMyYMQMhCv4A42O/1co+tXBLQXbRmrdNTU2qjs2lLYeW+OSUgoIgcEtBCxEEAfboxfRBoq6wVN/sMuZw5OFKQQ4VWNtBbmbneezYsX6FYB+XLl1CaWmprKUgSx08SVpbW3H8+HFUVlYiIyMDt956K8LCwkT98uNDybUd1togx1y4paA+WJXLTLilIBmU+mC75zMfY/wTO9RNMUjKTVspaISNGzf2KwQBoLi4GBs3bsS8efOopSn3XqwpeQZj1/pME5pKQSVYqy9S7by4uBhLly6VtcYNDg7GQw89hHHjxqlOT00fIae08BdLQV9tt3Z7r6+//hr79u2jEjfN40O7urqIxs0hh5JSkIV1PX+D56vvw5WCHCrY4WxxWhw+fFj0+d69e2U/DOzyflpoa2vD0qVLUVtbCwA4f/48zp07hwULFiA0NNQUGeQmDywuavLjQzlWwpWCbMplJnawUpOCJUtBM44PtbLtsVj+/gwvD/Nwu926lBe0LQW7urpw5cqVIc8vX76M9vZ2hIeH64pXCbnjJlk/PpS17wAW2jHN40PtZiko9g1ZUFCAhQsXyioE4+Li8NRTTyE1NZW4THLlw1r+ScFCPeeIo7ZsSkpKqCkEaeDdbkhbClZXV+uWi8MxA1rHh1q9wYRDBnvMHDi2g8SxWL5GUVGR3x0fmp+f368Q7KO8vBwXL14U9c8tBfmCLcda+PGhHLXwMpSHWwpyfBE71E3a6K37tNtMdXW1ZBqlpaXU0rWzkoIfHzoUux0fSnNRcnDcly9fxl133YXKykrJMElJSVi4cCEVhSAA2VOHQkJCqKRJGn58qDgsvJdaGb7//nsm5FALzTsFP/vsM6Lx+TP87jtlzH5Pf8lXf4ZbCnKoEFxdjdiGBlG3gOJioL1dc5wRMnGisFA+cFOTdFgplOKUQC6dgOJiSfewykrdabLK4dWrESvy/OCqVbjxlVeGOnR0aC+nXiLDwkTzL8DplIwzuKwMiIvTlZ4WYhsaVE9AAwICJOuBlryJqK4GCgsRUl6uO08B9MgSxIcKuxFUWqqr3IPLykTrn1w9iggK0tx3yfbnFuKL/bBW5MomvKqqP39iGxqoWhToRqb8gsvKTKt3gYGBsvkj1dYAde03oroawRERmt9HbIwJq6zUHE9gSQlgkwVIf8Csuh1UWgpQsv6iiaOujlj+CAUFgMQx+HKEVlSok6GwUFfbCq2pkYxfKCgAgoM1x6kGT2urZLrRdXVUxtQAPd91IkSGhhKXT1auwkJEypST9xhrFZE1NQiRUTwZIaC4GGhslHSPbWgAnE5NcSqNtUbo+5YCgCtXruDpp54CamqQDSAQQDqAYwD6DiPMyMjA008/jcjISF3pqVl8lTv6MFhlG7fauoMrBcVh4b3UynDp0iUgPt5yOfRA2lKQb5IjB1cKKsOSUtDqsYRDBr7Sy6HCyFdfxYNSjnl5uuKcI+eoEGcMgFytCeqUUzadvDxM0hWrPcmVc/yv/xryKEwpjBL/9E9DHsXKxamzjLWySGuA//1f0ce5WuPJzcV4AOO1hvPGpDzikGVM708zEuU9pfcnya9/rSmZRzX55pjJQyr9vUFVCgPI9Fm62wUNZOQcCfX9/Y160h40xtza+9MEHxuYYmzvjzo2LfdEGJxfeqMzD2b0/mjFnwxr5ruRcukCwN/8DfE0dX3XSfHP/0wqJgDK34GPEU2NPK/RjFyhHj5HM22DjARwVOT5NAAHAWRlZWHevHnUr8fwBUtBfrUFx2xoWgpyyMHbtjJmn9DEy8T34UpBDhUuvvMOdl+6JOo2b948JCcna45z3bp1ksff5ObmyoZtamrCxx9/rCk9pTilWLx4saTbxIkTcfLkSVG3MWPGYObMmbrSZBW5vPDOX7fbjX379hk6iiItLQ1PPvnkkOeNjY1YunSpaJi7774bN910k+401fLnP/9Z06XWb775pujOG7n8HExWVhYeffRRnDp1ytCZ/6+99prqnaccdjh79ix27dqlOdwdd9yBW265ZcjzQ4cO4ehRseWQnqOS5s+frykduf7cSiZMmIDp06dbLYalfPHFFygoKBB1u/7663H//fcDAN566y0md8dK9Z8A8MMPP2D37t0mSyTOlClTMGWKuKr98uXL2LJli2z4kSNHIjs7G19++aWmdAMCAvDLX/5ywLPjx4/jwIEDmuL5+c9/jmuvvVZTGA49zpw5gz179lBP5+GHH0ZOTg71dEhTV1eHFStWEIlr4cKFiI6O1hxux44dOH/+vKK/RYsW6VIs1NTUYNWqVaJu06dPx4QJEzTHqQan04klS5aIuo0aNQoPPPCAqWlqISUlBU8//TQBiX5E6dtHbv5zww034L777iMqjxY8Hg/eeustavE/99xziI0VO0OmhxUrVqCurk5TnKGhodQW+adMmYKbbroJTz/9NE5/990At0wABwBUAMjMzDRFIQjIWwraRSnI4tyRBVhYfGdBBsDa40NZyQOONvyl3Fh6T24p6BtwpSCHCp2JiXAOukuuD/fw4UBamuY4W5KS4GxtFXdUWKDwNDbCqfWIA52LHnLpNCcmSrq3paToTpNVZPPc6113btuGYyUlho6hiEpKEs0/T329pByd6emm5HljXJzszs7BCNnZcIjcq6GlDrf05kdnZaX2uu9NTg61I6c49OjS0+cB6EhLE20T7VeuSMYXkpCguR3J9ucW4ov9sFZakpLglDjeyzt/GuPimPow6ePDPXvgcDgwbtw4TJ48ecAHS6fMeGA27ampknWtq61NUc7W5GR0DRum+X0cDseQdDvLyjTH0zVsmN+3FZborKszpW67MjNtWe7uiAhi+eMePlzX0fMtSUmqZBCys3UdT9odEiIZf2tyMrVy666tlUxXak5hFE9DA5HyDE9MJC6f0rdPa3Ky5PyHZjmpwd3dTbUfcQ8fDiQkSLq3JifDqVFhFB4ejnYd15KooTU5GY/+7d9i5yCFoDfJqam4a/58IgpBfzk+lFsKsgsreUtaDu8jhpWOD+VYB89/9uBl4vtwpSDHdPR2LL7QIcm9gy+8nx48Hg/OnDljOB6p/GMhz7WmQ0Kuvjj4hxdHC2a1I16v7A+rZVheXg4AKCsrQ0dHB7OWnyTaFKky0BMP3+nvn7Da7s1Eb92n3Wbk4teyMU0rcve5BYhscGMJK/oxltuQy+WiGr/Su+tRVtGqY263G//2b/+meNrKI488gg4dSnwpBEFAQ0MDoqOjRZV8Um05MDCQ+fbWB79TUBxffS8W6Mtbt9ut2M/xciBPW1sbDh8+jLKyMll//JhLZVg6PtTqDSYcMnClIIcKNDplXxgkWFBQsUZzczO1HZ5KsJrnLCkFOfZEb7lLfaj7i1KQVbnMxJfGqWPHjuHOO+/s/2hhSX65RTE1clq9wYqlvOTw8jATrhQciJxSMDAwkEqavtqPWS0PbaWgEnqUWjQUYS6XC5999hkuXLgg6SclORmoqUFoaCg6CKVbVlaGTZs2oampCYGBgfjJT36CmTNnwnvZVcpSUMvRoVYv5PJNRexidR/UB63jQ5Wuc2Hl/X2Jzs5OLF++HFVVVVaL4hOYXUd5m/B97LGdiGM7+GRPHLmPLX/tcEl9zPmSpSCJ9tMXB7cU5GiBWwpyfIm2tjZUV1dbLYYo3FKQY0fs2neTlFtOCUZCBtKbegDlhVAjyKVrtfJBCbvWZ1rordtqUcpvPd+EpBXPXV1dWLNmjaxCMC0tDQ8++CDRdAHgq6++QlNTE4Cesjhy5MiQ+7xJKAWthn+bisPCe7EgA0BPKajm/lFW8sBXuHjxoikKQX8pN5aUgqzP8Tjq4EpBDhWM7oAnGc5oWK3IfdDIWcT5y0A2GFILixUVFZrDsJrn3FKQYxXcUpBNucxETVnbKZ+8FzlZkpuFDStG0mMpLzm8PMzEjpaCNJWCVlgKksKKvpbltmq1paCe+kLSUrCzsxOffPIJLl++LOknKSkJ77//PqKiooilK8epU6cG/C1l9av2PkEW4MeHsouv5q1apaCvvr+VbN26VbVfu6z32g2eNxw5uFKQYxvs0pmFydwrwJWCQyG5SCL2ESeXr2ZZOlhhKWjHxXsOOUhvviCtwGDVyoi3F3XYKZ+8dzGyJLdRWSorK7F3715C0miHpbzksHvygS9CWylIw1Kwo4PUAYdDoW1dJgY/PpQOVt8paOXxoW1tbVixYgUKCwsl/cTExGDHjh245ppriKSphsEWNvz4UHp0d3dTPWpZCavbP2nGjh2LiRMn6gpLOi/64uOWguajJs/7oHHvLMcY3FLQ9+F3CnKowNIOeLPTDAsLQ1tbm6gbVwoOheSHwaFDhzBq1CjV/lnNc5YsBVnNIw4d+PGhHNbGb6Ow+sFi9ESFviPG9CAIgmFlKauLehwObbQscHljpaWgXpnVYIVSkBTcUnAgdjw+lIRSsKSkBJ999pnsuBoXF4ddu3bhlltuQX5+vuE09SKltOLHh+qnu7sbn3/+OS5cuIDYhga8gR7lq9k5ykLfQFIGh8Oh21qc1vGhVltDc+ThloLKmL3u4i/56s9wpSCHCkFVVYhtaBB1CywpAXTswoqsqZGMEzK7+gAgoKFBOqwUCnFKEdfYCLdEWsEdHYiVUAyGV1XpTpNVZPO8713r6rSXjQT1DQ3AT3864FmATPwh5eWm5HlMfb22AbWwEIiIGPJYSz5FBgcDhYUIKS83lL+OoiIgNFR3eI41BJeV6Sr3sMpK0TYRVlkpGV+0y6W5Hcn25xYi9f7+hFzZRFRXA4WFENxuJstPjMCSEqDXSkZvu6CBXF2jLmdhIeClFAytqNCcXnBZGZCURFgwjl7MqttBpaW2nBMEEBxzdn/wAV5++WXN4SKqq1XJ4CgqAsLDNccfWFIiGX9wUBC1sS2guFgyXVrfNrq+60SIcruJyycnl1BQgKjaWtPzSy1CaSnVfiSguBiQ2DgLANE6vgljgoLQaUDm06dP45tvvkG8ICAeQCCAdADHAPTZ5CUmJmLXrl26rZ5IImUpyI8P1c+mTZtw9uxZAD8qxnft2oUHrruOaDp2gGTeGlHY01IKKtU91jducDgsXTHB6sZbjja4UpBDhfH/8A8YK+WYl6crzqfkHBXijAeQqzVBnXI+oytUL7/8pZHQzJEr59ibv4lK/rQyqNxk49dZxlp5U2sACblytcbzq19hCoApWsOpkIXDNjf2/khxV+9Pkt/9TlN8840Iw6HKY0oe3ngDgSDcb9PEqw+b0PtjnTG9P2oM6td1jRN8bGCKm3t/1LFpuSeDcJ/1n/+pOcjjaj3qzOORUHjHX/9aV7yG06WAru86Kf7t30jFBED522euUgRvvEFMFq1kgnJZKtTth2imrZFpAA4CSEtLw549ezB2rOTKhqn4wvGhLFkKulwunD9/fsjzgoKCHmtBEy0wfU0Z5XA4LK9rffQpA9Xksa+Vg53gFm3KsKQU5PgGXCnIocKp//ov7C4vF3V74oknkJ6erjnOTz75BNXV1aJuubm5smHr6+uxfPlyzWnGxsZi2rRpuPbaa1WHWb58Oerr6zWnNWLECDz44IOaw7HM4sWLJd36yqy6uhqffPIJsTQH14Xa2lqsXLlS1O+UKVMwZYohlZkq5PJBjIULFyI6OtpQPElJSZg/fz4OHz6Mb7/9VlP63rzyyiuy92Ry2CQ/P1/XfWO33norpk2bNuT5nj17cObMGdEwkZGRePHFFzWls2zZMjQwYrHlzZgxYzBz5kyrxbCUdevWobS0VNRt5MiRmD17NlwuF9555x2TJdPHM888g8TERADAqVOnsG/fPosl6uHGG2/EPffcI+p25swZ7Nmzh1rakyZNQlxcHEaMGIGwsDBd48T06dMxYcIEOgLahKqqKnz22WcDjqOKjo7GvHnzTB83zarbs2fPxsiRI6mnQ5qamhqsWrWKWHxz5sxBZmampjCrV68ecj+YGC+99BIiRE6LUOLChQvYvn27qFtYWBheeeUVzXGq4fz589ixY4eom1w/ZwS933WDiYqKwgsvvEBAoh+Rm6u/9tpr2LBhAyoqKkTd+8ZYq7h69So2bdpELf558+YhOTlZ0n3Lli2i98PLcc0116CgoEBTmLa2Nmzbtg2lZWVD3DIBHABQASA1NRXffPONpnUA2kgdH+pPloIkqaqqEj1S0u12o6ioiKmy1wLpu+X1YEQhSOtOQaV4uQLEWnj+04GWspUVpT/HGFwpyKFCZ2IinBLHZLqHDwc0fkgDQHNiIpwSE2EhO1u2U/JERcEZH685TSeA1YcP47kbbsDw4cPVy6mj421JSgJycjSHYxnZPO991+7gYF1lI8XguuAOD5eMvz011ZQ81/p+nqwsIDbWUDwhCQlATg7ar141lL9CdrauY6w41tJZW6ur3Ae3CZfLhaCgILSlpEjG54qM1NyOmhIS4NQsHX3M6hNYpiUpCc7WVlG3tpQUICcHQnc30X6bJp6sLKB3EbKrqooZufvyUozOujqqcu6+dAkAkFRQgGeffRbtqama0+saNszv28qp8+dRN2gDjxPApe5u3HjDDabK0lFRYUrdtmu5u0JDieaPJysLyMrSFKYpIQFOCSufIXFHRWmWqbOpSfIdO0JDqZVbR2OjZLpy/ZwR9H7XDcYdFUVcPjm5hOzsnjG290jrwdDKL7V0tLVR7Ufcw4cDaWnS6aelwVlXpzq+uLg4RIwZA2djo+owpaWlWLt2reK9vPGJiXjro4+YUwr5gqVgZWUlGhsbERcXpyu8WUdcmq28JPleLCgFAf11jdbxodxSkG24paAy/vKeHPPgSkEOFVjaAQYYH2DOnj2rWinIyiTMLpCuK4IgqJ6AmpHnetIgkSdqd8RxOGIUFxdjx44dqKioQExMjOQiBGBdHVfLzJkzsWvXLlV+S0tLsX37dnR2duL666/H6NGjKUtnL+zYn3jLzJL8cm3ALDlra2tx6NAhBAYGag7LUl5ahZR15ZYtW3DjjSQPcOawhp67kmiPe3Lx00y77w4uO8KP4RqImMWUmWhVIEyfPh21tbWq/Z86dQqbN29W1R6eeOIJzdbAZuALloIAsHbtWrz00ku6wpJsR3LzH3/s21i5U5A0Wu4U5HBYhqV5i9UbTDhkYKen5vgUcp0HC5MUrRw5coR6Gv46CaGhFJT7W62blZCQi1S+sppHHDoIggCn04lPPvmk/3irpqYmdEjsau8LoxUzlYJadnnX1tbi6NGj+O6777B27Vp88803FCWzL3bqF1hVCkpRUFCAr776yrT0Dh8+bIt8sRNymyhoYVYZ8rrSg54xzB+VgrTqC6l4rVhcY/m7hLYSROn9tCww3nHHHRg/fryqMIIg4KuvvsIXX3wh2xYCAgLws97jboODgyXjtrKcSFgKskBFRQWcTuvPDGFJKWh1+yeNkTsFuaWgf2JkjPCXctPzntwCkyMHVwpyqMDSDgY17iSxo9LTSkgvVGiJj1sKcnwBsfpipNwvXryIzs5O1f7NnpxqJShI/6EI+/fvl9yV7auoWbC0U7/Cqqxi7fbLL7/E8uXL0dbWZoFE2mA1XzkcMWgtMNIIo1dWuQVsmkpB1k6H0YKdjwekAW1LQZLf6yNGjACgbI3k8XiwadMmxTtXw8LCMH/+fIwbN67/GYtWEK0Sx7vb6fjQPoqKinSFM+veO24paAw73inIsS+8bOnALQV9H358KIcKNDplX9/hYAcZacAtBYdCQi4++fV9Lly4gK+++go1NTXIyMjA/fffj/T0dENxCoKAixcvag6jFTMX4owcX+NyuXDu3DncdNNNBCXimAmrloKDZWlsbMT+/fuZkIVjP7iloLnYzVKwz0KNxgKOFZaCpOCWggOx+vhQLfTVZSXLkZ07d+LUqVOycaWlpWHu3LlISEgAGhqGpMEK3d3daPCSz5tYkbvoWYcVKzIp7GwpyIpSkJU2pOX4UKv7YX+G5z1QVVWFy5cvIywsDNdddx2iB91dzprxDcf+cKUghwpm35XDUmfFwiTMTtBWCpqZthhWWVGRUgr6a71kndLSUqxdu7a/DpeUlGDFihVYtGgRoqOjDfVDdXV1msPoSccMAgICDH+QsnC8kZn42tE6rMo6WC6p++nMgOU2zFEHLw9zYdFSUM1ip9lKQVrY+fhQlrH6+FA9+SNVpz0eD7Zt24bjx4/Lhh8/fjweeOAB0Tv5WLoTDYCkQhAAUlJSTJSEDCwoBeXi8kelIElYshTsK0sW8oVDB18o2/z8fGzcuLH/XSIiIvDss88a7t9pGdewovTnGIOtmQ7HZ2BN8WeHQYJ1GQVBQHV1NcrKyogq0/jxoUMhkSdazs7n2I8zZ84MqSft7e24dOmS4bjT0tI0+WfZUjAwMJBPWAlix/7ELpaCBQUFFknCVr5w2MaudYX28aFNTU2or6/XFIY0SvHTSt8fj9izS3pasaOloJjirqGhAUuXLlVUCN533314+OGHRRWC3mmofU6b2tpa0edBQUGIj49XHQ8r82JW5JDCH/s2ViwFrTo+lFsKWos/573b7caWLVsG5EFbWxt27949wJ8/5xGHDtxSkEOFkNpaxErsZgsoLgZ0fJhG1daiS2qHXGEhIHNRdGBNjaQ8qiksVOUtuq4OHh2WJZEREarTMJv29nZs3LgR1dXVAIDo6Gg88sgjPcesyCCb573vGlhSYrxsBscbHt7/Z0BVlWT8YZWV9PPc5dL8fgHFxUBHx5DnWuKJ7OoCCgsRVllpKH8dRUVARITu8Bw6nN+xA2IHBX2zfDkmJiQgpLxcV7mHVVYi3OFAuYawQUFBmttRTH09QjXcW6iX0NBQBBQXG2oDoRUVzPbNNIiUGS8ja2p68qKjg2y/TZGA4mKg917I0IoKZuQOr6oaUK/k8p02esaJkPJyv2oXYqiZ45iF3j5fK8FlZUBUFPV0SBNocC40JL6SEiAkBJ2dndi8eTNKS0sBAMnJyXjooYcQJZJHMfX1CJS4D8wbR1ERMOi4KDUEl5XJvqPn6lVAw71jJNId3M+RIkDmO1MLeuYvcgiCoNgvyPX1EdXVlvartMdI7/FYjHCZb7bBBJWWAh7PkPHr0qVL2LNnDxxdXcgGEAggHcAxAF19YYOC8Oijj2LMmDGyaUgpNKxalJXaeJCUlMScVaMa9MpslkWd2UpyFiwFWblTkDRqjw/lWIuvG4HIceHCBXR1dQ15fvnyZQuk+RG5zREstXGOfrhSkEOF237zG4yVcszL0xXnAjlHhTiTAeTqSlV9Gn08ZySNf/gHI6GpEQ7g6cEPf/c7xXC5co69+TlKyZ9WBpVTKun4NRKkJ32JuqY5nn//d9wJ4E6t4VTIwrGWXDnHvDxMADDBQPya68yf/qTJ+yKt8RvhD38w1gf4WRt4QslDbi7CYG2/qgmv8ru198cMr7/e/99nLBQD0NHm/axdiJEr52hy/kzq/VHHpuWeBjpzzVAAcwa7/frXokFe1Bi3VhTrAKWym9b7M5MkECxPjfMXORxQ7heGfE8NJlc2BqpM7f1RQ6EO/lxHXGrH9WkADqJHEfXkk09i1KhRimFYW/Bsa2sTfZ6YmKgpHlbeixUrMim4paAxjCiqaVn3c0tBtvHnvK+srFTlz8wrHzweDzZs2KArLMc+cKUghwoH/+VfsLuxUdRtzpw5yMzM1BznsmXLJM/Sf/3113t2e0pQXV2NTz75RHOa3uSq/Ej7+OOP0dTUpDn+9PR0PPGE4nKs6bjdbrz99tuibvPnz0dSUpJk2MWLF0u69eXn+fPnsWPHDiMiDuCFF14YsEO7srISa9asEfV744034p577iGWthjd3d149913NYV54oknkJ6ePuS5XH4OJjw8HC+//DK++uorfPfdd5rS9+bFF19EZGSk7vAcOii1rVOnTmHfvn2a4x0/fjwAaKozAQEB+OUvf6kpnXfeeceUHbgRERFYsGAB/vKXv+iO47bbbsOkSaYstzPBmjVrJD9McnJy8PDDD6O9vR3vv/++yZLp4/HHH0dGRgYA4OjRozh06JDFEvUwcuRIzJ49u/9vvXMHEkyYMAGnT5/WFGbatGm49VamVKymo2aOYxbffvstDh8+TD2d++67DzfccIPu8GVlZTh9+jScTicyMjIwZcoUhIaGEpRQnIqKCnz66afE4ps1axauueYayfnd4LkoALz//vtob29XjPv5559HTEyMor/BdwQePnxY9m7Sl19+GeFeJ2mQYt++fTh16pSo2+jRo3HvvfcST7OmpgarVq0yHI+e+YscHo8Hb731lqT7woULsXnz5v6TVwbTN8ZaxYEDBxSP3DTC3LlzMWzYMEn3LVu2qLaKePLJJ5GWloZTp07hyy+/xJ49e3Du/Pkh/jIBHABQgZ4j5efMmaNKIQhIKzVotCMjyK2BsAwLykl+pyA9WLpTkF+r4vvYvWzlvgG953tmvmdJSQmam5sl3VnowznGsecMgsM8bXFxcEp0Eq7MTCAnR3OczYmJkDqUU8jOBiTuAwAAV0gInBrO2hdFpcxNCQlwyhxlKkVUYqKufKFNR2urZN5d9XiQJCOzbJ73hut0Oo2XjRfu4cOB2B8PVnQHB0vG35aSQj3Pha4uze/nyswEhg8f8lxLPF3h4UBODtpSUgzlr5CdbcujwnwdpbbVWVmpq9zbU1OV4x+Ew+HQ3I4aYmNNOcJFiIkBcnIMtYHO9HQm+2ZatCQlwSlxtGtrcjKQkwOPzLjAGq7MTCA7GwDQWVLCjNwtSUkD6pUzPh5NOuYOJNAzTvhbuxBDzRzHLDqLi02p290ZGbrfrbS0FMu+/rp/Q8ilwkJc6u7Gc889h0DKdd8dFEQ0fzrT09EYFycZZyGAcYPyqSkhQdLSxxtPVhYQFyfp3tHRgW3btuHy5cuIiorCrbfeikmTJqHtyhXZd/RkZQEqNnn13SEeGBiIhIQERWuP9vPnTZ9ne8LDyZUnQfkEt1uxDJoTE+GUOEKzb4y1ivZLl6j2I67MTCArS9K9NTkZzro6VXF5srKAYcPQWlqKv+7ahYsXL8r6DwoJwbwnn8SIESNUyyu14DlixAiEUDiK19/gloL0YMFS0OFwMKOoUXunoFo/HDr48/Ghajdkm/meBw4cMC0tjnVwpSDHNti9o1eC1feTWwwgsahPWjEwOB/l8tWMPNeTBsl8NfqOrNZLDh3MOpLCrHoVEBDAd7FpxOo+kzTeMrMk/2BZ7HbPCUt5yTGvPIykc+LEiSEW4mVlZSgrK0OWjKKARTwej2xeiI07JMpIEAR88sknKCkpAdBz5/f27dsRGBio2Ieo6WOampqwatWqfku2jIwMPProo7J3iNu9LxhscUk7LZax2zjU2dmJf/qnf1JUCALAvHnzejY6akCqXgQGBmLixIma4iKBVP3RWn9ZmRezoBTkloIDIdkHsGQp2IfS+7HeR/s6vpz/RhWeRiwF9aZt9X2GHHOw343EHFtA46PCLjtHWNiZRRK5CR2LSkEt8bGa56QWjkjFxfEvaE82zbyvgSsF6WCnfoVVWVlSCrKaRxz1mFmGV65cwYYNG/DJJ5/g+PHjqtOWOqL2q6++IiidOLSOIjNbhrq6un6FoDenT58mohRcv379gKMty8rKsGzZMrS0tGgXFvTqJat9VkdHh6y70vzH6veinb6a+7zU0tnZiUcffRQHDx6U9Tdl8mQAUHUk72DkNsZO7o3XTKyuH6RhQSkoh50tBfXyxRdfEMtfFpWC3FKQbZTyXq5OsV5udtt0Ayi3YdbznKMObinIoYLZHzy+0CGZ9Q4dHR04ffo0KioqkJ6ejptvvln3fS4sKgV91VJQazxcKejfGNmcYPWiEEm4UlA7avpMO/UrrFoKDu7n7aYUZCkvOeZx7tw5XLhwob/8L126hLq6OkP3xjVK3EHOMnosBdUiF++RI0dEn5eWlsre1QYo9zHt7e0oLi4e8rypqQl79uyRvOvO7n2Bx+Mhdnyt0r2VrOeVXeZ/3d3dWLhwoeyGgqCgIDz44IOYMnw4IHPXphxy7ZiluSVLstgNbik4EI/Hg4qKCsXxRA0Oh4M5xS/JjQkcjhaMfOex+i3L8Q24pSCHCtxS0LxwWujs7MSKFSuwc+dOfP/999i5cydWrFiBTon7o5TkIiEzbaUgKb9mIiaXVUpBVvOIwxZa6omZyo/AwEC+WOLnsPohxS0FOSQxqwzPnz8/JK2jR4/KziOVsGP9s+r40G6Ju+j6ZJJDyV3uvsMzZ87ICyaBHcqWlIwtLS2iVpxa0rI6v6y2ZFDz/t3d3VizZo2sQjAsLAy/+MUvcNNNNxmSh5X5o9I3nV2PD2VhzUQuLrPbAwtKQQA4dOgQERlYqWfeqClTq/thjj5YLzcrlYJ684bFNswhD1cKcqhgtnVWSUmJ7Y94MGMgO3v2LMrLywc8Kysrw7lz5yTD0J4s+/rxoVZZYFj9Yc+xJ3otBVlVxnNLQbLY3VKQJQoKCnDo0KH+hXi7zWFYzVeO+Xg8Ht1KI4DduZgcNI8P1fsNReL4UClY659YWTz3Jj8/X1VaLPedrFsKdnR04JNPPsGVK1ck/YSHh+PZZ59FZmamobQA9hZEWa47etDbJ/HjQ5UxkkdXr14lIoORbzBaJ4uxvjHD3/Hl/PfFtTlfLi9/gisFOVQw21Jw5cqVeOedd9DQ0KA5LGlY2PUmxa5du0Sfb9++XVd8LCoFtRwfyurgzI8P5RjFbMtqVi0FuVJQO2rKktW+UwxWLQUBYPfu3Vi+fDna29u5pSDHEFaXod475+wKi32gUaUgje8Xq+ulGkjJqEaBwHp+WC2fXPotLS1YunQpCgoKJP2Eh4djwYIFSE9PJyKP3J2CZsItBa2RwR+PDwXI1Xt+pyBHK0aUtqyXGylLQTNhZazg0IWNmQ7H57DiY7mxsRGff/65qBvrgwRgjowdHR2iz7u6uiTDcEtBY5BSsPDjQ9nE1/LHjE0NZuYZPz6UDiwuiEvBehutqqpCfn6+pXJaZdHOIYedy8OOslt1fKiRObkd89kMSOWLmrmGkqWK1WVEe2zX+36tra1YuXIlKisrJf30WQiSUggC7CyIKuUbK3JqheWN1ID/WgqSqk9G7hSkAeuW2hxjsF62pMZXfnwohzRBVgvA8U3C6+sR4XKJugWWlAA6diBF19UBzc2yfpwNDWg7exYRERED0ywrQ6yEFaFqCgtVeYuuq0OgzL0cUkRpSEMvsnkgkbajrU0yXEh5uazMatILJlE2XgQUFwNed9sElJZKxh9eVUU9zyGTf1IElpQAoaEDngnd3drzqbAQ4VVVhvLXUVQExMToDu+rNDU14euvv0ZZWRni4+Pxk5/8BCNHjjQtfaW2FVJerqvcw6uqIAiC5rBCQQEQEqLOb3s70TYvR3RkJBxFRYbSC62ooN9PMERUba1kfkVERvbkRX29aWVolMCSkv66GVpRwaTch1evRqyFH7N6xgl/axdi6JlT0SKsstLSuh1WWan4zlLyRXV3U88vubmgHoLLyhAYHCwZZ3BZGRAWNuBZTH09XBLfRt44ioqApiZRN7m2qlQHHEVFgMTmQABw1NXpqtNy6dKaZwcYnNsOoLBwyJxbD2rGF0dREaLr6tAl4S8yKopYfgmCgJqaGjQ3NyMjIwNhg+qjGEa/GZQIKi2VXQOIqK4ekn5VVRV2bN2K0OZmZAMIBJAO4BiAvi2tERERWLBgAdLS0ojKy8qCKGlLQVZgQSnILQWHQlIpqBdaCh41m2dYVy75Mr58vKuVdwrSgiVZOPrhSkEOFWb+6U8YK+WYl6crzoVqPYrEnwEgV1eq8vGK8ZKRNH7zGyOhFcmVc5R4vwilcAbTm9L7I8ag98hUkuONN0imPgRd+SdSFsE647kPwH1awynIwgFiADxoYfq5co55ebgVwK0G4p+pNYCGehIOAv2xFv7+742l52dtYJ6Sh7//eyTA5DI0glf53db74wyFZpv3VXLlHE3On9t7f5ah4n1z5Rx//3tSkoiiOBfUSu/7SsYpkh+va4xbjFm9Pynu1xkvACRCX52+p/cnyeuq31w1qSBYnoTaqqp5V14enlHy83d/R0QeB4CU3p9aZkLHWKAFhbx+WOL5f4g8mwbgIICEhAQ88cQTSE1NNSabCHY5PlQrrCgRWVAKyuGvloKkMGIpaNWdghxrMfv6EzOx0lJQL6yMFRy6cKUghwrb/+ZvsFui43vkkUeQnZ3d/3dDQwO++eYblJeXIzExEZMnTx7g3seHH36o6s6SOXPmDLlcvLS0FOvWrdP4FgPJzc1V5e/9999He3u75vhjY2Px3HPPaQ6nhcWLF0u6Sb1fa2srPvjgA1G3m2++GXfeeaeh9A4ePIhjx45JcNgfwwABAABJREFU+tPK3LlzMWzYsP6/5cp+5MiRmD17NrG0xZDLPylmzZqF6667bsCzrq4u/PnPf9YUT25uLrZt24aLFy9qCufN888/jxhuKTiAK1euYPPmzUOejx07FjNmzDBFBrm2FRAQoHviOWbMGAiCgHPnzmkKt2jRIoSq3Gnf0tKCDz/8UI94msnJycHDDz8sm19K3HbbbZg0aRI5oRhn5cqVqK2tFXXLzMzEnDlzUFNTg1WrVpksmT4eeOABjBo1CgD58cZXGD16tOY2P2XKFEyZQnRLj+3QM6eixYEDB3D8+HFT0/RGTT8plV+RkZF48cUX+/++cuUKzp49i+7ubowYMQLjx483vDBB4jvAm8mTJ2PEiBFYvXq1qPuDDz6IESNGDHj29ttvq1pkXrBgARISEkTdtm7dikuXLom6jRw5EleuXJGM9/HHH0dGRoake11dHVasWCHpLlWn9+zZgzNnzoi6jRo1Cg888IBknHqpqqqSzHutvPTSS0NOmNHDiRMnsH//flk/Tz/9NHbs2IH6+npR974x1ij79+/HiRMnBjwLCAjAyy+/LDtX2759Oy5cuGA4fSkefvhh5OTkSLpv3LgRRUVF8Hg82L9/P06dPj3ETyaAAwAqAIwYMQJ//vOfceTIESrysrIgyo8PtUYGbiloDBbrpRpLNBbqpb/CLQXF4dcBcWjClYIcKrTGxkq6dWdkAL0fBG1tbfh4/foeZV9EBKrb23Fx/378YuTIIYo9Z3w8WoKDFdPuGjasP/4+XL3hDSHzEeNNU0IC2nQcH+qIi1Odhl5k80AibU9zs2S41uRkWZnVpNd26ZLxsvHClZkJZGX9+LeMHC1JSdTzXGhp0fx+nenpQ+QSOju151NODlqTk+GsqdEWzgtPVhYQF6c7vC+yaeNGNImUxaHycsygXJ/6INlmvGlPTYXb7YZT5t4WMTxZWUB4uDq/TU3U5B9MR1oakJNjKD2x9ujLNCcmwimxEBLX22d2h4SYVoZG8Z4TtF++bBu5zaQtJUVzm29PTfWrdiGGnjkVLdoJz6W0Ijb3HoyUfK7IyP6w3333HT4/cKDfLf+771AVHo57773XkHxEvgO8aEtJgSszU/qdMjOH5EdjXJyqRSFPVhaQlCSZrlNi00ZLUhKcEsomYOD3lxjuiAhddbo9NRXOsjJRt7aUFCptwU1wDPJkZQFRUYbj6SwvV5TJlZnZM8ZKLNDFEfou+XLZMkBElvzmZtx6/fWS4VqTk+GsrjacvhRi7WJw+hWVlVi/fr2sghsA0jMy8NmBA2hubuZKQUbk1IreRXJuKUgXFu4UpGUpaKc70TnaYF3x5YuWgqznOUcdbJyJwPE51HZ6ly9fHmL953a7kZ+frzttu3ZOrMotJxcJmUlPzgbHJyejGRNDUpcBs37Eij/RIXMnj93Ru0NSSxjS7S4oSHp/EytHP9kJNX2+nT6qeR+oDM8j+2N1GZJaRDx8+PCQZ8eOHUN3dzeR+Emhpw8kUUZG5rRW9Nu06iUrFjXeqGkDVrdTpe9r2vIpWWXt2rULb7/9tqJCEOg5QSg9PZ2qQow1ZRs/PtRYOK1xcUtBYxj5BrNq7OCWgtbCLQXFMXqnoN58Y2Ws4NCFr5ZxqCDX6Xl3Slu2bBH1c/ToUdlwWtM2cwBhYYJrFkYXGFwuF65evUpImh605COreU6yDvPjBsjDJ0hDsbLdyR2FxcuKDnbaPc3q5ewsYeYHJoczmL661NXVhaqqqiHubrcbZ8+eNVssWTwej2wbMDL26G1bSnPykydPUtnoZ/e+wOxvRCvzSyltqxTH+/fvxx133IEVK1YoXsFxQ6+lY99VETTneaxsLFO6U9Cuc10W+g65+ayd5rqDYUEpaMRSkAZW978cZfidgsqw/p4c+8GPD+VQQW1npWXnrxGloB1gtYOnZWlXVlaGlStXEre60iLTlStXsH79ekRGRmL8+PFIT08nKgtg7WIrq3WKwy52tBQMCwtDa2urKWn5A2rK0k75yvtBjj9gdT0noQST61f0HMsvlgYplMZKsfygbSmotID9ww8/IDw8HD//+c8Ny6EWq+ulGliS0UpLPbPTFwQB27Ztw+9//3tRC+HBOBwO3Hvvvbj3+usBr3sPaSruWFFo+OrxoVZuRGhtbcUXX3wheUcrwC0FjWLF5hgS8bI0JnAGQvsEM5pYaSmoF358qH/AlYIcKli5YEjy6EVS6dMMZyVGynn16tVUjmEcnI9K+XrmzBkAPTuo582bh+zsbKry6A2jNx5uKcjRip4y19IXkB4f5CwF7bzLl0Xsfnwo78/E4ZaC9BEEAadOncLVq1cRFRWFCRMmIC0tzWqxODqh2QfSshQEgOPHj+OnP/0poqOjdaUhhhV9Ack0zRzPrLZUsdpSUBB67vT6/PPP8bvf/Q6nTp1SFS4sLAxz587FiBEjgIYGAD8uVvrD8aGkLQVZey+zwnmHX7lyJSoV7lLmSkFj2PFOQT635dCCtfVxDqcPrhTkUEHt8aFa4JaC1kBrR46UZY9R9JZ/d3c3Dh48SFwpqIe6ujq43W4EBgb2P7NKKcgZCisf0zTQW2e0fDibeXwoVwrSwU7jLO8DleF5RJ+tW7fixIkT/X+fOnUKzzzzDDIzM4nEb3UZsmgRQBOlPnBwfphxAoTafvn06dO44447NMXty7C0cdSXLQXdbjc2b96MJUuWaDoOOCkpCU899RQSExMHPO9rY/5kKehrbVTvXNJoPtTU1CgqBAF7f0OwohTUC7cU9E/48aHiWPVurIyBHLpwpSCHClZ2yvxOQbLQOj6UFlotBb2RO0JEL3rK9dChQzh+/DjuvvtuTJ48WXc8SnfecDiksNJSMCwsTNLNzh/0VqFmI4iRMgwNDcWsWbNw+fJl5Ofn645HLdxSUBluKagdNYvrfR/TTU1NAxSCQM/9eYcOHcLcuXNNkYdl1MhudGGCdP5onV+xpBSsr68nIosa7FAvScmopo5anR9WKAVdLhe+//57HDhwQFPdCw4Oxu23347bbrsNISEhQ9zNsBRk5U5BpetW/M1S0CjHjx9X5Y9bChrDjncKWt1H+zu+XD6kFJ4s5QFLsnD0w5WCHCpENDYitrNT1C2otBTondzH9h4BIkph4YA/o+vqECIR55D4o6IGPAssKZFPSw2D5JEitqEBnSrkHExYe7vqNPSiJb/7CHA6JcOFVVbKymw4z3UQWFICeFkOBZWWapJDKCggOoENaGrSnQ+HV69Gans7cnJy4Ght1RyP5+pVRFRXGyoHR1ER0NSkO7wvEtvQgFCpo28pt2GgZwJGq22FV1XB5XJpjl8oKACam1X5DTBYJwcT19goGV94WBhQWGgovdCKClPKlRWi6+rgksivqN781DOmJiQkICkpCbfccgtSY2Jw08SJKP7mGxIiyxJcVgbExQHoGbOsGJdYR884oTT++zqCxyObZ0JBARy9C8r5Bw+K+i0/dAiYNImIPOFVVZbWbTX1QUq+0NBQoLAQjs5OaT8G+2Gtc0ElwiorEVBcLBlncFkZ4HXaAxTqizeOoiJA4g7FyJoayXgig4JUpRFZUyOal4pjs0T+y9U9qbSMElBeTqw8HUVFqucvcoRWVCjKFFhSgqjaWridTlH3qPBwIvklV0fk4ifdj5SVlWHXrl1wNjUhGkDfobWBANIBHAPQJRJuxIgRmD17NuLj4xXT8AdLwaVLlyIXQFFRESCSJ6zIqRWrNlKrVfaxuPlZLbSVgqT8SEFL2aCmTLmiwzp82VLQjM1hpNO269jC0QZXCnKoMOevf8VYKce8vP7/5spF4uUPABapTXxQOADIUUpLZ7xiqJZTjP/6LyOhFcmVc5R4v1ilcG+8oS89Wgx6j2ytcqgsZ7XEaE1/ML3yROqJJy8PDxtJ2yt9zo+8IudoQn45YFHbkkPDe6eAvPwz5Rz/6Z+ItEF/4VklD//0TxgFMmVIIg5FvMrvzt4fh2OUAKifU93e+1PyZ4TpvT/LUPEeuXKOf/gDQuX8GMynLKX0dSIZ5yB5FeuLTFhvHlQbhw4Ux2YJuWZCYQx+8029IkkyDATLk1AbvLn3p5TWc0p+/vEfDcuSK+f4619LOj1mOOWh/LeM2zQAB73+Hjt2LCZMmIBRo0YpLkb6052CvopVSkHv6zlYgqRSo9nARgeSSkHW7hT0ZUs0f8DO5WNHhScfA/0DrhTkUGHN888jUeIS+9mzZ2PkyJEAgLfeektyx05ubu6Av9977z1VFngzZszA2LEDVZIFBQX44osvVEguzZtvvqmqY/zzn/+Mri6xfY/yhIaGYtEiQypFRRYvXizpNji/+2hsbMTSpUtF3UaMGIEHHxRfohAEAXkWLKbPmjUL1113Xf/fhYWF+Pzzz1WHf/nllxEeHk5MHqfTiSVLlhiKIzc3F83Nzfjoo480hXvppZewY8cOFBcX60772WefVbVT1594//330d7eLuom1Y5I4nK58M4771CJ+7rrroPL5cLVq1c1hXvyySeRlpamym9FRQU+/fRTPeKJcssttww5mq+PpKQkzJ8/X7bvU+K2227DJELWPHZg6dKlaGxsFHVLS0vDk08+ifPnz2PHjh2a4n3jjTeGLMTk5eVR/9C55557cOONNwIAvv76a5w+fZpqenZk5MiRuHLliqYwt9xyi+i9ZP6CUj+8aNGi/vtOt2zZgsuXL4v6IzVm7N2715TjeKW48847cfPN8ioRqX44ODgYr732Gjo6OvCXv/xFd/xyFBUVYePGjbrDD+a6667DjTfeiPXr14u6P/roo8jKyur/W8u4PW/ePCQmJqKmpgbh4eGIiYnpd/viiy9QUFAgGi4+Ph4NKqy8Jk6ciJ/+9KdDnldVVWH16tWS4aTq6q5duyTviLvmmmvw0EMPKcqklfLycqxdu5ZIXPPnz0dSUpLheE6dOoV9+/bJ+nn00UexZ88eNEmcwJGeno4nnnjCsCxSba1vTiTFZ599hrKyMsPpHzlyBEe+/VbSPRPAAQAVvX8/9NBD+NWvfoUzZ86o/mYx405BVo4PVYIfH6oNu5SrXjwej6HvLFL1g8V85ncKso0dFWdmw9J7siQLRz9cKcihgjMyEkESioTujAwgJwcA0JSQIH2EQ6+f/jjj41UpBTvS0oaEdXV3w2lQsSFkZ/cfBSVHY1yc4tn/YoSEhAyRmzSyeSCRtruuTjJcc2KiZDjB4zGc53roTE8fIJPL5dIkR9ewYQiPjSUmj7u+3ng+5OTA43RqjkfIzkZLUhKcBnYLuocPBwgslvgSTQkJaJM42ot2GwYAgUB/JkVbSgq6u7vh1Hh8VHdGBjB8uDq/AQFE5e8aNgxOCSVmUFwckJNjKL3BfYqv05SQAKfEgkBUUhKQk4NOHf2R45prgEFjaFNCAvXjmbzLrzU52ZJxiXVakpLg1HjPWHtqql+1i8F4urpk65InKwvo3WDUnpoKZ12duEdCeWh13fae20shJV9wcDCQkwOhvV3Sj9F+2OV2E82flqQkdGdkSMY5JD80zEVLg4KwbMMGtLa2AgBGjRqFuXPnIjg4uKetSmzaCIiPh/ihlAqy9eIOCdH1nSBX91p6xwzSuAMDiZWnKzMTULmpSY6uqipFmbozMtCcmAinhKVSlMx3lRak5AhJSJCNvzkxEU6p+a0KBEHAl19+if0yCkFvZj3wAF78/e9x0003AYCmjQ3cUvBH7CLnYFpaWnDmzBlERERg+PDhPWOBCsyyFDR7wZtUekYV+/5sKcixFiOWnKyXrZV3CvLjQzlycKUghwpqz2rX0tGo7cz6/AmCgNOnT+Ps2bOSO7S1QHugYX0gE0NuMdeq9xmcrlY59Ch0WYVPfulg9QSJphJFb51R2+f3pUESuZ2oWuTiKNNXdna6Z4XVy9k59kapLnm3ETPGDKvrNot3B9HE4/FokluL302bNg34+/Lly9izZw/uv/9+RZnUEBRk/89/knWGVFxq2oDVdZ3m0XmCIGDXrl04fPiwrL/AwEDMefhhYP16vP3227qVoFwp+CN2kXMwBw/+eHhsUlISFixYgGiJk6a8MdqOWLRgI8mBAwcMhfflOwXV9IFW99P+jC/nvZV3CnI4cvj2iMhhHi2TMrUdYN9H8YEDB7Bp0yYiCkHveJWw6nx8WsjJxaJS0OhiNWmloNUTAFbrFUc/tBUyeuqMFplIyy+345crBbWjpvz1lKHY4oDZyhLeH4pj5q5TX0Hp/b37HjPquZ0U9VLQrFOk4xYEQdMc2Gj6J0+eVIxHbR2QGjNpzDPt0E+YKaPVC85aNjNowePxYMuWLYoKwdmzZ+PSpUv44x//qEs+MWgqeOyqbFOC1nvl5OQMucJFLbW1tdi5c6cqv9xSUJ6Ojg5D4UnVDyOWgjRQGrc57GP3+YZeWL1T0Jfz3J/gSkGO6Xh3HjQmCh6PBx6PB4cOHSIar79aCuodfFmxFDxy5Iim8KxaCupdtDVaDqzWS3+GxYVTVi0FU1JSiKbl75C2FDRTKdjU1ITy8nLq6dkR3s9rh5Sl4Jo1a3DmzBnD8li90GVk4cCO9U/JUpC0UtDlcqmSSQ19C+LV1dXYtGkTPvroI+zatUvyrmRfx2yloBF3FtN3uVxYt26d5N3OQE//MHv2bPzrv/4rrrnmGs1pyEFzHmEXizJWFC/z58/vuQ5FJz/88ANBaaRRW652HJvMwlctBWmkfeHCBWbXl1jDl9uclYYC/PhQjhz2Pz+EY2toHB/q8XhQUlJieJeU3vRZjV8PXV1d+PLLLyXdWbcUvHTpEq5K3DUmRVdXF2mRiMAtBdnB6gkStxQcSEBAAG655RbRBanbb7+daFr+AC1LQavo7u7G1q1bceLECd4fSsAtBbWj1AbUtpELFy7gwoULaG1txeTJk3XL4wvlYad30Hp8KClIWQrW1dVh6dKl/YrA0tJSRSsvQRA0z3+sXNi1Ii6W0tKTvlb5Ojs7sWbNGhQUFEj6cTgceOSRR3DTTTf135NJIv2+usgtBbXLSeu9AgMDbXFcNqtKQav7hz5IWgrqhUZeWGWpvWbNGgwfPhzz5s1DaGio6en7EnbeYGb0eG4S8XA4YnClIMdSaCkFSSsE++JVg68ob9xuN1atWoXi4mJJPywqBb3TPX36tObwvrSTy+pjijh0YPFOQRaUgvn5+QOU+hkZGcjKyiKaFqcHOx0funfvXuppcPwPUpaCfRw8eBCTJk3S3SasVtSzbilIOg2zLQXVxKOlDpw+fZqYZaDd55lm7t5XmmNZvQFVSx1qaWnBJ598ImuBHxAQgMcee6z/SEklpaAW+J2CbGJUSSsIApRyXWs7uXTpEo4fP47m5maMGDFCtWLGrn2b0XqrpgzVWgqy1oassBQEgJKSEhw9ehR33HEH8bh9Cbu2OV+FHx/qH3ClIMd0zDg+lNbuIpqw1qmWlZXJKgQB9pWCZ8+e1Rye3ylINrwvYvUHDouWglYfH5qeno5nn30W3377Lerq6pCdnY077rhD9b0hnB9Rs2BptQKCQxZuKagdpffXeqdgc3Mz6uvrkZiYqEse1tukVQtxtND6rcGS4lMQBBw4cEBX/KxYCpKEVNuxQx0nZSlYW1uLlStXorGxUdJPYGAgHn/8cdxwww39z9ra2oikD5hjKciPD9WOUVnUKAW1cPHiRaxZs6a/blVUVBCMnSxW9w99kDoa1Ej7obWWp6a/p1UOX375JVcKGsTqDWZGsNJSkPW84VgLVwpyqBDV1ITY4GBRt+CyMiAiAgAQ29CAYKkPhMLCAX/G1NerGsiDy8oQ3N2N2IYGTTIrIRQUAJGRiv7UyimVBs2JvWyeDMrvo+vWKeZhZFDQkHD9dHQQLwM1BJWWAsnJABTeVwJHUREQE0NMnoD6euP5UFgIh554CgsRWVNjKP2A4mJA4SPe34ipr0dAS4u4o1R7IIjD6aTWtiKqqxHU1aU5/sCSEiAqSrVfkvKHVVYChYUYBuCRm2/+0aGysv+/RtILragwpVxZIaa+Ho7mZlG3qN4+P7isTFd/NJi4xkZmj2z2JyKqqzWXZ3hVlV+1i8EITU2yeeYoKgJ6LbHU5q9QUABItD0l9JQhSZT6ScHlkpTP4XD0zHNaWyX9GO2Hg0pLieZPRFiYbJyBJSWA191aDhJz4sJC2XIODg5WtbFNV/+N3vopstEmvKpKMr7IqCgq/UQgwfIMLCkBCCyYhZSXK8oUVFqK6Lo6OCTmkLLfVRqQkiPa5ZKNP7KmBl0K71BWVoZdmzYhtqsLsQACAaQDOAagbzQPDw/H3Llzh9wf2CI1d9aBGZaCdoGV40NJxE1auX78+HHDi/H+VsdIHh+qNy4tZXb58mWi8XIFinWQUpyxiB3fzd/6Pn+FKwU5VFiwciXGSjnm5fX/9yW5SLz8AcAvNcqQq9G/IoPkkUKrnHrS0EuuhrTnqI30178WfRymlB4tvN5DV/qEyyBBrxze5OXpiycvD08RSJszkBfkHE3Ir1hY1Lbk0PDeo0BYfhVpG0rPz9rAQiUPv/41JgGYpDVikXx8VWscHA4jxED9nGpm708RA33Ng7pDEkJB9iAo5NfixYiU82OwH75GKX2dSMY5SF4ic+K8PPVzc4V4JuoMJ8as3p8kf/d3elKTJRMEy5PQGD+x96eU1rVKfiS+q7SQK+f4u99JOj2rMv7/Fnk2DcBBAJGRkfjDH/6AmpqaIX7sdKcgi0cfSsGSnEZl8Xg8UDrjQ0s9uXTpkiF5zFQKsqLUYOFOQbXk5+djw4YNqvyqvSKDlXLwR3jeK6Mnj2hdj8TLyzfgSkEOFZbPn490iSOQZs2aheuuuw4A8OGHH0ruGszNzR3wd15enqqOZ+LEiUhPT8fWrVu1Ca3A888/jxgVFmRq5RTjl7/8JdWjShYvXizp9uabbw6YvH3wwQeKH28JCQlYsGCBqFtbWxv++te/6pLTCHfccQduueUWAPLvK8XUqVMxefJkYvLU1dVhxYoVhuNJTU1FVVWVpjDPP/88tmzZgurqat3pzps3D8m9lpecHj766CM0S1hzDO63aECqTokxYsQIdHV1obS0VFO4e+65BzfeeKMqvxcuXMD27dv1iCfKzJkzMWbMGFk/evqCPm677TZMmqRZBWZb5Mbl5ORkzJs3D4cPH8a3336rOk6Hw4E333xzyPP33nsPnZ2dumWlTXBwMMLDw5GTk4PCwkI0NTVZLRIVMjMzNbf58ePH46677qIkEfs4nU4sWbJE0n3GjBk4ceIE6uvrVcepdp4pxoYNGxSPfKfJjBkz+u8NE6Orqwt//vOfJd0dDgdmzJiBXbt2ibrfeeeduNnbElwjV69exaZNm3SHH0xycjJuvfVWybFs9uzZGDlyZP/fJObEubm5WLdunWRbDQgIUHVSybRp03QdH/r6668jKGjo0sG2bdtw8eJF0TCZmZmYM4eIKnMApaWlWLduHZG4Hn30USL3Dx8/flwxX++//37s379fcYw1itScJzIyEi+++KJkuCVLlsDpdIq6HTt2DAcPHRryPBPAAQAVAOLi4vDMM89gwoQJ2L179xC/JJWCfdBSPLCkaLMTJO4UJOGHFHZc9DZDZtp3Cqp9B61jmZXHh3KUMXLENevlZuXxoQCwevVqzcYCfBz0D7hSkEOFlpgYOOPjRd26MzKAnBwAQHNiIpokjhnt89NHY1ycqrTbUlLQNWyYZPp68WRlASpkcMbH67//LTtb9GgeUsjliZCdDYfXRN4ZH49Wr6OPxAiMjx9STn14WlqIl4EaOtLS+mXSk35LUpLkO+nBExlJJB+cXV2Axng8WVloTkyE08DuIE9WFpCaqju8L9KcmAinyMIYAKJ1Rwp3RAS1ttWanIyOjg44FRZuBtOemqr63buam4nK78rMVEzbSHqd6emmlCsrNCUkoFliXA5NSAByctB25YqmPHU4HKJ56IyPZ1op+NprryEpKQkA8O6778Lpo3dUOltbNY8vbSkpftUuBuOqq5NtA+uOH+/5j4Z8FbKzgdhYXfI0JybCqfPoURJ0DRsmWx+Ezk7FPuNIZaWkH6X4lXB1dREdd0ITEmS/NQbLK7S2Gk8/JwctSUmS47PD4VD1/dGRlqZPlpwcQGTu05qcDKeIVRgAxCcnU+knXDA2rnvj/V1qhI7SUkWZujMy4IyPR4vEGBuWmEhEFik5XJGRsvE74+PhHKTUcbvd2Lp1K06ePCmbZkJSEh5esAAxMTGIlLhuo7W1ldidcbSPD7XTYqgvHR/K2v24/qiAJHWnoJG6oCYv2tvbNW185paCHCshVa/0xqPVuACw1zjI0Q9XCnJMx7sjo2EV53a7iccJqO+A7XheNNAzCddaHnITd6vexejHBC3zeqvgE1vfg+YHs976okUm0vLTtK72R9TUAVJlyPrHBuvycayDxthq1/mjmvTVyFdSUkJKHF3pa8Hj8WiK04zFILVp6L73XMc70KqXJOMlFZcdLFC0ttOGhgasX79elSX5448/jvZeS+coiTumPR4POjo6EK5TPm/MOD7ULrAkK2t3CtoJVt7LLncKulwuKvGyUg7+iC9bChqB5Lu1trZCfNuOdnw5z/0JvpLGsRQak1itH+pa4qWN1UpBb4wuDFv1LkbT9SWloNodcUpxcNiCdl+kp8y1bMYgXad4HTUfrXVQaqxnaSFLDNblsxJ/b3esvT9r1hWDYS2/jOLxeDTNgVl6f92nmUiEY+nd9GDm7n2leTntvFSK37tOl5SU4IMPPlBUCN44bhwAIMTrdBkpS0Ggx7qHJLTGaV/ecMaypSBrShs79m9Gy4AFS0EakFgX4dDFl8vHakvBPrRswGOtDXPowC0FOZZiJ6WgGYOULykFrVqgYs1S0OrJjdXp+yJWT5BoWwrqqTNWWgp2dXUp+pk6dSoOHz5MNF1fRc2CJesKCFJ4t3Wr2z2HLWi0ASPjtdVtkoSloJ1Q+tagoRQktaDJF9QHYrZS0ErUttPvv/8eX3zxheKGr5/97Ge4Z+xY4MyZAc8DdR61rSd/uKUgW7IaLQ+rx7LB2KW/zM/Px7lz5xAYGIiioiJDcpCqTwEBAdTvFNQKa/WLMxBfthS0+k7BPlgaLzhswJWCHNPx7sjkOiVBEHR1WrSODzXjWBi7KQVZHJi5peCP8B1xvonVO8nFsNJSUM2ddJMnT8a5c+fQ2NhING1/xV+OD/VlSwGj+PvYwtr7Wy0P60pBq48PJYHVSkGWLAVZPD7UF5SCXV1d2LJlC4733YkqQWBgIB555BGMGzcOaGgY4q70fU8S1ucRZsBSHnBLQfp0dHSg5NIlXAugsbERZw4cwN69e4nFz4KlII16wNdFfBt/KVsz31OpDftLnvs6XCnIsRQaSkFuKagPPYu8LB8fqnfRWo3VkZ2ws6KaVaz++OZ3CmqPLzY2Fs8//zzOnDmDuro6VFdXU72/ys7QsBS0us3oxa5yc+jD2tjI+u531vLLKFZYCpLC3xfUB8Py8aFdXV1oaWlBfHw8kfFILu2LFy/inXfeQUVFhWwc4eHhePLJJ5GdnW1YnsGwZClop01BWusGy8eHsnY3J2tpNTY2YtmyZRAKCpALYOnSpXDGx1OXze12D7AAVqsUZG0ebYcxiSONncuPlKWgmbDWfjl04EpBjul4d2pyE269nZ/b7bZMKWhnBYyv3CnYJ5Nei1FalqZWwHfE+SZ2v1OQtPzXX3+9Kn/R0dGYOnUqAODYsWNcKWgAf7EUZF0+K/H3sYUfHzoQJdl9zUpb6wZElo4P1VtXfLXNs2gpKAgCduzYgePHj8Pj8SAmJgZPPPEEhg0bRlzGhoYG/P73v8fbb7+tuDEyOzsbjzzyCOLi4mT9+YKlIB//9WFUmcotBeXZs2cPGhsbEUsxDe93Pn36NPbv34/GxkYMHz4cD40fj3iwcaegHktBq+dKHHnsqDhTCyvy8bGNMxj7bIHi+CRynZLeQZuWpaAZkwiuFDROX7oul8tQeFJYPQGwOn1fxOrJFM0y1bvoqKV/JC1/UlIS0fj8HaN9vy9hdVvnsAtrY6vV8sil73K5sGTJEhOlGYrZx4eyfGKJmceH0qqXvnp8aJ/7t99+i6NHj/aPtU1NTVi+fLnh00y80+/s7MT//M//YOTIkfjTn/6kGPfNN9+MZ555RlEhCOhXDOkpC64UZEtWMywFzYQ1BeQPP/xgmhwXL17EF198gfr6eng8HhQVFWHdunWq4zFiKUhLOWz1XIkjD+tH0VuF93vz40M5pOGWghwqRDU1ITY4WNQtuKwMiIkBAETX1aFD5C4CABAKCoCQkP6/YyX8DSasshIhsbGq/asloLgYUPoY83iMpVtYCERE6A+vgKxshYWA14debEOD4gdiUFBQTzgRHHV1xMtADSHl5UBhIdwtLbrSjwgLk3wnPQTU1FiSD0BPnY2qrYWnqclQHFBxZ5s/EV1XB7eU1QPBuiNFQHExtToVWVODwI4OzfH3tTs1BJeVEZN/ypQpcBQVaQ4XWlGhWobQigpTypUVYurrEdLRIeoWBQCFhQirrNRUhlJjRWxDA4JaW/UJagIBxcX9Y3JMfT26LOrLWSSsstKv2sVgAsrL6cwzNYzX9fX1OHjwICorK9HV2krVckAJuTGgvLgY0XV11OJXA8lxBwBCQkJk4wwuKwOio/v/djidxtMvLEQkgTmllvHPG0dRERAWNuS5nExRhOfUfQSVlhIrz6DSUiLfXiEq+oTgsjJE19UhWGKMjXY4gMJClB44IBpX8TffYNSoUYqySMkREBAAoaAAW7ZswR/+8AeUlJYiBkBMr3sggHQAxwD0fQE6HA7cc889uP3221Uv8LOkpNKLnd7Bl44PZc1S0B/py9/8/Pwhbq29c3YW7hTUEyevO74L62XLihWkncY2jjlwpSCHCgtWrsRYKce8vP7/zpOLxMsfAORqlGGMRv+KDJJHjABol1NrGkbI1ZD2q2oj/dOfRB8nKqVHmSgj6f/TPxGTI9mIHEbJy8PzBOLgDOQXco4m5FcOrG1bRrml90cEnfl9U++PZhp25RUlD7/5De4HcL/WiEXGihe1xmE2XmU/30IxOOwxDBT6YY19TQKA2aRl0IuM7FkgkFcG++FRJGQQYYKUwyB5Y0mkn5eHp4zG0ctPdaYvhmIdJDin7iMbBMuT0Bj/U6jI17w85bnHv/wL5siEV0OunOP//i9mQ77cpgE4iJ5j1x977DHk5OSoSrcPvceHsrSoa6c7BVnC15SCvpqWHH1ynDlzxlA83FKQoxVfthS0+rQHPXAFon/AlYIcKiyfPx/piYmibjNnzsSYMT0qu9WrV6OqqkrU3yuvvIIwrx2pixcvVpV2RkYGRo8ejT179mgTWoHHH38cGRkZsn7cbjfefvtt3Wm88MILiIqK0h1eCbk8nD9//oBj+N599110d3crxpmbmyv6vKamBqtWrdIqomHGjx+Pu+66C3V1dVixYoXm8CkpKXj66aeJyWNVPgDAggULsHHjRjQ3N+uO46mnnkJqaipBqezPsmXL0CCxC1uqPZDkypUr2Lx5M5W4hw8fjo6ODtTU1GgKN2bMGMycOVOV36NHj+LQoUN6xBuC93iihfz8fOzdu1eV39tuuw2TJk3SnIZdee+999ApYR0cFxeHX/ziF9i8eTOuXLmiOs7g4GC89tprQ55/+OGHaGlp0S0rbRYtWoTQ0FAAwMqVK1FbW2uxROygpc37IqWlpZqO0VLDs88+i/j4eFV+z5w5Q3yea4Q777wTN998s6gbibYzffp0TJgwQXf4S5cuYevWrYZk8CYgIAB33HEH9u3bJ+o+eGxqbGzE0qVLDaX56quvYt26daiurjYUz4QJE3D69GlDcdx333244YYbAACbNm3C1atXRf2lpaXhySefNJSWGEVFRdi4cSORuLzfxQj79u3DqVOnZP1Mnz4dhw8flhxj4+Pj8eyzz0p+ryUlJWH+fOUtKoPDX716FQcPHkRdfb1suEwABwBUABg5ciQeffRRREZGKqY3GL6QaC4sWQoaVab2Hc3MSg2ysxJCL6TemTXFOr9TkH1YsaZjDauOD1WCJVk4+uFKQQ4VWmJi4JRY2OjOyAB6dxy2JifDKXFEpXv4cMDrQ0QqvsFEJySga9gw1f7V4srMBLKzZf0ILpehdD1ZWf1Hq9JATjZXZiaQltb/d2NcnKp7+YTsbNGPC3dYGPEyUENbSgqQk4Ou0FBd6YcnJvbXTxJYlQ9ATxtyxsejOUh/V7+vqAhCYSHS0tJw66236loc8DWaExPhlHIkWHek6Gpvp1an4pOS0NbWBqfGOzlbk5NVv3tHcTEx+b3HE03h6utVy9CZnm5KubJCU0ICOiSONgtMSAByctCSlASnwuKiN8HBwaJ52JyYiCaJo8aZICcH6FUKNicmwul2WysPQ/SNtf5KtyAQ74fdw4cDKu9IXb9sGWDR3EIMuX6yJSnJcNvpGjbMUH3rbmsjWl4OhwMdaWmqvnUAwF1XZzz9vr5XxYY9OdpSUgzLcrS6Gjfcdx+A3vKV2CgVSXhO3Ue3we8tb4zWrT7azp1TlKkzPV12jHVFRqI6IkIynuD4eEVZBa++yel0YvPmzbh8+bLyC3hx989+hmG33UZlUd8uloJ2UmyyJCu3FLRHWnKokUPt8aEsWQq6XC7Dm2o4dOGWgubFowaWxhYOPdjavsHxC7w7MrmORu9OHrfbTaWzNGNnkZUD3eD3UyuLlD+r3qUvXTUKTTF8bQeZ0XI4d+4czp8/j6+//hpLly5FW1sbIcnsi9UTJBbrqBaZSMpvdVn4ImoW7FisgzTg9YsjhZ0XJmgglx++2o7k+sHB+UGivpC6D4lEHAUFBYbjYAUzF+qU/LS2tuK9996TdNcy9l6+fBnvv/++aoVgZGQkpk6ZAgAYO3asIYWg2W0+W2HTrh7s1G+xJKtRWfosBeUwukahBa4UFMeOdwr+5S9/IR4nhx1YaT9SsGIFydJ4wWEDrhTkWIreOwfkUDOZ1IMZO9dYUgoaxap36XsPNUefisH6hEILpN+ltrbW8P0CHOPQVMjoXXTUIhMLE1s+ITaG1joold+slwPr8lmJ2nbc1NSE3bt3Y8WKFdi7dy9aW1spS2YO/qIYJwELR4jpHXek+gBBENDe3k49/cFx8EVu8pitFDSSnpp+p6WlBZ9//jlWrlypaiNfYGAgXn75ZVy8eBGTJ0/WLZs3NK2DxKBxxDsL/RYtaM5tSFgK+qtSkBVYsBRUgz+Wja/DiuKMZViaw/lLnvs6vjvb4TCLd+chN+HmloLmwi0Fe/AV5Sit9Ldv3040PjtitaKAdp3SE79bw9Fw3FKQbeTKv6Wlxa/u5PCeo/C6pp2WlhYsXboUhw4dwtWrV3HgwAEsX75c8ug8O2HV5jNW8VVLQTnZDx48KOnGcln6wjyXZJosWQoqoTTX+vrrrzXdGTl79mzk5+fjL3/5C1JSUgzJ5g2NTb9yjBkzhvjdlXbqt1iSlcSdgqRguR8Wg5UFeFLpsGYpyGEfVtoADUgpPI3mgZZ2aef85qiHKwU5lkLLUpAGvmApqCW//VUp6EuDH6ld5YOprKwkHidHPdxS8EfMsBT0pT7BKN3d3XjrrbdQWFhIJD6WFrLEYF0+K1HTLvLz89Ew6K6x6upqXLhwgZZYpsH7hYH4o1JQDl8/PpRkPFZD6j3UzIOMnmYjlUZTUxMWLVqEu+66C1evXlWM5/HHH8f+/fuxadMmjB49GgAbczMjMlx//fVITk7WHX4wduq3WJKVWwrSgyWloB3vFOT4NqzXBzvOvVjPUw4ZuFKQYyn8TsGB2NFSUAqrjw9lxVLQamiUw+rVq/16kmD1xzeLddQqS0G9WF2GLKPUthsbGzXHadf8tqvcZqBmDNi1a5fo8y1btpAWx3Ro9GO+Oq6y0I705i2pIwRZWpwmFU/fuC8Xnx3qtN0tBbdv345x48apui8rIyMDx44dw9q1azFt2rQBbmad4mCX+sJCv0ULlo8PVVMPfXVRnJX6T1IpSBNW8otjHv5a5lYbW+h159gDrhTkmI5358HvFCQbXiluufj1fgxyS0Fz42Mh/aamJpSVlRGPl6MOK/sJKbT0H3Y7PtTqNuzLsL7oxrp8dkXv+MwSvF8YCLcUHAit+sGSctHKdszi8aFmpOU9fyoqKsKcOXMwa9YslJSUKIadMmUKnn/+edx6661UZPPGzm2+Dzu9Awuy9slghqWgWkh8b7A01rNkKaiGgIAAbinI0QSpIzZZhHX5OP5LkNUCcHyTqKYmxAYHi7qFlJcDCQk9/mprETvoaKl+CguBlpb+PyX9DSK8owMh5eWq/aslqLQUCAuT99TZaShdR1HRgHdWQ3d3Ny5duoTq6mqkpKRg1KhRCAkJGepREGRlCyguBgID+/9W+x5CQQEgkl5AaSnxMlBDWGUlUFiIgOJiXelHdXf31L1empqaUF5ejsTERCQlJWme3AZWVVmSD0BPmcbU1yO0s5N43CX79yNz6lTi8dqB6Lo6dEqUqVBQQP3jPIhi24oKD4ejtRVup1NTuPDw8AHtRo6wykpi8oeUlwMREbrCqZUhtKJC9bv5AjH19cQXe0NDQ0XzMLquDh6Ndc0sHA7HAJmj6+rQYVFfziLhVVWK7UK2jdm8TdHohwOKi4G2NlV+rZpXSBFSXi5ZptF1dYbllYtfDcFlZbpkCA0NRaeOOVRIeTmQmNj/d0BNjfEyKyxEVG0tugzGE05oXuq+cgWIjESkzLtFBQVRaesk219wWRmQlGQ4HjVzm5DycsTU16O7u1tXGkFBQei8cAF//etf8e6776KjsxPZvW6BANIBHAPQ5RUmNjYWjzzyCHJycmTjZkHhwNLmWhYUbWrRKivNdzNqXU1KGVRfX4+lGzYYkkVtWqRgxSpHTTp1dXVAfLysH9p3CnIli+/BShugASt3CupNl+O7cKUghwoLVq7EWCnHvLz+/z4iF4mXPwDI1SjDzRr9KzJIHjFCoV1OrWkMJhjAmN6fHA4oyKY3vyVkztQSB2lefx0TAEzQG/73v+//b0zvTy+psDAf8vKwyKq0fZj5co462rBWxvf+mOMf/1GVt+m9PyLozO/RvT+aadiV12lF/Ic/DHn0HK20SLF4cf9/51knhW3JlXO0ebu6FhTGdg15Qjxto8jIPody/Gq4vvdnGoPkTQaBMsvLwwKjcfRyH4lIet9R9lsOAH79axKpDWAECLYBQn3Rvb0/pbSmGE3oT3/CGwDekHCeBuBg7/8nTpyImTNnIkxpUyvYONqdJXxZKUgTEseHklAMfP7552j22uysF5YWxVlSCqrByJ2CamCpbDhk8GVLQVJwpSCHNFwpyKHC8vnzke61Q9abe+65BzfeeCMA4IsvvkBBQYGov6effhopKSkAeiaIb731lqq0w8LCMGnSJHzzzTc6JJfm/vvvx/XXyy8pdHZ24r333tOdxrx58zRdkn7+/Hns2LFjyPOZM2dizJiBakK32423335bMq4HHngAo0aN6v97sddiqByLFi3qsQIZRElJCdavX68qDpKMHDkSs2fPxrfffovDhw9rDh8eHo6XX34ZNTU1WLVq1RD3u+++GzfddJPq+KqqqrB69WrNcpDg6aefxmeffaZ7R7IcU6ZMwZQphpc2bMmqVatQU1Mj6vbLX/6S2B1EUpw6dQr79u2jEnd6ejpaW1vR1NSkKVxycjLmzVOnNvnyyy/x/fff6xFvCLNnz8bIkSM1h5PqO8WYPHkyplpgFdvW1oaNGzf217Xo6Gg8+uijiFfYmWuUt99+W9MdkWoIDQ3FokVDtygsW7YMDYxZPPURGBiIN974cdlVrt37I9deey1+/vOfy/qRm0fk5uaSFchktPQhatEyB1Q7RzOLqVOnYvLkyaJu69evV3W8oRzTp0/HhAkTdIfXW17h4eFob2/XHG7wXLG6uhqffPKJ5ni8efHFF7F+/XrU19cbiufaa6/FpUuXDMUBAAsWLEBCQgI2bNiA4uJiUT9JSUmYP192K5Uurly5gs2bNxOJ684778TNNxvfSrp9+3ZcuHBB1s/kyZNx8uRJTfPyyspKfPXVV6iqrpb1lwngAIAKAHFxcZrnRyxY2bFkKUh7Lu9rmHl8qJpybmpqUrRkUyuPWbBiJUVSKUhTBq6w8D/scietGNxSkMMqXCnIoUJLTAycEhOxrmHDgN4jTNpTU+FsbBT158rMBIYNAwAIbrdkfIPpDAtDR1qaav9q6UxP75dbCqGjw1C67uHDgbQ01f63b9yIJpH0tv7wA8bMmjXgmae7W1a2we+n9j2E7GzRY1W7PR7iZaCGlqQkICcHbQUFutLvCg8HcnJwJD9fNPyXV6/ipgcfVB2fKzjYknwAeupTY1wclXtfvNuxv9GSlASnRJ4K2dkDjuGlQXt5ObU6FZWYiJbQUDg1vkNoQoLq+tCWkkJMfldmpq566GppUS1DR1qaJXV986ef4rLL1b+o4QSw+vBhvPrqq1TTdcbHE1cKhvf2q4NpTkwEm4eHAsHBwQNklmv3/khbSopiu5BtYzYfP7qamoj3w1rmgFbNK6SQ6yfbU1Ph1Hg0/mC6MzIM1Znu5mZdeeaOikKLDtkHz6ldISGGy8yTlYWmhAQ4DS7StCYnw1lbaygOoLdMUlN7+sbmZlE/oYmJVNq6q7OTWBtQ832nhtbkZDgVFHftqamq5+VutxvffPMNvvnmG00LczeOH48xs2aJbtiUwyxLQbssMrJkfacES7KSsBT0V1hpG6TudeRKQY5WfLlM7WgFycpGBQ5duFKQYylykwXvSaGWDodW52TG5ERreClrnjaRO2mU4tY7CZeKl9XBS4m+fDh58qSou5PR+6/EKC4upqIQBPgOWiuh/cGspw1pUSKxsBtdC1b0ZS6XC+fPnx/yvKamBvX19UjovZeXBma+L0sLWYNhWTYW8PcPQX9euNQKC21Jb30lZfFEor2QWqgl1XbVzC/t0E9olVEQBNF6QfI7sba2Fhs2bEB5eblqucaOGQOcPYvp06fDqVEhqEU2NfiCpSAL/ZZatMpKs12ycqcgKVjqw8y0FCQ11vDjQzlaMKKE8pf6YOY46S956u9wpSDHdLw7F7mJghEzaRodmBmdIs00aCkF9aZHi7730Ju+Lw1+pI8288ZOH8tmYkb9obkYrVd+LTKxsGijJZwVfYKcZUpRURFVpSCnB97HceTwpbkCCeTyw85tiZTsLNUX0kpBlt5ND2rlz8/Px6FDh1BfX4+cnBz8/Oc/R0zMj7eOq1VmKC1qnjhxAjt37lR9xGh8fDz+/d//HS/OmAF4XQOhFbsdTUgbO/dbStAsAyKWggqKRV9VCrJilSMIApETQwINnJzDmnKYFk6nE1VVVQgNDcXw4cP9ftO1L2+4Y+X4UK4U5AyGKwUp4XA4QgA8AeApAGMBpAJoAFAAYAOApYIgGD+7RV6GiQDmAvgZgAwACQDqAFQCOA3gKwC7BUGopCmHgoySbkYsBWl0YGoGKZZ2OGqNm7SloJ7jlkhQVlZmKLwvT0ZI4ssfy0qo3cxAC9ppcEtB6/G1BXYpmVl+l8GysSyrFfj7h6JdN5/Rwtf6rD70LtDRqh/cUpB8vGriunjxIjZs2DDg75qaGrz66qsICgpSHY/cN0ZLSws2bdqEixcvqpC651ju5557Dr/97W+RlJQEFBaqCqdHNq1wS0FzYUFWM+8UNBN/lcVof5CRkYGQkBCqfQFLZaMVQRCwe/duHD58uP9ZZGQk5s6diywL5bIapXmFnS0FScnHklKQ9TznqIMrBSngcDhuALAawIRBTmm9v6kA/t7hcDwnCMI2CumnAPgfAPNEnNN7fzcDeA7AuwBeJy2DHGotBVlTCtp9sd9speAXX3yhKz6jdHR0oKmpiRlLQV8dLFn4AGURX7AU1PMO3FKQLHJp0t5F6qt9llb8fbcuRx7eTtTDwnxBb3mxZClIqs6RmkOQvnvWKtTk63fffTfkWUNDA4qKijBy5EgAxjaPXrp0CZ9//jlaW1sV47j//vuxaNEi3HPPPYiIiFD0rxZfsBRkYX5pBb52fChLC9G+mpYcgiAYHid+9rOfGZaBhB9WOXv27ACFIAC0trbik08+wf/32GMItkguq/GVeQVpzN4IRSNdDrtwpSBhHA5HJoC9AIb1PhIAfAPgCoBk9FjthQNIAfC5w+G4TxCELwmmnwXgawDXeD2+ACAfPVaCEQBGokdhSe5LggJ6zaQFQcD+/fuJy+PrloIk755raGggFpcexO7iUgu3FFSHmR/LgiDg5MmTuHDhAkJDQ3HTTTfh2muvNS39wVi9UEDbCldPP8QnmGSR64esrn8kYfldWJaNBfx9rPT39x+Mr1oKsnSnIKl4Ll++TEASdceH2mG8VyPj2bNnRZ/v2bOnXymo5/jQrq4u7Nq1C8ePH1cMGxYWhtmzZ2Pt2rWKfvXAQp/GUn2xU7/Fkqz8+FB6mKm4N9of5OTkAKBbN1kqG61IjcOdnZ2oqKjwW2tBbilIPx6+ZsMZDFcKkucT/KgQLALwkCAI/dsLHQ5HEoA1AO4BEAzgM4fDMVIQhEajCTscjlj0HAnapxD8CkCuIAjfi/gNAXA3gGij6RpBrqPRaylIUrnljdPppBKvN1YqBfUqGsTi/eGHH3TFRYq6ujoEB+vbY8UHP3WY+QG6Z88eHDp0qP/vH374AY8++ijGjRtnmgxqMaP+1NXVUYvbbhbR3FLQ3LT1wtKClVrsKLOZXLx4Efv378cdd9xhtSiWYNcTKWjhq0pBXzw+lBS0vrfUYNWu+cF0dnZqisfbT21tLVavXq1qTjdixAg8/PDDiImJgSAIVNoUC3Mzo5B8B18+LUBLPj311FO4fPkyKioqMDw9XdKfmceH+qpSkJX3NqoUJNH+fd1SUM4qXI3FuK9ixFKQ9fpgRD6r3o2VPolDF64UJIjD4ZgFoG91pAvAbEEQ8r39CIJQ63A4HgLwPYAR6Lnn7x8A/B8CIvyxN04A+BTAPEEQRHtWQRC6AOwgkKYoUU1NiJVQygSXlQHJyQCAiOpqxEpYlQWWlAC99zSgvV3Sn1mc2bIFHefP4/7775e+OLm11ZCcAcXFgIZJmGxag+6WEFpaZP13X7oE9O52VYx7cDpRUQMehVZUWFpeoRUVCAkJ0S2DUFCgKW/lCCgvt7zu0iCsstLw/SVq6OrqwvkdOxA7aJL4/aZNGDeo3plFdF2ddJkWFgKhoVTT7750CbGUPhiigoKAlhYEtbdrChfe0aG6PoRXVRFrE8FlZYo7isUI0dAuQysqTKnrA6ipkZQvpLwciIykljSN/iqis1M0D2Pq69HJaP8Y1d09QOao2lqf7MuNcGL9eiS1tGD06NGi7qTGURYJLisjXh8CS0qAri5Vflmri3JzgkiZ/kwtIeXlhuqM3vKKCQhAt45wg8eNgNJSw3ngKCpCTH090NRkKB5SBBQXAzExsuUbJQhU2jrJ9qembkmlFe3x9IeV+6btI6yyEjH19SgpKcGerVsR1dGBKACB6Lnb4xh6FhD6CAwMxIwZMzBp0qR+JZXb7e6/x5AkLBwfytICo502M9CUNT4+HrNmzQIAdF64QF0WFixWWcWOSkF+p6A4dukHzcbKzUa04ZaCHFbhSkGyvOb1/2WDFYJ9CILQ6nA4/h+Alb2PXnY4HP9PEATdvaDD4ZgA4IXeP0sAvCilEDSDBStXYqyUY15e/39/LheJl79wALnGxaJOJAzK6fXOapBNa1BcUUr+tcQtkw4A/KT3ZzXT9AbMy9OUt3IMgz3qrmY01lW9hAB4Q8rxV78yRYbBPCnnaEK+vEg9BZ3853+q8nZ/748IOvN7JNhul8mQkY9yHZNM1yj/8R9DHoldfMwUv/99/3+ftlAMppGpj7k6w9mBm3t/RNGQJ7mk06aI7FxfLQbry5jen2kMkjcTBMosLw/PG42DJL3v+LiSv9/+lnjSo0CwDaioW7Jp/eu/AgAeUZncXb3//lHEbRqAg73/T01NxWOPPYaUlJQBflwuFxWlIElljC9YCtoJf7xTUBAEXLhwAZcuXUJkZCTGjRs3pK2QgCVLQbNgwVJQDazklx7sLDtNlCwF/VWZqvdaLaW4OByAKwWJ4XA4otBzJGgfSxSCrAfwF/ToahIA/BSAkbsFX/H6/7uCIDQbiMswy+fPR3pioqjb9OnTMWHCBADAli1bJM/Unj17dv89DW1tbfjrX/9KRVathIaGYtGiRaJuLS0t+PDDD3XH/eijjyIrS/0p4osXL5Z0y83NHfB3U1MTPv74Y0n/0dHRWLhwoaq4vVm4cCGioweeQpufn4+9e/eqCk+LESNG4OrVq7rCvv7663jnnXck3QfnrRzl5eXU7v+wmvHjx2P69OlUJ//Hjh3DwYMHRd1ee+013cfEGmHNmjWorKwUdXvllVcQFhZGLe3q6mp88skn1OJPTk5GU1PTgCOx1CDXLw5Grt/Xypw5c5CZmak53JUrV7B582ZVfm+++WbceeedmtMwQlVVFVavXi3q5j02kkYQBORRUNZERkbixReHqrNXrVqFmpoa4umRICYmBs8//+MS/OrVq1FVVWWhROwiNSZqmaPYjRMnThC/v/rJJ59EWlqaKr9q52hmceutt2LaNPGtWDt27DB01zMA3HXXXRg/frzu8GfPnsWuXbs0h0tOTtbVR91xxx245ZZb+v8uLS3FunXrNMfjTd/coqOjw1A8pPjpT3+KiRMnYu3atSgvLxf1ExcXh1/84hfE07506RK2bt1KJK7Jkydj6tSpsn6k2pv3OLF+/XqUlJSI+istLcWxY8dQVFws6p4J4ACAit6/p06dinvuuUdU+UfLkkLPQqHY/P+GG27QnQ5Li512shSkidp8IHV8qBpllCAI2LdvH/bt29f/7Ntvv8Xdd9+Ny3v2EN1wxpJSkFsKavfDKmqvUPI3uru7rRaBGnasr6z0SRy6cKUgOW4D0HdmXCt6TgCRRBCEDofDcRjAjN5Hd0OnUtDhcAQCeMrr0Xo98ZCkJSYGzvh4UbfO9HSg9/LhtpQUOCXuUvD252lpkYzPEnrlGozQ3GxIzq5hwyTjFkM2rUHxeBobZf03ORxwDx/efzSq2vfwZGUBsbEDnzmdlpfXqYYGQKcMnqwsTXkrhzsw0PK8oMU3xcVI6+iQPDqOBB0lJdL5l5MDWKAUbE1OhlNCaebJygIiIqil3dDZSbU+hSYkoCkoSPOiY1hYmOp20ZqcLNnva8U9fDiQna05nEtDPnakpWlq8yRwBQdLyufJyqInjyBQqV/uqChRmVuTk+Fk9KiYgPj4ATK3JCXBqfJoR79Doj6SGkdZpKOsjHhbcQ8fDmRkqPKrNe2wsDCqyqT21FTJMm1PTYXToEK9a9gwCNnZqK2tRWxsLEJCQrSFV5gDSxGhs48aPG50E+hb+282Dw83FA8pWpOTgZycnr5R4sjxwf0oKbrb2oi1P7m624dUWo64uP6wLUlJcA66n93pdGLbtm24oOLYRQCIiIrCgkcfxYgRIyT9GFUKSt1JqHUhOjAwENOnT8dxL2V3eHg47rzzTqqKALOw052CLFkKmnGnYEdHB06cODHgWVdXF3bs2EH8aG2W6qSZSsHq6mpT0pKTgYQfVvFXizclfNlSkNSdgvz4UA5puFKQHN6r4vkqjwI9iR+VgkZW1ccBiOn9vxPAFYfDEQTgGQDzAYwFEA+gFj13GW4C8LEgCNpMQSigtmO3S4dkVE6aO4PU7PRobm5GXFyc4XitsN4iCcn6Zpe6q5cjR45QVQraDdrlbeQCbrXoeQerJph6Fx+0hLOiDcuNBTR3r9N6VzvueuVWAhw5aNRpQRBQU1OD0tJSpKamIj093XA9nDZtGjIyMpCUlIR3332XkKRDkes7SLSlkpIS7Nu3D62trQgICMCkSZMwc+ZM1XHr7dtIKTd8cS7oK3f/kCqbwX3CxYsXsX79ek0nL8yfP79HoSwDLaWg1nwQBAHTpk1DlscD5OVh2rRpGHnPPYiPj5ftH2m2BRbml1bgS0rB0tJSXPjhB1lrv++//56JOzDNTsssWbq7uw2dcvT/s/fmcVJU5/7/p7p79g1mZWAYhn1HEEVWwQUEFBRFjYK4b3FhvInfX5LvvTc3N7k3N8n3JowxIcbEBAVjFBdEQZF9l31fxGGG2fd9n56u3x/T3fb01HKq6lTVqZ56v179gqmqc85z1jp1nvM8h4alIAlWfq9aWbmlJ6zPKzweD0qLi9HR0YHBgwfr4spbCFspaKMntlKQHqMD/n+NMEygDxFpXxvSBB7fVohuLyQbAUwLem6g97cQwI84jlvO87ykRaMeNDc3Y+vWrSgsLERpaanoc4EfFH1lQDJTKQgAdXV1ipWCQvisDa2KFRewzaJAxBWSEZg1Lpi5UKB32yTZoSsWTo9n5eiLSkEr7V73IVaGLC+6sSybjfnoMS7s3LkTeXl5/r/Hjx+Pe++9V1OfnzFjBqKjo9EUZMFkJDT60tmz3x3T7vF4cPjwYSQlJeGGG27QHLcUVhxvjcK3eGf1xU1aMvri4Xkehw4dwldffUUc97ixY4GLFxEREQE5e16t7tXEZFKjFATgP/bihhtuUO2hRa0MtMMHYqU5gJ6ykip4fPe0jpmnT5+WtfbrMNBrA0tjmFGyaPUqQKM9slTuemD196ZesG4p+O677yLXK2NUVBRWrVpF7Paf9lxDiP79+6NWZvykuWbTl9tqKGF/6dAj8AA9Uh85gYdSJWpIe3DQ31vxnULwEoB3APwd3ZaJPjIB7OY4bioMZt++fThy5IikQhCwLQVpQyJbfX297DMk8VqlvsSwuvx9BRbrSW+ZjFBY652HvrpoowSzNiboVfcs9lU5QrVt2dBBjzYdqBAEgPPnz+P06dOa4jSqHettKSjEqVOndIk3ENtSUBwjPBeIwaJHj8LCQrS2tuK9997Dtm3biOLNyMjAI488ggULFhCno9e3Js15Ryi8P0N5QwDLloKswZKloFWwzxSUx2zlFqto2fRiRLlVVVX5/9/a2op//vOfxOnSch8qxu23347ly5dTlaMvt8W+ROjOdownNuD/wgcr9CbwuVjRp+TpF/D/Ceh2F9oC4AGe58fyPL+K5/nHeZ6fiu6zC32jWTSAf3Icp+xgDgkiIyMRG6slK9/h8XjQ0tKClpYW5gYknzwNDQ3+3Wqtra1oaWnRFG9jY6N/521zczNavWd0dHR0oKGhwZ92XV2d7Me4x+NBXV2d/yOPZJd4fX19jzyRwPO8v56A7pe5mTvSaSD3YVxXV0dcT6y7QaBFe3s7GhsbAfRue42NjX73SW1tbf720dXVhbq6OtH+1NzcLDtpDm57gYptJfXk609NTU3+HZJieZL6wHG73bJ5CnzOR319vX8iLJUnvfuW2kW+jo4OFBUVEeVJLA01H44cx6lqe0oWvwJ3zJLWk9a2J7VLt6WlRXV/AuTbnh54PB7BemKZQKsP1mU1G6m2J4VR/UmP95Oe5/MFsnv3bsE8kdLR0YGmpibdF2qD5zyB9aTXJofi4mJF454a1Mrua9e+tsfadwwN3G43PB6P5CKer+3Sej/5xgiac2ue52XHCKn88TyPwsJC5Ofn46233sLly5cRFRWFmJgYAIDL5erhhSUhIQGZmZlYsWIFnnzySQwfPhwA0BkWBg9BP5Uc92JjwcvEwXuPiwge93ieBw+grl8/kLTWwDZdn5CATm+dBNaTEP4xIiYGrV4ZfHki6Se+MhKqJ6H+qiRPgbR3dRG9nzyEykOPw4EuDZ502iIjRdtHS0tLz/7kHXvd3n7nI7A/Ad+VpVTZtLa2+sfyTrcbDfHxgs/xPI+2trZe7xqPw0FcRoE0xMcrrjOALE+S4YPqyVeuVOYRzc3oIDgPV2zcC55XqWnXgbRHRBCNOYGQ9CeO43qP5QkJimVtbm1Fq/cMXbVrLGrbn4/WqChVZVSfkCB4zzc3klvfaIqNRRvNthcfjw5vm6KxHtFjvhdQT21tbbh48SIuXbqElpYW4u8nXz11dXVJ5klqncLXP9wuF+oC1ktofGvUecs/uNbq6uqQn58PQL6eAtur0nGqK2As53lesD9xHCdZPh6OQ2tUFHieJ/5+Cn6nBvcnXxgq6xFNTfp9E1LuT/Ei70GrYisF6REZ8H9SjUrgIQNaTo2PEbi2kuf5D4Iv8jy/C8BSAL4ePhyQdNuuiOnTpxPtUCCB53ls27aNeLelkfgGi7feegsXLlwAAOzZswfbt2/XFO8XX3yBoqIiAMDmzZuxZ88eAMCFCxfw1ltv+dPOyclBZWWlZFwNDQ3IycnxD46bN2+WTb+urq5HnkgIrCcAyM3N9f/fqsgtAuXk5BDXU19ZTD558iQ2bNgAoHfb27BhA06ePAmg+wzCjRs3AgAqKyuRk5Mj2p/k2qxQ21u7dq3/vpJ68vWnjRs34vDhw7J5EqOqqoooT0VFRcjJyfGHW7t2LXJzcwFAMk9fffWVZPpaaW9vVz3evvPOO7J52rt3L65evSoYXu2itZq2p8Qq+syZM/7/k9aT1rb37bffisqzc+dOTf1Jqu1pfYeJwfO8YD2ZaWkih8/9iq+etLpsC2Wk2p4URvUnPd5PV65cUV5QKmhoaBDMEynHjh3Dxo0bDbHeEKsnPedBpOOenDslMYqLi1WFKywsBPBd22PtO4YGXV1daGhoQHm5uIMc36IOjfdT4BghlaZSxN5PgWOEGI2NjcjJycGsWbPQr18/DBo0CAAwd+5cLFmyBEC3NWB2djYAYNiwYVi9ejUef/xxjBw5ske/zB0+HI0EC015eXni497y5WiPiJAM7/F4BMc9j8cDj9OJnOxsQOF4sfb555FbUgKgu56k5qo+WTcvWYI9XkvowLFcjmbv5uOGlpZe9SSkJFCbp9OVlUTvp0aRxf9gGhMSUJmSokiGQA5Pn46WGKEln+71gx796dAhAECRt9/58PUn33jU5l3Id4eFiaa7c+dO/1h+qbAQbz3xhOBzbrcbhw8f7vWuaYiPJy6jQN564gl0EijQgiHJkxTB9eQrVyrziK1bcWHcONG0ffUiNu5du9bzhKKc7Gx0aTjT7OSUKf7+RApJf+I4zj+W+9rD2uefV1QnPM9j86FD2DN3LgDh+R7Jt1xjQoKoIpuEPXPnojU6WlEYd1gY1j7/vOA939xITim4cflyHKbZ9p54Ahe87YfGekSP+Z63nlpbW7F27Vq8//77+Oc//4nf/e53PeKWwldPbrdbMk9SGw59385FGRnI+fBDbXkK+tb42xdfdD8k0O73798PQL6eysq+cxLoG8s9hBtFKgPGcp7nBfuTr9+J0RodjT1z54LneeLvp+B2GtyffHNrKusRn36q3zchrf7kXQt4QuQ9aFW4UPxIMQOO4z4HsNj75694nv8RQZhFALZ4/2zieT5OZdqvA3gh4NIhnudnyoT5AIBPe/clz/ML1aQdEN94AOciIyPhcrmwatUqpKamaokSd911F4YMGYKWlhbExMTg9ddf1xQfTf793/8dHMehoaEBkZGRCA8PR2trK2pra/Hmm2+qjnf+/PmYNm0aXC4Xmpub4XA4EBUVhY6ODrS1tSE+Pr57d0h9PeLi4vCLX/xCNK5/+7d/Q0NDA+Lj4+FwOHD16lW88847kukPGzYMd999NyIjI/HLX/6SSOYXX3wRUd4JeHR0NDo7O3H69Gl8/vnn5BlnjOzsbKxZs0b0/urVqxEbG0tUTzU1NbLlbnV++tOfor29HR0dHYiLi4PH4+nR9hobGxEeHt59VkpbG9xuN2JjY/27wRISEgT7k8fjwfHjx7Fr1y7BdF999VX//31tr6WlBQnej8+6ujrieoqLi4PT6URTUxNcLhciIyNF8/T222/3+jDz8fLLL4PjOMk8xcTEwO12o6mpyb97vL6+HtHR0QgLC/Mvognlae/evaLlQYP+/fujoaFBtbJmwYIFmDFjBoDeeTpy5Ih/4iaEy+VSvPv/6aefRlJSkuK298033+Af//gHURoTJ07EvffeK5gnQJ+2d+7cOXwY8EETyLJlyzB69GhV/Umu7TU0NOB3v/udojogweVy4Yc//GGvetq4caPqRXe9SUlJwfe//31/PX3wwQco8S562vTkX//1XwXbntQ84qc//alh/UmP99Pu3btx5MgRw8o3OE8/+9nPiML+4Ac/ANB91vOvf/1r3WScNm0aZsyYIVhPn376qf8jmzZibS943Dt69Ci2bNkiH2EQGRkZkossYsyePRu33Xabv+2VlZXh3XffVRwPy0yYMAHLli3Dn//8Z1ElXWxsLH7wgx9QeT8FjhGnTp3Cpk2bqOTjpptuwi233CI5Rvz2t7/1P8/zPL755hucPHkS5eXl/t3j8fHxaGtrQ0dHB6KiouBwONDc3AyXy4XY2FhMmDABL774Ii5dutRLhoTaWrzwxz/i9y+8gEaZs91XrVqFpKSk3uNeYSGaJk7Em089hQaJOF599VV0dXX1GvfKysqw+fXX8fi6dfjbo4+igeB8wJ/+9KdAfj7qJ09G9LFjCBsxwl9Pv/nNbwTDrFixAiNcLjRPmADH8eOIGj3aP5b//ve/l50HxtXV4V/WrIEnNxcNiYk96umPf/xjL2vq+NpaRXlKqK1Fdk4OPl+7FguefFL8/VRbCwwdit++8gqR0iuuvh6rX3sNv3/xRdQrPHsxobYWz73xBv743HOC7WP58uUYOXLkd/0pPx8x48bB/e23aEpK6tWffN/pvrL83erVomXz5JNPIikpCVFRUWi+cAFdM2bgrccf75WH8PBwvPLKK2hoaPAv4CbU1uLl3/8ea1avVqQYTKitxRN/+xv++vjjRHUWCEmeJMMH1dMDDzyAsWPH0plHnD+PyOuvxx+ff16wDaSlpeG5554THffKysrwxhtv+MvoMQXtOpiE2lo8/6c/4Q/PPy875gRC0p+io6PxyiuvoKmpCdXV1dj8+9/j8b//HW899hixrAMHDsTDs2fDMXUqoi5cQMfAgb3me0VFRaLfSj7i6uuRnZOD1156SVW/e/bPf8baZ59VXEZP/P3v+Ntjj/VIk+M4/OAHP4DD4cCGDRtEv3/umjABox97DK7jxxE5apT2tnftGhquuw6Rx44hfORIKusRPeblFy/CMXUq9q1Zg0NBx0OFh4cTeQ7x1dPaf/kXrPr3fxfN069//WvR+G688UYsHjcO7pEj0XTyJPpNmKA+T0HfGvXnzyPl+usFx5V58+Zh7ty5svV08OBBv7JN6Tj1wAMPID09Hf369cOG//ov3PWb3/TqTwsWLEBGRoboBpu4ujo8/8YbuPzuuxi3eDHR91Pwt0Zwfxo9ejS+973vaVuPqKsDhg5F/dmziB49mv43oXduRKU/1dbiwrBhmBkfH2goMIHn+fOylcgw6reW2AQT6NON1Oov8DktPuGCw35MEOZjfKcUlFQgKoGmO6XPPvuMWly08e16CjQdjoqK8u+IUItPqQrA73YG6H6hhnt3y3Ec18MNjRgOh6PHc9EEu5zq6+sVm0PzPN8j7rCwML+S0KrIWQoGlqtcPak5p9GKREREIMK7Ozm47cXFfbffITLyO6Nqp9PZ47ng/gTI+zIPbnsJAR+dSurJR6D7Y6k8ieFwOHrIIJQnQNidlFSeeJ5HeXm57tZKWs9Q2bFjh18pGJynixcvSoZV6z5UTdtzKdhZGx6wU1munnxobXtOiZ2D0dHR/vwq7U8AedujCc/zgvXE8pk9vjbiq6dQOyeHJlJtTwqj+pMe7ycj24NvPFDjnj86OhoOh0N3d6c8z4vWk5LxVimk457asSZCxupKDF+efW1P7hx1K+J2u+FwOCTfV75yp/1+otmmxN5PPgLHiMrKSnz22WeCG8MCPUn43Fn5uOWWW3DddddJjhthnZ1wEGzWdrlc/vLrNe41NYGTiYPnecFxj+d5cAD61dVB6eiWUF8PeOtEbh7hay8xzc2At8wDx3I5fGUkVU+BqM1TZFgYwryWGILvJ6+FhIPQxbDD44FTg3eEyLY20fYRGxvrL7+oqCjA26dcQf3O159831a++KTKJiYmxt9HI8LD4RLxmMJxHCIjI3u523V4PMRlFEh8Q4PiOgPI8iQZPqiefG2AyjwiJgaQUJD46kVqbhSImnYdSER7O9GYEwhpf/KN5TU1NQC6xwilssZERQHesVRovkeyUU9t+/MR1dqqqowSBNZ/HA6Hf24kZykY29QEePNLpe01NADe9qNlPcJHj/met54uXLgABCm4SI8k8tVTZ2cnYmNj/e/K4DxJvkO9+XO53egXMF+m8a0R7w0nlHo4YT0FzluUjlPB8Qn1J47jeo0RPeLgeUR5XdeSfj/1iiOoP/ne55rWI7zeRBJiY/1tlPo3Ia3+5JVVznOY1bCVgvSoDvh/GmGYAQH/r6GUNgCQ+H4MXJ2N4zgujud58UMTFBLb0IAElW4bLIHXd3QwXH19985BlbiKioDEROLnJdMKktFRUSEvW2Mj+Ly8bksnwnxw164BQeecuYqKNJWD2XDXrikqWymcFi8LIhSUh1IiSkvFyy8/H9BJiSFFbFWVqEzctWsAZT/jlZWV2LRpk9+vuXInPOTE8jw8DQ3azoASaQ/tly9Lyk66mzAQV1ERoGIzhpIxKqq8XNc2LoSjoEBUPmdhoX/xjTZ8Z6cu4xXHcYJlKNWXzCY+IqKHzCzLajoi/YPWe5RFnIWFxrUHgbJSNEfjOHDt7brKKzVORpPMP9VC2I7CS0pUyaC230eUlvaQzdD2YhC+PEqVUWxnpy59Pay4mFp5RpaVycoYX1ODEydO4ODBg4DHgyEB95wA0gEcRe/zQ5KTk3H//fcjLa17aYDG+ZpavTyJyWCUO2+e50VdD7LkwcpKG4GUyqpnOVup3Egwsk3KpcVS/5CCRhsgyatVysNHYLlIvQusli/aeDwe0c1GVi4bWrKLxUN77A3FPmgjjK0UpMflgP8PEX2qJ5kB/+/tS4Sc4LAkVofBCsA4gWuqWbV+PcbTioxFRPxjJwDI1iFeMSTTCoorVe55H//7v/JxS6QDAKO9P8uSk6OobKXIgMY2YQUUtlslTPf+jE5XCslTU3WQKQXAU9Rj1RGRMsg2MC05MsF2v5QcQ3Vs92HQsVwEXDI/oFdatPjxj/3//Z6JYjCPmj5v0vhNi/nenyEIlFW2wrARSsJQZp73pwuE7Wii92cYQXINB9vvHNW88goeknvmv/6LerJGf2e8QvDMbAAHAv6eNGkS7rzzzh7WpjQW0LTGIRaetlKQ4zjDFwxppseyJ4NgWFDE+WSwUrmRwNKiN0uySBHYHtW2zVBUSAT2DSnZaWwesTKdnZ2SHgjEYL09aJEvMKyUUpCkv7FeTjbGYysF6RFoeTeR4zgXz/NyhyNdLxJeKeeC/ibxLxTsY4Oqj8O3V65EelISzSiZwndgfDB1dXX4+9//rjreuXPnYsqUKcTPS517FyxjWVkZ3nvvPdk4X3zxRbhcLsm4A1m5ciWSk5N7XLt06RK+8B3Ia0EeeeQRyXMAxepfiKKiIv8htaGKkvJQyuHDh/3+14N56qmnVLlT08rGjRtFzxh6/PHHe7g40IrR7SchIUGzy1uh9uB2u2XPhY2MjFTs4m7FihVISUlRFAYACgsLZc+h8DFhwgTcfvvtitPQwoULF/wHbAezZMkSDB8+XJd0Ozo68Mc//lGXuIXaxQcffMDsmYIDBw7EAw98p7b85z//GZIuAGkg9g4gmaO43W7k5+ejsrISaWlpyMrKssSi4qZNm5CXl2dIWkLlSzJHczqdeOmllwB0L7L84Q9/oCzZd0ycOBG33Xab4L09e/bodqYg6fzjzJkz2Llzp+L4hw8fjtzcXMXhbrrpJr8rbQDIzc3F5s2bFcfDMr4x8t1330VFRYXgMzExMXj66aepp03zO0Os7RYWFuKXv/wltmzdKhk+A8B+AL63w+jRozF9+nQMHTq017O2paA0eik81UCqzIiPj6e7iGIASspJqYKHBQWlVbEtBb8jFJWCgeUi5z60LyN3rqwYfaXctFoKkpZTXylPG1spSJODANrRvRk3BsANAIRXsgFwHBeBngYwyr9UvfA8n8dxXB4A39fHOACfywQbG/D/Gp7nm9WmL0RTfLziw3wtRVaW4GVPTY2mfLempYnGLYRkWkHxuF0uItk8mZlAeDhxProGDwbSenrM7WhosHT9uzMyFJWtZFyQqadQQEF5KKUtP1+0/DyZmdRddZLQkpqK+mbhIbNr8GBFLoDlOH76tKHtx9G/P+q1LsgLtIeu9nbZfLhjYtAsUq5i8EOGAKmpisIAQBfI+2VLaqqubVyINol3iTsjQz95Ojr0a28CMjenpKDee5g4aySkpPSQuSk5GfU6n8tmWUTao9x7tLOzE++99x6uXr3afe2bbzC+pgb33nsv84rB2oQE48ZmgfIlSdvlcn0XtrNTV3ml5q+tly4ZOq4I0VFVpUqGltRU1NcoP+GhbcCAHrJ1tLaG3Fwwul8/ICsLjUlJqBc577grNlaX91VnYyO18gx+xzc2NuKXv/wlfvvb3yo6K37S5MlYMH06BgwYIPoMC4tsZlsKslAGNJkyZQoKz5wxVQaWFHEsyUKDUGuvRjB27HfLjHq2B6vVDYm1l420UtDK5aa3paCSuHiel+2boaiYtxGG7S9uC8HzfBOAHQGXHpMJci++s9arAbBXowgfBfz/HoLnA5/RmraNF60Do567NPXaFRKKH3w05bd6WbAMi2VLWyajP671KlOSsU1NXtWWj5JwZrQzs86aYLFPmUWoLWyxyNmzZ79TCHo5f/48vv32W5MkIkeJssAsAhWrerfnUN31rlY5beU8k0Kym98K5eCTsba2Fq+99hpGjhyJX/7yl0R9fMSIEdj4wQcAur29SCkEA9OiIa9abEtBMkj7/nXXXYeJEw11TtwLPc8UJLUU9N0LtbmTfaagcm688UbNcYSiQoJUsWO1fNEmVC0FaSkFxSB1H7p//3786le/wmuvvYYDBw6Ixs16edrQw1YK0iXQ59ZjHMcJHqvHcVw0gP8MuPRnAlejcqwF4NumOZPjuKViD3IcNw3dSkkff9eYtg0l9PQhTho3Cx+sZtPXfbmzBIuTZqkJl9Xbfl9RCrKOVHlZvY0FwnL9sW6pFgrs2LFD8PrevezvVevo6DBbBFlYUQqygJh8SUlJ6C9hcUbrPCTWy0cNahfuaECrPHmex7lz57Bq1SoMHDgQq1evRnl5uWy48PBwLF26FM899xxuuOEG4vT6kvtQsb5jlb5A2vcdDgfuvfdevPzyyzpLZA1Cbe7EUntlSRYxkpKSehwrQ+Md6vF4BD3JWKE8xGBxfYMVOkU8DwB22QDa3YcC3Rsba2trsX37dtFjeuyy7jvY7kMpwvP85xzH7QMwB91uRD/jOO5unuf9PiU4jksC8A8AI7yXagD8Sig+juOyAAQeWPI4z/N/F0k7l+O4PwJY7b30Lsdxq3ieD7QgBMdxcwF8AMB3euthAJ8SZ9JGEr0+1GhAKptSGWxLQRsb/ehLloJqFhKMsBQ0A7M2Jthj33cEtxHW24yZkLihEaJFxHUsq+dMBmIFpaDSs6D0guVxRa5caJUby2WgFt973Yp5a2trw5EjR3Dy5EnU1tYqCjt27FgsWLAA/fv3V9w+WFAKGuU+VA0sWQoqrVupzQV6o6eloFJCba5kWwoqY+7cudTi4nkeHIA33ngDFdHRSElJwX333Yc077E1ViiPQEgtBfv65nQWLQXNNpogaTtqx97Tp0/3OANbLh2lz9iwj60UpM/DAI4ASAeQBeAUx3F7AOQCSAFwO4Bo77NuAA/wPF9HKe3/D8D16FZKxgD4kOO4iwCOovsIpUkApgY8X+pN3+7NjMCCUtB2H0q3HqxeFixjWwrSR68xyMqWgn3JfajRsLx4xLJsrKFWKWhlbPehPQnVXe+03IdauQzEsKr70KtXr+KTTz5BQ0ODonBpaWlYuHAhhg4dqjptsxcWAfH5RSgsRJupFDQT232ofrA0hrEkCylaLAUvXLiA8fDOt6KjUVlZiXXr1mH16tWIiIiwZHn4CNU5Ew3sMwXVx6Omv4l5R7ByWdsow1YKUobn+SKO425FtzXgZAAcgHneXyCV6Lb8E/adpC7tdo7jlqDblehD3stjvb9gvgZwP8/zhbTStwkNS0H7BWCXgVVgsZ5YlEkJVrMUVAvrixZ95UxBluuBZdmMZNCgQbKWex6PJ+RchknB87ykeyNW6Et1IofaRRR7HBDHt3BnxrxHTZo8z2Pv3r3YtWuXonCpqam46aabMGXKFM19igWloFGWgkrdh5LkKy4uDgtuvBHIydEkGwlWGj9ZGqes/h0UDEuWgn0Jnudx6dIlBJ/F1NraimvXrmHUqFGWKy9SS0Gr5Ys2at9FofR9rCZ9lt4DNtbCVgrqAM/zlziOuwnA99CtnBsPIA1AHYCrAD4C8Dee56t0SLsewMMcx/0JwCoAswEMQre70HJ0uwt9H8AntoUge1hRKWhbCtroidUmzbRl6kvuQ420FFQSzrYUJIPjOGZlU4P9cQU88cQTyMvLI1IK9iWs4DoUsC0FSdDLfahtKdgNK/nu7OzEp59+irNnzxKHCQ8PR3Z2Nv7v//2/+N3vfif4jNL8sTBWGnWmIE0effRRpKWlITIyEty1a6LPsdLeWEdtOZGMh1ZSprJGKLgPpTnXKCwUtl3Yvn27JZWCgVh1zmQ2LJdbaWkpjh49isbGRgwePBizZs2C0+n039dbPtrzfNt9aN/BVgrqBM/zHQDe9v7UxpGPbktDNWH3AtirNm2txDY0ICEszKzk9Sc/X/Cyo7oaCQrPpggkorRUNG4hJNMKisdZWEgkG5+XB8THE+fDUVAABO2YDysu1lQOZiNbVgrqyFVUZOmyIEJBeSglsqxMtPy4a9eAxkbd0hYjtqpKVCZHQQHQ2kotrajyckPbT2RrK8La2rRFItQeSktl8xHPcXArzKuzsBCor1cUBgCcBPL4iCov17WNCxFeUiIqX1hxMRAbq0u6XFub6vbmdDqlFxUFylCqL5lNXHV1D5lZllUvXEVFkmOwDz4vD4iI6HVdKhyfl0ftPWs0nU1NxrYFgbIgST/Z6ewRtl9dnW4f8NEVFaJ1put7jLCdiI2pcQ4Hurq60FVXJxguprJSleyRZWU9ZAvVuSCfl4fYqiq0i+QtsrVVl76s5DujoaEB2z77DA2VlRiC7l2y6eg+W0NIvT9o0CA88cQTePrppzF48GB6QqNvnSlI01KQ4zhERUXJpklzfAuz0DqGnps+SOP2PRcdHY3k5GRUVVHf+24KLC16syQLKbQ21gTiUzxbrTxILQX7OmrL5tixY7guIQEZlOUB5GUqLS3F3//+d/+mwW+//Rb5+fl45JFH/H3AiDMFab4L7Dbad7CVgja6sGr9+l7m/iGFiNuSJADZBoohmVaQjFlyzweFI3pWIB2g+/DKSaThWSQnR1HZSpEJY9uEKejoxmem92d0ulLcI3WTsky3eX+WQqAM0qFTP1BZ3rrJQ4kZ3p8gOrb7SOhYLgJyL9MrLVq8/LL/vw+YKIZp5OQgHcA0gueEyJYJI3efVWJh8PghUBbE6f/bv/n/u5qKMMrR9T1G2E4me39quF1luEDEznKwPDk5eETumV/9inqy47w/Uv5d4NpsAAe8/3e5XLjrrrvwxBNPYNGiRXC59FkiYcF9qJhisqysTFO8oUYoKwX1XuydM2cOPv74Y13TMAqW3If2pUV6EpffVi4PKdlZsChnFbk6//DDD02Z63799de9vIjk5eXh2rVryMrKopqWHu1e6Gx4K/cvG2XYSkEbXXh75UqkJyWZLYZuZGdnC16vqqrC+vXrVcc7YcIE3H47+fLDmjVrRO8Fy3j16lV8+umnsnE+/vjjSEhIkIw7kAceeAADBw7sce3UqVPYvXs3UXgWueeee/DJJ5+I3herfyGuXbsWMh9GYigpD6UcOHAAR48eFby3cuVKJCcn65a2GJs2bUJeXp7gvYcffhipqanU0tq5cyfOnDlDLT4jEGoPBQUF+OijjyTDpaSkoLKyUlFaTz75JOLi4hSFAboXv9577z2iZ0ePHo1FixYpTkMLe/fuxYkTJwTv3XHHHRg7Vp/l5dbWVrzxxhuqwrpcLkl3ckLt4pNPPkE+oxZhI0aMwF133eX/+/3330dJSYmJEhnPSy+9hBMnTuDAgQOSzz3zzDOIjo7udV1qHvHiiy/i9ddfF72v53tFK+Xl5fjHP/5hWHrPPvtsLysZkjna0KFDcffdd/v//v3vf6+bi8AxY8Zg4cKFgve2b9+Oc+fO6ZIuaTs5efIk9uzZ0+t6cnIyurq6UCtidTZp0iRV7+ApU6Zg7ty5/r8vXLiAbdu2KY6HdZ577jl88MEHqK6uFrwfERGB559/nnq6cuXJ8zwOHjyIo8eO9bqXAWA/gFLv3/Pnz8f69etF5240F8ZYVQqWlJTg6tWrSNAUMxlqLQW1xK2G8PBwanFZGTWWJ5MmTUJUVBRyd+wAACxcuBDDb7sN//3f/01bPN2xF8aVEdxe9LBitapS0D5TkAxaFnU0kYv3ypUrgtd37NiBJ598kigO0vSlLAW1xK9GKdjX22qoYCsFbXShKT4e9f37my2Gfojs+OiKitKU7+aUFNG4hZBMKyiejrY2Itm6Bg/Glepq4ny4MzKAzMyeaVVUWLr+OwYOVFS2Uri7uixdFkRQ3gEVSFturmj5eTIzAYoKOFKaU1JQL+JqzJ2RAQQpybXQmpZmvfYj0B7aOztl8xGdkoJ6gjOKAuGHDAHi4xWFAQBPeDhxubakpuraxgXTvHRJVL7OQYN0k8fT3Ky6vcm6DxWQuTklBfUq3L8aQWtaWg+Zm1NSUE/RNbAVcA4fjvbSUtk24cnMFHRpKxWOHzKE2nvWaFohM/+izO83b8aqVaswYMAA/zWS9N0ZGT3KsSExkegcODUEj5NXr17FpUuXEB4ejqsej37lRdhOOsrLBWWISEpCV1cXxEahtgEDUC9yrpEUbQMG9JCto67Oeu9yAtwZGWhITES9iGVDRESELn1Zqjzr6urw0ccfo6CgQDIOzunEA/fdh3vvvVf1Zi4zzhTUw33owYMHNcUphNXP5Q1lS0ESV6xaGTlyJEZ6y3DMmDHosuhZg7aloDb0cB9q9bEFsJWCaiEtm9bWVug/ynXDcRxaWloE7xUVFfn/b8SZgjT7m90O+w62UtDGhiH0dBdAOrB7PB7s2rVLU7xWf4mwtivYRhizytbIj5FQ+PAByM6qUZNXteWjJJwZ7UzqXcDqmKJGLpbbN8uyGYEv/yTloGbuQhrm2rVr2L17N8rKyjBo0CAsWLCAqjW2GoJdBOlNa2srNm/ejKefflpRuIigcx71bNOB/f/o0aPYsmWLbmmpQe246VC5kM3qOE0bvZTMajl37hw2b96M9vZ22Wfvv/9+RI4ZY+hCPAtKQSEZzp8/rylOGrCmBAgeP1lGaflMmDABn3/+uaEyqB1LzYalsZwlWcSg1VdD0X2obSlIBo380/aKYXadGGEpSHLNJjSx5tvZxoZR9DrngQaksrW3t6O0tFT+QQppsYrty90asNjOWJTJTLq6urBt2zb885//lH1WzYKBEQtFfUkpyKLLFrOw6gIWLZQsiOqlFCwvL8eGDRuQn5+PtrY25ObmYt26dWhoaFCcHk3MUISUlJSgublZURgzFrW7urqww+syzgrI7aw2YoHTyrjdblMWN4Pj5Xkeu3fvxsaNG2UVghmDBgEA0tLSiGQMtY2CRskg1ndYKAMSQtlSMCIiAtdff70ucesdj9HYloLa0KPeKyoqAFizPHzYSkFxaOSfpW8439ydVr2ypBTs6201VGCnt9jYWAi9BkAWlIJKd9aE4s4Sq8uvhEHexRFWsdqkmUWZzOTzzz/HoUOHiJ5l1VLQDKTGYVbbmG0pGFqMHz8eAFk5qKl7kjDnz59HZ2dnj2stLS345ptvFKdHE7P6YGNjo6LnzbAUzM3NJbLSsgq0XDGxOm5rhQVLQY/Hg88//1z2LHOO43Drrbfivvvu63HdakpBljegaoE1S8FQP1PwzjvvxOzZsw1Ns6/Pq2zIkRoPOjs7kZeXZ+n3qtXWN6wG7bFGrk6k3hd13iNn9D5TEKDrrpdUXp7nUVxcjMOHDyM3N1fXeWF7ezs2bdqE3/72t3jzzTdx6tQp3dLqSzDtPpTjuAk8z+tzMr2NjQ6w/KGmZGDXGq/VJzOsfjDrwdChQ1FcXGy2GKpg0X2o1ds+TdxuN86ePUv8vJFKQSWYUadmtSOj07XSApGVZKXB1KlTiZ/Vy1Jw3759gtc///xz3HDDDYrTpAWL7x4hzFAK1omct2s2WuqM4zjNc+NQnRvIbSTUO98dHR345JNPcOHCBcnnIiIisGzZMowZMwZcbW2Pe1qUgqFypqAe2JaCxqF2/ux7j06dOhU7r17VXQaHw0HdrZ/e0N4UIFVKoWApGNwOtCgppELu3r0bo0aNUhW3mfA8r2pO0ZcQKxuWyywqKkr0aAGj3vta5vhCMpJaCm7fvr3HucTDhg3Dgw8+SH1jDc/z2LBhAwq953w3NjZi06ZNcDqdmDhxItW0+hqsWwqe4TjuEMdxT3IcF2O2MDY2PliwFKShvNMqg9a0WIW1XcE2wvSFsrWyIuLq1auKdosZ6eqD9XK14pmCoUZf2hwSzLhx45Ceng5AvzMF7XasHJaVgkamQRM5eeXci/Z15NyH6gXP88jLy8PatWtlFYKZmZl4/vnnMWbMGNG45NKihW0pKI5tKagePcuHZtxWHEtp9v9Lly5J3pfrm1acN9G0XAqkoKCACUt1tUjVNatjtJWg3Vfk4pNq5776DEX3oSUlJT0UgkD3+s/x48dVyyJGZWWlXyEYyMmTJ6mn1ddgXSkIANMA/BlAKcdxb3IcN91sgWxsxDDyQ03phEEvpaAVJ6hy9KXJGOsfaCy617AtBclQ+rHGqvtQM+rULPehtqXgd1htNzstRowY0cu9nhxq2o2V37NmjfNKN04EL2obYSloRUgUg0rpK5aCZizKNjY24pe//CXWrVuH2iCrv2BuueUWPPbYY+jXr5/oM0bWDQsbL2mNvZmZmarCWaUvhLqloBmwdM4XKTTbq9wGBrMtr62GFeeRvjpkcX2DFaxoKUiiFNQCqaWgXkp4MVpbWwWv79mzR1V8UgQrH33k5eVRT6uvwbT7UAAtAKK9/48F8ASAJziOuwDgLwDe4Xm+xizhbPouVrQUJI2bhlKQ5Zc2CVaXXwlW+ZAUgsV6oi2TletHKWoWC0LVfagVP3RDDSvvQNbCDTfc0KMv6mUpaLdx5Sgd74IXtfuyUlCtfLTKjPXyUYucpSDNfDc3N+OTTz7BT37yExQUFEg+63Q6ce+99/rPRpXCypaCdXV1uHz5Mrq6ujA6IgJJBskAADfffLPkfaV9hzVLwb40/5aCtBxInrNimdLs/0JWLoGEglKQpvtQOaw8j7SVgvpidBmS1KfeloK049SSjh5ni7e1tVGP06Yb1pWCAwB8D93KwOmA37X0OAC/BfA/HMd9AuCvPM9vN0VCG0FiGxqQYKEddorJzweczl6XHWVlSJDZtSpFVHl5d9wE8J2d0mkFxRNWXEwkm6OgQFEenIWFvcoivKREUzmYjauoSFHZaorLZCI1tlkAispDKVLyOQsLAROseWIqK6VlojhZiyovZ7r9COJtD6Rjjo/YqirFeeWuXQOCXOSR4KyuJk4rprJS1zYuhFS9hxUXA0kkS3/K4Rob9WtvAmUo1ZfMJrKsrIfMatqnFQkrLu7RpyJKS2Xz7SgoAAQ+1qTCcdeuyb5nab2HaWPWe91ZWAg0NgKQLlsfUeXlQMBcPKG2FmEtLbrIFl1RAeTnE7UXqhC2AzG54sLC0NXVhQ4RmSPLytCvrk7xJoHg8cPq82IxuGvXEFddDU99veB9l8ulqa+63W4cOHAAn3zyCb788ku0tLaCAzDEe98JIB3AUQC+03zCw8Pxve99D8OGDSNKw0ilIM1F7KKiIqxfv96/+Ha0rg6rDZIhMTERQ4cO1RyPDR20KtuMUtb1daWgHH3VQ4UQpOeZWQ3bUlAeGpaCRroPlRvXaLgP1ftMQZ7n0d7ejqtXr6KhoQFDhw6FU2Ct20z6er/QE6aVgjzPN6HbIvAvHMeNBfAUgJUAUryPRAB4AMADHMddA/AWgL/xPF9shrw237Fq/XrI7820MDk5gpcHAMjWGverrxI9FiaXVpCM470/WXJylOVBoCymeX+WJScHE2TukzIUFNqEzszQGoGC8lDKHO/P6HSluEvqJmWZ5np/lsJbBiNhQNtXWd5JUCjbyy+rSkctS6Vu6tju46BjnQnILdmXWOAHP/D/d7mJYhhKUD1N8f6UhPGRLRNG632zGOv9GU5AnrMVPg8Az1AVRoCXX8YkAJP0TicQwnYw1ftTw2yV4QK5zvsLOXJyMErumf/9X9XRu0A2D5oN4ACAuLg4PPTQQxg4cCBxGlqUgnqd704SxxdffNFjNz5p3DRc2y5btkzWu4PYAqWaBV8rKpOMxCrl09fdh5Kk5fF4RMvJCovitCwFSbBCeYhhKwVDCyPrU+pMQbX9rbGxER999BGqqqr812666SZVcemF3S/0g2mlYCA8z18E8AOO4/4/AHej23rwDnx3LuIQAD8D8FOO47YBeBPAZp7n7S03JvD2ypVI18mSgQVeeOEFwbMGysrK8N5776mOd8CAAfje975H9Gx7ezvWrl0rej87O7vH32fPnsWOHTtk4120aBG2bt1KJAMA3H333b12ix4+fBiHDx8mjoM1brnlFuzevVv05RNctlJcvXoVn376KSXJ6DJ58mRERkZqrisl5aGUvXv34sSJE4L3li9fjoyMDN3SFuOzzz7Dt99+K3jvvvvuw+DBg6mltWfPHssdoOxrD99++y0+++wz4nDDhw9Hbm6uorS+//3v9zo3i4Samhq8/fbbRM8OGzYMS5dKqumo89FHH4m6R5s3bx4mT56sS7oNDQ146623dIlbaJz4/PPPceXKFV3S00p6ejoefPBB/9+bN29W3D6tyD333IOsrCz/3ydPnpQ9G+KBBx4QXIRfs2aNaJhHHnkE77zzjuj97OxsyfB6vneEKCgowKeffmqqW9nAs9GkysbHE088gfj4eP/ff/nLX9DU1KSLbL5x8syZM9i5c6cuaQhB2g6OHTuG/fv397qempoKj8fTYyEkkGnTpuHUqVPo6OgQvC/GhAkTcPvtt/v/JulHVuT222/HkSNH0NDQIHjf6XTipZdeIo6voaEB77zzDv785z+jXiTOQDIA7AdQCmDKlClYsGABoqKiiNMDrGcpyPM82traUFysbg90sAxq8seaBYGNfvR196FG09XVZWmlIC1Ixkorug+1LQXlsZqloBy0LQWllIJq2bVrV6958Ndff606Pj3o6/1CTyyjFPTB87wbwIcAPuQ4bhCAxwE8BsDnI8QJYKH3V8Fx3Dp0uxdlc9UpRGmKj0d9//5mi6EfWVk9XDL5cLtcmvIdnZjYHTcBXS0t0mkFxdNeVUUkW3t6uqI8dA4a1Duta9csXf++MhB9+RDWEQC4OzqYLIsBAwbgpgcfxJEjR7TLp6A8lNL2zTei8rkzMnRNW4zmlBTUV1cL3hPqD1pou3yZyfYjiTf/na2timRvSU1FfY2yY4K5oUMFx2I5+Lg4YtmakpMNb2eNSUmo97oJDKZj4EDd5PHU1enX3gRkbklNRb3IYrzZRPfv30PmG5Yvx4k//9k8gQyia/DgHvnurKiQbRPujAwgM7PXdalw7owM2TmMkjmOnrjdbmz4xz/QERdnWJpCeDIzgcREANJlCwApKSmIn9TTZq8hMRGNOrn2b05JAbKy0Fldbew7i7AdtBcXC8oVk5ICt9uNehG3bW0DBqAhMVHx+Sgtqak9ZOsoL7feu5yAltTU7veViJLI4XAQ1ZHH40FOTg5+9rOfoV7EFakUdy9bhoTr1NliWvFMQaVKaikZ9Fposy0FjcMq7kNtS0F5urq6BDeemyELDdS2LRKFnxXLAzD2nWNjDFJ1RkMpSJKWFktBVjfoBqK1/FpbW3HlzBk0Nzdj+PDhSE1NpSSZ9bGcUjAQr5vQXwD4BcdxtwJ4EsAyAJHeR9IAvArgVY7j9gP4M4APeJ5XP5O2sYF+L2slO55IJhSBLwZSmWntYrUyNHeesVYWYWFhePDBB5GZmSn60cESVttJR1umvrQQomaxwIjyMaOdSZ0rwmK7VwvL7Tu4DgYMGICBAweipKTEJImMQU2dCL0z5dqplXZ45+bmalqEp4WSvn/LLbf0uma78VIOrTIL1fJxu92a87Z7926sXr0aZ86cURz2ukmTgDNnkJmZCeWqxG6saCmoxVIvWAY1MukxlthKQfVYpXysImcgZigFrQwt96Ek5WCleaSPUD0rkSahZilI0204rfisiNZ8v/vuuyhyfaf+uueee3Cdys1koYb1tuuIwPP8Tp7nV6D7GCOfrauv5XDoPm7gbQDFHMf9J8dx/YyX0ibU0TpY0VYKKnneh9LJqFC8Vn9ZWV1+Ka6//noMHz7crxBk/QPNakpBG/WoaYtq2y+tdt/c3IzTp0/j6NGjqK2tpRInIP0u0LPdG92nSOvB5TJ+D1uwm0iO4/DII49g2LBhIiFCAzULOmqUglYavy9evGi2CACUldnYsb1PPTRCKcjqnEKLwkFNnoyyxjIbuW8GqXyXl5djxYoVuOWWWxQpBFNSUvDAAw/gueeeE1R+K8WqZwqqxWylYKj2BTPRc9ylGbdtKSiPlIvyvtR3QtV9KCAvd1+q51DBSEtBMVidf9NCa/k1Bnlg2rx5Mzo7OzXFGSpY780sAsdxN3Ec92cAFwBMQ0+FoO9fDkASgP8L4DLHcXcaLqhNSMCCpaDSCYVeloKhqBS06iSTBKtNGKymFGRRJqtgNUvByspKrF27Fp988gm2bNmCP/zhD/jmm2+opBnKY5AaWLHWjIyMxN133224LEaiph+qmQdYqY2HyvlZVnv/GwGJQpBGuYXq3ECNpWB5eTleeeUVjBkzBu+++y5RmOjoaKxYsQJbtmxBcXExXn31VQwYMECNyL2wovtQmlYLeo3FSvsNK5aCZpxVbjY0yjdUzxRkyVLQiu8RtXVOklcrzSN9kIzfRtVzV1cXcnNzcfjwYRQVFTHTvmhYCtKGxjvXiDMFrTjGkkK7/ru6unD58mWqcVoVS7sP5TguCcAqdLsN9W2JDewJ5wG8CeAjALcBeALAHO8zKQA+5jjuZp7nDxsmtE1IoNfLqqurC8ePH0dBQQFiY2MxZcoUJCcnq0rLVgqqx+d61er5IIH1yQOLE34jFZWs1w9NjMwrjbS++OILNDc3+//u6urCpk2b8MMf/lBz/LalYE/McKdkdRdOarEtBXvDilJQa5nZ7kONwy6PbnzlUFZWhq+//hpbtmzBunXriM9ojI2Nxf/5P/8Hr7zyCmJjY3vFS1NGK6FlbhwcVk3+Q21u+tBDD6GoqAipqakYHREBvPqq2SIpwiqWglZsN7ZSUBlG1rEVykMIFjbNdXZ24r333sPVq1f912bOnInbb7/dkv00mG+//RZjR45EVFSUIemRWArSil9KKRjK6NHfCwsLMWHCBOrxWg3LKQW57tZ+B7oVgUsA+A7F8vWCVgDvA3iT5/mDAUHXAVjHcdwUAL8HMBPd+f8xgNDe9m1jGerq6vDZZ5/5/z5x4gQef/xxwYNQWbEUJEnbaoTymYJWw7YU7Duw6j5UqE67urp6fEj5aGlpQX5+PoYOHapKLh9mKQVZJSkpCdXV1YamKbYwE+ofXfaZgr0xw32tEFZQCrLaP9RaIdlnCkojZfXg24V955134osvvlDU52NjY/GDH/wAL7/8MhITE2mJK4jVNjCwYCmoxSpMzcZavceVUaNGYdSoUd1/5OfrmpYesDruBmO7D5Un1Dak6dk2rTSP9EHSnoxoc8ePH+/1HXvw4EGMHTvWdGtpGsYXe/fuxReXLmHFihUYMmSIbjKRYJT7UNbwGVnQjE8NHo9H1D0mK993ZmOZUuA4Lgvdln6PARjkuxzwyBl0WwWu53le9KxxnudPchx3G4ArADIAzNJDXpvQxiiz9ra2Nhw8eBD33HOP4rTUykLjTEGrE4p58kHrAHAhGhsbcfDgQZSUlCA9PR0zZsxAQkKCpjitphSkjVU+9GlgpFJQCULtTOrMj9LSUr9S8Pz58zhz5gza29sxZswY3HTTTb1k9ng8vRZKbEvBnsTGxiIsLAxlZWU6S/QdtlJQ+G8hbPeh1iDU264a9DhPEOg7ZwqKbZo5ceIEDhw4gLq6OsVxLl68GK+99hqGDx9OQUJ5+ppS0OwzBW3Yw3Yfyg62pSA5VppHBsJCPe7atUvw+uHDh7F8+XKDpdGHzs5OvP/++/jBD36g+4YEkvUqvV2QsuY+1OPxUP1+Ult+brcb4SL3QuX7TitMKwU5jgsHcB+6rQLnoef5gADQDOCf6LYK/Jo0Xp7n2zmO2wHgUQD9qQls4ye2oQEJYWHyD1oU7to1IDKy13VnURESamupplVy8CAweXJvGWprJdPi8/KAiAj/3+ElJUSyhRUXK8qDq6gIiI7ucS2itJR6ORiJr6xEJ5sKdpEqLU+9iSwr6yE/lbrKz0drays+/Oc//QtA9adPo+TgQTz44IOIiYnRJK+YfM7CQsCEcSa6okJapnCxqYdypPLPLN72pbTtx1RWKs+ryh3djoYG4rRiYmN7p9PeLho+vKQEyM/HuXPnsH37dv/1w6dOof3yZcydOxcAcPbsWRw9ehRNTU3IyMjAbbfd5leix1RWwl0vvL8porRUt53sDpn3iiYEZJbqS4HExsTgrnnzsH79eh0EEyY9PV1QZkdLi/X6pAJcRUVAgNKbZO7gLCzsPSfq6JAM5ywslI43P1/2vlGoGpt0gLt2DWhpAQBJeTiOEyyf+JoauHXKR3RFBZCfTzzXpAZhOxCb68RGRsLtdovKHFFaiviaGoS3tSkSy1ceculbHV/5OJqaAAA1NTX48ssvUV5RgQQAvm1hTgDpAI4C6BCJKyUlBYsXL8bQoUNx4sQJZGVliS7YGOk+lLXNaZ2dnThw4IDq8EYprK1kKWh1rOI+1LYUlEdq0yELyiSl2G7Le8KKpWBHh/Cb+Pz586YrBWnmv6WlBQUFBcjKytIUD82NOHrJwdp7squriwmloNRGC1sp2A3TSkEApQD6ef8f2MpPAfgzgA08zzeqjLtOtVQ2sqxavx7jzRZCT3JyBC9nAMjWI73f/KbXpf5yaQXJONX7kyUnBzcRC9Y7HaD74M45SuJgkBlSN0XqX4jh0KlNUOJG708TOTmIQrcZdy9+/nNNUc/3/sTSNYOlUjcpyzTb+7MU3jIYAeVt/3aVaSklHgpl++EPe/wZIRXeK9ME70+Mid6fEI9LyaJju5d9r2hBQO47vD9SsmnJQsqPftTrUrQZchhJUD1JtVOxMAAQDvk5itb7RjHd+zOdgDxnyz27Zk2vS6toyiLED3+I8YCx83/CdjDN+1MTv6I5sQhU5lqMEjxH+U+ZZ4PVWTExMZg2bRpmzZrld+V04cIFjBw5EpMFNkXSxmqWgjt27NAU3rYUDD2sUh9WkTMQltyHsjYWkWC7D+2N1d45rKC2XPLz8zUrBeUwylJQCtbGV9qukLVYCophuw/thvVS6A+AR7dCsAnAP9BtFXiMQtzfAthDIR4bAd5euRLpSUlmiyHLsGHDBM+FkuOZZ55BdJB1HAAUFRVh48aNNETrQXZ2dq9rVVVVklYTzz33HCIDdu4fO3YM+/fvl01r2rRpOHLkCLFsixYtwujRo3tc27NnD06ePEkcB2vccMMNOHHihOhkU6g+xPj22297nBNpNlOnTsWcOd+pbEnbhRTZ2dlYI7AAGXhfLdu2bcOFCxcE7y1ZssQw91KBfPrpp6Ljxl133YURI0ZQS+vAgQM4evQotfiMwFffStv+lClTFI8battWY2Mj/vrXvxI9m5GR4d81WVZWho8//hjt7e2iz8+ePRsTJ07E2rVrBe8vXLgQFy5cQEFBQa979957LzIzM/HXv/4VjY3Ce55mzpyJadNULW/LUlNTg7fffluXuIXqSqp/BzJ48GDcd999kuMMbV544QWECVgit7a24o033jBMDqNZsWIFUlJS/H8HW7wKsXDhQowZM6bHtfb2dtE+AAB33303Nm3aJHpfz/eKUk6ePIk9e8z/ZAisG6my4TgOq1ev7nX9nXfe0e1sTt84eeHCBWzbtk2XNIQgbQdff/01Dh061Ov6wIED4Xa7UVFRIRhu5syZOHHiBNoUWgqOGTMGCxculE1fbyIiIiTfV1qZOnUqDh48iE2bNqGktFT0uQwA+9G929fHwIED8S//8i9ISEhAcXFxrzD79u2zlYI6YLZSkDVLwZEjR+oWt1FoLR8a56qSPGdbCspjdaWg7T5UGhL3z1bMF01ot3MabZKVMwXl4mBJMSiljFOD2n5hWwrKw7pSEABOoNsq8F2e55tpRcrz/B8A/IFWfDY9aYqPR31/9j2ztqeno16FOx9+yBBAwCViJ8/rk2+B3S3uyEjJtLoGD+4hY1tREZFsLampivLQMXBgL/laL12yRP2L0ZqWhvr+/cVfPgp2G3W2tjJVFm0DBvSQv6OkRLt8WVnScWjYndWckiIat1DbM4Km5GTRcaNz0CCqMrXl5jLVfojw5l9p28+8+WbsLShQNulTW9aNjcSy9UtOBrKywPM8/vHxx2iIju7lMjmQtgED0DlokGj8DYmJONvYCAjcP1pZicybb0Z9//5oFNm91p6erlu798TG6tfeBGRuTUtDvcRCso+k1FT5cYYiixYtQpjYQiFjYzptPJmZQFqa/+/O2lrZ/Aq1SY9MOXUMHCj73tDrvaIUd2UlE3XuzsgA0tMBQFIejuMEy6cpORn1Oi02+cbJjro6Y8uKsB20FxQIyhWfnAy32436zk7BcB0DB6LB6yJdCc0pKT1kE0tfb6Kjo9HidTlLm/Lycnzy179i3759xO/t8MhIzJs+Hffccw+eeuopxMTE4Gc/+5ngszU1NTTFFaWvKQWD86PXArQZi5NDhw5FXl4e8fMcx2HqVCI/OjYUYGnBmhSWlIJWxLYU7E1fe+fQguVykZKNRjslPVOQJWxLQevAeilcz/P8KbOFsLEJhoWXkl4TCqUDeENDg6p0WMaqk0wSWJswyMFCX1OC1eRlifDwcIwfPx5nz541W5Qe+Oq0uLiYeLxT2w58Fh1SY5DWNsbzPC5evIiCggIkJydj3Lhxfst3LXFnZWUh38Bz3vQkKirKbBFMQ807Qqi9htJO6FD5aDTi/c/qHMPod7NR57bJoYdlTklJCY4cOYLTp08T5SssLAz33303sHEjLly4AG7oUM0y0CxPOetZ1s4U1Erw2KsmD3r0cxqLnbNmzZJUCk6ZMgVhYWG4evUq4uPjceONN/bydmNFWBh3SWRgQU6lsKQUtMJ4Y2QdW6E8giGxFLRivmjCoqWglvhpuA8NjkuNHEbDilLQthSUh+mvXFshaKM3tAdPPV7i4eHhqtJSuyChdKFu+/btmDx5MmICrBKtPpnheZ5a22C9LFibQARjtcUYWhO+c+fOITc3F6dPn6YglTVwOBxYunQpnE4nTp06pWtaatp9YWEh0XM8z0uOo1IWJ75xVK92z/M8Nm3a1KNdff3113j00UcRGxurOl6g222qUqUgaT0YPWmXWkhnfczUSnD+SPIr1CZDadGDlTrXWmZ65sNK9RkIx3FUXOfJYVb50Kzz1tZWbN26FWfOnCEOM2LECGzbtg1DOQ7YuJGZvhTM6dOncd111wnes2rbFoOGpaAWBZCe5Tl06FBERUWJzrPCw8N7uPUNFfTsVzTjtqL7UKORsmqx4lhkWwr2JpTmx0aitlyMmHeQWArSOFNQTinI0hyLFaWg1JgqtL7Q0tKCw4cPo6ioCGlpaZg+fToSEhJUpW0VmH4zcxx31fv7qcrwP/aGz6Utm01ooHbgNPJlLXSmESA/0KqVUc0E69KlS1TSZgUS+Ts7O3H16lXk5uaiU8TtlI129LSYUoveisrt27fjo48+srxCUOn4ynEcXC4XFi9erJNE6vDVqZL8SI3Pzc3intBJLPa0tLGSkpJe7aqqqsp/bqWWuIdSsP4Qw2jLPSOUBKxiWwr2hpU5ja0UNB5a3wlWtxTMy8vDn/70J2KFYHh4OJYsWYIVK1YgMzNT9DlWXOWdO3fObBEMw+wzBcWgYQHhcDhwzz33UJLIhjZWnD/ZloLasJWCPSGxFBTD4/GgsLAQx44dQ1lZmSXbAwksWgrSUOjpDWvjK+0zBdWixFKwvb0db7/9Nvbt24e8vDwcPnwYb731Vkh6xguEaUtBAFkAeABJKsMnBsRhY9MLKygFhT7om5ub8dZbb0mGC5QxNzcXO3fuJEpPzQTrs88+63Emg9UnKXLyV1dXY926dWhsbAQAxMbG4rHHHkNSktqhyjjUWIGYidUsBbXA8zyKiopw8OBBs0URJS0tDeXl5brEbWRbVJMWaRie5yUnoFLnO0VGRgLQ70N37969otdvueUW1fHOmjVL1eIzaZlGS5zhqAe2paD430KEuqVgqBCK7kNbWlqIxoe+2t601kdTUxO2bdumyDowKysLd999N/p7z1AUK/v9+/dj3759quSiXZ/ffvutYWmZjdkKa73T64vvb6vky4qWgiwpBa2AkW3RikpBQN2mua6uLmzcuLHHRvxZs2bhtttus0z/1wrLloJSGGUpyBq0xzK1/V2J9fU333zTa52roaEBZ86cwezZs1WlbwWs92a2saGIFdyHCsm4ZcsWYlny8/Pxj3/8gzg9mofhWhU5+T/++GO/QhDoXjT56KOP9BarT2I1paBamXiex+bNm2WV/Wby8ssv49FHH9Utft9YZ/bkPRgjLQWD01R6T45vvvlGdbpS6L3Qw5JSMNQxylLQSgtfrLxrbEvB3qxZswYFBQWqw8uVSV+1FPR4PDh+/Dhef/11YoVgYmIili5dilWrVvkVgmKcO3cOO3bsQEdHhyr5jISV/k8LoywFlfYdK52VxBpay4eGdwT7TEE62JaC5FhRKaj2TMGTJ0/28sx14MABFBUVUZWPBVhs51o2OtruQ+lghBe8Xbt2CV7fsWOHqrStAuuWglrx2YOyYbtqwxxWsBQMlpHneVy4cEE2nE/GkydPKhqUbaWgfBkUFxf3ulZSUoLGxkbExcX1uM56WbA0eRCCRaWgHjKdOXMGJ0+eVCuSIcTGxurqCoJVS0EjlYK+sYdFt7lSqK07Vi0F+7L70GAlAkl+Q10pyAq2UrA3nZ2d2LhxI1555RXdxyElWFkp2Nraig8//FDSei6Q/v374/bbb8fYsWMF0xPKe/DiJsuwOA/VAqvuQ2ml1xff31rz5XKJLwnSbONW3HBlKwXZxarloUbBJGZVf/jwYQwePJiKXKxjVUtBmu3USptnWFEKKrEUrK2tVZWG1Ql1paDvEINGyadsqBPb0IAEkbPwWCK6ogIJKjo/d+0aEB/f67qzsFBVfFLEd3UB+fn+vz1dXURpcNeuAfX1uLZnD5QcjRpZVqYuDwEyRpWXUy8HI/GVgdKXWd2pU4gLmpiFFRczVRZR5eU96iq8pES7fPn50nEEpKcUqT7qKioS7Id6E1NZSV2my19+yVQ7ESQ/Hw6PR15Ob30rbfvOwkKguRkc4RgXmJZSHG1txGnERkQA+fnEfSW8pARwOkWfdba1IaG1VfBeRGkpkJ+P+Joa0fEnsqxMdb7l+qlDom1L4RtXlI4DpO+KhNpa+fgpEl5SAojMYTi3m/2+qgFHQQFQV+f/m6Qfh5eU9KpfrqFBMpzsfEnH94pSWHmPOwsLAe+4ICUPx3GC5RNXXa1bPpSOk1SprUXpoUMYOHCg6CMRpaWCcsXGxMAt0acjy8oQX1OD8LY2RSJFV1T0qAPVc2uNxDsc6CRMl+d5fPPNNzh06BA66+sxBN27a9MBHAUQbNOXlJSEW265BWPHju11Losc58+fV/S8kKxGYdWFZzGC82O0paBYedIqZ9YWRq3A2LFj8ZnAuZpJSUmK+7YUVqwbo/u/kgVsFjHymJK+ZCkodqYZiaGA1bDimYJGWQpKwdr4SnsjudryszehyhOySkGO46YCWIju8wSl/WXZUGfV+vUYb7YQhCxQEygnR/ByFoBs9aKI8/Of+//rJE3DKyPRs0EsUhEmsExu9/6szHw1gQTaxSjvj1WmeH+ayMmRbmci/YWEpTrFq4VlUjdVyvSAqlAGQzqmeJ8bTvKsQDjiMS4gjFIilaQBAD/+Ma4DcB3JsxrGXl/Yl9SEJSBbJu0UuWckwpLEH8xt3h+V+Gki0a5cRsphBkF5H+v9KQkDAPGQbw+TZe7LhTeKid6f6QTkOVvu2TVrel3S/T3z4x9jDIAxeqcjhEx7mOH9qYlX9Rzp5Zf9/53l/VmV2QAOBPx9/fXXY+HChQgPD5cNa4WFbClIFgPZWoqTJnghnZX6McICgrVFU1pozVd0dDRGjRrVy8X85MmTNcUbjBXL37YUZBerlod95rY6rG4pSKNe5eIwO6+BWNFSsK/CjFKQ47idEreXcRw3gTCqMACDAAwBwKFbKbhNo3g2Cnl75UqkJyWZLYYsEyZMwDmBnXFyPP7440hI6G1/l5eXh02bNtEQzU9cXByefPJJ/98ejwevvfaabLhVq1YhMTERawQWhqQYPnw4cnNzlYqJ7Oxs//+3bdtm6Z1L48aNwzfffKN4h8t9993Xy4XD5cuXsXXrVpriaeKmm27CjBnfLY2dOnUKu3fv1hRndna2ZDsLbBtK+fjjj3Ht2jXBewsWLMC4ceNUx60WPWRS2k/N4KWXXoLb7cbatWsln/PVd25uLjZv3kwc/2OPPYZ+/fqhq6sLv//974nCqG1b7e3tsvnwkZaWhoceeghnz54l8ik/ffp0DBgwAJ988ongfYfDIbq79YYbbsDs2bMl24PvGTXI9dOKigq8++67iuOdPn06pk+frngc2LlzJ9F5VY888giSkpIM6yfLly9HRkaG4D0l7dOKPPXUU4iNjfX/fenSJXzxxReSYWbMmIGbbrqpx7X6+nr87W9/Ew1z8803Y+/evaL39XyvKOXMmTPYuVPqM8UY7r//fgwaNAiAdF/mOA6rV6/udf3DDz9EYWGhLrKlpqbi4YcfJmovejBv3jzJBexDhw7h66+/7nU9IyMDXV1dKC0tFQw3d+5cHD58GO3t7YrkGT58OJYsWeL/e9++fTh+/LiiOGiQkpKCyspK0fvV1dXYtWsXigTc4gNABoD9AHylk5ycjDvvvBNDhw6lLiurhNqiEauWgrToi+5DabB8+XJs3boV33zzDSIjIzF58mTMmkW+lYGkbK3oPtRorG7VYlsKSqPWUrAvUVhYiPr6ejidTowbNw5paWma4mPFUpBG+rb7UH3l4DiuT/Y/ZpSCAOahW4EXDAdgoPenBF+vKAPwunqxbNTQFB+PeplD5lmgbcAA1It8CEvhycwEBPLn7uyknm8+Ph7Iyvru764uojS6Bg8GUlIUy9OYlIT6mhqlYvaQsTUtDfUiCyxWoDklBfWVlYqVgu6MjB7lAACdTU1M9YW2AQN6yNhZWaldvqws6TiCykQJTcnJqBdxmdGenq4pbrXoIRNLbUQMbuhQcG63vKze/He2tSnKFz9kCNC/PziPhzycyvrnFcgWnZQEZGWhs6aGKEzbgAHoGDhQVZ22pqWBHzJEMmxrWprqfMv1066ICFVydwwcqGocaBswAPUESorIMWOAmBjD+oknMxPIzBS8p6h9WpGsLCBAKegmeIcFv1cAoEumv7Smpcm2F73eK0ppp/GepIA7IwMYMgSAdF/mOE6wfFpSU1Hf1KSLbNHJyUBWFlF70QPfGCRG69WrgnL1T0mB2+1GvYh70M5Bg9CYlIRWEZfPYjR5y8NH25UrppRLTGoq6gXmsm63GwcPHsSePXuIFkw4pxO3zp2LmTNnSp4/JoTVF1jkzhS0mqWgUUpBpdBa7GRtYVRvaOU3LCwMS5cu7W7POpWhFevGthTUhq0U7I2c3FasZ5qcPXvW//8DBw7goYcewvDhw1XHZ3Z50nAf6sNWCipHiaWgy+VCZ2enqnSsDEtKQQCic2o1LbwFwCcAfsLzfJVqiWxCGrWDp97nIdCIU+1EieZuFqtSXV1ttgg2XuQWY1iDRZlooueE08jJrJK0fHVKGobnedUTYY/HY2obMto1C2m4qKgoVfGrpS9bGqjJn9C8Qa4tWXUxx0y0jg16WmmY/e7TcwxSk7fgMGaVT3D+6uvrcejQIZw9exbNzc3E8axYsQKOYcNoi6casfKMiYlRlC8taVkVs92HCqVXVVWFzz//3FA5QgXac5JQmefTwlYKsosV55G2paAyurq6sH37dgwfPtzwNdFAtNQZDfehpGcKsjTGWvFMwbCwMFspaDK3BP3NAdiJbuvBTwDI+0vsfrYNQDWAPJ7nrfemsDEUlgZO2rD84mSdYhXWo1bBSLceNLCaUjCU0but+OI3ok2qSUNJGLVKQat+LOpdZ0a7nOrLLq6C805St2qUgiy2YzGsJKsURrRr1ucUSqGVH7PakK/OPR4PTpw4gS+//FLRgse4sWOBixfRv39/1KuUwci8x8fHY/r06USuvmlhtfEheLw22n1oMDU1Nfj73/8uqcy1LQXZJ1TL3ej+bfXzr2z3ofKE0vzYCMrKyjRt9jG7ndBM30ptw4qWgmFhYarSsDrMKAV5nt8TfC3gJVIsdN/GRitWtBQkTcNWCrKBXRbaYFEpyKJMRqD3DjRWFTFKLQU9Ho8mS8G+5FaGpEwnTZpkgCQ9kWqLLC98hYWFITk5WfR8NBLU5E+oTdqWgvTR2vf1bLtmj0tyeTPa5ZLZ5eHD4XCgubkZGzduRF5eHnG4sWPH4tZbb8UIlwu4eFFHCekze/ZsxMXFiZ7rqxRW6pIWrLkPPXXqFFXrTpbf0XpgpfxaSVYfRvf/4P7Y1dWFqqoqJCYmGiqHFbDi2Eyy+dOeH/emvb0dTqdTVdhQshS03YfqK4eUe3yPxwM2V6q0w4xSUISfef89YqoUNiELbaUgSxgxcNJO2+qw9jIWwrYU1BcWZaKJnru1Q8VSsC+7D73llluwa9euXvfVngWRkJCAm2++2f/3woUL8cUXX6iKSwmsj4tiTJ06FXPnzsXJkydRUlKCc+fOKY5DzTuCZfehXV1dKCwsRHl5OTIyMjBw4EB0dHSgsrISAwYMIDofjZVx3XYfSh+59m11S8G8vDy88cYbaBA5BzmYzMxMzJs3D8N8rkJrazXLYMbRCgMHDjQkLSu2exruQ7VYCgant2/fPirp9VVYKRua1qMsYab70HPnzmHz5s3o6OiAy+Uy3JU+DWxLwd7YloLK0dKOzG4nRp4pyNIYy4pSkJalYGdnJyJUScA+TCsFeZ7/mfxTNjbqoT1wsvQSN9NS0MaGFlZrjyyNATRhVVFnBEZaCvI8b0lLQV/ZTJw4EXv27OmVh+uuu04ynBhPP/00YmJi/H+PGTMG27dvp35OQTCsWq1KceONN2L+/PlwOByYMWMGAKC0tFTxGblGnSloxKJIV1cX3n//fXzzzTc9rnMcB57n4XK5sGTJEllrVBb7nBqs2K5JYe39wcKZgidOnMCWLVuIxsvIyEjccccdmDx5MnNlGQzP86Ju/vXYXCSnFLTa+EDDUpBlpOreanVlYz5muQ+tqKjARx995E/f7XajsbHRUFnUYLsPlcaqx0SwAKte0HzfFGrCKk3fSpaCrJwpqKT+baWgjY0NMUa+rG33odaG9bJgbQIRDIs7tKXSvXjxIpqbmzFo0CAMHz485BZhlbQXpfVjZFtUkw+j3Iea+bGo1VKwf//+WL58OT755BN0dHTA4XBg5syZmDBhguI4x44d20MhCHRbDq5cuRKbNm1CLQULFjGs1m/T0tKwePHiXtdpWMSSxKGH+1Aa7fzUqVO9FIKBcbvdbnzyyScYMGAAUlNTNaenN1pdEBlhKcjqnEfr2GZW+mpwu93YunUrjh8/LvtsWFgYpkyZgjlz5iAuLs4A6bRRXV2Nd955B/X1ak84VA6L81AtmH2moF6WiWqeDQWslF8ryWoWvv547tw5S44vRmJFpSBgjfdGSUkJcnNzER8fj5EjRyI6OtpskVRjdjuhaSkohW0pKIwSS0Ep7zFKzuO2GrZS0KZPw9LASRvbfajxWCHfVmvzVluMycvL85/bM2HCBCxbtsxyCgYhjHDtyapSUGkYrZaCVt9BOnbsWIwaNQoVFRVITExERIT4vjo19TBkyBC8/PLLeOedd3D16lUtoooiJ1dcXBxTO7ZpjjFGWQrKfaTT+Ijfs0f+OHKe53Hu3Dnceuutks+wgFbFWyifKagWuUUUqx0zUF9fj/fff1/Uks6H0+nEnDlzMGPGDMkxmgY0y+L9998nUgjaloLisHamIG1Ylk0P+lp+jcbo/u1Lj8StLosYaSlotbEXsMZ33tdff93jqIZ+/frh0UcfRb9+/cwTCmx7QWPhTEHWoF3uRqxty1kKhiqmKwU5jvv3wL95nv9PsXtaCIzXRn9iGxqQINGpWCGqvBwJKqwNuGvXAIFD0V1FRarikyK6vR3Iz//uQmcnURqOggKgq0uxPDEAOtTkIUBGteVqdVxFRUDQ5DesuJipsogoLe1RVxGlpdrly8+XjiOw/SokprJSNO7wkhJNcatFSqZACvftw7XERAwdOlT2WaPayMKFC+FwOJCfn48LFy4Qh3M6nd1lzfPysnrrROl46CgoALyLk8Th1Na/grExluOA/HyEl5QQhQkvKYGrsVFVnUaWlYHPy5MMG1Verjrfcv3UQZjHYCLLynrI5ASQDgClpbLhxNKLqayUzGdyUxOqdeo3rqIiQELpd2NKCo4XFOiSthriwsMFyyq+pgadCsuIu3YNcDr9f5O0++D3CgA4ZOYBUnUPQLYfkPQBR0EBEmSfAs58+ilu9Z2hJgCV9yQFXEVFgMsFeDyS8nDeMSsY0neXGuK8aeoxDyZBqA0GItbeYior4Xa7JecZ8TU1iGhvVyRPdEVFD3nk2jsNLly4gL1798LV3o4h3mu+sfgogA7vtbS0NDzwwANISkrSVR7aNDQ0oKKiQvIZPRagWV/AVQqNMwW1oLelYF+DlbKxzxS0ZnpWxmwLMLWwcua2GMFnt9fV1WHPnj24++67TZKou8zM3KSlJQ6aXtis5D6U9lhmWwrqh+lKQQD/ASCwNv5T4p4WbKWggaxavx7jzRaCkDlqAuXkCF4eASBbgyyi/PKX/v+GkabhlZHoWRoElMldRqXJGgLtYqz3xwxBMo73/rTGma0gTSU8rFO8Wliu5GFCGbPVCKIGrzyjACxQGva3vwUHAlm9aSgeDwPKijicyjbgVJIGAPz0pxipMMxNSuIPQkk61OLNycFAtWmrrIebvT9RXnxR9NYi708XZPIzByrnDnryk5/0uvSImniC8j4c6tpEGkG4uTJySIYnaHNy6ZPGd733ZzpeGR0gyNuaNb0uLYCKcV8JP/0pxgAYo2caYsi0h9nen5p4lTs/9vLDH/r/e6v3ZxazARwAMGnSJNx1110IDw83LG1aC0NlZWXEzxplKUhynzXMdh+qN6wtjNrYKMFq44kc9pmCPbGCpaAQp06dMl0pqBa924lcndJwH3rgwAHU1NRg8ODBos+w5j6UNkZYCtpKQXPxtV6hmqbRstkbWUOct1euRLoFdqDecMMNOHbsmOJwK1asQEpKSq/rV65cweeff05DND9RUVF49tln/X93dHTgj3/8o2y45cuXIyMjA2sEFoakiI+PR0NDg1IxkZ2d7f//5s2bkZubqzgOtVx//fU4ceKEYemJ4SvzQC5cuIBt27aZJFFvZs6ciWnTpvn/zs3NxebNmzXFmZ2dLdnOAtuGUjZs2IDKykrBe3PmzMHUqVNVx62WjRs3oqioiPh5kvwr7adqWbZsGYYMGYLKykps2LCBOJzL5cKLXgWNnKy+/CodD7///e/7FypJy0Nt2+J5HjmEiqz+/fvj0UcfxbfffovPPvtM9vlx48YhOjpa1btl5MiRuPnmm/HXv/5V9JmJEyfitttuUxx3Z2cn/vCHP4jez87ORnFxMT744APFcc+bNw+TJ09WHG7//v2i5TRy5EjceeedomG/+OILXLp0SXGaJDz55JNE52t1dnaivr4e69ev10UOUgYMGIDvfe97va6/8847qK6uVhTX6tWre3xUkrwjhg8fjiVLlvS4VlZWhvfee080zMSJE3H27FnR+88++yzeeOMN0fu0x9XA+E6ePEnketRo7r77bgwdOhRutxuvv/666HMOhwMvv/xyr+s7duyQLHMt9OvXD4899hguXryIL7/8Upc0pJg/fz7Gjxff4rRv3z7BM/aysrLgdrtF3+nz58/H3r170a7QUjAjIwPLl3+3hUiPsu/q6sKxY8dw5MgRdIksemUA2A+gHMCiRYswbdo0yy4a6e3mVAwrLuBKYUX3obTOFLRaXZFgpf5sJVl9GN1mrKjoCsTIOrZqWYXaO8UIPB5Pt9cilWG1woLrz4sXL+LixYuiHlBYG19ZsRRUchSRVBl2dnYCFvCEqAYWlII/U3nPhmGa4uNR37+/2WLI0p6ejobERMWDTNfgwcCAAb2ud7a0UM93Z3Q0kJX13YWODqI0OgYOBLKyFMvjiYtDo5qXboCMzSkpqK+pUR6HCiIjI5F5883Y5T3HzUzcGRk96wpAZ309U32hPT29h4xZgwej9cgRdHR0iAeSQ66dBZWJEur790e9iNl/24ABmuJWS1NyMuoF3AeLQiCjUW3Ek5kJZGWhKzJSUZphYWH+fMiG8z6ndDzkhg71T7aIw6msfw5AxuzZOH/+vOyzzsREICsLHYT5aUpOBh8To6pOm5KT0TV4sGTY1rQ0Vfl2t7bK9tMuh0OV3L73jVLavv1WND25fLampaG+vFxxmiRwQ4cCsbGyz4UBiNbhva+UuJQUwbJqSk5GvdKP4aysHm6w3e3tsvmriY/vlb7b5ZIM15ySInnfnZGh+b2iqF688R0/fhyfnTkDMPTe9tE5aFC3nG63ZN4cDodg+bSnp6NewYYWJfjGyc6GBlP6g9wY1HbliqBczSkp3cp9kXd656BBaEhMRFtbmyJ5+gf1yZbUVKrlUlBQgM2bN4tumgpm2f33I0ZCaaonRi5wmrEoZrUFXBruQ7VYClqtvFiHlYVgVuSgje0+VBv2mYI9saqloNloOb/3woULkptM9YaGpaAVYUUpqEQpLJVGR0eHrRTUC57nRRV/UvdsbFhEj8Fej10RUpi9m0YJ4eHhWLVqFSIjIw1JLxQInpw7nU7MnDkTu3fvNkcgGVicQLEoEym++lf6kabmo05pORm9oLB48WJUV1cTuyQjzY/H41HkqiKQS5cuYc4caceUevjUdzgcmuJWW3esLiKxKpcRBOedpCyErKi0LnqYtQP8zJkzpqRLgtbdxkYszpn1fpTLm9kLu7TSb21txfbt2wWtHoUYPmwYcPUqBg4ciHoqEpiHkveqke5DrWatQsNS0GhoWQramIsV6ya4v5SVleHQoUOoqKhARkYG5s6di1iCTWRq07M6tlKwN7ZSUDlaLAVbWlpw5coVjBw5UnX6SqzNlN6nBWvuQ1lRCmqpu0BC2X2ow2wBbGzMRO3gaebLmjRtI/wu005bCXFxcfjRj36E9PR03dPSghUmdjffLHmql6nQepGbBUuTM4Bt5Y3RZRUdHY1nnnlG9jnFluRdXZrGUTmXq2rbvZQ1sNoPLR9q686njDQyTRKUyMVCHxeTwQjlPwBBKyqtH8k05iJqKCgoMCVdJagdA7T0Nzms8D4WQq7Nq+0TtMvD4/Hg3Llz+MMf/kCkEHQ6nZg3bx5eeeUVqnKogVZZmDUmhJpS0KgzBcXQyzJRzbOhQF/Lr9EEtteqqiqsW7cOZ86cQVlZGY4dO4Z169Ypdi9Nmp4VsdujNFos3voyWsvt5MmTFKXpCekcQe96D/W+p3aupaTcpZ4NZaWg6ZaCNjZWRGzAsC0FtaVNitPpxF133RXyLz+j4DgO0dHRaGlpMVuUXlhdKRjGmJsBtZaCalBaP3ouWIvBcRwiIiKIPuiVWApqGUdLSkqoyBHM1q1bRe9JHaxNgh5KQTPHdzPaohb0LCu9LAXl+ojVFtqNQKs1nhHt2grv5WCk2jitvqVlTn7u3Dns2bOH+HzQIUOGYMmSJUhOTvaf0xsKKBkTjLQUtFqbN8pS0P5GMwZWyjk+Pl72GVZkVUJgfzl9+nSvTVBVVVXIzc3FuHHjqKcXClixzvUm1OrYCLS+py5evKgpvJb1qI6ODuTm5hK7e1cLa32NlXZuWwrKYysFbfo0rA2eNAlFpWBiYiKmTp2KUaNGITk52X89lOuRNlYrK1spSBe1i8JWs6hWAm23c1rch+oFz/PIzc0Vve9rp0bXGauWglYbJ2mhNt+2UtAYGhsb0dTUpPq9EsqWgqy7D1VDdXU1PvzwQ9mNIj4iIyOxYMECTJkyxdANQHIYaSmoNr9SfSrUlIJGnSkohpmWglarKxJY6OMA215ntBDYZvbv3y/4zJYtW2yloBc17ZHjOMvnmxQrWwryPG/aeMNymcnJVlRUhPXr1xsiCyvvA4CdOqNlKSh1DIvVsZWCNn0emovdRgx+VnAfqhfTp0/HjTfeaLYYNgbColJQSbqsKQWNPFNQKWZNZEkXk404U1Av5KyAzXIfKpWuVSwFWfgA09N9KEkcXV1dcLvdPSxOtSoFWetDLLBlyxZs2bIFAwcOVBW+L58pqDacWZaCZ86cwWeffSbp9jmQiRMn4o477uh1thUL45MW3nzzTdx0002YNGmSrmcKSlnLh7pSMNQsBa3e5q1A8NwtMzMTAwYMkA0XqnXT3NxMLS6rjSdykNS5w+HoU3M+q9bxBx98gKVLlyIyMtLwtM1WprK4HhUMq+PrtWvXkJubi5iYGIwdO5bIqtwoWKk7szFdKchxnCHbinie32tEOjbWgtXBMxCj3YfSGBz1GmCtUF/BWOVlw6qcUosVSmVuaGhAeHi4oZNZUqWg0+k05IPIyDMFldSPmX2bNG0lSsGKigotIlGRQ0kYnxJM7TgQamcKWu1dw0JZtLe3K1IKhto5XUZCajkWjNXc4hqFHv0nuH2Tjq0dHR3YsmULTp06RfR8v379cNddd2HEiBGC91kYy7TML0tKSvDxxx/D5XKZNiaE2lhllPtQmtBqxyz0B9qYkad77rkHh0pLUVtbi6FDh2LevHkh+34x+vvYCv2RNn1JKcjzvGXr+OLFi2hsbMQTTzxh+LjDcpmxsobG2vuN53kcPHgQX331lf/avn378OijjyIlJcVQOWg8y0o964HpSkEAuwHoXcI82MhrnyG2oQEJjFnICBFZVoZ+dXWKzYEdBQWAgF9hV1EREmpraYkHAIiIiADy8/1/c+3tRGm4ioqAyEjq8ogSIGN0RYUu6UaUlvZIx4ejocG4fErgKirqdS28pIQJ2XxElpUJlmF8TQ3Cg85JICY/XzqPAumRElddDa6pSfCeWHsIpqGhAZs3b0ZlZSU4jsOIESNwxx13qD5HLbaqirhO+4eHE8nYv77eEF/lYcXFQEcHnDU1itplVFubPx+y4bzPhRUXE6fhcDh6lBOxbBralo9+dXUIk9jlG+d2A/n5xPnxeDzorK9HgmbJhIkqL1ecb665WVL2WJ4H8vNVv8MiSkuB/v0Vh4ssKxNNL7qiQjKfUeXluo2tjoICgPDjivSdrCcxMTGCZRVXXY1WBbK5XK5e8ZC2ic4rV4B+/fx/OwsLJcPJ1h+F94qieiEd3yxA8HjqQ88+g9paReMkbcKKiwGJ3cdiY01MZSU6OztFZQ4vKUF8TQ0iCM6dDSQ2MlLxvLiwsBA7duxAXX09hgBwAkgHcBRAsL0gx3GYOXMm5s6dG1LnBopx6tQpjBkzRvY5td4QtCwEsbxYKQQN96EkiNWB3gtrtvtQ/Rk8eDAGz5mjOBxri9YkWNH1tJmo8ThhxXahBSvXcVFREWpqapCUlGRouraloDwcxzHVl9ra2rBjx44e15qbm7Fnzx4sX76calpSrm1pGhiEKqwoythpvTZUWLV+PcabLQQJOTmYrjKcEGO9P+r8+tf+/0YAyCYJ45WR6FkaBJTJfQakEUg8DMynFALyjff+mEGkDJ/TGGe2ijRJeEp1yO+IB7CCQjw+HlAa4Cc/kX3kBVWSqMBbF4lQ0Wf+538AknDeNBSPh7/7nf+/smkEpaWFp0ke+sUv9BvfDSAGBGX6s59hMMlzQqish8nenxrme3+6oCA/xO9kvXn11V6XHlYTz//+b48/h0DZnENxOIn4JMMT1JGi9I2eM+lNwHjq4ybvTzdycjABwAQ905BIW4q53p+aeEerCQcAP/qR/793eH9qmA3ggPf/HMdhzJgxmDt3bp9y13flyhWMHDnSlLRDzX1oqFsKhkqbJ6Wv5ddobKWg/oSqlakQZiu3aHDkyBEsWrTI0DQ9Hg/a1G5e1xlW6pO1d8GFCxcEr58/f566UlAKWpaCoQwLSsG90N9S0MZg3l65EukG7yBRw4wZM3Ds2DHFFjoPPPCA4JkuFy9exJdffklLPABAeHg4vv/97/v/bmtrw5/+9CfZcIsXL8aoUaOwZs0aqvKIkZ2d7f//xo0bUSRgNaeV+fPnY/z43iq2hoYGvPXWW9TTU8ry5cuRkZHR49r58+d7mM2LERERgeHDh4u+QGlx88034/rrr+91fe3atWhXuBPeR3Z2tmQ7C2wbSvnzn/8seh7atGnTMHPmTMnw1dXVeOedd3pdd7lcePHFF1XJ9M9//hOlpaVEz2ZlZeGee+6RfU4qnzRZuXIlkpOTUVtbi3Xr1hGHi42NxVNPdato5cYUX31fuHAB27ZtI4o/LCwML7zwnWqUdNzS0rZ8/PWvf0VjY6PofV/eleRHT8aMGYOFCxcqCtPU1IS//OUvovf79euHxx57DAUFBfjoo48Uy7RgwQKMGzdOcTip8XHs2LG44w7xZfTt27fj3LlzitMkQUm7am9vx9q1a3WRg5TMzEzce++9va6/++67ilzZBs83ABC3ieD3X15eHjZt2iQpc0FBgej9e++9VzJdkjoiHUccDgdefvllRWFYJjA/gRw7dgz79+/XLd3hw4cjKyur185gI1i4cKGkJdmePXtw8uTJXteHDx+Ojo4OFBYWCoZbvHgxduzYoXh+lJaWhoceesj/99atW3H58uVez129ehXbt29HS2trr3sZAPYD8M02hg0bhsWLFyM5OZlYDhYWiWgtsuipvNIio9UWkYw6U1AMMy0FbczFinVDs72S5N9q4wkJcvnuS0pBwPp1rNTDGg14nsfWrVsNTzcwfRtrQsvKM5TbgOlKQZ7n55ktgw19muLjUa/ClZjRtKeno75/f8VKQXdGBpCZ2et6R3099XyHh4cDWVn+v/nWVqI0OgYOBLKyjKuHABmbkpNRr/LQ7alTp+L48eOC9zoHDeqRjg9eh3JXgzsjo5d87TU1RLJFRUWhbcAA1BMqm9TSnp4uWIb1/furVgrKtrOA9FpbWxEZGUn8YVjfvz9aIiIE77WmpQnmJZAzeXmisvFDhqj6QG1KTkY94W41Xz8kiVNKMUULfsgQICUFnrg4ZX0mIcGfD9lw3uc66uqI0wge54hlIyhbOZqSk1Ev4Uq2KzYWyMpSlB89aU5JUZxvT0ODpOyO/v2BrCx0dnWpyqPQ2EcUTmLsbklNlYyzbcAA1BcXK06TCAV54To6TG8XYm2iOSUF9QrmN8H9EAC6eJ4of03Jyf6wFRUV+Pz8eclwTcnJqJcY83zzM1EI6oi0XpxOJ/n4ZgEcDodg+XSWluqavxM1NRg4c6YpZSg3BrVeuiQoV3NKCjo7O1Ev4qa8c9AgNCQmKt6hHhPQH3zp1Acp6I8fP47NmzfLxuUBcPvtt2PmzJmKF0+tuAgvBsmZU2rdh0oRau5D1Z53qRSadRBK7Zg2ViobK8nqw1YKKkNNHVuxXaglFCwFzcDj8aCsrMxsMQRhpT5Zcx/KCrbiTx7TlYI2NmZixYGTdLAy8yNVy4A6bdo0UaWg2GKIFetRiFDJhxAVFRX4+OOPUVZWhoiICMyePRuzZs2SzTOLPtyVpEtap06nU604ivD1IaVtLZR3cZKWBSsTRVbkCETt2CXVrkJ5PKQNrbLSEo9vU0lpaSnWrVsnu8lEbo5i5Bymr7Q1I8ZxFscnQL1catuGXHonTpwgUggC3d5JolVYYgNstG1abYJEKagWLXNNVtu8GLalYGjR1/JrNE0iG0bUQPIOttp4QoJtKfgdR44cUWTtb9MNy/2CFdms9C6QOgOQdny2paA8fWcEtrERQc2AJDYo6DFYqI2T1cN4pbj11lsRGRkpej86OlqtSJbAiEmxGROGjo4OvP322/4dXu3t7dixYwdOnz4tG1bPw4GN6COkaRhVL3oob8TQQ3mqB6SKaStPBkkXNY3OoxZlOCsfPyzIISaDUtmEnieNw+dx4euvvyayOpdbiNZTARAMC3VoBKGcT72UfrTKLHCM3bNnDz799FPZMOPGdp9im56eTkUGq6NEeWVbCopDqhQcM2YMwsLCel2fMIHs1FCzLAWlnrXyPC4UsOI7qLy8HM0qvR8FQ5J/q40nwaiZR/YlpeCpU6ewfft2s8XQhBn9mOV+wcp7xUrjK6v1yUpdGk3fGYFtbATQawcwC1hRKehwOBAfH4/ExMRe9yIjIzFs2DCtohmOEqWQmS9zPdtLfn6+4AfVmTNnZMNq3d1jdl81O/1g1LrWorl5QuuztLHSJBpQV1as7sy3LQXZQkuZ+9oYyWaPwOfFMMNSkLXxmjZ92VJQCj3GGiEXjW1tbdi0aRN27dolGTYpKQmPPfYYFixYoFkOFsZRWu4qbUtBOgTLKzbWhoWFYdmyZT3GjcTERMyfP19X+WyUwUIfD3W+/fZbKvH0VUtBOew2bCOH2UokFj1XCWGVvmTkxk+r1J2Z2O5Dbfo8Ru4mNTJOKyoFfXUxZ84cbNq0qce92bNn2+5DLYqYO9i8vDzZsHq+yI3oW6TPGtVf1S4Kh/IuTrm8sWYpqOd7xmgXe1raFSvjJQty6CmDXnHbloLGE8rjuF6KGxqbB/Pz87Fu3Tps374dHR0dkuFmzJiBW2+9tdtCq7ZWVdqBsNi21dYFyaKgGWcKsjI3ICW4HMXkdzgcGDt2LF566SXk5eUhOjoaQ4cO7T57lgA1rryUxqX12VDASvm1kqyBVASdB6snVhtPSLAtBUMLM/qxkd8ESmGlz1ppfKWt5JWqAyVp9VUFoq0UtOnTWNFSkDUlA820ffUxefJkxMTE4Ny5c+jq6sKYMWOI3dVYFaMsBWl+pJPidrtF78n5FLf6C1hIfrfbjaKiIng8HgwePBhhYWGG5VPtgpne7kPNpC+cKciqpWAouA9lAT3dh5KitI2xeKYgK31cL0LZUtBopR8JFy9exH/8x39g48aNRO35tttuw5w5c3STxyysYCkoBUtWzTQgtRT09Y1+/fphypQpustFC3tu0LcZp/L8VSlovddI2qbV5yFq+p+tFLSRw+z3rBWURVZ699mWgmxhulKQ47jAFsHzPO8SuaeFHvHa2ATCuqWgWliSRQ0jR47EyJEjzRbDUEJ1Uix1FmRra6vkfRYtBbWkUVtbi3Xr1qG+vh4AEBMTg0cffVR3OXwYYdGl5vBolt2HWn0sZZlQHfOsipYzBZViKwWNx0oLBqygpsyqqqqwa9cuvPTSS5KbogKZP38+Zs2apTgtOVgcY41QCtKcg/RlS0E9sFp5sY7QuY+sovc7aN68eRjJcHn0VfehRp3da2MM9pmCPQnFPqs3rCgFlTwbyvXMgqKMA8B7/1Vyz4ZhYhsakMDwpMxHZFkZ4mtqENHeriics7AQEHghhpeUIIGCu58eaTmdQH6+/2+upYUoDUdBAZCURF0eUQJkjKmsVJVuZFlZj3hIcTQ3G5dPCVxFRb2uhRUXE8kW3d6OqPJy3fMRUVoqWMYJtbXo7OxUF2l+vqTciQ0NovdbL15EdFKSaNj4mhrRiSBJe4koLRWXLT8fcCl/DcZWVRHXU0xlZQ8Zd2zcCBQVIcF3obYWX77xBuLa24HGRsWyKMVRUADExMAhUSdCxEdG+vMhF47PywPncBC3fcC7qBFQTsSyqRgvgomrrkabRHoRLS1Afr6i/OhJdEWF4nxzdXWSsse53UB+PpyFharyGF5SAkgo98WQKtOo8nLJfEZXVOhSH+PGjVNUvlxXl+ntIraqSlDmuOpqRbLFdHT0isdJ2O7Diotl3wWBxDocaJd4VrYtEtQRqSxRbW1Afj54t9v0uqSBw+EQLB/J92EQHMep+gA2a5wMKy4GEhJE70eWlQnKFV1RgXCJencVFRF/J7S1teHQoUM4c+YMeACDADgBpAM4CkDIcajT6cSyZct084bBglKQlqWgEvehNOnrloJqoVUXNC3eQ3FRLyoqymwRiNFbmRAeHq7LoqGR7cbqbdS2FLTRA7Pdh1pBWWQl5TorSkGe5/0evBIkviFCHRaUgoC00s86rdvGz6r16zHebCFIyMnBVJXhhJjg/VHnt7/1/zcaQDZJGK+MRM/SIKBMHqYQhxJiYGA+pRCQf5L3R4rujqNEyvgFjXFmyzxyi0RYKV5WIU4gs7w/NWmL8ZDSANnZ/v8uV5UiRbx5joeKPvOjHwEk4bxpKG37+H//z/9f2TSC0tLCCpKHfv1rXAfgOs2pUeJlZT2jHwjK9Be/wDCS54RQWQ8ZatMDMNf7MxsnGHn/CLSJB9TE89//3ePPQTBpzpGTg8kE6UmRrSS9//kfuJSGYZnf/a7XpTHen67k5MAUR4My7eFW709NvM+rCRfEbAAHgq7Fx8dj+fLlyMzMpJCCMCwuErHoPlTLoh4rC4KkkCoFWVmoN9INthWxklLQRh6rjScksHqm4Lhx43D16lW0tbWZkr4NOSxvvqHZZxMTE1FTU6M4nNXee0aeKSh1Lz8/H/v375c971suHqtjulKQ53nRt4DUPRu2eXvlSqRLWP+wws0334wjR44ongwsW7YMQ4YM6XX97Nmz2LFjBy3xAHTvIn7ppZf8fzc3N+PNN98kCvv8889j7dq1VOUR4+WXX/ZP6jZs2IDKykrFccydO1fVuRVKysTH2LFjMXToUGzZskVxemIsX74cGRkZPa6dOXMGO3fulA0bExODcePG4ejRo9TkEWLevHmYPHlyr+uvv/46sZurYLKzs7FmzRrR+9OnT8fhw4cF7y1atAijR48WvMfzPHIkFvomTZqEW2+VXuY7cOCAaJm+8MILqtzuvPvuu8SHzg8ZMgTLli0DAFRWVmLDhg2K06PJc889h8jISDQ2NuKvf/0rcbiMjAwsX96t0pSqawB46aWX4HQ6cfr0aezatYso/hEjRuCuu+7y/y2Xho/sAIWrWt577z2UlZWJ3o+IiMDzzz+PU6dOYffu3ZrT08qwYcOwdOlSRWF8bmvFiI2NxVNPPYXc3Fxs3rxZsUxLlizB8OHDFYcrLy/HP/7xD8F7o0ePxqJFi0TD7tmzBydPnlScZjCTJk2Cw+FAbGwsRo0ahfj4eEXhPR4PXnvtNc1yaGH48OFYsmRJr+vvv/8+SkpKiOPxtYNASkpK8P7778uG9b2/SftuQkKC342yELNnz8b+/fsF73Ech9WrV8umQSqLL98dHR344x//SBSGZRwOB14WUBJfuXIFn3/+OVEcTqdTlRJm7ty52LNnj+JwWpk/fz7Gjxffjrhz506cOXOm1/WRI0eis7MT+SKWp3fffTe++OILtItYCra1tWHbtm24mpcneD8DwH4ApQHXoqOjceONN2LGjBmIjIwUlZkGLCwUkSqh5FASjma+Dx48KHnfagtFpJabWhfqzTjDvC+i9xhCE73HI47jmLYUJImHZeWHXpilFExNTcW8efNw+vRpHDgQvG3HRgwz5hV9xVJQbV9gYa6nBLPr08fVq1fNFoEJTFcK2oQmTfHxqO/f32wxZGlPT0dDYiJaW1sVhescNAjIyuodX1UV9Xw7HI4eafFNTcRplEdFGVYP/JAhgNMJAGhITES9CgVTx8CBguUqS3Oz4nw2p6TAnZFBtXzcGRm95G+vrCRKoys2Fh0DB+peX2Jtt65fP/Uv6KwsSbnbBgwQvV/Xr594nfO8ZLwtqamy7aX1229F4+CHDAHCwyXDC9GUnIx6QlerTcnJfhm7IiPNHxezsoDISPANDYpkSQwoa7lw/JAhgMuF9ooKojQiIiIwa8UKIOBZYtnUjBdBNKekoF7CNVxERASQlYX28nLz6w892xQpXbGxkrJ74uKArCy429tV5bFr8GBVdcFL9Am5fLZdvkylPrLmzcOwYcPUR+DxmN4uWtPSBMuqOSUF9QrmN3x8fK94PC4XUf7aBgyQfRcEwvXrh3qJj9/WtDTRuDiOI2pvpLL48s2rbP+sETxv9NHV1kacv7CwMFUuxdvT000pw/b0dMk20ZKaKihXS2oqOjs7RRXUvnlisFLQ4/Hg1KlT2LFjB5qbm2Xl6wKQnJyMGTNmYNKkSYadA8aKtVcgeloKql0YE5Oprq5OcvOCVFirYFsKWhvbUvA7OI5DfFwc9Xht96HkqOl/ZvVZjuOQkpKC22+/HRzHiW5EszEflpXlNPtsX3l/seI+1KYbWylo06fhOM5yg6+Sgc3IF6jH4+k+/1ADRtcFS3VvxbZIilQ7bGpqUhUOMO8lT+vAYjPwtTGlbU3J4pCSPCckJGD58uXob+JCvFxZsFaHespjdF6l2pVc/6c1Xmp9b5GQmppKbF2sBhbeHUrbjlz9Gjl/8ZUfa32dNkrGcdrKFVaRy6fQ/ZqaGnz00UcoEjhHWoyVK1bAOXy44YoWFhQ7Rp4p6IPWmHj69GnZZ1herBSD53l/GemlFDTLUpCF96GR2JaCPeOPVnG+NUtY7R1KAqvuQwNxuexlcVLMGGPNfs8aZSmotmyt9t4zUilIq+2E4tjsw/wR2MbGRGgverA2WJi1s421chCDhUloIEa80FmbyEntsNe7HRnRTlnrC2rbvBqlIEnen3/++V4ud41GLm9K8mMEauSQC6M1b2rHFSmFnFFKQb0WPn0MHjwYgwcP1pSGUQjlRa93hlz9Sn0w0pbJVgr2xmoLDEa9z0+ePIk//elPRArBIUOG4H9++UsAwA033GDKnJO1eS5grTMFz58/LxvW7MVKrYSapWBfw7YU/I7AthITE0MtXiPdh4b6PEQIs8aawPZC03o/Tgdr1b4OK+4m9cZWCqrDCKXtwYMHUVBQQCUu1mBjtmdjowOjRo0iek7NIGoVNxJGyhn4Uak2XaNfhCy9QM22FNSznUktmEidY6i3IsMIWJNRraWgkudJ8xwdHd3tmtNkSPPGWl3qgdFjtxZLQVrovRgxceJEQ3bHK7muNB4SlLYdLe8N2vQVpaCS+rWapWBgukKLDVrHttbWVmzcuBGbNm1CR0eHZBiXy4XFixfj4sWL+N73vqcp/VDECKWgkZtGrFi3gTIbrRS0LQXpYiWloJFzoVWrVuGhhx7CzTffrGuatLHieBKIms1lLGxAoKUUnDNnDh5//HEqcbEKaxvMjcC2FKSLkfVJs34++eQTanGxhKXspDmOiwXwEIBbAEwBkAIgDkAjgCoAJwDsAvAPnufFfdLZ9AlIJhi0BtDm5macP38eX3zxBZX4pGDVdSENS8FQdB+qpCxYmBSrQYvyTsukQOuOS7XtlNU+SIIeyptgSC3rWGnvfcF9KKuWgiy4D9XbUtBKFuBWsRSkTagpBcXqTElbZ2V8VkJubi6++uorVFRUIC0tDXfccQeyZM6eJNmQVVxcjHfeeUf2bDmg+9zABx54AGPGjGFisZ6FejTSfShtZTaJe2mzFyvVYIRSUM/3khHpWgUruQ81koiICIzKykJcXBz27t2rKS7bUlAbLMyT5aClFAwLC2MiP6EGy5aCNPssC3M2I7DqmYJWnO+RYAmlIMdxDgCvAvi/AAJ9AfhG3EQA/QGMBPAggP/lOO6/Afya5/nQrDkbWfQcVAMHl8bGRqxbtw7V1dW6p2VkWKXQsBQ0GtqTNi35NspSUI8zPrScDSV1z7YUpI9vXGThTEFWPpqsZilonylIFyPOFDSrrRuZrn2mIPuE8pmCZWVl+OKLL/wLDWVlZXj33XfxzDPPIDk5WXW8X331Fd544w10dnZKPsdxHGbOnIl58+YhLCyMmiJMKywuMIWapaAVF4nMtBTUG6m6D8UxnoXNB6SY4TWBRppW8RDFAmrKO5Tch7LybRtqmP2etS0F6WJVpWCowrxSkOO4aACfots6UKq1B96LBfBfABZwHHcXz/MtOopowygkgyMNRczRo0d1Uwhqpa9YChph/WQEVnuh+9DiBk6LUlArffFMQbWEsqWg1c4UVAOrloKhcKagHH3FUpC2UlDqg5F2X7Tqu1cpSpWCEydOxNmzZ3WUiB4XL17s1WY6Oztx+fJlJCcnq2ozBw8exFdffSUbNisrC0uXLkViYqL/mq0U/A5aZWGGpQBJ+bFswSCGmZaCwfXPcZxkm+gr47NabKWgcfEbgdnKDz3oS+5DgdBoh1JY1X0oz/O6yG4rBZVj1JmCVl67MRLmlYIA/gHgVgC+Gi0F8B6AQwAKADSj23pwMIAZ6LYUHIRuJeFcb/i7jRXZhgX0HBwDB5h9+/bplo5W7J1t0rBkKQhY74XuQy9LQTnMcsMSCu5D9bQUVCqL2djuQ7XFDdhnCkphhBW4WB6U1qeRfVLLe0MvpSBrfZ02SurX4XBg0qRJipWCZpVhS4vw/s/t27dj1qxZouGEysTj8WD79u04ePCgZJoOhwO33XYbZsyYwcSiphCsvGcDYdF9qBiheqZgIGZbCjocDqoLhCy2eT2x3Yd+h20paE1Y8KYhpRQcNmwYIseMgdvtxsCBA7Fp0yaiOG3owfLmG1spqByjvvH74niqBqaVghzHLQWwBN0KQQ7ALwD8gud5oRPejwD4kOO4H6Pbzei/ecPcxXHcEp7nNxsktg2A2IYGJFDccaOGmMpKJNTWSj4TUVqKhNpaOJuUHUHpKioCvJNwuTSokJ//3f8bGojTdBYWGiMfAD4vD4iPBwDEVlXB09CgOI6I0tKeeSWEa2tTnM+o8nKEFRdTLR9XUREQ9BFNmkZ8Vxciy8p0ry+xMo6vqVEfaX6+pNxS+YoqLxev8/Z2yXglwxKkjfx8QMUO27jqarQT1lNMeLhfRifBmKQ7Xlm41lZFssRUVvrDyobLzweioxFeUiL5bALPi9YfiWzDhg1TNV4EE1tVJZmew+EA8vNl82MUMTExivMt1/ai2tqA/HzVY2JYcTGgxmVQR4doetEBfUeIqPJyKvXhKioCVLyvAulXVyf64RFeUoIomTamlfiaGsGyIpkH9YiH43rF4yKMI7ykRPZdEIjD4ZD8KJR7H/J5ebIfwaSyJLhc3flubGSij2vF6XQKtocwBX0mvqsLI1wujI+JQVFREXHavnk1U+Tni44X0RUVCOvs9N/zKQSLL17EEO8zTgDpAI4C8H2AJiUlYfny5UhPTxdMkhVLQRYWisywFFSTbyErAtt9qL5pA/TPG2OhzRuJy8X0cl4PrOo+1GisvJCtpg5Y2FQjpRRMSUnBjAULAAANGr8XQoG+aCloVJ/sK0pBpUpeteVv5bHUSFifRTwe8P9/5Xn+v+UC8DzfCeA/OI5rR7cLUQB4AoCtFDSQVevXY7zZQgBYKPdATg4mqYk4J8f/32w14TWkF68kzZwcY+TzpuXjCQpxKCES6utBbThBBOSf4v2RouRZVYiUcbbGOOXCz5e6+S//Ing5Atrr52bvTxCV7W2l0gA/+QkAIAUGjRdSePMcBR37jDeNqd6fJD/7mbo0fKxeTfqkKEtJHvrd73AjgBs1p0aJV19V9DhR2/uf/8EoAKPUyKOyL4VDRi5v3xFipvenGZWyByLZCr3xz9OcinLuVxPopz/t8SfxuOXNJ9GzhCwgSE+KbCWJ/eu/Ik5pGJb57W97XUqDwvz9/OdYrjTdnBx2xkkfOTmYD5l5SADCMxJgNoADACZMmIClS5ciPDycinh6wsJiazC2+1DzMdN9KO10+jpWWwzWk1CwFDQjPRLmzZsHl8uFox98QD1uFsYAKaWgGefZ2vSEllJQD2jGy0JfMALbfShbsK4UvMH7bzmAXyoM+ysAL6J7cydz36ehztsrVyI9KclUGcaOHYuLFy9KPnPbbbfhyJEjaGxsVBT3nXfeiZEjRwIA1qxZo1ZEYlavXu2fZDQ0NOCtt94iCnfnnXfi888/11M0P4899hj69esHAPjrX/+quEwBYP78+Rg/Xrk6ub29HWvXrlUUZvTo0Zg0aRI+oDi5XbZsGYYMGdLj2smTJ7Fnzx7ZsAkJCbj++uuxa9cuavIIIVbGWtrx008/jTfffFP0vlRfzMjIwPLlwsuObW1t+NOf/iQa76hRo7B48WJJ2fbu3YsTJ04I3nvmmWcQHR0tGV6Id955h/gc0ZSUFKxYsQIAUFlZiQ0bNihOjybZ2dkA5Ms2mIkTJ+K2224DIN9WnnrqKcTGxuLYsWPYv3+/6HNJSUl45JFHBO/JpXHTTTdh+vTpVD6+PvvsM3z77bei9zmOw+rVq3HkyBFZd3JGMGjQINx/vzJ1T0VFBd59913R+5GRkXjuuedw+fJlbN26VbFMy5cvR0ZGhuJwPM8jR0S5k5ycjJUrxVXwhw4dwtdff604zWCefvrpbutLDbz22muiH6zz589HVVUVTp48qSkNKaZPn47p06f3uv6Pf/wD5eXlxPEI9UnSccsnA6050ciRI3HlyhXR+y+//LLsxzOpLKmpqXj44YcVza9Yxul04qWXXup1Xck7KCEhAY8//jjOnj2LHTt2EKc9c+ZMJsbJQLKzs7Ft2zZcuHCh172xY8eivb0dW7duxc6dO9He0dsZTQaA/eg+v2Lu3LmYN2+eZdxOs7DAFFwWahf3lLgPNdJSkJW6VgJLloJy6dC0FNS7rqKjo0VdGeuFlZQQVpI1EFrtRm9X/nqi5cw92tbAtCB1HxqowLBqG6aJVS0FtSDVJ233ocpRqhRUW/8sjqUswrpSMAXdrkP38AprlOd5D8dxe9F9xqC52qk+SFN8POr79zdVhpbUVNSXlUk+0zFwIBoSE9Gg0PVG56BBQFYWABiTz6wsv2s2T10dcZodAwcaVg9dgwcDXkVwff/+aFThzqRj4EB/uSqBb2tTnM+W1FTwQ4ZQLR93RkYv+dvLyojScPTvj85Bg3SvL7Ey1pKuJzNTMnxTcrLo/fjERNE697S0SMbbnJIi215aL18WjYMfMgRQoQxoTEpCPeHkJDIpyS+jOyLC9HHRX14K+0zbgAHEY54nMxOIj0dbUZHks5ES9ScV7tVXX1WlzBWjNS0N9XJK3qwstBUUmF9/AOID2hQp7vBwSdnbIyOBrCx0NjWpyqMnMxPIzFQcjoN4XYdLjA0A0J6fT6c+srJUjQOBNCQmin7gdA4ahDaXS9e248nMFCyrxqQk1AsoOcSISE7uFY8nKopIdt8YQSufTcnJqK+qEr3PDxkCOJ2ScZDKEuMdi7pqa5no41pxOp3CfScmhjh/Lu8401lTo/hdwVwZZmV1j/Olpb1uNSUnY/369fjkiy9ko7lt/nwMkjifMBBWFiJYUAoGY1sKqktHL8y2FKS9mGnm4ujChQvx0UcfGZqm1RaD9SRU3Id+9dVXZovQC5fLRTTWhaL7ULfbTRyPFdubFaDxng1lS0GrtTvbfShbsK4UrAQwEIByk6NufOHEVxVsQhaSwZF1v9KB6and9WoUNHbwGL07hvYLVGt5szApVoNc3Uvdl7onV55ay9uI/hGYhpUnJkraJmk+1bT3iIgIqgpBwHoTaT3bkdq49ShDo3aF0pDd4XBIfuDo3cbE3BgqLUOWFtTkPhj12Jlr5TGaBCVjrhaLK6vQ0dGB3/72t7KWjWEuF+B2Y9y4cahXmZZ9pqD436QYcaZgME6ZjQeA+RYMajDTUlBpOiy0YVJGjx6NjIwMReewasVK5dPXzxQkHftoeMGgDalSUA0sWApKnc2pxFLQ7PZWXl6OU6dOoampCSNGjMCkSZPATg9Qj9nuQ21LQboorU+1ZWzF+ZkZsK4UvAhgEIDhKsMPR7el4SVqEtmEFBzHMa9s04KRctJQfhj9QmPpBaq2LapJhzZyL1yp9hDqL2tWlYJK24EapaBcflnpfyRy8DzPVP0pxYqyy40NtNoPjXik4jCindNSCmqBdhuT25mtx85cK/YTJRihFGS1DIPlqq6uxj//+U9UVFRIhktISMADd94JSLhfJkmvLysFg7HS4g5JnzFzU6RazDxTUKn7UFrpGkF4eDhWrlyJ48ePo7i4WNBlMU1Y7N9mEipnCrKIy+VCB4HnCTXlzcKmaFpnCppJYWEh1q9f76+nc+fOoaSkBIvGjqWajhnjTl+xFOwrYzpt96H2mYLaMH8ElsZ38MUcjuOGKQnofX5OUDw2fYhQHVSVDG5GfkAHpmWVAZi1NsKaPKScPn1a8n6oWQoqCceqUlAprFgK6gGpHKzUnxo5SPsSSxs6rGYpqHcaUrBgKXjmzBlUSbj7VEpnZye1uOToK5aCStphKFsK5ubm4s9//rOsQjA5ORkffvihqvNSWYGF96yRloJazxQMxiiloNFYyVJQqRxmj1kRERGYOXOm4rOf1WB2XpViVUtBe27QrRTUq/5YaMdSVuGBm9RYtBT0tc8DBw70UtweOXIETU1NhstEG9tSUJ9wZmG7D2UL878UpNkA4BC6LRrf4ziO6JAKjuMSALznDXcYwHrdJLSxNFaxFLTCQGimpSArL1ChfCspC6u90H3s2bNH8r6ZSkGzJwOsKgVtS8HvILUUZAWWZPFhhlLQSpaCerd1sR3ONJSCpNTV1eEPf/iD6vDByCkFbfehylEyjvueDRVLQR/nzp3Dhg0b0N7eLvnc3Llz8eyzz2L06NGq0mHFUpAFpWAwVjpTkKT920pB9WkDbC6yWwWrlY3V5KUNq+9Hkr4u5V5TDlb7eGC6UjJYZYy/fPmy4PUrV65QTceMdmy2UtCoeO0zBYWxwlq4lWHafSjP826O4+4D8DGAmwCc5jju3wB8wPN8S/DzHMdFAbgfwH8CGAzgawD38TxPfjqsjU0IYTWloNGwtFhiZfehcqhVCsphhTMFA7HKR4UQeigFWel/VnMfKrdb8fz58/jmm28QFRWFSZMmYdCgQbaloAR6Wwpa3X2oWR+aWt2HqtmQw0of14u+fKZgYWEhNmzYILs4FhYWhvvuuw9jxowxSDJ9YaH+aClI9X4nCMlFkqaVx1nAePehescj9XyojfEs9G+WsC0F1UHTUlBNHfjWQFgtZytYCkqVXU1NDfX0jMZsF662pSBdlM6b1M6zWB1TWMN0pSDHcW8RPJYLYAqADABvAVjLcdxZAAUAWgBEA8gEMAFAJAAOQDuAbwH8N8dxPM/zT+ogvg3DkE5crGApqBYj5aThPtTIFxrP84ZYCiqBFSUJbdSeKai3+1C1hIL7UJqLLGphpb2LKVSCYan+xNi1axf27dvn//v48eN4+OGHJc/KYJVQsRSklYYUYm1YaZtl6aNSi6XgoUOH8PXXXxOn5ct3bW0tcRgrYoT7UNbGycbGRnz/+9/HG2+8ITum9OvXDw8++CDS09P919T2CdtSUBw9d3zTVmaTLESx1uZJYMlS0Irlxwos9m8pzHAfyhKstnWSdhQfH4/q6mpdZTBa8UPaXlJSUnSWRBsej0dyziz0jeBwOCylaGHZUpAmrI9htKBtKWifKagN05WCAB4DQFpbPLoVfpEAbvD+AuECngsH8HDAPVspaCCxDQ1IMHkRMqq8HAkyCzxhxcWIq66Gp75eUdyuoiIgPh4AZNOgAZ+XB3jdNnB1dcRphhUXGyIfADgKCgDvTqr4mhpEyLhmEiKsuBiIi1McjuvsVJzP6IoKOAsLqZaPq6gICJp4hZeUEKURz3HEz2ohvKQESEjodV3PdKX6YmxXF5CfLxywoUFSruiKCvGwXiLLysTjyM/392MlxFVXw01YXrEej19G2u1NFb7yUthnosrL/WHlwnHXrgGNjYgoLZV8NjYuTrT+xMJFRETI1rlS0lpbZfPE5+VJtyUDiXG5BMugvb0d5z77DAlBH04nPvoIM2bMkJQ9PDwcyM9X/c5wFRUBQedYkCJa1y0tknVNrT7y8wGN85V+dXVwNjYK3gsvKUFkVZWubSeyrAxobe11PbaqClxzM3E8cQL9y1lba0q7j2xtBdfWJv5Afj4QGdnr8tmzZ/H1jh0AgN5vOmFi4+LQfvkytq5dSxyGZZxOp2Dfcba1EddlfGQkkJ+veF7CwjjZ2dmJvLw8XLx4EdeuXYOH5zHYe88JIB3AUQCBI9aIESNw7733Ijo6mooMrCxEsLjAxErZkEAiK42FbKPryQilIEsbd0IVu2x6IlQeNM4nttKYpQaSvt6vXz/V8au1MDSayZMn49SpU72uT5o0yf9/szcBCsHzPFoFvgF8REREUE3PDM9HZisFbUtButjuQ9mCBaUg8J0yj1aY4Ht2azCYVevXY7zZQgCYL/dATg7GqYk4J8f/32w14TWk109Jmjk5mEhfGtG0fDxPIQ4lhEF9PagNJ4iA/FO9P1JGURNGBJEyztY7XSl+/nPBy/EgkOuVVyRvz/P+BFHZ3h5VGuA//xNAt0/rbFUpUsSbZ8V9RsmY5312uvcnyQ9+IHhZMo1f/1ouVkVc7/1JkpODmQBmUk1ZA//6r70uRQB4WSJItlycv/kNxgGa34lKyZa6KVHXN3p/mtEguw/JXWc5ORgNYJbmVKTTEOJpNXH9+Mc9/uwPBsYtIUTyPNH7U8wPfsBmPtXy29/2uhQJhXX5ox9hFJTPS2YofN4MZgM44P3//PnzMWPGDMGFUVoLLX3ZUtAMyzCO4zB+/HicP3+eOIyZ7kONJtBluFh9GNV2rHL+NItYrWzMsBSk4Skj1BeW5fp6fHy8JvehJGFYaMvTp0/H5cuXeynYEgQ2U7OEGqWglvK2qvtQK5wpaCsFhVE7z7Li/MwMWFAKPm62ADb0eXvlSqQnJZkqw4QJE3Du3DnJZ+644w58/fXXqKurUxT3ggULMG5c99LpmjVrVEpIzosvvug/4Lmurg5///vficLdcsst2LVrl46Sfcfy5cuRkZEBAPjjH/+IDhVWI4sWLcLo0aMVh+vs7MQf/vAHRWFGjRqFWbNm4W9/+5vi9MRYsmQJhg8f3uPa8ePHe7jzEyMpKQkzZszAZ599Rk0eIe644w6MHTu213U92/HAgQNRUlIieC86OhrPPPMMmpqasGfPHhQVFSEhIQFTp05FWloa3npL3MP0kCFDsGzZMsm0d+/eLbjrDwCeeOIJxKuwFPz73/9OPGbEx8fjiSeeAABcu3YNH3/8seL0aJKdnQ2g+3yE119/nTjcnDlzMHVqt3pbrq2sXLkSycnJsi78hg0bhqVLlwreE0sjIiICzz+vetuBIJWVldiwYYPkMy+88AK+/vprHDt2jGraakhJScGKFSt6Xd+7dy9OnDghGGb58uXYuHGjaJxhYWF44YUXcP78eXz11VeKZVqxYoVq9zpide10OvHSSy+Jhjt27Bj279+vKs1AXnrppW7LKg289dZbaGhoELy3ePFiVFVV4ciRI5rSkOL73/++oHugtWvXol2B1X56ejoefPDBHteUzDmM5Nlnn0VUVFSv62reZVlZWSgpKVE1b2ERsb6jZK40aNAg3H///bhy5Qo+//xz4nSnTp2qa1sXwu124+zZszh69ChaJBbGgO5zKPYDKPX+/b3vfQ+LFy/G1atXBZ+n5T7ULFhQCgajZ9kE1teiRYtQWVmJiooKAN3zh1tvvRUH332XOL5QVQr6kJJdL0tBK7u1Zg27bHoiVB79+vVDv379FK/16AEr74Vg5Pp6//79AeirsDDjXRUsV1paGp588kmcOXMG9fX1GBUeDuTk9HiOVUvBNgnPGkKKcaspBfuKpaDafmC1d4HS+rQtBfXFdKUgz/PrzJbBhj5N8fGo904gzKJtwADUFxdLPuPOyEDjt9+iXuFA2jFwIJCVBQCG5JMfMsTv3qyrupo4zfb0dMPqIbBM6vr1U+Wuw52R4Y9DCZzbrTifLamp4IcMoVo+QvK3l5QQpRGelISuwYN1ry+xMtYz3djERNSLLNTVA/jjli2orKzsvhAZibL2dnxz6BAWLVokKVdTcrJse2lNSxONw5OZCahwh9KYlEQ8ZvDx8X4ZO1W0U+p4ZeG6uhTJ0jloEPGY1zV4MJCWhra8PMlnW1JTRetPLFxERISqMUKK+PR01G/ZIvkMP2QI2q5dM7/+AEQkJgqWQevly6LyuTMyJGV3uVxAVhY6amtV5dGTmQmkpSkOB4jXNcdxknXdXlxMpT64oUMBjYsRzSkpqBdRLHYOGoT2sDBd207YyJGAwJhU16+fIkVXfEpKrzL31NQw0e6D8WRmAjExva6rkbUlNRWV9fWC8VkRp9Mp2HeUzJX6eduCu7WVOIzT6eyeexvUXtxut3/jVVNTk6KwqQMG4JY778TSpUtFFfo0MWthgoWFIrPOkIuJicGzzz6LkpIStLW1ITMzE1VVVaLPm2kpaJb7UD2VgrRgoQ2zitXKxix5b731Vnz00Ueqw4f6wjJNpaDVLZ2SkpJwyy23dP+h4rgKFt2HCmE1paDR500qwbYUVI7S+pT7lrXPFNSG6UpBGxuzUTOIWmWAMVLOwLTUpmv0C412ekL5VlIWVnuhkyK3YOJXCAbA87yohV/gM3IYtbOLJA2rjBtCKGmbgW6ppGBlwYn0rAVW6o8VOQLRY+wyyqUYjXik4jDCLZKeFhmsvpdY+Ai3GkrGXN+zSsd+I8Ynj8eDkydPYs+ePYoVevFxcUBjIx588EG/8lJKZlqWgn3ZfWgwRlrWORwOvxcTpfA8j9LSUtnnrGgpaKZSUGnf6CvjsxqsVjZmzYUmTpyIrq4ubNq0SVW8tMZvFufvgHxf13KeIEBmXWdGW1br6pQ1PB6PpKWgEFZTCpptKWhUvCy2Lz1QqhQsljH0EYPVMZc1bKWgTcii524mowcYtekZ+aFqtY9inueZevEaNSE2I89q24aYy1EfZr3olaTLqlJQaTtQsjhEmk+W+l9KSoqgctoHS3WnRha5MKSKXDFYqkul0JBdqn+YWTZKx14r1aP9Ea4cJfn0Pcta2ZSXl2Pz5s0oKipSFC4pKQk33ngjbh8xAghwna1X/txuN/Lz8xFbVYVkXVIggwWlICsKUkC6vgPlcrvdeP/994ksUFm2YBDDCKUgSxt3fLA0l6MBC/2bJaTayrBhwwyUxFrI9TGf+8lQcx+qByxaCtIe96xqKRjKSkHW5upyKP0+vXz5sqp0Qu2drxe2UtCmT8PKwcZKUKuQ0BszLQVD5QXKmjy0YHUSZlsKkqNGKWil3d833XST5HmeRlnAaIGGVaxaBb5VdvjqEQdJPGa1dSu6tSNFras/Iay2qUkOsTrTWyno8XionPMpRGdnJ/bu3YsDBw4Q11dYWBgmTpyINWvWoKysDBcuXICztlZRuhzHCZ7HI0dXVxfWrVuHhNpaZAPdZ3tqPLtUDSz2X6POFNTCwYMHceXKFaJnaeSnL7kPNdNSMC4ujlpcLMBi/5bCLEtBQFt7Zn3+rxW5slEyH1BrfWeVtsyinHJnCoaCUpDGPL2xsRHx8fGqwhrleSpU1jTlUKrklTMUECPUx25ahMaWDBsbAfQcHK0ywFhNKWg0tD94teSb47iQ2SUXjF4LrlZoZ6z2CyMsBa2kFJwyZQqGDh0qep8lpaAeloI+Pv/8c8VxmwVL7cdMS8FRo0aJ3qPhPpRVaCoFSRf/rYJUvWdmZhLFocZ9qB60t7dj7969eO2117Bv3z6iOna5XJg5cyays7OxdOlSzJkzR1M+5s2bpzqsDyPOLRTC7PoDrGkpeODAAeI4rbypIFQtBcXmczfccINWcZiChf7NEnKu3M2Gle+IYEiVgmrR03uXFvRI0yqWglraolWVgn/729/Q2dlJQZqe0CwPte9dFsY3JShVCra3t0vet88U1IalLAU5jksAMBvAZADJAOJAptjkeZ5/UkfRbGx0Re2AZuRAGPiytooLOiPSY+1MQSu5D5XDPlPQOPRQWLOkBHc4HLjjjjvwpz/9yWxRZFHTjuT6IM/zRG7SxNAyrgwdOhR5eXm9rtNYiJcjFCwFp0yZQi0uK50pKITb7TZbBOaZNWsWioqKZMcEs92Hut1unDhxAnv27EFzczNRGKfTiRtvvBGzZs0itgjiOE72TMHBgwcTxcUiLL1nfVhhLtTR0UH8rO0+lD2mT5+Oa9eu9cjfuHHjEBsba6JU9LHS+xkw11LQameoGQlNS0G9ZGAFFvucbSlIRldXF65du4YRI0YoDsu6paDVUKqctcJRWlbGEkpBjuP6A/gVgBUAIlVGYysF+xgkg2pnZ6eqwdfMyWEouw9VCyum9lrzHaoTgVB7IffFMwWVPG9FS0E5WLIUVAOJ7GfOnFEdv5a6nDp1ai+lIMdxGD9+vG5p0owDkLcU1Kuth4WFYcyYMdTis1qfDMaKi/N6EBkp/qk0atQoPPLIIzh9+jROnz4tOjaYqRQsKCjAJ598gpqaGqLnnU4nrr/+esyZM0fUNZRcPsXgOA4REREAuq0sL7a2Wkr5zMJCK8/zQEA5m+k+lNRSUAlWnBuYeaagEe5DR40ahYcffhinTp0C751f3H777YrjYR0rvbPNxlYKikPa10PNfWioWAp6PB5ZSyqaWPVMQQDYvn27KqWgFCwoBa32LtDDYlOIUB+7acG8UpDjuCwAewBkACBp7bzAc3ZrsBFE7YBklQHGLEtBtRj5QuN5nqkXqJX86StFr4Va+0xB41DjPlQO1tq73GIhK/WnxkWGnOw8z6OxsVG1TFrqcty4cZgzZw72798Pnufhcrlw9913Izk5WXWcpJjp3owGEydO1D0N1vqpDxaVgomJicSKLD1ZvHix5P2srCxkZWVh3LhxePfddwWfMUMp2NXVhX379mHPnj3E4+2IESNw5513on///pLPqVUKBnLvvfeCHzIEP//5z5l5H8jBglIwGKuUHSlW3PhmJUtBtWPQ8OHDMXz4cCA/H3j1VWbyQxNW389iWPVMwVBHb/ehJFilLbMo5+nTpyXXNG33od9B6nkiGNYtBVlsl1Io3VxHso6hJpxNN0wrBbnu1v0xAJ/fljMANgBYAOA2dCv7nkC3G9EhAG4GcKP32SYAPwNQZaDINl5iGxqQEBZmqgzRFRVIqK2VfMZRUID4mhp0yDwXTHhJSfdHBiCbBhXy8wHvTmVHdTVxmuElJcbIB8BVVATExoLnedVpuoqK/PlUhMejOM3oigpw165RLZ+w4mIgOrrHNdI6iHW5EFZcrHt9hZeUADExva7rmW50ezscLS3U442JiPD3QzEiy8pE8+YoKABUuEyMq64GT3g+UHh4uF9GV1GRYf1RlIDyUiJLRGkp4HW7RDKuoqsLEaWlks9GV1SI1p9YuAiCOleLU2pszc9HVHm5+fUHILarS7AMpOSTa3scxyG2qkp1/hwFBUB9vaqwHIBbhw3DrEGDUFtbi+TkZLhcLtl6lmtfJISFhVFpT/E1NaKyhBUXI1LBe1sJUn0IUD6ux1ZV9YqPa2xkot0Hw1271qvN8fX1psp6/YgRiBk8GLt37zZNhtjYWAx3OonatdScw9cWjJiXAN1n7m3/4guUlJYi8NRDJ4B0AEcBBDp0jImJwcKFCzFhwgSixRCxBSUS96FSf7MOC/IGlm9JSQlOXLtmojT0sdqmSMBcpaARloJ9BbtsesJxHEBhA0gwNBaWWV6cpuk+VI0beo7jQkZpa0af3L17NwYMGCB633Yfqi/2mYLKMcp9KMvjLkswrRQEsBzAdehW/n0JYCnP826O4zLRrRQEz/PrAgNwHDcVwJ8BTAGwGsACnucvGSq1DVatXw9px1/GMFfugZwcTFUTcU6O/7/ZasJrSC9JSZo5OZiugzhiaQHdC7zZGuNQikNDmmrDCSIg/zTvj5RsWrKIIVLGuqerFz/+seTt27w/QVS2tyeUBvjNbwAAo70/U1E7dikJ5332Zu9PDZJp/PrXKmOVRnJszcnBPADzdElZBT//ea9L8yAhX04OUX3PUiuPyr4USAQA8U/a3kz2/jTz//6f5ijul7qZk4Nh+G7HmpFkqwn0L//S4884tfHojUCbSwAbsk42W4D/+i+ix7IgU14vvojBcs9Q5N8l7s0GcADdrkInT56M2267DdFBm7CkoGEpGBjGKgsNrCwUud1uuAC8//77qJex6tSCGe5DzbZQ1oIZ7kPNiicUsZoixRBLQR2UgqGO3mcK6uV2VCtq3/+046RBWVmZ6L1QUAqaDeuWglaDtlKQ53mUlpaisrISgwcP9nsP6YttVQ2sKwWXef/lATzP87ysnSnP88c5jpsN4CsAMwG8z3HcNJ7nxU9ftaHO2ytXIj0pyVQZpkyZgpMnT0o+c8MNN+DatWuorKxUFPe8efMwefJkAMCaNWtUSkjO888/7z/TpKqqCuvXrycKN23aNBw5ckRP0fwsWLAA48aNQ1dXF37/+9+riuPuu+/G0KFDFYfjeR45ChelR4wYgYULF+L1119XnJ4YixcvxqhRo8DzPFpaWhATE4MjR47g4MGDsmFTU1Nx66234r333qMmjxB33XWXoC91PdtxeHg4Ojo65B9USGpqKh5++GHJZ3bs2IGzZ88K3nvkkUeQpGKceuutt9BAaCnocrnw4osvAgAuXryIL7/8UnF6JGmQumHIzs72/19JnS9duhTDhg0jCrd8+XJkZGRgz549kmPwxIkTcdttwirbzZs3Izc3t9d13zijB7W1tVi3bp3gvaeeegpHjhzRdO4eLeLj4/HEE71V07t27cLp06cFwyxevBhbtmyRjHfmzJlEY5UQTzzxhOhZXnpx+vRp7Nq1S1McEREReP755zXLsnHjRhQVFQneu/vuu1FdXY39+/drTieYSZMm4dZbbxW9r3Rcz8rKwj333NPjWlNTE/7yl7+okE5fVq1ahcTExB7XKisrsWHDBpMk6p5zxcbGYufOnabJEDjGy1FQUICPPvpI8N7o0aOxaNEiFBUVYePGjZSk60ljYyO2bt2KktJS0WcyAOwHUOlwYNaMGZg1a5YiZaAPsYUBFtym6QkLSgOe53H69Gl1mzAtAI1Fp75kKSgmixhW74N6YrWyMdN9qG0pKA4Lii6rtWWrYzX3oSzDglLQav2HtlLwgw8+QGFhof/v+fPnY+bMmXZbJYR1peA0dCsET/A8T+xrhOf5Vo7jHgNwEcB4AA8DeEsXCW0EaYqP13UnKAltAwbIytCYlITGpibUK/Rr3J6eDmRlAYAh+fRkZgJRUd3/j44mTrM1Lc2wevCXSVeX6jTdGRn+clUEzytOsyU1FdzQoVTLp2PgQByvrsaOHTvQ2tqK/v37IzExkSiN6ORkeDIzda+vzkGDBMtYz3SVKK2UEJWUJNteWtPSUC+yWN81eDCQmqo43YbERNQ7nUTPOp1Ov4wd9fW6lLMipWtAeSmRpWvwYOIxz9fGWi9dknw2cBwNZugtt+BE0Nlc4eHhGDJ3rqD7Wxp44uJE5fVkZqL12jXT32sAwMfHC5ab1HjfMXCgrOzujAz1+cvKAgxWCnZUVmquj4iICHXvnCBa09JQL3JORdfgwWgPD9el7bQNGCApv5r3Yq/4mpqYaPfBeDIzgaBzJzt1KmdS2tPTEWH2/FdBe+6SmDv52lYXx+mSn9zcXHz44YdoIXQtvvKxx7rrXCW0LQWtAgtKQQD4+uuvmVAK6mEpyLJbMzGMUAqKlbXScrZSfzMau2x6wrJSkGX6qvvQULIUlMK2FPwO1t1Q9hWloNvtBs/zxHLLlX+gQhAAvvrqKwwfPtzSbdVI2PhSECfF++/FoOv+GSzHcZFCAXme/xbAQXR7M/yeLtLZMA3JIDNq1ChVcVtlgDFSTt+HpZY0jX4R0n6B5ubm4rPPPkNrayuAbssjIWsnMVlYWbyhjV6ulUjamh59QEmcgc/q1R9J242W9q6kbZLmU0qeCRMm4Pbbb/dbSPfv3x8rV65EjE4KQTl5eJ5nZtxXIwfJoqWTUNEthFXc/ugRB0k8VvlYs4qcgHA/YMGNn5XKkGQBlXZ+urq6sH37drzzzjuyCsHIyEjcuXgxACAuLk5TulJKQSVnCloNVuTXw1sEK7Aw7iiFJUtBOVhpwyxitbIxU15W2jOLGPEdaWbcfR2hOY5tKUgP+0xBdehhMBDIsWPHLLlpywxYtxT0Kfyagq4H/p0IoEQk/BUAc8DAMU42bJKVlWWJQVStYsFqSkGjoV33Ym4qSVEjT3Z2Nnbv3o1Tp07ploZW9GoTWuM1oq0aoRQkVebMnz9fdRpqlIJaXULNmjULM2bMQFNTkyGuKa2iFBRD63kHWpSCZiBVX9HR0cQWSDSQ6h8cx+k27tKOV80Ob7MQatN6f2DKwWpZiWH0OT91dXX48MMPe+3oFWLIkCFYtmwZhlAad9VaClqpTwjBgqxGvjvNOFPQiu5DfbCgFLTdh6rHLpue6FUeoe4+lKYbbbXvTKu0ZbM2AbJ0ljErchgJ62cKWqX/BNLZ2YmwsDDZ59SW77Fjx3Q7cibUYF0p2IBupV/w4RHVAf8fAXGlYIL3X+X+4Wwsj9zgOG7cONWLoKSL3mZjpHy+nbJmWAqqQYnJOiladgurWTh2uVxISEiQfzBEsdruHzMtBQcPHozrr79e1zSUQtLeHQ6HYWfVWWVCraYdkYTRUsesbTaIiYkhUgoaZSloQx8WLQX1VADrgVELdTzP4/jx49i2bZusxZjL5cK8efMwc+bM7jGptlZz+j4ZhAh196E2+mP2uKMGEktBre2clvtQG3GsNhaZfaYgS4oVlqDpPlQqvNR9q7gPNQstbdd2H6ovLCgFrQjpuYK2Vav+sK4UzEW3UnBA0PXzAf+/FcDe4IAcxzkA+FZAjdsubmMZsrznroSyj3kjlSY0lIJmwNIHgtK22JcmDkJobd9GTK5ZcB96//33Y+TIkUS7sdSmEQgtS0GWYMlSUC+loNXch0r1/5iYGFRWVhomi20paDwsKgUBdstLCCPch1ZVVeHzzz9HXl6e7LODBw/Gvffei/46nGHYV92HsgAr707APlPQh5xS0MgNDqE0VzQau2x6QqJ80msObUQceqG3UpAEq7RlKx4XYLsP1Y5RloK2+1C69MW2qgbWlYKnAEwDEGz3eRhAO4BwAM9xHPdHnucrgp7JBjAUAA/gnL5i2rCIni9toy0FreA+lMZinBkvNIfDwcRCIqBeKajVrYdVIVmIYWEy4LNKNUMpmJGRQcV1gh5nCrJ2vocei4V6oNeZglax8vYhNW6Tnj1pdUtBI5SCrMKiUtC2FPyOlpYW7NixAydOnCAaW6ZPn4758+fr5sZYSvmhFCvVMQsYqTRjbYMKKUbLLacUpDE/o2UpaPc3cVibR8thdl2qTZ+lbwA9MNt9qFlzJ7PboxJYMmII9f6gFJrlofY7xkpt2YdtKcgOrCsFdwN4BkAGx3HDeJ6/CgA8z9dzHPchgIcBpAA4xnHcGgBn0e1qdCmARwPiec9IoW2shZpB9MqVK5g5cybzA43V3IdqQa3ShZWXqBrXGazIbhZmWQqqSUdPpaDUIiqtNJW0NdLzRVlrv3JKQSuP9ySys56/YKR2GEZHB3ud1xezLAVpYyVLQSHMVgoC1iovEiIiIhQ97/F4cOLECezYsQOtra2yz0dFReGee+7B6NH6Hv8uNr7RXAy1EYald4tVNv/ojRFKQaWyiGH3QXHssumJ3HehXV7CkG6k17P8rKTglvqmp1lGPM/DFxttpWBfVbToITvNOBsaGlSFs+LYZisF2YF1peAWAB0AwgAsB/DrgHv/H4BFAPoBGATgNyJxnADwF/1EtBEitqEBCRpc1dEgqrwcCRJnkUSUlgL5+YitqpJ8Toja2lo0Xn89IiMjFYdVA3ftGuBd5HRWVhKnGVlWZoh8ABBWXAzk5wNtbarTDCsuBlROChNqaxUN/NEVFUB+PvrV1RG/lPQkNjISzsJCRWUXEREB5OcjuqKCOFxYcTEgsMhnVDuhSXR7e3ebk0BqHHAWFgLt7YrTjauuhqO5mfh5Pi8PcDoRVlysSzknOJ3oFIk3JjxctIyUyBJWXAx4z4KSC+cqKgIiImTH4Kjyctn6MxJHU5OovNy1a7L5MYrI1lbBcpOSj6TtuYqKVOfPUVAAREaqCqsWqTwlNjQQ5YVkDCEhRuK9HFZcjAgV8wwS5PqQ0jR978VAOA3vdD1xFBT0Gr9LDh40VdbIsjKEt7SYW14K2rNLYo7oawv9PR6ktrSgneBdmZ+fj0OHDqG8osJ/mLsTQDqAo+j+oAskMzMT9913nyFnI9tnCpqHFd1rGo1ZbYoFpaAcdn8Tx2plo7e8ct/zcu06PDxc8Hpfdx/qQ68zBbXEzRo08+HxeODb9suSpWBffKcb5T5UrVLQithKQXZgWinI83wDx3EPAUgFUBx0r5jjuNsBfAggSySKvQAe4Hne/BX/Psaq9esx3mwhAMySupmTAwB4SG3k3vDZasOrSAvoNo1VkuattGWRIRIayiQgn0pZrSbQyy/jBdUp6sCPfqS87H79a9wO4HbS50XKWHG6rPDLX0renu/9CaKyvT2tNIA3ncnen+H85CeCl7OVxBFQVrLhvM/eCuPHHy3EQiJvOTlYAGCBYdLI8Ktf9bp0m/cnSE4OrpOLMycHE9XKo2HsVst070+QnBzxe8HIjCEkLPL+xGTJgDl9P1tNoBdf7PGnpne6ngi0uTu8P9PwyjSGARlIGAD5unUAeF6DOD5mAzjg/b/L5cKtt96K6dOnG6Z8sM8UNA8jF2Xs+iKD5ExBrdjuQ/XHamWjt7xutxtwiS9vyqUv9j4iabP79u3D+fPnwXEcxo8fj1mzZlmmfmieKah2o42V3Ifq6f0nkMA0WGpLtqKlJywoBVlqH6QYoRTsiwpsNTCtFAQAnuc/lrh3kuO4MQDuQ/da2EAAHgBXAWzmef4rY6S0CebtlSuRnpRkqgzTpk3DkSNHRO/ffvvtmDBhAt577z2UlZUpjt/lcuHpp5/G2rVrtYhJxNNPP+0/I6miogLvvvsuUbgJEybg3DljjtS87rrrcMstt6CtrQ1/+tOfVMWxfPlyZGRkqAr72muvKRr4hw8fjiVLlmDt2rVEO+D1ZuDAgVi4cCHeeust4jDR0dF45plnsGPHDpw9e5YozNKlSzFs2LBe19esWUOcLitERETg+eellyu3bduGCxcuCN576KGHkJaWpjjdN998E80KLAVfeOEFhIWF4eTJk9izZ4/i9OQYMGCA6BiWkpKCFStWCN5TUuerVq1CYmIiUbglS5Zg+PDh2L59u+T4M336dEyfTqy60Z3m5ma8+eabgvceeeQRHDt2DBcvXjRYKmFeeumlXm5jpcp77ty5sm1v5syZOHjwoCp5nn/+ecVuBrWyd+9enDhxQvDes88+i/fffx+1MhZbMTExePppxWr+Xnz55ZeibWP58uWorq7Grl27NKcTzNSpUzFnzhzR+0rH9dGjR2PRop7qzfb2dkPmOUp58MEHkZ6e7v/73Llz2L59u4kSAbNmzUJ8fDy2bt1qSvozZszATTfdRPy81Hxy/PjxmD+/e0vNiRMnsHfv3l7PXLt2DXv37kV1TY1oGhkA9gMo9f6dmZmJpUuXIjk5mVhOGqi1FLS6S10WYGlRxnYf2o3tPjQ0sMumJ2rGc1rs3LnT//+ysjL8/+y9d5wVRbr//+kzZ3LOOcCQ4xAkZ5SgBANGBAVdFOPsvbvu3t+6691w73f37t27jKuru64orqwJVxQDILpiAgXFgIAKOsAEhgGGyXn698ecczhz5nR3dXd1d3Wfer9e5zVzTldXPRW7up56nmpra8PFF1/Yssvy+MKCG22ntGXaloIswnJbNgqz8jxp0iS89tprqu+zY//hloLswLxSUAlRFDsAPOP5cBihKSEB9cnJlsrQlpUlK0NHTg5QVISmtDTUa1AKhYeHQywsNCWfYmEhEBcHAOiOjCROszk93bR6aEpLA4qK0NPSojnN7vx8oLBQ0731ycmqJk8tGRlAUREaU1OJzr0xmoS0NAgDBqgqu+64OKCoCK2ZmaivqCC7Jz8fKCrq97vV/VUL4eHhQfPiT2tmJuqrq4Ne68rLA3JzVafbkJKCJgkXM8EQCwuBiAi0VlUZUs4JGRmSY1hUaqpkGamSpagI8CgFle7rzM290C4rKyXDecdgZmhulsxbd34+Wk6cQL2GDSRG8FFNDaZNm9bnN7nyVnoeAsAbhw8DWttnUVFQt8RG0nz4sGSewoqLMWv1ajz77LPo6Ah0WngB7xiql9bMTMm20Z2fjw4Vz201tGVlycqvNk3vc9GfntZWJp8PXXl5QH6+7/ubL72EBovl7MjJQVdSkmXlddHVV6tywd4TFSUpa2tmpq8tRDY3o95v41FbWxtef/11fPHFF8RpxSUk4Ir58zF69GhLXBOacf4PJzisLmxKYcUiktnt0EqlYChZCubk5KCqqsqw+O1WNkbLW1BQAMi8d2hVGmoZEz755BPMmzePKVe8UtA8U1DrRhoryslId6g0oPUsCoxHb7x2VrSwfqZgkcZ3Urs9CwCPZTcBXCloPOw/pTgcjRh9aLJZrgMAewxo3d3dVougCm+ZsvIQ1eI6w4yDv1nGqjantj96wxvVj83Y+a6mjZHml7V2q1SOLI3Dx44dUxXeaNmtqEu5/h8WFoYBAwZg/fr1GD9+vGQ4WnLLxWOkWyTa8QaLj9UFfdqLHLSwalxzu92qF9WU2q0XfyvgEydO4LHHHiNWCLo9Fs2rVq3C2LFjLVsgpek+lGYdu2Vc3TkFVvomQDZfYnXMMwIjlYKk/cRuc0U1zJo1y9D47aBwMouUlJTezaIymGlJ2NbWZqhCmCY03YdqwSr3oUZAMx+HDh1CY0TPNvsAAQAASURBVGMjALYUIyw9083CrDMF09LSMGfOHNX32bH/kFoKasXMtXq7w2cSnJBF7+Bp1UCjJk0z5fMu0OpJU0+daL2XpRcqrUrBUEXvwo3ZSn2j0pNrw3Jp5qqwklTTT9577z3s2LFDUXHFWvtlTR45vvvuu36/mfXCEgzWlILe9pqUlCSrFLQ7SuWu9sUyWHxmu4XVSnR0tNUi2G5hi1TWiIgItLa2Ytu2bdi4cSPOnj1LdN/QoUOxevVqANYqv0RRlHSxbXV9zZtnp5N3tWGmko1GfXJLQev7hVMYPHgwRo4caVj8dqsnI+VdunSpYhitbjK1jgn+ljAsL04b7T7UqLMIrcIsWXfv3o2HH34YJ0+e1BUPVwoaC+3yMHozCStw96HsYMvtiYIgRAMYAyAdQDyARgBnAHwuiqL1fgA5TED6wHaypaAVSkG7EXgul5WobYtaFJp2mnST0NPTw5RiVw7WLAVHjx6NShk3O/6oKePq6mpUS7hs1Rqn1bBmKagWoxdlWVMK+stDag2lB6ssBZUYPnw43nnnHeLwweR0u90oLi5WbZ1qNIH9MSoqyiJJ2EBLGyPtG++99x4efvhhNDU1EcU7bNgwTJ8+Hfn5+UhQONfTDF599VXJa1afKcjSHNQoWHp2ckvBXsxwH0qqYHGypaDL5cKVV16JkpISnNm/Hygroxq/ncuGNiRjqZnuQ/XcZzak/d0o5Z4gCLZyH2pmnO3t7XjllVd0xcHdh+rHzI23tOfzrMKVguxgG6WgIAhhAFYB+AGAiwAEe/J3C4KwD8BjAJ4WRZHMUS0nJLHrblI1hJKloFZYWZDRMiH2hrfjRIAWSkpBIyZxrLkP1Zr/SZMmoba2Fp988oliGnZ4cdKLndyHqsXOskvB0kYUVt2HZmRkYOrUqdizZ4+udJYsWYJNmzbh/PnzuuKhSWCbDnVLQSMWEVpaWvCjH/0IjzzyCFF8w4cPx/Tp05GXl6daFiM5cOCA5DWrN6dYnb4Z2E3J5sTnZSBWninodYdHCmtzRbW4XC4MGjQIgwywlrZb2RgpLw2FFW357DKWGO0+lFsK6uPMmTO67ueWgsZiRHkMGDAA33//PXF4O/UfL2YoBe02/7QKW7yJCIIwBsAnAB4HMAW9ykwhyMftuf44gE8EQSixQl4OGzjJUtAf1t2HWoXWemRFKQiY4z7UjpMGOezwsGf1TEFBEDBz5kzdaWiFtbaotRztgBMtBUeMGKE7DjMsBa1m0KBBxGGl8pGUlIQ777wTq1atQkJCAi3RdMGVgvqRk7WhoQEzZ84kUggmJydj7dq1uPbaa5lTCALKz0ErzxTkSkG66Fn055aCFzCyXZ44cYJoM5oXO42pJNC0ardb2dhVKUhjEynL7xGh6j40FN5tAW4pSAOzj+gYO3asqvAstjslSMtNz/i7detWTfeGGsy/iQiCMAXAbgCjcUH5BwBNAI6gV1l4BL0uROF3fTSA3Z77OZx+eAfPiIgIzfdz96EX4JaC+tCymMgtBfUt3oT6mYK00tAKa+3W7paCoXam4ODBg4OeUzZp0qQ+382QzQwXpVrjptV33W43Bg4ciKFDh1KJTy+BbZqVsw+dYCl45swZ/OQnP8Gnn36qGMeoUaOwbt06FBQUqE6fBbj7UONh/dkZiN3k1YORZwrKxfHee+/5/ney+9BgXHXVVdTiclrZGI3Ryi+7QtNS0E7uQ7Vi1ZyfFez8jDRCdqOUgosWLUJiYiL1uO2GndubXWDafaggCPEAXgDg7Q3tAB4GsEkUxS+DhB8F4CYAdwKIRO95g88LgjBSFEV1vio4uohraEBieLilMkSdOoVEmbNMwisrgYQEDHS5UKvhzJOY9nagvFw2DVoIx48Dnt35YQr58kepDGgSHR0NlJdDaGrSnKa7ogLo0ub1N7Gurs+B3krE1tb66q+VgTNvYmNjIRw/rqrsEt1uoLwc0TU1xPe5KyqAIItQZrUT2vR89x0QEyN5Peb0acm8hZ08CWhQKsafPYvwtjbyG8rLgdhYRFZXG1LOcWfOSMYb193dm74ErsZGIplcJ04AnkV3WnmIOnVKVjazETo7ZduKmn5mCgFlJyefUW3Pi3D8OGDyi3AEgJXTp2Pbtm2+TSm5ubmYN3Bgn7IJkxkDEhT6BylK40yETB/VQ3RNjaL87ooK4rRjTp9WjE8ur2YSdvIk4LeIxEL/jKyuRnhrqyVyREZGqm7LYfX1/WQ9efIkdr76KsI6OlCI3rMasgHsA9DhFy4pKQmXXXYZBg8erE9wi7F6Ac9OC6FaYcnyjsRSMBQWoKy0FFSL1X2UNunp6Vi8eDHeeOMN3XHZrWys3iRFsgkkWO/nloLcfaid4e5D9WPFxtvJkydj8uTJaG5uxubNm1FdXS0Z1o79JxTbEaswrRREr3IvF4AIoBLAIlEUD0kFFkXxIIAfC4KwEcB2APme++8A8DvjxeV4Wf300xhptRBlZZiscB0Apno+mvh//w+lWu9Vg9/B5FmAOWlq4Sc/QRx0yKfjAPa7tNx0zz24TnOKBvDjH6svu/vvxxwAc0jDS5Sx6nRZQaHNLPB8tNwrxe1qb6Ax1ujh17+WvBQPwrr3Kyui8CrjZIFwyOStrAxLzBOFjIDyk23rAKaZKItZFAG4O/DH++7r8zUDCm1Wpn+QMtfzCUpZGbIAjNKdSvC4lcgD3fF9DlQ8b4wkIO+zPR9L8chUalX6//M/qoInIrisfwjy2wwAH3j+nzp1KubOnavZ0wZLcPehxmO3hR8rlJhmL+iZoRQkzVOoWQoC9PIUCuMHKawrBVmG5lmLRioOaWOErHYYr7j7ULoYXR6xsbFYvXo1fvc7aXWGHdqdVnh7Mx7WlYJX+P1/rZxC0B9RFA8LgnAdLry/XgWuFDSVp268EdmpqZaknZqaiquuugoHDx7Ehx9+KBlu0aJFGDZsGHp6evDoo4+io6OjX5ioqCi0SVgExcXF4eqrr8YTTzxBTXYp1q5d6zvHp7q6Gs899xzRfcXFxTh27JiRovlIS0vDjTfeiMbGRjz++OOa4lixYoXm82gefvhh4gNrAWDgwIFYtmwZXnzxRZw8eVJTmjTJz8/HFVdcgQcffJD4nszMTFx//fXYvXs3Dhw4QHTPlVdeGdTN14YNG4jTZQn/vhGMHTt24PDhw0GvaW1vjz76qOS4EIxbbrkF8fHx+OCDD7Bv3z7V6SkxaNAgHD16NOi1+Ph43HLLLZL3Njc347HHHlNM484770S4x/qbVluZP38+Ro8eTSUuGnR1deGhhx4Keu2aa67BJ598Ytp4qkRYWBjuvruvOmznzp04dCj4NCktLU33QfVylJaWGha3Xmpra7F58+ag1xITE7FmzRrdabzzzjv47LPPgl67/vrrUVtbi127dulOJ5ApU6ZgyhR5L/lq5gyjR4/G/PnzZcOoed4YyeWXX46ioiLfdxbkmjNnDpKSkiw5wyIyMhLr169XdU9DQwM2btyIlpYWvPfeezh85Ei/MHkA3gdQjd7nyRVXXIGBAwdSkZkFrF5IsTp9M2DJUpCEUFiA4paCzsBuZWMHS0Ga2GUsIe3vRin8BEFgxgW8E+GWgvqx8ogOoHdNWm5d2m7PAsD4MwU55LCuFByEXivB/aIo7lFzoyiKewRB2AfgIk88HBNpSkhAfXKy6enOnTsXEyZMQExsLNrPnpWVoSsvDygqggvA8MWL8e677/a5npKSgpjERNR8/33Q+8WEBHTn55uSz56CAiApCQDQ7XYTp9mUlob6c+cMlOwC7qQkoKgIPfX1msukIycH8FvkU0N9crIqpWBzejpQVIS2rCzUNzVpSpMmKenpEAYMUFV28RkZQFERWo8cIb6vOz8/aBlb0V9p0J2fD8jI3pKRgfpTp4Je844BaqlPTlalFOwpKAASE9F69Kgh5dySkYH6s2eDpx0fL5/H5mYimYQBAwDP+W208tCZm6u5vxuB0N0tmbeuvDw0nzhh2niqRExMTL+ya83MRL2Ea5H67m7ZfkJCRERE0M0zAJiqx0B6oqMl69WVnExF9rasLMk0egoK0BkRYUjfJ3lmiirSbs3MVIyv7euvmXheBI4fLYcPWy5XR04O4ouLUb97t+lpR0dHq2/LDQ34qKYGL7/8MlpbW2WDJiYnY/nNNzvufBOrzxS040KOWsxUCupZ9FdSlBmJVZaCXtfbgXBLQXvAy0YdWs8U5O5D9bkPJSFG5igQowgVS8HAthfKloJ2OVMwGCy2LTOwc3uzC+xsAwuOd8tIv/MDCTno+Wvt4XYc05g6dSpiY2MBqHsxnDFjBiZMmOD7np2djRtuuEHxoc/6IGWmfFIvlmpQcyZgIFoflGFBztezAkEQVOfBjEk66yi1Oxb6qJXn1NBabDFi1zhLO9EBe/WjYPVqZPuaPXs238Urg1VtJ5XAI4MZbp+sgPYiBw0EQUBqairS0tIsSVsNoijiF7/4BZ599llFhSAAXHvttY5TCALWt3kj01ey+jULFvqmGuwmrx7sYCnoRGj1e6vHL7VwS0E20aosJYWk3K1QCoYK3FLQGdhNGU0L3t6Mh3VLwUr0WvlpPbTCqwysoiMOh3W0Dojh4eFYsmQJFi5ciNbWVll3hP5pmTVI+afT0tKi6T6joaEUpBGHWlhRCmqBv7Tr29Ftdv+1s1LQiMmmnSawoigyNSk125LhoosuwldffYXGxkZT06WBGS9RVmwgCg8Px9ChQxXD0VYKstJvWVUKAsDSpUtNcS2vlbq6Otxxxx149tlnFcOuXbMGeOIJREZGgtw+3j64XC5LzxQ0kvHjxwOnT1stBlPuQ1m1FDQbJUtBlt6N7NLfrICXzQWMVApyS0GyTch62qOdlIJ2U87Qbnuh8IxUAwt9m8V2pwR3H8oOrCsF3wUwGMBkjfdPRq/70feoScRhGv8BUcvEJTw83HduFqA8CJk5SDU3N2PLli0oLy8nvsfMh7b3xVJPmeixFFTLoEG9XoVZefHV8jD3TuKdaglCglIbZ8FNBFcKmhenHpQWC1malJo5tqelpSE2NhYREVr3Z7GLWUpBGgS6b12wYAHcbuVpvJrNI1wpSIdg5/YaDWm9HDhwAMuWLUNFRYVsOJfLhT/96U+449JLAYYVnHox23LErPiHDh3KzCKrmX2TRnlaMZZY5T5Uai5BQ55QtYYzE7uVjdXy6lEKahkXWJqXyMHdh4YWoew+VCtWnykI2E8ZTYtQbG9mw7qZyV8A9AAYJAjCdWpu9IQfjF6l4F8NkI0TAsgtvAqCYNrCrCiKeO6551QpBL33mQUNK7/c3FzN96pVjI0ePRoAO0pBLTh5AkCKHvehZlsKtre3m5JesLSlsLINsdZ+SSwIWMFM96Fel9zcfag0ZrTldevWYd68eZg+fTpuvvlmTJw4keg+1vqZUbDQR/3LmhWFjD+vvfYaZs6cqagQTEtLw29/+1vccccdvt+Ki4uNFs8StPQPO/Sp6Ohoq0XwwZJVAclznoWxRA8lJSWKYZSUgma9G5GUtR36m1pCVWGqVt4iFefkcveh2uHuQ9VhN+UMdx96ARY2i2vFbu1OCTu3I6fBtFJQFMX9AH4DQADwuCAIK0juEwThSgCPe77+lyiKHxskIocx9FoKBqKkFCQdzPQO1E1NTTh58qTq+6xQCmpNMy0tDSkpKTRFkuTyyy9HVFQUAHsrBbVYCjoNlhabpBBFEV9++SUOHDhgWPxargHWth07ub8NZUtBbxuxq1KQBfehNEhNTcXMmTNx8cUXo7CwkPg+bikYGijVy5///GcsW7YMzc3NsuFmzpyJ22+/3bdxysu4ceN0y8giSnN5u1oKstJPAfv1TSvmlTTra/DgwcRhjTxTkKU26FScXsbTpk0jDktSFlqVXzQsBVkeB0n7u9Pch4aCFxyA/nyZ5bZsFCxsMmexbZlBKLY3s2F+RU4Uxf8EcC+AMADPCYLwjiAIawVBGC4IQqzQS6zn+xpBEN4C8AJ683avKIoPWCg+x+YoLRSQDlIkLr7k+O677zTdZxdLwdjYWFx99dUUpZFm1apVGDNmjO87K0pB74M+MzOT+B4tL+1Om1DocR9qVv84d+4cXnrpJVPSCoRlpSCLbZFFmYLBlYJsYbULQlpp26X9A2wqBVms5+7ubvz7v/877rzzTtlxIywsDNdffz3mz58fdM6am5uL2bNnU5OXFZxqKciSjFY8r7Rcd4qlYG5uLi6//HKflX8wlM4UNKv9hKqloBrk3lPtVjZy8mZmZuLmm2/GjBkzMHPmTABARkYGlbhJw8gpBZ2M0e5Dle7r7u62laWg3eCWgsbCQnnY7VmgBhbK1+lYfqagIAhqNAkCgJmej1K4CAAbBEHYAEAURdHyvHKMh1VLwfDwcHR2dhKFDYbWHZtmDqKiKKKnp0d1mosWLcKECRN0K05JSUpK6vOdFaWgl9GjR6OmpoYorBk+/lnHDmcKHjx40NC+qMftJYuL2FYiNa6LooijR49aIJE0oij2KUOj2pg3jcmTJ+Pzzz/vdz09Pd2QdGnhFEtBrdC2yLU6P15Yf0lkoZzq6upw/fXXY8eOHbLhUlNTceWVV8q6cBcEAXPmzEFJSQkOHTqEN998k7a4lmC1Qt+o+FmyxLeDRwd/7CZvMMaOHYsxY8bgV7/6VdDrZrgPDVUXmSSoyZOTlIJyCIKAwsLCXk8IKo9LUZOG1uuhbClotFKwo6PDtHUgoxEEAWC4rmnAcls2ChY2mbP8rqkF0nILxfZmNiyMvgJ6z/2Ta8liwF/vfVrDcQwmrqEBieHh5idcXg54rRqqq5FYVycZNLyyEvC4kJQi5vRpyTgSXC64TpyQTcNLfFcXwhsbFcNJ3n/2LFE6gcRGR2u6Tyvdx47B1dysKs1BbjfcCufbkJBYV0d0ZlvYyZNAQ4Pve2xtrallJEVsbS1QXo5pOTkIGzoUX3zxBdrb22UtMOPOnAHKyxF16hRxHtwVFUEnqyyUgRY6vvnG1+eDEV1TI5m3sJMnAQ0LH4l1dejo6CAOf+Ldd5GoOhVy5PIYHh4u/3Ld1UVW935x0GorEVVVAEPnHgFA0vnzQfvc0V27mOsjPd9912exSO55pQfv2JQlihggCDh37lyf6+OHDjVsAYcGrnPnJMsl3uWiIrtcH3SdOIEIFWO0JBrldDU0EKcdXVOjmI5cXs3EXVEB+FnCsCBXZHW1r/wSzp2Du6XFtLTju7r61N23336LW2+9FcdPnIDX2WwYgGwA+wB4n2AjR47E8uXLERER0Sc+qQWGpKQkDB8+PGSUgrTuMSMuM+LVAksLOqxaChrlxi4hIQENfu88XpQsBc1SKnNLQWXklIIsKf9JMLIuWbQUZGnsk4PWmYJa65dk/cYItMprl3qVgrsPpQsLSkEnw9ub8bCgFASUFXekPSA0ewqDrH76aYy0IuGyMt+/4z0fkrBSrFQK8ItfoFRZKv2UlcEWp7mUlSEJUFcmBPVAwnqN6U33fJjghz+EAGCK50PE3XdjBoAZpOElyruU9H7WUGg/S3XcK8Udmu6ykP/9X8lLbhDWvV9ZEYVXGScr3C1zbaFpUhASUH6LPB9D+Pd/hwBgNYEcrJEChTb7i1/oTkN2zC4rQyqgf06ksZwTQHd8n+b5WE5AeSzwfCzFT6Z1VqT/m9/4/h0MYLdEsBkAPgBw3333ISoqynYLyzSx+kxBo2BJbrtZ3tlNXi0oWQqyNCaw1JatIJQsBY2+X4/yS6+lIMuQKkuNtBQEes9D/fbbbzWlwQos9knuPlQ/LOSZWwpyjMJypaAoiuzMOjnUeOrGG5Gdmmp6uqWlpb7/Dxw4gN27pZZEgGXLlmHgwIGy8f3973/H2bNng15LT0/H3Llz8fzzzyvKlZaWhjNnziiGk2L27NmyeZEiMzOT2BUlDdatW4f29nZs2rSJ+J6bbroJycnJutN+5JFHiHaarV27FgkJCb7vH3/8MT788EPd6etlwIABWL58eb/fjxw5gu3btwe9Z+jQoVi8eDE++OAD7Nu3jyidq6++OqiLsA0bNqiSlyWk8gQA27Ztw7Fjx4JeW758OQYMGKA6vYcffliXO2DaDBo0SNK1ZVhYGO6+W1rV1dPTgwcffFA2fpfLhXvuucf3nVZb0Vr+RvLQQw+hq6vLajGIuOOOO/pY97zxxhv4+uuvqadTVFSEyy+/vM9v7e3tcLvdzLlfDkZdXZ3kMyktLQ033nij7jT27t2LvXv3Br120003obKyErt27dKVhv/8Rg1NTU3429/+RhR24sSJmDFDfovJnj178NFHH2mShSaLFi3CsGHDfN+3b9+OI0eOWCgRsGDBAowYMQIA8Nhjj6G5udm0tBMSErB27Vp8+OGH+MEPfoDmIFaKeQDeB3BaEPDYX/+Km266Cf/93/8dND6nLT5IoWWRmFsKqsPMBR0a+bZyAYr2M5XkLK9g0FAKcveh0oSq+9BQthRkeWGblvtQvZaCJSUlpioF7dZ/tMKVghews+xyhEpb5hiD5UpBjjNpSkhAPQVFjxoEQQCKinzfO2pqZGXoysvrEz4YDSkpqJfYRRmdloauvDyifMZmZqJexg2kEm1ZWZrKMyY1FfUq3BzqpSsvD90dHapkFQsLgZQU3Wk3pqaitbVVMVxPQQHgd65gV1WV6W01GC0ZGUHbY1dTk6R8bVlZQFER2o4dI85DT0EBkJ/f73cWykAr71dU4Nrpwe09m9LSUB/g7tALyRgQjPrkZKaUgs3p6aiX2Lzgcrlk8yiIomLdh4WF9Ylj4Lx5OHDggBZR+9Cdn6+p/I2kISWFqbqVo6egoI8L7JaMDNSfPk09nWBjUyT1VIyjJz5eso1HpaVRaYMdJ05IptFTUIAOgn6miFY5ZZ4hgXifKXK0l5cz8bzoyMnpI2tzejrqTdwEFYzO3FyfTA0pKWgKcMlpJGJCAv53yxb8x3/8h+LGhr89+SRmrV5tmw0QRmK1+1CjYElGlhbhSCyBrLAU9Mo1depUvPbVV9TjDYQVS0HuPlSZsLAwSK0gOKlszMiLHqWgky0Fje7vSuXuVQqOGDEC8fHxaNRx5I7VsNgnA9shdx+qHhbyzGLbMgMWyt7pcKUgJ2QhGVjlXgyVXA75o/fwZK0vqGYPonLn30lh9gMuMD2WXOSoxSt7qE4SvNTX10teY+FgaCtRyqOWtjNhwgQqSkEW2y2LMklh1sKlncokGFYvNAmCYGkZqknbTnUd2P5DYTyXoqWlBS+88AK+UlAmDB40CDh6FLNmzQJgnCswO2G1+9BQsBS0mztOK8eSiRMnImHMGHzzzTcQRRGffvqprvi0KgVpWCxyS0E6OEkpaKQFupGWglrxXxdheY5Cy1JQK/6ensaNG4d3333XkHTMgMU+yS0FnYHTPHhw96HsYN/VcA4ngMDBkMbgSEspqPflyk5KQbVpWv0QY0UpKFUOTpsAGEF4eLjkNSP6gJ0mJzRkDWxnubm5uPjii3XHy0rfsytcKaifUFi0pK0UZCWvHQFeEFgYl/3LxqxyOnr0KB599FFFheDixYvx0ksv9fmNzy+4paAZmKkU1LPo7x1DrBhL/OUaMmQIlixZgksuucSw9Lx5lNrMaVb7CVVLQe4+1Jq4zbYUfO2112xhkW+0+1Cl++Li4ojD0sRu/Ucr3FJQPyzkOVTn7CyUvdOx9YqcIAhxgiBkC4IQpxyaw+kLyeCpNAiRDlJ6F7/tpBRUi9mLsqFuKejESYNWS1w+ySAjWJuZPn26rDJWa7xWw6JMUtB+yZPCTmUSDBYsBa3Eqc+HwDOEWRjPzSy/1tZWvPzyy3j66afR0NAgG/baa6/F1q1b+yy8AdxSELA+L6FgKchC31QDLSWm3g2hNOpQKQ4jLQU5dHCSUpB1jChPGp5VjEbL2bpqULp/6tSp1NKyGrvLT4LdnumhgJPbHW9vxmOr1XBBEAoFQfgvQRA+FAShFUA9gAoA9YIgtHp+/40gCAUWi8qxAJYtBfUqnrQo2wBuKUgC60pBsxabs7Ozg/4eExNDLQ2jkFMK8omEfqTaWXx8vCHxWgmLMknBLQXZgeUyoi0bK3ll0VLQDOrr67Fr1y48+OCDRIuNd955JzZv3owIE883tBPcUtB4WHIfaqaloN73CyOVgkqWgjTejWhsviWNx8nIKQVZf4cNJNQsBQFg9+7dvjhYxWr3ofn5+YbEq0SojC3cfegFtMrOQp5Z3oCqBe4+lB1sMZMQBCFCEIQNAI4C+CmAyQAiAQh+n0jP7/8B4JggCH8UBIG/AXMk0fuyYqZSUOsLtdkv4loGbbMfYqxaCmpxuUHTUnD27NlBf6fhJtJotLoPtfPE0Ey0uoPRGq+VsCiTFFwpSIYZL1Esv6hFRkYiISGBKKyd3IeybilIu5xaWlrw+uuvo6ysDO+//z5aW1tlw8fExGDTpk146KGHJBeVtbZbVtoADdTM5Y1K307xasHM8jV6Q6gaWLYUVDpTkKX2w5IstAhV96FGYrRSUCvNzc2a7zULo92HyjFr1qw+m3vt3qZZlJ+2ZxmWNvpo4fTp0/jggw/w8ccf4/z581aLQwyLbYvjDLT5XDMRQRCiAbwJYCp6lX+ywT1/wwDcA+AiQRAuFkWxzUAROYxgtqWgml1joXKmoJVKQa3xsKIU1AJN2QcPHowRI0bg0KFDvt+Ki4sxatQovPLKK9TSMQJuKWgsRk1CWex7dppwBz4XuPtQ9VjtWtQMBEHAmDFj8P777xOFtQssKgWNoLW1FZ9++imRItDLiBEj8MILL2DEiBGa001OTtZ8r52w2lIwFJSCLC0gmmkpqObdL5hcRioFX3/9dVRVVaG2tjbodRruQ61+v3MKTlIKatlsMmrUKBw8eFBX3KSQjA9OxMp2RLppjcMOdu4LXV1d+Mtf/uKbl7z99ttYvXo1cnJyLJZMGadt1uOWguzAvFIQwGMApgHwtoavAGwE8AGAcgDNAGIBFHnCrQEwGr0Kwqme+1eZKTAHiGtoQKLO86bU4na7gfJy3/eIqiok1tVJhg+vrAQUXnrizpxBeMDCk5fYiAiEnTwpm4Z/PCThpIisrtZ0f1xPD7rr6zWnqxbXiRMQwsNVyeo6cQKg4KIy4dw5uFtayNKLjfV911q2tImtre3Tfr3ItePomhqgvBxRp04R5yHs5Emgs7Pf7y4AV02YgAmpqaipqUFGRgYKCwvhrqxkonzkiDtzJmjZAb3lKiW/u6ICiIpSnV5iXZ1ml75GEHP6tHwdSZSNF6X6jYqKChpHwrlz6NLRNtwVFUBXl+b7jSDh3DmEEy68W41w/DjQ2Oj7Hl1TY0hflRqb7IKroUGyXOIiIqjkTW4MFo4fV5yPEKFDznkDByKiqgqffPKJbLjI6mrFdNQ8b4zEXVHRR1a5sd4sIqqqAM+5fQnnzkHw659q6enpwYEDB/DRRx+ho7MTGZ7fwwBkA9gHoCPIfevXr8fvf/97xPrNc+QoKipCeUCdu1wujB49WvIeOy4+SOFyuRy54MDSphuWlIIkWGEpaJRSUI7PPvtM8ppZ7Ye7D1XGSUpBLUydOhXffvttv41AWrDCUpBmHEZBWi5GWAoasalfa9qsxqkX2paCLLdlEvyf8e3t7dixYwfWrFljoUT6YbHd0cLu7c0OMK0UFARhEoAb0KsQ7AHwYwBlYv+W0QzgNICPBUEoA3A3gD+g9935BkEQHhRFcZ95knNWP/00RlqR8B/+4Pt3jOcjSVmZYnTrCZIsJQgDAIsJw0kR3LkjY3jKtFTDPXpZpzG9oZ4PE9x9d7+fiqFcnlM8HyJkytsFYKDn449S+ixzldxFjW2vfy0xjkI+S0ni+N3v+v20WpMwflDq+zS5zWoB1BBQfkssEoN1EqDQxv+//093GuM8n6CUlWEkoH9OpKO/CABmej5607jI82GCe+7x/bvMQjF8+JXfLQYnNQO9uyO9pKWlYcuWLZKuwKWYNWsWKioq0OW3QWPGjBkhcwah1QspoWApyNKCDoklkJOUglZ6UeGWgtKEqvtQLfLm5ORgzZo1ePTRR3XHrUepxdI4RhtaSkEt8QeONXZr03bAiLYriqJj6urEiRPo7OzUfByNWTjNUpAUFsre6TCtFERfC78fi6K4QekGj8LwQaG3Z/zR8/Nq9G6q5ZjEUzfeiOzUVFPTjIiIwB133OH7/uWXX+Ktt96SDH/VVVcpHmz88MMPozOIVRUApKenY8qUKdi2bZuibIFuGdUyevRofPnll6rvS0hIQENDg+Z01bJixQpERkZi8+bNxPfcfvvtvZZIOnnssceI/PavW7cOMX6WiceOHSOqQ6MZNGgQlizpv6wvJ9+kSZMwbdo07N27F3v37iVK5/rrr0dmZqYq2TZs2KAqvNmMGzdOciF0y5YtqKioCHrtsssuw+DBg1Wn9+CDDzK18724uBjHjh2TvF5aWip7v1L9RkdH47bb+qvL/v73v+Ps2bMkIgblhhtuQEZGhnJAEyEdR1hg5cqVSE9P933ftm2bbDvQyrBhw7Bo0SLq8ZpFQ0MDNm7cGPRaVlYWrrvuOt1pfPbZZ3jnnXeCXrvllltw4sQJvPnmm7rSUOrHJDz99NM4c+aM5PVp06Zh0qRJsnHs37+fyBWp0WRmZuL666/3fd+6dWs/izez8X+mbNy4UfX8q7u7Gx9//DE+/vhjSL0C5wF4H0C153tERAQmTZqEq666SrVCEAAGDBiANWvW4Msvv0Rra6vPlbgcTlp8cFJe/GEpX2bOl/Tm+8yZM3jxxRepyaLnzEq7KwVpwVJbtgK5IxLsVjZalW6ZmZmYOnUq9uzZoyluUriloLbreuK3cqwJVUtBTn+6urr6KAXb29tx8uRJJCcnIyUlxULJLsBi29IDdx/KDqwrBed4/laRKAQDeBDAjwDkAJhLUSYOAU0JCag3+TySiIgIoKjI973z3DlZGbrz8/uED8b5pKQ+u6f9iUxJQWduLlE+O3JyUF9drRhOiub0dE3lKSYkoIHCuRCkdOXlwR0VpU7WoiJNLhwDaUhJQRPBznaxsLCP+9Cezk7T22owWjMzg7bHrvZ2Sfnas7OBoiK0lZcT56E7Px9Q6TedhfKRoyUjQ7IvN6amol5CydOZm6s4BgSjPjmZKaVgS0YG6s+dkw6gkEel+u2KjQ0aR2NqKup1lENPQQGQlaX5fiNoTE1Fo00sZDpzc/v05aa0NPl2oBGpsck2NDRItvH49HQqeeusrZXuR0VF6Ojq0j+OUpCzMTUV9TKujztychTT6aiqYuKZ4I6P7yNrU1oa6k10lx6Mrrw8n0wNKSmoJ5x/iaKIr7/+Gjt37sQ5wj4cExeHxTNnoqSkBJGRkbos+3JycmxxnooRaFlkoblAYZaloJULr3ZZ0Ons7FS1qZEEl8tF5G6eNYtRGmcK0sJpC6Fqkeu7LClvjYaG4kqP+1C7jGNaCFX3oUZgB/lpKbntkFdS/PNy5MgRbNmyxffsHjZsGOIZODaGWwpyjIJ1pWAuel2Hvqf2RlEURUEQ3gNwHXoVgxyHY8RgKLfw39PTI2kZEIjeSbtWBYTZg6iWSbPZDzGWFkpIINldp6bMnThpkOsfcmUTCpMMf0syrUi1Gb1tifW+xzq0z4iQwoljBm3sUkZWWp7QJvB8IbuO5+fOncOOHTvw9ddfE4V3h4UB3d1YvXp174YYD3Y/h8cqnJQXfwLzdckll+D5jz+2RBaWNlHJ1fcnn3yC8+fPU00rLCxMs1LQyrZplvvQUD1TkLsPNfdeltJgEe4+1NkY5T7USXjbXXNzM1544YU+85YjR44gsa4Ol1olHAFO7jdOa2sswrpSMNrzt0nj/d77omVDcRwJjd1Mci+yci64AgklpaBarD5zgnXFBG2loBMxe8GJxfKeO3cu/vWvf/X7/eKLL9YdN2s72I2ERZmkCGz3XCkYHL6QRI6d8sGiUtC//JTKsrGxETt37sTBgweJZI+MjMTUqVNxyeDBwGOPyZ59wiFHj3tHWumbEa+Vc127uA89fPgwRUl6IS13uc1XetqnEYv4HHNxklJQDr3rNqxbCrIwR5GCtB0ZYSnI3YcajxGbSHt6epiyKNeLt0y+/PJLpjYy+eM0S0GWx8RQg3Wl4Bn0WvkN0nh/sV88HIfD8mAYSkpB1gd4lhZK/NHjcoNbCnJLwZKSEhw4cKDPLvfCwkIMGDDAOqEUYLEtsiiTFFwpqB8zNqWoqZecnBxUVVX1+33s2LGa5FILjUU1s+js7ERPT48tN8eUl5fjxRdfRGNjI1H44cOHY/HixUhISEBMXV3QMNxSUBtW5yUUNt2w1DfN7ieki6asKQVpLPZavenTKThJKWikpaDRSkEnY+WZgk5zH8oi3FKQnP3791stgiSh2jec2tZYgnWl4FfodSE6QxCEAaIofk96oyAIAwDMRK/70a8Mko/DMEZPcNSg9+WKxPVMMOxgQWX1Ay7W73xBFuGWgspoVQo6iYSEBKxZswaffvopTp8+jby8PEycOJGKNYlR7kOt7vvBYFEmKbj7UP2YkTc19XLppZfib3/7W7/faSkFWZoX0aCjowNRnjOJWRjrlcqvp6cHu3fvxrvvvkskb3R0NJYsWYKRI0fSEpETgNWWgkbBUl9mdde9GejdeGjVPMusDZPcfagyTlIK6sFqrw+hbClopvtQMwlVS0FW47QSO+THaZaCpNihbuwO60rB1wEsABAGYLMgCAtFUVTcVisIQiyAp9GbPxHAq4ZKyWEClncacUtBaczeSRoYLjU1FcnJyaiT2H1vFnpcboT6w1KrNaDWcmO1vBMSEjBnzhzq8Ro1lrJipesPS88NJcyyFLQ7dlpIys3NxdKlS/HGG2+gq6sLbrcbF198MVMWvyz1kfb2dmaVgoHlVFdXh1deeQXff0+2v3H8+PGYN28e4uLiVKdtNCy1Ab1oeQ7RbGtmWQpaWWdm9k2WNj4IgkDFfaheGbRg1pmCZsZjV5ykFDRSXm4pqB1aSkEa7kPt1qbtCI327PQ+wSJOUwqStiHe1oyHdaXg4wB+CiATwGQA+wVB+DGAV0VR7KclEXp7w2UAfg9gCHoVgjUANpomMcc22MlS0E5KQbWY/RALtlAyb948vPjii6bKQQrJBIC7Dw3dXehW4kRLQTvB3YfqhzX3oUCvMmjMmDGora1Feno63G7zpup2ch8K9FoKemH1pbGpqQl79uzB3r17ibw+5OTkYMmSJcjJyVGVDkv1YiecWm4s5SuU52h63YdatXmKWwqyg5OUgnqw0n0owO4cgwbcfSg9WJSfWwoq482PXfPFYrujhV3rxE4wrRQURbFZEIR1AF4C4AIw2PP/GUEQPgZwHEAzgFgABQAmAUj33C4A6AJwqyiKLWbLHurENTQgkYLbOjVEt7UB5eW+7xFVVUiUsf5yV1QACgs0cverkq2mRldcWu+PiIjos2hmNGEnT8IVE6NKVuH4cYDCy2fCuXMQSM7nKS8HIiP7/DQqLg57OjrQ3NysWw6txNbW9mm/XtwVFZLlGXXqFFBejsjqauIyd504AbS2qpKNVj8wCm85BCO2tlZSfndFBRAfrzo91soj5vRpyfyToJSfhO7uoPHHnTmjqyxcJ04AfmcgskDCuXPoYUwmKVwnTgB+CiO5tq4Hve3LalwtLZLlEhcbSyVvKQ0NkmlEVFUpzkd8eGRxA8gGgIoK3bL5E3/2LFpl5IisrlYsD+K8qEQQBAwfPhyHDh0iv6m8HPA8t41q/2oIr6wEIiJ88uzZtQv79u1DV3c38tDr9iQbwD4AgTOz1NRUzJw5E2PGjGHSitofGosPBQUFOHHiBAVp9GH1QopZloJWEqoLOmosBeXisOJ+GmcK0oKltkwLWu5DWX9WBKKnLs2wAjbSUpDlcdBo96FyOM19aKjAcnt2Kk6zFCSFtzXjYVopCACiKL4qCMKNAB4DEIdeZV86gEuDBPfvDU3oVQi+bryUnEBWP/00LDkB5be/9f073PORpKxMMbpSvfL4pXURrbhYxlOmpRru0cstOtP7ARUp6FMImfL05GW250OEhvKWTJ8l7r476M83yN2jse2VarrLYO65R/OtpSSBfv3rfj+t1JyiB0p9nyY3Wy2AGgLKb4VFYrBODBTa+I9/rDuNArk0ysowEiCbExncJ2THQ8L0Szwfo1igJrCfvNdSl0QDfvLcAul5yQwAH/h9nzhxIhYuXKjrDFi7LQhccsklePzxx60Ww3blRgpLLtlYsxRk0VMMa+5DjVSw+EOycdWpfZQUJ1kKGqkUpBGHnFLQyQvTWo9g0RqPPyw9q2jAovxGnEHv5P7AKiy2LT3wNsQOzCsFAUAUxecEQdgH4AEA1wCIRF8FoD/tAJ4D8CtRFL8zSUROAE/deCOyU1NNTTMmJgbr1q3zfT9y5Ai2b98uGf66665DVlaWbJwbNmygItvs2bOxe/duzffn5OSgqqpK9X1utxtdXV2a01XLkiVLEBsbi+eee474ntLSUippb9y4EQ0NDYrh7rjjDkR4dvL788Ybb+Drr7+mIosWhg0bhkWLFvX7/eTJk5KuTS+++GKMGjUKu3fvxoEDB4jSufHGG5GWlqZKtrKyMqYf3AMGDMDy5cuDXtu8eTNqa2uDXluwYAFGjBihOj1a4wItiouLsXTpUs33K+UnKSkJN998c7/f//GPf+D06dOa0/3BD36A2NhYzfcbwVNPPYVz585ZLQYRS5YswaBBg3zfn3/+eU3PCSVKSkoMOavSLFpbW/GXv/wl6LW8vDysWEFHnfrFF1/g7bff9n13uVy47LLLUFxcjK+++gpvvvmmYhy0nodSKPXZOXPmoKSkRDaOwHzSwu12Y/ny5apceV977bXIzs4GADzzzDOoqamhLpcali5dirfffhv/+7//i/Ygi915AN4HUO35HhkZieXLl2t6DlmJ3oWJ2267TXH+bRaCIKie39jxTEErMVMpyFK+Q/1MQRKefPJJIDlZNgxLdWoFci7EQ6lslNok62XB8nu00VaYcnm30n2oEWmx2A65+1Bl7OA+lFsKcozCFkpBAPAo+G4SBOEeANMAjEOvxWAceq0CawEcAPChKIr1lgnKAQA0JSSgXmGST5vuuDigqMj3vbOxUVaG7vx8IDdXNk5aeejIydEVV1xKCupVunwEencXkpxhQ4uOnBxExsery6tfnemhISUF9QQ7coUBA4Agu/FbMzNRr0PBoZfWzMygZdElipLl2ZWXBxQVoeXwYeIy7ykoADIyVMnWkJLC3E5vfxpTUyXbUUNKCuolFOOdubmq258oUx9W0ZKRoasfKeXHLVG+zenpqO/s1JwuiooAxpSCjampqLfJ5LM9O7tPvTSmpmp6TijRlpVFbZy2ArGlRbKNp+jsO/6MKSpC7MiROHLkCNxuN0aOHIm8vDwAQEddHdm4YXA5K/VZkjGx48wZQ8bAiIgIdOfnq4q7MzcXKCgAADSlpaHeRHfpgdTV1eHan/wEn3zyiWLYbvRu9lqxYgVSUlKopG+nBQFaeaaBncpNDSzli7UFHW4pqAwN96FmnNlrV9TkSU4ZZreysdp9aChaCo4cORJnzpyR3TRFy32o1FqBXNnZzQWuHeGWgs7Hbs8CgLwN8bZmPEwrBQVBGOP39StRFLs9Cr83PB8ORxIzfM+TojctrQoZsxU5agftXAWlrBqsenE2Gjm5vBNpNeWu1bUHy0pBrbLxSQYZoWDJ4IVFmaQIbPdGtWc7lYnVFBcXo7i42GoxNENjUU1P2mrj9t/0ZOV4fuTIEWzduhVtbW1E4S+ePx+506dTXQyz05yWpTFFi6Ug7fTtFK8Wenp6EIrLvixYCmqFL9Szg5Pch+rBjLw6oTwnTpyIlJQUnDlzBgUFBRg9ejTq6+vx4IMPSt5DSynYKrExUY1S0O51wKL83FJQGTvkh1sKcoyCaaUggM8AiACOi6I40GJZOIxjpfsBJaxSCpo9iKrdSTdlyhQDpQkOS+3CHy1yee8xup5ZLTMvcv2DTySMw0kLw15YlEkKI3Z+BsNOZRKMUH2Jshsul0t1ffiP/VaM9d3d3Xj77bfxwQcfKIaNiorC9PHjgQ8/xKhRo1AfwovuLPU7LbLY0X2olWVuZt9kqW0B5Mo11iwFaSgFuaUgHeTch9rtHYd1S0Gpdk/DUtCsuoqLi8PUqVP7/Jas00Wvme5DzSRUxha7jRNWwnJZhUp7DYTlOnEKrCsFO9Er416rBeHYD24pyB7z5s3DsWPHEB0djZKSEgwdOtRqkXyw+qAlWdA2+mHJ+o5hrUpBLeUWihMTo/oGi+2K1XEgGNxSkKMWMxbVtKLFUtAqpaAoiqiqqsLOnTtx/PhxxfDFxcVYvnw58ru7gQ8/NEQmO81pWYLF5xANWKqjnp4e6HdGSQ8W3YdKYWelIC1Yasu0UJMnuTYUSu8kVrpRtVM569lkrHRdazk7zVKQVSWnFNx9qDJ2yI/TNrly96HswLpS8BSAPPSeGcjhyGLErtgFCxZg586duuMJFaWg0k666dOnY+bMmYakTVrGrLno0YMWpaARLwtWwy0FjYW1HexGwqJMUnClIBlOe4kyEiuVgnaxFDx37hy2bduG77//XjFsREQEFixYgAkTJvTmra7OBAnZh6V+Z7UsoeI+NBRhwX2o1vtpnClIC5bashXI1YXd+paRloI04pC7bhdLQSPf852mFAz1sYXTH7uuGzm5Ldu1TuwEO9vAgnMEgACg0GpBOOpYtWoVli9fbqkMNHbEDxkyxBRZlLDLpJ8P2trRsiDALQV7sYt7XbsSCouWdoQrBTm0sdqNE8tKwZ6eHuzbtw+PPPIIkUJw0KBBWL9+PSZOnOi4s5CctCGEBVmmT59OPU7uPlRfGFqQKtdY27BohgLG7HjsCrcU7IXGBi+ta0NOL2crvWs5rX/bIT/cUrA/dsiP0za52qHMQwXWLQWfB3AJgBmCIKSKonjWaoE4ZMTHx5s+OKl9ASaRLzU1FVOnTsWePXt0yaaX7u5uS9MnRclSkIUHFmsv3krQVgo60VKQtotQrWk5lVBSCrIokxT8TEEy7C4/TVha6A1Ei6Wg/9zIqPbf2dmJAwcOYO/evTh37pxieEEQ8LOf/QwZGRlE4TnWIgiCpc91QRBQUlJCdC6l2nhZwS4bG2mjxlJQLg4r7mdpMyBLbZkWtNyH2q1vGWUpaIYC2i7vf9x9KCcQu7Rdjjyh2jd4+zUedmZ8wdkM4BCAKAAPWywLh3GM2hU7ePBg3XFwS0HjsfvO9YSEBNX3mCUzS4sDwTDzTMFQxChFOovtyupxQA1mWQo6GbPqOyMjw5R09GKllQ2LloLffPMN/vznP+P1118nUvAlJSXh9ddfx69//WvT3e9xS0FtsCBLWloali1b1keWkpISFBcXa46ThXx5Ye3ZZGbZhLL7UG4pSAcnWQrqqUsa7wxWWgra2X2oU5WCRqTF4nhlt3HCCrxlxHJZOc1SkBSW68QpMG0pKIpimyAIKwBsB3C1IAgJAEpFUfzGYtE4SlRWIsLlQqKJ56fEd3cD5eW+7+6KCtn0w06eBFpbFeMNr6zUnY/I6mpdcUS3tSGMQFarCa+sRFhjo2RehePHDUs7/uxZdJ8/rxhOOH4cCPLgjDl92tT2GshF6el92q8Xt0zbCa+sBKKiEF1TQyy768QJoLFRlWyJdXVwqbzHTGIFIWjZAUDcmTPoaWgIei2iqgpITVWVVvmxY5a2k2DEnD4tmX8SlPITFx4eNP64M2d0lYVUX7SS+LNnmatfKcIrK/vUS9yZM+gwQPbomhpd7ctqhI4OyTqNO3PGlLzliCLyurrQqDSOGiyLUp+NqKoCkpJk46AxJwpGoigqztsCcVdUAJ4NNXFnzqCLYA5AQkNDA3bv3o1j332HBADeLTthALIB7APQEXBPfn4+nnnmGUNcQZJgpwUBlmTVYilIc4HCWxbjxo3DsGHDUFlZibS0NCQlJeHVhx7SHS8L2GVjI20EQbDcfajW+1lqPyzJYgVOshTUg5XuQwFnL0wb7T6UdS9SNGExP0Z4lnFyf7AjLLY7JUjbEG9rxsO0UlAQhF94/n0FwO0AFgI4LAjCFwA+AVALgEhTIorirwwRkhOchQsxCECp2en++te+fwcqpV9WRhRlnlI8JJSVYYTeOOyAp0xLFa4bwc2kASVkmO/5WIaEXNlQLs8Fno+edOS4RfUdFvDAA0F/Xit3j4ayKIYF4xoJ99yj+dZSkkA/+1m/n67RnKIHA8cDrVxntQBqCCi/1RaJwToRUGjjpbJXqSCAcBw1uE9cSyH9EZ6PIfzyl+rGVz95b6YsihwzAHidPebl5WHatGkYNmwY8vPzTZTCOuy4+CCF1XnxTz86OhqDBg0Kek1PvFZjpuKCtTMF7WopyBJOyEMgtNyH2m2x1M7uQ+2CkceEcEtBe2K3cUINLpeLyhzDDmXELQU5RsG0UhDAfwIIbAUCgDGejxq4UtBMduzAsbAwbNu2zbQkExMTsWbNGt/38vJybN26VTL8qlWrkEpgJVRVVYXnn39el2wLFy7Ejh07NN8fERGBjo7AfensMX/+fCQmJuKf//xn0OulBi6+btq0CXUEFgZSMrz99tv44osvKEslT2FhIYqKijB27FjJhYPq6mo899xzQa9dfvnlKCoqwvbt23HkyBGiNG+++WYkKViCBPLEE0+gvr5e1T1mkpCQgLVrg6v/Nm7ciAYJS8F58+ZhzBjyR0lzczMee+wxTTIaSXFxMZYuXar5/g0bNshez8rKwnXX9VeXvfDCC6isrNScrpHjgVaee+45VFdXWy1GHyIjI9He3t7v9+nTp+Oiiy7yfX/yySdxnpKllD9TpkzBlClTqMdrFh0dHfjzn/8c9NrAgQOxbNky02RpbGzE448/Lnnd6D7x/PPPo6qqSvL6woULMXz4cNk4Dh8+rGs+I0VqaioWL16Mp59+mvge/zFcbqxXoqenB1999RX279+Pepk48gC8D6AagNvtxvz58zF58uSgz289L+hLlizBq6++quoeJy8IGAnL5caybBxl1JwpaLfzzkmws+wsIdeGuKWg8jU14eSu6y1r7j40OCweJaEHFsc9J1sK0lIKemElX8FwmlKQWwqyA+tKQaBXCUjymxy8JZlNbi46w8JQn5xsWpJhKSlAUZHve3d3t2z6PQUFQHq6Yrw9brfufHTl5emKw+12o6urS5cMZtCenY2ulJSgeRUEoU/90KYxNRVEaisJGdqyslB/8iRNkWQZPXo0rrjySsVwnS6XZNvpzs8HiorQnJ6O+poaonR7CgqAlBRVsjalpaGe4Um7mJAgWa/1yclokNhl256drapNtp87Z+qYRkrOtGm6+pZSnuLT04PG35yejvqWFs3pGjkeaKU5PR31bW1Wi9GH2NhYNDc39/u9NTOzTxk2pKSg3oCXgo6cHCbrihShs1OyjTdLtG2jiIdCfzNYlqa0NNTLuCLvystTlKGrsdGQcTAyLQ1iYaGquNuysnzyNqSkoF7lOVgdHR04fPgwPvzwQ9QQPkMBYMiwYViyYAFSAp6lpC/lERERktdcLhfzL/e05EtMTLR8w5HVZW1W+lbnkyXMLAu7ug9lCSfkQQ9yShO7LZZafaagEqHqPlQN4eHhqu9R4z401Ps7Rx202osd+jfvGxyjYF0p+EurBeBox+qdP7T8o5txsLUSdtkJaIcHqhRmP2hJ0yOZSKspdyPdiliFXP+wc5skweVyYdSoUVaL4RhYbOtSL+CB7d6ots5imXC0QWNeZFR70KIM6+7u9v2vpv2fOXMGe/bswcGDB4Na4UoxetQo4OBBLFy4UJdi1IgytGM/nTRpEt58802rxVANyxYfoQ5LZabGUlAuDivvZyFtluqUFmryxC0Fe7HaUlDvuO+E54YgCBgwYIDq+0LJfSiL45WT10JYLG8rcHI5OLn9sgLTSkFRFLlS0MZYrWRh6WUklJSCVg3cTn0Y0lYKasFqBb8SWpWCdp9kCIKAK664ApGRkYano+Z3O8Nintzu4FM1rhQkw2nuVozE6gVktemrnRu1tbVh9+7d+Oijj1Tdm5OTg8suuwwjYmKAgwclw9GaL4ZKu5wyZQpqamp8rtvDw8OxYsUKvPbaa5pdwWrByrmAUeNTqLQh1gllpSAtnJAHPchZm+bk5JgoiX6sPlPQSqWgWRjdX+bOnav6nlByH8oiTnYfSttSkJV8BcNp77PcfSg7MK0U5Ngbqx/ytCwFWVAK2gU17iFYg1X5uKWgMnZRmtNk+fLlGDBgABITEw1Pi/X6Z5mlS5eisrISn376qeY4pCwFjXjJCwavf44/LFkKnvRz+S3X/nt6evDFF19g165daGpqIo4/KioK8+fPx4QJE3rntArnFvvLr+fl3Q7PaUEQdI85LpcLV1xxBS6++GKcO3cOubm5cLvdiIuLY/L8XrPhY6+9EQQhpN2HsrQ51+4UBXHrHRUVpclqy0qsVgrqSYMvTPcSHR1NNT4r3YeGiqWgkwmlfuk0pSApoVTHVsGcUlAQhBwAdwC4GMBAAAkA6gF8D+AtAH8WRbHSOgk5pJitFFQ7qbCT+1C7YKWloF5YrSMWLAVZLRsvoWYpGBsbi5KSEtPS45aC2hk/fjyqqqp0xcEtBfURqi9RwWDZfagWC7mvv/4a1dXVyM7Olmz/VVVVeP3111FRUaFKlnHjxmH+/PmIjY1VJRNp/FquaY2TdeLj4xEfH+/7npOTg0WLFmH79u2mpK927KQ51pplKWjn9qEG1vJJ+g4ZSvMstTixDNTkSRRFzJo1q89v3g0VVm/ANhMz1mO4+1BjkHtPt9J9aKjgZEtB/2ME9MBKfuRwWt/gloLswJRSUBCEWwE8CMDrC83b8tMBpAG4CMAPBUH4oSiKf7FARI4KrHYfylK8ThvEpbDSUtBuu2lJ02NBKZiYmIiamhpD09BDqJ0pyGpbdQIs5pWfKWgcTs6bFqwsDy2WggDw2WefBVUKNjc34+2338Ynn3yiKr6RI0fikksuQVJSkmpZaG02s0O7pGEpKIfUuMfh6MWs/hXqloK0cEIe9BAREYH4lBQAwOLFi9GYmori4mIk6zjX1iq4paDxsNhfQsl9qN3K3+7Q9hZl17Jisd3Rwq51YieYUQoKgrAKwF89X0VcUAj6gnh+jwLwZ0EQWkVRfMpEETkqsfohz92Hmg+3FKQPC+5DZ82ahW+++Ub1fWYRapaCrLRVVuSgCYuuZLilIIcWLM9ntFgKAsDHH3+MxYsX+9p/d3c3PvnkE7z99ttoa2sjiiM6OhpjxozBuHHjkJWVpVqGYGhdwAxFS8FQhlsyOxurLQW5+1B7k5eX1+fc8KFDhwJBXImGAjTGSm4paA1qNo1z96H0MaLtsbKGQksOVvIjB58vcoyCCaWgIAgJAP7k+epVCH4O4EMAdQCSAUwHMMbv+oOCIGwVRdG8k+g55FRWIjw+HokK56/QJCEsDCgv9313V1XJpu86cQKor1eM133+vO58hFdWmloWVhFRVQV3e3vQvLrd7j71Q5v4s2fRQVLGEjJEnTplah3FnD5NVB5hJ09KyhVeWQl0dyO2tpZYduH4cSAhQY2oyBFFDIuKQnV1tar7zEIQBMmyTDh3DhESC8OR1dWq2qSLwlhAg/iuLqp9SSlPcXFxQdNT0+6CYuB4oBXdeQqkvBzRNTWa4xQEAfFnzwa9P+rUqT5lGH/2LNytrVollURtP2ENoadHsvxJx2GayLYFg2VRat8RVVWAwnkxRs1n4uPi4DpxQlvc5eWIra3FNwcO4OOPP0Z9QwMyPZfCAGQD2AegIzDN+HjMnz8fo0aNklS+q8GMhUlWYN37g10wa5EnVMqTBDMtBUNZKUgLJ+QhEJI8RUREYMGCBSZIYx5GWQrSisMJloIswsuOLXh92BOnKQW5+1B2YEIpCGA1es8OFNF7fuCNoii+HhhIEITLAPwdQBKAeM99D5knJoeYhQuRDaDU7HR//nPfvzlK6ZeVEUWZpBQPCWVl5peFFXjKtFTq+h/+YFjSq0gDStT7TM+HNQZApjw9eVmmJkLCdu+PAOBa1XeZzIYNQX++Xe4elWWRBAvGNCl+8xtqUZWSBPrRj/r9dKXehDW0RaPRnadAysowD8A82vEG4TajImawntTggkIbv/tucwTxUCp30eCyXqEUgCD9QTB2HNQUd1kZ7lAIMgPAB57/XS4Xpk6dilmzZvWxwjALpRd7LS/3dlwQkMPM/DhxwcFp7YEU1vIdyko9O8tuJZGRkZg9ezaGDRtmSxehRiGnYDfDKpW2m0KjYLHfGe3RSCvcUpATCMtl5TSlICks14lTYEUpeLHf/2uCKQQBQBTF1wRBWAvgn373caUgi+zYgdNJSfjHP/6h6farr74aL7zwgqp70tPTsXLlSt/3U6dO4dlnn5UMv3btWiQQWEw1NDRg48aNqmQJ5PLLL8fWrVt1xWEHpk2bhrS0NLzyyiv9roWHh+POO+80LO2nn34aZ86cUQxXWloa9PcPPvgA+/btoyyVNCNGjCDaAXrs2DFs27Yt6LUbbrgBGRkZ2Lp1K8oJLUxuueUWxMfHqxHVx6ZNm1DHgKVcMO6+++6gZ7c88sgjaG9vD3rPrFmzMH78eOI0zp8/jyeffFKriNRISEjA2rVrqcW3QUKh6qWwsBBXXHFFv99feuklHD9+XHO6Un3RStT0JRJKS0vxr3/9C59//rmm+yMiIlBcXIzDhw/3uxY4hsi1dT3MmTMHJSUl1OM1C1EUUSah7Bo8eDAuu+wyU+WR6m+CIODee+81NO0XX3wRJ0+elLy+bNkyDBw4UDYOuWeSHoqKinDJJZfgscceUwzb0dGBb7/9Ft9++y2qq6vR3hFoA3iBPADvA/DauQ8aNAiLFi1CWloaFbn98X8p1/PybgeloJMXIMwkVBd5rMRMS0G91sOhrFT04oQ8qGH27NmYOnWq1WIYgtVnCnL3ocYyevRo3XHYob/bTUnhZPehtHBafuwAtxRkB1aUgmM9f78VRfFluYCiKG4VBOFbAIPR606UwyK5uehJTUW9xh1uPQUFqu+NSk3t42e/JyJCNg6xsBBITFSMV6yv15wPL935+brjsANtWVnozMwMmtfw8HBDz0FoTE1FfXe3ckAJGdq/+87UOmrNzCQqD7GrS1quoiIgIwNNaWmoJ3CFC3javUr3oV4aU1NBlor59BQUICw8vN/v55OS0CGxYNyWlaWqTXafPctEPxaSkqj2JaU8tWRkBE2vOT0d9Q3aPHgXFRUxeS5KS0YGcV8ioqgIrRJjIglRUVFoz85G/alT/a41Bjzz6pOTDVEKdubmMllXxIiiZPmTjsM0kZJFEATDZWlOT0d9U5Pk9a68PEUZutrbDRkHveOMXNytra348MMP8dFHH0mO61LEJSTg+ssuw5AhQww9F1FvOK2Wgk6D5TKw4+Iuy+XpZEJZKcjPFJRGLk+kLmedhhlutbn7UHrk5+f3mU+63W5cdNFFQcOGUtmxOF4Flj8r9ZGfny+7UZHTl1DdRMZKe3UyrCgFU9HrOpTUTOdj9CoFUw2TiKMbsye1Rh1UHKqTcy2oOUjaCuQsA1iQLxhFRUUIDw9HZ2dnn99jY2ORnp4OwDy3HKyWESDt1sWJEwlWLEL0yEFjN6kRsOZKJiwsTPKss66urj7fjWrrLPd7Euwuv5mQlJVR5elyuSTj7u7uxt69e/Hee++hTeKMWCnC3W6gqwurVq1Cs+eZaTWsjTN2SM9IrJwnGLXI46T6UYOVY1iwdOys1GOFUCsDJ6876FG6mdEOuKUgOcuXL0fKyZMoLy9HUlISJk6ciPz8/KBh1eTdzOdxqIwtrFoKTp48mRmloDc/dl03cnJbtmud2AlWlIJx6FUKnicM7w0XZ4QwHDromdTScJ1Ea8eZGTvTnIIoipYN3CRlPHz4cF33W4Hb7UZJSUk/16bjx4/3yTx+/Hh89913VojHDFrOelDbVvmkhA4ZGRmq3LaGMmFhYUHd4gK9ihJ/uFJQPU7OWzBozIuMtLILFndlZSW2bduGU0GsZeVwuVwYM2YMrhw/Hti4UVK5ThNV7kMl+iu3FOyFlwEvA1YYNWoU2tvbMWTIEOzatUuVRX4oWwrSwgl5CCRULT705I2GsjQULAXNaj9utxtz584lCsuqUtAI7NB/WSljO5QVSzjtucHdh7IDK0pBL7zGHQTrgxNXCtKHZUvB8ePHY86cOZLXrZZPjkWLFiEmJgaHDh1CWFgYRo0ahWnTpvmuDx48GBEREardqamF5TKSans0JxKsTEpYsQjRKod/22UN1tq4y+XiloIGwlLeWJDFShkCLQWPHz+Ojz76CIcOHVIdz7hx4zBjxgwkJycjnsFzcI1QCrLyXLBL/HqgOdaatcjDcnmyTFRUFK666irf97feeov4XjVlLhVWryKEuw+1H062FNSDGQo7JygFWUTNxl1uKUgfI8q0pqYGx44dQ0JCAgaHhyOSegrmYgdLwVBprxzzYU0pyHEQrFsKkmLGzjSnwOqDNDs7G0uXLpUNw/KCmsvlwpw5cySVmhEREVi5ciWeeeYZRddqTm2LWtyH2tVSkOW2andYc+snCAJXCnKYwmhLwbq6OuzcuROHDx9WdX94eDhKSkowY8YMJBKcF20EpGXjcrkAmUUy3udCByP7UyhC29o58B1QbblyS0H9OCEPanCyUtBql8hWWgo6zX2oGtTkXYvnH5ZgsfyN4KWXXvL9XyiKuFlDHKFSVqRccsklstedZilICivrb07GubMOjuVYPThx96Hmw6r70IiICF3324GCggL86Ec/QlZWlmFpsFxGZpwpyMqkhBWloFY5WG5HrMkmpxTk7kM5amHZfWh7ezseeOABPPTQQ8QKwejoaEydOhXvvPMO7rvvPlx22WWWKQQD0TM+cktBc/PDyrM9ED72Wo9eJYbVSkEr4ZaC0oTq4q4cSvmWU5aSjuHcfSj72KWcpWCx/APLlHYZnz9/XtN9NMpq4sSJuuMArG93ERERGDp0qOb7WWx3SnD3oezAmqXgJEEQfkESzvsPYXiIovgrzVJxNOEUS0GuFCSHVfehJGk7YWdmWFgYcnNzZc9ecmpbDKUzBZ1ah5zgSJ0pyC0F9ePkvGnBqvI4evQo/vSnP+Hs2bNE4SMiIjBt2jRMnToVkZGRmD17Nnbv3m35GE1rs5kdlIIcOnDlAF0CN8sEQ49bT6MsBVm9nwWckAc1OOF9VAqrLQX1pMEtBbXD6pmCLJaVEVg9N5aCRvnn5eWhsrIS1dXVfX5PTExEvYb4zC4rl8uF3NxcLFiwAKmpqbJhQ3W+yGr7dRKsKQUv8nxI8LaOBwjDc6WgyVg9qaW16MLdh5JjpaWgHFZaP5idnpH5YLkdm2EpGKpwS0Fr4+TuQ0MDFsrZ7GdlS0sLdu3ahU8//ZT4nmHDhuHSSy9FQkJCn99ZGOtpKAVZaAckOMlSUGrjhRR2WNw1aqMk67S2tlKNT085smApyPqGTE5/rF4/YRUaCjs9a0N2d2tpJdx9qLUYbSmoFRplFRYWhlWrVuHNN9/E999/j9zYWADAzTffjN88/TRxe7KqTO666y64Bg4kCsti2wKA3NxcVFZWqr6PWwqyA2tKQaNaOm9JZlNZCZcgILGuTtPt7ooK1ffGR0UB5eW+72F1dbJxCMePAzExivEKXV2a8+FFS37sSGR1NcKBoHmNCqgf2sSfPYtWiTKOi49XTDvq1ClT6yi6psaQ8og5fZpKuw9G/NmzaGO1HZeXAw0N/X5OOHdO8paIqipVdeBSKFuzSAgLo9p2lPIUW1sbNL3Y2lpN5RFRVQXEx6u+zwy05kmS8nJdY0sCpPt0bHe3r15EUTSsbUZUVQEBChi7IVU2Um3bClnCKPfrYMSdOSPbTtwVFYpx0JjPdHR04PDhw9i7dy9a29pQ6Pk9DEA2gH0AOgLuSU1NxcKFCzFkyJB+8e3YsUOXPEYg9/KutOjLLQXNzc+ll16K559/vt/vo0ePNjxtJyiIWaKlpUUxjJpy5WcKcoxAz/PBzlhtKWiV+9BQt37jloLW4mSliiAIiI6OxrJly3p/KC8HfvxjCIKA7OxsTcoqM1Ez3ls9X0xNTUVXwPtffHw8brnlFvz2t79FR0fgmxsdnNx+WYEVpeC74Io7Z7FwIWIAlGq9v6xM270//anv32Sl9MvKiKJ0K8VDgtb82JRSqQu/+51had6gFODf/1328njPx+7M9XwkIWz3wVip+U4TkMhXqYZ7pMhQis9Mfv5zalGVkgS6665+Py3VmqCONmg0l3o+1Cgrw2wAs3VGM0Lqwq9/DaB3R1WpzjQkYbi+SCm1WgA/SuUu/t//GZr25UoBCOq6AMaX5wwAH3j+z8rKwty5czFo0CBJi669e/caLBEZtCwF7bBQZQcZSRkwYABiY2PR3Nzc5/dRo0ZZJFEvWss4LCwM+fn5lKWxByRKQTWYpZRz4pmCHG2Eap0rLfzSOFNQCSOVgnawMDeK8eODr7AkJSX1+41bCtKHVaWK0Yp+NQo3bxmxWlZKmNHu5s+fj53HjvVJ8+KLL7bNewtHGiaUgqIozrFaBg5lduxAe2EhHnnkEU23r1y5Eps3b1Z1T05ODq655hrf9/r6ejzxxBOS4W+77TZER0crxiuKIsp0Lopef/31eO6552w/0QGA6OhoxMXFoba2tt+19PR0NDU1BXXfEx0djdtuu80wuf7xj3/g9OnTQa8VFRXh8ssvl73/wIED2L17twGSBWfUqFG4+OKLqcf7zjvv4LPPPpO8Ttrug7F58+ag9e5PRESEYTuF5Fi5ciXS09P7/KbUd6dMmYIpU6YQp3Hq1Ck8++yzmmWkRXp6OlaupKei3bBhg+z1oUOHYvHixf1+37ZtG475TQ5JufTSS4Na+7DA9u3bceTIEWrxlZaW4t1331XlHtGf5ORkTJ8+Ha+++mq/a5GRkVi/fj2A3pfoBx98UJesUixevFjX4ecsINXGR4wYgQULFjAhS1hYGO6++25D0966dSvKZawRr776auTm5srGUVFRgS1btqhKt6mpCW+//Ta++/572XB5AN4HUA0gNjYW8+bNw7hx4xxnOcHPFFTGzPxERUXh5ptvxiuvvIKKigokJydj5syZpjynjNj5PWTIEISHh1OJy24YrRTUcx4hjfTVYtcFzlDGyX01VC0FQ53i4uKgv190Uf9To3g508fJ7kNDyeqadL54ySWX4M0336Se/vDhw5F0zTXAhg0YN24ciubMQWFhoaJsUng3S3zx+ecYC2DXrl0YtmgR8vLy+oXjGAsTSkEnIghCBIBrAVwPYCSATAB1AL4H8E8AT4qieMZEef4PwA/9fjouimKRYQnm5kIYMAD1ycmabu/Oz1d9b2J6OlBU5PveU1cnH0dREUCgHBEAzfnwyVJQgIaUFHR3d+uKx0oSEhKQk5ODuXPn4l//+hfqA86zAtD7W1RU7yeAzpiYPvVDm+b0dNR3dga91pKRoZh25+nTuutZDW1ZWYaUR1tWlmw+xMJCze5Dm9PTg9a7P8F225tBZ24ukJPT5zexp0e2LNqzs1XVQZfbbWobkSI6LY1q21HKk1T/acnIQL2Me1YpOnNzDR0L9NCSkYH6mhoqcY0cORIoKkLbN99objfhaWkQCwuD3u92u33lKHZ3G9Y2u/LymK0vUqTKpjUz0/S8ScniX59G0ZKRgfr6esnr3fn5QEGBbBxdIJ8T9fT04KuvvsIbb7yharF+1JgxuObSS3vdjtsI/5dircoeu+y4ddKZggCQlpaGtWvXoru7W/UZg0ahpQyGDx+uuAnOyQQqQ/Vid/ehgWcPm4kTNsIaRSgtZPujZxOEGQo77j7UGLxzucjISN9vJSUlQTfmhnpZhRJGKwXVxG8HxRNpXseMGYP9+/ejzoBjRbKzswEAs2fPBgoLfb9rrctt27bhu3/9C2MBHDx4EB/V1GDlypUo8nsftkPd2B2uFDQAQRCGAXgGQEnApSzPZyqAHwuCsEYUxddNkGcSgHuNTicQPZNaFnZXBsalZ0CyyyKPHD/84QWdst12sZOk7eSXMH+M3qVpVTkGW3xQ6rN2nWSY3ZdoL1axPBZqkW3w4MH49ttv+/3udZejN79SC9RdXV0QRVH380kJluuLQxeSuiZtD9999x127dqFqqoq4vQL8vOBkycxd+5c1NtMIUgTu82xnITZCkHa9ebvMSUUUeP9gQS9loJWKwWt3IzKlYLa4GN5cOxsKRjq7kO9rFu3DtWRkUhOTkZsbGzQMHzcMB5W1j9YtBRkpWyCQVpecXFxuPnmm7Fv3z7U1NQgNzcXsbGxeP/ppw2WUB0NDQ0oLy9Hot9vXV1d2LNnD1cKmgxXClJGEIQ8AG8B8JqsiOg9M/EYgHQAFwOIRu/xVFsFQVgkiuLbBsoTDuBvAExfqbd6UkLTPRNXCvbFbnmhudDJOlbnw+r0jYSVSQkrSkEnoiWvAwYMQE5OTh/3w3PmzMHAgQOpyOR2S0/Venp6EBYWxpWCGnFy3rSg91kpiiJOnDiBd955B98ruAr1JywsDNdddx3+dv/9wPDhxPexBml7kluosMtmCydYCo4YIXlaqyw0x1sj3IeGKjExMRgwYIBiODNdgFqtFLTSUtDO3nGsxMn9Xk/eaJwpaKVSkNM71wt0DRgItxQMHVhSCtq9jwaWQ0JCAubPn+/7fujQIVPTJ+GchLepb775ps93u9eNHeBKQfr8AxcUgscBLBdF8XPvRUEQ0gA8C2A+gHAALwiCUCyK4nmD5PkJgNF+st1gUDr9YN1SUE0aLpdL184lrhS0dgGJRaWgUenRbPda7rXKUjDYhIG2pSArkxJW2qpdFq/VoEU2URQxZ84cTJw4EadOnUJ2dnafHbB6+5ycUrCrq4srBR2CGeVs1POhu7sbBw8exPvvv6947qw/MTExGDduHC666CJcakN3oYH4l59RbtI49NCqFDQL3g7IycrKwtzVqzWfmS2F3S0FuftQNpGbs4WK5xq1WD1HsruloNQ5YxMmTDBaJFWw8q7NsQdy46XTxlKW3yuMjJ+PCcbDlYIUEQThUgAzPV87ACwVRfFL/zCiKJ4RBGE5gC8ADASQAuA+AP+fAfIMA3C/5+tmALtgolLQ7JfZwAGDtvtQvfc76eXebnlhUSloFFbnw+r0/aE9iWBlUmJ2GRf6+YynAUtthAYJCQkAet11DBo0iHr8cu7surq6EBkZyZWCGomIiLBaBNvh3x66u7vxxRdf4N1331V1dkVmZiamTZuGESNG+M4AM6OdlZSU4LPPPjMsfr0KAO81FjdemZ2e0fHPnj2799xXi+GWgvrwPn+vu+46IDOT6B61m0K13qslPO37uVKQTeTmbE7u90ZtTGXdUtBMpPIwdOhQ/Otf/+o3Jhjx3qIH2hs7OP2xS1smgbalIMtlY6VS8KKLLjI0fjlYrhOn4Cz1ufXc6ff/pkCFoBdRFJsB/MLvp9sEQaCqoBV6e+bfAEQCqAPwbzTjJ0XrDg2t1hpq4jDTfQytOFjBDgtWatN2Uv0YBcvlGEqWgmYSFhYmuXDqxD6jNk9hYWEYNmyYQdL0Imcp2NTUhJqaGjQ0NBiWvhPqOTc3N+jvkydPNlkStiGta1EU8cUXX+Chhx7Cyy+/TKwQFAQB06dPx7p16zB27FifQhAwZ0ev0efF0VAKqonHyRhVBt6NAOPGjdMchx3nArxNaUOvpaDesFwpaM/+pkSoKgX1YLUXKT3tmYU2nJqaihtuuAFpaWkAgMTE3pO8srOzrRSrHyNGjDDNwov3NftDSyloB4z29iWF2+3G2LFjNd/PYR9uKUgJQRDi0OsS1MsTCre8COBRAHHotRacBYDm2YLrAUz3/P9jURRPW/HgY10RZFZcgiA46sHE4iTKbu5DjSJU3YeaAQsvdYC5bXXZsmXUralY7mtqZZs1a5as0k5LnIH3ysX/6KOPao5bjQx2p6SkBJWVlX1+KyoqQnJyskUS9cdq11ikMpw9exbPPvssvv76a1VpDx06FBdffDHS09M1p60XVtqyEZaCZmMHGYMRGRlptQh94JaC5mPmplCr3Ydaea4ftxSURq5snPwepac90zhTUAknuw8Fes9Av/POO9He3o7I6mrgV78yRSY1REZGYvz48di/f7/VojgWVtYzaMgRSkpBOYxY/0tMTERaWhpmzJghublWT/yksNJenQxXCtJjGnqt8gCgGcA+ucCiKLYJgrAHwCWen+aBklJQEIR8AL/1fH0PwEYa8aqishKIjUVyfT06OztV3x528iQSVbiiAoDYyEigvNz33dXaKhuHcPw44LdLXY6k8+fR1tamSh5/wk6eRMK5cwhvbdUch+X4lW1sba3q+onr7OwTB23izpyRlCm2tlYx7cjqatV50kPM6dOGlEd0TY18PsrLAY2LYnJl7CXB5UKnieXoJezkSSDgJVtsb5eVN7K6WlUduCsqTG0jUsTHxFBtO3J5GpOQIJmWlnEA6C1HrW3QaBT7TwCzCgoU6yLq1CnN7SY+LAzhlZWWtrvwykriZyWrTExLQ3hJCQ4ePIiWlhYUFhZi9pQphj6TpJCqy4iICMPlUeqz7ooKoL096DVRFPH666/j/vvvR9v58/A6FQ4DkI3eSW9HkPsKCwsxf/58FBQUyMrmhJd3/5dircoerS/WTlMgGZUfO5WTWlnj4uIMkiR00WspaLVS0AmWgk6EWwqqx2pLQb1KQbMgKSfWNscEcumllyI5ORkfP/+8oenwvmZ/aM2n7eA+VA7aSsEpU6Zg4cKF1NLXg13rxE5wpSA9hvv9/6UoiiSz8E9xQSk4XC6gSv4MIB696zO3iVb0JM8gcqdCMEnKylCq5b7/+A/fv9GAfBxlZcTR3q5FloC0btMbh9X4ldcCz0c1//VftKTpx7U67x/m+did6bhgIhwUFe0+kGs032kCQfIVCYUxQCX5lOPTxX33UYuqVO6iTHtZ7PmoRkcbNJqLPR9iCPKi2CeV+PnPrW13DNeXGsZ6PlZTKnfx9783NO2lSgFk6loAcJnnE4wZAD7whhUEFBcXY+rUqRg4cCAz1vqsnINnxI5esxe3+GIaHWgqiGfNmqVXHNthdF/hZwpqhysFpZFbmnHCBhkpjPJWwy0FL+CEZ7MgCJg2bRpyOjoc8w7C6Q+3FKQH7fcKlsYRrhQ0Hq4UpMdQv/+PE95zwu9/KvoIQRCuA7DE8/V3oigephGvanbsAIYMwSOPPIJ2iV3nctx0003YtGmTqnsyMzNx/fXX+763tbXJula76667FN2+efnrX/+KlpYWVfL4s2bNGrzwwgtoamrSHIfVlJaW+v7fuXMnDh06pOr++Ph43HLLLZSlusDzzz+PqqqqoNeGDx+uuNvlm2++weuvv26EaEEZO3Ys5s6dSz3eDz/8EB9//LHk9TvuuEOzO8gtW7agoqJCNkx6ejpqa2s1xa+HFStWIC8vr89vSmPAxIkTMWPGDOI0jh8/jpdeekmzjLTIy8vDihUrqMW3YcMGyWv+/T6Q7du348iRI6rTW7ZsGQYOHKj6PjN4++238cUXXxCHlysfL0p9Uo709HRce+21eOihhzTdT4MrrrgChYWFygE5REj1t4iICNxxxx2Gpr1t2zYcO3ZM8vrKlSv7uff89ttv8YMf/ADlx4NPbfMAvA+gGr0vkWPHjsXMmTORmpqqSjYzXt7toBS0i/tQo2HZUpDFxd3hw4dj/PjxVOLiXIBbCmqHlutSJ7ZdOYWpE/NLAxoKu1CwFORwlGClPbKkFGSlTIzCaKVgqFgKOvX5zJWC9PBf/aghvOeU3/8pegUQBCEVwIOer98AMM4sS4ncXKCoCE1paZqUaT0FBahXedZPTGoqUFR04Ye2Nvk4iooAQqVgU1oaGhsbVcnjj1hYiMbUVDTY2QWbX9m2ZWWhvrpa3f2JiX3rhzJNaWmol3DP2pqZqZh2V0uL6janBxKZtND+/ffK7V6jUrApLQ31zc2yYWLS01FvwSJEV15ev/LsUajTtqwsVXXQ2dVlahuRIjk9nWrbUWwvErRkZKC+hvRxd4Hu/HxDxwI9tGVlof7kSfIbCPLR9t13mttNVGoqwoqLLW13wfoWRztSdRkZGWl4ObdkZKD+3DnJ62JhIZCR4fv+z3/+EzfddBPRhqZhI0ZgycUXIyVF23TWCZaCpGlxS0Hr4mfthV6PPAsXLkR0dDTS09ORlZUVUrvi9cDPFDQHWpaCLC0I0oK7D1UPjfHNKqWgmTip/ajNS3h4OCIiIpCamooTJ04ohndSWdkRo5WCWurXLv08EKstBblS0N7wtwd6+B/kQHpwnH84GgdB/BGAd4v37aIoqjfR00lUVJTvTIvu7m5NnXj48OGadjZ6Xz46OjrQ0NCg2Gk7Ojp8ir6enh6cP3/eF0djY6PPwrGtrU33YKRHoWgkGRkZyMnJIQrb1dWF8+fPA9A+IDY3N6PVo7jz1hPQO9ifP3/e9/La1NTkO8Oxvb2dqJ7kXj47OzvR0dF72lFrayuaPYotGnnSivesTaW2512M7e7uxvnz531tsaGhIWielF7CveXf2dmJ+vp63+/nz5/39TupeiLBykWpwDz5/x8MrzsX0rbHSj/2tgFa/UkJubanhe7ubtVtj8YYQdqf1ODd9CLXn7Scq+uPKIpMLPayVk9SYznQ2/e95d7S0kJUT2blSQ6j86TUFgVBQHt7O86fP4/7778fV199Ndxut6/9xcfH+86i8c730tPS0B0WhvkLF2pWCHrz2+IpV9qvf+2RkeihYIHnlatHZgHfW0/B5o3e+5T6c7PM5hvRE0dg7O3t7WT9KSlJfX9KTESnp035tz1SOiIi+pQZaX/yz6dUmavF2wbqm5rI+5NH1ubWVl9/IkUE0BgfL3ldbtzzIpX3xMREFBYWIicnBy6XS3qMCA9Hk8YzzWmVvwj0tj1dsfTHW5/nm5qIx3Jv+yfJk8vl6tOfgvVrqTJSo5ATBAGd4eGo93tO+MtKSlNcHNo8fbq9vV31/MNXTxTGCKX3kebYWKI6aG1t7TtGeNq1qnmEljyRjhGkba+pCd1hYb50pWhqagqep6goXz9WnBt5wnUFjCX9xghPuXZ2dZHNIzo70ZCQcCFPJGO5y4XzfnmSIrB/NiQkoMMja2trq+xzxxu3Up5I+mSPy+WrJ3/0zOV7enogiiJ6BAEdGjfmBiPYmCoIAvkcNjLS15/kMHIeITeHbe3oQGt0NFFZuFwu/OQnP8Fdd92FadOm+X7vcbnQIzHn8soq25+ioy/0p4A8SdHZ1YX6xEQiuaVoiovzzfdo4N+ftHhxk6NHEIjryR//ua5cPcnhbdd92p7bjfNNTaotBeWeuT0Sc2+teONT857r7bdAb3/yl8Vbp1L9SRAEVfXkLdd+77lNTb56UpobqcV/PuA/RtDYYEStP3niSPA8B52C9atMziHK73/SlUX/EVn9SOqHIAgLAKzyfN0kiuK/9MSnlSlTpvjc2tXW1qp+eU5NTcV3331HtLsnEO+AdejQIWzcuFFx8efzzz/H5s2bAfQOwGVlZb4J1ObNm3HgwAEAwN69e1XnI5DNmzdb6sJFiilTpiAzM5MobEVFBco8ft217mLftm0bdu/eDeBCPQG9D5yysjKf28ktW7Zg7969AIADBw4Q1ZOcwubo0aM+d6e7d+/Gtm3bqORJD9988w0A5ba3ZcsWAL39qayszPfw3bhxY9A8KSmu3nrrLQDAsWPH8Mgjj/h+Lysr87kGlaonkge+VTtoRFHsl6e//vWvsvccPXoUO3bsQFlZGU56rMPk2t4rr7xikPTq8E4WafUnJaTanta6rq6uVt32aIwRJP1JbZ527twJQL4/ffvtt6ri9EcQBDQ0NFh6No+337NUT4D0WA4AjzzyiM9N5s6dO4nqyaw8yWF0nkjmVh9++CH++7//G//1X/+FhIQElJaW+l5+Vq5ciXHjxgHonT/ccsstuO6661Cbno5GnQsg33zzDXbu3w8A6KLsVeHAuHFojovT/Xzq9CzmtUdFBb0uCEKfegqk0VOOcnK0t7fLPmvaPUrZDs9fLwcPHlTuT/X1KCstRbtnYYi4P61fj2Me9+zetqemLA+NGIEmP8UYSX/yzrtFz+JDcxyNvZMXyv6RV14h708eWbft2ePrT6R0REZi88qVktflxr0uz7jfJKFUPHv2LNkYUVyMFz1lrJYez+J4S2yspvv94ykrLfUtqNCm7MUXicdy70s6SZ4EQejTn4K+D3ryFFhPlZWVqvrJseJiPOLX98vKymQ3CARjy4oV2Ovp0wcOHEBYEOWGHN56ojFGKM1bti1dKjmW+vPuu+/2HSN27QIANLS0kM0jtI57pGMEadt78UXUetxz79mzRzK/mzdvDp6nKVOwxRO34tzIE3+FJ5wvT4FjhOeZe6yqimwecfw4Nq5deyFPJHOjhASUvfii4gbTzs7OvnlauxaHPG7Ld+/ejTfeeEP2fpI8KW0W7erqQmNioq+e/FE6PkMO72J+U3w8Do0YoTmeQMpKS9EdxOsV8Rx23Dhff5LDqHkEID+H/fDrr7F79myishBFEWFhYfjss898cQNAY2KiT5EdyKuvvtqbJ7n+NHv2hf4UkCcpjlVV4ZH164nklmLLihW++R4N/PvT559/Ti1eAGiNiSGuJ3/851Ny9SRHeXm5Ly5f28vLQ9mLL6reUFtWVia51uV7vlOaw3jnH7X19cTvufs9YxvQ25/835W8x5RI9SdBEFTVk/dIpn7vuS++6Ksn/+cTDUVzo1/9+48RSuM2CbT6k7d1rPU8B52CwJI5pp0RBOE1AJd6vv5OFMWfEtyzGID3ELMmURSlt5LKxxML4CCAIgBnAQwTRfFMkHA3A3jC8/W4KIpFWtKTkGEkgINRUVFwu93Yu3cvhg0bhrKyMiLrmlmzZiE7OxsDBw5Ea2sr2tvb+wxoJKSnp+OOO+5AR0cH2traEB0djf/+7/+WDH/fffehq6sL8fHx6OnpQUNDAxISEny7QiMiIhAZGek7l0zPgHTrrbdiy5YtRLuLzGLJkiWYMGECWltb8fTTT0uex+flZz/7GZqampCUlITXXnutz4OJhKSkJNx6661wuVyIjo721VNCQgJEUUR9fT3i4+MRFhaGpqYmuN1uREVFob29HR0dHYr19Pjjj0tO2EeNGoWlS5ciIiICra2t6OnpQWxsLLq6unx5+uabb/DMM8+oypMeSkpKsHz5csW219XVhbi4OHR3d6OxsRGJiYk+RUFUVFS/PL399tt47733JNMtLS1FYmIiOjs70dLSgkTPQu758+cRFxcHt9uN5ubmoPW0adMm3+RLivz8fJ+CzUxWr16NvLy8PnmqrKzE3/72N6L709LScNNNNwGAZNv77LPPfJMzKxkwYABWr14tWU9q+9ODDz4oOQl+4IEHJNvea6+9pur8PS/XXXcdsrKyVLU9GmMESX96++238dFHHxHn5cc//jFiYmJk+9OOHTt8L+BqycrKwg9+8AP8/ve/77ND0ExuuOEGDB48mKl6khvLgd4XiJiYGISHh/t2GirVk1l5+uUvfxm0nKOionDPPfcYmqcXXngBR48elazr+fPnY926daioqEBjYyNcLhcSEhJ8iun4+Hh0dHQgISEBV111VW8/rqvD3Q89hLJ77tGlGJw/fz7Gp6UhZvhw/PHee9FAyWVuYl0d1j/6KB5evx6jL70UH374oea4Eurq8MOyMvxfaSkaPfXiz09/+lO0tbUhJiYGTz/9dD8lbPz58/i3DRuw8y9/wR4JF+ypqalYtGiR7yW8nwznz+OHGzb0K6PRo0fj8ssvl+9Px46hceJEJH76KYQBA8j6U3k56ktKELN/P8IHDfK1vccee4xoTptYV4c7HnkED91xh6/M7r33XsX+dOzYMTz99NOKZa6WgS4XVv3iF6j/8kvEDB1K1p/OnoV70CA0HzoEV1ER/vSnPxFvFkyoq8OtGzfi8bVrg7oO/ulPfyo57h3fvRtjL79cMu/XXnstsrKy5MeI06fROWQIyrdvxz9k5oZy8tMo/4S6OqzZtAlP3HQTtb4N9L743vSf/4nzX36JuGHDiMbybX/6E1b94hdEeSouLsby5ct9/emRRx7B6dOn++UtWBkNHz4cEydOxN///nfFfFw5fjyGXXUVWj79FImjRgHobXt79uwhPpM4sa4Otz7+ONyffIKoIUPQ3t6OqqoqPPXUU0T3e/OyZtMmKmPErl27fAuGwWT9wd/+hr/84AeydRAdHY3169cjPDz8whhx7BjiR45Ez7FjaEhJUZ5HqB33zp8HBgxQHiPq6oABA8jb3ldfIb6kBGFHj2Jfba3kOfarV69GYWFh3zxVV6Nt+HB0ffop4oYPV54blZcjdsQIdB09iqbUVOkx4sQJxAwfjs5vv0VLerryPOLbb9E2cSISPv8cYmGh8tzo7Fn0FBej4fPPkTBiBFwul+QcKC8vD1dddVVvno4fR8PYsYjavx8RgwejtbUVnZ2d+OMf/yjZVh544AHFPH399dfYvn27ZByrVq3C1ocewr0PPog/3XVXnzF7zpw5eOeddyTvlaO0tBTV1dV4/S9/wV1//jP+vH697mMBEuvqcHOQMXX16tXIzc1VnsOeOoX2YcPQ8emniB8xQrJeAOAnP/mJIfMIpTns17t2oWDZMvxl3TrF8nK73fjZz36G9vZ2lJeX49lnnwUAxNfXo7SsDA/efXe/ONavX4+MjAzp/lRVhdYRI9DzySeI9Xgya2pqwiOPPCLpXeaBBx5A59GjaJk4EU/cfLOmevaO5Y/deisaKMx7EuvqsPaJJ3z96fDhw3j++ed1x+sl/vx5rP/LX4jqyZ/ly5fj5Zdf7o1Dpp7kWLNmDQoKCi60vdpadA0ejKYDB/BRZSXx+/fq1auRnJwsqfT1zt9pvZ944+s+ehSNqalE77k7duzA/v37kVhXhzVPPomNN9/sk2XVqlUYOHCgZH+qrKzEixs2ENfT1KlTsWDBgv7vuYcOIWHsWLiOHUNjaqrvmVtWVqZ5nTuxrg6lAXOoH//4xwB6x4h//vOf+PLLLzXF7Y2fVn9KaWzEvD/8AdM878YeRomi+JWuiC2GnylID3+/UKRWf/7hlP1KSfNf6H0vAoB/D6YQNAv/RcuwsDDiHYozZ86E27PTKSIiQtPip3c3SEREBCIiIhQt86Kionw7OF0ul2/CDPS6yPIPp3anZSCJiYlMuH/zMnHiREyYMAFA7wvXrbfeioqKCt+usmC43W5fGWm1FIz125XrrSfvNf/yj/PbER4ZGelzVyZXT3LlGxkZ6Usr2s9sXm+e9ECSpyi/HbRhYWF9wvmbrQfmSQ5vHYSHh/smDAD6xC1VTyRt2Kp2LopivzypMe0/c+YMPvroI8yfP9/3W2Dbi9W5U54W3jKm1Z+WL1+OrVu39kvH635Fqu1p7TNa2h6NMYKkP6nNU0xMjGKeInXsTEtOTobL5dL8XKQJS/UESI/lAPrUhbeOADbanhxm5SkYhw4dwu9///u+7nwCXAw3NjZi4cKFGDduXN966u6GS6c1a2RkJGI8cdJ+Gke2t8MlivrPB/P8dclsqEyUUYzK3edLQxD6tJ1+1z1xBOYkKiqqj5tX/9+9hIWF9S54B3F/I9v26ut9Z3B7256asozo6OiTd5L+5J13k5S5GrxyJ8bFAZ5d1or9ydMHYqOjAZUusgQA8RKbI10uVx93vF68495JT31K5Z14jOjsRJwG115e+eVkUBNP0vnz1Pu2l6S4OF8bVRrLfe9+GvpjsDmuVBm53W5VZwqGd3b2tktvnpKSVL9/xjU1+c4Nj4yMxIABA1Td760nGmNEuILFd2xzs2IdTJo0qU/5R0ZGItITv6p5hJo8efq74hhRVwdARduLiwM8LtnknsX+awZ98tTW5ht/FOdGnnDugHD9xghPOYW73WTziPBwRHgWQonmRmfPwtXT05t3hffDwPgSGhp85R8dHS07j/L2M6U8Kb0ju1wuuHp6EBbEzSiN91uXKCJCx/ELgQQbUwVBIJ/Dtrf7+pMcRs0jAPk5bHREBKIJN+B46ycyMrJPm3X19EjOT73hZPtTa+uF/hSQJynC3e7e/OogrqnJN9+jgX9/kht/tOASReJ68iIIQp92JVdPcvRb36uthburC0lxcar7rHd+EGyjtEti7q0Vb3xq3nP9yyuxvr6PLN5rUv1JEARV9eR9fvd7z42LAzz15P980rtWDvSdQ/mPETTGXlr9yeUZ99QcrWQH2NFS2J+zfv+T+WMEsvz+P6clUUEQxgO42/P1X6IobtISj1GQduLAlybSBTR/AgdwmkoeGgfNs3wwqSAIyM/PVxWeNfQeNMxinuyIncvx/fffl73OimU97TIePHhwPwVqeHg4Ro8eTTUdO8Ba+50xYwYAOpNtDicYPT09eOutt/D8888ruqr75S9/iSeffFLTHE0JMzaUGN2//eOXe14ozVe0brxyEkblx07lxNJ7DKsY3VcCxyU196rpy1LhaNSbdx5hNhdddJGu+xcvXozZGlzS2QGtz4dQRq5cSN/PlMqWRhoca/CvO73jLsd4pJRvWuKRQu2Zgv5/7YaesY1GeCNhqU5YKheacEtBenzt938h4T0Ffv8f0ZjuGFxQ7hYIgiBnI+3vID07IOyvRVF8TaMMkuhZ5Fm0aJGsi4dA1A4Yel4K1cKaUpCGktPsNPUQSkpB2pMCtfdaeaYgyW9a4n333Xfx5Zdf4uzZs8o3mADtMo6JicHNN9+MN998EydPnkRmZiZmzpyJrKws2fu0yuGUvkaK1vwWFRUhOztbVxw0YGky7mSsqOOGhgZs27ZN8dzLhIQEPP3001i6dGk/13m0MDr/LpcLAwYMUNz8oQdaC1F2GCPtICPr6G0HvA6MJ7CMjVpYM1IpaFU7SU1NRV5enuaz2CZNmkRZInaQO2+RJc9CoYZRSkFRFE2bSzvpuaB2EwbHXrCkFLQ7VisFjex/LK1DOHWc4UpBehz2+3+0IAhuURTl/VcC4yXu10qx50NCBIDJft/7n6ish8pKIDYWCefOodPjXkMO4fjxfm4lMrz++gmJd7kAv/POhJ4e+fsVzkbzJ+HcOXSokCUQ14kTxGVhBjGnTwfNP2l5RdfUqKobAIgXRVVlrpa4M2ckZZLKrz/hlZWq86SH6JoaQ8oj6tQp5XrUaHUkV8Ze4hMSTC1HL+6Kiv75amhQL0tAnez58EMc8Jznov20LLrEnTlDve0kA7hm0iTAuwhD0F+1jANAb18Do5Mq1XkiqIfI6mqiOJctW4avv/4aDQ0NyMvLw6RJk3qfjQDiz55Ft0Vn0rorKnzuyDj6kWoLUa2thj4jASC2thaJdXVoamrCJ598gi+++ALdPT0oBBAGIBvAPgD+zq2GDRuGrVu3YujQoQDsa8E1cOBA6i6TAuGWgvSwaztTg9JCB0uysoqZ1r9q02NFoWdVOxIEAStXrsTrr7+u6zwgJyLnIlrJ7SpHO1ZZCpq5qB2qzw1uKUgOS0oWvej1FObF7mXClYIcPXClID0+BNAOIBJALICJACSt9gRBiAQwxe+ntw2VzmwWLgQArCINH+RQ1wEAStWm+4tf+P51Kd0vcZBsMG5UK0eQtIjLwkJK5S76lddsz0c1ModY62WFzvsLoKG9MchFno8kKtp9IJdrvtMEguQrARrqNCCeaZ4Pc9x7r9USYIHnoxodbdBoZno+xBDkZQr6Puzl4hoocelmconow3B92ZFSuYu/+52haV/q+cgxA8AHnv+XL1+Op556qo97YbsqaxYuXIgaQ1MgxwkWYGYrY1iKl9YChd54uBWF8ZjlWcVIS0EriYqKwpVXXomvvvpK1jou1PBuUukIOF8uMzOzz1lKHLpYqRTkC9vqMdOrF8dcaLkPlat33iYuYDeloOh3DjwfO42HKwUpIYpikyAIb+HCesvNkFEKArgSgHeb2DkA72pM90kAT5KEFQThZgBPeL4eF0WxSEuaROzYAQwZgs2bN6O2tlYx+L333ttvMDl+/Dheeukl4iRTUlKwevXqPr9t2LBBMnxpaSlx3P/4xz90ucxav349tmzZQlQWZjBu3Lig5zQ0NDTgmWeeQavfIbSxsbG47rrr+uxqfO+99/DJJ5+oSjM5ORk33XSTdqEV2LJli6SLGqn8+lNRUYEtW7YYIVpQSGTSwv79+2Xdo91zzz2aJ0kvv/wyvv/+e9kwAwcOxHfffacpfj1cfvnlKCoq6vNbQ0MDNm7cqCoe/3FBy/1mUFxcjKVLl1otBt5880189dVXqu9bsWIF8vLyDJBIPx988AH27dtHHJ7kOfLRRx9hz549iuHWr1/vO8w7kE2bNqHOIkvzpUuXoriY1AkBRwmpeUl0dDRuu+02w9I9f/481qxZgwOffRb0eh6A9wFUe77/8pe/xP3332/aS7VRi99r164FysoQHh7OzJmCcmXK3TIbC0vlxC0F9cPPFNQet5mwIANLhIWFYc6cOdi5c6fvN0EQHHuGol3gloL2RYulYKjCipKFJfehrJSJVqy2FDQSluqGpXKhCVcK0uXP8FMKCoLwJ1EU+62YCoIQA+BXfj/9lcDVqL3IzQWKitCSkYH6LoKsFRX1cyfX3dOD+uRk4iTdKSm98fghe39AWDma09NR39lJHD5YWk1paWRlYQJtWVlB858A4MrsbLz77ruoqqpCTk4OZs+ejfi0tD7h2o8eVVU3AOBOTVVV5mppTk9HfXNz0Gvt2dmKafe4XKrzpAepOtBLR1WVcrvXuMjbkpGBegUXhi0ZGai3QHnRlZfXrzy76+rU16lfHF3nzpnaJkhpycgwtC+R0pqZifqqKtX39RQUAAUFygEtoO3YMXV1TlAP7SdOkMVZVARIKAWb0tJQTy4VVTo9z3MOHaTaQmdMjCHl3NPTg02bNuG+++7DmTNnFMPHxMVh2zPPYMmSJUGvs2zBFQy327xXHSvPFDT7RTWULQXNwgkWpXaHnylIBxZkYI2pU6ciJSUFhw8fRnh4OEaNGoXCwkKrxXI03H2oc7HDvMloxo8fj08//dRqMYgx+vkWSpaCVisFQ8VS0GljhheuFKSIKIqvCYLwHnq9j0UCeFUQhOWiKH7hDSMIQiqAZwAM8vx0DkBQf1GCIBQB8DfLWeOxDLQNegZjtZ3OyAGDhvsYuwwi6enpuOqqq2TDsDjx0utT3GkLalZh1QQsWP9naRJBE1baDity0MSIPNn9bAun9qNQoLm5Gddddx1effVV4nu2bt2K4vnzJa+z2k6lMHP3OKmloFIcditjO2GnsrWTrFZh9PuIHqUgjb7MlYLOZujQob7zejnWY5RSkMb9pIRqXwt1S8G0tDRMmDDBNkpBQRBQXFys240otxTsxWlKQVZxaj65UpA+NwD4GEA2gCIAnwmCsBvAMQDpAC4G4HUW3wXgGlEUz5svpjnoWQxlqdPpVXSwtsjDwkuqmbCoFDQKI3eW260c7T7Bk4KlMtYCy/KzKhurcnHYpba2FsuWLcPevXKe7HuJj4/HnPHjgd27LXMVG0qWYUqbmFjceGV2eizWmxdWFnf1KLc4ZOjd3MqCpSALhJLFBoddQsFSMFSxw7zJCEpKSpCZmYnRo0eju7ub6B5W2mNUVBQGDx6Mb775RnMcoWQpKFdvSm1ZrdcUq/uGf15Zaa+A9eViFM7qKQwgimIFgHkAPvP8JACYA+AWAMtwQSFYC+ByURTfMllEU+GWghfuZ2kQsUIpaGX+7abM0oOR+WC5HI2wFGRpEsIxB6eMAzThZUKXuLi4oL9PmjSJWhrvvfcexo0bp6gQDA8Px6JFi3DPPfegpKSEKG67Ke/MbL+kloJKc2Pe55zRHjj2R6+loN6w3FKQw6GHHqVgT0+P5nS5+1DjCVVLwaVLl2LKlCmIjY21Zb6vuuoqjBgxwqe0GjlypKr1Y24pSEZKSork+ycNjHAfGux/jjFwpaABiKJ4BMBkADcB2A7gJIAOAKcB7AVwH4ARoii+ZpmQJmG0VZI/rCsF582bR0ka62Fx0qHXfahTdhMZaSlII30z6OjosFoEQ2GhjAHtcrAifzC4+9C+uFwuDBw40GoxHMW0adOC/j527FjdcXd3d+M3v/kN5syZg8rKStmwKSkpuOWWWzBlyhSEh4frTlsvZrR/qzfNkITlloLGYie5rZ7PORUW3YdypSCHYz1GWgqyYmFuJ7g1vDJalKEsKFm8skZERODqq6/G7bffDgC45JJLEBYWpjoetdcCee+99/Duu+8Sh2cNkvki6eZPkvj0hlcDC+3Vi1PHGe4+1CBEUewA8JTnozWOcvRaGtKS6UkAT9KKjwQSRYsdXKbQcB9aUFCA+Ph4NDY2UpJKnzxm329lfepph0bBUvsmhWXlqiiK+Oabb7Bjxw6cO3fO51vfidix7fhjd/mtwKoyGzZsGCIiIixJ26lMmjQJFRUVOHToEIDeur388suRlJSkK97Ozk5cf/31ePHFF2XDhYWFYcaMGZgxY4YmZaDdLLhYsl73wsdAZXgZcfehJJi90Y0rBe0rA4fD3Yc6Fy3KMaeNS3bOj797SzX5kFt3UrMmVVFRgYqKCuLwrEFSZhMnTgQAxMTEoJ5CfHrCK8GqpaCd+5gcXCnIMRTuPvTC/W63GzfddBNeeuklVFZWIiYmBi0tLZQkVC+PlfebDctuL2ljtSWEVeV46tQpvPvuuz73LmfOnMGOHTsskcVoWGmrrMhBE24p2JfLL7/cahEcR1hYGFasWIFz587h7NmzyM/PR3R0tK44Ozs7cd111+Gf//ynbLjU1FRce+21yMjI0JwWi+1UDrNcSnFLQXtAQ25u8WFvzFKmau3L/tDYaMdCO1Jj+cHhGIVVSkEa95PCQn+nBd/4og6nlAGteneKFzAS1JTZVVddhYdefZVafEbDlYLGw5WCHEPRo0RgqdPRUqKlpqbi1ltvRXt7OyIiIvCHP/wBzc3NNEQ0FRYXrPS6D2CpvenB6nxYlf6hQ4d0nfcQDJYmIU7C6jYqB6uyWSHXmDFjmHAr6UQEQUBqaipSU1N1x9Xc3IzVq1crKgTHjh2LO++8E1VVVbrTNAK7WwoGpqPHUpDFOZbZ2L09mIGT8qIVli0F1YS3w7uwHrhSkGMH5JQIdrEUdMqYoRb/urPzZky1aMmDk9Y3uFJQPUasixppKcgxHq4U5BhDZSUQG4v4s2eRWFcnG9TlcgHl5f1+d9fUKN7rT3xXV794ZO8PkqZk3AT5kCUgrUjP34Rz5+C2wFowuqZGVf4DiayuVl0e8W63rjSViK2tlZQp6tQpxbTD9NaxSkhk0kJEVZVkPgRB0JWmXBl7iTl92tRy9NJeV4dEGhH5lY/r3DlVeRk3bhwOHDhAQwpZYmtrDe1LpGita3dFBcDouY9Rp06pyxNBPZCOl8Lx44DEwln82bNoM7lfTc7MZKKdcaQ5evQo1q9fj2+PHkWh57cwANkA9qH3MGsAuO222/DHP/4R27dv160UtJuyxiqloNawNKyLnIDd2wMN7CSrndDjmsxs96FOsRT0dw3H4ViFUl9wglIwVGFhnLMaO5WB3s38JGGdphQ0o8y0xKclvBKsug91KnyGxjGGhQsBAEtJw//xj/1+ygRQqjbd3/ymz1fZ+8vKiKNdrlYOwrTW6Y3XIiZ5Pqq5/37KklzgCrmLBHWdCg3tjUHGej6SbNigOe5LPR8lLtGcAgP4tZUUqG8Ts2nKwjhzPR/VqBh7zeYiz4cYgrxM9Hz0xLWSWCCKMFxPnF4GAXhT4toMAF/Ex+Nvf/sbrrnmGgBsn09lRrxmLpg43VLQTotP/thJbiPaidNg2VKQlfFWTRwJCQm60wsGtxTkKMHCeGaU+1BRFLn7UA1oHW+dVAZqIM23k5QsoaQUlIN2m7daKegPS+3VqWMLVwpyjGHHDmDIELz22mv49ttvFYOXlpb2+622thabN28mTjIuLg633nprn982yChAgqUpxbZt23Ds2DHi8KRpPfbYY5a4D508eTKmTp2q+f79+/fj/fffV3VPeno6Vq40bml769atKJewapkxY4bvcF0pzp8/jyeffJK+YBJMnDgRM2bMoB7vl19+ibfeeivoNUEQcO+992qO+4033sDXX38tG2bMmDH44osvNKdhNf599dy5c3jqqaeI7x0/fjw+/fRTA6Tqy4gRI7BgwQLD01HinXfewWeffab6vpUrVyI9PZ2+QBRQO7aRPEc++eQTvPfee4rh7r77bsmFs82bN6O2tpZYLr1cc801yMnJMS09Djmtra343//9Xzy+cWPQ63kA3gfQGBuLXbt2YdKkC1t4nPoyIweLloJybnlDsY6CYTflsxHYSVY7weKZgixYCoaHh2PB/PnAr3+tO81AuFKQwwJWnSloB/ehkyZNwscff9zv99GjR+sVyRTM3EzFkpLCH6X8tLe3+7yVsQy3FFSP1ZaCtGHVUtDqcjEKrhTkGENuLlBUhLasLNSfOaMcvqio30890dGoT04mTrI7Lq5fPLL3B0lTitbMTNSfO0ccnjStxtRUNEZEaI9XI+3Z2aryH0hHVZWqugGAmPR0XWkq0Zyejvr6+qDXOnJyFNMW6+pU50kPbVlZhpRHx9mzkvlwuVy60mzNzET96dOyYdqzs1F/8qTmNCzHr3x64uJUtYn27GxT2lBrZqahfUmNHFry21NQAGRmGiCRflSPbQT10E4YpzBgACDxAtOcno76ri5yuXTSnZ8P5Oeblh6HjF27dmHdunX4/vvvFcNuevpplEzqa9PPiuWKmfGalYaaMwUjI+WXZbilINvtjBWLD7Ot1liEdUtBFs4UlIsjIiICixcvRnd3NwYNGmSY+3/uPpSjhBnjqpXuQ1l5bkgxduzYoErBsWNl/Q8xA7cUVM73P//5T6z40Y9MkkYeWnVEy6Umpy/cUjA4Tm1ToaM+51iC3h2WajBywGB5ccKKdO02ILK4I8ZpbYqV9Gmidkwxa0caK2XMihw0MSJPdiwnO8rsZNra2rBu3TpccskligrBvNxcAEBJSUm/ayzXq92fiWrSiZDZDNbZ2cl0PdkdO5WtnWS1E6F2pqAc8fHxKCkpwYQJE5CYSOVk7qBwS0GOHZDrs0atM7Eyzufk5GDp0qU+Bb7L5cIll1yC4uJiy2QyeuMLK2VPC6X81NTU4LvvvmNKyRIMPc9o0mtOw+pNYkaeKcgSThszvPBtWxxD0TMYs9TpWJKFBViceOndKeSUOjbTEsLs9FmHxcVnFrG7/EbB0m5HXkfs0NDQgOXLl+Odd95RDLtkyRL8/de/BsaNM0weuyvvzELuhVZOKdjR0cHkHCsQo1/YndYetEDTUpCjDadbCpoFVwpyWIBkTDVCKSh3r8vlQnd3t+a4A9HT38ePH48xY8bg9OnTSEtLk52rsAa3FCTL986dOzF//nwTpNEOdx8aHD1nlavF6j7EqvtQp+KsnsJhDqdYChr1UOGWguYQSsosIxULJPc7bQKmBqe0IVK05pflcmppaaEeJ8v55bBNTU0N5syZo6gQFAQBv/71r/Hyyy8jKSlJNpxe7KwUtHrTjBc596FcKWgsNMppyJAhFCRRhj87lLFywyHJvSxYCrKw4YgrBTlKsDAHkLtulPtQ2u/NesvR7XYjJyeHCYWg1dZPesln8BiGc3qOQ6KIGe5DrVyTMvuZR7uvcPehwWFxnKFB6K7eckyBWwqyCVcKagvDUSaUy5FbCtqf8+fPW5Y2Cwt3VqXH6c/HH3+MiRMn4sCBA7LhsrKy8Prrr+P+++9XnHPxejUPrZaC7e3ttqgnu1oK0oh32rRpFCTRj90XTO2AXvehtNPXAgtzC36mIMcOWGEpyMdmOmixFDS67EeMGGFo/IGQ5oclJUswaNWLVUrBkSNHYt26dUhPTzctTastBY10H8p6e3UCXCnIMRSnWAoaNWmw6yBnh13satM2e+JgxYKXGcrgUH65CbUzBbXCsvxdXV1Wi8AELNeR0+nu7saf/vQnzJw5ExUVFbJh161bh8OHD2PRokVEcXNLQTYsBZXOFDQ6fRqEslIwOzsbEydO7PNbZmYmxo4dqztuf/g4rIzZloJ2dB/KAtxSkMMCeiwFe3p6NKd7+PBhvPvuu0GvsWYpaFdYzPfw4cOxdOlSZGRkICoqyvD0WCwDo2HNUjAuLg4rVqxARkYGMxvItGC1UpBjLnzbFsdQzLQUtKNS0CqcaCmoVxnGYp60YHU+uPtQ56SjhBPdh44aNQpHjhyhGifL+eWwRU1NDa6++mq89957suEyMzPxzDPPYO7cuariD3WloJkonSEkhx3KIpQ2tQWL49JLL8WQIUNw/PhxpKWlYdiwYZKLvnrS0XOdExw91n5GLZRx96GcUMcst8xyGGUp+PHHHwMAEoNc40pBadTkxb8cjbYUVHPf+PHjMX78eIiiiCeeeAInT57UlCZNuViYv5nxXJJz1W8U/rKXlJTgrbfeQlNTk6npshifWli1FLS6XIyCKwU5xlBZCcTGIra2Fol1dcrhy8v7/RTW0EB2r4fIyMh+8cjeHyRNKWJOn1YlC2la8WfPQjDhQRFIZHW1qvwHu19tecRHRelKUwm5tkaSX1dbm746VknUqVOGlEd4ZaVkPtxut640SfpB3JkzppYjbcTvv/c98AWVeYk6dcqUvMecPm1oXyJFa35dJ04AjY0GSKSfgS4XUhsbyS0GCeohoqpK83PQS/zZs6b2K3dFBdDeblp6HOCjjz5CaWkpqk+dQqHntzAA2QD2Aejw/DZw4EDs3LkTxcXFqtNg+WXGCNlycnKox0kDI5Q93FLQ3HgFQcDgwYMxePBg6nEbER/LfV8PZlsKqr2XhU2YXCnIYYnJkyfjo48+6vd7SUmJ4WkrtXeXy2WIUlAOp47NZmNmOWppC7yezSctLQ3R0dFobW01Lc3Aeh48eLDiMRBGpKs3rNWWgt4+9vnnnyt6zeHohysFOcawcCEAYLbno0hZWb+fEgCUqk33f/6nz1fZ+4OkKcUlno9mJNK6VU+celCR92CM9nxU89Of6kpXjmVyFwnyGwUN7Y1Bhns+kvzhD5rjJuoHZWW4SHMKDODXVtKgsk3YPe8qmeX5qEbn+GMk0QDuUnMDQV7GeT564rqWWCBKMFxHTmUygD0S12YA+ADAuHHj8NprryE7O1tTGixbChrBhAkT+nw3032onjOE7FDGLO3cVYMdytaLE9oJi2i1PlF7Lw33oUZbCpoFVwpyvMyePRvHjx/HqVOnfL8tXboUsbGxhqetZ0w16pnHLQXp4J9vVsuA5U0sLEFz89bQoUPx2WefUYmPhMD+bNZc2epNaUa0vQ8++AC7du2iHq8enNLHAuFKQY4x7NgBDBmC9957D5988ols0KioKNx+++39fm9sbMTjjz9OnGRERATuuOOOPr9t2LBBMnxpaSlx3G+//Ta++OIL4vCkaT322GNobm7WHK9WZs6c2W+xTA1fffUV3nzzTVX35OTk4JprrtGcphLbtm3DsWPHgl675JJLMHLkSNn729vb8cgjjxghWlAmT56MqVOnUo/366+/xhtvvBH0Wnh4OO68807Nce/atQsHDx6UDbNs2TK88sormtOwmrvvvtu3eHHmzBk8/fTTxPfOmjWLuvuwYIwbNw6zZxNttzAUkvE9GGvWrEFiYjAnOuzw/PPPo6qqSjEcyXPks88+wzvvvKMrLlJ5aLFy5UpTD0gPVQ4ePIgf/vCH+Pbo0aDX8wC8D6AawOrVq/Hoo48iOjpac3o0XmaMchEtCAJA8eV56dKlGD9+PBNW1WrhloL2fPE2e1HGjmVkN5xwpiALloJuN19y4vQSHR2NtWvX4vjx4zh//jwGDBiA1NRUq8UCYJz7UDm4UlAa2tZPNO7RgxnpCYKg2FZZ39RFs5xycnJMVQqq2SBoFXY4VkkURXz44YeWyhBK8Bkaxxhyc4GiIrQfPYr65GTZoOmDBgFFRf0vNDYq3utPREREv3hk7w+WpgRtWVmo1+MDXCKt+uRkNEdEaI9XI+3Z2aryH0jn+fOq6gYAEtLSdKWpRHN6OurPnQt6rdPTHuUQOjpU50kPbVlZhpRHZ1OTZD6C9RE1tGVlob6yUjZMT0GBqeVIG7GwEPAsXvTExKjKS0dOjil5N6rtqIVkfA9GT0EBwHgbac/ORj2JuxGCeug4fZqsnGTiakpLI5OHEmJhIZCRYVp6oUZDQwP+53/+B7/73e+IXNX+569+hRvvv58JV3RGWXzQVArGxsb2KgSDpWEQVi8E2EUpeOmllxKFY919qN0I1XwHw6wzBVmxFNSSLm24pSDHn/DwcAwaNMj0dEk2WthdKRiqcEvBC2mwqIgKxKnPnsB89fT0WJKu2fHRTr+iogItLS1U4+RIw5WCHENRmuiEhYVhypQpQa+pHVyMfAA6bcJmxcKilRM0krSdUsesToTtgp7Jm1llb/c6toP8NMcDO7pstEMd2ZV9+/ZhxYoVOHHihGLYUSNHAl99hVWrVgGMWIzYQVnDwvOcuw/tT2pqKkaMGGGANGzALQXNh2V3bDSsXJxiKciVghw7YIX7UNqE6nNBbb4HDBhgkCTSmKUUVIL1tkyznKx+f2bRfagRZUI7zvb2dqrxAaE7NpJg/Vszx9EoLcysXr0axcXFQa+xpBQ0ahCx6qHMgrUBbfS+9Fo9aWA9XtK4WWwbavDvk2r7p93zrhYn59fJeeNYQ0dHB/7zP/8TM2fOJFII3nrrrdiyZQtVGWgtMBuhdLPzIoBa7PBCrgTJ83HSpEmYNGkSAOCiiy7CTTfdRHxulB3nSLSxk6x2ItQsBVloR9x9KIcF9KwVGLVmo2acII0vFFFrKThv3jwjxQkKK0rBUMLs8gh8ZnNLQW0YoRQsLCykHqdT4DM0jqHIvcwkJSWhoKBA8jpLDzWnKQX14kRLQZbamx6M3BHslDKSQ0+fZME6xQ7YoR1xS0H268hOVFdX4/LLL8fHH3+sGDYzMxOPP/44LrvsMlPPw1NT52FhYaa96GpBqv+y0q5ZkUMPJM/KuLg4TBs+HAAwffp0ID6eOH47lhHL47Qdy5MEsy0FjVIKkqZPOw5uKcgJJVhUCgK9c5bu7m4qcTl1rFdCTb6vvPJK5OXlGShNcEK1boJh1nPJ6nkZi2u9dlgX3bFjB/U4Fy9ejOb9+3Hs2DHN9WJ1uRgFX8HkGIrcSwBttzisug+VU3xaBQsvqWZih4efk4iMjLRaBM3oGUdCrQ1pza8dyskOMhpJqOefJkeOHMHUqVOJFIIrVqzAwYMHexWCBkDrJZxbCiqnqeQ+dPDgwUGvZWVlUUnfaEielSyOIyzKJIWdZA0VnGYpyJWCHE5fpPqEURuhaFsKOgmtG1+U7ktNTdUsE+s4wX0oTUJFKeg0S0EjiIyMxMqVK3Hfffdh3LhxVovDFFwpyDEUuZcZ2kpBI9Ejy7BhwySvhZL7ULN386pN2+pJA+vxksYtCAKys7MNSX/OnDnErse0YgelYChN5q2CNatPlp6HHHJefvllTJ48GcePH5cNl5KSgs2bN+P5559HWlqaYfKEulKQpX40Y8aMoL9PmDBBU3xm541kgVSPTHacI9HGTu9JVmH0+4jeNhxqmzCl4O5DOUYSFRVFFI5kDiQVxi7H1DhlzFCLmnmpVWXE3YeSYef+YAf3oUasi9qp3UVFRSEiIsJqMZiCrVUvjuMwUynI2mQtLCwMkydPxpQpUyTD2HVx304DP0Aur93yFQwWdgTPnTs36O+5ubma45wyZQpmz55t+MKCHc4UZGXccLKlIGvuQ83GjjKzRE9PDx544AFcfvnlaGhokA27atUqHDt2DDfccIOlm2fUYITVh50XAYKlqWQpmJ+fj8mTJ/f5fciQIbbZvUryHGJtcwVg/cYpK+PjqEeP+1A14bmlIIejjNT75aWXXkp0P6vuQ+0+/2EBNZaCoa4UZGEdwaznktWb/kNFKWg3nLyGpQW+bYtjDJWVQGwsok6dQmJdXdAgCYIge16O0NEheW/Q8EHik71fxVk9MadPq5JlypQpmDBhAsLDwwEZC4HEujpDDlJVIrK6WtdZRRFVVarKA0CvhZeB5yPJ1VFEVRUQE6MYR9L586Y9vPXWgRTuigrJcoiMjNSVJkk/CK+sRF5eHoZGRuLUqVO+38PCwjDtoouw8+BBzWmjvBwJ584BCovsehC//x6IiwMAhNXWqmrnkdXVqvuFFqJrakw9a0wKufFdDteJE4DBFp96iSWte4J6IB4vZeKKO3PGlLblJezkSUP7mZM5deoUfvrTn+Kd3btRCCAMQDaAfQA6/MKlpqbit7/9LW655RbTXjJYthSkCQsLHkpKQUEQsHDhQowaNQqVlZXIzMxEQUGB5rJ1mvtQp754q4HmwqZTy5N1S0G9YblSkMO5wJgxY7Bv3z40NTX5fktPT5d0x60Fsy0FBUFgfk5lFU57xrGiFAwlrFYKsvA+ogUnWwoC9pPXaLhSkGMMCxcCAMZ6PpI88IDkpQgApWrT3bChz1fZ+8vKiKOd4vkQQxj3ejVx0kRF3oMxCBrqBgB+/GNd6cqxRO4iYX7voSIJITrrQIpiKNTN//yP5rhnez6yePJ1XbBr//d/GKE59V7W6rxfEb96SYfKdl5Wpjt/dmKq56Mag9o+TRZ5PooQ5GW056MnrqtI7qeJDeqIVbIAPBnk9xkAPvD8P2HCBGzbts0wV8tS0FocZt1SUOolnJWXQH83ZXl5ecjLy7NYIvXYVSnILQU5elC7SK3XUpBGG2ChHXGlIIcGSUlJWLNmDfbu3YtTp04hLy8P06dPN8V9qJGbhu1sGcUK3FLQvDSMxs79wUhLQVrHS4S6+1CAWwoGwpWCHGPYsQMYMgRfffUV3nzzzaBB0tLScOONN0pG0dXVhYceekhVsqWlpX2+bwhQEsqFleOjjz7Cnj17iMMvWLAAI0YoqwcefvhhdHZ2EsdLi3nz5mHMmDGa7z927Bi2bdum6p78/HxcdZVxS9uvvfYavv3226DXli1bhoEDByrGIddeaDN16tR+rsNo8P333+Pll18Oei0qKgq333675rh3796NAwcOyIa56qqrkJ+fH/RaY2MjHn/8cU1pT548GVOnTsXGjRsV3fHpYe3atUhISAAAnD59Gv/4xz+I7120aBG2b99ulGg+SkpKMGfOHMPTUWLv3r3Yu3ev6vvWrVuHGALLXSvZuXMnDh06pBiO5Dly8OBB7Nq1S1dcL774Ik6ePCl7f0JCArW+4d8POMrU19fj7rvvxrvvvdfvWh6A9wFUe75feumleO655xDnsUg2E5YtBWm+aJll8e+P1S+KTrMUNAoWZZKC1YVNljDbUtBspaDRFkRmtSF+piCHFikpKcTuQrVghaWgnZUgRmKUpaDeMsrJyVE8K9yIdGmlwYL1GgseUowg8JlNs6xHjhyJV199td/vJGucauFKwdCCz9A4xpCbCxQVoau+HvXJyUGDRKWlAUVFklEI3d2S90oSEJ/s/TJpB9JZUaFKlq68PKL465OTLVEKdnrqRyvdHR2q6yY1I0NXmkq0ZGSg/syZoNe68/OJ68Ms2rOzDSmPrs5OyXx0REfrSrP9m29Qr+AuUa6sxYYGzWXckZMDFBWhKS0N9QbuOO4pKACSkgAAXRERqvu9GW2oxeC+REpbebm2/BYVEbnztZL27GzUV1crBySoh45z58jKSSaulowM1Pu5Swpk6NChuPbaa3HkyBE8//zzymkpIBYWAomJuuMJBU6dOoWFy5fjiy++kA3XDeDnP/85HnjgAcusJmi9BLGuFGTBUpCFRRcjMfpMQTu+sLNsKag2rpKSEuTn5+Pdp56iJoMdsVopaLSlIHcfygkl9FgKGvlM5+5D9aPGUlAvc+bMwaZNm/r9Pm3aNNn77DivsQI7K8mNtBQMDw/HvHnz8LHfe35ERAQTG8XtBu+LfeFKQY6hyL0E2GkHrFG7JaxaNNJbtizVjRcWXnpZwMhysPJ+s16Y9PRJs9oZK4vNTu5Xdnsh8S4+DhgwgIrFoJPrlibHjh3DggUL8N133ymG/etf/oIF69aZIJU0tOrVru5DzcRsGULNUlAQBE1l7KSxzci8lJSU4Pz584bFTwuj69NqpSA/U5DDoYcet3ncfSjbmGkpmJ+fj+LiYhw7dsz3W1xcHCZMmKArXhqEav1LYbVSkPa7wLRp05Db2QmUlWHKlCkonj8f6enpVNMAnG8pqBWn5pNvS+EYitzLjJOVgk7HaHc9tAml+rM6r0YtPijt4KSF/+RN7USO7/Qkw+o2SgJrdUn6vIyKisJNN91khkghz+7duzF9+nRFheDoUaMA9LoVtxqW3YfShLsPNR6rzxScPn265riNgmVLQY75GG3lZ2YceuHuQzmso9RPuPtQ89Gq6DN6jTEsLAzXXXcdFixYgGHDhmHGjBlYu3YtUlJSDE2XBLu4D5XDzv0h8P3IiPeRwsJCAMCUKVM0KQT1bI6gFd5q7Cav0bD9Vs+xPaGqFOSWgmzBorxGyWT0znwr7zcDPZM3bilo7H1mYgcZ/fGXNyUlBddffz21+Dj9efDBBzFv3jzU1NRIhomMjMRvf/tbvPTSSyZKZg52tRTk7kPpYbVSMBTGKCXlO8vzPbMwepMitxSkA7cU5LCAnvbO3YeyjdnPLLfbjalTp+Laa6/F/PnzkUxwTAQrSkEWMOu55DRLQbOwSzvSipPXsLTAt21xDEWPUpAl1E7WuFKQfpp64rdTWzMSM+rd6Hpg2VIw1JSCTobmC7oV7V6v/HzMDE53dzf+/d//HWVlZbLhBg0ahG3btmHYsGGAwjmsZsKypSDNNmeFpaDVsGgpaORCJ4sv9LTjtnKhmLb1il3RqxSknT5tuFKQE0qQzIHMdh/KLQXpYKaloFZYUQqysI5glvW41UpBFt9HuKWg/eQ1Gq4U5BiKU5SCRsnKwkNZC+3t7VaLoAo7tTW9hFJejUBPnwy1nZ4sLsrSwm51GVimfAGOPs3NzVi5ciVefvll2XAlJSXYvn07MjMzTZKMHFpKQW4pqBy3Xed3pFhtKah1jLbD88eLlZaCnF7MUgpaZSloFtx9KMcuSPUXI5/pXCkYHLPHW6NhRSnIAhEREZLX7NwfnPIuYJd2pBWn508tfIbGMRQzF1aHDBliWNxO2y2hV77IyEjT01RC7qHLYn1w96Ha7uWWgvadYHphsT8GQiLjiBEjqMWlNw7aSkE71JGZnD17FosWLcL+/ftlw82ZMwdbt25FYmKiSZKpg2VLQZrYfYzUAot91kilIIuYbSlo5CKoHcufFBbzJiWT0fMHbinICSX0WAraxX0oi+ObGaixFLQKrhS8QHh4uCnpmF0eZpwpqBduKejsje1aYPutnmN7zHwJmD59umFxc/ehfcnKyqIkiTk4dQBnERYWH/Sgp0/aIX80cXJ+Scb8CRMmmCAJGVwpaByNjY1YvHixokLwtttuwxtvvMGsQhCgV6+suw+1Ym7F+0x/WNykZKd6slr5bqeyMgqnWwpypSCH0xe7uw91EtxS0BhY2DjHLQXZxulKQU5fuKUgxxgqK4HYWIRXVSGxri5okNjISMWzdqTuDWTkyJHI7+7uF5/s/SrO+YmsriaWBQDCKyuB6GjFcGripEl4ZSWQkKD5/hiolz3uzBlDz1aKrqmRlMldUQEQTObNrI/I6mpDysNdUSGZj5j2dl1pypWxl7CTJ4Hu7qDXhPZ2zWXsLa/4s2fRaWA9uU6cANraev+vrFQlb4TMeEeTqFOnmDinTO246EU4fhwwaYegVmJOn5bNW35+Pga6XET1EE7ajmTiijtzRjaOmNOn+9wfUVurqy0Kx48TPcOcTnNzM9bdeitO79uHQgBhALIB7APQ4Qnjdrvxl7/8BWvXrrVMTlJCxX2o1OKdmS+tZi8EsPhCrkehEYreFAKx0n0oi+0pGFrk1LN4bPYitRmeBsyAKwU5LMCqpaCdlSCsYAeloBnYJW9OtRS0g1KQWwqGxsZCNXClIMcYFi4EAOQAKJUL9x//IRuN7L0EyN5fVkYczyjPhxjCuEvVxEkTFXmXolTLTffeqztdKS6Tu8hifVCog2DkQSEf/+//aY57qucji0y+IqGjjD3xrtZ6v8p0ACAXKuUtK7OuT1vARZ6Pagxq+zSZ4vnI8qMfEcU1wvNRRKZclhGldIF06BzPbFBHZhAL4Jkgv88A8AGAhIQEvPjii7j44ovNFUwjLLsPtbuloNWw+KLKokx2wsry49YrwbGjpaCWdGnDzxTksICe9m6kG0CrrcKdgH8ZsvrsYsV9KAtzZKdaCtrBfSgJrPYhWjg9f2rhMzSOMezYAQwZgtOnT+Mf//hH0CAZGRm44YYbZKPZsGGD5LXS0lJFMfTe7+XQoUPYuXMncfilS5eiuLhYMZycfEayePFiDB06VFccR44cwfbt24nDDxw4EMuWqV3aJmfbtm04duxY0GvXXXcdkctTM+tjxowZmDhxIvV4Kysr8cILLwS9Fh0djdtuu01z3Hv37sXevXtlw1x77bXIzs4Oeq2zsxMPP/ywprS95fX3v/8dZ8+e1RQHCf7yV1RUYMuWLcT3rlixQlV4rYwYMQILFiwwPB0l9u/fj/fff1/1fXfddRfzC0Qff/wxPvzwQ8nrK1asQF5eHlFchw8fxo4dOxTDyT2T5MY3oH+bqKurw6ZNm4jkC8b69es1nR3rFKqrq7Fq1SocDSjzPADvA6gGUFBQgNdeew2jRqnaMmQpLFsK0iQULQVZxMgzBVnc5Wv1jnRaYe2E2ZaCZqdjtKWgWeMUV3pwWMcqS0HaY7OTxnruPpTNNGggZyloZ6WgUywFWYjTSOwmr9GwvSrHsS+5uUBREcToaNQnJwcNEpWSAhQVyUYjdS8AxXtp3O+lq6FBPq7A8Hl5+uUzkE5P/eihu7lZlfwtGRm605SjOT0d9efOBb3WU1AA5OQoxmFmfbRnZxtSHj1hYZL56IyJ0ZVm+/HjimXUnZ8PSClLOjs1l7G3vJrS0lBv4K6rrrw8ID8fANAtCKrk7SkoMKUNNaenG9qXSGmvrNSUX2HAAIBxpUJHRYVs3rrz84HCQqK4uhobycpJpk7lxjeg//gqJCXpaotiYSEQFaX5fjuzf/9+XHnttTh58qRkmOzcXDz7wQfEimFWCJUzBa3A6oUAFsvPLIUKC/E6DV5OvZjlPlQKo88U5HBCCT3uQ1taWgyRSS5NDjn+ZWjUpiK9cKXgBULFfWhCQgLOnz9vqgw0cLr7UE5f+LYtjqHIvcywuHNCCqcNjKy8qJoF6/VBE6t3wdOyRLEK/3FJ7Rhlh/zRxMn5tfIsJy0EyqPXkou1/JnFE088gRkzZsgqBAHgqaeesp1CEOBKQY65GDlPZLG9WL34ZLf4aeCUMwVZj4PDCXWMtBTkfVQ/vAx74e5DjYtLS3pz584NGm7ECKKDRQzBiDMF7YbT86cW+6zqc2yJ3MIkCw8kUtQubLA+0FihFDS6TOTaE4v1YcUueKv7nJ70lXZw0kKPUtAsRbnV9agXFvtjIKwpBdWmp7ct2qGOaNLR0YE77rgDa9euRXt7u2S4XI/F+cCBA80SjSqhcqagFWlY3WesTj8Y3FJQHr1u/NXgtM2NVmG2OzuuMOBw6MHqYridNlqzCrcUNC8NGjjVUjCwL+fn5/c7VsftdjN/9ASfMwbHqfnk7kM5hiI3ybHTwatOHQD0wFqZ2E0paEf0vky53W7Ex8ejsbGRplhUoaG4DBW05tcO5WS3XYq0LQVDiaqqKqxYsQJ79uyRDTdixAhs+dvfgGnTTJLMXKw+j8UO44IauPtQNmUyErX51bso5GQlNylmWwpakY4gCHxuyuFQQI/7UCPhfVQ/Vs9hWU43EBY2F7vd0moIu72Dy6UXFhaGVatW4e2338bx48eRkpKCKVOmQPlQI+MwYnMEK22bFLvJazRcKcgxFO4+lE2caCnIatpmI5dXvbuy9JajIAgYOXIk9u7da5kMSvhvVmDVfaidxk67YndLQe4+lIz3338fV199NU6dOiUbbtKkSXj99deRyvCGBhJCpV6lMDP/fJw2VqFi97Y8Z84cx+0UdyJmuQ+VC+tyuXRtpOX1yOEoY5VSkFsDS6N1DGW1PLml4AWcaikYLL3o6GhcdtllfX8sLzdHII04be2bFk7NJ7dV5xiKU5SCdlKAkWCFUtBouKVgL3J5TUpKsjR9ALjkkkswfvx41ZPBmJgYPWIRo2dcYq1PGI2TLQVpKgXtaClohzrSy8MPP4y5c+cqKgRvvPFG/Otf/0JqaqpJkhkHLfeh3FKQPVgsPxafiSxY1w0YMACzZ882LT21YbWEtwqj5WRBKUhjQx6Hw2G3L7D4rLQbVs9hWUnXLhuq5CwFacKCUtCOOCUfUjg9f2rhTyCOoThFKcgHjv6wpii1m1LQCpn0KgVpKZOXLl2Kn/zkJ8T3hIWF+Q5kNrMdcUvB0IW1lyq18rA45rGCKIr4+c9/jrvuugtdXV2S4dxuNx588EE89dRTpm1KMBojF571YnX6egmUn4/Txioz7NxezNohzwmOWS5BacXrlDOCueKDYzUsug/lloJ0UGMpGMpKQYCN+amcUpCmfKy9r9sFp24k4wSHuw/lGENlJRAbi7D2diTW1QUNEt/drWg6LXUvACKza733ewmvrJSPK0h4EFhqqImTJuGVlUBUlO441Mgfc/q0oabysbW1kvKEnTwJNDUpxmFmfURWVxtSHm6ZcshsbdWVZtSpU4plFHbyJNDerhhXGMjLu6SkBBFVVQCAuDNnDK2nsJMnAc9E1V1RoSqtsJMnTWlD0TU1TLidiKyuVp1fQRCYkF0JpbburqgAOjqI4iIeK2XKJeb0adk4AsdXAUBKQwO6u7uJZAxEOH6c6BlmN06fPo2f/exneHPXLhSidxzKBrAPgH9tZmRk4IUXXsCsWbMskdMoaL202dVSkL+0mosgCAADi0/+sGApSEs5YraVHIuwXAYsj7dWoNcNKodjBlb0N6f0cdqoKRc7bDrg89wLyG2OsrNS0A7tkASuFAyOU/PJlYIcY1i4EAAQCaBULtyvfy0bjey9ZWWKYui938sApbg0xq0qTpqoyLsUudAg/1136U5XiivkLrJYHxTqIBjpMC4fEzwfWVTkq1SDDDdouEcVfvIXQn2/VxVeDwb2JVLGeT6q2bCBriAGMMLzkURFOx/i+SgiE+dlklekuVvDPT4MGp+sJgPAY0F+nwHgA8//U6ZMwZYtW5Cbm2ueYCbhVMsrFrDaUlDO6tUqWLQUZKGd22HRmQVLAhYww31obm6u7EIitxTkcOjAoqUgwPsGDexgKWgGTrAUpLl5hFsKmoPd8m03eY2GKwU5xrBjBzBkCLq7u/GnP/0paJDY2Fj84Ac/kI1mg8zicWlpqaIYeu/3cuLECfzzn/8kDn/VVVchPz9fMZycfEaybNkyDBw4UFccp06dwrPPPkscfsiQIbj00kt1pSnHiy++iJMnTwa9tmbNGiQmJirGYWZ9zJo1C+PHj6ceb0VFBbZs2RL02pVXXomCggLNcX/66ad49913ZcOsXLkS6enpRPFJlXdCQgLWrl0b9NozzzyDmpoaovi1sHTpUhQXFwMAysvLsXXrVuJ7b7rpJmzatMkgyS4waNAgLFmyxPB0lPjss8/wzjvvqLrH5XLhnnvuMUYgihw5cgTbt2+XvK6mnX/77bd47bXXFMPJPZNef/11fPPNN5LXx44di7lz5/b57ZFHHkE7gdVuMO69917HTJhra2tx33334V9B2moegPcBVHu+33bbbSgrK0NkZKSJEppHqJ8pqCaNzMxMQ581tGFRKehyuQCN1sqA/V7anWQpyMKiIQl2P1NQEATMmDFDdzxG3k8LvWcdczhmwN2H2hOr57CspGuXtsTdh7KNU/JBG6eWC1cKcowhNxcoKoJLFFGfnBw0SFdsLFBUJBuN1L0AFO+lcb+Xbpl8BA2fn69fPgMhlU8OMTJSlfytmZm605SjOT0d9RIuQsXCQoDgPD0z66MjJ8eQ8kjJyED9W28FvZY5eTKgY7G7vbpasYx6CgqAzEyi+KTiciUnS5ZNU1oa6gndNmrBv146OztVtQmxsNCUNtScnm5oXyKl4/Rp1fkNCwtjQnYlupubZfOmpp13trSQlZNMubRmZqK+tlbyeltWVr/7m9PT0dzcTCRjUFkcMPHdsmULbr/9dpw9e1Y2nCgI+Mujj2LdunUmSWYNoa4UJCUmJgZXXnklHnnkEc1xmK1U0eoq2EhYqlMvLMhkF6sQFsqKNWiPk6tWrcKAAQNk3YdzS0EOhw6sektgpY+yhtXzUtqwICMLMgDOdR/KSvnqhbsPDS347IxjKHIDhF12oQLqX2RYHxhpyMfay51ce2K9PmgSExODwsLCfr+PGjVKt/ULC+VotAx6xiUWyodDB5quZ6xqF3p25du9LdfV1eHGG2/E1VdfragQBIAHH3zQ8QpBgO16pSnblClTdN1/zz33ICMjQ9U9VpetE5WCdnMfShq3Hc6as9M7mlrMen6T3DtgwABDZVC638x6Zu29kRN6WP2cDoYgCLxvUMAO72WsWAqy8HxPSUmRvEbqPnTo0KGKYfiZgtpwulLQbvIajTNaLceWsPBAIsXpA6MWWMsjVwpeYMWKFX3c1w4aNIiK69ZQKEf/dqR2jDKrfFgZO53cHpQm9aztPAx23SkvJmr59NNPMW7cOGzevFkx7NAhvac9suCO1wxYVkbQjHPMmDG60rCj+1gW3Yc6+RmhByvch/IzBS+gZsOMGWcKKuGUZzl3H8phGSvPFOTPyuAYNd6GulLQagYPHiw7zyadf5Acw8Pa+7pdcEo+aOPUcuHuQzmWQfMQWaNx2gBghaWglRZeLL5QG1kecXFxWLt2Lerr6xEREYHo6GjD0grE7PNdaGMHS0G1Fiwc9djNUjBYGloX4Oz8vNu0aRNuv/12tLW1yYaLjY3Fr371K9y1ZAlAsNM0FLBzvQeSnZ1teppWlx+LSkEj3R5yS0FjEUXRFnJqIdSUgqzUI4vvYpzQguSZwpWC9sQOZciVgkBWVhaWLVsmG4ZkLWb27NkY4tnYKQdXCmqDG8SEFlwpyLEMO+1CZU0BxgJ2erkLhfoIRmJiItX4QqEcWbIUTEpKwvnz5/v9ftFFF1FNRytObg92Gt+kCKVd+R0dHfi3f/s3PPzww4phS0pKsHnzZowYMUL2HCcnQkvJwrKlYElJieFpsAiLSkEj3R6yFKdVMnD3odrKQM/z3YpxksV+pAUnzKs49oakL1ihROB9Qz9Wz2FZSZdkU6tVz/fRo0fjiiuuUJRRSb4hQ4Zgzpw5RGly96HacLpSkMWNhVbijFbLsSV2eeEEnDcwhpqlIGnaZlrU2REWXqZCyVJwxowZiIqK6vPb5MmTER8fTzUdTn9C2X0o68+vQPbv34+pU6cqKgRdLhfuv/9+fPTRR70KwRCE5bplWTY74MQzBa2KWyukMlmxaMRieVmF202+J1pPuXFLwb44ZbGU42y4pSA7OM19qBmwmrfY2FjMnTuXSD4lb3IxMTHE6bL2vm4XnLb2zZGHWwpyLIO7D7UOK5SCRkNDKTh79mxs376dlkgcG+I/LlltKZidnY1bbrkFX3zxBRobGzFw4ECMGjWKahp6cNq46I8T3Ic6fRecKIr4r//6LzzwwAOK84nBgwfjqaeewpQpU0ySjk1CwVLQLu2XNnIWklbhFGUGbezQ1u3iPtRoS0E97kNpYYd6ICGUvBdw2IRF96GCIDimj1uJHcqQBUtBwFzDjJycHGRmZmLatGlITk4mukdJPqvfV1hKzyickg8pnJ4/tXClIMcy7GQpyJpVHAvYaQcJadrjxo37/9m77zgrqrt/4J977/a+y8JWtlCWXpcOSlFZRbESuwImFozoxvLLk5gniab4GI2wamJJomhEo2JPVLC3iKJiAWwgC+yy9C1sb/P7Y+8ud3dvmZk75czM5/167Uu8d8r3zDlT7nznnME333yDcp8h5SZNmoSvv/465Duq9IpJJCLE7KSegi6XC+np6ViwYIGmy6XQrNZT0B879xSUJAmlpaW4++67Q057wQUX4G9/+xvi4+MNiExsIicFjWDXnmspKSnIyMgwbf2B6D3sYXR0NFpaWjRdZjhE7imoVEJCgm2PmeG8UzCchKJadkmuW6Hdk3OZlRQ0a512Y8axWSlR6rmurs6Q9dx8882KeuZ3Y1LQfFa6z2sku5aTSUHSR2Ul4P0xmVxd7XcSl8sV8n0+geYFIOtdQOHO381z6FDwZfURUVEBtLWFnE7JMrUUWVkJhHlQ8zQ2Koo/7sABXd/fFH/wYOC2tmsXEB0dchlRAC6cNQu7c3Nx6NAhZGVlYfDgwdj73/8iWkVSMDs7G3v37vW/rr17Lfc+q+iqqpB17tmzB2hokLW8QMtK7OwMuG0SFO6LSkVWVgLeJ9kiKioUrcuzZ4+msUVUVAAKb3gaSU576Mvj8Vii3UdWVgYtm2fPHqC2VpNl9QiyXeIOHAi6jNj9+/vNn3j4sKr2GBkZKXQdSZKEsrIyvHD33cj3fuYBkAVgE4DW7s88Htx555247rrrbHsRr5RWSUE9WKH3lEi6y5meno7zzz9fyHLrnYCbNWsW3nrrLd3WITq9tm96enrPE/0DBgxQPH9RURG+++47rcPyS802CKfHmhk3I/VOrhuFSUEymyj7Ql+ixmU2uw0fKkJPwY6ODmzatEn3OAoKClQlBIHQo8mJXNdOPc/xGGZtTAqSPkpKev5ZGmy61auDLibovGVlIcMId/5u6aGWpXLZipapJQVlDyQOJsbvx/nBvlRQ3kgAQ71/3a5SF1JwGtSB0cZ5/4JSUK7SYF/eeqvfj38ke+kq+cQ/DMr3e0XTK4hFRGO9f4rddZfGkWgvB9qdP4aEWpaMZS70/ilxnsLpe7nzznDm1pULXduz1M93cwB8AGDQoEF46qmnMHfuXAMjE59WP9qUvM9DDqN+TIrQS0wrV111FRoHDZI9HJPWIiMj0Rbi4Te9kxmzZ89WnBQU4caFyCOlRERE4JRTTun5/4ULFwK//rXs+UePHq358UFr4fQUNONmpF16CnL4UDKbqMOHOjWRoCVRjnPBiJAUNEo41wGhrpFE7hUqyvYPl13KEYjdy6cUk4Kkj/XrgaIiAMDqIIm/0tLSoIsJZ14t5u925MgRPProo7Knv/DCCzFo0KCQ0wWLT09LlixBbm5uWMtoaWnBfffdJ3v60aNHd91c0Mnjjz+OAwcO+P3upz/9aVfvF5UefPBBNDY2Kppn7NixyMzMxOuvv+73+/nz52PChAmqYzLDli1bApan29KlS2XfpAzU/pOTk7F8+XK/361btw4VFRWylq/GggULMH78eADA999/j//85z+y5psxYwYmT56Mv/71r5rFctFFF2HgwIGaLU9rW7duxWuvvaZoHo/Hg5UrV+oUkXb27duHf/3rXwG/v+yyy5CUlCRrWT/88ANefPHFkNMFOydt2LAB27ZtC/j91KlTMXv27F6fqd1XoqOjsWLFCsXz6e3jjz/G1VdfjUOHD/f7LhfA+wCqAJxxxhn4y1/+gpycHKNDFJ5WPQXHjx+PDRs2CJnccMoPvejoaESblBAEgEWLFuGFF14wbf0ulwsejwcnnnhiyOuSvvPpGZMcWr1TXcuyDBs2DIWFhRgxYkSv3oHdw9IuWrQIG/ftw86dOwMuY+7cuTjuuOOwfv16zeLSg9WGD2VPQSJ702ofHTNmjCbLsSKRe48ZuV5RjvcxMTGq5+Xwoebj8KHOwqQg6SMnBygoAADUBrtp4Z0mkHDm1WL+HklJwZfVR2deHpCZGXI6JcvUUmdeHpCXF9Yy3G1tiuJvyshQts0Vqk9PR22Ap9ZdhYWAyiEMAODogAGolzH8qK/mzEy05eQE3Eat2dm6bg89tB45ErLOO/PyAJnDTQValjs1NeC2qU9PR63M4UnVaMnK6ll3W2Oj7DY+/bzz0NHRoek+LeXnAzIeLjBLa3W14vJ6PB5LtPvOqKjQ5w+ZScEOucfKINulKSMDtVVVAb/3bbfdGgYOVLWvxMbGCldHDz/8MK688sqQPZNW3303Flsg6WwWLXsKjh8/Hl988YUmy+OPSesZOXIkPvzww4APYwHGJDMmTJigKCkoAjOS6aG25axZs1BYWBjw+6KiItSmpgZMCp5//vkYMWKErHVpycj37Spdnyg9BUVhl3KQdYnYU1CrdUZGRmL69OkaRGNNVriOZFJQHisnBe1ynmNS0D+7ltMerZZIZ3Y7AGhRHtFOFsEuIMx6ytYuFwbd5GwHvetZ7+X7PsEv98bd3Llz4XK5NI9N9OOO6PGFI9S+K9qTh/6+VxujSPUqSRJ+9atf4bLLLguaEOyOePHixcYEZlHB6lZpouL000/HvHnzenoSBVNcXKw6LqVEfm+incTExGDp0qVITEzUbR1y6ishIQHDhg3TdJlqyV22iD1s5Vyvyt23RL/2VfKeI/YU1A6HDyWzifA71t/61BwzM70PnxcWFmLKlClYtmwZBg8erHV4liFyoshIopTNqUlBUbZ/uES7z6s1q8WrN7Gv2onCdNppp/n9fObMmYqWY/cDoxqi/egXLSmoR5LIbHYrjz/h3KxTsk+UlJTg+OOPDzqNE7a3qLRMCppVj2qP0SId2++44w784Q9/CDpNdHQ07hT4HYgi0bItut1uzJ07FxdccEHIaU8++eSg38uNS+Rjosix6SUuLi7oezuNSsD96Ec/kj0cuwj1pNXwoVrS8mZ5OMP1K6V3T0G+U1A7Il1bEPVltZ6C3Un2M844A6eeeiqys7O1DstSRDnOBeOknoLRCkfY8hXqGkmUMvojcmxK2KUcJA+vzsjWioqKuoZC8+HxeBSPuW63pKAdewqKtu5QSUHR24iojOxxKjdBqOaHZHR0NObPn49p06aFXC4ZT03PPD05safgmjVr8POf/zzoNBMmTMCnn36Kc845x6CoSKlFixYhIiJCVo/CULTszUTa0LPXm9z6ioqKwplnnhn0fGoEkXsKhopNy8RTVFRUWMvSWzjvFDQjKajng41GtkUmBclsIl4DqH2IWMSymMkK2yNYjKNGjZL9rnorYE9BZ3FKue1aTl6dka0lJiZi6dKlKCgoQEREBHJycnD++ecjJydH0XLs9kNGq6SgSAdGEW5MaTWfqEQcdkVratqRmmGzrL6dAHuUIRCrHfPtlBSUJAkPP/wwfvKTnwSd7oorrsBHH32k+CEfJzOjbrt7DQXbp+TGJfLwc2bvNyIyeqhOq1yjiDh8qJbbzsikoJr6VDJ8aF9mDB9ql56Cwd5ZSWQ2M3sKWu03h4hEOc4FEyzGlJQULFu2DDNmzAhrGFhRtgOTgtZmpc4falgtXr2pvyomsoiMjAwsXboUkiQZdpPUKQcat9uNjo4Os8MAIObwoXa7yBehXYvcUxDo2ie0GhpMhO3tVBw+1Bw1NTW46qqr8OSTTwacxu12Y/Xq1bjmmmu4jyhk5vbSIikYbk9BObKyssKa32mCDVkWzvBRgD7t1ehEpT8iDh+qZS9c0XsKGjV8qFbscp4bN24cXnnlFWF+N5LziPrgCHsKhs8K91xCnUNTU1NRUlICjBgB3Hij5uswUjhJwVDXSGY8nCPq+shYdq1f8Y+eRBoJZye2W1LQjKdXjUzmaE3txbro7UAPVi9zuD0F5ZZf1B+mSogeXzg4fKjxdu3ahVmzZgVNCALAI488gpUrV9q6/enFzJtdRiUFwzV58mTd12EnWVlZSE5O7vf50KFDw363nNKhYK1yTLBqT0G5RO8pGM7woewpqF5UVBQWL14sTDzkPHLOKWZc3zMpGD4rbA+l1zRar8NI4TwUxp6C1iNKue00BK+R2FOQ9FFZCcTHAwDmFRRg8+bN/SY56aSTgPLyoItJrq4O/GWIebXkbmoKHkvf6XfvBurrQ06nZJlaiqioAFpbw15Oam0tWlpaZE0bu3+/rnWWePgw2gJtzzDXm3TkCDprahTNE7t/P6IiIwPWcXRVlaFtWAtRe/eGbLPu3bsBmdsq0LISOzsDbpuEQ4d03W8iKyt71h1RUSFrXTH79vXMI3efiKysBJKTEbNvX8B1ePbsAWprZcdutMjKSsV14fF4LNHuPUePBi2be/duQOYPHtnbKch2id2/P+gyfNtgt/iDB1XtK0mSZHgdvfzyy/jVr36Fxupq5APwAMgCsAmA75nqz3/+My6++GJDY7OTYD/a9EpUyLnRZmRS0OVyBS0rk4LKuFwuLFmyBI899ljPuS8lJQWnnXaayZEZT247tuo7BdlT0JybkXZJCgJd7wHOycnB43/8o9mhEPnFnoLWZIXtwaSgPEwKWo8o5S4sLERERAQ+/fTTns/y8/P7TSdKvKJgUpD0UVLS88+53r9+yspCLqY02Jcy5tdKLELE0pfM2BQtU0sabbsVmixFG5cG+zLM8i4LY97SQF8Y2H61MtL7F5SCcpUG+/LWW/1+fJbspavkE/8o75+SeWTvE9555nv/Qi1XRLK3T1933aVxJNpLhHbnn7xQy5KxzBO8f0rmDeuW/C23hDO3You8f33NAfCB99//8z//g+uvv964oGxI1J6Ccuk9fOjQoUNVx+nkH5i5ubkoLS1FeXk5IiMjkZeXF3YvQUCfUTpEqCcRhw/VctuJnhQM552CZtyMNOMVCHpKT0/HhAkTzA6DHMiIpIxSal83Itp+bTarbw9RzhdaSElJ8TuChFaYFBSPKOV2u9049dRTMXbsWFRUVCAzMxMFAKDR/QNRyqk1JgVJH+vXA0VFPf+7c+dOfPjhhzhy5AgyMzMxd+5cDBw4MORiVq9eHfC70tJSDQKVp6WlBffdd5/s6ZctW4aUlJSQ0wUrn54uuugiWds/lAceeABNTU2yph0/fjwWLFgQ9joDWbNmDWoC9FALt6088sgjqFbY42by5MkYPHgwXnjhBb/fn3DCCRg3blxYcRnt22+/xSuvvBJ0mssuu0x21/1A7T85ORnLly/3+91zzz2HXbt2yVq+GjNmzMCMGTMAANu2bcOGDRtCznPcccehuLgYgPx9oqSkBKNGjcJbb72FL774wu80SralGb755hu8+uqriubxeDxYuXKlThFpp7GxEQ8++GDA71esWCH7Kcjdu3fj2WefDTldsOPUm2++iS+//DLg97Nnz8bUqVN7ffbKK6/g22+/lRWjrwEDBuCSSy5RPJ9S1dXVuOaaa/DBf//b77tcAO8DqELXDdw//elPhp7z7UrUpKAoPQXt+mPPCDExMRg5MuRjQ4q4XC4Eel5cxOFDRe4pGIqWvdFETwo6bfhQIgrNrPOHx+NhT8EAlDzAYYXt4ZSegnPnztU1DiYF9VVQUGB2CKp1D8dcUFBwrBx+Rj+yQz1piUlB0kdODuBzQCksKEDh/PmQJEnRTlibmhr4SwMPWK7W1uCx9NGZlwekpYWcTskytdSZlwdkZIS9nPr0dNTLGCYVAJozM3Wts6MDBqA2UNsKc7316elQOohjS1YWOgYPDljHbX32EStob2gI2Wal/HxA5tNhgZblTk0NuG0aBw1CbV2drOWr0ZSR0bPuttpaWftoa3Z2zzxy94n23FygoABNGRmB11FQAAicFGyvr1d8DPN4PJZo966mpqBlcxUWAjJvfHZIkrztFGS7NGdmonbPnoDf+7bBbk0ZGag9cEBWjL6i09N1r6MdO3Zg0fnn47vvvgs6XX5hIZ56+umepDuFxwlJwXDKqOW8iYmJOHr0qOrlkT5EuBEg4vChVu0pqKY+rTZ8aLhEicOXiDGR/YnYmzwmJoZJwQCYFLSW0aNHY+gJJ2Do0KG6rkfNKBJGXXdZpR5HjhyJb775xu93M2fOVLw8Ucqt90NUopRTa3z0jAxl1R1JjyGM7ECkp1f1PNmrrU+7tQMRf0xpzbcdyW1TvmXWcp+w+ra0Mi1uoCoR7nvM/MWjti3qfVzfuHEjZsyYETIhCADPPvssE4IaMvOYosXNECU9fNTQcvucfPLJmi3LqZS2GbOvUeQuW8ThQ530TsFwbjSb0VNQ7nJycnJ0jYPI6uQcw8xICnL40OBiY2NDTmOF7WH3noILFy7UPSEIiH1f1grtEACmTZvm9zfVpZdeiiKf0f7kEqXccuMQJV5RiHNHn0hgIp981DDjwkPvbSJaUrC7+zppS8R25BuTk+rczmUN9QM9nHcS+RMq8WXkU8R61uvTTz+N+fPn49ChQwGncbvd+OnVVwOArGG4ST5RewrKpUVPwWDfa5kQHzZsGDIzM3t9FhcXp9nyybrk3OA0mgjDh6pJ+uvdUzCc9Rn9WyvQdYSdr9WItGb0/hIbG8t9NISLLroo5DRW2IZ2TwqKiknB/goLC3HJJZdg3LhxyMvLw9y5c3HzzTejsLDQ7NDCIlKHFSvh8KFEMtjtAMP3XOjP5VL34nCRGXWhY+YFle8T/GoShHLr3OweDRRcsHqMj4/X9MZgXFwcsrOzZS9P7jpESgpKkoQ//elP+J//+Z+g06WmpuJf//oXFhYVAX/9q+ZxOF2wutXrwRqjhw8Nh5bDh0ZFReGSSy7BBx98gIqKCmRkZGBmVhZw223hhukYejyQJ0JPQTVDM4UrVGxa9sKNjIxUNd+4cePw+eefaxZHIOG8U1DUpODEiRMDvgfIjON+KLy+JTOIOHxjTEwMOjo6FM/npH0oISEB2dnZ2Lt3b8BprLA9mBQ0B5OC/uXn5yM/P1+TZYlSbpF/J4qMSUEiGfTqKZiSkoKamhoVEYnBjGF0ArFaT0GzfojrTe96FrEdOXX4UNHjC4fb7Q74DgKth7MMNOSXLzW9n4LNM23aNHz88cd+v9P6grqtrQ1XX301/v73vwedbsyYMXjxxRcxZMgQvy8FJ2uSMySXlknBcHoK9v1u4cKF2LBhg6zY/ImLi8NJJ5107AO2a0VEvIEbruzs7H49SNVQM7xTMHISZXLrQ23dzJ8/Hx6PB59++qnsefTuKWiF4UOHDRuG008/Ha5duzRZH5GTmTF8aFNTk+L5rHoOVCucaztR2PGaxgxK79UYuW3t1iFALlHaL4cPVceZrZZIIb2SgieccIKacMJmx56CoiUFQ81nxaSgE06g4b5TUMuLESdsb1G53W5kZWX1+zwiIgJTp05VtCyz6jHY8XngwIEBv9My3traWixatChkQnDBggV4//33uxKCpBtRhw8Vtafg5MmTMXjwYFXzkvHMPq+GWvaECRNw8cUXK46h74MoUVFRmDNnjuL4ghHhet7tduO0007DyJEjdV1POL39zDyGBpKfn2+5m82hYjr++OMNioSoi5wHmPQQExOj+uFjJwlV3ra2NoMi0Qd7CuqHPQX1J0q52VNQHfYUJJIpUK+RcIwYMQIFBQUoN/jpcTOSgiL28JKLPQW7mH3DzYjli9RTkMx1wgknYO3atb2GlJ07dy4SEhI0XY8W+5XSnoJaJGhCqaysxMKFC7Ft27ag0y1btgwPPPCA6vdQkXxm/pgR5Z2CSuaNjo7GxRdfjO+//x779+/H4I4OoKxM9fJJGT0SHWbtAyUlJRh1yimq5p0zZw5SJ03Cjh07EBcXh/HjxyMjI0PRMvQePlSL7dq9DCXv7DW6PkXsKWiHHjR9TZw40ewQyKGM3l9iY2ODvmc7ECvu13pSO2y1kTh8qDZE7inohO0vMm5/dZgUJH1UVgLx8WEvJrm6OvCXBifSUmpqet0cDsa9ezcg48ZxJIALZ83CtwMGYN++fdiyZUuYUcrj3r0bOHo07OUkHj6M5mB15CNm3z5d6yzx8GG4Gxr8fxnmehMPH0ajzHJ2i92/H5GxsQHbcGRlJRCkt46IIioqgu+TQNfwRTL3/UDLSpSkgHUWf/BgyBjC4dtOIysrZa0ruqqqZ56kI0fQImOeuAMHgPh4xOzbF3Ad7t27gZgY2bEbLWrvXsV14fF4LDOE3hC3G1eWlGDbtm3o7OxEYWEhCnNzFcfvCbHfxB88GHKZwdoJ0LsNdos7cCDgPNFVVYH3v/j4sOuosbERly9Zgoavv0Y+AA+ALACbALT6TPeHP/wBv/jFL3gRbxD2FFR+UyYqKgpjxozBmDFj0Pb992Gvn/Rj9nFEr/W7XC6MHTsWY8eO1WX5AB9oCiScnoK8yavO8OHDkZqaanYY5DBm9hRsbW0NPWEfTjsuhCqvv9FdRKP0+jM1NRW1Gq7DqZgU1J8o5ea1rDpMCpI+Sko0WUxpsC8Nflr7WiUTK4gtEsBY79+JykJST6Ntd5EmS9HG5cG+DLO8F6iZybvO0hDfW8lQhNgnAUXlCrqsW27x+/Fi2UsP3zjvX0g+ZZa9T3jnWeD9C7VcEQ2DjPbgz113aRuIjgZ5/8KRCxnb6brrgn491/sXkJ+2Ms/7F2j6McGWd9NNQeMJJQ7Ay34+nwPgA3T1wFqzZg3OP//8sNZDypjRe120dwrqNS9pT48ezWbVsehtK9z4tOwpaEbiTe7yrZgUFLHtBYuJCUEyg1n7CZOC4cvKyrJlT8ERI0ag/NtvNVuHUzEpqD9Ryq3la3ychElB0sf69UBRUdiLWb16dcDvSktLw16+Evfeey/a29tlTXv55ZcjXkVPyZdffhnfffed4vmArovK5uZmWdMuX74cycnJqtbj68knn0RVVZWsaSdPnqzrOyIefPBBNDY2+v0u3Lbyr3/9C/v27VM0z4wZMzBkyBA8/vjjfr+fO3cuJk2aFFZcRtu5cydeeOGFoNNcccUViIuLk7W8QPt3cnIyli9f7ve7l156CTt27JC1fDXGjRvX867PL7/8Em+++WbIeU488cSeJ/jltJVJkyZh7tyuFM+bb76JL7/80u90K1asQHR0tJLwDbVjxw689NJLiubxeDxYuXKlThGJqbKyEk8//XTA74cOHYrFi4Onu99991189tlnAb+fP38+JkyY0OuzpqYmPPDAA/2mzc7OxtixY7Fhwwa/y8rLy8PZZ58dNJ5APvjgA1xzzTWorqnp9XkugPcBVAEYMGAAXnjhBcyePVvVOkg99hQMLzlptfd2WZ3S+ja7Dsxev96UlG/u3Ll45513dIzGGH3LbMXhQ63GbuUha2FPQTEFG62rRKPOCHpTeg05bdo0HIiLw+bNmzVZh11w+FDxiFJu9hRUh0lB0kdODlBQEPZiaoM9LajB8pU4OmCA/Iu2ggJVw6c2DhqE2oMHFc8HAG1xcQGTYn115uUBGjyJ2ThoEGplJiKbMzN1rbPa1FQ0BkqghLnehoEDUdvSomie1uxsdOblBWzDem8PPbS3tQXfJwFI+fmy236gZcVkZATcNo2DBqH2yBFZy1ejyWfdrYcOhSwvALT5HO8aBw0K2lZOOOGErmSI9+KpKSMj8DoKCgCBk4Jtzc2yto8vt9ttuXYfrk6PJ+h2ahw0KOQ2af7uu6DLaPNzzo0FMGTBgl4/Jl0uF0oWL0Zra2vA5TUF2f+CWbNmDS6//PKgD8/kFRTgb6+9hmHDhilePoXPzKQgewqSUkrfcydy/Zkdm9E96qZMmaI4Kaj2/d1GsmJPQRHZsUxkbWa0SY/Hg4iICFVJQacJlhRU8h5aMym9Dna73Tj99NOZFOyDSUEKhElBdbjViGQSaTibcNepVXxmPDFrBrU3Kux2YpKzHZRsqzFj/A9geNJJJ2myfDV8LzTlXnT6xhQsvoSEBMyZM8c2QxuIHp+dqN3WixcvxsKFC1FYWIjRo0fjggsuwKhRozTt8SRJEn77299i+fLlIXvTP/3000wImkjUnoJy6X1OZUJRLFYbPpRt4JiEhASMGDFC1bwibUf2FCRyFiP3p+joaLhcLsQI/P54UQRLCip9gMgsHG3CHEwK6k+Ucut9j02UcmrNGo9VEAnAiIOAUTek7Pj0ql7vQwL0OXHoGa9etK7v8ePHY+vWrb0+S01NRV5enqbrUUtNUlDLm5gi7V9asWOZwqXlu5j8fT5z5kzMnDlTl3gkScL1118fdKhvABiYng4cOoT09HTZyybtmbn/2X34UNKeHj0FWYf68LddY2Njw16GHvOEs3yn/9YygtPKS2KQM6qB1rrPcZMnT8amTZsUzeu0/aSjoyPgd1ZJCgbD84V+mBTUnyjllvs7UZR4RWGvbixEOhK9p6AZROopKFpS0OVy2S4pKIeSbVVUVISzzz4bmZmZiIqKQlFREZYuXRr0ZeEi7ltOTQqqic+u7T4YPZN+atcRbHq5x/XGxkYsW7YsZEJw2rRpePbZZ5WERzoRtacghw8lf4Ld6BOxrtgLoDe1SXyRt5WIvwVF3l6BWDFmcgYj22b3MTIjIwM5OTn9vu9+X70/TtuH2FMw/HXYBYcPpUC4/dVhT0EimYxIgFmtp6DdhsfUkh2TgnqcaMeNG4dx48ZBkiQhTuRqhg/1pfSCP9g6RNgepD/RhpuWE8+XX36JCy+8sF9P375WrlyJP//5z4isrFQcI9mDnKfv7dBTkMdr7Smtb/YUNI+/7WqHbR3O8KF6xWB3TisvicGMnoK+67z44ouxfv167NixA0lJSZg2bRqio6OxZcuWoPM6hR16CjIpKE9aWhqOHDlidhiq2GH7qyFKueVeo/l7CEMOUcqpNSYFiWQS8elQtes0IynotJ6CQPDtY8WkoJ70HgNcT3r1FBSdiEN9iUjEnoJql9Xc3Izf//73uP3224O+P9DlcmHVqlW47rrrNIuLwidqT0G52FPQWfS40adnHTs5aaxFUlDEbaTF8KFDhgzBDz/80O97ue9c1PP8b9ZvERHrmggwp6cgAMTExOCMM87o9f13330XcF6n7UN27ylopXXobcGCBVi3bl3A70W+h2aH7a+GKOWWG0dycjKys7Oxd+9enSOyBnbzIZJJlIOdSETaJqIlBZ3aU1CkNhEuvlNQe1Zs93ozImmoZPpAbfjTTz/FxIkT8Yc//CFoQjAiIgJPPfUUE4ICMuOcZPTwoeGw4zHXypS2Gdafvoy6hhGpHrXoKTht2jS/n0+dOlVVDHbntPKSGMxod6GOJ05+0KQvuycF2VPwmKKiImRkZGi2PCPvPdhh+6shSrmVXKMtWbJE8fJFKafWmBQkksmInnh2Hj7UygdRJgW7iFCHIvY49Y1Jywt+EbY36c+MZLuSdtre3o7/+7//w8yZM/Htt98GXW50dDSef/55VRfapD8zjymivFNQTUJczrxab9vCwkK/n0dHR2u6HpGxp6B1mNVT0OjtqmZ9RUVFmDlzZq/PjjvuOAwZMkSTddq9bREZyYzhQ9V877T9nsOHhr8Oq4iMjMRFF12k2fKCJZS1Zoftb2VK7k2npqbyAWYvDh9K+qisBOLjw15McnV14C/Ly8NevhLJ1dVw1dXJmta1axcQGal4HXEHDgQvcxBJHR2Akvg0qJ+EQ4dkxxuzb5+udZZ05Aja2tr8fxnmepWUs1vMvn1wJyQEnC+6qsrwNhyuiIqKkNvBtWsXoONNy3D2ETli9+/vqZeovXtlrStq796e/SlYW0kC+tV57P79gddRXg4IfHEZWVmpuC48Ho/l2n24IoLVMbradKhtErNvX9BlRO3dC6SkyI4pWN0lHDrUE8/u3buxcuVKfPHll8j2fu8BkAVgE4BWn/lyc3PxzDPPBOwVQeYzc/hQLW6GOKmn4Jw5c7Bz585+n8+ePduEaMwR7Eaf2iSUSHVsd3bY1uEMH+o7z8KFCzFt2jRUVVUhOzsbycnJqmOwO6eVl8QgYk9BJ72SIhQmBZ0l2ANwSh/gZk9B/YlSbqVxWOXYoTcmBUkfJSWaLKY02JdlZZqsQ67LlEysMrYS75/uNNp2p3j/RPDTYF+GWd6z1MzkXWdpiO+tJBch9klA93IZ2eYme/9C8inzqaGm/e1ve/3vCd6/UMsVUQFktAd/7rpL0zhElwGV28nHLO9fQArbynDIiykPwAsBvpsD4APvv88880z84x//QFpamqI4yFhmDh+qNMHjj949BUXqkVNYWIiJEyfi888/7/lsyJAhGDVqlGExmE1pEtjsmxJmr99MWvYUNGPkE7nLD+fBhJSUFKQoeHgnUAxKvyci+cx6p6A/3LePCdbbS+8HxowQrK7z8vKwe/fusJdjJVrWKZOC+hOl3ErbjdV+Z+iFSUHSx/r1QFFR2IvZunUrXnvttX6fT5w4EfPmzQt7+UqsWbMGNTU1sqa95pprEBGhfPfasGEDtm3bpng+AEhKSkKdzJ6CV155JWJjY1Wtx9f69evx9ddfy5p2+vTp/YbP0dI999wT8Cmy0tLSsJb9/PPPo1xh76a5c+dixIgRePDBB/1+P23aNMyaFfQ2v3AqKyvx9NNPB53m6quvRlRUlG4xvPrqq/jmm290W/7o0aOxcOFCAF3vUHvvvfdCznPaaadh2LBhAILvEwMGDMAll1zS67M33ngDX331ld/pw223etu1axeee+45RfO43W5ce+21OkUkpv379+OJJ54I+P3IkSNx8sknB13Ghx9+iI8++ijg9yUlJYqSBTt27MBLL73k97sRI0Zg9+7duOOOO9Du55iaC+B9AFUA0tPTUVZWhgsuuMC2F8p2YmZPQS2extT7iU6jhnCXu7zTTz8d48aNQ2VlJTIyMjBkyBBEVFRouh6R6dFLwqzjlMjHR71iE7nMcmnRU1DrGOzAjmUia1PzUEK4RBqyXHTBegpaZVuorc958+bh0Ucf9fu5kuVYiZYPMTIp6BxKt78dHijQApOCpI+cHKCgIOzF5Keno3XrVjQ1NfV85na7MWTBAiAvL+zlK1Gfno5amQcaV2EhoOLmVeOgQaitqlI8HwAgORm1Mtcp5ecDcXHq1uOjKSMDtfv2yZq2OTNTkzYRSE1KSuCnyMJcb+OgQaitrVU0T5t3H6hNTfX7fVNGhq7bQw8dbnfA8vQoKAB0TAo2DhqE2v37dV1+d7207N0burwA2nNze+YJtk9Ep6f3q/OmjAzUBrrJK3j7aO/okLV9fLndbuHLpbXO6Oig20nOsaB5586gy/Btg3K0NTf3W54kSfj666/xp6eeQpWM89Ci007Dbx5+GOnp6bLXS+Yy84a2KO8U1GtePbhcLgwZMkT2u8fsRmkSWLT6swq5N0X0fkegFd4paMYNJKe1a6eVl8SQkJAAwDrvFCTrUZsUzMvLw8iRI3s9FJ2eno7i4mJFy7ESLc+1fKeg/kQpN3sKqsOkIAktISEBl156KV5++WVUVlZi4MCBmDdvHvIMTggC9joImPEyYytvPz2eSDfyqSWtiFCHRsYgt458Y3LSU512K4/ItL5x0Hf6Xbt24bXXXkOFjF5IiQkJQH097r77briYELQUM/dZo4YPDcVJx2irs9oTvFZtP3r1wLVab05/rNBTUKTtRSS6YcOGYfv27f0+7x7NyCo9Bcl61F5/ejweLFmyBF999RV2796NQYMGYdy4cYiPj1e0HCthT0FrEaXcfKegOkwKkvAyMzNx2WWXobOz09QbBErWLfoPYTOSgnrT84Sv9unlYG3GrklBkdqEUXzLzJfCU19G3NBTkxRsbW3Fli1b8Mknn2Dv3r2y5luwYAEe+/3vgVmz2J4tSNThQ63yTsFw1kvKKW0zvEZRR4vfVv6uaY3oKaj370IrJAWtiA9nkFmmTZuGHTt29DpmDR8+3JR3YjMp6Czh1KfH48HEiRMxceJE3dZhFSNHjlQ0PZOC+hOl3DExMYqmt9rDh3rhViDLMHundUqvOCVE2ibTpk3z+3mcBsOkqk0K2q2noAj0bke+9aKmp6DSpKCV24FTjnMi0HJbd3Z24pFHHsFdd92FF198UXZCcOXKlVi/fj2ysrI0i4XsT05SUC4trgP54IZ16PEEr551bNX2Y+WegkZvcxGTglZtd0RmGD58OC688EKMGDEC2dnZmDNnDs4991xV7xSMjIwMK5ZQ6zL73hdpy4hjtZ3OB/4SoImJicjNzVW0HCYFncHtdiM7O1vRPEY8vGYF7ClIJJOdDgJ27Ck4efJkfPTRR/0+P/74402Ixp5JQT6FHxqffialjOwpuGPHDlx22WV49913ZS87ISEBq1evxo9//GO14ZEgnNBTMJxlsKegWJTWFetAHb1uPBvxrha969xfT0GXy8WbjGHitTKZadiwYRg2bJjf75QmBdva2lTHwZ6CzsL6VObkk09GdXU1du3aBQCIj4/HhRdeqHg78nytPxHKPXjwYERHRyuaR4S4RcCkIJFMIj+5qpQZSUG9t8mgQYNQUlKC9evX93w2cuRITJkyJexl6/G0s12TgnaKwYiegomJicoDE4QI7cEKjEj6hfr+k08+wapVq/DUU0+hvb1d1jrdbjeWL1+OW2+9VfGTd0TdutumFsk4LYYPZU9B62BPQWOI1lNQdKIlBcPZzlqMpkJkJ0r2p3CPneEkBa14H4H0Z6fzbnR0NJYuXYrq6mo0NjYiOztb1UNMIp2v7UqEcivtQaqGCOXUA5OCRDIZMYSD1Q40osU7Y8YMjBw5Env27EF6ejoyMzNNeV9X9zx2e6egE6ipl3CSgsXFxXjnnXf6fV5QUKA4DiJfHR0deOmll7Bq1SpFPQMBYNGiRbj99tsxduxYnaIjpxCtp2CwODhUl1j06Gkm2nWrCPRq92qHZRLpgUMR1qnF+oqKivDdd9/1+3zOnDlhL1tr3EfJKsJNCnJoYGcxooe03dqMy+VCWlpaWO/8ZFLQGSIi9E9t5ebmoln3tRiPSUHSR2UlEB9vdhSaSjx8GMnV1fImLi9XtY7Y/fvlr6OPpI4OoK5O1rSuXbuAMMfBB4C4Awdkxxuzb5/q7aJECoCUxESgpQXwDjcQrviDBxXXS3RVFVypqQHnM2p7aClCRn27du0CdHrqHAhvH5Ej7sCBnnqJ2rtX1roiKyt7yhwsvsTY2H51nghgekYGvvnmm57PXC4X5uTmCt8+IioqFNeF2+0Wvlxa8xw6FHQ7+ba5QGL27Qu6jKi9e4HYWABdP37Wr1+Pu+66C999/z0AIL87FgBZADYBaPWznMLCQqxYsQI33XRT0HiIlNKiN5KcZZjVU5A3ArSnNJFsdh2YvX61ROspKHpS0OiH+rRIHBQXF+P777/vFfvgwYORkZERdnxqWHVfIftT0jbDfaCCw4c6C98paH9O3f4ilFvvGKKjo1FQUIBvQk9qOUwKkj5KSsyOQHPnKZm4rEzVOk7y/ulOZXx9zfP+GblOMyzy/iniLW+pxrGYaRBklEfnel7o/TPCdO9fSD5lPs77F9DPf97vo5O9f72sXi1nzabKhcr2vWqVtoEILh3hHwemef8C8mmDLgRoUz7mAPjA++/IyEgUFxdjypQpSE9PR3FxcZjREh0jp6eg3JvsevcUFOFHLR1jteFDrUrufqW255/S6ZkU7E2rnoLnnnsuNm3ahJqaGgwZMgQnnngi9weiMJg5fChZD5OC9ufUEUdEaHd6xuDxeLBkyRLdHqIzG5OCpI/164GiIrOj0NTTTz+NyspKWdOWlpaqWsfrr7+OLVu2qJo3KSkJdTJ7Cl5zzTWadLF+5513sHnzZlnTzp49G1OnTg17nWZ49dVXe/XkkmPhwoUYPXo0VgdI7owbNw4nnHCCBtEZ5+DBg1i7dm3Qaa699lpdL4hee+01bN26VbfljxgxAqeccgoAYOPGjdi4cWPIeZYsWdIzjvmHH36Ijz76yO90hYWFOOOMM7QL1mR79uzBM888o2get9uNa6+9VqeIxHTo0CE89thjAb8fO3YsTjzxxKDL2LRpEz744IOA3+fm5mLdunXYGKDt9UwH4H0AVd7/z8/PxxlnnNFrWBYRLuzJPuQkBTs7O2Uti+8UdBaldWX28KFWbT9a3OTwlyhjT0FtaDXE4MiRIzFy5EgtQgqbEcPoEakh0jsFnZpgsCsmBe3PqdtfhHLrEcPFF1+MxsZGFBYWIiEhwbajXTEpSPrIyQFs9k6sxkGDUNvYKG9ilWVvzsxErczEY1+ulBTUyrw4dRUWajLEY8t336FW5sGxJSvLsm2icdAg1O7fr2ieNu8+UJuaGnCZVtsenbGxAcvTo6AA0PFHTFNGBmr37tVt+b710rJrV+jyAmjPzT02T3l5wHlas7MtV+fBtEuSrO3jy+1222obyCHFxwfdTk0ZGSG3SUtFRb9lSJKE7777Du+++67sB1a6ZeXkYMzkyZg0aVK/mw4iXNiTfXS3p2A3t+QmBbVomxw+1Drs+kSuaER5p6Ca+Zxw05zHFiLjGJkU5DsFnYVJQfvj9jePHteDQ4cO1XyZImJSkEgmOx3kzXiZsZW3n5rYQ81j9JPGdqF3O/KtF7l15BtTsAuSqKgo9YEJiG1YG0p7txw9ehQ7duzAhx9+iP0KH1aYMX068NFHWLt2Lda8/bbqeMh+9Nqftewp2L28YLGGar8cPtQ62FPQGKK9U1DJjR2rbnMlnFBGX04rL4mF7xQkvbA+7c+pdSxCuUWIwaqYFCSSiU/39Ge1eNXSo5xWTKiYfcNNVHKTgpGRkUaEQ4LRap+oqKjA22+/je3btyte/7nnnoubbroJxQMGAIWFTIyQ4bRICrpcLrjdbnR0dKiOg8OHWgd7ChrDyj0FncCOvYmsGDM5A3sKkpWxzZjLqdtfhHKLEINVMSlIJJOdkoJm9BS0Mj16ClqRCGUyMgb2FCQjhGrThw8fxu9+9zusX79e8bLnzp2Lu+++G+PHj+/6QMZwzyLs52QfWvcUDJUUNKunIPcb7SlNVpldB8HWL/KDYHJvbCvdvnZ9p6DRnFBGX04rL4mFPQXJDLw3Zw9O3f4ilFuEGKzK/gPxE2mEScHwluO0A3Wo8iYmJhoUibGsXs9qbtz5ljlY+dlTkJR6/vnnMWbMGMUJwXnz5uH111/HW2+9dSwh6MPq+ylZh5ZJQZfLFXbbZU9B69Ajgcs67k+0noIcPrQ3O/YmsmLM5AzsKSimQYMG+f08PT3d4EjExgfZzcVtaR5ue/WYFCSSyQkvs1dKycFXSU8A0YRzkgn0gtqpU6eqXqZZRDjZithT0JeTegqK3PNBJGp+9O/atQs/+tGPcNZZZyl6b+App5yC999/H2+99RZOOOGEgOsOFpMI+znZR3d7CnZsVNpTUM76AuHQudah9Iar2UOcW7X9aPH7xt/1gNrl8oHD3pxQRl9OKy9ZV7hJwVDHSN57Omb27Nl+P58/f77BkahnxO9mHj/N5dTtL0K5RYjBqnimIZLJTj0FtaIk3nDeAWS2cJ66mjFjRr+L+gkTJliyp6DV2qdR+E5BCodv+2lsbMRvfvMbjBw5EuvWrZO9jIULF+KTTz7Byy+/HPCHs5p4iMJlpZ6C4dyA436jvWD14e/mGutAHb3e3cjhQ7XB3kREYtI7KWjVIan1MGbMGBQVFfX6bNSoURgxYoRJEYmJ5wNzOXX7i1BuEWKwKr5TkPRRWQnEx5sdhabiDx5EcnW1vIllvLfJn9j9++Wvo4/Ejg5IdXXyJlYZX18x+/bJjjdq717N1mu0uAMHFNdL1N69QHw8hkVEYPn8+di6dSsaGhqQn5+PSePHW3JbuKurQ28Hnculpi6UiN2/v6cM0VVVstYVUVEBtLWFnCf+4EFL1nsgERUViuvC7XbbahvIEWq/id2/Hx07duC5557DnXfeiX379yPD+50HQBaATQBa+8yXlpaGoUOHYsqUKbjppptQWFgoOyZeOFNfet1g0uOdgnLWp2Z+7hdi0ap3qS/2FOwvNzdX1nTZ2dkBv0tLS+v3GYcP1YYTykgkCr5TUEwejwfnnnsuduzYgaqqKmRnZ2Po0KHsTdmH2gfZnZZk1gv3WfOo3fZxcXFobGzs9/mkSZPCDckymBQkfZSUmB2B5hYrmbisTNU65nr/dKcyvr5meP/s7gTvnyI+2zjX+2d1qQBKQ02kUdsKZL73T1crVwIAZnv/QvIp83jvX6jp7CAfMtqDP6tWaRuI4GTtNwCWeP/8mQPgA++/BwwYgJNPPhnDhg3TpScGf9CQHqzQU5BtXyzB2oy/0SdYf8GNGTMGW7du7fWZ2+3GxIkTZc2fmJiInJwcVFZW9vq8sLAQMTEx/aY3oqegE24IO62noN3KQ9bCdwqKy+PxoKioqF+PQTLX4MGDzQ5BGE7dZ0Uot9oYZs6ciTfeeKPf59OnTw83JMtgUpD0sX49YLMT9ssvv4zvvvtO1rSlpaWq1vHuu+/is88+UzVvUlIS6mT2FFQbX18ff/wx/vvf/8qadtKkSZg715CUp+befPNNfPnll4rmOe200zBs2DCdIjJHTU0N1qxZE3QardpWIG+99Ra++OIL3ZY/bNgwnHbaaQCA999/H5988knIeS666CIMHDgQALB161a89tprfqc766yzkJ+fr12wJisvL8fzzz+vaB63241rr71Wn4AEFWi/aWtrw4cffojNmzcj0POZuQDeB1CFrovdWbNmYd68ef2GolV6ISzCxTs5Q3dbC9bmtOwpGIpe7xTkPqU9q/UUFN2CBQuwe/duHD16tOezhQsX+k3oBbJkyRI8+uijqPb2fk9PT8dZZ53ld1ojkoJkTaxjEpXctqn3Q0pKYiHqFs4rb9RIT09Hydy5wI03ql6GnTh1nxWh3GpjmDZtGrZv345du3b1fHbcccdh0KBBWoUmPCYFSR85OUBBgdlRaKopIwO1Bw/Km1hl2Vu+/x61qamq5nWnpqJW7hNrGtVNa0WF7HgbBg60bJtozsxE7Z49iuZpz821bHkDkaqrQ9e3zmVuzsxE7e7dui3ft502b98uq3135uUBGV0DPrYcORJwHldhIZCXp1msZmtvb1d8vHK73bbbL0Lpu990dHTgiy++wNtvvy37QY7B+flYcNJJAYd50/JiXIQLe7IPLZOCcm7CcfhQ+1CaFJRTf04ePjQtLQ1XXHEFvv32W9TX12Po0KGyhw7tlpKSgpUrV6KqqgputxsZGRkBy+3k4UOPO+44zZbltN5EdisPWYvc9ud2u5kUJM1oVddGtpmBAwdixYoVcPkkU5zOqfusCOVWG0NUVBQuvvhilJeX49ChQxg8eDBycnI0jk5sTAoSyWTEwU6EA6oSSuJV+1S3CKxWL3px2nZQM75+e3t7wO+ioqLCCUc4fP+AMrt378aHH36InTt3orm5WdY8qSkpQE0N/vznP+PfW7ZoFguHDyWjyGlPSq4Pwm2fevUUJO3p0VPQ6RISElBcXBzWMlwuV9D3C/pOp3b5ekxrpFmzZmm2LFHLSORkWvQUDOchJiJ/jDxfZGVl8fzUB7eHecI5XkZERGDYsGG2G+VNLiYFiWRiUrA/JfH6e/+LVRg9FAMFJuJ29Y3JSUlBkqempgYvvviioqGhIyMjcfXVV+OW5cuBiRNDvreEw4eSqLRMCorcU3Dq1Kmq5yX/rNZTkHpzalJw2rRpioZkDUXEMoaLDyaRqKzSU5APZlqPEXVm5D0rHqv7c+o2EaHcIsRgVXz8hEgmPq3Vn1N6ClIXJ5xsfS/Y5V68y00K9n0PHNmbJElYt24dZsyYoSgheO655+Kbb77B6tWrkZycLGseDh9K4TLzBpOR7xTUIymYmJiIwYMHqw2JAghWV2ofNOPxzThOHT40IkLbZ66dNnwokZmskhQk8sfINsP22ZuTt4cIZRchBqtiloNIIFY7mLGnoLbziE6EMokQQ19O7SnIp1QD27VrF84880z86Ec/woEDB2TNk52djZdeeglPPvkkhgwZ0us7/sgjq9K6PYV7g1yL4UPHjh3bczNvwIABuPTSS/ngmA6C1ZXanoJkHKf2FDT6mGdF7ClIojIyKciEv7Ok+rxfvq+srCxN1sHfi+Hr+xtcLrtuD6vg9lePw4cSycThQ/tjUpDsjD0FSan6+nr8/ve/x+rVq9HS0iJrnoiICFx11VW49dZbg/5gDEbL4UN5vCMtiXaDXIuegieeeCKOz85GY2MjUlJSwoqHAtNj+FCzOPEhGqcmBbXGxAGReLR4pyB7CjpLTEwMhgwZgh9++KHX59nZ2bJHhglFzQNqHD60N7UP+dl1e8ghQtlFiMGq+FgrkUx8Crw/JgW1nUd0IpRJ7xjCvXGXk5MT8DseQ+zthRdewOjRo3H77bfLSghGRERg4sSJePjhh3HPPfeoTggCYuybRP5o2TYlSRKipyDQ1fObCUF9BXuQxqgHKEg9pw4fqjUnlJFIFBw+lPR05plnIj09vef/U1JSsGTJEs2Wb+QDyHZtn0ySKidC2UWIwarYU5BIJvYU7I9JQW3nEZ0dyxSMmp6CRUVF8Hg8/dr7yJEjNY2NxLF7925ce+21eOGFF2RNn5qaigULFmDkyJGIjIxEZmZmyHm07inAnoLUV1JSki7LtVJPQT64IZaoqChkZ2f3+zw6OhpDhw7t9zmPXWIx4ml7EetctCGTRcRrEBIVk4Kkp8TERFx99dXYv38/Ojo6kJWVpem1J5OC4WNPQeVEKLsIMVgVk4Kkj8pKID7e7Cg0FXfgAJKrq+VNXF6uah0x+/bJX0cfiZ2d6KytlTexyvj6iq6qkh1v7P79mq3XaLH79yuul4iKCiDCXodYV0ND6O2gcx2rqQtfqampqA4yf9yBAz1lkLsuz549QF0dACASwJkTJ+L1118/tsy4OJwwdKhl238gnj17FNeF2+22zXZoa2vDww8/jFWrVqGpuRn53s89ALIAbALQ6jO9y+XCrFmzMHfu3F7vlzTjIpYXzs41YcIEfPHFF/0+nz59ui7r07qthXsTTauegmSMWbNm9fts4cKFvGljARw+VBtOKCOR1RjxTsFgnDgktV24XC5ZD4SqoSYpaESvfivh9aU1cfurZ6871iSOkhKzI9DcfO+fLGVlqtYxw/unO5Xx9TXe+yfbTTdpsl6jzfb+KaLRNhZJPIDSUBPpXO7jvH+6Ki0FAMz1/oXUp8xjvX+93HZb2GGJZihktAd/Vq3SNhCTRAK4wvvnzxwAH3j/nZWVhdNPP131i+SN7CnAi2p7mzJlCrZt24a2traez/Lz85GRkWFiVPKJ8E5BMk5ubi4AYObMmahNTcWIESOQn5/vd1o59cc6Ng6HD9UGewoSGUdu+zPinYJESkUY+EC6VY7VERERaG9vlz09hw9VToSyixCDVTEpSPpYvx4oKjI7Ck298cYb+Oqrr0JOV1JSglGjRqlax0cffYQPP/xQ1bzJycmoldlTsNSb9AjXli1bevWICmb+/PmYMGGCJus12n//+198/PHHiuY566yzAt64sqqmpiY88MADQafRqm0F8t577+HTTz9VPX96ejoOHToU8PvCwkKcccYZAIC3334bn3/+echlXnbZZboNvSeyHTt24KWXXlI0j9vtxrXXXqtTRPrbsWMH/vCHP+DNt94KOE0ugPcBVAHIyMjAL3/5Sxw6dChgDyUtLmI5fCjJlZubi0suuQSbNm1CdXU18vPzcfzxx8O9d68u6xNtKD0mBa1p+vTpQEGB2WGQAk7tKSjakMlEJB+TgmRlHD60v0WLFuHFF1+UPT17CionQtlFiMGqmBQkfeTk2O7He+OgQahNTQ06zamnnopRU6aoXkfrnj0h1xGIOzUVtXJPYhrVTVt1tex4h590EhAXp8l6jdayc6fieukYPNh2+4DU2Bh6O+hc5pbt21XvIwAQk56O2iDvt6xPT+8pg5x9HkDX9A5MCna0tiquC7fbbcn94siRI7j11lvxl7/8RfbThpcsXYqflZXB7XbjrrvuCmv9vMlIWho8eDAGDx5syLpEa7scPtS+zO4pyPbTm1OTglqzY0/BYOxWHrIWI5OCcuZPTEzE0aNH+30+dmy/MWmIDB0+1CrH6pEjR+K///1v0IfCfdl9e9gVt796fDyFSKZQY7ePGjUKU8JICALhHcxEfi9VVlYW4iyaEATUbVs7npjsUCYlZeD7GoIrLCz0e4M9JibGhGj0sXPnTvzsZz/DkCFDUFZWJishOHbMGADAb3/7WyQnJ4ec3oyegkYti0hLkiSxpyCFhXVsHA4fqg07ltGOZSJ7MPKhBDnHuvHj+7+oJTU1FQMHDgxr3WRP7CnYX2xsLJYuXYo5c+bImp49BZUToezsea0etxyRTKESBFokEEQ4oCohN94x3pvkVmW1erEzM1/qbuQyrSAyMtLvvj1u3DgTotHWV199hR/96EcYNmwYVq9eLWto5sTERJSVleGFF17o9bkRST8OH0qi0ro9hfujj23fvsyuPz5I1JtTewqKNmSy1ditPGQtog0f2v36le5pMzIycMkll3A/Ib/UvFPQCT3jEhIScMIJJ/S8pzoYJ2wPO+L2V4/DhxLJZERS0GqUXDg7jR3LbIcyhfoB5rsfy92n7bBd1Fq8eDEiIyPx9ddfw+12Y8yYMVi4cCE2bdpkdmiq1NXV4YYbbsA//vEPRcf0Cy64AHfccQdycnKA8nJF63Ry+yH7iI+PR9/Ued8HBHJyclBZWdlvXiXDYOl5E477orWZPXwo9ebUpKDW7FhGO5aJnMeIB1U9Hg/OPPNMLFq0CM3NzcfeYS/jYUVyHiN7S9n1OM6egsqJUHYRYrAqJgWJZGJPwf6ckhS0evxaEWE7sKegWCIiInDaaafh1FNPBWDtbbFx40Zcdtll+Prrr2XPM336dKxatQozZ84MOI2IPQWDna+sXIdknsWLF+ORd95Bc3MzACAzMxMnn3xyr2lmzpyJdevW9Zt38uTJstcT7r7AnoLOxjo2DocP1YYTykhkNUb1FOwWFRWFqKiosNZHpCW7DtfIpKByIpRdhBisiklBIpmYFOzPavGqxXcK2oce7xRkXVt7G7S3t+Pmm2/GHXfcIbvOc3Nzcfvtt+P888/XdThDI5ehx7LIOTIzM3H99ddjz549iI2NRWZmZr+2NHr0aBQXF+PTTz/t+ey4445DQUGB7PXo+WAI2761sf7E4tSeghw+NDx2Kw9Zi2jDhxLpzUnDZcr5ne+k7WEn3P7qMSlIJBOHD+2PPQWdRYTtoHdPQSfux05WXV2N888/Hxs2bJA1fWpqKkpLS3HjjTciLi5OkxjM2K/YzkkPkZGRGDJkSMDvXS4XTj31VMyYMQP79u1DTk4OUlNTFa2DPQVJVGw/vdk1KTh06FDs2LHDsPWxXREZx8ikIPdtsjK7tl/2FFROhLKLEINVMSlI+qisBOLjzY5CU7H79yO5ujrg93EHDih+l1RfMfv2BV1HMImShI6aGnkThxlnt6i9e2XFG11Vpdk6zaCmXiIqKgCb3Xh3tbWF3g4613M4+wgAJMbHB50//uDBnjLIXZd7924gJkZ1THYUaLu53W5hjgXbt2/H5Zdfjp3l5cgH4AGQBWATgNY+044aNQrXX389LrroIsTGxipajxEXqRw+lKzC5XIhPT0d6enpiueVJEnXJ/M7OzvDWjaZi+8UFItdhw+dOnWqUElBu7Vpu5WHrMXIhxLYU5CszK7HavYUtCZuf/WYFCR9lJSYHYHmFnn/grr++rDWMcn7p7uyMk0WMxxAqYHrM8sU758iFi+zP5GQUd86l3um909XN9wAADjJ+xeSDes6XKXBvly1yqAoghsG4C0/n88B8IH33wUFBbjzzjtx9tln63axyeFDieQLdRMtnBvo7EFLpB0lN7xHjBjR82/RewoWFRUF/d7o4UOtyI5lInvg8KHkNEyC9caegsqJUHYRYrAqJgVJH+vXAyF+NFnNv//9b2zfvj3g94MHD8Y555wT1jo+//xzvP3226rmTUlJQY3MnoKlpaWq1tHXjh078NJLL4Wcbu7cuZg0yZB0py4+/fRTvPfee4rmOffcc5Gdna1TROZob2/HvffeG3QardpWIBs3bsTGjRtVz5+Xl4fdu3cH/N53P96wYQO2bdsWcpkrVqxAdHS06pjsaPXq1X4/d7vduPbaa40NxockSbj//vvxpz/9CX1v/+cCeB9Alff/zz33XNx3331IS0szNkg/tL7QZfKDrIo9BSkQ9hQUi9xt7Xa7MWXKsUfvRE8Kulyufu9G1Xt94XxvNXYrD1kLewoSyWPXYzWTgtbE7a8ek4Kkj5wcoKDA7Cg01TBwIGoPHw74fWp6ethlbj1wALUK36/TzZOWhlq5B0ON6qa9pUVWvG0Wbw+tVVWK66UzLw/IzdUpInO4OjpCbwed67m5vFz1PgIAjYMGofbo0YDfpw0c2FOGpowM1FZVBZy2m6uwEIiKUh2THQWqI7fbbdqxoKOjA1dddRX+/ve/B50uPjERL65di8WLF2uyXiNu6CldhsfjCfgdE9wkMj3fKchkuf3xpoFx5GzroqIiTJ06FcOGDev5zAo3yo18N6kd26wdy0TOwncKkp0sWLAAb775Zr/Ps7OzsXfvXr/zWLH9yrnOHzNmDN5//33Fy7bi9tCKCGUXIQarYlKQSKZQJxEtbiZZ7WBmtXjVcko5rUDEH2BsH+JraWnBxRdfjHXr1oWc9oUXXkDh/PkGRCWf1onF5ORkJCYm4mifBHlUVBSGDBmiOD4io+h5DmBS0NpEPhc7sW2Fqo/09HRccMEFiudTO62WjFwvewoSGYfDh5LTdPd+37p1K/bv39/z+dixYxEfHx8wKWjH9jto0CBV7zwHeO4yG7e/evbbk4l0wqRgf0ounK1MTfxWL7M/dihTqDL47sdOvIlnR/X19Vi8eHHIhOAJCxYAAAoLCzVdv4g39FwuF6ZPn97v8+Li4qC9CInMpmdPQQ4fam0cPlQsRrynyKybkiIlBYlIO0wKkhPFxcVh6dKlOO200zB9+nQsWbIEZ511VtA2ardzU2ZmJi688EIOH6qCCGXn8VQ99hQkkolJwf6sFq9aTimnFYj4A4ztQ1xHjhzBokWL8NFHHwWd7he/+AV+9+MfAz5DmIlEj8Ti7NmzERMTg6+++godHR0YNWoUZs6cqTZEIt1JkhT2MTw2NlbVd2QPep6vExMTA36n9slzJ1Kyj4dTn4MHD0Ztfb3q+QMxevhQK16DWjFmor5EHL2GSK3Y2FgUFxf3+szIobLNduWVVwJQf0/XbtvDarj91WNSkEgmI5KC4TCrt4mW09mJHctshzIpKYPcfdoO28WO9u7di5KSEmzZsiXgNDExMXj44Ydx/vnnA+XlxgXnw4x3CnYrLi7u9wOQSGTh3iBPT09HcnIyamtre30eHx+P7OzssOMj85h9Lo6NjUVeXh52797d77u0tDQTIjKX2n3VqOFD58yZg+1vv43m5mbF85rd1uyM25bMxJ6C5DRG9Oq3ErXlcvL+LEJbECEGq3JuyyVSiD0F+7NavGpx+NAuIpRJ76cy1ezHImwX6m3Hjh2YM2dO0IRgUlL2axQJAACoNUlEQVQS1q9f35UQ1JGZST8iu9HiHDBv3rx+n8+bN4/7mQPoXcenn356rx6D0dHRuq7PjoxKCmZkZPT0DFCKw4eGx45lInsw8p2mTk4imMUJ52Qt3w1vt56CenbisOL20IoIZRchBqtiT0EimZgU7M8pPQWtHr+W8vPzsWvXLrPDUI09Be3vyy+/RElJCfbt2xdwmoEDB+LVV1/F5MmTDYzMPyYNieTToq1PnDgRCQkJ2Lp1KyRJwujRo1FUVKRBdGQmEY6DAwYMwDXXXINdu3aho6MDhS4X8Kc/mR2WKdT2FDRq+FAASElJUTWfkTdK7Th8aDB2Kw/ZkxY9BdnW9bNo0SK8/PLLfj+3u+OPPx4//PCD7OnZU1Ab3B7m4vZXj0lB0kdlJRAfb3YUmoo7cADJ1dUBv4+PjAx7+Lnoqqqg6wgmEUC7jHmTk5M1GyYvsrJSVrxRe/cCAwZosk4zqKmXiIoKoKVFp4jMs2DIEDz7+eeBJ9B5CMaYfftU7yMAEH/wYND5E+LjgfJyNDc3Y/e77yJZzkLLywFeiPQSaBu73W5d28ibb76JlStXIrqxEUMAZAHYBKDVZ5rBgwfjtddew4gRI3SLw5cRST9eCJNTaLUvDBs2DMMEfYco6ceIY2VUVBSGDx/e9T8mDUttZTyf9cbtQWQcDh9qD2PHjsUnn3yCFp/fo9nZ2Yb99jPT4MGDUVBQgHKdrz/Yfntz8rlahLKLEINVMSlI+igpMTsCzZ0jZ6Kbbw5rHaO9f7q79VZNFpMLoFTOhGVlmqzPLOO8f4pYvMyB5CFEnetc7qnev3CEfEbwppsQA5ltG7BtXYejNNiXq1bptt4FALb2+WwOgA+8/x45ciQ2bNiAwYMH6xaDUuwpSCQf2zoFwrYhFiN6H5hV5yINH2rFdm+3IenIPjh8qD3ExsZi6dKl2Pqf/wBlZTjuuOMw5tRTHTF8qNvtxumnn46777477GXxWC0ft4e5uP3VY1KQ9LF+PWCzoZgaGxvx4IMPBvx+4MCBuOiii8Jax7Zt27BhwwZV86ampqI6RA+q0aNH48QTT9TsIrSyshJPP/10yOlOPPFEjB07VpN1mmHLli14/fXXFc1z0UUXYeDAgTpFZK5HH30UR44c8ftdaWmpruvetGkTPvjgg9ATBjBq1Ch8/fXXAb/PycnBtGnT8Nxzz8lansvlwnXXXac6HrtavXq138/dbjeuvfZaTdfV0dGBX//611j7+OO9Ps8F8D6AKu//FxcX45VXXrHtfknkBHa8QU7kRCIMH6qWSMOHEpF2jOwpyH1bX3FxcZg6tetR4uLiYiAmxuSIjGPEedSK7ZfvFNSHCGUXIQarYlKQ9JGTAxQUmB2FpuIAzLzgArz66qt+v49OSwu7zO11dahNTVU1b8SAAagN8v0NN9yAhIQEdYEF0OnxyIq3zeLtoa26WnG9SPn5wKBBOkVkrqMDBqA20EWVzvXcWlmpeh8BgKaMDNQGeddc0oABeGPHDtnrcLlclm7begm0/dxut6bbq6WlBZdccknQhxM6AMydOxcvvvgikpKSNFu3XFokMZgIIerCtk6BsG3Yg5J6NKunDXsKhseKMZMzGJkU9Hg8Yc1PpDf2FJSP28Nc3P7qsc86kQLTp08P+J2eT55oQeuEIOCcg69TyimXlbeHnNhD9bhVujzSR0NDA04//fSQvZVPLinBK6+8YkpC0Chsh+QUoZIA3Beci3UvFjsPH2okJ5TRl9PKS2Ixsv1x+FDSixHtmMfq3py8PUQouwgxWBXPREQa0SIpaLWDmZKn6axMTfxWL7OojBiqRcmTm6xn/0aNGuX380WLQr7RUZampiacccYZsoZb/utf/4rY2FhN1quGET0FiZxAkiTuC0Q2weFDw1+XHusjotC06CnIpCCJwEnDh+qJ28Nc3P7q8UxEpBEmBe3LKeWUy8rbI1TskiQxKagBf+8QjYyMRJEG75o9ePAgTj31VLzxxhsBp4mKisKf77wTgDN+dLMdkhPEx8fzBjkFxLoXi51vNIo0fKgVcUg6EpWRw4c64fcJmUOr4yiP1fI5eXuIUHYeT9XjliPSCJOC4U8nKvYUFAd7ClrD6NGjcdJJJyE6OhoAkJycjIsuugiJiYlhLfejjz7C5MmT8dZbbwWcJjExEevXr8c555wT1rqMokUbYjskO0n1807S2NhY5Ofns60T2ZyRN+WtgA9CEBnHyJ7KvIlNejHivGDF9qvn6554LjYXt796EWYHQGQXor9TUA88+DqTletdTuxWGLrKCmbNmoUZM2bg6NGjSEpKCmtbSZKE++67D6WlpWhraws4XXp6Ol599VUUFxcD5eWq16clthEiZWbMmIFdH33U67pq7ty5cLvdvEFOAbHurSXc4UPNrG+Rhg+1G6eVl8Si5PgTbltV8hAqkV7Uns94rO7NydtDhLKLEINVMSlIpBH2FAx/OlGxp6A49H4qs6KiIqzlU29utxvJyclhLaOhoQFXXXUVHnvssaDTDRo0CG+99RZGjx4d1vqMpsU7BXm8ITsZMWIELikqwtatW9HR0YGRI0dixIgRANjWiaxC7+FDRU0KGr0uHhOJtGNkUpD7LunFiLbF9tubk7eHCGUXIQarYlKQSCNmJwXNOBA65eDLpGBvVi4bn+C2lsrKSixevBibN28OOl16ejreeOMNyyUEAQ4fSuRPYWEhCgsL+30e6oYd9wXnYt3bA5OC5q1LBE4rL4lFSftjWyUns2L7nz17Np599tl+n6enp/f6//Hjx+PLL79UtGwrbg874fZXj0lB0kdlJRAfb3YUukiurvb7eWJ7e9jD1UXt3Rtw+aEkulxoCzavDkPpeQ4flhVv1N69QFKS5us3ipp6ce/eDdTV6RSRuRIOHQq8PXQesjG6qkr1PgIAsfv3hzV/v3iio4UZptJuNmzYgJtvvhlHDh1CPgAPgCwAmwC0+kw3ceJEPPPMMxgyZIgpcYbCpB+RdrgvEFmD2h5uVhg+NBg+fBaaHctE9mBkT0EivWiV3Lbb8KHDhw9HVFQUWltbe31eXFzc6/8nT57MpKABsrOzkRwbq8myuP3VY1KQ9FFSYnYEuikN9uXvfx/WsoeGWn44yso0X+QAyIxXh3UbaThU1IvFyxzMRcG+1Lnck7x/4ZirRSC+/vQnrZdIABZ6//qaA+AD77+XL1+Ov/zlL4jV6ILSDEwaEsnHofQoENa9PbCnoLJ1sd0TaUfJ8Yf7HomKw4f6FxMTg4suughPPfUUGhoa4HK5MGXKFEyfPr3XdPn5+cjNzVX0Whkrbg8tuVwuxSPnRUZG4owzzgB+/nNN1k/qMClI+li/HigqMjsKXaxevdrv5/Hx8bj88svDWvaOHTvw0ksvqZo3NTUV1UF6QJWWlqqMKrDq6mo88sgjIac75ZRTet4HZEXbt2/Hv//9b0XzLF++POx3qYlq//79eOKJJ/p9PmLECJxyyim6rnvz5s145513VM9fXFyMTz/9VLN4YmNjceWVV2q2PKfr7OzEvffei7tWrer3XS6A9wFUAYiKisK9996Ln/zkJ8JfBBqR9BN9GxBphW2dAmHbsAcmBZWty4rt3m69T8g+5PYUBNhWyR6c1FMQAPLy8nDDDTfg4MGDSEpKQkxMjN/pCgsLmRQ0QHR0tCbL4fZXj0lB0kdODlBQYHYUuqhNTfX7eVtcXNhl7mhtDbj8UDxpaagNNoEO9SElJcmKt83i7aG9uVlxvUj5+UBKij4BmWxQfj5Svv4au3bt6vnM4/Fg9KJFQH6+rutuO3BA9T4CAK3Z2aj94Qft4tFgv6cuzc3NWLZsGZ588smg02VmZ+PJF17AlClTDIpMX7yIJZKP+wuRNXD4UGOWFxHB2zlEWmFPQbIDI9qmkgS6aFwuFwYNGqT5Mp1MTU9BLbeZ07d/OHgVSaQRpQdBf6x2MLPC07ykPZfLhQsvvBDvvPMOysvLkZKSgqlTpyJf54SgFviuFzFVVlbirLPOwqZNm0JO+/zzz2OgTRKCWmE7JKcIdROC+4Jzse7twQq/LUTqKRgZGWlQJMbgfkxWwKQgOZ3d27/S8tl9e+iBSUExMClIRKo55eCrppx23zZRUVE46aSTDF+vaNtVtHis6JtvvsFJJ50UcoiOy3/yE+Dvf8fAgQMNikwbWgz9Zcfhw4jUYFsnsga991UzeymIlBS0Yk9BHsfJDtiOSVRK2qbadsz235vTt4fZ90udvv3DYd0+v0SCMbunoBbrV8oKT/NqweyTHGlDjxtIrOfwfPbZZzjuuONCJgTvv/9+3HzzzQZFRUSiYoKcAmHdW0u49SVqT0Gj42JPQSLjsacgicyItsn23xu3h7m4/dVjUpBII2YnBc1gtXjJ+sJpc3q0V+4D6j355JOYN28eDh06FHCa+Ph4rF27FldeeaWBkRmLPQWJ5GNbJyJAu2PB1KlT/X4+adIkTZYfLjsOH8rjOFkdk4LkBMHub7L99+b07cFOFNbFpCARqcaegtrOQ/piUlAMDQ0N+MlPfoLzzz8fR48eDThddnY23nnnHVx44YUGRkdEImOCnAJh3YtF7/rQavnjx4/3+/mECRN0X7cWRIpFC3YrD9lTZmYm2yoJi8OHGs/p24P3S62LSUEihcaNG+f381NPPTXsZdt1+FAirYjWU5CU+fzzz1FcXIx//OMfQaebNm0aPvnkExQXFxsUmb7CHWos2DRmvleJyGg8jhPZgyjDh+bm5uL000/v6XEXGRmJU089Ffn5+arWzWMUkf1Nnjw5rH2d1+5kBcHuL9q9DSvdv3nuJ6uy3pupyRoqK4H4eLOj0MWE5GTsrq7u9Vl0dDSGejxAeXlYy46srERyn2XLldjRAamuLvAEYcbmj7uxUVa8UXv3ArGxmq/fKGrqxb17t233ATNF7d2reh+JiopCzL59quf3J6mjQ5d9y25aW1vx0EMP4a677kJrWxvyAXgAZAHYBKDVZ9qFCxfi2WefRTz3H1ns/qOMyFeo9s4f5c7FuheLVXoKAl1DhY4fPx6HDh3CgAEDEBHBWyR64r5KVnb88ccjLi6OD6qSsLRqXxw+VD6n/x5nT0Hr4hUv6aOkxOwIdDMUQKm/L/70p7CXPTjQsrVQVqb5IuMgM14d1m2kAqioF4uXWVTjvH/hmKVFIL5+9zutl2g7UQCu8v71NQfAB95/n3POOVi7di2io6MNi80ILpcr4A+rcHsK8oKanITtnQJh23AWrevb4/EgIyMj7HWzHYaH249EVlhYiPnz5wMIr606PYFA+tJq+FAmBeXjPq0c25AYmBQkfaxfDxQVmR2FriRJQmtrq6Y3rysqKrBu3TpV8w4cOBAHDx4M+H1paanKqAJrbm7G/fffH3K6xYsXY+jQoZqv3yi7du3Cc889p2ieK664AnFxcTpF5FxbtmzB66+/rmremJgYzJo1C2+++aZm8aSkpGDZsmWaLc8uJEnC+vXr8eCDD+KzzZv9TpML4H0AVei6Gffb3/4Wv/jFL+DxeIwM1fL4I4SchO8UJLIHUYYPtdq67YDbj6xqxIgRPf9mUpDsjklB+Zy+T7OnoHUxKUj6yMkBCgrMjkJXLgBa92XpcLlQm5qqat7F55+Pxx57LPAEetRHc7OseNtzcy3dHjo6O5XXS0EBwKSg5lqPHFG9j7TFxWFESQle+OILdHZ2ahJPxIABlm7beti4cSNuvPFGfPDBB6EnBpCVk4N/PvUUZs3SvA+nJVj5xiiR0djeKRC2DbHoXR9m3oBjW9MPty2JzLd9cvhQEpUR7YttuDenJwXJuthyiQSi9uSampqKvLw8jaMJTW68vGggrYT7Ayw6OhrTp0/XMCLqtmXLFpx11lmYOXOm7IQgALz88su2TwjqeQzk8ZWchD0FiezBrg/EiBoXEYXP98Y/ewqSHXD4UP+Uls/p+zR7ClqXs1sukWCUHhhjYmIwcuRILFu2DJGRkTpFFZhTDuQ8ydlDd52cdNJJyMzM1HSZTvbee+/hvPPOw/jx4/H888/LmicxMRH/d9ttAICkpCQdoxNfuO8UdPqPEHIWtncKhOdjsehdHxw+1Lr4TkayKq2SgmznpCet2peTk4JK8feJcmxDYuDwoUQWNXHiRJx++umW+FFs9QO+1eO3Ey2eynS5XJg0aRJeeeUVU+OxutraWqxYsQJPPPGEovmWLVuG//u//0NGUxPwi1/oFJ1Y2FOQSBvsKUhEAJOCRGQ8rYYPZQKBRKG2pyDbcG9O3x68LrIuZ7dcIsEoPZiaffB1SlJQDSeWWXR61IlT6/mLL77AlClTFCUEp06dildeeQUPP/wwMjIydIzOWsJtQ07/EULO4tRjLoXGtiEWvRP4oiYFjYyLbZ7IWBw+lKyA7xQ0Hvdp5diGxMCWSyQQqx0YrRavWhw+VByiDdXixHpes2YNZsyYge3bt8uavqSkBJs3b8bHH3+Mk08+Wefo7EmUG5BEZmN7JyKAxwIA8Hg8ZodA5CgcPpSchMOHyuf0pKCa9lBcXKxDJKSUs1suEYWFPQXJSrQa8iXQMu2uqakJl19+OZYvX47m5uaQ0xcXF2P9+vV49dVXMXHiRP0DFJieST2n/wghZ+HwoRQI695ZRO0paKSICL4JhshIHD6U7Ebt8KGinAf1orR8Tt+nlW6v+Ph4FBQU6BMMKcIrSSKBKDmYinAiFiEGI7CnoDj4VKY5duzYgSVLluDzzz8POe3IkSPx+9//HmeffTa3uQxythF7ChJ1YXunQNg2xMLhQ/Vn1Z6C3FfJqthTkKgL23BvTk8KBpOeno6cnBx8+eWXkCQJKSkpuOCCC7jNBMGkIOmjshKIjzc7CsuJOHAAydXVsqaN3b8fKC/v9VnQeftMqwVXqHV6RVZWAhb94QoAEXv3yq6XHuXlQFSULvE4WWRlpfK68Ep2uXr2gyg1depHYmSkLvuWSF577TXccMMNqDt6FPnezzwAsgBsAtDq/Wz48OFYtWoVTj75ZMveqNKLnj+ceEFNThKqvfMmBZEzdHR0mB2C6dhTkMhYfKcgOYmTewoq5fR9Olh78Hg8OPPMM3HyySejoaEBaWlpbD8C4ZUk6aOkxOwILGkQgNIw5g86b1lZGEtWuU6d122UbKioF4uXWVSjvH+q/eY3AIAJ3j9N3HyzVksS0kkAvgzw3RwAHwBYsmQJ/vGPfyApKcm4wGyCPQWJ5GN7p0DYNsSid320tbXpuvxgRGlrfACLyFgcPpTshsOH+sfhQ7XTvS1jYmIQExNjcjTUF5OCpI/164GiIrOjsJyDBw9i7dq1sqYdO3YsTjzxxF6frV69OuD0paWlYUQWWLB1djvnnHMwePBgXdZvhKqqKjz55JOK5vnpT3+KyMhInSJyrm+++QavvvqqqnnT09Nx8cUXAwC+/PJLvPnmm2HHk5mZifPPPz/s5Yjmhx9+wC9/+Uts/Ogjv9/nAngfwEG3G6vvugvXXnut7X8ciIrbnZyE7xQksodw99XW1tbQE+lElAd1rNpTMNiNZiKRcfhQcpJgx2omwXpz+vYQ5bqIlLPmlSSJLycH4ItDFeuMjUVtaqqsaZszM/tt46Dz6lQfcuJtz821dHvoiIiQXS/dXIWFgEV/rIus7ehRxXXRLSY9vacdth46pHo5vhIHDrR02+6rtbUVd9xxB373u9+hpaUl5PSPP/UUis85x4DIrC3cC+Vg0zj9Rwg5C39YEhEgblLQSLGxsWaHQOQoHD6UqIso50FRcJ8OjG1FbGy5RAKx6wHT6uVSE7/VyywqrZ7KZP309+GHH6K4uBi/+tWvQiYE58yeDQAoLi42IjQKgm2ZnIQ9BYmsIZx9MTo6OuQ0Zg4farRhw4b5/XzevHnGBkLkcFr9luS1ComCw4dqw+lJQfYUtC5nt1wiwfCAKSbWiz3ocbFmh7ZRV1eHa665BrNnz8aWLVtCTn/zzTfjkUceMSAy+9Czp6Ad2iCRXE7/0U1kF8HOXccff3zI+Ts7O7UMRxGjz8kTJvR/C3ZaWhry8vI0XxcRBcaeguQkTk4K8p2C2rF7W7E6jm1HZFFWOrhaKVatOLHMRhDtB5jV6/n999/HBRdcgIqKipDTJicn45///CcWL14MlJfrHxzJwh8h5CTsKUhqFfFd54YKZ1+cNm0aysvL8f3332sYkXaMPs6MHTsWLS0t2LhxI2pra1FQUIDFixfz/E9kMCYFyW7YU1AbTt+n2R6si0lBIoHwYCom1os9aPVDzpdV24YkSbj77rtx4403or29PeT0xx9/PB566CEMHTrUgOichT0FieRjeye1xowZY3YIJFNERATOP/987Nu3D3/729/MDkcIxcXFKC4uhiRJPA4SmYTDhxJ1YRvuzelJwWDYVsTGlkskECUHTCsdXK0Uq1acWGYjiPZUphXrub6+HhdeeCFKS0tDJgRTUlLw97//HW+99RYTgmHQs53wRwg5CXsKkhopKSkYP3682WGQj1D7qtvtRnZ2tkHRKGPmgzo8xhGZhz0FyUmC9RRkG+7N6duDDzBbF3sKEgmEB0wxsV7swekXawDw7bff4uyzz8a2bdtCTnveeedh9erVyMzMNCAy5wr3+MLjEzkJ2zupMXv2bLNDcBw776t2LhsRBaZVUpDHEBKF2rbINtyb0+8zMSloXUwKkj4qK4H4eLOjsBx3TQ2Sq6tlTRu7f3+/93oFnVend4DJiTeiogLo7NRl/UbwHDwou166uXbt0ikaZ4vau1dxXXRLOHSoZz+IrqpSvZxey0xIsMz79V599VXceOONaGhoQD4AD4AsAJsAtPpMl5eXh/vuuw+LFi0yJU5Sxuk/QshZQrV3/vB0rmBPtBNpiccZImfSavhQXruTFTj5nYJKy8d9OjC7txWrY1JQJy6XKwrAeQAuADAGQAaAagA7ATwLYI0kSYc0XmcBgJMAzAUwDkAegAQARwFUAPgQwOOSJL2j5Xr9KinRfRV2lAKgNIz5g85bVhbGklWuU+d1G2UgVNSLxcssqmEIbx/B9dcD6Dooa/Z2oRtv1GpJujrZ+9fXHAAfeP99+eWX46677upKdpJm9Hx6jhfa5CRs7xRIRETgn7XxfFDRcE4d6teu5SIi9hQk68jJyUFlZWVYy3ByUlAppycF2VPQupgU1IHL5RoJ4AkAE/t8len9mwngJpfLtVySpJc1WN8kAPcDmBZgklTv3zgAV7hcrrcBLJUkaXe46w5o/XqgqEi3xdtVXV0dHnroIVnTTpw4EfPmzev12erVqwNOX1paqj6wIIKts9t5552HrKwsXdZvhEOHDuGxxx6TPb3L5cJ1112nY0TOtX37dvz73/9WNe/QoUOxePFiAMDWrVvx2muvhR1Pfn4+zjrrrLCXoxdJknDrrbfi4TVr+n2XC+B9AFUAYmJi8Ne//hXLly83OEKSgxfaRF3Y3imQ2NhYDBo0CAcOHOj1eWRkJIYPH25SVBSu7Oxs7N27t9/nZg5tzuMQkTPxnYJkFePHj5eVFAzWjpkUlI/7dGBsK2JjUlBjLpcrF8AbALrfjC4BeBfADnR1ODoRQCyAQQCed7lcJ0uS9GaYqx2B/gnB7wBsAXAIXR3QZqHrHjAAzAPwocvlOk6SpB/CXLd/OTlAQYEui7azzpoa1Kamypq2OTOz3zYOOq9O9SEn3o7Bg4Hc3JDTiUqKj5ddL4D3xMf2r4v25mZFdeGrKSOjp17aFOxrwTQOGiRsXbe0tGDlypX4m5+EoK/s3Fyse/FFTJo0yZjAHEjPpB5/hJCTOLX3Eclz3HHH4dlnn+11I2v27NlBexGS2ObNm4fHH3+83+fTpgV6FlZ/PM7oh9uWRMbhQ8kqpk6ditbWVnyybp3ZoTiC0/dpPsBsXfyFpL3HcSwhuAvAGZIkfdH9pcvlSgfwLwAnAIgE8LTL5RoqSVKNBuveDuDvAB6TJKnXYyEul8sNYBmAewDEeWNc63K5Zkl8CYcw7HrAtGu5AnFaea1Cj4s1Uev6s88+w9KlS7Fly5aQ07700ktImThR/6BINV5oE3Vhe6dgxo4di9jYWHz11Vdoa2vDyJEjMW7cOLPDciStEvhDhgzB2LFje13PDBs2rKteKyrCilEPPEaFh7clSGQcPpSswuVyYc6cOZidk6P6tTY8Hsvn9KRgMDzeiY1JQQ25XK5FAI7z/m8rgMWSJH3lO40kSYdcLtcZAL4EMARAGoD/B+CXYay6CsByAP+UJKnD3wSSJHUCeMjlclWj652GADADwEIA68NYN2lIyQGTB1fjcFuLQ6unMu1ap52dnbjjjjtw8803o6PD7+kAQFf5f3bddcDq1UhJSTEuQOqH7xQkko89BSmUoUOHYujQoWaHQRrxeDw4++yzMX78eFRVVSEzMxNDhgwxtfcnjzNEzsThQ8lqwrludnJSUOn+7fR9mtdF1uXslqu9n/r8+5G+CcFukiQ1APi1z0dXulwu1b9sJEl6R5KkNYESgn2mfQ7Axz4fnap2vaQ9ux5M7VquQJxWXqvQo15Equvt27fjlFNOwf/8z/8ETQhGRkbi6aef5nsvLSRYO3P6jxByFrZ3ImvQ8vrI5XJh+PDhOP7441FUVGT6cLAiXfsRkXG0Gj6UxxAie+Hvk8B4vBMbW65GXC5XArqGBO32cIhZngFQ7/13GoDj9YgrgA98/l1g4HqJLEnpiYwnPv2I9lSmCHUtSRLWrFmDiRMnYsOGDUGnjY6OxvPPP49zzjnHoOgoFPYUJJKPPQWJ7MHK+yqH9CZyJq16Cg4ePFiLcIh05eSegko5PSnI6yLrcnbL1dYsANHefzcA2BRsYkmSmgF86PPRAp3i8rt6n397DFwvhWDX4UOtFKs/Vo+fuugxfKjZbaOurg4XXXQRli9fjoaGhqDTpqen45VXXsGiRYsMio66hfujij0FibqYfcwlIiL98BhPItPimtvtdmP8+PEaREMUPg4fqg3+Hg+M53WxseVqZ5TPv7+SJKldxjyfBZhfb+N8/r3HwPVSCFY8YBYXF5sdgnCsWI9WwZ6Cx3z88ceYNGkSnnjiiZDTLlmyBFu3bsX8+fMNiIyUYE9BIvnYU5CIzMYn4omcSYvhQ+fPn4+oqCitQiLSDZOC8jk9KWjEdVFcXJzfz2fPnq3J8p3K3AH57WWEz793yZxnt8+/R2oYS0AulysPvXslvq7Liiorgfh4XRZtZ+6mJiRXV8uaNnb/fqC8vNdnQeftM61W5uTmYt/Gjaivrw84TURFBdDSosv6jeCprZVdL0DXO9v02t5OF1FRoagufMUdONBTL5GVlaqXE2iZRmlra8MDDzyA1atXo6OjA/no6vKdha4u6q0+08bHx+OBBx7ARRddZGiMJJ+cC2XegCTqwvZOZB0ulyvgTUUr78tWjp2I1NPixv+4ceNCT0RkEJ7P/FO6XZgU1L8dDRs2DLt370ZNTU3PZ1FRUex5HSYmBbUzwOff+2XOs8/n32kaxhLMXTg2ZOhuAC/pspaSEl0Wa3exAErDmD/ovGVlYSw5sBQAPwk1kU7rNkoyVNTLnXdqHwihEOHtI91GQcPu2StXarUkWSIBXOP962sOjr00dvr06VizZg1GjjTkmRMyCX/MkZOE+tHN/YHIGqy8r3K4NSJncvqNf3IWns/k47EhMK2u92JjY7F06VK8+eab2LNnDzIyMjBnzhwMGjRIk+U7FZOC2knw+XeTzHl8p0sIOJVGXC7XUgDn+Hz0C0mSNO2+FRMTg4iICOCZZ9AxdCiONjUhOT4eLpcLdQ0NiImKQlRkJJpaWtDZ2Yn42Fi0d3SgvqkJKQldm6C2vh5xMTGIjIhAY3MzACAuJgZt7e1obG5Gsne6mvp6JMTGIsLjQUNTE9xuN2Kjo9Ha1obm1lYkxcdDkiTUNjQgMTYWHo8H9U1NiPB4EBMVhZbWVrS2tyMxLg6dnZ2oa2xEUlwc3G43jjY2IioiAtFRUWhubUV7RwcSYmPR0dGha5n2Hz6Mx//5T7gAdHoPnm5JggRAcrmO/dvtxpRJk3D8ccf1KtOq1av7Tefq7IQLwI+vuELXMj33/PM4uG9fr1gBoNPtxgXnnouszEzL1tPhI0fwyD//2atM3dvVXz3FREZixYoVQpfJqvtTeXk5nn3hBbgkKeh+4q+eJowfjxPmz0drWxu2bNuGd996q99+0ulywQXAFWC/6zWdJGFEUREWnHii7vUUGxWFe++9F4+sXYv6ujp0tLcjJj4enZ2daG1qQn5UFF6KiUFVXR0iIyPxxz/+Eddddx0iIyNRX1+PiIgIxMTEoKWlBa2trUhMTOyqp5QUJHV2wg3g6NGjiIqKQnR0NJqbm9He3o6EhISuMh09iuTk5K4y1dUhpq0NUUBXmRoaEB8fj/b2dtTX1yMlJaWrTLW1iIuLQ2RkJBobG7vKFBeHtrY2NDY2Itl73qipr0dCezsiIiLQ0NDQ1fZiY9Ha2orm5mYkJSV1tb36eiR6PPAAwctUV4ekpKSuMiUmIqq1FdGAMWVK7ipVTUoKEjo6EAGgoaEh6I+qzs5OIFCZvO24zrsufzo6Onr+269MMTGIiopCU1NTV9sD0B4R0VUm7/yyy1RTg4SEhK4yxcfD3dKCWKB/PdXWIjExsesY0V0mAC3R0WhtbOwqk289ud39215TExK6y1RTE7xM8fFd+1NKivIy1dcjISKip54Ctr3uMgGoT0hARGtrV5kCtT3fMgFojonpXaZQ9eTb9vQuU3c9dZeptRWtR48GL5PvMQJAh8eDo/X1SJYkeWUKtD81NyMO6Dru1db2b3sREWhqCn6J3b0/qG57eh4j6uuPHfd8ymRIPXWXKSWlq54A+fWUnIy49nZEAvKOEb5lAtAaFYXmhgYkAYGPEYGO5d3np8ZGRLW0yKsnOftTfT3i2trkHfe6j+VNTXA3Ncmrp+4ytbaiNTFRXdvrrqeGBsS0tirfn4Cu/SkyUn3b6+joOu41NSGiuTn4OddPmbpJ6Dov+p4Ju899issUznWEBmVqb+/9hpDuMnX63PQyvJ7Unp9MOkYAXdcRnX5uFEqShJqamsDHCN9jeU2N9mXyxhHyGKG07Sm9hg3nOqKpqet6r6MD9TU1YZ1ze5WprQ3NSUnyj+XwXsPW13cdy+WecwHUJSUdO+dqfB0hp54CcblcvepJiU6XC61RUcrL1LftBfitIfs6ItxrI6OuI5qa4I6Nlf9bw9/+VF+PJLdb+e/cmJiueoqNPbY/ya2n9nY0Jiebfyzvsz8F+iXa1tbW8+++Zep7vvPV3n3cM7uetP6d662niIhjqZLuc1WwFGl7ezuOyr0uV/o71wL7U/c1nT/d90GCnXP9XQ/01Z1cPP3003vtTwhWJmi4P3nLkZSUhLq6upDxWgXT2dqJ8fl3a8CpevNNyMVqGEs/LpdrCoD7fT56QpKkx7Vez4wZM7BkyRIgJwcH4+NR9swzaMnKAgoK8NBrr2FbQwNQUIB3du7ES198ARQUoMLjQdkzzwAFBUBBAe7797+xo70dKCjAhm++wYZvvgEKCrCjvR33/fvfPdOVPfMMKjweoKAAL33xBd7ZuRMoKMC2hgY89NprQEEBWrKyUPbMMzgYHw8UFGDdRx9h4969QEEBNh85grXvvgsUFKAuLQ1lzzyDurQ0oKAAa999F5uPHAEKCrBx716s++gjoKBA9zLd/+9/oy41FbWpqTiakoKjKSmoTU1Fnff/e/6dnIwjiYn9yuRvuu7l6V2mvR5Pv1hrvTFURUVZup7KJalfmYLVU11amvBlsur+1J6b27WNQ+wn/uppR1tbT5ne+O47v/vJ0ZQU1AXZ73pNl5qKpowM3evp3hdeQPE55+CGe+7B2ddei87cXOwCMGnxYgydOxe7AESOHo2HLrsMg/Pz8e6776KhoQGHDx8GAKxbtw4bN24EAGzevBlr164FANQ1NqKstLQn4bR27Vps3rwZALBx40asW7cOAHDw4EGUlZWhxTsE8EMPPYRtu7pGyX7niy/w0ktdHc4rKipQ5tMr+L777sOOHTsAABs2bMCGDRsAADt27MB9993XM13ZM8+goqICAPDSSy/hnXfeAQBs27YNDz30EICuC7iyZ57BwYEDg5eprg5lZWU9F2prL7oIm7dvN75MpaWoOHiwp0y+P7j66h4CI2CZkpLw8GuvBZx/586dgcu0bVtXmd5551iZcnO72p7SMpWVHaunxYvxzhdfAPBTT2VlOOgte68yTZqEta93jVjer576tj1vGzhYWyuvTAcPoqy0VHmZnnkGFbm5XWUK1vZ8y7RkCTZ6Ywja9nzLNGPGsTLJraeKCnX1pKZM69YdK9P27fLK5Ls/DRzYddyTU6Zg+9Mnn3SVae/egG3vjTfeQDBHjhw5ViY1bU/PY8SLL/otk2H1VFuLstJStHiPR7LracUK7Ni713+ZAh0jfMs0ejQeeuWVwGUKdizvPj+9/rr8epJTphdflH/c6z6Wf/ih/HrqLtP27VjrHb5bcdvrrqdXXlG3P3WXaehQ9W2vtrarTO+8I++c26dM3TeCOj2ermO0z02fo0ePqi+T2usIDcq0bt263k+9e/9dn5jY85Hh9RTO+cmsY8TixWiJ8b190qWtrS34MaL7WN7YqG+Z5B4j9LyGVXsd8eGHXWXyTtdTJhXn3F5l2rULD1122bEyyTmWJyV1/SZUes697LJj51yNryPk1pM/bre7Xz3JVZ+YiG2jRysvk8zfGorPT2qujYw8Rnz4Id6ZO1dZmfruT888gzpv8lbR9V53mebOPbY/ya2nvXtx34oV/stk1LHcz/7UFuA9lpWVlQHLFCzRI1Q9af0796WXcPDgQXi8Dwj0nN+DJK62bt0qv56U/s61wP7kO6RnX93bIViZjsp8yMLU/cl73LvMex60Cxe7BGvD5XL9B8Ai7//eLknS/8iY5xQAL3v/t16SpMRg04cRWyGA/wLI9H70JYDjJEnSLL3tcrnGANjS3VNw48aNGDlypLKnd5U+HaX2KWslT+aF+0SywjLt378f999/P+SYOXMmFi5c2KtMt9xyS8Dpr7/+el3L9Nhjj6Gqqsrvui+//HJkZ2dbtp4OHTqEv/zlL7LqBejqMfv//t//E7pMVt2fduzYgccee0x2XfiaMWMGSkpK0Nrais8//xyveG9ShmPcuHFYtGiRLvW0f/9+XHvttXjvvfdQ672JlZKSgvr6erS3tyPe21OwqakJQ6Oi8FlMDNwffID4MWPk1dMPP6CuuBhJn34K95Ahyupp/35EFRWh6Ztv0Jmbq67tVVcDhYWo+eorJIwcGbrtbd2KxIkT4dm+HfXp6aHb3u7dODp+PKI++QTRRUXGlCk5GSgvR82kSUj45BNEDB2KhoYG3Hvvvb16Tfhavnw58vLy/NfT4cPoHDoUFe+9FzAxOHHiRJxxxhny2t7Bg2gfPhz1mzcjZexY+WWCzzGiogINY8fC/emniB0xQt4xYt8+tIwcidbPPkPi6NGhjxE7dyJh9Gh0bN+OowMGhN6fduxA/ZQpSNm8GSgokF+mLVuQMGkSIr7/Hg0DB4Y+7u3Zg/px4xDx6aeIKSqSd9yrqkLzqFFo/+wzJIwapewY8c03SBk3Dti5E7WpqfqUqbue9u5FzIgRaPn2W7RmZck/lh86hI5hw3D088+RPGZMeMe93bsRN2oU2r7/Ho0DB/o9P4W6Trruuut6jpOq2p6ex4hvv0Wytz5rUlLUnXPV1lNCAjp27MDRKVOQ/NlncBUWyqun8nLUTpyIuE8+QeSwYcqvI/bvR+uIEWj+7DMkjRmj/DriyBG4hw7F0a1bETV0aPjXETU1QGEhar/6CnEjRsg77h0+jIhhw9CwbRvcBQXKro2++w6tU6Yg8csv0ZmXp6ztVVfDNWQI6rZsQczw4equ9w4cQFtRERo/+wzJ3mO+ouu9w4fhGTYM9du2IaKwUPH13p/+9CdIkoSk6mosf+QRPLx0KepSUwEAI0eOxHnnnRfeNazS6wgNytTe3o7q6uqem09J1dX4WVkZ7iotxdGUFJxzzjkYOnSosfWk9vxk0jFi38aNSD35ZDxw+eU46t0u3S655BKkpaUFPkbs2IHEMWPQuWMH6tLStC+T3GOE3tew4VxHlJcjfvRotG/fjvoBA8I65/Yq0/ffo3nKFCR98QWk/PzQx3LvNWzdF18gafRo+efcXbtQN2ECYj75BFHDh2t+HSGnnu655hrUeo9Vvn79619DkqSeevrd734X6HKkn8SaGlzz178i6ttv0ZSREd5vdz+/NRT9dld7bWTkdcTXX8NdXIzYbdvQmp2t7n7Etm1ImjAB7h07cHTAAGX3I/buRdPo0ej89FPEjxolv562b0fjlClI/vxzoKDAnGO5n/3pH8uX95x/feXm5uLHP/6x3zK1t7fjvvvu6/cbdtq0aTjppJPEqCetf+f61NN7772HDz/8EIk1Nbh+9Wqsuu46v9sQAH72s5/B5XLJqyelv3MtsD89/PDDOHDggN9tM2rUKJx77rlBz7nd11DBzJw5E9OmTTNvf6quxrYhQzCrd0/BsZIkbQ0auOA4fKh26n3+LbfXn+909QGnCoPL5coC8BqOJQR/AHCylglBX74nDI/H03PSBNBriIXY2GNFj4iI6DVd90EM6Dq4dYuMjOz1ne888fHxPf+OiopClPdJGJfL1Wu67iFLACA6OhrR0dEAup768p0u0edpzxifpxiNLFMo3U+u+JYpGL3L1B2PP93d761aT91xKiF6may8P6nVHV9UVFSvbREOl8uleT1FRUVh1apV+M1vftNvqDzfp7AaGhoAdNXdHb/+NZKuvx5ISACU1FNNDeAddkFRPXl748RGRwPe9qK47VVXd8WfkADIOUYkJADeoQFlt72jRwHvMgwpk1dKTQ3gPSbGx8f3PAHoT/dy/Jbp8GG4Ozt7hpn1p3sbyWp7Bw8ior291/JUHSMaGgCf/UnWMaKlBdHe5Yc8Rnjjlb0/eTxd21xpmRISAO/QOLKPe/X1PW1K9nGvuVl5mSIi1NWTmjIlJBwrU1QUor2xyzqWHzoET0dH13q9T9CqPj95lxkZESHr/OSPv2sjRW3PZzmaHyN8YlJ9zlVbT91lqqlRXk+1tT3HaFXXEa2tiPL+v+LrCO9+nRgX13PMCeuc611eckICEBkpr0zeeeJjY3v2Y9nHvagoRHt7xClue971JsXH99S7quu9tjb1bc8bQ0JsbM/+qeR6z+12o6OjAy50nRd9n7Hv3lfDuoZVeh2hQZkAoNq7XgA9ZXL7PGhteD15qTo/mXWMaGjotc26hTxGqDmWKymT3GOEEdewaq8jvNNF9Jku3HNuVGQkorw3QmUdy32vYZX+1qir69n+el5HBKsnf1wuV7+yy+WWJES1tiovk1eo3xoBy6TFdbmXoceI2FjA+ztY9f2IhATA29tN1f2IpqZj+5PceoqI6CqvvzIZeSzvsz8F6uMW6d3PApXpkksuwRNPPIH6+q7b1WPHjsXChQt7zuFC1JPWv3O99XTSSSchLS0NFe+/31UmBBYbG9uzLTX/nWuB/SnYveCg13vec66/6wF/TN2fvLHaaehQgElBLR32+XeGzHkyff59RMNYAAAul2sAuhKCQ70fVQE4UZIk/925yHRavYTVDMF6HVu5XGo4rbxGCmfbWqFeNm3ahCuuuAKff/65rOnPOOMM3HfffchqaQGuv17f4Ei1YMdH3wtkNazQrom0EuxHJ8D9gYj0F+w4w1GYiIjIKkJdN2dnZ+P666/H/v37kZiYGPLhPDtxuVyYMmUKpqSnAz/7GQoKCvCFT8LXV/e77ZwqWDvibzOxObvlautbn3/ny5wnz+ff32gYC1wuVxKA9QDGeD86hK6E4E4t10PaUnLA5MHVONzW9uB7saZVnWq1nB07dmDFihWYPn26rITggAED8Pjjj+O5555DVlaWJjGQOcJNCjr9Rwg5S6ikIBGJw643iawcOxFph9ck5AQulwuZmZmOSgj6E+yhH/4eD0y0+27UG1uudr72+fc4l8slpxfm5ADzh8XlcsWj612Fxd6PatE1ZOg2rdZBpITVD+BK47d6eUUWzrbV42It3Lo+fPgwrr32WowYMQL333+/rCfMf/SjH2Hr1q244IIL2NZsINx2yTZAThJqf+H+QER643GGiABg+vTpZodARAbp9A6d6Y/Trwvs+hCYEzApqJ3/Auh+aVA8gCnBJna5XNEAZvh89KYWQbhcrhgALwKY7f2oEcCpkiR9qsXySV88YNoD61FMIj3BtW/fPlx77bXIy8vDPffcg44g76/oNnXqVPznP//BU089hYwMuaNUkx3wQpuoC5/KJ7IHu567OHwokXPMnz8fo0aN6vl/3/dxEVmBXc/FeuD5XR32FBQb3ymoEUmS6l0u1xsAFnk/WgZgY5BZzgbQ/SbLIwDeDTcGl8sVCeAZAAu8H7UAOEOSpA/CXTYZw67Dh1opVn+sHr+daNVT0KyLk6amJqxatQq33XZbzwu7Q0lKSsJtt92Gq666SqjEJomBbYKcJNQxl+drInHYdX+0a7mIKLDCwsJ+n0VERODcc89FfX096uvrkZGRgd/97ndMHhCRo/C6yLqYFNTWX+GTFHS5XPdIkrS170QulysOwK0+Hz0oSVJ7OCt2uVweAI/7rL8dwLmSJL0eznJVq6wEHD7mtBquzk4kV1fLmjZm3z6gvLzXZ0Hn7TOt1hIOHQq4fvfu3cDRo7quX0+uxkbZ9QIA8a2tum9vp4qoqFBUF75895nIykrVy/EVd+CArLru6OjAf/7zH9x+++2o3LsXAwAM8H7nAZAFYBOA1j7znXPOObj77ruRnZ0ddqxkXewpSEREdmLlc5eVYyei0IYOHYrPjhzp+X+Xy4Vp06YFnD4hIaGnl6Db7ZY1AgwRWUuw4UOdzoh7Fbz20geTghqSJOk/LpfrPQDHAYgG8G+Xy3WGJElfdk/jcrkGAHgCwDDvR0cA3O5veS6XqwDATp+PlkuStMbPdC4A/wCwxPtRJ4BLJEl6MawChaOkxLRVW5kbQGkY8wedt6wsjCWHdr6J69ZbHFTUyx//qH0ghFyEsY/4tMPh4SxHBQ+A071/gcwB0N2tOz8/H/fccw8WL16se2xkbewpSHQMfzASicOJ+yN7CBFZ3ymnnIL43buxY8cOJCQkYPLkyRgxYoSseZ143CPrYnuVj+d3siMmBbV3IYCP0dXxowDA5y6X6x0AOwAMBHAiunIMwLHefDVhrnMFgKU+/78DwByXyzVHzsySJF0T5vr7W78eKCrSfLF2J0kSymQm0GbMmIEZM2b0+mz16tUBpy8tLQ0jstCeeOIJ7N+/3+93y5YtQ0pKiq7r11NzczPuv/9+2dMnJCTgJz/5iY4ROVdFRQXWrVunat4TTzwRY8eOBQBs374d//73v8OOZ/z48ViwYEG/z7dt24Y1a9bghRdeQEtr3/5/veUCeB9AFYC8vDz88pe/xKWXXorY2Niw4yOxyU3osacgERHZiZXPXVaOnYhCi4iIwIIFC/z+xguFxwcie2JPwcB4r8K6mBTUmCRJFS6XawG6egNOBOACMM/75+sgunr+vaHBagf1+f/h3j+5tE8K5uQABQWaL9buXABqU1NlTduSldVvGwedV+f6qE9PR22A5IeUnw/ILJeIpKYm2fUCAJ2JiWz/Oul0uxXVha/23NyeemlTWKeBNGVk9Krr7777DitXrsSGDRsUL+uGm27Cst/+FnFxcaEnJlvQIvHLnoJEx/CHJ5E47Lo/2rVcRhkwYEDA7zIyMgyMhEh7PD6QlbC9ysekoDocPlRsvJOkA0mSvgEwHV29914FsAddr4o6AGAjgP8HYLQkSf8xLUgikk3pCYgnLP2Es219kyda1ZHH4wEAtLS04JZbbsG4ceMUJQSTk5Nx8y9/CQC4+uqrmRB0mKysrLCXweMNERFZjZXPXcFi5/BioQV6ICo/P5/XwWR5Vj62ERGpwZ6C1sWkoE4kSWqVJOlRSZJOkSQpT5KkaEmSMiRJmilJ0h2SJB2SsYxySZJcPn9rAkz32z7TKfrTvPAUFqseNIP9CLZqmdRyWnmNpFVSUEv/+te/MG7cOPz2t79Fa4ihQrt5PB789Kc/xfbt23H55ZfrEheJY/z48X4/nzdvnqz5g7V79hQkOobnXyIia/DtMThw4ECcffbZJkZDpA1ehxDZE3sKqsOegmLj8KFEgnG5XLKeMrXSQdFKsfpj9fjtRKSk4JEjR/Czn/0M33zzjex5oqKicN555+EXv/gFRo0a1fVhfb2mcZF4pk6diq+//hptbW09nxUUFCA7OzvsZfP4REREIrLr+Yk9BbVx8cUX42B8PICupKBd2ws5C9sxWQnbq3w8vwfGdmRdTAoSEYXA4UPFIcLwoXV1ddi4cSM++eQT2T0Dc3JysGLFClx++eUYNKjva2DJ7nJzc3HppZfik08+QU1NDfLz83HcccfJbocckoNIHu4PRNZg5X3VyrGLxOVy8ZqYiIgsobOzE+D5XzFeM4mNSUEiwWhxk1g0VoqVxBZOW1I7b2trK8rLy7F9+3bs2rULBw4ckP2k2IwZM3DDDTfgjDPOQGRkpKr1kz3k5uYiNzdX1bzBhivh8KFERCQiXv8TERGRHRQXF2PXZ5/1+zw5OdmEaMRixAPMvKbUB5OCRIKx6sHOzt3p2VNQHHoPH9re3o6DBw+iqqoKBw4cwMGDB1FeXo6Ojg5F60pLS8Of//xnLF26lO2BwsZ3thId43a7+V4PIouz8rmLw4cSUSBWPraR87C9yjd06FB4vvii332hadOmmRSRNbCNiY1JQdJHZSXgfUcAKZNcXY329vaQ08Xs2weUl/ebN6A+02ot4dChgOt3794NJCToun49udrbg2/bPhI7O3Xf3k7lOXhQUV34itq7F/D21ousrERydTUOHjyIb775BkeOHEF9fT2OHDmCjj43m/v27fIAyAKwCUDfwUNdLheWLVuG22+/HQMHDlQVJ1FfTAoSHRMsKcj9gYj0xuMMEQXC4wORPcXFxeG8887D008/jba2NgDAhAkTMGPGDJMjMx97CloXk4Kkj5ISsyOwrGvkTlhW1u+jUoXTa+kiE9ettwiE2Lb+3Hqr9oEQBkJFXXTzaYdDwlmO1xwAH/j8/wknnIB77rkHo0aNCnPJRL15PJ6A38XzARxyGI/HI+vhKSIyl13fh8uegkRERM4zfPhw/L//9/+wd+9epKamIjEx0eyQhGDlazqnY1KQ9LF+PVBUZHYUlvTXv/4Vra19+x/1N3v2bEydOrXXZ6tXrw44fWlpaZiRBbd27VocPHjQ73eXX365pW9cd3R04J577pE9fUpKCpYtW6ZfQA52+PBh/POf/1Q17/z58/HGG2/gsccewxGVvQ2Brp6D7wOo8v5/SkoKfv3rX+O6667j+91IF3FxcUhPT8ehQ4d6fR4VFYXhw4ebFBWROYIdZ/mjlMgauK8SERGZi+di5SIiIpCXl2d2GJbBNiY2JgVJHzk5QEGB2VFYUl1aGlpaWkJO15qd3W8b16amBp5B5/qoT09HbYAn96X8fEsPH4qOjuDbtg9PWhrbv06khARFdQEAjY2N+Pjjj/E/998va9+SKyEpCTddeSV++9vfIi4uTrPlEvlz3HHH4bnnnuv12ezZs4P2IiSyIz58QWQNdr0RZNdyEVH4eHwgIqfh8KHWxaQgEenO6gdwpfFz6CD9yKmL+vp6VFZWYv/+/aiqqsJ3333X74XQasTGxmLYsGGYkZkJvPYali9fjuPPP58JQTLE+PHjERsbiy1btqCtrQ0jR47E+PHjzQ6LyHDBEuFWv94gcgor76scPpSIiIgoNCtf7zkBk4JEgpF70BTt4GrnH8GibWsnC1QXHR0dKC8vx8aNG/H999+HvR6Px4OMjAykp6djwIABGDp0KLKzs+F2u5FcXQ289hoA9lghYw0fPpzDhZLj8bhLRGbi7wIiCoTHB7IStlfSAnsKWheTgkSCsePBzo5lCsbOCVKzdbellpYW7Ny5E/v27UNVVRX27NmDxsZG1cvNycnB0KFDkZaWhszMTAwcOFDWsIy8OU1EZCy+U5DIGoy4SUREJBIe24iIyCqYFCQSDC8kxcM6EUdLSwveeecdfPDBB2htbQ1rWVFRUSguLsbkyZMxcOBAVctgUpCIyFg87hKRmTh8KBER2QHvc5EW2FPQupgUJLIoK90U4wGctPD222/j8ssvx/bt28NaTnJyMlasWAEAiImJCWtZVtoPiYjsgO8UJLIG9hQkIiIici5e74mNdzOJBCP3oBkZGalzJERiOHz4MC677DLMnz8/rIRgdnY2br31Vnz//ff4yU9+EnZCEAh+c5qIiLTHhzGIyEy8wUVEgfD4QEROw4fArIs9BUkflZVAfLzZUVhScnU1IhoaQk4Xd+AAUF7eb96A+kyrtcTDh9EcYP3u3buB6Ghd16+3lJoa2UMCJXZ06L69neDIkSP429/+hn/+85+ob2hAPgAPgCwAmwCEGjw0KSkJmZmZyMjIQH5+PlatWoX09HQAQF1dnSYx8uY0EZGx+E5BIuuz677K4UOJiMgq7HouJmNx+FDrYlKQ9FFSYnYElnW53AnLyvp9VKpwei1dZOK6jXCd0hl+9zs9wnCUNAA/9/71NQfAB34+j4yMRFFREaZOnYr8/PxeFw9RUVGax8ikIBGRsXjcJbIGu97AsWu5iCh8PD4QEZFVMClI+li/HigqMjsKS/r73/+O+vr6kNOdeeaZKCgo6PXZ6tWrA05fWloaXmAhPPbYYzh06JDf71asWIFoi/cUvPvuu9HZ2Slr2sTERPz4xz/WOSL7qa2txV//+lesWbMGLa3++wHmAngfQJX3/yMjIzFkyBBkZWUhJycH+fn5AZN/vj/StPrBxpvTRETG4rDNRNZn1xvn7ClIRERETsKegtbFpCDpIycH6JOwInmODhiAOhnvC3QVFgL5+b0+q01NDTyDzvVxdMAA1HZ0BF63xZOCdWlp6AhUvj6kpCS2fwWam5tx77334o9//COqgw2B66MDwIQJE7Bw4ULEyxyqWI8EHpOCRETG4nGXyBp4A4eInIbHPbIStlfSG9uY2JgUJBKM3INmpIzEoSh4IiB/Ojo6sHbtWvzv//4vdu/erWjeJeecg8Rx4xTN43sjWas2yR4rRETG4nGXyPqs/NsgWOzsKUhEREROYkRPQdIHH7UlsigrJQXtgCcz7XR2duK5557D5MmTsXTpUtkJwQEDBqD0uq63O+bm5ipeL3sKEhFZH4+7REREJCLeMyAiOobDh4qNv6qJBMOegmJSUgY+JRzYxx9/jGnTpuHss8/Gl19+KWuegQMH4rbbbkN5eTlWrFihet1MChIRWR+Pu0TWwCfHiYiIxMVzMWmB7ci6OHwokWCsmhRkIoyCOXz4MG6++WY8+OCDsttKRkYG/vd//xeXXXYZYmNjAQAtYcSgx/ChvDlNRGQsHneJyEwcPpSIAuHNcSKiY9hTUGxMChIJxqpJwWDscABnT0F1Ojo68Le//Q0333wzjhw5ImuehIQE3HTTTbj++uuRkJDQ67tw2pIe7ZA3p4mIjMV3ChJZg117CkZEBL6FMmDAAAMjISIiIjKXXa/3nIBJQSKLCvaDlLTHk5kykiTh2Wefxa9//Wts27ZN1jwRERG48sor8b//+7/IyMjwO41oSUHenCYiMhYfxiAiM0VERCAvL6/fO7Gjo6MxbNgwk6IiIhHwngFZCdsr6Y1tTGz8VU0kGLkHTSvdFOOJwFm++OILzJs3D0uWLJGdEPzRj36Ebdu24d577w2YEAS0Swpy+FAiImvicZfIGuz85PhJJ52E6OjoXp+dcsopPD4RERGRoxhxvWf160ZRsasR6aOyEoiPNzsKS0o6cgTt1dWhJywv7/dRcrD5/EyvpcTDh9EaaP3l5YDFe1QlV1ejpUXeG+3iW1t1394iqqmpwV133YXHHnsMnZKEfO/nHgBZADYBaO0zz+mnn47f/e53GD9+vKx1qL0Y0Osigjd/iIiMlZqaanYIRORwubm5uOKKK7DzrbeAsjJccMEFyJgwweywiMhkvHFNVsL2SlpgO7IuJgVJHyUlZkdgWZfKnbCsrN9HpQqn19IlJq7bCCuUzvDHP+oRhtBSANzq/fNnDoAPvP8uLCxEWVkZFi9erGgdTAoSETnb5MmT8cYbb/T7vLCw0IRoiEgNO9xASktLQ1pxMQAEHeWCiIiIyInYU1BsTAqSPtavB4qKzI7Ckv75z3/i8OHDIacrLS3t99nq1asVTa+lRx99FEeOHPH73bXXXmv55Mn999+P5uZmWdPGxcXhiiuu0DkiMXz66af4zW9+gy1btwacJhfA+wCqAMTExOCXv/wlbrzxRsTGxipen1ZJQQ4fSkRkTXFxcZg6dSo2bdrU85nH48Hs2bNNjIqI+uINHCJyGh73iMhp7DxcvN0xKUj6yMkBCgrMjsKS6tPTUdvZGXpCP9u3NtiQWjrXx9EBA1ArSX6/cxUWAhY/GRwdMACNjY2ypm2Li7N1+z98+DAeffRRrF27Fp9++qns+U5dvBg33HMP8vPzQ08cgGg9BT0WHxaXiMiKTjnlFGRkZGD79u2Ii4vDhAkTkJeXZ3ZYRCQTbxIRERGZi+di0ht7CoqNSUEiwfBgR6Lq7OzEXXfdhVtuuQX19fWy55s9axbw3//i7rvvBsJICIaDw4cSEdmHy+VCcXExir1D9xGRePjkOBE5DY9tROQ0vN6zLiYFiUh3djgR2KEM4di8eTOuuOIKfPLJJ7LnycvLw1133YWzJ08GhgzRMbrQOHwoEREREREREREROR3vZhIJxunJJxJLZ2cn/vznP2P69OmyE4LR0dH49a9/ja+//hrnnHOOEG1arxhEKBsRERGRlfD6iYjsiMc2IqJjOHyo2NhTkEgwkZGRZodAfig5CUkB3q1oNXv37sWyZcvw2muvyZ7nzDPPxF133YXCwkIdI1NOj4sIt9vNixMiIiIiP3iNREREJC6ep0kLHD7UuthTkEgwcpKC8+fPNyASZeySCAvEaSezF198EePHj5edEJw1axbWr1+P5557TriEIKDP8KEcOpSIiIhIOaddVxORM/DYRkR0DHsKio09BYkEExUVFfT76OhojB071qBoSA0rJ0gbGxtxww034P777w85bUJCAm688UZccsklGGLyOwND0aunIBERERH1xxs4RERERPbGnoLWxaQg6aOyEoiPNzsKS0qurkZydXXA7y+88EKk1dUBdXV+5w2ovFyD6AJLPHwY7YHWr/O6jZBcXQ330aOypo2OjrZkmTdu3Igbb7wRFZWVyAfgAZAFYBOA1j7TnnbaaVi9ejWGDh1qeJxq6HExwgscIiIiIuV4DUVEdsRjG1kJ2yuRszEpSPooKTE7Ass62fsXUFlZwK9KVc6nhaUmrtsIP1Y6w5/+pEcYupoB4H0/n88B8IH33/Hx8bjnnnuwbNkyS11E6jF8qMfjCXsZREREREREREREVmNET0Er3Xu0EiYFSR/r1wNFRWZHYUnvvPMONm/e7Pe7U045BSNGjAg47+rVqwN+V1paGmZkwT3yyCOoDtBTUO91G+Ghhx5CnZ/emf5ER0djxYoVOkekjba2Ntx888146umn+32Xi64kYZX3/6dOnYq1a9di+PDhRoaoCQ4fSkRERGQcDidFRE7DYxsROQ2v96yLSUHSR04OUFBgdhSW1PHDD6gNMPRke25u0O06+6KL8PLLL/f7/OSTT9a9Po4OGIDaQF/aoC0cHTAAtTJ7hkVHR1uizA0NDTj33HP9thlfnQB+8Ytf4JZbbkFkZKQxwWmMSUEiIiIiIiIiIiZsSH/sKSg2JgWJBBMVFRXwu1AHwlGjRuG///0vampqej5LTk7G6NGjtQovIEmSdF8HaefgwYM47bTT8PHHH4ec9oknnsCM8883ICr96DF8KC9MiIiIiPzjk+NE5DQ8thGR0/B6z7qYFCQSTLCeWKEOqAkJCVi6dCk++OAD7N27F1lZWZg9ezYSExO1DtNxlJzMRE+Q7ty5EyUlJfj++++DTrfknHOAZ57BjBkzDIpMP+wpSERERERERERERE7HpCCRYMLpKQgAKSkpOPXUU7UMiWzk/fffx5IlS7B///6A00RHR+POO+/ET089FXjmGQOj048ePQU9MoeTJSIiIqJj+OQ4EdkRj21kJWyvpAUjegqyreqD3RyIBBNOT0Ezid47Llwib3s5JEnCqlWrMG/evKAJwdTUVLz55pu45pprLF9mX3qUxU7bh4iIiEhLvE4iIiIici5eC4qNPQWJBBNuT0HSh5W3/dGjR/HjH/8YTz/9dNDp8vLy8Oqrr2LUqFEGRWYcDh9KREREJAYrX1cTEQXCYxsROQ17CloXk4JEggmWFLR7bzy7EKmetm3bhrPPPhvffvtt0OnGjRuHV155BTk5OQZFZiw9hg9lUpCIiIjIP97AISIiEhfP06Q3tjGx8Y4mkWCCDR/a3t5uYCTky2ons/379+OWW27BtGnTQiYE586di3fffde2CUGAw4cSERERiYLXUERERETWZ8Q1Ha8b9cGegqSPykogPt7sKCwp5vBhJFdX+/3OtWuXsNs18fBhdNbW+v+yvNzQWPSQePgw2gLUS18RERGmlbmjowOPPPII7rzzTjQ2NSEdQLr3Ow+ALACbALR6P7vyyitRVlaG6OhoM8I1DIcPJSIiIiIiIr3wxjVZCdsr6Y1tTGxMCpI+SkrMjsCyBgAoDfRlWZlxgSi0PNiXAsct16VKZ/jzn/UIIyQPgMu8f4HMAfBpTAzuv/9+LF261JjATKbH8KG8wCEiIiLyz4h3zBARiYTHNiJyGl7vWReTgqSP9euBoiKzo7CkpqYmPPDAA36/O/744zF58mSDI5LnoYceQl1dnd/vSktLjQ1GB4899hgOHToka9qIiAhcc801Okd0TEdHB26//XY8+Le/BZ0uF8D7AKIGD8bGl17ChAkTDIlPBBw+lIiIiIiIiIiISBtGJAV5700fTAqSPnJygIICs6OwpIi2NtSmpvr9rmHgQGG369EBA1Dr8fj/UtCYlTg6YABqOzpkTevxeAwrc1VVFX784x/jlVdekT3P8//+N5LGj9cxKvFw+FAiIiIi4/DJcSIiInHxXEx6YxsTG+9oEgkmIiJwrn748OEGRkK+RDuZSZKERx99FKNHj5aVEIyPj8fNv/wlACApKUnv8ITD4UOJiIiIiIhIL/x9SEROE+5xLy0tTfd1kH9MChIJxuVy+R3WMTk5GRkZGSZERIBYJ6Hq6mpccMEFWLp0KWpqaoJOGx8fj//7v/9DRUUFLr/8cmMCFBB7ChIREREZhz0FichpeGwjIjpGzjHxhBNO4LHTJLyjSSSgkpIS5Obm9vx/fHw8LrjgAh4oLUKSJN2W/eabb2LChAl48sknQ0579tlnY9u2bfj5z3+OlJQU3WKyAu47RERERERERES8R0LaCPchsJycHKxcuVLLkEgmvlOQSECxsbG47LLLcPjwYTQ1NSEnJ4e9kkxm9gVTU1MTfvnLX2L16tUhp01OTsbjjz+ORYsW6R+YRegxfCj3SSIiIiLlzL6uJiLSA49tROQ0wTpFyD0mJicnB/2ex1Z9MClIJCiXy4X09HSzw5BNz95xTrd582ZcfPHF2LZtW8hpJ0yYgH/9618YOXKkAZFZB4cPJSIiIjIOhw8lIiIici6513u8LjQH72gSEcmg5CSlVYK0vb0df/jDHzBt2rSQCcHIyEj84Q9/wKZNm5gQ9EOPiwxeuBARERERERGR1fB+BonC5XLxYTITsKcg6aOyEoiPNzsKMlDSkSNAXZ3/L8vLDY1FD4mHDyO5ulrWtC6XK+wyl5eX4/rrr8dnmzcjx/uZB0AWgE0AWn2mHTFiBB5//HFMnjw5rHXaGYcPJSIiIjIOb+4QkdPw2EZETqPF8KHd03IEOmMxKUj6KCkxOwIy2GXBviwrMyoM3ZyvdAYZ7/4LpgDAswG+mwPgA++/V6xYgTvvvBNxcXFhrc/u+AONiIiIiIiI9MLfnERExyg5JrrdbnR2duoYDfXFpCDpY/16oKjI7CjIQA899BDqAvQULC0tNTYYHTz55JOoqqqSPb2aMtfW1uLGG2/Ea6+/7vf7XADvA6gCkJWVhYceeggnn3yy4vU4EYcPJSIiIhIDr6GIiIjMxXMx6U1pUlDNd6Qek4Kkj5wcoKDA7CjIQHVpaaj1ePx/aYO2UJ+ejtrmZvkzKCzzZ599hiVLlmDnzp0hpz150SLc+uijGDBggKJ1OBmHDyUiIiIyDm82EhERETmX0uFDA4mKitIiHOqDdzSJSBN2H/tZrxsbkiThwQcfxKxZs0ImBJMSEwEA9957LxOCCrGnIBEREZEYeA1FRHbEYxtZCdsriaSjoyPgd5GRkQZG4hxMChIRyaDHBVNbWxt+8pOf4Morr0RLS0vQaRcsWIBXX31Vt1ichj0FiYiIiPTD61Uichoe94jIaYJ1EFFyTGxvbw/4HXsK6oN3NImITNDQ0IAzzzwTDz30UNDpoqOjsWrVKrz22mvIzs42KDr7YU9BIiIiIjHwGoqIiIjI3rS63mNSUB98pyARkQxa3rxYv349rr32Wnz33XdBpxs1ahSefvppjBkzRrN1OxWTgkREREREREThkyQJnZ2dwV8j09kJJCZ2/TdILyDN5tNqGWbFrUW5/SwvIirK7/CLbrc7aO8sucs3rZ70WI7ey7ViuwyxDJfLFXB4T0mSArexPssMNkSox+OR3VZdLhfcbjd4ty40JgWJiAwiSRJuv/12/OIXvwg57QUXXIAHH3wQCQkJBkRmf30TeBw+lIiIiEg/wa61+GAVEdmRnY9tkiShccwY1Dc1oeGHH0K+/gQA0NIC/OUvQF0d8P338lemdj6tlmFW3FqU28/yxmZkoMPj6fd1fHw8vg9nPWbXkx7L0Xu5VmyXIZaRmJiI6dOn+53t4MGDqKmpkbXMQMsAgIqKCsXH1+j2dsRfcAES2toQJ0m2Pj6rxaQgEZEM4Z5AJEnCz3/+c9xxxx1Bp4uMjMSqVatw9dVX86SlIfYUJCIiIiIiIr3Y9YHetrY2VNTXo/nnP++6kU9EZCA1995aOjrQcsopONLQgJjycuTm5gbtjehETAqSPiorgfh4s6MgAyUePgxXfb3/L8vLDY1FDwmHDiG5ulr+DD5l/vbbb3Hbbbfh7XfeQT4AD4AsAJsAtPrMkpaWhpdeegmzZs3SJGY6Ro8EHnsKEhEREfnHnoJE5DQzZszAJ5980u/z/Px8E6LRRnNzM/bs2YP2jg7A4wGU/AaOjARGjer6rxJq59NqGWbFrUW5/SwvLTIS8HPeDft+htn1pMdy9F6uFdtliGUkJCQgLi7O72wREUHSTn2WOXDgQPXx+V85kJICuFxobm5GeXk5Bg8ejJiYGG3XY2FMCpI+SkrMjoAM9pNgX5aVGRWGbs5ROoNPmUcAWONnkjkAPvD+Oy8vD6+88gpGjx6tJjwKQY/hQ3lDi4iIiIiIiICuh3yHDx/ea0hGl8uF8ePHmxiVepIkYffu3ejo6OhKKhUWdiUGiYhE53IBWVldyUEA7e3t2LNnD4YNG8Z7eV5MCpI+1q8HiorMjoIM9Pe//x31AXoKlpaWGhuMDp599lns3r1b1rR1dXU4evQonnnmGXT6efF2LoD3AVR5/3/p0qVYtWoVUlNTNYuXeuPwoURERERi4DUUEdmRy+XCueeei7fffhs//PADEhMTUVxcjKFRUWaHpkp9fX1XQhDourEeGYnIyEgkp6YiPj4ekZGRwY/nra3Atm1dyUQl20DtfFotw6y4tSi3n+UdTE5Gh58eW/Hx8UhMTAx7+abVkx7L0Xu5VmyXIZZRV1eHxsZGv7Olp6cH7i3YZ5n79u0LuPrMzEzZoUqShLa2NjTU1qK2shJtPt+1t7ejvr4+vHZvI0wKkj5ycoCCArOjIAPVpaXhaKDu6DZoCw0DB6L26NGg09TV1eG9997Dp59+is7OztALdbux9p//xIUXXqhRlBQIhw8lIiIiMg4Tf0TkRBERETjxxBN7f2jR16nU1NT0+v9oAHm5uYgIMFRgP90JRY+np7eOrvNptQyz4tai3H6W53a7Ifm5d+HxeIIP7yhz+abVkx7L0Xu5VmyXIZbh8XgC3huLiIgI3Mb6LDPY/TWl7TQyMhJxHg9SKyuxOyoKLe3tPd/V1NQwKejFpCARkQyBbmzU19fju+++w549e/DVV1+h3edkE8r999+Pk5gQNASHDyUiIiISA6+hiIjEJkkSGhoaen2WBiCCw4cSkUVEAEhLSUHVoUM9nzU0NECSJF6LgklBIiJZfE8YkiTh0KFDeP311/Hdd99B8jNEaDAF+fnArl046aSTtA6TAmBPQSIiIiLj8GYLEZF1dXZ29rvPIbN/IFkEz9PkBHExMb3+X5IkJgW9mBQkIk0oTYxZTXNzMzZv3owvv/wSFRUVaGtrCz1TH2PGjMGvfvUrnD15MjBihA5RUiB8pyARERGRGHgNRUQkNn/3d/hILBFZjb+H+Ts7O/mQP5gUJCIKqrOzE2vWrMH111+Puro6VcsYNmwYbrnlFpx33nnweDyWfaeAlXH4UCIiIiIiIiIiIofgfbuAmBQkIgrgo48+wsqVK7Fp0yZV8w8ePBi/+c1vcOmllyIyMlLj6EgJDh9KREREZJxg1158sIqIiIjI3ni9JzYmBYmI+vj000/x5z//GU888YSq+RMSEnDbbbfh8ssvR3R0tMbRkRocPpSIiIiIiIiIiIicjklBIiKvXbt24Wc/+xmee+45xfMmJydj+PDhKCgowIgRI3DNNdfoECGppcfwoewpSEREROQfewoSERERkRxxcXFobGzs93lycrIJ0TgDk4Kkj8pKID7e7CjIQElHjsDT0OD/S8HfoSdJEh599FHcdtttaG5pQb7Pdx4AWQA2AWj1M+/AgQMxY8YMTJo0iUkigbGnIBEREZEYeA1FRERERN1iYmL6JQVdLhdiYmJMisj+mBQkfZSUmB0BGezyYF+WlRkVhiouAEu9f4HMAfABAI/HgylTpmDMmDFIS0tDQkJCv2mzs7P1CZRUY1KQiIiIyDi8TiIiIiIiOWJiYpCSkoKjR4+io6MDERERSElJgcfjMTs022JSkPSxfj1QVGR2FGSgBx980G9XbwAoLS01NhiZ/vOf/+Dmm29GTW1twGlyAbwPoArAiBEjUFJSgrS0tKDLnT9/vqZxUvj0GD6UN7uIiIiIlOM1FBERkfjWrFmD5cuXAwCWLl2KNWvWGLZu32sFSZIMWy+ZJy4uDrGxsZAkiSOxGYBJQdJHTg5QUGB2FGSgurQ0NERH+/9SsLZQU1ODlStX4rHHHpM9z5UrVqApIyPkdEOHDkVhYWE44ZEO9Lj5xIsUIiIiIiIiIhLJvHnz8M477wAAbigtxfU33WRyRETyuFwuPjxmEN7RJCJNLFq0yO/no0ePNjiS4N5++22MHz9eVkJw0qRJePCBBwAAY8aMCTrt+PHjsWjRIpx//vns3u4QTAoSERER+Rfshg5v9hAREZHR5s2b15N0evvtt80OxxaC9eLk9Z7Y2FOQiDRRWFiI2NhYNDU19fo8VDLNKJ2dnfjNb36DP/zhDyGHHoiNjcXtt9+Oq6++Gp49e0Iue+bMmVi4cKFWoZIOOHwoEREREREREREROR27ORCRJmJjY3HppZciwzvEZnx8PE4++WQhegru378fZ599Nn7/+9+HTAhOnToVmzdvxsqVK3v1+OPTztamRx2x3omIiIj847UzERGRtS1btgySJEGSJEPfJ0hE+mNPQSLSTGZmJq666io0NzcjOjpaiB/8L7/8Mi699FIcPnw46HQejwe/+tWvcPPNNyMyMrLf9yKUhdRjT0EiIiIiIiIiIiJyOiYFiUhzMTExZoeAyspKlJaWYt26dSGn/f/t3Xl8FEX+//F35YZcnComQBANqFxyiuABi8KiIKKisKDgsnjyA8XV1ZVzPdCvoq6gIrogoKCCouCBiuKBIIiioCLIoQjIaSThCCGp3x8zDJOQY5LMTM8Mr+fjMQ+qq6uqPw0k6fSnq/qMM87QjBkz1K5duwodi+RQ6AvEvxHvFAQAACg/rp0BAAAA53BHE0BE2bFjh8aOHavGjRv7lBC86aab9M0335SZECzt5gXJodDH8qEAAADBw3USAAChq6xX60jStGnTZIyRMUYDBw4ss/0ff/yh+++/X61bt1b16tWVlJSkRo0aafDgwVqxYoWn3dExTTknFPz0008aPny4zjzzTCUlJSklJUXNmzfXPffdp91ZWSX2O3q8Tz75xFPXqVOnY3F4ffy1TOrGjRs1ZswYXXDBBUpLS1NCQoKqVq+u0y6/XL2uvlpPPfWUdu7cWWq8vl5LXXTRRZ72ixcvLr7NxRcf12b79u168MEH1bZtW51yyimKjo5WtWrVJEnNmjXztJ/1yis+n/ddd92ltLQ0paWl6bbbbiu17Y+bNunekSPVtm1bnXzyyYqLi1Pt2rXVrl07jRo1Stu2bfP5uCg/ZgoiMLZulRITnY4CJ5CCggJNmTJFEyZMUO7hw6opqaakaEl1JK2QdNirfVJSkmbOnKnLL7+80seOieFbaagLxPKhJIMBAADKj4QhAACR5eOPP1bfvn21Y8eOQvXr1q3TunXrNHXqVI0aNUqjR4+u0PjPPvushg8frtzc3EL13333nb777jtNmTJF773zjlqfd16Fz8EfcnNzNWLECE2ePFlHjhw5bv+mgwe1ads2vTl/vkaMGKE9e/YoOTk56HG++eabGjRokP74449i9/fv31933323JGnmrFnq+5//lDlmbm6u3n777UJjlNRu2G236fmpU5Wfn19o3+7du7V7924tX75cjz76qB555JEyk4uoGO5kIzC6dnU6ApxgoiTd6P4Up6OkJe5y48aN9dprr6lJkyY+j1/azQuSgqGPmYIAAADBw3USAAAnhmXLlumyyy7TgQMHJLmuAdq0aaOzzz5bhw8f1vLly7V+/XqNGTNGtWrVKvf406ZN08033yxJatSokVq3bq0qVapo7dq1WrJkiay12vPnn+p51VX68ccflZqaWqj/rbfeKkl64403PLPPevXqpbS0tOOOdeaZZ5Y7vqNycnJ0ySWXaOnSpZ66qlWrqkOHDqpbt67skSPaum6dVq5frz179igvL++4pFgwfPHFFxozZozy8vJUs2ZNXXDBBapVq5Z27typb775RpLUr18/3XPPPSooKND7H36oXXfcodpljPvRRx8pyz1jMyMjQ+3btz+uzf79+9W1a1ctWbLEU9ewYUO1atVK1atX1969e7VkyRJt27ZNBw8e1NChQ7Vv3z7de++9/jp9uHEnG4GxcKGUmel0FDgBLFmyRMOHD9eu3buL3Z8u6XNJ293bt99+u8aPH6+4uLhyHYekYHgjKQgAABAauIYCgMhSUFCgffv2Fa7MzZUOHJCysqT4eN8Hq2g/f40RwLhTUlIibsWhQ4cO6brrrvMkBBs0aKBXXnlFbdq0KdTu1Vdf1aBBgzRixIhyH+Omm25S7dq1NX36dHXr1q3Qvk8//VQ9evTQvn37tH37dj355JMaNWpUoTYTJ06UJK1Zs8aTFBw2bJguuuiicsdSmsGDB3sSgtHR0Ro1apRGjBihxKMr6eXmSqtXq+Dss/XJsmV68sknHbkmGj16tPLz8/Wf//xHd999t2JjYz37js7ETE9P14UXXqiPP/5YR44c0SsffKDbLrig1HFff/11T7l3797Ftrnllls8CcHMevU0ecoUXXTJJYXa5Ofn67nnntPtt9+u3NxcjRo1Sp06dSo2yYiK4042AiMtTcrIcDoKRLCCggLdf//9GjNmjE9roWc2bqwZL7yg8wKwlABJwdDH8qEAAAAAAPjfvn379OSTTxa/8+OPKzZoRfv5a4wAxD1s2DDPO9sixbQZM7R+/XpJrllxH3zwgRo2bHhcuz59+ig2NrbEZFFZPvzwQzVr1uy4+gsuuEAPjhun24YPlyTNmjXruKRgMHz44Yd6xevdezNnztS1115bbNuoqCh16tRJnTp1ClZ4hRw5ckT333+//v3vfx+3L94roT1gwAB97P7//NJ77+m2UpYQ3bdvnxYtWuTZLu7f+bPPPtP06dMlSQ1PO01LJk9WrfPPP65ddHS0br75ZlWpUkWDBg1Sfn6+xo0bp3fffdf3k0SZuKMJIOzs379fffr00ejRo8tMCCa5n8iZP39+QBKCEknBcMBMQQAAgNDANRQAAJHhhWnTPOXhw4cXmxA86oorrqhQImzIkCHFJgSPuu5vf1NMdLQk6aeffjp+1moQPPbYY57yNddcU2JCMBSceuqpnvcFlubKK69UlSpVJEnLVq/Whg0bSmy7YMECzyzDli1bqkGDBse1mTBhgqf82MMPq1YZCfKBAweqcePGkqSFCxdqz549ZcYM35EUBBBWvv/+e7Vv315z584ttV1SUpIeeeQRz7T0QCbuSAqGvkDcfGKmIAAAAAAAOBFl79+vr93voJOk/v37l9nHlzZFXX311aXuT05OVsP0dEmStVa//PJLuY9RGbm5uVq8eLFne+jQoUE9fnldddVVPt3HTElJUY8ePTzbL82eXWJb76VDr7zySkmF78MdOXJEH3zwgWfcy7p39ynWo0lka22h9xCi8riTDSBsLFmyRH/961+VnZ1daruWLVtq9uzZOuOMM6TNm/1y7NKSStHuJ5IQugKxfCgAAADKj+swAADC33c//6yCggJJrkTP0VldpWnXrl25j9O0adMy29RMTfWUgz1TcNWqVTp06JAk1xKqFTnHYGrVqpXPbfv3769XX31VkispOGrcuOPabNu2TcuWLZMkxcbGqmfPnse1+e6777R//35Pm2EjRkh79kg1a0ql3FNdsWKFp7xlyxaf40bZSAoCCHnWWj3zzDMaPny48vLySm07bNgwPfzww4XWwQ40ZgqGPmYKAgAABI8v7/wGAADha9cff3jK6enpPt13SXfP6CuPVK+EX0live7LlXXf0N927NjhKdetWzfk7xHWrl3b57bdunVTrVq1tHv3bq1bv14rVqxQmzZtCrWZN2+e57rvoosuUo0aNY4bZ9u2bZ7ynj17NOnZZ8sd9x9e/99QedzRBBDScnJy1L9/f916662l/mBPTEzU3Llz9cQTTwQkIVjajY1Q/4EPkoIAAAChgpmCAACEv5wDBzzlqlWr+tQnKSmp3McJ9esG79XMKnJ+wXb0PYG+iI2N1TVXXeXZnjlz5nFtils6tKg///yzHBEW78iRI5UeA8dwJxtAyPr+++919dVX68cffyy1Xf369fXWW2+V+uLhyjq6JEJxSAqGvkAsHxrqF6YAAAAAAARaSkqKhg0bVrgyN1f66SepUSOpPA9uV7Sfv8YIYNwpKSnliyXEJXklAg94JQhLc3QJyUiSnJzsKefk5AT9+KXdr/SH/n37emb2vfLKK5owYYLnNUrff/+9555tSkqKLr744mLHSExM9JSbNWumb5cvl1avlpo2rfjXOSqFO9kIjK1bJa8veKA8rLWaOnWqHn74YeUePqz6kqIl1ZG0QtJhr7bdu3fXtGnTyjX9vSJKeyKFpGDoY6YgAABAaODBKgCILFFRUapWrVrhytxcqWpVqVq18ifXKtLPX2M4GXeYqeX1b75161af+vz2228BisY5J598sqe8ZcsWHTlypFL3CWNiYjz3IH0Zyx+z8Epzbrt2Or1uXf28ZYt27NihDz74QN26dZMkz/sGJenSSy9VQkJCsWN4/x39/vvvAY0XvuFONgKja1enI0AYM5JucH+K6ihpibs8aNAgPffcc0FJyjFTMLxx8wkAAAAAAMA/mp1+uqKiolRQUKA///xTa9euVePGjUvts3z58iBFd7xA3Rdq0aKFEhISdOjQIR04cEBffvmlOnToUOHxUlJStHfvXkmu9+95J9SKOnz4sNatW1fhY/nqb926aeyUKZKkl156Sd26dZO1VnPnzvW06d27d4n9W7Roofj4eOXm5mrnzp36ecMGnR7wqFEa7mQjMBYulDIznY4CYea3337TkCFD9EMxy4WmS/pc0nZJ8fHxeuqppzR48OCgJXvy8/NL3EdSMPQFYvlQZgoCAACUHw9rAQAQ/lKSknROixZa+fXXklzJov/85z+l9inunXTB4j2LLS8vz2/jxsfHq1OnTnr33XclSRMnTqxUUjAjI8OTFFy1apW6ljLx5q233tKhQ4cqfCxf9f/rXz1JwXnz5unAgQNavny5Z4boqaeeqvbt25fYv0qVKurcubPn7+jpyZM1YcCAgMeNknEnG4GRliZlZDgdBcLI4sWLddVVV2nPnj2ltjs1PV2vzpunVq1aBSkyF5KC4S0QN5+4oQUAAFA8a22J+7iGAgDAWaX9nC6PG66/3pMUfOKJJ3TDDTeoQYMGxbZ96623tGjRIr8ctyJq1qzpKfu63Kmv7rjjDk/Ca/bs2br88st17bXXVmisdu3a6Wv33+m0adNKTAru27dP//rXvyoWcDmdXreuzm3XTsu+/FI5OTmaN2+ePv74Y8/+3r17l3l9d/fdd3v+jp56+ml1z8xUl6ZNfTr+77//rlNOOaXiJ4DjMM0BgKOstXrqqafUpUuXMhOCkrRgwYKgJwQlkoLhjncKAgAAAAAA+M+g667T6ae7FoLMyclRly5dtHLlyuPazZkzR/369VO8g+9bbNKkSaF4/JUYlaQuXbro6quv9mz3799f48aN04EDB45rW1BQoI8//lhXXHFFse8D7Nevn6c8e/ZsTZw48bg2a9euVefOnbVhw4ag/Z3279vXU37hhRc0Z84cz3ZpS4cedeGFF+r666+X5HpX4qW3366HHnlEOTk5xbY/dOiQ5s2bp8svv1w9e/asZPQoijvZAByzf/9+3XrrrXrxxRdLbVe1alU9dN990r33KjU1NUjRFUZSMLRUq1ZN3pdOxhi1aNFC33zzTbHtWT4UAAAgNDBTEACA4Jj+0kt69/33j6uPiopSdHT0cfXjxo0rVwKmSpUqmjZtmi6++GIdPHhQGzduVJs2bdSuXTudddZZOnz4sJYvX+55793EiRN12223SQr+9UDv3r117733ylqrt99+W82aNdN5552n5ORkT5trr71WrVu3rtD4zz//vH755RctX75c+fn5Gj16tB555BF16NBBdevWlT1yRFt/+klfrV/vmRRRXGKyY8eOuvTSS/X2229LkoYOHapJEyfq3DPOkKlRQz/9/LOWLVumgoICDRw4UJs2bdInn3xSoZjL45qrrtLt//yn8vLy9NFHH3nqmzRpokaNGhVqGxsbW+wYkydP1vbt2/X+++/rcF6e7h01SvePH6927dqpXr16io+PV1ZWljZs2KA1a9YoNzdXkhyZHBLpuJMNwBGffvqpbrzxRq1du7bUdvXr19ebb76p5qmp0r33Bim64xUUFJS4j+RQ8F155ZV654cftHnzZtWsWdOzXruvSUEAAAAAAIBItmvXLu3atcvn9kffZVceHTp00FtvvaV+/fpp165dstZq2bJlWrZsmadNVFSURo0apSFDhniSgikpKeU+VmVkZmbqX//6lx566CFJ0po1a7RmzZpCbZo0aVLhpGBKSooWL16sYcOG6X//+5/y8/O1f/9+vV9MUlZyveOwuMSsJE2fPl1du3bVV199JUla+9NPWvvTT4Xa/P3vf9ekSZNKfeegP9WqVUtdu3bVggULCtV7z5A8qmrVqsWOER8fr3feeUdjR47UY48/rgOHDunAgQOFliItKjY2Vueee27lgsdxSAoCCKo9e/bozjvv1LRp08pse+GFF+q1115T7dq1pc2bAx5baY4cOSKVkFgi4RR8ycnJuuaaawrV/VTkAskbMwUBAABCA9fOAABEli5dumjt2rWaOHGi5s2bp40bNyovL09paWm64IILdOONN6pNmzbasWOHp081B1YCe/DBB9WxY0dNnTpVK1eu1I4dO4pd4rOiqlSpoueee0533HGHpk+frkWLFmnz5s3au3ev4uLiVKdGDTVr1UoXd+2qa665ptAsRW81atTQF198oeeff16zZs3S999/r5zsbNWpU0dt2rbVkCFDdPHFF/stbl8NGDCgUFIwOjpaf//731WlShXl5uYqKipKVatWVWJiYoljREdHa9zo0RraqZOmf/21Ply8WD/88IN2796tvLw8paSkqH79+mratKk6deqk7t27u+4Lw69ICgIImtdee0233HKLdu/eXWbboUOH6rHHHitxynmwFRQUSCU8wYPQUNoNpkDcfOKGFgAAAAAACCWLFy+WcnOl1au146STlF/MK28SExPLfD3PwIEDNXDgQJ+PW6NGDY0aNUqjRo0qsc13333nKZ/ZuHGJ7cr7vr/FkydLTZtKPrxfr3v37urevXu5xi+vxo0b68EHHyxc6f438TXO2NhY3Xzzzbr55ptL7bt48eIyx1r8wQc+HbMsffr0UZ8+fYrdZ60t132y2tWra8Tw4Rpx992VjgvlR1IQQMBlZ2dr6NChZb47UJLi4uL0zDPP6IYbbghCZL7Lz88nKRjiSpu5F4gEHjMFAQAAyo8HqwAAODG98sornnIb3hMXUbi+Cy8kBQEE1NKlS9W/f39t3LixzLb169fX7NmzQ3Kt6Pz8fKdDQBnKM1PQHxcrXPAAAAAAAACU7csvv9T06dM92/2uvVY6fNjBiIATF0lBBMbWrVIp6wcj8h0+fFgTJ07UpEmTlF9QoPqSoiXVkbRCUtEf+3379tWkSZNUvXr1oMfqC5KCoS/YMwVJCgIAAJQf11AAAESOX3/9VSNGjNCwYcPUoUOH437O5+fna9asWbrtttuUl5cnSerZs6caN2rkWhITQNCRFERgdO3qdARwWJykO9yfojpKWuIun3HGGXr22WfVuXPnoMVWESQFQx83mAAAAAAAAIKnoKBAc+bM0Zw5c3TSSSepVatWqlOnjqKjo7Vjxw4tXbpUu3bt8rSvU6eOnn32WQcjBkBSEIGxcKGUmel0FAiSXbt2af78+Zo1a5bW//xzie3SJX0uabtcs7ruuece3XfffUpISAhWqBVWUFDgdAgoQ3mSgiQQAQAAAsdaW+I+rsMAAIhMO3fu1Lvvvlvi/tatW2vOnDmqU6eOlJsbxMgAeCMpiMBIS5MyMpyOAgH2888/a+TIkZozZ46OHDnic7+0unU185VX1L59+wBGhxNNacuHlnZjqrxq1arlt7EAAAAAAADCVUZGhr788kvNnz9fy5Yt02+//abdu3crKytLSUlJOvnkk9W+fXv17t1bPXr0cDpcACIpCKACsrOz9cADD+jxxx/X4Qq8FPidd95RUpMmAYgscDp16qR5q1YdV3/WWWcFPxgUK9BPnffo0UO1atVSWl6eNHJkQI8FAAAQqZgpCABAZGnbtq3atm3rdBgAfFTytAoAKMJaq5kzZ6pRo0Z6+OGHy5UQrFmzpp6eNEmSlJSUFKgQA6ZBgwaKiTn+OYpmzZo5EA2KU56ZghW5GdW4cWPVq1dP0dHR5e4LAAAAAAAAAE4jKQjAJ/v27VPv3r01YMAAbd++3ed+MTEx6t+/v9asWaPu3bsHMMLASklJ0bXXXutJaMbFxalr165q1KiRw5HhKJ46BwAACH1cswEAAADOYflQAGV67733NGzYMK1bt86n9sYYdenSRVdffbWuuOKKY+9g27w5cEEGQcOGDXXHHXcoKytLqamppc5MQ/AF+gYTN7AAAAAAAEC4K7qaEoATC0lBACX6448/dOONN+q1117zqf1pp52mAQMGqG/fvhE7g84Yo+rVqzsdBopRnuVDAQAA4AwetAIAAACcQ1IQQLG++OIL9evXT7/88kuZbU8++WSNHz9e1113HbPn4BhmCgIAAAAAAABAyUgKIjC2bpUSE52OAhXw22+/6dFHH9W8N9+UJNWXFC2pjqQVkg57tY2NjdXw4cN13333KSUlJfjBAl6YKQgAABD6eNAKAAAAcA5JQQRG165OR4AKSpf0hPtTVEdJS9zl008/XW+88YaaNGkSpMiA0jFTEAAAAAAAAABKRlIQgbFwoZSZ6XQU8EFubq6mTZumSZMmaV92drFt0iV9Lmm7e/u6667TE088wbv1EFKYKQgAABD6eNAKAAAAcA5JQQRGWpqUkeF0FCjDN998o/79++uHH37wqX3Gaafp5ZdfVrt27QIcGVB+zBQEAAAIDTyQBQAAAIQmkoLACchaq6eeekp33nmn8vLyfO43f/58VT3rrABGBlRcaUk7bkwBAACEBh60AgAAAJxT8lprACJSdna2+vbtq2HDhvmUEDzrrLP0vxdekCRVrVo10OEBIYsbWAAAAJXHNRUAAADgHJKCwAnCWquXX35ZZ555pl555ZUy29epU0dTpkzRt99+q86dOwchQqBymCkIAAAAAAAAACVj+VAgwllr9c4772js2LFasWJFme2Tk5N19913a/jw4UpMTAxChEB44Kl2AACAyuOaCgAAAHAOSUEgQllrNX/+fI0bN04rV670qc9VV12lSZMm6aSTTgpwdID/MVMQAAAgNHDtBQAAAIQmkoJAhNmwYYOmTZumN998U6tXr/apT0JCgiZNmqRBgwbx5C7CVkxMyT/S/DHrla8NAACAyuOaCgAAAHAOSUEgQvz6668aPny43njjjXL1a9CggV5//XW1aNEiMIEBQZKQkKCTTjpJO3fuLFQfExOjzMxMh6ICAAAAAAAAgNBAUhCBsXWrxPvogsJaq7lz52rs2LHKzslR/SL7oyXVkbRC0mGv+piYGA0dOlSjR49Wampq0OIFAqljx456/fXXC9V16NCh1FmEvuKpdgAAgMrjmgoAAABwDklBBEbXrk5HcMIwkq5yf0rTUdISd/myyy7T//3f/6lx48YBjQ0ItqZNm6pKlSpavXq18vLy1KhRIzVr1szpsAAAAAAAAByTnZ2tjz76SJ999plWr16tvXv3avfu3YqLi1P16tWVmZmpNm3aqGfPnmrfvn2xY4wZM0Zjx44tdl90dLRSU1OVmpqq6tWrq2nTpmrdurU6dOigc845p1yxXnTRRfrkk0/KfY4ff/yxLrroonL3A040JAURGAsXSizXFzDr16/XM888o3nz5qnA2lLbpkv6XNJ2ST179tTIkSPVunXrYIQJOOL000/X6aef7vdxeaodAACg8rimAgAgeA4ePKgpU6Zo8uTJysrKOm7/4cOHlZOToy1btmjRokUaP368MjMzNWbMGF177bU+/9zOz8/X3r17tXfvXm3atElff/21XnzxRUlSixYtdNNNN2nw4MGKjo725+kBqACSggiMtDQpI8PpKCLO5s2bNXr0aM2YMUO2jGRgUW8tWKCzL700QJEBAAAAAAAACBW/bd2qAX//u3788cdC9enp6WrRooVq166t/Px8/f777/r222+1Y8cOSdK6devUr18/bdmyRXfddVexY59au7auuPJKySvJl52draysLG3evFlr1qxRQUGBJGnVqlW66aabNG3aNM2YMaNcD3K3adNGbdu2LblBfr60Z49Us6bS0tJ8Hhc4kZEUBEJYfn6+Vq9erXnz5mnRokX6/PPPfe7bpEkT3XDDDerVooXUubPOPvvswAUKnAB4qh0AAKDyuKYCACDwNm/bpu6DB2vnrl2SXD9/e/XqpaFDh6pFixaqXr16ofbWWn311Vd66qmn9NJLL6mgoEAHDhwocfwz6tbVxCeekOLji92fnZ2tBQsWaMKECfrqq68kScuWLVPbtm21bNkyZdav79N5dO/eXWPGjCm5QW6utHq11LRpibEAKCzK6QAAHG/RokXq0aOHqlWrpnPOOUdjx471OSEYGxurhx56SKtWrdLtt9+uBg0aBDhaAAAAAAAAAKHg8OHDuvpf//IkBBMSEvT8889r4sSJatSoUbF9jDFq06aNpk+frm+//VZNmjSpVAzJycnq27evli9frgcffNCzbOgff/yhyy67TH/++WelxgdQccwUBELIr7/+qttvv12vv/56hfo3b95c06dPV7NmzfwcGQAAAABUHjMFAQAIrEcee0xfeS0Z+vjjj6tbt24+92/SpImWLVumVatWVToWY4zuuecexcTEeJYiXb9+vZ6cOFGjevas9PgAyo+ZgkAI+P3333XfffepcePGFUoI1q5dW1OnTtVXX31FQhAAAAAAAAA4AR08eFD/ffppz3b37t3Vs0jyLSam7HlCiYmJ6tChg9/iuvPOOwuN9+SkScopZXlSAIFDUhBwUG5urkaNGqWMjAw98MADOnjwYLn6Z2Zmavr06dq8ebMGDhzo0w91AOXHE+0AAAC+s9aWuI/rKgAAAmfOnDna5V42VJKGDBlyXJuqVasGMyRJrp//d9xxh2d77969+uDLL4MeBwCWDwUc88MPP6hPnz76/vvvy923bt26Gj16tK6//noSgUAQHF37HgAAAAAAIFR99NFHnnK9unXVtm3bQg/rVK1a1bF7HD169FBCQoIOHTokSfps1Spd4UgkwImNbAICY+tWKTHR6ShC1nvvvacRI0Zo/4EDqu+ui5ZUR9IKSYeLtI+Li1ObNm3Uu3dvnXfeeWrTpg1JCiCISL4DAAD4BzMFASCyHDlyRL/99lvhytxcads2KTlZio/3fbCK9vPXGAGMOz09PSj3Fj777DNPuV3btqpZs6YOHjyo/Px8xcfHOzJL8KjY2Fidc845Wrp0qSRp2erVjsUCnMi4y4nA6NrV6QhCWjf3pzgdJS1xl8855xyNHj1a3bp1U3xFL4YAVBpJQQAAAAAAjvfbb7+pQYMGTocR8jZt2qSMjIyAH+eXX37xlM8+80zFxcUpLi4u4Mf1VaNGjTxJwR1795bZ/p133tHu3btLbpCfL+3Zo3vGj1faaaf5K0wgonGXE4GxcKGUmel0FCGjoKBAL7/8sh5++GFl5+QU2yZd0ueStkuqXr26HnjgAQ0ZMoQZgUAI4OsQAADAP5gpCABAYOzbt09HjhzxbFerVs25YEqQmprqKf+RnV1m+xUrVmjFihVltht8550kBQEfkRREYKSlSUF4+iUcrF27VjfccIPnKZiy3PPvf6vPXXcpJSUlwJEB8BUzBQEAAAAAQCjLLpJkSwrBVzslJSV5ytn79zsYCXDiinI6ACCSzZ8/X23atPEpIXhxly6SpMGDB5MQBEIMSUEAAAD/YKYgAACBkZycXGg7JwSTbt6JyxSvBGFJRo8eLWttyZ9Dh2RXrFCL5s0DGTYQUUgKAgFgrdX48eN1+eWXK6eE5UKPMsZo1KhRmjx5cpCiA1BeLB8KAAAAAABCWUpKSqGHmrOyspwLpgR//vmnp1yDSRGAI0gKAn62evVq9ejRQ/fcc4+staW2bd68uZYtW6axY8cqKoovRyBUMVMQAADAd6X9HsRMQQAAAqd+/fqe8g9r1zoYSfHWesV0Ss2aDkYCnLi4ywn4ydq1azVmzBi9+uqrZSYDq1SporFjx2r48OGKjY0NUoQAKoqZggAAAP5BUhAAIkt6ero2bdpUuDI3V/rpJ6lRIyk+3vfBKtrPX2MEMO709PTyxVJBHTt21IYNGyRJXy5fHpRj+urw4cNatWqVZ/vcJk2cCwY4gZEUBCpp48aNGjt2rGbOnKmCgoIy219yySV69tln1aBBgyBEB8AfmCkIAAAAAMDxYmJilJGRUbgyN1fKzpYyMsqfXKtIP3+N4WTcftK5c2e9+OKLkqRffv1VX3zxhc477zxHYzrqrbfeUm5urmf7gnPOcTAa4MTFeoVABVhrtWrVKg0ZMkSNGjXS9OnTfUoI3nfffXr33XdJCAJhhqQgAACAfzBTEACAwLn66qtVq1Ytz/aECRMcjOYYa60ef/xxz3bt2rX1l7ZtHYwIOHFxlxOBsXWrlJjodBR+t2vXLr322muaO3euNmzcKElKc++LllRH0gpJh4v0S0hI0LRp03TNNdcEL1gAfkNSEAAAAAAAhLoqVaro/91yi0aNGydJmjt3rubOnasrr7yyXOPs379f3377rd9mGT766KP64osvPNu3Dx2qqgkJfhkbQPlwlxOB0bWr0xEERG1Jt7g/JekoaYnXdsuWLfX888/rHKbEA2GLdwoCAAD4BzMFAQAIrLtGjNC8V1/V12vXSpIGDBiguLg49ejRw6f+a9asUd++fXXllVdWOilordXDDz+s++67z1N35plnaugtt0hF30UJIChICiIwFi6UMjOdjsIvli9frn//+99a//PPpbZLl/S5pO3u7SZNmmjcuHHq1asXv/gCYY6kIAAAAAAACAfx8fF67aGH1P7GG7Vz504dPHhQvXr10t/+9jfdc889OvPMM4/rY63VV199pYkTJ2rmzJkqKCgo9+xCbzk5OVqwYIEmTJigFStWeOpr1aqlBQsWKCkpqcJjA6gckoIIjLQ018t1w9ju3bt11113aerUqeXql3HaaXrggQfUp08fRUXx2k4gErB8KAAAAAAACBenpafry08/VY+rrtKaNWtUUFCgGTNmaMaMGcrIyFCzZs1Uq1Yt5efn6/fff9eqVau0Y8eOQmMkJyeXOP76LVt02/DhktdD1Dk5OcrKytLmzZu1Zs0a5efnF+rToUMHzZgxQw0aNJByc/16vgB8x11OoBiLFy/WNddco507d/rcp256uvTbb1q4cKFiTj89gNEBCDZmCgIAAPjOWut0CAAAnPAyMjK0dOlSPf7445owYYKysrIkSZs3b9bmzZtL7Ne8eXONGTNGvXr1KrHNtl27NOnZZ32Ko2XLlrr55pt1ww03MIECCAEkBQEveXl5Gj9+vMaOHXvc0yzFiYqK0oUXXqj+/ftrwPnnS5mZzCgCIhBf1wAAAAAAINwkJSVp5MiR+n//7//pnXfe0QcffKCVK1dq586d2rt3r+Li4lSjRg01btxY7dq1U69evdSyZctyHyc6OlopKSlKSUlRzZo11bRpU7Vq1UoXXHCBmjdvHoAzA1BR3OUE3H7++WfdcMMN+uyzz8psm5qaqn/961+67rrrdOqpp7oqS3nCBkB4IykIAAAAAADCVWpqqvr27au+fftWeIwxY8ZozJgxrqU/V6+WmjaV4uP9F6Tb4sWL/T4mgGO4y4kTnrVW48eP15gxY3T48OEy2/fr10+PPfaYTjnllCBEByAUsHwoAAAAAAAAgHBHUhAntKysLP3jH//QnDlzymx7xhln6Omnn1aXLl2CEBmAUMJMQQAAAAAAAADhjrucOGH98MMP6tWrl9avX19m21tvvVWPPvqoEhISghAZgFDDTEEAAAAAAAAA4Y6kIE5IX3zxhbp166bs7OxS21WvXl3//e9/1b9//yBFBiAUNW7c2OkQAAAAAAAAAKBSSAoiMLZulRITnY6iWGvXrtVNffqoRna2akiKllRH0gpJ3m8UbN++vWbPnq169eo5EieA0HDaaacpMUS/nwEAAAAAAACAr0gKIjC6dnU6ghI1lvRdMfUdJS2RVKVKFU2cOFEDBw5UVFRUcIMDEBJiYmJUUFCghg0bqnfv3k6HAwAAAAAAAACVRlIQgbFwoZSZ6XQUHtZavf/++7rvvvu0a/fuQvvSJX0uabukzMxMzZ49W+ecc44TYQIIAaeccopuuOEGWWsVFxfndDgAAAAAAAAA4BckBREYaWlSRobTUUiSli5dqjvuuEPLli0rtV2nv/xFE15/XSkpKUGKDEAoMsYoNjbW6TAAAAAAAAAAwK9YGxERKy8vTyNHjlTHjh3LTAhK0jPPPENCEICMMU6HAAAAENastU6HAAAAAKAYzBRERFq/fr369++v5cuXl9m2Xdu20vLlzAwCIEmqX7++0yEAAAAAAAAAgN8xUxARxVqr559/Xuecc45PCcGOHTtqypQpQYgMQKhp3bp1sfVt27YNciQAAAAAAAAAEHgkBRExdu3apSuuuEL/+Mc/tH///lLbRkVF6fbbb9eHH37IkqHACapjx46qVq1aobrzzz//uDoAAAAAAAAAYYTl7EvE8qGICK+//rpuvvlm7dy5s8y2Xbp00cMPP6yWLVsGITIAoSo1NVWDBw/W2rVrlZWVpQYNGqhBgwZOhwUAAAAAgGOMMcfVcWsdQLgpKCYpWNz3txMRSUGEtYMHD+qWW27RtGnTymxbo0YNPffcc7ryyisDHxiAsJCYmKhWrVo5HQYAAEBEsTyZDQBhKyrq+IXlDkuKDX4oAFBheXl5x9UV9/3tRERSEIGxdauUmBjQQ6xcuVIjR47UDz/+qPruumhJdSStkOuC5aguXbpo2rRpSktLC2hMAAAAAAAAQLgyxighIUGHDh3y1O2TFNi7fADgX/tycgptJyQkMFPQjaQgAqNr14AfopWkd0rY11HSEknx8fF66KGHNGzYMJ4EAAAAAAAAAMqQnJx8XFIw9dAhVY2Pdy4oAPDRAR2fFExJSXEmmBBEUhCBsXChlJnp92GXLVumoUOHatfu3cXuT5f0uaTtkpo2baqXXnpJTZs29XscAAAAAAAAQCRKSUnRrl27XBvWqkDSlm3blHLggFJSUhQbG1v6w/f5+cf+PHLE9wNXtJ+/xnAqbn+cdyDHC8T4/ooxUOcaSv8m4fr1FMwxJRUUFCgvL0/79u7VPve2vL5PJScn++1Y4Y6kIAIjLU3KyPDbcLt379bo0aP19NNP+9R+yE03afgTTyieJ5gAAAAAAAAAn8XFxSk5OVnZ2dmuG/cHDqigShVlZWUpKyur7AEKClx/btpU6KZ8wPr5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8Ecs7jxvd5xnZycrLi4OP8fK0yxniJCWk5Oju655x6lp6f7lBCsc8opkqS7776bhCAAAAAAAABQAaeeeqqSkpJcN9Z//fXY7B4ACGUFBa7vWe5ZiElJSTr11FMdDiq0kBRESLLWaubMmWrUqJHGjx+v3NzcMvv06NFD8+fPD0J0AAAAAAAAQOSKiopSWlqakmNjXYnBo7NvfJGXJ/34o+vP8qhoP3+N4VTc/jjvQI4XiPH9FWOgzjWU/k3C9espmGN6y8+X9u+X5JohmJaWVvpyxycg/jYQclauXKmOHTtqwIAB2rZtW5ntmzdvrg8//FBvvfWWatWqFYQIAQAAAAAAgMgWFRWl9MRENbzzTtVOSFBCQoLTIQFAqRKio3XSK6+oYXKy0tPTSQgWg3cKImTs2rVL9957r1544QVZrzV/SzNkyBD997//ZalQAAAAAAAAIADidu5UrYQE1crIkLVWBQUFpd+7+/VX6dZbpVWrpHr1fD9QRfv5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8EcU5IxRlFRUTK//CK9/bY0caLfxo40JAUREj744AP169dPu3fv9ql9vXr1NGXKFF1yySUBjgwAAAAAUB61a9fWxo0bnQ4DABAAxhhFR0eX3igqSsrOdv0ZU47bzxXt568xnIrbH+cdyPECMb6/YgzUuYbSv0m4fj0Fc0yUC3Mn4aitW7fqpptuUteuXX1KCJ500kl64IEHtGbNGhKCAAAAABCCzj333GLrmzZtGuRIAAAAAHgjFRsgxpg4SddI6ivpbEknS/pD0iZJr0uaZq31bVpcGB3bY+tWKTGxxN3WWs2aNUv333+/Dhw8qHqSoiXVkbRC0uEi7WNiYjR8+HCNHDlSKSkpgYsbAAAAAFAp1apVU8uWLbVh0SJPXUJCgtq3b+9gVAAAAABICgaAMaaxpFmSWhTZdYr7017SP40xg6y170TKsQvp2rXU3UZSP/enqI6Slnhtd+vWTY8//rgaN27sv/gAAAAAAAFz2WWX6cfoaOnJJ9WmTRtlXnKJateu7XRYAAAAwAmNpKCfGWPSJS2SdKq7ykr6VNIGSbUldZFURdJJkuYZY7pZaz8K92MfZ+FCKTOzUNV3332nZ555Ru+9956KexVxuqTPJW13bzds2FBPPPGELr30UhljAhImAAAAAMD/jDE666yzJEkdOnSQSAgCAAAAjiMp6H8v61hS7hdJl1trvz260xhTS9JsSX+RFCvpNWNMQ2ttVpgfu7C0NCkjQ5K0fPlyjR49Wu+9955PXfMl3XHHHXrwwQcVHx/v99AAAAAAAAAAAABONFFOBxBJjDHdJZ3v3jwsqYd3Uk6S3O/yu1zSRndVDUl3hfOxS1JQUKDRo0fr3HPP9TkhKEnPTZ6sxx57jIQgAAAAAAAAAACAn5AU9K9bvcovWmtXF9fIWrtf0iivqhuNMZWdtenksY+zfft2XXzxxRo3bpysLW6x0MISEhJ037//LUm65JJL/B0OAAAAAAAAAADACY2koJ8YY5LkWpbzqKlldJkrKcddriHpgnA8dkmuuOIKffSRb68rbNmypVauXKnBgwf7OwwAAAAAAAAAAACIpKA/nSfp6HqX+yWtKK2xtfaQpKVeVZ3D9NjFysnJKbPN2WefrRdffFFffvml5wX0AAAAAAAAAAAA8D+Sgv5zpld5tbX2iA99vi6hfzgdu9zOPfdczZ8/X6tXr9Z1112nmBi/r14KAAAAAAAAAAAAL2Rj/KeRV/kXH/v86lVuHKbH9lliYqL+97//6eqrr5YxJhiHBAAAAAAAAAAAgEgK+lNNr/IOH/v87lWuEabHPiqutJ3NmzfXQw89pHr16umHH34ovtHWra4/162T9u+vWBQVGcMfx/XHOP6KIxDjhsLfUUX7huK/S7icSyj8uwdyrFCJIRy/9zkRc6i1D/Q4/h7LX+MF4/9asP7tgnGcYH+dBfvnSyj/f/f3mKFwPREu/59Cpb8/xnPqZ6XT/1/8FYM/x/HHuKHwfyqSxgj1r6lAtQ/mNWa4noMT1xWh8j0v0GM7dZ7hcF3qrzHC5X5NsMcLxPiReK0RqPHC9espmGMGavytW/Xz8bWl5kHCgrWWjx8+kt6WZN2f8T72+atXn+xwPLbXeD0l2YSEBJuUlGQl2ejoaFutWjVrjLGSbEpKio2Li7OSbJUqVWxiYqKVZGNiYmy1atWOxmJTU1NtbGyslWSrVq1qq1ataiXZ2NhYm5qa6mlXrVo1GxMTYyXZxMREW6VKFSvJxsXF2ZSUFCvJGmNstWrVbHR0tJVkk5KSbEJCgpVk4+PjbXJyspVko6KibLVq1WxUVJSVZJOTk218fLzlnDgnzolz4pw4J86Jc+KcOCfOiXPinDgnzolz4pw4J86Jc+KcOCfO6cQ9p6PxSOrpdC6qsh/jTuigkowxiyR1dm/+x1o7yoc+nSUtcm/mW2srNHPTyWN7jddT0puVGQMAAAAAAAAAACBEXW6tfcvpICojyukAIsghr7KvU0jjvcoHw/TYAAAAAAAAAAAACHG8U9B/crzKVXzs490up8RWoX3soz6RdLnX9hZJh/0wLgAAAAAAAAAAQLDFSarrtf2JU4H4C0lB/9njVT7Zxz6neJX3humxJUnW2j8lhfW0WQAAAAAAAAAAAC/fOB2AP7F8qP/85FWu72Ofel7ltWF6bAAAAAAAAAAAAIQ4koL+86NXuakxxpdZmC1L6B9OxwYAAAAAAAAAAECIIynoP19IynWXEyW1Lq2xMSZe0rleVR+F6bEBAAAAAAAAAAAQ4kgK+om1NkfSIq+qgWV06S0p2V3eK+nTcDw2AAAAAAAAAAAAQh9JQf962qs80BhzdnGNjDFVJY3zqnrOWnskjI8NAAAAAAAAAACAEEZS0I+stW9L+sy9GS9pgTGmmXcbY0xNSfMkne6u2ivp4eLGM8ZkGGOs12dgsI4NAAAAAAAAAACAyBHjdAARqJ+k5ZLqSMqQtMoY84mkDZJqS+oiqaq77RFJfay1WRFwbAAAAAAAAAAAAIQoY611OoaIY4xpLGmWpBalNNslaZB7hl9J42RI2uRVNchaOy0YxwYAAAAAAAAAAEDkYKZgAFhr1xpj2km6VlJfSWdLOllSlqSNkl6XNNVauzuSjg0AAAAAAAAAAIDQxExBAAAAAAAAAAAAIMJFOR0AAAAAAAAAAAAAgMAiKYgKM8bEGWMGGGPeMcb8Yow5ZIzZboz5whhzpzGmltMxAoA/GWMyjDH/MMbMNMZ8a4z5wxiTZ4zZa4z5zhgz2RhzodNxAkAwGWMmGGOs12ez0zEBQCAYY1oaY8YbY75y/+6ba4zZZoz52hjzP/fvx6c4HScA+Isxpr0x5mn397m97t9/9xlj1htjXjXG9DPGxDsdJwCUxhgTbYxpZoz5uzHmGfe13GGv32EXV2Lsvxhjphtj1hlj9nvdI/w/Y0xjP56G37B8KCrE/R96lqQWpTTbKWmQtfadoAQFAAFijDlH0rOS2vrYZbGk6621vwYsKAAIAcaYtpKWqvDDhr9YazOciQgA/M8Yc5KkCZL+5kPzSdba2wIcEgAElDGmpqQXJF3uQ/MNcv3+uySwUQFA+Rljekl6SVLVUpp9Yq29qJzjpkh6TtI1pTTLkzTaWvtQecYOtBinA0D4McakS1ok6VR3lZX0qVwXAbUldZFURdJJkuYZY7pZaz9yIlYA8JNGOj4huE7SGkm7JVWTdJ6kdPe+iyQtNcacb63dGKQYASCojDGxkp4Xq48AiGDGmHpyPfDVwKv6J0mrJe2R6wZTQ7kemC3tZhMAhAVjTBVJH6rwRIBdkr6R9Jtc9/7OlnSae19DSe8bYzpba78MYqgA4Itq8vM1mvt34TckdfaqXiPpa0kJks6XVEdSrKQHjTGx1tpx/oyhMkgKoiJe1rGE4C+SLrfWfnt0p3vZ0NmS/iLXf/zXjDENrbVZwQ4UAPzsZ7lugM+01m713mGMiZI0UNJTcl1snCrpJWPMeZZp+QAi092SmrrLL0vq52AsAOB3xphUSR/rWELwY0nDrbXfFdM2Tq4bQ8nBixAAAuJuHUsIWkkjJU2w1h482sAYY+SaHfOspFS5fgeeIqlZUCMFAN/tkLTC69NV0rAKjjVSxxKCh+RaLXH20Z3u68L7Jf3TXTXGGPOJtfaTCh7Pr1g+FOVijOku6W335mFJra21q4tplyjpOx17augha+29wYkSAPzL/Z7ABpJmWGvzy2h7haTXvaq6WWsXBjI+AAg291LyqyTFy7UUy4eSprp3s3wogIhgjJkiabB78xVJfyvrWhAAwp37/dD13ZtPWmuHl9L2KkmveVU1K+4+IQA4xf2+57iir/gxxoyRNNq96fPyoe5l5TdKSnRX3WStnVxC29k6trzoUmvteeWLPjBY6gfldatX+cWSftBba/dLGuVVdaMxhpmpAMKStfYTa+00X24CWWvfkLTcq+rSwEUGAMHnfjL8ebkSgn9IusPZiADA/4wxLXQsIbhF0j9ICAKIdO53ZNX3qppVRpd5kg54bWf6OyYAqAxr7e9FE4KVdL2OJQTXyfVewZLcJanAXW5vjDnHj3FUGElB+MwYkyTXkqBHTS2prdtcSTnucg1JFwQiLgAIQd4vWM9wKggACJCbJXVwl/9prd3pZDAAECA3eZUnWWuzHYsEAIInqcj2H6U1ttYekbTPq4p7zQAiXS+v8rTSXhnkTkZ+5FV1RaCCKg++UaM8zpPriXBJ2i/X2rslstYekrTUq6pzSW0BIMJ4XxBEOxYFAPiZMaaupPHuzc8k/c/BcAAgIIwx0ZL6elXNdSoWAAiyXXK9H+uos0trbIypLekkr6pvAxEUAIQCY0yCpHO9qhb70O1jr3JI5EdICqI8zvQqr3Y/DVSWr0voDwCRrKlXeYtjUQCA/z0tKVmud0vfWNpTkQAQxppISnGX/5S0wRgTY4wZZIxZZIz53RiTa4zZaox51xhzszEmvpTxACAsWGvzJL3rVXWfMaZqKV0e1rH7y4ustesCFhwAOK+Rjn3Ps5K+8aFPyOVHSAqiPBp5lX/xsY/3er2N/RgLAIQkY0w9FX7y50OnYgEAfzLGXCvpMvfmw9baH52MBwACqI1XeYukdLmWh/+fXNd5J0uKk3SqpG5yPTCxzhjTRgAQ/u7VsdcBtZT0nTHmemPM6caYBGNMXWPMpcaYzyQNcrf7wasMAJHKOz+y071SYlm88yM13DOsHRXjdAAIKzW9yjt87PO7V7mGH2MBgFA1QceWDP1V0nwHYwEAvzDG1JT0X/fmOkkPOBgOAARa3SLb7+rYEnpr5XqVRr6kZnLdMJekepIWG2MusNauDEqUABAA1tq1xpgOcv0uW09SQ0nTSmieJWmGpH/z7lUAJ4DK5kckV45kl3/CqRhmCqI8vF82fNDHPt7tir6sGAAiijHmeklXelXdY63NdSoeAPCjxyUdfaLxJr63AYhw1bzKTeRKCB6Q1Mdae6a19jpr7SBrbSu5Zg7udretKukVY0xcUKMFAD+z1n4nKVPSbZL2l9J0oaRZJAQBnCAqmx8pOoYjSAqiPBK8yod97ON9w6iKH2MBgJBijGkt6VmvqlnW2pedigcA/MUYc4mkAe7NF621H5fWHgAiQGIxdf2tta8VrXR/T+wpqcBd1VDS3wIYGwAEnDGmlqRn5HowLFGumS6vS3pO0qs69lqhayR9YYyZbIyJLm4sAIgglc2PSCGQIyEpiPLwXiPX1ycfvV+27mv2HADCijGmgVxLqxy9OPhO0k3ORQQA/mGMSZQ02b25R9KdDoYDAMFS9P0wS621b5TU2Fq7VK6b5UddE5CoACAIjDFnSPpGrncEFsg1W7CutfZKa+2N1tprJDWQ1E/SPne3IZKeciJeAAiiyuZHpBDIkZAURHnkeJV9zWh7t8spsRUAhCljTB1JH0g6xV21UVI3a+2+knsBQNh4QFKGuzzCWru7lLYAECmK/u5aYkKwhDbn+TEWAAgaY0yMXA85pLurbrLWTrLWHvFuZ11mSbrKq/pmY0zbIIUKAE6obH6k6BiOICmI8tjjVT7Zxz6neJX3+jEWAHCcMaamXAnBhu6q7ZK6WGu3OxcVAPiHMaalpKHuzY+ttS86GQ8ABNGeIts/+NDnR69ysjEm2Y/xAECwXCnXu1Ql6SdJpV7/WWs/kPShV9WgAMUFAKGgsvkRKQRyJDFOB4Cw8pNXub6Pfep5ldf6MRYAcJQxJkWul6qf7a7aLVdCcJNzUQGAXzXTsYcI6xljlpXStrZXuU6Rtv+x1r7t9+gAIHCK/u7qyxPd2UW2k4upA4BQ182r/LG11vrQ5yNJXdzl1v4PCQBChnd+5CRjTIK1tuiy80V550f2Wmt3BSCuciEpiPLwfvKxqTEmpujyAcVoWUJ/AAhb7ndsvSOplbvqT7mWDPXlKXIACEcNdWxWdFniJLXz2q5dUkMACFFrimwn+dCn6MzAP/0UCwAEU5pXueis6ZJ4Ly+f6sdYACDU/CTXu1ajJBlJLSSV9vCsFIL5EZYPRXl8ISnXXU5UGU//GGPiJZ3rVfVRgOICgKAxxiRIektSB3fVAUmXWmtXOhcVAAAA/MW98oP36g9n+dDtTK/yXmvtfv9GBQBBcdCrXMPHPjW9yln+CwUAQot7VqB3EvAiH7pd6FUOifwISUH4zFqbI2mRV9XAMrr01rGnJfdK+jQAYQFA0BhjYiXNldTZXZUr6XJr7RLnogKAwLDWTrPWGl8+Kvz+mF+K7J/m0CkAQGW87lXu5UN77zb87gsgXP3qVe7kY5/OXuWf/RgLAISieV7lgaU1NMbUlfSXEvo6hqQgyutpr/JAY8zZxTUyxlSVNM6r6jkflhoFgJBljImW9LKk7u6qI5L6WGs/LLkXAAAAwtQzkvLc5fOMMT1LamiMaSvXQ7FHTQtgXAAQSN6/3zY2xgworbExprOki72qFgYkKgAIHS9KOroiRCNjzOBS2j4sKdpdXmqt/TqgkfmIpCDKxVr7tqTP3JvxkhYYY5p5tzHG1JQr6326u2qvXF8AABCWjDFG0guSrnJXFUgaYK19y7moAAAAECjW2g0q/FDsy8aY3kXbGWMulLRAx274LJNrqXkACEdvS1rntf2cMeYm90OyHsaljwrPqt4iaXYQYgQAx1hrd0qa4FX1X/f3Qw9jTKwxZrykvl7V9wQjPl8Ya63TMSDMGGPSJS2XVMddZSV9ImmDpNqSukiq6t53RFI3a+2iouMAQLgwxtwiaZJX1XpJ7/va31p7m9+DAoAQYowZKGmqe/MXa22Gc9EAgH8YY+IlfSDpfK/qHyWtkJQvqZmkVl77tktqZ63dErQgAcDPjDHt5HrvVVWv6u2SvpC0W1KqpHMlZXjtz5XUxVr7eZDCBACfGWPekXRqkepTJJ3sLu9X8csfd7fWbitmvFhJ76nw8smrJX0tKUHSBTqWO5Gk0dZa71UVHUVSEBVijGksaZakFqU02yVpkHt2IQCELWPMGEmjK9rf/b4tAIhYJAUBRCpjTKpcS4n2LaPpl5KuJiEIIBK4l0WeISnTh+ab5FpJZ0lgowKAijHGbJZUvwJdG1hrN5cwZqqk5yT1KW6/W56kMdbaBytw7ICJcToAhCdr7Vr3k0PXyvXL0dlyZdazJG2Ua/mAqdba3Y4FCQAAAABAJVhr/5TUzxjzrKTrJHWUlCbXcqE75Fou9FVJ8yxPXQOIENba5caYsyX1lNRLUmu5ZtkkyTWjZoeklXItlzzHWptXwlAAEJHc14jXGGOmSLpeUnu5ZgfmybWc8kJJL1hrf3QuyuIxUxAAAAAAAAAAAACIcFFOBwAAAAAAAAAAAAAgsEgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAACCwhgzxhhj3Z8xTscDAAAAACeSGKcDAAAAAACEFmNMhqRNfh52rJ/HAwAAAACUAzMFAQAAAAAAAAAAgAjHTEEAAAAAQFH7JE0qo01bSW3c5W2S3iij/XJ3HwAAAACAA4y11ukYAAAAAABhxv1OwNHuzU+stRc5Fw0AAAAAoCwsHwoAAAAAAAAAAABEOJKCAAAAAAAAAAAAQIQjKQgAAAAACApjzBhjjHV/xpTQZqBXm2nuuihjTD9jzLvGmC3GmFxjzA5jzFxjTPtixogzxgwwxixytz9kjPnVGPOiMebMcsYc6x7rVWPMRmNMtjFmvzFmkzFmljHmCmOMqcjfBwAAAAAEU4zTAQAAAAAAUBJjTC1Jr0jqXGTXSZJ6S7rCGPN3a+1Ud/vTJb0lqWjyr66k6yRda4y5xlo7z4djXyTpeUkNi9md4f5cK2mZMeYqa+1Wn04KAAAAABxAUhAAAAAAEKpiJL0u6XxJhyR9IulXSTUk/UVSNUlG0vPGmPWS1kn6SK4E4D5Jn0raLulkSV0kVZUUJ+llY8zZ1tpNJR3YGHO1pJckxbqrDkpaJmmzpAJJmZLau2M8V9JSY0wba+0O/5w6AAAAAPgXSUEAAAAAQKi6SlK8pDclDbHW7jy6wxhT3V1/vlyvxhgn6U+5EoLPSrrLWpvt1T5d0vtyzSCsImmkpBuKO6gx5mxJL8qVELSSHpP0gLU2q0i709ztOrqPO1VS90qeMwAAAAAEBO8UBAAAAACEqnhJiyVd6Z0QlCRr7R+SBkjKd1d1ktRL0ovW2pu9E4Lu9r9J+odX1VXGmJIelP2vXIlDSRphrf1n0YSge8yNkrpJ+sFd9VdjTDvfTg0AAAAAgoukIAAAAAAglN1urc0vboe19hdJX3hV5Uq6q6SBrLVLJG1xbyZLaly0jTGmuY69v/AbSU+UFpy1dr+k/3hV/a209gAAAADgFJKCAAAAAIBQtcFau6qMNqu9yp8VnVFYjDVe5QbF7Pde/nOWtdaWMZ7keo/hUR19aA8AAAAAQcc7BQEAAAAAoWpN2U30h1f5ex/a7/UqpxSzv71XuZMxpr4PYxqvcl0f2gMAAABA0JEUBAAAAACEqj99aHOkEu1ji9l/qlf5rz6MV1T1CvQBAAAAgIBj+VAAAAAAQKjyZenOyrQvTmol+0f7IQYAAAAA8DuSggAAAAAAHLPfq9zbWmvK+3EscgAAAAAoBUlBAAAAAACO2eFVPsWxKAAAAADAz0gKAgAAAABwzJde5Q6ORQEAAAAAfkZSEAAAAACAYxZ4lXsbY052LBIAAAAA8COSggAAAAAAuFlrl0ta7N6sImmGMSbOl77GmDhjTPVAxQYAAAAAlUFSEAAAAACAwoZKynGXL5b0qTGmXUmNjTGZxpiRkjaLJUcBAAAAhKgYpwMAAAAAACCUWGvXGGP6SnpFUlVJ7SQtM8ZskPS1pL2SEiSdJKmZpDSnYgUAAAAAX5EUBAAAAACgCGvtAmPMeZJekNTKXd3Q/SnJZkm/BTg0AAAAAKgQkoIAAAAAABTDWvutpNbGmEsk9ZJradBTJVWTlCtpl6SfJH0paaGkpdZa60iwAAAAAFAGw+8rAAAAAAAAAAAAQGSLcjoAAAAAAAAAAAAAAIFFUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcP8f/QlVT34BTAwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "def cdf_from_lc(lc, dt):\n", + " cdf = np.cumsum(lc)\n", + " cdf = np.concatenate([[0], cdf])\n", + " cdf /= cdf.max()\n", + " return cdf \n", + "\n", + "\n", + "# cdf_times = np.concatenate([[0], dt / 2 + time])\n", + "cdf_values = cdf_from_lc(flux, dt)\n", + "cdf_times = np.arange(cdf_values.size) * dt\n", + "\n", + "cdf_inverse = interp1d(cdf_values, cdf_times)\n", + "\n", + "plt.plot(times, flux / flux.max(), color=\"grey\", label=\"Light curve\")\n", + "plt.plot(cdf_times, cdf_values, color=\"k\", label=\"CDF\")\n", + "\n", + "for prob_val in np.linspace(0, 1, 100):\n", + " time = cdf_inverse(prob_val)\n", + " plt.plot([0, time], [prob_val, prob_val], color=\"r\", lw=0.3)\n", + " plt.plot([time, time], [0, prob_val], color=\"r\", lw=0.3)\n", + " \n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Probability\")\n", + "\n", + "plt.ylim([0, 1])\n", + "plt.xlim([0, 10])\n", + "plt.legend(loc=\"lower right\");\n", + "plt.tight_layout()\n", + "plt.savefig(\"CDF_lc.jpg\")" + ] + }, + { + "cell_type": "markdown", + "id": "55e11634", + "metadata": {}, + "source": [ + "The same method can be used, in principle, to simulate variates from *any* probability distribution. The only requirement is that the input distribution is positive definite.\n", + "Stingray implements this method in `stingray.simulator.base`:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e77b524a", + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.base import simulate_with_inverse_cdf\n", + "event_times = simulate_with_inverse_cdf(flux, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6ed2573e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3809308 , 0.10856514, 0.71888075, 0.54479831, 0.87783205,\n", + " 0.45405823, 0.66623686, 0.62832368, 0.72111516, 0.25882679])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "event_times" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eab73320", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Simulator/Concepts/Simulator.ipynb.txt b/_sources/notebooks/Simulator/Concepts/Simulator.ipynb.txt new file mode 100644 index 000000000..4d93c4ec7 --- /dev/null +++ b/_sources/notebooks/Simulator/Concepts/Simulator.ipynb.txt @@ -0,0 +1,793 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following features of impulse response simulator have been implemented in this notebook.\n", + "\n", + "1- Find lag-frequency spectrum of a simple delta impulse response.\n", + "\n", + "2- Find lag-frequency spectrum of a _more_ realistic impulse response based on real physical principles.\n", + "\n", + "3- Compute lag-frequency spectrum of delta impulse responses with same intensities and varying positions at different energy levels.\n", + "\n", + "4- Compute lag-frequency spectrum of delta impulse responses with same positions and varying intensities at different energy levels." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and obtain data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from stingray import Crossspectrum, Lightcurve, sampledata\n", + "import numpy as np\n", + "from scipy import signal\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = sampledata.sample_data()\n", + "s = lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lag-frequency Spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Delta Impulse Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define a delta impulse response with a delay of 10." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "h_zeros = np.zeros(delay)\n", + "h = np.append(h_zeros, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find output signal by taking convolution of variability signal and impulse response." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "output = signal.fftconvolve(s, h)\n", + "# To make two counts of equal size, remove last 'delay' entries and avoid first zeros\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualize input and output signals." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVxklEQVR4nO3dd3jT1fcH8HfSkbZ0UuiipRTKKrTsUZGNFKwMQURkqYCiRQH5geIXFSc4ERURRUEFRUBAplCZAmUVCmWPFspqy+qCzuT+/rjcjDZJkzRpmuS8nqdP0uSTT25aSE7PPfdcCWOMgRBCCCHEhkitPQBCCCGEEGNRAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5FMAQQgghxOZQAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5ztYegKUoFArcuHEDXl5ekEgk1h4OIYQQQgzAGEN+fj5CQkIglerOs9htAHPjxg2EhYVZexiEEEIIMcHVq1cRGhqq8367DWC8vLwA8B+At7e3lUdDCCGEEEPk5eUhLCxM+Tmui90GMGLayNvbmwIYQgghxMZUVv5BRbyEEEIIsTkUwBBCCCHE5lAAQwghhBCbQwEMIYQQQmwOBTCEEEIIsTkUwBBCCCHE5lAAQwghhBCbQwEMIYQQQmwOBTCEEEIIsTkUwBBCCCHE5lAAQwghhBCbQwEMIYQQQmwOBTCEEEIMs3kz8Pff1h4FIQDseDdqQgghZnTtGjBgACCVArduAb6+1h4RcXCUgSGEEFK5X38FFAqgrAzIyDDvue/fB1q3BhISzHteYteqFMDMnTsXEokEU6ZMUd7Wo0cPSCQSja+JEydqPC4jIwPx8fHw8PBAQEAApk+fjrKyMo1jdu3ahbZt20ImkyEyMhJLly6tylAJIYSYijFA/T34+nXznv/QIeD4cWD5cvOel9g1k6eQDh8+jEWLFiEmJqbCfRMmTMD777+v/N7Dw0N5XS6XIz4+HkFBQdi/fz9u3ryJMWPGwMXFBR9//DEAID09HfHx8Zg4cSKWL1+O7du3Y/z48QgODkZcXJypQyaEEGKK/fuBCxdU31+7Zt7zp6Xxy9xcoLgYkMnMe35il0zKwBQUFGDkyJH48ccf4efnV+F+Dw8PBAUFKb+8vb2V923btg2nT5/GsmXL0Lp1a/Tv3x8ffPABFixYgJKSEgDA999/j4iICHzxxRdo3rw5Jk2ahKeeegrz5s0z8WUSQgip4MQJIDwcWLxY/3HlM+DmzsCIAAbg9TWEGMCkACYhIQHx8fHo06eP1vuXL1+OOnXqoGXLlpg5cyYePHigvC8pKQnR0dEIDAxU3hYXF4e8vDycOnVKeUz5c8fFxSEpKUnnmIqLi5GXl6fxRQghRI9163g9y9SpQHa29mMePAD+/JNf792bX1oygNE1DkLKMXoKacWKFTh69CgOHz6s9f5nn30W4eHhCAkJwYkTJ/DGG2/g3LlzWLNmDQAgMzNTI3gBoPw+MzNT7zF5eXkoLCyEu7t7heedM2cO3nvvPWNfDiGEOK6rV/llQQHw4YfA119XPGbNGiA/H2jYEBgxAti+3XJTSAAFMMRgRgUwV69exeTJk5GYmAg3Nzetx7z44ovK69HR0QgODkbv3r1x6dIlNGrUqGqj1WPmzJl4/fXXld/n5eUhLCzMYs9HCCE2T3010fffA5MnA+Xfp8X00XPPAaGh/DplYEgNYNQUUnJyMrKzs9G2bVs4OzvD2dkZu3fvxtdffw1nZ2fI5fIKj+nUqRMA4OLFiwCAoKAgZGVlaRwjvg8KCtJ7jLe3t9bsCwDIZDJ4e3trfBFCCNFDZGACAoDSUmDWLM37r1wBduzg18eMAerV49fNmYHJywNu31Z9TwEMMZBRAUzv3r2RmpqKlJQU5Vf79u0xcuRIpKSkwMnJqcJjUlJSAADBwcEAgNjYWKSmpiJb7R9pYmIivL29ERUVpTxm+/btGudJTExEbGysUS+OEEKIDoypAhgxdbRiBZCcrDrm11/5cb168WJfkYG5dw8oLDTPONLTNb8v98crIboYFcB4eXmhZcuWGl+1atWCv78/WrZsiUuXLuGDDz5AcnIyLl++jPXr12PMmDHo1q2bcrl13759ERUVhdGjR+P48ePYunUrZs2ahYSEBMgeLp2bOHEi0tLSMGPGDJw9exbfffcdVq5cialTp5r/J0AIIY4oN5fXvgC8w+7Ikfz6m2/yS4VCNX30/PP80scHEG0xzDWNpD59BFAGhhjMrJ14XV1d8e+//6Jv375o1qwZpk2bhqFDh2LDhg3KY5ycnLBx40Y4OTkhNjYWo0aNwpgxYzT6xkRERGDTpk1ITExEq1at8MUXX2Dx4sXUA4YQQsxFZF/8/XlQ8uGHgKsr8O+/QGIisHcvDy68vIAnn+THSiSqLIy5ppFEACN9+HFEAQwxUJX3Qtq1a5fyelhYGHbv3l3pY8LDw7F582a9x/To0QPHjh2r6vAIIYRoIwp4xWKHBg2AV14BvvoKeOMNQDQpffppoFYt1ePq1QPOnzd/BiY6mnfjpQCGGIj2QiKEEEckMjDqqzX/9z+ecTl2DPjlF36bmD4SRCGvuQOYzp35JQUwxEAUwBBCiCPSFsDUqcOzL0LjxsAjj2g+zlJTSGKRRnY2LxwmpBIUwBBCiCPSFsAAwJQpwMOWFhg7lte9qDNnBkYuBy5f5tcfttxASQlfWk1IJSiAIYQQRyQCmPr1NW+vVQtYvZo3tZs8ueLjzNkL5sYNHrC4uPBsj6cnv52mkYgBqlzESwghxAaVL+JV16UL/9LGnN14xfRRgwaAkxNvqFdQwAOYxo2rfn5i1ygDQwghjkahUGVQjN1yRWRgMjOBsrKqjUMEMA0b8suAAH5JGRhiAApgCCHE0dy6xaduJBJVQGKowECeLZHL9XfNXbOGnzspSfcxFMCQKqAAhhBCHI2ofwkK4vUnxnByAh5uDaN3GmnpUl7jsnix7mMogCFVQAEMIYQ4Gl0FvIYypJD35El+uW+f7mNEABMRwS8pgCFGoACGEEIcjb4CXkNUVsh7/75qk8Zz5zR3m1ZHGRhSBRTAEEKIo9HVA8ZQlfWCOXNG8/sDByoeI1YbARTAEJNQAEMIIY7GXAGMrimkU6c0v9c2jSQyNLVr812uAQpgiFEogCGEEEdT1QCmsikkEcD4+fHL/fsrHlN++gigAIYYhQIYQghxNOYq4tUVwIgC3rFj+eWhQ0BpqeYx+gKYO3eq3mOG2D0KYAghxJGUlfHlzUDVMzDXrmnfeFFkYJ58kk8RFRXxHa7VaQtg/P15bxrGeBBDiB4UwBBCiCO5cYN34nVx4U3pTBESwi8LC4GcHM378vNVq5xatlTtZl1+GklbAOPszIMYQH+TPEJAAQwhhDgWMX1Urx4gNfEjwN2dZ1aAioW8p0/zy+BgfowIYMoX8moLYACqgyEGowCGEEIcSVULeAVdhbxi+qhFC34pNoXcv1813aRQqFYhUQBDTEQBDCGEOJKqFvAKugp5RQGvCGDat+dTQzduqKaWbt4Eiov5tgTlAykxrUUBDKkEBTCEEOJIzJWB0dULpnwGxsMDaNuWXxfTSGL6KDycBzfqKANDDEQBDCGEOJKqbiMgVDaF1LKl6rbyhby66l8ACmCIwSiAIYQQR2LJDExOjiqgiYpS3U4BDLEACmAIIcSRmDuAUc/AiBVIoaGq7QEAVSHv8eN8mTUFMMQMKIAhhBBHUVQE3LrFr1e1iFfbFFL5Al4hJITXuygUvCsvBTDEDCiAIYQQRyGmezw8VPsUmUpkYO7c4Q3tgIoFvOrUl1NTAEPMgAIYQghxFOoFvBJJ1c7l58cb2gGqrQm0FfAKog4mMRHIzOTX9QUw9+/zL0J0oACGEEIchbnqXwAeAJWvg9GXgREBzH//8UtfX+1ZIC8vQCbj18V0FyFaUABDCCGOwpwBDKC5EunOHVVmRX0FkhAdDXh6qr7Xln0BeGBE00jEABTAEEKIozBXF15BvZBXZF/CwzUDFcHZGejUSfW9rgAGoACGGIQCGEIIcRSWzMDomz4SRCEvQAEMqTLnyg8hhBBiF8zVhVdQr4GRy/l1bQW8gqiDASiAIVVGAQwhhDgKc2dg1KeQ7tzh1/VlYDp35jUujFEAQ6qMAhhCCHEEeXn8C7DMFFJxMb+uL4Dx8QGGDgUOHAA6dNB9HAUwxAAUwBBCiCMQ2Rc/P+1FtqYQGRjRIE8iAZo31/+YlSsr70FDAQwxABXxEkKIIzD39BEABAYCUrWPkYYNeZdffQxpoCcCmKws08dG7B4FMIQQ4gjMXcAL8KXRQUGq7/VNHxmDMjDEABTAEEKII7BEBgZQTSMB5gtgAgP55a1bfANIQrSgAIYQQhyBpQIYUcgLmC+AqVuXX8rlwL175jknsTsUwBBCiCMwdxdewRIBjKsr3ysJoGkkohMFMIQQ4ggsPYUklQLNmpnvvFQHQypBAQwhhBjqwgXg8cf5fj83b1p7NIZjzPJTSJGRgJub+c5LAQypBAUwhBBSmaIi4L33eJv8LVv4ip5Dh6w9KsOlp/PXAGhO+ZhD375A+/bAa6+Z97wUwJBKUCM7QgjR599/gVde4dkXgC8dLisDcnKsOiyD3b0LDBzIr3foAMhk5j1/QABw+LB5zynOC1AAQ3SiDAwhhGiTkwOMGgU89hgPXoKDgT//5K3wxf013f37QHw83yk6JIR3wbUVFMCQSlQpgJk7dy4kEgmmTJmivK2oqAgJCQnw9/eHp6cnhg4diqxy3RQzMjIQHx8PDw8PBAQEYPr06SgrK9M4ZteuXWjbti1kMhkiIyOxdOnSqgyVEEIMp1AAw4cDy5fzzrGvvgqcOQM8/TRvxQ/U/ACmpAQYMoTvO+TnB2zdCjRoYO1RGY4CGFIJkwOYw4cPY9GiRYiJidG4ferUqdiwYQNWrVqF3bt348aNGxgyZIjyfrlcjvj4eJSUlGD//v345ZdfsHTpUrzzzjvKY9LT0xEfH4+ePXsiJSUFU6ZMwfjx47F161ZTh0sIIYabMwfYtg1wdwf27gW+/ppvRAiolvfm5lpteJWSy4HRo/lrqFUL2LyZ1+/YEgpgSGWYCfLz81njxo1ZYmIi6969O5s8eTJjjLGcnBzm4uLCVq1apTz2zJkzDABLSkpijDG2efNmJpVKWWZmpvKYhQsXMm9vb1ZcXMwYY2zGjBmsRYsWGs85fPhwFhcXZ/AYc3NzGQCWm5trykskhDiqnTsZk0oZAxj7+eeK98+dy+97/vlqH5pBFArGXnqJj9HFhbFt26w9ItPs2sVfQ5Mm1h4JqWaGfn6blIFJSEhAfHw8+vTpo3F7cnIySktLNW5v1qwZ6tevj6SkJABAUlISoqOjEShaRQOIi4tDXl4eTp06pTym/Lnj4uKU59CmuLgYeXl5Gl+EEGKUrCxgxAg+hTR2LPD88xWPEZmYmjqFNHcusGgRn/pavpzX8NgiysCQShi9CmnFihU4evQoDmupOs/MzISrqyt8RYr1ocDAQGRmZiqPUQ9exP3iPn3H5OXlobCwEO7u7hWee86cOXjvvfeMfTmEEMLJ5cDIkUBmJhAVBSxYoP048f5WUwOYRYv45bx5wLBh1h1LVYgAJieH1/O4ulp1OKTmMSoDc/XqVUyePBnLly+HmzkbFpnBzJkzkZubq/y6Kpo2EUKIIT76CNi+HfDwAFat4rUj2tTkAIYxVYO9QYOsO5aq8vMDnJz49Vu3rDsWUiMZFcAkJycjOzsbbdu2hbOzM5ydnbF79258/fXXcHZ2RmBgIEpKSpBT7j92VlYWgh5uuR4UFFRhVZL4vrJjvL29tWZfAEAmk8Hb21vjixBCDLJjBzB7Nr/+/fc8A6NLTQ5gRLYCAB6+n9osqVS1qSNNIxEtjApgevfujdTUVKSkpCi/2rdvj5EjRyqvu7i4YPv27crHnDt3DhkZGYiNjQUAxMbGIjU1Fdlq/yATExPh7e2NqIdvGrGxsRrnEMeIcxBCiNncuwc8+yzPXowbx1fv6FOTA5iH0/Dw9TVvW39roToYoodRNTBeXl5oWW4pXq1ateDv76+8fdy4cXj99ddRu3ZteHt749VXX0VsbCw6d+4MAOjbty+ioqIwevRofPrpp8jMzMSsWbOQkJAA2cMOkRMnTsS3336LGTNm4IUXXsCOHTuwcuVKbNq0yRyvmRBCVH77jRfvNmnCl0tXRn0ZtULBMwU1hZg+svXsi0ABDNHD7FsJzJs3D1KpFEOHDkVxcTHi4uLw3XffKe93cnLCxo0b8fLLLyM2Nha1atXC2LFj8f777yuPiYiIwKZNmzB16lTMnz8foaGhWLx4MeLi4sw9XEKIoxNNMidN4vUvlREBjEIBFBQANWm6WmRg7CWAEYs5ypUUEAKYIYDZtWuXxvdubm5YsGABFuiq4AcQHh6OzZs36z1vjx49cOzYsaoOjxBCdDt+HDh2DHBx4dNIhnBz4/sJFRfzaaSaGMAEB1t3HOZCGRiiRw3KfRJCSDUT2ZeBAwF/f8MfJ3rB1LRuvPaWgREBDGVgiBYUwBBCHFNJCbBsGb+urWGdPjW1kNdea2BoGTXRggIYQohj2rwZuH2bf9gbW19XUwMYe83A0BQS0YICGEKIYxLTR6NHA85GlgPW9ACGamCIA6AAhhDieLKzAdGW4bnnjH98TQ9g7CUDo74KiTHrjoXUOBTAEEIcz/LlQFkZ0LGj/q67utTEAKakhE+JAfYTwIhOvCUlAG3QS8qhAIYQ4lgYA5Ys4ddNyb4ANTOAEdMszs7GraiqyTw8AE9Pfp2mkUg5FMAQQhzLsWNAairv5fLMM6adoyYGMGL6KDCwZnUHriqqgyE62NG/ckIIMYAo3h08mO94bIqaHMDYy/SRQL1giA4UwBBCHEdxMa9/AUyfPgJqZiM7e+sBI4hCXsrAkHIogCGEOI6NG4G7d4GQEOCxx0w/D2Vgqg9NIREdKIAhhDgOUbw7Zgzg5GT6eWpyAGMvPWAECmCIDhTAEEIcQ1ERkJjIr48eXbVzVWcAwxiweDHfeFIfe8/AUA0MKYcCGEKIYzh8mPcTCQ4Gmjev2rnUAxhLN1jbuROYMAEYN07/cVQDQxwMBTCEEMewdy+/fPRRQCKp2rlEACOXA/fvV+1clTl4kF+eOgUoFLqPoykk4mAogCGEOIb//uOXjz5a9XO5uwMuLvy6paeRjh3jl0VFwI0b2o9hzP6nkCiAIeVQAEMIsX9yObB/P79ujgBGIqm+OpiUFNX1Cxe0H5OfDxQW8utiysVeiADm7l2gtNS6YyE1CgUwhBD7d+oU79ni6QnExJjnnKIXjCUDmPx8zaDl4kXtx4n6Fy8voFYty43HGvz9VZ2Fb92y7lhIjUIBDCHE/on6l9hYvleQOVRHBqb8yiNdGRh7rX8BePAiNnWkaSSihgIYQoj9Uy/gNRcRwFiyG6+ofxF0ZWDstf5FoDoYogUFMIQQ+2fJAMaSGRgRwHTowC8ry8DYewBDvWCIGgpgCCH2LSMDuHqVd97t1Ml8562OAEYU8A4bxi8vXtS+lNpee8AI1AuGaEEBDCHEvonsS9u25i1wtXQAU1ICnDzJrw8ezAMwXUup7bkGBqApJKIVBTCEEPtmiekjwPIBzOnTfNmwry8QGQlERPDbtU0jOcoUEgUwRA0FMIQQ+2arAYyof2ndmvedadyYf6+tkJcCGOKAKIAhhNive/dU0zBdupj33JbuAyPqX9q04ZeRkfxSWwbGUWpgqIiXqKEAhhBiv5KSeJv9xo3N36G2ujIwIoDRlYEpK1M1eKMaGOJAKIAhhNgvsf9R167mP7clAxiFQpWBad2aX+rKwNy6xYM0qRSoU8f8Y6kJ1AMYS+/+TWwGBTCEEPtlqfoXwLKN7NLS+DYCMhnQrBm/TWRgLl3SXEot6l8CAvhKJXskApjiYv5zIQQUwBBC7FVREXDoEL9uyQAmJ8f8WQExfRQdrdr1OjycByiFhZpLqe29gBcAPDz4PlYA1cEQJQpgCCH2KTmZ91IJCFBNv5iTCGBKS1U7QZtL+QJegAcyYim1eh2MKOC11/oXgepgSDkUwBBC7JP69JFEYv7z16qlmrIxdx2M+hJqddrqYBwhAwNQAEMqoACGEGKfLFn/AvCgyFKFvOVXIAmiDoYCGEIogCGE2CGFAti3j1+3VAADWCaAyczkXxIJEBOjeZ/IwKhPITlaAEM1MOQhCmAIIfbnzBnexM7Do+I0jDlZopmdyL40bVpx7yZtGRhHqYGhDR1JORTAEELsj5g+6txZtYrHEiyRgSnf/0WdyMCoL6V2tAwMBTDkIQpgCCH25+BBfmnu7QPKs0QAo6v+BQAaNKi4lJoCGOKgKIAhhNiftDR+KZrAWUp1BzAuLjyIAXgdTEEB/wIcJ4ChGhjyEAUwhBD7k5HBL+vXt+zzmLsbb16eqkBXV+2Oeh2MyL7UqgV4eZlnDDUV1cCQciiAIcReZWYCo0YB+/dbeyTVSy4Hrl3j18PDLftc5s7AnDjBL+vVA+rW1X6M+qaOjjJ9BKgyMHfv8uaBxOFRAEOIvfrlF2D5cuCTT6w9kuqVmck/4JycLL8yx9wBjL7pI0G9mZ0jBTC1a/MNKwHg9m3rjoXUCBTAEGKvUlP5ZXq6dcdR3cT0Ub16gLOzZZ/LGgGMo2ZgnJxUu23TNBIBBTCE2K+TJ/nl5cvm32ywJhMBjKWnjwDz94ExJgNz8aJqJZK994ARRB0MFfISUABDiH0qK+PN3AAgP583dXMUV67wS0sX8ALmzcCUlQGnTvHrrVrpPk59KXVyMr/NETIwAC2lJhqMCmAWLlyImJgYeHt7w9vbG7GxsdiyZYvy/h49ekAikWh8TZw4UeMcGRkZiI+Ph4eHBwICAjB9+nSUlZVpHLNr1y60bdsWMpkMkZGRWLp0qemvkBBHdPEi34lZcKRppOrMwJgzgElL47U7Hh6qpdLaqC+lTkrilxTAEAdkVAATGhqKuXPnIjk5GUeOHEGvXr0waNAgnBJ/NQCYMGECbt68qfz69NNPlffJ5XLEx8ejpKQE+/fvxy+//IKlS5finXfeUR6Tnp6O+Ph49OzZEykpKZgyZQrGjx+PrVu3muHlEuIgxPSRcPmyVYZhFdbKwFR1mk5kzJo2VRWr6iLqYPLz+SUFMMQBGVXhNmDAAI3vP/roIyxcuBAHDhxAixYtAAAeHh4I0vGfadu2bTh9+jT+/fdfBAYGonXr1vjggw/wxhtvYPbs2XB1dcX333+PiIgIfPHFFwCA5s2bY+/evZg3bx7i4uJMeY2EOB5HDmCqqwcMoApgSkqAoiLA3d30c509yy8Nab4n6mAEqoEhDsjkGhi5XI4VK1bg/v37iI2NVd6+fPly1KlTBy1btsTMmTPx4MED5X1JSUmIjo5GoPhHCCAuLg55eXnKLE5SUhL69Omj8VxxcXFIEqlSHYqLi5GXl6fxRYjDEiuQRHMzRwxgqmMKydNTlS2pajM7kYFp3rzyY0UGRqAMDHFARq8xTE1NRWxsLIqKiuDp6Ym1a9ciKioKAPDss88iPDwcISEhOHHiBN544w2cO3cOa9asAQBkZmZqBC8AlN9nPlwOqOuYvLw8FBYWwl3HXzhz5szBe++9Z+zLIcQ+iQxMXBywerXjBDB5eap6lOrIwEilfCXSvXv8easSSJiagZFIdDe9szcUwBA1RgcwTZs2RUpKCnJzc7F69WqMHTsWu3fvRlRUFF588UXlcdHR0QgODkbv3r1x6dIlNGrUyKwDL2/mzJl4/fXXld/n5eUhLCzMos9JSI1UWKhqR//EE44VwIjsS+3aPDtSHXx9VQGMqRhTBTDGZmDq1LHsjts1CQUwRI3RU0iurq6IjIxEu3btMGfOHLRq1Qrz58/XemynTp0AABcfvpkGBQUhq9zcpfhe1M3oOsbb21tn9gUAZDKZcnWU+CLEIZ09CygUgL8/0Lkzv81ResFUZ/2LYI5eMJmZfApKKq04PaSNWEoNOE79C6BZA+MI/56JXlXuA6NQKFBcXKz1vpSUFABA8MP/YLGxsUhNTUW2WvScmJgIb29v5TRUbGwstm/frnGexMREjTobQogeYvqoZUtVHUhBAXDnjvXGVF2qcwWSYI6l1CL70rAhIJNVfrz6UmpHqX8BVFNlxcWqFVjEYRkVwMycORN79uzB5cuXkZqaipkzZ2LXrl0YOXIkLl26hA8++ADJycm4fPky1q9fjzFjxqBbt26IiYkBAPTt2xdRUVEYPXo0jh8/jq1bt2LWrFlISEiA7OF/2okTJyItLQ0zZszA2bNn8d1332HlypWYOnWq+V89IfZIPYBxc1P9he4I00jVWcArmCOAEQW8htS/CCJT40gBTK1a/AugaSRiXACTnZ2NMWPGoGnTpujduzcOHz6MrVu34rHHHoOrqyv+/fdf9O3bF82aNcO0adMwdOhQbNiwQfl4JycnbNy4EU5OToiNjcWoUaMwZswYvP/++8pjIiIisGnTJiQmJqJVq1b44osvsHjxYlpCTYih1AMYQPWXuiMEMLaegTEmgHmYta7WYK0moDoY8pBRRbw//fSTzvvCwsKwe/fuSs8RHh6OzZs36z2mR48eOCb2BCGEGEdbAJOUZDsBTGYmb6nfu7fxj7X1DIwhBbzC9Ol8SuWFF0x/XlsUEMA7S1MvGIdHeyERYk9yc1Uf4raagZk0CejTB/j9d+Mfa40iXmtlYIKCgDffVGUkHIUo5KUMjMOjAIYQeyK29QgNVX2wRkTwS1sJYM6f55effWbcSpPSUuD6dX7dlgKY/Hzg2jV+3ZgAxlHRFBJ5iAIYQuxJ+ekjQJWBsZUNHe/e5ZcpKYAB09JKN27w5eOurqq/0quDCGBM7cR77hy/DAjg/WuIfhTAkIcogCHEnugLYGylF4wIYADgyy8Nf5wo4A0Lq3wzRHOqagbGmAZ2hAIYokQBDCH2RFsAI6ZTHjwAbt+u/jEZo7CQfwkbN6qmlCpjjfoXoOqN7ExZQu3IaENH8hAFMITYE20BjEwGhITw6zW9DubePX7p5ATEx/OMkY5O3xVYYwUSQBmY6kYZGPIQBTCE2IvsbODWLb65X/kPQ1tZiSSmj/z8gGnT+PWlSzWnlXSxRg8YoOoBDGVgjEMBDHmIAhhC7IXIvjRqBHh4aN5XlQDm+HG+y3N1EIFK7dpAjx5Aq1Z86uuHHyp/rLUzMEVF/MsYpaWqjTcpA2MYEcDcuQOUlVl3LMSqKIAhxF5omz4STF1KnZwMtG4NjBlTlZEZTj2AkUgAscP8N98AJSX6H2utGhhvbz5WwPiVSGlpPIjx8OBL30nl/P1VRdq3bll3LMSqKIAhxF6kpvLL6OiK95m6lDo5mV+K/jKWph7AAMAzz/CGbTduAKtW6X4cY9abQpJKeRADGD+NJOpfmjat3pVTtszJCahTh1+naSSHRv9jCLEX+jIwpk4hiaCguj4oygcwrq68My/Al1TrWgZ+7x5w/z6/HhZm2TFqY2odjClbCBDVNBKtRHJoFMAQYktmzuQZFvHBJzBmeABjTC8YEfDk5Rlf32GK8gEMALz0EuDuDhw9Cvz3n/bHiUArIIAfW91MbWZnyhYCRLXDuui8TBwSBTCE2Irbt4HPP+eBSr9+mm/eGRlAQQHg4gI0blzxsWFhvE6jsNC4ugH1jE111BtoC2Dq1FHV4OhqbGetAl7B1F4wtITaNOL3LAJX4pAogCHEVqxYoVp1kZEB9O+v+sAU2ZdmzXgQU56pvWDUPyCsFcAAwJQp/HL9eu1/dVurgFcwZQqJMVpCbSqRUaQAxqFRAEOIrfjlF345dSovbE1NBQYP5lM7+qaPBGPrYIqLefGsUB11MLoCmGbNgEcf5R/6K1ZUfJy1CngFUwKYzEw+NSeVas+aEd0oA0NAAQwhtuH0aeDIEcDZGXjzTeCff/jKl927gdGjea8WQH8AI5ZSG7oS6epVzXoZawYwAPDss/zy998r3mftKSRTAhiRfWnYkGfIiOHE77mmN2YkFkUBDCG24Lff+GX//rxQtVUrYN06vkpn9WpVVsKcGZjyf91WRwAjthLQFsAMG8YDuKNHVbUjgi1OIVH9i+lEAHP1KiCXW3csxGoogCGkppPLgWXL+PWxY1W39+zJAxuJRJUp0dYDRjA2gCl/nLUzMHXqAHFx/Poff2jeJ4ItW8zAUP2L8UJCeD+YsjLg5k1rj4ZYCQUwhNR0u3YB167xD8knntC87+mnVZsd+vvr/wCv6QFMaalqywJtAQygOY0kgrbiYl5PAlAGxlE4O6v6/VAdjMOiAIaQmk4U7z7zjPZaiVdfBTZuBLZs0d/N1dheMOKDoUkTfmnpVUjqH/4iIChv4EDedv/iReDwYX7b1av80t2dB3HWQBmY6keFvA6PAhhCarKCAuCvv/h1ffsRxccDHTroP5foBVNUZFg2RWRgxHktnYER00e+vnx6QBtPT2DQIH5dFPOqF/CKPYmqm7F9YPLzVcvBKYAxDQUwDo8CGEJqsjVr+G7MjRsDnTtX7VyurkC9evy6ISuRRADTsSO/rEoAY0jGR1/9izoxjbRiBa8PsnYBL2B8J95z5/hlYCDg52eRIdk9Wonk8CiAIaQm+/VXfjlmjHmyC4buSl1aqsoQqGdgjNmGQCgo4NNQo0bpP87QAKZvX35MVhawc6f1e8AAqgBGrKKqDE0fVR1lYBweBTCE1FRXrwI7dvDrlX34G8rQQt5r1wCFgtfciJVNRUU8GDHW0aO8ZmXNGv0BkKEBjKsrX1IN8Gkka/eAAXhjQbFVgyGZKirgrTrqxuvwKIAhpKZatox/4HfvrnqzripDAxhxf3g4rzvx8ODfm1LIK85VWKhaZaSNCGAMmVIZOZJf/vUXcP48v27NDIyHB9CoEb+emlr58adP80vKwJhOPQNjSmaQ2DwKYAipiRjTnD4yF0MDmPJ9VQIC+KUpdTDqz6WvZ4ehGRgA6NKFFyXn5QF79/LbrJmBAVRNBMW2DvqIIEdf3x6in1hGXVjINzolDocCGEJqoiNH+DSDuzvw1FPmO6+xGRhxfE0LYKRSYMQIzdusmYEBDA9g8vOBS5f49ZgYy47JnslkQHAwv07TSA6JAhhCaiLRaXbwYL7nkbmo1w3oS7tbKoARDee0MSaAAVSrkQBefyJWWFmLyKZUFsCI+0NCeHdhYjpaieTQKIAhpCbauJFfDh1q3vOGhfHsRVGR/mCipk8hATx7ERXFr4eE8OJea1LPwOgLDk+c4JeUfak6Wonk0CiAIaSmuXCBf7m4AI89Zt5zu7gAoaH8ur6/Ws2VgSkrU3XKBcwbwEgkqiyMtetfAN6rx8WFr9QSK6O0ETuHUwBTdbQSyaFRAENITbN5M7/s2tW800eCeNMXdRjlqQcd4ti6dfmlsauQbtzg5xPMGcAAwKRJwLhxwHvvGTcuS3BxUa0q0jeNJDIwrVpZfkz2jjIwDo0CGEJqmk2b+GV8vGXOLz44Dx7Ufv+NG7zDrYuLqkjS1AxM+SyPuQMYHx9g8WKgTx/jxmUplRXyMkZTSOZEAYxDowCGkJqkoADYvZtff/xxyzxH16788r//tN8vgo769VWbQ5oawIgtC8QmlLrqbhQKVRdbYwKYmqayAObyZb4KydUVaNq02oZlt6iI16FRAENITbJ9O1BSAjRsaLkPuEcf5ZcnTmjfu6d8/QtQ9QxMu3b8UlcGJjdXVfhqy3sDVRbAiOxLVBTPcJGqEQFMbq7h+1ARu0EBDCE1ifr0kaV2Vg4O5l1jGQP27694f/kVSIAqgLl1i2dLDCUCmNhYfnnvHl8BVZ7IvtSqpcrW2CIRwJw5o1n7I1ABr3l5egL+/vw6TSM5HApgCKkpGFMV8Fpq+kjQN42kLQMj+pXI5YZvWKh+rtat9U8jmVL/UhM1aMC3FSgu5vs/lUf1L+ZHdTAOiwIYQmqKEyf4DtAeHkCPHpZ9LjGNJNrwqxMfBOoBjKurasdlY1YiiQAmIoJveAjYdwAjlQItWvDr2qaRaAWS+VEA47AogCGkphDTR717A25uln0ukYE5dIhnC9Spb+Soztg6mPLLscWKJm11MPYSwAC6O/Lev6/KylAGxnwogHFYFMAQUlNYevm0usaNeUBSXMz3XRIUClUTtvI7YBsbwFy/rrkc21ECGF2FvKJDb2Cg6mdJqo5WIjksCmAIqQnu3AEOHODX+/e3/PNJJKppJPU6mJs3gdJSwNmZt+dXZ2wAo57JkUpVU0iOGsDQ9JFlUAbGYVEAQ0hNsHUrz35ER1ffrsra6mBE0BEayoMYdaYGMCKTIzIw9lwDA6gCmAsXNFdc0Qoky6DtBBwWBTCE1ATVOX0kiDqYfftUS6O1rUASjN1OQFcAY+8ZmKAg/joUCuDsWdXttALJMkQGJjsbKCy07lhItaIAhhBrk8uBf/7h16szgGndmvddyckBTp3it2lbgSSYKwNj7wGMRFJxGkl9CwGaQjIvPz/eDwbQv4kmsTsUwBBibQcP8g9wPz+gc+fqe15nZ1WDOVEHo2sFElD1AMZRamCAigFMRgbvFOvsrNrwkZiHREJ1MA7KqABm4cKFiImJgbe3N7y9vREbG4stW7Yo7y8qKkJCQgL8/f3h6emJoUOHIisrS+McGRkZiI+Ph4eHBwICAjB9+nSUletYuWvXLrRt2xYymQyRkZFYunSp6a+QkJpOTB/FxVWsO7E0MY0k6mD0TSGZKwOTlcWzTupEAGPL2wioKx/AiOxL8+a8pw4xL1qJ5JCMCmBCQ0Mxd+5cJCcn48iRI+jVqxcGDRqEUw/Tz1OnTsWGDRuwatUq7N69Gzdu3MCQIUOUj5fL5YiPj0dJSQn279+PX375BUuXLsU777yjPCY9PR3x8fHo2bMnUlJSMGXKFIwfPx5bt24100smdmvBAmDCBONa3VenY8eAn3/mAcuRI8C1a3zfI2vUvwjqK5EYM98UUvkeMOLxEgn//dy+rXm8vWZgUlP5JU0fWRYV8jomVkV+fn5s8eLFLCcnh7m4uLBVq1Yp7ztz5gwDwJKSkhhjjG3evJlJpVKWmZmpPGbhwoXM29ubFRcXM8YYmzFjBmvRooXGcwwfPpzFxcUZNa7c3FwGgOXm5pr60ogtKS5mTCZjDGAsOdnao6noxAnG3N35+LR9SSSMZWdX/7gKChhzduZjSEtT/QzT0ioem52tGm9Jif7zXr7Mj3NxYUwuV90eGMhvP3ZMdZtCwY8DGMvIMMvLsrq7d1U/q9xcxoYN49c//dTaI7NPn3zCf74jR1p7JMQMDP38NrkGRi6XY8WKFbh//z5iY2ORnJyM0tJS9OnTR3lMs2bNUL9+fSQlJQEAkpKSEB0djcDAQOUxcXFxyMvLU2ZxkpKSNM4hjhHn0KW4uBh5eXkaX8SBHD+u6iira8dja8nNBYYO5SskGjcG2rYF6tXTnC7q10+1yqc61arFxwMAf/3Ff4ZSKV9GXV7t2vw+gPet0ad8DxhBWx3M/fu894x4Dnvg58d/xwAvkKYVSJZFNTAOyegAJjU1FZ6enpDJZJg4cSLWrl2LqKgoZGZmwtXVFb5iv5SHAgMDkfmw70NmZqZG8CLuF/fpOyYvLw+FepbIzZkzBz4+PsqvsLAwY18asWWiCRygvc+ItTAGvPAC7wlSvz6QlAQkJ/Ppo+JiviT57Flg3TrrjVHUwfz2G78MDeXdc8tzclJt6ljZNJKuWhptK5HE9JGrK98Hyl6IaaRDh/jvH6ApJEuhAMYhGR3ANG3aFCkpKTh48CBefvlljB07FqdPn7bE2Iwyc+ZM5ObmKr+uivl34hhqagDz5ZfAmjX8w3n1asDfX3WfVMoDgqZNrVvYKepgRJZA2wokwdA6mMoCGPXfkXr9i0RS2Whthwhg/vyT1/3Urcu3ESDmJ/7NXr+uyuYRu2f0kgdXV1dERkYCANq1a4fDhw9j/vz5GD58OEpKSpCTk6ORhcnKykLQw7RxUFAQDh06pHE+sUpJ/ZjyK5eysrLg7e0Nd3d3neOSyWSQyWTGvhxiL9QDmJoyhbRnD/DGG/z6V18BHTpYdTg6demi+b22Al7BXAGMtgyMvUwfCSKAEdPfMTH2FaDVJIGB/I+AkhKe3YyIsPaISDWoch8YhUKB4uJitGvXDi4uLti+fbvyvnPnziEjIwOxD3tNxMbGIjU1Fdlqb36JiYnw9vZGVFSU8hj1c4hjxDkIqSA7G0hLU31fEzIwmZnA8OF8ufCoUcDEidYekW5162r2JrFkAKOtBubePX5prwGMQNNHliOV0jSSAzIqAzNz5kz0798f9evXR35+Pn7//Xfs2rULW7duhY+PD8aNG4fXX38dtWvXhre3N1599VXExsai88PmXH379kVUVBRGjx6NTz/9FJmZmZg1axYSEhKU2ZOJEyfi22+/xYwZM/DCCy9gx44dWLlyJTaJpaaElHfwoOb31g5gysp48JKZCbRoAXz/fc3/y7trV1Xbe31TSKLQmDIwlWvenP/eGePfUwGvZYWH81ojCmAchlEZmOzsbIwZMwZNmzZF7969cfjwYWzduhWPPfYYAGDevHl44oknMHToUHTr1g1BQUFYs2aN8vFOTk7YuHEjnJycEBsbi1GjRmHMmDF4//33lcdERERg06ZNSExMRKtWrfDFF19g8eLFiIuLM9NLJnZHTB81acIvrR3AzJ3Lp4+8vPjKnlq1rDseQ4hCXsCwDIy+/ZC09YARKquBsSe1agENG6q+pwDGsigD43CMysD89NNPeu93c3PDggULsGDBAp3HhIeHY/PmzXrP06NHDxw7dsyYoRFHJgKYJ58EPvmE/3XPmHWyHnI5sHAhv/7117xA1xaIQl6g6lNI16/zn4OLiypgEdQzMOJ3ZK8BDMCnkS5d4iu4Hk6TEwuhAMbh0F5IxLbJ5XyZKgAMGsQvHzwACgqsM55du4AbNwBfX2DECOuMwRQNGgDPPQc89ZT+AkhDAhhdPWAAVQ1MYSEgejXZcwATHc0vmzUDaJGBZdF2Ag6HAhhi206f5sGKpyfQsaNqV1prTSMtX84vhw2zrQ8siQRYsgRYtapi0KHOmABGWybHwwPw9ubXRR2MPQcw8fH85ymCa2I5tJ2Aw6EAhtg2MX3UsSNP04u/8K0RwBQV8ZoXABg5svqfvzoYUsSrL4ABKhby2nMA07kzf31qdX7EQkQGJiOj4mahxC5RAENsmwhgHq5007rKpbps3MinRcLCNIti7YnIwBQU8GkgbQwNYESQac8BDAD4+PDgmlhWaCjPwJaWqnYBJ3aNAhhi28oHMNbMwIjpoxEj9E/D2DJvb1XXYF0rkSgDQ6zByUn1PrB/v3XHQqqFnb7LEoeQk8NrYACgUyd+aa0A5t49QKyus9fpI4DXylRWB1NZAFO+mR0FMMRcHnmEX1IA4xAogCG26/BhftmwoepD1dAAhjE+Vy6ajFXV6tW8jXnLlvbf70NfAKOvB4ygnoEpKuKrxgAKYEjVUQDjUCiAIbar/PQRYHgNzLJlvOivb1/gzp2qj0VMH40aVfVz1XT6Ahh9PWAE9RoYsY2Ak5NqdRIhpurUiWcJ09Ks39CSWBwFMMR2aQtgDM3A7NvHL//9l2+yKHZiNsXVq8Du3fy6LfV+MZW+lUj6esAI6kGmmD7y9a352y2Qms/Xl2/fAag20SR2iwIYYpsYq1oAk57OL11c+PXYWGDlStPG8scf/LJbN6B+fdPOYUv0bSdQWf0LoFkDQ/UvxNxoGslhUABDbNPFi/zDTybT3OVXfDhmZ+vvBSECmBUrgMce43UYw4cDb75pfA+JZcv4pT0X76rTN4UkAhh93XxFBubePd61GKAAhpgPBTAOgwIYYptE9qVdO9WyXoB/uEqlgEKhe5mvXK76oG3fnq8emj6df//JJ8ATTwDFxYaNIzWVf7m48Db8jsCQAEZfBsbPT9Wl+MwZfkkBDDEXEcAcOWL4/2NikyiAIbZJ2/QRwItBRY2GrmmkGzd4sysXF6BePcDZGfj0U+D33wF3d+Cff4ClSw0bhyjeffxxx/kQrmoAI5GoMmWnTvFLR/nZEcuLjATq1OGrAo8etfZoiAVRAENsk64ABqi8DiYtjV+Gh2t2SB0xAvjgA359yZLKx6BQ8KAHcJzpI0B3Ee+lS0ByMr+ubwoJUP2ORB8fCmCIuUgkNI3kICiAIbbnwQPg+HF+3ZQARtS/aPuQHTWKZ2QOHlR9uOry3398BZKXF592chTqGRjRRyc/n29YmJ/P96Xq2FH/OUQdzPnz/JICGGJOFMA4BApgiO1JTuZ1LCEhfP+T8sp3ei1PZGAaNqx4X2Ag30EYqDwLM28evxw+nE89OQqRgSkp4QGLQgGMHcung4KCgLVrK9/7RwQwZWX8kgIYYk7qAYy5mlWSGocCGGJ7xPRRbKz23iHlNwssT18GBgBeeIFf/vorr5XR5uxZ4O+/+fXXX698zPbEw4NvmgfwLMyHH/KgxdUVWLOGB5aVKd/kjgIYYk7t2/NMamamqi6L2B0KYIjtEQGM2P+oPENrYLRlYACgf38+TZKdDWzZov2Yzz7jl4MGAc2bVz5meyOmkX78EXj3XX594UIeVBpC/I4ECmCIObm7A23b8us0jWS3KIAhtoUxVYdNbfUvQNVqYAC+OmnMGH79558r3n/jBvDbb/z6jBmVj9keiQDm00/55aRJqsyVISgDQyyN6mDsHgUwxLZcu8ZrW5yceA8YbfTVwBQWqm7Xt1Lm+ef55aZNQFaW5n1ffcWnlh59VPUm6WhEHQwA9OgBfPmlcY+nAIZYGgUwdo8CGGJbxPRRTAyvxdBGXw2MmA/39tb/oRkVxaeoyspUnXYBIDcX+P57ft1Rsy+AKkgMD+dbMLi4GPd4CmCIpYkA5sQJXmxO7A4FMMS2HDzIL3VNHwGqD9f8fOD+fc371KePKts8UGRhfv5ZtZJh0SJ+3qgo1WolRzRpEjB6NO9irJ6NMVRAgObP39fXbEMjBABvUhkezlfJHTpk7dEQC6AAhtgWfQ3sBC8v1bLm8tM/lRXwqnvmGcDNjfeDOXyYtyX/6it+34wZundbdgQxMXyVVlSUaY93dlYFPj4+/HtCzI2mkeyaA78DE5tTWqrq9KprBRKg2aq+fB1MZQW86nx8VPsb/fwzn0q6eZP3nhkxwrixk4rENBJNHxFLoQDGrlEAQ2zHiRNAURHfDLBxY/3H6qqDMSYDA6imkf74g2/0CABTp2puIElMQwEMsTQRwCQl8akkYlcogCG2Q73/S2XTN7qWUhuTgQH4CpsGDYC8PODCBV6rMWGCgQMmelEAQyxNFPvn5qp2Pid2gwIYYjsqa2CnTlsAw5jxGRipFHjuOdX3r7zCa2xI1YnfEQUwxFKcnVXvFzSNZHcogCG2w5AVSIK2Gpi7d1XLKRs0MPx5n3uOLxN2dwdefdXwxxH9evfmRdK9ell7JMSeiWmkffusOw5idlT6T2zDnTt8CgeofKdjQHsNjMi+BAfzD05DhYcDe/YAMlnFFvjEdL1786k5Y3vIEGKMHj2Ajz4CNmzgKwllMmuPiJgJZWCIbRDZlyZNDJty0DaFJOpfDJ0+Ute5M9CmjfGPI/pR8EIsrWdP3hPm7l0exBC7QQEMsQ3GTB8B2gMYkYExtICXEGL7nJxUe5stWWLdsRCzogCG2AZDGtipEwFMVpZq+WRVMjCEENslCvH/+Uf7HmnEJlEAQ2o+hUKVgTFkBRIABAbyy7IyXj8DGL+EmhBiH5o04cW8CoVqJ3mi6f59vkHuM89YeyQGowCG1Hznz/M+Du7uQHS0YY9xcQHq1OHXxTSSsUuoCSH2Q2Rhli5V7W1GVPbuBY4eBf78k2+dUpmMDODKFcuPSw8KYEjNJ6aP2rc3ruhTvQ5GLlf9Z6MMDCGO5+mn+R9BZ84Y9gHtaNR/JgsWVH78rFlAZCSwcKHlxlQJCmBIzWdMAzt16r1grl3j00murkBIiHnHRwip+Xx8gCFD+HUq5q1IfcfuFStUU+/aXLoE/P47f081pK2FhVAAQ2o+Y1cgCeq9YET9S3g4X5VACHE8Yhrpjz/4vmqEY0yVgfHx4f1y9AV5n3zCs9r9+vG6GSuhAIYYbvly4KWX+Mqe6nL/Pt/EETA+gFGfQqL6F0JIr15AWBivqVu3ztqjqTmuX+fvk05OwAcf8NsWLtS+Aea1a7yOCODTSFZEAQwxDGPAlCnADz8AbdtWX1vuI0f4f6J69fiXMdQDGFqBRAiRSoGxY/l18SFMVNmXli2BceN4FiYtDdi6teKxn30GlJbyDsddulTrMMujAIYY5to14PZtfv3GDf6Pd948y1fzmzp9BGjWwFATO0IIoJpG2raNv68RVQDToQPfvfv55/n35Yt5s7L4H7EA8L//Vd/4dKAAhhjm2DF+2awZ7xNQVga8/jqv7M/Ls9zzGtvATp22GhiaQiLEsTVqBHTtyv/4op4wnHoAAwAvv8wvN29WvXcC/I/WoiK+oKJ37+odoxYUwBDDHD3KLzt35tXnX3/NlzSvXs3/0Z86Zf7nZAxISuLXjV2BBGivgaEMDCFEZBioJwyfoj9yhF8XAUyTJsBjj/GfzaJF/La7d1UZmVmzAImk+sdaDgUwxDAiA9OmDf+H++qrfIfm0FDeaG7wYPO/EVy9qiosM6XSXQQwOTmqwmPKwBBCnnqKT5WcP6/6I8lRXbzI3yPd3HgNjPDKK/xy8WKedfn6a6CgAGjVCoiPt8pQy6MAhhhGZGDUd2Tu3BlITua9VS5eVGU5zGX7dn4ZE8PfbIzl6wvIZKrvfXwAPz+zDI0QYsO8vHgQA1Axr5g+atNGs1HoE0/wFVt37gA//cQDGIDXvtSA7AtgZAAzZ84cdOjQAV5eXggICMDgwYNx7tw5jWN69OgBiUSi8TVx4kSNYzIyMhAfHw8PDw8EBARg+vTpKCsr0zhm165daNu2LWQyGSIjI7HU0f+RWdPt26pit9atNe8LCFClHf/7z7zPu3gxvxRvNMaSSFRZGICyL4QQFVHM++efQGGhVYdiEYWFwNy5QPfuQEqK7uPK178Izs68bQYATJ0K3LvHayBFM8AawKgAZvfu3UhISMCBAweQmJiI0tJS9O3bF/fv39c4bsKECbh586by69NPP1XeJ5fLER8fj5KSEuzfvx+//PILli5dinfeeUd5THp6OuLj49GzZ0+kpKRgypQpGD9+PLZqW9LlyIqLq+d5xPRR48b8L5fyHn2UX5ozgDl5Eti/n08fiflqU6gHMFT/QggRunfnjS3z8oC//7b2aMxHoQCWLQOaNgVmzuRT/W+/rft4XQEMAIwfz7MypaX8+7feqlmNQFkVZGdnMwBs9+7dytu6d+/OJk+erPMxmzdvZlKplGVmZipvW7hwIfP29mbFxcWMMcZmzJjBWrRoofG44cOHs7i4OIPHlpubywCw3Nxcgx9jU/btY8zFhbGPPrL8c82dyxjA2NNPa79/40Z+f5Mm5nvOV1/l53zyyaqdZ9Agfh6Asf/7P7MMjRBiJ2bN4u8N/fpZeyTmsXMnY23bqt7zQkL4pZMTY2qfuUqlpYy5u/Njzp7Vfs4RI/j9ERH8+Gpg6Od3lWpgcnNzAQC1a9fWuH358uWoU6cOWrZsiZkzZ+LBgwfK+5KSkhAdHY3AwEDlbXFxccjLy8OphytZkpKS0KdPH41zxsXFIUlPsVVxcTHy8vI0vuzaunU8Kt6yxfLPJTIwbdtqv/+RR/h0zfnz5unS++CBanmjSGGaijIwhBBdRFO7bdt4fytbVVbGW1r07MnrFb28gDlzeG1ip0687f/vv1d83KlTfKrJ25tn2LV5/32gb1/gxx/5tFINYnIAo1AoMGXKFHTp0gUt1SqXn332WSxbtgw7d+7EzJkz8dtvv2HUqFHK+zMzMzWCFwDK7zMzM/Uek5eXh0Idc5Vz5syBj4+P8issLMzUl2YbxLK3S5cs/1zaCnjV+fmpqtfN0aF31SpeFd+gAV/KVxWiFwxAAQwhRFNkJO8mK6ZdbNWWLfx908kJSEjggcubb/Ldt/V1HhYbOLZvz7sUaxMZyTvy1oC+L+WZHMAkJCTg5MmTWLFihcbtL774IuLi4hAdHY2RI0fi119/xdq1a3HJwh+0M2fORG5urvLr6tWrFn2+KikpATZu5JemUCj46h+Ad5lVy3CZXX4+cOECv64rgAHMWwcjOj1OmKD7P5WhqIiXEKKP+ID/5ReL94S5df8W8ovzzX/i06f55fDhwLff8sUVwjPP8JWiJ05ULObVV/9iA0z6dJg0aRI2btyInTt3IjQ0VO+xnR42ILt48SIAICgoCFnlphnE90EPP2x0HePt7Q13d3etzyOTyeDt7a3xVWN98QUwYIDprZgvXNDsfnv5slmGpdXx4/wyNBSoW1f3cV278su9e6v2fOYq3hXUA5jw8KqfjxBiX55+mvdAOX1aldm2gPzifDT5tgna/9gezNyBklgN3LRpxfv8/IBBg/j1X37RvE8EMB07mnc81cSoAIYxhkmTJmHt2rXYsWMHIgxIyac8jPiCH6byY2NjkZqaiuzsbOUxiYmJ8Pb2RlRUlPKY7aIHiNoxsbGxxgy35tqxg18uXaqq7jZG+f9k5u6/oq6y6SNBZGCOHePNjkwlsi8DB2pO/5hKBC0NGvA3KUIIUefjAzz5JL9e/gPejE7fOo2cohycv3Me1/Ovm/fk+gIYQJVlWr5c9ZlTWAikpvLrjpCBSUhIwLJly/D777/Dy8sLmZmZyMzMVNalXLp0CR988AGSk5Nx+fJlrF+/HmPGjEG3bt0QExMDAOjbty+ioqIwevRoHD9+HFu3bsWsWbOQkJAA2cOmYxMnTkRaWhpmzJiBs2fP4rvvvsPKlSsxdepUM798K1AoVPOOt28D//xj/DnKBzCWnJ6rrIBXCAvjwYJcrtq/yFjmLN4VWrXiKVULvjERQmyc+ID/4w+Ltae4dE/1Pn0i64R5T37+PL/UFcDExQGBgcCtW6qFHykp/P06MBAIDQVjDIuPLsa/af+ad2yWZMzSJgBav5YsWcIYYywjI4N169aN1a5dm8lkMhYZGcmmT59eYSnU5cuXWf/+/Zm7uzurU6cOmzZtGisttzxr586drHXr1szV1ZU1bNhQ+RyGqrHLqM+cUS1xAxgbNsz4czz6qOYSuddeM/84hZgY/hzr1lV+7MiR/Nh33jHtuZYu5Y9v0IAxudy0cxBCiLHKylTvp3/9VfF+hYK3rrhxw+SneH/X+wyzwTAbbM5/c6ow2HLu3FF9nhQU6D5u2jR+zJAh/Pv58/n3TzzBGGPs15RfGWaDeX7syQpLC803PhMY+vlt1JooVsm8XVhYGHbv3l3pecLDw7F582a9x/To0QPHxF//9kRkXwID+ZLj9ev5ihtfX8MeL5erpnWGDQPmz7fcFFJxsao4rLIpJIDXwSxfbnodjDmLdwkhxFBOTsDo0cAnn/CpffVus7du8d2Z//qLvw+K918j6c3AlJTwJcqmvO+J6aPQUKBWLd3HjR3L6y83bODbA6gV8N55cAevb3sdAFBQUoCd6TvRv3F/48dSzehTorqJAObZZ4EWLXiQsHq14Y8/e5ZPtXh6Av368dssFcCcPMn7C/j78ymiyog6mAMHjK/tMXfxLiGEGENMI23ZAogazbVr+fv0X3/x748dA9LTTTq9zgDm4EG+11tICDBmDP8jUK1GtFKV1b8I0dE8ACst5VNl4rOoQwe88e8buP3gtvLQ9efWG/78VkQBTHUT/2g6deIRP6Cq+zCEqH9p21bVeCgtjdfWmJt6Aa8hm3c1bw7Urs0DLGOzZ+Yu3iWEEGM0b86LWcvKgAUL+PvzkCE8A9OyparXVSWzB7pcuqsKYM7ePouisiL+zd9/88x6Vhb/LBg1imfo27UDZs+ufJ+myupf1In9nxYsUD7uv3pl+OnYTwCAtx59CwCw4fwG86+UsgAKYKpTUZFqHX7HjsDIkTww2LPH8KXQIu3Xvj1Qvz7PWBQVAQ+bAJqVCEIMmT4CePqzSxd+3Zh+MMXF5i/eJYQQY4kP+Pff543tpFLeEO7IEdUfnJs2GX3aB6UPcLPgJgDA3dkdcibHmVtn+J0nHmZjXn4ZeOMN1Ya5R48C773HMzL6GJqBAYARI/hU1dmzAICSRg3w0n9vAABebPsi3u7+NjxcPHA9/zqOZdb8Eg4KYKrT8eM8fVenDl/WGxrKWz8DhneBFBmY9u35Jlv16/PvLTGNJDIwla1AUmdKP5jERF4HFBJS9c67hBBiKtH0DQCaNOGdxefMAWQy4PHH+e07dxrdPDT9Hp928pH5oGM93nNFOY0kApgRI/ju0ceO8QalooP9wYP6Ty4CmCZNKh9I3bpAfLzy28/iPHHm9hkE1ArA3D5z4ebshrhGcQCADec2GPbirIgCmOqkPn0kpmTUp5EqS9mVlqoyOO3b80vRXdbcAYxcrvqPZWgGBtAMYAxNQa5Zwy+HDKHiXUKI9dSuzd+P5s3jgUTnzqr7WrTgfzAWFfEgxgii/qVR7UZoFdgKwMMAJicHEF3jo6NVDwgKUvWm0ddcTy7n2wYAhmVgAGWW6WJt4MMAnomZFzcPfu5+AIABTQYAANafr/l1MPRpYayqzAuKAEa96+HQoXy/ivPnVdNDupw6xadbfHyARo34bSKAMXcvmHPn+NxrrVq6N/nSpm1b/npu31b9ZaBPaalqK/uhQ00bKyGEmEt8PDBlCi+sVSeRqLIXRk4jifqXRn6NEBPIe6KdyD6haiRXv37Flajt2vHLkyd50KTNlSv8M0EmU2XjK/P442B16+CVeKAIZejTsA9GtByhvDu+STwkkODozaO4lnfN0JdoFRTAGOvTT3lUPns2kJTEC74MpS2A8fJSRdqVFfOqTx+JTIWlMjBi+qh1a+OyIq6uPMMEGFYHs3s3cPcun1YTq5gIIaQmEtNImzYZ9cesyMA09GuoCmCyTqiy3A8bvWqoX5+vAC0rUwU65YkC3saNeT2kIVxdseKH15DYCJA5ybAwfiEkaos0AmoFoHMozzxtPL/RsHNaCQUwxtq8mc9Jvvce8MgjfE5x2DDgp5/0L327d0/1j61822YxjbRihf7lx+oBjCAyMeYOYIwt4FUnAhFD6mDE8sTBg2vcVu2EEKKhVy++JUlGBs+IG0g5heTXCC0CWkACCbLvZyPr5MOu5erTR4JEosrCiM17yzOm/kXNhzf4Jsyzus1CZO3ICvcPbDoQQM1fTk0BjLGWLQMWL+ZBi68vn8NcvRoYP55H0Tdvan+cmB5q1IhH1er69OHL5irbWkBbAGPpDIwpAYyog6ksAyOX8z4LAE0fEUJqPg8P1cILI5ZTp93j78+NajeCh4sHGvvzafkTVx++p2vLwACq9/rKAhhD618AlMhLcO42f9wLbV7Qeoyog9mRvgMFJVXY287CKIAxVlgYMG4csHIl7w+wfz/w7rv89qws4McftT9OvYC3PGdnvqQaAH79Vfvji4tV6UZtAUxmJnD/vvGvRxvGVMXCxqxAEjp35tNO6enAdT2blu3fz39mPj78LxtCCKnpjKyDkSvkylVIjfx4xlw5jXT/4R+eugIYkYHRVchrQgCTfi8dciZHLZdaCPbU3nMrqm4UGvo1RLG8GImXEg0+d3WjAKYqnJ2B2FheDzN3Lr9t0SLt00Da6l/UiWmkDRv4dFN5J07w8/r7q3ZYBvhW6aL4y8QOkRVcvswzSy4uwMMdwo3i7a3qZaBvGklMHw0cqFq6SAghNZmog9m3T/t7dTnX8q6hVFEKF6kLQr1DAQAxAQ8DGN8S/t6nawqoskJeY5rYiYfc4Y9p4t9Eo/ZFnUQiUWZhNpyvucupKYAxl6FDgYAA4MYNvr+ROsYqD2BateJReHEx8L//Vbxfffqo/D86c9fBiOmj6GjTAwtRB1P+ZyEwplo+TdNHhBBbERHBu/bK5cC2bZUeLupfIvwi4CTlhbbKDEwg+PJsXfV/+gp5798Hrj1cJWREDcyFuxcAQDmNpYuog9l4fiPkCrnB569OFMCYi0zG62AA4LvvNO+7epVPlTg7qzIT5UkkvPcAACxcWLHPgLb6F8HcS6nF3K4p9S/CiIfL8n7/nTeqK+/wYf5zqVUL6NvX9OchhJDqJqaRDKiDEUuoG/o1VN4mApjTdYHSmJa6H6yvkFdkX+rU4f1rDKTMwNTWH/R0rd8VPjIf3HpwC4euHzL4/NWJAhhzeuklXvuxYwdw5ozqdtFJMSaG90jRpVcvYOJEfn3cOKBArXhKBDDlVzAB5i3kXbIE+Plnfv2pp0w/T+fOwKRJ/Pr48UB+vub9YvooPl7/z4QQQmoaMY20ZUul+9Cpr0ASwn3D4SV3RokzcC4qQP9z6SrkNaH+BdCcQtLHxclFuSN1TV2NRAGMOdWvDwzg84ZYuFB1u74C3vI+/ZSfJz0deItvrIUHD1RL9vRlYKoawOzdq9qL6O23Vbtdm2rOHJ5uzcjge3wINH1ECLFljz7Ka/1u3aq0AalyBZJaACOVSBFzh08bnQh10f9clWVgjFxCLaaQKgtgAGBgEz6NVFPrYCiAMbdXXuGXv/yiyqBUVv+izstLtZLpm2/4UuTjx/l8a1AQ3y+oPHPUwFy+zFv5l5byoGL2bNPPJXh68iXnAA/oduzg11NTeftrNzfVXzKEEGIrXFxUU9+VrEZS30ZA6cEDxFzhRbknalWyTFkEMKmpmoW8JmRg7pfcV3bXrawGBgD6RfaDk8QJp26dUgZiNQkFMObWpw8QGQnk5fH6j7Iy1fSPIQEMwP9jjBvHr7/wAt+tGtBewAuoMjDp6brTma+8wvsXrFxZsXtwfj5fCXTrFq97+eUX8+1JpD4tNn48D+rE9FFcHA9yCCHE1og/vvTUwTDGNLYRUDp1CjFZ/OqJgkpqF3UV8poQwFy8y/dN8nf3R233yutm/Nz90C28G4CaubkjBTDmJpWqsjALFgCnT/MpIC8v4+Yqv/gCqFePZypENkTb9BHAe9A4O/MVTDduVLz/9GmeAdm1Cxg+nI9j4UK+15FCwXc9TU3lzfT+/psX1ppT+WkxEcAMGWLe5yGEkOrSn9eHIDlZZwPTu4V3kVucC4CvQlI6cUIVwIhdqXXRVsjLmEkBjKH1L+pq8nJqCmAs4bnneGHqiROqlUXt2xu+VwXAm7v98AO/LtKGugIYZ2dVbxht00giYGjYkEfyaWk8yAoPB554gi91lsl48BIWZvgYDeXlpZpK+uYbXs/j7KyqFyKEEFsTFKR6T377ba19uMT0UbBnMDxc1DaHPHECLR/uPHM9/zruPLij/7nKF/JmZvJstlSqysAbwNAl1OqeaPIEAGDPlT3IK84z+HHVgQIYS/DzA559ll9fupRfGjp9pO7xx4GxY1Xf6wpgAP2FvKtX88tZs/jupV9/zYOXW7d4FT3A93IypMjYVI89plpmDgC9e/OfEyGE2CrRQf2nn/h7cPfufBXnw1WXyukj9foXADhxAt7FQIRzXQBAaraOzRqF8hkYkX2JiOB/fBrI0CXU6hr7N0bj2o1RqiitcV15KYCxFDGNJJgaHMybx9v5DxnCp3h00dUL5vx5nglydgYGDeLTQ6++yqemfv+d1+zMm6f6j2hJn38OhPJOlBg2zPLPRwghljR5Mt8fr3dvPtWzZw+vXwwMBCZORNotHjBo1L8wpqxlifHnnc4rnUYqX8hr4SXU5cU35n1vNl0wbPuE6kIBjKW0basZtJiSgQF4liI5WTUNpIuuDIx4XK9ems2OnJ15s7nERGDKFNPGZiwfH+Dff/k00nPPVc9zEkKIpUgk/I+/f//l2e2PP+ZBRWEhsGgRLiXxD3yNAObmTeDOHUAqRUyjRwAYEMCUL+Q1MYAxZQoJUE0jbb6wGQqmv+9NdaIAxpISEvhlaCgvyLUkXUupRQBTlaZ05tS0KW9wZ0w9ECGE1HRhYcDMmbyJ6ddfAwAuXUkBUG4KSWzK27QpYurxzXKNLuQ1oQfM3cK7uP3gNgAgsnakwY8DgK7hXeHl6oWs+1lIvqFjZ2wroADGkp59lkfkS5ZY/rm0ZWDS0/k/dqkUGDzY8mMghBBHJ5Hw1hEREbjkxTf21cjAiAAmJka5pcDJ7JOV7zekXshrQgbmwh2efannVQ+ersa1r3B1ckXfRrzvTU2aRqIAxpKcnHhE3qeP5Z9LBDDZ2aq2/SL70r07ULeu5cdACCEEcHFB4VszcN2bf9vQLUh1nwhgoqPRyK8R3J3dUVhWqFyxpJPIwCQlqVY8GRPAmDh9JNTEOhgKYOyFj4+qxkX84xarj2rK9BEhhDiI9MdjAQBexUCdX1ar7hDN6GJi4CR1QnRgNADDC3kTC0/hryZy3gQ0ONjg8ZiyAkmd2BfpyI0juJmvve9NdaMAxp6o18Fcvco3kZRIgCeftO64CCHEwaQVXAUANLoLSD77jDc0LSlRbfQbw6ePYgL45fHM4/pPWL8+7gfWxsARwFPDgXNt6mvvzK6DqSuQhCDPIHQI4ZsJb7m4xaRzmBsFMPZEvQ5GbJb46KNGRemEEEKqTtkDptgDyMoCFi3itSulpXwjyPr1AUBZB3M086j+E0okONy1IYoe7v24NqaSTSDLMWYTR11q2jQSBTD2RL0XjJg+ot2eCSGk2ik3cWzZld/wySfAgQP8ekyMMnsSG8anmvZf3V/pEuV9zVTbvKyre9vgsTDGlBkYU2tgACC+CQ9gtl3ahuKyYpPPYy4UwNgTEcDs28e/ANpviBBCjPDr8V8x9Z+pOHz9MBhjJp9HGcA8OhBo0IBnYd55h9/5cPoIAFoHtYanqydyinJwMvuk3nPu81W18j+I67ied92gsWQWZKKgpABSiRQN/QzfeqC8tsFtEeQZhIKSAvyX8Z/J5zEXCmDsiaiBOX6cd3vs3NkyexsRQogdupp7FS/8/QK+OvgVOi7uiHY/tMOiI4uQX5xv9LnEFFLDuk34JrYA38MIAKKjlcc5S53xSBhvaLfnyh6d51MwBZJK+Dnr3Oe3rT+33qCxiOxLhG8EXJ1cDX4N5UklUjweyXfh3nTe+tNIFMDYk/KbetHqI0IIMdj3R76HnMkRWCsQMicZjmUew8RNExH8RTBe3PAiLt69aNB55Ao50nP4atBGfo34nnZiw11AIwMDAF3r82kmfVmN07dOI6ckDx5yKaZeqgMAWHt2rUHjqeoSanWiK+/GCxurfK6qogDGnoSG8i0CBJo+IoQQgxSVFeGHoz8AAL6L/w7XX7+OL/t+iab+TXG/9D5+PPojhq40rKbwRv4NlMhL4Cx1RphPGODqCvzvf6oDWrbUOL5beDcAPAOja9pqXwYvC+jUqDue+oFf33l5J3KKciodT1WXUKvr07APXKQuuHj3ovK81kIBjD1xcuJzrQDvGRARYdXhEEJs0zcHv0Gjrxvhs32foUReYu3hVIsVJ1fg9oPbCPMOw8CmA+Hv4Y+psVNxJuEMto3aBgBIzUo1aDpJ1L808G0AZ+nDPyrHjuXd2d94g69CUtOxXke4OrkisyBTZ0O7/df2AwC6hHVBE/8miKobhTJFmUFTOVVdQq3OS+aF7g26AwA2nrduFoYCGHvTrBm/pOkjQogJ5Ao5PvzvQ6TdS8OMf2cgemE0tlyoGX0/LIUxhm8OfQMAeKXDK6qgA4BEIsFjjR5DqHcoGBhSMlMqPZ9yCbX6FgKursDy5cDcuRWOd3N2Q8d6fMPf/65on0YSGZgu9bsAAAY3HQwAWHduXaXjMecUEgA80ZhPI1l7OTUFMPZmzhxg9my+zTshhBhp/9X9yL6fDS9XLwTWCsT5O+fx+O+PY8AfAwyuAbE1SdeScPTmUcicZBjfdrzWY9oF8064yTcr38xQuQJJPYCphKiD2ZNRsZA3qyALl+5dggQSxIbyZddPNucNSrdc2ILC0kKd55Ur5MrfmzkyMIBqOfWeK3uQV5xXydGWQwGMvWnZEnj3XcDd3dojIYTYIFEYOrjZYJybdA7TYqfBWeqMjec3osV3LfDKplfw99m/cbfwrpVHWtH+q/tx+Pphox8nsi8jo0eijkcdrce0DeY7RxsTwBizZFnUwWjLwOy7yrMvLQNawsfNBwAPqEK9Q3G/9D62p2/Xed6M3AyUyEsgc5IhzNs8q1Ija0eiiX8TlCnKsO3SNrOc0xQUwBBCCAHAp1JEAPNksyfh4+aDz/t+jtSXU9G3UV+UyEuw8MhCDP5zMOp8Wgetv2+NyVsmY+2ZtXhQ+sCqY79XeA+9f+2Nbku7Iasgy+DH3ci/gdWneePPVzu9qvM4ZQbmRuUBjNj5uVFtwzMwj4Q9AqlEikv3LuFG/g2N+8T0kVhuDfCpLTGNtPaM7tVIYvqoUe1GcJI6GTyeygxpNgSPNXwMPjIfs53TWBTAEEIIAQCkZKbgcs5luDu7Iy4yTnl7szrN8M/If7Bl5Ba82PZFNPVvCgaG41nH8fWhrzFk5RDELIwx6MPdUk5knUBRWRGKyorwy/FfDH7coiOLUKYow6P1H0XroNY6j2sXwgOYs7fPoqCkQOdxBSUFyo0Z2wS1MXgc3jJvtApsBaBiFka9gFfd4GaDAQDrz6+HXCHXel5zFvCqm9NnDraN3obHGj1m1vMagwIYQgixI2duncG6s+tMeqzIvvSL7AcPFw+N+yQSCfpF9sOiAYtwdtJZ3Jx2E38+9Sdebv8yQrxCcOneJcT+FIuvD35dpQ62pkrNTlVeX3x0sUFjKC4rxqLkRQCAVzvqzr4AfDPDEK+QSgt5k64mQc7kCPcJR7hvuM7jtFFOI6n1gyksLVQGhqKAV/14Pzc/3H5wWznNVJ45l1DXNBTAEEKInbj94Da6Le2GJ/98EtvTdNdF6KI+fVSZIM8gPN3iaXwX/x1OvnwSTzZ7EqWKUkz+ZzKe/PPJaq+REVkPgE+b7L6yu9LHrDq9Cln3s1DPq55Br9mQaSTRTVcEI8ZQFvKqdeQ9cuMIShWlCPIMQoSvZmsMFycXZWM5XUGrpTIwNQEFMIQQYide3/o6bj/gm/z9euJXox574c4FnMw+CWeps/JD0VB+7n746+m/8E3/b+Dq5Iq/z/2N1t+3xv6r+406T1WIAKaeVz0AwI9Hf6z0MaJ4d2L7iXBxqnx3Z0NWIolVRCYFMOE8gDmZfVIZAIrMSpewLpA83ABSnQi81p5dqzXrZO4l1DUJBTCEEGIHEi8l4rcTvym/X3NmjVGFtSL70rNBT/i5+xn9/BKJBJM6TsKBcQcQWTsSV/OuotuSbnhpw0u4nHPZ6PMZQ8EUyo0Q5/bhfVb+Ov0X7jy4o/Mxh64fwqHrh+Dq5IoX271o0POIOpijN49qvb+orAgHrx0EYFoAE1ArQFlfJAp3RQCjXsCrLi4yDu7O7ricc1kjCwXwKTLxs6cMDCGE1DCX7l5CUVmRtYdhVQ9KH2DipokAgEkdJqGBbwMUlBRgw7kNBp/DmOkjfdoEt8HRF49iZPRIyJkcPxz9AY2/aYwJ6ycg7V5alc6tS/q9dNwvvQ+ZkwzPtHwGrYNao1herBHQqWOMYfau2QCA4S2GI6BWgEHPIzIwZ26fwf2S+xXuP3z9MIrlxQisFYjGtU3LeKjXwSiYQpnFKl/AK3i4eKBvo74A+E7a6sW8affSoGAKZU8fe2NUADNnzhx06NABXl5eCAgIwODBg3Hu3DmNY4qKipCQkAB/f394enpi6NChyMrSXNKWkZGB+Ph4eHh4ICAgANOnT0dZWZnGMbt27ULbtm0hk8kQGRmJpUuXmvYKCSF2iTGGD3Z/gMhvIjFm7RhrD8eq3tv1HtLupSHUOxQf9/4Yz7Z8FgCwPHW5QY+/nncdB64dAAAMajaoyuPxknlh2ZBl+O/5/9CnYR+UKcqw+NhiNPmmCZ7/+3mzN8QTBbxRdaPgLHXGhLYTAPBpJG3TKouPLsaWi1vg6uSKNx990+DnCfYKRrBnMBRMgeNZxyvcL2pXuoZ31TrdYwj1jR3P3zmPu4V34ebshjbBulc0iaDzywNfIviLYLzw9wv4++zfyjE29m9s8nhqMqMCmN27dyMhIQEHDhxAYmIiSktL0bdvX9y/r4pEp06dig0bNmDVqlXYvXs3bty4gSFqmwrK5XLEx8ejpKQE+/fvxy+//IKlS5finXfeUR6Tnp6O+Ph49OzZEykpKZgyZQrGjx+PrVu3muElE0JsHWMMM7fPxDu7+PvG6tOrcSXnipVHZR3Hbh7DF0lfAAC+e/w7eMm8MDJmJABgy8UteqdRhL/P/Q0AiA2NRYhXiNnG9mj9R5E4OhH7XtiHuEZxkDM5lqYsRfTCaBy6fshszyOmTmIC+S7PI6NHwt3ZHadvnUbStSSNY9PupWHq1qkAgI97fYyoulFGPZeyoZ2WQl6xeqhbfeOnjwSRgTly4wgSLyUCUO2VpMvTLZ7GuDbj4Ovmi1sPbmFJyhIM/nMwRvw1AoB9Th8BAFgVZGdnMwBs9+7djDHGcnJymIuLC1u1apXymDNnzjAALCkpiTHG2ObNm5lUKmWZmZnKYxYuXMi8vb1ZcXExY4yxGTNmsBYtWmg81/Dhw1lcXJzBY8vNzWUAWG5ursmvjxBS88gVcjZp0ySG2WCYDRb0eRDDbLBZ22dZe2jVrlReytotascwG2zYymEa97X5vg3DbLCFhxdWep4+v/ZhmA326d5PLTVUxhhjB64eYF1+6sIwG6z+vPrs1v1bZjnvUyufYpgN9vm+z5W3PbfuOYbZYM+te055W5m8TPn83ZZ0Y2XyMqOf650d7zDMBhu7dqzG7aXyUub5sSfDbLCUmykmvxbGGAv7MoxhNljD+Q0ZZoPN/HemQY8rKSth29O2s9c2v8bC54Ur/49Y+vdqboZ+flepBiY3NxcAULt2bQBAcnIySktL0adPH+UxzZo1Q/369ZGUxKPgpKQkREdHIzBQNR8XFxeHvLw8nDp1SnmM+jnEMeIc2hQXFyMvL0/jixBiX+QKOSasn4BvD38LCST4Pv57zO83HwDw07GfUCovtfIIq9c3B79B8s1k+Mh8lD8HYWQ0z8JUNo10t/AudqbvBKDaX8dSOoV2wqZnNyGydiQycjMwas0onQ3YjFE+AwNAOY3058k/kVvEP6u+SPoC+67ug6erJ34Z/ItJnWlFIW/5lUgpmSkoKCmAr5svWga0NOl1CGI1kqgZ0lXAW56Lkwt6RfTC/P7zkT45HSkvpeDPp/7EpI6TqjSemsrkAEahUGDKlCno0qULWrbkv6zMzEy4urrC19dX49jAwEBkZmYqj1EPXsT94j59x+Tl5aGwUPumVXPmzIGPj4/yKyzMPHs+EEJqhlJ5KUatHYWfU36GVCLFL4N/wUvtX8LgZoMRUCsANwtuYsN5w4tWzTmuozeP4sfkH5F4KbHamrhdzrmMWTtnAQA+e+wzBHsFa9z/TMtnIIEEezP26l0FtPH8RsiZHNEB0YisHWnJIQMAfNx88NfTf8Hd2R1bL23Fh3s+rNL5HpQ+UNbURAdGK2+PDY1FVN0oFJYVYnnqcpzIOoG3d74NAJjfbz4a+DYw6flEIe/pW6c1VnmJ+pdH6z9a5Zb95aegDA1g1EkkErQKaoWnWzwNdxf73BvP5AAmISEBJ0+exIoVK8w5HpPNnDkTubm5yq+rV69ae0iEEDMavXY0VpxcAWepM/586k+MbjUaAODq5IpxbcYBAL4/8r3Fx1FYWojVp1fj/7b9H7ou6QqfuT5o90M7vLjxRfRd1hdP/PEE0u+lW3wcc/6bgwelD9C1fleMazuuwv31vOuhZ0RPAMDvqb/rPI+5Vh8ZIyYwBt8/wX9X7+1+D/9c/Mfkc52+dRoKpkBdj7oaK20kEokyC7MoeRFGrx2NEnkJBjYdiOdbP2/y84V4hSCwViAv5M1UFfIqG9hVof5FEBkYAGhepzlqu9eu8jntkUkBzKRJk7Bx40bs3LkToaGhytuDgoJQUlKCnJwcjeOzsrIQFBSkPKb8qiTxfWXHeHt7w13HLssymQze3t4aX4QQ+3A19yr+PPUnpBIp1g1fh6eintK4f0LbCZBAgsS0RFy6e8li4yhTlKHXr70wbNUwfJH0BfZm7EVhWSF83XzRPbw7XKQu2HxhM1p81wJz/puDEnlJhXPceXAHK06uwLykeVrvN0RRWRH+PPUnAOC9Hu9BKtH+Vq4+jaQtM3S/5L4yeLD09FF5Y1qNwUvtXgIDw8g1I00uwlafPiq/0mZ0zGi4OrniRNYJnMg6gboedfHDEz9UaUWORCKp0A9GwRSqAl4T+r+U17xOc+Wu2LqWTxMjAxjGGCZNmoS1a9dix44diIjQbGvcrl07uLi4YPt2VQvrc+fOISMjA7GxsQCA2NhYpKamIjs7W3lMYmIivL29ERUVpTxG/RziGHEOQohjEXvPtKjbAvFN4ivcH+EXodx88IfkHyw2jnlJ83Dg2gF4y7zxcvuXsXTQUpxJOIM7M+5g13O7cOLlE+jZoCcKywrx1o630GZRG+y6vAt7M/bi7R1vo+OPHVH3s7oY8dcIvL7tdZMzRhvObUBucS7CvMPQvUF3nccNbT4UMicZTt86XWHZL2MMXx34CkVlRYjwjVBuJFidvur3FdoFt8PdwrsYtmoYisuKjT5HahZfQh0dEF3hPn8Pf41gd9ETixDoWfV+KOU78p6+dRp3C+/Cw8VDuUqpKiQSCR5v/DgAoH/j/lU+n70yKoBJSEjAsmXL8Pvvv8PLywuZmZnIzMxU1qX4+Phg3LhxeP3117Fz504kJyfj+eefR2xsLDp37gwA6Nu3L6KiojB69GgcP34cW7duxaxZs5CQkACZTAYAmDhxItLS0jBjxgycPXsW3333HVauXImpU6ea+eUTQmzBscxjAKB3t+CX2r0EAFiSssSkD8LKXLhzQblse36/+fgu/juMbT0Wzeo0U2ZAmtVphu1jtuO3J39DXY+6OH3rNHr+0hNdl3TFh/99iMM3DoOBoa5HXQAweepENGgbGT1SZ/YF4PUmA5oOAAAsP6Eq5i0qK8K49eOUNTQvtnvRKn1C3JzdsPrp1fBz88PhG4fRbWk3vLLpFXyy9xP8efJPHLx2ELfu39J7jhPZFQt41U2LnQZ3Z3dM6jDJbFmm8gGMmD6KDY01aEsCQ3zd72vseW5PtU7t2RxjljYB0Pq1ZMkS5TGFhYXslVdeYX5+fszDw4M9+eST7ObNmxrnuXz5Muvfvz9zd3dnderUYdOmTWOlpaUax+zcuZO1bt2aubq6soYNG2o8hyFoGTUh9uPJFU8yzAb7Yv8XOo8plZeykC9CGGaD/ZH6h1mfX66Qs+5LujPMBnvs18eYQqGo9DF3HtxhL214iUlmS5j/J/7smdXPsCXHlrDredfZ8czjDLPBPD7yYEWlRUaNJbsgmzm/78wwG+xU9qlKj197Zi3DbLB6X9RjZfIydjX3Kuv4Y0eG2WDS96Tss32fGfR6LGnz+c1M+p5Uuey3/Nc3B7/R+jiFQsHqfFqHYTbY4euHdZ7flOXS+mTkZDDMBnN6z4k9KHnAnln9DMNssPd2vWfW53FUhn5+Sxizwr7n1SAvLw8+Pj7Izc21Wj1MblEuXlj/Ano26Gm3y9gIqQ4N5zdEek46to/Zjl4RvXQeN3vXbLy3+z10D++OXc/tMtvzLzqyCBM3TUQtl1o4+cpJo1awFJYWwtXJVWNlCmMMwV8EI+t+FnaO3YkeDXoYfL5vD32LV7e8inbB7XDkxSOVHl9cVoygL4KQU5SDj3t9jPkH5yPrfhb83Pzw51N/4rFGjxn83JZ0+tZp7L+6H5dzLuNK7hVczrmMS3cv4WbBTTT0a4iLr16skCXKLMhE8BfBkEqkyJ+ZDw8Xj2oZK2MMgZ8H4taDWzgw7gCGrByCG/k3jP5dEu0M/fx2rsYxOZz5B+djzZk1+DftX7zc/uUqL60jlpV2Lw0LDi3AoRuH4OXqBV83X/i6+cJH5gNfN190C++G2DCqw6puOUU5SM/hq3r0TSEBwPi24/HBng+w+8punL19Fs3qNKvy81/Lu4bpidMBAB/3/tjo5bfalrBKJBL0adgHy1OXI/FSolEfemL6aHTMaIOOlznLMCxqGH48+iPe2vEWAF4vsu6ZdWjo19Dg57W0qLpRFbri3i+5j8DPA5F2Lw37r+5Hl/qaBa2i/iWydmS1BS+AqpD3n4v/YOWplbiRfwMuUhd0qtep2sZAaDNHiykoKcD8g7yxVF5xHk7dOmXlERFtGGPYkb4Dg1YMQuTXkfjywJfYm7EXWy5uwR8n/8DCIwsxd99cvLn9TTzy8yN4f/f7UDCFtYftUMQqk/o+9StdThrqHYonmjwBgGdNqooxhokbJyK/JB+xobFI6JBQ5XMKjzXkmY/EtESDH3Pu9jkcun4IThInjIgeYfDjxGokgLedTxqXVKOCF11qudbC0KihAKB1Y0ZtDeyqi6iDWXxsMQDe7t9e+63UVJSBsZAfk3/E3cK7yu/3Zuy1yn8yop2CKbDk2BJ8dfArnMw+qbw9rlGcchfdnKIc5VfavTRsOL8B7+56F8cyj+GXwb/AW0ZL9avDsZuVF/Cqm9huItafW4+lx5fi494fV+lDZcXJFdh0YRNcnVyxeOBis2ZR+zTk3caP3DiCu4V3Der1IT7E4yLjDN5BGeBLez/u9TFqu9e2WsGuqUbHjMavx3/Fn6f+xPx+8yFzlinvE5s4aluBZGkigMkr5l3fzbF8mhiHAhgLKC4rxudJnwMAmvo3xbk757A3Yy9e6fCKlUdWcx24dgCMsWqbopmXNA//l/h/AIBaLrUwttVYvNrpVb1TDkuOLcHETROx7uw6dF7cGeueWVftm6Sl30vHxbsXa0zdQnVIyUoBALQObG3Q8X0b9UW4Tziu5F5B3LI4vNX1LcQ1ijP6Q/v2g9t47Z/XAACzus4yetO/ytTzroeoulE4fes0dqTvqNDbpjwFU2DZiWUADJ8+EiQSCWZ2nWnyWK2pZ4OeqOdVD9fzr2Pj+Y3KjAxg5QzMw14wAgUw1Y+mkIyUfT8bU/+ZqrcB1a/Hf8WN/BsI9Q7FvLh5AIB9V/dV1xBtTmpWKrou6YquS7ri9K3TFn8+BVNgweEFAICpnafi2uvXsCB+QaX1Es+3eR57ntuDEK8QnLl9Bh1/7IhN5zdZfLwCYwwD/hiAvsv64uC1g9X2vNYmesC0CW5j0PFOUifM6T0HzlJn/JfxH/ov74/Wi1pj+YnlBu+V9KD0AYb8OQS3H9xGdEA03nj0DVOHr5dyGulS5dNIezP24kruFXjLvDGo6SCLjKcmcpI6KafA1KeRyhRlyvcLawQwYd5hymZzUonUpHb/pGoogDGCgikQtywOXx38CuPXj9fa2bJMUYZP9n0CAPi/2P9D1/CucJI4ISM3Axm5GdU95BpPwRR4aeNLKFOUQc7kmLZtmsWfc9flXUjPSYe3zBsf9voQvm6+Bj+2U2gnJL+YjC5hXZBbnIsBfwywaOM0danZqcpaqh3pO6rlOa2tRF6CU9n8NRs6hQQAI6JHIO21NEztPBW1XGrhRNYJjFo7Co2/aYyFhxfqrWMqlZfi6VVP47+M/+At88ayIcvg6uRa1ZeiVd9GfQEA29K2VbqH0m/H+Yf3U82fcrhaC7FtxOYLm3HnwR0AvC9PsbwYtVxqmbyvUVVIJBLlNFKboDY0pWwFFMAYQSqRYk7vOXCSOOG3E7/h3V3vVjhm1alVuHTvEup41MH4tuPh6eqpfOPdl0FZmPJ+TP4RSdeS4OnqCRepC/65+A+2XNhi0ef86dhPAIARLUeYtHIhyDMIO8buULZBn/zPZJy/c97cw6zgr9N/Ka8fuH7A4s9XE5y5dQalilL4yHwQ7hNu1GPDfMLwZdyXyJiagQ97foi6HnVxJfcKXtn8Cvov74+sgqwKj1EwBZ7/+3lsurAJbs5u2Dhio0X/uhfbD1zOuYxL93RvgVBYWohVp1cBUH2YO5KWAS3ROqg1ShWlyi0UxPRRdGC03mZ+liRWj/WL7GeV53d0FMAYqV9kP+UmZB/s+QA/Hf1JeZ+CKfDx3o8BAFM6TUEt11oA+O6kAE0jlZdVkIU3t78JAPiw54d4rROvN5i2bZrBqX5j3Su8pwwExAaApnB1csXC+IV4rOFjKCorwoQNEyy+OumvM6oAJulqUrXtemxN6h14TS08re1eG//r9j9cmXIFX8V9BXdnd2y7tA2tF7XWyGQxxjDlnylYnroczlJnrB62WmNTPUuo5VpLOfWgbxppw3m+dUB9n/oOW2sxJmYMANU0kjULeIXXY1/H38/8jbe7vW21MTgyCmBMML7teMzqyltwv7TxJWy9uBUAsOn8JpzMPgkvVy8kdFQttxSbce3N2Fv9g63BXt/2OnKKctAuuB0mdZyEWd1moY5HHZy5fcZi0zJ/nPwDxfJitAxoifYh7at0LolEgh8G/IBaLrWw58oe/Jj8o5lGWdG52+dw6tYpOEud4SJ1wa0Ht5S9Uczl/7b9H17a8FKNWiaurH8JMqz+RR93F3dM7jwZhyccRlTdKGQWZKLPr33wzs53UKYow/u738c3h74BACwdtFTrnkuWYMhyakO3DrBnI6JHQCqR4sC1A7hw54JVC3gFVydXDGw6UGNlFKk+jvk/wQze7/k+RseMhpzJ8dSqp5CSmYKP/vsIAJDQIUGjrkI0X0rNTkVuUa41hlvjbLu0Db+n/g6pRIpFTyyCk9QJvm6+eL/H+wCAd3a9g3uF98z+vGL6aFybcWZZStrAtwE+7s2zbtMTp+Na3rUqn1ObNWfWAAB6R/RWFrMeuGa+aaSzt8/ii6Qv8MPRH5Q1JzWBCGCMqX+pTIuAFjg84TDGtxkPBoYP9nyA6IXRmL17NgDgm/7fYGTMSP0nMSOxomxH+g6UKcoq3H8z/6ZyzyRjVx/ZkyDPIGXN0G8nfqsRGRhiXRTAmEgikWDxwMXoFdELBSUF6LG0Bw5ePwg3ZzdM6TxF49gQrxA09GsIBVOY9UPHVhWWFuKVTXxJ+asdX9VYjjih3QS0qNsCdwvv4oM9H5j1eVMyU3D05lG4SF0wKmaU2c6b0CEBsaGxyC/Jx8SNEy0ytSOmj4Y2H4rYUL7UPOlqktnOv+7sOuX1/Vf3m+28VcEYs0gAAwAeLh74ceCPWD5kOTxdPXH29lkAwOzus6t92492we3g5+aH3OJcHLmhuTWAXCHHmHVjUKYoQ+fQzmhet3m1jq2mEQHcz8d+xuWcywB4DQxxTBTAVIGrkyvWPL0GLQNaIreYZ1bGtxmvdbt2mkZS+ei/j3Dp3iXU86qHD3pqBinOUmd8GfclAOCbQ9+YtThW1CsNbjZYufzRHJykTlg8cDFcnVyx6cImrDi5wmznBoDLOZeRfDMZUokUg5sNRudQvrO7OQt5NQKYazUjgLmccxm5xblwkbpY7IP72ehncfTFo3iy2ZP4qNdHeKf7OxZ5Hn2cpE7o3bA3gIp1MO/tfg//pv0LDxcPLB6wuNrHVtMMbjYYnq6euJ5/HQBQz6ueQQ0AiX2iAKaKfNx8sPnZzQj1DoWnqyf+75H/03ocFfJyp2+dxqf7PgXAU/VeMq8Kx/Rt1BfxjeNRpihT7kFjCLlCrjP7UVRWhOWpywEAL7R5wYSR6xdVN0pZF/XaP6/h1v1bZju3mD7qFt4NdWvVVWZgUjJTUFhaWOXzX8+7joPXVX1lakoGRmRfWgS0sNgyZgBo7N8Ya4avwVtd37Jah1ptdTCbzm9SZiF/HPAjWgS0sMrYahIPFw+Nhn/U3dyxUQBjBmE+YTj58klcePUCwn21L/UUAcyBawcstsLGFry1/S2UKkoxoMkADG42WOdxn/f9HM5SZ6w/tx7b07ZXel7GGAauGIjAzwOx4dyGCvevO7sO94ruIcw7TPlhYW5vPPoGogOicfvBbUzZOsVs51WfPgL4nkBBnkEoU5Qh+WZylc+//tx6AECLuvwD8uLdi8i+n13l81aVOQt4azrxbzLpWhLyi/NxOecyRq/l0yUJHRLwbPSz1hxejaJeB0QBjGOjAMZMfNx8EOQZpPP+ZnWawc/ND4VlhcqlobamVF6KB6UPTH58XnEetlzkPV4+7v2x3r92m9VphpfbvwwAmLl9ZqV1Jfuv7sfmC5tx68EtDFwxsMKmi6J497nWz1lsV3BXJ1f8NPAnSCVS/J76u7Lwsipu5N9QZkSebPYkAF5/pZxGMkNN1dqzawEAY1uNVQYxldXX5BTlYNGRRbied73Kz6+LcgsBM9e/1EQRfhFo5NcIZYoybL20FU+tfAr3iu6hY72O+KLvF9YeXo3So0EPhHqHAgBaBbay8miINVEAU02kEqlyNZKuhnaJlxIxe9dsvdsUWNNTq56C9xxvjF031qTalH8u/oMSeQma+DdRflDqM6vbLMicZDh84zCSrun/QBVbA4g3tnd3vYuhK4cirzgPl3MuK7M4z7d+3uhxG6NDvQ6Y3GkyAOD1ra9rXVVijLVneHARGxqLet71lLcrC3kr+blUJqcoBzsv7wTA6wtET5LKppGmbZ2GiZsmotmCZph/YL7e1/mg9AFWn15t9OomSxXw1lQiCzNu/Tgk30yGv7s/Vg1bRUt0y5FKpPh18K+YFjtNY18k4ngogKlGj4bxaaS9VysW8p6/cx6DVgzCe7vfw7ykedU9tErdLbyLDec2QM7k+PX4r2i+oDlGrRmFM7fOGHwO8Zf+k82eNKjWIKBWgHIPlK8OfKXzuKyCLKw+vRoAsG74Ovw88Ge4OrkqN118f/f7YGDoFdELEX4RBo/XVO90fwf+7v44c/sMFh+tWuFl+ekjQWRgqtrQbtP5TShTlKFF3RZo7N9YFcDoKeSVK+T4+9zfAICCkgJM2ToFnRZ3wuHrhzWOu5p7FTP/nYmweWEYtmoYHvvtMYMDujsP7ii33nCUv7LFcuq84jxIIMHyIctR36e+lUdVM/WM6InP+35u0dooUvNRAFONRAZmb8ZejQ+dMkUZxqwdg8IyXpD58d6PTa5B2JexDy9vfFlrm/Sq+O/Kf2BgqO9THwOaDICCKbA8dTlafNcCI/4agYt3L+p9fHFZsXLjQ321L+VN7syzGX+d+QtXcq5oPeanYz+hVFGKTvU6oV1IuwqbLi5JWQKgap13jeHr5ot3u/NtJt7Z+Q7yivNMOs+t+7ew+8puAMCQ5kM07msf0h5OEifcLLhZpd4z686tA6D6nYgA5vD1wzozgUnXknCn8A783Pzw3ePfwdfNF0dvHkWnxZ0wafMkbE/bjqdXPY2I+RGYu28u7hbeBQDcLLhpcIHw8azjAICGfg3h4+Zj8uuzJb0iesFJwqc33+3+LuIi46w8IkJqNgpgqlH7kPZwdXJF9v1sjX1P5u6di4PXD8JH5oMWdVsgrzgPs3fNNvr8jDFM2DAB3yd/j6dXP13l6Qt1Yprh8cjHsX7EeiS/mIzBzQaDgWHFyRXo+UtPFJcV6318fkk+gj2D0bFeR4OfNyYwBr0iemnsIK1OrpDj+yN8a4dXOryivF1900WABxWihqQ6TGw/EU38m+DWg1uYu3euSef4+9zfUDAF2ga3rZA58nDxQKsgnpkwdRqpsLRQue+U+Nk0rt0Y/u7+KJYX49hN7bVaokj68caP4+UOL+NswlmMjhkNBoYFhxegz299sOr0KsiZHD0b9MTa4WuVmTT15dr6ONr0EcD/jf4w4Ae81+M9vN2dWtMTUhkKYKqRm7Obsn296Adz9OZRvLf7PQDAgscX4NvHvwUA/JD8g1HTMwD/IDtzmz9mz5U9eHdnxc0mTSUCmJ4RPQEAbYPbYu3wtUh5KQUhXiG4lncNK0+t1Pl4UcsxqOkgo1uhT+k0BQDw49EfUVBSoHHfxvMbcTXvKvzd/fF0i6c17hObLn4V9xXWDl9brTv4uji54NM+fLn4vAPzTNqJXEwfDWk2ROv9og7G1ELe7enbcb/0PsK8w9A2uC0AXiBcWR3M+vN81dKAJgMAAIGegfj1yV+xfcx2NPVvCjdnN4xvMx7HJx7HjrE7MLjZYOUU2Lqz6wya8lIGMIGtTXpttuqFNi/gne7vOOx2AYQYg/6XVDNlHUzGXhSVFWH02tEoU5Thqain8Gz0s+jRoAcGNR0EOZMb1QMFUDVqa1anGQA+FWWOlTC3H9xW7jsidl8VWgW1wqQOvHPp/IPztX44KZhCWTPxZHPjsyDxTeIRWTsSOUU5+PX4rxr3fXfkOwB8esjN2a3CY12dXDG58+QK464OA5sORI8GPVBUVoS3tr9l1GNzinKUhce6ChWVdTAmZmBEUDm42WCNmiR9dTAX7lzA2dtn4Sx1rrADb6+IXjidcBp3Z9zFjwN/1Fji2rdRX7g5uyE9Jx0ns09WOjZHzMAQQoxDAUw1U29o97/t/8PpW6cR5BmEhfELlR8inz72KZylzth0YZNBPVAAXvi34hTvAPvjgB8xsd1EAMCoNaOqvD/Pnit7APA+IQG1AircP6HdBLg5uyH5ZrLWD9MD1w4g634WfGQ+JgUSUolUubJn/sH5yuXRF+5cwLZL2yCBBC+1f8no81qaRCLBF32/4AWZqcsrFLlqk1+cj/Xn1uPFDS+iVFGKqLpRyoC0PBHAHL15VO/0nTZyhVyZSSlfk6SegSkfkG44z6ePuod311qbIpVItWa6arnWUq6yqWwaqaisCKdvnQYA5b5PhBBSHgUw1Ux8OJy9fRbzDvDVRosHLNZobd/Ev4myB8q0bdMgV8grPe+fJ//Eg9IHaOrfFF3CumBev3loE9QGdwrv4JnVz1SpHmZnOp8+0hV81PGoo6xx+Prg1xXuFx9Y8U3iTV418Fzr5+Aj88H5O+eVWaWFRxYCAPo37o+Gfg1NOq+ltQ1ui9GteOOtadumVQgI5Ao5jt48irl756LnLz3h/6k/Bq0YhFWnVwGA8ueqTSO/RqjjUQcl8hJlxsJQ+67uw+0Ht+Hn5odu4d007msf0h7OUmfcyL9RYepLNL0b2HSgUc8HqAIlUTisy6nsU5AzOfzd/VHPq57eYwkhjosCmGrm7+GP5nX4vi4MDBPaTkB8k/gKx73T/R34yHxwPOt4hWkTbRYf48t1x7cdD4lEAjdnN6wcthJerl7Yd3UfZu2YZfKYlfUvDXrqPOa1Tq8BAFafXq2R8WGMaSyfNpWnqyfGtx0PgC+pflD6QLm6KKFDgsnnrQ4f9foI7s7u+C/jP/x15i8cuXEEn+//HAP+GAD/T/3R7od2mLl9JnZd3oVSRSka+jXEy+1fxvpn1uONLm/oPK96Qztjp5FEUDmg6QA4S5017vNw8VB2v1Wvg7lbeFdZuyXqX4wxoMkASCVSHL15VG9NkPr0kbVa+xNCaj4KYKxATCM19Guo3LiwvDoedTCrGw86/rfjf7hfcl/n+U5kncCh64fgLHXGmFZjlLdH1o7Ez4N+BgB8su8T5TJmY2Tfz8apW7wBWfcG3XUeFxMYgx4NekDO5Pju8HfK20/dOoWLdy9C5iSrUDNhrEkdJ0EqkSIxLRFv73gbOUU5iPCNQFyjmr3cNNQ7FNNipwEAhq0ahg4/dsD0xOnYeH4jcotz4eXqhSeaPIFv+3+LC69ewKXXLuG7+O8woOmASrsGm1LIa0hQqa2Qd8uFLZAzOVoGtDSpn07dWnWV5xWZHG2o/oUQYggKYKxg+iPTMTJ6JNYOXwtPV0+dx73a8VVE+EbgZsFNfL7/c53HieLdQU0HVahReSrqKWWR7dh1Yyus4qnMrsu7APAApbIdnF/ryLMwPyT/oNxkUPyl/1ijx/S+VkM08G2g/MD98gAP/Ca2n2ixrQHMaUaXGcouwb5uvhjQZAA+f+xzHJ5wGHffuIsNIzYgoWMCImtHGnVeUzIwx7OO43LOZbg7u6Nvo75aj9FWyCvqX0zJvgiDmw4GoLsOprC0EBsvbATgGHsgEUJMRwGMFTT2b4xlQ5ZVuhGZzFmGuX14D5GP936sDCbUFZUV4bcTvwGAcoqlvM/7fo6Gfg1xp/CO3r98tRHP2SO8R6XHDmw6EOE+4bhTeAe/p/4OQNV9V3xwVdWUzlOU12VOMovsLG0JXjIvHH3xKFJfTsXt6bexfsR6THtkmrLexFQdQjpAKpEiIzcDN/JvGPQYETzERcbBw8VD6zEigDmeeRwFJQUokZco97Eypf5FGNRsEAD+7+pe4b0K98/ZOweXcy6jnle9Kj0PIcT+UQBTww2LGoYhzYegRF6CQSsGKZczC2vPrK10l2WZs0xZDLri5Aqjnr98/xd9nKROmNSRZ3u+PvQ1ruRcwdGbRyGVSM32YdQlrAvaBbcDAAxvObzSrFBNUrdWXbQMaGnWjJGXzAstA1oCAA5eO2jQYzZd4FOJg5oO0nlMqHcowrzDIGdyHL5+GP9d+Q95xXkIqBVgVCPC8iJrR6JlQEvImRybL2zWuO/8nfP4ZN8nAICv+n0FL5mXyc9DCLF/FMDUcBKJBMueXIau9bsirzgP/Zf312ipL4p3X2jzgt4PxmdaPgOAb6goWrtX5mb+TZy9fRYSSNA9XHf9i7pxbcbBw8UDJ7JO4PVtrwPgQUfdWnUNenxlJBIJfhjwA0bFjMKHPT80yzltXed6hk8j3XlwB8k3kgGg0toh9ToYkbl7ovETVW6yJgIn9dVIjDEkbE5AibwEcY3iKuz9RAgh5VEAYwPcXdzx9zN/o0XdFriRfwNxy+Jw58EdXLp7CTvSd0ACSaW7LEfVjUJMYAxKFaXKBmaVEdNHrYNaw8/dz6DH+Ln7YWyrsQCANWfWAKja6iNt2ga3xW9P/oYwnzCzntdWxYYZXsi7PX07GBhaBrREsFew3mNFALPv6j5V/UtT0+tfBLGcesuFLSgqKwIArDy1Ev+m/QuZkwzfPv4trT4ihFSKAhgb4efuh39G/YMw7zCcu3MOT/zxBL49xLcd6NuoL8J9wys9xzMteBZGNLyrjAhg9C2f1ubVjq9qfG/M5o3EeGIl0qHrh/SuVgOAxEuJAKBzulGdCGD+TfsX6TnpkDnJDHpcZdoFt0M9r3q4X3of29O2I684D1O3TgUAvNX1LaMLmQkhjokCGBsS6h2Kf0b9Az83Pxy4dgBfHfwKgOG7LA9vORwAsCN9h0G7VYv6F2O75zav21y5uqVVYCuTltwSwzXxb4II3wgUy4v1bh3BGENimuEBTKvAVnB3dkepohQA0Lthb9RyrVXl8UokEmVQ+/e5v/HOzndws+AmImtHYkaXGVU+PyHEMVAAY2Oi6kZh47Mblfv+1PGoY3CBbEO/huhYryMUTKHs9KrL9bzruHD3AqQSaYVOrYb4sOeHiKwdiZmPzjT6scQ4EokEQ5rzDR/Fqi9tLt69iCu5V+Dq5GrQ79TFyUWjYHdgE/OtChJ1MH+e+hPfHPoGAN/MVNt+VoQQog0FMDbokbBHsPKplajrURdvPfoWZM4ygx87ouUIAJWvRhLZl7bBbbXueVOZDvU64MKrF5RZH2JZos5o4/mNKJGXaD1GZF8eCXvE4EyKmEYCgCeaPFHFUap0b9AdPjIf5BXnQcEUeLrF0zp70hBCiDYUwNioAU0HIHt6NqbGTjXqccOihkECCfZd3ae3nbvY/8jY+hdiHbFhsQjyDEJuca7yd1eeMdNHQp+GfQDwQKaet/n2JXJ1clVuoeHl6oV5cfPMdm5CiGOgAMbB1POup5w+WHlqpc7jdl3ZBcD4+hdiHVKJVDkto20aqUxRhh3pOwAYF8D0iuiFraO2YuVTuv+tmGpKpylo6NcQC+MXIsQrxOznJ4TYNwpgHJDoCaNrGikjNwNp99LgJHFC1/pdq3NopArENNK6s+sq7GB+6Poh5BXnwc/ND22D2xp13r6N+po1+yJ0qNcBl167hJExunfcJoQQXSiAcUBDmw+Fk8QJyTeTceHOhQr3b7u0DQDQPqQ9dUO1IT0jesJH5oOs+1kVesKI5dN9Gvaxib2jCCGkMhTAOKC6terisUZ8GkE9C6NgCnyZ9CUSNicAABVV2hhXJ1dloW35aSRT6l8IIaQmowDGQYmmdn+c/AOMMVzPu464ZXGYtm0aSuQlGNh0IKY/Mt3KoyTGEtNIa8+uBWMMAJBXnKfMyIjAlRBCbB0FMA5qcLPBcHVyxZnbZzB371zEfB+Df9P+hbuzO76P/x7rhq+j6SMb1C+yH9yc3ZB2L0258eeuy7sgZ3JE1o5EA98G1h0gIYSYCQUwDsrHzQePN34cAPDWjrdwt/Au2ga3xdGXjuKl9i/RXjQ2qpZrLeUmjWIayZjtAwghxFZQAOPARkbz1R8SSPBmlzeRNC4Jzeo0s/KoSFWpTyMBVP9CCLFPztYeALGeoc2H4rcnf0Pj2o3RKbSTtYdDzGRA0wFwkjjhRNYJ7EzfiXN3zkEqkaJnBDUlJITYD6MzMHv27MGAAQMQEhICiUSCdevWadz/3HPPQSKRaHz169dP45i7d+9i5MiR8Pb2hq+vL8aNG4eCggKNY06cOIGuXbvCzc0NYWFh+PTTT41/dUQviUSCUTGjKHixM7XdaysbEL72z2sAgI71OsLXzdd6gyKEEDMzOoC5f/8+WrVqhQULFug8pl+/frh586by648//tC4f+TIkTh16hQSExOxceNG7NmzBy+++KLy/ry8PPTt2xfh4eFITk7GZ599htmzZ+OHH34wdriEOCQxjXQy+yQAmj4ihNgfo6eQ+vfvj/79++s9RiaTISgoSOt9Z86cwT///IPDhw+jffv2AIBvvvkGjz/+OD7//HOEhIRg+fLlKCkpwc8//wxXV1e0aNECKSkp+PLLLzUCHUKIdoObDcakLZOU31NPH0KIvbFIEe+uXbsQEBCApk2b4uWXX8adO3eU9yUlJcHX11cZvABAnz59IJVKcfDgQeUx3bp1g6urq/KYuLg4nDt3Dvfu3dP6nMXFxcjLy9P4IsRR1fOuh071+NSgl6uX8johhNgLswcw/fr1w6+//ort27fjk08+we7du9G/f3/I5XxvlszMTAQEBGg8xtnZGbVr10ZmZqbymMDAQI1jxPfimPLmzJkDHx8f5VdYWJi5XxohNmVY1DAAfPsAFycXK4+GEELMy+yrkJ555hnl9ejoaMTExKBRo0bYtWsXevfube6nU5o5cyZef/115fd5eXkUxBCH9lqn1+Dp6qncXoAQQuyJxZdRN2zYEHXq1MHFixfRu3dvBAUFITs7W+OYsrIy3L17V1k3ExQUhKysLI1jxPe6amtkMhlkMpkFXgEhtsnFyQUvtX/J2sMghBCLsHgju2vXruHOnTsIDg4GAMTGxiInJwfJycnKY3bs2AGFQoFOnTopj9mzZw9KS0uVxyQmJqJp06bw8/Oz9JAJIYQQUsMZHcAUFBQgJSUFKSkpAID09HSkpKQgIyMDBQUFmD59Og4cOIDLly9j+/btGDRoECIjIxEXx9ubN2/eHP369cOECRNw6NAh7Nu3D5MmTcIzzzyDkJAQAMCzzz4LV1dXjBs3DqdOncKff/6J+fPna0wREUIIIcRxSZjYstZAu3btQs+eFTt6jh07FgsXLsTgwYNx7Ngx5OTkICQkBH379sUHH3ygUZR79+5dTJo0CRs2bIBUKsXQoUPx9ddfw9PTU3nMiRMnkJCQgMOHD6NOnTp49dVX8cYbbxg8zry8PPj4+CA3Nxfe3t7GvERCCCGEWImhn99GBzC2ggIYQgghxPYY+vlNmzkSQgghxOZQAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5FMAQQgghxOZQAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5FMAQQgghxOZYfDdqaxENhvPy8qw8EkIIIYQYSnxuV7ZRgN0GMPn5+QCAsLAwK4+EEEIIIcbKz8+Hj4+Pzvvtdi8khUKBGzduwMvLCxKJxGznzcvLQ1hYGK5evWq3eyw5wmsEHON10mu0D/Qa7QO9RsMwxpCfn4+QkBBIpborXew2AyOVShEaGmqx83t7e9vtP0DBEV4j4Bivk16jfaDXaB/oNVZOX+ZFoCJeQgghhNgcCmAIIYQQYnMogDGSTCbDu+++C5lMZu2hWIwjvEbAMV4nvUb7QK/RPtBrNC+7LeIlhBBCiP2iDAwhhBBCbA4FMIQQQgixORTAEEIIIcTmUABDCCGEEJtDAYyRFixYgAYNGsDNzQ2dOnXCoUOHrD0kk+3ZswcDBgxASEgIJBIJ1q1bp3E/YwzvvPMOgoOD4e7ujj59+uDChQvWGayJ5syZgw4dOsDLywsBAQEYPHgwzp07p3FMUVEREhIS4O/vD09PTwwdOhRZWVlWGrHxFi5ciJiYGGXjqNjYWGzZskV5v62/Pm3mzp0LiUSCKVOmKG+z9dc5e/ZsSCQSja9mzZop77f11ydcv34do0aNgr+/P9zd3REdHY0jR44o77f1950GDRpU+D1KJBIkJCQAsI/fo1wux9tvv42IiAi4u7ujUaNG+OCDDzT2LqqW3yMjBluxYgVzdXVlP//8Mzt16hSbMGEC8/X1ZVlZWdYemkk2b97M/ve//7E1a9YwAGzt2rUa98+dO5f5+PiwdevWsePHj7OBAweyiIgIVlhYaJ0BmyAuLo4tWbKEnTx5kqWkpLDHH3+c1a9fnxUUFCiPmThxIgsLC2Pbt29nR44cYZ07d2aPPPKIFUdtnPXr17NNmzax8+fPs3PnzrG33nqLubi4sJMnTzLGbP/1lXfo0CHWoEEDFhMTwyZPnqy83dZf57vvvstatGjBbt68qfy6deuW8n5bf32MMXb37l0WHh7OnnvuOXbw4EGWlpbGtm7dyi5evKg8xtbfd7KzszV+h4mJiQwA27lzJ2PMPn6PH330EfP392cbN25k6enpbNWqVczT05PNnz9feUx1/B4pgDFCx44dWUJCgvJ7uVzOQkJC2Jw5c6w4KvMoH8AoFAoWFBTEPvvsM+VtOTk5TCaTsT/++MMKIzSP7OxsBoDt3r2bMcZfk4uLC1u1apXymDNnzjAALCkpyVrDrDI/Pz+2ePFiu3t9+fn5rHHjxiwxMZF1795dGcDYw+t89913WatWrbTeZw+vjzHG3njjDfboo4/qvN8e33cmT57MGjVqxBQKhd38HuPj49kLL7ygcduQIUPYyJEjGWPV93ukKSQDlZSUIDk5GX369FHeJpVK0adPHyQlJVlxZJaRnp6OzMxMjdfr4+ODTp062fTrzc3NBQDUrl0bAJCcnIzS0lKN19msWTPUr1/fJl+nXC7HihUrcP/+fcTGxtrd60tISEB8fLzG6wHs5/d44cIFhISEoGHDhhg5ciQyMjIA2M/rW79+Pdq3b49hw4YhICAAbdq0wY8//qi8397ed0pKSrBs2TK88MILkEgkdvN7fOSRR7B9+3acP38eAHD8+HHs3bsX/fv3B1B9v0e73czR3G7fvg25XI7AwECN2wMDA3H27FkrjcpyMjMzAUDr6xX32RqFQoEpU6agS5cuaNmyJQD+Ol1dXeHr66txrK29ztTUVMTGxqKoqAienp5Yu3YtoqKikJKSYhevDwBWrFiBo0eP4vDhwxXus4ffY6dOnbB06VI0bdoUN2/exHvvvYeuXbvi5MmTdvH6ACAtLQ0LFy7E66+/jrfeeguHDx/Ga6+9BldXV4wdO9bu3nfWrVuHnJwcPPfccwDs498pALz55pvIy8tDs2bN4OTkBLlcjo8++ggjR44EUH2fHxTAEIeRkJCAkydPYu/evdYeitk1bdoUKSkpyM3NxerVqzF27Fjs3r3b2sMym6tXr2Ly5MlITEyEm5ubtYdjEeKvVwCIiYlBp06dEB4ejpUrV8Ld3d2KIzMfhUKB9u3b4+OPPwYAtGnTBidPnsT333+PsWPHWnl05vfTTz+hf//+CAkJsfZQzGrlypVYvnw5fv/9d7Ro0QIpKSmYMmUKQkJCqvX3SFNIBqpTpw6cnJwqVItnZWUhKCjISqOyHPGa7OX1Tpo0CRs3bsTOnTsRGhqqvD0oKAglJSXIycnRON7WXqerqysiIyPRrl07zJkzB61atcL8+fPt5vUlJycjOzsbbdu2hbOzM5ydnbF79258/fXXcHZ2RmBgoF28TnW+vr5o0qQJLl68aDe/x+DgYERFRWnc1rx5c+VUmT2971y5cgX//vsvxo8fr7zNXn6P06dPx5tvvolnnnkG0dHRGD16NKZOnYo5c+YAqL7fIwUwBnJ1dUW7du2wfft25W0KhQLbt29HbGysFUdmGREREQgKCtJ4vXl5eTh48KBNvV7GGCZNmoS1a9dix44diIiI0Li/Xbt2cHFx0Xid586dQ0ZGhk29zvIUCgWKi4vt5vX17t0bqampSElJUX61b98eI0eOVF63h9eprqCgAJcuXUJwcLDd/B67dOlSoY3B+fPnER4eDsB+3ncAYMmSJQgICEB8fLzyNnv5PT548ABSqWb44OTkBIVCAaAaf49mKwd2ACtWrGAymYwtXbqUnT59mr344ovM19eXZWZmWntoJsnPz2fHjh1jx44dYwDYl19+yY4dO8auXLnCGOPL4Hx9fdnff//NTpw4wQYNGmRTyxkZY+zll19mPj4+bNeuXRpLGx88eKA8ZuLEiax+/fpsx44d7MiRIyw2NpbFxsZacdTGefPNN9nu3btZeno6O3HiBHvzzTeZRCJh27ZtY4zZ/uvTRX0VEmO2/zqnTZvGdu3axdLT09m+fftYnz59WJ06dVh2djZjzPZfH2N8CbyzszP76KOP2IULF9jy5cuZh4cHW7ZsmfIYe3jfkcvlrH79+uyNN96ocJ89/B7Hjh3L6tWrp1xGvWbNGlanTh02Y8YM5THV8XukAMZI33zzDatfvz5zdXVlHTt2ZAcOHLD2kEy2c+dOBqDC19ixYxljfCnc22+/zQIDA5lMJmO9e/dm586ds+6gjaTt9QFgS5YsUR5TWFjIXnnlFebn58c8PDzYk08+yW7evGm9QRvphRdeYOHh4czV1ZXVrVuX9e7dWxm8MGb7r0+X8gGMrb/O4cOHs+DgYObq6srq1avHhg8frtEfxdZfn7BhwwbWsmVLJpPJWLNmzdgPP/ygcb89vO9s3bqVAdA6bnv4Pebl5bHJkyez+vXrMzc3N9awYUP2v//9jxUXFyuPqY7fo4QxtdZ5hBBCCCE2gGpgCCGEEGJzKIAhhBBCiM2hAIYQQgghNocCGEIIIYTYHApgCCGEEGJzKIAhhBBCiM2hAIYQQgghNocCGEIIIYTYHApgCCGEEGJzKIAhhBBCiM2hAIYQQgghNocCGEIIIYTYnP8HJQgFG/29ssoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(s_mod[-80:],'r',output[-80:],'g')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make lightcurves using `Lightcurve` class." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc2, lc1)\n", + "# Rebin the cross spectrum for ease of visualization\n", + "cross = cross.rebin(0.0075)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lag = np.angle(cross.power)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGiCAYAAADnfswJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGTklEQVR4nO3dd3hUZcL+8XvSSUISSgpRelEBBVFAVJqy0ixYENFVcBVXhJ8iYsFdRXQVVnztWJfmu64i7qq7YgVBUCIIwvpKcakGlI5JTEL68/vj2UwYSDATMjk5M9/Pdc3FmZmTM8/hTGbuPNVjjDECAAAIAWFOFwAAAKCuEHwAAEDIIPgAAICQQfABAAAhg+ADAABCBsEHAACEDIIPAAAIGQQfAAAQMgg+AAAgZBB8AABAyAho8Fm2bJkuueQSpaeny+Px6N133/V5fvTo0fJ4PD63QYMGBbJIAAAghAU0+OTl5alLly6aOXNmlfsMGjRIu3fv9t7eeOONQBYJAACEsIhAHnzw4MEaPHjwcfeJjo5WWlpaIIsBAAAgKcDBpzqWLl2qlJQUNWrUSBdccIH+9Kc/qUmTJlXuX1hYqMLCQu/9srIyHTp0SE2aNJHH46mLIgMAgBNkjNEvv/yi9PR0hYXVXZdjR4PPoEGDdMUVV6h169baunWr7r//fg0ePFgZGRkKDw+v9GemTZumqVOn1nFJAQBAIOzcuVMnn3xynb2exxhj6uSFPB698847GjZsWJX7bNu2TW3bttWiRYt04YUXVrrP0TU+2dnZatGihXbu3KmEhITaLjbqkbyiPKX/T7ok6ae7flJcVJzDJQIA1FROTo6aN2+urKwsJSYm1tnrOt7UdaQ2bdqoadOm2rJlS5XBJzo6WtHR0cc8npCQQPAJcuFF4VKM3U5ISCD4AEAQqOtuKvVqHp9du3bp4MGDatasmdNFAQAAQSigNT65ubnasmWL9/727du1bt06NW7cWI0bN9bUqVN15ZVXKi0tTVu3btU999yjdu3aaeDAgYEsFlwqIixCo7qM8m4DAOCvgPbxWbp0qfr373/M46NGjdKLL76oYcOGae3atcrKylJ6erouuugiPfLII0pNTa32a+Tk5CgxMVHZ2dk0dQEA4BJOfX/XWefmQCH4AADgPk59f9NeANcwxii/OF+SFBsZy7xNAAC/1avOzcDx5BfnK35avOKnxXsDEAAA/iD4AACAkEHwAQAAIYPgAwAAQgbBBwAAhAyCDwAACBkEHwAAEDJCZx6f9eslj0fq2NHpkqCGwsPCdVXHq7zbAAD4KzSCz7PPSnfcIV16qfTee06XBjUUExGjBcMXOF0MAICLhUZTV/mip//6l3TEoqkAACC0hEbwOeUUacgQyRhb+wMAAEJSaAQfSZowwf47e7aUleVkSVBDeUV58kz1yDPVo7yiPKeLAwBwodAJPgMGSJ07S3l50qxZTpcGAAA4IHSCj8dTUevz7LNSSYmjxQEAAHUvdIKPJF13ndS0qZSZKb3zjtOlAQAAdSy0gk9MjDR2rN1+6ilnywIAAOpcaAUfSbrtNikqSsrIkFaudLo0AACgDoVe8ElLk0aOtNtPP+1oUQAAQN0KveAjVXRyXrBA2rnT0aKg+sLDwjWk/RANaT+EJSsAADUSmsGna1epXz+ptFSaOdPp0qCaYiJitPDahVp47ULFRMQ4XRwAgAuFZvCRpDvvtP++8oqd2wcAAAS90A0+Q4dKbdtKP/8szZvndGkAAEAdCN3gEx5uV2yXbCfnsjJHi4Nfl1eUp7jH4hT3WBxLVgAAaiR0g48k3XijlJgobd4sffih06VBNeQX5yu/ON/pYgAAXCq0g098vDRmjN1mQkMAAIJeaAcfSRo/XgoLkxYvlr791unSAACAACL4tGwpXXml3X7mGWfLAgAAAorgI1UMbX/9dWnfPmfLAgAAAobgI0nnnCP16CEVFkovvuh0aQAAQIAQfCTJ46mo9XnhBRuAUO+EecLUt2Vf9W3ZV2Ee3roAAP95jDHG6UKciJycHCUmJio7O1sJCQk1P1BxsdSmjbRrlzRnjjR6dK2VEQAA+Kq1728/8WdzuchIO8JLskPb3Z0HAQBAJQg+R7rlFik21g5rX7LE6dIAAIBaRvA5UqNGFU1cTz/tZElQibyiPCXPSFbyjGSWrAAA1AjB52jl63e9/75dygL1yoH8AzqQf8DpYgAAXIrgc7QOHezK7cYwoSEAAEGG4FOZ8qHtc+ZIP//sbFkAAECtIfhU5oILpNNPl/Lzpb/8xenSAACAWkLwqYzHI02YYLefe04qKXG0OAAAoHYQfKpy7bVSSoq0c6f09787XRoAAFALCD5ViYmRxo612wxtrxfCPGE6O/1snZ1+NktWAABqhCUrjmfvXqlFC6moSMrIsIuZAgCAE8aSFfVRaqpt8pLsMhYAAMDVCD6/pryT89//LmVmOloUAABwYgg+v6ZLFzu8vbRUev55p0sT0vKL89Xq6VZq9XQr5RfnO10cAIALEXyqo7zW55VXpNxcR4sSyowx+iH7B/2Q/YNc3jUNAOAQgk91DB0qtW8vZWdL8+Y5XRoAAFBDBJ/qCAurWLz0mWeksjJnywMAAGqE4FNdo0ZJSUl2xfaFC50uDQAAqIEIpwvgGvHx0pgx0owZdmj7JZfYx42RioulwkJ7Kyqq2D76fmXPtWsn9elja5UAAEBABTT4LFu2TDNmzNCaNWu0e/duvfPOOxo2bJj3eWOMpkyZoldffVVZWVk677zz9OKLL6p9+/aBLFbNjR8vPfmktGSJlJBQEV5O1MknS7/9rXT99VLHjid+PAAAUKmAVjPk5eWpS5cumjlzZqXPP/7443r22Wf10ksvaeXKlYqLi9PAgQNVUFAQyGLVXIsWtslLkn75pfLQEx4uxcZKjRpJaWn2Z9q3lzp3lrp1k3r1kvr1kwYOlIYMsc1nu3ZJ06dLnTpJZ58tPfustG9fXZ5Z/VZSIhUWyuPxqGNyR3VM7iiPx+N0qQAALlRnS1Z4PB6fGh9jjNLT03XXXXdp0qRJkqTs7GylpqZq7ty5uuaaayo9TmFhoQoLC733c3Jy1Lx587qb8rq0VNq61TZNRUdLUVH23/Lt8HD/jldQYPsMvfaa9MEHFSvBh4dLgwfbWqBLL7VrhwUrY6RDh6Rt2+xt+/aK7W3b7MSRkZHSqlXS6ac7XVoAQC1waskKx/r4bN++XXv27NGAAQO8jyUmJqpnz57KyMioMvhMmzZNU6dOPebxvKI8hRdVP3RER0QrIsyefklZiQpLChXmCVODyAY+x6xUq5MqebBMKi1QlKIUGR4pSSotK1VBSYE8Ho9iI2O9e+YX51fMQxMm6ZJB9nZgv50h+m9/k9Z8I338vr0lJCjy8isVdcON0nnnqcwjHS4+LEmKi4rzHvdw8WGVGf9GnEWERSg6IlqSDaP5WfukrGzFxSV5w1xBuFGp/MvH4WHhiomoCGt5OQelnZmK/WG3PDt2SNu2qXD7ZpXs2Cbt+MHWoFUlTDZwLluksFPbVXqNGkQ28C5cWlRapOLSYr/KW9U1iomIUXiYfV8VlxarqNT/ps3KrlFl778TOW5BSYFKy0oVFX7s+89fsZGx3hq1wpJClZSVKDI8UlHhUZKkMlPmff/5o7JrdMz7rwYTU1Z2jY55/1X1u3wcJ/QZcRyVXaPjfkZUU1XXqNY/I/57jSp7//mjqmtU2fvPH1VdIz4j6t9nRE1+f2qDY8Fnz549kqTU1FSfx1NTU73PVWby5MmaOHGi9355jU/6/6RLflSKvHXVWxreabgk6Z2N7+jqt69W35Z9tXT0Uu8+rZ5ppQP5B6p/UEnPD35e43qMkyQtz1yu/vP6q2NyR62/bb13n+6vdteG/RuqPsig/968cjRl6Rw91GeO1KqVNl4/UJ3DX1bT2Kbaf/d+716DXx+sz3/43K/y3lZ2tmZuPUXaulUHftyslJsOSpLMQxX7XD9ceruTX4fVVVknacFP50m7d0vbtyv+5l2SpH2PS8n//W6bOER64VI/Dnpgovq+/l6l1+i7sd+pU4ot5GPLH9PUz48Nx8dT1TVaMmqJ+rXqJ0l6Zc0rGv/heL+OW9U1quz95y8zpeKL8fp3rtfbG96u9P3nr32T9ik5LlmSNPHjiXph9Qua0neKHur3kCRp4/6N6vxiZ7+PW9k1uu3s2zRzqG0KP5B/QClPpPh93Mqu0VUdr9KC4Qu8+8RPi/f7uPX6M6ISlV2jWvmMqOIaVfb+80dV16iy958/qrpGfEbUw88Ih3q1uG5UV3R0tKKjo50uRt07s6u0Zqu0Y4f00svSOElZWdILL0gjRkhNmtTsuKtXSx+sttuxx9/VLz/+KC1469jHTztNOrmD1KaNlLJaKlzu12G//ulrdXqhk74e87XPX18AAFSHY318tm3bprZt22rt2rXq2rWrd7++ffuqa9eueuaZZ6p13PI2wp/2/+RXG6Erq7ELS6R//lNlr83T4SWfSKVliiuW7f9y4YU6XJirsh3bbeg43uHDw6TmzaXWbRTRqo2i23aQ2raVad1a+S3SpIRExUXGeofpF+TnqLTgsO3MXVQ+FL/YbhcVSYX/HaZfXOR9LryoWDHFRkpJkdq0UV7zVKlJU8VGxflfjf3Si9Kku5V3xSVKPe1fkqTcybmKi4qjGvu/6mM19tFo6rJo6rJo6qoQqp8ROTk5Sk9OD50+Pq1bt1ZaWpoWL17sDT45OTlauXKlxo4d6/fx4qLifC6yPyLCIhQRdex/RU2PVy48LLzSY9S4piI2SrrmGoVdc43i9uyR3nhD+t//ldaulT76SA2O3Dc+Xmrb1tastG3ru92ihQ1LR/FI8iltVJQUFaWYhg1rVt4jVPY/GR0RrWhVo/Yu5WSpWNK+n6XTjjpuJf+/UeFR3l/AmqrsGkWGR3o/MGrqyA/kclW9//xx5BdIuaref/6o7BqFecJO+LiVXSOPx3PCx63qGp3ocV3zGfFfVV2jyt5//qjqGlX2/vNXZcet9meEn8flM8Jy+jOiNMq/sFxbAhp8cnNztWXLFu/97du3a926dWrcuLFatGihCRMm6E9/+pPat2+v1q1b64EHHlB6errPXD+oQlqadOed9vbdd9LixVLTphUhp2lTKViGfKf8t9/H/v3H3w8AgF8R0OCzevVq9e9f0XGqvFPyqFGjNHfuXN1zzz3Ky8vTLbfcoqysLJ1//vn66KOPFBPMQ7cDoXNnewtW5cHngH+dSAEAOFqd9fEJFKfmAUAd2rtXSktTXpQUf799qLyPDwDAnZz6/maBKNR/TZrYZjtXR3QAQH3guuHsCEEREVLjxvLkHFTL2HQpMpIlKwAANULwgTukpCj24EHtOOt/pQsucLo0AACXoqkL7sDILgBALSD4wB2S7fTorFoPADgRBB+4Q0qKDkdI3Q9OU/dXu9do5mAAAOjjA3dITlaZR1rt2S39tNvvafcBAJCo8YFbpPi/ajcAAEcj+MAdCD4AgFpA8IE7lHduBgDgBBB84A7U+AAAagHBB+5AjQ8AoBYwqgvu0LixFOZR0zwjNWnsdGkAAC5F8IE7hIUpLilF+2fsldZ9JrEyOwCgBmjqgnswezMA4AQRfOAerNcFADhBBB+4xuGURuo3Wuq37UGWrAAA1Ah9fOAaZcnJ+ryJpNKtLFkBAKgRanzgHgxpBwCcIIIP3KNpU6dLAABwOYIP3COFGh8AwIkh+MA9qPEBAJwggg/cgz4+AIATRPCBeyQnK7ZIii2SVFDgdGkAAC7EcHa4RlzTdOXNiJSKi6Vb86WEJk4XCQDgMtT4wD08HpatAACcEIIP3KU8+LBsBQCgBmjqgmsUlBToyr4/Sp2kv+/ZpRinCwQAcB2CD1yjtKxUHzQ+IDWWSg/Q1AUA8B9NXXAnmroAADVA8IE7EXwAADVA8IE7HTjgdAkAAC5E8IE7UeMDAKgBgg/ciRofAEANEHzgTtT4AABqgOHscI24qDiZiTlSQoKkw1JenhQX53SxAAAuQo0P3CU+Xor579SF1PoAAPxE8IG7sF4XAOAEEHzgGgUlBRq+YLiGD/5FBRGixgcA4Df6+MA1SstK9faGt6V0aa5H1PgAAPxGjQ/ci+ADAPATwQfuRVMXAMBPBB+4FzU+AAA/EXzgXtT4AAD8RPCBe1HjAwDwE8EH7kXwAQD4ieAD14iNjFXu5FzlXrdBscWyTV3GOF0sAICLEHzgGh6PR3FRcYpLbymPJBUWSr/84nSxAAAuQvCB+8TGVixOSnMXAMAPzNwM1ygsKdTv3/+9JOnl1KaK3pZnm7vatXO4ZAAAt3C8xuehhx6Sx+PxuZ166qlOFwv1UElZieb9e57m/XueSlKb2gep8QEA+KFe1Ph06tRJixYt8t6PiKgXxUJ9Vr5CO3P5AAD8UC8SRkREhNLS0pwuBtykKTU+AAD/Od7UJUmbN29Wenq62rRpo+uuu06ZmZlV7ltYWKicnByfG0JQeY0PwQcA4AfHg0/Pnj01d+5cffTRR3rxxRe1fft29e7dW79UMUx52rRpSkxM9N6aN29exyVGvVBe40NTFwDADx5j6tcMcFlZWWrZsqWefPJJ3XTTTcc8X1hYqMLCQu/9nJwcNW/eXNnZ2UpISKjLoqKO5RXlKX5avCQpt9Wrihs9RhowQPr0U4dLBgDwV05OjhITE+v8+7te9PE5UlJSkjp06KAtW7ZU+nx0dLSio6PruFSod+jcDACoAcebuo6Wm5urrVu3qlmzZk4XBfVMbGSs9k3ap32T9ik29WT7IH18AAB+cDz4TJo0SZ9//rl27NihFStW6PLLL1d4eLhGjhzpdNFQz3g8HiXHJSs5Llme1FT7IOt1AQD84HhT165duzRy5EgdPHhQycnJOv/88/XVV18pubwpA6hM+fujpETKypIaNXK0OAAAd3A8+Lz55ptOFwEuUVhSqIkfT5QkPTnwSUUnJEg5Oba5i+ADAKgGx5u6gOoqKSvRC6tf0AurX1BJWYmUkmKfoIMzAKCaCD5wLyYxBAD4ieAD9yqv8SH4AACqieAD96KpCwDgJ4IP3IumLgCAnwg+cC9qfAAAfiL4wL2o8QEA+MnxeXyA6moQ2UDb79ju3aZzMwDAXwQfuEaYJ0ytklpVPEBTFwDATzR1wb3Km7oOHJDKypwtCwDAFQg+cI2i0iLd/cnduvuTu1VUWiQ1bWqfKCuTDh1ytnAAAFcg+MA1ikuL9UTGE3oi4wkVlxZLkZEVa3TRzwcAUA0EH7gbHZwBAH4g+MDd6OAM1H95edL770tLlzpdEoBRXXA55vIB6qetW6UPPpAWLrSBp7BQCguTNm6UOnRwunQIYQQfuBs1PkD9UFQkLV9ug84HH0jff+/7fFiYHYjw2WcEHziK4AN3o8YHcM5PP0kffmjDzqefSrm5Fc9FREjnny8NHWpvb70lPfSQtGyZdOutjhUZIPjA3ejcDNSd0lJp1aqKWp21a32fT02Vhgyxt9/8RkpMrHiub1/777JlkjGSx1N35QaOQPCBazSIbKDvxn7n3ZZEUxcQaIcOSR9/bMPORx9JBw9WPOfxSN272xqdIUOkbt1sk1Zleva0U1D8+KO0fbvUpk3dlB84CsEHrhHmCVOnlE6+D9LUBdSurCzpiy9sh+SlS22tzpEzoyclSQMH2qAzaFDFHx+/pkEDqUcP6csvba0PwQcOIfjA3WjqAk5MVpbtlLx0qfT558cGHUnq3LmiVufcc23/nZro3dsGn+XLpdGjT7DgQM0QfOAaRaVFemz5Y5Kk+3vfr6jwqIoan0OHpJKSmn8gA6HiyKBTXqNjjO8+7dtL/frZW9++0kkn1c5r9+kjTZ9ua3wAh3iMOfod7y45OTlKTExUdna2EhISnC4OAiivKE/x0+IlSbmTcxUXFWc7W0ZG2g/u3bultDSHSwnUMz//7Bt01q07Nuh06OAbdNLTA1OW7GypcWNbo/Tjj4F7HbiCU9/f/HkMdwsPt4uV7t9vbwQfhLrDh6XFi+18OVUFnVNOsQEn0EHnaImJUteu0jff2DA2YkTdvC5wBIIP3C852YYe+vkgVB04YJeEeO896ZNPpPx83+dPOcW3RqdZMydKafXpY4PPsmUEHziC4AP3S0mRNmwg+CC0bN1qg85779lRWEd2SG7eXBo8WOrf3/mgc7Q+faSnn6afDxxD8IH7lXdwZi4fBLOyMmnNmoqw8913vs936SJddpm9nXlm/Z0g8Pzz7b/ffWfnBGrSxNnyIOQQfOB+DGlHsCoslJYssUHnn/+0S0SUCw+3tTmXXSZdeqnUqpVjxfRLcrJ02ml2sdIvvrDlB+oQwQfux+zNCCZZWXY5iPfes+tg/fJLxXPx8XbSwMsus3PqNG7sWDFPSJ8+NvgsX07wQZ0j+MA1YiJitOrmVd5tL2Zvhtvl50vz50uvv24nESwpqXguLa2iCat/fykmpurjuEWfPtLLL9PPB44g+MA1wsPC1f2k7sc+QVMX3Gr9ehsAXnvNznFTrmPHirDTvXvV61+5Ve/e9t9vvrE1Wg0bOlsehBSCD9yPzs1wk4IC6e23beD54ouKx1u3lsaMkYYPl9q1c658daF5c3u+27dLGRnSRRc5XSKEEIIPXKOotEjPfPWMJOmOc+6wS1ZI1PjAHf7zHxt25s61S6xItoPypZdKt94qDRgQfDU7x9Onjw0+y5YRfFCnCD5wjeLSYt2z6B5J0m3dbzs2+GRnS0VFUlSUQyUEjlJUJL37rvTSS3Z0VrnmzW3tzk03he6yDX36SPPm0c8HdY7gA/dLSrJ/OZeW2uau2lpQEaipbdukV1+VZs+uqIkMC7MjsW691Y7MCg93toxOK+/ns3Klbf4Lhk7bcAWCD9wvLMz289mzx37JEHzghJIS6V//ss1ZH39c8XizZtLNN9tbixbOla++adfOjljbs0f6+uuKIAQEWAg1KCOo0cEZTsnMlB58UGrZUrriiorQM3Cg9I9/SD/8ID38MKHnaB6Pbe6SaO5CnSL4IDjQwRl1KTtbmjNHuvBCO2PyI4/YWZWTk6X77rPraH30kXT55VJkpNOlrb8IPnAATV0IDszejEArKrIzKb/+ul0+orCw4rn+/W3fnWHD6Fzvj/Lg8+WXtqkwgq8kBB7vMgQHZm9GIJSVSStWSH/9q7RgQcUwdMmuN3X99dLIke5ZJ6u+6dRJatRI+vlnae1aO1kjEGAEH7hGTESMloxa4t32QVMXatPGjTbs/O1v0o4dFY83ayZde6103XVS1671dwV0twgLs52a//lP29xF8EEdIPjANcLDwtWvVb/Kn6SpCyfqp5+kN9+0gWft2orHGzaUrrxS+u1vpX79GIZe244MPnfd5XRpEAIIPggONHWhJnJypHfesWHns89s05Zk+5oMGWJrdi65RGrQwNlyBrPyfj5ffGH//0Np9mo4guAD1yguLdYra16RJN1y1i2KDD9itAw1PqiusjLpk0/s0hHvvWcnzyt33nm2Zmf4cKlJE8eKGFLOPFOKi7P9pzZskDp3drpECHIEH7hGUWmRxn84XpI0uuto3+BDjQ9+zS+/2CUSnnvOrptV7tRTbdi59lq7cCbqVmSkdO650qef2uYugg8CjOCD4FBe45ObKx0+TNMEKmzZIj3/vF0+4pdf7GMJCdLo0dINN0jdutFJ2Wl9+lQEn9tuc7o0CHIEHwSHhAQ7f0pRkW3uYpbc0GaM/SJ99lnpgw/sfUk65RTp9ttt4ImPd7aMqHDkRIbGEEQRUAQfBAePxzZ3/fijbe4i+ISm3Fzptddsc9amTRWPDx1qA8+AAXSerY969LB/uOzebWe9btfO6RIhiPEJgODBXD6ha9s2OxT65JOlceNs6GnY0Iad//xHev996aKLCD31VUyM1LOn3Wb5CgQYnwIIHixUGlqMkRYvli67zNYQPPmkXUOrfXvbxLVrl/TMM/Y+6r/y1dkJPggwgg+CBzU+oSEvT3r5ZTv6Z8AAO/mdMdKgQbY/z6ZN0v/7f7bfF9yjvJ/P8uXOlgNBr14En5kzZ6pVq1aKiYlRz549tWrVKqeLhHooOiJa7498X++PfF/REdHH7sBcPsFt717p7rttc9att9o5X+LjpfHjbdj58ENp8GCas9zq3HPttdu2zdbWAQHi+CfE/PnzNXHiRE2ZMkXffPONunTpooEDB2off7XjKBFhERraYaiGdhiqiLBK+uUzl09wKiqS/ud/pA4dpCeekLKypLZtpaeftl+Qzz1nR2vB3Ro2tFMLSNT6IKAcDz5PPvmkxowZoxtvvFEdO3bUSy+9pNjYWM2ePbvS/QsLC5WTk+NzAyTR1BWMFi60TVqTJtnlJc4+W/rXv2yH5TvukBITnS4hatORw9oR/MqnmahjjgafoqIirVmzRgMGDPA+FhYWpgEDBigjI6PSn5k2bZoSExO9t+bNm9dVceGw4tJizV03V3PXzVVxafGxO9C5OXhs2mTXyrr4YmnzZik1VZozR1q50j5Gc1ZwIvgEv8OH7Rxbt98unXGGI0VwdB6fAwcOqLS0VKmpqT6Pp6amatORc3AcYfLkyZo4caL3fk5ODuEnRBSVFunG926UJA3vONx3yQqJGp9gkJUlPfywbb4qKbHLGdx5p/SHP9BZORScf779d8MG+wdM+R8zcKeyMls7u3Jlxe3bb+3vtoNcN4FhdHS0oqMr6dgKHNm5mdlf3aW01C4p8Yc/VNTYXXKJ7dvDcPTQ0aSJ1KmTtH69Xa398sudLhH8sW+fb8j5+ms7xcTRmjWzNboXXmjXyKtjjgafpk2bKjw8XHv37vV5fO/evUpLS3OoVHCt8r8ODx+2Q55ZksAdli2z/XXWrbP3TztNeuopaeBAR4sFh/TpY4PP8uUEn/rs8GFp7VrfoLNjx7H7NWggnXWWnaCy/Na8uf3D1KE+uo4Gn6ioKJ111llavHixhg0bJkkqKyvT4sWLNX78eCeLBjeKi7O/ZIcP2788CD71W2amHZ7+1lv2fmKiNHWqXaQyMvL4P4vg1aeP9OKL9POpT4yxi/1mZFSEnH//+9gmK4/H/uHSo0dFyOncud79Pjve1DVx4kSNGjVKZ599tnr06KGnn35aeXl5uvHGG50uGtymfL2uzEzbXNKmjdMlQmXy86XHH5f+/GepoMB2VL7lFtu3hz4dKJ/Bee1aWyNA3y5nHDxoZ0b/5BN727nz2H1SU31rcs4+2xUjLR0PPiNGjND+/fv14IMPas+ePeratas++uijYzo8A9WSkmKDDx2c6x9jpPnzpXvuqfgQ7dvXzsfTtauTJUN9ctJJdp6mrVulFSvsjNwIvKIiW6NTHnTWrPEdbh4VJXXv7ht0WrRwZV9Kx4OPJI0fP56mLdQOZm+un775xg5f/fJLe79lSzsZ4ZVXuvKDEwHWp48NPsuWEXwCxRjp++8rgs7SpbZv5JFOP136zW/sAr+9e0uxsY4UtbbVi+ADVEd0RLTeuuot73almL25ftm3z47UmjXLftA2aCBNnmwnJGzQwOnSob7q08fO20Q/n9p14IBv89XRS4OkpFQEnQEDpPR0Z8oZYAQfuEZEWISGdxp+/J2Yy6d+KCqyc/E8/HDFyI1rr5WmT7cjOoDjKe/ns2qVHaxASK6ZoiLbXFgedL75xrf5KjrahszysHP66SExOSjBB8GF2Zud98EHdtLB//zH3u/WTXr2Wem885wtF9yjTRtb2/DTT3YEUb9+TpfIPYqLba3O/PnSO+8cO4/OGWf4Nl+FYKgk+MA1SspK9M7GdyRJl592eeULlVLj45xNm6SJE+0q6ZK9FtOmSaNHh8RfkahFHo+tiXjzTTufD8Hn+EpKbB+d+fOlf/xDOnSo4rnUVN/mq2bNHCtmfUHwgWsUlhTq6revliTlTs5VRNRxgg81PnUnK0t65BFbq1O+zMQdd0gPPMBQZNRcefChn0/lSkttKJw/X/r7330/81JSpKuukkaMsMuA8IeHD4IPggudm+tOZctMXHyxXWaiQwdnywb3K1+wdMUK23xTzybBc0RZmf3/mD9fevttac+eiueaNLGjJEeMsNNEhIc7V856juCD4HJkUxfrdQXO8uW2VmftWnv/1FPtMhMMPUZtOe00+2V+8KDtlNuzp9MlcoYxtp/T/PnSggXSjz9WPNeokV3WY8QIqX9/wmE1EXwQXMprfIqL7WgiF8wi6iqZmXYCwvnz7f3EROmhh6Rx4/jQRe0KC7Odb9991zZ3hVLwMcZOIDh/vl3SJTOz4rmEBGnYMBt2BgywEwvCLwQfBJcGDewaXbm5ttaH4FM78vOlGTPsMhOHD9uatDFjpD/9iWUmEDh9+lQEn7vvdro0gWWMXf+qPOxs21bxXHy8dOmlNuwMHGiHoaPGCD4IPikpNvjs3y+1b+90adzNGPshfPfdFctM9OkjPfMMy0wg8Mrn8/niC9u/JRg76X73XUXYKZ8CQrKzJF98sQ07gweH5LDzQCH4IPgkJ9u/lujgfGLWrrX9eJYvt/dbtLDLTFx1FX2nUDe6drW1HVlZNiCccYbTJaodmzZVhJ0NGyoej4mRhgyxYWfoUCkuzrkyBjGCD1wjKjxKcy6b492uEnP5nJjcXLusxMyZFctM3HefXWYiSNbqgUtERNiJLz/+2DZ3uTn4bNlSEXa+/bbi8agoOyhgxAjpkkukhg2dK2OIIPjANSLDIzW66+hf35G5fGru88+lG2+Utm+390eOtP16WGYCTunTpyL4uG0x6+3bbdB56y07Mq1cRISdUHDECNt3JynJsSKGIoIPgg9z+fgvL0+6/347CaFkg86sWXbGV8BJ5fP5LFvmjikqdu6sCDurVlU8Hh4uXXihDTvDhkmNGztWxFBH8IFrlJSV6OMtH0uSBrYbWPmSFRI1Pv5avtzW8mzdau/ffLOdhJBZl1EfdO9uRzHt3Stt3lw/J8fcsUN67z0bdlasqHg8LMwutzFihJ1vhxGQ9QLBB65RWFKoi9+4WNJxlqyQqPGprvx8O+vyM8/Yv6RPPln6y1/scFmgvoiOls45xzbDLltWP4KPMdL//Z8dav/uuxUTeUq2Rqp3b+nqq+1MymlpTpUSVSD4IPjQufnXffmlreXZvNne/93vpCefZN4j1E+9e1cEn5tvdqYMpaW2Nqc87Bw5z075ZIuXX25HPZ50kjNlRLUQfBB8aOqq2uHD0h//aJeXMEZKT7e1PIMHO10yoGrl/XzKp1aoKwUF0qJFNuj885++nykxMbaD8rBhdr4dmrFcg+CD4FP+AbR/f/BOelYTGRnS6NEVk6SNHm0DECNKUN/16mU7B+/YYZdvaNEicK+VlSUtXGjDzocf2o7/5ZKS7JDzYcNskzDz7LgSwQfBpzz4lJZKP/9sFzoMZYcPSw8+aJuyysqkZs2kV1+1E6QBbhAfL511lh0ltXy5dN11tXv8H3+0nZPffVdaskQqKal47uSTbdAZNszWPLEmnesRfBB8oqJsX5XsbFvrE8rBZ+VKW7OzaZO9f8MN0tNP21WdATfp08cGn2XLaif45OVJ8+bZ25HDziWpUycbdC6/XOrWrf4PoYdfCD4ITikpNvjs2yedeqrTpal7BQV21fQZM2wtT1qa9MortpoecKM+feySKcuWndhxdu2Snn/e/j78/LN9zOOxzWnlNTus8RfUCD5wjajwKD0/+Hnv9nGlpNgRS6HYwfnrr20tT/kaQNddZycmZMI0uNn559uAsmmT/YOmfBBDda1aZfu0LVhgm8ElqV076f/9Pzv0nGHnIYPgA9eIDI/UuB7jqrdzKM7lU1IiTZlil5goLZVSU6WXX5Yuu8zpkgEnrlEjqXNnO3/O8uV2jpxfU1Ji++089ZTvxIL9+kl33mn7uYWHB6rEqKcY7oLgFGpz+RQU2PlDHnvMhp6RI6X16wk9CC5HLl9xPDk5Nuy0by8NH25DT2Sk7eP2zTe2A/OllxJ6QhQ1PnCN0rJSLc+083j0btFb4WHH+dA6ckh7sPvlF9sv4bPP7Cy38+bZKfKBYNOnjzRzZtXz+Wzfbpt1Z82yvxeSHdxw663SuHF2RCNCHsEHrlFQUqD+8/pLsktWxEUdZw6NUKnxOXhQGjLE9l+Ij7eTrPXv73SpgMDo3dv+u26dHbyQmGgn4vzyS1vD8+67tjO/JJ12mjRhgnT99VKDBg4VGPURwQfBKRRmb/7pJztz7Pr1tuPyRx/ZBR2BYNWsmW2+2rxZWrrUDkl/6ilp9eqKfS66yPbfuegiJi9FpQg+CE7B3rl52zZpwABbtZ+eLn3yiZ17BAh2ffrY4HPllRWjs6Kjbc3OhAn8HuBXEYcRnIK5qeu77+zQ3u3bpTZtpC++4MMeoaNfP/tv+cjFhx+Wdu60s5Hze4BqoMYHwam8xufgQfsBGSyjN1autAuK/vyzHdr7ySd02ERoueYau17XSSfZ7ehop0sElyH4IDg1bWr/NcaGH38nO6uPFi+2w9Pz8qSePaUPPmBSQoSeiAjp/vudLgVcjKYuBKeIiIo1uoKhg/O779rRW3l5tm/PokWEHgCoAWp84BqR4ZF6fMDj3u1flZxsa3v27XN32/9rr0m/+51tsrviCulvf6N6HwBqiOAD14gKj9Ld591d/R9ISalY18etnntOuv12uz16tO3AGcGvLQDUFE1dCF5unr3ZGDtapTz0TJhgZ6Ml9ADACeFTFK5RWlaqb3Z/I0nq1qzb8ZeskNw7pL2sTLrrLunpp+39qVOlBx6wK1MDAE4IwQeuUVBSoB5/6SGpGktWSO6cvbmkRBozRpo7195/5pmKWh8AwAkj+CB4uW325sJC6dprpX/8w847NHu2XU0aAFBrCD4IXm5q6srNtSO2Pv1UioqS5s+3K64DAGoVwQfByy2dm3/+2c7R89VXUlyc9N570oUXOl0qAAhKBB8ELzfU+GRnSxdcIK1bJzVqJH34oZ2VGQAQEAQfBK/y4PPzz1JxsRRZjUkP61JBgV2CYt06W9bFi+36WwCAgGEeHwSvxo2lsP++xQ8ccLYsRyspkUaOlD7/XEpIkD7+mNADAHWAGh+4RmR4pKb0neLd/lVhYXax0n377K2+rGJujDR2rF1/Kzra9unp2tXpUgFASCD4wDWiwqP0UL+H/PuhlBQbeupTB+cHHpD+8hcbzP72N6lfP6dLBAAhg6YuBLf6NpfPs89Kjz5qt196yQ5hBwDUGWp84Bplpkwb92+UJJ2WfJrCPNXI7fVpZNcbb0h33GG3H3nEztAMAKhTBB+4xuHiw+r8ou0AXK0lK6T6M5fPJ59Io0bZ7fHjpT/8wdnyAECIoqkLwa0+1PisWmWbtIqLpWuusetvseAoADjC0eDTqlUreTwen9v06dOdLBKCjdMLlW7aZGdlzsuTfvMbad68iiH2AIA653hT18MPP6wxR/R1aNiwoYOlQdBxsnPzrl3SwIHSwYPS2WdLf/+7XYcLAOAYx4NPw4YNlZaW5nQxEKycauo6dEgaNEjKzJQ6dJA++EAi1AOA4xyvc58+fbqaNGmiM888UzNmzFBJSclx9y8sLFROTo7PDaiSE52b8/OlSy6R1q+X0tNtx+bycgAAHOVojc/tt9+ubt26qXHjxlqxYoUmT56s3bt368knn6zyZ6ZNm6apU6fWYSnhauU1Pjk5UmGhnSk5kIqLpauvllaskJKS7FIULVsG9jUBANXmMcaY2jzgfffdpz//+c/H3Wfjxo069dRTj3l89uzZ+v3vf6/c3FxFV/EFVVhYqMLCQu/9nJwcNW/eXNnZ2UpISDixwqNeKyot0h8W22Hgj174qKLCq9Ffxhjbr6akRNq5Uzr55MAV0BjpxhttB+aYGGnRIum88wL3egDgYjk5OUpMTKzz7+9aDz779+/XwYMHj7tPmzZtFFVJJ8/169erc+fO2rRpk0455ZRqvZ5T/3FwkfR0afduac0aqVu3wL3OPfdIM2ZI4eF2Ha6LLw7cawGAyzn1/V3rTV3JyclKrmF/hnXr1iksLEwp5c0TQG1ISbHBJ5AdnJ94woYeya7DRegBgHrJsT4+GRkZWrlypfr376+GDRsqIyNDd955p37729+qUaNGThUL9ViZKVNmdqYkqUVii+otWSEFvoPza69Jd99ttx9/XBo9OjCvAwA4YY4Fn+joaL355pt66KGHVFhYqNatW+vOO+/UxIkTnSoS6rnDxYfV+pnWkvxYskIK7JD2hQul3/3Obt91V0UAAgDUS44Fn27duumrr75y6uURSgI1e/OKFdLw4VJpqXT99ba2BwBQrzk+jw8QcIGYvXnjRtuP5/BhuyTFrFksRQEALsAnNYJfbTd1FRbaxUZ//lnq1UtasECKjKydYwMAAorgg+BX252bH3pI+vZbqWlT6Z13pNjY2jkuACDgCD4IfrVZ4/PllxV9eV55RUpNPfFjAgDqDMEHwa+2Ojfn5ko33CCVldl/L7/8xMsGAKhTjq/ODlRXRFiEbjv7Nu92tZU3deXl2VtcNYfBH+2uu6Rt26QWLaRnn63ZMQAAjiL4wDWiI6I1c+hM/3+wYUO7OGlhoa31qUnwWbjQNm1J0ty5UmKi/8cAADiOpi4EP4/nxDo4Hzgg3XST3Z4wQerfv9aKBgCoWwQfuIYxRvvz9mt/3n75vbZuTTs4GyONHSvt3Suddpr02GP+/TwAoF6hqQuukV+cr5QnbIDxa8kKqeYdnF9/XXr7bSkiQvrf/5UaNPDv5wEA9Qo1PggNNZm9eedOafx4u/3gg9JZZ9V+uQAAdYrgg9Dgb1NXWZl0441SdrbUs6c0eXLgygYAqDMEH4QGfzs3P/+8tHixbdp67TXb1AUAcD2CD0KDPzU+mzZJ995rt2fMkDp0CFy5AAB1iuCD0FDdzs3FxdL110sFBdJFF0m33Rb4sgEA6gzBB6Ghup2bH31UWr1aSkqSZs+2cwABAIIGHRfgGhFhERrVZZR32y9HNnUZU3mg+fpr6U9/stsvvCCddNIJlBYAUB8RfOAa0RHRmjtsbs1+uLzGp7DQLjbasKHv8/n5tomrtFQaMUIaOfKEygoAqJ9o6kJoiIuTYmPtdmXNXffdJ33/vdSsma3tAQAEJYIPXMMYo7yiPOUV5fm/ZIVU9ciuRYuk556z27NnS40bn1hBAQD1FsEHrpFfnK/4afGKnxav/OJ8/w9Q2Vw+WVl2okLJrsk1aNAJlxMAUH8RfBA6KqvxGT9e2rVLatfOztkDAAhqBB+EjqPn8lmwwC5CGhZmFyCN82PRUwCAKxF8EDqOnMtn927p1lvt/cmTpXPOca5cAIA6Q/BB6Diyqevmm6VDh6Qzz7QrrwMAQgLz+CB0lNf4vPuunbcnOto2cUVFOVosAEDdocYHoaO8xif/vyPCHntM6tTJufIAAOocNT5wjfCwcF3V8Srvtt/Kg48k9e0rTZhQOwUDALgGwQeuERMRowXDF9T8AK1aSTExtmlr7lw7mgsAEFIIPggdjRtLK1fadbpatXK6NAAABxB8EFrOOMPpEgAAHERdP1wjryhPnqkeeaZ6lFeU53RxAAAuRPABAAAhg+ADAABCBsEHAACEDIIPAAAIGQQfAAAQMgg+AAAgZDCPD1wjPCxcQ9oP8W4DAOAvgg9cIyYiRguvXeh0MQAALkZTFwAACBkEHwAAEDIIPnCNvKI8xT0Wp7jH4liyAgBQI/TxgavkF+c7XQQAgItR4wMAAEIGwQcAAIQMgg8AAAgZBB8AABAyCD4AACBkMKoLrhHmCVPfln292wAA+IvgA9doENlAS0cvdboYAAAXC9ifzY8++qjOPfdcxcbGKikpqdJ9MjMzNXToUMXGxiolJUV33323SkpKAlUkAAAQ4gJW41NUVKThw4erV69emjVr1jHPl5aWaujQoUpLS9OKFSu0e/du3XDDDYqMjNRjjz0WqGIBAIAQ5jHGmEC+wNy5czVhwgRlZWX5PP7hhx/q4osv1k8//aTU1FRJ0ksvvaR7771X+/fvV1RUVLWOn5OTo8TERGVnZyshIaG2i496JK8oT62eaSVJ2nHHDsVFxTlbIABAjTn1/e1YD9GMjAydfvrp3tAjSQMHDlROTo7Wr19f5c8VFhYqJyfH54bQcSD/gA7kH3C6GAAAl3Is+OzZs8cn9Ejy3t+zZ0+VPzdt2jQlJiZ6b82bNw9oOQEAQPDwK/jcd9998ng8x71t2rQpUGWVJE2ePFnZ2dne286dOwP6egAAIHj41bn5rrvu0ujRo4+7T5s2bap1rLS0NK1atcrnsb1793qfq0p0dLSio6Or9RoAAABH8iv4JCcnKzk5uVZeuFevXnr00Ue1b98+paSkSJI+/fRTJSQkqGPHjrXyGgAAAEcK2HD2zMxMHTp0SJmZmSotLdW6deskSe3atVN8fLwuuugidezYUddff70ef/xx7dmzR3/84x81btw4anQAAEBABCz4PPjgg5o3b573/plnnilJWrJkifr166fw8HC9//77Gjt2rHr16qW4uDiNGjVKDz/8cKCKBJcL84Tp7PSzvdsAAPgr4PP4BBrz+AAA4D4hN48PAABAXSP4AACAkEHwgWvkF+er1dOt1OrpVsovzne6OAAAFwpY52agthlj9EP2D95tAAD8RY0PAAAIGQQfAAAQMgg+AAAgZBB8AABAyCD4AACAkMGoLriGx+NRx+SO3m0AAPxF8IFrxEbGav1t650uBgDAxWjqAgAAIYPgAwAAQgbBB66RX5yvTi90UqcXOrFkBQCgRujjA9cwxmjD/g3ebQAA/EWNDwAACBkEHwAAEDIIPgAAIGQQfAAAQMgg+AAAgJDBqC64hsfjUcvElt5tAAD8RfCBa8RGxmrHhB1OFwMA4GI0dQEAgJBB8AEAACGD4APXOFx8WN1f7a7ur3bX4eLDThcHAOBC9PGBa5SZMq3+abV3GwAAf1HjAwAAQgbBBwAAhAyCDwAACBkEHwAAEDIIPgAAIGQwqguu0jS2qdNFAAC4GMEHrhEXFaf9d+93uhgAABejqQsAAIQMgg8AAAgZBB+4xuHiw+o3t5/6ze3HkhUAgBqhjw9co8yU6fMfPvduAwDgL2p8AABAyCD4AACAkEHwAQAAIYPgAwAAQgbBBwAAhAxGdcFVYiNjnS4CAMDFCD5wjbioOOXdn+d0MQAALkZTFwAACBkEHwAAEDIIPnCNgpICDf3bUA3921AVlBQ4XRwAgAvRxweuUVpWqg82f+DdBgDAX9T4AACAkEHwAQAAIYPgAwAAQkbAgs+jjz6qc889V7GxsUpKSqp0H4/Hc8ztzTffDFSRAABAiAtY5+aioiINHz5cvXr10qxZs6rcb86cORo0aJD3flUhCQAA4EQFLPhMnTpVkjR37tzj7peUlKS0tLRqH7ewsFCFhYXe+9nZ2ZKknJwc/wsJV8krypP+O4o9JydHpVGM7AIAtyr/3jbG1O0LmwCbM2eOSUxMrPQ5SSY9Pd00adLEdO/e3cyaNcuUlZUd93hTpkwxkrhx48aNGzduQXDbunVrANJH1Rydx+fhhx/WBRdcoNjYWH3yySe67bbblJubq9tvv73Kn5k8ebImTpzovZ+VlaWWLVsqMzNTiYmJdVHseiEnJ0fNmzfXzp07lZCQ4HRx6gznzXmHAs6b8w4F2dnZatGihRo3blynr+tX8Lnvvvv05z//+bj7bNy4Uaeeemq1jvfAAw94t88880zl5eVpxowZxw0+0dHRio6OPubxxMTEkHrDlEtISOC8QwjnHVo479ASqucdFla3A8z9Cj533XWXRo8efdx92rRpU+PC9OzZU4888ogKCwsrDTcAAAAnwq/gk5ycrOTk5ECVRevWrVOjRo0IPQAAICAC1scnMzNThw4dUmZmpkpLS7Vu3TpJUrt27RQfH69//etf2rt3r8455xzFxMTo008/1WOPPaZJkyb59TrR0dGaMmVKyIUlzpvzDgWcN+cdCjjvuj1vjzGBGUc2evRozZs375jHlyxZon79+umjjz7S5MmTtWXLFhlj1K5dO40dO1Zjxoyp8/Y+AAAQGgIWfAAAAOobqlYAAEDIIPgAAICQQfABAAAhg+ADAABChuPBZ+bMmWrVqpViYmLUs2dPrVq16rj7L1iwQKeeeqpiYmJ0+umn64MPPvB53hijBx98UM2aNVODBg00YMAAbd682WefQ4cO6brrrlNCQoKSkpJ00003KTc3t9bP7Xhq87yLi4t177336vTTT1dcXJzS09N1ww036KeffvI5RqtWreTxeHxu06dPD8j5VaW2r/fo0aOPOadBgwb57BNs11vSMedcfpsxY4Z3H7dd7/Xr1+vKK6/0lvvpp5+u0TELCgo0btw4NWnSRPHx8bryyiu1d+/e2jytX1Xb5z1t2jR1795dDRs2VEpKioYNG6bvv//eZ59+/fodc71vvfXW2j6146rt837ooYeOOaejVwYIxutd2e+ux+PRuHHjvPu47Xq/+uqr6t27txo1aqRGjRppwIABx+xfZ9/fdboy2FHefPNNExUVZWbPnm3Wr19vxowZY5KSkszevXsr3f/LL7804eHh5vHHHzcbNmwwf/zjH01kZKT5v//7P+8+06dPN4mJiebdd981//73v82ll15qWrdubQ4fPuzdZ9CgQaZLly7mq6++MsuXLzft2rUzI0eODPj5lqvt887KyjIDBgww8+fPN5s2bTIZGRmmR48e5qyzzvI5TsuWLc3DDz9sdu/e7b3l5uYG/HzLBeJ6jxo1ygwaNMjnnA4dOuRznGC73sYYn/PdvXu3mT17tvF4PD6L/bnteq9atcpMmjTJvPHGGyYtLc089dRTNTrmrbfeapo3b24WL15sVq9ebc455xxz7rnnBuo0a1TGI1XnvAcOHGjmzJljvvvuO7Nu3TozZMgQ06JFC5/r2bdvXzNmzBif652dnR2o0zxGIM57ypQpplOnTj7ntH//fp99gvF679u3z+ecP/30UyPJLFmyxLuP2673tddea2bOnGnWrl1rNm7caEaPHm0SExPNrl27vPvU1fe3o8GnR48eZty4cd77paWlJj093UybNq3S/a+++mozdOhQn8d69uxpfv/73xtjjCkrKzNpaWlmxowZ3uezsrJMdHS0eeONN4wxxmzYsMFIMl9//bV3nw8//NB4PB7z448/1tq5HU9tn3dlVq1aZSSZH374wftYy5YtK/0lqyuBOO9Ro0aZyy67rMrXDJXrfdlll5kLLrjA5zG3Xe8jVVX2XztmVlaWiYyMNAsWLPDus3HjRiPJZGRknMDZVF8gzvto+/btM5LM559/7n2sb9++5o477qhJkWtFIM57ypQppkuXLlX+XKhc7zvuuMO0bdvWlJWVeR9z8/U2xpiSkhLTsGFDM2/ePGNM3X5/O9bUVVRUpDVr1mjAgAHex8LCwjRgwABlZGRU+jMZGRk++0vSwIEDvftv375de/bs8dknMTFRPXv29O6TkZGhpKQknX322d59BgwYoLCwMK1cubLWzq8qgTjvymRnZ8vj8SgpKcnn8enTp6tJkyY688wzNWPGDJWUlNT8ZPwQyPNeunSpUlJSdMopp2js2LE6ePCgzzGC/Xrv3btXCxcu1E033XTMc2663rVxzDVr1qi4uNhnn1NPPVUtWrSo8evWdhlrQ3Z2tiQds6r166+/rqZNm6pz586aPHmy8vPza+01jyeQ571582alp6erTZs2uu6665SZmel9LhSud1FRkf7617/qd7/7nTwej89zbr7e+fn5Ki4u9r6H6/L7O2BLVvyaAwcOqLS0VKmpqT6Pp6amatOmTZX+zJ49eyrdf8+ePd7nyx873j4pKSk+z0dERKhx48befQIpEOd9tIKCAt17770aOXKkz0q/t99+u7p166bGjRtrxYoVmjx5snbv3q0nn3zyBM/q1wXqvAcNGqQrrrhCrVu31tatW3X//fdr8ODBysjIUHh4eEhc73nz5qlhw4a64oorfB532/WujWPu2bNHUVFRxwT+4/3/1aZAnPfRysrKNGHCBJ133nnq3Lmz9/Frr71WLVu2VHp6ur799lvde++9+v777/WPf/yjVl73eAJ13j179tTcuXN1yimnaPfu3Zo6dap69+6t7777Tg0bNgyJ6/3uu+8qKyvrmAXC3X697733XqWnp3uDTl1+fzsWfBAYxcXFuvrqq2WM0Ysvvujz3MSJE73bZ5xxhqKiovT73/9e06ZNc+0aMddcc413+/TTT9cZZ5yhtm3baunSpbrwwgsdLFndmT17tq677jrFxMT4PB6M1xvSuHHj9N133+mLL77wefyWW27xbp9++ulq1qyZLrzwQm3dulVt27at62LWisGDB3u3zzjjDPXs2VMtW7bUW2+9VWkNZzCaNWuWBg8erPT0dJ/H3Xy9p0+frjfffFNLly495nOrLjjW1NW0aVOFh4cf0/t+7969SktLq/Rn0tLSjrt/+b+/ts++fft8ni8pKdGhQ4eqfN3aFIjzLlceen744Qd9+umnPrU9lenZs6dKSkq0Y8cO/0/ET4E87yO1adNGTZs21ZYtW7zHCNbrLUnLly/X999/r5tvvvlXy1Lfr3dtHDMtLU1FRUXKysqqtdet7TKeiPHjx+v999/XkiVLdPLJJx933549e0qS93chkAJ93uWSkpLUoUMHn9/vYL7eP/zwgxYtWlTt32+p/l/vJ554QtOnT9cnn3yiM844w/t4XX5/OxZ8oqKidNZZZ2nx4sXex8rKyrR48WL16tWr0p/p1auXz/6S9Omnn3r3b926tdLS0nz2ycnJ0cqVK7379OrVS1lZWVqzZo13n88++0xlZWXeN04gBeK8pYrQs3nzZi1atEhNmjT51bKsW7dOYWFhx1QdBkKgzvtou3bt0sGDB9WsWTPvMYLxepebNWuWzjrrLHXp0uVXy1Lfr3dtHPOss85SZGSkzz7ff/+9MjMza/y6tV3GmjDGaPz48XrnnXf02WefqXXr1r/6M+vWrZMk7+9CIAXqvI+Wm5urrVu3es8pWK93uTlz5iglJUVDhw791X3dcL0ff/xxPfLII/roo498+ulIdfz9Xe1u0AHw5ptvmujoaDN37lyzYcMGc8stt5ikpCSzZ88eY4wx119/vbnvvvu8+3/55ZcmIiLCPPHEE2bjxo1mypQplQ5nT0pKMu+995759ttvzWWXXVbpcLgzzzzTrFy50nzxxRemffv2dT68uTbPu6ioyFx66aXm5JNPNuvWrfMZ3lhYWGiMMWbFihXmqaeeMuvWrTNbt241f/3rX01ycrK54YYbXHvev/zyi5k0aZLJyMgw27dvN4sWLTLdunUz7du3NwUFBd7jBNv1LpednW1iY2PNiy++eMxruvF6FxYWmrVr15q1a9eaZs2amUmTJpm1a9eazZs3V/uYxtjhzS1atDCfffaZWb16tenVq5fp1auXq8977NixJjEx0SxdutTn9zs/P98YY8yWLVvMww8/bFavXm22b99u3nvvPdOmTRvTp08fV5/3XXfdZZYuXWq2b99uvvzySzNgwADTtGlTs2/fPu8+wXi9jbGjpFq0aGHuvffeY17Tjdd7+vTpJioqyrz99ts+7+FffvnFZ5+6+P52NPgYY8xzzz1nWrRoYaKiokyPHj3MV1995X2ub9++ZtSoUT77v/XWW6ZDhw4mKirKdOrUySxcuNDn+bKyMvPAAw+Y1NRUEx0dbS688ELz/fff++xz8OBBM3LkSBMfH28SEhLMjTfe6POfXxdq87y3b99uJFV6K5/3Yc2aNaZnz54mMTHRxMTEmNNOO8089thjPgGhLtTmeefn55uLLrrIJCcnm8jISNOyZUszZswYny9BY4Lvepd7+eWXTYMGDUxWVtYxz7nxelf1Pu7bt2+1j2mMMYcPHza33XabadSokYmNjTWXX3652b17dyBP8xi1fd5V/X7PmTPHGGNMZmam6dOnj2ncuLGJjo427dq1M3fffXedzutiTO2f94gRI0yzZs1MVFSUOemkk8yIESPMli1bfF4zGK+3McZ8/PHHRtIx31/GuPN6t2zZstLznjJlinefuvr+9hhjTPXrhwAAANzL8SUrAAAA6grBBwAAhAyCDwAACBkEHwAAEDIIPgAAIGQQfAAAQMgg+AAAgJBB8AEAACGD4AMAAEIGwQcAAIQMgg8AAAgZ/x/yizjQQIHlKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*10.0)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-15,15])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al, the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase warps and the lag becomes negative. This is given in page 43 of review." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More realistic impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The response of refelection from an accretion disk to an instantaneous flash follows the _top-hat function_ to first\n", + "order approximation. The response shows an initial steep rise some time after the initial flash (slope depending on\n", + "the light travel time to the disk) and then gradually decays, as parts of the accretion disk farther away from the \n", + "source receieve radiations at later times.\n", + "\n", + "The secondary peak is caused due to the bending of light in strong gravitational field around the black hole. This is the re-emergence of photons reflected from the far side of accretion disk that although would be classically blocked from our view, are lensed by strong gravitational field around black hole into our line of sight. \n", + "\n", + "Below, we obtain an impulse response similar to one in Utley et al.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB1klEQVR4nO3de3wU5b0/8M/MXnPbzX2TQEK4XwQCgoSIVq1RipTW2p5ylCOI1VYPtmj6ayUqIPVotFarrSgVRfQognqUeqEoRpGqCBIIikK4BRMgu0mA7Oay2U12nt8fSZYkBMyGJLOz+3m/XvMimZ3Z/T4uJh++zzOzkhBCgIiIiEglstoFEBERUXhjGCEiIiJVMYwQERGRqhhGiIiISFUMI0RERKQqhhEiIiJSFcMIERERqYphhIiIiFSlV7uA7lAUBcePH0dMTAwkSVK7HCIiIuoGIQRqa2uRlpYGWT57/0MTYeT48eNIT09XuwwiIiLqgfLycgwcOPCsj2sijMTExABoGYzFYlG5GiIiIuoOl8uF9PR0/+/xs9FEGGmbmrFYLAwjREREGvN9Syy4gJWIiIhUxTBCREREqmIYISIiIlUxjBAREZGqGEaIiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVBVwGNmyZQtmzZqFtLQ0SJKE9evXd/vczz77DHq9HhMmTAj0ZYmIiChEBRxG6uvrkZWVheXLlwd0Xk1NDebOnYsrr7wy0JckIiKiEBbwZ9PMmDEDM2bMCPiFbrvtNtxwww3Q6XQBdVOIiIgotPXLmpEXXngBhw8fxtKlS7t1vMfjgcvl6rAR0bn5fPUoK3sEDQ0H1S6FiCggfR5GDhw4gEWLFuHll1+GXt+9RkxBQQGsVqt/S09P7+MqibTP4XgFhw8vwpEj96tdChFRQPo0jPh8Ptxwww1YtmwZRowY0e3z8vPz4XQ6/Vt5eXkfVkkUGtzulo6I12tXuRIiosAEvGYkELW1tdixYwd27dqFO+64AwCgKAqEENDr9fjggw/wwx/+8IzzTCYTTCZTX5ZGFHIaG78DAPh8TpUrISIKTJ+GEYvFgq+//rrDvqeffhofffQR3njjDQwePLgvX54orHg8ZQCA5maGESLSloDDSF1dHQ4ePL1ArrS0FMXFxYiPj0dGRgby8/Nx7NgxvPTSS5BlGWPHju1wfnJyMsxm8xn7iej8NDYyjBCRNgUcRnbs2IErrrjC/31eXh4AYN68eVi9ejUqKipQVlbWexUS0fdSFC+83goADCNEpD2SEEKoXcT3cblcsFqtcDqdsFgsapdDFHTc7sPYtm2o//sf/KARssx1V0Skru7+/uZn0xCFgLYpmjbsjhCRljCMEIWAtsWrbRhGiEhLGEaIQkDbZb1tGEaISEsYRohCQOfOCO81QkRawjBCFAK4ZoSItIxhhCgEtHVGZDkSANDcXKNiNUREgWEYIdI4IYR/zUhU1AUA2BkhIm1hGCHSuKamE1AUNwCGESLSJoYRIo1rm6IxGlNgMCQD4AJWItIWhhEijWubojGZBkGvtwJgZ4SItIVhhEjj2jojZnMGwwgRaRLDCJHGtV3WazJlQKdjGCEi7WEYIdK4rjojXDNCRFrCMEKkcW1rRsxmrhkhIm3Sq10AEZ2f9tM0ktTy7wuGESLSEnZGiDTM52tEU5MDQMs0DdeMEJEWsTNCpGEeTzmAltvA6/XxaPv3hRAeKIoHsmxSsToiou5hZ4RIw04vXh0ESZKg11v8j7E7QkRawTBCpGHt14sAgCTpoNNFA2AYISLtYBgh0rD2l/W24boRItIahhEiDWt/WW8b3muEiLSGYYRIwzpP0wCAXh8LgJ0RItIOhhEiDetqmoY3PiMirWEYIdIoIZSzdEYYRohIWxhGiDSqqakKQngASDCZBvr3ty1g5ZoRItIKhhEijWrrihiNaZBlg38/OyNEpDUMI0Qa1dV6EYBhhIi0h2GESKPaLuttv14EYBghIu1hGCHSqLZpmvb3GAG4ZoSItIdhhEijOE1DRKGCYYRIozhNQ0ShgmGESKPYGSGiUMEwQqRBPl8DmpqqAQAmE9eMEJG2MYwQaZDHUw4A0Oli/J2QNm3fK0ojFMXb77UREQWKYYRIg9qvF5EkqcNjer3F/zWnaohICxhGiDTobJf1AoAk6aDTRQNgGCEibWAYIdKgsy1ebcN1I0SkJQGHkS1btmDWrFlIS0uDJElYv379OY9/8803cdVVVyEpKQkWiwU5OTl4//33e1ovEeHsl/W24RU1RKQlAYeR+vp6ZGVlYfny5d06fsuWLbjqqquwYcMGFBUV4YorrsCsWbOwa9eugIslohbf1xlhGCEiLdEHesKMGTMwY8aMbh//xBNPdPj+oYcewj//+U+88847mDhxYqAvT0Q4vWak82W9bRhGiEhLAg4j50tRFNTW1iI+Pv6sx3g8Hng8Hv/3LperP0oj0gQhFP+lvVwzQkShoN8XsP7lL39BXV0dfvnLX571mIKCAlitVv+Wnp7ejxUSBbeGhn0QogmyHAmjMa3LY9gZISIt6dcwsmbNGixbtgyvvfYakpOTz3pcfn4+nE6nfysvL+/HKomCm9P5bwCAxTIVstx1c5NhhIi0pN+madauXYtbbrkFr7/+OnJzc895rMlkgslk6qfKiLTF6fwUAGC1XnLWYxhGiEhL+qUz8uqrr2L+/Pl49dVXMXPmzP54SaKQ1Z0wwjUjRKQlAXdG6urqcPDgQf/3paWlKC4uRnx8PDIyMpCfn49jx47hpZdeAtAyNTNv3jw8+eSTyM7Oht1uBwBERETAarV2+RpE1LXGxqNobDwCQIbFMvWsx53ujNT0S11EROcj4M7Ijh07MHHiRP9luXl5eZg4cSKWLFkCAKioqEBZWZn/+GeffRbNzc1YsGABUlNT/dvChQt7aQhE4cPl+gwAEB09EXp9zFmP4zQNEWlJwJ2Ryy+/HEKIsz6+evXqDt9v3rw50JcgorPozhQNwDBCRNrCz6Yh0pDuhpG2NSMMI0SkBQwjRBrR3OxEXd1uAIDVOu2cx7Z1RriAlYi0gGGESCOczq0ABMzmoTCZUs95bFsYUZRGKIq3H6ojIuo5hhEijejuFA0A6HQW/9ecqiGiYMcwQqQRgYQRWdZDlqMAMIwQUfBjGCHSAEXxorZ2GwAgNvbSbp3DdSNEpBUMI0QaUFu7E4rSCIMhERERI7p1Di/vJSKtYBgh0oC2D8ezWi+BJEndOodhhIi0gmGESAMCWS/ShvcaISKtYBghCnJCKHA6W24DH0gY0etjAXDNCBEFP4YRoiDX0FCC5uYTkOUIREdP7PZ5nKYhIq1gGCEKcm1TNBZLNmTZ2O3zGEaISCsYRoiCXE/WiwAMI0SkHQwjREHudBjp3v1F2rQtYOWaESIKdgwjREHM4zmOxsbDAGRYLFMDOpedESLSCoYRoiDW1hWJjs6CXm/5nqM7YhghIq1gGCEKYjU1WwAEvl4EYBghIu1gGCEKUs3NdaisXAMAiIvLDfh8rhkhIq1gGCEKUhUVz6G5+RQiIoYjIWFmwOezM0JEWsEwQhSEFMWLo0cfAwCkp/8BkqQL+DnawoiiuKEoTb1aHxFRb2IYIQpClZWvwuM5CqMxBTbbjT16Dp3u9IJXdkeIKJgxjBAFGSEUlJX9GQAwcOCd0OnMPXoeWdZDlqMAcN0IEQU3hhGiIHPixLtoaPgWOp0FaWm3nddzcd0IEWkBwwhRkCkrewQAkJZ2uz9M9BTDCBFpAcMIURCpqfkULtfnkCQjBg5ceN7PxzBCRFrAMEIURMrLW7oiKSnzYDKlnvfz8V4jRKQFDCNEQaKubg9OnHgXgIT09D/0ynOyM0JEWsAwQhQkystbrqBJSvo5IiOH98pzMowQkRYwjBAFgYaGElRWvgoASE+/u9eel2GEiLSAYYRIZR7PcXz11Y8gRDPi4q6GxTK5156ba0aISAsYRohU1NR0Ert3X43GxiOIiBiG0aNf6tXnZ2eEiLSAYYRIJT5fPb7+eiYaGr6B0ZiG8eM3wWi09eprMIwQkRYwjBCpQFE82LPnOrhcX0Cvj0dW1geIiMjs9ddhGCEiLWAYIepnQviwd++NOHXqA8hyFMaP34CoqAv65LW4ZoSItIBhhKgfeb2V2Lv3RlRVvQ5JMmDs2LdgsWT32euxM0JEWqBXuwCicODz1aO8/K8oL/8zfL5aADJGj16D+Pir+vR1GUaISAsYRoj6kKI0w25fhSNH7ofXWwEAiImZjKFD/4LY2Mv6/PXbwoiiNEBRmiDLhj5/TSKiQAU8TbNlyxbMmjULaWlpkCQJ69ev/95zNm/ejAsvvBAmkwnDhg3D6tWre1AqkTYIoaCubjfKyh7Fjh3jsH//b+D1VsBsHowxY9biwgu39UsQAQCdzuL/mt0RIgpWAXdG6uvrkZWVhZtvvhnXXXfd9x5fWlqKmTNn4rbbbsMrr7yCwsJC3HLLLUhNTcX06dN7VDRRMBFCwOM5ipqazTh16gOcPLkJTU0O/+N6fQIyM5cgLe02yLKxX2uTZQNkORKK0tC6iDWxX1+fiKg7Ag4jM2bMwIwZM7p9/IoVKzB48GA89thjAIDRo0fj008/xV//+leGEdIMRWmGx1MGt/sQ3O6DrdshNDYegtt9CIri7nC8LEciNvYKxMdPR0rKXP90iRr0eiu83gZ2RogoaPX5mpGtW7ciNze3w77p06fjzjvvPOs5Ho8HHo/H/73L5eqr8oi65PVWo7z8EdTXfwO3+yAaG0shRPM5zpARHZ2F+PjpiIubDqs1B7Js6rd6z6UljFQwjBBR0OrzMGK322GzdbyrpM1mg8vlgtvtRkRExBnnFBQUYNmyZX1dGtFZ2e3Po7z8Lx32SZIJERFDW7dhiIgYCrO55WuzeVDQLg7V6xMAAF7vcZUrISLqWlBeTZOfn4+8vDz/9y6XC+np6SpWROGmubkGABAf/yOkp/8RERHDYDINgCRp79Y8FstFcLk+g9P5OWy2OWqXQ0R0hj4PIykpKXA4HB32ORwOWCyWLrsiAGAymWAyBUeLm8KTongBAFFR4xEXd4XK1Zwfq/UHOHr0CTidW9QuhYioS33+z7ycnBwUFhZ22Ldp0ybk5OT09UsT9ZgQLWGkv69+6QtW6yUAgPr6PWhqOqFyNUREZwo4jNTV1aG4uBjFxcUAWi7dLS4uRllZGYCWKZa5c+f6j7/ttttw+PBh/PGPf8S+ffvw9NNP47XXXsNdd93VOyMg6gNtnRFJ0n4YMRqTEBk5GgDgdH6qcjVERGcKOIzs2LEDEydOxMSJEwEAeXl5mDhxIpYsWQIAqKio8AcTABg8eDDee+89bNq0CVlZWXjsscfw3HPP8bJeCmqh1BkBWqZqAKCmhlM1RBR8Al4zcvnll0MIcdbHu7q76uWXX45du3YF+lJEqgmlzggAxMb+ABUV/+C6ESIKStq7NICoH4ReZ+RSAEBt7U40N9eqXA0RUUcMI0RdCLXOiNmcDrN5MAAFLtfnapdDRNQBwwhRF0KtMwJw3QgRBS+GEaIuhFpnBGhZNwKA60aIKOgwjBB1IZQ7Iy7Xdvh87u85moio/zCMEHUhFDsjERFDYTSmQggvamu3q10OEZEfwwhRF0KxMyJJEteNEFFQYhgh6kIodkYArhshouDEMELUhVDsjACn1404nZ9DUZpUroaIqAXDCFEXQrUzEhU1Bnp9PBSlAXV1O9Uuh4gIAMMIUZdCtTMiSbL/bqxcN0JEwYJhhKgLodoZAbhuhIiCD8MIURdCtTMCtF838imEUFSuhoiIYYSoS6HcGYmOngCdLhrNzTWor9+jdjlERAwjRJ0JIUK6MyLLelgsFwPguhEiCg4MI0SdCNHs/zoUOyMA140QUXBhGCHqpK0rAoRmZwRo/wm+n0AIoXI1RBTuGEaIOmlbLwKEbmfEYpkCWY5EU1Ml140QkeoYRog6Od0ZkSBJelVr6SuybPJP1Zw6tUnlaogo3DGMEHXS/koaSZJUrqbvxMXlAgBOnfpQ5UqIKNwxjBB1EspX0rQXF3cVgJZ1I4riUbkaIgpnDCNEnYTyPUbai4oaC4MhGYrSAJfrC7XLIaIwxjBC1Em4dEYkSfZP1Zw8yXUjRKQehhGiTsKlMwKcnqrhuhEiUhPDCFEn4dIZAU4vYq2t/RJNTadUroaIwhXDCFEn4dQZMZsHIjJyFAAFNTUfq10OEYUphhGiTsKpMwLwEl8iUh/DCFEn4dQZAdqvG+EiViJSB8MIUSfh1hmJjb0cgA5u90G43UdUroaIwhHDCFEn4dYZ0estsFiyAXCqhojUwTBC1Em4dUYAXuJLROpiGCHqJNw6I8DpRaw1NYUQQlG5GiIKNwwjRJ2EY2fEYsmGTheDpqZq1NUVq10OEYUZhhGiTsKxMyLLhtaFrJyqIaL+xzBC1Ek4dkaA9vcb4SW+RNS/GEaIOgnHzghwehFrTc2/4fO5Va6GiMIJwwhRJ+HaGYmMHAWjMQ1CeOB0fqZ2OUQURnoURpYvX47MzEyYzWZkZ2dj+/bt5zz+iSeewMiRIxEREYH09HTcddddaGxs7FHBRH0tXDsjkiS1u8T3A5WrIaJwEnAYWbduHfLy8rB06VLs3LkTWVlZmD59OiorK7s8fs2aNVi0aBGWLl2KvXv34vnnn8e6detwzz33nHfxRH0hXDsjABAf/yMAwIkTG1SuhIjCScBh5PHHH8ett96K+fPnY8yYMVixYgUiIyOxatWqLo///PPPMW3aNNxwww3IzMzE1Vdfjeuvv/57uylEagnXzggAxMdPB6BDQ8M3cLtL1S6HiMJEQGHE6/WiqKgIubm5p59AlpGbm4utW7d2ec7FF1+MoqIif/g4fPgwNmzYgGuuueasr+PxeOByuTpsRP0lnDsjBkMcrNZLAAAnTryncjVEFC4CCiPV1dXw+Xyw2Wwd9ttsNtjt9i7PueGGG/CnP/0Jl1xyCQwGA4YOHYrLL7/8nNM0BQUFsFqt/i09PT2QMonOSzh3RgAgIeHHAIATJ95VuRIiChd9fjXN5s2b8dBDD+Hpp5/Gzp078eabb+K9997DAw88cNZz8vPz4XQ6/Vt5eXlfl0nkF86dEeB0GKmp+RjNzXUqV0NE4UAfyMGJiYnQ6XRwOBwd9jscDqSkpHR5zuLFi3HjjTfilltuAQCMGzcO9fX1+PWvf417770XsnxmHjKZTDCZTIGURtRrwr0zEhk5EmbzUDQ2HsKpUx8iKelatUsiohAXUGfEaDRi0qRJKCws9O9TFAWFhYXIycnp8pyGhoYzAodOpwMACCECrZeoz4V7Z0SSJCQkzATAqRoi6h8BT9Pk5eVh5cqVePHFF7F3717cfvvtqK+vx/z58wEAc+fORX5+vv/4WbNm4ZlnnsHatWtRWlqKTZs2YfHixZg1a5Y/lBAFk3DvjACnp2pOnnyPn+JLRH0uoGkaAJg9ezaqqqqwZMkS2O12TJgwARs3bvQvai0rK+vQCbnvvvsgSRLuu+8+HDt2DElJSZg1axYefPDB3hsFUS8K984IAMTG/gA6XTS8Xjtqa3fCYpmsdklEFMIkoYG5EpfLBavVCqfTCYvFonY5FOJ27pwGl+tzXHDBW2G9XmLPnp+juvpNDBq0FIMH3692OUSkQd39/c3PpiHqRFE8AMK7MwLwEl8i6j8MI0SdtE3ThPOaEQBISGi5MWFdXRE8nuMqV0NEoYxhhKiTtgWs4d4ZMRptiImZAoCfVUNEfYthhKgTdkZO41QNEfUHhhGiTtgZOa0tjJw6tQk+X6PK1RBRqGIYIeqEnZHToqMnwGhMg6I0oKZms9rlEFGIYhgh6oSdkdNa7sbKqRoi6lsMI0SdsDPSUfswooHbEhGRBjGMEHXCzkhHcXFXQpbN8Hi+Q339HrXLIaIQxDBC1I4QPgA+AOyMtNHpIhEXdxUAoKrq/1SuhohCEcMIUTuK0uT/mp2R05KSfgEAqKp6Q+VKiCgUMYwQtdO2XgRgZ6S9hIRZkCQDGhq+QX39XrXLIaIQwzBC1E7behEAkGWDipUEF4MhDnFxuQA4VUNEvY9hhKid050RHSRJp2otwYZTNUTUVxhGiNrhlTRnl5h4LSRJj/r63WhoOKB2OUQUQhhGiNrhPUbOzmCIR2zsDwFwqoaIehfDCFE77IycG6dqiKgvMIwQtcPOyLklJl4LQEZdXRHc7lK1yyGiEMEwQtQOOyPnZjQmITb2cgCcqiGi3sMwQtQOOyPf7/RUzesqV0JEoYJhhKgddka+X2LizwBIqK3djsbG79Quh4hCAMMIUTvsjHw/kykFVuulAICqqjdVroaIQgHDCFE77Ix0D6+qIaLexDBC1A47I92TlPRzAIDL9Tk8nmMqV0NEWscwQtQOOyPdYzKlwWKZBoBTNUR0/hhGiNphZ6T7eFUNEfUWhhGidtgZ6b6WMCLB6fw3r6ohovPCMELUDjsj3Wc2D/TfAM3heFndYohI0xhGiNphZyQwNttcAIDd/r8QQqhcDRFpFcMIUTvsjAQmKennkOUIuN0lqK3doXY5RKRRDCNE7bAzEhi9Pqb1w/MAh+N/1S2GiDSLYYSoHXZGAmez3QgAqKx8FYrSpHI1RKRFDCNE7bAzEri4uKtgMNjQ1FSNkyc3ql0OEWkQwwhRO+yMBE6W9bDZrgfAqRoi6hmGEaJ22Bnpmbaraqqr30ZTU426xRCR5jCMELXDzkjPREdPQGTkBRDCww/PI6KAMYwQtcPOSM9IkoSUlJaFrJyqIaJA9SiMLF++HJmZmTCbzcjOzsb27dvPeXxNTQ0WLFiA1NRUmEwmjBgxAhs2bOhRwUR9iZ2RnktOnoOW28Nvgdt9RO1yiEhDAg4j69atQ15eHpYuXYqdO3ciKysL06dPR2VlZZfHe71eXHXVVThy5AjeeOMNlJSUYOXKlRgwYMB5F0/U29gZ6bmW28NfAYC3hyeiwAQcRh5//HHceuutmD9/PsaMGYMVK1YgMjISq1at6vL4VatW4eTJk1i/fj2mTZuGzMxMXHbZZcjKyjrv4ol6Gzsj5yclpWUhq8PB28MTUfcFFEa8Xi+KioqQm5t7+glkGbm5udi6dWuX57z99tvIycnBggULYLPZMHbsWDz00EPw+XxnfR2PxwOXy9VhI+oP7Iycn8TE61pvD78ftbVfql0OEWlEQGGkuroaPp8PNputw36bzQa73d7lOYcPH8Ybb7wBn8+HDRs2YPHixXjsscfwP//zP2d9nYKCAlitVv+Wnp4eSJlEPcbOyPlpuT38zwAAFRVdd0uJiDrr86tpFEVBcnIynn32WUyaNAmzZ8/GvffeixUrVpz1nPz8fDidTv9WXl7e12USAWBnpDekpt4CAKisfAXNzbUqV0NEWqAP5ODExETodDo4HI4O+x0OB1JSUro8JzU1FQaDATqdzr9v9OjRsNvt8Hq9MBrP/KFvMplgMpkCKY2oV7R1RmSZf/96Kjb2ckREjIDbvR+Vla8iLe3XapdEREEuoM6I0WjEpEmTUFhY6N+nKAoKCwuRk5PT5TnTpk3DwYMHoSiKf9/+/fuRmpraZRAhUlNbZ4TTND0nSZI/gBw//g+VqyEiLQh4miYvLw8rV67Eiy++iL179+L2229HfX095s+fDwCYO3cu8vPz/cfffvvtOHnyJBYuXIj9+/fjvffew0MPPYQFCxb03iiIesnpzgjDyPmw2eZBkoyoq9sJl2uH2uUQUZALaJoGAGbPno2qqiosWbIEdrsdEyZMwMaNG/2LWsvKyiDLpzNOeno63n//fdx1110YP348BgwYgIULF+Luu+/uvVEQ9RJ2RnqH0ZiIpKRfoLJyDSoq/gGLZbLaJRFREJOEBm4G4HK5YLVa4XQ6YbFY1C6HQtjnn6fB663A5MnFiI7mvXDOR03Nv1Fc/APIchQuvvgY9Hqr2iURUT/r7u9vfjYNUTvsjPQeq/USREaOhqLUw+F4Re1yiCiIMYwQtcM1I72nZSHrbwC0LGTVQBOWiFTCMELUDjsjvctmmwtZNqO+/iu4XNvULoeIghTDCFErIQQ7I73MYIhDUtIvAQAVFbzMl4i6xjBC1EoIH4CWqQR2RnpPWtptAIDKynVoaqpRtxgiCkoMI0St2roiADsjvclimYqoqHFQFDccjv9VuxwiCkIMI0St2taLAOyM9KaOC1lXcCErEZ2BYYSoVfvOiCQFfD9AOgeb7b8gy5FoaPgWNTWb1S6HiIIMwwhRq/ZX0kiSpHI1oUWvtyIl5SYAwNGjj6tbDBEFHYYRola8kqZvDRy4EICEEyfeRUNDidrlEFEQYRghasV7jPStyMgRSEiYBQAoL/+rytUQUTBhGCFqxc5I30tP/z0AwOF4EV5vtcrVEFGwYBghasXOSN+zWi9FdPQkKEojjh9foXY5RBQkGEaIWrEz0vckSfJ3R44dewqK4lG5IiIKBgwjRK3YGekfSUm/gMk0EE1NDjgca9Quh4iCAMMIUSt2RvqHLBswYMDvALRc5suboBERwwhRK3ZG+k9q6q3Q6aJRX78Hp059qHY5RKQyhhGiVuyM9B+DIRYpKb8CAJSXP6ZyNUSkNoYRolbsjPSvlpugyTh16n3U1e1RuxwiUhHDCFErdkb6V0TEYCQlXQeAt4gnCncMI0St2BnpfwMHtt0E7X/hdh9RtxgiUg3DCFErdkb6n9U6FXFxuRCiGWVlD6tdDhGphGGEqBU7I+oYNGgpAMBuX4XGxjKVqyEiNTCMELViZ0QdsbGXIDb2CgjRhLKyR9Quh4hUwDBC1IqdEfVkZrZ0RyoqnkNj41GVqyGi/sYwQtSKnRH1xMZeBqv1BxDCi/JydkeIwg3DCFErdkbU1dYdOX58JTye4ypXQ0T9iWGEqBU7I+qKjb0CFss0COFBWdmf1S6HiPoRwwhRK3ZG1CVJUru1I/+Ax2NXuSIi6i8MI0St2BlRX1xcLiyWqVCURpSXP6p2OUTUTxhGiFopigcAOyNqkiTJf9+R48efgdfrULkiIuoPDCNErdgZCQ7x8dMREzMFiuLGd989pHY5RNQPGEaIWnHNSHCQJAlDhrSEkOPHn0ZDw0GVKyKivsYwQtSKnZHgERd3JeLjfwQhmlFaeo/a5RBRH2MYIWrFzkhwGTLkEQASqqpeh8u1Te1yiKgPMYwQtWJnJLhER49HSso8AMChQ3+AEELlioiorzCMELViZyT4ZGY+AFk2w+n8N06ceEftcoioj/QojCxfvhyZmZkwm83Izs7G9u3bu3Xe2rVrIUkSrr322p68LFGfYmck+JjNAzFw4F0AgMOH74aiNKtcERH1hYDDyLp165CXl4elS5di586dyMrKwvTp01FZWXnO844cOYL/9//+Hy699NIeF0vUl9gZCU4ZGXdDr09AQ8M+2O3Pq10OEfWBgMPI448/jltvvRXz58/HmDFjsGLFCkRGRmLVqlVnPcfn82HOnDlYtmwZhgwZcl4FE/UVdkaCk15vRWbmEgBAaelSNDfXqVwREfW2gMKI1+tFUVERcnNzTz+BLCM3Nxdbt24963l/+tOfkJycjF/96lfdeh2PxwOXy9VhI+pr7IwEr7S022A2D0VTkwNHjz6mdjlE1MsCCiPV1dXw+Xyw2Wwd9ttsNtjtXX+o1aeffornn38eK1eu7PbrFBQUwGq1+rf09PRAyiTqEXZGgpcsGzFkSAEAoKzsz2hsPKpyRUTUm/r0apra2lrceOONWLlyJRITE7t9Xn5+PpxOp38rLy/vwyqJWrAzEtySkn4Bi2UaFKUBhw7dpXY5RNSL9IEcnJiYCJ1OB4ej44dXORwOpKSknHH8oUOHcOTIEcyaNcu/T1GUlhfW61FSUoKhQ4eecZ7JZILJZAqkNKLzxs5IcJMkCSNGPI0dOy5EVdUbOHnyA8THX612WUTUCwLqjBiNRkyaNAmFhYX+fYqioLCwEDk5OWccP2rUKHz99dcoLi72bz/5yU9wxRVXoLi4mNMvFFTYGQl+0dHjMXDgbwEABw7c4f+kZSLStoA6IwCQl5eHefPmYfLkyZgyZQqeeOIJ1NfXY/78+QCAuXPnYsCAASgoKIDZbMbYsWM7nB8bGwsAZ+wnUhs7I9qQmbkMlZXr4HYfQFnZo8jMvE/tkojoPAUcRmbPno2qqiosWbIEdrsdEyZMwMaNG/2LWsvKyiDLvLEraYsQCoRouaEWOyPBTa+3YOjQx7B37w0oK3sQNtscREQMVrssIjoPktDABz64XC5YrVY4nU5YLBa1y6EQpCgebNliBgBcckkN9HqryhXRuQghsHt3LmpqPkJCwo8xbhxvFU8UjLr7+5stDCKcXi8CsDOiBZIkYfjw5ZAkA06ceBfV1W+rXRIRnQeGESKcXi8CcM2IVkRFjUJ6+u8BAAcO/A4+X4PKFRFRTzGMEKF9Z0SGJOlUrYW6b9Cg+2AyZcDj+Q7fffeA2uUQUQ8xjBCBV9JolU4XheHD/wYAKCt7FC7XlypXREQ9wTBCBN5jRMsSE3+K5OTrAfiwb99N8Pka1S6JiALEMEIEdka0bvjwv8NgsKGh4VscOXK/2uUQUYAYRojAzojWGQwJGDnyHwCA8vJH4XR+oXJFRBQIhhEisDMSChITfwqb7UYASut0jVvtkoiomxhGiMDOSKgYNuxJGI2pcLtLUFq6WO1yiKibGEaIwM5IqDAY4jBy5EoAwNGjj8Pp/EzlioioOxhGiMDOSChJSJiJlJT5AETrdE292iUR0fdgGCECOyOhZujQx2EyDYTbfRAHDixUuxwi+h4MI0RgZyTUGAyxGDXqJQAS7Pbn4XC8onZJRHQODCNEYGckFMXFXYFBg5YAAEpKfoOGhv0qV0REZ8MwQgR2RkJVZuZixMZeDkWpxzff/JJ3ZyUKUgwjRGBnJFRJkg6jR78CgyEJ9fW7cehQntolEVEXGEaIwM5IKDOZ0jB69MsAgOPHn0Fl5esqV0REnTGMEIGdkVAXH381MjLyAQAlJbfA7T6kckVE1B7DCBHYGQkHmZl/gsUyDT6fq3X9CG8XTxQsGEaI0L4zYlK5EuorsqzHmDGvQq9PQF3dTpSU3AwhhNplEREYRogAsDMSLszmdIwd+3+QJD0qK9eirKxA7ZKICAwjRAC4ZiScxMZehuHDnwIAlJbei+rqf6pcERExjBCBnZFwk5b2G6SlLQAAfPvtHNTVfa1yRUThjWGECOyMhKNhw/6K2NgfQlHqsWfPT+D1VqldElHYYhghAjsj4UiWDbjggtdhNg9FY+MRfPPNL/x/D4iofzGMEIGdkXBlMMRj3Li3odPFwOncgpKSW3mFDZEKGEaIwM5IOIuKGoMxY9YC0MHheAmHD9+tdklEYYdhhAjsjIS7hIRrMHLkcwCA8vJHUVb2F5UrIgovDCNEYGeEgNTUmzBkyCMAgMOH/wC7/UWVKyIKHwwjRGBnhFqkp/8BAwf+HgCwb9+vUF39rsoVEYUHhhEisDNCLSRJwtChf4bNNheAD99++x9wOj9TuyyikMcwQgR2Rug0SZIxcuRziI+fCUVpxNdf/xi1tTvVLosopDGMEIGdEeqo5R4kr8FiuRjNzTXYvftKuFw71C6LKGQxjBCBnRE6k04XifHj/9UukOTC5dqudllEIYlhhAjsjFDX9HoLxo/fCKv1Evh8TuzefRVcrm1ql0UUchhGiMDOCJ2dXh+DceP+Bav1Uvh8LuzefRWczq1ql0UUUhhGiMDOCJ2bXh+NceM2wGq9DD5fLb766mrU1HyqdllEIaNHYWT58uXIzMyE2WxGdnY2tm8/+zzqypUrcemllyIuLg5xcXHIzc095/FEamBnhL6PXh+N8ePfQ2zsFfD56vDVV1ejuvodtcsiCgkBh5F169YhLy8PS5cuxc6dO5GVlYXp06ejsrKyy+M3b96M66+/Hh9//DG2bt2K9PR0XH311Th27Nh5F0/UW9gZoe7Q6aIwbty7iI+fAUVxY8+ea3H8+HNql0WkeZII8CMqs7OzcdFFF+Gpp54CACiKgvT0dPz2t7/FokWLvvd8n8+HuLg4PPXUU5g7d263XtPlcsFqtcLpdMJisQRSLlG3bNkSAUVpxNSp38FszlC7HApyitKE/ft/Dbt9NQAgM/N+DBq0BJIkqVsYUZDp7u/vgDojXq8XRUVFyM3NPf0Esozc3Fxs3dq9BV0NDQ1oampCfHz8WY/xeDxwuVwdNqK+xM4IBUKWDRg5chUyMu4FABw5cj/27/8NFKVZ5cqItCmgMFJdXQ2fzwebzdZhv81mg91u79Zz3H333UhLS+sQaDorKCiA1Wr1b+np6YGUSRQQIXwAFABcM0LdJ0kShgz5Hwwf/jQAGRUVK/HNN9fB56tXuzQizenXq2kefvhhrF27Fm+99RbMZvNZj8vPz4fT6fRv5eXl/VglhZu2rgjAzggFbsCA23HBBf8HWTbjxIl3sGvXJXC7j6hdFpGmBBRGEhMTodPp4HA4Oux3OBxISUk557l/+ctf8PDDD+ODDz7A+PHjz3msyWSCxWLpsBH1lbYraQB2RqhnkpKuRVbWhzAYklBXV4ydOy/CqVOb1S6LSDMCCiNGoxGTJk1CYWGhf5+iKCgsLEROTs5Zz/vzn/+MBx54ABs3bsTkyZN7Xi1RH+jYGTGoWAlpmdU6DZMmFSE6+kI0NVVj9+5cHD36dwR4jQBRWAp4miYvLw8rV67Eiy++iL179+L2229HfX095s+fDwCYO3cu8vPz/cc/8sgjWLx4MVatWoXMzEzY7XbY7XbU1dX13iiIzkNbZ0SSDLwags6L2ZyOiRM/hc32XwB8OHjwdygpuRk+X6PapREFNX2gJ8yePRtVVVVYsmQJ7HY7JkyYgI0bN/oXtZaVlUGWT2ecZ555Bl6vF7/4xS86PM/SpUtx//33n1/1RL2AV9JQb9LpIjBq1EuIjp6IQ4f+ALt9Nerrv8GYMesQETFY7fKIglLA9xlRA+8zQn2poaEE27ePgl4fh0suOal2ORRCTp78EN9++0s0N5+CTmfByJHPIjl5ttplEfWbPrnPCFEoYmeE+kp8fC4mT94Fi+Vi+HwufPvtf2Lfvl/x8l+iThhGKOzxc2moL5nNgzBhwicYNOg+ABLs9lXYsWMSamuL1S6NKGgwjFDYY2eE+pos6zF48APIyvoIRmMa3O4S7NyZjfLyx1tvukcU3hhGKOyxM0L9JS7uckyevBsJCbMghBeHDv0eu3Zdivr6fWqXRqQqhhEKe+yMUH8yGhMxduw/MWLEP6DTxcDl2oodOyagrOwRfrYNhS2GEQp77IxQf5MkCWlpv8ZFF32D+PgfQQgPDh9ehF27clBX97Xa5RH1O4YRCnvsjJBazOZ0jBu3AaNGrYZeH4va2h0oKpqEQ4cWobmZN4ak8MEwQmGPnRFSkyRJSEmZh4su+hYJCT+FEE0oL38E27ePgsOxlreTp7DAMEJhj50RCgYmUyrGjn0LY8e+DbN5CLzeY9i793oUF1/BqRsKeQwjFPbYGaFgIUkSEhNn4aKLvkFm5gOQ5Qg4nZ9gx46JOHDgt/B6q9QukahPMIxQ2GNnhIKNTmdGZuZ9mDJlLxITfw7Ah2PHnsK2bUNx5MifuJ6EQg7DCIU9RfEAYGeEgo/ZPAhjx76BrKwPER09CT5fLY4cWYpt24bi2LHl/iBNpHUMIxT22qZp2BmhYBUXdyUmTdqOMWPWwmweiqamShw4cAe2bx8Nu/0l3p+ENI9hhMJe278u2RmhYCZJMpKTZ2PKlL0YPnw5DAYbGhsPY9++edi+fQSOH1/p7/IRaQ3DCIU9dkZIS2TZgAED/hvZ2QcxeHABDIYkNDaWYv/+X2PbtmE4evTv8PncapdJFBCGEQp77IyQFun10Rg0aBGmTj2CYcOegNGYBo/nKA4e/B2++CITR44sg9frULtMom5hGKGwx84IaZlOF4mBAxdi6tTDGDFiBczmTDQ1VeLIkfuxdWsG9u69CbW1u9Quk+icGEYo7LEzQqFAlk1IS/sNpkzZjzFj1sFimQohvHA4XkRR0YXYtesyVFX9HxSlSe1Sic6gV7sAIrWxM0KhRJYNSE7+JZKTfwmXaxuOHn0SVVWvw+ncAqdzCwyGZKSk3ITU1FsQGTlc7XKJALAzQsTOCIUsiyUbY8asQXZ2KTIy8mEw2NDUVIny8j9j+/YRKC6+Ag7HGi54JdUxjFDYY2eEQp3ZPBBDhjyEnJxyXHDBm4iPnwFAQk3NZuzdOweff27Dvn3zcfLkhxDCp3a5FIY4TUNhj50RCheybEBS0s+QlPQzNDaWoaJiFez2F+DxlMFuXw27fTWMxlQkJ18Pm+0GREdfCEmS1C6bwgA7IxT22BmhcGQ2Z2Dw4PsxdWopJkzYgtTU30Cvj4PXW4GjRx9HUdFkbNs2BAcP/h5O5+cQQlG7ZAph7IxQ2GNnhMKZJMmIjb0UsbGXYvjwv+HkyX/B4XgFJ068i8bGIzh69HEcPfo4jMZUJCZei8TEa2G1/gA6nVnt0imEMIxQ2GNnhKiFLBuRmPhTJCb+FD5fA06e3Iiqqjdx4sQ78HorcPz4Mzh+/BnIciTi4nKRkHAN4uNnwGzOULt00jiGEQp77IwQnUmni0RS0nVISroOiuLFqVOFqK5+EydObIDXexwnTryNEyfeBgBERY1FXNxViIu7ElbrD6DXx6hcPWkNwwiFPXZGiM5Nlo1ISJiBhIQZEEKgrm43Tp7cgBMnNsDl2or6+j2or9+Do0f/CknSIyZmCuLirkRs7A9hsWRDp4tQewgU5BhGKOyxM0LUfZIkISZmAmJiJmDQoHvQ1HQCp059iFOnCnHqVCEaGw/D5focLtfn+O67ByBJBsTETILVemnrNg0GQ7zaw6AgwzBCYY+dEaKeMxgSkJw8G8nJswEAbncpTp0qRE1NIWpqPoHXWwGX6wu4XF+gvPxRAEBk5CjExGTDYpkCiyUbUVHjIcsGNYdBKmMYobDHzghR74mIGIyIiFuQlnYLhBBobCyF0/lvOJ2foqbm33C7S9DQsA8NDfvgcLwIAJBlM6KjJyI6+kLExFyI6OiJiIq6gP9PhhGGEQp77IwQ9Q1JkhARMQQREUOQkjIPAOD1VqG2djtcrm1wubahtnY7mptr4HJthcu1td25BkRFjUV09ARERY1r3cbCaLTxRmwhiGGEwh47I0T9x2hMQkLCTCQkzAQACCHgdh9Abe2XqK3dhbq6nair24Xm5hrU1e1CXd2uDucbDImIihqHyMgxiIwc5d9MpgEMKRrGMEJhj50RIvVIkoTIyBGIjBwBm20OALRO73zXGky+Qn3916iv3wO3+yCamqpRU/Mxamo+7vA8Ol00IiJGIjJyOCIihiEiou3PYTAYkhhUghzDCIU9dkaIgkvL9E4mIiIykZR0nX+/z+dGQ8O3rZcS7/WvPXG7D8Lnq0NdXRHq6orOeD6dLhpm8+DWLRNm82BERAyGyZQBszkDen08w4rKGEYo7LEzQqQNOl0EYmImISZmUof9iuKF230IDQ0lcLsPttsOwOMph89X19pd+brL55XlCH8wMZnSYTINgNGYBpNpgH9r6a7w49z6CsMIhTUhBIRoAsDOCJFWybIRUVGjERU1+ozHfL5GeDzfwe0uRWPj6c3tLoXHU46mpkooihtudwnc7pJzvIoORqMNRmNKpy0ZBkNyhz/1+gTIMn+9BoL/tSistQURgJ0RolCk05kRGTkSkZEju3y8JawchcdTBo+nHI2N5fB6j8Hjadm83uPweh0AfK1fH+/W6+r1cTAYEmAwJMJgSIRen9D6fTz0+jjo9fHtvo6DXh8Lvd4atvdb6VEYWb58OR599FHY7XZkZWXh73//O6ZMmXLW419//XUsXrwYR44cwfDhw/HII4/gmmuu6XHRRL2lbb0IwM4IUThqCSvDEBk57KzHKEoTmpoq4fXau9gq0dRU1fpnJZqaqgEINDefQnPzKbjdBwOqR5ajWoNJLPR6C3Q6C/R6a+vXVuj1MdDpTm8dv4+CThfdukVBknTn+V+n/wQcRtatW4e8vDysWLEC2dnZeOKJJzB9+nSUlJQgOTn5jOM///xzXH/99SgoKMCPf/xjrFmzBtdeey127tyJsWPH9sogiHqqbb0IwM4IEXVNlg3+tSPfRwgfmppOoqnpBJqaqjtszc0n0dR0sjWotH19Es3NTvh8tQAARamH11sPr/dYL9RthixHQaeLhE4X5f9aliNb/4zw/ynLkUhL+w0iIgaf9+v2hCSEEIGckJ2djYsuughPPfUUAEBRFKSnp+O3v/0tFi1adMbxs2fPRn19Pd59913/vqlTp2LChAlYsWJFt17T5XLBarXC6XTCYrEEUi7ROXk8dmzdmgpAwmWX+biinohUoSjN8PlcaG6uaQ0rztaQ4mr92gWfz4nm5lr4fKe3lv218Pnq4fPVweerA6D0qIaJE7fCap3aq+Pq7u/vgDojXq8XRUVFyM/P9++TZRm5ubnYunVrl+ds3boVeXl5HfZNnz4d69evP+vreDweeDwe//culyuQMrutvPwJNDYe6ZPnJm1o+9eIJBkZRIhINbKshyzHn/eHCAohoCgef0BRlIbWoHL6a0Vxw+drgKK4W/e1fN2dzk9fCSiMVFdXw+fzwWazddhvs9mwb9++Ls+x2+1dHm+328/6OgUFBVi2bFkgpfVIVdVrHW4/TOHLYEhQuwQiovMmSRJ0OjN0OjOAJLXL6bagvJomPz+/QzfF5XIhPT29118nJWUeYmOv6PXnJe2Jj5+hdglERGEroDCSmJgInU4Hh8PRYb/D4UBKSkqX56SkpAR0PACYTCaYTKZASuuRtLTf9PlrEBER0bkFdDs5o9GISZMmobCw0L9PURQUFhYiJyeny3NycnI6HA8AmzZtOuvxREREFF4CnqbJy8vDvHnzMHnyZEyZMgVPPPEE6uvrMX/+fADA3LlzMWDAABQUFAAAFi5ciMsuuwyPPfYYZs6cibVr12LHjh149tlne3ckREREpEkBh5HZs2ejqqoKS5Ysgd1ux4QJE7Bx40b/ItWysjLI8umGy8UXX4w1a9bgvvvuwz333IPhw4dj/fr1vMcIERERAejBfUbUwPuMEBERaU93f3/zIwiJiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVMUwQkRERKpiGCEiIiJVMYwQERGRqhhGiIiISFUB3w5eDW03iXW5XCpXQkRERN3V9nv7+272rokwUltbCwBIT09XuRIiIiIKVG1tLaxW61kf18Rn0yiKguPHjyMmJgaSJPXa87pcLqSnp6O8vDxkP/Mm1MfI8WlfqI+R49O+UB9jX45PCIHa2lqkpaV1+BDdzjTRGZFlGQMHDuyz57dYLCH5F6y9UB8jx6d9oT5Gjk/7Qn2MfTW+c3VE2nABKxEREamKYYSIiIhUFdZhxGQyYenSpTCZTGqX0mdCfYwcn/aF+hg5Pu0L9TEGw/g0sYCViIiIQldYd0aIiIhIfQwjREREpCqGESIiIlIVwwgRERGpKqzDyPLly5GZmQmz2Yzs7Gxs375d7ZJ6ZMuWLZg1axbS0tIgSRLWr1/f4XEhBJYsWYLU1FREREQgNzcXBw4cUKfYHigoKMBFF12EmJgYJCcn49prr0VJSUmHYxobG7FgwQIkJCQgOjoaP//5z+FwOFSqOHDPPPMMxo8f77/pUE5ODv71r3/5H9f6+Dp7+OGHIUkS7rzzTv8+LY/x/vvvhyRJHbZRo0b5H9fy2No7duwY/uu//gsJCQmIiIjAuHHjsGPHDv/jWv5Zk5mZecZ7KEkSFixYAED776HP58PixYsxePBgREREYOjQoXjggQc6fGaMqu+fCFNr164VRqNRrFq1SnzzzTfi1ltvFbGxscLhcKhdWsA2bNgg7r33XvHmm28KAOKtt97q8PjDDz8srFarWL9+vdi9e7f4yU9+IgYPHizcbrc6BQdo+vTp4oUXXhB79uwRxcXF4pprrhEZGRmirq7Of8xtt90m0tPTRWFhodixY4eYOnWquPjii1WsOjBvv/22eO+998T+/ftFSUmJuOeee4TBYBB79uwRQmh/fO1t375dZGZmivHjx4uFCxf692t5jEuXLhUXXHCBqKio8G9VVVX+x7U8tjYnT54UgwYNEjfddJPYtm2bOHz4sHj//ffFwYMH/cdo+WdNZWVlh/dv06ZNAoD4+OOPhRDafw8ffPBBkZCQIN59911RWloqXn/9dREdHS2efPJJ/zFqvn9hG0amTJkiFixY4P/e5/OJtLQ0UVBQoGJV569zGFEURaSkpIhHH33Uv6+mpkaYTCbx6quvqlDh+ausrBQAxCeffCKEaBmPwWAQr7/+uv+YvXv3CgBi69atapV53uLi4sRzzz0XUuOrra0Vw4cPF5s2bRKXXXaZP4xofYxLly4VWVlZXT6m9bG1ufvuu8Ull1xy1sdD7WfNwoULxdChQ4WiKCHxHs6cOVPcfPPNHfZdd911Ys6cOUII9d+/sJym8Xq9KCoqQm5urn+fLMvIzc3F1q1bVays95WWlsJut3cYq9VqRXZ2tmbH6nQ6AQDx8fEAgKKiIjQ1NXUY46hRo5CRkaHJMfp8Pqxduxb19fXIyckJqfEtWLAAM2fO7DAWIDTewwMHDiAtLQ1DhgzBnDlzUFZWBiA0xgYAb7/9NiZPnoz/+I//QHJyMiZOnIiVK1f6Hw+lnzVerxcvv/wybr75ZkiSFBLv4cUXX4zCwkLs378fALB79258+umnmDFjBgD13z9NfFBeb6uurobP54PNZuuw32azYd++fSpV1TfsdjsAdDnWtse0RFEU3HnnnZg2bRrGjh0LoGWMRqMRsbGxHY7V2hi//vpr5OTkoLGxEdHR0XjrrbcwZswYFBcXh8T41q5di507d+LLL7884zGtv4fZ2dlYvXo1Ro4ciYqKCixbtgyXXnop9uzZo/mxtTl8+DCeeeYZ5OXl4Z577sGXX36J3/3udzAajZg3b15I/axZv349ampqcNNNNwHQ/t9PAFi0aBFcLhdGjRoFnU4Hn8+HBx98EHPmzAGg/u+KsAwjpF0LFizAnj178Omnn6pdSq8bOXIkiouL4XQ68cYbb2DevHn45JNP1C6rV5SXl2PhwoXYtGkTzGaz2uX0urZ/XQLA+PHjkZ2djUGDBuG1115DRESEipX1HkVRMHnyZDz00EMAgIkTJ2LPnj1YsWIF5s2bp3J1vev555/HjBkzkJaWpnYpvea1117DK6+8gjVr1uCCCy5AcXEx7rzzTqSlpQXF+xeW0zSJiYnQ6XRnrIR2OBxISUlRqaq+0TaeUBjrHXfcgXfffRcff/wxBg4c6N+fkpICr9eLmpqaDsdrbYxGoxHDhg3DpEmTUFBQgKysLDz55JMhMb6ioiJUVlbiwgsvhF6vh16vxyeffIK//e1v0Ov1sNlsmh9je7GxsRgxYgQOHjwYEu8fAKSmpmLMmDEd9o0ePdo/HRUqP2u+++47fPjhh7jlllv8+0LhPfzDH/6ARYsW4T//8z8xbtw43HjjjbjrrrtQUFAAQP33LyzDiNFoxKRJk1BYWOjfpygKCgsLkZOTo2JlvW/w4MFISUnpMFaXy4Vt27ZpZqxCCNxxxx1466238NFHH2Hw4MEdHp80aRIMBkOHMZaUlKCsrEwzY+yKoijweDwhMb4rr7wSX3/9NYqLi/3b5MmTMWfOHP/XWh9je3V1dTh06BBSU1ND4v0DgGnTpp1xSf3+/fsxaNAgAKHxswYAXnjhBSQnJ2PmzJn+faHwHjY0NECWO/7K1+l0UBQFQBC8f32+RDZIrV27VphMJrF69Wrx7bffil//+tciNjZW2O12tUsLWG1trdi1a5fYtWuXACAef/xxsWvXLvHdd98JIVou14qNjRX//Oc/xVdffSV++tOfauZyOyGEuP3224XVahWbN2/ucOldQ0OD/5jbbrtNZGRkiI8++kjs2LFD5OTkiJycHBWrDsyiRYvEJ598IkpLS8VXX30lFi1aJCRJEh988IEQQvvj60r7q2mE0PYYf//734vNmzeL0tJS8dlnn4nc3FyRmJgoKisrhRDaHlub7du3C71eLx588EFx4MAB8corr4jIyEjx8ssv+4/R+s8an88nMjIyxN13333GY1p/D+fNmycGDBjgv7T3zTffFImJieKPf/yj/xg137+wDSNCCPH3v/9dZGRkCKPRKKZMmSK++OILtUvqkY8//lgAOGObN2+eEKLlkq3FixcLm80mTCaTuPLKK0VJSYm6RQegq7EBEC+88IL/GLfbLf77v/9bxMXFicjISPGzn/1MVFRUqFd0gG6++WYxaNAgYTQaRVJSkrjyyiv9QUQI7Y+vK53DiJbHOHv2bJGamiqMRqMYMGCAmD17dof7b2h5bO298847YuzYscJkMolRo0aJZ599tsPjWv9Z8/777wsAXdas9ffQ5XKJhQsXioyMDGE2m8WQIUPEvffeKzwej/8YNd8/SYh2t18jIiIi6mdhuWaEiIiIggfDCBEREamKYYSIiIhUxTBCREREqmIYISIiIlUxjBAREZGqGEaIiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVMUwQkRERKr6/7ePxQ0t3jCpAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Primary peak time, secondary peak time, end time\n", + "t1, t2, t3 = 3, 4, 10\n", + "# Peaks' values\n", + "p1, p2 = 1, 1.4\n", + "# Rise and decay slopes\n", + "rise, decay = 0.6, 0.1\n", + "\n", + "# Append zeros before start time\n", + "h_primary = np.append(np.zeros(int(t1/lc.dt)), p1)\n", + "\n", + "# Create a rising exponential of user-provided slope that ends at secondary peak time and secondary peak\n", + "# value\n", + "x = np.linspace(int(t1/lc.dt), int(t2/lc.dt), int((t2-t1)/lc.dt))\n", + "h_rise = np.exp(rise*x)\n", + "# Find a factor for scaling\n", + "factor = np.max(h_rise)/(p2-p1)\n", + "h_secondary = (h_rise/factor) + p1\n", + "\n", + "# Create a decaying exponential until the end time\n", + "x = np.linspace(int(t2/lc.dt), int(t3/lc.dt), int((t3-t2)/lc.dt))\n", + "h_decay = (np.exp((-decay)*(x-4/lc.dt)))\n", + "\n", + "# Add the three responses\n", + "h = np.append(h_primary, h_secondary)\n", + "h = np.append(h, h_decay)\n", + "\n", + "# Plot\n", + "plt.plot(h,'y')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtain output through convolution." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delay = (int(t3/lc.dt))\n", + "output = signal.fftconvolve(s, h)\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Form light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find cross spectrum and compute lags." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc2, lc1)\n", + "cross = cross.rebin(0.0075)\n", + "lag = np.angle(cross.power)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot results." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGiCAYAAAD3HoLVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC/UlEQVR4nO3de3wU1eH38e/mTkIuQBJCakjAGxcBFSGGVoklFRStWkSLWC5FrApWRS2kjwro04K3qlW0rT8k9qfWio93EQsoeCHKRVFBoIBAuCXcTCK5bDbJef4Ys7AkWQjs7uwmn/frNa/Mzp6ZPZPZ7H5z5swZhzHGCAAAAE0Ks7sCAAAAwYywBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOCFX8PSRx99pMsvv1zp6elyOBx64403PJ43xui+++5Tly5d1K5dO+Xl5WnTpk3H3O6cOXOUlZWlmJgYZWdna8WKFX7aAwAA0Nb5NSxVVFSoX79+mjNnTpPPP/TQQ/rrX/+qv/3tb/r8888VFxenoUOHqrq6utlt/vvf/9aUKVM0ffp0ffHFF+rXr5+GDh2qvXv3+ms3AABAG+YI1I10HQ6HXn/9dV155ZWSrFal9PR03XnnnbrrrrskSWVlZercubMKCgr061//usntZGdna8CAAXrqqackSfX19crIyNCtt96qadOmBWJXAABAGxJh1wtv3bpVxcXFysvLcy9LTExUdna2CgsLmwxLNTU1Wr16tfLz893LwsLClJeXp8LCwmZfy+l0yul0uh/X19fr4MGD6tSpkxwOh4/2CAAA+JMxRj/88IPS09MVFha4bte2haXi4mJJUufOnT2Wd+7c2f3c0fbv36+6urom19mwYUOzrzVr1izNnDnzJGsMAACCwY4dO3TKKacE7PVsC0uBlJ+frylTprgfl5WVqWvXrtqxY4cSEhJsrBkAnLyKmgqlP5ouSdp9527FRcXZXCPAP8rLy5WRkaH4+PiAvq5tYSktLU2SVFJSoi5duriXl5SU6Oyzz25yneTkZIWHh6ukpMRjeUlJiXt7TYmOjlZ0dHSj5QkJCYQlACEvvCZcirHmExISCEto9QLdhca2cZa6deumtLQ0LVmyxL2svLxcn3/+uXJycppcJyoqSv379/dYp76+XkuWLGl2HQAAgJPh15alQ4cOafPmze7HW7du1Zo1a9SxY0d17dpVt99+u/7v//2/Ov3009WtWzfde++9Sk9Pd18xJ0lDhgzRVVddpcmTJ0uSpkyZorFjx+q8887TwIED9fjjj6uiokLjx4/3564AQNCKCIvQ2H5j3fMAfMuvf1WrVq3SRRdd5H7c0G9o7NixKigo0B/+8AdVVFToxhtvVGlpqX72s59p4cKFiomJca+zZcsW7d+/3/342muv1b59+3TfffepuLhYZ599thYuXNio0zcAtBXREdEquLLA7moArVbAxlkKJuXl5UpMTFRZWRl9lgAACBF2fX/TXgsAIc4Yo0pXpSQpNjKW8eMAH+NGugAQ4ipdlWo/q73az2rvDk0AfIewBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALxgnCUACHHhYeG6utfV7nkAvkVYAoAQFxMRo/kj59tdDaDV4jQcAACAF4QlAAAALwhLABDiKmoq5JjpkGOmQxU1FXZXB2h1CEsAAABeEJYAAAC8ICwBAAB4QVgCAADwgrAEAADgBWEJAADAC0bwBoAQFx4WrktPv9Q9D8C3CEsAEOJiImL07nXv2l0NoNXiNBwAAIAXhCUAAAAvCEsAEOIqaioU9+c4xf05jtudAH5AnyUAaAUqXZV2VwFotWhZAgAA8IKwBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC+4Gg4AQlyYI0yDMwe75wH4FmEJAEJcu8h2Wjpuqd3VAFot/gUBAADwgrAEAADgBWEJAEJcRU2FUh5OUcrDKdzuBPAD28NSVlaWHA5Ho2nSpElNli8oKGhUNiYmJsC1BoDgsr9yv/ZX7re7GkCrZHsH75UrV6qurs79eO3atfrFL36hkSNHNrtOQkKCNm7c6H7scDj8WkcAANB22R6WUlJSPB7Pnj1bp556qgYPHtzsOg6HQ2lpaf6uGgAAgP2n4Y5UU1OjF154Qb/97W+9thYdOnRImZmZysjI0BVXXKF169Z53a7T6VR5ebnHBAAAcDyCKiy98cYbKi0t1bhx45otc+aZZ+q5557Tm2++qRdeeEH19fUaNGiQdu7c2ew6s2bNUmJionvKyMjwQ+0BAEBr5DDGGLsr0WDo0KGKiorS22+/fdzruFwu9ezZU6NGjdIDDzzQZBmn0ymn0+l+XF5eroyMDJWVlSkhIeGk6w0AdqqoqVD7We0lSYfyDykuKs7mGgH+UV5ersTExIB/f9veZ6nB9u3btXjxYr322mstWi8yMlLnnHOONm/e3GyZ6OhoRUdHn2wVASAohTnCdF76ee55AL4VNGFp3rx5Sk1N1fDhw1u0Xl1dnb755htdeumlfqoZAAS3dpHttHLiSrurAbRaQfEvSH19vebNm6exY8cqIsIzv40ZM0b5+fnux/fff7/+85//6LvvvtMXX3yh66+/Xtu3b9cNN9wQ6GoDAIA2IChalhYvXqyioiL99re/bfRcUVGRwsIOZ7rvv/9eEydOVHFxsTp06KD+/ftr+fLl6tWrVyCrDAAA2oig6uAdKHZ1EAMAf6h0VarXHOsfxm8nfavYyFibawT4R5vv4A0AODHGGG0v2+6eB+BbQdFnCQAAIFgRlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFV8MBQIhzOBzqldLLPQ/AtwhLABDiYiNjte6WdXZXA2i1OA0HAADgBWEJAADAC8ISAIS4Slelej/dW72f7q1KV6Xd1QFaHfosAUCIM8bo233fuucB+BYtSwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFV8MBQIhzOBzKTMx0zwPwLcISAIS42MhYbbt9m93VAFotTsN58+WX1gQAANoswlJzXn9dGjhQGj1aqq62uzYAAMAmhKXmXHih1KmTtH69NGOG3bUBgGZVuao04NkBGvDsAFW5quyuDtDqEJaa06mT9Pe/W/MPPyx99pm99QGAZtSbeq3avUqrdq9Svam3uzpAq0NY8uaKK6Trr5fq66Xx46Uq/mMDAKCtISwdyxNPSF26SBs2SPfdZ3dtAABAgBGWjqVjR+kf/7DmH31UWr7c3voAAICAIiwdj8suk8aOlYyRxo2TKivtrhEAAAgQwtLxevxxKT1d2rRJuuceu2sDAAAChLB0vJKSpGefteYff1z65BM7awMAHpJjk5Ucm2x3NYBWyWGMMXZXItDKy8uVmJiosrIyJSQktGzl3/5WmjdPOu006auvpNhY/1QSAAB4OKnv75NAy1JL/eUv0imnSJs3S3/8o921AQAAfkZYaqmkJOl//seaf+IJ6aOPbK0OAADwL8LSiRg6VLrhBmt+/HiposLe+gBo06pcVcotyFVuQS63OwH8gLB0oh59VMrIkL77Tpo2ze7aAGjD6k29lm1fpmXbl3G7E8APCEsnKiFBmjvXmn/qKWnpUlurAwAA/MP2sDRjxgw5HA6PqUePHl7XmT9/vnr06KGYmBj16dNHCxYsCFBtj/KLX0i/+501P368dOiQPfUAAAB+Y3tYkqTevXtrz5497ukTL2MYLV++XKNGjdKECRP05Zdf6sorr9SVV16ptWvXBrDGR3j4YSkzU9q2TfrDH+ypAwAA8JugCEsRERFKS0tzT8nJzQ+s9sQTT2jYsGG6++671bNnTz3wwAM699xz9dRTTwWwxkeIjz98Ou6ZZ6QlS+ypBwAA8IugCEubNm1Senq6unfvrtGjR6uoqKjZsoWFhcrLy/NYNnToUBUWFja7jtPpVHl5ucfkU0OGSLfcYs1PmCD98INvtw8AAGxje1jKzs5WQUGBFi5cqGeeeUZbt27VBRdcoB+aCRzFxcXq3Lmzx7LOnTuruLi42deYNWuWEhMT3VNGRoZP90GS9OCDUrdu0vbt0t13+377AOBFbGSsYiO5owDgD7aHpUsuuUQjR45U3759NXToUC1YsEClpaV65ZVXfPYa+fn5Kisrc087duzw2bbd2reXnnvOmv/736VFi3z/GgDQhLioOFX8sUIVf6xQXFSc3dUBWh3bw9LRkpKSdMYZZ2jz5s1NPp+WlqaSkhKPZSUlJUpLS2t2m9HR0UpISPCY/CI3V5o82ZqfMEHy9ek+AAAQcEEXlg4dOqQtW7aoS5cuTT6fk5OjJUd1ol60aJFycnICUb1jmz1b6t5d2rFDuvNOu2sDAABOku1h6a677tKyZcu0bds2LV++XFdddZXCw8M1atQoSdKYMWOUn5/vLn/bbbdp4cKFevTRR7VhwwbNmDFDq1at0uSGFh27xcVJ8+ZZ8//zP9L779tbHwCtXnVttYa/NFzDXxqu6tpqu6sDtDq2h6WdO3dq1KhROvPMM3XNNdeoU6dO+uyzz5SSkiJJKioq0p49e9zlBw0apJdeekn/+Mc/1K9fP7366qt64403dNZZZ9m1C41deKF0223W/IQJUmmprdUB0LrV1ddpwaYFWrBpgerq6+yuDtDqOIwxxu5KBFp5ebkSExNVVlbmv/5LlZVSv37S5s3W6N4Nnb8BwMcqairUflZ7SdKh/EN08karFZDv7ybY3rLUasXGSgUFksNhnZbzxS1Z6uutEFbHf44AAARKhN0VaNV++lPpjjukv/xFmjjRulKuqkqqrm76p7fnqqulmhpru/HxUl6edOml0iWXSD/5ib37CQBAK8ZpOH8341VVSWefLf33v/57jX79DgennBwpggwMtCWchkNbYddpOL5V/a1dO+m116RHH7VOycXEWMsafh45fzw/Y2KkjRul996zTu19/rn01VfWNGuWlJQkXXyxFZ6GDZOOGu3cL8rLpe+/lxISrCk83P+v2Ryn0+pQX1oqHTokRUUd/j0f+ft2OHz/2nV1UkWF9bpHTz/8YP2sqJAiIxsfe29TVJR/6gsAOC60LAUwmfrF/v3W8AQLFkgLF0oHD3o+37+/FZwuvVQaMODEgozLZY0btXWr9N131nTk/IEDnuXj46XExMNTUpLn42Mtc7ms8NUQehqmo5c19bj6OC+bPp6QcuQkNQ4+R0+VlS3/3R4Ph6PpYBUTYx3P8HCrNbFhvrll3spERR0O40dO0dEtW06rpi1oWUJbYdf3N2Ep1MPSkerqpJUrreC0YIG0erXn8506SUOHWsFp6FApOdlabowVeI4OQQ2Pi4qO3ak8Otpq1QkGDocVutq3t/p5NfQHq60NzOuHh1uvHR9v/TxyiouzwuCR/dSam+rrA1NfX4qIsN5XKSlSaqr188j5o38mJdnbambM4ffI8fQllKy6d+4spaVZ+0pABAKGsBRADb/s3ft2t+iXHR0RrYgw64Oxtr5WzlqnwhxhahfZzl2moqaixfWJCo9SZHikJGu8lOraajkcDo+bYla6KtXSQxW574CiFn0gvfee6t9fqKpK6/YrcS5ZX1D9+6uqtlr127dZLSPeREdJmVlStyxFZHZXdPfTpe7dZbKyVJnRWYpPUJwipbIyqaxM1Qf3qq70oHWKrqxcKis9PF9e9mM5z/nw0jLFVP8YaOLiVJGcICV1UGx8BzmSOkgdOsiZFK/apB9brpI6SEmJh+cTE63H8QlS2OELPd3HyOWSqqpUUb5fqqpWO5dRWLVTqqpSTUW5XJWHpOoqqar6x59HzEtS+3ipfZwU116Kby9HXHvFJia7g1BlTLhMXJxi4hIVHm69T1x1LtXU1bTouElSXGSsu75VPxxUfWWlomvqFOG0ltVWHpKz6pAVYuvrrCBYV/fjVH/48VHPxdVHuB9X1zlVV1ujqDopsqZOqq5WnbNK1c5KKxw4q6Vq548XFzgPzzcsdzqteVetYl1SQ+Rxhku1YVJkvRT1Y8aud0hVTWWKyAgrxKekSMk/BquGsBXbTu1qHQqrrZNcLtXUOuVyVSvCVafoWkkul4yrRpV1Vh1UW2v9zmpdP87/+Njlsupf9WPdq6oUc6ha4VXW/rgcRjXhUriRYo7I0xWRx3GgHJI6JVsBKjVV0aldFNG5i9S5s2pTk+VM7aSwzp3VLj3T2qeIiOD6jAiPVFR4lCSp3tSrymW9149smapyVanetCy4R4RFKDoiWpJkjFGlq7LRdqtrq1s8JlR4WLhiImLcjxt+l7GRsXL8GLqdtU7V1rfsH6PmPsfbRbZTmMP6LKmpq5GrztWi7TZ3jGIiYhQeZrXyn/BnRBPHqKnvqJPZbsMxaur911JNHaPm3n/elJeXKz0lnbAUCA1hSdMkxRyzuNsrV7+ikb1HSpLmr5uva169RoMzB2vpuKXuMikPp2h/5f4W1eepS57SpIGTJElLty3VRc9fpF4pvbTulnXuMr2f7q1v933bou1OHzxdM3JnSJLW7flKZ/3jbCWbdtr3+unS119LknLHScuyWrRZ3XLeLZozfI4kaV/FPqU+kipJMtMPv5VGzh+pV799tUXbvbrn1Zp/2fNWn57ISDlmWn9Ye+/aq5Q4a5DSSe9O0tOrnm7Rdps7RmtvXqveqb0lSTOWztDMZTNbtN3mjtGHYz9UblauJGnOijma/F7LRpdPjk3Wvrv3uR/nFuRq2fZlTb7/WqqpY9TU+6+l9k7appSweKmiQpM+uFNPb5uv6R2u0oy6C6S9e7Xu+//qrC6vtXi7a+dIvX/8VczIlWbmSreskOb8OBLHvlgp9Q8t3qw+LJByt1nzcwZIk4dLV6+T5r9z+DSnY+KuFm/3lVekkT/+mc7vJV1zjTR4m7S0QNY/KJ06KWXi99of3bKQEJDPiL3rdNYzZzX7/msJv31G9Lpa80fOdz/mM8ISEp8RTRyjpt5/x1Qtabbo4A0/+bGlQ3FxVmfwnTulTz6Rdv9Z+uEbe+vWwCFrfCqEnnaxUlxHqWNHq4Vom6S+faXcO6zn966Tnml5WNLll0uyWmSU+KWkldbVpf0usUJ1uFMyD7Z8uwUFUuZgq5/Vf1+QPrxbuvpq6ZXDX8SaeQKnB39zvXQgTSopkWq/kvS1Vc+wOuu06v79Uq2k6JZv2pvq2mrtLN/p240CcGvTLUut/jQcTeySaGJvbrvB2MR+tKaOUXPvv5Zo6hg19/5riWY/I8KirH6BJSWq2PpfK5hJVqiKO3Zn7GN9RhzZwbvkzpLj7uDNZ4SFz4imtxuMnxGchgugVtvBG0Bo6NDBuoJz3TqpV6+T3hxXw6Gt4HYnANBWZGVZP7dts7MWAI4TYQkAAo2wBIQUwhIABBphCQgphCUACDTCEhBSCEsAEGiEJSCkMM4SAASaj8NSbGSsDuUfcs8D8C3CEgAEWmam9XPfPqmi4rjGWvLG4XAwXADgR5yGA4BAS0qyJknavt3OmgA4DoQlALBDt27Wz61bT3pTzlqnxr0xTuPeGHdCozYD8I6wBAB28GG/pdr6Wj3/1fN6/qvnW3yrDwDHRlgCADtwRRwQMghLAGAHwhIQMghLAGAHwhIQMghLAGAHwhIQMghLAGCHhrGW9u+XDh2yty4AvCIsAYAdEhOlDh2secZaAoIaI3gDgF2ysqTvv7dOxfXufcKbiY2M1d679rrnAfgWLUsAYBcf9VtyOBxKiUtRSlyKHA7HSVcLgCfCEgDYhU7eQEggLAGAXXwUlpy1Tk16d5ImvTuJ250AfkBYAgC7+Oj+cLX1tXp61dN6etXT3O4E8APCEgDYhdNwQEggLAGAXRrGWjpwQPrhB3vrAqBZhCUAsEtCgtSxozXPWEtA0CIsAYCdOBUHBD3bw9KsWbM0YMAAxcfHKzU1VVdeeaU2btzodZ2CggI5HA6PKSYmJkA1BgAfIiwBQc/2sLRs2TJNmjRJn332mRYtWiSXy6WLL75YFRUVXtdLSEjQnj173NN2mrABhCLCEhD0bL/dycKFCz0eFxQUKDU1VatXr9aFF17Y7HoOh0NpaWnH9RpOp1NO5+GxR8rLy0+ssgDgaz4IS+0i22nrbVvd8wB8y/aWpaOVlZVJkjo2dHpsxqFDh5SZmamMjAxdccUVWrduXbNlZ82apcTERPeUkZHh0zoDwAnzQVgKc4QpKylLWUlZCnME3cc6EPIcxhhjdyUa1NfX65e//KVKS0v1ySefNFuusLBQmzZtUt++fVVWVqZHHnlEH330kdatW6dTTjmlUfmmWpYyMjJUVlamhIQEv+wLAByXb76R+vaVOnWS9u+3uzZAUCsvL1diYmLAv7+DKizdfPPNeu+99/TJJ580GXqa43K51LNnT40aNUoPPPDAMcvb9csGgEbKy6XExMPz8fEt3kRNXY3+z5L/I0n605A/KSo8ypc1BIKGXd/fQdNeO3nyZL3zzjv68MMPWxSUJCkyMlLnnHOONm/e7KfaAYCf+GCsJVedS48UPqJHCh+Rq87lw8oBkIIgLBljNHnyZL3++uv64IMP1K3hXkktUFdXp2+++UZdunTxQw0BwM8a+i2d5D3iAPiH7WFp0qRJeuGFF/TSSy8pPj5excXFKi4uVlVVlbvMmDFjlJ+f7358//336z//+Y++++47ffHFF7r++uu1fft23XDDDXbsAgCcnIZ/Ehk+AAhKtg8d8Mwzz0iScnNzPZbPmzdP48aNkyQVFRUpLOxwrvv+++81ceJEFRcXq0OHDurfv7+WL1+uXr16BaraAOA7jLUEBDXbw9Lx9C9funSpx+PHHntMjz32mJ9qBAABRlgCgprtp+EAoM0jLAFBjbAEAHYjLAFBzfbTcADQ5mVmWj8PHrTGWmrh+DHtIttp7c1r3fMAfIuWJQCwW3y8NYK3dEJjLYU5wtQ7tbd6p/bmdieAH/BXBQDBgFNxQNAiLAFAMDiJsFRTV6MZS2doxtIZqqmr8Wm1ANBnCQCCw0mEJVedSzOXzZQk3T3obu4NB/gYLUsAEAw4DQcELcISAAQDwhIQtAhLABAMGu4Px810gaBDWAKAYNAw1tL330tlZfbWBYAHwhIABIP27aXkZGv+BMZaAuA/hCUACBb0WwKCEkMHAECwyMqSVq1qcViKiYjRihtWuOcB+BZhCQCCxQm2LIWHhWvATwb4vDoALJyGA4BgwWk4ICjRsgQAweIEw1JNXY2e+OwJSdJt59/GCN6AjxGWACBYnGBYctW59IfFf5Ak3TLgFsIS4GOchgOAYMFYS0BQIiwBQLBgrCUgKBGWACCY0MkbCDqEJQAIJtwjDgg6hCUACCa0LAFBh7AEAMGEsAQEHYYOAIBgcgJhKSYiRh+O/dA9D8C3CEsAEExOICyFh4UrNyvXH7UBIE7DAUBwaRhrqbTUmgDYjrAEAMEkLk5KSbHmj3OsJVedS3NWzNGcFXPkqnP5sXJA20RYAoBg08JTcTV1NZr83mRNfm+yaupq/FYtoK0iLAFAsOGKOCCoEJYAINgQloCgQlgCgGBDWAKCCmEJAIINYQkIKoQlAAg2DWGJ+8MBQYGwBADBpiEslZUx1hIQBIIiLM2ZM0dZWVmKiYlRdna2VqxY4bX8/Pnz1aNHD8XExKhPnz5asGBBgGoKAAEQGyulplrzx3EqLjoiWu+MekfvjHpH0RHR/q0b0AbZHpb+/e9/a8qUKZo+fbq++OIL9evXT0OHDtXevXubLL98+XKNGjVKEyZM0Jdffqkrr7xSV155pdauXRvgmgOAH7Wg31JEWISGnzFcw88Yrogw7mIF+JrDGGPsrEB2drYGDBigp556SpJUX1+vjIwM3XrrrZo2bVqj8tdee60qKir0zjvvuJedf/75Ovvss/W3v/2tyddwOp1yOp3ux+Xl5crIyFBZWZkSEhJ8vEcA4APXXiu98or02GPS7bfbXRsgKJSXlysxMTHg39+2tizV1NRo9erVysvLcy8LCwtTXl6eCgsLm1ynsLDQo7wkDR06tNnykjRr1iwlJia6p4yMDN/sAAD4Swtallx1LhWsKVDBmgJudwL4ga1haf/+/aqrq1Pnzp09lnfu3FnFxcVNrlNcXNyi8pKUn5+vsrIy97Rjx46TrzwA+FMLwlJNXY3Gvzle498cz+1OAD9oEye3o6OjFR1Np0cAIYSxloCgYWvLUnJyssLDw1VSUuKxvKSkRGlpaU2uk5aW1qLyABCSCEtA0LA1LEVFRal///5asmSJe1l9fb2WLFminJycJtfJycnxKC9JixYtarY8AISkzEzrJ2MtAbazfeiAKVOm6Nlnn9Xzzz+v9evX6+abb1ZFRYXGjx8vSRozZozy8/Pd5W+77TYtXLhQjz76qDZs2KAZM2Zo1apVmjx5sl27AAC+18KxlgD4j+19lq699lrt27dP9913n4qLi3X22Wdr4cKF7k7cRUVFCgs7nOkGDRqkl156Sffcc4/++Mc/6vTTT9cbb7yhs846y65dAAD/yMqS9u61wtLZZ9tcGaDtsn2cJTvYNU4DALTIcY61VFFTofaz2kuSDuUfUlxUXIAqCASWXd/ftrcsAQCa0a2b9fMYN9SNjojWK1e/4p4H4FuEJQAIVsd5RVxEWIRG9h7p9+oAbZXtHbwBAM1g+AAgKNCyBADB6siwZIzkcDRZrLa+Vq+vf12SdFXPq7iZLuBj/EUBQLBqGGupvNwaa6lDhyaLOWuduubVayRZHbwjovhoB3yJ03AAEKzatZMa7oXJqTjANoQlAAhm9FsCbEdYAoBgRlgCbEdYAoBgRlgCbEdYAoBgRlgCbMclEwAQzAhLaOuMkXbtklaskD7+2JYqEJYAIJgdx1hLUeFRmnfFPPc8EFKMkQ4etG7rs22bNR05v22bVFlpaxW5kS430gUQzKqqpNhYa/7AAaljR3vrA5yI779vOgg1zB865H39sDCpTx+Vn3OOEgsKuJEuAOAI7dpJaWlScbH1pUJYQjBzOqUvvpAKC6XPPpP++1/rfVtWdux1u3SxWlK7dbN+HjmfkSFFR1sDtBYU+HMPmkRYAoBgl5V1OCyde26jp2vra/X+5vclSUNPG8rtThA4e/ZIy5db4Wj5cmn1aqmmpumyqanNh6GuXa1/DIIUf1EAEOyysqz/0pvp5O2sdeqyf10midudwI9cLunrrw8Ho8LCpt+TyclSTo40aJDUp48ViDIzpbi4gFfZV/iLAoBgxxVxsMP+/VZIX77cmlaubNzR2uGwAlFDOMrJkU47rdmbPocqwhIABDvCEvytrk769lvPVqP//rdxucREKxA1hKOBA6U2cKEUYQkAgh1hCb5WViZ9/vnhYPTZZ1bn6aP16OHZatSzp3VlWhtDWAKAYHccYy0BzTJG2rTJsyP2unXW8iPFxUnZ2YfD0fnnc/XljwhLABDsuna1fv7wgzVeDV9g8Kaiwupf1BCOCgutMbqO1r27Z6tRnz5SBLGgKfxWACDYMdYSvCkqkj799HBH7K++svogHSk6WhowwLPVKC3NnvqGIMISAIQCL2MtRYVH6alLnnLPoxWrq7NOoX3yyeFpx47G5X7yEysUNbQanXOOFMV740QRlgAgFHgZaykyPFKTBk4KeJUQAFVV1g1kG4LR8uWNO2KHh1th6Kc/PRyOMjLsqW8rRVgCgFDQrZv1kyviWrd9+6xA1BCOVq+2BoM8Uvv2ViD62c+sKTs7pAd8DAWEJQAIBQ1XxG3d2uipuvo6fVz0sSTpgq4XKDwsPIAVwwkzRtqyxfOU2saNjct16SJdcIHVcvSzn0l9+9IRO8D4bQNAKPAy1lJ1bbUuev4iSdbtTuKiaGUIStXVVktRQ0fs5culvXsbl+vV63Cr0c9+Zh17houwFWEJAEIBYy2Fnt27PYPRF180PqUWFWVdpfaznx3uc9Spkz31RbMISwAQChrGWjp0SDp4kC/UYNNwk9mGYFRYKG3f3rhc586eV6n17y/FxAS+vmgRwhIAhIKYGKvvyp49VusSYcleBw543kdtxYrGN5kNC7P6Fx0Zjrp1o1UwBBGWACBUZGUdDkv9+9tdm7alpkb66CPp7bel999vuiN2UpLniNgDB0rx8QGvKnyPsAQAoSIry2rFYPiAwDh4UFqwwApICxc2Ht+oR4/DwWjQIOtxG7zJbFtAWAKAUOHlijj4yH//a4Wjt96ybiFy5G1DUlOlyy+XLrvMupSfU6FtBmEJAEJFM2EpMjxSD+U95J5HC9TWWq11b71lhaSjT6/16WMFpF/+0rpqjZajNomwBAChopmwFBUepbt/enfAqxOyysutfkdvvy29+651uq1BZKSUm2sFpMsvP/w7R5tmW0Tetm2bJkyYoG7duqldu3Y69dRTNX36dNXU1HhdLzc3Vw6Hw2O66aabAlRrALDR0WMt4fht2yY99ZR08cVScrJ0zTXS//6vFZQ6dpSuv1565RVp/37pP/+Rbr2VoAQ321qWNmzYoPr6ev3973/XaaedprVr12rixImqqKjQI4884nXdiRMn6v7773c/jo2N9Xd1AcB+zYy1VFdfpy/2fCFJOrfLudzuRLJCz4cfSosXS0uWWLcVOdIZZ1in1i6/3Oqcze1D4IVt745hw4Zp2LBh7sfdu3fXxo0b9cwzzxwzLMXGxiotLc3fVQSA4BITI6WnWyNDb93qDkvVtdUa+D8DJbXh251UVkoff2wFo8WLpTVrPFvfwsOtEbIbAtIZZ9hWVYSeoIrSZWVl6tix4zHLvfjii3rhhReUlpamyy+/XPfee6/X1iWn0ymn0+l+XH705Z8AECqysqywtG2bdN55dtfGPrW10sqVh8NRYaE1FtKRzjpLysuThgyRLrxQSkiwp64IeUETljZv3qwnn3zymK1K1113nTIzM5Wenq6vv/5aU6dO1caNG/Xaa681u86sWbM0c+ZMX1cZAAIvK8saNbqtDR9gjPTtt4fD0bJljcc9ysiwwlFenvTzn0ucgYCP+DwsTZs2TQ8++KDXMuvXr1ePHj3cj3ft2qVhw4Zp5MiRmjhxotd1b7zxRvd8nz591KVLFw0ZMkRbtmzRqaee2uQ6+fn5mjJlivtxeXm5MjIyjmd3ACC4tKWxlvbts65WawhIxcWez3foYIWihtaj007jViLwC5+HpTvvvFPjxo3zWqZ79+7u+d27d+uiiy7SoEGD9I9//KPFr5ednS3JaplqLixFR0crOjq6xdsGgKDT2sNSXZ11Wf9zz1ljH7lch5+LibEGg2wIR2efbfVFAvzM52EpJSVFKSkpx1V2165duuiii9S/f3/NmzdPYScw2NeaNWskSV26dGnxugAQclprWPruOysgFRRIu3YdXn7OOdIll1gBKSfHCkxAgNnWZ2nXrl3Kzc1VZmamHnnkEe3bt8/9XMOVbrt27dKQIUP0z3/+UwMHDtSWLVv00ksv6dJLL1WnTp309ddf64477tCFF16ovn372rUrABA4R4+1FMqnnaqqpNdek+bOtS7zb9Aw7tGECRKf7QgCtoWlRYsWafPmzdq8ebNOOeUUj+fMj5d7ulwubdy4UZWVlZKkqKgoLV68WI8//rgqKiqUkZGhESNG6J577gl4/QHAFg1jLVVUSAcOSMnJigyP1PTB0yWFyO1OvvjCCkgvvSSVllrLHA7pF7+wAtIVV0h0nUAQcRjT9oaBLS8vV2JiosrKypTApaQAQs1PfmINH7ByZegMH/D999KLL1oh6cfuE5KkzExp/Hhp3DhrHvDCru/voBk6AABwnEJlrKX6euv02ty51um2hvHuoqKkq66yWpGGDOHmtAh6hCUACDVHjbVUb+q1ft96SVLPlJ4Kc9gcPnbssDpqP/ecZ0f0vn2tgDR6tHv0cSAUEJYAINQcdUVclatKZz1zliQbb3dSWir9v/9nnWpbuvTwrUYSE6XrrrNC0rnnhnaHdLRZhCUACDXdulk/t261tx7V1dKCBVZAevfdw6fZJCk31wpIv/qVxM3OEeIISwAQauwca6m+3rrVyIsvSq++KpWVHX6ud2/rFNuoUYfrCLQChCUACDVHj7Xkb8ZIX31lBaR//ctz0MhTTrHC0ejRVp8kTrOhFSIsAUCoyciwQkllpbR/v5Top9Nc27ZZYyG9+KJ1E9sGSUnS1VdbAenCC7maDa0eYQkAQk10tJSebrXwbNsm9evlu23v3y/Nn28FpE8/9XzNyy6zAtKllzJoJNoUwhIAhKKsLN+Fpdpa6c03rcv9Fy60HktW69VFF1kBacQI68o2oA0iLAFAKMrKslp+tm1TZHik7sq5S1ILb3dSWmoNGPnkk9L27YeXn3OOFZB+/WtrtHCgjSMsAUAoOqKTd1R4lB6++OHjX3fLFumJJ6R586RDh6xlycnSxInSb34j9ezp8+oCoYywBAChqKXDBxgjffSR9Nhj0ltvHb6Krndv6fbbrZakdu38UFEg9BGWACAUHRGW6k29isqKJEldE7t63u6kpkZ6+WXp8celL788vPySS6yQ9ItfcLk/cAyEJQAIRUeEpaqaSnV7whrV2327k/37pb/9TZozRyoutsq2ayeNGSPddhun2oAWICwBQCg6cqylA/sPL9+wXnrqH9L//q91OxLJGmZg8mTpxhu5gS1wAghLABCKoqOtK9V27pS2HXEl23kDJNeP8/37S3fcIY0cKUVF2VJNoDVg2FUACFUNp+KuuurwsjCHdfPajz+WVq60Om4TlICTQssSAISqrCzpk0+k778/vOzrb6QzettWJaA1IiwBQKi6/XaprEy66KdS+TRrWUNrEwCf4TQcAISq/v2tMZMmTba7JkCrRssSAIS4iLAI3XLeLe55AL7FXxUAhLjoiGjNGT7H7moArRan4QAAALygZQkAQpwxRvsrrYEpk2OT5eD2JYBPEZYAIMRVuiqV+kiqpCNudwLAZzgNBwAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALxg6AAACHERYREa22+sex6Ab/FXBQAhLjoiWgVXFthdDaDV4jQcAACAF7QsAUCIM8ao0lUpSYqNjOV2J4CP2dqylJWVJYfD4THNnj3b6zrV1dWaNGmSOnXqpPbt22vEiBEqKSkJUI0BIPhUuirVflZ7tZ/V3h2aAPiO7afh7r//fu3Zs8c93XrrrV7L33HHHXr77bc1f/58LVu2TLt379avfvWrANUWAAC0NbafhouPj1daWtpxlS0rK9PcuXP10ksv6ec//7kkad68eerZs6c+++wznX/++f6sKgAAaINsb1maPXu2OnXqpHPOOUcPP/ywamtrmy27evVquVwu5eXluZf16NFDXbt2VWFhYbPrOZ1OlZeXe0wAAADHw9aWpd///vc699xz1bFjRy1fvlz5+fnas2eP/vKXvzRZvri4WFFRUUpKSvJY3rlzZxUXFzf7OrNmzdLMmTN9WXUAANBG+Lxladq0aY06bR89bdiwQZI0ZcoU5ebmqm/fvrrpppv06KOP6sknn5TT6fRpnfLz81VWVuaeduzY4dPtAwCA1svnLUt33nmnxo0b57VM9+7dm1yenZ2t2tpabdu2TWeeeWaj59PS0lRTU6PS0lKP1qWSkhKv/Z6io6MVHR19XPUHAAA4ks/DUkpKilJSUk5o3TVr1igsLEypqalNPt+/f39FRkZqyZIlGjFihCRp48aNKioqUk5OzgnXGQBCWXhYuK7udbV7HoBv2dZnqbCwUJ9//rkuuugixcfHq7CwUHfccYeuv/56dejQQZK0a9cuDRkyRP/85z81cOBAJSYmasKECZoyZYo6duyohIQE3XrrrcrJyeFKOABtVkxEjOaPnG93NYBWy7awFB0drZdfflkzZsyQ0+lUt27ddMcdd2jKlCnuMi6XSxs3blRl5eFB1h577DGFhYVpxIgRcjqdGjp0qJ5++mk7dgEAALQBDmOMsbsSgVZeXq7ExESVlZUpISHB7uoAAIDjYNf3t+3jLAEATk5FTYUcMx1yzHSooqbC7uoArQ5hCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALwgLAEAAHhh26CUAADfCA8L16WnX+qeB+BbhCUACHExETF697p37a4G0GpxGg4AAMALwhIAAIAXhCUACHEVNRWK+3Oc4v4cx+1OAD+gzxIAtAKVrkq7qwC0WrQsAQAAeEFYAgAA8IKwBAAA4AVhCQAAwAvCEgAAgBdcDQcAIS7MEabBmYPd8wB8i7AEACGuXWQ7LR231O5qAK0W/4IAAAB4QVgCAADwgrAEACGuoqZCKQ+nKOXhFG53AvgBfZYAoBXYX7nf7ioArRYtSwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFV8MBQIgLc4TpvPTz3PMAfIuwBAAhrl1kO62cuNLuagCtFv+CAAAAeEFYAgAA8IKwBAAhrtJVqazHs5T1eJYqXZV2VwdodeizBAAhzhij7WXb3fMAfMu2lqWlS5fK4XA0Oa1c2XxHxdzc3Eblb7rppgDWHAAAtCW2tSwNGjRIe/bs8Vh27733asmSJTrvvPO8rjtx4kTdf//97sexsbF+qSMAAIBtYSkqKkppaWnuxy6XS2+++aZuvfVWORwOr+vGxsZ6rAsAAOAvQdPB+6233tKBAwc0fvz4Y5Z98cUXlZycrLPOOkv5+fmqrPTeodHpdKq8vNxjAgAAOB5B08F77ty5Gjp0qE455RSv5a677jplZmYqPT1dX3/9taZOnaqNGzfqtddea3adWbNmaebMmb6uMgAAaAMcxseXTkybNk0PPvig1zLr169Xjx493I937typzMxMvfLKKxoxYkSLXu+DDz7QkCFDtHnzZp166qlNlnE6nXI6ne7H5eXlysjIUFlZmRISElr0egAQbCpdlRrw7ABJ0sqJKxUbST9OtE7l5eVKTEwM+Pe3z8PSvn37dODAAa9lunfvrqioKPfjBx54QE8++aR27dqlyMjIFr1eRUWF2rdvr4ULF2ro0KHHtY5dv2wAAHDi7Pr+9vlpuJSUFKWkpBx3eWOM5s2bpzFjxrQ4KEnSmjVrJEldunRp8boAAADHYnsH7w8++EBbt27VDTfc0Oi5Xbt2qUePHlqxYoUkacuWLXrggQe0evVqbdu2TW+99ZbGjBmjCy+8UH379g101QEAQBtgewfvuXPnatCgQR59mBq4XC5t3LjRfbVbVFSUFi9erMcff1wVFRXKyMjQiBEjdM899wS62gAQNOizBPiXz/sshQL6LAFoTSpqKtR+VntJ0qH8Q4qLirO5RoB/2PX9bftpOAAAgGBGWAIAAPCCsAQAAOAFYQkAAMALwhIAAIAXtg8dAAA4OQ6HQ5mJme55AL5FWAKAEBcbGattt2+zuxpAq8VpOAAAAC8ISwAAAF4QlgAgxFW5qjTg2QEa8OwAVbmq7K4O0OrQZwkAQly9qdeq3avc8wB8i5YlAAAALwhLAAAAXhCWAAAAvCAsAQAAeEFYAgAA8IKr4QCgFUiOTba7CkCrRVgCgBAXFxWnfXfvs7saQKvFaTgAAAAvCEsAAABeEJYAIMRVuaqUW5Cr3IJcbncC+AF9lgAgxNWbei3bvsw9D8C3aFkCAADwgrAEAADgBWEJAADAC8ISAACAF4QlAAAAL7gaDgBagdjIWLurALRahCUACHFxUXGq+GOF3dUAWi1OwwEAAHhBWAIAAPCCsAQAIa66tlrDXxqu4S8NV3Vttd3VAVod+iwBQIirq6/Tgk0L3PMAfIuWJQAAAC8ISwAAAF4QlgAAALzwW1j605/+pEGDBik2NlZJSUlNlikqKtLw4cMVGxur1NRU3X333aqtrfW63YMHD2r06NFKSEhQUlKSJkyYoEOHDvlhDwAAAPwYlmpqajRy5EjdfPPNTT5fV1en4cOHq6amRsuXL9fzzz+vgoIC3XfffV63O3r0aK1bt06LFi3SO++8o48++kg33nijP3YBAABADmOM8ecLFBQU6Pbbb1dpaanH8vfee0+XXXaZdu/erc6dO0uS/va3v2nq1Knat2+foqKiGm1r/fr16tWrl1auXKnzzjtPkrRw4UJdeuml2rlzp9LT05usg9PplNPpdD8uKytT165dtWPHDiUkJPhoTwHAHhU1FUp/1Pr8233nbsVFxdlcI8A/ysvLlZGRodLSUiUmJgbuhY2fzZs3zyQmJjZafu+995p+/fp5LPvuu++MJPPFF180ua25c+eapKQkj2Uul8uEh4eb1157rdk6TJ8+3UhiYmJiYmJiagXTli1bWpxHToZt4ywVFxe7W5QaNDwuLi5udp3U1FSPZREREerYsWOz60hSfn6+pkyZ4n5cWlqqzMxMFRUVBTaZ2qwhkbe1FjX2m/1uC9hv9rstaDgz1LFjx4C+bovC0rRp0/Tggw96LbN+/Xr16NHjpCrla9HR0YqOjm60PDExsU29yRokJCSw320I+922sN9tS1vd77CwwF7M36KwdOedd2rcuHFey3Tv3v24tpWWlqYVK1Z4LCspKXE/19w6e/fu9VhWW1urgwcPNrsOAADAyWhRWEpJSVFKSopPXjgnJ0d/+tOftHfvXveptUWLFikhIUG9evVqdp3S0lKtXr1a/fv3lyR98MEHqq+vV3Z2tk/qBQAAcCS/tWMVFRVpzZo1KioqUl1dndasWaM1a9a4x0S6+OKL1atXL/3mN7/RV199pffff1/33HOPJk2a5D5ltmLFCvXo0UO7du2SJPXs2VPDhg3TxIkTtWLFCn366aeaPHmyfv3rXzd7JVxToqOjNX369CZPzbVm7Df73Raw3+x3W8B+B3a//TZ0wLhx4/T88883Wv7hhx8qNzdXkrR9+3bdfPPNWrp0qeLi4jR27FjNnj1bERFWg9fSpUt10UUXaevWrcrKypJkDUo5efJkvf322woLC9OIESP017/+Ve3bt/fHbgAAgDbO7+MsAQAAhDLuDQcAAOAFYQkAAMALwhIAAIAXhCUAAAAvQjIszZkzR1lZWYqJiVF2dnajwS2PNn/+fPXo0UMxMTHq06ePFixY4PG8MUb33XefunTponbt2ikvL0+bNm3yKHPw4EGNHj1aCQkJSkpK0oQJE9zDIASKL/fb5XJp6tSp6tOnj+Li4pSenq4xY8Zo9+7dHtvIysqSw+HwmGbPnu2X/WuOr4/3uHHjGu3TsGHDPMq0tuMtqdE+N0wPP/ywu0yoHe9169ZpxIgR7no//vjjJ7TN6upqTZo0SZ06dVL79u01YsQI9yC5geLr/Z41a5YGDBig+Ph4paam6sorr9TGjRs9yuTm5jY63jfddJOvd80rX+/3jBkzGu3T0XeVaI3Hu6m/XYfDoUmTJrnLhNrxfvbZZ3XBBReoQ4cO6tChg/Ly8hqVD9j3d0DvROcDL7/8somKijLPPfecWbdunZk4caJJSkoyJSUlTZb/9NNPTXh4uHnooYfMt99+a+655x4TGRlpvvnmG3eZ2bNnm8TERPPGG2+Yr776yvzyl7803bp1M1VVVe4yw4YNM/369TOfffaZ+fjjj81pp51mRo0a5ff9beDr/S4tLTV5eXnm3//+t9mwYYMpLCw0AwcONP379/fYTmZmprn//vvNnj173NOhQ4f8vr8N/HG8x44da4YNG+axTwcPHvTYTms73sYYj/3ds2ePee6554zD4fC4IWWoHe8VK1aYu+66y/zrX/8yaWlp5rHHHjuhbd50000mIyPDLFmyxKxatcqcf/75ZtCgQf7azROq45GOZ7+HDh1q5s2bZ9auXWvWrFljLr30UtO1a1eP4zl48GAzceJEj+NdVlbmr91sxB/7PX36dNO7d2+Pfdq3b59HmdZ4vPfu3euxz4sWLTKSzIcffuguE2rH+7rrrjNz5swxX375pVm/fr0ZN26cSUxMNDt37nSXCdT3d8iFpYEDB5pJkya5H9fV1Zn09HQza9asJstfc801Zvjw4R7LsrOzze9+9ztjjDH19fUmLS3NPPzww+7nS0tLTXR0tPnXv/5ljDHm22+/NZLMypUr3WXee+8943A4zK5du3y2b974er+bsmLFCiPJbN++3b0sMzOzyT/MQPHHfo8dO9ZcccUVzb5mWzneV1xxhfn5z3/usSzUjveRmqv7sbZZWlpqIiMjzfz5891l1q9fbySZwsLCk9ib4+eP/T7a3r17jSSzbNky97LBgweb22677USq7BP+2O/p06ebfv36NbteWznet912mzn11FNNfX29e1koH29jjKmtrTXx8fHm+eefN8YE9vs7pE7D1dTUaPXq1crLy3MvCwsLU15engoLC5tcp7Cw0KO8JA0dOtRdfuvWrSouLvYok5iYqOzsbHeZwsJCJSUl6bzzznOXycvLU1hYmD7//HOf7V9z/LHfTSkrK5PD4VBSUpLH8tmzZ6tTp04655xz9PDDD6u2tvbEd6YF/LnfS5cuVWpqqs4880zdfPPNOnDggMc2WvvxLikp0bvvvqsJEyY0ei6Ujrcvtrl69Wq5XC6PMj169FDXrl1P+HV9XUdfKCsrk6RGd2t/8cUXlZycrLPOOkv5+fmqrKz02Wt648/93rRpk9LT09W9e3eNHj1aRUVF7ufawvGuqanRCy+8oN/+9rdyOBwez4Xy8a6srJTL5XK/hwP5/d2ie8PZbf/+/aqrq1Pnzp09lnfu3FkbNmxocp3i4uImyxcXF7ufb1jmrUzD/esaREREqGPHju4y/uSP/T5adXW1pk6dqlGjRnncwfr3v/+9zj33XHXs2FHLly9Xfn6+9uzZo7/85S8nuVfH5q/9HjZsmH71q1+pW7du2rJli/74xz/qkksuUWFhocLDw9vE8X7++ecVHx+vX/3qVx7LQ+14+2KbxcXFioqKavRPgrffny/5Y7+PVl9fr9tvv10//elPddZZZ7mXX3fddcrMzFR6erq+/vprTZ06VRs3btRrr73mk9f1xl/7nZ2drYKCAp155pnas2ePZs6cqQsuuEBr165VfHx8mzjeb7zxhkpLSxvd+D7Uj/fUqVOVnp7uDkeB/P4OqbAE/3C5XLrmmmtkjNEzzzzj8dyUKVPc83379lVUVJR+97vfadasWSF7T6Jf//rX7vk+ffqob9++OvXUU7V06VINGTLExpoFznPPPafRo0crJibGY3lrPN6QJk2apLVr1+qTTz7xWH7jjTe65/v06aMuXbpoyJAh2rJli0499dRAV9MnLrnkEvd83759lZ2drczMTL3yyitNtqS2RnPnztUll1zS6J6poXy8Z8+erZdffllLly5t9LkVCCF1Gi45OVnh4eGNrlooKSlRWlpak+ukpaV5Ld/w81hl9u7d6/F8bW2tDh482Ozr+pI/9rtBQ1Davn27Fi1a5NGq1JTs7GzV1tZq27ZtLd+RFvLnfh+pe/fuSk5O1ubNm93baK3HW5I+/vhjbdy4UTfccMMx6xLsx9sX20xLS1NNTY1KS0t99rq+ruPJmDx5st555x19+OGHOuWUU7yWzc7OliT334I/+Xu/GyQlJemMM87w+Ptuzcd7+/btWrx48XH/fUvBf7wfeeQRzZ49W//5z3/Ut29f9/JAfn+HVFiKiopS//79tWTJEvey+vp6LVmyRDk5OU2uk5OT41FekhYtWuQu361bN6WlpXmUKS8v1+eff+4uk5OTo9LSUq1evdpd5oMPPlB9fb37zeZP/thv6XBQ2rRpkxYvXqxOnTodsy5r1qxRWFhYo2ZNf/DXfh9t586dOnDggLp06eLeRms83g3mzp2r/v37q1+/fsesS7Afb19ss3///oqMjPQos3HjRhUVFZ3w6/q6jifCGKPJkyfr9ddf1wcffKBu3bodc501a9ZIkvtvwZ/8td9HO3TokLZs2eLep9Z6vBvMmzdPqampGj58+DHLhsLxfuihh/TAAw9o4cKFHv2OpAB/fx93V/Ag8fLLL5vo6GhTUFBgvv32W3PjjTeapKQkU1xcbIwx5je/+Y2ZNm2au/ynn35qIiIizCOPPGLWr19vpk+f3uTQAUlJSebNN980X3/9tbniiiuavPTwnHPOMZ9//rn55JNPzOmnnx7wS8l9ud81NTXml7/8pTnllFPMmjVrPC4ldTqdxhhjli9fbh577DGzZs0as2XLFvPCCy+YlJQUM2bMmJDd7x9++MHcddddprCw0GzdutUsXrzYnHvuueb000831dXV7u20tuPdoKyszMTGxppnnnmm0WuG4vF2Op3myy+/NF9++aXp0qWLueuuu8yXX35pNm3adNzbNMa6lLxr167mgw8+MKtWrTI5OTkmJycnpPf75ptvNomJiWbp0qUef9+VlZXGGGM2b95s7r//frNq1SqzdetW8+abb5ru3bubCy+8MKT3+8477zRLly41W7duNZ9++qnJy8szycnJZu/eve4yrfF4G2NdXda1a1czderURq8Zisd79uzZJioqyrz66qse7+EffvjBo0wgvr9DLiwZY8yTTz5punbtaqKioszAgQPNZ5995n5u8ODBZuzYsR7lX3nlFXPGGWeYqKgo07t3b/Puu+96PF9fX2/uvfde07lzZxMdHW2GDBliNm7c6FHmwIEDZtSoUaZ9+/YmISHBjB8/3uOABYIv93vr1q1GUpNTw7gcq1evNtnZ2SYxMdHExMSYnj17mj//+c8eoSIQfLnflZWV5uKLLzYpKSkmMjLSZGZmmokTJ3p8cRrT+o53g7///e+mXbt2prS0tNFzoXi8m3sfDx48+Li3aYwxVVVV5pZbbjEdOnQwsbGx5qqrrjJ79uzx52424uv9bu7ve968ecYYY4qKisyFF15oOnbsaKKjo81pp51m7r777oCOu2OM7/f72muvNV26dDFRUVHmJz/5ibn22mvN5s2bPV6zNR5vY4x5//33jaRG31/GhObxzszMbHK/p0+f7i4TqO9vhzHGHH87FAAAQNsSUn2WAAAAAo2wBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFYQkAAMCL/w+NfYe2u2nhTgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Define the x-position of vertical line\n", + "v_cutoff = 1.0/(2*t2)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-10,10])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Energy Dependence" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same intensity and varying position" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create different lags for different energy channels, we create delta impulses of same intensity at different positions." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create impulse responses for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = [np.zeros(int(i/lc.dt)) for i in energies]\n", + "responses = [np.append(h, 1) for h in h_zeros]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delays = [int(i/lc.dt) for i in energies]\n", + "outputs = [signal.fftconvolve(s, h)[d:-d] for h,d in zip(responses,delays)]\n", + "s_mods = [s[d:] for d in delays]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mods = [lc.time[d:] for d in delays]\n", + "lc_input = [Lightcurve(t_mod, s_mod) for t_mod, s_mod in zip(t_mods,s_mods)]\n", + "lc_output = [Lightcurve(t_mod, output) for t_mod, output in zip(t_mods,outputs)]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc2, lc1).rebin(0.0075) for lc1,lc2 in zip(lc_input,lc_output)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute lags and cutoffs." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.power)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cutoff points for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "v_cutoffs = [1.0/(2*energy) for energy in energies]\n", + "h_cutoffs = [lag[int((v_cutoff-0.0075)*1/0.0075)] for lag, v_cutoff in zip(lags, v_cutoffs)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We plot lag-frequency spectrum for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHHklEQVR4nO3dd3hT1f8H8HeStulO94K2lA0FpOwyKyBDRGSLSCmylAIiosLPAbhAcQPiQJYgCCKgggpC2XtvaKGD1QGlLd0j5/fH/SY0tIU2pEmbvF/Pc5/e3Jzc+7m5N8mn5557jkwIIUBEREREFSY3dQBERERE1RUTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSLSCgsLQ1hYmKnDIBPZuXMnZDIZdu7caepQiKoNJlL0UMuWLYNMJitzOnjwoKlDrFTF99XKygpubm5o2bIlXn31VZw/f97U4VVL+/fvx6xZs5CWllau8hEREWWef//880/lBktGo1arsWLFCrRt2xZubm5wcnJC/fr1ER4eXiW+Zyp63pLlsDJ1AFQ9vP/++wgKCiqxvG7duiaIxrieeuophIeHQwiB9PR0nDp1CsuXL8e3336LTz75BFOnTjV1iNXK/v37MXv2bERERMDFxaVcr1EqlVi8eHGJ5U888YSBoyNTmTx5MhYuXIh+/fph+PDhsLKywqVLl/D333+jdu3aaNeunUnj0+e8JcvARIrKpXfv3mjVqpWpw0BWVhYcHByMus369evjxRdf1Fk2d+5c9O3bF6+//joaNmyIp59+2qgxWRorK6sSx+BhTHGekP6SkpLw7bffYuzYsfjhhx90nvvqq6+QkpJiosj0o1arkZ+fD1tbW1OHQkbAS3tkEHFxcZDJZPjss8/www8/oE6dOlAqlWjdujWOHDlSovzFixcxaNAguLm5wdbWFq1atcIff/yhU0ZzWXHXrl2YMGECvLy8ULNmTe3zCxcuRO3atWFnZ4c2bdpgz549Om18MjMz4eDggFdffbXE9q9fvw6FQoE5c+botb/u7u5Ys2YNrKys8NFHH+k8l5eXh5kzZ6Ju3bpQKpXw9/fHm2++iby8PJ1yMpkMEydOxKpVq9CgQQPY2tqiZcuW2L17d4nt3bhxAy+99BK8vb2hVCoRHByMJUuW6JTRtG9Zu3YtPvroI9SsWRO2trbo1q0bYmJiSqxTc5yKv3+lqej+bNy4EU2aNNHGWfzy26xZs/DGG28AAIKCgrSX6OLi4sp+sx9h1qxZkMlkOH/+PF544QW4urqiY8eO2udXrlyJli1bws7ODm5ubnj++edx7dq1cr0fD7YZ05yTD8ZbVtuiQ4cOoVevXlCpVLC3t0eXLl2wb9++UuOPiYnR1naoVCqMGjUK2dnZJeJcuXIl2rRpA3t7e7i6uqJz587YunUrAGDkyJHw8PBAQUFBidf16NEDDRo0eNTbWcKePXswePBgBAQEaI//a6+9hpycnBJl161bh8aNG8PW1hZNmjTBhg0bEBERgVq1aj10G7GxsRBCoEOHDiWek8lk8PLy0j7WHIPdu3dj/PjxcHd3h7OzM8LDw3H37t0Sr//777/RqVMnODg4wMnJCX369MG5c+dKlLt48SKGDBkCT09P2NnZoUGDBnj77bcBPPq8Lf5ZDg4OhlKpxD///FPmeaH5vly2bJl2WUREBBwdHZGQkIBnnnkGjo6OqFGjBhYuXAgAOHPmDLp27QoHBwcEBgbil19+eeh7SsbDGikql/T0dNy+fVtnmUwmg7u7u86yX375Bffu3cP48eMhk8nw6aefYsCAAbh69Sqsra0BAOfOnUOHDh1Qo0YNTJ8+HQ4ODli7di2ee+45rF+/Hv3799dZ54QJE+Dp6Yn33nsPWVlZAIBFixZh4sSJ6NSpE1577TXExcXhueeeg6urqzbZcnR0RP/+/fHrr7/iiy++gEKh0K5z9erVEEJg+PDher8nAQEB6NKlC6KiopCRkQFnZ2eo1Wo8++yz2Lt3L8aNG4dGjRrhzJkz+PLLL3H58mVs3LhRZx27du3Cr7/+ismTJ0OpVOLbb79Fr169cPjwYTRp0gSA9N96u3bttF/Wnp6e+PvvvzF69GhkZGRgypQpOuucO3cu5HI5pk2bhvT0dHz66acYPnw4Dh06pC3z008/Yfz48Wjfvj2mTJmCq1ev4tlnn4Wbmxv8/f215Sq6P3v37sXvv/+OCRMmwMnJCd988w0GDhyIhIQEuLu7Y8CAAbh8+TJWr16NL7/8Eh4eHgAAT0/PR77fD55/1tbWUKlU2seDBw9GvXr18PHHH0MIAQD46KOP8O6772LIkCEYM2YMUlJSMH/+fHTu3BknTpzQXqIp7/tRETt27EDv3r3RsmVLzJw5E3K5HEuXLkXXrl2xZ88etGnTRqf8kCFDEBQUhDlz5uD48eNYvHgxvLy88Mknn2jLzJ49G7NmzUL79u3x/vvvw8bGBocOHcKOHTvQo0cPjBgxAitWrMC///6LZ555Rvu6xMRE7NixAzNnzqzwfqxbtw7Z2dl45ZVX4O7ujsOHD2P+/Pm4fv061q1bpy23efNmDB06FE2bNsWcOXNw9+5djB49GjVq1HjkNgIDA7XbGjx4MOzt7R/5mokTJ8LFxQWzZs3CpUuXsGjRIsTHx2uTFwD4+eefMXLkSPTs2ROffPIJsrOzsWjRInTs2BEnTpzQJninT59Gp06dYG1tjXHjxqFWrVq4cuUK/vzzT3z00UflOm937NiBtWvXYuLEifDw8ECtWrUq3J6qqKgIvXv3RufOnfHpp59i1apVmDhxIhwcHPD2229j+PDhGDBgAL777juEh4cjNDS01CYXZGSC6CGWLl0qAJQ6KZVKbbnY2FgBQLi7u4vU1FTt8k2bNgkA4s8//9Qu69atm2jatKnIzc3VLlOr1aJ9+/aiXr16JbbdsWNHUVhYqF2el5cn3N3dRevWrUVBQYF2+bJlywQA0aVLF+2yf//9VwAQf//9t85+NWvWTKdcWQCIyMjIMp9/9dVXBQBx6tQpIYQQP//8s5DL5WLPnj065b777jsBQOzbt09n3QDE0aNHtcvi4+OFra2t6N+/v3bZ6NGjha+vr7h9+7bOOp9//nmhUqlEdna2EEKIqKgoAUA0atRI5OXlact9/fXXAoA4c+aMEEKI/Px84eXlJZo3b65T7ocffijx/lV0f2xsbERMTIx22alTpwQAMX/+fO2yefPmCQAiNja2jHdV18iRI0s9/zRxzpw5UwAQw4YN03ldXFycUCgU4qOPPtJZfubMGWFlZaVdXpH3Q3NOPhi75r2PiooSQkjnc7169UTPnj2FWq3WlsvOzhZBQUHiqaee0i7TxP/SSy/prLN///7C3d1d+zg6OlrI5XLRv39/UVRUpFNWs42ioiJRs2ZNMXToUJ3nv/jiCyGTycTVq1fFwzy4H5qYHzRnzhwhk8lEfHy8dlnTpk1FzZo1xb1797TLdu7cKQCIwMDAh25XCCHCw8MFAOHq6ir69+8vPvvsM3HhwoUS5TTHoGXLliI/P1+7/NNPPxUAxKZNm4QQQty7d0+4uLiIsWPH6rw+MTFRqFQqneWdO3cWTk5OOvsjhNA5dg87bwEIuVwuzp07p7O8tPdTiPvfl0uXLtUu05znH3/8sXbZ3bt3hZ2dnZDJZGLNmjXa5RcvXhQAxMyZM0vEQsbHS3tULgsXLsS2bdt0pr///rtEuaFDh8LV1VX7uFOnTgCAq1evAgBSU1OxY8cODBkyBPfu3cPt27dx+/Zt3LlzBz179kR0dDRu3Lihs86xY8fq1CYdPXoUd+7cwdixY2Fldb9Sdfjw4TrbBoDu3bvDz88Pq1at0i47e/YsTp8+XaE2N2VxdHQEANy7dw+A9B91o0aN0LBhQ+2+3b59G127dgUAREVF6bw+NDQULVu21D4OCAhAv3798O+//6KoqAhCCKxfvx59+/aFEEJnnT179kR6ejqOHz+us85Ro0bBxsZG+/jBY3D06FEkJyfj5Zdf1ikXERGhU8Ojz/50794dderU0T5u1qwZnJ2dtdvWl62tbYnz7/PPP9cp8/LLL+s8/v3336FWqzFkyBCd2H18fFCvXj1t7BV5P8rr5MmTiI6OxgsvvIA7d+5ot52VlYVu3bph9+7dUKvVD42/U6dOuHPnDjIyMgAAGzduhFqtxnvvvQe5XPerW1MDI5fLMXz4cPzxxx/acxIAVq1ahfbt2+tVe2FnZ6edz8rKwu3bt9G+fXsIIXDixAkAwM2bN3HmzBmEh4drPxMA0KVLFzRt2rRc21m6dCkWLFiAoKAgbNiwAdOmTUOjRo3QrVu3Et8JADBu3DhtLTcAvPLKK7CyssKWLVsAANu2bUNaWhqGDRumc/wVCgXatm2rPf4pKSnYvXs3XnrpJQQEBOhsQ/O+lkeXLl3QuHHjcpcvy5gxY7TzLi4uaNCgARwcHDBkyBDt8gYNGsDFxeWxP1dkGLy0R+XSpk2bcjU2f/CLSJPYaNouxMTEQAiBd999F++++26p60hOTta5HPDgl398fDyAkncMWllZlWiLoflhWbRoEbKzs2Fvb49Vq1bB1tYWgwcPfuT+PEpmZiYAwMnJCQAQHR2NCxculHmpKjk5WedxvXr1SpSpX78+srOzkZKSArlcjrS0NPzwww8lGuGWtc5HHQPN+/fgtq2trVG7dm2dZRXdnwe3rdl+aW1XKkKhUKB79+4PLfPgeRIdHQ0hRKnvMQDtj3BF3o/yio6OBiC1WSpLenq6TuL/sOPm7OyMK1euQC6XP/LHOjw8HJ988gk2bNiA8PBwXLp0CceOHcN3332nLZOYmKjzGpVKpZMwFZeQkID33nsPf/zxR4njmJ6eDqDsz6Rm2YPJfmnkcjkiIyMRGRmJO3fuYN++ffjuu+/w999/4/nnny/Rhu/B4+Xo6AhfX19tuyXNMdAk/Q9ydnYGcP8fDM2ldH0Z4hKbra1tic+aSqVCzZo1SyR1KpXqsT9XZBhMpMigitccFSf+12ZF81/4tGnT0LNnz1LLPvhlXNYXfHmFh4dj3rx52LhxI4YNG4ZffvkFzzzzjN61DcWdPXsWCoVC+yWqVqvRtGlTfPHFF6WWr2h7G8379eKLL5b5o9ysWTOdx486BhXdfkX2x5DbrqgHzxO1Wg2ZTIa///671LiK15yUV1k1FEVFRSW2DQDz5s1D8+bNS33Ng9s31HvXuHFjtGzZEitXrkR4eDhWrlwJGxsbnRoNX19fndcsXboUERERJdZVVFSEp556CqmpqXjrrbfQsGFDODg44MaNG4iIiChRq2Yo7u7uePbZZ/Hss88iLCwMu3btQnx8vLYtVXloYvv555/h4+NT4vnitdmGUNr3VHnPF42yzgFTfq7o0ZhIkVFp/sO3trZ+ZA1DWTRfpjExMXjyySe1ywsLCxEXF1cisWjSpAlCQkKwatUq1KxZEwkJCZg/f76ee3BfQkICdu3ahdDQUG2NVJ06dXDq1Cl069atXJcFNP81F3f58mXY29tr/zN1cnJCUVGR3u/XgzTvX3R0tM5/6wUFBYiNjdXpm6mi+1MehlrPo9SpUwdCCAQFBaF+/fpllqvI+6GpJXqwEbGmRqb4tgGp1sNQx61OnTpQq9U4f/58mcmZRnh4OKZOnYpbt27hl19+QZ8+fXRqv7Zt26ZTPjg4uNT1nDlzBpcvX8by5csRHh5e5uuLfyYfVNqyimjVqhV27dqFW7du6SRS0dHROp//zMxM3Lp1S9sVieYYeHl5PfQYaL6Tzp49+9A49Dlvy3u+UPXGNlJkVF5eXggLC8P333+PW7dulXi+PP3FtGrVCu7u7vjxxx9RWFioXb5q1aoyq7pHjBiBrVu34quvvoK7uzt69+6t/05Aaus1bNgwFBUVaW+RBqQ7r27cuIEff/yxxGtycnK0dx1qHDhwQOeyx7Vr17Bp0yb06NEDCoUCCoUCAwcOxPr160v9otenf51WrVrB09MT3333HfLz87XLly1bVuILv6L7Ux6a/p0qu4foAQMGQKFQYPbs2SX+cxdC4M6dOwAq9n5ofpyLd1FRVFRU4rJry5YtUadOHXz22Wfay7/F6XPcnnvuOcjlcrz//vslaoIe3L9hw4ZBJpPh1VdfxdWrV0u0B+zevbvO9GANlYamJqT4+oUQ+Prrr3XK+fn5oUmTJlixYoXO/u7atQtnzpx55L4lJiaWOlJAfn4+tm/fDrlcXqKm+ocfftDp5mHRokUoLCzUfrZ79uwJZ2dnfPzxx6V2B6E5Bp6enujcuTOWLFmChIQEnTLF91uf8zYwMBAKhaJElybffvttuddBVR9rpKhc/v77b1y8eLHE8vbt21e4HcnChQvRsWNHNG3aFGPHjkXt2rWRlJSEAwcO4Pr16zh16tRDX29jY4NZs2Zh0qRJ6Nq1K4YMGYK4uDgsW7YMderUKfU/xxdeeAFvvvkmNmzYgFdeeUWnkeqjXL58GStXroQQAhkZGTh16hTWrVuHzMxMfPHFF+jVq5e27IgRI7B27Vq8/PLLiIqKQocOHVBUVISLFy9i7dq1+Pfff3XamjVp0gQ9e/bU6f4AkG5z15g7dy6ioqLQtm1bjB07Fo0bN0ZqaiqOHz+O//77D6mpqeXeF0CqDfzwww8xfvx4dO3aFUOHDkVsbCyWLl1a4lhWdH/KQ9O4/u2338bzzz8Pa2tr9O3b1+AdaNapUwcffvghZsyYoe0ew8nJCbGxsdiwYQPGjRuHadOmVej9CA4ORrt27TBjxgykpqbCzc0Na9as0UnoAam9z+LFi9G7d28EBwdj1KhRqFGjBm7cuIGoqCg4Ozvjzz//rND+1K1bF2+//TY++OADdOrUCQMGDIBSqcSRI0fg5+en0yeap6cnevXqhXXr1sHFxQV9+vTR6z1s2LAh6tSpg2nTpuHGjRtwdnbG+vXrS/2H5eOPP0a/fv3QoUMHjBo1Cnfv3sWCBQvQpEmTUpPJ4q5fv442bdqga9eu6NatG3x8fJCcnIzVq1fj1KlTmDJlirbLAY38/Hx069YNQ4YMwaVLl/Dtt9+iY8eOePbZZwFItYGLFi3CiBEj0KJFCzz//PPw9PREQkICNm/ejA4dOmDBggUAgG+++QYdO3ZEixYtMG7cOAQFBSEuLg6bN2/GyZMnAeh33qpUKgwePBjz58+HTCZDnTp18Ndff5VoW0jVnLFvE6Tq5WHdH6DY7bua23nnzZtXYh0o5TbdK1euiPDwcOHj4yOsra1FjRo1xDPPPCN+++23Ets+cuRIqbF98803IjAwUCiVStGmTRuxb98+0bJlS9GrV69Syz/99NMCgNi/f3+597/4vsrlcuHi4iJCQkLEq6++WuJWZ438/HzxySefiODgYKFUKoWrq6to2bKlmD17tkhPT9dZd2RkpFi5cqWoV6+eUCqVIiQkpMSt0kIIkZSUJCIjI4W/v7+wtrYWPj4+olu3buKHH37QltHcar1u3Tqd15Z2q7UQQnz77bciKChIKJVK0apVK7F7927RpUuXEt1CVHR/HhQYGChGjhyps+yDDz4QNWrUEHK5/JFdIYwcOVI4ODiU+bym+4CUlJRSn1+/fr3o2LGjcHBwEA4ODqJhw4YiMjJSXLp0Sa/348qVK6J79+5CqVQKb29v8X//939i27Ztpd7mfuLECTFgwADh7u4ulEqlCAwMFEOGDBHbt29/ZPxldbWwZMkSERISoj0WXbp0Edu2bSux32vXrhUAxLhx48p87x5U2u3658+fF927dxeOjo7Cw8NDjB07VtutxYPn1Jo1a0TDhg2FUqkUTZo0EX/88YcYOHCgaNiw4UO3m5GRIb7++mvRs2dPUbNmTWFtbS2cnJxEaGio+PHHH3W6IdC8L7t27RLjxo0Trq6uwtHRUQwfPlzcuXOn1H3q2bOnUKlUwtbWVtSpU0dERETodDsihBBnz54V/fv3Fy4uLsLW1lY0aNBAvPvuuzplyjpvyzr3hRAiJSVFDBw4UNjb2wtXV1cxfvx4cfbs2VK7PyjtPO/SpYsIDg4usTwwMFD06dOnzPeUjEcmBFurkXlQq9Xw9PTEgAEDSr0U1b9/f5w5c+ax22wYikwmQ2RkpPa/Yqp6NL2aP9gzdXWwadMmPPfcc9i9e7e2CwxTaN68OTw9PUu0q9LXsmXLMGrUKBw5cqRKDFtFxDZSVC3l5uaWaBeyYsUKpKam6gzpoXHr1i1s3rwZI0aMMFKERKb1448/onbt2jrD5VSmgoKCEpc4d+7ciVOnTpX6mSQyF2wjRdXSwYMH8dprr2Hw4MFwd3fH8ePH8dNPP6FJkyY6/UPFxsZi3759WLx4MaytrTF+/HgTRk1U+dasWYPTp09j8+bN+Prrr412l+SNGzfQvXt3vPjii/Dz88PFixfx3XffwcfHp0Rno0TmhIkUVUu1atWCv78/vvnmG22j3/DwcMydO1end+pdu3Zh1KhRCAgIwPLly0vtT4bInAwbNgyOjo4YPXo0JkyYYLTturq6omXLlli8eDFSUlLg4OCAPn36YO7cuSXG5CQyJ9WmjdScOXPw+++/4+LFi7Czs0P79u3xySef6Ixmnpubi9dffx1r1qxBXl4eevbsiW+//Rbe3t4mjJyIiIjMVbVpI7Vr1y5ERkbi4MGD2LZtGwoKCtCjRw+dfmxee+01/Pnnn1i3bh127dqFmzdvYsCAASaMmoiIiMxZtamRelBKSgq8vLywa9cudO7cGenp6fD09MQvv/yCQYMGAQAuXryIRo0a4cCBA2jXrp2JIyYiIiJzU23bSGkGy3RzcwMAHDt2DAUFBTpDATRs2BABAQEPTaTy8vKQl5enfaxWq5Gamgp3d3ejNdIkIiKixyOEwL179+Dn5we53HgX3KplIqVWqzFlyhR06NBBO2J3YmIibGxs4OLiolPW29u7xEjnxc2ZM0enF2kiIiKqvq5du4aaNWsabXvVMpGKjIzE2bNnsXfv3sde14wZMzB16lTt4/T0dAQEBODatWtwdnZ+7PWTZcnKz4Lf534AgJuv34SDjWGHPaFqIisL8JPOA9y8CRh4+BsiKikjIwP+/v7aQeSNpdolUhMnTsRff/2F3bt362ScPj4+yM/PR1pamk6tVFJS0kNveVcqlVAqlSWWOzs7M5GiClPkKwBbad7Z2ZmJlKX632C/AABnZyZSREZk7GY51eauPSEEJk6ciA0bNmDHjh0ICgrSeb5ly5awtrbG9u3btcsuXbqEhIQEhIaGGjtcIiIisgDVpkYqMjISv/zyCzZt2gQnJydtuyeVSgU7OzuoVCqMHj0aU6dOhZubG5ydnTFp0iSEhobyjj0iIiKqFNUmkVq0aBEAlBizaenSpYiIiAAAfPnll5DL5Rg4cKBOh5xExmIlt8LIJ0Zq58lCWVkBI0fenycis1Vt+5GqLBkZGVCpVEhPT2cbKSIiKqGoqAgFBQWmDsPiWFtbQ1G8/eEDTPX7zX+ViIiIykEIgcTERKSlpZk6FIvl4uICHx+fKtXPIxMpIgMSQiC7IBsAYG9tX6U+7GREQgDZ0nkAe3uA54FZ0CRRXl5esLfn59uYhBDIzs5GcnIyAMDX19fEEd3HRIrIgLILsuE4xxEAkDkjk90fWKrsbMBROg+QmcnuD8xAUVGRNolyd3c3dTgWyc7ODgCQnJwMLy+vh17mM6Zq0/0BERGRqWjaRNnb25s4Esumef+rUhs1JlJERETlxMt5plUV338mUkRERER6YiJFREREFVKrVi189dVXpg6jSmAiRUREZCHmzp0LmUyGKVOmlFlm2bJlkMlkOpOtra3BYujbty969epV6nN79uyBTCbD6dOnDba9ysa79oiIiCzAkSNH8P3336NZs2aPLOvs7IxLly5pHxuybdLo0aMxcOBAXL9+HTVr1tR5bunSpWjVqlW5YqwqWCNFZEAKuQKDGg/CoMaDoJBXjVtzyQQUCmDQIGmqIrdok2XLzMzE8OHD8eOPP8LV1fWR5WUyGXx8fLSTt7f3Q8svXrwYLi4u2L59OwDg7Nmz6N27NxwdHeHt7Y0RI0bg9u3bAIBnnnkGnp6eWLZsWYkY161bh9GjR+u3kybCRIrIgGytbLFu8DqsG7wOtlaGqwqnasbWFli3TpoMeEmEqhghgKws4096jOwWGRmJPn36oHv37uUqn5mZicDAQPj7+6Nfv344d+5cmWU//fRTTJ8+HVu3bkW3bt2QlpaGrl27IiQkBEePHsU///yDpKQkDBkyBABgZWWF8PBwLFu2DMVHqVu3bh2KioowbNiwCu+fKfHSHhERkT6Kd7xqTBXs5HXNmjU4fvw4jhw5Uq7yDRo0wJIlS9CsWTOkp6fjs88+Q/v27XHu3LkSl+Leeust/Pzzz9i1axeCg4MBAAsWLEBISAg+/vhjbbklS5bA398fly9fRv369fHSSy9h3rx52LVrF8LCwgBIl/UGDhwIlUpV7n2rCphIERERmalr167h1VdfxbZt28rdYDw0NBShoaHax+3bt0ejRo3w/fff44MPPtAu//zzz5GVlYWjR4+idu3a2uWnTp1CVFQUHEtJMq9cuYL69eujYcOGaN++PZYsWYKwsDDExMRgz549eP/99x9jb02DiRSRAWXlZ3GIGJIuv3CIGPNnby8dX1Nst5yOHTuG5ORktGjRQrusqKgIu3fvxoIFC5CXl/fIoVasra0REhKCmJgYneWdOnXC5s2bsXbtWkyfPl27PDMzE3379sUnn3xSYl3Fx8gbPXo0Jk2ahIULF2Lp0qWoU6cOunTpUu59qyqYSBEREelDJqvySXK3bt1w5swZnWWjRo1Cw4YN8dZbb5VrvLqioiKcOXMGTz/9tM7yNm3aYOLEiejVqxesrKwwbdo0AECLFi2wfv161KpVC1ZWZacZQ4YMwauvvopffvkFK1aswCuvvFIley5/FDY2JyIiMlNOTk5o0qSJzuTg4AB3d3c0adIEABAeHo4ZM2ZoX/P+++9j69atuHr1Ko4fP44XX3wR8fHxGDNmTIn1t2/fHlu2bMHs2bO1HXRGRkYiNTUVw4YNw5EjR3DlyhX8+++/GDVqFIqKirSvdXR0xNChQzFjxgzcunULERERlfpeVBYmUkRERBYsISEBt27d0j6+e/cuxo4di0aNGuHpp59GRkYG9u/fj8aNG5f6+o4dO2Lz5s145513MH/+fPj5+WHfvn0oKipCjx490LRpU0yZMgUuLi6Qy3XTjtGjR+Pu3bvo2bMn/Pz8KnU/K4tMCD3uozRjGRkZUKlUSE9Ph7Ozs6nDoWqGbaQIANtImaHc3FzExsYiKCjIoL18U8U87DiY6vebNVJEREREemIiRURERKQn3rVHZEAKuQJP13taO08WSqEANHc4cYgYIrPGRIrIgGytbLH5hc2mDoNMzdYW2MzzgMgS8NIeERERkZ6YSBERERHpiYkUkQFl5WfB4WMHOHzsgKz8LFOHQ6aSlSV1eeDgIM0TkdliGykiA8suyDZ1CFQVZPM8ILIErJEiIiIi0hMTKSIiIqqQsLAwTJkyxdRhVAlMpIiIiMxUUVER3n33XQQFBcHOzg516tTBBx98gIeNDrdz507IZLISU2JiokFimjRpEho1alTqcwkJCVAoFPjjjz8Msi1jYBspIiIiM/XJJ59g0aJFWL58OYKDg3H06FGMGjUKKpUKkydPfuhrL126pDNmnZeXl0FiGj16NBYsWID9+/ejffv2Os8tW7YMXl5eeFrToW01wBopIiIiM7V//37069cPffr0Qa1atTBo0CD06NEDhw8ffuRrvby84OPjo53k8rJThs2bN0OlUmHVqlUAgGvXrmHIkCFwcXGBm5sb+vXrh7i4OABA8+bN0aJFCyxZskRnHUIILFu2DCNHjoSVVfWp52EiRWRAcpkcXQK7oEtgF8hl/HhZLLkc6NJFmh7y40PVmxACWflZRp8edlnuQe3bt8f27dtx+fJlAMCpU6ewd+9e9O7d+5Gvbd68OXx9ffHUU09h3759ZZb75ZdfMGzYMKxatQrDhw9HQUEBevbsCScnJ+zZswf79u2Do6MjevXqhfz8fABSrdTatWuRVax7kJ07dyI2NhYvvfRSufevKqg+KR9RNWBnbYedETtNHQaZmp0dsHOnqaOgSpZdkA3HOY5G327mjEw42DiUq+z06dORkZGBhg0bQqFQoKioCB999BGGDx9e5mt8fX3x3XffoVWrVsjLy8PixYsRFhaGQ4cOoUWLFjplFy5ciLfffht//vknunTpAgD49ddfoVarsXjxYshkMgDA0qVL4eLigp07d6JHjx544YUX8Prrr2PdunWIiIjQlunYsSPq16+vx7tiOkykiIiIzNTatWuxatUq/PLLLwgODsbJkycxZcoU+Pn5YeTIkaW+pkGDBmjQoIH2cfv27XHlyhV8+eWX+Pnnn7XLf/vtNyQnJ2Pfvn1o3bq1dvmpU6cQExMDJycnnfXm5ubiypUrAAAXFxcMGDAAS5YsQUREBDIyMrB+/XosXLjQkLtvFEykiIiI9GBvbY/MGZkm2W55vfHGG5g+fTqef/55AEDTpk0RHx+POXPmlJlIlaZNmzbYu3evzrKQkBAcP34cS5YsQatWrbS1T5mZmWjZsqW2vVRxnp6e2vnRo0ejW7duiImJQVRUFBQKBQYPHlzumKqKanXxfvfu3ejbty/8/Pwgk8mwceNGnecjIiJK3K7Zq1cv0wRLFikrPwue8zzhOc+TQ8RYsqwswNNTmjhEjNmSyWRwsHEw+qRJWMojOzu7RCNxhUIBtVpdoX09efIkfH19dZbVqVMHUVFR2LRpEyZNmqRd3qJFC0RHR8PLywt169bVmVQqlbbck08+iaCgICxduhRLly7F888/DweH8l2yrEqqVSKVlZWFJ5544qFVf7169cKtW7e00+rVq40YIRFwO/s2bmffNnUYZGq3b0sTkQn17dsXH330ETZv3oy4uDhs2LABX3zxBfr3768tM2PGDISHh2sff/XVV9i0aRNiYmJw9uxZTJkyBTt27EBkZGSJ9devXx9RUVFYv369toPO4cOHw8PDA/369cOePXsQGxuLnTt3YvLkybh+/br2tTKZDC+99BIWLVqEAwcOYPTo0ZX3RlSianVpr3fv3o+800CpVMLHx8dIEREREVVd8+fPx7vvvosJEyYgOTkZfn5+GD9+PN577z1tmVu3biEhIUH7OD8/H6+//jpu3LgBe3t7NGvWDP/99x+efPLJUrfRoEED7NixA2FhYVAoFPj888+xe/duvPXWWxgwYADu3buHGjVqoFu3bjr9UgHSlaSZM2ciODgYbdu2rZw3oZLJREXuo6xCZDIZNmzYgOeee067LCIiAhs3boSNjQ1cXV3RtWtXfPjhh3B3dy9zPXl5ecjLy9M+zsjIgL+/P9LT00sccKJHycrP0t7FU5E7a8jMZGUBjv+7myszE6iGlytIV25uLmJjYxEUFARbW1tTh2OxHnYcMjIyoFKpjP77Xa0u7T1Kr169sGLFCmzfvh2ffPIJdu3ahd69e6OoqKjM18yZMwcqlUo7+fv7GzFiIiIiqs6q1aW9R9HclQBIdyY0a9YMderUwc6dO9GtW7dSXzNjxgxMnTpV+1hTI0VERET0KGZVI/Wg2rVrw8PDAzExMWWWUSqVcHZ21pmIiIiIysOsaqQedP36ddy5c6fELZtElUUuk6OVXyvtPFkouRxo1er+PBGZrWqVSGVmZurULsXGxuLkyZNwc3ODm5sbZs+ejYEDB8LHxwdXrlzBm2++ibp166Jnz54mjJosiZ21HY6MPWLqMMjU7OyAIzwPzFE1vT/LbFTF979a/at09OhRhISEICQkBAAwdepUhISE4L333oNCocDp06fx7LPPon79+hg9ejRatmyJPXv2QKlUmjhyIiKqzqytrQFIHVyS6Wjef83xqAqqVY1UWFjYQ7PRf//914jREBGRpVAoFHBxcUFycjIAwN7evkI9jNPjEUIgOzsbycnJcHFxgUKhMHVIWtUqkSKq6rILstF4YWMAwPnI8xUaE4vMSHY20Fg6D3D+PGDP88AcaDp71iRTZHwuLi5VrtNtJlJEBiSEQHx6vHaeLJQQQHz8/XkyCzKZDL6+vvDy8kJBQYGpw7E41tbWVaomSoOJFBERUQUoFIoq+YNOplGtGpsTERERVSVMpIiIiIj0xESKiIiISE9MpIiIiIj0xMbmRAYkk8nQ2LOxdp4slEx2v/sDngdEZo2JFJEB2Vvb49yEc6YOg0zN3h44x/OAyBLw0h4RERGRnphIEREREemJiRSRAWUXZCP422AEfxuM7AIObmqxsrOB4GBp4iC3RGaNbaSIDEgIgfMp57XzZKGEkMbY08wTkdlijRQRERGRnphIEREREemJiRQRERGRnphIEREREemJiRQRERGRnnjXHpEByWQyBKoCtfNkoWQyIDDw/jwRmS0mUkQGZG9tj7gpcaYOg0zN3h6IizN1FERkBLy0R0RERKQnJlJEREREemIiRWRAOQU5aP1ja7T+sTVyCnJMHQ6ZSk4O0Lq1NOXwPCAyZ2wjpaeY1BjUdatr6jCoilELNY7ePKqdJwulVgNHj96fJyKzxRqpCsotzMWLv7+IJt82wbnkc6YOh4iIiEyIiVQFKRVK3M29i7yiPLy44UXkF+WbOiQiIiIyESZSFSSTybC472K427njZOJJzN4529QhERERkYkwkdKDr5Mvvn/mewDA3H1zsf/afhNHRERERKbAREpPAxsPRPgT4VALNUZsGIHM/ExTh0RERERGxkTqMXzT6xsEqAJw9e5VvP7v66YOh6oID3sPeNh7mDoMMjUPD2kiIrMmE0IIUwdRlWRkZEClUiE9PR3Ozs6PLL8zbie6Lu8KAYE/h/2JZ+o/Y4QoiYiIqLiK/n4bCmukHlNYrTC81u41AMCYP8YgJSvFxBERERGRsTCRMoCPun2EYM9gJGUlYfxf48FKPiIiIsvARMoAbK1s8XP/n2Ett8aGixuw4tQKU4dEJpJTkIOwZWEIWxbGIWIsWU4OEBYmTRwihsisMZEykBDfEMwOk/qUmvT3JMSlxZk2IDIJtVBjV/wu7IrfxSFiLJlaDezaJU0cIobIrFWrRGr37t3o27cv/Pz8IJPJsHHjRp3nhRB477334OvrCzs7O3Tv3h3R0dFGi+/NDm+ivX973Mu/h4iNEfwhJSIiMnPVKpHKysrCE088gYULF5b6/KeffopvvvkG3333HQ4dOgQHBwf07NkTubm5RolPIVdgxXMr4GDtgF3xu/DlgS+Nsl0iIiIyjWqVSPXu3Rsffvgh+vfvX+I5IQS++uorvPPOO+jXrx+aNWuGFStW4ObNmyVqripTHbc6+LKnlED9347/w5mkM0bbNhERERlXtUqkHiY2NhaJiYno3r27dplKpULbtm1x4MABo8YypsUYPFP/GeQX5WPEhhHIK8wz6vaJiIjIOMwmkUpMTAQAeHt76yz39vbWPleavLw8ZGRk6EyPSzOwsYe9B04lncLMnTMfe51ERERU9ZhNIqWvOXPmQKVSaSd/f3+DrNfb0Rs/PPMDAODTfZ9ib8Jeg6yXqj57a3vYW9ubOgwyNXt7aSIis2Y2iZSPjw8AICkpSWd5UlKS9rnSzJgxA+np6drp2rVrBoupf6P+iGgeAQGB8A3huJd3z2DrpqrJwcYBWf+Xhaz/y4KDjYOpwyFTcXAAsrKkyYHnAZE5M5tEKigoCD4+Pti+fbt2WUZGBg4dOoTQ0NAyX6dUKuHs7KwzGdLXvb5GoCoQsWmxeO3f1wy6biIiIjKtapVIZWZm4uTJkzh58iQAqYH5yZMnkZCQAJlMhilTpuDDDz/EH3/8gTNnziA8PBx+fn547rnnTBazs9IZK/qvgAwy/HTiJ2y6uMlksRAREZFhVatE6ujRowgJCUFISAgAYOrUqQgJCcF7770HAHjzzTcxadIkjBs3Dq1bt0ZmZib++ecf2NramjJsdA7sjNdDXwcAjP1zLJKzkk0aD1We3MJc9PmlD/r80ge5hcbpv4yqoNxcoE8faTJSP3ZEZBoywRF2dWRkZEClUiE9Pd2gl/nyCvPQ+sfWOJN8Bv0a9MOGoRsgk8kMtn6qGrLys+A4xxEAkDkjk+2kLFVWFuAonQfIzGQ7KSIjqKzf70epVjVS1ZnSSqkd2HjTpU1YenKpqUMiIiKix8REyoie8HkCH3b9EADw6j+vIvZurIkjIiIiosfBRMrIXg99HZ0COiEzPxPhG8NRpC4ydUhERESkJyZSRqaQK7D8ueVwtHHE3oS9+PzA56YOiYiIiPRkZeoALFGQaxC+7vU1Rv8xGu/seAdtarRBgCoAaqF+rMlKboVm3s3gYuti6l0kIiKyCEykypCVnwVFvqLc5ZVWSljJpbezUF2IvMI8yGVy2Fnb6axTY0jjIVh/YT22RG/Bk8ufNFzgABp7Nka7Gu0QWjMU7fzboZaqVok7BK0V1rBR2AAA1EKNnIIcANC5yyynIAdqoa7Qtq3kVlBaKQEAQghkF2SXWG9uYW6FL2kq5ArYWt3vxkLzXtpb22v3La8wD4Xqwgqtt6xjZGdtB7lMqrDNL8pHQVFBudZX/BgXl12QDSEEbK1soZBL51VBUQHyi/IrFC9Q+jEq7fx7nPVqjpGNwgbWCmsAQJG6SK8uHUo7RmWdfxVR2jEq6/yriNKOUVnnX5nyswBr3fmKfkeUV2nHSCaT6QxTpDn/KoLfERJDf0dolHWM+B2h/3eEPp8fQ2D3Bw/Q3D6J6QAq0P3U2kFrMTh4MABg3bl1GPLbEHQJ7IKdETu1ZTzneeJ29u0KxeNk4wRHG0fIZXLkF+UjJTsF1nJrBKgCIJfJIZfJEZsWW+EP28wuMzErbBYA4FzyOTRZ1AQe9h5IeSNFWyZsWRh2xe+q0HontJqAhX0WAgBSslLg9ZkXAEDMvH+aDV43GL+d/61C6x3UeBDWDV6nfSybLX3okqclw9PBE0IIjP1zLH468VOF1uti64Knaj8FD3sPuNu548uDXyKrIAuLnl6EFn4t4G7njh+P/4hP9n1SofU29myMcxPOaR8HfxuM8ynnETUyCmG1wgAACw8vxMS/J1ZovWUdo9LOv4oq7Rgt6L0AkW0iAQA743bqlfRrjhEARG6OxLdHvy31/Kuos6+cRbBXMABg1s5ZmL1rdpnnX0WUdozKOv8qorK+I0o7RmWdfxVhbt8RwP3zryLKOkalnX8Vwe+I+wz2HZELYC6M3v0Ba6SquDnd5pQ4Seu513vsL8nlJ5ejSF2EDgEd4KJ0MVi81+9dx5qza5CUmYTYtPt3JY77cxys5FZQyBQ4lXiqwuuNvRuLH479gJSsFKRkF/uSWB6Guzl3kZKdUuH/NAEgLTcN686vK7H8lS2vVHhdRERkeVgj9QBNjdTNlJsVymirarV9TkEOjt06hoPXD+LA9QM4eP0g0vPSS5QL9gxGuxrt8GTQk+gQ0AE1nWsiIS0BSVlJSMlOQXJmMpKzk5GUmYTk7GQkZ0lTSlYKUrJSoEbFqvcri5ONEzzsPeBp7wkPBw942v3vr72ntNzBEx52HigSRUjNScXd3Lu4l3cPt7Nv407OHSRlJSE1OxWpOalIzU3Fnew7yCp4+HGb3mE63un8js4yVtvfZ5GX9kpRVb8jysJLexJe2it9vVXxOyIjIwN+nn5Gr5FiIvUAU/WMaixqocaFlAvYd22fNCXsw5W7VwyybldbV3g7esPbwRvejt7wsveCl4MXrORWKFQXokgUSX/VRWU+flgZuUwOT3tPeDp4wsvBC572//v7v8ce9h46X6SGkluYizvZd3An54727+3s2/gn5h9surQJQ4OHYs2gNdqyIzaMAAD83P/nSomHqoHcXGCEdB7g558BEw9TRWQJTPX7zUTqAeaeSJUmMTMR+6/tx74EKbk6dusYCtWFkMvk8LD30CZG3g7S5OXgpZMweTt4w9PBU/vfg6XYcGEDBqwdgDY12uDQmEMAOEQM/Q+HiCEyOlP9frONFMHH0QcDGg3AgEYDAEhVwffy78Hdzl1bxUwlBbkGAQB7qCcismBMpKgEO2s7nTYBVLogFymRSslOQWZ+JhxtHE0cERERGRt7NifSk8pWBVdbVwCslSIislRMpIgeg/byXhoTKSIiS8REiugxaC7vsUaKiMgyMZEiegzaRIo1UkREFomNzYkeQ23X2gDuJ1L21vbInJGpnScLZW8vdXugmScis8VEiugxPNgFgkwmY99RBMhk7DuKyELw0h7RYyh+aY992xIRWR4mUkSPIdAlEACQmZ+J29m3kVeYh4iNEYjYGKHXWFZkJvLygIgIacrjeUBkzphIET0GWytb+Dn5AZBqpQrVhVh+ajmWn1pe4cFRyYwUFgLLl0tTIc8DInPGRIroMbELBCIiy8VEiugxsVNOIiLLxUSK6DGxRoqIyHIxkSJ6TA/2JUVERJaDiRTRY2Lv5kRElouJlL7YZxD9j6aNVHxaPIrURSaOhoiIjImJlD5+/x0YMAC4e9fUkVAVUMOpBqzl1ihQF+Bu7l0kT0tG8rRkDhFjyeztgeRkaeIQMURmjYlUReXkAK+8AmzcCLRoARw5YuqIyMQUcgUCVAEAgLi0OHg6eMLTwRMymczEkZHJyGSAp6c08TwgMmtMpCrKzg7YsgUICgLi4oAOHYBvvuGlPgvHLhCIiCwTEyl9tGwJHD8O9O8PFBQAr74KDB4MpKebOjIyEU2D8+g70YjcHInIzZEcIsaS5eUBkZHSxCFiiMwaEyl9ubgA69cDX30FWFtL8y1aSAkWWRxNInU17Sq+Pfotvj36LYeIsWSFhcC330oTh4ghMmtMpB6HTCbVRu3dCwQGAlevAqGhwKJFvNRnYYrfuUdERJaDiZQhtGkj1UT17Qvk5wMTJgDDhgEZGaaOjIxE0ylnXFqcaQMhIiKjMqtEatasWZDJZDpTw4YNjbNxNzdg0ybgs88AKyvg11+BVq2AU6eMs30yKc2lvVuZt0wcCRERGZNZJVIAEBwcjFu3bmmnvXv3Gm/jMhnw+uvA7t1AzZpAdDTQrh3w44+81GfmPOw94GDtYOowiIjIyMwukbKysoKPj4928vDwMH4QoaHAiRNA795Abi4wbhwQHg5kZho/FjIKmUymbSdFRESWw+wSqejoaPj5+aF27doYPnw4EhISTBOIhwfw11/AnDmAQgGsXAm0bg2cPWuaeKjSaS7vERGR5TCrRKpt27ZYtmwZ/vnnHyxatAixsbHo1KkT7t27V+Zr8vLykJGRoTMZjFwOTJ8OREUBfn7AxYtSw/Rlywy3DaoyNInUuBbjEPtqLOys7UwcEZmMnR0QGytNdjwPiMyZWSVSvXv3xuDBg9GsWTP07NkTW7ZsQVpaGtauXVvma+bMmQOVSqWd/P39DR9Yp07Spb4ePaQhZkaNkqbsbMNvi0xGc2kvNTcVtVxqQS4zq48XVYRcDtSqJU1yngdE5sysP+EuLi6oX78+YmJiyiwzY8YMpKena6dr165VTjBeXsDffwMffCB9sS5bJtVOXbhQOdsjo9PUSMXe5TAxRESWwsrUAVSmzMxMXLlyBSNGjCizjFKphFKpLPlEVpbUtqm8lEqp2wNA6sk4L09KmIpX6+fkAK+9JvWAPmoUcO6c1EXCiy9Kr5fJpNdoJoVC6jXd2vr+f7VqtTRva3u/XGGh9Fpra8DXV7pjsGZNwNW17AFTra0BG5v768zJkeYdit15lpMjPVcRVlbSvgDSnYqaWrfi683NBYqKKrZehULaZ42sLOmvvf39fczLq3gv0g8eI8167ezuv+f5+dJQQI9Q29YHAHAu+Rze2DIFH/X8FDaK/73H2dnS+2Fre/+8KiiQ1l1RpR2j0s6/x1mv5hjZ2EjnCiA9zs2t+HpLO0ZlnX8VUdoxKuv8q4jSjlFp558Q9ydA9/siPx+YNUuanzVL2tfyfEdozr+KKO0YyWTS+66hOf8qgt8REgN+R+go6xjxO0L/7wh9Pj+GIMzI66+/Lnbu3CliY2PFvn37RPfu3YWHh4dITk4u9zrS09MFAJGu+zX56Gnt2vsrWbtWWtali+7KPTwqts7KnCIjhcjKkuI6e1Za5uGhG2+XLhVf74QJQhQWCpGeLsTp0/eXX74sRHS0EDExQvTuXfH19usnxJ07QiQkCHHx4v3lq1cL8dtvQixfLkTnzhVfr6urEAMHCjFypBATJwphZyctnzFDiKVLpXUPH16udd2zgcCs+1NmXLQQV69K8dapI5WbP1+IqCgh/vlHiPHjKx6vnZ0Qr70mxKRJQrzyihC+vtLyzp2FGDZMiMGDhWjTRr9z4sknhQgLk4675lytXVuI0FBpnfXr67deBwch7O2FcHQUQqmUljk5CVGrlhD16knb0Ge9zzwjxPPPS8evQQNpmb+/tB+dOgnRqpV+67W1leK1sxPCykpaJpMJoVAIIZdL8/qst7K+IxYsuP/6qChpWePGuutt3Lji65058/7rDf0doZGcfH95cYMGVXy9gwbprkOzvPj3/4QJFV9vWcfo7Nn7y2bOrPh6yzpGUVH3ly1YUPH1lnWMSjv/KjqVdoxKO/8qOpV2jEo7/x4xpQMCgEhPTxfGZFY1UtevX8ewYcNw584deHp6omPHjjh48CA8PT1NHZr+OnUCgoOljPz6dWDLFmmcv2eflbJ/tRrYvLnivagvXChNbm6A5v3JzAQ++QTw9wecnIDk5IrH+8MP0vhiD6pfv+LrKm7TJsDdveTyYcMeb71370rjJD5ozpwKr8oxH3DPAu5o/mmrVw948J/USZMqvF4dOTnAl1+WXL579+OtF5BuinjQ1avS9DhK+y/x3j1pehx//VVy2bVr0vQ4SvuPWoiK15AQkUWQCSGEqYOoSjIyMqBSqZB+8yacnZ3L/8KqVm2fmwvcuCElX5rp2jXp740b0nxl92slkwGOjrqXJTU/SJr/ITTLNH8fdTpaWUnVy3Z20l9HR2lycJCqxO3tdScHh9L/FhZK+5+dLR2re/ekx6mp0nxurvT43j0pSdU8f+/eQ6vEW44DjvtJ85lz5XCQKaVzQ3OJ1tZWeqw5rprqaxsbad+sraW/Vlb3L+1qHmsmO7v780JI5ZRKad2ac1Ctlt7/sibNMSm+zM7u/nxBgbRua2tp3ZpLDZr1KhT3J81l6OKPiy9zcJDiUqulz0DxKvqCAun9zMqS5jVTYaE0FV9WfLmV1f330srqftxKpbQf1tbStouK7s9r3svi76km1uLvi+Z9lMmk1xcWSq/XvD9yuXTeaF6TnS39swMAV64A3t7S/nh7S8uSkqT3oKp9RzwKL+1JeGmv9PVWwUt7GRkZUPn5IT09vWK/34+JidQDtImUkQ+ESaSnSwlVQkLJv9nZUq2UJlEpbXrU85p2X/ooLdGSye5/sExJk4Tduye9T5oPvFKJgf+Oxu9X/gQAZM7IhIMNezu3CM2aAWfOSLWbAwZIP7aOjtJzmZm6P0BEVClM9fttVpf2qIJUKmlq0sTUkZT0YM1JVWJlJV1edXEp8VSgZ13gitEjIlPr2FFKpPbtkxIpIrIYVfBXiqj6qqWqZeoQyBQ6dJD+GnNsTyKqEphIERlQLddapg6BTKFjR+nv8ePsaJfIwjCRIjKghh4NAQC2VrawtbJ9RGkyGwEBQI0aUvu5w4elhshnz0oTh4ghMmtMpIgMqJZLLcggQ25hLm5n3zZ1OGQsMtn9Wql9+6S2fcHB0lQV2/kRkcHwE05kQDYKG9R0rgkAuHr3MftfouqF7aSILBITKSIDyi/Kh+x/XT5Ep0abOBoyKk2N1P79Up83s2ZJkz79ABFRtcHuD4gMqKCoAAnpCQCAK6nsB8GiNG0q9R2VkQGcOgXMni0tf+ONqtH/GRFVCtZIEVWSuLQ4U4dAxmRlBYSGSvMHDpg2FiIyGiZSRJUkPj3e1CGQsWnaSR08aNo4iMhomEgRVRLWSFmg4u2kiMgiMJEiqiTX0q+hUF3BAVKpemvbVhpw9vp1U0dCBAC4m3MX2QXsJLYysbE5USVRQ43rGddRy6WWqUMhY3F0BJo3B44dM3UkZEGyC7IRkxqDy3cul5ju5NyBl4MXLkRegJudm6lDNUtMpIgqUezdWCZSlqZDByZSZHAFRQWIS4vD5TuXEZ0arZMsXcu49tDXJmclY9XpVZjUdpKRorUsTKSIDMjWyhaHxxzG5L8n4+CNg7h69yqeDHrS1GGRMXXsCHzzDVC/PrByJWDLoYLo0bLys5CclYykrCQkZyXj5r2biL4TjcupUrJ09e7VhzYVcLV1RX33+iWm/67+hze2vYEfj/+IiW0mavu5I8NhIkVkQAq5Aq1rtEZzn+Y4eOMgYtNiTR0SGZvmzr2YGKBBA6nNFFkcIQTu5t6VkqPMJG2CpDNfbFlWQdYj12lnZYd67vWkJMlNN2Fyt3cv9TWBqkC8G/UuziSfwdGbR9G6RmtD76rFYyJFVAmCXIMAgImUJfLzA4KCgNhYqRuEHj1MHRFVEiEEbt67ieO3juP4reM4kXgCCekJ2gSpojeb2FrZwtvBG14OXvBx9EFdt7raRKmeWz3UcK4Buaxi94i52rliUONBWHl6JRYfX8xEqhIwkSIyoPyifHx98GucSToDQGojRRaoXTspkZo3DwgLY8/mZkAIgbi0OG3SdDxR+puclfzQ16mUKng7emsTJG8Hb3g73p/3cvDSPu9o41gpl97GhIzBytMr8cvZX/B5z8/haONo8G1YMiZSRAZUUFSAN/97U/uYNVIWql07YPVq4L//gIICJlLVjFqoEX0nukTSlJabVqKsXCZHY8/GaOHbAi18WqCeez1tguTl4AWlldL4O/CAzoGdUdetLmJSY7Du3DqMChll6pDMChMpokqUmJmInIIc2FnbmToUMibNUDGAlEhRlZVbmFsiaTqZeBKZ+ZklylrLrdHUuyla+LSQEiffFmjq3RT21vYmiLz8ZDIZxoSMwfTt07H4xGImUgbGRIqokjjZOOFe/j3EpcWhkWcjU4dDxtSw4f35M2eATp1MF4sFE0LgTs4dxKfFIyE9AQnpCYhP150v69KcnZUdmvs01yZMIT4hCPYKho2ietYujmw+Em/veBv7r+3H+ZTzaOzZ2NQhmQ0mUkSVJNAlEGeTzyI2LZaJlKWRF2sQfOAAE6lKkl+Uj+sZ1+8nRpqEKeP+fE5hziPX46x0RohPiDZpauHbAvXd68NKbj4/kT6OPnim/jPYdGkTfjr+Ez7v+bmpQzIb5nOWEFUxtVxq4WzyWVy9e9XUoZApHThg6gjMQnZBNo7dPIaD1w/i4I2DOHLjCK5nXIeAeORrfR19EaAKQIAqAIGqwPvzLtK8q62rRfSvNKbFGGy6tAkrTq/Ax90+rhLtt8wBEymiSlJLVQsA79yzeAcOAEIAFvBDbShCCFy9exUHrh+QEqfrB3Eq6VSp3QnYWtlqE6MA5/vJkSZhqulckwnD//Sq2wt+Tn64ee8m/rj0BwYHDzZ1SGaBiRRRJQlUBQLgnXsWLylJ6gqhdm1TR1Jl3cu7hyM3j+DAtQM4eENKnG5n3y5RzsfRB6E1Q9GuZju0q9kODT0awtPe0yJqkwzBSm6FUc1H4aM9H+GnEz8xkTIQJlJEBmRrZYuokVEAgPTcdABMpCySrS0QFQVERgLnzwN79zKR+h+1UOPS7Us4eP2gtsbpbPLZEpfobBQ2aOHbAu1qSElTqH8o/J39mTQ9ppdCXsJHez7C1itbEZ8Wj0CXQFOHVO3plUgdP34c1tbWaNq0KQBg06ZNWLp0KRo3boxZs2bBhn2mkIVSyBUIqxUGADiXfA4AL+1ZJIVC6ojz6aelRGrfPiA83NRRGd3t7Ns4l3wO51PO43zKeZxLOYcTiSdK7Y8pUBWorWkKrRmK5j7NeUmuEtR2rY1uQd2wPXY7lp5cillhs0wdUrWnVyI1fvx4TJ8+HU2bNsXVq1fx/PPPo3///li3bh2ys7Px1VdfGThMouqnlkstAEB6Xjru5tyFq52raQMi4+vYEfjsM6lGykwJIZCSnVIiYTqfch4p2SmlvsbOyg6ta7TW1ja1q9kOvk6+Ro7cco1pMQbbY7djyYkleLfzu1DIOR7k49Arkbp8+TKaN28OAFi3bh06d+6MX375Bfv27cPzzz/PRIosVkFRAX449gMAYFzLcfB28EZSVhJi02KZSFmSggLghx+Ae/ekx+fPA6mpgJubaeN6DEIIJGUllZow3cm5U+brglyC0NizMRp7NkawZzCaejdFU6+msFZYGzF6Ku65hs/Bzc4N1zKuYdvVbehVt5epQ6rW9EqkhBBQq9UAgP/++w/PPPMMAMDf3x+3b5dsIEhkKfKL8jHx74kAgIjmEQhyDZISqbuxaOHbwsTRkdHk5wMTpfMA9eoB0dHA/v3A/74rq4O7OXexN2Ev9iTswYHrB3Au+Rzu5t4ttawMMtR2ra2TMDX2bIyGHg3hYONg5MjpUWytbDGi2Qh8fehrLD6+mInUY9IrkWrVqhU+/PBDdO/eHbt27cKiRYsAALGxsfD29jZogETVWZBLEA5eP8i+pCxZu3ZSIrVvX5VOpG7du4U9CXuwJ34PdifsxpmkMyUagMtlctRxrVMiYWrg0aDKD5NCukaHjMbXh77GpkubkJyVDC8HL1OHVG3plUh99dVXGD58ODZu3Ii3334bdevWBQD89ttvaN++vUEDJKrOglyCAPDOPYvWvj3w889Vqp2UEAJxaXHYHb8bexL2YHf8bkSnRpco18C9AToFdELHgI5o7tMc9d3rc9xIM9HUuyna1miLQzcOYcWpFZjWfpqpQ6q29EqkmjVrhjNnzpRYPm/ePCgUbLRGpBHkykTK4rVrJ/09cgTIywOUxr8TTQiBC7cv6CRO1zOu65SRQYYnfJ5A54DO6BTYCZ0COsHbkVcYzNmYFmNw6MYhLD6+GK+Hvs6uJfRk0H6kbG1tDbk6ompPWyPFLhAsV926gKcnkJICHDsm1VBVMiEETiaexM64ndLluoQ9JTq4tJJbobVfa3QO7IxOAZ3QIaADXGxdKj02qjqGBg/FlH+m4NKdS9h3bR86BnQ0dUjVkl6JlKtr6eMSyWQy2Nraom7duoiIiMCoUaMeO0Ci6kxTIxWXFge1UEMukz/iFWR2ZDKgQwdg40apnVQlJVL38u5h29Vt2Hx5M/6O+Ru3Mm/pPG9nZYdQ/1B0DuiMzoGd0bZmW7ZrsnBOSicMDR6KJSeXYPHxxUyk9KRXIvXee+/ho48+Qu/evdGmTRsAwOHDh/HPP/8gMjISsbGxeOWVV1BYWIixY8caNODyWLhwIebNm4fExEQ88cQTmD9/vjZOImPyd/aHXCZHXlEeEjMT4efkZ+qQyBQ6dpQSqb17gTfeMMgqhRC4dOcStkRvwebozdgTvwcF6gLt8w7WDuhSqwu6BHZB58DOaOHbAjYKdpZMusa0GIMlJ5dg7bm1+LrX11DZqkwdUrWjVyK1d+9efPjhh3j55Zd1ln///ffYunUr1q9fj2bNmuGbb74xeiL166+/YurUqfjuu+/Qtm1bfPXVV+jZsycuXboELy/elUCVS2mlxF/D/tLOW8mtEKAKQFxaHGLvxjKRshRKJfDXX/fnO3SQ5vfte6wBjHMLc7Ezbic2X96MLTFbStwNWt+9Pp6u+zT61O+DTgGd2DM4PVK7mu3Q2LMxzqecx+qzq/Fyq5cf/SLSIRNCiEcX0+Xo6IiTJ09q79bTiImJQfPmzZGZmYkrV66gWbNmyMrKMliw5dG2bVu0bt0aCxYsAACo1Wr4+/tj0qRJmD59+iNfn5GRAZVKhfT0dDg7O1d2uGQBui7viqi4KPzc/2e82OxFU4dDppCfD6hUQG4ucOEC0LBhuV+akJ6grXXafnU7cgpztM/ZKGwQVisMfer1wdP1nkZdt7oPWRNR6b488CWmbp2Klr4tcXTcUVOHozdT/X7rVSPl5uaGP//8E6+99prO8j///BNu/+u5NysrC05OTo8fYQXk5+fj2LFjmDFjhnaZXC5H9+7dceDAgVJfk5eXh7y8PO3jjIyMSo+TLEuQSxCiEMW+pCyZjQ3Qpg2we7dUK/WQRKpQXYj91/Zra53OJp/Veb6mc01trVPXoK5wtHGs7OjJzI14YgTe+u8tHLt1DCdunUCIb4ipQ6pW9Eqk3n33XbzyyiuIiorStj06cuQItmzZgu+++w4AsG3bNnTp0sVwkZbD7du3UVRUVKJTUG9vb1y8eLHU18yZMwezZ882RnhkAQqKCrDqzCoAwPCmw2GtsGYXCJaooABYJZ0HGD4csLaW2knt3i21kxo9Wqd4XFoctl3Zhq1Xt2LblW1Iz0vXPieXydHev702eWrq1ZS3qZNBedh7oH+j/lh7bi1+OvETFvguMHVI1YpeidTYsWPRuHFjLFiwAL///jsAoEGDBti1a5e2Q87XX3/dcFFWohkzZmDq1KnaxxkZGfD39zdhRFSd5RflY9Qm6W7VwY0HS4kUu0CwPPn5gOau5cGDpUSqWDupjLwMRMVGYdvVbdh6ZWuJzjDd7dzRu15v9KnXBz3q9ICbXfUdo4+qhzEhY7D23FqsPL0S856ax45XK0DvfqQ6dOiADpovhirCw8MDCoUCSUlJOsuTkpLg4+NT6muUSiWUJuggjywHa6SoSF2Eo0HW2NoF2Fo7Ggc+cUORKNI+r5ApEOofih61e+CpOk+htV9rKOTs3JiMp1vtbghUBSI+PR6/X/gdw5sNN3VI1cZjd8iZm5uL/Px8nWWmaqRtY2ODli1bYvv27XjuuecASI3Nt2/fjomaAUSJjExTI3U94zoKigo46r2FiHUBttUBtm4aju3XdiEtNw148n9PiiLUc6uHHnV64KnaT+HJoCfhrOTNLWQ6cpkco0NG472d72HxicXVK5EqKgJu3ZJu5DABvRKp7OxsvPnmm1i7di3u3LlT4vmioqJSXmUcU6dOxciRI9GqVSu0adMGX331FbKystg5KJmMj6MPbK1skVuYi4T0BNRxq2PqkKgSaC7Xbb2yFVtj/kXMlP89Eb0JAOBi64JuaW7ose0qngobjaCZi00WK1FpIppHYNauWdgZtxPRd6JRz72ecQMoKgLS04G7d4HUVN2/D1uWmAgUFho31mL0SqTeeOMNREVFYdGiRRgxYgQWLlyIGzdu4Pvvv8fcuXMNHWOFDB06FCkpKXjvvfeQmJiI5s2b459//inRAJ3IWGQyGYJcgnDh9gXEpsUykTIjt+7dwrrz67Du/DocuHZA53KdVRHQ7jrQ44V30KPhM2jl1wqK1WuAuS8CVmcfslYi0/BX+aNX3V7YEr0FS04swZzucx5/pUJIyU58vO5082bJxCg9XSqvDysrwM8PSEh4/JgrSK9+pAICArBixQqEhYXB2dkZx48fR926dfHzzz9j9erV2LJlS2XEahTsR4oeR1Z+FhznSLejZ87IhIONAwCgzy99sCV6C3545geMbWn83v7JcFKyUrD+wnr8eu5X7IrbBYH7X6Gay3U9anRGWNuhcM4DkJkJOEjnAeLigKAg6Us/PR2w5xAtVLVsuLABA9YOgI+jDxKmJDy6KYLmslp8vJTEPJgwxccDFe1P0sEBcHUF3Nykv8XnS1vm4wP4+SEjK6v69COVmpqK2rVrA5DaQ6WmpgIAOnbsiFdeecVw0RGZCU07KfYlVT3dzbmLjRc3Ys25Ndh+dbtOzVNozVAMDR6Kfg37oZZLLWlhVhaQV8qKAgOBGjWAGzeAw4eBsDBjhE9Ubs/UfwZeDl5IzEzElugt6BfUC7h2rfQEKT4euH5d6u7jUby9pfNfM9WsCbi7l0yKXF2lfteqEb0Sqdq1ayM2NhYBAQFo2LAh1q5dizZt2uDPP/+ESsVxeshyKa2UWDtorXZeQ9sFAu/cqzbu5d3DH5f+wK/nfsU/Mf/ojGPX0rclhgYPxZDgIQh0CSz5YqUSWLv2/ryGZgDjtWuljjmZSJGp3bunkxhZx8djZI4b5rknY/GnQ9FvWf6jL7cpFFJiVDxRKj4FBAC2tsbZHxPQK5EaNWoUTp06hS5dumD69Ono27cvFixYgIKCAnzxxReGjpGo2rCSW2Fw8OASy9kFQvWQXZCNLdFbsObsGmyO3ozcwlztc028muD54OcxtMnQRw/FYmUl9R9Vmo4dpURq714DRk5UCiGAlJSya5MSEqS2SQ8Y7Q7MmwRs8c/DDUegRqFd2UlSYCDg6yud8xZKrz0vPjRM9+7dcfHiRRw7dgweHh5YuXKlwYIjMhfslLPqyivMw9YrW7Hm3BpsurgJWQX323PUc6uH55s8j6HBQxHsFWyYDWr63ztwQGpfomB/UaSnwkKp0fbDEqWcnEevx9VVJzFqEBiITkWLsSf7Apb9OgNv9/pI74G2LYFejc3LcurUKbRo0cKk3R88LjY2p8dRqC7EhgsbAAD9G/WHlVz6XyUtNw2un7gCAO7NuMfx0UxMCIGouCisPL0Sv1/4XWdIlkBVoDZ5au7TXL/hWAoLgQ3SeYD+/XX/Wy8slH64MjOBU6eAZs0ec2/IbOXklN6AW7Ps+nUpGX8YmUyqMQoIKLtGqZRxcVecWoGRG0ciyCUIMZNjIJfJK2knDadaDVpMRKXLK8zDkN+GAJDu2rOykT5iLrYucLF1QVpuGuLS4tDEq4kpw7RY6bnpWH5qOb498i0u3bmkXe7n5IchjYfg+SbPo02NNo8/ll1eHjBEOg+QmambSFlZAe3aAf/9J7WTYiJludLSyq5Nio8HkpMfvQ5ra8Dfv+wkqWZN3XZ65TSo8SBM+nsSYtNiERUbhW61u1V8/4ykUF2Iy3cuY3/MfpNsn4kUkZHUdq2N47eOI/ZuLBMpIzuTdAYLjyzEytMrtZfuHG0cMbzpcLzQ9AV0DOho3P+4O3aUEqm9ewHe6Wye1GogKenh3QJkZDx6PQ4OD2+f5ONTKZeH7a3tMbzpcCw6ugiLTyyuMonUvbx7OJN8BicTT2qnM8lnpPaMuY9+fWVgIkVkJEEuQVIixQbnRpFflI/fL/yOhUcWYm/C/YbdjT0bI7J1JEY0GwEnZclLGkZRbABjqsaKiqSE6OLF+9PVq9Kya9ekmslHcXd/eKLk5may9kljWozBoqOL8PuF33En+w7c7d2Ntm0hBG5l3tJJmE4mnkRMaoxO320ajjaOaOzRGIdx2GgxalQokRowYMBDn09LS3ucWIjMGvuSMo7rGdfx/dHv8ePxH5GUJQ1gbiW3Qv+G/RHZOhKdAzs//qW7x9W2rVSLoGnnUrOmaeOhh8vKAi5f1k2YLlyQlj0sWZLLpd62H9YtgKaz1iqohW8LhPiE4ETiCaw8vRKvtnu1UrajuTT3YNKUkp1SavkaTjXQ3Ke5zlTbtTYy72VCNdH4XTBVKJF6VB9RKpUK4eHhjxUQkbliFwiVRwiBHbE78O3Rb7Hp4iZth5m+jr4Y33I8xrYcCz8nPxNHWYyTE/DEE8Dx41Kt1NChpo6IhJAuxRVPljQJ08OGHbGxAerXBxo2BBo1AurU0W2fZF29Bykf02IMIrdEYvGJxZjcdvJj/xOSW5iLU4mncOzWsZKX5h4gl8nRyKORTsL0hPcT8HTwfKwYDK1CidTSpUsrKw4is8cuEAwvPTcdK06twLdHv8XF2xe1y7sEdkFk60g81/C5Rw9xYSodO0qJ1N69TKSMqaBAuvz2YMJ08aLU+Lssbm5SotSokZQ0aaZatcy6C4sXmr6A17e+jrPJZ3H4xmG0rdm23K8tVBfifMp5HLlxBEduStPppNMoVJccYNjRxhFPeD+hkzQFewbDztrOkLtTKdhGishIitdICSFMf3mpGiur8Xh4s3BMaD3BcH0+VaYOHYBvvmE7qcqSng5culSydikmRuqCojQymTQW4oPJUsOGgIeHceOvIlxsXTC48WD8fPpn/HTipzITKSEErty9ok2aDt84jBOJJ5BdkF2irKe9J1r5tUKITwia+zRHiG8IarvWrhZdLJSGiRSRAdkobLC031LtfHGacdgy8zNxJ+cOPOwt84tZXwVFBdhwcQMWHF6APQl7tMurROPxB9nYAJoa/LLGDdM0OD91Shqmo5S+fOgRhJDamD2YLF28KA2kWxZ7+5KJUsOGQL16Zj2Uib7GtBiDn0//jNVnV+OLnl/A0cYRN+/dxOEbh7WJ09GbR3E3t2Qv6U42Tmjp1xJt/NqgdY3WaO3XGgGqALP6R5KJFJEBWSusEdE8otTnbK1s4evoi1uZtxB7N5aJVDklZSbhh2M/4Ltj3+HmvZsAqmDj8QdZWwMREQ8vU6OGdFkoLg44eBB46ikjBFaNZWQAp08DJ0/eny5elBqCl8XXt/SEqWZNqSE4lUungE6o51YP0anR6Lq8K27cu6H9LBanVCjR3Kc5Wvu11iZNDTwaVNuapvJiIkVkREGuQVIilRaL1jVamzqcKu3IjSOYf3g+fj33K/KL8gEA3g7eGN9yPMa3Gl+1Go/rq2NHKZHau5eJlIYQ0rAnxROmEyeAK1dKL29lBdStWzJZatAAcHExXtxmTCaTYUyLMXjrv7dw5OYRAFJD8GDPYJ2kqal30xI18ZaAiRSRARWqC/FvzL8AgJ51e2qHiNGo7Vob+6/tZ4PzMuQV5mHd+XVYcHgBDt04pF3etkZbTGozCYODB1ePL+rCQuBf6TxAz55lD+jaoQOwcqXltpMqLJS6ECieNJ08KQ20W5qaNYHmzaXpiSeAJk2ku+Sq+Z1x1cHktpORU5ADJ6UT2tRogxCfEDjYVN2uG4yJiRSRAeUV5uGZ1c8A0B0iRoN9SZXu5r2b+O7od/jh2A/avp9sFDYYGjwUk9pMqn61d3l5wDPSeVBiiJjiOnaU/h48KCUVZZUzB3l5UnuwY8fuJ0ynTwO5pXRHrVBItUohIbqJk4U2+K4KbK1sMTNspqnDqJLM+FNLVPVou0BgX1IQQuDA9QP45tA3WH9hvfaWaD8nP7zS6hWMazkOXg5eJo6ykjVuLF1+SkuTkoyWLU0dkWGo1UB0NHD4sDQdOiQlTgUFJcs6OkpJkiZhat4cCA4G7Kr+be9EABMpIqNip5xSh3xrzq7B/MPzcfzWce3yjgEdManNJPRv2L/q9v1kaHI50L49sGWL1E6quiZSSUm6SdORI6X3yeThAbRurVvTVKcOG35TtcZEisiINDVS8WnxKFIXQSE33478HnQt/RoWHV2EH4//iNvZtwFIlwteaPICJrWdhOY+zU0boKl06CAlUvv2Aa9WzhAcBpWdLV2e0yRNhw9LQ908yNZWSgzbtJGGxGnTRrpLsardYUn0mJhIERlRTeeasJJboUBdgJv3bsJf5W/qkCrdhZQLmLVrFtafX68duiVAFYAJrSZgTIsxRh0ItUrStJPau1e6Y60qJRpFRcD587q1TWfPSsuLk8mky5TFk6YmTdgInCwCEykiI1LIFQhQBeDq3auITYs160TqWvo1zNo5C8tOLYNaqAEAT9Z6EpPaTELfBn1L3NFosVq3lhKOW7eA2Figdm3TxKHp3LJ40nT0aOn9NPn53U+Y2raVap6cnY0fM1EVwG8yIiMLcgmSEqm7segc2NnU4Rjcnew7mLt3LuYfno+8ojwAwHMNn8PssNlo5t3MxNFVQXZ2UiJy8KB0ec9YiVRGhtSWqfglutJ6A3d0lJK94rVNNWoYJ0aiaoCJFJEB2ShssKD3Au18aWq71sb22O1m1+A8Kz8LXx/6Gp/u+xTpeekAgM6BnTG321yE+oeaODojs7EBFiy4P/8oHTtKidTevcCIEYaPp6BA6mqgeNJ08aJUC1WcQgE0bapb29SwoVkPykv0uJhIERmQtcIakW0iH1rG3PqSKigqwE8nfsLsXbORmJkIAGjm3Qxzus1B77q9q97wLcZgbQ1EPvw80NGhA/DZZ4brmPPuXeC//4D9+6XE6cSJ0vtrqlVLN2kKCZHGoSOicmMiRWRk5tIFglqo8dv53/DOjncQnRoNQEoSP3jyAwxrOszsx9cyKM0AxufOAampgJtbxV4vBHDmjHT335YtUgL1YINwFxfdy3Nt2gBeZt5PF5ERMJEiMqAidRH2JOwBIA30WVr3BtpOOavxMDHbrmzDjO0zcOzWMQCAp70n3u38Lsa3Gl89hnCpbEVFwB7pPECnTo++NObpCdSvLw2XcuAA0KfPo7eRmSnVOmmSpxs3dJ9v3Bjo2vV+4lSvXtW6I5DITDCRIjKg3MJcPLn8SQDSEDGljUWlqZG6ee8m8grzoLRSGjXGx3H05lFM/286tsduBwA42jhiWug0TA2dCielk4mjq0Jyc4EnpfMAmZmAQznGJOvYUUqk9u4tPZESQnpekzjt2qXbU7idHdCtG/D000Dv3tJlOyKqdEykiIzM094T9tb2yC7IRnx6POq71zd1SI90+c5lvLPjHaw7vw4AYC23xoTWE/B2p7fh6eBp4ujMRIcOwJIluu2kcnKAnTvvJ09XH2hXV6eOlHQ9/TTQpYvUCSYRGRUTKSIjk8lkCHIJwrmUc4i9G1ulE6mb925i9s7Z+OnETygSRZBBhhebvYj3n3wftVxqmTo886LpmPPwYemOv7//Bnbs0G0kbmMjJUxPPy1N9avuuUNkKZhIEZlAkOv/Eqkq2uC8oKgAc/fOxZy9c5BTmAMAeKb+M/io60fsC6qy1KsntZVKSQEmTbq/3N//fuLUtavUrxMRVRlMpIhMoLaL1OliVWxwfibpDEZuHIkTiScAAO3922Nut7noFNjJxJGZOZkMeOkl4MsvgdDQ+8lTcDAbiRNVYUykiExA0+D8alrV6UuqUF2IefvmYebOmShQF8DV1hULnl6AYU2GWWZfUKYwdy4wZw4TJ6JqhIkUkQlUtS4QLqRcQMSmCBy+cRgA0Ld+X3z/zPfwdfI1cWQWiEkUUbXCRIrIgKwV1vi0+6fa+bJUlU45i9RF+PLgl3hnxzvIK8qDSqnC172+RvgT4ayFehzW1sCnn96fJyKzJRPiwcGWqq9atWohPj5eZ9mcOXMwffr0cq8jIyMDKpUK6enpcOZo5lRJ7uXdg/Nc6fxKn54OZ6Xxz7XoO9GI2BSB/df2AwB61umJxc8uRk3nmkaPhYjocZnq99vsaqTef/99jB07VvvYyYmdBFLV46R0grudO+7k3EHs3Vg84fOE0batFmrMPzQfM7bPQE5hDpxsnPBFzy8wOmQ0a6GIiCrI7BIpJycn+Pj4mDoMslBF6iIcv3UcANDCt0WpQ8RoBLkGSYlUmvESqat3r2LUplHYHb8bANA1qCuWPLsEgS6BRtm+xSgqAo5L5wFatHj0EDFEVG2Z3aiic+fOhbu7O0JCQjBv3jwUFhY+tHxeXh4yMjJ0JiJ95Rbmos3iNmizuA1yC3MfWtaYDc7VQo1FRxah2aJm2B2/G/bW9lj49EJsG7GNSVRlyM29PzBw7sPPAyKq3syqRmry5Mlo0aIF3NzcsH//fsyYMQO3bt3CF198UeZr5syZg9mzZxsxSiJJbdf/9SVVyQ3O49PiMfqP0drx8ToHdsbSfku12yciIv1V+Rqp6dOnQyaTPXS6ePEiAGDq1KkICwtDs2bN8PLLL+Pzzz/H/PnzkZeXV+b6Z8yYgfT0dO107do1Y+0aWThNjdTVu5XTl5QQAouPL0bTRU2xPXY77Kzs8FXPrxA1MopJFBGRgVT5GqnXX38dERERDy1Tu3bpPwpt27ZFYWEh4uLi0KBBg1LLKJVKKJXKxw2TqMIqswuE6xnXMfbPsfgn5h8AQGjNUCx7blmVHtePiKg6qvKJlKenJzw99Rtd/uTJk5DL5fDy8jJwVESPT1MjFZcWByGEQe6YE0Lg59M/Y/Lfk5Gelw6lQokPu36I19q99tCG70REpJ8qn0iV14EDB3Do0CE8+eSTcHJywoEDB/Daa6/hxRdfhKurq6nDIyohQBUAGWTILshGclYyvB29H2t9+UX5iNwcicUnFgMAWvu1xrLnlqGxZ2NDhEtERKUwm0RKqVRizZo1mDVrFvLy8hAUFITXXnsNU6dONXVoRKVSWilRw7kGrmdcR2xa7GMlUrezb2Pg2oHYHb8bcpkcs8NmY3rH6bCSm81HnIioSjKbb9kWLVrg4MGDpg6DLJy1whozu8zUzj9KkEuQlEjdjUW7mu302ua55HN4ds2zuHr3KpxsnLBm0Bo8Xe9pvdZFBmJtDcyceX+eiMyW2SRSRFWBjcIGs8Jmlbt8kGsQ9iTs0bvB+ebLmzFs/TDcy7+HIJcg/DnsTwR7Beu1LjIgGxtg1ixTR0FERlDluz8gMmf6dsophMAXB75A39V9cS//HjoHdsbhsYeZRBERGRlrpIgMSC3UuJByAQDQyLMR5LKH/6+iT6ec+UX5eOWvV7Dk5BIAwJiQMVjYZyFsFDZ6Rk0Gp1YDF6TzAI0aAXL+z0pkrphIERlQTkEOmixqAgDInJEJBxuHh5avaKecKVkpGLh2IPYk7IFcJsfnPT7Hq21f5WDDVU1ODtBEOg+QmQk4PPw8IKLqi4kUkQlpOuVMSE9AobrwoXfZnU0+i76r+yIuLQ7OSmesGbgGvev1NlaoRERUCtY3E5mQn5MfbBQ2KBJFuJ5xvcxyf13+C6E/hSIuLQ51XOvg4OiDTKKIiKoAJlJEJiSXyRGoCgRQeoNzIQQ+2/8Znl39LDLzMxFWKwyHxhxCI89Gxg6ViIhKwUSKyMTKGnMvrzAPL/3xEt7Y9gYEBMa1GIetL26Fu727KcIkIqJSsI0UkYmV1gVCclYyBq4diL0JeyGXyfFlzy8xqc0kNionIqpimEgRmZg2kfpfjdSZpDPou7ov4tPjoVKqsHbwWvSo08OUIRIRURmYSBEZkLXCGtNCp2nny6N4X1J/XvoTL/z+AjLzM1HXrS7+HPYnGno0rLR4qZJYWwPTpt2fJyKzJRNCCFMHUZVkZGRApVIhPT0dzs7Opg6HLMDRm0fR+sfWsFHYoKCoAAICXYO6Yt3gdXCzczN1eERE1YKpfr/Z2JzIxDSX9vKL8iEg8HLLl/HP8H+YRBERVQNMpIgMSC3UiEuLQ1xaHNRCXa7XuNm5IcglCAqZAgt6L8CiZxaV+7IgVVFqNRAXJ03q8p0HRFQ9sY0UkQHlFOQg6Guphqk8Q8QAgEwmw/7R+5GVn4U6bnUqO0QyhpwcIEg6DzhEDJF5YyJFVAX4OPqYOgQiItIDL+0RERER6YmJFBEREZGemEgRERER6YmJFBEREZGemEgRERER6Yl37REZkJXcChNaTdDOk4WysgImTLg/T0Rmi0PEPIBDxBAREVU/HCKGiIiIqJphnTORAQkhcDv7NgDAw94DMpnMxBGRSQgB3JbOA3h4ADwPiMwWEykiA8ouyIbXZ14Ayj9EDJmh7GzASzoPOEQMkXnjpT0iIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITuz8gMiAruRVGPjFSO08WysoKGDny/jwRmS0OEfMADhFDRERU/XCIGCIiIqJqptokUh999BHat28Pe3t7uLi4lFomISEBffr0gb29Pby8vPDGG2+gsLDQuIGSRRNCICs/C1n5WWBlrwUTAsjKkiaeB0RmrdpcvM/Pz8fgwYMRGhqKn376qcTzRUVF6NOnD3x8fLB//37cunUL4eHhsLa2xscff2yCiMkSZRdkw3GOIwAOEWPRsrMBR+k84BAxROat2tRIzZ49G6+99hqaNm1a6vNbt27F+fPnsXLlSjRv3hy9e/fGBx98gIULFyI/P9/I0RIREZElqDaJ1KMcOHAATZs2hbe3t3ZZz549kZGRgXPnzpX5ury8PGRkZOhMREREROVhNolUYmKiThIFQPs4MTGxzNfNmTMHKpVKO/n7+1dqnERERGQ+TJpITZ8+HTKZ7KHTxYsXKzWGGTNmID09XTtdu3atUrdHRERE5sOkjc1ff/11REREPLRM7dq1y7UuHx8fHD58WGdZUlKS9rmyKJVKKJXKcm2DiIiIqDiTJlKenp7w9PQ0yLpCQ0Px0UcfITk5GV5eXgCAbdu2wdnZGY0bNzbINoiIiIiKqzbdHyQkJCA1NRUJCQkoKirCyZMnAQB169aFo6MjevTogcaNG2PEiBH49NNPkZiYiHfeeQeRkZGscSKjUcgVGNR4kHaeLJRCAQwadH+eiMxWtRkiJiIiAsuXLy+xPCoqCmFhYQCA+Ph4vPLKK9i5cyccHBwwcuRIzJ07F1YVGOuKQ8QQERFVP6b6/a42iZSxMJEiIiKqfjjWHhEREVE1w0SKyICy8rMgmy2DbLYMWflZpg6HTCUrC5DJpCmL5wGROWMiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREeqo2Q8QQVQcKuQJP13taO08WSqEAnn76/jwRmS32bP4A9mxORERU/bBncyIiIqJqhokUERERkZ6YSBEZUFZ+Fhw+doDDxw4cIsaSZWUBDg7SxCFiiMwaG5sTGVh2QbapQ6CqIJvnAZElYI0UERERkZ6YSBERERHpiYkUERERkZ6YSBERERHpiYkUERERkZ541x6RAcllcnQJ7KKdJwsllwNdutyfJyKzxSFiHsAhYoiIiKofDhFDREREVM0wkSIiIiLSExMpIgPKys+C5zxPeM7z5BAxliwrC/D0lCYOEUNk1tjYnMjAbmffNnUIVBXc5nlAZAlYI0VERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVERESkJ961R2RAcpkcrfxaaefJQsnlQKtW9+eJyGxxiJgHcIgYIiKi6odDxBARERFVM0ykiIiIiPTERIrIgLILslHrq1qo9VUtZBdkmzocMpXsbKBWLWnK5nlAZM6qTSL10UcfoX379rC3t4eLi0upZWQyWYlpzZo1xg2ULJoQAvHp8YhPjwebH1owIYD4eGnieUBk1qrNXXv5+fkYPHgwQkND8dNPP5VZbunSpejVq5f2cVlJFxEREdHjqjaJ1OzZswEAy5Yte2g5FxcX+Pj4GCEiIiIisnTV5tJeeUVGRsLDwwNt2rTBkiVLeHmFiIiIKk21qZEqj/fffx9du3aFvb09tm7digkTJiAzMxOTJ08u8zV5eXnIy8vTPs7IyDBGqERERGQGTFojNX369FIbiBefLl68WO71vfvuu+jQoQNCQkLw1ltv4c0338S8efMe+po5c+ZApVJpJ39//8fdLSIiIrIQJq2Rev311xEREfHQMrVr19Z7/W3btsUHH3yAvLw8KJXKUsvMmDEDU6dO1T7OyMhgMkV6k8lkaOzZWDtPFkomAxo3vj9PRGbLpImUp6cnPD09K239J0+ehKura5lJFAAolcqHPk9UEfbW9jg34ZypwyBTs7cHzvE8ILIE1aaNVEJCAlJTU5GQkICioiKcPHkSAFC3bl04Ojrizz//RFJSEtq1awdbW1ts27YNH3/8MaZNm2bawImIiMhsVZtE6r333sPy5cu1j0NCQgAAUVFRCAsLg7W1NRYuXIjXXnsNQgjUrVsXX3zxBcaOHWuqkImIiMjMyQT7B9BhqtGjyTxkF2Sj9Y+tAQBHxh6BvbW9iSMik8jOBlpL5wGOHJEu9RFRpTLV73e1qZEiqg6EEDifcl47TxZKCOD8+fvzRGS2zK5DTiIiIiJjYSJFREREpCcmUkRERER6YiJFREREpCcmUkRERER64l17RAYkk8kQqArUzpOFksmAwMD780RktphIERmQvbU94qbEmToMMjV7eyAuztRREJER8NIeERERkZ6YSBERERHpiYkUkQHlFOSg9Y+t0frH1sgpyDF1OGQqOTnSEDGtW0vzRGS22EaKyIDUQo2jN49q58lCqdXA0aP354nIbLFGioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREioiIiEhPvGuPyMA87D1MHQJVBR48D4gsARMpIgNysHFAyhsppg6DTM3BAUjheUBkCXhpj4iIiEhPTKSIiIiI9MREisiAcgpyELYsDGHLwjhEjCXLyQHCwqSJQ8QQmTW2kSIyILVQY1f8Lu08WSi1Gti16/48EZkt1kgRERER6YmJFBEREZGemEgRERER6YmJFBEREZGemEgRERER6Yl37REZmL21valDoKrAnucBkSVgIkVkQA42Dsj6vyxTh0Gm5uAAZPE8ILIEvLRHREREpCcmUkRERER6YiJFZEC5hbno80sf9PmlD3ILc00dDplKbi7Qp4805fI8IDJnbCNFZEBF6iJsid6inScLVVQEbNlyf56IzBZrpIiIiIj0VC0Sqbi4OIwePRpBQUGws7NDnTp1MHPmTOTn5+uUO336NDp16gRbW1v4+/vj008/NVHEREREZAmqxaW9ixcvQq1W4/vvv0fdunVx9uxZjB07FllZWfjss88AABkZGejRowe6d++O7777DmfOnMFLL70EFxcXjBs3zsR7QEREROaoWiRSvXr1Qq9evbSPa9eujUuXLmHRokXaRGrVqlXIz8/HkiVLYGNjg+DgYJw8eRJffPEFEykiIiKqFNXi0l5p0tPT4ebmpn184MABdO7cGTY2NtplPXv2xKVLl3D37l1ThEhERERmrlrUSD0oJiYG8+fP19ZGAUBiYiKCgoJ0ynl7e2ufc3V1LXVdeXl5yMvL0z5OT08HIF0qJKqorPws4H93u2dkZKDIhndsWaTivZpnZPDOPSIj0PxuCyGMul2TJlLTp0/HJ5988tAyFy5cQMOGDbWPb9y4gV69emHw4MEYO3bsY8cwZ84czJ49u8Ryf3//x143WTa/uX6mDoGqAj+eB0TGdOfOHahUKqNtTyaMnboVk5KSgjt37jy0TO3atbWX627evImwsDC0a9cOy5Ytg1x+/8pkeHg4MjIysHHjRu2yqKgodO3aFampqeWukUpLS0NgYCASEhKMeiBMLSMjA/7+/rh27RqcnZ1NHY7RcL+535aA+839tgTp6ekICAjA3bt34eLiYrTtmrRGytPTE56enuUqe+PGDTz55JNo2bIlli5dqpNEAUBoaCjefvttFBQUwNraGgCwbds2NGjQoMwkCgCUSiWUSmWJ5SqVyqJOQA1nZ2futwXhflsW7rdlsdT9fjA/qPTtGXVrerpx4wbCwsIQEBCAzz77DCkpKUhMTERiYqK2zAsvvAAbGxuMHj0a586dw6+//oqvv/4aU6dONWHkREREZM6qRWPzbdu2ISYmBjExMahZs6bOc5orkyqVClu3bkVkZCRatmwJDw8PvPfee+z6gIiIiCpNtUikIiIiEBER8chyzZo1w549ex5rW0qlEjNnziz1cp85435zvy0B95v7bQm438bdb5M2NiciIiKqzqpFGykiIiKiqoiJFBEREZGemEgRERER6YmJFBEREZGezC6RWrhwIWrVqgVbW1u0bdsWhw8ffmj5devWoWHDhrC1tUXTpk2xZcsWneeFEHjvvffg6+sLOzs7dO/eHdHR0TplUlNTMXz4cDg7O8PFxQWjR49GZmamwfftYQy53wUFBXjrrbfQtGlTODg4wM/PD+Hh4bh586bOOmrVqgWZTKYzzZ07t1L2ryyGPt4REREl9qlXr146ZczteAMosc+aad68edoy1e14nzt3DgMHDtTG/dVXX+m1ztzcXERGRsLd3R2Ojo4YOHAgkpKSDLlbj2To/Z4zZw5at24NJycneHl54bnnnsOlS5d0yoSFhZU43i+//LKhd+2hDL3fs2bNKrFPxYcgA8zzeJf22ZXJZIiMjNSWqW7H+8cff0SnTp3g6uoKV1dXdO/evUR5o/1+CzOyZs0aYWNjI5YsWSLOnTsnxo4dK1xcXERSUlKp5fft2ycUCoX49NNPxfnz58U777wjrK2txZkzZ7Rl5s6dK1Qqldi4caM4deqUePbZZ0VQUJDIycnRlunVq5d44oknxMGDB8WePXtE3bp1xbBhwyp9fzUMvd9paWmie/fu4tdffxUXL14UBw4cEG3atBEtW7bUWU9gYKB4//33xa1bt7RTZmZmpe+vRmUc75EjR4pevXrp7FNqaqrOeszteAshdPb31q1bYsmSJUImk4krV65oy1S343348GExbdo0sXr1auHj4yO+/PJLvdb58ssvC39/f7F9+3Zx9OhR0a5dO9G+ffvK2k29YiyuPPvds2dPsXTpUnH27Flx8uRJ8fTTT4uAgACd49mlSxcxduxYneOdnp5eWbtZQmXs98yZM0VwcLDOPqWkpOiUMcfjnZycrLPP27ZtEwBEVFSUtkx1O94vvPCCWLhwoThx4oS4cOGCiIiIECqVSly/fl1bxli/32aVSLVp00ZERkZqHxcVFQk/Pz8xZ86cUssPGTJE9OnTR2dZ27Ztxfjx44UQQqjVauHj4yPmzZunfT4tLU0olUqxevVqIYQQ58+fFwDEkSNHtGX+/vtvIZPJxI0bNwy2bw9j6P0uzeHDhwUAER8fr10WGBhY6ofWWCpjv0eOHCn69etX5jYt5Xj369dPdO3aVWdZdTvexZUV+6PWmZaWJqytrcW6deu0ZS5cuCAAiAMHDjzG3pRfZez3g5KTkwUAsWvXLu2yLl26iFdffVWfkA2iMvZ75syZ4oknnijzdZZyvF999VVRp04doVartcuq8/EWQojCwkLh5OQkli9fLoQw7u+32Vzay8/Px7Fjx9C9e3ftMrlcju7du+PAgQOlvubAgQM65QGgZ8+e2vKxsbFITEzUKaNSqdC2bVttmQMHDsDFxQWtWrXSlunevTvkcjkOHTpksP0rS2Xsd2nS09Mhk8lKDAQ5d+5cuLu7IyQkBPPmzUNhYaH+O1MBlbnfO3fuhJeXFxo0aIBXXnlFZ2BtSzjeSUlJ2Lx5M0aPHl3iuep0vA2xzmPHjqGgoECnTMOGDREQEKD3dg0doyGkp6cDANzc3HSWr1q1Ch4eHmjSpAlmzJiB7Oxsg23zYSpzv6Ojo+Hn54fatWtj+PDhSEhI0D5nCcc7Pz8fK1euxEsvvQSZTKbzXHU+3tnZ2SgoKNCew8b8/a4WPZuXx+3bt1FUVARvb2+d5d7e3rh48WKpr0lMTCy1vGYMP83fR5Xx8vLSed7Kygpubm46YwFWlsrY7wfl5ubirbfewrBhw3QGwJw8eTJatGgBNzc37N+/HzNmzMCtW7fwxRdfPOZePVpl7XevXr0wYMAABAUF4cqVK/i///s/9O7dGwcOHIBCobCI4718+XI4OTlhwIABOsur2/E2xDoTExNhY2NT4h+Ih71/hlQZ+/0gtVqNKVOmoEOHDmjSpIl2+QsvvIDAwED4+fnh9OnTeOutt3Dp0iX8/vvvBtnuw1TWfrdt2xbLli1DgwYNcOvWLcyePRudOnXC2bNn4eTkZBHHe+PGjUhLSysxWkh1P95vvfUW/Pz8tImTMX+/zSaRospRUFCAIUOGQAiBRYsW6TxXfEDoZs2awcbGBuPHj8ecOXOq7dAEzz//vHa+adOmaNasGerUqYOdO3eiW7duJozMeJYsWYLhw4fD1tZWZ7k5Hm8CIiMjcfbsWezdu1dnefFxSps2bQpfX19069YNV65cQZ06dYwdpkH07t1bO9+sWTO0bdsWgYGBWLt2bak1sObop59+Qu/eveHn56ezvDof77lz52LNmjXYuXNnie8tYzCbS3seHh5QKBQl7q5ISkqCj49Pqa/x8fF5aHnN30eVSU5O1nm+sLAQqampZW7XkCpjvzU0SVR8fDy2bdumUxtVmrZt26KwsBBxcXEV35EKqsz9Lq527drw8PBATEyMdh3merwBYM+ePbh06RLGjBnzyFiq+vE2xDp9fHyQn5+PtLQ0g23X0DE+jokTJ+Kvv/5CVFRUiQHhH9S2bVsA0H4WKlNl77eGi4sL6tevr/P5NufjHR8fj//++6/cn2+g6h/vzz77DHPnzsXWrVvRrFkz7XJj/n6bTSJlY2ODli1bYvv27dplarUa27dvR2hoaKmvCQ0N1SkPANu2bdOWDwoKgo+Pj06ZjIwMHDp0SFsmNDQUaWlpOHbsmLbMjh07oFartSdiZaqM/QbuJ1HR0dH477//4O7u/shYTp48CblcXqKqtDJU1n4/6Pr167hz5w58fX216zDH463x008/oWXLlnjiiSceGUtVP96GWGfLli1hbW2tU+bSpUtISEjQe7uGjlEfQghMnDgRGzZswI4dOxAUFPTI15w8eRIAtJ+FylRZ+/2gzMxMXLlyRbtP5nq8NZYuXQovLy/06dPnkWWrw/H+9NNP8cEHH+Cff/7RaecEGPn3u9zN0quBNWvWCKVSKZYtWybOnz8vxo0bJ1xcXERiYqIQQogRI0aI6dOna8vv27dPWFlZic8++0xcuHBBzJw5s9TuD1xcXMSmTZvE6dOnRb9+/Uq9fTIkJEQcOnRI7N27V9SrV8/ot8Mbcr/z8/PFs88+K2rWrClOnjypcztsXl6eEEKI/fv3iy+//FKcPHlSXLlyRaxcuVJ4enqK8PDwarvf9+7dE9OmTRMHDhwQsbGx4r///hMtWrQQ9erVE7m5udr1mNvx1khPTxf29vZi0aJFJbZZHY93Xl6eOHHihDhx4oTw9fUV06ZNEydOnBDR0dHlXqcQ0u3wAQEBYseOHeLo0aMiNDRUhIaGVuv9fuWVV4RKpRI7d+7U+XxnZ2cLIYSIiYkR77//vjh69KiIjY0VmzZtErVr1xadO3eu1vv9+uuvi507d4rY2Fixb98+0b17d+Hh4SGSk5O1ZczxeAsh3QUXEBAg3nrrrRLbrI7He+7cucLGxkb89ttvOufwvXv3dMoY4/fbrBIpIYSYP3++CAgIEDY2NqJNmzbi4MGD2ue6dOkiRo4cqVN+7dq1on79+sLGxkYEBweLzZs36zyvVqvFu+++K7y9vYVSqRTdunUTly5d0ilz584dMWzYMOHo6CicnZ3FqFGjdA6mMRhyv2NjYwWAUidNvyPHjh0Tbdu2FSqVStja2opGjRqJjz/+WCfhMAZD7nd2drbo0aOH8PT0FNbW1iIwMFCMHTtW50dVCPM73hrff/+9sLOzE2lpaSWeq47Hu6zzuEuXLuVepxBC5OTkiAkTJghXV1dhb28v+vfvL27dulWZu1mCofe7rM/30qVLhRBCJCQkiM6dOws3NzehVCpF3bp1xRtvvGHUfoWEMPx+Dx06VPj6+gobGxtRo0YNMXToUBETE6OzTXM83kII8e+//woAJX6/hKiexzswMLDU/Z45c6a2jLF+v2VCCFH++isiIiIi0jCbNlJERERExsZEioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREiogIwM6dOyGTyUqMs2ZoI0aMwMcff2zQdd6+fRteXl64fv26QddLRI/GRIqItCIiIiCTyUpMxhi41NTat2+PW7duQaVSVdo2Tp06hS1btmDy5MnaZWFhYZgyZUqJssuWLYOLi0u51uvh4YHw8HDMnDnTQJESUXkxkSIiHb169cKtW7d0ptIGtc3PzzdBdJXHxsYGPj4+kMlklbaN+fPnY/DgwXB0dDT4ukeNGoVVq1YhNTXV4OsmorIxkSIiHUqlEj4+PjqTQqFAWFgYJk6ciClTpsDDwwM9e/YEAJw9exa9e/eGo6MjvL29MWLECNy+fVu7vqysLISHh8PR0RG+vr74/PPPS9TCyGQybNy4UScOFxcXLFu2TPv42rVrGDJkCFxcXODm5oZ+/fohLi5O+3xERASee+45fPbZZ/D19YW7uzsiIyNRUFCgLZOXl4e33noL/v7+UCqVqFu3Ln766ScApV/a27t3Lzp16gQ7Ozv4+/tj8uTJyMrK0j7/7bffol69erC1tYW3tzcGDRpU5vtaVFSE3377DX379i3PYSihVq1apdYWagQHB8PPzw8bNmzQa/1EpB8mUkRUbsuXL4eNjQ327duH7777DmlpaejatStCQkJw9OhR/PPPP0hKSsKQIUO0r3njjTewa9cubNq0CVu3bsXOnTtx/PjxCm23oKAAPXv2hJOTE/bs2YN9+/bB0dERvXr10qkZi4qKwpUrVxAVFYXly5dj2bJlOslYeHg4Vq9ejW+++QYXLlzA999/X2bt0JUrV9CrVy8MHDgQp0+fxq+//oq9e/di4sSJAICjR49i8uTJeP/993Hp0iX8888/6Ny5c5n7cPr0aaSnp6NVq1YV2neNI0eOaGsIr1+/jnbt2qFTp046Zdq0aYM9e/botX4i0pMeAzQTkZkaOXKkUCgUwsHBQTsNGjRICCGNvh4SEqJT/oMPPhA9evTQWXbt2jXtKPP37t0TNjY2Yu3atdrn79y5I+zs7MSrr76qXQZAbNiwQWc9KpVKLF26VAghxM8//ywaNGgg1Gq19vm8vDxhZ2cn/v33X23sgYGBorCwUFtm8ODBYujQoUIIIS5duiQAiG3btpW671FRUQKAuHv3rhBCiNGjR4tx48bplNmzZ4+Qy+UiJydHrF+/Xjg7O4uMjIxS1/egDRs2CIVCobMPQkjvq7W1tc577uDgIJRKpVCpVKWua/LkySIwMFAkJyfrLH/ttddEWFhYueIhIsOwMm0aR0RVzZNPPolFixZpHzs4OGjnW7ZsqVP21KlTiIqKKrVW58qVK8jJyUF+fj7atm2rXe7m5oYGDRpUKKZTp04hJiYGTk5OOstzc3Nx5coV7ePg4GAoFArtY19fX5w5cwYAcPLkSSgUCnTp0qXc2zx9+jRWrVqlXSaEgFqtRmxsLJ566ikEBgaidu3a6NWrF3r16oX+/fvD3t6+1PXl5ORAqVSW2gZr+PDhePvtt3WW/f7776Xe3ffDDz/gp59+wv79++Hp6anznJ2dHbKzs8u1f0RkGEykiEiHg4MD6tatW+ZzxWVmZqJv37745JNPSpT19fUt991+MpkMQgidZcXbNmVmZqJly5Y6SY1G8WTC2tq6xHrVajUAKcmoiMzMTIwfP17nDjuNgIAA2NjY4Pjx49i5cye2bt2K9957D7NmzcKRI0dKvdvOw8MD2dnZyM/Ph42Njc5zKpWqxHvu5eVVYh1RUVGYNGkSVq9ejWbNmpV4PjU1tURyRUSVi4kUEemtRYsWWL9+PWrVqgUrq5JfJ3Xq1IG1tTUOHTqEgIAAAMDdu3dx+fJlnZohT09P3Lp1S/s4Ojpap2alRYsW+PXXX+Hl5QVnZ2e9Ym3atCnUajV27dqF7t27l2vfzp8/X2ZSCQBWVlbo3r07unfvjpkzZ8LFxQU7duzAgAEDSpRt3rw5AOD8+fPa+YqIiYnBoEGD8H//93+lrh+QGv6HhYVVeN1EpD82NicivUVGRiI1NRXDhg3DkSNHcOXKFfz7778YNWoUioqK4OjoiNGjR+ONN97Ajh07cPbsWUREREAu1/3q6dq1KxYsWIATJ07g6NGjePnll3Vql4YPHw4PDw/069cPe/bsQWxsLHbu3InJkyeXuxPKWrVqYeTIkXjppZewceNG7TrWrl1bavm33noL+/fvx8SJE3Hy5ElER0dj06ZN2sbmf/31F7755hucPHkS8fHxWLFiBdRqdZmXLT09PdGiRQvs3bu3XPEWl5OTg759+yIkJATjxo1DYmKidtLIzs7GsWPH0KNHjwqvn4j0x0SKiPTm5+eHffv2oaioCD169EDTpk0xZcoUuLi4aJOlefPmoVOnTujbty+6d++Ojh07lmhr9fnnn8Pf3x+dOnXCCy+8gGnTpum0NbK3t8fu3bsREBCAAQMGoFGjRhg9ejRyc3MrVEO1aNEiDBo0CBMmTEDDhg0xduxYne4MimvWrBl27dqFy5cvo1OnTggJCcF7770HPz8/AFL3DL///ju6du2KRo0a4bvvvsPq1asRHBxc5vbHjBlT6uXJR0lKSsLFixexfft2+Pn5wdfXVztpbNq0CQEBASXu5COiyiUTDzZMICKqZGFhYWjevDm++uorU4diVDk5OWjQoAF+/fVXhIaGGnTd7dq1w+TJk/HCCy8YdL1E9HCskSIiMhI7OzusWLFCp8NSQ7h9+zYGDBiAYcOGGXS9RPRobGxORGREldEY3MPDA2+++abB10tEj8ZLe0RERER64qU9IiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj39P8kMfez2u3hPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + " plt.axvline(v_cutoffs[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cutoffs[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note:\n", + "\n", + "Currently, lag-energy spectrum isn't plotted and hence I am unable to verify results from Uttley et al. However, as soon as it is implemented in library project, I will test it here as well." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same position and varying intensity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we use delta impulse responses whose position remains same but intensity varies. \n", + "\n", + "Again, first we define energies and then create impulse responses, and subsequently using convolution, obtain the output light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = np.zeros(int(10/lc.dt))\n", + "responses = [np.append(h_zeros, i+1) for i in range(0,len(energies))]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "outputs = [signal.fftconvolve(s, h)[delay:-delay] for h in responses]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mod = lc.time[delay:]\n", + "lc_input = Lightcurve(t_mod, s_mod)\n", + "lc_output = [Lightcurve(t_mod, output) for output in outputs]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc2, lc_input).rebin(0.0075) for lc2 in lc_output]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.power)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "v_cutoff = 1.0/(2.0*10)\n", + "h_cutoff = lags[0][int((v_cutoff-0.0075)*1/0.0075)]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1i0lEQVR4nO3deVhU1RsH8O/MwLAzgICAAiIoKuIGau6k5JKZqbknYqaWWppZav1yadPUzFJzyRTL3cyszH3BNRMVd9FBFBcQEQFZB2bO7w9kcgQURmAc5/t5nnmYuffce98z987My7nnnisRQggQERERUZlJDR0AERERkbFiIkVERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVEWiEhIQgJCTF0GGQg+/btg0Qiwb59+wwdCpHRYCJFjxUREQGJRFLi459//jF0iBXq4bqamZnByckJQUFBGDNmDM6fP2/o8IzS4cOHMXXqVKSmppaqfHh4eInH37Zt2yo2WKo0Go0GP//8M5o3bw4nJyfY2dmhdu3aCAsLeya+Z8p63JLpMDN0AGQcPvvsM/j4+BSZ7ufnZ4BoKtdLL72EsLAwCCGQlpaGU6dOYcWKFfjhhx/w9ddfY9y4cYYO0agcPnwY06ZNQ3h4OBwcHEq1jIWFBZYuXVpkesOGDcs5OjKU9957DwsWLED37t0xcOBAmJmZISYmBlu3bkXNmjXxwgsvGDQ+fY5bMg1MpKhUunTpguDgYEOHgczMTNjY2FTqNmvXro033nhDZ9qMGTPQrVs3fPDBB6hTpw5efvnlSo3J1JiZmRXZB49jiOOE9Hf79m388MMPGDZsGJYsWaIzb+7cubhz546BItOPRqOBSqWCpaWloUOhSsBTe1Qurl69ColEgtmzZ2PJkiXw9fWFhYUFmjZtimPHjhUpf/HiRbz++utwcnKCpaUlgoOD8ccff+iUKTytGBkZiZEjR8LV1RXVq1fXzl+wYAFq1qwJKysrNGvWDAcOHNDp45ORkQEbGxuMGTOmyPZv3LgBmUyG6dOn61XfKlWqYO3atTAzM8OXX36pMy83NxdTpkyBn58fLCws4OnpiY8++gi5ubk65SQSCUaPHo1Vq1bB398flpaWCAoKwv79+4ts7+bNm3jzzTdRtWpVWFhYICAgAMuWLdMpU9i/Zf369fjyyy9RvXp1WFpaokOHDlAqlUXWWbifHn7/ilPW+vz++++oX7++Ns6HT79NnToVH374IQDAx8dHe4ru6tWrJb/ZTzB16lRIJBKcP38eAwYMgKOjI1q3bq2dv3LlSgQFBcHKygpOTk7o168frl+/Xqr349E+Y4XH5KPxltS36OjRo+jcuTMUCgWsra3Rrl07HDp0qNj4lUqltrVDoVBgyJAhyMrKKhLnypUr0axZM1hbW8PR0RFt27bFjh07AACDBw+Gs7Mz8vLyiizXsWNH+Pv7P+ntLOLAgQPo3bs3vLy8tPv//fffR3Z2dpGyGzZsQL169WBpaYn69etj06ZNCA8PR40aNR67jbi4OAgh0KpVqyLzJBIJXF1dta8L98H+/fsxYsQIVKlSBfb29ggLC8O9e/eKLL9161a0adMGNjY2sLOzQ9euXXHu3Lki5S5evIg+ffrAxcUFVlZW8Pf3xyeffALgycftw5/lgIAAWFhYYNu2bSUeF4XflxEREdpp4eHhsLW1RXx8PF555RXY2tqiWrVqWLBgAQDgzJkzaN++PWxsbODt7Y3Vq1c/9j2lysMWKSqVtLQ0JCcn60yTSCSoUqWKzrTVq1fj/v37GDFiBCQSCWbOnImePXviypUrMDc3BwCcO3cOrVq1QrVq1TBx4kTY2Nhg/fr1eO2117Bx40b06NFDZ50jR46Ei4sLJk+ejMzMTADAwoULMXr0aLRp0wbvv/8+rl69itdeew2Ojo7aZMvW1hY9evTAunXrMGfOHMhkMu0616xZAyEEBg4cqPd74uXlhXbt2mHv3r1IT0+Hvb09NBoNXn31VRw8eBDDhw9H3bp1cebMGXz77be4dOkSfv/9d511REZGYt26dXjvvfdgYWGBH374AZ07d8a///6L+vXrAyj4b/2FF17Qflm7uLhg69atGDp0KNLT0zF27Fiddc6YMQNSqRTjx49HWloaZs6ciYEDB+Lo0aPaMj/99BNGjBiBli1bYuzYsbhy5QpeffVVODk5wdPTU1uurPU5ePAgfvvtN4wcORJ2dnb4/vvv0atXL8THx6NKlSro2bMnLl26hDVr1uDbb7+Fs7MzAMDFxeWJ7/ejx5+5uTkUCoX2de/evVGrVi189dVXEEIAAL788kt8+umn6NOnD9566y3cuXMH8+bNQ9u2bXHy5EntKZrSvh9lsWfPHnTp0gVBQUGYMmUKpFIpli9fjvbt2+PAgQNo1qyZTvk+ffrAx8cH06dPx4kTJ7B06VK4urri66+/1paZNm0apk6dipYtW+Kzzz6DXC7H0aNHsWfPHnTs2BGDBg3Czz//jO3bt+OVV17RLpeYmIg9e/ZgypQpZa7Hhg0bkJWVhXfeeQdVqlTBv//+i3nz5uHGjRvYsGGDttyWLVvQt29fBAYGYvr06bh37x6GDh2KatWqPXEb3t7e2m317t0b1tbWT1xm9OjRcHBwwNSpUxETE4OFCxfi2rVr2uQFAH755RcMHjwYnTp1wtdff42srCwsXLgQrVu3xsmTJ7UJ3unTp9GmTRuYm5tj+PDhqFGjBmJjY/Hnn3/iyy+/LNVxu2fPHqxfvx6jR4+Gs7MzatSoUeb+VGq1Gl26dEHbtm0xc+ZMrFq1CqNHj4aNjQ0++eQTDBw4ED179sSiRYsQFhaGFi1aFNvlgiqZIHqM5cuXCwDFPiwsLLTl4uLiBABRpUoVkZKSop2+efNmAUD8+eef2mkdOnQQgYGBIicnRztNo9GIli1bilq1ahXZduvWrUV+fr52em5urqhSpYpo2rSpyMvL006PiIgQAES7du2007Zv3y4AiK1bt+rUq0GDBjrlSgJAjBo1qsT5Y8aMEQDEqVOnhBBC/PLLL0IqlYoDBw7olFu0aJEAIA4dOqSzbgAiKipKO+3atWvC0tJS9OjRQztt6NChwt3dXSQnJ+uss1+/fkKhUIisrCwhhBB79+4VAETdunVFbm6uttx3330nAIgzZ84IIYRQqVTC1dVVNGrUSKfckiVLirx/Za2PXC4XSqVSO+3UqVMCgJg3b5522qxZswQAERcXV8K7qmvw4MHFHn+FcU6ZMkUAEP3799dZ7urVq0Imk4kvv/xSZ/qZM2eEmZmZdnpZ3o/CY/LR2Avf+7179wohCo7nWrVqiU6dOgmNRqMtl5WVJXx8fMRLL72knVYY/5tvvqmzzh49eogqVapoX1++fFlIpVLRo0cPoVardcoWbkOtVovq1auLvn376syfM2eOkEgk4sqVK+JxHq1HYcyPmj59upBIJOLatWvaaYGBgaJ69eri/v372mn79u0TAIS3t/djtyuEEGFhYQKAcHR0FD169BCzZ88WFy5cKFKucB8EBQUJlUqlnT5z5kwBQGzevFkIIcT9+/eFg4ODGDZsmM7yiYmJQqFQ6Exv27atsLOz06mPEEJn3z3uuAUgpFKpOHfunM704t5PIf77vly+fLl2WuFx/tVXX2mn3bt3T1hZWQmJRCLWrl2rnX7x4kUBQEyZMqVILFT5eGqPSmXBggXYuXOnzmPr1q1FyvXt2xeOjo7a123atAEAXLlyBQCQkpKCPXv2oE+fPrh//z6Sk5ORnJyMu3fvolOnTrh8+TJu3ryps85hw4bptCZFRUXh7t27GDZsGMzM/mtUHThwoM62ASA0NBQeHh5YtWqVdtrZs2dx+vTpMvW5KYmtrS0A4P79+wAK/qOuW7cu6tSpo61bcnIy2rdvDwDYu3evzvItWrRAUFCQ9rWXlxe6d++O7du3Q61WQwiBjRs3olu3bhBC6KyzU6dOSEtLw4kTJ3TWOWTIEMjlcu3rR/dBVFQUkpKS8Pbbb+uUCw8P12nh0ac+oaGh8PX11b5u0KAB7O3ttdvWl6WlZZHj75tvvtEp8/bbb+u8/u2336DRaNCnTx+d2N3c3FCrVi1t7GV5P0orOjoaly9fxoABA3D37l3ttjMzM9GhQwfs378fGo3msfG3adMGd+/eRXp6OgDg999/h0ajweTJkyGV6n51F7bASKVSDBw4EH/88Yf2mASAVatWoWXLlnq1XlhZWWmfZ2ZmIjk5GS1btoQQAidPngQA3Lp1C2fOnEFYWJj2MwEA7dq1Q2BgYKm2s3z5csyfPx8+Pj7YtGkTxo8fj7p166JDhw5FvhMAYPjw4dpWbgB45513YGZmhr///hsAsHPnTqSmpqJ///46+18mk6F58+ba/X/nzh3s378fb775Jry8vHS2Ufi+lka7du1Qr169UpcvyVtvvaV97uDgAH9/f9jY2KBPnz7a6f7+/nBwcHjqzxWVD57ao1Jp1qxZqTqbP/pFVJjYFPZdUCqVEELg008/xaefflrsOpKSknROBzz65X/t2jUARa8YNDMzK9IXo/CHZeHChcjKyoK1tTVWrVoFS0tL9O7d+4n1eZKMjAwAgJ2dHQDg8uXLuHDhQomnqpKSknRe16pVq0iZ2rVrIysrC3fu3IFUKkVqaiqWLFlSpBNuSet80j4ofP8e3ba5uTlq1qypM62s9Xl024XbL67vSlnIZDKEhoY+tsyjx8nly5chhCj2PQag/REuy/tRWpcvXwZQ0GepJGlpaTqJ/+P2m729PWJjYyGVSp/4Yx0WFoavv/4amzZtQlhYGGJiYnD8+HEsWrRIWyYxMVFnGYVCoZMwPSw+Ph6TJ0/GH3/8UWQ/pqWlASj5M1k47dFkvzhSqRSjRo3CqFGjcPfuXRw6dAiLFi3C1q1b0a9fvyJ9+B7dX7a2tnB3d9f2WyrcB4VJ/6Ps7e0B/PcPRuGpdH2Vxyk2S0vLIp81hUKB6tWrF0nqFArFU3+uqHwwkaJy9XDL0cPEgz4rhf+Fjx8/Hp06dSq27KNfxiV9wZdWWFgYZs2ahd9//x39+/fH6tWr8corr+jd2vCws2fPQiaTab9ENRoNAgMDMWfOnGLLl7W/TeH79cYbb5T4o9ygQQOd10/aB2XdflnqU57bLqtHjxONRgOJRIKtW7cWG9fDLSelVVILhVqtLrJtAJg1axYaNWpU7DKPbr+83rt69eohKCgIK1euRFhYGFauXAm5XK7TouHu7q6zzPLlyxEeHl5kXWq1Gi+99BJSUlIwYcIE1KlTBzY2Nrh58ybCw8OLtKqVlypVquDVV1/Fq6++ipCQEERGRuLatWvavlSlURjbL7/8Ajc3tyLzH27NLg/FfU+V9ngpVNIxYMjPFT0ZEymqVIX/4Zubmz+xhaEkhV+mSqUSL774onZ6fn4+rl69WiSxqF+/Pho3boxVq1ahevXqiI+Px7x58/SswX/i4+MRGRmJFi1aaFukfH19cerUKXTo0KFUpwUK/2t+2KVLl2Btba39z9TOzg5qtVrv9+tRhe/f5cuXdf5bz8vLQ1xcnM7YTGWtT2mU13qexNfXF0II+Pj4oHbt2iWWK8v7UdhK9Ggn4sIWmYe3DRS0epTXfvP19YVGo8H58+dLTM4KhYWFYdy4cUhISMDq1avRtWtXndavnTt36pQPCAgodj1nzpzBpUuXsGLFCoSFhZW4/MOfyUcVN60sgoODERkZiYSEBJ1E6vLlyzqf/4yMDCQkJGiHIincB66uro/dB4XfSWfPnn1sHPoct6U9Xsi4sY8UVSpXV1eEhIRg8eLFSEhIKDK/NOPFBAcHo0qVKvjxxx+Rn5+vnb5q1aoSm7oHDRqEHTt2YO7cuahSpQq6dOmifyVQ0Nerf//+UKvV2kukgYIrr27evIkff/yxyDLZ2dnaqw4LHTlyROe0x/Xr17F582Z07NgRMpkMMpkMvXr1wsaNG4v9otdnfJ3g4GC4uLhg0aJFUKlU2ukRERFFvvDLWp/SKBzfqaJHiO7ZsydkMhmmTZtW5D93IQTu3r0LoGzvR+GP88NDVKjV6iKnXYOCguDr64vZs2drT/8+TJ/99tprr0EqleKzzz4r0hL0aP369+8PiUSCMWPG4MqVK0X6A4aGhuo8Hm2hKlTYEvLw+oUQ+O6773TKeXh4oH79+vj555916hsZGYkzZ848sW6JiYnF3ilApVJh9+7dkEqlRVqqlyxZojPMw8KFC5Gfn6/9bHfq1An29vb46quvih0OonAfuLi4oG3btli2bBni4+N1yjxcb32OW29vb8hksiJDmvzwww+lXgc9+9giRaWydetWXLx4scj0li1blrkfyYIFC9C6dWsEBgZi2LBhqFmzJm7fvo0jR47gxo0bOHXq1GOXl8vlmDp1Kt599120b98effr0wdWrVxEREQFfX99i/3McMGAAPvroI2zatAnvvPOOTifVJ7l06RJWrlwJIQTS09Nx6tQpbNiwARkZGZgzZw46d+6sLTto0CCsX78eb7/9Nvbu3YtWrVpBrVbj4sWLWL9+PbZv367T16x+/fro1KmTzvAHQMFl7oVmzJiBvXv3onnz5hg2bBjq1auHlJQUnDhxArt27UJKSkqp6wIUtAZ+8cUXGDFiBNq3b4++ffsiLi4Oy5cvL7Ivy1qf0ijsXP/JJ5+gX79+MDc3R7du3cp9AE1fX1988cUXmDRpknZ4DDs7O8TFxWHTpk0YPnw4xo8fX6b3IyAgAC+88AImTZqElJQUODk5Ye3atToJPVDQ32fp0qXo0qULAgICMGTIEFSrVg03b97E3r17YW9vjz///LNM9fHz88Mnn3yCzz//HG3atEHPnj1hYWGBY8eOwcPDQ2dMNBcXF3Tu3BkbNmyAg4MDunbtqtd7WKdOHfj6+mL8+PG4efMm7O3tsXHjxmL/Yfnqq6/QvXt3tGrVCkOGDMG9e/cwf/581K9fv9hk8mE3btxAs2bN0L59e3To0AFubm5ISkrCmjVrcOrUKYwdO1Y75EAhlUqFDh06oE+fPoiJicEPP/yA1q1b49VXXwVQ0Bq4cOFCDBo0CE2aNEG/fv3g4uKC+Ph4bNmyBa1atcL8+fMBAN9//z1at26NJk2aYPjw4fDx8cHVq1exZcsWREdHA9DvuFUoFOjduzfmzZsHiUQCX19f/PXXX0X6FpKRq+zLBMm4PG74Azx0+W7h5byzZs0qsg4Uc5lubGysCAsLE25ubsLc3FxUq1ZNvPLKK+LXX38tsu1jx44VG9v3338vvL29hYWFhWjWrJk4dOiQCAoKEp07dy62/MsvvywAiMOHD5e6/g/XVSqVCgcHB9G4cWMxZsyYIpc6F1KpVOLrr78WAQEBwsLCQjg6OoqgoCAxbdo0kZaWprPuUaNGiZUrV4patWoJCwsL0bhx4yKXSgshxO3bt8WoUaOEp6enMDc3F25ubqJDhw5iyZIl2jKFl1pv2LBBZ9niLrUWQogffvhB+Pj4CAsLCxEcHCz2798v2rVrV2RYiLLW51He3t5i8ODBOtM+//xzUa1aNSGVSp84FMLgwYOFjY1NifMLhw+4c+dOsfM3btwoWrduLWxsbISNjY2oU6eOGDVqlIiJidHr/YiNjRWhoaHCwsJCVK1aVXz88cdi586dxV7mfvLkSdGzZ09RpUoVYWFhIby9vUWfPn3E7t27nxh/SUMtLFu2TDRu3Fi7L9q1ayd27txZpN7r168XAMTw4cNLfO8eVdzl+ufPnxehoaHC1tZWODs7i2HDhmmHtXj0mFq7dq2oU6eOsLCwEPXr1xd//PGH6NWrl6hTp85jt5ueni6+++470alTJ1G9enVhbm4u7OzsRIsWLcSPP/6oMwxB4fsSGRkphg8fLhwdHYWtra0YOHCguHv3brF16tSpk1AoFMLS0lL4+vqK8PBwnWFHhBDi7NmzokePHsLBwUFYWloKf39/8emnn+qUKem4LenYF0KIO3fuiF69eglra2vh6OgoRowYIc6ePVvs8AfFHeft2rUTAQEBRaZ7e3uLrl27lvieUuWRCMHeavR80Gg0cHFxQc+ePYs9FdWjRw+cOXPmqftslBeJRIJRo0Zp/yumZ0/hqOaPjkxtDDZv3ozXXnsN+/fv1w6BYQiNGjWCi4tLkX5V+oqIiMCQIUNw7NixZ+K2VUTsI0VGKScnp0i/kJ9//hkpKSk6t/QolJCQgC1btmDQoEGVFCGRYf3444+oWbOmzu1yKlJeXl6RU5z79u3DqVOniv1MEj0v2EeKjNI///yD999/H71790aVKlVw4sQJ/PTTT6hfv77O+FBxcXE4dOgQli5dCnNzc4wYMcKAURNVvLVr1+L06dPYsmULvvvuu0q7SvLmzZsIDQ3FG2+8AQ8PD1y8eBGLFi2Cm5tbkcFGiZ4nTKTIKNWoUQOenp74/vvvtZ1+w8LCMGPGDJ3RqSMjIzFkyBB4eXlhxYoVxY4nQ/Q86d+/P2xtbTF06FCMHDmy0rbr6OiIoKAgLF26FHfu3IGNjQ26du2KGTNmFLknJ9HzhH2kiIiIiPTEPlJEREREemIiRURERKQn9pF6hEajwa1bt2BnZ1dpnTSJiIjo6QghcP/+fXh4eEAqrbx2IiZSj7h161aZbyxLREREz4br16+jevXqlbY9JlKPKLz57PXr12Fvb2/gaKgiZaoy4fGNBwDg1ge3YCMv31uUEBFR5UlPT4enp6f2d7yyMJF6ROHpPHt7eyZSzzmZSgZYFjy3t7dnIkVE9Byo7G457GxOREREpCcmUkRERER64qk9MllmUjMMbjhY+5yIiKis+OtBJsvCzAIRr0UYOgwiMjJqtRp5eXmGDsPkmJubQyaTGTqMIphIERERlYIQAomJiUhNTTV0KCbLwcEBbm5uz9Q4j0ykyGQJIZCVlwUAsDa3fqY+mET07ClMolxdXWFtze+MyiSEQFZWFpKSkgAA7u7uBo7oP0ykyGRl5WXBdrotACBjUgaHPyCiEqnVam0SVaVKFUOHY5KsrKwAAElJSXB1dX1mTvPxqj0iIqInKOwTZW1tbeBITFvh+/8s9VFjIkVERFRKPJ1nWM/i+89EioiIiEhPTKSIiIioTGrUqIG5c+caOoxnAhMpIiIiEzFjxgxIJBKMHTu2xDIRERGQSCQ6D0tLy3KLoVu3bujcuXOx8w4cOACJRILTp0+X2/YqGq/aIyIiMgHHjh3D4sWL0aBBgyeWtbe3R0xMjPZ1efZNGjp0KHr16oUbN26gevXqOvOWL1+O4ODgUsX4rGCLFJksmVSG1+u9jtfrvQ6Z9Nm4jJaIqCJkZGRg4MCB+PHHH+Ho6PjE8hKJBG5ubtpH1apVH1t+6dKlcHBwwO7duwEAZ8+eRZcuXWBra4uqVati0KBBSE5OBgC88sorcHFxQURERJEYN2zYgKFDh+pXSQNhIkUmy9LMEht6b8CG3htgaVZ+zdZEZCKEADIzK/8hRJlDHTVqFLp27YrQ0NBSlc/IyIC3tzc8PT3RvXt3nDt3rsSyM2fOxMSJE7Fjxw506NABqampaN++PRo3boyoqChs27YNt2/fRp8+fQAAZmZmCAsLQ0REBMRDddmwYQPUajX69+9f5voZEk/tERER6SMrC7C1rfztZmQANqUfQHjt2rU4ceIEjh07Vqry/v7+WLZsGRo0aIC0tDTMnj0bLVu2xLlz54qcipswYQJ++eUXREZGIiAgAAAwf/58NG7cGF999ZW23LJly+Dp6YlLly6hdu3aePPNNzFr1ixERkYiJCQEQMFpvV69ekGhUJS6bs8CJlJERETPqevXr2PMmDHYuXNnqTuMt2jRAi1atNC+btmyJerWrYvFixfj888/107/5ptvkJmZiaioKNSsWVM7/dSpU9i7dy9si0kyY2NjUbt2bdSpUwctW7bEsmXLEBISAqVSiQMHDuCzzz57itoaBhMpMlmZqkzeIoaI9GdtXdA6ZIjtltLx48eRlJSEJk2aaKep1Wrs378f8+fPR25u7hNvtWJubo7GjRtDqVTqTG/Tpg22bNmC9evXY+LEidrpGRkZ6NatG77++usi63r4HnlDhw7Fu+++iwULFmD58uXw9fVFu3btSl23ZwUTKSIiIn1IJGU6xWYIHTp0wJkzZ3SmDRkyBHXq1MGECRNKdb86tVqNM2fO4OWXX9aZ3qxZM4wePRqdO3eGmZkZxo8fDwBo0qQJNm7ciBo1asDMrOQ0o0+fPhgzZgxWr16Nn3/+Ge+8884zOXL5k7CzORER0XPKzs4O9evX13nY2NigSpUqqF+/PgAgLCwMkyZN0i7z2WefYceOHbhy5QpOnDiBN954A9euXcNbb71VZP0tW7bE33//jWnTpmkH6Bw1ahRSUlLQv39/HDt2DLGxsdi+fTuGDBkCtVqtXdbW1hZ9+/bFpEmTkJCQgPDw8Ap9LyoKEykiIiITFh8fj4SEBO3re/fuYdiwYahbty5efvllpKen4/Dhw6hXr16xy7du3RpbtmzB//73P8ybNw8eHh44dOgQ1Go1OnbsiMDAQIwdOxYODg6QSnXTjqFDh+LevXvo1KkTPDw8KrSeFUUihB7XUT7H0tPToVAokJaWBnt7e0OHQxWIfaSIqLRycnIQFxcHHx+fch3lm8rmcfvBUL/fbJEiIiIi0hMTKSIiIiI98ao9MlkyqQwv13pZ+5yIiKismEiRybI0s8SWAVsMHQYRERkxntojIiIi0hMTKSIiIiI9MZEik5WpyoTNVzaw+coGmapMQ4dDRERGiH2kyKRl5WUZOgQiIjJiRtMiNX36dDRt2hR2dnZwdXXFa6+9hpiYGJ0yOTk5GDVqFKpUqQJbW1v06tULt2/fNlDERERE9LwzmkQqMjISo0aNwj///IOdO3ciLy8PHTt2RGbmf6dk3n//ffz555/YsGEDIiMjcevWLfTs2dOAURMRET1/QkJCMHbsWEOH8UwwmkRq27ZtCA8PR0BAABo2bIiIiAjEx8fj+PHjAIC0tDT89NNPmDNnDtq3b4+goCAsX74chw8fxj///GPg6ImIiCqfWq3Gp59+Ch8fH1hZWcHX1xeff/45Hnd3uH379kEikRR5JCYmlktM7777LurWrVvsvPj4eMhkMvzxxx/lsq3KYDSJ1KPS0tIAAE5OTgCA48ePIy8vD6GhodoyderUgZeXF44cOVLienJzc5Genq7zICIieh58/fXXWLhwIebPn48LFy7g66+/xsyZMzFv3rwnLhsTE4OEhATtw9XVtVxiGjp0KC5evIjDhw8XmRcREQFXV1e8/PLL5bKtymCUiZRGo8HYsWPRqlUr1K9fHwCQmJgIuVwOBwcHnbJVq1Z9bBY9ffp0KBQK7cPT07MiQyciIqo0hw8fRvfu3dG1a1fUqFEDr7/+Ojp27Ih///33icu6urrCzc1N+5BKS04ZtmzZAoVCgVWrVgEArl+/jj59+sDBwQFOTk7o3r07rl69CgBo1KgRmjRpgmXLlumsQwiBiIgIDB48GGZmxnMtnFEmUqNGjcLZs2exdu3ap17XpEmTkJaWpn1cv369HCIkYyCVSNHOux3aebeDVGKUHwUiMiAhBDJVmZX+eNxpuUe1bNkSu3fvxqVLlwAAp06dwsGDB9GlS5cnLtuoUSO4u7vjpZdewqFDh0ost3r1avTv3x+rVq3CwIEDkZeXh06dOsHOzg4HDhzAoUOHYGtri86dO0OlUgEoaJVav369Tj/nffv2IS4uDm+++Wap6/csMJ6U74HRo0fjr7/+wv79+1G9enXtdDc3N6hUKqSmpuq0St2+fRtubm4lrs/CwgIWFhYVGTI9o6zMrbAvfJ+hwyAiI5WVlwXb6baVvt2MSRmwkduUquzEiRORnp6OOnXqQCaTQa1W48svv8TAgQNLXMbd3R2LFi1CcHAwcnNzsXTpUoSEhODo0aNo0qSJTtkFCxbgk08+wZ9//ol27doBANatWweNRoOlS5dCIpEAAJYvXw4HBwfs27cPHTt2xIABA/DBBx9gw4YNCA8P15Zp3bo1ateurce7YjhGk0gJIfDuu+9i06ZN2LdvH3x8fHTmBwUFwdzcHLt370avXr0AFJzfjY+PR4sWLQwRMhERkUGtX78eq1atwurVqxEQEIDo6GiMHTsWHh4eGDx4cLHL+Pv7w9/fX/u6ZcuWiI2NxbfffotffvlFO/3XX39FUlISDh06hKZNm2qnnzp1CkqlEnZ2djrrzcnJQWxsLADAwcEBPXv2xLJlyxAeHo709HRs3LgRCxYsKM/qVwqjSaRGjRqF1atXY/PmzbCzs9P2e1IoFLCysoJCocDQoUMxbtw4ODk5wd7eHu+++y5atGiBF154wcDRExHR88ba3BoZkzIMst3S+vDDDzFx4kT069cPABAYGIhr165h+vTpJSZSxWnWrBkOHjyoM61x48Y4ceIEli1bhuDgYG3rU0ZGBoKCgrT9pR7m4uKifT506FB06NABSqUSe/fuhUwmQ+/evUsd07PCaBKphQsXAigYu+Jhy5cv1zYLfvvtt5BKpejVqxdyc3PRqVMn/PDDD5UcKRmLTFUmanxXAwBwdczVUjeVExEBgEQieea/N7Kysop0EpfJZNBoNGVaT3R0NNzd3XWm+fr64ptvvkFISAhkMhnmz58PAGjSpAnWrVsHV1dX2Nvbl7jOF198ET4+Pli+fDn27t2Lfv36wcbm2X4/i2M0iVRpOtdZWlpiwYIFRtk0SIaRnJVs6BCIiCpMt27d8OWXX8LLywsBAQE4efIk5syZo9Ohe9KkSbh58yZ+/vlnAMDcuXPh4+ODgIAA5OTkYOnSpdizZw927NhRZP21a9fG3r17ERISAjMzM8ydOxcDBw7ErFmz0L17d3z22WeoXr06rl27ht9++w0fffSRtn+zRCLBm2++iTlz5uDevXv49ttvK+dNKWdGk0gRERFR2cybNw+ffvopRo4ciaSkJHh4eGDEiBGYPHmytkxCQgLi4+O1r1UqFT744APcvHkT1tbWaNCgAXbt2oUXX3yx2G34+/tjz5492papb775Bvv378eECRPQs2dP3L9/H9WqVUOHDh2KtFCFh4djypQpCAgIQPPmzSvmTahgElGW6yhNQHp6OhQKBdLS0h7bJEnGL1OVqb3ipixXwRCR6cnJyUFcXBx8fHxgaWlp6HBM1uP2g6F+vzl4DhEREZGemEgRERER6YmJFBEREZGe2NmcTJZUIkWwR7D2ORERUVkxkSKTZWVuhWPDjhk6DCIyIrw+y7Cexfef/4YTERE9gbm5OYCCAS7JcArf/8L98SxgixQREdETyGQyODg4ICkpCQBgbW2tvSUKVTwhBLKyspCUlAQHBwfIZDJDh6TFRIpMVlZeFuotqAcAOD/qfJnuX0VEpsfNzQ0AtMkUVT4HBwftfnhWMJEikyWEwLW0a9rnRESPI5FI4O7uDldXV+Tl5Rk6HJNjbm7+TLVEFWIiRUREVAYymeyZ/EEnw2BncyIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hM7m5PJkkgkqOdST/uciIiorJhIkcmyNrfGuZHnDB0GEREZMZ7aIyIiItITEykiIiIiPTGRIpOVlZeFgB8CEPBDALLyeCNSIiIqO/aRIpMlhMD5O+e1z4mIiMqKLVJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREeuJVe2SyJBIJvBXe2udERERlxUSKTJa1uTWujr1q6DCIiMiI8dQeERERkZ6YSBERERHpiYkUmazsvGw0/bEpmv7YFNl52YYOh4iIjBD7SJHJ0ggNom5FaZ8TERGVFVukiIiIiPTERIqIiIhIT0ykiIiIiPTERIqIiIhIT0ykiIiIiPTEq/b0pM5TQWYuN3QY9JScrZ0NHQIRERkxtkjpYeXCd9B4ggKpt68ZOhR6CjZyG9z58A7ufHgHNnIbQ4dDRERGiIlUGWWnp2BK7FKcUeRg+NetITQcf4iIiMhUMZEqIyt7J6zttBRmamCD4gZ+/D7M0CERERGRgTCR0kPTlwZjhtUrAIAxyatw9tAmA0dE+sjOy0ZIRAhCIkJ4ixgiItILEyk9vf/RJnRJdUGOOdB3Y39kpSUbOiQqI43QIPJaJCKvRfIWMUREpBcmUnqSyswQMWYv3DKlOK/Ixdgv2xg6JCIiIqpkTKSegmuNAKxsPgMSAfxocxHrfhxj6JCIiIioEjGRekoden2IjzWtAADD475H3On9Bo6IiIiIKgsTqXIw9X+70OqeHdItgH7LX0ZeTpahQyIiIqJKwESqHJjJLbF6+HY45Ejwr0Mm/vfFi4YOiYiIiCoBE6ly4lWvBZb5fwgAmGn+L7av+9LAEVFpWJtbw9rc2tBhEBGRkZIIIYShg3iWpKenQ6FQIC0tDfb29mVefvTEBlhgdQYuWRKcGn4C7r6Nyj9IIiIi0vG0v9/6YotUOZv9v/1okGqJO9YCYfM6QKPON3RIREREVEGYSJUzS1sHrOu/EdYqYJdjCmZOf8XQIREREVEFYSJVAeo0exnz3YYAAP6Xtx1Hti4xcERUnJz8HHRd3RVdV3dFTn6OocMhIiIjxESqgoSPWooB6d5QS4H+u0fiXkKcoUOiR6g1avx9+W/8fflvqDVqQ4dDRERGiIlUBZFIpVg48SB8081wzU6NYbPaQGh4PzciIqLnCROpCmTvUh1ru/wEczWwUXETi+e+YeiQiIiIqBwxkapgwaFh+Nq6OwBg7L01OH3gVwNHREREROWFiVQlGPvRb+ia6opcM6DfpoHIvJdk6JCIiIioHDCRqgQSqRTL398Hj0wpLihUGPtVW0OHREREROWAiVQlcfGqi5UtZkEigKW2MVi75D1Dh0RERERPiYlUJXqxxzj8T7QBAAy/Og9XTu0zbEAmzkZuAzFFQEwRsJHbGDocIiIyQkykKtnkT3ag9T173LcA+kW8AlV2hqFDIiIiIj0ZVSK1f/9+dOvWDR4eHpBIJPj999915gshMHnyZLi7u8PKygqhoaG4fPmyYYItgZncEqtH7IBjjgTHHDLxyRcvGjokIiIi0pOZoQMoi8zMTDRs2BBvvvkmevbsWWT+zJkz8f3332PFihXw8fHBp59+ik6dOuH8+fOwtLQ0QMTF86zbHMvrTsRrcdMxWx4Ft+nd4OboiXx1nu5Dk//f32IeeZp85At1wWuhhlQiRaBLAF5o1A0NW/eC3MrW0FV9puXk52DQpkEAgF96/AJLs2fnGCEiIuMgEUIIQwehD4lEgk2bNuG1114DUNAa5eHhgQ8++ADjx48HAKSlpaFq1aqIiIhAv379SrXe9PR0KBQKpKWlwd7evqLCBwC8N7Eh5lmdrpB1W+YBQRl2eMGmNl6o2Q4vtO6H6v5NK2RbxkBoNLh/9xaSbymRcice/o1DIbVTwHZ6QbKZMSmD/aSIiIxYZf5+P8yoWqQeJy4uDomJiQgNDdVOUygUaN68OY4cOVJiIpWbm4vc3Fzt6/T0dABApioTMpWs1Nu3MLOAmbTg7czX5CM3PxdSiRRW5lbaMpmqTJ1lpkz4G6lftcO1vGSYQQqZRAYzSGEGCcwkMphJZJBLzCCXmMFMIoNUIoVEIoWZ1AxWEnOYSc1gJjWDRiqBmcQM2epsnEy/jGOWyUi1BA453schHAduHAfWzoF7hgTN1G5o5twALeq/jBdC3oCVvRM0QoPsvGwA0EkmsvOyoRFlu62NmdQMFmYWAACNWo27924AABQ2VWAmt4RUZoac/Jwy39tOJpXptBil3EvA3QQlMu/cwt3keNy5ex0JqTdwJ+sOkrNTcDcvDXc1mbgrycYdcxXuWgrkP7Q7G22xwvbPrxbZTuE+sjK3glRScOZbpVYhT51XpnglEgmsza21r7PysiCEgKWZJWTSgkDy1HlQqVVlWi9Q/D4q7vh7mvUW7iO5TA5zmTmAgnsT6nNzZ2tza0gkEgBAbn4u8jX5MJeZQy6TA4DO8VcWxe2jh48/IQSy8rLKvN7i9tGjx9+jn+XS0Oc7ojSK20clHX9lUdI+Ks/viIf3UXHHX1mUtI+KO/7KoqR9xO+IZ+87Qp/PT3l4bhKpxMREAEDVqlV1pletWlU7rzjTp0/HtGnTikz3+MYDKMOZnvWvr0fvgN4AgE0XNqHPr33Qzrsd9oXv05ap8V0NJGcl6y74hLNv87vMx6hmowAA+67uw4srXkQ9l3o4N/KktkzADwE4f+d8QY83h5LXlWArsBkJ2JyXAJzcDrOoMWh03xq1LKthjeVlOMoVuDshBRJpwZdDl1VdEHktsrRvAQDAM8cCzjlSJJupkGShRq550TISAQhJmVYLJ5UMNbMscFemQrI8H/ctSigoAWBdwryHRDtko+o3VYtML9xHZ985iwDXAADAVwe+wrTIosfI4xTso3Pa101/bIrzd85j7+C9CKkRAgBYcnwJRm8dXab1Ols7486Hd7SvC/dRccdfWYkp//3QDto0CL+e/1Xn+DsQfwAvrih7n76k8UlwsXEBAIzbPg4/RP2AKe2mYGrIVADAhTsXUH9h/TKvt7h9NDJ4JBZ0XQAASM5Khuts1zKvt7h99Hq917Gh9wZtmcKWzLLQ+zviCYrbRyUdf2VR3D4q6fgri5L2UXHHX1mUtI+KO/7KoqR9xO+IZ/A7ouw5XLl4bhIpfU2aNAnjxo3Tvk5PT4enp6cBI6ocNnlApjkQ5ZCFKBR0yL+nSoPrx2Z4IdcF1eXOOCdXlvkIuW6Zi+tPSEDLmkQBQIpcjRR50dYF10wJXPPlcNZY4bp1HmItDPMfCRERmabnpo/UlStX4Ovri5MnT6JRo0bacu3atUOjRo3w3XfflWq9hedYb925VaZzrMbWbG8mkSHx0nH8c3g9jlzZj8M5lxFtm4m8UiRO9jlAFZUMzhpLOMMGzmZ2qGLhABdrZ7jae8DDyRvOzl5wrloTVi7ukJmZwwIy5Ktyoc5XISMnHSpVNvLzcpGfp0J+fi7y81VQ5+UiPz8P+fmqgodaBfWD1xp1PixlFqhSpTpc3Hxh5eIBhXN12FjYlrnZvvUEF0Q7ZCPC8z2EX/8ewH99pNhsX+BZbLZ/FE/tFeCpvQI8tfcfU/2OSE9Ph4eLB/tI6cvHxwdubm7YvXu3NpFKT0/H0aNH8c4775R5fTZyG707H5tJzWAmL/rWPm1nZplUVuw6Hv4wloV3QCt4B7RC3wevczPTcfLAevxzagtSsu7CxdYVLgoPODtVh4trDbi4+8G5eu2nvhqw7CdbSsfCzAIWKOmc33/8Jc6IxnXcTLxUZF5x769cJtd+oPVV3D4yl5lrv4D09fAXfKGSjr+yKO4KxpKOv7Iobh9JJdKnXm9x+0gikTz1ekvaR0+7XmP5jihU0j4q7vgri5L2UXlcQVvcekv7HVHW9fI7ooChvyPU8rIl3+XFqBKpjIwMKJVK7eu4uDhER0fDyckJXl5eGDt2LL744gvUqlVLO/yBh4eHttWKHs/Cxh4vdH4LL3R+y9ChVCg/Wy8A13El7Wqp+lMRERGVxKgSqaioKLz44n8d2Qr7Ng0ePBgRERH46KOPkJmZieHDhyM1NRWtW7fGtm3bnqkxpMjw/FzrAHcP4WrubWR8XjCy/NP+x05ERKbJaPtIVRRDjUNBlefgXz+gzfFRqHHfDHGzy9avgYiInk2G+v02qlvEEJUHv3qtAQDxNvnIzUw3cDRERGTMmEiRyalaoz5sVIBGCvRb0wvhv4frdQULEREREykyORKpFH5ZBf3mfr+5CytOrSjzJdFEREQAEykyUbUkVQwdAhERPQeYSJFJ8rN5/kevJyKiisdEikySn4u/oUMgIqLnABMpMkl+3o0NHQIRET0HmEiRSfKr28rQIRAR0XOAiRSZJHffRrDkWJxERPSUmEiRSZLKzOCbVXCT0bV+k3iLGCIi0gsTKTJZtUTBEAjJCUpIJBIDR0NERMaIiRSZLD/ragAA5V2lgSMhIiJjxUSKTJZ3FV8AwCbJRd4ihoiI9MJEikxWDc9AAMA1i2zeIoaIiPTCRIpMlm/t5trn6jyVASMhIiJjxUSKTFY1vyDt85vK4waMhIiIjBUTKTJZMnO59nnspaMGjISIiIwVEykiAFeunzZ0CEREZISYSBEBiL172dAhEBGREWIiRQTgStYtQ4dARERGiIkUmSwrcytE1PwAABAnuWfgaIiIyBgxkSKTJZVI0TrwZQDAFWsVNGqOJUVERGXDRIpMmne9ljBTA9nmQEJstKHDISIiI8NEikyWSq3CpH2fwja/4GOgvHDIwBEREZGxYSJFJitPnYfZR2Yj1UIDAFBeO2ngiIiIyNgwkSJ6QHknxtAhEBGRkWEiRfSAMvO6oUMgIiIjw0SK6AGlSDF0CEREZGSYSBE9oLTOhtBoDB0GEREZESZSRAAkGiBDDiRdO2/oUIiIyIgwkSIC4JkpAwAozx8wcCRERGRMmEiRybIyt8LZd87i7DtnUSvfHgCgvHrCwFEREZExMTN0AESGIpVIEeAaAACoZeGO3bgHZdJFA0dFRETGhC1SRAD8HGoCAJQZ8QaOhIiIjAlbpMhkqdQqfHXgKwBAfY96wNW/oNQkGzgqIiIyJkykyGTlqfMwLXIaAODf9muBq8BlyywIjQYSKRtriYjoyfhrQQTAp15LAECaJZByK9bA0RARkbFgIkUEwMrOCdUzHgyBcG6/gaMhIiJjwUSK6AG/PDsAgDLuuIEjISIiY8FEiugBP/OqAADl7QsGjoSIiIwFEymiB/wcfAAAyvRrBo6EiIiMBRMpogf83OsDAJSaOwaOhIieRKPON3QIRAA4/AGZMEszS/z71r/a535+TYHrgNIi08CREVGhfFUOlNF7cObMLpyJj8KZdCXOSpMRZ5uHTyRtMW1qpKFDJBPHRIpMlkwqQ9NqTbWvfeu3BfYCyVYCqbevwaGqtwGjIzItQqPBzcvHcebEVpyNO4ozKRdxRp2AC7bZyC38pZICcPhvmW9U+/HBnRuwd6lugIiJCjCRInrA1skNbplSJNpoEHv2AIKYSBFViNTb13D22BaciTmAM0lncDb3Os5Y3UeqpfivkN1/T61VQP0sGwSaVUOgSwDq+7bA6EP/w0WFCqt/+Qhvj1td+ZUgeoCJFJkslVqF7/75DgAw5oUxkMvk8FPZItEmHcorxxDU4Q0DR0hkvDTqfFy/eBSXzh/ApWsnEJMcg0u5N3HeLBXXbdX/FbR+8AAg0wC178sRiKoIdKiNwBrNUL9BKHwC20Iq0/25Gn75EMblbsbi679jBO9GQAbERIpMVp46Dx/t+ggAMLLpyIJEyswVB5EOZeJ5A0dHZBxSbsUi5tRuXLpyDJdun0dMxjVcwl1cts5BjvlDBa0ePB6oniFDYL4TAm18EFitCerXC0GdoE6wtHUo1XYHh32DSQs3I9ohG8d2rUCzjkPKs1pEpcZEiughfooagEYJZdpVQ4dC9MzITk+B8vReXLr0Dy7dOo2Y1Fhcyr+NS5aZuGv10Ok4GQDFfy/N1YBvhhy1hRP8rT1R27Uu/Gs2Rf3grnB093mqmJw8fNEnuyZ+sbuCxTunM5Eig2EiRfQQP7d6wK1dUOYnGToUokonNBrcUp7AqagtiI49hFP3LiJakojLdnkQkocK2ukuVz1Dhtp59vC38EBtp1qo7dkIteu2Ro2AVjCTW1ZYvCNeHI9fokZirfwy5iTFQ+HqVWHbIioJEymih/jVbArcApTyDEOHQlSh8nKycDFqK6JP78Spm1GIzryCU5apSH64hemh1iVFDuCfYwN/WVXUtvdBbY9A+NduAb/AENg4ulZ+BQC07DICAbvfxzlFLlb+PB6jxq83SBxk2phIET3Et34b4CCQaKNBRkoibJ3cDB0S0VO7lxCHU0c3IzomEqfunEW0+ibO22ZDVfgLIH/wQEGHb//7FmgkcUNDp3poVKsNGgR3RdUa9Z+5Dt0SqRQj3F/Be1kbsfjWnxjJTudkAEykiB7iUNUbztkSJFsJxJ7dj4Zt+xg6JKIyyUpLxj+7V+DAmb9wPPUCTpklI/7hq+QeOi1nnws0zLJHQ0tvNPJogob12iOg2Suwsneq/MD1NCjsG0yYtxFnFDk4su1HtHx5hKFDIhPDRIroEX65Nki2yoBSeYyJFD3z0pLicXh3BPaf34r998/hmP195MkezHT4r1yN+2ZopHZBQ0VtNPJpgYaNu6BG/dZG34LjUNUbfXP8EGGuxOI9M5lIUaVjIkUmy9LMEnsH79U+L+QndcE/yIAy4ayhQiMqUfL1GBzYvQz7Y3Zif85FRNtnQyNFwbe5Y0GZahlStNN4onnVIDSqE4IGzV99rkfqHxE6ARFHh2G95RXMTYh76isCicpCr0TqxIkTMDc3R2BgIABg8+bNWL58OerVq4epU6dCLpeXa5BEFUEmlSGkRkiR6X723gDioEyNq/SYiB5181IUDuz7GZGxu7E/LxbnFbkFMywfPAD4ppuhrdQHbb3bol3bsOeipaksmnd8Ew22v4vTDjn4+ZcPMOaj3wwdEpkQvRKpESNGYOLEiQgMDMSVK1fQr18/9OjRAxs2bEBWVhbmzp1bzmESVR6/qnWB2/ugzLtt6FDIxAiNBnFn9mP/gZXYf20/9mviEGufXzDT+r9yAWkWaGvuh7a+7dEmJAzVagcbJuBnhEQqxYjq3TEqYx0WJ27Be+x0TpVIr0Tq0qVLaNSoEQBgw4YNaNu2LVavXo1Dhw6hX79+TKTIKOSp87Dk+BIAwPCg4TCXFQzD7OcTBNwGlOb3DRkemYD0OzdwbP8aHD2/E0dTzuCoPAm3rTUFM20L/kg1QON0a7S1qoO2/h3Run04nD39DRf0M2rgoJn48Lt1uKBQ4eCWH9Cm22hDh0QmQq9ESggBjabgw75r1y688sorAABPT08kJyeXX3REFUilVmH01oIv2/BG4f8lUgFtgX+AG7ZqZKenGNUVTPTsylfl4MzhTTh64k/8mxCFo+p4XLDP/W+gS4eCP+ZqoGm6HdraBaBtvS5oFfom7F2qGypso6Fw9cIAlT+WymOweN83TKSo0uiVSAUHB+OLL75AaGgoIiMjsXDhQgBAXFwcqlatWq4BElU2Jw9fOORIkGopcOXsAQS07G7okMjICI0G1y8exdEjG3D0yn4czbyM47bpyC6895ztf2Vr3DdDc407mrs2QfMGXdC4dW8m73oa0eljLD00GL9aX8V3Ny6jSvVahg6JTIBeidTcuXMxcOBA/P777/jkk0/g5+cHAPj111/RsmXLcg2QqLJJpFL45VghyjILSuVRJlL0ROl3biDqwDocPb8DR++exlHzJCTaPDhF99Bgl/a5QLMsJzS3r4vmtV5Es9Z9UdWnvsHift4Eh4ahyZa3ccIhGytWjse4iZsNHRKZAL0SqQYNGuDMmTNFps+aNQsymayYJYiMi5/UGVGIh/Jm0eOcKCstGQe3/4g9pzdjT+ZZHLfPLBiCANCeojNTAw3uW6G5vCaae7VAs+Du8A/uDKmMo85UpBHePTEibRWW3NmG99npnCpBuX6iLS0r7uaURJXJz9YLQDwu34s1dCj0DFBlZ+DorgjsObERe+6dxBH7tIJBL82hTZy878vQXOOB5q6N0TywM5q06ctTdAbQf9BMfDBnFWLsVYj843uEvDbW0CHRc06vRMrR0RESiaTIdIlEAktLS/j5+SE8PBxDhgx56gCJDMHPtQ6QfBBKVaKhQyEDUOepcGLfGuz5dy323DmGgzZ3kVU4PN6DQS89M2ToIHzQvmYHvNhhKKr7NzVYvPQfuyoeGJhXF4vlF7Bo/xwmUlTh9EqkJk+ejC+//BJdunRBs2bNAAD//vsvtm3bhlGjRiEuLg7vvPMO8vPzMWzYsHINuDQWLFiAWbNmITExEQ0bNsS8efO0cRKVhl+NJkAyoDRLN3QoVAk06nycO7IZew6vwp6EI4i0TERaYQP7g8TJJUuC9nnV0cErBO1DwlGzQQhPGz2jRrz8KRZHDsBvtteRdPUcXGsEGDokeo7plUgdPHgQX3zxBd5++22d6YsXL8aOHTuwceNGNGjQAN9//32lJ1Lr1q3DuHHjsGjRIjRv3hxz585Fp06dEBMTA1dX10qNhZ5tFmYW+Kv/X9rnD/Or1waIAuJt1cjNTIeFjb0hQqQKdO3cIWzfuRB74vdjj/kN3LEWBTMcCv4ocoCQHDe0d2+J9q3eQECL7kycjETjkP5ounkYjjlkImLVh/jok78NHRI9xyRCCFHWhWxtbREdHa29Wq+QUqlEo0aNkJGRgdjYWDRo0ACZmZnlFmxpNG/eHE2bNsX8+fMBABqNBp6ennj33XcxceLEJy6fnp4OhUKBtLQ02Nvzx9NUCY0G9p/KkCEHLnTZgjrNXjZ0SFQObsedxfpfp2LNze044pihM89aBbTJqoL2zs3Qvnk/NG7XDzJz3u7KWP30fTjeurcCvulmuDQzm538TYChfr/1OrKcnJzw559/4v3339eZ/ueff8LJqaBzZWZmJuzs7J4+wjJQqVQ4fvw4Jk2apJ0mlUoRGhqKI0eOFLtMbm4ucnNzta/T03kqhx4MgZBlhWh5NpSX/mEiZcRSb1/Db+umYs2VP7BHkVJwdZ0jIBFAq1R7vOQYhPZBr6NZhzDIrWyfuD4yDv0GzcS4WSsQa5+PPZvmIPT1jwwdEpUjdZ4Kt5QnEXf5X5y7fBink07jRHq8QWLRK5H69NNP8c4772Dv3r3avkfHjh3D33//jUWLFgEAdu7ciXbt2pVfpKWQnJwMtVpdZFDQqlWr4uLFi8UuM336dEybNq0ywqNnTJ46D6vOrAIADAwcqB3ZvJCfxAnRuMkhEIxQVloy/lz/OdacX4+ttolQmUHb16lZqg36u72EPj0/hUetJgaNkyqOjaMrBmkCsQBnsPjw90ykjIzQaHAn/gKuXvoXcdeiEXc7BnHp1xCnSkKc7D6u2eQVXDlbyBqAgc6865VIDRs2DPXq1cP8+fPx228Fd9n29/dHZGSkdkDODz74oPyirECTJk3CuHHjtK/T09Ph6elpwIiosqjUKgzZXHBlae96vYsmUjaeAG5CySEQjIIqOwM7Ns7EmpM/Y7PlNWTKoe3vFJBmgf6ObdCv2yT4NmpvyDCpEo14ZQoW7H4dv9veROKV03Cr2cDQIdFD0u/cQNyFw4iLO4m4hAuIS41DXG4i4iRpuGqVW/AZfpjNg8cDZmrAK8sM/mpHNLT1RS23hhiKxZVZhYI49F2wVatWaNWqVXnG8tScnZ0hk8lw+/Ztnem3b9+Gm5tbsctYWFjAwsKi2Hlk2vxc/IF7/0CZe8vQoVAJ1Hkq7P9rPtYc+REbpTFIsRLAg64RPvfN0M+qKfp3+gCBrXsZNlAyiMDWvdDiV1sccczA8tUfYtL/ths6JJOjUefj+sWjOH96N85fPYbzKTG4kJeAGMvMgs/rw6wePB6QCMAjUwqfPFv4mDnDx7Y6fJxrwcczED61mqFarSCdfozp6ekYOtaIEqlCOTk5UKlUOtMM1UlbLpcjKCgIu3fvxmuvvQagoLP57t27MXo0b2BJZePn3Ri4twJKaZqhQ6GHCI0Gx3atwJq987BOfQoJNhrtf6lumVL0kQWif7vRaN7xTV5lRxhRqx+OJC/Fj6l7MEGdz07nFUSdp0Lc2QM4f3YPzl87jvOpl3FBnYgL1lm6LUuPdEOski2BT64VfCRO8LH2gI+TL3yqBcDHNxjedVsYxRXTeh1RWVlZ+Oijj7B+/XrcvXu3yHy1Wv3Ugelr3LhxGDx4MIKDg9GsWTPMnTsXmZmZHByUysyvbisgGrhqm4+8nCyYW1obOiSTdu7wZqzZNgtrM48i1j4feDDOk0OOBL3ya6H/C28h5NUxvNKOdPQZ9DXGTv8JcXb52Pnr1+jU9xNDh2TU8nKyoDy1B+fPReLCjZM4n6bEec1tXLTNQe7DGcVD15qZq4HaGRaoBxfUs/dFveqN4V+7BWoGtIZdFY9Kr0N50yuR+vDDD7F3714sXLgQgwYNwoIFC3Dz5k0sXrwYM2bMKO8Yy6Rv3764c+cOJk+ejMTERDRq1Ajbtm0r0gGd6EncfRvBKg/INgeuXTgCv8YdDB2SyYk7vR9r//gSa1L244wiB5ABsC8YquDVHC/0b/QGOvWcYBT/tZJhWNk7IQwN8D1OYfE/C5hIlUFWWjJOHf4NUWd3IOr2SRzX3ESMbS7yH+7k/dBHzzIPqJNphXpSV9RzqIV6nk1QLyAENQPbPdf/iOo1jpSXlxd+/vlnhISEwN7eHidOnICfnx9++eUXrFmzBn//bbyDn3EcKdORqcqE7fSCduaMSRmwkdsUKRM4zhJnFbnY6v85Ovf7X2WHaJISYqOxfuNnWJOwA0cd/huHzlwNdLnvhn51XserfT6FjSMH2KXSOf/PHwjY3h0yDRD/xnFerVmM3Mx0nD68CVGntyEq8Tii8q/jnH0O1MWcHbdVAfWybFBX5oZ6jrVRzzsY9QLbw7teS4O2CBvVOFIpKSmoWbMmgIL+UCkpKQCA1q1b45133im/6IgMzE844SwSoLx+ytChPNfuJcRh4/qpWBP3J/Yp7hWM9eQASDXAi2mO6F/zVfTsPQWO7j6GDpWMUL0XXkXrtfY46JiOn9Z8iE8n7zZ0SAalys7AuaN/Iip6K6JuHUNU3jWcscv+bziBh/oxuWVK0TTPBcEO9RDk1xYNmnRBdf+m7H/4EL0SqZo1ayIuLg5eXl6oU6cO1q9fj2bNmuHPP/+EQqEo7xiJKoSFmQXWv75e+7w4ftbVACRAmaKsxMhMQ+a9JPyx/nOsubgB2+xuF3yJPxjr6YVUW/R374g+r0/hJetULkb4D8DBpEX48X4kPs5TmUxfunxVDi78uwVRJ7cg6sYxRKnicMo287/+TA81xDtnSxCcWwXB9nUQ7NsGwS/0hIdfEyZNT6BXIjVkyBCcOnUK7dq1w8SJE9GtWzfMnz8feXl5mDNnTnnHSFQhzKRm6B3Q+7Fl/JxrA+lRUOZwCITykJuZju2/fY010Svxh2U8sh4a6ykwzRL9ndqi36ufwKdBW0OGSc+h1wdNx5gvFuO6rRrb1n+FrgOnGjqkcqfOU+HSiR2IOv4Xoq7/g6jsKzhpex/ZhUPkWT94oOAijeBsRwTb1UawT2sEN38NXnVbMGnSg16J1MO3hgkNDcXFixdx/PhxODs7Y+XKleUWHJGh+Xk1As6uhlKaauhQjJZGnY/IP77HqsOLsdHsMlIt/xvrqeZ9M/S3bo7+nT9EQMvuhg2UnmuWtg4IlzbBHBzH4qhFRp9IadT5iI3ei6ioPxB17QiispQ4YZOGjMKGNktor2y1ywWCshwQbOOH4BotEdy0O2o2CGHSVE706mxeklOnTqFJkyYGHf7gabGzuenI1+Rj04VNAIAedXvATFr0/4pr5w6hxq+tYa4Gsj/NNZnTAeXhTvwFRKwcjyV3d0Jpn6ed7p4pRV9ZQ/R/8V00DR3ML3OqNDHHtqLO3y9DqgGu9vsHnnWbGzqkUhEaDa6ePYioY78jKu4QojIu47jVPaRZFi1rrQKaZNoj2MoXwd4vIDioG2o1eckkxs8yqs7mRM+D3Pxc9Pm1D4CCq/bM5EU/DtVrN4U8H1CZAddj/kWN+q0rO0yjIjQaRP7xPRYf+Ba/WccX3OPOvuA/4r55/hjQcjjavjKaCSkZhH/TLghZ5YB9jqn4ad0ETJ26z9AhFSE0Glw7fxgno/5E1JWDiEqPQZRlyn+jgJtD25fQMg9olGmLYAsfBHs2R3DjV1CnaRd+vioZEymix5CZy1EzU46LChWUFw8zkSpB8vUYrFg5HkuSt+OSfZ721F1wqjVG1Hgd/QZ9DVun4m/TRFSZRtQbhH0J87A08wD+p8qBmbyYZp1KosrOwIVjfyP6zE6cvBGF6Ow4RFul/dfS9NAFGOZqoOF9awTLayC4WlMEN3oZ9Zq98lyPz2QsmEgRPYGfcMBFJEEZH41QQwfzDBEaDQ78tQCLI7/Br9bXtK1PtipgYF5dDO/8CZq0H2joMIl09Bj4BZw/n4+bthr8ve5zvDroy0rZblpSPE79sxnRF/fhZNJpRKtv4tzDQw481KfJXA3Uu2+JYDMvBLsHIbhBZwS2eI0Dzz6jypRI9ezZ87HzU1NTnyYWomeSn2U1AElQ3r1k6FCeCSm3YvHzL+Ox5PbfuKBQaVufmqRaYYR3T/QfNPO5uO0DPZ8sbOwxRBaMWTiGxSd+LPdESmg0uBFzDNFRfyE67jBO3ruAaNkdxNnl/1foodunKHKARtkKNLaqiUbVg9Ao8CXUbfoy5Fa2RVdOz6QyJVJPGiNKoVAgLCzsqQIietb4VfEDMk9CmXXT0KEYjNBocOjvRViy7xust7pSMAaNArBRAf1V/hjR6WMEh/KzT8Zh+OvTMeuPUGxV3MG1c4fgHdBK73Vp1PmIjlyHXUdWYfedf3HcMgV3rR66hsvhv6deGTI0zndBI4U/Gvm0QKOgrvCu15IXXBi5MiVSy5cvr6g4iJ5Zfp4NgYsboJTcM3Qole5eQhx++WU8liRuwTlFrvY/6UapVhjh+RoGDJoJe5fqhg2SqIz8GndAhxWO2O14Dz+um4AvPjtY6mWFRoMrp/dh196fsOt6JPbKb/2XOD3oz2T24NRcI5kHGjkHopF/WzRs3h1OHr4VUBsyNPaRInoCP/8WwEUg1joXGnW+SVxGnHw9Bp8t6IMfzU4jxxyAouCy6n6qWhjx0iQOW0BGb0RgOHbf+BY/5RzBlJysx3baTrp6Dnt2LMbuyzuwS8TiauFpugcnaexygRez3dDBvSVaB/dEQPNu7M9kQp7/XwSiEshlcizvvlz7vCTe9VrC7Dcgxxy4pTyJ6v5NKyvESpebmY553w/AF+lbkGZVMK1BqiVGVO+OgYNmQuHqZdgAicpJ9wGfwXXqXCTaaPDnmqnoOWSmdl7mvSTs37YIu8/+gV1Z53DKIadgxoNuS+ZqoEW6AqFOQQht2hdNO4QZ9Oo/MiwmUmSyzGXmCG8U/sRyZnJL1Mg0h9I+D8oLh57LREpoNPh1+XhMuDCvoFOsZcHpu9mtp6F9jw/Y+kTPHbmVLYbKX8B0HMHCUz/Bfasfdh1bh10px3HEPq3gajr5gweAhqmWCLUOQGjga2jTaThsHF0NGT49Q5hIEZWCn0YBJZKhvHYSIYYOppz9s20pPtg2Docd7wN2BSOPf+U1BIM+/oED+9FzbVjvGZjxWzvsckzBrn9HFEx80M/J+74ML0n80KFWR7TvOAKuNQIMFyg905hIkcnK1+Rju3I7AKCTX6dibxFTyM/CHUAylHdiKim6inf17EFMWj4Qa+3jAceCPlAfyUMwftI6/rdNJsGnQVv0jKiGjYqbcMqWoL3KA6Ge7RD64lDei45KjYkUmazc/Fy8suYVACXfIqaQn5MfkH0GyqwblRVehUlLisf07/tgruQocu0BiQDCM2vhi+Fr4VGriaHDI6pUKz87i+kxx+Db6EWTuJCEyh+PGqJS8KvWAFBuglLcNXQoestX5WDp/Dcx+fZa3LEuuFy7/T1HfNNjIRq162vg6IgMw9LWAbWCXjJ0GGTEmEgRlYJf7eaAElBa50BoNEbV5C80Gmxd+zk+jJqO84pcwBrwT5djVqOP8MrAaUZVFyKiZw0TKaJSqFGvFaR/AZly4PbVs3Cr2cDQIZXK6QO/YvzGEdjpmAIogCrZEkxzfh3DJ0TwZqdEROWAiRRRKVjY2MMr0wxX7fKhPH/wmU+kEq+cxqcL+2CZdQw0joA8H3hPE4xP3v8VDlW9DR0eEdFzg4kUUSn55dvjKlKgvHoCrQ0dTAlyM9Mxe04vTM/ZhcwHgwf2TquOGYN/Qc2GIQaNjYjoecREiqiU/CzcsAspUCZdNHQoxTq6/ScM2T4SFxQqQA40T7XBnJe+QcuXRxg6NCKi5xYTKTJZcpkc87vM1z5/Ej+HmoDqPJQZ8RUdWplkp6fg06874luz49AogKpZUnxbcyT6ffodO5ITEVUwJlJkssxl5hjVbFSpy/tVCwTi/nqmhkA48Od8DN03Dpft8wAAg+7XxLdjt6FK9VoGjoyIyDQwkSIqJT+/5kAcoLTMMvgQCBkpifh4ZifMtzwNYQ94ZEqxuMEneOWNzwwWExGRKWIiRSZLrVHjQPwBAEAbrzaQSWWPLV+zfhtgJ5BmCdy9eRnOnv6VEWYRe377Bm8dnlhwc2EAQzNqY/b4Hbwaj4jIAJhIkcnKyc/BiyteBFBwixgbuc1jy1vZO6F6hgw3bNVQnjtQ6YlU+p0b+HDWS1hicxGwA7wyZFja7Au81HtipcZBRET/YU9UojLwy7MDACjjjlfqdret/QIBM2sUJFEARmbVx9mJ8UyiiIgMjC1SRGXgZ14V+5AK5e0LlbK9ewlxGPdNR0TYKQFboOZ9M/zUehZCXhtbKdsnIqLHYyJFVAZ+Dj5AfgyU969V+Lb++OUTvH1mBhLsNJAIYExuY3zxyTbYOLpW+LaJiKh0mEgRlYGfe33g+jYoNXcqbBvJ12MwZm4nrLa/BtgU3GB4WYfvObAmEdEziIkUURn4+TUFrgNKi6wKWf+vP32AUZe+RZK9gFQDfKhujqnTtsHS1qFCtkdERE+Hnc2JysC3flsAwF0rgXsJceW23ttxZ/H6uOrofWMOkqwF6qdZ4J/WEZjxxT9MooiInmFskSKTZS4zx8zQmdrnpWHr5Aa3TCkSbTSIPXcAwe4+Tx1H1K6f0W3HECQqNDBTAx9L2+Ljz/+EhY39U6+biIgqFhMpMllymRwftvqwzMv5qWyRaJMO5ZUoBCPsqWL485dP0e/iF8iyAeqnWeCX7ivQqF3fp1onERFVHiZSRGXkZ+aKg0iHMvH8U61nwew+eO/+BmjkQKfUKlj/cTTsXaqXU5RERFQZ2EeKTJZao8axm8dw7OYxqDXqUi/np6gBAFCmX9Vruxp1PsZ/EozRmRugkQJvZfjjz+nxTKKIiIwQEykyWTn5OWi2tBmaLW2GnPycUi/n51YPAKDMTyrzNrPTU9Dnwxr4Rl4wMvpXso5Y8vV5mFtal3ldRERkeEykiMrIr2ZTAIDSIrNMy92Jv4AOk72xUXET8nxgVdWRmPS/7ZBI+TEkIjJW/AYnKiPf+m0AALetNbh/91aplrkUtR0tvmuAI44ZcMyRYGfT7zHg7QUVGSYREVUCJlJEZeRQ1RvO2RIAQOzZA08sf2jLQrT4tQti7fPhc98Mh3v8hbavvlvRYRIRUSVgIkWkB79cGwCAUvnvY8ut+3EMOvwzEilWAs1SbXBk1EnUafZyZYRIRESVgIkUkR78pC4AAGXCuWLnC40GX3/ZBf1ufY9cM+C1VHfsnXoVVX3qV2aYRERUwZhIEenBz94bAKBMK3qbmHxVDkZOCsTE/G0AgDE5jfDrzKuwVjhXaoxERFTxOCAnmSxzmTmmtJuifV4WflXrArf3QZl3W2d6Rkoi+n7eAH873IFEAN9a98CYKb+VW8xERPRsYSJFJksuk2NqyFS9lvXzCQJuA0rz+9ppty6fwCs/tMZJh2xY5QGra03Ea4Onl1O0RET0LGIiRaQHv4C2wD/ATVsNstKSEXsmEl0398V1BzVcsyT4s8NPaNZxiKHDJCKiCsZEikyWRmhw4c4FAEBdl7qQSkrfZdDJwxcOORKkWgosWTQMU9J+R7ot4J8ux99h21GzYUgFRU1ERM8SJlJksrLzslF/YcFVdBmTMmAjtyn1shKpFH45VoiyzML7Ob8DFkDbewps+ug4nDx8KyhiIiJ61vCqPSI9+Un/uwpvQLo3dnwZzySKiMjEMJEi0tMrtbrCIh/4RN0Kv8xUwsLG3tAhERFRJeOpPSI9DXz7B/RVzYGZ3NLQoRARkYGwRYroKTCJIiIybUykiIiIiPTERIqIiIhIT+wjRSbLXGaO8S3Ga58TERGVFRMpMllymRyzOs4ydBhERGTEeGqPiIiISE9skSKTpREaxKfFAwC8FF5lukUMERERwESKTFh2XjZ8vvMBUPZbxBAREQE8tUdERESkNyZSRERERHoymkTqyy+/RMuWLWFtbQ0HB4diy8THx6Nr166wtraGq6srPvzwQ+Tn51duoERERGQyjKaPlEqlQu/evdGiRQv89NNPRear1Wp07doVbm5uOHz4MBISEhAWFgZzc3N89dVXBoiYiIiInndG0yI1bdo0vP/++wgMDCx2/o4dO3D+/HmsXLkSjRo1QpcuXfD5559jwYIFUKlUlRwtERERmQKjSaSe5MiRIwgMDETVqlW10zp16oT09HScO3euxOVyc3ORnp6u8yAiIiIqDaM5tfckiYmJOkkUAO3rxMTEEpebPn06pk2bVqGx0bPJTGqGkcEjtc+JiIjKyqAtUhMnToREInns4+LFixUaw6RJk5CWlqZ9XL9+vUK3R88OCzMLLOi6AAu6LoCFmYWhwyEiIiNk0H/DP/jgA4SHhz+2TM2aNUu1Ljc3N/z77786027fvq2dVxILCwtYWPBHlIiIiMrOoImUi4sLXFxcymVdLVq0wJdffomkpCS4uroCAHbu3Al7e3vUq1evXLZBzxchBJKzkgEAztbOkEgkBo6IiIiMjdF0DImPj0dKSgri4+OhVqsRHR0NAPDz84OtrS06duyIevXqYdCgQZg5cyYSExPxv//9D6NGjWKLExUrKy8LrrMLkm7eIoaIiPRhNInU5MmTsWLFCu3rxo0bAwD27t2LkJAQyGQy/PXXX3jnnXfQokUL2NjYYPDgwfjss88MFTIRERE95yRCCGHoIJ4l6enpUCgUSEtLg729vaHDoQqUqcqE7XRbAGyRIiIydob6/X5uxpEiIiIiqmxMpIiIiIj0xESKiIiISE9MpIiIiIj0ZDRX7RGVNzOpGQY3HKx9TkREVFb89SCTZWFmgYjXIgwdBhERGTGe2iMiIiLSE1ukyGQJIZCVlwUAsDa35i1iiIiozNgiRSYrKy8LttNtYTvdVptQERERlQUTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hPHkSKTJZPK8Hq917XPiYiIyoqJFJksSzNLbOi9wdBhEBGREeOpPSIiIiI9MZEiIiIi0hMTKTJZmapMSKZJIJkmQaYq09DhEBGREWIiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREeuLI5mSyZFIZXq71svY5ERFRWTGRIpNlaWaJLQO2GDoMIiIyYjy1R0RERKQnJlJEREREemIiRSYrU5UJm69sYPOVDW8RQ0REemEfKTJpWXlZhg6BiIiMGFukiIiIiPTERIqIiIhIT0ykiIiIiPTERIqIiIhIT0ykiIiIiPTEq/bIZEklUrTzbqd9TkREVFZMpMhkWZlbYV/4PkOHQURERoz/hhMRERHpiYkUERERkZ6YSJHJylRlwmWWC1xmufAWMUREpBf2kSKTlpyVbOgQiIjIiLFFioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREioiIiEhPvGqPTJZUIkWwR7D2ORERUVkxkSKTZWVuhWPDjhk6DCIiMmL8N5yIiIhIT0ykiIiIiPTERIpMVlZeFmrMrYEac2sgKy/L0OEQEZERYh8pMllCCFxLu6Z9TkREVFZskSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSE6/aI5MlkUhQz6We9jkREVFZMZEik2Vtbo1zI88ZOgwiIjJiPLVHREREpCejSKSuXr2KoUOHwsfHB1ZWVvD19cWUKVOgUql0yp0+fRpt2rSBpaUlPD09MXPmTANFTERERKbAKE7tXbx4ERqNBosXL4afnx/Onj2LYcOGITMzE7NnzwYApKeno2PHjggNDcWiRYtw5swZvPnmm3BwcMDw4cMNXAN6FmXlZaHpj00BAMeGHYO1ubWBIyIiImNjFIlU586d0blzZ+3rmjVrIiYmBgsXLtQmUqtWrYJKpcKyZcsgl8sREBCA6OhozJkzh4kUFUsIgfN3zmufExERlZVRnNorTlpaGpycnLSvjxw5grZt20Iul2underUCTExMbh3754hQiQiIqLnnFEmUkqlEvPmzcOIESO00xITE1G1alWdcoWvExMTS1xXbm4u0tPTdR5EREREpWHQRGrixImQSCSPfVy8eFFnmZs3b6Jz587o3bs3hg0b9tQxTJ8+HQqFQvvw9PR86nUSERGRaTBoH6kPPvgA4eHhjy1Ts2ZN7fNbt27hxRdfRMuWLbFkyRKdcm5ubrh9+7bOtMLXbm5uJa5/0qRJGDdunPZ1eno6kykiIiIqFYMmUi4uLnBxcSlV2Zs3b+LFF19EUFAQli9fDqlUtzGtRYsW+OSTT5CXlwdzc3MAwM6dO+Hv7w9HR8cS12thYQELCwv9K0FEREQmyyj6SN28eRMhISHw8vLC7NmzcefOHSQmJur0fRowYADkcjmGDh2Kc+fOYd26dfjuu+90WpuIHiaRSOCt8Ia3wpu3iCEiIr0YxfAHO3fuhFKphFKpRPXq1XXmFV62rlAosGPHDowaNQpBQUFwdnbG5MmTOfQBlcja3BpXx141dBhERGTEJIID6OhIT0+HQqFAWloa7O3tDR0OERERlYKhfr+N4tQeERER0bOIiRSZrOy8bDT9sSma/tgU2XnZhg6HiIiMkFH0kSKqCBqhQdStKO1zIiKismKLFBEREZGemEgRERER6YmJFBEREZGemEgRERER6YmJFBEREZGeeNUemTRna2dDh0BEREaMiRSZLBu5De58eMfQYRARkRHjqT0iIiIiPTGRIiIiItITEykyWdl52QiJCEFIRAhvEUNERHphHykyWRqhQeS1SO1zIiKismKLFBEREZGemEgRERER6YmJFBEREZGemEgRERER6YmJFBEREZGeeNUemTRrc2tDh0BEREaMiRSZLBu5DTI/zjR0GEREZMR4ao+IiIhIT0ykiIiIiPTERIpMVk5+Drqu7oquq7siJz/H0OEQEZERYh8pMllqjRp/X/5b+5yIiKis2CJFREREpCcmUkRERER6YiJFREREpCcmUkRERER6YiJFREREpCdetfcIIQQAID093cCRUEXLVGUCD0Y9SE9Ph1rOK/eIiIxV4e924e94ZZGIyt7iM+7KlSvw9fU1dBhERESkh9jYWNSsWbPStscWqUc4OTkBAOLj46FQKAwcTeVJT0+Hp6cnrl+/Dnt7e0OHU2lYb9bbFLDerLcpSEtLg5eXl/Z3vLIwkXqEVFrQbUyhUJjUAVjI3t6e9TYhrLdpYb1Ni6nWu/B3vNK2V6lbIyIiInqOMJEiIiIi0hMTqUdYWFhgypQpsLCwMHQolYr1Zr1NAevNepsC1rty682r9oiIiIj0xBYpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLS03OXSC1YsAA1atSApaUlmjdvjn///fex5Tds2IA6derA0tISgYGB+Pvvv3XmCyEwefJkuLu7w8rKCqGhobh8+bJOmZSUFAwcOBD29vZwcHDA0KFDkZGRUe51e5zyrHdeXh4mTJiAwMBA2NjYwMPDA2FhYbh165bOOmrUqAGJRKLzmDFjRoXUryTlvb/Dw8OL1Klz5846ZZ63/Q2gSJ0LH7NmzdKWMbb9fe7cOfTq1Usb99y5c/VaZ05ODkaNGoUqVarA1tYWvXr1wu3bt8uzWk9U3vWePn06mjZtCjs7O7i6uuK1115DTEyMTpmQkJAi+/vtt98u76o9VnnXe+rUqUXqVKdOHZ0yz+P+Lu6zK5FIMGrUKG0ZY9vfP/74I9q0aQNHR0c4OjoiNDS0SPlK+/0Wz5G1a9cKuVwuli1bJs6dOyeGDRsmHBwcxO3bt4stf+jQISGTycTMmTPF+fPnxf/+9z9hbm4uzpw5oy0zY8YMoVAoxO+//y5OnTolXn31VeHj4yOys7O1ZTp37iwaNmwo/vnnH3HgwAHh5+cn+vfvX+H1LVTe9U5NTRWhoaFi3bp14uLFi+LIkSOiWbNmIigoSGc93t7e4rPPPhMJCQnaR0ZGRoXXt1BF7O/BgweLzp0769QpJSVFZz3P2/4WQujUNyEhQSxbtkxIJBIRGxurLWNs+/vff/8V48ePF2vWrBFubm7i22+/1Wudb7/9tvD09BS7d+8WUVFR4oUXXhAtW7asqGrqFePDSlPvTp06ieXLl4uzZ8+K6Oho8fLLLwsvLy+d/dmuXTsxbNgwnf2dlpZWUdUsoiLqPWXKFBEQEKBTpzt37uiUeR73d1JSkk6dd+7cKQCIvXv3assY2/4eMGCAWLBggTh58qS4cOGCCA8PFwqFQty4cUNbprJ+v5+rRKpZs2Zi1KhR2tdqtVp4eHiI6dOnF1u+T58+omvXrjrTmjdvLkaMGCGEEEKj0Qg3Nzcxa9Ys7fzU1FRhYWEh1qxZI4QQ4vz58wKAOHbsmLbM1q1bhUQiETdv3iy3uj1Oede7OP/++68AIK5du6ad5u3tXeyHtrJURL0HDx4sunfvXuI2TWV/d+/eXbRv315nmrHt74eVFPuT1pmamirMzc3Fhg0btGUuXLggAIgjR448RW1KryLq/aikpCQBQERGRmqntWvXTowZM0afkMtFRdR7ypQpomHDhiUuZyr7e8yYMcLX11doNBrtNGPe30IIkZ+fL+zs7MSKFSuEEJX7+/3cnNpTqVQ4fvw4QkNDtdOkUilCQ0Nx5MiRYpc5cuSITnkA6NSpk7Z8XFwcEhMTdcooFAo0b95cW+bIkSNwcHBAcHCwtkxoaCikUimOHj1abvUrSUXUuzhpaWmQSCRwcHDQmT5jxgxUqVIFjRs3xqxZs5Cfn69/ZcqgIuu9b98+uLq6wt/fH++88w7u3r2rs47nfX/fvn0bW7ZswdChQ4vMM6b9XR7rPH78OPLy8nTK1KlTB15eXnpvt7xjLA9paWkAUORmr6tWrYKzszPq16+PSZMmISsrq9y2+TgVWe/Lly/Dw8MDNWvWxMCBAxEfH6+dZwr7W6VSYeXKlXjzzTchkUh05hnz/s7KykJeXp72GK7M3+/n5qbFycnJUKvVqFq1qs70qlWr4uLFi8Uuk5iYWGz5xMRE7fzCaY8r4+rqqjPfzMwMTk5O2jIVqSLq/aicnBxMmDAB/fv317kB5nvvvYcmTZrAyckJhw8fxqRJk5CQkIA5c+Y8Za2erKLq3blzZ/Ts2RM+Pj6IjY3Fxx9/jC5duuDIkSOQyWQmsb9XrFgBOzs79OzZU2e6se3v8lhnYmIi5HJ5kX8gHvf+laeKqPejNBoNxo4di1atWqF+/fra6QMGDIC3tzc8PDxw+vRpTJgwATExMfjtt9/KZbuPU1H1bt68OSIiIuDv74+EhARMmzYNbdq0wdmzZ2FnZ2cS+/v3339HamoqwsPDdaYb+/6eMGECPDw8tIlTZf5+PzeJFFWMvLw89OnTB0IILFy4UGfeuHHjtM8bNGgAuVyOESNGYPr06UZ7a4J+/fppnwcGBqJBgwbw9fXFvn370KFDBwNGVnmWLVuGgQMHwtLSUmf687i/CRg1ahTOnj2LgwcP6kwfPny49nlgYCDc3d3RoUMHxMbGwtfXt7LDLBddunTRPm/QoAGaN28Ob29vrF+/vtgW2OfRTz/9hC5dusDDw0NnujHv7xkzZmDt2rXYt29fke+tyvDcnNpzdnaGTCYrcnXF7du34ebmVuwybm5ujy1f+PdJZZKSknTm5+fnIyUlpcTtlqeKqHehwiTq2rVr2Llzp05rVHGaN2+O/Px8XL16tewVKaOKrPfDatasCWdnZyiVSu06ntf9DQAHDhxATEwM3nrrrSfG8qzv7/JYp5ubG1QqFVJTU8ttu+Ud49MYPXo0/vrrL+zduxfVq1d/bNnmzZsDgPazUJEqut6FHBwcULt2bZ3P9/O8v69du4Zdu3aV+vMNPPv7e/bs2ZgxYwZ27NiBBg0aaKdX5u/3c5NIyeVyBAUFYffu3dppGo0Gu3fvRosWLYpdpkWLFjrlAWDnzp3a8j4+PnBzc9Mpk56ejqNHj2rLtGjRAqmpqTh+/Li2zJ49e6DRaLQHYkWqiHoD/yVRly9fxq5du1ClSpUnxhIdHQ2pVFqkqbQiVFS9H3Xjxg3cvXsX7u7u2nU8j/u70E8//YSgoCA0bNjwibE86/u7PNYZFBQEc3NznTIxMTGIj4/Xe7vlHaM+hBAYPXo0Nm3ahD179sDHx+eJy0RHRwOA9rNQkSqq3o/KyMhAbGystk7P6/4utHz5cri6uqJr165PLGsM+3vmzJn4/PPPsW3bNp1+TkAl/36Xulu6EVi7dq2wsLAQERER4vz582L48OHCwcFBJCYmCiGEGDRokJg4caK2/KFDh4SZmZmYPXu2uHDhgpgyZUqxwx84ODiIzZs3i9OnT4vu3bsXe/lk48aNxdGjR8XBgwdFrVq1Kv1y+PKst0qlEq+++qqoXr26iI6O1rkcNjc3VwghxOHDh8W3334roqOjRWxsrFi5cqVwcXERYWFhRlvv+/fvi/Hjx4sjR46IuLg4sWvXLtGkSRNRq1YtkZOTo13P87a/C6WlpQlra2uxcOHCIts0xv2dm5srTp48KU6ePCnc3d3F+PHjxcmTJ8Xly5dLvU4hCi6H9/LyEnv27BFRUVGiRYsWokWLFkZd73feeUcoFAqxb98+nc93VlaWEEIIpVIpPvvsMxEVFSXi4uLE5s2bRc2aNUXbtm2Nut4ffPCB2Ldvn4iLixOHDh0SoaGhwtnZWSQlJWnLPI/7W4iCq+C8vLzEhAkTimzTGPf3jBkzhFwuF7/++qvOMXz//n2dMpXx+/1cJVJCCDFv3jzh5eUl5HK5aNasmfjnn3+089q1aycGDx6sU379+vWidu3aQi6Xi4CAALFlyxad+RqNRnz66aeiatWqwsLCQnTo0EHExMTolLl7967o37+/sLW1Ffb29mLIkCE6O7MylGe94+LiBIBiH4Xjjhw/flw0b95cKBQKYWlpKerWrSu++uornYSjMpRnvbOyskTHjh2Fi4uLMDc3F97e3mLYsGE6P6pCPH/7u9DixYuFlZWVSE1NLTLPGPd3Scdxu3btSr1OIYTIzs4WI0eOFI6OjsLa2lr06NFDJCQkVGQ1iyjvepf0+V6+fLkQQoj4+HjRtm1b4eTkJCwsLISfn5/48MMPK3VcISHKv959+/YV7u7uQi6Xi2rVqom+ffsKpVKps83ncX8LIcT27dsFgCK/X0IY5/729vYutt5TpkzRlqms32+JEEKUvv2KiIiIiAo9N32kiIiIiCobEykiIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITEykiIgD79u2DRCIpcp+18jZo0CB89dVX5brO5ORkuLq64saNG+W6XiJ6MiZSRKQVHh4OiURS5FEZNy41tJYtWyIhIQEKhaLCtnHq1Cn8/fffeO+997TTQkJCMHbs2CJlIyIi4ODgUKr1Ojs7IywsDFOmTCmnSImotJhIEZGOzp07IyEhQedR3E1tVSqVAaKrOHK5HG5ubpBIJBW2jXnz5qF3796wtbUt93UPGTIEq1atQkpKSrmvm4hKxkSKiHRYWFjAzc1N5yGTyRASEoLRo0dj7NixcHZ2RqdOnQAAZ8+eRZcuXWBra4uqVati0KBBSE5O1q4vMzMTYWFhsLW1hbu7O7755psirTASiQS///67ThwODg6IiIjQvr5+/Tr69OkDBwcHODk5oXv37rh69ap2fnh4OF577TXMnj0b7u7uqFKlCkaNGoW8vDxtmdzcXEyYMAGenp6wsLCAn58ffvrpJwDFn9o7ePAg2rRpAysrK3h6euK9995DZmamdv4PP/yAWrVqwdLSElWrVsXrr79e4vuqVqvx66+/olu3bqXZDUXUqFGj2NbCQgEBAfDw8MCmTZv0Wj8R6YeJFBGV2ooVKyCXy3Ho0CEsWrQIqampaN++PRo3boyoqChs27YNt2/fRp8+fbTLfPjhh4iMjMTmzZuxY8cO7Nu3DydOnCjTdvPy8tCpUyfY2dnhwIEDOHToEGxtbdG5c2edlrG9e/ciNjYWe/fuxYoVKxAREaGTjIWFhWHNmjX4/vvvceHCBSxevLjE1qHY2Fh07twZvXr1wunTp7Fu3TocPHgQo0ePBgBERUXhvffew2effYaYmBhs27YNbdu2LbEOp0+fRlpaGoKDg8tU90LHjh3TthDeuHEDL7zwAtq0aaNTplmzZjhw4IBe6yciPelxg2Yiek4NHjxYyGQyYWNjo328/vrrQoiCu683btxYp/znn38uOnbsqDPt+vXr2rvM379/X8jlcrF+/Xrt/Lt37worKysxZswY7TQAYtOmTTrrUSgUYvny5UIIIX755Rfh7+8vNBqNdn5ubq6wsrIS27dv18bu7e0t8vPztWV69+4t+vbtK4QQIiYmRgAQO3fuLLbue/fuFQDEvXv3hBBCDB06VAwfPlynzIEDB4RUKhXZ2dli48aNwt7eXqSnpxe7vkdt2rRJyGQynToIUfC+mpub67znNjY2wsLCQigUimLX9d577wlvb2+RlJSkM/39998XISEhpYqHiMqHmWHTOCJ61rz44otYuHCh9rWNjY32eVBQkE7ZU6dOYe/evcW26sTGxiI7OxsqlQrNmzfXTndycoK/v3+ZYjp16hSUSiXs7Ox0pufk5CA2Nlb7OiAgADKZTPva3d0dZ86cAQBER0dDJpOhXbt2pd7m6dOnsWrVKu00IQQ0Gg3i4uLw0ksvwdvbGzVr1kTnzp3RuXNn9OjRA9bW1sWuLzs7GxYWFsX2wRo4cCA++eQTnWm//fZbsVf3LVmyBD/99BMOHz4MFxcXnXlWVlbIysoqVf2IqHwwkSIiHTY2NvDz8ytx3sMyMjLQrVs3fP3110XKuru7l/pqP4lEAiGEzrSH+zZlZGQgKChIJ6kp9HAyYW5uXmS9Go0GQEGSURYZGRkYMWKEzhV2hby8vCCXy3HixAns27cPO3bswOTJkzF16lQcO3as2KvtnJ2dkZWVBZVKBblcrjNPoVAUec9dXV2LrGPv3r149913sWbNGjRo0KDI/JSUlCLJFRFVLCZSRKS3Jk2aYOPGjahRowbMzIp+nfj6+sLc3BxHjx6Fl5cXAODevXu4dOmSTsuQi4sLEhIStK8vX76s07LSpEkTrFu3Dq6urrC3t9cr1sDAQGg0GkRGRiI0NLRUdTt//nyJSSUAmJmZITQ0FKGhoZgyZQocHBywZ88e9OzZs0jZRo0aAQDOnz+vfV4WSqUSr7/+Oj7++ONi1w8UdPwPCQkp87qJSH/sbE5Eehs1ahRSUlLQv39/HDt2DLGxsdi+fTuGDBkCtVoNW1tbDB06FB9++CH27NmDs2fPIjw8HFKp7ldP+/btMX/+fJw8eRJRUVF4++23dVqXBg4cCGdnZ3Tv3h0HDhxAXFwc9u3bh/fee6/Ug1DWqFEDgwcPxptvvonff/9du47169cXW37ChAk4fPgwRo8ejejoaFy+fBmbN2/Wdjb/66+/8P333yM6OhrXrl3Dzz//DI1GU+JpSxcXFzRp0gQHDx4sVbwPy87ORrdu3dC4cWMMHz4ciYmJ2kehrKwsHD9+HB07dizz+olIf0ykiEhvHh4eOHToENRqNTp27IjAwECMHTsWDg4O2mRp1qxZaNOmDbp164bQ0FC0bt26SF+rb775Bp6enmjTpg0GDBiA8ePH6/Q1sra2xv79++Hl5YWePXuibt26GDp0KHJycsrUQrVw4UK8/vrrGDlyJOrUqYNhw4bpDGfwsAYNGiAyMhKXLl1CmzZt0LhxY0yePBkeHh4ACoZn+O2339C+fXvUrVsXixYtwpo1axAQEFDi9t96661iT08+ye3bt3Hx4kXs3r0bHh4ecHd31z4Kbd68GV5eXkWu5COiiiURj3ZMICKqYCEhIWjUqBHmzp1r6FAqVXZ2Nvz9/bFu3Tq0aNGiXNf9wgsv4L333sOAAQPKdb1E9HhskSIiqiRWVlb4+eefdQYsLQ/Jycno2bMn+vfvX67rJaInY2dzIqJKVBGdwZ2dnfHRRx+V+3qJ6Ml4ao+IiIhITzy1R0RERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKSn/wOcIL5tVkYgZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + "\n", + "# Draw horizontal and vertical line\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-25,25])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected (and also demonstrated in Utley et al), the shape of lag-frequency spectrum for both energy channels is similar.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/Simulator/Lag Analysis.ipynb.txt b/_sources/notebooks/Simulator/Lag Analysis.ipynb.txt new file mode 100644 index 000000000..42a45e543 --- /dev/null +++ b/_sources/notebooks/Simulator/Lag Analysis.ipynb.txt @@ -0,0 +1,481 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook analyses lag-frequency spectrums of the light curves simulated through impulse response approach. First, a simple case with delta impulse response is covered. Subsequently, an energy-dependent impulse response scenario is analysed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, AveragedCrossspectrum\n", + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instantiate a simulator object and define a variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "var = sampledata.sample_data()\n", + "\n", + "# Beware: set tstart here, or nothing will work!\n", + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.4, tstart=var.tstart)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For ease of analysis, define a simple delta impulse response with width 1. Here, `start` parameter refers to the lag delay, which we will soon see." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "delay = 10\n", + "s_ir = sim.simple_ir(start=delay, width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, simulate a `filtered` light curve. Here, filtered means that the initial lag delay portion is cut." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEFCAYAAAABjYvXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACIxUlEQVR4nO1dd7gdRdn/zbktvVcSQgqhhBYghF6kJnQQFRsIKKKgIqAG/BREUVARQZrSQaUpAhI6BAhSA4SQ3knvyb1pt5xz5vtjZnbfmZ2Z3XPuubltf89znnPO7OzM7O7svP0dxjlHihQpUqRo38g09wBSpEiRIkXzIyUGKVKkSJEiJQYpUqRIkSIlBilSpEiRAikxSJEiRYoUAMqbewDFok+fPnzo0KHNPYwUKVKkaDX46KOP1nHO+9qOtVpiMHToUEyZMqW5h5EiRYoUrQaMsc9dx1I1UYoUKVKkSIlBihQpUqRIiUGKFClSpEBKDFKkSJEiBVJikCJFihQpkBKDFClSpEiBlBikSJEiRQqkxKDNIpvL44kPlyKXT1OUp0iRIh4pMWijePCdxfjpv6fhsQ+XNPdQUqRI0QqQEoM2ivVb6wEAm7Y1NPNIUqRI0RqQEoM2inQDuxQpUhSClBi0cTDW3CNIkSJFa0BKDFKkSJEiRUoM2hK21WeD3xypnihFihTJkRKDNoJnpi7HqF++hFkra7RyhlRPlCJFinikxKCNYNLsNQAQIQYpUqRIkQQpMWhjSA3GKVKkKAYpMWgjUBaCVC3UfvHM1OXYUpeNr5gihQUpMWgjUHEFqWTQPvHZsmr86LGpuOapz5p7KClaKVJi0EbQ3nyHrnt2Bva59qXmHkaLwVbpSbaqpraZR5KitaK8uQeQIkUxePCdxc09hBQp2hRSyaCNgJv5J1K1UQoDm7bV4825a5t7GClaKFJi0MbA5OofGpRbD5Zu2IahEyZixorq5h5Km8R3Hp6C8+//ADW1afLCFFGkxKCNoC3YDF6ZuRoA8OSUZc08kpaHTdvqkc3lG9XG/DVbAADZXFuYLSlKjZQYtBUotVDzjiJFE6Aum8Po61/BL5+d4ayTZqlN0VikxKCNoTXbCHbUevbfT1dg+vLWo4qqywqJ4L9TV5SkvYh9KUUKpMSgzSBNTJccP3j0E5z6l7ebexgFgz7hT5ZsxNAJEzF39WYAyZgA056UIgVFSgxSpGjhsK3zz01bCQB4c05y7yDVTioYpLAhJQZtBOoFzyjur5Fv/N1vLsBbzeSG2JpVXS0ZpbqvDbk8TrrlLbwxZ01pGkzRIpASgzYCXmID8o0vzMZ5939QotbaPhas3YLXZ69u7mEkQmNViqtrajFn9Wb8/D/TSzSiFC0BaQRyG4F6wRX3x1L2eofiuJvfBAAsvvGUkrdtW7oblYuqkWqiNA9W20QqGbQR5IMXPH1D2xpKp+MXcyPfyPbyckCZlBq0KSQmBoyxMsbYJ4yx5+T/YYyx9xlj8xljjzPGKmV5lfw/Xx4fStq4WpbPYYydRMrHybL5jLEJJby+dgOTW9vR7oMNjQyIAuxjnrWyBkMnTMTSDdsa3X6rhbwt9P4Uo+oJ5kYjRYN8YJ9qVDMpWhgKkQx+BGAW+X8TgFs457sC2AjgIll+EYCNsvwWWQ+MsVEAzgWwF4BxAO6UBKYMwB0AxgMYBeCrsm6KgiDVRM3Q85TFGzDy5y/gnfnrSt724x8uBRBGJzcnlm3chrpsbof3G6oAo0+3EHUg5/p3sShGMthSl0X1tjQNRktGImLAGBsM4BQA98r/DMCxAP4lqzwE4Ez5+wz5H/L4cbL+GQAe45zXcc4XAZgPYKz8zOecL+Sc1wN4TNZNUQBCyYBp3zsC7y1cDwD434LSE4OWgtqGHI64aRJ+8uS0Hd43t0kGjVjQGyszqnEUMsUO/e1r2O/6lxvZc4qmRFLJ4M8AfgpA6QJ6A9jEOVfbKi0DMEj+HgRgKQDI49WyflBunOMqj4AxdjFjbApjbMratWn2RYrmTEwXBDOVSDPVEndrU1HAaq/pYjB/zRYs37S94PNKpfBTi3e+kUYDpREsRDLYnO7A1uIRSwwYY6cCWMM5/2gHjMcLzvnfOOdjOOdj+vbt29zDaVFQ3FqmGV0CmtJK0WLipBpBp47/05s4/MbXCz4vif1nR5qIlJqoLDUatCkkcS09HMDpjLGTAXQA0A3ArQB6MMbKJfc/GMByWX85gJ0BLGOMlQPoDmA9KVeg57jKUyREU+6BzDnHonVbMbxvl5K3rffTpM03Ds04Nm58UxTlWVoim0Hqvty2EMtHcs6v5pwP5pwPhTAAv845/zqASQDOkdXOB/CM/P2s/A95/HUuWJtnAZwrvY2GARgJ4AMAHwIYKb2TKmUfz5bk6toRuENPVIo17Ompy3HszW/GbozS2EXmttfmAQCWbNjauIbaGJLcV9e6vK0+i231uoqmsd5EYbR7o5pJ0cLQGKXCzwBcwRibD2ETuE+W3wegtyy/AsAEAOCczwDwBICZAF4EcCnnPCcli8sAvAThrfSErNvs4Jzjo883NvcwEsGkBaV8Tz9bVgMAmCeTopkoFYOo9Mqra+pK3nZjoRbQ5vCtty3eSY24o375Eva9TjfcNjbOIJdv+XEGE6etTDfxKRAFEQPO+Ruc81Pl74Wc87Gc810551/inNfJ8lr5f1d5fCE5/wbO+QjO+e6c8xdI+fOc893ksRtKdXGNxd/f+xxfvOsdvDar+d0a48ATiO5PTlmKo/8waUcNqWi0xAyszRp163EJTTKcrLH6NzYGJXAtbaGiwfw1W3DpPz/GT578tLmH0qqQpqPwQO0M1RoCntT7nc3lnf7+P/lX07pFtsRFvFRoTm8tazoK838Bt76xT6mlB51trxexIMV4brVnpMSgjUAtxDe+MBvz1mzBEbv2EeWWN59zXlLjX2C0LhEtoGNuKUblJJJXUyFfhF+/D429p4HnWgtWE6UoHGluogRoIeuRF+oFnyelmY3b6mPrJm475g60hzWhWSUDz+0PgwwLarFR4wltBo1qJkULQ0oM2gjMBSPjWSTiloKmymt03bMzMOY3r8bWo92XmtAUe23NaTMIXEtL9FgabUCWA/lwcetwrkiRDKmaKAFaAwNkcu8+rk0siO4KTaWaefCdxQWfU+qxFNseb0bZwEbAGpWOorFxBo3PSdikaMu2q6ZEKhkkQGuYWuYL7tNtx11PvsDVIthOsaCzCkOpluBix1ioZDB16Sbc9OLsInuz921DmKW2gPYKvAu1DTmM+uWLeOEzsdVmtsTU4I8vzcFTHy8raZtAy0xr0pKREoM2AtfrbTcgF9ZW3EvVXGmzi0GhhE6h0NPOvON/uOuNBUX15RwDeTKN4X4LvZaV1bXYVp8LiFs2V9rnfPuk+bjiidQNtLmREoO2AuP9nLp0k6eq/2UudsFsChSTIdPfXnyd2oZcZH+GMG1zacbhw5tz12LB2i3Bfx9BD4IMCxDPiiaI8tuMW2ipSNVFhSElBh60ptwrhUx8uhZUb2uIcPTNRQt6da4EAOy3c/dwLPI7yZOo3tYQGyCYZCHc4xcv4uw737GetyNUD+ff/0GwjSYQ82yVo0AB7Rf6fAM6I8/LtXBikKqHikNKDBKgBTHKTphj7Nu1KvacZRu3Yb/rX8Y9kxdq5bSt7z4yxbkYfbJkI7KEg27sfTp5nwEAgD0Hdou0mYQw/+CxT3DRQ1Owuqa2cQMB8Nnyau1/sd5EpVCd+Talacjmkc/zIBq4UK7/llfmYr9fJdtnQF17rjW8ECXEhq31jU773RrQbonB5+u3tgodNwA8N20Fzrjjf9465iLg9yYS30s3iAjNV2fpOfppWy/NCDltuiB/unQTzrrzHdz62rwdwoklWYQXrROqlboGt4GzsTaDQq+0FFPM1sTmWpHH6frnZuLHT0wNxpXk+miVW1+bh+rtheXwyZZgi9PWgnVb6nDAr1/BLa/Obe6hNDnaJTGYtbIGR//hDQy7+nlvvWAzkGYmGpf98xN86rEBANEFQzEy1iRnsizYTjFybrzaSHHfs1bWOMdQLP43fx2GTpiIdVvqClJ/KScXH+ForGtpoarDUtwTWwTys5+uCH4/M3VFMC4fA1sIwbAhSHnSBrjk9VvqsJDYZVxYt0UkTXx5RsvPT9ZYtEtisLI6Wc6SlqZ79Eky5iHf+x51Q9X/u951Wo0uiqU2rShp5KPPNxbNkbtQ7DJW7PpXSjWRD0oS9M4R4zsp6POdtmwT7nlrobtyM+HRD5bgt8+LLdqTMBDH/OENHEvsMoXikyUbC362P3nyUwydMLHoPpsa7ZIYVJaVJaoXvmBNOBgLXpy+EnMt6aK9C3ykrtvgySM/YhqzYLNMD/z5+jCJX+Nz3uj/c3nyWiegOEk8j4rniovzairN1JGSnNeOzBL3VyyBWl1Ti9Nv/1+Q8kRh9qoaDJ0w0evB1tS4+qnP8DeDSPmYuaTbcNpu1aQ5a3DWne/gkfc+L2iMT360TLbZMiWrdkkMkqK51ESX/P1jnHjLW5Fy7yiMMfrGrCZj6KmjvzSuc+lC+ML0VQAQWRgUVlXXFrw4+K4vyRocXI8v4K7IR6kkg8INyMX1V2wbiWwGRY5D7QNt4o05YtOj52VQWluHymI8b3W8mqk1oV0Sg4aEEZSFcFvF4sIHP8S/P0oWfZlEBaDgtxmo9sR3VE1k2gyibUw3vG1MHPPHSTgzxugdGZepvrKUJTk/PhWH/v9vby3A2s11jjOCmnJMhdoMSqAmSlJHXleSqV0oZxpXvVzecDM2o7lB7/32+hxmr6rx1N5xaKGCQfskBt06VCSqZ/pXNwVen70GV5ZgE46ozSC5fcEkBi7CQqvF3ZNaj0dPYRAdbUkg1ieJBTDHPXNlDX77/Gz86LFPYtoW380pGSRpyicZFDuf41xJFTFoyfEHP3j0E4z78+TIFqDFoNHq0EaPoGnQLolBUrVPKBm0jMfnG4U5Ru8leqQGIHp/bPeLnlu6+6Sfn8kwLFwr9kO+8YX4PD+hmshdx7wWtYApV01n2yU2ZBeCJPfVlPa8dQrs/5F3/brxsjKxjLQULyOVsZfeiw8WrQcA1DtUXXEopZPEyurtuPGF2S0udqFdEoP1W+JUAgLFJAFrShTiIeS1GRgGSZOTjrYl65E3gs7jppKgOlSUJZIIFJIs2MV7EykDcnNkLU1et9A4gySIVaHtwFQdhaCp1trGToHLH5uKu99cgKnLNpVkPKVCuyQGl/z940T1Wtjc9nKIrgU8Sd2kNgNab+zQXgCAYX06uzsqEFFvonyBqgfdMG4DvbZZK2uwuqZOnuPvJ6lkcNWTn2quyyU1ICd4psmIQYGDirnovIOpaC7YEicyi7SQBL68UMVCSaHlLYx6tkti4MKWuiyGTpgYeEUE3kQtTJyzIarn17l/6zFXWw4pg07dg4cLYnD4rr0LHGlyZHO8IGLgS9sQVgp/jr91Mr7z8JREbecTUoN/fbQMh/7uddJd8XNHea3Y2th/SA+jJJ4QhkFnhY0jbskqdTLBxqKxROnZT1c49xHX+imymznSbbyirGUtvy1rNM2MxeuEfvr21+cDCCdVSyEFfjWRwc372nGcoxC1GbjHUkpu0BxONs9xzO59AQDj9hoQf36CPlwLYVJur6nXu9qGXPD7SpnW2TY2ylXSRSnJdRRKoOJUY6q1pt4T+d7JCzHPEn9Tavzw0U/wtXvfj63XWAmhLEYymLmiBhu2urevLTVSYmDBzJU1OPbmNxIFneXyvEUEkRTjTRQaXP02A7uoHHKDTbWfQTbP0b2j8Pwa0S9eHRVKPPH2kkJRrM2g0FtC8wRtrsti7ea6sA3Hop9hLPi/SDI01rFEfiRDnDZjRwjOnHP8ZuIsnGCJv3GfE/4O5miJxkLbLBZxrrgn3zYZ59z1jrdOKdGuicHOvTo6jy1cuzV42nQBWbphG7bXC+5tdU0tRlzzPB77cKl27vw1m3HtM9N3qHrJXOR86hWzrjmnnYSFzH66PpUuVYTecTaXT5RzJzg/gZqoWHpVrDdRY2bArJU1OOiGV8P7Qhqj0luhuudCx5RUTdSUkkFB6kIj91ZTobFX69skSN3ThR7iXmq0a2IQu4OX/KYLyJG/n4TzH/gAAAK3x/98slw778IHp+Chdz/Hkg3bUEoU5k2kym1svfFtIGJA9vTXlN412RwvyKMriWTiMrDGnWpLFpcEpQjw8j1CQOie1f/+3dypyxubqM6FQjb+eeLDpUWlGC8kbbbyfqIqFu57HzywJSh0SdSFwrd9qCvauynRLolBny5iE5W4lyL0Vxb1lJvjB4s2iHJH1k+FlmBQs+r75bd6WbYa7puuOAMt6MzSV2OXGJvNIDwW33qS4KyiJYMC6laWl/a1svVNn2tZJlQTJQkCLrVW0yI4OvHTf0/Dtx74sOA+CpEM7v/fYgDAui2UGBR30UmJ8xf++Ab2vz7ZvhAKipm0IS62oynQLonBLr2F/jlufph6xjmOcPYdtej7deGOcs9kvn2SMJRP+Xyjdtx873zv4YeLN3j11I1BNp8vKPo2zjAujvnPdZ+XXBVCA5sKXYKs6UMsthB6jRVl4ZhyHm4zRiCMPS/ueFI10ZoiJAM6B+NSodhQ7LXbAy4F6OUuWrcVG7cVti/ET/41zXnsBpmBdUeifIf32IIQxy2YaiLnQmKUl1o95OqHwqn+sOYmkouLs0GHZKAZMEXZjBU1mLGiNDlfzNEo2wyQzL03kfRQtAFZfDe1AdnahnU81GaQCa7dFQV895sLyJgKG9RRI/vimakrnMfVWN6TEnMcilGv0Os99S9vAwAW/PbkWI+cAEU8hxHXPI8TR/WPNhVIyi1A9C8h2qVkoLCiuhYPvbPYedzMWhp5z+R/F0dU7vAjvnfyQsx3ZPukL+rJt07WuO6aWg/nkZBQAcBTHy9HPu9eFl3XGdeuz+soCcyqf31rYXB+Ep3xVkk8fKkl4miK090271cJuhsssHrC+0oFgHIiGbiIJk3nUSiB6lzlT/mu2ovbgCmsX/jKbDtlxDXPawyDgjcCvYCuc3keZOfd0bjw8GEAgAMi8SRNh3ZNDADg2mdnBNv4mRPFzFpqTmJX8rLecmN3G9OSywsXudNvf9s6Hvouz1xZg1teCbfbu8mTnycZjy/wh5fm4Ompy9GjU6X1HFM/m3QzeLuKw3uK9/wzRw8ihvDk7Yy/dbK7D6cBWUlL9vMUMco0wxtjCyCkwyzPsOC/Lz+Qeq6FSkfFElAX1m+tx4vTC0x37ehis49Bij+9KBRiIykGddkcunQQSpuhJYzwj0O7JAbOBcExZVR1+lLMWllDPA3MduL73mbhaEQf+tmriH51e4P9HNpu0vKN2xpwzgGDAABfGbOzdwxqEdHURAlfr8a8hF07lBPDaGle59iFzVUuD0xfXoNH3l3sbYOm6Ch04bXVbrB4lug2g/A19jlFNDiYHkBXI0X7ch6SffqP21DoNpJuNWgUx+/ZDwDQqTKUaGx2l0KgO08UKSUmxJE3TcJtr80DAJTtQC+UdkkMTKjpYU5qcwLRiTT+1snOKFzlpRPnEmhLp+t78fyxA45yp/oovJqKcmNzG2PtsaWwbpIQCvP+I7znLjVR4SoHf33XokPLf/HMDG8bPTuFKdILHZ5NzVNvcRHSbAZlmaAfn2TgIwa+rLBJ8zYVAtNpIQ6FdDGwu4gfGjWwW+z5xcQCNbVksIYkBmzqqG6KlBiAGoi5o1z/Do7Lb9fzsk0z+hKP+uVL3uNmI15i4Fr0Pa+RehFM7iO68Ba/8jc2Klldsuul/W2BXhdx776bGCTvgzt+JzrXcoIt7TIdT0UZC3z3fbe7EM+suDHpYyn8GRe6EU4h88iWeys43WhmYhG7s4XvfdMv1NNXVKO6QC+lYhFLDBhjHRhjHzDGPmWMzWCM/UqWD2OMvc8Ym88Ye5wxVinLq+T/+fL4UNLW1bJ8DmPsJFI+TpbNZ4xNaILr9MJlIFaLYrCLlMv/voBJUeh7Q3XU3kykMSouE9k8hwqANMcftRmoev524yShOETqch402uCI1rxn8qICevBJSv7jhSx4mm5f/kmaR9/Wj+3azQjkK56YGj8uTx+FjsnWbiEY3rcwXXghkq+truv9SBrcRc8O1KaJznTjuD36xdaZsaIG597zXiN7SoYkkkEdgGM55/sBGA1gHGPsEAA3AbiFc74rgI0ALpL1LwKwUZbfIuuBMTYKwLkA9gIwDsCdjLEyxlgZgDsAjAcwCsBXZd1mgLEIKoOb4k4dDLNrUhTDFZsvXleyK5t/X2NHuaP+mpq6YHyme16hm9v4+irkFtgin9U99/nPFyLqF6vyKFbCUalKkuqqbfe6PpeTbdDxhL/LM5mE6Tr0+VwqFHNvjhzZt8A+CqnreU+M/zRGw3curXXzy3MAAIvXNy6+pmdnuwOHiVkrd8x2nbHEgAsoP8gK+eEAjgXwL1n+EIAz5e8z5H/I48cxwXqeAeAxznkd53wRgPkAxsrPfM75Qs55PYDHZN0mg/m4XemeA8lA1cubi5WSDPTz1ARLyj3rY9H/n0D8nIshBq5zVmzaHnA4pteTeZ22fPVJX845q5JnmYxoyHh4j3268JdnRt3/ah3GdhdNUf041UQFaDVoC+r6k94v22U2ZHUJVdQrfAEOT7Gf61LdxHVlk4RKjca4KAPubVijjFB8+50rhadPhwq/y20cmuhWFY1ENgPJwU8FsAbAKwAWANjEOVcW0GUABsnfgwAsBQB5vBpAb1punOMq32Fwcf7q3Qh1rQYxkH+31JrpHDx9xXKm5opI2i0mXYmju7HDehF3Sb/NoDGeGKfd/nYk4nTohImxQy3LMHDw0DDqSeplE/U/chgoY++/o7ygxZfULfSO2RY9ZUCm8yqv9VGY1OGan04C6rj2XXp3ihxPuvVlqRL+mdc+dMLE4H7Z7qWpAjWdP5J4rZ07Vnjf7UkM1MWgpWynq5CIGHDOc5zz0QAGQ3DyezTloFxgjF3MGJvCGJuydu3akrWrHkk0jkBfBDtWlBvHxXc0nUPhHLzZZji2sMAXeEX7rCSuhq4zBvfs6DQgO7nnGA7QNbxlm7bbDxig18Bke+p+FLq/bt+u9oRtcTaDJN5EcdDVOX6JI9pPtMzGsdNnVKjU4arvcl121bdtluMj2o1BIbQ4MKZbjh124+vBviVA9J0yn5Mv8V9jNyrL5XkQ49QSUJA3Eed8E4BJAA4F0IMxplbHwQBU6s7lAHYGAHm8O4D1tNw4x1Vu6/9vnPMxnPMxffsWpnP0wWlANmwGSfWLPmNknBeFy6MJ8OvGVb3K8oyR995+Toax4HpNUdn1guiLnHUU1r66VCXMekJOZwy6a6lHLLKlJIhb9F1dc9JNXZakwyhyjVOn0fOnLHanbbARjZmWdB/0uRYsfbiMqQ5Viqv9MCiTSgbJFreCs786RmELhFQGd9ez/pTsPexiABVsr6t6lr99fjaue9bvZuzDM1NX4MQ/J9+foamRxJuoL2Osh/zdEcAJAGZBEIVzZLXzATwjfz8r/0Mef52LO/4sgHOlt9EwACMBfADgQwAjpXdSJYSR+dkSXFtiuNRAamIoomCKkMWsD+8uWJ9oLOEYouOxnkcCYZLGA4TBZDEGZENdJvqLwuVVldRXWpcMZCbOBJLB4J6dImWuxcOdwlo+Y3L8lZlhYFSx3kRqGHTROefud53n2vqx5bSnt6NQPb3rVq537KoVZ1Slh5NKBrZF/HceN2E3EY9XBZn4i9zJ0FY3+t8f4/GgJ51NEvgyl+5oJJEMBgKYxBibBrFwv8I5fw7AzwBcwRibD2ETuE/Wvw9Ab1l+BYAJAMA5nwHgCQAzAbwI4FKpfsoCuAzASxBE5glZt8kQmVgOTl5x4i7JIe4ltE3ULXXuvDm0L1sbSTa5pzuP0fLo2MLxR9VELsmAcKOWdl1ic9LFSqvGRH+q7yQbgTjbouUxY6CLwWX//CT4XVicQbRy0vNt41a6eb29RkgGjptjSr6+MQEIqAFtj+7U5h2DZdR/fWuhs34hxFgxDq4zqA0r4kZtrP02wlIKw29iaXkHInZEnPNpAPa3lC+EsB+Y5bUAvuRo6wYAN1jKnwfwfILxNgnCLJ56eS4gAuq4W4VjbddyvFCbQVIOUB0xOS4fh1wjDd+T563Fj44fGRyLSEC267C068pdlPTdMW0G4GHfxURfx/VhayNOcigU8Rliddj679e1g6UeHZtxLM8jTgFJkIT7vurE3fDHl0W+LJtk8P6i9Yny6RSqKneNzTYtcjZRlqBP16pg7rveebN9rpU1nhq4CG9zIo1Ahtt4qCZsoCYixzOsODVRXPbNyCJL6m/Y5t4cW1XLJJUMeCjixhnAw+A7z8DhlgySvjyaYBBkjBXfDb48/QUQXVpu2/a0JAZkUjVmXbL0k6xvk7jQ/FJxxvZCd3uj5VXloTulUv/R7kb07eLtO24MhcJGZOMkg28fMTz4bb6PcWojwD/2pDEvnSpbnmSQEgOEk+ZzI4gkVBNB+wZEoE+cbtJ2NPYckxaQ30s3+LxyRE3GdP486Z4FFCbXltSA7LIZcJ6MM45IXgiJ40aHPtvZlscZUWHfQT0ixa7nQ2lR1w7+F9l2qcm9iSyLj01VYfzeqUdI2AqdY76+RXn4mz5iM8U7ANwqE6zFQY3R5c5qohCHAKVSdF1Px8pw2Xtumr5PgytJo17HPc5/fbTMfZCgqsS74ZUCLW9EzQA1AcwEZCrCMCAKZBZkMvEvnU1/GrckRI23CblqWY3Bvl9rtB/g6wcPSTYG9ZfqqS0vmstOnOc8YYQsaQsMnIdxBovX+zYMsnHOrrGEv22qFJcAktOu3TMU62gaZzOIlRY418YX59FTqD0lzpOHzoVC024kzVFEx3DuQTt7asa/l/k8MKCbUL39b77u0GHOfdu99DE2P/23e/cyhcN37d10KU8bgXZJDMxH6Xq278udm0IDclixPJPRUgfbcOYd/4uUxc0Bn2TgPY90oHsTuVUCbkJhcOgWycCGjo6IzKSSgWYzYIVIFLFVrHWp2lYVJ7EZFLc5S1KiHq1n9WghCx43zitGYvWN0dWcuS0sAHx5THShtrUbbBaU2NMs/E1die0qQu48BgjC7urWmZdLaz9utH6wFrpHWrskBibiIgGVI4vGVbJQR97PEeBkw147+aMWowtx+LurxwNB26M3gc0gz7nz5XdtbqMxo7YxOMeWjDOmVZj8n2SHM+tYEqhCyiw71Zj9NVijf2PGQ9ro07XSOUb7+KJl9RZPKkMw0J5ZsTYD12n0emyLd+y8sBSazhlx4Npzo5KvhXjGEAPOudPd2Z2uhNRxMEtJITz+Wh45SIkBEPumKi6GvnBlGUYmtPvc9VvqtP9x08acV4VGrmYikoGjH5gLipuzDI2gflWJW/3AE12Hrptm2iLnc8UrVjIo1zhM+SyNa1dRuYWmf1BZOVUMRDE2g9P32wlAvK87h64mCoMlPQ+/gAN0PtC5xQIDcnjcpta0XXuQ6iWhVxFtgS7ktkt8c+5a2Yfretz9JGE+XMGpSWHa9VoKUmKA5Hp8kzsJ54C7hWnLqvW+YiZbsSJosEk3Y7rNwKP2yDsIgIsg0WJ71tLCOE7bmBSYbC+MJi3sxrhTeoflGY3DtI9VLVaFSAZASGjUfU16D+gzGTusFwB7jIXpWkpvj28TG6Dw5+RUE1mOWw3glvODgM7EkkH4u8zy3CiUo4UziI6cNbin7lGWZGF32tQSQtj1CjtnRyAlBnC/NHsPEiodm2tpWYYFC4tvAq0zJIM4e5kvfbRvzqlj5kRzi8r6JJ62PCRa0UR10bas7XrE8iScsVZF2gyChc17noUwJWCKbSafaJR5lBglIeiK98vHcemWc8PxiTbidjoz1URr5U5ZhauDXOWESFu8ifRsqrb+bJIBdx5zjCL4ZZPoCgG9X6baNpnNSD9WqJssYzt2B7OkaJ/EwFzsHEuN6aKmGbEYc6apoDBTJRS6UUih7wqLqIkckxtca5vmv3HaDDzj9PWV58m4J/oc1DXY3ARtLqjRtuwwnQDCNqPHxX/57ZGcon1zzFm9WTs/6XPUbBpMly60PihhNs5Tjg2uLpPYU1zlupoo2p6N07faDAokBrSaTaJznOUszQbvrn1cvv6TuJ/6YHr8tRS0T2JgQD1bJZYrmCK+qWJQx2tqs9ju2OA+buMYE7YNXpKAvq5JXEuFaiE8Sie0awxF2wy421hNQVXj6hpsKo9EEdJODi/8bePOXMbBnGcx8PXxl9fnJTonbDv8rYYXt9MZ51wjVq79OYL6ThWavb5LmlX3T09TYiEGnlmcnEiGv8tibAa2c8xOlR3GtMc47QwO6ef4Pftrz+LIkX3cA5LIMOacn8XsyVwqpMQA4WJ3xK76g1QT4/XZa7T/gLIZhP9rau05WUxVRCxX6VMTeU4OvYmSSQZ5rhOKXmTXJZdkoPVntRk4xobCJQNAXJNNTRTR6xcwFt2bKCzfJom5KxlhoVlCFQ+QNeZQHDTJRfq+2nzdXVHiADEgF2gbSJLcjzIaVptBwiCtJCpW19h0Bst9fqXD9TvPqerXHJejf40Y0ErcysT4oJwjbEhqQ2kKpMQA4YP2vWDiePhbNyAn5/wKjkAm/31nqmOJE9UZevyB3cP8N+YQrdxKAZJBPq9LBu7gNGh1qDgP370uREohv6lrqbLtuFx7TR29DxxAny66u/GnSzf5TwraDhtXnHcSA7JtLjrHmUBqco+JlFvOs+UTtDMT7mNxY4uLM9itv0iJMbK/PTUG5zyU+o25nciV2ZASdNVe7OlYWb09kUpuRyMlBiAvvDExzJeQHqc2AyC5G1u8msgcW1jgS4OgqjEjibVTXWL0pXHejsCbOMLkSwKnnesTISQyknsKJQMXZ1YgyKnllghk83mFjIK93NoFIbQHDe1pdusF5TIzhqrM2R90NZG5Q1+0vqPcxa3S7i0qmjjjus19lFvmlA9OYmCp2zkmIyhHuOj7chHZCB+gPyPOuZGzLJ4aKAO/DbY4h06VjdteMylSYkDg8h/u06VSHtdF1XcXhqHsLvHQF0SWtH5nORmGebJB0v2Y6VB8gUQubteVvCtON+xC3uir0pGXxTRU5jkPCLLXZmBtLZ7zsqajcNhLCnEn5GSMamGybcATNz5FrOKCyDi323ycah9He0m4VXoZtghku2upuyx5EkP7gms73RYXpLXFqZrIfK70/pN5qjFCXCuOm1Mmjtuzv5Mg2yST/t2iWWubAu2SGJi326YKAMIHo1IIm2qiidNWxvYVEUMLVRMBKJe6T+8CJI9ljIAWb4ZKjVt3Sznmjm+2cZpt6Af0e+7idGgdpSayeTJFuXTbWBxDoc/QZkB2GKej6jsPYeQkc6Y8dOKoAfYBmf1T6UgRA8Kau5LWmWoj25hpfdu43RKDfSG2BZ3Zdwazj1nUT0gMSLXymAjkbBwxIMd872e5Q+cTUdEVuAUpY8kIbzCOxu6vmRDtkhiYcAXAmO5vZpyB1oaT27L3FTcW+j/r2eBbwVxIbeVmfVcMg9mPMmBqdWLGQGHqVZ2pALR+maYL1/S0jliAZGOhzzB6PBJjAfui4QtC46S+OpT0fbYtvNSbyCYlRKQ8NeYY24B5OElcgiYZWI7HBZ1967Ch6NOlijBg5tj8YwbibQZxLt/ifsm65vtmOIkE5zjGaEq9SSRmZjbo6N82jqZESgxgN4QB0UllRiBfdMSwsA3Xwy1AvUD7ou02GC6uVshjIs4g3mYgchPp/YRj0OuaXK75m7ZpH5rel2tqa3XkG2PT2buC4uLKRIshbLmJosTb3mfeWBAUMkzXI7ucE1yg/SuOkNoMbC7MJmFXF+nKs+NU0TiGSK/dlkgh1mZAyob16Rw8W1t9Nzev3+Owbct4HSogBUpQI+88KaCJKH2BdVr0vrVHHUrqtcF2/S4JpdRIiQHIC+sQGW2cRhlj2kNyvezRhcs/XaKcabIAHXUsw1gBEchRbtI2hpzS28NeP66vPDcXevvkjqSj4HYCmCya2c0VKtjE76iaKJ4Qm1IPR3QhTuo+btM/03lXl7PEs3D7IuLbEMg2pmSupVq34tvDSJj97DO4e/BsbWNw27jC35kYNZFLBaRA1W5mDdN93AbT1kbHlmRuMjBnPduQberMpkBKDED0lzHqEVOfm2QSRDifODWRqY7IEzc4z6nqUPIIZONFoNdielUltRm4xmaI0nRzEdf5KoW1njNJveTJ+rWPRe/DhCugzR//EZareWFmzkyqG7cZa+mi7rrvNpVfXDStuZA6M3bS67NwGj5GAsbYyhgLPMVsY3TN1xWbwo2dtCgDblNrcu3bhBbE55EyKbNACZDuhad7EyURABlz7xVtu/5UTdSEiEjH3F4e4e7ILGAwPTjsfUVdS/1jMyewvhC4Tw4S1UHnvH3eRK5AKnNCxm2WEjc+Uwpx7pVMF2owmNlOQ27Szr1rZY4xuu7HKfsOtLYdnudeNCJqIvDEi5wJWq0sMCDTeWa5Vs6tRkzXYuiKQ3BKt3TeWyQDbXrEEYMM0wyoNhuZDVc88Wn4x6Di5r1WnL+LGNL57JMMqOSvezCR55H3R+/bwABs2mYnBrYxp8Rgh8I+MQPJwDJxOexcq4kkC5dW3yQG2WQTLZQM9InjVxPZ60UlJLV4xC1KrrEZ9omE6ghTBHdxvLbWfGMJ+wjvVWXgsWVfnHyOALqBlekLc4wx14TJRQM6J2tb3zj0Z6b6zDriEwq5j+aYbG6dcddmShaM9BUlSPY2XGm0OY8SvfqYbS8pcTWr0Puo566yn8PBY99pE74oZRsx2FFJ7VJiAPekDjxZjP+qMEmKgkJdS12bq4i23Oep06IRyO6F12UzSOJeWQgxyOfjVUxmuVowbJ4akfO5W9cf14eCeuGiQWfyGkyiTn6bi2XWotZJKFxpcyyQDPJ0Dtjvu+16XZJBnOTgqg+YkoF8HrRuzPlCMmCed84+JtpvRpN8o1JYQ6xk4L5ulzeRa4xUJaj+NwapZNDMCDklfz3TgyTJJEhqIFOIqIkoMUgogupBZ+4FwSkZJNjtydasT8USGrh990rn2k31UvCcIgsztxre4/rIaAuMq235bTRIo2rp7wwzJUZ7uy7Q8Slvloas32ZgLojBYm/LDUH6cBF9E3pUblwEsrs/IHTnVYRkwdot+hhikuIBUVWV651xvWu6Adlg1jTJwO5aas5JSugTvaOetd02T1JisANhm9S24+a+szmLOsCEzyXRBvMFpRuMJ5to+g6rrjM4otdTSD8udQUQvY+cHEsq8jJmUS+phdXSeZJMptE+ovfJZSh27XNA66g2NddFhwulC7btHWl7LolMs4nK7zhbT5RD9hMPwL6QxakATcmJET3RbybO0uq6iKa2j4LWt1sycF2/17XUYTPQHCy0OemO5HfBt89ZGmewgxHJjhmj11XH9TS23Om6pp1rLowxs8Wc2PWaZBDbnchamjAdRdZhnI4LVjLrm8cjLotUMsh40vcai44pGYSGz+jC71usfX2YY3cRlRrD+4NWM6WNnEUnHSd12tpVkkEcMRD98MhvX9CVra0k0q1VMohpw1R9UT97n5eWa2ymZBAlBvL6HPfcZzPQpRhiM9DGop/vijlxoVDJILUZ7EDEvbC2RS6iwnDMgWhqB/9Yop4RBU40g+/wevhoko17DGEd//W6FiHOw2M+Jkd74cFAI0UpbEFnSQLRon2QctjHru7Mkx8t00pdBuSyjCkZROuLccQTK8WZxnmtKe5YqTVUFds+CLQNUzJwza64rKWuSHZby5nAtdR+v5N4czGDILmTRNrLG7zeROFv145qumtpEUFnnmOFbpRTSqTEAPFqorCezn0VZzOIkQyM41QySKb6MF1L3Qt71kENknBnVnWF41ieh+eqoCwbIpIB7Pp3W5xBNEWFqw/yx+InaV5WEqLCjYXK9kIXE4FcYYmQdrnR5vI8kiQtLs6gGJuBbSnz7Z9tlpWXMZmEUPwf2F3fgzhJrIPhL+dUB7lUTj4vQI0YJ7AZ5E2GJeE76oLtUorZ2rMYpMQACdREgeSgcwCT562LtGHilZmrtBQChaqJlP6zoswdtWgiiVCZ5+b1hL99Cb5sv4Myl/oB4QtT5tnYw1xyqERBx2jjsqPSiOtZkoXb0rdvDwtXO7oaBVYim3Th1SKkLWkI7JKB+ASRqorzd7qWigpRycAvSQBmKghxQM/h42YSADFGRhiCc8fubPRlH8P5h+0S/E4qGah7Hpea3nYOoN9/nRGCVl64msjjWkrO//tFB4s+YlssDVJiALLYx9x1U09M85K7pIuXZqzGL5+ZHvy3TVw6N8xweEUMKssyiSZaxghBdo2Lc7EY9O1apdUT1+ZoPGbSq/Oion9YXxmGfc0r6YYj+uLZ+uYIX6Kd5CY9CS4h4qJoG7tzrOS3aSC13b+IHcUxPm0xsujU7IutkFJDNZF9sTfHktTo7spaSs/bb+ceztTk2j3PyDiDgHEwx2YfxE49QgnCVFU5XWjlt8vbSNmlKPRklK7r0ZlC9cwyLNlzZQCG9OpkrUefSd+uVdhvcPdEGoFSoF0SA86Bnp0qtP9AvHEuiY3ANi8/W17tPU5zj5jEQHkTVZZnEvmqZzLRoBzbeFWUbIVaQCgxSCIZ2DjU4HyjnIdeQWUZj2SgCAYQLBhJ0yyoPo8c2Tc6WG2M5KVMSDQBsdet1p+DMJqLpU+asYFemo2DNKUlVZbnoZrIJslGTiDHDxneS47VDm3zFsuKkec83G7VOi+M+8Pos9QnSxI1kamWijOUR+xw8n95hkWIq4sYOzdXIuri8oybYdPKGdChIn5Pj7IMAI9atdRol8QAMLwiErr/6ZuO2+vYJubsVZvJecklg4oMC4yAFWWZRLpDBma4TLoWI/FSVJRHI29dulaXntwssxlzVftlGZ/NAEEdtWCYbnyuawleSCnau1/K8LdVTeTgll1EwvxtLpY+acY+Pjuxou3ZpIxcnqOiTCcGrh3SQo5ZHFcENBGB0jLihmNWLqO2FmizZWq/jYBgmWOLZ0QaNG8g7lT7mNeJ4H+4eEckA/r+udREWlxBeCyTcTOJ9J3YWpe1VzL6D6K1d5Bo0G6JgY0rdHIl8ttcmBRHpbUR8+Bsh+kLZu6ZENoMMok4hIBDM2Bz97R5oADJvIlcumsg+vKZKSCcL0w+JBhqwbBFeUf7Dt18yy2Sjm2MYiy0nMuxG5wiIUB7DuyG3529j1Zu/na5Aboim33jS7bvgzinPpuPbADv1KWra5JjqohJkex0x1XqqJyYR8oDzIR2zzPKiUBx7XlnXb3czqwoQmg/R9aP2AxEn+UWxoTSlXIthXVYbkbu5yhxsQ9fW1t6dKxEj05i90TzEedNYrBjvEpFfzuuq5YFW8BRHEccCUO3GGAL9RYyYYbDK2+iyvIoF2ODKzeRXTLIB77srslua8tVJ4gqXbNVK8/nw/pisba3r7jq8w4dKm0G9oAek+NVUg4QvsCuW6XGWFmWsQbn+SSKyvKMldi4/PB97SaKg3CM3+b+2pDLB1KeOtoQs0gqoq1043EL8aiB3awEqiEn5pFNB6/GrFAmFzi1OCZ3bw1/a8GS3B1c5iLwSpIoL4sSL3Of8zhQqTSjvB4soO99h4oM7vjaAQCitgOTGfQ0WXK0X2JAfoc5b/wcsckR2CIZ4/yEfYsooE/cDAslA5t+0wbG7H7PZrd5LoKjwg08CKebJB2F7ThX39EXXA3JZWAFxMt3yj4DcfX4PYK0FVlDJQBE/ecpdxgu1u5FHQDenvAFq57IJxlkWLjYuwijafMNFiRzzI57oNsMosc5j57LubgnlQFht3PdQX1j3IF6yTG/cnmOQT064j+XHmaVqLNSReUi86a0ozLSqrYp4gI/zXNMhkE/J1pfjFcngq7+XTm+TAZFHSv3SO+6+imDvl2rcObonbz1MhmmSVFNjVhiwBjbmTE2iTE2kzE2gzH2I1neizH2CmNsnvzuKcsZY+w2xth8xtg0xtgBpK3zZf15jLHzSfmBjLHP5Dm3MZ/vVQnAOTC0d7i5vGvSmDCDf7SFSpXHGHmtnBMpM9MF12wX+kVhM/C3DYiXbeE6wplzNd4oZ5rN80DHro0hgWRgW2xVH0oEpuXUDdG3UFeWZ4KUGnnOUZ/Lo6pc51xpig6z7zKL2st2ESr4KShWBN9pM9DFdn1B0Am4DcXkJnK9Bjb7Q0MuH3jzqKNxuYnU8bh0B3kOdOtYgaryMuOeCdRn8ygvy3hVgAoqkSIlJNq1OM53SqXc4yrq6EM3IOvIOZ4lrWd6FSpBNZFzBAPOP2woKdfrmYwFlaKaGkkkgyyAKznnowAcAuBSxtgoABMAvMY5HwngNfkfAMYDGCk/FwO4CxDEA8C1AA4GMBbAtYqAyDrfIeeNa/yl+dGtYwUevOAgAISrj5mI5iRQHJGoIzmdODWRheDoE01fDNQmGOu31jk5atNtzVrHFIe5NDpmomqVZGk23GURsZ1TNY5bMshzHiy2asGotyxyNjVRVDJw9SHbh93ryqW2iEgGpA4djrl+h0xCskWPwiUZ2HbP04iB41rMQYVeMHF2Fh5IPLYxZfNcqt1c54e/TWLtivh2DBlvXHVMRPKNi4vJGS92A1ETmd3lDWbMBlMyoCpQl5SixnjdaXuhQ0WZbD/K9dO5VGZIUU2NWGLAOV/JOf9Y/t4MYBaAQQDOAPCQrPYQgDPl7zMAPMwF3gPQgzE2EMBJAF7hnG/gnG8E8AqAcfJYN875e1ysqA+TtpoUIeclF/IYsdrMSZLL57Wc56IN/4OLsylkHQv7tvocXC+KqVqiCFVcxkm8CMnA5V4XHI+OR9VVHhRdq8rd6jiujz+bFy6pVeVl8rg4L0IMiB49FP39XLHKkUP7BqKLNlUTMYdkQMdjzgc3kXGMz/Ms1XlmZk8OwZ1XGAbkOP97avikYzXx6qw1mLGiBoAuldHnUe5RNb09PwzOzKigM3VfEqrPVHn/bh0ikf/uVN2iPOJN5DMgU8Ju8ZyK/AbHXOkt6JMMArsCkcJs9gBdMyC96nYMLSjMZsAYGwpgfwDvA+jPOV8pD60CoByxBwFYSk5bJst85css5bb+L2aMTWGMTVm7dm0hQ7ciIAWKUyrAK0G5tJneOHGLvd0LhyyyDs6k3DPRTD2nb5G79rRRQXBMLs+tKgInPeP+Ok79OBQxA7p0KPdeR8iBhjEWVYZkUJeNSgYBd2YhbhTLN24P2l+2MdxK0RmVq+4fV2J7tH16Dr2fesLAZIuey/VVrxNti9oM1J1yRiAHNgXjnjn6o6htiO7BnFW2J8fC9czU5cFvIV2FvUW8iRz95oPF1DAgWw3qOpxxBhZ3bV1NRMdlZ4TyHLj5lbmyvsdtWqmSjPSrPjWRih/dQbQgOTFgjHUB8G8Al3POa+gxydE3+Zg553/jnI/hnI/p27dvo9szovdjdXM0WVme6376cQRFwZVbRsHF5Q/r09l5g+k5Px23h8G5qPHyoE3GmFRzEW8izYDs5yjFdViOB9yeEUjEObZIyaBLVbn3OtRiyhAuPOGOc6JeVDLQ3VLNsVLc+/Yi0T4D7n5zARmj+LapYNS38vum5eZ4KDGgnKeNQNrgclMN5ipPriZyu5bqx4N75qBQfbpUok8XEalOCbGqXZ/LBwbkuGtS0pUaQ1KbQeBibZG8Co1AVvPJJhm4mDGN+HuSR7ruoXpmVHiz3TEthbaSXluSZMAYq4AgBP/gnD8li1dLFQ/k9xpZvhwATTgyWJb5ygdbypsM6t6qh+HUdUfOCCEMR5xEKfKg3AerzYBy3A410e4DurknmjznF6eOwoG79LTWUS9EhdTtKj27TV8cF9EJABu31UePG32F54ULe+fKcuc9yuZCtRtjoTShjOiKYDVEJIPQo0RdT9xzMH3ygwXUsWjn8lwzOtNanyzZGPxWi6YYS9hH0kVDlU//1UkRyVD1S9sa0bdzsCBWGm61cTud0YBG85oodu7VCXsO7ArAmBuE+JdnlAHZ9q6I78N37Q0gzEgbaQ/u55bNSZuNISELRsAlAcHah+5aqp+TxICsMSPaWNxzLkxZoRN4X6K8TKaF2QykZ899AGZxzv9EDj0L4Hz5+3wAz5Dy86RX0SEAqqU66SUAJzLGekrD8YkAXpLHahhjh8i+ziNtNSlCbktOTMc9NyfM2GG95AsY9dOPky7ibLMrq2vJ+MKJU1HmFkEDDs9qcBTH1GJcVZ5BhjFs3NaAhhwP9Lm07RwXroQ3f2k/o63w90efb4QJl46Wc66l1XCt0xu3NWBzrTCYMxa2s4dciNQgbamZ1fsZZwxVqCjLGLl01BwwXk55bz9esglvz19ntRn06yryId149j7YuVeYQ6ecbOsWDcSzI88Fp96lqlwrD/X6YWqP3561D47ara8WiyLqiOPxier081yDyhOJzXZfle3JHYEsSmmglY9xsKEhn7fGkHDOPZKBuk5TMlCMQyay0CaRDGw5rQC/xx+VzIP2LfVskkFLshkcDuCbAI5ljE2Vn5MB3AjgBMbYPADHy/8A8DyAhQDmA7gHwPcBgHO+AcCvAXwoP9fLMsg698pzFgB4oQTX5gXVrat7HedFs+/g7jhqt77YpVenwGZQYehb47yJ4kLLqSrKUC+6jVOKGBjcLhWDaxvEi9+hogxgwMwV1QBC7ttMz71L707o0kFfkOLmpDpuiwNQL2BluT/h3tNTVwAQ3KNqJ9ysXtRRi9+9540JzgtE/xgud48BgrCUZRiuP2PvcIwOLtJsJ8P0+uqaAGD0kB666E8WvaQRyNRuQhcOqtfPBVymuE8mMVCIlwykTcaiKjTbUbpu5QmjxgLQCGT7dYXMSqgCdN9vt2Rgy6NF74eJsA+PAdk4Vc3N16482una26myDAO7d8Dxe/ZHngNn7S9MnLv16+ocv6mSo+O31bvg8KHoVFnuJLBNgSTeRG9zzhnnfF/O+Wj5eZ5zvp5zfhznfCTn/Hi1sEsvoks55yM45/twzqeQtu7nnO8qPw+Q8imc873lOZfxHZSMQ724gd91jO5RGelU4JTgiPRbqNJVq0UHAHbr3yX4TSfuvBvG4wfH7ir6sFyyRgwcIjht04yYpN4NddlQMnDpdml7GcZwyLDeWnncUzFf8McuPgSAILLqBax0BOaoa7vg8KEAxLVTaQIIFwpVPqxv56DffEQysA92n0HdMVBmNu1LVDouTlXNjT5dqnDcHv2CBcLmTaSicBU214Y5aHL5PAZ064BfnDpK79BAnocSoVVNxKkxVeccTfuPYgBMBF5A2ZBAq7ZtoHsljNt7ACaM3wPH79lfU/WUSTWRDx0VISGG1qSSQTYXSgYn7zOAnBDvWmraa6ibc0RNlBd2rRF9u0T2TVBYuG4rBnTvgG4dhcqzd+dKdKos83Lx9Jkp2Oqret8+crio40jx0RRotxHIAHnZ5L12Gk65WoRyQs2SidoM1PP6+dOfAQC+dvCQ4PyuHcIMqbSLirJMRPw+96DQrOJKbWDC9BdXoMY+KhlkGAvGdPFRw7X+RXti0pqcZpzuMiSa4eKoygP9dLk94Z66Lz0DVULI8ZqquAZpsAz195wY6PwLUo6HKg8tD788PzIH5N8OFRl071gR8UADvbZMlNCGBJLkXIL7XlKffl0yiObJoQZtAJHgPGogt1xSVL1krS3mejm5Z5ccPQKdq0IJQahL1aY10VYuOHwYAOCiI4fJcRPVbD6Pob074S9f3d/Ru0BDPpTCR/bvimcuPTwYW1w8hTMdhSMCWd1/X5biT5Zskju2hXPK500UBKZpaiJ3nEEZYQhajGTQFhFEA6r/8tuZ40R+hwFQQjLQ/Ktlm58s2QQAzg1tzJfF9ChwxRn4vAqU0dPc6YqOXdkMOlRkNK67fzeV/5+MMc9RxqJqBx+D0oOkBM9a1DvZfB7lGRakmTARpggIVQmBZGCofoJcOGRcecLt+cZK3WmpUEc51X5dq/DPbx8cjF1dUzklQKT9QO1QpscujB3aC2GcB9diG/xqovAeKFBHBU1NRCq5FvVT9hkY6QMIiXacZJDNR3dRU/3k8zywczDHYqiIlLKDUDVRNsfRoaIskBqSOBcAhndVwTaD8HlFXEvJ/LBlGKDIMIMpZO7xL1y7BYAIHqXX4DJgUzrVkmwGbRamz/iCtSKNg1oITKjMkMpPWqQNtr+AlJOjc/GDRRtgg6qiJvZ954/RxG7BRdjhkgyG9+kcXFxd4LNfJhZaz0KgXggfl20aOHt2qox4iFSUh4SyQS6mKs2EiWzg2RJyRIGEEYxRSWj5iEomXCBDacEG6r5q29w9n+eoLM9EVFPZvEq5IOtRNREhRPSZdayk3DM3JAM7RDxDVE1EJcjHp4hwnfcXbtD6M3MT7TmwGwDgl6eN0vowbQY292JtTMRmoKAWdDr3KMdPYc5PGnmbI8ZnOjYTihiH/Yc2FLXYv3/NcdbrVDaDpy89HN07VoQRyI50FOpe+7bHBFSeLa4/W8f47//fIgDAC5+tCq/BwvUrpiaUDNL9DJocDNSAHN7ufQd3R8/OYW6dPQZ0DSZVfVZIBhkm9rnN5kk6B+OJ6QErIWauFCEaKmthxKMpzzGsT2cct2f/4Ng+g7pb3dAU1GQ3ubfBvTpZJYMMCeiqtHDSM1fW4NVZa2CC+txvqw/14S9dfpQmGagNx6l6R3HzGcsLAIQvtIogppKBmae/PicW7NDmA9QGNpEyra6JPFHt2VwHs/J4uOjLa5IGTJtraTBOQ01EDZTV2xuwuTZLGBDHwstpSo6wNcp0fCw9uRat36oRDDMCeWjvTtitfxdniox1W+qDcfpAF0gFNTYa+c2Y3ZsuINRE6gskg8DeoI/NREOea9dH35ucQdQUgmdKFn8bgaXI50PJTM1JumjT58ak7TCX417JyA2bzULdTzVHoU3m+Ws24625jQ+4taHdEgMgGoHcr2sVRg3spk2YKqLj3ritQeoGdV9lIMpV2fTRgAgeA4BT9h2oj0F+UzFVHQtS2Tquw3SrDMZA/obEQHgTJdUX21CXzWvSzu4DukZEf4CqdziJUrVHUgfSRCAZsNADyXjJG3JCQqMLwg0TZwEA1myulWX2sWfJy77NosrLcS4Ns+GizTlH9fYGMR6LZPDr52YCkHOB3HM6j96auxbrttTFLnqcG+6H8ie1TdFEa1TNqCQx81pNVaS61r+9tRAAInYrE/m8feGkmXvLPRk2F0qJW9ODB1w7167DRSSFmsiuqsoaC6gajy3SWiPWFldQ+v6FczKsp75/fPxugSS0tT6LhhwveCMam73dNDQz6JqF4//0Fs67/4PEfRSC9k0MjBcz8JemL5j0ftmwVXBRD76zWDNumt5EYdsMI/sJLyI6P0b266J5GpkTQunWgXBRULpm9wKX1+pTqHPqSGoHynVXlul5fxT2HtQt2pb8vu21eUHZV+WG5lT0pwFugJjMj7z3OTZsrSeumXp/Su9uEkIgqsoKDMhkEeveUUgmoQ3EjrpsPrhPSzZsjRzPSTdJaht4d8F6AMA/3l9itRkoVBh7JNjqmQyICWrABPQ5IM7jmq5fsxlEYl6UnUPvIyrFRqUdimw+71YTkcynrvTkD76zWGufGk6z+Xyws51vDELN6LcZUGKRzYdkSSV7FHspGATDNOASm83Ez1YG51FmAVBpNcT1PjdtJTZsrfcaew/ftQ8AYDz1hLJcccQN10FgmwLtmhjA4EaUkYq+PIrzX7dFN/wEC15Gn8VHyId+1Mg+eOWKo3HcHv0ibohV5dHbrqq8NGN1sE0m9XrxTQrTrXK4lD7oOUHQWUUZMhmGJRu2ASB+87IttSjTFN/mGB9593MAwHmH7oLfnb2v6Iscny1VYYrLpxw4Ve1QBN5O5SqjY3jM1GkHNgN1/ZzjtP1EbvgRfbsEZTa8NXdtoKo7bESfoDxPXvayjN52DXERDRfzaPumHQPEztOjUwW6dSgPLsy3uY0tMImqQFbXCOnHzBRaZdg5Xpu9BtOX12gL4IBuHYLnpGwKQdtONaTFOUH+3SLVhdl8XqaZcC9c5cQeZEoGPiKr2q+w2Azg8SRTbU14Snj4banLGmq8qGTAeXTr0hwhLFTllTGu19DoaNitv2AADybu2rb65rWYdcbs0jNWrVcs2jUxsEoGhl5RiYj0BVU2AyCa5Ou9hYKL3KU3WZDJw5w0Zy0+XVZNxuBeHFTKhw8WbfBONNMT5z+XHo5XrzhKO8eUDBSC/ZllvZdnrgYguB0TaoybZZ4hda3iOsK+VOCc4uifm7YiqOeSDLZTNRZ0LyvVjiIgL0xfhXlrtmgc7fb6HBgjG40nYKZ6EdsQXZzKMuYmNmFjqpwSs28dNhRdq8o1AzGgE7Sde3bCmKG9wuNOyUC3FaifNOfS6hrBmFSYkoGFyQCAHh1Dew5dsPcb3B39u1XFqq6oaykF58B9kxcBAB5653On9LrXToLodJPuzCYx0AzrTjWRPgYqGcxeKeZw3CKpgrgUKsttWUujxnKa6nrFJpHc8NOlm4TNQItY9jBsRKKg12DWNtNWmPe0V+dK7NqvC5oC7ZYYsFAyDZ5IVoqipocG51zj5jPahNINlqYbWxy3FAzBUkW99KIh/8sKhAtG944V2LVfV23i/+GlOQDCdBQKw1XgFnGBTDrG8XuHLou2pFtqcVI6YyB8iaOSQWjglg2G7RheMgrUH/z2SfPBuZ+4mqDPVF+cdK8hOlYbMctzjjLC9VLoHlAsduH9YNEGTQpVni+L5IZF9BZ0qSyPqDTNOoAlbTLCa9WT79nHlM3lowZkeVZ9Tjy3bfVZ6XcfbWTfwT20nE1KTbStPouPl2zC5HnrYu/L2/PX4WPptg3ojNyznwpmg45R2eY45/jqWBHzs/uArjActq2cuSkFlRGvI2W8fXnm6iDOIGzNp/5T49alG/N+PSyl7vBadILlyjRcCrRbYgBEF476XB4yE28AZTNQz+zq8XtoD/R9yR27Fp+4x2YzItnbcVMD345VEZ010yWf/Qb3sNazwaxCd2wSx0WNo3YTGWVtNgzXYl0bkQxCmEbu4X0749R9B5JoYNK+GovleswXr7wsgy8dOFgbz5tz10quT11TuMgO69OZGJDDdmjwIV2c6TWsqN6OXJ64RDru9/w1W6zlSu9N79uVJ+2mPUt172jbnYl7K6A8YEKVmMpiK86zD6qmNht5luqv8t7q06XKaTPI5gwVj+R2N25rCMti7osJW336XnYn0pBSC9Jxh7/1Dqkb7b6DuwOARuRoMLNSE3XtUI5jZXS6a/zq/DjJQEmrqp64V2Gt12aHe0uUGu2bGMhvzoE/vypykt8xaYFuZCoLowwBoB8Rq4HwYbomgck9AHqUcdKXQEwchwjtyHtichW0XMFcaH3jMI91ogsNEWfLmHCHtRMDe1uvzlqtleuqOv0e5Qx1nsqzpLVvGb9tofrDl/YLEg9q4yT2JLXQ//6cfa1xDA25vPW+0WvYXJvFq7NWW92ZCwJHQMD6de2AtZtDKaKzjP1QLXeqLMO5Y4dopzMiGrw1d60wfIZNR7BYSiT/eP/z6FA4x+idewAAfnf2Pk4pWLkV0zFwwKH2SXZf4u4jNaZ/unRTUK4txojOQ7pJkFIFV29vsLqWZjIMW+tz2Fybxeuz18S4f+vqH9W/iX0Hd8eAbh2CNahpZAA72jUxoHrhP786j5SHdYTxiONJGeizqrpOe6BlweIgMHZoLwzqEWaupC+ImhADZG4cdVyc738JfCLodc/O0K6Htm0PlqG/9YXWPwpTTWNXP2yty6FzVZl1IrsMhfdI3fOm7fWRtsOFRJyUzQlVjqqzeN02Mg43cXVFqtKxA8BhI3oHRkTOQzfcjhVlVsnjiSnLsF56mynXVljqqb5c40sCDkHU1Bx77MNwvyhFnDnnyOc5ttXnAhVK0D95KOu21GN7Q84b8KUcDcwNhdQ9+/HjUwEAPTtXOudoQz4aMGZmG/URJEBwzN88ZJdofW6XiFXAn9meJrlZOPMtddkgoHJwT3GP+3erCq6rb1eh7jpj9E4Rqd6cRxTqUl1GboVPl1ZjVQ3NXFz8XCkU7ZIYmNxnnnOctFf/4DidMFXlGeQ58PQnYouFBWu3aByNOQ/Lyxh26tGBHA+5c2UkpRx1hryIvqypPre1eVK1MHf1Zv0cT1vmb9eG8BQRXbTZjjz+weINeG/hBqsKTBWZHOQ5kts9cdSAyBhtm7aoiFcA+kLjIa4uewgde9eqcuzWv6vm9RRGR2c0d1YbnpgijOfH79kvaIM+lzjdeBLQfaG/d8yIoJxy32/MFUGDVHJQ4DC2V1QE1NKXSz+triP0qss44wyyMi6Ensuhp9i27SBntmHbRc68FoWOFXaXaXXeATLDrHn8/UUbUCPTqH/tYEF8DiJpRbrKTL4XHj7MwXzZx79s4zatf/E72v+cyDscvadUBVZKtEtiAOgLPgcwqEcnACLNAn1g/bp1AHiYcoAmSAOAi45Uid7EceFLr8uiahHaJr1wOlWWk8Nq0eFB5K6JCeP3sE5cEx0ryrzHzT7l8OT4xbfSO//9IpGS46nvH4YDd+mJnp0qnP7pqk1z0ppZLC/7wq5On/buHSvQubIsWORshtE8F9lXV9XU4vEpS4P2yzLu66FwEgMy9jrp+kuN05f+82M5DuYkZgrKIE/TWZx4y1sAgEuOHqGpn4oB5yJholpcexOPKPWbIzREKk8e7Vo51zdo8ahofGoKXV8v/e4tU7jBTCUhbQvzVgsm5jtHDotVE+kbSYUjczEvnZySgUCvzlURBkv1rTzsjt6tLxbfeAoG9egYXGt9ljAGEcnA7U2kNA/mOxE3CyiBUZmHlf2o1Gi3xADQ9dcDugvx75Kjh2vEoEwGptA8LnRSDu0tiAgHsH5LHWav2oz3Sf6hDJlxyt+eSgaUw1GeI1eduJs2zq8dPMQrGSh88cDB2n81kQ664VUAwP5Desgx0Uph/0CoElH344AhPfHv7x2GqvIyy2If/b1Kbs7TVYratK+rTtpdk8YottXntNa1Z0D09NvqcpE6egIzN5frVBPJ+6Q24aG5clYTkb2CeJq5nsVFRwyLtKtw95sLyMJrP79v16ogkM8GMRd5EG1M3UmDe8ZDIqA8acK8QGLsr0gXYu08C1T7vzxVz2+kFr59BnUHINRWiW0GAMA5nvxIqLjenLs2Vk2UzYceW3TMtj2ZAaBDZWhMZww4cmQfeZ448Y05ayJqLRXrshNR45oII/ejkd1JVDobt4Y7BFKJVGHXfl20xIL0va+tF30fu0c/fydFon0TAzIF//7eEgDAlw/aWcsDn5EPuK4hzKBJXc/CgB3gv4Z+VvQRviDKC0BzGVUj4MBTHwsVw11v6KmHla7aNdEOHtbLGsimXlilKlAZVdUL0aWKuCbKxn/46CfyOk0vlGi/ES6HA0ulOKxiEcw6LnXAox8s0YLTJs9bF/xW0ko+j0CEB1zeSmosFjWRfKxfGaMvtkqVpyKN7528KBjnWuLmSblBl2Sg5sDzn62K3LNBPTrGGgTNhdME58DrMpgMcBFCjsE9BZNy3J5i4Xjn6mO12BNK5HxjUmqgYLe5oC/xPbhnR+zWv0uQwsNGbxtyeW3vYrXAHTS0FwDg7AMGx6qJTMlA/druIAbhm83Rs1NlJIgym+eRuansPSpamDamhvXz/4gANqtkkIBho5KaLfnk9vqctoGQtkWo/D56t8bv/25D+yYGZB1UhrLKsowWjKSybNKgKC0HCslNtH5rdF/gVdW1WLxetD1Der2s16KZQ9b8NzK/zla5KP71mwfi0OG9g5w+LlSWZ4IIR9v1mVALwZa6rCGZhETQFsDk43rUi2B26QhcLUhNou5xnnPc/LLw+tpjQNegbZp63KcmUs9wtwHRhS3POZ6SdqG6bD5opzNR6dGspGr8n5EAQgB4b6GelZYO44LDh8Yueg1ZOzF44FsHRdozQa+9LtjmVCws/bp2kLEnYgEy00q7xhSmerDPh9qGXNCHeB7RRpas3xYwB2qcnAPvSOIr3DJlmw6bQzbPsb0+amOgDARFoDLjur0hsrMauWjVlhnURd261YZFGcaCpIoA8I9vHwzA7Vpqjlv8jr4H2xty6FgZJZxAmAbbJQ01Fu2SGKgJp57Lo8Qjo9zYG1csFOG5Z+6/k8ah0ECfft2i4uUHi8Xi0JDLB37LZx8QqnMoB6PpcQGctNcAPCp3C/MtopPnrcNny6sj5S9MX4W5q0O/9XF7CeOs1YuDh1IBECUGG7fVY8PWeue+uoqDUZ4Qvzp9L2s9ajBPCioBKO+Y+lyYY0gZeB+6cKzXZ/7ZT8VirzzDKDgH/kW2HDUzVwI6N6ia/8PLc7R2dPuFbuc5dERv7Xmb2F6fw9b6HB5+d3HkWLeO5ZEyAHj8wyVhf4TwXvdfkTwvCOILxiTujfKKueUro52xH4DbbVktUpPmrA1iI1xxBiuqazFL8/UXEuvrs4WRW212D9jnhdoKVaWBVtcBAP98f0n0BIRqIkDESaj8SFtl+gy14xztbo2UoIf20aUIca36wMzNn3p3qbTGLfhg49W21+c02x+NXTjn7ncBAG/NS7OWlhSMhTpCmhK2U0UZulSV49dn7IVnLzs88sAUd6VACUPPTm4rP+fAljqVHyiq5/3nB0uCh/6bM/c2T/e6/yXFJcTzJGw3XDxfmB7mWjeJQW1DHq/NXoParIMYyMXhJ09OAxB6T5j7Idu2jbThzNE7Bb+tqhnyUxFRofaKHA6gpKfL5FajdEy0/n479wjuNyXQFSSJoVr0Nm3TpcGXLj8KgNya0Zg8u/fv6n2Oyq3WvGdylPI8cUzln7JtbUnPNjO+Kib3kr8Lo3hlecYrTb0u4z+iqR7C/0rictkMTCjVq4I4xz0vtpN06UHvsvvlMj3EIcOFyunCw4dhRN/OwXOaI43BSg+vOPuuylGEdHfBAyIbqGmgpSpaZXcb2K2DpppV+5zYLp9GlJug1Rev2yokA01NFGVsyixSWinQbokBACuXq+wB3zx0KPYd3COiVwTClMWAnv5XuXzZNsfJc46rnvwUgP6CqtZ//2LIYX6D+FMH43IYLgtRt2y0qLFciyeNGKWo8XgycB4uDK4JaybGU+jXtUoLxqN+7bZ8QNXbGyLcOw1Es90WVUTjQIDQoKlw+n47BW03kHGUZ/S02YAReAehYph/w3jc+fUDAYQbJgHQNsexPTXVp82ArM771gMfAhAqPgBB0Je4jqgKysyqazKvdTTOwDKmhyLpEULUGioam81AEdMhvTppo6DqGpo23jYGG3E0jbfH7ylcw3952ii8duUxQXtn3PE/ACFzovDB4g0Rnb3Lq5qqakb07YKduneISAYcoUrZBDXWR9ol1X8gJfNN5B2z2SEqLM+iFGjXxKDeweVS+DwtAPICQgRbAUCnqqhIf4/MHR9tP9mDVbXMyabsEUmw1cNhmXM4wlFKnH7729byyfPWYSqJ9DzH8GwyOzSvY3uDbjij0prNA6lbx4qAsKgFp4zmxbd0PdGSfA+QKSiWVeOLUn33dbJ/9b1vh6oJ26Y3W+ui+lu1ANuerM+1VM3HA4b0tJynQ6k0viwJKJVmfAGMjDG8SxIMHrVbXysRMWESg0mz12h2AEDf21hBMQfnHRoyOIyFXjmAYMCC1i1jsG1Ha14jddcGovdrUE+dAQhSTlsuOpquW6j7cnmOf320DCukxxwlBt06VDgNyOsdkoGZ2G7pxui7TKWSYHwpMSg96h36bwpbArade+kRxoBYkC75+0cA7Fz1za/MDX7360aSdiV8rq5Fe/H6aE5+F0yXtN+cuXdwfaZhzUWk1O5YcTC5b4VgHls4SPpybaVpr+VYKIclIkBF+TRpxCXaButLrmwCdDGk+Lf05uog03xHxp6hMSbSgCxtNWOlZwxFUkKvcPvr8wEALxJ1XVxbI/t3QceKMlx5wm6ause0FQTtINybY0ivTuhQUZaIiFDvIwBalKyCLfVKtcw/VGWoPpR3njLW+uwWNu87c76a75x5u1RqdIVhfTrD0BI5z1WL/BOGrYmqifp2rXJ6/NkcSwBga11WU/OpmAnaxtNTV2DJhm2a0Xi0VFWVGu2SGNBIVoquFo7e9g5++4jhkbJNJOmWzzUQCD08AL9bnz4O+8tygVQb7EfUBS6YQWlfGzskGMBfXp9nOcMN5V/uQrnxcj55yaEAQuJq28/A5ioKhASEutz+4NiREU8llVM/Djv37BRbx2z7oKGCW6eSAZ0/t351dKSNVdXbI2U+dYja21h52QDA4xcfgju+doBznnTrUIFZvx4nkgPKSiurt1ttCbR/IPSgU/BJBiry1geGqMR35RNCNXo3eXaMhRLDt2SyQ5/d4j4inSmY765p4zKZODOp4oVHDNPUNHSxNZkmtcib0r0pPdsiigGxV7UN/5DGb7WFrLqknKWNPX7xYvD7kqOitr9SoF0SA4Wxw3Ru7uUrjorUoYvCp9eeCEB4+QAQBmZ5/BrpfwzEEwMNBXKPrhf24iOjBIqCZls9cBexsGWI2oNu4JIEV5ywm/e4aXBUPuU2Y/D/PS3uHfUWUThhVH8rkVAb/lBwuHMfURwyvLf7oIS5mByzez85/rB9ldwQsKcI+HDxRmf7vvE9fNHY4PfBw3vjlH0HRqbJhPF7OM+/Y9IC5zHqXaYQ54IMAHvt5Cb+o+QmOTbJQBl4N9BgK7Dgv1INJnluXx4Tqh7NVPE2bycKk1nq2qFcU9NQD7MenSq1uqqxhet0KbyDJeLfNnyaNdUG5dKq7EBxdkCb1FoKtFtiwBjQtYP+AtsWcaqTVy/8gO4dsPjGU4SB2cKzuYyvNtCMmwDEbliO8fpgcuIm6IL6yEVj8b8Jx4p2LXXPPmCQvzPEq9hcag2bv7cK+KM2nHvPGwMA+MM5+8aORSGX507bCkWfLpXOYwrm+9axokwrz3OOl2aE6hxTZ23iO0cOA0Dvi3t8Y3aJ2gxMfMvgdAG7SjMJ1Hk0oA8ALn54SvDbt3FMj07hpjXmfVfE4NARIQGmNoAKYx8I33OjRNyUDA5NQOApOleWa2qdLRbbj8JctQGUAeUVqCKWTe8kBbWF7EMXjtXKlaNAfTaPj5eEjENjPAYbg3ZLDGyosHjAUN/zpgBVLwFRH2cFm5HvL2QvYturesnRoTj5TWLA61RZHuj0bYv2TV+MLsAq507YRrI8SCYU0TI5OxPHj+qPxTeegh6dKhO5KwLATjIlAhB9J7XEbMY1/2xcyGUHhNC4LV8/RBmVQwP4yuqo3twFxXi41CENlqRtFOZCb404L5JhVOf99U1dDUJ35PMZLW/+8n4A7JKBwk/H7R78fnXWGmdbvid9MknTsIcRONibbJ4DAH9/73NrG8fs3hcVZSzYd1n1N91gyihenKHbcB64QAYAypOVQdkWUQwAe0up6kgjsllpJuqyeZx95ztBuc2QrJA0/1gxSIkBQTHuu7YXsCcRM6+MUadEMx/aX7pJMkBH5ZXP57lmlN5kcfk8bb/w5bGJtICdiNgkJHMi0/2DTfzaEiehoFxOc/k8VlXXYuiEicGxHxj+/wqunEImRLoHu7phm8WTSoEurMputHFrg1FHlwxWbKoNfNaTYHe5eLmIVVxUadSoaSMYOlQ+njio5632kbb37yYG/bqGnLG537cCjeSmC3mw16/DQYLOD6qjLy/LBIFzNri87B68YCzm3XCy6FNSg1kra5yeZjZ8QaoMTUbO5Z2k0oyb6h01p1R8g8JfvznG2bfv3Wos2iUxKKUUZr4j3zhkSLDJCAAMMzhqZYgMG9D/Ul97igUyFP0RyfGYnDXdWlLB5R6qdZ+QmzT91X2cYqVHZaXUDdk8xzl3v6MdcxmlTcmAuimacHnG+AgKJZTq2e3W377PrFoUb3pxtrM9G5SdyUas1tTU4nsyCMyFJNKRuWCftb9f3TecSKFdqsrRt4t7cTXxe6K+U1OBpmsHdO6cLoQj+ob3tiJww41Xn5mLqbolFx/lt5dR7z8Kdbsu+6f/3rtw/ChBFI4OdvaLjv6jz+3GYyC0yZiEq4vFkUXBF8DWWMS7CLQjFGT4TdgG/X/X1w/AeCLqArpk8Jev7u/kzpR72ufrt+Hqp6ZFAtP2t7ibmQu4DUn1zFRnHCeq2vLYmO1c/9+ZWLZR97ZxeROZ5onrz4jnjsy18/g/veWs27kqej0uTthGA6/2GHNNqPwy67bUYXcIDvma/3yGt+eLxHxUnUJBib9rcTNxkMXdlYLq8SvKmMbJ0+03v2eJXKcLerArlyEZZEmwGE01PfGzkAtXNgO6mVBSqIVxcE///ahzeFblOUd9Lq8FBsaBqkeryssw+adfCCQUuqWowhfvetfZls1l1sQJo/prLtU+201j0S4lAyC6CP7i1FFWVYrNUEeRNaIjTfUJ5c6t3gdk8ozbe4C3L4VHP1iKU27Tg796mh4QSDZxzDXPxZ3/lbjVxRmYX58T6oTfuOoYvHbl0eGY5MtP3ScVXDQkiZoo2AfBcck+jkrbKS3mltmIpy1i3AXlNriRpLGoJ3OoqtxOaOk9oLYgfWwh/vbNA7FzL78L7TAiGVSUZTTDLiUM1KaisN2SIG51Ta0moT5G8ia5bESKAXC5HCeBLT8RDXp866dfsJ6nVK8UN31xH29ffzeyC+wsYzWA0AX1yic+1dRbLhxhZke1wJxbLoapFGi3xMDE6Q6O/IfHjfSeZyaXMx8wlQyqLIFAlJiYkY8Uwx2GZQXTTRZIplow8d8fHBFbh26ookDz3VP969A+nTUu0pdXxcWNU4J57WmjrHWU15G6h0ntDCa+61hoFWxD7OwQ6wdYEheq59S7c6iSmUwSj22ts9sh6Dw5c7SdGNOxucZ0+fFiPleWZTTf+4qyTLBxCxAf5aoeI+1z7uotqN7egPlrNiNrcNxxHlxJAt9cMN9BQGykpOCyl9ncbL9y0BBLzRBDfARWqolU8KLPTgXYvQ5Nw7ip6j14uF/aawxSYiDh4qLjXgqT4+loeNnQB25Tn1BuzOc/bEspHQfTw8KGYhiNiB829AVN5YmxwSetmFGiCjQIhxIWCsUxlZdlUJZhgZvqX99coHFpNhULNbR36+DfUrCQ+/Xi5UdGypSxuj6XB+cci9ZtNXIJ2Tug88Q1F6jUMsCxQYtS13zvmBEao0LVRPNWb9ZiKGzYqbu4jz8izJJihI7/01vY9ecvaPVNN24Fdemhy254TNnJ4mBL39E7gftwMfBtOUlTXQPAqF++5G3LFlx2+9f21/6bDKQv3qOxaJc2A+sm8Y5FKi5mII4DpXr7zbVRj584F8sk/Tz1/cPsfSdRE5EF5NZzRzvrnXPg4MDNdqTFuErzMf3Z046LuB4wpEeQedIEvfajHBt70GutKs+gLpvDR59vxO9e0A29NkJlI24UNB13IWK6zRCoNg36+PONuPnlOUEqDYVejrFQycD5XEnxLg4OVqmkTIJSUZZBQy6PP7w02xu0pjC0T2dM/ukXtLQjvSwSIwD83yl7av/F8xGER7ldKonxw0UbsGjtVpx36C5YTmxKNIutwln7D8J/Pllu5dY7x8R9FAvfOyXSViSXbGwqWZPZoTYKG3NRSrRLYmBDsZJBvDoiPL7FogKw+YsX2o+NMwKSGcTp2qYiSW04a/9BATGw9UdTefi8IVz3+V+XHOZREzmbC5AxiME9kxfhnsnRiGabzj9ug/HdieheCDGwzR21XeWtr9nTf5xuWfSAkGkY3qdzopxHLucBJTGZ6oeKsoyWwlyBbuNpwrRJuObbMEPF2bNTZZDbSBlf1bxQ3nK3GJLJn748OtLuLV8ZjV+eOgo9LUSo0Cjdrh3K8d7Vx1mPXXL0CLFlKfwutgyu9OP2QEJTWrrk6BGR9qmzxh4D3O9nKRC7WjDG7meMrWGMTSdlvRhjrzDG5snvnrKcMcZuY4zNZ4xNY4wdQM45X9afxxg7n5QfyBj7TJ5zGys0u1exkL2oF9a16NsC0SjUIr3/kB5BugoKmtVytCV/0A1n+Q1WCl8oYt/TJO8DreIjfIpoDe/b2aqPVsZvX5oEwK5m+fgXJ3hfXl9enBNGCU6/P9HPu4ywADDQoj4pyzAsvvEULL7xFOs5lADEpT3Qj4mDNH4izt3X9QxUqdogyd6ft2kAwHypelF7Jyi4JOBvFmAcd/V/kGHPOu8w0Sa108UxRa75YSMExeD9a45z2ll8e1JT+O7/pcSGYcP3jhlhTfFiqp2bEkkkgwcB3A7gYVI2AcBrnPMbGWMT5P+fARgPYKT8HAzgLgAHM8Z6AbgWwBgIVvkjxtiznPONss53ALwP4HkA4wDoCscmxNcPHoKH3/3cydXEcRjq5d2pe0crh6n2HwaAXXpHjcB9ulTh2D36oX83v37/6vF7WBN23Xe+O0AlCV2ldXxCjroPtmR+gMjdM+NXJzlfKAVqpASEF5dLvaDg2wD8zq8fgI8+36gRWltGTYULPZyuiQOG9MDHSzZpRLVQ241JYOLOdzEfX9ijH3543EhcdLh7/Emkli8eMAhvzV0bBE4F/brmfwG8mSta37TDfO/oEdhnUHccTjzvirGJxeG2r+4f63gR9O8h0i5u34QtnblCHDNn89gCmk7dZUNsT5zztxhjQ43iMwAcI38/BOANCGJwBoCHuVDKv8cY68EYGyjrvsI53wAAjLFXAIxjjL0BoBvn/D1Z/jCAM7EDicF1p+2Fq8fvWXSO8EOH98ZVJ+7mdC88Zd+BuFJuauPC/XJ/Wx/K5d7MG7bWY+ywXti1Xxecd+guiUTHCz0LCL1u3z1QOmtfCus4QgDEZ5u0wUfUKsoyiRLPAcDEHx5R0HNWQ6X9mxz0dwvMIOm63jG79MSZ+w9yMh9lGRabHNCnnlM4Y/QgHDq8d2SLVjODqULSmIZCwBjDkSN1249PmnvzJ8cU1Y/LQ9AGX0yOK1+YCbW1polfnGr3gEuCYtO+FINiyU5/zrnyH1wFQFnlBgGgSb+XyTJf+TJLuRWMsYsBXAwAQ4b4XcB8oMtRJsMaJYplMgyXHet2P+1QIQJTbG6lheLs/Qfh3rcX4aYv7hvRw7rgUn1QPHLRWFz/35nYqYfdAwUIvVwKScJng7nBjs+dluKDa45LFETnQ6GeGMqDhxIQqsO94oTdYl2PTVSV2efakN6dCopXcGHeDeNj7Vi2vbrXbNbjMO7+xgEYt/fASL1CcdtX94+vBD9TkITJKAZ9ulQliujt160Dnr70cIzsZ/dki4PP7hKHHaU1B0pgQOacc8bYDsmzxzn/G4C/AcCYMWOaKbdf4YgL/kmKCeP3wBcPHJyYECTFkSP74pUrjvbWOWBIT7xx1TF+P+sEMO0mSf2mbQtYUnzpwMFatG1SXHni7rj8sanaIkBfTpsNKA7KgExx4C49NRfNxqCiLINS5DJT6TMai6TcuU9is8W1lAJPfPcQHHvzm4nqFvOsAZHmvrGYef1Jib0OG4NiicFqxthAzvlKqQZSoXzLAVBry2BZthyhWkmVvyHLB1vqNzkKobcdKjL48phkRqSmRHlZBnt6PH6aGq6MqoWAGnrn/mZ8k+iKTfzhS/sVdd4Xdu9ndQpQKOZZ2HTT//6e3TW4OVEMR3ruQTsHSdkA925rO2IsSTC8bxfc8pX9EqsZ4zDvhvEYacRX7Du4h/ecdyYcG5t+Pi49eqlQbC/PAjgfwI3y+xlSfhlj7DEIA3K1JBgvAfit8joCcCKAqznnGxhjNYyxQyAMyOcB+EuRY2oyzP71+OYeQpvEjiAETQkRYZo8uRug66Z7dqrwBui1Nvzu7H3QtUM5fnzCbtiwtb7oKHCKpPr6YnHW/o69uosANcI/94MjnIF/FDs5todtDsTeacbYoxBcfR/G2DIIr6AbATzBGLsIwOcAviyrPw/gZADzAWwDcAEAyEX/1wA+lPWuV8ZkAN+H8FjqCGE43mHG4xRtE5d+YQTumLQAPzlpd2cW2MbguR8cgVtemdtoldnvzt6nJHr5UmBwz45B4kC1RWmhYIzh56cIY2mpuNn3rrH7/rdUTPyhSOfSlJHCTYUk3kRfdRyKPCXpRXSpo537AdxvKZ8CoOmSdKdocfjq2J2tic5KhZ+ctAeuOnH3JlMv7D2oO+5L4AEWh1KpJ0qBX5+5d7Cfdly20x2FJM4PLQ2tkQgotM8I5FZjem6b+N3ZybeyLBY70gujWMSlwdihaAHvxE/H7Y7fvzgHn113YmRzoRRNj/ZJDNA6FosUbRPD+nTGonXJc+jvCKicOjsl0HM3Fb5/zK74/jEiUteV2C5F06HdEoMUKZoLk646prmHEMH+O/dEl6ryxHEBKdoeUmKQIkUK9Oxciem/Oqm5h5GiGdG6fftSpEiRIkVJ0C6JQQuwlaVIkSJFi0K7JAZAYRHIKVKkSNHW0W6JQYoUKVKkCJESgxQpUqRIkRKDNon37gKu6w5s39TcI0mxoyDTbadIUSzaJTHgSTbVbU3IZYEta8L/Hz0ovjevtFZv9cjn29fit/ht8YxdWDQZuL4nsPRDd52alcDyj0o/thRtBu2SGLQ5vPxz4I8jgdoa8Z/Jx8pb+YI56znguh5AvRGt+5f9gZsavxFMq8Dn7wAPngK89Qd3nfmviu/Fk911/rwPcM+xpRnTtg3xdVK0OrRbYtCmslHMfFZ8120W340lBis/jS7ALtSsAN78AxAnbU15IJRYbFg2Bfj9cH2hee16AByoNvbW3bgYqKtJNj4Ts/4ruORSItcgPk2BmhXie92csGz2ROA3A5I/IwDIl2h8n78D/H6YGEOKNoV2SwxisXEx8P5fm3sUyaAW/Yzc4kpRunwRmUHrtwF/PQp48lvJ6j95ATDpN8DqGf56z10O/PdH7uOvXQ9sWy8WG4WsSKmMsgR5atbMBj77l79OrgF4/BvAw6fHt0fBOTD1n+Le2PDnfYHfkVTZT18K3GXscPXuHX41ThwYeVVf/ZW4N5uWqAEW326hWPGJ+F7kkUKaE7kGYMr9xc39do6UGLjw0OnACz8FaqubdxzbNwLVMZu/bVkV/uYcyMjFM0/0zLmGZAblrWvF97yXxfe7dwhjdK2DE2+QC2RjOc9FcvtBKrKpxS7u+gHgzoOBf1/kr5OV+91uXOyu85cxwIf36mWLJwNPfw946Rr7OZtXhIQLAKb+HVg9Xa/z0jXAfcf7x2dDIN1RUZbrZUoqM8XdvxwIPP8Td9t1W9zP1QUmGQ4uF9t8Hpj+lN+G88hZwH++Zz/WUFta+897dwLP/dgvha6dA6ydm6y9VZ+VZFjINYhrbcFol8QgER9Vu0l8NxWHUb8NuPMwYOkHevnW9eGiBQC3jgZuGZWszZf/D/hVj1BCoKqLX/fR9ezLPhKL/PoFehvryEuyYFK4AK6fF5bn8yFnqPqiL/SUBwQRKQY21db2Eumo1X3N1YdllDBwLq5z4pX6eXVbxPeOMMjXb7UvjnShV88oKDOIg8L6+cAHf3P39ceRwI0xm/8smyLmyTr5/IPnLRmNB8YD/7oAeO06dxsLXgc+/We0PJ8HbugvmK7GYNVn4fi2b9S/bbhjLHBHgv0opj0J3H1EqIYFgGw9MPOZeLWoib8eJa61BaP9EYMta/Dm1jNx2hpDBbRospj0K6aK/0osp8Tgs3+FCwMArJxW/DhWTwfWzIhym38YDtx5SPhfEaUk+OxJ8b1MqiPoomfi00fF9/zX9HK6GD9yZvi7nKQ2nvhj4KFTgTkvABmZ65CT+/Tc5W4uOg5PXgA8dJpetvh/xbVlYtWn+v8Z/wFu3S80wAZqFwMr5Xlr59iPlwoNtcBvd9IXVrXo2BafO8YKG4iC73mb7QGhVOfDvXIPq9sPEu/H81fJduQ8Wfqe+H7vrvi2TCiCMuU+fz3OgamPAg3b7cfvPgK4fUxYl34DwCf/AJ44v/DxrZwqvjcuCsve+j3wxHnA3JfCspd+LtSIPqyZWXj/NqyaDmxeXZq2DLQ/YvDHkQCA4zc8Crx7Z1g+S1L/6f8WE0lxFmohWP6xUENMvEL8/+xfwF+PFAsKxZpZwMeP2Ptev0C8ULOfD8vopFWG0g0Li7gwC2xGTdXfh/fIOnX68R6Gl043uUdshujtlQj+9PdCYlAqA2q+AVj0lq6+WNUIokvRiewsdu/xwIdyEVKqgBqHOkoRTroo2HBdd7suPakaRDkA/O9WQRgaakNO3OUM8Pg3gNVyoZl0Q3wf2br4OlYYxMiUmJMQIhOKGMQ5Oix4DXj6EuA/3wUmXiUW33mv2Ov+78/ieytxtX7m+8DMp5ON6bruoWS4drb4Xj8/PD7lAfFNF/d3bxfvQhJMvEr04ULNSrH2ZB338+7DgZt3S9ZXgWh/xIDipavD30qcfuc2oWpRqJELtNIBT3tcLNbKYEonCiC4+mcvs/e3cJL4fozuJEqJAVmMbtgpyRX4YdPjK25HYfMq/f8jZ+n/lYRke9m3bwSWvOs+3hhMezz8bd5jBZs3jal20+oTTnjZh6ErplrYpv/bcR6RBs37ZeKhU6NlSe0pswmXf0N/8VG2FB9nuWFBtIwSICr9mcQfABa+mWx8FC4u3Ydf99O9kPKe2AkKFUMz8xnBxLx7O/CPc/znrJvnP26Dmh8f3gvctn8oMU4nDN+2deLbfI+SQjFh056wS3t/2gO4aSjwm76CaOxAQ3j7JgZJ8NFD4vvZH4RlT38fyEpj0LICAnmWTQl/33eC+NYeNhXhtwpdq8KS95L3o2Dj1v92TMiBRvqHMIZSKL20bRGhsL3YisOi+lvatw+f/D38rYzagD7e31oIprqvNrjUImqx2bY+LKOEgwZ83by7u/1Iu3LcVFrwcea0f4WPHxbfiku1wWYQbyCE8u9nkz6k/YVeU6HeVUDyxZAueLk64LGvhcFvnydU/yV1of3gnvB3ZefocdNF2TToUoaGSuf1ljmr2ip2sX7qO8D94+LrvXlT+LuJMwq0P2Kw88GF1V/xcbRsybvCawEA5r5gP48u5ApK3UCRJRPSFJeXvB/+LsYg61r8qATyfoyud9Pn4tsltirYFrkP7xWLDrWz/G6wvx2FgfvZy80XwvaCuMbquh9K/TOHPMvfDgx/+zh732LwzPfF99t/Cst+089dPymhpOjjIE4uA6qScsxrKlR9ZJPWbOpNW7tK+qSeej7VCZXMfFD2DMDOnNyyl3BBVlhkSESue7DvV6Jlyz8S7sNbiP5+09Jk41RYajB4trk098Xwt88oXgK0P2Jw0cuYy4Ynrz/ksOL6eeSsZLpiyvGZnOEupO9Zz6JgON0GTf1vgnHGqYEUUTN98dfPK06lsMvh9nJTQqnfGl38XYuqaxw9h4nvrMP1z2do9S2iilB1S6jyK4YY9N/LXl6zwl6+Vao5qJQK6F5kxWLyn6Jl6y3qGkUETOcFF3z3xfVMlQRkPh9qV/nnl/VjVE1H4XrGq6fr/f95b/c4k8B2LSuJ08PCNxrXfgzaHzEAsBsnHIztAVBD4xIZBFXl4VxcqHZ4p7hgSgauxSkpXpA+5lvW6uXmwl5HOLSDL7G3Fcc5qrGqoCSFTDmwfEq0vgtdBsgxOvozVV/5hijH5CJcrgUyzjDsg8voDADLpP1CeXnFoVCff8Ctdzefg4LyqjHjIFiCpWD3U/zHbQR8poWJOeF68b0gITFwPbdsvdvDS9178/32MVWv/8Ze7jM+J4lDSupAMO0x//HnLk/WTpFol8RAw8bPo2W2F4wumBWd7G2ZBqFb9wP+/e3kY3njJv2/yb0VC9MOYHLS9IV5/257G3E2g4AYGGq1bB3wzKXh/zg1nQqgcxGfjx4wxpWNjs1FRF+9Nvy9D+EKVYBdEvQaof+nLoZJ0HcP97HuRIV23LX2OubCYs5VZQtwzZ1dDhXfNLEhAJRV2ut3I2PqM5LUr4rWtUWK23T3CjYbiQ1UvUoJ0poZ8YTcJ9EOP0b/X6gaZuiRSBS11JDQ5rGhEUxJCZASgw7domV0cVSukxS7j9f/qxd08h+jdZNyhYCY3BRv/T78Pexo+zlJuMmthmSQNbilJLl6YiUDeVzFOCjkG4CeQ8P/GcuCYQPVE1d2DX+/fUu0/cj1JdB/J/HwsXl7mIuLy7YByMXCbNPDJdJjgw6MHs/ndZdJwEIMYqKs1QKoPGWC81zSFDG60piXPU+LVLUSYVsEr60vFdkcB5qjae1c4J2/+Osvt9j8FDr2Stbn4LGO83voRNckLgr0Hf26J2VKxx7JxtNESImB7eWkk3XIodHjpneDWlhcYqaCjZvqu6f/nGBMjsXLJzqO/rr47tBDLzeDq2zeEibUAusymCoCOvMZvTyX1Q2LNqmLXpsiem/dTI57uLtcQzRiOIl6zYwPscHWjklobE4BCl0sEae+a3nntvA3DfKj55rE1jTaqvG5VHPq/puxG0niRGiKh3w2ykTYrm06Wfyu3eTui+eSeeZQw/VOo91pudV7Ve0x6vqexYB9w99KujEl6vptevS0+Z4p0Dq+9Ba2bLA243UTISUG+Zz/Rcg1RHWW1MKv6iSBTdXCE7qmuSYu9Y2nHDQQvlwqilSBqm2AcBKbqgOtfzn26x3clGsBpveq+87267idpAZQahRKoHL17vD/fENUP27rg7pSUpsQAIxx5DRq2A6sI4vPwNHRZzj1H/Zz1dgi40g4V2w6/FydCDKjML164gihy8ZgGxdlenrvGm1n6ft6Wdy1MSYkw1y9fX+GQgMXfSkhlERPPYxM+OIcKLFU8+mTh/U61LGgc1/3+Gc/F/6mi7vJHL5HgmC/Il2r0ziDpsUXOj4R/qlZIfL2uFC9FPhTDPeeb4iqL0xMdXCQ6uV9+lL7cQDYbZx9gTNfhvE3hr87dBcBPj6XPYV8VuQ1+uNId50kBmSbPzhVnW1da3fVpXrfE3+tH6voDICLl+Ll/wvL+8goTBpF/uWHw7GYoJzy5RbuzBY5vHkVcDtR1ww7UucOqZtihaEb7zFELHi/N2wMLqJOF5LdxgEVFskgSWR6tla/T5Hj9Xp21+OvE982wkX3P7j4zfD+AmLOPGmkePBx2qMlESurFHPp172jdWznUyn2wpeBg74T/ldBnDbkG/zpYnbaX7/nPrdQNfdNCVQFXAKS0Yl5R464Aug+CDh6gvjfi3g1mobwPU8Tc1wRrMakvkmIdkkMsqwCMzvL/D8PeAI/+u/t9xbpJInITUOBV68Ly01O87ruIpxe4VvPA9dVAwecLyb7dd1FpkuF776ln19WEeU6PrxXj5Q+/XZgf8I11lZH1T9XGu6DZ8vsnPceF9W9mmN4cYKfsLzzFz0I7PTbo3XUIr11nUjN8e9vA/8mL/eAfYFyg1s6Uqb/+HVvfYzH/kJ8UzVEt0GyH8tLef9J4W/TqDnlPj1y+AwZ03GXoSIsqxIvfD4nApzuJMbwnxvS46YlwJyJYcQqIDy1XAsmZUi+9jjQsWe0zt+OCX8f/TP92Kl/Ft/3Hq/fJ9Nu8cZv9eyuSh9ujmvOC7rbc1UXYNQZYt4CUekYiEpodL4c+3Px3bBV54AB4NDL7GPYul5syqMw5GDgxN+EHm8vTgiPnWAwEWtni3QxLpR3CPtbN093C/3eu3rd2k3RuW/adMqrovPujRv18/Y7V3x/4Wpha8o3iPd09kSRZ0phgiSA6+YKT6bruuvXcpFh7ykRLNbR9oFRWy0RvafeItLfKpjud995XeeW9v+6yCNj4qQb/Mm3hkoXvI8fsh+nRskjfhxKHb7FePTXwjE21AIPnhyt08lQ8XQdYG+rU2+/YRQIFwXXuIYeof8/egLwppRc/jAiWh8QYzfh8rAwVT1AqGdv2CYSp9HFwsTZ94goUBtsqQz+b61ICc3zblWZD6O/Lvzla6sFMfn0UWDS73QDLQU1tPcbFU1H8YVr9OhU9Syph85RPwWOuNweqa2giNXDZwD7nisWpg7d9XEpwuvChCXAjUOEytKV0sMVa9FrhJCiAKGm3LAQ2OkAu+QACInJZu859DLgFc84v/cOcBeJ21FcvW3u9h8lVIIqytpUxanrpSirFMzOH3aNOjQoKGkWCOMHzHYAcf992DlBxtUi0C4lAwB4YoBFlzjmQvHSH/J94DKLYWqnA/T/n1km/pl3ARUdgZ9Y8sUAoRHNhZ9L18ofThWeB0qM92GPU8OEZoMODIkNxS/W6a5/X7zPLdZ+X+qC/28t8Msi0kf/cGp0Qn/haiGa+2C6Jo65SJeYFL73TjQq9ZqVoRH7ifPchOCX0n1w3y8LCc3ETxbYXYfLK91xI+dJ3/W9vyi+x90UrXPmnaF94fpewm5jIwRnyRxZFR3DMnM/h859xbdSvXz7Nbu959ifCynosinAjy2bD427STcCT3tMSJPmuA73bEoExC9ePvzw43BLz7sOFelEbITgHOJSfIChnrp8OpDJACf9VnxMfOlBoDdRgV7lyHUFhO/fd9/UGR4K83p/ukhEMy99300IgGTbK8Y5lNgYphKhXRIDzoH3exic808lB1peCYz7HdBn1/DlBoD/WyMe5vkySvGKWUAnQ5QfuF/IoXfuI/SIFF138k+Ib00MF4Few4CRnjw7FF+xLJh08l9XHS6011WLzz7nRHO1AGLR6CIXm/LKkMhQHPaDaJnCXmeLsVMpRL1UrkAoQCc6339PvNSn/kl3SwWEvr//XsCQQ/Tyyk5AF0+qB4UMmfIm0fzWRPHc+hkv5ASPPvnQy4Dh0gPq7HuAi98ADjEC9woR6/eTBsYO3YQ0dfEbwIhj9DpXScnlzDvEvR08Jmpwpv74fUbqMQxqTIdcAoy92D+evc6OEmmqIrnGERBGoQiwCcUYJSEme5P8Skcaunt1bYdeKj70vQWAUWeKuXz+c0I1qua3ieHH6ETYhi9Kif9nMj7pwpeiErcN5j2wueYCgtFx4aJX7S7HJUK7JAYAwOki95OF9gd6rDTE7TY+1GUPO0q8gN12Ai6QuWzGXAR846monn0cMehe8jbwY0PtdLHMjdJ7JHD1sqhqReFCR2DTcb8ErpxjJzCXSIPoaRY1lgLlsE7+o5AezEUD0PX/11ULvS2F4oQ79gLOuV+vS7mrb1siTg84Xyxu9Hn021O81ID+clxXHaoU6AKiCElPI/22icunR8uuqxb69ss/C+8/fVG/+1YYi2LaXA78llAJKmTKQunnumox9quXhWL9mTF5oExOVElT5zwA7Hq8WIgu+8j+vPcjmXB/PEN/DgqnSdfV854Jx5TxLAFn3wN86YFo+bdfEwzIj2f4g8oAscDSPpQR+ov3hddxVsz2spcZbrIVHcJo52s3Re/HOfcLl/AvPyzuqTo+7Ehg3y+J39SWMnC0uCe2GAA1Z/Y8PWSiABETcF11lCmx4UfTovf5y0aa+599Ltqj9ah24fTbm0w9FIBz3io/Bx54IC8Wh9/4Gv/x459wns+Ljw8znuZ8e3XRffFP/sn55jXFn6/wzGWcX9ut8e2YWDqF88l/Kn27Ljz6Nc7fu7uwczYs5rx2c7K6D50u7tOiyZzPe5XzbRuSn0tRs4rzRW9Hy+e8xPmdh3OeyxXeZi4rxnZtN86n/4fz2pri2nFh3XzxKRT/+b4Y030ncZ5t4PydOziv21pYG7kc5/eP57x6BeeTbix8HA+eFt6ba7tx/u5dnK+eVVgbheLz98T1lgo3j+L88W9yft84Mf/iUL2C84Zaf50lH3C+fmFpxsc5BzCFO9ZUxgvdvq2JwBgbB+BWAGUA7uWc3+irP2bMGD5lSnHpGo646XWMHdYLf/ry6KLOT9GCkc8LQ16lI2VICjvWzIqqx1K0OTDGPuKcj7EdaxFqIsZYGYA7AIwHMArAVxljCTf+TZGCIJNJCUExSAlBu0eLIAYAxgKYzzlfyDmvB/AYgDOaoqPT/vI2VlU3MhtoihQpUrQxtJQ4g0EAqMvGMgCR9JaMsYsBXAwAQ4ZY/HMTYETfzti5V0d88YCEm6ykSJEiRTtASyEGicA5/xuAvwHCZlBMG38+N8bXPUWKFCnaIVqKmmg5AOqUP1iWpUiRIkWKHYCWQgw+BDCSMTaMMVYJ4FwARezzmCJFihQpikGLUBNxzrOMscsAvAThWno/59wSP58iRYoUKZoCLYIYAADn/HkAlmQxKVKkSJGiqdFS1EQpUqRIkaIZkRKDFClSpEiREoMUKVKkSJESgxQpUqRIAbScRHWFgjG2FsDnCar2AbAutlbrRHptrRPptbVOtIVr24Vzbt3QodUSg6RgjE1xZelr7UivrXUivbbWibZ8bUCqJkqRIkWKFEiJQYoUKVKkQPsgBn9r7gE0IdJra51Ir611oi1fW9u3GaRIkSJFini0B8kgRYoUKVLEICUGKVKkSJGidRIDxtj9jLE1jLHppKwXY+wVxtg8+d1TljPG2G2MsfmMsWmMsQPIOefL+vMYY+c3x7WYcFzbdYyx5YyxqfJzMjl2tby2OYyxk0j5OFk2nzE2YUdfhw2MsZ0ZY5MYYzMZYzMYYz+S5a362Xmuq608tw6MsQ8YY5/K6/uVLB/GGHtfjvVxmX4ejLEq+X++PD6UtGW97uaA57oeZIwtIs9ttCxvFfOxaHDOW90HwFEADgAwnZT9HsAE+XsCgJvk75MBvACAATgEwPuyvBeAhfK7p/zds4Ve23UArrLUHQXgUwBVAIYBWACRArxM/h4OoFLWGdUCrm0ggAPk764A5spraNXPznNdbeW5MQBd5O8KAO/L5/EEgHNl+d0Avid/fx/A3fL3uQAe9113C7yuBwGcY6nfKuZjsZ9WKRlwzt8CsMEoPgPAQ/L3QwDOJOUPc4H3APRgjA0EcBKAVzjnGzjnGwG8AmBckw8+Bo5rc+EMAI9xzus454sAzAcwVn7mc84Xcs7rATwm6zYrOOcrOecfy9+bAcyC2P+6VT87z3W50NqeG+ecb5F/K+SHAzgWwL9kufnc1PP8F4DjGGMM7utuFniuy4VWMR+LRaskBg7055yvlL9XAegvfw8CsJTUWybLXOUtFZdJ0fR+pUZBK742qTrYH4IbazPPzrguoI08N8ZYGWNsKoA1EIvdAgCbOOdZWYWONbgOebwaQG+0wOszr4tzrp7bDfK53cIYq5Jlre65FYK2RAwCcCG7tSWf2bsAjAAwGsBKADc362gaCcZYFwD/BnA557yGHmvNz85yXW3muXHOc5zz0RD7k48FsEfzjqg0MK+LMbY3gKshru8gCNXPz5pvhDsObYkYrJYiG+T3Glm+HMDOpN5gWeYqb3HgnK+WkzYP4B6EonWruzbGWAXEgvkPzvlTsrjVPzvbdbWl56bAOd8EYBKAQyHUJGq3RDrW4Drk8e4A1qMFXx+5rnFS7cc553UAHkAbeG5J0JaIwbMAlBX/fADPkPLzpCfAIQCqpUriJQAnMsZ6SvH9RFnW4qAWSomzAChPo2cBnCu9N4YBGAngAwAfAhgpvT0qIYx4z+7IMdsg9cb3AZjFOf8TOdSqn53rutrQc+vLGOshf3cEcAKEXWQSgHNkNfO5qed5DoDXpcTnuu5mgeO6ZhPGhEHYQehza/HzsWg0twW7mA+ARyHE7gYI/dxFEDrJ1wDMA/AqgF489Bi4A0LH+RmAMaSdCyGMWPMBXNDc1+W5tkfk2KdBTMiBpP7P5bXNATCelJ8M4dWyAMDPm/u65JiOgFABTQMwVX5Obu3PznNdbeW57QvgE3kd0wH8UpYPh1jM5wN4EkCVLO8g/8+Xx4fHXXcLu67X5XObDuDvCD2OWsV8LPaTpqNIkSJFihRtSk2UIkWKFCmKREoMUqRIkSJFSgxSpEiRIkVKDFKkSJEiBVJikCJFihYKxtiXZAK5PGPMufcwsyR3lOWuBIg9GWP/kRHGH8hAs2LbKjh5HWPsQMbYZ/Kc26QLa1F9eO7Jj+W9m84Ye5Qx1iHunJQYpEiRotnBGDuGMfagUTwdwNkA3oo5/UHYcwFNAPAa53wkhOuyygJ7DYCpnPN9AZwH4NZGtDUeIl5iJICLIaLOwRjrBeBaAAdDBK1dy8J0JHcB+A45b1wxfbjAGBsE4IcQrq97QyRAPNd3DpASgxQpUrRQcM5ncc7nJKjnSu7oSoA4CiKWAJzz2QCGMsb6F9lWQcnr5LFunPP3uPDrfxj2BH9J+gBj7CeMsQ+lxPArMt5yAB1lBHgnACss16QhJQYpUqRoq3AlQPwUQuIAY2wsgF0gUkgU01ahyesGyd9mecF9MMZOhJAWxkLkvzqQMXYU53w5gD8CWAIRwFrNOX855vpSYpAiRYrmAxOb30wFcC+A01m4oUxJN76RXLiKsL0RgrueCuAHEFHIuSLbahIk7ONE+fkEwMcQyfVGSnXUGRB7RuwEoDNj7BtxfZbHVUiRIkWKpgLn/GBA2AwAfItz/q0SNr+aMTaQc76SkQSIXGSUvUD2ywAsgtiQpuC24E9ed4xR/oYsH2ypX0wfDMDvOOd/pQNljH0JwCLO+Vr5/ykAh0Gk1nAilQxSpEjRVmFNgMgY6yETAQLAtwG8xY1U6knbQoHJ6+SxGsbYIZIQnQd7gr+kfVzIROp0MMYGMcb6QaiHDmGMdZJ9HAeRWNCP5k6OlH7ST/pJPxBc9ING2VkQ+vE6AKvlYgoI1cfzpF4kuaMsdyVAPBQiGeAcAE+BbFFZRFsFJ68DMAbCU2oBgNuBIEdcMX38SJZ9BuBdACNk+a8AzJb9PAKZRND3SRPVpUiRIkWKVE2UIkWKFClSYpAiRYoUKZASgxQpUqRIgZQYpEiRIkUKpMQgRYoUKVIgJQYpUqRIkQIpMUiRIkWKFAD+H0QCPOho5eFZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(var.counts, s_ir)\n", + "\n", + "plt.plot(lc.time, lc.counts)\n", + "plt.plot(var.time, var.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc, var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rebin the crosss-spectrum for ease of visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "cross = cross.rebin(0.0050)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "lag = cross.time_lag()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvRklEQVR4nO3dd5xU9b3/8deHIghSlF1EKYJKURRXXRsBgoEoGogNscWI8RfUVBJNYkmi3tjuvXg1ibGgiVgjBKIRYoWIKEUFXRHLIkUFRLqAgkj5/P74nnVnlu07s2dm9v18POYxM6fNZ87OzmfOt5q7IyIikgqN4g5ARERyh5KKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKKZAUz29fMZpjZZjO7Le54RKR8SipSJ2b2oZkNroeXGgWsBVq7+xX18HoZxcw6mdkkM1trZhvNbIGZjUzza44zsxvT+RqSe5rEHYBINR0AvOsV9NY1sybuvqOeY6pPDwNvEc7DNuBwoEOcATWAcy61oCsVSQsz29vMppjZGjPbED3ulLC+W0Jx1lQz+4uZPVLBscYBFwG/NrPPzWywmV1vZhPN7BEz2wSMNLM2ZvZXM1tpZivM7EYzaxwdo7GZjYl+6S8xsx+bmZtZk2h90hVXdPxHEp4fb2azzOwzM3vLzAYmrJtuZn8ws5nR+3nezPIS1vdL2HeZmY00s2PMbFVJfNF2Z5rZWxWc0mOAce7+hbvvcPc33f2ZaL+u0XsZZWafRO//yoTjNjKzq8xssZmtM7MJZrZPFfGNAi5IOOeTE87Tb8xsPvCFmTWJXvvgxL9XyRWOmQ00s+Vm9mszWx3FdrqZnWpmC81svZldU8F7liykpCLp0gh4gPDLuguwFbgzYf1jwGtAO+B64MKKDuTuI4FHgf9x973cfWq06jRgItA2Wj8O2AEcDBwJnAT8v2jbHwJDo+WFwPDqvhEz6wj8G7gR2Ae4EphkZvkJm50PXAy0B/aItsHMDgCeAf4M5AMFQJG7vw6si2IscSHwUAVhzAH+YmbnmlmXCrY5EegeHfM3CUnyp8DpwDeB/YENwF+qiG8syed8WMLrnAd8B2hbzSuVDkBzoCPwe+A+4HvA0UB/4Hdm1q0ax5EsoKQiaeHu69x9krtvcffNwE2ELzWiL8VjgN+7+1fu/grwVC1eZra7P+nuu4DWwKnA6OjX/GrgduDcaNsRwB3uvszd1wO31OB1vgc87e5Pu/sud38BmBu9XokH3H2hu28FJhC+nCEkm6nu/nd33x6dl6Jo3YPRsYmuHE4mJNvynA28DPwOWGpmRWZ2TJltboje+9uEhH5etPwy4Fp3X+7u2whJfHh0lVZZfBX5U3Qet1axXYntwE3uvh14HMgD/ujum939HeBd4IhqHksynJKKpIWZtTCze83so6h4agbQNiru2R9Y7+5bEnZZlrDvPVGRy+dVFI0sS3h8ANAUWBkV43wG3Eu4ciB6zcTtP6rB2zkAOLvkuNGx+wH7JWzzacLjLcBe0ePOwOIKjvsIMMzMWhKS3svuvrK8Dd19g7tf5e69gX2BIuBJM7OEzcq+v/0T4n8iIfb3gJ3RcSqLryLLqt4kyTp33xk9LklEqxLWb6X0fEmWU1KRdLkC6Akc5+6tgQHRcgNWAvuYWYuE7TuXPHD3y6Iil73c/eZKXiOx0n4ZoQI7z93bRrfW0Zcw0Wt2Tti+bBHSF0BiPImV4MuAhxOO29bdW7r7rZXElrjvQeUG774CmA2cSSj6ergax8Pd1wJjCEljn4RVZd/fJwkxnFIm/ubR61cYH8nnt7LlW6j43EkDo6QiqdDUzJon3JoArQi/QD+LinauK9nY3T8iFB9db2Z7mNkJwLByj1xN0S/854HbzKx1VDl9kJl9M9pkAvAzC01z9wauKnOIIuBcM2tqZmXrXEquKE6OKvybRxXQnajao8BgMxsRVWq3M7OChPUPAb8mtOb6Z0UHMbP/NrPDomO0Ai4HFrn7uoTNfhddIfYm1O+Mj5bfA9wU1Z9gZvlmdlo14lsFHFiN91gEnB+dmyFExZzSMCmpSCo8TUggJbfrgTuAPQl9S+YAz5bZ5wLgBEJl9Y2EL8BtdYzj+4RK8ncJldETKS2iug94jtAs9w12/wL/HeEX+wbgBhLqNtx9GaFRwDXAGsKv+19Rjf8fd/+YUPdyBbCe8AWcWH/wBFHxVJniwLJaRNt+BiyJ9vlumW1eAhYB04Ax7v58tPyPhDqr581sM+HvcVw14vsrcGhUbPZkJbH9nPCj4DPC37WybSXHmSbpkkxgZuOB9939uio3Ts3rdQWWAk3j7mthZouBSxNatdV0/65kyHsR0ZWKxCLqp3FQVEw1hHAl8GTMYdU7MzuLUEfxn7hjEUmF2HrUm1lnQnnyvoR/qrHu/seo/H080BX4EBjh7hviilPSpgOhCKodsBy43N3fjDek+mVm04FDgQujZtEiWS+24i8z2w/Yz93fiCoe5xE6aI0kNDe91cyuAvZ299/EEqSIiNRIbMVf7r7S3d+IHm8mtJ3vSCgGeTDa7EFCohERkSyQERX1UUXjDOAw4GN3bxstN2BDyfMy+4wijFxLy5Ytj+7Vq1d9hZvTitcVA9CzXc+YIxGRdJs3b95ad8+vesvqiz2pmNlehKaQN7n7P83ss8QkYmYb3H3vyo5RWFjoc+fOTXOkDcPAcQMBmD5yeqxxiEj6mdk8dy9M5TFjbf1lZk2BScCj7l7Sb2BVVN9SUu+yOq74RESkZuJs/WWEzlXvufv/Jax6ijDM+a3R/b9iCK/B+u2A38YdgohksTgn6foGYbyjt82sKFp2DSGZTDCzSwiD4o2IJ7yGafCB9TGJo4jkqtiSSjTcuVWwelB9xiKlij4tAqCgQ0GscYhIdtJ0wpJk9LOjAVXUi0jtaJgWERFJGSUVERFJGSUVERFJGSUVERFJGVXUS5KbB1U2e6+ISOWUVCRJ38594w5BRLKYir8kyaxls5i1bFbcYYhIltKViiS5Zto1gPqpiEjt6EpFRERSRklFRERSRklFRERSJjeTijt8+WXcUYiINDi5V1G/fTt07QoXXww33hh3NFnnjiF3xB2CiGSx3EsqTZtCx47w8stxR5KVNOS9iNRFbhZ/9e8Pr74K27bFHUnWmbpkKlOXTI07DBHJUrmbVLZtg7lz444k69w440ZunKFiQxGpndxMKv36hXsVgYmI1KtYk4qZ/c3MVpvZgoRl15vZCjMrim6n1vjAeXlwyCFKKiIi9SzuK5VxwJBylt/u7gXR7elaHbl/f5g5E3burEt8IiJSA7EmFXefAaxPy8H794eNG+Htt9NyeBER2V2mNin+iZl9H5gLXOHuG2p8hAEDwv3LL0NBQSpjy2n3Dr037hBEJIvFXfxVnruBg4ACYCVwW3kbmdkoM5trZnPXrFmz+wZduoSb6lVqpGdeT3rm9Yw7DBHJUhmXVNx9lbvvdPddwH3AsRVsN9bdC929MD8/v/yD9e8fkop7+gLOMZOLJzO5eHLcYYhIlsq4pGJm+yU8PQNYUNG2VerfHz79FBYvrnNcDcVts2/jttnlXhyKiFQp1joVM/s7MBDIM7PlwHXAQDMrABz4ELi01i/Qv3+4f/llOPjgOsUqIiJVizWpuPt55Sz+a8pe4JBDoF27kFQuvjhlhxURkfJlXPFXSpmF3vUzZsQdiYhIg5DbSQVCEdjixbByZdyRiIjkvEztp5I6ifUqI0bEG0sWePiMh+MOQUSyWO5fqRx5JLRsqf4q1dS5TWc6t+kcdxgikqVyP6k0bQonnKCkUk3jF4xn/ILxcYchIlkq95MKhCKw+fPhs8/ijiTj3T33bu6ee3fcYYhIlmo4ScUdZs2KOxIRkZzWMJLKcceFYjAVgYmIpFXDSCotWsDRR6u/iohImjWMpAKhCOz112Hr1rgjERHJWQ0rqWzfDq+9FnckGW3iiIlMHDEx7jBEJEs1nKTSr18YtkX1KpXKa5FHXou8uMMQkSzVcJLK3nvDYYcpqVRhXNE4xhWNizsMEclSDSepQCgCmzULduyIO5KMpaQiInXR8JLK55/DW2/FHYmISE5qeEkF6l4EtnkzvP02LFkCu3bVPS4RkRyR+6MUJ+rYEbp1C/1VRo+ufNslS6C4GJYuhQ8/DPclt/XrS7dr2RIOPzzc+vQpfbzPPrWPc8cO+M9/YPx42LQpNDIYMCAcv3Hj2h9XRCTNGlZSgXC18swzYdgWs93Xv/YaXHcdPPts6bI99oCuXUNCKiwM9127ll6xzJ8PkybBffeV7tOxIxQUhMEs+/aFY48NCagi7jBnDvz97yGZrF4NrVuHBgYToya+rVuHBNO/f0gyhYUhNoCdO8OcMR9/DMuWhfuPP4YVK0KsAwaE/dq1q9v5ExGphLl73DHUWWFhoc+dO7d6G99/P/zwh/Dee9CrV+nyN94IyWTKlPDFe8UV4Yu4Wzfo0AEaVVFS6B6+1OfPD4nm7bdh3jx4992wvnHjkGT69i29dekCCxbAY4/B44+Hq6DmzWHoUDj/fDjllPD8449Dkd3LL4errPfeC8fcc0849FBYsyYkj507k2Nq1Soktw8/hC+/DMsOPxy++c3w3gYMgH33Tdply/YtALRo2qJ651NEspaZzXP3wpQeM86kYmZ/A4YCq939sGjZPsB4oCvwITDC3TdUdpxW3Vr50dcdXelrDe0xlCv7XgkLFzLwlp6MLBjJyJ8/wNpXX2T4P86GdeugSRPo3Dl8EZcpZhpZMJKRBSNZu2UtwycM54oTrmBYz2EUry3m0imXVvzCO3bApk1c8dkhDJu5luKFs7l08FZungZ9P9+bWXtt4JpBhCuSffeFvLxyi7huHnQzfTv3ZdayWVzz7K+4d6/z6PnaYiZ/Mp3bun0CzZpDs2YhCTVrFm5NogvRXbu4t+Nl9Jy7lMnzJ3LbXvOZ+Pgu8rbAuFM6MO6EFuF9V2LiiInktcj7unXY9JHTARgzawxTFk6pdF8gafvZy2czacQkAK6eejWzl8+udN92Ldolbb9u6zrGDhsLwKjJo1i4bmGl+/do1yNp+3Z7tuOWwbcAcNaEs1i3ZV2l+5/Q6YSk7U/odEL4LAEDxw2sdF9I+OxF25f9LFWl1p+9SNntkz5L066pcv+y29879F565vVkcvFkbpt9W5X7l92+7GepKvrspe+z99LFL6U8qcRd/DUOuBN4KGHZVcA0d7/VzK6Knv8mZa/YvXsYXPK112D4cHhmEpzXOBQRdexY+kWcKk2ahPqV73wP/msYrHoH/nER9BkACzbC4W2h5ZwQU3U1bQrf/jac9xMongxV/WM3ahTGPjv5fCjuA7PGwMhrYPZbMP32cCUUJZVPNn8CwP6t9q/lGxaRhiz24i8z6wpMSbhSKQYGuvtKM9sPmO7uPSs7Ro2KvyAkk0mTQvHQL34Rbm3b1vo9ZLXrr4cbboCvvoKmTb/+9VPy605Eclc6ir/ivlIpz77uvjJ6/Cmwb3kbmdkoYBRAly5davYKv/89HH88/OAHdWullQvy88P9unWh7khEpA4yMal8zd3dzMq9lHL3scBYCFcqNTpwnz7hJqVJZc0aJRURqbNM7Py4Kir2IrpfHXM8ua19+3C/Zk28cYhITsjEpPIUcFH0+CLgXzHGkvtKrlRWK3eLSN3FWvxlZn8HBgJ5ZrYcuA64FZhgZpcAHwEj4ouwAUgs/kIV9CJSN7EmFXc/r4JVg+o1kIasXbswsoCKv0QkBTKx+EvqU+PGoQVclFTGzBrDmFljYg5KRLKVkoqEIrAoqUxZOKVavZRFRMqjpCKhBZiKv0QkBZRUJOlKRUSkLpRUJCQVNSkWkRTI6B71Uk/y88PEYzt3smfTPeOORkSymJKKhKTiDuvW8cwFz8QdjYhkMRV/yW4dIEVEaktJRZKSyh9e+gN/eOkP8cYjIllLSUWSBpWctnQa05ZOizceEclaSiqi4i8RSRklFQnjf4GaFYtInSmpSJjzfu+9daUiInWmJsUSRL3q27VoF3ckIpLFlFQkiJLKpBEvxh2JiGQxFX9JoPG/RCQFlFQkiEYqvnrq1Vw99eq4oxGRLKXiLwny82HtWmYvnx13JCKSxTI2qZjZh8BmYCeww90L440ox+Xnw65dsH17aA0mIlILGZtUIie6+9q4g2gQSjpAKqmISB2oTkWCxKQiIlJLmZxUHHjezOaZ2aiyK81slJnNNbO5a9Rqqe6ipNLJW9GpdaeYgxGRbJXJxV/93H2FmbUHXjCz9919RslKdx8LjAUoLCz0uILMGdGgko80Px/OvCzmYEQkW2XslYq7r4juVwNPAMfGG1GOy8sL97rqE5E6yMikYmYtzaxVyWPgJGBBvFHluD32gDZtGP3FJEY/OzruaEQkS2Vq8de+wBNmBiHGx9z92XhDagDy8yna9Ql8WhR3JCKSpTIyqbj7EuCIuONocPLzYbtacItI7WVk8ZfEJD9fTYpFpE4y8kpFYpKfD9u/ijsKaQjWr4f586FNGzjyyLijkRRSUpFS7dvT450d0K573JFIrti+HYqLQwJJvK1YEda3bg3r1kETfRXlCv0lpVR+PmOfchj3P3FHItnms89C8li4MPn+/ffhq+jqt2lTOOQQOPFEOOII2LABbr4ZioqgUEP75QolFSlVMlTLmjVhemGRstxh0SJ46SWYMyckjuLi5P5NjRvDgQdC9+4wZAj06RNuPXuGpuslli8PSeWVV5RUcoiSipTKz2fUMOClKxnb46m4o5FM4B6uNl56qfS2cmVY164d9O4Np50WEkaPHuG+W7fk5FGRTp2ga9eQVEaPTue7kHqkpCKl8vNZ2A7YuCTuSCQO7iFhvP12uL36KsyYAatXh/X77Qff/GbprVcvCH3Jaq9/f3j++fDadT2WZAQlFSmlkYobjs2bYcGC0gRSclu/vnSbLl3g5JNLk8hBB6X+i79fP3j44VCk1l0NRHKBkoqUKkkqX6lZcc7Yvj1UmpdNHh9+WLpNy5Zw2GFw1llw+OHhdthhpePBpVO/fuH+lVeUVHKEkoqUat48VLLqSiV7rV0LU6bAtGmh6W5i66vGjUO9x7HHwiWXlCaQrl2hUUz9oHv1gn32CUnl4ovjiUFSSklFkhRsbgl77RV3GFITixfDv/4Vbq+8EqaF3nff0Knw5JNLk8chh0CzZnFHm6xRo3C18sorcUciKaKkIknu+OgQ2NA67jCkMu4wbx48+WRIJAuiAbwPPxyuvTa0xjrqqOyp+O7XD556KjQIiOb1keylpCLJ8vNh2bK4o5BEO3eGepAZM+Dll0tbZDVqFFpP/d//hURy4IFxR1o7ifUqZ54ZbyxSZ0oqkuR7vd6FNit5JO5AGrKvvgpXIjNmhNvMmbBxY1h3wAFw0kkweDB85zv1U5mebkcfHerzlFRygpKKJFm+53bY40v1G6hvH38MTz8dbtOmwZYtYXmvXnDOOeGKpH//kFRyzR57wHHHqV4lR1QrqZjZPuUs3uzuaiaUa5o2DQll06Ywgqykx44dMGtWSCL//ndpvUi3bqEV1Le+FYqFGkodQ79+cOut8MUXoYmzZK3qXqm8AXQGNgAGtAU+NbNVwA/dfV56wpN6VzK8xpo1SiqptmlTSCBPPgnPPReKtJo0gQEDYMyYUJzVs2fDvELs1y/UHc2ZA4MGxR2N1EF1k8oLwER3fw7AzE4CzgIeAO4CjktPeFLvmjYN92vWwMEHxxtLLvjsM5g8GSZODIlk2zbo0CF0NDz1VPj2t8Pw7w3dCSeEZPrKK0oqWa66SeV4d/9hyRN3f97Mxrj7pWaWlobvZjYE+CPQGLjf3W9Nx+tIshPaHwXL3k4edVZqZv360ER24sQwrtX27WHwxMsvh+HDwxdoXJ0NM1WbNmE4fNWrpMeXX8KSJaEzbOK8NmlQ3aSy0sx+AzwePT8HWGVmjYFdqQ4qOu5fgG8Dy4HXzewpd3831a8lyW7pfwNc+CCcuzruULLLtm2hz8i4cfDCC6HO5IAD4Gc/C4nk2GOVSKrSrx888EA4d5q0q+a+/DJ0hP3ggzCWWsn9okWhm4B72K5RozAkzlFHhe1TrLp/ufOB64Ano+czo2WNgREpjwqOBRa5+xIAM3scOA1QUkm3xDlVpHLu8MYb4YvwscfCpFOdOsEvfwlnnx2ayjbE+pHa6tcP7rxTk3ZVh3sYv2327FAPNWdOOG+JQyy1axeSx4AB4f7gg8MwPYceCi1ahG3S8PmsVlJx97XATytYvSh14XytI5DYA285ZeptzGwUMAqgS5cuaQihYTpryoVwXmMmKalUbM0aePRR+NvfQqfEZs3gjDNCq61Bg8IYW1Jz3/hGuNekXbvbsCEkjVdfLU0kJVMStGgBxxwDV1wRJkPr3j2MKB3TRHvVbVKcD/wa6A00L1nu7t9KU1xVcvexwFiAwsJCjyuOXLNuyzpo00RXKmXt2hXqR8aODRXvO3aEf+S77oJzz9VMmamgSbvC5+qDD+Ctt5LrPhJHuejRI8yoefzxoX7usMMyqriwupE8CowHhgKXARcB6fzWWUFowlyiU7RM6kPTPZRUSqxaFYq3xo6FpUtD8eDPfw4jR4Z/ZkmthjRp15o1yYlj/nx4551QPwchUfTqFc5Jnz6hIcMxx4RirQxW3aTSzt3/amY/d/eXgJfM7PU0xvU60N3MuhGSybmEOhypD02bNuyk4h6mzb3nHvjnP0M59cCBcMstoZirOlPlSu3k4qRdX321e6ur+fNLp2WG0My8Tx/46U/DfZ8+IaFk2qjS1VDdpFJS+7PSzL4DfAKU18s+Jdx9h5n9BHiO0Bjgb+7+TrpeT8poqEll/Xp46KGQTIqLoW1b+PGP4dJLwz+4pF82T9rlDp9+Wpo0Soqw3nsvFGtB+EHSu3cYv60kefTpk1MjJ1Q3qdxoZm2AK4A/A62B0ekKCsDdnwaeTudryO4GdRsEC3fA6rkNowjCPVR+3nMPjB8fmmUef3xoGjxiBOy5Z9wRNizZNGmXO7z7bqhjmzo1JJG1a0vXd+oUEsZ3vlNafNW9e2kH4xxV3dZfU6KHG4ETAcxsdJpikhj97pu/g1ebwbaZ8Pnn0KpV3CGlx+bNoQXXPfeEL4O99gr1JJdeCgUFcUfXcGX6pF1ffRVGjp48OdyWLg3LCwrg9NNLrzwOPzwkxwaoLk0GfgnckaI4JJMk9lXJtaRSVBQSyaOPhqR5xBHh+fnn5957zVYlk3atWhVmsIzbypXhSmTy5DDUzqZNYaj+QYPgqqvClUjHjnFHmTHqklRyvFykYTrl0VPgszU8AyGpZOvET4m2b4dJk+CPfwzt+5s3D82AL7ss9HTP9SK+bFNSrzJzZv3Or+IerjzefDN0ai25X7UqrO/QIRSJDhsW5rMp6UAoSeqSVNQ3JAdt3b4VmkR/2myvrN+wITQFvvNOWL48lGfffjtcdJH6lWSy+pq0a+vWUJQ1dSrMnRuSSMlkaI0bhwr1IUPgyCOhb98Ql4baqVKlScXMNlN+8jBANZi5KnGk4mxUXAx/+lOobN+yJcxNcvfdYVRgfSlkvnRN2uUePhvPPhuKsaZPDw0zmjULdSLnnRcSyFFHhT5IzZtXdUQpR6VJxd1VyNwQZWNScQ8zJt5xR5izZI894IILQs/sPn3ijk5qqmTSrs8/D40oamvz5nAlUpJIPvooLO/ZMzTKGDIkjI2loqyUyZy+/ZI5GjcOv9KyJals2gSXXBKGmm/fHq6/PtSXZEIlr9ROyaRdr75a8/lVPvqotHXWiy+GOrVWrcJxrr4aTj45DAcjaaGkIkmG9hgaHuQvKR2wLpO9/XaY8GrJktDjffRoFVvkgppM2rVrF7z+emkiKZknpEePMKTO0KGhTiTH+4dkCiUVSXJl3yvDg/aPZ/6VyoMPhomv2rYNv0j79487IkmVyibt2rUr9FKfOTPcnnsutNBq3Dhc4YwZE1po9ehR/3GLkopUID8/c5PK1q1h8qv774cTTwxzmXToEHdUkmolk3Zt3Ajz5sGsWeE2e3aYphnC5/TEE+G734VTTmmwHQ4ziZKKJBk4biAA0/O7hF+DmWbx4jCTYlERXHMN3HBDRg37LSlUMmnX3nuXzlrYu3eYAO0b3whFWgcfrH5GGUb/jVK+TLxSefLJMJRKo0YwZUroySy565RT4MILoUuXkESOP179i7KAkoqULz8/9PHYsiX+5paffAI33hj6mhQWwj/+odY7DUHr1mHUaMkq6gkm5cuEuepXrAh1JwceGHrG/+xnoeJWCUUkYympSPlKkkoczYpLkslBB4Xpei+4ABYuDGN3ZeGkRSINiYq/JMmI3iPCg53RpEH1eaWyYkXoRX3ffaHj20UXhcr4XBjUUqSBUFKRJD865kfhweLF4b4+ksqWLaGn8z33hD4II0eGZNKtW/pfW0RSSklFkmzZvgWAFvVVp7JiRehj8OabYaiVa69VnYlIFsu4pGJm1wM/BEq+za6JphaWenDqo6cCMP2iF8OgjOlMKvPmhYSyaVOYlGno0PS9lojUi4xLKpHb3X1M3EE0aGbp7asycSJ8//vhNWbO1EjCIjlCrb+kYulIKu5w002hV3RBAbz2mhKKSA7J1KTyEzObb2Z/M7Nyu9Ca2Sgzm2tmc9dkWs/vXJGfn9omxV9+Ga5Ofvvb0Ez4P//R8PQiOSaWpGJmU81sQTm304C7gYOAAmAlcFt5x3D3se5e6O6F+SWVypJa7dun7kpl9eowhPkjj4Te8Q8/rCHqRXJQLHUq7j64OtuZ2X3AlDSHIwlGFowsfZKq4q933w1T+a5eHYZYGT687scUkYyUcRX1Zrafu6+Mnp4BLIgznoZmt6Ty+eeh2Kq2VxXvvx+GJm/UCGbMCGN3iUjOyrikAvyPmRUADnwIXBprNA3M2i1rAchrkZc8/lfnzjU/2AcfwLe+FVqSvfgi9OqVwkhFJBNlXFJx9wvjjqEhGz4hFE1NHzm9bkllyZKQULZvh+nTlVBEGoiMSyqSQWrbq/6jj0JC2bIltPDq3Tv1sYlIRlJSkYq1jwaVrEmz4uXLQ0LZuBGmTQvzjItIg6GkIhWr6ZXKypUhoaxZA1OnwlFHpS82EclISipSsTZtoGnT6iWVVatCQvnkE3j+eTj22PTHJyIZR0lFklxeeHnpEzPIy6s6qaxdC4MHh7qUZ5+Fvn3TG6SIZCwlFUlyzmHnJC+oqgPk4sVw+umwaBFMmQIDBqQ1PhHJbJk69pfEZNnGZSzbuKx0QWVJ5dlnQ2fGFStCQhk0qH6CFJGMpaQiSS584kIufCKhq1B5SWXXrjDS8KmnQpcuMHeuEoqIACr+kqq0b5/cpHjTpjB3/JNPwvnnw9ix0LJlbOGJSGZRUpHK5eeHRLJtGyxdCmecEYZfuf12+PnPQ2W+iEhExV9SuZK+KvffH5oJr1sX+qCMHq2EIiK7UVKRypUklZ/8BA45BN54AwYOjDUkEclcKv6SJFeccEXygp49wxXJJZfAn/+sibVEpFJKKpJkWM9hyQt694b166Ft21jiEZHsouIvSVK8tpjitcXJC5VQRKSadKUiSS6dEuZEmz5yeryBiEhW0pWKiIikjJKKiIikTCxJxczONrN3zGyXmRWWWXe1mS0ys2IzOzmO+EREpHbiqlNZAJwJ3Ju40MwOBc4FegP7A1PNrIe776z/EEVEpKZiSSru/h6A7d4j+zTgcXffBiw1s0XAscDs+o2w4frtgN/GHYKIZLFMa/3VEZiT8Hx5tGw3ZjYKGAXQpUuX9EfWQAw+cHDcIYhIFktbUjGzqUCHclZd6+7/quvx3X0sMBagsLDQ63o8CYo+LQKgoENBrHGISHZKW1Jx99r85F0BdE543ilaJvVk9LOjAfVTEZHaybQmxU8B55pZMzPrBnQHXos5JhERqaa4mhSfYWbLgROAf5vZcwDu/g4wAXgXeBb4sVp+iYhkj7hafz0BPFHBupuAm+o3IhERSYVMK/4SEZEslmlNiiVmNw+6Oe4QRCSLKalIkr6d+8YdgohkMRV/SZJZy2Yxa9msuMMQkSylKxVJcs20awD1UxGR2tGVioiIpIySioiIpIySioiIpIySioiIpIwq6iXJHUPuiDsEEcliSiqSREPei0hdqPhLkkxdMpWpS6bGHYaIZCldqUiSG2fcCGgGSBGpHV2piIhIyiipiIhIyiipiIhIyiipiIhIyqiiXpLcO/TeuEMQkSwW1xz1Z5vZO2a2y8wKE5Z3NbOtZlYU3e6JI76GrGdeT3rm9Yw7DBHJUnFdqSwAzgTK+1m82N0L6jccKTG5eDIAw3oOizkSEclGsSQVd38PwMzieHmpxG2zbwOUVESkdjKxor6bmb1pZi+ZWf+4gxERkepL25WKmU0FOpSz6lp3/1cFu60Eurj7OjM7GnjSzHq7+6Zyjj8KGAXQpUuXVIUtIiJ1kLak4u41HufD3bcB26LH88xsMdADmFvOtmOBsQCFhYVet2hFRCQVMqr4y8zyzaxx9PhAoDuwJN6oRESkumKpqDezM4A/A/nAv82syN1PBgYA/2Vm24FdwGXuvj6OGBuqh894OO4QRCSLxdX66wngiXKWTwIm1X9EUqJzm85xhyAiWSyjir8kfuMXjGf8gvFxhyEiWUrDtEiSu+feDcA5h50TcyQiko10pSIiIimjpCIiIimjpCIiIimjpCIiIimjinpJMnHExLhDEJEspqQiSfJa5MUdgohkMRV/SZJxReMYVzQu7jBEJEspqUgSJRURqQslFRERSRklFRERSRklFRERSRklFRERSRk1KZYkT1/wdNwhiEgWU1KRJC2atog7BBHJYir+kiR3vX4Xd71+V9xhiEiWUlKRJBPemcCEdybEHYaIZCklFRERSZlYkoqZ/a+ZvW9m883sCTNrm7DuajNbZGbFZnZyHPGJiEjtxHWl8gJwmLv3ARYCVwOY2aHAuUBvYAhwl5k1jilGERGpoViSirs/7+47oqdzgE7R49OAx919m7svBRYBx8YRo4iI1FwmNCn+ATA+etyRkGRKLI+W7cbMRgGjoqfbzGxB2iJMnTxgbdxBVEOeXWxZESdZcj5RnKmSDTFC9sTZM9UHTFtSMbOpQIdyVl3r7v+KtrkW2AE8WtPju/tYYGx0nLnuXliHcOuF4kwtxZla2RBnNsQI2RVnqo+ZtqTi7oMrW29mI4GhwCB392jxCqBzwmadomUiIpIF4mr9NQT4NfBdd9+SsOop4Fwza2Zm3YDuwGtxxCgiIjUXV53KnUAz4AUzA5jj7pe5+ztmNgF4l1As9mN331mN441NX6gppThTS3GmVjbEmQ0xQgOO00pLnkREROpGPepFRCRllFRERCRlMjKpmNmQaJiWRWZ2VTnrm5nZ+Gj9q2bWNWFducO8VHXM+ozTzL5tZvPM7O3o/lsJ+0yPjlkU3drHFGNXM9uaEMc9CfscHcW+yMz+ZFHFWExxXpAQY5GZ7TKzgmhdSs9lNeMcYGZvmNkOMxteZt1FZvZBdLsoYXkc57PcOM2swMxmm9k7FoZROidh3TgzW5pwPgviijNatzMhlqcSlneLPiOLos/MHnHFaWYnlvl8fmlmp0fr4jifvzSzd6O/7TQzOyBhXWo+n+6eUTegMbAYOBDYA3gLOLTMNj8C7okenwuMjx4fGm3fDOgWHadxdY5Zz3EeCewfPT4MWJGwz3SgMAPOZVdgQQXHfQ04HjDgGeCUuOIss83hwOJ0nMsaxNkV6AM8BAxPWL4PsCS63zt6vHeM57OiOHsA3aPH+wMrgbbR83GJ28Z5PqN1n1dw3AnAudHje4DL44yzzGdgPdAixvN5YsLrX07p/3vKPp+ZeKVyLLDI3Ze4+1fA44ThWxKdBjwYPZ4IDIqyZ0XDvFTnmPUWp7u/6e6fRMvfAfY0s2Z1jCelMVZ0QDPbD2jt7nM8fOIeAk7PkDjPi/ZNlyrjdPcP3X0+sKvMvicDL7j7enffQBj/bkhc57OiON19obt/ED3+BFgN5NcxnpTHWZHoM/EtwmcEwmfm9AyJczjwjCd3o0il6sT5YsLrJw6RlbLPZyYmlY7AsoTn5Q3V8vU2HsYQ2wi0q2Tf6hyzPuNMdBbwhrtvS1j2QHQ5/Ls6FoXUNcZuZvammb1kZv0Ttl9exTHrO84S5wB/L7MsVeeyunHWdN+4zmeVzOxYwi/exQmLb4qKTm5PwQ+husbZ3MzmmtmckiIlwmfiMy8dWzBjzifhCrvs5zPO83kJ4cqjsn1r/PnMxKTSYJhZb+C/gUsTFl/g7ocD/aPbhXHERij26OLuRwK/BB4zs9YxxVIlMzsO2OLuiWPAZcq5zDrRL9SHgYvdveTX99VAL+AYQjHJb2IKr8QBHoZCOR+4w8wOijmeCkXn83DguYTFsZ1PM/seUAj8b6qPnYlJpTpDtXy9jZk1AdoA6yrZNx3Dv9QlTsysE/AE8H13//qXoLuviO43A49Rt1Gaax1jVIS4LoplHuHXao9o+04J+8d+LiO7/QpM8bmsbpw13Teu81mh6MfDvwnj9H09wKu7r/RgG/AA8Z7PxL/vEkL92ZGEz0Tb6DNS42OmI87ICOAJd99esiCu82lmg4FrCSOabKti35p/PlNVSZSqG6GX/xJCRXtJZVPvMtv8mORK2wnR494kV9QvIVReVXnMeo6zbbT9meUcMy963JRQLnxZTDHmA42jxwdGH6R9vPyKu1PjOpfR80ZRfAem61xWN86Ebcexe0X9UkIl6N7R49jOZyVx7gFMA0aXs+1+0b0BdwC3xhjn3kCz6HEe8AFRpTTwD5Ir6n8UV5wJy+cAJ8Z9PgmJdzFRY4x0fD5r/QbSeQNOJUzetZjwawngvwiZFaB59MFZFL3hxC+Ta6P9iklopVDeMeOKE/gt8AVQlHBrD7QE5gHzCRX4fyT6Yo8hxrOiGIqAN4BhCccsBBZEx7yTaGSGGP/mAwlD/SQeL+XnsppxHkMod/6C8Kv5nYR9fxDFv4hQrBTn+Sw3TuB7wPYyn82CaN1/gLejWB8B9ooxzr5RLG9F95ckHPPA6DOyKPrMNIv5796V8KOnUZljxnE+pwKrEv62T6X686lhWkREJGUysU5FRESylJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKK5JQyI9cWWcII1tnOzI40s79Gj0ea2Z1l1k83s8JK9n/czLqnO05p2OKaTlgkXba6e0F5K6Kxv8xLhx3JNtcAN9Zh/7uBXwM/TE04IrvTlYrkNAvzwhSb2UOEDlydzexXZvZ6NJDfDQnbXmtmC83sFTP7u5ldGS3/+grAzPLM7MPocWMz+9+EY10aLR8Y7TPRzN43s0dLBrM0s2PMbJaZvWVmr5lZKzObkTiXRvT6R5R5H62APu7+VjXe83cTrtSKzWxptOplYHDCECYiKacPl+SaPc2sKHq8FPgF0B24yN3nmNlJ0fNjCcNOPGVmAwg9oc8FCgj/F28QeuRX5hJgo7sfE40wO9PMno/WHUkYNugTYCbwDTN7DRgPnOPur0djbG0F/gqMBEabWQ+geTnJo6RXc6JzzKxfwvODAdz9KeApADObALwULd9lZouAI6rx3kRqRUlFck1S8VdUp/KRlw6MeFJ0ezN6vhchybQiDPi3Jdrv65kEK3ES0MdKZ/prEx3rK+A1d18eHauIMFTHRmClu78O4O6bovX/AH5nZr8iDJUxrpzX2g9YU2bZeHf/ScJ7nZ640sx+TTgff0lYvJow+ZaSiqSFkoo0BF8kPDbgFne/N3EDMxtdyf47KC0qbl7mWD9198ThzDGzgUDi/Dg7qeR/zd23mNkLhAmVRgBHl7PZ1jKvXaloJNqzgQFlVjWPjiWSFqpTkYbmOeAHZrYXgJl1tDB3/QzgdDPbM6q/GJawz4eUftEPL3Osy82saXSsHmbWspLXLgb2M7Njou1bJdRv3A/8CXjdw8x7Zb1HVLxVFQvzjv8FONvdyyaQHuxejCaSMrpSkQbF3Z83s0OA2VHd+efA99z9DTMbTxj1djXwesJuY4AJZjaKMM9IifsJxVpvRBXxa6hkqlV3/8rMzgH+bGZ7Eq4YBhPmWp9nZpsI82qUt+/7ZtbGzFp5mB+mMiMJMyA+Gb3HT9z9VDPbl1Ac9mkV+4vUmkYpFimHmV1P+LIfU0+vtz9hoqleFTV5NrNfAJvd/f5avsYvgE3u/tdaBypSBRV/icTMzL4PvEqY/6KyPjR3k1xXU1OfAQ/WYX+RKulKRUREUkZXKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjL/H3DbH9bCFmNTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-0.0050)*1/0.0050)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al (2014), the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase wraps and the lag becomes negative. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "13it [00:00, 3156.72it/s]\n" + ] + } + ], + "source": [ + "cross = AveragedCrossspectrum(lc, var, segment_size=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvIUlEQVR4nO3debyUdfn/8dcFKJssyiFF2bSEfm5hHO2rolL6U/KruYYaWqSFWdaXzA2wb1ailpqUqUmalJBCmiZqZtgPrYAU7GhuEG4skiKioiDbuX5/fO7juWeYOWfOOfece5b38/GYx5m512tuhrnms97m7oiIiCShQ9oBiIhI5VBSERGRxCipiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKlAUz29nMHjOzdWZ2bdrxiEhuSirSJmb2ipkd2Q6nGge8CfR09++0w/lKipn1N7O7zexNM3vHzJ4xs7FFPuc0M7u8mOeQytMp7QBECjQIeM7zjNY1s07uvqWdY2pPtwNPEa7DRmBfYJc0A6qCay6toJKKFIWZ7Whm95vZajNbGz3vH1u/e6w6a46Z3WBm0/McaxrwJeAiM3vPzI40s8vM7C4zm25m7wJjzayXmd1qZqvMbKWZXW5mHaNjdDSza6Jf+i+Z2TfMzM2sU7Q+o8QVHX967PV/mdk8M3vbzJ4ys5GxdXPN7Idm9vfo/TxsZjWx9SNi+y43s7FmdoCZvd4QX7TdSWb2VJ5LegAwzd3fd/ct7v5Pd/9jtN/g6L2MM7PXovd/Qey4HczsEjN70czWmNksM9upmfjGAWNi13x27DpdbGZPA++bWafo3B+L/3s1lHDMbKSZrTCzi8zsjSi2E8zsGDNbYmZvmdnEPO9ZypCSihRLB+A2wi/rgcAG4Oex9b8FHgf6AJcBZ+Y7kLuPBWYAP3b3Hdx9TrTqeOAuoHe0fhqwBfgYsD9wFPCVaNuvAsdGy2uBUwp9I2a2G/AAcDmwE3ABcLeZ9Y1t9gXgy8BHgO2jbTCzQcAfgeuBvsAwoM7dnwDWRDE2OBP4TZ4wFgA3mNlpZjYwzzafBvaMjnlxLEl+EzgBOBzYFVgL3NBMfFPJvObHxc5zOvDfQO8CSyq7AF2A3YD/BX4JnAEMBw4FvmtmuxdwHCkDSipSFO6+xt3vdvf17r4OmEz4UiP6UjwA+F933+TufwPua8Vp5rv7ve5eD/QEjgHGR7/m3wCuA06Lth0NTHH35e7+FnBlC85zBvCguz/o7vXu/mdgYXS+Bre5+xJ33wDMInw5Q0g2c9z9DnffHF2Xumjdr6NjE5UcjiYk21w+D/wV+C7wspnVmdkBWdt8P3rv/yIk9NOj5V8DJrn7CnffSEjip0SltKbiy+dn0XXc0Mx2DTYDk919M3AnUAP81N3XufuzwHPAJwo8lpQ4JRUpCjPrZmY3m9mrUfXUY0DvqLpnV+Atd18f22V5bN9fRFUu7zVTNbI89nwQsB2wKqrGeRu4mVByIDpnfPtXW/B2BgGfbzhudOwRQL/YNv+JPV8P7BA9HwC8mOe404HjzKw7Ien91d1X5drQ3de6+yXuvjewM1AH3GtmFtss+/3tGov/nljszwNbo+M0FV8+y5vfJMMad98aPW9IRK/H1m+g8XpJmVNSkWL5DjAU+JS79wQOi5YbsArYycy6xbYf0PDE3b8WVbns4O5XNHGOeKP9ckIDdo27944ePaMvYaJzDohtn12F9D4QjyfeCL4cuD123N7u3t3dr2oitvi+H80ZvPtKYD5wEqHq6/YCjoe7vwlcQ0gaO8VWZb+/12IxfDYr/i7R+fPGR+b1bWr5evJfO6kySiqShO3MrEvs0QnoQfgF+nZUtfO9ho3d/VVC9dFlZra9mR0EHJfzyAWKfuE/DFxrZj2jxumPmtnh0SazgG9Z6Jq7I3BJ1iHqgNPMbDszy25zaShRHB01+HeJGqD707wZwJFmNjpq1O5jZsNi638DXETozfX7fAcxsx+Z2T7RMXoA5wJL3X1NbLPvRiXEvQntOzOj5b8AJkftJ5hZXzM7voD4Xgf2KOA91gFfiK7NKKJqTqlOSiqShAcJCaThcRkwBehKGFuyAHgoa58xwEGExurLCV+AG9sYxxcJjeTPERqj76KxiuqXwJ8I3XKfZNsv8O8SfrGvBb5PrG3D3ZcTOgVMBFYTft1fSAH/f9x9GaHt5TvAW4Qv4Hj7wT1E1VNZ1YHZukXbvg28FO3zuaxtHgWWAo8A17j7w9HynxLarB42s3WEf49PFRDfrcBeUbXZvU3E9j+EHwVvE/5dm9pWKpzpJl1SCsxsJvCCu3+v2Y2TOd9g4GVgu7THWpjZi8A5sV5tLd1/MCXyXkRUUpFUROM0PhpVU40ilATuTTmsdmdmJxPaKP6SdiwiSUhtRL2ZDSDUJ+9M+E811d1/GtW/zwQGA68Ao919bVpxStHsQqiC6gOsAM5193+mG1L7MrO5wF7AmVG3aJGyl1r1l5n1A/q5+5NRw+MiwgCtsYTupleZ2SXAju5+cSpBiohIi6RW/eXuq9z9yej5OkLf+d0I1SC/jjb7NSHRiIhIGSiJhvqoofExYB9gmbv3jpYbsLbhddY+4wgz19K9e/fhH//4x9sr3Iq2eM1iAIb2GZpyJCJSbIsWLXrT3fs2v2XhUk8qZrYDoSvkZHf/vZm9HU8iZrbW3Xds6hi1tbW+cOHCIkdaHUZOGwnA3LFzU41DRIrPzBa5e22Sx0y195eZbQfcDcxw94ZxA69H7S0N7S5vpBWfiIi0TJq9v4wwuOp5d/9JbNV9hGnOr4r+/iGF8KrWpYddmnYIIlLG0rxJ1yGE+Y7+ZWZ10bKJhGQyy8zOJkyKNzqd8KrTkXu0x00cRaRSpZZUounOLc/qI9ozFmlU9586AIbtMizVOESkPOl2wpJh/EPjATXUi0jraJoWERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZLjiiKbu3isi0jQlFclw8ICD0w5BRMqYqr8kw7zl85i3fF7aYYhImVJJRTJMfGQioHEqItI6KqmIiEhilFRERCQxSioiIpIYJRUREUmMGuolw5RRU9IOQUTKmJKKZNCU9yLSFqr+kgxzXprDnJfmpB2GiJQplVQkw+WPXQ7oDpAi0joqqYiISGJSTSpm9isze8PMnoktu8zMVppZXfQ4Js0YRUSkcGmXVKYBo3Isv87dh0WPB9s5JhERaaVUk4q7Pwa8lWYMIiKSnFJtqD/PzL4ILAS+4+5r0w6oWtx87M1phyAiZSzt6q9cbgI+CgwDVgHX5trIzMaZ2UIzW7h69ep2DK+yDa0ZytCaoWmHISJlquSSiru/7u5b3b0e+CVwYJ7tprp7rbvX9u3bt32DrGCzF89m9uLZaYchImWq5Kq/zKyfu6+KXp4IPNPU9pKsa+eHguFxQ49LORIRKUepJhUzuwMYCdSY2Qrge8BIMxsGOPAKcE5a8YmISMukmlTc/fQci29t90BERCQRJdemIiIi5UtJRUREElNyDfWSrttPvD3tEESkjCmpSIYBvQakHYKIlLHqqP4aOTI8pFkzn5nJzGdmph2GiJQplVQkw00LbwLg1H1OTTkSESlH1VFSERGRdlH5SWXGDFiwAB59FAYPDq9FRKQoKjupzJgB48bBxo3h9auvhtdKLCIiRVHZSWXSJFi/PnPZ+vVhuYiIJK6yG+qXLWvZcuGu0XelHYKIlLHKLqkMHNiy5UJNtxpqutWkHYaIlKnKTiqTJ0O3bpnLunULyyWnaXXTmFY3Le0wRKRMVXb115gx4e/ZZzc21p9+euNy2UZDQhk7bGyqcYhIearspAIhgfzyl+AOW7fC7Nmwbh306JF2ZCIiFaeyq7/izOAnP4E33oCrrip8vxkzwviWDh2KO86lvc4jIlJE1ZFU5s4NjwMPDCWXa68NY1aa0zDO5dVXQ0mnWONc2vM8SlwiUkTVkVTirrgilFomTGh+20LHuTT3Zd3c+gkT2j6eppAY2iNxiUhVM3dPO4Y267F7Dx/+veFNbnPskGO54OALAPjN5wbxxdnLYP583tzvY5wy65Sc+/zly4/mzLoOPH/hWPY6/Vu8tmAOO42/hC6b6j9c/8H2Hbh67BAeOWhnjpj/OhdOW5KxfnNHY33tJ+i1fQ82Lnmezq+/mfP8Dnz6V4eBGVPfHcmQn0zDly3j9Z22p/7yy9n1axcwe/Fs6n5y0Tbn2NjJuOuo3Xhh95503biVi+/6Dx3ffmebc7zXrw/HXrHPh6/rPRyjg2W+87tG30VNt5oPe4fNHTsXgGvmXcP9S+7PGX9cfPv5K+Zz9+i7AZgwZwLzV8xvct8+3fpkbL9mwxqmHjcVgHGzx7FkzZIm9x/SZ0jG9n269uHKI68E4ORZJ7Nm/Zom9z+o/0EZ2x/U/6APP0sjp41scl/I/OyNnDaSscPGMnbYWN5c/2bez15c9vbfOeg7HDf0OBa/uZhz7j+n2f2zt7/iiCs4eMDBzFs+j4mPTGx2/+ztbz72ZobWDGX24tlcO//aZvfP3j77s9QcffaK99l79MuPLnL32mYP1AKpNtSb2a+AY4E33H2faNlOwExgMPAKMNrd1yZ53juOGcgp89+h2/nnw5//kHe7d3foRO/3tmyzfEtHY6+rp8HV0+jXoQNWX5+xvsumei6ctoQTH3mNj7/8Lp0yV7PdVqfnE0/DIYfwzmEH0vX+P9Fjw9ZtzmPAzAv+wYqdu/CxF+fBps0YsMuajdSPnwT/eJa969dw1B1L6Lw58ySdtzhjHlzR7LXo/p/MD3V2MhERaRF3T+0BHAZ8EngmtuzHwCXR80uAHzV3nOHDh3uL3XKLO7jPnLntuq1b3S+9NKzv0CH8bXh06+Y+fbr7ypXuv/lN5rrsxxFH5F9n1ni+6dPDcePru3Z1/8pX3E88MWyb7zjZ+2Wfo67OfelS9/79c28zaFDGW7/h8Rv8hsdvaPn1FJGyAyz0pL/Xkz5giwMIJZJ4UlkM9Iue9wMWN3eMViWVLVvc99vPffBg9w0bGpe/+6778ceHS3P22e7TpoUvXrPwd/r0zOMMGtT0l3Vz6xtMn57/PPmSipl7fX1h58iVuBoSZMzhtx3uh992eMuvp4iUnWpJKm/Hnlv8ddZ+44CFwMKBAwe27orOmRMuQceO4e+uu7rvtlt4/bOfhS/s5jT3ZV3gl3mTmksahZ5j+nT3Tp0a980Rg5KKSPWouqQSvV7b3DFaVVJxD1+qDQkl/pgwoeXHaao009z6Qo7fXNIo9ByHHOL+mc/kPZWSikj1KEZSSb33l5kNBu73xob6xcBId19lZv2Aue4+tKlj1NbW+sKFC1t+8sGDc49XGTQIXnml5ccrphkzQhfjZcvChJiTJ7duupkTToCXX4annsq5uqFHSUOPGRGpXGaWeO+vUuzqcx/wpej5l4D83bPaqpymxh8zJiS6+vrwt7Xzl9XUwJu5uzCLiLRV2l2K7wBGAjVmtgL4HnAVMMvMzgZeBUYXLYCBA3OXVCp5avyGpOIeBoFmUQlFRNoi1aTi7qfnWXVEuwQweXIYVR4fzV7pU+PX1MCmTfDee5pUU0QSV4rVX+1nzBiYOjW0oZiFv1OnVvbU+DXRDbjyVIFdM+8arpl3TTsGJCKVpLqTCiTXVlEumkkq9y+5v6CpL0REclFSqTbNJBURkbZQUqk2SioiUkRKKtVGSUVEiqjybycsmXr1gk6dYPXqnKu7bte1nQMSkUqipFJtzJocAPnHMX9s54BEpJKo+qsaaVS9iBSJkko1aiKp/PDRH/LDR3/YzgGJSKVQUqlGTSSVR15+hEdefqSdAxKRSqGkUo1U/SUiRaKkUo1qamDNmjCLgIhIgpRUqlFNTUgob7+ddiQiUmHUpbgaxQdA7rRTxqo+3fqkEJCIVAollWoUTypDhmSsunv03SkEJCKVQtVf1UhTtYhIkSipVKMmksqEOROYMGdCOwckIpVC1V/VqImkMn/F/HYORkQqSckmFTN7BVgHbAW2uHttuhFVkG7doEsXVX+JSOJKNqlEPu3u+uZLWjOTSoqItJbaVKqVkoqIFEEpJxUHHjazRWY2LnulmY0zs4VmtnB1nnuDSBPyJJX+PfvTv2f/FAISkUpQytVfI9x9pZl9BPizmb3g7o81rHT3qcBUgNraWk8ryLJVUwOvvrrN4uknTU8hGBGpFCVbUnH3ldHfN4B7gAPTjajCqPpLRIqgJJOKmXU3sx4Nz4GjgGfSjarC1NTA2rWwZUvG4vEPjWf8Q+PTiUlEyl6pVn/tDNxjZhBi/K27P5RuSBWmYazKmjWw884fLq77T1068YhIRSjJpOLuLwGfSDuOihYfABlLKiIibVGS1V/SDjT/l7SnGTNg8GDo0CH8nTEj7YikSJRUqlXfvuGvkoq0VXMJY8YMGDcu9DZ0D3/HjVNiqVBKKtUqT0llSJ8hDOkzJMcOIjk0lzDc4ZJLYP36zP3Wr4dJk9o/Xik6JZVq1Se6GVdWUpl63FSmHjc1hYCkZDVVEpk0KXfC+OpXYf/9YccdYcWK3MddtqxYEUuKSrKhXtpB587Qo4eqv6RpDSWRhsTx6qtw1llwzz2w/fY5B9ACsGED7LorjBgRjrF27bbbDBxYvLglNSqpVLMcAyDHzR7HuNnbzIojlSxfSeS112D8+G1LIps2wd13w/z5YbbrXAYNggcegOuvD49u3TLXd+sGkycn/EakFCipVLMcSWXJmiUsWbMkpYCk3eVqE/nSl0I38912y1+SNYOXX4Zbbmk+YYwZA1OnNla59usXXo8ZU5z3JKlSUqlmmqql8jXVHvLWW7lLIlu3wrp1cO21sMsuuY/bUHXVkDAGDQqJZtCg3AljzBhYuDA8v/RSJZQKpqRSzZRUKluuUshXvgInnwwHHRS6lef79//gAzj/fLjmmsJKIq+8AvX14W++hDFoUCj9/O1vSbw7KVFKKtVMSaWy5eqZ9cEH8PvfhyTz3e/mn02hpSWRQpiFhnsllYqmpFLNamrgvffCF01k2C7DGLbLsPRikpbJVb21bFloHM/XM8sMFiyAyy4LVVxJlUQKMWIELF+u7sQVTEmlmsUnlYxMGTWFKaOmpBOPZGrNSPUzzwyliW99CzrlGTEQ78qbZEmkECNGhL8qrVQsJZVqpvm/0tVU0siVMM4+G849F666Cs47LwwwzK7ecofevWHxYpg2rbCuvEmWRJqz775hfJSSSsXS4MdqliOpnPH7MwDdAbLocg0q/OpX4dlnQ2P2hAnbJoyNG+EXvwjPe/cOAwxzeecdGDIkPCC0rSxbFkookyen2/OqY0c4+GAllQqmpFLNciSVFe/mmVJDkpWrEX3DBrjyyqb3Mwvdfbt3D6WbXO0m2dVbpdZ9d8QI+N//DaPsd9wx7WgkYQVVf5nZTjke2xU7OCkyVX+1v/p6eOihphvRV67MP4XJwIEhoUAodZTjSPURI0I13fz5aUdSvaKq1+EwPOlDF9qm8iSwGlgC/Dt6/oqZPWlmiQcl7WSnncJfJZXiiLeZDBgAZ5wBQ4fCZz8bluUycGCYM+uKKwofqd5ejexJOfDA0IlAVWDpiLfXFUGhSeXPwDHuXuPufYDPAvcDXwduLEpkUnydOoXqByWV5GU3tK9YEZaZhb+/+lXTSaMlI9Xbq5E9Kd26wfDhSirF1FQnkIkTt616TVChbSr/5e5fbXjh7g+b2TXufo6ZdS5GYGY2Cvgp0BG4xd2vKsZ5ql5NDaxe/eHLg/oflGIwFeLdd0OX3lz/cTdtgi98ITzv1KnpRvRSbA9JyogR8POfh84HnYvyFVK9cnUCOfts+N3vQieOIo8RKrSkssrMLjazQdHjIuB1M+sI1CcdVHTcGwglor2A081sr6TPI2wzqv7KI6/kyiObaSyW3L8E588P08L36xfm1col/h+6HEsZSRkxIiSUhvnApHBNlUI2b4YLL8zdc/APfwidPHr0KGp4hSaVLwD9gXujx8BoWUdgdBHiOhBY6u4vufsm4E7g+CKcRzRVS8vlG3R48MEwa1YoiTQ3EWO1O+SQ8FdVYNtq6fils86Co44K87n17AmrVuU+rllI4jfdtG3Va4IKSiru/qa7f9Pd948e57n7anff5O5LixDXbsDy2OsV0bIPmdk4M1toZgtXx6pvpIWyksrJs07m5FknpxhQGchVJ+0eOj6sWgW//GVhEzFWs759Q6cFJZVM+W7PfN11cP/9YdBrrvvbzJkTbpr29a839urMlms+tyIotEtxXzO72sweNLO/NDyKElGB3H2qu9e6e23fvn3TDKW8NSQVdwDWrF/DmvVrmtmpCuT6tbhuXRh8mK9Oeu3axqqFcu2Z1Z5GjIC//z1U/1WTpkoil1yS+/bM558Pxx0Hb7+d/7iPPhrmcpsypeD53BbBora9mW0VWv01A3gB2B34PvAK8ETSwcSsBAbEXvePlknSampCfev776cdSenI9Wtx7Njw6/rcc2G7PEO0squ2qrnNpBCHHhoS8fPPpx1JclozX9uXvwy1teGHx4omBh/Pmwf9++del+Z8blkKTSp93P1WYLO7P+ruZwGfKWJcTwB7mtnuZrY9cBpwXxHPV70aSnlqV2mUa7T7li2ht9aCBXDbbaraSkKlTS6Zr+rq17+Gp56C6dND9VT2Z2vz5rD+4IPD9Du5DBoU2kyuuqr05nPLUmhS2Rz9XWVm/21m+wM7FSkm3H0LcB7wJ+B5YJa7P1us81U1jarPtGxZ/kFh69fDpz6V+i/BirHHHqFDQzkllaZKIrl+jKxfH0q5w4aFzhzvvpv7uFu3wh13hG7WSYxfSlGh41QuN7NewHeA64GewPhiBQXg7g8CDxbzHMI2SeWI3Y9IMZh2NGNG4xiRAQPg1FPhhRfggQfy71Pqc2qVm3K7aVeu8R9f+Qo88khjySSfO+4IMzQfc0zuNrl4IzqU9/gld2/VAxjf2n2TfgwfPtyllZYscQf3229PO5L2M326e7du4X3HHz16uE+c6D5lyrbru3UL+0mypkwJ13f58rQjCaZPdx80yN0s/I3/m/fvv+1npuHRt69716651w0alHn8EvpsAQs94e/jtiSVZUkH09qHkkobvPVW+Bhcd13akSQn3xfDli3uCxa49+qV+z//wIHNH0OStXBhuPZ33pl2JLm/8Lff3v2II9z32Sd/QjFzr68vPGGU0Ger1JLK8qSDae1DSaUNtm5179jRfdIkd3cfNX2Uj5o+KuWg2iDfF0NtrXvv3vm/GBq+HKR9bd7s3r27+3nnpR1J/pKImfvRR+f/MZJdEimRhFGIYiSVttz50dta9SYloEMH6NPnwzaVDZs3sGFznps/lYNcjaWbNsE//wknnRTqtgvplinto1On0KupPdpVcjWyP/ss/OhHoXtzU915H3oIbrih4PEf1dyNvMmGejNbR+7kYUDXokQk7a+SpmrJNzCxvh5uvTU837o1s8EV1CU4TSNGwA9+ECY77NWrOOfI1ch+5pkfDvrlk58M537nnW33bUkjujRdUnH3Hu7eM8ejh7vrrpGVolKSyqxZoUdRLiU0OEyyjBgRkv6CBW07Tq6SyObNYdDgN76Rf2qdFStg0SKVRBLSluovqRTlnlTWrg3/uU89NXyZdOmSub7EBodJlk99Kty7vi1VYLkGHn7xi7DDDmHyylwlEAifnd2iaQX1YyMRSiqSkVSOHXIsxw45NuWAmhH/RbrzzmEQ3cyZ8P3vw+LFcMst+mIoJzvsAPvv33RSyTfo0B2eew6++c1tSyL19WGSxbvuKrwdTT822i7plv80Hur91UYTJ4YeYPX1aUfSvFy9u8zcf/CDtCOTthg/3r1LF/eNG7ddl69H30EHue+8c2E9+kpsfEipoMR6f0mlqKkJjdf5qghKSb5p5xsa4aU81dfDBx+Eqsvs6U8uvjh3j75//AOOPDL82++6a+7j5pruXSXYolJjuzRO1bJ6NSPvPQGAuWPnphZOXnV1+Xt3FfkWqVJEM2aEe9BA5o2nbrstNKKvzDNBuXuYpBHCLYmb69FX6tObVAiVVKT0J5VctSrcY/uTnwx16rlojEn5mjQJNmSNjdq0Cf7yF/jYx2DHHXPvpx59JUlJRUovqcQbZXv3Ds9vvz3cqCjXrVA1xqS8NVXKvP9+uP76kp/uXRqp+ksyk0qeYR7tJnuQ2jvvhO6mV18N3/52WNa9uwagVZKBA3PP8KtBh2VJJRUprZJKrob4rVvhpz9tfK1fpJVl8mQNOqwgKqlIGCew/fbw5puMHjk6vTjc1RBfjVQSqShKKhIaNqMBkF8/4EfpxOAeBrDlo4b4yqaeWRVD1V8SREll/eb1rN+8vvntk1RfH+ZmuuGGcGc8NcSLlK2SSypmdpmZrTSzuuhxTNoxVYUoqRwz4xiOmdGOl7y+Hs49N/Tquvji0NtHXUNFylapVn9d5+7XpB1EVampCYML6dd+56yvh3POCXN1TZwIl18eEomqQkTKVsmVVCQlffu2T++v+BiUnj1DQrn00saEIiJlrVSTynlm9rSZ/crMcg6nNbNxZrbQzBauXr26veOrPDU1sHYtHbcW8Yae2dOTv/8+bLcdfPzjSigiFSKVpGJmc8zsmRyP44GbgI8Cw4BVwLW5juHuU9291t1r+/bt237BV6qaGnBnh/c3F+8cuW71u3lzWC4iFSGVNhV3P7KQ7czsl8D9RQ5H4MMBkGP7H8s7e+SZ8bWtNAZFpOKVXEO9mfVz91XRyxOBZ9KMp2pESeXEvofCsEOTP358KvNsGoMiUjFKsU3lx2b2LzN7Gvg08O20A6oKUVJ5d+VLvLk+wQb7jRvDGJQzzoAhQ6Br18z1GoMiUlFKLqm4+5nuvq+77+fun4uVWqSYoqRy85+u4JRZp7T+OPHeXf37w157wY03wgUXwL/+Fe6boTEoIhWr5Kq/JCV9+gDQa10bGuqzZxhuuLnS//xPmGUYNAZFpMKVXElFUtK1K3TvTq/32pBUcvXuArj33tYfU0TKipKKNKqpaVtJRb27RKqekoo0qqmhd2uTysqVYSBjLurdJVI1lFSkUU0Ne/qOnFt7bsv2W7QIDjwwNL537py5Tr27RKqKkoo0qqmhz/v1nLrPqYXv87vfwaGHhlLKE0/Arbeqd5dIFVNSkUY1NdS/uZrl7yzPvT7eXXjQIDjlFBg9GvbfHx5/HPbdV7d9FalySirSqKaGDuve46xZORJB9mSQy5bB3XfDIYfAI4/ARz7S/vGKSMlRUpFG0QDInrm6FefrLrx8OXTpUuTARKRcKKlIoyip5Byrkq9b8PI8VWUiUpWUVKRRQ1LJ1a24X547Qqq7sIjEKKlIo3wllaefhnXrtt1e3YVFJIuSijSKkspJfQ9vXLZgARx+OPTqBT/+sboLi0iTNKGkNIomldyvY1TV9Ze/wOc+B7vsEnp4DRoEF16YYoAiUupUUpFGs2bhZvj3vhe6CB91FOy+O/z1ryGhiIg0Q0lFgmgcirljAKtXh/Eo3/xm/kZ6EZEsSioS5BqHUl8PV1yRTjwiUpaUVCTQtPUikoBUkoqZfd7MnjWzejOrzVo3wcyWmtliMzs6jfiqUr7xJhqHIiItkFZJ5RngJOCx+EIz2ws4DdgbGAXcaGYd2z+8KjR5chh3EqdxKCLSQqkkFXd/3t0X51h1PHCnu29095eBpcCB7RtdlRozBqZOZcOuH8E1DkVEWqnUxqnsBiyIvV4RLduGmY0DxgEMVBVNMsaMoauSiIi0QdGSipnNAXbJsWqSu/+hrcd396nAVIDa2lpv6/EkqPtPHQDDdhmWahwiUp6KllTc/chW7LYSGBB73T9aJu1k/EPjAZg7dm6qcYhIeSq1LsX3AaeZWWcz2x3YE3g85ZhERKRAaXUpPtHMVgAHAQ+Y2Z8A3P1ZYBbwHPAQ8A1335pGjCIi0nKpNNS7+z3APXnWTQbUj1VEpAyVWvWXiIiUsVLrUiwpu+IIzfUlIq2npCIZDh5wcNohiEgZU/WXZJi3fB7zls9LOwwRKVMqqUiGiY9MBDRORURaRyUVERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZJgyakraIYhIGVNSkQya8l5E2kLVX5JhzktzmPPSnLTDEJEypZKKZLj8scsBOHKP1twOR0SqnUoqIiKSGCUVERFJjJKKiIgkRklFREQSo4Z6yXDzsTenHYKIlLG07lH/eTN71szqzaw2tnywmW0ws7ro8Ys04qtmQ2uGMrRmaNphiEiZSquk8gxwEpDrZ/GL7j6sfcORBrMXzwbguKHHpRyJiJSjVJKKuz8PYGZpnF6acO38awElFRFpnVJsqN/dzP5pZo+a2aFpByMiIoUrWknFzOYAu+RYNcnd/5Bnt1XAQHdfY2bDgXvNbG93fzfH8ccB4wAGDhyYVNgiItIGRUsq7t7ieT7cfSOwMXq+yMxeBIYAC3NsOxWYClBbW+tti1ZERJJQUtVfZtbXzDpGz/cA9gReSjcqEREpVCoN9WZ2InA90Bd4wMzq3P1o4DDgB2a2GagHvubub6URY7W6/cTb0w5BRMpYWr2/7gHuybH8buDu9o9IGgzoNSDtEESkjJVU9Zekb+YzM5n5zMy0wxCRMqVpWiTDTQtvAuDUfU5NORIRKUcqqYiISGKUVEREJDFKKiIikhglFRERSYwa6iXDXaPvSjsEESljSiqSoaZbTdohiEgZU/WXZJhWN41pddPSDkNEypSSimRQUhGRtlBSERGRxCipiIhIYpRUREQkMUoqIiKSGHUplgwPjnkw7RBEpIwpqUiGbtt1SzsEESljqv6SDDc+cSM3PnFj2mGISJlSUpEMs56dxaxnZ6UdhoiUKSUVERFJTCpJxcyuNrMXzOxpM7vHzHrH1k0ws6VmttjMjk4jPhERaZ20Sip/BvZx9/2AJcAEADPbCzgN2BsYBdxoZh1TilFERFoolaTi7g+7+5bo5QKgf/T8eOBOd9/o7i8DS4ED04hRRERarhS6FJ8FzIye70ZIMg1WRMu2YWbjgHHRy41m9kzRIkxODfBm2kEUoMa+bGURJ2VyPVGcSSmHGKF84hya9AGLllTMbA6wS45Vk9z9D9E2k4AtwIyWHt/dpwJTo+MsdPfaNoTbLhRnshRnssohznKIEcorzqSPWbSk4u5HNrXezMYCxwJHuLtHi1cCA2Kb9Y+WiYhIGUir99co4CLgc+6+PrbqPuA0M+tsZrsDewKPpxGjiIi0XFptKj8HOgN/NjOABe7+NXd/1sxmAc8RqsW+4e5bCzje1OKFmijFmSzFmaxyiLMcYoQqjtMaa55ERETaRiPqRUQkMUoqIiKSmJJMKmY2KpqmZamZXZJjfWczmxmt/4eZDY6tyznNS3PHbM84zez/mtkiM/tX9PczsX3mRsesix4fSSnGwWa2IRbHL2L7DI9iX2pmP7OoYSylOMfEYqwzs3ozGxatS/RaFhjnYWb2pJltMbNTstZ9ycz+HT2+FFuexvXMGaeZDTOz+Wb2rIVplE6NrZtmZi/HruewtOKM1m2NxXJfbPnu0WdkafSZ2T6tOM3s01mfzw/M7IRoXRrX83wzey76t33EzAbF1iXz+XT3knoAHYEXgT2A7YGngL2ytvk68Ivo+WnAzOj5XtH2nYHdo+N0LOSY7Rzn/sCu0fN9gJWxfeYCtSVwLQcDz+Q57uPAfwEG/BH4bFpxZm2zL/BiMa5lC+IcDOwH/AY4JbZ8J+Cl6O+O0fMdU7ye+eIcAuwZPd8VWAX0jl5Pi2+b5vWM1r2X57izgNOi578Azk0zzqzPwFtAtxSv56dj5z+Xxv/viX0+S7GkciCw1N1fcvdNwJ2E6Vvijgd+HT2/Czgiyp75pnkp5JjtFqe7/9PdX4uWPwt0NbPObYwn0RjzHdDM+gE93X2Bh0/cb4ATSiTO06N9i6XZON39FXd/GqjP2vdo4M/u/pa7ryXMfzcqreuZL053X+Lu/46evwa8AfRtYzyJx5lP9Jn4DOEzAuEzc0KJxHkK8EfPHEaRpELi/H+x88enyErs81mKSWU3YHnsda6pWj7cxsMcYu8AfZrYt5BjtmeccScDT7r7xtiy26Li8HfbWBXS1hh3N7N/mtmjZnZobPsVzRyzveNscCpwR9aypK5loXG2dN+0rmezzOxAwi/eF2OLJ0dVJ9cl8EOorXF2MbOFZragoUqJ8Jl42xvnFiyZ60koYWd/PtO8nmcTSh5N7dviz2cpJpWqYWZ7Az8CzoktHuPu+wKHRo8z04iNUO0x0N33B84HfmtmPVOKpVlm9ilgvbvH54ArlWtZdqJfqLcDX3b3hl/fE4CPAwcQqkkuTim8BoM8TIXyBWCKmX005Xjyiq7nvsCfYotTu55mdgZQC1yd9LFLMakUMlXLh9uYWSegF7CmiX2LMf1LW+LEzPoD9wBfdPcPfwm6+8ro7zrgt7RtluZWxxhVIa6JYllE+LU6JNq+f2z/1K9lZJtfgQlfy0LjbOm+aV3PvKIfDw8Q5un7cIJXd1/lwUbgNtK9nvF/35cI7Wf7Ez4TvaPPSIuPWYw4I6OBe9x9c8OCtK6nmR0JTCLMaLKxmX1b/vlMqpEoqQdhlP9LhIb2hsamvbO2+QaZjbazoud7k9lQ/xKh8arZY7ZznL2j7U/Kccya6Pl2hHrhr6UUY1+gY/R8j+iDtJPnbrg7Jq1rGb3uEMW3R7GuZaFxxradxrYN9S8TGkF3jJ6ndj2biHN74BFgfI5t+0V/DZgCXJVinDsCnaPnNcC/iRqlgd+R2VD/9bTijC1fAHw67etJSLwvEnXGKMbns9VvoJgP4BjCzbteJPxaAvgBIbMCdIk+OEujNxz/MpkU7beYWC+FXMdMK07gUuB9oC72+AjQHVgEPE1owP8p0Rd7CjGeHMVQBzwJHBc7Zi3wTHTMnxPNzJDiv/lIwlQ/8eMlfi0LjPMAQr3z+4Rfzc/G9j0rin8poVopzeuZM07gDGBz1mdzWLTuL8C/olinAzukGOfBUSxPRX/Pjh1zj+gzsjT6zHRO+d99MOFHT4esY6ZxPecAr8f+be9L+vOpaVpERCQxpdimIiIiZUpJRUREEqOkIiIiiVFSERGRxCipiIhIYpRUpKJkzVxbZ7EZrMudme1vZrdGz8ea2c+z1s81s9om9r/TzPYsdpxS3dK6nbBIsWxw92G5VkRzf5k3TjtSbiYCl7dh/5uAi4CvJhOOyLZUUpGKZuG+MIvN7DeEAVwDzOxCM3simsjv+7FtJ5nZEjP7m5ndYWYXRMs/LAGYWY2ZvRI972hmV8eOdU60fGS0z11m9oKZzWiYzNLMDjCzeWb2lJk9bmY9zOyx+L00ovN/Iut99AD2c/enCnjPn4uV1Bab2cvRqr8CR8amMBFJnD5cUmm6mlld9Pxl4NvAnsCX3H2BmR0VvT6QMO3EfWZ2GGEk9GnAMML/iycJI/KbcjbwjrsfEM0w+3czezhatz9h2qDXgL8Dh5jZ48BM4FR3fyKaY2sDcCswFhhvZkOALjmSR8Oo5rhTzWxE7PXHANz9PuA+ADObBTwaLa83s6XAJwp4byKtoqQilSaj+itqU3nVGydGPCp6/DN6vQMhyfQgTPi3PtrvwzsJNuEoYD9rvNNfr+hYm4DH3X1FdKw6wlQd7wCr3P0JAHd/N1r/O+C7ZnYhYaqMaTnO1Q9YnbVsprufF3uvc+MrzewiwvW4Ibb4DcLNt5RUpCiUVKQavB97bsCV7n5zfAMzG9/E/ltorCruknWsb7p7fDpzzGwkEL8/zlaa+L/m7uvN7M+EGyqNBobn2GxD1rmbFM1E+3ngsKxVXaJjiRSF2lSk2vwJOMvMdgAws90s3Lv+MeAEM+satV8cF9vnFRq/6E/JOta5ZrZddKwhZta9iXMvBvqZ2QHR9j1i7Ru3AD8DnvBw571szxNVbzXHwn3HbwA+7+7ZCWQI21ajiSRGJRWpKu7+sJn9H2B+1Hb+HnCGuz9pZjMJs96+ATwR2+0aYJaZjSPcZ6TBLYRqrSejhvjVNHGrVXffZGanAtebWVdCieFIwr3WF5nZu4T7auTa9wUz62VmPTzcH6YpYwl3QLw3eo+vufsxZrYzoTrsP83sL9JqmqVYJAczu4zwZX9NO51vV8KNpj6er8uzmX0bWOfut7TyHN8G3nX3W1sdqEgzVP0lkjIz+yLwD8L9L5oaQ3MTmW01LfU28Os27C/SLJVUREQkMSqpiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKiIgk5v8D8ZVR1RH7rk8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cross = cross.rebin(0.0050)\n", + "lag, lag_e = cross.time_lag()\n", + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.errorbar(cross.freq, lag, yerr=lag_e, color='r', fmt=\"o-\")\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-cross.df*2)*1/cross.df)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Energy Dependent Impulse Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, stingray an option to simulate light curves and add them to corresponding energy channels.\n", + "\n", + "Below, we analyse the lag-frequency spectrum in such cases. \n", + "\n", + "We define two delta impulse responses with same intensity but varying positions, each applicable on different energy channels (say '3.5-4.5 keV' and '4.5-5.5 keV' energy ranges). " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "delays = [10,20]\n", + "h1 = sim.simple_ir(start=delays[0], width=1)\n", + "h2 = sim.simple_ir(start=delays[1], width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we create two energy channels to simulate light curves for these two impulse responses." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', var, h1)\n", + "sim.simulate_channel('4.5-5.5', var, h2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute cross-spectrum for each channel." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "cross = [Crossspectrum(lc, var).rebin(0.005) for lc in sim.get_channels(['3.5-4.5', '4.5-5.5'])]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate lags." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "lags = [c.time_lag() for c in cross]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cut-off points." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "v_cuts = [1.0/(2*d) for d in delays]\n", + "h_cuts = [lag[int((v_cutoff-0.005*6)*1/0.005)] for lag, v_cut in zip(lags, v_cuts)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag-frequency spectrums." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABZAUlEQVR4nO2dd3gU1frHP286kNBCCdJRQkeaVEVaAAVEpHv1gohYfurFfu0oYrkiKioKNlCQIohSlSYiTYoEpYcSJHRCCyUJIef3x5mFTUjZJLs7m+R8nmeenZ1z5px3zs7Od057jyilMBgMBoPBHfjZbYDBYDAYCg5GVAwGg8HgNoyoGAwGg8FtGFExGAwGg9swomIwGAwGt2FExWAwGAxuw4iKId8iIiNEZLLddhQmTJkbssOIiocQkVgRuSgi55y2j+22KztERInIecveeBFZKiL97bbLk4hINeu6A7KIM0JELqX7PZ/1pp0FHRG5X0R2iEiCiBwVkQUiEubB/LL93Q05xxSmZ+mhlFriyQxEJEApleLmZG9USu0WkTLAbcDHIlJbKfWam/PJb0xXSt2TVQQR8VdKXfaWQQUFEbkVeBPoqpTaJCKlgR42m+Wp/1eBxtRUbEBEBovIShEZLSKnRGSfiNzmFF5CRL4UkcMiclBE3hARf6dzV4nI+yISD4wQkXARmSsiZ0VkvRV/pRX/ExF5L13+c0TkiezsVEqdUEp9CzwMPC8i4Tmw72MROWO9eXbMwbVlVS7VReQ36012MVAm3XW1FJHVInJaRDaLSDunsOUiMtKyLUFEFlmiCbDC+jxt1UBaZVc2TulOFJFPrbfq80B7EblORGaJyHHrGh53il/EOueUiGwTkWdEJM4pXInIDenSf8Ppe3cRibaucbWINHQKixWRp0XkL6vsp4tIiFN4T+vcsyKyR0S6ikhfEdmY7pqeFJGfXLz+70XkiJXfChGp5xSW6X2ZATcBa5RSmwCUUieVUpOUUglO5fCZiCy2fr/fRKSqU161rbCTIrJTRPqlK/P3RGS/ZedKESlCBr+7ZPz/StPkJ+lqONa99Yb1e5yzrjlcRKY4XXs1V8qzQKCUMpsHNiAW6JRJ2GDgEvAA4I9+aB8CxAqfDYwHigHlgHXAg07npgCPoWuaRYBp1lYUqAscAFZa8ZtbaftZ38sAF4DymdimgBvSHQu08rwtB/Y9YZ3XHzgDlHbx3KzKZQ0wBggG2gIJwGQrrCIQD9yOflmKsr6XtcKXA3uASKvMlgNvW2HVrOsOyOL3HOHIK93xidb1tbHyLQpsBF4BgoAawF6gixX/beB3oDRQGdgCxGVW/lb6b1j7jYFjQAurfAah77Ngp3tuHXCdlf524CGn++CMVS5+VnnVtsryJFDHKc9NQG9XygEYAoRZ6XwARDuFZXpfZpDuLcBF4DWrLIMzKOcE63cPBj7k6j1ezEr7PvR/ojFwAqhrhX9i/d4VrXJrbaVxze9Oxv+v9Nec5jwr7d3A9UAJYBuwC+hkpfEN8LXdzySvPfvsNqCgbtYf/Bxw2ml7wAobDOx2ilvUukkjgPJAElDEKXwg8KvTuf84hfmjH8S1nI694fznRT9coqz9R4EFWdh9jahYx48A/3LRvitCYB1bB9zr4rmZlUsV689ezCn8O66KynPAt+ls/gUYZO0vB15yCnsE+Nnav+bhksH1jwCS0/2e16Efdt84xWvh/PtYx553PFTQAtPVKWwYrovKp8DIdGnvBG51uufucQr7H/CZtT8eeD+Ta/sUGGXt1wNOke6hnq4crhFXK6ykZX8JXLgvMzj/NmCuVbbn0C8Q/k7lMM0pbihwGS3M/YHf06U1HngVLaAX0U266fO75ncn3f8ro2tOf551b73oFP4esNDpew+cxLagb6ZPxbPcqTLvUzni2FFKXRAR0H+U0ug3/MPWMdB/jANO5zrvl0W/DWUWDjAJuAdYbH1+mJOLEJFAK5+TQFUX7DuorH+TxX70A9iVczMrlzLAKaXU+XTpVrb2qwJ9RcS5HT4Q+DWjtNG1tdBMLzpjZqh0fSqWfc72VwWuE5HTTsf80bUT0OXgHH9/DvKvCgwSkcecjgVZaTpIf42OsMrAgkzSnQRMFZGX0OI/QymVJCL/Qj+cQT+0b3M+SXSz5SigL/r+SLWCyqDf8LO7L9OglFoILBQRP6A98D1aNB02HHCKe05ETnL1vmqRrswDgG8tW0LQtVRXydLOTDjqtH8xg+85vdfyLUZUfI8D6Lf5MirzDkLnB/Zx9Bt8JXSVG64+aB1MBraIyI1AHeDHHNrU08pjHfohlp19FUVEnISlCjAH164tMw4DpUSkmJOwVOFqWRxA11QeyGG6kLY8c4Pz+QeAfUqpmpnEPYz+fbZa36ukC7+ArqE5iAAcfS4H0DWKUbmw8QC6eeYalFJrRSQZ3QR1t7WhlJoCTMkizbvR90YndC2pBLqWI7h2X2aIUioVWCoiy4D6TkFXzhcRxwvYIevaflNKRaVPyxKoRPS1b06fVWYmpPt+nmt/E0MmmI56H0MpdRhYBLwnIsVFxE9Erhc9Oiaj+JeBH9AdikVFpDbw73Rx4oD16De3WUqpi67YIiKlrbfVT4B3lFLxLtpXDnhcRAJFpC9ayBbk9NrSXcN+YAPwmogEicjNpB0dNBnoISJdRMRfREJEpJ2IVHLhUo+j37JruBA3O9YBCSLynNVB7C8i9UXkJit8BnrQQynLtsfSnR8N3G2d1xVwLpvPgYdEpIVoiolIN3Ft2O2XwH0i0tEq94rWveLgG+Bj4JJSKrPO9PSEoV8S4tEP3TcdAa7cl86IHkQwwCoXEZHm1rWvdYp2u4jcLCJBwEhgrVLqADAPiBSRe617LlBEbhKROpZAfQWMET2Awt/qkA/G9d89GmgrIlVEpAS6OdOQCUZUPMtcSTuvYbaL5/0bXSPYhn7zmwlUyCL+o+i3xCNo4ZiK/rM7MwloYIVnx2YROYfufBwKPKGUeiUH9v0B1ER3lo4C+iil4nN5bc7cje6zOIluL//GEWA9XHoCL6AfFgeAZ3DhHldKXbDsXCV6VFVLF+3JKK3LQHegEbAPXQZfoH8f0B3R+62wRVz7e/wHLZan0X1YPzqlvQE9iOFjdNntRvcBuGLXOnRH9vvoDvvf0M1GDr5F1wpyMrHxG+taDqJ/z7Xpwl25Lx2cQl9bDHDWsuNdq7bk4Dv0734SaIpuykXpEWKdgQHomssR4B10ZzzA08Df6Berk1aYn6u/u1JqMTAd+As9CGNeFmVS6HGMqjEUIETkHSBCKTXI6Vhb9B+1qvLgjy4ig4GhSqmbPZVHQUL0sOfJSilXalSetKMIemRZE6VUjIfyuOa+zMG5E9EDGl5yu2EGt2JqKgUA0WP0Gzo1G9yPHrrrCA9EvwF/4UlBMeRrHgbWu1NQsrsvDQUT2zrqRaQyuvpcHt0xNkEp9aGIjEBXg49bUV9QSmU2asWgCUM3LVyHHnXyHvATgIjUQfdFbEY3fxgMaRCRWHTn+p1uTjrT+9JQcLGt+UtEKgAVlFJ/Wh2NG9E3dT/gnFJqtC2GGQwGgyHX2FZTsUYCHbb2E0RkO3rGq8FgMBjyKT7RUS/aL84K9OiTJ9EjWs6im22eUkqdyuCcYejZyBQrVqxp7dq100e5wtmks8TEx1CrTC1Cg+yZg7QzficAtcJr2ZK/y+zUdlLLx+00GAx5ZuPGjSeUUmXdmabtomJNYvoNPanrBxEpjx6GqdBj0SsopYZklUazZs3Uhg0bMg3fc3IPN3x0A1/e8SVDGmeZlMdoN7EdAMsHL7clf5dp105/Ll9upxUGg8ELiMhGpVQzd6Zp6+gva1TSLGCKUuoHAKXUUaXUZWvS0udoR3h5omrJqgT6BRIT75GRkgaDwWCwsHP0l6Bn+W5XSo1xOl7B6m8B6IX24ponAvwCqFGqBjEn7ROVl9rmk+H1L+UTOw0Gg09ip++vNmjndX+LSLR17AVgoIg0Qjd/xQIPuiOzmuE12RW/K/uIHqJTjU625Z0jOuUTOw0Gg09i5+ivleix8enxyJyUyNKRLN27lFSVip94v9Uv+kg0AI0iGnk97xwRHa0/GzWy0wqDwZBPKTReimuG1+RiykUOJRyiUnHve8QY/vNwIB901A8frj9NR73BYMgFhcZNS83S2hO5nU1gBoPBUNApNKISGR4JYEaAGQwGgwcpNKJSsXhFQgJCbB0BZjAYDAWdQiMqfuLHDaVvMM1fBoPB4EEKTUc96Cawbce32ZL3mx3fzD6SL/BmPrHTYDD4JIVKVGqWrsncnXO5nHoZfz9/r+bdunJrr+aXa1rnEzsNBoNPUmiav0CLyqXUS+w/s9/rea8+sJrVB1Z7Pd8cs3q13gwGgyEXFKqaivMIsBqlang17xeWvgDkg3kqL2g7zTwVg8GQGwpXTSVcz1UxI8AMBoPBMxQqUSlfrDyhQaFmBJjBYDB4iELV/CUiRIZH5qmmcuHSBdYdXMfqA6spFliMqOujqFOmDtrpssFgMBRuCpWogO6s33Ao8wW90hN/IZ5VB1bx+/7fWXlgJRsPbeRS6qU0ca4Lu46oGlFE1YiiU41OlA8t726zDQaDIV9g+8qP7iCsephq+mrTLON0j+zO062f5uVlL/PG72/weY/PGdpkKCcunKDPjD5p4iZfTmb/6f2cTjzNhZQLAPiLPy0rtaRphaYsi13GCze/QOvKrfn2r28Z+8dYTiWeIiU1BYBigcUoVaQUZYuWpXhwcQB61e7FrdVupUhAER6c9yBvdnyT1pVbs/rA6iud+FmRPv747uOpVaYWc3fO5b0172V7fvr4M/vNpEzRMkyMnsjE6IlXI547pz9D0y67nD6+Y8DB6NWjmbdrXrb5O8dfE7eGWf1mAfD8kudZE7cmy3PDi4aniR9/MZ4JPSYAMGzusGybMyPDI9PEDy8Szlud3gKg94zexF+Iz/L8VpVapYnfqlIrnm79NHB1Rc+scNx7jviDGw1mcKPBGd57GZE+/lOtnqJHrR7sPLGTB+dlvzJE+vg+e+9lgrn3PHfv/Xbfb25f+bHQ1VQcI8COnz+eYfix88eIiY/hsrpMqZBSlA8tT4ngEjxy0yM80PQBTlw4weajmwkNCqVqyar0rduXJXuXAJCQnMCpi6c4lXiKg2cPEnc2jluq3IKf+FGjVA0aRTRi54mdXrvWXJFOTAwGgyEn2FZTEZHKwDdAefSCXBOUUh+KSGlgOlANvUhXP6XUqazSym6NemfWxq2l1ZetmDtwLt0ju185Hn8hnkcWPMKMrTNoWaklk+6cdEWAcsO49eP4vwX/x+GnDhMRGnFFeHx+sa4l2k6zWJfBUPDxxBr1dtZUUoCnlFJ/ikgYsFFEFgODgaVKqbdF5L/Af4Hn3JVpRi7w5++az9C5Q4m/EM+oDqN4ts2zBPjlrWjCgsIAOJesm5PeWPEGkA9E5Q1tpxEVg8GQG+xc+fEwcNjaTxCR7UBFoCfQzoo2CViOG0UlvGg4pYuUJiY+hrNJZ3nylyf5ctOXNCjXgJ//9TM3RtzolnxCg3QzkkNUDAaDoTDgE30qIlINaAz8AZS3BAfgCLp5zK3ULF2TZbHLuPGzG/nnzD/8t81/GdFuBMEBwW7LIyw4bU3FYDAYCgO2T34UkVBgFjBcKXXWOUzpDp8MO31EZJiIbBCRDcePZ9zpnhmR4ZHsit9FgF8Av9/3O291esutggKmpmIwGAonttZURCQQLShTlFI/WIePikgFpdRhEakAHMvoXKXUBGAC6I76nOQ7vOVw6pSpw+MtHqdYULE8XEHmGFExGAyFEdtERfQU9C+B7UqpMU5Bc4BBwNvW50/uzrtJhSY0qdDE3cmmIb2ojO8+3qP5uY3x+cROg8Hgk9hZU2kD3Av8LSLR1rEX0GIyQ0TuB/YD/ewxL284RCUhKQGAWmVq2WmO69TKJ3YaDAafxM7RXyuBzBxmdfSmLZ4gfU1l7s65APSo1cM2m1xirraTHj5up8Fg8El8YvRXQSTYPxh/8b8iKg53Fj4vKu9ZbjeMqBgMhlxg++ivgoqIEBoUajrqDQZDocKIigcJCw4zomIwGAoVRlQ8SGhQKOcuGVExGAyFByMqHsQ0fxkMhsKG6aj3IM6i8m2vb222xkW+zSd2GgwGn8SIigcJDQrl4NmDAFQuUdlma1ykcj6x02Aw+CSm+cuDONdUpm+ZzvQt0222yAWmT9ebwWAw5AJTU/EgoYFXReXTDZ8C0L9+fztNyp5PtZ3093E7DQaDT2JqKh7EdNQbDIbCRsEUFaUgMdFuK66Iil1LNhsMBoO3KXiikpwMVarAqFF2W0JYcBgKxcWUi3abYjAYDF6h4IlKUJAewbR4sd2WmDVVDAZDoaNgdtR36qRrKqdOQalStpnhLCoz+820zY4cMTOf2GkwGHySgldTAYiKgtRUWL7cVjOcRaVM0TKUKVrGVntcokwZvRkMBkMuKJii0rIlhIba3gTmvFDXxOiJTIyeaKs9LjFxot4MBoMhF9gqKiLylYgcE5EtTsdGiMhBEYm2tttznHBgILRr5zOici75nBEVg8FQKLC7pjIR6JrB8feVUo2sbUGuUu7UCXbvhtjYPJiXN0xHvcFgKGzYKipKqRXASY8kHhWlP22srRhRMRgMhQ27ayqZ8aiI/GU1j2U4fEtEhonIBhHZcPz48Wsj1KkD110HS5Z42tZMCQsKA4yoGAyGwoMvisqnwPVAI+Aw8F5GkZRSE5RSzZRSzcqWLXttBBFdW1m6VI8EswFTUzEYDIUNn5unopQ66tgXkc+BeblOrFMnmDQJNm2Cpk3dYV6OCAkIwU/8OJd8jgX/yl3XkNdZkE/sNBgMPonP1VREpILT117AlsziZkunTvrTpn4VEbni/6toYFGKBha1xY4cUbSo3gwGgyEX2D2keCqwBqglInEicj/wPxH5W0T+AtoDT+Q6g4gIaNDA1n6V0KBQEpITGLd+HOPWj7PNDpcZN05vBoPBkAtsbf5SSg3M4PCXbs0kKgo++QQuXoQiRdyatCs4aiozts4A4JGbHvG6DTlihraTR3zcToPB4JP4XPOX2+nUCZKS4PffbcnerKliMBgKEwVfVNq21Z6LbepXMaJiMBgKEwVfVIoVg9atbROVsKAwIyoGg6HQUPBFBXS/yubNcOyY17M2NRWDwVCYKByi4hhavHSp17N2iMrywctZPni51/PPMcuX275kgMFgyL8UDlFp2lQv1mVDE5ipqRgMhsJE4RAVf3/o0EGLilJezdoxT+XdVe8yevVor+adK0aP1pvBYDDkgsIhKqD7VeLiYNcur2YbGhRKqkpl7q65zNuVe48zXmPePL0ZDAZDLig8omKTyxaHU8nLqZe9mq/BYDDYQeERleuvh+rV7RMVZUTFYDAUfAqPqIBuAvv1V7h0yWtZOtZUMTUVg8FQGCh8opKQAOvWeS1LR00lwC+AIoHe9z2WY4oUscVHmsFgKBj43HoqHqV9e71415Il0KZNzs69eFF39B84oLe4OP3wrV1brzJZtSr4XavRDlF5vf3rRF0flbM8ExPh8mXtFcBbLFzovbwMBkOBo3CJSni4nrOyeDG8+mrm8f76CyZOhD17rorIiRNZpx0SArVqaZFxCE3duoSWDgFysPpjfDzMnw8//gi//KKFpW5daNHi6lavnh4mnRVK6VrZ4cNQoQIUL+5a/gaDwZAHRHl53oYnaBYWpjZkt7Jj9+7w9NPwwgvw1lt6zZCHH9Zi0aePjnPypK6BnDqlazRFi0JwsN5atYKePfXD+a234NlnoV07WLQIRoyACxeubomJV7LdEy7c8JjirpMRNKrRipevHwLvvqvTaN0aVq+GJ5/Udpw4AWfO6BODgqBMGQgMhLNnISVFiwToGlHTprrmlZwMc+dqT8zJyWk/nZdRrlkTbr1Vi9/atXrYcPnyWjwnTrwab/9+/Vm1atrymzlT2+OI75h1P3q0a0OQneOvWQOzZunvzz+vv2dFeHja+PHxMGGC/j5sWPbDxCMj08YPD9flD9C7t04vK1q1Shu/VSt9L4G+B7LDce854g8erDfney8r0sd/6ino0QN27oQHH8z+/PTx33zz6r33wgvZn58+/vjx+gVq7lx4L8PVvtOSPn76eyk7zL13Nb6b7z357beNSqlm2SfkOrbWVETkK6A7cEwpVd86VhqYDlQDYoF+SqlTbss0Kkr/SDt26O9JSXDkiBaT8+f1w7x6dbjuOghwKp4ePeDf/9Y/RpEiOl54ODRpomsCzqSm6uayc+cIvXwGOMzfHCE+ejYvD5+tReGhh6BlSz1wYPdufV7RolCliv4DhYWlTXPUKChXDiZPhi+/1ML1/vtXBx2IaPELCoLQUG1bUJDeLl7UC5bNmqUFE/RouJYt9bUkJFzNzxGeXlQMBoPBBWytqYhIW+Ac8I2TqPwPOKmUeltE/guUUko9l1U6zZo1Uxs2bHAt06Qk7bKlb1/dTDV2rBaVBg30G93AgfpB7CbOJ58n9K1QapSsTuXAMiwPeww2boQNG2DLFp3vnXfqWtANN+Qs8aQkiI2FsmX1NYlkHV8piInRNZU//tCfmzdrwYmL03Ecbz/G/5fBUOARkYJVU1FKrRCRaukO9wTaWfuTgOVAlqKSI4KD9Ror33yjv3fuDJMm6RpMdg/lXFA0sCiCcFml6prIvffqzR0EB+tmBVcR0dXxyEhd6wJ4+WXdvHH5cvb9NAaDwZANvthRX14pddjaPwKUzyiSiAwDhgFUqVIlZzk8/7x+sA4dCg0b5sHU7BERQoNCfXeeSkSEbq47cUL3sRgMBkMe8EVRuYJSSolIhu1zSqkJwATQzV85SvjWW/XmJUKDQgnwDyC8aLjX8nSZiAj9eeSIFpVwH7TRYDDkG3xRVI6KSAWl1GERqQB4f2UtNxMaFEqz65rxXe/v7DblWhy1kyNH4MYbr450MRgMhlzgizPq5wCDrP1BwE822uIWfHpNFeeaisFgMOQRW0VFRKYCa4BaIhInIvcDbwNRIhIDdLK+52tCg0LZfHQzzy953m5TriW9qDz/vN4MBoMhF9g9+mtgJkEdvWqIhwkNCuXkxZOsictmopUdhIZqNzBHj+rv2U0GMxgMhizwxeavAodPj/4CXVsxzV8Gg8ENGFHxAqFBob69nkr58kZUDAaDWzCi4gVMTcVgMBQWjKh4gbCgMFJVKpWKV7LblIyJiLjap1Kpkt4MBoMhF/jiPJUCR2hQKArFl3d8abcpGRMRoT00JyVph5UGg8GQS0xNxQs4Fury+bkqx/L9PFODwWAzRlS8gENUnln8jM2WZILzrPrhw/VmMBgMucA0f3kBh6j8fexvmy3JBOcJkNHRtppiMBjyN6am4gUcouKzI8AcouLorDcYDIZcYkTFC1wRFV+dq+Lc/OWDKKVYtm8ZW49ttdsUg8GQDUZUvIDP11SCg/XKkT4mKkop5u6cS/MvmtPxm44MmzfMbpMMBkM2mD4VLxAWrNd/L1usrM2WZIFjVn1kpN2WkKpS+WnHT4xcMZJNRzZRvWR1ml3XjB0ndthtmsFgyAZTU/ECjppK/3r9bbYkCxyz6idM0JsNpKpUZm6bSePxjblrxl0kJCfwdc+v2fnoTu6ufzcnL54k/kK8LbYZDAbXMDUVL+Dz81RAi8qGDbZkrZTi+23f8/pvr7P1+FYiwyP55s5vGNhgIAF++hatGV4TgJiTMb65gqbBYABMTcUrFA0sCsDULVNttiQLHDWVYcP05iWOnjtKz2k96T+zP6kqle/u+o5tj2zj3hvvvSIoAJHhulluV/wur9lmMBhyjs/WVEQkFkgALgMpSqlm9lqUe/zEDz/x49h5H56xXr48nDsH27eDv79Xsvxxx488MPcBEpISeL/L+zzW/DH8/TLOu3rJ6viLvxEVg8HH8VlRsWivlDphtxHuwF/8fXf0F1ydq5KcDEWKeDSrs0ln+c/P/2Fi9EQaRzRm8l2TqVu2bpbnBPoHUqNUDSMqBoOP4+uiUmDw9/P33XkqcFVULl3yqKis2L+Cf8/+NwfOHuDFW17klVtfIcg/yKVzI8MjjagYDD6OL/epKGCRiGwUkWsa+UVkmIhsEJENx48ft8G8nJGvaioeICkliWcWPUO7ie0I8Atg5X0reaPDGy4LCmhRiTkZg1LKIzYaDIa848s1lZuVUgdFpBywWER2KKVWOAKVUhOACQDNmjXz+adMiZAS+IkPa7hDVMqVg4YN3Zr09uPb6T+zP38f+5sHmz7I6M6jr4yIywk1S9fkwqULHEo4RMXiFd1qo8FgcA8+KypKqYPW5zERmQ00B1ZkfZbv0rB8Q05ePGm3GZlTpgyIwM03w+uvuy3ZdQfXcduU2wjwC2DewHl0i+yW67ScR4AZUTEYfBOffHUWkWIiEubYBzoDW+y1Km+EBoX69jyVgAAoW9atrlqW7l1Kh0kdKBlSkjX3r8mToIAZVmww5AdcEhUR6ev0kH9JRH4QkSYetKs8sFJENgPrgPlKqZ89mJ/H+fPwn8SejrXbjKyJiIAFC+Cee/Kc1Ozts7n9u9upXqo6K+9bSY1SNfKcZsXiFSkSUMSIisHgw7ja/PWyUup7EbkZ6AS8C3wKtPCEUUqpvcCNnkjbLhJTEkm+7JlOcLcREQH79kFcXJ6S+WrTVzww9wGaV2zO/LvnU7pIabeY5yd+1Ayvya6TRlQMBl/F1eYvx7ClbsAEpdR8wPVhOwbfH/0FWlTyOPprzJox3D/nfjpW78iSe5e4TVAc1Cxdk5j4GLemWZA4n3yekb+NpPeM3r79EqMUHDxolrAugLhaUzkoIuOBKOAdEQnGR/tjfBV/P38UiuTLyTkaRutVypfPtagopXj515cZ9fso+tTtw+RekwkOCHazgbpf5aedP5GSmpLGjUthJyU1ha82fcWry1/lyDndL7bh0AZaV25ts2Epuva7fXvabccOOHsWKlSAAwe85sXB4Hlc/Vf2A7oCo5VSp0WkAuCjC677Jv6i/zTnks+5/e3dbURE6DfIlJQcnXY59TKPLniUzzZ+xtDGQ/ms+2eZulvJK5HhkaSkphB7OpYbSt/gkTzyE0op5uycw3+X/pcdJ3bQpnIbPuv2GXdOv5NV/6zyjqhcvAixsbB3r9727Lm6HxOT9kWlQgWoUwfuvVef99VXegnrpk09b6fBK7gqKiHAcgARKQ0kAb96yKYCSa3wWuw5tcf3RQWgbtYuU5w5l3yOIT8N4ftt3/Ns62d5u9PbiIiHDEw7Aqywi8qaA2t4ZvEzrDqwilrhtfix/4/cUesORITrS13P6rjV7s1QKfjnH1i7Vm9//gm7d8OhQ2njFSsGNWrADTfA7bdrEalTB2rXhpIlr8Y7ckSLypIlRlQKEK6Kyp9AZeAUIEBJ4IiIHAUeUEpt9Ix5BYdBjQaxYPcC3x5W7BCVu+92KfrfR/+m7/d9iTkZw7tR7/J066c9aJzGWVRur3m7x/PzRbYf385Lv77ED9t/ICI0gvHdxzOk8ZA0zYFtqrRhYcxClFK5F/lz5/RyCGvXwh9/6E/HkPMiRaBxY+jcGa6/XouIYytbVs95yo6ICKhfH5Yuheeey52NBp/DVVFZDMxUSv0CICKdgT7AV8A4PDQKrCCRb9ZUgWznqiil+Dr6ax5d8CglQkqw5N4ltK/e3gsGQniRcEqFlCp0nfWXUy+zIGYBH6//mEV7FhEaFMpr7V7jyVZPZuidoE3lNnyz+Rt2n9x9ZS2aTDlzBnbu1P0cjm37dti1C1JTdZyaNSEqClq21FuDBhAYmPcL69QJPvsMEhMhJCTv6bmRlNQU1h1cx9K9S6lfrj696vSy26R8gaui0lIp9YDji1JqkYiMVkoNszrtDdnwzqp3AB8XlfLl9edbb8GAARlGOZ98nkcWPMI3m7+hY/WOTLlrCuVDy3vNRBEpVMOKT148yVebvmLc+nHsO72P68KuY2T7kQxrOoxyxcplel6bym0AWHVglRaV1FQ9VNxZOBzb4cNXTwwI0AJSpw707asFpEULCPfQwmgdO8IHH8Dq1dChg2fycBGlFLtP7mbx3sUs3ruYZfuWcTbpLKBfZnrU6mEGh7iAqyV0WESeA6ZZ3/sDR0XEH0j1iGUFjPPJ5wEfF5VSpXSzxalTGQZvPbaVvt/3ZceJHYy4dQQvtX3JYx3yWREZHsmK/fnWY49LbD6ymY/WfcSUv6eQmJJI26pteafTO9xZ+04C/bOpIRw8SJ2Vf1OSEFZPeoPBQ8bqmsiFC1fjlCyphaNrV93X4diqV3dPDcRVbr1Vj/xassQWUUlKSWJ+zHx+3v0zi/YsYv+Z/QBUK1mNAfUGEHV9FAlJCQyZM4Rf9/1K1PVRXrcxv+GqqNwNvAr8aH1fZR3zR48MM2SD8+gvn8XPTz9QMhhWPCl6Eo8seITQoFAW37uYjjU62mCgJrJ0JJP/mszFSxcpEujZtV+8zfLY5bzy6yv8/s/vFAkowr0N7+XR5o/SsHwWTj4vXoTff4dfftHb1q34Aa3+BavK/APlO+qHt7N4lCvnWr+HpwkL07WhpUu9mu3WY1v5ctOXfLP5G+IvxlM8uDgdqnfguTbPEXV9FNeXuv5KX1RiSiKP//w4M7bOMKLiAi6JirVQ1mOZBO92nzkFF8cbfUJSgs2WZENQUBpRSb6czMPzHuar6K9oV60d3931HRXCKtho4NXO+t0nd9OgfANbbXEXm49s5r9L/8vPu3+mUvFKvNf5Pe5rdB+lipS6NrJSsHWrFpBFi2DFCt0nERwMt9wCgwZBhw60OT2XhStf4+QPU3x3xCHofpWRI3UNuVQG1+smziefZ/rW6Xzx5xesiVtDoF8gd9a+k6FNhtKheodMm7ZCAkLoWasnP+z4gXHdxmVfUyzkuCQqIlIWeBaohx5eDIBSyt5G0HxEvqipgBaVpKQrXx9f+DhfRX/FS7e8xKvtXvWJNmXnEWD5XVT2ndrHy7++zHd/f0fJkJK8G/Uu/3fT/6WtgZ0+DevW6e2PP/TmWEOobl146CHo0gXatoWiRa+c1iY2AVa+xpoDeXfm6VE6doTXXoPly6GXezvDlVJsPLyRzzd+ztQtU0lITqB2mdq81/k97m14L2WLlXUpnX71+jHl7yks3beUrjd0dauNBQ1XnxBTgOlAd+AhYBDg+ytj+RCdanRi5YGVvi8q1arpUT/Al39+yfiN43muzXOM7DDSXruccMxPiTmZf0eAHT9/nDdWvMGnGz4lwC+A59o8x3M3P0fJwDA9GXDt2qsisnPn1RPr1IFu3fQSBZ07Q+XKmeZx03U34S/+rD6w2rdFpUULPbdlyRK3icruk7uZ+vdUvtvyHTtO7KBIQBH61+/P0MZDaV25dY6HWXe+vjPFg4szY+sMIyrZ4KqohCulvhSR/yilfgN+E5H1njSsoPFqu1f53+r/+b6o3HYbbN7Mun/W8MiCR4iqEcWoDqPstioNYcFhVAitkC+9FZ9LPseYNWN4d/W7XLx0kfsbD+HVCgO5bvXf8PFg/bZ+5oyOXL68fuDee6/+vOkmKFHC5byKBRWjcYXGrDqwyiPX4jaCgnSfTx77VQ6ePcj0rdOZumUqGw5tQBBuqXoLw1sMZ0D9AZQIcb3s0uNoApu9Yzafdf/Md10t+QCuisol6/OwiHQDDgE+3Ejrm/j8mioAEREcC7lM7xl9uC7sOqb2nmrLCK/syG/r1aeqVCZFT+LFZS9y+Nxheoc0YdSeCGp98hMc+1xHqlFDD+Pt0AFat4YqVfLcmd6mchsmbJzApcuXfLsvoFMnvezCgQNZ1r7Sc+LCCWZtm8XULVNZsX8FCkXTCk0ZHTWa/vX7U6l4JbeZ2K9eP77961uW7F1SaCfeuoKrovKGiJQAngI+AooDwz1lVEHktim3kZCUwLlLvi0ql776gn594cTFeFb/aw3hRT00PyGPRIZH8uOOH+02wyWW71rEk3P+j03nd9PyeDCzfoJWcX9qP1hRUbpPoX173fToZtpUbsOHf3zIpiObaF6xudvTdxsdrdGES5fC4MFZRk1ISuCnnT8xdctUFu1ZREpqCrXL1GZEuxEMrD8w+8meuSSqRhQlgkswY+sMIypZ4Oror3nW7hmgPYCIDPeQTVjpdwU+RA9b/kIp9bYn8/M0Fy9dxE/8fL6m8my9Q/xWDb6t8R8aV2hstzmZEhkeyfELxzmdeJqSISXtNuda4uLYPWciz8R8wo8lj1DlNEz9LZD+FTogz92u38xr1fL4sF6HQ8nVB1b7tqjUr6+HOS9ZkqGoJKYksjBmIVO3TGXurrkkpiRSpUQVnmz5JAMbDOTG8jd61OccQHBAML3q9GL29tkkpSR5xAu3xzlzBrZv5/CWNczb65l1D/MylOdJ4AM32ZEGa1LlJ2hX+3HAehGZo5Ta5on8vIW/n79Pi8p3f3/HBzcc5/G1cE/1enabkyWOEWAx8THcVPEmm61BD/PdsgVmzOD0zz8ysvQWPmoBwcWEUeda8ETH5ygyqkua0VneoGLxilQtUZVVB1YxvOVwr+adI/z8dG1l6VJdliKkqlSW7l3Kd1u+44ftP3A26SzlipXj/sb3M7D+QFpVboWfeHcFjn51+zExeiKL9y6me2R3r+btEhcuwP792mv0vn36MzaW1H172XR+DwvKnmZuLVhfEfCQJuZFVDz5WtAc2G2tAImITAN6AvlbVMTfZ+epRB+JZuicodxyqjijF52FDkftNilLapbWTRy74nfZKyrbtsH06TBjBqk7dzChmfBSZ39OBglDqvXijbs+JsLmeT1tqrTh132/5s25pDfo1AmmTuXM5j/4OnEtn6z/hN0nd1M8uDh31bmLgfUHZjmfxBt0rNGRUiGlmLF1hr2i4ljk7M8/024HD16JElccFkf6s6h+URZ3SSQ+8BKC0KJoJKNq3k6P5vfScIT7V4XPy6+j3GbFtVQEDjh9jyOd00oRGQYMA6hSpYoHTXEfvlpTOXnxJHdNv4tSRUoxY1tVAvkjW6eSdlOjVA38xM+ezvqdO2HGDC0mW7eCCP90acl9/67FsuSdtKt2M+93eZ9GEY28b1sGtKnchu/+/o7Y07FUL1XdbnMyZXvTqnx8O0z66VbOk0ybym0Y2X4kd9a+k5AA33A2GeQfRK/avZi5fSaJKYnesevSJb3EwNatsGnTVQFxrJrp5we1a3Oh/c38ViuYRWHHWHRpB9vOxwKXiQgtRrfre9G5Rmc61ejkcV99WYqKiCSQsXgIYKt/DKXUBGACQLNmzTwpcG6he2R3ziWf48SFE3abkobLqZcZOGsgcWfjWHHfCiJSV8LGnT4vKsEBwVQrWc17jiXj4uC77/S2ebPuC7nlFtRHH/FNg1QeX/MyqSqVCd0nMLTJUJ+qETj3q/iaqDi8L49dN5Yle5cQ3FQYeKIcj73wE00quP8t2h30q9ePr6K/4pfdv9Czdk/3JXz+/FUP0c7b7t1XF84LCIB69fRcpSZNSG3SmOWlTjNp5wxmbZvF+UvnCTkXQtuqbRlS41E6X9+Z+uXqe/V+zFJUlFJh3jIkHQfR67c4qGQdy7c83fppYk/HMm3LtOwje5ERy0ewaM8ixncfT8tKLeHplvDDDz4vKuCFYcVnz+qy+PZb+PVX3eTQsiV8+CH07s2xkoEMmzuMn5b/xC1VbmHinROpUaqG5+zJJQ3KNSAsKIxVB1bxr4b/stscAM4mneWrTV8x9o+x7Du9j4phFRnVYRQPTN1F2W9nwRjf9ZTQoXoHShcpzYxtM3InKidOXCsc27frBdAcBAToRc7q1IG77rq60Fm9ehASQkx8DJM2T+LbdXfzz5l/KB5cnIH1B9K3Xl9uqXKLrT7x7Pe5kTHrgZoiUh0tJgPQDizzNb42T2XJ3iWM+n0U9zW6j2FNh10NiIi4Mqvel4ksHcnKf1a6t6/g0iXtT+vbb+Gnn7RPrRtugFdfhXvu0QtSAT9s/4EHv3uQhKQERkeNZnjL4T45nwd0s2vLSi19YhLkP2f+YewfY/n8z885m3SWNpXbpPW+fGwWfDoJ1q/Xc3V8kED/QO6qfRfTtk7L3KmpUnrOTUbiccKptaJIEe3g8+abrwpH3br6PgtKO8HydOJpZmz9hkmbJ7H6wGr8xI+oGlG83fFt7qx9p884V/VJUVFKpYjIo8Av6CHFXymlttpsVp5oN7Ed+8/sJ+lykk9MRDt67ij3/HAPtcvU5qPbProa0K6dXlfcyf+Xr1IzvCbnks9x9PxRIkIjcp+QUvohNnkyTJum/WqFh8P992shadHiytDf04mneXzh43z717c0qdCEb+78hnrlfHukHOh+ldd+e40ziWfyNLM8t6w/uJ4xa8fw/dbvAehbry9PtHzi2mHO7dvrsl6yxGdFBXQT2BebvuDn3T/Tq8zNej2YbduuCseOHXrlTAelS2vBuPPOq+JRp46e4OqX+Qi22NOxzN81n3kx8/h1368kXU6ibtm6vNPpHe5peA/XhV3n+YvNIT4pKgBKqQXAArvtcCcOp5LnL52npH9J2+xIVancM/seziSdYcm/l1AsqFjaCEFBet3x5ORr3pZ8CWfHkrkSlX37tJBMnqxrZsHB0LOnFpIuXa659mX7ljHox0EcTjjMK21f4aW2L9n+cuAqrSu3RqH44+AfdL6+s1fyvJx6mbm75vLemvdY+c9KigcXZ3jL4TzW/DGqlqya8UmlS0OTJlpUXnnFK3bmmIsXab/nMmVUEWaMGUKvL05fDatUSYvFkCFpxcPFJZZTUlNYG7eWebvmMT9mPluObQH0vf7ITY9wd4O7aVqhqU/12aXHZ0WlIOJoHjmXfM7WCXtvr3ybJXuXMKH7BOqXq39tBMfD9Ngx/SfxUZxFpW3Vtq6ddPKkHrk1eTKsspqD2rXTa6T37p2hb62klCReWvYSo9eMplZ4Ldbcv8Y35sbkgJaVWuInfqz6Z5XHReVM4hkmRk/ko3UfsefUHqqWqMqYzmO4v8n9FA8unn0CnTrBe+/pN/3Qa5dK9jqXL2snn4sXa7FbuZKApCR63+HH5BuTuDDyFYp27KoncIblvBs6MSWR+bvmM3vHbBbuXsjJiycJ8AugbdW2jOk8hm6R3a7c6/kBIypexBfc36/6ZxWv/PoK/ev1Z2iToRlHcqz8d+SIT4tK5eKVCfYPzr6zPiVFrz3y5Zcwb57uN6lbVy+bfPfdugkiE7Yf387dP9xN9JFoHmr6EO91eY+igd6dwOgOwoLDaFi+oUf7VXbF7+KjPz5i4uaJnEs+R+vKrXmz45vcVeeunM0t6dQJ3nlHLzx2220es/caHHM/tmxJu23bphdCA2jYEP7v/yAqin5VLzN+RncW3tWQ3nVb5SirVJXKiv0rmPzXZGZum8mZpDOUKVqGHpE96B7ZXbuEsaGZ0h0YUfEidi/UFX8hnoGzBlKtZDUm9JiQeRXaUVM56tsTIP39/Lmh9A2Zi8q+ffDVV/D11/phUa4cPPaYbt5q1CjL5gilFJ9u+JSnFj1FaFAocwbMoUetHp65EC/RpnIbJkZPJCU1xW0TCFNVKov2LGLsH2NZuHshgX6BDKg/gMdbPE6z65rl0tA2uilyyRLPisqhQ/Dbb1q8/vpLC4jDQzRo32z16+v1apo10zP+y1+d49E2NYVyxcoxY9sMetft7VKWfx39i8l/TWbqlqnEnY0jNCiUu+rcxT0N7qF99fY+sV5RXsn/V5BP6FevH7vid7Hl2BZbaipKKYbMGcKRc0dYff/qzJsh+vXTTUSbNuWbYcU7453WG0lKgh9/hC++0A8lPz+9DvtHH0H37i6tv37s/DGG/DSE+THz6XpDV77u+XXeBgL4CG0qt+GT9Z/w99G/8+zXLTElkS///JKP1n3EzvidRIRG8Fq71xjWdFjey6pIES0sS5bkLZ30HDyolxb47Tf9GWOtx1O8uH7J+Ne/tIjUr6+H7pbO2hF7gF8Avev0ZtLmSZxPPn9t36TFnpN7+H7b90z5ewpbjm0hwC+Arjd05d2od7mj1h35suabJUqpfL81bdpU5Qc2HNygGIGas2OO1/P+YM0HihGo99e8n33kixeVAqXeeMPjduWVZxc9q4JGBqmUg3FKDR+uVHi4tr1qVaVef12pf/7JUXrzd81X5d4tp4JHBquxa8eq1NRUzxhuA7GnYhUjUB/98VGe0pm3c566/sPrFSNQN024SU3ePFklpSS5yUqLN9/Uv+PRo7lP4+hRpb77TqmhQ5W64QadHihVooRSPXoo9d57Sm3YoFRKSq6z+HXfr4oRqOlbpqc5HhMfo95c8aZq/FljxQgUI1CtvmilPln3iTp+/njur8nNABuUm5/HpqbiJS5cumBbn8qGQxt4ZvEz9IjswX9a/CfryBcu6M8SJfJNTSX5cjL/tKlH9YMX9JDNoUN1u3wWQzXTk3w5mWcXP8uHf3xIw/INWfrvpRkPYsjHVClRhYphFVl1YBWPNn80x+fvPbWX4T8PZ+6uudQuU5tF9ywi6vooD1iK/v1eeAGWLYMBA1w758IFWLlSd6gvXqw9HwCULKmXWn7kET0oo2FD8HfPnKJbqtxC+WLlmbF1Bo0iGvH91u/5ftv3bD6q825RsQWjo0bTp26fzEe8FTCMqHiJ26fcTtJlPffDm6JyNuksA2YOoHxoeb7u+XX2QxFvt9aJiIjw+T4V4uOJ/Pg7qAq76pan+sKf9ESyHBJ3No6+3/dlbdxaHm/+OO9EveMzvqbciYjQpkobVv2Ts876i5cu8s6qd3h75dsE+AXwv07/4z8t/+PZ1Q+bNNFisGRJ5qKSmKhHZS1frkVk1Srd/BkYqJvPRo3S69U0aeI2EUmPv58/fer24ZP1nzBr+ywAWlVqxZjOY+hdtzdVSuQPv4TuxIiKF7GjpvLQvIeIPR3L8sHLc7bgVkSEb9dU5s+HoUOJTDwBw2HXSw/TJReCsnjPYu7+4W4SUxKZ0WcGfev1db+tPkSbym2YsXUGB84coHKJrFdYVEoxd9dchv88nH2n9zGg/gBGR42mYvGKnjfU319PhFy8WDdaXboEf/8NGzZc3bZsueoTq0GDK6OyuOUWvea9l3is+WPEnY2jXbV29K7TO9tyLegYUfEizvNUvMGCmAVM3TKV19q9xs1Vbs7ZyRER2hOqr3H2LDzxhB7V1bAh5SYtpPjPt7Lr1J4cJZOqUhm1YhSvLn+VumXrMqvfLGqVqeUho30HZ+eS/Uv0zzTervhdPPHLEyyIWUDdsnVZ9u9ltK/e3ltmajp1gtmzdU1j2zY9GRd0B3qzZvDss/qzVSt9v9pErTK1+HHAj7bl72sYUfEighASEOIVUUlMSeTxhY9TK7wW/735vzlPwBdrKsuWwX33aY/BL7wAr7yCBAdTc11NYk7GuJxM/IV47p19Lwt3L+SehvfwWbfPMh25U9C4sfyNFA0syqoDq+hf/1pR2XR4E2+tfIuZ22YSGhTKmM5jeLT5o/Z4DrjjDj1qLzwchg/XAtKsmV522YdnlBd2jKh4mdCgUBKSPT9PZfTq0ew5tYdF9yzKXdt3+fKQkKA7P728WuE1bNsGo0fr+SaRkdrPUoury+tEhkeyNm6tS0mtP7iePt/34ci5I3za7VMebPqgT7u8cDeB/oG0qNgizSRIpRQr9q/grZVv8cueXygeXJzn2jzH8JbDPb72RpZUqqT9aBnyFUZUvMTgRoMBeO231zxeU9l/ej9v/v4mvev0zvnoHMf64MpaouboUahuwxocSulO2jFj4OefISQEnnwSRo68RuQiwyOZtmValuuGK6UYv3E8//n5P1QIrcCqIatyPzkvn9OmchveWvkWCUkJLI9dzlsr32JN3BrKFSvHWx3f4uFmD+fb2dwG+zGi4iUcojJmzRiPi8oTvzyBiDCmy5icn+wQlYUL9eeRI94VlcREmDIFPvhAd8SWL6+F5MEHtVO+DIgMj0Sh2HNqD3XL1r0m/OKlizw8/2EmbZ7EbTfcxre9vs3ZoIUCRuvKrbmsLlPnkzocTDhItZLV+OT2T7iv0X0+4z7dkH8xouIlHCs+enpNlV92/8LsHbMZ1WFU7oYzOtZ6cHR8eqtf5ehR+PRTGDdOu55v2BAmTtTDSYMzrn04cHYsmV5UYk/Hctf0u9h0ZBMjbh3By7e+jJ+4Pn+lINK6cmtKBJegZEhJ3u70NgPqDygQ7kEMvoG5k7xEnxl9AM+KSlJKEo8tfIyapWvyVKuncpdIH20nU6fqT0+LilJ6JNdjj2mnfd266WYux7oaLlCzdE0AYuLTdtYv2rOIgbMGahfsA+fSPbK7283Pj5QIKcGhpw4REhBS6AXW4H587o4SkREiclBEoq3tdrttcieeFJUxa8YQczKGsbeNzbRvwWUc6z94UlQSEuDee/UM+NatdafsvHnQoUOORveUCClBuWLlrjiWVErx1u9v0XVyV64Lu44NwzYYQUlH0cCiRlAMHsFXayrvK6VG222EJ/CUqPxz5h/e+P0N7qx9J11v6Jr3BAMCoEwZz82q37xZO6/cvRtef10PEc7DrOfI8Eh2ndzF2aSzDP5xMLN3zGZA/QF80eOLQjNc2GDwBXxVVAosnhKVpxY9RapK5f0u77svUU/MVVEKJkyA//xHT2JbtgxuvTXPyUaWjmT2jtk0/7w5u0/uZkznMQxvObxQDRc2GHwBX63/Pioif4nIVyJSKqMIIjJMRDaIyIbjx497275c4wlRWbJ3CTO3zeSFm1+gWslq7kvY3aJy9iwMHKjXp7j1Vu23yQ2CArqmcirxFKcST7Hk30t4otUTRlAMBhuwpaYiIkuAjPwqvAh8CowElPX5HjAkfUSl1ARgAkCzZs2Ux4x1Ew83exiAnfE7uZhy0W0LJSVfTubRBY9yfanreabNM3lOj4cfvrofEaHXbncHmzbp5q59++DNN/XyvTnwIpwdA+oPYP+Z/bxwywtUKu67q1UaDAUdW0RFKdXJlXgi8jkwz8PmeAWHS4z31+jmqfPJ590yweyDtR+wM34n8wbOc49n3f5OrjvKl9d9KkrlzS3GpEkwbJju/F++HG7OoR8yF6hasirjuo1ze7oGgyFn+Fzzl4hUcPraC9hily3u5MCZAxw4c4DQoFDAPU4lD549yOu/vU6PyB50i+yW5/QAOHBAb6BrKomJutkqNyil1xofPFh7jo2O9oigGAwG38EXO+r/JyKN0M1fscCDtlrjJu6dfS8ADzbVl+MOUflg7QckpiTyQdcP8pzWFe7VdrJ8edoJkCVyWKtKTYWnn4b339cTGCdNgiAPrr9hMBh8Ap8TFaXUvXbb4EncVVM5n3yeLzZ9Qe+6valRqoY7TLsWZ1GplQO38JcuwZAhMHmyntT4wQdu7T8xGAy+i8+JSkHHXaIy5e8pnE48zePNH3eHWRlT3vJQm5MRYOfP61n5P/+sV957/nnjptxgKEQYUfEy7hAVpRRj/xhLkwpNriy65BEcNRVXJ0DGx2s3K+vXw+ef65nyBoOhUGFExcu4Q1R+jf2Vrce3MrHnRM/OxShdWs+sd6Wm8s8/0KWLHjI8axbceafn7DIYDD6LERUv4XDw6BCVvCzUNfaPsZQtWjbDlfvyzFNOjij9/HQTWHaism2bFpSEBFi0CNq2db9dBoMhX2BExUv0qNUDgNOJp4Hc11T2ndrHnJ1zeOGWF9wzLyU9PXqk/Z7VrHql4Ntv4dFHoVgxWLFCu6w3GAyFFjMkx0vsPLGTnSd2UixQOzfMraiMWz8OP/G7MkPf7ezcqTcHmdVUTp7UEyUHDYLGjeGPP4ygGAwGU1PxFg/O0/NTlg9eTrB/cK5ExTGMuE/dPlQsXtHdJmoetKYFLV+uPyMi9KRFZ5Yu1WJy7Bi8/baej5IHD8MGg6HgYGoqNpBbp5KT/5qshxG38OAw4vREROjRX6mpkJSkBaRTJwgLg7VrtQ8vIygGg8HCiIoN5EZUlFKMXTeWphWa0qpSKw9ZlgEREXD5Mvz2G9x0E7z3HjzyCGzcCE2aeM8Og8GQLzDNXzaQG1FZtm8Z245vY9Kdk7zr0t0xV6VjR+0Qcv58uL1ALcZpMBjciKmp2EBuRGXsOmsYcT0PDCPOishI/dm9O/z9txEUg8GQJaam4iVeavvSlf2cisq+U/uYu3MuL97yYt7Xns+Ol15K+/3GGyEuDq67zrhbMRgM2WJExUt0qnF1CZmw4DCOX3B9tcpP1n+Cv58/DzV7yBOmpaVTBkvdVPTQSDODwVDgMM1fXiL6SDTRR6KBnNVUziWf44s/PTyM2Jno6GuHEBsMBoOLmJqKlxj+83BAz1MJDXRdVCb/NZkzSWc8643YmeHD9adjnorBYDDkAFtqKiLSV0S2ikiqiDRLF/a8iOwWkZ0i0sUO+zyNqzUVpRQfrfuIphWa0rJSSy9YZjAYDHnDruavLcBdwArngyJSFxgA1AO6AuNEpMDNrAsNCuXCpQtcTr2cZTzHMOLHWzzu3WHEBoPBkEtsERWl1Hal1M4MgnoC05RSSUqpfcBuoLl3rfM8Dk/FFy5dyDLeuA3j7BlGbDAYDLnE1zrqKwIHnL7HWceuQUSGicgGEdlw/LjrI6l8AVfWVElMSeTn3T/Tt25fzw8jNhgMBjfhsY56EVkCRGQQ9KJS6qe8pq+UmgBMAGjWrJnKa3qe5s2Ob17Zd0VUfov9jQuXLtAtspvHbUvDm29mH8dgMBgywWOiopTKYMJDthwEKjt9r2Qdy/c4L/vrykJd82PmUySgCO2rtfe4bWlo7cHliQ0GQ4HH15q/5gADRCRYRKoDNYF1NtvkFlYfWM3qA6sBPfkRMq+pKKWYt2seHWt0pEhgEa/ZCMDq1XozGAyGXGDLPBUR6QV8BJQF5otItFKqi1Jqq4jMALYBKcD/KaWyHiKVT3hh6QuANU8lm+avHSd2sO/0Pp5t86zX7LvCC9pOM0/FYDDkBltERSk1G5idSdgoYJR3LfIu2YnK/Jj5ANxe0zhvNBgM+Qtfa/4qFLgiKg3KNaBKiSreNMtgMBjyjBEVG8hKVE4nnmblPyvpHtnd22YZDAZDnjGiYgNZicqiPYtISU2hW00vDyU2GAwGN2AcSnqJD7p+cGU/yD+IQL/ADEVlfsx8ShcpbZ+vrw8+sCdfg8FQIDCi4iUaRTRK8z00KJSEpLTzVFJVKgtjFtL1hq74+9nk8qxRI3vyNRgMBQIjKl5iyd4lwNXFusKCwzh3KW1NZf3B9Ry/cNzepq8l2s4MF+syGNzEpUuXiIuLIzEx0W5TCgUhISFUqlSJwMBAj+dlRMVLvLHiDeCqqGTk/n7ernn4iR9db+jqdfuu8Ia204iKwZPExcURFhZGtWrVjAduD6OUIj4+nri4OKpXr+7x/ExHvU1kJCrzY+bTunJrShcpbZNVBoN3SExMJDw83AiKFxARwsPDvVYrNKJiE+lF5VDCITYd2WRGfRkKDUZQvIc3y9qIik2kF5UFMQsAjKgYDIZ8jREVm0gvKvN2zaNy8crUL1ffRqsMhsJBYmIizZs358Ybb6RevXq8+uqrGcabOHEiZcuWpVGjRjRq1Igvvvgiy3RnzZqFiLBhw4YMw6tVq0aDBg1o1KgRzZo1yzDO4MGDmTlzpkvX0b59e3755Zc0xz744AMefvhhl873BKaj3kuM7z4+zffQwKuikpSSxJK9S/j3jf+2v0lg/Pjs4xgM+Zzg4GCWLVtGaGgoly5d4uabb+a2226jZctr54f179+fjz/+ONs0ExIS+PDDD2nRokWW8X799VfKlCmTa9udGThwINOmTaNLly5Xjk2bNo3//e9/bkk/NxhR8RK1ytRK8925pvLb/t84f+m8bzR91aqVfRyDwZ0MHw7R0e5Ns1GjLCfyigihodqzxaVLl7h06VKeX+hefvllnnvuOd599908pZM+zQMHDvDll18yZswYZsyYQVJSEr169eK1116jT58+vPTSSyQnJxMUFERsbCyHDh3illtucZsNOcU0f3mJuTvnMnfn3Cvfw4LDOJd8jlSVyvxd8wkJCKF9dS8vyJURc+fqzWAo4Fy+fJlGjRpRrlw5oqKiMq1hzJo1i4YNG9KnTx8OHDiQYZw///yTAwcO0K1b1i+GIkLnzp1p2rQpEyZMyDLuM888w/Hjx/n6669ZunQpMTExrFu3jujoaDZu3MiKFSsoXbo0zZs3Z+HChYCupfTr18/WFg9TU/ES7615D4AetXoAV/1/nU8+z7yYeXSo3oGigUVts+8K72k76dHDXjsMhQebXAP5+/sTHR3N6dOn6dWrF1u2bKF+/bR9mj169GDgwIEEBwczfvx4Bg0axLJly9LESU1N5cknn2TixInZ5rly5UoqVqzIsWPHiIqKonbt2rRt2/aaeCNHjqRFixZXhGfRokUsWrSIxo0bA3Du3DliYmJo27btlSawnj17Mm3aNL788stcloh7sKWmIiJ9RWSriKSKSDOn49VE5KKIRFvbZ3bY5w0corLx8Eb2ntrrG01fBkMhpGTJkrRv356ff/75mrDw8HCCg4MBGDp0KBs3bgTgxRdfvNJ5n5CQwJYtW2jXrh3VqlVj7dq13HHHHRl21lesWBGAcuXK0atXL9aty3hh25tuuomNGzdy8uRJQE9gfP7554mOjiY6Oprdu3dz//33A9CzZ0+WLl3Kn3/+yYULF2jatGneCyUP2NX8tQW4C1iRQdgepVQja3vIy3Z5DYeoTN8yHTBDiQ0Gb3L8+HFOnz4NwMWLF1m8eDG1a9e+Jt7hw4ev7M+ZM4c6deoAMGrUqCsP+BIlSnDixAliY2OJjY2lZcuWzJkz55rRXefPnychIeHK/qJFi66pGTno2rUr//3vf+nWrRsJCQl06dKFr776inPndD/swYMHOXbsGAChoaG0b9+eIUOGMHDgwLwVjBuwa+XH7VC4Jz85RGXm9pnUL1efqiWr2myRwVB4OHz4MIMGDeLy5cukpqbSr18/unfXaxi98sorNGvWjDvuuIOxY8cyZ84cAgICKF26tEtNXM4cOnSIoUOHsmDBAo4ePUqvXr0ASElJ4e6776Zr18xdMvXt25eEhATuuOMOFixYwN13302rVq0ALSSTJ0+mXLlygB4F1qtXL6ZNm5aL0nAvopSyL3OR5cDTSqkN1vdqwFZgF3AWeEkp9Xt26TRr1kxlNi7cV2g3sR2g16gH7WAy6tsoAJ5r8xxvd3rbJsvS0a6d/jRr1Bs8yPbt26+89Ru8Q0ZlLiIblVIZT5jJJR6rqYjIEiAig6AXlVI/ZXLaYaCKUipeRJoCP4pIPaXU2QzSHwYMA6hSxfeX3f2217dpvjtqKuBjTV/ffpt9HIPBYMgEj4mKUirHbm6VUklAkrW/UUT2AJHANdUQpdQEYALomkrerPU8lUtUTvPdISqlQkrRqnIrO0zKmMqVs49jMBgMmeBT81REpKyI+Fv7NYCawF57rXIP07dMv9IpDxAWFAZA1xu6EuDnQyO7p0/Xm8FgMOQCW55mItIL+AgoC8wXkWilVBegLfC6iFwCUoGHlFIn7bDR3Xy64VMA+tfvD0D50PI0qdCE+xvfb6dZ1/KptpP+/e21w2Aw5EvsGv01G5idwfFZwCzvW+R9QgJC2Dhso91mGAwGg1vxqeYvg8FgMORvjKgYDIZCy+XLl2ncuPGVOSrpcdX1vavx2rVrR61ata7Ec0xgdGbEiBGMHj3aJfvvu+8+xqfzLP7jjz9y2223uXS+J/ChHmKDwWDwLh9++CF16tTh7NlrZi1cwVXX967GmzJlSqZrqeSUgQMH8tZbb/Hggw9eOTZt2jRbZ9YbUfESM/u5tuiO7bi4OJDB4C6G/zyc6CPRbk2zUUQjPuj6QZZx4uLimD9/Pi+++CJjxoxxa/7u4vPPP+eHH37ghx9+YNasWYwdO5bk5GRatGjBuHHj6NixI4MGDeLw4cNUqFCB8+fPs2TJkmw9IHsS0/zlJcoULUOZou5ZmMejlCmjN4OhgDN8+HD+97//4eeX9WPQFdf3OYl333330ahRI0aOHElWHk0+/vhj5s2bx48//khsbCzTp09n1apVREdH4+/vz5QpU/D396d3797MmDEDgLlz59KuXTuKFy+ezdV7EKVUvt+aNm2qfJ2vN32tvt70td1mZM/XX+vNYPAg27ZtszX/uXPnqocfflgppdSvv/6qunXrlmG8EydOqMTERKWUUp999plq3759nuLFxcUppZQ6e/asioqKUpMmTbomzquvvqoaNGigbr/9dpWcnKyUUuqjjz5SFSpUUDfeeKO68cYbVWRkpHr11VeVUkqtXLlStWzZUimlVM+ePdXMmTMzzDujMgc2KDc/j01NxUtMjJ7IxOiJdpuRPRMn6s1gKMCsWrWKOXPmUK1aNQYMGMCyZcu45557ronniuv7rOKlx+H6PiwsjLvvvjtT1/cNGjQgNjaWuLg4QL/8Dxo06Ipn5J07dzJixAgAWrduzeHDh9m8eTOrV6/OdqEwT2NExWAwFDreeust4uLiiI2NZdq0aXTo0IHJkydfE88V1/dZxXMmJSWFEydOAHoJ43nz5mXq+r5x48aMHz+eO+64g0OHDtGxY0dmzpx5ZbTYyZMn2b9/P6C9vffv359BgwZx2223ERISkosScR9GVAwGg8GJV155hTlz5gAwduxY6tWrx4033sjYsWMzdX2fVTxHbSYpKYkuXbrQsGFDGjVqRMWKFXnggQcytePmm29m9OjRdOvWjXLlyvHGG2/QuXNnGjZsSFRUVBohGzhwIJs3b/aJ9VRsdX3vLvKj63ufxbi+N3gB4/re+3jL9b2pqRgMBoPBbZh5Kl5iwb8W2G2CayzIJ3YaDAafxIiKlygaWNRuE1yjaD6x05DvUUoV6iXFvYk3uzlM85eXGLd+HOPWj7PbjOwZN05vBoMHCQkJIT4+3qsPu8KKUor4+HivjQozNRUvMWOrnvH6yE2P2GxJNlgzc3nEx+005GsqVapEXFwcx48ft9uUQkFISAiVKlXySl5GVAwGg9cJDAykevXqdpth8AC2NH+JyLsiskNE/hKR2SJS0inseRHZLSI7RaSLHfYZDAaDIXfY1aeyGKivlGoI7AKeBxCRusAAoB7QFRjnWLPeYDAYDL6PLaKilFqklEqxvq4FHI19PYFpSqkkpdQ+YDfQ3A4bDQaDwZBzfKFPZQgw3dqviBYZB3HWsWsQkWHAMOtrkohs8ZiF7qOM3Ccn7DbCBcog+cROMHa6j/xgZ36wEfKPnbXcnaDHREVElgARGQS9qJT6yYrzIpACTMlp+kqpCcAEK50N7nY14AmMne7F2Ole8oOd+cFGyF92ujtNj4mKUqpTVuEiMhjoDnRUVwerHwQqO0WrZB0zGAwGQz7ArtFfXYFngTuUUhecguYAA0QkWESqAzWBjBccMBgMBoPPYVefysdAMLDYctOwVin1kFJqq4jMALahm8X+Tyl12YX07FuQOWcYO92LsdO95Ac784ONUIjtLBCu7w0Gg8HgGxjfXwaDwWBwG0ZUDAaDweA2fFJURKSr5aZlt4j8N4PwYBGZboX/ISLVnMIydPOSXZretFNEokRko4j8bX12cDpnuZVmtLWVs8nGaiJy0cmOz5zOaWrZvltExoob/Jfnwc5/OdkYLSKpItLICnNrWbpoZ1sR+VNEUkSkT7qwQSISY22DnI7bUZ4Z2ikijURkjYhsFe1Gqb9T2EQR2edUno3sstMKu+xkyxyn49Wte2S3dc8E2WWniLRPd38misidVpgd5fmkiGyzftulIlLVKcw996dSyqc2wB/YA9QAgoDNQN10cR4BPrP2BwDTrf26VvxgoLqVjr8raXrZzsbAddZ+feCg0znLgWY+UJbVgC2ZpLsOaAkIsBC4zS4708VpAOzxRFnmwM5qQEPgG6CP0/HSwF7rs5S1X8rG8szMzkigprV/HXAYKGl9n+gc187ytMLOZZLuDGCAtf8Z8LCddqa7B04CRW0sz/ZO+T/M1f+72+5PX6ypNAd2K6X2KqWSgWlo9y3O9AQmWfszgY6Wembm5sWVNL1mp1Jqk1LqkHV8K1BERILzaI9bbcwsQRGpABRXSq1V+o77BrjTR+wcaJ3rKbK1UykVq5T6C0hNd24XYLFS6qRS6hTa/11Xu8ozMzuVUruUUjHW/iHgGFA2j/a43c7MsO6JDuh7BPQ9c6eP2NkHWKjSTqNwJ67Y+atT/s4ustx2f/qiqFQEDjh9z8hVy5U4SvsQOwOEZ3GuK2l6005negN/KqWSnI59bVWHX85jU0hebawuIptE5DcRucUpflw2aXrbTgf9ganpjrmrLF21M6fn2lWe2SIizdFvvHucDo+ymk7ed8OLUF7tDBGRDSKy1tGkhL4nTqurvgV9pjzRNez096ed5Xk/uuaR1bk5vj99UVQKDSJSD3gHeNDp8L+UUg2AW6ztXjtsQzd7VFFKNQaeBL4TkeI22ZItItICuKCUcvYB5ytlme+w3lC/Be5TSjnevp8HagM3oZtJnrPJPAdVlXaFcjfwgYhcb7M9mWKVZwPgF6fDtpWniNwDNAPedXfavigqrrhquRJHRAKAEkB8Fud6wv1LXuxERCoBs4F/K6WuvAkqpQ5anwnAd+TNS3OubbSaEOMtWzai31YjrfjOS8jZXpYW17wFurksXbUzp+faVZ6ZYr08zEf76bvi4FUpdVhpkoCvsbc8nX/fvej+s8boe6KkdY/kOE1P2GnRD5itlLrkOGBXeYpIJ+BFtEeTpGzOzfn96a5OIndt6Fn+e9Ed7Y7Opnrp4vwfaTttZ1j79UjbUb8X3XmVbZpetrOkFf+uDNIsY+0HotuFH7LJxrKAv7Vfw7qRSquMO+5ut6ssre9+ln01PFWWrtrpFHci13bU70N3gpay9m0rzyzsDAKWAsMziFvB+hTgA+BtG+0sBQRb+2WAGKxOaeB70nbUP2KXnU7H1wLt7S5PtPDuwRqM4Yn7M9cX4MkNuB29eNce9NsSwOtoZQUIsW6c3dYFOz9MXrTO24nTKIWM0rTLTuAl4DwQ7bSVA4oBG4G/0B34H2I92G2wsbdlQzTwJ9DDKc1mwBYrzY+xPDPY+Ju3Q7v6cU7P7WXpop03odudz6Pfmrc6nTvEsn83ulnJzvLM0E7gHuBSunuzkRW2DPjbsnUyEGqjna0tWzZbn/c7pVnDukd2W/dMsM2/ezX0S49fujTtKM8lwFGn33aOu+9P46bFYDAYDG7DF/tUDAaDwZBPMaJiMBgMBrdhRMVgMBgMbsOIisFgMBjchhEVg8FgMLgNIyqGfE06T7XR4uSx2lcRkWYiMtYN6YiILHN4OhCRc+nCB4vIx1mc311EXs+rHQaDM3YtJ2wwuIuLSqlGGQVYvr5EXXUz4hMopTYAG9yQ1O3AZqXU2VyePx8YKSJvK885OTQUMkxNxVCgEL0OzE4R+QY9YauyiDwjIustx32vOcV9UUR2ichKEZkqIk9bx5eLSDNrv4yIxFr7/iLyrlNaD1rH21nnzBSRHSIyxeG8UkRuEpHVIrJZRNaJSJgVf54VXkxEvrLCNolIT+t4PetYtJVXzQwu91/ATy6Wi3Nt7qKI3Kr0JLXlQPfclLXBkBGmpmLI7xQRkWhrfx/wBFATGKSUWisina3vzdFuJuaISFv0zOcBQCP0/+BP9Az8rLgfOKOUusnyKLtKRBZZYY3RboIOAauANiKyDpgO9FdKrbeaqS6mS/NFYJlSaoiIlATWicgS4CHgQ6XUFNGLTPlnYE8b0jojdS4L0K435gA4anMi0gN4FlhtxdmAdrY5I5trNxhcwoiKIb+TpvnL6lPZr646QuxsbZus76FokQlDO/i7YJ13ZeXALOgMNJSrK/uVsNJKBtYppeKstKLRrjnOAIeVUusBHM1U6TzwdwbucNSS0O5oqgBrgBctx6M/KGuNk3SUVtpZZmZlMRjtYsPxvSbaK217ddWx4TH0YlwGg1swomIoiJx32hfgLaXUeOcIIjI8i/NTuNo0HJIurceUUs7uyxGRdoDzejiXcf2/JUBvpdTOdMe3i8gfQDdggYg8qJRalt5OEfFzpc9IRELRtZEHlFKHnYJCuLb2ZDDkGtOnYijo/AIMsR6qiEhF0WvVrwDuFJEiIhIG9HA6JxZoau33SZfWwyISaKUVKSLFssh7J1BBRG6y4oc5uWR3TvMxpz6YxtZnDWCvUmosut+kYSbp18jy6q/yFfC1Uur3dMcj0X1PBoNbMKJiKNAopRah11JZIyJ/o13ghyml/kT3d2xGu/Ne73TaaLR4bEK7VXfwBbAN+FNEtgDjyaJGovSSrv2Bj0RkM3qJ1pB00UaiXfP/JSJbre+g19/YYjWl1Ucv45qe+WgPzVkiIlXR4jjEqbPe0SzW3krHYHALxkuxwQCIyAjgnFJqtN22uIro1QS/UUpF5fL88sB3SqmO7rXMUJgxNRWDIZ9i9Y18Lrlf5rkK8JQbTTIYTE3FYDAYDO7D1FQMBoPB4DaMqBgMBoPBbRhRMRgMBoPbMKJiMBgMBrdhRMVgMBgMbuP/AV0TwObWCJV1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "energies = ['3.5-4.5 keV', '4.5-5.5 keV']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross[i].freq, lags[i], colors[i], label=energies[i])\n", + " plt.axvline(v_cuts[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cuts[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.ylim(None, 25)\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Power Spectral Models.ipynb.txt b/_sources/notebooks/Simulator/Power Spectral Models.ipynb.txt new file mode 100644 index 000000000..747733347 --- /dev/null +++ b/_sources/notebooks/Simulator/Power Spectral Models.ipynb.txt @@ -0,0 +1,229 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the pre-defined spectral models available for light curve simulation. Specifically, the notebook describes the meaning of different parameters that describe these models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import pyplot from matplotlib for plotting light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power Spectral Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Currently, stingray has two spectral models namely generalized lorenzian function and smooth broken power law function. More models might be added in future, but, as explained in the rest of the section, Astropy models can be used to create most power spectral shapes one might be interested in." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generalized Lorenzian Function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies, the lorenzian function needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = peak centeral frequency\n", + " p[1] = FWHM of the peak (gamma)\n", + " p[2] = peak value at x=x0\n", + " p[3] = power coefficient [n]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Smooth Broken Power Law Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies which need to be passed as a numpy array, smooth broken power law needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = normalization frequency\n", + " p[1] = power law index for f --> zero\n", + " p[2] = power law index for f --> infinity\n", + " p[3] = break frequency" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These models can be imported while simulating lightcurve(s)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACCY0lEQVR4nO29edwsR10u/lR3z8y7nH3JQvaEhBgChBASEATZCcpykaug3gv+uOaq4NWb6xLkCgii6P2pqCBcRFBUBMQtEmQLIYACSQhJyL7v28nJOTnnvMvMdHfdP6q+Vd+qrp7pmXfmnZk3/Xw+53Pememlurv6W08936WElBI1atSoUWP2EU26ATVq1KhRYzSoDXqNGjVqbBDUBr1GjRo1Nghqg16jRo0aGwS1Qa9Ro0aNDYJkUifetWuXPP744yd1+ho1atSYSXz3u999REq5O/TbxAz68ccfjyuuuGJSp69Ro0aNmYQQ4q6y32rJpUaNGjU2CGqDXqNGjRobBLVBr1GjRo0Ngtqg16hRo8YGQW3Qa9SoUWODoDboNWrUqLFBUBv0GjVq1NggqA16Rdy25xC+ddveSTejRo0aPfDIoTZu33No0s2YGGqDXhF/dslteNs/XjPpZtSoUaMHnv/7l+CFf3DppJsxMdQGvSI6WY5uNp2LgVx0zQP4oy/fPOlm1KgxcSx1skk3YaKoDXpF5LlElk+nQX/LJ6/EH198y6SbUaPGhsZDB1Zx5yNLk25GT0yslsusIc1zZPVyfTVqPG5xzu9cDAC4830/MuGWlKNm6BWR5Yql16hRY/rxeF0ruTboFZHlOfLHaSepUWPW0MnysR07HeOx14raoFdEJjG1GnqNGjVctNPxGd19y92xHXutqA16ReS5RG3Pa9SYDXTGaND3LrXHduy1ojboFZHmec3Qa9SYEZQx9Lv2LuH4Cy7C9+99bOBjNmNlLvce6qypbeNEJYMuhHi5EOImIcStQogLAr//kRDiKv3vZiHE/pG3dMLIc9Qaeo0aU4b9yx18+fqHCt+3u+F49K/c8DAA4B+uvHfgc21fbABQ2ajTir4GXQgRA/gggHMBnAbgDUKI0/g2Usr/KaU8Q0p5BoA/BfCPY2jrRJFJWRv0GjWmDOd94rv42U9cgUeXXNZcxtApUi2OxMDn2rHYAjD7DP1sALdKKW+XUnYAfArAq3ts/wYAfzeKxk0T0ilOLKoxu/jM5ffg05ffPelmzCzu2KsSffzIkzINPdXvcDKEQd/cUmk706yhV0ksOgrAPezzvQDOCW0ohDgOwAkAvlry+3kAzgOAY489dqCGThrkFJVSQojBO0ONGiH82j+o+kA/8czZeh+mHaUMXc+yoyEMOuHASjr0vuPGqJ2irwfwWSllUMCSUn5ESnmWlPKs3bt3j/jU4wWx82km6Y/XZIoaNajnE9dqp2ENnd7jeAhSRpni0yy9VjHo9wE4hn0+Wn8XwuuxAeUWgBv06X2YU9y0GjXGAjLL1PcbkTJpZZILvcfDMPRcTj+pq2LQLwdwshDiBCFEE8poX+hvJIQ4FcB2AN8abROnAzQ6T7OOXteaqfF4AxFt6vtJrL7oJ7kMo6HTqz/NM+G+Bl1KmQJ4K4AvArgBwGeklNcJId4thHgV2/T1AD4lp/lq14B8Bhj6NA82NWqME7nn7CyTXNI1RLnIGZBcKlVblFJ+HsDnve/e4X1+1+iaNX2gjjDNRnOaO1qNGuMEvZeNuLfkQoY/GkJD3yiSSw1Mzin6qg98Ez//N9+ttO00DzZrxX37V8aazl1jtlFVcsnWELaY60NOM3GqDXpFGIO+zkbzmnsfw79d+2ClbfMNau+W2ime876v4u3/9P1JN6XGlMJKLsqktbslBn0NYYuGoU8xcaoNekUYp+gUj87T3La14OCqivv9+i17JtySGtMGoeNcSBJtJlpyKSlxa8MWBz8XvV5TbM9rg14V+YQY+iDYqJJLV7+cxL42CjZo/MBEYMIRKQ69pJZLtganaD4DTtGN9YaMEemENPRBMM0dbS0gg97QtCrNcnz40tuwWvLSzgqmddHxWYTvsOwXtjhMtjftO82vWW3QK4KY+TTLGhuVoa9qPTTREQyf/e69eN+/3YgPXnLrJJsFAHjP567Hh75221D7jnNVnUGwf7mD4y+4CP969f2TbsrQ8BP/ygx6qgfRYd4UK7lM73tWG/SKyGbAIbJRDTrFFFNI2opm5qStTxL/cdteXHbH3qH2nZaonesfOAAA+Otv3TXhlgyPzAsrLo1yMSx78HdlUMklzXLsObi+hbxqg14Rk45DrzKQTDNzWAuIoZPkQjHE03C9UkrTN+7dt4w/vfgW3L7nUKV9p8WgU7GpLfONCbdkcJhM0dyVQ8oSi9biC8ul+38/vOdz1+OZ7/0KDrXXj3jUBr0iJp0pulrSQTk2KEE3106xw+TPmgaDnuXSaPy/8U/X4g++fHPlxRO6UyK5HFhRa2Ruma+UZziV8EtzpCX+Cfp6GPeFHTSq7fyv1zwAAOvq69lQBv2Bx1ZwxZ2PjuXYk660ttTu3yk2rOSiXwjS0MmhNQ32MJe2Tv5qR7UzZc8hyyXu278S3HecCxkPgse0Qd86gwyd4Cf9lPm6Mr1hFaP80IFVfIWthiQ9x2s/dPXzXc9i2xvKoL/4Dy7F6z48+tpgeS7NVG5SRmS503/aNg2MdRwok1wG1UHHMfWV0karGJbI6N8fX3wLnvO+r+KeR5cL+06L5PKIXrChlcQTbsnw8AlXmaQySNXU1334P/DfPnFFwZBXfc/I6b2eRGtDGfSlznimNny0H/fDuX3PIXzn9qKTbbnCtW1Uhk5TVnKK6v8GGsCuvHsfTn/nF/Gl66pl3VZFJiVSzfqoPZyh/8etjwAAHnhstbDvtEgu5LiblvYMg8w8A/pcZtDhbNcL9zy64mw7aC0Xup/rGRm3oQz6uMA7x7hZ8Av/4FL8xEe+Xfi+CkPfqAadpAlKLBLGKVr9GFffsx8A8O/awI4KuZRGrw35WWgQChnLaQlbfESvkTktM4ZBQHIG3Uo/2sVH5g2+VeDXcao6M6Tty/T8caA26BWwnga9DFU09I0ruRBDV68vvcSDXK9ZCGGE7QKUdusnnXGG3uiRij4tBvQRzdCnpT3DwK+1VKqhG6Nc/dg2oWg4P1otuUwZ1lNyKcPjW3JxE4tM6dMBLlcY3X2kTVNhi55WyvXbRkTZrcUTj4qhp1mO9/3bjYWV76uCfAuzLLn4MeJl78IwYYupN/MatAheLblMGbiTaz1ZMJ/aPa6dojpske4HlXQZ5EWxY8Bo71EmpXGKhjT0npLLiBjxJTftwYcvvQ3vuvC6ofY32ZUzbNAzj5mXvQv+doMce1CnqL//emBDGnRuCLtZjg99bW11P/jDX08SzDtCFYdv1ffxW7ftNaxyFkDPzn+RBnkW/tqTo0IuUXCK5gHJpZ9BX0uhLkqiGZZhU3s3hOTSxymaes7TKvB9I4M+qlpDXyP4w7zm3sfwe1+4Ed8ORI5UBX9B13O05QPJyoiconftXcIb/vzbuOSm2SlFS05RejFspMJAmguA0WvoksWhBzV0LbmECnFxA8of3b37lvGez11fWRagzYap8c33n0WDbnMSPMd0yaXQcxhkAM08Q14z9HVGSPNeS2U7/oL2eskeDISmrQW8U1bpE1U6GtU/qSLhTAuIofsv7SAvJdm6UZesVZmi5Q65XpIL/46/9L/0qavwF9+8A1ffu79SG+i88RAVBAHbbwZh+PuWOlPVh3yppUxS8WdTlY7ta+iDGvRaQ18bXEM4eGf1wV+2sofzH7c9gmf97sX4/PcfGPo8PtKcM7j+naLKNsR2Z8mBSqvP+IuMDOKcooUQxiK5ZK6R4D6XRkIMvXfYIn92g8pha6nxrc6t2zMAQ3/6e76Ml7//G0OdbxxQyX8yOEvi6KbubKoKigZ9sLZl67iU2IY06I7mna/doOcBxu/j6nse0//vH/o8hfOyJlcxRFWMdGcGDbrP0AfJ9iOIMdV/yVlxrtCqVhQ7HzKW/Lu1PA+zrJrH0KWUeO9F1+PGBw845/RLEdCsZdCom7sD2a+TQsaMOVA+k+6uYxw6odbQ1wg3blz9PyrJpexZ2kUYRndLQwNTL1Rj6BQxMny71oIX/cHXcP5nrhpoH4pyGWTq+9o/+3f80qe+Zz5byWWgU/eFlCyszUtuAXovica/W8u0nAYGn6A/cqiDP//GHfjpj15mvnvnhdfiOe/7Kg6sds13dB/5AHNwtYvr77cDwbQjy2Ul4kXv6TBx6MOuiVBLLmuE48SkULK1MPQKTtGxGPTAwNR7+/7bGIY+AYu+0slw254l/OOV9w20H8Wh+yWMe92TK+/ej3+5qrhgw6ivOsuVU1RN9932AbZC5Gpg0WInymUNs3KawfiSS4hJXqqd4VRhEWCSC+tAP/XR7+AVf/KNoX0Ojy138bWbHh5q30HAy+dWSQC0jvXq1zVMHHpWwWaMAxvSoKeBB7smDV0WBwgf9DKQZupj31IHtzx0cLDzDpihWklymUDBIML37t431H7tdO2SCz3+0Wvo1L/CBp3+DNXn5lPxtQywKzqk1Y9ysVKM/c6GURb7Fh9grrlXSYjD9pO3/t2VeNPHL8feQ+uzwIMaVN3PIXSzwSWX3CMQg8yEgXI9fxzYkAad33DJXrhhwV+8Um1OO1uaJQz9lR/4Jl7yR1/veR6fDWWB6+i1T5WORi/tJBYovvxOZdCP37kw0H4+q+rnnAoZT1M2dcQcnW6jYoj2b/u7+rsdYOh+mV2zj/6/6rqXfuKVOX5W1NZDUTe0W0jnH/a9uXPvEoBqJStGgVzKSsTLhi1WP3YmpXNvq+y7wvJG1nOVsw1p0N3pjvo/XYOnOXeMZnibfpLLvfvCNbE5Us8Q5AGm56MKK+GYpFN0zyEV1pkMKEtxo6n+p+/D17B/uVv4ju7t2Bh6npv2hKbboUEmH3AwLsNKJ9fncPs49UnO0EkCcmPgNUMPhVYG3psqZICITdnKQaNGlnv3syyxaAiGrvR5+7nKvqvs/tYMfY0ISRWjcoqWj/zVNPReL4Mf9RCSjnxkAxoFI7msvz03s5hBs3Z9KaOfU3Tfsq1p4hvZkcehGx8Nk1wCTDHI0LnksoaXntZY9Rk29XkuxTQDmavmHdH7P8YGxG6AtVcxUE1dW33ci3hYDT13jDi18Zzf+Qpe+2f/br73yzRUge9wrbIvZ+jrSZ5md82pHghLLqNxipaN/J0AGwqhm0k0S3R2x6BL38lT0rYKnv3QOSax2DU9g5CDsBd8g96vRCovUrXcybDYSixDH6zJPSGl1W3TLLfLnwWiokKGbdBnV4bVUoNOfbIouYSyVKkP37PPhiOGiFCVd4kGjvVafi3LPSKn/37oQBsPHbA6/jCp/75BrzIW8OuuGfoaEZJcRpZYVDqVK7KzEHpNQdtObY/wwORjUMmFzjGJQl7dvD9Dl1IWfqfL8teNLFPR9i1ZhkmZsf4iwqMAP1bKnHKhqKjQNWcBwx/C9fcfwN9fcU/p78QGfcmEPvPoFypBvOr0NTuLzXOJR5gjM5jhmva/iS1t0FfGbNAl6xu8+4feQ554NAihyaXrcB1kJjzoudaKDWnQQ9OjtQT3V4k2Md7zPg+v1xTUl1xC55VS4qJrHiiUbO3VttD5JxG2SNP3Xgb94/9+J079zS84RqVMcinzizzKJBeKt6bnP8qr5vcwzaxTLiTRhZ57PymPrvMVf/IN/OpnryltR6nkQmta8igX0rbZM8ilNfodNtMAhl+Ygwx6lbLPawEvh+vOeIrbDruuQUGfr7ArJ2BTx9CFEC8XQtwkhLhVCHFByTY/LoS4XghxnRDik6Nt5mAIac/9OuGhdor3/duN4QiJCvoZdfx+D6+XMetkTHcrkVz+4cr78JZPXolPXnZ3oT2DxKFPUnJJc1k6Y/rb79wFAEGDTgY8JG1w7GOSC8Vbm5VqRnjd/N538zxYbZFe7NBz75ff4M/KytpeLrloDT0gubQ98tBi2jqXWYaWXPR5VsZs0Hl2Lt3/RiyC7+mwVVPTPB/YKcpv0VSl/gshYgAfBHAugNMAvEEIcZq3zckA3gbgOVLKJwP45dE3tTpCI3E/hn7ZHXvx4Utvw7X3FbPjQhKOj07FhIVeDJ1ry9LXBPV1UCw7Oa4G7Wg2yqXvpiMHH1TLBjZidI7Gm7v/9yu4xp2iJLmkZp/RXbgjuWTStI/PHGyUS2+GHnp2fldaKimGZQx65hv0ol+HJBdqDw0acw3lxOyk/Rl6lXvYahQZ+mo3w+s+9B+4aoTlMXioKLW7EUfB9zBU46kXTLkIj6FXIfdVbMY4UIWhnw3gVinl7VLKDoBPAXi1t83PAviglHIfAEgpx58i1gPOg6uooXfScoNcpThX1xjKPga9h0PQTwXPAp3oMc0455vqBcz7GIXiOcK1xceBGx88gPM+cYUxzvwZkEzwx1+5BdewqoJLevUcWkWHt7XA0EueKT8PSS79WP0wcApqMYYeepn7hS3263eAe084yiQX66gvMnRbY159P8dKFPABKRjKWEG+NAydDdw3PHAAV9y1D+/8l2v77l8V/J7T7WzEUXA2w6+rSvfn+rwccDCQzrOdIoYO4CgA3CNzr/6O4xQApwgh/l0I8W0hxMtDBxJCnCeEuEIIccWePeOrxx0KG+vXCY0cEOjAoUSRsv3X4hStoqHv1XICGfaho1zWwaD/yt9fjS9d/5ApDsVnSTSw/dFXbsarPmDDysgA8IQU+9KqzyGtmoN/fWCMDJ3fb66hhyS6UGRPmbPdOFe9Z7Q0oEGnaxU9JBc6RxlDD81sKzF0HbbI6/jTPWjpc40CPOKJM/RQ3xiUodv9Bg9bdPwr06ahV0AC4GQAPwzgDQD+XAixzd9ISvkRKeVZUsqzdu/ePaJTFxEywP0ZerkGPkjRn7U4Rdte5EHoJb9HV7jbH5BcJp1Y9OR3fAEf/cbt5jMZg9gs8uBKLqHBkQbeJYehQ7fZvcdl5V7zXGLzXOIcJxuDQee3MM1zy+gCafWh8/aLcvGJ3aGSrMt+iUU8NcJKLu5MrcUMOn8HhpVcaJlALrnQOUmvHwX4akJkRBuxCBKrYTX0LJcD7zvoezkqVLmz9wE4hn0+Wn/HcS+AC6WUXSnlHQBuhjLwE0HIUdgvU9Qw7OBUrb9BJw2932hcOcpF+pmi6u+79mqDHmDovZjDVffsh5SSJRaNtpNJKbHUyfDbF91QaI+NoJBGz13pZoUXgxt4R3JhLIy3veyZcieflVpoBja66+btbXvPjrdFnX9wKc9/nodWwwy9k5Zo6FpG5JJLYqJcSENX35Ohz6V7j8KSS3+DTtfmGnTN0JMRMnRHcrEMvZ/kUsU5Trctzf049P77TmqVsyoG/XIAJwshThBCNAG8HsCF3jb/DMXOIYTYBSXB3I4JISRVdPrEzvaKUqkS7mQYT18NvVccuptd5rMCKaWZXu/Xjr8qUS5fuf4hvOaD/45PX34Pq+XSs5kDI3TZdN9oJZ1ulmPLfAOAmn77Hf0xVgGQr4ZTTCxS35cZ50xKIy34y9Z11/ByXXLjwzjhbRcVdHmgvLa5dcr3CVsM9TtvQCzT0GnfMg2dSy4m6sZj6HSOXEpH8w3d437vEmCvbcVzigLAXGP0FUl5LZ0QQ1elNOzngSQXafX5JBJOX79v/0rYATutkouUMgXwVgBfBHADgM9IKa8TQrxbCPEqvdkXAewVQlwP4BIAvyqlHH4RzzUiJLn0Y+g2SqX31Ljs2bS75QMCx2pFhi5lsbYLb0dIcinrpLc/cggAcOvDh4Zasegd/3ItLr7hoZ7b9HLq8RLGJIUohu7u88ghG51yyNHQ1f+27nhv+STPJRLNOC2DK/eRcHz79r1OrXCOD1xyK6QEbn7woNMuoIdB7zH49JtdUd9N+hj0tMSgh6JcqD3UX6mpdA6/3w0rudAz4k5ROufcCDV0I3PlPGwxgpQuk/advbmUSLMcf3LxLU6Yawj82HFkQyLv27+C57zvq/iTi28J7hP6e9yoNFRKKT8vpTxFSnmSlPK9+rt3SCkv1H9LKeX5UsrTpJRPkVJ+apyNLmmj+Tt0M/t1wqoMvezhmFV1+jlFe8Whe0bBl1x42yg0LzS1e+jAqpP+TpceR2Jgg95OM3ziW3fhzX91BQDg2vseK6x4Q+3zQe0lY9bNJDa3iKEXDToPZVwKSC5+rZReTtFYCMSRsIbca0sIB1a7eP1Hvo1f+Jsrg78n3oLPZZJLKGEo1NZ+DJ3sD0WMlDlFDUMvDVu0Ft1PdAoz9LUbdLo2LrnQrGstGvqeg2286eOXmRkqd0Rzpyjg3tN2mhfW6P3Xa+7HH375Znzgklt7njOX0hn4qD9SCPHXbykGeIyqrMOg2DCZomV6JH3dN8rFW1meo0oVN2IiWWj/PPziF9rghy16MwP+2cahFzvOOb9zMc58z5cL7Y8iEYxyeee/XIvjL7go2CZywi7qMMkf/dNv4jnv+2phu14DITc4xNBXu1mho5cadM8o5n2McyYloogMutuWUPVA//x8yTYOv7BVGUMP1f4JzRD71QiifkyzjRBDl2yg9yOjbGIRO6cx6LrkLhvs1fHcZ9lJc+xf7uDSm63RqhK2SOdZ6do2L3XIKTo8Q7/u/sfwtZv2mNWUMtYnfH8Av452Ny+Uo77hAWWQdyw2nXMstVMcf8FFrE6PJVdxJMz3t+9RJYI3tYolsabZKToTSEtejl5RBhydHgy9SrXFXgydM6dho1w4Q98638DBdopuVi2DjWvZIYP+V9+6q7RNdzyiDPoxO3rXMK8iubgaelaI4uChfYcCUS5SqmdLx+tkedBBledSMXRRZOi9+gEdqqwOuV9LnD9resZJJEoWWJGFtpZJeVSznbann0IGnfZbaNooFdMmk/pvr4feDSu5kKGKzLm5LJXmEu+96Aa88WOX4WbNSId1ilL717KoFx33UDv1Viazz4OeE+/j7TRz5NRcWoa9e3PLOcc3PMadcQ09jsx5bnn4oD52b5l2qjT0WUGZLFI1U9Su5KP+v/Xhg6YUQF8mldspWciwuQa9XHLhzCfL4TEKe+yt2igut7PS6+YwDF3w6yxtBm556KDp7Hc+oljI0dvXYNDJmKacoeeFAYjfmxBDB4ozF5KmHnxs1fkujgQSztCz/v2AjltWMdOXXHhfIOPZiCOvvcXj88/E+oNhdp7eHZJciPmHDHoolJb+9MMWk4hFuZRILrR8Xcig3/PoMl73of/AwwdWnWu99aFDOP6Ci/CFax/ActvNCRgGJqy1k3rRRLY/lUkuvNm5lLh1j/It+e/0pTc/4nzmcehcQ7/lIbX//X0kyPUshLdhDHpZGrWVXPpo6Kk7rf/sd+/Dhy+9De+68Pq+TlFHKglswLNDe2WK+scpMnT1O03xVlM3lrvsPaEO60guQc1WffeSP/q6WV2JVp7ZMte70nKvKA2joecSm1tMcvHkImLoOxabwcQi2s6PIHj/xbfgWb97sXmxcikRCYE4DjH08pcrtMIPR8OTXPh7SgayEYvS2aJvyDIpjT4efB5SsXo6dihske47ZQ63WT2gkF+oqKGr7+mafQ29k+ZmMP/mrY84x+X4yNdvxxV37cNnr7zXaddBbcT/5ar7jaN7FIXyDgXIDN1DE4LJmuknTGW5xD2Pqv7iD6bfv2+/e04pnYGPDvPQQTV4PXRgtdD/nT66josPbBiDXjbFGdQpal4Q7Ym/8q59fSWX0GIBHFUlF/84nFlzDX0TRYp03FjuMibAX9pei0SHYo6plnQ/VhUshsTq20ipCnJRhIMfZ3+onRrZaudisyC5NFlcue+0u1QvRvyQZoe5VIktsRBMXybj1uP+564Tcf9yB2/82GW4VU+tm7GvoRcZejOJjDTkb+Pfw5Qz9BKDnrLZH92Tx1a6JsSTBqhN5GzucIbuzpCA4pJ4fiSNr6GnuSUSdH87WfF4qybDN8zC40iU/jYIqC1L7bQQsltwinpO67JELn8w9Q0wn4EnsbCLpjBn/yPe2qm8m01b6v9MIFQQCeBhi707kU39dwcACS/tN3AczvrCcbu2bb2rLfphVfpl09N4+ryZMfQqkguPZ/an2hyh2QN1xn7RO0GnqLn3uTbqNiNRSveYS+3UDHY7CgZdohFZR5czdc6tRszj1SnKxXeo9mJLNlVefb7pwYO49OY9eNn7vwGASy4BDZ1JLvw3h2h4A2aeS8MmyxKLOAGg/vG03/oSnvZbX3KOv03LcAfb3cL2IYJDceimb8Rk0JWGbgavNC8MDHwVIyOtaPmCZAi/fyWRMMXF1mLg6HxL7bQwg6WPQcnFmxH2ikLx286TlpIosvKqtBnJvCAc/UaoNfQhUJb8YxJK+iyF1fEYOp+u0jEiETaa/EUNMl927p4MPXU7mdEEI+E4SV2G3t+gW6bfW3Lh03WCYbh9po3hzDxrCMgotEqY9rsuvM4MdkdunTMvCK0KRHKHX1cjzXOjedPhchbl4i8w3Wum5ksuNFBkucRyJzVtIIbqhC1mnkEPMPRuJnHZHY/iQ1+7zWxD24eduy4BCLWdiMz2RWXQuSxjC8a5zkDAJvzQ51i4Gjovp+sP6pw8pVrquEnH5pPj1B844ygaDUPXx1VOUfu9G4fuDvBAkaGX+TnoWP5nc58YSchy25/9MWrQonmjwoYx6O76jPZ7E2XQl6HTdmpnbuCpQyuHV3Ffp0piyFAyZx//+959y6UvrJJY1N+NJEKe2xdhsWWTc5ypo9dxyEgYDZ07RUPX0WOZtGEYug3ZsyUHuEHnh/zS9Q9h75Kath61fR4HV1PlkPZYV5oXnaIUcseNt4lD9xl6j37gJ+L4IYDEWjue/gzY2Y1h3Mag222yXOLH/++38HtfuNF8bpoBoNiezGPooZWCDENfUKF3B7lBD5SzoGdC0Sf02Uou6v4msUAzjtDJ7GBsE7rc+//wwTaWOxm2zCW4W4e5Bhn6CDR0en5Lbd8p6iYW8W2BkEG3x/TJiN9FuPyZ6LBFdZ/yYEQNPwYnFeuBDWPQy2SR6sW53DjyrmPQ1TZNL4KB4Hfw4rHDDP25v3cJfvYTV7DjuJILDSRqmmcNGUkufmytf247VVafhQhHaITaSfAZbhmCMxfG0GkW00wiCFEMywRshcUjt84DUGuD0v1ushfH16WJSdOgQQxdRbm47efOMx/+ghD+wOEXtnKchz5DD0gufh/kJQrKlkzjiWihGHp6PiS5cKkqpKHb+HAdh84Mj/pd3dM4ipSDl2VYmnBRL4nq/seUc/GE3ZuQSx1a6t3jOBZY7rqF0oZBZjT0otxoNPSk6GhuM3kyEr1XFPLbx0kEj9fnM6yCTMNmC/x4h9op3nXhdbj8zkcHuu6q2DAGvcxx6UdalIE6v6+1coaeeA/HnLsPQ3cMetdlRt+4xYZI+UzfOnmEftHcKBc/fd7vVHZarV/iTl66LdB7IeN+L2GvaWXKJJdGHKn4cCkLRmy5k6KZRCYueO+hjnMP6FipN4ASozY1vnMlIUQsJtwJxSvRcM1zJIbuRCrkJlZ71YvhBlynKGCJQZlTlJ5vM2B8aJcsd59Jr4qN24mhM4Me1ND1nyR/+JmiUkpkmUQSCTSSSEsuRAKK7chyiQf2K2fpMdvnzfn8/pIwptqvDEcv0LUc8p2ikiUWBap7dlI3rNFh6AHNnIMnLSXMgPNB3t+HBowmi1sH1H3/y/+400hTo8aGMehlzkH6s98SdP701JFcpJrW8yk8R1/JhXesHlUZ/WxDevliT0NfZKF/fskDfn6TvUrTbJa112/g8bfzt3/Txy9zCmj1ju/Ozf1txBEiHR9ORuxZJ+4AoDIJ55IIuzYp4/TIobazaAGgDKU/KyFGzZO7oshN0+5XcAooLgjhhxzaCBGX3QLlTtHcGxT49r0MAu3bZgNFSHIxyWYL2inK6tCEJBdzDWmONMsLBj2XasBTcfyu5BLyQ2S5NOGilHxG7wxHHAlnxjYs6NkVnKIOASL9nzN0WxaYVjQSAWkNCBn4cLw+n2GVDQrNxK3Nbt6DaDymd8MYdJ+1EWyaeD/JxWUzXYehqw4ZCRF0XlWVXDa3EiPthFiKr6FT20nqobZtYgWu+GVluXsMMriWoRdjux0Wk+WF+1QmVXztpj34OkvA6MnQM8kkCWGmvHQ4eimW2ylajRi7NimG/sihjsOqABTCHVNm0EnHJiMfOWGL7JpK2mqdovbY/D6YCJFuMVLIGnTXQPPzuppu5kzZS6Nc9Lk2t5LCzCJl7HmxmSCJhOsU7RHlAgDLrISx0dDBNXSBLusTocViMi25LDZj7NCzhG6eFwZNxdDzwv6DgjN0h8SxGV8SW4cuod21CYIUekjZBiEnqPNZysDA582wJPCFax8w4Yt8cMkC9oHKOYwaG8aglzN0Ykq9mYFlM7rTMQOf5bmawosKkkvgxSQDsHku6bmQhvOiMAOexAKSXZeRXDpFyYUflxg6vVw8DZuOxavhddK8UA3SKX7kXVszsZ2yl7MxYzKJkVyYgTTFpzoZ5hoRdm4iyaVdiFzI8qLfgJgWLwkbRwJJHGbofsTOfftX8JZPXmn055CGnjLWGSpwVtDQjUwhjbHkRo7KB5NBKCthQOdabCUFyWW5mxlikMQCm+cS1ykaWFaR95fltp3hWSlBXStJLkpDt9cCuIYyzXM8sH8VR26btxUuM1kY4OMoquyP6QWjoXf8OHTJZI5ALRePoefSllSg43zumvvx2Eo3wLbz4sAnXQ39wEoXP/c3V+KNH7vM/E7n4v2V3nEaGEaN3ul/U4zVboYL/uEaPO2YbXjTDx5fKI1p/7b7dLMccRQuDGSiXDynaM4YOi/2xNFPcqHynIdtmbO6ZsnSXpRExMPzKPaV9iGD3k7zQqfm4ZnEyOla3Brj7jbqeFmhGqTrS/AMemzvZa+XVGnoruSSSxTY93InxVwSY7EZo5VE2LvUMbqtNZS+FJIXJJdcUpSLne76yTIcv/256/Fv1z5oDIIf167Om5vz+utxAkxDD4QtNpMIaSdzGHY7zVynaKBf5dIOHptaiVNBE1AG2eQqRAKb5hLHKeqH4gJueJ0yiupvh3lmEkkUAVAx6PxagICG/tgKjtw6Zweu3LJXu0JWbq5/FBp62Cmq/vZr7vA2AVrXzq0unuYStz58EG/95PfwiqccEWDsdsCl+5TpGaZfCOwOXSqDjHgzcRespmunNo4aM8vQ79y7hH++6n781r9ejz2H2qUMvVeUAUeZhk6rlViDHpJKyBCEDdujSx1EQhUBsiUGisfppLmpRMejWhpJ5Gjoc40YcSQUQ3ckF+kYDWLkbWPQi5IL/y7E0LlT1GcuoSp+BF/bdyUXUbg+QBmoViOCEAI7F5vYG5Bc0gBDt05ReoaqzEEswk7dTpbjPZ+73kyP6XB+dUJ/EKDzrnpZlgBP/XcNeiYtC089TTfLWdhiieRCg8emuaTQZ5Y7qWljHAlsbjVKwxa/dN2D+MK1DzrPic/wDGOUFOUi0Igjp4648cWwPpPmEvuWu9ix2DROYxr8eRVCPjCsjaGrfQtOUdY/TYkGr9idIUixcPbNc2kyb+/bH07j9xl66s3I/IRE3m+dfsQG4HFgZg26v+Cwr6cRnPAkto9f17uoodtOnBonkQjGb9PDnW/EYYO+3MG2hSbmGnFfhk6ruajz2ofPa7kkscBcEhVqiqeedklyCnXsoOTiLRFWYOjsJfSZLZ+Z+NfT8dhRlzHYWIcTGhZjJBfF0AGVUdphTrsGS+DIcruPMrTqPKssgigSamZjIitY+756w0P4i2/egXfo1eepuiHdk6BTNLMMMBi2SBp6YttFx2gldjAiUJ8NhdgRcinN89k63yg4rZc7lqU24gib5hLHKUq/pXmO8/76u/i5v/mucfADbvp8whh6mudKQ/clF91EvrJUpo3h1vmGkVxo0KWCYfSdPwseBrRvJ82d6pwyMONzM6/tM/GNbJZLHFhRA2HDW5GIfrcDn3tsvxyEHxbcjF0SyNswDsys5FLQN51pZdi4c4b+o3/6TQCKNX/pl59XqLZonKLSl1zKnZlzZQZ9qYPtCw2VqNFjgYluJnWtE6XjkWGKhdCGzL588824ELbItWrAGmu6Np7EZDV0NkVP80LoIl/P0zc6/MXMvUHUXazDvsxJHBmGbjRPrcUvtzNT64WcaNbo61A0LX00YoFOptm/NrCGoWujFUWuU5dK29JLteqtq9krsYhf/6q32g9gpZFQYlGYoWcuQ8/5/aNzWpls63yjUIJ3hWnocSSwZS7BA6zqZGh2kkvly9m/3MVyJzMRUxHLFM00Q4+ECDr8abUsumcHVrVBj+y1Z5nE5rmGvd5uXjjOMODvH60sFQk3P8HIIFn4+SVsoRdA9Ze9Ws6iCBj3nLIw8HGfEODalr/9zl2mbxQkl8w+r3Fgdhm6d5P45wOrKX7vCzdqBmv3CWWL7jnYxn37VwoRAW5iUW4yD7903UM4/oKLzMIPgA1FnEui4NT50aUOdi620Ewi05HKVoIhg5ZLa5iEcB2ecSTQSuJCCdrUk1wMQ/ckFxVlordhsentNC/UmilbPAEoJpjY63AzHHm7KMoll0XNc6mTGjabaBZF7UyoXrd2zvKiVtQOvq5rJFTYHc8U9VfKoTZTy+n6RB+nKDlf/SXOgKKGnuXSyGicoZNTNJSmTsilNItCbJtvmJo4BM7Qk0hgU8t1ilqG7pIdkkK4Y5FniqaZREMnFnVSG3JK179/pWOS2x5b7kJKNeCYjF19rxZalqGvlvSVQeG855pVU62jXho6lyybOr6e35O9Wn7z5RiAHK7qb6p5Y3xCpkSC3eft/3RtIUSSYIlN7RR10Iuh/8U370CWS2xfaDgvXdd78Qmr3awQa+vWlbZRE/Sgrr53v4m7TSsw9BN2LaIZC5uR6m13/qevwo0PHsSpR2w2v+eMKXGDmkQR5puxs0gEOXo4KyEDTtdCjH2uEZuXkztKfYYupWU1oSgX/6Xg3zsMPbOSS4NLLt70M5coMHSue9I2ee4ZdDMDsfolzah4tcVWI8ZSx5ZLKKuyZxi6r9H2Yuhde320PbWlGZcz9LI4ZmpfO1WOchXlIh3DsdJJTbGzWM/a+IBM7eOHznJizitOPf04LjL0ViPCvqWOjYBhDH3npiYOtlPDbLfMN8ygSw7KxaY1L+7scHinKH9viKFTOr5fxoATOLou+t1h74yhh3xFfvlcwBrmhmfgCe1uBiHUc1npcltVO0WDcAoEZa6+Szf9vn0rnuFX+3ANEFBMtutp6Px4nTTXBsLeLv4A6e9WqUFXTiPFDGgG4G73j9+7zxwDsIxcZTwWGfp8w5VcVJq2dNpFRpVmEGS8udbPmVMncw06181D6dxlCyN3vePwTNFmQpKLNWJNxpxbDWLoArx0rNF4c5ehK33eZc6ZZNUW2fNsxj5DdyUXmtGEwxat/NP2KhXSvePXwlP/m56uro6RezMNFJBLxaIXm4nZjg/AS+3MhGAmUYRWEheen4/lTmrY9TKPchGMoWsNnfqYGRSlKuFwcDU1oaUUeeMw9EzNahc5Q2cGfS21Tfh7c0C/x7SoiN+f/HBivqKRr6Hv1QuUH1xNC/ctz93iXKodYQ2doAZi4SS3AXDe4XFgZg26Y0Dy3Bn16WapxBS7D3WGx5Y9g97JmLOyKIm0U+sUNcdK+cusJZdGUX/Lc4l9yx1j0EOhZBxziWVsWa5qktioEO0UjQTmGq5TtKG1Omd6Ld3ZxjJj6PRb249D77oRDLRdKJ3bd3zy7/3QNjds0Q3L5GyF5ImGdmjatRwti3e159y0w5ZVULKJn53YTFw2bLuM+kzlXctqudBnf/k2unf8WuhZ5RJO5UICrakaYuj0FzlF55uxYYLOosvM2BKjDvlJOPYtd01impqtuAZGwka5GIOe2YGPyNBOvQ7nXmbQHQ09lw5DX/EiY4YFf89Jy29pqdNfgq5YG8kafCcvIZemMJyKQ/fP2V9D9zPRV7tZIXTW2a/OFHXh3yT+mTr9noNt50WhBxxi6IXyuR5zjYQ7qroRHlpySYoMnUb87QtNNOPYdPayeiJmAYjcSgdCM1rqDHEkMGcYutqvGUc6yqUYeUIyD7G3hSYz6N4alD6z5gbRb7JTqsC5z7Kgr9O9TyJha7nQC8b0RDJ+yhjnzgyEzqMkl9hcI51rlWWKxhE5k+2ARMc2iUH62NT0ZV0czI96of1pO9pfBgx60zhF7X2hWVcoAim0wAVfHGNJOy5JzuAGfaWTOpFPxNBNlc2AjPPYShdzjQhJJByG7kS56Dj0uWaMlY4bOUWMfKcuz/CoNoRb5xtWX9Za/yILW1zpM9BUBX/PH9UllucaMfLcSkzWyLJB0pdcnMEahqHv9+qaU3t9YuHPyPxZRzvN1SIrkdePMvu8xoGZNeg82y/NcocBEO7dt+xpu+rv/R5DP9ROnSQDwO0MnTRDEkUuQw9ILiGGTgsObJ6z02Z/OSwOClskiUNlqLpOHTMd7mQOy81yV2OlKfKyd2+U1q/+5gbcTyzKvNhhX0On1dH/7Gu3uk7R1GfoeU/JhTN0usdJrCIs/KluHnCKto1BZ5JLpJagS3VUTMocznSNvlOUGHrKDGroXnRSOxNQ7bcLh/B4eWpfKJKFBo9GVJwN5Mwgr3RSzDdiG6vPJBfuFFWOctfYlPWxSAgsNGMstYtx6DQDSjRDX2WRNAAz6ItFycVh6FKavgzYZ0MD9bCgtgHW+LZ0noa/BJ2/EId9f6LC/SaSdyC0zJ/kZSo8p2iJ5LLazdQyiJGbXd712jhqzKxBT72bFHoQDx5Y9SQXddP3ewydvOUAY+hZbjq5Gm2Fw9D5iNw1kktcMHq8Ch89xI5n8DjmmIaeSy65uPrbYitxXmgqAuQb0pe+/+tOKBugNPTcGCc7GPmJRTyqwl+cGVDTdwD40CW3FZyizipOBclFmAxcajuBWB4NUCHHqYpDtxEVJmyRRZ+Qfqmm00p6O3zLnN5OyyFk0I2D2K2EWZZYZGvK0wzDVu/j8fKqvWyxCGbIaPBIYltOmGD1d6WTL7Zic70rDkN3M0Wp74SqQXJEQm2r6s27zJM09DigoQPWgO9YbDqffQ09z9W10bVTm+Yb8drqoWfSLJK+b0lLLo0oSBD87PGcPS9fQw8VpuO/86xtaoc6llu6mdBOWbkQx7mutotrycWFq2/mJqGCL2ZMbIOQGobuTqu4BMMzvuaY9hlHLpO86p79uF0vu9UrDt2Gs8V2yp+5acvcGLaYUy3PVcSFDfOznWq+GWOZRWxQ3WV3KT7g9j1LhXs314wLDr5NrYZyinpTY4ehe9dGJVj9xQN6a+iiUMuF31fSFuNIFYbyNV56Mbke7ke5UJQGSTu0FuZR25RBL2Pofpifr6H7g6CNoy/OMOg58MQiHotNhpmkIW5g6JlKKbHczTDftJLLEjPopMMDrvHkiU8h5xtJdqvdnIWF2holVMtlvqn6M5/h7S1ILh0kkWL8PMIn1aG+FItODH2u4RrTQZHmuTXohqHHzvsRqrZI16XulSg4TLtZXpq9yXMmEo+hm0JgXiXMVR3l4jtFu2wAHgdm1qBzw9XNVKbXplbivFyAO3LSQzjgM/RAdl03y81K6irKJXJejou+/wBe+AeXmm1NJqlv0BlDbya2o/lhUwTD0DUjjAXT0DlDb8ZaA+0huZTp9IldqKOd5mjEysna9jT0bh+DTnVDOplr0LtetE2a89T/yMTV85rRBLrHDT/Kha15meUsttvR0K0hM9PdzBr0J2ybN9dM91gd070/JuTQYeg2yiWX0CGVMNdEaHmaKpeHuI68bAx6VCjLzO/5cjvFYjMsuXD2zBk6rzoZmtoLodrJneqRp6HH7Hi8giO9K2RUD6ykWGjGxgkN6OQvqZ7l//0vz8ATD9tkrr0V8DP5KFuAhK6JnMTcKcoZum90aT9u8PkpMt2HaNbhIw1If77k4stIK91MJ7e5g7XvTB01ZtegZ+5NOrDaxZa5xEQoEEJad1FyYQw9z/UK9dK+IGmOWJSPqt1MvTihBTBCBr2T5oUpH4Fn7OW5klwE7JJXADQjUpKLn8DgL8XnJ9MAKjSSs81WomYPfmIRrz3ur+UJuIsp+Bm5zsCSedUWdSkDE5XAqjaSAUqiKBhdQBmzZjk4ZlhtHQ1Ygy4lHjqgHHe+QQ/VLFf3LSC5ZO6AxmclrQY36G4SUS4RDjnUf1O/CpVYzaUy/PNNK7ksOwzdRndxDd0uBI5CqKY6J0kuPaoIRhHmdf/nAxHNLCg5iUuTdAzq83Ek8IzjtuPo7fOmX7UaUU8NfbWb4cTf+Dz+9OJbgr+nuUQSR1hsJYahU9QWXUso7p+c6UDRmGZ6lseduBxcrimLQ/clm3ZXhS1yx7xqf+0UDcKPET6w0sUWpuMRKIYcsA/hNi2VELj+zmOmyaB3TRx6mUFXawuGyuvyDEKqTthJ3WiU0MruZMwosciPQ6cYX5I9SBd0JZccJ+7e5LSnmUS6Jo2VXNRgE6OT5k5Fv06WO85iurYP/dSZ2L7QwKFVPhAyg+47RfWUliKFyCcQklxoCptoyYXLTHQsHoLoFxejexdHMA6phw6sQgi1+DTgMnm+H28v4DlFvQGNr4DDjSYZd17ToxVoKzlFY+1TcCUXe/5lHYcejHLxGLqvV6v7VKwuqjR0l6FzSSvNpdLQmxHbB875yfjx9ysOGHTVNsuI55LeGvpnrrgHAPC337k7+LuKwBFYbCbmvZlruEs0hsMWeR0V9z3OtSRI77uPLC8ydHrPDEnznaJpZvxumVSE85+/d19dnKsMfqq5YuiNAkNXDNROix5d6uDbtz/qbONr6PSwiKF0smIcOgcZ9NCKRqVOUdZ+Z6FokgOkKjoV6cQiKcGSSATmdYwvTYepZoQf5QIALzz1MJxzwg4AQItqqVCUS1fdH9Lg9xxsF9pOx6LjzTdjNJPIKdXqrt9Y1NA7mV1QN9KGNmQQeZRLlkvHRwAUU/9XTOw4M6LSrimaaoO+c7Fl2LNfz9x/GbnkQfDj8Plgx41m05uCu221z9kydGGKr5nzM4O+1MmUPm0qUtp7zjV0LpG0WV340Awtioohji5Dz02Ui7kuNssQwn03qFQCDTptz6BzA0oaupQSf/Tlm3Hrwy65oiUZn3L01kK7AXVf40g4lRxbSayXifNYs5fJnEtVO79gI/QsjxcT48gkCvfJL5dcCFvs5mYZxCxX5QB++dNX4Zp796vjTFJyEUK8XAhxkxDiViHEBYHf3ySE2COEuEr/+2+jb6oLd0mxHAdWUmyZT0wn4lPyFpM6Lr35YWS5xAtPPczsf1AbdCp/Sw6OeaZJ+pmiHN1USS6k2XLQg29xySXLnPbzF52X36TiXCLE0HXnI01TRbm4zD/LYQpZ0RSvmUSII5Z0pO8Pre7zMDfomX0xuQYZR6oS36FA3RBqE+/wlM1JBp3K2pqwv4BTMYkjHbZI57RRLuqaXMa62LKLh+RSspdJGfTDt7RY1FIfhh4w6Koeut3GZegsjp4xdCnVgJREESLhOjQdp6iXfMIlpE6aY6GZGCNFx1hoUkihncH4DJ07jzkiAcvQ9TXZxKKihg5YKWm5k6GVRKY/dbLcZJkWGLr3PWBnvXuXOvjji2/BT3/0O07baN+ldjFqDbBhizwLVYUt2tj/ssQicvb6Bp18DqUGPc8L/dCvmljMFM1sYT0p8bD245BTeWIMXQgRA/gggHMBnAbgDUKI0wKbflpKeYb+99ERt7OAYtiiYuj0rGiNRV5jPM1tiu/Jh1kpgozifCNGyjIP6eVUDD0qZ+h57ix+DKiOd/feZScBwWroLpN2ZAMjudjEIrX0nY1aEEJp6ICdXVA6P49zpdV9+GBEceBkrNrd3MoweY49B9vYrCOFKBqE6sRwg96II1dDdwy6rdPdaqisvDTPjVEyma8hpyiTXLgjkie+cOZJ+u6mVqJZszROUXJSH2qn2DyXGCPEJQn1PCoydMaiHQ3dYejWWUu7U6GwFUdDt05RX0On2c6hNg1WNoKEjrF5LnGyOEMMnfsaOGxxNyu58Fo5qR4w5xuu0QRUGGUrie0AIK0ck3gDpmXotg1GxqTsXq+uEn1/qMSgUxbrQpMzdDf1369RTtdFRdv813jFRODY6+XbqAgn9xqLxbkCGrqWXNIsL8zSJukUPRvArVLK26WUHQCfAvDqsbRmADjsKbMa+l17VRVEcoB1spyxphxL+iXZtmA92gWjmAUkF2FjpH0op2ikE1lUu37/Czfief/nEtytqzI2WViZHxXCnU6UsJEzw0Rhi9SZARiGQp7++WasNHQajBKVPKQGATsYNRNaMchq6PSCppnEnkNtozXzBYoBlqkqBJpx5FT249PbAytd5x5SjZmC5BLQ0CnRJonUWox+uFgu1T8aHIpOOmVIo8gydHo+Zu1RbUQePLCKr930cKFkMI+95985kkvKJZeihs5j+ONItZ8P3O0uZ+jCY+jqb2Kpc424MCPZPNdQcehcQ2/Y8Ehas5U7nAmRUNtyp6h1xktDHOabRcllpZtirhEZ9g3YCBmet8E/cyJEyUb03Eiu+cwV9+C2PYdMHzsYyCsBVB9sxJGTtNRkUS5CADSR7ngMndh95Fl0ev84Q+d9Ms/BGLrrj7Nx6O7MfDW1iUWqv7rPb0wEvZJBPwrAPezzvfo7Hz8mhLhGCPFZIcQxoQMJIc4TQlwhhLhiz549QzTXwtfQD7VTJwb9ZU8+HICroXczaUq0zrMOQQ+HjKIxRvoBS4neGroO/eMe7YtvfBiATSluJuVOUdLQzz5hB3793FMBWM2PFjvOmbYJwDCU/XwwYtEkc5oZZ7lEzHTDVmLX9ATUy0dT6H3LHXTSHEdudaNBbCq1ZV7+VJ5HCnHJhWKZO47kouu7h+K49TaNWJjwN8AtzsW3oxefwugouShmDD3V980wSBYP/qaPX96ToVv/i+cUzZjkwg06k/d4SKBKtXcXE1H3MtL+AtfnANh+0Yyt/4WOsWUuMSV4I6HOQYuDrKZuSQgfkSiWX7bliWHuV4ihK8kldowi9a2E+YjoutX3jKEz6QaAieD6tc9eg1f96TeNES416DlVgtQ1f2I9cGuGHuvIEqAY5ZLmOmrMe41X+xj0TLIyziWZov7i6lShleRK6nsr3QyNWJiBbNQYFe//VwDHSymfCuDLAP4qtJGU8iNSyrOklGft3r17TSfkbGn/isoE3DJvC+ofpRl6l013FENX8eqtgEebs0nAdj7ALnARakeqJReKHvnXq+83zp6USS7ElvywRWIrP37WMVigWi6aYfn10GNj0NV2VGiMnE0dztC1TBMxY0ZsnE7fSXOtq0cmo/QJOgGH6//8cxSJgqGgELLtCw0cWEntINmwgyQ9B6oe6adqA9Zw04zBr6Hha5f7V9zMxdWuq01nOq46iaMCgyQ8eMDNpA1VSiSGPmdYcNhocnnPGHShJCoetthmA4+fWER/mgE1EYzhkeTSMBo6GWPO0On9CEVukIbuZooKc53U70Ia+opeyJszdB7Nwq/N+EPYe0PvXUhmXOpkTHJxQ4sJRGro3aSZl5LabLgqUIxyMWWVPWNKEhy/Xt4nuQPfZsN6ZCeQaUoO2EzalalWOpm5T+NAlSPfB4Az7qP1dwZSyr1SSvKmfRTAM0bTvHK4BYPUw9/USnD521+Mq9/xUnPTHA1dG/SFVhxkLsTQO+QUbboGPaR7rXYzdLTBiCKldf/i333P/E46s2Loluk6dcu79gUwCR65tOyLaej0ciwaht7RTk83Dp20a8NadAfd1ErUAOEz9EgYVkQp8vRiWmeulVz8e0FlALYvNHFg1Uouc0zGorZTJw8ZRGJAtMCF0dBN0Ssbiw/Y9G/KXCT2HekXV0roCBv7ovuLePggPZtr9RSHzmW40AyDl241kos2MmTEkkiYdnIWR/CrZCZRxBYBIclFaeg8G5T6OdfG5wMGnYx1u2tnQL4RpExR/7rUDNdl6GQfC3HoHnMHrORCA5MQ1qDSfVbXYCOl8lzi+/c+pn7PyWFLM7lIOx4puql4LXQMI7kUnKJZ4V7xWQVFVvFrtHHoYQ2drj+O1Lmpj690s7HFoAPVDPrlAE4WQpwghGgCeD2AC/kGQogj2cdXAbhhdE0MI7QU1UIrwe7NLWxdaIBrXdaQ6up1zWJGKUAauu1IPGGEj/wcVEu9GYclGRNWGLNM0dStDrlKuhpjp7aD+hp6pK/Vaug0O0i181EI15HJ5aLFVuI4b7mGTtgyZx3K1Hb+OSS5HFpNEQk1Szqw0kWa6Xbo6BvSsele8vrqoeJcjcKLo5kRc8wmkTBlHMj3YBi6sJE97W7uFFfzGboPnvpPma1ZrjRzY9BZyF/IoPPCYpEmAzQTm2/Gjs7sG3TfWduIRcFnsGW+ofoeGyjN7CHtzdCFUDHrnSyHvyQa3e84ioJhi8TQeVc30Sye5NLLKWoju4QxqEK4hpF8CO+/+Ba88gPfxG9/7nrcvmfJyYpVDJ1HhYnCtQBFnxQHyXRcctnMwiI5+SCiaOqhJ+65zjx2m70vkS2fa6KU2unYIlyACgZdSpkCeCuAL0IZ6s9IKa8TQrxbCPEqvdn/EEJcJ4S4GsD/APCmcTWYQDcpiYTRbxf4CMvYgmLXwjD0xUCJAIA5FnMrW/DjhR7ESifDo0sdbJ1vFJwtgPXWc4PezlwNfaXrTlEjAUcTNFEhWZGhq9R9W8GQ4r0pkoUGBerkm1qxY0A6qXIa82koz5AF4EhWQHi20smU0dwy38CB1RQdbcBJx+5muZl28gGLH1/dA71NwThY6QPQ09lIGB8CSS58kQruBE0YQ/cjK3zwZesoWoZmC3OsHIRZCNgLuzSlf3OSXJRRptjzhWbMQkJRyDAmvZZXcCxKLgmk1HW3Y5+h29lDyKDHkf2e2LG/mj3fRh3b1dA5ATAaujdgBp2iuo0//7dXAlDPsZ3aNnBHJs0Yv3jtgwCAj37zDrUdc4qSHi0lTKkMak+oHjpFiXFYH5o14r/4oifiF374JDzvlN3IchSc82Vhi7/1qtPNMQTT87lkOK4YdKCihi6l/LyU8hQp5UlSyvfq794hpbxQ//02KeWTpZRPk1K+QEp549harGGYZ8wMOotNNQZBM8VEj5RUX7qcodsqgDwpgxvFSFin61InxR17l3Di7k2O5k441E6N46bFnaLsBbaebytJWMnFreVCbZhrRGaqS4YTUGy0EdkyBMopagejTXOJkYYA9TI1dYQOwTI9T3JhL6qfsNLR9Z+3zCU4qKNcmlq3Nho6C1v0a2sQ6IVpRO45/YUFyNDSvbMaupVc3HtiNXQ+xQ/BpN7nrmMrL0guansuGVFBppSVTaABcNXEO1vDoWq5eNX/zOxJX7tj0MkpqmZRB1ct4yPi0k4zM5jwbE9zTiGYgU7NvoAt7+rPSF2DHjmyhR/lUsgUZffHf+8EvNK6rJoiGfS7HnULzHENXcBdkIS/p34ZDLN4eED/B1zJZbGZ4NdefirmG5EKUGAzQ36NvkHn0TfKj2P/JjTYOUeN8Q0VYwY5g5IoMqn7/EXhK4KQ4e+k5BSN0Qpp6A2fobNjMKN4yuGb8Z+fodwKt+9ZQifNccKuRccpSzi0mpoXfr4ZQwgVEcJT9H2jRbVO8lw5ECNha7mQwRNCmBlJM7YauWKjNlEoy9049MVWYmYAanvF0N3QMrfIky+5KCefz3JUgoli6F0dpmhnUEvMGWSmyCENnVVbBGxkjV/FMBJ2m2YSmbBFK7nY31c9hs7xNC8jcdemps5QVZm6amZm9fx5Nnsh1ub3k4aXFEVOUQI3HDwah8AjkABlAEJRLoAiDK7hjR3JJaShC8FL7box47w2DN+fz1bnGrFr0I2GbiUffgzet3xnJ9fQk0gt3kyDM81u/QGYO2wzKc35u5k0yTyAG7YoGUPn3YC3bcHzmdH/ruTi9kNbH536Ao9ltz4xFiA1eYY+jUgpHT8WpnRu6IEA6sbSij7L7RQLTEPnLyOF2JmFlxOXOfJMUXIY/YKeOp64a9EwC46D7dQcp5lEeMLWedy1d8lhZCYc0GGwbmKRz9B5GxqJNcgHV9WCCJROnktiMOp8m5qJE7ZITuMQGzMVEr3PIQ2dpK0tcxTlQuUQIty2ZwlX37Pfk1xYIgiLlTYM3SxS4LL4NHcZOqCMGx2bGyiupZJh9vHKpz3B+XyEjsHPdZioqcehB0e65+00HLZIg103s5mlkRBONqzfT0miAdy66KQtc4a+0lFlWamWyqHV1LkuqqJoyjSUOEX9+jLWUNn7CwBH6ogn/p60ErfyKJ+50r3hx+BOwDecfSx26fVIAUBA2FBTLbls10mBh9rdQjggtZWYcJbbGQLZhMgzugCTXIQbh+4MtOy5RJF9F3lfJRtA/TLWWcBGjoxtBBgV5wLcKJiJaujTCkrjTaLILFDBXxTeiSLtIOumKl6dl9nlRpgkl9DK3NyAAEVt8oTdi04cPOHQauq88MfvWsAde5ed6aAfFUAMNpNuYhGPcgHY+pvacAIqS3OhpaIQqC5NEgvDchZbiRNJQ8W5ggy9xCmaBDR0Wnd1y7zK2DywmqIRRw4jM5JL1ENy8abpbc9pRxEoqlyr2mZTK3GiCOgc3OioKCTb3l2bWvjK+c/DG3/wePzMc4433x+hI3x8uUoZaFuBs8OScvgMI4qEjtDJmeQCZ0boR0/xAZYzdZsHYO83+UjIUPsM3VRR1PZjLpDOHgn7jG0ZX0/S0p8pycxNnoodlkuatND3yg9b5LPl7QtNvOUFJ7F97UyQpCpi6AdXU5Mqz9HN7bJ+tJgJoGwCtSWOhDG6KpzYJUgEbiecgdaTP6XH0GmxEopgMgadzV45qeCO+ElHuUwVPv/9B/Cmj1+GlU5mNENijq426U4J1TRYLce2oItLAcC2BWvQF5jDC/Cm0p6B4Mzn7ON3YPemlik3wLHSzVyDvnMRdz6yVMg6BEKSC9PQczfKBbBROFxDP7DS1dX5mGwjhM2onEtMZ+3q6JNWErnH9TRzn7FHkV24wFyDLo+wQ2fgPnxgFY1Y4MYHD5pteJQLhWHy6wasITcvQreMQdrvNs81zD1eZU5R16C7DH2uEeGJh21GI47wzlc+2XxPDJ18KfTc//Y7d+P+x1adKBdqv8vQlUTSZTH0iqGXTe1dpyjrFo7jjUsFzTgyhvrgauoYCJ+hh/w6EWO4RcnFhloCMElmvA5NK4kghE3Q4fYpjkRRcond58DfHa6hJ3pmQ9LlcicLhpgeWk1LJBe3roxdhELFqVONGldyKZHCCpKLq6GbaCDtlLXRQXb2ymVBl6HXkovBvfuW8bWb9mA1zZQhKxlhuZEgDXOpo2qMLDJGxxl6y2emnkEPxdMCwGd+7tkQQgQlF8BloCfsWsRjK13sOcSLYLmsyEao2MQiPw4dsC9rk+nDB1a7WGjGxhmpHEFuzRM6D7F2JbnY9vo1QQpOUSFw+BY7babf4sg6Jx88sIpGHDnrt/LiXPSSCAEn6sCwOk+bJEOfMSMZG4NunyddU+wZ9EbkhtqV1dIwDF37LPyInn5hizExdJZJ6mvonHg0YzfqKLRsHI/Np8/UjqWOGwbXMgydnKLFSpCUKQoEGDrzUQDAE/QA9xBLvqL+wVmsaWskAuVz3efAZ7dCCCe7N80lts2rPrTUToMhpgdWu2Y1MQocsH/DHKtrchZsrRce/aTuSXjW7QYooKChd9m7EAvhyJGcuFhfUM3QgyAmSRUQG8zRxhl14jlF+Qoni4yhkxFOIlGQFvhL6BuI+cBUlhv0Y3bMm7/5lPz4nYsAgNtY2VCfoVOtFZ5Y5GeKAnCSKyxDV2GZcWQjZWIhDNNRTlG1LbF2JblEheP6TtGuYejW8BGIHVGCz0OPtdGIIzzvFJsRTB2Zh1T6WXvGeHlRLtbgWIZuQzGTIkOPhMf8hZEE+PEITzlKOUcpdE0t7mHlIUIjEVrrZZminoaexMJZ7akwKPAU88SGRQJhg0770nNoxLYu0FI7dQyUYeh50WFLf6sFLlyJyl8rkwb9n37WcTj9qC34qXOOLRwnYv2VkMSRE4YIwMnKVrMD992x1SHV562MobcDEUkHGUPPc2lmCt1MOhE3RnKJqQSERBKLQnsJnBCagSFyM0UT712gGZwruViD7tcP4vdlHJg5g85jXSnmF1Csx2F6bBSksEUqwrXYSnDk1nn85DnH4iWnqfBDmtYCbFEKzrxi4WiBxHC4PeJTtgvf8ly2rd2PsjDv379ivuNSBgBT6yR3NHS3lgtvA2+7YehsGhhFwiyMvKmVGDZOIWtNz8ll6oZ798Fh6Ftdg95J1cLClODT0XHnf/HGs/DqM5Tj0TDEiCQXl90B1rCYPIKMYrFJ41Vt4MZ581zD/G4YeuQabV4YjB+f8MmfPQdf/9UXGPkg05JXLNyVhqgwmSO5eL6WRuQxdEYW4sgtm2Dq6Ac0dLNNRIZcmPPxdTN5P6WlBDNPIgCsRCeEm8rPtzOJW/q5HLZlDp/7xR/C0dstQSFjSod2JQyrodMx/cGfD2gqysXWb6draCVqRr0ayBk4uNr1JBdi6HaxjUiw1YH0Ahu8CqdprzPDL0q2RKb8tW27bLCmGTSgyA49Dy7TOpLLGKNcwmsuTTGskyEz01ugyJh9L3wjiXCvrnxIKxv9zn96Cq6+Zz8AgNcMJ922VcLQhRDYNt/Auacfgf/y7OPMNnxA4SGM/IXbvVkZvAM6fpivWh9MLIp0+VxIU/CHYBg6r0+d5ipxJbVlgGMhTDbqQtOGnFFY2KZW7E3bPYbuaehJFBVe0lTPBHZsslUsm9qZd5i+Zl6cyyY9OYcpOEV5+judR90jT3LxyukWNHRmyDsoSi6b5xrYPNcw5Xsp6zaJIqcaZqQ10k6aY76h2KHrPIdehNjmM8TC6qoUymnvUWTCIgE4NddN2wOSS8MbFAitJMb+la6j3/NzAW6Ui5/UZiQt77n4swC6LjoeIY5sWQNqNx8MABi5BFDE5h+uvBeAXay7Easl5pbbvRi6OgYtpA7YRDBqB1+QmYrd+dUWGwHfkbp+d7ZcKrlEfj+zhdSEsPeIS0ehdV5HhZkz6Jyhk5QCwCz44G8HEGsSxmNOhbsAOxBw2SHI0CNXQ48igQ/9dHnJGnrQvMATYGuOAKoDpZ3Mie+mY4cSi3gtEbU/19BdjfbgasokEqtT8hhimrFsajW8gcImzwDFAkRRZAcm/5o3txIdtmdT/Te1GuZ32p+WkiuVXLxMUVvLxUouxOh2LjaZhs4MujNjc52toZh0wL6AeQ6TB8BTyMk4U+lZklj4PUjiKCC5WHadeMaYZJ3f/8KN+NCltxXalLB9aZ9QQTNA9ak2c4ry67TOOhba580OTZ/xnkuof3CfD2+LZejqfE/Y5hp0Tr5yCXzv7v0ALMttJBEWmjGWOmkwq/edrzzNYegxa7uVSgTaHetspcWvQ1IcgYeWmsGKkQ9+H1IWr+8mWTHiUsLQyxbKGQVmTnKhTtTu5jpyQX3mabuAO63xWRTvYGQgm162JVA06GVGoAz0AvpTbIqzbXmG0+rHNpmBarkoL32OIEOP3bDDRZ3e7+vPdL1Gnlkhhp4UWKO6D+WZoiGnopp+CuMYpWewiRbMSK2xldKWJeCg41rJpUxDFyahbPtis6Ch+8+Lh5Lxzz544gg3FvwaW8agSx1tw/uaQDMW6KZ5UEP3Q0SJsWe5xOV3PoqAhM4MObU9cu6/K7nEWOlmuP7+A+Y+EYgARBFPj3cNFW8zR5ChBwx6HAsnDJHaxBGKjQdYsk6k1gxdbmeFpKK3nXsqXn76kSYgIGOhimnmM3RLSHIKWywZ6NV27sBM//Pa/VaWtezfuX6mofNZPTfodaYoA3/RVS1pdQn+8lH8peGFmuYa1qCqzzY5p6eGzrS3qo+DJxRxUGKFHx7InaJUfjUWpOPZ+jWFtseuBr7QTFyDLgT+4o1n4a0veCIO39IyRtQy9ISxLWtUaZpo68m77G3nYhMn7l4057Xfq+ujCAIqdMQrDNJLUsYE/axDKwmQhm5rsO9cbJo2c4buM2d+nLLB2cbooxAmSr9vW2hg/3IHmZSOlk9QEoq72hJ3bPqskO4HjwhyjmekFjqGO6D6DP2uvcs4/zNXF67TFJtjzmg+44lEMbHIXLco9jsbCeJeux+26KNsMWZ6do04wkIrzNDpHsx5hfMApWsbQyw8yYXyOLyMYR7lwuUXHuUiJUzEmYl5Z+8Cv0zuIxFsJsQlFx7hNmrMnORiNPRuhmSxaQycb9D5Q1NhWuomH7Vt3tG6TbYle9H8hBqAElX6j3+f/NlzTA0Ka9Ddtu3e3MItDx9i8d3uS0SaX2HFIk9Dbxld1i2utdgsMvQnHrYZv/KyJ6nPvuQyZxm60KxCiEBikceWv/ubL8Geg208871fUe3W949kJTI6PLuSrjMzIZUeQ/ccgFZy8aIwhI13dhl6eCpMx7UMPfwsOUMnpyhHLAR2LLbw6FJHLXwibBbom597grkPK11pBp8osv2v4TF0mhmqBczDRcMSr82JPyiwa/GNJb9MakPGIkNsmKK6X2kFyaXFpBv/NxUB5A7CPsoNus1MXmwmKsrFC1ukfuFEzujTZLldsNqPZFEGvehbabDZT+RdBx2b/Fk06AG2H/LAjEjoSpYN6muuhr65leBgO8U1uhTwODBzBp0ztziyySK9GHoUAc84bge+ckNxubE5bhS96ZFfRc8avfL2/eBJu8zfZAh9fd8ydDeRydY60Qw9pxVWFEvo5rm7+gvJRYlwimst6BK5vgEm0Av56JJiCiryRbMKdr0dLw7dpDt7mimBvj9u5wK+cYs9L53PlVzCUS6xJ43wWYbgDJIZqp2LTSR6ELJp5F61TDpuwAhxGIbOan84vwtg12ITtz18yCzi/dwn7sLfvPkc/OBJOwGovqSWoLP3xWXorgRHDjwqBeyjwZi5+uw5RQOhiba9bPAggy7tdfLqlfz+FqUm+zc3WGrfkv7A/v7q/3q+WYA8FPLrXG8ksNCM8cihtpH9zG89GLpayKT4fBvaSY3IFlsz7WV+idD1mtmkhE6m0rMB5nvwBzaqhKoGD3WcdprhB56wBZfd8WghoGCUmDmDbqNc3GXFFnto6JEQ+LEzj8LvfeHG4HbNOHLqmZclFtG5QzpnCLQ/d4QC1qFoS7FS7LQ9V06JRcItB8r1N2IpvNY33YuEZdD6OjW9UHv0C7Z5LimwqTgShfvQ1pUrneXHAi/wk5+gYropGcVP2IojFhboEWWfjZprEJbZA6oGCGH7YhNCuDXHhXAXaDBOUS/O3QfPSA0a9EjF2u9dahunaBwJPPfkXc4xqOwC3ZcGMxy+0UsigUcDKe503UYuYsdw/DIhWYUdn0D70EBE16nOo4wVl2DcdpRLLqHVi6idhBN3b8KJu9XC7HNJ+N7z/RZbiQ5bdAkY3Tu6ls16wRZAvR+tJAm2qZPmkLko+lZKZmxOgIIOW+TPguyP2sbdh6q+cmPf0VVNv/DLP1SagDgKzJxBt0ZXhS0+ol+EJ+vEEH87QN3ow7bM4S/eeBZO0p2KY64ROfVQTIakNygMmhBA8cukKRN+/KxjICXwoh84DD/10e844YDUdsrypGqLAGVjFtmYhGt4KDSRBh4/koScUo8c6iDRcoANyYRpS6iWSyEqJWDQT9cG/Sad9m8YetdO5ylzr+x4ofUpI2ElAr7bNv2CtOLIGACePAPAWXwaKHeK8qzDoFNUSy6r3RyH2t3gbI3KTFAIogqb1YbIk1zo2ghHbZvHfSxHIeS0K+jwfNbmyXv8/vLl8fh10nVHophYZI7TQ3LhYyNvb9ksqF8cNkW58LBFIRSRomsVQuD//89PwzOO244r79pnriskuTSiCEsyNb4Dl6HbWU/oep0QW+GSPp43wvfhDN30Yx3QcOoRW3pe+1oxcwadGBZV0KM48nNO2OFuFzA0L/qBw4PHnNeZo74R8R98YjpTtbbSakU+Q3/SEZvxjleeZqZtPBxQ/e/WcrEhZWGnaJa7jHOhGXuG1m0Xsbg9B9tYbKmELFOWF7ZzFqNcsp4vOv19yhFq0KQBZaeOeqG1SlVYJoxTMXQ8E+/LNF3FIGE+EwxzTSITbx9HIrikGDW31NgwKSLktCWGDgAPH2wHj5PEdkCmc/GIJ9+g8Wd18uGbHIPuR0jR8UP1b4AiQ+fPi36jkguAm3krIBxN3TlOgKGHolycdg1IgAiNSBiG3k7VosrkM+GD1+uecTQAGBvAfUxuJIsKKpCyuKao7Rfh61XvIgohqp00Y3kjrkEnhk4BDYB6F8aZIUqYOYPuGqoIW+YSHFhN8QNHuiMff2j9DPBCM3GmwiEvve9MqQIqaOQzdL+NvoZOYWyUWETtpxK1BGJKuScN8IqK1HYOMnR7DrVNHXGzv/6vEQscansaelZk1I7jUb8crSTGH/7408wzOfnwzfjIf3kGfvCJu/Q+XHJxj0cG3k/9V5KLjXLxrwlQxm+V6fRzjaKGbhl6mCXy8D2q6NmMIyb9COzSBn1PiUFvxJEOW7T9iEc8FeUt25bTn7AVX7tpT6HdvM1qWTwq0ytL65Hw66H7A7jhfVZDF/r+Fv0k/nEsQ4e5J6HtBn1fCMTQV7u5WSFJQMscgZkVd/CGBmySMKX+m/ub6J5s8wrrcUcnYB3JXHLhmc98H2LoEkVSOG7MnEH3HXIXvvW52LtUfLHsWpzhl59j52IT29k6pH6iD2C1TqA6QzfH9xg6b6MQxRkBOUVtlIttVyhcjTLgCJtZRUV+XAJpy48udXDqEZvVNoEX2NfQO2leMEZljOy1Zx7tbPfSJx9hj60ll0z2mpa7g6ugKAzGKP/mzedg/4rVnsmRRu13VnH3olzKzsuTqGgFnO/8xovwO5+/AX//3XuRZjl26AH64YPtYN9qmFou9r7waIpeDP31Zx+DhVaMb922F9+45RFn5sUlF2prN8tcht7DKUoMnafLpywZJxK8XIR7Tfx++YlFcUkfqFpV8EeeeiS2zDXwd5fdba6LjOK+5Q5aSWRr5weMolucq9imBkW5hBi63s5PlPOZvkpaskEYnSw375EZREhDb9rFQ9xzVbsfa8HsGXRvxDt+1yKO37UY3DaJowKrDeEDP3kmmkmEW3XBLL+eM513UENOKDPogBsva51fwqzIzuNcSYcjmEgFT+s9fMucw0IKBp0ZOp+h05ZJFBnJxCQaBSSXskJHvUC1XLhzzoefnUovImm8QriOSAA47Qlb8LlrHtDb+6u4uy96mYZO0+XlbmY0/u2LTZOM1s2lkZD2HGybeuEcia7lwmcTZU5R3iZAVav8hR9+okkMapQwdHUe4XwG3Mge/9jN2Ba04szTGH3hauocvVL/+aZOQbuKjHTHQtMkn9F10XN4dEkZdKqdEppZ8SQpLpXw4+WSygSE5ardm1yD7h8nzVynKIWshralxUdWujlCQQPjxPiHjBHDqa3c5wZVZdRHbJ3DjsVmMVSOP4xhrTlgaoSHEIrbNWGLuvStqxczg871OW/azdtbJrkAtvP508HQFLtscEz6GEkfkcd6QvBrjURCPceyKAwAePqx283fJEn4bezH0IkZLrczU50PcBfKbgVC5jj8Wi6q9oo9jn+veT+e9/TpUM0Wv02uX8WLcilh6Ca7khl01e/Coa5Bhk5s2JHdqr2fv/Sik3HsjgVzHTxSp5lEZmA6oCsrNs0gFjLo6n+eSc1vcSOOzMI1fi0XKrrlM3RfuunmeWEw8H0I9Jth6J2sdAY7LsycQed6Y79En5CDpBd4FqoQyig88/jt5juCqJwrqo/bg7n6Oj21w5bPdVcpd9dKVf/7kgu/Fv9vwF3FhpiRiUMXxX1MvHyJAbYVDKt1J/OSZOWzJzIaVECMnMNlTjsAOPPYbfYc3n2jZ0AvcJlfg17GpU7qOEV5tUe/NLOPRhyhq4t7UVtpgGoGGDrP0hXCMxIOQ3eNfMgf4DN0/kjIKGYeQ6fbFInyTFH+DvnacciPAvRmpP/zJafgJ56p1uVtegusJJH1ORxc7TqDYDMpHtPEhrNr8WfykhKLItcoP3JISXa7NvWWXKjEQMhH4Bt2IgWr3oy2ZugBDDLihbzwVbZvd2143s885wR9jOrx54R3vfK0wpqVhXMG9Lw4UgyPap3w1ocGgKwkRT30N+AydFo2z5Y1KBoSYnaq2mPxGvxQw34w+m0gisScM4kghF2AgXwJZdUAARX/zkuXhtr40AGlsfsVAAkkQS21U0fKIuPpO4bLZiz0/Ggbt5ZLWEN32bj+ztHQ7TEAmFDI0LMKtc8wdHbf+TMQTNLyL0vowzaTiGnn6ruyNTr7ESkeFus7f2nQOLCSotWwUVsh0kDXyBm67/8ytVwit717dXJdgaF7s3uSXPxlKfm2xilKkksnC0bUjBMzZ9CdEbKPAaHaEFUD+f2YUQB4xVOOxD+/5TmOk6+q+vKm55yAP33D03tuw6+Bdwwq2RkLt1ZEo0xy0RvRlDuUwWmPYePOt2k5yI9D5wMED50LvlDEYisydGpaL/+GEAJzSVyoNdJlGrqPZhLh9Cds0dsXrxlQKykBwDF6uu/DaOidDBkLg+MLZfPLDDVfrSkqnVoiXP/2+y2dgyeybTcFzorG0gwAkWX9hIKGzu7DmVqSOuu47cHIlEiUF+ei4zjLMgq7n712+51PJHzwjGzer5Xkog36ahetJCrITRx0mpzp2m7yUIRMF7fzk/AoEa3gFPWOQ/Jg6F2k70ySo+5DqzpXhlBLLgH0MlQ+qDaEH5JUfmzt/Ou6huaMY7aVhrmtFXQNvjZno1zgTdtsOyiu+6TDNpmpMnXMflM9enGpUFmvhCFnaa7AbTCSS0WGbhhVXqy2yOGswu4z9JJnT0arwNC9tpUZdJJEDEM3g1WRBYbOo46hiQFLiuLsulEib3HDTI5Xp0qfJ7n4/wNFDV0Igf/09KMAAM86cSeu+N8vxrlPOdIhJcYnKsolLbpOf/k4/x700rp9vPZM1a4ffeqRzvaU7Aao659rxE7pBB+8raE2xTFV97T9iPCe15yONz/3BDz7xJ3B6/XlQV6MzWQfe0ydFspY6eTBgXOcmLkol7LpXS9QOdd+cCo5BgzG6UdtxU+ecyx+9odOrHS8Kggt4xXrKAn63tHQmWF6xnE78Jn//myceew2kyH5G+f+gHMt/rF90PqNxBppS9cJxqb9gRc1JBn0gi13mvc26N7SZZFjcML7/PCTDsMnvnUXti+6g7jf7rJ6GkKopJblTuak/vMVgvhLGnaKqm1X2eIRpP3yInDGqehJKYDV+A+sFtdkpe382vGh9sSRwP953VPxW69WC2GTVhy6hkgA7ax3lIu/cLq/baiWShlOOXwz7nzfj+hr48eInHvRYhp6SLbgTaWf+axDhcnCVFvk9+uY7Qv4zR89rXBM7igGKAvVHptyFPg2ZDMMQ++uP0OfOYPuVKrrUxOCsK1HlAmH1dCzYMeJI7XK0ShhtUE+82B1qr1pnt8pztYZspviyLwcgKch9pjJ0OylzKkaiWJNGx9ly7qVgd6nTiax2GMQIM2XDsslgTKG/tyTd+Hqd760UACqVxSPj8VmjEPt1MSh8/27WV6YTfngxIDaSiGDPLFIeNvzAZFWfqKa9aoNblRLiKH7S9ip0tERthRqlRT/FhDIshLJJQoYdM/o8bYMarz4zJOv+UvnpAE5dNzQ4MTbRv2GfAduBFhZezyDzgbyJBJogy0Y4vkSiKH7Br1qGOdaMHMG3Z3eVbtBlRk609DLSnyOGqFEiDiKnMJajnGuyIL9apNlKGrobnv8Wuuhgc6fgvaDo0tGqgt+4Zd/CEvt1Nlu3guPU5KArQ5YhlA1P3q2//DzzzZlg8uw0Epw255DSHOJw7WERYz+6O0LfSUXP/w1iVgtF5ZY5D97zlJJcuHL31F/9+vR8P1O3L2IHYtNU+yr7NmXMfSuCVv0t1f/u5KL+5tqo5YhBjReSU+GHju1cHpeizfjpegom1jkPrOQL4ZfE92HUBaqz9D9sEV/UfeqPqa1YOYMehLw+vfD9ooaujU0vbXdUSIUFx1Hbg0TxxFTlQVX9DVsNwzdvZduIoyrb/rwQ/v6gUsu1LZQ0aLCQgqRWw99ENDL9IzjdvTddrEZm5rVTztmGwDgnBN34uM/80w856RduoyqckaH2mFmegEN3UksIgNh7h+TXDYVwyrNMVjJZ3+/hWaCK3/zJTj+gouctvhwNXQ7YPJSAO72qh+GJBc/RBAYnKH7fafpXFPslMXw4TqpPYYeqe9ofYE4ivoOyEAxfJRLbf6CI7E3iDT0gPQrLz2lb0TUqDFzBt1h6BUlly1zgzlFgeqx62uFP9rTd3YRWvflqtop3Hj98n22LrjrfdKWPGvVkXx61NKo3jb7kvRypBqGTlNaIVC25mXfcw7AGBdbCTK9OhSvEfSCJx1mjycE0kA1RiDM0E1xroRr6Gp7+txyNPTirJKvWMQ/93JAlvVjMtDKUUjfsXroJQMVZ+j+rA5wqyEOAroGChvl7/Z8M7azkT4MPfb6IhEifl1u6G/vdlkHfl5wYtsoFxpE7H43//a5AIB79y2zaxy/TalkEYUQLxdC3CSEuFUIcUGP7X5MCCGFEGeNroku+E2pytCrsu0qI/eoURY322VMtCxxo/dxi+cIwThFPdbIdV3u2Q9NG83ivlXbpq+nLFGJEMpIzPo4RcswyHSXNNAfOHJLqfTWK2kt8Qx6HClHaySAzXONQsx/KGwxdN6mp53T51CyDaFX3/cdf5FgJZdLZmJ80LHynN2G2jZozgbdEzLoPPxyrmEZeug59pJcYi25EBGoKrkQbIy7q6Gr/10fT6/BHVgfDb1vLxdCxAA+COBcAKcBeIMQouAWFkJsBvBLAL4z6kZy8JsSGq3XgtAiseNGMGxRCMeh1o8hB49bkaGbiIkShk4ST2h6TaDsy6oMhN6hULEvjjnjFCUmCKahD8gAB2Loypg87ehtpdvYaXbxN15MjT7vWGzisz//g06InmHobPD0cfxOG17Z8Kb6fsZosJ097hPXzvn/QNhHUWDoZj9OONTfckCLTte0ea7I0OcakXnXe8Wh87bwsh+RjnJR1xANxNBDJRJiz3fR692YxiiXswHcKqW8HQCEEJ8C8GoA13vbvQfA7wH41ZG20IOTkj7i2PBJMPSysEXeDicsrPJsg50j8HbuXGxiL1slpyxum+u1ZeVL6WUZzilafj3WKWqvo1ctl14Y5GWiTD/Sz0PotZQdd67zc/sx8r5O6xv0y9/+4uCqS77k0mtm1Ov+UrfgGrq5vpBx8hi6z/B5WwYk6OaeLRqGziSXRswWKCm2y2m316ZWI3b6ShzBi3Lpw9CZvydhK4Tx/0Ox7/7+fPtxoopBPwrAPezzvQDO4RsIIc4EcIyU8iIhRKlBF0KcB+A8ADj22GMHby28ztNjqgkAX/qfzxuo6gq/4etkz8Nhi44xdtlS9XopvRn6V85/vlnMmp/fr0fuF7UKvVAS5aVNQ+DFuXozdAr1s9JLWa2RMvz5fz0Ln778noEYPa0Be8YxW0u3CdUxMb8xSYlvSzA6s/4sve8JfvZiMVzRZYoh9CIm3NkMePHcgesSoizKhRkt3bZ8QIZORzAMPXYNOhU4Cz1Hh6GbOHT1fyuJCgbcfc/d473h7GNNGV9+nG4msdD03gVi6IGBze7P7810MPSeEEJEAP4QwJv6bSul/AiAjwDAWWedNeggDmAwDf2UwzcPdGxH2liH0RToz9CLYYsVGXoftrV9sWnSy0Pb+DJAr9BEw9Crpv4zp2iVTFHKiBXCXdS4Cl5y2uF4yWnhlarKcPpRW/HUo7fixF3F5QoJvabZfHGO0IDll1kgacavZe6j6UsufRbrAPpJLu42oYxLjqO3L+DYncUMW376ppFcSk8bxJJeTIU0dN4v5psxkrhYA4cQjEPX+6uaQO4Mlx/Gv8zffe1T8LuvtbkmNrHIlnzw3w2+FnChbes8669i0O8DcAz7fLT+jrAZwOkAvqZv3BEALhRCvEpKecWoGkoIpRmPCuT865eSPkqQfS5j6HyRaKC6c8/VCftfi50+uvtTpw3FShOkkVwGH2yqMHSKAY+j/qn/o8CrzzgKrz7jqJ7b9HKK8rDFUD/yZ0PksOsXtVVILErcZxRCr+7iF5fiLQ0Zn8/94nODA6lrMIdj6IfaKjeADDrHXCPG9oVGaQmPUF+3ma1xIeCgF0MvO3Zo8Qw/Dj1kj6r29VGhikG/HMDJQogToAz56wH8JP0opXwMgFlpQAjxNQC/Mg5jro9v/h61UxRQDysNrEY/LlgHWQlD95yig4YGVt3HZ/7+4rlWegndmEElF3benlEu6lw7A+nqY7TnleDX73B+09/xdSc5yNTRT8TQ+90/8inMe1puT8mlx40yg3eAoYf2KyM5TvIMvZMDMnSqZR8aSOcaMX7u+SfhJ84Ky7Qi8H7wyCFHwvQYer9Xg8ehGzmyJA49tJCNnzA4bvQ16FLKVAjxVgBfBBAD+JiU8johxLsBXCGlvHDcjSzDqJ2igE3rXa84dHrGoZRq9Xt5LZdeGKSIGd+GtrQ6oe60ppxr8VjDSi78PCGQoduh67KEohkmhaphi6Hft8438IIn7cZ5zzsJgGXo/STEZ524A+//iTNM9E3TSzDq1c4QfD8Ab6qo9Chpf/sN9Y9BGTqv6+JjvhFj81wDm0vyScJZr+WSyyAM3cqDeWE2Te8iHSGUkT6NUS6QUn4ewOe9795Rsu0Pr71Z1TAOhq4MWFaZCa8VVusrLpemfve0/YqDGJ++V7Gz1jFGjNxlf/S5V9hi1cGmavbc/mU1Dd+uyxOIwIs7KVTRTTtZHvR5xJHAx3/mbPP5qdpA88SlEJI4wmuebhlslTr0vZzBBcmlD0PvdxzADi75UB6yMOb7lOFwDbr6n+6NinJx+w1/ZP0u00a5hCQXda0UXLAjsGgKv49Vy3ivBTOXKcoxjpK2flTHuEHTsLJlzSIhCgyjCnjnqcKcI4+h+44fn7FzDM7Q+d/l10OVFQ/TGrrL0CudamwwUlkPjbyMoft42jHbcMO7Xx6sQdMLvUrKVoFxikbuZ/XdkAY9obDF0Vn0+Wbv6wu1mztF+e1JvEiZftFP1FdpCTqgyND369pAoexe3j/8qKVxYKYN+qidogBLGFknBkjkymHonpPHZejV2sUdSFXsrD9Djj1m3mvdUJNYNGDYIj9uCP/rJU/Ctvkmzj39iMJ+gyYWjRo2QiT0GzPoFQ3joMYcYLOnId8DEz8djHKpfhy3ABVJLkM1KYh+hfJCBjpiBj0kyVQF3RspiwED1N/3Lat8jn5FAA8vKdk8Ssy2Qe8Thz4M1p+hq/PwmuO+xjxMYhFn6FVYIkUXvO6so53z0D3unSmq/q86Y6qqYW5fbOJXXvYku60z0FU61djgF2TiMIlFAxj0YUCGrl+4YxmoaTaxyP5Wpc/YOHT73bBO0V7oZ9D9wnaAbX8riYeqhUSIPHLFj0H9+DEtDYacohwhBj9qzLRBH4fkQsx03TJFWccjJJ7hch0r1a6Zh39VuZb5Zowb3v1yYxxiw8y92Oeg5DJY6r9TKnWgqT3/e9IM3WW3HCbKJcsLS8KNEq8982gcs2PBZFcOCt9ADWv4oqj4PAd1ivZCfw2d/+0OtM0kcmZRgzom3Tox7m9FyaW3pLIeodDrFJw3HlSttjgIejn/xgEybmUMPRLCOAX59v3gOBAHmPb7i1X4TqYgQzdtq8rQhzQcU+QU7Vm/Q7etrFTCqLBjsYmXPfmI4G+bKxj54mIQ9rdBJK2wU3R0Br0fQw8mFpnYcBFk2VURinG3eRfqWs1yjovjd3r2Q83QPfQKRxsHQgzdjwLZtZkZ9CFiWYe5FjJEvs4aDlscLMqFG/5hDfqk49DNgBcy6AM6RceBL5//fNzDSreGYCQTinDS3w9KZvg1No1TdHTo1x5+i23NchpwozVJLrHT57RB15+pD5x13HZccde+sc7GqqI26B56vajjQEhD952ifCo3DOMbZrbBq9Xx/0MsXA4Y5TIsQ3de3AmL6FGPgZ9LLus10/NxxNY5HLG1txMuVD4XGJwA8M3p2Y6QoPeFm5TntimJReUw2eCxA0lINkxX/fiJN59tQmzLcOoRg5UhGRYzbdCHdQb1wrArrgwLOgsf3Z0pYiQcaWmYdg0jT5CGTjW7pfk+ILkYp+jgGvogL9ggZU/HjZ7VFplRm5RBrwIbtuga9EG7ixPlsl4p1gyheuh5bv06w4ZjFo7t3RjqxwvNxNTQD+Gy33gRNs2tj6mdaYM+HsmlPL54HOjqjlfG0H22NEyI2loYutm1h9E2TtFhNPQhtdpJa+i9qi1OogzzMChcg2fg+4G2GmYBlir4+M88E7c9fKjvdqEl6GiBmCR2wxYHnX2ESIQhMBVnpIetQ7giYaYN+jheFuP8WyeDkWbFSnu9wvOGY+iDt8uvCGi/D0gu+v/KUS68tO8AEpLrtKu821hgGXrgt1kx6N4sw8bWDypLcIM+uut9wZMO65s9CyBosCkprRGJQhjwIAjlPphy0WMIm14rZjrKZRzwi1GNG7ToMffkOxq6145B2vU/XvhEAMMl4fgdv1fN89zTFAc59iDGY5pS/826oD2cov7f0wZqmv1/OMklGIe+jgg5y6luvmLodtuBnaI9ydX0mc+ZZujjAK2xud6SS1nqv98BB+mQ57/0STj/pU/qv2EANK0s6IY91hSt6rBtDB3lwv+esORSIQ697PdpQalTdA2RIIOs3ToqhAw2EaVG7CbmDfpeh449qM9oPVEbdA+06MN6vYhdXVFwrkdiEQD83c8+C1+87sF1S3knRk6ns5Es5ecfplb78HHolXcbC3rGofeYYU0T/KXT/NT2/vu7/wOTMXKhmVvGnaLsetaSWETnsYl0NUOfelB67noRK9L6nMV3A8kMzz5pJ5590s71aRSsAfcHkF4svDpDH9KgR8WXa1LwZQoO/qKvl3Q3DMw1GIPu/j8MJiExOTM3/YFKEsee5DLaxKLpe7a1QfdABXYOttM+W44G5I136qFPgQZLsbb+2Xu1p/KKRSNg6JNXMnow9DXEPa8nipKL+n4ts1MhBI7ePo///vyT1ty+qgg6RTMetsgY+oBGOBjloj9PIkSzH2qD7oEK7BxY6Z0oMCoQQ2/1YejrDeq0YoBOXFVycTT0gcIW+d+TNZS95Il4yBnIesMacPW/8L6vCj+J6Ju//sI1tWtQhIxuV79XvkEfOIIn5IiXxfNOC6ZviJkwiKH3y/waFbppb4Y+MYNOkovH0UMSAi3CXFUv3ggaOiEYh74GA7Ke8EvN+oWtZgWhDGLS0Bu+5LIGp6i15+HZ6zRgJhn6V85/PlY62ViObQz6Smcsx/fRNRr6dEouNpmivOb5B37y6XhsgBnNSFL/p8RQznYcuvrfLD84ZJTLpBFi0c87eTf+5ar78QNHbsG9rKbNoD6NaSBXg2AmDfoTD9s0tmNT3ZT1Yug2vCoctjip0Kjcc4ra5KGiBWslMQ7bXL0w0bDFktxCSZV3GytmOlPU09DpUqoaLr8sxKQQquXyY884Gi958uHYMtfA/ftXgttWOnaPTNFJO+ZDqCUXD8TQ+5XsHBUoU5SnzXMW0a/G8rhQ9pKOOmpjVsvnEoJriorev08LfInFTzSaFZT5VrboRaXFGp5HHOhzvn9pmjCTDH2caCYRfve1T8HZJ+xYl/PRy9QoYXVb5ifziHbo2s60bJZfA3pUGGiBi0DNjkmBzh4yEEIIJJFAmsupNujWsav+HzaxaNLgTHlzoAhWs4QsVQG/F2a2WhIBNg2oDXoAbzj72HU711/+zNn45+/d5ywgG+pE643XnHEUIiHwI0850vl+1C/7IIbZTSAZaTOGRln7o0gAuZxqp6if7Tqo5DKN2BGY0e7cZL8b1Cnq+m3U/9PM0GvJZcJ44mGb8Csve9KaivCPA0IIvPqMowwjH1cnHiQu2I04mPw9Asqf1XqvTTsMzMIWnlO0sobuacrTgNC6nbvYWp80eJ1xzDYsVFiYOyS5vPc1T8HzTtmN04/autbmjhw1Q59CTKURGNNbOwgb9BNgpgFlDLxXvfRpQbHa4vS3uR+2Bww6X8KRcgT++S3PqXS8UIz7aU/Ygk/8f2evoZXjQ83QpxChNR43KoZxik6DJGDkiZL2r/di48OgUMtFfz/FTe6LxQDrdsrnDth3hBB9n/U0oTboUwh6wTizmBaMukvPqkEnlPmISXKZiVouHoGoarim6DEY9JPihhlg4ynsd2WoDfoUYqWrkqa2LUx+FXEfo9auh0n9n6b3qtQpqr9faE2vqunPBIddU3SWMNTqXbF7n6YZ09vbHsc4YdciXnjqYTj/JadMuikG83oqO+qXfSCnaDR9TKnMQFBiVkgCmBYUMkMHjHLZOq8IB89ynnYM038bcYTVbj5V/a4MtUGfQjTiCB970zMn3QwHf/z6p+NTl92D04/aMtLjDha2SPuMtAlrQpmBaOtZ1uIUM3Q/TNEmGlXb/+0/chqeeNhmvPDU/svETRon7lrE7Y8sDaWDUxz7tERW9cL09rYaU4XDt8zhl1588siPO8giAdOkoftFy3ysptqg91gNflpQWFO0otHb1Erw5ueeMK5mDYQkEvjPZx1d+vtnf/4HcfNDB4c6NpXlmCYiUYZKvU0I8XIAfwwgBvBRKeX7vN9/DsBbAGQADgE4T0p5/YjbWmMDYpBFX/wEmGkG1blfaE2v5GKXGVT/0yA1DQPmoLj1d17R8/cdi00868ThFoihxaBn4b70fZ2EEDGADwI4F8BpAN4ghDjN2+yTUsqnSCnPAPD7AP5w1A2tsTExCENveElOs4BpllzoThrfhFcCoIbCLDH0Km/T2QBulVLeLqXsAPgUgFfzDaSUB9jHRczWO1djghikNAwtpE3Li00D+nX0aZZciKHPevnccYMWbtkoGvpRAO5hn+8FcI6/kRDiLQDOB9AEEFyyRAhxHoDzAODYY9evXkqN6UU8AEOnRUA66fQY9H6okl4+afgGnKfK1+Bhi9Nv0EcWbySl/KCU8iQAvw7gf5ds8xEp5VlSyrN27949qlPXmGEMEkZGJY3zKZj/VW32pimWXGx9HnUxdz6yBAB4xnHbJ9Si6UTiOY2nGVUM+n0AjmGfj9bfleFTAF6zhjbVeBxhEKcoX6ZvVjDdTlFl0ikV4Mq79wEAnnHc+pSOnhWYKKAZsOhV3pDLAZwshDhBCNEE8HoAF/INhBA8nu1HANwyuibW2MgYxCnaSqbXOJZhFhg6GazXnqnC/k7avTihFk0nTK2b6bfn/TV0KWUqhHgrgC9ChS1+TEp5nRDi3QCukFJeCOCtQogXA+gC2AfgjeNsdI2Ng1ln6P2KUM7NwCBEzPO9rzkd73zlaTPh/FtPkEGfhZIIleiDlPLzAD7vffcO9vcvjbhdNR4nGIShr9eygFVQ9d2e5mm6jUO3US6zOAsaN6iPPq6cojVqDINBWE9rhmqGzAKM5DIDhmqSmCXJpX5DakwU8QDFuaZRcpllkFN0mmcR0wB/AZBpRv2G1JgoBmLoUyQHHL19AUB5ieMXPGk3jto2v55NGhojXvd7w8GvdTPNmF4XfI3HBQbJSpymMq3/66Wn4Mxjt+M5T9wV/P3jPzOdS5SFMAvMc5JINljYYo0aY8MgBn2aGHorifHy04+YdDNGgtqg94bV0Kf/PtUGvcZEMQjpqTX00cLUcpkB5jlJbLRM0Ro1Ro4Lzj0VQgzGeuool/GgZui9Ec9Q2GKtodeYCH7u+Sfh555/0kD7TJPkshEgqXzu9NupiWKaF/r2UVOeGjODWhoYLWrJpRootDabhqpwfVAb9Bo1HqcwmaK1Qe8JYui1Qa9Ro8bUo84U7Q3SztPaoNeoUWNaYTX02qD3AjH0vDboNWrUmFZYyWWy7Zh2kIZeM/QaNWpMLcyKRagZei9YDX36lz6sDXqNGo9z1IpLb1Aces3Qa9SoMb2Yfvs0FZilKJc6sajGTOHyt7940k3YMCCnaE3Qe4Pi9GeBodcGvcZMYffm1qSbsGFATtFZKDo1ScwSQ68llxo1Hueo7XlvGIae1Qa9Ro0aU4rpN0/TAVrM5Ojt079gSS251KjxOAUtQVcT9N542ZMPx1+/+Ww856TwYibThNqg16jxOIWJQ68tek8IIfBDJ++edDMqoZZcatSoUWODoDboNWrUqLFBUBv0GjUep5DGK1prLhsFtUGvUeNxijm9pF+9wMXGQe0UrVHjcYr3/8TT8cnv3IWnHb110k2pMSLUBr1Gjccpjtg6h/Nf+qRJN6PGCFFLLjVq1KixQVDJoAshXi6EuEkIcasQ4oLA7+cLIa4XQlwjhLhYCHHc6Jtao0aNGjV6oa9BF0LEAD4I4FwApwF4gxDiNG+z7wE4S0r5VACfBfD7o25ojRo1atTojSoM/WwAt0opb5dSdgB8CsCr+QZSykuklMv647cBHD3aZtaoUaNGjX6oYtCPAnAP+3yv/q4Mbwbwb6EfhBDnCSGuEEJcsWfPnuqtrFGjRo0afTFSp6gQ4qcBnAXg/4R+l1J+REp5lpTyrN27Z6M2Qo0aNWrMCqqELd4H4Bj2+Wj9nQMhxIsBvB3A86WU7dE0r0aNGjVqVEUVhn45gJOFECcIIZoAXg/gQr6BEOLpAP4vgFdJKR8efTNr1KhRo0Y/CCn7l7kXQrwCwPsBxAA+JqV8rxDi3QCukFJeKIT4CoCnAHhA73K3lPJVfY65B8BdQ7Z7F4BHhtx33JjWttXtGgx1uwbHtLZto7XrOCllULOuZNCnDUKIK6SUZ026HSFMa9vqdg2Gul2DY1rb9nhqV50pWqNGjRobBLVBr1GjRo0Nglk16B+ZdAN6YFrbVrdrMNTtGhzT2rbHTbtmUkOvUaNGjRpFzCpDr1GjRo0aHmqDXqNGjRobBDNn0PuV8l3nttwphPi+EOIqIcQV+rsdQogvCyFu0f9vX4d2fEwI8bAQ4lr2XbAdQuFP9P27Rghx5gTa9i4hxH36vl2l8xzot7fptt0khHjZGNt1jBDiEl32+TohxC/p7yd633q0a6L3TAgxJ4S4TAhxtW7Xb+nvTxBCfEef/9M6+RBCiJb+fKv+/fh1btdfCiHuYPfrDP39evf/WAjxPSHE5/Tn8d4vKeXM/INKbLoNwIkAmgCuBnDaBNtzJ4Bd3ne/D+AC/fcFAH5vHdrxPABnAri2XzsAvAKqeJoA8CwA35lA294F4FcC256mn2kLwAn6WcdjateRAM7Uf28GcLM+/0TvW492TfSe6evepP9uAPiOvg+fAfB6/f2HAfy8/vsXAHxY//16AJ8e0/0qa9dfAnhdYPv17v/nA/gkgM/pz2O9X7PG0PuW8p0CvBrAX+m//wrAa8Z9Qinl1wE8WrEdrwbwCanwbQDbhBBHrnPbyvBqAJ+SUrallHcAuBXqmY+jXQ9IKa/Ufx8EcANUFdGJ3rce7SrDutwzfd2H9MeG/icBvBBqDQSgeL/oPn4WwIuEECNfjbpHu8qwbv1fCHE0gB8B8FH9WWDM92vWDPqgpXzHDQngS0KI7wohztPfHS6lpBIIDwI4fDJNK23HtNzDt+op78eYLDWRtunp7dOh2N3U3DevXcCE75mWD64C8DCAL0PNBvZLKdPAuU279O+PAdi5Hu2SUtL9eq++X38khGj57Qq0edR4P4BfA5Drzzsx5vs1awZ92vBcKeWZUKs5vUUI8Tz+o1Tzp4nHhU5LOxg+BOAkAGdA1f/5g0k1RAixCcA/APhlKeUB/tsk71ugXRO/Z1LKTEp5BlTF1bMBnLrebQjBb5cQ4nQAb4Nq3zMB7ADw6+vZJiHEjwJ4WEr53fU876wZ9EqlfNcLUsr79P8PA/gnqE7+EE3h9P+Tqj5Z1o6J30Mp5UP6JcwB/DmsRLCubRNCNKCM5t9KKf9Rfz3x+xZq17TcM92W/QAuAfBsKMmCynDzc5t26d+3Ati7Tu16uZaupFSlvD+O9b9fzwHwKiHEnVDS8AsB/DHGfL9mzaD3LeW7XhBCLAohNtPfAF4K4Frdnjfqzd4I4F8m0b4e7bgQwH/V3v5nAXiMSQzrAk+z/E9Q943a9nrt8T8BwMkALhtTGwSAvwBwg5TyD9lPE71vZe2a9D0TQuwWQmzTf88DeAmUvn8JgNfpzfz7RffxdQC+qmc869GuG9mgLKB0an6/xv4cpZRvk1IeLaU8HspOfVVK+VMY9/0apUd3Pf5BealvhtLv3j7BdpwIFV1wNYDrqC1QutfFAG4B8BUAO9ahLX8HNQ3vQulyby5rB5R3/4P6/n0fanHv9W7bX+tzX6M78pFs+7frtt0E4Nwxtuu5UHLKNQCu0v9eMen71qNdE71nAJ4KtRj8NVDG8R3sPbgMyhn79wBa+vs5/flW/fuJ69yur+r7dS2Av4GNhFnX/q/P+cOwUS5jvV916n+NGjVqbBDMmuRSo0aNGjVKUBv0GjVq1NggqA16jRo1amwQ1Aa9Ro0aNTYIaoNeo0aNGhsEtUGvUaNGjQ2C2qDXqFGjxgbB/wNgL5auqlstQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABltklEQVR4nO29d/wlVX0+/pyZWz59e2MLS1maVFlQUMGGgg39xgIalXxNiN2o0S9+Y4ii38SY/DQmYkFjiY1gi6hIUVAUpSxSFxZZlgW290+/ZWbO74+Z98yZM2fa/dzOeV6vfe3n3jt35szcmWeeed7lMM45NDQ0NDR6H0anB6ChoaGh0RxoQtfQ0NDoE2hC19DQ0OgTaELX0NDQ6BNoQtfQ0NDoExQ6teHFixfztWvXdmrzGhoaGj2Ju+++ex/nfInqs44R+tq1a7Fhw4ZObV5DQ0OjJ8EYeyLuM225aGhoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGiAc47xmXqnh9FSPLBtHPc9dajTw2gpNKFraGjgjscP4PRP3oTdE5VOD6VleOXnf4cLr7yt08NoKTSha2hoYNd4BZbDsX+q1umhtBybdk3gH37yIPpxch9N6BoaGqjbDgDAcpwOj6T1+POv3olv/uEJ7J2qdnooTYcmdA0NDViOq1brdv+pVhl00yoY/Ud//bdHGhoauWGRQrf7X6Hb3k1LWy4aGhp9CVLmpNT7GbSPtiZ0DQ2NfgTZEPWngUKnfe3HcIEmdA2NPsD4bH1OFgIpdFsr9J6GJnQNjR7HnskKTvn4jTj7UzejatkNrYOUebcGRSt1Gwenm5NSSTzu9OHNSxO6hkaP4+C0W+G5c7zScB655Xvo3elDvOVrd+K0T9zU1HX249OIJnQNjR6H6Hs7DdoIdYeyXLqT5O58/EDT16ktFw0Nja6DqDQbFdhE5E+HoChBWy4aGhpdBzHVsFGFTvnn/WhDxEErdA0Nja6DSMKNklSdKkWfToTeh/uqCV1Do8chBjIbTV1sd6Xot/6wFT+9b0fu7zWzuvORXZNNy5zpFmhC19DocYQ89Ab5zq8UbVNQ9Eu/2YIf/nFb7u81qqpVN4IPXHMfLvjcb2O/M1Hpvf7wmtA1NHocIgnLhHfHlv2ZiMnPQ29D2mKlbmPH+CxqVv5tNdqaIO5GsCum//vNm3bj5I/d2JLsmlZCE7qGRo8jLig6PlvHG666He/6zh/T10GVom1Q6E8dmAHnaIjQGw765rwR/H7zfgDouRmONKFraPQ4bEFViwK7UnerRh/eOZm6Dr+XSxsChVv3zwAAag349Y0q9Lzfo8UZa2hzHYMmdA2NHkecQiebwcxwlQceeustlyf2TwNoUKE3arnkfPLg6M0MmEyEzhg7nzH2CGNsM2PsMsXnn2WM3ev9+xNj7FDTR6qhoaGEHUPoZKOYGWQmKfR2tM/dSoTeVoWeb1t0GI0ek+iFtAUYYyaAKwGcB2AbgLsYY9dyzh+iZTjn7xeWfw+A01owVg0NDQXEoKhI6NSoyzTTSanexkrRJ8hyaaNCz2+5uMsbvcXnmRT6mQA2c863cM5rAK4GcGHC8hcD+F4zBqehoZEOUX2KvFX1CDOTQrfz9XI5NFPDTM3KMcoAj+9r3HJpl4fuK/QeY/QshL4SwFPC623eexEwxg4HcASAm2M+v5QxtoExtmHv3r15x6qhoaGASFai/UKWhpmBlGgdWYnv1Ctuwks+e2ueYQJwnxp2HJoNjS8PGs1Dz+uhk0LvLTpvflD0IgA/4JwrmzJzzq/inK/nnK9fsmRJkzetofH0RJyHXq1nJ3RSy3mCotsOzmZeVvyOw4FFw6WGFLq4r5xzXPfAzkxjzu2he/8z4enm95v34doGqlvbiSyEvh3AauH1Ku89FS6Ctls0NNoK0SYR07RJAWcJ7OVV6I1i854pAMC6ZSNztlx+/sBOvPM7f8RVv92S63tZwH0PPTh2b/zqHXjv9+7p6h4wWQj9LgDrGGNHMMZKcEn7WnkhxthxABYA+ENzh6ihoZEEO85ysXJYLv6MRXmzQfKR2//csx0Lhoo4bc0CWA7PHeQUn0AOeH1YyMJJQt6WBiToVffCjTvGc62rnUgldM65BeDdAG4A8DCAazjnGxljVzDGXiUsehGAq3kzu+d0GDvHZ/0AjoZGtyIuD93PcslA6I32cpmsZg+MTlTquPGh3Xjd+tUYKbsJdnl9dHF8pJ6zrCKvqqbjKH5v7aIhAMBtXhVpNyI1bREAOOfXAbhOeu9y6fXHmjes7sBZ/+TGdrd+6uUdHomGRjxClaK8QYXeYB767vEKxgaKmZY9OF2D7XAcu2wUB2dcdV2zHQwUzczbE/ePCD2Lhszbo4YOg+jPj3r7uf3QTK51tRO6UlRDo8chTuws8lYtV9piY3OK7p6oZl52puY+MQyXTZQKRmiMWSHecOg+laW/S16FTpWi4vboiaeLLXRN6BoavY7YLBcre1C0njMPnRDXrVAFylsfLBVQMhsjdHFfKUc8i+WSuy0wj26v4mUNdbOrrAldQ6PHEeeh57NcGqsUzVNcNF31FHrJRNEj9LzbCxF6DsulUQ9dpdC7Ocslk4euoaHRvbBjKkXzFBb5Cj0DWXHFTSMLyHIZKhUatlxsheWSNO2eZTs477O3Yv3hC3Jtx0lQ6F3M51qha2j0OmKzXLz2uWmOC+c8yHLJwFaqm0YWkJofKgUe+qZdk/juHU9mXodKoTscuH/bIexR2D/TNRuP75vG9++Onx1JpfBpO2oPvXsZXSt0DY0eR1weetUj2zSLQPw8S9WlKtc9CZv3TOELt2zGsctHAQBDQlD0Pd+7BwBw8ZmrQ1WZcRCDtkS2Dud41edvw+hAAT9/z/OwxksvzLM/BamBWV2aY5VzHij0LpboWqFraPQQ7nnyID59/abQe3WpUtRxOB7cPi6U80cJaKJSx/n/dis27ZoIqdAswUOR0LN44D+7fwd+dM92/NMv3HEPlQooS03as6ZLhvu9hwl2smLhnH+5BU8dCNIKszxB1BX7XJduhuJ6upjPNaFraHQDbnpoN174r79OJcjXfOH3+MKvHwsFI0UP3XY4vvibx/CK//idPx+mKhXxtkf3YdOuSXz2pj+FtpklX1tcXxaFvnC4FHo9WDRRLISpJ2twVLzhiApdxHahclQe3yVnr8WP3nl26D0V6csWFKlz1fa6CZrQNTS6AB/50QPYsm8aB71y9jTsmwyWkz30e548BCBonqWyXCiQaBosTJK5FXr68uI6ywUDpsH8tMU86wHUE3jI3w3doCSy/t/POQInrBiLXV5+j/aV/HN5DN0GTegaGt2EBBv50ExA4nunggCg7XCfIDkPyEiVekcI5sxkIVWerXNhNNc9CSqLpqRQ6D+/fydOveLGEHkmbTtQz+HlRTUtj880WSQvP4nQ6WmkKir01s8B0jA0oWtodAXSVd9DOyf8v/dOBhWalsNR9IJ6NucBQSlS7/ytCd0ESekyBtRsjvd87x7ctfVA7DicnB56XZFWKRO6ZXP843UP49BMHXsSqk/DAWB3vZQOSZiYrft/y5ZLwWCRNE7VU4nc20Yr9B5HNxcPaPQfiCNYgkSnwhwgTOi2zX2CdARClxX6ZKWOd3z7buydrAYTSLOAlAeLJvZNVfHT+3bg4qtujx2HqJKzeOiqySWilouDsrcPSapfZffICn2iUo8sQygYLDKtnNpDD+flhz302OF1HJrQY9BIr2YNjVZCPCfDCt3xKy8dh6NmU7DQ+9wjp4d2TOAXD+7CPU8e9InRMJhPeqMDBWGd8ayVN8tFta6ywnIpe026ZIKO27YdY7lMzAYB46hCNyLpkT/+4/ZI5lBNe+j9BU3oGu0E9/+PJ4uaLSj0qbDlEih0oO6duzVJZc56xDdbt0Oz2pNPvHL+YOIYZ2s23vXdP2Lr/qCldCaFriD0oiIoSiQ/ldCS11Z46NOy5SIodPGYAeoJsz9/y2Z84dePYdd4BR/6/n2YqVkpCr17CV0XFsWgaserBA2NZoM87SSuIPJcMFQMWy5CULRuO5GeI/T/rEd8MzXbN3YMFvjEqxcO4Y9ehgwAjM/WMW8waI37q0278fP7d2Lz7qlgTBkVesk0QsvKHvobrvoDDs24RDxViSf0cM68o1w+7KFHLZc4/NcftuL7d2/DkUtGUPe+d2C6ikMzNf+YGkxbLj2JrGlUGhrNRFLshrzlZWMDODgTkJYleOif/PnDeGxveFIWIkEKHs7W7FDaIqnRNQuHQt/bKk3uQjeEYiEgxSwK3bIdvxLz6KUj/nZFHBL2Z1pq+CUGYcOFReEnD8K4SOh2NCgah9Xe/t/71EH/qeW2zftx6hU3+Qp9qFTo6kpRrdBjoC0XjU4g6XGezsmxwSKmq2JhEY8oXhEy8c3WbT8rxrVcPIW+IEzoMlGSVy3aJVk99ILBcM/fn4dy0f1uUsOwSUlx24rcc1qvCiHLRU5bTNgufXTfU+OR75FCHyyZ2nLpRWhC12gnfA89gStIoY8NFP35NIFwUFQFIt3AcrH8WYIMFij0wyQPXSZrUqnitrJYLm6vFAMLhIrRpEk3ZA89rt97XM68Kij62TecgrufOJjYL4aCybsmKpEbJO37YLG7CV1bLjHI26dZQ2MuII7IotBHBwqhzA5L8NBViCj0muOvS/TQB0vJ5fhk2ZC6HygavtecBMvhEWVsGCy2C+R0AqHfuHG3fzPLotBpH85ZtwSffPVJieMURVxEodep9a+pC4t6EWIubDd7Zhr9haRTrWY7KJkGBopmKOvCsnmkN4qIiIdetwJCFzz0gmHguOWjWLXAVepyHGnSI0oi8cGimVGhO0rvOk6lT1YsjM/U/UCxaLncufUA/vKbd3nrVR8s8UZE+5lkSRGS0iVpP8sJCn3PRKXjQlATegzEO3Q3P2Jp9AeIvJLOtWrdQalgYKBo+IoRCGe5qBBkubjKd6Zm++l8bqsA9/OCyXD935yDr19yBoCoQj/kBRtn6tTXvJAxKBptTwsEU8jJ2LhjHKdccSO+4/VJlwXVpl2T3vjUx0r02YmIsxB60uxLtK2yaSh/o+mqhTP/8Vf4+E83pm6nldCEHgNReSTNiKKh0QwEHnpyHrpL6CYqlmi5OJFCHRG2w8E59y2XmZotdBN0/IwO8sbjpoejTBSqWB0oGpnTFgtGdHxxCv1PXlrkz+7f4Y8/tD6b0jHV21Yp9KJi+zLkFgIiKFBbLDCo7iP7p1wb6JZNe1O300poQo9BXVAems812oVEy8XyLJeCibrNQ3nmKgUswna4T1iVuu0Tne1wnyDJFiH7RvbHx2dd0iKPe6hUyGQx2AoPHYjPOCGep+CoTOjUGybOQ69LCr1ostinAREz1SD7BwCec/Qi/29KhSyahvKme9BrnCZW23YCfUvoB6driQ2G0hBS6NpD12g1MgZFyXIBAs+Xgo5JnGU53F9+pmb7MSLLDnq/BArdXZHcG50UOt0YBopGNsslxkOPGy+tf/9UDROVeuQJmV7GtfqV+7Un2VEipmsWCoaBH73zbFz33ueFbgwTlTpMg8FkTPkb7Z92C71GyprQW4JXf+E2vO5Lf8g0I7gK2kPXaCfoDEvKoKh5DawGpJ4ntpfnnQRLUOiu5SIodCfw0IHAnqhbag+dCn8GiqZSoe8cn8WJ/3ADHva6Q+ZV6HTt7Ryv4OSP3RgrqJIUOl33ddtJDBiLx2225ir0Z65ZgBMOGwvt28SsS+iMMageSshyGdEKvTV4Yr87DVWWfs0qhKac6uI0JY3+QtagKABUvHO7bnOYhpFo19g2FypFgyyXusP9fG5foZPlIilgCsTSEIdKrvUjBy1/88heTFUtfO13j/vrKShUclKRT2jsMTsW56GL30lT6IMl0/97pmaHgqcyoVOnRpVI3O+lUmqF3gKIBzwpFSkJWqFrdAKJlovt+EFRQLRc1JaGCMtx/OVnQx664xM3KXOyXOSAp0ysg944ZGuG+r+Q7xz3BCFPNBGHAzGzOKkU+rnHLAl9RjZVHMRxzdSscBWsJVoulmu5GDGWi9csLe13aDX6jtCnq5Y/9RYQLV/OCpHQdZaLRqsRpC3GL1P11Ga5EBA65xzTVSv2UZ/UqRgU3T1RxfUbdwEIe+gRy0UidJlAB0vuNmUffXQgTOiW4+SyXGTsGq9E3qvbDiybY1hQ2Fs/9XI89+jFobFX7WRCN4Xsl5maHdvWIFDoTPkbkULPkvXTSvRd6f8z/uGG0OvZhFSkJIg/plboGq2G76GnBEVHBwp+P5RK3cFs3U1BHBsoKr9TNBlqtmutqMSNykM3PCUqBx1jFbq0HAlvUaGrWhNkVeg7FIQ+PluH7XCsWTTse/XiPtCY6imWi/jRTM32jy0QJufx2TrmD5XAmLrQkDx0caq6TqDvFLqMRhV6aOJd7aFrtAlJQfyq5QVFPYVerds+aYptbkWQOrVtrhQ3dUfIchHUatFkIVHDOVcodHd5WaET8U/M1nHtfTuwcceE0kNPS7Uk7Bqfjbw3PltH3XGweKQUep9uHBQXqKUpdBa2XEoxCp0ajMVZLpS22GmF3v+ErhW6Rg8g6OUSv0zNslEumH5Q9FPXb8JOT72mEXrdcTBTs3Dyqnmhz23HtS4MFq7cLEr9y1XjIoX+s/t34Peb9wXr9HZmfLaO937vHszU7Fyl/zJ2KhT6Y3umlN58kHKZLShqhDz0sOWi6tQYZ7nQsqokjId2TMTGAZqNTITOGDufMfYIY2wzY+yymGVezxh7iDG2kTH23eYOs3E0rNCFx0idh67RatBMRUl9g+Sg6P3bxvG5Xz4KABgbjPHQPUIfn63D4cArTz4Mn7voVP9zy+aoK7o1lkxDUqhRoiIP/ZM/fxhv/Ood/vu0D+JMQiq/PEuxDxAl9NULB/G5Xz0Ky8vuEUEVqaTQ63ZyJ0pxXFXLCRUWReYjNd2GYio+CKaqCx+n6x7YiZf9+2/xqV88HDuGZiKV0BljJoArAVwA4AQAFzPGTpCWWQfgIwCewzl/BoC/af5QG0OjCj1kuWiFrtEm2JzjJ/duV2Zn+ZWixSAQSIJFVOjHLR/1/yYyO+gpxHmDRSwZLQfb8ypFZdIrmCxV1IgBydA+KJZtRKFfdsFxOGbZCB7bOxV6/zWnrsTGHROo2W52z60fegF+8b7n+eMGAjJOy3KRx5DUGpgKi1S2mJgmKeJHf9wGAHhk91TkO61AFoV+JoDNnPMtnPMagKsBXCgt81cAruScHwQAzvme5g6zcTSu0Htjlm+N/gBxxG2b9+F9V9+Lf73hkcgycqWo+0X3P5HQX3v6Kv9vshsoC2NssIClAqFbXh667GfLlgsJHHHbwzE51yoB1IhCP2fdEpy6en5oNiMAGPBuJLM1GwWTYc2iIRy/YswftzvewAJJInR5DKosF9rnpCwXspnEyaSBgH/2CVMGthJZCH0lgKeE19u890QcA+AYxthtjLHbGWPnq1bEGLuUMbaBMbZh797mN7FRKYNG89BFha4tl+7Ck/tnsPayn2PjjvFOD6VpoDNs94R74e+ciPrGRE4UFAWCyaLFLBeRwOhv8nDHBopYMjrgf245DuqK5lmu5SJcA97fw6WAxONSJVVxQZXtkVaRbxoMpx++IPI+3aRm61Fvnl5TDnmlbvtev3IbEYUevL74zDUAgn02DQOGoU5jtmy1Qqc2xzvHZ9syaU6zgqIFAOsAPB/AxQC+whibLy/EOb+Kc76ec75+yZIlTdp0APnuCCR3UEuCHOHX6B788uHdAIDvb9jW4ZE0H2SNqAJ5NStc+g8EOdpjgkIXv0t/+4Q+WMSYQMSWzVGXvGPAJWCx9J8EzlA52PZojEJXEZ4yDz3FcokjdOosOV21Ih663ynSU+iVuhN+opGQpNA/eeGJ2PSJ8/2nF1LoSZaL7KGToHQ4sO3gTOw4moUshL4dwGrh9SrvPRHbAFzLOa9zzh8H8Ce4BN9WVBQ5oI1aLqIq14VF3QW6BvvxRrv9kJuiJ9sWjpcvXioYoVa5s3Ubo+VCiDBFhU551ZQnPW+wCMYYPv1nJ2PNwiE/D122XApS2iJdD1kUuiqwq6wUTbFcTINh7aJh//W/vPZk3HbZC/39k4OYgJi26Cl0yw7dAKPbCL8W+74YBsNA0fTXmZTlYsV46JW6jWVjrsX1xIHuIPS7AKxjjB3BGCsBuAjAtdIy/wNXnYMxthiuBbOlecPMBpVCrzSs0HUeereCyKuvnDBvX6jKmQiYIE7UYBgMr18f+ORjUsqiqDKpqpS6AZI18/ozVuOU1fNhe3nocr/womn4qX9A4EmLvUri+paoLMqGFDpjofz1o5aOYOX8wdANS14v3ZgoBlappxC6NAbVk5HYhdKIyXJxYjz0St3xb0q7FemXzUYqoXPOLQDvBnADgIcBXMM538gYu4Ix9ipvsRsA7GeMPQTgFgAf4pzvb9Wg4yAq9HLBwGDRnENhkc5D71bQRL/99OREaYvUA3zfVDiIRo/u5J9/+rWnYMGQS87JhB4odMbC/boLBkPdy0NXpi1aUYW+dCwIqA6VslsuykrRFIUuz0lB5CuuKykPnXPuWi6KoOhLn7EMRy8dwcde9QysWTgUuz5xndRtUcUHfiGT5YSeHKuWjZXe5NsHZlqfi56p9J9zfh2A66T3Lhf+5gA+4P3rGMS7Y6lgoGQazakU7SPi6AdQyXg/Wi4EmdDpPBa7Aw4WTRxEHfOkHPRSISClgNCrGCkXQiRqGgy2zd3mXrJ1UWChMnZ6Yl0qBFTjgo0qy6VRDx0AFg6XcGC65r8WVbRcgSrmoZOfXVaM88tvXu//fcPfnIPjL78eAJStdmmdBcOAaTDlhDd0w3O4yx10E6jUHcwfKmGwaOLAVOsJva8qRUWFTvm6s7XG/BJL4R9qdAeIG/rJCpNJYv90LXQOUj2FSKKUvidXiZbMYBmyXPZN1yLLFU0Gy+HK9rYFw1B66MvnBYQeN+2dSqEr89AzeOgAsMLbpmp+0EiWi5+H7vg3pCTLRfwOEGe5BAo9znIR91n00V3Lx/BvSq1GnxF6WKEPlkzM1uMnfk2CWFSh+by7YPgeev/8MOKelEwDnIfbxlYU5DTkEbrcmEsVFK1ZTmQ502BeUNRBUZHtUbOjHvrysYDQ4yyTzApdeE+0PfzPPQVPHRTpdYjQY4KidZv7864mZbkA4ZuCHGQV1xnkoauzXKjQKpgNyoHlcAwUTZfQ22C59BWhiylDJfLQMwZFN++ZCt0QtOXSPPzk3u24+4nGpwOUYfShhy5i1ULXc6WMFyDecgGiCl0kJVFFy1kppMJdhS4FBwtM+ZSaZc7MzEFR772Lz1yDt5x1OICgU6P4+YfPPw7f/atn4ZTV8yP7JNs+YmGRHHeIA2PMV+Yqr78gKnTPcvnSbx7DX39rg7+M5fBIO2GagEQr9AYhEnLRzB4UnazU8eLP/AYf/sH9/nuhoKiW6HPC+66+F3/2xT80bX1B2mLTVtlxiPEAyooQ+/oH5BRcsgMxhB5S6AXRfglf7qTQVf1OipFeLtz/ThzoOlFN9amajIJuzOIqxZa69ARgGgxnH7XYf1+0lGQ7xS8ssrnyqSYOtF+qrpC+QveyXBzO8alfbMING916CMfh4Dx4YqJYnv+bkULXhJ4PIYVuGv4JmwYqPrp9S5CYE6qS6yfmgFu88u3bn+j0MBoGXfP99OQk7gnZD6GJWmpRhe5bLhEPXST9aMYLoeB56JYd7VroqvdotbRcUSqCPG6VALIU5aM0TMoeAcKB0rjZf8QblpxpI+ahB4SaTnO02VKC5WIaBgzGInxAr+n38BW68ISgCb0BhBR6IZ7Qn9w/g3uePOi/pmVEdWAJfZT7iDcAAO+/5l589H8eDE0M0Eugh6dufnC68/ED+OVDuxv67thAAQuGinhKqCz0LZdiFstFrdDlniaFBIVeKrBwLxc7XaH7E0+r0voSbJiwKg8+j5sAQ9wP6slOEIOis4JCTgNtSWm5kHr3K0XDnxN/DEkeOj0hlD3LZaZmN9yKJCv6asYiUaGXTbcAQ/X4d86/3ALAnbIKCH4Q8WS1HY6yaaBmOX2X5bLH6xfSq/vlp4h18fhf/2XXYqJzLA0iSRgGw+qFQ8qpFEVyGozJchHPY3EGHjmDwzQMV6ErZhQqmobSQy+YDH//ihOUfXSCeUrje52IIMI2DeYTqqjQ424epSQPXZg+L49Cp9GpCJ1SGalSVIbfFsF7WlBZLvO9moGDMzWsmDeYOp5G0VcKvSpluZjCdFGX/fB+vOHLah9XReh1m/snTj892gPB/mSdAqzbQBdQ2u/ytd89jqfaUG7dbJiMYeX8wVDvj6oiKErkLlsuhZigaKRFrkG50rYyW6SuyHIxDYa3PfcIfOb1p0bGTcsrLZdEhQ6cffQiAMD5J64IPo9T6Kao0KVAL1WKOoGHXk4JigJBsLesIP9iSKGHP6tatt+4jH4bSpesWgGhlwQrqJXoL0IXFHrRZCHL5eq7nsIdj6szLSzfchHfc/yLoW8JvUd/fXqkT/pdpqoWrvjZQ/jZ/TvbNaymwTQZRsqFUNsKleUy5Cv0MKmJwqRgGP55LVsutNxU1Yoo3YIZtlwCD71By0XloVNQ1GA4bvmYO8nzukX+53FpkSFCj8tysZ0Qoabhe3/1bHz05cfj/Gcsj3wW6uUijenYj16PL/7mMQBBs7KKr9C9oGzBELJvNKFnhpyHrsoZVVUX0oko/ljUCAlQtwPtBszULLz5P+/A5j35mufTOdWrCt2m4FvCtUGKVkUk3Q6TeZM0CztIBXIDCg89Uvov3KkNI8jckAmd0hsPzdQj6YhkN5LazpLlQoJKpdBVNoyfxSJ66BnOyXBQVCZ0Mcslu+Vy5JIR/OXzjsSikXLkMzp+hRjL5Xt3Pgkg6A9fqbt2z0d+9IC3fdM/bq0+H/uK0MN56KYyKEq9MkQQoZuhoGj3Wy53bDmA3z66Dx//6cZc36MLrjfpPEiLS5tQGUCowVSvgJSgeN7N1m0/c4tw2poFOPOIhVg4FJ4o2TTDBFmKIXSx9exIOXxTmO+tc6LiTi5B11HSdG71hBut6nfwFToLP1GkoaRI3SQw/2bo5EpbTEJQKWpELBfAFVaASOg2fv3IXjzp2X0DRdN/stEKPQfCeejMC4qGD+A+RT+FuiKCb9mO7711a/CNVBXN/J4Vjm9ZNH1IbYHtxAffCGK1Xq/BYAwFSaFTCbmI5xy9GNf89VmKsv0woZOvXE5YTi46WjjsEjql2sUp9LOPCiySJMvFVvRpIIUe7i8TWSwCcQyDimnwCgYLKfSkCS6yQMxDVz2h1P3JP9ztVOpOKFA9UDT836jViQh9Reii+i4XDJiMRchYbnoECJYLU1su3Up8dJHJU3SlgS643s1ycf9PGn5SxkW3g7IpbInQVeQV933V33EeOhCdrGKBR+gHvXJ1ImTZQ//6X5yBf7/4NADBMVcJoOceHZ3QhlYVzmzJR0lDCrKmoqhmKfSC1G0xDqJCF387UaHXWyww+iptcVog9KJpwDSciFrYq5jbL/DQg/csh/tB0W4tLCIVmluh+4TYnfuVBiKXpPFTQEyeub0XYBquQheJcTZlKjURom1hsCAlUiZ00X+OKPQhUujuuRWXh14umP4cpRRElW+iV1/6bDzriIWRcRI3iqvMotBFKBW6N8F1xbL95Ii5oBTy0OOXGxGCoiJxDxQCD10r9ByYrtr+o2LJ9IKi0g1RpdD9k1W4+9ZDhUXdSQr0SNm45dKd+5UGulaShl/1FXr7LZe5XrSmoQqKJk/UIH+fIE6ZJuehiwFAebKKBcNe3rRkuag8brIk/Kci6YdZMlpOVLZhyyUfJak6PhZNA5bjYKpizVmdu2Nyx8eQHLQdFCwXIvQ/e+YqzBsqhtIpW4m+IvSpquUn8JcKBkwjuLhI3Yizb5MCqqmyXGzuXwDd+tguz1+YFU7PWy6eP55A1rUOBkXFvvyNiAGTqYOijZCTwZhfNFOS8rEXjwTB1FgPfSbZQweCG4WYh57U4lZGyCLKmXmlulEUPQ/9D1v24+RV83KtT7kNL32AI3lSjqLJUC4YqNZt/1hces6RAIIboVboOTBTs/xHxSL1cvEuCrpjHhLULE0kq8pysXvAQxcLqfJ4c3avWy7+b5puuXQiKCp2+GzkAjYMdVC0keCeOCGDbLksFhS67KEPFk2UC4av0ClVVEXOtF4xKCoqZ1XDKxFhy2XuuVcDJRMPbh/H5j1TeNFxy+a8Pr//PueJlotpuHMwVOqB5SL2Ugda76H3FaFPV20/mOPnoTvc70sMIDQLC11sZLmId9+6E1gu3ZrlIir0PI1/ej3LhX7LpIuDfudWP+KqIHb4bGT7Ys8QUvhps9fHgbFgHXKvb1LhADAq9UpnjIUaSvkKXdm8yn0vCESHrZA4hU7K1wgFRedO6KetXoBNuyYBAOedMHdCp+Fxnmy5mIab0SJaLmIvdUAr9FyYqlpYOlrGsctGcdzyUV+hixVvoYZDkuVCCt322mE2WinKOcc1G57K3Iu9UYiEnmdbvW65OE66QqfftNWl1ipUQlO35VdkpNCB4Deq206q0lXBNALLRfabxZxy2XIBXMIPslziK0V9D13othiuVs1huTSBkajatFwwsFoxcUZekK3DkWwJ+QrdCiwXMeURaL3A6JssF845pqsW5g0WccP7zwEA/PbRfbCFng5A2N+kHgxilstU1fKVBuWh581y+d3mffjwD+7Hg9vHccWFJza+UykQ8+7zzJ1KhCg+efz+sX0YLRdxUhM8x1ZDVOh/8fU78fxjl2LjjnH87tF9+P1HXgRAVOgO9nuBcFUVYCsQmiilgRsKeeiAu68F0yXUNGJUQayWli0XEar0v7GBoh9wT/LQywrLxcxRLGTMIW1RBUqR/MgFx815XSIczpFk8RcMhoGCO6kOxXfo6SWY61QTeiZULddWGRa8QNNL/RJJXJzvz5ItF8bwt9fchxnvgmzUQ5+quOmTuycq+XckB0IKPQ+he/sj3qje+JU7AGTvDthJOAKh3/LIXtzyyN7IMoGHznH6J38JIP++7Tg0i/M+8xv8+F3PwTHLRjN/T/wt6hmybGRLzzQCVes/TXGeGJCLg9juVZwYIrKcYt0DRQP7p91zOakfupzl4jjhscqNvwgqcswaFD1+xVjs08+S0TIevuL8zHn7afCHlGq5MNdysRz/WNBTlV/63+Ksq74hdJqkYlj4EQ3mXgjVkEKPeuh+UNRg2DVRwaRX7kzR++710APiyNNnWZyhvBfhK/SELB+/UnQOO3njxl2Yrtn49u1P5HrSyqvQ5SdAgzGBAIKnqbwZIO664vPQ00ABPnEcqnuKKigaV9yUhqzL/uJ9z0v8vFlkDgQkzpE8PtNgKHvHjI5XMLVdezz0viF0KioSFbphuHnoFYH4RHKnu6XooVctx785NNrLpV09r8R9yUPoflA058n1oe/fh1se2YMNHz0v83dakcNP468lZrmEM5gaganokPdff9iK+7eN419fd0rs9/JmucjnlzvVmafQnUChp5HdLz9wLvZIT4Wuhx5vudz0/nOwc1z9JFkuGKF8/kJMpWRRSlu0pZtPUv8XIHyONCMo2mz4Aj3FcjENhsGiiUMzNV9sFKQsF90+NyOo7F8skDC96aJCCl3RElTMcqlZtn9z8CtFG7yrNpvLOOc459O34Ad3bwMgK/TsxEXjyrtf3797m7IXThJaIUjo90p6fK02ofTfD0wKF+HlP9noH/84zOZMJ5V3Q+y/Eij09E6ERy8dwdlHLw69xxjzfwO5sAgA1i0bxTnHRMvyATeGJGYLxZEtqU+/26JkD8VxtOBk+OhGQvcVeorlUiDLpe749Q/BbEfeTc9xWlqo2DeErlLo1G2RTrSRciGUu61Kf6taDqYlhd4t6drbD83iyQMz+Pv/eRBAWKFfdesW3PqnqJesgi34sq1Gs3PdHW+GHSDNcgk89EbRaIe88FNg+LsHp2v40+7J0Hvy7yDOjOMrdIc3lAHi5qGnB0VVKBcN/zjainlHCczr6OhbLpJCj6sSVb3fjYQezGGbbrkEWS4OimbwREM36H2TNRz70etxtddyt9noG0KfUlku3sEkxTQ6UFA27RfTrcQp50oN9nKhi7jZdLlpp0sEh80fAODefMa8dLN7nzqEt3ztzkzrof1rR0uDZm/i7E/djB/fsx2AOm3R/039StHGLZeC73s6sGwHn/rFpkzfS1Lor/z87/CSz94aek++6ZlMSFsUbr6NkJ3BgqckVZl8EsoFw3/yS1LogKvSxTz0PAFccfcbyeRpFzjSCovcLJdK3UbdCs/TSvu1b6qKmu00pSWBCn1D6NNV9yIakRQ6AMx4ZD82UAyrJ3p0p5JlzsM91c2oh/7g9nE851M349BMvPVAJ3azyWzTrgkAwGHz3TkJq5bt961uBO0oomy2Qt8leMQ1xQ4QgTbDQydBYDkcN2/agy95M9OkISkoKs4TOlW18MiuyUgswzCEtEWhnL4xQg++00hQtGrZGJ+p4+ZNexLz4IuFQKE7vLGnCSDfjaBdEC2XpJ40ouUiz9NqCoQOwG9R0vSxtmStHcBU1c1MEQskfEL3LJR5g8XELBebh9May8VoP/R/++Wj2H5oNnY6OyC8jmaCqt+IJKuWE5kgOA8atVzylNO3264ikqcbN6WQAsDay36OOxN+Nxli/408fXMqisC7Cm/+zzvw0n+7NeLzFwzmWxb0W1sNZ7lkD07KKBcMOBx4/zX34skDM4nVyEmWSx50o0JfMc99Il61YDBbYVHdRs2zXAh07Pd7Mai5CLEk9A2hT3oXrjiVFp3MM6LlYokeeljFyTnrQXOuYDtxfaFFBMqxuWy2/ZCr7mhfK3Ubw+Xwo1seGyVt2Tu27Fcuk4fc2t0vhnx1+g0mK+EZqq7Z8FTudVoOzxVcFc+h937vXv93E2E7HPc8echfvwjDUAVFG8xDF67w3B66V1i3QzF+GUXTiA2K5kE3Tot4/onL8bVL1uMvnnNE4jy8BYNh8UgZVcvB/dsOJSr0BVqhJ2PCu3BHSqJCd//3LZdYhR74ruK1VSqEVRIgFCMlXOCtUuhUtUckVbWiXpxqir04JJHUdQ/sxBuuuh3/fVeUALua0L3fkoLfMqEnWWUyxIlA5N87y/R3gHsT/oefRKcIFK0g+XwxWUzaYgNkJ35HleWShLLXO0bs+RKHUsGITVtMQ7dnuTDG8MLjlqVOcGEYDK8/YzUWDBXx4PaJUEEVHY+9ZLkMaoWeiKmKhZFyQUqXilouql4udHHJ1ZYDBROMhUmJSHCqEk+cjba1TcOET+ju/9W6gwGpJapqAo84qAidiGrTTtevV+Uoiwo0De1OECJyrEpKnZBndqegTS+P9FVPEuzy8VH5+LVQZlV4eZrgAgjfVBohO8YYnrlmPoBoc640UBB1QQZ7oGQa/tORnfFpQlkp2oWELiLpRlUwGOYNFnHq6vkAwhaX4U2OMVmxYDBEJuVuFvqmsGiyEp25PPDQAztGFFayhy4T+mDJdKexUyh0IlUVWhEU5Zz7Cn3CV+i2r6IIeyarOHLJSKZ1qtQzqf4JhYXlL5Mn573N3WuJKOOekg7lmAxEDEjKCr1uOzANdaaCXBNA1t7vHt0XjFMYn7y8wRRB0QZtDNNg+Mb/PhNPHZhJVJcq0NNflsByscCCbDHOM032rEK3E3pa6T8QZNoVpWNQMA3UvLhXq4K/mY46Y+x8xtgjjLHNjLHLFJ9fwhjbyxi71/v3l80fajImK1YsoU9VbTDmZrmIuPVPezFbCzqjyR0Lh8sFb27H4D3bJ/R4he6TShPTSGa9pvmj5QJqloOqZaNSdyKpaHkUOnGUGPSlMU8JmUEy2mW5WLaD32/el76ggCDLRf0UkU+hBzd8ORMlyXKTj0/d5ti6bxp//p93RMapWr5gsmgvlzmU/o8NFPGMw+bl/i6dW9O1dBsvEhTNlbYYHMtuDIqKoOGpWhnT7zPs2b7FQnhfaN9aFRAFMhA6Y8wEcCWACwCcAOBixtgJikX/m3N+qvfvq00eZyomq/VIT2e6m05XLbdhv/QjfPnWLfj7nzwYr9CLJgwjfMJRAVOSV+0H5ppovZA6X7nATVmcrFioWnYk0JVHgdqCP0s499O3YM9k0M9GPmZAPstlLoT+mZv+hDd+9Q5s2Jo9M0VOW5QxPpvfQ3/qwAwekYqBLNvBnskK7nvqUOR71bodsjcs24mcL6IgkM+TkEJ3ODjncHhjKX1zCTJSUHTKSwn+l9eeHLts0VOfgJstlslyQXSZbgyKiqCnHFUeOfWKJ4UuP6WYPqG3JiAKZFPoZwLYzDnfwjmvAbgawIUtG1EKvnPHEzj7n34V6V0ylajQLX8GFhmb90wFhB6r0ANSIoU3kUGhN9NLJ0JftcDt7zxZcdv8liUPvZrS00W8Oan6oh+cqePae3f4hBNny2TFXEr/H/HSNA+mqOrLX3EC3vvCowEE5Bh3M63bPHMPGzouO8Yr+Pbt4cq+us1x4edvw4VX3hb5XtVyQvUQlsP9OA5BjE2oPHRTCIom9SJPw1we7X2FXrWweKSE161fHbtsqWCE+6Ez4PeXvRC/+uC5ubbZ7QqdOEU1e1TBt1zcz+SYBXnq8+eQapyGLIS+EoCY6rDNe0/GnzHG7meM/YAxpvzlGWOXMsY2MMY27N2brUxdRqXuYMd4JeLjTnpBURF0UUxVLQyWzAj5Ae4jlG+5SGQ45HvowXuHPIWXpNDTSKURjM8QobsKfapioW7ziEJPI1vRKvB72chpc4z5hG7ZHLdv2Y/th2b9kznLfl3/4E5s3jM1p2pUKyORDRRNnHWU28Mky810MmMmUFLbANvhPinLwWU3nTQ4F+s29wPahF3jQSqgPNZQpajD/SeFRvzlRvPBgeDpbLpqpXriKsvlsPmDOCohniPOBEToxsIiEYHlolDokocuX1f0+VxqR1LH16T1/BTAWs75yQBuAvBN1UKc86s45+s55+uXLFE3BEoDeVcVSdVMVKyo5WKELRdVHq7BWGzQp1wwQlkulbrtB7CyBEWb6aEHCt0l9IlK3SteyEfo4r7S+SYXCpkG8/fPdjguuup2vPBff+2TTBbL5e3f/iNe/JnfzCnLhYKJcf20g/GKLVyp6Cp+jFlvtElpneJxlM8FWaHXLBsT0jK7J6rC55LlYgTnru1wv3lXI3bEXPgxsFys1JtJ0TRQt4QAboaxdjd1q0GWiyoFNPDQ3eMm/64FifBbgSyEvh2AqLhXee/54Jzv55zTGfpVAKc3Z3hRUJqebLlMVup+XxMCHfNpX6HnI3TGmHuiep+LAcfEtEVFYG7D1gP46m+3xH4nDUToVPZPr8V9KhWMVLIV+584MQrd4TxQ6E5QlUo3jzxZLnMLipJCpyZp6nUZXnMoIFv8IuuNNinw6ZZ2uxfoxGz4XKhaTuiinahYEYUuBmcjQVHDCKUtBgo907BDmIviHRAUelrKY1GwXLIGRekJIG86ZSdB+6XaP1mhRwjd7A5CvwvAOsbYEYyxEoCLAFwrLsAYWyG8fBWAh5s3xDDoUUe0R9ysDyfioRui5RKn0I3ki79UCII9VHq/ZLScnOWiIJWf3LsDn/vlo4n7lgQi8GVjA6HXRZPhh+84C599wykYKBipZCuqcVvhoQNu3j7ZEuJnBalNahbMxUP3LZeUyQFMg/kZBWlBUSA9zkBIuhlZdqDCZfVdtcKWy/hMHfulsvlDQnBWvgmLCl2sUm1Moc89KOpwpM5nWgoFRbOlWL7rBUfjnc8/Chc/a03DY2w34ibcBgL1PuRlucjCgYLAQ02cfENGKqFzzi0A7wZwA1yivoZzvpExdgVj7FXeYu9ljG1kjN0H4L0ALmnVgAdLnuUiEBf52bLlEgqKxnroLLGXuBjs2bhjHIwBZ6xdkNtDtxwe6sWeFxMVC4wBS0fdeTFJ8ZVMA6cfvhCvOW0Vyl4zpSSIqlPsExLeVt0fu/iZr9DzZLnMgdHp5kPcEKeYTYNFJiquWk6s3ZD1hpTkodftYLpDWX1X6w5GRcvFdvAfN28OLSN+R1UpKgZF6Ri23UMXBFBaHKMk5qFnTLEcKhXw4fOPU16X3Qo/QJ1wgxuJUegkNlpJ6Jm0P+f8OgDXSe9dLvz9EQAfae7Q1FBZLvS3nBtKJ1Wl7sRmubiEHk9QovLYuGMCRywextLRAUxU4vOj5WpFIGjN6856kv8iq1o2SqbhnwykCovCPpUzKPSaNCYgPIEDEJ9SV/IJPUdhURMUOt0H46wS0XKpWW6rW9txc/ZVAdCs45erQ8Of8RSFnnzRjs/GWy6mEZ6Cbi5BUTaHKJlItGmNvURrstFWv70AsiyT9m+orPbQ6fVQqbOWS1eBOiCKJGz7Cia8O+Jj32BJbbkwljx9m9vk3/0hNu+ZwvHLxzBYMiMpjiJU1Yp0UTYaKLVsjpJp+HMlkm8rBmfEKcNi1xPKcqH3wt8ZF/xd8dj4lkvKTUP0uvkcwqKWHbaE4hSzabBQUJSO8VAMqdLvcvWdT+LynzwYv/2koKgTWHzjCoUuWi7/67RoUpj4HTmlUST0Pz550D/XOpXlAqQHpsXS/yyzKyXhg+cdg+/85bMa/n4rQddKku8fp9DpddrNfi7oudJ/P8tFQejyY6F4Mg8WTWXuqMEYKkkeuqDQJysWxgaLGC6ZsDzFrbpJiHYFBYhIDVcVueNZULcdFAuG/4RChFAKKfQMlksGD/2g0MBKzCbKarnYIVsncdFE0OQUdIOIa9trsMByqduOf8NxK/ailbM0/st+9AAAxE4AndRe2LIFhS4FRSuWHUpre9vzjsCP7gnlEYQIfVaqxBR7uXz5N1vw6O4p9/22e+jBuSWXscuIBkUb3ize86J1jX+5xQhSaYMdvPH95+Bhr/cREFgqssVa1Qo9ikFfoYf9aSAa0RcVzWDRVHpXjGUPilbrNgaKhv+DzMSURIvrEwNF8md5ULfdSXoNT43SY35IoRfTFbp43HiMhy4W8ohqnA5nnqeAuWS5iJWsW/dN48x//JVyOddDD3LkiVhIJQ9Lv3vWLB3ZihJh2U7wtFSp+yradjjqNg+R4ZGLg1zsWz/0AgDJCl2sFAXcSVWABitF53CFMxY8+WRS6LZb1drPlkvZu96WjJbxspOW48PnH4tjlo3iwlODp7BYhd4tHno3YUBhuRBpyApdvACGSqZ/AYpII9hSwfQvPlLX9IPM1GzMH4p+R7RVapZ74duCQm8ENSuYAWWwaApZLsEVS9NfJUFU3D5hSoQutpgNH2caS/I+iOubU2GRYLl8+/YnYpcT89BrgkKn32n+UAnTtfhCntjtJ1ou3I8P3PLIHvzHzZvxrbedifWHLwQQ9p/pvDtu+ahvA4k3Vtm+ExU6vQbar9ABV6XXLCc9y0WwvBwnWx56L+KsoxbhE68+Ef/rtJWx6YdpClwrdAEqQrdiAhXiBTBQMpUHMq1/OFkutsO9uQANDJWzK/QHd7jqSp7rMi/qdmDvDBZNP0siFBTNpNAFQo9V6HGEnu2mJFoVqnk/s8LyLZdk/9hgzLcE6rbjWyp0wS0YDmc/1exsWTpJhUW2E8w9++B293H7qlu3+Nsma/CEFWMAgA0ffTF++I6zlRad3PxK7IcOJOc+p2EuHjoQ3JiKqYVF3hOS7fS1QmeM4c3PPjwxl5x+40vOXqv8XHvoAuhCmRUUjh8UZbJCD/4eLJrKk2xCKNCpWg4YC2dmuArFFi5UE0PFQKGrULUcvOyk5di4YwKf+NlDuP5vzhEUevaUPxE0izjgKr7xuKBoip0gfh7MKO++d8nZa7Fvqoqf3b/TX6aiWD7VQxdIfDrHhBsyRIWeZDeYnhVVMJhH6I7/PhDt553ZcvFOhJedtBzXPbAr9Fnd5pH4wO827/OPV7lg4vaPvMgPnC4ecdNNxRvkcMnEdM2OWi5CUFTcj0Ysl7kKZbreslgugNvS4NBMvW8VelY8/k8vi81mG9YKPYAqbdFP6zLjFXqcb0UpenTHLRcMvPWsw3H1pc8GEOSh04U6UDD8x2aamFpGzbKxdHQAZx+1GNsOzuLl//5b3P3EQQD5qixF1O3AcnH7lVNQNNjHLEFR0XIJSv/dP15ywjK/+VfS8qnFSwLT5ZlBCQDue+qQH/y0BA89cS5H77Oi5+MSodN65Hal8hPGA9vGcdoVN0bmzLRtjuVjA/j0a0+JbNOyeSQ+wHlQ8FYuGFg+byCi5ESLjOomVBlTzbJcGkmRFVH2PfT0oCgAvPgztwLo/r7mrUbScVdZv81CzxE6BQXDXrCnyKSDKJ5UqmY6QBCcomBryTTw8QtPxLOPXOS/rlmOkOtupgZFK5aDctHNGZ+qWti4Y8KvFGw0bbEu9G0ZLAaB2pIZ7FeWtMWK4skmSPtkkVx+VTZRkrcsLgfkI/Q7tuzHhVfehq/d9ri7HTvIckniB1KuRZP5veLFccrd7eSb3pdvfQwHZ+r4/WPh2gLLy1AaUpw7luMoA750U1C1HQbCKYmk3lVPeqIap/N6LpkjjSK75RIenFxspRFAK3QJcol70PMjKSiqPoh00ZOvVZYuXspyEQl9uBRvuVAB0UBBnVXTuEIPWy4EsYl+Xg9drhQtmCxyYYo3ALqBJc1kD4Q9dLHnTVqA9F6vtzh1MawLhUVplgvgBrBrthOkjXrnxQJpTsy4pkmyZ247jm/nyKjb6omj93tzRialppI9MebdaFTCQKnQ55Ky0iDKxWwKXS7au+PxAy0bU69DNTlGs9CbhF4MF/aIClOEnIeeBCJ8uYtaQOjkjQbFPaoLkQh1oBiTVZMxICcjrNCD9ZZyZrnQ+AoGi/RDNw0jsv/i+ugGllQSD4Q9dFGhy3x+00O7cePGwJsmIj9s3mBoXLaie9/bzz3K/5s+K5kMdSvw0C95zlqsWzqCN565RlhWVZlpKPfLcrhPrO+TcqNtx1FWwW7dPw0geVZ3ujGPZVToRgcVOlmcqc25pMG9NSYgqDF3GywJPUnogyUzbLnElEaH8tBLybsaKHQFoQuZE65Cj78QxTYEqkf1RhV6TfLQCcXceeju+IZKplApGjzhyBeuSOi07qTsD3d9wRjENgKyRfFX/7UBl37rbv/1Tq9HOPnOtB3Oeaio6EfvPBuvW7/Kf02/85KxATy6Z8of51FLhnHTB87F8nluQ7PXnb7K60gpE3p03DReWvf7zzvGz1gBKCgaPQ4PeBkvRywejnxGKHkkmeShm4osl04EGn2FnlZYJJyH1/z1WXjbc49o6bg01Oi5LBcgqkStGIVuhBR6ttxQWaGWC26gzQ92FUWFriB0i4JiplJRNeyhW2qFLj7qlgtuvrtlx+cNVwXrSM5ycbsWxlsu/lgcjqcOzOCJ/TN47rrFkc9FwhezXNKqRkmhy8RqS43NikJ7WSAgv5c+Yxk+ff0j+OdfbAIQtj02feJ8FE0DNz60G9W6HbpB+ApdGqBlx6ffUb8YGfdvO4R5g0UsHI6fN7JECn3QEwZ1O5Jdpcpy6USgsZyxsEjsdLpmoaI4QwP/9oZTcf+28ZZuoycV+kDRCAf3pL7ZhLBCD4KeKpAvrvLQgUBpDnhNvkyDKS0XPxumaGBQ4dvPxUOnjJaQhy6lLQLJeeIVy51YumCwSB56wVB46IqsGdtx8IJ//XVo0uPQ5wIziTewtKrRHYc879yWvWweOm7FQjhPm372V5x0GABg+yFX6Ys53wNe2mqZspaEY+RPyBzx0MOELgpkSygsEvHE/hkcuWQ48bGabpqk0G2HR85LJaHnUOgvP3lF+kIZ4AdFU/yeM9YuxLnHLMHikZLfEVQjjFefthKXv1I1HXPz0JOEXi6aoX7oRCDyU6F4DvpZLIrCDgA++ZZlD917TdkwAwUTjLmZD6q0xVA2jMpyaTAP3fVzo5ZLuJdLOqG77QtMGEoPnUWCWypP3rK5fxMYn63jC7/eHG4VLBCyOHlIWtEoFTTJPVs4D98YCoYRUoxEeGsWDeGqNwdzq6i6a5aLbkBd3C+xs2FoPwUPXYbYBVFGkt0CuJNOA26JOHF0hNAV5J0nD/3zF5+Gx/7xZZmXj4Ov0FO2bRoM3/zfZ+L3l72o66eR62f0JKEPFs3QJAVBcy6p2yKLKnQ6QY9bPhq6iAKFHrVcgCANiyLUQ2V1x8UgKGqos1waLv13Uj10ej/pplGpu9WuBgsahokzAyVluRBE4nvL1+7Ep69/BHc8vt9/T7Qiala2vi6c89i0SJtLCt1kYY9Z+Pusoxb5f6syTUqm66GLhE7niWyhiB66DMtWpy0CwNpFyYT+nKMXgzHgVacc5le4ylaXSIp0g8tjuTDGmmLR0DmVdfLmOMGk0R705NEflBR6nIcuN+cCAoL+0p+fjne94Gj/cyrnV2W5AO4EE0BgyQyXCpGSbUBQ6AV1lkujhC5aLkMhyyWctuiOIclysX37gYS0r9AVaYsqiIR7n5dquG8q6GoYLv3PZrmIx6VuO6EUR9vhoZtU0TTCWSDC3+IkJypyoeIr8RjR/cDy4g+/eni3F4vgscFA6lmiwkpvmsA4fOUt6/GnT16A1QuH/CeNpCySWoYe3K1C1sIije5AT/5KQyUzFJCMm9ElSPcKsjfoInc4D13wQzEKvSQrdO/1ivkDuPuJgxEfveIHT9W9Y+bSy4XIdpEQcBO9Wtpe0nynlbqNcsGAwYLjRm1q5SyXuHxZ1cQPuyequHnTbuyeqISUrmpSavl9IBxgpr45BM556LgVTKYMispQESBlAokKnZaybAc3b9qDt31zA/75+k0pHroT2h9xPCsXJBP6QNH0f0v6XpKy9RV6J7Ncemjez6czepLQB6QJJsSgngi6GIeKZjBbt+AzixeRf2FFPPTwDEH0CPq+Fx2DneMV/Fjqcx0Kiio99LmX/lManozFIy7R75+O9gAXt08KXeWhlxQWjgxVHvruiQre/q0/4ju3PyF56OrOi3KGkHhjrNthAncVejjLJVRJmUO5UjWtMjbgcOz2JgK/6tYtsLzCIhUsqbBIXC5NoYug3zTpyajegOXSLASVoj1JFU879OSvNFQ0JUWnPuHp9YBgUbz/xccAAFYtGAwROi0r+66BQg+yXADglNXzAIRnbwcQyldXWy6NBUVrtuOrpOVjakJfNOxmF+yfqik/B1yFPlAwYTAWmQmoIKUtDsRUO6pK/3eNV1CzHczW7UwKXY4/iL+nJVR7AoDNw082xUI4bVEOwn3opcfiGYeNQYVSwfQIPWq52A7Hbi91EnCPeSyhO+E8dJGQ4264KpgxQkIE3RQ7koeeMW1RozvQk3noQyXXQ3e8LnzEGXGWi6iULzhpBbZ+6uUAgnzgdUtHgmrDgtpymazU3WAc9Q0R2rWKCPd8yd9/PQ6W7fgX/bIYwlikUOiUUbHayw2u1N2p04yqWqGHg6xxlkuU0Hd4RFiznEweuqjIHYeHCd2bJILAedhDT5qZCnBnkxfjIyJKpoFq3Vb2ebcdjt0TwbGbqdlYNipYLgj+loOiIuFliUPIyyZ9x4oRLO2AHxTVHnpPoCcJnVIMK5aNoVIhVaHHdVqkvOfzTljmqzw51Y1IdKJihRQrtTgVCeupAzP44q8f89fTLMvFdtxWrXTRj8b0Yh4pF1AyDb8RGAA879O3AIB/E6vUbSweKXuWi7uMOK1WKMgao9DlmxgA7PByv2u2E/LYQ5NSCwQoBrVrtoOZqmi5OKHioojlYhoh+yaPG1A03RuZmF9P+1O3HeyaCCbCmKnasSRad7jkoTdGeAUhtvOFNz3T7wUjIuj339Am5gS6HtKac2l0B3qS0MUZg4ZKhXgP3VNucV7wa09fhS37pvGO5x+Fn97n9gCPU+gTs/VIwLRgsJBf/I7v3I2t+2f8barycRtR6EQ4ROhxRSuMMSwaKcVaLn/7/fuwadckjl46AoOJ3Ra9oKgpe+jZFPrYQAF7Pe+5ZvFMeeii5VKzHclyCfvTthQUNQ0WrqrMYUWYBoPl8ND2aYw1y/GrVQF34onEtEVhjAYD/vCRF6bm2sugc7ZoMrzsJHUxEAWIO1r6rxV6T6AnCZ28aXEeRyDqpZJoimvMtXrhEP7j4tMABOpHVqViHvqY1Ia1ZBqhbAyRlAZishYa8dBrPqGnX9AuoauDoj+4exsAN4ApFhb5aZ/CHJJAtGqWIHvow+WCn9ZZk0riawK5OzFB0ZrlhFJA644T2gbn7pPNi45bivef58ZAxJtaHiuiYLBIFg3ZO1XLwa7xChYMFXFwxp0nNG7dh2bqkTTMFfOyB0MJmSyXmErodqCcsTmXRnegJwmdFDo9tttxCj3FchER56GTSp2sWjhiSbhgpGCGFbqYAx2naBpS6NT7XBjb1y85w8+8EbFouByyXESsXTSErftnsGuigmWjA6F+6AZzb4iqQiUZciWnaFPVLDvkoVsxQVGZ0OnmXCoYUYXutSRePFLGiSvnRcaTpzLRNNz1i+qafpP90zXM1GysWzqCgzPjkUpRuoecsmoefrVpT2qTsiwgy0VV1UqgJ4hOJJoElaJaofcCevJXGpKaY6U15xrIQejyhbVkJAhA0jRiBHeGnICwxgai98dffuCcUOOiRjz0ukKhveC4paGZxglJlgv1Bf/im06PKHRad3jSafXpISt08UYj9wkPBUWF98WgpKvQ3ddjA0W/qIdAhUWxk0bksCIKBoPlOMox7qL2vULaoaoH+dued2SEzBuldtVxJ3zuolMBxJ/f7UAQFNUKvRfQk4ROnRMpU8IRLAMRdAGk9UIXl5UV+thgwSf5JUpCDy5l1XaOXjqKFUJWSmOEnt1yWTl/EDvHZ5VtCWqWgxcfvwwnrpznFRa574sFNFny0GUyK4UUupOQhx58Z0by0Ge933LeYAF1ybZxPA89LrUvl+ViupaLmEpPYyT/XEw7VG0yLijdCIp+pWh0QxeeuhKHiWPpYNqitlx6A71tuaQodLoAMlkuMVkujDEsGS1j28FZLB4Nt0Qtmm6Wyz9e97CXWqcma1HlzSUomqVPxjMOmweHA5t2TeC0NQtCn1W9TovumIIMHbfE3SMWYQYkIhkxVlCUbCb6nFCzZA89PW2RFHrRZBgsmW4JvhP+XtWb1k+FPMHCghcUdRQKndoXHDZPrdCZ/17zyG2eF5eJ89DFWEEnml6dtGoeLj3nSJx5xKL0hTU6jp5U6LLlQgpTzv4w8ij0GA9dfE9W6AXTgOU4uOrWLfjKbx+PneFevFazBkWf3D+Dt33jLkxW6r6CzJLffNIq12N+cPt45LOqZfuELhYW1YWiJXEbqrL0ohQIlr9TtbPloYtPEFXPQx8smigYro3l8LDKtxwemj9VRB6CNQ0Dts1jxwi4bR0IqqZU4nt0PPNmtxCOXjrqjStuvOktDlqJcsHE/33Z8Rhp4lOJRuvQk4QeyXJJmBX+xccvw/q1C1PXGZflAgQX0uLRqOUidhMkHziaD59foX/+lkfxq0178LP7d0bSFpNw2LwBLBgq4gEVodcDlWsaDFNVCzXLwWSl7gd0Qz1SFI2jkm54gBvAFdNI65Y6KHpgJvD5a5aD6aqF4XLBfwIQnwJIzccrdOXbShRMV6GLTxHyE8eKkOUSXbn43ly7C65bOgIAoXRJEeLmdVtajTT05G13qBT20OUmSiK++tb1mdbJYoKiQHABR4OiLGQNzNQsvPzkFfjM608JLSeSpGzLxI196ahLKjsPzeL3j7mtabMEphhjWLVgCPsUgVHXcnFvWAZj2LxnCm/66u0YHSj6gVvxKYfGLWbsqHzsUJaL7cAWLKK4Xi6P7Z32/657eeiDJVehy0HLfZPuviwcUs8ClGeORtMLijoxttBg0cS8wWA7SoUuFV9NIr4ZWhrWLXMJneYilWE0mJ6p8fRETyp033KpB5MWZ+3XHAczgdDpiWBY6p5YNI2QupuqWJg/WIyofDOG0G/cuAtH/d/r8NCOicg2aV7Ne546hJ/etwNAcr+P8LiYspqzJjQkoxHdtfUgJit1jA1EJzUO2hwkl7XLQVE6JDQ7EEFU6I/tmcKR3kQQNcvBTM3CcKmAgsl8i4WwZ9JVr3IMoxGQhx6aVUn4TRYOl0LngPjbjXg3PdUsUY3iqCUuocf1zRFV+VzPcY3+R6azkTF2PmPsEcbYZsbYZQnL/RljjDPGssniBlEuGGBMLCxy5vw46ucDKx7rP/v6U/Hnz16D41eMhr9jhKeh2z9d84lYhDg0kTxoguSHd0YJndb720f3Bd/NOB+paiJk6odCBCTmqk/MWqHUSoJKoasITLzR1IXSfzlLhnzx2ZqN7Ydmcbw36XLNdoOiQyW3rays0Pd4VajUfGwuKBgGOI+fVWnRSJjQxfPqs68/FR887xictHKef2yC86UxE324XMDn33gavnbJGcrPQ5ZLBzx0jd5CKqEzxkwAVwK4AMAJAC5mjEUmxmOMjQJ4HwD1RJNNBE0BNyN46HNVL88+chE+9NJjccqq+ZHP1i4exidffVKkWKhUMHBQ6raoyqgRmzpRUFS0Hya9AqH9U1V8/bbHwTlXTm93/HJ1B0EZcn48QN0BA0KmnOuiyVyFPqhS6NFOeyrPuChluZC6lsmfCP2xvVPu/ng3SCosGiqZfjuFkEL3GmbJMYxGQPsi3hzFbS0eKYeesMRg4NKxAbznRetCswFlfWpKwitOPsxvniZDWy4aeZDFQz8TwGbO+RYAYIxdDeBCAA9Jy30CwD8D+FBTRxiD0YGiT4RJHnpWDBTN2A59cSgYDAekqkxVNoA4b2TN6wEiPvL/9P6dWDo2gG/f/gR+/9h+nHPMksjEGdRcKwvKBQMHpsOEToqdyGrXhEvoS0cHMD5bT1ToYi/stKBozXL8SbvlZW94cBdOWDGGf75+E8oFA886cpH/nemahTXlIXDOvaCl0ODLI19xYo9GQeeJ+KQk/v3KU1aEntLmKW50gHtsqohvj9AshNIWNZ9rpCCLvFgJ4Cnh9TbvPR+MsWcCWM05/3nSihhjlzLGNjDGNuzduzf3YEXMHyri0Ewd37njCXzvzqc6ol6KpuFPHk1QzVJE1yR58XK/k7ufOIh3fuePeHSPq1xth2OqamGNp9oOy9Ffm8YlK/SXfvZWAFGSXTxaxlTVSvTQFwwHn6V66ELaorytf795M27YuBu/fXQf3n7uUTh8kbt/VdtT6F7aomU7kWrU0XIhttApD+gmFe7l4v79/GOX4FWnrAyp7jhC9/vnt7hpFa3eYPmCvxpPT8w5y4UxZgD4DIBL0pblnF8F4CoAWL9+/ZwaYcwbLOLQbB1/9+MHAXTmcVRFbsPleNIZKpkYn62jajlKtXXIS+WbrlqYqdmYN1jEbz/8gtyBN7mCFQC2e+1t5XVRrxWVQidVf+rqBbjj8QPgXG0xyIRu2W5vGNXxefKAm82xeuEQyl5euZi2aPN6pH0AEPR6nytUCt1yOI5fMYZv/MWZkeXnD8UodG/f4lIpmwVxGkUNjTRkORu3A1gtvF7lvUcYBXAigF8zxrYCeDaAa1sdGF0wVPIJEOhMBoCqHFrOhAECD50UetWylY2diISnqzamqxaGSiZWLxzC0pgZiuJQKhix+e5EQF980zMBAAc9y0il0B/YfggA8Mw182OblwFhlep2RnS7FKp+k8kKlfgX/XXVLHemo8GSiaKXtijnhsspo42ioCD0uuXEFvakKfRmeOhJIFWuA6IaWZDlbLwLwDrG2BGMsRKAiwBcSx9yzsc554s552s552sB3A7gVZzzDS0ZsQeyXAidKLpQdVQ8TsqEEUEVq9W6E1HQIqZrFqZrljJjJgtU1ZwE8tAvOGkFnrdusV/gMzYY3dZzj14CADhj7UI/rJsWFAXcLpimwZSqkibbnjdY9G+IMzULdZtjuGSiYDLsnqjig9+/D0BAnHFKOS8o0CtW7NZsJ7YwLZbQKc21xQqdNINOWdTIglTG4JxbjLF3A7gBgAnga5zzjYyxKwBs4Jxfm7yG1mCeROiOQvG2GjKRPeOwMaxaEM1WIK4YEjz0pCKhmZqFmaqNoUWNecYlk6FmOaFMmuCzcGk/za05qlDobz/3SLz17MMxVCp4CpGnBkUBYLbmoGAYyparFHMYGyygYBoomQa2H3TtoMFSIXJMS6aBWceOnT0pL/wsFyvsoccJgvmDaqtHVuiNlv6ngZS5rhLVyIJMEpBzfh2A66T3Lo9Z9vlzH1Y6FgyVQiq00bk65wLRcrn5g+cqyVwETZ1Xrcd3DgSAqartKnSFfZMFboWmA9U9TlSUYksC0XL59tueBQ7upoeWqILUW3eKhw4As3V3ph/VTWtcUOgAcNZRi/ATr3Bq2EtbFFE0GWbrcy+xJ6iCog6P75Oiii2IoBtNq+QEEbpW6BpZ0JOVogAwX3oUbqQt7VxBarJcMHDkkpFY0iEfdNAj05qQxXHK6vmR5WeqrkKfi+Uit6AliEpXvCENCvnzz123GM9btyT0Pd9Dz0DoM7V4D53SPInQX3nKYf44B0umItffjN1uI1AFRYF4BRz/Po2vxUFRb/WqvuwaGjJ69iyRPdVOEDopUJVdocKQr9BtP8/6L597BP7fa04MLTdVJQ+9MZuBslzEPjMEMcslrQJUBPGa0nKRPfRavIe+d7Lqtsn14gmnH77A/2y4VIjcBGhczVPoQSBWRN5OhhTonmvpfxq0QtfIgx4m9LC32QnLhYhMNVORCkGWSxAULRgs0t53/3QNDlfntGcal0cy5I+rPqNtE9I6OdJTRloeurtdGwWDKT30vVNVjA0U/fWJnQ2HSmYknZOeIppF6HSTkQVA3hl5aJytnjxZpy1q5EFPdlsEgCVSGXjWPifNBBFWms9Kl+JQMci79if+NQ3IUws/sM1tfduoQqcbzWw92j6gHEvoyYTBcij0mQSFXrd5KHNELBYaKhcwJbU8KDVdoUc9dCCaFvi3LzkmNMG1DOYTrfs6brq+uYIsHz0FnEYW9CyhH7VkBN/4izOwf6rmp7i1GzS7z0gaoUuVolXL8e2QgslQECZuWDxSwgPbx7F4pIwXHLu0oXER+ammoRNL1UNtcVMtl3ilHA2KxnvoAJR9YwBXoU9KE1/TTbNpHrpHjFXp6UW++bz7hesS10O/6aLhMt7/4mPwilNWNGV8MmhYWqFrZEHPEjoAPP/YpfjT7smObZ96nIyWkz10uhSJ0A/O1DDt9WopGCxkYwyXC9g3VcNbzzo8tmFT6rhMslyihC6nLcrfiQMtquy2qLBcxgaLsSSUTOjhHjakkVU3kh+/8+zI8mmg3yxNoadBtELe9+Jk8p8LaDtFHRTVyICeJnQg2/RyrULRD4pmO4xkuXz0fx703ysYRmgfaOaaY5fHFyhlHZeK0EUSFx/j0wmdPPQo8aksl4XDpVibQJ5kuey1+x0smpishhU6BY9VNxJ5ztQsELNcxLlS8z4A0GFsdX64VugaedDzt/1GU/uaAbIssma5DCpa6xa8iZEJFNw9LmOrXBV8y0Ui9He/4GgsEDoWEonH+d0iWELaYlFhuRhMHRQFoi2Gv/Tm03HG2gWYP1TCyVL7YivHfKpZIBYWiTecvIRJWS6t5lk/y0V76BoZ0PMKXdV/vF0gtZruobvLqboFqrJcAGDVAjlUmh1+UFTy0P/63CNDr/P0IwnSFqNjlb/PuXtTiSNJ+Sb8gmOX+vGCD5x3DAwGXHnLYwCCXuXNznKp2Y7X6tg9RnktF1q81RM36ywXjTzoeUJvdR5wEooZ0xbpUlSNtWgaIaL/7l8+C1v2Tc/pUb4Yk+UiK+ZijgwK4i2V5RI3i1FcUDTpJlw0DRwrPJ1Q0VGzgqI0JtvhIdWfW6G3qWkW/WQ6D10jC3qe0DvZIzqwXLJluZiG4c33GaTDmUbYcjn76MU4++jFcxpXkIcuEbpExjT+LGRBxKXqWRKX+WLG3CjSnqrkKe3ittEIzFAguHHLpX0eulboGtnR8x56J1HKWSnKOY/YLkWTNT2HuRhjucj2AJFElpsiEcuAR8anCi0L4gg9XqEn3wBLheB7dpMtF/EpJaTQG7Rc2uah6ywXjQzoeYUOAKetmY+zvOnM2omshUVkunC4WTliqp1pGE2vNgyCosn9SkihZiElIrDDFw7h+28/CyPlAi743G+99agtl7j+I2kFU+L64mY/ahThzJ65KPQ2WS5+RapW6Brp6AtC//E7n9OR7a5aOIiiyXD4wuHM35EzXUQVu3ZRY3nnMkoJeejhbbvL5VHopsFwxuqF2LpvOthekxW6SOiU5dKsqd7icu/zWie+h95qy4XiHNpy0ciAviD0TuG45WN4+IrzUxU28SXn0bx5Ul6/+uC5WDzcnFl5qII1ldC9bWehCtqHIB4QfCuuA2Oc6k310IUbBFXUtsZDb9xy8T30Nlku2kPXyAJN6HNEXrtE9tBJJR+1ZKRpY0rq5aLadhYuk4lF/I5INgZz+4uXC0Zsf5hUD120XFrqoc/dcml92qL7v/bQNbJAnyVtQHDJ84hCT2uK1QjigqIyCr6HnsVyof+jilEkNdp2szx0yghqhUIXb8a589Dp/xYTOo1XK3SNLNCE3gaELBfJbmjFhRpXKSqDfNksZCYTl0ji4kdid8RG8tDFdYTea4GHXgrloedbT7usEOZnuWhC10iHJvQ2YI3XZGv+UEmh0Jv/EwRB0eSWwnnsIkO4KQFhghf/FiekiPfQ04Ki0e+1Pssl5/rb5qG7/2uFrpEFmtDbgA+99Dhc9ebTcdZRiyIeeisu1KKv0JM7EVKlaBYuo94ljsfoceMOLBcztK/PPnKh/3faXKnKIGvTFHpMHnrXNufKXs2roaEJvQ0oFQy85BnLAYQnaQZa8yg9VDTBGDAxm0zofoAzQ54LiXCf0GNsGtFyWSBME3j1pWf5f6ualKnWkfZeI2hWlkvQnKtNhK6DohoZoM+SNkO+/FsRVDMMhpFSAYdma4nLEaFluacQEfqWS8yZQ0q6VDAi8776y6SQc5Zp7hqFeAMNZefkzXLxhqPTFjW6CZrQ24x2tZ4ZGSjg0HQ9cZk8WS5ZFXpRIPR5g+F5X89YuyB1O+I6RDTLcjEMpsylz5+HThZUU4aVsB33fx0U1cgCTehtRhZ7oxkYHShgsprNcskypEvOPgIAsHrBUPi7EnzLxWQRhf6ttz0LGz764tRtqYKizWyPoMruabRSlKu6lTURftqi9tA1MkAXFrUZbVPoGSb+ICWcZUivPX0VXnv6Kv91nKoXPfT50lRzA0VT2RNeRjtyu+s2D9kl+Se4cNFiPtdpixq5oBV6m9GuyzJLB8g8eegy4vilJGS5NENVr5g3MOd1yKD5OUNFRg22z+VoLaMHaYv6UtVIh1bobUa7+rdnmeeUMicaIfRUy6VJQcyfvee52DVRacq6CGRfiDZL/hmLPA89OdV/zqDbhVboGlmgCb1PkYXQVX1ZsiLuxiRmuTQDi0bKWDTSnKZlBCp+EgOhjU5w0WLHxQ9C6zx0jSzQz3FtxhvOWN2W7WSxXMguaOZTQ9EPinbvqUU+/lzSFiEVWrUKtPpW57tr9Ae696rrUxy/YgxbP/Xylm8nS1DUzylv4nabpdC/+KZn4ifvak2f+wFvomuRJEczHC8RQSuEVhM6D21PQyMJ2nLpU2SxXEhdNlP8EZGTrXHde5+HXROzuddzwUkrmjcoCQNFCooG7x29NF/74nbloTtaoWvkQCYZxRg7nzH2CGNsM2PsMsXnb2eMPcAYu5cx9jvG2AnNH6pGHmRR6PO8tMKTVs6b8/buvfw83Hv5ef48q0TsJxw2hhcet2zO628myHIRbZa8hH74Imq4lm0+2UYR3HQ1oWukI/WqZ4yZAK4EcB6AbQDuYoxdyzl/SFjsu5zzL3nLvwrAZwCc34LxamREFg/98EXD+OE7zsKJTSD0+UNuVWiplzx0gSSz5MeL+OBLjsX6tQtx9lGLmzo2Ga2wxTT6F1muujMBbOacb+Gc1wBcDeBCcQHO+YTwchitD/5rpCBr/vbphy9EuZCPzJLQ7LTFViCwXBqnyVLBwHkntP7Jw9EeukYOZPHQVwJ4Sni9DcCz5IUYY+8C8AEAJQAvbMro+hgGa60veuzy0ZatOwnFJqcttgJlISj6g7ef1fS0yGYirV2xhoaIpgVFOedXAriSMfZGAB8F8FZ5GcbYpQAuBYA1a9Y0a9M9iY0fb60jlddCaBZ6QaHT2EyDYf3ahSlLdxZ+0FV76BoZkIXQtwMQk6dXee/F4WoAX1R9wDm/CsBVALB+/fqntS2T1hO8V/GSE5ZjtmbnTgNsJ+gpohdUb5CH3tlxaPQGssiouwCsY4wdwRgrAbgIwLXiAoyxdcLLlwN4tHlD1GgUN73/HPzdy45v6zaPXjqCD77k2K7OyqCUyl5IBQzy0Lt/rBqdRyqhc84tAO8GcAOAhwFcwznfyBi7wstoAYB3M8Y2MsbuheujR+wWjfZj3bJRXPKctZ0eRteh6PeB7/BAMsBPW+zwODR6A5meiznn1wG4TnrvcuHv9zV5XBpNQt6JG54OIMulbre4s1YToEv/NfKgeyNXGk1Bqycx7kUQodfs7g/j2C2o5tXoX3Rv5Eqjabjk7LW44MTlnR5G14CyXLRC1+g3aEJ/GuBjr3pGp4fQVaAq1rrVC4TuBUX1s7RGBujTRONpBwqK1npAoevmXBp5oAld42mHYg9ZLro5l0YeaMtFo2Gcd8IyHNaCOT9bDT8oanV/UFQ359LIA03oGg3jK29Z3+khNIRyDyn015y2Ej9/YCdOXT2/00PR6AFoQtd42kE1BV234sUnLGvLDFca/QFN6BpPO7zouKV4x/OPwl8978hOD0VDo6nQhK7xtEPBNPB/zj+u08PQ0Gg6dJaLhoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn4BRv+W2b5ixvQCeaPDriwHsa+JwmoluHZseVz7oceVHt46t38Z1OOd8ieqDjhH6XMAY28A578rOUN06Nj2ufNDjyo9uHdvTaVzactHQ0NDoE2hC19DQ0OgT9CqhX9XpASSgW8emx5UPelz50a1je9qMqyc9dA0NDQ2NKHpVoWtoaGhoSNCErqGhodEn6DlCZ4ydzxh7hDG2mTF2WYfHspUx9gBj7F7G2AbvvYWMsZsYY496/y9owzi+xhjbwxh7UHhPOQ7m4t+943c/Y+yZHRjbxxhj273jdi9j7GXCZx/xxvYIY+ylLRzXasbYLYyxhxhjGxlj7/Pe7+hxSxhXR48ZY2yAMXYnY+w+b1wf994/gjF2h7f9/2aMlbz3y97rzd7na9s8rm8wxh4Xjtep3vvtPv9Nxtg9jLGfea9be7w45z3zD4AJ4DEARwIoAbgPwAkdHM9WAIul9z4N4DLv78sA/HMbxnEOgGcCeDBtHABeBuAXcCeSfzaAOzowto8B+FvFsid4v2kZwBHeb222aFwrADzT+3sUwJ+87Xf0uCWMq6PHzNvvEe/vIoA7vONwDYCLvPe/BOAd3t/vBPAl7++LAPx3i45X3Li+AeC1iuXbff5/AMB3AfzMe93S49VrCv1MAJs551s45zUAVwO4sMNjknEhgG96f38TwKtbvUHO+a0ADmQcx4UA/ou7uB3AfMbYijaPLQ4XAriac17lnD8OYDPc37wV49rJOf+j9/ckgIcBrESHj1vCuOLQlmPm7feU97Lo/eMAXgjgB9778vGi4/gDAC9ijDV9Vu6EccWhbec/Y2wVgJcD+Kr3mqHFx6vXCH0lgKeE19uQfLK3GhzAjYyxuxljl3rvLeOc7/T+3gVgWWeGFjuObjmG7/Yeeb8m2FIdGZv3eHsaXHXXNcdNGhfQ4WPm2Qf3AtgD4Ca4TwOHOOeWYtv+uLzPxwEsase4OOd0vP6fd7w+yxgry+NSjLnZ+DcAHwbgeK8XocXHq9cIvdvwXM75MwFcAOBdjLFzxA+5+/zU8bzQbhmHgC8COArAqQB2Avj/OjUQxtgIgB8C+BvO+YT4WSePm2JcHT9mnHObc34qgFVwnwK6YqZteVyMsRMBfATu+M4AsBDA/2nnmBhjrwCwh3N+dzu322uEvh3AauH1Ku+9joBzvt37fw+AH8M9yXfTI5z3/54ODS9uHB0/hpzz3d5F6AD4CgKLoK1jY4wV4ZLmdzjnP/Le7vhxU42rW46ZN5ZDAG4BcBZcy6Kg2LY/Lu/zeQD2t2lc53vWFeecVwF8He0/Xs8B8CrG2Fa41vALAXwOLT5evUbodwFY50WKS3CDB9d2YiCMsWHG2Cj9DeAlAB70xvNWb7G3AvhJJ8aXMI5rAbzFi/Y/G8C4YDG0BZJn+Rq4x43GdpEX8T8CwDoAd7ZoDAzAfwJ4mHP+GeGjjh63uHF1+pgxxpYwxuZ7fw8COA+uv38LgNd6i8nHi47jawHc7D3xtGNcm4SbMoPrU4vHq+W/I+f8I5zzVZzztXB56mbO+ZvQ6uPVzIhuO/7BjVL/Ca5/93cdHMeRcLML7gOwkcYC1/f6FYBHAfwSwMI2jOV7cB/D63B9ubfFjQNudP9K7/g9AGB9B8b2LW/b93sn8gph+b/zxvYIgAtaOK7nwrVT7gdwr/fvZZ0+bgnj6ugxA3AygHu87T8I4HLhOrgTbjD2+wDK3vsD3uvN3udHtnlcN3vH60EA30aQCdPW89/b5vMRZLm09Hjp0n8NDQ2NPkGvWS4aGhoaGjHQhK6hoaHRJ9CErqGhodEn0ISuoaGh0SfQhK6hoaHRJ9CErqGhodEn0ISuoaGh0Sf4/wG2WSuQME7B4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Simulator/Simulator Tutorial.ipynb.txt b/_sources/notebooks/Simulator/Simulator Tutorial.ipynb.txt new file mode 100644 index 000000000..00fa37407 --- /dev/null +++ b/_sources/notebooks/Simulator/Simulator Tutorial.ipynb.txt @@ -0,0 +1,886 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of initializing and using the functionalities of simulator class. Various ways of simulating light curves that include 'power law distribution', 'user-defined responses', 'pre'defined responses' and 'impulse responses' are covered. The notebook also illustrates channel creation and ways to store and retrieve simulator objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, Powerspectrum\n", + "from stingray.simulator import simulator, models\n", + "from stingray.fourier import poisson_level" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a Simulator Object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has a simulator class which can be used to instantiate a simulator object and subsequently, perform simulations. Arguments can be passed in Simulator class to set the properties of simulated light curve. \n", + "\n", + "In this case, we instantiate a simulator object specifying the number of data points in the output light curve, the expected mean and binning interval." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=False)\n", + "sim_pois = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also import some sample data for later use." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "sample = sampledata.sample_data().counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are multiple way to simulate a light curve:\n", + "\n", + "1. Using `power-law` spectrum\n", + "2. Using user-defined model\n", + "3. Using pre-defined models (`lorenzian` etc)\n", + "4. Using `impulse response`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (i) Using power-law spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By passing a `beta` value as a function argument, the shape of power-law spectrum can be defined. Passing `beta` as 1 gives a flicker-noise distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5sElEQVR4nO2dd5gV1fnHv+82ll6XDi5dEBBwxQJKFRCMJb+YaIyxhsQSNSYaQKNGTULUqDFqDFGsaIyKDRBFSrAAsjTpvcPCgjRZYFn2/P64M7t3706fc2fO3Pt+noeHvXPnnnln5sw757znLSSEAMMwDBNdMsIWgGEYhvEHK3KGYZiIw4qcYRgm4rAiZxiGiTisyBmGYSJOVhgHbdKkicjPzw/j0AzDMJFl0aJF+4QQeYnbQ1Hk+fn5KCwsDOPQDMMwkYWIthptd2xaIaKJRLSXiFbEbXuciNYQ0bdE9D4RNZAgK8MwDOMCNzbyVwCMSNg2A0B3IURPAOsAjJUkF8MwDOMQx4pcCDEXwHcJ2z4TQpRpH+cDaC1RNoZhGMYBMr1WbgTwidmXRDSaiAqJqLC4uFjiYRmGYdIbKYqciO4DUAZgktk+QogJQogCIURBXl61RVeGYRjGI769VojoegCXABgiOAMXwzBM4PhS5EQ0AsC9AAYIIUrkiMQwDMO4wY374VsA5gHoQkQ7iOgmAM8CqAtgBhEtJaIXkiQnwzAeOXqiDNNXFIUtBpNEHI/IhRBXG2x+SaIsDMMkgbGTl+OjZbsw/a4LcHrzemGLwyQBzrXCMCnO9gMxq+fRE6dCloRJFqzIGYZhIg4rcoZhmIjDipxhGCbisCJnGIaJOKzIGSZirNx1CBx7x8TDipxhIsRnK4sw6pkvMXnxzrBFYRSCFTnDRIgNxd8DANbtPeL4Nzx4T31YkTNMhNCVMoHCFYRRClbkDBNByIceP3TsJPZ9f0KeMEzosCJnmDSj98OfoeDRzys+L91+EPljpuKlLzeHKBXjB1bkDBNB/BhWyhNs5pc/9xUA4JEpq3y0yoQJK3KGiRDsdsgYwYqcYSJExWKniyG5H3s6Ew1YkTNMBHHjtcKD+NSHFTnDRAhdJz87ewNmrdkTqiyMOrAiZ5iIUF4uMGvN3orPN75SGKI0jEqwImeYiDBpwVYs3X4wbDECQwiB+z9YjtW7D4ctivKwImeYiLDj4LGwRQiUosPH8cb8bbj+5W/CFkV5WJGHyN3/XYr8MVNDO/7Og8ew5/Dx0I7PuCPdwvIzNXebPYdPoDzR+Z2pguPiy4x8wspgd/JUOTrd90nF5y3jR4UiB+OOdHMjzMyoPOHjZadQK6dSXZ08VY6l2w/i7PxGYYimHI5H5EQ0kYj2EtGKuG2NiGgGEa3X/m+YHDHlsPPgMZz1yAxs2Xc0bFFCpYSL8KYM97yzzHHelMQXgerBRfGKPJHHpq/BlS/Mw7UvLQhQInVxY1p5BcCIhG1jAMwUQnQCMFP7rCwfLNmJ/UdL8Xbh9rBFYRgpvLNoB/4ybY3lPvoC6R8+WIEXv9hUsX3xtgNKK3OymIKs2xNL5/vF+n2G37/y1Wac8cD0pMilIo4VuRBiLoDvEjZfBuBV7e9XAVwuRywmWZSXC7w6b0vYYjAeMFNrTk0uK3cdxqNTV1d8/r9/zsOHS3f5FywE7M75oY9X4Whp+sw8/S52NhNC7Nb+LgLQzGxHIhpNRIVEVFhcXOzzsIxXpq8swpMz1oUtBuOBZNjIN+z9Xn6jAZBmywW2SPNaEbE5muk8TQgxQQhRIIQoyMvLk3VYxiXfnygLWwTGIyVpNMIEgG93HDT9zsrsko74VeR7iKgFAGj/77XZn2EYj7z81ZawRQiUjRGdLYSBX0X+EYDrtL+vA/Chz/aSysZi7hg8jmHiEeaTaCZCuHE/fAvAPABdiGgHEd0EYDyAi4hoPYCh2mdl0f22i4/E3LXyx0zFmPe+DVOkwOHHNvVQ2PHEF2w+cY4br5WrhRAthBDZQojWQoiXhBD7hRBDhBCdhBBDhRCJXi3K85+F4bgiquz2xUSL9xbvQGlZedhiSMerHj9+Mr3WEgAO0Q+Ndwp3hHJcHuOkJkeOn/T0O5XHE/F9NVFOq37c/6+zkyGO0qSlIldBmX210TiQgWGY6rh53ziNdE0l0lKRB8m6PUewM82y1jEMEyysyJPMsKfmot/4WdW2qzilXbT1AKZ8G81Iv6jyhw9WYNz7y0M7voLdsJI4I3nimtLMNezpHA8r8pD4aJl6CvP//vk1bn9zSdhipBWvz9+KNxdsC1sM5Sl49HMMfmJO2GIoS1oq8nT2amKXLiaKnCgrxyaPWUsnfrkZI56eK1kitUhLRR4V3lywDX/8eGXgx12y7QDue385u0imASrf4j98sMJ+Jwc8PGUV1hQdkdKWqqSlIg+i8w56Yo7v6j/j3l/uOyy77FQ5fvzCPHy1wbmXzE8mzMekBdtwIgV9k4Ok7FQ5np+zAcfSLEeKE7btL8GyNKo/mmwipciPHD+JW95Y5Nu96OuN+yVJZM5mF9NAu5Hvd0dLPcux7/tSfLPlO9z936U4VS6cjfAVHqUFQeGW71BS6j+52PtLduKx6Wvx9Exn2SY37D2CAz7utReKDoXjUXXh47Nx2XNfhXLsVCRSivydwh34ZEURnp21wVc7J0+FN9I8fPwkPlhStcSb3Qzh/SX+S8LtOXwCCzbtx5Hj9gqqVLs+6WhOLzp0HD96YR7uedd/6obtB2JK0umIfOiTc3HRU3JtuXa1LlclVKi/9NkvpR6fCYZIKXJZ7D0SXsDAve98i7veXhrKsd3Wr023Yr8AcFQbia/eddh0n5+9uABTv91t+r3OMzPXAwAyXLwRvc42E29taVk58sdMxchnvrD83dGEsn/f7jjk6fiqcrCkcoZTUlqGWWv2hChN8khLRQ5Y5zpOJrsNqtarYMk4VFI9xDsdR+RO1k++3LAPt7252HGbbhS5V95fvLNKnz6q5Z23W+RTKVjt0LGTmC3ZP3zok5UznDHvLceNrxTaFtM4cLQUp9yOekImbRX5jFWp+WZOxKkOGTM5vbJA2iJR91rUEDbksIe8KX+athqXPltpc5b17jhwtBRrA/L4uHXSItzwykKpIfbxbW3ZH1u3OmpRXOXoiTL0fmQGHg7BW8wPkVLkMgc2ekpbI1btOowPl/q3SxtiMOQLys3vz9NWm37nZ0GVsSbDpSZ/QJLbnVduemUhXp+/FQBw6XNfYnhAPtibimOKNkxvKV3JT1tRFJoMXoiUIteRofisppQjn/kCd/5nqe9jOGWFhT0WkKfoExe2dE6UnTI076jsY5w8rE+62MP6yh4Dc5oVh455y2Qoi5lr9lb4cG//LjjTi/66CzN+IapdPlKKXL/Ra/ccwSat2s/mfUfR5f5PsHW/t6gvFbj8ua9Czdi2YmdqLXAlk9fnbXH9m9UmL1AzZCiTKC5U61HHdnr8+Tn+vNasuOL5mHnKyws7TCKlyHXmb/oOg//2PwDA5MU7cKKsHB8utc5donqUYqKL2qNTVvlqTwiBmav3+Fq0OXTsJPLHTMXHCuaFCQsvKQ6yMtw9Zn66qp27YSrw2PS1SWu7baNaSWs7mURSkcfjtNPvOuRueuuV8nKBMg9+6onn8eKXm33JMW15EW56tRAT5m5ytL+RXVIPakqUZd2eIymvMDYVH8UZD0yvtj3T7colgCt6t3K1v58re8Fjs9HjoU/x+vwtPloJh3T0kpJFpBR5FBI+3fX2UnS875OwxUCRZpd95estjvZ3Gi69evdhDHtqLv7hMyhLVU6eqlSjRw0CeTzocWRluvuR2eyxT9sGtr/97mgpjhwvwxOfOYsmVZFkTZ7d+si7XdsIk0gpcj8E9QqwTU/r4GWkSm4Oo0W33VpI95LtB4IWJxDsTFFOBxPxgShOfvHfQvvasT1bN7Dd51iE61Xql1a4nJNYuRO6Jf4lsnV/ibR2k40URU5EvyGilUS0gojeIqJcGe0msqbI3aKRSrhRzkdOhOu1oPOL1wqrbdMX0ZyOmspOlePZWeuVeTn5xUlwz7HSU1UCcZy4H85cXRnXsPew8ULbspCC2Mz4Yn0x8sdMleZo4LZv6Ux0aYZcuMVZjXgvs6+w8K3IiagVgDsAFAghugPIBHCV33aNeOsb7xXvw7bK3Pue84CbICIB4ylxo2Rdivbfwh144rN1+Mes9e5+mATeXLAN8zdZJ0wrt9EimQ6emOte/gZXTZhf8dnskp0oq7zu8Yddu8c4AGfJtoP2B08SRuYePRZj0VY5s7PKEbk5urdaPKdcav5Hp5rHUxjJEwVkmVayANQkoiwAtQAE7uaQjGsuM1x4pY2LX/x0MlGRJ3tt4NqXvrH83s/Rj2tTfVcviyQx7v3luGrCfGwq/h7bTKbNdm57T86wtz1/szlhxGdy/87980zbtnTe+ibcKkLTllcPkFkqOQ2tEz/yfd9XD1xLnqtldDS5b0UuhNgJ4AkA2wDsBnBICPGZ33a98NSMdcgfM9XQzunlZt/wykJ5ORccHP6DJTuRP2ZqhfJTkcOa3TxqPitD/zan4u/Bf/sfLnx8tqd2jp9075FkdusPGOS3MWPs5PDqegLA/qPVzT26V5PfccaWfUcxc/UeR9HFMsc0K3cdsnxppNWInIgaArgMQDsALQHUJqKfGew3mogKiaiwuLjY72EBVA9k0QMFXvpyEzbslZMfQta9tGuHQBXZ8nYnuEp6CU6Q6TcfP/LSI14j1McBAP075flu45Pl9hkPjYiSQjBD5imUJri6DnxiDm56tRCHtRTLQQwSZqzag1HPfIn3LFJ1eKGktAzrTUxjyUSGaWUogM1CiGIhxEkAkwGcn7iTEGKCEKJACFGQl+f/oQKAS/5RNXeyrrv+PG1Nte+8PkyyOpWdeaTqSn3Vo77wv42SpJCP3SKmKiN3O9u4jpXHxC2TrDMeCmFcuMPJmocq18kUiW+jR2yC3azGIDsOyPEk2ajZ2hOVbvxpejnj0a8twkVPzQ08e6IMRb4NwLlEVIti2moIAGerCRKIf/DiL13iFFj1QdE7hTs8F5fdVPw98sdMxacrizBz9R7c8dYSydIZ8/GyXej6wHTXIehhEETNxi37SwxL8+U4WCGdu07OLDVZyHx+nHqNGPH5qurrVvHKd9z7zkxQZi8LvxPZrzc6L6kokyy/DQghFhDRuwAWAygDsATABL/tOuW52bHR6tHSU9bmBIc9MXHaFxTPzq4MsFm3xzpfciJ6oMO05bsrUhX0bF1fnnAm6IvBK3cdRtcW9ZJ+vCBIRjCKkybTqT6q/TV29xzHb3pzgctFYQu9EKWc5FK8VoQQDwohThdCdBdCXCuECDzjzKFj5gsldjckf8zUikCXfuNnVflOlq15w97vMc2hjfVVh9GYTCVz18V8mot8pmKwcz9MZMeBEtz99tLQBgBBYWVZke01YnULZLnmOgk6cqvIN+87WlGFK+jcTikV2Zl46Ub+/QsIIdBh3DT0/ZO1q5c+tc12GU7thlsnLU7KkM9tJFwq8oaWP3vp9oM44qEwg47bK3nf+ysweclOfLVxn6k6M92uuL0vPtXzip2HpeWs99NfZV0y/TG0egm5lXLQE3M8y+OXFFLk1W/Iqt2HKwoJO8Xtzes3fhZGPD3XdgFH51sHKWPdjgr/4yNQSgZOHq6glNaaosPo8dBn1Qpch8kzJsFQiutxrItbCHzrm22+CzMfLCmtkrrADKveL6sfPf5pLINioiNBFZcDH+OjoPNCpZAiN77wX6zzt/hgdy93HjyGNUVH8JLDMGEnncNtB1qQGIASACWlZUrNA3RZ9IXX/3lcPHR77eN3LzOZipvl7Ag6gtctidLtOGBcZMLpafR6eAZ6PTzDdj+3S12yLuPKXYeqB3N5hE0rknE7uvVz/f1M6eMxUwhuSHY/iq++roI+0muw6lPl+PB3N9Sukelq/3hvk3cX7XD1W6v7/K//baxwkYsKPR78FDe/utB2P7u+6db08sRn6/Cah4IflfLEjnf9y1Vlj5LJMmUUuSxlUuQjdeXIZ76QIsNmj26I8SQGFckmI8PdqGPZ9oPSgrSs0AsXG4WUO6F2jndHrmOl8rLw/eWTNfjxC/OkteeF711mFTxyogyfr7ZPa2HXa4QAOt03zfA7s1mM03TNRsSnLo5n+3dplv1QBY6bBKaM8Rna7GZkG2R9QzsmfuWvMIUd8YtETl6ii7cdxNAnk1/E9+uN1QN/xk52nrDMzf1ekBBkJNsuul9bXJQVBOOW299MTjzCbot6uQBw8d+/MFWuZgsLfmagZeXG62i/f285Vu6KRhnElFHkk00Wt7g6fHJwqrNUKLHnJmummxnZU59XJtAi2F+Tm15ZiKc/d1/w4Qf/8LfIqBpGBTucYuZl4taEGs/JMvPfLtjkzWYedK9PGUXuF7MOEiU7WdCm6uhcGWOmr9iNL9ZXXRT98zTnQcnzEx5yu8XLmWv24unP3aXzveL5r1wl10p1zC6xjPGCUdPHy05FIpc+K3KXCCHw2rwthtVzwiC+OkqQipWAiihSK1/cIB6CEo+26V+9sbhaCl+ja1h2qhzjP1lj255VIQInFYCMCDMHuVMWS8pH7oRk+ORbDdYem74WXQ1qt9rx8bJdyB8zNbBiOKzIdRx0hAc/XIGeD32GBz5ciXEhpxXViZ9SBpnzZOdBZyaIkx4KUbvljAc/TWr7n6wocpS4zGpEfu+7zu30UePVeVvDFsGXaSUZ3P3fZQCAW9+wTrQmC1bkNsT3j1fnbcURbQR8wEFgQxDEL7C5zdHih3gFbbUgFMTMReozbNCY41BtBdwww+KwgevtjgMlFRG3sjB7V27/7hj6/3WW8Zc2yOg/Ya8FsSLXcPsMBn3f9n1vnL5GBd3x7y82Y9aaPSgpLcPnq/ZU+S5xtBalRESMc4wKX1zz4gLc/8EKqS9zq1mPWcCSDOxyjL+90Nh0FlRvZ0UeEdaapGENKzowsVr7ln0lGDd5OW5+rdBUVgCGIdq3vLEIc9bKK6un8+FSZ2H6dsFDKgQ8qc4uA5fCCo8xidosGQMBvcW9FgVcLnrK2nV2+krzuIUbX1mItxcmt1QfK3KNoHMjuEU16RKz/REBW7UACreBJJ+sKKoWVScDpznIF289iIMlpfh64z5PpdwA9/3H6wKtqlhdtz1HjjuqdeqEZJjq9n1/okpeGZnsPXwcs9bsxe/fS+6amu985KnEfQ6T0gMhuCWqpsk9knjVkmlbdNo0EXDdywuxTHIxYSt6PBRKWdukUZ4wUp65eg+OaKXbhtmMZt2QjBG5X/nu/2A55qw1zu0T7zO/fs8REBE6Nq3j63hGsCKPY5JBUnpVFsP/9tk6HBt4CkO6NquyXU0/d4Ht35XgdYOFLlWuZzwEa48fJ7bX6yZ+Y7tPPKm2VpDYD10XeIgAx0pPoWZO9Vw8b8x3dq66eWbL+FFS5QLYtFKB6gPeRVsP4KZXC6ts23XwGFbsDMblcMm2A/h6g/NMkrdOWowJczfZ7qeCYs+wcgBHZcpTBpi9dq/h2oPX95LbOIMwu8s3PkrUJRsekWt8/O2usEVwxZJtB3DF818Hdjy7YyWqQjP/cTcziJOnynGqXCA3211GQrfHotjOjANu0NYyLj2zpeV+TpcM3AbbhOnmZ3RKBxRJAcIjcg0zG5dqpgs9X/L6AH3GneJlVmN1dX/4/Nc4/Q/uo+rcQqTefVadxPQEiQp2rs86ACpi5CF2wWOzQ5CkOqzII8bjn8ZCxSOreFyIvdxBNSU5kBImniiR6D2ysbhq6mW3lbmcsklCimevEAGLtx3A9BWVtXfdemglC1bkHgn7BqqmeHbapCY1YvO+o45C+PfEZSScvWYvXnGYovdf/7O30QPeZE93zFK/JhuzaktBQIjNEn8VUNi9G6QociJqQETvEtEaIlpNROfJaFcFzBRmUIuMZiimx/HvL6oq1w17jU0/uty7Dx3DoCfmYICDqWl8+a0bXlmIhz52Vh/VKWuLDptez7BDrxnGCbIWO/8OYLoQ4kdElAOglqR2lUAIgcURyEKnEmZlzHS9qBfhqF8rG3ssIur8snW/v6n4HI+1P5nU5lDJSbyzKNyi5/H4VuREVB/AhQCuBwAhRCkANZZyJXD4+EkMemKOYfhumKO1qA8Ufz5xgel3W/cfRXZm5WTRz6lahV3rEMj0XhYn8SUTZUpOqJ+jWzbxRUfOfFitgC4ZI/J2AIoBvExEZwJYBOBOIUSVoRARjQYwGgDatm0r4bDBMOypuRURaomEqUyjutipy62HdBtdwwGPz6ny+Y63lqDo0DGMvrCD6+Nd6aDuZQaZvyyiUFQgDKLa//zwlIfqTkEhw0aeBaAPgH8KIXoDOApgTOJOQogJQogCIURBXl6ehMMGg5kSB8KxU+tFHFQekVvJ9siUVeh83yeV+zps88/T7As7+MFM5gc/WpnU40aVRMtZTmbq+02EtL7rCBlXfweAHUIIfa78LmKKPeXZWBy8L/c3W76DENEdD01bXmTomqZ4zjKpbA7RhU4WiS+++Ht6xCA3OZNcfCtyIUQRgO1E1EXbNASAXLcCRZGZDMgNG4u/V3tIHjGCznw56Ik5vn7/8e395QjiA6uhRKolBNNR2YNJltfKrwFM0jxWNgG4QVK7jAHFR0ojOyJXkajNBnq0rh+2CGk5jth1yFl5wzCQosiFEEsBFMhoi7Hn6n/Px+gL24ctRjW8uGgmjnLCGPUcVSQ6L0qoPDpNR1J/hSJFSdVoRLdZ9LZIsDcnBjMx9rAaVwtW5FGFnyQAwK/eWBS2CGkJD8jVghV5RFmy7UDYIkhBVwhU8dmdhmCFEg7bvgsv5wlTHc5HHlFUXnhxg57NTjepODWt/PL1Qnx/oixyC5WpwktfsjlKJViRM0oRnyDLik9X7gEAnN68bjLFYZhIwKYVRilOqhw+pxCNa+eELQKjEKzIGaVIrMbOGHNZr1a+fv/Bbf0kScKoACtyRims9Pjew9XXBYKOylQFv0kaerVpIEcQRglYkTPK8POJ31h6rfT988wApVEbt946mRnp+cJLFyKlyLkvpjZz1xW7DghKV2pku3t0rz33tIq/n78mLXLapRWRUuS1a6jjZNOuSe2wRfDNA5d0C1uEarj1I0/Xd3vN7EzH+w7t2qzK55E9WsgWhwmZSClylR7aOgq9VLzSskHNKp9/P+L0kCSpZNz7y13tn6Ymclczl9+P6GK/ExMYx0/KL1YSLUWerk9tkhh+RtWRWpYCtiuVZl0qkle3RuwPlzOX5vVzAaTvi08l5m3aL73NSClyRi6JL0YVHvIdB1IzGZgsdP09onvMPNK2kX2dc6LKGeTVfaNTZpFxTqQUuQqKRkdGjZ47BneUIIk8ojjjiaDIUujWsh62jB/Fka0m5De2f8GlEtFS5GELEIeMZE29T2vov5E0Z/XuI2GLEDBVO56zF1nlTlFLMlbXo6ntpevPliyJ2kRKkauEjAdCpReTTILUFafYXzGlqVgTcEnDWgqnMEhCl42UIo/a1P9PV3T3/NvbB3XE12MGS5TGHllrnVEb9UWJJ648U1pbCqxt22Lm5munChqlWS6aaClyCW3kZMk5ZSe6imwkrpubbfpdw9o5aOpxNGLE8oeG2e4j67kuZ02eFG4b1AEDuzR1/TsiY8W3/KHhEqQKh6UP2PfndCJSilwGQQ5CerSyLpJbv6a5/U92TUSrl4aOrBkPK/JoEBVXzy/uHVTN26Z+Tfv+nE5ESpGrZFpxomjtqp13bGrucSCEPFPamIuDDfRhPZ4c7GZ45r8DzmgZ64vnd2gsUaJgaNOoFprVkzc7DZsTZfJTNUtT5ESUSURLiGiKrDaTQVR0TLkQ0mYPI85o7mg/We/JVFfkXhfgwqRXmwZY9sAw/ODMlqb7jL6wfYASpS9Fh+THSsgckd8JYLXE9qohQ9HIUo5riuS4vZ1l4oIoAGRlBjthknVtZPjYq4zTtQunL1A/6KN0q7S0WRmxflS/VnVzxL+uPQsttKjPM1rWky+gTxSahEsjGZYFKZqCiFoDGAXgRRntmR4nmY0rRp+2MQV/z/Dg8mTMd1hmzY7X5m2V0k7UeeHas5J+DP2l+UuL0XRbi+CY4Wc0R+dm6gcVpdIsLxkvJ1lDvqcB3AvA1PhDRKOJqJCICouLiz0dpFaO84xvUadvu0YA5Cx6Om2hVJLtbsaqPVLaYRidFNLjSRmQ+lbkRHQJgL1CiEVW+wkhJgghCoQQBXl5eZ6O9eJ1cqO1/v3zAqntRZ0o+BUzVfG6AFqlDa0JpUe9Sgvnjlo58r2FZIzI+wG4lIi2APgPgMFE9IaEdqvRumFN+51sGNqtmf1OKYbTUX1GKhokU5wGmt07NzsTNTzGSERBR0ZARMe4LQriBN+vBiHEWABjAYCIBgL4nRDiZ37bNUKGnqkRt4AYptqafOv5AOT7izth0s3noEmd6gt2rMidEZbiM7o991/SDZ2b1cXALnloVDsHuw9Vr2uaCnBsgjWR8iNPJfTFTDuXLxn9N7GJfh2boItB1jzW49GjTo0s3Ni/nS9PiArTisLj3lTS48k4F6mKXAgxRwhxicw24/FqD6yXWznxiL+GKiius/MbhXr8+EpHXKDXGQdKSsMWIe0w0n23DeoQuByqkhYj8tYNo5ubOMiBCKtxZ3z5+8FKFmgoS8lMkLFeWW5wbvcMD780oSpESpF7HUHXzY1GTolk0d6iUHS8jZ5t5M7IzCC01IJoVMIoW2b/jk0c/z5I88UtA92NplPxFSWTaClyj79rkBDR1rJ+Lu4b2TUQ08rZ+f6KR0jJe+7wRFXKZaM6KiqW7MwMzBs7GIX3D63Y9sbN54QokX9G9YxFx4bhFBAlIqXIZTCsWzN8PXYIfhFQXomJ15+t9IwgXnm3aeTfvZNxz9IHLnK0n5PXbIv6NdGkTg20a1Ibdw3t5E+wkNnwp4txRe/WAICUtBpJRF0NY4CMEePFPVpUtheAVbhubjbq18zGkeNlnn6f7EFy/EinVQNW5GHQIAnVbGb/bqDjffUuFqRpzckAOz7XkN8B+dCuzVB0+BhW7DzsryEJJOOdlHYjcqf87Fx5i1lz7xmEBeOGePqtzBnl+B/2wMe396+y7Yo+rSr+JiIMPr0pHrnsDHkHTVH6dZSbDvaac8JbPNW7WD2L/Phh49eP/MXrCjDl1xdIkkY9WJGbIHO0npFBaFYv/MWxq/q2rZYj/Y+XVi1HN/H6s3HtefkBShVNzjpNrtuo28U/Jrokw94fKUXu1c3Z9LpFYG0v2UEa7DtujJWnT2gkyfQRRg9w2695sdOaSClyIgrMf1cVB47TmzvLEf3ur85LsiTRp+C0hnjm6t62+718w9mY5cLGLANV9NSCcUOC6fsm59upaR3D7bzYaU2kFDkgN0Of3lT3Vv4T6o/q2SIpL5kR3Z0VJzAKuXdL/KX9xQXtHP3m/lFdfR83KBrXycGlFhVydAZZFDiWbRu34kdnta7y+WKHfcErQgDN6uWicQAV6M308vS7LjTc7sfzKytOaTSpU6PKZzOeuPJMz8cLg8gp8mTQqHb1BFJu3xfDujVDfPesF7DLoWwf8KFdnWWJdPqiUQmzqkxOGNXD/kUgi9pa/v2HftANW8aPQtcW6lXw8YqZqcTM1JdtUi3LymX2lwPa48Z+7bD0wWEV2+aPHYzVj4ywla/ARx8Jg8gpci/6ym5W5tf+dumZLTE8oayXkym8ani5tlEKItJv82mNopGy4RJt9tDPRXSmH/RbGYhlxeUjF/+M/i1utFynRvXydTpjL+6KB37QrUo+oazMDNOXQpXjuRMvdCKnyO34+XmnVdtmpqitlJDZd0Yj7Weu7o3c7MyKzvnnK3pgoMX0PBnIePjiE3hFSUEn8qcrutvv5JEgMwSend8IW8aPQqeASrHp/ffrsUPwwW39MH+sN5dZR8fysX+8mSWKi6DKZz8MglM21cg65FVfLDmVBislfoI59BFLm7iRaoT1uL0d3Me5JUtvNK1XAw0NiiMHQeJLOzszA73aNEDzJOaTcT8id77vLwfIjdr+Ye9W9juFTOQU+U89LCh6yQqXzE4cT91c+4f33Pb2Pss1fdQz/eTOC/DPa/p4/j3jnxpZmVjywDD7HZNAGKNatzObQafHZrjN6+Xiws7WpSKduI5aDVTa59VGi/qxRd8J156FM9s0cCOqLcmY1UVOkfdoXR9bxo8y/d7I42BT8VHDfa0GZjf3d+a1EY/+PLgZzeY4KM/lNDgpg4C+ceaRYQ7L2rVpVKtK6gI3RGngLuPxcdrGb4Z2BmBs6ounUQAeIn6YN7Z6RkUZuH13nHVaQ2wZPwrzxw1BbnbloMWonZOn7Bu36rcZRMjNzsSiP1yEYWdEYzE/corcjraNa+H68/MrPs/67QDMvXeQ5W+MOkOWgwUR2Xx4Wz9fv9/0l1H4b5w/+YSfF1i+9KzoaGCiMqKFw5mL3Sgq1ejdtgEAe7fQJnXCV+RW6yEt6qudf6dFg+r977NVe3y16dT11itsI/dA+7w6gUUv6lMmu6NFwf7c0OFI0XGKXD/CuMRMJrfue0YL205fcE7vsR9XyCgjy5zz95/0xqieLTD9rso8KqfKbRbSYN1vf3K2ekVD7Eh5RS6bSxwElNg9xBHQ4ynJee1jwTxe8+g8cnl3nNfBWUCQ02OMuVidgCoz3XplQmCSlGNJaqd+rWw899M+VSKga2R5Xy+KKmmtyL0Unb28l/kKttNBhlvXvrBH8Oe0858gKshzyDVZd6jwk/YoS35j5/7nicfIq1s96AwIPnDMC48nIcox/ln5peTaADsPlNjuE+QjdWO/5JpqgAgr8nuGdzH9zmja9soNZ7vK0ZxMzDpR2ArbDCcLsiphtr4RpHNG4r0c2rX6IvygLnmR9tf3Q/zgadgZzhblnfLpbwbY7hPkZW9cJ6dKmmIlbeRE1IaIZhPRKiJaSUR3yhDMjm4t3dk7B3ZpinaKZLRz6/Md1rM+7Y4LMPt3A33nggaqBhtFBT9nfU47bzlZflwg34xhh5PuJXuxOr5LyU4JLBv9+bvmnLZ47ca+ntrIb5xc3SNjqFUG4LdCiG4AzgVwGxF1k9CuJee1b2zauZw+gLIrBOnHtWs3UTH3aFXfeMeQ6dayHto1qS0lv4jT3C3JxOlidCK6Z47T99lXYwYbLLA7dSFVc4ReK9vY7pyd6U3esEP0vDz7GUSe7k/iT5SsECSE2C2EWKz9fQTAagBJD4XKzc70/HZMRNZUZ/HWAwCAzjYuZ9VvbNjd2pqr+7bBnUOiXf8xniwT5fPhbf0w8fqCatvdPrrGJfPUvce1tMhes+tiRXweEzf0at3A0++k4eJU9YXUrzfu83y4jCR7zkldaSGifAC9ASww+G40gNEA0LZtct17nJoCZA9+Zv52APYeOWFaDahLs7pYu+cI2jQ0XjQLooaoF4gI9Wr6Cx+vaTKiCxL9+t41tDOWbT+EN24+B30emVHxvVkEX6rbsR+9rDu6NKuDCzu5N594de1NrFR138iuvqKT3ZLp4p72bdcIX48ZjJYNauLL9d6U+TXntMUjU1YBULxCEBHVAfAegLuEENUqnAohJgghCoQQBXl58uxtb9x0TrVtYaVWIbIu6XaTFmiQ2Ilt21VUwbuhrQuPj0RkBc3oM59m9XIx7c4L7KMqpfYjde9h/VrZuH1wJ8tRo5necxuZero2W03UZb+4sD1+dq51FKxMarucSbT0WZg8N8kDGSmKnIiyEVPik4QQk2W06ZT+nSpTfI7sEQundfvGc7O7n8HZwC55qJ2TWc0dqXWDmJKrmWN8O5I9LXNC0BLo9xJITpV5nYcdFJrO0G6LusaR5GPW73Wzw19+2APjf9jDcXthmxPf/uW5uHeEuedbMlHSRk6xeedLAFYLIZ70L5J3WmrhxA4CuwBUKicBgWUPDktq2k4AaFo3FysfHoHuCYubj1/ZE89f0wcdmxrb1h/7v55JlUt1ajmYco/q6S1XTI6DVAyyZkS9HCRfUjWVgd01qJmdiascJLTTFwvDzj7bIa8Obh3YUWqbZuOtIGbUMkbk/QBcC2AwES3V/o2U0K5r9L6h28jdpAWtXzM7sIyHidTNzcZIi6RVzevnYtXDwzHHxA8+cbT03E/7SE/lGTTxnd948bAqz/00edkbm9WLBfMkvlAmXl9QJTTcDifrDMl2U5ONVVDd6zdVd0ZI1eWG317UGWseubjis12yNNn4XuwUQnwJxQyAuo183Eh1wp/9UisnC/lNnN2uUT1beB6hMpXoqunhy7pj+Y5D1cp/DT5dvkulqorOSyzBBRaLp2GPyL2S+MIyS0r38GXdcW77xrh10mIM0GZZ/7ymD26ZtDgpFZ+iFbLnEN1Gbufz2bhObKTVrYWaftx2/OzcaCT3saqraErcrUu8jfH2c78MceDfXqdGFn58dpuU916xIl8Lpnv6J718tVNhWkmDFYeRPVpgy/hRFcGLF2ufncww3aJ+ogcX6I+ZPnrIsHlNdWleF5NvPV+pgJzc7AwcP+nMyB+V5EBN63owWcU954mjt1o5Hrutge6wMr/pA4I01t8V3H1RZ5zfoTEu6JSHu95e6rmdClOMhR6/Y0gnnLQrBRYSqnqQpdSIXO8benHVLDtNDqBP24aOirEGxdx7BmHKr/uHLYYr5t4zCM9LrjB08Fhpxd+J4f1z1u6Vdhwno2w/I/GLujZDw1rZVXLkW+E1wCbZZGdmWJpKErGzEQvEkpCNG3l6te/uvqgzfj+i+vYguMhhMRbVUEeDSeT+Ud3wqwEdcHH3aFT3iKdpvdxqXi1mZDgY3cjm+vPz0aRO1Ux+bRvXQuuG5tNFL96TX23YX/H3JWdWtfe7USjxWF0mI11dmXLBO03r5WLJA8PQpXldR+3E102NAmbn1L1lrA8nXleq8FoRmHPPIIy+sINUefw+83Zl4lQ1Can5+vdJ/VrZGHNxct7oKk2spny7G0DwozgjpWcVhCV7OtrYJAjlX9eehdpezS4WuBmQW7201FQBycFM4VW6/MrHazUsmbx+U1+UlJ4K/LgpqcjThSt6t0LDWjkY2CVY3+Pm9XJRfORElW0lpWWe2+veqh5W7KwWDAwg5haaiFlk7HCb+opeXydOX0SzfzdQSg3OKb/ujx0HjvluJ1k0r5eLosPHHe1LMFbaqnqt2Ill1xe8zhb9kpKmFVl0alq9rJfb9LmyiV+cE4iFNndqZp2kSzYvGSSWssxdYaMH6+WaLzjmZGU4Ctpxglfd4XRE3qROjuGLp+L4DrVX91b1MUJhs6BRUrjEUzM71coZi6KaPKKkhCK/2kFEmRcS3641szO9e0xIYskDw0I9PhDzQvnDJd3w3i2VhZ6N0ggM0xeObJ7ZFTsPmX4nRPUQ/aBGPboycjqSt1sUTfTF/u2wcELEg6BifSHhmpAikZ1m2L1sVbWRp4Qi75AXTDQcu6FVclP/dlUKAhjZhm/s76zElVnWQTNkmC90HN1SSfd9QEL4vdNFbdVwcjkS9eHndw+oEn2rpjp0/oJpWT8XU+9Qx7ssJRR5UKg6ilAD76YVo1wqunK/sX++d5ESaOvRI8TOLuq0FN4vLmiPhfcN9SSDioz/YQ/HrpmnNa6FUT1bVKQzVnVM5PQRb5dXG2e0VOdFnFKLnbIVrarTKB2VXizLth+sts2pfEYeL3+6vDua1q2BphZpgd3wn9HnGrr2ORHRTldNu+MCfLqyyNZ7iIhMizBHCf16NK1nfi5mz86TPz4Tr83bij5tGxp+z3iDR+QWqKQow+by3q3Qs3V93HyBsbnEbY71eMoNNHkGkWMl7qRohV3NUCNd7bQ0XMemdXDbILmZ9FSmcu2Aqm1L5Omf9ELnZnWQpdnemtbLxe+Gd1EiNbMRTp951SI8U2pELsuGfVmvWI3KxIWPhy5NeilSZWlUOwcf3W5uEzQKdXd6P4wSMrmZDTmpLOOna6RzjhUjKlNgmF8X/Zb+4MyW+MGZ/mu+BoXqs3AzeESewLcPDcPfrjwTQOW0+5aBHbBg3BD85OyYd0zh/eHaOW8bJDcaLlk4Hd1c1K26q12L+vITC3klGWq8o4Fra1Rw4s0TTXXovM+qpvBTSpHLMIXUy81Glua3rI88WtbPrVLCzU29v2Sgl6lSrTOZYXe1ru7bBiv/OLzKNjeeKX5m6RkUM8388VLzSkGyb/ec3w3E5FvPl9togFSMyMncwNAl4NgGr0Qlg6gdKWVakU2F6baaL2zwskQZ22g5Itc1FBNa8P5LIqx+ZIThd0a2YBnk2+TzUB39uli9QPu2s16TUIUGNb25sqpmI0+pEblszKaQ9XKz0T8JyeGjTJgLw0Yv1p8UtPHdbsV7nJ+SKpS7jZSKEMmocB8E3EUtMS5QkZFBeOPmc8IQCIB6owE73ErbuZk7+7GRWaRD06qjXj+zqGhd7eSjq7r450Lf9tHt/fDo5d0Dl8krieZJp2pcNbMmm1Ys0Is4K+oppfyKkllnn/Lr/sjKJNTIyjS8the6DME3qncqc2DFXisJWAzIe7ZugJ6tGwQpDQNW5JYM7toUbxduV65jRl2vBBGa3j5PgldI6loQfFHhXx/1jojqs9thBh5UTn4XNlIUORGNAPB3AJkAXhRCjJfRbtgMP6M51j16sWkI9sTrC9AyCfX3UoUwO/s57eUttqWAvpKK7gRAhJR6y6mQz9wrvhU5EWUCeA7ARQB2AFhIRB8JIVb5bdsp9bTUoVb1F71ilUcjGVXU3aC4ZcWzHfE6h2XRrJCpX1QbfYVNZXFz4NaBHbFs+0EMOb1pyFKlNzJG5H0BbBBCbAIAIvoPgMsABKbIf9SnNU6eKseVZ/n3VGDk43ZEK7PcWXYmYcG4ob7MADwir8rVfdti8baDOK1xbTSpUwMzfzswbJECo7PmH39lQeuQJamKDEXeCsD2uM87AATq0pGRQbjmHOtir0xysRp7h+nRlZWR4TntrWqeCapwZUEbXCnBvTOKNKuXq6QJJjD3QyIaTUSFRFRYXFwc1GFTEh4gBguPyBnVkaHIdwKIfz231rZVQQgxQQhRIIQoyMsLp65dqqFy8MKKPw5Hcy2twY4DJdLbz8601q4yPSrYRp66pMpLWoYiXwigExG1I6IcAFcB+EhCu0yEqVMjC+3z6mD27wZi7r2Dpbe/+mHjsPpEUuVBZRgrfNvIhRBlRHQ7gE8Rcz+cKIRY6VsyJiVoJymvSI2sDJwoK6/4nCWpILMVCk94GEmkyj2W8jQIIaYJIToLIToIIf4ko03GHBVHmcl+IKbfdaGr/WVcor/8sAea1q1RURSBST1UfJa8wJGdESZVRhNO8Dqy93ON0tk7I11oXl9OKcGw4aRZEUT1xbd+HRuHLULKjLSY5HJBx5jjRauIR2jziDyCXNW3DZbtOIhbFawTmZOVgX//vCBsMSpgX3DGCRkRH9KyIo8gdXOz8exP+4QthiGnNaqFWjnG3WrMxaeje8vkJ8wC1J+1MGqQKi96VuRMYPxqQDRqjTLpR9Rf/BGfUDCqoZptOp0WhBnvRH1kzoqckYJqD0Km5jLYOSJFgJlwiPpIXIdNK0xkGNq1Kb7csM/RvjlZGZh08zno1qJekqViooxqAxCvsCJnIsOL153tav9+XCCbcUjUR+asyBmp+HkgZv12AA6UlEqUhmHSA1bkjDJIqbPJMC6oUyOmAgtOaxiyJP5gRc5IQY+M+9XA9iFLwjDOaVynBj6960Kc1lheVaowYEXOSKFubraSlVMYxo4uzaPv2cTuhwzDMBGHFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYfdDJrL8/apeaNMo2v6/DCMDVuRMZLmsV6uwRWAYJfBlWiGix4loDRF9S0TvE1EDSXIxDMMwDvFrI58BoLsQoieAdQDG+heJYRiGcYMvRS6E+EwIUaZ9nA+gtX+RGIZhGDfI9Fq5EcAnZl8S0WgiKiSiwuLiYomHZRiGSW9sFzuJ6HMAzQ2+uk8I8aG2z30AygBMMmtHCDEBwAQAKCgoSI2yHAzDMApgq8iFEEOtviei6wFcAmCIEFzqlmEYJmh8uR8S0QgA9wIYIIQokSMSwzAM4wa/NvJnAdQFMIOIlhLRCxJkYhiGYVxAYVhDiKgYwFaPP28CwFkpdXXhcwifqMsP8DmoQNDynyaEyEvcGIoi9wMRFQohCsKWww98DuETdfkBPgcVUEV+TprFMAwTcViRMwzDRJwoKvIJYQsgAT6H8Im6/ACfgwooIX/kbOQMwzBMVaI4ImcYhmHiYEXOMAwTcSKlyIloBBGtJaINRDQmbHmMIKI2RDSbiFYR0UoiulPb3oiIZhDReu3/htp2IqJntHP6loj6hHsGlRBRJhEtIaIp2ud2RLRAk/VtIsrRttfQPm/Qvs8PVXANImpARO9qOfNXE9F5UboPRPQbrQ+tIKK3iChX9XtARBOJaC8RrYjb5vqaE9F12v7rieg6Bc7BtPYCEY3VzmEtEQ2P2x6cvhJCROIfgEwAGwG0B5ADYBmAbmHLZSBnCwB9tL/rIpanvRuAxwCM0baPAfBX7e+RiGWNJADnAlgQ9jnEncvdAN4EMEX7/F8AV2l/vwDgFu3vWwG8oP19FYC3w5Zdk+VVADdrf+cAaBCV+wCgFYDNAGrGXfvrVb8HAC4E0AfAirhtrq45gEYANmn/N9T+bhjyOQwDkKX9/de4c+im6aIaANppOiozaH0VWkf1cHHPA/Bp3OexAMaGLZcDuT8EcBGAtQBaaNtaAFir/f0vAFfH7V+xX8hytwYwE8BgAFO0h21fXGeuuB8APgVwnvZ3lrYfhSx/fU0RUsL2SNwHTZFv15RZlnYPhkfhHgDIT1CCrq45gKsB/Ctue5X9wjiHhO+uADBJ+7uKHtLvQ9D6KkqmFb1j6+zQtimLNr3tDWABgGZCiN3aV0UAmml/q3peTyOWEK1c+9wYwEFRWUgkXs6Kc9C+P6TtHybtABQDeFkzD71IRLURkfsghNgJ4AkA2wDsRuyaLkK07oGO22uu1L0wIL72ghLnECVFHimIqA6A9wDcJYQ4HP+diL2ilfX7JKJLAOwVQiwKWxYfZCE2Pf6nEKI3gKOITesrUPk+aHbkyxB7IbUEUBvAiFCFkoDK19wJTmovhEGUFPlOAG3iPrfWtikHEWUjpsQnCSEma5v3EFEL7fsWAPZq21U8r34ALiWiLQD+g5h55e8AGhCRnvo4Xs6Kc9C+rw9gf5ACG7ADwA4hxALt87uIKfao3IehADYLIYqFECcBTEbsvkTpHui4veaq3QsAVWovXKO9kABFziFKinwhgE7aqn0OYgs6H4UsUzWIiAC8BGC1EOLJuK8+AqCvvl+HmO1c3/5zbQX/XACH4qahoSCEGCuEaC2EyEfsOs8SQlwDYDaAH2m7JZ6Dfm4/0vYPddQlhCgCsJ2IumibhgBYhejch20AziWiWlqf0uWPzD2Iw+01/xTAMCJqqM1MhmnbQoMqay9cKqrWXvgIwFWa11A7AJ0AfIOg9VWQCwgSFiBGIuYFshGxUnOhy2QgY3/Epo7fAliq/RuJmL1yJoD1AD4H0EjbnwA8p53TcgAFYZ9DwvkMRKXXSnutk24A8A6AGtr2XO3zBu379mHLrcnVC0Chdi8+QMwDIjL3AcAfAawBsALA64h5Rih9DwC8hZhN/yRis6KbvFxzxOzQG7R/NyhwDhsQs3nrz/QLcfvfp53DWgAXx20PTF9xiD7DMEzEiZJphWEYhjGAFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYUXOMAwTcf4f3Jnkxmg4ENcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(1)\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When simulating Poisson-distributed light curves, a `smooth_counts` attribute is added to the light curve, containing the original smooth light curve, for debugging purposes." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOSklEQVR4nO2dd5zUxPvHP7Ptjt5BinKogKICIgiKBUURxfqzARZEsWL9qogVBQTEgqioIBakKXbkpEsRld57Pekd7oC72zq/PzbZzWbTN9lN9ub9evFiL5lkJpPJk8kzTyGUUjAYDAbDebgy3QAGg8FgGIMJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUDzprKxmzZo0Ly8vnVUyGAyG41m2bNlhSmkt8fa0CvC8vDwsXbo0nVUyGAyG4yGE/Ce1nalQGAwGw6EwAc5gMBgOhQlwBoPBcChMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh8IEOIPBKJMEwxFMWroLkYhzQ2qn1ZGHwWAw7MIXf23H0GmbAArc1eb0TDfHEGwGzmAwyiRHTwYAAIUlwQy3xDhMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh6IqwAkhpxNC5hBC1hNC1hFCnuG2VyeEzCSEbOH+r2Z9cxkMBsNcKJxrRqhlBh4C8DyltBmAdgB6E0KaAegLYDaltDGA2dzfDAaD4QgIyXQLUkdVgFNK91FKl3O/TwDYAKA+gFsAjOGKjQFwq0VtZDAYDIYEunTghJA8ABcCWASgDqV0H7drP4A65jaNwXAOPyzdhby++dhfWJrppjDKEJoFOCGkIoCfADxLKS0S7qOUUkBakUQIeYQQspQQsvTQoUMpNZbBsCs/Ld8NANh++GSGW8IoS2gS4IQQL6LCezyl9Gdu8wFCSF1uf10AB6WOpZSOopS2ppS2rlUrKScng8FgMAyixQqFAPgSwAZK6QeCXZMB9OB+9wDwm/nNYzAYDIYcWoJZtQdwH4A1hJCV3LZXAAwBMIkQ8hCA/wDcZUkLGQwGgyGJqgCnlC4AIGdw09Hc5jAYDAZDK8wTk8FgMBwKE+AMhglQ5zrzMRwME+AMhokQWW0jg2E+TIBnEZNX7cWcjZLWnAwGIwthKdWyiKcnrgAAFAzpkuGWMBjOwcnqLzYDZzBMxMmR7coaJAuiWTEBzmCYQBbIAoYDYQKcwWAwHAoT4AyGCThZj1pWoVlw05gAZzBMhJkROg8nq7+YAGcwGGUaJ0/EmQBnMBhlEmaFkkZ2HD4luf3YqQCOFwfS3Brnc/RUABv2FaE0GLa8rl1HixEKRyyvh8EoazhCgE9ftx9XvTcX09buS9p34YCZaNl/ZgZa5WxaDZiJ64f/hUfHLrO0noMnSnH50DkYmL/B0noYjLKIIwT4hn3RDG7r953IcEuyj3mbrU1zd7w4CAD4e+thS+thMMoijhDgDAaDwUjGEQLcyavEDAbD3jhZvDhCgPM4f82YwWDYhWyQJ44S4AwGg8GIwwQ4g8FgOBRHCHAn66gYDIY9yQa54ggBzpMFjlNlDrYAzbA7ThYrjhLgDG3k9c3HKX8o081IINtfvuw95VycfO+cIcDZNE43K3cdz3QTyiTZ/qLKJrLhVjlDgDMYDAYjCWcIcDatcTzsI4rBMB9nCHD29DuWsvbuZUOVkU6cIcA5WLYThl1hI5ORCRwlwBnaYTNBBiP7YQKcYSll5UVSRi4zK3HyGHWEAHdw/zI4yoouvKxcZ1aQBffKEQL8GJcyzU4Px9o9hdh5pDjt9W4/dBIb9hVh2tr9iETkX227jmlvW3HAeqefzQdOYu/xEqzZXYhdR9Pfb05l55FirN1TmOlmZIxwhGL6uv2gFkyT1+8tMv2c6cYRAnzcwp0AojfTLtz48QJc8e6ctNd79fvzcP3wv/DYuGWYuGSnbLmXf16j+Zx9f9JeNhUuHfInbvpkAS4fmv5+cypXvDsHN368INPNyBij/9qOR8cuQ/6a5HSKqfLXFudniXKEAGdIc6DIb8p5Co5IJ4xmMDLN3uMlAIDDJ8wZ61LY6cteL0yAMxgM22Kfb2574igBzm4mg1E2IRZOk5kVCsPROPgL0j44WAgwnIujBDgTNAxG2cLJs+N04CwBziR4Imx02wc2Ni2FPfvSqApwQshXhJCDhJC1gm1vEkL2EEJWcv9usLaZUZi8sgj2dDAYjkTLDPwbAJ0ltg+jlLbk/v1hbrMYDAaDoYaqAKeUzgdwNA1tUUVpolhYHNR8ni8X7EBe33wEQhETWmUe3UYtRKdh8yT3LSk4iry++bLHjl34n1XNSjufz9uGvL75uh23flu5B3l983HsVMCilqWH3uOXo/XAWZluhmkMn7VFcexawei/tiOvbz6C4cRnvN2g2cjrm48+P66KbXtn2sa0ts1MUtGBP0kIWc2pWKrJFSKEPEIIWUoIWXro0KEUqlNWoezU4Z798Z9bAMB2eSP/3X4Emw+clNw3eeXe5I2CN9rnc7cZrtduCpRhMzcDQNLDp8Y3/xQAALYfdrZjUv6afTh80jrHlXQzbNZmw8dSg+Y9w2dFn/GSYDhh+/6iUgDApKW7DbfJThgV4J8BOAtASwD7ALwvV5BSOopS2ppS2rpWrVoGq2MwbA5bn7EUo5OMbF83MyTAKaUHKKVhSmkEwBcALja3WdKwtbayhfGHL3NPLRuiNoG/EUyAJ0MIqSv48zYAa+XKmkm2v011I+iQVKK12e3FaLQ9NrsMhgkYHdZlZSx41AoQQiYC6ACgJiFkN4B+ADoQQloi+n4rAPCodU00H/YiSB9GdZipHsvIMgy+1bN9DKkKcEppN4nNX1rQlpQwcqPsNvNUwkltTZVUc59m8gWd3eLCOfCxU7J9suYoT0yGNWTLu8HKgEfqlWeuakYyZWXC4ygBnuUv04xhZb+mMpvO9tkTw3qyfQg5SoB/NHsLvv57h+7jpqzei1W7jgMAIhGKwhLtTj9ClhQcxfR1+xO2fbVgBz6du1XSeaSwOIgRc7bKpj77csEO7C8sla1v6pp9WL7zmHyDuGlGIBTBXonzfDhrM35buQfT1u7H0gLtvljFgRD6/LgKXy1I7uutB09g0pJdqudYuP0IZm84oLlOAJi3+RAWbDmc8uzJ6oe2NBjGkKkb8cGMTThRGsRHs7cgpGCzXliSOA6mrd2PZf+Z4xu3/dBJTFgkn5nJrhwsKsW5r09DqchOW4zeexkKR3DF0Dk4rsOxz8mo6sDtxlu/r8eNzeuhVqUczcc8OWEFAKBgSBfM2XTQcN13fv5v7Dw8/aesBwCs2nUcI+9rnVC+3+S1+HXlXjSrVxlXNa2dsG/X0WIMmLIev67Yg9+fukyyvsfHL0+qLwFuijpxsfQD/CHnzMAjex4Rw2dtiTk63Nm6ASrlemP7Og2bjwgF7mpzuuI5uo5aCACY/uwVmuoEgB5fLQYAlPe5Aeh/eNP11fzZ3G34fF7UcWrikl04JMgWI9WG/r+vx0/Ld6NpnUq4plkdPDZuGQDt90OJmz/5Gyf9IXRve0bK50onFw+aDQDoNWYpxvVqq1pe6739ecWeBKc+K3Jp2glHzcB5UrkpVrnPn/InzyROctuCEnWGuNnYidLUZwpqsxg1xA9HcSB+PnFPpyMtqd3Vl0LvvuPF6m77vMevXs9SLZy0mTexXswY/0L8omctu8W3QwU4I31k1KLDYOXpbHOWT/AyDutfZZgAzzDZPj6z3Q6XkRpaR0dZsSrRS5kT4HYZCDZpBgAV8zsHyt903mMHdk9WI7712T6DL3MC3C7YdYEuG0ivCiXLJQTD1jhTgEtIMyPPUaoef2WBTKhAjDrk2OXrimEfsl2F50wB7jCkhpCdZI1SW5zolp7OWbGWmrJdiKSC+q1Kse+yvOsdLcCVEjIUlgRREghLmHnJi6sjKQbRLwmEccofSgrG7w9FYuZSgVAEhcVBHBE5/igF8I9EqCnme4XFQUlTthOlIfhDcdO4I6fU+6E4YK75mvB8Rl9uer6oTvpDkuaX/lAYRSqmbYdPaB8n/lAYJ0qj1yb1hXDsVACHTvh1v3SckvBB6MQm5dCm9nI7cjL6nBw9mWyuefRUQNZJjoe/z2plC7gkIOEIxf7CUt3mjceLA4rOXFbhaAF+Xr/psvtavDUD574xDS37zxTtEYRgFfzOX70PFw2chSU6PBbFtBs8G+f1m47WA2dh5vq4F+LTE1fggjdnAAAe+HoxWvSfgds/+ye2f/q6/YoptIbN2mxKyrQW/WfgyQnLk7ZvOnAC945eBABYv7cIf6yJe5vKDfkWb81IuT1Cmr0Rv5cn0mDbfH6/6bhi6Jyk7d2/WITmbypf288r9miup/sXi/DPtiOS+wqLg7hwwEy0eXsWRs7frvmcq3cfR+uBs/DTMvtnlRkxZ2vs97szNuk6dvuhk5jBPUfvz9yMRdvj/Xj0VACtBsxUPefV78/Def2mo9WAmYqZgTq8NxdHTvoxZOoGtBs8O/a8aiEcoWjZfyZe+mmN5mPMwtECXEiq+s/FO6KDY92eQsPnELroy7nASz3My/5TcJcHEl4GqTJ9nfS5lhRE27Dl4AlN5wmGtc0YMxELRethByVm0mr3Qi9K5zteEp9VztXhIbxxf/Qe/btd+sVgJ2ZtjF+XOAyFGv+J0iSu21sU+32U+0qcITqnlBzgc6uqPUfHigOYulZfGwEgFInOvH9fJZH20GIcKcClhAJbxLSGVPXJadX/ZuB2MiMUC1HoW6v63Wn305ECPDWUn/J03z+nDZi0wvpGkbI2diSNAcq46VEZFODSmD0Q0jGsytjzqxm7Cjaz2uVUkWX3dtt13CjBBLgIs26intMwZxBzsIOAKOszQkZ6KXMCPBufL/6aXIjgPKI/XroSmXy1ZJv9tHjsCd/b2foOF16y3peb+P6ziU4yZU6AJ2ChME/ne4If173dvyI/51U0J9vSWDsjUzjtBSclgM22NMqEYUIm3ytZI8CdNZTNQTxUz3cVAADqEnOyvQCZDiebubqNko5ZYjapaVLtLjN7giLF+5eB2+JIAT5k6kb0+22t7P781fu0nUhwrxbviAq9D0XG/hMW7cQXIicLqZvM24LyfDp3G2aJUor1GrNEognSA0aYok3KXllIss258iDsNWap5PZ/th6W3D5q/jZcMng2flgqnUqt4PApPDp2KUbM2YpxC/9L8HgLy3i/vfJL1Olh8NQNmKZge0spRZ8fV2FJwVHM3nAAA7gMSEIG/bHBsK18rzFLsed4SdL2vL75+H3VXjz3/cqE6/l07taksnr4V+AHsFjFaaz3+ESnq4MnSvHQN0tMS4KQv3of3puuz7kmXfyyYjeGz07s64H5G3DJ4NnI65uPF39YBQAoKg0ir29+LEOSErz9fLp4+ec1+Geb9DNlFo5LqQYAPy1P9kATvvx6S3gbqrF+X9RJoKg00QuQFzQPX3FmbFtIQihtOXBStY5ZG6SdNaRe+mP+LYj9PiqRb1MI75xDNU4BxC8Wnu6jF2F415aJbQPFoD82AgBe/HG15HH9Jq/DvM2HYu3ockHd2L5dImcMngmLdmLQbRdg5Dx5D0RCgEA4gklLd+PXFXsR4FyVX7+xWUK5UfO3Y9T87WjbqHqszVqZteEAKuV6MOzulkn7npoYTcX38vXnoHblXADA0GmpCbxuXyyM/e4j0588+WsSJyIj/tyK2RsPxl/oCTp0qntmzj8nL1zXVNdxejD6sfDc96skt+/jcr+u2h11uDtQFO2LIVM34rErz7JVPtWJi3di4uKdpqTOk8ORM/BsIiVPRRPbYRWpfJHqPTaLNAuKlJXrNIIT1W6pULYFuIkPguHIeaCSD6RtVHFl7IFIlWzST5uBcBw7oW+c9gLIGgGuOTWTpa1giEnlmTX8LNn2IWSjz2oy+o7IwLjLGgHOsAbbykIJjKqjVC0PmNxl2BQmwG2A2d6fJM1i1wFfxlmFkz7zhWND0g48jW3RQkq29cyMkMFjZBh5ELXSuM29wLx2GInymPDQplK3sYPtJhTMwgk6ZL2YbTefSg856cXIU+YEuPAhyLbnoRaJ2oN3ci/TVP4612LUgrnxr4HMPQjZdj/VEHazE4SPE15ATuhHIVkjwA8Wcfahu44rlpNzLNHDX1sOJW1Ts9WWY9fRZCcSQNtMQmyP3tKlPauLD0GM9H2I73wDNR8jZuvBE9h8wDrniEU74o4uAYl0VUWlQYwV2MvHjpNJdHC8OICx/xZItnnX0WJZm/XVu/Ql+di0/wQOFJXGnMPiyI89fs9KmfG7v7A05huw65h0O42y+cAJLNx+BAe4ZwiIOpJt2FekcJT5lATCsolQtPDN3zsEqQopvNCX2emkKBPUnI0HEYlQBMMRiXupzEFBX67ZbTxJjBqOdOSR4pGxy7BpYGfcMuJv2TK/rtiT4CBj9G374DfSnoxGCRvUDX42dxte6nyOoTp5PXl9YtxT7JoP5gMAOjStZfgcSjwxfjkWvdJRdv+NHy3AToHQ5bMdffTnVnQ8tw5anF41oXybt2fJZhK6XCK9Gk+vb5di5RvXomp5n6Z2X/fhfE3lxBwvDuBWmfHbbvBsQTlzPDF5Og2Lt5d3Ornx4wXYc7zEUicUMS/8sAr5a/Zh8avy91yJN3+Pe+n29UzEY54paFI6BgF4k8q+6PkOe2gtTAjH63p07DK4BDOnnt8sQb+bmmF/USlGztuO33q3TxpTcgjv102fLMCOwTdY8gWSNQIcUJ9d7zh8ClsPqntMpptMfrapDalMB0wqCSQnHubZKTNjBqQTM8sJby1XWBo0I2Gtcm/rrcPKuCtS4QWMoEdkreHSGSrdc610d0cFaA6CkgK8t2cyACQI8MMn/ahdKSehXMHhU7FxpiXZN48ZSci1kDUqFECbILS/Fo4hROrrhMHQil6LLKXSdhyKWSXA1SDEnouYku1I02hRqyVlKxT9h4vqT0N0PwPH1MIxfO/rj+pIr57Yydj9a08KCu2Lr5kQJ2VLgFvUxR6E4FTjtXQNurPIHjzt/ln3cRJrl7bgIc80tHVtxF3uuaacj0D/hILK/LYr2r2lzRuVWgO8xcpblEjZqnlI2RLgxPxZdyUUY2vu/ejt/s3cE9sEI+NOarB+7xuA/3l/RCXos6CIGLUFT5NEM2s4OUEAl1Vs8qEuiSMEuA9B1IB1pjipUJNE23WHe57hc9hRt2Y2PhiznDDD7FMNQy8p01uR/dhZEGrBjvdcVYATQr4ihBwkhKwVbKtOCJlJCNnC/V/NykaO8A7HstzHVcupdbB4ADl9QKUDLTpoK/vR6MstXesb4kUyu6yrOAWrJy9mhJXQek8VF0BTboU0Wmbg3wDoLNrWF8BsSmljALO5vy3jWrf+BA1yWPV86dW12YUcEsQFRLsDkF5SfUCNqlDsiJogcOYIsitGe1PB2cqGY1FVgFNK5wMQuyHdAmAM93sMgFvNbZY1vD9zM44JnCB+WLobeX3z8efGxAw1LfvPSEqjltc3X/KcZrzhxQMjr28+PvoztdRdqnUKBvhA71ex3898tzKh3GXvyDu48Ig92IRek0rZka5+f67queUcs64f/pficQ9+sxSDp25A64GzkNc3PyEtmpjfVu5Vbcekpbtw9it/qJYzyuIdR3HxoNnqBQWUBhPtpdu8PSsh5dvzk1bh7pH/mtI+I3QaNg/Ldx6P/S309JTCGvmo76SHTyZ6VH/773+ymbQAYMCU9egscNxavOOorKywAqM68DqUUj7f034AdeQKEkIeIYQsJYQsPXQo2QU9k/Tn8it+Njcxn97x4iDe/mODrnPZbwauPHCFL55Un5sdh08l/H3kpLawAtsPnVIvJIMWN++R87bj8Mmo80Uwkpo5ywczNyeELojf78TeS+ckjU8nFq2X4tAJf0LKt5+W704IR5BuNovSDIrTFQLSpoNWq6FcMM+06csFO1BwJLowTwB8888O086thZQXMWl0+ig7bCmloyilrSmlrWvVssblOlUy/WVkRvUVkOg5dx4p0HG0uU9MWdAD2+9jOnsw83mUGopXuVaYV4FGrFK/GBXgBwghdQGA+1/+G8NUKJqTbbjXPVN6bwYksTkqlNSOv8y1ButyH0rYlqPD6iPVrwc97U93rHKr0dNzmZ4olEWkxpsHxlz17Xj7jArwyQB6cL97AEiLETQBxeSc1zHQ+7Wp57XjjdFDJ1dycK2PfJ+krX61hcY6OIpcGIvWyCh7mPEFp5TcxEyjiEyjxYxwIoB/ATQlhOwmhDwEYAiAawkhWwBcw/1tOdn6ZZ7qgJUSnw0EUQbLoRRnkAMSpeSPTwWX4IJyEMCi3CfhI2GurszcRau8cJPqSePlOX3iYRVuhOHm9NxSt+MOd3zRsQXZigvJFk3n1RZrKb3jWzUaIaW0m8wuYzEfUyDbPr95Uvq0Dpagh0dapcTzrW8I2rg2I690gnT9qapQRH8LhdgZJFG7li33MJdTUem5nrKwNmAH1uf0RA6JLpiq3Z/fct4AANlnQy9y8VwyaQduG9RuRjpFQ3vXGtzm+ivWplSEYEpBfErUA+C3cW1Wqd86HXi2CGwxD3mmWnp+H4IY5PkCU319URfSCSqyDTPWCBqQQzHhDej5atdSuf3GsqMEuMuiDjSy+DneNxjDfJ/Fz2FTBQ+RMZkSCtbWrs140G1cIIn7T6kn7NJPUdd++z2QPHe756C7Zw7Ode3EI54pquXteyXpRWx9pXUCUQXGTVpjdZH0q1AcJcClbsaj7t/xkDvqYPHlX8ZsMIXOBkLGL/pPcntNHXFZKqEYBbndcZPrH9ky4xbulN0XFcDyg7DdoFmK9fdwz4j9bkj240wi7bTyhnes4nl43AijtiiPpti+V0lVYMaMfNLSXbqPmbI6ft2VUIzNuT3wtPuXlNtShSQ++C/9uFq27P++X6n5vD4N6cDU0geKCYQi+GzuNnw+b5tkKjopZq4/gL+3HsZvK/doKu8PhTHmnwIUB6Tbv3F/UcILf/OBkzh4IurgIzVuzifbUZDbXXENJ6H+JK2wtvH2lEd9LNjRishRAlzK/Odl70S87h0HABg+W9tihFZe/WVtwt/VUIT2rjUJgZmU3rePuycj3/cyAGCI9wvd9VfFCezIvRfDvSNky1Qm8tH9XvGMRz0S//yel/M//Jnzgu52COnn+RaLc3ujssKMxeqB3kdBSMrxv0mrYr+rkWhOzNvdxlKfCRGba24/LN8vp7hMM26EdTmTmPXV8tncbXhn2kYMmboRr/+2TtMxD3+7FPeMXoRnvluJoIbYviPmbEO/yetwuYwHb+cP/8LfWxNVQhe/HfVAlRo3d3JB4q5yrdTUXvET+aiGrxcA6GWCSkwp7hoLJwtgTs7zsvt6uKcDAMqj1JJM6wAwzjcY432D4SbxF0lcB57MS97vcIYr6n1agfjRgGj3RL3FtQArcx+N/nb/Ax+CuNW1IKmmK12rJI6O8ojHfJfea7mM9xWg7BZdVjDyRbEt9z5sz71XsYwVqqbCEnNzaUpxvDhqLnpEIcm33OxcCYUIJbjEtS5WQtxvYsHczzMG2YSjBHhtclx2Hx9Y/1ff61iS29uS+puS6Ke7cIjwXwVaHjc92VsucyXO/jfn9sCHvk9xtciLzOiDblSVUZcc5epVOLegSWr1DPR8iSsUXkJA1BRxuq8P2pCNWpupSKpqnA6Ce2AXnX46sKMK4TrXEkz0vY37OVWhWhN7eqYbrsuGl+8sAa4E/xg1cWnT1RmrI3m2/UfOKwCAxly9FVGMtmSD5OKhnoddruzD7j9QkNsdBbndUQXqCZrlBl17l7ZPaGNov857PbPxre8d1EQh3vV8jhwJh58mZDeaunbjDe+3ZjbSsPC9xBXPft7ctU2hpHFowm9zXhJONGNUazKvImxE9gMAIjYVaVali7Pn1WpEKMCkHnyz0TL+h3tH4PucAdih8olslEvcceFxOjmoOwY6z2jf+ym1QyhUquAkHndPBi92jAiKSb63cKdnPm50LdRUp11o6TIeivcj78d4zvODKe2w4+zYTMT33ocgnnD/KnDYkVdl8ng1LAwrtsGGfexoAb4q95HY74qkRKGkubgVFqCakN2y+yiAJmQX6iHqJUkQgVsmLoMWYRUto1xOys1ejjvdczWXFbbvbe9XeMn7HZ5wT0ZLohwGd5Kvv+TL9kxXdAZVjviT9snZ2ldACW5zSYeVbUm24hbXAuWLMIhZL5Kb3f/iGRnrhw4qaiUj2O/1p04F7rlu60pUn/X1TEQf7yS85h0PALjRHX3xS5kaE0SQg4CuZ8Ewae5kRwtwIXUk9OOn4QhW5/TC2QpCVQ8uEh0c97mlTfeucy3G6S7lhcoZOS/hn9ynAQCjvMOwLfc+yXK3uKXjYOslz6XN/AoA3vWO0lxW+JhU5CIh9vF+j19z3kgYw+LxfI5rFwZ5v5Q9r5SlkdzsapD3SwzzfYbmJFmN8WvOGxju+1ThCszh7/B5SWaVQs4ie3CXWz2mupgr3XFLGxtO/GQxe5Z6uzv6EuYFNE8HkVVKTVKEid6BeMEzKekceeQANuU+gAdVLE2ak20op7A4b5UaJBUcLMDVO/MN71hUJsX4zDscBbndYzPfVJGzSR3p+1DxOPHMjbfokCKXaLMYMDIbNCcDT7xe8Z1QuzMtOIErtU5QnRShn2cMPFD3pjuNW1AtLzFrVyLVRUy+XgBo716HxRKL5le6VmFJzuOYnfMihhowIRUifKmVRykmegeiEdmncISzkVPBtXetUTzuEvd6tJBQaT3BJRy/yKVsZjw553V85I0GgSvI7Y43POatuTAzQhFavDJvcC8GEF9g7O/9Gk3ILgzyjDacZBewVzQzI+MilQTMWmpWM1c727UXFVCCCyXULU97fkVPz3S8Iyn0Ep9s/uVlVCAbfaZudcs7ZfG84hmPWkSrw5dySx7wzEBtHENBbne86Pkel7jXo4/nu4QypaG4kBdnHwqFIwiGIwmZkpQQZ/qJt5IiEIroTDRNkQu/aEsy/lA41j45YTfeN1hwDu0Tlzs92u39hS+ABz3TEtsYjPcf36dCAqGIbOYnf8i8JBJCHCvApR5aJecSALjGvQIzcl5Cd8+fuMmViVRTZivIjJ1PLfhVHPkHVanm//s0KuC6uBaivcgckqeX+w9FZ5bb3XHdtpwOnNLU+rORDvWSXvS8VOqLvgzF6gEg3h9yZnDN34x73D71XaKp6ZXvzkXjV6fi23+lPYuFvD9jE855fZrs/iavTcXj4+S/HMX0dE/DxtyeCWqmBVuSv4SbvjYNh05EBf17MzYl7U8XSnft+R/i6xI3frwAjV9NVslMXbtf8tgWb83AnuPmr9NllQCvTrTbWduRh91TsCTnMc3l83NeQT+NLvB68CKEgtzu2JDTU7aMFgE1wvdRzEtWDNURNUKLhQEQVW1psUZqTLSZmt7rnomLiDFhoufVIlYZvC2xRvCSN3HGfYFLPmxE/upE9YoewfGxQi5WfmY8Y732F9/13FdwHtmPPLIPNVCIOZuU879oyVGaaTbuP6H7mP8UvHSN4lgBrqZCqQrlDpY6+jLXGjQg1iUXUhNAr3onoBYpSnAUyQR8QKByRF4YJubU1D8TDsNlWqTCx92TUR6lmJ/zHD7wqi9c3uPWljx4oPdr/JTzlqE26bk2scpAy7HlHeIJG1dzAXNznse/OU+act5ZkVamnEeMlDGEWVihBnesAFcb5Lwbuh7G+QZjQc6zBltkHt/43s1o/cKePYfsjJk78kHDAGXhrq0OggtdyiaHPLIqFO7/K9xrcB+XZu8KlYUuq4nqe6nuxLnDvCNiZpz1iHoiYqeZBBLOgstHjKUzE3OAVjflPGqcRfagsgaHOS1YsZDpWAEuhdMGNc/1rkWZboIAivsFOvJpOX3xuHsy7nHPSlCHvCmIKXGWTIRDJSqSErzsnaipbDfPHK5l0ouYAGIp28Qv9jwJaw0rZkL3umeiLo5gY25P9HDPQI0kdZ5SNA+C29x/6zLjtCtiUzv+Hp1PjEUKFeNCBLnwy4ZJNgOhwJ6d82LM29qOOEKAb4o0SNomNcPRk6w0E159cnV+5huOOlCfdaWDa1zLExYQAaC5awcqiCwJ+MBcPgTR0KVf7dRKxaRLCJ8Cy4jgFbb7ctdq/J3zlGTC5xwE8L2vv2ETy4Her2PZh25wL0JAFNZU6YvRyFjMhEWykRkkv9DMO9zoQcrJbXvuvdiY2xPPeH7W3xiNjPR+mPB3A3IYZ2lcN1HCCjtyRwjwU8hN2iY15IWf+GbSimw2vJglZGrOy7L7FuWaoxtMFSnd6jlkp6QNbkOyH5tzexiqp51rg2oZM8MjeBHCWN8Q1CdH0FDC+uRcshNtXRvxe85rhl2uqxD5T+2bFEIEXKjjZcZTXaEuvXR2LcY837OyXsGpICWyCAFudS3A7z7lme01Lnlrl8oWel4Lw1XwNCPqFjxqWKFCUc2JaQekZtZSM3Cl2Nip8HPOm5ac1ynkuQ4gD4lCj4Cqus2nigfhhHm/nA5c3C5IlBLG/q6N47Hfl7jW4d/IeQmhfvt6JmJB5HyZVsk/haN8w2K/xYvsj3smY3LgUsnjrjHoV1AFJ1GIioaOFTLYOxrVyElUQjGOo5JsOSMzSLmviw9VvGTr4Cje9n6luz6rMCNIVpldxJSKPS1OlgsoxygRIx5YTYj+LC/ZiFbriTNd++Ej0jPV5zw/KLok62mL0JpISQcux5WuqEu6cBLgFSykTfS9DSCawoznIc9UfC2zkMyHLVaiKdmFGiTRCkqpX//PbSxmi96F0kwgddVaZqKDvF+ipo3Mgs0QvkZSN6rhiBm41OCXWljQY7p1sWsjfo1cFvv7a99QY43LMnTZL8v09zOeX1AJqX/iVkIJhinM1M53FcR+P+f9CUA0cYZQDVSLMwsza83jIqKu7qhKku19+b5SczYzi0sGazOV1MO2g+ptD4akFzGF7D5WAgmtaAJ2eznxM/C3fl+Hf7fpSTJN4UEYIYtErSNm4FoFs9TilBzdPX8abY4pKAVAyiS36ZgNKolEsRuyEe71zJTUlXdzz8YgzxeoJqMHftkzIfZbqyCoq2C614ZsjMVgzzFoPsmP4aYmfukRAL3c+diWc0/Svn2F2r+AtD5fPb9ZrFpm1oZEVZvRF6fdQgfzPfT13wW6nHi6u//E1tz7cRqOlF0Vitet7WaeQDnDdViV8V4OqQBIdkAYBU+NZqIM4GbTkEgLg8HeL9HdIx/hTyjYtYqBs13yppDvekfGftfSkdBaCD++rnSrhYnVNw5f846Hm6Q2dvkvBjVBri8GijZakc2S2+0mwLu7jU34eP+EM8hBS5TgjhDg6UBpBsaQRntMFWPc6E60j9diuQIkzrrlnID0IAzJa9R7lD9ObZ1Gz/nN8mTlOceV+tcB0ZnN4wPvZ5Lb7Ra4Vc/ERsi5rp0AouOvzJoRah2oLNGucxgQTP7s18LlLvUH6QKB04jZQs5NjOlm+ZeKmkpH3xqEMe52z0FBbndURKLVVgnNUTxOS08K5XcFlEhGZOzt/jX2Wy5evS/F7Dl24A9f3Gw4hwTLriem1ocw3WoQhnGucxvLjjLWN0S1jDCphtkf4uLMMFrhIx+aOQOX4iF3Pk6D8iLbw+58APG45kU0qno8SKvGyrzmGYv3NcSVEUMQjYX+g+9NTPG9EpuBCnnRm5x0QUx1oj9YlPVovzdehNDMFbcdr4XjZViAa7xys2dbDOu42JWekKH8mLhHJotSOqmAElMFuDDpRVOyEw3IIbzuHY+FuU8pHicMMOVCJOYU87I3vvjbyzM1lg0ndhwFnvP8iBtd/8qaxBECfOz9GG1cm1MK1yu0MLILeu6NMNQEAATLshXKDPcVmsqZJcDPIcmzBifxd/i8TDfBNvAxSc5zpe5JlypveMaaqkLhE5YAwPScvobig1QX2Nnf5Jb3FuV5xvMzPvF9LLvfZSSjtUPQc2UXi77UdtC6ZdcKZQ1pqqnc5W7p5AFyyLkO93SnbgLHsAdGVTVWUJWcVJ2B64nFInbdpwYeZz3u81ocUVIV38O8I/C8RF5Lp/Ck+xfM9j0vOZkss448VlEZp3AMlZO2C7tZzszJzjBVUiJKMTXSjdo6jZ6wDeKM9hGNGYqELcjVYddOKWIS+u+tR1DO50Z5nxvhCEWOx4WGNSrgYOFJVM41FtKiDo7iNpOSeVuBlufqBe8PAIBtkbqiPdakRHaEALdKIF3mWovfI8nxKXJJAAQR1MVRR8ZBsSomjFMZ7Xtfcf/tLu05E1NFLvyAGUQ0zn/5MBQEVPWL4EyyF93dszEwdC9O+EMxD8p7v0wOgdy97Rm42aWeL1SOL1TuU6aRkkM3u/5GM9d/GB76P/jhi22vKAq25QItu8GsrLIK/dj3CX4vTRbgt7r/QQnNwbTIxZbUazV2XACyM+/7Pk9LPRQkFhrXCpJjkEuTS6Iey0Qi8YQbYVQVxMMe7X0PZ7r2Y2z4WvxHT1M877KCY2huwMySDyhW1aTECVYh9Xr8yDcCAPCYZwrGhTrGtosz+xDQpNR5ZuAIHTgsjovgkbA57eaZgzG+dyyt1wp4kzBG2SM/51XZfTkI4H739ISFzp7uaUkqHQKKRTm9E/4W/q9GhOoXKVdqsO23A2p9oBTozCotgiMEeIla5JsU0RPF0O4MC92R6SYwbIQXIbzt+RIzfH3Q3zsGXQTZn7p65kqOfY9gFs2bHGr1sdCqxhHCfwWUI36VkplFTQgrpYuzyjbHEQJ8CWmOEaGbLTv/NS5j8ZjtiFX2pozU6exekvY6O7mW4h7P7FjWpO6ihM5iFYo4oceZrv0AtM0gCYkmq9YL34ZaNgofK0Uqs2irois6QoCDEEwKd7Dk1NVQhBG+jyw5dyYwI/A8I3sQC45LRdlmKokW204jqUXJNBJzxike1E94fjN8bASusuuJacWF89yowXnBSURAElyiGQwlPvZqm7x01PiVaiQdXSbNXgsidTSXfdrzq+F6hF6uZpKSACeEFBBC1hBCVhJCLPOYoLAuvOQA7zeWnDdTREDQwf9BppshyaLIOZluAkOEVrWFVFAqKV7yfqe7DZlM3rCP1tB5RPRlM9QzEne652o+ymgMHTXMUJheRSk9bMJ5FHHGR1bmoSAotnjR1yhDg3eDgOLHnP6ZbgpDBrnZcEuXtvynYvM5LThFhQIAuQigFD7c5ZmHuzAv081xjgrFbgHe7UgRLYe54ZaZboYsFAQ7qfZPVkbq6H1q5Mq3cW1WdbvXk6lGSENyIKOz8F6B5zWXfc870laezqkKcApgBiFkGSHkEakChJBHCCFLCSFLDx06JFVEYzX247Vgz0w3Icas8IVo7v8Sh1A1YfteWh0tS0dKH5QB7HknsxOCiG7BeFLh6004U25LpJNrhDW68wu5wr0GI72ZUfv9GmmPWZGLNJe/zLXGVlPJVAX4ZZTSVgCuB9CbEJIUNpBSOopS2ppS2rpWrVopVGWnbovyR7htppsQQ24QBqkHx1Epza2RJjpzsd99zEZOwxGsynkEHyokhZZCyalGOPNsLRMO2IgZIQBc606/KW+j0nH4Xqd1W1VyCoM8o61pkAFSEuCU0j3c/wcB/ALAEt9zSoEDtBp205oYE7rWiioMYSfdnVxbDqNKmlsiTxhuQ44eDP0szH3KUEycZzw/y+4TCnA5pxsjEREzRbSt+sdjV89c09tiFMO9TQipQAipxP8G0AmAvniuOgjCg8v8H2FmpLVVVejGTrowubbsoql89ZjH4GA3rKRnsbUMm1Nb4yLkk57f0IALivWQ+w8U5HaHCxEbPRHJBKk7sw2g2kP3aiWV12UdAAsIIasALAaQTym1JJA2lfmdaYpQPtNNiHGEJobFfSbwhKbjhgS7ok/wYSualMDI8E1Qe+UtizS2vB0M44jv3oKcZ3Eh2YI+nu8BGLMBTyeZ/vqrfsh8T1zDApxSup1S2oL7dx6l9G0zGyaHnTwN/fAhr9QaA309nKS5mBZpY+jYz8M3YVL4KpxIUxAspftXSCukpQ0MY3RyJbt6nEn2ZaAl6uyI1MEU0RrVw8HnMSfcIkMtAjxB80MF2EcaKmBFJotsYnqkNVJdHPwkdKspbVEj2+7k0kiTTDchbfChU5Ohgl/2UJFdFRiGQyKP5PmRFugZfCkzDQLgCZ0y/ZyOEOBC7DJAngwoJ45NJ6n1SPToUNqGgnxr7XJv9fBruH2mm2Ab7Hb/ttL6mW5CAsRmOvCMQA3YmVrBCR3679/CyUkjzETK1rcUOQCAE1RbO9PVq0p6SCfNztuUjkCj0nEYF74m003JOELduJ0W9seHO+L//G9muhlxLNAkOEKA23URU4kZ4ahd9sLIufgufJWhc2yMnC67b2SoS+y3lEicEbkIA4L3YHCoe8L2t4PdJUrri0exMnKW5rJi7DZLMw4xbIaWTbzv+zwWB5vY7u4SLKfRhfF0rfEoYcXLzREC/M2bzov9Fg+Rw7QyOvjtkUtPKFRfDD6KN4I90DXwGgLUWMiZ78JXYbwgTZMQYS9ICV8KF74Md4nFRSmlXgDA2PC1eDDwguL51PgvBXd4uz3iRsmW6zCT3p5fkcOla7MPBP2CPXBLYEBsS7vSj9G69LOEUj+HL7O+KdT8cAGOEODCXHLiT/C1kUYooOIM0NYjfJf+FL4cALBZMGMuREV8G74OqczQlN7YBBRHaUUd5zIP/RHc4ijNQZhQdDaphFvVXVcgnvbt/aByFqox4euwndaL/b0fNZIc3PamMKa1QsqqCkWI+CFXC7CTDmaFWwEA1tG8tNXpAsWbwR4A9Ak+ubLp0l3ayQw0FVLtrfWRhqplVkXOjE0OGIlMjsQXj8eEr8tgS7RTsWiz6ed03NMkFgA+knnngamRtmha+g020jNMPe+KSGNZwToj3BpHEXXe2Ulrazibssj5O3K+5nb9Hr5Ec9lsJdWvhRsCg1XL3BIYiOeDjydtHxsq2wun+eHEiB1FSN1/QGlxfULo6pTPDwC5xftNOY8Qxwlwsbmbn9PtphvxA+yHT7as0dntSnq27L5F9FwsiFyAXoHn8WHodtVz8W2QEzyHqPaYKal8aWSLmiRTi+l5pRPweujBDNVuD/ZYEB5CaVyupMYX7RPqIOa78jtOgJdw5nE8J5D51WU1rBRZsyIXIaQhLwffBgqC/bS67H4rEHq/Kbsz20u474zICwqtLyI7eOpmG1a4xCsFpjOrtpOV5SdkRnGcAN9G6yXoBXcbeBt/lCavQx6z9MuXlH6c8jkogPVp1NVPCF2Nx4LPCeqXfhz+FCWiEAceutw/DG1K9YVGTRXeBE2KbPmScCJW9P2EUEfLv+a3NzU/5pDjBDhA8HzwceSVTkCvwPN4L3S3YulRnGnf6ND1sW2TTXCs0TOIzNDRAcA+RFfKD5iQtLiT/x28Enwo9rf4JdM18Jruc7YoHZW0bRetnaBekuu3B4N94Ef8AfozcqHoPHWSklXopW+wF6aGtceM2UVryy42mvFKvsI/TFO5h3RkjMlG7vS/gQ8EliZSMcc3RE7Hv+FmhuvYhxq4XsO6RCpEXOa/IBwhwOWsb2ZFLkJQQn0gNNr/IXwl2pR+ioGh++LnM+ENXiTj4dg/eB9u9SfmfNxIz8D9AekYDIW0fFIWk2v9Q/FA4EXJ8ueXjsaVGh98IWIBvZmejgnhjrL7F0b0PwyFUDdrVPr8ncotTn0SukV33VpRu/c7BFnKA9SDmwX2w7tpTVPbopRe7jb/W7Hfs3VkjMlGltBz8FH4/2J/S42h6wPv4OXQQ0nb9ZCp9bRUcIQA18sLwUdjvwlo0szNDAG+WmZh46vw9ZKLj/MjzSXLt/CPRhfRm38LbYC5ohnoO8GuAICTKB9zk9eD2iJmwJT81vJc3IjXuxO8FbxPskx+pC16BZ7HB6E7EYT5Cz6LIufipIpH3v8F3sKCcNRxjHJJyXj2JAhwa1UoKyTUN3vSYKvsBMbJJHVJ9bneg1roHXga7wXvTNhulgr07Nra/Ta0kpUC3A9fzA1dqvMzo7+Ur7MK1KOU6Yk93rROcgq1z8I3A5CfAR9CtaRt3QKvonfgaeSVTsBZpWM11y+E7/2vHoirLuR7gmBW5CJE4MJnoZs1nX+ujvCgO2hd7Oeuc2uknmSZY6iMVdzLmSo8ulrGkB5VV0TwFbYqcmbS/tv9/XCLf2Ds7+NlOPRuMTeB6R54JcELO5XFTY8remx+pB0+Cd+Ka/1DU2ukBPWrmX/PHCHAqYY3oFyHC2/pw4H/4elAb9vFU9Hyaa7PWSf5Ct8L3Y280gm6Ul79GzkP+ZF2AKLp0ITc7u+HYUF180W+3XpDAq+jjWTVTkJ6B5+W3XeZ/0PZfSWKZp9RKOT7XelqugVeTfj7Tv8bCqWT2RxpkLRtGW2a4D24WkLIZyPtJBbu+XvyT+T8BC9sfnsg5cw7BFtoA8Ff5kgMYsG80RECXAvCDl8XaRjrcmHnz4y0xuRIexwVZa/JNHtQC9f5h0ju4xfzVqUQQMoKltGmGB5WF+A8Rh6B+RH12XWpQBBPCbeL/R4S7IrdmhyclCCQ+15QeqHywpVPer2EniNbdm0kjztfnAGhe3W1Mlt5OvAk9kOP2ih6T04ZMC1Oz6TOCvNHB6A3hEBUHSDfWUWogDt0zoqsYJfAzphfjN0WSYzrMityEZqUjtHlPGNV/ouZ4YuwKCIvjCTbwv+v0CalmbbcYnH8/AQvBx/Cz+HL8KRgNv55WJsKRgivY9Yy41IS4KdQDi1LR2JASFrXL6X2EZ6vSMNisFPMGPU4iInRq77i1VBmD38797S1K1c2QO5hXKowK1LjqcCTho8VIjSHUhIaAehbHTc6gB8MvICvfO8lvUR4Hg4aN2dTUqEozbSv9Q9FHjmgeO6J4Y6YGJaO2iiH1EMZoa6EfUpCUq2PjyN5HULp2L20Bs4gh1TO6jz20eqoRQoNHatXfRVT19la5JpLVs7AgfhNtOJW/h4xJ0GDVZ9tRlPQ8U5RIRMsQEYJQutG2xT/rUeneADVsYieK7tf75VO5+zAZ0VaJe0jhHLti4b9VFoUkzJf1Yo41ZcRnCKklPrwJ5UQrvICXGYGbnMBTlxlVIWilU9DN+PxwDMAgKGhu1FEy2M7PU3z8bz5mBxFtDw6+t9NqY1CrBpodlikFZstRmyS13QdbYS80gmSDjriuOpKLdYSvkCOfqEesd8bItEAaHoyPDkJpRfdLyqRFpdEmuqqK5XnSWnSMzOsboevyYa8rIaT1bp6OzTUFVMj0YWjuZGWaO4fjRIuoYEWlFynJ4WuxGX+4dhmYp69HRmIY64FM1bdebty/gGOWCS/1R7a80tHS26XVKHAJbvPTIRj8rXQg7jL/zp26JhoAOa/pIWOQ2ZCQXC5fxial36R5Kkr5VEp5KCEaSt/Tuntif+bhRYP4I4B+YndgOA9CFEXSFkNZpWuyZvSg/tR+LYEl/i2jZIDQr11s/QM/okOyRYkiyLn4NlgPCi9mqONEj3b5yX8PaJ7snpAzJk1k21SzVQ7fRK6FZ+GbsaEcEf06dwU1StErUXuap1sIhdrUy11O1lhIP8oia19JfhQghnfSY0z289DN+H+QF/ujPruxUGBSuSJgLxZoxR++LBYQUWUDm72D5B0HDKLXbQOilABhaiIddyXz/zwBVgUMfu6ieh/bTSrm7pVmpLF0zfhzjjbP84SO0JHCPB0QUBlF/DEg6J25fgsqmBIFxQM6YIel+ahYEgX8YG4pWXyrH1uuKWhz2a+LuHf/W46D5OfjAe4P7du5Vg5cXmeP1/ogPvaJaoRxO/Jcw0M7DAl2BapixLkYmioKwLw4okOZ8PtIigY0gVD72iBmhWlbbD/fL4DCoZ0wa0tpZ1sAPXgZRPCHfFvRFkVBiTbgQ8JdYtlbZET4Pzfzwcei20rGNIllq4OAP6ItIMUzUu/SPh7+euJ3oTieOw3tagXu3dXNEm+ZqmIkkaR8yo2A7mX4DuhbpLJPXg15kEN6wR9OjeN9dFPj18KvXPvTs2ioQye7tjYUrWjlTp5RwjwdGlPCSjcOpL7aj6vPddUTIHP+n2ERq0uGvvH4hqFz0kAcKlkUdJ6vx8NPKuxZDLzI83xRrCH5D6hI48Ue5DoePVG6AEAwBrOplsKcUAzsc51Ylhf0oD+IhPF/yKp2rwnMk4mF2uq/BW5AEB8vIh5I9QTgPLip5RAJESb9ZDcGaXo4h+Ey/zDdZ4rGf5amCOPxRDoy86uF6VoacYHH3eciW85D7RnOVpOm+Aa/1Bcyy3uRuBS9/bkFOKbI/XxdrB70m6t1zI9crF6IVkIl7M0mR/DVwCIOn4BwGvBnrjeLx+p7hgnjNR0ukKS1wSUAgwko2dtxwhHRDkjzWJoqCsuLf1I1kGnmEbd5LU8B8SAl2zC8YLDpcbcOppnKFw1z6/hSzkva+tmcI6wAzdqFqcXAgoXka7LjCZ0C76Gl+hEPO75XbZMJm01eHvdRq6o3bXWYbeVyuu1pYm+JGdFLsIX4Rt1HcmrN5ZFrNPZbqANExIxjAtLB09KBTWrHOGY1zImjC489w32MnScVsSCOAIX9kI+dEQqoi6VdSQreDaY6C9iRavYDFwAUQxfZH5dQvis2KN0CrTY+UwYHTWR6HBhVU8QqmxnrVTvAUR1v/PD0tEd04EZY8QuZpWTwh0sPf/SSBNDxxnpHZfNBHg6YAJcAAFVTK1kBvwn2T7RItQplENe6QT8GL7S0vqFiIW+HhVAKvxFona103QkV+DZTWuhbekn+Ch8m9nNUqWAixUu596vJjb4CJmAPrNKLeKIF1pKenjp4/Rt18sHoTvVCwnQ83IUBm0jiOfLPU71hW3V8i6VSlbCszlinmmxXpyhQklTPUo68NScBOK/J4Svxh5aE3M1BGpKN3zALD+NDgur5jGbkKeYK1JNZcbPwtNNv9ADmBm5COtoI0PH3xV4A7XJMQBAxGTDeKPqA6tnq1KWJlow0q5DqIbXgw9ocrwB5HXoUmhJVpIJHCHA00V0Bp4owP3UgxyifVFPDQoX5kZamnY+M+EfmiOwNlqjmuwy+4XdI/CSalAsLfjhSyk7ThEqoIiL462qAzdYh37BJ13ehQimhNvhRvdCgy0xhpYZOO8kJiWAx4Y7md4msyBl1Q78rFrRt98158qnoFKj/dnyYSknhaJqCykVCi/MxA9GmzxpLzG70kjguHNG9agwu/CMqgllhNd4zbm1cXlj/SnELmqo3i/iesW00XAOPcyLtLDUUUWv0Lz6nNqolJvser1TEJ1S2AftzkwcuxfUT7YQ4R2WtAj+PkH15LpuRCzJiiRGbK7IyzipPr3RPxBX+d8H/9I5p27cFLFmRX1ZqirnetCGc8Y7o0Z6whhY8a3jiBn4RQ2r4a8+V6FBtXLYcfgUcr1uzN5wAK//tg71quTi+0cvwZCpG5G/Zp/sOcY91BbL/juGelXL4dIhfybs4wPlE0TzMt7rmR3b93DgBTzgnhbL5MJzX7uGaHdmDVQrn+yUsuL1a1Fw5BQe+HoJCkuCSftHdG+F+tXKgVKK2z79B4QAL19/Dgb9sTGh3KDbLsArv6wBANx2YX281kXdc61uFWnzsilPXYaSYNT+upzXzZ2zAVo3rI5whMLjJug7aTk27WmAwaFu+Lx7K3jdLnRoWhsRSnHP6EWoUcGHUfe3Rl6N8rho4KyE8w/v2hLXNqsDFyE4eioQ6+MH2yerG+5qfTpmrj8AFwGmPXsF/jtSjMaCdFM9Ls3DWbUr4sjJADo0rYUIBTbuK8LPK/bgx2W7k87XpXld5K/ehzZ51bCk4Fhs+/LXr8X+wlL8u/0IBkxZn1C2bpVc7CssVe3PijkenPQrf4Ed5SIPLucsY75+oA38oQia1KmIq9+fx/V1ffyyYg8a166IL3u0BiEEf/e9Gu25fhp9f2vc9O3bqEWO44+nL8e5AuH06BVn4uJG1XFG9fIoLAmgflVO4AyK/vd2sDvW04YY79OWlHdS+CrMCl+ExmQPAGDeix1w5btzNR1rhIUvR4V0u8Hx5+rze1vB7XLh13ELcS9mC0rLv4LW0mic9fG92sLncaFNXlyVVrtyogD/q89VqFrei2CYYsfhU1ix8xgG5m/ANefWxtA7WsDrJqiY40GnZnVwevW4AF/y6jV46/d1mLI6LksaVCuH3cdKFK/x03taAT8pFoHLgmBWjhDgAGKdfCY3G2/CpQ1rUK08Tq9eHpXLKV8KIQSt8xJ1pydoOVQiJXFDe1D0Cz2AD0J3Ynlu1NtuHc3Di6HHJM/XRCJ1GQBUq+BDtQo+1K6UIynAuzSPentu3F8EAGhcuyI6nlsHg/7YiEY1K2DH4WiKtWrl47O0Fg2qoIbCLIP/IpebiVTI8aBCTnIfCQdvw9pVcN2OaGajXE7IX3JWDew+VhzbJjfDFnqb1qsaD6gv90IBgKua1kaTOpWS+pEQgssbJ9rfXnp2zQThzFOjgg91KkXraC8qU72CD9Ur+NCsXuWYAOe/PmpXjgrwd4JdcZV7hWwbtViL7Ka10cn/DrZzsW2qVfCh5elVcfBE9AVRs2IOWp5eFb+s2INLzqoR+5SuL+in06rkohAVUUgrolm9RBWWy0Vi/V6rUvz+tiwdiQhcKEIFtCRbVdsp5CgqYxGX2ER4v2J1gqaUokzIaRJjoEG18ji7dkU8ztnaJ9XvklcOtD87+ctQrE4RjuvqFXxYvy/6rNWpnBsL6yAux5ct70v88mjdsJqqAL/hgrqqAtwKHCPAxfAPQfwBMz7YwrEgRhRhuHEUlXGNf2jKCzxaVV7CwSc8JMHRwOQ604VSezLRVnGVn4VvjuULTYXNNG5h4k7ThQljjqeybiDVWgIai4+ul/nhC7A4cg7qk8OqZcVRHffSmpgZboUfyt0JKMvMBMzqcgL9gdfGhq/FAHOq142DBXj0fzMWvPiBKlzA1O+cIo9cTk/h5M4mZsGmY+Z1qT2kWurS+6AbaX9yHem7uWqX1z3wiuZzGbUg8cOLTwyaeUbgwsPBF1C/QjnokuAmIrYQUrt7Y8OdMibAHbGIKQWvTjLDSzM+AzcXrWZKCQ98wiE2m05nGLlbrUco8/dE67gx4nDDt0d4/632JtbytdiidBT+EQXNAuJfs138g+LbQOHXmQmKR5wAWw5TX+4mVUYIEDahYZrig5uAYwU4f8v4l2Uqn1BCHbgVyI2HxO2Zn4KnqwVmCjOrtRVGWuq2YLFKja20Po7Sing3dLfk/u2R02RtmfnWCvOuEgBfhzsDAFZySZrF8MkoxGzWGDOf/zLlvwpmhS/UdJwUWk30tBRL1UT/KK2Itv5PUjuJRlIS4ISQzoSQTYSQrYSQvmY1Slvd0f9T0YAn+nGZL8D1CBdepsnqwDMv3zOOmcJaa38aedm4DDQ01ftbjFy08o/CAi7aX9L5dT4hLkSwg9bF04He6BnoI1lmqMzLopCqx3UH4tf8T+R8XFA6Go8Fn9PVRiFmDQ1CSMpOVvtoDcWcqGZiWICTaHqJEQCuB9AMQDdCiHy4PZOJ3TATJJuV+TMBhRm44IURexHJPPxMfstj7OWtrUeNDC8lAW5HpZhUc/lNkyPtcQyVJcO/ppo7Vdi1J1A+YUFT7zvQzJe7nNrsycBT5lViEqnMwC8GsJVSup1SGgDwHYBbzGmWOh7OzCjHEx1EvNmbHgq4NFa8Zxc85uqt+DbJWUTxD3o5nzum0y8nuA6P4FPco/JZzn+253iM31K5Y/l25nj1n1tKneBx823Vd8+87uT6czxu+Lh2+zRcO19Ga93lDIwr/pp5oZLrdcPDtV3qGoRlraIU0kk0onUnVy524pFKsHCYVkGb0k+Ttgc06M5dRHmFSO/zLLwGqXGg1v/CsS8u4+P+nhK5JCkxhxRG1w6MkIoVSn0AuwR/7wbQVlyIEPIIgEcA4IwzpHVmRji/fmU83bExul8cPefznZrgywU7ULNiDl654RycUb08th86BX8ojJanJ9ouj3uoLY6c8mPLvnewaOEEfBvuhFqkEJ2feA+fHI7gyQlxu+C8GuVx3fmnweMiCIUpzqpVEcGItpjhn97TCt8v2YWmdSrht97t0W/yOrwqcMY557RKeKZjY3S9+HScVjkXz13TBHe0boDVu46j/5T16NC0Nn7r3R63fvo3ul2c2HcDbjkv4brOq5fYH0Z4qfM5+PrvAkx/9oqE7XWr5OKFTk1wc4u4bvPDu1vi/Zmb8NbN5yEQSu6PFzo1weKCY7inXXJ7rmxSG090OAu9LpfWrcrRs30e5m8+hL2FJfjvSDFubF4XL3RqilqVchCOUPS6vBHcLoL3Z2xC/1sSF+te63Iupqzeh4cvPxOn/CE83bExPpmzFV4XQefz62L17uOolOvF76v2YvnOY6hfrRxaNKiKZ69pjM/mbsO97Rpi0tJdqFIuWqbrxWeg6WnRWemEXm3RffQi3NP2DNSpnIs8zrOvZsUcvHhdU3S5oC7qVS2HXUeL8VTHRI/Q/13bBIt3HMV59Spj8pPtsWp3oeb+uKppLZxXrwrK57gxdNqm2Pa3gvehITmA38LtcYv7bzzgmYFHAv+L7X/66rPRpXk93DN6Ycyv4puebfDA10vQN9gLQ7yjcbzdS7hsfwkWbI2aAj4QeAl/5TyDzoF38KznJ7RybcEGGs3o1C3wKm52/YNunjkAgN/Cl8bqGnp7PGrk5/e2wmPjlqOCz41z61YCIQRdLqgbc8C7OK86Bv3f+Zi6Zj9uvbA+Zm84gDaNqoNSYMXOY6hRMSfJRlt8j7ccOImHLk92Hru9VQMUHD6FJ68+W/LY35+6DPM3H4r2383noX61cjhY5MdPy3fjtS7NUBIMY8XO49hzHHgn2BXLI40xyDsab4Z64M2booqHEfXewbW7P0JvLrF6p2Z18MCleYhQ4Mgpv2y7U4EYXVAihNwBoDOltBf3930A2lJKn5Q7pnXr1nTp0qWG6mMwGIyyCiFkGaU0yespFRXKHgCnC/5uwG1jMBgMRhpIRYAvAdCYENKIEOID0BXAZHOaxWAwGAw1DOvAKaUhQsiTAKYDcAP4ilK6zrSWMRgMBkORlFzpKaV/APjDpLYwGAwGQwcO9sRkMBiMsg0T4AwGg+FQmABnMBgMh8IEOIPBYDgUw448hioj5BCA/wweXhOAeoR4e8OuIfM4vf0AuwY7kO72N6SU1hJvTKsATwVCyFIpTyQnwa4h8zi9/QC7Bjtgl/YzFQqDwWA4FCbAGQwGw6E4SYCPynQDTIBdQ+ZxevsBdg12wBbtd4wOnMFgMBiJOGkGzmAwGAwBTIAzGAyGQ3GEAM9k8mStEEJOJ4TMIYSsJ4SsI4Q8w22vTgiZSQjZwv1fjdtOCCEfcde0mhDSKrNXEIcQ4iaErCCETOH+bkQIWcS19XsufDAIITnc31u5/XkZbTgHIaQqIeRHQshGQsgGQsglTroPhJDnuDG0lhAykRCSa/d7QAj5ihBykBCyVrBNd58TQnpw5bcQQnrY4Bre5cbRakLIL4SQqoJ9L3PXsIkQcp1ge/rkFaXU1v8QDVW7DcCZAHwAVgFolul2SbSzLoBW3O9KADYjmux5KIC+3Pa+AN7hft8AYCqi+WPbAViU6WsQXMv/AEwAMIX7exKArtzvzwE8zv1+AsDn3O+uAL7PdNu5towB0Iv77QNQ1Sn3AdFUhTsAlBP0/QN2vwcArgDQCsBawTZdfQ6gOoDt3P/VuN/VMnwNnQB4uN/vCK6hGSeLcgA04mSUO93yKmMDVUenXgJguuDvlwG8nOl2aWj3bwCuBbAJQF1uW10Am7jfIwF0E5SPlctwuxsAmA3gagBTuIfssGAQx+4HorHgL+F+e7hyJMPtr8IJQCLa7oj7gHiu2epcn04BcJ0T7gGAPJHw09XnALoBGCnYnlAuE9cg2ncbgPHc7wQ5xN+HdMsrJ6hQpJIn15cpawu4z9gLASwCUIdSuo/btR9AHe63Xa/rQwB9APCZimsAOE4pDXF/C9sZuwZufyFXPpM0AnAIwNecGmg0IaQCHHIfKKV7ALwHYCeAfYj26TI46x7w6O1zW90LCR5E9MsBsMk1OEGAOwpCSEUAPwF4llJaJNxHo69k29ptEkJuBHCQUros021JAQ+in8GfUUovBHAK0c/3GHa+D5ye+BZEX0T1AFQA0DmjjTIBO/e5FgghrwIIARif6bYIcYIAd0zyZEKIF1HhPZ5S+jO3+QAhpC63vy6Ag9x2O15XewA3E0IKAHyHqBplOICqhBA+e5OwnbFr4PZXAXAknQ2WYDeA3ZTSRdzfPyIq0J1yH64BsINSeohSGgTwM6L3xUn3gEdvn9vtXgAACCEPALgRwD3ciwiwyTU4QYA7InkyIYQA+BLABkrpB4JdkwHwq+k9ENWN89vv51bk2wEoFHxuZgRK6cuU0gaU0jxE+/lPSuk9AOYAuIMrJr4G/tru4MpndJZFKd0PYBchpCm3qSOA9XDOfdgJoB0hpDw3pvj2O+YeCNDb59MBdCKEVOO+RDpx2zIGIaQzoirFmymlxYJdkwF05ayAGgFoDGAx0i2v0rlAkMLCwg2IWnVsA/Bqptsj08bLEP1EXA1gJffvBkT1kbMBbAEwC0B1rjwBMIK7pjUAWmf6GkTX0wFxK5QzucG5FcAPAHK47bnc31u5/Wdmut1cu1oCWMrdi18RtWhwzH0A8BaAjQDWAhiLqKWDre8BgImI6uyDiH4FPWSkzxHVM2/l/vW0wTVsRVSnzT/TnwvKv8pdwyYA1wu2p01eMVd6BoPBcChOUKEwGAwGQwImwBkMBsOhMAHOYDAYDoUJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUP4fhJWeNqSRcesAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(1)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Passing `beta` as 2, gives random-walk distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA26ElEQVR4nO3dd3gTV9YH4N+VZMtgm25Mx3TTmxMIxYTe0jfJpmxCevZLNnV3sySkENJI3YRkUwhpm142nUDoxIQEYno1GDAdbAPGvUi63x+aGc2MRtKMijWSz/s8eTKaGY2vkH10defccxnnHIQQQszLEu0GEEII8Y8CNSGEmBwFakIIMTkK1IQQYnIUqAkhxORskbhoq1ateEZGRiQuTQghcWnDhg3FnPM0rWMRCdQZGRnIzc2NxKUJISQuMcYO+jpGQx+EEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHAVqQhqg9QdOo7i8JtrNIDpRoCakgeGc48q3fsPV83+PdlOIThSoCWkATpytxomz1QCA6joXAGBvYXk0m0QMiMgUckKIuQx/ZjkAYGKfdDx/+YAot4YYRT1qQhqQpTtPIrfgTLSbQQyiQE1IAzP7hx3StstFa6bGAgrUhMQ5dXZH26ZJ0nbBqYr6bg4JAgVqQuJcaVWd4vEfsqGPBCuFgFhA7xIhcW77sVKfx/JOlNVjS0iwKFATEufSU+0+j93yX1rgIxZQoCYkztU56YZhrKNATUicq3U6/R4vr3HUU0tIsChQExLnnvlpt9/j419YVT8NIUGjQE1InKuu89+jHtm9VT21hASLAjUhce7wmSoAQJdWybAw7+PFFbX13KLAOOfgnMbWRRSoCWkgFszIwt8n9fLa73S5otAa/ya//Au6PPhTtJthGhSoCWkgEq0W3HF+N+nx5kcnAgAOn64M+dqcc9Q4/A+xGLHnJFX2k6NATUgcu/i1NdJ2xxaNwRhDZptUdG7ZGMl2d/HMK7M6hvxz5i7ajV4PL8bTP+0K+VrEG5U5JSSObTly1mvf4nuzAbh7wRYG1DhCH/p465f9AID5v+zHQ9N6h3StFbtPSttOF4dVa2C9gaEeNSFxSl4Zj2nEOsYY7DZrWAK13Be5h3Wfe+hUJZbsOKHYd6DYMxRz2oQ3OqOBAjUhcaq81jORxVef1J5gQU2A9D1/vtt8FJmPLFLse+CrrdL2K8v2ImPmQqzNL/bK4jhbVYfs51fitg83KPbLx7qfoaEUABSoCYlbZdWeQN20UYLmOSWVdfjgt4NB/4x7PtssLe2l5d/L9gAArlmwDu/+WiDt33y4BAMfXyI9PlVegyNnKrH+wGk8tzhP2v/1pqN4d82BBl83O2CgZoz1Yoxtlv1Xyhi7tx7aRggJQVm1p7zpmco6P2fWj+83H5W21x84pTg29MllGPXsStz5yUav5835cSdGzF0e8faZWcCbiZzzPACDAIAxZgVwFMA3kW0WISQUnHP8uOW49LhZY+0etWhfUTm6paVEtE3yG5sf/a7diy8qq9HcL/920BAZHfoYD2Af5zz470qEkIjLfm4lXluZLz0ONMnv201H/Z9gwBVDOwQ8p1ebJoau+dcx3RSPSyprsXZfsaFrxDKjgfoqAJ9qHWCM3cYYy2WM5RYVFYXeMkJIUIrLa6Rp44A74+PJS/r5fc4R2fl6bT/qnfoHAAu3eXrymW1SFcfEsealO0/CiBeX7lFkk1y7YB2ueXsdzlZFf0inPugO1IyxRAAXAfhS6zjnfD7nPItznpWWlhau9hFCDNp9XLlqy8aHJ+LCge00z01OtAIABnZoquvanHMs23kSLhdHzl5lj/aVqwYBACpr3VkbZ6vqsFu1gszEf6/WVcOjR2vvYRh5NskOYdWauz7dpKvdsc5Ij3oqgI2cc2MfhYSQemVR/VU3EoKxFnHyS2O7vrlv3285hlv+m4uP1h2ESxVw7TblDz5yxntq+r6iCr9ZIp7n6uvhbzx4JvBJccBIoL4aPoY9CCHmcKaiFiWqDA91AJVLEQJ0pc7FA46VVAMAXluR75V/nWC1oFe6e6hj3vK9sGjNsgEw+/sd0nZGy8aa53Ro3shrn9blGsqiB7o+RhljyQAmArg9ss0hhASrzunC4CeWeu1nPgImADS2u3vbFbX+J70cP1uF/UUVeHaxexGCwrIar5Q/m9WCvJPuoY6Xlu5Boo8PiM9lY83L7h+D7rMWeZ2jVUP7nvE9/LYxnunqUXPOKzjnLTnn2ncPCCFRt3Dr8cAnqSRaLWAAPlaly9U5Xbj70014dvFuOJwunPfMCly7YJ3inA+F54hZHt1V48pzF/lfWQZwB/f+7ZXj4w9OzcTKf5yPxfeOxvzrhkr7NzSQYQ4tVJSJkDhRUmm8LgZjDBYLg1M13vz0T7vw/ZZjAICvco/4vcbVwzrhiUv6ISlBeyz8oWmZeNrPcmCPXtgHV7z5GwBg39PTpCJMmW2aIFOWxpeztxgHiivQpVWytG96/7Z+26ZXxsyFAICCudPDcr1woynkhMSJl5buCep5ThfHydIa5Bd6akDLU++KyrUnoYgaJ1qlIP3ynwd5HR/auYXm8yb1SQcAnJPRAneN647bs7sGrJT32op8xXTyOqf5Fj2IBArUhMSJB6ZkKh7/c3IvzLm4r+7nT3hpNQCgqtaJOqf+2hryXq+8tytq0zQJ78zI8tr//BUDpe2/T+qFB3WUR/3fxiP4Yesx6bEzDDVAvpSNme8U0v7MhoY+CIkT6nKld47tbvgau46XYuorOUG3oXdb7xmH7Zs1Qvtm3lkcvgpFBfKYLGukLohA/fqqfPRonYqJQo/+Q9n4/LR5Och7cgrsNt8pjdFAPWpC4sT7vx4I+Rpvrd4X8JzhXbWHMgAg0WbBE7JZkE9d6tnu1MKTiveirDcdyLT+bdBINv4tTz80ut6jw+nCc4vzcOt/c3H8bBVOllZjq2pxhVV55ptZTYGakDihnoASjG83Hwt4zh3n+++pXza4PVokJ+KvY7rh2mGdpf33TvCk1/1JRz0Q0evXDsWqf56vecxhYIgGgKK0as7eYgx72rsq3+0fbjBdHREK1ITEiWlBZkAEqqwnOjfD3ZPObJvq97xkuw0bH5mImVMz/Z5nhK9UcIfBoQ95vri/QlRmW/uRAjUhceDw6Uq8nRPc0EeCVV8YuHpYRxx4ZhpapyZJ+5bel63754jBdnSPVobaBwBpKXbN/fJAffBUBTJmLsS6/ac0z1Vbu8/3eT3T/X8Y1TcK1ITEgfyi8sAn+aB36dhEq1Wa5fj29VmYf91Q9DAQ0OYt3wsAQVW8Y4xh15wpXvvlY9S/CEWifA3f6CkGJfp641FUmGh6OgVqQuKA1c808UDev/Fcn8duH9NVc//EPumY1LeNoZ8zLtOdZaG+eadXo0QrbhnVRbFPPkb92HfbAQAnS6s1nx8o5fCTW4cpHk/69y/BNDMiKFATEgfUE0XO76W/1HCfdk1wzbBOmscenNobLZITAQAOgxkWarOm9cZ1wztj55zJQV/jvok9pe3MNqnS0Mfrq/IhjoJs81EnO9DkGHVK3tES4zW6I4UCNSFxQF7EKP+pqXh3xjmGnv/JukM+j4ljyqFmlVgsDE9c0g+NE4OfvpEsK8faMz0VDiH4yhfEvWlkF6/nAUCtkGfu6zhg3gV0KVATEgeqhEA9tV8b2KwWWAJMxVZTL3UlJxZ7CrFDHTa92zbB8K4tYLMwqUc9sntL6XiNQ7sSoNijbqxRn7tji0YY1LE5bhiREf4GhwEFakLiwEtL3HU+HtIxDVvLv6b08tr3yS3uMducf43FtP5tMLW/sTHpSFl0z2h8eutw2KwMR85U4Y6PN+DQKc8iBeoZmur96iyXh6ZlIueBcbBaGGZf1Bcf3OR7zD5aKFATEgduHJkBwP9qLv4wxqRr5DwwFt/cMQIjuruHPNo2bYTXrx0a0pBFuDHGYBWWsvlp2wlcO9wzsabWR6AWe9SpScrXoV7gYExP9/i+r0UNAGDF7pNeP+ftX/bj1v/m6nwFxlCgJiTGcc7xhVCK1FepUT0eu7AvCuZOR8cWjTG4U/NwNS9ift5xQtqukS3v5Wvoo1YI1G2aJimq/Pmqm11wynspMQD4ff8p3PR+Ll5cmqfYv2pPoeFFe/WiQE1IjFuZVyhlOiT5WXYr3pyu8NTfLqv25Gbv0KiAV1JZiykve4pNXTK4vTRWfYef4lVaudTiz31r9X7F/l/z9U20CUbDeVcJiVOHT3vSyGw6ZxnGmwVrPLMyNx0qQUFxheL4FlnuthjUxbTDbD8zJUs0JufI16Cc+NLqsJRaDaRhvquExJFGIQx3xDKx9oiWM6rVbma8u17aFoeHTpx1T4yRT4kXXTyoHQB4LeALeGZYAsDewnLFEEykUKAmJMaJC9Q2NNU+xqJFi7YdR8bMhahSLdwrTg66ZbR71mXrJt51RC4Y4A7UFTXeP2OLamblit2FOH7W/a0m2BrbgZjnNi4hJChMd7WO+OJvKnqtw4X/+3gjAOCB/21VHGslFHh6YHIv3D2+u+YN2GRpdfbA9T6+2nAEa/YWw26z4KpzOupuvxHUoyYkxr24JC/wSXGog8aqMSJ5LvVP25Srsw/r4h4ysViYz5TDZGF/WbUyULt8jEefKK1GjcMVsRRGCtSExDhxanfXNO/1CuPZ13eO8NrXv31TAMpcavnNvqzOzaUKgP6IU9XVedFdH/rJ7/O0Zj2GAwVqQmKcWFDp+7+NinJL6pfWuobPXzEAgCdnWu0e2Soz/iRrjPvrKZMa7ISjQChQExLjKoWbZQ0t+yNZIygmCumJb6zahwsHtlOeb7didA99VQWTND4EjpwJXE1Pz5qTwaCbiYTEuKo6J+w2i1ep03hns1pQMHc6qmqdqKpzokVyIg6ecudPbzt61muqeN+2TXVfW6tS4FXzf5e2LxvSHuMyW+Nvn2xSnHODz8p8oaEeNSExrqrWGbGx0VjQKNEqTV6RZ3Col9qyJ+gPd6lJ3ml28vrUPVqnSil8cgnWyHxYUqAmJMpKKmsxb/lenxkFgXz4+0GcqTS+vFU8Sm/iPXlFVK0xecWXRNnsw6paJ85/fqXiuM3Ht5dIfaehQE1IFDmcLpz/wiq8tHQPVu8pCuoaDW1sOlh/FJwJ6nn7isq9CjTlHjytee5lQzoE9TMCoUBNSBS9tjIfJUJv2BFkj3pIp+YY2tn81e5ildaEmIJid+B+QFXHW74CTThRoCYkivYVeYoHMQDdHvoJ172zztA11uQXY8PB4HqLJDCtIRNxBZ07zvddeS+cdAVqxlgzxthXjLHdjLFdjLHzIt0wQhqCH7Yck7atFganiyNnb3EUWxT7ltyXLW0bWeRX7fZsdy0QrfrWz18+QNoWF1yIJL096lcALOacZwIYCGBX5JpESMPRWb6KSBB3ovRMwmhoeqanYul92dg1Zwr2FZZL+1f8fYyh64zNbA0AqK5zKd6agrnT0a+9J9XvNiGgR1LAQM0YawogG8A7AMA5r+Wcl0S4XYQ0CAdlN6mCyfoQa1qMDaHnGI96pKeiUaIVV53rnrV548gMdE1LMXSNx77bDgBYvqtQWp98/azxXueJFfMenJoZfIMD0NOj7gKgCMB7jLFNjLEFjDGvogKMsdsYY7mMsdyiouDuXhPSkP1nZb7h54glPPcXVQQ4s2ES/01/22d89ZWLB7cHALz7q2dRAq3a1Y0TbSiYOx23+1nJPVR6ArUNwBAAb3DOBwOoADBTfRLnfD7nPItznpWWRp/uhBi18VCJ4eeszCsEAAzv2jLMrYkP4jeOozqmf6v5W5igvukJ1EcAHOGci7eiv4I7cBNCQnCytDrka3z4+0EAwB8F2nm9DV3+U1Nx4cB2yH1kguHnDujQLPwNClLAQM05PwHgMGNMTBgcD2BnRFtFSAMQjpS6G0ZkAADenpEV8rXiEWMMr149WLPSXiDq6eB/jeDQRiB6s7PvAvAxYywRwH4AN0auSYQ0DHcIK5Bocbq4riJLYo6v1qQMEhrGGBJtFqm29U2jMqLWFl3peZzzzcL48wDO+SWcc8quJySCZn+/Q9d54s3EJBvNXYsEu2xVd60bifWF3l1Comz2hX289n34+0FdtT+qhd5epArWN3RlNYHXTKwPFKgJibLpsnKZd4/zTEme8e56aWjjZGk1Nh7y/iIrDX0EMQZLYgctHEBIPfsy9zDeztkvPRYnTADwmpRRWl2HpAQrxr+4GuU1DhTMna44Xl3nQqLVItWeIPGJAjUh9ejN1fswd9FuxT557eMxPZVzEKpr3UMb5T6+gtc43Ku7kPhG7zAhEXaguAKPfrcdVbVOryAtaiIsG9U8OVERuF9f5X+2osPJkUCBOuIm9UmP6s+nHjUhETZ9Xg4qa50YqDGBIklYHmrFP87HmYpaAO7KbPd8thkAsL9Ye2p4SWUtVuYVShNeSGQ8flFfLN5+Am9dNzSq7aBATUiEdUtLwbajZ/Hqir1ex+6b0BMA0CrFjlYpdgDKFVsuHqRcl8/l4rBYGO7+bDN+CXJFGKLfjBEZmCFMKoom+s5ESISJM9zUyzkBQO+2Tbz2NU709J/EyRaiovIaAMCxEuO1K0jsokBNSITZrL7/zFKTvL/UNkr0nK8O1MOeXo4P1hYgX1ZnmcQ/CtSERFiin0A9uJP3Woc2i+f8GlWgBoDHVLMWbxnVJYTWkVhAgZqQCLNZjeU4y2t8qHvUWkZ2b2W4TSS2UKAmJMJW5Wnf9NManwZUgdrpgjPAyi+JlJ4X9+gdJiRK5NPF5bq3TpHydmsdLtQ5/feq9fS6SWyjQE1IPVs7cxyeuaw/pvRro3k8wWrB/Ouz0CrFjhqHC6VVdX6vp3VDksQXeocJqUdL78tGu2aNcLWw6Ko/xeU1+HT9IXy6/pDf84Z29r4hSeILBWpCIui6d9ZJ2+qCSuHCGBVkinc09EFIBOXsLY7o9fc9PS2i1yfmQIGakBjz/OUDAAAWBl3LdZHYR0MfhERQWqodRWU1YblWy+REnKqoRYrdhtX/PB/NkxPDcl1ifhSoCYmgGmEFli2PTQr5WqeE6npl1Q50bpkc8vVI7KChD0IiqHvrFIzu0UqxikuoNh2mtaUbGupRExJBu0+UBT1z0G6zaNb6sFCWR4NDgZqQCEpvkoR+7ZsG9VzuY+a4nRaybXBo6IOQCKqqdaJRQnB/Zk9e0g+A+ybiH7Mm4Dkh2+PSwe3D1j4SG6hHTUgEVTucihVbjOjVJhUA0L55I6Sl2nFlVkdcmdUxnM0jMYJ61IREyE3v/4GSyjokJQYXqO1CTzy9SVI4m0ViEPWoCYmQFbsLASDoHnVmmyZ44YqBmBjlFbBJ9FGgJiTCkoIM1ABw+dAOYWwJiVU09EGIQT9tO46zlZ7So3VOFzJmLkTGzIXSPoeshnSwPWpCRNSjJsSAwrJq3PHxRgCeanjfbT4mHeecgzGGihqntI8CNQkV9agJMaDO6Z3c7JItlSVOUHHJkqB3Hi+NfMNIXNPVo2aMFQAoA+AE4OCcZ0WyUYSYlVi7Q65NU09WRnWdE0kJVtS5PEMf6w+crpe2kfhlZOhjLOc8ssV1CTE5+ZRul4vDYmGoqHFI+6rqnGgGwCHreb934zn12EISj2jogxAD8gvLpe1KoXf9v41HpH1r80+Bcy4tSPviFQMpD5qETG+g5gCWMMY2MMZu0zqBMXYbYyyXMZZbVFQUvhYSYiJ3fbpJ2q4UetLiDEIA+PuXWzD6uZXSWHZCkAWZCJHT+1s0inM+BMBUAHcyxrLVJ3DO53POszjnWWlpaWFtJCFmIL9pCLiHQdbtP4X/rNyn2H/kTBUOn6kEACTQCiwkDHSNUXPOjwr/L2SMfQPgXAC/RLJhhJhNmWwsGgDGv7gafds30Tx378kyAECClXrUJHQBf4sYY8mMsVRxG8AkANsj3bD6UlZdhwU5+6PdDBIDDp+uVDyudbqw85h26l1NnXuM2malHjUJnZ4edTqAb4Ql6W0APuGcL45oq+pR/9lLAAA90lMxpicN2cSz9349gLRUOy4Y0C5s12yUaNUs7v/i0j0AgETqUZMwCBioOef7AQysh7ZEVX5hOQXqOLZ6TxEe/2EnAAQdqP/55RavfSWyqeRa6GYiCQf6LRIUllZHuwkkgma8uz7ka9w/qZfh59joZiIJAwrUgqKymmg3gZhceY3/3rMWuplIwsG0v0X5heX4ZN2hevt5y3adrLefRaKL+1qMMIDyanfWxz8m9YRV1VMumDsdn9w6DC9dqRwlpEBNwsG0v0XT5+XgoW+21dvP0yq2Q+KT02X8veac45HvdgAAbhndFf+5Zoh0rGurZADAiG6tcNkQZf3oWo0bjYQYZdpArb6T7nC6UK1RECdc7EEuQEpiTzAfyiPnrpC27TaLokf9yAV9fD6veXKC4Z9FiJrpo5P4NTXzkcXIfCRyWYGB7t6T2KUe6qhxGPvAr65z4myV5/eDMYa1+zz1ycZmtlacP6xLC2m7WeNEQz+LEC2mD9QOFwfnHI4gvq76U1pdV69DKyR6vtxwRPH4iR93GXr+K8v3oqJWGdxHdW/l8/xtR89K23ZKzyNhYPrfIocz/EEaAKa9nFOvNytJ9Dzw1VbFY3m1Oz2Wa9xo7tE6VeNMt0pZUKebiSQcTP9bVOt0SSUjgfDdnBnQsWlYrkOi64O1BXj8hx2Gn1dWrX+oS+vmI/OTHt0ymYY7SHiZPlDXOV2K4HwyTBNTqKcT+85W1uGx73fgvV8L/J4n3vf7/Lbh0r5VefpL8WpNEU9Ltfs8/49ZE3RfmxA9TB+tVucV4eYPcqXHf/1oQ1iuK1+QVG7z4RKp8hkxt4Fzlkjb6hKkcnabe3HZwZ2aS/sOqQos+XPkTJW0vfQ+d4XfJD8L1lpoNiIJM9OvQv7t5qPYcPCM9HjHsVIUFFcgQ8hdDac6pwuX/OdXAJ4VpklsqHW6kGTRDp5VQlpngqyS3fM/5+HOsd0DXlf9AdAj3TM2/cgFfdCpRWPN5+19aiqs/sZHCDHAlD1q+fhhzl7vZRrv/GRjWH+e+AfcY9aisF6X1B+xrKhaxsyF0jYLInBWy1L59jw5VXHs5lFdMLFPuubzEqwW6lmTsDFVj7q6zomnf9qF3IIzfs9zhDCLcPeJUqSnetawa5WSiOLy2qCvR8yhvNaBpo19Ty7JbOOdpeF0ca+p4GoLtx6XthMp1Y5Eial+877ddBT//e0gdh7XLsYuOllWjYyZC7E23/ii6FNezsHgJ5ZKj7+5Y6Tha5Do+G7zUfxN9m2qW5pn+OvzPw77fe7uE973HfTMdJ3zo7s06sAOlCVEosdUgbpctdSRL+Iswo/XG8uD1qqQ19HHGCMxn3s+24wfZT1c+Teh5ETfN/d80crmEJ2ucF+7TCjElGw31ZdP0sCYKlAbZXQE8Jynlike35bd1ee5RqcZk/ojTgnv3dYznPHMot2Gr+PrPe718CIMeWIpnhR60wBw3fDOhq9PSLiYKlA3TjTWa1l34LTftKxAxD/4z2T5tSJ5bQdiLg4Xh9PF8fv+0yFdx9cNSLGnvWDNAWnf1P5tQ/pZhITCVIG6mexmUCNVnuqy+7MV6VWAeyhjiGy82ai3c9x/iMO7tsTd45SpWr7+iONBfmEZVu4ujHYzgjbtlRyU6vgg1ZpR+MpVg6RtraGPV5fvDalthESCqQK1fAZiVZ0TrWWzv7q3TsXOOVO8nlMSQs/35lFdpO15K/IVxyJRX8QsrnjzN9z4/h/RbkbQ9haWo9YZ+IO0stb7nsfFg9rjnRlZALSHPsRFaeX8FWAipD6YNlADwMK7Ryseh3vad8fmjaTtm0Z2URxz6AgEsepMHJR01VPzZecxT/bQy38eJG2LMxWrVd+aNh8u0bzOiO4tjTeQkDAyVaCuUPWA9BbzLywLrv7HtAGecUf5jSnAvWp1vIu1G6bnZnjqPH+iI+OnuVAc6YUrBuKSwe2l/eLvlfr1i7NS1RIspvozIQ2QqX4DH/9hp+JxYz/1FOSCWVoJAFrLJr5cPKi94tiTC43VLI5FvSO4EEMkyGcJvrFqHwDgn5N7Ybpwo0+9QIDY626SpLxJPft7d7U9vfchOOJ3GIzEBlMFajWbzqEOPTMVxT9sXxrirLNYGIYvr3GgpNKd07z1yFmv404Xx8Jt7txq9bcg8T6Desjsmcv6AwAe/W67rja8vIxuMJLoMlV0unhQO2k7u2caAODZP/WXKpYBwOJ7R3s9r07HePKzi915tv7KU8pFamWOrzYcwe/7T0Xk2pG2+0QpvggwAzDcBs9ZgkFzfGf2uGS96Ie+Vq7YI/5eqAO1Raj54a+w15VZnkVqe6b7XiSAkPpgqulWYunRD246V6rN8OdzOinO6Z6W4vW8QBkax0o8ZSrPzWiBSwe3R7/2/qcE92nXRFebjfrHl1sARKc6345jZzF93pqgnz/l5RwAwJXndAxXkwIKtBDtTaO64NCpSny96SiOna1GrcMlfTuqc4iBWpnW2amlezbqOGGtw6MlVVKvHXDPcnxwam98keteCaZzS5q9SqLLVD1q0ZieaUhvkqR5zGa14MlL+mF0D0/KVKAMgBGyFaQXbjuOCX3S0aap9/XnXtZf+oDYdKgEGTMXoqo2tm64+bM2X9mTH961hY8z/TOyOko4aU0Tb5KUIN00BICeD3sqIIorv6iH0JKErI/31xYAcK8wLv8Am31RX6TIxrWpXCmJNlMG6kD+MrwzPrx5GBZc786HveDVNThV7l3Hw6irzu2ExfdmK/adrgxfZb1QZlGGgzqrpqrOhdMVtbjz4404GyBlT36j7hbZQg71ydc3pxtHZmjuFxcKEOt2iBKsDBYGXDq4vdbTMLxrS8VwyeVDO2ieR0h9MV2g7tiiUeCTBPIbgEOfXObnzODZwlhT+JUoznrbeaxUKqAv2nOiDO+uOYCF245j+rwcv8/PlGWIrDsQ2tTtYKkD9ZyL+wIAOjTXHpr4TBhPV7+DjDG4OPDqinzNFEV1oa4RNOGFRJmpAnV6EztGdNX/R/H0T4FT6ILJFb5EdlMzlKnkZypqkTFzIdbsLcau46VRC9R7TpZh2rwcvLV6v2J/VZ0TH607CADI7pXm9xrtm+v/AI2ER7/b7pWG+ZdhnkJJb/5lqLRdXF6jGA4b0rk5fBnxzAqfxwgxC1MFaqcLsFr192AfvaBPwHNKq5Rf928f47tinuiCAZ5A/cZq/2l9/tz3xWYAwF/eWYfDqjX6/A01VNc58c6aA0Hnh6v5q4shloz9ZN0hv2P9+4sqAv6cwrJqfPj7QeMN9EE+3PLf35TXTU60KlZQOV/2QbN810kcP+u5gdzYTwnUUxX+h7bC+Y2KkGDpzvpgjFkB5AI4yjm/IBKNcbpchv4winSMS09TfaX/1+TMgM9pnuwpDvXp+kNS3q1R8pWu1SG3rKbO54okLy7Jw9s5B9AiOQGXDg59fDTQKiaiz/44hOvPywh43lChh1pQXIFnF+/GlsMl6NY6xbNsGue4Tsd1AvH3QaV+TfLFZv/1P2WaXrCplpsfnUir1RNTMJKedw+AXQAik7cG9xik3qACAKN7eHpRU/q20TxHvljA6B6tdK1jN6ST76/KwVLPmlM9hMvFwZh7/FSs6hfoBp9eeoONnvoZgDs/+bvNR3HPZ5ulfcfOeqbxv7+2IKRALf5b+Eu7NLL+YTBrJQJAs8aJgU8ipB7o+gtmjHUAMB3Agkg2xunihnrU8vxYpyryFZXVKBY2/f5vI/HhzcN0XZcxhnMyQg/WLYS0sRS7TQq+InX1t64P/YSbVdkU4UoS0bPkFOC757nnpGcZq/QmdtQ6XIogrWYJMZ2t3+yfMfWVnACBWt+1Hp7eW3P/hocnBNM0QqJC7/e6lwE8AMBnl4sxdhtjLJcxlltUFFxBo3GZrdGrjf4Ou7z3rZ6d+JmqaE//ABNc1N6Q3ZwKljihorzGgQ0HlQv2ynuvYttXqGpEh2t49Lp31nvt01rsVWutyt/2ncKkf/8iPU622zTXH5QLdbJQZa0Tu0+U+e3ha/3TvC2ka8q1bap9E7S5qrf8syotkxAzCRioGWMXACjknG/wdx7nfD7nPItznpWW5j+DwJfXrhliKGdV3nNT/1Gr6wob/frbKsWuqNYWDH89WfkHS6WPSTUtUvRNdw9EnZYHABcObOe179P13tPDNxxUpuLpuanoa7KSHodOeW66TnxptaHntmvm/XN91XBRD4H1aO2e8drVz7RyQqJFT496JICLGGMFAD4DMI4x9lFEW6WTvx51OKwvcAepUc8Gl8KlrncMALeOdte91jMevPlQCXYc8y5EFA7yRRP8eWGJ5wNPK7hrCSVbpdbp+VDRysh48pJ+ALx7xID20M0LP+fp+rkWC8Oy+7NpVXpiSgEDNef8Qc55B855BoCrAKzgnP8l4i3TweqnRx1OR85UBT5Jg1YO9/je6QCAh7/1VG6Tz1iUB+Z3fz0QUm0Of5J8lJDtP/tn6UNPnVKod6Vv8b1wuThyC4xNjtH6cPvHpJ7SdtumSXj0gj744KZzvc5LtHq373FhUoyWxy9SHuveOtVnJg4h0RTTuUfyr6+1for3RCsVVmvoQ1wLcrAss+SMbJr64u0ndF1HL3WwBfynq5VVO1BW7cDmwyUY/dxKxTE9GTOA+zW4XBx3fbYJl7/5G9bmFyuOv74qH5mPLNJ87kWveX8wtZGNM3du2Rg3jeriNXsQ0F5oYo6qxrlcVhhuGBNSHwwFas75qkjlUIdql8aNMNF3d46qx5Z4aPUOGwm90k9lNzt/k5U9fVW1diPge+URPW77UHlrYebUTOQ9OVV6zADkPDBWcU6tw4W8E97/ngkWhj9nBa6cN7pnK7z76wEs3OquEy1P3QOA5xbnobrO5ZWyCGhnuqzbfwrL7s/Gguuz0L2175KjYrElueevGODz/E4awZ4QMzJVmdNQ1TicsNusigDwyz/HSmUtjRrTMy2kJbn2FpbBwpTBR726OgAkJ/p/GwJlWfhzstQTJB+/qC+uPtdTNnbJfdlo3jjRq0a3w+XSXKE7KcGK3m2b4PNc/zWp65wcb8pmdPrqhztdHDYdM1FrHC50b53qN0gD2j1qf98eUpNomIPEhpge+lB79FthiSVZkAk2SAOhTXz5/I9DqK5zYfqAdpjYJ13a30hjnPfezzf7vZZ4AzIY8spxM0ZkKLIgeqanai6k4HByzeGWH7ce85vb/NC0TKTabah1OBWTRXwl3HSftQi3fOBZDd3XfQa9k6C0grLWuDUhsSbmA7W8AP/nuYdxtrIOZ/3UtjDib+O6B/1ccRpzit2Gt6/Pwp+zOuLdG7IUdSf0jj3X9zRmh8ulGZCPlVRrZluIbsvuhi5pyahxuJBfWC7t95cZuWxXIWocTny/5Ri+33JM2r/872N0PV9OKwVT7wLJhJhZXA19AMC9n2/CvRN6Bj5RB6uFoUmSzXBGSXmNpxCUWBzo2cu9x0pLq+p8Zl/IhfLBM7lvOn7ecdLQTLw6J8eWwyVe+/u2b4Jp/dtg3tWDMa1fG3Sf5X1DMCnB6rXYQqCZii8u2YP5vygr+8k/EO4L4f0M9CG3+p/ne9WrJsRs4qK70S3NM0lhZV4R3vol+Ip3aqN7pqGdwRKf767xTBfXGuN++c+DALjzhNUTSrQE+qAoq67D4DlLsHafMrviWEkVft5xEql2G1oamDwz9ZUc/LzjpNf+e8b3BGMMFw1s53Ph4QQr8+qNv7p8LxZuPe7ztZ5Q3WwEgGaNPOPHWqvx+HL1uZ3wwJRe0uNku/8Pws4tkxUZOISYUVwE6q9VkxR+2uad4hYsu81iuCa1fMVzrdolYq70Q99sw5/e+E3a/80dIxQ/F3Cno8nrgnDOUSpbCmtfUTn6z16CM5V1eGmJcjbmO8IHRlmNstSrlm/vDDzRQ732oBabxQKHavLRxL5tcOcnGxWvVU4+5CGSpwIaGfp55rL+uFq2zqZdIxOEkFgTF4G6aSPtu/daGRZGWRjD0ZLAE152HS+Vsk3kU7ZT7N6jS+2auXvomw6VKPZ3a+1ZuHfLY5Ow/fHJXh8UX+YewYDZS7C/yD0G/Ns+T2rfxkPKeiLbj+qf1TioYzNcpJp5aLMwRQ66OmCunzUen946HIAnVz3ByrBXNj4NKD+4rnxLO1jLzfEzSUUPGpcm8SZufqNbyb7ai/WSt86eFPJ1v9rgXona35qMS3eexNRXcjBBqE0hzz7QKhR02RDteibiB8s943sgKcGKFLsNiTaLokf90Dfum5RiASX5DUn5iEPeiTLNyS7+XH9eZ8XjTi0bY/8z09FOGHp48kfl5JHWqUk4r1tLfH3HCPz24HgA7puDvmqXAMB6Hct4yVduCQb1okm8iZtA/do1g6XtMxW1SLHbwpotkecnl1ksAzqxj7sm9owRGQCA+yf2RJZGYadEjXa9f+M5SLBaUDB3Ou6b6Ll5VlrlwPajZ7GvqByP/7BDqsgn1tPwlTky+eVfvCaaBKIu3iQGPPE6T17aT/N5Qzo11yzE1CQpuHvV4rDHJ7cOw4c3e08VD8RITXNCYkHcZH0M7tRM2t5fXOFzkoVRrVPtKCyrwTUL1ilSAbWIyQ0uF0ejBCvuHt9D8zytSR7ZPbQrDh4SesXT5+Wgus6Fnunu4ZF7PtuMvBNl+HbTUencVI1hFgBoprN+xTHVEI96TNpoBcLnLh+Av3600dBz5EZ0o0VlCQHiqEet/robppr7GNixmbTtq/cqFlWyMOCj3w9iwZoDmqVFRVo3GAPV0RCnoxfIyoC+vmqfotdcVuPAS0v34OuNRxTP/ey24X6vLeqRrpz55xDqp4jj7Ear4qXYaeYfIeEQNz3qSGkhy+ctqaxDm6be459i+GJgfosAiRhj6JqWjNSkBM18ZX8CperN01jp3NfNVrXBsg8lwDMOnmK3obzGoevm7ITerbFsl3sBhC1HSjTPSbAyJNmsmtkok2SzOAkhbnHTo46U2bJSmMOfWY4lO7xT/z7/w137wsKAOpc7kAYqCWq3WXUF6YlhCFx6x+p9DW38ePcoPHVpP/TVsXLL/Os8N099rarDGEPuIxPwuayn3ys9Fd/dORLzNW6+BmPh3aPw24PjwnItQqItrgL10vvCv5ySujaHuhodALiEtLx5K/KlRWsr/GQ+AP6r/cn1a2dsCTEtwd5UFbM9WqXYce2wzrrGqOVDONk903D3uO64fUxXxTm1DhfsNqu0piQA/HxftmKYKVR92zX1uQwXIbEmroY+5GOs9bkG3nGD2RVq/pZ/0pMTnGi1eC2Wqz4ejNLqwBNltCQnWqUPqvsnuWcJXjSwndciCJSdQYg+cdWjluulsXhrpAQbCEX9O/juNfsr0ynqEGCKe5KBCSCzpvXGAKE93WUTcIzY8MhEbH50omJf33ZNcfW5ylrW4SqeRUi8i9tAHU7d0/wveNo8xOWb/uRjAgzge3FWubLqOrx3wzle+zPbpOK9G84xlFZ3a3ZXaYkqrcL+eiQlWBVlTkVje7VWPG4VpsV7CYl3FKh1uMtHPrToZJn3rMWFd+tfVSa7p+9V2/XUGVkw4xwM6exdWOihab0xNrO1xjP8EwOo1mSdUKin09P6hIToE3eBOhLDnvKbXkDgFc9vz+6KvgFuAh54Zpqun+2vzog4IaV1E7tmTZE+OrI0tHRs0RiL7hmtqEIXDsmqNqYk2pCUYMFTPmY8EkLc4upmIgBsf3yy5rp7oRjVvRXmXzcU+4srMHfRblTWOtG0keczrkmSTXHjbVr/tgGvKQ5HBKpIN6F3ulQFT23b7Mk4cqZSym5Ydv8Yqd4IoFyl3ajebYML8v4M6NAUt47ugkl93VPtLRaG3U9MDfAsQkjcBerGAdYfDAZjDJP6tsHH6w4CcM9QlE8iSbYrA7XeRVN3zpkcsKi+1hj1xD7puHeCu3CTfB3B7q1TkGBlqBNmFJqtihxjDLOm94l2MwiJOeb6SzY5cRkt+QomLhdXpOf9MWsCmif7Xq5KeT1bwBVe5Fkf905wj5U/PL23z6GVpy7pDwCYf93QiHxoEULqH/0lG/D6SnddZXkZT7GXDbgDqNZisaGQ96gvHtQed47t7ncCyxVZHTC5bxu6UUdIHKFAbYB4o1JecOmR73ZI27eM7qp+SsjkOdqdWzQOWLyJMUZBmpA4Q0MfBjwhDCuoF28FgL+NDX7Fcn/kPepAQZoQEp8oUBsgVo/TKmGaGmSR/ED0THghhMQ3igIGiAWa5IG6i1Cn4/xexieW6KFnCjkhJL7RGLUBUqCu9aTiDezQFC7OI1ZbhHrUhBCKAgZIQx+yMeqKWmdYVjv3JdSCT4SQ2EdRwAAxj/qFJXukZbmqap1eU6PDyeg6hYSQ+EOB2gBxvLi8xoE3V7tzqtfkF2PvSd8rlIdD//ZNpYp2hJCGJ2BXkDGWBOAXAHbh/K84549FumFmJO/dyie9BFtgX68f7tJfiY8QEn/0fGevATCOc17OGEsAsIYxtohz/nuE22ZqLheXquilUV1lQkgEBQzU3F09vlx4mCD8F+b6dLHHxYHznlkOABgXRM1nQgjRS9cYNWPMyhjbDKAQwFLO+TqNc25jjOUyxnKLiorC3EzzeX/tARSX1wIAPs89HOXWEELima5AzTl3cs4HAegA4FzGmFeld875fM55Fuc8Ky3N94ol8SLcNa8JIcQXQ1kfnPMSACsBTIlIa2IUrf1HCImkgIGaMZbGGGsmbDcCMBHA7gi3y7R+1MjASE6M3IQXQgjRk/XRFsAHjDEr3IH9C875j5Ftlnn1a+9dsH/xvdlRaAkhpKHQk/WxFcDgemhLTMpskyrVACGEkEigmYlBuHNst2g3gRDSgFCgDsLNozwruVTURnZWIiGEUKAOQgvZ4rUnS2ui2BJCSENAgTpINmFZrFqHK8otIYTEOwrUQXLQjBdCSD2hQB2kxy7sE+0mEEIaCArUQZo+oC0AgBYGJ4REGgXqIFmF2tQZwuK2hBASKbS4bZBaptgx+8I+mNKvbbSbQgiJcxSoQ3DDyC7RbgIhpAGgoQ9CCDE5CtSEEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHOM8/FXgGGNFAA4G+fRWAIrD2Jz6FuvtB+g1mEWsv4ZYbz9Qv6+hM+c8TetARAJ1KBhjuZzzrGi3I1ix3n6AXoNZxPpriPX2A+Z5DTT0QQghJkeBmhBCTM6MgXp+tBsQolhvP0CvwSxi/TXEevsBk7wG041RE0IIUTJjj5oQQogMBWpCCDE50wRqxtgUxlgeYyyfMTYz2u3xhTHWkTG2kjG2kzG2gzF2j7C/BWNsKWNsr/D/5sJ+xhibJ7yurYyxIdF9BW6MMStjbBNj7EfhcRfG2DqhnZ8zxhKF/Xbhcb5wPCOqDRcwxpoxxr5ijO1mjO1ijJ0Xg+/BfcLv0HbG2KeMsSSzvw+MsXcZY4WMse2yfYb/3RljM4Tz9zLGZpjgNTwv/C5tZYx9wxhrJjv2oPAa8hhjk2X76y9mcc6j/h8AK4B9ALoCSASwBUCfaLfLR1vbAhgibKcC2AOgD4DnAMwU9s8E8KywPQ3AIgAMwHAA66L9GoR23Q/gEwA/Co+/AHCVsP0mgP8Ttu8A8KawfRWAz6PddqEtHwC4RdhOBNAslt4DAO0BHADQSPbvf4PZ3wcA2QCGANgu22fo3x1ACwD7hf83F7abR/k1TAJgE7aflb2GPkI8sgPoIsQpa33HrKj+ssr+kc4D8LPs8YMAHox2u3S2/TsAEwHkAWgr7GsLIE/YfgvA1bLzpfOi2OYOAJYDGAfgR+EPqVj2iyq9HwB+BnCesG0TzmNRbn9TIcgx1f5Yeg/aAzgsBCub8D5MjoX3AUCGKsgZ+ncHcDWAt2T7FedF4zWojl0K4GNhWxGLxPehvmOWWYY+xF9a0RFhn6kJXz8HA1gHIJ1zflw4dAJAurBtxtf2MoAHALiExy0BlHDOHcJjeRul9gvHzwrnR1MXAEUA3hOGbxYwxpIRQ+8B5/wogBcAHAJwHO5/1w2IrfdBZPTf3XTvh8pNcH8TAEzyGswSqGMOYywFwP8A3Ms5L5Uf4+6PWFPmPTLGLgBQyDnfEO22hMAG91fXNzjngwFUwP2VW2Lm9wAAhHHci+H+0GkHIBnAlKg2KgzM/u8eCGNsFgAHgI+j3RY5swTqowA6yh53EPaZEmMsAe4g/THn/Gth90nGWFvheFsAhcJ+s722kQAuYowVAPgM7uGPVwA0Y4yJq9LL2yi1XzjeFMCp+mywhiMAjnDO1wmPv4I7cMfKewAAEwAc4JwXcc7rAHwN93sTS++DyOi/uxnfDzDGbgBwAYBrhQ8cwCSvwSyB+g8APYQ73olw3yz5Pspt0sQYYwDeAbCLc/6S7ND3AMS71zPgHrsW918v3AEfDuCs7GtiveOcP8g578A5z4D733kF5/xaACsBXC6cpm6/+LouF86Pao+Jc34CwGHGWC9h13gAOxEj74HgEIDhjLHGwu+U+Bpi5n2QMfrv/jOASYyx5sI3i0nCvqhhjE2BezjwIs55pezQ9wCuErJuugDoAWA96jtm1ecAfoDB/WlwZ1DsAzAr2u3x085RcH+12wpgs/DfNLjHC5cD2AtgGYAWwvkMwH+E17UNQFa0X4PstZwPT9ZHV+EXMB/AlwDswv4k4XG+cLxrtNsttGsQgFzhffgW7uyBmHoPADwOYDeA7QA+hDuzwNTvA4BP4R5Tr4P7m83Nwfy7wz0OnC/8d6MJXkM+3GPO4t/0m7LzZwmvIQ/AVNn+eotZNIWcEEJMzixDH4QQQnygQE0IISZHgZoQQkyOAjUhhJgcBWpCCDE5CtSEEGJyFKgJIcTk/h/C5Usiz5J1cAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(2)\n", + "\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dd5gURfrHP+/MbABEAUVEUVeQpJ6ioqKgh4cBAfU8Pc+MATFhOhNmz3BnOLOeOSvq705RBCOKCqLAooLkuGTJGWZ3Z6Z+f0zP7ISe2Yk7Yd/P88wz3VXV1W93V3+7urrqLTHGoCiKohQvjlwboCiKomQXFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocV64NsGOXXXYxFRUVuTZDURSlYJg8efIaY0xru7h6hV5EXgUGAKuMMQdYYe8Dna0kLYANxphuNttWAZsBL+AxxnRPxOCKigoqKysTSaooiqIAIrIoVlwiNfrXgWeANwMBxpi/hWT+KLAxzvbHGmPWJLAfRVEUJQvUK/TGmO9FpMIuTkQEOBP4U4btUhRFUTJEuh9jjwZWGmPmxog3wJciMllEBsfLSEQGi0iliFSuXr06TbMURVGUAOkK/dnAu3HiexljDgFOAq4SkWNiJTTGvGiM6W6M6d66te33BEVRFCUFUhZ6EXEBfwHej5XGGLPM+l8FDAcOT3V/iqIoSmqkU6M/DphljFlqFykizUSkeWAZOAGYlsb+FEVRlBSoV+hF5F3gR6CziCwVkUusqLOIaLYRkd1F5FNrtQ0wTkSmABOBUcaYzzNnuqIoipIIifS6OTtG+IU2YcuBftbyAuCgNO0rOmb9voktbg/dK1rl2hRFURoJeTkytpjp+8RYAKoe7J9jSxRFaSyorxtFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXLqFXoReVVEVonItJCwe0RkmYj8av36xdi2r4jMFpF5IjI0k4YriqIoiZFIjf51oK9N+OPGmG7W79PISBFxAs8CJwH7AWeLyH7pGKsoiqIkT71Cb4z5HliXQt6HA/OMMQuMMTXAe8CpKeSjZIkl67ZhjMm1GYqiZJl02uiHiMhUq2mnpU38HsCSkPWlVpgtIjJYRCpFpHL16tVpmKUkwuRF6zj64TG8P2lJ/YkVRSloUhX654AOQDdgBfBouoYYY140xnQ3xnRv3bp1utkp9TBv1RYAfl68PseWKIqSbVISemPMSmOM1xjjA17C30wTyTJgz5D1dlaYoiiK0oCkJPQi0jZk9TRgmk2ySUBHEdlHREqBs4ARqexPURRFSR1XfQlE5F2gN7CLiCwF7gZ6i0g3wABVwGVW2t2Bl40x/YwxHhEZAnwBOIFXjTHTs3EQiqIoSmzqFXpjzNk2wa/ESLsc6Bey/ikQ1fVSURRFaTh0ZKyiKEqRo0LfSNHu84rSeFChb+QIkmsTFEXJMir0iqIoRY4KvaIoSpGjQp/H1Hh8PP7VHNy13mDYM9/MZegHU6nx+Gy3WbR2K2/+WGW7rR2TFq3j/yqXMOv3TRm1XUmdl8cuYMXG7bk2I2XGzl3NmFmrktpmybptvPbDwixZlBjDJiwOjhjPNL8sXs8nU5bz6riFLF2/LSv7iEe93SuV3PHWT4t48uu5OES49riOLFm3jX9/OQeA/XbfkQuOrIja5q/P/8iqzdVsrfby5NdzAbj++E4x97Fg9VZu/t9UAKoe7J/5g1CSYsm6bdw/aiYf/bqMkVcfnWtzUuL8VyYCyZWnc1+ewOJ12zjt4D1o0bQ0W6bF5bbhv1HqcjDn/pMynvdp/xkfXB42cTGj//7HjO8jHlqjz2MCtXG3x//vC+kqU11rX6PfuL3WdlulMPD4/Nd4i9uTY0salk1uf7nNdW+wWG/KmWSzdawNiQq9oig5J9cCX+yo0BcQmbwZ9L5S8hHR3r5ZQYW+ALAr+7FuCBVwpZDRmn12UKEvAOzKvt4QxY1eXiWTqNAXGYm++eobcn7S2K+LNt1kBxX6AkDLvqIo6aBCX6AkXPPRNgBFySty4V9KhT6PMSk0xAe20FdgRVECqNAXAAHRzmTlXCv6itJ4UKFPkkPv+4p7P5mR0rYdb48/2dbaLdVUDB3F6Bkrw8LtKvb3j5rJ4rXRPjMiK/IvfL8gyo/NoDcmceuHv0VtWx0xinb0jJVUDB3F2i3Vce1W/NwzYjrd7x+dkbxCr/nDn89i/7s+z0i+6TBv1WYqho5i6tINaee1fMN2KoaOYvy8NUBqb6/ZxuszVAwdRcXQUVRWrYsZF2BLtScY9vm0FQ1tblxU6JNk7dYaXk3R+VKtN35hnrHCL8ivj68CQOppf/lh/pqE9vvl9PAHx+iZ9g6nNm0PH3YfOM5Zv29OaD+NndfHV7EmzYei3SX/z7fz2VqTe1cWX1vlZuTU9EVskiWc705aknZe2SK04vO/yUtjxgUIdVb20tjcOmiLRIU+j0mnlpOHFSRFiUl9lZpiwuSg4bReoReRV0VklYhMCwl7RERmichUERkuIi1ibFslIr+JyK8iUplBuxsVydwDqu9KIZKPTTehJGJePh9CIjX614G+EWFfAQcYYw4E5gC3xtn+WGNMN2NM99RMVJTGQz6LRUNQKFNbpnOd8rJ7pTHme2BdRNiXxphAg+5PQLss2NZoSfTVztYHTibtaOSik0saUUtG3lIoD51EyEQb/cXAZzHiDPCliEwWkcEZ2JeSAukKdvEU98JBH7L5RWTlq9AexGnNMCUitwMe4J0YSXoZY5aJyK7AVyIyy3pDsMtrMDAYYK+99krHrIInVk0imXbMQiuIip9CuG753p7eENidgnw+LSnX6EXkQmAAcK6JceWNMcus/1XAcODwWPkZY140xnQ3xnRv3bp1qmYVFakUnDwua0qBk42HUEA6tNxml5SEXkT6AjcDpxhjbGe6FZFmItI8sAycAEyzS6uEE/WaGKOG31C1P70JlUxTCN0pC8DEhEmke+W7wI9AZxFZKiKXAM8AzfE3x/wqIs9baXcXkcDwzzbAOBGZAkwERhljcj+8L4/JxMefIiqbSiNCy212SaTXzdnGmLbGmBJjTDtjzCvGmH2NMXta3Sa7GWMut9IuN8b0s5YXGGMOsn77G2MeyPbBpMO8VZuTGtU4edE6Ji8KHxZd6/VFhcXDGMPEhevYVuPh5bELmLhwrX06DNOXbwyOTAwwqWo9Xp99fTt0cumN22uj3CDY8duyDWyv8bJk3TaWbdjOlmp/Hpm+CScuXFdw7bxbqz38tnQji9duY/mG7cHwiQvX4bO5BoFr2xB2fTH9d5as28aqzW7mr96Scl7LN2xn5NTlLFm3jQUh+azeXJ1QvvNXb2H15rp7KHSkaCShTTZTlmzAHTHZ/SZ3LdOXb2TCgrXBtKs2uVm4ZmvCxzNt2UY2u2tZun4bS9dv443xVcFJyOtj4sJ1DP9lWUJpF6/dxswVm8LyDlx/u3Ie601h2rKNwXsu06T1MbaYOO6x79mhzMW0f5yYUPrTn/sRgI+u6km3PVsA8O8vZ/PCdwsYeXUvDthjp3rzGDZxMbcPj27NsqvZ939qXFTY/yYvZa9WTbmmT8eouJfH1Q3BfvWHhbz6w0KqHuwf156LX6/kxP3b8EWEywRPjIdJKoyesZJBb1Zyz8n7cWHPfTKWb7YZMuxnxsxeHVyverA/381ZzcBXJ3J7v65cekz7sPRv/riIu0dM56ULunP8fm2S3l+iXWwvf3syY+eGu8Ko7zrH4qgHv7HNp8e/vsbrM9zWr0vc7fs8+h2OkKLb66ExMW35v0q/64NRU1cwKtSlgrX9wFcn8sviDQA88bdu/PngPTj8n1+H2RUPn88w4OlxHFbRkklV64Phd4+YntD2Z77wY71pAhzzyJiosJ8Xb+DMF37kybO6cWq3PerNo9rjZcDT4+i57868M6hHwvtOFHWBEEIqT9M1ITWYWSv8PmFWJ/hmsHC1fe0k0TZ6gLmrwmta6Ury1KUb08whPoFaXjI1s3zglyUbosICNXu72m6gRrwsTq3WjmSb735etL7+RGkS663RjkSTVq2JcV6s7QMiD7B4XXLnMCQbJmfo/KT6ArokQdsD5/jnRRtS21E9qNAripIUBdbqlhUK7RSo0KdJNr/M50thKqbeB6mSr+JWCL1X7Ij5jaYwDycpclGWVOhzSKHco8U0FFxJn0Ipt5kkUpsL7RSo0OeQ+p7shVaYlIanUMtIzDeRPH1ziiRbZmbLhbEKfR6TyCWPul0KxK9NgdzPQZLtDpru8eVrU5GSHIk2rWX7rVmFPoMke28m+gqcnD/69BQi2/pSqG3KqZL14y3Q01lo4ygyaa5dkcj2ZCQq9Glid9Fyee9pe3rDkU2tamTPQ8UiW/evCn0ek5pTs8yrj4pO/pKLS5PNB1wuptlrDKjQ55DG1oxRbDS2y1dIb4v50jSU/Led7NhdVC4Q3p+0mDs/ms5Pt/WhVbNS/v7+r3z4yzKO67or1/bpxMnPjKNzm+YMv+oompbWHfq2mroRsR6vD5cz8effxa9XMmJIT0555odg2IWvTQLA5ZCY7gOuefcXRkxZbhv3w7y1VAwdFVx/+pt5MfcfKTa13tgF5ZVxC7lv5IyY8QArNrqjwmo8fj8kn09bwdqtNZx7xN5x8ygmPF4fJzz+PZvc4aOmI2/gMbPC/RDFYvKi9Xw1YyXrt9Zwc9/O7LxDWTDuv5VLWLU5sVHVj3wxiz5d20TZBX6fS3d9PJ39d9+RtVtqeHz0HN69tAdHdtjZNq8HRs3gpbELo8LHzl3N0R3rXIYHRGj8/LU89+18rujdga3VHu4ZMZ07T94vpq3j561h6rKNXP7HDsGwZCo5kSkrho7iiH1aMezSHkxcuI5flqznyt772m8rEvcVpNbro+8T3zM/ZJT6Lf+bGpXug5+Xcv+fD2Ds3NWs3OTmtEMSm1Tv31/O4Yj24ec98h575ItZWf/4XlRCf8sHvwHw8OezePD0A/nQcko0euYqRlsOwWav3Mx7E5dwca86PyvDJiwOLk9cuI6j9t0lqf2Ginwo8XzExBL5bFKfyMfio1+XcWyXXbn87Z8BMiL0eVLhqpcfF6xlgY27hkhBvuj1SWHrsY7v9OfG16XB8PAZBwXXbwoRmPrOz7Nj5vPsmPm2cWPnrubdiYvDws5+6aeYPl7sRB7g/Fcmhm2zapP/mGes2MSMFZu4oncH3vixiv9OXsouzcts8wA45+UJAGFCny4TFq6jsmodZ7/0E0BMoa+PcfPWhIk8wPuWH55IXvh+Pk+MnguQsNAD/PX5+H5zYl3HTKJNN0TcVIXzdgoUjmAGKJbmjkQPo1iOF2L0Fslw+bOduSlG2kTeCjLZhFNITVeRNEqhL6abr9AotAdTujS2421I4ol4oXz/aqhvCUUp9DriNLNkoywWyH2YMln1gVTPBSnkmqeSHYpS6BsTDSGYjblSGk9TtbaupEtDlaFGKfRxX+v05m0Qil0k0z2+tLYvgAp9rLeSfC4WoV0f86X7ZqIUpdAn2xdVB2nEJ5O6USxNNobEjiUbx5srjYm33yK5rA1OQ13KohT6tNASqxQ4WoSVSBISehF5VURWici0kLBWIvKViMy1/lvG2HaglWauiAzMlOHpUCy1SiX76LteHZm8bzLRKybetclG00o2PnJH2pmtt7VEa/SvA30jwoYCXxtjOgJfW+thiEgr4G7gCOBw4O5YD4SGpJh0vpiORUmM+rSgULoW2mEn0OkcTSGfi0ySkNAbY74H1kUEnwq8YS2/AfzZZtMTga+MMeuMMeuBr4h+YOQcr69u2efzT9RrjMHn8/8Cy/n4AcZr/PZ6vL6kJnFOhlqvD58vsuZhgmGR+40Xly1C9xmPWq8veB0T3Sb2PhNL5/H6gr/oPBIvWx7L9vrOaaxjCtjg89WfR6h9dcvhcd4Qu+ONAg+1K9XzbXd+fCFhoefW66v76uaz2c7rM7hrvdR6fUk9RLwheaVbrL3WuUjkvGWCdFwgtDHGrLCWfwfa2KTZAwgdT7zUCssbflqwloc+nxVcP++VCVFpLv9jB57/LvvDlFPhkynL+STL7hQ+m/Y77W/7NCzsuMe+Y8m67bxw/qFc9PokRl3Ti/133wmAf302ixe/X8DIq3sx4OlxvHphd/7UJbx4ZPoD+D0jpvPGj4tiDvMHmLp0A6c88wNddmvO59cdw5//M54pSzbE3SYWAtw23O9yY8aKTVHxgeNbv7WWfW//LGY+d308nbd+WkS3PVuEhS/bsD0q7b63f8ZuO5bz+6Zof0ShRLpjCN0+lF/vOp4WTUsTzuvlceGuEjqElIkXv18QNx8gWIZSOd8X2xzTOS/V3av73v4Zn117NLvsUMZhD4zmzgF+3zt2z89Qu586++CEbXjq67nB5YP+8WXC29nRIeJ+CpCtF5CMfIw1/sdtWneuiAwWkUoRqVy9enWa9tS7s+Di2Ln17+uVcfUX4sbG/NVbqfH6GD1zJQA/L94QjHv9hyrA748E4OuZdQ6/svUi/caPi+pNM27eGgBm/b4ZgClLNtS7TSx7Q4vY1KUbY26/YmO0YIfy1k9+u39NwBagXpFPhkQcqH07O717MVOMScCOX5dsYOn6bQAM/2VpQvmu3ZKYE7lCJx2hXykibQGsfzv3fcuAPUPW21lhURhjXjTGdDfGdG/durVdkqzgSMhfRgMYUkQUU3fV4jmSwqCxn+9cf4y1YwQQ6EUzEPjYJs0XwAki0tL6CHuCFZZTJMZyLOza+ZQIbNpy8+0zmF7GwiTRyxZa3vRah5No98p3gR+BziKyVEQuAR4EjheRucBx1joi0l1EXgYwxqwD7gMmWb97rbCskkTLTUKNYlpmkiPyfGnHB6WhSLaXTWN5ICT0MdYYc3aMqD42aSuBQSHrrwKvpmRdA6AalCFUzQuOYr5ijUXAE6XRj4xNpI1eSYCwphv/cjGc2nzsUlvMpHu6i6DIZYVGKfShI9wSESO911OjmM9bMR9boRJ6Lyd6eRrLZWycQh9SILQGkCFsnpiBm0j9oyvpkEzpCRRDfRMLp1EKfSjF0LyQF4Q23eTQDCVxtOw3HopS6JOZYUp9YWSefK1MpVLLiz1faXq2QO7fdPLxOjX0GIzGUvMvSqH/ZMpyajzRfkUC/LbMP5JxUtU6nhg9p6HMKhruHzkjuFxr+Rh5+pt5rNrkZt6qzcG4EZZrhm9mreLJ0XMZP39NMG78/LW2w/wDeLw+PvplWdI34ke/LKPW6+OXxeuZt2ozo2es5JVxC1m3tYZ/f2l/rcfPX8PitduiwtduqeaRz2fbbvPNLLvxgX4CrhEgvpiuqGeU68H3fsn3c7I3MvX4x79nwNNjs5Y/2I/4vevjaTGv/T9GzGDk1HCXHo9+ldg9umKjO/jwDIx+ro+VGRxpnM9IPj7RunfvbiorK5PermLoqODy4RWtmFgVu8t+1YP9w9Ir6bNHiyZxxRvgvlP3586PpwNQXuJg1n0n2aZ7dsw8HvliNk+e1Y1Tu9XvHin0Wl7bpyNPhvglsWPGvSey313hY/cifbD0f2os05dH+7FJhKM77sLYuWs467A9eW/Skvo3UDLCJ0N6cfIz43JtRsqUuhzMud/+nqgPEZlsjOluF1eUNXqAuasSe6IrmaM+kQfC2jzctbHfulZZNa31W2uStiMRHy6JeA2sWrM16X0HqLaOTVsGlXygaIVeUdIl/951lWInW/UCFXpFUZQiR4VeyUuKpTadh5/AihptKrNHhV5plCSiByrSSrFQtEKv/eOVXBLoD67FUEmGbNUtilbo87HbqNIYXU40viNW8o+iFXolP0llEonCRiscSu4pWqHXppvCptDlMdfuDRorhX7ba/dKRWlgMuF3RVsQlXwgoRmmCpF19YyoVPcHueGN8VUx46o9Xs58/kfuGLBfMGzD9loqho6iYuemfHvTscHw24b/xt6tmnLZHztwX4jvHUi9Vnfy0+OCfpDSJeB+Q90fNCz9nypc9wcA1XF8dKWD1uiVBmXeqi0x4xau2cqUpRu5Y/i0YNhXM1YCUBXhdGzYhMX867NZALwybmFGbMuUyCtKvqFCrxQd2lyiKOGo0CuNEv1YrzQmUhZ6EeksIr+G/DaJyHURaXqLyMaQNHelbbFS9KT7EVQ1XFHCSfljrDFmNtANQEScwDJguE3SscaYAanuR2k82HVJVNFWlPTJVNNNH2C+MWZRhvJTGiENPY2cojQWMiX0ZwHvxog7UkSmiMhnIrJ/rAxEZLCIVIpI5erV2Zs+Tcl/dLCRomSWtIVeREqBU4D/2kT/DOxtjDkIeBr4KFY+xpgXjTHdjTHdW7duna5ZSgGjNXtFySyZqNGfBPxsjFkZGWGM2WSM2WItfwqUiMguGdinUoRoTV5RskMmhP5sYjTbiMhuYvVjE5HDrf2tzcA+FUVRlARJywWCiDQDjgcuCwm7HMAY8zxwBnCFiHiA7cBZRv0HKyH8vtGNwwEtm5byuzUh+IqNbjZtrwVg/qq6Cbq31XjYuL2Wtjs1CYa5a71Rec6PM/o2wIZtyU86riiFiuSj7nbv3t1UVlYmvZ36r2kcPH/eIVz+9s8AdNmtObN+35xjixQlc1Q92D+l7URksjGmu12cjoxVCo5fl9T5pFGRV5T6UaEvINrJKjrKUhxkx8OdoijFSdG6KS42DpE5fFh2T3C9wj0sd8bkGO1+qSjJoTX6AiFU5AF2YJt9QkVRlAhU6AuAcqqjwn4ouyYHluQJWqFXlKRQoc8yxzsqmVN2Ph1kGZ+X3sJfnd8mncc1rmhfcTtJ463Rq84rSnKo0GeZl0ofo1S8fF12E10cS3ik5EXbGno8Bjn93Ub7Vz9A/+p/BsNvcr3HMyVPJpVXF1nMKY7xuPAktZ2iKIWLCn0WkRi9Y2aVX2Sb9nznl9ziepdTHePoIMtw4KOrLKJU/IOCZpi9mW4qgttc5RrBAOcE9pWlNMUd046/Or9lVtlAyqjh87KhPFX6DHe53krr2BRFKRy0102WuMj5GTvJ1pjxD7te4GZPcEAxh8oc7it5PSrd054/B5eN9Vx+2XMSg1yfBcNHl90MxO6J80jJiwB8X3ZdMOwC11fc5bkIMFSVn8tNtYP5r7d3PUeVH+TjID9FiUdnWUxTqvnFdMzJ/rVGnwVas4G7S97iOteHYeGfeHsEl890fUcztgNQRg0HO+bZ5nW16yMAjnI/FQz7wXeAbdrLnJ9EhZVRN9S/jWwIizvd8T1V5ecC/odBKzbFOKL8QnVeyVd2ZCsdZWlYWFdZxBdlQxledneOrFKhzziCj0GucFcMQ2quppv7Ba6uvYbu7ueC4bvIRtqyltnlF3J7Sfx+8atpEVwe4+tmm+bWknfpJEvCwvaSVTHzfLT0+bD1f5c8T7s46fOFD39ZlmsTFCXIza73qCo/h3+5XmJq+aV8VXYzJSHfwP7q/C6H1vlRoc8A5VRzrfMDjpCZLCw/j8tChL5/9T8Z6TuSDTQHYA078aqnL+Cv+f9YfrVtnltNWdh6bVgrm3CY+1m6ul+lm/uFsHRflt0SXB7o/IKvrGadsd66t4A7ay+03eefnL8yzmre2VNW8mjJc3n50XbdVnVIpjQszSPGrQS+v/V0/MaVrhEAnO0aE4z/m9O/7MDHxa7Pg+GHyuxsm2qLCn0GuMP1NteXfMD7ZfeFhVe4h4V9PA0w1dcegP+V3RsVV+F+h87u1/nI2ysY1tMd3bNmNS3ZTjkbaE6Fexj9qx8Ixu0rSymlln+UvBEMu9UziNtrL2Zf95u85T0hLK9jqh+PyN0wtux6TneO5dGS51GUxszJjvH8Vj6IrrKIoa53GV82hIXl5+HCwzul/7Ld5v6S17jS+THHO8KdM35Q9o+GMDkKFfoM0Mf5S1LpP/UdESdWqKaUez3nc17NrVS432EZ9c+4Nd3sE1weXXYzc8oHhsUvNbvyjvc4PDbf3xebNmHrgXZ7gFOd49lHVtS7f6U42VeWUlV+Dje4/i/XpmQcwceVzo+oKj+HqvJzYqZ7uvQZwN9Ec7nrE3aXdQDMK78gmGaDaRa13c0l7/NC6RMA/L3m8gxanjwq9Bmg0tcpbP0z72Hs5341ZvoaSsLWA4Vgo2kaDKumlHG+P0ASsy6dXXN7VNgkXyeur7kiKvxn374AfOs9CIBu7hd42XOSbb5jym6IeyMo+UcLNoe1E6fK7a53gLpOAcXCJc5PWVh+HjeX1D3A6vs+daxzSsy4E6sfirvtcF/dG3prNgSX28tydqL++RPSRYU+BQK1nOdKHqeq/BxOdv7ELN+eVLiHUeEexhW117ON8rh5nFZd9wr3pa877d1v0636xbTs+snXNSrs77VXMNx3dFT4BTVD6Vf9Ty6s9bfpb6A593vOD0tzWc11Yet7oJO2FwK7sZZfyy9jbvkFvF4SW4B2Yy0DnV/EzetAxwIAfvTuFwwL1ICHOKNHbBcCZdRwZ8nbUeG7hggwwOXOEQlVcMZ792MlrYLrf6x+LCx+gq9LsGs0QB/nz9aS4ZuyG5lSPpgmccbBZAIV+hQI9Fs/yTkpGNbFsSRWclt+M/vwibcH59cMZQtN8eEIKwypYHAwpOZq5vj2CIYtNfbNPltoygyb7wc93U/y95rLqXAP4wvf4WF5/VB+LeqAIP85zflDcLm3cwqdZbFtup/Kr+YfJW9wi+tdTnRMsh3gt7P4/f03l23szEb+U/JEMO7Gkv9m1nAbDpNZMQcepsr5zq/C1gNv5JdanSgCD7KhJe8F02wx4RW3NWbH4PI5tf436UBFb5HZLWxMyx21FwMEe9w9WPIyAC1CavIzyy9O76DqQYU+Q8zy7ZlUeg8urq69hrG+AzNqx0jfkfSv+RczfXvy95rLk354LKM1H/qOCa6fXXMHF9XcFFzv4/jZbjMlj7glRKAAvigbGjf9Fa5PeKH0ce5zvRYM24FtvFtyf3C9pWxmcvkV9HNODNu2j2NyBiwOZz+pwoWHC52f89+ye5lfFvqmaegm80inwtFK6iarecNzPBfV1FXc/HlHc6/n/LBOD8dWP8ZH3qOsZlf75tX7as9lvq8tc007ANZQ93CoKj+HPo7wb3vJukZJBp1KMEl2ZCtTyy8NCzuh+iEWmrYRXSCLi9BX2MbsCz8fudj5Gb/6OvCz6YQDHwvKzwPgptrBwVHR4O/RFSpKz5Q8yQDnhLC8jqt+mBGld9JU4ovOKtOCXa0BeI/WnsHT3r9QggfBUENJsLzYlZVA3BnVd1FpuoTEGJ4qeYZTnD/ylOfPXBPxXeDu2oFc5PycCsdK7qs9j1e8/eLaGIsRpbfTSZbSpfp1AucjYNMEXxeOcMwKpq02Lh70nM1r3r4k870sFvGagj72HsW1tUN0KsFcshNbuNn1Hgc4FgLwpOc0AE6uvp85Zs+iFnkIiISfm1zvxUmpNBTN2cb8snO5q+QtPiy7h6ryc5hdVtfbKtKlRaA31U5soar8nCiRB3i39IEokQ98sA9lZMgo7xtK/gfA6NIbmVM+MK6YneoYF1wOdC9uxSarueRcTnH+CMApjh+jtv1HyRtUOFYCcIIz+Yog+CfwOdCxkHKpxU64Q0Ue4Oraq3nNe5Jt2lTo6H4zKuyh2rMAfw+3w2VmRvYTSdpCLyJVIvKbiPwqIlFnX/w8JSLzRGSqiByS7j5j0ZoNtGZ9VHgT3FSVn8PdrjdstkqMM5zfcaVrBMNK/d4jv/V2o8I9jN9M+5TzLCzqCvpVrhF5OZAqlzTBTRvWpbx9OdU0Y3uwffjL0rrmstdKHuK9Uv8Yjd6OX7nR9T4Av5UPwinhb+QllgO8e2r9Xf/e9/QOi+8kS5hSPji4Pt/XliPczwQ/traWjURydW3doL6bay9lUM0NPOz5W1iaK50fsbcjutfKYTILMBwiczjKMY0nS/8TFj+h7Ep+Lo/uehgQ9Fgc4ZgV1nslUU5xjgfgF6vXWYAe7qfD1o+pfpzHas9gtO/QpPcRj1pcYaPjAZ7znhxcDgy+yjSZqtEfa4zpFuO14SSgo/UbDDxnkyZ9arYxqfxKJpVfxV8c31NVfk6w//cxjt8AuMj1Bam27bWTNWHrs0xybfLFwKCaG4LLn5XemkNLGo4DZEG9FYTdWcPM8ouZUD6k3vyceNmFaDEdXXYT08svCa53ciwjUFaPdU6hh2MmQ13DeL30YYa4Pq63N8jb3uMAuMUzOOxtLHTkNEApHlbSik99h0fl8YKnP+3db7OZum6/n3qPYLTvUNyUcbC7bjBdaDfFUP5bdi+9HVP4sOyeYCUplEj/S5HcWXshJ1ffbxs3qfzKuNsGOMP5XfABeqHrSwCuqw3f9nd2DltfbNrwlPcv+LLQ6LGGnYLLndxvABLsh782pB0/kzRE082pwJvGz09ACxFpm/G9lNYVxscsHy5jym5gf1nIQY75wbiznGOiNq2PVmyyHhJ1bK+n+2QxMtp3KP+qPRuAjo7G4W9mZNkdXOT6gr/HGDDU1zGR8eV1s33Fm7jdgY/55edTWX5FVO0/siIBcIAspAV1Hw4vd420zfdAd3S3XE+Ey4zLI7rKjvYeDMDLVjv3J94jw+Ifrz2dpzx1QlfhfocK9zC2hIj+enYME/tQjnA/E1x+vfThqPhIewLcURvuwvst7wn8ZtoHa9zDPMcyzHNsMP4S56i4LroB/l3yQlTYErNrVNgUa8T63bUDo+IyzYHul+jpfjI4pqZb9Uv85OvK3hL/TSZVMiH0BvhSRCaLyGCb+D2A0L6HS62wMERksIhUikjl6tWZ6689quz2sNchu6/q/pszdk3/07Lw2utttZfESFn8vOAdEFx24o2K7yB1NdFiIvBh8K/Ob6kqP4cdra5xz1sjHwMEPoTacWfIHADPlvq9kQ4vvSuqdj7B5/9AObLsDvZ3VNVr2yZ2oMI9jPZuf9/whb42UWk+9x3OfF9d/WpQ7U3s636TNyx3GBtoTj9rUpsB1ffzpPd0ttIkJAf7Nur17Mha0zy4/qTnLxxd/TgracU47/4xbf484g0iMIBvhPcourlfoFf1E2Efcn9nZ06tvpd7PRfwqOfMYPidJe8woeyq4PqFzs+DTVuA7aCxu2sH2tbUT6253zonJ8a0O1NsolnUiPcFvt2yNgo9E18QexljlonIrsBXIjLLGPN9spkYY14EXgR/r5tUDOnsfp3Z5RfGTXOW61uGevzPo1Jqudo1nKtdH/G+pze3eOyeU7Cb+Nv9b629hHe9fVIxrYiou+Hnl58fdjOe6JjEC6WPc1nN9XzhOywXxmWc0N4ld7veCL7ZTS0fzAfe6IFo8dhZ6txAbzelMd1TX1MzJNgMFMuXSoATqx8MLvtw0Kv6ybA+3qH0qXmUIx3TmefbHYis9cMMU5FSj6rTa+7h2zJ/s16lrxNLLJcavZzTo9I+VHsWX1rt3vu636QFW8OaMgJsCHl4BJhi/A8DN2VcWXMN/7Eels3F/21jtPdgjrPckXzp7c5U057bXeEDo57w/CWukNu5CGkoXvb25y3vCXxmDEhmPv4GSPuojDHLrP9VIjIcOBwIFfplQGiDdjsrLONUU8pJ1f+iqyyiv3NCmA+av9dcHmzSCRDqD+Zvrm9thT50sIaKvJ8+1Y/wddlNUeHXuT4A4FTnD8w27agymW+ha0iasT0o8kBU893pzrHB5dOq/xH0N15Vfg4nV98f9qG+FZuCPUpWmx052jmN2c4Lo/Y5y7cnK2nFYl9r9nLUvdlWuN+hDes53jmZj709w9rNQ4k1QC7Aj77YtexUCb3OP/nqRtAuN63YXdbxg3d/3vf2ZoSvZ9h2Hly2Ip8In/p6AE+FhR0Xcr+PKLszLO5tTx/u8OT3m/gC438AZ1rkIc2mGxFpJiLNA8vACcC0iGQjgAus3jc9gI3GmKx5yZpp9uZD3zHcWFs3e1N393N86DuGdWYHAB4teS7mx6w/yAKqys8JTgpyhtP/zLqv9lzb9I2R+WYPNhv/a/2JDv/o4BI8dHX4R2D2c04M1vAKmdOc/q6Am4y9qAb4g/vlqJmDPim7g6ryc7jV8hUT2rOkdUjNHmC6b2+6uF+jwj2MvjV+lwXH1ER6LBVW0oq3vcfHFPlcEhgVGtrN+KjqZ6hwv8O5tbdHiXwmOML9DG5TUn9CsGZTa7yk20bfBhgnIlOAicAoY8znInK5iARK9qfAAmAe8BKQ2KfyNFnPjozxHsTFNTcGaw3rrdfB0JpYKC+VPMonZXcAML38EpqxPTjg5Hezs+02jZXnPf4uYS+UPs6DrhfpZfVsKiZ2sB72f6upqx2uMzvQp/qR4Pr5NUODwhsaHuAy1yjru0VsBtQ8gJuymPGfeQu5GSzztdMAK2lF1+rX6k13ZvWdWek9U0ikdfTGmAXGmIOs3/7GmAes8OeNMc9by8YYc5UxpoMx5g/GmNRGOqTARbW38I2vrtv++TXRXQJDnYsd7wwfzh3a3W2UrwdKHb+FuEU+y/Utr5VGi1yXGD5WCoV9Hcv53bRkptkrGHZo9fMsNG3xGAcDa24Jc2Ex3+xh28Yd2cx1ZnXdg+OU6vtiuql40vMXAK6ptZ+cRiHq3A2quYFvvN2C69fVXMlEE+3sr7FR3MM5I1jOLrzk6celrk8BeMnTj19MR3q6n7Qcdtlj5xWysfN9DB8959XcytvWB8TPy4ZyiPt51mWpb3C2CTTbgdDT/SRNpRqDAwPsWx3t/TDAoJobeLn0UbabUppI3WxY831tObnmAbZRznHVD9NBljPVdIiZz+OeM3jcc0aGjqZ4qXAPw4GP7jKbiaYrY31/oK1nbcF/I8okje595gHPecH2xAc8/q5wy2jNNTV1XbQeqT0zbBs7P++KcLj72ajQH3z781htnTj9XH45B8r8qHQNTUfLtfR+UpVQ+siJ0pfROuicqj5G+w6lwj2MXtXh7ezH1zwSdF89z7TjC5tBSkpq+HAEa+7VlKrIR9CoavTxGOHryfzqPZhu9gaELo7FnOz8CYh+PVT8rKJlVJjBwVPe0+jiWBz0dNjNMY+p3tg112zixIsDE5w799Oy2xLqQhgYWGc3aUuirGUnBlTfTzWlCT8kFCUbqNCHEDq/6/2157HG7MQ/PdrbJh4V7mGUUsuc8oEhbaNCdcgsWveWvMGbDTAIxY755edHhTXFzTbKaEJ1zBHON5f4B92M8x1gG58o0xqNLyQln9GqagxW0op/eAYWvVfKTFBDCYe5n+Wy2r8Hw57znJJDi/zYjdwF/0fiW13DmFl+sa1ztlDHeKtt3loUpdBQoVcywmpahj0U55g9w5pIqsrPob0sr9cvSSZ5rSTcx8qlNf4HUVtZx2XWbEKBUc8BHPiYVH4VilJMqNArWeW6mrphE9+U3ciMLE+Z5sLDmc4xtGUtxzjD+/ZPsHpPDQmZ0GJc2bXB0c8OfPxWVtelNrTrraIUMtouoWSV8TZD7supjjtAKB3mlfv9sId8ImBo7SAqfZ3YhN8VbGAEb4D7Xa9xu+cS/iALaBYy6UbkaFdFKVS0Rq9klVW05LyIgWpDXB+xq80EMenyQsljUWGjvQfznvdPzIvT6+Vc19cAYS5iQ324K0qho0KvZJ1xvj8E3dACDHF9zMTyq/iDLLBNf5RjGgNsppKLRxdZzIkR08tN9e3DoNrwUamh3h7f8BwfFne9yz8l3p+q/002h+4rSkOjQq80CINrbuDqmvAZmD4pu4MjHeGubHdmI8NK/8kzpeFTu9XH52VDg8sV7nfY1/0mp9Q8EJVuttmL7aYUgEdCpsPbnTXsY01fF/QiqChFggq90iCsYSc+8R0V5ucF4EZr5qYjHdNx4WFyed0AJYkzW1MobVkbXH7Gcyogcf2Kn1NzO294jmdLyMQaobNEKUqxoUKvNCgTTdewaeZWmxb0cMzg3dIHeLwkfOLoc5zfJJTnAGddM8+/IyattuMX05G7PRcBEjVb2Hdeex8+ilLIqNArDc5KWvnnHzXl9HVO4i5rir2Ay4kAD5S8ynel14UNYLKjlfjnVf1r9V1J2zIsYjKZ//P2TjoPRcl3VOiVnLHS+Eed7udYFDPN3o5VvFj6eNx8rnB9AsAMs3dKdgScs600LRjlOyKlPBQln9F+9ErOmOjrQgdH9GRjf62+i6mmfXD+X7t5VcE/OOqr0rpeNeGTWSfOKlqmNFeqohQKWqNXcsY9noF87/1DVPgk04VqSuld/Wjc7Q9zzA72lFEUJTYq9ErOqKaUC2pvpcI9jGsiul6Cf9Lp9dY8v5G48PBuaV33ydAPvIqihKNCn+d0btM81yY0CCN8RwUnhAnlLe9xgN8pWmBC9x6OGdzjeiMs3doCncVKKX7a79Is1yZoG32+I418gOYSs2vYuuDjvdL7g+uP157OSF+PuP3mFSWXmFwbQBo1ehHZU0TGiMgMEZkuIlGTropIbxHZKCK/Wr/k+78pjZpNJrw29HJJeLv9W97jmW/2aEiTFKXgSKca5AFuMMb8LCLNgcki8pUxZkZEurHGmAFp7EdpxIz37c9y04rdZR0AfZy/BOOqTUnBTjyuKA1JyjV6Y8wKY8zP1vJmYCagVSslo2ymKUdVP0MPd7jvmzOr76RL9Ws5skpRCouMfIwVkQrgYGCCTfSRIjJFRD4TkWjn5HV5DBaRShGpXL16dSbMUoqI39mZCb4uwfUppoNO2q4oCZL2nSIiOwAfANcZYzZFRP8M7G2MOQh4GvgoVj7GmBeNMd2NMd1bt26drllKETK4pm5O2mpKc2iJohQWaXVVEJES/CL/jjHmw8j4UOE3xnwqIv8RkV2MMWvS2a/SONnIDlxccyNrzE65NkVREsaY3Pe7SVnoRUSAV4CZxpjoqX38aXYDVhpjjIgcjv8NYq1dWkVJhG98h+TaBEUpONKp0fcEzgd+E5FfrbDbgL0AjDHPA2cAV4iIB9gOnGXy4fGmKIrSiEhZ6I0x46hnvjVjzDNA0Y5Nb1LiZHutN6v76NSmObN+35zVfSiKkj0679acqrXbcmqDdltIg9/uOSFs/YMrjmLwMe2D67f07cLIq3vx1iWHc+FRFUnnP+TYfXno9AMZc2Nvnj/vUMbdciw39+0cluagPVvwysDufHX9MXHzuq2fv8fKe4N7RMVdf1wnptwVfiz/+ku0szElv3E6khtGfWXvDlFhd/TvGhV2yF4tOK7rrlHhADedGF4e/3JIXQ/rdi2bcOjeLZOyCeDxvx2U9DaZ4to+HePGt92pPGbcXQP2Cy5f2bsDlXccx+39uvLYmd0S3v+YG3snnDYZikroky3oAFUP9k95fy5n+Ok7dO+W3NavK13b+gfxHNNpFw7YYyeO7tg6SqABWjWL33OkR/udaVLqZJ9dmtH3gN1o17Ipf+wU3iPp46t60qdrGzq2ac7eOzeNmdclvdpT9WB/erTfOSru2uM6slPTkrCwsw/fK25+Sv4x/5/9kkp/c98uUWGDjm7PiCE9w8KuP74TZx++V3D9huM7BZfPPWIvdm1eFlwP9c305FndeP68Q5OyCeDkA6Pn7N1/9+iBcS0jymwmGHT0PrS2jscu/8P3aWW73f1/PoCLe+0TXP/LIXuwyw5lXHpMe5qV1TWcHNQufkeCfbLkF6eohL7Qmv8LzV6l8RKrqEaGh/tmSs1Rk9g4ePI10K1iYizXR777pCoqoW/sZLqs5XnZVbKE2Fz5WKJnaBiRs6sUZVv7kzksu3NmnzA3d5UKvaIocYkUsVCB9RkTFp+w4BUAdg+SWEenNXolZewKT7wbKV4NJ8/LoZJHmHrqyqGVa189zY/15WWHXVltqFZOCdmXnR12zUqxc8ofVOizQKJt7/UVGm3CV/KF0DIdKt7GxK7NZrKWa/fAyIaU1nfLxazRJ51Tw6JCn0Ua+jU2v+oQSjERS7b8TTd1hIp7JsujXaUn21KqH2PzlPx6hqb22hpKvhcepTiJ35MmsummvswyYlLe3duRJFqpy9UtXVRCny8k2o7XkBc9328UpXAI+xjrMzHLe+Lt2ZHbRYfV9y0gs8TZV+JtN3mFCr2iKPWSeD/60B44mTQgk5klhu3H2BhHlec6X1xCH1nompY6G2zfe7WKP4q01Jn8qe7YZoeosD1aNgkuX/bH9mFxlx7TPjJ5kFgFccix+0aFnXzQ7mH5hQ5rV/KTPl38LgrO77F3VNzO1ghsu/vhpAN2Y6cmJRy6d8vgqNbIEdEd2+xAWUld+T2+a5u6vHco5ZaT6kbYHtu5buT23js3Zccm0aNLL+pZwZnd2xE6kP3Wk6JH6QLBUeaDjo4u23ZlN12alDi5orc/3+utEcBHhIyGPbN7O675kz9+55CR7YdVhI+YbbNjbFcJAXruGz1KPVtIPo7O7N69u6msrEx6u4qho4LL39zwR9q33iEsPJ67g3tGTOf18VXcNWA/7h0ZPu1tmctBtccHwGkH78HwX5ax+07ljL+1j21efZ/4nlm/b2bUNb3Yf/fwIc83/XcK/528FPC7QPj5zuPpfMdnVHt8zLqvL+Ul6T+cPv51Gde+9yunHLQ7T519cMLbJXKeAmkCtkeyZks13e8fHXc/C/7ZD4dD+H7Oai54dWLC9tlR9WB/3vppEXd+NM02LrRMBChxCiOG9OKkJ8fGzDORc5EMkXa8dEF3rhr2MzXWde9y5+dR+3vmm7n8+8s5YXYBfDNrJRe/XsmxnVvz2kWH17vPyGNI5dgC16rXvrvw9qAjEt6uPkJtCSwv/Fc/9rn10ygbI89hrOOKZME/+9H+tuj8AO78aBpv/bSIe0/dnwuOrEj9QBLkz8/+wK9LNvDBFUel5AcoHiIy2RjT3S6uqGr0oaTaPlhvvkmlzd1Q7myTTgXBkYJPokySN4N66jmFscpwLutmDdFBINP3brzs0u0wkSy56mBRtEKfr8QTyEzfwPn+TMmYfXn4VlofsbokKko2UKGPINuDPOx6DxTijR6zp0UD25EqhXjOA+TC9sJ7lOY7DXtGi1bos3YvWBnHdTcQ504slqabvKKQVTsFCvAFJqck0hTUUCVI+9FnmFTv/fpuokTad+M1zzRsf+DskVcf8VOwJZ/MT5VsfYeyI6+ut5I0RSv0+YCtu9c490tDfxhSckv9zsPyrzw05MNFyRwq9EmSbjm3baMvmJbt+ikUIcgnM5O9/nmo/0qek5bQi0hfEZktIvNEZKhNfJmIvG/FTxCRinT2l5RteSqeXm2kzziFekbTFWx1oZE+uXpoNvR+UxZ6EXECzwInAfsBZ4vIfhHJLgHWG2P2BR4HHkp1f/lCujeX6rwSST69XdRHAZmaHA10EXL1xptOjf5wYJ4xZoExpgZ4Dzg1Is2pwBvW8v+APpLFI20SMqo02b2UufynwuUUykvCT0uTkKHjpVa6eCNYA3EOm7Mb2A9AubWcaVcNLmvHJc7sFaomMY4/mbFQrgwNnHLZneg4lJc4cORYXZ0OCZarQO0u0k1GSQy3GU7rupa6Gq7lNXCtGnKfmS6/drYHwjJVFusjoC0NLfiu+pPEZA9gScj6UiBybHQwjTHGIyIbgZ2BNZGZichgYDDAXnvtFRmdECOG9OTtnxaxyw5ltAvxCfPmxYezcXtt3G2v7tMRgL8dtied2jTntuG/0X6XZrTZsZyLeu7DlCUbeGnsAu7ovx+7t2hiO1N9gP+cewj/V7kk6DsklPv+fAB779yUpqVOBlh5/N/lR/LVjJU0LU3nctRx4v5tuPyPHbj8j7F939iRyHm6/rhOPD56DiOvOdo2vkXTUm7u25k2zcup9fqo9RnKnA62VHto37oZW6u9wbRHtt+Z3p1b8+3s1QDsvlM5yze6+ezao3l2zDxGTl0Rlf9xXXeleXkJ5xyxFzNXbALgjEPb8eOCtey2YxkHtmvB1e/+wgOnHQDA+4N78NhXc/AZQ7uWTWnXsgmndtuDDq2b0afLrnRp25zenXdl4ZqtYKB962YAjLqmF5MWrkvq/MXjuXMPYfWWav756Uy6792KYzq1ZviVR/HNrFWUuhzc0b8rx3RqHbbNwKMqWLe1hnYtm9B5tx2D4cd0bM2VvTvY+n8J5aULutt+0B11TS8mJnlsPTvswlXHduCinvsktV19DL/yKGau2AzAR1f1ZPryjQDc0b8rR3cMPx93n7wfw39Zxo0ndGaDTTkddukR/LRgHU1KnDgd0KzMRbnLGcwv8vwC/P34TpQ6HZx+SLuMHlcsHj+zG2/9tIhD9mrRIPsLkLKvGxE5A+hrjBlkrZ8PHGGMGRKSZpqVZqm1Pt9KEyX0oaTq60ZRFKWxki1fN8uAPUPW21lhtmlExAXsBKxNY5+KoihKkqQj9JOAjiKyj4iUAmcBIyLSjAAGWstnAN+YfOwcrCiKUsSk3ChstbkPAb4AnMCrxpjpInIvUGmMGQG8ArwlIvOAdfgfBoqiKEoDktbXP2PMp8CnEWF3hSy7gb+msw9FURQlPXRkrKIoSpGjQq8oilLkqNAriqIUOSr0iqIoRU5eTg4uIquBRSluvgs2I28LiEK3H/QY8oVCP4ZCtx8a9hj2NsZED/8lT4U+HUSkMtbosEKg0O0HPYZ8odCPodDth/w5Bm26URRFKXJU6BVFUYqcYhT6F3NtQJoUuv2gx5AvFPoxFLr9kCfHUHRt9IqiKEo4xVijVxRFUUJQoVcURSlyikbo65uoPF8QkT1FZIyIzBCR6SJyrRXeSkS+EpG51n9LK1xE5CnruKaKyCG5PQI/IuIUkV9EZKS1vo81Afw8a0L4Uis8ZxPEx0NEWojI/0RklojMFJEjC/AaXG+VoWki8q6IlOf7dRCRV0VklTUpUSAs6fMuIgOt9HNFZKDdvhr4GB6xytJUERkuIi1C4m61jmG2iJwYEt5wmmWMKfgffjfJ84H2QCkwBdgv13bFsLUtcIi13ByYg39y9YeBoVb4UOAha7kf8Bn+eZl7ABNyfQyWXX8HhgEjrfX/A86ylp8HrrCWrwSet5bPAt7Pte2WLW8Ag6zlUqBFIV0D/NN0LgSahJz/C/P9OgDHAIcA00LCkjrvQCtggfXf0lpumeNjOAFwWcsPhRzDfpYelQH7WDrlbGjNymlhzeCJPxL4ImT9VuDWXNuVoO0fA8cDs4G2VlhbYLa1/AJwdkj6YLoc2twO+Br4EzDSuhHXhBT04PXAP1/Bkdayy0onObZ/J0skJSK8kK5BYD7mVtZ5HQmcWAjXAaiIEMmkzjtwNvBCSHhYulwcQ0TcacA71nKYFgWuQ0NrVrE03dhNVL5HjmxJGOv1+WBgAtDGGBOYDft3oI21nI/H9gRwM+Cz1ncGNhhjPNZ6qI1hE8QDgQnic8k+wGrgNav56WURaUYBXQNjzDLg38BiYAX+8zqZwroOAZI973l3PSK4GP+bCOTJMRSL0BccIrID8AFwnTFmU2ic8T/i87Lfq4gMAFYZYybn2pY0cOF/9X7OGHMwsBV/k0GQfL4GAFY79qn4H1q7A82Avjk1KgPk+3mvDxG5HfAA7+TallCKRegTmag8bxCREvwi/44x5kMreKWItLXi2wKrrPB8O7aewCkiUgW8h7/55kmghfgngIdwG/NxgvilwFJjzARr/X/4hb9QrgHAccBCY8xqY0wt8CH+a1NI1yFAsuc9H68HInIhMAA413pgQZ4cQ7EIfSITlecFIiL459KdaYx5LCQqdCL1gfjb7gPhF1g9EHoAG0NecxscY8ytxph2xpgK/Of5G2PMucAY/BPAQ7T9eTVBvDHmd2CJiHS2gvoAMyiQa2CxGOghIk2tMhU4hoK5DiEke96/AE4QkZbWm80JVljOEJG++JszTzHGbAuJGgGcZfV62gfoCEykoTWrIT9gZPnjSD/8PVjmA7fn2p44dvbC/2o6FfjV+vXD3176NTAXGA20stIL8Kx1XL8B3XN9DCHH0pu6XjftrQI8D/gvUGaFl1vr86z49rm227KrG1BpXYeP8PfeKKhrAPwDmAVMA97C37Mjr68D8C7+bwq1+N+sLknlvONvB59n/S7Kg2OYh7/NPXBPPx+S/nbrGGYDJ4WEN5hmqQsERVGUIqdYmm4URVGUGKjQK4qiFDkq9IqiKEWOCr2iKEqRo0KvKIpS5KjQK4qiFDkq9IqiKEXO/wPB3e/dO1x1vwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(2)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These light curves can be used for standard power spectral analysis with other Stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABBcklEQVR4nO2deZgcVbn/v6d6nenZlyQzmUwmOwlkZUhYwmpYA0QFFYTrQgD5XUEfr5d7UblXxY3rxY0LiigYFAUBURMSBNkMsmSFbCSBkGSSyTaT2ffezu+P6lNdVV3VXb3XTL+f58mTmerqqjM1Pd966/u+5z2Mcw6CIAhi7CPlewAEQRBEbiDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBCc+R5APGpqanhTU1O+h0EQBDFq2LJly0nOea3Ra7YUfMbYVQCumj59OjZv3pzv4RAEQYwaGGMtZq/Z0tLhnK/hnN9aXl6e76EQBEGMGWwp+ARBEETmsaXgM8auYow93NPTk++hEARBjBlsKfhk6RAEQWQeWwo+QRAEkXlI8AmCIAoEWwp+uh7++vfbsfFAJ070DoPaPxMEQcjYsg6fc74GwJrm5uZbUnn/f/91Jw52DAIAilwONFYVo7G6GJOrijG5uhiN1T40VRejvqIILoct73kEQRAZx5aCny6rPr8YBzsGcKhzEAdPDuJQ5wAOnhzA+vfbMRIMK/s5JIaJFUXyTUDcDKp8aKqRvy92j8nLQxBEgTImFa2pxoemGl/M9nCYo61vBC0dA2jpHMShjsHI/wN4bvsx9AwFNPvXlnowWXk68GFydXHknw+VxS4wxnL1IxEEQaTNmBR8MySJYUK5FxPKvVgytTrm9Z7BAFo6B9DSMYhDnYPyjaFjEG992IFntx7R7FvqdeLmpVNx+0XT4ZBI+AmCsD+2FHx1L51cUl7swrziCsxrqIh5bTgQQmuXbBG1dA5i44EO/OSl97G5pRM/u24hqnzunI6VIAgiWZidq1iam5u5XZuncc7x5KbD+ObqXajxufHgDYuwsLEy38MiCKLAYYxt4Zw3G71GJSopwhjD9Ysb8afbzoYkMXzyl2/hsTcPUhkoQRC2hQQ/TeY2lGPtHefivBm1+ObqXfjSk+9iYCSY72ERBEHEQIKfAcqLXfjVZ5px56WzsHb7Uax48A3sa+vL97AIgiA0kOBnCEli+OKF0/H4yiXoHvTj6gfewOptR/M9LIIgCAUS/Axz9vQaPHfHuZhTV4YvPfEOvvnXnfCrJnsRBEHkC1sK/mjvhz+h3Isnbj0TNy+dgsfeasEnf/kWjnYP5XtYBEEUOLYU/LHQD9/lkHD3lXPw8xsWYV9bP5bf/zrWv9+e72ERBFHA2FLwxxJXzK3D6tvPwbhSLz77m4342UsfIBym0k2CIHIPCX4OmFpbgj9/8Wx8bMFE/OSl93Hr7zaT6BMEkXNI8HNEsduJH31yPr568Uy8tLsNWw915XtIBEEUGCT4OYQxhs8vnQKvS8Jf36WSTYIgcgsJfo4p8TixbPZ4rNtxDIEQlWsSBJE7SPDzwIoFE9Ex4Mcb+07meygEQRQQJPh54PyZtSgvcmE12ToEQeQQWwr+aJ94lQi3U8Llp03AC7uOY8gfyvdwCIIoEGwp+GNh4lUirl5QjwF/CC/vOZHvoRAEUSDYUvALgSVTqjG+zEPVOgRB5AwS/DzhkBiumleP1/a2oWcwkPgNBEEQaUKCn0dWLJiIQIjj+Z3H8j0UgiAKABL8PHLaxDJMrfGRrUMQRE4gwc8jjDFcvaAebx/owIne4XwPhyCIMQ4Jfp65en49OAfW0OpYBEFkGRL8PDO1tgRzJ5bTcogEQWQdEnwbsGJBPba39mB/e3++h0IQxBiGBN8GXDmvHoyBonyCILIKCb4NmFDuxZlTqrH63aPgnBZGIQgiO+RM8BljH2WM/Yox9kfG2CW5Ou9oYcWCeuw/OYCdR3rzPRSCIMYoaQk+Y+xRxlgbY2ynbvtljLG9jLF9jLG7AIBz/hfO+S0AbgPwqXTOOxa5/LQ6uBwMf333SL6HQhDEGCXdCH8VgMvUGxhjDgAPArgcwBwA1zPG5qh2uTvyOqGivNiFC2aNw5rtRxGi9W4JgsgCaQk+53w9gE7d5sUA9nHO93PO/QCeBLCCyfwPgOc551vNjskYu5Uxtpkxtrm9vT2d4Y06rp5fjxO9I9h4QH9JCYIg0icbHv5EAIdV37dGtt0BYBmAaxljt5m9mXP+MOe8mXPeXFtbm4Xh2Zdls8ej2O3A6m1k6xAEkXlylrTlnN/POT+dc34b5/yhXJ13NFHkduDSUydg3Y7jGAnSwigEQWSWbAj+EQCTVN83RLZZZqyveBWPqxfUo2cogPXv03q3BEFklmwI/iYAMxhjUxhjbgDXAVidzAEKYcUrM5ZOr0GVz03VOgRBZJx0yzKfAPAWgFmMsVbG2ErOeRDA7QBeALAbwFOc813pD7UwcDkkLJ9bh5d2n0D/SDDfwyEIYgyRbpXO9ZzzOs65i3PewDl/JLJ9Hed8Jud8Guf8e8ket5AtHUCehDUcCOPv7x3P91AIghhD2LK1QiFbOgCwqLESEyuKaGEUgiAyii0Fv9CRJIar5tfj9Q9OoqN/JN/DIQhijGBLwS90SweQbZ1QmFMHTYIgMoYtBb/QLR0AmF1XhvkN5fj9hkPUQZMgiIxgS8EnZG44czL2tfVjA7VaIAgiA9hS8MnSkblqXj3Ki1z43dst+R4KQRBjAFsKPlk6MkVuB649vQEv7DyOtr7hfA+HIIhRji0Fn4hyw5JGBMMcT206nHhngiCIOJDg25yptSVYOr0Gf9hwiPrkEwSRFrYUfPLwtdx4ZiOO9gzjlT1t+R4KQRCjGFsKPnn4WpbNHo/xZR48TslbgiDSwJaCT2hxOiRcv7gR/3i/HS0dA/keDkEQoxQS/FHCdWc0wiEx/GHDoYT7BkNhujEQBBEDCf4oYUK5F5fMGY+nNh/GcMB8NSzOOf7tqW24+Mfr0TMYyOEICYKwO7YUfEraGnPjmZPRNRjAuh3HTPd5fMMhrN52FP5QGO8d683h6AiCsDu2FHxK2hpz9rRqTK3xmSZvt7d24ztr3sPpkysBALtJ8AmCUGFLwSeMYYzhhjMnY+uhbrx3VCvmPYMB/Ovvt6KmxI1ff6YZNSVuEnyCIDSQ4I8yrl3UAK9LwuMbolF+OMzxb0+9ixO9w3jghkWo9Lkxu66MLB2CIDSQ4I8yyotduGpePf7yzhH0DctJ2V+u34+X97Th61fMxqJG2c6ZU1eGD070IxAK53O4BEHYCBL8Uci/nDUZg/4Q/vzOEWzY34H7XtyL5XPr8Lmzm5R9ZteVwR8KY387lWcSBCHjzPcAiOSZ11CBeQ3l+M0bBzEwEkRjVTHuvWYuGGPKPrPrygAA7x3rwawJpfkaKkEQNsKWET6VZSbmxiWTceDkAHqGAvj5DYtQ6nVpXp9a64PbKWH3sb48jZAgCLthS8GnsszEXDW/HufOqMF9n5ivRPNqXA4JM8eXUKUOQRAKZOmMUorcDvxu5ZK4+8ypK8PLu9vAOdfYPQRBFCa2jPCJzDC7rgwdA360943keygEQdgAEvwxTDRxm31bZ/exXnBOC7QQhJ0hwR/D5Erw3z3cjct/9jre+rAjq+chCCI9SPDHMOVFLkysKMp6pc7GA7LQt5F1RBC2hgR/jDO7rizrlTpbW7oBAP0jwayehyCI9CDBH+PMqS/D/vb+uD3004Fzjq2HugCQ4BOE3bGl4NPEq8wxp64UYQ7sPZ4dW+doz7Bi5fQPk+AThJ2xpeDTxKvMke3E7daWLuVrivAJwt7QxKsxzqTKYpR4nFnz8bce6oLXJaHM60IfRfgEYWtsGeETmUOSGE6ZUJo1wX/nUDfmNVSgotiFAYrwCcLWkOAXAHPqy7D7WB/C4cxOjBoOhLDraA8WNlagxOMkS4cgbA4JfgEwu64M/SNBtHYNZfS4u472IBDiWNRYiRKvC30k+ARha0jwC4BsJW7fOdQNAFjUWIlSjxP9kRW4CIKwJyT4BcCs8aWQWOYFf+uhLkyqKkJtqYcsHYIYBZDgFwBFbgem1Pgynrjd2tKNhZPkNXR9HicGRrIzuYsgiMxAgl8gZLrFQmvXII73DmNRYwUAoMQrR/iZTgyPNZruWov/+svOfA+DKFBI8AuEOfVlaO0aQs9QZnz2F3edAACcN7MWAFDqkad0DPjJ1knE795uyfcQiAKFBL9AEInbPRmK8tftOIZTJpRiam0JADnCB2i2LUHYmZwJPmNsKmPsEcbYM7k6JxFlTkTwM2HrHO8ZxuaWLiyfW6dsK4lE+NRPhyDsS1qtFRhjjwK4EkAb5/w01fbLAPwMgAPArznn93LO9wNYSYKfH8aVelDtc+NHf38ff999AjPHl2LW+FLMnFCKBQ0VkCTra94+v/MYAOCKeQaCTxE+QdiWdHvprALwAIDfig2MMQeABwFcDKAVwCbG2GrO+XtpnotIA8YYfnjtPLyw6zj2nujHkxsPYyjSMvkbV8zGLedNtXwsYedMi9g5AFk6VqAlIIl8k5bgc87XM8aadJsXA9gXiejBGHsSwAoAlgSfMXYrgFsBoLGxMZ3hETo+Mns8PjJ7PAAgHOZo7RrC8v97HYc6By0f40SvbOd8ZdlMzXaydBJDBUxEvsmGhz8RwGHV960AJjLGqhljDwFYyBj7mtmbOecPc86bOefNtbW1WRgeAchN1Rqri1Fb4kHngN/y+57fcQycA1eo/HsgKvi5bK8wEgzh2l+8iS0tnTk7ZzqESPGJPJOz9sic8w4At+XqfIQ1qnxudAxYX4t23Y7jmDW+FNPHlWi2l3pzH+G39Y5gc0sX3jnUjdMnV+XsvKlCgk/km2xE+EcATFJ93xDZZhla8Sp3VPnc6BqwVpvf1juMTS2dMdE9IM+0BZDTFskiXzDkHx0zfEPk4RN5JhuCvwnADMbYFMaYG8B1AFYncwBa8Sp3VJe40WHR0vnru0fBObB83oSY11wOCR6nlNOkrbi5DGZpvd5MEwqR4BP5JS3BZ4w9AeAtALMYY62MsZWc8yCA2wG8AGA3gKc457uSPC5F+DmiyudG16A/YUuEcJjj8Q0tWNxUhenjSg33KfU6c+rhD0Qie3WE7w+GcetvN2dtDd90oAifyDdpCT7n/HrOeR3n3MU5b+CcPxLZvo5zPpNzPo1z/r0UjksRfo6oLHYjFOboTdDaeP0H7WjpGMSNZ0023afE48yph69E+Kp2Dsd7hvHieyewRbXWrl0IhsP5HgJR4FBrhQKnusQNAAkrdR5/uwU1JW5cdmqsnSMo8TqT8vAH/UEs+/E/sGF/h+X3qOlXBD8a4Q8H5a+zGU0//nYLrvnFm0m/j/SeyDe2FHyydHJHlc8DIL7gH+4cxMt72nDdGY1wO80/Mj53cpbO0e5h7Gvrx7bWbsvvUTNgkLQVX4dC2VPXu/+yE1taupKuuqEIn8g3thR8snRyR7VPjvDjJW7/sPEQGIBPL4k/Ea7Um5ylIzp3dg2m1sFzwCjCD4gIP6VDJkXXoPX5CwBF+ET+saXgE7mj0hff0hkJhvDHTYexbPZ41FcUxT1Wsqte9QrBT2LilxqRtFVX6Yh2Ebnoy3+y3/r8BSA2wj/cOYhVbxzI5JAIIi4k+AVOdQLBX7fjGDoH/PiXOMlagVgERfD7DS1455B58jQa4aco+IqlEz3ncEAW1WAWBV/0/j/Zl2SEr8sr3PjIBnxrzXvoSfEJhyCSxZaCTx5+7vC6HCh2O0wF/8mNhzG1xodzptUkPFaJx6UIfjjM8e017+GJjYdM90/X0jFM2ooIP4tJW9EoLvkIXzumvoj9FUjC6wmEwtSgjkgZWwo+efi5pcrnNhX8fW39OHNataX2ySUeB/zBMEaCIZzsH4E/GI67zq0Q/O60I/xYSyeYRRO/NEXB1yd5JSZf02Tsp1t+uxmnffMFNN21NmOrlxGFgy0Fn8gt1T7j2baBUBgdA36MK/VYOk6J0l4hhMNdcgfOeFU7QrA6LbZ20CNuJsZJ2+QFn3OOE73DCfdzOeQ/m/Y0BT9ymKTG+treduXrw0l0OSUIgASfgJy4NUqcigh2XKnX0nFKvC4AcgO11q6hyNfmYt6rivBT6RUv1s8dCoSUKDmdpO1jbx7Eku+/nHCW7khQtmC6k7xRxQh+JMJPtamaPxTGyf6RlJ+QiMLDloJPHn5uMbN02nqF4CcX4feNBJToM57fLCL8YJin5EurJ3mJCVfpJG3Xf3ASQOLIWTxFBJKs9dfnFYRNlqr9NBwIofm7L2HBPX9P6f1dA37sOpr+31jTXWtxzxrtchfbDnePmrbVhYQtBZ88/NxSbdIiua0vIvhl1gRfeNsDIyElwrfi4QOw3LFTjfrYwtZJJ2krbhIOR/x8hbip+JMUfL2wO4Tgp1ign0obi/eORtc0/tjP38Dy+/+Z0rn1PKorL13x4Bu45hdvpXSstr5htHaRXZUNbCn4RG6p8nkwHAhretIA8h8eANRajPB9yrq2gaiHH8fS6RkKwBUR11RKM/tHgvC5HQCiidvhNJK2oYjwOhMkqEeCqUX4eq9eWDqBFCP8PpXg72uTbaje4YBp1L5uxzFccf/rWLPtKADgYIf8O+oa8OPl3SdMz3OkewhXP/BP/G3n8bhW2dZDXWi6ay3ufX6P6T67jvYktO8Wf+9lLP2fV+PuQ6QGCT6BKp/svXf0a0W3rXcEjAE1JUlaOmoPfyRo+gfeOxTApMpiAMkLPuccAyNB5WY0qOucmVKEHxFeRyLBj0T4yQp1TJVOmpaO+ma67Mfrse1wNz776EYsv/+fyjXnnMMfyTkc7BgAAOw8or0hfG7VJqx8bLOprfbI6wewvbUHtz2+Bb9586DpeD7+c7m/0EP/+NDw9b/tPI7l9/8Tf333qLUfkMg4JPiE0k9HL7rt/SOoKnYrVSmJEJZO71AAR7uH4HZICPNoIlVPz1AAk6tlwe9OshbfHwojGObKzWhQlcAFUkuEiveIyNtsH2HlJB3hmyRtk6nDV7NLZc8AwKHOQbxzqFtzrh++sBcz734eI8EQ9rX1A4j9few9Lh/H7MbMEd2+v70/pbECwP6T8ntf3duGYBLX7sVdx9F019qYc+880oM/bjKf55EKw4EQbvj12xnJbQhe2XMCx3sSV3/lAlsKPiVtc0uVST+dtt4Ry3YOEI3wP2wfQCDElWUQjSLHQCiMAX8Ik6t9ABJ369Qj/Hsxvqilk3rSVrxH/9ZAKIxP/+ptbGnpVOwcsV3NByf60HTXWrxt0v0z0xH+01taNd+rn2rEz/L7t1sAAMP+MJ7dKi88N6wTfHHNzO476vuApLsZJlNdJayyv757NMbzj8faHccAANtbtXpw5f/9E//5px2Wj2OFnUd68Ma+Dvz3X5NawiMuN63anFJ31WxgS8GnpG1uUdor6Cyd9r5hjCuzVpIJAMVuBxgD9kQixlPq5IVSjJKLoiSzsaoYjCU/+UpU6OgtneE0yjKFIOuF+UjXEN78sANffvJdRRyBWEvnH+/LNfIv7Doe9/gCpyL4iaPdE73DyvHNUGuv/makTgyrfwY1H//FG5obb/9IENt1nUz1bpdVvf+/lz/QjH+PQenr4c5BnPG9l2K2S2mWr6ZCKmXCRojP4ZHuoYwcL11sKfhEbqky6Ynf1jdiuSQTABhjKHE7sfuY/Mc8e0IZAOMIX1ToVPpcKC9yJd1eQRyzVlg6Aa3ghzjHcCCk+NdWEFGxvmpGtITu6PdromO1qPYMBvD0ZjniLnI5DI9vFuFbqfa574W9+OyjG+Puo47w9Tcj9fertx01vC4ftg/g2a3Rp4Z//f1WXP3AG5pkPtNF+FYnjf3o7+/jjX3RJ58ilwMPvPKB5no+s6UV7X2x1WJC8L/69DYcODlg6XxWGQ6E0HTXWjwZaQESx81LiVTtumxBgk+g1OOEy8HQqYqyw2GO9iQFH5D7zPQMBcAYMHNCnAg/sq28yIWqYnfSSVshQlFLJ9bDv+W3m3HPc9YfzUWVjl6YQ6pJXSMqoVSL5n/+aTv2npBvdMVuE8GPqdKR/7di6Vhpo6AedjAUxoneYeU66wVeVOroEdbY8Z5hrI9E5Or3CvH99ppd+OHf9qQcda/dcQz3vfg+Hnhln7JNH1W/uqctcs7otusffhtAtCoJAL727Pa454r3tCeCnJ++9EFki3yyTD1L5PKpxAok+AQYY6gsdmssna5BP4JhnpSHD0R9/PGlXsUqihfhlxe5UFHsSlrw+yMefjRpq4vwwxxHu4dwvMd6+4NohG8s+OrjS0wb4av76hS5nYbHj7V0pMj5EkeBouQ1HpoIP8w10bD+KcKsiun1yOSzH724V9mmvh6PvnEAr+5pw2/eOIifv/Zhyk3qRJJevbSmXhs/v2oTAG3VlPjcbDgQndT1xMbDmvdxzpWbx6o3DmDq19eh+bsvoaVjAI/884BmYp2I6I/3DmtsRfWPdbR7KKmV3NSor52R1RcMhfHq3raUjp0KJPgEADlxq07aKpOuLLZVEIhOkg2VRYr4JxL8ymJ30hOvzD38aJQeCvOEghQOc1z20/V47M2Dph6+OjIXgl/qdWn+mMXPDQAek1XBYi0d+X8r5Z2uBJPBAGjC0mAorBFKfYSvT74KNh7sxIneYbSoRFF/CX/1+n7laysR7NE4/rX6Zzf6XX39zzs0NlJIKTc1P9/X/7wDU762DgDw7Dtyovpk/wh++MJefOe593DjIxuUfRmix15wz9+xQ5ezCIbCOPveV/DFP2w1P6GKO5/ehpsf26R6f3SgX/jdFk3SHwB+8dqH+PxvNilPM9mGBJ8AIK9t26mabZvsLFuBEPlJVcWqiVjmgl9W5EJFsTvppK04ZpXPDYlFrQi1pROM/IvHpoOd2HO8D99cvUv549S/R20JiPOWF7kQUImoOgI3u8noj6ufabv5YCemf30d2nQN3N472osP2xN711oPP6yxQvRJ3Hhe9XAghI2qCFr/BKI+jxWL+ux7XzF9TZ2wNvpV/WHDIairgsUNJt5vVR3xq/Mpa7fL1T5qe0z/u/qWrkWEuCGpm9bF4+ktrXhpd1S89ddO/9EQN9b2vhF8ELEEB/1BdPSPZCxxrMaWgk9lmbmnstitSZy29yXXR0cgBL+hskipy++LU6VT5nWhypd80lZE+D6PE8VuZ6ylwyMRfgLB/3MkAhxf5lH+OEO6P1J1hL/5oLygy6wJpfCrordSleCbRez6sUi6mbbfX7cbwTBXcgFHuofQ0T+CK+5/HVtauuL+HIBWMOVJc1FVT0bw9RPP9DkG9eVJlLQ1K1FV3q8aNLfgnJs9Uby8+wSa7lqryU003bVWY/0o51Edwux4YqtZ0lVdV987HMCnfvkWHnx1X8x++uPrL5e40s/vPIaLf7Ief9t5HI/+8wBO/+5LKc/AjoctBZ/KMnNPtc+Njn51hC9/oJO2dESEX1kMj1OCU2KG/mfPUAAepwSvy4GKYjeGAqGY+nA1hzsHNf1VhMD7PA4UuR0YCsgzevURfiLLYdNBWRBO9vuVpwS9wKm/f/PDk6gt9aC+3KsRUfXkNLMJWaYRfojj7f0d2BqZNFUa6Tp6zr2v4PTvxpYpmqGOVj/96w2an11v6aitDD16u0c/bnXU2pGgRfR1kSSrGQG14Jv8qgy36zZ+5zk5Mr/jiXfing+QP3uiTDLRE2DIQHS3HurCmT94GX+KzIP44EQfNhzoxP++sDdm35ibJef4wbrdeHqz/BTy90hLC5FvefdwN+578X0AiWd8p4ItBZ/IPVU+D3qHg4pYtfWOoNTjRJFJxYkZag+fMRaz7KGgZzCA8iJZ2CqL5eRuvMTtnc9sw9f/vFP5vn8kCJeDweOUV+wa9IfgD4UVHQiFOYKhcMIItGswAJ/bgVCYKxUt+puEWki3t/bg1PoyuBySxo5QC6pZXb04jtBTMdM2GA5rhDHMOW74dXyhjHd8gdpy0idt40X4+iumtyUOdUY9+Yt/sj65QeqPHQqjpWMAfcMBwydBo/EYIfoCWeWce19B14A/bpABRJ8A1QjrZcMB+ekl3tNXjD3IOX65fj/ufGY7mu5aqySvj0aeGPpHok+6WdB7JE79EwWBqMXvGvBjXJkX7X3JzbIVlCqWjtwywed2GpZl9gxFBV/08ukaCKCu3Hih9EMdgyiL7A/Ilk5xpBqmyCUL/rA/KkxWIvxwmKN70I9zptco1SlA/CqdkWAYU2p8cDklzSO3OhnnN3kUF9Ge+DsWdfj6R3fOuaZm3Sp6wfSb3JCA2Hp6NU9s0LYr0I8v2ZW+4hEIcZz/v69hfkM5trUaW7jZ8LIBYOF3zNtKC7G957mop/+t1bvwtStOgbis4mPx/XXmzeL09qBZzkP8ftR/K/F+R6lCgk8AUM22HZQFv61vOCXBn9dQgXkN5airkK2gUq/TcNUrteBXRCJ8s8RtKMxxok/rSfePBBX7qL6iCB+c6FN64ov3hBIIfu9wAGEOnD65UiP4oTDH33YeQ2OVD3Pqy2KO4XZIcEks8kTBwRjDSDCMiRVFONI9pET4f9rSimA4jE+d0QhAHeEzHO4cxN/fkx/n9U8Eqepbr65WXy3UetGOJyUPr9+v+d7sGlYUu5LugaRHrDBmJvZA7PUIhTn+K4OtD4wocjnwoq6MctWbB/Gnra3KjTVeBdigP4h//f3WmGRvoqqxo1nuuUOWDgEgaquIWvy2vpGk2ioIls0Zj9W3L1U87RKP09DD7x2OCn59JKrfZ9KY62T/CEJhrqmuGBgJwueR7aYLZtXiYMegptd7iMsRfrw/MJEobqwqhtcV/VMIhjlue3wrrrj/dflYBjNkxc8nngZGgmFU+dzwuiRl21ef3qbp9SJyBG6HpNSYq48h+JIFH/r8mbX4z8tO0WzTT85S30iOdGstj2SCRzOLKhPx544jiQsz9L/CJzZmtmGaEUUuB2793ZaY7eqnqGe3HsHCe140fP/KVZsNK3su/sk/4p73PV1DvExDgk8AkMsyAbmBGuccbb3Jz7I1wtTDV0X4k6qK0FRdjJd3G9ciH1P8zaAiPoP+kFIKeeGscQDkfu8C4eHHm8UqcgaVxW5U+6I/q9rX3XSwU2n1LHBKDK5Irb3IeYwEQ/A4Jbgckmk7B9H+waFLZOurO6xEeQ6JYWKl1v7q1a09oLZ09LbDV/74bsJzCMyqRZKtrEoV/U377r/sNNkzc7xssS7e7Bq8ZVKddLI/fvlxKiu/JQNZOgSAaMfMzgE/+keCGAqEMiL4Po8ThwwSaj1DAcWTZ4zhI7PH43dvtUQid+3H8nhPVHD7hoOo9Lk1ls6kqmLMGFeiEfxgKIwwj/8ILSykimIXako9SuWGup/LJx6KXbVJYtEIX4jhSCAMj0sWfLOZsyLC108IUy/CbhWJxdbZ6CevxSvri/eaPsGb6opcmcJezQlGNyxbCZFMUDV5Nr/464/mexgFAQew8UAnJlYUoabEjW2tPZhW67O8+IkZ+08OoHvQj0WNlZrtGyLnaohEqb3DAew+1ocZ40qUm4/geO8wWiI3jfkN5fC6HNje2g2vy4GZ4+V+PYe7BnG0W46MJQZ4nA4MBUIockmY11BhOLaT/SP4sH0A8xvK0dIxiO6IJVJV7EJnnOi1obIITonhYMcgFjVWwOWQsONID9wOCQP+ICqK3Zha41NqwJdMqZKvRXs/2vv9YJAj9FRaOAsqi12oLvEoPe4BoMglYSgy09jlYGioLM5IszGvU8JwEk3oMk1NiTthZDwWEZ+bZHnqtrO3cM6bjV6zpaUjJl4Fg9l9vCGiKCIUCisRntviwifxcDAW44ELoVMvJVjqdcHBjEsz1RZJtP2Btk55YkXU3nBITJnEEy+eEVGuyyFp2xAk6F7JEK2gEIfnnENicn27WRCVhXk0GkR1kMQAr9ORseqWfIeEQyk8ARHG2DrCb25u5ps3b873MAqGi370GmZPKMOlp03Al554By9+5Twlgk6Vn770Pn760gf48PtXKKLa0jGA8//3Ndz3ifm49vQGZd87nngHb+47iY3fWKYR4C8/+Y6yLN7vVi7GuTNqMf/bL2LFgnrcs+I0Zb+uAT/+/M4RvPnhSew+1ocj3UOYXF2Mf9x5oeHY/veFPXjoH/vxwXcvx3+v3onH35aTgaLaxoy7Lj8FNSUe/PvT27D+zgvRWF2M8374KhY1VuDdw92Y11CB+69fiKa71gIADt67HABw06pNeGVPGxwSQ6nXGbfCpczrVOYFGLF8bh2umFtn2ONlfJkHEyuKsHxevTIhKR3qy71Zrx4hYhGfm2RhjI2uCJ/ID9U+NzoGRpReLhlJ2hr00xGJrspil2bfc2fUoGPAr6y9KjjWM4yKyL69Q/JxBv2xXn+lz42blk6Bx+lQ2hjHK8vsGgygosgFSWIo8UTHImYZm+FgTGlm5tckbR1wOaSYmbbDgRDaeoeVls5hnrjlQ6IJb4yZV9r0DQex9VA3ntp02HiHJDES+0QLvRPWmFRlPO8kW5DgEwpVPjc6B/xo7xuB2ykpVTTpYCz4Ilmq9erFYib6evLjPcPKk0bPUAAjwRACIa4cW48kMfiDide27R70KzeSUq+2F47bKWlKNfXHdzu0rY1HgnLS1umQYhKin/vNRiz+/suKNcG5caMwNR5nfME/d0aNaVmkSAKLnjzZwGuyyAthnfs+MR+v/8dFOT0nCT6hUOXzoHMggLa+EdSWeDIy00+0WlCXIXYr5ZAuw33Vtc6ccxzvGcYpkcVUeocDynq2ZguNOBisRfgDAWX+gVrwAaDG5zYVXaeqDj8QjFbpeF0OuBwspqrl7f1y8nZA5UUnWgDdrMWy4JPNk+K+nm3sIPgVxckHJNcvTnzdptb6NF+r80PNkyuN3pI0H1s4ER9bOBEAcPfy2Rk5phVI8AkFuWulHyd6h5Nui2yGiMLVIt6tWDpuw33VTwOdA374Q3I7A6fE0DMU0HTKNMIhSYrVoi/L7B70K5UrXYN+5SnjgpnjNPtVFLtNRVdS1eE/8OoH+PjP38BQIFqHbybm6uRjoqZu7jiC75AYGGOmlo7Zk0kmydQ50ikMELbYqfVllt8jWn7Ew6G6sK989QLN78Ls93LO9Grl64vnjE94jpVLpyh5qpvPnZpw/0xBgk8oVPk8CIU59rX1Z8S/B6KRs97DZwya3jiASvBVNwcx6aqu3IvyIhd6hwLKscwsHYcUrc7Rlz5e9tPXceF9r0XG4VeeMhqri3Hw3uWoiUxAK3I7TP+4HYzBFfljfWHXCaXLpdshdwc1q3FXrw2bqCQznuCLQovJ1T7D111SLgQ/QxF+Eg+RHzlFe1MWv+Mbz5xsuP8dF01PaUjjdTPMxWcCAJwmN6hk51I4rSxokwVI8AkF0U9HXrw8+bYKRvgMRLx70I8yryum/WtZpC2wuveO6Ds+obwIZUUu9AwFFOE0j/BVKyTphPV4JCHNOUfXYCCm5l+81+OUTCN89UxbzXaHFNNFU42VdWkFiSwdAJhdV4bFTdpa7aXTa5SmbNlEXf+fDlaHev3iRnxRJ+DiN2uWQJ41IbbCTP/7NuL+6xdqvn/whkVYMKki7rlGArGlw2q+cL4cxYt5LWZNArMNCT6hoP5jSKVxmhEiCh/QRfh6/x6A0hunT9UiQJRH1ld4UVbkQu9wUFnPtsRj4uGr/ijNqmGGAiH4g+GYxLFYZ9bjlOA28fDVvXS055UnPAVC3LAGPsy18wXiYXZuPQ269gqnT65Muo/6jWc2JrV/JjFbatEIvf0jrrHLIeG6M6zlNIxyH2c0aX15/U1hXKlX8f7NBP/+6xcoXxvOG4h8HFYunYKD9y6PWxDx0r+djw+/f4Xp6+lAgk8oqD/oGbN0PLFRe7fKO1fjdEgocjk0TwNHuofgdkqo8XlQ5nVqPPxik8XC1R6smXViVhoqxNLtlMwtHcl4jVmJsUiVTtjU1tH3vzEjnretPrI+se52SkmJKAB89qympPbPJNbHymNsEPGrdToY7r1mHurLtU+lRou8OCSmyT8smz0eT992dsKad3GDN7rRA8D0cdGniSFVL6bl8+rw40/OV/ozWcl9lBU5s7L4CUCCT6jQCH6GkrYialeLuNo711Oqa7Z2pHsIEyuKIEkM5UUu9Fny8KMfa7NeOl0DxqWhTsXScZjaKg5JMhRkicnlmvJausa2jj4iN8NjMSmq10uHxJBMHrSputhUxJLlkc82x4huIpKRNf04xe9WPJXpb37jdZ/h9+65FID2JvPAp7X2jeCrF8/EU184y/TcgDwJ0IjFqpYID356ET6+qAFfvGg6LpkzHteoJhqaUepJvxzaDGqeRihoI/zMePhOh1zPrl7Jp2sggJnjjGfwluj65x/pGkJ9pLe+8PATV+lEvzarhulOEOHH8/AdkUg+9rwMTgeTI/yg8XkbqxJXiQCAJ16Erzq0kWAmM3k+zJNrlSyY11CO7boe9pOqipNP5lo8N+exyWjxc4qnLfFzrL79HARCYZw+WZvfEE+E6idAs/He8ZEZmu/FOYLhML5xxWycNa0ap00sx7LZ43HWtGrNvndeOitmTYFxpV48/BnDya8xZLPKKmcRPmPMxxh7jDH2K8bYDbk6L2Edr8sBX6S2PVOWDgCUeFyK7w7IyUsjSweQV8zqG46N8AGgPEbwzT12QZgbr5jUKeYCmCVtXXEE38zSkRickoRAMGy6+LXVG2m8Kh3NOXVqnWynlDDnSVtAAPDQjacbjCX5vjtm5/7DzUs033MOuJzafb959RxcdMo4nD2tBoBq6UiJxYi95pwp2CVinKEwxy3nTcVpE+X1tn/92WasXDpFs6/LIeGH18zDv5hUD8Xj9f+4MCsrXQnSEnzG2KOMsTbG2E7d9ssYY3sZY/sYY3dFNn8cwDOc81sAXJ3OeYnsUVXihsSA6jS7ZKpR2zT+YBj9I0FTS6fE60R/JGk7HAihvW8EEyvkqLjM60IwzHGy36+sZ2uEPrFmFOWfjLRA1s8FED6xxxmnLNPU0pGjs5GgeR/+Ire1PzmrHq5eG7jSNs4aqbbSMgoIGDNvHGeG0Y/pdUk4e3oNvv+xuZpJUE5dhD+ttgSPfu4MpQ2FEGX1TcRoUtNZU6tjtiVC/D7izZ/49tWnKuL/yTMm4TsfPc10Xz2rbz8HL3/1fEyy+ASYKulG+KsAXKbewBhzAHgQwOUA5gC4njE2B0ADANHcg9rf2ZSqYjeqSzwZTRqVeKIi3j0U7UFvRKnHpdwcREmmSHSKyoaj3UOmCVtA+8gOwHAhc7Euq34cDlWVjtkNRY7wDSwdxpQF1b/27HbD93otVt9YjbqNdktGdDnnKUW8aktLPO2or7vVHjFG0axItn56SSNuVU1K0t9k9XaMkeAbTWr67sdkITbLARkh/h7izZ/47NlN+K8r51g+ppp5DRWYVluS0nuTIS3B55yvB9Cp27wYwD7O+X7OuR/AkwBWAGiFLPpxz8sYu5Uxtpkxtrm9PXaJMCK7NFQVY3KGowyfx6G0QxDeuZmlI0f4suCrSzIBleD3DMX9Y3XoIkEjd+Vk/whKPc4Y4RZS4XYaR/FAZAEUg+hfkhiK3U4MBUJ41WB5O8B6Mtb6DTd2v6Q9/AT7fPHCaXFfF9dQYkx5upg3scLS+Y1+TDOrTl+loy/LVRaHT/ADVfvc+NzZTXjy1jMtjRGIPl0kmiFtd7Lh4U9ENJIHZKGfCOBZANcwxn4BYI3ZmznnD3POmznnzbW1tVkYHhGP7330NPzCwJ9NhxKPS0nEiuoYvZUS3Tfq4R+JLC3YELF0RFL5QPuAqSgAiKlSMaqYOdnvR4Uv9ilDVH7Et3SYYT22g7G44xLHtUKi4wiMFkBPRpKsePhfvXiW4XZxfYTgqw9j9tTwzG1n6bbE7vfHL+j3ka0q/c055inP5Mf49JJGZeKUPE6Gb119quLDC6bUGM9cBqxF+KOBnFXpcM4HAHw+V+cjUsMs8k4H2cOXI/suJcI3tnTKvE70+4MIhzmOdA+BMWBCpNTvjKZKNFYV41DnoGmFDhArNkYRfv9wEMWu2GOICC5ulY7JxCtJAoriWE3iuFa4eelUPPjqhwn3EwLkdpj3D4oHR+KIWJIYdnzrEsz9lnbB7hnjSrDraK8mgS1ObXbMZt3MYKP91NaGuIlwHpso1zfPEzcu/U///Y/NNR6Mjhe/cp7ptRNPF4naWtudbET4RwCop7M1RLZZRqx41dPTk3hnwvbIHr4ctXebVMco+3qd4Fxe8PtI9xDGl3qVSNLpkHDb+dOUY5qhj76P9w7j4MkBjbc9HAwZ9jNRBN8VZ+IVY4aWi8SYUuVkhtUI3+ty4Mu60kAjhECJ8SSbNPU4JUulkaXe6A36uTuWAgAeu2kxfv2ZZuVnYgxKythqDiLRfurJU3q/Xz0m+Vjy/8nc8NS4HPHyNmMjws+G4G8CMIMxNoUx5gZwHYDVyRyAc76Gc35reXl54p0J21PilW2aUJgr68aaVulEJp30Dwc1NfiCa06fiPpyr9I73wi9iFz60/W44L7XNEsXDgdChrZMMBy1dBL98Rttj5dMBpKbUGXFx1dmm0qxUbYVilyOpMsyhRVSU+LBMpPOkJYzEFbr8FVfOySGXd++NOb6iJtDNhbxc1qo0hkNpFuW+QSAtwDMYoy1MsZWcs6DAG4H8AKA3QCe4pzvSvK4FOGPIWaMK0Ew0oWza9APt1NuoWBEqdITPyDX4Ova2XqcDvzl9nPwzatPNT2fmVCOqNbGHQmGDSdPqS2deB6+4fZIlY6aZbO1HR6tWjqSyVOEHhHNrlhYDwC49NQJSUW4XpcjqdmuiVBOrTpodZyGZYnOLW6Q4slp57cvxd7vXGZo6antn0wjboqjPcJPy8PnnF9vsn0dgHVpHHcNgDXNzc23pHoMwj7MjyTMth3uRveAvKyg2eQSsQhKz1AAx3qGsHxeXcw+iSYvmTW4Glb1ODGP8CMLuCfw8I1gBklbvT5YtXQcEtPcoEyJHH9OXXm0H0wWI/zTLS4AYtTHxnC/yLln15Vh97HemNevnFePQx2DuClS3x7PyhM/R6qWTjxEHuny0yZk/Ni5hHrpEFlnSrUPpV4n3m3tjvTRMY/4SiN/0Pva+hEIccutCNSYVYiol04cDoQNE68iwRsvwjcTSCNLR91LXRzXChIDeiL5DkBOyt6zIvapRjyRqH+UZOTO63ZYtlW23L0Mv9fNgNWTKGmrR1TQ3vtx48SqQ2K44yMz4ibpBdmM8GtKPNj+rUtw+4Wp9di3C7YUfLJ0xhaSxDC/oUKO8AcDcZemExH+rqNytDfJwgpFeswi/LbI7FpAjvCNInUR4ccryzRbvMIhaStHLjt1Aq6cV6/Zx2qvGcaYku8A5NzF7LrYlZ2iSdvEDeOMuHJuneWp/NUlHsPxL2ysAKAtk1TfFPWjmaaaPWv1ScAKiuAn3eDBGmVeV07WGsgmthR8StqOPeZPKsee43041jsUP8KPVF68F3m8TynCNxGwdpXgjwTDhv1wREsEj8s8z6Cfyas+r1r0rppfH3PTsNojB4hOUgPkqNXorELaNBG+Tu/M9Pz3Ny/BJ8+YlFLzNDX3fWI+nrtjqab5Xrxjrr59qfL1vdfMxUdOGWd4M0sW0bvGyjKGhYotBZ8Ye8xvqEAozHG4cwiVBhOeBMKj3XOsFw6Joa4i+a6dZh67WvCB2N4sgLpKR8JFp4xTykDVmEV5ks7DF2vcWhmbEeqKEG7S1VKUYapvcndeqp0oZXZGca1TaZ6mxutyKJU7YjyfOmOSphKrRlVV5fM4lddOmVCGRz53RlI3QjM+dUYjDt673NKqVoUKCT6RE9QzHeNN7lJWyPKHUFfuTalXu2XBN4jww6qyTJ/HiZvOaYrZx8wyckhM81TgcUmGTxFW+Z9r5ykrj3FwQ+tFRPPqn/mmyKpKAjPLJtp7JuUhmjKuzIvnvnRuZIwcr915AbbcvSxmTNlIsBLm2FLwycMfe4wr8yqLY5jV4AOycIkSvFTsHHEMI2Ij/Hh1+JLpscwiYokxjbh6nA5T++qq+fWG29VMrCjCv18yE4C5paN4+HGidHXPmOsXR5czFG/JpI++6qbF+Pw5Tagv92qOWuJxajqwfnTBRACxs2WJ7GJLwScPf2wiyjMTtW8QidtUBd8sAm/v10f48evw5WMZL3RihH67xylhUlVxTAXKwXuX43sfs9Y6V5lMBOMbjXB94iUTz2iqwrcj8xbUh1AE3+StCxsrML8hub/BmeNL8c2rTgVjLK5V9I3ls7H9W5cknKhGZBa62kTOmD+pAs/vPI6KOAs4A3I0eAIjKfcGt5K0BYwXMVFX6QDGto/ZDUW/WUwaOtOg/3q8iFyDqtTQ0MO3eDzxsnqMwk0xe+uf//Uca2M0QZzLyLRxSAxlutYIP79hEaaPy36L4EKGBJ/IGedMq4FTYppFLYwoiQhBqoKfTtJWRMxCrA0tHTPB120X7ZWNjmF5gZPI/xzc0Hrhul46yRCtmc9SqWGSh71ibuwkOyKz2NLSIQ9/bDK3oRw7v30pppusZysoi1g6kywu+K3HTPw6BvyW9gOiYm220InheSPbxZODJ5LANeysaXmBk2iYbFylEzleAsFXvzpXVNREYm/1a1Y7S1ohazcSImVsKfjk4Y9drEw8EpU6mU7a6jGydB5fuQQfXzhREVCjQ5mJqziv8KWVlaAi29X6l3yEbyz4VpK26pNzru4qKf+vFuZPL2nUvzNlSO7thy0Fnyhsyrwu+NyOlOuprfrjRknbpTNq8ONPLVC+NyppNPPwxa436/q+iP3V77LqwETbBRgvVBJW6vATHCfyv3zj0JZEZs3RoQjfdpCHT9iOledOwUWzx6UsGJYj/BQL0BNV6dx+0XT8vwumKTcUh0NE+NH3Wf3ZVI6OSYSf3PHUyV+uCH52hFm5yVCpvW0gwSdsx8zxpZg5Pr7PHw+rgq9f+9Yqps3TWFTY1dU9zjj2UCLUPd6NzsutRviq1yWVvZNNKMC3H7a0dChpS6SDVcE3a4KW8H2R4+s7YcZruQCkNsFJE+EbvG6lDh8AlkyRlxZcPrcOp9bLfWvKE5THEmMPW0b41A+fSAcjwf/CeVNx+uRKOCSGlY9tBmCctLWCENfnv3wejvUM4eoH3pC3m4S0okrn2uaGmNdqSjw4qZsQZgTnPEEvnfjvnz6uVGm3sHhKFVYsqMeMNJ6ikiHZZReJ7GFLwSeIdDAS3kqfG5ecOkFTi5+qpSOoLfUovW6AOOWakUXA9bNKn7ntLDRWF2Px9142PYfw19XJVjXR/mrWb15up4TTJ1cl3jFNMtmygcgMJPjEmENYNS4HQyDS7ljYMOoKm3QamxkR7/6hX3AbAJqbEouuMsIE7ZGNIvx7VpwKXx5bF4jrUVee2nwKIvOQ4BNjDhFpux0SAiF5WUPRftehSaZmNoWVymzXRKgX9YiftI197TNnNWV8PMlQ6nXhZ9ctwFkGrSWI/ECCT4w5hPB6XA4M+GXBF+KujvBTTdqakY2ZpeoqnXgTr+xaEbMi0hWTsAe2rNIhiHQQgu9WTaxy6ma9AuYTqIxoqk486zddwX/9Py6M2aZep9W4l05mzk0UBrYUfCrLJNJBiJ9ogAZE/Xq1jWM009aIPd+5DC9+5fyE+6Vq6VwwqxaAcbO4c6bXYPq4Enx52YwEE69SOjVRYNjS0qGyTCIdRDTvUS2bJ4RerclWZ9paXXjccstjHb/+TLOSXNZTXuTCS/8m32xauwZjXldmy1JFDGEBWwo+QaSDkrR1qiN8+WvGGJwSQzDMLUf4VmEpHs7pkOC0cE8xTtpGXrPlszphN+hjQow5jDx8dQmmw6BEMyPnzbKvEjdpSxE+YQESfGLMoVTpqMJmdTSv1ORnuEonG2WZaowifNFzSCwLmQnGl3kS70SMSsjSIcYcovWBxtKRjCL8zMY72a6UMTr6D6+dhxvObMTEisxNbnr9Py5SFkchxhYk+MSYwykZJG0dsV8nO9P21X+/AF2DftPXsxzgGyq+z+PE2dNqMnoa9Y2SGFuQ4BNjjmhZptrSiY3wk7VgptT4MAXm6/Hmw9IhiGSgWzkx5hDCq47g3QYevtFas+mQ7RWeSO6JdLGl4NPEKyIdRLWMU2JRv96oSifDSdtsQxE+kS62FHxaxJxIB0liYExuf2yUoBWRfaaTttmG9J5IF/LwiTGJU5InWIloPxd1+Nkmm7X2j69cggnlVI451iHBJ8YkEpPtnKh9k/06/GyT6kxeKyydkdlKH8KejK5nWoKwyPgyL8aXeQ0TuI4sJW2zzei6PRF2ZHR94gnCImu/tBQ3nzslKu6SQYQ/yiwdStoS6UKWDjEmEUsKCpE0rNKhpC1RYIyuTzxBJIlRzb2y+tUo8/ApwifShQSfGNMYVeSM1jp8gkgXEnxiTCNJiNTkx65l6yJLhygwRtcnniCSxClJcEmSpu2BIzIxS6KkLVFgkOATYxqJxVo3TomNuugeoLJMIn1yVqXDGJsK4BsAyjnn1+bqvERh44jMuI3ZZlP//g+3LEFNifGMV4rwiXSxFOYwxh5ljLUxxnbqtl/GGNvLGNvHGLsr3jE45/s55yvTGSxBJItDkmImWDklKaM1+N/56Gn43NlNGTnW2dNqlFWs9JDeE+liNcJfBeABAL8VGxhjDgAPArgYQCuATYyx1QAcAH6ge/9NnPO2tEdLEEnikGItHTnCz5yl8y9nTs7YseKR7fbLxNjHkuBzztczxpp0mxcD2Mc53w8AjLEnAazgnP8AwJWpDogxdiuAWwGgsbEx1cMQBAC5VXJshB9r8xBEIZBOmDMRwGHV962RbYYwxqoZYw8BWMgY+5rZfpzzhznnzZzz5tra2jSGRxByNK8X/ElVxWisKs7TiAgif+Qsacs57wBwW67ORxCAcdL2KxfPxFcunpmnERFE/kgnwj8CYJLq+4bItrShFa+ITCGxzPr1BDGaSecvYROAGYyxKYwxN4DrAKzOxKBoxSsiUzgdTNMamSAKGatlmU8AeAvALMZYK2NsJec8COB2AC8A2A3gKc75rkwMiiJ8IlMsmVKNs6ZV53sYBGELrFbpXG+yfR2AdRkdkXzcNQDWNDc335LpYxOFxZc+MiPfQyAI20D98AliFHHezFp8dEF9vodBjFJsKfiMsasAXDV9+vR8D4UgbMVvb1qc7yEQoxhbli9Q0pYgCCLz2FLwCYIgiMxDgk8QBFEg2FLwqSyTIAgi89hS8MnDJwiCyDy2FHyCIAgi85DgEwRBFAi2FHzy8AmCIDIP45znewymMMbaAbToNpcD0N8JrGzTf18D4GQGhhkPo3Fl8n2J9ov3Ol3H5PY1e93q9kTX1s7XMZn3Zvs6Gm3L9WfSztcRAGZwzo0ToJzzUfUPwMOpbDP4fnM+xprJ9yXaL97rdB0zcy2tbk90be18HZN5b7avo5Vrm+1raefrmOg1W1o6CViT4jajfbJNque0+r5E+8V7na5jcvuavW51u9XrnU3SOV+2P5PJbM/3Z9LO1zHua7a2dLIJY2wz57w53+MY7dB1zAx0HTMHXUtzRmOEnykezvcAxgh0HTMDXcfMQdfShIKN8AmCIAqNQo7wCYIgCgoSfIIgiAKBBJ8gCKJAIME3gDE2mzH2EGPsGcbY/8v3eEYrjLGPMsZ+xRj7I2PsknyPZ7TCGJvKGHuEMfZMvscy2mCM+Rhjj0U+hzfkezz5ZswJPmPsUcZYG2Nsp277ZYyxvYyxfYyxu+Idg3O+m3N+G4BPAjgnm+O1Kxm6jn/hnN8C4DYAn8rmeO1Khq7jfs75yuyOdPSQ5DX9OIBnIp/Dq3M+WJsx5gQfwCoAl6k3MMYcAB4EcDmAOQCuZ4zNYYzNZYw9p/s3LvKeqwGsBbAut8O3DauQgesY4e7I+wqRVcjcdSRkVsHiNQXQAOBwZLdQDsdoS2y5iHk6cM7XM8aadJsXA9jHOd8PAIyxJwGs4Jz/AMCVJsdZDWA1Y2wtgD9kcci2JBPXkTHGANwL4HnO+dYsD9mWZOrzSERJ5poCaIUs+u9ibAa4SVEoF2Aiond5QP4QTDTbmTF2AWPsfsbYL1G4Eb4RSV1HAHcAWAbgWsbYbdkc2Cgj2c9jNWPsIQALGWNfy/bgRilm1/RZANcwxn6B/LQFsRVjLsLPBJzz1wC8ludhjHo45/cDuD/f4xjtcM47IOdBiCThnA8A+Hy+x2EXCiXCPwJgkur7hsg2IjnoOmYGuo6Zh66pBQpF8DcBmMEYm8IYcwO4DsDqPI9pNELXMTPQdcw8dE0tMOYEnzH2BIC3AMxijLUyxlZyzoMAbgfwAoDdAJ7inO/K5zjtDl3HzEDXMfPQNU0dap5GEARRIIy5CJ8gCIIwhgSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgC4f8D0ms9A+23UnIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pds = Powerspectrum.from_lightcurve(lc_pois, norm=\"leahy\")\n", + "pds = pds.rebin_log(0.005)\n", + "poisson = poisson_level(meanrate=lc_pois.meanrate, norm=\"leahy\")\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.axhline(poisson)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (ii) Using user-defined model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Light curve can also be simulated using a user-defined spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVqElEQVR4nO3dbYxc133f8e9/d/kgUZZIiltCJumQroimbJ4sLGQ6DgLDqm1JMUy9cAwJQcw6Qoi0cuJUBRyqBiKkQQC7LexYReqEiJTIgCNbUeyKMJTKjKQgCFDJXlmynmhZa9oySVDm6omO9URy998Xc5aa2ZkluTu7s8sz3w8wmHvPPXPvOcPhb+6eOTM3MhNJUn8YWOwGSJJ6x9CXpD5i6EtSHzH0JamPGPqS1EeGFrsBp7Nu3brcvHnzYjdDks4pDz/88POZOdxp25IO/c2bNzM6OrrYzZCkc0pEPDvTNod3JKmPGPqS1EcMfUnqI4a+JPURQ1+S+oihL0l9xNCXpD5SZei/evwkn/3G0zzyo5cWuymStKRUGfqvHZ/glvvHePzwscVuiiQtKVWGviSps6pD34uCSVKrKkM/Iha7CZK0JFUZ+pKkzs4Y+hFxW0QcjYgnmsr+R0R8NyIei4ivRcTqpm03RcRYRDwdER9oKr+ylI1FxO5570kHXvRdklqdzZn+XwNXTivbB/xcZv4C8D3gJoCI2AZcC/y78pj/HRGDETEI/BlwFbANuK7UXRAO7khSZ2cM/cz8J+DFaWXfyMyTZfVBYGNZ3gF8OTPfyMwfAGPA5eU2lpkHMvM48OVSV5LUQ/Mxpv9bwN+X5Q3AwaZth0rZTOVtImJXRIxGxOj4+Pg8NE+SNKWr0I+ITwEngS/NT3MgM/dk5khmjgwPd7za19nva57aJEm1mPPlEiPiPwAfBK7INz8xPQxsaqq2sZRxmvJ554xNSepsTmf6EXEl8EngQ5n5atOmvcC1EbEiIrYAW4FvAt8CtkbElohYTuPD3r3dNV2SNFtnPNOPiDuA9wDrIuIQcDON2TorgH3li1APZubvZOaTEXEn8BSNYZ8bMnOi7OfjwL3AIHBbZj65AP1p4YxNSWp1xtDPzOs6FN96mvp/AvxJh/J7gHtm1bo5CidtSlJHfiNXkvpI1aHv6I4ktaoz9B3dkaSO6gx9SVJHVYe+P7gmSa2qDH2/nCVJnVUZ+pKkzgx9SeojVYa+ozuS1FmVoS9J6qzq0HfyjiS1qjL0w+k7ktRRlaEvSerM0JekPlJ16Kc/uSZJLaoMfUf0JamzKkNfktRZ1aHvlE1JalVl6DtjU5I6qzL0JUmdVR36ju5IUqsqQz+cvyNJHVUZ+pKkzs4Y+hFxW0QcjYgnmsrWRsS+iHim3K8p5RERt0TEWEQ8FhGXNT1mZ6n/TETsXJjutHL2jiS1Opsz/b8GrpxWthu4LzO3AveVdYCrgK3ltgv4AjTeJICbgXcClwM3T71RLARn70hSZ2cM/cz8J+DFacU7gNvL8u3ANU3lX8yGB4HVEXEJ8AFgX2a+mJkvAftofyORJC2wuY7pr8/MI2X5OWB9Wd4AHGyqd6iUzVTeJiJ2RcRoRIyOj4/PsXkN/vaOJLXq+oPczEzmcXZkZu7JzJHMHBkeHp6v3UqSmHvo/7gM21Duj5byw8CmpnobS9lM5ZKkHppr6O8Fpmbg7ATubir/aJnFsx04VoaB7gXeHxFryge47y9lC8rZO5LUauhMFSLiDuA9wLqIOERjFs6ngTsj4nrgWeAjpfo9wNXAGPAq8DGAzHwxIv4Y+Fap998yc/qHw/PG2TuS1NkZQz8zr5th0xUd6iZwwwz7uQ24bVatkyTNK7+RK0l9xNCXpD5SZej7g2uS1FmVoS9J6qzq0E/nbEpSiypD3ymbktRZlaEvSeqs6tB3dEeSWlUZ+o7uSFJnVYa+JKmzqkPf0R1JalVl6IfTdySpoypDX5LUWdWh7+wdSWpVZeg7uCNJnVUZ+pKkzqoO/XT+jiS1qDL0nbwjSZ1VGfqSpM4MfUnqI1WHvlM2JalVlaHvN3IlqbOuQj8i/nNEPBkRT0TEHRGxMiK2RMRDETEWEV+JiOWl7oqyPla2b56XHkiSztqcQz8iNgC/B4xk5s8Bg8C1wGeAz2XmpcBLwPXlIdcDL5Xyz5V6C8rRHUlq1e3wzhBwXkQMAecDR4D3AneV7bcD15TlHWWdsv2KcBxGknpqzqGfmYeB/wn8iEbYHwMeBl7OzJOl2iFgQ1neABwsjz1Z6l88fb8RsSsiRiNidHx8fK7NkyR10M3wzhoaZ+9bgLcCq4Aru21QZu7JzJHMHBkeHu52Z902R5Kq0s3wzr8HfpCZ45l5Avgq8G5gdRnuAdgIHC7Lh4FNAGX7RcALXRz/tBw4kqR23YT+j4DtEXF+GZu/AngKeAD4cKmzE7i7LO8t65Tt92d6Ki5JvdTNmP5DND6Q/TbweNnXHuAPgBsjYozGmP2t5SG3AheX8huB3V20++zauNAHkKRzzNCZq8wsM28Gbp5WfAC4vEPd14Ff7+Z4s+HojiS1q/IbuZKkzqoOfT8xkKRW1Ya+3/uSpHbVhr4kqV3Voe/lEiWpVbWh7+COJLWrNvQlSe0MfUnqI1WHvlM2JalVtaHvjE1Jaldt6EuS2lUd+o7uSFKrakM/nLQpSW2qDX1JUruqQ9/ZO5LUqt7Qd3RHktrUG/qSpDZVh74/uCZJraoNfUd3JKldtaEvSWpXd+g7uiNJLaoNfX97R5LaVRv6kqR2XYV+RKyOiLsi4rsRsT8i3hURayNiX0Q8U+7XlLoREbdExFhEPBYRl81PF2bm6I4kter2TP/zwP/NzJ8FfhHYD+wG7svMrcB9ZR3gKmBrue0CvtDlsU/L396RpHZzDv2IuAj4VeBWgMw8npkvAzuA20u124FryvIO4IvZ8CCwOiIumevxJUmz182Z/hZgHPiriHgkIv4yIlYB6zPzSKnzHLC+LG8ADjY9/lApaxERuyJiNCJGx8fHu2ieJGm6bkJ/CLgM+EJmvgN4hTeHcgDIzGSWQ+uZuSczRzJzZHh4uIvmQfqLa5LUopvQPwQcysyHyvpdNN4Efjw1bFPuj5bth4FNTY/fWMoWhFM2JandnEM/M58DDkbEvylFVwBPAXuBnaVsJ3B3Wd4LfLTM4tkOHGsaBpIk9cBQl4//XeBLEbEcOAB8jMYbyZ0RcT3wLPCRUvce4GpgDHi11F1Qju5IUquuQj8zHwVGOmy6okPdBG7o5niz4eiOJLXzG7mS1EeqDn1HdySpVbWhH07fkaQ21Ya+JKld1aHv7B1JalVt6Du4I0ntqg19SVK7qkM/nb8jSS3qDX3HdySpTb2hL0lqU3XoO3tHklpVG/qO7khSu2pDX5LUztCXpD5i6EtSH6k29P3BNUlqV23oS5LaVR366ZxNSWpRbeg7uiNJ7aoNfUlSu6pD38EdSWpVbeg7uiNJ7aoNfUlSu65DPyIGI+KRiPh6Wd8SEQ9FxFhEfCUilpfyFWV9rGzf3O2xz8TJO5LUaj7O9D8B7G9a/wzwucy8FHgJuL6UXw+8VMo/V+otGL+cJUntugr9iNgI/Brwl2U9gPcCd5UqtwPXlOUdZZ2y/YowmSWpp7o90/9T4JPAZFm/GHg5M0+W9UPAhrK8ATgIULYfK/VbRMSuiBiNiNHx8fGuGuflEiWp1ZxDPyI+CBzNzIfnsT1k5p7MHMnMkeHh4Tnvxz8hJKndUBePfTfwoYi4GlgJXAh8HlgdEUPlbH4jcLjUPwxsAg5FxBBwEfBCF8eXJM3SnM/0M/OmzNyYmZuBa4H7M/M3gAeAD5dqO4G7y/Lesk7Zfn/64ziS1FMLMU//D4AbI2KMxpj9raX8VuDiUn4jsHsBjt3CtxRJatXN8M4pmfmPwD+W5QPA5R3qvA78+nwc72w4L0iS2vmNXEnqI1WHvqM7ktSq4tB3fEeSpqs49CVJ01Ud+s7ekaRW1Ya+s3ckqV21oS9Jald56Du+I0nNqg39wQgmJ89cT5L6SbWhPxAw4Se5ktSi3tAfCCYNfUlqUW/oRzA5aehLUrNqQ39wIDDzJalVtaEfjulLUptqQ38wAq/RIkmtqg39gQgmHN+RpBb1hr5j+pLUpt7QD5y9I0nTVBv6g87Tl6Q21YZ+RDBh5ktSi2pDfzBw9o4kTVNt6Dt7R5LazTn0I2JTRDwQEU9FxJMR8YlSvjYi9kXEM+V+TSmPiLglIsYi4rGIuGy+OtGJv70jSe26OdM/CfyXzNwGbAduiIhtwG7gvszcCtxX1gGuAraW2y7gC10c+4was3cW8giSdO6Zc+hn5pHM/HZZ/hdgP7AB2AHcXqrdDlxTlncAX8yGB4HVEXHJXI9/Js7ekaR28zKmHxGbgXcADwHrM/NI2fQcsL4sbwAONj3sUCmbvq9dETEaEaPj4+NzbtNAhL+9I0nTdB36EXEB8HfA72fmT5q3ZWP6zKySNzP3ZOZIZo4MDw/PuV0D4TdyJWm6rkI/IpbRCPwvZeZXS/GPp4Ztyv3RUn4Y2NT08I2lbEH4jVxJatfN7J0AbgX2Z+ZnmzbtBXaW5Z3A3U3lHy2zeLYDx5qGgeadY/qS1G6oi8e+G/hN4PGIeLSU/Vfg08CdEXE98CzwkbLtHuBqYAx4FfhYF8c+o3CeviS1mXPoZ+Y/AzHD5is61E/ghrkeb7Yav6ffq6NJ0rmh3m/kDnjlLEmartrQHxoY4OSE386SpGbVhv6KoQGOnzT0JalZvaG/bIA3DH1JalFv6A8N8vqJicVuhiQtKRWHvmf6kjRdxaE/yMnJ9MNcSWpSb+gva3TtuKEvSadUG/orhxpde+OEoS9JU6oN/RXLBgF4/aQf5krSlHpDv5zpv+6ZviSdUm3oX7hyGQA/ee3EIrdEkpaOakN/zarlALz46vFFbokkLR31hv75jTP9lw19STql2tBfO3Wm/4rDO5I0pdrQv3DlMgYHgud/+sZiN0WSloxqQ39gIHjb2vN59oVXFrspkrRkVBv6AG9ft4oD44a+JE2pOvQvXX8BB8Zf4bXjfkFLkqDy0P/lf72O4xOTPPiDFxa7KZK0JFQd+u/cspa3rBzirtFDi90USVoSqg79lcsG+c3tP8M9Txzhn595frGbI0mLrurQB/j4ey/l0uEL+O0vjnLHN3/k7+tL6ms9D/2IuDIino6IsYjYvdDHO3/5EH/z29v5+Y0XcdNXH+ddn76fT33tcf7PI4fZf+QnvHr85EI3QZKWjMjM3h0sYhD4HvA+4BDwLeC6zHyqU/2RkZEcHR2dl2NnJv+w/yh3jh7k/33/BX76xpthf/Gq5axdtZw1q5az5vxlXHTeMs5fPsTKZYOct2yQ85YPcN6yQVYsG2T54ACDA8GywWBwYIChwWBoIBiaYTkCIoKBCAYCgkbZwEAQ8GZ5lPLmegON9al6U9tP3Z96Xk89v/PyXEk6t0XEw5k50mnbUI/bcjkwlpkHACLiy8AOoGPoz6eI4H3b1vO+beuZmEyefu5fOPD8T3n2hVc5/PJrvPTKcV585Tg/eP4Vjr12gteOT/D6iclz+spbze8Bb75BxLT1qe3RUnGm7dG2vXV/7Y/v/LjTtYUZjnU2ZvO+F7PY82zfT2fX5oV5s57VczHr/i3Mc7eQz9usai+BNv/bSy7kf133jlns/ez0OvQ3AAeb1g8B72yuEBG7gF0Ab3vb2xakEYMDwba3Xsi2t154xroTk8nrJyZ47cQErx2f4MTEJBOTyYmJbNxPNtZPTiQnJyfLdXmTiclJTkwkSeOvjEyYzGQyW9eTzuUz1cuEycnGdoDGFshT60XTX3A5rWimx0zfTtv2s3vc9D8eTz2upezs2tL6qNObzR+ts6o7izbMft8Ltd8FasQsq89mJGGhnovZ73th2jy7f5Jk05rzZrP3s9br0D+jzNwD7IHG8M4iN4fBgWDViiFWrVhyT5UkzVqvP8g9DGxqWt9YyiRJPdDr0P8WsDUitkTEcuBaYG+P2yBJfaunYxaZeTIiPg7cCwwCt2Xmk71sgyT1s54PVGfmPcA9vT6uJKkPvpErSXqToS9JfcTQl6Q+YuhLUh/p6W/vzFZEjAPPdrGLdUC//aZyv/W53/oL9rlfdNPnn8nM4U4blnTodysiRmf60aFa9Vuf+62/YJ/7xUL12eEdSeojhr4k9ZHaQ3/PYjdgEfRbn/utv2Cf+8WC9LnqMX1JUqvaz/QlSU0MfUnqI1WGfq8vvr6QIuK2iDgaEU80la2NiH0R8Uy5X1PKIyJuKf1+LCIua3rMzlL/mYjYuRh9OVsRsSkiHoiIpyLiyYj4RCmvtt8RsTIivhkR3yl9/qNSviUiHip9+0r5SXIiYkVZHyvbNzft66ZS/nREfGCRunRWImIwIh6JiK+X9dr7+8OIeDwiHo2I0VLW29d145J89dxo/GTz94G3A8uB7wDbFrtdXfTnV4HLgCeayv47sLss7wY+U5avBv6exmU7twMPlfK1wIFyv6Ysr1nsvp2mz5cAl5XltwDfA7bV3O/S9gvK8jLgodKXO4FrS/mfA/+xLP8n4M/L8rXAV8rytvKaXwFsKf8XBhe7f6fp943A3wBfL+u19/eHwLppZT19XS/6k7AAT+q7gHub1m8CblrsdnXZp83TQv9p4JKyfAnwdFn+C+C66fWA64C/aCpvqbfUb8DdwPv6pd/A+cC3aVw/+nlgqJSfem3TuCbFu8ryUKkX01/vzfWW2o3GlfPuA94LfL20v9r+lvZ1Cv2evq5rHN7pdPH1DYvUloWyPjOPlOXngPVleaa+n7PPSfkz/h00znyr7ncZ6ngUOArso3HW+nJmnixVmtt/qm9l+zHgYs6tPv8p8ElgsqxfTN39hcbl0b8REQ9HxK5S1tPXtVf7PsdlZkZElfNuI+IC4O+A38/Mn0TEqW019jszJ4BfiojVwNeAn13cFi2ciPggcDQzH46I9yxyc3rpVzLzcET8K2BfRHy3eWMvXtc1nun3w8XXfxwRlwCU+6OlfKa+n3PPSUQsoxH4X8rMr5bi6vsNkJkvAw/QGN5YHRFTJ2fN7T/Vt7L9IuAFzp0+vxv4UET8EPgyjSGez1NvfwHIzMPl/iiNN/bL6fHrusbQ74eLr+8Fpj6x30ljzHuq/KPlU//twLHyZ+O9wPsjYk2ZGfD+UrYkReOU/lZgf2Z+tmlTtf2OiOFyhk9EnEfjM4z9NML/w6Xa9D5PPRcfBu7PxgDvXuDaMttlC7AV+GZPOjELmXlTZm7MzM00/o/en5m/QaX9BYiIVRHxlqllGq/HJ+j163qxP9hYoA9LrqYx4+P7wKcWuz1d9uUO4AhwgsbY3fU0xjLvA54B/gFYW+oG8Gel348DI037+S1grNw+ttj9OkOff4XG2OdjwKPldnXN/QZ+AXik9PkJ4A9L+dtphNgY8LfAilK+sqyPle1vb9rXp8pz8TRw1WL37Sz6/h7enL1TbX9L375Tbk9OZVOvX9f+DIMk9ZEah3ckSTMw9CWpjxj6ktRHDH1J6iOGviT1EUNfkvqIoS9JfeT/A6eL3sW0puviAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]\n", + "spectrum = np.power((1/w),2/2)\n", + "plt.plot(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABRAUlEQVR4nO2dd7gVxfnHv+85t1CliwjIRcAWFVFUQLFrbElsSTSxxpLEVH9JDNYUSzTFJGqisZeoMdEYexcLgiCgCEivggiXdulw7z3z++PsnDM7O7M7u2f3lHvm8zw8nLs7uzs7O/POO++88w4xxmCxWCyWyiRV6gxYLBaLJTpWiFssFksFY4W4xWKxVDBWiFssFksFY4W4xWKxVDA1xXxYz549WUNDQzEfabFYLBXPlClTVjPGeqnOFVWINzQ0YPLkycV8pMVisVQ8RLREd86aUywWi6WCsULcYrFYKhgrxC0Wi6WCCRTiRPQAEa0iohnCsT8Q0Wwi+oSIniGironm0mKxWCxKTDTxhwCcKB17HcC+jLH9AcwFcFXM+bJYLBaLAYFCnDH2LoC10rHXGGMtzp8fAOiXQN4sFovFEkAcNvHvAHhZd5KILiOiyUQ0ubGxMYbHWSwWi4VTkBAnomsAtAB4TJeGMXYPY2w4Y2x4r15KX3WLxWKJxMvTV2DNpu2lzkZJiSzEiehCAKcC+DazQcktFkuRadrSjO8/NhXfeejDUmelpERasUlEJwK4EsCRjLEt8WbJYrFYgml1dMcla6tbBJm4GD4BYAKAPYloGRFdDOBOAJ0BvE5EHxPR3Qnn02KxWFykKPt/JlPdhoBATZwxdo7i8P0J5MVisViM4UZcIiptRkqMXbFpsVgqEq5/V7kMt0LcYrFUJtyfospluBXiFoulMqluS3geK8QtFktFkrGezQCsELdYLBWKndjMYoW4xWKpSKwinsUKcYvFUpFk7MQmACvELRZLhWJt4lmsELdYLBXH2s07cMnDdtN1wApxi8VSgTwwbhFmf7ERgF3sY4W4xWKpOKpdcItYIW6xWCqOancrFLFC3GKxVBzk81e1YYW4xWKpOFKCJl7tSrkV4haLpeJIVbngFrFC3FI1ZDIMG7Y1lzoblhiodu1bxApxS9Vw66uzsf+vX8NGK8grHnFis9rluRXilqrhhWkrAADrt1gh3paodq3cCnFL1ZByartdrm1pS1ghbqk6qOoH4Ja2hBXilqrBKuBtByZ8zGrvlK0Qt1Qd1W5DtbQt2qwQ/2DhGutOZrFUAdXeKQcKcSJ6gIhWEdEM4Vh3InqdiOY5/3dLNpvh2LitGWff8wG+9+iUUmfFUkZYc0rbpNq/q4km/hCAE6VjYwC8yRgbAuBN5++yoaU1+1VnLG8qcU4sFkvSWE08AMbYuwDWSoe/BuBh5/fDAE6LN1vxUO09tEVNtTf6tka1f86oNvHejLEVzu8vAPTWJSSiy4hoMhFNbmxsjPi4cLQ60tv6A1tEuEeDDWNqaUsUPLHJsi1DKy0ZY/cwxoYzxob36tWr0McZ0ZrhQrwoj7NUGMx27hWP/YR5ogrxlUTUBwCc/1fFl6XC+WRZ1hZuI51ZRHi7twKgbVHtI6uoQvw5ABc4vy8A8Gw82YmHSx/JbqBa7R/XYqkGqn1kZeJi+ASACQD2JKJlRHQxgFsAHE9E8wAc5/xtsVQEVd7mLW2MmqAEjLFzNKeOjTkvsWP1cIsIF95MP4VjsVQcbXbFJgArxS1KrCbetqj2z9mmhXjGuqdYBLgGbmtF5WO/YZ42LcSbrRC3KKj2ibBqZFtzK9Zs2l7qbCRCmxbiVhN3s2FbM1a30YochiRrxcZtzfjBY1OxfP3WBJ9iETHpk8+9byIOuvGN5DNTAtq0EG+xQtzFkb8fi+FttCKbkJvYTLBajJ3TiBenr8Adb85L7iGW0Exesq7UWUiMNi3ELW7W2b0lHZKT4pu3tyR272rg6SnL0DDmRWxrbjW+ptq9jawQt1QNxVixmcnFZ0nuGW2ZP742BwCwdvMO33R2WiOPFeKWqiPJ9p8XLpUhxVszDH96bQ7Wb/EXmsUmzDdqzSSWjYrACnFL1ZGkFsc9Xyolbs87c1fhjrfm41fPzSx1VgDku74wHkTNVS7FrRC3VA3FWLHZ7GxIUpuujKaVceTfpm3lYcvn8Y7CdLQtVoi3PQ4akN0t7og9ihP6ttKodj/pJF+/xZGKNQGq+JI1m7FlR+kFZzqdzWeQJ9f4+atx/G3vYHuL+YRjIYTxLKv29SBtUoi3q22TrxUbrVVb6ZN/b66J1wRo4kf+4W1c/NDkxPMTF9c/NxPzVm3C4tVbivK81oy/di2OpnTmlLWbd+CztcXJbylpk9KOC6lq1zh1VKv/fDH8xPkCs/vHLcRna7dgj2tfxpl3jVemnbBwTXIZiRk+smjcmOxiMe7VE6aO6r7nkb8fi9G/HxtDrsqbNinEeSdevRqnP9UqxDlJ2sT5nZtbGb5930TsaMlgShtaaHLu/RMTvX9OiLeaf6PBO3dSHt9YJT77bVKI8z02rRBXU60TQcXe2adpq3pxlR0hBhOm7XZpX+s5pivjtlj2bVOI58wpxXle48btaBjzIv47dVlxHlgg1a6JJ4k4nanbqLuc5Ei5ekK2BhSSeFpVzv+Zom6L5VT2cdEmhTj/qEEVIS4Wr9kMAHhs4tKiPK9QwgxV2yLFasi655RT6ZdTXgCAnG4lSBMXNWpV0kmL1uZ+X//sjPx1BeavHGmTQjy/231xPlkYbWbz9paSRxKs1sURvOEXwyYuPk+mWPWykgkS4uLpIBPJIxOWGKetRNq2EC9Ds8FX7xxX8kiC1T5XUKx2rCvmNihHYoNPbAZq4hA18RCeLJFyVd5UnBB/dMJinPa397Hfr17F7Zpwn8U2p3BMevkFjZtjf+7gq1/Cz/8zzTh9S4APblL8+8PPMPzGN0quDSX5dHFUptP4yynqXjnYxKcva8LY2atcx8Jo4qrqrDVllU/Rx0bFCfHrnp2Jjz9bj43bW3Db63OVafKaeHHyVOqIdS0Zhqc0EzkqmktkE7/6melYvWl7yZ6f904pzvO3NasrYDkJknLIylfuHIeLHvoQAJAif5v4jOVNePD9RYETmzraoikrcLf7SoR//7b4weKgVBObtekUWjKt2N7Sirqa0ukPiUYxNElThtWyXLLE9SGdED/1jnEAgO8esXvumKo8y2m0kzQVp4mbsMlx8i+27Vf3tFkrNuC3z39acjMCJylzStCEaQ2P01EqTbwYKzYNbl5OAmb5ujLbRo7bxAPKUXSTVZa5NaeYQURXENFMIppBRE8QUbu4MhaWGcubMGN5E5q2NueWBhdPE/e3p5x3/0Q88P4i/HvyZ0XKjz9JdG4vTV+BIde8jJte/FSbJjdULnlLStA7xeDWQWm27GjBPe8uKMrE/LX/y7rfJWERfGrKstCeWEGaOEdcsKZq57qry6kDjYvIQpyI+gL4MYDhjLF9AaQBnB1XxsJy6h3jcOod41yR4QptAy2tmVACL6hx/vLp6bnfz0/7PGq2CiYJm/SrM78AANz73iJtGh7Yr1ReQzkXwwQfbzLaCkrxh1fn4OaXZuPF6SviyZQBcRfJqo3b8PP/TMPFD5sH+drW3Jqb+A8U4sL5MN+z5PpDAhRqTqkB0J6IagB0AFB0ySSHxkwLIUAL1cQHX/MyTv/7+wXdI5sP77H73ltY8H2jUioXw1Jr4kz6P05mft6EZeu2GCkOqno5dvYqzPliIwBgoxPbe6tin8lVG7fh9L+/j1UbtgEA7n13IWYsb3KlYYzhj6/OwaLV8XlCUcjZe/6KK9abm2vWCbsLBXun5M+r6pN22b1xbiqHyEKcMbYcwB8BLAWwAkATY+w1OR0RXUZEk4locmNjY/ScanjyQ7eJQjT3xiGsPlnWFJzIQVfPVY22lCaF5gRs4iavQwGeB4mToE38lNvH4fBbx5rZxBVJLnroQ3z5L+8CEEwbinSPfbAUHy1dj39+kF3ActNLs3KTfZwVTdtw59j5uOCBSWFeIRGiFnWwOUUQ4oq0WnNKG1TFCzGndAPwNQADAewKoCMRnSunY4zdwxgbzhgb3qtX/Js0bJIilYmNqNjDdl39UOWjlIsmWxMwp5jcMW9Oif3xRsTlYvjmrJVY0LjJ9xky785txEpHexYTqdxk+YhF1SHwkaZf1ebKRJgd48sBl2AO+Eai4Fa1L21bbHsyvCBzynEAFjHGGhljzQD+C2BUPNkyZ0eLWyLwip+i4n2woJFmOXT+Yjkl4Z1iIhi5cCrVYqP8svvCuPjhyTj2T+8AyAqQFz/J2651mvj5D0zC1+5835Pmb2Pn50wjHF6fTAS1H35ptjW3FkXJCWOEEb2bgjTx1gBzipYyaItxU4gQXwpgBBF1oOw4+VgAs+LJljlyReTyoSadKshkMXnxWu25rTtasXWHuZajysesFRs8HVBSbGtuxR7Xvpz7+9EPlvikjkYoTbzUKzZjfPyL01fgB49PNbr3F46wFpO0ZhgOuflNV7rcPpMRJQ7PA2lEaEtrBntd9wp++4LekyguwryBKLjDTGyqRrW6q+96Z0GIHFUGhdjEJwJ4CsBUANOde90TU75cPDJhMX4oNBSR5gzDuHmrc39zAVGbosiaxubtLTjr7gna8/v/5lUM/a3H/K+tODqhJZuCkmK71Fm8P38NZq3YgOufnYGN29Qxr0MTyiYezyPDEpc5RWS5NHFn5J0SkMZPExcvNb2PDBeA/0ygMy+ElhBCXDQJhlEK7m6DQrygFZuMsV8B+FVMedGyePUWT2wFzl1vL8Bdb+c/DP+g6RRF1vjkeNtfuWMcNmxrxju/OBoAd9HLpwkaMuqWX5dyc4Z731uI/05djg51NRhz0l4F389Ea0w5KkOpA3AV8vTNUscrv4vJq93x1vwCcpCFfJ4VlAXl2piYR0dRbifa8MNp4ubeKW2RilixWZsm440MuOCuq0lFFhayBjN9eROWrNmCFz5xe1DKk1vTPluPv411N1C/0UCxPFRUeUhz+3RMHYmJmdtvwq4Y8McW8vyv/c3tcioLC5N7PzR+sdGzgpQD/aYTzPf6KGaasIuBojzj9L/n9yJVtd1VG7cJ54XFPm1xtjIEFSHEUyG0av49a1KpSNrAefdPxP6/9ppKAOCjpetdf/PJLZE/vDpHyo+PEC9S5VN1Fnw39rg6EiNNPDex6U37v4+WY/6qjbHkRQf3uy7kleevUnulcOIozvfnrw5OhOCdg3S+3apqF9YPPIhCy0FVL102c+aftpqoCCGeJjIWeKI5JcrHfW+evgHp8qBqAF80bQNjzHd4XSwhrtJU+CRjXHkwKWq/Z/70yY9x3G3vxpKXIOIsdXkgE8cwfsmaLUbpoj5Klccw+Z6+rAmLAxYSFTraUtURcaJW1MRLbZ4rNRUhxLOauFlF4x+Um1O27mjFlCV6T5MwmG6+uqBxE0b87k3c+95C38ocx/J3ozJRpMkEDLnDYtKOTM0pLa0ZrNu8wzdNWMbP905+F8qTHy7FNmnFcKHyZO7K/Ggk6Fa69wh6P57HqMr3V+4ch6P++LZvmkKDjSmFOKnPl9rbqdRUhBBP5xp/cFr+PWtSBMaAq/77Cc68awJWNBUerc10ImmZExnuvXmrfStxHBqESf1VPYYrMvFVf3Nzyvot/h4xv3t5Nobd8Hqsi1UueUSI4RHTS//y6emuSXWgcIHym+dn+p5372ijThMkpFUdf9zmlEJRa+J5PliYV8xURR7mfTKSh1ulURlCPIRXA0/DzSmzVmQ1m6at8bjSqWfC3X+nheXl/pp44ZOKJiJjpbSYBACejDmiotmy++z/lz7iHxTpP07etmu8eqKQFhq1/E0YY5iyZF0szyl0s2zRZOArhkg/T5QbZWmFuOq58ZKEOUV3R9Wz/N7niN+Pdf39wPuLcO79E/HGpytD5LB8qBAh7kzCGQjxnJ94OoUMY8Z79pmiFrzue4uudH6V2dTjxg+TxnKGMOsvE585JTgf5aLtyVl9ZMISnHnXeK0bazkybl4jrn1mhvJckImNfys52ZuzVmrLIGxNTWJiU3dP1eHnfKKELl3rnnPgcxDL1pnNRZQbFSHEw6z0y3mnpLPmlKDVa2FgYNihEOKebAnDWf+JzcI1zbAaz9D+XQt+pgqTXAgBJvFFU350oI84l4ytUy4z7iq6ZE38+5+GxTSEw9Sl67WCKhNQ58W358/r1K4GFz88ObdNmve55t+iaUsznvlouXF6FarJeFVdP31Y34I7jDLRLSJTEUI8H/QnnCYO5ON0pGJ602bFUnm5vvE/CeRb+eOZ2AyXviaVTI01yYcYJnjSYr1Nk0LMgZjCNL8BMURufM8rJUHmFLEd9e/WAUA0r5rz7p+I65/1jgZ+8dQ0/FWzibkpqlGq3P7r0ins1j16/jlhWkTT1uay09grQoiHadQLHa2qNu0OexqHJg6oK5dcgfJ+uv55jmObMl3dfXn6CjSMeRFrpJ1VZCG+ckO4nVd0mESPFM0pYplF9bKIivy9eJkUY9HIQ+8vKuh6E62RD/C0SYXX5GUcxdz43rzVeGSCd+n+qo3BdWrZui24/c15WuFrMvfUypjg8SSmi/YdTa464c/v4PBbxwYnLCIVIcTD7AjDd8/hdvQ47M4cxoB/TfJOCHqtKdkjKZ/Jp2zekjOn3D8uKyzmrHQvoOEjFM4rzo48IvNXbUJTgAeJHzM/36A8LvYfKddEo/o+SQnxHVLnyUcIxVg08uvnowWdenvOKjSMeTHQswcwdzEE8m0qqJnM/sJ8IVbaYLT3g8em4rbX5+Z28pFRCXH5vVoz+Tkvt1JgnFUA3rmaNZu240NNALy4lJ44qQghHsacwqmTNuWNQyCs39qMP7/hjf8s39qtifsI8Tg08YDzW7a73fRMdpk/7rZ38JU7xwWmc+VDyIjuWlFwp3y8RVT3NOWiByfhgXH+2u6Pn/jI9XfJN6sQ0E3+/n1s1pVx1gp1B3n1M9NzIRSCV2x6BZ6f9irHiwnCRBPe7EQB1X179doGbzreX4inoipH/JHfuncivn73hIqJv1IRQjyKjbRG0sTjEOJi3GgReQJO/OuNT/UeD0lq4rz9ypES69Jmn1yewY+aDxFRQROzIV+bj+IX/puNndOoDLHq1yC5OaUshLjiWOPG7Vi9OasB6rTcxycuxWTHTTJoIZf4loWYU3SY3EmM+688bzixmZcNojnPIAM+8NFrGVQHIwqKYlgsosShTuds4m7txI8bo8ZXlu6dn1giXP3MdMUFWeIw9ejei1duOdSsiSYeZz5ESKuJq9MXqxGlIoz0isnBN72R++1nqjAddXIBKY4U/co6bLmYJOdpUprRgsncEwDBnCJeG1ETl/7OMIZ07B708VMRmniU6He1KXewJZNr7wsYhuvw3JkPZwOue29u4avEdBomf/aGbW5NPMwO6lOXrjPPh4H+JWpXJhtaFys6XdCcy2+f/xTX/U/tk50kqtz4CnFHeOVew2QSlPH/9WUd9jPox6XiPfU3ra9JaTRx998pyjssiLcLO6oIszduOVIRQjzMsntOLkpfJv7hokgmw7w2ceQ1HT/i0IqDXmuDtFL1sME9je/tt0hIxqS+NwuZdWni0kvwM8VqQ7kVtpoHPvD+okR2QwpC1UGbuIjmTRX+NnFCfuLdr6yDbMPPTfsc/xZWAJvYkvMjAG/aDnVpjSbu/rtjXU2ujc36YgM+dzboiDrCfXTCYld4jlLtBRuWihDiuVWXISYCuYthXhOPPVsAgE07WrB+qztYU36BkT9dO9QW/Hx9UK7s/7ImfsQQcyEeLh/BaVzb0QmFo/s2cXqLqO7UmmH4fP1WwZwS2+MiowvyxDHJY85cojkvFmvGQMkJeuaPn/gIVz71ifL++jzCea73XIe6Gt+gbZz2dencKOqMv4/HqFvecu4ZUhN3Smrxmi341bP52DVWE48RrlGoVkvq4BObvJIGaQdRZ6K/csc4/PDxj6R7Zf/XaUIcedu0KOiDcmVPyDZx2cWwmAzZuVPut1jeHj97zfG4+csbczHqlrdyq0eDzDc6t7OkUAYuC7FqWX9emAQ0MqeEtIkbmNb4t1WFsWhXm1IqbHI+OtbXKNd/FDLXtFhYtXv8bd79AsqRihDi3A4YJmBUTUhNPOp3V8V+zpkkA1TxeBb7hNPEkxLiJg1XNAWIQ1XdlUnrQeOc8LR8xxhRg1u6Zgv+8OpsV/l+3Wff1bgQq4zq25pombmdfXQBsITfKnPKN/8xAT//zzRPGlOMNHEnjep96mrMzClXfnlP5TuGGbED+tHP503ewHHlSEUIcV7IYYS4LKyCF0DEJzLyFcFfivNnrtq4Dbe8PDuS3T5IAMqaOO/ctPeLutrN4DKV8JB/x5EXE7bsaEEtH63ltNH8+csfn4K/jV2AhQGbHySJqlzCaOLa2CmCvS/nYijcd+KitXhqyjIhvWmO3c/3g3f6Kk+SujRh8ZrNno0n5Hc/ab8+Sl/4Qlx3C507m/bZejSMeRFzQiyOKpSKEOLcLBFKE5cmgIIqf5zygu+zGaSJ8wpzyE1v4u53FuQ0wzAELVnftC2cn3jUcjC5TLuqTmcSSlAVf23mSmyX6pNYljx0cVKxZnRQgOuliXzyq+s7WjK5d9vRkjEyp5gKNh5SwGzzluz/qtFobTqF+as2eTae8FvsI1KIOaWVMaPQBrp3fGlG1vvrrSJGxKwIIc7NKTOWb1AeV1EjCaugehWnJj59eROA4IlNefJGFVwrCLG+Pjphsee4bHcP0sSTnMxxyW3RJq7NS3zPlt/rp09+jGmfrQfgjv/O4UPyoHmNJFF9CyNXTh9zyoUPTsKZd+XNQnyyOQ4/8V8//6ln83Ad/PurOghxFC3OQ5jGDQ8bp59cv82iLOmKpBSbgVeEEOey+lfPuXc9qfURSLUhNfEkCGr/8kSaqQbx9bvH43uPTvHc4zphZp3Xsh2SEFfZxAuJO6G6h0jTlubcphQuX17XxKbmnjFaxf3eiysDYvhUP5ttkri+hYFdWH0P/bnxC9YEPjfKMznNrRmj9Pz7N6uEuOB6K85DmO5IVOg3M4l7r5MnYeI8xUVBQpyIuhLRU0Q0m4hmEdHIuDImPUd5vL4mrb1G9sEOM2MfF4sC7KlyZTMduX+4eF0ucJUu2/zWslai6vhcAZEMvHjueHOeKxznjpYMpi5dr0w/8pY3cejNb2avFY777ZHI/4zTT9d32b1TJmKIAi5kfh2wXVrcuOcNvOfDhGMOswmHv4uhedtIE7k6X9Wlf31jXi6QlxxT/9Yz98vFPZJR3UvVZvhoYN++OxnlWSwmBmamiWuO82JMFdEMV6gm/lcArzDG9gIwFMCswrPkJa2ojL061/uaUzxCPECKJ9Fxzl3pP7T8z5RlOE5wY4qy841qq7Hnpn2e259S1sRrFIHVxQYc1F6XrNmCP70+F5c+MiV37C+KoGCcLTvyAbj0mz+oCauJ+wlqv+/LLztscI98eueCt+c0hspDobCADtXITzxCXfY3p5jfZ92W5sD0YhA52Sb+zYN303pQKe+raDNXPJn1rPnekYMwtF8X/8zA2+7MbOLq40Gx3JMgshAnoi4AjgBwPwAwxnYwxtbHlC8Xqg0dhvbr4ttjykJ8RdO2XJQ3FWE8IUbHuGBm/iozG6IO2a5+xZMf48dPfIR5zn1l33pVAzHxFJHZsiOvtS5fb7YJNYM62NRMZw7Bkz6kMJLTL1u3BY1ObGu/9+JnRKWwVAs9gjTxMPvMhlEG/TtA87L4xj8muNIHmhQV99YLcW9a+R3FUBFNW5v1CoKYR5/8zdDVTc2d+W1VimdSFKKJDwTQCOBBIvqIiO4joo5yIiK6jIgmE9HkxsZoWo1aQ/UvJNkL4+pnpuO21/UaYxhtIylf6yifXW58//vYvWWXV4h7n6KzVatIKSYBTSssY0wIK5w/ftmjU5TpwwpSOf2Zd43Hl//yrvNs/3wB7oa5roB46oWwUJgYVAnWMEvaw8gRv84htKunkDzoUtXuVrrJd/XEpjvtGX8fj2P22hkAcMp+ffTzLT7HxXs++aF6Q3GtJp7rQCtDiNcAOBDAXYyxYQA2AxgjJ2KM3cMYG84YG96rV69omdQUiF85qeKS/Heqz75/IeppkNtZ1JgoUb77pyv8/VHlyiZ77QDZxpHJMLzx6UrjCRkxr6b2P8bC7aITVnbIHdDKDduxdvMObG9p1VzhPCfcYxJl2TohdoeiAKYtU2uGIq0RBInqWZu3t+BL17+CN2aFc5djmt8AsH6LO0SFqvPQtS9Tm/hbs1ehf/f26NqhTq8xi3/4FFOQxi2T89GvBHMKgGUAljHGJjp/P4WsUI8dlaaXPeRjE1cIKz/Xo1AREgM08a7to8VEidJ7X+sT6pbTt2v73G+VJr6wcTP+OXEJLnlksraj29bcilteno3NO7wbBJjmmjGzsK9c81OlmbJkLY7509vKjQp0t9zz2lcC8sV8rw/CZCebKESdpwmKJ65C9e6LVm/G5h2tuPWV2ZGeL+bhyQ+X4u05q3DpI5NdaVUeWWnNhrhNQjC3A5wNv3VNpmOdf5Rt39EFiT81HYq2cwg/qVwokYU4Y+wLAJ8R0Z7OoWMBRAzI7U+UNqLShv3KNYwQD/K1jrzYIMJ7qjRrme4d63K/VR3Q5Y9PwSpn2yndZhBPTFqKu99ZgJP++p6T1XxmTesrg9qcok/v5dZX5mBh42ZMW7becy6qHZtfFlUjb1/r9ZLq1629ImU4MhmGcfPCLwBr9VEH99qls/qaGOcAVLf65dPTceGDH3om+2XvFECtib8/fzUuf2wqAOCp743EM5ePAqAXsh3q0tq8AO76J95DTi9m5b73FiqvFxGvX7VxG8YWYdFPoZtC/AjAY0RUB2AhgIsKz5IXXa8W1pziJyXDVGGVh4dI2MUGhWCyolDsdJQTm5l8mofGLzZ+9sLGTZi8eF1wQgDvzG10mVN0QoN71QBqbYmPylSXR+07N24Lt/2YTIe6tGcHpbd+dhQmLlqDF6atwJOT1XbVIDKM4dz7JwYnlBAnNldu2IYUEXp1rgcA7NROPUpUxQCK2imK18l3kOufWhP31ukpS/L1jIjyMkGnidcHaOJCzmQ54lr8I5y88cW8813QPEGKstu8zV+1CQtuPjmx0RpQoIshY+xjx969P2PsNMaYWYsOiaoAgopEZU5ZvWm71nc7nDnF/+lRhbjfXV+Zkd29fnXA7vUqaoVOR5f3oNdXfYOTb38PVz79idEatwsemASGvMnouv/NUG7GfPY9H/jmiTe+N2etcnnIANGFDg93MGnR2kiLNDopBEZdTQqjh/TCtw7dLVKe2tWmIndKM4QVw4fe/KZrZ6AwRF/4pT8n19ebXvR6JavqtFj/XKc1z2rnjI50E7bMpYm7MXIx1BwXTVlLnY4xaE6mUCpqxaZIUP3STS6e8ff3lcfDtP9Ac0rE6IR+drQH318MAJgrBdbZu0/wgoYgTZyxYI9sOW8MDNuaM865wCw4z3E3UB5nQuTjz9bnIi+qF7tk/3/g/UUY87R7PoDFMAB6fNLS0Ne0r9MvOouqgdWmU6E7pSue/BhvzV6JhycsAQAUGiRTZeowwS/MsFwe4jqCXJqA9iXWRV3N5cqK+PhvCx2qadHq5ql0dY3fl4hyrtEqD5w4qQghHmWSQCfEda5jQR+1m7CBQ5A5JapN3O8tef5kTxATn3XRbq4SKhlmNjwU+Wytv284X2rvhrnyH+TzrMyTcGhB4ya8M7cRN734KT5bu8Ul9FYpnx+M6B1iit9Ed1RXsxRR6InWdVuaXaEpdnZMKJz73luISYqY6LqgaHKsIlP8QriadGoqTVysC+JpXRnxydHcytuv7IPj9u6dO+/ny24y37N683b85vmZHi1b3NUrF0cl4SX4FSHEo5hT6kO6+QVpPcMbuud+B5lTdARpzX454JVRLguT+iHHkYmCnzBSFd31z3r3pJQ18aCO45EJS1xp1m7e4RJCRFkzzb3vLcLo3491fcNDnKX+xcDPpBVVE09RNPOQeIns1XWjwnQB6EeWvEOIc92TiflPzve4eavxxKT8vELKpYn7P4eX4eFDeknL6/P4mQN1Z37/ymw8+P5ivDLjC9fxnCYuXJv0wrGKEOJR2kGQtiwTVMy//dqX8vfWaC6vXXGE9vo/f3MoDh3YXXse8BdqOt9fuYIM262r59ogQcLg3SdUxu8WYh52697BOaZOJ+YlaIT14vQV+ETwix7z9Cc+qeMJVjV+werQ9/Hzk9cp6d0CtuZLERX8PqbCI8ndnuQc6DqMgwZ0w53fGqa85tz7J2pXBes18exzjt4zu/BHLm/35Kvb/LNVmFzXVVFuSpRNJfyvf36wFJsdU1Gcnj8qKkSIe0syRf7TabVhNfGABtNOCLal0yb88mMyrDZZVSg/2qR+iI1UNQnHmN62eO+7WbcqP4ErFh1vPKrUDPIEVXCZiN4qsgeIN23hRvFPljXhjrfmhbrGT7vUveM5h/hPeBJRwfF8TC8PGlnG6fKsK49vH7obTt1/VwDB5shUCJv4VSfthQ+uOhY9OtVLoZDVv2VTkC6/uWiFUgPkf85ZmZ+7SnrD5coV4gE5D2vyCPTOEO6n0/L9Krto3jl/5ABlGv99Dt3/665RdUai9tOuNo0FN5/sOs+gf/+bXsoOwf1K8+mp+V1g/MqAMfdCDpMRlpgteZ5DFtrNMbWWuSvD7crCO6Y9enfSnpMJ6sDSqQjL3SVMrw8aqRUSB8T0FcRHBClUYvML0sRr0ins0qWdk1Y94er7OM2rk8berSpza06BWmCrNEPxUNiKF+SfId6vtkZ3b/0zj927N/buk11occI+u6CzRiPWwSuCR2hL18xTBNSSOx1Vo/Ub8mUyzHiCjqdTpc9q4t60fojvK7+HHDwsrtjfO1qC79O5Xf77cU188M5eIR4lZAS/Lkrjdy/bN7smyPSouo24gMyPbc2teNDZ8ccPsZyCNHHX4hxNmsB3EjVxn7Yf5D5rUsb3vLuw4A7Zj8oQ4ooa30NRicR0YSeUgj6GeD/dbL6uYd58+n6oTafwjeH98foVR+DwIT2Vaf2Xomf/l90X5WtULlsmoxI/7ac5kzEuT55s/ILVrmXSAA+AJZQdBWuL4umg94hj42nAzM//3BH50RR/J5ViobMBB5VmKg5zilB4ckhikaBvq+ocTVvX9pYMfvN88EJuseyCOmO3n7g6reqdxKQum7jP43RFw4+v3+qOBaO610PjF2Pm59E8fUyoECHu/vvCUQ246qS9fdOFDcoeJEzESqGbCNI9kTdkIsKQ3p21+fOruzwaoSp+eBDBmyP7az/NrWb7DgL5jnTDthZc+vBkxXl32qDsiw06KMRAXMNWEyHu8gJxsqVSNnQjwqBJXYronSIiftI9rn1Zmy7J1YQyulcScxAkxHVeJiKqeQqxjouP8GtD+s+UPfH7V+a4juq0+iRNKoUuuy8KcuM4f+QAtK9La/w7s4UV1pwSpPXUGAhxHcoAXsqU6kxMWbIuZzqQha2JtlaTSuGFHx2uXFoNOO5sPjdqac0Y++qL6WZ+3uQ6x5i8n2HIlbIBwqaQDXJF/LRWjsuc4tQHVfZ0HY+JOaXQdm9atsXcC1on5MQ2HuTNoZuUFFEpLoN65SNlm9rEdeYU3WS27l5JhqatEE3cXQAmE4thtYsgjVYUTtohsuZDqdKr0uoqwJl3jc+n8Qjx4IZamybs27cLTtm/j/J8/+4dfBsOY+YNXUwn75/IwFzvnUqFc7/yWxkJRF9hKBOkie/dZydcMnpg7m/eoFVFpDen+Bfo1uZWTFyo3g8zbsK64wLxh1oV601rgFlM7Kx17VYVCXHwzp1x7SnZEXzGoCMAgCWagHCifBHri3akkWBHWZFCXFfnTNzX5MPNrRk0bWnGVf8NDunK0drENelNFyuZCORImnjAyGH4gG6x7HYOSBNUrRnsLmg/jRu3u97bRNsUT6vcI0XisonvCLjPD48e7NrflW9CcNZB/T1payN4MgHZsvJb+WiC6XeLw5xy1kH9jNKZCLmgEZX4ncOYU4B8HRrxuzfxvhMzx6+cnp/2ufK4KLhd2xtqcmQSXygqlSHEpVxyzUEuGFGA6D6iLNzPunsChv72NUwWoqQFobWJa76TySo1ALjr7QV4beYXvmkWrZa8T0w0cZ/nt69N+7oYAtmGYtJZpFPkXhINoHuH/AT03JWb3D6+zEzQtGaym1a0ZBja1eqrbFyTR82tGd+NPeSGOqhXJyy+5RQcNKCbJ23Uic04MB2YxCHEg/zeObqvLY7QguqEOHoLcjGUEevfqwFtzQ+xo3HZ8JP1JlRSGULcUBMXk+kEqnx42mfrA58/1AlAz9F5Seh6W9WoQJW/mZ9v0G5Vxrn5JXeA/qiaeM9O9bl8ZDIscLWoyQSqaiGS5yohTYYxo/wPuvolXP7YVLS0ZtCuNq1d7fjbF+IJZ9/cmgkV74J/X9U31SoTRTBEm240bSrEH7zoYOEv9zWm6zJ09UhsI0ft6b8D2ABnVTCgl5naNioc5ms3okw6ipq4X+hdVZq4qUghrrPhiemixCA3JbQmHjHWigkmlUP1/Fd/OhqvX3FE1qQRcJ8z/j7eaJKNnHuJyI1W9kIIyv/jE5cAAF6Z+QVaMgw1KTKeZI3KjpaM0laviowH5IWgurOOpx6a7NouY9oPmQpx0Ywo5990sl+riQu/v3ZAX98QFd0E9+IwNnHA/Y24SewRJ+pjGESTjjji0eUnrjUMKipDiEu51AW3MqmLcdimwg4/1RUqHkFkFgDL+/weneoxpHfnnIeI332Wr99q1FmkyFtZ5atc7mEseHXeqzNX5n63tGZjryStw65o2qbstPbaJRvArI+zApDD64OuXrx35dH47pG7u46FfYt9+4YX4pMWeSMWqjCtzyN271HwPXRSXK6iQZs65G6n807RjoDyvzu1i+6c1yJIbrHD11XnJOOnVIYQl7p9LsTlCRATN54drRm8PSfklknSBwirWZvaxMOy93WvGAWc98svUfb1gjQFI5s4EW4/Z5jvdaLwahU6j84GDSqriZeuyv7fCXvgX5eNcEW0BPLKg+4z9+/eAZ2kPR/DauJJ+nKbuuOmU4SvDt0VVxy3h+ecafZ0yoA8YjE1P+iEo+6VRBmh2lZPhUrRECe/TbTsJFfeV6QQ5zbendrJDcOsJl344IcF5Ue/gEOd3tQmHpatza1Yu3lHYDq/oS4RgTHmqohXnrinJ91WxQbJMqkUYVAvaem5bE4h5CYnsyOA7PmGHh0RREsmU5Bp6uuGHhQqduveAcMHdFNqo7mgXz4fVbaBh5XJSfoZh+kgbj9nGH5y3BDFbjhm99BtkOCNzmmWH5Ode3Q0btyOhjEvBqZrzmQwfoF7r9MWjU1cR9Uvuxc/1OnD+uZ+P/ydQ1zpirVoQTcpFcZPPIjtLa24f9wiV2VRYbLAxW/SKUXZEa6o0aj8dIPc7gC1mUtlTnntp0cCyDZU3gBMJvq4TTwqpkN0Fe/84ih01uxPaRah0l0SXTvU+U7gvf3zo1x/J7pHY4R7y69s2sm0aFxm5KtNhZ7OHGcygTr7CzNvpuZWlttqjdOi0cT1E5tGj4pERQjxXp3r0b97dvfwboLLWn9hlhrQV6QDFTG2o8Bv36V9tjHLi2d01TjsphZ7XvsyzrtvEm544VM88aH/JrtBCyMA/8Uc5ARaEu+jcrcM6kwA4EfHDPEck9sSgdCxPjuMzWQYvnVvdiNgEznS2po1p0RVSlNE+MNZ+xunv/yoQbnffpqmSX52ap/vADrWpXHmgf1wxoH6kUFDz44uN0exDnXrUIuxkpAvhDjm3U1NMjpffrntmk4Eaned16SXXVxNyK5Ydh8TI2aa3KbqvVMA4KJRAwH4F4ZOW7lgVAN6djKLuuYHv3vndjWYfcOJ+MUJbrNDoX7inO0tmdwONhu3qbeT47xi4OvqF1s9xW3iQrmqbIUmGv8Foxo8x2Q3N6L8d2puzeTCCZhoci0hAnGpIMovzDGha8DGDRwx7z85dgie/v4oT5pvCX7UFx8+EOkUBWubwmnxGbt0aY+BPYPNT6bEoeWbdqy6kAZyFkxDKAzaWV0OuqIVn7PDcENzlQnIvUqTKX+LWCGOfEWTC+M3X83vuKOrSIVWUv5Ero2lidCuNu25b6F+4knhH3MkGy1P1Hx+cpxXo/7Dq3M8x0xQjZ55OYrbhZl8opYMc0xD0QqvJk3o0akeb//8KOwqeZioCBt+FwCuOH4PzaKfFEY69nRT+7HYAca1+U4vad9NIJq93bPQzrCNbdcITrlMTDVxvpGEjMkEqrjhiB8tmYznfV2rRg2yWtYTm0SUJqKPiOiFODKkg9cR+eOK2p9+F45ojf7Hxwx2/c3vwiusR4jrNHFV7BRDQfTiJ94d4cPit+w++wruic2OdTWx2WDlupsiUt7b5Bs1t3JNPHyLaF+bxjeGZ5fFN/TsiDd/dlTgNeZC3CwP3KoVpTqqzBXP/uAwXH3yXqHuIwaByt07wreWNWVTc4pOE5cvv/VMc7OXCl0nID5nqyTEzxDm20RaWhle+9Q94g27g325a+I/AaDegTVG9nI2GVZpOZyg2L9hOVbYHRvIVwBeYU3NJIVMxsWxlDzIxTCT8e7+HddAwbPYh9Tfw0SQLF+31RWzJAyzbjjR5TkTFEwLMK83xhEenVI17cDFolNpukP7d8VlRwzyHA/KwxOXjnAdizKxuV9f96bfhfb5coc5eOdOuO0bQyPfT2eOEZ+zYavb40pXDmPnrMIbs9xuyas3bc/9NpHP785tTMxDpSAhTkT9AJwC4L54sqPn4IbuGPfLo30ng/RBrwo0pzhlzxsf36pN/uj6iU1vMSdpTjntgF1xg7Cxsy5gF+AEoQJzDQ/TKe/Ky7ggqL+Tida7eM0WTFi4BnF1MTeetq/veVPhZi7sw6UXv0EhW6SJTFi4BiMHud0ko4xU7/jWgXjysnxnUGgbU5VJ2Hydc8hu+O4Ru/umEe+4VIpQqCvj65+d6XtP10bLmjT3vrcI97630Pc+USlUE/8LgCsBJLwVaJZ+3Tr4nvf30y68EfCPxTVrz0fX2eSLaQAH8PXh/XHeyIbc334jAUJ2hl+c2IzTnS3DWC5OC5Bt7Oo9U82eOWpQD8QVZWjUIP0KRCCaTdwE0+RMGh0lRRTvlE71Na5RcaFVRvV+pu/M6+tZB/XDD44ZjHMO2U05yQ74r5yMuo7MVMHeu89OwYkiEFmIE9GpAFYxxnwjNhHRZUQ0mYgmNzY2Rn2cEbwx/fDowdJxb1qTiRO5EvGPlYuVYTixmVbaxJNDFtp+NvHsYh+3v212FWc8gpIxt596VhP3pjMVAqcdoLZbRiHITinuV+lHeCFuOrHpvka1ETNQuAstr8dH7OEfeEpG7OwLrS2qMjEt19k3nIjZN5yIgwZ0w07tavG7M/bThi3W+ZWPHtIz8twZA7BpewuWr/evLx3qktmDpxBN/DAAXyWixQD+BeAYIvqnnIgxdg9jbDhjbHivXuEqSVj4RzhscE/Pce6bzBl09UuB95Pb+NUnZwPK81gksrCMy8WwUGSh7WdO4QJbtCGmiXDSvuoNJMLC4LbJiy6GImGWfsdlWgzyMFu3eQf+ddkI/OWbB/imI8NWJAuJQA9D6fy1p+zjHHefePTiQ80yoIGXfdhqKgreQr+J6tGmQrU2nUI7wyX0Olv56CE9I49AGWP47qOTcdgtb/mmS0oORBbijLGrGGP9GGMNAM4G8BZj7NzYchYB/s09q8lShPsvONh7QQD77LoTvvyl3vi9s0DkO4cPxOJbTtF7pwC45PCBnvuEiW4XB7LQ9pvYVEUxTBHhzz6Cq1+39sZ5YUyOd6KOQigea+ihN5vVpKPtAq8iKF5LhjGM2L0HTtN4LXBMhQ0PkRBV49Nd1rG+Bq9fcUSkewL5+lHI0v6gDTtETH3ck5B5uhF4SmPmM4EBeH9+8C5MSa26rRg/cRP4R5DbeIqys93HhljoAWR7+H+cN1xry5I/OhHhmlO8GzgXcyNawCu0/ZbdE2WFlVi5UynSborw+hVH4KWfjDbOC5Oer5+3EH/7dzpxsWvX9njhR4drz5sulTb9vNOXNwGAUdAyGcaYr1dL947RF7OlfDTxvXbJbuwdtHNP+7o0/v3dkUbP66DwDFKVdRIx13WaeHZDk6iauFm6pOLfxGKkYYy9DeDtOO5VCLqJCf7dTHaKH7xzp9wqwiCUy+kVHyrpic0eHeuwX78ueHtOds5BDnjl55aXouxiH9Fn1q/t9OvWIdA9L2uiyf5mzL3sX+/BEyzogeyQtEv7Wqzb4r+SlTNk507YuE0fvMsvxKvppgphGyfvMMNcFrTPaRwCQq67/7psBA7o3xUTFq7B0XsGK0BitetYl8bmHerOKh8wTKwn3rKeGmK3LVN0NvF0igpYUJW/p194iqT2FWhTmrhOWPKClb+f6nv++RsHYPiAbrjmZK9GLRN2kYdI3HL9rm8flPsta95+Q11Cdh/BhY2bc8d4I7v1zP286Q3y7Y5PwTw28aBr/ARSOkUYc5L5ApfX/+9IfHD1scbpRUw1rLDfUmcOumDkAO2oLcPgOxseR32S2w8BaFebNhLggPQNfRpHXvPPp1FpyMsCJgqjoPNOSRF58vzXsw8wuqd4S91iJv6MJGhTQlxnZ+YFKzcelX2MCHjq+6NwaYC/KX+eGA5Xv8tIspo4Q3Y429kR1nxik+8G4xe9T1VkvLL13sm7NN2kHopJGNwTOtpVtaaaeJpw4r59cNoB6uXWcZKUi6HOTFNfm8aUa4/DpGu8nU4mwJxSyFYZOf91SRqErbeunbV80uV3Qsofa1ZosOeNGBDq+SaEMacM2bmz0T3FO/rFY7E2cQN4GcnD4Gbnw8kyVqURhW2Qn/z6yzl7pEnkNE6SFhauid93wcH493dH+m766+faFXVRjhwprsZnWy+OOHggEO47fzi+Mdxrh+ULpwrZlcWUqwyXtIetMzoNnzGGrh3qsHNnb+fJ4D/yU3nIjB7SE7soOmKRbh1q84vZPHM8vpd6cH13n3RcmInloIpuuHuMQb449RqbSYq8IxHzfUPzv7c3+5hTrBA3R25UeXOKmSYeFRN7bxLwEQB/G+4C2atzPQ7x2asQgNL+77dnpInAEpNkGJP8xNXXiwKECDhun9646LCBnnS8IZjEBn/mcm80wTCIi5T8MP28fLONSD74jPmHw1Uce/TiQ3MhnHW8/fOjc79VE/VB1KQIhw3OLppytS+fV+TCUkzv2UwEybSbU/bvg7MP7u/xiVeZU/zWV4iISqOfJp7U5thtSojzDSPkHrxZJ8Rj0MTF++oqvcpWn8ROkdxlziQuiB+8rqnqnEmuZU3cFXbAOXXT6e4l7+J9+fUqzYU37HYGMVSG7dbNILeFY+oumvOe0pz3k+0M/gqGrt4G9RddhHC7suJp0hbm33wyHrsku/xeNFVce6p+TonPkfDk547YDbsp3EqT2IqvY30Nbjlzf09o6qw5RX5+eE3czyaelIND8mPSInLuiAE455DdPD3owJ7ZXl5WvCcv9m4kG6Wz/ONZQ/Gn1+fmNovw3LMINnEAePzSERg3f7XxwgcdOaGkEuKaV/nK0LyNWn5dMRQu5Y5JDVS4RrciFsg3rHpni7fRQ3qiviblClD0zOWjQvktF4ucuU8jWf3kbYYx4Xrved13CaPzm8YC0iGObM86qD927doe590/yfscKbO6vS5VK53jQhao6RR5jvmZIUXE76Gy7YvPSII2pYkTkXIIxE0KsnuRyvUsyiKc4/bpjZd/MjrUR4qzU+a3GtizY6yTQWEWKak0aUDlnZL9/ekKd3RGt3dK9n8TTTxFhO8f5Y7kt0fvzhjS22xSqpikcmaE7N9yWfrVn+w14Sc2w5huvOYU40sBuN3rUgSMGtQTP5LCOQPe99Rp/Em65srPTKcU5hRTTVzoKv1C1FohHgNeP3FvmiKvy8nx+hVHhF6MxElq9WcY05KYVGwMnzdtwxbBX5ifkeNMuMrdZ2KVD7H5aKNV4XsXtrGceWA/HNxQHNMLoHcx9BfiTLsiWXcMMNPEeZpC675oxiPKxo3/2QneTbdNbe9JTv5v2u5W4NLk3WnJ2CZuqolbF8PCkc0p6sZQHCkuP2VI784u+2Qh94qLqI1aLsIJC9Z4zskRBFWmKNXiCC7o1m3JLmEfN3+1J03YT/inbwzFf75X2CSoCbxuyTKc22dH7K6PqpjJMO2K5Oy91dfpFPGrT94LX/6SO15+oX7MpnMQpjGHknQImLtyo+vvHa0ZjxZt6p0i4ivE7WKf8IzYvbsrXKbc037RtM1zjem2UEkQd0yNQonrvimFTfzsg3dzpTlREXBLpblwwb5B2HtU1myTWlRRKHKuuHlv1KCe+OTXJ+BInyiCrRn/zlprTtGkv+yIQfjHecPd9yhSuflMh7gQv//lR4Xb/CIIPqfCWbpmCxat3uw6Zjqx6nIx9JnYtC6GEfjXZSNdm9bK8vl3L8/2XBPnNkp9u+rdu9T+2bE9OhaiNmr5qva16dymw1ygy1qOMrKhz7FLR+cXY8k+xoUWY79u7Y06ML9dplTwe3JlgisMNSnCTu38R2GiOUWFtu6EqM+y9SAuDyqvJ5LZfcXO/4Qv7RJLXnL3lgqzlTFs2eE2sRj7ibts4nohXm84URqW8pvCj8AhA7tj0iKvp4mMiYBWLTqIyvM/OhxrN29XnlNVD7/Kfcawvnj+k881Eyelt4n7UZtO4eyD++POsfNz9/RObnmvU2lCXJvhPtzH7rVz7Jr4098fhV4GPuKPX3ootvks7pDhueK57dM1uxBnz12CJ2Gz3imOOUWhX4sd7i9P3CsXuCqUd0qxTInk/7eKuBUc+V0zGeaJx0NEuOqkvZTKnutal01cX+JJjXTahBC/9cz9MU+ycakwMZWodgOPSveOdaGiy/mN3kStZM/enTFHeN+kNPgwt3XPS7qvrK9JeXzP5TTq3X68zxGF/0fXHY+O9TX4YKE7DGihbYXIzC20viYdas9P+Z1HDeqJp78/CsP6dw28NqjuitkVvXVkveW6U/fxXMsX2piGiA2LnAceoC2dIrRm/MMJcOLuYOTPO2JQDxw2uCeuema6K47QifvuEijEmTNKYqw05tg2IcQH9uxoVAFNRpZxCvGw+PXU2dlz57dUA/kkX9xErY7yW9SkydfjRD7Of6k18fyxbk4HKWvihWo8SSzEEhGza2qSCTKn6N5Z1tpVuwNdNKoBQ/t1KSicrR+HSquGLxk9EB3q0ujUrgb/eMds38m4hbjchoYP6I66mhTe+tlRaBjzYqjn3vHW/Ng2KolCm7aJywSZU0bs7r9E3ZRbztgP/7pshG+asEaRVCq/ebFcAVVLluOEB9LyI0hwNjkdzUdL12uu9x4L0sQ5cTegpEY2utg+JrQK3ilhyEjWHlUHlUoRhjd0T8wbZEjvzlh8yym5AG07tavFTafvh47OdmUmrxV33kx99E1GZG/NXqU9VwwLVZvQxE0JEuIPXXRILM85+5DdAtOEDb6VTmU1mvEL1ig2fSivvlh+DcaAKUuzsaHnaMxeqldXaeKqxhbnZHQ2L8m6+0QZcWdYNIHgnS/Qp41D2+3SvhZNW9Wx3mUlJMxnSxHwx68PxcCe/pulmyK/qVguZx3UL+cC61del44eiHvfW+T7nBSR7+bMcVBlQtz/fDF34Am70ChNhHvOH47l67bi6memu69LKN+xbZYMFmqhg9/iE/VGHBEzpiHpOYYoxZoxtB3LcK8gbn/2u0Uc9f+N/ztSL8SdF4/ynFSKAncXCoP8CcSO+49fH5p/rqZynbp/H4we0stAiAPh93EKR3mpcAnj5/4DJL8Dj4g4pOYxGvw0wFSK0Km+RunJkJT/Ke/0UikKOVcgz/xH62hU5aF61yP32BnfNYj/bvzchGzihVQvUZsL0wnccc6B+M1Xv4TBjsnN793iqEe9Otdj8M5q8x6vT1FGjqXy/RefO1SYgE6nyDC2fvL5riohrtrEWCTpQFUi919wMM4bMQDTrj8BU687HoB/Ixc7GFlDTqrz4c8hZDWsCVcdY3SdKjtBeTSt7Drf8asMdmIyJvFqEF4Vjzoo6tW5HheMasgpDb7mFMOVlFHhHZHsf23ymNjruGF5ikUyrH9XPH7JoQCy8XmM6mwRREpVCfELDxuIBTefXOpsAMhWghtO2xddOtTmIu4FbUumI4GInQAETZyy+1r26WK+y737Psy3gxw9pKfSa0JFMUxeyZlTwtuCc9dSPEI1yAMqSfgKVa6Jh5ngjV+Gmz1brG8pIowa3BNPXjYC3ztyUOhdrpKiqoQ4UPyd58MQ5J3CkatfUu/EJ8XCDmXl1Iz5C4ifn7Cn8WRiUqYjkaQmNrkGahriVCSuHPmu+hTKtq4mFbvfODdHeMwpBuWd1GrHIMS6wIvn0N17ZM0pBtfztnP8Pr0DUkanqiY2yx3/zWX116UTUsVzGmOBEoSB+Y4WZG8bv8cVI75HUk/46gG7Yu7KjfjRsUNCXbdb9w745Ul7KUMnm8Jyoyp9GlEZmHvjSZGfpeOBCw/G4tWbI3mnhFlUZYLps8Xy8lQ9Q9fI9648OtH1J1WniZczfo3UT5NNKna+iR1VhZzVDMv7K8vRC4G8K+ENX/sSgNKPlpKaRKuvSeOaU/YJjJMic9e5B0Y2ZXkpnTmlS/ta1+Qgx+SpcsCqYiHWRc8epIbdff/uHQreqMWPyCVDRP2JaCwRfUpEM4noJ3FmrBp5ZcYK7TmXOUXSIuIQevv23clzjAuOwwf3DHUvuXIzlp/U+rFCC+Wa+B7ORg6ltniVWxDEODs138nzIhd8mKmBUplT/Dp0k3oSl5uuH4WYU1oA/IwxNpWIOgOYQkSvM8Y+jSlvReOG0/ZFp/rkekpTfCc2fbxTCtEcT92/D174ZIVSCxvYsyPeH3MM+vjsmH5IQ3dMUmxzJ8IYy01qqQSFvPlx/27eBR379t0JM5Zv8BxPgnIT4vL3jSIW8r730SbPk8RogjDmj2JahuJj5XZXLtUkcvfGGFvBGJvq/N4IYBaAvnFlLEn+/M2hrr+H9uuC04fFt5AgKqaTTrtLy+wLWbF54agGz/1F+nZt72urP/uQ/p5j3ih1+VVrKiHChce+fbvgb986EDdKoUuBbFjhiVcfq81HnBTDtzcMuaBhMdzLd/K82K9dyoAjhojKjXdTmfKoJ7GMUYioAcAwABMV5y4joslENLmxsTGOxxVM1w7uQD/ls4mAmZYkx2c+eT/vhgqm8KhraSJcOKoh8iy637CRCAGaeL4anrJ/H3So8w4QO9XXoLfPiCBOyqY6OHj25oxwD35NlCBaSVNunaaIe79Y9zkjc0rM+VFRsHcKEXUC8DSAnzLGPONdxtg9AO4BgOHDh5dF1yvvtF5ujVaFqBGIQm7eTScVpIkP7JV1Izt3xACcNiz8QEpVdqpJfK6J++3WUy6UT6eeheeHrzj22/uxTxf/jq6cBGYphYGprdplTkF4c0oxSrsgIU5EtcgK8McYY/+NJ0vJM2pQD7SvTWNrczaqQbk0WlNzikihwa927twOi285paB7BEGU30OzncLLoBi+32Eor9zk6yf3ajlwt67KdG/83xG5zTJkct6iAS938n674KtDd42SzdB0bpcVP906RttbthhQgZp4MUY3kYU4ZXN3P4BZjLHb4stS8qRShDd/diRG3fJW9u8yEeJ+lJmyGgoC4a9nD8NL01dgSG9v7JdSuxTKlFt14PnZrUcHPPfDw7DXLl5PIgAYvHPwDkFB7/b3bx8UNnuRuXDUQLSrTeNbBlE/4ybKKMAbLbM8KkohatxhAM4DcAwRfez8K4817QaIq+bKpdH6ZaPcBJ2MWL13SFtU7dKlHXp2qsf5IxuU15ZfKN3yKmvx2+/fr2ukFZ+ccjKn1NWkcP7IBl/zUDnh3Xwk+JqyNqcwxsahXLqiCIiCo8zlI4DiBucKg0oofOuQ/rj9rfm5v+89f7gnjUi5d1ClJo6RIrcBJxVnJyme+t7IshHyHu8Ug2uKoQ+UR+mUgLq0qImXvxApZpjcQrni+D3wwo8OB5BdpBG05LjcbOLlRpzFU06auAnDG7rjAIM9SMOyc4hl8NwbzGsTDy7LYsiWqhXiYjjMSrCJl3sexQpORLkJTBPbYyV0oqUkzlGYLeosN5++Xy7MQxD56JMRvFOsJp4c7hCTJcyIgN/OQ2VrTtFki/t+F2PZcVsnzg68PGtR8enRqR7naeZoZHjT8251F1yaZx6Y/CLCqo1i6A4xWR5V20/glYlZMMeAHh2wi8/iG+77HWU/SYubWM0p5VHVKwouH/xcDFV7i/7hrP2LIsTLTDSUhnKp2N061mnPlUtHw3nnF0fjye+O1J7nmnjcmxhXI9bcVGJymrh0WPgs0351gueyzu1qijKCrlpNXKRcBOQDFxyMI/4wttTZiIQsqrkm7ifDbz9nGD793D+o1feOHIR1m3cUmLvKJg7vHduVRievics28aDvUhy5YoU4ykcT79tNHzO60hRaObSBiq8O3TVwdeCYk/YyfuZxe++MKUvWGaevFOJV5sqkslcQOpt4kNwollyxQhzlo4n7NdZKM0uUIh7KfRccXPRnFoNyqZ/VCi9+uQX6fZd9++6EgwZ0Sy5TAlaIo3w0cT/bZ4XJcLuAJ0ZiEeIVVn/KCTmKJEf3Wfp3b48XfjQ64VzlsRObqAxNp9w1cdleyFfEtk9wW6pqwfaHpYVyQlx2MVSnL3ZTtZo4KsNKWK4iXDd6SKcI156yN47co1eRc9T2qAQloxrwfgX1d7FCvARUwtC/EhfNXDJ691JnIRT3XzAcs1YUZwu4MMTiplb+Vbxs4W3Ps1GyVKYXjmrAQ+MXFylXeaw5BeXlhzv1uuNx7Sl7e46XUx5VVF4X4+XYvXvjh8d4N3JuE7SFD1QiMrmtBd3H5RES36qw2AqX1cRRXpp49451yoBQtWUaUDynpZQ4HxYzylwXKDo3nubdz1Umk91QySO05aLkQeqK3V9aIY7ymzhSLVXfu496I4BSw/e9LNf8WSx+nDtiQGCaYc5OSvL+sx6hXqIe0gpxlN/EkTwL/smvT8htzVVujNi9B57+/kgM618cn1hLNDJ2xBSZ3Xt1wqzfnoj2dW5PK1lslGpEb4U4yk+IyyY1lQBPEbDPruWh/R40oHups2AJILdRdbkNOysEWYCrKFXMfyvEUX4V28QnfMHNFbMTnqUMuOqkvfGL/0zLmb8shSN7DeVWdloXw+JTZjLcKHxruXurWMqLk/frg5P361PqbLQpPBObKT6xWVwpbl0MUX4CsdxXZ1osFtXEZonyUZrHlgd81tlisVjCUi66X1WbUx69+FCs3ri91NnwcMGoBixbtwVPTPqs1FmxlJB0itBqt0YqW7gM58K8VJtQV7UQ71Rfg0715VcEnepr8Lsz9rdCvMp578qjsXpT+SkZliw6M2yxraEFmVOI6EQimkNE84loTFyZslgswK5d22P/fl1LnQ2LBlmGd+tYi64danH9V/Ypaj4iq6FElAbwNwDHA1gG4EMieo4x9mlcmat2Lh09EH266Hf7sVgspUOe2KyvSePj6717bSZNIbaEQwDMZ4wtBAAi+heArwGwQjwmrjmluD26xWIxp0zmNQsyp/QFIBptlznHXBDRZUQ0mYgmNzY2FvA4i8ViKR/yE5qlJXEXQ8bYPYyx4Yyx4b162Q0CLBZL26Bc1pcUIsSXA+gv/N3POWaxWCxtnjKR4QUJ8Q8BDCGigURUB+BsAM/Fky2LxWIpb8olcF7kiU3GWAsR/RDAqwDSAB5gjM2MLWcWi8VSxpSHCC9wsQ9j7CUAL8WUF4vFYqkYchObJdbIqzp2isVisUSlXMwpVohbLBZLBWOFuMVisRRAqeMvlV/0J4vFYqkA2tWmMeakvXDc3r2DEyeIFeIWi8USke8dOajUWbDmFIvFYqlkrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCoYYY8V7GFEjgCURL+8JYHWM2akE7DtXB/adq4NC3nkAY0y5NVpRhXghENFkxtjwUuejmNh3rg7sO1cHSb2zNadYLBZLBWOFuMVisVQwlSTE7yl1BkqAfefqwL5zdZDIO1eMTdxisVgsXipJE7dYLBaLhBXiFovFUsFUhBAnohOJaA4RzSeiMaXOT1SIqD8RjSWiT4loJhH9xDnenYheJ6J5zv/dnONERLc77/0JER0o3OsCJ/08IrqgVO9kChGliegjInrB+XsgEU103u1JIqpzjtc7f893zjcI97jKOT6HiL5colcxgoi6EtFTRDSbiGYR0ci2/p2J6AqnXs8goieIqF1b+85E9AARrSKiGcKx2L4rER1ERNOda24nMtiNmTFW1v8ApAEsALA7gDoA0wDsU+p8RXyXPgAOdH53BjAXwD4Afg9gjHN8DIBbnd8nA3gZAAEYAWCic7w7gIXO/92c391K/X4B7/5/AB4H8ILz978BnO38vhvA953flwO42/l9NoAnnd/7ON++HsBAp06kS/1ePu/7MIBLnN91ALq25e8MoC+ARQDaC9/3wrb2nQEcAeBAADOEY7F9VwCTnLTkXHtSYJ5KXSgGhTYSwKvC31cBuKrU+Yrp3Z4FcDyAOQD6OMf6AJjj/P4HgHOE9HOc8+cA+Idw3JWu3P4B6AfgTQDHAHjBqaCrAdTI3xjAqwBGOr9rnHQkf3cxXbn9A9DFEWgkHW+z39kR4p85gqnG+c5fbovfGUCDJMRj+a7OudnCcVc63b9KMKfwysFZ5hyraJzh4zAAEwH0ZoytcE59AYDvvKp790ork78AuBJAxvm7B4D1jLEW528x/7l3c843Oekr6Z0HAmgE8KBjQrqPiDqiDX9nxthyAH8EsBTACmS/2xS07e/Mieu79nV+y8d9qQQh3uYgok4AngbwU8bYBvEcy3bBbcbvk4hOBbCKMTal1HkpIjXIDrnvYowNA7AZ2WF2jjb4nbsB+BqyHdiuADoCOLGkmSoBpfiulSDElwPoL/zdzzlWkRBRLbIC/DHG2H+dwyuJqI9zvg+AVc5x3btXUpkcBuCrRLQYwL+QNan8FUBXIqpx0oj5z72bc74LgDWorHdeBmAZY2yi8/dTyAr1tvydjwOwiDHWyBhrBvBfZL99W/7OnLi+63Lnt3zcl0oQ4h8CGOLMctchOwnyXInzFAlnpvl+ALMYY7cJp54DwGeoL0DWVs6Pn+/Mco8A0OQM214FcAIRdXM0oBOcY2UHY+wqxlg/xlgDst/uLcbYtwGMBXCWk0x+Z14WZznpmXP8bMerYSCAIchOApUdjLEvAHxGRHs6h44F8Cna8HdG1owygog6OPWcv3Ob/c4CsXxX59wGIhrhlOH5wr30lHqSwHAi4WRkPTkWALim1Pkp4D0OR3ao9QmAj51/JyNrC3wTwDwAbwDo7qQnAH9z3ns6gOHCvb4DYL7z76JSv5vh+x+FvHfK7sg2zvkA/gOg3jnezvl7vnN+d+H6a5yymAODWfsSv+sBACY73/p/yHohtOnvDOA3AGYDmAHgUWQ9TNrUdwbwBLI2/2ZkR1wXx/ldAQx3ym8BgDshTY6r/tll9xaLxVLBVII5xWKxWCwarBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlg/h8Nt2E/3DB5MwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(spectrum)\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iii) Using pre-defined models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One of the pre-defined spectrum models can also be used to simulate a light curve. In this case, model name and model parameters (as list iterable) need to be passed as function arguments.\n", + "\n", + "To read more about the models and what the different parameters mean, see `models` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4XElEQVR4nO29eZgkR3km/kZmVlX3TPcc0owGnUhCAiHAIDGISwbEZQ4bDAYbr41ZH6ufF7wYe31wGGzDLvjgMF6zZmXAYDBgw2LDcoOQAIEM6Eb3jW7NjObqnu7qqsqM3x8RX8QXkZF1d1fXTLzPM890XZmRkRlfvPF+RwgpJSIiIiIipg/JpBsQERERETEcogGPiIiImFJEAx4RERExpYgGPCIiImJKEQ14RERExJQiW8uTbdu2TZ588slrecqIiIiIqcfll1++R0q53X9/TQ34ySefjMsuu2wtTxkREREx9RBC/CT0fpRQIiIiIqYU0YBHRERETCmiAY+IiIiYUkQDHhERETGliAY8IiIiYkoRDXhERETElCIa8IiIiIgpRTTgEVOD6+87iMt/sm/SzYiIWDdY00SeiIhR8KK//S4A4M6/ePGEWxIRsT4QGXhERETElCIa8IiIiIgpRU8DLoT4iBBilxDiWvbeUUKIbwghbtH/b13dZkZERERE+OiHgX8UwAu8994I4EIp5ekALtSvIyIiIiLWED0NuJTyOwD2em+/FMDH9N8fA/Dz421WREREREQvDKuB75BS3q//fgDAjqovCiHOF0JcJoS4bPfu3UOeLiIiIiLCx8hOTCmlBCC7fH6BlHKnlHLn9u2leuQREREREUNiWAP+oBDiWADQ/+8aX5MiIiIiIvrBsAb8CwBeo/9+DYDPj6c5ERERERH9op8wwk8BuBTAo4QQ9wghfhPAXwB4nhDiFgDP1a8jIiIiItYQPVPppZS/XPHRc8bcloiIiIiIARAzMSOmDkVR6TOPiDiiEA14xNShEw14RASAaMDXFd7w6Stx8hu/NOlmrHvk0YBHRACIBnxd4d+vum/STZgKtIti0k2IiFgXiAZ8gmjnBW7dtTjpZkwd8jwy8IgIIBrwieIdX7wez33vt/HAgeakmzJViAw8Yr3i3v3LuGPPoTU7XzTgE8Sltz0EADjYbE+4JdOFqIFHrFc8/S++hfPeffGanS8a8AmikMoQiQm3Y9rQiRJKRASAaMAnCm2/IUQ04YMghhFGRChEAz5BkBlKPPsdE1W6I48aeEQEgGjAJwqSUHxzHRlmd7SjhBKxzrFWJCwa8AmCDLh/s6OTrjti/0SsdzQ7+ZqcJxrwCYKUgFx6BlxGA9UN07JCaXUKyHgvj0gstaIBP+xBg9tnlDFRpTs6+frXwHcdbOKRf/IVfPw/fjLppkRMAEsr0YAf9iC77fvkIgPvjkkx8GY7x95Drb6+e/e+ZQDAv11572o2KWKd4lCrsybniQZ8giANvONZcP91hItJxYH/0v+5FGe/4xt9fZcii6ZE7YkYM5aiAT+8IKXEy/739/Cla+637+n/C18Dj6O+KyY1wV19z4G+v5vo2P6ogR+ZOBQllMMLhQSuvGs/XvfJK8x7VgN3vxsNeHdMQ/8Iw8DXf1sjxo/oxDzMEGKNZIdKTswpMFDjws0PLlTGzFa9Pw1x4EIXSKDbfueeQzjv3Rdj98LKmrWhKCT+/cp7j6jnab0gSiiHGUKDyMSBH6ESyiW37MHz3/cdfObyu0ufff/WPTj1zV/GjwOyxTT0j39vb921iDv2HMJde5fWrA3/94p78IZ/uQofueSONTvnkY6ZmjKphyIDP7wQipwghnmkMvBv3vAgAGDvoXI1xu/dtgcAcOGND5Y+mwYnL91vMuB5RcjoamL/kurXBw/GcsVrhUaWAgCWViIDP6wQiu0m4p1L6QzsaUlUGRXX3afY9XFbZkqfHbWxAQDYFwjbm4ZqhJaBq9d0f9dy8kl0KMyR8jytB9SzyMCHxs0PLqzbHW6CDJyl0reZJ/NIYeDX3nuw8rPNszUAwEMBAz5K/0gpccF3bsNDi6urRdMk4ydrreXkk2kDPk5H6v6lFm7bvT7H2HoA3e/IwIfA89/3HTz3vd923muvk6y9kNGhdzqFROsINODLbcVSQgaG3ntosWzAR9mR57r7DuKdX74Rb/iXqwb63aD3hL5Pl1ZMQEJZDQb+ovd/F895z7d7f/EIRcestGIxq5Fx84MLOP0tX8FXr31g0k0JZlc6DLxTdP3u4YyQPSamGsp8HMUIptqo7To4GAMfNLOOpBLfcK+lnJEKioQZ3znvO0y2//vARbfiwhvK/pVRkXu+j9XGYW3AL7tzHwDg4pt2TbglYQ3c6KNSOgP7SGHghNDDTiunkIQyShhhLVVGjdh/v1hsDmbA7UB2X69lLfNUj+5p1MA/+YO78Jsf/dFQv73mnv04+Y1fqtybstUp8Ndfuwm/+bHLRmliEFNlwIUQvyeEuE4Ica0Q4lNCiLI3aoKgWMwN9WzCLQk7r7g+2mIMfBqcdONEdwNeZsqjGEFSqgY14IcG1DT9KBT6fy1j2JNVYOBrhWvvO4DL79o31G8/d4WqP3PRjYq43bZ7EX/3rVvM5zc/uAAAqKfj5692oh77oYMY+gqEEMcDeD2AnVLKxwJIAbxqXA0bByiddWMjLX221qU+w3Hg9L/rxBx19t57qLVutP9+ELIvbeMELH82CqOkibQ5YJTAAjPg/Tw3vgZOt2MtV1d0pmmU5PJcDl2V00xc+rpf+cFL8e6v34xFfQ+v0bkFjzl+0xha6sJs0jINDBxABmBWCJEB2ADgvtGbND5UMfClVgeP/JOv4H3fvCX0s1VByOjwVHrOzEYxUAeW2jj7Hd/A+75x89DHWC1cfNMufPeW3aX3uzHwEEZZoZABHYWB93N7SnHgeuJYSznDssEpNOCerDgIEq+MAflRaLxdq8NXj98yO2Iry/Dv+2pjaAMupbwXwLsB3AXgfgAHpJRf978nhDhfCHGZEOKy3bvLg3dcCM14h4wBdxl4s60G04e/e/uqtcdHVwZeCiMcnj1/4Ro1h974wMLQx1gt/Od//BFe/eEfAnDvV5iBsxWJ/gINzFGMIE2Ugx6Da+AmVKzVwXIFk8+rnJhruDKic62GAV9tWSYv5NArB3JU+11Nw4ru5bivoCgkizoa88ErMIqEshXASwGcAuA4ABuFEL/qf09KeYGUcqeUcuf27duHb2kPhLRFKqrubxpMA3Ctgu2B7gajUzLgw5/n69epiJtHPWx++IOsAXh3hCZffj9pIJuwyxE6aFhjttLhEpf6/8y3fQ1nvaPEWQDYVYJ1VOv315ANd1aRga+2LJMXcuh2CxGOf889f8S4ZY7cISXrnIEDeC6AO6SUu6WUbQCfA/C08TRrcIT2oKOKYP6gmcSKshurzqV0DdYIDJx0vvXuuOKDM9RWP7FJSsn05NE18MF/Fx6ctJrzYTVwGyrK318L0CSyKgZ8LRi4vu+DgnyTVXvNrlZMPj/eWrkdRjHgdwF4ihBig1BT3nMA3DCeZg2OkFOKJBT/Ro1rdvzSNffjWX99UV8PQjfdtiyhDN8memjXe+hYMYCEkrOlqfpsdA18UBQDDk6rherzyrW/L4aBr4I1WQsDDgxHtkz8u/dbm3eB4Oejgj/TazVRj6KB/wDAZwFcAeDH+lgXjKldAyPEhKoZ+Hg696YHF3DnQ0tY6WMH6m43NPcM+CAs8cf3HMBnLrPV/MaxbP7kD+4ydUpWC0WP5aYvofT6fr8Y1gE66PLYdyAebhr4ak9EdsIbvL9IQsmlG56bexPauCWUqlXaamKkKBQp5Z9KKc+QUj5WSvlqKeXaFTv2EJJQKHJgtar9rbTDE0QI3b5TlCSU/tv3c393Cf7ws9eUfjvKNb75336MF//tJUP/vh/w5vWKQikK6TicRhl4/D7wwT3I7/oZnKU48AmsjExa9wgrlgcONPG/LrxFS1jdZa9xwjDwIeY7cmIWhXQyeUuy1rgZ+JRJKOsKzUBYmGHg3gPMH4rQ7wY9Zz/xqr5Bld5ya1zFrIoJLNWHgaOB95BQOoXLwEe5Mu5fGCQ5xxmcA3yfmr2aDsUqEHttjcD6f+eTV+A937gZNz244ByHrudzV9yDf1+FjZtHqd6YsiJee1jRMp/cjJslTx0DX08ISSiLhoG7n/HO7XeX8RCWB2Dg3VYBuRzdgPu1NibtxLx77xJ+71+uqpwgix4PO590eXhW1ff7Bb9XCwOkxzsOqj5sSlUm5iQY+CArDR8UqZUX0hlj1B+//69XD1wYrB+MwsAF21Cax/vnHvNeTQYeDfiACBmKZoWBzcdkwOmB7suJ6X3HqX2Sy5JBHxSmst+IS/VxMcT3fP0m/NuV91YWEnMYdeCUPtvr5fTsF/z6BmGm+YCDc33Egatz9uOj6QUprWQIrE0YITCkBg7LwEPRTr6sNS7kY3pGB8FhYcAvvmmXs9egX4O5m3wxysNtJ4jeD5nfBodxS+nc8GGMKCWU2J1fhjMU40rBpw0ZqnaDcR72vsII7Wej2A7uaxhES/edmL0Gf8djkJPYkYfOtTICA+cpFA4DX+WaLr7DcRBwA10EiFHVVoajwl81rgWm3oDvWmjiP//jj/DfP3O1ec/XG/2wM26jRnm4jYTSx8PsG3n/ZvMbPozTqWkYuHo97Pga1xL/mE3KgO8KbOJblkQC7cg9gymHM7w++MQ2yKX6mn0v9u4zyEk4MWkSXKmIVe8HJEdIT45Y7Z2FRpnwTPx7BTGq0sCvvns/3j9geY1v37wbv/3xyyHHGCk1CCZfpm9ENFvlB6mTS9RSbsjd7/CHYpSYYhoYg2rgUkpnU4JxhMkte6uBoRn4CBMax2xNlS8IMfBWXvSUjMoSiv1sXBr4IMbBv3+9jCKPA1dJKfr9NZRQLAMffpVpDDikI1OutoEaZQcjbvzdlZ7+v0IDf+kHvgcA+N3nnt73uV77ictxqJXjwYMrPR3zq4GpZ+DBELSicBmt15v8N6M4eCh0cVANPC+k82DmhWvE+He/ffNuRx6qgpFQRqx6N8puN85xdENo4wTOmlt5UWLUh1Y6OPcvv4Uf3P6Q83uAGHt3zbxfDKplh3/X2yi6JKGYSDGrttHAR5FQhDlW02Hgg1/Hj+7cawILemHQSJH7DyyzbFd1ve28CEsoXjhh1bn7wSOOmQMAXH//gaGfrVEw9QY8xN7yvPsGCbxzR9F8l1vDaeAdz4AXFUu9Tl7gNR/5IX71Qz+oPC7te0ghk6OmCY+rFjn1/64FxcD5SqfVKZzogkJK3PjAAu7Zt4x3feVG/X2XgfeSXDg+f9W9+NI19wc/czXwvi7FtNH8DtIxiiFDwPuxlRcT0sC1hDKKAacCYnnhSijec8L74KHFFfzTpXc67+1fauGVH7wUr//UlX2dd5AdjO7eu4Snvutb+F/futX5Tavjrmz9SaHq0IPYhNO0Ab/h/gXHFsU48D4RGhDtoigZTA7+chIMvJ0XroTiO1v03zRg7ngovLMIANR04QfjUM1HY3rDGnApJb5w9X2ldlCUjxP90SngR5VkpoKcXTqT8ciLwTTw3/30VXjdJ68IfuZq4P1fqxvj6zLwUF/z87Q7hZVQ1pKBM813VOmmU7hhhH7fccnrK9c+gLd9/jpn5UiTyI/v7S/D14YR9mHA9y0BAL5/2x71W/0M+1KdITfSfe1jkHvUyJRUeN19B0qkbC0w9QY8NFv62le3GOyRDPggGjhrZzv3JRTXQHU8A95t5xB/izBqyrBMb9ikj69c+wBe/6kr8SFdotf3LfAJq80YKaAe9tTbgLeVF5jRg8NfoQxyZb/1scvw4r/9rnk9bLKFE+PrGbPQM8jP02ET9Jpq4OweNId8zikKpZ0XXSct7ouiMcX7iI7TrwN6kNoxNDk0tN+Fftv2iEJVgTEfg9wjs3PUYmu6aqGsF4SckB1vNw//IfD12GHRbA3HwDu+E8930ukXNCjqWfVtqmsjt+y1pVeb/vbCW/DxS+8MtLP//njC279ujkG1U1qm3jbFQevjehKKr2nz9GdADYyZWqKP5aVxD2B4v3nDg7juvoPmdT4kS/IrzbW8Cbnb91udYiCDNC7we7k04KbMBnoZ1PFzFbzrCEWocINPX++3ywcpCUEO5YYeJzl7hkLjqlehrEFsAhl7KcvPyFpg6g14iEF3Cuk8vN2iUMYhofQjOzhOLY9x515cMQ3ypbYadJlf0JyBGPhSezAD/t5v3Iy3fv660vX3K6EUhcT+pTbe+vnrAAD37FsGAGzdUHOOE0pgWWGSAh3LZioW5vczmlH5tVBGsYFt9uNBjuMz95UBGHiLOdPWNpXenqtq44n+j1WUVo0c3MEZcp7aCb36+kMyYl8GXI9DMuB8FReKdqK3KiWUAWREutbcTxqKEkp/CA4eb4nu3xD+WZXD4sq79uGr14YdYXSOtsc2u8HRwH0NuAiHEdKgq3WVULQGXkrk6e8B+vbN7i5J/TpwfOfx3XuVDklMrO0ZcG4424GB5TutFANPzXurEgc+gDH17w9nl1UyHj+Pz8Cb7Ry37lrdXZP4c780pAG3Ekr3wICQg3MlUAmwqss/fMkdOPXNXy4VoOtLQjEMXEsopIFXSChFj7YMZsDtxETHTxMRDXi/CC13OkX35R7v2yoG/rL//X389ifCjjDA1RT7echchl2WUGiA19PEPEA0KBpdJBSugcuAIazCphmVAnDnHtdB2m9cvP+A3q0ZuB+ZYwwXu0/+wJLStrfDBh9dd+FJTKOMDd8Z2S+c5TE8dtlDQuH7O1I//Pn/ux7Pfe93nGJLIYxSbM2VUIY04GYbu8KZ/LoZcDJqfGzZTarLfVUUEu/44vUAgAd03sAgYYSGgddcBu4TBT8Ds4oItPIcn7vinr60cD/eH1Bjcq0WWlNvwEOJJx3PSViqheKxwWHAB1Y/acVuFIoXNihtmFwtFWag9MPACcvtfKBkF/rYZ9L9OnD8RceSZk5kKDgDl9Itl+vHgfPUdD4BzdatU2pchYLGo4G7YYQhElHycXgT6x17FgGoeu5V+NaND+KMt36163e6oZNL4wAfVUJpd7ozcL6hSjuggRsHYuDYt+1eNH8fWG6r75uJvx8Drs7Hnd5AYJx5ZQ2q7v/Hvv8T/P6/Xo1P/fCunuc2DJyRsFqSRAbeL0KMsV2El04E/tnKGAz4oJmYbd+AsRVDLUvMg0CsppZVa+Am5LCVu6GTPR78qnjxdp/UwTf89DNylvGJIPd8EiXnEmeoXELJUuc9Ap264yVq9ANfy77pgQU8+q1fxe3MiIRQSuTpEhOtzsOlmrKme+axmwGg68YZF96wCwBwxV37uratCp1CYl6vtIZ1YiaagodCc3nfhySUVkADlxL46rUPmL1b/d8aAz6QBk5RKJ4G3imCurohLxXHpnvSz7gOSSi1LBrwvtHKy8xCGQxXsuBwEnk6w3W0w8D7uNElBu4PBpq908QxyvReFWgCW27lA6Xj06e+8ek3lb4UmqnPF9oFKZfuiqjV8Ze27pKZGDtFoVT5CE57y1fw6x/9UV/tJTiGVQJfufZ+LLdzfPw/ftL1d37Y40rHnZBK3/euv/AY5VxDTU7X3nuw9FsCHaGLD7srOkWBTbPKqbw8pBRDp+7k5U1H+D3mIYM0eYc1cInf/sTlOP/jl5vPeP8d9A14PxKKF27LMzFDOyn5htzHffuVjLNtrtHz3HylScfNEjFUGdxhMFUGPC8kdnm1NUIGuOQkK0ko9u/QBOCfMwTnge0rE9N9wKuq29USUdLAuxlwnvTjxx5zHFhu44EDzdLnJQmlzyfP1w+lZ8D9aoL89UopjNDViOlvcmKWwizZ374TtgqhKJBCSuP4unXXAAy8QE8JxZcbrDTk+gbu0s7fEEwXiWoL3mzneOnfXYKr795fbkPOGfiIEkpe1sD5s+Jo4IwB299Xyxa8L/cv+Qy89/NI/iiflPhSnc/qq0gO6fBJl34nhMIIa2lk4EG89xs34Zx3XmjSs4Fq/bF7JqbLBrvhK9feH9QPR2Xg/P6SgUoTgTQVVkJp9U7k4VEN3Sat8959MZ7yrgvt78x+ie7100DrxfqqkqOWA7sg+U7ldu7Xabbt4MbeNeD8fHLg8E96Tni7pJSm2Na1gQzBqk02/CiUXk7MQkqT/WeNSPkcZWhD0+X5uuaeA7j6ngPGCcjRKSQ2zSgGProTs7yqdcIUuQHvdGPg5XPwe1mWUHq3kZ45f5L2JRTfedlr2PZDZvjEROetZ0mMAw/h4psU26ICSUBVGGH3KJTCMybd8DufvBJv/+J1pfeXR9DA/ZhRKmaVCLWjNmfVAJCl3TRwq8GF9D6CvzcgfVzeaEIdT/RgH7nHoOkwh0gD98L1SrVQHEZtJZYO+65JzJDlWij7l3pvxOHWfS/M8c01FDDp3ge93Xlu3bWA09/yFVNTxY+aafWQUEqZtp7GT8frljRCXXioi35N/ZwGZtycaeDLQ2rgVMzKTz4rpJssx52YdI1u5qa+mIENeG8juuSH0BonZngl3suJadrchwOV7n0urRMzi2GEYZCU4Cxf2d9JgC1kTJIgcOPRD5O7e+9y6b3Q9lLd4DjPAppuISWEEEgTZsBNgarex/UZUrc2+ZX+nM861Qx8uZXj5Dd+Cf/wndsdjY8/q8teFIptG79nrl7PJzSKWgHs/ebvAaq/9umldjf4kwa1hR+HVnP+Oa7RkR9fv1452xzmjv40cOrDgl2/n+DUzedAx13ssvUbdWtokm/nBWZrKbJE4L4DTZz7l98KrjT6gR8H3sndksjNHmGE3WQLfp9KUSh9jK1lnfDmM/ByFIrLvHvZ2EHyO3wJZbV3LCJMlQEnKWEl8LAAdsnN2UIjS0rGzMRcZ0lfabOhVHYnCqWPY+Q+I/O0OSkV+86Schx4iIXc9MACdi00HYPQby0Gv9Kf81kXBr5Xs96PfO+OkgEmLAUqNOaF68RUA8tltHwi4gPBXhuc7+/Tbem2UODX2QpIRlJKZ8OJ0GDnG+Ty7/mSkI9OUZjnRoVB2vf58bs9fws6NLPb5suWgZef0byQyFKB2XqKi27chXv2LeP9Fw62YYE1pIHcBfY6FBfvZmJqQ8eO/Zz3XIy7HloyfqiZWoIDy20nn6EfcrTklZHgUTAh57e/tVoV+smJoEkqd55bsWYSylRt6EADgtcUbrFOnqmlWGrljhFo1NJyFIr+bCZL+mLgIQ16UAnFj8pAoQyDCvqXhrE1aolJ0fdjqjl+5m++g5laworUu17wqjbxDFKgPEDo4e+mgQvvd4VjwDulNvtOzFCVOD8qBbDhk/7kVEhpJJS5uvsIcxbtnLNjGXAiyAi7clxeyJLBToVbJZE+cyekMAOvpwmabXWtfoaskVC6PH/EvBe6GHAz0QTuVzuXSJMEG+qpMSiDJgZ1mO/A3wbQkYlYv9N4awWMOr+Pt+0+hI987w48+th5AMAx8zM4sNQOTqTdUJJQmFTiS5W8Db2O3d/KuhxGmEUnZhiUdch3E3cYuKmFUJiOradlBk6dO1NL+0rkofhSjpUBnZh+CrcJ+teZl4WUSBKBWT0JAZyBh4/fbBfO0pw7Ueh8zXaOP2DbzTU7RaVzDrD9SdqnlBIf+u7teMjLGHTj2O37Phuiv/mEshIoJxuqElhLuIRiz6EYuFpqb2y4BpyftxUw4HkhDbM/tNLBcjvHZh1q565g1P9+lUR1/nJcu49OIU2hMT64/e3+ujNwdY3dJBSaKImBX3PPfmOk86JALRXYUM/MxBoy4A8ebFauIm1cftmvVCXZtQwD52PERmtwrHRyc2+2zdVxYLnd1X8VQsmJyQy0MxmUJtHux+3HNtgMU/bcplEDD4IGHmfgXEO0EopdsjZqSWUm5kwt7YuBh1LZ3TDCwRk413kp0zARAhsbmXkgm4GYah/0kZNIwCati27chc9efg9rd97DgLsM/Ad37MX/+NINePsXr/c8+vY3NDBma6nKCC3c+tMdj4GrPUD5NYQzLY2EIssMnCSUjTqemp/LvxbAGvB2Ic1KjgzMhno5YYgMTlIhoVSdx/5esup49vclDbzLMp0MdzcnJl1Dmqhx8ZK/+x5+55NXmnOlmhSQk9aPRnnwYBNPfueF+Fu9GULoOlQ7VdQJrUYVYQg/R3TvqerkroPNyme42S6Mwd+yoY7lQDTVUqtjau2EQJNTSDcP1b6hW9mrpg5Vwfz0D++qzGQ1Tkw2odXSBH3I52PBdBnwoIRie6rOqpERQwpp4HTfZmpJX7NsSANfHpCB85rXSi9T76ubbcMIZ+upeSAtm+3PmcK1fWoTpaObdrfykoPROY5uGMXAUuw4X0ILFilD1wYAczMZpFRVGktJH35YoRfFEqpRwiUUn4FTvHDmab+ONu3Eatu+JMNKhoNr7f5x/I0mAL2C4tdTwcBpxcj1UZ+B+1oyB600uzFwYtRZkphV4TdveJC1ITETFFBO6PnuLWoThJseCCcU0T3vFAXy3E5Khaxm4FwD/+j378Q577wQNz0QLtzFGfhsLXXkJkAZ5f/v45fjp//qokqDS2SKmuBsphGQC0NRKKF7kBcSl972EN74uR/j7YEwTX6tTi5HmoxUcG0QjGTAhRBbhBCfFULcKIS4QQjx1HE1LAjdJ5USSsCJWc8CDJxJKNzRstzKg3v21dO09F6zndvldT+1UFhdikJyCUWYEKREABtqqZntVwYoV8vT8evMC06bC/N2d41Codeagd+vDfhRG+uVujcNwPmGTRopOTG9nXCcqJIizJTqjhPTY+A6LNKfgP2djwgrTAOvGRapZTZWNMv+llYiZQMu9XkoUzREAgrG9PnqyMS7B7T6vJB42+evNWzTGPAuGjgZrzQRJTmmUxSGFJjve0zyh3eoPUgffeym4PH5SqFTSCddvaq8rK2FUuBbN6pyAFUJS812YZ6fRk0RD9/hT5NM1dZwRhKhSdIhC+5z5/5vjxG6h/w9ql1T9R2+KquxXI7VxqgM/P0AviqlPAPA4wHcMHqTqkEGbaFpQ8haLBOTbwBgo1DSag08S52H/lnvvgiP/dOvAbB6O/8+R7OtQrQSEWbI+5daTpGenA3ovIAjodCmvYkQ2FBPTW1vvz4IIbgHo3PNloH7xGLZM+BVDJwGw0/0dm6FLKdSm2Nqo0Axx4dWOs6E1SnKjlOuMeeyrJFT39D3eSsVy9fLdN9oBSJPgLAGzpe8QDiahq+a6JkotAZOk2MrMMF2nPvNGDgxtsD1Xv6TffinS3+CP/rsNYqZUhhhFwNucgUSUa7tXkhkiTD3hX+f0C2Vn46h2q38LXxSrcr85VEgVOo1rQgXarZztHJFhoh4+KWgqZ9pQnvdP1+BV3/Y7hNbcl4G2sLf545/QlUs/wZNSg4sl+8BXzmWnZjByx07hjbgQojNAJ4B4MMAIKVsSSn3j6ldQdCD7mjgQQbuGjN/iUuDp+FJKA+yiASevh5yNC23c8zUEhX2F7hbL3z/d/Gc93zbvO4ww+EUryIGXigDPlvPsLQSrqnNj+WDGwm+6vAjcHwJpcqJaavmKQN+sNkJshnAGjuqu7HQ7KBdFIat8WJOdE76fZYIJ2wMsLJArYKBS9jlqj/wqsL7uAZOhph+WyfDzCclf4MMadtDYY+zbMXng6JQqK98fZbbfD9uOkncLcoOrVRHjlBfJZ4BL7TslCbCZGMCZQ18pce+rmQA2wUxcJsd26lYydH1rHRyc/ykIqxJrQjVPUkT4cTMA6rvSAKicf+lH99vWDk/t5/Io9pSnmRsRiaC3+Pfp+9SjRYO/hvK5QDUynEaJJRTAOwG8I9CiCuFEB8SQmz0vySEOF8IcZkQ4rLdu/urW1EFms25Jsgf2oajgVtj5j+cRh+ucGIWzNgC4WSLlXaOmVqKtCJk7/4Dbs0W7tRSN1u9rxyOMBr4hrpaFXT0P6BspIJLdukacCl1Aon3YPoMvMqJSQ/jvftVEtPB5ba5TiH8yBN1PzYzA8531FEMXP0g04lK3IDz5Se1EbDJKdzpq9pm20ftXWp1cPIbv4T/853bg/3E48ApOoT6hjPya+89gLd9/lqTubjSsb/LmEMzZ9dXFUboTEAeO+QGz0wuuV15kBHbPFvDoVanp/6bF25yEcXsp0KYiZWuJ1RJs8qZyhl4ntvJr5xaHzLghWlTla+JJJR6mpjVGH+2eFnhxWYnGBNvNO0QAy8KkysQilLx2+xcO6t2GTLgZZnQkrJ1z8ChYsjPBvD3UsqzABwC8Eb/S1LKC6SUO6WUO7dv3z7C6Wzp1340cBrgjYAGTi9VGGG5p/cttRwJJXRzmx1lwEOZniGUEztcCaUo1C7sxDaWmKGtMrLu8d1NIeg8ftt9Dbwqld6EuekBeLDZroz7XfYY+OJKB+0Kh9dMLXWYDcXM8msklmiuw8uo49+nyZVWTx/53h2sn8oSSie30oZh4Ezq+NUP/wD/dOlPcJ+egK30Yg09TTiNLhJKLj0JxTDw8j1texM1X9XNNZRjuMrAkjFu5254KOnoaSqMb4LAjZGNiqnSl22/KUlGG9pSYk/5meKTRVX8uWLpalJNtHPc35CcxsTCShs3BpyhfJXErwmAZve8JIN1iPeqicQnqVAsPr8nRJiA6YkDvwfAPVJKEqM+C2XQVw3kZV+oiEKZyVIIAc1gyYB30cBrNpGHMxyenQeEB89yS0koKduAIQQ6ruPEZAaslgp0dP1yJaHYTYrtlm1hmcO5JsbyuOHwf9ts+3q0x+47xMBdje/gcrtU45tABnezMeBtdIrCkbTot40s0RKS+q1h4KxNxH7dgWe/r2Ju1Wu6/0Z2YVEpIQlFSRvC+bzGpA7qQ6qRQsfnqzLSwGupQD1LnHhnQlFIh7Fb3dXNA+Bto/bUM2Hu8Zw2vs3AOQArgbTzwjFCRsP3GDgAp+a7KfLVh4RCceXKgHvFvmT5Ny3GwHnYLQcx8EaWGAnFd2LO6mStxWYHN7JoGbpek1kZYuA5WzkV1Ts7hWP5w/Xmf3jHXnz4kjvMbxq6/rdZ9WtSthYY2oBLKR8AcLcQ4lH6recACMfajAl0w3hxet7xWSowV8+w0OyU9ODQruYztZQZAHucXQsrzkMQ0sDJidkt65H/dnGlg02z6kHkLKOmHR5cQlHXmAfZmn/NBF82ot/5311u58aYqiWre5y2vyzMiYF3zMAXwp3wyOlKWuuikVB4O9wVkWXgpIFzuUOa9im5xn4/1Zo5nb/tGXBeE8QNI7SGqsacq4CrtVMJAapS2KJIoKIwxybNPksEGlnibHBMKCSXUPxlvQw+X1z7JyNIce5VDJZXf3Sctuwe03NHCIVAVmrgTELpFCoUNuvBwEMSSjcG3s7ZxOA7MQuJDTWrge9dtEXMSBMPZWDytqTCHruqZn6wJHBeJkAA8Iv/51K844vXM5KYODJZmkyHhAIA/w3APwshrgHwBADvHLlFXcBDwQicZZHHfaHZMTfRLuPtceheUSKPlNIU0QFQSjzoJqHw4lMh0KSz0Oxg82xdnZ8xSEq6yaWSUGZrdgcVw358DdyrgV7PEpeBM03XXz0oZq+ON8MyNj9yyR24dddCZRnYg8ttVCVuLPsa+EoH7bywm8xqxpomwiwvzXIzcdmLuj5rfFIhHINPg4PvMJ4X0hgyYlt+v9F93nuoxSQUy3jpmkgvtQa8MOehY0u9YsiSRIeihjcVqTHJzJcFHAPuEROugc/pSTE0SQCWeLQ8Bt5ifcidmIA7SXcqVnm8rYBO5NHXTPekMg7cSCi5WTVXhQAaDTxLkAgRDCnlTkxuaCkajb4e1Lb1PVVVPt34ficKxRtT842slH0qpZtwZhh4TZUqyKWa1FWphrWx4CPVQpFSXgVg53ia0hs0UELhYYBKJ56fqWGhaR1ujcw60tLE3TPPOqE8A64ZOLFrvu/d927bg3NP24blVo5tcw1Hr2znBXYvrOBpf/Et1uYC81AP25YNNXMcq4GrCUBKiVRYBs4NbYmBe7IHsVqeyEPn8SMkltu5Ybiz9dQk6Lz9i9dj00yGc0/fZr5bSGlY90qnMNEQAm6cKw3ODXW1Illsdpw4aZpIskQYpy9dUqav33c8ASobNNHMiU6XCqGiULzlL8lqWUX00EqnwHu/cTMOLLdx9Ea10wr1DZdqyPz7Eo3rhFav0y4MXEq1OQfdB//63BA29fch0v4zroGnuv3qszv3HEKzk+OMh20CYKUVv1ZJ22HgrgF3CBCt8io0dvq8nUsISFOznjvIM4/E0ATc6pOBt3JlwNNET3YVTsyFZseZCMgX5jsxO/p4rY4KBEgTgSSh/AOYfukwo+0z8I2NrLTKOLjcwe7FcinrempJSJIINRFNgQa+5qCBEnpQAWUMDQMPOKgIppgVS8Tg9aX3HmohLyR+86dPwVNPPRrtjsQXrr4P/+lD/4FXf/iHuOTWPVjpFCUG/ooPXuoYb8Ayv8WVDrbogcSXctyJp1Lp1cN6qGV32OmlgZMGx2Uj+h0Z4P/05JMAqIFk9egUhZQmbPFgs+PE1RMDJ2a9j/URn0NM0ksiMDdjJSza0zLPpdE5E+FqwKSBu5KCPV6mdVEz8FLF0nwmRNEJqcPAbUnXVqfADfcvYOuGGt70ojOcfgxJKKYtTDvPmAbe1pKKnwxGyKUbheLHJgcZOF2DsI5xo4HrZ/9Z774YL/ib75rfcidmqMRtIgIMnDuxjcYd9qtQv1N9oSwVhtjwbGdnBcUSebhDM4S2fjbqaWJq4fthhLTyWVzpODWIDjbD26/lhTSTJ5UTSD0HKQ/p9fsEADY0UhM6STjUcjV4IwvWbDmMVAgIMT0SyprChCRVbGeVkoSy0jbabsNbLgP2RpOBaXUKh4FTJmcqBLJUZbi9/lNX4j9u36uPpbzrM1niaOChba1anQKHWmrHeGLgTsy2llAKCV3Myhbg9+tmEPzlHjlq+TEB7WzT/fOHz38UNtRTV0LRdWJ4rQ1npyFtaKjd+w6pPhLeEtFo6kJgrpEZQ09x4LmUJtJArVgKtgJJSqn0dH8TEZBQNLvxGSwZ8FriSiicSS802zh9x7xdeRX+YLZ7QBLcBKCwBh5il1xCIcmIS1uc0dP9ONSyert1YmoJpcKJ2WSkJiShZCENXF837/e8ULXR9zCG6Sfn0KrDRIsYIpSWJijeBtXO6lj2Vl6gliYmVtyR8XK7m9FCs+1JKJ3gJiYd1vdtPSknfvgqS8qi/uOoJYkTzUbXw31lbUaEpLSJU2nSu87KuDA1BjwvrJOmnZcfFoA08JpmgKRPuWnTgF0eNxgDdwy4nqkznR1Wmp3rGZbbOWbrqQmpqrphK53CaHWbNygNnDMbqlymilnBcWKa5W3hOmH95Z6RUIxsVE53zlJhik1xCSUvpOMU5gOYJkxKWOGREL6jCVCSx1wjM3VKDAMvGAPXEQwlTTugLabCLtfp+zTI/e+HJBTO1habHSw0O9g0k9mNP8wSmGKb3b1KeR9wRl1IYnaJklAC7JJLKMT8+GqwkDaOnH5P96HVkSUJJRTFsbjSMZmy7ZIT0/aXz8BNBcvCvYfn/M8LsfN/fLP0PXX8woQRkmRCzxbPteCTAp90qhg4XXc9S0y2ppunYCf7xWbHkau4r0udW/1fSF50yzoxfd+L+q7uL699WSpKTsyWF6rZMgbcFvhK2AS3FpgaA/6IN38ZgDJ4rdwaTG6YlQaulvC+Bu5LKIlwd/ghAz6rS8xKqY5XCxjwTi4VA6+lyNIE7VyasDMfrU5htDouoTjlZPWA5lEoiysdSOnKIbsONh0JhGCcmJ4Gnud215RaqhxuzbZNEJrRzJ1n+vEQSlOjQh+PWJRAOPMu0Ssgn4F39ORb1yuWUO3kkNM40c6nTuGGEXItk9pJDJwrINxoXHzzLhxstjE/UzP1TbgBAtTA9wtHcQ3cSeTRr1WfBhi4dOOP88KNP88Lm8lpGPiKlUPoPSqXG2Lg7/h/15uyuu28cFamfFW0wStoZsJT+aq0IreA/90hP0ZKUoclDJz9AurerfTJwBebHTO5Ay5B4TW9//2q+3D/gSaO3qiI0EIzXHrWiTTyJJSCPUeAJRL+BEkrayc6qlM4Y4/qyvCVlIqcihJKJUgTNN5x1lNZKowTkx7IWW+5DNjKgLzjeT0PevDSRFVA9CM5lIRSGAklLyRu230o2N5WnhsGTs4kbmwzE4WiqvxRcggZ/RnG2s5554V41QX/UWoPMfBQbQ+ebUg7EFkJRRtwxsD3HmrhuM0zAKzRoEkwtEktYA1BoiUUYuD0u6KQaHVy1PUymRvkmmHgYfaYkMGGPUchy6FiZHg5Q6NBecq2jbh77zLu2beM+ZnMGHlfQjm0kjtGC/A1cBuF0i4KpKmoZOCFZJq5vt+8jkgubaVIPwqFIj4AVeGRXwsHlTkA7CTptztLlUHZsamBc0/bZs6vrr9wfl+6Zi8eu6OvmSZVs8pluRZm4qlnziTb1YCv5NqJKZzz276yB7r09odw9Jwy4IvNjiNxkA4tJTOqOhMzKREHey9D7ct0JBDnSisdW/oWsCtSmphb5DDVz9dayChTYcA5A6YH2rII+xmFEbZzaWKTjaOy487qQggzcFt5YQYzea8BYuDlIkGU6t1gqfS0lPWx0i5MLeb5mYylC5NeTU46iVRYZrBi2u+ytKvu3l9aEdQrnJh5oRiDEEqqqKUC7Y5N5KGsyCWv1sbDjAF3ZShuHLmdI0OQJirsLcjAO4yBs0FJcd2u3mo1cJN6r09NceO+Br6or6HpLNvV3097xNHmvU0zNbNU96NQ9nvp0jsfvtVJFuGJPOQoCzFwyvYjaSYvKHOTa+BF6d5yBk730joxy+eYn8nwmOM24eVnH49Wx9XAuRMTAH7w5ufi9573SOezduD7AHD/AVU+wc8JoFUHPcO+E08dR/2/wavT3o2RLrU6qKVcQnEnjqKQeNSOefPexkaGmVqChZWOQyQKRmLIQPsMnIxqiYF7K5wsETqM0J0UeT8tt+wEZs4lhOnztWDhU2HA/QpqAEvMYDdbxbyqB37/UhtC2M71S6imQhhG1O4oZ18tVUadM/CQBk5ZbrXUJjVUVYxbya2EsmkmM/GoZilHFdgKFYVCLMToz0wTJ/Ad5gF1jdzRx6setgtpshPLDFxJL/6GAcduntVtcJeI9Fp4YVKcgTeyxLTVyleFDRUTNvNU9WE5ld6GwKlj+k5MKculQElC4YaOWOuxekIC1CRaJaH4O90/+thNTgIQ6aayhwbO5SG6fs4KlTEEZmuWQADudnR+JqZ/jlZu+7SmHcOOE5MlQxFqqXvdfNLkEUa0ibcvT1AiT5oIp2QzSSg3P7iAK36yD0B5p6RuWGrZ1RngbcWmJ/tGLcG2uYY5H620efAMl1tosnUSeQq7cuMRRUBAQvFkIoAyvMuykC+hUJevRSjhVOyJyWsY379fJViYCm6sQxOhJBRADcZMs0763kon16FzmpGapQ9lg6llnN3lJDEadSNL8MSHb8X3b3vIDDQqwEOaeAgt5sScn6mZeFS+lCu0Uy9hszcNWHIE8voVl+lBQmjo4lUmMYWXce3YDMJ6mhgWoRi5jkKpYuBtl2Hwh9yVUCzb47sXkQMuL2CcmFJaVkXXTwyVQNchdBQQT4FOtPEotDEh5/aiMeB88FupiDA/U2MSCjFw9QZF2fzizhNw1klbcduuRSsnSLecLLHRLCkzcGorDWa+ulPXp9pP7aJzUBQKOQwBawh930ezpcIGa2mCWqbY4gr7nCfyEGgCon7hxGQP833cvU/VUfEzDe01q9dtJqEcWsnx/Pd9xxxjY30w06Imd5TaRTH0VGpZfTfF/EyGg54Tk1cy5AXKEhYHXtLA9alKEkqSoJO7US4tT0Ih20Pjyxhwj92vJqaCgXP2+atPeTgAe5P5wBfC1qTet9QyRgoArrnnAB71J1/F1657AJRxZ3a517JCpuOOeQhWLU207FDgKO08MQw8S8xMXVXrYYU5MecNA1dLOaElk1xSGCEYA9cSin5oD7Ia6LsX3EqHDW9jAc70KLQJUA+1YuC2fKcfhQJYxmokFI+BA14t5cKyPb57EdWwyAubbackp4INJBVGmAcGRsrCCGk3jywRkPr8hvl0wisgU55VWFakNHCVot/xJjxaibz87BPwy+ec5MhproQCowfP1MoMnPqGpCuSKlwNXLJ64upzcqRzJyaPA1/iqwu9k00jUyWNlRMzsIphXl0jKxQqc/Uzl9mt9niCyn26AqVT0VNLJlmaoJYlaOX2nlEeAoe/1V0vVGngIQe/ZeCuhMJ9PjMs+oyc4Zw41DwGTpLld//oPFzyx+cpudGPQvEkFF58DFCrHgqzBNxcidXCVBhwklD+/lfOxmOP3wxADT6/jjRgH/j9S22kTOd+15fVXhM3PbCg9OZEmBRqWrLSQ0QDMkkEaplAs6PiuGnA8Wp5qc7EbLZzZ/eb7/zheQDUTb9r7xJqOoyP4lFzSZKJraPADQ2xX3JiHmQF5f2azmQY6MH3a6FQH5BBMqsN/VD7DHzHJs+JWbMTHaCjUAJx4FyyAmBqWHQKHQeul8m5LKc0V8WBk/OJs1piwGTAv3XjLlx77wH44PVA6N7QBJ8IWzCKVmIkw9BxKSOStFUeO0wTYyOQSs/lHn4emxUsHQbe7qhEL1tAyxoiHoXC92WkqpJ17Zxu54XZNg5wMzEJNJF3cok//3/X4f0X3sK+b/ufJhLHSan1YBVaqyYlE4US2Hc2xMD9aBgOLqHwlQQx/0RYObGRJZhvZEpC4U7Mwq6q6kY6leY54gl01C9WA1eT4YlHbcAJWzcYcuMmmLmrIBpvpr58Z+0llKky4LP11JFEQlUCa5k1NuS4A2AciVs31IzxpK3SVHiQjXHlDLye2igUE6OtB3o9S1DXmnmzkztbV5HRu333Ij5z2d34+SccD8HjUaVlmIBisRSClAjrVJkNMHDfJ2C84AED3smt4Wn4BjxV7JYz8C0baoxxu8yRx0RztwAZm1S4DHyjkVBcJybFzRNDLaSO3fUSW8wKpXAHXlEoHZoM4Beuvg+ztRSnHzPn9EuLTcTUjySxpdyA6+tb9rT7utcPNaOBK/aZJQlmsgTNtpsHQIOefBq07PbLy2YpfZ7jdrZ7U7vjbglYT9U5eC3s5Xbu9GlHZzSaYwQMONeFb9kV3iIMsHIdZeXO1hOzaxKtapXMU2hNvFx9L6SB+/HoHHQddP0EcmC7EooNF/admLxoGgDbRiFKG6kAVu6isGBCliZoe6n07Y5bW8jfOapTFJ4TM2rgAKwGPsv2i6QHiEPAGpvlVm6WexzKs6weCG4w2nlhBxTph4zBA1bOOMQY+Gw9xUo7N2GFf/WKn8Kp2zaadlxzzwG0c4lf0dIPX8opA6aOraJF1I1PE8EYeFkD93fI9uOJeQp3u7AMnAbe0kqOjY3UGFPuxNwxP2MMvo1C0WGEtNVb7hX1IYOVuBq4lVAoE1MZInImJVrKIEbbII2eSTKUFEFjwexRySSU5XaOuZnMZIyadjEZgQYnObmFYBKBJ6HQ5Evv0wTHQ8+IkTeYDGLDJmH6IxWCRRTZZT1l+tbTBFfdvR8fuOg2AMDpx8yp55G03ESgUVPZnksOA2dOTO3LUJq40OnpZScm3x4utDECAJx01AZDdogozDVq2KXrrZOseGilg6WWWnWmAiUGTnIjx+bZGh442Cy9T31N95ZWTlRjhEIwKUu5kalnt8TApVu2WPW1DQ7gceDUFzTxNvUOW4RaUk7kWdGOY4KRUAyptCQMiFEoBvTgztZT4z32Z0OCNT65ZtnuJZL+nCZ2FiajUU+VnmijUFwDToaSqu/VswSztQTL7dzM4L+480TsPPkoMzkYo6BfW0lAOg4P5S1X50mElXHooTrYrJZQZrx4Yp68xDfxpSiUhZUONtYzYxx5GOExmxolR6rPyP3Y3ConJjGmXEpt4FgYYWElBuXYtBteOKn0HgPPWP/NMElL1egoT9bqOMBZJ21V91C3KWH1Rui8S15iRsN7v6SBswmLs3Aroaj7TYaQZAWSUGiF+L1bHzJtPn3HnBMHnqUJGpmqt8JXXsut3NQQoed4qZWbCd8PI1THsqs97jOgZywRwPFbZo2E0jQGPGVRKIn2pagCcJtna0YG5OCRP+Y83SQUpoETeaFCb3kXDZxzOJeB24mVF5ji0U+ANbJU24jApU1Cq+MmS/GVOlCWUGIcuIaRUGquhBLai5AGcbOt9DpeHxqAWRZxBk7HIgZOhipLrQRD5weYBp4lJj2dGCaB/vbLnJqiOoWt9QFYpgDAiYQxEgpj4L7TkdpF2iHP3uywrcAoCmWx2cH8TGbkCc7Aj5mfMX244oVJGQZelOOwqd1BA84LFmknJkkoCTHwvCyhpNqpyxN/zATINPBWp0AtSZx7TddKv/nLX3gcPv6b5+CErRvUe6K8YvEllBnvfvPYYa6BA4ownPKmL+Ntn7/WTG6JDrmj53cDk5RIjqgzn8G2uQZma5kTRpgm2lHqM/COlVBqbKXgT+a8T0gC6uSuHEPPz2wtxZYNNfOsUX/MNTLDbjPtO2rnBQ4ud7BptlaqRgjYSCYOXurXB0WAAWpDEEDlfOQSxj9E7WxoCWWplTuMuJC232wJDZVf4Wva1JacM3B2L9RKpig5MUMJT1yaoslCtafycseG6TLg9dTGbjMNnG6GYIx7uZ2XGDQAsz0XZ+dcF85Sazy5kQesQaL21NIEM7pAVElD0zPxIbP8VseheFQVNmiXcsQUAGXkVzw27WjgHgOndlEUAk06PHIAoKxSFbEx18iYBp6bY7xy5wkgIuu3gXaC93cq4eVf3f6yjJNHoRTSlmPlhZF4DRcAns/A6uwUB84dplQlj9DQqw36zYZ6hp8+3W7plyRcA7cMFrCMlNpPYaCmvreeUDIdBw4ADx5QEsM/XfoT0zcUFkrHJQauimyp8LY6M7AX/+GzjHG0WbW6YFYnNys/QE2mRgPX93dxJS/JaSEG3sl9Bq4NYy3F5tmaYeBm5aC3dSskkZpEG/A2Ns9mJruWgxzhdC8AV87xQfXAVX9T1FbNJH2lzI9BDByw44I2B/cjizpFwZyYdnXEs2Rf+cHv42vXPehIKFkqSkRFhRHyWPvCOVZbT3Chej2rhakw4E3OwJm25WtQQriMI03KEkpb35QkgaeBK0PHNfDMmwDoQT+0wiUUvbxtuRqa0Maf5AkyLjYeVTqzdYeVPk24Bl4jBs4kFM+JacPRXMac5zZBCYBxuC6udDCnMxILqfTQJz58K+5414vwlFOPtgy8lImZm+NWpdJzozpTSwzDtjWfbRhhqgcWacq+M1b5IJSmS+MoS+0E0OCapY4IIjRqCUKOPIIjoXhaN12D3YvRrXTInzu6PzfoMqPb5uo2Zl2oynTLLXc1RROW7/TdUEutg5CFqM3UUqy0C4eBL7dzrOg+pUlgaaVjnsFW4NptHLgrP9I1zGQJNs3WjFG0GnjGjmFDaw8st7FpplbaHAGAqVcC2MifWtrdgFNbedgtX62a51gzcAA4sEQGPEFRsAJTJrRWOmWJTUav0cCBH925T/+GE7DE7EJEK8dWnneXUEwmJvSxowEH4GrgfLliWErizpzm7xADL6wDqeYzcH2jnTBCz4AL4YYR0sO/f7ntMHD63OxNWJJQpMkQo+uhvzMmoVgN3DJw/7kwep+JGrHaM8W3q+8lprjWXCMzBXsOrSgGbp2o6rjlTEwbe8/JBWd7joykfQotHVXRyFITRVJ4Eopf7ImOV9NSiKlGKOyWai4DTxwDwTNoRcBuJIKHnFmtWwhraPhu6HQOwDWO1Dc33r8AQGnItkyAut8hDZxWINbBLMzzxuOPa3qSaHZcCWW5pfeSTC0DJ6ciUDYuqv3uBETwGXizrZLemoyBE8IauCjJmXws0ASZJtXmpsEY+MFm20TfmDrbia1EKYTdqHn/ckv3U6J9Pu6qEbDRXo4vxYsD99tsi1lpsqefw94SCkoSyvdv3YNXfvD7uOuhpcrrHxZTYcCJwcxkYQ3c1z4JPIyQ0MmlyXqkgbtncQXNdu7ocABNADwMS6CWJCUNHFCZn1xDA9SAoMFLbbTxqFYioOshA5okwiQGzRoG3jZOQB/GC04PFNsiTEXXuFEoiyttXZdFZUYuaqem7Tdi3OX4ZTquEwfOoka4Bt6opUgSy+T8VHqSUEwUCovdVf2gBjZVh6R7IqElFC9qgN+7ht4uj9rlgzPwGjOAjSwx98Ew8KYbhUJSFVUjBIAb7lcMfMemGVdCSYR5frkGbmS8zN4bOgdtyk0RDWQ8uHRGOjHXwA+1OoZFBiUU3Q9+KQYiCY0sMVE6B5c7jgbOj1HX+jA34Op67DH5c5CmlphUgY+9hWYHG+s02VsJxejWhWQZ15aBU6ijf/4kUf94FVC/Fgpgcy4AXcwqp+zTxMmhINBEXmMTY5YkpTjwe/Yv40d37gsSiVExFQacQnw4I+YaOBkcAbceNE+XJ5CulbAH4h++eweuuGt/KZKBJ4AAMBo5T6Wnz/cttR0JhT4n0HEpHpVYBWfgxokphIkDNxJKs4ONjazklKV2ArYamknY0M4yvvQspHLwzjUyw7QPNttO8SFyrPpRKAQ/PtZGobgaOGUJ8hUL1QMnRzKV3syLwvFvqOMFGLherudSOhMmabMEkl749XAIIRjLtRKKk4hkDLg2EonbvoxNWCShFExnpWJcxolZt8Y1LygSSv2e+o1WDu3Crsgo85FHoZBOXeNRKCvWD8Mdy/ya00Q4dU8AG6raqKWmYubBZjsoodCqYanVwXI7twy8KJyxwp8D6reuGniamOdxodnGhrpb+I07/JUBtwl76vdqXPk1ugEbzURF4wBX9gi2ORW6GqE0zzXtO0qX4a9yqB64DSNUxyansL+13TgwFQZ8mWU5uhKKt0wUriMrTYQjrwDQdTRgtj7iqHsMXIUuMfahP+cMfIbpmr6E4rAQ0sDZUo4n8pC3nL67EmDgs7W0dD10TEA9UEqWsQ6ajpeJSVAGXL1WjMcdpEA5E5NAmjWBb6lGBjAR1pG7zPqLYs8LqcvFCrsJQDkKRZgsQzpbxgaiO+Ds6kRVzHOjUHxwZY0ycpVj1H5AceyUITk/Y52QAJCmCbbp0qZkSFq5ndwoTNQwcBYXn5MT02PgaocitfohzZ0YuAqNVW0jnwhn4K28MCyySv/P2PNLcBi4NjIHlpUBV05SV4bhJZY3b6iZCA8nkY1LGIm7ognBd2JubKRqdcYYOK8xQucyOzFliePE5Hq2cZazBDS6pgUmTbr76ypi8cVr7kOW2oS9TlEugcCltYz5tYjcH2x2VJmPAQp89YupMOAqSsJ1hKg4cNWBjz1+EwCVhFBzWG9AQinsDvA+/EgG5fl2Z+Ua07VrjIEDKGvg3owOEIO0JW3NNlKFDSNMkrLxPNhsq+Qb73ooWxGw2admUihIA3eNBKBCtLgRcycqn4GXB55br8I6HQ2T1FJEptkavWfiujWzMfW9C8kmZ4pCIdnH3ZFHSrvBAq/zwjNOs0SYAZYEbjZ/j3wGgDtZUSmA+w+o5JMtekelFca8qHKj7ZfcKbxVpYEXhd3xSbXBvUeUiKb6TUkWzbZiuTO1xBgensGo2u8aF9+A19j9IBgnZi3FNr3h84MHmljR53N09CRxnqPNFWGE/Nmn6+hWodB3YnIGTv4iLqEk7Bmn6yLJEAAarI2cgdt8grJviU9stMLZs9gy0iBJKH4RMi6hkOOa2nnZnXvx43v2Y76RBYnEqJgKA77MsqTMMruwEsqvP/0UfP51T8czH7ndCaQnpxkH1VAJLeeIYRN4Bh/gsjzA1cCBMlP1I2LU/3Z3bJWGbL/PwwhpPMyyJTHtAOScgzGTVkcxANIcqTobl1AI84yBA27xIbrGJmPOPng4lV9OFrBGn69YGiyMkFYgibBRGX5RLnI0r3R48SurgXMnIFXJAxRz5mGCaeAp5wacfAYAHFmGWN59uj42ZRdydrux4WaAug5X14DyKJSOF4Vimbj6/nI7d6KHiIHP1FI0stQkdtVTN9vY32fTl4+yVJRq3/D46tN3zKGWClxz7wEsa6do4hhwN/Rx02zNTMLtXGLbXAPf/P1nlnxJQHcGyuuBL7dzw8DzQseBs+c8Z+PX6tCJTuRxo1AAmBjye/c3jZxBY9OtMWT/fgYLOaX7RDXXfQPOt2dLHSemxH/71JW46KbdqyKfAFNiwJstW2fEsLRO4TihHn/iFvN9y1ySkkzCE3l81NPyctHXwDn7UKn09rXvxHRXA1YD5wV6eDvomecDxveM+2GRCWMmrVxVyHM0cBYHzlnJnE7kIXB2RO1uelEoHCtO2VbrdKwbA26v1zgxUxtGSCsQqi2eFzKogVsnptWzKZGHR4xwJ9hs3a1pE7rX/C1+n/jAV5ERtoTxURtrTvvo3MdvsSy8lVsDzutiAK4GrvpLsPa7k+xSKzfPDMlIzbbKZq1xP0yWOLKaeuZZKKa3YlMSisvAG8yAz9RSnPGwTbj67v1m31c/koX3F4URAuqcL3n8cTjNq0lDXbCxkeEffm2nkZ2cNmSJ89wrBg4roQhhjOpzzthhawgxFuxsMuHIl8BvnHsK9h5awfkfv1x/v8zA+cR23hnH4BfOPkH/Xji19Ok++uVkVf9am9MpJB7UpQO61YEZBVNhwF/xxBPw6087BQAPhbL1iH1ZgQxByPAo/TGsi9JuI4Q0SVxpIXEzO+tZ4hhYX0KhgSUYE+Op9EnpfJaBh46ZeRMMYCMdAKuBm3ohhXKGkZbKmeact6Tj+iSdw89M5OCV70Kp9GQIU6YBm0QezapSff0kifhVFcnAtTpFORNTugyWZ81uqGVOsaqqKBSCY8DZtQohsLGemfodJKH4zvPjtAHfsqFmQibp9/zcJKGYUg3CZmKa69DHXG53rBPTMHDF/rhjmAy6uRYt21Q5cPlvCWZ1q9vwUydsxo/vOaAyO2uplwzkkhj+HK108qCTvcmcoc87cwc+8J/OLn2HSyiqr1Imoaj7/tjjN+POv3gxzjnlKJNs1nYYOMJhhInAk04+Cn/+ksc47wE2wghAaWMT/gzzMEJ/KzzeH+TXAVSNdVo5bj6SGfgLH3csfuGJajbkDhvDwD3HXhaQDAhGQgnIUTUdNUFIhSh51k1KvDY+rgbuno8MpqOrMycmZ88AnGJWoWNyzdccj73X6rhRKH41Qq71Uhw4YaMzUWkGbsIIy/3Y7kjG/K3TjkdTANBRO3YisGGE0CsQm9iUpsIpMpUIyz55LRSpfQg8KilLbCLPrB78bSbt+OB9XHcMuHuttnaKZVGGeSUuAz/56I1KQinsOZxJskFp9yEG7kooS63cYeWtvECTORV5MhmX1Wo60sfUk/FuHb8f5hopQEB/+eSjN2JhpYM9iy3M1FzSUEvcyK4NjKGTrOWDniOKZuHfoT95MSvVV5lxYha6dhGHjd6yz0UupSmExu8jjavnnfkw5zoAl4G/8YVnOOdomEnVSijtTmFW2v5zQH/TdZDvBAA2za5O3cCpMOAcThRKYAkDWAMUMjydLhJKLXGXvGkiMFP3Dag70Ko877wdzgOb2D0e/SU2sSX+3qzHwP3EpES4YX9cEzdOzEAUytFzDaddPIyQrq1ZEYUC6NR/rWGTE1MI2wdGA+cSCtPAyQBTHLhJbPKYM1Xa45EdlNZNYYbq2IyB11PPSPSSUOwL/5mhlQk56wC7bKdznP3wrThh6ywefvQGRwNPEzhEYYPH3HjcPE0iZORu333I3jePgXNHej1N3XBVrSWvGONS9pn4lQhplUfjiCKr9i+1lAbuMXCugft9zY3Z2372THzsN86xDJxqsbPvmImrKwOXpZVEqXJhpioXms0zuISiv0tRRIBdPZEGfskfn4ef/anjnHNwP46tuS5L9WYcBi4sA+eVF/37MC6MfFQhRCqEuFII8cVxNKgXiPmqWFmbrcZBD5hvUOcamU3kCUkonkThp+LzSAd6vysDp4fTY/UUx8ylFcCyEZeBuxq4P1lRfwCagTMNnIr7GAmF/XbrhpozKDZ64ZKAdWKGJJSVTm52EOL1wEMSih+FAujKbU4cuA0V48yZ+pBXiCx0JmYi7DUpBi5Mn4WkKQ5/oqav+NdKoYRbNtTtVmyeBv6Sxx+HS/742dhQz9RONTIsoRBzM1v2OROQ+v9ZjzoG2+YaOLDcNvfRauC5ibBxGThfTQinUFfZiVneQWim5hINCkXce6ilo1D4BOFq4BQtwvuS8BvnnoJnPnJ7KaOTt4lH4fD3N9Tt7lXkxOSwJSisEZWS70rVPYzRODE1A58LOFjpWRYCLIywMHuZ+qU81Lls2x5gDNzf9GNcGMe08LsAbhjDcfpGLVVGg2bbEssIME5A3cBOQQXi1XuP3GEdLn4mJmXCEfhylbRLbmD9MCka4Kk3KdiStu4Sm/7m7zVKEornJGQGfKWTO4as0yUOnPabtG0PRKEwB5FPYlvMADtx257/gWqAAy5bazMGL6XNTOQMjmvqRnYQKgrFT0XnhqWW+uGgKIE+FsI1tP5qgzNw2orN18AJKtQsN5mYfIVFSUyk6QPQxaxcBj5bT/Gys44z/amuRyVgkSadpW42sOMs1+exPgP3ukPZkLwKJuAmj83UU6f/al4Y4UwtKUkIPug5CkkoXO50VoR1Ff3CnZgcvoRCY82v3wPY1RYfy2ajFx2VEgpxpGPkhdTJVFpCYVEoQrgTUppYKYgz8KotF0fFSAZcCHECgBcD+NB4mtMfaG9Hs4Fp5htwYuDu+xsbmYmAoAfg67/3TPzc44/TxxVdH8YsESy5onyOp5x6tNcOq6ER+JZiPLsMsAPJVlcEGimXNhIz0OmBKzkxmUHPc1tEKtQf7oApR6Ess3h3aic1t6WzzuyelTBx7bXUOuc4s3cNOJdQyCDD6w/bFiqkZeuBq/PxBBg6dj1zQ9+6xYGnnvGqklAoVDARIqh9qvMmOgrFnsM/bpp4xdK8RB4AOPEoVfKWYpHp/i00O8ZpyTejcMs9+OUgwqtCDrtLTXlVOVtLnYnKZ+A8l0FdX0Bu62LAa2zC9w14KpiE4vU13TceRghYpuuU1Ajcf+oX26fldvO6+mazkdwm8qwwEmOv306aDzIDzsNux4lRlfW/AfBHAOarviCEOB/A+QBw0kknjXg6BarpYWZffyDRQxFgU7wWij0eZzo2IaGUBMGWq3WzvLLf8T3NfHlvjilgdln3o1CMhKKP6de4TpmEQg+R48TMCze7U2vg3MiFzgOglIkphNXAaVKgLLSlVo6W3jAjEa4+DagHnwwW19ZpWUxtTQRsHHjixvrS8fxtzUgDp/bbPuZJPQKdvD8DzmPvgXIkETHdo3QEikB1liNp1WZLtQRsUrHO1pUQA2cTByUH7dIZoHTfFpqagbPzKu2fy3weKahw/nF0vPs348mCDgNP7V6yhF4MnEAaeMiAq4nHfpdi+XNd+Kwkoejv0r2gfmy2C2ecVF0zfb640qnMELUx9dI6MYvC+L1s/W/7G27Q9y21cPyWWTzl1KPx2vMeUdkvo2BoBi6E+FkAu6SUl3f7npTyAinlTinlzu3bt3f7at+gZah1YrqXQR3Ioy4AZaQoCy5U5CeUiemcly0f+YD79PlPwQ/e/JxyOwNOTJJQqB64EwduJBR7nf5y02a1UXSEXaa3cyvLcAPsJ4tQOFwoyYS3nReQ8nVEyvoMxbHXM1snu5qBF46E5FdnBFyGTasBf8LjBoBXXfQnAh/Ux6lnyH0G/lMnbAag9Fx1znIdcQLVmuH6s5FQGAPnGrifSg8Ax21RtbT9PU4XmrqgmZOL4GbnUhSKuXZv8gqVdO14RIjnNmysuwlffiYm9Yk5XzcDXrerRt4eIgj8fcXI4Ti4OfhzRNcNkIzoHsvPBaHrAGBqqodgyjLrMg/LrRxSusl1ifDHt5VQqObQe37x8XjE9rnyCcaAURj40wG8RAjxIgAzADYJIT4hpfzV8TStGptna9i/1DbMwXfsUdKHz8Bn6ikOLLdL4U70gNaSBB10YeDMoPKH2JdOzPcpjDDlRseNY/Y/4+fN0rK+SINsI1uO+slH9N1my11OCqjPtuiVwvZ5lTZdz5LSQ5wmAsitH4DadMz8DPYstnDlXfuxba4RlCo2NlKzXCaDTxEX3OHK61/QMpk+p8OSwdm71HLK9wLwaom4RszX0n34fe0zZcKfvPhM/PELzjDnFcJWI/SPS78lpx1fYTVYO20UCoIM/DgvPZ/kOsrGdcrmZokXhSI8TdZny/a7//bap+G23Ydw10OHTHtVW91wU348X0Kh90J/+yDS4TNwW27WM+DkxAzkbRjSQpuYZNZo1ryQxJAPxJafyEsyk2lDjapwqkJri9oZ72y9FpJQ9MtmK0dj8zjcjNUY2oBLKd8E4E0AIIR4FoA/WAvjDSjDs2dxhUkobieRDOKzKbVRqUoKcZY9+mvlcMTyrM+z43qBvuuzepuJ2T2MsMzArQHkhjE0YFX0R5iBP/nUowCofSK/98ZnIwmMuSwVQLts4J5+2tF45I45/PtV95l63v65/9cvn22y7TYyQ+6Uz+0UOkTN/p77BHzD99DiCuZnMvCm8iiVLE2YQ6vsjPZhSvfqj8gh7juz1KTCJg3GwKv0ZQqb5PeXM3Beo8Wmy9s2+psz82dNOQ0T5zM/DpxPgj775M/4E07cgrNO2oq//tqN+nqIgbuOeX6ZfjayuiYmEXZh4GZXKuE+06ZOEGfgOoW/UxFNY1edPgNXpSN4m4MaeMqew9nuEgoVWqMV6axHInwyyEsC+JnT48bqHn2VsH2ugd2LK5Vx4ORE8o1slrpJNOZ9fbelx8y5Yw+gJX2ZgVfBz64DyIlJrKJ7GCGl5fIqe7Q+2GCWo55Xn2m6fOs3ADhl20Z8+vyn4M9YRtrxW2ZLBZn4b/i56ZrOOFYVDyOnqW2/+vsJJ24xe08S6+ITDmBL3wpv8qHPhXD7ee+hFuZnMo/xcz+DcBxavjPUR+r19SE92fXKmEuE3QjCJ24+A1fX435GG1zQ5+Ts9R2DHH6mqM/A/Zr1Rh4Kab/sPpqUb7aBMuAyTJXwlTi/942SY5AD5/z1p5/s/Ib3W505vEMM3Eb8uMc0Ekrha+CqCFiVhEIhk5lj8HtIKLlb+bJRS4wzn8d9Uzt5Kn0/RG8UjCU9SEp5MYCLx3GsfrB9voHdCytOXWYOCuMKJdYY7TUQ/eFv0+XHdQP2xvdTGpJnbRJ4PfAs8wwNM77qXPb3ahPdxFzbRs7AA2wzTYQxJPwhqpJ7qtpu+5aYYmpYqio3ag1eyFDSRENaOGfg/n3g15J6zPWhxRZO3rbRCWfkYYS1NDH7PNZTT5oKaeCifG+A3jUr+EYQ/m8bxojY+ujcsUu/4Q7ZUKExAPjG7z3DGFJu/EoM3JOLuHwQdt4lpWMaKZIYuBca6zoxE9QyN6IiJEdy/OnPPQZ/+nPlNHY6XmjPTIrlN6uVkoSi/rf7wFqD7MeU8+NurGdotltMQing+9AIZoORwtXJs0T1ufE5eato3tRQMuE4sTr5nauM7fMNNNsF9i21dYyyz8B1iFUFA5cI63Y8vBAIOz9Igw7tul36LotRJqSGgZPD0X7fj4zgLHhFH4euzaZ4l40g/W8ZePWytnfb1f+8T+caNg6WuksEluuAnWgoGsVEoRgD7l5/WQPXDryVjpZQ3PvDy7Byp19ImuIwfe191qtqnBAsDryXBi7cOHBA3UNeZCvkxASA03fYwC632qDvtLQ+Cto9xshQoec3MGH4O7Vz4jI34zkxmQbuy2v8GN3ga+rUFt+J2c0ZK4SbsMTDTbM0PCYANSE9dKhlrlmVMQ63mceB++UWUm3Ay+PPbfdqM/DplFC08+3+A8tBBwRJKDT7PUzvkE2dTrWkCbx2SOgBfNLJW83flP153Jay7OCDHgy+h6Wq7wDkspyp57NPn8Greg90bDuI3AkiMf8vs4JHg4I7QwEeKyzckMMuxgJQNS0AVWCKHzfMwK3h9icxQLFjZ7kq3EmSD+Zu0USAjWcvM/DunEYItSEFbyPBGnBroMthhMKpJ84TnqrQKDHwsgxi3xMsmql83fR8cIP0uvNOw/PP3IGX63pDM44TM/UkEut0LK/Sumvgoe/UmAYeklC6HZczdHqumloSEaw7+aP5xIersexvBhICDyPkY2iGZacmwpWE+DOsjlG9icU4MJ0MfE4Z5PsPNINe77xwnZjf/O/PxEo7x1999SYWs1x2vKh9CMs38xO/9WQz6Pbo2Nxj+2DgxF6lE9kCm4kpXMPnG5XMY8FZmhjjweushDRIvvNKP3p9qe3e4CxYn/K0Y+sMDA9cMvYbWNgjAKzkbt0W+swycJIebNvnZ7JS2CVFHzjJLZm7Q32oacMy8ETAKR3AQYZtmWvg3nWkSYJDej9Lvq1fN2dXmYGr19ywU6o3Z+AhMkL1QLgB2z7fwAW/ttNeo8dYC6aY1FKBvHAngYEZOPvOMfN2HPH+JCemaVPFKsqPA19pqzBCx/izv9/18sfhl885qbTPZwjc+JYcyWzS8Rm4n729mphOA64Z+H37l4PGSXoSylwjU+FQqaqEJxGO986lu4M7QSWmqJu5e5EMeD8M3DpH+bkou4wbLIBFoSTWKAEwogHf+YR77gfRwPuFYfj6PNw4uruUU5vDxyHDXa2B2++qa3GNAr+/8zM1xxg7UShJgtc/+3QcWungl550It73jZtLbeQILf+B/jTwdlGOSQdCTkyYuiin6jjgWhqOA+92j5zley0JyiBmxZTaSTF03ZSQ1C3cj2NjPXOqF2ZpgtQ4Pcvn6YeBc8P8jp9/jJP4ROiXgROxqrGV3cZGVimhzNRSnHPKUbhR72EKVPc9twH1EgO3489fRaZraMCnUkLZqgvr71tqB7OorITiJ6cIU9nOkR2ME9NGVVR1PO2PSMkW3VAtoVRlYpIcoV6XUvlTYdgQl1CCUSiJu5HCoKD+ofOQIaqlrgGnU1dJKIaB18uRBmEnpnvcusfAObtJHA1cYOvGOv7qFY/XBZbYCivQtioJZb4PCcXsQNTDgAshcOuuRQB227+yEzOsgXP4USihUFaTYJYmrA8DBlzvKtT0SspWYX4mKz1f9Iyd8TB7TebzPiYGv2gV7TBfklC4fyhkwAUjNKzvS2GEgd+GEvl88IAGnhSoslMtcfFJiK/lryamkoFzljQfYEx5RRx4miQ2ZIr1+svOPh4f/f6deOUTT8QN9x8M/pZAS7ZBnJjMflsnZmBHHmtUwoOaah4DKprkwYNNvO680xwvuuPEJAllGA2camvriITCYeBuHCxQLaGQ4TYG3Hf48IefLX15LDxBSShgv0elAew1+K2E4r7vp9KXf8dSzyvC/YyEIgSu18/T445XGZ1cA+eJSF0ZeMXy3U2htzJbNwnlaB2fv+iVlK3CxkaGfUu2ZnYtTTCzMcVHf/1JOOukraXzhCRIH1Us3TV8voRS/j7vfnq+DrXKYYShvuXH6xWF4h+Da+B+9nCWuIXfooQSwExN1UBu5UXQ6SSrEnm0hCLgaqQnbN2Ay9/6PADAzQ8uAKhmrf9y/lNxya17+nJO0IMtGQVPNGugiJew/EHtdSeALElYFEqCv37l4wG4pSpdCcXVBweBqXeuDRpNHPUSA3dlHx8mkYcyR52VD0pM2dfAeds3zdSc7cB4qr0/CPlxw/opfa8/KSF0LN9WNTwGngi1E8wP79iLk3SBqkaW2jrSibuCqALvg21zjWA5B741WzcnJjHwfg14lUP4WY86xrznlzzuharJ3nVuVuvYoe9TuOpCs13aHCL0/Pf6HOguoaSsj8ulid2JaDUxlQYcUDtc7FlsBRl4lYSSJmr5KyArl3rddvMBgMedsBmP0/UxeiF0jDSxu4z4USjlVPqQhFJO464HGDhPbBmGBRDDoMFJc1AtS5woFGp+1bjdaDTwMAP3y7762rQvoTT5ZCVsBI5f0KzX4K9yYvYC/7p/XAq/I804SYAPv2YnDjY7RvrhIXqNWorjtszi2M0zpX0kOXgfnLh1Q9DxmbGViJ/NyrFVa+CFLH1UiV67qYd8It1Q9R3Xoe+NjS5+DMBKdYXUfgD29dBq2pFQqsIIuQFPXQPONXDnmUiSkpa/mpheAz5Tw57FVnCrorxwnZiELFW7uwhRVD9EA6TK9wLP8LTHtxKKvyOPL0eUd1NJDBP249VrqQqRzJKyYRpFA/clhUaadJ10fGyZreOUbRuNXuqHb/rHouNR87lMsG2+gT2HWvb7CY+v9u91NVNW7w1nwLsVbqK+WmKFt+Znag7J4KSikSU4amMdl76pXAiNg7PzTbNZsN49l5K63ZOjAxsK90KVf4MQqiXfDfSVMx7mFjGtqndS1Qb++QanDW4kSMi/EMrE9lEVTTLDavr4EkqaeNLLEGNvEEytAZ/X4V6hqIHKRB7d0e1clhib/52xGHByYsKVUIrC7h/oGjD1v43AKDNwKivsGx5VYjc3E5CT7DFCFIpfpdDvF2tww/1ZzxJc9AfPst/3WJWf5NSNgZ914hbc9MCCc26TSu/1Va/ICL+v//gFZ5S+E4ITBeMdl+Qm2i0nNDn48cT9wN+IoxboG15SwK+0yEESyiDoxarnBmTgQgh85refitN6VOjrdQ/5e912xgqNZVen7t7mJ59yVDkOXI8PX0JJhHBk3dB2hOPE1Bpw6qSwBq7+D0kQhCpnS0h7HRZ0jMKJQrElMoXwHlJvWW/iyNmGvo8+dh433H+wVLOjnqldWsbGwPVxZrLug8FPPur3uPS3P0h9DZy+//Kzji85pxJhN0ToVp+jWxQCGeH/+qz+6jV3Y4U02S12M+BcQulzYi1X/0tKv+e6eFWIpPpNf5PGN3//mU5Nl25w9m3tc+/HJ518VM/vhHarcj5nKw1nZyyvhlHQiek8h9VtvuKtz8OGeoq79i6Z93hFyESU5Ri+4ooMvALEvEMa+AWvfiI+8r07TP1hgmM8KnQvP4Z8FBgG7m0SkUtK5AnrfIaBew9tliZ458tUIgLt2kLw05udov9DOTHDDDy0qTI/by/4Btsv+2oNuHpPCIEb3/ECY6z4adxqhNUMvJsTa9AqA/z8JQklcyWUUJdwA9o3A0/JH+E6PB0NnN33XrLWppkML3zssV3PyTX5XvfWL0g2LvTrxEyFcFh3adUYuP9++eEq0IrF9zPx8eY/k37hq9XE9BpwrX2HNPCnnbYNTzttW+l9Z2ecigdtxdTTGN17HAojTITaUaYT2FLN33IqVN52ppYG2YufFecYsBFS6WdrYQnlzGM3YWMjNXVB+pWSa95A8DNi/VUI4Bo612Fk2ZbfTt9H4KMqDrwXQkXQzOtEpcYTAw8y4B7F0oLnTATe9fLHmUJkIZnP1FTpwcAB4Jo/+5m+zksYpI/6TRDq77zhvwnGgZ646f9+bkhIQuTPSz+1gqrk2KpaROZ36eh2pBum1oDPd2HgVXAKWFUa8OGTX3yYB8NzYgLagCduwgElkZQklB5tBtxaG/w8TjsGAP2+4Rtw3aYv/+5PAwB+4e+/XzpfN5S2iKtg4FXH48ZYCIHnPHo7PvirT8TDj94YbH/VffSlmn7hTiDl387WU+xfsqnyPlwnZv+D+5fPsdsRhpyYZjs5lko/6LVVoR/HJGGcDLzbZAmwFatwJRTfgDcCz4AT+jiEAa+zFaErx7jHWu0olNU9+irCauADGPA+GHgrD+/mMwyqEnkA2pUdFQxc/74koVQ/aH5BIC5FVCUqdANF8lQxcIJhQX1r4D4DF8HXVU5RX4OeqaV4wWMfFjiPnoAqBlAvmaEKbiZo+XOn2H/gGoh1J2K4iRUISyg2CsXGgQ9ieLthkIlgXOcE+nBiMj8Gv8+zfWjgfOOLfmoFhZLqqF2+hNLr3OPE9BrwWWLg/S8i3BKy4Ut//pk78LKzjsfbfvbM0RoIHkboRqEAdk9I/mCalOKSE9M9XghVDHyYQlaAzTac9T36JQ3c1ax7oeatglxGzsP7wr93BkuXS6PjzFRsWDu8hGL/D00y3ICHdFti3Y0srZykeqFbKr0jQ43JmE6KgfcbB54mblE0n4FXGdFsgDFSTgqkidiVUGyWbFnmWg1MrYRy/JZZpInAjk29U9oJ/eyePVNL8b5fesKozQNgw5NcBq7+7+hawnwQz5tdu21ML0c3Bs7LyAKjh0PSbkf9hhH2zcDZNSVCOJOSet1LQimfO3geMuAVK6lhE3l6MXd3z87y52QI+tW/Qwin0qusTiGsLDcsw/cxyETQbxRKX+ftMw7c/6ykgVcY6FpKFRz7kFDSagMeyotoZCnaeSdKKFV49hnH4OI/eFZfNUkIvgNttRFK5KEb3NFhhBzWgKvXpTjwLoPDbhFG/3fXgHuBasb4kRLlmiODSRE1bxItSSg94sp76aJ+u2YqdOZu2YrdQMaz6tx8wusWBz5KijXdA24csjQptW2+0b+8OC6sFgPvFgdeFY9PqCIxg6xS/XNwyZLf5i0605Um6MjAKyCEKIXS9QK/UePU6qpAN1ZW7HRfiiPWD57VMPtn4JYZutEoQzPwosqAu22gSxiKgXtOzFSwUqgVh+s3ZM0Y8IpQPeraQRm4378+ekko1J6RGHjg3vLNhqltg8iL48Ko4+rc07Zhp95AZRAnJoe/MXUVibESyuBtNgw8cSPJKLuUS2Wriak14MOAM5a1YOD00PGC+I4BLxlD94H048i7DQ7fcVUlw/SLjm60bwB9ZmwTYvo7rh8J5OucvSIo+LvdbG8vCeWhRZWSHwpD7YZahdEgVIU8EsbJwLlheuojjjZ1cqhtvTanGCcSobOLR5RtPvFbTzZ/D5pNS+gl+xFCUlS/MJmYIhzyam3NAEVnhsARZcD9jUkngV66HsCXdoNIKK4kQD8dloFTfHcvCWZQZ2nNi0IppdKTDFAxWfXTf/x7VQyc2vvaZ53WV7t5G7u1b4PZqzQsAzXGwcADDrKXPP44vOTxxwGwJmOQCK1RMVNLsdTKMZr5dtErDjytIA8lJ2YlA9f+oiEMeJ0kFCGCE/WTTz0at+85VIqIGTeOKAPuSChjTDiowjGbGthYT/GmF9k6G71YBcDTyAeQUBL3O6G9DwdBx9trcNtcA3v0bkRuW9X//TpresWB07K/6krdKJTq/qiqSEl4+0sfg9edd1rXKoAhhHah4SAJpdLJOQYGHopC4aBaLIOuLkbBB37lbPz9RbeZsq7jwLASCu2/SujNwPuzBfUswfMevUP/1kooQgi87WfPxLmn2+TBP3/JY/ArTz4Jx/exd+4oOKIMeCjxYTXRyFJc9/YXOO+lPR5KoMzA+0nkKZWi1f+HdizqB/5O5V97w0+b7eRC5+3XIJVrofAoFLsB9cFmuF61G4VSfR5KyKpiukfPNXD0XKOvNnPYzWwrDLju7yonLDHwUfIMeoWoHdI10wdJchsV5z3qGJzHaoSPA06xqsBzTGPJ74d+JZRBV483/48Xmr9rTEIBgN8495TSOR97fH9lp0fBEWXAax77mwSSfhg4GeFS8kD1g+aHVNExyCs+KEhCoQe1yuAlFYOoCk4ijO/EZGGhtHVd1993kVCoEFO/9Ub6hfUxhD+n81XJOzaMcAQGHtDAORZX1LWHCr1NE3gf+pElQLUB9klLFfGpeSG3g8BPnJsUpjaMcBg01oEG7up6FQzcSCieBt41DjzMwLduGI6FvfQJSk89tkeYpkm5H2rTiHIMLRnwkFxD3wn97YN2IxpFaw6hV/XFkKHhsE7M8UahcFgJZe3DCMcJTnZC/ZpU9IP/3arV0ChOzNCG5ZPAdE/RA4IXlpkYAw8YoDe/6AycvsMWt7dx4IOHEfoa7dYh6j8DwPnPOBWvedrJPZkiXc4wmi5P3AGIgXeXNXgPdLuH1A9HbRxcJukGHj4WwmxdfU67IfmwYYTDM/Djt8zixKNm8cgd88HPjQEfo4RyxsPmcW6gQNxqgt/fUEYtDYdShcw+x/YgmZg+zGbfg2xttAoY2oALIU4E8E8AdkDJtBdIKd8/roatBmqscPtaODFDcJ2Y6v/zn+HWovaNMfpIpbchVa4B2TIkAxdegaDq82oGPgTTzVJR2pD5mPnujJ93Qbcwwl/ceSIOLLfxG08/pfpLQ6BX4hJFHVQN7HEw8K0b6/juHz278nOqhjjOOPCvvuEZYztWv0j6lFBISjrvUdtx0U27+z4+PXvD2AKSUCZsv0di4B0A/11KeYUQYh7A5UKIb0gprx9T28aOUP3ktcZgTsxw1mO339DxF7QTcOuQGni/GEVCSZPy9my9tPR+E3lqaTJwiGA/yHpIKDvmuzP+xhgYeC9QPfJpl1Dciprl54KeBTKm//BrOytXPiHYTccHbxu1p5iwhjI0DZBS3i+lvEL/vQDgBgDHj6thq4F1EQfehxOzKg6863EpaUg/UAtNVdJ0WA28X5AdGybePA1IKIByvj3zkdvD52N/j6tc6iDoFQd+XI+wsZkxMPBeILY615huhbTXLk9+FEqWJgOFMRLz7hT9G33/t1MroXAIIU4GcBaAHwQ+Ox/A+QBw0kkn+R+vKda6FkoIvbb64u/TJPO+X3oC3n/hLV0HJB3WGnDFwIeNQukXg4YRcpTKyepjddtwoF8n5mqBlt1VxqWXAc/SBK9+ysNx3hnjDbnj+LfXPg0/vHPvxCMkRkUvjjVqxU0aX1T3ZxCsFwY+sgEXQswB+L8A3iClPOh/LqW8AMAFALBz586JXq0joawDDbxSQvE08OeeuQPPPXNHX8f1GfiwGni/IAYynITiJfL0cQjXgA98ypGR9WDg/ax43vHzjx1rm3ycvmPecYpPK3pNQCYKZUgDfvxWNdkO47+pHQ4MXAhRgzLe/yyl/Nx4mrR66Ee+WMs2VOnwyRDMgow+SYAHl8cfiRACaY7jCCPs557wOW8S99A6McOfD1vjO6KM3hKK+n9YBv7WF5+Js07cgqfqreoGwXqJQhlaiBPqSf0wgBuklO8dX5PWBuvCiVnRhmHCm4Sngb/8bOWOOGrIMMJ+0RnBgKeJWw+9n53t3UzMtb+HNVYDI2J10SscsCoOvF/M1lO8cueJQ026h4OE8nQArwbwYyHEVfq9N0spvzxyq9YAwxSwGQe4TFBlBJ5y6tH43eecjscct6nv49LlUEW6P/yZR+H1zzl9VaMdAJuxOawGztFP/G7SxwS4mqAwzW7n/i8/fQpufGBhrZp02KJfJ2YV0Xn9c05fNZlt6sMIpZSXoLrm0LrHemDgVRLAxkaG33veIwc6ro1CUa/7jeMeFW1i4EPoiP7198XA2d+T1MC7tfUtLx59O76IPjRwMuBZ+Hu/P+AYGgRTL6FMO9aDBj5OBnnsZuWQ2bzGsb+dfDQnJkdfDLwPJ/BqoteOPBHjQ98SygRW0xTBMs0SylRjUgy833rWg+K15z0CJx09ixc9rrxD+2qCYmjHIaH0M6nyr0xiEjbJH6tcqD+i//ExCQNO+91OmoEfsQZ8YnHggVT6caCWJnjZWSeM74B9okUbPwyZyNPtdRj2O1smkGlIGvikixgdCegVVkr+ntoq7zsZAjHwSRvwI1ZCGTb0aFT0k0o/TRg1CoWjvzhw+/ckHNHWeRUt+GqjV6li2rd1EmN5vUShHLEGfHIa+OTbME50RohC8ZOp+mHgk570UiOhRKw2TJZvhYEm41mfQFLeeknkOXIN+IQMgb+J77RjmCgU6vqShDJgIs8kMEoBpIjBQP6VKgaeT5CB09id2jDCacekjGe6Sk7MSaFNg2yQpCMoBusb7H4SKoiVrXW0DcFq4NGCrza2zzXwmqc+HK86J1xDiQz4sIk8o8BmPkcn5hGFflLppwntzuCOpEQIFFKOJCEdPbe6GaZVyNIooawVhBD485dW140hhj4JBu7XHpoUjlgJZVLoJ5V+mmAHUf/XYiSUIa7/oC7StW2IDYnHgSihrB9Q3Z+JSihRAz+yMGjxpvUOSqUfTEKhglCDX/9GXe/56Y9Y2+29CGmMA183IPY7CHkYF2jD6Of1qBK62ogSyhpj0pmE48Y//NpOfPT7dwxU9XAUBv74E7fg31/3dPzU8ZsH/u04YMLHBt8DIGLMoDDCSaxk52dq+NFbnrvqG6b0whFnwJ/76GPwzRt2Tez8/dRCmSacc8pROOeUowb6DXXBsLsiPeHELUP9bhyIYYTrByRfTCoYYHuP7fPWAkecAb/g1Tsn6njopxrh4Q4joUzh9VsNPJrwSYMiQA4HIjQsjjgDniQCyQSLKLpOzIk1Y6KgLpjG66fsz2i/J49owKMTc81xuDkxhwFp/9NoA2Mxq/UDioA6HMJxh8URx8AnDWdbtymUEMaBT/2Xp+BfL7sb81O4a3oawwjXDWgv4sMhHHdYTN8ImnIcbnHgw+BxJ2zG406YTBTJqMjWSQJHxOSdmOsBUUJZY6SRgU81jAY+4XZEAOeernIBjtk0+WiQSSEy8DVGcpiFEY4Dm2drOLDcnnQz+oLRW6MFnzj+4PmPwq88+SSzG9WRiGjA1xjRiVnGd/7oPCy38kk3oy/EOPD1gzQROGHrhkk3Y6KIBnyNMektwdYjNs/WJlZdcFDEDR0i1hOiBr7G4CVTD4dU+iMNcUu1iPWEaMAniMjApw+piHHgEesH0YBPEDEKZfpAtywWs4pYD4gGfIKYxlTyiIiI9YNoQiaIKKFMH5JYzCpiHWEkAy6EeIEQ4iYhxK1CiDeOq1FHCqITc/owo7eOO23H/IRbEhExQhihECIF8AEAzwNwD4AfCSG+IKW8flyNO9wRGfj04ei5Bv75t548taUAIg4vjMLAzwFwq5TydillC8CnAbx0PM06MhCdmNOJp5+2baAdiCIiVgujGPDjAdzNXt+j33MghDhfCHGZEOKy3bt3j3C6ww9HajGriIiI8WDVnZhSyguklDullDu3b9++2qeLiIiIOGIwigG/F8CJ7PUJ+r2IiIiIiDXAKAb8RwBOF0KcIoSoA3gVgC+Mp1kREREREb0wdBSKlLIjhPgdAF8DkAL4iJTyurG1LCIiIiKiK0aqRiil/DKAL4+pLRERERERAyBmYkZERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSUIhrwiIiIiClFNOARERERU4powCMiIiKmFNGAR0REREwpogGPiIiImFJEAx4RERExpRipFkrEcPjorz8Jh1bySTcjIiJiyhEN+ATwrEcdM+kmREREHAaIEkpERETElCIa8IiIiIgpRTTgEREREVOKaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiSiGklGt3MiF2A/jJkD/fBmDPGJszLqzXdgHrt22xXYMhtmtwrNe2Dduuh0spt/tvrqkBHwVCiMuklDsn3Q4f67VdwPptW2zXYIjtGhzrtW3jbleUUCIiIiKmFNGAR0REREwppsmAXzDpBlRgvbYLWL9ti+0aDLFdg2O9tm2s7ZoaDTwiIiIiwsU0MfCIiIiICIZowCMiIiKmFFNhwIUQLxBC3CSEuFUI8cYJt+VOIcSPhRBXCSEu0+8dJYT4hhDiFv3/1jVox0eEELuEENey94LtEAp/q/vvGiHE2Wvcrj8TQtyr++wqIcSL2Gdv0u26SQjxM6vYrhOFEBcJIa4XQlwnhPhd/f5E+6xLu9ZDn80IIX4ohLhat+3P9funCCF+oNvwL0KIun6/oV/fqj8/eY3b9VEhxB2sz56g31+z51+fLxVCXCmE+KJ+vXr9JaVc1/8ApABuA3AqgDqAqwGcOcH23Algm/feXwF4o/77jQD+cg3a8QwAZwO4tlc7ALwIwFcACABPAfCDNW7XnwH4g8B3z9T3swHgFH2f01Vq17EAztZ/zwO4WZ9/on3WpV3roc8EgDn9dw3AD3Rf/CuAV+n3Pwjgv+q/Xwvgg/rvVwH4lzVu10cBvCLw/TV7/vX5fh/AJwF8Ub9etf6aBgZ+DoBbpZS3SylbAD4N4KUTbpOPlwL4mP77YwB+frVPKKX8DoC9fbbjpQD+SSr8B4AtQohj17BdVXgpgE9LKVeklHcAuBXqfq9Gu+6XUl6h/14AcAOA4zHhPuvSriqsZZ9JKeWiflnT/ySAZwP4rH7f7zPqy88CeI4QQqxhu6qwZs+/EOIEAC8G8CH9WmAV+2saDPjxAO5mr+9B9wd8tSEBfF0IcbkQ4nz93g4p5f367wcA7JhM0yrbsR768Hf08vUjTGKaSLv0UvUsKOa2bvrMaxewDvpMywFXAdgF4BtQjH+/lLITOL9pm/78AICj16JdUkrqs/+p++x9QoiG365Am8eNvwHwRwAK/fporGJ/TYMBX284V0p5NoAXAnidEOIZ/EOp1kMTj81cL+3Q+HsAjwDwBAD3A3jPpBoihJgD8H8BvEFKeZB/Nsk+C7RrXfSZlDKXUj4BwAlQTP+MSbTDh98uIcRjAbwJqn1PAnAUgD9eyzYJIX4WwC4p5eVrdc5pMOD3AjiRvT5BvzcRSCnv1f/vAvBvUA/1g7Qk0//vmlDzqtox0T6UUj6oB1wB4B9gl/xr2i4hRA3KSP6zlPJz+u2J91moXeulzwhSyv0ALgLwVCgJIguc37RNf74ZwENr1K4XaDlKSilXAPwj1r7Png7gJUKIO6Gk3mcDeD9Wsb+mwYD/CMDp2pNbhxL7vzCJhgghNgoh5ulvAM8HcK1uz2v0114D4POTaF+XdnwBwK9pb/xTABxgssGqw9MbXwbVZ9SuV2lv/CkATgfww1VqgwDwYQA3SCnfyz6aaJ9VtWud9Nl2IcQW/fcsgOdBafQXAXiF/prfZ9SXrwDwLb2qWYt23cgmYgGlM/M+W/V7KaV8k5TyBCnlyVB26ltSyl/BavbXuD2wq/EPyot8M5T+9pYJtuNUqAiAqwFcR22B0q0uBHALgG8COGoN2vIpqKV1G0pX+82qdkB53z+g++/HAHaucbs+rs97jX5oj2Xff4tu100AXriK7ToXSh65BsBV+t+LJt1nXdq1HvrspwBcqdtwLYC3sXHwQygH6mcANPT7M/r1rfrzU9e4Xd/SfXYtgE/ARqqs2fPP2vgs2CiUVeuvmEofERERMaWYBgklIiIiIiKAaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSU4v8H0t+PQeueM4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABgmUlEQVR4nO19ebglRXn+W72cc+46d5Y7wzAzMDDsiywZVllEcAE0qNHEXRMjGjXRGDUQozGJRuMW9afRENx3RYwLEpEdhCADM8DAADPAMAuzb3c/53R3/f7o/qqrq6vPcu9Z79T7PPPMPWvX6a76+q332xjnHAYGBgYG3Qer3QMwMDAwMJgejAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLYQy4gYGBQZfCaeXBFixYwJcvX97KQxoYGBh0PR544IHdnPNh9fmWGvDly5dj1apVrTykgYGBQdeDMfas7nkjoRgYGBh0KYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwKeBNZv3Y+3WA+0ehoGBwUEOY8CngU/c8Bg+dePj7R6GgYHBQY6WZmLOFkyUfPiBaYRhYGDQXhgDPg2UvKDdQzAwMDAwEkqt8AOOd3x3FR7ctA8lP0DRGHGDgxSb905g5+hUu4dhAMPAa8Zz+yfx20d3YO3WEQScIzC9RA0OUpz/6dsAABs/dXmbR2JgDHiNIHvNGFAsB/AD1t4BGRgYHPQwBrxGcIQW3GIMJS+AbxkDbmBg0F4YA14jKOjEYqET0zLeA4ODEJ5vfD+dhKpmiDH2DcbYTsbYWum5eYyx3zHG1kf/z23uMNsP0rwZY8KJyY0ObnCQYazotXsIBhJq4ZHfAvBS5bmrANzCOT8awC3R41mNIKLgXhAyEM6Bsm8MuMHBhdEpY8A7CVUNOOf8TgB7laevAPDt6O9vA3hFY4fVeSBjXfZio130/HYNx8Cg5Vi79YCIQDHoDExXyV3EOd8W/b0dwKKsNzLGrmSMrWKMrdq1a9c0D9d+EPOm/wGYWHCDgwpfv/uZdg/BQMGMXXE8FIIztQTO+TWc85Wc85XDw6mmyl0DwcB9mYEbA25w8GB4IN/uIRgomK4B38EYWwwA0f87GzekzgTVPpG98MWykVAMDh7M78uJv13bhNF2AqZrwH8J4C3R328B8IvGDKdzQYbbMHCD2YSrr38E7/7Bg5goVXdOMslm97h2E0dlUCtqCSP8IYB7ARzLGNvCGHsbgE8BeBFjbD2AS6LHsxrliIGXjQZuMIvwwz9swg0Pb8P1D26t+t5iOZ7vvTmTQtIJqHoVOOevy3jp4gaPpaNBDFwO/TYSikG3ozdnY6Lk1xTfXZLkQ57t9jJoIUw+YY3QxXwbBm7Q7ZiMSEgt9e3l+W7q4XcGjAGvEboJawy4QTej7AdiRxnUYJBLXoA5PS7ecs7hJomtQ2AMeI2Q478JJpHHoJsxLskmfg1lIYqej5xjwbEtw8A7BMaA1withFI2DNygeyHr3rUw8KIXIO9YcCyGsilq1REwBrxG6KqwGQnFoJsxVicDL3lBxMCZYeAdgq4y4Lc+vqNtd35Pq4EbCcWgezEmFaaqZVmFDNyGbVnwAm6qcXYAusaA37JuB/7iW6vwX3c81ZbjGwZuMNuQkFDqYOBu1MzEsPD2o2sM+FO7xgAAe8fLbTm+loEbDdygi5GQUGrSwH3kbQt2lEavWxMGrUXXGPB9E6HhntvrtuX4+jhwI6EcDPj4rx/D/6yunqnYbZCjUO59ag8+9stHK76/5AXIuxbcqB2VMeDtR9cY8P0TJQDAkFRQp5XwlTDCvpxtJJSDBNfe/Qze9+M17R5Gw0HNGRgDHts2gm/ds7Girl30AuRsC3YkoZj2au1H1xjwfZF0kmtTFTSZgedsCwXXNgzcoKtBEspgId7VVkrQEQzcSCgdg64x4HsjBt6uSSMn8rg2Q96xjAZu0HaMTpVx3EduxJ1P1t8sZbzooce14dqxGahESmIGHkkoJhuz7egaA04SSi0JB82APFltiyHvZkso9zy1G8uvugF7xoqtGp5BhC37JvDbR7e3exgtw+PbRzFVDvDFW9bX/dmJko+enA3JfqNUQRYsRWGEjmDghsC0G11jwMmJSQx8suTjlw8917Ljy8zfta2QgWewlWvvCltPrd60vxVDM5BwxZd/j3d894F2D6PlmI6wGHAOx2KwpULflfw6IpVeaOCGgbcbXVPU90BkwCnc6eM3PIbv37cJh84pYOXyeU0/vuywsa1IQsmY7LQczPRuPfaMxzs1y5r9XWNmkkvj+Ry2xRLniea05wfgQEJeiTMxTRRKp6ArGDjnXNQipkmzdf8kAGC0hjrGjUA5xcDtTA2cCA159HeNFnHf03uaPkaDGKUGRUh0erYhjY9N417lB6EBtxMGPNxVvvgLd+K4j/xv4v1yLRTASCidgK4w4FPl7DrEreJYMgN3bIa8my2h0KhopH/y1XvwZ9f8X3MHaJBAo0I8u4VksmmsBJ9HBlyWUKK19vSu8cRa8wMOL+BGQukwdIUBlzPGaNK0mhjJ28WqEopg4OH/m/ZORI/NhG8VKjnj6kGns8yZzCgvyJZQVND5TDoxzXxuN7rOgNdSNa0ZkNmGa4USylRGS7V4PSTHaiZ869CoomezmWUGgc6JqZ/TZMBDBh6aDTW5zaD16A4DnqiaFvWmjB6z6Yh/04DMxKo7McMxqfba1FBuHRrBwJ/eNYarrn+kAaNpATTL4MrvrMKtj+/I/IgXcFgsycDV80YyStEPDbusgZuuPO1HVxjw0WJcwEplsa2KC5cnqys08NokFN13GDQXjXBivvsHq/GrFoaqTgdZG1I/4LjpsR1YtXFf5meDgMOxWSIOXJ3T46WQPJE2nnPiVHpTjbD96AoDPl6Mt3W+0MDD/xsVbVANSScmRaHot5tkwFX91DDw1kFmkvsnSjj/07fisedG6vqObvBZUBlYlYDTXKs057yAw2aVJRTa/VLz496cLcIIzXxuP7rCgI9VYOCtmkR1OTGj5aRuR2ezntppkK/N3Rt2Y/PeSXz5tvqzFTsdNC9VJbEkDHj2nAu4xomphMZSxcLJUmjAe1xbSCgHCwOfKvu496nODAPuDgM+la5bTOSoZQZclVAiA65laYzG1p6bjUHy5knJKCWvPoPTKv/KdHD/xr3wA57pSCxHv39ksozHt+t3HpTIo2ZiynOa8izIYd/jxlEoB4sk+MuHnsPrr/0/7I2SxDoJXWHAaRIN5J00A69zUU4XshziWBbyrg1AL+FYjCZ48rVWyT0GyXOdm2Vb/md2j+M1X7sXdzy5UxCL8aKPzVG4KhD//utXb8VLv3AXdo2m6/L42jBCP2GYBQOPDHghZ0tRKAeHAR8veuC8M+v/d4UBHy96cCyG3rwtnJYcrdXA5UntRBIKoI+bZeIz4WtCEz9IGEsnQMfA6zXgncq/D0yGkuLolCeM6CNbD+D8T98m3qMSm4c27099j885HMtKJfJMSYaKdr86Bt7pMfKNAq3bTrxhdYUBH5vy0F9w4ETNVGW0ilXJF8+xJQOuSaen9UA3lyxGbtA8yAa802+gG3eP4y+/fT8+d9MTNb2fnOeezzNzC1Ris3pzOhrFi+rFyKn0JT9I5DeMqQxc0sA79Xw2GmUKXZZ+7pdvXY+frtrcphHFmJEBZ4z9LWPsUcbYWsbYDxljhUYNTMZo0UN/3oFjszgOvMUauHwcJ0rkAfTbKsHAIxZkCU3cGPBWYXSqjE/+Zh3Gi54wcvXu1lQJvFlRKXet34Wb1+3EV2+vrWG3KDgVBJnNiNW59uCz+1PvoUQe+XcWvSBBSoQBL4XPhQz84JJQdAz8szc9iQ9e93C7hiQwbQPOGFsC4G8ArOScnwTABvDaRg1MxthUaMBti2kYeGsmUSkRRhjGgQN6CcVXbi4UlVLPWMeKnmjkbFA/vnPvs/ivO5/GV27bIEJAZaN2z4bd+MptG+r6zmbNNU/IgrWB5lzZ55ksWDXgu8eK4JyLqp50XIspxazKvmDbQFoDl6NQygeNhBL+znZlgVfCTCUUB0APY8wB0AugKVkPRyzow2mHDcFmTNwFiXk0quZFNUyV4kkdMvBsCYV2CaoGXg8Df/PX78PFn7tjusM9KCEzZLrhjkkMXD7/r7/2Pnzmt7VJFoRmab40p2tltLTr8/wg8zPqupgs+/jqHU/hlH+5CTtHpwDoU+m/fe+zuP2JneLx79btRFmSVQo566ALIyyLyLfO+73TNuCc860APgtgE4BtAA5wzm9S38cYu5IxtooxtmrXrvrbPgHA1Zcdj0++6nkJBk7Mo1WyhMxKQidmWkJ5ds841mzeL5jaTDTwB6NmEO3qQNSN0OnBJS+Q5kr69YlS7eWIm83AgdqMBJEGL6hdA58s+fjNI9sAAM/tn4o+H6SiUADg337zuPj7oc37cdvjOzFV9mGxMKKHolAOljBCwcCjU9pJhnwmEspcAFcAOALAoQD6GGNvVN/HOb+Gc76Sc75yeHh4+iNFKF0Eip5Zq1F86RfuxCdvXDftYycMuK2PQrnwM7fjFV/5fWrLbmXEhdcCE3pYO3S7sZIXCOasmyt7xmqP7W0WWZCZbC1zhKJEyn6FOHDleyZKvjC8E5EsIuqBZ8S7f+41pwAI0+knSz56XBuMMbjOweWULysaeKNKFTcCM5FQLgHwDOd8F+e8DOB6AOc2Zlh62FIUSknSAWvB49tH8V93PF3X8XaOTmH5VTfgJ/dvTtQkd6zKGrjYsgsnJnnt67/wnTRZOh2yASeWVPSDiru1PRWSM1S71qyoC3lcUzXEGhMD94Mgk4GXNRIKSR/0m31qqaYw8N5cuLuc0+OK402Ww/6ZQBxXX6t8+eP7N+Ed311V03s7EUQASLadKHVOPPhMWqptAnA2Y6wXwCSAiwE09So5VqyBEzNtJkPdsDN0In7vvmcBhBmYZZ/DkbaROqOcqkOhhBXWg1Zp/LMB8vmlG26xLDPwZCy/F3DsHa+98XQrGPhU2cdgwa34ftmJqerQnHMwxrRzjYz9+p1jWH7VDQCAs45ISyikdw+SAfdCA16Iktcc24LFap+bf/+zLqnomAG6cZMBH29RF7BaMG0Dzjm/jzF2HYAHAXgAVgO4plED0yHUwJPGUWUajQTtTmmi9uUd7J8ow7GZlBySZkBepgZeP4PrxOyvToXsUKYqeiU/EOddnis9ro3RoofdFSQUtctNswy4zKKz2vTJEE5MDQP3owqDurHSPF61ca94zrEYvOhn9rg2Jsu+KINMDLzkhU5MMuBA2Nhhts/NGx7ehpGpckpCmS0MHJzzfwLwTw0aS1XYLDbgsYTSPAPuK5EufbnQgNuMIVdBB1SjHojgTEdCMQy8dpT8dPhbyfNTuzYA6MmFBrye+hbNasihMvBqiBsPpxm4zzkc6OfNrrFwtyGn1VuSE/PlpyzGEzvGRNamkFA8X2jghJxjzfq5+e4fPAgAuOLUQwHE9f3H63B8NxtdkYlJcGwmGcf4/+se2JKq9XD7Eztxw8PbMr9rx8hU1QgPchAVBQMPJ7DFWMX0bHXLPp0oFDL6RgOvHfK5EpFAXqAtrUr69p6xbAlF1cCbxsClndlkLQa8nC2h0K5Rt9ujNbJTWityGKFtWSg4sUnoLziwWCyh9CQYeHY1zix0UvRGPVAllIli5zDwrjLgtiVFoUSTZ+v+SXzgpw/hL7+TlN+/+fuN+Ood+kSNqbKPs/7tFvzdTx+qeDzV+UUT2GKoWBNZ/RxVtSvVIaGQ0Z/tLKeR0BmUkh/LDLKto/KolZyYqr1plhNTjiSZmqGEQkZGnpd5J7nMqZYKgEQij2Mx4agEwvlOTHuyHKCQmxkD79awQ9q50c3SMPBpwpHiwOmk0qJ9bv9k4r1+wEUUiMq0aXv989VbK7KCQGkaQbHfjDG4FUpq0uKhCT4dCYW2tYaB146sMEKZpf7Dz0OHGhnK0ansxaiy21Zo4LKEkjU3p6Q4cDWMUJX9AGCoN9sp6kgSim0xFKI5TpnPodYdoFj20ePG5iLvWCjWeT66tfgVrdtAaODhnFGjd9qBrjLgdhSFwjlPaeCqcfQDLgyvylLkx0/sGM08Hn0lOb8odJCxyiVK0xr49CUUw8BrR5YBl8/7D+7bBM8P4rlR4Zqo16tZDFKngY8XPRxx9W+09VHkTMysFoOy3j/Uk8s8tm3LEkrMwPvzoXsslEr8RBQKAOQcuyaHq4xWlX5uBGTSp+7gxopxf9B2o/0jqANUjVCetLQVVre3fhAb+UpMaqwCAxMOU4WBqxr4hp1jiW2pmvkXp9LXL6HMZk//bx7Z1tB6L8SMHIkZjZf81NyQdeZKjsn0jb8FDDyas9tHwmzJn2gq3iWcmJp5DyTnODkjgZh4EGxJQrEtJoz0QCE04LlI6y55QeKzOceqOyy2ESG/6k67WRiVQgXpXPpCAw9fk29o7UJXGXBi4DLTokWrFtbxOY+dV8pr8oKuxHDjxRD+X4gYeKiBxxLKa6+5F/91R8yU1FBH3aKqBvsg0MA/dN3D+O69zzbs+ygkcPFQXBSTqhFaDDjriHlYNJhPGvAKN9VWtcSjjEggZuByCzMVIg5ck0rvazRwcr4DwCFzkgVDHYsJshAa8HCO9xdkBh6I8ERC3rEye8JmYaYS1D1P7ca5n7oVv364+Y2mRzSEjFj5eHRt1JthO9D+EdQBigOXJwItRpVlewGX5JVsJlWJFajfSXdcxhjcKJFnquxj91gJ+yZiZxgtMPpunWOpGtSa4rMNnHOMl7y6apEQfvvodqz4h9+kEiooJHDxnB7x3ETJR8kLUHBtHLWwH37AhXEEKrPqVnVU8gKOvki6IANOZVx7cxoDXo4llHQiT/i/vNvrzcfRwiceOph4f1gPPPzbZkzcMAaiZKJ8JJX4UeVCQn4aDHymBpwS6+5pQX9KeUddFhJKkoFnlfJtJbrOgPt+koFPSSFVMgKJqauLVO6NWAsDJ5DmxVg48R2LiSgG2SjQIhQ3EIXJ1wJiZPXqjN2CsPfi9JIiPvPbJ+AHPLWd3jtewkDBSWUybt43ASe6Xl7AEwy80jVJSShNjEIhzXnTnglwzgUDlI0vIVFOVpPIAyTndX8u/o5Tlw0l3p9m4KEB743+J6mE0u4J+WlFocxsLvdFv2OiBZmQSQae3EnT/OkEAz6jRJ5Ww7EYfM5riswIGXh4gisx8EoLuJwy4BEDjzL0XNvC3mjbLhsFcVOJbhS+n2bgG3ePY35/TjAdFUIDn6UMnAx3LYkrKmhBOcoWdvdYEQv684lQOAB4dOsBuLYFKyIAdGzGKpdEVbN8m6aB+xx9kaG+9u5nsGnvBF50wiIAsSGVkWjokGXAlaQlwvz+fOL9chq9bcUMnOQSkkp8nyfem5tGHPhMncC0G2lFJqTOp0UGmx43K7GrHnQfAw+4cOxV0qCCKAqF83SygzyR5Ow9FfICdm0mJjXNY8dmYtuum1QkD6glcAHgBZ+9Ha/6z3syjy3CCKdh4LoBdMOrJXFFBV0/Rwnj2jtewry+nAh3m9cXRl88d2AKtsTAqbb7QN6pyApV30kzo1DyUojeTY/twCNbDwDIkFC8WDbMjAPXtJQDIKQagmMx0UjCtpiI9SYnPRlqlYHn7MYw8Kt+9jDe+s0/1PU98s1/rElsPCmhkBQaPVYYeTvRdQzcC7hguAMFJzMRg9iSrIWL16THlUKb5M8V3LihMrHjnG1hd1QMSRdPPDLloRxtP9XvA8KiQlmwZrkGPlmiVl3TMeBJ3wJh73gJy+b1ChY51OuiP+9g094JuLYF27Lg85iBD/a4FVmUarCbVcTICzhsK0lGNkUd5vM6Bi5kwyAVB64aGSDcMb7vkqNxxvJ5qd8rH9e2GFwpqQcId517vJLon0mYTi0UnQH/0f2195WUm3TsGi3ijE/cDNtiWP3RF1UtAFYvRqZCA26xdEs1NbGnnegyBm7B97nYdlOokw7yRNY5OAmVJAo1m40+RozGtS1RT5ouOGHhQLhV3Tte0m5rq0FIKLNUA6cei9PZDmcxoN1jJczvywkWmbMtrBjuAxDulqiaJbH+/ryTGQceBMmdm20x0cmm0fADntpNbIuaLujqfcdx4BU0cKVswPsuOQbPP2oB+vPJG4LN4oQhhnhtuJG/J++GceCBMsbpZGKWZhgHTjfUiZKH7Qfo/HDxdyMR7/KsOJFHIWLGgNcJ24LCwLPvunLRK5VJyYa50iSUX7MtBg6K6440cIeJrdbIZJKdUbjWrtGiuND1OMGm24i30zEyVcaHrnsIH/vVowCmp4GXFU0SCA3uvokS5vfnBAO3LYb+aI7YUd1rP+CCSQ/1ukk5zQvw5VvXY6rsp+SThQN57BipvfRsPaDOOGcun4eVh88FADx3IHTQ/mTVFpz9b7ck3i8YeKCphSIyMfVzrTeXJD22JEMyFu9OiYnn7VBC8QKeaPzQDicmfX686CfqpssFyR54di+e2J6dnFcr5LWqRqGo1QnbiS4z4Bb8oEYGHs2Vko6ByxenwqSSa5c4liVCtIiIuNL2U/ZaA8CiwdiAq8eSHU9Z6dK0kLqZgX/0F2txzIdvTDz3izXP4SertuCBZ/cBmK4GTgwofm6s5MEPOIZ6YgPuS+F5rhX3cqSb7lBPLjE3fnT/Jnz2pifxtTueSt1sFw4WsGOkuQz8J+88B//+6ucBSEpy20emEvMkTuTRl5MFVAklRr8S1WIzlqj5Qt9H0kretQRhkuWWWpyYX7/7Gdy1Pm6j2CgDPlHyEjf+fZIB/5Ov3ouXfOHOGR0HSDYwVluqqYk97UTXaeA+5+LuW8mAyxUBU4k8QW0MXJ5wlhXfgWlBuBJ7UZnyIZEBlxe9aAMnHf/AZBlDvelU57imePc6Mb+jSdL59UPJJAxVA//yrevxP2uew83vvzDze3VbWLqOsjPQD7hgnI7NYEdO6P1kwHvdxFygsYwXvZSxWTSQx7N7JjLHNBN4AUfBDcemGlhC2efIOUw454GMcrIaAy5r16pTVJZFGBjOPnI+AODFJ4ZRMHnHlmp/xJ/LOVZUiyVOQpKx7cAk/vXXj6V+QxaoEUUl0DXeN1HGJ26I2yNWKkg2XZB05XOeSuShc8t5+JzaEKOV6DIGziIGXl1CERPZSzPwUo0MXH4twcCtWELJAkko8rb73qf24P+e3pMYT9a2nIx8NzNwFZxz3L9xr9ClgTQD/+xNT4qEjSzQ6ZMlFLpWrm2JWGY/4CILkeLAAWD/RBk9ro28YyWMCvkdOE8bm0WDBexogQauizoBpAJpsgNeU42QTonMUGUj3afcICwpCgUATloyBxs/dbkw5DnHEn4KmYFTSG0WAbr+wa0AgEGJZFVaa7VUYZR/++OSTLKvCQbck2STOAolnc/RbhbeVQacJiJpmCoDl7eZMhOpFIWim4BBwLHtwGSSxbC4qhsd160QxjjU6yLnWGLRv++So+Fzjt9v2J1YdFnbcrWrT7Px/h+vwT0bdjf1GH7AEXBg6dxe8VzZT0cJAbVp44lmwJHmm7MtIaF4EgOXIz1GJsvoLzhwbCsxF4gABjxtbBYN5rF/ojwtzb4aPD8em6pRE2ieyjd0P+DpOPBoDRyYLOOiY4fxxrMPwztfsEK8rhZgSjBwDR+R368ycHlcKh7esh9Aco1UMuC1ZORmRYztnWgCA4/Wn3wz10WTtVsH7yoDTlvgMWHAkwxc1uTISBa9IJ3Ik4gDT0+qnz6wGRd+5nbsGo0nhm0xvPuio/CvV5yIK05ZAiCpgatwLQsL+nLYGRnoOT1uGDvrB4kCRLrwQ87j6IJWMPAg4Lh+9Va8/tr7mvL9dGOlBTC/PykZ6Yyi6lMYnSrjwU37Es/J7IekJteRDLgfCEZb8oKYgU+WMJB3EuWJE+NFfFNhDFg6twcLI0lsZxMcmV4Qjy0s4ZqeV3H55GQdFzW5iAzKgckyFg/14OOvODkRYqfKFLbFUnXPZSQNuJV6vpgh8ZFjUZY3KhnwWnwhZT+AxYA3nn2YeK43Z9fVValWyPOCzqnai0B+rV3oLgPOkgx8UGHgsrGT9apUIk8VDfyep/ag5AXYsi/WPG0r3Jq/6ZzlNUkoOcfCvP6c6H7iWEwkP8iTQ5fdJ78+Ewa+Yeco1kYJIZVAx6siQU4b8QIIH8/vSxpw3eLdrxjwd33/QbzqP+9JMDWZfZYEA49LooYMPPy76AVCq90/UUZf3kl0eAJi4yazri/82am4++9fiCVDYX2VLfsbr4N7ARfkBNAbBZqnJDXkbEs7twMellveP1HGUE/12OhqNa1zsgFn6eezCIZOl67U0KSWfICyH8C1rcQuZfGcQlMMuC5NXudfaHc2ZncZcElCYSy93fzbn6zBl25ZDyBZfyQtoYSvhRpoegKuiXoCyhEkOrWkkoTi2haGenIiTty2LOSc9KLTLVZ5hzCTLfsln78TL/t/d1d9H43BapIFp2tBjHmuasA1i/eAYsBXb9oPIC0hEOg65hxVA3fE67YUhdKfd+BEUU20QyBbxnmc7UtMc+ncyIDvq72c6a7RIj5xw2OpWPPP/PZx0XeSxilLGTqjQLtLGldv3k6VVgbCm9pYVIExq5HDr95znshSlcNjdSCtG0iGHNJ5Kflhw+NP3rgOX7x5vXh973hJVDYkqKUJ5BtwLfkAJT9ATtphAcChQz2JQnKNgu4a0FPya9XaMjYbXWXAaZKPFX0UHDvBDgDg1sd34vO/exJAMug+qx54b85OMfA9Y0URbSCzCFtj3MiAu3b6tZxjYU6viz1RpqZthe8ve7zqHVzeIeybCA3ZLet24Bdrtqbe2wjQ8ZrlTBeZa1SW10k66mQGTobhwETSgNP1lON/kxJK7MRMauCxhJIw4AUn1VWJfn7AY2mL5IfFc3pgMWDL3toZ+Md++Sj++65ncNsTcSid5wf4ym1P4abHtkvP6SM5ZKMuNHCpwbZubvsR+wayGzmcvHSO2FHI81oXBSKTFDUOHAhvqGu3HsB/3fE0/uPmJzE6VUbZD7B/ooxjFw0kvitVVE5TVbQSyn5Yk1x29A4P5LFvvIwg4Imb4kyh1lkH9GUKDAOvA5RWvH+ihJ6crTWcNOnlRBi1KBW91ptzUtEGazImgW6B0fEXDhS0rw31uIkYWtdhqbj0agycmu5+656N+M/b0t1ZGgGarNXCuKYLT3ECqedSZuDEnlUGHkdXZDBwTzLguZiB0y6tKGngo1Ne1DIsnP5kWCyhkZfxzO5xAGG6PRDekA8ZLNTFwHWVAYsZzkg1ExOIs3mBmHQQAw+zSHnKvxMEUpx7hVZqoo2aXVkDl2uAq5mYQLS+pDGMF33BiI9RDLi61uRzoNuFcc7x5VvXY2N0LcoejySU2IAP5B2MFT188sZ1uOIrv8/+IXVCZ5jjLFcuObyNAa8ZFP2xe6yIgmMlilmRUThqYT+CgItJGfZEjCcK51xsaXtzdioZYc3m/VotWG/Aw+MvHMynXsvZVmIBCQ3cVzVwnQEPxzTU62LveCnc0peDlFGrFdUSKETyRpMMuBq3rcbNyuyrJ8OA00KRF3oiDlzLwAMtAwdCA0g3YOEDiF771UPP4errw96ZsgNw6bxePLNnHFd8+e5EgkoWHPH9GgOusDi1siIA4TiVfx8Zvf6CAy9IM/Cndo0J2UyXX0CgU5Fg4LrfIJ0ztRYKEJ5X2YiNlzyhSR+3eDDxXepuV3bI6iSU3WMlfPamJ/Gmb4TO9bIfwHUYeiTpdKDgYqzo4boHtmh/53ShM8x0qst+IHaRhoHXAYo62TVaRMG1E9u7tR97CV5+yqGichqhrDCEsFcmMXA75SRcvWk/jj9kMMXudfowHX+RhoHnHAtzpQVkWWEbNrXJrq8cPwg4roqMx6KBAryAY2TSQ9Hz6zLgsnauRnSoiDXwmr++LqgGXL1RyEaZEnFUJyZd0u/cu1E8l4wDj/0aPRoNvOQHcKQoir4oCgWIdwi6pTjYExuLpXN7sHrTfjy05QA+dN3DFX5xCJofMksmoyUbL1+KQpEhM/CUhJJ3Ig08OX/kbjWVGDhdA91xZTgJkhQ/L5yYnp8wYuNFT5RYPv4QlYGrBjx+rAsjHI3qC23eG+56SsKJGTPw/oIDP+BCamwU9Bp4LMuSvm808DpADHzXWBF51xYFd4A4/KpY9lPOLV9hvJ4fLpi8Y6ccK49sPYBTlg2l2IujkWuEAdcwcNe2Er0IHYsJJ6a86NSJsnO0iFsf3xl+b5QMtHu8iKlygMmyX3P9if3ShK5m+IWE0CIJxbEYfvD2s/Cxl58AICz3qr5XvenQ4pGr18n2oCRJKIUcSSM8UT5VZuADURx4eMw4s1GFnBkpX89azhQZxw27xkS8v2qIaZy6HZ58vJLixOzL2ZkJR4RKUSh0rWVWrbv8rvS6LoxQ3eGOF33hOxoeSK6LtAFPN0GRMaKE2JIGLtc3z8pczSpRUSt0RcTkKJSCW5mByzv9Wx/fgYs+ezue3TM+ozHp0FUGnMIGyz5HwbUSLNkhA64w3LLHE1EAQRRj7dgs1Zh1rOjhwGQZh8/vxVyFvegZePjcqYcNpV7LOVbiJmBHEkq1KBSZiSyKFsCesZJw3tXKwmXPfFUDrjRfbjTUGjCWxXDuigV4y7nLsXAgjz88s1e8tyj9zv9duw1v/86q8LMVwrrkY7g2E9Lah15yXKKjjZMhoZCPROePcBKRF7HhqMVfQDf9r97+FM76t1swMlWuSQP/xCtPwoXHDCcIyl3rd2PXaFH4AGhnoRo+WYqYU4GByxpuJWPnZDgxYwaezLMYj9YQEN6A5DWq3mxkf4ZOQlHnbdkPNfC+hISiN+AzlTZ0N3M6V2WfJ3Z5Onzrno046sM3Ys9YEfsnYp9Ko9FVBlxO3Ck4tlioFguNQsG1UxKKqjnfvG4nrrnzabhWeAOQWQGVpVw8p5Bi4JU08EWDBfzNxUenXlM1cJJQKmngcoF6SsffO14UC7VmAy5F0KhyhApPMqzNgFq9jWwCY2Htjfue3iOMCBm4kcky3vm9B/G7x3YgiDI4VQSaKJScY4Exho2fuhx/9YIViZAzOda6J2cLRik6JlXpuKNGPVWDoyR6/fzBrcJwJxJygmQ98DecdTi+/RdnJtjvN37/DM74xM3YGrWRI+apGj6aP6cdNpS44aiQywbQWdRq4LbMwCUDbscMXNXAPckfcehQ3J+0soRSOZlrMupt6tosKaFkMPCZNgPXauBS2Ga+igEnTf65/VNiLPXOn1rQZQY8vlghAw+HTywhZOB+IgSopDCEv/nh6ugzLFXTmAz4IYMFzFMllAoGfLDg4v0vOga/es954rW8YyW2sJbF4DoWSkrkgDoB5MxMcmLtHisJtlI7A4/fV6sG3mwnprhRSMc57bAh7Bwtio7ytKjl8zCV0ThAGweuOANlo6P2dIwZeDLMMQtyVmItp0qV3UYmy5IGXj0KRZdn8GBUxZFqvKgdaSjJ7YdvP7vi2Oh+EbLK8G9tGKHS8IFABkwlJOPFWBN3bIaTDp0jXqtXQpHn+pZ9E0IDr0VCqdeA37JuR4L0aKNQeBwCTF2fsgw4zfGAx8XHmtHFfkbfyBgbYoxdxxh7nDG2jjF2TqMGpkOPa4tJJDsxRe1ix04l7pQ1JTeBqPuInZRQtkU1mBfP6cGbzz0c5x+9QLymk1By0QKlSAW5Ep5rW4ktLEWhlL3KGrhsuBZJTSFoslczxoS6JJSA0sablcgTSShCA4/PE+2qJks+OI8bUY9Khmm8qDfgCQYuaeAq/vWKE/Gr95yXNECOJcbhCQY+fQM+JkkHBHUsk2U/FYVCLf+0ceCa30LzQy1KRZgo+WAsXfNERWxgYh+OmmAVjiEjjNCOnZiyEZsoebEBtyx86k9OxkdedgKWzetJhxFKRlbXGk1uknJgMowvzzlpJ6YO9WQwr9s2grd9exU+8Zu4wqHOMAc8rsdSqMLAaX5woKMZ+BcB/C/n/DgApwBYV+X9MwJjTLDwgmsj58T1I4DYgMrbsbIfaLuuFMtBJgNfOJjHuSsW4LtvOwunR/q2zolJC4wiFeRF6NoM8/tiJ45tMeS0ceDJsY1Kkzbc5jNMlX0tA9+wczSzo8xWqWO7mhSjotlRKJTmrkooQBw2OFn2E4tOPg9ZadZ+wHHzYzuw/KobRHy2q1kkbzpnOU5eOidx48g5lrimcZRM5UUvtzdjiuBw1iduxin/fFPiuVS8e9lPRaH4wthVTuQh0I1tbkaI4HjRQ49rV70ZCwMecLzzwhX44mtPxcuftzj1PlnDToQRurEGLs/nsaIX/yabYaDg4m3nHSFCaGXIfgCdAZfnetEL4kQeV9LA83qdvx4Gfsu6HQCSEpJWAw9iNi0MeIb/IC7LEDdh7ygDzhibA+ACAF8HAM55iXO+v0HjygQt+IWDeSkTMpZQgFCHI5R8rmVWE2VfOBUJ20amMK8vJy4OIHnrNQvitMOGcP7RCwQDVxMdktt3SxwvoYH72Qyc8/A75RsSsZKNu8dxyefvxGdvejI1LgBYvWkfnrd0Dnpzdu0aeJMZuC5lvyeKGJmS2CmQPA/jSojZW845XHzfd/7vWQDAI1sOAKi8TZVfyjtxIpiu6bQOlRj4uOYmo0pSU2U/1sDLSVnJ1hAEHUanymFlzIwIEzLg1UBzM+BhDPoVpy7RGn35pqdn4Mn5PFHyxZqSf78b7T5l0E2sx7UxpuspK3W5KnmBSOSRJZQsJ2a1ZhMybo8yZeVdjY5Z+1LYZkFIKPrj0KkKeDyWTpNQjgCwC8A3GWOrGWPXMsb61Dcxxq5kjK1ijK3atat68kM1UHGoExYPCsNtSxIKkGbgWSFBKgPfOTKViL0FpIw1DRs6/+hhfPdtZ4n3WMqEBYAjFoSnhDHEceCSoajkxByZKsO1rYQxIzZN5+H+jXuhwvMDPLT5AE4/bC56c07VNGUyXM1i4GpTWHk3QwkRk5Jxm9PjJs6DWu/5+UeF0lbAuTAKJKfosnMJakcZ4cQMksaUcPTC/sTjhAHPPEoMlZ1NltISSiUGrnOkjRU95B07UzoYL/kJApKF9158NBbPKWDl4fMqvk+e9/L8lp2YOgZOgQXi/Zq6Q3QO5vfn9E3BNQzcdawEk82Skuph4ERw5KbVOmatl1D035nQwL1AONcbjZkYcAfA6QC+yjk/DcA4gKvUN3HOr+Gcr+ScrxweHp7B4ULQZJENOP1f0EgoqhNTBlUHJIxMeqnkB2IR1aq2AUnDRBP8jOVzAYTMyXXSDDztxIwn7ZweF47NMFZMx3TLhZdUPLZtBJNlH6cdNoSCa1UtiNVsDVzUQuFpBk4NiGUJZX5/stXZbsWAU3q7H8Rjnyj5cG1W8TeoDJJ8J6TNynLUK09bgp++M+nSSTLw6udKvbZT5SAloagtzGTo5NXRKQ9518o0XAASDDULpywbwr1XX1wx1BBI6viOIqeomcW9OTvqZpTOLNWV7iUDvqA/n/B5EEamyoJhl/wgcmLGY7jo2OFMWaIeDZyu+3jJwz0bduOep3Zr/WayQ7IgZfvqQFOt7AcoeQHyTWDfwMwM+BYAWzjnVET6OoQGvSU4YkGfMJI0sQQDlyZDlhMTSPf1Gy166Fc0NVpXtURoJNhK9Pc/vfxEfPAlx+KCo4elcrKyE1PVwD0MD+Tx03eeg/OPHoZrWwknHhlw2Umi4ubHdsBiwHlHLUCPa1c14HGKe9WfOC2oLank80Tb/WLZRzEa54K+5C5o92iyBjdJVn4UkwuE9XEqVYdUjxtq4EknpjxPTloyJxVKmogDl56XoynGi55Is1eJg86JWYmB627OfsCRd6xE9IU6NWuRUGpFwmgrB8o5ForlQFzXwYKL8aKvzSx17XQTZHG9+3MJkgJQU5UpkQxULPtCAweARz72Ylzz5pWZ466HgdMcGiv6eP219+H1/31f5q49jkKxo3Hqv5N8JGU/rGzZDP0bmIEB55xvB7CZMXZs9NTFAB6r8JGG4FOvOhmvO/MwOLYl6nHHEkrtTkwgvAiedFHGiuWUpmbVwcB1Rr4v7+DdFx0Fx7ZE4lClRJ7RoofBgoMzlodbW9diCVYeO3biOF4VN67djjOPmIf5/Xn05OyqtZZnooH7AcfOKq3G1DBC+TwVJCemYGQDScO5e0wx4JHTOJA0yX0T5aqLRA0jdJQwQtng6qI4Es9Jp0rOev3I/6zFm77+Bzy9ayxlBCa1GnikF9cooYTjsBMMXA2lU8u4zgRuhgYejsNCyY/DBgd7nJiBW2ljr0ooRCyGB/IpCeX79z2LDTvH8PLnHQogLppFN+mBgiv+fvUfLcVbz12e+Hw9BpyuwZi0zjyfp+S4QAojpHOcxcBpipe9QEgozcBMv/WvAXyfMfYwgFMB/NuMR1QFrz3zMHzyVScDkMq5Sh20gWQ2Y8lL10wm9EjbdwAYi6rUybAraOAq1MQNFWHiUDIOXOfE7JcSlhzbSmwvqzHwoudj/c4xnLsi1IkLjl1VA/f96RvwD173EM78xC01NYeuxMD3jJWEBjlfYeBUU51AmXh+EJ/LybJfPwOPHvsaBq7TkfMZhlFuKPBsVG5291gp8X0DBSdy1MYSCoUQAlkauP53qAz8c685BZdLESS1aOC1IiuRB4gZON2o5vS4GC+FGrgqobi2lQojHJ3ykI9qBo1NeYkdx6PPjWBBf14Y5tCJGWiv8Wdfcwr+/PnLE88VM3IHdKA5JO90d4xMpZyOCQMe7caybrK0lsqR9NMsAz6jrvSc8zUAsvcxTYZjqQw8PKnjCgPPKthDpUYnS74oS6k6h+rRwKtFEuRsOyqmFbMunQYudxpybSbYSW/OFgZcTHZlApGTkwr2F3J21djxWAOv+DYtqHnteNFDztGHtqk9BXUG/ONSl3G15ZpasJ/Os7yggOpe/lQYoVJOVmZTegaejk4Ckk5W+j0TJS9xbef35RJOzIBTXZ70OSGoxoGx8HLnXStR4+Xw+X34+BUn4YaHtyXG0AhUMuB5J6mBD/XmsH7HaKJFHEHNegbCWicDBTeqrBg2K5dJVV/eToQrFqNqhDqoY6tPQqEduOQ4nyhjbq+bsCWhhJJ0Ymb512iqlUgD71AG3lYwFjpSXKGBRwy8mAw/ymbgseQSerl5ioGTs6oWdlpNJ6fJR5JG3rFSYxsveolaD65tiYm1aLAgjDFNJPWXyXUogDBjrLoTc3oMXK7Epob6Jb9fycTUxBPLWNCfZODq9prOsx/whDxUjeXIN1g5jLCsYeBVJRQJcuMPMnhyRiIQ3lAnlVBJOYZal2egkju6QfW4doLh9ubsxDmtxYlZK7IyMQGIKC6aBwv6c9g/WYankVDUpDkgJiuUzDUq6eBTZR89rp2IdpE1cBXq7rceJyZd/12Kr0WeTxYLneaqhJLFwGUNvJMllLbDtVmcSp+VyJOhU/W4VE/CkxolqxJK+H+1spvhe6sx8PDLSNLIO1aKgU+W/cQCdOw4DnzhQF4YaPqcOn8oJIqiaXrcGiSUaabSPyNVV6vUEqusODFVLVrFAoWBjyoOLjrPPueJGPdKIYS64wonptDA43mikyHkRSjfvOQdAp3DfROlxLWd15eP4sDj81Qs+5IGnj4PqhOTjq+OrTdnJ0JAW8XAKQiAblTz+nIYiTImdRKKTi4cKDgYiEiTfKOeLIcV/xzbgsXC+cV5dhtDdWz1xIHTNVCNvny9844dFbJSo1CyEnnC/8t+gKKXfeOZKbregDt2nDBT0EgoJT+7EQKl5E6VfZFIMDMNvIoBjyYEscaCa4vJ879rt2H5VTdg897JhBNKZhYLBwsYjxIlaCKp/QxJQiEGXnBjJ+a1dz2N25/YmRpXtWqEQcCxfsdo6nm5Q3tlA56dyKMLxxtW6qvLC3turys+XywHiePWpYHbsQauFtsCqksosoHYLLVZE119JpIa+IL+XBRGmGTglKXqauYOlROWxwzoDLiT+G2N1MCzWqoB4fmgOHDGwuzQgIfyQzUJ5SerNuPR5w5goOAK0iQn80yVfLEO8o4tolSyrrF6PJJQOOe4/YmdmXW7qbpgpWJ1QLh2fc7F9aqeSi9p4IaBZ8OVJRSNE7PsB9h+YCrBrF952hLc8DfnCaY7UfIFA8+UUGow4NXeQxNiopRm4D97MO53KRsK+c5NSUYjk2UtA99+YCpm4FE/xIIURvjxG9bhrd+8PzWuak2Nv3LbBrzoP+7Eum0j2s8BSdkqHJfsqE0m21S7Gc7vyyXeQwb8l+95PlZ/9MXiNbUbeTUDrnaXIXYZ13mu4sSUFqHM1h7ZekD8Ted630Q5EYUyN5JQZDmr6AUpyUvGlecfiS+//rTU71PHVnAtJbu1cQZcvg4pBm5boqGDYzHxG/aMF1PvdaWsZ88P8KHrHsbusRIGCo5Yc7IGPeX5YieRc+JQ2ixDqPqfyID/z5qteOs378ePV23G27+zCn/1vQeUZhqRfq85//Lao7VK169aOdk4Dpyj6AfIVagMORN0vQHP2UxsP4UTU7rYZZ9j52hRNHEFgIuOW4gTD50jOZx8YSTkkrVA7Z1LahurKqHYgqXJE1NeoPIWlooOhYV9Ilkimj+/WLMVZ3/yFtz8WFjXgRI0enJ2ou6yDqKpccZsWBVVwNt+IBkuKJdfVRl4st1ZUmOuZsB78zb+4bLjxWNiZnFZg/D5DTvHEp+rxnLUG2xczCq5QwD02rz8nBxZ8+jWESEDUBOCfeNJCaU/H3aOGZMiHdZuPYA7ngxjxnXtzxzbwsuiMDr59/UoY2OMaR3DjYBTwYDn3VgDty0mfsPu0ZJWQiGjOiHdxAZkDVypf1OQDDgZ91yGTKbuDojErd8RzpE9Y0X87rEduHHtdpE6D8RzUpfQJN+w864FzoF7ntqNgbyDI4bDDOtq1QjLxolZGa5jSdUIkwy8xw0zw/aOlxIGnCY4SSiTEgNPx4HT/zM34K6QUMJj5d2Ygct3+4SEIj1P3VY+fsM6vPN7DwCIme6qjaGRveep3WAMwqAUnLBtnKzvqk7NagycmLP6slwSQHVi+hoG7tdqwHMO3nbeEbj77y/CyUvmCLZLNzPGGCwGPLRlPwDguKh1V/UolPS2HoiZt7zF19XSlr+fjNGmvRMYLXo4/fC5AGIjpGrgNDcPTMa7hr/+4Wp87Y6wUfU8TSVAwqp/vAQP/OMlYry63UEiu7WBceCyxJWK7bZjDdyx4vr3e8aLGXHgUchnSTbgsYSS1MBjBp53LBFiWqsGTjsbWtdy3PzqTftxZ3TjpGsuM3D6LlUDL3oBfvfYDlx8/MLaGbgXdGYiT6cgjEIhBh7+Py40Zgtboyp1i4diPZFOvhyyRBpbVn3hWjTw6mNl4ng0drmTDEFeoDLjWBhpw9RyTTe+kSkPc3pcwTYp0kaOcd2otHbyaowDV/Vq2Tk8VvQSOqOuVreQUKoch67P0rm9ij8gyQYnSj4OGSzgsHm9AKo7MdNhcFEWqJdm4Doj6Ei6ORlwqvp4bHQToQJM+ybK8AKO4w4ZwJqPvkjMtf0ZlSEr9a9c0J/H/P682IarBARI1rGRm/42EuoOhqJQqPYJGcEwlT5bA5drjoQMPG3Ap8qBKLMgM/BaNXCqh0+7N5kIfe2Op/Dmb/wBQDz3j5caMJNUSceyWPj963eOYt9EGRceO5xwpOtAT3dyKn1H4KpLj8PbLzgSAES2I7GgHtcWSTByZxAyar0iCkVyYioMnC5PQwy4lClqsXCCkNGQJ2bBkY1W+DdjwPBAmqXRRJHHJ+uptNjlSAlVeqhWTlYU/FeelzXjD/98LY776P/iie2hs9NLGPBIQqkQ80zIa6o4EuQbDP190pJBId9Uqg+ifhdA2nFsUOSqlVmGgkiCF3C86/sPCMNCDJrm3oHIT9GbszHUmxPX4aldY2J3FP+W2hyPsa8nfO9dH7oId37wIgDJm2tvAyUUGelMTFuEQjqa+vfJz4Yhs5zzhNzWn3fEdUto4GVfBCXkpFBaXblgID2n6EZJ638yI8yVZMDjFg+KdUPXUm4YYzGGZ/eEzuqjhgdiA57BwGn+l0wYYWVcfPwi/FG0fQXCvpl08eRFIUsoBZWBlzxxoZvJwGlCTJX9kM3ZcYGfhAHXaOB5xxJFnGRQFIq8YOTtIC32vZIB3yRFTQDV48AzJRRl8pa8AOt3hgY8WXExycArOXtVI5xsKJCOSR4eyOOYRSH7feeFKzK/F0jfoBhj6IsSuMLfE+8o3AyHgLwQf/PIdnHjpw5OxOanyn4UDx3HbgOhz+JP/mhp4juzMi5V0Pmj75rfn8dh83tT76NuPY2GjoGThGJLTkwgfbOk81b2ebLqXxCViHXtpAZe9gXRykdSKJCtgau7w/3RfKfrkxWJRqTCtRju+vuL8It3Pz+hvdNr8vpfvqA3kYugAz3/5I5R7BwtGgNeKwYKrrh4sjf+EKlbN2VgunZ4YSbLPqYyOpkQ+2ykE3O86MOxGBwpEzOf4cSUIw90kQo6Bj6oYeCv+s97xHMkKxFIo84y4HQMdbKqmXXycwkGLho6hI8rnUvVAZeIgpBjkqOx5mwLH3rpsfjDP1yMk5bMyfxeQB+y2C8ZcM/nOGnJID7xypMyq/Sp2jhFwqga9lTZT3TaWTo3NLRLhnrwasWA1wo6f9U07mZJKNpaKF5cvCrv2OL66SQUIJwfshOTDHN/Ib4O1PhbaOC2JQxxtUgjIJSjaMdJ3ynXFpdBBtyxLQwWXJyybEisRTK6jm2Jm9fCgTwGCq6YizoDfu1dT+MPUZlnkjubFQfenCvdRgwUHMFoZGMgG7XDI82UMYZe18ZEyYcd/a0ucro8jXBiErs8MFmGbYXRMzSBklEo8d/CceXYyDt2VB42Npw6iUfO5NRFJMjdeoDY2Gb9RGL5ai0LXRJDWem+A0g9JzXlZIHwmpH+qd5AE6xbllDIce3aKET/poO+vCOMiBdwrBjuxxvOOjzz/Wp0ChXaUtuRFaOqk/lIpjt56Rys/eeXoMe1UzfQWkE+hmpRJr0NDCOUoV63vMTA6bW+fJg4pgsjBCIDLvljzo1qu8tzgHxEMhMmv1YtBnx+Xy7lxMxi4DQ3Zf8JrUXSrV2bid0b1fcXGaIaEiOXhSBk1dGZKWYhA9cbL5rUiwbzqbTjyZKfyoBUUauEcvWlx+Gbf36G9jUqg7p/opRi4LKhyickFGLg4f8qC+ea2OpeaQutGracbWHLvkkEAcff/ngNVm/aF8eUZ/wmssUq49YZ8JJg4PF7RaKMVANGxh0fvAhvjrrsqDeRrDA2ESkwQ2bTl3fw+w278aVb1sPzg6rXWY1S2jVWhMXS14W0Yfn7+vNhws10FzPdAKvdrBoZRihDZeBzel0UvQBjU16qpLMqobiSwaOIpds/8AKcfeR8AGHUFBnwqVLSgMs39ZoMeH8e+yfK4JwLWUburylDMPBE1UUy3JZ4TORhWUT+aEzFKiG6hJxt4sBrgtwjj7zYPa6NZXN78c4LV+D6dz0/8f6eXMjA5bhTGToDWQnvuHAFLjp2oX5s0eIfL/mwLQu2zVL6MBBnlAJxhh6NLWXAo/9ldiTr+KqxWLGwH1v3TWLPeAk/X70Vb/7GH4Qh1tWflg+SMuAa9qGLqaauOUTg1XM5ry+HoyMdW2V5dkIDj/+msc40vnYg72BkysPnf/ekNnpCxWdefQr++oVHice7x0royzkpWcOPijPp5CJ1zGrpgCwQA69mwKs5c6cL9bodOif0K23eN5nqS6sLOQTCmzklfcm7YllCoR2mqkWHf1dfhwv6c/ACjtGiJ/xhuoJunpTRrGveHEsoTJA+8i8xxpBzLEzVWPUwq5zHTDH7DLjEkMgQUrGfqy49LuHMBOJaIZNlX7v1bGQUihzhojJw2eDJOwE1RDKlg2uMa28FDfSohf2YLPuihvfolCecd1kOGbq5pCQUTSU2XWGoLftDp6munCyBIm8qMXB556STnqYD2eE3UfKq+jqOXzyYSLrZPVpEX97RjmO85Gl/q6yjH3fIAH75nvNqGmvMwCv/5mZJKKq8SJFdm/dOiPNGay6lgUeG15M0cHmcA3lXsOVJJdtRvuHVwmSpHPHOkaKYhzoJpexzbRgvkQbhxLStuGmFHCAQldOtBWoSXKMwCw245MDLJY2fDr05GxMlL5E4oEO9hZ50cG1LTFoncqDSBJPjSXWJPCSrDBb0DFzW4volo7Ty8Ll43yVHi8ek4VFIFIBUVqcKLt5Xu4RCN4MlQz14cscYPKnsqO5cEttKMXBLz8B1GazTgcxWR6c8bVEpFfuliJ7dY8Ww7Klc/kAKF9XViJfHfOGxw4kQ10rwa9TAG5lKXwmHRrkVY0VPXLcsBk7ngTRwSwkY6C84wlEp0tVzSWcigMxysjLIobztQOxrGJlKOzHlUri65s2CgVtM7A5kAlVw7VTd8axd7PYRY8BrQr+GgVeq091fcDE25WEiqxlsxrZ/uqAdQiUGnpBQlOw7lYHT1oych0CSgTPG8MazY6fc0shYPCc5Mv0qEkrMwAM8uGmfyHQluWRYagQd17sIP3PCoYMoeQE27pmQwgjTxyCjpLK8rHKm9Lt1GZP1QJabvCDdhUWHE6Skj91jRfTnnYQxoms0VtQzcNtiUgnk2sdfq4TSrDhwFYsGC8K559gqA8/QwD2O8VJYMlm+1lonppOWUGrRwOn8y52cdBJKOUNCoWsmx4GTbk/doAA9A88iQR948bH6F2aIWWfA5WYIxESyYnrp/SNTHqYyJZT6NPBqoB2CiEIJkkkuQEYYYTSJ1Vhwz+f4yf2b8dtHt4vn1DhgWVZaOjc04HIkCiVWZDLw6Pndo0W86j/vwft+tAZAnPhy5wcvwqP//JKwca1S2Y+M3RPbR7UOW/U3q6fZ1iwsYPoM/OpLj8M33xo7mVW9uJbrfOnJi3Ft1I8x4OF3yM5UmoMlL7uZCBnuejR82qVVY9iq8WwWXNsS5R1o51LI0sCdOIxwsuQnHO1A5MQsenj/j9fEBjxH50hf3C0LROL2jie72qsI2y3y1PeKDl9CQmEik1neAYcMXN2Vpo9zw9+ch1OWDVUd93Qw6wx4QgPPiElNvj/U3iZKlaNQaqlGWAsGBQO3FAYu16KWJZRk9p3KwMt+gA/97OGEQVaNkrwAKB5ZZuBUDjWrOD09S8lOD27aJ8ZsWww9ubBHoyOlS5OxWbGwHwCwZd9ExYxP+s2qhJKIQpFeo6HW68R8x4UrcNFxsZNZZau1MDwAWB5JUUB4vuX5MUdTV0OFiDWuw9iKOPAmVbabDg6JSt7SEstnaeBSGOF4yU+EugIQRb6uX71V1Ezv0Tgxa7k+lOm6d7yYek2Wn+QG4/JNj0gDzUXHYkLeUTVwta6Qzlepyp6NxCw04Okklkq9Kgd7HIxMehWiUML/G6GBy+Ozo+wuT4TdZTBwK8nA1YQRXesodXHIWDiYh20xPLc/1uR2RVvNbAYevkCTVd41yAZW7rpCNyRaTFPluGaGLqGGDGCKgUdPMKa/ic5UAy8rP7rWnZZ8s1ezdxMZiRnkgQx4PSGFQY1OzFaC5rOTYuDZYYQTRS9Fll4o3VTlcssAEu3japG4iIGrvVTD8cbXqhw1Sg7Hm/a1iCxnaV7PUZ2YNTBwY8DrwIBOQqlw0QcLrmj6oJVQovXdIPstxldwQwY+MuWFBecl9iuzSkfRwF9x2hL88SlxiVGdI7FSGFnesTCvL5dg4JTIUk0DJ5bkSZEmiaL3UtcV+j8fNQ+e8nz4XF84Xz62atxpMWVLETObwqoTStdYQQeZyZFktWxeKE8N1sLAiV3WxcCjtO8WSSS1gErbiqYq0e/KSuTxfI6xopdaa+cdvQAffdkJAOLWZnSO5PmcVQtFBt1Q94ynDbh8sy15cU/SROMKMuCcxh7/FlVCyarsmThmoTlhncAsNOCnLBvCH59yKP71ihPFha/EqkjSGCt6Fb37DbLfYoKfumyu2Kq99Zv3JzRw2YjFqfRxGOGrTl8iXtd1wqkURsYYw/y+XGJyxxq43oATyx+LwrzkFmSJKBFZQpFCBmmiU91oHSj066wj5iWep61t1udmysDVTi21LrakAQ8/c8bycOzyIs7a/anp2rXgS687DWcun6etidMukMNcrtkjPybIqfSb906kwnmBeHdJERt0c5N3lLXc8AYEAw9vBGS0846VON9yu0V5vLTmiFTI1zDlxPQCjBe92LGvMeCN8p/pMOsM+GDBxZdedxredM5yUfimklMnGXaYXrxqy7KZ4uldYSXAs4+cl2CVWTHYuhrQ1SZxtUQOtes7edizJBTaJo4rDLysRG3IEooIz7KZSP/3Ap4pRS1f0Ieb/vYCfPAlSW89naOsz82Ugb/rBUfh7CPjm4ausUK1486NPvPyaGckN2WupoHXE4Vy4THD+Mk7z2mqQagXtMslvVj4nTIY+J7xEp47MIVjovK7MqgcwQ4y4CShyAy8BgPeJzTwkKTI7QVlQy1LKLpoJx0Dl2/cYTVGHyf+029xyj/fBCBNCJqNWWfAZeQkL3IW5DuqjoE3WkI5ddlcAMCZR8xL3NnJSH78FScl3u8oHnGg+jayWjW6eX3Jru/0G6sy8GKSZfhKL8GwvjnH7zfsxpNRD03bssKJHhV3quQMPmbRQOpmawttvHI0x3Qxty+HL73uNPFY11pLB/l3UBz3RccuxI3vPR9vOOsw8Vq1KJRmValrFXoVg03zVI2nJ8P72HMjAIBjFqYNOFV0pKQXoYFL87m23rQWCq4ldpmxAbcSREBudKLLxCRbLK9TeXcs1yXSJbA9/6j5+MZbV1Yd70ww64pZyWAg/bRGBl7ROdQYC37VpcfhL88/AkO9yb6P+yZKWDHcl4jZBmJjXRcD1+wkvve2s7A1yoicl1FpLyuTngy42nWnHATJBAg7dMq+4dr74uesiIF7Pvq5U3dVx1obRc8E8o27VgYu41Cp+fDxiwexZV+cJJWtgVdPMqsXH3/FSTWn5deDz77mlFQNeQLJdXRDoxuwykRpzj763AEAcQMMGXP7wnlJBpw+k1XiOQu2xdCbc7QMXEbJC4QTWxcH7gVB2MzBZrjgmGHRxYdADFyGvJN+3tIhvPC4RXWNvV7MagMugvQrauCxMdOloDd6Q5RzLMHYZIO4d7ykvdGIdnGa2PAs6HYS5x29QPytK0sLVGfgch1nIJRSVAlFzdaMNfB0cadaQAYh6zo0wgDK171SZ5wsqJmU8q6gmvO1kQxcvfk3CpXK31KsNjHZ2PglrxhlUD6+fRR5x6qogW8bmQorAEbfVW9tF9tiyk05MuDKbm2qHOD+Z8Kyr7KEIhyu0Xx1bQvf+YszU05+tTIokDTgjYpcq4RZbcBr6cGYiBtvQRSKjL1SmNOe8RKG+/Op94hqhDUU9OnPO3jj2YdXjVnPcoJlGfCin5RQCKpBdu10WJUTGfCiF0kodZ7IVjBw+TfUKqHIWDiQvG5yaGDWtZhtEgr5PuiGrhY6I6M4OuXhyAV92vPS49rCMSjvMqfHwONoGLoBzOl1E1Ejn7vpCayPdhYyA18+P4zxP2xeLywWZ82qEVJ5TSq9fOPKWk+NRHfPnioo1xB2pWt+kEQU3tbQkYXYK0WC7BkramOG1TBCILugz2mHDeGqS4+retxMBq5JQuCcCwauso2yHyTOrWuzVM9Hy4qdmNNh4NXeP1MNXEVWI4dKUHX7Qh0MvFndylsF2r3QHCHtO8XAJYYr96eVwRgTDmH5xlY3A2exAe9xbfFdy+Ymuxetl2QheR5fdvIh+PGVZ+O1ZyyDbbHMIAhdHLjMwLMCExqJGc8expjNGFvNGPt1IwbUSFCrNdmppKIvZwsWvniOfmIB+uSTmUIO5Qu43lFHTCTpxNSPRVcdUIcsA66LA1crECaOF/BU+NVeJfY2Z1soOGEYYaU48CyIpIoMNtNoBtuIG0Kisl1WGGETNPB2gKJQyIDT9VKNV38hLrlLZWh1oBR7+TrU2yKOsoNpfDTllsztyfTzyAacMYazjpwPxhhsxjJzAwqunfo+OZGnFQa8ERLKewGsAzBY7Y2txpKhHmz81OUV38MYw4MfeRF2jxWxWDOxmrkL+pcrTsQHf/ownogiNnRsjSaiHJ+c5cSsdcLIBjwnhf7pPq7rOAJQDC1PGCjXthLNk+k5igOfHgOvrIE3q1VVLbjxvedrb7ryzb56LZTOSYufDmjXSkyUbugqA7cthqMW9mPt1pGK1ReJOcs35nrPkayB97i2yMikOkBZn9Hhry8+CqcfNlf7mu7mK+9idTHhjcaMZj9jbCmAywFc25jhtAeubWmNNxAbjmZIKM9bOoRf/XVcC1o3iU5bNoSvvuF0nH3EfPFcVhhhrUXjZZlAnoSk2d2/ca+IxS2W9QXr//3Gx3Hnk7sS7MS1rVRikWuHHWiEhFKvBl4ldbqW1Opm4fjFg9poCiD2mVSthdLlDJwMbkkJGNA1+6D4+Eo7XV39k3phsVja6XFt7IwyO5cO9dSd13HlBSuwcvk87WuqAf/J/Zvx8i/fLR53g4TyBQAfApBpORhjVzLGVjHGVu3atSvrbR2PZjmUc06yRnj6uAyXnrw44fSRWec3//wMnBpVOpsOA5cdbvTx13ztXlz2xbsAZDPwa+9+JjVmnTHNOZZwYga8chy4DrGEon+9GdJWIyBKAFSphdLOHUQjoEootGPSzUUiSZUS6yiZbibnhbGkhELNSw6pcOOYDvKKz+wff7E28djvZCcmY+xlAHZyzh+o9D7O+TWc85Wc85XDw8PTPdysxqAocFXb5ZD1uouOXYgPRdmLtW7ZZAMuf5fsNSd9vtpNwdGEX6ljDTXwkIHXGwfeqqzDBz/yIqz+yIsa9n3EzHXFxgCpVGoHFaaaDlQnpmDgmnnzgRcfgz9buQyXnnRI9ve5jTkvtNMb6nVx9aXHY0F/XlTibBRUBq5e61ZkZc5EA38+gD9mjF0GoABgkDH2Pc75GxsztM7AK05bglsf35m5VW4EiC3UqgaoRo2MQa0MXI62kUlCwHkqjruaKqOrISEj1MAtoYHXH0ZIGnhzF4Na5XGm+MCLj8Vbv3l/ppPyVactxSGDhYrt77oBqoRCgQOvPG1J6r3z+/P491c/r+L30VqY6c6E2rZdef6ROPeoBbjs5MXa973noqO0Ra9qQbXGGq3QwKc9ezjnVwO4GgAYYy8A8IHZZrwB4I9POTRR/a8ZyEo/rhVkkGs14LLsINqcWQxBwNPV1apsA5MMPGmcqWRuwbXhBRxFr3rX99T325UllE7FC45diN++7wLRwk7FIXMKeNXp2Qky3QIyYtSZZtm83qqBA5XQo3FiAsAP3362to58Fq669DhcdtIhOPeoBRXf944Lj0xkY9eDgSrhjZ3OwA0ahLxST6Je0GSfjtOE6nb3553IgKstoip/p0yUVAYeF+IKn58o+dMOI1TxpyuX4r4oi65T0cxdW6dAZeAzha6RMQCcs2K+7u2ZWDLUo832VKdzvUlCMg6bX1mS6WgGLoNzfjuA2xvxXQcjKMuyUu/OSqikO2bh+nedi4G8g1d99R4A4UTeP1HSdBihZCiGss9TpWjl2PO0AU/WcRkvetNKi9bh068+pa7vMWgOyOAev7gxNytdGGGtOGphf2bNlizMxAleKZ4dAFYu14cfNhKGgXcAiIHXG2JHWzhygtYzYSi2lVj7QCEs/kOpwTQUuicUHBtl30N/wUkY8CkplViVUEjHpMzEiZJfd3cSp0ocuEF7YVkM173zHKwY7m/I91XTlSvh5+86V9t9XkYjpbhKEVX//eaVuOT4hZmvNwrGgHcAiIHXI6Hc/P4LRZGeuX053PS3F+CwefV72YlB9+cdBDyWUIg9k4HPuxZGi2nn0mRJNuDJ14hF5YWE4mk70leCYODGgncssuKkp4NeURyr/gs+UHCnrWc3GofP721JiKsx4B0AwcDrMOBHLUwynmMWTW8LS8k//QUHnMd9LylBhzTwQ4d6sHuslNLEZc28moQyOuVVLO2rQzsTdQxaD5Jkml0I6iMvOyHRh3O6OHnJHDyy9UDq+VaFv3Z3EOosgWDgbTBWJJEQA6eUaMr2pIVEN4ytUi9NICmhqCDjS0y86AV1/0bRHcVQ8IMCPXWGxNaLC48Nc1EuP3lxZoRQPfjB28/CK05NR6m1opQsYAx4RyCvNIZtBwYKbiShhAaZmDKto6OjDipT5SDB/qckCYUaJVNMNTFwuRJdvQy83vcbdDdESGyT7tcfePGxuOeqFzYsK3Og4OLEQ+eknjcM/CACOfladdfWYaDgIOCxJEL9RIkJrRiO2cqPrzwb//FnYRSIXE5z096wEw0ZeEraqZZuXwlqf0KD2Y2CyGloTFiiCttiFYtpTQeVykA3G8aAdwBiBt6+y0HMZ5IYuNKZW84YnN+fx4XHhPqhHHb44cuPxwuOHca5SsxusrxqfRObPmvs98GBrHK0nQxd8EGryJhxYnYAiIG3Q+f91XvOw90bdosU+smozZurMHCLhWFa5OWnBAi5MuJJS+bgW39+Jq6962kAcShitXopldBJHdgNmg8KzWsSAW8KdMSrVfPWGPAOQKHOVPhG4uSlc3Dy0jn48q3rAUCUgxVhhBEDtyyG06S6yDnHwocvO144hWTQZ4UB13T8rhUiDtxoKAcFyPC1opJfo6Cb063y3RgD3gEgCaVS95tmg2JWVQNO60hXhOrtFxyp/S6VZSc719fJwE0Y4UGF4w4ZQF/OxnsvPrrdQ6kZOrbdqnlrDHgHgOo+6IrgtwpkoEkDtxQtsh67K5rAIu3ErJ+BGw38YMJAwcWj//LSdg+jLugcliaM8CCCk9EItpUguzoRaeBUA4XiwOvJKksl9CQYeGMbOhgYtBs6ucSEER5EyOoj2EpYioTiKwa8HkZRSQOv14lp4sANOh06Yz3dyqL1wqyODoBg4G2UUMjYThQVAx4NqZ5GDCrLdmYQRmg0cINOh85Y19s6cLowBrwDQAaunU5MMqzUyYSiAOIolNq/iwpe0RROhBE2qB64gUGnoJ0kwxjwDoArJJQOcGJGGjgxcArfaxQDrzsKxRhwgw5HO0mGMeAdgFhC6QQnZlJCIVWnHkMqdO7I6DfCifm8pel6EwYGnYB2+mlMGGEHIO6o004NPBzDWDHJwINpMPA4jDDETMIIGWO4/l3nYsWCxjQMMDBoNNpRRVQcu21HNhA4IioU9dITD2nbGMhAj0cG3AsCjE6VJQNez7cpEoolG/D62crpUgaogUGnoZ0yn5FQOgCL5/TgsX95Cd5y7vK2jYHm4GjUkmrHSBEnf+wm7BotApjeJCXSzhgTRtw0aDCYbTAauAF6c05LWjBlgRi4XB4WALbsm0y8XhvSWj7dAOp1YhoYdDoMAzdoO7LsMxn0euJaKWtS/gQ5Nk1UicFsQzudmMaAGwDIZtglMuB12N1Fg2G3kwuOiSsVkqPHSCgGsw3GiWnQdmSRCGrYUE8q/bJ5vbj36hdi0UDctopYikmNN5htMBq4QdshM/DeqLEsEIcV1qvPL57Tk5BdXMPADWYpjAZu0HbIBnqgEG/MKKxwppOUtpntbBtnYNAMGA3coO2Q7TO1TQNiBj5TkiEkFMPADWYZ2snAjQZuACApocgMXBjwmTJwigM3DNxglkHWwG/5uwsTjb6bfuzpfpAxtgzAdwAsQhj4ew3n/IuNGphBa1Gdgc9UQjFhhAazE/KucsVwa0s+zISBewD+jnP+IGNsAMADjLHfcc4fa9DYDFoIWQMf1GngMzTgxolpMFvRlRo453wb5/zB6O9RAOsALGnUwAxai6SEEjNwqlE+0yRRx2RiGsxSdH0UCmNsOYDTANynee1KxtgqxtiqXbt2NeJwBk2APAdlBk6YeRQKxYEbBm4wu9DVceCMsX4APwPwPs75iPo65/wazvlKzvnK4eHh9BcYdARkJ+WAxoDPWAMXDNwYcIPZBVo777vk6JYfe0ZRKIwxF6Hx/j7n/PrGDMmgHZAN9GCPq3l9Zt8fM3AjoRjMPmz81OVtOe60VxMLvV5fB7COc/75xg3JoB2QDbTaOd5i9WdiqnBNOVkDg4ZjJnTo+QDeBOCFjLE10b/LGjQugxaDGHiPa6f07pnKJ0AsnRgnpoFB4zBtCYVzfjfU1isGXQuy0cvm9aRCBmeaxAMYJ6aBQTNg6JABAGBkMoz3Xjq3N+VobITNFU5MY8ANDBoGY8ANAABFL0z/PfHQwZRkMtMkHkCuhWKmnIFBo2BqoRgAAC4/eTFGpjz82cpluGXdjsRrjdDATSamgUHjYQy4AYCQGb/p7MMBpDXvxmjgVE7WGHADg0bB7GcNUlB16sZo4OFUM9UIDQwaB7OaDFJQGXcjWLNrM1isMWzewMAghDHgBimoJnamSTwAcMicHhwyWKj+RgMDg5phNHCDFALOE4+Vh9PCW845HK89Y9nMv8jAwEDAGHCDFIJAedwAC+7YlgkhNDBoMMyKMkjBVwy2HzSAghsYGDQcxoAbpBAoBlt9bGBg0BkwBtwghRQDb4QIbmBg0HAYA26QgiqZGAnFwKAzYQy4QQorl88DAPzpyqUAGuPENDAwaDyMATdIYclQDzZ+6nJceMxCAIaBGxh0KowBN8gE1S8x9tvAoDNhDLhBJnImbtvAoKNhVqhBJtTemAYGBp0Fs0INMqF25jEwMOgsGANukAnDwA0MOhtmhRpkwmjgBgadDbNCDTJhJBQDg86GMeAGmTASioFBZ8OsUINMGAnFwKCzYVaoQSaMhGJg0NkwBtwgE0ZCMTDobJgVapAJI6EYGHQ2ZrRCGWMvZYw9wRjbwBi7qlGDMugMGAnFwKCzMW0DzhizAXwFwKUATgDwOsbYCY0amEH7YSQUA4POxkxW6JkANnDOn+aclwD8CMAVjRmWQSfANQzcwKCjMRMDvgTAZunxlui5BBhjVzLGVjHGVu3atWsGhzNoNRgzBtzAoJPR9D0y5/wazvlKzvnK4eHhZh/OwMDA4KDBTAz4VgDLpMdLo+cMDAwMDFqAmRjw+wEczRg7gjGWA/BaAL9szLAMDAwMDKrBme4HOeceY+w9AH4LwAbwDc75ow0bmYGBgYFBRUzbgAMA5/w3AH7ToLEYdCA+/SfPwxHDfe0ehoGBgQYzMuAGsx9/esay6m8yMDBoC0ymhoGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwA0MDAy6FMaAGxgYGHQpjAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLwTjnrTsYY7sAPDvNjy8AsLuBw2kUOnVcQOeOzYyrPphx1Y9OHdt0x3U45zxVzrWlBnwmYIyt4pyvbPc4VHTquIDOHZsZV30w46ofnTq2Ro/LSCgGBgYGXQpjwA0MDAy6FN1kwK9p9wAy0KnjAjp3bGZc9cGMq3506tgaOq6u0cANDAwMDJLoJgZuYGBgYCDBGHADAwODLkVXGHDG2EsZY08wxjYwxq5q81g2MsYeYYytYYytip6bxxj7HWNsffT/3BaM4xuMsZ2MsbXSc9pxsBBfis7fw4yx01s8ro8xxrZG52wNY+wy6bWro3E9wRh7SRPHtYwxdhtj7DHG2KOMsfdGz7f1nFUYVyecswJj7A+MsYeisf1z9PwRjLH7ojH8OOqJC8ZYPnq8IXp9eYvH9S3G2DPSOTs1er5l8z86ns0YW80Y+3X0uHnni3Pe0f8Q9tt8CsCRAHIAHgJwQhvHsxHAAuW5TwO4Kvr7KgD/3oJxXADgdABrq40DwGUAbgTAAJwN4L4Wj+tjAD6gee8J0fXMAzgius52k8a1GMDp0d8DAJ6Mjt/Wc1ZhXJ1wzhiA/uhvF8B90bn4CYDXRs9/DcBfRX+/C8DXor9fC+DHLR7XtwC8WvP+ls3/6HjvB/ADAL+OHjftfHUDAz8TwAbO+dOc8xKAHwG4os1jUnEFgG9Hf38bwCuafUDO+Z0A9tY4jisAfIeH+D8AQ4yxxS0cVxauAPAjznmRc/4MgA0Ir3czxrWNc/5g9PcogHUAlqDN56zCuLLQynPGOedj0UM3+scBvBDAddHz6jmjc3kdgIsZY6yF48pCy+Y/Y2wpgMsBXBs9Zmji+eoGA74EwGbp8RZUnuDNBgdwE2PsAcbYldFzizjn26K/twNY1J6hZY6jE87he6Lt6zckiakt44q2qqchZG4dc86UcQEdcM4iOWANgJ0AfoeQ8e/nnHua44uxRa8fADC/FePinNM5+0R0zv6DMZZXx6UZc6PxBQAfAhBEj+ejieerGwx4p+E8zvnpAC4F8G7G2AXyizzcD7U9NrNTxhHhqwBWADgVwDYAn2vXQBhj/QB+BuB9nPMR+bV2njPNuDrinHHOfc75qQCWImT6x7VjHCrUcTHGTgJwNcLxnQFgHoC/b+WYGGMvA7CTc/5Aq47ZDQZ8KwC5NfrS6Lm2gHO+Nfp/J4CfI5zUO2hLFv2/s03DyxpHW88h53xHtOACAP+NeMvf0nExxlyERvL7nPPro6fbfs504+qUc0bgnO8HcBuAcxBKEI7m+GJs0etzAOxp0bheGslRnHNeBPBNtP6cPR/AHzPGNiKUel8I4Ito4vnqBgN+P4CjI09uDqHY/8t2DIQx1scYG6C/AbwYwNpoPG+J3vYWAL9ox/gqjOOXAN4ceePPBnBAkg2aDkVvfCXCc0bjem3kjT8CwNEA/tCkMTAAXwewjnP+eemltp6zrHF1yDkbZowNRX/3AHgRQo3+NgCvjt6mnjM6l68GcGu0q2nFuB6XbsQMoc4sn7OmX0vO+dWc86Wc8+UI7dStnPM3oJnnq9Ee2Gb8Q+hFfhKh/vbhNo7jSIQRAA8BeJTGglC3ugXAegA3A5jXgrH8EOHWuoxQV3tb1jgQet+/Ep2/RwCsbPG4vhsd9+Fo0i6W3v/haFxPALi0ieM6D6E88jCANdG/y9p9ziqMqxPO2fMArI7GsBbAR6V18AeEDtSfAshHzxeixxui149s8bhujc7ZWgDfQxyp0rL5L43xBYijUJp2vkwqvYGBgUGXohskFAMDAwMDDYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXYr/D7pqz+4kZMSJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iv) Using impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before simulating a light curve through this approach, an appropriate impulse response needs to be constructed. There\n", + "are two helper functions available for that purpose. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`simple_ir()` allows to define an impulse response of constant height. It takes in starting time, width and intensity as arguments, all of whom are set by default." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUqElEQVR4nO3df5BdZX3H8fcnuxIUWsCQasmPbhxiO0FpxW3EqbUOaTWxlNhpmAkyY5wyEztjWlvt2FBnEKn/0DrSdhptM4JS/BEo1XZHoykVZ5xxJGZBBUNIXUFJEMvyQyw6GO453/5xzg3Xy8Y9+yt37/1+XjOZvfec5959zjy7nz35nueeRxGBmZkNriW97oCZmS0sB72Z2YBz0JuZDTgHvZnZgHPQm5kNuOFed6Db2WefHSMjI73uhplZX7nzzjsfjYjlU+1bdEE/MjLC+Ph4r7thZtZXJH3vRPtcujEzG3AOejOzAeegNzMbcA56M7MB56A3MxtwjYJe0kZJhyVNSNo5xf7XSrpLUkvSlq592yR9u/63bb46bmZmzUwb9JKGgF3AJmAdcJmkdV3NHgTeCnyy67UvBN4LvApYD7xX0llz77aZmTXVZB79emAiIu4HkLQH2Azc224QEd+t95Vdr30DcFtEPF7vvw3YCHxqzj03szmZeOQpxr75ffCtyheNl774F7j4/HPm/X2bBP0K4EjH86NUZ+hNTPXaFd2NJG0HtgOsXr264Vub2Vx89CsP8In9DyL1uifWdvH55/Qs6BdcROwGdgOMjo769MLsJHimKHnxL57KHX+9odddsQXW5GLsQ8Cqjucr621NzOW1ZraAihKGlvh0PoMmQX8AWCtpjaRTgK3AWMP33we8XtJZ9UXY19fbzKzHirJkiSdYpzDtMEdEC9hBFdCHgFsi4qCkayRdAiDpNyUdBS4F/kXSwfq1jwN/Q/XH4gBwTfvCrJn1VhEw7KRPoVGNPiL2Anu7tl3V8fgAVVlmqtfeANwwhz6a2QIoy8CVmxz859wsqVZZukafhIPeLKnqYqwjIAOPsllSZQRDToAUPMxmSbXKYMiflkrBQW+WVFmGa/RJOOjNkioc9Gk46M2SKiJY4tJNCg56s6SKMhgectBn4KA3S6oofUafhYPeLKlqeqWDPgMHvVlSrcLTK7Nw0Jsl5TP6PBz0Zkl5emUeDnqzpIoyWOKgT8FBb5ZUEcGwgz4FB71ZUoXvdZOGg94sKZdu8nDQmyVVlC7dZOGgN0uqDJ/RZ+GgN0vKNfo8HPRmSbU8jz4NB71ZUl54JA8HvVlShW+BkIaD3iwp3wIhDwe9WVK+GJuHg94soYigDDy9MgkHvVlCRRkAPqNPwkFvllARVdB7zdgcHPRmCZVl9dVrxubgoDdLqFUn/ZATIAUPs1lC7TP6oSWOgAwajbKkjZIOS5qQtHOK/Usl3Vzv3y9ppN7+PEk3SrpH0iFJV85z/81sFto1epfoc5g26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19bbLwWWRsTLgVcCb2v/ETCz3nm2dOOkz6DJGf16YCIi7o+IY8AeYHNXm83AjfXjW4ENkgQEcJqkYeD5wDHgR/PSczObNZducmkyyiuAIx3Pj9bbpmwTES3gSWAZVej/GHgYeBD4QEQ83v0NJG2XNC5pfHJycsYHYWYzc7x045xPYaGHeT1QAOcAa4B3SXpJd6OI2B0RoxExunz58gXukpmV9QemPL0yhyZB/xCwquP5ynrblG3qMs0ZwGPAm4EvRMQzEfEI8BVgdK6dNrO5aZX+wFQmTYL+ALBW0hpJpwBbgbGuNmPAtvrxFuD2iAiqcs1FAJJOAy4E7puPjpvZ7BU+o09l2qCva+47gH3AIeCWiDgo6RpJl9TNrgeWSZoA3gm0p2DuAk6XdJDqD8ZHI+Lu+T4IM5uZ8niN3kGfwXCTRhGxF9jbte2qjsdPU02l7H7dU1NtN7PeahV16cZBn4KvuZsl1D6jd+kmBwe9WULHb1PsM/oUHPRmCbVn3XjhkRwc9GYJtUs3rtHn4KA3S8grTOXioDdLqHDpJhUHvVlC7aB36SYHB71ZQu2bmvmMPgcHvVlCReEafSYOerOECt8CIRUHvVlCpT8wlYqD3iwhn9Hn4qA3S8i3QMjFQW+WkD8wlYuD3iwhn9Hn4qA3S8ifjM3FQW+WUOGbmqXioDdLqPSasak46M0SarlGn4qD3iwhX4zNxUFvllDpD0yl4qA3S6jlefSpOOjNEvK9bnJx0JslVJTVVwd9Dg56s4SOLzzinE/BQW+WUFGWDC0Rco0+BQe9WUJF6QuxmTjozRIqI1ji3/40PNRmCbWKYNhJn4ZH2iyhMsIXYhNpFPSSNko6LGlC0s4p9i+VdHO9f7+kkY5950v6qqSDku6RdOo89t/MZqEow1MrE5k26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19avHQY+DvxJRJwHvA54Zt56b2az0nLQp9LkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGVfO2Xg/cHRHfBIiIxyKimJ+um9lslQ76VJoE/QrgSMfzo/W2KdtERAt4ElgGvBQISfsk3SXp3VN9A0nbJY1LGp+cnJzpMZjZDBURnl6ZyEJfjB0GXgNcXn/9Q0kbuhtFxO6IGI2I0eXLly9wl8ysKMPLCCbSJOgfAlZ1PF9Zb5uyTV2XPwN4jOrs/8sR8WhE/ATYC1ww106b2dwUZXgZwUSaBP0BYK2kNZJOAbYCY11txoBt9eMtwO0REcA+4OWSXlD/Afgd4N756bqZzVYRPqPPZHi6BhHRkrSDKrSHgBsi4qCka4DxiBgDrgdukjQBPE71x4CIeELSB6n+WASwNyI+t0DHYmYNFYVr9JlMG/QAEbGXquzSue2qjsdPA5ee4LUfp5piaWaLRBGedZOJPxlrlpCnV+bioDdLyGf0uTjozRLyLRBycdCbJVSUvhibiYPeLCF/YCoXB71ZQj6jz8VBb5ZQEcHwkIM+Cwe9WUJlGSzxGX0aDnqzhHw/+lwc9GYJeXplLg56s4RK348+FQe9WUIu3eTioDdLyPe6ycVBb5aQ73WTi4PeLKGyxNMrE3HQmyXUKksvJZiIg94soaLE97pJxEFvllAZwZB/+9PwUJsl1CpKhpf41z8Lj7RZQmX4YmwmDnqzhKpbIPS6F3ayeKjNEvLCI7k46M0SKiI8vTIRB71ZMhHhFaaScdCbJVNG9dWlmzwc9GbJFHXSu3STh4PeLJkyqqD3GX0eDnqzZFr1Gb1r9Hk46M2SaZdufJviPBz0ZsmUDvp0HPRmyRThoM+mUdBL2ijpsKQJSTun2L9U0s31/v2SRrr2r5b0lKS/nKd+m9ksuXSTz7RBL2kI2AVsAtYBl0la19XsCuCJiDgXuA64tmv/B4HPz727ZjZXhS/GptPkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGqfopkvQm4AHg4Lz02MzmpB30nl6ZR5OgXwEc6Xh+tN42ZZuIaAFPAssknQ78FfC+n/cNJG2XNC5pfHJysmnfzWwW/IGpfBb6YuzVwHUR8dTPaxQRuyNiNCJGly9fvsBdMsvNF2PzGW7Q5iFgVcfzlfW2qdoclTQMnAE8BrwK2CLpb4EzgVLS0xHxT3PtuJnNTnt6pRceyaNJ0B8A1kpaQxXoW4E3d7UZA7YBXwW2ALdHRAC/3W4g6WrgKYe8WW+1POsmnWmDPiJaknYA+4Ah4IaIOCjpGmA8IsaA64GbJE0Aj1P9MTCzRcjTK/NpckZPROwF9nZtu6rj8dPApdO8x9Wz6J+ZzbP2Tc08vTIPfzLWLBmXbvJx0Jsl43vd5OOgN0vGNfp8HPRmyRSeXpmOg94smfYHpoaHHPRZOOjNkvEZfT4OerNkSt8CIR0HvVkyrcI3NcvGQW+WTPuM3qWbPBz0ZskUZfXVpZs8HPRmybTKKumH/NufhofaLJlnL8b61z8Lj7RZMsdLN67Rp+GgN0umqEs3PqHPw0Ntlkz7jH7YSZ+GR9osmfYtEJzzeXiozZIp6lN61+jzcNCbJVN/MNalm0Q80mbJtBcecc7n4aE2S6bwTc3ScdCbJeMVpvJx0JslczzofTE2DQe9WTI+o8/HQW+WTFEGSwTyGX0aDnqzZIoIn80n46A3S6Ysw4uOJOOgN0umVfqMPhsHvVkyhYM+HQe9WTKla/TpOOjNkmmV4Tn0yTQKekkbJR2WNCFp5xT7l0q6ud6/X9JIvf33JN0p6Z7660Xz3H8zm6HSpZt0pg16SUPALmATsA64TNK6rmZXAE9ExLnAdcC19fZHgT+IiJcD24Cb5qvjZjY7rtHn0+SMfj0wERH3R8QxYA+wuavNZuDG+vGtwAZJioivR8T36+0HgedLWjofHTez2Sk8vTKdJkG/AjjS8fxovW3KNhHRAp4ElnW1+SPgroj4afc3kLRd0rik8cnJyaZ9N7NZKCIYHnLQZ3JSLsZKOo+qnPO2qfZHxO6IGI2I0eXLl5+MLpmlVfhibDpNgv4hYFXH85X1tinbSBoGzgAeq5+vBD4DvCUivjPXDpvZ3JQRLHGNPpUmQX8AWCtpjaRTgK3AWFebMaqLrQBbgNsjIiSdCXwO2BkRX5mnPpvZHLSKYNhBn8q0QV/X3HcA+4BDwC0RcVDSNZIuqZtdDyyTNAG8E2hPwdwBnAtcJekb9b9fmvejMLPGyvDF2GyGmzSKiL3A3q5tV3U8fhq4dIrXvR94/xz7aGbzyNMr8/EnY82SaZWu0WfjoDdLpgzX6LNx0Jsl4+mV+TjozZIpymCJf/NT8XCbJVOUwbCTPhWPtlkyReCLsck46M2SKcoS3+omFwe9WTJFCUMu3aTi0TZLplp4pNe9sJPJw22WTOE1Y9Nx0JslU90Cwb/6mXi0zZKpPjDV617YyeSgN0um8L1u0nHQmyVTfWDKQZ+Jg94sGV+MzcdBb5ZMWXrhkWwc9GbJtLzwSDoOerNkSgd9Og56s2SK8P3os3HQmyXj0k0+DnqzZFy6ycdBb5aMp1fm46A3S6Qsgwg8vTIZB71ZIkUEgD8Zm4yD3iyRoqyC3ve6ycVBb5ZIWZ/Ru0afi4PeLJFW6dJNRg56s0TKdunGF2NTcdCbJdKu0bt0k4uD3iwRB31ODnqzRApfjE2pUdBL2ijpsKQJSTun2L9U0s31/v2SRjr2XVlvPyzpDfPYdzOboeNn9K7RpzJt0EsaAnYBm4B1wGWS1nU1uwJ4IiLOBa4Drq1fuw7YCpwHbAQ+VL+fmfWA59HnNNygzXpgIiLuB5C0B9gM3NvRZjNwdf34VuCfJKnevicifgo8IGmifr+vzk/3n3XfD37En37y6/P9tmYD5VhRAjDkom0qTYJ+BXCk4/lR4FUnahMRLUlPAsvq7Xd0vXZF9zeQtB3YDrB69eqmff8Zpw4PsfZFp8/qtWaZXLD6LF79krN73Q07iZoE/YKLiN3AboDR0dGYzXuMnH0aH7r8lfPaLzOzQdDkP3APAas6nq+st03ZRtIwcAbwWMPXmpnZAmoS9AeAtZLWSDqF6uLqWFebMWBb/XgLcHtERL19az0rZw2wFvja/HTdzMyamLZ0U9fcdwD7gCHghog4KOkaYDwixoDrgZvqi62PU/0xoG53C9WF2xbw9ogoFuhYzMxsCoqYVUl8wYyOjsb4+Hivu2Fm1lck3RkRo1Pt8yQrM7MB56A3MxtwDnozswHnoDczG3CL7mKspEnge3N4i7OBR+epO73mY1mcfCyLU/Zj+ZWIWD7VjkUX9HMlafxEV577jY9lcfKxLE4+lhNz6cbMbMA56M3MBtwgBv3uXndgHvlYFicfy+LkYzmBgavRm5nZzxrEM3ozM+vgoDczG3ADE/TTLWC+mElaJelLku6VdFDSO+rtL5R0m6Rv11/P6nVfm5I0JOnrkj5bP19TLxw/US8kf0qv+9iEpDMl3SrpPkmHJL26z8flL+qfsW9J+pSkU/tlbCTdIOkRSd/q2DblWKjyj/Ux3S3pgt71/LlOcCx/V/+c3S3pM5LO7Nh3ZX0shyW9YabfbyCCvuEC5otZC3hXRKwDLgTeXvd/J/DFiFgLfLF+3i/eARzqeH4tcF29gPwTVAvK94N/AL4QEb8G/DrVMfXluEhaAfwZMBoRL6O67fhW+mdsPgZs7Np2orHYRLX+xVqqZUo/fJL62NTHeO6x3Aa8LCLOB/4HuBKgzoKtwHn1az5UZ15jAxH0dCxgHhHHgPYC5n0hIh6OiLvqx/9HFSYrqI7hxrrZjcCbetLBGZK0Evh94CP1cwEXUS0cD31yLJLOAF5Ltd4CEXEsIn5In45LbRh4fr0S3AuAh+mTsYmIL1Otd9HpRGOxGfjXqNwBnCnpl09KRxuY6lgi4r8iolU/vYNqRT6ojmVPRPw0Ih4AJqgyr7FBCfqpFjB/ziLk/UDSCPAKYD/wooh4uN71A+BFverXDP098G6grJ8vA37Y8UPcL+OzBpgEPlqXoT4i6TT6dFwi4iHgA8CDVAH/JHAn/Tk2bScai37PhD8GPl8/nvOxDErQDwRJpwP/Dvx5RPyoc1+9NOOinwsr6WLgkYi4s9d9mQfDwAXAhyPiFcCP6SrT9Mu4ANT1681Uf8DOAU7jueWDvtVPY/HzSHoPVTn3E/P1noMS9H2/CLmk51GF/Cci4tP15v9t/3ez/vpIr/o3A78FXCLpu1QltIuo6txn1uUC6J/xOQocjYj99fNbqYK/H8cF4HeBByJiMiKeAT5NNV79ODZtJxqLvswESW8FLgYuj2c/5DTnYxmUoG+ygPmiVdewrwcORcQHO3Z1Lrq+DfjPk923mYqIKyNiZUSMUI3D7RFxOfAlqoXjoX+O5QfAEUm/Wm/aQLX+cd+NS+1B4EJJL6h/5trH03dj0+FEYzEGvKWefXMh8GRHiWdRkrSRquR5SUT8pGPXGLBV0lJJa6guMH9tRm8eEQPxD3gj1ZXq7wDv6XV/Ztj311D9l/Nu4Bv1vzdS1ba/CHwb+G/ghb3u6wyP63XAZ+vHL6l/OCeAfwOW9rp/DY/hN4Dxemz+Azirn8cFeB9wH/At4CZgab+MDfApqmsLz1D9b+uKE40FIKqZeN8B7qGaadTzY5jmWCaoavHtDPjnjvbvqY/lMLBppt/Pt0AwMxtwg1K6MTOzE3DQm5kNOAe9mdmAc9CbmQ04B72Z2YBz0JuZDTgHvZnZgPt/PP6JMlAe4GMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = sim.simple_ir(10, 5, 0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using `relativistic_ir()`. Its arguments are: primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAk/klEQVR4nO3deXhc9XX/8ffRaLTakmxLlhfJ+wICjGMLCGExCZshBLckJJC0TVoSkhSapCRtyC/5kTT5pVnakqQNSSBLeUIJhKx1CRQIOCwJi21278ZYRl5lebeW0YzO748ZmZElW2N7pHtn9Hk9jx7P3HulOWjmHL46997v19wdERHJfQVBByAiItmhgi4ikidU0EVE8oQKuohInlBBFxHJE4VBvXB1dbVPmTIlqJcXEclJy5cv3+nuNf3tC6ygT5kyhWXLlgX18iIiOcnMmo60Ty0XEZE8oYIuIpInVNBFRPKECrqISJ5QQRcRyRMDFnQz+4mZ7TCzVwc47gwzi5vZe7IXnoiIZCqTEfqdwMKjHWBmEeAbwMNZiElERI7DgAXd3Z8Adg1w2N8BvwJ2ZCMokY07D/L42pagwxDJKSfcQzezicCfA9/P4NjrzWyZmS1raVGyypF9d8l6PnXvC0GHIZJTsnFS9NvAZ929e6AD3f0Od29098aamn7vXBUBkiP0Pe1ddHdrARaRTGXj1v9G4F4zA6gGLjezuLv/Ngs/W4appl1tuMP+jjiVZdGgwxHJCSdc0N19as9jM7sTuF/FXE5EWyxOy/5OAPa2d6mgi2RowIJuZvcAFwDVZtYMfBGIArj7DwY1OhmW3tjVfujx3vauACMRyS0DFnR3vzbTH+buHzqhaESAptaDhx6roItkTneKSuhs2tV26PGe9liAkYjkFhV0CZ2m1jaS59g1Qhc5FiroEjqbdrUxo2YEoIIucixU0CV0Nu1qY1btSIoLC1TQRY6BCrqESqLbad7dRv3oMipLo+xtU0EXyZQKuoTKlj3tdCWcyWNSBV0jdJGMqaBLqPRc4TJ5tAq6yLFSQZdQ6Snok8aUUVWmgi5yLFTQJVSaWtuIRozxlaVUlEbZox66SMZU0CVUNu06SN2oMiIFRmVplH0aoYtkTAVdQqWptY1Jo8sAqCyNsr8zTkJT6IpkRAVdQsPd2dTaxuQxbxZ0QKN0kQypoEto7GnrYn9n/NAIvSo1be4eFXSRjKigS2g09VyyOKYceHOEritdRDKjgi6h0TNtbnoPHVTQRTKlgi6hsak1dQ26CrrIcVFBl9DYtKuNsSOLKS2KAFBZWgTA3jbNiS6SCRV0CY2mXW9e4QIaoYscKxV0CY1NrclZFnsUFRZQGo2ooItkaMCCbmY/MbMdZvbqEfZ/wMxeNrNXzOxPZnZ69sOUfNfRlWDbvg4mjy7vtV0TdIlkLpMR+p3AwqPsfx1Y4O6nAV8B7shCXDLMNO/uuWSxrNf2qjLN5yKSqcKBDnD3J8xsylH2/ynt6TNAXRbikmGmqfXNWRbTVWiELpKxbPfQrwMePNJOM7vezJaZ2bKWlpYsv7TkspVb9gEwrVotF5HjlbWCbmZvJ1nQP3ukY9z9DndvdPfGmpqabL205IEn1+/klAkVVJUV9dquGRdFMpeVgm5mc4AfAYvcvTUbP1OGj4OdcV7YtJtzZ1b32VdZGtVcLiIZOuGCbmaTgF8Df+nua088JBlunn29la6Ec96Mvn+1VZVGaYsl6Ep0BxCZSG4Z8KSomd0DXABUm1kz8EUgCuDuPwBuAcYA3zMzgLi7Nw5WwJJ/nly3k+LCAhqnjOqzr7LszZuLqkcUD3VoIjklk6tcrh1g/4eBD2ctIhl2nlq3kzOnjqYkGumzL/1uURV0kaPTnaISqG17O1i34wDnzujbP4fkZYuArkUXyYAKugTqqfU7Afo9IQrJHjpo1SKRTKigS6CeWtfCmPIiTh5X0e9+TdAlkjkVdAmMu/PU+lbOmVFNQYH1e4wKukjmVNAlMKu37Wfngc4jtltAPXSRY6GCLoF5al2yf37eUQp6NFLAiOJCjdBFMqCCLoF5cv1OpteUM76y9KjHaT4XkcyooEsgOroSPPd6K+fNHHhOH824KJIZFXQJxIOvbqWjq5sFswcu6JWlhext17qiIgNRQZch1xlP8G8Pr+WUCRUsyGCErpaLSGZU0GXI/ezZTTTvbucfF550xMsV01WVFqmgi2RABV2G1IHOON99bD1nTxvD+Ue5uiVdZZlG6CKZUEGXIfWjJzfQejDGZy87idTsnAOqLI3S0dVNR1dikKMTyW0q6DJkdh7o5IdPbOCyU8cxt74q4++r0HwuIhlRQZch893H1tMR7+Yzl84+pu+r0u3/IhlRQZch8evnm7nrmSbe21jH9JoRx/S9ms9FJDMq6DLo7np6Izfd9xJnTR3NF97ZcMzfX6n5XEQyMuCKRSIn4rYl6/mXh9Zw0clj+e775/W7KtFANEIXyYwKugyKHfs6+Paj6/jZs5tYNHcC/3r16UQjx/cHoQq6SGZU0CWrNrW2cfsTr/GL5c3EE938zTlT+cI7T87oBqIjOTSFrgq6yFENWNDN7CfAFcAOdz+1n/0GfAe4HGgDPuTuz2c7UAmn9liCF97YzdLXd7N04y6e3tBKxIx3z6/jo+dPY0p1+Qm/RqTAGFlSqMsWRQaQyQj9TuC7wE+PsP8yYGbq6yzg+6l/JQ90JbrZuqeD5j1tbN7dTvPudjbvaWfLnuS/m3e3E+92zGB27Ug+ct40/vqcKdRWlGQ1Ds3nIjKwAQu6uz9hZlOOcsgi4Kfu7sAzZlZlZuPdfWu2gpRgJLqdBd9cwpa9HYe2mcHYkcVMrCplTl0VV8wZz/zJo5g/efShXvdgqCqLsvNA56D9fJF8kI0e+kTgjbTnzaltfQq6mV0PXA8wadKkLLy0DKaOrgRb9nZw5ekTuOaMeiaOKmV8ZSlFhUN/tetpE6v4n5e20JXoPu6TqyL5bkgzw93vcPdGd2+sqRl42lQJVizeDcBbJlXxthnVTB5THkgxB1gwq5oDnXFe2LQnkNcXyQXZyM7NQH3a87rUNslxsUSyoAdVxNO9bUY1kQLjibUtQYciElrZyNTFwF9Z0luBveqf54eeEXpRCFocFSVR3lJfxeMq6CJHNGCmmtk9wNPAbDNrNrPrzOxjZvax1CEPABuA9cAPgb8dtGhlSHXGwzNCBzh/Vg2vbtlLq06OivQrk6tcrh1gvwM3ZC0iCY0wjdAhWdBvfWQtT63fyaK5E4MORyR0wpGpEkph6qEDnDaxklFlUbVdRI4gHJkqoRQLWcslUmCcO7OGJ9ftJPmHoYikC0emSiiFreUCcP7Malr2d7Jq6/6gQxEJnfBkqoROLJFcwzMsI3RI9tEBnlintovI4cKTqRI6sXiyrRGmgl5bUcJJ40bqenSRfoQnUyV0ek6KFoeooENylL5s427aYvGgQxEJlXBlqoTKmz30Y19laDCdP7OGWKKbZza0Bh2KSKiooMsRhe0qlx6NU0ZRGo2wZLXaLiLpwpWpEiqxePKkaDRy/KsNDYaSaITzZlbz6KrtunxRJI0KuhxR2G4sSndRQy1b9nawYsu+oEMRCY3wZaqERlhbLgAXnjSWAoNHVm4POhSR0AhfpkpohPHGoh5jRhQzf/IoFXSRNOHLVAmNzkQ3RZECkuuAh89FJ9eycus+Nu9pDzoUkVBQQZcjisW7Q9lu6XFxQy0Av9coXQRQQZej6EqEu6BPqxnB9JpytV1EUsKbrRK4WLw7lP3zdBc11PLMhlb2dXQFHYpI4MKdrRKosLdcAC5pqCXe7fxhjW4yEgl3tkqgYiFvuQDMrR9F9YgitV1EUEGXo4jFu4mGvOUSKTDecdJY/rBmx6HLLEWGq4yy1cwWmtkaM1tvZjf3s3+SmS0xsxfM7GUzuzz7ocpQ68yBlgvAxQ3j2N8R59nXNVmXDG8DZquZRYDbgMuABuBaM2s47LAvAPe5+1uAa4DvZTtQGXqxeDfFIR+hA5w3s5ryogi/e3lr0KGIBCqTbD0TWO/uG9w9BtwLLDrsGAcqUo8rgS3ZC1GCkgs9dEhO1nVRQy3/u2IbXQm1XWT4yiRbJwJvpD1vTm1L9yXgL8ysGXgA+Lv+fpCZXW9my8xsWUuLrkoIu1y4yqXHu+ZMYE9bF0+t3xl0KCKByVa2Xgvc6e51wOXAXWbW52e7+x3u3ujujTU1NVl6aRksuXAdeo/zZlUzsqSQ+19S20WGr0yydTNQn/a8LrUt3XXAfQDu/jRQAlRnI0AJTtjvFE1XXBjh0lPG8fDKbXSm5nEXGW4yydalwEwzm2pmRSRPei4+7JhNwIUAZnYyyYKunkqOy6WWC8AVc8azvyPOE2vVdpHhacBsdfc4cCPwELCK5NUsK8zsy2Z2ZeqwTwMfMbOXgHuAD7mWksl5uXJStMc5M6oZVRbl/pd1Tl6Gp8JMDnL3B0ie7Ezfdkva45XAOdkNTYLWmUM9dIBopICFp45n8YubaY8lKC0K1+LWIoMtd7JVhlyutVwA3jVnPAdjCZas2RF0KCJDLreyVYaMuydbLjk0Qgc4a9oYqkcUq+0iw1JuZasMmXi34x7O9USPJlJgXH7aOB5bvYMDnfGgwxEZUrmVrTJkwrxA9EAWzZ1AR1c3D76ia9JleMm9bJUhEeYFogcyb9IoplWX84vlzUGHIjKkci9bZUj0zImSiyN0M+Pd8+t47vVdNLUeDDockSGTe9kqQ6Izh1suAFfNm0iBwa80SpdhJDezVQZdLDVCL87Rgj6+spRzZ9bwq+c3092te9xkeMjNbJVBl8s99B7vmV/H5j3tPL1BC1/I8JC72SqDKpevculxSUMtI0sK+aXaLjJM5G62yqDqabmEfU3RoymJRrjy9Ak8+OpW9nV0BR2OyKDL3WyVQZUPI3SAqxvr6ejq1vJ0MizkdrbKoMmXgn56XSUzxo7gF8veGPhgkRyX29kqg6YzD06KQvKa9Pc11vP8pj2s3rYv6HBEBlVuZ6sMmly/bDHd1Y11FBcW8NOnm4IORWRQ5X62yqDoypOWC0BVWRFXnj6B376wWSdHJa/lfrbKoIjl8K3//fmrs6fQFkvozlHJa/mRrZJ1+XBjUbrT6iqZW1/FXc80odURJV/lR7ZK1uXLVS7p/ursyWxoOcifXtOdo5KfMspWM1toZmvMbL2Z3XyEY95rZivNbIWZ/Sy7YcpQy7eWC8Dlp41ndHkRP316Y9ChiAyKAbPVzCLAbcBlQANwrZk1HHbMTOBzwDnufgrwqeyHKkMpXy5bTFcSjfC+M+p5ZOV2tuxpDzockazLJFvPBNa7+wZ3jwH3AosOO+YjwG3uvhvA3bVCb46LxbuJRgwzCzqUrPrAWZMA+NmzmwKORCT7MinoE4H02+yaU9vSzQJmmdkfzewZM1vY3w8ys+vNbJmZLWtpaTm+iGVIxOK5t0B0JupGlXHRybXc/WwTbTGtOSr5JVsZWwjMBC4ArgV+aGZVhx/k7ne4e6O7N9bU1GTppWUwxBKJvOqfp/vogmnsbuviF8t0CaPkl0wydjNQn/a8LrUtXTOw2N273P11YC3JAi85KhbvztuCPn/yaBonj+KHT24gnjr5K5IPMsnYpcBMM5tqZkXANcDiw475LcnROWZWTbIFsyF7YcpQ60p43hZ0gI8umE7z7nZ+94pmYZT8MWDGunscuBF4CFgF3OfuK8zsy2Z2Zeqwh4BWM1sJLAH+wd11sW8Oy9ceeo8LTxrLjLEj+MHjG3SjkeSNjDLW3R9w91nuPt3dv5radou7L049dne/yd0b3P00d793MIOWwdcZ76aoMBJ0GIOmoMC4/vxprNq6jyfX7Qw6HJGsyN8hmJyQWCJ/e+g9Fs2dQG1FMbc/8VrQoYhkRX5nrBy3WDxBcR63XACKCyNcd+5U/ri+lVea9wYdjsgJy++MleOWz1e5pLv2zEmMLCnkPx5bF3QoIics/zNWjksskbxTNN+NLIny4XOn8fDK7RqlS85TQZd+DZcROsDfnDuFqrIotz6yJuhQRE7I8MhYOWaxPL/KJd3IkijXnz+NJWtaWN60O+hwRI6bCrr0K9+vQz/cB8+ewpjyIo3SJacNn4yVYxLL8ztFD1deXMjHL5jOH9e38swG3RMnuWn4ZKwck1g8QfEwKugAf/HWydRWFHPrw2t196jkpOGVsZKx4XBj0eFKohFuePsMntu4i8fXanpnyT3DK2MlY8Oth97jfWfUM2l0Gf/8wCrNxCg5Z/hlrAwonuim2/NrPdFMFRdG+D+Xn8Ta7Qe4d+kbA3+DSIgMv4yVAeXjAtHH4tJTxnHW1NF865G17OvoCjockYwNz4yVo4qlFoiODsOWC4CZ8X+vaGBXW4zbHlsfdDgiGRueGStH1VPQh+sIHeDUiZW8e14d//nHjWxqbQs6HJGMDN+MlSPqTBX0fJ9tcSD/cOlsCiPG1x5cFXQoIhkZ3hkr/RruPfQetRUlfHzBdB58dRtPaREMyQHDO2OlX10q6Id85PxpTK0u5/O/fYWOrkTQ4YgclTJW+jjUQx/mLRdI3mz01T87labWNs2ZLqGXUcaa2UIzW2Nm683s5qMc924zczNrzF6IMtR0UrS3t82o5qp5E7n98Q2s3b4/6HBEjmjAjDWzCHAbcBnQAFxrZg39HDcS+CTwbLaDlKGlgt7XF97ZwMiSQj7361fo7tY8LxJOmWTsmcB6d9/g7jHgXmBRP8d9BfgG0JHF+CQAneqh9zG6vIjPv7OB5U27uWfppqDDEelXJhk7EUi/B7o5te0QM5sH1Lv77472g8zsejNbZmbLWlo0+VFYqYfev3fPm8jbpo/h6w+sZvOe9qDDEenjhDPWzAqAW4FPD3Ssu9/h7o3u3lhTU3OiLy2DRC2X/pkZX79qDt3ufOa+l9R6kdDJJGM3A/Vpz+tS23qMBE4F/mBmG4G3Aot1YjR3aYR+ZJPGlPHFd53C0xta+ckfXw86HJFeMsnYpcBMM5tqZkXANcDinp3uvtfdq919irtPAZ4BrnT3ZYMSsQw63Vh0dFc31nFxQy3ffGgNa7bpqhcJjwEz1t3jwI3AQ8Aq4D53X2FmXzazKwc7QBl6arkcnZnxtatOo6KkkE/9/EU647rhSMIho4x19wfcfZa7T3f3r6a23eLui/s59gKNznOb7hQdWPWIYr5+1RxWbd3HrY+sDTocEUB3iko/OtVDz8hFDbW8/6xJ3P74Bn6/cnvQ4YiooEtfOimauVuuaODUiRXcdN+LmmZXAqeMlT5iiW6iEaOgwIIOJfRKohG+/4H5AHz87uWawEsCpYIufQzXBaKPV/3oMr71vrms2LKPLy1eEXQ4Mowpa6WPWLxbJ0SP0YUn13LD26dz79I3uPc5TQ0gwVDWSh+xePewXU/0RNx08WzOm1nNF377Kn96TQtiyNBT1kofsYRG6McjUmB89/3zmFpdzsf/63leazkQdEgyzChrpQ+1XI5fZWmUn3zoDAoLjL+5cym7DsaCDkmGEWWt9NGpk6InpH50GT/8YCNb93bw0buW6U5SGTLKWumjK9FNsUboJ2TepFHc+t7TWbpxN5+850XiqbtvRQaTslb6UMslO66YM4EvvquB/12xjX/81cuablcGXWHQAUj4xBLdlERV0LPhr8+ZyoGOOP/2yFrKiwr58qJTMNMNWzI4VNClj1i8m4oSfTSy5cZ3zOBAZ5zbn9hAeXEhn104W0VdBoWyVvpQyyW7zIybLzuJA51xfvD4a5jBP16qoi7Zp4IufSSvQ48EHUZeMTO+suhUHPj+H16jPZbglisaNF+OZJUKuvSRvFNUhSbbCgqMr/7ZqZRGI/z4qddpjyX456tOI6KiLlmigi59dMZ12eJgMTO+8M6TKS+K8O+PraetK8G/Xj2HYv1FJFmggi59xOIJ3Vg0iMyMmy6ZTVlxIV9/cDU79nVw+1/Op6qsKOjQJMcpa6WProTrpOgQ+NiC6Xznmrm8sGkPV33vTzS1Hgw6JMlxylrpQ5NzDZ1Fcydy90fOYldbjD//3p9Y3rQr6JAkh2WUtWa20MzWmNl6M7u5n/03mdlKM3vZzB41s8nZD1WGQqLbSXQ7RRH1dIfKGVNG85u/PYeKkkKuueMZ7nqmCXfdVSrHbsCCbmYR4DbgMqABuNbMGg477AWg0d3nAL8EvpntQGVoHFpPVCP0ITW1upz/vuFczp1Rzf/97at8+r6XaI9pUi85Nplk7ZnAenff4O4x4F5gUfoB7r7E3XtWyH0GqMtumDJUVNCDU1kW5ccfPIObLp7Fb17czJ9/74+8vlN9dclcJlk7EXgj7XlzatuRXAc82N8OM7vezJaZ2bKWlpbMo5Qh05lIjgpV0INRUGB84sKZ/OeHzmDbvg7e+e9P8vOlm9SCkYxkNWvN7C+ARuBf+tvv7ne4e6O7N9bU1GTzpSVLekboxbpsMVAXzB7Lg588j7n1VXz2V6/w0buW03qgM+iwJOQyydrNQH3a87rUtl7M7CLg88CV7q5PXo7qKejRQt29GLTxlaX813Vn8YV3nswf1rRw6bef5OEV24IOS0Isk4K+FJhpZlPNrAi4BlicfoCZvQW4nWQx35H9MGWoxFILMegql3AoKDA+fN40/vvGc6geUcT1dy3n4/+1nO37OoIOTUJowILu7nHgRuAhYBVwn7uvMLMvm9mVqcP+BRgB/MLMXjSzxUf4cRJyOikaTiePr+B//u5c/uHS2Ty6egcX3fo4dz/bpEUzpJeMbv139weABw7bdkva44uyHJcEpCuhgh5W0UgBN7x9BpefNp7P/+YVPv+bV7nnuU3ccsUpnDl1dNDhSQgoa6WXzp4Ruk6KhtbU6nLu/vBZfOeaubQeiPHe25/mhruf541dbQN/s+Q1Tc4lvajlkhvMjEVzJ3JJwzjueGID3398PY+s3M77z5rE3759OmNHlgQdogRAWSu9HLpsUQU9J5QWRfjkRTNZ8pkLuGreRO56pokF3/wDX39wNbsPxoIOT4aYslZ6iamHnpPGV5by9XfP4fc3LeCSU2q5/YnXOOcbj/GV+1eydW970OHJEFHWSi8x9dBz2tTqcr5zzVt46FPnc+kp47jzTxs5/5tL+MwvXmLNtv1BhyeDTD106UU99Pwwq3Yk33rfXG66eBY/fup17l26iV8ub+at00bzwbOncHFDLYX6n3beUUGXXtRyyS/1o8v40pWn8IkLZ3Lfsje46+kmPn7384yvLOHqxnqunl9H/eiyoMOULFFBl14O3fqv0VteGV1exMcWTOcj503jsdU7+OnTG/mPx9bx74+u423Tx3B1Yx2XNIyjvFglIZfp3ZNeOnWVS16LFBgXN9RycUMtm/e086vlzfxyeTN///OXKIm+woUn1/KuORO4YHYNJVFN/5BrVNCll0N3imqEnvcmVpXyiQtncuPbZ7CsaTf3v7yF3728ld+9vJXyoggXzB7LJafUcsHssVSWRoMOVzKggi69xOLdFBYYBQWabXG4KCgwzpw6mjOnjuaWKxp4ekMrD7yylUdW7uB3r2ylMLV/wawaFsyuYXbtSMz0+QgjFXTpJRbXAtHDWWGkgPNm1nDezBq++mfOi817eHjFdv6wZgdfe3A1X3twNbUVxZwzo5qzp43h7OljqBulk6phoYIuvcQSKuiSVFBgzJs0inmTRnHzZSexbW8HT6xt4fG1LSxZvYNfP59cFqF+dClnTB7N/CmjmD95FLPGjtRfeAFRQZdeYvFu9c+lX+MqS3jvGfW894x6urudtTv28/RrrTz9WiuPr23h1y8kC/zIkkLm1FVy2sQqTq+r5LS6SiZWlapNMwRU0KUXtVwkEwUFxknjKjhpXAV/fc5U3J2m1jaWN+1m+abdvNy8hx89uYF4ar72ytIoDeMrOHl8BSePH8ms2pHMrB1BWZFKUDbptym9dKrlIsfBzJhSXc6U6nLePb8OgI6uBKu37eeV5j2s3LqfVVv38bPnmujo6j70fXWjSpkxdgTTqkcwraacaTXlTBlTzriKErVtjoMKuvSilotkS0k0wtz6KubWVx3aluh2mloPsnb7AdZt38+a7ft5reUgz2xo7VXoiwoLqB9VyuQx5dSPKqVuVBkTR5UysaqU8VUlVJcXq+D3QwVdelHLRQZTpMCYVjOCaTUjWHjquEPbu7udbfs62NBykKZdB9nU2sbG1oM0tbax9PVd7O+M9/o50YhRW1HC+MoSxlaUUDuyhNqKYsZWFFM94s2v0eVFRIZR4VdBl140QpcgFBQYE6pKmVBVyrlU99m/t72Lzbvbad7dxrZ9HWzZ08G2ve1s3dvBqi37WLJvB22xRJ/vM4Oq0iijy4sYU15MVVnycVVZEaPKolSWvvlVURqloiRKRWkhI4oLc3LysowKupktBL4DRIAfufvXD9tfDPwUmA+0Au9z943ZDVWGQpd66BJCPUW3YULFEY/Z39FFy/5Odh6IsfNAJy37O2k9GGPXwU52HYzReiBGU2sbL7yxhz1tMboSR19gu6wowojiQkaUFDKyuJDynq+iyKHHpdEI5cURSosKKYtGKC2KUBqNUBKNUBItSP2belyYfFxcWDBo7aIBC7qZRYDbgIuBZmCpmS1295Vph10H7Hb3GWZ2DfAN4H2DEbAMrliimxEl+sNNcs/IkigjS6JMqxn4WHfnYCzB3vYu9rZ1sbe9i30dXezviLMv9fhAR5wDnXH2d8bZ3xHnYGecXQfbOBiLc7AzQVss3qvvfyw+tmA6N1920nF979FkkrlnAuvdfQOAmd0LLALSC/oi4Eupx78Evmtm5u5H/1/gcXh8bQv/7/6VAx8ox6VpVxsXzMogI0RymJklR9/FhUysKj3un9Pd7bR3JTgYi9MR66a9K1no27sSdHYln3d0JeiMdx/6t7Orm3mTq7L3H5Mmk4I+EXgj7XkzcNaRjnH3uJntBcYAO9MPMrPrgesBJk2adFwBjyguZGbtiOP6XhnYzNoRXD2/PugwRHJCQYEdar+EwZBG4e53AHcANDY2Htfoff7kUcyfPD+rcYmI5INMzn5tBtKHbHWpbf0eY2aFQCXJk6MiIjJEMinoS4GZZjbVzIqAa4DFhx2zGPhg6vF7gMcGo38uIiJHNmDLJdUTvxF4iORliz9x9xVm9mVgmbsvBn4M3GVm64FdJIu+iIgMoYx66O7+APDAYdtuSXvcAVyd3dBERORY6A4SEZE8oYIuIpInVNBFRPKECrqISJ6woK4uNLMWoOk4v72aw+5CDYmwxgXhjU1xHRvFdWzyMa7J7t7v/ByBFfQTYWbL3L0x6DgOF9a4ILyxKa5jo7iOzXCLSy0XEZE8oYIuIpIncrWg3xF0AEcQ1rggvLEprmOjuI7NsIorJ3voIiLSV66O0EVE5DAq6CIieSLnCrqZLTSzNWa23sxuDjCOn5jZDjN7NW3baDN7xMzWpf4dFUBc9Wa2xMxWmtkKM/tkGGIzsxIze87MXkrF9U+p7VPN7NnU+/nz1BTNQ87MImb2gpndH5a4zGyjmb1iZi+a2bLUtjB8xqrM7JdmttrMVpnZ2UHHZWazU7+nnq99ZvapoONKxfb3qc/8q2Z2TyoXBuXzlVMFPW3B6suABuBaM2sIKJw7gYWHbbsZeNTdZwKPpp4PtTjwaXdvAN4K3JD6HQUdWyfwDnc/HZgLLDSzt5JcUPxb7j4D2E1ywfEgfBJYlfY8LHG93d3npl2zHPT7CPAd4H/d/STgdJK/t0Djcvc1qd/TXGA+0Ab8Jui4zGwi8Amg0d1PJTkF+TUM1ufL3XPmCzgbeCjt+eeAzwUYzxTg1bTna4DxqcfjgTUh+J39N3BxmGIDyoDnSa5NuxMo7O/9HcJ46kgm+zuA+wELSVwbgerDtgX6PpJcjex1UhdUhCWuw2K5BPhjGOLizfWWR5Ocrvx+4NLB+nzl1Aid/hesnhhQLP2pdfetqcfbgNoggzGzKcBbgGcJQWyptsaLwA7gEeA1YI+7x1OHBPV+fhv4R6A79XxMSOJy4GEzW55aYB2Cfx+nAi3Af6ZaVD8ys/IQxJXuGuCe1ONA43L3zcC/ApuArcBeYDmD9PnKtYKeMzz5v97Argk1sxHAr4BPufu+9H1BxebuCU/+SVwHnAmcNNQxHM7MrgB2uPvyoGPpx7nuPo9ki/EGMzs/fWdA72MhMA/4vru/BTjIYW2MID/7qV70lcAvDt8XRFypnv0ikv8jnACU07dVmzW5VtAzWbA6SNvNbDxA6t8dQQRhZlGSxfxud/91mGIDcPc9wBKSf2pWpRYWh2Dez3OAK81sI3AvybbLd0IQV8/oDnffQbIffCbBv4/NQLO7P5t6/kuSBT7ouHpcBjzv7ttTz4OO6yLgdXdvcfcu4NckP3OD8vnKtYKeyYLVQUpfLPuDJPvXQ8rMjOQar6vc/dawxGZmNWZWlXpcSrKvv4pkYX9PUHG5++fcvc7dp5D8PD3m7h8IOi4zKzezkT2PSfaFXyXg99HdtwFvmNns1KYLgZVBx5XmWt5st0DwcW0C3mpmZanc7Pl9Dc7nK6gTFydwkuFyYC3J/uvnA4zjHpI9sS6So5brSPZeHwXWAb8HRgcQ17kk/6x8GXgx9XV50LEBc4AXUnG9CtyS2j4NeA5YT/LP5OIA39MLgPvDEFfq9V9Kfa3o+awH/T6mYpgLLEu9l78FRoUkrnKgFahM2xaGuP4JWJ363N8FFA/W50u3/ouI5Ilca7mIiMgRqKCLiOQJFXQRkTyhgi4ikidU0EVE8oQKuohInlBBFxHJE/8ftBDZCqJovU8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = sim.relativistic_ir()\n", + "r_ir = sim.relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)\n", + "plt.plot(r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Now, that the impulse response is ready, `simulate()` method can be called to produce a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since, the new light curve is produced by the convolution of original light curve and impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter `full`." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'full')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, some times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to `filtered`." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'filtered')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To learn more about what the lags look like in practice, head to the `lag analysis` notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Channel Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we demonstrate simulator's functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where you can create a new channel for each energy range and simulate.\n", + "\n", + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, there is an option to simulate light curves and add them to corresponding energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.simulate_channel('3.5-4.5', 2)\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Above command assigns a `light curve` of random-walk distribution to energy channel of range 3.5-4.5. Notice, that `simulate_channel()` has the same parameters as `simulate()` with the exception of first parameter that describes the energy range of channel.\n", + "\n", + "To get a `light curve` belonging to a specific channel, `get_channel()` is used." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABLAklEQVR4nO2dd5hU5fXHv2dmtlCWvkuHpSNIERakKWBBEGvEqNEYjQlBiTGxG40xRn8SNcXEFmISjd0olohBIsUOuEiVzrJ0Yemd3Z15f3/c+8688869M3dm79Q9n+fhYebeuzPvzNx77nnPe873kBACDMMwTPbjSfcAGIZhGHdgg84wDJMjsEFnGIbJEdigMwzD5Ahs0BmGYXIEX7reuFWrVqK0tDRdb88wDJOVLF68eI8QothqX9oMemlpKcrLy9P19gzDMFkJEW2228chF4ZhmByBDTrDMEyOwAadYRgmR2CDzjAMkyOwQWcYhskR2KAzDMPkCGzQGYZhcgQ26AwTJ/PW7MbWfcfSPQyGiSBthUUMk22U3j0Tlwxsh3eW7kC+z4N1D01I95AYJgz20BkmDt5ZugMAUF0bSPNIGCYSNugMwzA5gqOQCxFVAjgMwA+gVghRpu1vCuAlAJ3M13xcCPFPd4fKMAzDRCOeGPpYIcQem31TAawSQlxIRMUA1hLRy0KI6roPkWGyB9mjl4jSPBKmPuJWyEUAKCLjLG4MYB+AWpdem2HSTo0/MmZu1WD9xQWb0eWeD7D3yMlUDIthwnBq0AWA2US0mIgmW+x/EsApAHYAWAHgFiFExBVARJOJqJyIyquqqhIeNMOkms82RE5OawORBv3VRVsBADsPnkj6mBhGx6lBHyWEGARgAoCpRHSmtv88AEsBtAMwEMCTRNREfxEhxHQhRJkQoqy42FKfnWEykv1HI6OHfguDvnrnIQCA18MhFyb1ODLoQojt5v+7AbwNYKh2yPUAZgiDDQA2Aejt5kAZJp1UHY4MoQQsQi4SHxt0Jg3ENOhE1IiIiuRjAOMArNQO2wLgbPOY1gB6Aahwd6gMkz4e+e+aiG3b9h9Pw0gYxh4nWS6tAbxtrtr7ALwihJhFRFMAQAjxLIDfAnieiFYAIAB3RcmIYZicYOmWA+jZushynz+K984wySKmQRdCVAAYYLH9WeXxDhieO8PUG7qVNLbdV+tng86kHq4UZZgEqdVSGQPKIum6XYdTPRyGYYPOMImiZ7ks2bo/+PihmatTPRyGYYPOMIly4HhN8PH+o9W47Jkvg8+tCpEYJtmwQWeYGMiK0DZNCsO23/Ty18HHm/YeDdtnlaPOMMmGDTrDxGD/McMTH9y5ue0xugFnD51JB2zQGSYGg377PwBAg3yv7TF6VstpneyNP8MkCzboDOOQBnn2Bl330Mf1aZ3s4TBMBGzQGcYh0Tx0vZCohvPQmTTABp3JanYcOI7Su2fiD7PXJv29okmc6y3p/AGOoTOphw06k9X8b9UuAMCf525I+nsdPWkv8a9ro7OHzqQDNuhMVtO+WYOkvr5a/WklxiVj57r55rRFRlLjD+B4tT8l78UGnclqpIRt+2YNcMtrS1zvFNT1lx8EHzdrkBd8fPu4ngCAWjO0ohr+fJ/HsvkFUz8Z89h8nHL/rJS8Vzw9RRkm45j84mIAwPYDx7F96XE0KczDby85NSnvpdroPK/hC0lPXF0U9XkoQueFqb9sP5A6mWX20JmcYtv+Y0l77VPahppwyY5EMlauhlh8HmIPnUkLbNCZnKJzy0ZJe+0+7UIGXXYkCsbQTfs997bROHSiFmu/ZbVFBvh9CrKvVNigMzlFMlu/je4Z6oPrNUMuMoYuDbv03L+s2Ju0cTDZw1+U7KtACmZtjgw6EVUS0QoiWkpE5TbHjDH3f0NEH7s7TIZxxvGa5GQTLPt1eP8W3UOXMXRPtGR1jbcWb0Pp3TMt+5UyuUcqwnDxLIqOtWsrR0TNADwNYLwQYgsRlbgxOIaJlx5RugjVhQJfuO8jDbrUcAloHroTXvtqCwCgouoIiosK3Bgmk8GkIpXVrZDL9wDMEEJsAQAhxG6XXpdh4iJZl4zuePu81h56PAadYBzL66f1g9oUVA87NegCwGwiWkxEky329wTQnIjmm8dca/UiRDSZiMqJqLyqqirRMTNMkDN6tAp77rYX5CGgecM8FPi82nbTQ9fy0OMJuSB54X4mA8kkD32UEGIQgAkAphLRmdp+H4DBACYCOA/Ar4iop/4iQojpQogyIURZcXGxvpth4ka/SNyOU7ZolI8J/dpGbP93+TYAwLtLd4SNQ/XQdTkAHXmoSNq8gskkUhFDd2TQhRDbzf93A3gbwFDtkG0APhRCHDXj7J8AGODmQBnGioBmNN32gmoDAnkWYZT9x6oBAJV7jbx3Kd3iVTz0WEORIRe25/WDjPDQiagRERXJxwDGAVipHfYugFFE5COihgBOB8BdcpmkIoTAgop9Ydv0RhN1xe8X8HpCl8miX56Nr+49B3dP6A0AGNChKY5V1wY7FOX7PPjZWd0BRN5s7GB7Xj/IlCyX1gDeJsPz8AF4RQgxi4imAIAQ4lkhxGoimgVgOYAAgOeEELrRZxhXOWoheOS2bG1NIBBcAAWAErOv6K5D+QCAh2auxrtLd+Cs3kZiV4HPgwb5xmVV6xeI0hMjuNDq1PAz2cXuQyfCnn+1aR/an9Y+qe8Z06ALISpgET4RQjyrPX8MwGPuDY1homOVvy29oBGPzEHbZg3w1o0j6vQe/oCwLFZSFz9XbD+IEd1aojDPA4+HkGfeAKr9ATSAvUWXL+H2rILJDOatDU/2+/nrS3FJkg06V4oyWcvjH0aWVcs45Y6DJ7B48/46v0etnUHXrpzjNf5gi7p8M2c9mkDXH2avxecbjGrSldsP1nmcTOYRV8aTW++Z8ndkGJeYuWJnxDY345T+gIAQCIuhS7zaxbpkywHsP1YDIKTEGK3JhdqQ4/f/W+fGcJkMo33zSK3+k7XJ1UVng85kLVaNmPVMggf/swpPzUusm5HMMVdj6BKP5rWvULxsX1CJkSV06zNWN/R5a5Jbf8MGnclaxvVtE7Ht+S8qw57/4/NNeMwiNOMEGdu2CrnoHrqKDLmwQa/f1NRG/v5TXlqc1Pdkg85kLYlkh8z4ehtmfL0t+Pzdpdux72h1xHEna/2Y8MSnAACfN/Iy0e356V1a4PQuLQA4C7no7HG50xKTfqrNG/oPhncO255M1UU26EzWIisxGxeEJ2ut2Ga/yHjrG8tw6xvLAAC7Dp3ALa8txZQXI72mXvfNwpZ9RtHQtwcjO87osfoTtaH0xkRCLieSpBLJpA/5+/doXRS2vTqJMzc26EzWIm1qg/zw1MBNe486/HvjBTbvi3786p2RzSp0L2vZ1gPwmYuneWbIJZ4Ll9KQEcEkl2oz5LJh95Gw7cksMGKDzmQduw6dwGXPfIFvDxqFGyO7tQzb76RR9MKKvcHS+12Hoh9vle9udU1Kz1we/8k6+wWwSwa2C3tuFW9lshsZcutWHN5FK5m/NRt0Juv4+2ebsHjzfjwxZz0A4M7xvcP2HzxeY/l3agbMFdMXhDV2lhw9WYsH/7MqbJvaek5ipbsuhblkXrm+QKuiqzcmsoC6dOsBLN68L/aBTFqoNlMUS1tpBp1DLgxjGOqqwyexX1vELPB5UDltYvB5w3zr6kw9B9hvsWj53Keb8I/PN4Vts9I419MWAWD2ql0AgK7mBXzgWA2enm+dMqnfTBKJq17y1Oe47Jkv4/47JjVID10/fziGzjAAhj8yB0Me/gj/XrwtbLtekdeikXX3Hz1MYtVw4P3lOyK2xdundFJZx+DjR2dZp0ye1KbdXP6fe0jD3bVV+GwunuyneGGDzmQNxyzEuICQtywLjaptYpS6R66GYPYdrcZdby7Hem0BS339WFw11DDkDaIpcplUa7OFeKfhs1ZGVskymYU8D0uKCsJmkBxyYZgoSHt781k9AEQaSwB4dNaaCI9czTaY8MQneL18q+XrTx3b3dE4Gpkqi07a0EmPvHUTYzYR7zR8yktfx3U8k3pq/AH4PBThENg5HG7ABp3JemTIRUqufLFxb8QxT8/fiE/Xh/c4Vz30aJku7ZtFanIAke3v9h2LLFCyoyYgMLBjMzx99SDjOYdcco7q2kCwalhFD7e5CRt0JuuRBl3mgcvFSZ2fv7407LldCMcpw7qGp0vO+Hq747+tqQ0gz0vBqtJoyoxMdqIqcALAL84xunI+OXd90t6TDTqTFUTrzynXRC0q9KNyrLq2DiMCfnxGVzx4cd+E/rY2EECe16PIBLBBzzVO1ARQqBj0/5rrHvPWJk+gy9ElQESVRLSCiJYSUXmU44YQUS0RTXJviAwTvbouGHKJs9ryeB099HyfB9cOLw0+10Mw0aj2C/i8HqUZBodcco0TNX4U5oVM7FVDOyX9PePxacYKIQYKIcqsdhKRF8DvAMx2ZWQMoxAtrc8T9NDjM+huC2K1bJRvuX3tt5HSAcu2HsBn66s45JLDzFyxExurQrISPxhRCgDIj3cqGQduvvLNAN4CsDvWgQwTL9GyQKRnHq9B/9W738Q8Ri/Rj4aVKiMA7LAQ9wKMvHhp0NftikyXZHKTan/AstuWGzg16ALAbCJaTEST9Z1E1B7ApQCeifYiRDSZiMqJqLyqKrlC70xuEc2DlWlh8Rr0WNx/QR88OiminW4EVw4x8s+njO5quf/6f34VUd0qkQqNz368EQBw6dOfY+rLnJKYC/RqXYTxFpr9APBkgk1XYuHUoI8SQgwCMAHAVCI6U9v/JwB3CSGizhuFENOFEGVCiLLi4uL4R8vUW5wo1Llt0EtbNbRMO9OZdll/VE6biO4lRbbHbD9g7aXr0+8lWw5YttaLRrQFYyZ91PgDQeXNVOHo3YQQ283/dwN4G8BQ7ZAyAK8RUSWASQCeJqJL3BsmU9/Rs0Ckgp0qkiULe5zSu429AQase4kmypKtB4KiXar0bp5NmGbD7si4ux2cw56ZVPsDwUVvnUtPa5+U94x5xhJRIyIqko8BjAOwUj1GCNFFCFEqhCgF8CaAm4QQ77g/XKa+ohuteyeeAgBo07QwuK1A8YZG9zRmgNF0WGJ5/fFquKg8f/2QsOe/emclLvjLZwCAGqVi1U4m4OWFW2xfW8/OOc7NMTKSGn8AeTZOwYUD2iblPZ24IK0BfEZEywAsAjBTCDGLiKYQ0ZSkjIphNHQjVlSYBwBo0yRk0NVFyXZKdefAjs3C/rZpA+Nv9cYDOp1bNkxorAAwplcJZv9Cj0waqJWCdjox0dqUPfdpRdhzzpDJTGr8Ank+6993YMfmSXnPmHNUIUQFgIiVISHEszbHX1f3YTFMOPe8vSLseVnn5nhsUn9M7G/t6by6yPBwA0LgzvN64XvPLQzue3RSf/zEou2cyvIHxqGJedNIlJIia9XHEzb572os/NT2TW1fV9d7T2IDHCYBHvzPKnQvaWxWA1v7zC1sUlzrSnxBR6beMGvltwCA8adar9KnmmVbD4Q9JyJcrsjU2vHTs3pEpBPGEkf61w+H1tmYA5Gt8SSHT1pXqFbuPRZ8HO2Cr9Ra7CXSLJtJHlJPv8DniVj0Lm3ZMOx3dhs26IwlU14yPFhV9jPbqJw2EUIIfL1lf9j2WCX/Z/Z0JwPLroDEriH02MfnBx9Hi+8fPRn+92zQM5Maf6SH/uEvzoSFDL9rsJYLExXpqWcrRIRDJ0IGPN/rwaTBsT17t97bCun93zm+l+3f+qMYdD0VLtqxTPpQC8ckBT6v7czNDdigMxGopeqvLLLPtshkwlISFXv3wS2j4HK6elTm3T4mYpv0vtuaGTqyMYZKNCOtZ9/Udwf94LEa+AMCizbtw7w16S1Uv/WNpWHPN2vhsWTDBp2J4PkvQj017cIDqaZDc2tNcjv+7zv9go/VkETrJoUgogijePngDnUboA1WecjSWMs898GdW9geY4VeQFWfPfSdB49jwIOzcfVzC/Ddv36J65//Kq3j0SWUZyxxLqnsBhxDZyJQY3yLNmVGV/lzTmmN57+odHy8qrzYuCB0mst0R5+Xgp6yXCe4eGD7uAp6nKDH0a+avgDXDu9sjMFDYf+rRDPS6ucBIhtO1yd2mBW4Cyoy4zzVOa1Ts5S+H3voTARCiVE0TGK8Lx5qAwFbNUOVf08Zjm7FjdCrdSjkMrRLpAfssyj4GNWjFa4b2aVuA9XQpQO+rNiLO99aDiCUW7/PQuclmkHv264JAOBXF/QBUL9L/wt8xvl5StsmaR6J9e8wZXS3lI6BDToTgXpeOtEySQU1tQI+L+Hs3iW4+Sz7Hp9DSltgzm1jwhaerBYnj9ikDrqNVR7yYXORdqmZiumzCMus22U9Uyi9eyYemrkaQKhAqj7XFcmQ4AGl/V/3X36QlrFYdcCqS7VxInDIhYlA9TP8GaITUhMIwOfx4O/XDYl9sAV3nNcLZ/ZIvSCcXWEJAFxmxu2tbjjPfbYJ95keuB3b9xvhhg27j6BXDF2aXOXzDUb/2J0HTwS31QYE/AHhulhbLP5qKmaqpHoMmeF+MRmF6qHbFcGkmqrDJ+uUbz11bHf062BffZks7MSZgJD2zA4bJcZYfLzOyOiY9U12p5bWhbJSo4T+1PbhIZd0LBTrFbyAdWgvmbBBZyI4EEf3+lTx6fo9YV5YtmCXiw6EvPerhiTWmuyu8b0BABMypJo3lbz+1RbMW7M7qMJJCP+e01FsZdVGMMX2nEMuTCSLKjMzYyDXkN57JwsRsAsHxO6U1LKxoRVTHxtM3/WWoe3z3LVGR0y9sjYdHrpVii976EzaqU9JE/MtCn9SRbT4eqGDxWjZgPhkTf0y6Kq65I/+ZfSs19Up05HKKcM/KhxDZ9JObTLFJjKMukjk1hWr7BaJlUHSjVahqaV+ojYzir9ShV68A4RrzAPR5YeThaz8ffDivsFtqc5yyQmDXusPYOzj8/FBnK27GGvqU+VhtBh3slGLjmbcNCJsn9VvoDeyCBr0DKnmTRVHLcTVdEnidJzD8h48sGOzoLwEe+gJcLTaj017juKuN5eneyg5QX0y6OlElfUd1Kk5Hr881HbA6jf40QvlYc/lDSGWHHCuYRVNqdG+r1SfwjsOHMeJmtACraxUjjYLSwaOFkXNXqGHAfgB1AohyrT9VwO4CwCZx90ohFjm7lDtkdMrJ42EmdgM6tQc5Zv3xz4wxYzs3jLdQ6gTXVs1QsWekFhTgRYnV2V9v7b4/r+s2Bv2XC6q1oeeorX+ALbtP47SVo1g9Wn1m1oqs1w27z2K0Y/NDz4nktITAt4UzwDj8dDHCiEG6sbcZBOA0UKIfgB+C2C6K6NziFzl596K7jCqRysA8QtiJZN8rwf92jdL9zDqxEe3jg57ri+Kvq0IOe2IkaL5u8v6gYjg9VC9WPN4+IPVGPP4fHxr873oOeCpnGXuOnQy7LmHKJiumJUhFyHEF0II6VIsAJAc6Tob9OkWUzf8AQEiYFT3VrZt1FKNXwhESQrJCtT+oU9fPShifzyhE3kz8HkItfXAQ/9s/R4AwIHj1Y60a1Jp0PWZFlEoLz5T0xYFgNlEtJiIJsc49gYA/7XaQUSTiaiciMqrqqriGWdUapQLofTumfj97LWuvXZ9pDYg4PNQmCJhuvEHUj99dYuiwsjIptrEWqJmRPQoaRz1NRvmG6+Z5/XUj5CLeR5WHT4ZFkNXm4SrpLOLk4cotCia4hi6U4M+SggxCMAEAFOJyLKdORGNhWHQ77LaL4SYLoQoE0KUFRe7p6uhF1b8Ze4G1167PhIwdTB8Hk9GFK1Ij8yT4umrW3zwszPw1PcMj1z2CpU55CptmoaMU6wb6Vm9SwAYi25HTtbgun8uQkXVEbeGnHHI2cv3/74I1co5afc9pdIP0d/KQyH55oxMWxRCbDf/3w3gbQBD9WOIqD+A5wBcLITYq+9PJvXBQ0kltaY3nOfNjOm8nD57stRD79iiISb2bwsAaGCmGhb6ImWJ/3LVIJQUFaBNk0Js2mPf6eaSge2CKpg+jwcfr6vC/LVV+O37q5Iw+sxANeJNlBnPniPh8evrR5YCSG3Ixa+tYRAZ/4DUn7MxDToRNSKiIvkYwDgAK7VjOgGYAeD7Qoh1yRhoNDLBi8wlpFKdz+vJiAU3WWTj5gLTp3eOxfs3j3Lt9Zwiv08rWeJ8nweL7j0H3x6yXviTAlSqZnuel4IOTbbe8JygGuhosxe5tpDKkIvu9BiLomQ+TtkwjPdzcExrAJ8R0TIAiwDMFELMIqIpRDTFPOZ+AC0BPE1ES4mo3O7FkoFudLrHiD/qLNt6AKV3z8QLX1Riv0WzgfqGPyDg83qQ5zGMRbobKOw2swjctFcdWzTEqe1Tr74ofQ8nNyf9e29SmIfBnZtjYMdmwW0+LwXDEekskko2arn/q1H63MqvIJUeun6DyfN6gjfXVF85MQ26EKJCCDHA/NdXCPGwuf1ZIcSz5uMfCSGam2mNdqmNSaO6Nvxr6x+nTOrFT30OAPj1e9/glteXujWsrKVW8dCB9Bca3fuOMSFcXJl5ufHxcvu4ngCAZg3zbI+RDa717726NhDR0i7P4wk268hhe45DJ0I5+ut22a8VbN13DEBqz9m3vt4W9tzrIVwzzGgzqLcLTDZZnghmoIdcdCnNeNi4O3cXlpzy6qItqDp8Mljllu5MFzlryoXemVcO7YTKaRODrdOsuGigobSof+81/kBEqEatRDxkocdd35AGNJWniq4t4yHCL87pgY3/d35QniFV5IRB10MuIo6Jjq6DsT3BZgO5SJ6ZQ5vuNQr5/rp3mqvYfe8nay0MupLnbKVxUt/o286Ynafz5t+maWGw6CvV5MQVoodc4vktv/vXL10eTe4Q9NDTkOny6qIt+GSdUasgY8R5GdLfNNnYfe/VFh66+p3U1Gb/DKauyHTQp+elJ3U51SEWnZy4Qir2hIdJ4lnhXr7toNvDyQoWVuy1LKNWqxVlDF2XJk0F98xYgWv/sQiA4ZkCqc/pTRfyc+ohl+raAAq0WYr6lew9Wm1bGl9f2FhlpHvOXrUr6e+18+Bx/G7WGkwd2y24LVrLwVSQEwb90VnhlaF1DfnOXbMLV01fkPbsjmRyxfQFGPbInIjtd88IKVbmedLnoavIMFgO/xxhyBupHkqstgi5qOw5chLDHpkTJvJV30hlmGP4I3PxzPyNqKgK1QxE+31SQU4Y9In92oY9r6u4/Q+fL8eXFXszpkFyKlEFooKGJY0GfaGiMFhP7HnIQ3cQcrG6yW0xMz1yhcMnoi/23nJ2j+DjZg1C2UMPpajQ6r8rQ026o3WhSgU5YdAHdQ5v/TRnjTvTLRnDrU+oBiIoz5rG4qIrpi8IPs7lGZNKXtBDj522aEWufU3Pf14Zse3cPq2DejdqQZXai/W5zzYlfWw66VgIVckJg6575Cfq0GOxUX4ozejvaTghUkG0GUx7RTRqg5nCmSmpnDlmp2zxBj302CGXHRZZWekUpkoGVllW/1u1C5cOag8gXDa7OM3qoJv3pnd2lN4lWZdwM0XpqNLKKlc7wege96/eWYmSogIcOlETlrYppXN1rem0kVt2yhbpoav6JYGAQG1ARBj03YfDtUwAoHLPsWD6nhssrNiLAR2bpTynWmInj9292PDQu7Qy+sI2zPfWm4VzO3LDoCep8OWbHYdcfb2NVUfQtVWjtJdo62JmLy7YbHncaZ2MUFbTBvZVjakknvqCbKYgL7K1nDTuThbdpr7yNSb2n+jKWDbtOYorpi/Ad8s64NFJRou8EzV+7D1aHTabc5tlWw+gW0ljNC7w4Zn5G4Pbe5Q0xvrdR/CT0V0xrm8bvDllOAZ1ao6zerdGvs+T0mtrTK9izF+bWWHZrA+5bN13LDjt/NGoLjGOTh9fbtyLs3//Mf69eFvsg5OMPpW3wuehoPGozhDxsyuGdEr3EFLCcXOWuF4pcZepm6kurpKzs7XKWG544SuMnDY3aWsax6prcfFTn+PGlxZH7Ovd1hAokze7stIW8HgIxUUFQcfjnFNaJ2VcOpmoz5/VBn3b/mM449F5eHmhIdbzy/NPCe5zcrL9wMxzTgVrvjW8/VUue/2J4ERueMn952ZcE+LRPd3T0M9kpM7L7sOhnHL5G+jdcZLFvqPVWLr1QDAev2zrgeC+zzcYmUcnk3ReyPPz0/V78PWW/cHfvWurRsGMl71H7EX0rhjSMSnj0kn3TNuKrDboK7eHFwV5PBSM++p9/qz4WMliuW/iKRjft03Mv3nxy0q8FkXtzQ65sJPuwgMgfJHJ7sZXVJgX8tAzxKDXF2QXno4tGga32YVcLh+cnG6Plzz1OS556vOoXmiyNH7Ut/zO018Er1MBYGiXFgCAtk2tOxUBqIOSU3SEEMHCrX4PfIiPVie/eClestqgT3np64htncyL4EicOeTjT20TJnRkx6/e/QZ3z1gR12sDIa8j3XmqQHh+c7SLMtNCLvUFX1DLJfTbyDaLukF/7PIBqJzmTrxcReayR0vDe+SD1aj1B7Cx6ggOHHNPdtpucj2sa0v4/bG18ZPlOL+yaAuGPTIH3+w4iMMnMrNGJf3WxWWuHmbEWePNB+3QvGFSje0f/2f0/cgEg65muUQrGmIPPT2EtFzUVmtyhpfa8yeaY/Tywi2Y9c23OPv3H2PCE5+69p52abW/uagvLhrYDgU+DyZFmZmoSpa7bJqFJMIKUyZkqRJ+0hnZvaVr75cI6bcuLiO9GycLfzr6TWB4V/d+HOkJp7vwYMeB43hK6bl6stZve6yMoT80c3XSx6WSbv31dOMLFnRFzqRSvRB3+7+XRd0vf6udLmrI2M0a830edG7ZCGsfmoCuxfZNbEZ0C123boaF5O8S7fzs2iq+5jpu4yhtkYgqARwG4AdQqzewIGN14AkA5wM4BuA6IURkPCQFBKsbEyhX1zUwvqxwvzVqurXFb3ihHKt3hhZmj9fENuiAsUBXUmQft3ST8sp9EduevnpQSt47E5Dyudv2h4pUah2EGpLBtv3R5aST0fbOao3q/H6x17ckajPxusqAhL2u7EIU5SVTtWhtRzzvPjZKN6IJAHqY/yYDeMaNwdmxZe8xjJw213KfV3rocZSry2nSByu+jdh3y2tLEhghsG7XYRyy0KBId073QS3Webw60qCXmVIK4RdGcselol8vw7u2xPmaXk8uIz3Bv35cEdwmvUK7dZ7BmvxFqkiGQa+0qLa0ujad4Obw5Ge1qsQ9r29rDOzYDD9Mc+q0W7eTiwH8SxgsANCMiJJ2Bb6yaIttIwqrLju/fX8VPvzG/oRQ0x113l26I6ExjvvjJ7jyrwsitjcuSE+1nUSvqrXy0Fs3SY0nbod+wdQn7xwIb1ohCYXsrC/ZVHxHWy1Ev5IxYdBbuiWCrBh9o9y9ug95c7By+kuKCvHO1JFol8RiKyc4NegCwGwiWkxEky32twewVXm+zdwWBhFNJqJyIiqvqkq8wiraXVdOV9WFvL9/tgk/eTG8SEFN1+vVuijq+72/fAceeO+bsG17j8ROi1ylhDYk6U4Y0dM59Y5NAPDrC/tEbEtVB5hafyBC01tWTtYXrKpBgx66jQVt3aQQj3ynH0Z2b4mOLeIzKjX+AJ79eKPluaBiJQERbYEwnTQxZ8J/nrMeizdHhvASQba2tEr1TffamMTplTJKCDEIRmhlKhGdmcibCSGmCyHKhBBlxcWJF4lE++6kh37l9EjvWEVNxfPFyBz46StL8PwXlWHbBj/0UdypkUB6hZOsxnu82vgefqZIkJZYeOj+FEnoPvzBatz6RvhCXCZkBqUSK+MgQ4jRDMdVQzuhXdMGccsdv7l4G6b9dw2eVkrsrZi/dnfEtveWJTaDjZdWjeMT3Xr4klODj19btDXKkc7xBD30LDfoQojt5v+7AbwNYKh2yHYAanlWB3NbUrCK20kv22nhTiKpeEc1g/jorDWWx+l3cDVOnU6DfvXfIm9yciG4T9vosxSr9YBkMGd1pNGo74JLQGwPXeLzUtwL73JGtCfGrPPx2esiz+0YXr1b3DW+V1zHt1VCH27JbXxlLtZbfb1ZY9CJqBERFcnHAMYBWKkd9h6Aa8lgGICDQoidro9Wjsli26ntDXU5q/ijZMPuw8HHMgvm3ijxc51Fm8Knbnblx3pa07X/WBh87Oaqe7wss2i3Jy/IPK8Hlw3qgOtGlFr+baKLw/FiJcCViSXWqcZp2qvP44k77fOJOesBWGeXqHRs0SDCmB045u6N/tP11qFYK1XJaCTDCZDXj+qUycXorDHoAFoD+IyIlgFYBGCmEGIWEU0hoinmMR8AqACwAcDfANyUlNGaqBd4c1P3YsnW/QCif7Hz1oROFumhN1Kauv5wpLFC/dldY3GRIpQv0bUrZq6wvmfp8eavKvcr+2yH5wpCCLy6aIvjNmQyburzevD77w7AAxf1tTxuo9Jmi0k+U8d2CzNKMuQVzWEBjPO/JsFCsFj3gatP7xxxs3D7Xvv9v1vrK1Xuie/8c1L1HXrPhSi9e6bj419eELrxSamRnTZJGqkmpkEXQlQIIQaY//oKIR42tz8rhHjWfCyEEFOFEN2EEP2EEOXJHLRadrvf9BBkX7/V2kKk6hGrJ19FlaEepy5A3X9hH1ROm4gOzRuitGVIR0Oih1js5EOjeUh62MZtPl5XhXtmrMAjH1iHg3RkOCjP5kY44VTn+b+Mexyr9qM2IILnr1MPvajQh6PVtXHNBK8fWerouCaFeRHndpeWjRy/Tyw2RTHa8fbqjHXjU/l0/R4A9rpGm/YcxUdK02k1w062n3snwWw4t8nK1abSViFj284U6blxjNF5W1/QU73lh2auDpbvfu85Iwxid6JcPaxzxLYK7YQb2KmZ5d9GM+h/MCUAksUh82a376gzbY3jZnenPJvvYWDHZq6Mi4mPf5pt19buMsKEsfLQJc0a5iMgYq95bNl7LJi10s2surxqaHSVQn8gEDH7bGV6qEWFdW+t8Pjstbb74l3oTUQEz2o9QAiBsY/Px4/+lVQf1TWy0qCrIRdZ/CKrGk/TjKxuXN8oD1/x1gttJK2bFOKO86IvxMxcvhM3vRyp2RwrhlnjDyRNSzrg0JOTHDdDM3Yxx1SHr3Ose1qdOWQaXSdZLgDwmRmDnr3KXgnw4PEanPnYPFzwF0N/RT8X7bz72oCIOLdPuijrO3N5eAhTFR0bH0elKBCeuXZuH2f66FbV5bGyeGQMPd0aLpKsNOjblXJkGfbo084QvlcN08laf8wVf6ntbMXUsd1jjuWDFd9GFC09q1T4WdHj3v/ipYXxS/A6QZ2a7zx4HJv3Ro89lm824vt2qYGUNDFSJho/P8dII5UzTqdZLmf1LgGAqO3ippg1GVv3HQ97bVkNbNcU3B8QWLLFOF9+MNyYwZ40vdpk34jH9iqJ63hV88bpIrGV/pNV1pXktxf3DSYRpLsCXJKVBv3Zj8PzZefdPgbnmVrmDZQTec+R6oj86X3HqvE9JX3PjbZmP3lxcZiXo4/PineXJCerU/XQhz8yF6Mfmx/1+C82Gjc0JxK5N7+a3EyXW15bElM7pL4gxaekMZIL67E89MZm6OPxD+3DF7LZikR3eqpsMkqq/QE8aQq7SUdAJhfsdRjiSxXq9zR3jb1RVrFy/qw8dHlTPa9vm+AMVlV4TCdZadBVigp96NIqtDCjhmOMxrpaZsrynUEjBrjX3cQuH9dO9bF8835LHZW6ImOc0VT5RnZviZ+as48zerQCEIqj6lyoZPv8J4lFJIdP1ETILJzZszjYvae+IY2GNOivmimFsRb7jpnn1BaLMn07ZNjEa8ad7W4aj85aGzTkMqShryu5RV0bwSQSKnSavy+vMZ/Xg3F92uC6EaW4b6Lz9OdkkvUGvUeUsn2/RcxPJ94KNDtesQmhRBPC/7JijyvvLZnx9bagQp8qrKUvkLZp0iAYV5Qelt1Uvk3TQssUTrcIBARmLt+Jfg/Mjtj3wvVD8PV95ybtvTMZaVSXbt1vud0OVSEzEBC4683lEZ299PRbGTaRr2y3AKmeIwUWITp1llrXQrS6NqBu2Sg/7r9xKrktP6bX7Lv7wEV90dIlO1JXst6gNymM9ODkQkVtIBDzrutWQYCdZni0d4935T4aJ2r8uPWNZXhqnhHuUS8+vQLwskHtg8URC81iqWjfQ8P85E0n3/x6G6a+Yq20TERhN6b6hPz97nprRTBurW63Q43lvl6+Fa+Xb8WPXgjP0DimzQxPmAZeOj81mmG7cEA7NMz3hl1LVh6w/PuP11Wh/wOz8cVGZw7L8m0HcOnTnwdrSgBggJld9e7UkXj/5lGOXkclkWK0eCW3M6GdpE7WG/TvDIrQAMPkM7sCAE7UBGJ66H3MLuLJ4vdRUrHcLJvWF6XUajZdKmFE91bYqsWqoxmKw0nMnd8WR2igPqHeYC99+ovQ9hhG5PQuRrbFz8/pgXvMVom6gdaRHro02PL/O87rhaICH+4Y1yviJmAl1LV6p5FiucDsIzD9k+jJAZL73/0GS7YcCNaUAMDdE3oDMAy7rAJPNnp4NlYmWqZUh6pkvUG3knotUHphRvPQ7zivV0J38tm/cK5N9nKUbBar2UWi6PnBNVr7Mv3Glq9NmaOdnHo6mZv8WemexISwyzqKpT8uQ+xPz9uobLP/m3tmrMC3Zps2GXKQ50634sZY8Zvz0MmiyK55w8iQhkwwkM7E/LXOFFWtFBv18zMZVFQdwRcbQrMIfcYcK6QeT/FSqsi8EbmALBbaf7Qa/iidGd5dmlimSddW7lTHuXmH17N5lm0NxU1rakWEl1aoSdI6vbEl07gzIezOjVj53vIsULOWVOOo39hfXbQFH36zK+xvaoMNze3PiZImkTFjmWGmNuZItKdnKrzfi578PFhgCETOZFZoaw86Geig56ZBlyf9DS+UR/XQLx8cO8Oli4XxdutkczN1V58uygpDwLhQ9bREmbcfL2o8l0kediGwWFLCjfKNtEU1O0i9V8+LksL3wYpv8bdPKvDHj4xq5miy0peeFhnq1BdbAeD+d3UdP2e4sXZy67k9g4+tQq+6nPRyTbzuMxuhMMD4fTJRNC7rDLrMsx7apQU++NkZlsfke0OLeNEWHts0jd2Z542fDMdz14Z33Uv0hzznlPDiCH1VfdOeo7j+n4scC2upWF1Mkhp/IOJ7SLQ/6Ovl7mhLM9FJ1Gnwegjdihvh9C4tgtu27T+OBRV7MXfNrpgl7A9/sDoYKrHT9wGAMRaFPla1DF9vORD1/WLF9+uCqvEfrRm65NdmE5udB49jz5GTeHy2vUxHunsD25F1Bn3ptgMAjHZYdl6mGtryKws8Ok4kNouLCjC6l7NmHNEWUV6bPCxY/CTRT+axj8/HvLVVCYU13oyi+bx137GoHZY6tYiMkaq8O3Vk8HG0NEzGPeoSn833eYNhFMmV0xfgh8/Hp0cSq/GLzsMWmV52RUoSOxG5aHUUiRBPzcfwR+ai7KGPXH3/VJF1Bv3vn20CAOw8aB+bU+2qvJNarZQ79YKcaivLm/Z5fSO1Iwp8nmAGgqTaZvZgdV9YvfMQHv9wreVN43i1P6ro1x1vLse5f/wEgPVnjlWEkomr+blOPPKvOm79XPGOYfHm+MNxX2shvHZNC/HGT4aHyVq7wdGTzgx6ojH/TCHrDLqTwLNaLBSqsIs8OZ0aKqchFjkbUON1coF2YMdmEdkCdrrVVtO5CU98iifnbYhIHwOAe99Z4Wh8APC7y/o7PlZyyCJFzQ2c5inXR6zO1z9eMcDR336zI7KXbSLk2cwSfnyG0TegVePYxTt9Y6zV6JdWs4b5GKqEi9xin40In87p/zfHcvv828dg/u1jXBxRcsg6g15synWe2t7+RFFj4zIUcbzaj+evHxJ2nFuep1Rak+laYQbd68HFA9tZ3hTs4ocyj9cKqzWBGV87z9ZJpJOL/M7dJtZ0vD5jdW4WplgvxM5Dl6J1TvRLYs3+9Hz2zhYpkm7wL60nsBVjbUKr828fg9JWjVDaqhGuHR4pq51JODboROQloiVE9L7Fvk5ENM/cv5yIznd3mCGkx3tB//jL0Vto5cBuGPSR3VvizB7GieDXCjMA4Gh1rW2qmZ1B1wWB1P6nJ/11K0ZKZCrfo3URXvnx6XV6XytidZmvz1idm/E2eagrdmmLUslRjvEWZfHxsme+CDv28IlazFm9C7+z6b9boXXCevDiUy2PqytORN+223QdalgQunHpYdNMI54z5BYA1vXtwH0A3hBCnAbgSgBP13VgdshYeK820Zsa63i9FFGUEY9B/9nZPTCiW0v87rJ+YdsfmzQg+Dp+Cw9diMiTVmIXQ9e58aWQ5vqXG+29dydYLbYNKW0e8+/kidyjxFrEKxGenMdFRXZYhd16RtEtSgbquaKe99Kgy9nesK4hI2cVR7/hhXI8Mz+2AikANCpIzizEqrJVZ92uI5bb1dCTrq2TaTgy6ETUAcBEAM/ZHCIAyBhIUwBJk+W7aEA7zL1tdNz6yIRI7zQere9bz+2JV348DFcM6RS2vZ0iIqS3C5OU2ywWzVrpLJtljpI7fMtrS2OK7kfjeE1klooTLWevh9C7TRFKYxRVfbKuCuuUHPhoSD1uSccWdRNkyiWsFsY7xshGchv1erFapJS54i0b56N/h9jl+U6ausSqhI2XK8qMWpMrY3Rjiob6PVw8MDL/PpNw6qH/CcCdAOySRh8AcA0RbYPRMPpmq4OIaDIRlRNReVWVs7JgK7raSL2q6LHiAp83YkHRrsO4E9776Uh8fMcYAMC/vtwMwCjMAJwL6n9VuR/7E9CR/pmiSx5P70gAmLsm8jMXOZQgyPN6YirSXfuPRRhnZtTEy/i+bcK61NRn6tK1Xq93SBS1tkEa2kaKUFtrs1rUQ+SoVD9arYTE7Yyqn4w2dJ30cKsVdo6NWsy1I0OaQdsR81cgogsA7BZCRPZaC3EVgOeFEB0AnA/gRSKKeG0hxHQhRJkQoqy42Flud6KM7R1+Uvfv0DQit7UutQH9OzRDZ7NBroy97Txo/B9P0UEiqV4qJxwUTKhcNyJyUcepbobPS0ktqIg37zmX6dyyYVAC9qzeJfibVtwWDbUf7oybRlgec/ngDnGNR145o0z9fAD485Wn4aFLTkX3ksaO1mbGxGi2Ariffy6NsV3YEwCGd22Jvu2a2IYeVYMulVwzFSdX0EgAFxFRJYDXAJxFRC9px9wA4A0AEEJ8CaAQQCukkf8pPRXH922DRgW+iLt/vkvyl/Jl/QGBldsPYpkmNnTV0FCY5p/XD8FbN4YuMqvKvXgaM3/vbwtjH6TQt13k1LjMQQwdMGKJ1Q68LDu+2LgnTAxJR3qlf/3+YLzxk+EJv08uQET46VlGNknH5g0c98UEwr37QZ2sf1v95nnX+N4Rx3RsHgrxSDurRk1aNi7ANebNI5YkAYCgCJiK3sDE7Wp6Oa4n5qwP235UKfvv2KIBfB6ylc9V7UaTDGk1Z0fMX0EIcY8QooMQohTGgudcIcQ12mFbAJwNAER0CgyDnng8w2VkR3v9ZCkrdSfftW1TI/ab5/XglUWR6oo3jekWfDy2V0nMu3yJliYYbbpopVQ3sV9b2+PVXpNrHxqP1ycPwySH3trSrQeC+umJ8L2/LQwTQ9KRi3Dn9W2TlFzkbEMaz3ilJmJ5ubed2xPXDOsUpnN/Zs9w/2tEt5ZaVo3xmnbzs0RDJS0b5WNi/9D56rY+itW4Jv+rPKIS1OMhR5IbTm5c6STh0RHRg0R0kfn0NgA/JqJlAF4FcJ1IVlv7BJCaFPqP65bReGySUazTtdh6wTCWQl6tPxBWoaaHNeL9KgMOjy/weXF615aOLyInfUfrQl2qI3MRKbgWr7GMJWz16fo96NuuKVY9OD64TZ+5PXPN4LDnVh66ip499fNzeqC7RUaUvr5U4xdJlcq1OrVnr9oV1ovA5/XA5yHHfVF/dnYPPPW9QW4N0VXi+iaFEPOFEBeYj+8XQrxnPl4lhBgphBgghBgohIjsJ5ZG5F1Vbzfn1okkT9J7315paXxj3dX3HavGyws2B5+r+enPfVoRJvzvhGzI77b6nlhiIJwTNcZ5oEsdx0J+j1YGFQAWVUafZf34jC5xd7HXF3FXbDuIKy369eoiWTX+QFI7/zjpOXDpae3hIYoaZ1e59dyeYbOKTCKz5w8ukeczTphWjQuw6N6zg3E7t9qbydTF9s0a4NVFkWqEebE0rEV4owe1GtSutZ0dkwZ3wPfNarZhXVvg0zvHBivgGrusj1EXVm6PLE+vS2ZHLvLdso7o1boIV58eX3Xilr1GdeaG3dZ51Sr/+ekoPHtNuLf5/WGlcb0fEDm7enRSf0tH5rP14WsohkFPnhnK93nQuWVDXDLQuhDx1R8Pw5DSFjkzO6wXBl2dDpYUFeL9m0fhr98fHOUv4kNKDay1yb+2mglMHRuKq+shEn9AQAiBj1bt0v8sDHWB8rFJ/fH89UPw+OUhvY8GeV50bNEQf7xioOX7xIuVNrwdsdIprXRc2EMPp03TQnz4izPDah2csPdodEmFAUrOeL8OTTH+1HBv00rCJfTLxG4gDRgLppbx6xfDk+X2HKlOqoQuYJxXNTbnozTkav57vLOTTCJnDfofvhsybHrJdIfmDSOkbOuClYehnstWU8pLTwstROpxxUWV+/BG+daY2tVqymKvNkVBjWrp4csLSmY01NWgn9W7JCwPORpVUeR6AWCQxcJwXVM4GYNYBqmPRaaTSpQmX7Yst+juE2vGJSWd3yjfhvdvHoVp3+kX9fhE8XkooqOXJHiNKGO9UUliyDZy1qCrFY3JnspbeSJv3xTSELdadGxSGAp/6NNQwOj2HgtVrfEUpdm1XPDRS7Q7NK9bpaHPa+/p6IyYNhezVn5rue/wiRrL4quPVkefkTDOuHxwR5R1bo5P7xwLAJhz22jM+nmoGcx9E0+J+vdFhZGhOVnMd1Zv6/RJNf4sBaxizbhU7ZRT2zfFlUM7RTk6cbwej239hM8iYaJBXmpF0NwkZw16M8VLSUWqUZ6XMLpncdA76tuuCc7o0cpWYrSkSWFQhvTuGc7lb1Vk3uwj3+kX9hllHvsV5qJUYZ4Xz1w9CK/8qG4CW6t2HEJ1bQDLzSYj0fAHBKa8ZF2L1u+B2ZbeeGEWX0iZhMdDePPGEUGpgG7FjdG7TeiGb6c1Xn7fOXjhh0PR3CJNtntJYyy7fxyuiqOEPlZcOlVVlz4P2fYWluFY1aBnYGc5x+SsQVflAZIdowOAHiVFyPN6giJAPq8HL95wOsrvO9f2b6yKfOy4QFlVlyEk+bn0G1bnlo1QOW0izugRqsad0K8tSpok1nZO8qk5k7jvHes+kfGkV0qD/uaUUAGR7IfJJIf3fjoyasVpq8YFGN3TvoK7acM82xTXlspNQNZ3xNJKkjNGmfabLLyeUIWzvrYjbzqqQe/QPLRm0bxhdsXTc9agq6RCdzvPS3HfOOLJsnlfaUsnF0OrgwY9tS7F0ZPWBRiHbbZb8c0OI+aqfgfJ0l1nDPp3aBZXxWk8qBWUFw0wMkqEzQLqi19W4uCxmuD1oqcTu02el4IhPr35hzTkm/aEdNvlLHti/7ZY8Muzkzo2t6kXBj0VU/k8r8dRI1qVeEP7Zyre0/YDx4MXRDILM1Rk79HrRpRa7v/Ne6scv9auQ8ZN1uchPHhxXwDA3RMiy8+Z7MDKcbdbXP3Vu99gwIOzg15zskOiqoe+aW94rrmMoa/eGTL0gzo1x7Tv9MO07/Rz1MQjk6gXBj1WGpcbHK32Y0FFfGXx8QoR/euHQ0Pvd7IWNbWpuSAkT19t5CtbxVgBYMNuZ7K5Kh4iXDu8FJXTJobpajPZhdW5HCurSs40kz3DXFCxD4tMyYqVWjaO1cItEeHKoZ0cq5BmEvUiaCllbZNJIn039Xhks4Z5OOCwKvSFLypx+IQR4ohVuOQWDcyURTt54GihLT2+Xta5Oco378+Zgo76jlzgfG3ysOC2WCsq/y43ivD2O+z3WVeOnqzF9E8qwrZlujZLvOTWp0kjaq776Q41YnTn4Pwoolo6Ly/cEmx0kaoYuvTC7Az6joORanoyLLREExGT2thuy6Uy6eGo2WtgvVpcp5wmlw2KFID7qtJYGLfqopUMrPTYc62YjQ26S6gnhtNKM/1kuus8+xiyXDiy6gyTqhh6sNWejUG3avArDfqRE+ELplJvJtcuqPrK780KZbXqVA25/Ozs7hF/c/UwI+98ZPfUKG1bJS3kmtxEThv0/95iFFMsSsFKtVqG79RIqeXGzRvmoWnDPNuu5zKf3SojIFXTRpmRYhcbtRJCCgigvHJfMFwjkeEiNui5wWWDO6By2sSwTCX1LLFqXiKrN1MVdiuvjKx9kOefk7662UBOG/RT2jZB5bSJdc6/dsKWfaG0J8cGXTlOKiq+f/OooJiWioy3/8AiwyRVF0Qo5GK9/8IBkSGjOat3YdKzX+LyZ78M2y6bHbBBz116m43c7zivV1DCWkVWHSfbS75+ZCkAYO23kYJw0hmS3ceynXqxKJpqnOqLW53HRYV5wfRAlT5maX/H5pFCTbsPn0Tf+IaYEDLU6bfx0K02PxxDLZINeu5yWqfmWPjLs1FSVGApAf3nOevh85DrTS10Xv/KWHxVFU0l8vzLlbWcnPbQ04Xegs4Ou5No3a5w2dPrRpTiEVO4SBcaA4B+7Z1XnNYFOd5f2VSKWull7NYyX966Mby1XK5cSIw1rZsUgohsb9ypuKHrzeHD3t88/247r2fSx5EKHBt0IvIS0RIiet9m/3eJaBURfUNEr7g3xOzDadaJ6pmcoTTf3ad1Tjmrd0nQkFsJbOWlKEtAvfgCAYHnP9+EI0p1qN1iqYqe0cAeev3A7ppId9qgDHuWFCU/LJsK4vk2bwFgOX8moh4A7gEwUgjRF8DP6z607MVpZerbS7YFH/dpFxJP0p1WPcb4xJUDw543TZHehBrzP/sPH+OB/6zCX5Tmu3aKdip6vD/Z020mM7DLxOI6BHdxZNCJqAOAiQCesznkxwCeEkLsBwAhxG53hpedWIVFrFDlQ2cqWi0H9SIl7ZxXe6G2j7P5QV1QwyOb9hgl1GohlD8QiLnAlaqcYyaz8Hk9WPmb83CVJpGbivOhdRNnWjGvTx6Gt28akeTRJBen3+afANwJwE59qieAnkT0OREtIKLxVgcR0WQiKiei8qqqqvhHm8GoqoFOmTQ4VGyhNpLeqRXotG0abrRbK9PDWA2o3cS6TNr4/0SNH0/N2xjTS9c9Mg651B8aF/jQsUX4uZyKCdrc28Y4Ou70ri1xWqfsTl+MaQ2I6AIAu4UQ1uLWBj4APQCMAXAVgL8RUTP9ICHEdCFEmRCirLjYXqYzGykrbYHnrx8CwL4zuo5qqK+waKgLAJ/cMTai9ZvHQ5h8ZlcAzmcDbmAVSpIX5PJtkR1rrNDj/dnc7ouJH11St9qietNtGhX44m60na04+ZQjAVxERJUAXgNwFhG9pB2zDcB7QogaIcQmAOtgGPh6hZw+OlUFH6R4A2onGNlR5uM7xqCTTaGRNKQFKW4K0a6pvnhkDMTphckx0/qN7pHXtS2iU1RHYrBF+8NcIaZBF0LcI4ToIIQoBXAlgLlCiGu0w96B4Z2DiFrBCMFUoJ4RNFYOT1J15V8NndwwqguWPzAuarGDjGenMuQCAF7NIMuGAVZNn61gg16/aahVDKfInoedt89FafKR7SRsDYjoQSK6yHz6IYC9RLQKwDwAdwgh9roxwGxCLgg6PUfVDA81dEJElmX0KlI24FsLQaxkoi9irTMlc5+ev9HR36cqxZLJTK4c0gm/OCeU850qD109b3WnJJeI6+oSQswXQlxgPr5fCPGe+VgIIW4VQvQRQvQTQryWjMFmOnKBL5G4YLwCWzKFUJUcSAX6GqaVaNhHt44ONq3QYQ+9fpPv8+CWc0LRWCe1C26gZl95ifDqj4fho1tHp+S9UwmX/ruIPDkrta4oToh3cXNhRXomQIdOWLeZu3JIJyzfZjS77l7SGIdOWOu6p7uQhMksrCRtk4HUDgKM2e3wbrnZTIWvLheRRuxETQIeerwGfVN83ZHcQm9iIReYdGnSZjbZKwU+D/7v0n7JGRzDOCCVmWGpJnc/WRqIphkRi0QV58rSvGIvQ6BS31zStbhxWMs8CVeGMoBRxJMucrn2gQ26i5xzipF6qJfmOyFRQ6frjKeaWtMzP2pxM1ObWqvInOBrhnWy3M/kPqlOt60vcAzdRQrzvKicNjEl7/XAhX3wwH9WoVlD64bNqaLaNOh/VjRdYjGxf1us2H4QN47plqxhMRlOqrps1TfYoKeZJb86N6xzkVOkIU/35FEa9KJCHw6fqMU7U0eG7S8pKoiQ0C3wefHrC1Oh4M5kKjKOnUotIiD3Z4V8m0wzzRvl10ktMd0h6ZpaI4g+plcJurZqhIEdm4Xt/+yus7D4vnPSMDImk5EFcSJVlUUmuS4Ol9ufLocRZvlSuuz5VUM7oUWjfFT7jdh5TW3AMiUx3+dBUYwiKab+4Y2zCM/t981V2KBnKdKxSVfWyCPf6Yd8ryfoodf4A8jz2TUxyO2LiImfRgVGtHdU91YxjnSXZPcvTTccQ89SUjxTtSTPR8EY+ucb90Qo6Uk4VZHRadogD3NvG42OFv1zk8mqnZGNonMJ9tCzFGnP02kqt+47jreXbAdgFFMdr0k8D5+pf3QtbpzyyuFP1zsTkctW2EPPUoKLSSm26Pdf0Acrtltrn+vNC1TWPzwh7Rk5DJPrsEHPUkIeemrN5A9HdbHc3qZJIYZ3tdfHYA0Xhkk+fJVlKX3aGk2lz+yZ2kUlO2oDAt4cTwljspd/mt3EnPYXzVbYQ89STm3fFMvuH1enHHY3qQ0EOJuFyVi6tWoMAOjZuijNI0kubNCzmEwx5nuOnMSBYzXYceB4uofCMJZ0atkQj18+AOecUpLuoSQVx3NkIvIS0RIiej/KMZcRkSCi3O3xxAQ5rVMzAMD7y3YAAD5avTuNo2GY6Ewa3CHt2kfJJp6g5y0AVtvtJKIi85iFdR0Ukx0M79qSwywMk0E4MuhE1AHARADPRTnstwB+ByC1TS6ZtOHzEGr8Av4MKHJiGMa5h/4nAHcCsGzFQ0SDAHQUQsyM9iJENJmIyomovKqqKq6BMpmHz0xF1JtbMAyTHmIadCK6AMBuIcRim/0eAH8AcFus1xJCTBdClAkhyoqLrZsfMNmDbPj8ysItaR4JwzCAMw99JICLiKgSwGsAziKil5T9RQBOBTDfPGYYgPd4YTT3kUJH283slhzXPWKYjCemQRdC3COE6CCEKAVwJYC5QohrlP0HhRCthBCl5jELAFwkhChP1qCZzECv/jyjB8+6GCadJFzaR0QPEtFFbg6GyS707um3j+uVppEwDAPEWVgkhJgPYL75+H6bY8bUdVBMdqD3hdQNPMMwqYWvQCZhdAPu45x0hkkrbNCZhCnQDHrnFDcrYBgmHDboTMJEeuh8OjFMOuErkEmYfK833UNgGEaBDTqTMBwzZ5jMgg06kzBeriRimIyCDTqTMB5ig84wmQQbdCZhgo2qAfRr3zSNI2EYBmCDztSBVTsPBR+/9KPT0zgShmEANuhMHRjRrWXwcdMGmdEOj2HqM2zQmYTpXpLbDXcZJtvgJtFMnXj7phFhoReGYdIHG3SmTpzWqTlO69Q83cNgGAYccmEYhskZ2KAzDMPkCGzQGYZhcgTHBp2IvES0hIjet9h3KxGtIqLlRDSHiDq7O0yGYRgmFvF46LcAWG2zbwmAMiFEfwBvAni0rgNjGIZh4sORQSeiDgAmAnjOar8QYp4Q4pj5dAGADu4Mj2EYhnGKUw/9TwDuBBBwcOwNAP5rtYOIJhNRORGVV1VVOXxrhmEYxgkxDToRXQBgtxBisYNjrwFQBuAxq/1CiOlCiDIhRFlxcXHcg2UYhmHsIVUxz/IAokcAfB9ALYBCAE0AzBBCXKMddw6AvwAYLYTYHfONiaoAbE5w3K0A7Enwb7MV/sz1A/7M9YO6fObOQghLjzimQQ87mGgMgNuFEBdo20+DsRg6XgixPsFBxjOOciFEWbLfJ5Pgz1w/4M9cP0jWZ044D52IHiSii8ynjwFoDODfRLSUiN5zZXQMwzCMY+LSchFCzAcw33x8v7L9HFdHxTAMw8RNtlaKTk/3ANIAf+b6AX/m+kFSPnNcMXSGYRgmc8lWD51hGIbRYIPOMAyTI2SdQSei8US0log2ENHd6R5PohBRRyKaZ4qafUNEt5jbWxDR/4hovfl/c3M7EdGfzc+9nIgGKa/1A/P49UT0g3R9JqfoQm9E1IWIFpqf7XUiyje3F5jPN5j7S5XXuMfcvpaIzkvTR3EEETUjojeJaA0RrSai4bn+OxPRL8zzeiURvUpEhbn2OxPRP4hoNxGtVLa59rsS0WAiWmH+zZ+JiGIOSgiRNf8AeAFsBNAVQD6AZQD6pHtcCX6WtgAGmY+LAKwD0AeGsNnd5va7AfzOfHw+DEkFAjAMwEJzewsAFeb/zc3HzdP9+WJ89lsBvALgffP5GwCuNB8/C+BG8/FNAJ41H18J4HXzcR/zty8A0MU8J7zp/lxRPu8LAH5kPs4H0CyXf2cA7QFsAtBA+X2vy7XfGcCZAAYBWKlsc+13BbDIPJbMv50Qc0zp/lLi/AKHA/hQeX4PgHvSPS6XPtu7AM4FsBZAW3NbWwBrzcd/BXCVcvxac/9VAP6qbA87LtP+wRBumwPgLADvmyfrHgA+/TcG8CGA4eZjn3kc6b+7elym/QPQ1DRupG3P2d/ZNOhbTSPlM3/n83LxdwZQqhl0V35Xc98aZXvYcXb/si3kIk8UyTZzW1ZjTjFPA7AQQGshxE5z17cAWpuP7T57tn0nf0K40FtLAAeEELXmc3X8wc9m7j9oHp9Nn7kLgCoA/zTDTM8RUSPk8O8shNgO4HEAWwDshPG7LUZu/84St37X9uZjfXtUss2g5xxE1BjAWwB+LoQ4pO4Txq05Z/JKKQ6htxzCB2Na/owQ4jQAR2FMxYPk4O/cHMDFMG5m7QA0AjA+rYNKA+n4XbPNoG8H0FF53sHclpUQUR4MY/6yEGKGuXkXEbU197cFIIXO7D57Nn0nIwFcRESVAF6DEXZ5AkAzIpJVy+r4g5/N3N8UwF5k12feBmCbEGKh+fxNGAY+l3/ncwBsEkJUCSFqAMyA8dvn8u8scet33Y7wvhKOPnu2GfSvAPQwV8vzYSygZKVujLli/XcAq4UQf1B2vQdArnT/AEZsXW6/1lwtHwbgoDm1+xDAOCJqbnpG48xtGYcQ4h4hRAchRCmM326uEOJqAPMATDIP0z+z/C4mmccLc/uVZnZEFwA9YCwgZRxCiG8BbCWiXuamswGsQg7/zjBCLcOIqKF5nsvPnLO/s4Irv6u57xARDTO/w2uV17In3YsKCSxCnA8jI2QjgHvTPZ46fI5RMKZjywEsNf+dDyN2OAfAegAfAWhhHk8AnjI/9woYLf/ka/0QwAbz3/Xp/mwOP/8YhLJcusK4UDcA+DeAAnN7ofl8g7m/q/L395rfxVo4WP1P82cdCKDc/K3fgZHNkNO/M4DfAFgDYCWAF2FkquTU7wzgVRhrBDUwZmI3uPm7wugtsdL8myehLaxb/ePSf4ZhmBwh20IuDMMwjA1s0BmGYXIENugMwzA5Aht0hmGYHIENOsMwTI7ABp1hGCZHYIPOMAyTI/w/oJW4yy6FpDoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.get_channel('3.5-4.5')\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A specific energy channel can also be deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.delete_channel('3.5-4.5')\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, if there are multiple channels that need to be added or deleted, this can be done by a single command." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', 1)\n", + "sim.simulate_channel('4.5-5.5', 'smoothbknpo', [.6, 0.9, .2, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "sim.get_channels(['3.5-4.5', '4.5-5.5'])\n", + "sim.delete_channels(['3.5-4.5', '4.5-5.5'])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reading/Writing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulator object can be saved or retrieved at any time using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "sim.write('data.pickle')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.read('data.pickle')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb.txt b/_sources/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb.txt new file mode 100644 index 000000000..5a9e0d54c --- /dev/null +++ b/_sources/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb.txt @@ -0,0 +1,2078 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3588b39d-5f96-4443-9241-189418f21f01", + "metadata": {}, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "7GoFZn8bp_6J", + "metadata": { + "id": "7GoFZn8bp_6J" + }, + "source": [ + "In this tutorial, we will run a quicklook spectrotemporal analysis of a NICER observation of one epoch of the 2018 outburst of the accreting black hole MAXI 1820+070, largely reproducing the results from, e.g., [Wang et al. 2021](https://ui.adsabs.harvard.edu/abs/2021ApJ...910L...3W/abstract), [De Marco et al. 2021](https://ui.adsabs.harvard.edu/abs/2021A%26A...654A..14D/abstract). We will not give a scientific interpretation, just pure exploration.\n", + "\n", + "The dataset used for the analysis can be downloaded [on Zenodo](https://zenodo.org/records/10683101). \n", + "\n", + "DISCLAIMER: this dataset was downloaded from the NICER archive and only run through `barycorr` to refer the photon arrival times to the solar system barycenter. We did not run the official NICER pipeline on these data, and some of the features appearing in the power spectrum are instrumental artifacts. Data are not science-ready and only good for demonstration purposes. For more information (thanks Paul Ray and Sara Motta for discussion): \n", + "\n", + "+ [Some Notes on Timing Analyses and NICER Data (using also MAXI J1820+070 as an example)](https://heasarc.gsfc.nasa.gov/docs/nicer/data_analysis/workshops/nicer_wkshp_timing_5_4_21.pdf)\n", + "+ [NICER Analysis Threads](https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/)\n", + "\n", + "See [Uttley et al. 2014](https://ui.adsabs.harvard.edu/abs/2014A%26ARv..22...72U/abstract), [Bachetti & Huppenkothen 2022](https://ui.adsabs.harvard.edu/abs/2022arXiv220907954B/abstract) for reviews on most statistical concepts and terminology used here." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 3072, + "status": "ok", + "timestamp": 1642601518655, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "outputId": "36746cbf-a295-43e0-f252-2203f73ea7ef" + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import black\n", + "# Uncomment and run this before releasing a new version of the docs\n", + "# import jupyter_black\n", + "\n", + "# jupyter_black.load(\n", + "# lab=False,\n", + "# line_length=100,\n", + "# verbosity=\"DEBUG\",\n", + "# target_version=black.TargetVersion.PY310,\n", + "# )\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from astropy.table import Table\n", + "from astropy.modeling import models\n", + "\n", + "from stingray.gti import create_gti_from_condition, gti_border_bins, time_intervals_from_gtis, cross_two_gtis\n", + "from stingray.utils import show_progress\n", + "from stingray.fourier import avg_cs_from_events, avg_pds_from_events, poisson_level, get_average_ctrate\n", + "from stingray import AveragedPowerspectrum, AveragedCrossspectrum, EventList\n", + "from stingray.modeling.parameterestimation import PSDLogLikelihood\n" + ] + }, + { + "cell_type": "markdown", + "id": "90aece42-47bc-49af-981f-c12b81b0f729", + "metadata": { + "id": "90aece42-47bc-49af-981f-c12b81b0f729" + }, + "source": [ + "## Data loading and cleanup.\n", + "\n", + "Let us take a look at the light curve. We load the NICER event list into a `stingray.EventList` object, and create a `stingray.Lightcurve` from it. Note that, for NICER, it is important to know how many detectors were on during the observation. In this tutorial, we make a rough check of how many detectors were on during the observation. In some cases, the number of detectors might _change_ during the observation. The user is encouraged to plot the `events.det_id` attribute (that gets set thanks to the `additional_columns` instruction below) and check the header of the event file for possible detectors that were switched off." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fa9bf7ab", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 358 + }, + "executionInfo": { + "elapsed": 256, + "status": "error", + "timestamp": 1642601523824, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "fa9bf7ab", + "outputId": "7be21b43-046a-4753-e2e1-da99ab63f3ef" + }, + "outputs": [], + "source": [ + "# This dataset can be downloaded from the NICER archive at the HEASARC.\n", + "# We do not include it because of the large size.\n", + "fname = \"ni1200120106_0mpu7_cl_bary.evt.gz\"\n", + "# Here we are also saving the information about the detector\n", + "events = EventList.read(fname, \"hea\", additional_columns=[\"DET_ID\"])\n", + "events.fname = fname" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5d922d6d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGwCAYAAACJjDBkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOnUlEQVR4nO3dfXxMZ/4//tckZJKISQRJZHMjpW7iJiG2TG9sRCoha2nVoj6aqsaPTdolW2x2bSjbr1brrqRSVbRbinZLWzSkQVBxF1J3ZUtjo5igJEOQm8n5/WFzmiG3JzNzzpl5PR+PeTBzrjnzPlfOzLzmOtec0QiCIICIiIiIGsVJ7gKIiIiI1IghioiIiEgChigiIiIiCRiiiIiIiCRgiCIiIiKSgCGKiIiISAKGKCIiIiIJmsldgL2orKzE5cuX0bJlS2g0GrnLISIiogYQBAG3bt2Cv78/nJwaN7bEEGUhly9fRmBgoNxlEBERkQQXL15EQEBAo+7DEGUhLVu2BHD/j6DT6azzIPPmWWe9tpSSov7tSEm5/68jbEdVm+qUtN3V62vsdtR3H1t5sDYl1NRYSt9PGqrq9amh+5USKXlfb6jatsFKjEYjAgMDxffxxmCIspCqQ3g6nc56IUqrtc56bUmnU/92VP19HWE7atqXlbTd1etr7HbUdx9bebA2JdTUWErfTxqq6vWpofuVEil5X28oa72H1kPKVBxOLCciIiKSgCGKiIiISAKGKCIiIiIJGKKIiIiIJGCIIiIiIpKAIYqIiIhIAoYoIiIiIgkYooiIiIgkYIgiIiIikoAhioiIiEgChigiIiIiCRiiiIiIiCRgiCIiIod3V+DbITUe9xoiInJouZUe6FoagblbTstdCqkMQxQRETm0+eW/AQB8uC9f5kpIbRiiiIiIiCRgiCIiIiKSgCGKiIiISAKGKCIiIiIJGKKIiMgivsy7hCXf/ih3GUQ2wxBFREQW8ef1eVj07X9wtOCm3KWQnfjldime/+AANh+7JHcpNZI1RC1fvhw9e/aETqeDTqeDXq/HN998Iy6PjIyERqMxu0yaNMlsHQUFBYiLi4O7uzt8fHwwbdo0VFRUmLXZvXs3evfuDa1Wi44dO2LNmjUP1ZKWlob27dvD1dUVffv2xaFDh6yyzURE9q7oTpncJZCdeGfHf7D//C+YsiFP7lJqJGuICggIwJtvvonc3FwcOXIEUVFRGDZsGE6dOiW2SUhIwJUrV8TL/PnzxWUmkwlxcXEoKyvD/v378dFHH2HNmjVITU0V2+Tn5yMuLg4DBgxAXl4epkyZgpdffhnbt28X22zYsAHJycmYNWsWjh49irCwMMTExODq1au26QgiIiJ6SPFdZQdyWUPU0KFDMWTIEDz66KPo1KkT3njjDXh4eODAgQNiG3d3d/j5+YkXnU4nLtuxYwdOnz6NTz75BOHh4Rg8eDDmzp2LtLQ0lJXd7/j09HSEhIRgwYIF6Nq1K5KSkvDcc89h0aJF4noWLlyIhIQEjB8/HqGhoUhPT4e7uztWrVplu84g1bhZUoa9P15DpSB3JWQv3th6GlHv7Mate+Vyl0KkKBpo5C6hToqZE2UymbB+/XqUlJRAr9eLt69duxZt2rRB9+7dkZKSgjt37ojLcnJy0KNHD/j6+oq3xcTEwGg0iqNZOTk5iI6ONnusmJgY5OTkAADKysqQm5tr1sbJyQnR0dFim5qUlpbCaDSaXcgxDHl3L8Z9eAgbTG3kLoXsxAd78/HT9RJsOHxR7lKIqBGayV3AiRMnoNfrce/ePXh4eGDTpk0IDQ0FADz//PMIDg6Gv78/jh8/jhkzZuDs2bP44osvAAAGg8EsQAEQrxsMhjrbGI1G3L17Fzdv3oTJZKqxzZkzZ2qte968eXj99debtvGkSleK7wEAMipbYQyuy1wNqdltwQmf7vlJvC5wdJPInLIHouQPUZ07d0ZeXh6Ki4vx+eefIz4+HtnZ2QgNDcXEiRPFdj169EC7du0wcOBAnD9/Hh06dJCxaiAlJQXJycnidaPRiMDAQBkrInIs5ypdYTLcQme/lnKXItnciiBs2PaDeH3N/gsYUOmKjk73ZKyK1OxumQlXb91DcOsW+OV2KXacLsTQMH94yF2YnZL9cJ6Liws6duyIiIgIzJs3D2FhYViyZEmNbfv27QsAOHfuHADAz88PhYWFZm2qrvv5+dXZRqfTwc3NDW3atIGzs3ONbarWUROtVit+q7DqYi37fryOQYuycbSyhdUeg0hNygUNost6IGbxHtwpq6j/Dgq1v9I8AF4quovosh4yVUP2IHphNn739m4c/7kI4z48hJQvTuDvm07IXZZkCh+Ikj9EPaiyshKlpaU1LsvLywMAtGvXDgCg1+tx4sQJs2/RZWZmQqfTiYcE9Xo9srKyzNaTmZkpzrtycXFBRESEWZvKykpkZWWZzc2S0/99eBD/KbyNsWWd5S6F7MR2kxfe/OYMKlU6O7602ktr0R1OxlYatR2W1Cj9nboRLhXdBQBknDTg9BWj+H+10lT743ycc0G+Qmoh6+G8lJQUDB48GEFBQbh16xbWrVuH3bt3Y/v27Th//jzWrVuHIUOGoHXr1jh+/DimTp2K/v37o2fPngCAQYMGITQ0FOPGjcP8+fNhMBgwc+ZMJCYmQqvVAgAmTZqEZcuWYfr06XjppZewc+dObNy4EVu3bhXrSE5ORnx8PPr06YPHHnsMixcvRklJCcaPHy9Lv9TmLpzlLoHsxP9X/iiQfR49AzwxRO5iyO7sPHMVA+UuguxO6pen8IK+vdxlmJE1RF29ehUvvPACrly5Ak9PT/Ts2RPbt2/H008/jYsXL+Lbb78VA01gYCBGjBiBmTNnivd3dnbGli1bMHnyZOj1erRo0QLx8fGYM2eO2CYkJARbt27F1KlTsWTJEgQEBGDlypWIiYkR24waNQrXrl1DamoqDAYDwsPDkZGR8dBkcyJ7c9XIuTdkeWsPFuANV7mrILUSBEEcgVL6IKGsIerDDz+sdVlgYCCys7PrXUdwcDC2bdtWZ5vIyEgcO3aszjZJSUlISkqq9/GIqij9yU1kS8U8rKooFSo9VH9P0CDmnd3oHdQKi0aFy11OvRQ3J4qIbMck3L+o2Y2SMo6oKcCgxfV/6FWbe+UmuUuQ7GD+DblLkOTbSi/895c72PS/38pT+nw12U9xQETymbvlND7W9MBOlxNwVviLVW1+v3QfAOC01gnumkqZq2mci4J9HPOqMFWi0FjzF4LU6q//Po71hy8iw8UNXZzuyl2Ow1L6yxJHoogc3H8FV/yC5nKX0WRXBBe5S3BYVaMG1al9hHP9/84ev7yincyVNJ3K/xSKxhBFRERNouav0JOyaRR+PI8hioiIyA5Un0v+319K5CvEgpQdoRiiVKeC47JERDZTqvi38ZrxJLS2wRClMstM/nKXQP+jzpdWImqMjEpvuUsgBWOIUplPK9rKXQLZJQ5xkjQlghOyzlytv6GKnLt6W+4SJLlnB2/pd4Rff5njhytGfFHDlxaURP09TkQOh5FPOf5c/ojcJVhc/KpDcpcgiT18Q/V2tZ83W7HnJxkraRiGKCIikuzbylZyl9BkDx6ar/oRX3tRVqGe86fNqQgS/1+pgl+yZogikqi2p/dtwQnbTK1wR+DTy5ZyKlvKXQIRWdCXeZflLqFefJVXGeXncppS/gj+VN4R08vby11Kg9nDJPmZFe3lLoGIHAxDFJFEtQWPqsMbWypb264YqtfNkjKUlFbIXQYR2RGGKCKyeyWlFYh8Zzfi3t0rdymkcP8sD5S7BFIRhigiqtGKCj/8fuleFNvBSfvOXb2N4rvluPDLHeRdLJK7HFKwlSY/uUuQTMMJHzbHEKUyfIqQNdR0aPL/VQTi5CUj/nXggq3Lsarhad/JXYJDsId5dmozobyT3CU4HIYoIqpT8V31j0R9/b3yv+VD1BQ/Cy7IF1zlLsPhMEQRUZ0+2JuPPf+5JncZTbJyX77cJRBZFU+pIg/2OlEjrKrwFf/vSIcrXlDpGZxrs2DHWVy8cUfuMohI5ZrJXQA1jiO9cStR9bPpknot3XkOG49cxEG5C7FjnL9JjoAjUSpzk7mXyCIKjaVyl0BEKscQpTLl/JMRQWjEmKyJQyJEZCV8RyaS6JrQXO4SqAF2VXrKXQIpHKdJkFQMUUQSnRBayF0CNUAJnGtdtqyinQ0rcSyvlYfIXUKDGfiBiCRiiCKiBn0Sb//XrRi9IgeCHR0ee6ciAD8LLnKXYZc2VbaRu4QG+0lwk7sEUimGKCJqsAM/3cB/Ba3cZTTK56a638zv8fw6RCQRXz2IyK7t5ZwoIrIShigiIiIiCRiiiIjfTiIikoAhioiIiEgChigiIiIiCRiiFO7WvXK5SyAiIqIaMEQpXAV/s4JsQMOfiyUiajSGKCIiIiIJGKKIqFE/6HtJAWf45rgZESkBQxQRNcoRoaXcJRARKYKsIWr58uXo2bMndDoddDod9Ho9vvnmG3H5vXv3kJiYiNatW8PDwwMjRoxAYWGh2ToKCgoQFxcHd3d3+Pj4YNq0aaioqDBrs3v3bvTu3RtarRYdO3bEmjVrHqolLS0N7du3h6urK/r27YtDhw5ZZZvJvtyyk58M4ZwoIqLGk/UdICAgAG+++SZyc3Nx5MgRREVFYdiwYTh16hQAYOrUqfj666/x2WefITs7G5cvX8azzz4r3t9kMiEuLg5lZWXYv38/PvroI6xZswapqalim/z8fMTFxWHAgAHIy8vDlClT8PLLL2P79u1imw0bNiA5ORmzZs3C0aNHERYWhpiYGFy9etV2nUGqdLTSQ+4SiIhIJrKGqKFDh2LIkCF49NFH0alTJ7zxxhvw8PDAgQMHUFxcjA8//BALFy5EVFQUIiIisHr1auzfvx8HDhwAAOzYsQOnT5/GJ598gvDwcAwePBhz585FWloaysrKAADp6ekICQnBggUL0LVrVyQlJeG5557DokWLxDoWLlyIhIQEjB8/HqGhoUhPT4e7uztWrVpVa+2lpaUwGo1mFyIiInIcijkWYTKZsH79epSUlECv1yM3Nxfl5eWIjo4W23Tp0gVBQUHIyckBAOTk5KBHjx7w9fUV28TExMBoNIqjWTk5OWbrqGpTtY6ysjLk5uaatXFyckJ0dLTYpibz5s2Dp6eneAkMDGx6J9TgXoXJKuslIiKippE9RJ04cQIeHh7QarWYNGkSNm3ahNDQUBgMBri4uMDLy8usva+vLwwGAwDAYDCYBaiq5VXL6mpjNBpx9+5dXL9+HSaTqcY2VeuoSUpKCoqLi8XLxYsXJW1/fbYev2KV9crhnqDB3TKGQrW7JTjLXQIRkSI0k7uAzp07Iy8vD8XFxfj8888RHx+P7Oxsucuql1arhVartfrjVAr2MeHXJACxZd1RvjAbuwUNmmvsY7vUqKZdqjE/QLzS5IeZza3zoYGISE1kD1EuLi7o2LEjACAiIgKHDx/GkiVLMGrUKJSVlaGoqMhsNKqwsBB+fn4AAD8/v4e+RVf17b3qbR78Rl9hYSF0Oh3c3Nzg7OwMZ2fnGttUrYOargTOuCC4AkV3cV3bDO3An7ORyw+Cm9wlEClKJ80d/Edwl7sMUiHZD+c9qLKyEqWlpYiIiEDz5s2RlZUlLjt79iwKCgqg1+sBAHq9HidOnDD7Fl1mZiZ0Oh1CQ0PFNtXXUdWmah0uLi6IiIgwa1NZWYmsrCyxjZw0jRojIKpfmfKe9kSyckOl3CWQSsk6EpWSkoLBgwcjKCgIt27dwrp167B7925s374dnp6emDBhApKTk+Ht7Q2dTodXXnkFer0e/fr1AwAMGjQIoaGhGDduHObPnw+DwYCZM2ciMTFRPNQ2adIkLFu2DNOnT8dLL72EnTt3YuPGjdi6datYR3JyMuLj49GnTx889thjWLx4MUpKSjB+/HhZ+qU6wQ7P35NhaoXxzXj6CCIiSzHKf2DJIcna61evXsULL7yAK1euwNPTEz179sT27dvx9NNPAwAWLVoEJycnjBgxAqWlpYiJicF7770n3t/Z2RlbtmzB5MmTodfr0aJFC8THx2POnDlim5CQEGzduhVTp07FkiVLEBAQgJUrVyImJkZsM2rUKFy7dg2pqakwGAwIDw9HRkbGQ5PNyTJerwi2mxBlLxFXbeOdaquXyNr4lR15yBqiPvzwwzqXu7q6Ii0tDWlpabW2CQ4OxrZt2+pcT2RkJI4dO1Znm6SkJCQlJdXZRg48nEeWZi/Bj8hSLivg9yBJnTg5gmRRyXdyagLuPmRJd8DTdpA0DFEKZy9zoh7ciuxKT1nqICIishSGKLKJtIp2Ztdv85MfESkEJ02oR6nCfsWDIUrh7GVO1ApTu/obkU3Yx9gmETmiTw8WyF2CGYYoksVdgbseEZGlCHbygbs+v5SUyV2CGb6TkSx4OI+IlIKjsyQVQxRREzjKpz975sy3UCKSiCFK4ezl23n2arOptdwlNBr3KCIiy2CIIllo7OSt/JzgKncJREQkE4YoIiJyaPbxkc4xrD98Ue4SzDBEkSwuCVq5S3BgnMdVHd9AidTj2q1SuUswwxBFslhp8pO7BIdVwtNLEJmxhyAt2MNGqBBfTYkcDH9s1RzH5cgR7DLxp7asgSGKiIjIzv2jIljuEuwSQ5TC2cvPvtgrNY6gq7FmImuyh1dZjT1shAoxRBGRQ7vDl0GHx/xBUvHVg4gc2vIK/ji2o+PoLEnFEKVwHKIlsi6eboOIpGKIInIw/L0/IvtT3ykOrgnNbVOIg2GIUjie+4PIuvgUI0dQyrd7q2CvKhx/gJgszV5+t9BS2BtkDzj1Qx4MUURNwNctIlICHrWQB0MUUROo8XWLc6LMsT9Ijc9jUgaGKCJyaHwDJSKpGKIUjkO0yqbGMQzuUkRElsEQRUSqY8kgyFBJ9oD7sTwYoogcDF9szbE/iPsAScUQRUQO7ZTQQu4SiEilGKIUjp+QyNLUOI+LyJr4nCCpGKKIiMih3YWz3CWQSjFEETWBGkcK1VgzEdWNo2nyYIgicjAMUURElsEQpXA8TxQREdVHp6mQuwSHxBBFRESkcjqY5C7BITFEKZzAgy+KxnkIRKQE/A1IecgaoubNm4ff/va3aNmyJXx8fDB8+HCcPXvWrE1kZCQ0Go3ZZdKkSWZtCgoKEBcXB3d3d/j4+GDatGmoqDAf2ty9ezd69+4NrVaLjh07Ys2aNQ/Vk5aWhvbt28PV1RV9+/bFoUOHLL7NjWW8yyFaJePLFhGR45I1RGVnZyMxMREHDhxAZmYmysvLMWjQIJSUlJi1S0hIwJUrV8TL/PnzxWUmkwlxcXEoKyvD/v378dFHH2HNmjVITU0V2+Tn5yMuLg4DBgxAXl4epkyZgpdffhnbt28X22zYsAHJycmYNWsWjh49irCwMMTExODq1avW74g6nLt6W9bHJ8fA8U4iosZrJueDZ2RkmF1fs2YNfHx8kJubi/79+4u3u7u7w8/Pr8Z17NixA6dPn8a3334LX19fhIeHY+7cuZgxYwZmz54NFxcXpKenIyQkBAsWLAAAdO3aFfv27cOiRYsQExMDAFi4cCESEhIwfvx4AEB6ejq2bt2KVatW4a9//as1Np9IMS4IrgjXlNTfkIiIRIqaE1VcXAwA8Pb2Nrt97dq1aNOmDbp3746UlBTcuXNHXJaTk4MePXrA19dXvC0mJgZGoxGnTp0S20RHR5utMyYmBjk5OQCAsrIy5ObmmrVxcnJCdHS02OZBpaWlMBqNZhdyPGocwalp7sS/KnxkqEQ6NfY7EdkfWUeiqqusrMSUKVPwxBNPoHv37uLtzz//PIKDg+Hv74/jx49jxowZOHv2LL744gsAgMFgMAtQAMTrBoOhzjZGoxF3797FzZs3YTKZamxz5syZGuudN28eXn/99aZtNBEREamWYkJUYmIiTp48iX379pndPnHiRPH/PXr0QLt27TBw4ECcP38eHTp0sHWZopSUFCQnJ4vXjUYjAgMDZauH5PFfwVXuEoiISCaKCFFJSUnYsmUL9uzZg4CAgDrb9u3bFwBw7tw5dOjQAX5+fg99i66wsBAAxHlUfn5+4m3V2+h0Ori5ucHZ2RnOzs41tqltLpZWq4VWq234RkrGAxdKdpu/uUVE5LBknRMlCAKSkpKwadMm7Ny5EyEhIfXeJy8vDwDQrl07AIBer8eJEyfMvkWXmZkJnU6H0NBQsU1WVpbZejIzM6HX6wEALi4uiIiIMGtTWVmJrKwssQ2RvWAsJyKyDFlHohITE7Fu3Tp8+eWXaNmypTiHydPTE25ubjh//jzWrVuHIUOGoHXr1jh+/DimTp2K/v37o2fPngCAQYMGITQ0FOPGjcP8+fNhMBgwc+ZMJCYmiiNFkyZNwrJlyzB9+nS89NJL2LlzJzZu3IitW7eKtSQnJyM+Ph59+vTBY489hsWLF6OkpET8th4RERFRdbKGqOXLlwO4f0LN6lavXo0XX3wRLi4u+Pbbb8VAExgYiBEjRmDmzJliW2dnZ2zZsgWTJ0+GXq9HixYtEB8fjzlz5ohtQkJCsHXrVkydOhVLlixBQEAAVq5cKZ7eAABGjRqFa9euITU1FQaDAeHh4cjIyHhosrmt8bfzyNJ4glAiIsuQNUQJ9SSEwMBAZGdn17ue4OBgbNu2rc42kZGROHbsWJ1tkpKSkJSUVO/jEdkbI+d2ERE1mqLOE0VE1lfTR5fMylY2r4OILEfD2Y6yYIgiItXhCxeROf4AsTz4WqRw/GxBRESkTAxRRA6GwZyIyDIYohSuvsn3REREJA+GKCIiIiIJGKKIiIiIJGCIUjgezCMiIlImhigiB8NgTkRkGQxRCtexrYfcJRAREVENGKIUzs2FP8dBRESkRAxRRA7mhtBc7hKIiOwCQ5TC8UT+ZGlLTf5yl0BEZBcYooiIiIgkYIgiIrvBE/yTo+KuLw+GKCIiIiIJGKIUjp8uiBqOzxdyVJw/Kw+GKIXj4QkiIiJlYohSOBNTFNFD+KwgIiVgiFK4DYcvyl0CkWowXBGRLTFEKdyNkjK5SyAiIqIaMEQRERERScAQRUR2g4fziMiWGKKIiIiIJGCIIiK7IfBsOURkQwxRRERERBIwRBERERFJwBBFRHaDE8vJUXHflwdDFBEREZEEDFFEpDqcPk5ESsAQRUR2g4c0iMiWGKKISHUYlohICRiiiMhuMFyRo+IhbnkwRBERERFJwBBFREREJAFDFBEREZEEsoaoefPm4be//S1atmwJHx8fDB8+HGfPnjVrc+/ePSQmJqJ169bw8PDAiBEjUFhYaNamoKAAcXFxcHd3h4+PD6ZNm4aKigqzNrt370bv3r2h1WrRsWNHrFmz5qF60tLS0L59e7i6uqJv3744dOiQxbeZiIiI7IOkEHXx4kX8/PPP4vVDhw5hypQpWLFiRaPWk52djcTERBw4cACZmZkoLy/HoEGDUFJSIraZOnUqvv76a3z22WfIzs7G5cuX8eyzz4rLTSYT4uLiUFZWhv379+Ojjz7CmjVrkJqaKrbJz89HXFwcBgwYgLy8PEyZMgUvv/wytm/fLrbZsGEDkpOTMWvWLBw9ehRhYWGIiYnB1atXpXQRERER2TlJIer555/Hrl27AAAGgwFPP/00Dh06hL///e+YM2dOg9eTkZGBF198Ed26dUNYWBjWrFmDgoIC5ObmAgCKi4vx4YcfYuHChYiKikJERARWr16N/fv348CBAwCAHTt24PTp0/jkk08QHh6OwYMHY+7cuUhLS0NZWRkAID09HSEhIViwYAG6du2KpKQkPPfcc1i0aJFYy8KFC5GQkIDx48cjNDQU6enpcHd3x6pVq2qsvbS0FEaj0exCRPIS+B0lIrIhSSHq5MmTeOyxxwAAGzduRPfu3bF//36sXbu2xsNkDVVcXAwA8Pb2BgDk5uaivLwc0dHRYpsuXbogKCgIOTk5AICcnBz06NEDvr6+YpuYmBgYjUacOnVKbFN9HVVtqtZRVlaG3NxcszZOTk6Ijo4W2zxo3rx58PT0FC+BgYGSt5uIiIjUR1KIKi8vh1arBQB8++23+MMf/gDgfsC5cuWKpEIqKysxZcoUPPHEE+jevTuA+6NcLi4u8PLyMmvr6+sLg8EgtqkeoKqWVy2rq43RaMTdu3dx/fp1mEymGttUreNBKSkpKC4uFi8XL16UtN1ERERNxXOkyaOZlDt169YN6enpiIuLQ2ZmJubOnQsAuHz5Mlq3bi2pkMTERJw8eRL79u2TdH9b02q1YpAkImXgGwkR2ZKkkai33noL77//PiIjIzFmzBiEhYUBAL766ivxMF9jJCUlYcuWLdi1axcCAgLE2/38/FBWVoaioiKz9oWFhfDz8xPbPPhtvarr9bXR6XRwc3NDmzZt4OzsXGObqnUQERERVScpREVGRuL69eu4fv262cTriRMn4v3332/wegRBQFJSEjZt2oSdO3ciJCTEbHlERASaN2+OrKws8bazZ8+ioKAAer0eAKDX63HixAmzb9FlZmZCp9MhNDRUbFN9HVVtqtbh4uKCiIgIszaVlZXIysoS2xCR8nEkiohsSVKIioqKwq1bt9CqVSuz2729vTFq1KgGrycxMRGffPIJ1q1bh5YtW8JgMMBgMODu3bsAAE9PT0yYMAHJycnYtWsXcnNzMX78eOj1evTr1w8AMGjQIISGhmLcuHH4/vvvsX37dsycOROJiYni4bZJkybhp59+wvTp03HmzBm899572LhxI6ZOnSrWkpycjA8++AAfffQRfvjhB0yePBklJSUYP368lC4iIitiWCIiJZA0J2r37t3i6QOqu3fvHvbu3dvg9SxfvhzA/ZGt6lavXo0XX3wRALBo0SI4OTlhxIgRKC0tRUxMDN577z2xrbOzM7Zs2YLJkydDr9ejRYsWiI+PNzvVQkhICLZu3YqpU6diyZIlCAgIwMqVKxETEyO2GTVqFK5du4bU1FQYDAaEh4cjIyPjocnmREREREAjQ9Tx48fF/58+fdrsm2smkwkZGRn4zW9+0+D1CUL9nyddXV2RlpaGtLS0WtsEBwdj27Ztda4nMjISx44dq7NNUlISkpKS6q2JiJSJI1REZEuNClHh4eHQaDTQaDSIiop6aLmbmxuWLl1qseKIiIiIlKpRISo/Px+CIOCRRx7BoUOH0LZtW3GZi4sLfHx84OzsbPEiiYiIqHY8V788GhWigoODAdz/5hoRkdLwcB4R2ZKkieUA8OOPP2LXrl24evXqQ6Gq+o//EhEREdkjSSHqgw8+wOTJk9GmTRv4+flBo/l1IFGj0TBEEZEsHvwB4gZ8d4WISDJJIeqf//wn3njjDcyYMcPS9RARERGpgqSTbd68eRMjR460dC1EREREqiEpRI0cORI7duywdC1ERE3Co3fkqLjvy0PS4byOHTviH//4Bw4cOIAePXqgefPmZstfffVVixRHREREpFSSQtSKFSvg4eGB7OxsZGdnmy3TaDQMUVQvXzz8s0FETXVTaAZPjUnuMojIQUgKUfn5+ZaugxyMMwefyQrOCa5oj1K5yyAiByFpThQRERGRo5M0EvXSSy/VuXzVqlWSiiEiaooHzxNFRGRNkkLUzZs3za6Xl5fj5MmTKCoqqvGHiYmI5MCDxkRkTZJC1KZNmx66rbKyEpMnT0aHDh2aXBTZv3s8kkxERCpnsXcyJycnJCcnY9GiRZZaJdmxG2hefyOiRuLIExHZkkWHA86fP4+KigpLrpKIqMEYoojIliQdzktOTja7LggCrly5gq1btyI+Pt4ihRERNRZDFDkqfqVCHpJC1LFjx8yuOzk5oW3btliwYEG939wjIrIevpUQke1IClG7du2ydB1EREREqiIpRFW5du0azp49CwDo3Lkz2rZta5GiiIik4OE8clTc9+UhaWJ5SUkJXnrpJbRr1w79+/dH//794e/vjwkTJuDOnTuWrpGISBK+sRCRNUkKUcnJycjOzsbXX3+NoqIiFBUV4csvv0R2djb+8pe/WLpGIiIzPDM5ESmBpMN5//73v/H5558jMjJSvG3IkCFwc3PDH//4RyxfvtxS9RERNRhHnojIliSNRN25cwe+vr4P3e7j48PDeUQkG4YoIrIlSSFKr9dj1qxZuHfvnnjb3bt38frrr0Ov11usOCKixmCIIiJbknQ4b/HixYiNjUVAQADCwsIAAN9//z20Wi127Nhh0QIdXduWWly7VSp3GUSqwLlSRGRLkkJUjx498OOPP2Lt2rU4c+YMAGDMmDEYO3Ys3NzcLFqgo+NbAhERkTJJClHz5s2Dr68vEhISzG5ftWoVrl27hhkzZlikOCKixuDhPCKyJUlzot5//3106dLlodu7deuG9PT0JhdFRCQFQxQR2ZKkEGUwGNCuXbuHbm/bti2uXLnS5KLoV04aHtAjkoqhioisSVKICgwMxHfffffQ7d999x38/f2bXBT9yl4zVFuUyV0C2aEKziIkIhuSNCcqISEBU6ZMQXl5OaKiogAAWVlZmD59Os9YbmGCnX6UdtVUyl0C2SFGKCKyJUkhatq0afjll1/wpz/9CWVl90cUXF1dMWPGDKSkpFi0QCIiIiIlkhSiNBoN3nrrLfzjH//ADz/8ADc3Nzz66KPQarWWrs/h2evhPCIiIrWTNCeqioeHB37729+ie/fukgLUnj17MHToUPj7+0Oj0WDz5s1my1988UVoNBqzS2xsrFmbGzduYOzYsdDpdPDy8sKECRNw+/ZtszbHjx/HU089BVdXVwQGBmL+/PkP1fLZZ5+hS5cucHV1RY8ePbBt27ZGbw81HLMhNYWdHuUmIpVpUohqqpKSEoSFhSEtLa3WNrGxsbhy5Yp4+fTTT82Wjx07FqdOnUJmZia2bNmCPXv2YOLEieJyo9GIQYMGITg4GLm5uXj77bcxe/ZsrFixQmyzf/9+jBkzBhMmTMCxY8cwfPhwDB8+HCdPnrT8RjeSvYYNvgmSNXC/IiJbknQ4z1IGDx6MwYMH19lGq9XCz8+vxmU//PADMjIycPjwYfTp0wcAsHTpUgwZMgTvvPMO/P39sXbtWpSVlWHVqlVwcXFBt27dkJeXh4ULF4pha8mSJYiNjcW0adMAAHPnzkVmZiaWLVsm+3mvNDyeR0REpEiyjkQ1xO7du+Hj44POnTtj8uTJ+OWXX8RlOTk58PLyEgMUAERHR8PJyQkHDx4U2/Tv3x8uLi5im5iYGJw9exY3b94U20RHR5s9bkxMDHJycmqtq7S0FEaj0exCDSdreiciIrIARYeo2NhYfPzxx8jKysJbb72F7OxsDB48GCaTCcD9k376+PiY3adZs2bw9vaGwWAQ2/j6+pq1qbpeX5uq5TWZN28ePD09xUtgYGDTNtbBDHX6pf5GRE3EHyQmImtS9IDA6NGjxf/36NEDPXv2RIcOHbB7924MHDhQxsqAlJQUJCcni9eNRiODVCNoNZy9QpbHvYqIbEnRI1EPeuSRR9CmTRucO3cOAODn54erV6+atamoqMCNGzfEeVR+fn4oLCw0a1N1vb42tc3FAu7P1dLpdGYXIiIichyqClE///wzfvnlF/F3+/R6PYqKipCbmyu22blzJyorK9G3b1+xzZ49e1BeXi62yczMROfOndGqVSuxTVZWltljZWZmQq/XW3uTiMiC7PUM/0SkTLKGqNu3byMvLw95eXkAgPz8fOTl5aGgoAC3b9/GtGnTcODAAVy4cAFZWVkYNmwYOnbsiJiYGABA165dERsbi4SEBBw6dAjfffcdkpKSMHr0aPE3/J5//nm4uLhgwoQJOHXqFDZs2IAlS5aYHYr785//jIyMDCxYsABnzpzB7NmzceTIESQlJdm8T0hddKiQuwSqRsocKF/+jiMRSSRriDpy5Ah69eqFXr16AQCSk5PRq1cvpKamwtnZGcePH8cf/vAHdOrUCRMmTEBERAT27t1rdmLPtWvXokuXLhg4cCCGDBmCJ5980uwcUJ6entixYwfy8/MRERGBv/zlL0hNTTU7l9Tjjz+OdevWYcWKFQgLC8Pnn3+OzZs3o3v37rbrjFrwDAfK1krDEKV2IU735C6BiFRK1onlkZGREOoYf9++fXu96/D29sa6devqbNOzZ0/s3bu3zjYjR47EyJEj6308W7PXEMWjLkREpHaqmhNFpDR2mnGJSGX4wVQeDFEKp7HTt2k+4ckWuJ8R2ZcXH28vdwlmGKKISHUYjogc06yhoXKXYIYhSuH8vVzlLoHqYJ/jhESkNo7yWqS035NliFK4l54IkbsEq+BIAhERqR1DlMIN7OpbfyMikown6CQiqRiiFM7ZSVlDl2RurPPV+hsREVGD/AalcpfQKAxRRE3QmifbJCKyGGeV/Tg9QxQR2Q11vfwSkdoxRJEspPzGGVF9KuUuwAI0jII2F6a5LXcJ9D9q2/sZokgWanuikDo8GM65n1FD6J1uyV0CqRRDFBERWZwfyuQugcjqGKKIiMjieMCeHAFDlMq0gEnuEoiISGF46FoeDFEq85zzdblLsAie4JDIPjzhVCx3CUSyYYhSGVe7+P4RUdMwgyuHH8rlLqHJWmo4wq8Gfx/SVe4SHsIQpTLOfPtQFP411I9/Q3KqYy/w5QR5xQgL9JK7hIcwRKkM/2BEtWMgIinq2m84QV45Ar3d5C7hIXxPVoGYbvwRYiJ71FNTIncJRIpS24mYR/UJRDtPhiiSoLnzr38me/mkbS/bQcry4H6l9P3Mo4a5ODybP9HDIoJbyV1CjRiiiIiIiCRgiCIikonSR8qIfyOqG0MUERERkQQMUSrQyt1F7hLIjnTQ3JW7BCKiRhEUOibIEKUCyU93krsEi+PkWfk873wNANDKvbnMlRARqRtDlAq0auGCFx9vL3cZZCe0/zvr/WMh3jJXQvbgwfGBhX8Mk6UOIjkwRBE1grcd/MRFFQ1HA8kK3F2ayV2CRSwd00vuEhpFmQe77B9DFBERUTVd2+kQ0qaF3GWQCjBEEZHqWPZTN0fkmuLB3tPYSXfay3aojaCyITWGKLKJHg/8vIXKnidkx7gvWhazB1mDtpmz3CXUiCGKiOwGA5H8NHYwhDM9trPcJVjErKGhcpdgMUN6tJO7hBoxRBERyYShT1n+2CcAx7VHMaCzj3ibmv9G458IkbsEi3htUCe4NFNmXFFmVUREpEpqH4fS1fCj0CSfR308kBT1qNxl1IohiogcwqJRPH+RLajxaB5P/ktSMUSphBpfmOriramQu4Qm8fd0lbsEydR8eKIpBoX6yV2CXXpwf7K31yqiusgaovbs2YOhQ4fC398fGo0GmzdvNlsuCAJSU1PRrl07uLm5ITo6Gj/++KNZmxs3bmDs2LHQ6XTw8vLChAkTcPv2bbM2x48fx1NPPQVXV1cEBgZi/vz5D9Xy2WefoUuXLnB1dUWPHj2wbds2i28v/aol1B2iiIjI+pQeymUNUSUlJQgLC0NaWlqNy+fPn493330X6enpOHjwIFq0aIGYmBjcu3dPbDN27FicOnUKmZmZ2LJlC/bs2YOJEyeKy41GIwYNGoTg4GDk5ubi7bffxuzZs7FixQqxzf79+zFmzBhMmDABx44dw/DhwzF8+HCcPHnSehtPquRIozh+KBP/P7H/IzJWIh0P09gez4RPjkTWEDV48GD885//xDPPPPPQMkEQsHjxYsycORPDhg1Dz5498fHHH+Py5cviiNUPP/yAjIwMrFy5En379sWTTz6JpUuXYv369bh8+TIAYO3atSgrK8OqVavQrVs3jB49Gq+++ioWLlwoPtaSJUsQGxuLadOmoWvXrpg7dy569+6NZcuW2aQfiJTsn8O7Y0ZsF7nLqFXCU79+A6mhoal9a3drlePwlPotKiJrUOzenp+fD4PBgOjoaPE2T09P9O3bFzk5OQCAnJwceHl5oU+fPmKb6OhoODk54eDBg2Kb/v37w8XFRWwTExODs2fP4ubNm2Kb6o9T1abqcWpSWloKo9FodiGyR+GBXnB2Uu7owrDw3zT6Pn+OVu63fdRs9G8D4enWXO4yLIIjatQQig1RBoMBAODr62t2u6+vr7jMYDDAx8fHbHmzZs3g7e1t1qamdVR/jNraVC2vybx58+Dp6SleAgMDG7uJDs1eDrM40uE9pZIyZ8Kn5a9fDODf0HISVHrY1x7Y636s9DCr2BCldCkpKSguLhYvFy9elLskRbPXJzjJpeYX1obuZ0oZWVPb74TZO6W/YZPyKDZE+fnd/zpyYWGh2e2FhYXiMj8/P1y9etVseUVFBW7cuGHWpqZ1VH+M2tpULa+JVquFTqczu1Dtyu3sxckeftrCHtWXSV5+MgQDOrfFY+29bVKPI2im+bXXA1q5yViJdTDnUl0UG6JCQkLg5+eHrKws8Taj0YiDBw9Cr9cDAPR6PYqKipCbmyu22blzJyorK9G3b1+xzZ49e1BeXi62yczMROfOndGqVSuxTfXHqWpT9ThKotYnNCMHyU2jAWb+PhSrxz8GJ4WMRNmDqp58NaqjYn8klshaZA1Rt2/fRl5eHvLy8gDcn0yel5eHgoICaDQaTJkyBf/85z/x1Vdf4cSJE3jhhRfg7++P4cOHAwC6du2K2NhYJCQk4NChQ/juu++QlJSE0aNHw9/fHwDw/PPPw8XFBRMmTMCpU6ewYcMGLFmyBMnJyWIdf/7zn5GRkYEFCxbgzJkzmD17No4cOYKkpCRbdwkRNVL1QzBq/ZBhD7TNGaDI8pQ+6N9Mzgc/cuQIBgwYIF6vCjbx8fFYs2YNpk+fjpKSEkycOBFFRUV48sknkZGRAVfXXyeFrl27FklJSRg4cCCcnJwwYsQIvPvuu+JyT09P7NixA4mJiYiIiECbNm2Qmppqdi6pxx9/HOvWrcPMmTPxt7/9DY8++ig2b96M7t2726AXHEN7zT2cEfi1ciWp78XJHgKJPWwDESmXrCEqMjISQh0zKzUaDebMmYM5c+bU2sbb2xvr1q2r83F69uyJvXv31tlm5MiRGDlyZN0Fk2TdnO4go5LzUMjymjkr/KOqBIKg/E/gRKTgOVFESmQvp2awJ4/6eMhdQpM14xwtIgDqGz1miCIi1XJ20tjFNyXfGRmGD+P71N+QiBSFIYqISGbNnZ3QK6iV3GUQUSMxRBERyURthy4ciR0McJINMEQRkd2oa85abWejZpAhUq4+7ZU9Qivrt/OIiIiUTI1fJvHQNsNLT7QX/3+7tALNUSlvUY20ZHQ4Lhfdwwv6YLlLqRNDFBERkcpVhT2dazMcSx0k/j7k4lHhePnjIwjV3JGzvEYLadMCw8J/I3cZ9eLhPCJSndoOwT14Ow/VWR/7WHmq/8A253ZZF0MUEdWJL8JE6mEPp/wAap/DqDQMUURUIzWMMDz4MquGmu2VPbx328M2kG0xRBFJwBdbIiLLU9tEfoYookbgSAdZw4OhnPsZkTowRBGRQ1Dm6KGmhv8RkVowRKmEWibZERHZA2WGblIahigiIiIiCRiiiCTgp1T7obaJrESkHAxRRE2g5gnAjhAE1fz3ISLlY4giIofGoEWkPGr5kMcQpTJqPfTANyqyBe5nRGRLDFFEVCc1fTNUrR8ySF72EL7tYRsA9W0HQxQR1UjJL2ZKrk0KRj8idWKIImoEe3vzJnlxfyJLU8tcInvBEEVEqsU3DCKSE0MUERERkQQMUURkNx48PKbWw2VqrdueqOkLFSQfhigiCfgCq0xqDh88NCm/mv4Gat6nyPoYoojIofFNkoikYogicjA8lxJZEkMoOTKGKCIiajIe4iZLUFsoZ4giIrtR1wsw5xwRkaUxRJEs1PZpwxFVHfZj+LCequcB+5hInRiiiMhuMJwTkS0xRBE1At+kiYioCkMUkYNS80TghoZZfhORiKyJIYqIiOgBap2nptKyVYshikgCtb7A2hs1j6aROvAQPtVF0SFq9uzZ0Gg0ZpcuXbqIy+/du4fExES0bt0aHh4eGDFiBAoLC83WUVBQgLi4OLi7u8PHxwfTpk1DRUWFWZvdu3ejd+/e0Gq16NixI9asWWOLzSMV41s3kf2w56DED3zWpegQBQDdunXDlStXxMu+ffvEZVOnTsXXX3+Nzz77DNnZ2bh8+TKeffZZcbnJZEJcXBzKysqwf/9+fPTRR1izZg1SU1PFNvn5+YiLi8OAAQOQl5eHKVOm4OWXX8b27dttup314ROBqGlqG7VS4huoEmsisiW1vOc1k7uA+jRr1gx+fn4P3V5cXIwPP/wQ69atQ1RUFABg9erV6Nq1Kw4cOIB+/fphx44dOH36NL799lv4+voiPDwcc+fOxYwZMzB79my4uLggPT0dISEhWLBgAQCga9eu2LdvHxYtWoSYmJha6yotLUVpaal43Wg0WnjLiaix1DyRnIcmidT3AULxI1E//vgj/P398cgjj2Ds2LEoKCgAAOTm5qK8vBzR0dFi2y5duiAoKAg5OTkAgJycHPTo0QO+vr5im5iYGBiNRpw6dUpsU30dVW2q1lGbefPmwdPTU7wEBgZaZHtJXQS1PeNJUX7dfRigiNRI0SGqb9++WLNmDTIyMrB8+XLk5+fjqaeewq1bt2AwGODi4gIvLy+z+/j6+sJgMAAADAaDWYCqWl61rK42RqMRd+/erbW2lJQUFBcXi5eLFy82dXMbhO/ZRETWwjBLjaPow3mDBw8W/9+zZ0/07dsXwcHB2LhxI9zc3GSsDNBqtdBqtbLWQETmHvyQwQ8dRGRNih6JepCXlxc6deqEc+fOwc/PD2VlZSgqKjJrU1hYKM6h8vPze+jbelXX62uj0+lkD2pESqCWCZ5ERLamqhB1+/ZtnD9/Hu3atUNERASaN2+OrKwscfnZs2dRUFAAvV4PANDr9Thx4gSuXr0qtsnMzIROp0NoaKjYpvo6qtpUrYOIiIioJooOUa+99hqys7Nx4cIF7N+/H8888wycnZ0xZswYeHp6YsKECUhOTsauXbuQm5uL8ePHQ6/Xo1+/fgCAQYMGITQ0FOPGjcP333+P7du3Y+bMmUhMTBQPxU2aNAk//fQTpk+fjjNnzuC9997Dxo0bMXXqVDk3nYgk4OE7IrIlRc+J+vnnnzFmzBj88ssvaNu2LZ588kkcOHAAbdu2BQAsWrQITk5OGDFiBEpLSxETE4P33ntPvL+zszO2bNmCyZMnQ6/Xo0WLFoiPj8ecOXPENiEhIdi6dSumTp2KJUuWICAgACtXrqzz9AZEpD48LEmNUbW7qCWYq6VOe6PoELV+/fo6l7u6uiItLQ1paWm1tgkODsa2bdvqXE9kZCSOHTsmqUZyTBoVvyPbw4utms8HZW/sYX8ikkrRh/OIiIio4dT8AQ/4NZSr5eSzDFEkC356JYuwwOusnC+CVSNqKn/fA2Af20DUWAxRROTQopyL5C7hITxcSaQODFFE5JCGhvkDAFqgUuZK7tNUezU2yVcGETUCQxSRo7LDwY7GHCZW2rev7PDPQWT3GKKIqEZKCReN0ZjDYJzDQ1XUuK+TMjBEETWCI85VUcu3ZOpjH1tBRErCEEVEREQkAUMUEdkNHpYhS6k63OuIo8/UcAxRRBLwZZXI/nCenPzUFloZooiIZMKRM6KaqSXQMkQRkd0QVJpKVPJ+QQqm0l1f9RiiiEh1GvqGwTcWIrImhigiIiI7wVFN22KIIpKCr1SKwD8DEcmJIUol+GahTGr7Jokj06hlpioRqQZDlMpwjoe8HKn/1bitaqyZiNSLIYqI6sQBHCKimjFEETkYjtaQJQmCvabs+9vF5wvVhSGKSAJ7fdsg2+IbNJG6MUSRLPjmQbaglv3MHia9q38LSEnU8pRgiCIiIofGb9mSVAxRRA6KbxtERE3DEEVEdqOuEQWGRiKyNIYoIrIbapkDRcqk5qDNQ5LyYIgiItVhWCIiJWCIIiIishNq+VabvWCIImoERxoBUcO2PviGoYaaich+MEQRUZ34wdZ6GPqUj38j21JbfzNEEUlgDydHdAScbEtS8SlODcEQRUQkM75fE5nTqORZwRBFRHajrkMBHFkgIktjiCIiIiKSgCGKiIiISAKGKCIiIiIJGKIekJaWhvbt28PV1RV9+/bFoUOH5C6JiIiIFIghqpoNGzYgOTkZs2bNwtGjRxEWFoaYmBhcvXpV7tKIiIhIYZrJXYCSLFy4EAkJCRg/fjwAID09HVu3bsWqVavw17/+Vebq7rskuOBnwUXuMhrNKJjvapcErSq3o/KB6/X9PZS4jUW1PO0frNVUx1eM5d4uQy2PfxXNzWorEup/iZPzOVVWy+fYS4IW2of2NmW6U8s2XIF6XquMgnPty9BMFdtRKDSvc7laXnPret1RIoao/ykrK0Nubi5SUlLE25ycnBAdHY2cnJyH2peWlqK0tFS8bjQabVLnlsrW2FLa2iaPZU3LTP5YZvKXuwzJqp7mS0y/wRLTb2pt92RpmG0KsoDG1KrU7frc1Bafm9o26j6rTH5YZfKzUkXSDCzrIXcJFqHU/aSx7GE7rqO5XWyH0jBE/c/169dhMpng6+trdruvry/OnDnzUPt58+bh9ddft1V5iOzsg037/oPbqP0Tk9K5oRL67gHYd/LnWj+Bq0HP9q3xTK8AzNt0rMbtKK12m1JHE1xQiadDfbHl+BXxtppq7RLojeDWLQAAO//yO0QtyK61rRz+EBZgdt0ZAprVcLaoQWEBD51l/ulQX+zKKzD7e8nBv01LhAd5wUPbDFFdfPDdGYOs9UjhpXPDEx3bAAA6+nigm78O5y4XyVtUI7mhElFdfIDv718P8nZHryAvnC64IW9hjfT7nuYfTsMCvPBImxa4dP2WTBU1XpeAVghp00LuMhqEIUqilJQUJCcni9eNRiMCAwOt9nhPPtoGua55Vlu/zfzfMGD213JX0TSTZgMAnv9mlbx1NFX4MAwL/w0we3btbRJ/XfZIWw9ceDOu7va29txQAKi/rjFDH7rp9z398fsvjlmpsEZ4bbb431Uv/lZZ/dtQf5st/te1uTO2vvqUOrej6zDxv82dnbDpT0+obzv+YL6vt/bQYudrkerajqTZclfQYAxR/9OmTRs4OzujsLDQ7PbCwkL4+T081K/VaqHVam1VHhERESmMeo+pWJiLiwsiIiKQlZUl3lZZWYmsrCzo9XoZKyMiIiIl4khUNcnJyYiPj0efPn3w2GOPYfHixSgpKRG/rUdERERUhSGqmlGjRuHatWtITU2FwWBAeHg4MjIyHppsTkRERMQQ9YCkpCQkJSXJXQYREREpHOdEEREREUnAEEVEREQkAUMUERERkQQMUUREREQSMEQRERERScAQRURERCQBQxQRERGRBAxRRERERBIwRBERERFJwDOWW4ggCAAAo9FovQcpLbXeum3FaFT/dlT9jR1hO2ran5W03dXra+x21HcfW3mwNiXU1FhK308aqur1qaH7lRIpeV9vKGu+j9b4cPcfr+p9vDE0gpR70UN+/vlnBAYGyl0GERERSXDx4kUEBAQ06j4MURZSWVmJy5cvo2XLltBoNFZ/PKPRiMDAQFy8eBE6nc7qj+eo2M/Wxz62DfazbbCfrc/SfSwIAm7dugV/f384OTVulhMP51mIk5NToxOsJeh0Oj5RbYD9bH3sY9tgP9sG+9n6LNnHnp6eku7HieVEREREEjBEEREREUnAEKVSWq0Ws2bNglarlbsUu8Z+tj72sW2wn22D/Wx9SupjTiwnIiIikoAjUUREREQSMEQRERERScAQRURERCQBQxQRERGRBAxRVrZnzx4MHToU/v7+0Gg02Lx5c53t9+3bhyeeeAKtW7eGm5sbunTpgkWLFpm1Wb58OXr27CmeaEyv1+Obb74xa3Pv3j0kJiaidevW8PDwwIgRI1BYWGjWJisrC48//jhatmwJPz8/zJgxAxUVFRbZbluTq59XrFiByMhI6HQ6aDQaFBUVPfRYN27cwNixY6HT6eDl5YUJEybg9u3bTd1kWSi5n9944w08/vjjcHd3h5eXVxO3VD5K7eMLFy5gwoQJCAkJgZubGzp06IBZs2ahrKzMEpttc0rtZwD4wx/+gKCgILi6uqJdu3YYN24cLl++3NRNloWS+7lKaWkpwsPDodFokJeX16jtY4iyspKSEoSFhSEtLa1B7Vu0aIGkpCTs2bMHP/zwA2bOnImZM2dixYoVYpuAgAC8+eabyM3NxZEjRxAVFYVhw4bh1KlTYpupU6fi66+/xmeffYbs7GxcvnwZzz77rLj8+++/x5AhQxAbG4tjx45hw4YN+Oqrr/DXv/7VchtvQ3L18507dxAbG4u//e1vtT7W2LFjcerUKWRmZmLLli3Ys2cPJk6cKH1jZaTkfi4rK8PIkSMxefJk6RuoAErt4zNnzqCyshLvv/8+Tp06hUWLFiE9Pb3Ov4mSKbWfAWDAgAHYuHEjzp49i3//+984f/48nnvuOekbKyMl93OV6dOnw9/fv/EbBwAC2QwAYdOmTY2+3zPPPCP83//9X51tWrVqJaxcuVIQBEEoKioSmjdvLnz22Wfi8h9++EEAIOTk5AiCIAgpKSlCnz59zNbx1VdfCa6uroLRaGx0jUpiq36ubteuXQIA4ebNm2a3nz59WgAgHD58WLztm2++ETQajXDp0qVG16gkSurn6lavXi14eno2ui4lUmofV5k/f74QEhLS6PqURun9/OWXXwoajUYoKytrdI1KosR+3rZtm9ClSxfh1KlTAgDh2LFjjaqNI1EKd+zYMezfvx+/+93valxuMpmwfv16lJSUQK/XAwByc3NRXl6O6OhosV2XLl0QFBSEnJwcAPeHL11dXc3W5ebmhnv37iE3N9dKW6NcUvq5IXJycuDl5YU+ffqIt0VHR8PJyQkHDx5sct1qY61+pl/Zso+Li4vh7e3dpHWola36+caNG1i7di0ef/xxNG/eXPJ61Mqa/VxYWIiEhAT861//gru7u6T6+APEChUQEIBr166hoqICs2fPxssvv2y2/MSJE9Dr9bh37x48PDywadMmhIaGAgAMBgNcXFwemhfi6+sLg8EAAIiJicHixYvx6aef4o9//CMMBgPmzJkDALhy5Yr1N1AhmtLPDWEwGODj42N2W7NmzeDt7S3+LRyBtfuZbN/H586dw9KlS/HOO+80tXRVsVU/z5gxA8uWLcOdO3fQr18/bNmyxVKboArW7mdBEPDiiy9i0qRJ6NOnDy5cuCCpTo5EKdTevXtx5MgRpKeni2Gnus6dOyMvLw8HDx7E5MmTER8fj9OnTzd4/YMGDcLbb7+NSZMmQavVolOnThgyZAgAwMnJcXYLa/cz3cd+tj5b9vGlS5cQGxuLkSNHIiEhwRLlq4at+nnatGk4duwYduzYAWdnZ7zwwgsQHOgHRqzdz0uXLsWtW7eQkpLStEIbdfCPmgQSjwfPnTtX6NSpU51tBg4cKEycOFEQBEHIysqq8RhwUFCQsHDhQrPbKisrhUuXLgl37twR5+8cOnSo0TUqia36ubrajrt/+OGHgpeXl9lt5eXlgrOzs/DFF180ukYlUVI/V8c5Udbt40uXLgmPPvqoMG7cOMFkMjW6NiVSYj9Xd/HiRQGAsH///kbXqCRK6udhw4YJTk5OgrOzs3gBIDg7OwsvvPBCg2tznCEHFausrERpaWmD20RERKB58+bIysoSl589exYFBQUPHTPWaDTw9/eHm5sbPv30UwQGBqJ3796W3wgVaGw/N4Rer0dRUZHZPLOdO3eisrISffv2lVyrmlmjn8mctfr40qVLiIyMREREBFavXu1Qo9Y1sdW+XFlZCQAO+5ywRj+/++67+P7775GXl4e8vDxs27YNALBhwwa88cYbDV4P50RZ2e3bt3Hu3Dnxen5+PvLy8uDt7Y2goCCkpKTg0qVL+PjjjwEAaWlpCAoKQpcuXQDcP8fGO++8g1dffVVcR0pKCgYPHoygoCDcunUL69atw+7du7F9+3YAgKenJyZMmIDk5GR4e3tDp9PhlVdegV6vR79+/cT1vP3224iNjYWTkxO++OILvPnmm9i4cSOcnZ1t0TUWJUc/A/fnPBkMBvGxT5w4gZYtWyIoKAje3t7o2rUrYmNjkZCQgPT0dJSXlyMpKQmjR4+W/pVaGSm1nwGgoKAAN27cQEFBAUwmk3i+l44dO8LDw8Oq/WJJSu3jqgAVHByMd955B9euXRPv6+fnZ9U+sQal9vPBgwdx+PBhPPnkk2jVqhXOnz+Pf/zjH+jQoYMqv2yh1H4OCgoyq7PqNaJDhw4ICAho+AY2eMyKJKkaSnzwEh8fLwiCIMTHxwu/+93vxPbvvvuu0K1bN8Hd3V3Q6XRCr169hPfee89s2Pyll14SgoODBRcXF6Ft27bCwIEDhR07dpg97t27d4U//elPQqtWrQR3d3fhmWeeEa5cuWLWZsCAAYKnp6fg6uoq9O3bV9i2bZvV+sHa5OrnWbNm1fi4q1evFtv88ssvwpgxYwQPDw9Bp9MJ48ePF27dumXN7rAaJfdzfHx8jW127dplxR6xPKX28erVq2tcrta3EaX28/Hjx4UBAwYI3t7eglarFdq3by9MmjRJ+Pnnn63dJVah1H5+UH5+vqRTHGgEwYFmqhERERFZiGMf0CYiIiKSiCGKiIiISAKGKCIiIiIJGKKIiIiIJGCIIiIiIpKAIYqIiIhIAoYoIiIiIgkYooiIiEix9uzZg6FDh8Lf3x8ajQabN29u9Dq2b9+Ofv36oWXLlmjbti1GjBiBCxcuNLk2higislsvvvgihg8fLtvjjxs3Dv/v//2/BrUdPXo0FixYYOWKiNSnpKQEYWFhSEtLk3T//Px8DBs2DFFRUcjLy8P27dtx/fp1PPvss02ujWcsJyJV0mg0dS6fNWsWpk6dCkEQ4OXlZZuiqvn+++8RFRWF//73vw367b6TJ0+if//+yM/Ph6enpw0qJFIfjUaDTZs2mX04Ki0txd///nd8+umnKCoqQvfu3fHWW28hMjISAPD5559jzJgxKC0tFX80++uvv8awYcNQWlqK5s2bS66HI1FEpEpXrlwRL4sXL4ZOpzO77bXXXoOnp6csAQoAli5dipEjRzb4x4+7d++ODh064JNPPrFyZUT2JSkpCTk5OVi/fj2OHz+OkSNHIjY2Fj/++CMAICIiAk5OTli9ejVMJhOKi4vxr3/9C9HR0U0KUABDFBGplJ+fn3jx9PSERqMxu83Dw+Ohw3mRkZF45ZVXMGXKFLRq1Qq+vr744IMPUFJSgvHjx6Nly5bo2LEjvvnmG7PHOnnyJAYPHgwPDw/4+vpi3LhxuH79eq21mUwmfP755xg6dKjZ7e+99x4effRRuLq6wtfXF88995zZ8qFDh2L9+vVN7xwiB1FQUIDVq1fjs88+w1NPPYUOHTrgtddew5NPPonVq1cDAEJCQrBjxw787W9/g1arhZeXF37++Wds3LixyY/PEEVEDuWjjz5CmzZtcOjQIbzyyiuYPHkyRo4ciccffxxHjx7FoEGDMG7cONy5cwcAUFRUhKioKPTq1QtHjhxBRkYGCgsL8cc//rHWxzh+/DiKi4vRp08f8bYjR47g1VdfxZw5c3D27FlkZGSgf//+Zvd77LHHcOjQIZSWllpn44nszIkTJ2AymdCpUyd4eHiIl+zsbJw/fx4AYDAYkJCQgPj4eBw+fBjZ2dlwcXHBc889h6bOaGpmiY0gIlKLsLAwzJw5EwCQkpKCN998E23atEFCQgIAIDU1FcuXL8fx48fRr18/LFu2DL169TKbIL5q1SoEBgbiP//5Dzp16vTQY/z3v/+Fs7MzfHx8xNsKCgrQokUL/P73v0fLli0RHByMXr16md3P398fZWVlMBgMCA4OtsbmE9mV27dvw9nZGbm5uXB2djZbVnUoPS0tDZ6enpg/f7647JNPPkFgYCAOHjyIfv36SX58higicig9e/YU/+/s7IzWrVujR48e4m2+vr4AgKtXrwK4P0F8165dNc5tOn/+fI0h6u7du9BqtWaT359++mkEBwfjkUceQWxsLGJjY/HMM8/A3d1dbOPm5gYA4igYEdWtV69eMJlMuHr1Kp566qka29y5c0ecUF6lKnBVVlY26fF5OI+IHMqDE0k1Go3ZbVXBp+rF9fbt2xg6dCjy8vLMLj/++ONDh+OqtGnTBnfu3EFZWZl4W8uWLXH06FF8+umnaNeuHVJTUxEWFoaioiKxzY0bNwAAbdu2tci2EtmD27dvi8874P4pC/Ly8lBQUIBOnTph7NixeOGFF/DFF18gPz8fhw4dwrx587B161YAQFxcHA4fPow5c+bgxx9/xNGjRzF+/PgaR4MbiyGKiKgOvXv3xqlTp9C+fXt07NjR7NKiRYsa7xMeHg4AOH36tNntzZo1Q3R0NObPn4/jx4/jwoUL2Llzp7j85MmTCAgIQJs2bay2PURqc+TIEfTq1UsMPMnJyejVqxdSU1MBAKtXr8YLL7yAv/zlL+jcuTOGDx+Ow4cPIygoCAAQFRWFdevWYfPmzejVqxdiY2Oh1WqRkZEhjv5KxcN5RER1SExMxAcffIAxY8Zg+vTp8Pb2xrlz57B+/XqsXLnyoXkYwP2RpN69e2Pfvn1ioNqyZQt++ukn9O/fH61atcK2bdtQWVmJzp07i/fbu3cvBg0aZKtNI1KFyMjIOieAN2/eHK+//jpef/31WtuMHj0ao0ePtnhtHIkiIqqDv78/vvvuO5hMJgwaNAg9evTAlClT4OXl9dA8i+pefvllrF27Vrzu5eWFL774AlFRUejatSvS09Px6aefolu3bgCAe/fuYfPmzeIEdyJSPp6xnIjICu7evYvOnTtjw4YN0Ov19bZfvnw5Nm3ahB07dtigOiKyBI5EERFZgZubGz7++OM6T8pZXfPmzbF06VIrV0VElsSRKCIiIiIJOBJFREREJAFDFBEREZEEDFFEREREEjBEEREREUnAEEVEREQkAUMUERERkQQMUUREREQSMEQRERERScAQRURERCTB/w/zWFQLAwjxJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create light curve and apply GTIs\n", + "lc_raw = events.to_lc(dt=1)\n", + "\n", + "lc_raw.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "7e37946c", + "metadata": {}, + "source": [ + "The red areas in the midst of the \"good\" data intervals are actually small intervals of missing data. For example," + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "05e44199", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGwCAYAAAB4h2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/CklEQVR4nO3dd3xT5f4H8E/Skc50T1qgUFZZZVNAZFTKEEERcVxERLwgVaH3gnJ/CChXueoF5CrLgaCCDBVRwEIpG8oqlE2BApbRwerezfn9URsautL05Jwk/bxfr7xoc56c8z0kTb55zvN8H4UgCAKIiIiIyOiUcgdARERE1FAw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIolYyx2ApdBoNLh9+zacnZ2hUCjkDoeIiIj0IAgCsrOz4e/vD6XS+P1RTLxEcvv2bQQGBsodBhERERngxo0bCAgIMPpxmHiJxNnZGQBwY9o0qFUq4x9w5kxg/vyyf6Ui9fGIpDR/ftm/fI0T1U/5Z4VYnxnlf5tGklVYiMBFi7Sf48bGxEsk5ZcX1SqVNImXWg2oVGX/SkXq4xFJqfzvlq9xovop/6wQ6zNDis9UQLJhQhxcT0RERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRWROvZcuWoUOHDlCr1VCr1QgLC8Mff/yh3d6vXz8oFAqd26RJk3T2kZycjGHDhsHBwQHe3t6YPn06SkpKdNrs2bMHnTt3hkqlQnBwMFatWlUpliVLlqBp06aws7NDjx49cPToUaOcMxERETVcsiZeAQEB+M9//oP4+HgcP34cAwYMwIgRI3Du3Dltm4kTJyIlJUV7++STT7TbSktLMWzYMBQVFeHQoUNYvXo1Vq1ahdmzZ2vbXLt2DcOGDUP//v2RkJCAqVOn4rXXXsP27du1bdavX4+oqCjMmTMHJ06cQMeOHREREYH09HRp/iOIiIioQZA18Ro+fDiGDh2KFi1aoGXLlvjwww/h5OSEw4cPa9s4ODjA19dXe1Or1dptO3bswPnz5/HDDz8gNDQUQ4YMwbx587BkyRIUFRUBAJYvX46goCAsWLAAbdq0QWRkJJ599lksWrRIu5+FCxdi4sSJGD9+PEJCQrB8+XI4ODhg5cqV0v1nEBERkcUzmTFepaWlWLduHXJzcxEWFqa9f82aNfD09ES7du0wc+ZM5OXlabfFxcWhffv28PHx0d4XERGBrKwsba9ZXFwcwsPDdY4VERGBuLg4AEBRURHi4+N12iiVSoSHh2vbVKWwsBBZWVk6NyIiIqKaWMsdwJkzZxAWFoaCggI4OTlh06ZNCAkJAQC8+OKLaNKkCfz9/XH69Gm88847SExMxC+//AIASE1N1Um6AGh/T01NrbFNVlYW8vPz8eDBA5SWllbZ5uLFi9XGPX/+fLz//vv1O3kiIiJqUGRPvFq1aoWEhARkZmbip59+wrhx47B3716EhITg9ddf17Zr3749/Pz8MHDgQCQlJaF58+YyRg3MnDkTUVFR2t+zsrIQGBgoY0RERERk6mRPvGxtbREcHAwA6NKlC44dO4bFixdjxYoVldr26NEDAHDlyhU0b94cvr6+lWYfpqWlAQB8fX21/5bfV7GNWq2Gvb09rKysYGVlVWWb8n1URaVSQaVS1fFsiYiIqCEzmTFe5TQaDQoLC6vclpCQAADw8/MDAISFheHMmTM6sw9jYmKgVqu1lyvDwsIQGxurs5+YmBjtODJbW1t06dJFp41Go0FsbKzOWDMiIiKi+pK1x2vmzJkYMmQIGjdujOzsbKxduxZ79uzB9u3bkZSUhLVr12Lo0KHw8PDA6dOnMW3aNPTt2xcdOnQAAAwaNAghISEYO3YsPvnkE6SmpmLWrFmYMmWKtjdq0qRJ+OKLLzBjxgy8+uqr2LVrFzZs2ICtW7dq44iKisK4cePQtWtXdO/eHZ999hlyc3Mxfvx4Wf5fiIiIyDLJmnilp6fj5ZdfRkpKClxcXNChQwds374dTzzxBG7cuIGdO3dqk6DAwECMGjUKs2bN0j7eysoKW7ZsweTJkxEWFgZHR0eMGzcOH3zwgbZNUFAQtm7dimnTpmHx4sUICAjA119/jYiICG2bMWPG4M6dO5g9ezZSU1MRGhqK6OjoSgPuiYiIiOpD1sTrm2++qXZbYGAg9u7dW+s+mjRpgm3bttXYpl+/fjh58mSNbSIjIxEZGVnr8YiIiIgMZXJjvIiIiIgsFRMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SKyMAXFpTh1IwNFJRq5QyEiokdYyx0AEYlr3MqjOHLtPsLbeOPrcd3kDoeIiCpgjxeRhTly7T4AYOeFdJkjMdzvp27j9e+OY0+i+Z4DEVFV2ONFJBNBEHA5PQdeTiq4OdrKHY5JefPHkwCAM7cyETdzoMzREBGJhz1eRDJZdeg6Bi3ahz4f70JeUYnc4Zik1KwCuUMgIhIVEy8imVy7mwsAyC0qxb2cIpmjabg0GgElpZyIQETS4KVGImqwMvOKMXjxPmTlF2M1nNBVmSN3SFSFI1fv4deE2xjewQ+9gj3lDoeoXtjjRUQNVmJaNlIyC5BbVIpjGie5w6FqRP54Ej8eTcbfv4+XOxSiemPiRUREJu1OdiEAILuQYyHJ/DHxIrNx8MpdjPjiAP695bzcoRARERmEiReZje/j/sSpm5n4+sA15BeVyh0OERFRnTHxIrNRonk480wjCDJG8tDVOzkYtewQXl11DAXFNSeDBcWlmPHTKby97iTu5RRKFCE1VCmZ+Vi65woOJd2VOxSyYD/H38SEVcdY7LgOOKuRqB5iL6Qj/s8HAIDTNzPRPci92rZHrt3HhuM3AQC9mntIEh9ZLkEQ8M7Pp5GYloM5w0PQubGbzrYZP53G/stlSdeVD4fA2orfs81VZl4xEtOyERroCltr03oe/7HxFADgcnoO9s3wljka82BazyCZjM92XkKnD3bg89jLcodi0ir2vNXWC1exVlRxqWn02JH5Ss0qwIbjN3HqRgZ+PXlLZ9trq49rky4AKDWRHmIyzND/7cdzK+Lwf5vOyB1KtdiLrz/2eFGVPttZlnAtiLmE30/fRjt/F8wTlHCUOS5LV1BcCjsbK7nDIDOgESr+rJtYxV7UveyTlV8CL2e+rszVrYx8AEDCjQx5AyFRsMeLanUpLQe/nLyFQxq13KFYjB3n0yrd93+bzqD1e9GYvfmsDBGRJft8F3uuxVJUokFGHleaIMMx8SK9lUAhdwj1IggCzt7KRGqm/Ov/7bt0ByUa3V6KNUeSAQDfxf0pR0hkwTLzi+UOwSIUlpSi/3/3IPSDGPwUf1PucMhMMfGiBmPNkWQ8+fkB9PpPrEl8Y9VoOO6GyJzczSmqcNnvgczRkLli4kUNxo37eQDKxsaUV8Kmhu3938/JHQIRNTAcXE9EDc6D3CLsupiOc7ez5A6FiBoY9ngRWbAxK+JYQLMKszaf1dYfIvNy/W6u3CEQ1QsTLyILduTafSzfe1XuMExOUnqO3CFQHTjYPiyFsfVMioyRPMQhmmQoJl5EFq62pYyITJ2/q732Z1OZlLL2SDJyCkvkDoPMEBMvMmuCIODllUfR8f0d+MNEvgmTabuVkY+Lqdlyh2EUGo2At348KXcYDQZ7TskQsiZey5YtQ4cOHaBWq6FWqxEWFoY//vhDu72goABTpkyBh4cHnJycMGrUKKSl6RaeTE5OxrBhw+Dg4ABvb29Mnz4dJSW630L27NmDzp07Q6VSITg4GKtWraoUy5IlS9C0aVPY2dmhR48eOHr0qFHOmcT1IK8Y+y7dQWZ+MWIuVC5Kasq4bJA8RnxxUO4QjOb6vVz8duq23GEQUQ1kTbwCAgLwn//8B/Hx8Th+/DgGDBiAESNG4Ny5sine06ZNw++//46NGzdi7969uH37Np555hnt40tLSzFs2DAUFRXh0KFDWL16NVatWoXZs2dr21y7dg3Dhg1D//79kZCQgKlTp+K1117D9u3btW3Wr1+PqKgozJkzBydOnEDHjh0RERGB9HSutm6qev1nl9mXhPj5BAswyuGuha4pp9EIyGChVCKTJ2viNXz4cAwdOhQtWrRAy5Yt8eGHH8LJyQmHDx9GZmYmvvnmGyxcuBADBgxAly5d8O233+LQoUM4fPgwAGDHjh04f/48fvjhB4SGhmLIkCGYN28elixZgqKisgKZy5cvR1BQEBYsWIA2bdogMjISzz77LBYtWqSNY+HChZg4cSLGjx+PkJAQLF++HA4ODli5cmW1sRcWFiIrK0vnRtLJzC/G2duZcodBZBIOXrmHUcsP4Zmlh+QOhYhqYTJjvEpLS7Fu3Trk5uYiLCwM8fHxKC4uRnh4uLZN69at0bhxY8TFxQEA4uLi0L59e/j4+GjbREREICsrS9trFhcXp7OP8jbl+ygqKkJ8fLxOG6VSifDwcG2bqsyfPx8uLi7aW2BgYP3/E4iIDHDtbi5OJmfIHQYZ2aPLjJF5kj3xOnPmDJycnKBSqTBp0iRs2rQJISEhSE1Nha2tLVxdXXXa+/j4IDU1FQCQmpqqk3SVby/fVlObrKws5Ofn4+7duygtLa2yTfk+qjJz5kxkZmZqbzdu3DDo/IkA4I+zxpsY4FhhKj4Rma9rd3NxjXXMzJ7sletbtWqFhIQEZGZm4qeffsK4ceOwd+9eucOqlUqlgkqlkjsMshAV30wbVZg6LwZrK9m/XxGRSE7fzECQp6PcYVA9yJ542draIjg4GADQpUsXHDt2DIsXL8aYMWNQVFSEjIwMnV6vtLQ0+Pr6AgB8fX0rzT4sn/VYsc2jMyHT0tKgVqthb28PKysrWFlZVdmmfB9EUlJZM1GihulCShbGfnMU9rZKbHqjNzyd+OUWAGysFJwFbUFM7h1eo9GgsLAQXbp0gY2NDWJjY7XbEhMTkZycjLCwMABAWFgYzpw5ozP7MCYmBmq1GiEhIdo2FfdR3qZ8H7a2tujSpYtOG41Gg9jYWG0bKjOvmOPYjIVvqkTAsev3cTenEDfu5+PMLU6eIcska4/XzJkzMWTIEDRu3BjZ2dlYu3Yt9uzZg+3bt8PFxQUTJkxAVFQU3N3doVar8eabbyIsLAw9e/YEAAwaNAghISEYO3YsPvnkE6SmpmLWrFmYMmWK9jLgpEmT8MUXX2DGjBl49dVXsWvXLmzYsAFbt27VxhEVFYVx48aha9eu6N69Oz777DPk5uZi/Pjxsvy/mKpM+TtI6yXpjukWO/wpnqUliIgaAlk/SdPT0/Hyyy8jJSUFLi4u6NChA7Zv344nnngCALBo0SIolUqMGjUKhYWFiIiIwNKlS7WPt7KywpYtWzB58mSEhYXB0dER48aNwwcffKBtExQUhK1bt2LatGlYvHgxAgIC8PXXXyMiIkLbZsyYMbhz5w5mz56N1NRUhIaGIjo6utKA+4bq+W6BWHfsBhRyB1KFklKNXu0e5BZh5wXWZSMyN6duZOAKK8STBZE18frmm29q3G5nZ4clS5ZgyZIl1bZp0qQJtm3bVuN++vXrh5Mna15GIzIyEpGRkTW2aagUpphx/eU/0Rf1ancvt8jIkYjn6t1cXL+bi6YcQEuEw1fvyR0CkahMbowXmS4BZT1HpiQz72GlboVJ9skZZvu56kuZEBGR+WLiRXrLhRU6zYvBnM1n5Q7FIlkpFejaxA0AUJ86ieXlKFi/i8xZFpc/IgvFxIvq7IcjyXKHYLHErM8zvKO/aPsiktqMn07LHQKRUTDxojrTCCx9QETG5WxnI3cIREZh3vUBiAh3sguRU1jCatZEJJkd51LxzYFrcodhlph4ERmgoLgUH0dfxLcHr8saR3pWAXrOj4VGAJa82BnDOvjJGg8RNQz/3noByffz5A7DLPFSI5EB4pLuyZ50AcDNjHztQPyrJlwglogsS0aeac1wNydMvIgMUFiiX+FWc3H2ViYW7EjEWS7TQkRkVEy8iAivrT6Oz3ddwd+/j5c7FKIaFddQa+WjbRfQZV4Mvj3IsUdkujjGi4iQmlUAALiVkS9zJFQfz3RqBDdHWwgCsNJCk4//xV6Gs8oaE/s2q7Tty31XAQCf77qC8b2DpA6twSgp1SCroETnvrziUny9/yqcVNYYI8CCylmLjz1eVMnc387JHYLRHUriMiRkeUL81XjvyRD0DvaQOxSj2hh/o8bthcWlEkXS8AiCgKe+OFjF/WUD7t/95QzmlwTIEJn5YOJFOu7mFGLVoetyh2F0G47X/MZNZEk2J9xGkQWNS5SjlGB6doEsCd3NB3koLjXOCV9Jz8GsX8/glxM39X5MqUbA+ZSsGtv8VOpZ39AsGi81kg5NfdaqMSPWVvzOQQ3LieQH6NnMsnvCjGXNkT/xf5vkWSpt5YHrRtv3F7su49eE2/jhcDKGtveDnY04y4yp0DA+RwzFTx8iogagxEi9JpZOEATZki4AyDdSL9uGYzfwa8Jt7e+lDeRLtylg4kUkoxe6B8odQoNyJZ21zixRqUbAudvGKYVS22U1czXjZ66FKRdeaiSycDHn01CqEWCl5DyjH49ygXdL9M+Np7Dp5C1R9xl7IQ0LdlyCsx0/Jo1p18U0fB/3J4Z39McznRvGoHy+oshsKBRMHOrC3vbheI1j1+9zfA+A4lLTG2CekVeED7ach5VCgblPtYWjqv5vyxWfe0vk5mCr83vshTTRj/HlvqsW29tlSmZtOovbmQXYnXinwSRevNRIBll18Bp6fLQT/92eWO99ZeYX4/u469h/+U6N7VTWfLnWxaAQX+3P2Y/U3DFl93IKJTtW58auGBTiI9nxqrI7MR2/nLiFjfE3RStz0r2pO94d0hrTwluisbuDKPuU2zOdGyGyfzAAQGVj/PeCIhNM0i3R3ZyGt/QQP8nIIAtjLiEtqxBf7L5S7319vf8q3tt8DmO/OYoHuQ3vj9BYHGyt0Kmxq9xh1Nm6Yw9LfTiJ0PtTk5d6NIGLvY1Rj1GbiqUCSkT6sLe2UmLS483xdngLOFhI75cCCjT3dpQ7DKJ6Y+JFBikoFu/bYGZ+sfbnnELz6ZkxJ3cl7EWqr/yih7O4LKW3RipKXo4nMnlMvIgsWPkU8X9tOiNzJGQsCgUwMtQf4W28EdHOt/YHNAC5RaUWVTC2obicli13CJJg4kVkwYa08wMA2S+nkfHYWinx2fOd8PW4bmjkai93OHVyJT0HC3Yk4ui1+6LvO+a8+APuSXyeTg8nSmyuUFfMkjHxIpKRsUs8PCHzwHGimsz85TQ+33UFz62IE33fD/I4XtQceDiptD+XyrEWlAyYeBHV4sb9PGTmFdfeUE8+ahWeCPHB050aoXNjN+39rBxNDU3y/Ty5QyCSHOt4EdVgc8ItvL0uAXY2ShyeORCuj9QPMoSviz2+erkrACD+T/EvsZBxxSXdw68nb2F4R3/0aWH+iwGX1zaz4fqlRpVdUIxRyw4hI68YX4/rig4BrnKHRDJh4kVUg8tpZUvMFBRrcCsjv16J1+q4PyvdV7HHi8zDW+tO4k52IbaeScHZ9yPkDqdeElOz8eyyQ7CyUuD3yD4INKFZpA/yijByyUEk3MiQOxRRbD+Xhkt/vZ8cvHKPiVcDxq84BKDsctrpmxlcU96ITv75AABQcVSXQqFAa19neQIig9zJLivNYQmlT07dzEB2YQky8opx9pZx1jo0VKlG0Em6BDN/d/o4+qLcIUiuQFBg08mb2JOYLncoJoU9XoT07AI89sluAMD0iFYyR2O5bKyVQCEw96m2codCFqCguLT2RmQyLKWQbV38UuqJf60/BQDY9Y/H0czLSeaITAN7vAhpmQ+La958wMGuxubYAN+AqXolpYb15Hy49ULZ4w2clHHjfh7+veW8QY9tCKy5qHy9PajQt8NZpg8x8aJaiTGgnIiqZmhx2/Ier1Y+hl2q/mr/VWSZ0RqeUlPbsfad3JLv5WHL6dvIFCzryyovNZKOH4+WrZNnpVRgxd+6ICO/GB0CXLBsT5Jox/gu7jp+S7iNV/sEYWh7P9H2S9QQ/f3xZgY9ruLSTESmaPgXB5CZX4wnlU3whe1VucMRDRMvqlb4X8U3xVq4t9zszecAACmZBUy8iAgA8OW+JKisy3o2hrX3w9YzKTJHVD21nXWdegvj/7yPP+81vGEcuYLhF9UKiku16/gmCqYz21YMvNRItbK2UiKyf7Do+83gNX8i+stH2y7i2t1cucOoVQtvJzjX8TLk4asNr15fYUkplpb6G/TYB7lF6Dk/VuSITAcTLyIyGVkFxYg+lyp3GCQTztQ0baUaAZ/uSNSrbX1W+7h2LxcZIq4WYmqYeBFZiP/tulzttoy8YlGXParNwh2JeGbpQey/fKdOj/vHhlO4kp5jpKhqFqdRy3LchszR1nijXW4+yMfqQ9eRdEee15MlSrjxACv2Ws5YK7nImnjNnz8f3bp1g7OzM7y9vTFy5EgkJupm0/369YNCodC5TZo0SadNcnIyhg0bBgcHB3h7e2P69OkoKdG9/r5nzx507twZKpUKwcHBWLVqVaV4lixZgqZNm8LOzg49evTA0aNHRT9nahi2nL6NCauOYef5NMmOWVwq4G5OYbXbw/4Ti6yC2pOvpDs5WLgjEUevGXZ5pKRUg//tuoITyRn4cl/d3qRP38ww6Jj1YWdTNq5on8alXmNSqO48KyyQLLble5Mw57dzePkb472Pr9gn3qQjc1BYLO5434ZK1neZvXv3YsqUKTh8+DBiYmJQXFyMQYMGITdX9zr/xIkTkZKSor198skn2m2lpaUYNmwYioqKcOjQIaxevRqrVq3C7NmztW2uXbuGYcOGoX///khISMDUqVPx2muvYfv27do269evR1RUFObMmYMTJ06gY8eOiIiIQHp6w6y4ywWb6ydy7UnEXkzHjJ9PS3rcmmpC5RWVIi2zoNL9MY8kh+/+fBr/23UFz62Iq3c8hSWm/0Y9oU+Q9ud8XgSwOLcy8kXfZ/n7o1y9s2TeZH2XiY6OxiuvvIK2bduiY8eOWLVqFZKTkxEfH6/TzsHBAb6+vtqbWv3wksCOHTtw/vx5/PDDDwgNDcWQIUMwb948LFmyBEVFZYO3ly9fjqCgICxYsABt2rRBZGQknn32WSxatEi7n4ULF2LixIkYP348QkJCsHz5cjg4OGDlypXS/GcQAGDj8RtyhyCq+7mmPYEgq6AYE787rnNf8n3Tmn0lCAKW7rmCWb+eQUqm+B+iTT0dRd9nQ5GZX4zwhXvR46OdOHdbvyWHElOzsWT3FVxKyzZydMbz6egOAAAFWGS1os6NXeUOwSyY1Ne7zMyyP1x3d3ed+9esWQNPT0+0a9cOM2fORF7eww+GuLg4tG/fHj4+Ptr7IiIikJWVhXPnzmnbhIeH6+wzIiICcXFl3+iLiooQHx+v00apVCI8PFzb5lGFhYXIysrSuVH9Ha7D5a0tp0x3urm5KDCDWk7X7+Xhk+hE/HA4GeuPWVZibu7O3crElfQcpGUVIi7pnl6PeXXVMXy6PbFSwl+bAFd7Q0I0CiuF/AnXPzacQvcPd2Jzwi25Q9FqaWAx34bGZBIvjUaDqVOnonfv3mjXrp32/hdffBE//PADdu/ejZkzZ+L777/H3/72N+321NRUnaQLgPb31NTUGttkZWUhPz8fd+/eRWlpaZVtyvfxqPnz58PFxUV7CwwMNPzkzVCRyLW9ytVllY4dnP3WIBSWlFb42fQvXVLNyi/91aWu1frXe+KtgS2MFZLZKSnV4OcTN5GeXYh1R/llxNyYTAHVKVOm4OzZszhw4IDO/a+//rr25/bt28PPzw8DBw5EUlISmjdvLnWYWjNnzkRUVJT296ysrAaTfAnVDCP6814u7G2t4O1sZ9TjD2ztjdiL6VDZiLOMxNojyYg5n4rXHmuG3sGeBu/nthHGkhA1dJ5OtujRzKPGNg62dStoaklKq3tDloGS61vqxSR6vCIjI7Flyxbs3r0bAQEBNbbt0aMHAODKlSsAAF9fX6Sl6Q4OLv/d19e3xjZqtRr29vbw9PSElZVVlW3K9/EolUoFtVqtc2uoxqyIQ/TZVDz+6R70+CjW6AmIt1rcmVD/2nQGuxPv4KNtF+q1H0Mf72wn3vefnvNjdQYTezmrYMU3Q7Jwfq7G/bJHZZJqKHDbxMMBA1t717qP3MIS/Hg0GbsvNsyJa4DMiZcgCIiMjMSmTZuwa9cuBAUF1fqYhIQEAICfX9lSM2FhYThz5ozO7MOYmBio1WqEhIRo28TG6lbBjYmJQVhYGADA1tYWXbp00Wmj0WgQGxurbWMpSjUCXlt9DIMW7cWJ5AfVtlv/ek+993nk2n3svVT2/y8Ipjc4W1/ly1MYyt62+h6487ezqh1o/49BrTCgtTc+GNG2Xseviou9DQ6+M6BOj8luoD0Hhpj/R/2SdX0UFJdi/h8XMG/LeWTrUQ7EFGxOuIUu82Lw5o8nDd6Hu6MtAKCNX8P9Umtq/ru9+uKpX7/cVa+rHT8eTcbMX85g/KpjuPnAPD8r6kvWS41TpkzB2rVrsXnzZjg7O2vHU7m4uMDe3h5JSUlYu3Ythg4dCg8PD5w+fRrTpk1D37590aFD2aySQYMGISQkBGPHjsUnn3yC1NRUzJo1C1OmTIFKVdYzMmnSJHzxxReYMWMGXn31VezatQsbNmzA1q1btbFERUVh3Lhx6Nq1K7p3747PPvsMubm5GD9+vPT/MUZ0/V4udl4oS5Kiz6aic2O3Sm0C3Oxr7dqvq9TMAvxjYwJsrUyik1Vyv526rf3Zy1m3x65nMw/0/Ov/e/rGU6If29fFDu6OtnrPsMwzgwH3pmLF3qt4rU+zSs+pmOKu3tMWrWzfyAUjOzUy2rHE8lP8TdzLLcLvp27jv6M7aNdgrNM+JoXh2PX76K9HLwpJw0llXe8vqBUr0td3X+ZK1sRr2bJlAMqKpFb07bff4pVXXoGtrS127typTYICAwMxatQozJo1S9vWysoKW7ZsweTJkxEWFgZHR0eMGzcOH3zwgbZNUFAQtm7dimnTpmHx4sUICAjA119/jYiICG2bMWPG4M6dO5g9ezZSU1MRGhqK6OjoSgPuzV3F4QCChGMD9iSm4+AV/WY9WaLy/+sh7Xzh6mArczQkJmPXvKtYtLLiRANTphHhvaWZlxOaeTmJEA2RaZE18artgz8wMBB79+6tdT9NmjTBtm3bamzTr18/nDxZc7d3ZGQkIiMjaz0elRnW3g/7Lt/R69KUMT6b7uYU6lWJXW4Vu9MD3ExnSjwRkaGaejjgeh1mptbHZcEeDwQruCnM44tHbRrmdR+yGMeuVz9OTWwXUrLxU/zNOq95uOOcdMsGERlbQXEpNFV8k7LkRY1J1+YpvfH1uG6SHvOAxkXS4xkTEy8iPf1z4yn8c+MpfLz9Yq1tG1Uo9ijGZRciU/DryVtoN2c7Bi/eh5JHavl9sfsKio1U38+cbDuTgv/8cRE3zHSSkamypFcWEy8ySYIg4OytTDwwwSV3TLFeV6C7PXo1F3dCBIkrJTMf529nSTq2UmxHrt1HiUbApbQc3M2p/LeZV2gZl4IMVVBcijfWnMDyvUn4fNflatt9HH0RW0+Ls/LGiT8fyPKaUhtYBielivViGxomXmSSlu5JwpOfH0DfT3ebzYDiG/fz8fyXcVVehqGG7U52IcLm78LQ/+3HzydMZ4kXElfFFT1qG/u68uA1UY5ZohFw5pZ+62RqHyNCz6S32g7B3nWb/JBdUIyfT9ys97HNHRMvMknX/yrUl11QYlZ1pQ5fvY/07EK5wyATcu1uLnrOf1gj0Fzr3JG4xLwsm5ZVt/ecH48mi3JcfQqmVqRvSRtLx8SLKnGooRAoUU0y84oxYEHtM5Ebkt0X041ecoKq5yPyShemKCOvCCOXHMSQxfvx573qq8uXq2uiRuJi4kU62jdyQdQTLeUOw+w807kRbKwsb2mekNnRWLL7it7tz93OZI/OI5hyGV9NC24rFZb3d/moE8kZSLiRgQspWThw5a5kx7Wu8J5nbUBx7O3n0rRXN6piqWNXmXg1YBvjda+1+7nY4fc3+2BwOz+ZIiJTk1dUWuMgYantv3xH7hAalMy8Yhy6chcFxaY7zvLQlbu8hFUhvZdynP2ozgEY3NYXr/UJQlMPhzo//n+xl5FdaD5DScQiawFVkldGXrHOgspSY0+AeSgs0X8syj0jfwCevZWFuzmF8HQy78tHS3ZfwfmULLw1oIXcodTo6WUHcfVOLoa298XSl7rIHU6VxCrimZZVgCvpOejW1B221uyT0EczLycsH2uarwtTxsSrgcuT8dtGXlEpLqZmyXZ8U1dcqsGBy3fh5axCu0Z1Lx4o9SWWHedS67Uosr6yC0rMOvF6kFuE7w//CQBwN/Hlo67eKbsMdPTafZkjMa5SjYDwBXuRXViCV3sHYfbwELlDktzX+6/h7XDT/iJgKZjWk6yOS1h53tz8eDQZ41cdw5OfH0BaVt1r37TxczZCVNU7n8IkWh8lmoc9iCw4ahqKSjTaS15X7+bIHI10XurRWPvzpbRsGSNpWJh4kVkoKC7FFpEKDhrb3745Isol3PQKM4/u5lSehXQhJQu/n7pddQw9Gxs02JWIGg4bKyU+GNFWkmONWhaHj7ZdqLHNsj1JDWIGMN+ZSXTPf3kYZ+tY0K82FXvGfNWmt9B0xSWCrqQb/xtzQXEphizej28PXjf6seR07naWqAOnSxrAm3pDFd7GB5un9Mb2qX3lDqVaTqqHo3vcTPwyszFs12Pd2oYwK5qJFxnF7ovpou6vtMJUnUFtfUTdd300crXH2ok98NZAccdGnL6ZUeP2vCLTnWVWkVKEYWbbz6bWfycAcgpLsPaIOIUjyfQoFEDHQFf4udrJHUq1nuzgh09GdQAgzt8GmScmXmRW2vqrYUplefxc7NCruSdsrJSidJHb/DWb6o+zqWaTXNXE2c6m3vsoEmkc1LU7tReWNCUlpRpMWHUMk36IlzsUiydIOcfahN6/SB5MvAjztp4HIG39F0skxlWsV3o11f6cX9zw6tvQQ0l3chErcs8xVW3ZniS92zYxoF4VUUUsJ0HIyi8GALg5NrwxB6ampY+0MxHN0Y37eQjydJQ7DKOTtBemgbtWoXq6o23VH4uzhrWBQqHAsPZ+uHqn4cx8JPGxx4u0/m9oG7lDIImZ44LeL688iiNX78kdBjUgXZu44cUejTGhTxB8XUx3DBmZByZe1KCJPQnA3CyKuSR3CAa5XstCwIIgID2rABozm8WYb8JL8xhqw7EbEMx4HMPHo9rjp8m94FBNT5gc5FxxpK6slAqM7hIgdxgmhYlXA5OSaZw/2B+P3tD5feXBa2j5f3/g7XXGr2ReH7sTHyZeXs76VUO3tqDpSMV6JCaCUDYGxpAirgCwOeEW/v79cUnXWXz/9/Po/lEsxq86JtkxDbHumO7fTdSGUzJFYjzvbT6H0zfFLS/T0C3fe1XuEKgemHg1MP/dIU0Px4O8YhSVarA5oeoCn6ZIpef6bCprqyrvnzWsDXo190DXJm5ihmUSPo6+iE+3Jxr02LfXJWD7uTS89+vZWttaiTRl9ZcTZQvA771kXotqV6zzZEmyCzhRREymvGg51Y6JVwMjV2fNgzzjLp5sCl57rBnWTuyJPi085Q7FKKqqnl8Xd/QYT9bI7WEh2mZelj+AnowvI69Y7hDMQmFJKTL5fyUJJl6kFwdV1b08+hAEweDeElN1/LplLxosF8VfRY6WvdQZIX5qmaOpmqtD/WuTicFYS6tsTriFOZvPIkmCmXtHDfw72n/5rt7j9/KLSxFzvvaK6Q3dzgvp6DRvB6LPPlya7eaDPMzbch4bHrkkTvXDxIv08kK3xphqfcugx9b0ATFLj8tPpqLigrJfH7gGQLeiPhnHwSumNYPR00m/sYDG9Pfvj+PINfGT/8KSUry9LgGr4/7EZzsvi77/+rKpsP7o4TrMbD0j8hJmlkojAKcqjMdbeeA6vjlwDTN+Po0HIi7d1dAx8SK9uDnaYqr1bTzZwU/0fReViFOZ3Jhe6dUUrXwf1thytisbi/P3vs3lCqnBMObabeZ6OVOfNe/qSgCgqfCnmF0g3WUnfZPZx1t6aX++U89L31S7irNsC83gfdpcMPEiqoeKyZi5WbAjEfvMbPC5GPxc7HDkXwNxeOZAdGpseRMhDDV1fYIsx+3fykvvsafOdjbo1dzDuAERGRkTLzIpuYWlSM8uwMb4m3KHYvE+33VF7hAktXzvw2VhfNR2LIT5CFsr8T4OrJXyfbQ42FjBn88tmTAmXmR0F1Ky9W575lYmun8Ya8RoyJTdeGC8y4rlg8WNNSi9Pl7oHmjwYzsFml6vnb2N4ZNx6svaSomd/3gcu//ZD2N7NpEtjoqS0uVZYiiroBhbTt9G8j3j/V1R3THxIqP7Lu66qPtzc+CakmJ7pnMj9GvlVXtDIzp2/T5SMsuKtIpUzqtK/x3d0Xg7r8LmBMMmpdTExqrsPyhu5gA05qLNlTjYWiPI09Gor6Pa/HE2FUv3XEFeUQl+OVn2GrAyUj2fRwtYl5u16Swi157EsM/31/sYuUUlZlUx35Qx8SKjKxG5h8FHbYeNk8Iq3X/qZoaox2lIejf3xLKXusgaQ8WFirsHGW8cj1LCT+P8olKjVm0vL79B8hMEARm5uhMSPolORE6F4rEvdG/86MOM6lJa2dWGmgrYKvT8e9hw/GFyZydjj6YlYOJFZqlbU/dK911Jz8FVCWoPmap7OQ+ne7vY173WlL2tabyZ9m/lBXdH3V7NYe3Fn00rheIK0wQHtvaWMRLTcNqCvxy9/n08+n66u9rtVkoF2jVykTAi/QzQ83WZlf8wqWzp42SscBoEJl5kUdL1qI5uqQpLHk79fv0xacpcbD+XinZztuPZZYcg9tApjYXVSNN3LVBLtv/yXblDMBpzLdLayNW+ThMr/tazsd69ZFQ1Jl4kqvoMEjaUp5Mtgr35DawiFyNUV6/qzXlP4h3kFJbg+J8PcCf74SLaHo71H4dXsb7bU6H+9d4f1SynsAQzfj4tdxgmIb+oFLEX0+UOo14KiktxMVX/iU0kHSZeRBbCWN9CyxcPt9HzW/HfejbGPwa1EjWGPsHVr3+ZX1SKPYnpeq0F2ZDp04P4+6nqF7UvKdXgx6PJYoZksuKuPuyZ83A0z57KA/XsXRTz+a7tralfKy9tUeqGgIkXkZH9e+sFXJZgOvmzXQIAAOFtxB1L9HSnRqLuz1CNXO2rvP+dn0/jlW+P4akvDkgckXmZ8VP9erPOp2SJFInpKyp5mKT2N9OxeQUVhh4Y4txt8Z7vEaGm8R5iKph4NRC7E9Mx4L97cDI5Q9T91jRbpq7eHBBc7yWJZv16Ft+LXL5CDLskuGwxpX8wLnwwGF+93NXox5LDpjd6VXl/+YDt8lIUpCvIs2xZpLp2iO5J1F3VQIzZyWeMOMPTGLo2cTNaCQgpGXIOYq5D2zvYE58820H7u5PKGj9VMTO9oZA18Zo/fz66desGZ2dneHt7Y+TIkUhMTNRpU1BQgClTpsDDwwNOTk4YNWoU0tJ0BzEmJydj2LBhcHBwgLe3N6ZPn46SEt2EYM+ePejcuTNUKhWCg4OxatWqSvEsWbIETZs2hZ2dHXr06IGjR4+Kfs5S2HTyJr7ef1VnrbVfT97C1QrT9cWy8LnaayJtOqlfHSOFQoE2fuoqt30eq9+CvVfSc/De5nO430AXdLW3tarXJceJjwUh2NvJJMfMeavtGvzMwH2X7tZ5bdM3+gUbKRrgq/1X9W6bW1iC6HOpRouFzEtbf9Ob4SkVgxKvGzdu4ObNh0u6HD16FFOnTsWXX35Zp/3s3bsXU6ZMweHDhxETE4Pi4mIMGjQIubkPE4Rp06bh999/x8aNG7F3717cvn0bzzzzjHZ7aWkphg0bhqKiIhw6dAirV6/GqlWrMHv2bG2ba9euYdiwYejfvz8SEhIwdepUvPbaa9i+fbu2zfr16xEVFYU5c+bgxIkT6NixIyIiIpCebl4DLC+nZWPa+lP499YL+LnCsjvGKtbtYCvNdfnrf1Vetq4wzqj8m3zXJpVLS5jKwtvPd5N+skF9/N+wEOyMelyn3pBrAypYe1lT9eVMU7H1TAr+p+eXECnUZVWK3ELxesfJMJl5xZi+8RS+2N2wlgszNQZ9ar744ot4/fXXMXbsWKSmpuKJJ55A27ZtsWbNGqSmpuokPTWJjo7W+X3VqlXw9vZGfHw8+vbti8zMTHzzzTdYu3YtBgwYAAD49ttv0aZNGxw+fBg9e/bEjh07cP78eezcuRM+Pj4IDQ3FvHnz8M4772Du3LmwtbXF8uXLERQUhAULFgAA2rRpgwMHDmDRokWIiIgAACxcuBATJ07E+PHjAQDLly/H1q1bsXLlSrz77ruVYi8sLERh4cPBvFlZpjH+IbvCm5uYlwHlVt5T/u8R7bT3/TK5F87cykS3pu4YzvE9ejmUdA8tfGpf2PvF7o3ham8DXxc77VI75ur7uOsoLNGgUI9k/OtSX5j6BZDbmeJWDx/VOQA/nzBsbVQ5L8N9F/cnxw7V0a7EtFrXwd19MR2hga6izEymqhnU43X27Fl0794dALBhwwa0a9cOhw4dwpo1a6q8hKevzMyy6//u7mU9GPHx8SguLkZ4eLi2TevWrdG4cWPExcUBAOLi4tC+fXv4+Pho20RERCArKwvnzp3Ttqm4j/I25fsoKipCfHy8ThulUonw8HBtm0fNnz8fLi4u2ltgoHn1bJirimvvujnaom9LL4MLf56/nYXv4v4UKTLTVl78sGL16ZrY21phVJcA9K5hNqG5eG/zOfx76wWdyviPKp+YYBr9pNKytZZ3DFPFzvisguJq25Urn117IvmBkSLSX2JaNjLzao+5KrsT7yBkdjRiL0hX/6u4tPZLHxdTs/H37+OxO9G8rvaYE4MSr+LiYqhUZVNsd+7ciaeeegpAWVKUkpJiUCAajQZTp05F79690a5dWa9GamoqbG1t4erqqtPWx8cHqamp2jYVk67y7eXbamqTlZWF/Px83L17F6WlpVW2Kd/Ho2bOnInMzEzt7cYN/T7QqLKEGxmyHDfyxxOyHFcO7w5pDUD3Uq3UcotKcfz6fdmOX5PuQZUvVz8qr6gEOSJcLqtuXb2GquJ4zG1nyt5vBVSfIMwcWvZarkvRT7GpK6wM8dvp6ktwAMDaGkoy5BWV1quorDHrJlZcCYPEZdArt23btli+fDn279+PmJgYDB48GABw+/ZteHgYtsbalClTcPbsWaxbt86gx0tNpVJBrVbr3BqCim+HYlUWl6vI39U74k82MJb6/leXj4eT27PL41BS+rBf6VZGPg5fvadznym6fjcXXebtROd5MbjySGmQCauP4eytTKw/loyUGi4DNvcyvQkL9bF0zxWjLZo8tIYlopztxC8OXFdt/dXay6yFxTWXbYj/s6xnrtRYA23J7BiUeH388cdYsWIF+vXrhxdeeAEdO5bNbPvtt9+0lyDrIjIyElu2bMHu3bsREBCgvd/X1xdFRUXIyMjQaZ+WlgZfX19tm0dnOZb/XlsbtVoNe3t7eHp6wsrKqso25fugMr2aP0ys82t5w6lNz2a19zLUh0YjYOmeK/g4+iIy8w27HGAqZv5yBr+cuIk/zqRAMPOldMqnqecXlaLfp7vx/JeHsXRPksxR1exiajbyi0urnLRx7nYWnvz8AN75+QzC5u9CflHVfxdjw5rUK4buf61PKtbC2PWty2XMy/T9W5n27FWFQoGnOuq3mkJ5j9YnozrU0pIaCoMSr379+uHu3bu4e/cuVq5cqb3/9ddfx4oVK/TejyAIiIyMxKZNm7Br1y4EBQXpbO/SpQtsbGwQGxurvS8xMRHJyckICysbAhsWFoYzZ87ozD6MiYmBWq1GSEiItk3FfZS3Kd+Hra0tunTpotNGo9EgNjZW24bKPNMpoPZGehKzF6aqHpOEmxn4JDoRy/YkYUstlwOMRaxqzGduZSJqwylMXnMCp8ysFlJ1sguKtWNObovcc9LIzUHU/dVFddXfFQrA3sbwhcibe4v39/LnvVxtgUwpBsjHXb1bY10oc/9ipI+Oga5yh0AmwqDEa8CAAcjOzoabm5vO/e7u7hgzZoze+5kyZQp++OEHrF27Fs7OzkhNTUVqairy88vehF1cXDBhwgRERUVh9+7diI+Px/jx4xEWFoaePXsCAAYNGoSQkBCMHTsWp06dwvbt2zFr1ixMmTJFOw5t0qRJuHr1KmbMmIGLFy9i6dKl2LBhA6ZNm6aNJSoqCl999RVWr16NCxcuYPLkycjNzdXOcrQkSgXgZuBaftZWD9+kvZ1VcH9k5sujv0vlo6fbV7qvoELPQ0E9e+cM9USI+D2mD/JMc+zFzgumMxjXzka+8T/6DBCXW1rWwxnZQ9rVr2ixPpbsTsKGY9XPptNnxqk569TYFa18a59NTA2DQV/H9+zZg6Kiym/+BQUF2L9/v977WbZsGYCyHrSKvv32W7zyyisAgEWLFkGpVGLUqFEoLCxEREQEli5dqm1rZWWFLVu2YPLkyQgLC4OjoyPGjRuHDz74QNsmKCgIW7duxbRp07B48WIEBATg66+/1paSAIAxY8bgzp07mD17NlJTUxEaGoro6OhKA+4tQdem7pXGqejLxkqJnyf3wtlbmRjWwa/SlONJjzfHkt3SXzayM3Bmo7GprJXo1NhV9BUDTJGUayWuPZKMiLa+ZldjrL6X58XWzNMRAW7S1C5btPOSUfabU1i3RHfvpTvIyCvC4Ha+UFkb533j+W6BWHfs4SSK8vVO9ZGZX4yp606iRCNgwejaC1ST+alT4nX69MO1vs6fP68z46+0tBTR0dFo1Ej/uir6jFWxs7PDkiVLsGTJkmrbNGnSBNu2batxP/369cPJkydrbBMZGYnIyMhaY7IkM385U+fB7V2auKFLk4e9nStf6YqFMZfweEsvONvZwMZKode0ZaK6Kk9cTt3MxBe7rmDWkyEyR0RyEgQBH227+NfPtbe/kp6NcSvLViT5ZFQHPGeCBY6PXL2H3X8t17Tn0p1aWtePVEk36apT4hUaGgqFQgGFQqEtaFqRvb09Pv/8c9GCI3GUlGp0xp30CHrY43X8z/rXwhnQ2gcDWj/sGTTFpItT+C1DxR6j+yZ6ydVSlYj0d/1ob1B9VJwpGNG29qsT93Mf9o7dM9FlxSpOfjTWRJrWvs6Y/0x7dAxwrbbNMSOWfhGjLIs5q9NAiGvXriEpKQmCIODo0aO4du2a9nbr1i1kZWXh1VdfNVasZKCKdbLeHtgCUU+0NOrxBoWYx+VZUymxUJ24pHtyh2B2zt6Sf+JB8v08uUMwind/OV17IxkNMsJ4SlMkRgLs52KHTo3doKxiYkV4m7L37ySRy+009TDt91sp1SnxatKkCZo2bQqNRoOuXbuiSZMm2pufnx+srExznE1DV3EK/Bv9m9drEWV9DGlvum+Ao7s8nJVZPu7CmEUI66N8fUoxCYKAY9fv49xt+RMUsbhUKGb5Uy3LoQBAiL9xa+59F/cnCkvqN5br0+0XMXpZ1atmyEVp5PcN0s8/Np4y6v5feyyo9kYG0KdIcbkTIlyJMWUGz3W/fPkydu/ejfT0dGg0ujNS9F2rkcRTXKpBwo0MZNcwo6qVj7PRBpOai4qzMqtTWFIq6//T2wNbYLGRFkI+fTMTo5eb1gd6fTmqHr6NlWhqnh33VEd/SWbeFhRpDH4NFRSXVpqg0ifYE4Hu9SuRUVyqgUYjVNnLYfEEAVPWnMDWM4atrGJK6jJQ3xAt9VjL1VA+apXOjNrqrDp0HQCqrYln7gxKvL766itMnjwZnp6e8PX11elBUSgUTLxk8P7v5/DD4eqXpjAXvmo7UfbzwleH0cyAS4nv/XoW3x/+E6/0aoq5T7UVJZa6alTLgNfsghJMWH1Momgsizl02jw6rMfTSYUfXuuBFXvrN1v4bk4RBi/eh61vPVav/dRGEAScvGFaPRZ3cooqJV1rjvyJyf2ayxRR3b3QPdBoY1WbejrgUloObI2c1OnL7q96d1P6ByPmvHRrWUrFoMTr3//+Nz788EO88847YsdDBiovhqivnALTHNz4dKdG8He1h5ujDQZ/pn9pkkddu5tb46LI1fn+cFk17lWHrsuWeNXm8NV7ZlOewhLfNM3ZpbQcpGYWGPUY525naXs1/jW0NVYdvI7bRj5mbS6nVZ65ffNBPjLzi3UuVTdUC58LxeaEWxjYxrTG57bxU1vke4hB6e2DBw8wevRosWMhAxQUl+osMquvV3o3FT8YESiVCoQ190Br34ax9qUhDJnp5O0sTk+ivkzlmzMBLXyc0DHApV77uJtThFw9Z6KlZT1Msp7uFIBwE5hsU93s7WITXyNUqtXB2jVywf8NC0HPZoattUx1Y9C74+jRo7Fjxw6xY6E6yhaUCJsfi87zYurcA9KjDgMdyfy1a6SGp5N0xUafkOCbs6WO/xCbnY0VNkf2qddyRQCQUsdeq46BrvByVtXrmHIw5Iussbz7yxkApleex1DWSn4hAwy81BgcHIz33nsPhw8fRvv27WFjo9tV+9Zbb4kSHNXslqDCgzzTW57E3dH83mwtnUKhQNcm7og+l1p7YxG4ONgYvWL/H2dTkZ5dt2TAxsqwN/57uboDgkeE+mNzgjzrf4qtrotuB7jZ4+YDw9fWbOHjDG9nFdIlXOmgLuKu3kP/1l5yhyG6/ZfvYMZPZSVB5ErlXnssCAt2XMJTofotMG6pDEq8vvzySzg5OWHv3r3Yu3evzjaFQsHEq4HrE+yJFWO74H+xl+s89kwqp25kINCdVZulIlbRzEdLGlytY62hV3sbNlX+/zad1fldzm/uBcWlohYpDnCzxxMhPjpjaUIDXXXq/1XUJ9izXs+lq70NDr07AMH/94fB+zC2uowP/ffWC5jQxzglGMRUsYj2A5l69cb3DsL4v/4GG3KPtUGJ17Vr18SOgwxwXZB23I6+rJQKRLT1xYWULJNLvNR2D3tnb9w3/Fu7qTH3c9l5IV37YV5TSjGmWyAupWUj28DJIc29DSvi6GxnbfAxxSZ2SQSlUoGvXu6K7h/u1PZCtfFzrjbxEoO1gT2PpiTET41NJ28BMN0q+BVVHC9mChcvbawUsLNRoqBYg6Yejoi38NpdFZn/q78B+6yk5u7aBTGXMG/LeeQ14G8Wj+pcYY3JhsZBZbo13O7mPLzsVNMYm+e6BuLM3AgEeztJERZRtcZXmKBkabXxpGBtpUTMtMex8pWueHdIa7nDkZRBPV61LQu0cuVKg4KhurHR43vLNweuocREZ+5U7H2SilKhwOC2vo+MdRK3uNPjLb2w8fhNeDqr0MrXeMUI62paeEv8cuJWldscbE03KauL+7lF9VrfbrfGFUMW78e/R7bTWQheLH9/vBlW7L0q+n5JelYVCtEaUrqmOkl3ckTbl6kLdHeod2Fgc2RwOYmKt/T0dOzatQu//PILMjIyRA6R6quwxPQSr2BvJ3iLVCy1vjoFuoq7v8ZuOPjuAGye0ht2NlbwMJHJBi4OVSe6Y7oGon9rb0ljySsqwZzfzom+321nUvGvR8Zj1dWFlCxsOW2cgfMzh7RBaxNKxhu63MISgxN1hUKBucND9Gpby4IKOj7dnmhQPGQ+DOrx2rRpU6X7NBoNJk+ejObNzacSMMmnfyvTmDU0ItTf6Jfg3h3SGjsvmG4RwMgBwdpK0VL4814ert3NxR9na55h2T3IHTsvpCPY26lOpRB+PJqMTo1d6xVjbZ/FdjbijNJo669GRl4xHmvhZbSq5FS9xz/dg/A2PgY/n7Z6Lgt1O1P/MZh1GU8ox1UDqj+D12p8lFKpRFRUFPr164cZM2aItVsiqkbXJm7VFoY0NRULqn617yoe1yPxfr1vc4zs1AhuDrYmt77ga481Q+9gT7yx5kS99lO+fM+f98S7VEV1Y8pfimrj5azCd692x62MfGw7k4L9l++axBWOFNgiNUve1QpMmaiD65OSklBSYhozf8hyCAJMtuYP6UdlrdT2chbVYcyht7OdwbW3jKmphwOGtvdDr+as9E0PlY/7GtLeT7JLyn1beuGF7o214zTnbTkPjUaeeYuuFYYzVDeelAzs8YqKitL5XRAEpKSkYOvWrRg3bpwogRGV23D84SWYR+s4VcXF3gaZ+aZXWLah69PCC7sT7wAATt/MFGWfZ2+Jsx8iAGjm5Yird3INuuzr6mCDXf/ohxKNBt7Odni8pReavrvVCFFW7fGW3th+rqz3rriWQWWtfIyTFAa6O6CphwOu38tDYQln01fHoK+SJ0+e1LmdPl1WDXfBggX47LPPxIyPCDcf5Gl/bqnHG8bQ9r7GDMfiOKlEG3Ggty/31W9mX0Fx2Zv68r1Jlbap7cQ9n8y8YpOp4UXG09ZfjVv1qMgPAO6OtnVeF3XVoetYuCMR2QX1+7L4ZEc/vdp1D3LHByPa1etYNenb0jTG75oyg96hdu/eLXYcJLHyddTumNElvFd6NdWZwk31t/rV7nBzlG4Nx3L2NlbILzb8G/GrvYPwwZbzsK9QBqP8m7afi3grEmTmF6Pn/FjR9tcQOcqQ2BtKqkWpH/W/XVcQ4OaA57oFGv1Y/Vt56/zdkPTqNXjizp07OHDgAA4cOIA7d+6IFRNJwNNJhT3/7Cfb8UMDTb+Q6WOf7MIXu6/IHYZRPW6m305Dq5i12LNZ2XirYo1GtDUiUzLz65UgfnfouihxmLOKhUapenlF7FVtKAxKvHJzc/Hqq6/Cz88Pffv2Rd++feHv748JEyYgLy+v9h2QSXBUWcPFXp7pyMM6+MHRSN+6xJpibe7L8Iht65kUXEnPljuMWtV1/UZjOnvr4ZJZtgZOEtDI1Q0jEm9nuzqVAyHTxHIn4jHonSAqKgp79+7F77//joyMDGRkZGDz5s3Yu3cv/vGPf4gdI9WRn4v+YwzeGtjCiJHU7MmO/hgU4iP6fp1U1hjWQb/xDlKoOIbKSWXedXee//KI3CGYpXkj20Hx18SQ0L8K9jZy1e+SaPnySF7O4hXivZ2h/5eK5yW4/EXmI8TPRe4QzJ5BidfPP/+Mb775BkOGDIFarYZarcbQoUPx1Vdf4aeffhI7RqqjMDOZ4u6kssabA2pP/Az5ptXChNby83Wxw+LnQzE9ohXGhjWp9/7yJV57s+IMqIprKlZkKgVxTVXFkYnzRrbDxklh2PZXDa/aTO5XVpT6qY41r82qrx3n0zB1fQIASDbGsz6Xa8m0vNijsdwhmD2DRj3m5eXBx6dyT4W3tzcvNRJVYURoI9H29WuCcZazqU6PZh5Y+1oPvPj1EVj/NblBEASUVKgV5FuHXtaGIrug+JE1QcvYWCnRral7nfdnLVI9s9gKBUOzC6UfV9TCx3S+FFHdqKxNr6aeOTLofzEsLAxz5sxBQcHDyrT5+fl4//33ERYWJlpwJI51xyz/2nzFy6sB7jVfwqn4xl9kAlWezYG7U9nMxxKNgK2nUzByyUGEzI7GppM3ZY6sbqz0qANnqBe6616SO3794aoCprAQcHmv06Gke0Y7xp/3czF1XULZL1WMTbO3sUKHAFejHd+clRcWNkbx01KNgH2XOQHOVBiUeH322Wc4ePAgAgICMHDgQAwcOBCBgYE4ePAgFi9eLHaMRLXyc7HHvun98XtkH4yspXdpYt9mEkVlOYI8HbU/7798B6duZqK4VEBBsXkkriND/fHt+G6i9Rrpo3xQvL2NldnOHq2rjcdvanvR/rxf+eqHh5O0pUt6B3tWuQ5jkKcjPhsTWun+8BBpF4sPb/PweB9tu4gd51KRa6ShBGlZ+l1WNuaXEypj0LtQ+/btcfnyZcyfPx+hoaEIDQ3Ff/7zH1y5cgVt27YVO0aqo4a6cGpjDwe0D3DRDmK2dE4iFwqticraCq/2DhJlX5sTbksy5qeRqz2e6xqAqCdaYtGYUPRvVbcP1eyCYvx3e2K942gp0dIxUnn076tiT19xheWgik2gNzmirS/Ovz+40vI9CqDKhdQXP98J3Zoat9RNaKAr1HbWcHOwwZzhbfHpsx2023ZdTDfqsfXh4mAj2iLwVDWD3rnnz58PHx8fTJw4Uef+lStX4s6dO3jnnXdECY7qrrG7A97o1xyrWD/I4s0aFoI9iXslP+71KhZ0trcxvSKZjdzs8cmzHQ1+/B9nU7HzgvwfhKamd7AHDiXdxZ/35B3PW1iiwQdbztfari4LrNtYKdG+kSuOXTfe4vMtfZxx4r0nAJSN2/N0UmH6T6d12jzbJQA/xct3GX9aeEvM/+OibMe3dAaltStWrEDr1q0r3d+2bVssX7683kFRzU5pHPH6d8dxRnCstG1K/+bwVpvmQGdPJxXsbJR4ibNi6m1yv+baMgNSO3z1fqX7RnWpfHm34gxIWzMclFvAmXhV8nRSYe3EnnKHAQD4Lu5PuUPQyqrD+rDWVsoaL3tb15AsCgA2J9S+APXltBy94yFpGfQ1NTU1FX5+leskeXl5ISUlpd5BUc2+LPHFjvNptTc0MZMeb4bXHuP4qvpo7uWIzPwSkxozFOhuD1eHymN3MvMefhA9362x0V+zwd5O9V6KiMhQUU+0rPc+Np2snFA9Wk6n4oQguxoK0y6OvVzveMg4DPoaWj6Q/lEHDx6Ev784tWaoeoVoGGOYqLLfIvvg+Kxw7fI4pqy8R87B1qpOs/oMKbUAlBUYPTYr3KDHmitjrblXMZF2l2EtT0PYWMv7vtjKV23Q4yqWaCisYVxcu0aVC5cO71D95y1XCzBdBvV4TZw4EVOnTkVxcTEGDBgAAIiNjcWMGTNYuZ4s3tYz7NXVx8LnQrHtbAoeC9a/d+6Zzo0wa1gbg49pJ+IlzaW7k0TblzGsfKWr0Zb88nFWYf3rPZGaVYBuTd2xdI/4/xeeTra4m1OEED81Tt/MrNe+QvzUcLDV/+OsWCP/wP9ySqUCs58M0Rmv9ui4NBd7G/R7ZHJIKx9nuDg0zIlU5s6gxGv69Om4d+8e3njjDRQVFQEA7Ozs8M4772DmzJmiBkhkCpwlnEFYFyNC/bE54TYGt/Wtta2dtRUUiirLK+mlrpUYmno64o1+wXV6TGtf5zrPSjXGpcXCEg1Sswpqb1iDWCPPUBvQWvzltirq8Vev6v3cIqPsP3pqXySmZqNrU7d61xp8pnPdChQ/1kKaS/VWSgVKNQKaelQej1uRtVXlREupAMpLeqntTfP9hwxj0NdDhUKBjz/+GHfu3MHhw4dx6tQp3L9/H7NnzxY7PiJRGXIxoq2/GuN6NRU7FL31CKr+0ttnY0Kxf0Z/LH2pc637sbVWYsfUvgbH8UznAIMfW+u+OzXCgNbeGNKubmts3rifj5PJGaLHI4iwMPXPf81KM0ZBTEvg6aRC72BPqKwrXxKzMXK9tVF1TNSqU3HSSFUTSH6e3AvvDmmN+c+0r/O+3xlceQIbWYZ6vbqdnJzQrVs3tGvXDipV3Rdw3bdvH4YPHw5/f38oFAr8+uuvOttfeeUVKBQKndvgwYN12ty/fx8vvfQS1Go1XF1dMWHCBOTk6M7mOH36NB577DHY2dkhMDAQn3zySaVYNm7ciNatW8POzg7t27fHtm3b6nw+VLMmtXzre1TXJuLX0+lqQI2eyP7B8HSq/Ppu5GpfpwXJDeGksq6xt02hUCDQ3UHvKfMtfJwNrtHTxs+wMSz6WDgmFCtf6VavCu+dGxu3/lJVdZ9q4vjX4ujTnpBvIXpjsa2QGFWVONXHL2/0MptZsE+E+GBcWBO81icIPZtV/oIUGuiKSY83N4mVC8xFQXEpMvKM08tqKmR9defm5qJjx45YsmRJtW0GDx6MlJQU7e3HH3/U2f7SSy/h3LlziImJwZYtW7Bv3z68/vrr2u1ZWVkYNGgQmjRpgvj4eHz66aeYO3cuvvzyS22bQ4cO4YUXXsCECRNw8uRJjBw5EiNHjsTZs2fFP+kGylqpwBMhdbs0suHvYWgp4rpu3YPcq5x9V66qMgnVsbexwt7p/WqcVWSq3h3cGgFu9vjnoPrPwjIVj7XwLEtAFQq4/jXupeLi3nIKdDP8QzfAzR6hJrjEjpezCu89GYIXugeKsvB7OYXC+Am0mFzsbfD+iHaY9WSI6AloQ5NdULbiwZDF+3E3x7ITL1kvHA8ZMgRDhgypsY1KpYKvb9XjVy5cuIDo6GgcO3YMXbt2BQB8/vnnGDp0KP773//C398fa9asQVFREVauXAlbW1u0bdsWCQkJWLhwoTZBW7x4MQYPHozp06cDAObNm4eYmBh88cUXFlWXTIB8lzyae9U9gVIqFXC1F39Glb2NFZxV1sguLEGQpyOcDaj076iylnT5GTG90jsIr4hUhd7UKJUK7JjWF5fTcgyeHSm3ivXDtk/tq+05MzUT+pS9hkpKTWegenWs9OgR5rqtJBWT/+TYs2cPvL290apVK0yePBn37j1c4DUuLg6urq7apAsAwsPDoVQqceTIEW2bvn37wtb24Qd4REQEEhMT8eDBA22b8HDdaegRERGIi4urNq7CwkJkZWXp3ExBTT0wfi41Lx5tTKUijJkRi42VErv+2Q8/TQrDPwa1Qu/mpluaIeevde9If97Odugd7Gk2l6setTDmkvZnpRkvf9XFSImvr9oOver4N/u3ng975ayViip7Id/o37zesZHhjDmUwdSY9DvT4MGD8d133yE2NhYff/wx9u7diyFDhqC0tOwbYWpqKry9dafYWltbw93dHampqdo2Pj66l7jKf6+tTfn2qsyfPx8uLi7aW2BgYLVtpTK0vS/C21R/OU+MAn91UXH805V006qi7OWsQtem7rBSKmBtpcT3E7rLHZJWY44HqZWtmfY26uPBX+NbPJ1sjVany9gC3Ozx+fOdjLJvK6UCayf2xNrXeuj9mBe6N8b1/wzD/hn9ceRfA6tc3aOliVyabqh+nhyG5l51Gwdsrkz63ev555/HU089hfbt22PkyJHYsmULjh07hj179sgdGmbOnInMzEzt7caN+k2HFsP0iNYmdVlidBf5k1F9mcp4IABmURxVbiEW+u1YEARtnbjI/nUrxVFfGXn6L3lTmyHtfA2qMeVv5F75QHcHeFQxUYbk52BrjV/e6N0ger5MOvF6VLNmzeDp6YkrV64AAHx9fZGerlsrp6SkBPfv39eOC/P19UVamu5SJeW/19amurFlQNnYM7VarXMzJT9O7Im3BrbA053EmTZtiLosTku6fNT8cKiJUqnAC90tb83P3KJSbZ01qSduFFUYqyX1h9+KsV0wItQfnz7bQdLjkmlxsbfByFDLX/3GrBKvmzdv4t69e9p1IsPCwpCRkYH4+Hhtm127dkGj0aBHjx7aNvv27UNx8cNvczExMWjVqhXc3Ny0bWJjY3WOFRMTg7CwMGOfktGENfdA1BMt0cSDl6304WBCPYVkeupaNmRXYlq9a4HVtaaZmHpI3Osa0dYXi5/vhF7BnpIetyIFl2IjiciaeOXk5CAhIQEJCQkAgGvXriEhIQHJycnIycnB9OnTcfjwYVy/fh2xsbEYMWIEgoODERERAQBo06YNBg8ejIkTJ+Lo0aM4ePAgIiMj8fzzz2vXjHzxxRdha2uLCRMm4Ny5c1i/fj0WL16MqKgobRxvv/02oqOjsWDBAly8eBFz587F8ePHERkZKfn/CcnDSWWNTW/0woLRHXH2/Qi5wyET8t6TIfhxYs86PWba+lN4UI9Ld2391bItB/PoeP5Hq6pbKjFL15iSZS91xt96mk/vcFhzD3g42iLI0xEh/qZ1JUkssn7NP378OPr376/9vTwZGjduHJYtW4bTp09j9erVyMjIgL+/PwYNGoR58+bpFGtds2YNIiMjMXDgQCiVSowaNQr/+9//tNtdXFywY8cOTJkyBV26dIGnpydmz56tU+urV69eWLt2LWbNmoV//etfaNGiBX799Ve0a9dOgv+Fhi3Q3R5OKmvkFJYgxE/ecVadGruhkxnVEDIVN+7nyx2CUT3fLdCkxk5KTW1ng0au9riVYVnPs6+LHRq7O+BWRj4WPx9qtuVhatOukQs8nFT44XCy3KHopUOAK+Lfe0LuMIxK1neTfv361dgdv3379lr34e7ujrVr19bYpkOHDti/f3+NbUaPHo3Ro0fXejxz4+H4sIyGu6P4NbHqy9XBFof/NRB5RSXwdhavCnywd9m31/qsTUj6q1hd38OR49MszcthTTD/j4tyhyEqlbUVdv3jcRSVauq0wLY5uPUgv15rmHZt6q5dNSMls35rllJllvVqo0pGdw2E2t4GXk4qk122wkllDSeRexSe7OCPDo1cYWerRPcPY2t/ANWJp5OtTnVptZ0NNk/pjT/v5yG8jXcNjyQyHdZWSpPt6apY9LWuvcrfxf2p/dmQ99YuTdyQMPsJKBUKtHrvDxSX8turmEzzFUeisbOxwojQRrIOWpVLYw8HuNewRBCJq2OgK57q6G9xvQf6slIq8OYAaUtAkHEFuMlXdDqibfWz6mtTvvpBxwAXuBl4pcPaSgmlUqFzxUDDyweiYOLVwHk6Pfyj9HLmJSJ9lWi4vAhV9o9Breq8mDaZrrfD5VvPtD5XKMrzo8db1b/3uUTzMNmqy7qjsRfSa2/UQDXMr6akNay9H5ztrOFoa41WvqZTRNQUudg/nGUmZrFJIrlM0XOZnPYBLrCxUsDexko7fpKk5VtFtf3qrD8uXkHvpzs1wqaTt2CtVGDTG731flx6dqFoMVgaJl4NnLWVEgNaV7/MkNxUNuJ1ytrUc1r8kHZ+eBsJ4gRTB+oKi3jrs9ivqTLj0C3S890CMT2itV5tezX3xMnZg2CtVNRY2PU2B2IbjZVSganhLfDZzstVbnc20szbRWNCsWhMqFH23VDxUiOZtIXPhWp/9jBgrIK1lRLjezdFsLcTXukVZFAMTT3L1g+ztVbKskbg2+Et8HrfZlj6UmfJq5mLaWBrH3QPMs7CyZamRILBzI1c6zZ+yUllXevrb9+lO/UJySTYVfiyZyfiFz9jUygUOPjuALnDID2wx8uCVLwUZim8nFX4aVIYbjzIM3iw6Zzhbet1/IrLpzT3dsKFlCzRZ2HWpImHI/41tI1kxzOWxh4O2PD3MMzefFZn1hVVToIGGnFmqPVfi0x3aSJOzTqlQgEXextk5lvG5fe/9WyCvKJSNPFwgJ+R146sTgsDL+c2crVHa19nXEzNFjkiEhMTLwvwTOdG+FvPJiZZp0sMXZu6o2tTeXpKHl0qZvHzodhyOgX9W3kZ9bht/NRIy7oDN5mql1NlxvxiY22lRGT/YHyxu2wd2mEdjLdckK+Lnag9j0qlAjum9UWPjyyjbIu/qz3mPmX4lzUxPNM5QNbjk3Ex8bIAwzv6ozMrrouqpY8TLqXlIKy5xyP3OyPqCeNPQvjv6I7YdTEd3WRKOKmyGRGt4eNsh7DmHlA8uq6OGVAqAI0ANPVwFH3fPmo7dGrsipPJGaLvu6GpWIyYLBOfYaIq/P5mH6RkFMi2yLinkwrPdQ2U5dhUtRB/NT5+toPcYRjs58m9EHf1HoZ38Jc7FHqEl9PDUj7ZBSXanzsGuuLUjQy05oxzi8LEi6gKKmsr7aB6IkvAtUhN16Bqxq9+M64r4pLuoUcz9nxbEiZeRESk5S/TgPKGzEqpgK2VEkWluoWZPZ1UGN6RPZSWxnzmyhKRSRndpWwA8FMm8MHApUzqb/nfOmNYBz98PMp8L6cSmQP2eBGRQT55tgNmDG6ts+yUlNr6PyzzMSK0kSwxWJLB7fwwuJ3xZlMSURkmXkRkEIVCIev6nn/r2QThbXzg6mAjW2FZdrQRUV3xUiNJwt6MK66T6fJ1sZO1mv/kfvqtdUgktkfHg2nvL6n6fjIdTLzIqOYOD0EbPzXel7kgIZExNJd4wejyy6vNvUxvxq2GvX+SmhHRqsr73xwYLHEkVFe81EhG9UrvILzS27A1EonkcuDKXdH25SLi6gPfjOuGfZfvoHewp2j7FEunv2pOVcXD0Rb3cosQUmH5LdI1uJ0vfjt1G931LJrsX81am8FerPll6ph4ERE94uaDfO3P1laGV6nvGOgKb2e72hvqydfFzmQL6/6tZxOsOnS9ym2/TumNhBsZ6NvCuEttmbNFY0LxRv/maOYpbS8qSY+JFxFRNcLbeENlbfgYsu5NWbAUAALdHRDoLs8qEObCSqlAa1/2CDYEHONFRFSNPgZc0ispbZiDnRq7O6BDgAtcHWzQtyV7tqhMKQf/VcLEi4gk9VgLLzjYWu4s11d6NZU7BFnYWivxW2QfJMwehMckuKRYcYxTo2rGOxGZIl5qJCJJPRHig/MfDMbgz/bhYmq23OHUSKmseXyXTYXt1sqy77EdA12NGRL9pamnI3ZGPY68ohK0b+QidzhEemPiRURUjYFtfGrc7q22Q2T/YFxKy8YL3RtLFBWVC5a4nAeRGJh4ERFVQaHQ7xLWP6upp0REVBWO8SIiIiKSCBMvIiIiIokw8SIiMgHl45VU1krO0iOyYBzjRUSy8HOxM/lZjVIa2akROjV2hdrOBq4OtnKHQ0RGwsSLiGQx96m26HDiFno0029tuoagiYfpLX5N5s/bWaX92ddFVUNLkgITLyKSRRMPR0x7oqXcYRBZvKaejtjyZh9k5hejZzMPucNp8Jh4ERERWQhb64dDt1UVfm7HIrMmg4kXEdWZ2s5G7hCIGhwftZ32Zy/nqi8ZtvRxwlsDW+BOdgFGdQ6QKjSqAyZeRKS3ucNDsO1MKib2bSZ3KEQNzuguAQhws4e7o63OWpUVKRQKRPESvklj4kVEenuldxBe6R0kdxhEDZK1lVKSBcjJuGSt47Vv3z4MHz4c/v7+UCgU+PXXX3W2C4KA2bNnw8/PD/b29ggPD8fly5d12ty/fx8vvfQS1Go1XF1dMWHCBOTk5Oi0OX36NB577DHY2dkhMDAQn3zySaVYNm7ciNatW8POzg7t27fHtm3bRD9fIiIiathkTbxyc3PRsWNHLFmypMrtn3zyCf73v/9h+fLlOHLkCBwdHREREYGCggJtm5deegnnzp1DTEwMtmzZgn379uH111/Xbs/KysKgQYPQpEkTxMfH49NPP8XcuXPx5ZdfatscOnQIL7zwAiZMmICTJ09i5MiRGDlyJM6ePWu8kyciIqIGR9ZLjUOGDMGQIUOq3CYIAj777DPMmjULI0aMAAB899138PHxwa+//ornn38eFy5cQHR0NI4dO4auXbsCAD7//HMMHToU//3vf+Hv7481a9agqKgIK1euhK2tLdq2bYuEhAQsXLhQm6AtXrwYgwcPxvTp0wEA8+bNQ0xMDL744gssX75cgv8JIpJTxdlf9aVUVPxZUX1DImqQTHbJoGvXriE1NRXh4eHa+1xcXNCjRw/ExcUBAOLi4uDq6qpNugAgPDwcSqUSR44c0bbp27cvbG0fVoKOiIhAYmIiHjx4oG1T8TjlbcqPU5XCwkJkZWXp3IjIPA1o7Y1XrVLxulVKvffV1MMRT3dqhK5N3DC8o78I0RGRJTHZwfWpqakAAB8fH537fXx8tNtSU1Ph7e2ts93a2hru7u46bYKCgirto3ybm5sbUlNTazxOVebPn4/333/fgDMjIlPjbGeD2TY3AABflvrVa19KpQKLxoSKEBURWSKT7fEydTNnzkRmZqb2duPGDblDIiIROdhYyR0CEVkgk028fH19AQBpaWk696elpWm3+fr6Ij09XWd7SUkJ7t+/r9Omqn1UPEZ1bcq3V0WlUkGtVuvciMj8vTUgGD5qFf4Z0UruUIjIApls4hUUFARfX1/ExsZq78vKysKRI0cQFhYGAAgLC0NGRgbi4+O1bXbt2gWNRoMePXpo2+zbtw/FxcXaNjExMWjVqhXc3Ny0bSoep7xN+XGIqOGIGtQKR/4VjvGsV0ZERiBr4pWTk4OEhAQkJCQAKBtQn5CQgOTkZCgUCkydOhX//ve/8dtvv+HMmTN4+eWX4e/vj5EjRwIA2rRpg8GDB2PixIk4evQoDh48iMjISDz//PPw9y8b1Priiy/C1tYWEyZMwLlz57B+/XosXrwYUVFR2jjefvttREdHY8GCBbh48SLmzp2L48ePIzIyUur/EiIiIrJgsg6uP378OPr376/9vTwZGjduHFatWoUZM2YgNzcXr7/+OjIyMtCnTx9ER0fDzu7helVr1qxBZGQkBg4cCKVSiVGjRuF///ufdruLiwt27NiBKVOmoEuXLvD09MTs2bN1an316tULa9euxaxZs/Cvf/0LLVq0wK+//op27dpJ8L9AREREDYWsiVe/fv0gCEK12xUKBT744AN88MEH1bZxd3fH2rVrazxOhw4dsH///hrbjB49GqNHj645YCIiIqJ6MNkxXkRERESWhokXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkURMOvGaO3cuFAqFzq1169ba7QUFBZgyZQo8PDzg5OSEUaNGIS0tTWcfycnJGDZsGBwcHODt7Y3p06ejpKREp82ePXvQuXNnqFQqBAcHY9WqVVKcHhERETUwJp14AUDbtm2RkpKivR04cEC7bdq0afj999+xceNG7N27F7dv38Yzzzyj3V5aWophw4ahqKgIhw4dwurVq7Fq1SrMnj1b2+batWsYNmwY+vfvj4SEBEydOhWvvfYatm/fLul5EhERkeWzljuA2lhbW8PX17fS/ZmZmfjmm2+wdu1aDBgwAADw7bffok2bNjh8+DB69uyJHTt24Pz589i5cyd8fHwQGhqKefPm4Z133sHcuXNha2uL5cuXIygoCAsWLAAAtGnTBgcOHMCiRYsQERFRbVyFhYUoLCzU/p6VlSXymRMREZGlMfker8uXL8Pf3x/NmjXDSy+9hOTkZABAfHw8iouLER4erm3bunVrNG7cGHFxcQCAuLg4tG/fHj4+Pto2ERERyMrKwrlz57RtKu6jvE35Pqozf/58uLi4aG+BgYGinC8RERFZLpNOvHr06IFVq1YhOjoay5Ytw7Vr1/DYY48hOzsbqampsLW1haurq85jfHx8kJqaCgBITU3VSbrKt5dvq6lNVlYW8vPzq41t5syZyMzM1N5u3LhR39MlIiIiC2fSlxqHDBmi/blDhw7o0aMHmjRpgg0bNsDe3l7GyACVSgWVSiVrDERERGReTLrH61Gurq5o2bIlrly5Al9fXxQVFSEjI0OnTVpamnZMmK+vb6VZjuW/19ZGrVbLntwRERGRZTGrxCsnJwdJSUnw8/NDly5dYGNjg9jYWO32xMREJCcnIywsDAAQFhaGM2fOID09XdsmJiYGarUaISEh2jYV91HepnwfRERERGIx6cTrn//8J/bu3Yvr16/j0KFDePrpp2FlZYUXXngBLi4umDBhAqKiorB7927Ex8dj/PjxCAsLQ8+ePQEAgwYNQkhICMaOHYtTp05h+/btmDVrFqZMmaK9TDhp0iRcvXoVM2bMwMWLF7F06VJs2LAB06ZNk/PUiYiIyAKZ9Bivmzdv4oUXXsC9e/fg5eWFPn364PDhw/Dy8gIALFq0CEqlEqNGjUJhYSEiIiKwdOlS7eOtrKywZcsWTJ48GWFhYXB0dMS4cePwwQcfaNsEBQVh69atmDZtGhYvXoyAgAB8/fXXNZaSICIiIjKESSde69atq3G7nZ0dlixZgiVLllTbpkmTJti2bVuN++nXrx9OnjxpUIxERERUpl8rL/wal4Qs004vZGXSlxqJiIjIfAxo7YPTdifR2tdZ7lBMFhMvIiIiIokw8SIiIiJRPdnBDwAQ1sxD5khMDxMvIiIiElXkgBY4pTqBtRN7yB2KyeHoNyIiIhKdi6IUUCjkDsPksMeLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiMik3RNs5A5BNEy8iIiIyCSVagQAwAcljWWORDxMvIiIiMgkDevgBwBQQSNzJOJh4kVEREQmaWAbH7lDEB0TLyIiIiKJMPEiIiIikggTLyIiIiKJMPF6xJIlS9C0aVPY2dmhR48eOHr0qNwhERERkYVg4lXB+vXrERUVhTlz5uDEiRPo2LEjIiIikJ6eLndoOq4KdnKHQERERAawljsAU7Jw4UJMnDgR48ePBwAsX74cW7duxcqVK/Huu+/W+ngrtRduCypkCbZGizFJY4ergr3OfS72llNYjoiI6FECgJtG+mzNEYyy22ox8fpLUVER4uPjMXPmTO19SqUS4eHhiIuLq9S+sLAQhYWF2t+zsrIQMPlbDAaAwkrNjapToKu0ByQiIpJQEZToU9hR7jBEwUuNf7l79y5KS0vh46NbM8THxwepqamV2s+fPx8uLi7aW2BgIDTFhVChFCpojHqzRykAwBkl+GxMKBQKhST/R0RERFLyVduhuyLLyJ+rpZKeE3u8DDRz5kxERUVpf8/KykJgYCAy330XapXK+AHMnVt26zTC+MciIiKSgZVSgQ2qRKMeI6uwEC5GPYIuJl5/8fT0hJWVFdLS0nTuT0tLg6+vb6X2KpUKKikSLCIiIrIYvNT4F1tbW3Tp0gWxsbHa+zQaDWJjYxEWFiZjZERERGQp2ONVQVRUFMaNG4euXbuie/fu+Oyzz5Cbm6ud5UhERERUH0y8KhgzZgzu3LmD2bNnIzU1FaGhoYiOjq404J6IiIjIEEy8HhEZGYnIyEi5wyAiIiILxDFeRERERBJh4kVEREQkESZeRERERBJh4kVEREQkESZeRERERBJh4kVEREQkESZeRERERBJh4kVEREQkESZeRERERBJh5XqRCIIAAMgqLJTmgFlZQGFh2b9Skfp4RFIq/9vla5yofso/K8T6zDDy52r553b557ixKQSpjmThrl69iubNm8sdBhERERkgKSkJzZo1M/px2OMlEnd3dwBAcnIyXFxcZI5GOllZWQgMDMSNGzegVqvlDkcyPG+ed0PA8+Z5NwSZmZlo3Lix9nPc2Jh4iUSpLBsu5+Li0qBesOXUajXPuwHheTcsPO+GpaGed/nnuNGPI8lRiIiIiIiJFxEREZFUmHiJRKVSYc6cOVCpVHKHIimeN8+7IeB587wbAp63NOfNWY1EREREEmGPFxEREZFEmHgRERERSYSJFxEREZFEmHgRERERSYSJVwXz589Ht27d4OzsDG9vb4wcORKJiYmV2sXFxWHAgAFwdHSEWq1G3759kZ+fr91+//59vPTSS1Cr1XB1dcWECROQk5Ojs4/Tp0/jscceg52dHQIDA/HJJ58Y/fyqU9t5X79+HQqFosrbxo0bte2Sk5MxbNgwODg4wNvbG9OnT0dJSYnOsfbs2YPOnTtDpVIhODgYq1atkuo0K9Hn+U5NTcXYsWPh6+sLR0dHdO7cGT///LNOG0t7voGypTOefvppeHl5Qa1W47nnnkNaWppOG3M772XLlqFDhw7a4pBhYWH4448/tNsLCgowZcoUeHh4wMnJCaNGjap0zub2GgdqP+8vv/wS/fr1g1qthkKhQEZGRqV9mNtzDdR83vfv38ebb76JVq1awd7eHo0bN8Zbb72FzMxMnX1Y4vP997//Hc2bN4e9vT28vLwwYsQIXLx4UWcflnje5QRBwJAhQ6BQKPDrr7/qbJPsvAXSioiIEL799lvh7NmzQkJCgjB06FChcePGQk5OjrbNoUOHBLVaLcyfP184e/ascPHiRWH9+vVCQUGBts3gwYOFjh07CocPHxb2798vBAcHCy+88IJ2e2ZmpuDj4yO89NJLwtmzZ4Uff/xRsLe3F1asWCHp+Zar7bxLSkqElJQUndv7778vODk5CdnZ2do27dq1E8LDw4WTJ08K27ZtEzw9PYWZM2dqj3P16lXBwcFBiIqKEs6fPy98/vnngpWVlRAdHW2S5y0IgvDEE08I3bp1E44cOSIkJSUJ8+bNE5RKpXDixAltG0t7vnNycoRmzZoJTz/9tHD69Gnh9OnTwogRI4Ru3boJpaWl2v2Y23n/9ttvwtatW4VLly4JiYmJwr/+9S/BxsZGOHv2rCAIgjBp0iQhMDBQiI2NFY4fPy707NlT6NWrl/bx5vgaF4Taz3vRokXC/Pnzhfnz5wsAhAcPHlTah7k914JQ83mfOXNGeOaZZ4TffvtNuHLlihAbGyu0aNFCGDVqlPbxlvp8r1ixQti7d69w7do1IT4+Xhg+fLgQGBgolJSUCIJgueddbuHChcKQIUMEAMKmTZu090t53ky8apCeni4AEPbu3au9r0ePHsKsWbOqfcz58+cFAMKxY8e09/3xxx+CQqEQbt26JQiCICxdulRwc3MTCgsLtW3eeecdoVWrVkY4i7qr6rwfFRoaKrz66qva37dt2yYolUohNTVVe9+yZcsEtVqtPc8ZM2YIbdu21dnPmDFjhIiICJHPwDBVnbejo6Pw3Xff6bRzd3cXvvrqK0EQLPP53r59u6BUKoXMzExtm4yMDEGhUAgxMTGCIFjGeQuCILi5uQlff/21kJGRIdjY2AgbN27Ubrtw4YIAQIiLixMEwTJe4+XKz7ui3bt3V5l4WcpzLQhVn3e5DRs2CLa2tkJxcbEgCJb/fJc7deqUAEC4cuWKIAiWfd4nT54UGjVqJKSkpFRKvKQ8b15qrEF5t3P5wpnp6ek4cuQIvL290atXL/j4+ODxxx/HgQMHtI+Ji4uDq6srunbtqr0vPDwcSqUSR44c0bbp27cvbG1ttW0iIiKQmJiIBw8eSHFqNXr0vB8VHx+PhIQETJgwQXtfXFwc2rdvDx8fH+19ERERyMrKwrlz57RtwsPDdfYVERGBuLg4sU/BIFWdd69evbB+/Xrcv38fGo0G69atQ0FBAfr16wfAMp/vwsJCKBQKnWKCdnZ2UCqV2te6uZ93aWkp1q1bh9zcXISFhSE+Ph7FxcU6r8/WrVujcePG2tenJbzGHz1vfZj7cw3od96ZmZlQq9Wwti5bwrghPN+5ubn49ttvERQUhMDAQACWe955eXl48cUXsWTJEvj6+lZ6jJTnzcSrGhqNBlOnTkXv3r3Rrl07AMDVq1cBAHPnzsXEiRMRHR2Nzp07Y+DAgbh8+TKAsjFB3t7eOvuytraGu7s7UlNTtW0qPrkAtL+Xt5FLVef9qG+++QZt2rRBr169tPfpc07VtcnKytIZIyeH6s57w4YNKC4uhoeHB1QqFf7+979j06ZNCA4OBmCZz3fPnj3h6OiId955B3l5ecjNzcU///lPlJaWIiUlBYD5nveZM2fg5OQElUqFSZMmYdOmTQgJCUFqaipsbW3h6uqq097Hx6dO52Oqr/Hqzlsf5vpcA/qf9927dzFv3jy8/vrr2vss+fleunQpnJyc4OTkhD/++AMxMTHapNlSz3vatGno1asXRowYUeVjpTxvJl7VmDJlCs6ePYt169Zp79NoNADKBieOHz8enTp1wqJFi9CqVSusXLlSrlBFVdV5V5Sfn4+1a9fq9HZZgurO+7333kNGRgZ27tyJ48ePIyoqCs899xzOnDkjU6Tiquq8vby8sHHjRvz+++9wcnKCi4sLMjIy0LlzZyiV5v2W0apVKyQkJODIkSOYPHkyxo0bh/Pnz8sdltHxvKs/76ysLAwbNgwhISGYO3euPIGKrLbzfumll3Dy5Ens3bsXLVu2xHPPPYeCggIZIxZHdef922+/YdeuXfjss8/kDhEAYC13AKYoMjISW7Zswb59+xAQEKC938/PDwAqfWNq06YNkpOTAQC+vr5IT0/X2V5SUoL79+9ruzd9fX0rzZYq/72qLlCpVHfeFf3000/Iy8vDyy+/rHO/r68vjh49qnPfo+dU3Xmr1WrY29uLdRp1Vt15JyUl4YsvvsDZs2fRtm1bAEDHjh2xf/9+LFmyBMuXL7fY53vQoEFISkrC3bt3YW1tDVdXV/j6+qJZs2YAzPd1bmtrq+2t7NKlC44dO4bFixdjzJgxKCoqQkZGhk6vV1pams75mOtrvLrzXrFiRa2PNdfnGqj9vLOzszF48GA4Oztj06ZNsLGx0T7Wkp9vFxcXuLi4oEWLFujZsyfc3NywadMmvPDCCxZ53vb29khKSqrUoz1q1Cg89thj2LNnj6Tnbd5fX0UmCAIiIyOxadMm7Nq1C0FBQTrbmzZtCn9//0pT7y9duoQmTZoAAMLCwpCRkYH4+Hjt9l27dkGj0aBHjx7aNvv27UNxcbG2TUxMDFq1agU3NzdjnV61ajvvir755hs89dRT8PLy0rk/LCwMZ86c0XmDjomJgVqt1iaqYWFhiI2N1XlcTEyM3mNNxFbbeefl5QFApV4eKysrbe+npT/fnp6ecHV1xa5du5Ceno6nnnoKgHmed1U0Gg0KCwvRpUsX2NjY6Lw+ExMTkZycrH19muNrvDrl560PS3muAd3zzsrKwqBBg2Bra4vffvsNdnZ2Om0byvMtlE2y0263xPN+9913cfr0aSQkJGhvALBo0SJ8++23ACQ+7zoNxbdwkydPFlxcXIQ9e/bolE7Iy8vTtlm0aJGgVquFjRs3CpcvXxZmzZol2NnZaWeECELZ1OtOnToJR44cEQ4cOCC0aNFCZ+p1RkaG4OPjI4wdO1Y4e/assG7dOsHBwUG2qdf6nLcgCMLly5cFhUIh/PHHH5X2UT4Vd9CgQUJCQoIQHR0teHl5VTkVd/r06cKFCxeEJUuWyDoFubbzLioqEoKDg4XHHntMOHLkiHDlyhXhv//9r6BQKIStW7dq92OJz/fKlSuFuLg44cqVK8L3338vuLu7C1FRUTr7Mbfzfvfdd7XT6E+fPi28++67gkKhEHbs2CEIQlk5icaNGwu7du0Sjh8/LoSFhQlhYWHax5vja1wQaj/vlJQU4eTJk8JXX30lABD27dsnnDx5Urh37552H+b2XAtCzeedmZkp9OjRQ2jfvr1w5coVnb+DR8sqWNLznZSUJHz00UfC8ePHhT///FM4ePCgMHz4cMHd3V1IS0sTBMEyz7sqqKachBTnzcSrAgBV3r799luddvPnzxcCAgIEBwcHISwsTNi/f7/O9nv37gkvvPCC4OTkJKjVamH8+PHaelflTp06JfTp00dQqVRCo0aNhP/85z/GPr1q6XveM2fOFAIDA3VqOVV0/fp1YciQIYK9vb3g6ekp/OMf/9BOzS63e/duITQ0VLC1tRWaNWtW6RhS0ue8L126JDzzzDOCt7e34ODgIHTo0KFSeQlLfL7feecdwcfHR7CxsRFatGghLFiwQNBoNDr7MbfzfvXVV4UmTZoItra2gpeXlzBw4ECdN+X8/HzhjTfeENzc3AQHBwfh6aefFlJSUnT2YW6vcUGo/bznzJlT6+vB3J5rQaj5vMtLZ1R1u3btmnYflvZ837p1SxgyZIjg7e0t2NjYCAEBAcKLL74oXLx4UWcflnbeVXk08RIE6c5b8VcARERERGRkHONFREREJBEmXkREREQSYeJFREREJBEmXkREREQSYeJFREREJBEmXkREREQSYeJFREREJBEmXkRERA3Yhx9+iF69esHBwaHSeobVmTt3Llq3bg1HR0e4ubkhPDwcR44c0Wnz1FNPoXHjxrCzs4Ofnx/Gjh2L27dva7cXFBTglVdeQfv27WFtbY2RI0dWOk5KSgpefPFFtGzZEkqlElOnTjXoHC9duoQRI0bA09MTarUaffr0we7duw3aV30x8SIii/XKK69U+WYulbFjx+Kjjz7Sq+3zzz+PBQsWGDkiaqj69euHVatWVbmtqKgIo0ePxuTJk/XeX8uWLfHFF1/gzJkzOHDgAJo2bYpBgwbhzp072jb9+/fHhg0bkJiYiJ9//hlJSUl49tlntdtLS0thb2+Pt956C+Hh4VUep7CwEF5eXpg1axY6duyod3yPevLJJ1FSUoJdu3YhPj4eHTt2xJNPPonU1FSD92mwOte6JyIyAahmyZfy25w5c4SMjAzhwYMHssSXkJAguLu7V1papzpnzpwR3NzchIyMDCNHRg3R448/XuvyNt9++63g4uJi0P4zMzMFAMLOnTurbbN582ZBoVAIRUVFlbaNGzdOGDFiRI3HePzxx4W33367ym1fffWV0Lp1a0GlUgmtWrUSlixZot12584d7Tqk5bKysgQAQkxMTM0nZgTW0qd6RET1l5KSov15/fr1mD17NhITE7X3OTk5wcnJSY7QAACff/45Ro8erXcM7dq1Q/PmzfHDDz9gypQpRo6OSDxFRUX48ssv4eLiUm2v1P3797FmzRr06tULNjY2oh5/zZo1mD17Nr744gt06tQJJ0+exMSJE+Ho6Ihx48bBw8MDrVq1wnfffYfOnTtDpVJhxYoV8Pb2RpcuXUSNRR+81EhEZsnX11d7c3FxgUKh0LnPycmp0qXGfv364c0338TUqVPh5uYGHx8ffPXVV8jNzcX48ePh7OyM4OBg/PHHHzrHOnv2LIYMGQInJyf4+Phg7NixuHv3brWxlZaW4qeffsLw4cN17l+6dClatGgBOzs7+Pj46Fx2AYDhw4dj3bp19f/PIZLAli1b4OTkBDs7OyxatAgxMTHw9PTUafPOO+/A0dERHh4eSE5OxubNm0WPY86cOViwYAGeeeYZBAUF4ZlnnsG0adOwYsUKAIBCocDOnTtx8uRJODs7w87ODgsXLkR0dDTc3NxEj6c2TLyIqEFZvXo1PD09cfToUbz55puYPHkyRo8ejV69euHEiRMYNGgQxo4di7y8PABARkYGBgwYgE6dOuH48eOIjo5GWloannvuuWqPcfr0aWRmZqJr167a+44fP4633noLH3zwARITExEdHY2+ffvqPK579+44evQoCgsLjXPy1GB89NFH2l5fJycn7N+/H5MmTdK5Lzk5uV7H6N+/PxISEnDo0CEMHjwYzz33HNLT03XaTJ8+HSdPnsSOHTtgZWWFl19+GYIg1Ou4FeXm5iIpKQkTJkzQObd///vfSEpKAgAIgoApU6bA29sb+/fvx9GjRzFy5EgMHz5cp+dcMpJf3CQiEll1Y1MeHTfy+OOPC3369NH+XlJSIjg6Ogpjx47V3peSkiIAEOLi4gRBEIR58+YJgwYN0tnvjRs3BABCYmJilfFs2rRJsLKyEjQajfa+n3/+WVCr1UJWVla153Hq1CkBgHD9+vUaz5eoNvfu3RMuX76svXXv3l34+OOPde4rLi7WeUx9xngJgiAEBwcLH330UbXby/9uDh06VGmboWO8UlNTBQDCDz/8oHNuly9fFq5evSoIgiDs3LlTUCqVQmZmZqV458+fr9/JiYhjvIioQenQoYP2ZysrK3h4eKB9+/ba+3x8fABA+8391KlT2L17d5VjtZKSktCyZctK9+fn50OlUkGhUGjve+KJJ9CkSRM0a9YMgwcPxuDBg/H000/DwcFB28be3h4AtL1tRIZyd3eHu7u79nd7e3t4e3sjODjYaMfUaDQ19tZqNBoAELVH18fHB/7+/rh69SpeeumlKtuU/z0plboX+ZRKpTYmKTHxIqIG5dGBvQqFQue+8mSp/A05JycHw4cPx8cff1xpX35+flUew9PTE3l5eSgqKoKtrS0AwNnZGSdOnMCePXuwY8cOzJ49G3PnzsWxY8e0tZPu378PAPDy8qrfSRLVQXJyMu7fv4/k5GSUlpYiISEBABAcHKz9wtG6dWvMnz8fTz/9NHJzc/Hhhx/iqaeegp+fH+7evYslS5bg1q1bGD16NADgyJEjOHbsGPr06QM3NzckJSXhvffeQ/PmzREWFqY99vnz51FUVIT79+8jOztbe+zQ0FBtm/L7cnJycOfOHSQkJMDW1hYhISEAgPfffx9vvfUWXFxcMHjwYBQWFuL48eN48OABoqKiEBYWBjc3N4wbNw6zZ8+Gvb09vvrqK1y7dg3Dhg0z7n9uFZh4ERHVoHPnzvj555/RtGlTWFvr95ZZ/qFx/vx5nQ8Qa2trhIeHIzw8HHPmzIGrqyt27dqFZ555BkDZIP6AgIBKA5SJjGn27NlYvXq19vdOnToBAHbv3o1+/foBABITE5GZmQmgrKf44sWLWL16Ne7evQsPDw9069YN+/fvR9u2bQEADg4O+OWXXzBnzhzk5ubCz88PgwcPxqxZs6BSqbTHGjp0KP78889KxxYqjAMrvw8A4uPjsXbtWjRp0gTXr18HALz22mtwcHDAp59+iunTp8PR0RHt27fXFlv19PREdHQ0/u///g8DBgxAcXEx2rZti82bN9erNpihmHgREdVgypQp+Oqrr/DCCy9gxowZcHd3x5UrV7Bu3Tp8/fXXsLKyqvQYLy8vdO7cGQcOHNAmXlu2bMHVq1fRt29fuLm5Ydu2bdBoNGjVqpX2cfv378egQYOkOjVqQPbs2VPttlWrVlVbXLVcxUTIzs4Ov/zyS43t27dvj127dtUaV3nypO+xq/Piiy/ixRdfrHZ7165dsX379lr3IwXOaiQiqoG/vz8OHjyI0tJSDBo0SPtN2tXVtdKYkYpee+01rFmzRvu7q6srfvnlFwwYMABt2rTB8uXL8eOPP2p7CAoKCvDrr79i4sSJRj8nIpKPQtAnlSQiojrJz89Hq1atsH79ep0xLdVZtmwZNm3ahB07dkgQHRHJhT1eRERGYG9vj++++67GQqsV2djY4PPPPzdyVEQkN/Z4EREREUmEPV5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEvl/x2KH98R61VwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_raw.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])" + ] + }, + { + "cell_type": "markdown", + "id": "3d1fecba", + "metadata": {}, + "source": [ + "Let us get some statistics on these bad time intervals, in particular the very small ones." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9ab90390", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total exposure: 5438.068227797747\n", + "Total BTI length: 44846.231474906206\n", + "Total BTI length (short BTIs): 33.45650801062584\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvzUlEQVR4nO3de1hU9aL/8c8AihdE8waiKG4zCy/gBcqyDipt08JLOzeVp9DK9tlNOxMr8WeJ2tlHa6tZnTldLNN6qm2WuZ8yr2w8ti0DTUw3ZmFYpIIZCYKJOazfH/txTgjqDLOGgTXv1/PwPM5aM2t9vmtuH9esNWMzDMMQAACABQX5OwAAAICvUHQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlhfg7gL9VV1fryJEjatOmjWw2m7/jAAAANxiGoZMnTyoqKkpBQRfebxPwRefIkSOKjo72dwwAAFAPRUVF6tat2wXnB3zRadOmjaR/bajw8HA/pwEAAO4oLy9XdHS06338QgK26DgcDjkcDjmdTklSeHg4RQcAgCbmUoed2AL9Rz3Ly8vVtm1blZWVUXQAAGgi3H3/5qwrAABgWRQdAABgWRQdAABgWRQdAABgWQFbdBwOh2JjY5WQkODvKAAAwEc464qzrgAAaHI46woAAAQ8ig4AALAsig4AALAsig4AALAsig4AALCsgC06nF4OAID1cXo5p5ebLiZjnVe3P7TwZpOSAACsitPLAQBAwKPoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAywrYosP36AAAYH0BW3Tsdrvy8/OVm5vr7ygAAMBHArboAAAA6wvxdwDgfN58szLfqgwA+DX26AAAAMui6AAAAMui6AAAAMui6AAAAMui6AAAAMsK2KLDFwYCAGB9AVt0+MJAAACsL2CLDgAAsD6KDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsKyALTr8BAQAANYXsEWHn4AAAMD6ArboAAAA66PoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAywrYouNwOBQbG6uEhAR/RwEAAD4SsEXHbrcrPz9fubm5/o4CAAB8JGCLDgAAsD6KDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsKwQfwcAzBSTsc6r2x9aeLNJSQAAjQF7dAAAgGVRdAAAgGVRdAAAgGVRdAAAgGVRdAAAgGUFbNFxOByKjY1VQkKCv6MAAAAfCdiiY7fblZ+fr9zcXH9HAQAAPhKwRQcAAFgfRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFhWky86RUVFSkpKUmxsrAYMGKDVq1f7OxIAAGgkQvwdwFshISFaunSp4uPjVVxcrMGDB2vMmDFq3bq1v6MBAAA/a/JFp0uXLurSpYskKTIyUh07dlRpaSlFBwAA+P+jq23btiklJUVRUVGy2Wxau3Ztres4HA7FxMSoRYsWuvrqq5WTk1Pnsnbt2iWn06no6GgfpwYAAE2B34tOZWWl4uLi5HA46py/atUqpaenKzMzU59//rni4uI0atQoHTt2rMb1SktLdffdd+vll19uiNgAAKAJ8PtHV6NHj9bo0aMvOH/JkiWaOnWqpkyZIkl68cUXtW7dOi1fvlwZGRmSpKqqKo0fP14ZGRm69tprL7q+qqoqVVVVuS6Xl5ebMAoAANAY+X2PzsWcOXNGu3btUnJysmtaUFCQkpOT9emnn0qSDMPQ5MmTNWLECN11112XXOaCBQvUtm1b1x8fcwEAYF2NuugcP35cTqdTERERNaZHRESouLhYkrR9+3atWrVKa9euVXx8vOLj47V3794LLnPWrFkqKytz/RUVFfl0DAAAwH88/uiqqKhINptN3bp1kyTl5OTorbfeUmxsrO6//37TA17KsGHDVF1d7fb1Q0NDFRoa6sNEAACgsfB4j86dd96p7OxsSVJxcbFuvPFG5eTkaPbs2Zo/f76p4Tp27Kjg4GCVlJTUmF5SUqLIyEhT1wUAAKzH46Kzb98+JSYmSpLeeecd9evXT5988onefPNNrVixwtRwzZs31+DBg5WVleWaVl1draysLA0dOtTUdQEAAOvx+KOrX375xfXRz5YtWzR27FhJ0pVXXqmjR496HKCiokIFBQWuy4WFhcrLy1P79u3VvXt3paenKy0tTUOGDFFiYqKWLl2qyspK11lY9eVwOORwOOR0Or1aDgAAaLw8Ljp9+/bViy++qJtvvlmbN2/Wk08+KUk6cuSIOnTo4HGAnTt3avjw4a7L6enpkqS0tDStWLFCqamp+uGHHzRnzhwVFxcrPj5eGzZsqHWAsqfsdrvsdrvKy8vVtm1br5YFAAAaJ5thGIYnN9i6dasmTJig8vJypaWlafny5ZKk//f//p++/PJLrVmzxidBfeVc0SkrK1N4eLi/41hCTMY6f0eot0MLb/Z3BACAG9x9//Z4j05SUpKOHz+u8vJyXXbZZa7p999/v1q1alW/tAAAAD5Qr29GDg4OrlFyJCkmJsaMPAAAAKZxq+gMHDhQNpvNrQV+/vnnXgUCAAAwi1tFZ/z48T6O0fA46woAAOvz+GBkq+FgZPNxMDIAwNfcff9u1L91BQAA4A2PD0Z2Op165pln9M477+i7777TmTNnaswvLS01LRwAAIA3PN6jM2/ePC1ZskSpqakqKytTenq6br31VgUFBWnu3Lk+iAgAAFA/HhedN998U8uWLdOMGTMUEhKiO+64Q6+88ormzJmjHTt2+CIjAABAvXhcdIqLi9W/f39JUlhYmMrKyiRJt9xyi9ata7oHoQIAAOvxuOh069bN9eOdvXr10qZNmyRJubm5rh/7bAocDodiY2OVkJDg7ygAAMBHPC46EyZMUFZWliTpT3/6k5544gn17t1bd999t+655x7TA/qK3W5Xfn6+cnNz/R0FAAD4iMdnXS1cuND179TUVPXo0UOffPKJevfurZSUFFPDAQAAeMPjonP69Gm1aNHCdfmaa67RNddcY2ooAAAAM3j80VXnzp2VlpamzZs3q7q62heZAAAATOFx0Vm5cqVOnTqlcePGqWvXrnr44Ye1c+dOX2QDAADwSr0ORl69erVKSkr0X//1X8rPz9c111yjK664QvPnz/dFRgAAgHqp929dtWnTRlOmTNGmTZv0xRdfqHXr1po3b56Z2QAAALxS76Jz+vRpvfPOOxo/frwGDRqk0tJSPfroo2Zm8ym+RwcAAOvz+KyrjRs36q233tLatWsVEhKi2267TZs2bdINN9zgi3w+Y7fbZbfbXT/zDgAArMfjojNhwgSlpKTo9ddf15gxY9SsWTNf5AIAAPCaR0Xn7NmzeuqppzRx4kRFRkb6KhMAAIApPDpGJyQkRDNnzlRVVZWv8gAAAJjG44ORExMTtXv3bl9kAQAAMJXHx+g88MADmjFjhr7//nsNHjxYrVu3rjF/wIABpoUDAADwhs0wDMOTGwQF1d4JZLPZZBiGbDabnE6naeEawrmzrsrKyhQeHu7vOJYQk7HO3xH85tDCm/0dAQACgrvv3x7v0SksLPQqGAAAQEPxuOj06NHDFzkAAABMV69vRn7jjTd03XXXKSoqSt9++60kaenSpfrb3/5majhf4puRAQCwPo+LzgsvvKD09HSNGTNGJ06ccB2T065dOy1dutTsfD5jt9uVn5+v3Nxcf0cBAAA+4nHRef7557Vs2TLNnj1bwcHBrulDhgzR3r17TQ0HAADgDY+LTmFhoQYOHFhremhoqCorK00JBQAAYAaPi07Pnj2Vl5dXa/qGDRt01VVXmZEJAADAFB6fdZWeni673a7Tp0/LMAzl5OTo7bff1oIFC/TKK6/4IiMAAEC9eFx07rvvPrVs2VKPP/64Tp06pTvvvFNRUVF69tlndfvtt/siIwAAQL14XHQkadKkSZo0aZJOnTqliooKde7c2excAAAAXvP4GJ0RI0boxIkTkqRWrVq5Sk55eblGjBhhajgAAABveFx0tm7dqjNnztSafvr0aX388cemhAIAADCD2x9dffHFF65/5+fnq7i42HXZ6XRqw4YN6tq1q7npAAAAvOB20YmPj5fNZpPNZqvzI6qWLVvq+eefNzWcLzkcDjkcjib3a+sAAMB9bhedwsJCGYah3/zmN8rJyVGnTp1c85o3b67OnTvX+Kbkxs5ut8tut7t+5h0AAFiP20Xn3K+WV1dX+ywMAACAmep1evnXX3+t7OxsHTt2rFbxmTNnjinBAAAAvOVx0Vm2bJn++Mc/qmPHjoqMjJTNZnPNs9lsFB0AANBoeFx0/vM//1N//vOfNXPmTF/kAQAAMI3H36Pz008/aeLEib7IAgAAYCqPi87EiRO1adMmX2QBAAAwlccfXV1++eV64okntGPHDvXv31/NmjWrMf+hhx4yLRwAAIA3bIZhGJ7coGfPnhdemM2mb775xutQDenc9+iUlZUpPDzc33EsISZjnb8j+M2hhTf7OwIABAR337893qNTWFjoVTAAAICG4vExOgAAAE2FW3t00tPT9eSTT6p169ZKT0+/6HWXLFliSjAAAABvuVV0du/erV9++cX17wv59ZcHAgAA+JtbRSc7O7vOfwMAADRmAXuMjsPhUGxsrBISEvwdBQAA+EjAFh273a78/Hzl5ub6OwoAAPCRgC06AADA+ig6AADAstwqOoMGDdJPP/0kSZo/f75OnTrl01AAAABmcKvo7N+/X5WVlZKkefPmqaKiwqehAAAAzODW6eXx8fGaMmWKhg0bJsMwtGjRIoWFhdV53Tlz5pgaEAAAoL7cKjorVqxQZmamPvzwQ9lsNq1fv14hIbVvarPZKDoAAKDRcKvo9OnTR3/9618lSUFBQcrKylLnzp19GgwAAMBbHv96eXV1tS9yAAAAmM7joiNJBw8e1NKlS7V//35JUmxsrKZNm6ZevXqZGg4AAMAbHn+PzsaNGxUbG6ucnBwNGDBAAwYM0Geffaa+fftq8+bNvsgIAABQLx7v0cnIyND06dO1cOHCWtNnzpypG2+80bRwAAAA3vB4j87+/ft177331pp+zz33KD8/35RQAAAAZvC46HTq1El5eXm1pufl5XEmFgAAaFQ8/uhq6tSpuv/++/XNN9/o2muvlSRt375dTz31lNLT000PCAAAUF8eF50nnnhCbdq00eLFizVr1ixJUlRUlObOnauHHnrI9IAAAAD15XHRsdlsmj59uqZPn66TJ09Kktq0aWN6MAAAAG/V63t0zqHgAACAxszjg5EBAACaCooOAACwrIAtOg6HQ7GxsUpISPB3FAAA4CMeFZ1ffvlFI0eO1Ndff+2rPA3GbrcrPz9fubm5/o4CAAB8xKOi06xZM33xxRe+ygIAAGAqjz+6+vd//3e9+uqrvsgCAABgKo9PLz979qyWL1+uLVu2aPDgwWrdunWN+UuWLDEtHAAAgDc8Ljr79u3ToEGDJElfffVVjXk2m82cVAAAACbwuOhkZ2f7IgcAAIDp6n16eUFBgTZu3Kiff/5ZkmQYhmmhAAAAzOBx0fnxxx81cuRIXXHFFRozZoyOHj0qSbr33ns1Y8YM0wMCAADUl8dFZ/r06WrWrJm+++47tWrVyjU9NTVVGzZsMDUcAACANzw+RmfTpk3auHGjunXrVmN679699e2335oWDAAAwFse79GprKyssSfnnNLSUoWGhpoSCgAAwAweF53rr79er7/+uuuyzWZTdXW1nn76aQ0fPtzUcAAAAN7w+KOrp59+WiNHjtTOnTt15swZPfbYY/rnP/+p0tJSbd++3RcZAQAA6sXjPTr9+vXTV199pWHDhmncuHGqrKzUrbfeqt27d6tXr16+yAgAAFAvHu/RkaS2bdtq9uzZZmcBAAAwVb2Kzk8//aRXX31V+/fvlyTFxsZqypQpat++vanhAAAAvOHxR1fbtm1TTEyMnnvuOf3000/66aef9Nxzz6lnz57atm2bLzICAADUi8d7dOx2u1JTU/XCCy8oODhYkuR0OvXAAw/Ibrdr7969pocEAACoD4/36BQUFGjGjBmukiNJwcHBSk9PV0FBganhAAAAvOFx0Rk0aJDr2Jxf279/v+Li4kwJBQAAYAa3Prr64osvXP9+6KGHNG3aNBUUFOiaa66RJO3YsUMOh0MLFy70TUoAAIB6sBmGYVzqSkFBQbLZbLrUVW02m5xOp2nhGkJ5ebnatm2rsrIyhYeH+zuOJcRkrPN3BL85tPBmf0cAgIDg7vu3W3t0CgsLTQsGAADQUNwqOj169PB1DgAAANPV6wsDjxw5on/84x86duyYqqura8x76KGHTAkGAADgLY+LzooVK/SHP/xBzZs3V4cOHWSz2VzzbDYbRQcAADQaHhedJ554QnPmzNGsWbMUFOTx2ekAAAANxuOmcurUKd1+++2UHAAA0Oh53FbuvfderV692hdZAAAATOXxR1cLFizQLbfcog0bNqh///5q1qxZjflLliwxLZy7JkyYoK1bt2rkyJF69913G3z9AACgcapX0dm4caP69OkjSbUORvaHadOm6Z577tHKlSv9sn4AANA4eVx0Fi9erOXLl2vy5Mk+iFM/SUlJ2rp1q79jAACARsbjY3RCQ0N13XXXmRZg27ZtSklJUVRUlGw2m9auXVvrOg6HQzExMWrRooWuvvpq5eTkmLZ+AABgXR4XnWnTpun55583LUBlZaXi4uLkcDjqnL9q1Sqlp6crMzNTn3/+ueLi4jRq1CgdO3bMtAwAAMCaPP7oKicnR3//+9/14Ycfqm/fvrUORl6zZo1Hyxs9erRGjx59wflLlizR1KlTNWXKFEnSiy++qHXr1mn58uXKyMjwNL6qqqpUVVXlulxeXu7xMgAAQNPgcdFp166dbr31Vl9kqeXMmTPatWuXZs2a5ZoWFBSk5ORkffrpp/Va5oIFCzRv3jyzIgIAgEbM46Lz2muv+SJHnY4fPy6n06mIiIga0yMiIvTll1+6LicnJ2vPnj2qrKxUt27dtHr1ag0dOrTOZc6aNUvp6emuy+Xl5YqOjvbNAAAAgF/V60c9G5stW7a4fd3Q0FCFhob6MA0AAGgsPC46PXv2vOj35XzzzTdeBfq1jh07Kjg4WCUlJTWml5SUKDIy0rT1AAAAa/K46Dz88MM1Lv/yyy/avXu3NmzYoEcffdSsXJKk5s2ba/DgwcrKytL48eMlSdXV1crKytKDDz5o6roAAID1eFx0pk2bVud0h8OhnTt3ehygoqJCBQUFrsuFhYXKy8tT+/bt1b17d6WnpystLU1DhgxRYmKili5dqsrKStdZWPXlcDjkcDjkdDq9Wg7wazEZ6+p920MLbzYxCQD8n0B+bbIZhmGYsaBvvvlG8fHxHp+uvXXrVg0fPrzW9LS0NK1YsUKS9N///d/6y1/+ouLiYsXHx+u5557T1VdfbUZslZeXq23btiorK1N4eLgpywx03jyhAllTfzEB0HhZsei4+/5t2sHI7777rtq3b+/x7ZKSknSprvXggw/yURUAAPCYx0Vn4MCBNQ5GNgxDxcXF+uGHH/Q///M/poYDAADwhsdF59xBwecEBQWpU6dOSkpK0pVXXmlWLgAAAK95XHQyMzN9kQMAAMB0Hv+op1U4HA7FxsYqISHB31EAAICPuF10goKCFBwcfNG/kJCm80XLdrtd+fn5ys3N9XcUAADgI243k/fff/+C8z799FM999xzqq6uNiUUAACAGdwuOuPGjas17cCBA8rIyNAHH3ygSZMmaf78+aaGAwAA8Ea9jtE5cuSIpk6dqv79++vs2bPKy8vTypUr1aNHD7PzAQAA1JtHRaesrEwzZ87U5Zdfrn/+85/KysrSBx98oH79+vkqHwAAQL25/dHV008/raeeekqRkZF6++236/woCwAAoDFxu+hkZGSoZcuWuvzyy7Vy5UqtXLmyzuutWbPGtHC+xI96AgBgfW4XnbvvvrvGTz80dXa7XXa73fWjYAAAwHrcLjrnfkkcAACgqQjYb0YGAADWR9EBAACWRdEBAACWRdEBAACWRdEBAACWFbBFx+FwKDY2VgkJCf6OAgAAfCRgi47dbld+fr5yc3P9HQUAAPhIwBYdAABgfRQdAABgWRQdAABgWRQdAABgWRQdAABgWRQdAABgWRQdAABgWQFbdPjCQAAArC9giw5fGAgAgPUFbNEBAADWR9EBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWFbBFh9+6AgDA+gK26PBbVwAAWF/AFh0AAGB9FB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZIf4O4C8Oh0MOh0NOp9PfUYCAFpOxzqvbH1p4s0lJgIvjsdo0BeweHbvdrvz8fOXm5vo7CgAA8JGALToAAMD6KDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyQvwdwF8cDoccDoecTqe/ozRKMRnr/B0BAACvBeweHbvdrvz8fOXm5vo7CgAA8JGALToAAMD6KDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyLFF0PvzwQ/Xp00e9e/fWK6+84u84AACgkQjxdwBvnT17Vunp6crOzlbbtm01ePBgTZgwQR06dPB3NAAA4GdNfo9OTk6O+vbtq65duyosLEyjR4/Wpk2b/B0LAAA0An4vOtu2bVNKSoqioqJks9m0du3aWtdxOByKiYlRixYtdPXVVysnJ8c178iRI+ratavrcteuXXX48OGGiA4AABo5vxedyspKxcXFyeFw1Dl/1apVSk9PV2Zmpj7//HPFxcVp1KhROnbsWL3WV1VVpfLy8hp/AADAmvx+jM7o0aM1evToC85fsmSJpk6dqilTpkiSXnzxRa1bt07Lly9XRkaGoqKiauzBOXz4sBITEy+4vAULFmjevHnmDQAwSUzGOq9uf2jhzSYlaVq82W6Bus2AQOL3PToXc+bMGe3atUvJycmuaUFBQUpOTtann34qSUpMTNS+fft0+PBhVVRUaP369Ro1atQFlzlr1iyVlZW5/oqKinw+DgAA4B9+36NzMcePH5fT6VRERESN6REREfryyy8lSSEhIVq8eLGGDx+u6upqPfbYYxc94yo0NFShoaE+zQ0AABqHRl103DV27FiNHTvW3zEAAEAj06g/uurYsaOCg4NVUlJSY3pJSYkiIyP9lAoAADQVjbroNG/eXIMHD1ZWVpZrWnV1tbKysjR06FA/JgMAAE2B3z+6qqioUEFBgetyYWGh8vLy1L59e3Xv3l3p6elKS0vTkCFDlJiYqKVLl6qystJ1FlZ9ORwOORwOOZ1Ob4cAAAAaKb8XnZ07d2r48OGuy+np6ZKktLQ0rVixQqmpqfrhhx80Z84cFRcXKz4+Xhs2bKh1gLKn7Ha77Ha7ysvL1bZtW6+WBQAAGie/F52kpCQZhnHR6zz44IN68MEHGygRAACwikZ9jA4AAIA3KDoAAMCyKDoAAMCyArboOBwOxcbGKiEhwd9RAACAjwRs0bHb7crPz1dubq6/owAAAB8J2KIDAACsj6IDAAAsy+/fo+Nv577Dp7y83M9JGpfqqlP+jgAPNdXHsD8fa011m8E/vH2s+vPx5k32xvo8OZfrUt/FZzMudQ2L+/777xUdHe3vGAAAoB6KiorUrVu3C84P+KJTXV2tI0eOqE2bNrLZbEpISKh1gPL50y52+dy/y8vLFR0draKiIoWHh5uSta5s9b3uhea7M/7zp11oe5i9DRpi/Bea1xgeA56M353re/MY4DnAY4DHAK+D/n4OGIahkydPKioqSkFBFz4SJ+A/ugoKCqrRBIODg2vdGedPu9jl8+eFh4eb9gSvK1t9r3uh+e6M//xpl9o+Zm2Dhhj/heY1hseAJ+N35/rePAZ4DvAY4DHA62BjeA6481uVHIx8HrvdfslpF7tc1+3N4smyL3XdC813Z/znT7vU9jFLQ4z/QvMaw2PA0+X68jHAc4DHAI8BXgebwnNA4qMrnzn3q+hlZWWm/U+mqQn0bcD4A3v8Etsg0McvsQ0aw/jZo+MjoaGhyszMVGhoqL+j+E2gbwPGH9jjl9gGgT5+iW3QGMbPHh0AAGBZ7NEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdHxsxMnTmjIkCGKj49Xv379tGzZMn9HanBFRUVKSkpSbGysBgwYoNWrV/s7UoObMGGCLrvsMt12223+jtJgPvzwQ/Xp00e9e/fWK6+84u84DS4Q7/NfC/TnPa/9/3Lq1Cn16NFDjzzyiM/WwenlfuZ0OlVVVaVWrVqpsrJS/fr1086dO9WhQwd/R2swR48eVUlJieLj41VcXKzBgwfrq6++UuvWrf0drcFs3bpVJ0+e1MqVK/Xuu+/6O47PnT17VrGxscrOzlbbtm01ePBgffLJJwH1uA+0+/x8gf6857X/X2bPnq2CggJFR0dr0aJFPlkHe3T8LDg4WK1atZIkVVVVyTCMS/7kvNV06dJF8fHxkqTIyEh17NhRpaWl/g3VwJKSktSmTRt/x2gwOTk56tu3r7p27aqwsDCNHj1amzZt8nesBhVo9/n5Av15z2u/9PXXX+vLL7/U6NGjfboeis4lbNu2TSkpKYqKipLNZtPatWtrXcfhcCgmJkYtWrTQ1VdfrZycHI/WceLECcXFxalbt2569NFH1bFjR5PSm6MhtsE5u3btktPpVHR0tJepzdOQ428qvN0mR44cUdeuXV2Xu3btqsOHDzdEdFPwmDB3GzTG5/2lmDH+xv7afzFmjP+RRx7RggULfJ6VonMJlZWViouLk8PhqHP+qlWrlJ6erszMTH3++eeKi4vTqFGjdOzYMdd1zn0Ge/7fkSNHJEnt2rXTnj17VFhYqLfeekslJSUNMjZ3NcQ2kKTS0lLdfffdevnll30+Jk801PibEjO2SVMW6OOXzNsGjfV5fylmjL+xv/ZfjLfj/9vf/qYrrrhCV1xxhe/DGnCbJOP999+vMS0xMdGw2+2uy06n04iKijIWLFhQr3X88Y9/NFavXu1NTJ/y1TY4ffq0cf311xuvv/66WVF9wpePgezsbON3v/udGTEbVH22yfbt243x48e75k+bNs148803GySv2bx5TDTV+/x89d0GTeV5fylmvC409tf+i6nP+DMyMoxu3boZPXr0MDp06GCEh4cb8+bN80k+9uh44cyZM9q1a5eSk5Nd04KCgpScnKxPP/3UrWWUlJTo5MmTkqSysjJt27ZNffr08UleXzBjGxiGocmTJ2vEiBG66667fBXVJ8wYv9W4s00SExO1b98+HT58WBUVFVq/fr1GjRrlr8im4jHh3jZoys/7S3Fn/E39tf9i3Bn/ggULVFRUpEOHDmnRokWaOnWq5syZ45M8FB0vHD9+XE6nUxERETWmR0REqLi42K1lfPvtt7r++usVFxen66+/Xn/605/Uv39/X8T1CTO2wfbt27Vq1SqtXbtW8fHxio+P1969e30R13RmjF+SkpOTNXHiRH300Ufq1q1bk35DdGebhISEaPHixRo+fLji4+M1Y8YMy5xt4u5jwkr3+fnc2QZN+Xl/Ke6Mv6m/9l+MWa+LZglp8DWihsTEROXl5fk7hl8NGzZM1dXV/o7hV1u2bPF3hAY3duxYjR071t8x/CYQ7/NfC/TnPa/9/2fy5Mk+XT57dLzQsWNHBQcH1zqArKSkRJGRkX5K1bACfRsE+vjrEujbJNDHL7ENGH/jGj9FxwvNmzfX4MGDlZWV5ZpWXV2trKwsDR061I/JGk6gb4NAH39dAn2bBPr4JbYB429c4+ejq0uoqKhQQUGB63JhYaHy8vLUvn17de/eXenp6UpLS9OQIUOUmJiopUuXqrKyUlOmTPFjanMF+jYI9PHXJdC3SaCPX2IbMP4mNH6fnMtlIdnZ2YakWn9paWmu6zz//PNG9+7djebNmxuJiYnGjh07/BfYBwJ9GwT6+OsS6Nsk0MdvGGwDxt90xs9vXQEAAMviGB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0Amjx5ssaPH2/6couLi3XjjTeqdevWateuXYOu+9ChQ7LZbB7/QvSKFSsumNWX6pu3sYmJidHSpUv9HQNwoegADcRXb+ieaOg302eeeUZHjx5VXl6evvrqqwZZpyfqelNOTU31S9bo6GgdPXpU/fr1c/s2c+fOVXx8vO9CARbAj3oC8JmDBw9q8ODB6t27t7+juK1ly5Zq2bJlg683ODhYkZGRDb5eSTpz5oyaN2/ul3UDvsYeHaCR2Ldvn0aPHq2wsDBFRETorrvu0vHjx13zk5KS9NBDD+mxxx5T+/btFRkZqblz59ZYxpdffqlhw4apRYsWio2N1ZYtW2Sz2bR27VpJUs+ePSVJAwcOlM1mU1JSUo3bL1q0SF26dFGHDh1kt9v1yy+/XDTzCy+8oF69eql58+bq06eP3njjDde8mJgYvffee3r99ddls9k0efLkiy5r3rx56tSpk8LDw/Uf//EfOnPmjGvehg0bNGzYMLVr104dOnTQLbfcooMHD9a4fU5OjgYOHKgWLVpoyJAh2r1790XXl5SUpG+//VbTp0+XzWaTzWaTVPujq3N7TZYvX67u3bsrLCxMDzzwgJxOp55++mlFRkaqc+fO+vOf/1xj+SdOnNB9993nGtOIESO0Z8+eC+Y5f2/b1q1bZbPZlJWVpSFDhqhVq1a69tprdeDAAVfOefPmac+ePa78K1ascGvd58b0yiuvqGfPnmrRooVefvllRUVFqbq6ukaucePG6Z577pH0r+I6btw4RUREKCwsTAkJCdqyZctFtzPgbxQdoBE4ceKERowYoYEDB2rnzp3asGGDSkpK9Pvf/77G9VauXKnWrVvrs88+09NPP6358+dr8+bNkiSn06nx48erVatW+uyzz/Tyyy9r9uzZNW6fk5MjSdqyZYuOHj2qNWvWuOZlZ2fr4MGDys7O1sqVK7VixQrXG2dd3n//fU2bNk0zZszQvn379Ic//EFTpkxRdna2JCk3N1c33XSTfv/73+vo0aN69tlnL7isrKws7d+/X1u3btXbb7+tNWvWaN68ea75lZWVSk9P186dO5WVlaWgoCBNmDDB9aZcUVGhW265RbGxsdq1a5fmzp2rRx555KLbfM2aNerWrZvmz5+vo0eP6ujRoxe87sGDB7V+/Xpt2LBBb7/9tl599VXdfPPN+v777/W///u/euqpp/T444/rs88+c91m4sSJOnbsmNavX69du3Zp0KBBGjlypEpLSy+a63yzZ8/W4sWLtXPnToWEhLhKR2pqqmbMmKG+ffu68qemprq97oKCAr333ntas2aN8vLyNHHiRP3444+u+0+SSktLtWHDBk2aNMm1nceMGaOsrCzt3r1bN910k1JSUvTdd995NCagQfnlN9OBAJSWlmaMGzeuznlPPvmk8dvf/rbGtKKiIkOSceDAAcMwDOPf/u3fjGHDhtW4TkJCgjFz5kzDMAxj/fr1RkhIiHH06FHX/M2bNxuSjPfff98wDMMoLCw0JBm7d++ula1Hjx7G2bNnXdMmTpxopKamXnA81157rTF16tQa0yZOnGiMGTPGdXncuHFGWlraBZdxbt3t27c3KisrXdNeeOEFIywszHA6nXXe5ocffjAkGXv37jUMwzBeeuklo0OHDsbPP/9cYxl1jfXXevToYTzzzDM1pr322mtG27ZtXZczMzONVq1aGeXl5a5po0aNMmJiYmrk69Onj7FgwQLDMAzj448/NsLDw43Tp0/XWHavXr2Ml156qc4s59832dnZhiRjy5YtruusW7fOkOQaZ2ZmphEXF1djOe6sOzMz02jWrJlx7NixGtcZN26ccc8997guv/TSS0ZUVNQF7wfDMIy+ffsazz//vOtyXdsU8Cf26ACNwJ49e5Sdna2wsDDX35VXXilJNT6iGTBgQI3bdenSRceOHZMkHThwQNHR0TWO80hMTHQ7Q9++fRUcHFznsuuyf/9+XXfddTWmXXfdddq/f7/b6zwnLi5OrVq1cl0eOnSoKioqVFRUJEn6+uuvdccdd+g3v/mNwsPDFRMTI0muPQn79+/XgAED1KJFixrLMEtMTIzatGnjuhwREaHY2FgFBQXVmHZue+3Zs0cVFRXq0KFDjfu0sLCw1kdul/Lr+7xLly6SdNH7xd119+jRQ506dapx20mTJum9995TVVWVJOnNN9/U7bff7hpnRUWFHnnkEV111VVq166dwsLCtH//fvbooFHjYGSgEaioqFBKSoqeeuqpWvPOvblJUrNmzWrMs9lstY6pqC9fLttbKSkp6tGjh5YtW+Y6jqRfv341juPxpbq2zcW2V0VFhbp06aKtW7fWWpanp67/ej3njiO62P3i7rpbt25da35KSooMw9C6deuUkJCgjz/+WM8884xr/iOPPKLNmzdr0aJFuvzyy9WyZUvddtttDXY/APVB0QEagUGDBum9995TTEyMQkLq97Ts06ePioqKVFJSooiICEn/Ok7m186dWeN0Or0LLOmqq67S9u3blZaW5pq2fft2xcbGerysPXv26Oeff3ad7bRjxw6FhYUpOjpaP/74ow4cOKBly5bp+uuvlyT94x//qJXljTfe0OnTp117dXbs2HHJ9TZv3tyUbXG+QYMGqbi4WCEhIa69T75QV35v1t2iRQvdeuutevPNN1VQUKA+ffpo0KBBrvnbt2/X5MmTNWHCBEn/KlWHDh3ydhiAT/HRFdCAysrKlJeXV+OvqKhIdrtdpaWluuOOO5Sbm6uDBw9q48aNmjJlittvxDfeeKN69eqltLQ0ffHFF9q+fbsef/xxSf+3J6Bz585q2bKl62DnsrKyeo/l0Ucf1YoVK/TCCy/o66+/1pIlS7RmzZpLHgRclzNnzujee+9Vfn6+PvroI2VmZurBBx9UUFCQLrvsMnXo0EEvv/yyCgoK9Pe//13p6ek1bn/nnXfKZrNp6tSprmUsWrTokuuNiYnRtm3bdPjw4RpnuHkrOTlZQ4cO1fjx47Vp0yYdOnRIn3zyiWbPnq2dO3eatp6YmBgVFhYqLy9Px48fV1VVldfrnjRpktatW6fly5e7DkI+p3fv3q6Dl/fs2aM777yz0ez1Ay6EogM0oK1bt2rgwIE1/ubNm6eoqCht375dTqdTv/3tb9W/f389/PDDateuXY3jQC4mODhYa9euVUVFhRISEnTfffe5zro6t5cjJCREzz33nF566SVFRUVp3Lhx9R7L+PHj9eyzz2rRokXq27evXnrpJb322mu1Tll3x8iRI9W7d2/dcMMNSk1N1dixY12nzgcFBemvf/2rdu3apX79+mn69On6y1/+UuP2YWFh+uCDD7R3714NHDhQs2fPrvNjwPPNnz9fhw4dUq9evWodr+INm82mjz76SDfccIOmTJmiK664Qrfffru+/fZb1942M/zud7/TTTfdpOHDh6tTp056++23vV73iBEj1L59ex04cEB33nlnjXlLlizRZZddpmuvvVYpKSkaNWpUjT0+QGNkMwzD8HcIAL6xfft2DRs2TAUFBerVq5e/4wBAg6PoABby/vvvKywsTL1791ZBQYGmTZumyy67rNYxLQAQKDgYGbCQkydPaubMmfruu+/UsWNHJScna/Hixf6OBQB+wx4dAABgWRyMDAAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALOv/A4B2ZzqxPYIQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.gti import get_gti_lengths, get_btis, get_total_gti_length\n", + "\n", + "gti_lengths = get_gti_lengths(events.gti)\n", + "btis = get_btis(events.gti)\n", + "bti_lengths = get_gti_lengths(btis)\n", + "\n", + "plt.hist(bti_lengths, bins=np.geomspace(1e-3, 10000, 30))\n", + "plt.xlabel(\"Length of bad time interval\")\n", + "plt.ylabel(\"Number of intervals\")\n", + "plt.loglog()\n", + "\n", + "print(f\"Total exposure: {get_total_gti_length(events.gti)}\")\n", + "print(f\"Total BTI length: {get_total_gti_length(btis)}\")\n", + "print(f\"Total BTI length (short BTIs): {get_total_gti_length(btis[bti_lengths < 1])}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b884f27d", + "metadata": {}, + "source": [ + "These short bad intervals $\\lesssim 1\\,$s represent a very small fraction of the total data, and can be filled with simulated data, without altering too much the statistical properties of the data themselves." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3737faa8", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGwCAYAAAB4h2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvZElEQVR4nO3dd3hTZfsH8G+696ITKHtDKRvKFiobWSJLQEVUXhCxP1HxRUBRcDEUUIaC8ooyVBAZhbJXoVAolFWgjCJ0QEub0tKZ8/ujJCRtkmaetOn3c11ctDlPznlOkzb3ec793I9EEAQBRERERGR2NpbuABEREVFVwcCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEYmfpDlgLmUyG+/fvw93dHRKJxNLdISIiIh0IgoDs7GxUr14dNjbmH49i4GUi9+/fR3BwsKW7QURERAa4e/cuatasafbjMPAyEXd3dwDA3XffhYejo/kPOGsWsHBhyf9ERETWauFCs+5emp+P4CVLFJ/j5sbAy0Tktxc9HB3FCbw8PABHx5L/iYiIrJUYn6mAaGlCTK4nIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIik3n4OB95hcWW7kaFxcCLiIiITGLLmbto99k+9Pz6EIMvDRh4ERERkUnE38sCAKRI8/AgO9/CvamYGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFILBp4FRcX4+OPP0bdunXh7OyM+vXrY/78+RAEQdFGEATMmTMHQUFBcHZ2Rnh4OK5fv66yn4yMDIwbNw4eHh7w8vLCpEmT8PjxY5U2Fy5cQLdu3eDk5ITg4GB89dVXZfqzZcsWNGnSBE5OTggJCcGuXbvMc+JERERUJVk08Pryyy/xww8/YPny5bhy5Qq+/PJLfPXVV1i2bJmizVdffYXvvvsOK1euxKlTp+Dq6oq+ffsiLy9P0WbcuHG4dOkSoqKisGPHDhw5cgRvvPGGYrtUKkWfPn1Qu3ZtxMbG4uuvv8a8efOwevVqRZsTJ05gzJgxmDRpEs6dO4ehQ4di6NChuHjxojg/DCIiIrJ6dpY8+IkTJzBkyBAMHDgQAFCnTh38/vvviImJAVAy2rV06VLMnj0bQ4YMAQCsX78eAQEB2LZtG0aPHo0rV64gMjISp0+fRrt27QAAy5Ytw4ABA/DNN9+gevXq2LBhAwoKCrB27Vo4ODigefPmiIuLw+LFixUB2rfffot+/fph5syZAID58+cjKioKy5cvx8qVK8v0PT8/H/n5zxYAlUql5vtBERERkVWw6IhX586dsX//fly7dg0AcP78eRw7dgz9+/cHANy6dQspKSkIDw9XPMfT0xMdO3ZEdHQ0ACA6OhpeXl6KoAsAwsPDYWNjg1OnTinadO/eHQ4ODoo2ffv2RUJCAh49eqRoo3wceRv5cUpbuHAhPD09Ff+Cg4ON/XEQERGRlbPoiNeHH34IqVSKJk2awNbWFsXFxfj8888xbtw4AEBKSgoAICAgQOV5AQEBim0pKSnw9/dX2W5nZwcfHx+VNnXr1i2zD/k2b29vpKSkaD1OabNmzUJERITie6lUyuCLiIiItLJo4LV582Zs2LABv/32m+L234wZM1C9enVMnDjRkl0rl6OjIxwdHS3dDSIiIqpELBp4zZw5Ex9++CFGjx4NAAgJCcGdO3ewcOFCTJw4EYGBgQCA1NRUBAUFKZ6XmpqKVq1aAQACAwORlpamst+ioiJkZGQonh8YGIjU1FSVNvLvy2sj305ERERkLIvmeOXm5sLGRrULtra2kMlkAIC6desiMDAQ+/fvV2yXSqU4deoUwsLCAABhYWHIzMxEbGysos2BAwcgk8nQsWNHRZsjR46gsLBQ0SYqKgqNGzeGt7e3oo3yceRt5MchIiIiMpZFA6/Bgwfj888/x86dO3H79m1s3boVixcvxrBhwwAAEokEM2bMwGeffYbt27cjPj4eEyZMQPXq1TF06FAAQNOmTdGvXz9MnjwZMTExOH78OKZNm4bRo0ejevXqAICxY8fCwcEBkyZNwqVLl7Bp0yZ8++23Kjla77zzDiIjI7Fo0SJcvXoV8+bNw5kzZzBt2jTRfy5ERERknSx6q3HZsmX4+OOP8Z///AdpaWmoXr063nzzTcyZM0fR5v3330dOTg7eeOMNZGZmomvXroiMjISTk5OizYYNGzBt2jT07t0bNjY2GDFiBL777jvFdk9PT+zduxdTp05F27Zt4evrizlz5qjU+urcuTN+++03zJ49Gx999BEaNmyIbdu2oUWLFuL8MIiIiMjqSQTlMvFkMKlUCk9PT2R9+CE8xEi6nzfv2T8iIqIKYM7fF7E++g4A4Oj7zyHYx8X4nZr5c06anw/PL75AVlYWPDw8zHosgGs1EhEREYmGgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4ERERkcmtOpKI2DuPLN2NCoeBFxEREZncryeTMOKHE5buRoXDwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJHaW7gARkaUVFcuw62IKbCUS9G8RCBsbiaW7RERWiiNeRFTlHUx4gOm/n8PU387i1K0MS3eHiKwYAy8iqvIe5RYovs5U+pqIyNQYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBEREZFZ2HL5rTIYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgsHnjdu3cPL7/8MqpVqwZnZ2eEhITgzJkziu2CIGDOnDkICgqCs7MzwsPDcf36dZV9ZGRkYNy4cfDw8ICXlxcmTZqEx48fq7S5cOECunXrBicnJwQHB+Orr74q05ctW7agSZMmcHJyQkhICHbt2mWekyYiIqIqyaKB16NHj9ClSxfY29tj9+7duHz5MhYtWgRvb29Fm6+++grfffcdVq5ciVOnTsHV1RV9+/ZFXl6eos24ceNw6dIlREVFYceOHThy5AjeeOMNxXapVIo+ffqgdu3aiI2Nxddff4158+Zh9erVijYnTpzAmDFjMGnSJJw7dw5Dhw7F0KFDcfHiRXF+GERERJVYsUzA+ug7lu5GhWdnyYN/+eWXCA4Oxrp16xSP1a1bV/G1IAhYunQpZs+ejSFDhgAA1q9fj4CAAGzbtg2jR4/GlStXEBkZidOnT6Ndu3YAgGXLlmHAgAH45ptvUL16dWzYsAEFBQVYu3YtHBwc0Lx5c8TFxWHx4sWKAO3bb79Fv379MHPmTADA/PnzERUVheXLl2PlypVi/UiIiIgqpYSUbEt3oVKw6IjX9u3b0a5dO4wcORL+/v5o3bo11qxZo9h+69YtpKSkIDw8XPGYp6cnOnbsiOjoaABAdHQ0vLy8FEEXAISHh8PGxganTp1StOnevTscHBwUbfr27YuEhAQ8evRI0Ub5OPI28uOUlp+fD6lUqvKPiIioqiqWCZbuQqVg0cDr5s2b+OGHH9CwYUPs2bMHU6ZMwfTp0/HLL78AAFJSUgAAAQEBKs8LCAhQbEtJSYG/v7/Kdjs7O/j4+Ki0UbcP5WNoaiPfXtrChQvh6emp+BccHKz3+RMREVHVYtHASyaToU2bNliwYAFat26NN954A5MnT64Ut/ZmzZqFrKwsxb+7d+9auktERERUwVk08AoKCkKzZs1UHmvatCmSkpIAAIGBgQCA1NRUlTapqamKbYGBgUhLS1PZXlRUhIyMDJU26vahfAxNbeTbS3N0dISHh4fKPyIiIiJtLBp4denSBQkJCSqPXbt2DbVr1wZQkmgfGBiI/fv3K7ZLpVKcOnUKYWFhAICwsDBkZmYiNjZW0ebAgQOQyWTo2LGjos2RI0dQWFioaBMVFYXGjRsrZlCGhYWpHEfeRn4cIiIiImNZNPB69913cfLkSSxYsAA3btzAb7/9htWrV2Pq1KkAAIlEghkzZuCzzz7D9u3bER8fjwkTJqB69eoYOnQogJIRsn79+mHy5MmIiYnB8ePHMW3aNIwePRrVq1cHAIwdOxYODg6YNGkSLl26hE2bNuHbb79FRESEoi/vvPMOIiMjsWjRIly9ehXz5s3DmTNnMG3aNNF/LkRERGSdLFpOon379ti6dStmzZqFTz/9FHXr1sXSpUsxbtw4RZv3338fOTk5eOONN5CZmYmuXbsiMjISTk5OijYbNmzAtGnT0Lt3b9jY2GDEiBH47rvvFNs9PT2xd+9eTJ06FW3btoWvry/mzJmjUuurc+fO+O233zB79mx89NFHaNiwIbZt24YWLVqI88MgIiIiq2fRwAsABg0ahEGDBmncLpFI8Omnn+LTTz/V2MbHxwe//fab1uO0bNkSR48e1dpm5MiRGDlypPYOExERkUaBHk7Y/GYYun990NJdqZAsvmQQEZGlzd7GFSqITEUiAZzsGV5owp8MEVV5BUUyS3eBiKoIBl5EREREImHgRURERCQSBl5EREREImHgRURERCQSBl5ERErm/XPJ0l0gIivGwIuISMnjvCJLd4GIrBgDLyIiJRKJxNJdICIrxsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvEgngiDg8n0pUrLyLN0VIiKiSouBF+lkS+y/GPDdUXT+Yj/SH+dbujtERESVEgMv0klSei4AQCYAKVKOehERERmCgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRVWlbzty1dBeIqAph4EVEVVrMrQxLd4GIqhAGXkREAEa3D7Z0F4ioCmDgRUQEQCKxdA+IxFVYLEN+UbGlu1HlMPAiIiKqYtKkeei4YD9afxqFuLuZlu5OlcLAi4iIqIq5kpKNjJwC5BYUIy7pkaW7U6Uw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISiUGB1927d/Hvv/8qvo+JicGMGTOwevVqk3WMiIiIyNoYFHiNHTsWBw8eBACkpKTg+eefR0xMDP773//i008/NWkHyTJSsvKQ9aTQ0t0gIiKyKgYFXhcvXkSHDh0AAJs3b0aLFi1w4sQJbNiwAT///LMp+0cWEHU5FZ0W7kf7z/fhQXa+pbtDRERkNQwKvAoLC+Ho6AgA2LdvH1544QUAQJMmTZCcnGy63pFFXEvNBgAUFMmQlJFj4d4QERFZD4MCr+bNm2PlypU4evQooqKi0K9fPwDA/fv3Ua1aNZN2kIiIiMhaGBR4ffnll1i1ahV69uyJMWPGIDQ0FACwfft2xS1IIiJDPSkoxpRfYzFxbQzuZz6xdHeIiEzGzpAn9ezZEw8fPoRUKoW3t7fi8TfeeAOurq4m6xwRVU2xdx5h98UUAMD+K6kYH1bHsh0iIjIRg0a8evXqhezsbJWgCwB8fHwwatQok3SMiKquYkF49rVM0NKSiKhyMSjwOnToEAoKCso8npeXh6NHjxrdKSIiIiJrpNetxgsXLii+vnz5MlJSUhTfFxcXIzIyEjVq1DBd74iIiIisiF6BV6tWrSCRSCCRSNCrV68y252dnbFs2TKTdY6IiIjImugVeN26dQuCIKBevXqIiYmBn5+fYpuDgwP8/f1ha2tr8k4SERERWQO9Aq/atWsDAGQymVk6Q0RERJXTryfvWLoLlYJB5SQA4Pr16zh48CDS0tLKBGJz5swxumNUcVxPzcbygzcs3Q0iIqrAzt19BADIKyy2cE8qNoMCrzVr1mDKlCnw9fVFYGAgJBKJYptEImHgZWVm/RVv6S4QEVEFZ/M0Flj0UqiFe1KxGRR4ffbZZ/j888/xwQcfmLo/VAGlSPMs3QUiIqokHJjrrZVBdbwePXqEkSNHmrovVEFV93S2dBeIiIisgkGB18iRI7F3715T94WIiIjIqhl0q7FBgwb4+OOPcfLkSYSEhMDe3l5l+/Tp003SOSIiIiJrYlDgtXr1ari5ueHw4cM4fPiwyjaJRMLAi4iIiEgNgwKvW7dumbofRERERFbPoBwvqloSUrMt3QUiIiKrYNCI12uvvaZ1+9q1aw3qDFU80YnpyHpSaOluEBERWQWDy0ko/0tLS8OBAwfw119/ITMz06COfPHFF5BIJJgxY4bisby8PEydOhXVqlWDm5sbRowYgdTUVJXnJSUlYeDAgXBxcYG/vz9mzpyJoqIilTaHDh1CmzZt4OjoiAYNGuDnn38uc/wVK1agTp06cHJyQseOHRETE2PQeVibfx89UXztaMcBUiIiImMYNOK1devWMo/JZDJMmTIF9evX13t/p0+fxqpVq9CyZUuVx999913s3LkTW7ZsgaenJ6ZNm4bhw4fj+PHjAIDi4mIMHDgQgYGBOHHiBJKTkzFhwgTY29tjwYIFAEry0QYOHIi33noLGzZswP79+/H6668jKCgIffv2BQBs2rQJERERWLlyJTp27IilS5eib9++SEhIgL+/v97nY42ea+yHS/elSMvOt3RXiIiIKi2TDWHY2NggIiICS5Ys0et5jx8/xrhx47BmzRp4e3srHs/KysJPP/2ExYsXo1evXmjbti3WrVuHEydO4OTJkwCAvXv34vLly/j111/RqlUr9O/fH/Pnz8eKFStQUFAAAFi5ciXq1q2LRYsWoWnTppg2bRpefPFFlX4uXrwYkydPxquvvopmzZph5cqVcHFx4S1TIiIiMimT3jtKTEwsc5uvPFOnTsXAgQMRHh6u8nhsbCwKCwtVHm/SpAlq1aqF6OhoAEB0dDRCQkIQEBCgaNO3b19IpVJcunRJ0ab0vvv27avYR0FBAWJjY1Xa2NjYIDw8XNFGnfz8fEilUpV/RERERNoYdKsxIiJC5XtBEJCcnIydO3di4sSJOu9n48aNOHv2LE6fPl1mW0pKChwcHODl5aXyeEBAAFJSUhRtlIMu+Xb5Nm1tpFIpnjx5gkePHqG4uFhtm6tXr2rs+8KFC/HJJ5/odqJEREREMDDwOnfunMr3NjY28PPzw6JFi8qd8Sh39+5dvPPOO4iKioKTk5Mh3bCoWbNmqQSgUqkUwcHBFuwRERERVXQGBV4HDx40+sCxsbFIS0tDmzZtFI8VFxfjyJEjWL58Ofbs2YOCggJkZmaqjHqlpqYiMDAQABAYGFhm9qF81qNym9IzIVNTU+Hh4QFnZ2fY2trC1tZWbRv5PtRxdHSEo6Oj/idOREREVZZROV4PHjzAsWPHcOzYMTx48ECv5/bu3Rvx8fGIi4tT/GvXrh3GjRun+Nre3h779+9XPCchIQFJSUkICwsDAISFhSE+Ph5paWmKNlFRUfDw8ECzZs0UbZT3IW8j34eDgwPatm2r0kYmk2H//v2KNkRERESmYNCIV05ODt5++22sX78eMpkMAGBra4sJEyZg2bJlcHFxKXcf7u7uaNGihcpjrq6uqFatmuLxSZMmISIiAj4+PvDw8MDbb7+NsLAwdOrUCQDQp08fNGvWDOPHj8dXX32FlJQUzJ49G1OnTlWMRr311ltYvnw53n//fbz22ms4cOAANm/ejJ07dyqOGxERgYkTJ6Jdu3bo0KEDli5dipycHLz66quG/HiIiIiI1DJoxCsiIgKHDx/GP//8g8zMTGRmZuLvv//G4cOH8X//938m69ySJUswaNAgjBgxAt27d0dgYCD++usvxXZbW1vs2LEDtra2CAsLw8svv4wJEybg008/VbSpW7cudu7ciaioKISGhmLRokX48ccfFTW8AGDUqFH45ptvMGfOHLRq1QpxcXGIjIwsk3BPRFRRfbMnAUNXHMeRa/rdfSAicRk04vXnn3/ijz/+QM+ePRWPDRgwAM7OznjppZfwww8/GNSZQ4cOqXzv5OSEFStWYMWKFRqfU7t2bezatUvrfnv27FlmQkBp06ZNw7Rp03TuKxFRRVFULMPygzcAAGuO3kT3Rn4W7hERaWLQiFdubq7a0SB/f3/k5uYa3SkiIjJMfpHM0l0gIi0MCrzCwsIwd+5c5OXlKR578uQJPvnkEyakExEREWlg0K3GpUuXol+/fqhZsyZCQ0MBAOfPn4ejoyP27t1r0g4SERERWQuDAq+QkBBcv34dGzZsUFR3HzNmDMaNGwdnZ2eTdpCIiIjIWhgUeC1cuBABAQGYPHmyyuNr167FgwcP8MEHH5ikc0RERETWxKAcr1WrVqFJkyZlHm/evDlWrlxpdKeIiIiIrJFBgVdKSgqCgoLKPO7n54fk5GSjO0Wkzvm7mXhj/RmsPpJo6a5UCv/ZEIuQuXvwR+y/lu4KkdGKimWITkzHv484c54qN4MCr+DgYBw/frzM48ePH0f16tWN7hSROquP3sTey6lYsOsq8gqLLd2dCq2oWIZd8SnIzi/CH7F3Ld0dIqP9cCgRY9acRM+vDyG3oMjS3SEymEE5XpMnT8aMGTNQWFiIXr16AQD279+P999/36SV64mU5SsFW8UywYI9qVz4o6paBME6X/D7WSXli4pkAqRPiuDiYNDHF5HFGfTOnTlzJtLT0/Gf//wHBQUFAEqqzH/wwQeYNWuWSTtIlhV/L8vSXSAiPZy+/QgpWXkI9HSydFeISA2DAi+JRIIvv/wSH3/8Ma5cuQJnZ2c0bNhQsTA1WY9L96WW7oLVKiqW4cydR6jh5Yxgn/IXltfVyZvp2HHhvsn2R5VP/L0sBl5EFZRRY7Vubm5o3769qfpCZFaCIODiPSn83B0rxIfSj8du4YvdV2EjAS7M6ws3R9PcOnn9lzN4nM8cGCJTEQQBV1OyEejhBG9XB0t3hyo5g5LriSqjDaeSMHj5MXT+Yj8ycwss3R3cz3wCoCQHa/Vh083UZNBFZFprjt5E/2+PottXBzmxh4zGwIuqjLsZJdPQZQLwIDvfwr1RdfJWhqW7QEQa3HpY8rfjcX4RMnMLLdwbquwYeBFVADYSS/eAiIjEwMCL9PZn7D1Ld4GIqpg0aZ6lu0BkEgy8SCcFxTLkPM0dOpH40MK9IWv311nxqu1n5zEnrqJLleZh/9U0S3eDyCQYeJFOsvOK8PXIUACAbQW7L1ZQJMPDxxUrZ4uMcyjhgSjHSZPmIfJSiijHIsPdezoRhcgaMPAinbmaqNyBKRUVy/D8ksNo99k+rI++benukIk42onzp+l2+rN1/7o39BPlmERUtTHwokpNmleEO08/POPuZlq2M1Rp1fN1RbPqHpbuht4ycwuQkJIN61wkiMg6VbwhDCIrl5NfBBcHW0t3gyq5JwXF6PrlQTzOL8JHA5pYujtEpCMGXkQiWnf8Fj7dcRltanmjWZB5RlhqeDkzJ6YKyMgtUBTLvfUwx8K9ISJd8VYjkYj2XUmFIACxdx6hsFimsq2oWIZrqdkoKvU4ERFZDwZeRBXEm/+LRZ8lRzBlw1lLd4WoQkl/bPklvohMhYEXkREu3stC54X70W/pEWTnGbeUiLxOUdTlVFN0jchqfLrjkqW7QGQyDLxIJxWtdldFcfzGQ9zPysPVlGxcui8tt/3dDPW5V/czWZWbTC856wkKiir/rWtHO05GqaieFBTjXFLZ1AnSjMn1pJMJYbUt3YVK73pqNpIyctVuU36cQS4ZK/bOI7zxvzMQBKBRgBv2zOgOiYTvq8pqz6UUHL/xEGM61EJTM03KMdSo1dG48G8WBrYMsnRXKg2OeFG5PujXBMNa17R0Nyo9TUFXabV9XMzcE7J2Kw8nQnha3Ota6mMcu8FlvkwlPScfF+9lQRDEq5725v9isT76DubvuCzaMXV14d8sAMAhLumkM454EVGVVVWWmvoz9l90Y2V+kxj43THF19c/7w97W/HGLx5km+79+phrlFoMAy8iqnIu3svChlN38HvMXQBAvhXkQWnDyvbmcTU5GyE1PS3dDYPM/OO8pbtQZTHwIqIqZ8GuKziRmK74vk/zAAv2hiormYi3G03NzdEOuQXFlu5GlcQcL6qUElKzLd0Fox1MYE6EJXwZeVUl6AKAQUwMJiKRMPCiSmn49yeQkFK5g69UadXIL6pofjiUaOkumJz8lilZt8o7vkbKGHhRpXU/i+sR6sKO5SmoEsnKLVSsQUmqbqQ9RlK6brOjqeJi4EVk5VwdmcpJlcPp2xlo+1kU2n+2D/8+YoChzrm7jyzdBTISAy8ql7+7o6W7oNG9R7qNehUWy7DqyE0z98Y0bj7MgUxm/E2F0e2DTdCbqqGmN2unVQRXkqUokgl4UliM62mPAQC3H+bgxtOvLUEQBPwek2Sx4wOAvS1Hra0JAy/SqFGAG9a90h5DWlW3dFc0Wn7wuk7t7lSy4fnt5+9bugtVRnhTfwR4OFm6G1RKfmHJjDtLr116LdVyQZ81KJYJOJfEUTplDLxIoza1vPFcE3/YiVggUF9Fxc9GhiSwnqvC5Cyu3SgWX7eKO6JblUVsLqkzJS/Z0L6Ot0VGfnIKmG+mjiAISNaSZ+vuZK/4ekvsv2J0qdKouJ+oRBVYXmExPt95GQt3XzXZPm1tJBjZVr+lmfIKizFm9Un0XXIEl3VYpJuosnBxUM1NrOXjqvj6j1jO4rS0udsvIWzhAY3bnR1sMaZDSbqDKVInrAkDLyIDRN9Mx5qjtyzdDVxJliL6ZjoSUrNx4Krht2R2XkjGK+tisDs+2YS9IzKtwqcj3NE309Vuv3xfijVHbnLmnwi2nbtXbhvmTqrHwIvK2HnB+j98bz7MMer5+YUVY4kZ5etIY4poz9h0DocSHihu71DlVKeaC67O74efJrZTebywuGK8X4311YiWAAAbifpbjqNXR+PzXVcwY9M5MbtldkVmHjHSd++/nrwDaam1HnMKinG1ktdWFAsDL1KR9aQQl5NLbllZcxmCZQd0S8q3BrosBC0fSXhSyCVEKrOXO9WGk71tmcd3xacgTVr58wbt7bTneMmDgcpeXFnZjgv3jbqo0sUn/1yGoONBimUCZm+7qLVNsI+zKbpltRh4kYp8pQ/eN7rXs2BPzMvWpuq89c8lZVp0On5FcvFelqW7YDHWPDvvSrIUC3ddMek+M3ML8Efsv7hu4eXJjt9Qf1vV1HRdt7G8AK1DHR/UruaqtY2yRzkF2HkhGalWcGGgK+sd0iCj2NpItE6xv3gvC3/H3UPvpgHoVK+aUcfKKyzGwatpCPZxQYsanlpaWs+sRbl+zQMReSnFLPvu0sAXG0+XJCHfepiDBv5uZjmOqeUVFiMt2zzLKf2hZnaVjYUr+9/NyMXrv5yBrY0Ev7zWAX4mqJun6VactZr5x3lcvGfaySWf/HMZW3XIYyJVQV76lWaZ+ttZnEhMR51qLjg08zkz9apiqTqX/WRSEZvjsOboLUxYG2P0vlYfuYkpG85i0LJjyHpSqLGdk731vV29Xe3Lb6Sj0sus1PJxQetaXgCAa5VoUfENp8xXrFKm5mp9VDvLFpqVT464nCzFmdsZJtlnuzre6NHID53q+cDT2XTvsYqqdDJ9gQly2m6nG5cHSro5c7ukxtftKjQhwvo+yUgUtx+W/JIUFBn/B045B0mqJfAi7VYduYm8Ujla8jpni/YmWKJLBnmUUyDasRaNDEVosJdoxzO3ur4lt3jcnezxy2sdsPGNMAR5VtzisKdvZ2D67+dMXjC4sFhA/L9V97ZypaI0OLvlTNUoE8LAi0iL5Kwn+GhrPJbtv65z8qk+lIsMFptg5lJmrmrg+nKnWgAAjyow6iGWe5lP8HtMEu5mVIwrdEc7G5z6qDcOvdcTvZsG6P38h4/zRQ12lc3bfgnbz9/H9N/Vz0LMLyrWOfeotPP/ZhrRM9MTBAHro2/ju/3XIc3jBaZcfb9nKRDGzjavLJjjRQBKrjwfZOcjRGuOVdXzx5l/8dvTW1/9Q4KMypOa9Vc8gJKlmEa3rwU3Rzs0r+GB1WZcQ7JtbR+z7buqmvzLGVxOlqKenysO/F9PS3cHAAxe8uhc0iMM/+EEbCQS7H6nGxoFuJu4Z9ppm3H78HE+Gs+OFLE35jVjUxz+jisZ2fNysceEsDqW7ZCI9l5OxRcj1G+zs3COpSUw8CLcy3yCkSujAQDTnmtg4d5ULPlKt1Lzi4wrtSCvxdPQ3x2vda2reNzXzQEPH1tmxIH0Jy+3cvOBaa7OzyVlGvS8/0XfMeq4N9KyMez7EwCAYkFAYtpj0QMvfQh6V5uqWM4qrVeYk181yrY42pXcVMvIKcCNtMd6X7gWFcvw8HEBAs3ROQvirUZChtKH/vKDN8x+vCVR19D9q4PYGGO+JOqKbEZ4Q5XvuVZg1fa7gb8H5+9mAlC9ONDHuuO3DXqeuZytYAspm3JSgjSvEHczNK9raE2UMzKGtq6h+DrriX4Xl9l5hej5zSF0WrgfXxbqt5RaRcfAi0T37f7rSMrIxTd7r1m6K2Qm+UXFuJuRq3deXPrjfPx5lgvq6kJeMWLJqFCDnm+KiTGmNPz7E0ipQIvD22opyaFvtY6/rGSRaEEQ8Ptp7QnwvZr4K772dXNE7Wr6LxuU/jgfHT7fj38flQSr+2Reeu+jImPgRRbzpKCo/EaVVOTFFEz5NRYHE9Is3RUAJUn3r6yLQZGaafa5pV6H+H+zMHtbPPZfMWztR0EQMPC7Y+j21UEs2affCgHvbTmP5Ar04VsZVOaaXaWr7Gc8TfIfGBJk9L4XR11D/Y92Ye7f2qus66uhvxuqe5ZUZpfnbJUnx8AJAhVN/L0sfFxO1fr+IcbfGLyTkWvVq2gw8CK1TDHDzhBb9LgyvPeo4g7d/2dDLHZfTMHMLRVn7cNDCQ/K1CbKLypG968OqTw2e1s8fj2ZhEm/nDHoOMUyQVEp/6SGxYw1kedPKZMJwMwt5zHux5OVqh5ZVZCdV4jBy46h59cHdV6mR3lB9gB385W6yMgpQLFMwC9G5sKpk/P0YuXQNctdWJ2+nYHVRxJFrfj+OK/8i2W7KrQqiKH4EyK9PcopUClQmPWkEDKZgDO3M4z+YNTng3r+jstGHUvu1M10LN6bgJsPjFtSRfk2iTxuFTtp/l6m9hIHpe/8ZeUWlplZllLBlu5IfPAYW2L/xfEb6diu4wgDiSP+3yzE38vC7fRcHL3+QKfnvLspzqAF2evqsQyNuS0YFgIAsLdQkCGTCRi5MhoLdl3F5ztNu1SSMcZ1rAXbKjhLUV8MvKoYQRCwYNcVvPW/WCQaGGjcL3UrqMsXB7D5zF28uDIafZYcwR0NFZ8v35eWu2agLr+z8oKQyjWwjDFq9Ul8d+AGPtoab9R+PtupORC8k56juI1SmruT6SYXj/ghGvcyn40Euhmw0Lm21QMsQbnafLG5VwvW0+ojiWY/Rn5RMb7Zk4CFu6+UWZ2gooq5lYHxP53CCjWTdeQXbbreSnKws8GOt7tiWi/NM679DSynYSgvC9fFU/6dEPNC6cs92gsxK+d3aXLyZjrazI/CgG+Plin4XFUw8KpikjJysfrITUReSlG7bp3c8rGtdd7n4/wilWKF6nJ0jlx7gAHfHUX44sN69Vedno39AADpOfnIM7LEg7J/jbx16exgq/bxwmIZtpx59rP2cnFQ2f5en8bo3cQf84e2MOr46gR6Oun1WgJAXmHFSrquyBbsuop0LbWoTCE6MR3LD97AqsM3Dc67E9uqw4k4ev0hvt6TYHAS/7DWNWAjAd7p3RAtanhCoiWXzZQXL6TZAy1B3hfDQ3QKvI5df4iMnAJcTpbqfPF/XXCGhbJfzIKBVxVTWPzs3asu0RoAano7Y1DL6iY9rrFBjTqCABy/oV8OkTEW772Gl1ZGIzpRv2PuuHAfhU9/1m1re5dZBLljvWr46ZX2GN+ptsn6qmxQy+rwcXUovyEZRPl3yhyUA2FLjxDcfpiDWX/F45cTt8tsW6VUCFj5gsjQ+ltLRrXCjc8HYGolqy0YdzcTG2OSkJmrOc1AzLwsU9IW/Lat7a11u7GiZRW3xpy+GHiRwQaGBJntSjM6MR0Dvj2KD/64YJb9G2L/1TTE3M7A2uO31G6/m/FEsSaiv1Jwla6U59Xm6aLVVHUIQsm6gX2WHMbgZcdwRc0Egsri5xO38XtMEuZuv1Tm1vmD7HyT3wq1qWT5QvlFxRi64jg+/Csei6M0l8v5+cRtLDbR+qkxtzL0XvIpJ78IadmGj9T+NLEdDr7XU+/nyWSCwbUiH8J6lj1j4EUV0rZz93A5WYpNZ+5qzI2ylEINI4UAsOzADTzIzoe9rbi/WsE+zuhcv5rJ9/vLidv495HuaxLmFhRh7JpTJu9HZRZ1ORWDlx/DtdTHiL+XhciLKZbuksGUi7Wqu4VYbObRP02ydZhtJwbln8+DcgKbQ9d0m4ygi8PXHmD8T6fw0irVHE9N5MugGcrXzRF1fV11yslVVvrOR1J6rsVHcS2BgVcVtuboLcjU3Dgf2qqGmtamp622jXLyqKyCJVSXx1KlOMxh7vZLmPqb+gWM1dl27j5ibmeYrT8/HEo0y2Ll5nS31IeNAOBE4kP8L/q21ttRFcGfsf9i8vozOH7joaW7olHc3Uytk3YCPHRbGeJBdj5O3kzXemFVUcXczsDR6w8RcysDhxPKD+jUTaAx5Lfq//o0Vnyty2Sn0redp2w4i+vlTLiyRsxIrOKUV4MP9HBC5IxuZZK/zem0Hh/S2hbUtbThbWrgn/P3UVgsIFWap9NVZ3ku3svC+39cQJCnE1aNbwu7UqNogiBoDUJMVVjzgtLECW22n79v9MxQXdzNeIJaBlTDrige5z0bFfzXBO8Tc/q/p3Xo7qTnYO+7PSzcG/Uu39d+61aX34NimYDeiw5BmleESV3r4uNBzUzVPVEIBl6ojukQjN9jSirRf7f/Oj4a0FSv444Pqw0XB1vU8HJGoKf2maWX7kvRtYGv1jalc9+CfZwR7O2CE3rm1VZ0DLyqOOVfWImk7Iw7Q4xefRL7InrotCCqrkUX76Tn4ORNeZBW8fI+JEp9GrLiuNH7e1JYjD2XUnA5WYrLyVJcS32MZtU9FNtlMgEjV0Uj9o7m9e2aBombjGpsHTRdGVNSoiKsJPCk8NltsazcilW6Q5OKdrvf1AqKZJA+vV1paJkdfVWEFQcc7WwhkZRMVDKkILWHkz1e7VJXaxv5fuf8fanc/f119h7mvdBc735UNrzVSDh31/SL0+65ZNo8ltvpz/KMujfUftUktjrVXDA4NMiks9u+239dpUht6SH6zCeFWoOulzvVKjNCZgmOdpbvg9zdjNxKtVBxQZEML62Mxlu/xlq6K5VClwbVsHB4CFaMbaP3c8urL2gqTQKfXQx5u1SMZPFPzBzoFOmZepEuctFpS6g4fxXJYn4+fhsATDojSV3umCk0r+6Bun6mq2BtbL5Qu9reODTzOfRsXH79Gl0or3MmFaGQqTEzm3RRei0+U5i8/oxBt50zK8noktzNh4/Nmi8nFrFyHl0c7DCmQy10a6T/hZnyTOXyJsa0CvbSe//Kz/3qxZYGP5+sAwOvKubS/awyjzk8HZV4W0tlaED7DT55noDcnsspGLzsGJbt12+RZLH9dOzZH9yKMPTfq0mAqMdbomXKu5wgAPO2XzL4Fsz28/cx5ddYHLtumgTtG2mPcfCq9luGm8/cxXPfHMLSfeWfnyVtPK36e/NF5FUL9cR8Oi3YX6HzMwHVmcoOagKvjnV9ED2rFza90QmfP10uyJJ+L/W+qcg+M0Nh6MqOgVcV8+NR9TWoAKBZkKfW57ap7a3zcS7ekyL+XhYWPf1g33pOfZV8S89QS8p4dgszqJzkUDlne1s8UPNBUhlrdBXqOBrx84nbWLrPsCB6+u/nsPtiCj7++2K5bZ11HCErL4F48d5ruPUwx+A+W0p5JQjkZDIBj8w0gnfrYQ4iLyYjx0Qj4NK8IlxNVp/LaeiInj63BpOz8ozKUftyRAg2vRmGIE9ndKxXTXGhaklntaQZGGpnfDK+2ZOgEiTnFRYj6nIqrhuxBu/LnWpjZNuapuii1bD8O4hEZWdr+KiOm6MdBrUM0vt5xTIBp2+r/0Px8d+XyizcbCm6DnjZSCT4eFtJEKGcv7Dlrc449VFvzAhvaI7umVxhsQy3H6pfV1Od7DzjPujTdKjW7e9eEvzW93NFh7o+AMqOpuoit8B8dZ3MmZuj66jrmDUnTV6INTuvCEXFMvRZchhv/XoWX1bA0Tf5zyc5Kw9nk3QPPjafqTwjRJa0/OANbIx5VuPrh0OJmLz+DJ5fcsRkgTgx8CIRlJfjoTzMf/JmBi7ey8IWLetIWkJNb2e816eR4nt5xX7lQNTWRoIAkRfrNcaLK6NVRvwqAvlI1nt9GqtU/zeFHfH3FV97udjD09keocHaR3nVqeZm2n4Z4tQt0+d+vf/nBRQWC4pJImK+N9x1XMy9i1I5grt69C9XS81AMViytl/Wk0K97iwo11dUzgGtKEVqrQEDLzI7fZeIGLTsmNbtEg3ZZupu/5lKeNMAeDiXHeno3VTcnCxTOn8309JdUHEjLRtnzHALRW7f5ZIFpt2d7HDmv+GInR2OBv7mL7mxwsAlUnRV09s0Nc3cdAx+dOHqoPu+nmvsp3GB+dJ83RzLXaHB3dEOQ1tVR7CPM2p4OevcD2MJgoAMpRl5uy+m4IdDiSgqlmldPsgUNI0KLz9wHaGf7DXJahL3Mp+YpD4hMfAiEehzZaqL+n6uCFcT8By59qBK/2FQvhVgZ6Pfr3avJv6YXs7kCnWS0nMx5++L2HDqjt7PLe1sUqbia+WaZaYin632+bAQ2NnaiFJuIye/SKf8ojEdgvXar/3TlIH/TeqAtnrkXmrzOL9I7TJAhtB0y/TUTfMXwpRIJFg6ujWOvt8LvZsaPtu4QM8K9pPXn0HPbw6pPPZl5FWV17+ryKVw/jmfDACI1vJz99Ch4jwA/B13T/G1j6t4RbatkUUDr4ULF6J9+/Zwd3eHv78/hg4dioQE1YVD8/LyMHXqVFSrVg1ubm4YMWIEUlNTVdokJSVh4MCBcHFxgb+/P2bOnImiItVh0UOHDqFNmzZwdHREgwYN8PPPP5fpz4oVK1CnTh04OTmhY8eOiImJMfk5k/HsbG3w48R2areZOsgzhaSMXIOW49CX8jIgI9vpl8w6MCQIEUrLf6hjp2ZhtnUnbmF99B38d+tFvRfq1aRLg2qoXc1VZd07bcm59zOf4KdjtxD/b9kZu+r4iLgyg3Kx16Gtqpt8/w31GLG7r8NFSZcvD2jcJpMJ+D3GuDX+zDmiaUp3M3JxVM9ZuPuulF+cd1BL078HNElKz0WCDknx/VoEqn289OstTwlpHOCOYJ/Ku3JERWDRwOvw4cOYOnUqTp48iaioKBQWFqJPnz7IyXmW8Pvuu+/in3/+wZYtW3D48GHcv38fw4cPV2wvLi7GwIEDUVBQgBMnTuCXX37Bzz//jDlz5ija3Lp1CwMHDsRzzz2HuLg4zJgxA6+//jr27NmjaLNp0yZERERg7ty5OHv2LEJDQ9G3b1+kpVm+0rW+7mU+weX7UpX7+sdvPMSAb4/inNKogimUzl1Qd+Wu60wtbe6ka04C93VzUFTJn7z+DBbtTdDY1hLWR9/B6iM3zX6cFjVK8pUCPZzQvLr+uUvlcbQrezsor1Bp0WSlEYKpz9U3+Djy6fzK79/3+zVR5NWV9tHWeMzfcRnDvjd+xQBzMkVNs9KLDOtC/rrM33m53LbKtfwOlVrz77KaZH59+7PhpPEjo2K4pLQMUetaphlRtNV3RWkjXbiXqVM7J3tbtSU01L3eANC+rv4/jzq+5dde1DXPzxpYNPCKjIzEK6+8gubNmyM0NBQ///wzkpKSEBtbUqk5KysLP/30ExYvXoxevXqhbdu2WLduHU6cOIGTJ08CAPbu3YvLly/j119/RatWrdC/f3/Mnz8fK1asQEFByRX4ypUrUbduXSxatAhNmzbFtGnT8OKLL2LJkiWKvixevBiTJ0/Gq6++imbNmmHlypVwcXHB2rVrxf/BGCElKw9dvjiAAd8dxfbzz5KJN5+5q/EXyRiNAsq/4j6m4wK7r3Sug4YalhlauKtkhpW6BWy9lUYwsvOKsOzADZMEe5XNVy+2xLpX2mP72100tinvg1LdbatxHWvp1Y+XO9VCDS/TXhG7ONjizymd1W6Tz8zUVCH78LUH2HspxSoWL1924AZ+PKpfED8ktGTRe2NzuNTdevt81xWdn5+ZW4D7WeXPbNVVnAg5iq1reen0N84QOQXFoqVGyIO+fx/lYsC3R7Xm3cbeeYSTN9NVRpyN9Z+e9TExrLbie1cHWywb01rxfc/GfhVxJTizqVA5XllZJbcKfHxKppHHxsaisLAQ4eHhijZNmjRBrVq1EB0dDQCIjo5GSEgIAgKe5fz07dsXUqkUly5dUrRR3oe8jXwfBQUFiI2NVWljY2OD8PBwRZvS8vPzIZVKVf5VBPeznv0iJykts2Ouz5y3ehg+siF380HJB6eHsz2Gtq6hto18tGNk22cjal+/2BK9m/hj7uCyS17o8iG7/MB1rI827xX4MA3nYw4uDnZ4rom/oiSDMnn+V3lJvlveDMO5j5/Hvoge6NHID6PbB2sMhvWVU1CMEzoG4eo0CnBH7yb65+xMXBuDN/4Xi+tGLAsjCAJO387AicSHZWqIyT8884t0mzlnSHkMZfpeQPUy4Gemi+y8QrjqmBQPQGP+mHLAXLqgrDryn/+6pytumJNtOeU9ElKzy73FralWWcytDHT54gA2nTbu9q0+TiSml/v+ibmVgdGrT+LwtQda2+lDIpGgeQ1Ple/V5elWFRVmbE8mk2HGjBno0qULWrQoqXSbkpICBwcHeHl5qbQNCAhASkqKoo1y0CXfLt+mrY1UKsWTJ0/w6NEjFBcXq21z9ar6WjYLFy7EJ598YtjJVmISpT9E6kafDKFPEcXODZ7NaBrZLhgj22lOSi4qlmHBrqvIzivECDU5QmIU1zTVWoVLoq6hnp8bnOxtDUqCH96mJn6PSYJNObc7bGwk8HZ1gLerA355rQMAYH30bUO6rNbYH0/hxuf9YWdrA5lMwKjV0biSnI1vRlbsZVTi7mZi5Er1F2EjfjiBFjU8cPFeyQfa2Y+fV5t8XJESkgVBUJRsGdMh2KBg8PklR3Rum56TD0B9AJ/1pLBMDqSvm+af1aSu9XDyZoZF1wFtEPDsXE7dSkdITc239qf9dg6A5ovBKxqKy+qiVxN/HChnFQdD6VJ3jwxTYUa8pk6diosXL2Ljxo2W7opOZs2ahaysLMW/u3erRoE+5RwumVA2b0GfZXfq6XDfX1fqrqbP3c3E2uO3sCX2X+yKTy6zXd/FWw1hqg/bfVfSsPrITXy3/7rGYrTahBsxu0tXf8beK78RniWcP3ycj9O3H+FxflGZfKLyHEp4oHWEyd/E9dRSpdpvXcuDLgDYeeG+2jaTu9Uzqg/ymYyayqnoQzmHyZRlJDR5Z2MclmhZvql0aoC2iR6lZ7zqW9j3aooUp26mG7WerL+7EwaEqE9K12TRyFCd2hXLBGw+cxe/nUoqd5ZpgIfla8qR/ipE4DVt2jTs2LEDBw8eRM2az0YmAgMDUVBQgMzMTJX2qampCAwMVLQpPctR/n15bTw8PODs7AxfX1/Y2tqqbSPfR2mOjo7w8PBQ+VdRCYKAf5TyvRxsbRTVt59fcgRXU3S/4upc3xdvdq+H0GAvvNK5DjrW81Fss5EAL+qxNITyc42lbj2wQqU/WqZaJ1BfxtT50lTzME/HW1pi03f6vSHkeSe7L6bgOy3rgGpKxBeDptwYF0fjkuv1+d0qj3JBUU2390tLf2zcrFV9RtXUzaBVRxAELNx99enX5be/k56DfkuPYtTqkyo5sIZQN9lErvQFaQ0vZ7Wj7uqcupWO9/+4gI+2xmP/ldTyn2AEbfXTYs04A1XX2/LWyqKBlyAImDZtGrZu3YoDBw6gbt26Ktvbtm0Le3t77N+/X/FYQkICkpKSEBYWBgAICwtDfHy8yuzDqKgoeHh4oFmzZoo2yvuQt5Hvw8HBAW3btlVpI5PJsH//fkWbykCap75C8flSOQjzhzZXuWWor1kDmuLvqV3QtaEvPJzsce7j5/HViJbY9U43k80A0pdbOR+0N9UsjWPOpV/k7GwkaG3gGo665LvoKze/CKsOJ+LXSjK7rLQcpaWAktUkav9Ph/PSs8SZ3j7becXoNUhXHLyBV9aeNlGPNKvn66rziNenOy6Z5JhNg0x3kap8+05TWQS5a6nZ+J9STqe694+plC5/EuyjeyFX6ZNn73GpmtG8L3ebZimn17vWxQSlhPfSjMmJVMdLqQC1fHUETSx1oSwWiwZeU6dOxa+//orffvsN7u7uSElJQUpKCp48KUlW9fT0xKRJkxAREYGDBw8iNjYWr776KsLCwtCpUycAQJ8+fdCsWTOMHz8e58+fx549ezB79mxMnToVjo4lw7BvvfUWbt68iffffx9Xr17F999/j82bN+Pdd99V9CUiIgJr1qzBL7/8gitXrmDKlCnIycnBq6++Kv4PxgArDyei5by9GLXqZJltuUpTxC990hej2us3S6083q4OeKl9MJoElvxB/WJ4iMH70udWpTa9Fx3Cl3vKlpWQr/8HQLG8j3J164W7r6DR7N34yoLr1LmUk7D8KKcAww0snXA97TEW7r6K2dvKX7DaFK4ZsbiurgKVFjdPSCk/8byNCBcHyh+e+sorLMbXexKQopRj4+5oBz81kyb0kZyVh2HfHzd4dqe2ER5l+UXFiLyUonF7qJZ8KGM8r2V0+eK9LPRZcgQ/HruleKwirkWpi4dGjjwCJasFzB7UDEGeJX/7lEe+fp/cyej9q6PPJI8tsSUXnU8svNSTuVg08Prhhx+QlZWFnj17IigoSPFv06ZNijZLlizBoEGDMGLECHTv3h2BgYH466+/FNttbW2xY8cO2NraIiwsDC+//DImTJiATz/9VNGmbt262LlzJ6KiohAaGopFixbhxx9/RN++fRVtRo0ahW+++QZz5sxBq1atEBcXh8jIyDIJ9xWJIACf7biMET+cwBdPr4K05S01DnCH69OrW+Vim6bmaG/422pASCC6NfTFECOLTeYUFKtdEqe+X9m8su6NnlWTXnX4JgqKZPj+UKJRxzfGvBfKztJUdvr2I9xO169QrIPIicjyOy139OynPhKfzobVJ1gf0qq6SeppmZO6wbLjs3rpNYNQmfJt13NJmToVUi3t4eMClVnS2py6+WyyTL/m+uVBmYumBHR1qwpcuq9bIV4x/Hbq2YzHUU8nEhl6bSoIgqL0Smnv9WmEGl7OeKd3QzQONE/5DDtbG51z0uRB/sy+2os6V1YWndWoy3C8k5MTVqxYgRUrVmhsU7t2bezatUvrfnr27Ilz585pbTNt2jRMmzat3D5VFImCk8oVnD4WDGuBD/6MN3GPSrjosU5babWrueJ/kzoCAP6OMy4HQ5vzdzNFXcfNtMr+3pT3q6Q80ieG5/QsYZBXWKxYS1FX5+9mai2sq46+SynJLdyte70qU/N1c1RZ1uXo9Qfl3qpRVsfXFcvHtlbMritN18KeuubwKc92Xj62NT7dcVmlbEtFmt1ZujQIANxOz0WCHnmv3+xNwOtGTpzQ5Py/WYrJBMbeIv/x6C3FBWXp98/4sDoYH1YHgPpg1FRaVPdEqjQNvjouNF+7mukmYFUkFSK5ngzz30LN9+cBYFHUNUxefwaZaka3dH3jG6JnYz982L9JubfMLEF5oWtrWtexvMKojna26NtcvNHbAA8nldy2NuXkuW2Lu4+9TwMv5Wr4pYXWVN1P6TydNGm+1gu6V7vU0doPoKR6e+mZchmlbu+MaGO6RHd9pRlQHHhQy+pw1jDSV8PLGa90rqPymLZyDrrWpgsN9lK7HmZ9PzdseL2jTvuwlBRp+X8b/J+O3uQVyvDaz6bLx1NePcCUlG/7q8sdE8Oil0Lx7ehW2PqfzopZugAq8UWwYRh4VWK5KD+wibqcqnPleFNxtLPFWz3q443u2q8Cq7mKPxW6rZr8Hl0XidVVaLAX7Gwk8HVzQB1fVxTpMTphTv1bBGnc5udu3tdCufp3Rk4BUqV56LNUfR0o5QT60j4e1Azbp3VBoIZyEXsvp+JDLSO5DQM0F4NVzmFae+y26kYTVdU2pACsuUkkEsx7oTn8ld4DzzfTHKSbon5WlwbiLhatyTsbz2H7+fs6zYgsLeL5Roqvy6ulpc8I5XtbzuvfmUrCy8UBQ1rVQLCPC+xsbbBnRncsGRWKD/o3sXTXRMXAqwowpl6NufRq4g9vHW855OYXG3SVr45EIimTd9KihmmTfZ9r7I+4uX1w4sPe8HS2x6Sudct/kgh6aajltXB4CLqa+YPQTunqdvmBGzh1KwOZudqvusObBsDORoIOdXwUo6e2NhK0rOmlmMWq7gNz0xnDZoMGejopRoUe5Wq/3VLLxwW1DFgo+MeJ7VRmuDUJdEeQpxO6NvDTe19kvOM30jH993PYWarOny5r2jra2WLOoGZqt5UuVJyqRzFSfUqhBHg4lVnj0FSzHsXQONAdw1rXNPnFb0XHwIssQl2Suya/xTxLMNV1ZpWuhrSqbnCyqjZujnaKhHZTB3Zy7dSsq2iIrg18y61obyxne1s0eZq0+zi/CNN/155vCQCjO9TC5U/7YdObncqUP5HfTvzwrwsm7ae6IHnzmbvIzlMdhZvWqwF2TO+q9+iPRCKBq1IOZOSM7oie1RstalTcOoBVka61DUtP1GgS6I6G/m54rUtdnScW/HziNqb/fg5p2fqXt3BztMPxWb1w9P3n8HKnktnq2flF5RZeNeSigUyHgVcV1dDfPDNXdKXPzLKsJ89GH3QJ2JSr6xujzoc7tS4maw2ea+ync37Fzvhkg2bEySkv76Qp36g0BzsbtTXn5Em36pKjAd1GLHRxNyMX7/9RNrizkZTcola3qLiyX0RYT7CiM2c+qSk19HeDg5qcNF15udgjckZ3REX0QAN/N6wc31bn524/fx97LxlWLNXDyR7BPi54T6nav6BmAo5cnWou+KScmdPq/PF0iSkyHgOvKqpWNRfEz+tjseOP7VgLwd66feDLK16/0rmOToVfLZE7po3yqIgpyjrcfmi6Eg3rXu2g12jXmDVl68RZwjQ161WObm+agFuZtnwzXSjXs5J/qOu7nJE80V9blXF93HyYg1GrS9adFGO1AWOXShKL2CVXSisy8rXQ9fd4VPtaqGZAMCzPU3OvYrcFzYGBlxUqPcStqQK6u5M9PtaQo2BuQZ7O6NM8EF+/aJrFkZX/5DjZ2+BNLYn9yleDhhaT1EdNb2dEPN8II9vWxGgTFK+Nvplugl7prnP9ZwuT30nPReydDLyz8Rx6fn0QR66VrLHYzITVyK3FtdRsxZqInw9robhomDu4Gd7qUV+xCHl5Zj/9HR0SqttsQk2eFJYUo5y4NkaRG1febFhAv4A28eFjTF5/puSbpwcpHTD6mnkiR2V17MZDZOcVlrmtbQrFsmeLohvr9QqSs1qZMfCqpIqKZRoHk8tbPqcikVe7N1az6h7o2dgPLWt64vlmgVpHB4a1flYKQIzASyKRYHrvhvh6ZCiCTZhbYaoq/+Vp4O+OC0qjo9/suYa/4+7jdnquoiRHaLDueWx/x91XBAFi6ts8QK8cwbsZuWpXgtBkcKhq0d+7Gc9GJns0epY8X9/PDR/2b6LymDY1n44Me4qwxJWx/oz9F/JfqVsainV2M9FEjvwiGfZd0T6bsGGA+pQKJ3sbtUuGdWto/tmWymkWnkrlbfZdScPqIzfNfvzyaMtbdLSzMWi0jFQx8KqENhf5oumcSFwU1Oc7mXIxXXMoPQvHFBztbPHzqx2wfVrXcisvd25QTev2yuJlLeusmZqHkz1ealfyvlI34lbds+xtY+VZi7bmXiBRjWZBHpg/tAXWvtIOt78YiFXj2+n1/EPXHui1woObhkWwQ4O9UNPbepKZ29b2VpmQopxTqXwho+6ipqa3s0kncrz1a6zW7eM71caRmc8pgle56p7O2Da1S5n2K8a1MXgtSV2Xt+ndxB9v9aiPac81QMx/e+PPKc/WA1ZXlqL04uL5RTJsPXev3ON8FVl2yTRduDraIayedfyNrKgYeFVCe2VeGuvCfDkiBJ0q6C/NK53rYPbAptj0ZuVZeFydnfHJZrkdoIt2tb3R0N8N26Z2wQuhxi2rpC83R80jLsPalL0Nprz48gg12zXRd8aVPMG+eQ1PNPB/VqfLzckO4zvVRq8mhhWOXWnkslHmKoSpzMmI5bm0UX7tSpc3CPZxwbEPepnsWHYmCsTs7dTvp1Y1F50XAneytzU46BgQorlOnjJXRzt82L8J3uvbGI52tipFgeW3ptXd3lU3SUHTiB6gXwmL0no2ZnkTc2LgRaKp6e2M17vVUyyBUZl4u1SMZU5+ea0DoiJ6oFWwFwCgy9PRO11KSzjZ2RpVOkPTiE6wj7PaSQ9fj2yJt3rUx6Y3Omn9gFDWLMhDrxlXdzOe4OTTtQE9nOwQ+U43nZ+rTX6RzOiVDf5vc0khTHPV0ftuTGt4mel9WcPLGd+NaY1Z/ZtgbEfzjKyO71QbNb2d8UqXsjlD+r5PmwV56LVUmTkS6dUFXvKAr5GW97+drQ3GdVTN/VReYUOu9GoJXi72Wm9Xi5WKYGopWXm4p0PuYWVWeZKBqNLT9cNXrlWwF+LULHRtjBAtNbVOKi3uq6xnYz+81rVOmeH9AA9HBHnqN0PNEF0aVMPxG+oT6n+c0B5xdzN1yrFysLNB1LvdEb64pGK8purvmkzoXAffHdC9vEaTQA982F+3IHvBsBBkPinA+E61DZ411aKGp0oAaExRRl3WkS2Ph7M9MnIK0FXPvKHSyxVpOg9zj3jK969u7T4PpVEwP3fDfgfmD22h+Fq5rttrXerqvd7rcD1GVAHgM6VjG6Nz/Wpo4O8Ge1sbtctibZvaGadvP0J4U+2jrqXTI2xtJHivTyN8s/cagJKLG/tSwWKAgT/3ikp+F6GizJw2JwZeVkZbfSwxpo5ro2sysdyfUzrj+cWHcVNDkq6+2tfxRqCnE2QyAaHBXrh4Lws9GvmVW9NsVLvgMsGAva0ER95/zuQFXdXRVvPK2cEWYfV1vzXSwN8dh2f2xL4raejRSL+AwJz1mMZ2NG62Z4e6PqjvV3KbcemoVjh1Kx0TS60/aKzWtbwMqg82XMe1DeXm73y2IPfC4SHlrnNpCe5O9tgzozuSMnLRuX41fLf/epk29f01L8+kiUQCzBmsfaa1hwGThxoFuKsURVU3UmjIUkh1fF2xL6KHxu0N/N3RwMCaifZG1BSrjJztbS0y6cYSGHhZkfCmAeit5crqvwOaitgboGdjfyzdV/YPsq5sbSTwdXM0WeAlHw2xsZFg2386I79IpghUl4wKxbubdF8jzdPZwWxBV2c9AilD1K7mWmGWMTJUPV/ViSXKH5pDW9fAUD2DHVNLfPjYoOc9zi/CP+fvAygpdDmmg/HlR3SlvCyXusWtS2sc6I7Gge4a608tfilU52O7O9khO68IjXQIUuRB38bTSVinY4Haz4e1QI9GfridnoOQp7mAd9JV/658OsQ0o2BkmC1vheHdTXG4nmbY705lUrVCaiv334FNFTkFf0/tgtkDm6okaZp7IeTS5HlIFZFEIlEZHezfIsjiBRTlanq7IMCj8kzZLiwSfy1QLxcHvW8vGUPfmW7Dvz+h9hadPtZM0G8Wpin1VaoFaEju++RudfUa6fnfpI6Y3rshvhvTWqf2jQPd8Xw5t++UuTvZY0Tbmvi/Po3RR8NSPp5q8qoqs/yiyjV61KKGJ6IieqjcBtZ1UkRlY51nRQgN9kJosBdWH3k2M8vFRJWvTamenytq+bjgQXY+Otb1Mdl+9c3vcbK3xeGZPZGYloP2db3ReHakyfpi7VKkeSq3Q131zM8xlBi3eQFg9fi26FS/GiaujRHleADQvLqH3jmRpiKRqF6kmSuBX1mrYC/RL9SqezmjRQ0PXLwnxej2wSatsWdqufn6BVE7LyQr6qn98VYYYm5n6FVewtvVcpOJhraugZz8Ing426N5JZyIpQsGXlbuxbbBkD4pgp+7o8pUeznli1lLTIJxdbTDofd6QiYIOt3e0NVL7YNhayOBt6uDTgsyAyXV9IPU1KNSJ7+K5CJo4uPqoDKi4+PqgMUvheJG2mNMCKtjuY6ZQZcGvnDV4crbRiJBXV9XjYVDK7NZ/Ztg4e6rlu6GSdnb2mDH29pnwdqaefF4bRoGPPt7na7n6Omao7cUX4cGe0HfibVDW9WAs70tPJztMenn0yh6uoP8chbfNgU3Rzu82aO+2Y9jSQy8rJyPqwPe69tY4/ZeTfyx/fx9uDnaobWFknhtbCSwgfo/cEUyw37R3RztMLFzHRQVyzBdfhwj/4b6K80iyhahRpOcnVLx0YoyRVzdz3J4m4pduNfcJBJg9zvd0OHzfZBaqM6bvoa20m1mpLwcgr2tBHWqaV6oXtPyZJXV3MH6LyZtKqXrz/m6aR+FUl7g+0pyST2wt3s1MChJ38HORrESQ6tgL5y58wgA8F6fRnrvi8pi4GVFtM1+06SOr6vaCs4VxYzwRpjw9BZPeRXp1bGztcGw1jVw9PoDgxOV5fk9fZoZVojTEMoB1oSw2kiR5qFDXR+TLZRsCd0a+qKer6vJJktURE72tqjv76b37MfSt8bFWMpqeu+GeDe8oU5tn2vij+hZveBkZ1vmNpQuC9dXJvIq9zYSoKaPbiPgpla6aC1Qcmv9Pz3r43sNhX2d7G3x3wFN8fmuZ7NiTfHabH4zDOk5BfBysa9yMy3NhYGXFWjg74aJnesgUISaUmLr3sgP8fP6IDO30OAcjCWjWun9HPnU5gEhgajzdAadjY0Ev0/uhE2nk9BfxyrVhhrboRYW77uGASFB6NzAF9tMtL6dJTUKcMeB93pizt8XsT76jqW7o7duDf1wLinT4CVltPF2dUCHOj6IuV1SS668kgrGaF/HGz+83Fbv8iCabsPb2kjw44R2eF2+OHYl90rnOmhVywuBHk5G1YLTR+nwaFyHkqK1EolirXEA5Rd+ndy9Hv48+69K6Qxj2dhIRJ+YZe0YeFmB/w5siuca+1u6G2bj7mRvcFFNQ+16pxvin9b5UhZWv5pedbMM9XbvhnizR/0KM9OSgIjnG2F0+2D4uTuaZZSnQ91ngZc5Ztj98VYYTiSm44XQ6lqDLjcDJkeENwswuM5ZRWNjI0GbWuWvBGFK3Rqq/p2RL4j+8cBmWHfiFl420+oBZBkMvIjUqOvrirq+mnNZxFDRg65xHWthw6kkjLTQouzKhTTFmHkHlMyEq6za1fFBuzqaZw5HPN8Im8/cxZvd64nYKwJKUj4cbG3KFLl+rWtdvFbJa+5RWQy8yKxsJIBMKD8xlCqfz4eF4IP+TUS7HVPa693qwcfVAU72thjY0rS3fnWtoB2g57JLFdn03g0xvbduOV9keZrqdBWIMPOQjFOxL6mp0vt+XFv0bxGIr0fqXsWaKg9LBV1ASa2pN3vUx8TOdUy+nNHfcfcVX2u7q6htxrCcKWsizezbGD6uDninAgZI2tIB5K+PtdZlMgX5mp665hBOfa6B2sff7MERy4qOI15kVv1aBKJfC/WVookqmq4NfbH84LOFwB1sbfResLmo+Fk2dIe6PiYNCqc+10DjB66lff1iS3RcsB9A2YD872ldcP5uJrpYwSQRc1kxtg3OJT1Ci5rlL3gPPCvxUVqzIN2eT5bDwIuIRNWnWSD2X0nDvcwnlu5KGZ3qqU6cmPuC9tmF9rbPhsMcbEtKfQxqGYT4e1kAgFAdP0StQYCHE9ZMaId/H+WWqelWw8sZNUycH9c40B1+7o7IzS9Ca5GT4c3B2cEWnRmYVgkMvIhIVF0b+uL4h73Qb+kRk057N4e+Gtb1k/N3d8IH/Zrgelo2Xu5UUieud9MAq6vyrqvnRax1V83NESdn9YZMEFhfiioVBl5ERGpIJNDpNuGUnqZZ3kS5OK4hxZCrIlsbCWw1rHpBVFEx8CIii+hc3xdXU7LRKKDsGqJV0ch2NfEopwCBnk4WL2VC1sXV8Vkg76amKj6Ji68AEenNFGtGfjyoKcZ2DEZNb8NWJLA2/u5OmD3IfBXrqfJT/r3T9DuoEmQ9/bpZkAe+GB6CzCeFOq/PSebDwIuIdDakVXX8c/4+JoQZX0lbIpGggb/+628SVVX9WgTi8LUH8HNzRJMg9b879fzc8NWIlkjLzsOodiV5hxKJBKMNXKuWTI+BFxHp7NvRrbFoZCjsmMxMJLpGAe74c0rnctu91D5YhN6QofjXk4j0wqBLuwAPRzjZl/yM6vkxf42IVHHEi4hIiauDLXIKitHAwKDJ3cke0R/2RkZuAeoz8CKiUhh4EREpWT+pA/ZdScPgloYnIXu7Oph0qSAish4MvIiIlLSt7YO2tX0s3Q0islJM1iAiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiqtAES3fAhBh4ERERUYUkPI24ZhTWt2xHTIiBVykrVqxAnTp14OTkhI4dOyImJsbSXSIiIqqSmlf3AAA4QmbhnpgOAy8lmzZtQkREBObOnYuzZ88iNDQUffv2RVpamqW7RkREVOW82rWupbtgcnaW7kBFsnjxYkyePBmvvvoqAGDlypXYuXMn1q5diw8//LDc59t6+OG+4Aip4GC2PhYLEuyTeZtt/0RERBWNAOBfM322PhY5gYyB11MFBQWIjY3FrFmzFI/Z2NggPDwc0dHRZdrn5+cjPz9f8b1UKkXNKevQDwDyyzQ3q0APJ3EPSEREJKIC2KBrfqilu2ESvNX41MOHD1FcXIyAgACVxwMCApCSklKm/cKFC+Hp6an4FxwcDFlhPhxRDEfIzPrPVml+x6SuddE0yMPsPx8iIiKxBXo4oYNEaubP1WJRz4kjXgaaNWsWIiIiFN9LpVIEBwcj68MP4eHoaP4OzJtX8m/QQPMfi4iIyAJsbSTY7Jhg1mNI8/PhadYjqGLg9ZSvry9sbW2Rmpqq8nhqaioCAwPLtHd0dISjGAEWERERWQ3eanzKwcEBbdu2xf79+xWPyWQy7N+/H2FhYRbsGREREVkLjngpiYiIwMSJE9GuXTt06NABS5cuRU5OjmKWIxEREZExGHgpGTVqFB48eIA5c+YgJSUFrVq1QmRkZJmEeyIiIiJDMPAqZdq0aZg2bZqlu0FERERWiDleRERERCJh4EVEREQkEgZeRERERCJh4EVEREQkEgZeRERERCJh4EVEREQkEgZeRERERCJh4EVEREQkEgZeRERERCJh5XoTEQQBACDNzxfngFIpkJ9f8j8REZG1MvPnqvxzW/45bm4SQawjWbmbN2+ifv36lu4GERERGSAxMRH16tUz+3E44mUiPj4+AICkpCR4enpauDfikUqlCA4Oxt27d+Hh4WHp7oiG583zrgp43jzvqiArKwu1atVSfI6bGwMvE7GxKUmX8/T0rFJvWDkPDw+edxXC865aeN5VS1U9b/nnuNmPI8pRiIiIiIiBFxEREZFYGHiZiKOjI+bOnQtHR0dLd0VUPG+ed1XA8+Z5VwU8b3HOm7MaiYiIiETCES8iIiIikTDwIiIiIhIJAy8iIiIikTDwIiIiIhIJAy8lCxcuRPv27eHu7g5/f38MHToUCQkJZdpFR0ejV69ecHV1hYeHB7p3744nT54otmdkZGDcuHHw8PCAl5cXJk2ahMePH6vs48KFC+jWrRucnJwQHByMr776yuznp0l553379m1IJBK1/7Zs2aJol5SUhIEDB8LFxQX+/v6YOXMmioqKVI516NAhtGnTBo6OjmjQoAF+/vlnsU6zDF1e75SUFIwfPx6BgYFwdXVFmzZt8Oeff6q0sbbXGyhZOmPYsGHw8/ODh4cHXnrpJaSmpqq0qWzn/cMPP6Bly5aK4pBhYWHYvXu3YnteXh6mTp2KatWqwc3NDSNGjChzzpXtPQ6Uf96rV69Gz5494eHhAYlEgszMzDL7qGyvNaD9vDMyMvD222+jcePGcHZ2Rq1atTB9+nRkZWWp7MMaX+8333wT9evXh7OzM/z8/DBkyBBcvXpVZR/WeN5ygiCgf//+kEgk2LZtm8o20c5bIIW+ffsK69atEy5evCjExcUJAwYMEGrVqiU8fvxY0ebEiROCh4eHsHDhQuHixYvC1atXhU2bNgl5eXmKNv369RNCQ0OFkydPCkePHhUaNGggjBkzRrE9KytLCAgIEMaNGydcvHhR+P333wVnZ2dh1apVop6vXHnnXVRUJCQnJ6v8++STTwQ3NzchOztb0aZFixZCeHi4cO7cOWHXrl2Cr6+vMGvWLMVxbt68Kbi4uAgRERHC5cuXhWXLlgm2trZCZGRkhTxvQRCE559/Xmjfvr1w6tQpITExUZg/f75gY2MjnD17VtHG2l7vx48fC/Xq1ROGDRsmXLhwQbhw4YIwZMgQoX379kJxcbFiP5XtvLdv3y7s3LlTuHbtmpCQkCB89NFHgr29vXDx4kVBEAThrbfeEoKDg4X9+/cLZ86cETp16iR07txZ8fzK+B4XhPLPe8mSJcLChQuFhQsXCgCER48eldlHZXutBUH7ecfHxwvDhw8Xtm/fLty4cUPYv3+/0LBhQ2HEiBGK51vr671q1Srh8OHDwq1bt4TY2Fhh8ODBQnBwsFBUVCQIgvWet9zixYuF/v37CwCErVu3Kh4X87wZeGmRlpYmABAOHz6seKxjx47C7NmzNT7n8uXLAgDh9OnTisd2794tSCQS4d69e4IgCML3338veHt7C/n5+Yo2H3zwgdC4cWMznIX+1J13aa1atRJee+01xfe7du0SbGxshJSUFMVjP/zwg+Dh4aE4z/fff19o3ry5yn5GjRol9O3b18RnYBh15+3q6iqsX79epZ2Pj4+wZs0aQRCs8/Xes2ePYGNjI2RlZSnaZGZmChKJRIiKihIEwTrOWxAEwdvbW/jxxx+FzMxMwd7eXtiyZYti25UrVwQAQnR0tCAI1vEel5Oft7KDBw+qDbys5bUWBPXnLbd582bBwcFBKCwsFATB+l9vufPnzwsAhBs3bgiCYN3nfe7cOaFGjRpCcnJymcBLzPPmrUYt5MPO8oUz09LScOrUKfj7+6Nz584ICAhAjx49cOzYMcVzoqOj4eXlhXbt2ikeCw8Ph42NDU6dOqVo0717dzg4OCja9O3bFwkJCXj06JEYp6ZV6fMuLTY2FnFxcZg0aZLisejoaISEhCAgIEDxWN++fSGVSnHp0iVFm/DwcJV99e3bF9HR0aY+BYOoO+/OnTtj06ZNyMjIgEwmw8aNG5GXl4eePXsCsM7XOz8/HxKJRKWYoJOTE2xsbBTv9cp+3sXFxdi4cSNycnIQFhaG2NhYFBYWqrw/mzRpglq1ainen9bwHi993rqo7K81oNt5Z2VlwcPDA3Z2JUsYV4XXOycnB+vWrUPdunURHBwMwHrPOzc3F2PHjsWKFSsQGBhY5jlinjcDLw1kMhlmzJiBLl26oEWLFgCAmzdvAgDmzZuHyZMnIzIyEm3atEHv3r1x/fp1ACU5Qf7+/ir7srOzg4+PD1JSUhRtlF9cAIrv5W0sRd15l/bTTz+hadOm6Ny5s+IxXc5JUxupVKqSI2cJms578+bNKCwsRLVq1eDo6Ig333wTW7duRYMGDQBY5+vdqVMnuLq64oMPPkBubi5ycnLw3nvvobi4GMnJyQAq73nHx8fDzc0Njo6OeOutt7B161Y0a9YMKSkpcHBwgJeXl0r7gIAAvc6nor7HNZ23Lirraw3oft4PHz7E/Pnz8cYbbyges+bX+/vvv4ebmxvc3Nywe/duREVFKYJmaz3vd999F507d8aQIUPUPlfM82bgpcHUqVNx8eJFbNy4UfGYTCYDUJKc+Oqrr6J169ZYsmQJGjdujLVr11qqqyal7ryVPXnyBL/99pvKaJc10HTeH3/8MTIzM7Fv3z6cOXMGEREReOmllxAfH2+hnpqWuvP28/PDli1b8M8//8DNzQ2enp7IzMxEmzZtYGNTuf9kNG7cGHFxcTh16hSmTJmCiRMn4vLly5bultnxvDWft1QqxcCBA9GsWTPMmzfPMh01sfLOe9y4cTh37hwOHz6MRo0a4aWXXkJeXp4Fe2wams57+/btOHDgAJYuXWrpLgIA7CzdgYpo2rRp2LFjB44cOYKaNWsqHg8KCgKAMldMTZs2RVJSEgAgMDAQaWlpKtuLioqQkZGhGN4MDAwsM1tK/r26IVCxaDpvZX/88Qdyc3MxYcIElccDAwMRExOj8ljpc9J03h4eHnB2djbVaehN03knJiZi+fLluHjxIpo3bw4ACA0NxdGjR7FixQqsXLnSal/vPn36IDExEQ8fPoSdnR28vLwQGBiIevXqAai873MHBwfFaGXbtm1x+vRpfPvttxg1ahQKCgqQmZmpMuqVmpqqcj6V9T2u6bxXrVpV7nMr62sNlH/e2dnZ6NevH9zd3bF161bY29srnmvNr7enpyc8PT3RsGFDdOrUCd7e3ti6dSvGjBljleft7OyMxMTEMiPaI0aMQLdu3XDo0CFRz7tyX76amCAImDZtGrZu3YoDBw6gbt26Ktvr1KmD6tWrl5l6f+3aNdSuXRsAEBYWhszMTMTGxiq2HzhwADKZDB07dlS0OXLkCAoLCxVtoqKi0LhxY3h7e5vr9DQq77yV/fTTT3jhhRfg5+en8nhYWBji4+NV/kBHRUXBw8NDEaiGhYVh//79Ks+LiorSOdfE1Mo779zcXAAoM8pja2urGP209tfb19cXXl5eOHDgANLS0vDCCy8AqJznrY5MJkN+fj7atm0Le3t7lfdnQkICkpKSFO/Pyvge10R+3rqwltcaUD1vqVSKPn36wMHBAdu3b4eTk5NK26ryegslk+wU263xvD/88ENcuHABcXFxin8AsGTJEqxbtw6AyOetVyq+lZsyZYrg6ekpHDp0SKV0Qm5urqLNkiVLBA8PD2HLli3C9evXhdmzZwtOTk6KGSGCUDL1unXr1sKpU6eEY8eOCQ0bNlSZep2ZmSkEBAQI48ePFy5evChs3LhRcHFxsdjUa13OWxAE4fr164JEIhF2795dZh/yqbh9+vQR4uLihMjISMHPz0/tVNyZM2cKV65cEVasWGHRKcjlnXdBQYHQoEEDoVu3bsKpU6eEGzduCN98840gkUiEnTt3KvZjja/32rVrhejoaOHGjRvC//73P8HHx0eIiIhQ2U9lO+8PP/xQMY3+woULwocffihIJBJh7969giCUlJOoVauWcODAAeHMmTNCWFiYEBYWpnh+ZXyPC0L5552cnCycO3dOWLNmjQBAOHLkiHDu3DkhPT1dsY/K9loLgvbzzsrKEjp27CiEhIQIN27cUPk9KF1WwZpe78TERGHBggXCmTNnhDt37gjHjx8XBg8eLPj4+AipqamCIFjneasDDeUkxDhvBl5KAKj9t27dOpV2CxcuFGrWrCm4uLgIYWFhwtGjR1W2p6enC2PGjBHc3NwEDw8P4dVXX1XUu5I7f/680LVrV8HR0VGoUaOG8MUXX5j79DTS9bxnzZolBAcHq9RyUnb79m2hf//+grOzs+Dr6yv83//9n2JqttzBgweFVq1aCQ4ODkK9evXKHENMupz3tWvXhOHDhwv+/v6Ci4uL0LJlyzLlJazx9f7ggw+EgIAAwd7eXmjYsKGwaNEiQSaTqeynsp33a6+9JtSuXVtwcHAQ/Pz8hN69e6v8UX7y5Inwn//8R/D29hZcXFyEYcOGCcnJySr7qGzvcUEo/7znzp1b7vuhsr3WgqD9vOWlM9T9u3XrlmIf1vZ637t3T+jfv7/g7+8v2NvbCzVr1hTGjh0rXL16VWUf1nbe6pQOvARBvPOWPO0AEREREZkZc7yIiIiIRMLAi4iIiEgkDLyIiIiIRMLAi4iIiEgkDLyIiIiIRMLAi4iIiEgkDLyIiIiIRMLAi4iIqAr7/PPP0blzZ7i4uJRZz1CTefPmoUmTJnB1dYW3tzfCw8Nx6tQplTYvvPACatWqBScnJwQFBWH8+PG4f/++YnteXh5eeeUVhISEwM7ODkOHDi1znOTkZIwdOxaNGjWCjY0NZsyYYdA5Xrt2DUOGDIGvry88PDzQtWtXHDx40KB9GYuBFxFZrVdeeUXtH3OxjB8/HgsWLNCp7ejRo7Fo0SIz94iqqp49e+Lnn39Wu62goAAjR47ElClTdN5fo0aNsHz5csTHx+PYsWOoU6cO+vTpgwcPHijaPPfcc9i8eTMSEhLw559/IjExES+++KJie3FxMZydnTF9+nSEh4erPU5+fj78/Pwwe/ZshIaG6ty/0gYNGoSioiIcOHAAsbGxCA0NxaBBg5CSkmLwPg2md617IqIKABqWfJH/mzt3rpCZmSk8evTIIv2Li4sTfHx8yiyto0l8fLzg7e0tZGZmmrlnVBX16NGj3OVt1q1bJ3h6ehq0/6ysLAGAsG/fPo1t/v77b0EikQgFBQVltk2cOFEYMmSI1mP06NFDeOedd9RuW7NmjdCkSRPB0dFRaNy4sbBixQrFtgcPHijWIZWTSqUCACEqKkr7iZmBnfihHhGR8ZKTkxVfb9q0CXPmzEFCQoLiMTc3N7i5uVmiawCAZcuWYeTIkTr3oUWLFqhfvz5+/fVXTJ061cy9IzKdgoICrF69Gp6enhpHpTIyMrBhwwZ07twZ9vb2Jj3+hg0bMGfOHCxfvhytW7fGuXPnMHnyZLi6umLixImoVq0aGjdujPXr16NNmzZwdHTEqlWr4O/vj7Zt25q0L7rgrUYiqpQCAwMV/zw9PSGRSFQec3NzK3OrsWfPnnj77bcxY8YMeHt7IyAgAGvWrEFOTg5effVVuLu7o0GDBti9e7fKsS5evIj+/fvDzc0NAQEBGD9+PB4+fKixb8XFxfjjjz8wePBglce///57NGzYEE5OTggICFC57QIAgwcPxsaNG43/4RCJYMeOHXBzc4OTkxOWLFmCqKgo+Pr6qrT54IMP4OrqimrVqiEpKQl///23yfsxd+5cLFq0CMOHD0fdunUxfPhwvPvuu1i1ahUAQCKRYN++fTh37hzc3d3h5OSExYsXIzIyEt7e3ibvT3kYeBFRlfLLL7/A19cXMTExePvttzFlyhSMHDkSnTt3xtmzZ9GnTx+MHz8eubm5AIDMzEz06tULrVu3xpkzZxAZGYnU1FS89NJLGo9x4cIFZGVloV27dorHzpw5g+nTp+PTTz9FQkICIiMj0b17d5XndejQATExMcjPzzfPyVOVsWDBAsWor5ubG44ePYq33npL5bGkpCSjjvHcc88hLi4OJ06cQL9+/fDSSy8hLS1Npc3MmTNx7tw57N27F7a2tpgwYQIEQTDquMpycnKQmJiISZMmqZzbZ599hsTERACAIAiYOnUq/P39cfToUcTExGDo0KEYPHiwysi5aES/uUlEZGKaclNK54306NFD6Nq1q+L7oqIiwdXVVRg/frziseTkZAGAEB0dLQiCIMyfP1/o06ePyn7v3r0rABASEhLU9mfr1q2Cra2tIJPJFI/9+eefgoeHhyCVSjWex/nz5wUAwu3bt7WeL1F50tPThevXryv+dejQQfjyyy9VHissLFR5jjE5XoIgCA0aNBAWLFigcbv89+bEiRNlthma45WSkiIAEH799VeVc7t+/bpw8+ZNQRAEYd++fYKNjY2QlZVVpr8LFy7U7eRMiDleRFSltGzZUvG1ra0tqlWrhpCQEMVjAQEBAKC4cj9//jwOHjyoNlcrMTERjRo1KvP4kydP4OjoCIlEonjs+eefR+3atVGvXj3069cP/fr1w7Bhw+Di4qJo4+zsDACK0TYiQ/n4+MDHx0fxvbOzM/z9/dGgQQOzHVMmk2kdrZXJZABg0hHdgIAAVK9eHTdv3sS4cePUtpH/PtnYqN7ks7GxUfRJTAy8iKhKKZ3YK5FIVB6TB0vyP8iPHz/G4MGD8eWXX5bZV1BQkNpj+Pr6Ijc3FwUFBXBwcAAAuLu74+zZszh06BD27t2LOXPmYN68eTh9+rSidlJGRgYAwM/Pz7iTJNJDUlISMjIykJSUhOLiYsTFxQEAGjRooLjgaNKkCRYuXIhhw4YhJycHn3/+OV544QUEBQXh4cOHWLFiBe7du4eRI0cCAE6dOoXTp0+ja9eu8Pb2RmJiIj7++GPUr18fYWFhimNfvnwZBQUFyMjIQHZ2tuLYrVq1UrSRP/b48WM8ePAAcXFxcHBwQLNmzQAAn3zyCaZPnw5PT0/069cP+fn5OHPmDB49eoSIiAiEhYXB29sbEydOxJw5c+Ds7Iw1a9bg1q1bGDhwoHl/uGow8CIi0qJNmzb4888/UadOHdjZ6fYnU/6hcfnyZZUPEDs7O4SHhyM8PBxz586Fl5cXDhw4gOHDhwMoSeKvWbNmmQRlInOaM2cOfvnlF8X3rVu3BgAcPHgQPXv2BAAkJCQgKysLQMlI8dWrV/HLL7/g4cOHqFatGtq3b4+jR4+iefPmAAAXFxf89ddfmDt3LnJychAUFIR+/fph9uzZcHR0VBxrwIABuHPnTpljC0p5YPLHACA2Nha//fYbateujdu3bwMAXn/9dbi4uODrr7/GzJkz4erqipCQEEWxVV9fX0RGRuK///0vevXqhcLCQjRv3hx///23UbXBDMXAi4hIi6lTp2LNmjUYM2YM3n//ffj4+ODGjRvYuHEjfvzxR9ja2pZ5jp+fH9q0aYNjx44pAq8dO3bg5s2b6N69O7y9vbFr1y7IZDI0btxY8byjR4+iT58+Yp0aVSGHDh3SuO3nn3/WWFxVTjkQcnJywl9//aW1fUhICA4cOFBuv+TBk67H1mTs2LEYO3asxu3t2rXDnj17yt2PGDirkYhIi+rVq+P48eMoLi5Gnz59FFfSXl5eZXJGlL3++uvYsGGD4nsvLy/89ddf6NWrF5o2bYqVK1fi999/V4wQ5OXlYdu2bZg8ebLZz4mILEci6BJKEhGRXp48eYLGjRtj06ZNKjktmvzwww/YunUr9u7dK0LviMhSOOJFRGQGzs7OWL9+vdZCq8rs7e2xbNkyM/eKiCyNI15EREREIuGIFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFI/h/NP6qytwNV+QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# max_length is the longest bad time interval in seconds we want to fill with simulated data.\n", + "# The buffer size is the region (in seconds) around the bad time interval that we use to\n", + "# extract the distribution of the data to simulate\n", + "ev_filled = events.fill_bad_time_intervals(max_length=1, buffer_size=4)\n", + "lc_filled = ev_filled.to_lc(dt=1)\n", + "lc_filled.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])" + ] + }, + { + "cell_type": "markdown", + "id": "9de38fe3", + "metadata": {}, + "source": [ + "Let us compare the raw light curve with the simulated data in the same interval above" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9d336905", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGwCAYAAAB4h2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFdUlEQVR4nO3dd1wT5x8H8E8SIMywpyCiuFAExYVai0rFUeuqtWrVWqvVQlulVWvrT622pbV11eKou1XraNW6iiIqLlwobqkiioPlAGSP3O8P5CCyQnK5S8L3/XrlZXL35LnvkZh889wzRAzDMCCEEEIIIRonFjoAQgghhJD6ghIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPDEQOgB9IZfL8fjxY1hYWEAkEgkdDiGEEEKUwDAMXrx4ARcXF4jFmm+PosSLI48fP4abm5vQYXDkNQC9Xt6PBeAH4D8AzgAsAKwEkCJMaKSeaAJg9Mv7BwCc0+CxBgJoi/L3egGAMA0eTxPEAGa/vH8PwAbBIiG6QhP/xyYBcALwO4A0AF8AkAOYx0HdmvfgwQO4urpq/DgimrmeG5mZmbCyssKDqVMhk0o1f8CZM4GwsNJ/Ofbzz+cwf/4pAMCYMa3x++/X0Lu3B66cvouUbBFOnBiFNm0cOD8uIWUOH76HoUN3AQAWLAjARx+11dixgoMPYdOm6xjrU4yNlw1gYWGEhw+DNXY8TSgulsPWdikAoGvXBjhw4B2BIyLaThP/x7p2/QPXrj3B7ncL0fKbYDRvvhoSiQjPnk1Rr+Iwzf4QyioogNvixcjIyIClpaVGjwVQixdnyi4vyqRSfhIvmQyQSkv/5ZixcXn8RkaGAAADAwOUXUA1NzeHTAPHJaSMmZkpe9/Y2Fij7zdDw9L3uJFEwm7Ttfd3cbGcvS+RGOhc/IR/mvg/JhaX/h8yMzSEhYUFu13tuvn4TgV46yZEnesJIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRcheurhwyxERNxBfn6x0KEQQgh5iRIvojPOnXuEgQO34qefTgkditaTyxl4e69A376bMXVqhNDhEEIIeYkSL6Izfv75NPbsicf06YeRl1ckdDhaTS5nkJGRDwC4ceOJwNEQor5Ll5LRv/8WzJx5WOhQCFELJV5EZ1S8ZFZSwggYCSGEb2vWXMSBA7fxww+nkJqaLXQ4hKiMEi9CCCFar7hYXuV9QnQNJV6EEEIIITyhxIsQQgghhCeUeBFCiB45fvw+5HLqA0mItqLEi9To4cMXQodACKmjEyfuCx0CIaQalHiRGkVE3BE6BEJIHWVmFggdAiGkGgZCB0AI4VZRUQmuX08XOgxCCCFVoBYvQgSSnp6DBQtOYffuW5zW++abf6Jt21Wc1kkIIYQbgiZeK1asQJs2bSCTySCTyeDv749///2X3R8QEACRSKRwmzRpkkIdSUlJ6N+/P0xNTeHg4IBp06ahuFhxbbpjx46hXbt2kEql8PT0xIYNGyrFEh4ejkaNGsHY2BidOnXCuXPnNHLOhJRZsuQMZsw4jMGDt+HJk1zO6j10KIGzugghhHBL0MTL1dUVP/zwA2JjY3HhwgX07NkTAwcOxPXr19kyEyZMQHJyMntbsGABu6+kpAT9+/dHYWEhTp8+jY0bN2LDhg2YPXs2WyYxMRH9+/dHjx49EBcXhylTpuDDDz/EwYMH2TLbtm1DaGgo5syZg4sXL8LHxwdBQUFIS0vj5w9BeJORkY+CAu1YNLpiP5zs7EIBIyGE1KawsAQMQ6NFifoETbwGDBiAfv36oWnTpmjWrBm+++47mJub48yZM2wZU1NTODk5sTeZTMbuO3ToEG7cuIFNmzbB19cXffv2xfz58xEeHo7CwtIvspUrV8LDwwMLFy5Ey5YtERISgrfffhuLFy9m61m0aBEmTJiAcePGwcvLCytXroSpqSnWrVvH3x+DaNxff92Are0CeHgsRU6OdiU6L15QZ2hCtNXWrddgbv492rZdRbPmE7VpTR+vkpISbN26FTk5OfD392e3b968GXZ2dmjdujVmzpyJ3NzySzIxMTHw9vaGo6Mjuy0oKAhZWVlsq1lMTAwCAwMVjhUUFISYmBgAQGFhIWJjYxXKiMViBAYGsmWqUlBQgKysLIUb0W7nzj2CXM4gOTkb9+9nCh2Ogi++iBQ6BEJINY4eTURRkRyXL6fSOpFEbYKParx69Sr8/f2Rn58Pc3Nz7Nq1C15eXgCAkSNHwt3dHS4uLrhy5QpmzJiB+Ph47Ny5EwCQkpKikHQBYB+npKTUWCYrKwt5eXl4/vw5SkpKqixz61b1nZ7DwsLwzTffqHfyhLxUWFgidAiEEEJ4IHji1bx5c8TFxSEzMxN//fUXxo4di+joaHh5eWHixIlsOW9vbzg7O6NXr15ISEhAkyZNBIwamDlzJkJDQ9nHWVlZcHNzEzAiQgghhGg7wRMvIyMjeHp6AgD8/Pxw/vx5LF26FKtWVR4O36lTJwDAnTt30KRJEzg5OVUafZiamgoAcHJyYv8t21axjEwmg4mJCSQSCSQSSZVlyuqoilQqhVQqrePZEkIIIaQ+05o+XmXkcjkKCqruaBwXFwcAcHZ2BgD4+/vj6tWrCqMPIyMjIZPJ2MuV/v7+iIqKUqgnMjKS7UdmZGQEPz8/hTJyuRxRUVEKfc0IIYQQQtQlaIvXzJkz0bdvXzRs2BAvXrzAli1bcOzYMRw8eBAJCQnYsmUL+vXrB1tbW1y5cgVTp05F9+7d0aZNGwBA79694eXlhdGjR2PBggVISUnBrFmzEBwczLZGTZo0Cb/++iumT5+ODz74AEeOHMH27duxf/9+No7Q0FCMHTsW7du3R8eOHbFkyRLk5ORg3LhxgvxdCCGEEKKfBE280tLSMGbMGCQnJ8PS0hJt2rTBwYMH8cYbb+DBgwc4fPgwmwS5ublh6NChmDVrFvt8iUSCffv2YfLkyfD394eZmRnGjh2LefPmsWU8PDywf/9+TJ06FUuXLoWrqyvWrFmDoKAgtszw4cORnp6O2bNnIyUlBb6+voiIiKjU4Z6UKimh4dSEEEKIKgRNvNauXVvtPjc3N0RHR9dah7u7Ow4cOFBjmYCAAFy6dKnGMiEhIQgJCan1ePWZ/OXcgZMn78e5cxOEDYYQQgjRQVrXx4tor6a2pf/SBIKEED4VFZXgt98uCh0GIZygxIso5cmTXMx6TegoSH2xc+dNoUMgWuTSpRShQyCEM5R4EaXI5bRGGeHPtm3Xay/EkdjYZN6ORVRDnz9En1DiRQjROqamhrwc586dZ7hypXQOPwP6NCSE8IA+aggh9VZy8gv2/tteAgZCCKk3KPEiOo1hGLz11p9wcvoZ//xT/dqahNSkWTNbuFsKHQUhpD6gxIvotKdP87B3739ITc3Bzp2UeBFCCNFulHgRQgghhPCEEi9CCCGEEJ4IOnM9IYR7UqkEBQUlQodBeLB9+3XcvJmO8ePbCR0KIURJlHgRomccHc2RlJQpdBhEw548ycXw4X8BALKyCgSOhhCiLLrUSAghOig3t4i9/+JFoYCREELqghIvQni0e/ctNG26DJMm7dPYMRjQLN+EEKKtKPEihEcrV17AnTvPsGpVLAoKijVyjKfZ1PpBCCHaihIvQnhUXCzX+DEKeDiGpunDORBCSFUo8SJEIAxdEaxWZl5R7YUIIUQHUeJFiEBup5WvEyhnGFy48Bhffx2FixeTBYyKEEKIJtF0EoQI5EV+eR+vohI53nrrTyQnZ+OPP64gKWmqgJHVR9T8SAjhB7V4EaIlkpOzAQAPHmQJHEn9kf0y+b33JBdX5aYCR0Oqs2nXTaFDIIQzlHgRoobk5Bd4//3dmDo1gpeO84RbSc9yAQByMLjCUOKlrVb/Fit0CIRwhi41EqKG7duvY+PGywCAd95pBX9/N4EjIkT/MBKR0CEQwhlq8SI641mO9s1PVVhYUuV9QgghpCqUeBGldO0qfEvOw+d57P08PUty4m8+EToEQgghPKDEi9Rq5EhvLFoUJHQYYCpMfCXXkkmwKs4SX1hLH6/nWfmIikqsct+zp+VJpbm5ETfBkXot9kYaBk38B8s2xQkdCtFjn3xzFA19V2DBmgtCh6IzKPEitWrTxgFiMfWxqMqdtGz2fkJ6To1l1+y4rlSdLi4WasVE6oeKP0SeZBco7JPLGQwYth3/rI7Dp6P/Qb6Glqci/Lj/KAurtl1Fdq72TSz869zjeHA5DXNmRAkdis6gzvWEqKHigtS1tcJRHzDCpbQX5cnWvSeKSf/gwdsUHhcWl8BYSh/3uqp56+UoyCjArwENcfXoOKHDqVIhrRGrNPqfSGq15kQiUhuZ43WGWr0I0RYV8/zaLrw/SMlBqyZSjcZDNKcgozTJTqS+oHqBLjWSWj3JLsDOS49wg+Y54sWrl40IUdf7n+4XOgS9kZ1bhMSHmUKHQXQYJV5EaSXQ7RYvRks65JeRVxNOVr729eMguu1FJiXzXGnZIhyN3ZZg7NR/hQ6F6ChKvEi9cSO5fFHqrDzhkxttSwQJIbVjXv5i+n3JOaSl1TyghpCqUOJF6o0XFVqSnmvhZKyEf9O/OFR6h3JgooL79zOEDkFl3313QugQ6i3qXE8IqXcSkjKwZP0lZD0snQ5EYmYocESE8Cs+/qnQIdRblHgRoue04bKqtgl6ZwcSzj5mH1u97gogXbiACOGZhNa/FAxdaiREzz3OzKu9UD2T+oBGpekSEeUIRI9Q4kWInqtu9CQhusJAop1fVbk0KTJRgXa+mwlRUsWRgY+e5woYCdEV566mIvsxjUYj6ntInzlEBYImXitWrECbNm0gk8kgk8ng7++Pf/8tnxslPz8fwcHBsLW1hbm5OYYOHYrU1FSFOpKSktC/f3+YmprCwcEB06ZNQ3Gx4rpkx44dQ7t27SCVSuHp6YkNGzZUiiU8PByNGjWCsbExOnXqhHPnzmnknAm3MiqsXfY4M1/ASOquuJZFtYlmdO2yVugQCCH1mKCJl6urK3744QfExsbiwoUL6NmzJwYOHIjr10sXE546dSr27t2LHTt2IDo6Go8fP8aQIUPY55eUlKB///4oLCzE6dOnsXHjRmzYsAGzZ89myyQmJqJ///7o0aMH4uLiMGXKFHz44Yc4ePAgW2bbtm0IDQ3FnDlzcPHiRfj4+CAoKAhpaWn8/TFInTRwXYTrCc+EDkMtN6IfCB1CvVScTYMNCCHCETTxGjBgAPr164emTZuiWbNm+O6772Bubo4zZ84gMzMTa9euxaJFi9CzZ0/4+flh/fr1OH36NM6cOQMAOHToEG7cuIFNmzbB19cXffv2xfz58xEeHo7CwtJ5mlauXAkPDw8sXLgQLVu2REhICN5++20sXryYjWPRokWYMGECxo0bBy8vL6xcuRKmpqZYt25dtbEXFBQgKytL4Ub4U5Jfgr1HEoQOgxCtcCs2RegQCCFK0po+XiUlJdi6dStycnLg7++P2NhYFBUVITAwkC3TokULNGzYEDExMQCAmJgYeHt7w9HRkS0TFBSErKwsttUsJiZGoY6yMmV1FBYWIjY2VqGMWCxGYGAgW6YqYWFhsLS0ZG9ubm7q/xEIIUQF+c906zI7UY28hEbK6APBE6+rV6/C3NwcUqkUkyZNwq5du+Dl5YWUlBQYGRnByspKobyjoyNSUkp/3aWkpCgkXWX7y/bVVCYrKwt5eXl48uQJSkpKqixTVkdVZs6ciczMTPb24AFdNiLaydiEpusjRB/kPcnDkbMPhQ6DqEnwT+TmzZsjLi4OmZmZ+OuvvzB27FhER0cLHVatpFIppFKp0GEQPWQg5ub3kJGzGQqTcyAxEPz3FSGEI/uP3EXPTq5Ch0HUIPgnspGRETw9PeHn54ewsDD4+Phg6dKlcHJyQmFhITIyMhTKp6amwsnJCQDg5ORUaZRj2ePayshkMpiYmMDOzg4SiaTKMmV1EMInriaLNLI34aYiQniyOyoBhhbfw9j2R9xM1O3BM5wS0wyy+kTwxOtVcrkcBQUF8PPzg6GhIaKioth98fHxSEpKgr+/PwDA398fV69eVRh9GBkZCZlMBi8vL7ZMxTrKypTVYWRkBD8/P4UycrkcUVFRbBlSakuxvdAhEKIRIgP6YtMGO/+9jeLsIhQ8y8c/h2nwDNFPgl5qnDlzJvr27YuGDRvixYsX2LJlC44dO4aDBw/C0tIS48ePR2hoKGxsbCCTyfDJJ5/A398fnTt3BgD07t0bXl5eGD16NBYsWICUlBTMmjULwcHB7GXASZMm4ddff8X06dPxwQcf4MiRI9i+fTv279/PxhEaGoqxY8eiffv26NixI5YsWYKcnByMGzdOkL+LNhFLJTB2swAA5EAicDTquZ/wXOgQiJYycjQFsoWOghBSHwiaeKWlpWHMmDFITk6GpaUl2rRpg4MHD+KNN94AACxevBhisRhDhw5FQUEBgoKCsHz5cvb5EokE+/btw+TJk+Hv7w8zMzOMHTsW8+bNY8t4eHhg//79mDp1KpYuXQpXV1esWbMGQUFBbJnhw4cjPT0ds2fPRkpKCnx9fREREVGpw319Y97GDrZ9G+HdDm7Yev4BtLFNIL+guPZCABKSMpAUR/OykcrM29hBRIsBaq3N+24hN1XYGeKPH08S9PhEvwiaeK1dW/MM0sbGxggPD0d4eHi1Zdzd3XHgwIEa6wkICMClS5dqLBMSEoKQkJAay9RX2vydNHzCHqXK3dGhRZHz0vNw7NxDBHSkDrSE7Nz/n6DHT0h4hlu3nggaA9EvWtfHi2gvbZxBJjuzgL2vzQliXS1bf1HoEAjRKqYtrAXpZJ6eTusxqqOkhMG9exlCh6FVKPEiSst/+XZJ1rE1EXWGCLBtYgUAkKuxjKPk5ZeTgUSPMlFS76Q9UUx4RDQtik4xMzNi7y9eXP1k5PURvZNJnT3LKRQ6BL3l7CbjrK6GNqac1UUI35bM1v75HEn1ZDIpXmtYep0kN5fWR62IEi9CCCFaR2Is+PzeRE19PIWOQDtR4kWIjrue8IyWESH1Sn6+cqOZiebMXXYGDs1+EToMnUSJFyEqeJ6Vj85vbcbOlTWPltW0q/89Qeumy9Cr81rM/PmUoLEQonHy0ktXX3wRKXAg5Me50Ui/TXMjqoISL0JUsPLPqzi7947QYeDijTR2uOnV6zRPGQEs/Bwg66yfy50Z2hoDAHKon6ngCqnflsoo8SJEBbl6dqlje8RtvDFqB3YcvC10KERN1r3cIG1gLnQYGiHzdxY6BELURokXIQTvDf8Lh7fcwOh3/xY6FKIG6x6u9XoW/teGboWh+XcYOaXmSbUJERIlXoQQFGWVXropyCiopSTRZt6ulhjfzQNveOn3cmcPn+dVuf3kzngU5xRjx2ph+17qu/yCYsjzSxS2yQvluHIlFQDAaONs21qEEi9SyddfHxE6BI3bsvum0CEQwjlHmTH+96YXvJy5mw9OG6Vm1TyJs7xYjRmISY3kcjkcmiytsczfEgeeotFNlHgRBTcTn7H3JTKjGkrqtj07bggdAiG8iT/1CNnUGVonnbmSzI7m1JRfVl1QumxhkRwvHmXXWOasI/XFqwklXkRBcVH5L0VLPe7IKpbQW5/UL7//Q628umjq/45q/Bh3rj9BxgtuuhmYetnAuP52M1QKffuQqokAkQAL0hLu3b+YioIC/RqFSequsKCk9kKkEkbgDkv5eZppqcwvUnw/FBTS+4MvlHgRIiCfwEYaq9vEovxScXT0fY0dR5ccPEV/B31UWFSCvw9pZiqUxCc5GqlXaFl6NiWOLqHEixA95dm+/FIxLVJb6pufaHZ/feTTcwPeDtrCaZ3frTgHmetCTPn8EKf1EkXfrzwHN5/l+HS+5i+pagtKvIjOoEufdWNqYgAjFzMAwO20mjvD1hdFRZUvp4hNhF2MOfFhJrxeXwfvHuuR+jSXkzplFvo7MAYADF/po/nfhWTOj7F08Rm8eJRNy+Jo2DdfHsHDK+lYNvu40KHwhhIvopL3ph6AkSwMgSN2qF3X/eQXGPtFBBZtuFhjOUMjidrHqk86ediy9/N0qP9GfOJzlGTz00Jn42GJQWPb8HKs6izdcAk3jz/AtWNJWPXnVU7qnDCsNQZ/1BZ9xnjD2MaYkzqF5m5rijdals5PxsdvsGKakoIXRdn1b/knYX/qEZ3158qLkOeXIGrrDeBP9er68IsIHN5SOr3DwJ6N0aShlfoBEhgbimEmNYCufaxN+z6at2ONHOsDYztT4P6z2gtrSMVOzQWF3PS7MZYaYOfKtwAAFg1+5qRObeAokwodAiFqoxYvohKmiLtfgxkZ5ZMhpj6rekZqop4Hj7OEDkFpuTy1dukjCU2TQojWo/+lhOiJiE3XKm2Tl5QmyGvCTvMdDuFR864N0NDXAVM/9BM6FK0gL5TThLE66N/j94QOgReUeBGiJ0qK5UhLUxz63qOPJwBAInAHcqI5IgMRbp38EPcvTUZHb91ao/Hgqft4Y9QOrNrGTd+2ir5bfo7zOgn3DM3LB4IsXHFewEj4Q4kXIQKSGHDbS/jVUXuTxvhwWj8hXBo1djcOb7mBSe/u5LzuFBrJqxNMKixNV6LhpZG0BSVehNTidFwy7j/iro+UoYUR3Ns5okU3V3Tt4la+o3585hDCykrjZvoMQnQJJV6E1CA0LBpd2/4Gj0ZLkfgwk5M6zWyMcS92Em6eGA/fVg6c1En4E775Mtr02oAlGy4JHQoncvOLkJtP/aE07VFaNsydf4KR7Hv8uT9e6HCIgCjxIqQGV66kAQCYYjku3khTq67lyyv3X3h/UEu16iT8mzppP64euY/PP9ovdChq23ssERZWP0JmswCnLj0WOhwFxTlFsPFYjJ0r9SPBDVtxHjkpuSh6UYTteyjxqs8o8SIASi+n/bk/HnKBF4TVZykvZ8AWVejWJRaLYf5ydnmiG4peTnch16FJaatz4MhdyAtKUJJXjANHE4UORxEDPL9Xfolf1z+afvs5RugQeFfMlH7Y/bPvP4Ej0S401Ing2p0n6Nr2NwDAgPHUGVtTxBIR5AB++aWv0KEQPZCZXSB0CKQOJFIJm7TXF/FiUwC5SE/JQdSZJPTq3FDokLQCtXgRXP+vfNbupPvc9GMi1bO11I8lXAg3ilScjPiDyfsAAEyJak1Bpy49xm8/1b9WGGWJaW1YtbVqVd6af//xCwEj0S6UeJFaWZnq94K7hAhp7Q+qTW5bVFB6qdPCxVyl50+ZFQV5vu5fLtUUU3P63FOXpYUEBlaqL/N0MvYxZvx0Avfz9CtV0a+zIWq7fPgee3/NmPb4eZgPBrdtwOkxxnwRATvPpfhq4SlO6yWkPpoQ3EGl5+XncrMuJCEViUTctRQGdFuHBdOPIHCvKWd1agNKvEi1Ar0c8bafKxrbcdv5+4+FZ/E0IQMLvz3Bab2EEN319sd7wbycQLNJR2eBo6mZ2FhSp/Lrdl5H/tP82gvqAYu29uz9HEb1FCPjRQFKXrbIJqfr148ESrxIrQwkYoT08OS83mJaS40Q8tLfKy7ivwr9TbWVmaMpDIzrNi5t94HbGopG+xg5lrZOFRSXYHmJi0p1JCRlwM7xZy7D0iqUeBFCtMaD1BeIOXpP6DCIQPJpIletVlhUgqD3/lKqbKYaP6xPXnyMkjz9auWqiBIvQuqBkrxiTpc9qk3vUX/BtvESLNpwsU7Pe63fZuSmCrOMzCW5ap3UieoM6njJri4S72VgdOi/iIxJ0tgx6ptNe2/h+F80+au6BE28wsLC0KFDB1hYWMDBwQGDBg1CfLziixoQEACRSKRwmzRpkkKZpKQk9O/fH6ampnBwcMC0adNQXKyYLR87dgzt2rWDVCqFp6cnNmzYUCme8PBwNGrUCMbGxujUqRPOnaPV7YlqZvx0Ag19V2B++Flej/ssp7DafR4eS/EgtfYh3ZExSeg96i+s2nZVpRjyC4oRueU6niVm4uef6zZi7/HLSWb5ZGxY+uV/Tm7B+7HrOzNL1Ue81SZ6xy1sWnwOb/bborFjzJ5/XGN1a6OcHGqR5IKgiVd0dDSCg4Nx5swZREZGoqioCL1790ZOTo5CuQkTJiA5OZm9LViwgN1XUlKC/v37o7CwEKdPn8bGjRuxYcMGzJ49my2TmJiI/v37o0ePHoiLi8OUKVPw4Ycf4uDBg2yZbdu2ITQ0FHPmzMHFixfh4+ODoKAgpKWpt0yMztLxWaKFtmD6ETy4nIZ50w/zetziGuZ0YorkuBb/tNL2eb8qJocjRu9C5JbrmPTuTrXjKSpUbY4qPo3v5iF0CESDCjO4n2i2bBBAahLNe1gJzX9WK0ETr4iICLz//vto1aoVfHx8sGHDBiQlJSE2NlahnKmpKZycnNibTCZj9x06dAg3btzApk2b4Ovri759+2L+/PkIDw9HYWHpr/+VK1fCw8MDCxcuRMuWLRESEoK3334bixcvZutZtGgRJkyYgHHjxsHLywsrV66Eqakp1q1bx88fgwAA5v6kX1NMFGv5kP0HqS8w55MIhW1ZacJc6quOXM5g0MR/4Nf3d8SquV5mVRpxPGq3Prmf/AJmTj/BSBaGvw8p14F877FEvPXhbuyP1rIliurgh6VBAAARKMmoqPHrrhBR4lUrrerjlZlZ+uvBxsZGYfvmzZthZ2eH1q1bY+bMmcjNLf9iiImJgbe3NxwdHdltQUFByMrKwvXr19kygYGBCnUGBQUhJqZ01ubCwkLExsYqlBGLxQgMDGTLvKqgoABZWVkKN6K+S+eVX6j3j82qXQoj5TIytX/ZmUvX0vDP6jhcjEjE1z/SFCTaZM/hBOSm5qLoRSG2Kbnw87DB27B37WW8PXR7nY7l6iqrvRBPDCXCf3W2ClgHI9n3+DxMey53ejazEzoEnSD8u+cluVyOKVOmoGvXrmjdujW7feTIkdi0aROOHj2KmTNn4o8//sB7773H7k9JSVFIugCwj1NSUmosk5WVhby8PDx58gQlJSVVlimr41VhYWGwtLRkb25ubqqfvA5SdZmS2tTlx9KtM8onaUR35eaV9yspoJnWdV7By0t/dZnXasWfg7Fn3SANRaR78guKcSP6AYpeFGHTxstCh0PqSGsWyQ4ODsa1a9dw8uRJhe0TJ05k73t7e8PZ2Rm9evVCQkICmjRpwneYrJkzZyI0NJR9nJWVVW+Sr8JqRp0dv/AINlZStPbU7K8eNx8HPLicBrEhN78bPpwZiYMHbuOLz/3x2Zi2Ktdz607l/lOEEPUYmBli0rttaiwjMZLU2+WP5HLt6ZArMaDLjMrQihavkJAQ7Nu3D0ePHoWrq2uNZTt16gQAuHPnDgDAyckJqampCmXKHjs5OdVYRiaTwcTEBHZ2dpBIJFWWKavjVVKpFDKZTOFWXzk0+wX/WxqD1zusgXfTcJy/llr7k9RgY8/t8hFrfziNh1fSMfvrI2rVs+JH1RYclpoYqnXcitp5LVfoTNyisQ2oGwrRd+a2JkKHUC/EXq3+s93Y1hjvv9u62v1lUp/mYsJXkQhbdZ7L0HSKoIkXwzAICQnBrl27cOTIEXh41D66KC4uDgDg7Fy6pIS/vz+uXr2qMPowMjISMpkMXl5ebJmoqCiFeiIjI+Hv7w8AMDIygp+fn0IZuVyOqKgotoy+KCwqgXvbFTB3/gkbd9+ottyKPwcrXWf67efYu+8/9vH5Gv5zarMCNYdKS6TVz0m0MzKh2o728+b3gKuPPUZ/3kmt41fF3dkCF69/XKfnFOdr94AAbfL6sK0aP0bGiwK8Pmwrugzagkdp2Ro/HhdCw6JhaP4dmnVZo3IdBqalF2TsG9XfH7XaZtOy6pOlnTuHo2Vj21rr+GTOEawJO42vJh3AmSvJXIanMwRNvIKDg7Fp0yZs2bIFFhYWSElJQUpKCvLy8gAACQkJmD9/PmJjY3Hv3j3s2bMHY8aMQffu3dGmTWnTc+/eveHl5YXRo0fj8uXLOHjwIGbNmoXg4GBIpaVzxEyaNAl3797F9OnTcevWLSxfvhzbt2/H1KlT2VhCQ0OxevVqbNy4ETdv3sTkyZORk5ODcePG8f+H0aDoC4+QFJeGnJRcrPnjSpVlpNbSWpv26+rSzXQ4eS2Dm89yTuvVFb+svsDeb9HYWmHfxyPa4EHcx/j95z4aOXbblvbsl5gymCLtnwJCWxz/Kx7XEzS7zM3KrVdw/K94xPxzGz+vjq39CVpg66arKM4pxu2YR8jKUW0AR0TUaEz8uisO7X6X4+iIqiR1XCqpKs+e5rH3H6Xoxg8Jrgnax2vFihUASidJrWj9+vV4//33YWRkhMOHD2PJkiXIycmBm5sbhg4dilmzZrFlJRIJ9u3bh8mTJ8Pf3x9mZmYYO3Ys5s2bx5bx8PDA/v37MXXqVCxduhSurq5Ys2YNgoKC2DLDhw9Heno6Zs+ejZSUFPj6+iIiIqJSh3tdV7E/AMPw1zdgxabLSL2p/euwaUrZ371xByd4uFoKHA3hUmGhZvsW5VRoKa040ECbyTn4bOnVuSF6dW7IQTSEaBdBE6/avvjd3NwQHR1daz3u7u44cOBAjWUCAgJw6dKlGsuEhIQgJCSk1uORUk06OiPxchrkBbV/8WiiA2hxdhFys6ufqV1bVGxOd9aiIfGEEKIqE1tj5NVhZKo6cp4UICFHjCZm+tEarxWd6wlR1dOEDN6OdTTmIUK+OVrnNQ+Xrq054SdElzzPykdxceUvwIqXkIh+27R3OHb9w+8l4FUJ3A6qEhIlXoQoKXzucYTPPY7BH+yutayRVfkadCUl+vErjZCp30XDxnoBrNwWIr9AcRBG1NYbyM3XjUuhmvTVwlMIeGcbTl2ieQa5pKGpIwVBiRfRSnK5HDsO3kZCUobQoVSSlqx9HUKlNsZwbGFTe0EimNgbadgZmQC5XHcT8WPR9wA5g5yUXNy8W3lB8/R63ur1PCsfYV8cRvSOW5j8+cFqy+3+7RJm/szN8mhPEjIEeU+52Ku21FZy8guOI9E9lHgRrTRo4h6802cLmjX7VeVRUXwreJYPx+a/VHkZhtRv1xOeoX2rFRjaexM+nV97v1Wim7IrDH7IqaX/6W8rOJrHSs5g27/KrZNZJr+gGCXZ6rVOejezg6lj3S7/PUrLxo3oB2odVx9Q4kW0UmJC6a9peUEJHqXlCByN8tL+e46rt2kGe1LuyNmHaN10Gfv4vzv1d3QvKVfC4Q+024kZdSr/0deHOTmuX7e6rdaSkJTJyXF1HSVepBKDGiYCJaQm9x9lwdplodBhaJXVW64AetQ/RdcYWhgJHYLGpabnwMZjMWQNFuL4hUe1ln/0iC73CYkSL6LA0s0CU2d0FToMndOyu1vdVvjWEWKj+Xjrw91Kl99z5C7yn/EzxFxX8DlfXn31IrX6VnFRPfiWOx3zAM/vZeHF42xs+Ou60s8zb6PeurqGFdbLlUrrPjvVqj+u4EVa1Wv/Avrbd1VrFskm/DsTcVfhsZGlETKSQqspTeojpkiOfRuvAmsGCR0KAODi6YdCh1Cv3H+UhT1H7mL0oJawspDW/gQBLPsjrtrluOqLirk9w+Oi2V991hmJd57D2VWGgA4uuP64bi1pkZuuaSgy7UaJVz1WkleMcwKuq0gNAbqBqUNflAcaHrGU9fAFbiY+Q0sP3f4V/NaHu3HjWjoW/xAodCg18mq7ErnpeVjS8RwSzk4UOpwqXb6Rzk098ek4dvYhxr/dGuam3C1cr896dW6Iu+c/EjoMnVMPGmFJTZ4+F274N1Mkx56jd2svWE/l5hchbNV57DhYtxFLZQzE/P73nrvsDH6acUTjx0mu4dKELnj2JBd7115GwtnH+ObHk0KHU6Pc9NLPh6TrTwSORLMKi0rQzmcVpozdgzdG7BA6HEG8HxohdAj1BiVeRFC76jgMuj6ZNCsKX006gHf6bMHl+Lr/qh/Yq7EGoqreGSU69RIoTDdSVKTZdR6Jcl7kFLFLnz2o4whBXdaiwrqxt2/pd3KtTSjxIjrheVY+7pzRjZmgu/XYgMIM9ecee1xh5NGd+xmV9u+OSsCKdVUvR9SujweMVejsSgipP8RiEUZ/3kmjx5C/XER+/NC/MHbS3hrLHtt+E4X14McIJV6Ec8Ejd2F7BLctWRt33mTvO7tYcFo3Fxq4lseUm6r5S2HPs/IxOHATzu69o/FjCa2Aw/mOSoqpY6G+atjWEZv2Dseeo2OEDqVaYqPyqXrMZNo5WIFr8goDH+7F1t6n+OTFZE2GoxUo8SIa8fs2bkerFFVY7/CjMT6c1q0OIyspfvljIP5ZO4jTeq9cqvnD58lz3ZiygYsZNh4+4yaRTX6Sg0uHEjmpi2gfkQgY9WYL+LZUb4oETWr9mismzeoGoLS1idRPdC2C6BSZq7lWfWBZ2Jrgk/d8Sx9wMEzT8OUv4rvnU+DgrH0te3VlYq7+5JVcLY57/Jxu9UHLLyhGs06r8eBymtCh6D05w+MyX9rz8UUEQi1eBCFTSkez0PQOauLg7zf/q9fY+3m56q2lRnRbZMwDSrp4MjJkv9JlbZ3NNRgJqQ8o8SLIzyldzNWYg9YJop7+r3sIHYLWu3RduLnn+EQz3vPn3t0M9r6xSdUXgoYF+2H4J+2xe8vbPEWlJ6iFrxK61EhY877rKXQIhGe3Ep8LHUKdfTF+H8xMDTHp3TZCh0LqCdsmVgif3xP21qYAgJM0dYrS7N70wJO91LeyImrxIvVa2KrzQocgqM9nHBY6BJVculbzJTi5XI6r/z1RmDNLF7x42fqsTz6ZcxRyuW69DhVN/Lorntz5jE26tIGQK47Ulay1HVoHNBQ6DK1CiVc9c/32U5Wfa2hrXO2+y4fvKTyO2H4DYoN5aNFtjcrH48POPbfY+6ZW1Z9fRRKJ/rSdl5Qo94U4+KM9Kk3iCgChYdHwaL8SizZcVOn5qvAf+CfaNA+He9sVvB1TFVei7is8Xjb7uECRaM7vC8/izwP/CR2GXvnsK938wURKUeJVz8yfG63ycw0spTD2kClVtiS3GEwJg/hTutMkb2io3H8Hwwpz8VT0TogfHFvYwLaJFYdRaYfdv13CqEn7VHru4q+O4V5sKmZ9EVlrWRFHI1YvHC69tPH4mm7Nxi2u5r2l69KfCLc0mT7Kz6vfi4LrOkq86hl1v9jEUtW+GNLSc9Q6ri7YtuxNpNz8BO27ugodikZkPFXvy7PgRe2X0SzsTNj7pvYmNZQkRDlFuZSkKKOosAT3H2UJHUa9QIkXUYqpigkXUNrfZu/ayxxGI7wjx+4JHYJeEr38XfDVwkC4NLEWNphqSKoZ9cY3OVcTnL3i87Dj6Nh/EyJjkjRSf0VP7mSo9LzkG0+V7r/HFMkx79ezKh2nPkmKS0Mjt8X435LT7LYzV5LRZdAWTP5flICR6R9KvIhSRnRoiCkGql02LCyq/gNyw09nVA2Jd22Dyqd6OL27tM+KXE5D/jUt/mKK0CEokMqEn3bFo/1KpN/mfkRqVk4BFn11FOcPJCD480Oc168uaYUfgCv+vKL0806efaiJcPQPA5yMKf9bTf3fUcT8cxsrvz2JhKQM4eLSM5R4EaVYmxlhisFjuFhxf/mnsED7F0Xt+KYnWrd2YB+XXXIN/kyzC8wSIP+Z5pZH6uDrpLG6NUmZNe/qimGAoqLyHxK52fyNsDQwN1Sq3Kdj27L37z2ky2Kalp9XPolzVg5N6MwVSrwIUUOPzm5Ch6CyN0bt0LnO51wwsjRC3K2PcfHGxxgzsKXQ4WiNH2YIcznJtY09e4m5Ng0czOHYwkazARGiYdrRWYGQlwryinHtzhNcO6b5/iX13eEtN4QOgVdff3OMve/T3F64QLSUSMLd73AJh3XVlb2VCYwspSjMLBAsBkJqQi1eROP+ibqrdNnMBy/g3TRcg9EQbZaVnquxulMflF6aYrSwX55PYCOVnzu4tyd3gXBEaizcb3pjqQEeJn6KqDPj4densWBxVHTnP9XnT1THg9QXmPHTCZyMfSzI8UnVKPEiGvftT6c4rc/dxYLT+gjQsrsbGngL2wq0esc1FGaW9isSczSfl4KXVYYtCeK+7hpE/BPPfaUv/z4Xrk9GNz8X7uvXcfbWpujZyRUiAb/h7p5PwaCJ/yD9eS5unijtsC4x0ExAr05gXSZwyDYsmH4Er3ddp/YxnmTkoTCDWhG5QIkX0Tiul23xaW6P37YPrbT93i1hflXqg149PXD5+AeCxnCxwjIoYwZ7aew4EjF/H3tPM/KRmfRCY/WLle0cRTROLpfj/kPF1/qf1XFIqdCKO3OqP68xPb6XAQCQ1zCASdkfOd8uKp9mQmYuVSuu+o4SL6KTJgxrXWlbbmouos7U375hORV+jVopufxRRbYqPEcTXNvYo6m7lcK2Jh2dhQlGTbkF5SPB3HwcaihZP/y5XwOtf1qicYff8Fr71dUXEAHDgpryF5CSPh7tq1S5zAqfL/27u2somvqBEi+iV+ITM4QOQTAlReW/atf93IeXY875JQYS6bew81wKrtdB1rc50qztaCb+P3fdFDoEjbl/UXcWrq6oo7cjRHVYf7ZdHw+IeWw11kf01yOcUqeTsKoMzAxh6mjK+3G1mXsD5dbUrAuDKtay3LPvP8gLS/A0IQNpKdnlZc3U71xdXFieSI4a5a12faRm8sIS+PfbJHQYWuFpRj4eXE4TOgy1ZLwoQPZj/V+qTRdR4kWIvtBQfx+RQWm9Bkp2DG7XxwNjP+nIaQwfj/Kpdt/TjHwsWHMB1xOecXpMfVOiRJPk7ZjqV6fILyhGXOQ9DiPSXqu2ls+K7+qsm4N5lv0ep9bzuXy9a/toauBtr/I6wLqIEi9CNGxHeCwS72g+KQgc2AwA0NCX275E3q835LQ+VUmtqu7Q26X/JsyYsB/t/FbxHJGOeHnFduZU9ZYA2nU4gYNgdENehc7oMya2FzAS1WXnqrfywN+RdziKBBj/vi9ndekDSrzqiR9Wn4epwwI8T8zktN6aRsvUVeBIL3h2Vm9o/LSpBzH2iwiOIuLOw8vpGj/GnjWD8OT5DCTGfqTxYwnh/NkPq9z+IL50NGvZVBREkYNraYtNXRtEH11VfM8WFqn/f/3aZd3qB2XbxApGhnrQEqNCYziXo9E/G9MWk/7XjX0sNpJgzY7KI9PrC0ETr7CwMHTo0AEWFhZwcHDAoEGDEB+vOOolPz8fwcHBsLW1hbm5OYYOHYrUVMX/vElJSejfvz9MTU3h4OCAadOmobi4WKHMsWPH0K5dO0ilUnh6emLDhg2V4gkPD0ejRo1gbGyMTp064dy5c5yfMx+mfHsMwz/Zh0dp5X1uNmy8jLz0PM6P9cm87rWWuXVSuQVqRWIxWraqei6pH8NOKlVHbmoufl94FrfvZyhVXt/YWhmr1fG16+BmMHU01co+c97N7Or9yMCoyLvIzq3bmnnfz+2hoWiABT+frr3QS6lPc5F4QbsWPCfCGRSofRP/8kWlT+gHDx7g4cPyL9Nz585hypQp+O233+pUT3R0NIKDg3HmzBlERkaiqKgIvXv3Rk5OeYfAqVOnYu/evdixYweio6Px+PFjDBkyhN1fUlKC/v37o7CwEKdPn8bGjRuxYcMGzJ49my2TmJiI/v37o0ePHoiLi8OUKVPw4Ycf4uDBg2yZbdu2ITQ0FHPmzMHFixfh4+ODoKAgpKXpVgfLf4/fw9L/RWP7r7GYEXac3c71iLMyljJ+piDITC19T4grLEVi8nKUmFtL20rl6/rlpClteunWsOuTO0cgJ2UaBrxTPo+WtQ2NxtMWCeeSMWj8bqHDYKXeU74FPe2p5lYlIMq5/ygL3j3WI2pr/VouTNuolHiNHDkSR48eBQCkpKTgjTfewLlz5/D1119j3rx5StcTERGB999/H61atYKPjw82bNiApKQkxMbGAgAyMzOxdu1aLFq0CD179oSfnx/Wr1+P06dP48yZMwCAQ4cO4caNG9i0aRN8fX3Rt29fzJ8/H+Hh4SgsLL30sHLlSnh4eGDhwoVo2bIlQkJC8Pbbb2Px4sVsLIsWLcKECRMwbtw4eHl5YeXKlTA1NcW6dVXP+FtQUICsrCyFmzZIe1b+4ZahR7MMl10mWbm8P7vtauxE/Lz2TZyPHCtQVLpny27lhvOHz+uFkLndsWTjW2jY0FLDUWnW2C8i8E7IPpQUaujXB88eP+Z2Qlav11Vf6F2kiRUGlLRhzUXBjq2rFq+/WOs6uBdOJGHOLzGcT3xNyqmUeF27dg0dO5aOWtq+fTtat26N06dPY/PmzVVewlNWZmbprycbm9LV52NjY1FUVITAwEC2TIsWLdCwYUPExMQAAGJiYuDt7Q1HR0e2TFBQELKysnD9+nW2TMU6ysqU1VFYWIjY2FiFMmKxGIGBgWyZV4WFhcHS0pK9ubmp/uFFlGdgUP5B36ShFT7/wE/liT93RibgwgHl15HUZcX5pf1z9uxQ7peurZUxls3pgc/GtNVkWLz4feFZ7AiPRd6T6i+1v+3nymNE2sVQ4D5MTIXp2rJf1N5Pr2zZnWd3ue2vqorslBzcf6Taj+6HV9IhNpqP71bw16WloLD2fnrZyTmY99khbPmbWsU0RaXEq6ioCFJp6Qijw4cP46233gJQmhQlJyerFIhcLseUKVPQtWtXtG5dOit5SkoKjIyMYGVlpVDW0dERKSkpbJmKSVfZ/rJ9NZXJyspCXl4enjx5gpKSkirLlNXxqpkzZyIzM5O9PXjwQKXzJsDdG08EOe7oUX8LclwhvPNxOwCKl2r5Ji+UY+1f1wQ7fk06etjUWib9eS6Sn6g/L1J16+rVV9mZ+ez9u+dKvz9qmjp3xS99AZRPcyIER3sz9v6cpVX/OC8z7bvoavcxRXLsOXBb5Tg0OW/iEw0uWF/fqfQp3KpVK6xcuRInTpxAZGQk+vQpnSX78ePHsLWt3N9GGcHBwbh27Rq2bt2q0vP5JpVKIZPJFG71QcVfpwzDzczi2cnCTPKXq4HBBppSomarfxsv7eiU/uGwv5FfUD7w5dzVVCz/84rCNm107NxDODouRAOnhchNVfxCCuj9O7ZH3MZHsw4j9kb1fUKbNbfTdJi8mvhFhMYWTX777ZbV7nOyM6t2H1/e7t2EHSmYW0t/0isXXjZG6NdCDEQNKiVeP/74I1atWoWAgACMGDECPj6lkxvu2bOHvQRZFyEhIdi3bx+OHj0KV9fyJn8nJycUFhYiIyNDoXxqaiqcnJzYMq+Ocix7XFsZmUwGExMT2NnZQSKRVFmmrA5SqntAeWfxgnz1hpc7NLNWN5waFRfLMWjiP+gxfDsep+r2DM4TJ+7Fp/OP4utFpyDX1EgJnhQWl75vnmbko5PvKgSP3IWhk/YIHFXNomIegCmSgymp/O2Z9TAbw/tuwW/fnUL7VivwNCO/ihqA1T+8oVYMdp5WALibJzdJzbnlNHmZPvQDP43VzQWxWIwWXZW7PJ18o3S6k0mzutVSktQXKiVeAQEBePLkCZ48eaLQ+XzixIlYtUr5SQwZhkFISAh27dqFI0eOwMPDQ2G/n58fDA0NERUVxW6Lj49HUlIS/P1LV3n39/fH1atXFUYfRkZGQiaTwcvLiy1TsY6yMmV1GBkZwc/PT6GMXC5HVFQUW4aU+unL2qePUJYzh522mSo6gm7edwv/rI7Dse03sWrDJc6OVRcWsqon/ayrzAcvsGz2cXz/+WFs2f8fJ3UK7XFaNvByPcaHD7gdnGIm4EjMWQtPVbldLAZEVSy7pKwGjaxUfu6rjl94hKyHpdPNSHi4ZLf34G0U1tBZuzhPu1s8udCvV2OhQyBaQqVPgZ49e+LFixewtlZssbCxscHw4cOVric4OBibNm3Cli1bYGFhgZSUFKSkpCAvr/QSkKWlJcaPH4/Q0FAcPXoUsbGxGDduHPz9/dG5c2cAQO/eveHl5YXRo0fj8uXLOHjwIGbNmoXg4GC2H9qkSZNw9+5dTJ8+Hbdu3cLy5cuxfft2TJ06lY0lNDQUq1evxsaNG3Hz5k1MnjwZOTk5GDdunCp/Iu0mAiSmqq2lZ2Jc3hHXxs4Erk7mCvttBVoI+MfFQZW2ZVXoqJsv0Af76OGtOa/zYQq3o9q4cuNM9cvN8M1AwOVHnj7X/kvYNyssrzRmhObXwTyy9SZm/Vj9XHxMsX5fh7P2sMSAAI/aC5J6QaXE69ixY+xUDRXl5+fjxIkTStezYsUKZGZmIiAgAM7Ozuxt27ZtbJnFixfjzTffxNChQ9G9e3c4OTlh586d7H6JRIJ9+/ZBIpHA398f7733HsaMGaMwrYWHhwf279+PyMhI+Pj4YOHChVizZg2Cgsq/rIcPH46ff/4Zs2fPhq+vL+Li4hAREVGpw70+sPO0VmUiYwCAqbEh1v09DO9N7YhtawdiwrBWCvt/X9pP/QBVILMwEuS4tTE3M4S1h25Px6Csomz+5k7b/sdVJD4UflRbXTFF2nWZ2MTeBG156v8X8ftVjdSbkVn1pd3q/LQ2Fp+HHUdWjuam23l1/j7DOrR03k9+ATef5XBp9Suu/ifMwCOiWXVq9rhypXzh0Bs3biiM+CspKUFERAQaNGigdH3KdM42NjZGeHg4wsPDqy3j7u6OAwcO1FhPQEAALl2q+XJTSEgIQkJCao1Jn4z+4J86r2A/bogXxg0pn2DzuxV98eN3J9G+mysaOJgDYhF7CYkQLhW+7ISfkZSF9z45gFO7RggcERGSXC7H3ytK5/NSZqxPxMl7mP7hPgClneJXzO+lyfBUsv6v63h4pXS5puWbLmv0WI0a1Y8fhdqmTomXr68vRCIRRCIRevbsWWm/iYkJli1bxllwhBv5BcW4HVN+Gci3gzOOPSq9XPU0IUPt+r+a1BFfTaowqEILky4awq8fCiusDfr8mfZf0tMn+Ryty9qmlzuuRN3npK7CCi2Ibw5oVmv5+4/KL9OnpGnngJuSCp+fcg19lpq7mCF8eX+M7N+82jJ3rmpufVm5EvOJ6bM6XWpMTExEQkICGIbBuXPnkJiYyN4ePXqErKwsfPDBB5qKlaho895b7P3e77XGwT80uzipezvduDxrIlB/NGX9d4nWtaurHQdVnxOJK4mJz4UOQSNCP/lX6BBqNH1ie6FD4EUhB0mLlZ0pxgxsCQODyilAw7aln9+5adzO4+XbSjumtNEGdUq83N3d0ahRI8jlcrRv3x7u7u7szdnZGRKJHqzirodyK3Qs37HyTbUWUVbGoMEtNFq/OloHNGTvS4xK/w6anIRQHXlP69Z3RRkMw2D1jmv4+5DwCQpXpGbl/ft+Xlb7LOD9e2i2k/OFA3fV7j/Ua8R2DO67haOIOCLg8kCk3K9zj9deSA0zpnXRSL0fDVd+EMf+w/q9oohqQ9sA3L59G0ePHkVaWlqleYUqLlBN+JGbX4TNe+ORXsNCtOZOZpCZcTO9ga6SVPEL71VZOQWC/p16v9cahzZpZob3zKQXmPiOfs3YL60wQre4pObWgGZdGqCpu5WGIwKeZ6j+Hsp4UYAjWxXX1HRqaYtGHlZQp8ePvJhBcbG8ylYOvSdn4NnpNyScU21lFW2i6Rn73+jSsPZCKjK0MEKREstC7dlS+vlXwtHlbW2jUuK1evVqTJ48GXZ2dnBycoKowox+IpGIEi8BvDb4T1yMSBQ6DLW5u3HT2bNr9/Wwa2BR5+e17/sHYiPuouObnji7dxQnsdRVYw+rGvc/eZaPTj028BKLvuFq8lFNKnllklYDc0Mk3wjB0MnqTTJbnFMEK7eFSEucolY9tZHL5XgYr97krFxLT8+plHT9u+MGsOotgSKqO5/ARhrrq2pqb4KclFyIJNrxH0RiVHr1bNiHvjhyMEHgaLinUuL17bff4rvvvsOMGTO4joeoKLGOH3Ta+kti8devo4WnDdxcLDCw5x8q15P3JA8PalgUuTqxEaVN3Of23VH52Jp25EginifqxlQK9y+m1l6I8CYnJRdxtzQ7RcFfhxLYVo2hk9th75brKMzU3NQNynhwN6PStoLnBbif/ALuznX/gaZv1m8YhKWrLmDkK9MDCa1bJ1dKvMo8f/4cw4YN4zoWooLnWfl48rzufYG6DmyGkzvjNRCRegwMxAge5SN0GFpNlZFOnjxcXqvI2FjlXgyEY0GvucOqoQwZSaqvDlCcUwSxkpe4blcYXPDN511x/36GRpcXUkZ1o7dz8/mbe04VHC2HW6thQU0xLKgpAOD2/Qx+DlqPqXSxf9iwYTh06BDXsZA6epQvgr3zQjRrtLTOLSB9Amn5ivpkWB9PGJgZ8na8aR9qfq29gjzt/tLUFlYWUjy/P1Wt5YoAoDCz9r45Csd1l6FVExu1jimEFwK3zlW0+vtTvCVffBBryaVMoan0s9TT0xP/+9//cObMGXh7e8PQUPED/dNPP+UkOFKz2OdGKMmt24chHxpQ073WEYvFcGtpi8QL/ExR4d5ABmsPS41eEr17PgXX7tTtspmBoWojrx8lKy7T1LxrA8Sf0p4lktQhrmPHN6m1FAXPVU9OWnrZ4+a5xyh6oZ2Jc1r8M9yM178Z4xdtuIiV80uXbRIqmRsytg22rbgInwDNdeDXBSolXr/99hvMzc0RHR2N6OhohX0ikYgSr3ruszG+yM4pxJKfTrML8WqbjPtZkNoYCx1GvcHVpJmv5gjHzz+u0/PnfaXaIu/rf4xReKzM6FhNKcgr5nSS4s4+TnBv56jQH8+6kQzP71V9abJ5Oye1Xkt7W1NkpU+HifF3KtehaXduK99ndkd4LOS/CLNUWl1s+L18TGyOQK16W5b0w5YlpX+rpxncT5ejK1T69Kg4ceqrt7t39Xv+DW1y/pl29qMxMpTgm0/94d+zkdChVCKzLB/iX/BMf/7j6/q53Dj7WKlf4++M8oZYjQWwA7u4qvQ8dY7JNa6nRDAwEONe7CQYWpRfuWjoqdlLhMZS7fzsqovWbconio7XgX5RFf9fMRD++qWZiQFEL3/ANGhYv5YuqocTuuiPJdE1j0zcv+EKugzagows7emzILQe3d1rL6SnjE356+NVV8UVFtjOrmHR4xXzeqEkfxZMHU35CIuQav2xqA9736/jGgEj0U3GUgOcPP8hvlvRFxFbNLuairZR6WdHbcsCrVu3TqVgSN1IlOioGPPPbRQXyWstJ4SKrU98kYjF8GjvpNDXieu5nUYO8cLRPbdhailFv+6N8Am31ats9ZI+6NZudZX7ZBZGVW7XNRnP8itN6FxXL14UYv3OGwoLwXOl+9vNcfwv7RtNTOrOqMJghTwVpq6pzuWr9WcKli6+zuji6yx0GLxTqcXr+fPnCre0tDQcOXIEO3fuREZGBschEnUVFBTXXohnpo6mcHHRjk74nTupdvmpOmMGtkTB8y/x/N5UWMuMYWGlHX3JGlbz9/bu6Y4veBiFWFH681wMeo/7GfTvnkuGXx/V5n+TVGgRXLXhElchKYje8S7MXcw0Ujepu/SneSon6mKxGKOmdFCqbF2mgNm7Vp31CYguUKnFa9euXZW2yeVyTJ48GU2aNFE7KKL/2qrY14Zrzbs2gEym2dae35b1RZ9uGzR6DHWsXBgEaxl/yeGJC49x7nIK7p6veYRlB39XJMWlwdTRFLaWyscXF3kP1h517zMilkpg7mOH7MtPah31JeVonjKZqzkKsovQr4+nxmYlJ9V7vcMaNGzrCCMV+/AZGyt3+f7FU+VbxMRSCeRKTnAtxFUDoj7O+niJxWKEhoZi8eLFXFVJCKmBbRMroUNQWsUvti/nHkO+Eq2wfy0fgKu3g5F+bwpv6wuKlewH9/M3PTHz50C1j5f54HPkP/8SfV5vpHZdRDVJl1Jx50zdRsdqCycnc/y89k18OLMLnL1sAQB5+cJf4UiGEVKydHvAjyZx+mmWkJCA4mLhX3SiX+RyaO2cP0Q5UqkBXNvYAwCKipRfrqq1px1MlWxV4FNABxd8/3lXOLbQvQlCiQa97C/63ghvmDvzc0n58w/8sPr7NyA1KW2F3bbsAoqLhenXa1Xhh8vOi/oxz50mqNReHhoaqvCYYRgkJydj//79GDt2LCeBEVJm5g/H2fsSSe2/FSTGEpTka+dalPVZ19fdse1KOgDg9BluPpSjTydxUg8hQOli0bnpeSpd9pWYGODmzWAUFBWjtacdpo33g0j0DfdBVqPXG02wNra0Y35uQc0/VN0aW2skBjcbUzSyNcW9p7koKKbP4Oqo1OJ16dIlhduVK1cAAAsXLsSSJUu4jI8QJN0rn/28X/dGtZZv3c1Ng9HoH0cbE96Pqe46oSWFpR/qO9dfqbRPbMztnFv3H2Up3eeG6C6ZqznyVFj3tqKm7lZo7WlXp+ec23cHvUf9hUdp6k02PWdKZ6XK2TW1xrFdI9Q6Vk26N7PXWN36QqUWr6NHj3IdB+HZkD6e+MbcEEXZunMJr+ObnjBScckXUrUFa95Ek4ZWvB9XZCgGo8Y0J4NHt8HWX85DUqHvmImtMfKe5sOUw1Gk95NfwMNjKWf11Ufm5jrUAVygeUUjt1zHt42tsWJ+L40fq1uPRrDVkpHW9ZVafbzS09Nx8uRJnDx5Eunp6VzFRHjQ0sMGD+5NEez4r3XR/rW6jG1/RNTWG0KHoVHTxvM7jQRX+vRoVGlbU9/SmcTlJXLO1oi8fCtdrQTx468OcxKHLlv2XU+hQ9AJL7Jpouv6QqXEKycnBx988AGcnZ3RvXt3dO/eHS4uLhg/fjxyc3O5jpFoiKOtKSQcX5ZRVtgXXSGz0MwvYa6GWOv6MjxcSziXjIiT94QOo1a56dxNZqmu61fS2PvmJioOEuBwXUYhtPa0g8iQFknRdTTdCXdU+t8QGhqK6Oho7N27FxkZGcjIyMA///yD6OhofP7551zHSOrIyFL5eanentBWg5HU7Jup/nBv51h7wTqSWUjRpJML5/WqysGmfHkbCw0lm3wZ0HeL0CHopLHTOkMsLv24bdyytA+QkZVy7wWrBqUT3zbgcMLhW3eUXwS6Ta/6u8wWqaxtPZxpnmsqJV5///031q5di759+0Imk0Emk6Ffv35YvXo1/vrrL65jJHXUxIf7ZEYTnO3M8OP82i9DqPJLy7O59gzzb9vSHqHf98CAD33wyzz1L7vk5/HbL69L+/IktriaPoFlU0WQqlVclSpm3yj8tn0o/rv2sVLP/XyaPwBgwfTXOInll3UXsWTWMQBAQVYhJ3XWRp3LtUS7rAl7Q+gQdJ5Knetzc3Ph6Fj5y93BwYEuNRJShYUzu3NWV/wpfufHmfRuGxQVyfHpmH8AcWkKIZfLkV9YPtLP1sEMD0H9PCt6lJatsCZoGVNjQ0wY1rrO9RlLuZkt/1jkXfa+EKM1KybyRLeIDDhe2LaeUqnFy9/fH3PmzEF+fnkfmLy8PHzzzTfw9/fnLDjCjStR94UOQeNaNysfwu3ZpOY5apo0K28NKyqkaQKU4e4qK70jZzDz51Ow9VgKM7MwXD6qW/NoGRlork+jT2Ajhce/77rJ3vdqXrcpBjShrNUp9Zbylxnr6nRcMmZPPfTygJX3iwzFGNG/ucaOr8vyy5Lg2tarUgUDxMfWvEQX4Y9KideSJUtw6tQpuLq6olevXujVqxfc3Nxw6tQpLF1KQ68J//y8HHDiwgRs3T8Ci76quXVp3aI+PEWlPwI6NmDvH4i4jYykLEDOgBFohuy6at61AcJ+68dZq5EyyhZGFhmKdXb0aF0t/PUc24r2Ir3y1Q8jc35XIegX5AlRFctNmdiZYMq3AZW2e/g58RBVuYa+Duz9v1dcxNxlZyAv1Mz/qaIXyl1WNuJpea76TKW/sLe3N27fvo2wsDD4+vrC19cXP/zwA+7cuYNWrVpxHSOpI13vwK2qbn4uGN6vGduJWd8ZK7muIBdkZlJ0fqspJ3XFn3rES58fqZUU3j0aot/73rhx/AN8OaFDnZ7/KC0bn4QeVDsOSxdztevQJmKx4uWmii19FZeDYkqET8q/+dQfhXlfV16+RwQMDvKsVP5q9DiNr4H6Zq/GEBtLIDE1wJ/rB+Hj2eV993b9c0ujx1aGewNZlckq4Y5KP//CwsLg6OiICRMmKGxft24d0tPTMWPGDE6CI3VnbGOMNYuC0Gb/HaFDIRq2dkV/9Om2gffjpjzIqrTNhMckUFkW9qa4cmScys//9tezSIpLq71gPdP7jca4dTEF+U+FnW6FKWbw2pA/ay1nYCBWHN1QA1NjQzRtZY+nCRnqBVeD/q97ICfjSwCl/faaN7LG8nknFMq0CmiI68eEu4w/+EMf7Fx5SbDj6zuV0tpVq1ahRYsWlba3atUKK1euVDsoUrPND43RyG8lMlMqf/CNmewH72bC9yepioG5IUQGYrQN8hA6FJ0X8E5LBHUVZph/2n/PK237Irhya1JuZvmEkFKp7q04kJOrO6s68Mnd1RLRR98XOgwAwIUDd2svxJOS/GKlyxpLDWq87C2R1JApMsCtUw9rPUbcFfrRoK1USrxSUlLg7Fx5Lg97e3skJyerHRSp2ZzTBrh/MVXoMOps8Ng2kBf9Dxcjxggdis4ydTCFgbkhhg2q/MNHKFIbY7g5yyptL6qQuMyb3k3jcTRvQRN1EuG8Oa6N2nVcja7cyvXqdDpMCcMOXDCroaX50KZrasdDNEOlT6myjvSvOnXqFFxcaKiwphUV6fZM1kR1d28Eo+jFV/h4hPof8ppm5Vzat0lkKEbXtsp/Lni1Va2Ds1sDGR49DlXpubrKRkNr7llXWDjd1s60hpLaw9SUv4ETVelQh/d4RZbm5RNeM8XVf7a386vc2DH3s+pnEaAfIdpLpVdmwoQJmDJlCtavX4/79+/j/v37WLduHaZOnVqp3xch+ibhXLIg8x/pmr+3vo2BE3zx5+7hSj+nZXc3nNz5rsrHtOZwYMnW1drdx+W7FX3h7szdbPYVNXAxx4o/ByP0+x74cdbrGjmGgVlpa417U/UnO7ZoYA57a+UTRHmJ9vx4NTAQ491PFS/VSySKX80SYwkmjfJR2GbuZAb3BpVbmon2U+knwrRp0/D06VN8/PHHKCwsHaJqbGyMGTNmYObMmZwGSIg2kMmUX4aJT827NkD8qUfwaF97K5G1hXqtIzX2O6lCQEdXBHR0rdNzvFrZ13lUaqEGkuDCgmIUqTmr+9+7NTtC7atJHTVa/6R3S1tVb9/P0Ej9V65OwqET9zFuqBcszX9Qq64+g+o2N5hXe56WvREBYABrp5pHthq+0jplaWXMPhcADLRw8ApRnUotXiKRCD/++CPS09Nx5swZXL58Gc+ePcPs2bO5jo8QTolUmHhZ5mqOX77txX0wSrJvWv2EsDeOf4CTFyfgv5jaW5rNTQ1xIHqsynF8Eay5L/qWr7nC1cceoRPb1+l5Bc/y8Twxk/N45BwsTB135B4AgNHxRa41paWHDT4b0xYys8qtlGaqLiiupJCPuJlXzdi4vO3CxKRyO8Yf/wzH4I/a4u8tQ+tc95CPhFtHl2iWWheBzc3N0aFDB7Ru3RpSad2b+I8fP44BAwbAxcUFIpEIu3fvVtj//vvvQyQSKdz69FGc/PLZs2cYNWoUZDIZrKysMH78eGRnZyuUuXLlCl577TUYGxvDzc0NCxYsqBTLjh070KJFCxgbG8Pb2xsHDhyo8/mQmrVuUbf1/DQxn857A+veKT1kame09Kh8OURqJUU7L82uUSg2ksDErPovIbG4tP+UgZLz7vTt3kjlOXoG9Wqi0vOUceP4eDyI+xhd1FiAd0ifyvMyccnaw7JO5SVGpSM5p3+l+YEFfKvYqVvK8aS0G3YNg7mOtPBMm9geHfo1QZdBzfDRu5WXgXpvQAvsXPmWWu/r+iYruwCF1awJqy8E7X2Xk5MDHx8fhIeHV1umT58+SE5OZm9//qk4b8uoUaNw/fp1REZGYt++fTh+/DgmTpzI7s/KykLv3r3h7u6O2NhY/PTTT5g7dy5+++03tszp06cxYsQIjB8/HpcuXcKgQYMwaNAgXLtGo0I4IxZhdkinOj0l5dYnMHPirmOvXVNreLhW/+VZ1TQJ1REZipGR8gWsdHCy2pEhfpBaS/HmB9rfQV9Zzl62pQmoRAzJy5YH91qWjuJLWy+H2gtVQ2otxbAgbiau5VKrJjYY/kl7+AQ2wrdfc7N4d5mxg7w4rU+T3J0tcG7/ezi1a0SVLXdEeWX9ZgcHbkJxjn4nXoIOA+nbty/69u1bYxmpVAonp6r7r9y8eRMRERE4f/482rcvvUSxbNky9OvXDz///DNcXFywefNmFBYWYt26dTAyMkKrVq0QFxeHRYsWsQna0qVL0adPH0ybNg0AMH/+fERGRuLXX3/Vq3nJmKoWT+OJuUPdEygDAzFMzI2QA24XXre1NIZYKoG8oATuja1hZ1P32CRSCa/Lz3Bp0+J+2LS4n9BhaISBgRhxVz5C1OkHGP923Rei1gYZWeXz892//SkcbbVzVOHWX/oDAPILlJ+/SiivzrZflRIeVlMgBBC4xUsZx44dg4ODA5o3b47Jkyfj6dOn7L6YmBhYWVmxSRcABAYGQiwW4+zZs2yZ7t27w8iovHN0UFAQ4uPj8fz5c7ZMYGCgwnGDgoIQExNTbVwFBQXIyspSuGkDsxouS1kKOCxcromFX1VkamyIK9c/xpodQxHxx1B88p5P7U8SiJwW8a6z1p52+GxMW525XPWq4R/tZe8bSLT+I7paTs3UH61YFd8WdnBsUbe63xldoXVXLEKH1o6VynwYUrclpQi3LPRsaa2aaPX/6j59+uD3339HVFQUfvzxR0RHR6Nv374oKSn9MkpJSYGDg2IzvoGBAWxsbJCSksKWcXRU/E9W9ri2MmX7qxIWFgZLS0v25ubmpt7JcqBxR2fMmFj9h8eCMH47iLu7lV/Wy03lttVKXa2a2GD8261hZFjacrVw/QChQ2J5t9RsvzF9YGKsm0mVMjIzSlu8DMwMYauhebo0TWotxemI0Rqp28hQgpSbn+CX3wcq/ZzV378BhpmDkxcn4NadT6pc3eO1CgvBE/4lXJsMUxWujOgirU683n33Xbz11lvw9vbGoEGDsG/fPpw/fx7Hjh0TOjTMnDkTmZmZ7O3BgwdCh4TVv/TTqssS4XN7Ch2C0t7o0lDoEFi6MDmq0IYEaq6jv7AY3DnzGAAwfIIvr0cuzuXukmH7AHeV5piSWmm2n1TXti5o7qEdff+IIntrU9yIm1QvWr60OvF6VePGjWFnZ4c7d0oXgHZyckJamuJ6VMXFxXj27BnbL8zJyQmpqYrL65Q9rq1MdX3LgNK+ZzKZTOGmTX7dNAhvvNcaLbrVbR4lLik70o5UZmihnfOGaQsDAzF832gkdBickxeW9zMyNeX3PcBUmFS0Wyd+PzdmL+2N5l0b4Kdf+tRemOgtd2cLvPGW9g0m4ZpOfTM+fPgQT58+ZdeJ9Pf3R0ZGBmJjY9kyR44cgVwuR6dOndgyx48fR1FR+SiJyMhING/eHNbW1myZqKgohWNFRkbC37/65Ri0XfAoHxz6YyjcG1sJHYpOsKuwRAohrzKyrFsStHj9RbWHsnz9sWYnSK1J2eSpfPnmU3/cOvkhPhnty+txKxKJdOrrkOgwQd9p2dnZiIuLQ1xcHAAgMTERcXFxSEpKQnZ2NqZNm4YzZ87g3r17iIqKwsCBA+Hp6YmgoCAAQMuWLdGnTx9MmDAB586dw6lTpxASEoJ3332XXTNy5MiRMDIywvjx43H9+nVs27YNS5cuRWho+Zpun332GSIiIrBw4ULcunULc+fOxYULFxASEsL734QIw9nODBt3v4OQud3xOP0LocMhWmT4J+1x8FDd+ist/V80StS4dCdzNdea5WCMjSVCh8CLft3dhQ5BI75aGIh2fTyEDkNpb7/ZHAZmBjCxM8GAnroTd10IOh7+woUL6NGjB/u4LBkaO3YsVqxYgStXrmDjxo3IyMiAi4sLevfujfnz5ytM1rp582aEhISgV69eEIvFGDp0KH755Rd2v6WlJQ4dOoTg4GD4+fnBzs4Os2fPVpjrq0uXLtiyZQtmzZqFr776Ck2bNsXu3bvRurVuDkfXJR3bOEJsJIG8sASdqlgElk9jBrbEmIEtBY1BFxU8y6+9kA5bOqeHVvWd5JubowWkVlIUZBQIHQqnfFvawdjGGPnP8zH9x546Oz1Mbfr3bIyGDWSYFJEodChKGdG/OUZkfy10GBol6DstICAATA3TDBw8eLDWOmxsbLBly5Yay7Rp0wYnTpyoscywYcMwbNiwWo+naxztzdj7jbTkF3RFHq6WePhoKp5m5KG1Z+WRRqryae2A2t89hCvOFUYj2dmZ1VCS6KL+73ph50rtXjS8rmRmUjx//Dle5BbWaYFtXXD+aioYNeYle/MNT+xedwUGJhIUZqq3ZimpTD9TfMJaOqcH7GxN0chVhq5tXYQOp0rOdmZw5vjL+sdpr2FAzyawsjSCd9PqV0YgqjEwM1SYXdrN0QKb9g7HpevpmDGRm3XwCNE0Y6mB1rZ0SSrM4VbXVuWvvi1vaHC0McHVOh573BAvjMhqBgOJGIbSbwFab5RT1JtQz1lZSLFwZndBO60KpZufCzzdrIQOo94Y9WYL/DzjNb1rPVCWxECEwJG6s9wNqZ2dk3Ctt5+Nb6fyc/PzS38UWTWUoUlDK5XqMJYaVBqZztDk/pygxKuea+Bswd5v0shKuEB0TMWh94SUidw8rM6LaRPttXyhcNNbqHOFoqwHT4fuHMxPWKG1y8RW+Ql9o26m1V6ontLONlbCm+9Cu8DW2hg2VsYYEKCfI0i4Yl+hg3VJnvavT0dIbXq+q9xgkoCuDbHztziIjcTo0Vm4uQHrM98WyveBvXrkPmfHbdHNFbdOPgTEIty8NEnp56W90K/BGFyixKueM5Ya4KtJws0XVBtDKXdD2SUGtS+UW5NvPvPHoq+OchSN8swqTKYqNdLdof3KLFRM+NOmlzui/nxHqbKfvOeLt/s0hYnUAFYW1c8u/yQ1h6vwyCuMDCUIGtMaB3+/VuX+BvaauSx688R4jdRbn9GlRqLVIv8Zyd63V2GRb2OpAToN8ISpoyk+VnFCyg4+pSsYmJsaQiThP3lYuagPug1pjpk/B9b4paftPh7tC7umtFyLMuTFmr+U7eZWt0uiznZmtb7/Hl97ok5IWsHEpLw9wlKHVpAQi8U4e0X5FikiHGrx0iNuTvq3xlWrJjZYs2Mort56gq+DVUuczuwZpfLxDc0NMahX+bqA5o5mePE4G2IeW566t2+AE3+/y9vxNKWbnwvS//sUHfr/gQsH7godjlbp6O2o8LjD6xpcO1QswsotgzFuCDcDAQwkYkiMJSjJL+GkPqH9OOt1hGQXoYmnNfy8HASJwbu1vUrP6+jtCHMXM2Q/ppZHbUaJlx5o2d0NM6Z2RlN3K6FD0Yjxbws3ka2pjWJn0j+3DMHSNRfx3tuaHb3m0MgSj66mQ2JK/0W1ham5EZ5rqG5jqQF6veuFqK03AADBH7TV0JEAqaURPhruzVl9BgZixMZ9BN8WyzmrU0gdWjvi7D7Vf6xx4Zf/9ai9ENFZ9KmuB8a8542xg2gYO5fMnEyRk5ILn46KI4v6v+6B/q9rfhBC5D/v4pf1lzCsf3ONH4so55eFQZj7wwn06ukBsVgHe2mIADCAtQZaxn2a28PawxLPEzM5r7u+EXPYr5VoJ0q8CKnC4zuf4uL1dHRvL8yksy09bLBiXi9Bjk2qNuSNJhjyRpPaC2qpjbvewc79/2Ha5A5Ch0Je4eZSPq2PvKD8kq2VuwwZ97Ng7kKrQegTHfzZRojmycykCOjoqpstG4RUYczAltj920CtXcGiPpvzSecqt58+OhbTfuyJmOj3+Q2IaBS1eBFCCGEZWenuyFldZWQogUgiqjQxc0sPGyyY/ppAURFNoZ/zhBCVtA4oHXnXrEsDgSMB5AytJKCuWYvfQJNOLvhxcZDQoRCi16jFixCikstRY3EzMQMtPawEOb6vrxPiIu8BAAZreJRpfTB/ShfMn9JF6DAI0XuUeBFCVCIWi9GqiY1gx1+/IAifjmuHRg0sYC1Tfg05LlFDGyGkruhSI+GFyJDeaoR7bVvaC5Z0AcD06dRCRIRRUiyventR1duJ9qBvQ6JRo6Z0gIWLOT6aQV9QRP+81oHfBaNlrqVzcJk61H35LE1j5NT8x6epM7tWuX3ip9q79i4pRYkX0ahNi/sh69HnWDGf5qQiuiP+Ygpndbm5cDdh6bFDYzDpf91w9PAYzurkSjPv6pfXMTAr7dXiJFB/QF3QtFPpNB92nlZKlfdqZlvldv92NF2ItqM+XoQQ8pLo5RroBc8L2G0mxqrPJG7lLkNrTzt1w2K1bWmvtRPrzvuyG/rsu1PlvuiTH2D3oTsIHuXDc1S64+qxcYg4eR89O7kJHQrRMEq8CCHkJdMW1sg8ncw+bujrAJmZ6vNatWrnxEVYOq+LrzO6+DoLHYZWMzKU4K0ejYUOg/CALjUSQshLRvamkJgbso9fC3Cvcx3yajo967uubV1g2dACEhMDDHmL1hglpUqo718llHgRQng1oG8zvR7lOnp8W6FDEIS5qSEy7oeiOPdrhL7fTuPH825efgm3aWNrjR+PEK7o76cfIUQrzQ7pBHnh/7R24d+S7CL2vlhS80ekibS8/5eBQen9NwPpchEfAjq6IuLk+9iy713Mn+IvdDiEKI36eBFCSDVCxtbceuXdzA693vXCnf+eYtbnNGUK34K61v1SMCFCo8SLEEKq0dHbsdYyh/8cxkMkhBB9QZcaCSGEEEJ4QokXIYQQQghPKPEihBAt4N26dOZ3kYEI7byqnwWeEKLbqI8XIUQQVnamyH6cI3QYWmPx169jcJAnGjiYwcPVUuhwCCEaQokXIUQQm9cOxHdLz+DNoCZCh6I1urdvIHQIRA819yif58zdTSZgJASgxIsQIpDu7Rug+x9DhQ6DEL0X0NEV2/4dieS0bEwe0UbocOo9SrwIIYQQPWFqWr7klXGFCX7f6dNUiHBIFSjxIoTUmaEpfXQQwje3BuWXCZs1qnqZpP7d3fHGe62RlpKNbz7vyldopA7o05MQorRRUzrg4L7b+OSzzkKHQki9s2xOD7RsZgt3Fwt0aF315L5isRiH6BK+VqPEixCitE2L+wGLhY6CkPrJWGrAywLkRLMEncfr+PHjGDBgAFxcXCASibB7926F/QzDYPbs2XB2doaJiQkCAwNx+/ZthTLPnj3DqFGjIJPJYGVlhfHjxyM7O1uhzJUrV/Daa6/B2NgYbm5uWLBgQaVYduzYgRYtWsDY2Bje3t44cOAA5+dLCCGEkPpN0MQrJycHPj4+CA8Pr3L/ggUL8Msvv2DlypU4e/YszMzMEBQUhPz8fLbMqFGjcP36dURGRmLfvn04fvw4Jk6cyO7PyspC79694e7ujtjYWPz000+YO3cufvvtN7bM6dOnMWLECIwfPx6XLl3CoEGDMGjQIFy7dk1zJ08IIYSQekfQS419+/ZF3759q9zHMAyWLFmCWbNmYeDAgQCA33//HY6Ojti9ezfeffdd3Lx5ExERETh//jzat28PAFi2bBn69euHn3/+GS4uLti8eTMKCwuxbt06GBkZoVWrVoiLi8OiRYvYBG3p0qXo06cPpk2bBgCYP38+IiMj8euvv2LlypU8/CUIIUKSGnD3G9RAImLvi8WiGkoSQuojrV0yKDExESkpKQgMDGS3WVpaolOnToiJiQEAxMTEwMrKik26ACAwMBBisRhnz55ly3Tv3h1GRkZsmaCgIMTHx+P58+dsmYrHKStTdpyqFBQUICsrS+FGCNFNPVs44ANJCiZKktWu6/X2rmjRzRW2TazwyQQ/DqIjhOgTre1cn5KSAgBwdFQcueHo6MjuS0lJgYOD4ppmBgYGsLGxUSjj4eFRqY6yfdbW1khJSanxOFUJCwvDN998o8KZEUK0jYWxIWYbPgAAfA31WqkMDMS4eWI8F2ERQvSQ1rZ4abuZM2ciMzOTvT148EDokAghHBIb0ccjIYR7WvvJ4uTkBABITU1V2J6amsruc3JyQlpamsL+4uJiPHv2TKFMVXVUPEZ1Zcr2V0UqlUImkyncCCG6742RrWBoYYThk+kyISGEe1qbeHl4eMDJyQlRUVHstqysLJw9exb+/v4AAH9/f2RkZCA2NpYtc+TIEcjlcnTq1Iktc/z4cRQVFbFlIiMj0bx5c1hbW7NlKh6nrEzZcQgh9cehzW+jMGsmtizpJ3QohBA9JGjilZ2djbi4OMTFxQEo7VAfFxeHpKQkiEQiTJkyBd9++y327NmDq1evYsyYMXBxccGgQYMAAC1btkSfPn0wYcIEnDt3DqdOnUJISAjeffdduLi4AABGjhwJIyMjjB8/HtevX8e2bduwdOlShIaGsnF89tlniIiIwMKFC3Hr1i3MnTsXFy5cQEhICN9/EkIIIYToMUE711+4cAE9evRgH5clQ2PHjsWGDRswffp05OTkYOLEicjIyEC3bt0QEREBY2Nj9jmbN29GSEgIevXqBbFYjKFDh+KXX35h91taWuLQoUMIDg6Gn58f7OzsMHv2bIW5vrp06YItW7Zg1qxZ+Oqrr9C0aVPs3r0brVu35uGvQAghhJD6QtDEKyAgAAzDVLtfJBJh3rx5mDdvXrVlbGxssGXLlhqP06ZNG5w4caLGMsOGDcOwYcNqDpgQQgghRA1a28eLEEIIIUTfUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE+0OvGaO3cuRCKRwq1Fixbs/vz8fAQHB8PW1hbm5uYYOnQoUlNTFepISkpC//79YWpqCgcHB0ybNg3FxcUKZY4dO4Z27dpBKpXC09MTGzZs4OP0CCGEEFLPaHXiBQCtWrVCcnIyezt58iS7b+rUqdi7dy927NiB6OhoPH78GEOGDGH3l5SUoH///igsLMTp06exceNGbNiwAbNnz2bLJCYmon///ujRowfi4uIwZcoUfPjhhzh48CCv50kIIYQQ/WcgdAC1MTAwgJOTU6XtmZmZWLt2LbZs2YKePXsCANavX4+WLVvizJkz6Ny5Mw4dOoQbN27g8OHDcHR0hK+vL+bPn48ZM2Zg7ty5MDIywsqVK+Hh4YGFCxcCAFq2bImTJ09i8eLFCAoKqjaugoICFBQUsI+zsrI4PnNCCCGE6Butb/G6ffs2XFxc0LhxY4waNQpJSUkAgNjYWBQVFSEwMJAt26JFCzRs2BAxMTEAgJiYGHh7e8PR0ZEtExQUhKysLFy/fp0tU7GOsjJldVQnLCwMlpaW7M3NzY2T8yWEEEKI/tLqxKtTp07YsGEDIiIisGLFCiQmJuK1117DixcvkJKSAiMjI1hZWSk8x9HRESkpKQCAlJQUhaSrbH/ZvprKZGVlIS8vr9rYZs6ciczMTPb24MEDdU+XEEIIIXpOqy819u3bl73fpk0bdOrUCe7u7ti+fTtMTEwEjAyQSqWQSqWCxkAIIYQQ3aLVLV6vsrKyQrNmzXDnzh04OTmhsLAQGRkZCmVSU1PZPmFOTk6VRjmWPa6tjEwmEzy5I4QQQoh+0anEKzs7GwkJCXB2doafnx8MDQ0RFRXF7o+Pj0dSUhL8/f0BAP7+/rh69SrS0tLYMpGRkZDJZPDy8mLLVKyjrExZHYQQQgghXNHqxOuLL75AdHQ07t27h9OnT2Pw4MGQSCQYMWIELC0tMX78eISGhuLo0aOIjY3FuHHj4O/vj86dOwMAevfuDS8vL4wePRqXL1/GwYMHMWvWLAQHB7OXCSdNmoS7d+9i+vTpuHXrFpYvX47t27dj6tSpQp46IYQQQvSQVvfxevjwIUaMGIGnT5/C3t4e3bp1w5kzZ2Bvbw8AWLx4McRiMYYOHYqCggIEBQVh+fLl7PMlEgn27duHyZMnw9/fH2ZmZhg7dizmzZvHlvHw8MD+/fsxdepULF26FK6urlizZk2NU0kQQgghhKhCqxOvrVu31rjf2NgY4eHhCA8Pr7aMu7s7Dhw4UGM9AQEBuHTpkkoxEkIIIaRUQHN77I5JQJZ2pxeC0upLjYQQQgjRHT1bOOKK8SW0cLIQOhStRYkXIYQQQghPKPEihBBCCKfebOMMAPBvbCtwJNqHEi9CCCGEcCqkZ1Ncll7ElgmdhA5F61DvN0IIIYRwzlJUAohEQoehdajFixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgjRao9zREKHwBlKvAghhBCileQlDABga2S2wJFwhxIvQgghhGilPm81AwCIDKjFixBCCCFEo0LGthU6BM5R4kUIIYQQwhNKvAghhBBCeEKJFyGEEEIITyjxekV4eDgaNWoEY2NjdOrUCefOnRM6JEIIIYToCUq8Kti2bRtCQ0MxZ84cXLx4ET4+PggKCkJaWprQoSl48qxY6BAIIYQQogIDoQPQJosWLcKECRMwbtw4AMDKlSuxf/9+rFu3Dl9++WWtzxebN8b5DCnMjAw1FuOJdEPkPstT2OZsb6ax4xFCCCGCY4AzzzXz3ZpTqJFqq0WJ10uFhYWIjY3FzJkz2W1isRiBgYGIiYmpVL6goAAFBQXs46ysLMizxyBwJQBoskWqct2j32qhweMRQgghwmJKGPj/oqnvVn7nCKNLjS89efIEJSUlcHR0VNju6OiIlJSUSuXDwsJgaWnJ3tzc3CCSiCAy4OFmWPqyiaViTPk2AGIxvYyEEEL0j28LO9i5mWj8e5VP1OKlopkzZyI0NJR9nJWVBTc3N2R++SVkUqnmA5g7t/T29euaPxYhhBAiACNDCdI/yNXoMbIKCmD5g0YPoYASr5fs7OwgkUiQmpqqsD01NRVOTk6VykulUkj5SLAIIYQQojfoGtVLRkZG8PPzQ1RUFLtNLpcjKioK/v7+AkZGCCGEEH1BLV4VhIaGYuzYsWjfvj06duyIJUuWICcnhx3lSAghhBCiDkq8Khg+fDjS09Mxe/ZspKSkwNfXFxEREZU63BNCCCGEqIISr1eEhIQgJCRE6DAIIYQQooeojxchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE9o5nqOMAwDAMgqKODngFlZQEFB6b984ft4hPCp7P8uvccJUU/ZdwVX3xka/l4t+94u+x7XNBHD15H03N27d9GkSROhwyCEEEKIChISEtC4cWONH4davDhiY2MDAEhKSoKlpaXA0fAnKysLbm5uePDgAWQymdDh8IbOm867PqDzpvOuDzIzM9GwYUP2e1zTKPHiiFhc2l3O0tKyXr1hy8hkMjrveoTOu36h865f6ut5l32Pa/w4vByFEEIIIYRQ4kUIIYQQwhdKvDgilUoxZ84cSKVSoUPhFZ03nXd9QOdN510f0Hnzc940qpEQQgghhCfU4kUIIYQQwhNKvAghhBBCeEKJFyGEEEIITyjxIoQQQgjhCSVeFYSFhaFDhw6wsLCAg4MDBg0ahPj4+ErlYmJi0LNnT5iZmUEmk6F79+7Iy8tj9z979gyjRo2CTCaDlZUVxo8fj+zsbIU6rly5gtdeew3GxsZwc3PDggULNH5+1antvO/duweRSFTlbceOHWy5pKQk9O/fH6ampnBwcMC0adNQXFyscKxjx46hXbt2kEql8PT0xIYNG/g6zUqUeb1TUlIwevRoODk5wczMDO3atcPff/+tUEbfXm+gdOmMwYMHw97eHjKZDO+88w5SU1MVyujaea9YsQJt2rRhJ4f09/fHv//+y+7Pz89HcHAwbG1tYW5ujqFDh1Y6Z117jwO1n/dvv/2GgIAAyGQyiEQiZGRkVKpD115roObzfvbsGT755BM0b94cJiYmaNiwIT799FNkZmYq1KGPr/dHH32EJk2awMTEBPb29hg4cCBu3bqlUIc+nncZhmHQt29fiEQi7N69W2Efb+fNEFZQUBCzfv165tq1a0xcXBzTr18/pmHDhkx2djZb5vTp04xMJmPCwsKYa9euMbdu3WK2bdvG5Ofns2X69OnD+Pj4MGfOnGFOnDjBeHp6MiNGjGD3Z2ZmMo6OjsyoUaOYa9euMX/++SdjYmLCrFq1itfzLVPbeRcXFzPJyckKt2+++YYxNzdnXrx4wZZp3bo1ExgYyFy6dIk5cOAAY2dnx8ycOZM9zt27dxlTU1MmNDSUuXHjBrNs2TJGIpEwERERWnneDMMwb7zxBtOhQwfm7NmzTEJCAjN//nxGLBYzFy9eZMvo2+udnZ3NNG7cmBk8eDBz5coV5sqVK8zAgQOZDh06MCUlJWw9unbee/bsYfbv38/8999/THx8PPPVV18xhoaGzLVr1xiGYZhJkyYxbm5uTFRUFHPhwgWmc+fOTJcuXdjn6+J7nGFqP+/FixczYWFhTFhYGAOAef78eaU6dO21Zpiaz/vq1avMkCFDmD179jB37txhoqKimKZNmzJDhw5ln6+vr/eqVauY6OhoJjExkYmNjWUGDBjAuLm5McXFxQzD6O95l1m0aBHTt29fBgCza9cudjuf502JVw3S0tIYAEx0dDS7rVOnTsysWbOqfc6NGzcYAMz58+fZbf/++y8jEomYR48eMQzDMMuXL2esra2ZgoICtsyMGTOY5s2ba+As6q6q836Vr68v88EHH7CPDxw4wIjFYiYlJYXdtmLFCkYmk7HnOX36dKZVq1YK9QwfPpwJCgri+AxUU9V5m5mZMb///rtCORsbG2b16tUMw+jn633w4EFGLBYzmZmZbJmMjAxGJBIxkZGRDMPox3kzDMNYW1sza9asYTIyMhhDQ0Nmx44d7L6bN28yAJiYmBiGYfTjPV6m7LwrOnr0aJWJl7681gxT9XmX2b59O2NkZMQUFRUxDKP/r3eZy5cvMwCYO3fuMAyj3+d96dIlpkGDBkxycnKlxIvP86ZLjTUoa3YuWzgzLS0NZ8+ehYODA7p06QJHR0e8/vrrOHnyJPucmJgYWFlZoX379uy2wMBAiMVinD17li3TvXt3GBkZsWWCgoIQHx+P58+f83FqNXr1vF8VGxuLuLg4jB8/nt0WExMDb29vODo6stuCgoKQlZWF69evs2UCAwMV6goKCkJMTAzXp6CSqs67S5cu2LZtG549ewa5XI6tW7ciPz8fAQEBAPTz9S4oKIBIJFKYTNDY2BhisZh9r+v6eZeUlGDr1q3IycmBv78/YmNjUVRUpPD+bNGiBRo2bMi+P/XhPf7qeStD119rQLnzzszMhEwmg4FB6RLG9eH1zsnJwfr16+Hh4QE3NzcA+nveubm5GDlyJMLDw+Hk5FTpOXyeNyVe1ZDL5ZgyZQq6du2K1q1bAwDu3r0LAJg7dy4mTJiAiIgItGvXDr169cLt27cBlPYJcnBwUKjLwMAANjY2SElJYctUfHEBsI/LygilqvN+1dq1a9GyZUt06dKF3abMOVVXJisrS6GPnBCqO+/t27ejqKgItra2kEql+Oijj7Br1y54enoC0M/Xu3PnzjAzM8OMGTOQm5uLnJwcfPHFFygpKUFycjIA3T3vq1evwtzcHFKpFJMmTcKuXbvg5eWFlJQUGBkZwcrKSqG8o6Njnc5HW9/j1Z23MnT1tQaUP+8nT55g/vz5mDhxIrtNn1/v5cuXw9zcHObm5vj3338RGRnJJs36et5Tp05Fly5dMHDgwCqfy+d5U+JVjeDgYFy7dg1bt25lt8nlcgClnRPHjRuHtm3bYvHixWjevDnWrVsnVKicquq8K8rLy8OWLVsUWrv0QXXn/b///Q8ZGRk4fPgwLly4gNDQULzzzju4evWqQJFyq6rztre3x44dO7B3716Ym5vD0tISGRkZaNeuHcRi3f7IaN68OeLi4nD27FlMnjwZY8eOxY0bN4QOS+PovKs/76ysLPTv3x9eXl6YO3euMIFyrLbzHjVqFC5duoTo6Gg0a9YM77zzDvLz8wWMmBvVnfeePXtw5MgRLFmyROgQAQAGQgegjUJCQrBv3z4cP34crq6u7HZnZ2cAqPSLqWXLlkhKSgIAODk5IS0tTWF/cXExnj17xjZvOjk5VRotVfa4qiZQvlR33hX99ddfyM3NxZgxYxS2Ozk54dy5cwrbXj2n6s5bJpPBxMSEq9Oos+rOOyEhAb/++iuuXbuGVq1aAQB8fHxw4sQJhIeHY+XKlXr7evfu3RsJCQl48uQJDAwMYGVlBScnJzRu3BiA7r7PjYyM2NZKPz8/nD9/HkuXLsXw4cNRWFiIjIwMhVav1NRUhfPR1fd4dee9atWqWp+rq681UPt5v3jxAn369IGFhQV27doFQ0ND9rn6/HpbWlrC0tISTZs2RefOnWFtbY1du3ZhxIgRenneJiYmSEhIqNSiPXToULz22ms4duwYr+et2z9fOcYwDEJCQrBr1y4cOXIEHh4eCvsbNWoEFxeXSkPv//vvP7i7uwMA/P39kZGRgdjYWHb/kSNHIJfL0alTJ7bM8ePHUVRUxJaJjIxE8+bNYW1tranTq1Zt513R2rVr8dZbb8He3l5hu7+/P65evarwAR0ZGQmZTMYmqv7+/oiKilJ4XmRkpNJ9TbhW23nn5uYCQKVWHolEwrZ+6vvrbWdnBysrKxw5cgRpaWl46623AOjmeVdFLpejoKAAfn5+MDQ0VHh/xsfHIykpiX1/6uJ7vDpl560MfXmtAcXzzsrKQu/evWFkZIQ9e/bA2NhYoWx9eb2Z0kF27H59PO8vv/wSV65cQVxcHHsDgMWLF2P9+vUAeD7vOnXF13OTJ09mLC0tmWPHjilMnZCbm8uWWbx4MSOTyZgdO3Ywt2/fZmbNmsUYGxuzI0IYpnToddu2bZmzZ88yJ0+eZJo2baow9DojI4NxdHRkRo8ezVy7do3ZunUrY2pqKtjQa2XOm2EY5vbt24xIJGL+/fffSnWUDcXt3bs3ExcXx0RERDD29vZVDsWdNm0ac/PmTSY8PFzQIci1nXdhYSHj6enJvPbaa8zZs2eZO3fuMD///DMjEomY/fv3s/Xo4+u9bt06JiYmhrlz5w7zxx9/MDY2NkxoaKhCPbp23l9++SU7jP7KlSvMl19+yYhEIubQoUMMw5ROJ9GwYUPmyJEjzIULFxh/f3/G39+ffb4uvscZpvbzTk5OZi5dusSsXr2aAcAcP36cuXTpEvP06VO2Dl17rRmm5vPOzMxkOnXqxHh7ezN37txR+H/w6rQK+vR6JyQkMN9//z1z4cIF5v79+8ypU6eYAQMGMDY2NkxqairDMPp53lVBNdNJ8HHelHhVAKDK2/r16xXKhYWFMa6uroypqSnj7+/PnDhxQmH/06dPmREjRjDm5uaMTCZjxo0bx853Veby5ctMt27dGKlUyjRo0ID54YcfNH161VL2vGfOnMm4ubkpzOVU0b1795i+ffsyJiYmjJ2dHfP555+zQ7PLHD16lPH19WWMjIyYxo0bVzoGn5Q57//++48ZMmQI4+DgwJiamjJt2rSpNL2EPr7eM2bMYBwdHRlDQ0OmadOmzMKFCxm5XK5Qj66d9wcffMC4u7szRkZGjL29PdOrVy+FD+W8vDzm448/ZqytrRlTU1Nm8ODBTHJyskIduvYeZ5jaz3vOnDm1vh907bVmmJrPu2zqjKpuiYmJbB369no/evSI6du3L+Pg4MAYGhoyrq6uzMiRI5lbt24p1KFv512VVxMvhuHvvEUvAyCEEEIIIRpGfbwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGE1GPfffcdunTpAlNT00rrGVZn7ty5aNGiBczMzGBtbY3AwECcPXtWocxbb72Fhg0bwtjYGM7Ozhg9ejQeP37M7s/Pz8f7778Pb29vGBgYYNCgQZWOk5ycjJEjR6JZs2YQi8WYMmWKSuf433//YeDAgbCzs4NMJkO3bt1w9OhRlepSFyVehBC99f7771f5Yc6X0aNH4/vvv1eq7LvvvouFCxdqOCJSXwUEBGDDhg1V7issLMSwYcMwefJkpetr1qwZfv31V1y9ehUnT55Eo0aN0Lt3b6Snp7NlevToge3btyM+Ph5///03EhIS8Pbbb7P7S0pKYGJigk8//RSBgYFVHqegoAD29vaYNWsWfHx8lI7vVW+++SaKi4tx5MgRxMbGwsfHB2+++SZSUlJUrlNldZ7rnhBCtACqWfKl7DZnzhwmIyODef78uSDxxcXFMTY2NpWW1qnO1atXGWtrayYjI0PDkZH66PXXX691eZv169czlpaWKtWfmZnJAGAOHz5cbZl//vmHEYlETGFhYaV9Y8eOZQYOHFjjMV5//XXms88+q3Lf6tWrmRYtWjBSqZRp3rw5Ex4ezu5LT09n1yEtk5WVxQBgIiMjaz4xDTDgP9UjhBD1JScns/e3bduG2bNnIz4+nt1mbm4Oc3NzIUIDACxbtgzDhg1TOobWrVujSZMm2LRpE4KDgzUcHSHcKSwsxG+//QZLS8tqW6WePXuGzZs3o0uXLjA0NOT0+Js3b8bs2bPx66+/om3btrh06RImTJgAMzMzjB07Fra2tmjevDl+//13tGvXDlKpFKtWrYKDgwP8/Pw4jUUZdKmREKKTnJyc2JulpSVEIpHCNnNz80qXGgMCAvDJJ59gypQpsLa2hqOjI1avXo2cnByMGzcOFhYW8PT0xL///qtwrGvXrqFv374wNzeHo6MjRo8ejSdPnlQbW0lJCf766y8MGDBAYfvy5cvRtGlTGBsbw9HRUeGyCwAMGDAAW7duVf+PQwgP9u3bB3NzcxgbG2Px4sWIjIyEnZ2dQpkZM2bAzMwMtra2SEpKwj///MN5HHPmzMHChQsxZMgQeHh4YMiQIZg6dSpWrVoFABCJRDh8+DAuXboECwsLGBsbY9GiRYiIiIC1tTXn8dSGEi9CSL2yceNG2NnZ4dy5c/jkk08wefJkDBs2DF26dMHFixfRu3dvjB49Grm5uQCAjIwM9OzZE23btsWFCxcQERGB1NRUvPPOO9Ue48qVK8jMzET79u3ZbRcuXMCnn36KefPmIT4+HhEREejevbvC8zp27Ihz586hoKBAMydP6o3vv/+ebfU1NzfHiRMnMGnSJIVtSUlJah2jR48eiIuLw+nTp9GnTx+88847SEtLUygzbdo0XLp0CYcOHYJEIsGYMWPAMIxax60oJycHCQkJGD9+vMK5ffvtt0hISAAAMAyD4OBgODg44MSJEzh37hwGDRqEAQMGKLSc84b3i5uEEMKx6vqmvNpv5PXXX2e6devGPi4uLmbMzMyY0aNHs9uSk5MZAExMTAzDMAwzf/58pnfv3gr1PnjwgAHAxMfHVxnPrl27GIlEwsjlcnbb33//zchkMiYrK6va87h8+TIDgLl3716N50tIbZ4+fcrcvn2bvXXs2JH58ccfFbYVFRUpPEedPl4MwzCenp7M999/X+3+sv83p0+frrRP1T5eKSkpDABm06ZNCud2+/Zt5u7duwzDMMzhw4cZsVjMZGZmVoo3LCxMuZPjEPXxIoTUK23atGHvSyQS2Nrawtvbm93m6OgIAOwv98uXL+Po0aNV9tVKSEhAs2bNKm3Py8uDVCqFSCRit73xxhtwd3dH48aN0adPH/Tp0weDBw+GqakpW8bExAQA2NY2QlRlY2MDGxsb9rGJiQkcHBzg6empsWPK5fIaW2vlcjkAcNqi6+joCBcXF9y9exejRo2qskzZ/yexWPEin1gsZmPiEyVehJB65dWOvSKRSGFbWbJU9oGcnZ2NAQMG4Mcff6xUl7Ozc5XHsLOzQ25uLgoLC2FkZAQAsLCwwMWLF3Hs2DEcOnQIs2fPxty5c3H+/Hl27qRnz54BAOzt7dU7SULqICkpCc+ePUNSUhJKSkoQFxcHAPD09GR/cLRo0QJhYWEYPHgwcnJy8N133+Gtt96Cs7Mznjx5gvDwcDx69AjDhg0DAJw9exbnz59Ht27dYG1tjYSEBPzvf/9DkyZN4O/vzx77xo0bKCwsxLNnz/DixQv22L6+vmyZsm3Z2dlIT09HXFwcjIyM4OXlBQD45ptv8Omnn8LS0hJ9+vRBQUEBLly4gOfPnyM0NBT+/v6wtrbG2LFjMXv2bJiYmGD16tVITExE//79NfvHrQIlXoQQUoN27drh77//RqNGjWBgoNxHZtmXxo0bNxS+QAwMDBAYGIjAwEDMmTMHVlZWOHLkCIYMGQKgtBO/q6trpQ7KhGjS7NmzsXHjRvZx27ZtAQBHjx5FQEAAACA+Ph6ZmZkASluKb926hY0bN+LJkyewtbVFhw4dcOLECbRq1QoAYGpqip07d2LOnDnIycmBs7Mz+vTpg1mzZkEqlbLH6tevH+7fv1/p2EyFfmBl2wAgNjYWW7Zsgbu7O+7duwcA+PDDD2FqaoqffvoJ06ZNg5mZGby9vdnJVu3s7BAREYGvv/4aPXv2RFFREVq1aoV//vlHrbnBVEWJFyGE1CA4OBirV6/GiBEjMH36dNjY2ODOnTvYunUr1qxZA4lEUuk59vb2aNeuHU6ePMkmXvv27cPdu3fRvXt3WFtb48CBA5DL5WjevDn7vBMnTqB37958nRqpR44dO1btvg0bNlQ7uWqZiomQsbExdu7cWWN5b29vHDlypNa4ypInZY9dnZEjR2LkyJHV7m/fvj0OHjxYaz18oFGNhBBSAxcXF5w6dQolJSXo3bs3+0vaysqqUp+Rij788ENs3ryZfWxlZYWdO3eiZ8+eaNmyJVauXIk///yTbSHIz8/H7t27MWHCBI2fEyFEOCJGmVSSEEJIneTl5aF58+bYtm2bQp+W6qxYsQK7du3CoUOHeIiOECIUavEihBANMDExwe+//17jRKsVGRoaYtmyZRqOihAiNGrxIoQQQgjhCbV4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTw5P+oe0g2WCE8+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = lc_raw.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])\n", + "ax.plot(lc_filled.time, lc_filled.counts, color=\"navy\", drawstyle=\"steps-mid\", zorder=20)" + ] + }, + { + "cell_type": "markdown", + "id": "cbfb45d0", + "metadata": { + "id": "cbfb45d0" + }, + "source": [ + "The light curve seems reasonably clean, with no need for further cleaning. Otherwise, we would have to filter out, e.g. flares or intervals with zero counts, doing something along the lines of:\n", + "\n", + "```\n", + "new_gti = create_gti_from_condition(lc_raw.time, lc_raw.counts > 0, safe_interval=1)\n", + "lc = copy.deepcopy(lc_raw)\n", + "lc.gti = new_gti\n", + "lc.apply_gtis()\n", + "\n", + "plt.figure()\n", + "plt.plot(lc_raw.time, lc_raw.counts, color=\"grey\", alpha=0.5, label=\"Raw\")\n", + "plt.plot(lc.time, lc.counts, color=\"k\", label=\"Cleaned\")\n", + "plt.title(\"Light curve\")\n", + "plt.xlabel(f\"Time (s from {events.mjdref})\")\n", + "plt.ylabel(f\"Counts/bin\")\n", + "plt.legend();\n", + "\n", + "events.gti = new_gti\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "05aee649", + "metadata": {}, + "outputs": [], + "source": [ + "events = ev_filled" + ] + }, + { + "cell_type": "markdown", + "id": "53598bba", + "metadata": {}, + "source": [ + "## Hardness-intensity diagram\n", + "\n", + "Just for the sake of consistency, we verify that the hardness-intensity diagram of the source tells the same story as the analysis done by Wang+2021. This observation was marked as Epoch 0 there, well into the hard state" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d5e09beb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NICER was using 52 detectors\n" + ] + } + ], + "source": [ + "ndet = len(set(events.det_id))\n", + "print(f\"NICER was using {ndet} detectors\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5ab316f8", + "metadata": {}, + "outputs": [], + "source": [ + "# Using the same intervals as the Wang+ paper.\n", + "# We use a segment size of 256 seconds, but we could make different choices depending\n", + "# on the quality of the dataset and the count rate.\n", + "\n", + "h_starts, h_stops, colors, color_errs = events.get_color_evolution(\n", + " energy_ranges=[[2, 4], [4, 12]], segment_size=256\n", + ")\n", + "i_starts, i_stops, intensity, intensity_errs = events.get_intensity_evolution(\n", + " energy_range=[0.4, 12], segment_size=256\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "054ca77b", + "metadata": {}, + "source": [ + "We compare the colors with the hardness-intensity diagram from [Wang et al. 2021](https://ui.adsabs.harvard.edu/abs/2021ApJ...910L...3W/abstract). The grey and red data plotted here were kindly provided by Jingyi Wang. The red dots indicate the points in the Wang plot corresponding to this observation. The difference in scatter is probably due to slightly different intervals being used in the analysis. Epoch 0 data are rescaled for 50 PCUs (as different observations had different number of working PCUs), while our data and the input data set from the complete outburst are rescaled to 52. We rescale everything to 50 for consistency with Wang+2021\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "03c5f5eb", + "metadata": {}, + "outputs": [], + "source": [ + "wang_data = Table.read(\"wang_data.csv\", names=[\"H\", \"I\"])\n", + "epoch0_wang_data = Table.read(\"epoch_0_data.csv\", names=[\"H\", \"I\"])\n", + "\n", + "epoch_zero_i = epoch0_wang_data[\"I\"]\n", + "epoch_zero_h = epoch0_wang_data[\"H\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e2cf5fce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAG4CAYAAABRpnMVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5cUlEQVR4nOzdd3xb1fn48Y+25SGPxHvJjrM32STEcQaGhgTCKqOQlDBKw/qFUSgtsxQoK1ACfGkLoWVT9sqeZOOQkJDpxI6XZCsekoeWpfv7Q+jWip1gJ/I+79fLL8dXV1ePHFt6fM5znqOQJElCEARBEARBCKDs7AAEQRAEQRC6IpEkCYIgCIIgtEAkSYIgCIIgCC0QSZIgCIIgCEILRJIkCIIgCILQApEkCYIgCIIgtEAkSYIgCIIgCC0QSZIgCIIgCEILRJIkCIIgCILQApEkCYIgCIIgtEAkSYIgCIIgCC1Qd3YAwWA0GjEYDCiVSqKjo1m3bl1nhyQIgiAIQjfXI5IkgC1bthAeHt7ZYQiCIAiC0EOI6TZBEARBEIQWdHqStHHjRubMmUNSUhIKhYLPPvus2TlLly7FaDQSEhLChAkT2LFjR8DtCoWC7Oxsxo0bxzvvvNNBkQuCIAiC0JN1+nRbfX09I0eO5IYbbuDSSy9tdvsHH3zA4sWLee2115gwYQJLliwhNzeXQ4cOERcXB8B3331HcnIyJpOJmTNnMnz4cEaMGNHi4zmdTpxOp/y11+ulqqqKPn36oFAo2udJCoIgCIIQVJIkUVtbS1JSEkplO435SF0IIH366acBx8aPHy8tWrRI/trj8UhJSUnSk08+2eI17rnnHunNN9885WM8/PDDEiA+xIf4EB/iQ3yIjx7wUVxcHIwUpEWdPpJ0Oi6Xi7y8PB544AH5mFKpZObMmWzduhXwjUR5vV4iIiKoq6tj7dq1XHnllae85gMPPMDixYvlr61WK2lpaRQXF2MwGNrvyQiCIAiCEDQ2m43U1FQiIiLa7TG6dJJ04sQJPB4P8fHxAcfj4+M5ePAgAOXl5cybNw8Aj8fDTTfdxLhx4055TZ1Oh06na3bcYDCIJEkQBEEQupn2LJXp0klSa2RmZrJnz57ODkMQBEEQhB6m01e3nU7fvn1RqVSUl5cHHC8vLychIaGTohIEQRAEoTfo0kmSVqtlzJgxrFmzRj7m9XpZs2YNkyZN6sTIBEEQBEHo6Tp9uq2uro78/Hz564KCAnbv3k1MTAxpaWksXryY+fPnM3bsWMaPH8+SJUuor6/nt7/97Vk97tKlS1m6dCkej+dsn4IgCEKH8Hg8uN3uzg5DEDqERqNBpVJ1agwKSZKkzgxg/fr15OTkNDs+f/58li1bBsDLL7/MM888g9lsZtSoUbz00ktMmDAhKI9vs9mIjIzEarWKwm1BELokSZIwm83U1NR0diiC0KGioqJISEhosTi7I96/Oz1J6mwiSRIEoaszmUzU1NQQFxdHaGioaHwr9HiSJNHQ0EBFRQVRUVEkJiY2O6cj3r87fbpNEARBODWPxyMnSH369OnscAShw+j1egAqKiqIi4vrlKm3Ll24LQiC0Nv5a5BCQ0M7ORJB6Hj+n/vOqsUTSZIgCEI3IKbYhN6os3/uRZIkCIIgCILQgl6bJC1dupQhQ4acdgsTQRAEQRB6r16bJC1atIj9+/ezc+fOzg5FEAShx3nttdeIiIigsbFRPlZXV4dGo2HatGkB565fvx6FQsHRo0c7OMpfVlVVxe23387AgQPR6/WkpaVxxx13YLVaA84rKipi9uzZhIaGEhcXx7333hvw3D/55BNmzZpFbGwsBoOBSZMmsWLFioBrbNy4kTlz5pCUlIRCoeCzzz7riKconEavTZIEQRCE9pOTk0NdXR3ff/+9fGzTpk0kJCSwfft2HA6HfHzdunWkpaXRr1+/zgiVBQsW8Mgjj7R4W1lZGWVlZTz77LPs27ePZcuWsXz5chYuXCif4/F4mD17Ni6Xiy1btvDWW2+xbNkyHnroIfmcjRs3MmvWLL755hvy8vLIyclhzpw5/PDDD/I59fX1jBw5kqVLl7bbcxXaSOrlrFarBEhWq7WzQxEEQWjGbrdL+/fvl+x2e2eH0maJiYnSk08+KX993333SYsWLZIGDx4srVu3Tj4+depUaf78+dK///1vacyYMVJ4eLgUHx8vXX311VJ5ebl83rp16yRAWr16tTRmzBhJr9dLkyZNkg4ePBjwuI8//rgUGxsrhYeHSwsXLpT+8Ic/SCNHjjxlnPPnz5cefvjhVj+vDz/8UNJqtZLb7ZYkSZK++eYbSalUSmazWT7n1VdflQwGg+R0Ok95nSFDhkiPPvpoi7cB0qefftrqmHqq0/38d8T7txhJEgRBENpFTk4O69atk79et24d06ZNIzs7Wz5ut9vZvn07OTk5uN1uHn/8cfbs2cNnn31GYWEhCxYsaHbdBx98kOeee47vv/8etVrNDTfcIN/2zjvv8MQTT/D000+Tl5dHWloar776alCfl795oVrtazW4detWhg8fTnx8vHxObm4uNpuNn376qcVreL1eamtriYmJCWpsQnCJZpKCIAi9iN1ux2q1EhkZKTfray85OTncddddNDY2Yrfb+eGHH8jOzsbtdvPaa68BvgTD6XSSk5NDWlqafN/MzExeeuklxo0bR11dHeHh4fJtTzzxBNnZ2QDcf//9zJ49G4fDQUhICH//+99ZuHChvL/nQw89xMqVK6mrqwvKczpx4gSPP/44N998s3zMbDYHJEiA/LXZbG7xOs8++yx1dXVceeWVQYlLaB9iJEkQBKGXsNvtbN68mY0bN7J582bsdnu7Pt60adOor69n586dbNq0iQEDBhAbG0t2drZcl7R+/XoyMzNJS0sjLy+POXPmkJaWRkREhJwIFRUVBVx3xIgR8r/921VUVFQAcOjQIcaPHx9w/slfv/POO4SHh8sf77zzDn/9618Djm3atKnZ87HZbMyePZshQ4acsoapNd59910effRRPvzwQ+Li4s74OkL7EyNJgiAIvYTVaqWqqgqDwUBVVRVWq7VdR5OysrJISUlh3bp1VFdXy0lPUlISqampbNmyhXXr1jF9+nTq6+vJzc0lNzeXd955h9jYWIqKisjNzcXlcgVcV6PRyP/2Nxv0er2tjmvu3LkBm6T/4Q9/IDk5mTvuuEM+lpycHHCf2tpaLrjgAiIiIvj0008DYkhISGDHjh0B55eXl8u3NfX+++9z44038tFHHzFz5sxWxyx0jl47kiT6JAmC0NtERkYSExODzWYjJiaGyMjIdn/MnJwc1q9fz/r16wOW/k+dOpVvv/2WHTt2kJOTw8GDB6msrOSpp57ivPPOY9CgQfLoUFsMHDiwWWuXk7+OiIggKytL/oiIiCAmJibgWNPk0Wazcf7556PVavniiy8ICQkJuN6kSZPYu3dvQLyrVq3CYDAwZMgQ+dh7773Hb3/7W9577z1mz57d5ucmdLxeO5K0aNEiFi1aJO8iLAiC0NPp9XomT57cYTVJ4EuSFi1ahNvtlkeSALKzs7nttttwuVzk5OSgVqvRarX8/e9/53e/+x379u3j8ccfb/Pj3X777dx0002MHTuWc889lw8++IAff/yRzMzMM4rfnyA1NDTw9ttvY7PZsNlsAMTGxqJSqTj//PMZMmQI1113HX/7298wm8386U9/YtGiReh0OsA3xTZ//nxefPFFJkyYINcq6fV6+T2orq6O/Px8+bELCgrYvXs3MTExAfVaQsfptUmS0HGqq6vZvXs3xcXF6HQ6JkyYQHx8vPxCDb6ag/r6ejIyMoiOju7kiAWh59Lr9R2SHPnl5ORgt9sZNGhQQHFzdnY2tbW1DBw4UK4rWrZsGX/84x956aWXOOecc3j22WeZO3dumx7v2muv5dixY9xzzz04HA6uvPJKFixY0Gw6rLV27drF9u3bAd/0YVMFBQUYjUZUKhVfffUVt956K5MmTSIsLIz58+fz2GOPyee+/vrrNDY2yn+g+82fP59ly5YB8P3335OTkyPftnjx4mbnCB1LIUmS1NlBdCb/SJJ/SadwdgoLC9m+fTsNDQ3yC/Hx48cDGscpFAoGDhyIQqHAYDDgcDg4dOgQjY2NhISEMG3aNHQ6HcnJyV0iYbLb7ezZs4djx46RmZnJyJEjO/RNRujdHA4HBQUFZGRkNJvmEVpn1qxZJCQk8J///KezQxHa6HQ//x3x/i1GkoSzUl1dzQ8//IDFYkGj0bB3795fvI8kSRw7dozhw4dTUVFBXV0dbrcbj8dDXV0dX331FWq1GoPBwJw5c6irq6OsrIzExERSUlJwOp1BnSo43ZJou93Ol19+yYEDBwA4cuQI27Zt49e//jVRUVEdOm0hCMIva2ho4LXXXiM3NxeVSsV7773H6tWrWbVqVWeHJnRDIkkSzlh1dTX//Oc/aWhoaPN91Wo1VVVVxMXFYTAYqK6uDri9sbGRqqoqPvroIxwOB16vF4VCQUxMDH369CE2NpbJkye3KTnxJ0M6nQ6n04lOp8NqtXLw4EG5kPXka1qtVkpKSgKuY7Vaee+99xgwYAANDQ0YDAYGDx6MVqvl+PHj2O12NBoNsbGxpKWliQRKEDqQQqHgm2++4YknnsDhcDBw4EA+/vhjsZJMOCMiSRLarLCwkB9++IHi4uIzSpD0ej2DBw9m+PDhco+Q+Ph41q5dG7AhJBBwfUmSqK6uxmAwYLFY2rR82d8fxmKxUF9fT0hICA6HA7VaTW1tLRkZGS0uiY6MjCQlJUUeSfKrr6/HZDKRkJBAfn4+paWlVFVVBcSr1WoZPHgwo0ePJi4uTiRLgtAB9Ho9q1ev7uwwhB5CJElCmxQWFvL222/j8Xhadb5er2fo0KFERERQVVVFQkICiYmJzZKGSZMmERMTw5dffkl9fT3g+4tQrVbjdrvl8yRJwmw2ExMTg06no7CwkM2bN1NRUYHL5SIxMZFZs2aRmJgYMI3m7w+j1WoxmUyEhIRgs9lISUmhrq6OqqoqkpKSmq101Ov1zJkzB51Ox+7du+XjBoOBxMREqqqqkCQJjUYTUHcFvtGwo0ePYrPZSEpKavPIlyAIgtC5RJIktMmBAwdalSAlJSUxZsyYNq1WGzhwIHFxcRw6dAi32010dDSFhYWUlJRQV1dHSEgIbreb5ORkPB4PBQUFfPPNNwHxFBQU8MYbb3DttdeSn59PVVUVMTExjBkzhpiYGCwWi1zgZzAY8Hg8ZGVlMXjw4FOO9uj1ei6++GIGDRpEXl4effv2Zdy4cYSEhFBeXs7Bgwc5ceIEISEhASNJKpUKlUpFTExMhzTuEwRBEIJLJElCq9jtdoqKigJGdVqi0+mYNm3aGa8Ai46OZuLEifLX/fr1k+uImtYPxcbGUlpa2mLC1tjYyIEDB6itrZU7CzudTrk/TNOapLYUgQ8cOJCBAwcGHDMajXI7A0mSAmqS9Ho9BQUF1NbWEhsbK/pxCYIgdDO9NklaunQpS5cubfW0UW9mt9tZs2YN+/btO22SlJqayrx584K6bL9pT5fo6OiA/krl5eXs2bOn2f+hWq1m8ODBASNJ/kSoPUZyml7X3+/FXwPldrvR6/WMGTNGjCIJgiB0M702SRIdt0/v5Hqe0tJS3G43/rZaGo0GpVKJSqUiNDSUiRMnMmTIkHZPBJomJEajkd/85jenrElqmlB1dILir4GKjo7GZrPhdDo79PEFQRCEs9drkyShZdXV1ezbt49jx46hUqlISEhgzJgxREdHy/sSabVaxowZw/Dhw1EoFJ3aJ8hoNGI0Glu8raM7Czfl3yOr6UiWIAiC0L2IJEmQmUwmPvroI7lnkT/BcDqdzJo1C4CamhqSkpI477zzxPTRaXTGHlmCIHRNBw8eZMGCBezevZtBgwYFrJQVujZlZwcgdA12u52VK1cGNHW02+2oVCoiIyOJjo5mzpw5zJ07lxkzZog3/VbQ6/UkJCQAYDabsdvtnRyRIHSsBQsWoFAomn1ccMEF8jlGo1E+HhYWxjnnnMNHH30UcJ2qqiruuusu0tPT0Wq1JCUlccMNN1BUVNTsMc1mM7fffjuZmZnodDpSU1OZM2cOa9asCXjMJUuWNLvvI488wqhRo077nIqKipg9ezahoaHExcVx7733NuvvdrKHH36YsLAwDh06FBBHZ0lMTOSpp54KOHb//fejUChYv359wPFp06Zx3XXXdWB0XYtIkgQAiouLMZlMAcfUajWTJk2SEyL/m75IkFrPX8C9ceNGNm/eTHV1tUiYhM5lt8Nf/+r73AEuuOACTCZTwMd7770XcM5jjz2GyWTihx9+YNy4cfz6179my5YtgC9BmjhxIqtXr+a1114jPz+f999/n/z8fMaNG8exY8fk6xQWFjJmzBjWrl3LM888w969e1m+fDk5OTkBm8qeKY/Hw+zZs3G5XGzZsoW33nqLZcuW8dBDD532fkePHmXKlCmkp6fTp0+fFs/5pZXDwTRt2rRmydC6detITU0NOO5wONi2bRvTp0/vsNi6GpEkCdjtdvLy8poVF/ft21dsqHmW/AXc/i7hGzZskBMmkSgJneLjj+HBB+GTTzrk4XQ6HQkJCQEfJ6+AjYiIICEhgQEDBrB06VL0ej1ffvklAA8++CBlZWWsXr2aCy+8kLS0NKZOncqKFSvQaDQByc/vf/97FAoFO3bs4LLLLmPAgAEMHTqUxYsXs23btrN+LitXrmT//v28/fbbjBo1igsvvJDHH3+cpUuX4nK5WryPQqEgLy+Pxx57DIVCwSOPPEJhYSEKhYIPPviA7OxsQkJCeOedd/B6vTz22GOkpKSg0+kYNWoUy5cvl6/lv9+HH34olzyMGzeOw4cPs3PnTsaOHUt4eDgXXnghFovllM8jJyeHzZs3yyNgtbW1/PDDD/zhD38ISJK2bt2K0+kkJyeHyspKrr76apKTkwkNDWX48OHNkt1p06Zxxx13cN999xETE0NCQgKPPPJIwDkHDx5kypQphISEMGTIEFavXo1CoeCzzz5r239GBxFJkoDVaqW8vLzZ8ejoaFFwfJb8Bdw2mw29Xo/dbpd7N1mtVux2uxhZEjrWhx/6Pp80pdVVqNVqNBoNLpcLr9fL+++/z7XXXitPXfvp9Xp+//vfs2LFCqqqqqiqqmL58uUsWrSIsLCwZteNioo669i2bt3K8OHDiY+Pl4/l5uZis9n46aefWryPyWRi6NCh3H333ZhMJu655x75tvvvv58777yTAwcOkJuby4svvshzzz3Hs88+y48//khubi5z587lyJEjAdd8+OGH+dOf/sSuXbtQq9Vcc8013Hfffbz44ots2rSJ/Pz8045u5eTkUFdXx86dOwHYtGkTAwYM4LLLLmP79u3y7gHr1q2TF8c4HA7GjBnD119/zb59+7j55pu57rrr2LFjR8C133rrLcLCwti+fTt/+9vfeOyxx+TNhT0eD5dccgmhoaFs376d119/nQcffLAN/wMdTxRu93LV1dX8+OOPWK3WgONarZZRo0aJqbWz1LSAW6fTkZeXJ6940+l0bNiwgYqKCuLi4pgwYUKbmlsKQquUl8MLL4B/OmfFCt/nb7+Fu+/2/VujgcWL4ee9FIPpq6++Ijw8PODYH//4R/74xz82O9flcvHcc89htVqZPn06FouFmpoaBg8e3OK1Bw8ejCRJ5OfnA75tiwYNGtSquP7whz/wpz/9qdnjDxky5JT3MZvNAQkSIH9tNptbvE9CQgJqtZrw8HA50Ttx4gQAd911F5deeql87rPPPssf/vAHrrrqKgCefvpp1q1bx5IlS1i6dKl83j333ENubi4Ad955J1dffTVr1qxh8uTJACxcuJBly5ad8nn079+f5ORk1q9fz6RJk1i/fj3Z2dkkJCSQlpbG1q1bycnJYf369eTk5ACQnJwckODdfvvtrFixgg8//JDx48fLx0eMGMHDDz8sP87LL7/MmjVrmDVrFqtWreLo0aOsX79e/l488cQT8sKgrkgkSb2U3W5nz549bNq0qcVNao1GI6mpqZ0QWc/TtBVB0xVv5eXl5Ofn4/V6qampob6+HpfLhV6vJzs7O6hNOYVezGSCJUvA6QSlEhQK33GPx3fc6wWdDq66ql2SpJycHF599dWAYzExMQFf+xMWh8NBeHg4Tz31FLNnz5ZHuP392U6nNec0de+997JgwYKAYy+99BIbN25s03XOxtixY+V/22w2ysrK5ETHb/LkyezZsyfg2IgRI+R/+5O04cOHBxzzt2w5FX9d0gMPPMD69eu59957AcjOzmb9+vVMnDiR7du3c9NNNwG+UaC//vWvfPjhh5SWluJyuXA6nYSGhp4yNvAViftjOXToEKmpqQGjgk0TrK6o1yZJvbnjtt1uZ8WKFc1+8fyMRiMXXHCBGM1oB00TJoVCIb+w+xMlj8cjF9BnZ2fLjSh1Ot0p95YThNMaNQry8uDyy+HwYV9yBL7PSiUMGgT//S8MHdouDx8WFkZWVtZpz/EnLOHh4cTHx6P4OZGLjY0lKiqKAwcOtHi/AwcOoFAo5OsrFAoOHjzYqrj69u3bLK6Tk7eTJSQkNJte8idyJ08HtkZL04KtodFo5H/7v1cnH/N6vae9Rk5ODnfeeSeVlZX88MMPZGdnA77Xnf/7v/9j6tSpuFwuuWj7mWee4cUXX2TJkiUMHz6csLAw7rrrrma1WE3jaG0sXVmvrUlatGgR+/fvl+dkexOr1UpBQUGz4wqFgtGjR3PllVeKUYwOEBcXR//+/YmKiiIrK4vIyEjq6uoIDw+nrq6OlStX8vHHH/PJJ5/w+eefs2HDBrE6TjgzQ4fCz6vFmtmypd0SpNbyJywJCQnymz6AUqnkyiuv5N133202nWW323nllVfIzc0lJiaGmJgYcnNzWbp0KfX19c0eo6am5qzjnDRpEnv37g0YpVm1ahUGg+G003StYTAYSEpKYvPmzQHHN2/efNbXbklOTg719fU8//zz9O/fn7ifRxGnTp3Kjh07+Pbbb+VpOX8cF198Mb/5zW8YOXIkmZmZHD58uE2POXDgQIqLiwNqYLv6e3CvTZJ6M4fD0eIUW1xcnGgS2YH802rnn38+M2bMYMaMGWRmZhIREUFISAilpaXY7XbcbjeNjY2YTCZWrVrFV199xZo1a0SiJLTNxo2+qTV/EqJQ+L7etKldH9bpdGI2mwM+/DU5rfHXv/6VhIQEZs2axbfffktxcTEbN24kNzcXt9sdUKvjnx0YP348H3/8MUeOHOHAgQO89NJLTJo06ayfy/nnn8+QIUO47rrr2LNnDytWrOBPf/oTixYtQqfTnfX17733Xp5++mk++OADDh06xP3338/u3bu58847z/raJ8vMzCQtLY2///3v8igS+PbgTEpK4vXXX5frkcBXX7Rq1Sq2bNnCgQMHuOWWW1pc8HM6s2bNol+/fsyfP58ff/yRzZs3y3VhTZPjrkQkSb1MdXU1n3/+ebPmZwaDgYsvvliMIHWwpr2noqOjyc3NJScnhxEjRqBWq1GpVPK5ISEhHDt2jIqKCn766SeKi4ux2+0cP36cwsJCkTQJp+df8j95MmzdCueeG3i8nSxfvpzExMSAjylTprT6/n369GHbtm3k5ORwyy230K9fP6688kr69evHzp07yczMlM/NzMxk165d5OTkcPfddzNs2DBmzZrFmjVrmtVFnQmVSsVXX32FSqVi0qRJ/OY3v+H666/nscceO+trA9xxxx0sXryYu+++m+HDh7N8+XK++OIL+vfvH5TrnywnJ4fa2lqmTZsWcDw7O5va2tqAJOlPf/oT55xzDrm5uUybNo2EhAQuueSSNj2eSqXis88+o66ujnHjxnHjjTfKq9u6arsZhdTWarcexr/BrdVqxWAwdHY47cput7Np0ya2bt3a7Lbo6GiuvPLKM5pXF4LPbrezYcMGzGYzoaGhjBo1iqqqKtauXYtSqcTr9TJ9+nRqamo4cuSIXJeRnZ0tRgJ7GIfDQUFBARkZGWf3RvLSS+Bw+Fa0qVS+mqTnnoOQELjjjuAFLAhtsHnzZqZMmUJ+fj79+vVrdvvpfv474v271xZu9yZ2u53y8nIOHjxIYWFhi+f07dtX9ETqQvxTcU33fmvarsFfg3H48GEkSUKSJCoqKrBarXKSZLfbxd5xwv+cnAipVHDffZ0Ti9Brffrpp4SHh9O/f3/y8/O58847mTx5cosJUlcgkqQezj8iUVxcTENDA8nJydTU1OD1elEoFISEhJCQkCBWs3VBTVfCgW+074orrqC0tJTk5GR5+s1qtaJQKIiLi5MTXf92KP6eTJMnTxb/v4IgdLra2lr+8Ic/UFRURN++fZk5cybPPfdcZ4d1SiJJ6uGKi4vl5bMul4va2lqGDRtGUlISiYmJKBQKMdLQjURHRwfUjWVnZ8sN9eLj4+X/x6bbofi7e4v/Y0EQOtv111/P9ddf39lhtJpIknowk8nEunXrsNlsKBQKdDod6enpZGZmBryhCt2XXq8nPT292XH/dij+kaSWplL907D+USjx8yAIghBIJEk9lMlk4v3338dmswG+brQOh4Pvv/+esrIyEhISxBRMD9Z0O5SWRgr907D5+flIkkT//v3FtiiCIAgnEUlSD1RdXc0333wjJ0hNOZ1OADEF0wucXNPUlNVqpaKiQu6EazKZ2LBhAy6XS9QwCYIg/Ez0Seph7HY7a9askbe2OJl/CeWppmCE3iEyMpK4uDiUSiUKhYKIiAjsdntADZMgCEJvJ0aSehir1UptbS1KpVLel06lUtGnTx+GDRtGVlaWKNYW5BYDgwYNQqFQYDAYyMvLO20NkyAIQm8jkqQeJjIyksTERKxWK3a7Hb1eT2pqKtOnTxfdtIUAer0eo9Eof326GqaTiR5M3ZPLBX/9q+/ff/wjaLWdG48gdHW9NklaunSpvM9PT+IfIRg8eDAOhwOdTidWsgmtcroapqZEDyahvT3yyCN89tln7N69u7ND6fIUCgWffvppm7cIacm0adMYNWoUS5YsOetr9RS9tiZp0aJF7N+/v8vvQNxadrtd3h3evyx84MCBGI1G8QYmBFVLPZiErk+SoLAQDh2CvXvhyy/h+HHf8fZisVi49dZbSUtLQ6fTkZCQQG5ubsBO9wqFgs8++yzgfvfccw9r1qxpv8CEFn3yySc8/vjjnR1Gl9JrR5J6kurqajZs2IDdbic2Nlb8ZS+0q9b0YBK6FrsdPvsM+vSB9HTQ6eC88+Cnn2DLFpg3z7eFW7BddtlluFwu3nrrLTIzMykvL2fNmjVUVlae9n7h4eGEh4cHP6CTuN1uNBpNuz9OdxETE9PZIXQ5vXYkqSew2+0cPnyYr7/+mvz8fKqqqjCbzeIve6Fd+XswTZ06VSTk3YAk+RKkqVNh2jRfMqRQQFQU5OT4jn/6afBHlGpqati0aRNPP/00OTk5pKenM378eB544AHmzp0LINfEzZs3D4VCIX/9yCOPMGrUKPlaCxYs4JJLLuHZZ58lMTGRPn36sGjRItxut3yOyWRi9uzZ6PV6MjIyePfddzEajQFTRwqFgldffZW5c+cSFhbGE088gcfjYeHChWRkZKDX6xk4cCAvvviifJ+NGzei0Wgwm80Bz++uu+7ivPPOO+Xzf/755xk+fDhhYWGkpqby+9//nrq6Ovn2ZcuWERUVxYoVKxg8eDDh4eFccMEFASuTd+7cyaxZs+S9NbOzs9m1a9cpH3P69OncdtttAccsFgtarVYemXvllVfo378/ISEhxMfHc/nll8vnTps2jbvuukv++nTn9hYiSeqm/M0Av/76awoLC2loaKCqqoqamhp0Ol1nhyf0cHq9noSEBJEgdWEul+8jP983ghQb6/va4/F9+G+PjYWYGN95weQfDfrss8/k/mwn85c7vPnmm5hMptOWP6xbt46jR4+ybt063nrrLZYtW8ayZcvk26+//nrKyspYv349H3/8Ma+//joVFRXNrvPII48wb9489u7dyw033IDX6yUlJYWPPvqI/fv389BDD/HHP/6RDz/8EICpU6eSmZnJf/7zH/kabrebd955hxtuuOGU8SqVSl566SV++ukn3nrrLdauXct9J20o3NDQwLPPPst//vMfNm7cSFFREffcc498e21tLfPnz+e7775j27Zt9O/fn1/96lfU1ta2+Jg33ngj7777bsD3++233yY5OZnp06fz/fffc8cdd/DYY49x6NAhli9fztSpU1u8VlvO7cnEdFs3ZbVaMZlMOBwOvF4vkiShUChwOp1YLBaxkk0Qejn/KrZDh3xTbFu2+JKjTZv+d45K5fvscMCyZfDee8F7fLVazbJly7jpppt47bXXOOecc8jOzuaqq65ixIgRAMTGxgIQFRVFQkLCaa8XHR3Nyy+/jEqlYtCgQcyePZs1a9Zw0003cfDgQVavXs3OnTsZO3YsAP/85z/p379/s+tcc801/Pa3vw049uijj8r/zsjIYOvWrXz44YdceeWVACxcuJA333yTe++9F4Avv/wSh8Mh396SpiMyRqORv/zlL/zud7/jlVdekY+73W5ee+01+vXrB8Btt93GY489Jt8+ffr0gGu+/vrrREVFsWHDBi666KJmj3nppZdy22238fnnn8uxLVu2jAULFqBQKCgqKiIsLIyLLrqIiIgI0tPTGT16dIvxt+XcnkyMJHVDdrtd7qbd2NiIQqEAfH+5OJ1O9u7di91u78wQBUHoIlwuXw3S6eh0vvOC7bLLLqOsrIwvvviCCy64gPXr13POOecEjAC11tChQ1H5szogMTFRHik6dOgQarWac845R749KyurxT8W/UlUU0uXLmXMmDHExsYSHh7O66+/TlFRkXz7ggULyM/PZ9u2bYAv8bjyyisJCws7ZbyrV69mxowZJCcnExERwXXXXUdlZSUNDQ3yOaGhoXKCdPJzAigvL+emm26if//+REZGYjAYqKurC4itqZCQEK677jreeOMNAHbt2sW+fftYsGABALNmzZL377zuuut45513AuJpqi3n9mRiJKkb8W9Iunv3bvLz87Hb7Xi9XhQKBVqtFqVSSWRkJC6XS2w5Igi93B//6Pv85Ze+Iu2oqMBE6A9/+F+fpJqawBGmYAoJCWHWrFnMmjWLP//5z9x44408/PDD8ht3a51cYK1QKORtddri5MTm/fff55577uG5555j0qRJRERE8Mwzz7B9+3b5nLi4OObMmcObb75JRkYG3377LevXrz/lYxQWFnLRRRdx66238sQTTxATE8N3333HwoULcblchIaGnvI5SU2Kw+bPn09lZSUvvvgi6enp6HQ6Jk2ahOs0Ge2NN97IqFGjKCkp4c0332T69OnyJtgRERHs2rWL9evXs3LlSh566CEeeeQRdu7cSVRUVMB12nJuTyZGkroJf2+a9evXs3//furr6+UXCEmS0Gg0JCcnExkZSWxsrFhxJAi9nFbr+xg71reKzf+1SuX78H+t1cK+fb7zOsKQIUOor6+Xv9ZoNGfdr27gwIE0Njbyww8/yMfy8/Oprq7+xftu3ryZc889l9///veMHj2arKwsjh492uy8G2+8kQ8++IDXX3+dfv36MXny5FNeMy8vD6/Xy3PPPcfEiRMZMGAAZWVlbX5emzdv5o477uBXv/oVQ4cORafTceLEidPeZ/jw4YwdO5Z//OMfvPvuu83qptRqNTNnzuRvf/sbP/74I4WFhaxdu7bFa7Xl3J5KjCR1ExUVFZSVlaHT6Vr860mlUjF+/HgMBoPogiwIgiwtzVePVFrqK9I+WWkplJf7VroFU2VlJVdccQU33HADI0aMICIigu+//56//e1vXHzxxfJ5RqORNWvWMHnyZHQ63RnVUw4aNIiZM2dy88038+qrr6LRaLj77rvR6/VyOcKp9O/fn3//+9+sWLGCjIwM/vOf/7Bz504yMjICzsvNzcVgMPCXv/wloG6oJVlZWbjdbv7+978zZ84cNm/ezGuvvdbm59W/f3/+85//MHbsWGw2G/fee2+rXttvvPFGbrvtNsLCwpg3b558/KuvvuLYsWNMnTqV6OhovvnmG7xeLwMHDmx2jbac25OJkaRuwG63c+DAAWw2GxaLhaioKNRqX36rVCoJDw+nf//+pKamihVHgiAEUCh8fZA2boR163xF2pLkm2Jbu9Z3fN4833nBFB4ezoQJE3jhhReYOnUqw4YN489//jM33XQTL7/8snzec889x6pVq0hNTT2rwuB///vfxMfHM3XqVObNm8dNN91ERESEvKn3qdxyyy1ceuml/PrXv2bChAlUVlby+9//vtl5SqWSBQsW4PF4uP766097zZEjR/L888/z9NNPM2zYMN555x2efPLJNj+nf/3rX1RXV3POOedw3XXXcccddxAXF/eL97v66qtRq9VcffXVAc8/KiqKTz75hOnTpzN48GBee+013nvvPYYOHdrsGm05tydTSFJ79lvt+mw2G5GRkVitVgwGQ2eH0yKz2czGjRvR6/VUV1czceJEJEnCYrEgSRJxcXGkpaWJ5EgQeiCHw0FBQQEZGRm/+IZ/OpLkW+b/0EO+2qRrrvFNsaWlBT9B6gpKSkpITU2VC6iDYeHChVgsFr744ougXK+9FBYW0q9fP3bu3BlQzN4dne7nvyPev9s03VZTU8Onn37Kpk2bOH78OA0NDcTGxjJ69Ghyc3M599xz2yXI3sxut+NwODAYDFRXV2MwGIiNjSUkJITi4mKqqqpwOp2kpaV1dqiCIHRhCoWvFYB/tmTOnJ61we3atWupq6tj+PDhmEwm7rvvPoxGY1B6+1itVvbu3cu7777bpRMkt9tNZWUlf/rTn5g4cWK3T5C6glZNt5WVlXHjjTeSmJjIX/7yF+x2O6NGjWLGjBmkpKSwbt06Zs2axZAhQ/jggw/aO+Zew1+svWPHDhobG9FqtdjtdvLy8iguLqasrIzQ0FCxf5YgCK2i1cIjj/g+elKCBL4E4Y9//CNDhw5l3rx5xMbGsn79+qBsO3LxxRdz/vnn87vf/Y5Zs2YFIdr2sXnzZhITE9m5c+cZ1UAJzbVqJGn06NHMnz+fvLw8hgwZ0uI5drudzz77jCVLllBcXBzQNVQ4M003EvX3zoiLi8NisWC1WrHZbFitVrmHhiAIQm+Vm5tLbm5uu1z7dMv9u5Jp06bRyytogq5VSdL+/fvp06fPac/R6/VcffXVXH311b+4eaHwy+x2O1arFY/Hw/Hjx4mPjyckJASbzYZer8dut5Oenk51dTWDBg0S9UiCIAiCEGStSpL69OnDV199xa9+9SuUyl+eofulhEo4Pf++bIcOHaK2tlZuMHbxxRejUCjQ6XTk5eVRVVVFUlIS8fHxnR2yIAjtTIwQCL1RZ//ct7oFwCWXXEJqaioPPvgg+cHeCbETLF26lCFDhjBu3LjODqWZiooKiouLcTqdcpO12tpaKisrSUhIIDo6WuzCLgi9hL+mpjduCSEI/p/7YNSWnYlWtwAoLi7mzTff5K233qKwsJApU6Zw4403cvnll3frN+mu1gLAP4p08OBBamtr5W1H4uLi5JEk0SxSELoG/7R4e/9OmkwmampqiIuLIzQ09BcbJApCdydJEg0NDVRUVBAVFUViYmKzczri/fuM+iStW7eOZcuW8fHHH6NWq7nqqqtYuHBhlxyV+SVdLUny90RqbGzk2LFjqFQq1Go1M2bMoKqqiqqqKmJiYsQIkiB0Mv/q0474nZQkCbPZTE1NTbtcXxC6qqioKBISElr8w6DL9Unyy8nJIScnh5dffpn333+fZcuWMXHiRIYNG8aePXuCHWOvEhkZSUxMDMePH0eSJDweDwqFApfLJa908y/5F0mSIHSepqtP2/t3UqFQkJiYSFxcHG63u10eQxC6Go1Gg0ql6tQYzmrvtoiICGbMmMHx48c5ePAg+/fvD1ZcvZZer2fy5MmEh4djsVjkmqTw8HBiYmLkv1rFkn9B6Fz+P2g68ndSpVJ1+puGIPQmZ5Qk2e12PvroI9544w02bdpERkYGixcvZsGCBUEOr3fS6/UkJCQQGhqKx+NBpVIRHh7O5MmTO6T+QRCEX+b/g0b8TgpCz9WmJGnbtm288cYbfPjhh7hcLi699FJWr15NTrC3jxaIj49nwIABVFRUEBcXR3x8PHq9XrwQC0IXIn4nBaFna3WSNGTIEA4dOsTo0aN58sknueaaa8SUTzvS6/VkZ2eLv1IFQRAEoZO0OkmaOXMm7733HiNHjmzPeIQmxF+pgiAIgtB5Wp0kvfTSS/K/GxsbWb9+PUePHuWaa64hIiKCsrIyDAYD4eHh7RKoIAiCIAhCR2pz4fbx48e54IILKCoqwul0MmvWLCIiInj66adxOp1i52FBEIQg66imlYIgBGr1tiR+d955J2PHjqW6ujrgl3XevHmsWbMmqMEJgiD0dv6mlRs3bmTz5s3Y7fbODkkQeo02jyRt2rSJLVu2oNVqA44bjUZKS0uDFpggCILQsU0rBUEI1OaRJK/XKzc4bKqkpISIiIigBCUIgiD4+JtW2mw20UhWEDpYm5Ok888/nyVLlshfKxQK6urqePjhh/nVr34VzNgEQRB6PX/TyqlTp4o9GzuK3Q5//avvs9CrtTlJeu6559i8eTNDhgzB4XBwzTXXyFNtTz/9dHvEKAiC0Kv5u/CLBKmdnJwUffwxPPggfPJJ58YldLo21ySlpKSwZ88ePvjgA/bs2UNdXR0LFy7k2muvFb/AgiAIQvfjT4oSE8Fkgi1bfMc/+giuvbZzYxM6lUKSJKktd3jvvfe4+uqrW7zt3nvv5ZlnnglKYB3FZrMRGRmJ1WrFYDB0djjCGRJLpAWhd3E4HBw/fpzS0lIGDRqEQqE4o+vY7XYU115LyLZtoFZDYyMoleD1gkIB55wDo0ZBSAjccgv07Rtw/9DQUFEn1kk64v27zSNJt956K1FRUVx44YUBx//f//t/vP/++90uSRK6P/8Saf9u7KJuQxB6HqfTSVFREQUFBRQWFmIymbDb7ezfv5+RI0eiUqladR23242rqgrNzp1IJSXUhYcTffSor/aksREJqPGmUsEIXFIY2rx64vNWEaksRdHYCAkJAdfTaDTcdtttIlHqodqcJL3zzjtcffXVfPXVV0yZMgWA22+/nU8++YR169YFPUBB+CViibQg9Dwul4vi4mI5KSorK8Pr9WIwGDAajYwbN46QkBA++OADLr30UmJjY3/xmna7nZ07d+L64Qdydu1CJUlI5eVI+Ap07YTwLZcQh0RfYiklHRc6nKoc1LdexLX/L5ymLy0Wi4VPPvmEhoYGkST1UG1OkmbPns0rr7zC3LlzWbVqFf/617/4/PPPWbduHQMGDGiPGAXhtPxLpP0jSa15sRLTc4LQtbjdbkpKSuSkqLS0FI/HQ3h4OEajkdGjR2M0GomJiZGn1kwmEwCxsbEkJib+4mMcP34cp9OJNHgwJCSQaDIhAQpAAv7NFTiJ5hhZSEiUk8Rx0nB7tChfcZL3VhHvXPUVYX95AOLi2u+bIXQZbU6SAK655hpqamqYPHkysbGxbNiwgaysrGDHJgit4l8i3dqkR0zPCULna2xspLS0VE6KSkpKaGxsJDQ0FKPRyAUXXIDRaKRv375nXG/UlL2wEM999zH8xAkkSSLBbAZ8CRJAIWlsYSJ7GEU1UdQQTQolzOYLUillq/dcNtdO5vx/XMZX15qJFklSr9CqJGnx4sUtHo+NjeWcc87hlVdekY89//zzwYlMENpAr9e3OtER03OC0PE8Hg9lZWVyUlRcXIzb7Uav15Oens6sWbMwGo3ExcUFJSk6WfX+/aR/+imqxkYkhQKvQgE/r1uyE8JjPMQuzkGBhxoMhFFLKUm8y/WkUswUNjCFTRzSjOTO51JZdl7QQxS6oFYlST/88EOLx7OysrDZbPLt7fGDLQjBdibTc4IgtI3X68VkMslJUVFRES6XC51OR3p6OtOnT8doNBIfH49S2eaWfW1it9v5Uamk6r77uOCf/yTKYkHl9QK+abZPuIRDDCSUOhyEUI8BFyGARAZHqSGCj/g1qRwnxF2DvdDM1q3RZGa2a9hCF9CqJKknFmQvXbqUpUuXtrjFitCztXV6ThCEX+b1eikvL5eTIn/9j1arJS0tjezsbIxGI4mJie2SFLVUZ+g/5nQ6OXHiBM7MTN763e+48/HH5fsVkYYSCSdaLPQlERMj2c1hBlBDFLsYjwErKRRzjH5ocJPRV8M338BttwX9aQhdzBnVJPUEixYtYtGiRXKfBaF3acv03MlE0bcggCRJVFRUyElRYWEhDocDjUZDamoqU6ZMwWg0kpSU1Orl+WfKbrfz008/yaPDY8aMwWq1cvDgQU6cOEFDQwMWi4XGxkYGHj6MUpLkgu3djERCgRcFGtwUkoESL05CANDiIAQnmRRSQhL5usFIGdHYbO36lIQuotcmSYJwJkTRt9BbSZLEiRMnApKihoYGVCoVqampTJo0CaPRSHJyMmp1x7611NbWUlVVRWhoKMXFxVRWVsr1hh6Ph8bGRvncQQcOAFCUlsaqWbNQ/duNzu3CixIlEko8VBKLBzUqGhnKT0xlE4mY+FRxCV6Ph6qNe0iY3a9Dn6PQOUSSJAhtIIq+hd5CkiSqqqoCkqK6ujpUKhXJycmMHTuWjIwMUlJS0Gg0HR6f3W6noqICu91OZWUltbW1FBQUIEkSjY2NpyylMCUmYomNZeu55yIplRz/VSoTV20hvKEeN2oSqCWGasKp4wBDKCOVYtKoIA6N5CKssZ6yfDv3jCoDIjr2SQsdTiRJgtAGouhb6KkkSaKmpiYgKbLZbCiVSpKSkhg1ahQZGRmkpqai1WrP+vGaTls7HA5KS0tJTk4mOjr6tOfq9Xqqq6tZs2YNx48fZ9++fSgUilb/sbJj4sSAr/uF5RPWUE8sJ6glgv4c4UdGMYDDRFGNDhfxmDjAEKxEEU0VdZlDmHS9gfJy01l/H7qz3lB6IJIkQWgDUfQt9CRWq1VOigoKCrBarSgUChITExk2bBgZGRmkpaWh0+nO+rHsdjvl5eU4nU5cLhf79u2jpqYGrVZLVVUVjY2NhISEMHLkSEaPHi0nS9XV1WzYsAG73U5sbCxDhw5l+fLllJSUUF9fT0NDQ8B0Wlu5++vYNmEiGduPUUg6EdQyhU1sZwLh1JGAiTzOwUkI5cShzwjl5lt1+GvP3W43FRUVREVFnfXrQXdKOnpL6UGbk6SSkhKioqIIDw8POO52u9m6dStTp04NWnCC0BWdTdG3IHQm/5SUPymqrq4GICEhgSFDhmA0GklPTyckJCSoj2u329mwYQMHDx6kvr4er9eL9+cl+E25XC42bdrEjh07GDx4MBqNhkOHDmGz2QgJCaG2tpYjR45QUVEB+BpStnGP9mYUCoicWUuJJgHXdxq2MZHr+TeZHOUbZrONyWh+Hk0azH5GDEvn8svj5edVXFzMtm3bsFgsZ5UodLeko7eUHrQ6STKZTFx88cXk5eWhUCi45ppreOWVV+RkqaqqipycHLGkXhAEoYuoq6uTp84KCgqorKwEIC4ujv79+5ORkUF6ejqhoaHtGofVasVkMrV61MfpdLJ79+6AYw6HQ96GJNg0Gg+5yWu4iyVcxQe8yiL6coLB/MSv+JqNA7ORjquY6VhLXNVA0tOHAb6k0263ExERcdaJQndLOnpL6UGrk6T7778fpVLJ9u3bqamp4f777ycnJ4eVK1fKw6Jnm9ELgiAIZ66hoSEgKbJYLAD07duXjIwMuYFjWFhYh8YVGRmJwWCgrKysQx+3LQYfPMAofmIXY3iaP7CHUVSQiI0oovVukm+NJ754CldOLMPfNzkiIgK9Xk9tbS39+vU7q0ShuyUdvaX0oNVJ0urVq/n0008ZO3YsAJs3b+aKK65g+vTprFmzBhAdtwVBEDqSw+EISIrKy8sBiImJwWg0MnXqVIxGIxERnbsKS6/XM336dDweD8XFxTgcjrOqIwLQaDSEhYUFbWWdKTGRuPJyksxmfpu6jA8n/ZqUr4pRNIBHPYRxt1zAgAFjafo2p9frSU1NZeLEiQwYMOCsEoXumHT0htKDVidJVqs1YNWBTqfjk08+4YorriAnJ4e33367XQIUBCFQdyruFILL6XRy/PhxOSkym81IkkRUVBRGo5Fzzz0Xo9HY7qMQ/p9BSZI4fvw4CoWCAQMGtLgyzS86Opo5c+ZQXFxMdXU1NTU17Ny5Uy7RSE9PJz09nZqaGk6cOHHaUaepU6cyaNAgiouLqaiowGAwnHImQ6fT0djYiEKhQK1W4/F4UCqVREdHU1dXR11dHfC/VW8/NTbK7QGODh7I3CNHGHxOKNqBLddpaTQa4uLigvK72BuSju6m1UlSZmYmP/74I/379//fndVqPvroI6644gouuuiidglQEIT/6W7FncLZcblcFBUVyUmRyWTC6/ViMBgwGo2MHz8eo9F42uQk2Pw/g2azGZPJhMPhQJIkduzYweWXX05iYmKL97FarTgcDrZt20Z9fT2xsbGkpqbKP8sTJ04kLS0NvV6P3W7n66+/pqioiNraWvk6Op2OefPmMXDgQPmYQqHA6/USFxeHzWZDp9OhUCiIj4/nggsuAKCgoIDw8HBiY2Ox2WxIkoRCoWDt2rVIkoTb7UaSJIouuQS3242uvh6lUkl6ejppd96JtgO/v0LX0uok6cILL+T111/nsssuC7zAz4nSZZddRklJSdADFAThf7pbcafQNm63m+LiYjkpKi0txev1Eh4ejtFo5JxzzsFoNBITE9Np5Q3+n0HwJT/+EZyamhrWr1/PJZdcEvAz2TSpKioqwu12A8gr1JRKJQ0NDXz33Xekp6fLif/s2bPl0aqioiIkSWLgwIHNEsKIiAjCw8NxOBz07duX2bNno1AoAkZam97H/2+73U5iYiJ1dXWEhIRgNBoZPnw4BoNBboUQrBEioftqdZL0xBNP0NDQ0PJF1Go+/vhjSktLgxaYIAjNdbfiTuH0GhsbKSkpkZOikpISPB4PoaGhGI1GLrzwQoxGI3379u0yNZ/+n0Gz2SyP+kiShE6nw+PxNEvc/UmV0+mUE6Sm/O0A6uvrsVgs8v2bTj21NDrl50+oPB7PKZtRnup+2dnZDB48GEmSiI+PbzGpEnq3VidJarUag8Fw2tvT09ODEpQgCC3rjsWdwv94PB5KS0vlpKi4uJjGxkb0ej3p6emcf/75GI1G4uLiukxSdLKmP4OSJJGfn09BQQFKpZKEhIRmiXvTpOp07HY7er3+jBL/qKio0yZSp+L/vgvCqQSt43ZxcTEPP/wwb7zxRrAuKQhCC9pa3OmvB9HpdDidzoDkShSBty+v10tZWZmcFPmnm3Q6Henp6cyYMQOj0UhCQkKXTYpacvIoz9ixY+WfMavVKp/j/zx58mQSEhL4+uuvcTgcza6nVCpJTk4mOztb/BwKXUrQkqSqqireeustkSQJQhfirwexWCzU19cTFhZGbGwskydPBhBF4EHm9Xoxm80BSZHT6USr1ZKWlsa0adMwGo0kJiai9O9r0QP4f25O9fOk1+sZNmwYkiSxadMmtFot5eXlaDQaJEkiISGBkSNHYrPZAJol87/E3w+qo+3du5eCgoJOeWyhY7Q6Sfriiy9Oe/uxY8fOOhhBEILLXw+i1WoxmUxER0fLBd+AKAI/S5IkUV5eLidFx48fx+FwoNFoSE1NZcqUKRiNRpKSklCpVJ0dbrtqzaKCrKwsysvLsVgsxMfHExISQkhICGq1mlWrVuF0OlGr1eh0OtLS0sjNzT3tz2RoaCgajYZPPvmkvZ9eM16vlx07dmAwGNq9Y7nQeVqdJF1yySUoFIrTdtXuTsPFgtAb+OtBLBYLBoMBl8tFbGysXPchisDbRpIkLBZLQFLU0NCAWq0mJSWFSZMmYTQaSU5ORq3uXfuHt7So4OTp3Kb1TP7pX4fDwYoVK+Sl/i6Xi4aGBmw2G1lZWQwbNuy0j3nbbbedclFRe9q6dSsOh4Pf/e534nenB2v1b3FiYiKvvPIKF198cYu37969mzFjxgQtMEEQzl5Lb0pNpzFEEfjpSZJEZWWlnBQVFhZSX1+PSqUiOTmZcePGYTQaSU1N7XVJ0cn8P2vl5eUoFAocDgd5eXlYLBZ5JVl0dHSzmjq73d7iZrcej6dV02iRkZEdnqTU1NSwf/9+zj//fDIzMzv0sYWO1erf6jFjxpCXl3fKJOmXRpkEQegcpyv0Fh1+A0mSRHV1dUBSVFtbi1KpJCkpSe5TlJqailar7exwu6T8/Hx5ireuro6GhgZ5Y9qWps/8W5Z89NFHARukazQaQkJCqK6ubnONUntbvnw5oaGhTJ06tbNDEdpZq5Oke++9l/r6+lPenpWVxbp164ISlCAIQkexWq1yQlRQUCA3EkxMTGTEiBEYjUbS0tLQ6XSdHWqX17Quqbq6GpVKRV1dHeHh4fLUW0uJzsCBA7niiivYvXs3arWa/Px8XC4X69evZ8+ePURGRsoLDjo7UTpy5AgHDx7kiiuuEIlyL9DqJOm888477e1hYWFkZ2efdUCCIHQf3bGFQG1tbUBSVF1dLW9jMWTIEIxGI+np6YSEtLxXl3BqTeuSYmNjGTp0KNu3b8dutwfUwp3MbrdTXFyM1+ulpKREbhPgcrk4ceIEOp0uoNFkZ2lsbOTbb78lMzOTIUOGdFocQsc5q0n09957j7lz5xIWFhaseARB6Ca6yz5ydXV1FBYWyklRZWUlAHFxcQwYMACj0YjRaOySsXc3LTU7zc3NPWUi7U+ynU4nZrMZp9PZrAjb4/FQUlJCbGxsp4/mbdmyhZqaGq6++mqxUKmXOKsk6ZZbbmHChAmicE0QeqGuuo9cQ0NDQE2Rv/i3b9++ZGZmMn36dIxGo/jjrp2cXOd2qrq3pkm2v0VFS40mwVfzqlQqcTqdAffvyFHMmpoaNm3axKRJk4iNjW33xxO6hrNKkkShtiD0Xl1lHzm73c7x48flxKi8vBzwtTfIyMhg6tSpGI1GIiIiOiU+oWVNk+yjR4/S0NBwygVAHo8nYBVbZ4xirlixgpCQEFGs3cv07jWrgiCcsc7aR87pdAYkRWazGUmSiIqKIiMjg3PPPRej0Sh613Rx/iS7tLRUbm56uj+8jx07xp49e9BqtYSHh3foKGZ+fj4HDhzg8ssv7/QpP6FjnVWS9O2335KcnBysWARB6GY6ooWAy+WiqKhITopMJhNerxeDwUBGRgbjx48nIyODqKiodo1DCC69Xs+YMWMoKSkJWPp/Ki6Xi5UrV6JWq4mJiSElJQWbzdbuo5iNjY188803ZGRkMHTo0HZ7HKFrOqskacqUKSxbtox58+aJv9oEQQgKt9tNcXGxnBSVlpbi9XoJDw8nIyODc845h4yMDKKjo0XxbDfn34ZEo9EE1Budin+kqba2lqSkJJKSkuRRzPaqUdq6daso1u7Fznq67eabb2bChAkiSRIEoc3sdjuVlZVUVlZy9OhRysrKKCoqQqPREBUVhdFoZMSIEWRkZNCnTx/xJtXDREZGkpCQgNfrlVsxOJ1OXC4XjY2NLd7H6/USGRkpJ8rQfjVKVquVjRs3MnHiRFGs3Uu1OkmKiYlp8XhjYyOTJk2Sd7SuqqoKTmSCIPRIHo+H0tJSDh06xKpVqygsLMThcBAaGkpkZCQpKSkMGjSI2bNni41De7imdW2SJLF9+3Y5aW4pSYqIiGDUqFGkpKQAYDabiYyMbLeVlsuXLyckJET0AOzFWp0kud1usrOzueKKK+RjkiRx4403ct9994naJEEQWuT1eikrK5Onz4qKinC73bhcLpxOJ6NGjcLlctGvXz8sFgvp6el4PB5sNptIknoBf12b2WzG5XLRp08fqqurm50XEhJCeno6LpeLvLw86uvrCQsLIzY2ljFjxgR9peXRo0c5cOAAl112mSjW7sVanST98MMPXHPNNaxdu5alS5cSHh4OwE033cQll1wiuo8KggD4kiKz2RyQFDmdTrRaLenp6UybNo2MjAwiIyPZunUrFouF+vp6FAoFBoMBl8t12u7MQvfnrx9quulyZGQkBoOBI0eOoNFoiIiIoK6uTq5DUqlUVFRUEBISgsFgwGQyER0dTVVVFU6nM6grLf3F2kajkWHDhgXjKQvdVKuTpKysLLZs2cKDDz7IqFGjeOutt5g8eXJ7xiYIQjcgSRLl5eVyUnT8+HEcDgcajYa0tDSmTJlCRkYGiYmJqFSqgPv639j8b5ZN3zS7QmNKIfj89UP+5Ng/GjR58mQGDRpERUUF0dHRlJeXY7fb5Wm3+vp6nE4n0dHRaDSaZgl1MFdabt26lerqan7961+LOrherk2F22q1mqeffprc3FyuueYarr32WvEDJAi9jCRJWCyWgKSooaEBtVpNamoqkyZNIiMjg+Tk5GZJ0ck6ooWA0LX464f8Xbb9o0FWq5X4+HiSkpKoqqoiOjqa2tpaGhoaaGxslN9rHA4HEydOJCMjo10San+x9oQJE4iLiwvadYXu6YxWt02fPp1du3Zx0003ERYW9osvhIIgdF+SJFFZWRmw1Ud9fT0qlYqUlBTGjRtHRkYGKSkpqNWiP61wev4mkhaLpcXRoKaji9u3b6e0tBSbzUZDQwMqlUruk+Rf2RZsK1asQKfTMW3atHa5vtC9nPErWp8+ffjkk0+CGctZaWhoYPDgwVxxxRU8++yznR2OIHRbkiRRXV0dkBTV1taiVCpJTk6W+xSlpqai0Wg6O9wALdW6iJGqruXkROjk/6emo4vZ2dnyyrdNmzZRU1NDUlIS8fHx7RLb0aNH2b9/vyjWFmQ95s++J554gokTJ3Z2GILQLdXU1AQkRVarFYVCQVJSktynKC0tDa1W29mhntLpal1EotS1nDzN6t9/z1+XFhcXF3BORUUFWq1WbjXTHjweD99++60o1hYCBC1JmjlzJseOHePYsWPBumSrHTlyhIMHDzJnzhz27dvX4Y8vCN2NzWYLSIr8jfwSEhIYMmSInBSFhIR0dqitdrpaF5EkdV3V1dWsWrWK4uJi3G43oaGhZGZmMnz4cLRaLVu2bMFkMmG1WtFqtdTX1xMbG0tCQoKcTAXD1q1bqaqq4sorrxS1toIsaEnSvHnzOHHiRJvvt3HjRp555hny8vIwmUx8+umnXHLJJQHnLF26lGeeeQaz2czIkSP5+9//zvjx4+Xb77nnHp555hm2bNlytk9DEHqkurq6gKSosrISgLi4OAYMGIDRaMRoNHbrZOJ0tS5+7bV1hXBm7HY7a9eu5ciRI3g8HiRJQq1Wc/jwYcrKyrDb7dhsNrxeL+Bbmu9wOPjuu+9QqVRkZWUxY8YMgLP6fxXF2sKpBC1JWrRo0Rndr76+npEjR3LDDTdw6aWXNrv9gw8+YPHixbz22mtMmDCBJUuWkJuby6FDh4iLi+Pzzz9nwIABDBgwoFVJktPpDNgjyGaznVHcgtCVNTQ0BCRFFosFgL59+5KZmcn06dMxGo2EhYV1cqTB80u1Lu21dYVw5qxWKzabDaVSKS/1dzqdKJVK3G43Doej2X28Xq98/PDhw/Tv35/i4uKz+n9duXIlWq1WFGsLzZxxkuRPNM62uO3CCy/kwgsvPOXtzz//PDfddBO//e1vAXjttdf4+uuveeONN7j//vvZtm0b77//Ph999BF1dXW43W4MBgMPPfRQi9d78sknefTRR88qZkHoavw1Hf6kqLy8HPBtJ5SRkcHUqVMxGo1ERER0cqTt63QtBdpr6wrhzEVGRpKYmEhNTQ0ej4fw8HDUajU2m63FDW8VCgWhoaE0NDSgUChwuVxUV1ef1f/rsWPH+Omnn7j00ktFsbbQTJuSpFWrVvHCCy+wdetWeQTGYDAwadIkFi9ezMyZM4ManL/9/AMPPCAfUyqVzJw5k61btwK+pOfJJ58EYNmyZezbt++UCRLAAw88wOLFi+WvbTYbqampQY1bENqbw+GgqKhITorMZjOSJBEVFUVGRgbnnnsuGRkZGAyGzg61y/BPxwVz6wrh7Oj1erKzs8nIyGDfvn24XC40Gg0OhwO32x1wrn9vv759+3Lo0CHUajVarZaYmBjq6urO6P/V4/HwzTffkJ6ezvDhw4P99IQeoNVJ0ltvvcWNN97I5ZdfzgsvvCAvwSwvL2flypX86le/4l//+hfXXXdd0II7ceIEHo+n2XLP+Ph4Dh48eEbX1Ol04q8FodtxuVwBSVFZWRmSJGEwGMjIyGD8+PFkZGQQFRXV2aF2WU2n40RNUteh1+sZOHAgaWlp8lTpBx98QH19fcB5SqWSiooK+Q8CgP79+5OamkpqauoZ/b9u27aNqqoqrrjiClGsLbSo1UnSE088wZIlS1qsPVqwYAFTpkzhscceC2qS1FYLFizotMcWhGByu90UFxfLSVFpaSler5fw8HAyMjLkXkXR0dHixb0NRIfvrqvp/01OTg4fffQRHo8H8P1hbLPZUCgUSJKESqVCqVSSlpYW0F+pLWw2Gxs2bGD8+PHt1ndJ6P5anSQVFRWddjptxowZ3H333UEJyq9v376oVCq5vsKvvLychISEoD6WIHSmxsZGSkpK5KSopKQEj8dDWFgYRqNR7lXUp08fkRR1MrFCrv0NHDiQ3/zmN+zdu5fk5GQSExP58ssvsVgs8s9/dHQ0GRkZZ/wYolhbaI1WJ0lDhw7lX//6F3/7299avP2NN95gyJAhQQsMQKvVMmbMGNasWSO3BfB6vaxZs4bbbrstqI8lCB3J4/FQWloqJ0XFxcU0Njai1+sxGo2cf/75ZGRkEBsbK5KiLkSskOs4/rYUfnPmzOHgwYOEhISg0+nkkdQzcezYMfbt28e8efO6VS8woeO1Okl67rnnuOiii1i+fDkzZ84MqElas2YNx44d4+uvv25zAHV1deTn58tfFxQUsHv3bmJiYkhLS2Px4sXMnz+fsWPHMn78eJYsWUJ9fb282u1MLV26lKVLl8rDuYLQnrxeL2VlZXJSVFRUhNvtJiQkhPT0dGbMmEFGRgbx8fEiKerCxAq5zmG32/npp5/k5HTUqFHo9fozGtXzd9ZOS0tjxIgR7Ry50N0pJH8FXCsUFhby6quvsm3bNsxmMwAJCQlMmjSJ3/3udwFZf2utX7+enJycZsfnz5/PsmXLAHj55ZflZpKjRo3ipZdeYsKECW1+rJbYbDYiIyOxWq1iJZAQNF6vF7PZLCdFx48fx+VyodVqSU9Px2g0kpGRQUJCQrtutSAElxhJ6hxms5mNGzdiMBiw2WxMnToVnU7Hhg0bsNvtbdp+ZsuWLaxatYpbbrlFlG10cx3x/t2mJKknEkmSEAySJFFeXh6QFDkcDjQaDWlpaXJSlJiYiEql6uxwhbMgapI63snJ6ZgxY9iwYQPHjh0jPDyciIgIcnJyfjHpsdlsvPzyy4wePfq0/fmE7qEj3r97zAa3gtCRJEnCYrHISVFhYSF2ux21Wk1qaiqTJk0iIyOD5ORkkRT1MKdaISeSp/ZzcvsGq9WK3W4nPDycuro64uLiWtUfaeXKlWg0mhZnLwShJSJJEoRWkCSJysrKgKSovr4elUpFSkqK3KcoJSUFtVr8WvU2Yhqu/Z2cnMbGxsrNJ/01SqdTUFDAvn37uOSSS0SxttBq4tVcEFogSRLV1dUBSVFtbS1KpZLk5GS5T1FqaioajaazwxU6mSjo7lh6vZ6hQ4dy+PBh7HY7q1ev5rLLLjvlajd/Z+3U1FRGjhzZwdEK3ZlIkgThZzU1NXJSVFBQIDevS0pKkvsUpaWlodVqOztUoYsRW550vMrKShwOB2FhYdhsNkpLS0+ZJG3fvp0TJ05wyy23iNWjQpv02iRJtAAQbDZbQFJUU1ODQqEgISGBoUOHykmRGJoXfklrtzwRdUvBk5ycLK92Cw8PR6vVYrfbm31fa2trWb9+PePGjROr2YQ2C+rqtscee4ycnBzOO++8YF2y3YnVbb1HXV1dQFJUVVUF+LY88K8+S09PF29eQrvw1y1ZLBZ5Y9czbYYo+FRXV3Po0CEKCgpoaGggMjKSGTNmBHxfP/74Y44dO8btt98u/uDpYbrd6rY333yTp556ihkzZvDll18G89KC0Gb19fVyPVFBQQEnTpwAfAWf/fr1Y+bMmaSnpxMWFtbJkQq9gdVqxWKxUFtbi8lkAiA3N1ck5WchJCRE7lzv700GMHv2bPR6PYWFhezdu1cUawtnLKhJUkFBAXa7nXXr1gXzsoLQKna7PSApqqioAKBPnz4YjUamTZuG0WgkPDy8kyMVeiP/FJvJZCI8PFyeehNJ0pkrLy/HYrEgSRIejweVSkV1dTVWqxWtViuKtYWzFvSaJL1ez69+9atgX1YQmnE4HBw/flxOisrLy5EkiejoaIxGI1OmTMFoNIppVKFL8E+xAXKX6FMVeIvapV9mt9vZt28fNTU1cm2px+PBarUiSRI7duzAYrFw8803i2Jt4Yy1OUlavnw54eHhTJkyBfAVQP/jH/9gyJAhLF26VMyxC+3G6XRSVFQkJ0UmkwlJkoiMjMRoNDJx4kSMRiNRUVGdHaogtCg6Oprc3NzTJkB2u50NGzZQUVFBXFwc2dnZIlFqgb/tgk6nw+12I0mS3I6jqKhILtZOTEzs5EiF7qzNSdK9997L008/DcDevXu5++67Wbx4MevWrWPx4sW8+eabQQ9S6J3cbndAUlRWVobX6yUiIgKj0cjYsWMxGo1ER0eLvxSFbuNUHbv9KioqOHLkCJIkYbVaGTx4MOnp6R0YYfeg0+kICwujsrIShUKBSqWisbGRqKgoDh06hFqt7tKdtcVoYffQ5iSpoKCAIUOGAL5VAxdddBF//etf2bVrl5hmE85KY2MjxcXFclJUWlqKx+MhLCwMo9HIqFGjMBqN9OnTRyRFQo8lSRIKhSLgsxDIbreTl5eH3W4nKioKpVKJy+VCp9MxYsQIVq9ezcUXX9xlkw/Rob37aHOSpNVqaWhoAGD16tVcf/31AMTExGCz2YIbXTsSfZI6n8fjoaSkRE6KSkpKaGxsRK/XYzQayc3NxWg0EhsbK5IiodeIj48nKytLnm6Lj4/v7JC6HP9KwYaGBrm/WUpKCm63m+XLl5OUlMSoUaM6O8xTEh3au482J0lTpkxh8eLFTJ48mR07dvDBBx8AcPjwYVJSUoIeYHtZtGgRixYtkvssCO3P4/FQVlYmJ0XFxcW43W5CQkJIT09n5syZGI1G4uPjRVIk9Fr+Au9TTcWIaZr/rRQsKytDoVDgdrsxmUxUVFSQn5/P8OHDcTgcXfb7Izq0dx9tTpJefvllfv/73/Pf//6XV199leTkZAC+/fZbLrjggqAHKHRfXq8Xk8kkJ0VFRUW4XC60Wi3p6enk5ORgNBpJSEhAqVR2driC0GWcqm5JTNP4+BNJu91OWVkZMTExuFwu8vPzGTFiBF6vl6NHj9KvX78u+f1pbYd2ofMFteN2dyQ6bgePJEmYzWY5KTp+/DhOpxONRkNaWhoZGRkYjUaSkpJEUiQIZ8BsNrNx40Z5O46pU6f26q02qqur2bBhA3V1dfz444+YTCbGjh2LQqEgJiaGhISELp1IilHBs9OlOm7/+OOPLR6PjIwkLS1NTI/0QpIkUVFREZAU2e121Go1qampTJ48GaPRSHJyMiqVqrPDFYRuT0zTBIqOjiY7O5sPPviA/fv3YzQasVqtAKjValQqVZet9xGjgt1Dq5OkUaNGtbjSQqFQEBISwl133cVjjz0m3gx7MEmSOHHihJwUFRYW0tDQgEqlIiUlhQkTJmA0GklJSUGt7rV7JwtCuxHTNM3V1NSwdu1a1Go1ffv2ld+jbDYbSUlJXTaRFMXb3UOr38kKCgpaPF5TU0NeXh5//vOfiY6O5p577glacELnkiSJqqqqgKSorq4OpVJJcnKy3KcoNTVVbuImCEL7+qU+S369ZSpn9+7d2Gw2hg4dGjCjERYWxqhRo7rscxejgt1D0GqS/vvf//Loo4+yd+/eYFyuw4iapEA1NTUUFBTISZHNZkOhUJCUlCTXFKWlpaHVajs7VEEQTqG3TOXU1dXx/PPPU19fT0REREBLF7VaTWxsLFdccQUhISFdMmHsLYlse+lSNUm/ZMyYMaccbRK6LqvVGjBS5O85kpCQwLBhwzAajaSnp6PT6To7VEEQWqm3TOWsWrWKkJAQFi5cyLp16yguLsbj8cjJUnV1NYcOHaKurg6LxSKviusq22e1dlRQ6DxBS5LMZjOxsbHBuly7663NJGtrawOSoqqqKsDXwG7gwIFkZGSQnp4ufnEFoRvrDVM5RUVF7Nmzhzlz5pCcnMzs2bNZs2YNxcXF1NfX4/V6kSRJbj3S0NCAyWQCIDc3V7zGCa0SlOk2i8XC1VdfTVpaGm+88UYw4uowPX26rb6+PiApOnHiBACxsbHy9JnRaCQ0NLSTIxUEIZhON5XT3ad5vF4vr7/+OiqVihtvvFGuRbLb7VRUVFBUVMSBAweIi4vDbrcDYDKZCA8PJyIigpycnF7dOqGn6FLTbaNHj25xmb/VaqWkpISBAwfy9ttvBzU4oe3sdntAUlRRUQFAnz59yMjIYNq0aRiNRsLDwzs5UkEQ2lNPbki5c+dOysvLAxIk8D3n9PR04uLicDqdVFVVERsby9ChQ9m+fTt1dXVotdpukSB290S2p2h1knTJJZe0eNxgMDBw4EByc3PF8v9O4HA4OH78uJwYlZeXI0kS0dHRZGRkMGXKFIxGY48cJRMEoe26e71SXV0d69at45xzzpF3fDhZS60SsrOzWbt2LSUlJZhMJrKyssjOzu6Sz70nJLI9RauTpIcffrg94xBayel0UlRUJCdFJpMJSZKIjIzEaDQyceJEjEYjUVFRnR2qIAhdUHevV1q9ejUKhYIZM2ac9ryTR9KcTif19fUoFAq8Xi8VFRVdNkH0b+CrUqkoKSmhvLwco9HY2WH1Sq1Okqqrq3n77beZP39+s1EJq9XKv//97xZvE86Oy+WiuLhYTorKysrwer1ERERgNBrlXkXR0dGi67kgCL+oOzekLC4uZvfu3cyZM+e0dZQnT1XZ7XZKS0txOBw0NjaiVqsJCwvrsqt2dTodtbW1nDhxApVKxb59+4iPj+9W/1c9RauTpJdffpkff/yR22+/vdltkZGRbNq0CZvNxoMPPhjUAHubxsZGiouL5Zqi0tJSPB4PYWFhGI1GRo0ahdFopE+fPiIpEgThjDQdZekutS9er5evv/6apKQkRo8efcrzTp6qGjNmDBs2bGDfvn14PB40Gg3Jycm4XC7y8vK65FSWf8/LkJAQlEplt5wW7SlanSR9/PHHPPfcc6e8/ZZbbuGee+4RSVIbNTY2UlpaKo8UlZSU0NjYiF6vx2g0kpubi9FoJDY2ViRFgiAEVXeqffn+++/lYu3TbZB9cs1VaWkpZWVlcrsXt9tNeXk5Q4YM6bLJh06nkzcxVqlUxMXFdbtp0Z6i1UnS0aNH6d+//ylv79+/P0ePHg1KUD2Zx+OhrKxMToqKi4txu92EhISQnp7OzJkzMRqNxMfHi6RIEIR21V2KuOvr61m7di2jR48+ZbG238k1V8nJycTFxWGxWORzlEolFouF1NTULpd82O12tm/fTm1tLYmJiYwcOZK0tLQu+f/SG7Q6SVKpVJSVlZGWltbi7WVlZafN7nszs9nM0aNHKSgokBub6XQ60tLSyMnJwWg0kpCQIL5/giB0qO5SxO0v1p45c+YvnttSzdXYsWOpqqrCZrPhdDpRKpVEREQwZsyYLpd8lJeXk5+fj9frxWazkZWVBXSfadGepk19kj777DMmTpzY4u2ffvrpaeeJewun04nT6ZS/rqys5IUXXsBgMJCWlsaYMWNIS0sjMTExICmqq6vrjHAFQcC3mXNtbS1JSUm96o+VthRxd9abdHFxMT/88AMXXXRRq5venryyLT4+nszMTI4fP05NTQ2pqal4vd6A1+quQqFQIEkSkiThcDjYs2eP3O/OZrN1+WnRnqbVSdJtt93GVVddRUpKCrfeeqvcE8nj8fDKK6/wwgsv8O6777ZboMHWXtuSPPnkkzz66KNBvaYgCB2juLiYlJSUzg6jQ7Vm/7DOql3yer188803JCYmcs4555zxdfR6PWPGjMFqtVJXV0d5eTlZWVldcuQsLi6O/v37U1xcDPh2R/AnSXFxcV16WrQnatO2JA8++CBPPvkkERERZGZmAnDs2DHq6uq49957eeqpp9ot0PYS7LbmJ48kWa1W0tLSKC4uFu0RBKGLstlspKamUlNT0yXfODub2Wxm48aNcjHx1KlTO2Rbj507d/L1119z4403nnXy6n8OoaGhVFVVkZ2dTXp6epAiDS673U55eTkHDx7EZrPJ7x1iJClQl9qWBOCJJ57g4osv5p133iE/Px9JksjOzuaaa65h/Pjx7RJgd6PT6VrsvWEwGESSJAhdnFgs0bLIyEgMBgMVFRUdttKqvr6eNWvWcM455wRldK9p/VVSUhJxcXFBiLJ9+Fc3x8fHy1OcgKhJ6gRtSpIAxo8fLxIiQehO7HZ44QX4f/8PxIurcJYaGxspKipCp9O1a4PDNWvWAPxiZ+3W6o5NNE/uZyV0vFZXKNbX13PrrbeSnJxMbGwsV111VcCSSkHoTex2O2azuXu8cH38MTz4IHzySWdHInRTVqtVnuo5evQo3377LV999RUbNmxol9+BkpISdu3axYwZMwgLCwvadfV6PQkJCd0iQWrKXxO2ceNGNm/e3D1ed3qIVidJf/7zn/nPf/7DRRddxDXXXMPatWu5+eab2zM2QeiSut0L1ocf+j5/9FHnxiF0W02nqiRJarb/WTD5O2snJiYyZsyYoF67u2qpn5XQMVo93fbpp5/y5ptvcsUVVwBw/fXXM3HiRHkfHEHoLbp8A77yct/0mtvt+3rFCt/nb7+Fu+/2/VujgcWLoQvXZQhdh3+qqqKigr1791JQUIBCoWiX+qRdu3ZhMplYuHBhr2rHcDrdpZ9VT9Tq7KakpITJkyfLX48ZMwaNRnPaBpOC0BN1+RcskwmWLAGnE5RK8Bcjezy+414v6HRw1VUiSRJaTa/Xk56eTlxcHBUVFUiSFPSapIaGBtasWcPo0aNJTU0N2nW7O3+SWl5eLhYXdLBWJ0lerxeNRhN4Z7U66H2GBKGr6/IFoKNGQV4eXH45HD7sS47A91mphEGD4L//haFDOzVMoXvyJ0vtYfXq1UiS1KrO2r1Rfn5+t9hnrydpdZIkSRIzZswImFpraGhgzpw5aLVa+diuXbuCG6EgdEGtacAHdN7KsqFDYcsW6Nu3+W1btkB0dMfFIgitUFpayg8//MCFF14Y1GLtnqLLT/P3UK1Okh5++OFmxy6++OKgBiMIXUXQtmDwryxLT4drrw1egK2xcaNvak2hAEnyffZ6YdMmmDu3Y2MRhNPwF2vHx8czduzYzg6nS+ry0/w91FklSYLQEwV1C4amK8s6Okn6ecm/Z9Ikav74R6KeeALV1q2+4yJJErqQXbt2UVZWJoq1T6PLT/P3UGe0LM1qtWI2mwFISEgQGa3Qo5zVsPYpVpZJ33xD4513olGrO25l2ZgxuAcMYMPYsVRZrcQ8/DDZ33+PJiKifR9XENrAX6w9atSooBVrd9ZmvO2t1dP8QtC0KUn65z//yfPPP8+hQ4cA5H4ZAwcO5O6772bhwoXtEqQgdKSzGtY+aWWZpFCgACSPB/Xf/+6b9uqolWV33EGl2UzVz3tuVVmtVC5c2CF7bglCa61ZswZJkpg1a1ZQrtdZm/EKPVOrk6RnnnmGRx55hDvuuIPc3Fzi4+MBKC8vZ+XKldx5551UV1dzzz33tFuwwbR06VKWLl0qVucJzbRlWLvpX6wA1oQEojZvJuQ3v4HDh1H8/POl9HqRFAoas7JQf/ZZh60sE3UMQldWWlrKrl27uOCCC4JWrC0KnIVgUkiSJLXmxPT0dJ555hmuvPLKFm//4IMPuPfeeykqKgpqgO2tvXcR7ohdioXga81wvf8vVovFgkajISQkhIaGBt9fr0OGoE9N9RVK/0xSKHCUlKBPSurwOHvi1EMwid/TjidJEv/85z/xeDzcfPPNQatFEiNJvUdH/N62eiSpoqKC4cOHn/L24cOHc+LEiaAEJQidqbUvslarFYvFQm1tLVarFY1GQ79+/aiqqsKxciX6JivLJEAhSei//75Z0fSZJjGtjVPUMQhd0a5duygtLeWGG24IarG2KHAWgqnVP5njxo3jqaeeorGxsdltHo+Hp59+mnHjxgU1OEHoDK3dJ8n/AlxXV0dERARKpZLq6mpiYmKIWLXKd9LkybB1Kwp/t/qTNpm12+1s2LCBlStXsmbNGgoLC1u9F5zYz0norvzF2iNHjmyXHRu660a2bdGtNtnuxlo9kvTyyy+Tm5tLQkICU6dODahJ2rhxI1qtlpUrV7ZboILwS4I1rdTaOh69Xk92drb82NHR0QwaNIj4+HjU+/fDyJG+vdJUKtiwAZ57DkJCAq5RUVHBkSNH8Hq9mEwmLBYLqamprZoiaGu9kST5Ft1pNP/bqUQQOsPatWvxeDxBK9bubcSUYsdpdZI0YsQIDh8+zNtvv822bds4duwY4GsB8Je//IVrrrlGzOULnSaYLxptGa6Pjo4mNze3+bl33BF4okoF993X7P5Nd1T3eDyEhoa2WGzaUgLY2jjNZti61ddou74ewsLg3HNh0iQQC92EjlZWVkZeXh4XXHAB4eHhnR1OtySK0ztOm1oAREREcOutt3Lrrbe2VzyCcEaC/aLRljqes6n5iY+PJysrC7PZTFhYGF6vl9jY2IBRodMlgL/02Hv3wuuvQ2kpGAy+nVEsFvjPf2DtWrj5ZjhNqaEgBJUkSXz99dfExcWJ8oyzcPIosk6nw2w2ixqsdnBGzST93G43hYWFxMXFiaXFQqfqrkvd/VN2VqsVnU6H0+ls9kJ3pgmg2exLkCwWGDbMt7etn9fr2/v29dd9u6aIESWhI/zwww+Ulpby29/+VnTWPgtNR5F1Oh15eXli6q2dtPqn9G9/+5tcIObxeLjnnnsIDw9n0KBB9O3blxtuuAG3v8uwIHQw/4vG1KlTu92LhL/INDo6usViU51Oh1arlYvCW0oAXa7mH5s2QXEx9Ovnq0fyeP73IUm+40VF8N13Ld9fEILJbrezevVqRo4cSXp6eoc+bk8scPa/bjidTrGAox21eiTpgQceYMGCBej1el544QXeeOMNXnvtNSZMmMAPP/zA4sWLeeGFF7ivhboLQegInb3U/WwKx091X7vdzg9btpDx3nscv/RSxowZI9/e9D5PPx34eJIEq1ZBQwPU1Jz6cWtq4PnnfdNyJxdzP/JIm56CIJxWZxRr94YCZ/8ousViQa/Xo9PpOjukHqXVSVLTnpPvvvsuTz31FL/97W8BGDJkCABPPvmkSJKEXulsXoxPd1+r1Uro8uWM/PBD7HFxOJuspmt6H7c7G41GI1/T6/WtZFOr8Q0dlZRASoqvgLwJtdp3ntfb7CZBCJqysjK+//57cnNzO7RYuzcUOOv1esaMGcOGDRuw2+3k5eX1yGSws7SpJknx85+aRUVFnHvuuQG3nXvuuRQUFAQvMkHoRs7mxfh0942MjKRfXh4Ambt2EeHf/uSk+9xyS2XAnmyS5FvJduIEpNv2w3efwchLmlVpHz8OffvCn/4k2gII7UOSJL755hvi4uIYP358hz52d61VbCun04nL5SI6OrrHJoOdpU1J0j/+8Q/Cw8PRarVUVVUF3FZbWyuG+YRe62xWmzR7IXc44P77we1GD4T8nCTFfv89ij/9CYA+CgXxEyZQbrMRExNDbGwkWm3gdc87z7eKTbH/J5R44OBPMOp/SZLXC7W1cOmloNWKHkpC+9i9ezclJSWdUqzdW7pv95ZksDO0OklKS0vjH//4B+ArJN21axdTp06Vb1+3bh0DBw4MfoSC0A2c0WoTux1eeAF+9zv69++PJEnEx8ejP3QIliwBpxOUSnkEV+Hx+I57vWh0OiZcfjk1RmPzF//ycnjhBSbVhLC2YAaHjioYiALFkSOwfAVeSQEqJUfiJhMdo6eqytfCSfRQEoLNbrezatUqRowY0aHF2k11dq1iR/C//pSXl+N0OqmoqCAuLq7HP++O0OokqbCw8LS3T5gwISBpEoTexv9ibDabWzf19vHH8OCDHK2tZf/o0cTExPg62Y8aBXl5cPnlvnX6Ho/vfI/Ht45/0CD4738JGToUfx4TUPhtMsGSJSQ4ndyk+JTXpZvYyVjsXj3V26NxEIIXNQmjGumrgK++Ej2UhPYhOmt3HIfDQV5eHqWlpSgUCvr37092drZIlM5Sq8c+H3roIfJ+HvZvycSJExk9enRQghKE7sw/9G37eSqs2dC33Q5//Su89x4A0atXYzAYsFgsHD161LdUeehQX4vsk0iAfc0a3+3y5XxF3Bs3bmTz5s3YBw70JVmDBjFcsY/L+C8KJMpIwYGeEK1E3Kgkiqoi2LcPYmPBaIT4eN/nYcN8ydLrr7gxP/CiL15BaCOTycT333/PtGnTiIiI6OxwejT/HpDHjh2joaEBr9dLRUWFaAcQBK0eSSopKeHCCy9Eq9UyZ84c5s6dy4wZM9CeXAghCL1MdXU1paWlJCcnEx0dfeo6iJ+nwdizB5Yvl5eTJe7ejfWll0hwOiE0lK3XXkvy6NFEbdhAvNfrKxKSJCRA4fVy6J//ZOC99wasgGs2cvVzkmXuM5SPuIJw6rmcD5FQIv3udo6WhXHiR18Iu3bBlCnQdNFRv36wb7mZTbs2cmFWAprf/FquVRK/8sIv8Rdrx8bGdnixdm9ktVqx2+2EhYVRXV2Nx+MRTZ6DpNVJ0htvvIHX62Xz5s18+eWX3HXXXZhMJmbNmsXFF1/MRRddRExMTHvGGlRLly5l6dKlePxTGYJwBqqrq/n444+x2WwYDAYuu+wyOVE6eZjbdugQ4S+8gNLfqfHnnz2FJDF4+XIUkkSjWs3ugQP50WzmgvfeIx7wTJpEzR//iPfuu4k9dIjINWuw3nxzwAq4mJgYKipqiI7ug14f6WsGuWYT30nnspbpxFKB+efJudpPq6jwhNHYqESng4pyifrjJ+g7IAaUvsTN5QLzAQ07eYmnFzeg/Rekpvo+nn22Q761Qje2e/duiouLWbBgASrRW6LdRUZGEh0dTUVFBXq9npSUFCZMmCCm2oJAITVtgNRGBw4c4Msvv+Tzzz8nLy+P8ePHM3fuXK6++mqSk5ODGWe7sdlsREZGYrVa22WD3va+vtCxTm76uG/fPlauXEloaCgNDQ2cf/75DBs2LOD82vx8Qv/v/yg4fBhldTVDvv+ekxeQSYA1NpaPf/MbqpOS0Gg0jNq4kXC1muTnnycyJobNGzcS++9/ExIVRdqzzzZrOvnnP3vQ6XRyvyTpk09ZtTeOY+pBaKL1UF2NqtGNS6PDpo1HoVCiUoHb7qbR5SFEpyBK24Dbo6TWrUPlbkCFByNFePrG4/SoidC5+Nd7YQyf1qcDvtsdR/yeBo/dbufll18mMzOTyy67rLPD6TUKCwvZuHEj0dHR2O12pk6dGtAWpCfqiN/bs9q7bfDgwQwePJj77rsPi8XCF198wRdffAHAPffcE5QABaGraKnpY3JyMgaDQR5JavrHgf98765dzPi//2N4YyOSQoGkVKLweptdf/VVV2FLTSVUp8PtdrM3J4esrCyGxMT4pvCmTsU6cmTAFF7TpM3fpM/tduN0OtHGJeBONpIcF4M+1EtNtZ7KAi0olBgMvoEsnc6Ls74GJW7SVSaodVNEKiE4ScREGPVMZy3SCSXgJV85iNdfy+bBQWL1m9CydevW4Xa7Of/88zs7lF4lPj6epKQk0QYgyM4qSQJfJrd27VoGDRrEwoULWbhwYTDiEoQup6Xan4SEBC677LKAmqRm548YwVePPsp5L75IlMWC8qQESQIUQKQkEdK/P7W1tQwcOFBe7XaqIfOTk7b/9/8mA7Blyxaqq6uJmh5N7bd9sVoVpKercLsjcDqd6BobObpyLz9WJBIlWWlotBNKPdMa1nMwaRrV5gb6es2Uk0A4taxlOi60aEPUJJ+XwZGaSL77DubODYxH1CoJZrOZnTt3MmvWLFGs3cF6S0+ojtbmJOnKK69k6tSp3HbbbdjtdsaOHUthYSGSJPH++++L4VWh3ZzN3mjBcKqGbdHR0QHJ0cnnWywW6uPiWPHww1x1220B50gKBRVGI/EFBSRu3cquceMwGAxkZGQEXLOlUaymSZvVbEb51GPU33wztbWVxMQYqK6uICurjLVrk1Eo1ISEaAgJ0VB3rALn4eOUkkER4UhALBY2kE1JWTIuNFgYghMtVUSjxY0SL96IRI7s8i2INZub7/cm9nrr3SRJ4uuvv6Zv375MmDChs8PplZou5vB/3dmvm91dm5OkjRs38uCDDwLw6aefIkkSNTU1vPXWW/zlL38RSZLQLrrCRpX+PZL8o0Yn1wSd/ELk/8vu6NGj7N27l4HFxSj8q9QAFAoUksS27GziR42i3uvF7XZTXV3N9u3bA3qcnDyKVVFRAYDBYKC6upr+339PxIsv4oiPxzBoECdOnMBms6FS7UShULB/fxJDhqixWGDn/j5YEs5DY3bTiAYvCmqIwkEIbrR4UeJBiQ4XEdQ1qZ9yIIWFUlsLZWVgs4EY0Rf89uzZI4q1O5n/ddK/2e2ECRP46aefevQGv+2tzUmS1WqVV7EtX76cyy67jNDQUGbPns29994b9AAFAbrGRpX+zSOrqqowm83yC84vJXARERG+0aZ16wBwjx9P7UMPEfXEE6i2bmXwoUN8dfnlaDQaHFVVKJVKbDYbgwcPlrsUNx3FMhgMHDhwgOrqalQqFSqViviNGwFwvv02jT8P6djtdiIiqpg0aR+HDvXh++/VHDsGDocXtBAaryK1/CBxVGDDwAliqSWCcK0dpctNYngDiswMKCiAWivghLSBVFdDQwOMGxc45eZyiSm33srhcLBq1SqGDRuG0Wjs7HB6LavVisVioba2FpPJhN1ux+PxoNfrsVgsYk+3M9DmJCk1NZWtW7cSExPD8uXLef/99wHfUuiQkJCgBygI0Ll7E9ntdsrLy6mqqsJisTTbRPJUCZy/wVtFRYVvSiwri11JSfwwfTq66mrC776b8/ftI0WnY9q0aezfv1/eJFqtVmMymeStBZrWGzgcDn5YvpzBn32Gu6EBpUpF0t69ACTu2UPNyy/jalSSBeyYNInMEfHMm6fkH//wNfCOilLidCqI0xbgLLfjIgQdLhIpw0EGFY1xhIV6aYwOgxoFRI0ApQ2vS4n9gG/7EpUK7rkHPvsM0tL+12NJTLn1TqJYu2vwj2SbTCbCw8Nxu93U1dVRUVFBeHi4vBpMJEqt1+Yk6a677uLaa68lPDyc9PR0pk2bBvim4YaLPQyEdtJZRYn+RCc/Px+v1yv/IRAbGysnaqfa3NZms3HkyBEkSaKqqorq887DYDBQU1hIiNtNeXk5nw8YwAUXXECS08nu3btRqVR4vV4kSeLgwYPU1dU1G5mKjIwkym5n2Jo1qBsb8SoUcnGQwutl6MqVPCo9hFehZL9jEukNE9i3T8/mzb692QwGFV5vBI0H1JhJwqPW4AoLI6ShAZdbhUvS4vWqcVr9l1Xg8UQiSeC2+xIknc63tdyPP0JhIYwZ4+vYLfQ+ZrOZHTt2MGvWLNE+oZPp9Xqys7MB32uXXq9HqVTSt29fzGYz27Zto6ioSEy7tUGbk6Tf//73jB8/nuLiYmbNmiXv6pyZmclf/vKXoAcoCH4dsVGl3W6nqKiI+vp6MjIy5M0ivT+vSNNoNAwfPpx+/fo1qz06eXNbf8LT9L41NTV4PB6sVitKpZLS0lI2bNjAhAkTcLlceL1eFAoFer2ePn36YDWbaXzsMez33svmXbvkRCxr3jw+qqwk9/XXibZYUPzc7kzp9SIpFDjCIyidPBkpLAyFQoHXCw6HB/AiSUrUahXeqChiNXbqokNRqyUiDfHYCy0UVrtA73tpUP/8ClFbCyqVl6goL0lJCrxeFaGhkJMD+fm+ZOqGG9r1v0bogvydtUWxdtcRHR1Nbm5uwOtRWVkZSqWy2Si48MtanSSdd955XHzxxVx88cWMHTuWsWPHBtw+e/bsoAcnCB3JbrezZs0aDu3ezZiNG/lk7lx+ddllxMXFYbPZkCSJxMTEgATJ7+TNbUNDQykvL0epVOJ0OlEoFNhsNqqqqgK6vKtUKurq6jCZTDidTvm6ycnJ2O12huzbR8TTT1OTkkJVbKw8pVdXVwdDh1Iwbx4xr78e+EQkiezX06mWSoiOjubcc7OQJDv791dgsUikpnpJTU1FMzEBz5Yt2EfEogsPR6NRUVCQQGKNb5QoIgJKS337uLlcXiIiGtDpHLjdKlyuSAYO9DWj7N8f9u2DHTta7p0k6pR6rh9//JGioiLmz58virW7kKZ/UE6ePJmKigoOHDhw6v0khVNqdZJ000038fnnn/Poo4+SkpLC3LlzmTt3Lueeey4Kxcn9gwWh+7FarZhMJrJ+/JFpq1ZR16cPldOmkZ2dzaBBg1AoFHKN0KlERkZiMBg4cuSInAzFxsZiMpmwWq0BCZJSqUSSJMLDwwkPD0elUsm/S2lpaSQkJJD6738DELF8OTF33imPJCUnJ2M2m0lbtQoJcKFBixsFvpVz09US1eedJ09Nms1mMjKKMZuzcDgqff2SCo+h2rQObd9oGDECrxfydnoZoDyCNSwLk0lFdLSvIFutlrDbFdjtYdhsajQaiImBnxfZUVMDzz/fvC0AiDqlnqppsXZGRkZnhyOcgl6vJz09nbi4ONEK4Ay0Okm6/vrruf7663E6naxZs4bPP/+cK664Ao/Hw+zZs5k7dy65ubnimy90W5GRkSQmJjJw3z4Ahh04QOTPS/1/acWOv7hboVCQkZFBRUUFERERlJSU4Ha7UalUKJVKXP592wCtVkt6ejrZ2dmEhISQlZVFzaFDDPr2W0JWrECh16NctQoA5YoVTElLw1NbS8jBg6jGjCHNqmdTwQi2cit1hKHRNpLjWssktpHw3/+ScMUV8mPpdDpSUpzU13vYsSOdgoJQQgo0pDKI1B+PETpsBIcPQ4S7iv4FX5I0fS55ygFYLGC3g0KhwONR09gIEREe0tKUNF2noVaD2w1er7xvr9DDrV+/HpfLJYq1uwn/6JLdbsdsNotkqZXOau82gO3bt8vbkRw9epTp06fzwAMPMHny5GDF2K7E3m0C5eXwwgvgduNubET16qso3W4krRaFv/mjRgOLF0NcXLO7Ny3uliSJjIwM1Gq1vFVJZmYmhw8f9jWVrK+nsbERr9eLRqMhMTGRESNGoNVqiYyMxLx8OQOuvx6VfwsThQKl14tXqUQhSXLt0V6G8X/cTCnJRGIlBDt29NQSSRKl3BL3OYMuH4hTqaTx9tv5aEMln74TTvVPXqob43B6tahsVXhQocNJcoqKIX3L+e2JZxlW8i3MmYv55f+yfTs8/bSvJ1JUlIf4eBdGo5qoKE3A9+D4cejbF558svlIUneYbhO/p21TXl7Oa6+9xsyZM7vNa31v01Lvtq7Qby6YuvzebQATJkxgwoQJPPHEExw7dozPP/8ck8kUjNgEAeiATtsmEyxZAk4nGqXyfyvFPB7fca/Xt5zrqqtaTJKsVmtAcXdVVRVTp04lJCREjjk1NVUupDx06BDr16+Xn9exY8cICQkhLS0Nl0rFzsWL+dWbbxJz4oS8hYlckJ2RQfn9S3jtvhpOWDUMZy9KfImTBEgoOMxAXq+4mAdfeYJYdSWf9R3Gx5umojlsYcaJDTjQU0IKRaTiQksd4ehKDnNTyQMMZx8KQFrxJWkv3k0aoEodyb8dVzJ8bAgqVfPvv9frK+y+9FLft0no2fydtfv06cPEiRM7OxyhBadKhrpCv7nups1JUmZmJjt37qRPn8BdwGtqapg5cybHjh0LWnCC0CF/+YwaBXl5cPnlvkZC/rohjweUShg0CP77Xxg6tMX4nE4nMTExcnF3XFxcwJ5rJyd5Wq1WXsXW2NiIw+HA4/H8r44pOpo3Fi7k3qefxsX/RmwkScFHd93Hj0fiOTJ6KmPXv4yEEn+VkwffSlMjx/iJoaxWziD88UmsPj6EuqMeJpu+o2rkKGKOHKF/wxGyOIIXJSDxE8M4xAAGKI6glLx43QoULyxFJzk5V5vGunkXcuRICAMG+L4lfl6v71uWkgLi/bJ32Lt3L0VFRVx//fWiWLuLOlUy1Jn95rqrNidJhYWFAcWnfk6nk9LS0qAEJQh+HfaXz9ChsGWLb87oZFu2QAt7szVtFhkTE8P555+PTqcLKO5umuQZDAYGDx5MYmIiffv2pern7toqlQqPx4N/5tvtdjPk5y1MnuCPvpEdfAXZ+/+VwA5rCqr6OlxMwYuCItLxz5n7Z7oc6MjzjkH7iIuKxngkj4K9/J7kn8qJIAE99cD/Rp+sGHiBxeyThvuuIfmOPzzwPRI+/pibvbG8/rqvMDsyEvR6X62S1epLkG6+ueWVbULP4nA4WLlyJUOHDiUzM7OzwxFO4VTJkNgEt+1anSR98cUX8r9XrFgRkIF6PB7WrFkj2tHjSxadTqf8tc1m68Rour8O/ctn40bf0IhCAZLk++z1Uv3FF4RceSVAwItLRUWF3CzSarUyfPhweRsRP3+Sp9VqOXjwICaTicTERM4991zq6+sxmUxUV1ejVCqpqqqisbGRxsZGBv70EwA2QyRH+/Uj69gxDNYaIs0VeHVqwhsqAXDpdMRoqzDU2ijECPgSHw9KaokgxGkHQIEXDyoqGmOwEkZfTtCIGhsGPKjwoCSCOmwYiOR/P7Mbn3ySCZmZDNfDgw/Ctm2webOv63ZsLFxyiW8EKTLSjtksXnh7On+xdm5ubmeHIpzG6ZKhjug315O0Okm65JJLAN8ql/nz5wfcptFoMBqNPPfcc0ENrjt68sknefTRRzs7jB6jQ//y+eQT3+fJk+GZZ/AsXoxq61Zq3niDQ/HxNDY2UlVVRVxcHNnZ2UiShEKhCPh8Mn9LgIMHD9LQ0IBWq+Xw4cNUVFSQlJREdnY2TqcTSZL48ssvqa6uRqPRYM3KYlXfvkSf28Ao6UfUCgXjt+zEq9VR7JmMJt9KH2U5xSkpjD60m761pUxkCwok6gljBblEU8M8PmY9OTQQShRWQKKMZEwkYMBGDFWoaaSGSEDCgY7r+IKhP9cm7dh6F9ZJk9Dr9SQk+JKiiy/2rWTTaHx5ZE8rBhVaVl5ezo4dO5g+fboobu8GRDIUHK1OkvxFqRkZGezcuZO+LU1LCDzwwAMsXrxY/tpms5GamtqJEXV/HfbLPmaMb9rt7rtBpcLy0UeU33cfWoNB7nOkVCqxWq0MHjyY+Ph4srKyqKiokOuQWop98ODBmEwmQkJCqK2tRaPRYDAYKC4uJiYmhsGDB2O1WomIiCAqKgqTycSOiROx2+0okYjU69FoNJiuuRylUsmsEyF8UtsHdVw4BpSEZ2XhzMhgv1bLqHVrKSMJG5FM4Tu0eEijmL34tgxyo6UBPXb09KGSSKxIQD1hDGMvJkM/Hh30Go9X3MmIwm1k7t7dbPROoQhcsSaKQXs+f2ftmJgYJk2a1NnhCEKHaXNNkn8DTqFlOp0OnVji0z3dcUfAl5ExMez77W99CYBKRW1tLYA8auTfJ8k/ygUE9B/xF2xLkoRGo8HpdNKnTx80Gg2FhYU4nU6+++47KioqmDBhAtHR0ZjNZqKjo3G73aSkpFBUVITX68VqtVJbW0tYWBiDBtUQGurixIkYKirUmKKzCAkJwVlYxEbOYz9DAYliUiknHhdabBiopI+cECnwUkoydYThIBQNbkpIQanrQ0y5nX2DbyR6xmhqNFrqS2pIS9OfcuWaKAbt+fbu3cvx48e57rrrRLG20Ku0OUm64447yMrK4o6T3lBefvll8vPzWbJkSbBiE4ROdfKebNu3b282atS0QVvTKacxY8aQl5eH2WzGbDZjt9vl3kg6nY7GxkY0Gt/KNZPJxKFDh6iurqaqqgqFQkFYWBh1dXVIkiTv6eb1erHZbOzbt5rRo5P47rvBVFdn4HDY0elchFQ4cRGPEi+xWDCRKBdye1BSRzhOdD8XgfumBl1o0dCIBjdmkpAs0EADzx8fwZL+52B29EX6SkF8vJMHH9QxaVLzAm1RDNqzOZ1OVq5cyZAhQ+jXr19nhyO0Ubu3UOnh2pwkffzxxwFF3H7nnnsuTz31lEiShB6l6VRf01Gjk19sTp5yKi0tlROehoYG+Ty3240kSXi9XjweD2FhYTidTrZs2YLdbkelUqHX61GpVKjVatxud8BqUkmScDgcpKbWMHXqd2RmFnP0aAJut5Z0TwmzU4rZursPDpub4/iKyOsJw0QiITjwoMKLEgkFCiT02Eml+Od6JZ8T6kSK9KmoquqIdNpwhCuwWt385z861q71rWQbPvzU3yehZ1m/fj1Op1MUa3dD/j/eLBaLPPId3cJKXeHU2pwkVVZWtjicbjAYOHHiRFCCEoSu6HSJwMlTTv691cxmMzqdDofDAfi39/Cg0WjQarUMHjyY0tJSHA4HSqVSXt0WGhqKxWKRawFPLgyvqqoiPFzF4MH7ycr6Ea9XhVLpQZGexkxvLh/cuJ7z2EQDoXzHFKKpJimsHJM9AbdXiUepo29YA6raanS4GEMe4dRTSxhfh15FtFTNLOkLYussHE4bStz06URH+3oivf66b6WbWPLf81VUVLB9+3ZycnLENGo3ZLVasVgs1NbWyk2exfZhbdPmJCkrK4vly5dzm3+7hp99++233apvxtKlS1m6dGmLPZ8E4ZecPITd0pST/2uHw8G6deuora1Fr9djs9nkkSKj0ShPo2m1WjQaDaGhoZw4cYLq6mr58XQ6HWq1mrq6OvmY/2dXoQCVyoMkafB61WRVfEsCNRymP9LPrQBiseC1qzB4qykhhQhvHVG1xWhwUUEcRaQykMMUkUadDc5lM32xABBfWUllVRVhYWH066dh3z747juYO7f596U7bEEitI6/WDs6OloUa3dT/tcik8lEeHi4/LrVUpIkpuVa1uYkafHixdx2221YLBamT58OwJo1a3juuee61VTbokWLWLRokbz3iyC01qmWvJ880uT/2mQyUV9fj8PhQKvV0q9fP2w2G3FxcaSmphIbG0t9fT2VlZU4HA4MBgMWiyXgMWNiYoiOjubAgQPy6JKfWq2msbGRTZvOIzw8nJ927UJCwTFlP46ShcLr8fVD8iqxEYkHFWoaOcggFIAbFeUksINxVBILwHYmcYI4FEhI5Qrsy+sp0hWgUqupiUjl+ec17N37v33a3G43TqeTxx9XiRfYHmLfvn0UFhZy3XXXoVaf9Q5WQifwT7GB73UrNja2xfc70cbj1Nr8k3/DDTfgdDp54oknePzxxwEwGo28+uqrXH/99UEPUBC6mrYsebfb7axfv56amhp0Oh319fWkpaWRlJQk/8VmtVpxuVxERUVhNptpaGggMjKSyspKeWXcxIkTUSgUKJVKCgoKAkaUGhsbUSqVeDwebDYbNqWSZCxM9W6khkjqCAdAi5tMjqKmkRPEUk00SrxI/7+9946Po7z2/z+zbXZXqy2SdtUsyZIlWXLHcixjY2TAxAYCBkwJxZhQknAJ3IQkJPmFQELuJQQS4nwvzuVCLiW5EALBlARiY1xkI9yQCy6yrGarbpG02t73+f0h5snualVWvTzv18sv0OzszPPM7MycOedzzgGHAKRfZr0RKOGCGEGA1vEmUHR39YrAOREkJRnwekWw2z1QKntT3lpaWr680XawG+w0QBBrl5aWMrH2FEen02HdunUDeolYGY/+GdbrwQMPPIAHHniAisFUKtVoj4vBGDLj7SYeSsq7MCafz4dQKAS5XA6v14uUlBTk5+dHiScJIejq6oLb7YZKpUJpaSlyc3PR0dGBY8eOgeM4VFVVoaenB+FwGHK5PGpfIpEIhBCsXr0fAMCt5pBlc+Jbb7wEdAKdSEUOWiFCmGa7OZGEFuSgBbPQjRQkw4Ef4Bnsxlp4oUAOWiBBhGAcHLjUVOCmm3DOKobH04iLLjoKvT4NhYWFOHLkKJKTk2E0WlBdXY358+czgegUprKyEl6vF+vXr5/ooTBGgcgs3MgyJQKsjEf/jMiHqtfrR2scDMawmAg38WAp77H92oTCq2KxGGvWrKHGg8fjocJYoX2N3W5HTU0NLBYLbYTL8zzMZjNCoRBEIhFcLlfU/gghIIRAIun1/IhEInRnpOCfP/ouVv9wP/4PmyBBECIQ2gNODTsW4DRKcQZfYDHuxiu4AR9AjgD+jE3gEIYIIWpUARxw793wiSS4cNyC0tIz8Hpt6OkJQyqdA4Oh1wtmMplgMplw9uxZbNy4kRlKUxCLxYKDBw8ysfY0Y6B7JSvj0T9DMpLWr1+Pn//851gxSJtvh8OBP/zhD1CpVHjwwQdHZYAMxkAMxU1stVrR1taG7OzsUXtoD5TpFjkmu92OJUuWYNasWVH7F25Y7e3t6OzspOGyUCgEiUSCU6dO0XIBHMdRTUggEIBYLIZcLqelBQghtEkux3G0ppL6+HGsxAHsxuU4h2IU4xxEIAhIZZAE/AiDQx2KkYsWrOCOoCFzKfZdfB9q/zkHJ90LoYcZuWhBDlqhghPh882o8eVCo3Fg3jw7nE4nrRmVnp6O6upqmEwmJCUlwW63o62tjRlJUwwm1p6+DHav7O+eNtMF3UMykm6++WZs3LgRGo0G1157LZYtW4asrCzI5XJYrVacOXMGn376KT766CNcc801ePbZZ8d63AwGgMHdxFarFe+88w7sdjvUavW4eDeEfm1msxlqtRonT56E3++H0Wikb29msxnt7e1Qq9WwWq3geZ7qj+x2O/x+P035F8oGAL3eKI7jEAgEovrGCQaSYGwRQjDv7FlkwIR7FhzAc46v41jHMqT6zfBpkiHrdMAODWahDd/Ei7CQNDy+8E3Yu9OQJT8Fk1uDFvFstKRcBK2zA3M8JyE66EDm1RIsXdoNlUoChaIAFRUV9MY5f/58nD17lh7r7OzsMT3OjNHn9OnTaGpqwp133snE2tOM4YTUmKB7iEbSvffeizvvvBNvv/02/vrXv+LFF1+EzdZbfI7jOMybNw/r1q3DkSNHUFpaOqYDZjAiiXUTA9GtQdra2mC326FUKsfduxEKhWgNpOTkZACgJQEOHTqEzs5O9PT0YM6cOcjLy8O5c+doZe6enh4Eg0EaShNqKHEcB6lUCkII9Ho9bDYbwuEwkpKSaIaZsO+u2bPhvvZalH7/+7juo6M4dIDA+GEQcIRhQCeux3u4GIdAADyFn8Jx3oUFX9Uj7LAjS29Dc7oeHi+Prq4CNLuT8PCqL3DVE1JoNEtgs+X3ebPU6XTYuHHjqHvtGOODz+fDjh07UFpaisLCwokeDmMUEbxBZWVlsNls4Dhu8C+BCbqBBDRJPM/jzjvvxJ133gmg9+B5PB7ai4rBGE0ScfH21xpk1apVyM7OpmGvoXo3+tv3UMdks9no/rq7uyGXy2loiud57N69G/X19RCJRACA4uJiqNVq1NTUIC0tDVarFfn5+bBYLPD5fAgGg/D7/QBA25QAQGdnJ6RSKSQSCQghSE9Px4ULFwD0epxqrrwSeevXI0+lwrXXfgVFRY04Unoei5//Hywxfo6Ogjno+fGv8fn396HFMQvzfWegVM4HrvgqpD4fsngeEokYwSBw5kwGkm/MQEoKACiQkhJ//jqdjhlHU5R9+/bB6/XOqMra0zmUJMyN53lUV1dTYwfo1T4OxTPEBN0jEG5rNJoZecAYY4/H40FlZSXtkxYZ0hmIeG89GRkZCXk34hlaQG/l4ZqamiHdXIRwW1tbG+RyOZKTk5GdnU3bmnR1ddEQmRBSE25GgmCbEAKfzxfV0iSWcDgMv98Pnufh8/nQ0tJCw3JCOYCamhoYDAYAwMsvZ+DcuWJUuv8N4gKCttxcZG/tQb3jHjhUGegWyUCqesN1YrEiqpFpTw/w3HOIqo0EAD//+b+O23R92MwELBYLDhw4gDVr1kCr1U70cMaF6RxKipybTCaDx+OBTqeD2WwGABgMhiF5hpige4TZbYyZy1g+FM1mM+rq6kAIgc1mQ2lpKfLy8gb9Xn9vPUPxbkSm7AuGlsViQU1NDcxmM8xmM+x2O/Ly8oZ0cwkGg7DZbDQsVlFRAa/Xi8rKStjt9ihBdmNjI3JyclBWVobKykpYrVb09PRQj9FACL3c4qHX62G1WukcWloyEAwG0Z6T0xvC4zio240IIAuikBehjFw47XYEAgFIpVL61tmbVSdGICBGOAxENoH3eDw0m22ob6eMyYUg1tZqtVi5cuVED2fcmM6hpMi5Wa1WWulfeGESrtWBHB2R9/iMGdyDiBlJU4zJ8MY+1m9gggER+d+hMNy3ntiUfeHG4nK58MUXX8DhcCAnJwc2mw1Wq5UWguxvWw0NDTCZTPD7/QiHw2hvb0draysqKytp01ue56FSqaBWq3H+/HmoVCoolUpaFddqtUZV1pZIJEhKSkIoFKL93Qgh/bbV4TgO3d3d4Hkex44dg8fjwcaNNphPncKyqipwoRCkEgkWdX6Gn+E/YPYYkGKtgc/rg4TnYZlVgPSCAnR3d8Pr9cJm06K0VI/HHpNST1Jkhp7NZkN+fv60e9jMBM6cOYOmpibccccdM0qsPZ1DSZFz0+v1KCsrg8/no3Mc7B45nb1siTJzrohpwGT54Y71G1h6ejoKCwtpuC09PR3A0AzE4XSjj03ZX758OZxOJ06ePAmVSgWn0wm73Y6ioiKUlJQgPT09rlZJiP1bLBZ4vd4vw1ZiiEQidHZ2wu120xR9APB6vejs7AQhBBaLBSqVCklJSQCA3Nxc1NfXw+fzQSQSobCwEEVFRaitrUVycjJaWlrg9XppfaVIhCw3p9MJv98PsViMcDiMUMiDWaIgVh3cB0kohDDHARyH1WQ//oS7kF9zCmKEEeZEcM/OgVgM+P0e8DwPuz2MpUud4Pl/eeS6u3uPm06ng91uR3d394AGJGPy4ff7sWPHDpSUlKCoqGiihzOuTOdQ0mBzG2yu09nLlijMSJpCTJYf7li/gQn9hiIv8LE0EGPnI9T9MRqN6O7uRmFhIUpLS2EwGAYsHBkZ+w+FQlCr1QgGg8jMzERJSQnq6urQ2dkJiUQCuVwOl8tFvWThcBjBYBAAMHfuXAQCATQ2NkKj0cDn88FgMFBPjcViocaWUB8pci5Op5N64CQSCVwuF3JyclBYWAhpWRle8/lw3Z//jNSuLojCYVyMg9iNK3AOxZglb0Hd4oWQJyfDwPPgeQUaG8XIygpjzZroSt+Rx62wsBAFBQWQsQ63U4rKykq43e4ZW1l7OC9VU4WRzC32nsjzfNxK3TOBhI2kzZs3495778Wll146FuNhDMBkcQ+PxxtY7AU+lgZif/MZyhz7i/1nZGREubgVCgVuvvlm1NbWwuFwoL29nQqvBYQGuO3t7TSc5nK5wPM82tra4PP5oNfr4XA4YDQaaS0luVwOqVSK1NRUqFQq1NXVIRgMQiwWw+/3Q6VSQSaTUc9Uu06Hl++9Fz985hkAQAZM+CZexP/gm9iRczWSCIfkbik4jsDrzUVJiQ8PPCBGfn60kRR53CIzaGa6e36q0NnZiQMHDqCiomLGiLUZQ4Nd2/8iYSPJZrNh7dq1yMvLwze+8Q1s3ryZFY0bJyaTe3i8q7NGZn8pFArwPD8q2x1InBhvjrHzGyj2H/tduVyOnp4eauDE1ioRPENCBe65c+eitbWVep7OnDlDe8GFw2HqhfJ6vQgGg+ju7gYAFBYWoqWlBS6XC+FwGA6HAx0dHVRXRQhB3oULEJF/tSlZgFN4DP8JzWwRqkWrIZGokJUlRUWFBCtWSNCfblM4RoLXbaK9nIyhESnWFjI4GYxI2LXdS8JG0nvvvQeLxYI///nPeO211/DEE09g7dq1uPfee7FhwwZWM2mMmczu4eGExIZqVCkUCpr95fF4UF1dPeI3mv7S/YfSky1yfrHFLO12O1paWsDzfFSIzmQy4dy5cwgGgxCJRJgzZw6OHz8eJdC22WwwGAzUMyWTyeB0OnH27NmIHm2SPoJtIeWf4zjYbDYEg8GodZxOJ5qampCeng673Y7SmhoAQEtuLnZddRW+umMHss+fx/3+t1H8jWSkpKTjiiv0UCqHdj1PFi8nY2icOXMGjY2NuP3222eUWJsRzVDuvzP92h7W1aHX6/HII4/gkUcewdGjR/HKK69g06ZNUKlUuPPOO/Fv//ZvM04EyEg8JJaoUeXz+eD3+6HT6fpsf6jGVuR6seM1mUyor6/vdzz9zS+ymGVlZSWtnK1QKFBcXEzrPPn9fng8HtqoVqvVori4GI2NjfD7/ZDJZJDL5ViyZAlycnLQ0NBA3dxC2xGg1+MklUppSA4Arcotk8kglUqRkpKCxsZGOnaNRgNCCEpLS3urjxcVoTI7G4cuuQQhAP93//1Y/umn4ORypKamwO22wW63QakcmhE6mbycjIERxNpz585FcXHxRA+HMUEM9f4706/tEb1CdHR0YOfOndi5cyfEYjGuvvpqnDx5EvPmzcMzzzyD733ve6M1TsYUINE3jkSNqv62P9SLPXa9srKyqO35fD60t7fHNcKGMj+bzQaz2Uwb1YZCIZjNZphMJsjlvXoewVjy+/04d+4csrOzsW7dOtrQNjs7Gzk5OVAoFMjOzsahQ4doqxFCCDIyMjB//nzU1taitbWV7ltoV5Kenk5rJxkMBoTDYTidTlgsFohEItR86UGyXH01dDodcjwetLa2wu/344t160AIQdKXoblE3xgjvZyToVQFIz779u2b0WJtRi82m40Wr7VYLLTVWGzCzEyvlZSwkRQIBPDBBx/glVdewccff4xFixbhu9/9Lm6//XZafO7dd9/FPffcw4ykGUaibxyJGlX9bb8/Yyv2QR27ns/nixInHjp0iLYUKSws7DOewean0WhoJVvB6yOXy3Hq1Ck4HA5IpVJkZWXhwoULIITA7XbDZDJR7ZBWq0V5eTkde3V1Nc14A3oNoeLiYsyfPx/nz5+PqiWVnZ2NUCgEh8OBUCgErVaLK664Al1dXfjss8/Q1dWFUCiEuro6iMViaLVaOJ1OWhHcarXScgNCu5Te+kiJGzqTpVQFoy+CWHv16tWsfcwMh+d5uFwudHR0QK1Ww+v14uDBg7RWW1lZ2YwWbAskbCRlZmYiHA7jtttuw+HDh7FkyZI+61x22WUsW4IxKMNx48bTZMUztqxWK9Uv6fV6rFq1Ku56keJEu91O0+xLS0v7dT33J+bmeR75+fmw2+2w2Wzw+/2w2WxobW2FXC6H1+uFXq+HWq1GKBSiTWx7enrAcRycTidsNht0Oh016HQ6HTo7OyEWi0EIwYULF2gZAEGbpFarwfM8bDYbFX0LNZLmzJmDM2fO0LIBQtiuu7sbKpWK1nMKhUK0HYpWq6XHz+/3J3yDNJvNaG9vp8d6pgk9JyuEEPzzn/+EWq1mYm0GfD4fkpKSoNPp4PF4cODAAXR0dEClUgEA2tra0N3dDYVCgfb2dphMJsyePXtiBz0BJGwk/e53v8PNN99Mwwfx0Gq1aGpqGtHAGOPPSEMkw/EgROp5hluHI554urKyEo2NjfSCN5vN4Hm+3+yzSAMqKyuLlu8f6pwtFgtcLhfEYjFcLhcMBgNaWloQDofh8Xho/SS/3w+JREKLPAoGilQqpc1rjUYjeJ6n2Xx6vZ72ctNqtTAajQgGg1AoFOA4Dpdccgk8Hg9qamogEoloVW6HwwFCCNU6BQIBWu2b4ziUlpbi3LlzcLvdkEqlCIVCkMvl8Hg8UKlUdMyD6b8i/wZAe9zZbDYUFRXF9RCycNz4U1NTg4aGBtx+++0swYYBjUYDvV5PX5icTif9r8FgQHZ2NlpbW1FfXw9CCM6ePdunkO5MIGEjac+ePbj++uv7GEkulwsPPfQQXn755VEbHGP8GMzAGcpDbbi1jEYjPBPp4TEajfRB73Q6kZqaOqTmtIWFheA4jhpIQzHahDnLZDJ0dHQgMzMTNpsNTqeTGhA6nQ5erxderxeBQAAAaDjO7/dTEXZeXh4aGxvpOAsLCyGXyzFr1ixwHIeTJ0+ioaEBLpeL9n2bPXs2WlpaYDKZoowckUiEzz77DDKZDHa7HQqFAsFgEBzHIRAIQK1Wo6Ojg9ZaEsajUqmgUqlQXl6O06dPD6r/inXJFxYW0h53VqsVJSUlQ84SZIwdgli7uLiYibUZAOLXQrJYLLSpuE6nQ2lpKcxmM1JSUuiLz0y7VhM2kl577TU8/fTTSE5Ojlru8Xjwpz/9iRlJU5SBDJyBHmqRxtNwU0UTMa6GmrKq1+sB9Ha7njNnDo4dO9Zv+Cd2fmq1mj741Wo1CgoK+qTzR+4rJSUFRqMRUqkUHR0dEIlEUKlUWLJkCRobGxEIBKixIpFI0NbWBqVSCZfLBQC0B5vH44HX64VCoUBbWxvOnTsHr9eLU6dOYf78+UhKSqLhMZFIBIVCgbS0NFRVVdFl8+fPp+G9rq4uGAwGhEIh+Hy+3qw2ux08z8Pn88FisUCtVqOzsxNarRY9PT3QaDTweDzo6uqK63WLPVeCS174m+O4KI+c0FJmuOebMTrs378fLpcLV1111UQPhTGJiHy5jPXGG41GqNVqZGVlzdj0fyABI0noXE4IgcPhiPIkhUIhfPTRR0MOUTAmHwMZOAMJo2ONp6FqjIZjXA0nZVUQZA8U/unvwa9UKnHu3Dlao0iv1+OKK65AZmZm1L7Kysqwe/dumEwmeL1eaDQaGI1GmmFWWloKtVqNqqoqmsUmaICkUilcLhd0Oh3C4TBcLhfMZjMNySkUCpjNZqo1EtL+w+EwAoEA/H4/DaMFg0F0dnbCbrejq6sLHMfBbDZDpVJBp9PB6XTC7XZDIpFAJBJBrVbD7/dDo9GA53lqIHm9Xpw8eRJGo7HPMdbIZFi6fTtOXH45UjIykJ2dTYvNpaSkwGAwwGAwDPgbmOl1V8YbQbzPxNqMgYiUPsR6i/srkDsTGLKRpNVqwXEczbCJheM4/OIXvxjVwTEGZiS6jtjvDiSi7u+hFs94ysjIGFIByf6MK0GADPRtwpiIByJWkJ2Xl4euri5otVq0tLRAJpPR+Hrk/NRqNaRSKdRqNcxmM8LhMMLhMNxuN5xOJ959913cdtttUQ8bn89HG82KRCLaSkRo/MrzPORyOe1rplKpaMhMqJek0WigUqkgFotpwUeHwwGHw0G3GwqFaF0koSaSyWQCAASDQcjlcgSDQfA8T/VOmZmZEIlEKC8vpyG77u5uGAwGlJeXw+fzUc+S0P7k5MmTSE5ORnt7O8xmM/Ly8uh5873xBgpfeQVpZWXgN27s93czWGHQmVx3ZTwRKmszsTZjqMTLAp6p6f9AAkbSnj17QAjB5ZdfjnfeeQcpKSn0M5lMhry8PGRlZY3JIBl9GYmuo7/v9lfNu7+H2kAegYEMOOEiVCqVfR7EA80pXmuSWNFwf2O0WCzw+/04ePAgfD5fn0KPq1atgslkwtmzZ3HixAmo1WqsWLEC586dQ01NTZTep62tLcpI4nkegUCAptDn5uYiOTkZbrebNoesrKxEbW0tgsEgfD4fOI6DUqlEUlISVq5cSTPUBF1AKBSCRqOBVquF3W6noTrBSAJAw28qlQrBYBBarRY6nY5uX6VSIRAIICMjgzbKXbVqVdy3QuE4CmLNuro6cByHmpoa6iGuqqpC6auvQgtA+eGH6N64kf4+RqIhY4wdZ8+eRUNDA2677TYm1mYMCebpjWbIRlJFRQUAoKmpCbm5uX36TjHGl5HoOobz3XgPtXjGk8fjocZGpFBa2K8QXlOr1X0exPHGFfk9hUKB+fPnY+/evXA6nTh06BCA3lCwUKNLaDIrCA8BoKioCCkpKThx4gTC4XBUocfIqtlyuZxuS/jvqlWr4HA40NTUhFAoBJ1Oh+zs7CjjzOfzITk5GVqtFm63GxdffDE0Gg3a2tqQnZ0Nn88Hs9kMjuOgUCho6q3b7UZGRgYtHgn06gJqampw4sQJpKamwu12Y8WKFXA6nZBKpbhw4QI6OzuRnJyMlStX4sSJE3A6nZBIJJg1axbKy8tp+YFz587BYrHAbrejqqqKGm2xmrLY8zVr1iy0tLQgLS0NvuZmhB59FFwggJzWVmSeOAEAEO/cCdt998EnlyNr9mxIH30U6CfczjLZJoZAIIDt27czsTYjIZinN5ohGUlffPEFFixYAJFIBJvNhpMnT/a77qJFi0ZtcIz+GYm1P5pvCrFVlquqqtDS0oKenh5ac8hsNqOuri7KQ1RSUgKz2UxDUsIFGTkunuejPEuCgdTe3o7k5GR0dHRALBZDp9OhpaWFhqQ6OjoA9Br2kQJsvV4Ph8MBsVgMsVgMg8EQNfd4x8VsNiMQCGDOnDmwWCwoLS0FgD4xeyGVdtasWdBoNHS/RqMRZWVlMBgMtB6SVquNKgEgiLWB3gKOTU1NcDgccDqdKCoqijKiCgsLe4+VTAbFCy9A++1vo7S0FIQQGj6Uy+VoaGhAT08PAoEALly4AKlUiry8vCjPnXC+2tvbYbPZkJ+fTyvv+nw+tLa2YqlIhKSXXgLn86GY40C+fDniwmEUf/QROEJAZDLgzjvjGkksk23iEMTa69evZy+1jIRgnt5/MSQjacmSJTAajTAYDFiyZAmt9BuLUKyOMfaMxNpP5LuJeAGEMvc+nw8ejwfnz59HSUkJCCFRHiLBq2IwGKj3QtAiRYoEIz1LFouFGkhC8sDs2bPB8zzOnz+PUCgEiUQCr9eL5ORkGhYTvm+321FeXo4FCxbQPmmCURE5x9gMj5MnT6KrqwterxeEEBw9ehQmkwmBQCCqhlBRURE1VGLL/ft8PpSXl8Nut8NqtUKtVsPtdiMQCKC1tRWVlZVYt24dgN76ThcuXIBSqYRcLkdBQUGURks4B77//V8ofvpTKPLykHfHHVHnq6qqCkajkY47OTkZPp8PTU1NEIlEOHnyJPXcWSwWyOVyWK1WdHR0ICUlBX6/n2q4FIsWwVdVBfmddwLnzkH0ZTNeUTgMwnFw5uRA8u67kMcpKiv8Jlgm2/jT1dWFqqoqXHLJJVHSCAaDkRhDMpKamppoSjUrEjl+DGagjMTaH8p3Iwslxoaw4iGMs6OjA1qtFhKJBPn5+UhPT48SRgs1i9RqNZYvXx7leVGr1dRbE+nZUSgUcDqdSE5OhsPhQFZWFi6//HLY7Xbqpejp6aEPBL1eHzfzCujbmyjW0yGIFC9cuICmpiaaScZxHD0nqampdA5CqEoI+QG9YT+Px0Mzx+x2O0wmE81gS01NRU9PD2QyGbq6umh/t8j6Tnq9ntZNEo6LUJ5A0AaF3nwT4ggjSTB8nE4nnE4nOI6Dz+dDWloaTCYTOI7D+fPnYTKZoNFo4HK50NPTg1AoBKVSCZ7nkZSUBKvVimAwiNraWnTr9Vi1axcUOTnRJ5zjID54EPIBtIhM3zD+CJW1k5OTcckll0z0cBiMKc2QjCRBVBv7/4yxYyzCFIlqQ4QHrsPhoCGsdevWxf2usO3y8nIEg0G0t7cjHA5TDZvgofF6vTh8+DD17sjlcvh8PmoI1dfXw2w2Iysrq0/WW7xiZ3K5nNbxyMjI6JOuGusZijX6bDZbv01thSKLwj+xWIxwOAyNRoOKigr4fD74fD589tlnEIvFqK2thdFohMvlon3ROI6LKp/hdrsR/tIbI9ROcrvdOHXqFMrKyqBQKBAKhWjpgBMnTvTWTTp6FLOefx4+kQjpXi8yvtQGiXbsAL7//d6TIJVCfs89AHp1WmKxGHK5HEqlEuFwGH6/HyKRCGKxmBpPcrkcYrEYbrcbXq8XDocDK1euhMPhwPHjx6k3zPvxx1CEwwDHAYQAHAcuHIbi88+B667r9zfE9A3jT21tLerr6/H1r3+dibUZjBEyrGKSaWlpuOaaawAAjz76KF588UXMmzcPf/nLX5gRNUqMpHp1vAfScIyuSM+Q0KYi3jhitz137lx0d3fTxqmRpQE8Hk9cz0JKSgoNpanV6ijtTLxiZ5Gp5pGGVGzmVmwl7kijLxQKQSwWo7OzE52dncjNzUV7eztN309PT0dhYSGMRiOUSiWkUikNyQn76enpgdVqhdPpjOp7BvRWOQ6Hw6ipqUF5eTkyMjJog9nu7m7wPE9rJZlMJuzduxehUAgqlQoVFRWQy+VoaWlBe3s7lDYbSj/+GOJAAOEIbRDCYWDLFiAcBuF5nJ09G36FAjKZjBaYTElJgdfrRUpKCvXCCV41uVwOt9sNkUgU9ZlarcbBgwdhNpuhVquh/OQTfHkSgGefBX7wA6CqCti2bUAjKfYcMMYWQaxdVFSEuXPnTvRwGIwpT8JG0lNPPYX//u//BgAcOHAAzz//PLZs2YJ//OMf+N73vodt27aN+iCnM/0ZNYOFKeJ9byBDaLgZbeXl5fB4PAiFQtDr9VHtKYT9x2qHuru7YbVa0dnZibS0NPA8H7XNeMaOkIJ/6tQpNDU10aw3tVodZfhEzjV2G4MZgbFGX09PDxUpB4NBNDQ04MKFCzh69Cg2btwInU6HiooKmEwm2jA2MzMTJ06coKX6Bf2VQtHb9sNisYAQApFIBADIyMiA3W6Hz+fD4sWLqSFICEEwGKSFJcViMXp6epCcnAyxWAyfzwedTodVq1ahubkZp5KS8MHjj+PS//ov6CwWiL/0RnGhECASASUl6HrhBTS1t8Njs8HlckEmkyEjIwOrVq3C6dOnYbFYkJGRQcseAL2JFq2trdRrtmDBAigUCthsNiQlJUGtVsPlcsFVUgL+17/u9VqJxUBlJfDb3wID9HBkjD/79++Hw+HAXXfdxcTaDMYokLCR1NLSgsLCQgDAe++9h5tuugnf/OY3sWrVKqxZs2a0xzetGcioiRcqEnqJAfENgoEMoeFoQzweD06fPg2gtwCiEA6KV5FV2LZYLIbFYoFUKoVUKoVYLEZbWxvkcnmUSJoQgoaGBmRnZ0On00GhUNAO093d3dDpdP12oo933AYzAiPDgQCo5wcANWr8fj+USiVsNhtOnz6NsrIyAL21ZoQmj+np6ejo6ADHcdRbJuiktFotCCFQKpVwOp1ISkoCACpMl8vlmD17Ns6fPw8ACIfDmD17NhwOByQSCXiep73mBOML6L3m/H4/xMXF2PXkk7jpgQeizhMB4N21C0k6HRQ7dqC1tRVisRgSiYSWA4hnmHo8HvA8j8LCQtqiRPAwaTQa6HQ6Wqbh8IoVvcaVWNy7U7EYePTRQX9DjPGju7sbVVVVWLVqFRNrMxijRMJGkkqlQldXF3Jzc/Hxxx/jkUceAQAqOh1venp6sHbtWgSDQQSDQfz7v/877r///nEfx3AY7MHeX5n4oqKiuN8byBAaTBsSzzMjjE9I0/f5fHHHLRQpbG5uxp49e2Cz2RAOh2nneaHFhdAM1Wg00krRGo2Gem0AID09nWqMhLnH6oWE/SsUCrS3t6O5uRk8z0OpVMJsNvdJ7ReMLY/HA71ej/Lychw6dIjqhsLhMEQiEcLhMC3E2NDQgM7OTtrgUWgH0t3dTb0uQrVsp9MJr9dLszvlcjnS09OxcuVKcBxH9VTd3d0AAKVSSfu9CY1thXGmpqZCLBZj9+7dUKvVWLhwIbq7e7t0X7hwAUVnzkBECAgADr0GEhcOo/aPf8TcH/4QFRUVCIVCaG5uht/vh8fjoXWoIqvmRv6mlEolbVFSXV1NjdF4ZRpY2GxyEinWXr169UQPh8GYNiRsJF155ZW47777cNFFF+HcuXO4+uqrAQCnT5+mnoDxJDk5Gfv27aMNQxcsWIAbb7wRqamp4z6WRBmqdyfWKCGExP3eQIbQQKLt/nr18DzfZz9Cby+1Wk0LN/I8D4VCgUAgALfbDY1GA6vVSvuPJScnR/VEE9p8qFQqWK1WNDU1USMpcg6EEBw6dAhWqzUq1CcUo6yvr0coFEJlZSWUSiXcbncfoarH40FlZSUaGxuhUqkA9KZH+/1+aLVaelxTU1NRVlaG1tZWnDt3Dk6nE52dnQiFQlCr1VTDJBRtFAoz5uXl4cSJE/D7/XC5XAgGg1CpVEhKSoJWq4VCoaAZdgqFAg0NDbQ2UkFBARYuXEi9NyaTCUajEQcPHoTX66X7FFqkEEJQWlMDADAXF+PsPfdg3ssvQ3/uHDS7dsH2zW8iIyMDV199NWpqavDFF1/QLLxYAyfyN9XR0YFgMIjMzMwoYzTSYGWZaZOb2tpa1NXV4dZbb2VibQZjFEnYSNq6dSsee+wxtLS04J133qHGSHV1NW677bZRH+BgiMViKJVKAL09tAS9x2TD4/FQA6K/kFp/b+mxxlR6ejqtxxP7vXgi2cFE27GaIsHrImiSOI7rE+YThMwej4d6H7Kzs6nxJJVKMWvWLGogZGVl0ZYXQqacUEW6vb2dpv1HVuWuqqqi4xBCfQJarRZSqRSpqano6OhAUlISnE4n8vLyqFEAAA0NDXA6nTSt3mAw0NIA7e3tEIlEyMzMhMfjgVwux/z58/HFF1/AarVCLpfD4XAgNTUVGo2GNpQFgBUrVqCxsRHHjh2D1WoFIQQ9PT0QiUTIysqC2WymwnPBqGtubobX6wXP8wiHwygqKorqi1ZfX48LFy7A5XJR75bJZMK8efNQUlKCs2fPomv2bHjuuQfyn/4Ui3Q6VC9ZAv2f/gS5VouMCGO5tLQU3d3d9LxGaqcif1MWiwWBQIAWsYxsADzU3yerqD2xCGLtwsJClJSUTPRwGIxpRcJGklarxfPPP99n+XCb2+7btw/PPvssqqur0dHRgXfffRfXX3991Dpbt27Fs88+C6PRiMWLF+O//uu/sHz5cvp5T08PKioqUFdXh2effRZpaWnDGstYIvQMi6c9GkiMLKyTaBNRAY/Hg4aGBlgslrhp7kD8ekRut7tP2r9g8AieDQAwGAxRzW03btyIpqYmtLe3w+12Y/bs2cjKykJ+fj50Oh1KSkpgNBqhUqlgsViQl5cHh8OBmpoamM1mWlyysLAwbqhP8AydO3cOHo+H1hUSsuL8fj/0ej2t1m2xWOB2uyEWi5Gbm0tLB6xatQpms5nWbBI8JTabDWq1mqbrC96dUCgEqVQKrVYLr9cLs9kMq9VKj1s4HIZMJkMgEEBjYyOkUikqKytx5ZVXQqvVRp0ToZyAPEL0bLPZaPkAoZFtOBxGd3c3Pv30U2zYsKG3svYTT9AimABQtnw52rKzYcjOjvubaWlpwfHjx7F7925kZmZS0bbweUNDA06ePInMzExYrVaUlJT0KbA5UHNLVlF74vn000/hcDiwadMmJtZmMEaZhI0koNcoOXz4MO2SLsBxHDZt2pTQtlwuFxYvXox77rkHN954Y5/P//rXv+KRRx7BCy+8gPLycmzZsgXr1q1DbW0tDVNotVqcOHECJpMJN954I2666Sakp6cPZ2pjhtVqRUZGRr+ZZYM9bIaTRh1ZDNLlcgFAVNgqctuRafSVlZUwm8190v4jjSnh2EcaGACg0+mg0+lQWlpKe4LV19eju7sbq1atAs/zcLvdcLvdkEgkVEB94sQJuFwu5OXlobu7GxzHUWMsUmNkMpnQ0tICQgh4nodKpcLq1atp0UYhE85kMtH2JRaLBUqlEiqVimrnhMKK5eXlfcoGaLVauFwuJCcn05AbAOqhdLvdOH/+PLxeL0KhEDIzM2l/NolEArfbDb/fj/Pnz2Pbtm249NJL6TyEFiQ5OTn0GAKgBScFD5hQ1V4ikcBut2Pv3r30XAmGjuDF6+7uRmtrK0pLS6MKZvI8j9Offw7Dq6/i89WrYbfb6TqCAZSdnY36+no4nU5kZWUhPT2dGqLCmCOz4WJhFbUnFkGsvXLlyikhMWAwphoJG0l///vfcccdd8DpdEKtVke9uQzHSLrqqqtw1VVX9fv5c889h/vvvx/f+MY3AAAvvPACPvzwQ7z88sv48Y9/HLVueno6Fi9ejP379+Omm26Kuz2hAKCA3W5PaLzDRfCI9KftSPRhM5jGSEhtF7wxALBw4ULMmTNn0OrdQjNjQTTt9XppqCY24y7eGKxWK9ra2iCVSmm16O7ubphMJhw/fpxmVQkp8MFgEAaDAU6nE1arFVlZWbR6dSgUgsvlgtfrBQCcOnUKdrsdgUAASqUSs2bNQm5ubp/9V1dXw2q1oru7GyKRCOnp6bTqdWS2WlFRUZQR4PV6aS8zoXhk7LEVij0CoOuo1WrYbDb09PREfcfpdOLEiROw2Wyw2+1ROqTYkCfP89BoNHA4HAiHwyCEUE2SIMJubW1FKBTC1VdfHSVgF4pwRhqvMpkMut27sWbnTti0WjStXAmv10uNceEYx4Y0L1y4gLq6OhBCYLPZUFpa2m/9M1ZRe2LZvn07kpKSmFibwRgjEjaSvv/97+Oee+7BU089RbVAY4WQbfOTn/yELhOJRFi7di0OHDgAoNezoFQqkZycDJvNhn379uGBmBTpSH71q18NOzQ4ElasWAFCSL+6jUiNiCCG7o+BvE6xWUsikYgKn+MZSPGMLZ1Oh3Xr1tFw1IEDB6gHQ0jXF4g1Tmpra3H8+HEqzM7KyqICb+FBL5wrqVSKrKwstLa2wm63o6ioCCUlJVRvZbVaaYPWyspKzJs3D01NTZBIen+2JSUlWLhwYVRvM8ELIvQ/E0JkQhFLjuPQ0dFBq0+bzWb6faH6tt1uRzgc7pOtKeiEXC4X6uvrkZ2dHSVAFwTsbrebauOEkJrQ7HfhwoV9DA6Px4OzZ8/C7XYDALKysuB2u5GUlASfz4eVK1fi3LlzaGtrg0gkQmtrK2pqapCfnx9VhDMlJSUqDNrZ2Ymyo0cBAPNraiC+6y7wPE/7yhmNRohEItpDT3h5ELL3Iv/b329lqLolxuhTW1uLc+fO4dZbb4VMJpvo4TAY05KEjaS2tjY8/PDDY24gAaChjtjQWXp6Os6ePQugt7/WN7/5TfpQeuihh7Bw4cJ+t/mTn/yEli0Aet+4c2J7Uo0BCoUiqrdXvM/LysqoaDoyFRvov3hjrNcp0rtw/vx5JCUlQafT9RE+C9uMl9UmPOx4nofVah1SWxKr1Yp33nmHZo7pdDrafywYDMLj8aCxsRE6nY72CRPCeZmZmVi4cCE9D4JXJbLwo8fjob3IQqEQfD4fGhsb0dzcjKSkJOj1epSVlaGtrS1KqF1QUIDy8nJ0dXUhOzsbAKhQWSwWIyUlBYQQ7NixAx6PB1KpFMFgMMrbKCASiWgGXSgUononk8mElJQU2j8usvWH4DEyGo1IS0sDISRKQC1oxqxWK/Lz82nD2Z6eHvh8PhQXF9O6ZA0NDbT327Fjx9Dd3Y358+dTQ8ntdmOWVIrZ774Lv8uF7EAAWSdPAgDm1NYib+dOhP75T8xrbMRnK1ZAnJmJrKysPh5OodK44JkSQnAD1fRixtH4Ioi158yZw8TaDMYYkrCRtG7dOnz++ecoKCgYi/EkzPLly3H8+PEhr8/z/IBempEyknCez+ejBkak8dNf8UahaKPdbqeGjeCRErwLer0ebrebegri1UGKzGqLLNw41LYkQK/xHNkaRBiTUqmkc7Lb7ViyZAkN30kkEshkMvj9fjQ3N0Ov1+PQoUP04SwUfhTqG+Xn56O5uRlnzpxBIBBAd3c3pFIpdDodjEYjtm/fTtPrlUolUlNTMWfOHJw4cQJ2ux1GoxGFhYVITk6GVquF2+1GcXExDh06hMbGRlpGIhwOU2MJ+FexychwmFAwUiQSQSKRIBwO01R6odebUqmEw+FAZ2cnPB4Penp64HQ6aRVsr9eLyspK2L6skC2E1lpaWuD1emmphJ6eHpw8eRI+n4+G8txuN4xGI5xOJzweD2QyGUpLS5Ha0oLM998H5/eDxLQvkTz/PKThMBZIJLBccQUsyclYsGAB5HJ5H++Q0NdOWB4p2mfao4mnqqoKdrsdd955JxNrMxhjSMJG0jXXXIMf/vCHOHPmDBYuXNinJsd1g/RxSoS0tDSIxWJaeFDAZDINmHEzkYwknNefviNe8caysjLs2rUL7e3taG9vR3Z2Ni6//HKauSVobwRNUGQWl+AFEHqHCeGwyMKNZrMZPp+PVn8Oh8N9RN+R3i1BNOp0OiEWiyEWi+H1enHq1CkkJyfTcQgPdZ1O1ydDrqmpCXV1dTSrKz8/H+vWrYt6WOfm5qK2thaEEAQCAYhEIjidTrhcLhrKUyqVmDdvHsxmM44dOwa73U4F4X6/n8511qxZ4HkeHo8HSqWS6omEwpJ5eXkoLi7G2bNnqUFmMBiQkpJC9yeUnYgsDwCAeqMkEgkIIVCpVLDb7ejq6kI4HKb6rIaGBhrO0ul0KC4uRnNzMwghEIvFcDgc2Lt3L1paWqK0TjabDUqlknrVHA4HTCYTdDodZm/diuXPPANRfT1EEe1LCMfBnp2Noz/5Cbr1eui/LCcxmEZtoN8mY/yxWq349NNPmVibwRgHEjaShGrWTz75ZJ/PhFDIaCGTyagxIJQFCIfD2LVrF77zne+M2n5Gk5GE8/rTd8R7QNlsNqp9cbvdqK+vBwBcffXVUCh6W3wI2h6v14vDhw/TCtUmkwnp6emorq6OqocU2ZPs2LFjqK2tRSgUQkpKCi6//HLk5OREhYkiM6AELZHf74fZbEYoFILf70djYyOKioqwePFiNDU1oba2lmbaCSJjwUiTyWQ0HBUOh3Hq1Cnk5uZGGcT5+fm0OKVQ2To3NxeNjY3UYDIYDEhNTUV9fT1SUlJgtVphNBqRmZmJxsbGKKGyXC6HTqeDxWKhImyZTAaO41BSUoJFixYhMzMT+/btg06ng8fjwfLly+F0OnH8+HH4fD60t7dTr1MsYrEYoVAIdrud1lJyOp3o7u6mHqCenh5qRHEch6KiItTX10MkEtGWJ4I+KbLaNyGEGmtCo1qNRoPzSUnIfvtt5Fx0UZ/x/Pnb30ZGRgbKly3rIx4fym9TyApkTBxMrM1gjB8JG0mx2T4jxel00gc8ADQ1NeH48eNISUlBbm4uHnnkEWzevBnLli3D8uXLsWXLFrhcLprtNtkYaTgvnr6jP+NJEOcGg0FIpVK0traipaUFarU6qiGsx+OhFaoJITh79iztPSaEwex2Ow01+Xw+qgcTiUSw2WxoaGiAXq+n+zabzVEZUAUFBcjIyIDFYoFKpaIVs8ViMdxuNwKBAKxWK+1OL2TaCSEnp9OJs2fPQq/Xo7W1FVqtFn6/P0pULfQTu+GGG7B3716EQiGkpaVRQyEcDtNaSHK5PEoIL5VKqcclsvaSULupra0NhBD4/X6Ew2GoVCo0NjbC4XCgrKwMWVlZdFsajQbp6elobW3FmTNnqB4uUuQs4PP5oNVqEQgE4HK56IuEzWaj3jSRSASHwwGXy4XPPvsM1157LRYuXAiv14u6ujpaaqOgoAB+vx8+nw+BQADp6elUoE8Igdfrpf39xFVV4GLblxCCwo4OdM+ZQzVfiSKUc2A1kSaGc+fOoba2FrfccgsTazPGHFYodph1kgS8Xm9UQbzh8Pnnn+Oyyy6jfwtemM2bN+PVV1/FrbfeCovFgscffxxGoxFLlizB9u3bR1wHaevWrdi6deuoer7GkkiDR3gQVlRUQKvV4rPPPoNIJALHcTh58iT1/kQKsQsKCtDS0gK9Xg+r1Yquri6o1WoaBjt16hQuXLhAtUc6nQ49PT3UQ3L69Gm0tbVh48aNkMvl6OrqogYBx3HU69fW1gaVSoVDhw6hra0NEokEGRkZSE1NhcvlQkdHB9RqNbK/LH5os9loNXKz2YzMzExkZGSA47ioopBCuFHwWF1//fVRXrK8vDxYrVYsW7aMljyILJYoNMxVKBR0zna7nVbAFgwoofYSz/M09CiEN2NF9QUFBbhw4QIkEgkcDgdkMhnC4TA1tIBeT5JUKqUtXcLhMJKSkmi2W1tbG0KhEG1y63A40NXVhQULFsBoNMLtdtO5XXLJJUhPT0dLSwtOnjwJm82GQCAAuVwOsViMtLQ0qFQq+P1+aP75TwBAZ0kJmh54AEv+7/8gO3IERSdPovGGG4YVLmM1kSaWYDCIf/7zn5gzZw6tUM9gjAbxjCFWKLaXhI2kUCiEp556Ci+88AJMJhPOnTuHgoIC/OxnP8Ps2bNx7733JrS9NWvWDNpG5Dvf+c6oh9cefPBBPPjgg1RgPBWI96NdvHgxenp6YDabkZSUREXSFosFu3fvhsvliqqzc+HCBSgUCtTW1kKn06G8vBxerxeffvoppFIpHA4HLSBosVhQW1uLs2fPgud52Gw2NDU1obu7m2ZhyWQyZGRkQKPR0MKGKSkp+OpXv0pDTOnp6TCbzRCLxZg1axbV0QCIEocrlUpYLBYkJydDp9Nh/vz5aGtro8sEr0pWVhZWrVqFjIwMmtovtD6JNJ4VCgXmzJlDRcdCBpzNZsOpU6ewfft2hMNhZGVlISkpCaFQiG5PMKJSUlLA8zza2tqiNFsmkwmNjY0IBAIghFDNk1A+QCAUCsHpdCIYDCI1NRUikQirVq1CfX09LBYLfD4f7QkXDAaRnJwMmUwGj8dD25lEZpkBoM1rhardaWlpsFqt0Gg0tOK4bOVKBJYuRejuu7EwJQWyBx9E4OmnkUYIMod5s2O6pIlFEGvfcccdLOTJGDX6M4bYS1EvCRtJ//mf/4nXXnsNzzzzDNUnAcCCBQuwZcuWhI2kmU4i7sx4P9qMjAyaiRTZbV4mk6G1tRVAb+aZWCyGWq2GSCTqLTL4ZciJEIK6ujoattNqtSgvL6eVs5OTk3Hu3Dl6gUil0qgClXPnzkVKSkpccXlkX7Kamhq4XC44nc4+/cGE4pU9PT0IBALQ6/VwOBw4dOgQPB4PLSbJcVyfzL/BtDKx1cR9Ph84jqPp++FwGG1tbcjOzqa1m5RKJa3ELRzT2KrlHMdRQbjVakV2djba29vjjkHom8bzPKRSKU6dOgWgV6jt9/vB8zxteyKXy1FdXY3m5maUlZX1+xtQqVTo6uqioni9Xo/58+fTPnahL290mi9/X9BooPjpTzGS1qeCjks4XjPxhjlRWK1W7N+/HxdffPGkbLvEmLr0Zwyxl6JeEjaS/vSnP+HFF1/EFVdcgW9/+9t0+eLFi2ntIkZfBF1Q7LJE3JmRP1qlUon29nYaFhK+JxgENpsNHR0dCAQCVGPjdrsxa9YsAIDRaKRhLUEELYSCYquop6enUy2Ny+WCWCyG1Wqlmpr6+nqo1eoo70vkBWUymWA2mzFr1izY7XbaH0xAKF4ZmZEXmW0H9Bpjkb3dYi/YgbQywv8LQvOUlBTI5XKEQiEqgs7KyoLNZqMlE3w+HzIyMqgXSqjvlJOTg/nz51PNk+DBys/PR3V1NQ1PisViiEQievyB3to2ycnJCIVCtAClz+ejxppggCYnJwPo1ecJ4xValgjeJUFflpaWhgULFoDneXz22WdobW2FWCxGYWEhysvLo7x7I3WXR7ZBMRqNM9b9PhFs374dSqUSl1566UQPhTHN6M8YYoViexlWMUmhuF0k4XAYgUBgVAY1HTl48CC++tWv9mlFMZg7U+gz5vf7qe7HYrFg7969OHfuHI4ePYqNGzdSY0Lwrmg0GhQWFsJoNCIpKQlKpRIKhQJisRjNzc1U9KxWq2kvL0HXEtmGRGhwKnhSDh06BKC3v1lSUhJaW1upV6q8vJzWEgJ6DTGe53H27FnalqOwsDCuniw2Iy/SK6bX61FaWorS0tK4F+xQjqPJZEJ9fT3C4TB6enro8QqHwxCLxejs7ITP50NLS0uUp0u4gRiNRtjtdpw/fx5OpxOlpaVRmi+bzQatVotQKIRAIEC9Q0I5ASFTTTiegkfmyJEjdB3hmAvbam9vR09PDzo7O2m5AqBXsN/R0UENOo7jaK2nUCgEuVwOs9mMtra2UXWXM/f7xFBXV4fa2lrcfPPNTKzNGHWYMTQwCRtJ8+bNw/79+/u0Vvjb3/6Gi+KkHDN6sVqtfR4qg7kzrVYrdu7ciZaWFtqrrLi4mPY5UyqVsNvtaGtrow/9SEpKSlBaWgqZTEa9SmfOnAHQ6+kQwmLl5eUwGAyQSqVoa2vD4cOHo4TfkQ90QWTtcDhoJhvQG4ISUsojPWQymQxOpxPp6elwuVwoLS3t9yKMDT3Gu3AHaukS7zgK2/T7/VT7Fg6HaT0nofik1WqlobNIT5cQYtq+fTs8Hg9EIhG6u7vR0dEBnU5H+7719PSgu7ub9pgLBoOQy+XgeR6EEMyaNQurV68Gx3F0PnK5HK2trXA4HOA4DiqVCoFAgNYe6+npoWLu1tZWVFVVAQAsFgsCgQAcDgf0ej0tmyCURgB6Dans7GzqCRvIXT7UkC9zv48/gli7oKAA8+bNm+jhMKY4/V3r8bKqmXC7l4SNpMcffxybN29GW1sbwuEwtm3bhtraWvzpT3/CP/7xj7EY47RAp9P1eaj0Zwh4PB6YzWYcOnQIdXV1NANPJBLBaDQiPz8/KjNNaLchEPnjVqvVCAaDaGpqAiGEvokKLTNidUxCiCu2AndZWRnOnz+P7u5uOh6fzwexWIwlS5YgMzOT7j/S49DZ2UmzyISQXOQ4I5vlxrsgh9JrbqDjGHkchIyylJQUuN1uWK1Wmn0mFLoUyidEIojMhZ5zYrEYPp8PDQ0NcDqdtG6SSCSCVCqlITaRSISlS5fSbLZ4hmx+fj6sVis9l263G8nJyVSY7XK5aE2k1tZWeL1eiEQiAMCyZctolpNer6dhvMWLF6OwsHBIb4iJ3AjZG+f4U1VVBZvNhttvv52JtRkjIlGjh3mOe0nYSNqwYQP+/ve/48knn0RSUhIef/xxLF26FH//+99x5ZVXjsUYx4TxLgGwYsWKIVU2Fn7I7e3t6OzshEgkojoXoecYx3G45ppraD+y2Idv5I9bqJwteFHkcjmWL1+O1NRUGmYT1hVS5K1WK4DeGlZpaWmwWCxoamoC0BtmE3qYCbqbtrY2NDc3R7UzETwOgqdJKDQpGByxF2xRUdGAF6RgOMarHB7vOMYeB7vdjuXLl9MWHD09PfD7/fD7/cjKysLixYupUDy2b55Go4FerwcApKamIhQK0QrYzc3NMJvNyMjIoPWhQqEQFAoFbabr9XphNpupGFyj0cDr9WL37t2wWCy0fpTL5aJZhGq1GmvXrsXhw4fR2NgIn89Hi1zG+w1FligwmUw0JB6vdESiocqBfq+MsaOnpwf79+/HihUrmFibMWISvdYH8xzPlBpKw6qTtHr1auzcuXO0xzKujHcJgIFCTEJmVqTRIlSK5nmetrYQ9DpVVVU01BPPOxH54zYYDNSTxHEcMjIy+oS8hKKLMpkMubm5aGpqgsfjgdfrRWdnJ7xeL7744gs4HA5aPTw1NRXhcJh6PSKzzoTeZPG0Rf21WhG62AvLhIywyPBde3t7VIuRRC9yoQWHx+PB6dOnaYNbwXiJ1zdPOHeRHpSenh5s374dFosFIpEIfr8fra2tSE9PR3FxMUwmE3w+HxXXC21WIvuz2e12Kr4OBoMIhUIQi8VITk5GRkYG/H4/NWjdbjftgadQKOBwOOD1emmF9IqKigHHP9AbJAuhTV4EsbaQ/clgJEKsEZPotT6Q53gmheISNpIKCgpw5MiRPj2Denp6sHTpUjQ2No7a4KY7QmsP4WFZVFSE8vJy+kOeM2cONBoNWlpaYLFYqGfJ5/PR47xu3bqoh6Hwg478cQO9FbIJIVRkDPzLK1BWVobdu3fTit0ikQgFBQXUKGppaYFCoUB3dzcaGxshk8mQnp6OBQsW9KmPFJkZEZtxN1CrlfT0dKSnp9MMt0OHDtGLL9JwtNlssFqtyMrKGtJFHi9lXdheZOXtwW4gkR6Z06dPQyqV0lYhXq8XYrGYitvVajW0Wi1ycnLQ1NREs+hsNhuysrJgNptp2EzwEgrGsEKhoLWONBoNeJ6HVquFx+NBWloaCgoK0N3djUOHDsHr9aKnpwcFBQXIycnpd/wDvUGyENrkpK6uDmfPnmVibcaw6M+ISfRa789zPJNCcQkbSefPn48bovL5fGhraxuVQc0UbDYbbTkBgIbGIhvUNjU1oaenh7bVkEgkcLlcSE5OpkZRrFha0BABvVXRfT4f7ZMWu47P56M/eIFwOAyLxQKdTodZs2bBZDKhubkZAEAIQWpqKhwOB+17NtiFF+9Ci1ffSBAzC+Eni8VCtysYAEVFRbTqdjzjMPZtJ17KejyDaKg3EOFYCc2XCwoKUFdXB6PRCKlUCrfbTUOLHMdBoVDQ60VoJix497xeL0KhEG1lI6wnGHcAcOjQIVitViQlJSEYDOL48eMQi8W0DUk4HMbhw4eh1+v7Hf9QDUDG5EAQa+fn5zOxNmNIxN4D+zNiRutan0ke6CEbSR988AH9/x07dkQdlFAohF27dmH27NmjOrjpjkajgcFgoEUdDQZDVOaToL0RQjVarRY8z9M3y/7CV4LoWijEmJSUBL1ej8LCwqh1du/eTT0pXq8XXq+Xhtw4joPT6cQnn3xCU9Szs7Nx/vx5mvYvpKSP5MKLrW/E83xU+xKhx9hw3L4D3Sj6y5wbbB6RNwe9Xo9FixYhNzcX7777Lk3H93g8yMjIQH5+PsxmM80sFPZRXl4OuVyOBQsWgOM4qNVqtLW10fYpwjmx2+1R/fE0Gg3S0tLQ2dlJyxIAvaUWKisrsW7duqhmwALMWzS1+Oyzz9DT04PbbruNibUZgxLvHjjWRsxMuqcM2Ui6/vrrAfRmRW3evDnqM6lUitmzZ+O3v/3tqA5uuqNQ9FabLikpoZqkeOGowsJCuN1uuFwupKenRwmA460veJaE1H9Bp8JxHF1HLBbTjDe/34+8vDyYTCbwPI9wOEzFx0IRSLfbTYs8pqen00a4IyGeEQMASUlJtBq1sI/+DBiz2Yz29nY6r0i370A3iuEadvFuDkKz2rS0NDgcDsybN4/qvioqKqL6x0U21o18qZDL5X3S9U0mEwghtN5SUlISLly4AEIIMjMzwfM87fnmdDr7rbMljDWeAcWYXESKtYVkAQZjIPrrxLBq1SoqsxgLZooHeshGkhASys/Px5EjR1i2xSihUCjieuAiH8Y8z1MNCgAa5oq3vhCya2xsRGdnJ+RyOfVsGAwGGAwGmM1mVFVVwePx0O71NpsNwWAQgUAARqMR2dnZ8Pv9UKvVCIVCKCwsREFBARobG2kbjHhvJ4lkPPRnxOj1+j5C73j74HmeZrvZbLaoIpCxx3Akbzuxc4q9OWg0Guh0OqotM5vNyM/Pp9+J7B/X31tdvLFqNBrI5XK6bN68efB6vVGZgxKJBF6vFyqVChqNZkhlFRiTlx07dkAulzOxNmPIDPQyWFdXx67/EZKwJklIBWeMPcLDWKj2LITm+hPJeb1eHDt2jBYWlMvlAACVSoX58+fThyfP8/D7/ZBKpbRCc1FREW0rw3EcFWUL/c6EB3dOTk6/RkeiGQ/9GTEDGTaxhSo9Hk9UEUgAUanuI33bGcqcFAoFSktLaQsRq9UaVWNq1apVQzLWYsfq8/mQnJyM1NRU+P1+qFQqZGVl0axFADT0Vl5eDgBDKqswU1J3pxr19fWoqanBTTfdREPZDMZg9HcfnUni6rFkWCUAdu3ahV27dkWJjgVefvnlURnYWDPedZJGwlDiy0KmXGNjI1QqFXw+H0QiEQwGA6xWKw4dOhRVGDIjI4N2rC8sLMRXvvIVhMNh2nE+Nzd3yCJsgeFclP2JuoeyD6Guk8fjodluo+05GeqcIr10SqWSFuWMdH8LY41XrygeQn0mwasmZAAKN0Ov10u1Z6dPn+5jFEWWVRB+NzMpdXcqESnWnj9//kQPhzHFiHfPnEni6rEkYSPpF7/4BZ588kksW7YMmZmZU1ZYON51kkZCf6nskdhsNng8HqhUKjidTuTl5SEpKalPs1ihFUk8LVRFRcWIPAzjcVHGCqdj+6eN9pvTcOYkl8uhUqn6NOMdLU9b5JtiZG2kWKMo1qgSvJLs7XLyceDAAVitVtx6661T9p7KmFzMJHH1WJKwkfTCCy/g1VdfxaZNm8ZiPIw4DKX7upAFFgqFYDAYUFFRQfUsQkFHi8UChUJB143VQo00NDUeF+Vg+xhtIy2R0gCRIdHI6t4jcX8PdE76qzU1UL879nY5+bDZbNi3bx9WrFhBw6gMxmgwU8TVY0nCRpLf78fKlSvHYiyMfhjs4SoYUYInKbISt7BeZNuK2LYbo8lgF+Vo6GH628dYGWlDmZPP56OVtCOrewufC8bqSA2UyG0JzYdjMx2H451iTBxMrM1gTF4SNpLuu+8+vPHGG/jZz342FuNhxGGwt/94FaRjGahtxXggtF85e/Zs3N5ro8V4vznFNtFdvnx5HwMpXgHP4RgowraEyt5C/atEjyN7u5w8NDQ04MyZM9i4cSMTazMYk5CEjSSv14sXX3wRn3zyCRYtWgSpVBr1+XPPPTdqg2P0Mtjb/1BCKBMZZonsvWaz2ZCfnz9t9DCxTXTlcnnUnGK9gD6fb9j1ioRtxda/mg7HcSYSDAbx0UcfYfbs2ViwYMFED4fBGJSZmBmbsJH0xRdfYMmSJQCAU6dORX3GBIdjx0Bv/0MJoUxkmCXW09Xd3T2k3mtTgcGMz4E+T/SGI2zLYrFArVZTz6DX641qBjzTbmJTlYMHDzKxNmPKMFMzYxM2kvbs2TMW42CMkKGEUIR1EklDHw1iq4eXlpZGVRefygxmfPb3+XBuOJHb4nkedrsdNTU1OHz4MA3lRTYbnik3samIzWZDZWUlysvLmVibMSWYqXWXhlUniTF1mYi3gekuFh7MQI33+XBvOJHbEvq7Cdtoa2ubkTexqciOHTvA8zzWrFkz0UNhMIbETM2MHbKRdOONNw5pvW3btg17MOPJVComOZpM1NsAEwtHMxo3nNhtZGdnD9r+hDHxNDY24syZM7jxxhuZWHsKM9NC29P9Zbc/hmwkTbcb7lQqJjmazNS3gcnGaNxw4m1jJt7EphKhUAgfffQR8vLysHDhwokeDmOYzFR9zkx82R2ykfTKK6+M5TgY4wR7kE4eRuOGE7uNmXgTm0ocOHAA3d3duPnmm5lYewozU/U5MxGmSZqBsAfp0JlpLnXG2GG327Fv3z5aS4sxdWEe+ZkDM5ImIezBPDmYqS51xtiwY8cOyGQyJtaexAz13ss88jMHZiRNMtiDefLAXOqM0aKxsRGnT5/GjTfeCLlcPtHDYcRhOA2o2f1g+iOa6AEw/oXH40FDQwMtFig8mBkTg+BSF9qoMJc6YzgwsfbUIN5LEYPBPEmThNi+XACg1+vZg3kCGa5LnYVLGZEcPHiQibWnAExnxIgHM5ImCZGtOwBg4cKFmDNnDnvITjCJutRZuJQRid1uR2VlJb7yla8wsfYkh+mMGPFgRtIkIfItRq/XMwNpisJ0TIxIPv74Y8hkMlx22WUTPRTGEGA6I0YszEiaJLC3mOkBc9kzBJqamnDq1CnccMMNTKw9Q2Gh96nPjDWSJmNbEvYWM/Vhxi4D+JdYOzc3F4sWLZro4TAmABZ6nx7M2Oy2Bx98EGfOnMGRI0cmeiiMaYZCoUBGRga7Ic5gDh06hM7OTlx99dVMrD1DYdly04MZayQxGAzGWOBwOLB3714sX74cGRkZEz0cxgTBSohMD2ZsuI3BYDDGgo8//hhSqZSJtacxQ9EasdD79IAZSQwGgzFKnD9/HidPnsT111/PxNrTlIG0RrHGE9OZTn2YkcRgMBijQCgUwocffoicnBwsXrx4oofDGCNitUZmsxk8z4PneVRXVzOh9jSDGUkMBoMxChw+fBidnZ341re+xcTa05jIMh9qtRo1NTWw2+2QyWTweDzQ6XSsRto0ghlJDAaDMUIEsfZXvvIVJtae5kRqjbxeLw4fPgy1Wg2r1QqFQsGE2tMMZiQxGAzGCPn4448hkUiYWHuGIGiNPB5PVKeEsrIy+Hw+JtSeRjAjicFgMEaAINbesGEDezDOMASvktlsBiEEcrmc9t9kTA+YkTTK+Hw++Hw++rfdbp/A0TAYjLFEqKw9a9YsLFmyZKKHw5gg6urqmGB7msKKSY4yv/rVr6DRaOi/nJyciR4Sg8EYI44cOQKLxYJrrrmGibVnKKyy9vSGGUmjzE9+8hPYbDb6r6WlZaKHxGAwxgCHw4E9e/Zg2bJlyMzMnOjhMCYIVll7ejNjw21j1eBWqJfBYDCmNzt37oRYLMbll18+0UNhTCCssvb0ZsZ6kliDWwaDMVwuXLiAL774AldeeSV7KDISbmrt8XhgNBrh8XjGeGSMkTJjPUkMBoMxHMLhMBNrz2CG0rdtsO/319aEMflgRhKDwWAkwOHDh2E2m3H//fczsfYMI56BAyAhoyme0JsZSZMXZiQxGAzGEHE6ndizZw/KysqQlZU10cNhjDPx+rYlmv4f2dYkUaH3SL1YjMRhRhKDwWAMEUGsfcUVV0z0UBgTQKyBQwhJ2Cs0XKE3C9NNDMxIYjAYjCHQ3NyMEydO4LrrrmMPpxlErPcm0sABMCyvkNDWJBFYmG5iYEYSg8FgDEI4HMaHH36I7OxsXHTRRRM9HMY40Z/3JtI4Ga/0fxammxiYkcRgMBiDcOTIESbWnoEMxXsTazTFGiSjZaCwMN3EwIwkBoPBGACn04ndu3czsfYMJFHvTaxBUlZWhurq6lEzUFiYbvxhRhKDwWAMwCeffAKRSMQqa09j+vP2RHpveJ6nfdn6MzJiDZK2trYJN1BGEqZjMCOJwWAw+qW5uRnHjx/HtddeC6VSOdHDYYwBg4WjFAoFvF4vKisr4fF4oNfr+6wjGFk8z0cZJNnZ2TAajRNqoLC2KSODGUkMBoMRB6GydnZ2NpYuXTrRw2GMEYOFozweDyorK9HY2AiVSkW/I6wTL8Tm8/n6ZMMNxRM1VgwnTMfoZcb2bmMwGIyB+Pzzz2EymXD11VczsfY0RghH2e32uN4em80Gj8cDlUoFp9MJhUJB1/F4PGhoaIDFYoFSqUR7ezvsdntUHzeFQgGe51FZWYk9e/agqqoqqmdbZB831tNt8sE8SQwGgxGDy+XC7t27sXTpUmRnZ0/0cBhjyGDhKI1GA71eDwAwGAyoqKigWWtVVVWwWCxwOBywWCwQiUSoqamBwWCAQqGA1WpFU1MTamtr0draiuTkZAD/8kRFeqHUajUAUGONZaFNDpiRxGAwGDF88skn4DiOVdaeIQwUjurPiBLCdDqdDl6vFyKRCOnp6bBarWhoaIBKpcKHH34Iu92OYDAIiUSC7u5u6PV68DwPo9EIr9dLDSSz2Qyg1xBjWWiTB2YkMRgMRgQtLS04duwYvva1rzGxNgNAfCMqMmssMzMTAGC1WuFwOHDo0CHYbDY4nU4QQgAAHMeB53kUFxfTsgBqtRpqtRp2ux0Gg4FuQwjRMSYeZiQxGAzGlwhi7aysLCbWZgxIvBYlNTU12L9/P8LhMFwuV9T6hBCoVCrwPE8NJLvdjvLycvA8D41GE5VFV11dzUJuk4AZayRt3boVW7duRSgUmuihMBiMScKxY8dgNBpx3333QSRieS2MgYn1MKWkpEAsFiMcDtNlYrEYCoUCOTk5CIVCkMlkUWUCBP0S0BvC8/v90Ol0LOQ2SZixRtKDDz6IBx98EHa7nRXXYjAYAIDKykom1mYMu5VIeno6Zs+ejdraWnAcB6lUCgCQy+UIhULQ6XQA0KdMgEBkCE+tVsPr9cLj8TBDaQJhr0oMBoPxJRzHYe3atRM9DMYEImSc7du3r0+6/mAoFAosXLgQWq0WSUlJCAQCSE5Ohkajwdy5cwEAhw8fRnV1dVwDTAjhlZeX03UTHQNjdGFGEoPBYHxJRUUFE2vPcOIVl0wEtVqNUCgEv98PmUwGlUqFjIwMWotpsO0Kou2hrMsYe2ZsuG28EDIb7Hb7BI+EwWD0h3B9Ll68eIJHwphoBup11l8YLnK53W6H1+uFTCYDAOTm5mLJkiWQy+UD9lCL3AbrtzZ5YEbSGNPV1QUAyMnJmeCRMBiMwXC5XFQ3wpiZ9FcXqb8eb7HL09PTEQwGEQ6HEQwG0djYCJvNhoqKin6LVsbb9kj6rQ1XU8XoCzOSxpiUlBQAvY0y2dvA+GG325GTk4OWlhZayZYxtkzlY04IgcPhQFZW1kQPhTEJiM1ai2w/kpycjPb2dpjNZuTl5cFms8FisUAmk8FoNKKrqwt+vx/BYBAikQgulwtWqxUejwfr169HRkZGn/3FC/FFtjZJhMEa9jISgxlJY4yQRqzRaKbcg2M6IBRrY4wfU/WYs5eYmYfgceF5Pm62mbBOVVUVjEYjenp6YDabIRaLafsRnufhcDjQ09MDnuehVCohl8sRDAbh8/lgs9kgEonQ0tKC9957D+vXr6fFJwWE54PZbIbBYBjRb3Gwhr2MxGBGEoPBYDBmHJG911wuF5KSkqDX6/t4XgRPkdvthtvthlgsRl5eHm0/IpPJ4HK5EAgE4Pf7IRKJwHEcJBIJRCIRwuEw3G43CCFoa2vDu+++ixtuuAEcx4EQgo6ODshkMgSDQYRCIbhcLni93mEbNkzPNLowI4nBYDAYMw7B4yKTydDR0dFvAUeNRgOpVAqbzQaVSoVgMIienh4Eg0GcPHkSIpEIHo+HhtcUCgWWLl0KqVSKAwcOwG63QyKRIBQKQS6Xw+12Y+/evQiFQjAajfD5fBCJRJDL5VAoFLhw4QJ27dqFZcuWIT09PWFjabCGvYzEYCUAxhie5/HEE0+wPjzjDDvu4w875oyphOBx8fv9UKvV8Pv9/Xpe5HI5pFIpgsEgCgoKsGjRIiQlJUGn08HpdNL1CCGQyWTIzMwEx3FQKpXIyclBamoq1Go1NaLcbjfC4TA8Hg84jkM4HEYgEIDD4YBSqUR7e/uw6jQJKBSKYWuaGNFwRMhRn6EIFbdtNtuU1FEwGAwGY3gMRZNkNBqxb98+KBQKWK1WXHrppUhPT6fiaJFIhLa2NgSDQfj9fqSlpYHjOOo18nq94DgOOTk5yMjIgNFoREtLC8LhMPx+P/x+PyQSCebMmQOO42C32+FyuZCXlwePx4NLL700rth7LI7DVPM8jcfzm4XbGAwGgzEjic1ii0ekxicrK4uGwISQFs/zOHToEFpaWuB2u6HRaNDa2gqdTgefzweJRIKsrCz4/X4AgMViQWZmJtxuNy666CIEAgEkJSUhNzcXAGA2m1FTUwO73T4sTVGiBg/LhhsYZiQxGAwGg9EP/Wl8Ig2s8vJyaLVaNDc30/Cdx+NBKBRCMBhES0sLMjMzceTIETgcDnR3d2P+/PmYNWtWHw9WXl4eDAZD1P6GavgMx+Bh2XADw4wkBoPBYDAGYCCPk8fjwaFDh1BXVwdCCDIyMrB48WIEAgGcOXMGWq0WDocDNpsNNpsNUqkUhBBotVpUV1fHNWgi92e1WlFZWQmPx0Oz77xeL9ra2pCdnQ2dTkeNKJ/Pl7DBw7LhBoYZSQwGg8FgRJCI56ahoQEdHR0ghCAcDqO9vR1erxcpKSlwu90wm82Qy+WQy+XgeR4ejwdSqRTt7e0IhUL9ZtUJ26+srERjYyNUKhWA3sLE+/fvp73drrnmGpw+fZoaR2q1GlarlfaAG8o8y8rK+tVkzXRYdhuDwWAwGF8ihKwGyy4T1jt58iQCgQBdLoi2LRYLpFIp8vLyoFarkZKSgpSUFCQlJaGoqAihUAgKhaJf7ZFggDmdTqhUKjidTigUCrhcLtjtdiiVStjtdjQ0NFADyW63o6CggIboqqurBx3/vn37UF1dzQykfmCeJAaDwWAwvmSoGh1hPaHX37Jly2htpNbWVqhUKmRlZcHtdiMjIwNlZWWw2+2oqamhnp7y8nL4/X74fD5abRvoFW+fPHkSnZ2d8Pv9UCqVMBgMqKioAAAcPXqUepLmzJkDr9dLw2U8z8Pv98f1UEV6yJgWaWgwI4nBYDAYjC/heR4ymQydnZ1QqVT9hqwitTx6vR6lpaW0ZUlaWhpEIhEWLFgAuVxOvTQ6nQ5qtZpqjE6cOIFgMIjz58+DEIL8/HxIJBJ0dHTAbDaD53mIRCIsW7YMpaWl1IjZuHFjlCZJq9VS4wdAXI1RrKi7rKyMaZGGADOSGAwGg8EAaIjK6XTCbrcDAKqrq+NmicWWATCZTDh+/Dg6OzsRCoWQlpYGjUZDPU0CPp+PenrMZjP8fj/C4TAAoKOjAzzPIykpCaFQCIQQcByH1NTUqP3rdDrI5XKYTCbY7XYYDIaoWkrxsvFiPUc+n49V5h4CzEhiMBgMxrRhJIURBUNCoVDAbDYjPT19wFCUsKyqqgrt7e20zQkAyGQy+Hy+Pt+J9EAZDAbqSQqHw9BoNFAqlXA4HEhLS4NUKoVerwchBB6PJypsVllZifr6ehBCUFRURENxwtxjC1DGy2IbSp2omQ4zkhgMBoMxLRhpYUTBkLBYLLRViV6vjwpFxRphkdqknp4ehEIhSKVSZGRkxA1hxdZdAoCWlhZ88cUXCAQCkEgkWLlyJRVi19TU4PDhw1HzsdlsMJvN1ANlNpthMplQX1/f79xZT7fhwYwkBoPBYEwLRipGjg2hxabFxzPCIj00xcXFKCgogEwmG7A5bawHR61WIxwOQ6fTwW63g+d5WrFbEGhHzkej0cBgMMBut4MQAoPBAI7j+p27x+OB2WwGIWRYTXNnMjPeSBJa1wnxZwaDwWBMTTiOA8/zMBqN0Ol0tBdaoiiVSvrfQCBAU/xNJhNaW1uRnJyM1tZWtLa2Ij09HQsXLqTGjGCARH5PwOPxRK0n/C2TycDzPNra2qBQKKhx1N98PB4PZs2aBYPBAJlMBr1eDwD9rvvpp5+ioaEBHMehoKAAl1xyybQwlIRzO5YtaGeskbR161Zs3bqV9tPJycmZ4BExGAwGg8FIlK6urjHLzuPIWJpgUwChQmpycjI4jpvo4YwIu92OnJwctLS0jFlH5MnKTJ47MLPnP5PnDszs+c/kuQNs/jabDbm5ubBardBqtWOyjxnrSRIQiUSYNWvWRA9jVBFK089EZvLcgZk9/5k8d2Bmz38mzx1g8xeJxq55CGtLwmAwGAwGgxEHZiQxGAwGg8FgxIEZSdMInufxxBNPDNr5eToyk+cOzOz5z+S5AzN7/jN57gCb/3jMf8YLtxkMBoPBYDDiwTxJDAaDwWAwGHFgRhKDwWAwGAxGHJiRxGAwGAwGgxEHZiQxGAwGg8FgxIEZSZOYrVu3Yvbs2ZDL5SgvL8fhw4cHXP/tt99GSUkJ5HI5Fi5ciI8++ijq87vvvhscx0X9W79+/VhOYUQkMv/Tp09j48aNmD17NjiOw5YtW0a8zYlktOf+85//vM+5LykpGcMZjIxE5v/SSy9h9erV0Ol00Ol0WLt2bZ/1CSF4/PHHkZmZCYVCgbVr16Kurm6spzEsRnvu0/m637ZtG5YtWwatVoukpCQsWbIEf/7zn6PWmUrnHhj9+U+l8z/c+/Obb74JjuNw/fXXRy0flXNPGJOSN998k8hkMvLyyy+T06dPk/vvv59otVpiMpnirl9VVUXEYjF55plnyJkzZ8hjjz1GpFIpOXnyJF1n8+bNZP369aSjo4P+6+7uHq8pJUSi8z98+DD5wQ9+QP7yl7+QjIwM8rvf/W7E25woxmLuTzzxBJk/f37UubdYLGM8k+GR6Pxvv/12snXrVnLs2DFSU1ND7r77bqLRaEhraytd5+mnnyYajYa899575MSJE+S6664j+fn5xOPxjNe0hsRYzH06X/d79uwh27ZtI2fOnCH19fVky5YtRCwWk+3bt9N1psq5J2Rs5j9Vzv9w789NTU0kOzubrF69mmzYsCHqs9E498xImqQsX76cPPjgg/TvUChEsrKyyK9+9au4699yyy3kmmuuiVpWXl5OvvWtb9G/N2/e3OdHNFlJdP6R5OXlxTUURrLN8WQs5v7EE0+QxYsXj+Iox46RnqdgMEiSk5PJa6+9RgghJBwOk4yMDPLss8/SdXp6egjP8+Qvf/nL6A5+hIz23AmZOde9wEUXXUQee+wxQsjUOveEjP78CZk65384cw8Gg2TlypXkj3/8Y595jta5Z+G2SYjf70d1dTXWrl1Ll4lEIqxduxYHDhyI+50DBw5ErQ8A69at67P+3r17YTAYMHfuXDzwwAPo6uoa/QmMkOHMfyK2ORaM5Tjr6uqQlZWFgoIC3HHHHWhubh7pcEed0Zi/2+1GIBBASkoKAKCpqQlGozFqmxqNBuXl5dPu3MfOXWAmXPeEEOzatQu1tbW49NJLAUydcw+MzfwFJvv5H+7cn3zySRgMBtx77719Phutcz/jG9xORjo7OxEKhZCenh61PD09HWfPno37HaPRGHd9o9FI/16/fj1uvPFG5Ofno6GhAf/f//f/4aqrrsKBAwcgFotHfyLDZDjzn4htjgVjNc7y8nK8+uqrmDt3Ljo6OvCLX/wCq1evxqlTp5CcnDzSYY8aozH/H/3oR8jKyqI3R+EaGOz6mGjGYu7A9L/ubTYbsrOz4fP5IBaL8Yc//AFXXnklgKlz7oGxmT8wNc7/cOb+6aef4n//939x/PjxuJ+P1rlnRtIM4utf/zr9/4ULF2LRokWYM2cO9u7diyuuuGICR8YYa6666ir6/4sWLUJ5eTny8vLw1ltvxX0Lm6o8/fTTePPNN7F3717I5fKJHs640t/cp/t1n5ycjOPHj8PpdGLXrl145JFHUFBQgDVr1kz00MaFweY/Hc+/w+HApk2b8NJLLyEtLW1M98WMpElIWloaxGIxTCZT1HKTyYSMjIy438nIyEhofQAoKChAWloa6uvrJ9XFMpz5T8Q2x4LxGqdWq0VxcTHq6+tHbZujwUjm/5vf/AZPP/00PvnkEyxatIguF75nMpmQmZkZtc0lS5aM3uBHyFjMPR7T7boXiUQoLCwEACxZsgQ1NTX41a9+hTVr1kyZcw+MzfzjMRnPf6Jzb2howPnz53HttdfSZeFwGAAgkUhQW1s7aueeaZImITKZDGVlZdi1axddFg6HsWvXLlx88cVxv3PxxRdHrQ8AO3fu7Hd9AGhtbUVXV1fUD2gyMJz5T8Q2x4LxGqfT6URDQ8O0OffPPPMMfvnLX2L79u1YtmxZ1Gf5+fnIyMiI2qbdbsehQ4emxbkfaO7xmO7XfTgchs/nAzB1zj0wNvOPx2Q8/4nOvaSkBCdPnsTx48fpv+uuuw6XXXYZjh8/jpycnNE794mozxnjx5tvvkl4nievvvoqOXPmDPnmN79JtFotMRqNhBBCNm3aRH784x/T9auqqohEIiG/+c1vSE1NDXniiSeiSgA4HA7ygx/8gBw4cIA0NTWRTz75hCxdupQUFRURr9c7IXMciETn7/P5yLFjx8ixY8dIZmYm+cEPfkCOHTtG6urqhrzNycJYzP373/8+2bt3L2lqaiJVVVVk7dq1JC0tjZjN5nGf32AkOv+nn36ayGQy8re//S0qzdnhcESto9Vqyfvvv0+++OILsmHDhkmZBj7ac5/u1/1TTz1FPv74Y9LQ0EDOnDlDfvOb3xCJREJeeuklus5UOfeEjP78p9L5T3TuscTL4huNc8+MpEnMf/3Xf5Hc3Fwik8nI8uXLycGDB+lnFRUVZPPmzVHrv/XWW6S4uJjIZDIyf/588uGHH9LP3G43+epXv0r0ej2RSqUkLy+P3H///ZPOQIgkkfk3NTURAH3+VVRUDHmbk4nRnvutt95KMjMziUwmI9nZ2eTWW28l9fX14zijxEhk/nl5eXHn/8QTT9B1wuEw+dnPfkbS09MJz/PkiiuuILW1teM4o6EzmnOf7tf9T3/6U1JYWEjkcjnR6XTk4osvJm+++WbU9qbSuSdkdOc/1c5/os+8SOIZSaNx7jlCCBm634nBYDAYDAZjZsA0SQwGg8FgMBhxYEYSg8FgMBgMRhyYkcRgMBgMBoMRB2YkMRgMBoPBYMSBGUkMBoPBYDAYcWBGEoPBYDAYDEYcmJHEYDAYDAaDEQdmJDEYDAaDwWDEgRlJDMYEs3fvXnAch56enokeyrhw99134/rrrx/xdoQmlg6HY+SDGgPWrFmD7373uxM9jDFlPObY2dkJg8GA1tbWMd0PgxEPZiQxGBH09wCfaYbMaHD+/HlwHIfjx49HLf/973+PV199dcTb/8lPfoKHHnoIycnJfT6rr69HcnIytFrtoNvZt28frr32WmRlZYHjOLz33ntRnwcCAfzoRz/CwoULkZSUhKysLNx1111ob28f8Rz646GHHkJpaWncz5qbmyEWi/HBBx/QZR6PB0lJSaivr8e2bdtw5ZVXQq/XQ61W4+KLL8aOHTsS2v+3v/1tcByHLVu2jGQaAzLUOaalpeGuu+7CE088MWZjYTD6gxlJDMY44ff7J3oIo8JI56HRaIZkvAxEc3Mz/vGPf+Duu+/u81kgEMBtt92G1atXD2lbLpcLixcvxtatW+N+7na7cfToUfzsZz/D0aNHsW3bNtTW1uK6664byRQG5N5778XZs2fx2Wef9fns1VdfhcFgwNVXX02X7dy5E3l5eSgsLMS+fftw5ZVX4qOPPkJ1dTUuu+wyXHvttTh27NiQ9v3uu+/i4MGDyMrKGrX5xCOROX7jG9/A66+/ju7u7jEdE4MRCzOSGIxh0NXVhdtuuw3Z2dlQKpVYuHAh/vKXv0Sts2bNGnznO9/Bd7/7XaSlpWHdunUAgI8++gjFxcVQKBS47LLLcP78+ajvvfrqq9BqtdixYwdKS0uhUqmwfv16dHR0RK33xz/+EaWlpZDL5SgpKcEf/vAH+pnf78d3vvMdZGZmQi6XIy8vD7/61a8AAIQQ/PznP0dubi54nkdWVhYefvjhfuf685//HEuWLMEf//hH5OfnQy6XAwC2b9+OSy65BFqtFqmpqfja176GhoYG+r38/HwAwEUXXQSO47BmzRoAfb11Pp8PDz/8MAwGA+RyOS655BIcOXJkwOP/1ltvYfHixcjOzu7z2WOPPYaSkhLccsstA25D4KqrrsJ//Md/4IYbboj7uUajwc6dO3HLLbdg7ty5WLFiBZ5//nlUV1ejubl5SPsAgA8//BAajQavv/46AKClpQW33HILtFotUlJSsGHDBvpbWLJkCZYuXYqXX345ahuEELz66qvYvHkzJBIJXf7+++9To23Lli149NFH8ZWvfAVFRUV46qmnUFRUhL///e+DjrGtrQ0PPfQQXn/9dUil0iHPbaznOH/+fGRlZeHdd99NeEwMxkhgRhKDMQy8Xi/Kysrw4Ycf4tSpU/jmN7+JTZs24fDhw1Hrvfbaa5DJZKiqqsILL7yAlpYW3Hjjjbj22mtx/Phx3Hffffjxj3/cZ/tutxu/+c1v8Oc//xn79u1Dc3MzfvCDH9DPX3/9dTz++OP4z//8T9TU1OCpp57Cz372M7z22msAgP/3//4fPvjgA7z11luora3F66+/jtmzZwMA3nnnHfzud7/D//zP/6Curg7vvfceFi5cOOB86+vr8c4772Dbtm00fOZyufDII4/g888/x65duyASiXDDDTcgHA4DAD0Wn3zyCTo6OrBt27a423700Ufxzjvv4LXXXsPRo0dRWFiIdevWDeg12L9/P5YtW9Zn+e7du/H222/36xUaLWw2GziOG7JH7I033sBtt92G119/HXfccQcCgQDWrVuH5ORk7N+/H1VVVdQYFjx19957L9566y24XC66nb1796KpqQn33HMPXRYOh/GPf/wDGzZsiLvvcDgMh8OBlJSUAccYDoexadMm/PCHP8T8+fOHNK/xmiMALF++HPv37094XAzGiCAMBoOyefNmIhaLSVJSUtQ/uVxOABCr1drvd6+55hry/e9/n/5dUVFBLrrooqh1fvKTn5B58+ZFLfvRj34Ute1XXnmFACD19fV0na1bt5L09HT695w5c8gbb7wRtZ1f/vKX5OKLLyaEEPLQQw+Ryy+/nITD4T7j/O1vf0uKi4uJ3+8f+GB8yRNPPEGkUikxm80DrmexWAgAcvLkSUIIIU1NTQQAOXbsWNR6mzdvJhs2bCCEEOJ0OolUKiWvv/46/dzv95OsrCzyzDPP9LuvxYsXkyeffDJqWWdnJ8nJySGVlZWEkN7jqNFohjRHAQDk3XffHXAdj8dDli5dSm6//fYB16uoqCD//u//Tp5//nmi0WjI3r176Wd//vOfydy5c6POj8/nIwqFguzYsYMQQojVaiVyuZy88sordJ1NmzaRSy65JGo/VVVVxGAwkFAoFHccv/71r4lOpyMmk2nA8T711FPkyiuvpGPKy8sjv/vd7ybFHAkh5Hvf+x5Zs2bNgONhMEYb5kliMGK47LLLcPz48ah/f/zjH6PWCYVC+OUvf4mFCxciJSUFKpUKO3bs6BN+KSsri/q7pqYG5eXlUcsuvvjiPmNQKpWYM2cO/TszMxNmsxlArwenoaEB9957L1QqFf33H//xHzTcdffdd+P48eOYO3cuHn74YXz88cd0WzfffDM8Hg8KCgpw//33491330UwGBzwmOTl5UGv10ctq6urw2233YaCggKo1WrqqUokBNXQ0IBAIIBVq1bRZVKpFMuXL0dNTU2/3/N4PDTsJ3D//ffj9ttvx6WXXhr3O/v37486XkJIKBECgQBuueUWEELw3//934Ou/7e//Q3f+973sHPnTlRUVNDlJ06coOJyYTwpKSnwer30HGq1Wtx44400HGW32/HOO+/g3nvvjdrH+++/j6997WsQifrezt944w384he/wFtvvQWDwQCg1wsZeRz279+P6upqKqjnOC6hYzIecwQAhUIBt9ud0NgYjJEiGXwVBmNmkZSUhMLCwqhlsenHzz77LH7/+99jy5YtNOvpu9/9bh9Rc1JS0rDGEKsH4TgOhBAAgNPpBAC89NJLfQwusVgMAFi6dCmamprwz3/+E5988gluueUWrF27Fn/729+Qk5OD2tpafPLJJ9i5cyf+7d/+Dc8++ywqKyv71aHEm8e1116LvLw8vPTSS8jKykI4HMaCBQvGRaCelpYGq9UatWz37t344IMP8Jvf/AZAr7YlHA5DIpHgxRdfxG233RaVaZeenp7QPgUD6cKFC9i9ezfUavWg37noootw9OhRvPzyy1i2bBk1QJxOJ8rKyuIaapHG6L333osrrrgC9fX12LNnD8RiMW6++eao9T/44AM8/fTTfbbz5ptv4r777sPbb7+NtWvX0uXXXXdd1O8mOzsb//M//wOz2Yzc3Fy6PBQK4fvf/z62bNnSRzc33nMEgO7u7j6GOoMx1jAjicEYBlVVVdiwYQPuvPNOAL16jnPnzmHevHkDfq+0tDQqdRsADh48mNC+09PTkZWVhcbGRtxxxx39rqdWq3Hrrbfi1ltvxU033YT169eju7sbKSkpUCgUuPbaa3HttdfiwQcfRElJCU6ePImlS5cOaQxdXV2ora3FSy+9RLPIPv3006h1ZDIZgN6HbX/MmTOHarby8vIA9BojR44cGbD+zkUXXYQzZ85ELTtw4EDUvt5//338+te/xmeffYbs7GwoFIo+xu9QEQykuro67NmzB6mpqUP63pw5c/Db3/4Wa9asgVgsxvPPPw+g14j961//CoPBMKCxddlllyE/Px+vvPIK9uzZg69//etRBmtdXR0uXLiAK6+8Mup7f/nLX3DPPffgzTffxDXXXBP1WXJycp+yCZs2bYoypABg3bp12LRpE77xjW9M6BwFTp06RcX/DMZ4wYwkBmMYFBUV4W9/+xs+++wz6HQ6PPfcczCZTIMaSd/+9rfx29/+Fj/84Q9x3333obq6elg1g37xi1/g4Ycfhkajwfr16+Hz+fD555/DarXikUcewXPPPYfMzExcdNFFEIlEePvtt5GRkQGtVotXX30VoVAI5eXlUCqV+L//+z8oFApqpAwFnU6H1NRUvPjii8jMzERzc3MfAbrBYIBCocD27dsxa9YsyOVyaDSaqHWSkpLwwAMP4Ic//CFSUlKQm5uLZ555Bm63O27IRWDdunW47777EAqFqPcstubO559/DpFIhAULFgw4F6fTifr6evp3U1MTjh8/TscTCARw00034ejRo/jHP/6BUCgEo9EIAEhJSaHGYH8UFxdjz549WLNmDSQSCbZs2YI77rgDzz77LDZs2IAnn3wSs2bNwoULF7Bt2zY8+uijmDVrFoBeD+I999yD5557DlarFb/73e+itv3+++9j7dq1UCqVdNkbb7yBzZs34/e//z3Ky8vpWBUKRZ/jL5CamtrH8JNKpcjIyMDcuXMHnN9YzxHoTWSorq7GU089NehYGIxRZYI1UQzGpCJSVBzJnj17osTVXV1dZMOGDUSlUhGDwUAee+wxctddd0V9VxC1xvL3v/+dFBYWEp7nyerVq8nLL7/cR7gdKzh+9913Sezl+vrrr5MlS5YQmUxGdDodufTSS8m2bdsIIYS8+OKLZMmSJSQpKYmo1WpyxRVXkKNHj9JtlZeXE7VaTZKSksiKFSvIJ5980u8xeeKJJ8jixYv7LN+5cycpLS0lPM+TRYsWkb179/YRPr/00kskJyeHiEQiUlFREfcYezwe8tBDD5G0tDTC8zxZtWoVOXz4cL/jIYSQQCBAsrKyyPbt2/tdZ6jCbeHcxv7bvHkzIeRfAvR4//bs2dPvdmPP/5kzZ4jBYCCPPPIIIYSQjo4Octddd9F5FxQUkPvvv5/YbLao7bS0tBCRSETmz5/fZx+XXHIJeemll/rsd6D5DJVEhNtjOUdCCHnjjTfI3LlzExo/gzEacIR8KXRgMBiMKcTWrVvxwQcfJFxNerrQ2dmJzMxMtLa2JqyvmmqsWLECDz/8MG6//faJHgpjhsHCbQwGY0ryrW99Cz09PXA4HHFbk0x3uru78dxzz017A6mzsxM33ngjbrvttokeCmMGwjxJDAaDwWAwGHFgdZIYDAaDwWAw4sCMJAaDwWAwGIw4MCOJwWAwGAwGIw7MSGIwGAwGg8GIAzOSGAwGg8FgMOLAjCQGg8FgMBiMODAjicFgMBgMBiMOzEhiMBgMBoPBiAMzkhgMBoPBYDDi8P8DQeBVDq7HbqkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "(plotline, _, _) = ax.errorbar(\n", + " colors,\n", + " intensity / ndet * 50,\n", + " yerr=intensity_errs / ndet * 50,\n", + " xerr=color_errs,\n", + " fmt=\"o\",\n", + " color=\"b\",\n", + " alpha=0.5,\n", + " markersize=7,\n", + " label=\"Stingray analysis\",\n", + " zorder=10,\n", + ")\n", + "plotline.set_markerfacecolor(\"none\")\n", + "plotline.set_markeredgewidth(0.5)\n", + "ax.scatter(\n", + " wang_data[\"H\"],\n", + " wang_data[\"I\"] / 52 * 50,\n", + " alpha=0.5,\n", + " color=\"grey\",\n", + " zorder=1,\n", + " s=3,\n", + " label=\"Wang+2021\",\n", + ")\n", + "ax.set_xlim([0.01, 0.4])\n", + "ax.set_ylim([2e2, 1e5])\n", + "ax.set_xlabel(\"Hardness ratio (4-12 keV/2-4 keV)\")\n", + "ax.set_ylabel(\"Intensity (ct/s/50PCUs, 0.4-12 keV)\")\n", + "ax.semilogy()\n", + "ax.scatter(\n", + " epoch_zero_h, epoch_zero_i, marker=\"*\", color=\"red\", zorder=2, s=40, label=\"EPOCH 0 from Wang\"\n", + ")\n", + "\n", + "axins = ax.inset_axes(\n", + " [0.05, 0.05, 0.47, 0.47], xlim=(0.30, 0.325), ylim=(1.5e4, 2.2e4), xticklabels=[], yticklabels=[]\n", + ")\n", + "\n", + "axins.scatter(wang_data[\"H\"], wang_data[\"I\"] / 52 * 50, alpha=0.5, color=\"grey\", zorder=1, s=3)\n", + "axins.errorbar(\n", + " colors,\n", + " intensity / ndet * 52,\n", + " yerr=intensity_errs / ndet * 52,\n", + " xerr=color_errs,\n", + " fmt=\"o\",\n", + " color=\"b\",\n", + " alpha=0.5,\n", + " markersize=7,\n", + " zorder=10,\n", + ")\n", + "axins.scatter(epoch_zero_h, epoch_zero_i, marker=\"*\", color=\"red\", zorder=2, s=40)\n", + "\n", + "ax.indicate_inset_zoom(axins, edgecolor=\"black\")\n", + "ax.legend(loc=\"upper right\")" + ] + }, + { + "cell_type": "markdown", + "id": "17c0427c", + "metadata": {}, + "source": [ + "## Periodogram and cross spectrum\n", + "\n", + "Let us now take a look at the periodogram and the cross spectrum. \n", + "The periodogram will be obtained with Bartlett's method: splitting the light curve into equal-length segments, calculating the periodogram in each, and then averaging them into the final periodogram.\n", + "\n", + "We will use the fractional rms normalization (sometimes referred to as the _Belloni_, or _Miyamoto_, normalization, from the papers [Belloni & Hasinger 1990](https://ui.adsabs.harvard.edu/abs/1990A%26A...230..103B/abstract), [Miyamoto et al. 1992](https://ui.adsabs.harvard.edu/abs/1992ApJ...391L..21M/abstract)). The background contribution is negligible and will be ignored.\n", + "\n", + "Note: since the fractional rms normalization uses the mean count rate, the final result changes slightly if the normalization is applied in the single periodograms from each light curve segment, with the count rate of each chunk, or on the averaged periodogram, using the average count rate of the full light curve. We choose the second option (note the `use_common_mean=True`).\n", + "\n", + "We will first plot the periodogram as is, in units of $(\\mathrm{rms/mean)^2\\,Hz^{-1}}$.\n", + "\n", + "Then, from the periodogram, we will subtract the theoretical Poisson noise level of $2/\\mu$, where $\\mu$ is the mean count rate in the observation, and we will multiply the powers by the frequency, to have the periodogram in units of $(\\mathrm{rms/mean)^2}$. \n", + "\n", + "In both cases, we will rebin the periodogram geometrically, averaging more bins at larger frequencies, in order to lower the noise level." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a1ce6955", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 24.41it/s]\n" + ] + } + ], + "source": [ + "# Calculate the periodogram in fractional rms normalization.\n", + "# Length in seconds of each light curve segment\n", + "segment_size = 256\n", + "# Sampling time of the light curve: 1ms, this will give a Nyquist\n", + "# frequency of 0.5 / dt = 500 Hz.\n", + "dt = 0.001\n", + "# Fractional rms normalization\n", + "norm = \"frac\"\n", + "\n", + "pds = AveragedPowerspectrum.from_events(\n", + " events, segment_size=segment_size, dt=dt, norm=norm, use_common_mean=True\n", + ")\n", + "\n", + "# Calculate the mean count rate\n", + "ctrate = get_average_ctrate(events.time, events.gti, segment_size)\n", + "# Calculate the Poisson noise level\n", + "noise = poisson_level(norm, meanrate=ctrate)\n", + "\n", + "# Rebin the periodogam\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "87f5cb03", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG1CAYAAAAC+gv1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6PElEQVR4nO3deVxTV94/8M9NICTs+ybgAmIFFBQU92p1qqWPbbW1/p52WrW22j5W7djFtjOjXZxx2umK5Wm1M1U7Uzt2uth5Ki1WRsV9QVHBBUFcUAFRdhKW5P7+YHJLSFhCEsLyeb9evJqce3LvyS2Gb875nnMEURRFEBEREZFEZu8GEBEREXU3DJCIiIiIWmCARERERNQCAyQiIiKiFhggEREREbXAAImIiIioBQZIRERERC0wQCIiIiJqwcHeDeiJdDodrl+/Djc3NwiCYO/mEBERUQeIooiqqioEBwdDJmu7j4gBUidcv34doaGh9m4GERERdcLVq1cREhLSZh0GSJ3g5uYGoOkGu7u727k1RERE1BGVlZUIDQ2V/o63hQFSJ+iH1dzd3RkgERER9TAdSY9hkjYRERFRCwyQzJCSkoKoqCiMGjXK3k0hIiIiGxJEURTt3YieprKyEh4eHqioqOAQGxH1KlqtFg0NDfZuBlGnKRSKVmeomfP3mzlIREQEURRRVFSE8vJyezeFyCIymQwDBw6EQqGw6DwMkIiISAqO/P394ezszDXeqEfSr1N448YNhIWFWfR7zACJiKiP02q1UnDk4+Nj7+YQWcTPzw/Xr19HY2MjHB0dO30eJmkTEfVx+pwjZ2dnO7eEyHL6oTWtVmvReRggERERgI6tDUPU3Vnr95gBEhEREVELDJCIiIiIWmCARERERNQCAyQiIuqx5s+fD0EQIAgCFAoFIiIi8MYbb6CxsRG7d++WjslkMnh4eGDEiBF46aWXcOPGDYPz1NbW4pVXXkF4eDiUSiX8/Pxw55134vvvv7fTOyN74zR/6pUuX76MiooKgzInJycMHjy41RVWiahnmjFjBjZu3Ii6ujqkpqZiyZIlcHR0xNixYwEA58+fh7u7OyorK3H8+HG8/fbb+Otf/4rdu3dj2LBhAICnn34ahw8fxrp16xAVFYVbt27hwIEDuHXrlj3fGtkRAyTqdRobG1FQUGDymL+/P7y8vLq4RUQ9jyiK0Ol0drm2TCYzayaSk5MTAgMDAQDPPPMMvvvuO/zrX/+SAiR/f394enoiMDAQkZGRuP/++zFixAg888wz2LdvHwDgX//6Fz788EMkJSUBAAYMGID4+HgrvzPqSRggUa/TfHvBIUOGQBAEXLp0CRqNBtx6kKhjdDod9u7da5drT5w4EXK5vNOvV6lUbfb8qFQqPP300/jNb36DkpIS+Pv7IzAwEKmpqZg9ezbc3Nw6fW3qPTjWQL1aQEAAAgMD4eDA7wJEvZ0oiti5cyfS0tJw1113tVn3jjvuAABcunQJALBhwwYcOHAAPj4+GDVqFH7zm99g//79tm4ydWN99q/GDz/8gOeffx46nQ4rV67Ek08+ae8mERF1GzKZDBMnTrTbtc3xww8/wNXVFQ0NDdDpdHjkkUfw2muv4ejRo62+Rt+brB/KmzRpEi5evIhDhw7hwIEDSE9Px4cffojXX38dv//97zv/ZqjH6pMBUmNjI1asWIFdu3bBw8MD8fHxmDVrFvcgIiL6D0EQLBrm6kpTpkzBxx9/DIVCgeDg4A71GJ89exZAU66RnqOjIyZOnIiJEydi5cqVWLNmDd544w2sXLnS4p3hqefpk0NsR44cQXR0NPr16wdXV1fcc8892LFjh72bRUREneDi4oKIiAiEhYV1KDhSq9XYsGEDJk2aBD8/v1brRUVFobGxERqNxprNpR6iRwZIGRkZmDlzJoKDgyEIArZt22ZUJyUlBQMGDIBSqURiYiKOHDkiHbt+/Tr69esnPe/Xrx+uXbvWFU0nIqIuVlJSgqKiIly4cAH/+Mc/MH78eJSWluLjjz+W6kyePBnr169HZmYmLl26hNTUVLz66quYMmUK3N3d7dh6spceGSDV1NQgNjYWKSkpJo9v3boVK1aswOrVq3H8+HHExsZi+vTpKCkp6eKWUlcRRRE1NTXSj1qthlqtlp5z9hpR3zVkyBAEBwcjPj4ef/rTnzBt2jRkZ2cjKipKqjN9+nRs3rwZd999N4YOHYqlS5di+vTp+Oqrr+zYcrKnHpmDdM899+Cee+5p9fh7772Hp556CgsWLAAAfPLJJ9i+fTs+++wzvPzyywgODjboMbp27RpGjx7d6vnq6upQV1cnPa+srLTCuyBrEUUREyZMwIEDB1qtExsbi/fff78LW0VEXWHTpk2tHps8eXKHvxy98soreOWVV6zUKuoNemSA1Jb6+npkZmYa/KLLZDJMmzYNBw8eBACMHj0a2dnZuHbtGjw8PPDjjz+2OUth7dq1eP31123e9u5Gp9OhurrarNc0NDR0aLxeJpMhICDAKqta19bWthkcAcDJkyeZR0BERB3W6wKk0tJSaLVaBAQEGJQHBATg3LlzAAAHBwe8++67mDJlCnQ6HV566aU2Z7C98sorWLFihfS8srISoaGhtnkD3YQoioiPj0dWVpbNrpGQkIAjR46YtWJue4qLi6FQKKRgeMSIEQgKCrLa+YmIqG/odQFSR91333247777OlTXyckJTk5ONm5R91JbW2vT4AgAjh07htraWri4uFjtnC4uLlAoFFCpVNJzIiIic/W6AMnX1xdyuRzFxcUG5cXFxdJePZ2VkpKClJQUaLVai87T01y6dMms/cva20cpNzcXI0eOtEbTuhWtVouTJ09CrVZDEAT069cP/fv3t3eziIioE3pdgKRQKBAfH4/09HQ88MADAJpyadLT0/Hss89adO4lS5ZgyZIlqKyshIeHhxVa2zO4u7tbdZqrs7Oz1c7VnVRVVRkk8BcVFTFAIiLqoXpkgFRdXY28vDzpeUFBAbKysuDt7Y2wsDCsWLEC8+bNQ0JCAkaPHo0PPvgANTU10qw2oo7Q6XS4fPmyNIPRwcEBYWFhXFGXiKgP6JEB0rFjxzBlyhTpuT6Bet68edi0aRPmzp2LmzdvYtWqVSgqKkJcXBx++ukno8RtoraUlZXh8uXLBmUKhQJhYWF2ahEREXWVHhkgdWRti2effdbiIbWW+moOUnciiiJqa2sNympqaqx+XmdnZ+h0OgCAUqmEQqFAZWWlVEZERL1bjwyQ7KW75yDV1dXh4sWLVvkj3jII6UqmgiCgaZPhsWPHSptMWktlZSUmTJiA06dPS2UJCQnYvn07gKZZjC4uLlwglKiX2r17N6ZMmYKysjJ4enqarLNp0yY899xzKC8v79K2mfLaa69h27ZtNp9p3NcxQOolRFHEuHHjcPz4cauf2xqLOXaUKIoYPXo0jh07ZvZrx4wZA2dnZzQ2Npr1umvXrhkER8AvSxAQUfc2f/58bN68GUBTnmBISAjmzJmDN954A0ql0mrXmTt3LpKSkqx2Plu6dOkSBg4cKD339vZGfHw83nrrLYwYMQJA00jMnj17ADSlDvj6+mLkyJFYsGABZs+ebXC+PXv24PXXX0dWVhY0Gg369euHcePG4dNPP+3VOZk9ci82MlZbW2uT4Gj06NFdulFjbW1tu8FRREQEzp49i3PnzuHcuXPYsWMHUlNT8dNPP1m86OShQ4csej0Rdb0ZM2bgxo0buHjxIt5//32sX78eq1evtuo1VCoV/P39rXpOW9u5cydu3LiBtLQ0VFdX45577jHoAXvqqadw48YN5Ofn45tvvkFUVBT+3//7f1i0aJFU58yZM5gxYwYSEhKQkZGB06dPY926dVAoFL0+3YQBkhlSUlIQFRWFUaNG2bspbTpy5Aiqq6ut8nPo0CGrrnRtjhMnTqCkpMTg5+bNmzh//jzuuOMODBkyBEOGDIGbmxtUKpVV2tmye10URajVatTW1kr/NZX/pt8sV79JLjfHJeo6Tk5OCAwMRGhoKB544AFMmzYNP//8s3Rcp9Nh7dq1GDhwIFQqFWJjY/H1118bnWf//v0YPnw4lEolxowZg+zsbOnYpk2bDD4fXnvtNcTFxeFvf/sbBgwYAA8PD/y///f/UFVVJdWZPHkyli1bhpdeegne3t4IDAzEa6+9ZnDN8vJyPPnkk/Dz84O7uzvuuusunDx50qDOn/70JwQEBMDNzQ0LFy7s8LZJPj4+CAwMREJCAt555x0UFxfj8OHD0nFnZ2cEBgYiJCQEY8aMwVtvvYX169fj008/xc6dOwEAO3bsQGBgIN5++23ExMQgPDwcM2bMwKeffiotyNtbcYjNDN09B0nP2dm5V6wg7enpCT8/vw7Xz8/Ph4ODg9USqUVRxNKlS5GTk2NQPn78eOzdu1cKyExtlhsTE4NPP/3UKu0gsofWcgG7grOzc6e/8GRnZ+PAgQMGa5CtXbsWf//73/HJJ59g8ODByMjIwK9//Wv4+fnhzjvvlOq9+OKL+PDDDxEYGIhXX30VM2fORG5uLhwdHU1eKz8/H9u2bcMPP/yAsrIyPPzww/jTn/6EP/zhD1KdzZs3Y8WKFTh8+DAOHjyI+fPnY/z48fjVr34FAJgzZw5UKhV+/PFHeHh4YP369Zg6dSpyc3Ph7e2Nr776Cq+99hpSUlIwYcIE/O1vf0NycjIGDRpk1n3RBzP19fVt1ps3bx6ef/55fPvtt5g2bRoCAwNx48YNZGRkYNKkSWZds6djgEQ9nkKhgEajQUVFhUG5g4ODRb1Kt27dMgqOgKZvmc23SDG1WW52djY3x6Uerba2Fq6urna5dnV1tVlf8n744Qe4urqisbERdXV1kMlk+OijjwA0TV754x//iJ07d2Ls2LEAgEGDBmHfvn1Yv369QYC0evVqKXDZvHkzQkJC8N133+Hhhx82eV2dTodNmzbBzc0NAPDYY48hPT3dIEAaPny4NNw3ePBgfPTRR0hPT8evfvUr7Nu3D0eOHEFJSYm0ndU777yDbdu24euvv8aiRYvwwQcfYOHChVi4cCEAYM2aNdi5c6dZny/l5eV488034erqitGjR7dZVyaTITIyEpcuXQLQFMClpaXhzjvvRGBgIMaMGYOpU6fi8ccf79L0C3tggEQ9XlRUFMrKyozKLf3H23wo9cCBAygqKjJKXmxpy5YteOSRRyy6LhGZZ8qUKfj4449RU1OD999/Hw4ODnjwwQcBAHl5eaitrZUCH736+nopYVlPH0ABTYnNQ4YMaXPW7IABA6TgCACCgoJQUlJiUGf48OEGz5vXOXnyJKqrq402S1er1cjPzwcAnD17Fk8//bRRO3ft2tVqu/TGjRsHmUyGmpoaDBo0CFu3bu3QeoCiKEpfLuVyOTZu3Ig1a9bg3//+Nw4fPow//vGPeOutt3DkyJFevRk4AyTq8ZRKZav/SM1dI8nV1RUxMTEGuQdxcXHw9vbu0PRea86aIbInZ2dnVFdX2+3a5nBxcUFERAQA4LPPPkNsbCz++te/YuHChdJ72L59O/r162fwOks3IW859CYIgtEQf1t1qqurERQUhN27dxudu7XlBsyxdetWREVFwcfHp8Pn02q1uHDhglGubb9+/fDYY4/hsccew5tvvonIyEh88skneP311y1uZ3fFAMkMXCiy92ieX9E8z8LDwwM//vij1CMlCAIGDBiA69ev26WdRPYiCEKPzGWUyWR49dVXsWLFCjzyyCOIioqCk5MTrly5YjCcZsqhQ4eklfLLysqQm5uLoUOH2qytI0eORFFRERwcHDBgwACTdYYOHYrDhw/j8ccfN2hnR4SGhiI8PNysNm3evBllZWVSD5wpXl5eCAoKssoivd0ZAyQz9JQkbTJNo9Hg1q1bqKurw1133YVz584Z1REEASEhIQgJCbFDC4nIGubMmYMXX3wRKSkpeOGFF/DCCy/gN7/5DXQ6HSZMmICKigrs378f7u7umDdvnvS6N954Az4+PggICMBvf/tb+Pr6Spue28K0adMwduxYPPDAA3j77bcRGRmJ69evY/v27Zg1axYSEhKwfPlyzJ8/HwkJCRg/fjy++OIL5OTkmJ2kbUptbS2KiorQ2NiIwsJCfPfdd3j//ffxzDPPSNt5rV+/HllZWZg1axbCw8Oh0Wjw+eefIycnB+vWrbO4Dd0ZAySyqwsXLhh0p9ty1kx7+UMJCQlmd+0TUffj4OCAZ599Fm+//TaeeeYZvPnmm/Dz88PatWtx8eJFeHp6YuTIkXj11VcNXvenP/0Jy5cvx4ULFxAXF4f/+7//s+lCiIIgIDU1Fb/97W+xYMEC3Lx5E4GBgZg0aZKUKzR37lzk5+fjpZdegkajwYMPPohnnnkGaWlpFl//008/lRZ79PHxQXx8PLZu3YpZs2ZJdUaPHo19+/bh6aefxvXr1+Hq6oro6Ghs27at3R65nk4QuWCL2fQ9SBUVFd0mi7+mpkaacZKdnY3o6Gg7t6h1ubm5GDJkSLv1Ll++bPHGsKIoYuLEidi/f7/RscGDB2Pnzp0QBAEymQxBQUGtrhqem5uL/Px8aSXd5rNsmt/7b7/9VgrEdu3ahTvvvFMK+iyZukxkSxqNBgUFBRg4cCDz6KjHa+v32Zy/3+xBoi7Xv39/jBw5ss2Vv+Pj4xEcHGzxtQRBwN69e032TNk6YNHpdBg1ahQyMzMBNM082b9/P4MkIqIegAGSGZikbR1OTk7t7nVmzeDFFsmmhYWF7faCVVRUSMERABw8eNBg/SQiIuq+GCCZgUna1tPTZsi0zEO4ePEiwsPDUVpaarep0EREZDsMkIg6IDQ01Gh/tcTERJtsEExERPbHAKkbsWTvo96+HoW9yeVyg528NRqNUXAUExPDBFciol6CAVI3Ul5eDm9vb3s3g8x0+PBhyGQyyOXydvdHOn78OJRKJXx8fKyyjgkREdkGA6RuxBq70MfExDA/qot5eHhICdvt9eRVV1dDq9WipqYGAwcO5Iw2IqJuigFSN+Lu7o4LFy5YdA43Nzf4+flZqUVERER9EwMkM9h6mr+jo6O04SJ1b+0NpRERUc9metlgMmnJkiU4c+YMjh49au+mkJ098sgj9m4CEVnBpk2bOrzTfU9l6/f42muvIS4uzmbnN6Ur/r8xQCLqIGdnZ4wfP96gLCYmxqztZjQaDdRqtdGSAa3R6XSoqKjgLEWiVsyfPx+CIEAQBCgUCkREROCNN95AY2Njh14/d+5c5Obm2riV9tUX3qMtcIiNqIP025aUlJSgqqoKQFPemK+vb4fPod+nLSYmBidPnmw3STs7Oxu3b9+WXmPOtYj6ihkzZmDjxo2oq6tDamoqlixZAkdHR7zyyivtvlalUkGlUnVBK+2nL7xHW2APEpEZBEFAQEAAIiIiEBERAX9//1Y3uG2uZW5ZdnZ2h9a8ap7rpFarzW8wUR/g5OSEwMBA9O/fH8888wymTZuGf/3rXwCAsrIyPP744/Dy8oKzszPuueceg8kwLYdqTp48iSlTpsDNzQ3u7u6Ij4/HsWPHADRtoD1z5kx4eXnBxcUF0dHRSE1NlV67Z88ejB49Gk5OTggKCsLLL79s0JM1efJkLFu2DC+99BK8vb0RGBiI1157rc33Nn/+fDzwwAN45513EBQUBB8fHyxZsgQNDQ1SHWu+RwDYt28fJk6cCJVKhdDQUCxbtszsXuy//OUvGDp0KJRKJe644w787//+r3Rs3LhxWLlypUH9mzdvwtHRERkZGQCAuro6vPDCC+jXrx9cXFyQmJiI3bt3m9UGSzFAIrKR5sFNcnIyUlNT8e2339qxRUTmq61vRG19o8GwcH2jDrX1jahr1Jqsq9P9UrdB21RX09CxutagUqlQX18PoCnAOHbsGP71r3/h4MGDEEURSUlJBgFGc48++ihCQkJw9OhRZGZm4uWXX4ajoyOApjzUuro6ZGRk4PTp03jrrbfg6uoKALh27RqSkpIwatQonDx5Eh9//DH++te/Ys2aNQbn37x5M1xcXHD48GG8/fbbeOONN/Dzzz+3+X527dqF/Px87Nq1C5s3b8amTZuwadMm6bg132N+fj5mzJiBBx98EKdOncLWrVuxb98+PPvss+3f+P/44osvsGrVKvzhD3/A2bNn8cc//hG///3vsXnzZun6//jHPwx+p7Zu3Yrg4GBMnDgRAPDss8/i4MGD+Mc//oFTp05hzpw5mDFjhsUzvc0iktkqKipEAGJFRYW9m0LdTHV1tQjA6Cc1NVXctWuXmJqaKpVVVVW1e77Dhw+Lu3btEnft2iVeuXKlC94B9UVqtVo8c+aMqFarjY71X/mD2H/lD2JplUYqW5eeK/Zf+YO48uuTBnXv+N2PYv+VP4hXbtVIZX/Ze1Hsv/IHcdmXxw3qjnhjh9h/5Q/i+aJKqWzL4ctmt33evHni/fffL4qiKOp0OvHnn38WnZycxBdeeEHMzc0VAYj79++X6peWlooqlUr86quvRFEUxY0bN4oeHh7ScTc3N3HTpk0mrzVs2DDxtddeM3ns1VdfFYcMGSLqdDqpLCUlRXR1dRW1Wq0oiqJ45513ihMmTDB43ahRo8SVK1e2+f769+8vNjY2SmVz5swR586dK4qiaPX3uHDhQnHRokUGZXv37hVlMpnJ3w9RFMXVq1eLsbGx0vPw8HBxy5YtBnXefPNNcezYsaIoimJJSYno4OAgZmRkSMfHjh0r3YfLly+LcrlcvHbtmsE5pk6dKr7yyism31Nzbf0+m/P3mz1IRFbk7OyMsWPHGpRxCxIi2/rhhx/g6uoKpVKJe+65B3PnzsVrr72Gs2fPwsHBAYmJiVJdHx8fDBkyBGfPnjV5rhUrVuDJJ5/EtGnT8Kc//Qn5+fnSsWXLlmHNmjUYP348Vq9ejVOnTknHzp49i7FjxxrkFY4fPx7V1dUoLCyUyoYPH25wvaCgIJSUlLT5/qKjoyGXy02+xtrv8eTJk9i0aRNcXV2ln+nTp0On06GgoKDNdgJNi+Xm5+dj4cKFBudYs2aNdB0/Pz/cfffd+OKLLwAABQUFOHjwIB599FEAwOnTp6HVahEZGWlwjj179hi01daYpE1kRYIgYN++fbh06ZKUMyQIQrsfgETd1Zk3pgMAVI6//IFeNCkcT0wYCLnMcJJB5u+nAQCUDr/UfXxsf/z36FDIWkxI2LdyilHdh+JDOtXGKVOm4OOPP4ZCoUBwcDAcHDr/p+21117DI488gu3bt+PHH3/E6tWr8Y9//AOzZs3Ck08+ienTp2P79u3YsWMH1q5di3fffRdLly7t8Pn1Q1l6giC0u4tCZ17TlrbeY3V1NRYvXoxly5YZvS4sLKzdc1dXVwMAPv30U4OgDYBBkPfoo49i2bJlWLduHbZs2YJhw4Zh2LBh0jnkcjkyMzMNXgNAGtLsCuxBMkNKSgqioqIwatQoezeFujGZTIZBgwYhOjoa0dHRcHFxMev1oiiiqqoKFRUVHV4OgMhWnBUOcFY4GPSMKBxkcFY4wMlBbrKurFng5Chvqqt07FjdznBxcUFERATCwsIMgqOhQ4eisbERhw8flspu3bqF8+fPIyoqqtXzRUZG4je/+Q127NiB2bNnY+PGjdKx0NBQPP300/j222/x/PPP49NPP5Wupc//0du/fz/c3NwQEtK5wK8jrP0eR44ciTNnzkgTUZr/KBSKdtsTEBCA4OBgXLx40ej1AwcOlOrdf//90Gg0+Omnn7Blyxap9wgARowYAa1Wi5KSEqNzBAYGduY2dQoDJDNwoUjqDC8vLzg5OUEulxt8eNfU1BgFQKIoYty4cXB3d4enpyd+/etfm7VuEhH9YvDgwbj//vvx1FNPYd++fTh58iR+/etfo1+/frj//vuN6qvVajz77LPYvXs3Ll++jP379+Po0aMYOnQoAOC5555DWloaCgoKcPz4cezatUs69j//8z+4evUqli5dinPnzuH777/H6tWrsWLFig7NdO0u73HlypU4cOAAnn32WWRlZeHChQv4/vvvzUrSfv3117F27VokJycjNzcXp0+fxsaNG/Hee+9JdVxcXPDAAw/g97//Pc6ePYv//u//lo5FRkbi0UcfxeOPP45vv/0WBQUFOHLkCNauXYvt27dbcLfMwyE2Ihtzd3eX8pLKy8ul8sDAQMTFxeHHH3+UvhXV1tbi0KFDUp28vDwkJSUhJiamSz8YiHqLjRs3Yvny5fiv//ov1NfXY9KkSUhNTTUatgKahoBu3bqFxx9/HMXFxfD19cXs2bPx+uuvAwC0Wi2WLFmCwsJCuLu7Y8aMGXj//fcBAP369UNqaipefPFFxMbGwtvbGwsXLsTvfve7HvUehw8fjj179uC3v/0tJk6cCFEUER4ejrlz53a4PU8++SScnZ3x5z//GS+++CJcXFwwbNgwPPfccwb1Hn30USQlJWHSpElGw3cbN27EmjVr8Pzzz+PatWvw9fXFmDFj8F//9V/m36BOEkR+NTVbZWUlPDw8UFFRYdYqykRarRYjRozA6dOnpbLU1FTcddddcHJywqVLl6Ru6JCQEIPkzrNnz8LJyQkNDQ0ICQmBs7Nzl7efeieNRoOCggIMHDiQEwqox2vr99mcv98cYiPqQnK5HAcOHEBWVpZUptFoUFVVhZqaGly5ckUq37Bhg8G6Sffffz8GDRqEIUOGYPz48Rx2IyKyIQ6xEXUxV1dXg5W19duPmNL820/zvZSysrJQW1trdgI4ERF1DHuQiOzA1Ma3zSUkJHR6qKO2trZD25gQEVHr2INEZAf6jW9//vlnaLVao+PDhw/v1JL6JSUlyMzMhFKpRHR0NPz9/a3RXCKiPocBEpGdCIIAlUolBUguLi4ICgqCo6MjvLy8zAqQGhoaoNFokJSUhMzMTMTExEibdRIRkfk4xEZkR8HBwVAoFFAqlQgPD0dISAgCAgKkRfmUSiViYmKk+s1zl/Tq6+tx4MAB7Nu3D5mZmQCA7OxsaSVvoo6yZHVmou7CWhNY2INEZEfh4eEIDw9v9bggCEhOToZKpUJZWRkAICkpyaBOXV0dZ7SRRRQKBWQyGa5fvw4/Pz8oFAqDlbOJegpRFHHz5k0IgmByHShzMEAi6uYEQYCrqys0Gg17hcgmZDIZBg4ciBs3buD69ev2bg6RRQRBQEhIiNE+buZigGSGlJQUpKSkmEyqJbKlgIAAKJVKg4Uj9URRhFqthkajsUPLqLdQKBQICwtDY2MjP+OoR3N0dLQ4OAIYIJllyZIlWLJkibQSJ5GtyOVyyOVygwRuPz8/g6n/Op0OR48exYIFC5CTk2OvplIvoh+WsHRogqg3YIBE1A3JZDIkJCSguroaSqXS5LYiarUapaWlbQZHJSUlqKqqQkBAAFxdXW3ZZCKiXoUBElE3pVKpoFKpWj1+7NixNhNpGxsbcebMGQBAVVUV4uLirN1EIqJeiwESUQ/i5uYmPb733nsREhLSat3mU7aZU0JEZB6ug0TUg7i7u2PMmDHSc1NJ20REZDkGSEQ9iCAI2L17N1JTUw0WjTS1gCQREXUeh9iIehgnJyeMGjUKGzZsMJja33IBSSIi6jwGSEQ9kLOzs7SXG8AcIyIia2OARNTDOTg4mBxi0y8gCYBT/ImIzMQAiaiXeuSRR3Du3DkAQGxsLE6cOMH9tYiIOohJ2kQ9UPOVjhUKhck6+uAIAE6ePIna2lqbt4uIqLdgDxJRD+To6IiEhATU1tbCw8MDN2/etHeTiIh6FQZIRD2Uq6src4uIiGyEQ2xERERELTBAIiIiImqhzwZIs2bNgpeXFx566CF7N4WIiIi6mT4bIC1fvhyff/65vZtBZFPcgoSIqHP6bJL25MmTsXv3bns3g8gmjh8/jqKiIgDGW5CIooj8/HzU1NRgwIAB8PDwsEcTiYi6tW7Zg5SRkYGZM2ciODgYgiBg27ZtRnVSUlIwYMAAKJVKJCYm4siRI13fUKJuKjIyUtqGpKX6+noUFhairKwM169f7+KWERH1DN0yQKqpqUFsbCxSUlJMHt+6dStWrFiB1atX4/jx44iNjcX06dNRUlIi1YmLi0NMTIzRT2f+INTV1aGystLgh6g78fb2RkxMDABg5MiRcHZ2NqpTUFCAmzdvQhRFqaz5YyIi+kW3HGK75557cM8997R6/L333sNTTz2FBQsWAAA++eQTbN++HZ999hlefvllAEBWVpbV2rN27Vq8/vrrVjsfkbU5Ozvj2LFjqKiogK+vLwRBQHBwMPLz86U6V69eRWlpKRISEuzYUiKinqFb9iC1pb6+HpmZmZg2bZpUJpPJMG3aNBw8eNAm13zllVdQUVEh/Vy9etUm1yGyhJOTE/z9/SGTNf2zjoyMRHR0tFE9nU7X1U0jIupxumUPUltKS0uh1WoREBBgUB4QEGCw91R7pk2bhpMnT6KmpgYhISH45z//ibFjx5qs6+TkBCcnJ4vaTdRdNO9VIiIi03pcgGQtO3futHcTiGzO1FYkFRUVBs+vXLmCK1euwM/PDw0NDRAEAUOGDIGDQ5/9eCAi6nkBkq+vL+RyOYqLiw3Ki4uLERgYaNNrp6SkICUlBVqt1qbXIbKW5j2fGo0GAKBUKiEIglR+6dIl6HQ63LhxQyoLCAiAt7e3NFxHRNTX9LgASaFQID4+Hunp6XjggQcANOVUpKen49lnn7XptZcsWYIlS5agsrKSa8dQjzN79mwAQHR0NP785z8DaJrFZionKTs7Wzqu0WigVCrh4OCAgQMHIiQkpOsaTURkJ93y62F1dTWysrKkmWgFBQXIysrClStXAAArVqzAp59+is2bN+Ps2bN45plnUFNTI81qI6Imzs7OiI+PNyjLyclBUlISkpKS8Nhjj0Gn00GtVkOtVhstAbB06VIkJSVh2bJlaGxsZP4SEfUZ3bIH6dixY5gyZYr0fMWKFQCAefPmYdOmTZg7dy5u3ryJVatWoaioCHFxcfjpp5+MEretjUNs1NMIgoCvvvoK58+fh0ajkXqR9E6cOIFFixZJgU9MTAySk5MhCAI0Gg1ycnIANPUoaTSaVhefJCLqbQSRK8WZTT/EVlFRAXd3d3s3h6hNBQUFuHz5MtRqtdG2I6akpqZCpVIZ1deXT5482YatJSKyHXP+fnfLITYiIiIie2KARNTLubm5WeU8Go0GoiiiqqoK58+fR2FhoVXOS0TUHTFAMkNKSgqioqIwatQoezeFqMN8fX0xfvx4KJVKab+26OhohIeHm6y/bNky6HQ6aVkAvdmzZ2PZsmUoKCjAjRs3kJeXh8bGRpu3n4jIHpiD1AnMQaKe6Ny5c7hx44Y0bV+j0RjkGIWEhEi9Qs0ft7Rv3z40NDQAAMaNGweFQmH7xhMRWQFzkIjISGBgIARBgEqlMlgoUu/DDz+UHjcPjqKjo/HNN99Iz+fPnw9+ryKi3o4BEhEBAFQqlTQEBwARERFITU3FunXr4OXlhYiICABAXl6e0fBbc7W1taivr7d5e4mIbKlbroNERLanz0nKzs5GTEwMlEolkpOTW92SJDk52eQyAbW1tcjPz4e3tzfc3Nxw/PhxyGQyjB8/HnK5vMveDxGRNbEHyQxM0qbeRBAEJCcnIzU1FZs2bYIgCNIQXGvDcHrLli2ThtmuXr2KW7du4cKFC1Cr1QCatv9pnsBdXl6O69evm9zWhIioO2KAZIYlS5bgzJkzOHr0qL2bQmQV+oDI2dm51TrOzs4YOHAgAgMDTQ6ztbeyvCiKyMrKQm5uLm7evGm9xhMR2RADJKI+qqMbLstkMvTv3x8jRozAjz/+2GZdURSlPd1yc3ORn59v0GtUV1dnUZuJiLoKc5CI+qB+/fohLCwMBw8eNOt1LYfdGhoapF4hURRx33334ejRowZ7ul29etVq7SYi6irsQSLqg9rKL2pJJjP9MbFs2TLk5ORIuUgajUYaftZvbktE1FMxQCLqI9zc3ODl5QVXV1f4+/vD0dERDg5NncjOzs7w9PQ0eo1KpUL//v2l587OzgZ5SLdu3TKrDdXV1Th48CByc3M7/0aIiLoAAyQzcBYb9WRyuRyxsbFISEiAu7s7ZDIZEhMTMWrUKISFhSE2NtYoSBo1ahR8fHyk576+vkhOTjaoo887akm/d1tzJSUlqKurw/Xr1633xoiIbIABkhk4i416G0dHR7i4uEhT/IcPH97m1iGOjo4Gz9VqNRYtWoSkpCQsW7bM4Jh+7zauuk1EPRGTtIlIIpPJ4OHh0eHp+A8++KD0OC8vz+h481yklgtPEhF1Z+xBIiKr27Jli/R46dKlUg8Te5OIqKdggEREZmm5fUjzYEhPqVRKj/Pz8wG0P7NNPwvOVE8UEVFXY4BERAa8vLwAAK6uriaHxGJjYw2eNw+G2tNWL1JxcTFqampQWFjIniYisjvmIJkhJSUFKSkp7W6tQNSTBQcHw8/PDw4ODiYDJFdX106fW79FiUqlMjrWfMXtffv2Yfjw4R1e7ZuIyNrYg2QGzmKjvsLR0dGihOqQkBBpvaTO0Gq1KCws7PTriYgsZbUA6fDhw9Y6FRF1Y87Ozhg3bhwAICYmxuQQm1wuN1ovqaWamhqIooiysjLU1tYaHecwGxHZk9WG2ObMmYMrV65Y63RE1E0JgoB9+/YhJycHN2/ehL+/f6fOc/ToUURHRyMnJweCICA0NNTgeG1tLY4fP46AgAAEBwfj9OnT0Gq1iI2NbXX7EyIiazErQHr44YdNlouiiNu3b1ulQUTU/QmCgJiYGABNPUHmWLRoETZv3gyZTIbKykoATZ8hLVfX1vcqVVZWGnzGVFRUSInkLel7nbjeEhFZyqwAaefOnfjb3/5mlKQpiiIyMjKs2jAi6hmcnZ0RExOD7OxsAE3DbmFhYSguLjaoFxISgsLCQhQWFmLx4sXYsGED6urqpOONjY2tXqP51P+TJ08iISHB6HOosbERR48ehUKhwMiRIxkkEZFFzAqQJk+eDDc3N0yaNMno2PDhw63WKCLqOQRBQHJyssGK2b6+vkb11q9fj8WLF6OwsFCazVZSUtKpa168eBHDhg0zCIJqampQV1eHuro6aLVaaSNeIqLOMGsg/9tvvzUZHAHAzz//bJUGEVHPIwgCVCoVVCpVqz03giBgw4YNrZ5Dv+mtTqeDWq1uM0n79u3byMnJsbjdRESt4VcsIrI7URSxdOlSg6AnJiYGycnJrQZcpaWlAIAbN25ArVbD29u7S9pKRH2DRVNBioqKrNWOHiElJQVRUVEYNWqUvZtC1O0plUopkTsuLq7NFbc1Go1Rj1B7W5PoX3f+/HlcuXIF5eXlBse4oCsRWcKiAOnuu++2Vjt6BC4USWSaQqEwKvPy8kJycjJSU1OxceNGo56gjm5eqx9u0w/BNX9N8xl0zZO8z549i71793KxSSLqNIuG2LiQGxEBQGRkpDSLTW/o0KE4ePCgQV6SUqlEREQE8vLy2tx2RG/p0qXIz89HdHQ0NBoN8vPzDYbeqqqqTL7u1q1bAJpmv+l0OoSFhVnpnRJRX2FRDxKn0RIRAPj6+iI8PBzAL71JphZz1M9409NoNG0mZOfn5wMAcnJypMfNh94uXbrUbtsuXrzY8TdCRPQfTNImIqvo168fnJ2d4eLi0uHXzJ49u1PX0mg0UCqVBl/SGhoaOnUuIiJTuF4/EVmFTCaDj49Pm8nYgGHydmfNnj3bKIep5cKURESWsKgHSS6XW6sdRNTL6XOPmi8sqdFoDHqRtm/fDkEQIIoi7r333jbPpx9qayuHSU+n06Gqqgru7u5MDSCiDrGoB+nEiRPWagcR9XIhISHSY/3Ckp6enlJvUkxMjLTYpEqlMuplioiI6PS1s7OzceLECRw6dKjT5yCivsXiHKS77roLd955J1avXm1QXlZWhgcffBD//ve/Lb0EEfUSAwcOREFBgfS8eW9S85yi5uVOTk7Snm1JSUmduq5+o9vme78REbXF4hyk3bt346OPPsIDDzxgsCZJfX099uzZY+npiagX6d+/v9FCq/repJZDX/pymUwGlUplVu6SqTWTiIjMYZUk7Z07d6KoqAhjxozp0LRbIuq7XFxcTC4B0B59r9K3335rUN48GNI/Xrp0KZKSktpcjLKyshIajQYNDQ3Q6XSdei9E1HtZZZp/UFAQ9uzZgwULFmDUqFH45z//iaFDh1rj1ETUC1grABEEwWCW3NKlS6FUKpGTk4Pw8HDpsV5ridw1NTU4fvw4gKbZdy4uLoiPjze6nn67Ek5IIep7LA6Q9N3iTk5O2LJlC9asWYMZM2Zg5cqVFjeOiHqu5r1EFRUVRsc6GzQ1X41bv3gkAIPH7WmeDqCf4daSTqfD4cOHIQgCEhMTO9XrRUQ9l8X/4lt2X//ud7/DF198gXfffdfSU3c73KyWqOPa6nUZOHBgq8f69evXZjDScjXujmg+DKfRaHDmzBmT9bRarfSZVl9fj/r6etTV1aGqqspoM1wi6t0sDpAKCgrg6+trUPbggw/i0KFD+Oyzzyw9fbfCzWqJOqdlAna/fv0wYcIEODo6GtUdPHgwxo8fb7Vri6JokJN06tQpk/Xq6+tx8OBBnDx50ujYiRMnkJWVZdDzRES9W6cDpMrKSlRWVsLLywvV1dXSc/1PWFgYZs2aZc22ElEPExkZCUdHR0RGRhodc3BwaHVto/ZyfvTDbB2xePFiKS8pOztb2si2pbKyMjQ2NrbZU3T69OkOXZOIer5O5yB5enq2uSKtKIoQBEFKciSivic4OBjBwcGtHvfx8enUefXDbM3XRdLnJbVUWFjYqWuYot8kl4h6v04HSLt27ZIei6KIpKQk/OUvf0G/fv2s0jAi6nvCw8Olx15eXigrKwMAxMfHo66uDtnZ2a2+Vp+X9OKLL0qz2sxJ3D579qz0uKKiAgqFwtzmE1Ev0ukA6c477zR4LpfLMWbMGAwaNMjiRhFR3+Tn5yc9vuOOO1BaWgo/Pz8oFAqjqfr6hSOzs7MRExMjrcS9bt06aQXuxYsXG/UqLV26FOvWrTNYubuloqIihIWFWf8NElGPYZV1kIiIOqOt2WpOTk5t9ki3tU2JPphav369UZCUn5+PpKQkREREYP369SbboNPpWk0P0KcPEFHvxoU9iMhuZDKZwZR/cxdkbG2bkubn37BhA1JTU7F9+3aDY3l5eVi8eHGrK223tivAjRs3zGojEfVMVu1B4rcqIjJXWFgYHB0d4eDgYHLav6X0QZRarTY6lpeXZ7DStn6dpKKiolY/z+rr602W63Q6LiZJ1It0OkCaPXu2wXONRoOnn34aLi4uBuUt900iImpOEIQ2Z7rpyeVyODk52WzvNP16STk5OYiJiUFycnKHv/Tdvn0b2dnZGDRoEEJCQqzeNiLqep0OkDw8PAye//rXv7a4MURErREEAaNHj4ZOp8P+/futfn6NRmOwXpKpPdxak5eXB51Oh7y8PAZIRL1EpwOkjRs3WrMdRETtksvlJvOUYmNj4ebmhn379rX62uaz3qytoaHB6uckIvvigDkR9XhOTk5wcDD8vhcaGmrwXD/rbcuWLZ26hk6ng06nQ2lpKRobGwEAtbW1yMzMZIBE1AuZHSCp1Wpcu3bNqFzfNU1E1NVM9SoNGjTIaIhMEAQolUqjuqIoYtmyZUbl+g1udTodpk6diqlTp6KyshJZWVnSprdVVVXWeyNE1G2YNcT29ddf47nnnoOvry90Oh0+/fRTJCYmAgAee+wxHD9+3CaNJCJqTUhICJycnIzKBUFAXFwcDh482Obr9duHmFpQMj8/H9HR0Qb7s1VUVEAmk+HQoUOWN56Iui2zepDWrFmDzMxMZGVlYePGjVi4cKHUXd3aWiLd0dWrVzF58mRERUVh+PDh+Oc//2nvJhFRJzVffbslJycn+Pv7G5S1nGAye/Zsk71H+m1KcnJyDHrNTfVAEVHvY1aA1NDQgICAAABNeyNlZGRg/fr1eOONN3rUGkgODg744IMPcObMGezYsQPPPfccampq7N0sIuqE9tYe8vLyAgA4OztL9dPT0xEdHS3VMbXJLRH1bWYFSP7+/jh16pT03NvbGz///DPOnj1rUN7dBQUFIS4uDgAQGBgIX19f3L59276NIqIOi4iIAAD4+vrC1dW1zboBAQGIiorCsGHDpC94MpkM69ats9k6bQ0NDUzcJurhzAqQ/va3vxl1VysUCnz55ZfYs2eP1RqVkZGBmTNnIjg4GIIgYNu2bUZ1UlJSMGDAACiVSiQmJuLIkSOdulZmZia0Wq3RjBci6r5CQkIwefJkxMTEtNt7LZPJ4O/vD5VKhaFDhyI2NhZA6wnbltKv07R//36bLGhJRF3DrAApJCQEgYGBJo+NHz/eKg0CgJqaGsTGxiIlJcXk8a1bt2LFihVYvXo1jh8/jtjYWEyfPh0lJSVSnbi4OMTExBj9XL9+Xapz+/ZtPP7449iwYYPV2k5EPYdSqZR6o6ylefJ289ylxsZG5Ofno7S0tNXtSoio+xBEK2RXNzQ0oKioCLW1tfDz84O3t7c12gag6Vved999hwceeEAqS0xMxKhRo/DRRx8BaPrGFhoaiqVLl+Lll1/u0Hnr6urwq1/9Ck899RQee+yxduvW1dVJzysrKxEaGoqKigq4u7ub/6aIyCZ2794tPZ48ebLJOmVlZTh58qT0XKfTYfHixcjLy0NERES7+UgRERHYsGFDh/Muhw4dioCAABQUFODy5ctS+aRJk7h3G1EXq6yshIeHR4f+fnf6X2dVVRU+/vhj3HnnnXB3d8eAAQMwdOhQ+Pn5oX///njqqadw9OjRzp6+VfX19cjMzMS0adOkMplMhmnTprU7nVdPFEXMnz8fd911V7vBEQCsXbsWHh4e0g+H44h6D5lMhg0bNiA1NRXJycmt1tNvIZKXl4fy8nJpjaT2nD17FocPHzYIjgBIi00SUffUqQDpvffew4ABA7Bx40ZMmzYN27ZtQ1ZWFnJzc3Hw4EGsXr0ajY2NuPvuuzFjxgxcuHDBag0uLS2FVquVki31AgICUFRU1KFz7N+/H1u3bsW2bdsQFxeHuLg4nD59utX6r7zyCioqKqSfq1evWvQeiKh7EQQBKpVK2o4EAKKjo6WZbjExMVi/fr1Uf/bs2UhKSsLSpUs7FCip1WrbNZ6IbKJTe7EdPXoUGRkZBtNkmxs9ejSeeOIJfPzxx9i0aRP27t2LwYMHW9RQa5owYYJZyZNOTk4mF6Ijou5FJpO1+2+7rWBGvx2JRqORErj1j/ULSjaXk5ODpKQkxMTEIDk52aLlTmpra1FcXIzQ0FCjbVOIqOt16l/hl19+2aF6SqUSTz/9dGcu0SpfX1/I5XIUFxcblBcXF7eaQG4tKSkpSElJgVartel1iKhzhg8fjnPnziEsLKzVOu192dH3JunpHzff7DYkJASFhYVSnezsbGg0GqOtTcyhn4lbV1eHO+64o9PnISLrsMrXlPT0dKSnp6OkpMTo29tnn31mjUtIFAoF4uPjkZ6eLiVu63Q6pKen49lnn7XqtVpasmQJlixZIiV5EVH34unpiTFjxrRZp73E6PDwcGkV7eaa9y4BQFJSksFxU71OnelRqqysNPs1RGR9FgdIr7/+Ot544w0kJCQgKCjIKitqV1dXG8wkKSgoQFZWFry9vREWFoYVK1Zg3rx5SEhIwOjRo/HBBx+gpqYGCxYssPjaRNS3tfUZpu9dMpVTNHv2bCntICcnp91ht+ZDfRUVFRa2moiszeIA6ZNPPsGmTZs6NBuso44dO4YpU6ZIz1esWAEAmDdvHjZt2oS5c+fi5s2bWLVqFYqKihAXF4effvrJKHGbiMhcfn5+7U71bz7c1lxOTo70uL1ht+ZD9SdOnLCgxURkCxYvwlFfX49x48ZZoy2SyZMnQxRFo59NmzZJdZ599llcvnwZdXV1OHz4MBITE63aBlNSUlIQFRWFUaNG2fxaRGQbbfUQ6SdktJdLpB9uS01NbXWyCtA01NZaUnhry6DU1tYarLtGRPZhcYD05JNPYsuWLdZoS7e3ZMkSnDlzxibrOxFR13BycoKfn5/JHuf+/fsDACIjI9s9j364ra093WbPno1ly5aZDJLamk138eLFdq9PRLZl8RCbRqPBhg0bsHPnTgwfPhyOjo4Gx9977z1LL0FEZDWCIEi9Pi1nw+p5eXlh4sSJ2Lt3r1Tm4+ODsrIyo4ko7e3plp2dDbVaDaVSaZQgfuPGDVy5csXoNcXFxRg6dGiH3xMRWZ/FAdKpU6cQFxcHAEbj8dZI2CYisoeWwcywYcOg0+mQkZHRoddv2bIFjzzyCADg3nvvBdA047f5ec+fP2+l1hKRtVkcIO3atcsa7egRuA4SUd9mzt5pptZb0q/Xxi+PRN0fd0o0A3OQiHqXwYMHIzg42CbnNpVo/cgjj7Sak2TKnj17sHv3bm5VQmQHVlvP/syZM7hy5Qrq6+sNyu+77z5rXYKIyKr69esHALh+/bpF5zE17b+1xWQ7uup2Y2OjFEgdPnwYEyZM4BYkRF3I4n9tFy9exKxZs3D69GkIgiD9g9Z3IXM4ioh6u+arbOuH1gRBQERERLtrKrVm3759Rs8TEhLg6uoqJX1zqI7IdiweYlu+fDkGDhyIkpISODs7IycnBxkZGUhISMDu3but0MTug+sgEfVurc1Gaz7tv3lQ4urqalCuUqkgk8kgk8kgCALWr1+PiIgIAEBISIhUt631kdpy7NgxXLp0CYcPHzZYlJKIrE8QO/OvtBlfX1/8+9//xvDhw+Hh4YEjR45gyJAh+Pe//43nn3++V64Qq9+LraKiAu7u7vZuDhFZqKysDDU1NejXr58UAImiiD179gAARo0aBRcXFwBNw136nKCWm9aaIoqiyf3b2tuKpCMmT57c6dcS9UXm/P22uAdJq9XCzc0NQFOwpB/L79+/P6ewElGP4OXlhZCQEKNgRf+8vXyhtuh7lvR5Snr6XCSgKYhSq9Wd6lUiItuwOAcpJiYGJ0+exMCBA5GYmIi3334bCoUCGzZswKBBg6zRRiKiLicIAiZMmABRFA2m93t6ekKtVpudMK3PUyovL8fs2bOlcp1Oh8WLFyMvL88qvUpEZB0WB0i/+93vUFNTAwB4/fXXMXPmTEycOBE+Pj7YunWrxQ0kIrIXuVxuVBYeHg5nZ2f4+fm1O7zWUstVt5cuXQoAyM/PB9DUq1ReXg5PT88OBUn64buioiKEhIQY7WRARJ1ncQ6SKbdv34aXl1ev/RbEHCQiAoCSkhKcOXPGrNeIoohFixa1Obutoz1Jd9xxB86fPw9RFOHr62swhEdExro0BwkA9u7di1//+tcYO3Ysrl27Bm9vb/z97383mqba03EWGxE15+fnB29vb7Neox9qa0vz/KS2nDt3TspbKi8vN6sdRNQ2iwOkb775BtOnT4dKpcKJEyek1WMrKirwxz/+0eIGdidcSZuImhMEwWD6fmeZOodGo4FOpzMrebvlRrpE1HkWB0hr1qzBJ598gk8//dRg/Hv8+PE4fvy4pacnIurWvLy8EBYWZtE5PvzwQ6Oy2bNnY+rUqUhKSsKiRYvaDX4aGxuRkZGB27dvW9QWImpicYB0/vx5TJo0yajcw8ODXb5E1OsJgtDmjN2O5GKqVKo284fy8vKwePHiDvUknT17FmfPnsWePXtQVlbWbn0iMs3iACkwMNBksuG+ffs4zZ+I+jxTq3M3XxMpJiYGSqUSycnJ+Pbbb1s9T15eXofykhoaGlBcXAxRFHHy5MnON5yoj7M4QHrqqaewfPlyHD58GIIg4Pr16/jiiy/wwgsv4JlnnrFGG4mIeoygoKB26+gTtVNTU6XZaoIgwNPTUwqcoqOjkZqaiu3bt0uvs3Qxydu3byMzM1NamoWIWmfxNH9RFPHHP/4Ra9euRW1tLQDAyckJL7zwAt58802rNLK74TR/ImqprKwM9fX1CAgIMNiHUqVSSVuTdIR+bSP9ZrRqtdpgi5Lw8HBs2LDBYPHKtvj7+6O8vBwBAQG4evWq1KbExMQOt4motzDn77fV1kGqr69HXl4eqqurERUVZbCJY2+RkpKClJQUaLVa5ObmMkAiIpMsCZBaEkURjz/+uMGilBEREdiwYUOn15pzdHTE+PHjO90mop7KLgFSX8IeJCJqS/MAKSgoCDdu3LDofLdv38aDDz5oUJaamtrpPeIYIFFfZc7fb4u3GgGa1us4deoUSkpKjKai3nfffda4BBFRjyOTyRAREQEXF5c2V85uj6meomXLlnW6F6mhoQFarRZVVVXw8PDotbseEFnC4gDpp59+wuOPP47S0lKjY4IgQKvVWnoJIqIeZdCgQbh48SKioqIgl8ulhSAtCZL0fH19UVpaKs1q62wv0tGjR6HRaBAWFsYZx0QmWDyLbenSpZgzZw5u3LgBnU5n8MPgiIj6orCwMEycOBG+vr5SWUhICIKDgy0+t6lFJTtDv2TAlStXTB5vbGxEeXm5RbPmiHoyiwOk4uJirFixAgEBAdZoDxFRryCXy43KIiMjLT5v8+GwZcuW2SyAOXbsGLKyslBcXGyT8xN1dxYHSA899JBBQiIREVmXh4eH9DggIAAREREAOr54ZGfoz1tSUmKT8xN1dxbnIH300UeYM2cO9u7di2HDhhnsxwY0fcMhIqLOk8lkSE9Plx4nJycbrI1kKZ1Oh4aGBjg5OVntnEQ9ncUB0pdffokdO3ZAqVRi9+7dBt2/giAwQCIisoKOLgzZGSdOnEBVVRUSEhKM1rDj5rfUV1n8L+63v/0tXn/9dVRUVODSpUsoKCiQfi5evGiNNnYbKSkpiIqKwqhRo+zdFCIiAE299DqdzmAbElEUzdqWpKqqCgBw48YNHD9+HLm5uTZrL1FPYfFCkd7e3jh69CjCw8Ot1aZujwtFElFn3b59G2fOnEFISAguXboklSckJEAURVy5cgU3b95s8xyiKGLRokXSsgHh4eHIz89HTEwMPvzwQyxevBh5eXmIiYmR9nrriNZW/Z48eXKH3x9Rd2bO32+Le5DmzZuHrVu3WnoaIqI+wdvbGxMmTEBgYKBBuaurK9zc3BAdHY3Q0FD4+fm1eg79Zrd6+fn5AIDs7GzMmzdPCpyys7PNSuJua0uUmpoaZGZmcsiN+gyLc5C0Wi3efvttpKWlYfjw4UZJ2u+9956llyAi6nWUSmWrPTbh4eG4efNmmz1JSqUSERERRotPNt+zDQAWLVqEzZs3QyaTSRvh6l9vzgrap06dQl1dHU6dOsUeJeoTLA6QTp8+jREjRgBo+rbSHJevJyJqnZubW6c3shUEAevXr5eG01pTWFiIxYsXY/369Vi2bBlycnIAwOzht7q6uk61k6insjhA2rVrlzXaQUREzbTsjTdFJpNhw4YN0Gg0WLp0qTTU1lJeXh7Ky8ul4Aj4ZfitI1uVtExVraurk5YEqKurg0KhgFarhYODA3Q6Herq6jq9BQpRd9HpHKRVq1YhMzPTmm0hIupT2poj4+HhgZCQEAwZMqTNcwiCAJVKhQ0bNkgLSOr3fmtu+fLlnW7noUOHDJ4fPHgQQFPC+cGDB7Fnzx7s27cP+fn5yMjIwOHDh9tNNCfq7jodIBUWFuKee+5BSEgInnnmGfz444+or6+3ZtuIiPosQRAQERGBoKCgDtXX9yalpqYa7Nem3w+uZW6SOVobXmt5zqtXr0qPm/dWEfVEnQ6QPvvsMxQVFeHLL7+Em5sbnnvuOfj6+uLBBx/E559/zpkORETtsPY+avreJE9PT6ls8+bNVr1Gcw0NDTY7N5G9WTTNXyaTYeLEiXj77bdx/vx5HD58GImJiVi/fj2Cg4MxadIkvPPOO7h27Zq12ktE1OckJiaaVV+/NUl6ejpUKhViYmKkY/phOGvQLzBJ1BtZnKTd3NChQzF06FC89NJLuHnzJv71r3/hX//6FwDghRdesOaliIj6jM4kPDffmiQ5OdlgPST9Pm7NlwAgIkMW/6tQq9Wora2Vnl++fBkffPABTpw4gYULF+L7779ncEREZEJXBSb6oTeVSiWtnwQ05RAtWrQIarXaaGuS9rYrMTenSRRF5OTk4MqVK51/I0RdyOJ/nffffz8+//xzAEB5eTlGjx6Nd999F/fffz8+/vhjixvYnXAvNiKypvDwcLi5ubU7U82a9Osn6We65efnIykpCUlJSVi2bBlEUYQoili6dKlBWUttrb1kyu3bt3Hz5s1et0cn9V4WB0jHjx/HxIkTAQBff/01AgMDcfnyZXz++ecGS+H3BkuWLMGZM2dw9OhRezeFiHoBJycnxMfHd3immrXoZ7y1pF8bSaPRSLPQzN2upDVardbicxB1JYsDpNraWri5uQEAduzYgdmzZ0Mmk2HMmDG4fPmyxQ0kIqKeqbGx0WR5RUVFF7eEyHwWB0gRERHYtm0brl69irS0NNx9990AgJKSEu50T0TUTSmVSml2mzVntjW3b98+6HQ6AE1/E/Rqampscj0ia7J4FtuqVavwyCOP4De/+Q3uuusujB07FkBTb5J+jzYiIupeBEEwmN2mn9nWFn2wY05yeX19PZRKJUpLS6Wy6upqM1tL1PUsDpAeeughTJgwATdu3EBsbKxUPnXqVMyaNcvS0xMRkY3oZ7d1ZMNcnU6HqVOnAgDS09M7HCTpgyqinsYq6yB5enriypUrSE1NNfjHUFRUhDvuuMMalyAioi6gVqvx0ksvGZRpNBqDIKqiogJeXl4mXy+KIjQaDZRKJQRBwJEjR6BUKg3qCIJg8Ly2thYNDQ3w8PCw0rsgspzFAdJPP/2Exx57DLdu3TI6JggCZy4QEfUgDz74oFHZ7NmzpT3dWmoeEAHA0qVLkZOTg5iYGCQnJ0MQBKNZcLdv34YoilKgdOTIEQDAmDFjjIIpInuxOEl76dKlePjhh3Hjxg3odDqDHwZHRES9Q/McIr2W6yV1dHkAtVqN/Px8VFZWIisrSyqvqKhAcXExh+WoW7A4QCouLsaKFSsQEBBgjfYQEZEJo0ePRkREBBwdHQ3K/f39LT538xlt5mgZEHUkl0mvsLAQx48fR3l5uVR27tw5nD17Fjdu3DC7LUTWZnGA9NBDD2H37t1WaAoREbXG2dkZISEhiIyMNCgfPHgwQkJC4Orq2ulz62e0paamIjo6GgAQHR2Nfv36SXVcXFykx60Ngy1evLjTbQAgrdhdVFRk0XmIrMHiHKSPPvoIc+bMwd69ezFs2DCjbzfLli2z9BJERPQffn5+iImJQXZ2NgDA0dEREREROHv2rEXT5/Uz2tatWyflFJWVlUk5SRs2bMCjjz4q1RdF0ejz3dQwHFFPZXGA9OWXX2LHjh1QKpXYvXu3wewEQRAYIBERWZmPjw9CQkLg7Oxs9XPrAyX94+blzWk0GpP7sfn6+locKFVVVWH37t2YMGECHBysMtmayGwWD7H99re/xeuvv46KigpcunQJBQUF0g83JSQisj5BEBAREYHg4GCDMmtrPu2+o1Pw169fb7Xr79u3D6WlpSgrK0NBQYHJTXOJbMXi0Ly+vh5z5841a2VVIiKyrgEDBrSauzN06FC4u7ujoaEBx48f7/A5ZTIZ0tPTAQB1dXVSuSiKBs8jIiKQl5eHmJgYqffJWvRDiUDT5r7Ng0IiW7I4QJo3bx62bt2KV1991RrtISKiTlAqlRg7diwyMzPh5uYmrU0XFxcHT09PAIBKpTJ7CMzUl997773X4PmHH34IQRCgVCpbndpvDbY8N1FLFgdIWq0Wb7/9NtLS0jB8+HCjJO333nvP0ktYXXl5OaZNm4bGxkY0NjZi+fLleOqpp+zdLCIiizg5OWHcuHHQarU4ffo0fHx8pOBIT6FQdOrcSqVS6ilqqa6urtWVta3pypUrCA4O5mKS1CUsDpBOnz4tbUrbvCsUsM2YuDW4ubkhIyMDzs7OqKmpQUxMDGbPng0fHx97N42IyGJyuRxxcXEmj4WFhaGkpARBQUG4evVqh8+pXwqgI5va2tKhQ4cQHh6OmpoayGQyo2UPiKzF4gBp165d1mhHl5LL5dLsj7q6OoiiyOQ/IuoTlEolxo8fD0EQzAqQ2tJeArd+O5LmbbDkC3R+fr70ODw8HHK5vNPnImqNRZnVDQ0NmDp1Ki5cuGCt9gAAMjIyMHPmTAQHB0MQBGzbts2oTkpKCgYMGAClUonExERpL5+OKi8vR2xsLEJCQvDiiy+2us8QEVFvY63e/e3btyM9Pb3NSTrNtyPR/yxbtsxqX0otWfuJqC0WBUiOjo44deqUtdoiqampQWxsLFJSUkwe37p1K1asWIHVq1fj+PHjiI2NxfTp01FSUiLViYuLQ0xMjNHP9evXAQCenp44efIkCgoKsGXLFhQXF7fanrq6OlRWVhr8EBH1dYIgtBkcaTQag+1I9Nrap81cJ06csMp5iFqyeG7+r3/9a/z1r3+1Rlsk99xzD9asWYNZs2aZPP7ee+/hqaeewoIFCxAVFYVPPvkEzs7O+Oyzz6Q6WVlZyM7ONvppOUU0ICAAsbGx2Lt3b6vtWbt2LTw8PKSf0NBQ67xRIiI7GjJkiE3PP3v2bCxatEh6vmXLFptcp76+HmfOnDHY143IUhbnIDU2NuKzzz7Dzp07ER8fb7BfD2D9WWz19fXIzMzEK6+8IpXJZDJMmzYNBw8e7NA5iouL4ezsDDc3N1RUVCAjIwPPPPNMq/VfeeUVrFixQnpeWVnJIImIerygoCC4ublZtUenpcLCQumxrWaf5ebmorS0FCUlJZg8ebJNrkF9j8UBUnZ2NkaOHAmg6Ze0OVvMYistLYVWq0VAQIBBeUBAAM6dO9ehc1y+fBmLFi2SkrOXLl2KYcOGtVrfyckJTk5OFrWbiKg7cnV1xZgxY+y66bg+idvJyQl1dXVmJ3FzDziyhT45i2306NHIysoy+3UpKSlISUmBVqu1fqOIiLo5pVIpbZQbExNjskeoeZ3w8HCDGWct6XQ6iKKIp59+2mB9pZiYGCQnJ1v0JVsURTQ0NHR63SeiTgVIV65cQVhYWIfrX7t2Df369evMpYz4+vpCLpcbJVUXFxcjMDDQKtdozZIlS7BkyRJUVlZ2eF8iIqLeQr8WkkajabWXp3kdJycnLF++3GRAJYoipk6davI6+iG/zmxbUlpaCl9fX+Tl5eHatWsYOnSo0YgDUUd0Kkl71KhRWLx4MY4ePdpqnYqKCnz66aeIiYnBN9980+kGtqRQKBAfHy/tDwQ0fQtJT0/H2LFjrXYdIiIyJggCVCpVm707+joymQzJyclITU1FcnKyQZ22Zg5bQr9g8bVr1wCAm6ZTp3WqB+nMmTP4wx/+gF/96ldQKpWIj4+Xln8vKyvDmTNnkJOTg5EjR+Ltt982e+XV6upqg+7WgoICZGVlwdvbG2FhYVixYgXmzZuHhIQEjB49Gh988AFqamqwYMGCzrwdIiKyEX2w1NITTzxhs2s2Njba7NzUd3QqQPLx8cF7772HP/zhD9i+fTv27duHy5cvQ61Ww9fXF48++iimT5+OmJiYTjXq2LFjmDJlivRcP4Ns3rx52LRpE+bOnYubN29i1apVKCoqQlxcHH766Sebd6MyB4mIyPpCQkIMZrtZat++fdJj7pJAnSWI/O0xmz4HqaKiAu7u7vZuDhGRxbpiFptarTY5ovDNN9/gwQcfNChLTU2FSqWSZrhZsj3J2LFj4eTkBI1GAwcHBzg4WDw/iXooc/5+W7xQJBERUUfoZ7i1pFKpTJY336bEku1JsrKyUFpaikOHDmHfvn0QRREVFRXQ6XSdOh/1DQyQiIgI3t7eNr+GfoZbamoqoqOjAUCa3ZacnIxvv/1WqqtWq1FWViZtU2LJYpZqtVpK3gaaErdPnDjR4bXzqG/iEJsZmucg5ebmcoiNiHoNURRRX1+PsrIynDt3Dt7e3rh9+7ZNr9dy6Ky1ITi9b7/9Fp6enlZfhHj8+PFwdHS06jmpezJniI0BUicwB4mIejP9n4U9e/Z06XXbC5AA6ywiKQiCwXBdQEAAhg4d2unzUc/BHCQiIuo0QRBsslVUe1rLUWouOzsbarXaovyhlv0CtlqTiXo2BkhERGQ1ERERnX6tPkdpy5Ytbda79957MXXqVKsmWXMwhVpigERERFYhk8kQEhJi0TkEQTDYkuSzzz5rtW5FRYVF12quq4cTqftjgGSGlJQUREVFYdSoUfZuChFRlxo5cmS7n30ymfX/pHh4eLQ67GbtXp+ysjKrno96NgZIZliyZAnOnDnT5h50RES9kbu7O1xcXLrkWs03A/f09DRaGkDvpZdesmqQdPPmTVRXV3O4jQB0cqsRIiKilqwVWMhkMmlDcn2vlEqlwrp166DRaLBo0SIUFhYiPz8fGo3G5F5vnXH9+nVcv34dADBixAiDQI36HvYgERFRtyOTyYyG7PQb327YsEEqW7p0KbRaLdRqtVV7fs6fP2+1c1HPxACJiIg6zFRvjX5JAH9//y5pg1KplGbL5efnY9q0aRZvR9JSbW0tbt68aZVzUc/EAMkMTNImor7E1dXVqEwulxuVxcfHY+jQoVLQMnHiRJu2S78cQEuWbEdiSk5ODvdr68MYIJmBSdpE1Jc0n26v5+BgnLrq5OSEgIAAKXgyFUT1VIWFhfZuAtkJAyQiIjJp8ODB8PHxwfDhw6UyU0NY9tjHrPmq283XXlq6dKlV85Fqa2utch7qeTiLjYiITHJycsKwYcMMypoHHkOHDu2yvKOW9MNsGo0GTk5OWLx4MfLy8pCfn4+kpCSr7NkGcIXtvow9SERE1CkBAQHtBiCmhumsRT+rTSaTGeUk6fdss1RxcTHq6+stPg/1PAyQiIiowzrao+Ll5QXAsr3ZLHXvvfeitrbW4l6gAwcOoLq62kqtop6CARIREXVYR4ON4cOHIzExEb6+vlKZl5cX7rjjDpu0q3lOUnP33nsvFi1aZPFstGPHjuH69eu4deuWdA9EUURdXZ1F56XuiwGSGTjNn4ioY/TDX8AvvUlDhw616fX0W5KEh4cbHMvLy8OiRYssTt7Ozc3F6dOnpfWRzp8/j4MHD6K4uNiitlP3JIjMQDNbZWUlPDw8UFFRAXd3d3s3h4ioy9y6dQunT59GcHAwIiMjO/QaURQhiiJkMhmKiopw7tw5m7ZRp9NJSdstxcTE4MMPP0RdXR2USmWnkrh9fX0RHR2NPXv2AGhaPDMxMdHidpPtmfP3mwFSJzBAIqK+rKGhAQ4ODp0KLroiQAKagjKNRgNRFHHvvfcaHAsPD0d+fr5FM918fX1RWloqPTcnYCT7MefvN4fYiIjILI6OjhZPn28uICDAaufS0w/xmWpnfn4+AMtW3m4eHAFNG92yv6F3YYBERER24+7ubrQprTUplUqDhSRbEkWR24mQSQyQiIjIbuLi4qzaG9WSIAjYvHlzq8fvvfdeTJ06lUESGWGAREREduHi4gKZTIYBAwZApVJh0KBBNrmOTCZDeno6oqOjW60zb948i4fIqqqqLHo9dS8MkIiIyK4UCgUSExMRFhZms2vIZDKsW7cOW7Zskcp8fHykx4WFhVCr1Rb1JB0/fpyrbvciDJCIiMgubNVj1BpBEAy2PtmwYQO++eYb6bk1httaJm9Tz8UAyQxcKJKIyHr0C0l2JQ8PD+mxp6cnvLy8jLZDKS8v7+JWmabValFSUoLGxkZ7N6VPYoBkhiVLluDMmTM4evSovZtCRNTjyeXyLr+mPh8pPT0dMplMWoG7ueXLl3c6H0mn06GhocEaTcW5c+dw5swZnD171irnI/MwQCIioi7TfMaak5OTXdogk8kMlhZQKpUGCdyFhYWdXh8pLy8P+/fvt0qQpN/S5NatWxafi8zHAImIiLqN/v37d/k1BUHAunXrDPKRLFVdXQ21Wo1Lly5Bo9GgpqYGubm5UKvVHRoy6y7DfH2Zg70bQEREpOfl5YXLly+3ejwiIgJyuRznz5+36nWbb65rDRcuXEBtbS0A4NKlS1L59evXAQDjxo2DQqEAADQ2NqKurg4uLi5SvZycHKu1hTqHARIREfUYISEhuH37ts2vo9FoOr2ZLQApOGrN1atXMWjQIBQVFUnBnkqlgp+fH6qrq62Wx2Rt+twsWy3uqdVq7ZKbZgqH2IiIqMt4enpCEAS4urp2+hxeXl5WbJFps2fPxrJly2y2v9rVq1cNgiMAUKvVuHLliskAMDc3FydOnDDZnsbGxi5bCTw7OxvHjh2zyX0pLi7G3r17UVhYaPVzdwYDJCIi6jJOTk5ITExEXFycyePNeyYiIyPbrWNNSqUSMTEx0nNLNrPtCP1wW0frVlRU4NSpUwbl9fX12L9/P7KysnDhwgWT6zCVlZXh0KFDVul5u3XrFmpqalBZWWm1oKyqqgqXLl2SZuvl5eVZ5byWYoBERERdSqlUwsGh/QwPf3//Lh1u0U/5//bbb6WyRYsWQa1W26THpDNbk5SVlRk8P3DgAERRRGVlJa5du4bs7Gzp3FeuXIEoijh58iQ0Go1BcNVacCOKIgoKCnDjxo0223HixAkcOHAAtbW1KCsrw4kTJ1BTU2P2+xFFEZmZmQZ5Wt0Fc5CIiKhbcnBwwIQJE5CRkWGzoa6WBEGAp6cnIiIikJeXh8LCQiQlJSE6OhrJyckGywPYy+HDh+Hp6YnKykqTx6urq5GZmQkARu3NysqCRqOBRqNBQkKC0VBnVVWVlCQfFBSE+vp6lJWVQavVIjg42KBuY2Mjjhw5Ij0/ffo0xowZA6BpqYTCwkLExsZKye+iKBr1/uXm5pr79rsMAyQiIuq2bDWc1t41169fj8WLF0vDPTk5OZg6daq0wKQ9qdVqqNXqVo8fO3ZMetyyV6f58gHHjh3D6NGjUVVVBX9/f9TV1RkkhxcVFeHcuXPS8/aCmebDkfr7dvjwYQwaNAhqtRpFRUXo378/tFotGhsb4e3t3W5PlT0xQCIiom5NLpd3+XYbMpkMGzZsQHl5OWbPni2VV1RUdEmSuLW0F4Doe4CuXLmCmpoauLu7S8eaB0cdVVpaahRIXbx4UXrcfCitrbZVV1dDpVLZdUab/fsKiYiI/kO/NlBzw4cPh0qlwrBhw7q0LS03twWaekm6arivK+l7mlobtuuo7Oxs1NfXW9yeY8eOGfSE2QMDJDNws1oiIttSqVQYOnSoQTDk7u6OxMRE+Pj4GJR1BaVSabCZ7SOPPIJFixZ12bT6vqytYcSuIIi9MRS2scrKSnh4eKCioqLL/pESEdEvRFGEVqvFvn37bH4ttVqNpKQkg7KIiAhs2LDBLjlSfcnkyZOtej5z/n6zB4mIiHocQRDg4OCAqKgou1w/Ly/Ppmskkf0xQCIioh7L39/fbte25UrbZH8MkIiIqNfy9PS0+BzNV9gOCQmRyvW9SLZaSJLsi9P8iYioV1EqldLwlzWmietX2NZoNHBycsLUqVOlY4sWLUJhYSFiYmKQnJzMnKRehD1IRETUqyiVSgQHByMkJMRqizoKggCVSgWZTIbt27dL5fqNVW29bxt1PQZIRETU60RGRhpMz7cmlUplsKmtHnOSehcOsRERUa/SfJjLFgFL8yE3AFi6dCny8/OlnCT93mPUs7EHiYiIyEz6ITeVSoV169ZJ5VxEsvdggERERD3amDFjEB0dLT3vSA9O89lollIqlQgPDwfQlJM0b948Bkm9AAMkIiLq0ZRKJfz8/BAXF4egoCAMGjRIOtZ8iC0yMlJ63LyOpQRBwNtvvy09LywsxOLFi5mP1MMxB4mIiHoFT0/PNtc9CgoKgru7uzQbLTExEUVFRbh8+bJVrt1cXl4eysvLoVQqoVQqOf2/B2KAREREfYIgCHB1dZWe63OIrEEmkyE9PR0ajQb33nsvAGD27NkAgOjoaLz99tsQBMEoWNIPxVlrOQKyHgZIREREViCTyaQlALKzs6XynJwcKWgKDw/HunXroFQqIYqitOjk9u3bW+1lcnJyQl1dHXuiulifDpBqa2sxdOhQzJkzB++88469m0NERFbW1XlAzZcA0Gg0Ui+SXn5+PpKSkhAeHo7y8nKpXB9AtSU6Ohp//vOfAYDBUhfo0wHSH/7wB4wZM8bezSAiIjux1TpJKpVK2sOteW+SXn5+vtnnzcnJQVJSEoBfgiUGSrbTZwOkCxcu4Ny5c5g5c6bJX14iIiJLtNzDDQDq6uqwbNky5OXlAWgacktOTgbwSy9S8+G25nWb0wdLERERSE5OZqBkA90yKywjIwMzZ85EcHAwBEHAtm3bjOqkpKRgwIABUCqVSExMxJEjR8y6xgsvvIC1a9daqcVERNQd+fj4AAAcHEz3B7i4uNj0+s33cNPnKG3YsAGpqalITU3Fp59+CmdnZzg7OyM9PR3p6elwdnaWEsj1dfXrPLVcvykvLw9JSUlYtGgR1Go11Gq11CsmiqJUptPpDP7bsi4Z65Y9SDU1NYiNjcUTTzxhNH4LAFu3bsWKFSvwySefIDExER988AGmT5+O8+fPw9/fHwAQFxeHxsZGo9fu2LEDR48eRWRkJCIjI3HgwAGbvx8iIrKP4OBgKBQKuLu7mzzu7u6O6Oho5OTkdFmb9EFTS6Zmsunrrlu3TuqJWr58udHIhz5QAoCIiAh8+OGHWL58ucnep+b0PVBAU14TAGkLlb7eKyWI3Tx8FAQB3333HR544AGpLDExEaNGjcJHH30EoGmaZGhoKJYuXYqXX3653XO+8sor+Pvf/w65XI7q6mo0NDTg+eefx6pVq0zWr6urQ11dnfS8srISoaGhuHHzFgJ8vKRfoPpGHRp1OshlApwc5FL92vqmQE3pIIdM1lS3QatDg1YHmSBA6di5uup6LUSIcHKQQ/6fuo1aHeotrKtp0EInilDIZXCQN/2D1epE1DVqzaorQIBKYVzXUS6DYyfq6nQiNI1aAICz4pfYvq5RC61OhINMBoWD+XVFUYS6oamuylFu9P/TnLod+X9vjd8TU/8/rfF7or/vlv6etPb/s7O/J639/7T096T5/09Lf09a+//Z2d8TfkZ07WdERUUF8vLy4OCkQlFRMeQywOE/90EURdQ3VYVC/steb406EVodzKorkwGOsl+CjrrGpj/BjnJA1sG6DjIR9XV1cHJyQq1ag+eefxH5eRcAbYNUV3BwAgRAbGwAxP+s6i2TQ5A7QNTpTNYdGBYKAWJTfpQgQ3jkHXj3nT9DIf+lDfVaESIAR9kv7dWKIhp1gACYrOsgA+SCACcnJ6g1GjT8p66bs1L62ypzdIJOJzbV1b9nQcCY8ROt+hlRWVkJDw8PVFRUtBo063XLIba21NfXIzMzE9OmTZPKZDIZpk2bhoMHD3boHGvXrsXVq1dx6dIlvPPOO3jqqadaDY709T08PKSf0NBQAMDoP6Tjdk29VG9DRj6iVqVh9feG30Ti39yJqFVpuFaulso+P3gZUavSsPKbUwZ1J7y1C1Gr0pB3s1oq+zqzEFGr0rD0yxMGdae9twdRq9KQfa1CKvvh1A1ErUrDk5uPGdS976N9iFqVhiMFt6Wy9HMliFqVhkf/ctig7sPrDyJqVRoyLtyUyg7klyJqVRpm/a9hj9u8z44galUa0nKKpbITV8oQtSoN93yYYVD3mb9nImpVGraduCaVnSuqRNSqNEx+Z5dB3RVfZSFqVRq+PHJFKrt8uxZRq9KQ+Md0g7qvfpuNqFVp2Li/QCorqapD1Ko0DH9th0HdNT+cRdSqNKTs+uVbVaWmEVGr0hC1Kg2Nul++L7yz4zyiVqXhnR3npbJGnSjVrdT80kOZsisPUavSsOaHswbXG/7aDkStSkNJ1S8B9sb9BYhalYZXvzX8Bpj4x3RErUrD5du1UtmXR64galUaVnyVZVB38jtNvyfniiqlsm0nriFqVRqe+XumQd17PsxA1Ko0nLhSJpWl5RQjalUa5n1mODQ9638PIGpVGg7kl0plGRduImpVGh5eb/jv69G/HEbUqjSknyuRyo4U3EbUqjTc99E+g7pPbj6GqFVp+OHUDaks+1oFolalYdp7ewzqLv3yBKJWpeHrzEKpLO9mNaJWpWHCW4a/Jyu/OYWoVWn4/OAvC/1dK1cjalUa4t/caVB39fc5iFqVhg0ZvyTH3q6pl/5/NvenH88halUaPkzPlcrUDVqprj5QAoAP03MRtSoNf/rxnME59HX5GdEzPiM8PDwQHx+PzSersHhnLf4v/5cAorYRWLyzFot31kLbrEvh69wGLN5Zi69zf6mrFX+pW9tsEOP/8pvqfnnul98HAPif9Ka6FXW/nHjH5aa6m7IN6z63u6nuTTWkYbtDpY5ofOBtzPrTd0hNTUVERAQAIHjRBoSt+AaDRkyQtkFxiZqMsBXfwG/WqwAglQctWIewFd/gmsZRSh53jhyLxgfexuItp5CUlCT9PPNNPp7bJ+KhJb+Vyh5euhrP7RPx9D/PG9Rd/I8cPLdPxMPPvYmkpCRMnToVDz79Mp7bJ+KZbZcwderUX+p+cQLP/FuDWcvXYOrUqZg6dSrOldTa5DOio7rlEFtbSktLodVqERAQYFAeEBCAc+fOtfIqy7zyyitYsWKF9Fzfg0RERNQdyORyqFRKbNiwARqNBi8f1KGiHli1ahXC3GXQaDQ4WirHZzkNGJOYiOeeSYcgCNBoNFh1RIebv8TmCA8Phy4gEF25m5xarUbLQcffPPcbBM17vwtbYajHDbFdv34d/fr1w4EDBzB27Fip3ksvvYQ9e/bg8OHDrZzJevRddBxi6znd523V5RAbh9jMrcshtt77GXHpSiHO517o1kNspuoKguHwVp1WBMSO1xV1IrQNmqb/f0oltDoR1WpNq8Nm5g6x/eY/+VDhEYPx5/fex4svvoj887/0uAsOCkAQDIcEBRlKbpXB1cXFLkNsPS5Aqq+vh7OzM77++muDvKR58+ahvLwc33//vc3akpKSgpSUFGi1WuTm5nboBhMRUc9x/fp15Obmtl+RzCKKIjQajZT4rX/efPkDU2bMmGHVRPFenYOkUCgQHx+P9PRfxph1Oh3S09MNepRsYcmSJThz5gyOHj1q0+sQEZF9cE8029DPxtMHO6aWPzD1Y89ZdN0yB6m6utpgamJBQQGysrLg7e2NsLAwrFixAvPmzUNCQgJGjx6NDz74ADU1NViwYIEdW01ERD2dv7+/zfJZqWfplgHSsWPHMGXKFOm5PkF63rx52LRpE+bOnYubN29i1apVKCoqQlxcHH766SejxG0iIiJzyGQyhIeHIz8/H97e3rh9+3b7L6JeqdvnIHUnzEEiIur9RFFEVVUVXF1dkZGR0f4LyGYmT55s1fP16hwke2IOEhFR7ycIAtzd3ZmP1Mfx/z4RERFRCwyQiIiIiFpggGSGlJQUREVFYdSoUfZuChER2cmgQYPs3QTqAgyQzMAcJCKivi00NBQhISH2bgZ1gW45zZ+IiKg7iYyMBNC076dMJpNmQlHvxQCJiIioHUqlEt7e3tLzuLg4VFVVwcXFBTdu3DBY3Jh6Bw6xmYE5SEREBPyyFIBcLm+/MvVIDJDMwBwkIiKivoEBEhERkQXsuaEq2Q4DJCIiIqIWGCARERG1g71EfQ8DJCIiIqIWGCCZgbPYiIj6JoVC0aF6o0ePtnFLqKswQDIDZ7EREfUtw4YNQ2RkJFxcXOzdFOpiXCiSiIioFT4+PvZuAtkJe5CIiIhsJCYmplOv8/f3R2JiIjw8PKzcIuooBkhEREQWkMl++VNq7my3SZMmmSwPCQmBSqVCXFwcvLy8LGofdQ4DJCIiIgsEBATAw8MDAwYMgFKp7HCvT79+/QyCq+b05VxewH4YIBEREVlAJpNhxIgRGDBgAARBQFxcXIde19o+bv7+/kwK7wYYIJmB0/yJiKg9zXt9HB0dERcXh9DQUKN6psoAICoqyuAc7EWyDwZIZuA0fyIi6oioqCgMHDgQHh4e8PT0RHh4uNFwmqOjo9nnDQkJsVYTqR0MkIiIiKzM398f/fv371DdIUOGSI/bW1YgIiICI0eONChrLY+JLMN1kIiIiLpY82GzoKAgBAYGora2FiqVqt3XNu95SkhIgFKpxL59+6Qyd3d3DBw4EFqtFtnZ2dZteB/CAImIiKiLtewFEgShw4nZKpUK/fr1g1wuh6urq8Exf39/REREQKFQoLa21mrtbY+3tzdu377dZdfrCgyQiIiIupibm1uH65pK0h48eLDB8zFjxqC+vh7u7u4dPq9CoYBCoUB1dXWHX9Oa/v37M0AiIiIi84WGhuLy5cvw9fW1+rmVSiWUSmWbdRITE6FQKFBcXAxvb28olUpUVVUhMzPT4uu7u7vD1dW11WDLxcUFNTU1Fl+nKzGzi4iIqAsMGDAAI0aMQFRUlFmvCwsLA9C0IKU5WuYzqVQqyOVyBAcHtxtMtcXZ2dmoTBAExMfHG5SNGzcOvr6+iIyMRGBgYKevZy8MkIiIiLqAIAjw8PAwe9aZh4cHJkyYgDvuuMPs65kbjAFNQ29tGTVqlMEec/rZeoIgICEhQSqXy+WIiYlBcHCw2W3oDjjEZoaUlBSkpKRAq9XauylERNSHODh07s+1n58f7rjjDrNynjw9PVFSUtLqcUEQ4Ovri3HjxqGystJgaYKOttPX1xelpaUAmhLL27qevbAHyQxcKJKIiHoSQRAQGBho8dYlkZGRAAyTyxUKBXx9fS1e6XvQoEFwdnY2mpFnb+xBIiIi6qPay0VydnZGXFwcFAoF/P39W90/Tk+hUEAmk0k/em1t4KtUKjF69Gio1WocPnzYvDdgQ+xBIiIi6qMcHR2RmJiIsWPHSknd/v7+0nGVSiXlJDk4OLTbWySTyTBhwgSMGzfOoK67u7vBJr7+/v5QKBQGieed2XrFltiDRERE1IfpA6OEhASo1Wq4uLhgxIgRuH79OsLDw80+X2tJ6J6entJjBwcHjB071iCIapm/1HJWXFdjgEREREQGK3N7eHi0OSxmDW31Rrm7u5uVWG4LHGIjIiKibsXWwVlHsAeJiIiIuoXExETcunULQUFB9m4KAyQiIiLqWqZW4waa8qFCQkK6uDWmMUAiIiKiLjFmzBg0NDRYtNVJV2GARERERF2iI5vqdhdM0iYiIiJqgQGSGVJSUhAVFYVRo0bZuylERERkQ4IoiqK9G9HTVFZWwsPDAxUVFXB3d7d3c4iIiKgDzPn7zR4kIiIiohYYIBERERG1wACJiIiIqAUGSEREREQtMEAiIiIiaoEBEhEREVELDJCIiIiIWmCARERERNQCAyQiIiKiFhggEREREbXgYO8G9ET63VkqKyvt3BIiIiLqKP3f7Y7sssYAqROqqqoAAKGhoXZuCREREZmrqqoKHh4ebdbhZrWdoNPpcP36dbi5uUEQhA6/btSoUTh69KhV6rZ1vLVjpsrbK6usrERoaCiuXr3aJRvzmnOPLHltR+ra6h7z/rZfx1r3F+jae2zJ/TX39X3xM6I73d/26nT0Xpoq52dE+3U6+zssiiLi4+ORm5sLmaztLCP2IHWCTCZDSEiI2a+Ty+Ud/gVvr25bx1s7Zqq8o2Xu7u5d8o/TnHtkyWs7UtdW95j3t/061r6/QNfcY0vur7mv74ufEd3p/rZXp6P3zVQ5PyPar2PJ77BCoWg3OAKYpN2llixZYrW6bR1v7Zip8o6WdRVLrm3N+9teHUvuMe9v+3X64v019/V98TOiO93f9uqYc996y++wve9va+Wdvb8cYqM2VVZWwsPDAxUVFV3y7aWv4f21Pd5j2+L9tS3eX/thDxK1ycnJCatXr4aTk5O9m9Ir8f7aHu+xbfH+2hbvr/2wB4mIiIioBfYgEREREbXAAImIiIioBQZIRERERC0wQCIiIiJqgQESERERUQsMkMgqrl69ismTJyMqKgrDhw/HP//5T3s3qVeaNWsWvLy88NBDD9m7Kb3CDz/8gCFDhmDw4MH4y1/+Yu/m9Dr8fbUtfu7aFqf5k1XcuHEDxcXFiIuLQ1FRkbTXjYuLi72b1qvs3r0bVVVV2Lx5M77++mt7N6dHa2xsRFRUFHbt2gUPDw/Ex8fjwIED8PHxsXfTeg3+vtoWP3dtiz1IZBVBQUGIi4sDAAQGBsLX1xe3b9+2b6N6ocmTJ8PNzc3ezegVjhw5gujoaPTr1w+urq645557sGPHDns3q1fh76tt8XPXthgg9REZGRmYOXMmgoODIQgCtm3bZlQnJSUFAwYMgFKpRGJiIo4cOdKpa2VmZkKr1SI0NNTCVvcsXXmPyfL7ff36dfTr10963q9fP1y7dq0rmt4j8PfZ9qx5j/vq564tMUDqI2pqahAbG4uUlBSTx7du3YoVK1Zg9erVOH78OGJjYzF9+nSUlJRIdeLi4hATE2P0c/36danO7du38fjjj2PDhg02f0/dTVfdY2pijftNreP9tT1r3eO+/LlrUyL1OQDE7777zqBs9OjR4pIlS6TnWq1WDA4OFteuXdvh82o0GnHixIni559/bq2m9li2useiKIq7du0SH3zwQWs0s9fozP3ev3+/+MADD0jHly9fLn7xxRdd0t6expLfZ/6+dkxn7zE/d22HPUiE+vp6ZGZmYtq0aVKZTCbDtGnTcPDgwQ6dQxRFzJ8/H3fddRcee+wxWzW1x7LGPaaO68j9Hj16NLKzs3Ht2jVUV1fjxx9/xPTp0+3V5B6Fv8+215F7zM9d22KARCgtLYVWq0VAQIBBeUBAAIqKijp0jv3792Pr1q3Ytm0b4uLiEBcXh9OnT9uiuT2SNe4xAEybNg1z5sxBamoqQkJC+MeoFR253w4ODnj33XcxZcoUxMXF4fnnn+cMtg7q6O8zf187ryP3mJ+7tuVg7wZQ7zBhwgTodDp7N6PX27lzp72b0Kvcd999uO++++zdjF6Lv6+2xc9d22IPEsHX1xdyuRzFxcUG5cXFxQgMDLRTq3oX3uOuxfttW7y/tsd7bH8MkAgKhQLx8fFIT0+XynQ6HdLT0zF27Fg7tqz34D3uWrzftsX7a3u8x/bHIbY+orq6Gnl5edLzgoICZGVlwdvbG2FhYVixYgXmzZuHhIQEjB49Gh988AFqamqwYMECO7a6Z+E97lq837bF+2t7vMfdnL2n0VHX2LVrlwjA6GfevHlSnXXr1olhYWGiQqEQR48eLR46dMh+De6BeI+7Fu+3bfH+2h7vcffGvdiIiIiIWmAOEhEREVELDJCIiIiIWmCARERERNQCAyQiIiKiFhggEREREbXAAImIiIioBQZIRERERC0wQCIiIiJqgQESEZGd1NfXIyIiAgcOHLDqeX/66SfExcVxp3ciCzBAIiKrmD9/PgRBMPppvtcUGfrkk08wcOBAjBs3TioTBAHbtm0zqjt//nw88MADHTrvjBkz4OjoiC+++MJKLSXqexggEZHVzJgxAzdu3DD4GThwoFG9+vp6O7SuexFFER999BEWLlxok/PPnz8fycnJNjk3UV/AAImIrMbJyQmBgYEGP3K5HJMnT8azzz6L5557Dr6+vpg+fToAIDs7G/fccw9cXV0REBCAxx57DKWlpdL5ampq8Pjjj8PV1RVBQUF49913MXnyZDz33HNSHVM9Lp6enti0aZP0/OrVq3j44Yfh6ekJb29v3H///bh06ZJ0XN8788477yAoKAg+Pj5YsmQJGhoapDp1dXVYuXIlQkND4eTkhIiICPz1r3+FKIqIiIjAO++8Y9CGrKysNnvQMjMzkZ+fj3vvvdfMuwxcunTJZG/d5MmTpTozZ87EsWPHkJ+fb/b5iYgBEhF1kc2bN0OhUGD//v345JNPUF5ejrvuugsjRozAsWPH8NNPP6G4uBgPP/yw9JoXX3wRe/bswffff48dO3Zg9+7dOH78uFnXbWhowPTp0+Hm5oa9e/di//79cHV1xYwZMwx6snbt2oX8/Hzs2rULmzdvxqZNmwyCrMcffxxffvklkpOTcfbsWaxfvx6urq4QBAFPPPEENm7caHDdjRs3YtKkSYiIiDDZrr179yIyMhJubm5mvR8ACA0NNeilO3HiBHx8fDBp0iSpTlhYGAICArB3716zz09EAEQiIiuYN2+eKJfLRRcXF+nnoYceEkVRFO+8805xxIgRBvXffPNN8e677zYou3r1qghAPH/+vFhVVSUqFArxq6++ko7funVLVKlU4vLly6UyAOJ3331ncB4PDw9x48aNoiiK4t/+9jdxyJAhok6nk47X1dWJKpVKTEtLk9rev39/sbGxUaozZ84cce7cuaIoiuL58+dFAOLPP/9s8r1fu3ZNlMvl4uHDh0VRFMX6+nrR19dX3LRpU6v3a/ny5eJdd91lVA5AVCqVBvfRxcVFdHBwEO+//36j+mq1WkxMTBT/67/+S9RqtQbHRowYIb722muttoGIWudg3/CMiHqTKVOm4OOPP5aeu7i4SI/j4+MN6p48eRK7du2Cq6ur0Xny8/OhVqtRX1+PxMREqdzb2xtDhgwxq00nT55EXl6eUU+NRqMxGH6Kjo6GXC6XngcFBeH06dMAmobL5HI57rzzTpPXCA4Oxr333ovPPvsMo0ePxv/93/+hrq4Oc+bMabVdarUaSqXS5LH3338f06ZNMyhbuXIltFqtUd0nnngCVVVV+PnnnyGTGQ4KqFQq1NbWttoGImodAyQishoXF5dWh5SaB0sAUF1djZkzZ+Ktt94yqhsUFNTh2W+CIEAURYOy5rlD1dXViI+PNzmjy8/PT3rs6OhodF79NHmVStVuO5588kk89thjeP/997Fx40bMnTsXzs7Ordb39fWVArCWAgMDje6jm5sbysvLDcrWrFmDtLQ0HDlyxORQ3e3btw3eIxF1HAMkIrKLkSNH4ptvvsGAAQPg4GD8URQeHg5HR0ccPnwYYWFhAICysjLk5uYa9OT4+fnhxo0b0vMLFy4Y9JqMHDkSW7duhb+/P9zd3TvV1mHDhkGn02HPnj1GPTt6SUlJcHFxwccff4yffvoJGRkZbZ5zxIgR+PjjjyGKIgRBMLtN33zzDd544w38+OOPCA8PNzqu7yEbMWKE2ecmIiZpE5GdLFmyBLdv38Z///d/4+jRo8jPz0daWhoWLFgArVYLV1dXLFy4EC+++CL+/e9/Izs7G/PnzzcaRrrrrrvw0Ucf4cSJEzh27Biefvppg96gRx99FL6+vrj//vuxd+9eFBQUYPfu3Vi2bBkKCws71NYBAwZg3rx5eOKJJ7Bt2zbpHF999ZVURy6XY/78+XjllVcwePBgjB07ts1zTpkyBdXV1cjJyTHjrjXJzs7G448/jpUrVyI6OhpFRUUoKirC7du3pTqHDh2Ck5NTu+0gItMYIBGRXQQHB2P//v3QarW4++67MWzYMDz33HPw9PSUgqA///nPmDhxImbOnIlp06ZhwoQJRrlM7777LkJDQzFx4kQ88sgjeOGFFwyGtpydnZGRkYGwsDDMnj0bQ4cOxcKFC6HRaMzqUfr444/x0EMP4X/+539wxx134KmnnkJNTY1BnYULF6K+vh4LFixo93w+Pj6YNWtWpxZzPHbsGGpra7FmzRoEBQVJP7Nnz5bqfPnll3j00UfbHOYjotYJYsvBeyKibmzy5MmIi4vDBx98YO+mGNm7dy+mTp2Kq1evIiAgoN36p06dwq9+9Svk5+ebTFbvrNLSUgwZMgTHjh0zuVAnEbWPPUhERBaqq6tDYWEhXnvtNcyZM6dDwREADB8+HG+99RYKCgqs2p5Lly7hf//3fxkcEVmASdpERBb68ssvsXDhQsTFxeHzzz8367Xz58+3ensSEhKQkJBg9fMS9SUcYiMiIiJqgUNsRERERC0wQCIiIiJqgQESERERUQsMkIiIiIhaYIBERERE1AIDJCIiIqIWGCARERERtcAAiYiIiKgFBkhERERELfx//0Qmw6nndeMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG3CAYAAABPMqr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABliklEQVR4nO3deVwUZ7ov8F81W7MjIJugoKhRQFBQ4hqNJEYzThKj4znJJGgcs1xEM9xsztybbTJxxpNxjAknau4Yk7mTXOfExFl0jAmjcd9QTIC4gCaCsojI1s3aXfcPT9X0TjfdTTf07/v58AldVV31dNnpfnjf531fQRRFEUREREQkU7g6ACIiIiJ3wwSJiIiIyAATJCIiIiIDTJCIiIiIDDBBIiIiIjLABImIiIjIABMkIiIiIgNMkIiIiIgMMEEiIiIiMsAEiYiIiMiAt6sDGIi0Wi2uX7+O4OBgCILg6nCIiIjICqIoorW1FXFxcVAoLLcReWyC9NBDD+HAgQOYO3cuPv30U5uee/36dSQkJDgpMiIiInKmqqoqxMfHWzxG8NTFag8cOIDW1lZ8+OGHNidIzc3NCAsLQ1VVFUJCQpwUIRERETlSS0sLEhIS0NTUhNDQUIvHemwL0uzZs3HgwIE+PVfqVgsJCWGCRERENMBYUx7jlkXaBw8exMKFCxEXFwdBELBr1y6jYwoLC5GYmAilUons7GycPHmy/wMlIiKiQcktEySVSoX09HQUFhaa3L9jxw4UFBTglVdewZkzZ5Ceno558+ahvr5ePiYjIwOpqalGP9evX++vl0FEREQDlFt2sc2fPx/z5883u3/Dhg1YuXIlli9fDgDYvHkzdu/ejW3btuGll14CAJSUlDgsns7OTnR2dsqPW1paHHZuIiIicj9u2YJkSVdXF4qLi5GTkyNvUygUyMnJwbFjx5xyzXXr1iE0NFT+4Qg2IiKiwW3AJUgNDQ3QaDSIjo7W2x4dHY3a2lqrz5OTk4MlS5Zgz549iI+Pt5hcrV27Fs3NzfJPVVVVn+MnIiIi9+eWXWz94auvvrL6WD8/P/j5+TkxGiIiInInA64FKTIyEl5eXqirq9PbXldXh5iYGKdeu7CwEOPHj8fkyZOdeh0iIiJyrQGXIPn6+iIzMxNFRUXyNq1Wi6KiIkydOtWp187Ly0N5eTlOnTrl1OsQERGRa7llF1tbWxsqKirkx1euXEFJSQnCw8MxfPhwFBQUIDc3F1lZWZgyZQo2btwIlUolj2ojIiIisodbJkinT5/GnDlz5McFBQUAgNzcXGzfvh1Lly7FjRs38PLLL6O2thYZGRnYu3evUeG2oxUWFqKwsBAajcap1yEiIiLX8ti12OzR0tKC0NBQNDc3c6kRIiKiAcKW7+8BV4NERERE5GxMkGzAUWxERETO0dHRgfPnz0OlUrk6FADsYusTdrGROQ0NDWhvbwcAREREICAgwMURERENDKdOnYJKpYJCocCsWbOccg1bvr/dskibaCBqa2tDaWmp/PjGjRuYNGmSCyMiIho4pJYjrVbr4khuYxcbkYP09PToPe7u7nZRJEREZC+2IBEREZHLNDQ0GK2O4Q6YINmA8yARERE5lm5pgjthF5sNuNQIERGRZ2CCRERERC7R0NDg6hDMYoJERERELmGue624uBjXr1/v52j0sQaJyAFEUYRKpZLnQFIqlS6OiIho4GptbUVrayvi4uJcFgMTJBuwSHvgaGlpQWtrq942pVKJ8PBwCILg0GuJoogZM2bg6NGj8rbU1FS8//77Dr0OEdFg4u7fpZxJuw84k7Z702q1OHz4sMnJxjIzMxEcHOzQ66lUKgQFBRlt379/P2bPnu3QaxERDXRarRYdHR04efJkr8c6+jOUM2mTR9NoNHJyFBkZCUEQcOvWLfT09Ng0eWNHRwfOnj2Lrq4uAICXlxfS0tIQGhpq9jkff/wxHnnkEftegI6rV6+iuroa3t7eSElJQWBgoMPOTUTkCmfOnEFbW5urw+gVEyQa1MaPHw+FQoHTp0/b/D9ka2srOjs75cc9PT24deuWxQTJsPZIFEWo1WoAQEBAgM3de7W1tejq6kJXVxdu3brFBImIBiS1Wo3z58/D29t7QCRHAEexEfUqODgY0dHRNj9Po9Fg8uTJCAoKQlBQEKZPnw57erTZG05EA0VPTw+ampogiiK0Wi2+++47tLS0oLGx0dWhWY0tSES9UCgU8PLysvl5LS0tKC4ulh8fO3YMarXaqa1Ara2t8rDZlJQU1sgRkUucPn0aHR0dGDNmDC5fvmy0VuVAwATJBhzF5nlEUUR7ezsEQUB7ezvUajVEUezzSLji4mIolUpERERg1KhRDo4WaGxsRFNTE5RKJRobG5kgEZHTSZ+T/v7+8mdjR0cHAODixYuuDM0uTJBskJeXh7y8PLkKngY3URSRn5+PsrIyve3Tp0/HoUOH+pQkqVQqaLVaqNVqjBw50qZzSHMtAabrmURRxMMPP4zi4mKkpqbir3/9q83xERFZUl1djc7OTr0/8C5evIiamhqMGjUKCQkJLozOsViDRB5PFEXcvHkTV65cwZUrV/D999+jq6sLarXaKDkCgCNHjsiF1/0Z46JFi+R6pmnTpunVJHV3d6Ompkbu0istLZUnrSQicpSKigpUVVWhublZHhVcU1MDAPj+++9dGJnjsQWJBgXd0WLd3d1ycqBSqaBQKCwWONfW1uKee+7RS4YmTpyInTt3yo+PHj2K2tpaLFq0yEmv4F90X0t7e7v8WnTrmY4fPy7XM3V1deH48eNy65KupqYmtLa2IjIyEv7+/k6PnYg8w9mzZwEAPj4+RvsGYr2RKUyQaMAzNZO1ofT0dPz+9783ua+pqcmopejs2bN6LTD+/v79snyIKIqYPn06jh07prc9OTnZ7HM6OztNToqp0WhQUlIC4HZtUnp6ukNjJSLSnVtOo9GgrKwMN27ccGFEjsMuNhrw1Gq1xeQIAM6dOycXDVpy5swZvfNaItUEGS5pYklHRwfa29vNtmip1Wqj5Ai43axtK93BBIPlLzoicm+DJTkC2IJEg0xdXR18fX3lJGPixImIjY21+vkBAQHy75MnTzZ7nCiKmDp1Kk6cOGFTfFIXXWpqKs6dO2exSPuzzz7Te46lWNrb261KAImIyDpMkGhQCQwMhK+vr1xvY+ucQ2FhYUhNTZXnEgJuJ1mG9TtqtdooOUpNTcXw4cNNnjc5OVmvFai0tBRqtdpoDbdbt27Jv1vTpafVanHvvffanKgNRqIoory8HH5+fha7JG053/nz5+Hn5wdvb290dHRg9OjRDl/smIjcExMkG3AepMEvKCgIR48elRMVQRAQGxuLy5cv6x2n24z89ddfIz4+HvHx8WbXetu0aROA211s5lqERFE0uo5SqdRL2HQTLa1Wi0OHDjE5+m+tra3yv0tSUlKfJvfUpVKpUFdXp7etvb3dZC2XVquVF7+097pE7qa7u1uensSTMEGyAedB8gzBwcEIDg7W2+btrf+/yqVLl+Tfo6OjMXLkSACwuBiupVFk5grNBUHApk2b4O/vLydtCxYsAHA72fK0DyxLdOu6pG5HpVLZ5xYfU4Xvui18uq5du4bKykrExMTgjjvu6PP1pJGJbKUiV9KdDFcURRw5csTFEbkGEyQiK8THx6Orq0t+7Ih10Zqbm9HZ2Ql/f380NTXpJUdZWVlyF5sgCAgKCpILvK0lJQkAjLry+ptWq0VPTw98fX375XrffPMNWlpaAAAjR4402/XpKFVVVQBuTxnRW4IkvXcMk6DS0lI0NjZi9OjRGDZsmHMCJeqFVqtFcXExAgMDcccdd+C7775zdUguwwSJyAq+vr42zxDbW9H0yZMnERoaitWrV+tNM/DZZ59h4sSJepOuRUdHIyAgANXV1fI2rVZr8RqPPPIIzp8/D+D2NAdnz561qzWlr60boiji9OnTUKvVmDhxYp9bX7VaLURRtKoLS0qOAODy5ctmEyRRFHHlyhUEBQUhKipKL3kx9zpNLTVjTcIsiiIaGxtRWVkJhUKBzMxMvfNIi3hWV1e7RYLU09MDlUqFkJAQm/7Ni4uL0draiqlTp8LPz09v3/Xr1+Hv748hQ4Y4OlxykKamJqhUKqhUKnR3d5ttNfUETJDII+lOxuisbqpHHnnE4v5FixYhPj5eL+lJTU1FWFiYUXG5j48PRo4cqfeFM3nyZLnlwhQpOQJuT3Ngz0K55eXlaGhoQHR0NMaNG2fTc3XvdXNzs9kESRRFNDQ0ICAgwChOrVaLEydOoLOzE5MmTdJbY66qqgoqlQoxMTFmY7h58ya+/fZbjBkzBnFxcQBud5e1tbXh6tWrAIAhQ4bg1KlTCA4ORlpamtlzGXaxi6JosWtVN07dGrOOjg6529URLZKOdubMGajVaowbNw7R0dFWP0+a9uLYsWOYPXu23nZpXS7d7eRedN+LnpwcAZwHiTyQKIqYMmWKvGxHVlaWzecw13ITEBCAqVOn6m1LS0tDcHAwBEFAWFgYJk2aJO/TTY4OHjyIY8eOYdq0aQgLCzN5ft3aKN3kyNZRWzdv3kRVVZVet6Epzc3N+PLLL+XiZ8OiZUMdHR04deoUvvnmG5Nf+iqVCidPnkRlZaXRvhs3bqCsrAynTp1CSUmJXndiV1cXOjs7Adz+4j527BgaGxshiiIqKytRW1tr8cP822+/BfCvhTPb2tpw7tw5vThu3bqFrq4u3Lx50+Jr1J2xvKmpCQcPHrR4vOT69etm9/3www/y7+3t7RYHgoiiiFu3bvVpbquOjg5UVVVZ9Vwpqe3t3xz417/rlStXLF6baCBhCxJ5HLVajdOnTxttz8zM1JsHyRJzrUOCIODIkSOorq5GR0cHBEFAfHy83pD906dPQ6VSYebMmfJM16mpqYiMjJRrhQy/wBSK23/LBAcHY9q0aXK9UnJyMjZt2oTo6GhkZmZaFXt3d7ecMLS3t2PMmDHyvs7OTrk7paamBvfffz/KysqQmpqKTZs2QRAEqNVqnD9/HoGBgRg7dqzeuZubm+Xm+dbWVnR2duq1tkhftmq1Wm+xS8A48aisrISPjw8UCoXRXFadnZ345ptvcNddd8nbbBldaqrVUDeh02g0vSaPwO1WOlOJ4MWLF9HV1YXU1FSIooiqqiqLCYLhGlYXL14021JXXV2NyspKBAYGWpyry5QzZ86gq6sLra2tGD9+vFXPkV6fqZF6Go0GVVVVcvy6iZ4lTU1Nen8EXLhwAWq1GklJSaitrcWoUaP0lrDQaDTo7Oy0+v9PIkdggkQeo6OjAyqVSi/5OHv2LEJDQ6FQKBAfH2+x1iIgIADTp0/XG9ExYcIEuctGIgiCxXolqej6zJkz2L9/Pzo7O6FUKvVGynl7eyM5ORnNzc1QKpVyy5EgCDh8+DCqqqpQVlYGpVIJHx8fREVFWX0fzM2w3dLSojeTeHt7u1wbVVpaKncJNTQ0oKWlBS0tLRg5ciS8vb2hVquhVCr1Ro/pnqsvGhoa5N+lxTANSa1KgHHRsyVNTU1G25qbm+Xfr169arH70pLu7m65tejAgQOIiYlBbW2tTee4ceMGxo0bh6+//hqiKGLIkCEIDAzEkCFD5FYvKaG8desWfvjhB4wZM0Yvgejq6oKPj4/efZGSPqm17MaNG4iOjjYapalLapn7/vvv5e5IqYvshx9+kLfZQqVS6SVI0r+v9AeDl5cXRo8eLe8/efKkXveqKIo4d+4cFAoF0tLSOOrPAURR1Pv/iZggkQcxNf9QQkICIiIirHq+IAg4dOiQXutDQEBAnz+cBUHApEmT0NjYaLKVRJpbydTzHLn4bHNzM6qrq3tdIqCjowNKpVKvJUQURdTU1ODixYsICAjAqlWrcOrUKb0WJ0cwNeQegN4cUNYmNE1NTSa7u3S3tbe3m73mxYsX5YJqU61ChiMNbU2OdEmtN7du3cKtW7f0umQl586dAwCUlZUhKysLgiDg4sWLuH79OkaMGIERI0agrKzMaDHjkpISqNVq3Lx5ExMmTOg1FlOJkC3L7OgORJBi0Wq1JpPVa9euQaVSwd/fH/Hx8fIXd1VVFYYNGwaNRiM/r6enBwqFAjU1NYiIiJD/v9BoNGhpaUFYWJjHJ1BtbW24fPkykpKSEBwcjLa2Nty8eRMJCQnyYt5Xr17FlStXjKY48WRMkGhAUalURh+ourUntbW1et1Zplp9JKmpqTZ/GAiC0OdCZ1PCwsLM1hv1l/Pnz1s1fcCiRYuQnJyMLVu2yF1+wL9aY27evIlTp04B0G9xciZzxc2iKMoJnanh9L2pr6832iYlTAqFQq91y5CtLWfmElNrBg/o1kupVCocOXIEI0aMkJO9H374wWS3V3d3t1xYLiV7uvEYjj4zVFlZiVGjRtldxFtZWYlr166Z3NfU1ISmpia91sMbN24Y3a9z584hLCwM1dXVuHz5MmbNmgXg9lQPzc3NSExMRGJiot5zenp6cOPGDURGRkKhUAz6yT3Pnj0LjUaDW7du4a677pJLDLRaLTQaDerq6uT3gy1J72DHBIkGjKamJsyYMUPvL1FDFy9elL+UBUGAQqHAoUOH5A9W3S/UqKiofpuXx9H8/Pzg5+dnVONjSHfm7ePHjyM6OtqooFutVsstIb1NrFhRUYGnnnoKW7dutfqvckvJCnC7FcZSF4+159E9Lj8/X692SrqOUqm0WKBs7hparRZz584FABQVFekliH31ww8/ID4+3uT7WavV4uTJk72eQ6olk/T09JgsgO9NfX09GhoakJCQgLKysl7/bauqqoxqyEy5fv26URe0tN3f399scmSLtrY2tLW1AdBvaZS6TGtqauQEqa6uDgEBAaiqqkJ9fT0uXLgAAHZNPzEQSN3qoijqtUJaWzPmqZgg2YBLjbhWY2OjxeQoIyMDw4YNkz/chwwZIv8eFRVlU52Ou/Py8kJ2djZ6enrg4+Nj9EVTVlYmf/hJM293dXWhoaFBr/VDN5kAYLZrbOfOnVizZg2qq6tRUVFhVetQR0cH/Pz85HmeTLU+tba2ori4GADkoeSmkhTdOFNSUvAf//EfFhMuw9qp559/3qjY3JCpxEoQBIiiiNzcXPm45uZmh8zjU1tba1f3myOVl5cD+FeXoWHLXF/jvHjxIiIjI00mQn1J5KzR09NjMuG+efOm2UkPz54965ZTD0h1QX5+fg7rJtRdE5Is4zB/G+Tl5aG8vFzuRiDXqaurk/9ylH7OnDmDCRMmIC0tDWlpaSbrdwYThUIBX19fkx+cI0aMMDviRyqkbm9vh1qt1ks6pYRCq9XiySeflLf7+/tj69atRufq7u4220W0aNEiPPXUU/L5pdYn3VFR0l/+wO0v4fb2duTn52PBggVYvXo1tFqtHKt0nrKyMnm/4Re5lFzpMlVsLt0D3eebSqyka+v+1W3NIsIDle4Em7p059SyVWVlZb+2VEgF3ZLOzk40NTXptbaZ+n/GHf/wvXr1Ko4fP240ytEaPT09aGlpccs5tgYKtiDRgBQYGOjQWqDBKCEhQe5CAP7VOiC1pgAwuSyGKIp46qmn5KQgOTnZqDh79erV2Lp1K8rKyix+ABv+tarb+nTixAl5tJ9hSxZwO0l58sknzbY0GNY5mToHAKxZs8bo9a1cuRKVlZUWW5Ty8/P71MphbVfgQCeNOOuNNfMoOVJXVxeOHTumt80wVlPv2UOHDmHmzJno7OxEfX094uPjrer6dSZpXqkffvgBSUlJFo+VppMIDQ1FaGgoTp48ia6uLouTnpJlTJDI7XR1dZkcrdPfH7QDneHM26ZG8ZlqGcjNzZW74eLj47FlyxYIggClUinXNEmJjtQFZdhq8/HHH/c6k3hnZ6ecQOm23uiyJkGRrm/uHIbvpfvvv1/+3VIxuS3XlpIhc12B0heyI2qX3IWp0WfAwE4QDx06JP/e0dHR54WH+5M05YG0NAhwexoGaUoHSwMKyDImSORWRFFEdna21X+d0m1DhgxBamoqSktLMWnSJLl7zZbCU2nZE90P1K1btyIoKAgRERFQKBTYs2ePPLHk6tWrsWXLFr0aI4mlbihHf3maajWylSiKWL16tdXXe+eddwD8qzVOSoYAGHUFpqSkyNt2794Nf39/hxW4uxtzdVwDUW1tLQRBMJoM1d00NjaaTVYB9+w6HCgGz58zNCio1epek6Ps7GzOqGsgMDAQR48exdWrV3HixAn5S8mWL6ctW7boJTmpqalQKpVQKBQYNWoUkpKSEBgYKB9TUVGBuro6vRojayxatMhk/ZA1DEfg6dYX9Xa8pVFXHR0dvcYv1bRVVlZiwYIFWLBggcm6KEO68d1///1ma6ekuZek2igp2ViwYAGefPJJs/MyuRNTdVwDWU1NjV6dnCGpjs4ZdT7m6sEMmVre5cCBA/LvpqasIOuwBYkcSndh0t70NsliWVkZRowYYfPzPFVwcLDRvE4BAQHIzMxEcXGx3pB/AEYL5QqCgK1bt1oc8h8UFIRNmzbJI+PMdaPpdsdJdB/3ZZ6k1NRUvP3222hubpa7Cw3ri0wdr1uwK8XdF2+//TYefvhhi8dYkyRaUzuVkpKC119/XS/5fPLJJ/HOO+8MmNakwaK6utpsV1tZWRlu3ryJ0aNHY9iwYQ69ruF8Wj09Pejp6TFqnbWUwJF92IJEDiOKIiZPniwvAtvbz7Rp0yz+5SWt6m74wy8H6wmCgD//+c/Ys2ePPB+Q5O233zZ5vL+/v9luoJCQEKuuO3ToUKPrbdq0CZ999pnVsUstNikpKXL8CoUCYWFhcsuQboInbTM8Xno95ljbymHr++7jjz+2eE3pvW+qdqqsrMwoGZNaruxpTdIdwdhbq4epkX72HDcYSRN1Xrp0yektNYcPH8bx48cHfKvcQMIEiRymublZntPGGsePH7e6tYn6Tkp6lEolUlNTAdxuXXHULNemEgFzxcimapNM1f+kpqbiww8/xJ49e/DOO+/oJWyCIBglX8DtBMzU8brXll6/LqnLrze6z09JSUFKSor8+86dO616rYbX1Gq1Vtc+SSoqKpCbm2tzkqTbZWdumgRTx+oep9Vq9a6re1x+fj7y8/NtimkgqK2tlYuf29raUF1dbfK+SXNJOdvx48cB3O5e1l0/kByPXWzkMLofGt98843ZOqFr167prcJOziWNZJMSC6noF4Bc2D1x4kSzX+hBQUEWz2/qeUFBQb2OOpSKnXXrf0aNGqXXjWQuiTPVhQfAYtInvf7a2lqjrkFzXWPSNaR6LMP7Z2p9Oonhl+ioUaOgVCr1anSampp67ZZLSUlBU1OT3mSL1dXVFmc0N1XcbdhSZamb01QtkZ+fn9Fs4rrH2Vsoby5ud2C4VJEgCA7vUpNoNBqjdfMMiaKotw4hOQcTJHKKkSNHmp2nyNJSD+R4sbGxUCqVqKiogFqt1vtClL7wR4wYYbKLYNy4cYiMjNTbZs0s0rGxsSaHyesmNlKXkS6p9ac3UrJja02RIAjyjN3m6CZFUg2T7he2bny9xSoloNIs4oIgoKmpSa6h0u1GGzVqlNE9++yzzxAWFoZbt27JxwYGBkKlUpmd0Vyr1eKpp55CRUUFkpOTsWnTJodMbqnbWtHX2cQtJUADaQTcpUuXnDJlgyiKelMNmPP11187/NpkjF1sRIOcIAgIDw+Xh+cb7rM07Hzo0KFGC3ma6qYyZO7Lw1z3WF8YdhlamwQoFAoUFRWhqKgIe/bskbvKpPNs2bLFqIapL1/UYWFhcrff1q1boVAoIAiCXg2VJDk5GVu3btWLJzU1VV6JXvf6ujOaG3aTSZN8Sq1SFRUVFrvTpFnTra1L0mVuagRTM9hLdUpPPvmkyXhEUURTU9OAGgGnOwmrvaqrq3HgwAGHtMKR47AFiYgA3E4crKlrCQwMxLRp03D06FGkpqYiNDRUbikBbn+xBwQEyAlMaWkpMjIy5ARGd7s09F6a1dqWlg7DLkNbkhgpgfP395e7+aTYLHXtmaP7mlJSUuTkSrqGqbh1W790kzEpHnOvydSEnbrdfKa67EpLS/H4448bbTecPFR3cV9d0kSchttMXctwtJ+5WdKl1i9zM6APRFevXsXw4cNteo4oivJ95KSO7sUjE6Sqqio89thjqK+vh7e3N/73//7fWLJkiavDInKpSZMmoaqqqtfaIUEQcPjwYfkv6FGjRsmJCvCvJMPPz0/eHhsbK09mZ6oWqq91J5aSmbvuuguNjY16a3CFhIQYzS/Tl4TIVBx9TdZMnau3Wqq3335bnhE8Pz9frm0ybJnSJY24MpzeQZe5lhtTs7Bbik+XuRnOgdvdgZb2A+5bl2TK5cuX5aU+TBFFEW1tbWhvb0dUVBREUeSkuG7MI7vYvL29sXHjRpSXl2Pfvn149tlney2K80SiKEKlUtn0QwOHbpGpIAgICgrCuHHjMHTo0F6fKwgC7rjjDtxxxx3w8fExOT1ASkqKXheebreb7vbeuvkkpubE6i3GiIgIeQ6boKAgTJo0Cenp6RafZ2mR47CwMIvXs7Y7ztbuQd0v3NDQUL25nSorKy1O1qlbCxgZGYkPP/zQqm7S3uLXJSVmvb0W3RGPoihi7ty5eku/GDIcJSd1AxqOpnMn5j4H6+vrcfjwYRQXF6O8vBytra3o6OjgSDQ35pEtSLGxsYiNjQUAxMTEIDIyEo2NjVz8VIe05MepU6dcHQo5QXx8PJKTk6FQKNDW1oa4uDiHX8NwFOPYsWPx3Xff9fq8lJQUhIWF6Y0cSkpKwrBhw8yuCj9q1CiEh4ebfL9GR0fD29vbaBJNc8LDw022sAQFBSE9PR1Hjx6Vh333la0tTlLdlPS7LUvIfPTRR3KX144dO6BQKORrS0ul6I4IbG9vxwsvvGB0Hkvr60ndcuZG9El0kydrEgPduiRTS7dIo+ncnUajMZoG4LvvvtOrfyP345bvrIMHD2LhwoWIi4uDIAjYtWuX0TGFhYVITEyEUqlEdnY2Tp482adrFRcXQ6PRyKuK021qtbrPyVFaWprVS4GwFcq1Ro0ahfT0dL0JIKXfHd2lER0djcTExF6PGzp0KHx8fPS6mXqr64iIiDD7B44gCIiMjNRbuNcShUKBqKgoo+1ZWVkQBMGoaL2vbGlxkuKSkgEpYTL3Bau7PSwsTC5Kl54vXfudd94xmkT04YcfNjkC0fD+GSZCpl6Lqdolc883lJ+fb7JrT7c7ztIaZK5y8+ZNeUqG1tZWfPPNNyZHpqnVarNdneQe3LIFSaVSIT09HU888YTJ/0F27NiBgoICbN68GdnZ2di4cSPmzZuHCxcuyB9sGRkZJoeT79u3T/5rubGxEY8//jjef/99576gAe7EiRNW//UN3G6hs/ZDv7ch1+Q4Pj4+Jn83lJCQgMjISPj6+lr972iqtseUxMREjBgxAocOHeq1i2T8+PG4fv064uPjjUZyOZOPjw9Gjx4NX1/fXr/AIiMjXVZYq1Ao9ArM/fz85K43pVIpjxKz1MIiJUrt7e0m90dERMi1S7rdevn5+SaTKEOWapeeeOIJ+XdTdVHWnH/NmjX46KOPADh+EeS+unnzJm7evInQ0NBeJ851xwSP/sUtE6T58+dj/vz5Zvdv2LABK1euxPLlywEAmzdvxu7du7Ft2za89NJLANBr4VtnZycefPBBvPTSS5g2bVqvx+p+OFi7iOBgMXr06D7NeWKO7srz5qSmpiI8PNxh16TbtSgTJkxAd3e30dxGhmwtWr7jjjtQXl6Otra2Xv/dpHqk3hKk4OBgvZXUvby8MG7cOHR1dRl9edrypdhbC5DUEjVy5EiTCZK3978+NkNCQnpNkHQTF0czLOjW/d0RicKmTZvw6KOPGm03vP+2rqtnaMuWLXjxxRctfiaYUl1dLXcJutv8SdaskWYuMSX34JYJkiVdXV0oLi7G2rVr5W0KhQI5OTk4duyYVecQRRHLli3D3Xffjccee6zX49etW4fXXnutzzGTvqFDh+LIkSMWaxCGDBnS6wzOZDtnJZ0BAQHIysqCRqOxqiYkKSkJly5dMtreW/IitTjqfkGHhYXZND2ApdazpKSkXp+v+/qs6W4bCDUyutMUSAwLrv38/EzOXg7AYk2U1DpkqYBbqsnSnUTTWrpF3n1ZBNlZzp8/7+oQyE4DLkFqaGiARqMx6pqJjo62+g155MgR7NixAxMmTJDrm/74xz8iLS3N5PFr165FQUGB/LilpYU1S3YQBAEhISFWL3xKA4e19TnDhg1DdHQ0RFHUK8bWbTGyVlJSksNaDHSTJ3Pn1E14HDFDtTvQLRqXWrx0u+mAf018qTt/0+7du6FUKo3uiZRsGc5GbqnuSJpE0zBR+/jjjxEdHY3Ozk45to6ODrOJlDQppaXutoE0dQC5zoBLkBxhxowZNg0R9fPzs7rAk4is4+3tbVQn6K5Js24CMGLECDQ1NSE+Ph7h4eHy0h8DnW53nfRfQRD0Rs+Zeo7hdlMj9KTz9dZSZWq9PCkB043N3Fp8wL9alFJSUvD222+jq6tLb74tPz8/rF692u265Mj9DLgEKTIyEl5eXkaT2dXV1SEmJsap1y4sLERhYSE0Go1Tr0M02HR1dTnt3La24vSly2v06NHy70OGDMGMGTPg5eUFQRCQmZmJb7/9Frdu3TL53ODgYJtqTUaMGGF2OgNX6Mv9MjfZpbmWKt0ERRCEXv9NTc1GPmzYML0FfcvKypCTkwNAf6Fg3cRKd2JMtiaRIffvHDfg6+uLzMxM+a8a4PZsrEVFRZg6dapTr52Xl4fy8nLODURkBd3uNnMtLF5eXnpfwLoF0JYMHz4cgiAgNTXV5tZdqZbG1Np05hh+2Xt7e8tfpgqFQm/yScOEYvTo0UhISLBqigPg9ki/rKwseRmWwUZKniytc2c4MaYphpNt6q5RZ8jSZJrSRJSrV6926wkoqf+5ZQtSW1ub3pv4ypUrKCkpQXh4OIYPH46CggLk5uYiKysLU6ZMwcaNG6FSqeRRbUTketa0PAiCgJkzZ+LWrVvw9va2OkEaOXIkRo4c2efYpNmyL168aDG2uLg4tLe329T1l5WVpTcvm4+Pj5zsjBgxwuxK7DNnzpSvGxQUZPdklAOZ4cSYphh25fV1cVup4L+0tBRz584FMHAmoCTncssE6fTp05gzZ478WCqQzs3Nxfbt27F06VLcuHEDL7/8Mmpra5GRkYG9e/c6fU4ddrER2UbqLrK0TIggCA4bXTdp0iRcuHDB6gVDU1JSoFarceXKFZP7bWllmjBhArq6uixOkmqpC8ewwD0sLAyJiYkIDAwcFAu52sraBNtUfVNKSgrWr18PQRAgiqLF5UxMaW5udujUJjQwCaLuMAWySktLC0JDQ9Hc3Oy2RaX2UqlU8jD7xsZGflhQn3V1dcHX19fVYVh04MABALe7anqbI8oa5eXlqK+vR1JSklFyKF3L0OzZs82er7u7W2+0n6u0t7fr1f3s2bPHLYbUS0yNTjOMWZe5iT537tzJedjchKX/L/rClu9vtiESkVO5e3IE3J61e/jw4YiIiHDI+UaPHo2UlBSHTQdiae6m/mTrIrv9zdTyLUql0uwCxFu2bMGePXuwe/duve1r1qwB2w7ILbvYiIj6U1RUlMn11/rKx8cHQ4cONblvypQpqK2tRUJCAs6dO2fVjMvuwtZFdt2BIAj48MMP5foiw32mllqprq52mwknyXXYgmSDwsJCjB8/HpMnT3Z1KEQ0QAUEBGDkyJHw8fHp9/nVHNHiY+siu+5AKvouKirCxx9/bLRft2WMSMIEyQYc5k9EA1l2dra8WLenUSgUUCgUeoN5pCkEpJaxzz77zFXhkRtiFxsR0SAXHx+P2NhYCIKA6OhoXL9+HQEBAVCr1a4Ord+Zm0LAmgkqybMwQRpERFF02AfeYFg6gcgTRERE4ObNmxaPGTp0KAIDAwHcbjXJzs6Gn58fDh482B8huh1rphAYSHVW5BxMkGzgzvMgiaKIadOm4fjx464OhYj60ZgxY1BRUYG2tjaTS5oMHz7caDizVHwsLfdBxhYtWsS12jwca5Bs4M41SGq12inJUVpaGoKDgx1+XiJyDD8/P6SkpCAsLMzk/pEjR5r9gs/Ozsa0adOQkZHhsHjS0tIcdi5XKy0tRXt7O9rb2zns3wOxBWkQ2r9/v9l5P2wVFRVl9fIPRGSboKCgXrvHrDVkyBDU1NTIj729vXud7FChUMDX19dhc1V5e3s7bC4pV9CdjVsizcKdkpKCTZs2cQkSD8JvvkFo6NChSE5OdnUYRNQLaUkUa2bvlmqNEhISUFVVZbR/6NChGDNmDJqbmzFq1Ci9BXXJOrrzPOXn58vrtAFAWVkZ5s6dy3XaPAgTJCIiF/Hy8kJSUpJVx6ampqKrqwt+fn7yGne6675Ji+t66jB+R5Hmedq6dSueeuopvYXTAa7T5kmYBtuAE0USkasIgiBPLOnt7Y1Ro0YhNjbWxVENXgqFAlu3buXcSB6MCZIN3LlIm4jI1aRC5kmTJrk4Esfg3EiejQkSERE5VG+rpA9kHR0dHNHmIZggERGRLCQkBD4+PkhPT7f5udLSHZaMGTOmL2G5jUceeQRPPvkktFqtq0MhJ2OCREREmDJlCsaMGYOMjAxMnz7dqBA5LS0NEydONPncYcOGYcSIEbjjjjuM9hlOIWBqBNjQoUPtiNy5lEql0ajgiooK5ObmMkka5JggERERAgICEBcXZ3YIe0REhNkWooSEBCQlJZmcT0la4kS6hinuPNeaNPTfUHV1NZ566il2tw1iTJBswFFsRES20U2QEhMTXReIE1RUVKCjo4MzbQ9STJBswFFsROTpTC09ZKrVKTMzE8OHD0dSUhLGjBmD6Ohos11pPj4+Do+zv+Tn52PBggVYvXo1k6RBxn3bNYmIyO2YSoZMda0FBwfLyZSlCSzHjRuHiIgIqNVqREVFoby83LEBO5k023ZpaSk6OjrkhYBp4GMLEhERWc1w+ZIJEyb0+VyBgYGIjo6Gt7c3UlNTERUVZW94TiGt0QbAYetckvtjCxIREVlNtxvpzjvv7PeJFKWRcufPn++3a+qu0ebn54e5c+f227XJddiCREREJklLm+jSTZBcMct0TEyMVYv7Opq0RptCocDu3bv7/frU/5ggERGRSaYSJHfg6mkB/P395S43XSzUHlyYIBERkUkJCQkAbs+BJHFkAmBuXiR3J3W5GbYkScP+aXBggmQDzoNERJ5k6NChyM7ONtla4ggjRoww2jZ27FinXMvRBEFAQEAAioqK2OU2SDFBsgHnQSIiT+Pv7683cs2RLUimpgwYaMPkFQqF0cg+GhyYIBEREREZYIJERERWu+OOO+Dj44MxY8b06fm6rS2mJpjUNWzYsD5dw5VYqD14MEEiIiKrBQUFYdq0aWZnxrZFb6PRhgwZYvc1+oNSqURycjIAFmoPJkyQiIjIJv1VcxMREYHY2Nh+uZY9pFFtko6ODrYiDQJMkIiIyC0JgoCxY8cOuCLoRYsWsattEGCCREREbmOgJUMSw241afFaGriYIBEREdkpNDTUYecSRRHt7e1sgXIxJkhERNRvvLy8bH6OqTXfJk2ahNGjR/f63MDAQJuv1xcKhcLuSSOlxCg/Px8LFixAfn4+tFqtA6MkW7h2QRsiIvIo4eHhCAsLQ0hIiNXPSUtLQ2Vlpd7M2yEhIQgJCUFHRweqqqrMPjcgIAAqlcqumK1lz6SRoigiPz8fZWVl8raysjLMnTsXX331Fbq6uqBUKgdsF+RAxATJBoWFhSgsLIRGo3F1KEREA5JCoUBGRoZNzwkICEBaWprJfaNGjTJKkBQKhVu0vHR0dPSa1EhxdnZ26iVHunJycgAAqamp2LRpE5OkfsIuNhtwqREiIvfX2/xK/aW30WxarRZz587F3Llz0d7e3uv5pMJv1if1DyZIRETkNgZb64iU1JgqvG5ubpZ/f/jhh606n1SfxGkEnI8JEhERuQ2pqNrHx6fP51AqlfD19TVaaLc/KJVKpKam6m3Lz8+3KbHZuXMnUlJSAAApKSnYuXOnvK+yshIApxHoD+7RDkkAgO7ubly6dKlPz1Wr1Q6Ohoio/3l5eWHmzJl2JTaCIODOO++EIAg4f/68A6Oz7tqbNm1CR0cH8vPzUVlZKSc1wL8SG39/f4vneOedd+QaJiZCrsEEyY20tLTIfzXYoy/DaImI3IUjPsMUitsdJK7ohhIEAf7+/njnnXewYMECu85BrsMuNjfiiA+FzMxMJCUlOSAaIiJyBqkmiTVE7o0tSG4kNDQUbW1tdp0jICBg0BU5EhHZwt0/AxctWoSUlBS9rrPIyEg0NDS4MCoyxATJjQiC0G+zvhIRkevoznkUHx+Pt99+2+qRbBJr5lmivmMXGxEReZywsDBXhyDbunWrxSRHd2RccnKyvL23eZbIPmxBIiIijzNu3DgcO3asX685cuRIXL582eQ+3cVuDRe+1R0ZB0Cv8NuaUXHUN0yQiIjI4/j5+SE5ORm1tbV2135a691330VTUxMeeeQRo33SYrfS74akUW3WzLhNjsEuNiIi8gjh4eF6j+Pj45GQkNCvMSiVSrP7FAqFyeSIXMMj/yWampqQlZWFjIwMpKam4v3333d1SERE5CDm6nlGjx4ttxz1B93aodTUVJPJkbnttmANknN4ZBdbcHAwDh48iICAAKhUKqSmpmLRokWIiIhwdWhEROQk/v7+mDp1ar9dT7d2yNRos48//hgxMTE2jUKTkq7S0lJ52/3334+ioiK2PjmYR95NLy8vBAQEAAA6Ozs5YRcR0QBmaUSaqz/bpdohU0lQX4boS0nXZ599pre9qanJnjDJBLdMkA4ePIiFCxciLi4OgiBg165dRscUFhYiMTERSqUS2dnZOHnypE3XaGpqQnp6OuLj4/H8888jMjLSQdETEVF/Sk9Px/Tp010dhlUsjVazliAICAsL0+sqfOGFF1yeDA42bpkgqVQqpKeno7Cw0OT+HTt2oKCgAK+88grOnDmD9PR0zJs3D/X19fIxUn2R4c/169cB3P6L49y5c7hy5Qo+/vhj1NXV9ctrIyIixxIEAT4+PnJL0rBhw1wbkAXSaDV7u8QEQcCWLVsQHx8PAKisrOSitg7mljVI8+fPx/z5883u37BhA1auXInly5cDADZv3ozdu3dj27ZteOmllwAAJSUlVl0rOjoa6enpOHToEBYvXmzymM7OTnR2dsqPW1parHwlRETUXyZMmIDOzk63nxPIUbVCCoUCW7du7fOCuGSZW7YgWdLV1YXi4mLk5OTI2xQKBXJycqye9Kuurg6tra0AgObmZhw8eBBjx441e/y6desQGhoq//T3sFAiIuqdQqFw++SIBo4BlyA1NDRAo9EgOjpab3t0dDRqa2utOscPP/yAmTNnIj09HTNnzkR+fj7S0tLMHr927Vo0NzfLP1VVVXa9BiIicg+DqW5HFEVotVq9x+3t7Uav0dx20ueWXWzONmXKFKu74IDbM676+fk5LyAiIiI73X///QCAoqIiCIKA/Px8lJWVITU1FZs2bYIgCBBF0eR2MjbgWpAiIyPh5eVlVFRdV1eHmJgYp167sLAQ48ePx+TJk516HSIior5qbm5GR0cHysrKAPxrvbb29naT28m0AZcg+fr6IjMzU16zBgC0Wi2KioqcPgFYXl4eysvLcerUKadeh4iIyJHy8/OxYMECrF69Wm/76tWr2dVmhlt2sbW1taGiokJ+fOXKFZSUlCA8PBzDhw9HQUEBcnNzkZWVhSlTpmDjxo1QqVTyqDYiIiJPZSrhqaysBAC971bpcUdHB4vbTXDLBOn06dOYM2eO/LigoAAAkJubi+3bt2Pp0qW4ceMGXn75ZdTW1iIjIwN79+41Ktx2tMLCQhQWFkKj0Tj1OkRE5Bie2DqyZs0abN261dVhDHhumSDNnj271zf1qlWrsGrVqn6K6La8vDzk5eWhpaWlzzOgEhEROVN1dTVrixxgwNUgERERETkbEyQiIiIiAzYnSO3t7bh27ZrRdmnY4GDGYf5ERDSQffbZZygqKsLu3btdHYrbsylB+vTTTzF69Gjcf//9mDBhAk6cOCHve+yxxxwenLvhMH8iInInSqUSqampAIDk5GR5u7k6XqVSCYVCwckhrWBTkfYbb7yB4uJiREdHo7i4GLm5ufjFL36BRx55xCNHChAREbmSIAjYtGmTXJQtLVy7Zs0aV4Y1KNiUIHV3d8tD6TMzM3Hw4EE89NBDqKioYDZKRETkAoIgwN/fH6IoIjk5GRUVFaiurpb3R0ZGoqGhAQA455ENbOpii4qKwjfffCM/Dg8Px5dffonvvvtOb/tgxRokIqKBxZN6N6TWJENvv/22C6IZ+GxKkP74xz8iKipKb5uvry8++eQTfP311w4NzB2xBomIiAaS5ORkKJVKV4cxINnUxRYfH2923/Tp0+0OhoiIiBxHtz6JbOOQmbS7u7tRW1sLtVqNoUOHIjw83BGnJSIiInKJPk8U2draivfeew933XUXQkJCkJiYiHHjxmHo0KEYMWIEVq5cya4oIiIiN7d69WqPqtWyVp8SpA0bNiAxMREffPABcnJysGvXLpSUlODixYs4duwYXnnlFfT09ODee+/Ffffdh0uXLjk6bpdgkTYREQ0GSqVSnjepoqKC3XAm9KmL7dSpUzh48CBSUlJM7p8yZQqeeOIJvPfee9i+fTsOHTqE0aNH2xWoO+BitUREg4untpxII96keZPIWJ8SpE8++cSq45RKJZ5++um+XIKIiIjIZRxSpF1UVISioiLU19dDq9Xq7du2bZsjLkFERET9QBRFdHR0QKlUevQk0HYnSK+99hpef/11ZGVlITY21qNvJhERuRdP7ULrK1EUkZ+fj7KyMqSmpmLTpk0e+71ud4K0efNmbN++3SMWqyUiosElJCTE1SE4nW7NrLn6WanFqKOjA2VlZQCA0tJSj16apM/D/CVdXV2YNm2aI2JxexzFRkQ0uAQGBiIzM9PVYTiVQqGQS2EUCtNf+4sWLcLq1av7OTL3ZneC9LOf/Qwff/yxI2Jxe1xqhIho8AkODnZ1CE6nUCjMJkcSqcWIbrO7i62jowNbt27FV199hQkTJsDHx0dv/4YNG+y9BBEREVG/sjtB+uabb5CRkQHgdvapy1MLu4iIiNydUqlEamqq0Xc33WZ3grR//35HxEFERORwvr6+rg7BbUmTRTY1NWHRokWuDsftOGQeJCIiInc0cuRIdHd3IzY21tWhuCVBEKBUKuXHnBbhXxyWIJWXl+Pq1avo6urS2/7jH//YUZcgIiKyia+vL9LS0lwdxoCxZs0aV4fgNuxOkC5fvoyHHnoI3377LQRBkLNPqf5Io9HYewkiIiLqB9XV1Wb3STNsA/CIWbbtHua/Zs0aJCUlob6+HgEBASgrK8PBgweRlZWFAwcOOCBE98F5kIiIyJ1JhdcAkJqaqtd9Zg9phu0FCxZgwYIFWL169aDvjrO7BenYsWP45z//icjISHmehRkzZmDdunVYvXo1zp4964g43UJeXh7y8vLQ0tJidjZSIiIiV5EKrx29lpruDNuAZ8yybXcLkkajkSfZioyMxPXr1wEAI0aMwIULF+w9PREREdlAEAT4+/sP+i4wZ7O7BSk1NRXnzp1DUlISsrOzsX79evj6+mLr1q0YOXKkI2IkIiIi6ld2J0j/63/9L6hUKgDAa6+9hoULF2LmzJmIiIjAjh077A6QiIiIXEer1Q76eiNT7E6Q5s2bJ/8+evRonD9/Ho2NjRgyZAib94iIaEBITk5GRUUFgoKC0NbW5upw3IYoipg7d66rw3AJu2uQAODQoUP46U9/iqlTp+LatWsIDw/H//2//xeHDx92xOmJiIicKj4+HtOnT0d8fLyrQ+l3SqUSycnJJvc1Nzf3czTuw+4EaefOnZg3bx78/f1x9uxZdHZ2Arh9U9988027AyQiIuoPhoutewpBELBlyxY5STKXLHkauxOkN954A5s3b8b777+v9+aaPn06zpw5Y+/piYiIyMkUCgW2bt2KPXv2YNOmTVY9Z7DPhWR3gnThwgXMmjXLaHtoaCiamprsPT0RERH1A2l6AGtVVFTIM2sPRnYnSDExMaioqDDafvjwYQ7zJyIiogHJ7gRp5cqVWLNmDU6cOAFBEHD9+nX86U9/wnPPPYdnnnnGETESERER9Su7h/m/9NJL0Gq1mDt3LtRqNWbNmgU/Pz8899xzyM/Pd0SMbqOwsBCFhYVcgJeIiGiQsztBEgQBv/zlL/H888+joqICbW1tGD9+PIKCghwRn1vhWmxERESewe4ESeLr64vx48c76nRERERELuOQBKmjowPffPMN6uvrodVq9fb9+Mc/dsQliIiIiPqN3QnS3r178fjjj6OhocFonyAIrNchIiKiAcfuUWz5+flYsmQJampqoNVq9X6YHBEREdFAZHeCVFdXh4KCAkRHRzsiHiIiIiKXsztBWrx4MQ4cOOCAUIiIiIjcg901SO+++y6WLFmCQ4cOIS0tzWixv9WrV9t7CSIiIqJ+ZXeC9Mknn2Dfvn1QKpU4cOAABEGQ9wmCwASJiIiIBhy7E6Rf/vKXeO211/DSSy9BobC7x46IiIjI5ezOaLq6urB06VImR0RERDRo2J3V5ObmYseOHY6IhYiIiNxIR0eHq0NwGbu72DQaDdavX48vvvgCEyZMMCrS3rBhg72XcBq1Wo1x48ZhyZIleOutt1wdDhERkVt54oknXB2Cy9idIH377beYOHEiAKC0tFRvn27Btjv69a9/jTvvvNPVYRAREZGbsTtB2r9/vyPi6HeXLl3C+fPnsXDhQqPEjoiIiDxbn2uQXn75ZRQXFzsyFtnBgwexcOFCxMXFQRAE7Nq1y+iYwsJCJCYmQqlUIjs7GydPnrTpGs899xzWrVvnoIiJiIhoMOlzglRdXY358+cjPj4ezzzzDP7xj3+gq6vLIUGpVCqkp6ejsLDQ5P4dO3agoKAAr7zyCs6cOYP09HTMmzcP9fX18jEZGRlITU01+rl+/Tr+8pe/YMyYMRgzZoxD4iUiIqLBpc9dbNu2bYNWq8WRI0fwt7/9Dc8++yxqampwzz334IEHHsCPfvQjhIeH9+nc8+fPx/z5883u37BhA1auXInly5cDADZv3ozdu3dj27ZteOmllwAAJSUlZp9//Phx/L//9//wX//1X2hra0N3dzdCQkLw8ssvmzy+s7MTnZ2d8uOWlpY+vCoiIiIaKOwa5q9QKDBz5kysX78eFy5cwIkTJ5CdnY0tW7YgLi4Os2bNwltvvYVr1645Kl50dXWhuLgYOTk5enHk5OTg2LFjVp1j3bp1qKqqwvfff4+33noLK1euNJscSceHhobKPwkJCXa/DiIiInfkyUP7dTl0dsdx48bhhRdewJEjR1BVVYXc3FwcOnQIn3zyicOu0dDQAI1Gg+joaL3t0dHRqK2tddh1dK1duxbNzc3yT1VVlVOuQ0RERO7B7lFs7e3tEEURAQEBAIAffvgBn3/+OcaPH48VK1ZgxYoVdgfpTMuWLev1GD8/P/j5+Tk/GCIiInILdrcgPfDAA/joo48AAE1NTZgyZQp+97vf4YEHHsB7771nd4CGIiMj4eXlhbq6Or3tdXV1iImJcfj1dBUWFmL8+PGYPHmyU69DREQ0kGm1Wmi1WleHYRe7E6QzZ85g5syZAIBPP/0UMTEx+OGHH/DRRx9h06ZNdgdoyNfXF5mZmSgqKpK3abVaFBUVYerUqQ6/nq68vDyUl5fj1KlTTr0OERHRQKXVajF37lzMnTt3QCdJdnexqdVqBAcHAwD27duHRYsWQaFQ4M4778QPP/zQp3O2tbWhoqJCfnzlyhWUlJQgPDwcw4cPR0FBAXJzc5GVlYUpU6Zg48aNUKlU8qg2IiIico3m5ma934cMGeLCaPrO7gQpOTkZu3btwkMPPYQvvvgCP//5zwEA9fX1CAkJ6dM5T58+jTlz5siPCwoKANxeGHf79u1YunQpbty4gZdffhm1tbXIyMjA3r17jQq3Ha2wsBCFhYXQaDROvQ4RERG5lt0J0ssvv4xHHnkEP//5z3H33XfL3Vz79u2T12iz1ezZsyGKosVjVq1ahVWrVvXp/H2Vl5eHvLw8tLS0IDQ0tF+vTURERP3H7gRp8eLFmDFjBmpqapCeni5vnzt3Lh566CF7T09ERETU7+xOkAAgLCwMV69exZ49e/QKsmpra3HHHXc44hJugV1sREREnsHuBGnv3r147LHHcPPmTaN9giAMqmSCXWxERESewe5h/vn5+fjJT36Cmpoaed4D6WcwJUdERETkOexOkOrq6lBQUOD0EWRERERE/cXuBGnx4sU4cOCAA0IhIiIicg921yC9++67WLJkCQ4dOoS0tDT4+Pjo7V+9erW9l3AbLNImIiLyDHYnSJ988gn27dsHpVKJAwcOQBAEeZ8gCIMqQWKRNhERkWewO0H65S9/iddeew0vvfQSFAq7e+yIiIiIXM7ujKarqwtLly5lckRERESDht1ZTW5uLnbs2OGIWIiIiIjcgt1dbBqNBuvXr8cXX3yBCRMmGBVpb9iwwd5LuA0WaRMREXkGuxOkb7/9Vl6UtrS0VG+fbsH2YMAibSIiIs9gd4K0f/9+R8RBRERE5DbsqkHq7u7G3LlzcenSJUfFQ0RERORydiVIPj4++OabbxwVCxEREbmRyMhIV4fgMnaPYvvpT3+KP/zhD46IhYiIiNzI22+/7eoQXMbuGqSenh5s27YNX331FTIzMxEYGKi3n6PYiIiIBqbBNtjKFnYnSKWlpZg0aRIA4OLFi3r7BtuN5Sg2IiIiz8BRbEREREQG+lSDdPXqVZuOv3btWl8uQ0REROQSfUqQJk+ejKeeegqnTp0ye0xzczPef/99pKamYufOnX0OkIiIiKi/9amLrby8HL/+9a9xzz33QKlUIjMzE3FxcVAqlbh16xbKy8tRVlaGSZMmYf369ViwYIGj4yYiIiJymj61IEVERGDDhg2oqanBu+++i9GjR6OhoUGeMPLRRx9FcXExjh07xuSIiIiIBhy7irT9/f2xePFiLF682FHxEBEREbmc3RNFepLCwkKMHz8ekydPdnUoRERE5ERMkGyQl5eH8vJyi8XpRERENPAxQSIiIiIywASJiIiIyAATJCIiIiIDTJCIiIiIDDBBIiIiIjLABImIiIisEhkZ6eoQ+g0TJCIiIrLK22+/7eoQ+g0TJCIiIrKKIAiuDqHfMEEiIiIiMsAEyQZcaoSIiMgzMEGyAZcaISIi8gxMkIiIiIgMMEEiIiIiMsAEiYiIiMgAEyQiIiIiA0yQiIiIiAwwQSIiIiKT/Pz8kJqaCgBITU2Fn5+fiyPqP96uDoCIiIjckyAI2LRpEzo6OqBUKtHU1OTqkPoNEyQiIiIySxAE+Pv7uzqMfscuNiIiIiIDTJCIiIiIDDBBIiIiIjLgsTVIiYmJCAkJgUKhwJAhQ7B//35Xh0RERERuwmMTJAA4evQogoKCXB0GERERuRl2sREREREZcMsE6eDBg1i4cCHi4uIgCAJ27dpldExhYSESExOhVCqRnZ2NkydP2nQNQRBw1113YfLkyfjTn/7koMiJiIhoMHDLLjaVSoX09HQ88cQTWLRokdH+HTt2oKCgAJs3b0Z2djY2btyIefPm4cKFC4iKigIAZGRkoKenx+i5+/btQ1xcHA4fPoxhw4ahpqYGOTk5SEtLw4QJE5z+2oiIiMj9uWWCNH/+fMyfP9/s/g0bNmDlypVYvnw5AGDz5s3YvXs3tm3bhpdeegkAUFJSYvEaw4YNAwDExsZiwYIFOHPmjNkEqbOzE52dnfLjlpYWW14OERERDTBu2cVmSVdXF4qLi5GTkyNvUygUyMnJwbFjx6w6h0qlQmtrKwCgra0N//znP5GSkmL2+HXr1iE0NFT+SUhIsO9FEBERkVsbcAlSQ0MDNBoNoqOj9bZHR0ejtrbWqnPU1dVhxowZSE9Px5133onHH38ckydPNnv82rVr0dzcLP9UVVXZ9RqIiIjIvbllF5uzjRw5EufOnbP6eD8/P49awZiIiMjTDbgWpMjISHh5eaGurk5ve11dHWJiYpx67cLCQowfP95iaxMRERENfAMuQfL19UVmZiaKiorkbVqtFkVFRZg6dapTr52Xl4fy8nKcOnXKqdchIiIi13LLLra2tjZUVFTIj69cuYKSkhKEh4dj+PDhKCgoQG5uLrKysjBlyhRs3LgRKpVKHtVGREREZA+3TJBOnz6NOXPmyI8LCgoAALm5udi+fTuWLl2KGzdu4OWXX0ZtbS0yMjKwd+9eo8JtRyssLERhYSE0Go1Tr0NERESu5ZYJ0uzZsyGKosVjVq1ahVWrVvVTRLfl5eUhLy8PLS0tCA0N7ddrExERUf8ZcDVIRERERM7GBImIiIjIABMkG3CYPxERkWdggmQDDvMnIiLyDEyQiIiIiAwwQSIiIiIywATJBqxBIiIi8gxMkGzAGiQiIiLPwASJiIiIyAATJCIiIiIDTJCIiIiIDDBBsgGLtImIiDwDEyQbsEibiIjIMzBBIiIiIjLABImIiIjIABMkIiIiIgNMkIiIiIgMMEGyAUexEREReQYmSDbgKDYiIiLPwASJiIiIyAATJCIiIiIDTJCIiIiIDDBBIiIiIjLABImIiIjIABMkIiKi/yaKoqtDIDfBBMkGnAeJiIjIMzBBsgHnQSIiGtwEQXB1COQmmCARERERGWCCRERERGSACRIRERGRASZIRERERAaYIBEREREZYIJEREREZIAJEhEREZEBJkhEREREBpggERERERlggmQDLjVCRETkGZgg2YBLjRAREXkGJkhEREREBpggERERERlggkRERERkgAkSERERkQEmSEREREQGmCARERH9N1EUXR0CuQkmSEREREQGmCARERERGWCCRERERGSACRIRERGRAW9XBzCYaTQadHd3uzoMGqB8fHzg5eXl6jCIiDySxyZIV65cwRNPPIG6ujp4eXnh+PHjCAwMdMi5RVFEbW0tmpqaHHI+8lxhYWGIiYmBIAiuDoWIyKN4bIK0bNkyvPHGG5g5cyYaGxvh5+fnsHNLyVFUVBQCAgL45UY2E0URarUa9fX1AIDY2FgXR0RE5Fk8MkEqKyuDj48PZs6cCQAIDw932Lk1Go2cHEVERDjsvOR5/P39AQD19fWIiopidxsRUT9yyyLtgwcPYuHChYiLi4MgCNi1a5fRMYWFhUhMTIRSqUR2djZOnjxp9fkvXbqEoKAgLFy4EJMmTcKbb77psNilmqOAgACHnZM8l/Q+Yi0bEVH/cssWJJVKhfT0dDzxxBNYtGiR0f4dO3agoKAAmzdvRnZ2NjZu3Ih58+bhwoULiIqKAgBkZGSgp6fH6Ln79u1DT08PDh06hJKSEkRFReG+++7D5MmTcc899zjsNbBbjRyB7yMiItdwywRp/vz5mD9/vtn9GzZswMqVK7F8+XIAwObNm7F7925s27YNL730EgCgpKTE7POHDRuGrKwsJCQkAAAWLFiAkpISswlSZ2cnOjs75cctLS22viQiIiIaQNyyi82Srq4uFBcXIycnR96mUCiQk5ODY8eOWXWOyZMno76+Hrdu3YJWq8XBgwcxbtw4s8evW7cOoaGh8o+UWBEREdHgNOASpIaGBmg0GkRHR+ttj46ORm1trVXn8Pb2xptvvolZs2ZhwoQJGD16NH70ox+ZPX7t2rVobm6Wf6qqqux6De5q2bJlEAQBgiDA19cXycnJeP3119HT04MDBw7I+xQKBUJDQzFx4kS88MILqKmp0TuPWq3G2rVrMWrUKCiVSgwdOhR33XUX/vKXv7jolREREdnGLbvY+kNv3Xi6/Pz8HDoNgDu777778MEHH6CzsxN79uxBXl4efHx8MHXqVADAhQsXEBISgpaWFpw5cwbr16/HH/7wBxw4cABpaWkAgKeffhonTpzAO++8g/Hjx+PmzZs4evQobt686cqXRkREZLUBlyBFRkbCy8sLdXV1etvr6uoQExPj1GsXFhaisLAQGo3GqddxJT8/P/k+PvPMM/j888/x17/+VU6QoqKi5MkLx4wZgwceeAATJ07EM888g8OHDwMA/vrXv+Ltt9/GggULAACJiYnIzMx0zQsiIiLqgwHXxebr64vMzEwUFRXJ27RaLYqKiuQvcWfJy8tDeXk5Tp06ZdPzRFGERqNxyY8oina9Zn9/f3R1dVnc//TTT+PIkSPypIYxMTHYs2cPWltb7bo2ERGRq7hlC1JbWxsqKirkx1euXEFJSQnCw8MxfPhwFBQUIDc3F1lZWZgyZQo2btwIlUolj2pzN1qtFocOHXLJtWfOnNmnCQZFUURRURG++OIL5OfnWzz2jjvuAAB8//33iIqKwtatW/Hoo48iIiIC6enpmDFjBhYvXozp06f36TUQERH1N7dsQTp9+jQmTpyIiRMnAgAKCgowceJEvPzyywCApUuX4q233sLLL7+MjIwMlJSUYO/evUaF245WWFiI8ePHY/LkyU69jiv9/e9/R1BQEJRKJebPn4+lS5fi1VdftfgcqZVKmrNn1qxZuHz5MoqKirB48WKUlZVh5syZ+NWvfuXs8ImIiBzCLVuQZs+e3WvX0KpVq7Bq1ap+iui2vLw85OXloaWlBaGhoVY/T6FQyMua9DeFwrYceM6cOXjvvffg6+uLuLg4eHv3/hb57rvvANyuNZJIS7nMnDkTL774It544w28/vrrePHFF+Hr62tTTERERP3NLROkwUYQhAGzjlZgYCCSk5OtPr69vR1bt27FrFmzMHToULPHjR8/Hj09Pejo6GCCREREbo8JEtmkvr4eHR0daG1tRXFxMdavX4+GhgZ89tln8jGzZ8/Gv//7vyMrKwsREREoLy/HL37xC8yZMwchISEujJ6IiMg6TJBs4AnD/HszduxYCIKAoKAgjBw5Evfeey8KCgr0pliYN28ePvzwQ/ziF7+AWq1GXFwcfvSjH8k1ZERERO6OCZIN+lqDNFBs377d7D5r6sIka9euxdq1ax0UFRERUf9zy1FsRERERK7EBImIiIjIABMkG3jCPEhERETEBMkmfV1qhIiIiAYWJkhEREREBpggERERERlggkRERERkgAmSDVikTURE5BmYINmARdpERESegQkSOdSBAwcgCAKamprMHrN9+3aEhYX1W0yWvPrqq8jIyHB1GERE5GaYIJFs2bJlEAQBgiDAx8cHSUlJeOGFF9DR0eHQ6yxduhQXL1506Dmd5fvvv5fviSAIiIiIwL333ouzZ8/Kx8yePVve7+fnh2HDhmHhwoV6C/hKvv76a9x9990IDw9HQEAARo8ejdzcXHR1dfXnyyIiol4wQSI99913H2pqanD58mX8/ve/x5YtW/DKK6849Br+/v6Iiopy6Dmd7auvvkJNTQ2++OILtLW1Yf78+XqtZCtXrkRNTQ0qKyuxc+dOjB8/Hv/2b/+GJ598Uj6mvLwc9913H7KysnDw4EF8++23eOedd+Dr6+vRCyATEbkjJkikx8/PDzExMUhISMCDDz6InJwcfPnll/J+rVaLdevWISkpCf7+/khPT8enn35qdJ4jR45gwoQJUCqVuPPOO1FaWirvM+xik7q5/vjHPyIxMRGhoaH4t3/7N7S2tsrHzJ49G6tXr8YLL7yA8PBwxMTE4NVXX9W7ZlNTE372s59h6NChCAkJwd13341z587pHfOb3/wG0dHRCA4OxooVK6xuHYuIiEBMTAyysrLw1ltvoa6uDidOnJD3BwQEICYmBvHx8bjzzjvx29/+Flu2bMH777+Pr776CgCwb98+xMTEYP369UhNTcWoUaNw33334f3334e/v79VcRARUf9ggmSDvo5iE0URKpXKJT+iKPb59ZaWluLo0aPw9fWVt61btw4fffQRNm/ejLKyMvz85z/HT3/6U3z99dd6z33++efxu9/9DqdOncLQoUOxcOFCdHd3m71WZWUldu3ahb///e/4+9//jq+//hq/+c1v9I758MMPERgYiBMnTmD9+vV4/fXX9ZK3JUuWoL6+Hv/4xz9QXFyMSZMmYe7cuWhsbAQA/PnPf8arr76KN998E6dPn0ZsbCz+8z//0+b7IiUzvXWL5ebmYsiQIXJXW0xMDGpqanDw4EGbr0lERP3L29UBDCR5eXnIy8tDS0sLQkNDrX6eWq1GUFCQEyMzr62tDYGBgVYf//e//x1BQUHo6elBZ2cnFAoF3n33XQBAZ2cn3nzzTXz11VeYOnUqAGDkyJE4fPgwtmzZgrvuuks+zyuvvIJ77rkHwO3EJj4+Hp9//jl+8pOfmLyuVqvF9u3bERwcDAB47LHHUFRUhF//+tfyMRMmTJC7+0aPHo13330XRUVFuOeee3D48GGcPHkS9fX18PPzAwC89dZb2LVrFz799FM8+eST2LhxI1asWIEVK1YAAN544w189dVXNtVYNTU14Ve/+hWCgoIwZcoUi8cqFAqMGTMG33//PYDbCdwXX3yBu+66CzExMbjzzjsxd+5cPP744wgJCbE6BiIicj62IJGeOXPmoKSkBCdOnEBubi6WL1+Ohx9+GABQUVEBtVqNe+65B0FBQfLPRx99hMrKSr3zSAkUAISHh2Ps2LH47rvvzF43MTFRTo4AIDY2FvX19XrHTJgwQe+x7jHnzp1DW1sbIiIi9GK7cuWKHNt3332H7Oxss3FaMm3aNAQFBWHIkCE4d+4cduzYgejo6F6fJ4oiBEEAAHh5eeGDDz5AdXU11q9fj2HDhuHNN99ESkoKampqrIqDiIj6B1uQ+kFAQADa2tpcdm1bBAYGIjk5GQCwbds2pKen4w9/+ANWrFghv4bdu3dj2LBhes+TWm36ysfHR++xIAjQarVWH9PW1obY2FgcOHDA6NyOmFJgx44dGD9+PCIiIqw+n0ajwaVLl4y6ZIcNG4bHHnsMjz32GH71q19hzJgx2Lx5M1577TW74yQiIsdggtQPBEGwqZvLXSgUCvziF79AQUEBHnnkEYwfPx5+fn64evWqXneaKcePH8fw4cMBALdu3cLFixcxbtw4p8U6adIk1NbWwtvbG4mJiSaPGTduHE6cOIHHH39cL05rJCQkYNSoUTbF9OGHH+LWrVtyC5wpQ4YMQWxsLFQqlU3nJiIi52KCRBYtWbIEzz//PAoLC/Hcc8/hueeew89//nNotVrMmDEDzc3NOHLkCEJCQpCbmys/7/XXX0dERASio6Pxy1/+EpGRkXjwwQedFmdOTg6mTp2KBx98EOvXr8eYMWNw/fp17N69Gw899BCysrKwZs0aLFu2DFlZWZg+fTr+9Kc/oaysDCNHjrT7+mq1GrW1tejp6UF1dTU+//xz/P73v8czzzyDOXPmAAC2bNmCkpISPPTQQxg1ahQ6Ojrw0UcfoaysDO+8847dMRARkeMwQSKLvL29sWrVKqxfvx7PPPMMfvWrX2Ho0KFYt24dLl++jLCwMEyaNAm/+MUv9J73m9/8BmvWrMGlS5eQkZGBv/3tb3qj4RxNEATs2bMHv/zlL7F8+XLcuHEDMTExmDVrllwrtHTpUlRWVsqTXz788MN45pln8MUXX9h9/ffffx/vv/8+fH19ERERgczMTOzYsQMPPfSQfMyUKVNw+PBhPP3007h+/TqCgoKQkpKCXbt29doiR0RE/UsQ7RkH7qGkUWzNzc1Go486Ojpw5coVJCUlQalUuihCGiz4fiLqXzU1Nbhw4YKrw3CpW7duYdGiRQCAzz77DEOGDDG5DwD27NljNI+bpefbavbs2X1+rimWvr8NcRSbDfo6DxIRERENLEyQbJCXl4fy8nKcOnXK1aEQERGREzFBIiIiIjLABImIiIjIABMkJ2HtOzkC30dERK7BBMnBpNme1Wq1iyOhwUB6HxnOIk5ERM7FeZAczMvLC2FhYfIaYQEBAfJaXETWEkURarUa9fX1CAsLg5eXl6tDIiLyKEyQnCAmJgYAjBZbJbJVWFiY/H4iIqL+wwTJCQRBQGxsLKKiotDd3e3qcGiA8vHxYcsREZGLMEFyIi8vL37BERERDUAs0iYiIiIywASJiIiIyAATJBtwLTYiIiLPwBokG+Tl5SEvLw/Nzc0ICwtDS0uLq0MiIiIHam1thUqlcnUYLqU7j59arYavr6/JfdJjrVZr9fNt5ejvWel81kzCK4icqtdm1dXVSEhIcHUYRERE1AdVVVWIj4+3eAwTpD7QarW4fv06goODbZoEcvLkyTh16pRDjrW039w+U9t729bS0oKEhARUVVUhJCTEqtjtYcs9sue51hzrrHvM+9v7MY66v0D/3mN77q+tz/fEzwh3ur+9HWPtvTS1nZ8RvR/T1/ewKIrIzMzExYsXoVBYrjJiF1sfKBSKXjNPU7y8vKx+g/d2rKX95vaZ2m7ttpCQkH75n9OWe2TPc6051ln3mPe392McfX+B/rnH9txfW5/viZ8R7nR/ezvG2vtmajs/I3o/xp73sK+vb6/JEcAi7X6Vl5fnsGMt7Te3z9R2a7f1F3uu7cj729sx9txj3t/ej/HE+2vr8z3xM8Kd7m9vx9hy3wbLe9jV99fc9r7eX3axkUUtLS0IDQ1Fc3Nzv/z14ml4f52P99i5eH+di/fXddiCRBb5+fnhlVdegZ+fn6tDGZR4f52P99i5eH+di/fXddiCRERERGSALUhEREREBpggERERERlggkRERERkgAkSERERkQEmSEREREQGmCCRQ1RVVWH27NkYP348JkyYgP/6r/9ydUiD0kMPPYQhQ4Zg8eLFrg5lUPj73/+OsWPHYvTo0fg//+f/uDqcQYfvV+fi565zcZg/OURNTQ3q6uqQkZGB2tpaea2bwMBAV4c2qBw4cACtra348MMP8emnn7o6nAGtp6cH48ePx/79+xEaGorMzEwcPXoUERERrg5t0OD71bn4uetcbEEih4iNjUVGRgYAICYmBpGRkWhsbHRtUIPQ7NmzERwc7OowBoWTJ08iJSUFw4YNQ1BQEObPn499+/a5OqxBhe9X5+LnrnMxQfIQBw8exMKFCxEXFwdBELBr1y6jYwoLC5GYmAilUons7GycPHmyT9cqLi6GRqNBQkKCnVEPLP15j8n++339+nUMGzZMfjxs2DBcu3atP0IfEPh+dj5H3mNP/dx1JiZIHkKlUiE9PR2FhYUm9+/YsQMFBQV45ZVXcObMGaSnp2PevHmor6+Xj8nIyEBqaqrRz/Xr1+VjGhsb8fjjj2Pr1q1Of03upr/uMd3miPtN5vH+Op+j7rEnf+46lUgeB4D4+eef622bMmWKmJeXJz/WaDRiXFycuG7dOqvP29HRIc6cOVP86KOPHBXqgOWseyyKorh//37x4YcfdkSYg0Zf7veRI0fEBx98UN6/Zs0a8U9/+lO/xDvQ2PN+5vvVOn29x/zcdR62IBG6urpQXFyMnJwceZtCoUBOTg6OHTtm1TlEUcSyZctw991347HHHnNWqAOWI+4xWc+a+z1lyhSUlpbi2rVraGtrwz/+8Q/MmzfPVSEPKHw/O58195ifu87FBInQ0NAAjUaD6Ohove3R0dGora216hxHjhzBjh07sGvXLmRkZCAjIwPffvutM8IdkBxxjwEgJycHS5YswZ49exAfH88vIzOsud/e3t743e9+hzlz5iAjIwP/83/+T45gs5K172e+X/vOmnvMz13n8nZ1ADQ4zJgxA1qt1tVhDHpfffWVq0MYVH784x/jxz/+savDGLT4fnUufu46F1uQCJGRkfDy8kJdXZ3e9rq6OsTExLgoqsGF97h/8X47F++v8/Eeux4TJIKvry8yMzNRVFQkb9NqtSgqKsLUqVNdGNngwXvcv3i/nYv31/l4j12PXWweoq2tDRUVFfLjK1euoKSkBOHh4Rg+fDgKCgqQm5uLrKwsTJkyBRs3boRKpcLy5ctdGPXAwnvcv3i/nYv31/l4j92cq4fRUf/Yv3+/CMDoJzc3Vz7mnXfeEYcPHy76+vqKU6ZMEY8fP+66gAcg3uP+xfvtXLy/zsd77N64FhsRERGRAdYgERERERlggkRERERkgAkSERERkQEmSEREREQGmCARERERGWCCRERERGSACRIRERGRASZIRERERAaYIBERuUhXVxeSk5Nx9OhRh5537969yMjI4ErvRHZggkREDrFs2TIIgmD0o7vWFOnbvHkzkpKSMG3aNHmbIAjYtWuX0bHLli3Dgw8+aNV577vvPvj4+OBPf/qTgyIl8jxMkIjIYe677z7U1NTo/SQlJRkd19XV5YLo3Isoinj33XexYsUKp5x/2bJl2LRpk1POTeQJmCARkcP4+fkhJiZG78fLywuzZ8/GqlWr8OyzzyIyMhLz5s0DAJSWlmL+/PkICgpCdHQ0HnvsMTQ0NMjnU6lUePzxxxEUFITY2Fj87ne/w+zZs/Hss8/Kx5hqcQkLC8P27dvlx1VVVfjJT36CsLAwhIeH44EHHsD3338v75daZ9566y3ExsYiIiICeXl56O7ulo/p7OzEiy++iISEBPj5+SE5ORl/+MMfIIoikpOT8dZbb+nFUFJSYrEFrbi4GJWVlbj//vttvMvA999/b7K1bvbs2fIxCxcuxOnTp1FZWWnz+YmICRIR9ZMPP/wQvr6+OHLkCDZv3oympibcfffdmDhxIk6fPo29e/eirq4OP/nJT+TnPP/88/j666/xl7/8Bfv27cOBAwdw5swZm67b3d2NefPmITg4GIcOHcKRI0cQFBSE++67T68la//+/aisrMT+/fvx4YcfYvv27XpJ1uOPP45PPvkEmzZtwnfffYctW7YgKCgIgiDgiSeewAcffKB33Q8++ACzZs1CcnKyybgOHTqEMWPGIDg42KbXAwAJCQl6rXRnz55FREQEZs2aJR8zfPhwREdH49ChQzafn4gAiEREDpCbmyt6eXmJgYGB8s/ixYtFURTFu+66S5w4caLe8b/61a/Ee++9V29bVVWVCEC8cOGC2NraKvr6+op//vOf5f03b94U/f39xTVr1sjbAIiff/653nlCQ0PFDz74QBRFUfzjH/8ojh07VtRqtfL+zs5O0d/fX/ziiy/k2EeMGCH29PTIxyxZskRcunSpKIqieOHCBRGA+OWXX5p87deuXRO9vLzEEydOiKIoil1dXWJkZKS4fft2s/drzZo14t133220HYCoVCr17mNgYKDo7e0tPvDAA0bHt7e3i9nZ2eKPfvQjUaPR6O2bOHGi+Oqrr5qNgYjM83ZtekZEg8mcOXPw3nvvyY8DAwPl3zMzM/WOPXfuHPbv34+goCCj81RWVqK9vR1dXV3Izs6Wt4eHh2Ps2LE2xXTu3DlUVFQYtdR0dHTodT+lpKTAy8tLfhwbG4tvv/0WwO3uMi8vL9x1110mrxEXF4f7778f27Ztw5QpU/C3v/0NnZ2dWLJkidm42tvboVQqTe77/e9/j5ycHL1tL774IjQajdGxTzzxBFpbW/Hll19CodDvFPD394darTYbAxGZxwSJiBwmMDDQbJeSbrIEAG1tbVi4cCF++9vfGh0bGxtr9eg3QRAgiqLeNt3aoba2NmRmZpoc0TV06FD5dx8fH6PzSsPk/f39e43jZz/7GR577DH8/ve/xwcffIClS5ciICDA7PGRkZFyAmYoJibG6D4GBwejqalJb9sbb7yBL774AidPnjTZVdfY2Kj3GonIekyQiMglJk2ahJ07dyIxMRHe3sYfRaNGjYKPjw9OnDiB4cOHAwBu3bqFixcv6rXkDB06FDU1NfLjS5cu6bWaTJo0CTt27EBUVBRCQkL6FGtaWhq0Wi2+/vpro5YdyYIFCxAYGIj33nsPe/fuxcGDBy2ec+LEiXjvvfcgiiIEQbA5pp07d+L111/HP/7xD4waNcpov9RCNnHiRJvPTUQs0iYiF8nLy0NjYyP+/d//HadOnUJlZSW++OILLF++HBqNBkFBQVixYgWef/55/POf/0RpaSmWLVtm1I109913491338XZs2dx+vRpPP3003qtQY8++igiIyPxwAMP4NChQ7hy5QoOHDiA1atXo7q62qpYExMTkZubiyeeeAK7du2Sz/HnP/9ZPsbLywvLli3D2rVrMXr0aEydOtXiOefMmYO2tjaUlZXZcNduKy0txeOPP44XX3wRKSkpqK2tRW1tLRobG+Vjjh8/Dj8/v17jICLTmCARkUvExcXhyJEj0Gg0uPfee5GWloZnn30WYWFhchL0H//xH5g5cyYWLlyInJwczJgxw6iW6Xe/+x0SEhIwc+ZMPPLII3juuef0urYCAgJw8OBBDB8+HIsWLcK4ceOwYsUKdHR02NSi9N5772Hx4sX4H//jf+COO+7AypUroVKp9I5ZsWIFurq6sHz58l7PFxERgYceeqhPkzmePn0aarUab7zxBmJjY+WfRYsWycd88sknePTRRy128xGReYJo2HlPROTGZs+ejYyMDGzcuNHVoRg5dOgQ5s6di6qqKkRHR/d6/DfffIN77rkHlZWVJovV+6qhoQFjx47F6dOnTU7USUS9YwsSEZGdOjs7UV1djVdffRVLliyxKjkCgAkTJuC3v/0trly54tB4vv/+e/znf/4nkyMiO7BIm4jITp988glWrFiBjIwMfPTRRzY9d9myZQ6PJysrC1lZWQ4/L5EnYRcbERERkQF2sREREREZYIJEREREZIAJEhEREZEBJkhEREREBpggERERERlggkRERERkgAkSERERkQEmSEREREQGmCARERERGfj/1nnlEHez6dgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "plt.plot(pds.freq, pds.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5, label=\"PDS\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.axhline(noise, ls=\":\", label=\"Poisson noise level\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2 Hz^{-1}}$\")\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "plt.plot(\n", + " pds.freq,\n", + " (pds.power - noise) * pds.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"grey\",\n", + " alpha=0.5,\n", + " label=\"PDS\",\n", + ")\n", + "plt.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - noise) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "3cb801af", + "metadata": {}, + "source": [ + "We will now do the same with the cross spectrum between the bands 0.5-1 keV and 1.5-3 keV.\n", + "\n", + "In this case, there is no need to subtract the Poisson noise level, as it is zero in the cross spectrum, provided that the energy bands do not overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "84a1cd9c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 34.28it/s]\n" + ] + } + ], + "source": [ + "ref_band = [1.5, 3]\n", + "sub_band = [0.5, 1]\n", + "events_ref = events.filter_energy_range(ref_band)\n", + "events_sub = events.filter_energy_range(sub_band)\n", + "\n", + "cs = AveragedCrossspectrum.from_events(\n", + " events_sub, events_ref, segment_size=segment_size, dt=dt, norm=norm\n", + ")\n", + "cs_reb = cs.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6d8aa019", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG1CAYAAAAC+gv1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABavUlEQVR4nO3de1hTd4I38G/CJeGuiHIREBWvoARB8F6tTC06tlOr4/N2puJlbXcXL/Pwdrb6zK7d7nbGZzszjqVlq3bHWmdb1+604+776lhnWK3W+w0VrCgUFVBA5A4JSHLeP3xzJjm5kJCEJOT7eR6eh5xzcs4vR0y++V1lgiAIICIiIiKR3N0FICIiIvI0DEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEv7uLoA30ul0ePDgAcLCwiCTydxdHCIiIrKBIAhob29HXFwc5HLrdUQMSP3w4MEDJCQkuLsYRERE1A/V1dWIj4+3egwDUj+EhYUBeHqDw8PD3VwaIiIiskVbWxsSEhLEz3FrGJD6Qd+sFh4ezoBERETkZWzpHsNO2kREREQSDEhEREREEgxIRERERBIMSEREREQSDEh2KCoqwuTJkzF9+nR3F4WIiIhcSCYIguDuQnibtrY2REREoLW1laPYiIiIvIQ9n9+sQSIiIiKSYEAiIiIikmBAIiIiIpJgQCIiIiKSYEAiIiIikmBAIiIiIpJgQCIiIiKP0d7ejlu3bqG7u9ut5fB369WJiIiIDFy+fBkAoNFooFKp3FYOn61BeumllzB06FAsX77c3UUhIiIiAF1dXWZ/dwefDUibN2/G/v373V0MIiIi+v/u3Lnj7iKIfDYgzZ8/H2FhYe4uBhEREf1/zc3N7i6CyCMD0smTJ7F06VLExcVBJpPh0KFDJscUFRUhKSkJSqUS2dnZuHDhwsAXlIiIiJzC3U1qUh4ZkDo7O5GWloaioiKz+w8ePIiCggK89dZbuHLlCtLS0rBo0SI0NDSIx6hUKqSmppr8PHjwYKBeBhERkc/T6XS4f/8+2tvbze4XBAHd3d0eV9HhkaPYcnNzkZuba3H/jh07sH79eqxZswYAsGvXLhw+fBh79+7Fli1bAAAlJSVOK093d7fRcMO2tjannZuIiGgwKy8vR319PYCn3VsM6XQ6nDx50uzzenp6XF00qzyyBsmanp4eXL58GTk5OeI2uVyOnJwcnD171iXX3L59OyIiIsSfhIQEl1yHiIhosNGHIwC4e/cuzp07h56eHuh0Onz33XduLJl1XheQGhsbodVqER0dbbQ9OjoadXV1Np8nJycHK1aswJEjRxAfH281XG3duhWtra3iT3V1db/LT0RE5CvUarXR47t370Kj0aCsrAwnT55ETU2Nm0rWN49sYhsIf/7zn20+VqFQQKFQuLA0RERE3kkQBJSWliIgIAATJ0402tfb22v2Oa2trQNRNId4XQ1SVFQU/Pz8jKrsgKdVeDExMS69dlFRESZPnozp06e79DpERETeQq1W4/Hjx3a14ngDrwtIgYGByMjIQHFxsbhNp9OhuLgYM2fOdOm18/PzcfPmTVy8eNGl1yEiIvIWgiC4uwgu4ZFNbB0dHaioqBAfV1VVoaSkBJGRkUhMTERBQQHy8vKQmZmJrKws7Ny5E52dneKoNlcpKipCUVERtFqtS69DRETkDQRBcPtoM1eRCR4Y/U6cOIEFCxaYbM/Ly8O+ffsAAB988AF++ctfoq6uDiqVCoWFhcjOzh6Q8rW1tSEiIgKtra0IDw8fkGsSERF5moqKCqOO1pMmTcK3336LGTNm4Nq1ayadtO0lnRbAUfZ8fntkQPJ0DEhERERPKzRcyZ0BySOb2DwVm9ioL01NTVCr1ZDJZIiMjIRSqXR3kYiInEoQBMhkMncXw+W8rpO2O7GTNlnT2dmJ69ev486dO7h9+zZu3rzp7iIRETnVd999h1OnTnncummuwBokIid58uSJ1cdERN5Mv6YaAFRWVuLx48duLpFrsQaJiIiI+mS4isRgD0cAA5JdOFEkERENJvYM029vb3dxaTwLA5Id2AeJiIgGk9u3b+PMmTNoaGiATqezOOljb28vGhsbB7h07sU+SERERIOcVqvFlStXMGTIEIwbN07c/vDhQwBP+xR9++23UCqVJnMKtrW14cqVKwNaXk/AGiQalHQ6Hbq6uox+LC2a6AyCIKCzsxNqtRpqtXrQTr1PRN6poaEBnZ2dqK2tNbu/u7sbgiBArVajo6PDaJ8vhiOANUh24TxI3kEQBFy4cAEajcZou1wuR1ZWltPnJhIEAXPmzMGZM2fEbampqfjoo4+ceh0iooFw6dIlTJ06FaGhobh+/bq7i+M2DEh2yM/PR35+vjgTJ3mm3t5eMRz5+fkBeFq9rK9VsjUg6XQ61NbWoru7GwDg7++PkSNHIiAgwOi4rq4uo3AEAKWlpSYBrT86Ojrw6NEj+Pv7Iy4uTnw9RESOsjYVyfXr1zF06FCT2iRfwoBEg9rs2bMhl8tx6dIlu/+jt7S0oLKy0mibn58fEhISLD7ns88+wyuvvNKvsppTXl4ujhzx9/dHbGys085NRL7pyZMnuHPnDhoaGqwe19zcPEAl8kzsg0Rkgb4pVaFQIDQ01GibJdLaKZ1Oh46ODnR0dPSrX5Lh9WzpQyUIAlpaWtDc3Mx+UEQE4GkgMpz5uqqqqs9wRAxIRH1SKpX9WpRYo9FApVIhLCwMYWFhmDFjhstDS319Pc6ePYuSkhLU1dW59FpE5B1Onz5tNMnjgwcP3Fga78EmNjuwk7bv0Y/qkMlkUKvV6OrqsnmhRrVajRs3boiPL1y4gOPHj0OpVGLYsGGYMGGC08v6/e9/H5cvX0Zqair++7//26nnJyLP5iuLyA4UBiQ7sJP24NXT0yP29ZHJZBgyZAgEQcDGjRtRVlZmdOzs2bNx6tSpfr0RdXd3Qy6X4+HDhxg/frxd5xAEAQ8fPkRPTw/i4uKMOov39PTg8ePHuHz5MoCnncTVarXd5SMi71RVVYX6+npkZGSgrq4Ozc3NCA0NtXmWbDLFgESDgiAIYhv7kydPxHDQ2dkJuVxutWnr8ePHmD9/PkpLS8Vt06ZNw+9//3uTcAQ8ra7u6upCSEiIk1/FU4avRT+vkkKhwIsvvoiSkhIAgEqlwpUrVyCTydDT04OzZ8+aXV27vb0dHR0dGDZsGAIDA11SXiJyj56eHmg0GoSHh+PevXsAnq6Xpl9QtqmpyZ3F83oMSOT1zM1DJJWWlobf/OY3Zvc1NDQYhSPg6cRohjUwZ86cQV1dHZYtW+ZQWfVD/y1NNSAIAmbPno2zZ88abU9OTkZFRYX4uKSkRAxp+gnepLRarVijFBkZialTpzpUdiLyLPr3vGnTprm5JIMTAxJ5PXPzEEldu3bNpnmJrly5Ir7ZGC7MGBQUZBJq9DU9ra2tNpdVH7BSU1Nx7do1kya2rq4uk3AEwCgc2cqwr5y1+U6IyLsZDsfX6XRuLMngwlFsNKjU19ejubkZR44cwZEjR8R1hmwVHBws/j5jxgyLxwmCgOzsbISGhmLkyJF9njc5OdnocWlpqcUmMb0vv/wSX375ZZ/n1nckd8bElN6ura3N7H11lL6pk8jT1dTUuLsIgwZrkGhQCQkJQWBgIIKCgsTH9hg+fDimTp1qNL1+ZmameD69qqoqXLx40WjblClTkJKSYva8hYWFAJ42sVlqphMEAXfu3BEf2zLj98OHD5Gbm4tr1671eexgp9FoxDWj5s2bB7nc8e9/zc3N6OjoECcMnTFjhtOXqiHqD8NmdXu/CJJtGJDswGH+g59CoRD79+gFBwfj7t27RscZzrB9/vx5jBkzBpGRkVZrGaQhy5ClflRKpRKpqaliHynDvkjd3d0oKSlhOPr/9EvCAE+bKh89eoTe3l7ExcX1q0N9b2+vyb29ffu22b5c3d3duH//PkaOHGlUC2kvrVbr9cvJdHR0oLe3F0OGDLH5OYIgQBAEp4RaT9XXEPyGhgYEBARg6NChfZ7n6tWraGtrE7ex9tg1GJDswGH+vkEmk5l8oCYkJBgFY8NvbxEREYiKirL7Oq2trfD390dAQADq6uqMwlFmZiaUSiVkMhkKCwsRHh4uzny7ePFiAH3P6q1vegMgzgTuzez5EC0rKxNfe0tLC6ZPn27x2CdPnsDPz8/kvOZmLrc0KqisrAxtbW2oq6vD3Llz+yyfOdXV1fjuu+8wZcoUREZG9uscnuDKlSvQ6XR21bZduXIFXV1dmDVrlksDorvmCSovL0d9fT2ys7OhUChM9qvVaty8eRMAMH/+fABP//6ePHli8sXq8ePHRuGIXIcBicgG/VkHra9vdfHx8Rg7diwA4xqpL7/8Eunp6WKtlUwmw+jRo5GQkGAyG661a7zyyiu4desWgKej+K5evdrvD4fe3l60trZiyJAh/foAq6ysRHt7OyZNmmT2A6IvOp0O586dQ09PD2bNmtXnlAWGNXmdnZ3Q6XTo7OxEaGio0T3QaDS4cOECQkJCkJGRgaamJigUCqs1Tr29vfD3N37r1H9gWQutWq0WDx48QGRkpNnz6/8GKisrvTog6TsJq9VqmwOSvu+d/sunLSG4u7sbN27cwMiRIxEeHo4bN24gKSkJMTExZo9/8uQJLl68iBEjRhj1Cezs7IS/v3+//i5tpW8Cq62txZgxY0z2G9Z+6p05cwY6nQ7Z2dkICgpCe3s7qqqqOHR/ADEgkU8ynGvIFZ16AZhdtFbaZCZdDHfKlCmIjo7G0KFDjZr15HI5RowYYTRCRaVSWb2+PhwBT0fx9WfuJp1Oh7t37+LevXuQyWQYNmwYpkyZYvX4Bw8eQKFQYPjw4eI2fbCrqamBRqPB0KFDERcXZ/Tc3t5eVFVVQalUIjg4GJGRkWKY6enpESe8O3PmDBITExEVFYXw8HDU1taiq6tLvJ45FRUVePDgARITEzFmzBjodDqUlpaivb0dOp0O7e3taG9vx/Xr1yGXyzFv3jyLc2fpz2MPQRBQW1uL7777DpWVlZgwYYJR4O7s7BR/98YRhy0tLeju7u5XADdcRFrfpDly5Eg8efIE48aNM5oQ1dC9e/fQ0dGB8vJyhIWFQaPR4NatWxYDUk1NDXp6elBTUyMGJI1GI/Yl1NfceILe3l7x/3pzczP8/PzEKTto4DAgkc8RBAEZGRm4evVqv89hqeYmODgYM2fONBqqr1KpMHbsWGi1WgQGBuLMmTNobGzECy+8YNS36D/+4z8wbdo0yGQyix+SI0aMQEZGhsmbpXSeJGv0ncE7OzsxevRosa+IIAhobGyETCZDaGgo2tvbkZOTg+vXryM1NRWFhYV4/Pgxenp6UFVVhZCQEMTHxxudu6mpSSzH7NmzodVqjaZBqKmpgSAIePTokUlAqqurQ21trfg4KSkJHR0daG5uRlJSktGx9+/fR21tLebMmSN2bJfW6hjSrz11//59jBkzBk1NTSbfxPVBWafTQRAEow9uQ4YhVafT4fHjxybH3Lx5E2q1GhkZGeju7saVK1eMagnKy8sxfPhwscz6zuVA302nlgiCAI1GY7WvW3NzM65du4ZJkyYhOjra6vkaGhpQWVmJ1NRUhIWFidcwF4L0E5gaamxsNOlPU1VVhZaWFqSlpYm1RJcuXTJ5rv7voKGhATNnzjSp3amurjZaT8yWoe2G91WtVqO2ttbqvXKnb775Rvy9qamJnbDdhAGJfE5XV5fZcDR9+nSbO9ga1g4ZfmDIZDKcPn0aTU1N0Gg0kMlkiI6ONmmWCgsLw/Xr1/GnP/0JWq0WSqUSISEh4rnkcjnkcrn4xq//Fi2Xy3Hu3DkUFxeL+2QyGcaOHYvx48fbVPaenh7xw+Xhw4diQGpubjaaOVytVouj+UpLS8UP34aGBvENOyYmBv7+/tBoNAgMDERvb6/YtHLx4kWTZQ6szWguDYWGNWjSmjbg6Qee4XPsWQjY3Aeq4fDox48f2xQ4Hzx4YHLckydPxP5iFy9ehFKpNNuEYlgGww9vrVaLR48eYfjw4dBqtWhsbERYWBiam5vR1dWF4OBgPHr0CPHx8Whra0N4eDiioqJQXl6Ouro6jB8/HrGxsZDJZBAEAT09PWLA0NfQfPvtt/D398eNGzeQkJAgNvUa0veJuXz5MubPn4+WlhZcu3YNgiAgKSkJSUlJ0Gg0OHfunNl7U1tbi3Hjxhlt08/23NDQYLGmR+rs2bMmzarm/h76Ytjsev78eZP9paWlmDx5ssd1FG9sbHR3EXwWAxJ5FcOmMT3D5gl7VVZWYujQoZDL5QgPD7faRBAcHIzZs2fj9OnT4rb09HQkJCQYHadviuqLTCZDXFycWGtjOOrHz88P06ZNQ3t7uxie9Pz9/TF37lxcuHBBfGzPN2HDICEIAmpqamwKA/paM8OaFZ1Oh7q6Oty6dQuhoaH427/9W1y8eFGscdJ/SGs0GrHTuTMZdmzXL68AwOo1e3t7zfbjMJyD6u7duyahRh9o7t69i7t372Ls2LFmP6gN729nZ2eff5/mgl1ZWRkSExONXpNUS0uL+PuIESPEUHb79m3cvn3b6NixY8ea1PbpF1Kurq42G5AMtbe3G9US3b17F0lJSRbDkTmGAdSeMAs8/XeOjY1FSEiI2b6A5jrU23utxsZGlJaWYsqUKUZ/M01NTairq0NCQoJJHzZn0De/kudhQCKv8eTJE2RlZZmtzreFRqNBXV2d0TfEiIiIPofV6slkMpw6dcpkCgBH3jBTUlKg1Wohk8lMaplCQ0MHZPRZVVWVTccZzgKuDz/AX0Z2PXr0SOzPoa9xUiqV4oK/0ufZy9agZbjIsP6aAMTnlpWVGc08bO4a0qYknU6HhQsXAgCKi4shl8st1mJIp4Sw5MyZM5g8ebJYUyNlLRxJ6cORJZWVlX3Wuuh0OshkMty7d8+kJtXR/i9ardYohJurUeuLvtbSXJg3d77m5mYEBgaazFdmjb45y7D5V1+L2tDQgLFjx5p8IbJnZNz9+/cRHx9vVBtWVlZmVEukD67kfgxI5DVqamqshqMpU6agvLzc4n5zEzTa+2FtbgoAR8hkMqt9ZyxRKBQIDAxET0+P2D/EHMO+STU1NYiMjDSpPent7TVaI66ve2LY3GaN/pz6Zjtzz+vt7cXNmzeNps4wF4R0Oh1ef/11VFRUICUlBb/85S8tllWj0Zhc86c//WmfIc1csNLXgOXl5YnHtba2Wg3Vhn1j+mIpHA20W7duoa6uDhMnTrQ54NlDGkjv3r2LUaNGuWzIfWdnZ7/nB2tqahIDkrSvYWVlpVFAqq6uRmVlJdLT022e+uX27dtITk5GYGAg5HK5SROauT5t5B4MSHbgRJHuZVhVXlpaKn7L1Y/WUiqVRvODBAYGIiQkxKRZTG/atGl2TWbnSfz8/DBjxgyxf4m0ir68vFysMdDPm/Tdd9/h4cOHYgABngYPfSgAngaq3bt3AwBee+018Xz6JU/0IXPTpk3Ys2eP1TIuW7bMZIkVqcePH4uB7fHjxyYh5b333kN3dzc2btwovp6ysjIsXrzYbNgxfG16arXaJDAplUqTEGYuWOkZNg8Nxpm06+rqAMBoJve+2NIP6Ntvv8WkSZPw6NEjk33nzp3r8++jP06cOOHQ8w0Di7nBEq2trbh79y5Gjx4t3oOrV6/imWeesSnwNTY2orGxESEhIQgPD3eorORaDEh24ESRniMpKUmsyYmPj0dra6tJX4OwsDDI5XKTZjE9R5vH3E0ul1v8sB45ciQeP35s1E8FMK4lAYCJEycaTQdQUVGBVatWAfjLSKLk5GQxSOprpCoqKqDRaFBTU2O1eUfaHKIPVoY1Q4Zla2lpMQopr732msUPYmmNlPS16W3evNnkHqxfv14coWWpRkkfyvrqnyPlyj5XrmbPlz/DObksqa+vR3d3t8nfIfC0WUz6b+Up9P9+5mrT9AM8pLViX3/9NRITEzF69Gib/t1t6Z9G7sWARB7HXEdswPJ8RQEBAVZnsnZ2s5i3SE1NNfoA0mg0RrUkgPFcSVFRUWhsbDSqjYqPj8fu3bvFN/zf/va3eOaZZwAY1yJJa20+++wzs/NA6YNVUFAQLl26JI7OsxRubKml0AcS6WvTky7euWTJEvF3a82FhhM39nVthUKB7u5uKBQKbNq0CWVlZUZNgfrw7mkjpAaCuXDk6ezpfG7o/v374qhC8n4MSORRBEFAVlaW2blRyLKYmBikp6fj6tWryM7OFmvHUlNTxWMsLZKr98knn2Dz5s1irY++uS00NFQcNi6TyYxqkZqbm/Hmm2+ioqLCqLnEWjOU/tu54Wg4S+HGFuaClb0EQcCmTZtsvt77778PAGLfJj3DPl/6psCUlBTxmMOHDyMoKMjmmiXDJkNvqZHy5ho0Z+ju7sbt27cRGRnJoOTlGJDIo3R1dfUZjjIyMhxaEHQw8vf3x+XLl8V5cvQfTPZ8QMlkMuzZs8fkA1kul4sdU9vb21FYWCj2a3r55ZfF5xs2pymVSouTVy5btqxfI9pSUlIAwGSuJmvhyLAMloblA08DWl9THYwcORK1tbWorKwUX7+UuXMYlm/JkiVW+04Z1kR1d3cbBbC+Oqd7Aksd3X2Jvh/XgwcPMHHiRJum/CDPxIBETmWpecycvvoAXb16FSNHjjTaJpPJjJagoL8w15QYHBwszrwdHx9v1Nwkfaw/h7XRadZGzBkaOnSoUZACjMOKrSPh9L788kuxH1RLS4tYG/b6669bfD2Gnbz1zAUbfW1HXwoLC40CYX+VlpaipaUFQ4YMgUwmMxqhZ42+Rkpfs9ff5jpX1vCY6+juqbNVDwTDJmzyPgxI5DSCIGD69Ok2z5kyY8YMnDlzxuKb9JAhQ6yur0V9k8lk+Pzzz8XpDwwDwnvvveeUD3xz/Y3MLSZbWFgIjUZj0tRnrnnLsLYoNTVVDBPA078LfdgyHHGk7w+lr33RBwD9B7ThTMqGbBltBwBBQUHiOnrmwqWUpX5YhtfcvXu3TeHIUEVFBfLy8vDJJ5/YHZIMw1hfNTz2zDtla8gk8ia+12OQXKa1tdWuCeXOnTvnsoVi6S/8/PwQFBQkLpQLPK1dsfWbfV+1RuY+GC01gRoe+9prr0GtVqOlpcWoGezIkSN4//338f777+PIkSMmH+IymQy7d+82mRkaeBpi5HK52X4+hq9fylJA0Qen1NRUKJVKFBYW4siRI/jkk0/Ec6WkpOCLL74wee6QIUOMrjd27Fgx+OmvuWrVqj7DUUpKiklNak1NDV5//XWLs0QLggC1Wm0ya7phGJNOZSB9/saNG7F48WJs2rRJPI9OpzMZeag/buPGjVi/fr3V10LkTViDRE5jaZ4iqZqaGsybN2+giuXzYmJi0NPTg9raWrEWRx9U9DUi06ZNMxt0UlJSEBkZabTNlmaZuLg4szN0G/ZNqqmpMWnyev/9942Cm6UQJ5fLsWfPHot9gcyRyWQoLCyEWq02GskmpS+fYROdYS2KvkyG99JS0NAfo3/twNNmqNdeew01NTVGIwbN9ZHSNy02NzeLtX0hISHo7Ow0GhFoyLCWKDk5GYWFhWIZba2pMtdUplAoTGYTNzzOlo7yfdVK+XoHb/IsrEEil0hKSsLo0aPN/owYMcLdxfMpCoUC48aNQ1pamtjkpB+Rpq8R+d3vfmf2A2nYsGEmS6BMnTq1z2v6+fkZ1dioVCrxQ2/37t1mm7T0tTS2ktaI2fJcmUyG4OBgFBcXo7i4GEeOHDGq1UlNTcXu3bvFmitLtVH6c1nal5ycbNTEZ3jPg4KCTCbZTE5Oxp49e4zKY9i0aHgNw+fqa3f0NUbS/kwVFRVYvHgxXnvtNbO1TRqNBjqdDmq12qTGSaq1tdXs71LmRm7py2euVsqW/UTu4JM1SNXV1Xj11VfR0NAAf39//MM//ANWrFjh7mIRuVRfH/ITJ05ERUWF1YU/ASA2NhazZs3CmTNnkJqaiunTp4s1UcDTD/bg4GDExcWJNSixsbHifDj62h9prYu9tQb6gGepxsGwTFL6vjtBQUF4//33TUbu2duxWB/WSktLxb5F9rwWwzCmL4+l+2FYC1dRUQG1Wo2/+7u/Q1lZmcWRehUVFWZrzaT9wVJSUsQpDAzp55kyZGlqhN27dxv1bTM3x5VhB25zndSlHbz1zXq+OI8UuY9PBiR/f3/s3LkTKpUKdXV1yMjIwOLFi31yMkHyXXFxcUbrhsXExCAmJgZlZWVml4bQk8lk+Oabb9DQ0AA/Pz8MGzbMpClJJpNhzJgxePjwoRjADJui7A0hoaGhGDp0qMnszdbOExUVhfDwcKPlZyy9HkdHWvUV1qQMA5W09quv8shkMrz33nti4Hn99dfFDuPmwpG+SU7PWgfzsrIys82F5ubQMtdkZ65vm7U5rnQ6ndXZ0vXHSJv2GJhoIPhkQIqNjUVsbCyApx8KUVFRaGpqYkCSsGfIPgBOm+9F4uPjkZiYKAYkww8aWxbPlclkiI6ONnrcV8iYNGmSuEyDNeHh4UhMTDSq/ZkwYQKCgoJsWt7C0Pjx41FSUoLe3l4MGzYMKSkpuH37trj2mDnTpk3DlStXTLbrm/Ms1UrZE7TsDVSGSxtFREQYNXGZCzv6WdGBp7VT69atE7frJwS19DpsIW3OPHz4sEkI7osgCGLwsUStVht1/K6vr0d0dLRJYCJyBY/8yzp58iSWLl2KuLg4yGQyHDp0yOSYoqIiJCUlQalUIjs7GxcuXOjXtS5fvgytVmu0QjM9ffPKyMhAaGiozT+8h94lMDAQSUlJiIqKElcvB4BRo0YhPj4ekydPtvnDx5YvFxEREUhOTu7znNOmTTPpx2Lr/EtSoaGhmDNnDmbMmIGUlBTI5XKjYGdOeHi4yagx4Gm4cObMyNb6MEnJ5XKx35RcLu9zLchPPvlE/H3UqFHi7wcPHoRcLhf7nun7OxmuN6fvCyT16aefGj02PMbW1/LZZ5+Jv1vrx6Q//+LFi406sr/yyivIy8szOYe5UXtEjvLIGqTOzk6kpaVh7dq1Zqt2Dx48iIKCAuzatQvZ2dnYuXMnFi1ahPLycrEDsEqlMtuX4tixY+KHQVNTE1atWoWPPvrItS/IC3V1ddn0bd+ctLQ0m2e6bmlpMVoxm7VQrmP44aUPKUlJSSbH6fu42GPixIk2TfEQHx+P+Ph4fPPNN332dQoNDUVHRweGDh0KwProuaFDh2LEiBHifE9S9s7RM3bsWAwdOtRsLYthE09SUpLZBU1dwTBY6gOTft03Q/pmruLiYqNjDc+hDzSG/a/MzY5uyPD+q9Vqo2YxSxNCmutnpmcYZsw1+1lqdpMex9m7yVU8MiDl5uYiNzfX4v4dO3Zg/fr1WLNmDQBg165dOHz4MPbu3YstW7YAAEpKSqxeo7u7Gz/4wQ+wZcsWzJo1q89jDWfj7atPw2Bz+/btPr+xGho2bJjNb1Dm5rIh1wgPD0d8fDyePHkiNjE7S1hYmE2TJ+qNGTMGt2/fNtluOMHkpEmTUFdXJ36h8fPzw5gxY9Dd3W1UqwA8DWgKhcJiQDJkSy2DXC63uESEQqGwOOnkQJLL5UYBRzpBprlALKUPSpZez7//+7/jxz/+scl2W9ets7b+349+9CPx9927d+PNN9+0u9lPo9EYLTfD2bvJmTwyIFnT09ODy5cvY+vWreI2uVyOnJwcnD171qZzCIKA1atX49lnn8Wrr77a5/Hbt2/H22+/3e8ye7uoqCjxW7wzxMTEYMqUKbhx44bFY6ZOndpnUwjZR7/QrKskJCRAp9OJS4JYExcXh+joaPT09OD8+fPi9gkTJoi/h4SEGDX9AEBiYiIAGAWk+Ph4KBQKm8tprTbJlr85pVJpV0CKjY3Fw4cPbT7eHtJ+T84OBpaClTSg2vMFyhzDPlnSBYCtsTRTeV843xLZwiP7IFnT2NgIrVZr8kYWHR1tteOlodOnT+PgwYM4dOgQVCoVVCqV1Q/rrVu3orW1Vfyxt6MoGYuIiEBJSQna29st/ly9epXfAr2MQqHA+PHjbZ7nys/PDwEBAUbb+jNQwt7laJRKJUJCQsz2a7Llg37ixIkYPnw40tPTxS8O1srtylDqLOZmGU9NTTV6n42OjjZ5LYcPH+6zo7S+lrivuaoMm/0M+yp9+umnYl+plJQUk9AstXHjRnFOKMNZv/UszRJOJOV1NUjOMGfOHLP/cSxRKBRQKBQoKipCUVERtFqtC0vnG+RyOUJDQ91dDHIhw2/mntQsLZfLkZmZCQD4+uuvbXrO+PHjxd8VCoXR5JLp6ekICgrCmTNnzD5XPxXC48ePERgYiJ6eHgdK7xqGNTjSpjrD/kvSBYhlMplJOJJOYWA4GzlgOj+VuWkODB9L54YC/tK0Zq6/VGVlpVEZDx8+LH7Z0jdHSpvk9OVmbRIZ8rqAFBUVBT8/P9TX1xttr6+vR0xMjEuvnZ+fj/z8fLS1tTlcpUw02BlOF2DpS4V0lu6BGrJt7wehtf/v1vbp+1SlpqZCq9XC398fJ06cMHusv79/nx3XXcmwuc6w9tbefxNzUxgYns9SELO1bNLy6X3xxRdmA9OSJUswduxYKJVKcTJNQxs3bkRlZaUY5vrzmmlw8rq/gsDAQGRkZIjfaoCnE4kVFxdj5syZbiwZEUnpRzNaaoKSyWSYNWsWhg8fjrFjxxp10rZGP/ouICDAqKls5syZiI2NRVZWlmMFl7Blbig9c9NdyGSyPs8xZ84czJs3z+wXvUmTJtl8fU9gbdi/fp+1ZVyk8z6ZI11qRro4sKHKykqx1kg6Ok7/uLS0FAsXLsTChQvtamGgwcsja5A6OjqMZmitqqpCSUkJIiMjkZiYiIKCAuTl5SEzMxNZWVnYuXMnOjs7xVFtrsImNiL7TJo0CQ8fPjSaZ0kqMDDQqMnKFklJSWanKFAoFEYdvfuSnp4OtVqNW7duATCuWZLJZEhJSYFWq7WrE3hERITYT9He/i1yuRyjRo0y6U9pS8f3wcTc1ARS5mqqDGunpMuX2KO1tdWpA1PIO3lkQLp06RIWLFggPi4oKAAA5OXlYd++fVi5ciUePXqEbdu2oa6uDiqVCkePHnX5qCc2sRHZJywsrN+TPA6EiIgIREREoKWlBS0tLSYTQdrTAXzEiBHivE1DhgxBS0uL2Q7rfS1/EhQUBJVKhaamJty/fx8A7Apog4UtzVzSpjfDx/r1/gRBMLsOnTXsuE2Ahwak+fPn9/kHumHDBmzYsGGASkREg9nEiRMdPsfkyZPF3ydMmIBHjx71e76pIUOG2Lxkx0Cytoacp+lrjifA8rp0mzdvxv79+9lp28d5ZEDyVGxiIyJbBAUFiXM2SUVERKCtrQ0KhQIRERFoaGgwe5y0A7snsHcNOU9gGOqkPvnkE3R3d5vUMtXU1HDCSWJAsgeb2IjIUYmJiRAEASNGjLA6p1pUVBSGDx/ucU2U9izK6wnMTWGgb7LUdxT3hJnRyfN43Sg2IiJvFhAQgOTkZISHh1s9Tt9J3FJNlLPYOrGnN5OOnJPL5UZ9nMxNlEnEGiQ7eHoTmyAI6OjocEoHQy4aS+R6A9EZeOTIkSZLgxgaN24clEql2CHcF+lrmVpaWsT147ypGZFcgwHJDp7cxCYIArKzs3Hx4kV3F4WIPEhUVJTVgBQQEIAxY8b4dEACTGfwXrZsmclM4AxLvoUBaZDo6upySThKS0vzuDBINFgMRA1SREQEgoKCEBISgtjYWCgUCly6dMnl1x0MSktL8dprr6GyshIpKSkoLCzkLNs+hAFpEDp//rxThi0DQGhoKN8QiFxEv0abdNFec/z8/Mw27wcGBiI8PByjR49GRUUFmpubjfbL5XJxZnF9DUhYWBja29ud8AoGP/1M22VlZVi4cGGfi/PS4MGAZAdP74OkFxIS0mcHUCJyP32Nji0j1aZPn46mpibcu3cP3d3d4vZZs2aJvycnJ+PWrVsm4UfaNBQUFMSA1E+cZdt3MAbbIT8/Hzdv3mQ/HyJyCplMhmHDhtm0Bp1SqURcXBzi4+MtHhMSEoKMjAyTBVml2GxunuFotr7uIQ1+rEEiIvIiI0eONFlwVaqvJqC4uDjI5XIGJQnpnEmbN282mWBSEASo1Wp22vYBrEEiIvIicrkcSUlJCA4OxuzZs80eExMTg9DQUCQkJJjdL5PJEBsbi+DgYJeU0dXrYrqS4ZxJhYWF+PLLL432v/7661i8eDE2bdrENdsGOdYgERF5maSkJCQlJVnc7+fnh8zMzIErkMSkSZNQX1/vtus7i3ToPwA0NjYCeDrCTT9XEudMGpxYg2SHoqIiTJ48GdOnT3d3UYiIPNJga7ZTKpVITk62uH/jxo2sURqkGJDswE7aRETWTZkyxd1FcCp9vyRz1Go1ysrKAPylRokGDwYkIiJyCj8/P/j7+07Pjc2bN7u7CORCDEhERET9UFNT4+4ikAsxIBERkVkhISEOn0OhUIi/6+cYIvIGDEhERITMzEyMHj3aaJufn59Nz9XPu9TXjOCRkZFGgclbGE4gaW2iThpcfKexmIiILAoNDUVoaCiqqqoAwKQvUWpqKvz9/VFSUmK0ffjw4Rg9ejQePHhgcd4lQ0lJSSgvL7e4Pzg4GF1dXfa/ABcynEBSrVbj5ZdfdneRaACwBskOHOZPRIOdft6fyMhIo+1RUVEYMmSI2ecEBwcjOTnZptohb50rSD+BpGH5ba1hI+/EgGQHDvMnosEuPT0dycnJGD9+vEvOLw1eUq6a3dtZDOd5+vzzz432cS6kwYVNbEREJFIoFFb72QQEBODJkyf9Pn9f0wAkJiaKs1V7IrlcjuLiYgBAa2ur0b6KigpoNBoEBQU5dA1BEDg7twdgDRIREdnM3k7W0g94cx/4cXFx4u99LbTrCeRyucvKKQgCZ+f2EJ7/l0hERIOGTCbDrFmzEBgY6O6ieCSNRsPZuT0EAxIREQ2owMBAo0VgB1MtCWt9Bg8GJCIi6re+JpM07HM02PrTGHbYHjt2LIC/9EOylU6ng06nc3rZyHHspE1ERP2SlJSExMREs/vCw8PR1tYm7pfL5YMuIBl22O7u7sbixYsBPK1F2rNnT5+vV6fTYeHChQCA4uJir+h/5UsYkIiIqF+SkpIs7lOpVFCr1U5ZrsST6UONUqlEcnIyKioqbB7NZjgKrrW1FUOHDjU5hs117sO4agdOFElEviQgIKDfz5XL5VbD0WCrTdLPtq3nrL5IS5YsYROcmzAg2YETRRKRLxk3bhwiIiKQkpLi7qJ4BX0tEvC0L5JarbYr3AiCgE2bNplsb2lpEc+lVqtZqzRA2MRGRERmKZVKpKenG23jh7Nl+lokfV+kJUuWAPhL/6K+JoDUaDSoqKgw2b5p0ybU1taKj1NSUlBYWMg+Sy7Gu0tERAPO0rpujs5C7W6GtUh6ra2tZieANAyb1ka+GYYjACgrK8PChQvZ9OZirEHyIIIg9HsV687OTieXhojIdUaNGoXAwEBERkbi/v374nZvXwBWWosE/GXpEOkEkJs3bxaPeeWVV6wu8WKOpY7d5BwMSB6Ef+xE5OnCw8Od8oVMLpdj5MiRTiiR59u8eTP27NljtE2j0aCmpsZom+Fj/Yi4vuhrkdjc5nwMSB5Eq9U6fI7U1FSEhYU5oTRERKbGjh0LhUKB4cOHu7soXqOmpgZqtdqu5xQWFkKj0WDZsmUWjxEEgfMouRADkgcJDw9HaWmpQ+cIDQ01WviRiMiZ/P39rc5/5ExBQUF2BwtPoFQqkZqaavR+/vLLLxsdY0tnd8PlWMxpaWkRf2cLhPMxIHmQgIAADqclIvJy+n5ILS0tFmuADPsf9Ze5KQHIeVgfR0RE5GQymcxqDZC0/5F+LTd7GPYF66u2ieznkwGppaUFmZmZUKlUSE1NxUcffeTuIhER+SxvH9rvqC+//BLvvvuu+Dg+Pp6BxwP4ZBNbWFgYTp48ieDgYHR2diI1NRXLli3DsGHD3F00IiKfEx8fj97eXkRGRrq7KC4XHx9vUnukVCqN5kF67733Bt1SLN7IJ2uQ/Pz8EBwcDODpCszSCbuIiGjgyOVyjBkzxuLkkYPJe++91+cx+nCk7+xN7uGRAenkyZNYunQp4uLiIJPJcOjQIZNjioqKkJSUBKVSiezsbFy4cMGua7S0tCAtLQ3x8fH46U9/iqioKCeVnoiIHBEXFwd/f/9BN09ScnKyXc2J+s7eX375pQtLRZZ4ZEDq7OxEWloaioqKzO4/ePAgCgoK8NZbb+HKlStIS0vDokWL0NDQIB6j718k/Xnw4AGAp9PcX7t2DVVVVfjss89QX18/IK+NiIisGz9+PGbPno3AwEB3F8WpCgsLLe6LiIgw+3tfnb3JdTyyD1Jubi5yc3Mt7t+xYwfWr1+PNWvWAAB27dqFw4cPY+/evdiyZQsAoKSkxKZrRUdHIy0tDadOncLy5cvNHtPd3Y3u7m7xcVtbm42vhIiI+mMw9MExnA8pNTVVDDrmZsmWy+UoLi4Wfx8ofS2g68s8sgbJmp6eHly+fBk5OTniNrlcjpycHJw9e9amc9TX16O9vR3A08m1Tp48iQkTJlg8fvv27YiIiBB/EhISHHsRREQ06OmbyI4cOYLCwkLIZDJxmzlyudxsODLsiyRdCNeQTqezawFbcwvo0l94ZA2SNY2NjdBqtYiOjjbaHh0djVu3btl0jnv37uG1114TO2dv3LgRU6ZMsXj81q1bUVBQID5ua2tjSCIioj7JZDKTfkeWapasnUO/9AgAo4Vw9fqz7Ii5BXR9fcoFQ14XkJwhKyvL5iY4AFAoFFAoFCgqKkJRUZFT1kwjIiLfZBh4bG3a0gctS0uvtLa2Gv1uuOyItBnNnlomZ/OmxXU9v4QSUVFR8PPzM+lUXV9fj5iYGJdeOz8/Hzdv3sTFixddeh0iIhrc9IHH1f1+pM1oOp0OCxcuxMKFCwe8Sc3w2u4MabbyuoAUGBiIjIwMsTMb8PSmFxcXY+bMmW4sGRERkWeRNqMZVi6sWrVqQMsireXydB7ZxNbR0WHUw7+qqgolJSWIjIxEYmIiCgoKkJeXh8zMTGRlZWHnzp3o7OwUR7W5CpvYiIjcKyoqCk+ePPGKD1hXUCqVZkfB9cfjx49tPtYXR7t5ZA3SpUuXkJ6ejvT0dABAQUEB0tPTsW3bNgDAypUr8atf/Qrbtm2DSqVCSUkJjh49atJx29nYxEZE5F6pqakICAhwdzHcxtooOD2NRmOx+cxwSRNb6XQ6vPbaaz432s0ja5Dmz5/f5z/Ahg0bsGHDhgEqERERkecy7NPzyiuvIDU1Fe+99x42bdpkdNzatWvtOq8gCHj99dfFGitfGu3mkTVInqqoqAiTJ0/G9OnT3V0UIiIi0Y9//GOjx6WlpWhpaXG4KU6j0TilOc8bMSDZgU1sRETkLV5++WV3F8GrMSARERF5EcOZtceOHdvn8fHx8UaPP/vsM5eUa7DxyD5IREREZJ4tM2sbeu+994xqk7j4rW1Yg2QH9kEiIiJPYG4JE2vHkv0YkOzAPkhERJ5lyJAh7i4CDVJ2ByS1Wo3a2lqT7fqZOomIiAZKWlqau4vg0ZKTkxERESH2WbJlcVx6yq6A9Pvf/x7jxo3DkiVLMHXqVJw/f17c9+qrrzq9cERERNb4evORYYdtcwoLCyGXy1FYWIgjR470Ockk/YVdAemdd97B5cuXUVJSgo8//hjr1q0Te8P7wsya7INERESeRN9h+8svv+zzuIFYHHcwsWsU25MnT8TlPDIyMnDy5Em89NJLqKio8Imbnp+fj/z8fLS1tSEiIsLdxSEiIoJMJmOzmQvYVYM0YsQIXL9+XXwcGRmJP/3pT/j222+NthMRERF5M7sC0u9+9zuMGDHCaFtgYCAOHDiAr7/+2qkFIyIiInIXu5rYpLNxGpo9e7bDhSEiIiLyBE6ZB+nJkyeorq5GeXk5mpqanHFKj8RO2kRERKYEQYBarR5UA7b6HZDa29vx4Ycf4plnnkF4eDiSkpIwadIkDB8+HKNGjcL69esH3YSKnCiSiIgGs/4EHUEQsHHjRixevBibNm0aNCGpXwFpx44dSEpKwscff4ycnBwcOnQIJSUluH37Ns6ePYu33noLvb29eO655/D888/jzp07zi43EREROVl/go5GoxEniy4tLRXXiPN2/Vqs9uLFizh58iRSUlLM7s/KysLatWvx4YcfYt++fTh16hTGjRvnUEGJiIjIdVpaWuwOOjqdbtDUGEn1KyAdOHDApuOUSiX++q//uj+XICIiogH0yiuv2HW8TqfDwoUL+3UtbwhV/QpIUsXFxSguLkZDQwN0Op3Rvr179zrjEkRERORBWltb+/3czZs3Y//+/R49ybTDo9jefvttPPfccyguLkZjYyOam5uNfgYTjmIjIiJP1NeabJ7AcLbvmpoaj++r5HAN0q5du7Bv3z6fWKyWS40QEZEn0q/J1tLSgmXLlrm7OIOCwzVIPT09mDVrljPKQkRERP3ENdmcy+GA9Fd/9Vf47LPPnFEWIiIi8iGePMGkw01sGo0Ge/bswZ///GdMnToVAQEBRvt37Njh6CWIiIjIBvq+SKWlpUhNTfX4GqWNGzeirKwMqampKCws9KhO2w4HpOvXr0OlUgF4Om+CIU96oURERIOdvi+SRqOBUql06HNYEASXfo6bm2AyKCjIZdezl8MB6fjx484oBxERETmBTCZzStBYsmQJDh8+bHG/p9dOOcopi9USERHR4OPIXEfezikTRQLAzZs3cf/+ffT09Bhtf+GFF5x1CSIiInKzTZs2Yc+ePe4uhss5HJC+++47vPTSS7hx4wZkMpnYE13fbqnVah29BBERkcgTRzx5E8OO3PaIj49HTU0NKioqPH6SR2dwuIlt8+bNGD16NBoaGhAcHIyysjKcPHkSmZmZOHHihBOK6Dk4kzYREXk7fUdue6foee+991xUIs/kcEA6e/Ys/umf/glRUVGQy+WQy+WYM2cOtm/fjk2bNjmjjB4jPz8fN2/exMWLF91dFCIion7rz6SSvjYy3eGApNVqERYWBgCIiorCgwcPAACjRo1CeXm5o6cnIiIiGnAO90FKTU3FtWvXMHr0aGRnZ+Pdd99FYGAg9uzZgzFjxjijjERERORFdDodAEAu997B8g4HpL//+79HZ2cnAODtt9/G0qVLMXfuXAwbNgwHDx50uIBERETkPQRBwMKFCwEAxcXFXhuSHA5IixYtEn8fN24cbt26haamJgwdOtTn2iuJiIh8neHcSa2trRg6dKgbS9N/Tol1p06dwo9//GPMnDkTtbW1iIyMxL//+7/jm2++ccbpiYiIyMMM9qH+DgekL774AosWLUJQUBCuXr2K7u5uAE9T4y9+8QuHC0hERESeZePGjVi2bJm7i+FSDgekd955B7t27cJHH32EgIAAcfvs2bNx5coVR09PREREHqaystLdRXA5hwNSeXk55s2bZ7I9IiICLS0tjp6eiIiIaMA5HJBiYmJQUVFhsv2bb77x+GH+XV1dGDVqFN544w13F4WIiIg8iMMBaf369di8eTPOnz8PmUyGBw8e4NNPP8Ubb7yBv/mbv3FGGV3m5z//OWbMmOHuYhAREZGHcXiY/5YtW6DT6bBw4UJ0dXVh3rx5UCgUeOONN7Bx40ZnlNEl7ty5g1u3bmHp0qV2L9hHREREg5vDNUgymQw/+9nP0NTUhNLSUpw7dw6PHj3CP//zP/f7nCdPnsTSpUsRFxcHmUyGQ4cOmRxTVFSEpKQkKJVKZGdn48KFC3Zd44033sD27dv7XUYiIiIavByuQdILDAzE5MmTnXKuzs5OpKWlYe3atWaHER48eBAFBQXYtWsXsrOzsXPnTixatAjl5eUYMWIEAEClUqG3t9fkuceOHcPFixcxfvx4jB8/HmfOnOmzPN3d3eL0BQDQ1tbmwKsjIiIiT+eUgKTRaHD9+nU0NDSI66/ovfDCC3afLzc3F7m5uRb379ixA+vXr8eaNWsAALt27cLhw4exd+9ebNmyBQBQUlJi8fnnzp3Df/zHf+A///M/0dHRgSdPniA8PBzbtm0ze/z27dvx9ttv2/06iIjI+fz8/NxdBPIBDgeko0ePYtWqVWhsbDTZJ5PJoNVqHb2EkZ6eHly+fBlbt24Vt8nlcuTk5ODs2bM2nWP79u1i89q+fftQWlpqMRwBwNatW1FQUCA+bmtrQ0JCQj9fAREROWLs2LHo6urCyJEj3V0UGsQc7oO0ceNGrFixAg8fPoROpzP6cXY4AoDGxkZotVpER0cbbY+OjkZdXZ3TrwcACoUC4eHhRj9EROQeCoUCmZmZiI2NdXdRaBBzuAapvr4eBQUFJoHFW6xevdrmY4uKilBUVOSS4EdERESew+EapOXLl+PEiRNOKIptoqKi4Ofnh/r6eqPt9fX1iImJcem18/PzcfPmTVy8eNGl1yEiIiL3crgG6YMPPsCKFStw6tQpTJkyxWg9NgDYtGmTo5cwEhgYiIyMDBQXF+MHP/gBAECn06G4uBgbNmxw6rWkWINERETkGxwOSAcOHMCxY8egVCpx4sQJyGQycZ9MJutXQOro6DBavqSqqgolJSWIjIxEYmIiCgoKkJeXh8zMTGRlZWHnzp3o7OwUR7W5Sn5+PvLz89HW1oaIiAiXXouIiMjbCYLg7iL0m8MB6Wc/+xnefvttbNmyBXK5wy12AIBLly5hwYIF4mP9CLK8vDzs27cPK1euxKNHj7Bt2zbU1dVBpVLh6NGjXtsPioiIyBM5GnA2b96M/fv3G1WeeAuHA1JPTw9WrlzptHAEAPPnz+/zH2XDhg0ub1IjIiLyZZs3b7b7OQqFQvy9pqYGGo0GQUFBzizWgHA41eTl5eHgwYPOKIvHKyoqwuTJkzF9+nR3F4WIiMjlzM1x2BdvrC0yx+EaJK1Wi3fffRdfffUVpk6datJJe8eOHY5ewmOwDxIREZFvcDgg3bhxA+np6QCA0tJSo32DJUUSERGRb3E4IB0/ftwZ5fAKHOZPRETkG/rdB2nbtm24fPmyM8vi8ThRJBERkW/od0CqqalBbm4u4uPj8Td/8zf44x//iJ6eHmeWjYiIiMgt+h2Q9u7di7q6Ohw4cABhYWH4yU9+gqioKLz88svYv38/mpqanFlOIiIiogHj0DB/uVyOuXPn4t1330V5eTnOnz+P7Oxs7N69G3FxcZg3bx5+9atfoba21lnldSsO8yciIvINzpvdEcCkSZPwd3/3dzh9+jSqq6uRl5eHU6dO4cCBA868jNuwDxIREZFvcHgUm1qthiAICA4OBgDcu3cPf/jDHzB58mSsW7cO69atc7iQRERERAPJ4RqkF198Efv37wcAtLS0ICsrC7/+9a/x4osv4sMPP3S4gEREREQDzeGAdOXKFcydOxcA8Pvf/x4xMTG4d+8e9u/fj8LCQocLSERERDTQHA5IXV1dCAsLAwAcO3YMy5Ytg1wux4wZM3Dv3j2HC+hJ2EmbiIjINzgckJKTk3Ho0CFUV1fjq6++wnPPPQcAaGhoQHh4uMMF9CTspE1EROQbHA5I27ZtwxtvvIGkpCRkZWVh5syZAJ7WJunXaCMiIiLyJg6PYlu+fDnmzJmDhw8fIi0tTdy+cOFCvPTSS46enoiIiGjAORyQAGDIkCG4f/8+jhw5Ap1OJ26vq6vDxIkTnXEJIiIiogHjcEA6evQoXn31VTx+/Nhkn0wm48r3RERE5HUc7oO0ceNG/PCHP8TDhw+h0+mMfhiOiIiIyBs5HJDq6+tRUFCA6OhoZ5THo3GYPxERkW9wOCAtX74cJ06ccEJRPB+H+RMREfkGh/sgffDBB1ixYgVOnTqFKVOmICAgwGj/pk2bHL0EERER0YByOCAdOHAAx44dg1KpxIkTJyCTycR9MpmMAYmIiIi8jsMB6Wc/+xnefvttbNmyBXK5wy12RERERG7ncKLp6enBypUrGY6IiIho0HA41eTl5eHgwYPOKAsRERGRR3C4iU2r1eLdd9/FV199halTp5p00t6xY4ejlyAiIiIaUA4HpBs3boiL0paWlhrtM+ywTUREROQtHA5Ix48fd0Y5vEJRURGKioo4QzgREdEg51AfpCdPnmDhwoW4c+eOs8rj0ThRJBERkW9wKCAFBATg+vXrzioLERERkUdweBTbj3/8Y/z2t791RlmIiIiIPILDfZB6e3uxd+9e/PnPf0ZGRgZCQkKM9nMUGxEREXkbhwNSaWkppk2bBgC4ffu20T6OYiMiIiJvxFFsRERERBL96oN0//59u46vra3tz2WIiIiI3KJfAWn69Ol4/fXXrQ53b21txUcffYTU1FR88cUX/S4gERER0UDrVxPbzZs38fOf/xzf+973oFQqkZGRgbi4OCiVSjQ3N+PmzZsoKyvDtGnT8O6772Lx4sXOLjcRERGRy/QrIA0bNgw7duzAz3/+cxw+fBjffPMN7t27B7VajaioKPzoRz/CokWLkJqa6uzyOk1SUhLCw8Mhl8sxdOhQ9qUiIiIikUOdtIOCgrB8+XIsX77cWeUZUGfOnEFoaKi7i0FEREQexuGJIomIiIgGG48MSCdPnsTSpUsRFxcHmUyGQ4cOmRxTVFSEpKQkKJVKZGdn48KFC3ZdQyaT4ZlnnsH06dPx6aefOqnkRERENBg4PA+SK3R2diItLQ1r167FsmXLTPYfPHgQBQUF2LVrF7Kzs7Fz504sWrQI5eXlGDFiBABApVKht7fX5LnHjh1DXFwcvvnmG4wcORIPHz5ETk4OpkyZgqlTp7r8tREREZHn88iAlJubi9zcXIv7d+zYgfXr12PNmjUAgF27duHw4cPYu3cvtmzZAgAoKSmxeo2RI0cCAGJjY7F48WJcuXLFYkDq7u5Gd3e3+Litrc2el0NERERexiOb2Kzp6enB5cuXkZOTI26Ty+XIycnB2bNnbTpHZ2cn2tvbAQAdHR34n//5H6SkpFg8fvv27YiIiBB/EhISHHsRRERE5NG8LiA1NjZCq9UiOjraaHt0dDTq6upsOkd9fT3mzJmDtLQ0zJgxA6tWrcL06dMtHr9161a0traKP9XV1Q69BiIiIvJsHtnE5mpjxozBtWvXbD5eoVBAoVCgqKgIRUVF0Gq1LiwdERERuZvX1SBFRUXBz88P9fX1Rtvr6+sRExPj0mvn5+fj5s2bVpdYISIiIu/ndQEpMDAQGRkZKC4uFrfpdDoUFxdj5syZbiwZERERDRYe2cTW0dGBiooK8XFVVRVKSkoQGRmJxMREFBQUIC8vD5mZmcjKysLOnTvR2dkpjmpzFTaxERER+QaPDEiXLl3CggULxMcFBQUAgLy8POzbtw8rV67Eo0ePsG3bNtTV1UGlUuHo0aMmHbedLT8/H/n5+Whra0NERIRLr0VERETu45EBaf78+RAEweoxGzZswIYNGwaoRERERORLvK4PkjsVFRVh8uTJVqcEICIiIu/HgGQHjmIjIiLyDQxIRERERBIMSHZgExsREZFvYECyA5vYiIiIfAMDEhEREZEEAxIRERGRBAMSERERkQQDkh3YSZuIiMg3MCDZgZ20iYiIfAMDEhEREZEEAxIRERGRBAMSERERkQQDkh3YSZuIiMg3MCDZgZ20iYiIfAMDEhEREZEEAxIRERGRBAMSERERkQQDEhEREZEEA5IdOIqNiIjINzAg2YGj2IiIiHwDAxIRERGRBAMSERERkQQDEhEREZEEAxIRERGRBAMSERERkQQDEhEREZEEAxIRERGRBAOSHThRJBERkW9gQLIDJ4okIiLyDQxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEj4bkKqqqrBgwQJMnjwZU6ZMQWdnp7uLRERERB7C390FcJfVq1fjnXfewdy5c9HU1ASFQuHuIhEREZGH8MmAVFZWhoCAAMydOxcAEBkZ6eYSERERkSfxyCa2kydPYunSpYiLi4NMJsOhQ4dMjikqKkJSUhKUSiWys7Nx4cIFm89/584dhIaGYunSpZg2bRp+8YtfOLH0RERE5O08sgaps7MTaWlpWLt2LZYtW2ay/+DBgygoKMCuXbuQnZ2NnTt3YtGiRSgvL8eIESMAACqVCr29vSbPPXbsGHp7e3Hq1CmUlJRgxIgReP755zF9+nR873vfM1ue7u5udHd3i4/b2tqc9EqJiIjIE3lkQMrNzUVubq7F/Tt27MD69euxZs0aAMCuXbtw+PBh7N27F1u2bAEAlJSUWHz+yJEjkZmZiYSEBADA4sWLUVJSYjEgbd++HW+//XY/Xw0RERF5G49sYrOmp6cHly9fRk5OjrhNLpcjJycHZ8+etekc06dPR0NDA5qbm6HT6XDy5ElMmjTJ4vFbt25Fa2ur+FNdXe3w6yAiIiLP5ZE1SNY0NjZCq9UiOjraaHt0dDRu3bpl0zn8/f3xi1/8AvPmzYMgCHjuuefw/e9/3+LxCoWCo9yIiIh8iNcFJGfpqxnPnKKiIhQVFUGr1bqoVEREROQJvK6JLSoqCn5+fqivrzfaXl9fj5iYGJdeOz8/Hzdv3sTFixddeh0iIiJyL68LSIGBgcjIyEBxcbG4TafTobi4GDNnznTptYuKijB58mRMnz7dpdchIiIi9/LIJraOjg5UVFSIj6uqqlBSUoLIyEgkJiaioKAAeXl5yMzMRFZWFnbu3InOzk5xVJur5OfnIz8/H21tbYiIiHDptYiIiMh9PDIgXbp0CQsWLBAfFxQUAADy8vKwb98+rFy5Eo8ePcK2bdtQV1cHlUqFo0ePmnTcJiIiIuoPjwxI8+fPhyAIVo/ZsGEDNmzYMEAleoqdtImIiHyD1/VBcid20iYiIvINDEhEREREEgxIRERERBIMSHbgMH8iIiLfwIBkB/ZBIiIi8g0MSEREREQSDEhEREREEgxIdmAfJCIiIt/AgGQH9kEiIiLyDQxIRERERBIMSEREREQSDEhEREREEgxIdmAnbSIiIt/AgGQHdtImIiLyDQxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEh24DB/IiIi38CAZAcO8yciIvINDEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIduBEkURERL6BAckOnCiSiIjINzAgEREREUkwIBERERFJMCARERERSTAgEREREUkwIBERERFJMCARERERSTAgEREREUkwIBERERFJ+GRAKi8vh0qlEn+CgoJw6NAhdxeLiIiIPIS/uwvgDhMmTEBJSQkAoKOjA0lJSfje977n3kIRERGRx/DJGiRD//3f/42FCxciJCTE3UUhIiIiD+GRAenkyZNYunQp4uLiIJPJzDZ/FRUVISkpCUqlEtnZ2bhw4UK/rvX5559j5cqVDpaYiIiIBhOPDEidnZ1IS0tDUVGR2f0HDx5EQUEB3nrrLVy5cgVpaWlYtGgRGhoaxGNUKhVSU1NNfh48eCAe09bWhjNnzmDx4sUuf01ERETkPTyyD1Jubi5yc3Mt7t+xYwfWr1+PNWvWAAB27dqFw4cPY+/evdiyZQsAiH2MrPmv//ovPPfcc1AqlVaP6+7uRnd3t/i4ra3NhldBRERE3soja5Cs6enpweXLl5GTkyNuk8vlyMnJwdmzZ+06l63Na9u3b0dERIT4k5CQYHe5iYiIyHt4XUBqbGyEVqtFdHS00fbo6GjU1dXZfJ7W1lZcuHABixYt6vPYrVu3orW1Vfyprq62u9xERETkPTyyiW0gREREoL6+3qZjFQoFFAoFioqKUFRUBK1W6+LSERERkTt5XQ1SVFQU/Pz8TMJNfX09YmJiXHrt/Px83Lx5ExcvXnTpdYiIiMi9vC4gBQYGIiMjA8XFxeI2nU6H4uJizJw5040lIyIiosHCI5vYOjo6UFFRIT6uqqpCSUkJIiMjkZiYiIKCAuTl5SEzMxNZWVnYuXMnOjs7xVFtrsImNiIiIt/gkQHp0qVLWLBggfi4oKAAAJCXl4d9+/Zh5cqVePToEbZt24a6ujqoVCocPXrUpOO2s+Xn5yM/Px9tbW2IiIhw6bWIiIjIfTwyIM2fPx+CIFg9ZsOGDdiwYcMAlYiIiIh8idf1QXKnoqIiTJ48GdOnT3d3UYiIiMiFGJDswFFsREREvoEBiYiIiEiCAckObGIjIiLyDQxIdmATGxERkW9gQCIiIiKSYEAiIiIikmBAsgP7IBEREfkGBiQ7sA8SERGRb2BAIiIiIpJgQCIiIiKSYEAiIiIikmBAIiIiIpJgQLIDR7ERERH5BgYkO3AUGxERkW9gQCIiIiKSYEAiIiIikmBAIiIiIpJgQCIiIiKSYECyA0exERER+QYGJDtwFBsREZFvYEAiIiIikvB3dwG8kSAIAIC2tjY3l4SIaPBqb29HZ2en0TZz77vSY8g2XV1dLjleelxXVxd0Oh00Go1Nxxly9ues/nz6z3FrZIItR5GRmpoaJCQkuLsYRERE1A/V1dWIj4+3egwDUj/odDo8ePAAYWFhkMlkNj9v+vTpNvdf6utYa/st7TO3va9tbW1tSEhIQHV1NcLDw20quyPsuUeOPNeWY111j3l/+z7GWfcXGNh77Mj9tff5vvge4Un3t69jbL2X5rbzPaLvY/r7NywIAjIyMnD79m3I5dZ7GbGJrR/kcnmfydMcPz8/m//A+zrW2n5L+8xtt3VbeHj4gPzntOceOfJcW4511T3m/e37GGffX2Bg7rEj99fe5/vie4Qn3d++jrH1vpnbzveIvo9x5G84MDCwz3AEsJP2gMrPz3fasdb2W9pnbrut2waKI9d25v3t6xhH7jHvb9/H+OL9tff5vvge4Un3t69j7Llvg+Vv2N3319L2/t5fNrGRVW1tbYiIiEBra+uAfHvxNby/rsd77Fq8v67F++s+rEEiqxQKBd566y0oFAp3F2VQ4v11Pd5j1+L9dS3eX/dhDRIRERGRBGuQiIiIiCQYkIiIiIgkGJCIiIiIJBiQiIiIiCQYkIiIiIgkGJDIKaqrqzF//nxMnjwZU6dOxX/+53+6u0iD0ksvvYShQ4di+fLl7i7KoPB//+//xYQJEzBu3Dj827/9m7uLM+jw79W1+L7rWhzmT07x8OFD1NfXQ6VSoa6uTlzrJiQkxN1FG1ROnDiB9vZ2fPLJJ/j973/v7uJ4td7eXkyePBnHjx9HREQEMjIycObMGQwbNszdRRs0+PfqWnzfdS3WIJFTxMbGQqVSAQBiYmIQFRWFpqYm9xZqEJo/fz7CwsLcXYxB4cKFC0hJScHIkSMRGhqK3NxcHDt2zN3FGlT49+pafN91LQYkH3Hy5EksXboUcXFxkMlkOHTokMkxRUVFSEpKglKpRHZ2Ni5cuNCva12+fBlarRYJCQkOltq7DOQ9Jsfv94MHDzBy5Ejx8ciRI1FbWzsQRfcK/Ht2PWfeY19933UlBiQf0dnZibS0NBQVFZndf/DgQRQUFOCtt97ClStXkJaWhkWLFqGhoUE8RqVSITU11eTnwYMH4jFNTU1YtWoV9uzZ4/LX5GkG6h7TU86432QZ76/rOese+/L7rksJ5HMACH/4wx+MtmVlZQn5+fniY61WK8TFxQnbt2+3+bwajUaYO3eusH//fmcV1Wu56h4LgiAcP35cePnll51RzEGjP/f79OnTwg9+8ANx/+bNm4VPP/10QMrrbRz5e+bfq236e4/5vus6rEEi9PT04PLly8jJyRG3yeVy5OTk4OzZszadQxAErF69Gs8++yxeffVVVxXVaznjHpPtbLnfWVlZKC0tRW1tLTo6OvDHP/4RixYtcleRvQr/nl3PlnvM913XYkAiNDY2QqvVIjo62mh7dHQ06urqbDrH6dOncfDgQRw6dAgqlQoqlQo3btxwRXG9kjPuMQDk5ORgxYoVOHLkCOLj4/lhZIEt99vf3x+//vWvsWDBAqhUKvzv//2/OYLNRrb+PfPvtf9sucd833Utf3cXgAaHOXPmQKfTubsYg96f//xndxdhUHnhhRfwwgsvuLsYgxb/Xl2L77uuxRokQlRUFPz8/FBfX2+0vb6+HjExMW4q1eDCezyweL9di/fX9XiP3Y8BiRAYGIiMjAwUFxeL23Q6HYqLizFz5kw3lmzw4D0eWLzfrsX763q8x+7HJjYf0dHRgYqKCvFxVVUVSkpKEBkZicTERBQUFCAvLw+ZmZnIysrCzp070dnZiTVr1rix1N6F93hg8X67Fu+v6/Eeezh3D6OjgXH8+HEBgMlPXl6eeMz7778vJCYmCoGBgUJWVpZw7tw59xXYC/EeDyzeb9fi/XU93mPPxrXYiIiIiCTYB4mIiIhIggGJiIiISIIBiYiIiEiCAYmIiIhIggGJiIiISIIBiYiIiEiCAYmIiIhIggGJiIiISIIBiYjITXp6epCcnIwzZ8449bxHjx6FSqXiSu9EDmBAIiKnWL16NWQymcmP4VpTZGzXrl0YPXo0Zs2aJW6TyWQ4dOiQybGrV6/GD37wA5vO+/zzzyMgIACffvqpk0pK5HsYkIjIaZ5//nk8fPjQ6Gf06NEmx/X09LihdJ5FEAR88MEHWLdunUvOv3r1ahQWFrrk3ES+gAGJiJxGoVAgJibG6MfPzw/z58/Hhg0b8JOf/ARRUVFYtGgRAKC0tBS5ubkIDQ1FdHQ0Xn31VTQ2Norn6+zsxKpVqxAaGorY2Fj8+te/xvz58/GTn/xEPMZcjcuQIUOwb98+8XF1dTV++MMfYsiQIYiMjMSLL76Iu3fvivv1tTO/+tWvEBsbi2HDhiE/Px9PnjwRj+nu7sabb76JhIQEKBQKJCcn47e//S0EQUBycjJ+9atfGZWhpKTEag3a5cuXUVlZiSVLlth5l4G7d++ara2bP3++eMzSpUtx6dIlVFZW2n1+ImJAIqIB8sknnyAwMBCnT5/Grl270NLSgmeffRbp6em4dOkSjh49ivr6evzwhz8Un/PTn/4UX3/9Nf7rv/4Lx44dw4kTJ3DlyhW7rvvkyRMsWrQIYWFhOHXqFE6fPo3Q0FA8//zzRjVZx48fR2VlJY4fP45PPvkE+/btMwpZq1atwoEDB1BYWIhvv/0Wu3fvRmhoKGQyGdauXYuPP/7Y6Loff/wx5s2bh+TkZLPlOnXqFMaPH4+wsDC7Xg8AJCQkGNXSXb16FcOGDcO8efPEYxITExEdHY1Tp07ZfX4iAiAQETlBXl6e4OfnJ4SEhIg/y5cvFwRBEJ555hkhPT3d6Ph//ud/Fp577jmjbdXV1QIAoby8XGhvbxcCAwOFzz//XNz/+PFjISgoSNi8ebO4DYDwhz/8weg8ERERwscffywIgiD87ne/EyZMmCDodDpxf3d3txAUFCR89dVXYtlHjRol9Pb2isesWLFCWLlypSAIglBeXi4AEP70pz+Zfe21tbWCn5+fcP78eUEQBKGnp0eIiooS9u3bZ/F+bd68WXj22WdNtgMQlEql0X0MCQkR/P39hRdffNHkeLVaLWRnZwvf//73Ba1Wa7QvPT1d+Md//EeLZSAiy/zdG8+IaDBZsGABPvzwQ/FxSEiI+HtGRobRsdeuXcPx48cRGhpqcp7Kykqo1Wr09PQgOztb3B4ZGYkJEybYVaZr166hoqLCpKZGo9EYNT+lpKTAz89PfBwbG4sbN24AeNpc5ufnh2eeecbsNeLi4rBkyRLs3bsXWVlZ+D//5/+gu7sbK1assFgutVoNpVJpdt9vfvMb5OTkGG178803odVqTY5du3Yt2tvb8ac//QlyuXGjQFBQELq6uiyWgYgsY0AiIqcJCQmx2KRkGJYAoKOjA0uXLsW//Mu/mBwbGxtr8+g3mUwGQRCMthn2Hero6EBGRobZEV3Dhw8Xfw8ICDA5r36YfFBQUJ/l+Ku/+iu8+uqr+M1vfoOPP/4YK1euRHBwsMXjo6KixAAmFRMTY3Ifw8LC0NLSYrTtnXfewVdffYULFy6Ybapramoyeo1EZDsGJCJyi2nTpuGLL75AUlIS/P1N34rGjh2LgIAAnD9/HomJiQCA5uZm3L5926gmZ/jw4Xj48KH4+M6dO0a1JtOmTcPBgwcxYsQIhIeH96usU6ZMgU6nw9dff21Ss6O3ePFihISE4MMPP8TRo0dx8uRJq+dMT0/Hhx9+CEEQIJPJ7C7TF198gX/6p3/CH//4R4wdO9Zkv76GLD093e5zExE7aRORm+Tn56OpqQn/63/9L1y8eBGVlZX46quvsGbNGmi1WoSGhmLdunX46U9/iv/5n/9BaWkpVq9ebdKM9Oyzz+KDDz7A1atXcenSJfz1X/+1UW3Qj370I0RFReHFF1/EqVOnUFVVhRMnTmDTpk2oqamxqaxJSUnIy8vD2rVrcejQIfEcn3/+uXiMn58fVq9eja1bt2LcuHGYOXOm1XMuWLAAHR0dKCsrs+OuPVVaWopVq1bhzTffREpKCurq6lBXV4empibxmHPnzkGhUPRZDiIyjwGJiNwiLi4Op0+fhlarxXPPPYcpU6bgJz/5CYYMGSKGoF/+8peYO3culi5dipycHMyZM8ekL9Ovf/1rJCQkYO7cuXjllVfwxhtvGDVtBQcH4+TJk0hMTMSyZcswadIkrFu3DhqNxq4apQ8//BDLly/H3/7t32LixIlYv349Ojs7jY5Zt24denp6sGbNmj7PN2zYMLz00kv9mszx0qVL6OrqwjvvvIPY2FjxZ9myZeIxBw4cwI9+9COrzXxEZJlMkDbeExF5sPnz50OlUmHnzp3uLoqJU6dOYeHChaiurkZ0dHSfx1+/fh3f+973UFlZabazen81NjZiwoQJuHTpktmJOomob6xBIiJyUHd3N2pqavCP//iPWLFihU3hCACmTp2Kf/mXf0FVVZVTy3P37l3867/+K8MRkQPYSZuIyEEHDhzAunXroFKpsH//frueu3r1aqeXJzMzE5mZmU4/L5EvYRMbERERkQSb2IiIiIgkGJCIiIiIJBiQiIiIiCQYkIiIiIgkGJCIiIiIJBiQiIiIiCQYkIiIiIgkGJCIiIiIJBiQiIiIiCT+H3vHnlPZJxjuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(cs.freq, cs.power * cs.freq, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.plot(cs_reb.freq, cs_reb.power * cs_reb.freq, drawstyle=\"steps-mid\", color=\"k\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");" + ] + }, + { + "cell_type": "markdown", + "id": "65989f28", + "metadata": {}, + "source": [ + "## Periodogram modeling\n", + "\n", + "This periodogram has a number of broad components, that can be approximated by Lorentzian curves.\n", + "Let us try to model it.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d3470baa", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 28.75it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(events, segment_size=segment_size, dt=dt, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "markdown", + "id": "9f39a4f5", + "metadata": {}, + "source": [ + "We will model the periodogram using the maximum likelihood estimation from [Barret & Vaughan 2012](https://ui.adsabs.harvard.edu/abs/2012ApJ...746..131B/abstract).\n", + "\n", + "For periodograms averaged over $L$ independent segments and $M$ independent neighbouring frequencies,\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2ML \\sum_{j=1}^{N/2} \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ML} - 1 \\right)\\ln{P_j} + c(2ML) }\\right\\} \\; ,\n", + "$$\n", + "where $\\theta$ are the model parameters, $P_j$ are the periodogram values, $S_j$ the model of the underlying signal, $c(2ML)$ is a factor independent of $P_j$ or $S_j$, and thus unimportant to the parameter estimation problem considered here (it only scales the likelihood, but does not change its shape). \n", + "\n", + "For non-uniformly binned periodograms, the factor $ML$ should go inside the sum:\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2\\sum_{j=1}^{N/2} M_j L_j \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ M_j L_j } - 1 \\right)\\ln{P_j} + c(2 M_j L_j ) }\\right\\} \n", + "$$\n", + "\n", + "This is the formula that we will apply here.\n", + "\n", + "Let us now create an initial model that more or less describes the periodogram" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "fd07a563", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 1042.102641366527)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG1CAYAAAAGD9vIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSgElEQVR4nO3dd3iT1dvA8W866aBsWlCWgAgIlCEILYiCgCIKIoqDoSiCIKAy5KeyHAiK+IIKToYiICqoqOxV9ixLRDYIbQGhG7py3j8OSZO2KWmTNml7f64rV5MnJ89zMprnzhn3MSilFEIIIYQQIhsPV1dACCGEEMJdSaAkhBBCCGGDBEpCCCGEEDZIoCSEEEIIYYMESkIIIYQQNkigJIQQQghhgwRKQgghhBA2SKAkhBBCCGGDl6srUJQZjUYuXLhA6dKlMRgMrq6OEEIIIeyglCIhIYGqVavi4ZF7m5EESg64cOEC1apVc3U1hBBCCJEP586d49Zbb821jARKDihdujSgX+igoCAX10YIIYQQ9oiPj6datWrm83huJFBygKm7LSgoSAIlIYQQooixZ9iMDOYWQgghhLBBAiUhhBBCCBuk600IIYTLZWRkkJaW5upqiGLC29sbT09Pp+xLAiUhhBAuo5QiOjqa2NhYV1dFFDNly5YlJCTE4fQ9EigJIYRwGVOQVLlyZfz9/SUnnXCYUork5GQuXrwIQJUqVRzanwRKQgghXCIjI8McJFWoUMHV1RHFiJ+fHwAXL16kcuXKDnXDyWBuIYQQLmEak+Tv7+/imojiyPS5cnTsm1sGSps2baJbt25UrVoVg8HAsmXLrO5XSjFu3DiqVKmCn58fHTt25NixY1Zlrly5wtNPP01QUBBly5ZlwIABJCYmWpU5cOAAbdu2pVSpUlSrVo2pU6cW9FMTQgiRhXS3iYLgrM+VWwZKSUlJNGnShE8//TTH+6dOncqMGTOYPXs2O3bsICAggM6dO3P9+nVzmaeffprDhw+zevVqli9fzqZNmxg4cKD5/vj4eDp16kSNGjXYs2cPH3zwARMmTOCLL74o8OcnhBBCiCJCuTlALV261HzbaDSqkJAQ9cEHH5i3xcbGKl9fX7Vw4UKllFJ//fWXAtSuXbvMZf78809lMBjU+fPnlVJKffbZZ6pcuXIqJSXFXGbMmDGqXr16dtctLi5OASouLi6/T08IIUqsa9euqb/++ktdu3bN1VURxVBun6+8nL/dskUpN6dOnSI6OpqOHTuat5UpU4ZWrVqxbds2ALZt20bZsmVp0aKFuUzHjh3x8PBgx44d5jLt2rXDx8fHXKZz584cPXqUq1ev5njslJQU4uPjrS5CCCFEfmzYsAGDwZBraoS5c+dStmzZQqtTbiZMmEBoaKirq1HoilygFB0dDUBwcLDV9uDgYPN90dHRVK5c2ep+Ly8vypcvb1Ump31YHiOryZMnU6ZMGfOlWrVqjj8hIYQQRU7//v0xGAwYDAa8vb2pVasWo0ePthoC4gxPPPEE//zzj1P3WVBOnz5tfk0MBgMVKlSgU6dO7Nu3z1ymffv25vt9fX255ZZb6NatGz///HO2/W3cuJH77ruP8uXL4+/vT926denXrx+pqamF+bSKXqDkSmPHjiUuLs58OXfunKurJIQQwkW6dOlCVFQUJ0+eZPr06Xz++eeMHz/eqcfw8/PL9sPf3a1Zs4aoqChWrlxJYmIiDzzwgFWr2QsvvEBUVBQnTpzgp59+okGDBvTu3dtqHPFff/1Fly5daNGiBZs2beLgwYPMnDkTHx8fMjIyCvX5FLlAKSQkBICYmBir7TExMeb7QkJCzImmTNLT07ly5YpVmZz2YXmMrHx9fQkKCrK6iOJNKUVSUpLVRSnl6moJUWzl9D9XWJe8/m/7+voSEhJCtWrV6N69Ox07dmT16tXm+41GI5MnT6ZWrVr4+fnRpEkTfvzxx2z72bJlC40bN6ZUqVLcfffdHDp0yHxf1q43U/fXt99+S82aNSlTpgy9e/cmISHBXKZ9+/YMGzaM0aNHU758eUJCQpgwYYLVMWNjY3n++eepVKkSQUFB3Hfffezfv9+qzPvvv09wcDClS5dmwIABdreWVahQgZCQEFq0aMGHH35ITEyMedgL6Gn7ISEh3Hrrrdx9991MmTKFzz//nC+//JI1a9YAsGrVKkJCQpg6dSp33nkntWvXpkuXLnz55ZfmHEmFpcgFSrVq1SIkJIS1a9eat8XHx7Njxw5at24NQOvWrYmNjWXPnj3mMuvWrcNoNNKqVStzmU2bNlnlV1i9ejX16tWjXLlyhfRshDtTShEeHk5gYKDVpW3bthIsCVFAkpOTs/3PFdYlOTk53/U+dOgQW7dutRr3OnnyZObPn8/s2bM5fPgwr7zyCs888wwbN260euyoUaOYNm0au3btolKlSnTr1i3X3D8nTpxg2bJlLF++nOXLl7Nx40bef/99qzLz5s0jICCAHTt2MHXqVCZNmmQVxPXq1YuLFy/y559/smfPHpo1a0aHDh24cuUKAD/88AMTJkzgvffeY/fu3VSpUoXPPvssz6+LKai5WXdZv379KFeunLkLLiQkhKioKDZt2pTnYzqdc8eYO0dCQoLat2+f2rdvnwLURx99pPbt26fOnDmjlFLq/fffV2XLllW//PKLOnDggHrkkUdUrVq1rEa2d+nSRTVt2lTt2LFDbd68WdWtW1c9+eST5vtjY2NVcHCw6tOnjzp06JBatGiR8vf3V59//rnd9ZRZb8VbYmKiAnK8JCYmurp6QhR5Oc1Kyu3/rqAvefm/7tevn/L09FQBAQHK19dXAcrDw0P9+OOPSimlrl+/rvz9/dXWrVutHjdgwADzuWj9+vUKUIsWLTLf/99//yk/Pz+1ePFipZRSc+bMUWXKlDHfP378eOXv76/i4+PN20aNGqVatWplvn3PPfeo8PBwq+PeddddasyYMUoppSIiIlRQUJC6fv26VZnatWubz4GtW7dWL730ktX9rVq1Uk2aNLH5mpw6dUoBat++fUoppa5evap69OihAgMDVXR0tLluw4cPz/HxrVq1Ug888IBSSqn09HTVv39/BaiQkBDVvXt3NXPmzDydb501680tlzDZvXs39957r/n2q6++CuiIc+7cuYwePZqkpCQGDhxIbGws4eHhrFixglKlSpkfs2DBAoYOHUqHDh3w8PCgZ8+ezJgxw3x/mTJlWLVqFUOGDKF58+ZUrFiRcePGWfWRCmFi6pbNOgFACOFc/v7+2ZIDF+ax8+Lee+9l1qxZJCUlMX36dLy8vOjZsycAx48fJzk5mfvvv9/qMampqTRt2tRqm6k3BKB8+fLUq1ePI0eO2DxuzZo1KV26tPl2lSpVsg03ady4sdVtyzL79+8nMTEx27Ix165d48SJEwAcOXKEQYMGZavn+vXrbdbLpE2bNnh4eJCUlMRtt93G4sWL7fruVEqZk0R6enoyZ84c3nnnHdatW8eOHTt47733mDJlCjt37nR4/ba8cMtAqX379rl2bRgMBiZNmsSkSZNslilfvjzff/99rsdp3LgxERER+a6nKDkCAgJcXQUhSgSDwVBk/t8CAgKoU6cOAN988w1NmjTh66+/tloJ4vfff+eWW26xepyvr69Dx/X29ra6bTAYMBqNdpdJTEykSpUqbNiwIdu+nZGKYPHixTRo0IAKFSrYvb+MjAyOHTvGXXfdZbX9lltuoU+fPvTp04e3336b22+/ndmzZzNx4kSH62kvtwyUhBBCiKLEw8OD//3vf7z66qs89dRTNGjQAF9fX86ePcs999yT62O3b99O9erVAbh69Sr//PMP9evXL7C6NmvWjOjoaLy8vKhZs2aOZerXr8+OHTvo27evVT3tUa1aNWrXrp2nOs2bN4+rV6+aW+RyUq5cOapUqUJSUlKe9u0oCZSEEEIIJ+jVqxejRo3i008/ZeTIkYwcOZJXXnkFo9FIeHg4cXFxbNmyhaCgIPr162d+3KRJk6hQoQLBwcG88cYbVKxYke7duxdYPTt27Ejr1q3p3r07U6dO5fbbb+fChQv8/vvv9OjRgxYtWjB8+HD69+9PixYtCAsLY8GCBRw+fJjbbrvN4eMnJycTHR1Neno6//77L0uXLmX69OkMHjzYPOzm888/JzIykh49elC7dm2uX7/O/PnzOXz4MDNnznS4DnkhgZIQQgjhBF5eXgwdOpSpU6cyePBg3n77bSpVqsTkyZM5efIkZcuWpVmzZvzvf/+zetz777/P8OHDOXbsGKGhofz2229Ws+eczWAw8Mcff/DGG2/w7LPPcunSJUJCQmjXrp15LNETTzzBiRMnzEk0e/bsyeDBg1m5cqXDx//yyy/58ssv8fHxoUKFCjRv3pzFixfTo0cPc5mWLVuyefNmBg0axIULFwgMDKRhw4YsW7bspi10zmZQuQ0GErmKj4+nTJkyxMXFSU6lYigpKYnAwEAA83gDy9tFZRyFEO7q+vXrnDp1ilq1allNxhHCGXL7fOXl/F3k8igJIYQQQhQWCZSEEEIIIWyQQEkIIYQQwgYJlIQQQgghbJBASQghhBDCBgmUhBBCCCFskEBJCCGEEMIGCZSEEEIIIWyQQEkIIYQoovr371+gy50Upg0bNmAwGIiNjbX7MTVr1uTjjz8usDqBBEpCCCFEnl26dInBgwdTvXp1fH19CQkJoXPnzmzZssVcxmAwsGzZMqcc7/Tp0xgMBiIjI622/9///R9z5851yjFy079/fwwGA4MGDcp235AhQzAYDPTv37/A6+EKstabEEIIkUc9e/YkNTWVefPmcdtttxETE8PatWv577//nH6s1NRUm/eVKVPG6cezpVq1aixatIjp06fj5+cH6GVCvv/+e6pXr15o9Shs0qIkhBBC5EFsbCwRERFMmTKFe++9lxo1atCyZUvGjh3Lww8/DOguIYAePXpgMBjMt0+cOMEjjzxCcHAwgYGB3HXXXaxZs8Zq/zVr1uTtt9+mb9++BAUFMXDgQGrVqgVA06ZNMRgMtG/fHsje9da+fXuGDRvG6NGjKV++PCEhIUyYMMFq/3///Tfh4eGUKlWKBg0asGbNGrtav5o1a0a1atX4+eefzdt+/vlnqlevTtOmTa3KpqSkMGzYMCpXrkypUqUIDw9n165dVmX++OMPbr/9dvz8/Lj33ns5ffp0tmNu3ryZtm3b4ufnR7Vq1Rg2bBhJSUm51tPZJFASQgjhPpSCpCTXXOxcIz4wMJDAwECWLVtGSkpKjmVMQcGcOXOIiooy305MTOTBBx9k7dq17Nu3jy5dutCtWzfOnj1r9fgPP/yQJk2asG/fPt566y127twJwJo1a4iKirIKVrKaN28eAQEB7Nixg6lTpzJp0iRWr14NQEZGBt27d8ff358dO3bwxRdf8MYbb9j1vAGee+455syZY779zTff8Oyzz2YrN3r0aH766SfmzZvH3r17qVOnDp07d+bKlSsAnDt3jkcffZRu3boRGRnJ888/z+uvv261jxMnTtClSxd69uzJgQMHWLx4MZs3b2bo0KF219cplMi3uLg4Bai4uDhXV0UUgMTERAUoQCUmJma7LYRwzLVr19Rff/2lrl27lrkxMVEpHbIU/iUP/9c//vijKleunCpVqpRq06aNGjt2rNq/f79VGUAtXbr0pvtq2LChmjlzpvl2jRo1VPfu3a3KnDp1SgFq3759Vtv79eunHnnkEfPte+65R4WHh1uVueuuu9SYMWOUUkr9+eefysvLS0VFRZnvX7169U3rajrOxYsXla+vrzp9+rQ6ffq0KlWqlLp06ZJ65JFHVL9+/ZRS+rvT29tbLViwwPz41NRUVbVqVTV16lSllFJjx45VDRo0sDrGmDFjFKCuXr2qlFJqwIABauDAgVZlIiIilIeHh/kzU6NGDTV9+vQc65zj5+uGvJy/pUVJCCGEyKOePXty4cIFfv31V7p06cKGDRto1qzZTQdWJyYmMnLkSOrXr0/ZsmUJDAzkyJEj2VqUWrRoke+6NW7c2Op2lSpVuHjxIgBHjx6lWrVqhISEmO9v2bKl3fuuVKkSXbt2Ze7cucyZM4euXbtSsWJFqzInTpwgLS2NsLAw8zZvb29atmzJkSNHADhy5AitWrWyelzr1q2tbu/fv5+5c+eaW/ACAwPp3LkzRqORU6dO2V1nR8lgbiGEEO7D3x8SE1137DwoVaoU999/P/fffz9vvfUWzz//POPHj8919tfIkSNZvXo1H374IXXq1MHPz4/HHnss24DtgICA/DwDQAcllgwGA0ajMd/7y+q5554zd399+umnTttvVomJibz44osMGzYs232FOXhcAiUhhBDuw2AAB4IEV2rQoIHVgGhvb28yMjKsymzZsoX+/fvTo0cPQAcDOQ1izsrHxwcg2/7yql69epw7d46YmBiCg4MBsg2yvpkuXbqQmpqKwWCgc+fO2e6vXbs2Pj4+bNmyhRo1agCQlpbGrl27GDFiBAD169fn119/tXrc9u3brW43a9aMv/76izp16uSpfs4mXW9CCCFEHvz333/cd999fPfddxw4cIBTp06xZMkSpk6dyiOPPGIuV7NmTdauXUt0dDRXr14FoG7duvz8889ERkayf/9+nnrqKbtaeypXroyfnx8rVqwgJiaGuLi4fNX9/vvvp3bt2vTr148DBw6wZcsW3nzzTUC3PNnD09OTI0eO8Ndff+Hp6Znt/oCAAAYPHsyoUaNYsWIFf/31Fy+88ALJyckMGDAAgEGDBnHs2DFGjRrF0aNH+f7777N1W44ZM4atW7cydOhQIiMjOXbsGL/88kuhD+aWQEkIIYTIg8DAQFq1asX06dNp164dd955J2+99RYvvPACn3zyibnctGnTWL16NdWqVTNPn//oo48oV64cbdq0oVu3bnTu3JlmzZrd9JheXl7MmDGDzz//nKpVq1oFZHnh6enJsmXLSExM5K677uL55583z3orVaqU3fsJCgoiKCjI5v3vv/8+PXv2pE+fPjRr1ozjx4+zcuVKypUrB+ius59++olly5bRpEkTZs+ezXvvvWe1j8aNG7Nx40b++ecf2rZtS9OmTRk3bhxVq1bNxzPPP4NSds6HFNnEx8dTpkwZ4uLicv3AiKIpKSmJwMBAQDePA1a3HRlDIITQyQpPnTpFrVq18nSSFs61ZcsWwsPDOX78OLVr13Z1dZwmt89XXs7fMkZJCCGEKEGWLl1KYGAgdevW5fjx4wwfPpywsLBiFSQ5kwRKQgghRAmSkJDAmDFjOHv2LBUrVqRjx45MmzbN1dVyWxIoCSGEECVI37596du3r6urUWTIYG4hhBBCCBskUBJCCCGEsEECJSGEEC4lk69FQXDW50oCJSGEEC5hWmojOTnZxTURxZHpc5V1SZe8ksHcQgghXMLT05OyZcuaF2z19/e3Ozu0ELYopUhOTubixYuULVs2x+zheSGBkhBCCJcxrWJvCpaEcJayZcuaP1+OkEBJCCGEyxgMBqpUqULlypVJS0tzdXVEMeHt7e1wS5KJBEpCCCFcztPT02knNiGcSQZzCyGEEELYIIGSEEIIIYQNEigJIYQQQtgggZIQQgghhA0SKAkhhBBC2CCBkhBCCCGEDRIoCSGEEELYIIGSEEIIIYQNEigJIYQQQtgggZIQQgghhA0SKAkhhBBC2CBrvQmRD0opkpKSzLf9/f0xGAwurJEQQoiCIC1KQuRDeHg4gYGB5kvbtm1RSrm6WkIIIZxMAiUh8mH//v1Wt7ds2UJycrKLaiOEEKKgSKAkhANOnjzp6ioIIYQoQBIoCeGAgIAAV1dBCCFEAZJASQghhBDCBgmUhBBCCCFskEBJCCGEEMIGCZSEEEIIIWyQQEkIIYQQwgYJlIQQQgghbJBASQghhBDCBgmUhBBCCCFskEBJCCGEEMKGIhkoZWRk8NZbb1GrVi38/PyoXbs2b7/9ttWipEopxo0bR5UqVfDz86Njx44cO3bMaj9Xrlzh6aefJigoiLJlyzJgwAASExML++kIIYQQwk0VyUBpypQpzJo1i08++YQjR44wZcoUpk6dysyZM81lpk6dyowZM5g9ezY7duwgICCAzp07c/36dXOZp59+msOHD7N69WqWL1/Opk2bGDhwoCuekhBCCCHckEFZNsMUEQ899BDBwcF8/fXX5m09e/bEz8+P7777DqUUVatW5bXXXmPkyJEAxMXFERwczNy5c+nduzdHjhyhQYMG7Nq1ixYtWgCwYsUKHnzwQf7991+qVq1603rEx8dTpkwZ4uLiCAoKKpgnK1wmKSmJwMBAAHNLo+m2SUxMDMHBweYysvabEEK4v7ycv4tki1KbNm1Yu3Yt//zzDwD79+9n8+bNPPDAAwCcOnWK6OhoOnbsaH5MmTJlaNWqFdu2bQNg27ZtlC1b1hwkAXTs2BEPDw927NiR43FTUlKIj4+3ugghhBCi+PJydQXy4/XXXyc+Pp477rgDT09PMjIyePfdd3n66acBiI6OBjD/0jcJDg423xcdHU3lypWt7vfy8qJ8+fLmMllNnjyZiRMnOvvpCCGEEMJNFckWpR9++IEFCxbw/fffs3fvXubNm8eHH37IvHnzCvS4Y8eOJS4uznw5d+5cgR5PCCGEEK5VJFuURo0axeuvv07v3r0BaNSoEWfOnGHy5Mn069ePkJAQQI8fqVKlivlxMTExhIaGAhASEsLFixet9puens6VK1fMj8/K19cXX1/fAnhGQgghhHBHRbJFKTk5GQ8P66p7enpiNBoBqFWrFiEhIaxdu9Z8f3x8PDt27KB169YAtG7dmtjYWPbs2WMus27dOoxGI61atSqEZyGEEEIId1ckW5S6devGu+++S/Xq1WnYsCH79u3jo48+4rnnngPAYDAwYsQI3nnnHerWrUutWrV46623qFq1Kt27dwegfv36dOnShRdeeIHZs2eTlpbG0KFD6d27t10z3oQQQghR/BXJQGnmzJm89dZbvPTSS1y8eJGqVavy4osvMm7cOHOZ0aNHk5SUxMCBA4mNjSU8PJwVK1ZQqlQpc5kFCxYwdOhQOnTogIeHBz179mTGjBmueEpCCCGEcENFMo+Su5A8SsWbu+ZRUkqRnJwMgL+/PwaDocCPKYQQxUmxz6MkREmllCI8PJzAwEACAwNp27Yt8ltHCCEKjgRKQhQhycnJbN261Xx7y5Yt5tYlIYQQzieBkhBCCCGEDRIoCSGEEELYIIGSEEIIIYQNRTI9gBCOspw5ZiIzyIQQQmQlLUqixMk6c0xmkAkhhLBFAiVR4mSdOWYiM8iEEEJkJYGSKNFiYmKIiYlxdTWEEEK4KRmjJEq0wsikLYQQouiSFiUhhBBCCBskUBJCCCGEsEECJSGEEEIIGyRQEkIIIYSwQQIlIYQQQggbJFASQgghhLBB0gMI4UYsl1aRJVWEEML1pEVJCDeRdWkVWVJFCCFcT1qURLFUFBe9zbq0imlJFUmKKYQQriMtSqLYkUVvhRBCOIsESqLYkUVvhRBCOIsESqJYk0VvhRBCOELGKIliTcb3CCGEcIS0KAkhhBBC2CCBkhBCCCGEDRIoCSGEEELYIIGSEEIIIYQNMphbCBfJmhRTcjwJIYT7kRYlIVwgp6SYbdu2dXW1hBBCZCGBkhAukFNSzMjISNdURgghhE0SKAnhYidPnnR1FYQQQtgggZIQLiZJMYUQwn1JoCSEEEIIYYPMehNuJ+tssJz4+/tjMBgKqUZCCCFKKmlREm4lp9lgOV3atm1bZKfTK6VISkpydTWEEELYQQIl4VZymg2Wky1btty01ckdmQLB4OBgV1dFCCGEHaTrTbitmJiYbAOdk5KSinSQkTUQDAsLw9/f34U1EkIIkRsJlITbCggIKNYzwmJiYqhUqVKRbBkTQoiSQrrehHCRgIAAGZAuhBBuTgIlIYQQQggbJFASQgghhLBBAiUhhBBCCBskUBJCCCGEsEECJSGEEEIIGyQ9gBBOYsq2LcurCCFE8SEtSkI4SXBwcJFfXkUIIYQ1CZSEcIC/vz9hYWFW24rq8ipCCCGyk0BJCAcYDAYiIiJITEwkJibG1dURQgjhZDJGSQgHGQyGYr3UihBClGTSoiSEEEIIYUOeA6Vr165x/vz5bNsPHz7slAoJUZCSkpLMs9NsUUrZVU4IIUTxl6dA6ccff6Ru3bp07dqVxo0bs2PHDvN9ffr0cXrlhHC24OBggoODbd6vlCI8PJzAwMBcywkhhCgZ8hQovfPOO+zZs4fIyEjmzJnDgAED+P777wFkOrRwWznNTAMICwvD39/faltycjJbt269aTkhhBAlQ54Gc6elpZl/ZTdv3pxNmzbRo0cPjh8/Lgn2hNsyzUzLOmX/ZokhY2JiCAgIkASSQghRguWpRaly5cocOHDAfLt8+fKsXr2aI0eOWG0Xwt2YZqZZXm4W/NhbTgghRPGVp0Dp22+/pXLlylbbfHx8WLhwIRs3bnRqxYQQQgghXC1PXW+33nqrzftyGgMihBBCCFGUOSXhZFpaGtHR0SQnJ1OpUiXKly/vjN0KIW5QSpGcnCwpC4QQopDlO+FkQkICs2bN4p577iEoKIiaNWtSv359KlWqRI0aNXjhhRfYtWuXM+sqRIkkKQuEEMJ18hUoffTRR9SsWZM5c+bQsWNHli1bRmRkJP/88w/btm1j/PjxpKen06lTJ7p06cKxY8ecXW8hSoycUhYIIYQoHPkKlHbt2sWmTZvYuXMnb731Fp07d6ZRo0bUqVOHli1b8txzzzFnzhyioqLo3r07ERERzq4358+f55lnnqFChQr4+fnRqFEjdu/ebb5fKcW4ceOoUqUKfn5+dOzYMVvAduXKFZ5++mmCgoIoW7YsAwYMIDEx0el1FUIIIUTRlK9AaeHChTRs2PCm5UqVKsWgQYN47rnn8nMYm65evUpYWBje3t78+eef/PXXX0ybNo1y5cqZy0ydOpUZM2Ywe/ZsduzYQUBAAJ07d+b69evmMk8//TSHDx9m9erVLF++nE2bNjFw4ECn1lWIm8maEDM0NNR1lRFCCGHFKYO5165dy9q1a7l48SJGo9Hqvm+++cYZh7AyZcoUqlWrxpw5c8zbatWqZb6ulOLjjz/mzTff5JFHHgFg/vz5BAcHs2zZMnr37s2RI0dYsWIFu3btokWLFgDMnDmTBx98kA8//JCqVas6vd5C5CRrQkylFKVLl3ZxrYQQQoADg7lNJk6cSKdOnVi7di2XL1/m6tWrVpeC8Ouvv9KiRQt69epF5cqVadq0KV9++aX5/lOnThEdHU3Hjh3N28qUKUOrVq3Ytm0bANu2baNs2bLmIAmgY8eOeHh4WK1hZyklJYX4+HirixDOYJkQUxJcCiGE+3C4RWn27NnMnTu3UBfFPXnyJLNmzeLVV1/lf//7H7t27WLYsGH4+PjQr18/oqOjAbLNEAoODjbfFx0dnS15ppeXF+XLlzeXyWry5MlMnDixAJ6REEIIIdyRwy1KqamptGnTxhl1sZvRaKRZs2a89957NG3alIEDB/LCCy8we/bsAj3u2LFjiYuLM1/OnTtXoMcTQgghhGs5HCg9//zzfP/9986oi92qVKlCgwYNrLbVr1+fs2fPAhASEgLoRU0txcTEmO8LCQnh4sWLVvenp6dz5coVc5msfH19CQoKsroIIYQQovhyuOvt+vXrfPHFF6xZs4bGjRvj7e1tdf9HH33k6CGyCQsL4+jRo1bb/vnnH2rUqAHogd0hISGsXbvWPIMoPj6eHTt2MHjwYABat25NbGwse/bsoXnz5gCsW7cOo9FIq1atnF5nIYQQQhQ9DgdKBw4cMAcjhw4dsrqvoAalvvLKK7Rp04b33nuPxx9/nJ07d/LFF1/wxRdfmI87YsQI3nnnHerWrUutWrV46623qFq1Kt27dwd0C1SXLl3MXXZpaWkMHTqU3r17y4w3IYQQQgBOCJTWr1/vjHrkyV133cXSpUsZO3YskyZNolatWnz88cc8/fTT5jKjR48mKSmJgQMHEhsbS3h4OCtWrKBUqVLmMgsWLGDo0KF06NABDw8PevbsyYwZMwr9+QghhBDCPTklj5IrPPTQQzz00EM27zcYDEyaNIlJkybZLFO+fPlCH18lhBBCiKLDaYHSX3/9xdmzZ0lNTbXa/vDDDzvrEEIIIYQQhcrhQOnkyZP06NGDgwcPYjAYUEoBmeOTMjIyHD2EEMWCUoqkpCRXV0MIIUQeOJweYPjw4dSqVYuLFy/i7+/P4cOH2bRpEy1atGDDhg1OqKIQRZ9SivDw8GxJUIUQQrg3h1uUtm3bxrp166hYsSIeHh54eHgQHh7O5MmTGTZsGPv27XNGPYUo0pKTk9m6dav5dlhYGP7+/i6skRBCCHs4HChlZGSYF/CsWLEiFy5coF69etSoUSNbriMhhE58WqlSJVnTTQghigCHA6U777yT/fv3U6tWLVq1asXUqVPx8fHhiy++4LbbbnNGHYUoVmThWyGEKDocDpTefPNN8wDViRMn0q1bN9q2bUuFChVYvHixwxUUQgghhHAVhwOlzp07m6/XrVuXv//+mytXrlCuXDn51SyEEEKIIs3hWW8AERERPPPMM7Ru3Zrz589Tvnx5vvvuOzZv3uyM3QshhBBCuITDgdJPP/1E586d8fPzY9++faSkpAAQFxfHe++953AFhRBCCCFcxeFA6Z133mH27Nl8+eWXeHt7m7eHhYWxd+9eR3cvhBBCCOEyDgdKR48epV27dtm2lylThtjYWEd3L4QQQgjhMg4HSiEhIRw/fjzb9s2bN0t6ACEKgWlplKSkJPMSQkIIIZzD4UDphRdeYPjw4ezYsQODwcCFCxdYsGABI0eOZPDgwc6ooxAiF+Hh4QQGBhIYGEjbtm0lWBJCCCdyOD3A66+/jtFopEOHDiQnJ9OuXTt8fX0ZOXIkL7/8sjPqKESRVtCL4e7fv998fcuWLSQnJxMQEFBgxxNCiJLE4UDJYDDwxhtvMGrUKI4fP05iYiINGjQgMDDQGfUTokgzLYZruc6bEEKIosPhQMnEx8eHBg0aOGt3QhQLshiuEEIUbU4JlK5fv86BAwe4ePEiRqPR6r6HH37YGYcQosiTxXCFEKLocThQWrFiBX379uXy5cvZ7jMYDGRkZDh6CCGKBVkMVwghih6HZ729/PLL9OrVi6ioKIxGo9VFgiRRUslUfSGEKB4cDpRiYmJ49dVXCQ4OdkZ9hCgWgoODZaq+EEIUAw4HSo899hgbNmxwQlWEKNr8/f0JCwsz3zZN1RdCCFF0OTxG6ZNPPqFXr15ERETQqFEjq/XeAIYNG+boIYQoEgwGAxEREVy6dMlpLaxKKQm2hBDChRwOlBYuXMiqVasoVaoUGzZssBqsajAYJFASxYoBaHnjEgB4f/ghtGgBrVpBxYoYDAanJnsMDw+3SigphBCicDkcKL3xxhtMnDiR119/HQ8Ph3vyhHBP8fF4T5xIFGDVVjRhgv5rMED37jBqFDRubL7b0YzclkFSaGgokZGRDu1PCCFE3jgcKKWmpvLEE09IkCSKr2+/hVGj8ImJIRiIAzYA/wF9n3gCr/374e+/YelSWLoUn2eeoSwQC05bGDomJgZ/f39Kly7tlP0JIYSwj8PRTb9+/Vi8eLEz6iKEe8nIgGHDoG9fiIlB1a3L/+64g0pAd+CbsDA8Fy6EI0fg0CF49lkwGPD+7juO+vjQ1GJXjmbklhxMQgjhGg63KGVkZDB16lRWrlxJ48aNsw3m/uijjxw9hBCFzh/wffJJ+OMPvWHiRAyvv8673t68cWNwtb+/f2bw0rAhfPMNPP889O9P5WPH2OPvT8r8+WR06WJd9mbHvjF7bsuWLUBmkCWDuoUQovA5HCgdPHiQpk31b+dDhw5Z3Se/gEVR5AksAbz++AN8fXXXW69egB7Mnetg7TZtYOdOePxxDKtXU+rJJ3WXXNeudh/fNHsuOaeATAghRKFyOFBav369M+ohhHtQik+ABwHl54dh1SoID8/bPsqWhd9/hz59YPFiePRR+PNPuO8+u3fh7NlzQggh8iffY5TGjRvHnj17nFkXIfJNKUVSUpL5kl/+n37KIMAIpMyZk/cgycTbW7dE9egBqanQs6ce8C2EEKJIyXeg9O+///LAAw9w6623MnjwYP78809SU1OdWTch7KKUIjw8nMDAQAIDA/Od7PEeIOCddwAYAWQ89JDtwvasY+jtDd9/r7vjYmPhoYcgLi5fdSsspoBTll4RQggt34HSN998Q3R0NAsXLqR06dKMGDGCihUr0rNnT+bPn8+VK1ecWU8hbEpOTmbr1q3ZtudlplkQMA8wKMXXwExbBX//HUqXhho17KtcqVKwbJkuf+IEDBoEbhqEWAacsk6dEEJoDqUH8PDwoG3btkydOpWjR4+yY8cOWrVqxeeff07VqlVp164dH374IefPn3dWfYXIVUxMDImJiSQmJhIREWH3IOhPgBpAWo0aDLe84+BB61agMmUgMREaNLDewbBhOojKSaVKsHAheHrCokUwd679T6gQWQacsk6dEEJoTs0SWb9+fUaPHs2WLVs4d+4c/fr1IyIigoULFzrzMELYFBAQYL7YGyR5/vQTfYAMoN2ZM5hGOHnNmwfNm8OIEZmFmzWDo0fhxx8zt506BZ98orvWDhzI+SCtW8Pbb+vrQ4fKeCUhhCgiHJ71du3aNZRS5i6OM2fOsHTpUho0aMCAAQMYMGCAw5UUosDExuI7ciQA7wHbb2wOCwvDp1EjSE+HK1f0gGwfH/D3h9tvt95HcDC89poeh2SxfEk2o0fDmjWwbh307q3TCPj4FMSzEkII4SQOtyg98sgjzJ8/H4DY2FhatmzJtGnTeOSRR5g1a5bDFRSiQE2ciOHSJdQdd/DqlSvW3XZt2+pgZtmy3AMaf3/44AP44ovMbUYjxMdbl/P01DPhKlSA/fv1Y4QQQrg1hwOlvXv30rZtWwB+/PFHQkJCOHPmDPPnz2fGjBkOV1CIAnP4MMzUw7YNM2YQEBREwMSJBCQlZXbbtWihF7y1h6lcWhr06wcdOujxTJaqVoWPP9bX334b/vnH8echhBCiwDgcKCUnJ5sX6ly1ahWPPvooHh4e3H333Zw5c8bhCgpRIJSC4cP1NP/u3eH+++Gdd3Qrz0MP6Rah/Pr3X51gct8+3dWW1dNP6+OlpMCLL7rtLDghhBBOCJTq1KnDsmXLOHfuHCtXrqRTp04AXLx4kaCgIIcrKESB+PlnWLtWL1FiWo+wRw+oXVsHUB4O/GvUqqXXiFuzRgdhWRkMMHs2+PnBhg0wZ07+jyWEEKJAORwojRs3jpEjR1KzZk1atmxJ69atAd26ZFoDTgi3kpYGY8bo66NH68AG9EDsgwd1i4+jWraE9u1t33/bbTBpkr4+ahRcver4MYUQQjidw4HSY489xtmzZ9m9ezcrV640b+/QoQPTp093dPdCON+8eTr5Y+XKerbapUuZ9/n5Of940dHw7LPw33/W20eMgIYN9ay6iROdf1whhBAOc0oepbJly5KWlsYff/zBr7/+yq+//kp0dDT/yEBV4W5SUjJbcsaO1TPV7rhDL15bUJ54QieZHDLEeruXF5h+THz6qeRWEkIIN+RwHqUVK1bQp08f/sv6axm9AnqGPWtiCVFYvvwSzp2DW26BgQP1oOorV6Ags1B/9BG88oru5svq/vv14PHly2HkSP1XCCGE23C4Renll1/m8ccfJyoqCqPRaHWRIEm4leRkePddff3NN3X+ow0b4LvvoH//gjtu8+awaZPO6p2TadN069Lvv4NF97UQQgjXczhQiomJ4dVXX833iu1CFJrPPtPjhWrWhOee09u8vfXgbXtzJTlDSor17dtvh5df1tdfeUVnAxdCCOEWnDKYe8OGDU6oihAF6No1mDpVXx85En79tfDzFykFs2bpQO34cev73npLZ+w+ckSnDhBCCOEWHB6j9Mknn9CrVy8iIiJo1KgR3t7eVvcPGzbM0UMI4bg5c/Tstpo19RiloUOhTx+4sfxOofnlF92qNWOGvpiUK6czdb/0kp4B17cvSB4yIYRwOYcDpYULF7Jq1SpKlSrFhg0brFZsNxgMEigJ10tPz1xXbeRIvayIvz889ljh1sNg0Eum/PmnDoiyeuEFvbzJP//oAeATJhRu/YQQQmRjUMqx/oeQkBCGDRvG66+/jocj2YyLoPj4eMqUKUNcXJxkIXeSpKQkAgMDAUhMTCQgIMDm/TExMQQEBJCUlGQeI5fTY1i4EJ56CipWhDNndJB06ZK+XZhjk+zx44/QqxcEBmbmerrB8rnnJsfXwA5Z92/vfpRSJCcn4+/vb/VDSQgh3FVezt8ORzapqak88cQTJS5IEq4XHBxMYGBg7hMJlIIpU/T14cN1kARQqZLrgySlICrKelvPnnqWXGJi5gw9N6aUIjw8nMDAQNq2bYuDv7uEEMLtOBzd9OvXj8UFmaxPCAv+/v6EhYXleF9YWBj+pkDIZOVK2L8fAgIgKUl3a7mDkyehTRto104vqWJiMMD77+vrs2bB6dMuqZ69kpOT2bp1KwBbtmwhuSDzUQkhhAs4PEYpIyODqVOnsnLlSho3bpxtMPdHpgVHhXACg8FAREREjifkHLt+TK1JXbvqAGTGDLhwAcqUKYTa5qJyZd21lpQE+/bpteFMOnbUlzVrYPx4veSKEEIIl3A4UDp48KB58dtDhw5Z3SfjFURBMBgM9o3B2bVLJ5T09oYXX4Tr16FKFdcHSaDHIP3wA9Srp+uU1Xvv6UDp22/1APRGjQq9itKNJoQQTgiU1q9f74x6COF8n3yi//buDffdpy/ulC2+fXvb9911l56V9+OP8MYbOu9TIWvbti179+6VHzxCiBLNoTFKaWlpdOjQgWPHjjmrPkI4x6VLsGiRvj50aOZ2T0/X1OdmzpyB1FTrbe+8o+v722+wZUu2h4SGhuZ43VkiIyNlzJEQosRzKFDy9vbmwIEDzqqLKEGUUiQlJeV4cYqvv9aBR/36sG4dJCQ4Z78FYexYqFMn+1ikevUyl1oZOzZbJvGIiAgSExNJTEwkIiKikCpbNJg+XwXRfViQ+xZCuB+HZ70988wzfP31186oiyghLKeUZ704Zc3A9HQ9Ywz0YrNjx+qLu6pcWdd5x47s940bB6VKQUQEnqtXW91lGqsVEBBQYN1jRTEgKMiUBZIOQYiSx+ExSunp6XzzzTesWbOG5s2bZxtkK7PeRFaWU8ptyXGqv72WL4ezZ/XaaSNGwLRp8Oqr+dtXYXjxRbj7bmjdOvt9t96quw4//BDv8eMxAIV5ag4ODiYsLIyIiIgiM1Ypp5QF+UnAWdj7FkK4J4cDpUOHDtGsWTMA/smSo6aofLEK1zFl187KoSzPpkHcAwfqrqtnn3V9csnc+PvnHCSZvP46fPEFngcP8jhQGFnLQkNDiYyMBCQgEEKUbA53va1fv97mZd26dc6o4029//77GAwGRowYYd52/fp1hgwZQoUKFQgMDKRnz57ExMRYPe7s2bN07doVf39/KleuzKhRo0hPTy+UOgvN1HWU9ZLvIOnIEVi7Fjw8YNAgvc2dg6Ssrl/XrWGWKlSAUaMAeBsn/LqxQ0RERLb/l6JMxhUJIfIrX4HS2axf5Ddx/vz5/BzGLrt27eLzzz+ncePGVttfeeUVfvvtN5YsWcLGjRu5cOECjz76qPn+jIwMunbtSmpqKlu3bmXevHnMnTuXcePGFVhdRSH47DP9t2FDnZHbaHRtffJi7VqoWRP69ct+34gRqEqVqAs8WwhVsTtXlQ3ODkwc2V9exxVJUCWEsKLyoXLlymrgwIFq586dNsvExsaqL774QjVs2FD93//9X34Oc1MJCQmqbt26avXq1eqee+5Rw4cPNx/b29tbLVmyxFz2yJEjClDbtm1TSin1xx9/KA8PDxUdHW0uM2vWLBUUFKRSUlLsOn5cXJwCVFxcnPOeVAmQmJio0ENtVGJiovN2HBenVGCgUqCUr6/+GxHhvP0XtLNnlfLyUqpaNaUuX8529/WpU5UC9S+oUlleO2e8pln3Yc8+LcuYyhmNRtWmTRsFqLCwMGU0GvNVH5O87i9rnWJiYrLVMb/HSkhIsHtfQgj3lZfzd75alP766y8CAgK4//77CQkJoWvXrrzwwgu8/PLLPPPMMzRr1ozKlSvzzTffMHXqVIYNG5a/KO4mhgwZQteuXenYsaPV9j179pCWlma1/Y477qB69eps27YNgG3bttGoUSOrWVadO3cmPj6ew4cP53i8lJQU4uPjrS7CjXz7rV5Mtm5dGDYMOnQAG+vCuaVq1XQm8RMndHdbFukDBnAauAUYmu1e9+Hs9d8Kcz253I6llKJt27YFdmwhhHvK13CHChUq8NFHH/Huu+/y+++/s3nzZs6cOcO1a9eoWLEiTz/9NJ07d+bOO+90dn3NFi1axN69e9m1a1e2+6Kjo/Hx8aFs2bJW24ODg4mOjjaXyToV3XTbVCaryZMnM3HiRCfUXjidUvDpp/r6sGF6pphSRWt8EuQe2Pn6Mh6YB4wFiI3Vi/3mgVLKfPJ3aMB8CZScnGwe4C6EKDkcGhfq5+fHY489xmOPPeas+tjl3LlzDB8+nNWrV1OqVKlCO+7YsWN51WKaeXx8PNWqVSu044tcrF+vB3IHBkLfvnpbUQ4ClNLZumvWtNr8HTAaaAik/t//wdSpedilHqtjajEpiGn/SikJvoQQxYrDs95cYc+ePVy8eJFmzZrh5eWFl5cXGzduZMaMGXh5eREcHExqaiqxsbFWj4uJiSEkJASAkJCQbLN6TLdNZbLy9fUlKCjI6iLchCklwO23Q1SUa+viqCtXoE0baNAA/vvP6i4j8MaN696ffQZ5mJmWNX+VZdeSujGA2VGShFEIUdwUyUCpQ4cOHDx4kMjISPOlRYsWPP300+br3t7erF271vyYo0ePcvbsWVrfyFfTunVrDh48yMWLF81lVq9eTVBQEA0aNCj05yQccPYs/PKLvr53r+6+yrpuWlFSrhykpOgFfG+MqbP0C7AdMCQlwbvvOnw4U0uTM7KiO7o+nJIZZ0IIN1MYKVmcrnTp0tnGPwUEBFChQgXz9gEDBvDqq69Svnx5goKCePnll2ndujV33303AJ06daJBgwb06dOHqVOnEh0dzZtvvsmQIUPw9fUt9OckHDB7tk4DcNddULWqbonx8XF1rfLPYIBvvoEqVcBG8PI/YB3o5/7qq1CpUr4Pl7WlyZQVvbAXxLXsGsytWzApKUnGVwkhCk2RbFGyx/Tp03nooYfo2bMn7dq1IyQkhJ9//tl8v6enJ8uXL8fT05PWrVvzzDPP0LdvXyZNmuTCWos8u34dvvxSXx87FpYtc0ori8uFhtoMkgDWAxn33QdpaTB+vNMOGxMTUyDjluxh7+y24OBg6eITQhSaItmilJMNGzZY3S5VqhSffvopn5pmQuWgRo0a/PHHHwVcM1GgliyBy5f11Ppu3fS24tbS8N9/OaYLSJ0wAb916+DbbzEMdU7CAFtZ0R0JStq2bcvevXvzHXzldGxZVkUIUViKbYuSKCFMg7gbN4ZC7ioqcErBCy/oLrgc0mAYmzWDnj1BKXwKuCXUkRYcR8YtSe4iIYSrSaAkiq6dO/XF0xN+/x0eftjVNXIug0EP6k5L088vJ++8Ax4eeC1fTisnH97f35/Q0FDA8UHa+ZWX3EWmgeD2zt6TgeNCCHtIoCSKLlO3aps2UL8+DBjg2voUhDff1MHghAk533/HHfCsXv3toxzuticYsHWfwWAgIiIijxV2nrykLDANBA8MDLRr9p5l+Zu1lklAJUTJJoGSKJouXYLFi/X1Dz+Ew4fhqadcW6eCcPvtejZfbiZNQgUE0AZ4wmKzPcHAzbq2CmNmma1AJC8pC7LO3Mu6/9zK5zZw3PI1DA8Pt6suQojiRQIlUTR9/bXulrrrLmjZUndTeXq6ulYFKzU159kXVauS9tprAEwFuHYNsC8YSEpKMndthYaG4u/v7/x65yJrMGdp//79TjmGI2OcLF/D/NZHWqSEKNokUBJFT3o6zJqlr7dtq3MoFXeff45fw4Y8Y+PutJdf5gxQHfCeMcPu3VoGEc5OC2APy0CkoNZRO3bsmNVto9HoUBbyunXr2l02L118Qgj3JIGSKHqWL9fZuH194aOP4PXXXV2jghcbi0dUFL1t3e/nx5gbV72nTYMLF3LdnelkbxlElJQEjkFBQQ5lIc/LuC17u/iEEO5LAiVR9JhSAjRtCkFB8OSTrq1PYXjhBa5/9RXdcimyGNgKGJKT4Y03cimZt5O9sFZSAkohhCaBkihajhyBtWvBwwMWLdIL4DZt6upaFbzy5cno3Zu0mxQbYboydy6GvXttlpOTvRBC2EcCJVFgLPPaZL3k22ef6b8PPww1akAhDz52JX9/f8LCwgBo16ZNjgOvdwHzb1w/3qULzgyHTAOSZXCyEKIkkUBJFAjLQaxZL/keHxIfD3Pn6uvduzurqkWGwWAg4t13SW/dmg2tWtlsFRoLJACNk5NxZmap4OBgwsPD3Wpwcl6TTAohRF5JoCQKRG55bUxMq9Tb7dtvITFRD+J+9ln48UcHa1n0GJKS8Ny2DcN33+mM3Tm4ALx14/oUoGIOZSxbp8D2e5G13NatW91mcHJek0zau8/8lJdWNiGKLwmURIGLiYkhMTEx2yVP09GVyszEXbs2BARAhw4FV2l31aULfPAB7N8P3t42i30C7APKcyO3UhamrNs3ey9M5WJiYpz1DJzGnmDctARL1us5yc+6cm3btsVoNNrdymY0GiWoEqKIkUBJFLiAgIAcL3kaULx+vR7IHRgI27bB6dNQrlyB1dlteXjAyJF6odxcZACDASPwLJDT6d9gMNj1XpjK2augusFuFujkJGswmJuc1pXLKZjJugbe5cuX7W5lCwoKIiwszG26Ll1FgkVRlEigJIoGU0qAfv10SoAKFVxbH3eRy4lmB/DljeufA1y/XggVgttuuy3bNtM4IkdOjPlp2bI3GLQlp2VLsq6BlzUwvFkQsG3bNsD1XZeuIkk4RVEjgZJwf2fPwi+/6Ov9+7u0Km7jzBm9CPBNBrW/DkQB9YGADz4o0Crl1uITHBzs0IkxLCzMHPAUBlNCzuPHj+d4v2XQlTUwlCAgd5KEUxQ1EigJ9zd7tl6mxNMTOnaEo0ddXSPXMxr1DMBffwUbJ3OAWGDQjev+n33GTZbXdYg9LT75OTHGxMTkaTybKWDL82QBC44k5DStCWfPc5XuJyHcnwRKwr1dvw5f3uhAqlwZgoMhD2ttFVu1aulB3Vu36sHtufgVWAAYjEbmAL4FVKW8jmWyV167zUzjkhxZu66wEnIGBwfnueVJxvcIUbgkUBLubckSuHwZqlXTA7jXrNEDmgW8+iq0bg0Gg9U0/py6wIYB0UBDYGIhVtFUl/wMxL4ZW4GCKWArKtnHbbU85RQQWY7vadasGcaSsCC0EC4mZxzh3kyDuAcPBh8fHTCJbCyn++fUbbT75ElzF9wowGPDhkKpV251clRep/IXJbYGPFuO74mMjKR58+bSsiREAZNASbivXbtg507w8tIDl0V2SUkwZQq0bYshI8NmS0pAQAC/AF+g/+l9n39et9QVMGe37lhOzT927Jh5uzPGJbmTpKQkqwHPly5dyjEgioyMlMHQQhQwCZSE+zIlmExP14O4U1JcWx935OkJ06bB5s2ZMwNzMQL4C/CIjtbZzd20NcJW4JN1ar6JM8YluYucEl/mZyyTEMI5vFxdASFydPkyLFqkr/v7Q506eukSYa1UKXjvPd3q1rXrTYtfA54EIn18MCxfDh99BK+9VuDVzCtTwOPv758t8LGVQbywUgcUtJwSX8LNxzLl9FoJIRwnLUrCPX3+uW5BatECLlyAjz92dY3c1/PP6/xSpUrZVfwAkDp5sr4xZgysW1dgVcuvojYg2yQvg9ZPnjyZ5/3nlPVc8jYJUbCkRUlYUUrZPeahwH7BpqZmdruNGAFlyuiLcJr0gQPx3b8f5s+HJ56A3buhRg1XVwso2uOMIiIiSE5OtmuR3vy0gOWU9Txr3qbi0rImhLuQFiVhZjnTxp5Lgf2CXbwYoqJ03qRevZy//+JIKVi6FO6/H0N09M3LGww6kWezZrqbs0cPSEws+HrmwrR4ckGNM7JMoZCj1FSqA/UAzyNHqAHYaqOzta/i1AUohNAkUBJm9qzGbqlAlh9QCqZP19cvXYKXX3bu/osrgwE+/BDWrMFv7lyrk7jNFho/Px1cVaoE+/bplqX09EKstHUuJEfWZLOHaSB4TEwMfkBX4B1gJeBXuzYB5ctzBvgbqNC+PafRY7ouAauA97ixuHB6unlfCQkJtGnTBnCsJcwyX5J0nwnhXiRQEjky/brP6ZLXhUnzZONGfdL28tJBU0hIwR2ruHn9dXj9dQwDB5pngd20haZ6dfjtNx00/fEHvPRSoc2Ey2l2lz0sUwTkSUIChrlzKd+vH/8By4E3gE6Ax43P9HXgCmCsUAHTEsIVgfuBscAmwP+222D4cAxHjhAYGMjmzZsdbgkzzWozGo12vSZVq1bNcbujQZZk/RYiB0rkW1xcnAJUXFycq6viFImJiQpQgEpMTHSonL37yubhh5UCpQYNUurgQaUuX87r0xA5MBqNKiwsTAEqLCxMGY1G6wLLlinl4aFf+zFjlMpyv+X7aXmJiYmxep+zljO99zl9Hiy3hYaGZq9TLhISEnI8To62blXq2WeVCgjQz+/G5TSor0C9COouUPfeeWe25xUEqhmoAaDmg7pk8XgFSnXpotSuXTZfK8vXJ+slISHB/J7kVL5u3bo2H3vixIkct+f1dbSUkZGhQkNDbX9GsjAajSoxMdGu41mWtfUZEaIw5eX8LYGSAyRQcnKgdOyYUgaDPgH9/Xd+noLIxU1PbLNmZQYAY8daBUvODJQSEhJsbrPXTU+2RqNSq1Yp1a6ddWBz++0q5a231J02ApCbBTgeoK4tW6ZUjx5KeXpm7vfRR5U6cyZb3XILlEzvhWUZy+vR0dE2H3vy5Mlc95tXRqPRHCTZsx+j0ajatGljV1CVtWyeglwhCkhezt/S9Sbcx//9nz7tdOoE9eq5ujZF19Gj8MILsHy51eabTrkfNEi/BwCTJ8Nbb1EQ3XA5TQJw2rgkoxF+/RVatdKfo02bwNsb+vWDiAj4+2/SxozhUB53a+rqax0Whu/DD8PPP+vXuW9fvfbgzz9DgwY6+acd47xCQ0PNs0ZtDf7O7TWpWLFiHp9B7mzlbsqtvGXm8NzGKualrBDuSAIl4R5iY2HOHH192zY9803kz9y58NVX8P77eX/ssGGZOavefVePWXLCAG/LcUUFsuxGRoZOUBoaCo88ope/8fOD4cPh5En9moSH60Hv+ZBj5u/atWHePNi/H8LC9HIyI0dS6oEHqJ7DPiwXCN6zZ0++g8P4+HgCAwMLZKFhIUR2EigJ9/Dll/pE4+sLCQluk9OnSBo2DB59VK8Blx/Dh8PMmZkpBLp3dzh1gK2lRxzlBfQD/Fq0gCefhIMHoXRpPbD99Gkd9N16q9VjLKf2t2nThmg70ink2hp355265erLL6F0aTy3bSMSeBTrBJGmYGvv3r14eOT/q9fDw6PAXk9HKRkMLoohCZSE66Wn6xMzwCefwNq1cPfdrq1TUValCvz0k27lyK+hQ/U+SpWC33+nVMeO3O5gtSyDDNMJNd+uX2cQcAyYC3gcOwbly8PEiXDmjO46rFzZZj1MQcvmzZsJDAzMfz1MPDx0hvR9+8ho0YJywE/Ad7fdhulZ25NtPC+vSX5apAoykFEWedhyy7EmQZQoaiRQEq73009w7pw+sT3zDNx3n6trJEAnodywASpXxvPQIfYAzzhp1+Hh4XZlr84mPh4++AC/O+9kFlATiAZS3n1XtyCNGwflyt10NzcLWixbnfKUH6l2ba6vXs2HN26+BfwI2JuC0jLz9k0TZOaRvYFMftk7Fik/KSFyIq1XorBIoCRcSym9MCvowcR2rlcm7BAfrwcXjx+f/320agWRkWS0a0cg8C3wM3DrTR52M6ZlN+x28SK88YbO+zR6NB7R0ZwFhgC1gPThw3WXm5NYtjrlOT+Stzej0F2CKeguuE2m55CD3LJ8OzOppbsMqj527JjD+yjooE8ISxIoCddavx527tTXf/oJjh93bX2Kk8hIGDlSj1VyJElolSpc/+03xgFpQA/gL2AM6HFlBUUp/dl49lk9Zu299yAuDu64g5TZs6kDfAbmxJDO5ujCvPOB9sBFoBng36mTbvXK4TgRERFWi+TWrVvXPCvOWUktixN3CfpEySCBknCtd9/Vf7289JpjtzraViHM2rbVXZmffgplyzq2L09P3gaaAluA0sD7QIWWLRkJlHewqlaio3WdmzfXLVpz58L169CypV5y5fBhfAYOpGV+usZykO9M33bYDnhu3YqqUQPD8ePQpg0cyp6cIGuagKwBkaNBmxAi/7xcXQFRgm3fDuvW6SBp9249s0q63pzHYIBvv3XqLg+j1zt7GpgA1L58mQ+AtwGv554jvVs3AoGc5siZupi2bNliXU3A48AB/Xn49Vc9g8xo1Hf6+uo16F58EVq3Nk/vN6CDieTkZHPLS34ZDAb27NlD8+bNiYyMdDjwyqpU48YYtmyBzp3h8GG45x79uW/SJNc65Ze93VCmgePOfK5CFEcSKAnXMbUmPfNMricN4XqWQU6T0FC+i4xkEdAHeBnd0sQPP+D1ww9cMRiIVIp/Q0Lw//xzqFYNypTB4OVFxPjxpFy4gOHyZX6ZNo3yUVHc5eWF340xOGatWukAqW9fqFAhxzrllqwxrzw8PNi7d69TAi/L18ocdAUE6ADwgQd0d2KHDnp2ZwF87tu2bcvevXuzPYesAZRpMH1YWBgrVqxwej1sHRd012JuY5WUUk55L4RwCmenBS9JZAkTB5YwiYzMXP5BlispWEajUn/8odRDDynlwHIRpiVQsi5BAaikdeuUeu01perUsV4yxN5LYKBSDzyg1LRpSp065bzn7iI2l4u5elWpu+7Sz7lCBaX27zfflXUpk5vJuoyL5dpwWf/nclqixPKS01IrlvvI+nxyWkImp222jmu5PEtOdb3Z8iiyXpxwVF7O39KiJFzjvff0X4MBpk/XiQ1FwcjI0HmRTp6EL76AV17J125MLThKKasutLCwMPzat4d774UPPoBTp3RX6p49OqfRv//qblVThu+KFfWlenWdrLFRI51R29vbOc/XDdhs7SpbFlat0sur7NqlW5bWrdOvgYMiIiIICQnJ8b68LlFiSd2YYbZ161bCwsLylOjS1nFvlksq60BtZ7UcCpEfEiiJwnf0KCxZoq8r5fhAY5E7Ly+dIuDAAejd2+HdmWZpmWYaWXWPGAxw22368vjjDh/L7WRkgKenY/swBUv3368Dyk6d9Dp0QUEO7dbZ45qMRiNGo5HLly8X2gwzo9FIs2bNci2jHE1WKkQeyaw3UfimTNEBUrduutXhtddcXaPir29f+PBDnbXbCUwtJsV2Jtbhw3oh3SeesN7eowcEB+s13hxhCpaaNNGz/O6/H4+oKMf26YCckkAGBQXh6emZv8Sg+aCUonnz5jcdu5TvZKVC5JMESqJwnTmTORPrjTegWTOoVMm1dRIiPR0sW0rS0mD+fNi40bpcRoZOHOnnl7ntwgV4+mm9mHNelCsHK1dCnTpw+jRln3jCuWkWsD97tSk4adKkCU3yMcDcGa08lt10VatWtVnG1LolRGGRQEkUrg8+0Cele+7RM5tE4Tp5EgYOdHragCJt4UIdrEyblrntzjt1d+WcOdZlFyyAffugY8fMbYsWwfffw+DBuqU0L4KDYc0auOUWvI4e5U/ACSvPAdmzV9tj8+bN7N27l7p161ptt0yGmRNnt/Ls3bvXafsSwlESKInCEx2tV1gHfbJZu9a19SmJfvpJvweTJmXmKirp0tN1S+cPP2QGOl5eMGGCns5vqWxZPfC8vEXbT8eOMGCAbiE1dUMqpVua7FGjBqxejbF8eVoCv4BOsOmApKQkq0HRtgZy16lTx+q2wWAwp0qwdLPB1PYsSWNK6mlPnipHunNNY6uEcBYJlETh+egjSE3VSSVTU/WvdlG4Bg+GRx/V3UoeJfTfPzHReimRp5/WLWw7d2YGOnnRuDF89RX06pW57eef4fbb9XZ71K9P7MKFxAP3AWVefDFzlmA+BAcH29WKtHLlSvN107Ip4FigYku+186zcLMuRKPRiKenJ56enhIsCacpod+UotBduQKzZunrixfD5s2620EUrsBA3arUurWra+IakZG6Rah7dx2sgw4Yn3nGetyRo5Yu1evgnThh90PKduzIw8A1wHfFCnj++Vxb/SwX082plcaedACWAUtBryPn6DIsSqmbBn+XL182X7906VK+jiNEVhIoicLx4Yf6l3xoqJ7t1ry5q2skIO9jaoq6ChUgPl4H7jksUOs08+fD11/r7js7eXh4sC4jA99ly3QKgnnz9KLGNt4jU5oGZy2W64wg6WZjmfJLKcWlS5fylAuqbdu2di/nIkRuJFASBc5w/rzudgM9QLY4TicvalJTYcYMaNECrl1zdW0KT7Vqelr+gQO6a6ygeHjAc8/ptepABzsDBtx0EL2HhwcejzySOYh8+vTM5Kw5sGylsWxhslfFihVzvH4ztgKQgkgMmZeUAJataseOHePSpUsopWTcknCIBEqiwHm/+y6kpOgbH34og4jdgVJ6ltfevY7nBHJnCQnQs6d+niahoYWf5HTpUvjmG3j2WTh+/Obl+/SBjz/W1998M7PbOhemFqaYmBi7q+Xh4UFGRgYZGRl4WIxZy61bz54uMGfKS0qArK1iwcHBhIWFybgl4RDJzF1MqRuLSuZFQWS7bQh4ffedvlGqFDRtWnIHEbsTX18dtF69qk/exdUbb+iB1ZGR8PffrlsmpXt3eP11qF1bpyKwx/Dh8N9/8PbbMGSIzrt0k8zqtpZOCQ0NJTIykjY3Fh82LUdia9FZy+zr/v7+Vt8ljiyH4grbLPJbXb58mcqVK7uwNqIokkCpGLJcm8nV3gcMRqP+VT9jRmZXhHA9y1laxdXbb+sA6Z13XLuWnIcHTJ5svS0pSdfJx8f24yZO1OOpPv1UtzKVLQtduuR6KFNrkOVafJs2beLatWvmliFTAJTbuCSb69UJUcJIoFQMOZq91p48J/a4B3gIUJ6eGN57D2xk2xVuQCndPVqqlKtr4riUlMyAvEwZPSbJ3SQlQdeuen23JUts/4AwGPQPjCtXdGLMRx+F1ashl7FIttbiswx63CkActaAa1kDThQU6QMp5mJiYkhMTMzTxSnThI1GPrhxNf3RRwt24KxwzJ49+sT7+uuuronjTp2CBg3gxx9dXZPcHTwIO3boJVJuNmbJw0OPI3vgAT3w/qGH9GD0XBTkWnyWwUjWDN754YzZabIGnChIEigVc6Yvy7xcnPHF6vnzz9wFKMBr6VI9RkS4p6tX9Tpl8+bpwc9F2axZepmWiRMdSthY4O6+G377Ta/11rDhzct7e+vgLywMYmOhU6c85Whypttuu818PSIiIl/78Pf3N2fqjoyMNM9Oyy9ZA04UJOl6Ew7Jsak7NZVS48cD8A9Qp3lzPPOx0KYoJB076hlWjz8OpUu7ujaOmTxZj/kZMkQvQ+LOLNeLA7h0SQ/YtlVvf39Yvlyvk3jgANx/v07c6sIu7Zv9qLIV/Ji6B0vf+LwFBwfb3TplGpiebZ/o7v4HgFbAreiWgMvAXmA5oExJRoXIA2lREg4JDg4mMDDQ6jK2fHk8z5whCmgOXP/lF8md5O6GD4cqVVxdi/xJS8u87umpB24Xtedy6pRuZbpJNm7KltWtULVr68d07qzHL7kho9FIs2bNzLezBk1Zg6xjx47Z3I9JTEwMe/bsscoX5Ql4fPEFfwPrgdHogKk2UAu4C3gR+A1QtWqhvvjCvVsbhduRQEnkWW6J7YKAcTeuTwBCw8Lwl+m4RcupU0UnY/f169Chg+5qKyp1zslff+mFeSMiwGIZjhyFhOgB3VWrwqFDeuxSXFzh1DMPmjdvbhX85DVdiUkVi6DX398fDw8Pc76oDsABoOJbb3E7EAfMAfoC4eiWpZ7A/wExQEh6OoYXX4R27TAeOyZ5lYRdimSgNHnyZO666y5Kly5N5cqV6d69O0ePHrUqc/36dYYMGUKFChUIDAykZ8+e2RKxnT17lq5du+Lv70/lypUZNWoU6fJL46Ysl07Ierk0ciQVAWOFCnwUFVXg60cJJxs7Vg+8/+EHV9fEPr/8ooOLjz6Cf/91dW3yr2tXvQbf5s1gzw+LWrV0y1L58nox306d9NglN2KrhcgelmOYLJmCLcO1a5QbP541QAPgEjAMuAV4DvgW2ALsBH4GRgDVb/xVQUGwbRuJt99OF0lCKexQJAOljRs3MmTIELZv387q1atJS0ujU6dOVuNlXnnlFX777TeWLFnCxo0buXDhAo8++qj5/oyMDLp27Upqaipbt25l3rx5zJ07l3HjxuV0SJGF5awa8+XqVXxmzgTA47//CPjqKwmSiho/P90tkc9BuoXuiSdg9mxYtkwvT1KUPfKIdZfhzQKfO++EtWv1+nU7d+oxS1evFmgVLeU1jUhelkgx/RjL0bFj0KIF3rNnA/AJUAeYCSQB0dHR5sSaJnXr1iUV3bJ0bft2Ulu2JAj4HUj89FO76yVKKFUMXLx4UQFq48aNSimlYmNjlbe3t1qyZIm5zJEjRxSgtm3bppRS6o8//lAeHh4qOjraXGbWrFkqKChIpaSk2HXcuLg4Bai4uDgnPhvHJSYmKvSEM5WYmFh4B37uOaVAqdtvV6pFC6Xc7HURdkhOVmrVKlfX4uaMRlfXoGCtW6dUuXJK/fTTzcvu369UxYr6f69ZM6X++8/p1bH8TgFUTEyMMhqN2bYnJCSo0NBQq23x8fEqIyPjpvs0PS4sLCzHfQPqyo8/6tcFVEZIiOqU5X7Td57p8RkZGSoxMVElJCRY1fHkkSPqO91Zq4wGg1Lffef010y4t7ycv4tki1JWcTf658uXLw/Anj17SEtLo6PFrJI77riD6tWrm9PZb9u2jUaNGlnl3ejcuTPx8fEcPnw4x+OkpKQQHx9vdRE37NkDc+fq63Pn6l+4QUGurJHIDz8/3TLhzr77Dp58Uo9PKq6WLtWtQ59/fvOxV40bw7p1UKmSXtOuQwe4eNGp1cm69lulSpWyLcQbFhZGQEBAtpYgDw8Pq3XkbO1zz549ueZxex4o27u3fl3uvpvrW7ZgK5WoqcXbw8MjW8qT8PBwbqtfn2eATwGDUtCvn37NhchBkQ+UjEYjI0aMICwsjDvvvBPQTa8+Pj6UzbLwZXBwMNHR0eYyWZOTmW6bymQ1efJkypQpY75UK+pN/c6SmqpXSjca9VpUrVvLLLfiIDlZr2LvToOkL1+GQYNg8WJdt+Lqo4/0Wnz2zhht1AjWr9fjmyIjdb6lkyedVh3LcYmWgUxO2+3tbs/62JyCGtAnqWnAl4AhPV0HyevXo/KZXHL//v3m6y8D1558EjIy4Omn9Q8+IbIo8oHSkCFDOHToEIsWLSrwY40dO5a4uDjz5dy5cwV+zCJhyhSd18XTE3r0cHVthDOkpkJoqA6Af/nF1bXJVLEi/PorvPACvPiiq2tTcLy84LXXrJeUudlEk4YN9diymjV1tu82bZya6NXUSpM1kLG13ZF9mpQGfgFevXE7ccwYWLAASpXKdfatvRSQ8OGHmVnPH34YLlxwaJ+i+CnSgdLQoUNZvnw569ev59ZbbzVvDwkJITU1ldgsgyFjYmIICQkxl8k6C85021QmK19fX4KCgqwuJd5ff+mFR0H/Kvv2W9fWRziHj49eNLd6dfdb/+2+++CLL/TSHiXFl1/qwOdmmdNvvx22btXdcTEx0K6d7pYrggxnzrAFvV7kNeBxwP+998wtbKYWqazf4zmxNYsO0EHpwoV66ZsLF/R6epKYUlgokt80SimGDh3K0qVLWbduHbVq1bK6v3nz5nh7e7N27VrztqNHj3L27Flat24NQOvWrTl48CAXLfryV69eTVBQEA0aNCicJ1LUZWToFoe0NJ34bsgQPQNJFA9vvglHjtx0tfoC999/ulvEyeNuiozYWP1e7NoFX3998/JVqsCmTTqDd0KC/t+cNavAq+lUW7fi1749jYALwNBGjViUkZFtrFPWxX5tyW0WnVIKY+nSJC9ejCpbVq/B97//Of4cRPFR4EPLC8DgwYNVmTJl1IYNG1RUVJT5kpycbC4zaNAgVb16dbVu3Tq1e/du1bp1a9W6dWvz/enp6erOO+9UnTp1UpGRkWrFihWqUqVKauzYsXbXo8TPevvoIz3TJihIqXPnCu44omR7+GH9Obv3XlfXxHV27lRq4sS8zfa7dk2pJ5/Urx0oNWiQUnbO6HVE1tlqef4OmjNHKR8fPSOtaVOVdPSoMubyvO09Xk6z6LJeXr/jDvPrZfz112z7MM2my60+omjIy/m7SAZKtj7kc+bMMZe5du2aeumll1S5cuWUv7+/6tGjh4qKirLaz+nTp9UDDzyg/Pz8VMWKFdVrr72m0tLS7K5HiQ6UTpxQqlQp/aXy+ecFcwzhPlauVOrRR5XKw/+H0xw9qlTz5kodPlz4xy7qjEal3n9fKYNB/6+2bavUv/8W6CHzHSilpys1cmRmYNezp1J2PNaZgRKg5pYpoxSoWC8vZTx71vx4o9Go2rRpY5XCQBRdxT5QchclNlAyGpW6777ML7RRo5x/DOE+4uPNuWvUjBmuqYOclDJlZCg1YkTefqAsX65bfkGpChWUyqG1xFnyFShduqRUly6Z3ynjxunnmd/jXb6s1GuvKVW3rlI3fiAnJiaqjqB+AdUbVGiTJjkGSj6gdt6oR/q99ypjenq2XEwF3lovClyJy6MkCtlXX+kBoqZVzps0cW19RMEqXRqmT9cL5z77bOEc85NP4ODBzNuSbiLTkiXw8cd6TOCpU/Y9pmtX2L0bmjXTY74efhiGDgWL1QxcZvNmPcNyxQo9cWDRIr12n52D9bPmY/L399c53H7+WWfxvpEXz9/fn0dr1OBhYETZsuzZuzfHgeCpwDNAMuC5fj0f1a1LYGAgbdu2tSpnNBpl+ZOSohACt2KrRLYo/ftv5i/TadOUioyUX/vCuZYs0Z+vMmUKvJuoSDIalXrxRaW+/z7vj71+XalXX81sualRQ6k//3Rq9exuUUpJUWrCBKU8PXVd6tXTWcbzwWg0quQNG6y7w1at0pnNExIyyx07plLGjFHGGys0mOpaKoeWpaE3XqMkUHVy6arLKeu4cH/S9VZISlygZDQq1a2b/lJr2VKPKRAl04kTBbfvK1f0WJoxYwruGCXdihVKVa+eGTA98YRSp045Zdd2BUq7dinVqFHm8Z95xiqgyROjUan//U/v55df8lzXl0EdAlU7SwBkALX6Rv22gvK0ESjVrVtXxisVQdL1JgrGokXw22+6G2T6dJ1gUpQsKSl6uYcGDeDQoYI5RrlysHo1vPdewey/uElMhMGD4dIl+x/TubPuknrlFd3FtXgx1Kunb+dlP3l1/jw8/zy0aqW7VitWhO+/h/nzITAwf/s0GDK7EG0sP2XTtWu8BjQEemW5SwHPAnFAa2C0jV0cO3aMpKQkkpKSUO6UxV44jQRKwj6XLsHLL+vrSsG8ea6tj3ANHx+4ckXnzrK1unt+HD8Oy5dn3vb1LVkJJR3Rv7/OX9a7N3labiYwUC+Vsnu3Xh8uNVWPfapeXS8T8/ffzqvjmTM603jdujoXlNEITz2lE9Y++aTjY9CmTYOVK2Hs2Lw9zs+Pu4HhwPvopMMZGRnmdTz/RS9zAjABaGRjN+Hh4eZxTBIsFUMF3r5VjJWorjdTPpbbblOqTRulYmKcs19R9ERFKbV5s/P2d+mS/lx5eCj144/O229JceSIHt+zfbtj+1m1SqkWLTK7w0D/r8+cqdT583bvxvT94wfqMVBpDz2UOQ7JtM+tWx2ra0aGUgsXOjw+0mg0qrCwMOsp/0ajSjxxwqp7bemNuu8D5X2T9AIyG65oyMv526CUhL/5FR8fT5kyZYiLi3Or5UySkpIIvNGMnZiYaFfm2lwtW6bXcPPwgO3b4a67HK+kECbp6Xrdtg0b9PIb+VzstETLyHBOV7hSuqVw+nS9xp/l6aFePZ3tu1EjfT0kBMqU0bNfk5N1S+OJE6RGRrJl6lTuBvws992xI7z6qs707mgL0ujR8MEHMGYMvP++Q7tSSpGcnIy/vz+GjAwYNAjjypVU+/dfTKu+VQYOAxWBScD4XPbnlO9cUeDycv72KqQ6iaLq8GHo00dff+01CZKEtcuXYeRImDpVr1yfH15eOuXE5ctQqZJz61dSWAZJZ8/qbqgXXsj7fgwGvT5cu3Z63bMfftBjE3fuhKNH9eUmfIB7b1w/Bdzy6qv49O+vAyxnqVpV/3Bzwj6tlkFJSIDNmzFcuEAYsORGmYvAS8APwP+AX4E9Dh9ZFBXSouSAYt+idPkytGypc7V4e+svzEcfdWJNRZHXqZMeeP3II7rl0V5Gox6T1K2b5Ehypv/+08FDVJRe6LV3b+fs98oV3dK0bZseu3T0qD5WXJxuEQwI0K1Lt91GWs2aDJk/n03AUQqwheWff/QiwM525gzqwAGajRtHZGSk1V0Lgd7ASV9fGqSkkJLDw6VFqWjIy/lbRkuKnKWmQs+eOkjy9dWDd2WWm8jqo4+gaVN4++28Pe6113RwNdrWXCKRLxUqwDPPQMOGcCMJo1OUL6/fr/ff1wHxkSN6keKUFB0oxcfDuXOwcSNec+fyV1gYR7FIAOkMFy/qLkaTggiSAGrUwNCtW46L6A4BooHbUlKIHzHCPOjbkrQ9FD8SKInslIKXXtIrkAcF6XEjy5bpL0ohLN15J+zZk/cukGrVdNdJaGiBVKtEe/993fJTrVrhHC9Li6DBYCAiIoLExEQiIiIwOKPF8No13XrZuXPBpi+wYDAYKA+sBkzt6FeAgTeu+/zf/+G1c2e2x8nMt+JHAiWR3ccf6ym8Hh66u61ZMwmShG2WJ8KjR+Hff2/+mFdf1VPDn3664OpVUnl46GVnTCIi9BijQmQa9+OUIAkgMlIvR3LggG7tLgT+/v68X706HYFZZA5M/w1Ie+opUArfF18ka3tZZGQkycnJhVJHUTgkUBLW/vxTd4sAPPEEPPCAa+sjio4NG/SYtu7d9SyorNassT7J1atXWDUrubZt060wXbrYNRDbbbVurYO9n3+GW24plEMaDAaeP36ctP79Cdi+nWsW96VOnQq33ILHiRNMLpTaCFeSQElk+usv66R1kZF6DIIQ9qhZUyekLFUqe6C0aJHuOuneXT5ThalRI71odevWOpFkUdawIYSHF+ohDd7eeM+Zo7uYLZUtq1vdgWFA+0KtlShsEigJ7fJlPQMpPh7attWrd//+ux7ILYQ9ataEjRth3Tq9NIWl8uV1AFWjhg6mROEIDIQVK2DpUvDzu3l5d3LlCjz8sO5ycxO3AT1MNzp3Rt1IwTAHCHNm+gPhViRQEro75LHH4ORJqFVLN2+PG6evC5EXDRpYB0KXL+u/nTrppTI+/VTSARS2MmWs35P583WuJXf3yit6bcknnsjb0iwFwN/fn95Nm7IXWGgw4H+jG9MwbRqqZk1qAuubN3dlFUUBkkCppFMKhg7VLQE+Pjobb9bWACHy45VXdAvS9u36doMGsn6bq337rV7UuH173WLjziZPhvvvh2++cXlwbTAY+H7XLgIeeACfNm0wmLLHly6NYc4cALznzqWzC+soCo58a5V0M2bAl1/q66mpOombEI5avhz+7//0WCVZQNl93Hsv1K6tE8eWK+fq2uSualVYtcptUkgYPD3xWrQIw/r11gPK27eHYcMA+Boo64rKiQIlS5iUZCtW6GnaoFfwLlNGMm8L57jjDqhSRa8H9n//5+raCJNbb4Vdu/RgZHfsAj1/XieuvPtuV9ckZ1kzOF+8qJfumTwZ4x9/cMvx48wCl3cVCueSFqWS6sgR3fdvNMKzz8KCBTBrlnt+eYqip04d3eW2Y0fm+Bilck4bIApXuXKZ/+dGI7z1lnu0JKelweOP68kkixa5uja5U0qPtzNNYPD3J+WLL0hHL3Hi9c03Lq6gcCYJlFxMKUVSUpLTL7n67z/o2lXPcGvdWgIk4RzffKNbK0yqVdML3oI+sQwfrleQT0hwTf1Edu++C++8o7vkbva9UdBSU3WXVkBA0Vh8e/t2nTF88WIAjC1bMvbGXT6jR+v0KqJYkK43F1JKER4eztatWwvvoOfP6zQAp07p2wEBkgJAOG7RIhgwQK81duCAHl9i6dw5+O47uHpVpw+QTO/u4cUX9QSO4cP1d4ErBQTooOPkST2Oyp0ZDPD55zrAfPZZ8+ZpQDugW0oK6vHHMezenb27ThQ5BiWL0uRbXlYfzklSUhKBgYEFUDMtLCzMeq2lPXt0XpILF/QYBR8fnV+lTZsCq4MoIRIS4L779Cyld9/NuYVy927d5dunT+HXT9iWnp7Z8ge6O64wZycmJup8T0WcUopmzZpxNjKSfUB10MMbFi6UFns3lJfztwRKDnBmoBQTE0OAk3/R+fv7ZwZJS5fqdbWuXdMZbpcv14NtpTVJ5JdS1ieAa9fyltQwMVE/3tUtGSJTUhI8+KBOIfDccwV/vLg4PXC7WzedDsDTs+CPWRDS0+HNN7lerx5+zz3H3cAmwBtImTwZnzFjnLfunXCKvJy/ZYySmwgICHD6xWAw6JPZ1Kl6Ntu1a3qg5JYtehCiBEkiv65e1WuIWQ66zUuQdP267n7r3FmfLIV7+Oor2LQJRo8unDxLv/0Gf/+tW13cPa9TbubNgylT8H35ZdrfeSfbgRsrZuI1diyvNmyI0Wh0ZQ2FA2SMUnGWmgqDB+tBtiblyuk0AEI44quvYPVq3Z3bpYvuys2L48dh7179S/zkSWjatECqKfLo5Zd1wNKxo152pqA984zu9qtbFypVKvjjFZT+/eG33zA89RRrH3uMO+64g5nHjtEYeB4Yf+QId3h68ndGBh6SdLXIka43Bziz6y0xMdG5XW9XrkDPnnpFdw8PmDBBrx4+Y0bhfAGK4s1o1BndX3xRL7qaH/v3Q2ws3HOPU6smnOyvv3S2/sqVXV0T92bRFW00GmnevDl/RUayDggD/gYq/PMPlerWdWUtxQ3S9VbSHTsGLVvqIKl0ad28/dZbetaRBEkiv1at0gES6OD7s8/yHySBfqxlkHTsmG6hEu4jKkq3GLZsqbvInGHLFj1eMjHROftzFxZjkDySktjbpw/noqN5FDgH3AGU6d9fdzuLIkUCpeJmwwadg+TECX3700/14EwhHPHKK3o80XvvFcz+L1/Wn9N27WD9+oI5hsi7pCQ9lrFUqewpH/IjJUXPBPv+exg/3vH9uaOMDLjvPgyvvUbZmTO5CDwExAM+W7fqWZ8ZGS6upMgLCZSKkzlz9CrtcXF6LFKFCnDbba6ulSgOmjTRv5gLauaOj4/+rFaurBfPFe6hTh2dRPT3363zAeV3YLKvL/zwg054+/bbzqmju/H0hEGDICSEjPvvB+AA0B1Q3t7w448wYoQsc1KEyBglB7jNGCWjEcaO1bPbQP9imzlTz3KrXj1/+xQiJcV6ZuThwzq1REFJS4PoaJ3R26Swc/qIm/vlF5gyRc9Uq1HD1bVxX3FxJHl5WeXKi5kxg0rDh2NQSo8bLa6takWAjFEqSZKS9NR/U5D01lu6WbtSJQmSRP6kpurp4a1b62DJpCCDJABvb+sgae1anWPn9OmCPa6wX1qazuK9bRt8/bV9j0lK0tmrz50r2Lq5G4vZxbWAe4DgYcP4wNSFOWGCXj5GuD0JlIqyCxf0YNhfftG3DQbdmiS/wIUjrl6FuXNh3z749VfX1MFo1FPVd+2Cjz5yTR1Edt7eegzZiy/qH2X2ePll/Xl6+OH8d9kVUf7+/nStX5/NwHLgLmDM+fN8XKWKLvDWWzqTvXBrckYtqvbt0zNR9uzRU3f79dN9/wX9q18Uf8HBMH++zubeq5dr6uDhAStX6vXjpkxxTR1EzmrVgtmzddAEeqzNyJHWCyJbmjBB58n67LMS9yPOYDCwKCKCQ8Bp4MYKm7wSFUXiG2/oG2++CZMmyZglNyZjlBzgsjFKv/4Kjz+uu0Xq19fLkcigbZFf587pxKRjx0JYmKtrk7t33tFdzTLg233Mnau71vz94exZPYkkqxI81iwpKYlKgYEEAJez3De7enVePHtW3xg6FD7+uOgu41LEyBil4uq//+D11/XSDykp+pf/li0SJAnHTJ6sZzW99JJ7/6pdskR3VbRqBZcuubo2wqRbN3jySd0yUqGCTiLauTNs3ZpZpoQGSSbXsA6S7gc6A4POniVl6lSUwQCffKJfR8txgcItyBImRUF0tB6n8dlnemAk6C+eBx4oFqtuCxewXND23Xf1Z+y999x7lfPwcJ3+4u67i/ZyF8VNhQp6AokpyJ44UScn3b5d53OrWNG19XMzzYBf0AvmtgdaLVjAHUrxrcGA95IlcPGiTiEgr5vbkK43BxR419u5c3o22+ef69kmoPv633pL5ze58073PrEJ95OUpAOj2FgdeBc1RqM+IZu6Jy5c0BnnX3klc8yMcK2kJN3KffGibiH5/ntX18ilLL/nQQdI3wDlgEcAU+rJDsDqwEAMiYl60fJffoHGjQu7uiWGdL0VdSdPwsCBULu2bo5NS9MnhiVL9ODtHj2gUSMJkkTeHTigu9pmzdJreBU1Hh6ZQZJSurtwzBg9xkq4zrFjmdcDAuDbb/UPuQkTXFYld+Hv70/YjbF/oaGhpAF9gZ5kBkkAEcC1dev09/7p0zo9x08/FXp9RXYSKLmTI0f0Gkh168KXX+oA6Z574PbbYcgQuPdeCY5E3l22GB3RujX873/612r9+q6rk7M89pjO5v3yy66uScn18cdwxx16pqRJp046KL/99sxtH36ofwBeuFDoVXQlg8FAREQEiYmJ7Nmzh7CwMBRgORJpLDpQUqVLw86d0LEjJCfrz/fLL8v6cC4mgZIbaAz49umjZ/J8/73uXujSBTZv1mu3HTkC//d/Oc8mEcKWq1f1F+0dd+hlbUzefVfntCnqQbfBAM88A2fOWC/OO3s2jBsH8fGuq1tJEhurv7O2b7febvn5unxZZ6H+8kv9vVbCGAwGAgIC8PDwICIigpMnT5rvKwOMAFoCUzt1QpUrB3/+qVMugO5VaNVKnweES8gYJQc4Okbp2saNrG7fnoctN3p56XXadu7U/dRC5Fd6uh7jcPSozrHVs6era1Tw/vtPd13Exenun2eecXWNiifL6f4ZGbBsmU7bkFvwvXmzHk82a1ZmuSNH9AoC+V2+qYgyGo14WqQBqAH0BqaQZbzqn3/qHHmXLoGfn55w8fLLkkLACWSMkrvbtAnuuQe/G0GSEUh/7DHdVL11qx7ELUGSyKvjx/VAf1P2Yy8v+Oor2L+/ZARJAOXLwzff6HF8Tz6Zuf3cOb00i3BMaqpuGXroocxZbp6e+vN1sxbK8HDd2mcqZzTqx9WqpZdEKUE8PDzIyMggIyODxMREDsbHY5VW9fp16NNHD4o/cADuv1+v3fnKKzrX2eHDrqp6iSQtSg7IU4uSUrBmjV4xOyIiczPQEfjVkUVxhbh+HW65Ba5c0Rm1u3d3dY3ch9EId92lZ2EtWaLTC4j8OXFCD9K+fh1WrND5kvLrzBm47z79mT1zBkzfoZapK0oIy5lxCQkJBL77Lrz/vh7jZepy+/JLvQZjfLye4Tl6tE4SK+eNfJEWJXeiFPz2m/5y6dRJB0k+PjBoEGmDB3M/sM7VdRRFj9Gou2dNSpXSM78efFAWQ87q1CmIitJjturWzdwuvxHtk56eeb12bZgxAxYvdixIAqhRQ3cLb9yYGSQB9O6tP8slbRHdG9q2bYsaMkQP6J4yRXdxenjo9fUOH9ateWlpeqzh7bfrLuYStoZeoVMi3+Li4hSg4uList+Znq7UDz8o1aSJUvorWV8GD1bq33+VUkolJiYqdKOSSkxMLNzKi6Lr2jWlGjbUn6e//srcnpHhujq5u+vXldq2zXrbM88o9dxzSp044Zo6uTujUan585WqUUOpo0cL55gnT2Z+VxbWMd2A0WhUoaGh5vNBTEyMMmb9f16zRqkBA5Q6f16pH39UqmbNzNeqZUt9v9HomidQBOV6/s5CWpScLT0d5s2DevX0emz79+um0YoV9S+l8eN1F4kQ9lJKt4qYlCqlE46WLm09VqGELxORK19f6y63qChYuFCPZ7p2zXX1cncLF+pusQ8/LJzj1aypZ/qaWktM3n1XLxwbFVU49ShkBoOBTZs2mW8HBwfTtl07lKnVMz1dt7J9/bWeBdezp+6SmzxZr85gSinQvr1+/YRTyRglB1j1cfr66jwiEyfC+fO6QJkyMGIEDBumT2pZMgfne1FcUXJcvKjHcZw8qU8SZcro7WfP6tmRpUu7tn5FlVJ64sS6dXoAvMmkSXo5l5dfLh55pvJq61adzNb0uTp2TCc9fOUVHWy6wrVrUKWKnsm4apUe2FwMXbx4keDgYKttVueFrVv1rLcFCzK/B6KidL6l//s/vYLDjQkL6p57SBk6FJ/u3Um+kYMpICAAQwkb+5WbPI4xFvllbrqbMkWpW2/NbAY1GJTy81Nq375cHy9dbyKb2Fil9uzJvG00KlW/vlKlSim1dq3r6lUSpKYqVbmy/h/+7bfM7SWlO+Oll/Rzf/ttV9fEWkqKUt9+q1Tv3tbdy599plT//krt2OG6ujlRRkaG+XyARRdcYmKiMtr6DD7xhFLlyyvjjz+qpKNHlXHwYGX08TGfi/4GNQiUP6gmTZqojIwMlZiYmPs+SwjpeitsY8bAv//qXz3Tp+vcFxcvQmioq2smipItW3SW6UcfzRxobDDAokW6leO++1xbv+LO01Pn+Rk40Hqg8qefQsuWuhuqOElKsk6ZEBamU0pYJid1Bz4+Oh/WwoXW3ctffQVz58K+fZnb0tIy18UsYkwpA+ItEqUGBwcTGBioB3grhVKKpKQk3SV3/boe2nHlCv3efpuAevVotm0blzdv5gMgFqgHzAL+BZ7fv5/mnp4EBgYSGBhIeHg4iYmJmd17wrYCDtqKNVNEGgvq+ptvqsTLl83Ruj2XmJgYaVEqqU6fVmr6dKV++SVzW1KSUgEBugUpKsplVRNZ3HOP/oU+fXrmtmvXlNq9u+gOoB8/XqmgIKUWLszclpqq1NmzLqtSnm3cqCfHXLqUuW3JEqXKlFFq5EiXVctRlj0Nlpfo6GjVpk0bBaiwsDDdIpSerpL/+MOq3DugNoDqBOplUMctJxOB2gtqCKhKN8qHhoaqjKL6OXZAXlqUJFBygOmF7g7KI4cPdl4uEigVcwkJ+kRkMnWq/uLq0sW63I0ZkcKNREUpNWuW9Xvz55/6/Wve3HX1youzZ627EMeN0/V/5hnX1akgDB6sn9err2ZuMxqVmjZNqe3b9WxkN2c0GlVYWJgCVN26dW2eM+Lj45VSSiUkJJi3eYD690ZA9AioqKgo5QGqC6g/y5RR1y0CpnRQa0G9COrehg1LXFecdL0VsmXo7Nr5FRYWhr+/v5NqI9zO44/rgdcbN2Zue+gh6NABunWzLiszIt1PSAgMGmT93vz7r55t1LSpddlevWDUKN317g6U0vnbqleHXbsytw8cCGvX6hm6xcnMmXrQ8+DBmdv+/htee03PCLPslouNdctcWpaL6O7du9dmuaCgIBISEggPDzdvM6LXjHsT+AMoXbo0aRkZ/D5rFp0DAmDcOOLfeYddgCdwHzAbWH34MGnh4agpU+DgQbd8XVzJy9UVKA4uXLiQr7XeTPz9/WU2QnFw8SJMm6ZPogsWZG7389PTe01TeEHPqFqzxjX1FI57/nno2xcSEjK3RUXBjz/qcWVvvJG5fcsWiInRY4CyzGpyqrQ0vZ7aoUN61h7oulSooP/u3KnHWoEO+opjUO7pCa1bW29LT9dL2nh66tQaJk8+qV+TefP0Dxc3YlpENykpKddyluedJk2aEBERQVBQEO9alPHw8IBff4ULF/ANCCCuf39avvkmtYF9Dz3EieXLCQU8t27VQebrr8Ott+qF2Tt3hnbt9NjJkqwQWriKrbw03Yli5uBBpT74QHfBmPz3X+ZYgMuXM7f/849OpCeKt/h4PTtr/Hjr7U88oT8T772Xue3aNaVWrVLq6tX8Hy811fpzdvasPo6Hh/4smhw/rtSFC/k/TnGUnq5UxYr69YqMzNz+55+6O/X9911XNwtZxytFR0erJk2a5NgVl5CQYNVtZx7HpJROuPr770qdO2eeXdf+xnfVeVA1QQ0F9Tsoo6+vdZJkUOqOO5QaOFCp774rWuPYciFjlAqJBEolQEaGUkuXKjVhgh5sbTJhQs5jPN54Q6lvvtEnTSGUUurNN3WG/nXrMrdt3ao/P9WqWZfduVOpv//OeSyN5RiSL75Qyt9fqWeftS7ToYNSffsqdeaM06pfbKWk6Nfb8rX+3//0+5L1de3SRW8r5IAzp8DHckyS6WIZFBmNxptO/8/IyFAZv/yijM2bqz8qVbLa1wFQ0T4+yti7t8owrQCQ5WKsWlWphx9WatIkpf74QxlvlsbADUmgVEgkUCpmDh3S//iff565zWjM/OW5c2fm9o0blereXamvvir8eoqi748/lLrtNqUefNB6e7Nm+rP200+Z2x57TKly5ZRavDhz2++/63ItWhROfUuK8+eVWrRIqc2bM7ddupQZJFh+18+cqVR4uFJff229DyfPIMsa+FgGT23atDG3JOV7/+npKiEhQbVp00YFgsq48VzbN2igANWlZUtlHDpUGatUURd8fVVaDoGTAnUa1MagIGUcPVovfbNnj1LJyc56GZwuL+dvycztgDxl9hSuk5Ghx5KULZu57Y039ODWjz+GBg30th9+gCee0GMctm7NLPvSSzr77ciRenFjIZwhOVnnMTJ9Lnfu1Lmyrl2Df/7RC9CC/swdPqyXRfr7b70tKUl/hoODoX9/ncNNFIzkZJ0R/ORJePXVzO19++oFad99F/73P70tLk6/JzVr6hxHpmzmx45BSop+T/38HK6SUork5GSnjm9VSnHp0iUaBAfTFLAcQZnavz/ec+fyLvAeEAr0qFKF56Oi8AQCgBxnhnl4wG236e/Y2rX10ku1a+tLjRrZVqsoTJKZu5BIi5Kb2bBBqS+/VOrcucxty5cr5e2tVJs21mXbtNG/hBYtytx29KjO9DtzZuHUVxR/SUk6o7plC5FSSvXqpT9/c+ZkbvvrL70tIMC6O+idd5S6887sU96DgrIvjPzdd0rVqaPUmDHWx1u3Tud9unbNaU+txDtyRKkFC5Q6fDhz2969+j2pVMm67LPPZs96Hhur1Isv6m2WLUJpaQVb71zYyuGUEBmpYj/7TDW22NbwRktSPKjSoNqCGgxqPyijh4cyBgTk2PJkvnh66lbV++/Xi/2OH69b6Fes0K9pAZ9XpeutkEigVACyNiFv2KBPJqdPZ27btk2ppk2V6trVumxYmP4H/OGHzG07duht1atbl12yRDeZW+5XCHukpOgv8u3brbdPm6bHCP34Y+a2v//Wn78yZazLDhyot0+alLktNVUnID127ObLpqSk6PFwzzyjlGUOtvHj9X5feMG6fOnSevvff2duW7pUd/3NmGFdds0a/dwkqMq79HSlTp2y7qZXSr8fZcoo9f33mdsiI/V7UrGiddm+ffX4s9mzM7dduaLU2LHZf8TFxTm1e8uyW+9mF39Q94LqlWX7ihuB0MRbb1UZFy7oz9ONvF1GT09lbNBAL/GVWxBlugQFKdWggVIdOyr11FNKjRihJ0V8/bVeZmjHDv165+M1kEApDz755BNVo0YN5evrq1q2bKl25GHdIAmUbuLKFT2WZ+tW6+0zZujEcJazTTZuVCo4WKlWrazLtmun/2Esx2eYgp+sA2FHj1bqgQf0LxKT69f1wFYX/koTbub6daUuXrQecB8bq8dVZB1v8u67+jO5YEHmtmPHMlt+LL3wgt4+cWLmtvh4pW6/XQ8Gtgw8oqP1zDRnD36NidE/Lvbvz9yWkqLHPlWpYv0rfeLEnIMqU0vAsWOZ2+bOVaphw+wz+iZPVmrKFOvZdxcv6lmhMTFOe1rFhuX4pbNn9euZ9TW97z79+s+bl7nNFFRVrmxdtndvvf3jjzO3RUUp1a2bUs8/b11261alfv7ZegZuerqeeWnx/WgaE5WQkJDjDLus22JiYvTg8IwMFRYWprxB1QNVEZ0wMyEhQSVt364i/f3VWtPA84wMZfz3X5XesqVSoNK6dlWpzz6rjF26qIw6dewLorJeAgL0OaFxY/2j+cEHlerXT6lXXtE/SGbO1C2uv/+u1NatKm77dgmU7LFo0SLl4+OjvvnmG3X48GH1wgsvqLJly6oYO//Bi0SglPWLOCpK/6NYfmmfP6/UsmVKrV9vXXbmTKVGjbL+wty6VUf3gwZZl+3YUX9QV67M3GbKXhwaal3WtCSEZbeXKfipUcO67OjR+iSzalXmtvh43aV2k0WHRRGSkaEDGEsXLujujStXMrdduaKDZstWG6X0SWXYMKUiIjK3nTqlVNu2SnXubF328cf1Z82yJeXECb3N39+6rKnlxzL4uXpVqfLllapbVwchJhEROj2AZVeYOztwQHdVb9iQuS0tTU+Pr1HDOnXBzYKqEycyt82Yobf16mVdtkED3bJ75EjmttWrdbmPPrIu+9VXSn36qXWwdf68Ln/ggHXZCxd04GmZ+b4oS0jQKR0sX/+TJ5V6+WWlXnvNuuwDD+jXeu7czG2moCo42LqsKU2FZVB18qTe5udnXXbSJKXCwtS1r782B0SlQSU995wyjhqlwiyXUtmyRX/uDx40z8qrV6eOagSqbpYgyweUL6joCxdUmzZt1H3o5VTqWZRpDuqij48y1qunPyurVun916+v69qmjQ6CWrTQwX9+gipQcTeOJ4HSTbRs2VINGTLEfDsjI0NVrVpVTZ482a7HmwOlL7+0/pLftUsHGVlXe3/nHaXeesv6H2DdOqWGDrUeq6CU/oJ+/HHrZROWL9cBSdZfIPfco/t6Dx3K3DZ/vu4DfuAB67J16+oPiuUJ5Ycf9LZ27azLhobq7ZYtNKbgp2lT67Jt22Zv+dm1S4+XePhh67JffKFfB8sWpcREXT5rV1hamj4ZWY7ZyMjQgV7WroGUFN0Ea/mFmZGh9511iZjr1/UXkuWJzmjUv7jj4qwDzORk3eJg2bxrNOqT9n//Wf9KTEjQX9xZ8+OcPKm//Cxbti5f1l04lmOqlNIB4K5d1s/vwgX9nmU9CW/apL9ILFtHzp5V6tdfs3cN/f67bvq3XBvr2DGlPvlE/9K0NHu2/pxZngAPHtRf1lOnWpcdN05/Ce/enbltzx7dDZV1mvVTT+lffb/+mrltyxb92alTx7rsgw/q7d98k7lt3z69rUoV67I5BT/Hj+fc8vP883q7Za6cq1f1WInHHrN+P3ft0j8ijh9XJdq5c/r7zPJ/1mjUwWnfvvr/w2TmTKUqVNCtxpYCA7O3VM2cqbc99ph1WdMJ0PLH0Jw5elvWZX9uvz37d9rPP+vuxqzfPT166PFelq3c27fr79Vhw6zLTpyoxyzu3Zu57fhxpV5/PXt35fff65Y1y//P6GilPvvMujVSKf2DdMEC6/+tuDjdlbR6tXXZv/7S/+Pnz2duu3ZNd+3t3Zv5nZWcrP/v9+/Xj/niCx0Ep6XpYOPvv3WaitatdZfrpUv6O2nz5syWqowMfb45f16pJ5/UXWUffaQ63n23qgjqyaZNdVlfX2XMyFCJ588rY2xsZkvqpEn6eNeuqYzz580BiQco7xuXaTe2vQfKcOO+UqBiQJ0DFWARMF2bPl2l3323MpoCu23blFqwQBm7dFFpjz6qjFev6ufVpYtSd9+tv1veflv/WL/rLn38O+7QgVWfPvr/G3SesfLlVVxgoN2BUonNzJ2amsqePXsYO3aseZuHhwcdO3Zk27ZtOT4mJSWFlJQU8+24G6tsx7/wAjRpomelAIwdq7Mu33EH7NiRuYM339R/w8Iys8d+/LHOmlqzpl413uTLL/VHqkcPePBBvW3BAr3fQ4esZ19s3qxndm3cCNWqWW/bvh0sVqPm7Fn9d8sWaNxYXz94UP/9+2/rspcv67+HD2fW98IF/ffqVeuyycn6b2xs5varV+H4cTAarcsuWQKrV+ulIWrV0tsOHIC2bfWMkX/+ySzbrx8sWwYffKCXXQA4cQKaNYPSpXUWbJNBg/QK4xMnwogReltUlH4fPD3hypXMsq+9plcfHzMmc8ZKbKyeiQFw6ZJetRzgrbdgxgyd7fidd/S2tDSoWFFfP3Mmc+bS5Mnw/vs6c/O0aZnHq1tXvx9HjkDVqnrbp5/C+PE6Q/Ds2Zll77lHv15792bOfFqwQC+N8cgjMH9+ZtnHH4foaIiIyHw/ly/XM/Xuv19nijZ5+WU9c2fVKmjVSm/bvBmGDtWfyQ4dMsvOnKnf99DQzOd55Ije3rQpvPhiZtkVK/SMrYcf1s/T9LqvXatvW773UVFw7pyus2m7aQX7a9esywYE6KVfUlMzt3t5QZs2uk6WZe+/X3/277gjc3tAgH6t/P2ty777Lkydqj8Tpu0eHpmvVWJiZtnbb9cXsN5HSRMUBC1a6OuWr8Pbb2deN23v21dfspZdu1a/tmXKZG5v1gymTNHfA5Zlu3SB//7T/4OW732DBjprtGXZ9HT9Ny0tc/vly3qma1ycddkjR/T33H//ZW4/eVJ/r1p+d4H+Xt6zBx54IPP/8PBh/f/doIH+bjKZNUv/D1aqlJnx/OBB/X9Ys6Z15u/334eVK+GTT6BPH73t0CG9nFGlSvo70+TNN+Hnn/VrNGiQ3nbihM6wHhgI589nPvexY/X3xIQJ8Mormc+tfn2dmT02Vn+HgJ7B++WXMHq0/q5LTtbf7abzx9q1+nk3bMiPp09j2L4d1bQp8R066PNSbCzccgsJoL8f771Xf6+NG6e/A3v3RlWqBOnp/Hv4MP41amBIS2MBEA8kAEOAd4ElQKkblzTgFFAeWDhuHD0TElh87Bi90tLwGDUK9dBDGFasAOCxM2dYcvEihvPn9czPb76B/v1RlSvr786OHTFs3Kjf788/h5499f/8vffCmjXE9+gBS5ei7Jn4f9NQqpg6f/68AtTWLONnRo0apVq2bJnjY8aPH5+tv1YucpGLXOQiF7kUzcu5rC36OSixLUr5MXbsWF61aMkxGo1cuXKFLl26sHv37lwfe9ddd7HLclHKPNyf0332bIuPj6datWqcO3euUPM83ey5FsQ+7C2f19c5t/vkPchfeXkPCm4frngPbG233CbvQd7L5eW1trW9pL4H9jxGKUVCQgJVTS38uSixgVLFihXx9PQkJibGantMTAwhISE5PsbX1xdfUwKxG8qWLYuXl9dNP3ienp65lsnt/pzus3cb6IUTC/Mf42bPtSD2YW/5vL7Oud0n70H+yst7UHD7cMV7YGt7TtvkPbC/XF5ea1vbS+p7YO9jypQpY9e+ckymWRL4+PjQvHlz1q5da95mNBpZu3YtrbOuPn0TQ4YMcbhMbvfndJ+921zBGfXI6z7sLZ/X1zm3++Q9yF95eQ8Kbh+ueA9sbXeH96Govge53S/vQeEd16REL2GyePFi+vXrx+eff07Lli35+OOP+eGHH/j7778JDg52dfUcJkusuJ68B64n74HryXvgevIe5F+J7XoDeOKJJ7h06RLjxo0jOjqa0NBQVqxYUSyCJNBdhePHj8/WXSgKj7wHrifvgevJe+B68h7kX4luURJCCCGEyE2JHaMkhBBCCHEzEigJIYQQQtgggZIQQgghhA0SKAkhhBBC2CCBkhBCCCGEDRIoCc6dO0f79u1p0KABjRs3ZsmSJa6uUonUo0cPypUrx2OPPebqqpQYy5cvp169etStW5evvvrK1dUpkeRz73pyDsidpAcQREVFERMTQ2hoKNHR0TRv3px//vmHgIAAV1etRNmwYQMJCQnMmzePH00r2YsCk56eToMGDVi/fj1lypShefPmbN26lQoVKri6aiWKfO5dT84BuZMWJUGVKlUIDQ0FICQkhIoVK3LlyhXXVqoEat++PaVLl3Z1NUqMnTt30rBhQ2655RYCAwN54IEHWLVqlaurVeLI59715ByQOwmUioBNmzbRrVs3qlatisFgYNmyZdnKfPrpp9SsWZNSpUrRqlUrdu7cma9j7dmzh4yMDKpVq+ZgrYuXwnwPhH0cfU8uXLjALbfcYr59yy23cP78+cKoerEh/xfuwZnvg5wDspNAqQhISkqiSZMmfPrppznev3jxYl599VXGjx/P3r17adKkCZ07d+bixYvmMqGhodx5553ZLhcuXDCXuXLlCn379uWLL74o8OdU1BTWeyDs54z3RDhG3gP34Kz3Qc4BNihRpABq6dKlVttatmyphgwZYr6dkZGhqlatqiZPnmz3fq9fv67atm2r5s+f76yqFlsF9R4opdT69etVz549nVHNEiU/78mWLVtU9+7dzfcPHz5cLViwoFDqWxw58n8hn3vnye/7IOcA26RFqYhLTU1lz549dOzY0bzNw8ODjh07sm3bNrv2oZSif//+3HffffTp06egqlpsOeM9EM5lz3vSsmVLDh06xPnz50lMTOTPP/+kc+fOrqpysSP/F+7BnvdBzgG5k0CpiLt8+TIZGRkEBwdbbQ8ODiY6OtqufWzZsoXFixezbNkyQkNDCQ0N5eDBgwVR3WLJGe8BQMeOHenVqxd//PEHt956q5xMHGDPe+Ll5cW0adO49957CQ0N5bXXXpMZb05k7/+FfO4Llj3vg5wDcufl6goI1wsPD8doNLq6GiXemjVrXF2FEufhhx/m4YcfdnU1SjT53LuenANyJy1KRVzFihXx9PQkJibGantMTAwhISEuqlXJIu+B+5H3xPXkPXAP8j44TgKlIs7Hx4fmzZuzdu1a8zaj0cjatWtp3bq1C2tWcsh74H7kPXE9eQ/cg7wPjpOutyIgMTGR48ePm2+fOnWKyMhIypcvT/Xq1Xn11Vfp168fLVq0oGXLlnz88cckJSXx7LPPurDWxYu8B+5H3hPXk/fAPcj7UMBcPe1O3Nz69esVkO3Sr18/c5mZM2eq6tWrKx8fH9WyZUu1fft211W4GJL3wP3Ie+J68h64B3kfCpas9SaEEEIIYYOMURJCCCGEsEECJSGEEEIIGyRQEkIIIYSwQQIlIYQQQggbJFASQgghhLBBAiUhhBBCCBskUBJCCCGEsEECJSGEEEIIGyRQEkIIF0tNTaVOnTps3brVqftdsWIFoaGhsjK8EA6QQEkI4VT9+/fHYDBku1iuRSWszZ49m1q1atGmTRvzNoPBwLJly7KV7d+/P927d7drv126dMHb25sFCxY4qaZClDwSKAkhnK5Lly5ERUVZXWrVqpWtXGpqqgtq516UUnzyyScMGDCgQPbfv39/ZsyYUSD7FqIkkEBJCOF0vr6+hISEWF08PT1p3749Q4cOZcSIEVSsWJHOnTsDcOjQIR544AECAwMJDg6mT58+XL582by/pKQk+vbtS2BgIFWqVGHatGm0b9+eESNGmMvk1AJTtmxZ5s6da7597tw5Hn/8ccqWLUv58uV55JFHOH36tPl+U2vNhx9+SJUqVahQoQJDhgwhLS3NXCYlJYUxY8ZQrVo1fH19qVOnDl9//TVKKerUqcOHH35oVYfIyMhcW9T27NnDiRMn6Nq1ax5fZTh9+nSOrXft27c3l+nWrRu7d+/mxIkTed6/EEICJSFEIZs3bx4+Pj5s2bKF2bNnExsby3333UfTpk3ZvXs3K1asICYmhscff9z8mFGjRrFx40Z++eUXVq1axYYNG9i7d2+ejpuWlkbnzp0pXbo0ERERbNmyhcDAQLp06WLVsrV+/XpOnDjB+vXrmTdvHnPnzrUKtvr27cvChQuZMWMGR44c4fPPPycwMBCDwcBzzz3HnDlzrI47Z84c2rVrR506dXKsV0REBLfffjulS5fO0/MBqFatmlWr3b59+6hQoQLt2rUzl6levTrBwcFERETkef9CCEAJIYQT9evXT3l6eqqAgADz5bHHHlNKKXXPPfeopk2bWpV/++23VadOnay2nTt3TgHq6NGjKiEhQfn4+KgffvjBfP9///2n/Pz81PDhw83bALV06VKr/ZQpU0bNmTNHKaXUt99+q+rVq6eMRqP5/pSUFOXn56dWrlxprnuNGjVUenq6uUyvXr3UE088oZRS6ujRowpQq1evzvG5nz9/Xnl6eqodO3YopZRKTU1VFStWVHPnzrX5eg0fPlzdd9992bYDqlSpUlavY0BAgPLy8lKPPPJItvLXrl1TrVq1Ug899JDKyMiwuq9p06ZqwoQJNusghLDNy7VhmhCiOLr33nuZNWuW+XZAQID5evPmza3K7t+/n/Xr1xMYGJhtPydOnODatWukpqbSqlUr8/by5ctTr169PNVp//79HD9+PFvLzfXr1626pRo2bIinp6f5dpUqVTh48CCgu9E8PT255557cjxG1apV6dq1K9988w0tW7bkt99+IyUlhV69etms17Vr1yhVqlSO902fPp2OHTtabRszZgwZGRnZyj733HMkJCSwevVqPDysOwv8/PxITk62WQchhG0SKAkhnC4gIMBmV5Nl0ASQmJhIt27dmDJlSrayVapUsXu2nMFgQClltc1ybFFiYiLNmzfPcQZYpUqVzNe9vb2z7dc0vd7Pz++m9Xj++efp06cP06dPZ86cOTzxxBP4+/vbLF+xYkVzIJZVSEhIttexdOnSxMbGWm175513WLlyJTt37syxC+/KlStWz1EIYT8JlIQQLtWsWTN++uknatasiZdX9q+k2rVr4+3tzY4dO6hevToAV69e5Z9//rFq2alUqRJRUVHm28eOHbNqRWnWrBmLFy+mcuXKBAUF5auujRo1wmg0snHjxmwtPSYPPvggAQEBzJo1ixUrVrBp06Zc99m0aVNmzZqFUgqDwZDnOv30009MmjSJP//8k9q1a2e739Ri1rRp0zzvWwghg7mFEC42ZMgQrly5wpNPPsmuXbs4ceIEK1eu5NlnnyUjI4PAwEAGDBjAqFGjWLduHYcOHaJ///7Zupfuu+8+PvnkE/bt28fu3bsZNGiQVevQ008/TcWKFXnkkUeIiIjg1KlTbNiwgWHDhvHvv//aVdeaNWvSr18/nnvuOZYtW2bexw8//GAu4+npSf/+/Rk7dix169aldevWue7z3nvvJTExkcOHD+fhVdMOHTpE3759GTNmDA0bNiQ6Opro6GiuXLliLrN9+3Z8fX1vWg8hRM4kUBJCuFTVqlXZsmULGRkZdOrUiUaNGjFixAjKli1rDoY++OAD2rZtS7du3ejYsSPh4eHZxjpNmzaNatWq0bZtW5566ilGjhxp1eXl7+/Ppk2bqF69Oo8++ij169dnwIABXL9+PU8tTLNmzeKxxx7jpZde4o477uCFF14gKSnJqsyAAQNITU3l2Wefven+KlSoQI8ePfKVFHL37t0kJyfzzjvvUKVKFfPl0UcfNZdZuHAhTz/9dK7df0II2wwqa6e+EEIUAe3btyc0NJSPP/7Y1VXJJiIigg4dOnDu3DmCg4NvWv7AgQPcf//9nDhxIsdB7fl1+fJl6tWrx+7du3NM+CmEuDlpURJCCCdJSUnh33//ZcKECfTq1cuuIAmgcePGTJkyhVOnTjm1PqdPn+azzz6TIEkIB8hgbiGEcJKFCxcyYMAAQkNDmT9/fp4e279/f6fXp0WLFrRo0cLp+xWiJJGuNyGEEEIIG6TrTQghhBDCBgmUhBBCCCFskEBJCCGEEMIGCZSEEEIIIWyQQEkIIYQQwgYJlIQQQgghbJBASQghhBDCBgmUhBBCCCFskEBJCCGEEMKG/wdSuDqXKJooegAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_model = (\n", + " models.Lorentz1D(x_0=0.02, fwhm=0.15, amplitude=10000)\n", + " + models.Lorentz1D(x_0=0.2, fwhm=3, amplitude=300)\n", + " + models.Lorentz1D(x_0=15, fwhm=30, amplitude=10)\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - 2) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "plt.plot(pds.freq, fit_model(pds.freq) * pds.freq, color=\"r\", label=\"Starting Model\")\n", + "for mod in fit_model:\n", + " plt.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + "\n", + "plt.semilogx()\n", + "plt.xlim([pds.freq[0], pds.freq[-1]])\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "plt.legend()\n", + "plt.ylim([0, None])" + ] + }, + { + "cell_type": "markdown", + "id": "2438911a", + "metadata": {}, + "source": [ + "We will now add a constant at the Poisson noise level (2 in Leahy normalization) and fit using the Maximum Likelihood estimation in `stingray`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2003fbfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1.94796052e+00 1.00085414e+04 1.65798045e-02 1.98807131e-01\n", + " 3.00810652e+02 -5.92867228e-01 4.70262505e+00 8.40235653e+00\n", + " 1.54668594e+01 2.51297268e+01]\n" + ] + } + ], + "source": [ + "from stingray.modeling import PSDParEst\n", + "\n", + "fit_model = models.Const1D(amplitude=2) + fit_model\n", + "\n", + "parest = PSDParEst(pds_reb, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "loglike = PSDLogLikelihood(pds_reb.freq, pds_reb.power, fit_model, m=pds_reb.m)\n", + "\n", + "res = parest.fit(loglike, fit_model.parameters)\n", + "\n", + "fitmod = res.model\n", + "\n", + "# The Poisson noise level was the first parameter.\n", + "poisson = fitmod.parameters[0]\n", + "print(res.p_opt)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "502706d3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG1CAYAAAAGD9vIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADUFUlEQVR4nOydZ3gUVReA300CIZVQQgKCdOkkdEJAQJFi76KoYAELCnZFPxWxIGBXBEVRUUSwYQcVKSFgqAEp0kFKsqEmu2kku+f7cbM1m5Bk03Pf55kn2Tt37pyZnZ05c+4pBhERNBqNRqPRaDT58KloATQajUaj0WgqK1pR0mg0Go1GoykArShpNBqNRqPRFIBWlDQajUaj0WgKQCtKGo1Go9FoNAWgFSWNRqPRaDSaAtCKkkaj0Wg0Gk0BaEVJo9FoNBqNpgD8KlqAqozVauXYsWOEhIRgMBgqWhyNRqPRaDRFQEQwmUw0adIEH5/CbUZaUfKCY8eO0axZs4oWQ6PRaDQaTQk4fPgwTZs2LbSPVpS8ICQkBFAnOjQ0tIKl0Wg0Go1GUxTS0tJo1qyZ/TleGJVSUVq1ahUzZsxg48aNJCUl8f3333P11Vfb14sIzz//PHPmzOHMmTPExsYya9Ys2rZta+9z6tQpHnzwQX766Sd8fHy47rrrePvttwkODrb32bp1K+PHj2f9+vWEh4fz4IMP8sQTTxRZTtt0W2hoqFaUNBqNRqOpYhTFbaZSOnOnp6cTFRXFzJkzPa6fPn0677zzDrNnzyYhIYGgoCCGDRtGVlaWvc+oUaPYvn07f/zxBz///DOrVq1i3Lhx9vVpaWkMHTqU5s2bs3HjRmbMmMHkyZP58MMPy/z4NBqNRqPRVBGkkgPI999/b/9stVolMjJSZsyYYW87c+aM+Pv7y4IFC0REZMeOHQLI+vXr7X1+++03MRgMcvToURERef/996VevXqSnZ1t7/Pkk09Ku3btiixbamqqAJKamlrSw9NoNBqNRlPOFOf5XSmn3grjwIEDJCcnM2TIEHtb3bp16dOnD2vXrmXkyJGsXbuWsLAwevbsae8zZMgQfHx8SEhI4JprrmHt2rVceOGF1K5d295n2LBhTJs2jdOnT1OvXr18+87OziY7O9v+OS0trYyOUqPRaGo2VquVs2fPVrQYmipKrVq18PX1LZWxqpyilJycDEBERIRLe0REhH1dcnIyjRo1clnv5+dH/fr1Xfq0bNky3xi2dZ4UpalTp/LCCy+UzoFoqgQiQkZGhktbYGCgTgeh0ZQhZ8+e5cCBA1it1ooWRVOFCQsLIzIy0uv7dZVTlCqSSZMm8cgjj9g/27zmNdUTEaF///6sWbPGpT02Npa4uDitLGk0ZYCIkJSUhK+vL82aNTtnjhuNxh3bC25KSgoAjRs39mq8KqcoRUZGAmA0Gl0O3mg0Eh0dbe9jO0E2cnNzOXXqlH37yMhIjEajSx/bZ1sfd/z9/fH39y+V49BUfjIyMvIpSQDx8fFkZGQQFBRUAVJpNNWb3NxcMjIyaNKkCYGBgRUtjqaKEhAQAEBKSgqNGjXyahquyqnqLVu2JDIykmXLltnb0tLSSEhIICYmBoCYmBjOnDnDxo0b7X3++usvrFYrffr0sfdZtWoVOTk59j5//PEH7dq18zjtpqnZGI3GfIq1RqMpfSwWC4CL/6hGUxJsirbzc74kVEpFyWw2k5iYSGJiIqAcuBMTE/nvv/8wGAw89NBDvPTSS/z444/8888/3H777TRp0sSea6lDhw4MHz6csWPHsm7dOuLj43nggQcYOXIkTZo0AeCWW26hdu3a3HXXXWzfvp2FCxfy9ttvu0ytaTQ2goKCtAVJoylH9NS2xltK6xqqlFNvGzZsYPDgwfbPNuVl9OjRfPrppzzxxBOkp6czbtw4zpw5Q//+/VmyZAl16tSxbzN//nweeOABLr74YnvCyXfeece+vm7duvz++++MHz+eHj160LBhQ5577jmXXEsajUaj0WhqNgYRkYoWoqqSlpZG3bp1SU1N1Zm5qyHp6en2TO5msxnA5bO2MGk0pU9WVhYHDhygZcuWLi+/Gk1xKexaKs7zu1JOvWk0Go1GU9NYsWIFBoOBM2fOFNjn008/JSwsrNxkKozJkyfbg6iqM1pR0mg0Go3GS8aMGYPBYMBgMFCrVi1atmzJE0884VJaqzS46aab2L17d6mOWVYcPHjQfk4MBgMNGjRg6NChbN682d5n0KBB9vX+/v6cd955XHHFFXz33Xf5xlu5ciUXXXQR9evXJzAwkLZt2zJ69OgyT0yqFSWNRqPRaEqB4cOHk5SUxP79+3nzzTf54IMPeP7550t1HwEBAfkSKld2/vzzT5KSkli6dClms5kRI0a4WM3Gjh1LUlIS+/bt49tvv6Vjx46MHDnSxWd4x44dDB8+nJ49e7Jq1Sr++ecf3n33XWrXrm2PlCwrtKKk0Wg0mkqLiJCenl4hS3FdeP39/YmMjKRZs2ZcffXVDBkyhD/++MO+3mq1MnXqVFq2bElAQABRUVF88803+caJj4+na9eu1KlTh759+7Jt2zb7OvepN9v01+eff06LFi2oW7cuI0eOxGQy2fsMGjSICRMm8MQTT1C/fn0iIyOZPHmyyz7PnDnD3XffTXh4OKGhoVx00UVs2bLFpc+rr75KREQEISEh3HXXXUW2ljVo0IDIyEh69uzJa6+9htFoJCEhwb4+MDCQyMhImjZtSt++fZk2bRoffPABc+bM4c8//wTg999/JzIykunTp9O5c2dat27N8OHDmTNnjj1nUlmhFSWNRqPRVFoyMjIIDg6ukMW9fFFx2LZtG2vWrHHJBzV16lTmzZvH7Nmz2b59Ow8//DC33norK1eudNn28ccf5/XXX2f9+vWEh4dzxRVXFJoLaN++fSxevJiff/6Zn3/+mZUrV/Lqq6+69Pnss88ICgoiISGB6dOnM2XKFBcl7oYbbiAlJYXffvuNjRs30r17dy6++GJOnToFwKJFi5g8eTKvvPIKGzZsoHHjxrz//vvFPi82peZc02WjR4+mXr169im4yMhIkpKSWLVqVbH36TVlWJy32lOc6sOaqofZbBZAADGbzfk+azSa0iczM1N27NghmZmZIuL6OyzvpTi/89GjR4uvr68EBQWJv7+/AOLj4yPffPONiIhkZWVJYGCgrFmzxmW7u+66S26++WYREVm+fLkA8tVXX9nXnzx5UgICAmThwoUiIvLJJ59I3bp17euff/55CQwMlLS0NHvb448/Ln369LF/HjhwoPTv399lv7169ZInn3xSRETi4uIkNDRUsrKyXPq0bt1aPvjgAxERiYmJkfvvv99lfZ8+fSQqKqrAc3LgwAEBZPPmzSIicvr0abnmmmskODhYkpOT7bJNnDjR4/Z9+vSRESNGiIhIbm6ujBkzRgCJjIyUq6++Wt59991Cn7/u15IzxXl+V8o8ShqNRqPRgJqWsaXnqIh9F4fBgwcza9Ys0tPTefPNN/Hz8+O6664DYO/evWRkZHDJJZe4bHP27Fm6devm0marMgFQv3592rVrx86dOwvcb4sWLQgJCbF/bty4cb4yXl27dnX57Nxny5YtmM1mGjRo4NInMzOTffv2AbBz507uvffefHIuX768QLls9OvXDx8fH9LT02nVqhULFy7MV9jeEyJiTxrp6+vLJ598wksvvcRff/1FQkICr7zyCtOmTWPdunVe13MrDK0oaTQajabSYjAYqkzOsqCgINq0aQPA3LlziYqK4uOPP+auu+6yK3u//PIL5513nst23tYQrVWrlstng8GA1Wotch+z2Uzjxo1ZsWJFvrFLIxXBwoUL6dixIw0aNCjyeBaLhT179tCrVy+X9vPOO4/bbruN2267jRdffJELLriA2bNn88ILL3gtZ0FoRUmj0Wg0mlLGx8eHp59+mkceeYRbbrmFjh074u/vz3///cfAgQML3fbvv//m/PPPB+D06dPs3r2bDh06lJms3bt3Jzk5GT8/P1q0aOGxT4cOHUhISOD22293kbMoNGvWjNatWxdLps8++4zTp0/bLXKeqFevHo0bNyY9Pb1YYxcXrShpNBqNRlMG3HDDDTz++OPMnDmTxx57jMcee4yHH34Yq9VK//79SU1NJT4+ntDQUEaPHm3fbsqUKTRo0ICIiAieeeYZGjZsaK9lWhYMGTKEmJgYrr76aqZPn84FF1zAsWPH+OWXX7jmmmvo2bMnEydOZMyYMfTs2ZPY2Fjmz5/P9u3badWqldf7z8jIIDk5mdzcXI4cOcL333/Pm2++yX333WcvZ/bBBx+QmJjINddcQ+vWrcnKymLevHls376dd99912sZCkMrShqNRqPRlAF+fn488MADTJ8+nfvuu48XX3yR8PBwpk6dyv79+wkLC6N79+48/fTTLtu9+uqrTJw4kT179hAdHc1PP/3kEj1X2hgMBn799VeeeeYZ7rjjDo4fP05kZCQXXnih3ZfopptuYt++ffYkmtdddx333XcfS5cu9Xr/c+bMYc6cOdSuXZsGDRrQo0cPFi5cyDXXXGPv07t3b1avXs29997LsWPHCA4OplOnTixevPicFjpv0bXevEDXeqve6FpvGk35o2u9aUoLXetNo9FoNBqNpozRipJGo9FoNBpNAWhFSaPRaDQajaYAtKKk0Wg0Go1GUwBaUdJoNBqNRqMpAK0oaTQajUaj0RSAzqOk0ZQAEXHJBhsYGGivSaTRaDSa6oO2KGk0JaB///4EBwfblwEDBqBTkmk0Gk31QytKGk0J2LJli8vn+Ph4MjIyKkgajUajKV8OHjyIwWAgMTGxyNsMGjSIhx56qMxkKiu0oqTReMH+/fsrWgSNRlMJGDNmDAaDwb40aNCA4cOHs3Xr1lLbx+TJk4mOji5SP4PBwPDhw/OtmzFjBgaDgUGDBpWaXNUdrShpNF6gy5hoNBobw4cPJykpiaSkJJYtW4afnx+XX355hcjSuHFjli9fzpEjR1za586dy/nnn18hMlVVqqSiZLFYePbZZ2nZsiUBAQG0bt2aF1980cVHRER47rnnaNy4MQEBAQwZMoQ9e/a4jHPq1ClGjRpFaGgoYWFh3HXXXfaaXhqNRqPRFAd/f38iIyOJjIwkOjqap556isOHD3P8+HF7n8OHD3PjjTcSFhZG/fr1ueqqqzh48KB9/YoVK+jduzdBQUGEhYURGxvLoUOH+PTTT3nhhRfYsmWL3Wr16aefFihLo0aNGDp0KJ999pm9bc2aNZw4cYLLLrvMpa/VamXKlCk0bdoUf39/oqOjWbJkiUufdevW0a1bN+rUqUPPnj3ZvHlzvn1u27aNESNGEBwcTEREBLfddhsnTpwo5lmsfFRJRWnatGnMmjWL9957j507dzJt2jSmT5/Ou+++a+8zffp03nnnHWbPnk1CQgJBQUEMGzaMrKwse59Ro0axfft2/vjjD37++WdWrVrFuHHjKuKQNBqNRuMJEUhPr5jFiwANs9nMF198QZs2bWjQoAEAOTk5DBs2jJCQEOLi4oiPjyc4OJjhw4dz9uxZcnNzufrqqxk4cCBbt25l7dq1jBs3DoPBwE033cSjjz5Kp06d7Farm266qVAZ7rzzThdlau7cuYwaNYratWu79Hv77bd5/fXXee2119i6dSvDhg3jyiuvtBsXzGYzl19+OR07dmTjxo1MnjyZxx57zGWMM2fOcNFFF9GtWzc2bNjAkiVLMBqN3HjjjSU+h5UGqYJcdtllcuedd7q0XXvttTJq1CgREbFarRIZGSkzZsywrz9z5oz4+/vLggULRERkx44dAsj69evtfX777TcxGAxy9OjRIsmRmpoqgKSmpnp7SJpKiNlsFkAAMZvNLp9ti9FodOmj0Wi8IzMzU3bs2CGZmZmqwWwWUSpL+S/F+E2PHj1afH19JSgoSIKCggSQxo0by8aNG+19Pv/8c2nXrp1YrVZ7W3Z2tgQEBMjSpUvl5MmTAsiKFSs87uP555+XqKioc8pi63f27Flp1KiRrFy5Usxms4SEhMiWLVtk4sSJMnDgQHv/Jk2ayMsvv+wyRq9eveT+++8XEZEPPvhAGjRo4PhORGTWrFkCyObNm0VE5MUXX5ShQ4e6jHH48GEBZNeuXSIiMnDgQJk4ceI55S8t8l1LThTn+V0lLUr9+vVj2bJl7N69G1ARSKtXr2bEiBEAHDhwgOTkZIYMGWLfpm7duvTp04e1a9cCsHbtWsLCwujZs6e9z5AhQ/Dx8SEhIcHjfrOzs0lLS3NZNBqNRqMBGDx4MImJiSQmJrJu3TqGDRvGiBEjOHToEKCeVXv37iUkJMSeWqR+/fpkZWWxb98+6tevz5gxYxg2bBhXXHEFb7/9NklJSSWWp1atWtx666188sknfP3111xwwQV07drVpU9aWhrHjh0jNjbWpT02NpadO3cCsHPnTrp27UqdOnXs62NiYlz6b9myheXLl7ukTWnfvj0A+/btK/ExVAaqZMLJp556irS0NNq3b4+vry8Wi4WXX36ZUaNGAZCcnAxARESEy3YRERH2dcnJyTRq1MhlvZ+fH/Xr17f3cWfq1Km88MILpX04Go1GoymIwECoKN/RwMBidQ8KCqJNmzb2zx999BF169Zlzpw5vPTSS5jNZnr06MH8+fPzbRseHg7AJ598woQJE1iyZAkLFy7kf//7H3/88Qd9+/Yt0SHceeed9OnTh23btnHnnXeWaIyiYDabueKKK5g2bVq+dY0bNy6z/ZYHVVJRWrRoEfPnz+fLL7+kU6dOJCYm8tBDD9GkSRNGjx5dZvudNGkSjzzyiP1zWloazZo1K7P9aTQaTY3HYIAqGl1qMBjw8fEhMzMTgO7du7Nw4UIaNWpEaGhogdt169aNbt26MWnSJGJiYvjyyy/p27cvtWvXxmKxFEuGTp060alTJ7Zu3cott9ySb31oaChNmjQhPj6egQMH2tvj4+Pp3bs3AB06dODzzz8nKyvLblX6+++/Xcbp3r073377LS1atMDPr0qqFgVSJafeHn/8cZ566ilGjhxJly5duO2223j44YeZOnUqAJGRkQAYjUaX7YxGo31dZGQkKSkpLutzc3M5deqUvY87/v7+hIaGuiwaTXkjeeVT0tPTdTZwjaYSkZ2dTXJyMsnJyezcuZMHH3zQbmkBFUDUsGFDrrrqKuLi4jhw4AArVqxgwoQJHDlyhAMHDjBp0iTWrl3LoUOH+P3339mzZw8dOnQAoEWLFhw4cIDExEROnDhBdnZ2keT666+/SEpKIiwszOP6xx9/nGnTprFw4UJ27drFU089RWJiIhMnTgTglltuwWAwMHbsWHbs2MGvv/7Ka6+95jLG+PHjOXXqFDfffDPr169n3759LF26lDvuuKPYyl1lo0oqShkZGfj4uIru6+uL1WoFoGXLlkRGRrJs2TL7+rS0NBISEuzzqjExMZw5c4aNGzfa+/z1119YrVb69OlTDkeh0RQfEXEpn6JLp2g0lYclS5bQuHFjGjduTJ8+fVi/fj1ff/21PbljYGAgq1at4vzzz+faa6+lQ4cO3HXXXWRlZREaGkpgYCD//vsv1113HRdccAHjxo1j/Pjx3HPPPQBcd911DB8+nMGDBxMeHs6CBQuKJJct1UBBTJgwgUceeYRHH32ULl26sGTJEn788Ufatm0LQHBwMD/99BP//PMP3bp145lnnsk3xWazSlksFoYOHUqXLl146KGHCAsLy/e8rmoYpAreZceMGcOff/7JBx98QKdOndi8eTPjxo3jzjvvtH9506ZN49VXX+Wzzz6jZcuWPPvss2zdupUdO3bYTYcjRozAaDQye/ZscnJyuOOOO+jZsydffvllkeRIS0ujbt26pKamautSNSQ9PZ3g4GAAe34t22cbRqPR7gtnNpvLPAGls0w2ymO/Gk15kZWVxYEDB2jZsqWL87BGU1wKu5aK8/yukhOJ7777Ls8++yz3338/KSkpNGnShHvuuYfnnnvO3ueJJ54gPT2dcePGcebMGfr378+SJUtcTtb8+fN54IEHuPjii/Hx8eG6667jnXfeqYhD0pQzIpKvNltgYCAGg6GCJNJoNBpNZaRKWpQqC9qiVDWxTV+tWbPGpT02Npa4uDi7sqQtShpN+aMtSprSorQsSlV74lCjKQEZGRn5lCRQUR7uViaNRqPR1Gy0oqSp0RiNxnzRkRqNRqPR2KiSPkoaTWmhp6w0Go1GUxjFtihlZmZy9OjRfO3bt28vFYE0mpqMzpGk0Sj09a/xltK6hoqlKH3zzTe0bduWyy67jK5du7rURLvttttKRSCNpjRwVjiqiuKhcyRpNConHsDZs2crWBJNVcfmc1qrVi2vxinW1NtLL73Exo0biYiIYOPGjYwePZqnn36aW265Rd/QNZWGc0W1VVbcncxtzuV6elBTk/Dz8yMwMJDjx49Tq1atKp+sUFP+2NK/pKSkEBYWZle+S0qxFKWcnBx7KHSPHj1YtWoV11xzDXv37tX5ZzSVBh3VptFUXQwGA40bN+bAgQMcOnSoosXRVGHCwsIKLElWHIqlKDVq1IitW7fStWtXAOrXr88ff/zB6NGj2bp1q9fCaDSljS2izabgazSayk/t2rVp27atnn7TlJhatWp5bUmyUSxF6fPPP89XFbh27dosWLCABx54oFQE0mhKk8o8beWeHVxPX2s0Dnx8fHTCSU2loFiKUtOmTQtcFxsb67UwGk1NwZMfVXR0dMUJpNFoNBqPlEoepZycHJKTk8nIyCA8PJz69euXxrAaTbXFkx9VYmJixQij0Wg0mgIpcTiByWRi1qxZDBw4kNDQUFq0aEGHDh0IDw+nefPmjB07lvXr15emrJoagqfQ/qoW6l8c9u/fX9EiaDQajaYASqQovfHGG7Ro0YJPPvmEIUOGsHjxYhITE9m9ezdr167l+eefJzc3l6FDhzJ8+HD27NlT2nJrqinuuYQKWqpyjiGbImijMvtRaTQaTU2nRFNv69evZ9WqVXTq1Mnj+t69e3PnnXcya9YsPv30U+Li4mjbtq1XgmpqBgWF9rtTVXMMFZTjSaPRaDSVkxIpSgsWLChSvzp16nDvvfeWZBcaDUajMZ8ilJ6eXqVD/d0VwdjYWAIDAytQIo1Go9EURqk4cy9btoxly5aRkpKC1Wp1WTd37tzS2IWmBhIUFFTlLEbFwWg0Eh4erpNgajQaTSXGa0XphRdeYMqUKfTs2ZPGjRvrDN2aGovN7ygwMLBIv4OgoCD9e9FoNJpKjteK0uzZs/n00091UVxNjcc2JWirKaeVII1Go6n6eF1t8OzZs/Tr1680ZNFoqhyBgYH5kq3qmnIajUZTffBaUbr77rv58ssvS0MWjabMseVhKgznPE7nwmAwEBcXh9lstteV02g0Gk31weupt6ysLD788EP+/PNPunbtSq1atVzWv/HGG97uQqMpNc4VMVeS8H2DwVCtnc41Go2mJuO1orR161Z7japt27a5rNM+GprKgG16LD4+3qXdFprvPE3mKY+Tp34ajUajqRl4rSgtX768NOTQaMoM2/SYu6Jzrug0Wx6nokaxaTQajab64bWPUkVx9OhRbr31Vho0aEBAQABdunRhw4YN9vUiwnPPPUfjxo0JCAhgyJAh+UqpnDp1ilGjRhEaGkpYWBh33XUXZrO5vA9FUw7Ypsecl3MpP0Xt5xGLBRITYcECmDYNnn0WJk/Gb+ZMLgeaFXO44vhNaTQajab0KJWEkwA7duzgv//+4+zZsy7tV155ZWntws7p06eJjY1l8ODB/Pbbb4SHh7Nnzx7q1atn7zN9+nTeeecdPvvsM1q2bMmzzz7LsGHD2LFjB3Xq1AFg1KhRJCUl8ccff5CTk8Mdd9zBuHHjtHO6pmTk5HAFcCsQeP75kJqar4s/8FPe/9ZOneCmmzBcf32hw+qyJxqNRlOBiJfs27dPunbtKgaDQXx8fMRgMNj/9/Hx8XZ4jzz55JPSv3//AtdbrVaJjIyUGTNm2NvOnDkj/v7+smDBAhER2bFjhwCyfv16e5/ffvtNDAaDHD16tEhypKamCiCpqaklPBKNO2azWQABxGw2F3t9UfsU1N9oNBa4rXM/lz4ZGSLvvCOWpk1FwLGEhooMGCBy++0i48eL3Huv5FxzjWwGyXHuB7I9OFiuyBszOjraZXxP+80ng0aj0WiKTHGe315PvU2cOJGWLVuSkpJCYGAg27dvZ9WqVfTs2ZMVK1Z4O7xHfvzxR3r27MkNN9xAo0aN6NatG3PmzLGvP3DgAMnJyQwZMsTeVrduXfr06cPatWsBWLt2LWFhYfTs2dPeZ8iQIfj4+JCQkOBxv9nZ2aSlpbksmpqN748/QseOMGECPkeOYAReBzKXL4eTJ2HVKvjsM3jvPZg1i+zPP6cbEAZkzZ8PV18NtWrR0WzmRyC3Rw/WvPJKBR6RRqPRaJzxWlFau3YtU6ZMoWHDhvj4+ODj40P//v2ZOnUqEyZMKA0Z87F//35mzZpF27ZtWbp0Kffddx8TJkzgs88+AyA5ORnIHwoeERFhX5ecnEyjRo1c1vv5+VG/fn17H3emTp1K3bp17UuzZsX1NNFUFxoA3wF1brkFDh6Epk3JfustmgOPAdZevcCv4JntdMBy1VXw/fdw9Cg89RQEBuK7cSMBl17Kx0C9ArfWaDQaTXnhtaJksVgICQkBoGHDhhw7dgyA5s2bs2vXLm+H94jVaqV79+688sordOvWjXHjxjF27Fhmz55dJvuzMWnSJFJTU+3L4cOHy3R/msrJYOAf4BpAatWCp5+Gf/8l9+67sQB13TcYPRomTID9+z0PGB4OU6fCgQNw770A3AnsAHz++quMjkKj0Wg0RcFrRalz585s2bIFgD59+jB9+nTi4+OZMmUKrVq18lpATzRu3JiOHTu6tHXo0IH//vsPgMjISIB8mZKNRqN9XWRkJCkpKS7rc3NzOXXqlL2PO/7+/oSGhrosmhqECBOA34HGwHYga8UKePllCAqi1ltvcRp41n27RYvg3XddLExRgN+CBZCd7ejXqBHMmkXmH3+wA4gE6lx1FbUmT8a3LI9Lo9FoNAXitaL0v//9D6vVCsALL7zAgQMHGDBgAL/++ivvvPOO1wJ6IjY2Np+1avfu3TRv3hyAli1bEhkZybJly+zr09LSSEhIICYmBoCYmBjOnDnDxo0b7X3++usvrFYrffr0KRO5NVWY3FxqP/ggb6NCRT8FegPWzp3tXazNmxMMdHffdvp0ePZZpGlTe3j/g4D/2LFw3335dmWNiaEHMAswiFD7tdf4DQ+WKo1Go9GUPWXhTX7y5EmxWq1lMbSIiKxbt078/Pzk5Zdflj179sj8+fMlMDBQvvjiC3ufV199VcLCwuSHH36QrVu3ylVXXSUtW7aUzMxMe5/hw4dLt27dJCEhQVavXi1t27aVm2++uchy6Ki30qdSRr1lZopcfbUISC7IQyDdQdaBZM6d6xjn5EnpAWLwsF+r1Sr9+vWzj/0QiKVJE5ENG5w75ZMnc948sQYGioDsBGmto940Go3Ga4rz/C4VRWnVqlUyatQo6du3rxw5ckRERObNmydxcXGlMbxHfvrpJ+ncubP4+/tL+/bt5cMPP3RZb7Va5dlnn5WIiAjx9/eXiy++WHbt2uXS5+TJk3LzzTdLcHCwhIaGyh133CEmk6nIMmhFqfSpdIqS2SwyeLAIiNXfX67KW/dSXlh/bq9eRdqve4h/bGysWLOzXQV5912RUaPEfPCgyzgZa9bIf3n7OwkyQCtKGo1G4xXlqih98803EhAQIHfffbf4+/vLvn37RETk3XfflREjRng7fKVGK0qlT6VSlFJS7EqShIRIxi+/2NcFgLwJkp53vZ9rv+77yGdxTU1VeZdAsl59NV8epQiQv/OUpQyQS7WipNFoNCWmXPMovfTSS8yePZs5c+ZQq1Yte3tsbCybNm3ydniNpkKoA9S56SZYvhxCQmDqVHz/+MO+PhN4GBC3FBRFwWNZlNBQ+OMPmDCB3Pvvz7eNERgE/AgEAIuBm4q9Z41Go9EUF69LmOzatYsLL7wwX3vdunU5c+aMt8NrNOWOL/AV4Lt8OQQFwbx5MHIktbOzuQUoswI3vXurJc/h2wD4LlqEJa/ESRZwHfAJqkzKl0Ao2OvAwbkL/Wo0Go2meHhtUYqMjGTv3r352levXl1m6QE0mjJDhFnAVYD4+8PPP6vs2a+8Qu4NN/BdiYaUEhWzfRWoc+ed1HayMOUCtwPvo368HwKz2rUjODiY4OBgBgwYgIiUQEqNRqPReMJrRWns2LFMnDiRhIQEDAYDx44dY/78+Tz22GPc5yH0WaOpzATNmMFYwAJkf/ghDBqkVjz8MNlz55JVzPEkr6Cte5b4orANldDSOnCg65jAeGBq3ufHjx1jfN7/8fHxZGRkFHtfGo1Go/GM11NvTz31FFarlYsvvpiMjAwuvPBC/P39eeyxx3jwwQdLQ0aNplwYBQS9/joAy4FB8+bBTTeBvz8YDGopJhkZGaxZs8b+OTY2lsDAwCJt+zkwOzERad4cxo7Nt/5pwAo8A7yHsjZ9UGwJNRqNRlMYXitKBoOBZ555hscff5y9e/diNpvp2LEjwcHBpSGfRlMu9AI+yvt/Nmp6y2/ZMlixAoYNK/Z46enp+RQio9FIeHh4sXyIJC+JKign7sdQU3I5eW3/Q/2In8yTO7fYkmo0Go2mMLyeerNRu3ZtOnbsSO/evbWSpKlSGJKSWIyKdMseOpT7gRFA9jvvlEhJAlWA2d1fyGO02zlw9m9aBEwBPnbr8xTwRt7/HwJ+X3xRIpk1Go1Gkx+vLUoAWVlZbN26lZSUFHs5ExtXXnllaexCoykbMjPxHzmSJiifoIj330fatGEVkHvnnfgXY6jAwEBiY2OJj48HlL/Q8ePHvRKve/fu7NmzB4B3UZavOR76PYr6MU8Aat93n4rWu/VWr/at0Wg0mlJQlJYsWcLtt9/OiRMn8q0zGAxYLBZvd6HRlA0iMG4cvhs3YkKZVw1mc4mHMxgMxMXFcfz4cbvztreRnzYlCSAlOppWiYkU5Ko9EfWDvl8ERo+G2rXhxhu92r9Go9HUdLyeenvwwQe54YYbSEpKwmq1uixaSdJUal57Db74AvHxwQR0BALmzi2wu81iZMOTY7bBYCA8PNylX0F9i7qf6OhoTCYTcXFxLkpSJHCF27YPADljxoDVCrfcAosXF2mfGo1Go/GMQbxMuhIaGsrmzZtp3bp1aclUZUhLS6Nu3bqkpqYSGhpa0eJUC9LT0+0+bmazmaCgoCKtFxF7WHx6errdouNpDAB++w0uuwxEyH79ddo9+igPAzcfPUrEeecVuK3zfgpL7ujc71x9z7W9bVvnY48A1gJNgUuBP522NaemEvTAA/D551CrllKWLr20WPvViSs1Gk11pjjPb68tStdffz0rVqzwdhiNpsTYchXZki6eM2fRwYMwapSaervnHnLHjeMQ8BCQnp1d6KYGg4GgoKBzOmY79yuJE/e59pOCUpT2A/+5r/T1hblz1bRbTg5cey38+We+MdxxPo86caVGo9EovLYoZWRkcMMNNxAeHk6XLl1c6r0BTJgwwSsBKzPaolT6lMSi5NzmTGxsLHFxca6KRnY29O8PGzZAgwbw00+kd+3qcfsCrVEVhPtx1kalDEh162eXOydHKUuLF0NAACxZAh7KDRU0fmU7fo1GoyktivP89tqZe8GCBfz+++/UqVOHFStWuDyUDAZDtVaUNJUPo9Fof7h7nD569FGlJAUEwMmTcNVVBO7f7xKtBsXzKaoozuYtNloDB5071KoFX32lLEq//qqmGn//HWJiylNMjUajqdJ4rSg988wzvPDCCzz11FP4+JRaWiaNpkTYpqs88tVXMHOm+n/ePPjiC7jzTgzBwcpR2gufoormUmABqmCuC/7+8O23cMUVavpt+HBYtgx69ix/ITUajaYK4rVmc/bsWW666SatJGkqN//+C3ffrf5/5hm4/nr4/nvIy/PlrU9RRVMbCAWiQE0vOlOnDvzwg5p2S0uDoUNhy5byF1Kj0WiqIF5rN6NHj2bhwoWlIYtGUzakpyvFKD0dunaFF15Q7VVMGSqMxahs4kNBWZHcCQyEn39W026nT8OQIbBjR7nKqNFoNFURr6feLBYL06dPZ+nSpXTt2jWfM/cbb7xRwJYaTTkgAvffD9u3K5+drVvhww/hvvsqWrJSZ4l7g9UKzpbekBCVFmHIEOWndfHFsHIlXHBBeYqp0Wg0VQqvFaV//vmHbt26AbBt2zaXdVVt+kJTDfn4Y+WPZDAoP50//oDBgytaqrJFBN55R00tLl2qMnTbqFtXtQ0erJTGiy6CVavAywziGo1GU13xWlFavnx5acih0RQbW7FY2998JCbCAw+o/195BZ56Co4cgaZNy0fACsJgNMKzzyp/pAULVDkTZ+rXV47dgwap6beBA9XnEp4XnaRSo9FUZ0rso/Tcc8+xcePG0pRFoykWERERBSeYTE1VfknZ2Sos/oknVHs1V5IAJDJSRfS9+SbcfrvnTuHhKvqtQwelPF54IQY3i3CR9qWTVGo0mmpOiRWlI0eOMGLECJo2bcp9993Hb7/9xtmzZ8+9oUbjBe510Jyx5z4SgTvvhH37VJbq4OD8kWDVnSuugIceKtxhPTJS+Sh16wYpKQSMGEEvp9VFUXoyMjJYs2YNAPHx8S4pFjQajaY6UGJFae7cuSQnJ7NgwQJCQkJ46KGHaNiwIddddx3z5s3j1KlTpSmnppohIqSnp3tcCsNgMBAXF4fZbM632LNwv/UWfPedUpJAOS5nZZX9QVVWcnJgyhSVYNOd8HD46y+IicFw+jTLAFvu7qpsIbJdX2Uhf1mOrdFoKh9epQfw8fFhwIABTJ8+nV27dpGQkECfPn344IMPaNKkCRdeeCGvvfYaR48eLS15PfLqq69iMBh46KGH7G1ZWVmMHz+eBg0aEBwczHXXXYfRaHTZ7r///uOyyy4jMDCQRo0a8fjjj5Obm1umsmry12ZzXs5Zp438OY9cch+tWeOYZnvrLeW8/f33UK9e2R5UBRAdHe3x/3yMGwfPPw+33KKsbe6EhcHvv2O58EJCUNFz1wCJiYkcP368yikEZTkdqKcaNZoaiJQRKSkp8tFHH8mVV14pM2bMKKvdyLp166RFixbStWtXmThxor393nvvlWbNmsmyZctkw4YN0rdvX+nXr599fW5urnTu3FmGDBkimzdvll9//VUaNmwokyZNKvK+U1NTBZDU1NTSPKRqj9lsFqDQJTY2VqxWa/EGNhpFmjYVAZEbbxQp7vaVHPfzZjKZxGw2i9lsFpPJZG83m82uG27dKhIZKfLtt4WPf/y4/KBUKbGATCjCd+EuU759lxJWq1XMZnORrglPMhVn+8L6ltfxajSasqU4z2+vFaWMjAxJT0+3fz548KC8+eabsnTpUm+HPicmk0natm0rf/zxhwwcONCuKJ05c0Zq1aolX3/9tb3vzp07BZC1a9eKiMivv/4qPj4+kpycbO8za9YsCQ0Nlezs7CLtXytKJcP5YWM0Gu0Pe+el2EpSTo7I4MFKSQoKEtm/v2yEr0AKe0g7r/P48M7IKNL4viAz85QlAXkdxFCIQlCQTMVRTM6F1WqVfv36FVmB9qRQFnX7c+3LWSHVipJGU3UpzvPb68zcV111FfPmzQPgzJkz9O7dm9dff52rrrqKWbNmeTt8oYwfP57LLruMIUOGuLRv3LiRnJwcl/b27dtz/vnns3btWgDWrl1Lly5dXKZ6hg0bRlpaGtu3b/e4v+zsbNLS0lwWjXd4mkIrUQmR//0Pli9XCRbT0x3ZtzWKgAAgz78mKYmMbds8ThtZgPFAdt75ewT4GsBsLvKupJSnp7x1GC/O9oX1FREGDBhQXPE1Gk0Vx2tFadOmTfabxzfffENkZCSHDh1i3rx5vPPOO14LWBBfffUVmzZtYurUqfnWJScnU7t2bcLCwlzaIyIiSE5Otvdx94exfbb1cWfq1KnUrVvXvjRr1qwUjkTjNd99B9Omqf9nzFC1zF5/vWJlqoSICDf17Ml/TZpwuEsXhsfE2JUYyXNQtpH76KNkzZ1LNnAdEHDRRbB3b5H24Y1iI5XYUTojI4PExMSKFkOj0ZQzXitKGRkZhISEAPD7779z7bXX4uPjQ9++fTl06JDXAnri8OHDTJw4kfnz51OnTp0y2YcnJk2aRGpqqn05fPhwue1bUwC7dsGYMer/Rx5Ry9Kl0KBBhYpVGcnIyGDFpk0EA0HA4YQEMjIy7BYg9xcHy403Mgg4Bvjs2AG9esGSfIVSXPBkQSqq0lNUS1RlVaQ0Gk31xGtFqU2bNixevJjDhw+zdOlShg4dCkBKSgqhoaFeC+iJjRs3kpKSQvfu3fHz88PPz4+VK1fyzjvv4OfnR0REBGfPnuXMmTMu2xmNRiIjIwGIjIzMFwVn+2zr446/vz+hoaEui6YCMZvh2mvBZIKePeHVVytaokrPceAyoCewM6/N2QIETvmogL/z+lp694YzZ+DSS1XW7wKiQxMTE/NZkIo6/VaQJcp924iICB1xptFoyg2vFaXnnnuOxx57jBYtWtC7d29iYmIAZV2y1YArbS6++GL++ecfEhMT7UvPnj0ZNWqU/f9atWqxbNky+za7du3iv//+s8sXExPDP//8Q0pKir3PH3/8QWhoKB07diwTuTWliAjcfbcqwQHKslSEqaGahqeprH8A51cEcUoUazQaHfmo8kgCYrKykLvvVuf9pZfgwgvhwIEiyeBJeSqq7Gazmf79++db52lKz3as58rF5d7/XApXZZ4O1Gg05UBpeI8nJSXJpk2bxGKx2NsSEhJk586dpTF8kXCOehNR6QHOP/98+euvv2TDhg0SExMjMTEx9vW29ABDhw6VxMREWbJkiYSHh+v0AOXAOSO0isJbb6nILF9fka5dRS6/XMTp+quOFDfqzT2Cyz1iC5D0JUvkcO3a0tnDmFarVaKjo13HXbBAJDRUnfvQUMmcOzffmEajMV9bYd+zLULOXb6oqKhCU0i4y2o7VvclOTnZY7oAT9FthUXMeZKnKNdvaUYAajSa0qFc0wOIiGRmZkpCQoL89NNP8sMPP7gs5YW7opSZmSn333+/1KtXTwIDA+Waa66RpKQkl20OHjwoI0aMkICAAGnYsKE8+uijkpOTU+R9akWpZHitKK1aJeLnpx7W77wjkp0tkpZW+oJWMoqrKLn396TArAgMFAH5FiQ6OrrQcHj7/g4cEOnXz55C4EeQpiVUlJwVFmelrChLQcfvvrRt29blc1paWj4Zi3POiqMoFTe1gUajKR/KVVH67bffpGHDhmIwGPItPj4+3g5fqdGKUsnwSlE6dkwlTwSRW26pdkklC6OoipItN5W7hcb5oW9THuqjciUF5FlPCtuny3eVkyPywgtirVVLBCQN5AEQn2IqSkVJPuqtolScsYqiKDkrXue6fnWCSo2mclKueZQefPBBbrzxRpKSkrBarS6LxWLxdnhNFUZKWM+tQHJy4MYbwZa+oWfPwou+1lAiIiLskWMFERcXB8Ap4FEgE86Zu8rmpyMipGdnI88+S+aaNcQDIcC7wCag1sqVpXMgRUCK6ZdUGtjOnUajqRl4rSgZjUYeeeSRItXo0tQcxMt6bh4GhAcfhNWroVYt1VbDCt0GBgYSGxsLuEamFURhOX8KVIrmz4fPP/e4KiIigv79+7uE8Fvbt2cAcB9wGogC6t14I7/k/V+WOF9jpXX/kSI4bDufO1t/KaLDt9Vq1c7hFP18aTSVAa8Vpeuvv54VK1aUgiia6oR7yLknivKwt/Puu/DBB8qC9M03qtDtU0+VgqRVB4PBQFxcHGazOV9kWnFxVrog77uIi4Nbb4W77oKtWz32W7NmTb4QfgFmA22AN4GzwKVAIvAT0BfsVh9vHozuhX+Lco0VuXAweMy8bbVaC92mf//+mEwmV+XRai3wWENDQ4mNja3RRXWdFdyaeg40VQuDeHmVZmRkcMMNNxAeHk6XLl2oZXvbz2PChAleCViZSUtLo27duqSmpuqcSm6kp6cTHBwMKKtjUFBQvj6BgYFFe9j/9htcdpmyKs2YAY89VtriVnmcz3dB7N+/n1atWgFgNpsJDAy0h9gHBgZiEIGbb4bWrVUKAB/1HiUiHD9+3KPVxmg02tujo6NJTEykNTAFuAnwzeu3EqVMJcfE8Fd8vP17L4rcoBS5VatWceLECfv+nPddECaTyb4vEbEnx3XHnFeipSiymEwmBgwYUKDFLioqii1bthAbG8uSJUsK3KftGMLDw4ul9Epe9vMi/34qGe7fudls9nh/0GjKkuI8v71WlD7++GPuvfde6tSpQ4MGDVx+uAaDgf3793szfKVGK0oF43wz9OpGuH079O2rkkt27AhbtoCfXylKWj0oqsJho8DvxGIBX998zQWN76ysmEwmMjIy7J/bAE8BtwO216fjQNiECdS6/Xbo3p30jIxzyu2sTDjLkZyc7DE5rE1hi42NdbG8FXaO3BWlNm3asNcpL1dtoAXQClj89ttw/DgfvvQSjYBwoD4QCNQBAvL+WoDQBg1IOnmSsyh/sBPASSAFOADsA+p268YXa9ZgcKsy4Ekhsllj1qxZQ3R0NBs3bsTHx+uJgXJFK0qaykCxnt/eeo5HRETIyy+/7JJDqaago94KplRyJaWkiLRsaQ9Dl8BAkX//LV1BqwlWq1ViY2OLHGZfpO/EYhH58EORrKwCo8qco8LMZnO+ftHR0XIeyNv168th2/doW1q2lOyJE+UikDoliG5zD/u3LSaTyWPeosIi48wmk5gPHJA+IDeDmJ58Uj4GWQ5yCMTiLnspL1ZbPrAxY0TeeUcsa9ZIz7y8Tf369ROTyWTPx+R+fqtaygEdCaipDBTn+e21Ral+/fqsX7+e1q1bezNMlURblArGa4tSdjZccgnExUGrVsofKSICrryyDKStHkieBUI8TDE5T7tBEb+TceNgzhy47TbS33+fYA9TSM4WJU/TV7apLxEhLCSES4Hvrr4av6VLITPT3i8LiAcSgM2o6LkDqCeps6wiQvfu3fNNexVkRXIm/eRJejRsSCuUZahl3t9WQNfgYAx58heEGWUB6nTppUijRkz/9FNSUFayk0AGKnowK2/xAdauWMGQQYOoA9QDGuYtkXn7bZ23eLp7mIA4YDnwJxAYE8N333+fz4pmO8dVZSpOW5Q0lYFynXp7+OGHCQ8P5+mnn/ZmmCpJdVSUbA/bolDYjdkrRclqVb4yixZBaCisXaum3TRFwtMUk7s/T5G+k99/h6uvhlmzSL/++nNOvXlSlGz7yXc9APz2GznffUfKggWc52H3GYAxIIAWgwdjaN4cGjaEevXIqlOH2+6/HysOs8SX8+bhk55O7exspfCkpoLRCElJKp1EUhKcOFHo4YrBwBER9gO9R47k5a++Yj/Yl+NOx+R+nDZsCpun81MY6f/+S+CuXbBpE7nr1pH622+4l3U+DPwI/ACsAHLy2p19orx18i8PtKKkqQyUq6I0YcIE5s2bR1RUFF27ds3nzP3GG294M3ylpropSuLk/1AUCn17L6miJAITJ6ooN4MBFi/WVqRiUmqKEkBKCjRqVCQfpWIpSnn7NpvNhISE0A4YBHQHBgQH0z4nB0N2dtEPuohk+Piwx2p1UYD2A1+sXo1/u3aEhIfnOy53bI7wAwYMID4+3mWdu59WYeM4W/mc/bDMZjOhISF0RZ2Ti/IW57OfCnwHfIFSmmyxeSaTqVi+au7YXpSKYp0qad8MN780rShpKoLiPL+99or9559/7MVvt23b5rKusr/ZaFwpSri1M7bw8FK9yb36qlKSQClN8fFaUSomtpB+20O8WGkY3GnUyDEu0Bv1YPYG27uZOIXj7wJW5UVHBgYGYsjNhUOH4OBBVXz3v//g1Ck4cwY5fZrNq1aRnp6OATAAffv1wzcsDEJCIDhYWSIjIqBxY4iMVH8bNyagfn0anzhBtJvy0rB//3OmD3DGlqohPT2dYcOGsWbNGmJjYwkKCiryfc/5dxMREWGP7BswYAACbMlb3gb8gYuBq4ArUVN3d+QtR4GvUErTgAED2LRpU4nuvVarlR49epxzChNcX6qK23fJkiXFlk2jqVBK20GqJlHdnLk9lcHwtLg78J5rrCI7a378scPB9aGHRK69ViQzsxSPsOZgc/y1OTU7O3uXpOaY+ehRWQuSDXJxMZy5PZUGsTkge2orKu7lWYrjEFyUcifupUtsDvKezp170Vv331FB+zCZTPbvxFP/gpzVDSBHv/pKZoGcdHMK3wCS9dZbIsW8J7kXQD7XOS3oe/ZUAPhcZWG0M7emIii3EiY5OTlcfPHF7Nmzx5thNJWQoKCgQpdS56eflPMwwJNPwptvwrffglvItKZoGAwG+3dlMBi8T1YZHMxhlENzSYqFBAYG2i02iYmJ+cqOFFem8rZWF3bubOe6oCloG84WK5v1KS4uDqPR6LF/QaVSBIi84QY+iI4mEmVl+hrIBnoA/g89pCxod90FCQlKhbJtW0BG7IyMjEIzuRcFKWIiyYLaS7I/nd1bUx54pSjVqlWLrXkZfDWaErNmDdxwg8rhc911MHVqRUtULSnsgX5OfH25FTX19ncJ9+384O/evbuL7055Kj7O2cb79etHsq12YCGU9Nw5RxralC1nhcs2rqf+QUFBLlnRbaSlpeHj40NcXBw5KAfvG4EmwEOAtV07yMiAuXNVDrKoKHjvPeT06TLNiO08dW+blvdEYTUIi0pRlTKNpjTwOlPZrbfeyscff1wasmhqIuvXq6zbNsddp7drTeXiLCo83kYLwGf37iJv76xkVKQV2tm6tnr1ao/Oz8Wtq+dObaAbcInbfoPeeYegSy7B8Mknjn0ZDKysX58PcSTmBDBkZxO3ahUmk4l+/frZZbHJ6660nUL5M2WsX6/Satx+u7LI/vOPqpN43nnctWYNvVGKzPHjxyvEIlMa331RlTKNpjTw2pk7NzeXuXPn8ueff9KjR4980zLVOepN4yXr1sHQoSqUu1cvCAiAjz9W0W6aSk0rlFN37sCBtAH2Ft691HF2WC+JIuNsybFNCzpPPdmUqSJFdYnAv/8qR/KmTQHogMoFlQbUxUnZ2r9fpbu46irHvk6e5MJTpxjg58e43FwA2rZtS+DLL2P45BOCn3uO1atXFznCbMCFFyqH7v794a234Isv4IMPMGzfzp3AnSgn8ckREcwHupSxg3VJFDGp4mVaNNULry1K27Zto3v37oSEhLB79242b95sX7yd89ZUYxISYMgQpSQNGADLlsHKldCmTUVLpvGAs4UlOjqaVOA0cNpqxZzXFhgYWKglxnldVFQUMTExHvsVhdIsEGwwGNi4caPdh8gmT5Gn2+69V+X5+ugjQB1nWEwMh4FDISGYjEaHjOPGwXffqalmGyEhMGsW5meftTfFxcVh2LcPzpyB4GCHLKdPw4UXwosvqnxjTrRt2xZQPmB2C0u9evDgg8jWrYxp25bPUEkxo4D3gWPAmPh4sj34Q1mtVqxWq90XqCTWJ/FQaNhZVk/9zWYz3bt3L3BazSaPRlNulLYneU2iOke9FTXipURRb2vXigQHq0idqCgRk6kUj0JTVtgimiwWi8TGxko4SKO8iDDnEkaeIp88rSusX0VwTnnOnhWZO1fkqqtE0tIc7R9+KFKnjsjDDxd9LA84R4MZjUaR7GyRjRtFjEZHp0WL1O+mUyeX31gESHJSUoFRaM5RgvVAJoBsd4uY2wRyD0iIW5RdVF4pFZyi/twj2Uwmk8dotoIiDJOTkz3K2q9fv3x9ne8fRemj0RSF4jy/S6QoHTp0qFj9jxw5UpLdVHq0olQCRWnNGpGQEMcNuk0bkZyc0j4UTRnjnn5ARET+/FNkx46KFawssVhEWrVS1+1XXzna09NLJY1FPkXJE8eOicyeLfLJJy6/sf0gOa1bSyen7S0Wi12pKKj+XyzIPJBMJ4Up3cdHPgTp6aF/QQqQszJVFEXJU4qRgvoWVOuvoD4Wi6VG1h7VFI8yTw/Qq1cv7rnnHtavX19gn9TUVObMmUPnzp359ttvS7IbTXVjzRoYNgxMJjXddtNN8Msv4Oe1q5ymnHFPP0BCAlxxhZoWKoaDd6Xl9Gl44QUYPhx7eL2PDzz9NEyZAr17O/oGBpZfGovGjeGee2DMGHtTSyAC8DEaOZjXFhERwZCuXVmb5/BckBuEsU0bbgfOAx4GrBdcQKDVylhgPbAbmAIMdko86oktW7acU3T3qc3C2L9/v8tnyZtus7pNN7pjtVrx9fXF19f3nH01miJTEk3sxIkT8vDDD0vdunUlIiJCLr30Urn77rvlgQcekFGjRkm3bt2kdu3a0rdvX/nll19KsosqgbYoFcOitHy5SFCQemsdPFhEm8qrFydOiPTsKTJihJoyquqcPCkSEKCu17Vry2WXFovF/pspikXEOYnokD59JH3pUhcryy8gu0EuLMAyBMi+ffvs/7dt21asFovIypVy9sYbJd1tau4fkOdAMlatElPeva+wxd2iZDKZ7BZIT/eQghJ1mkwmj9NttUEag3QASd+4UWTfPknZv9++vk2bNmIymcRqtWorkyYfxXl+e1XrLTMzk19++YXVq1dz6NAhMjMzadiwId26dWPYsGF07ty5pENXCSpzrTcpRnFbG+np6S51uwpKLFmUOm7OfbLmzMH/vvsgNxfat4eNG9VbuKZ6kZamrINV7bu1WOD772HnTnByqOatt1QJl2uuURGZ5YDNCuLjUzRjvzhFhwH2+nNBwCGgHtCOgqMS09LS7Pcui8Vi3296ejoRwcFcAYwErqxVC0NOjn27k35+/JKby1IgPm9f4Fq/zr32n/O9wtM9xLnNuUbe8cREbomOpiPQEeiEiiqsX8AxnQD+AeKApQB9+7Lm77/zHaOmZlOs53cZK23VmspqUSrI4bE4S2lZlJ5zeyuVzp2VU6ym+vP66yIffVTRUpybjRvVtenrK/LffxUtjVdYrVYxmUwSFRUlQSCXO1mLAJl33nnya3i4tMHhmO3J2uJe8sb0338yBuQbEIstEMNpOZa3zvTkk3ItSEcQ88mTBd4r3C1NkpUl6Vu3ysUoR/OMW2+V1SCn3e8fbksuyAkQa716Yg0M9NjnIMjzIA0oxPdLU+MoN4tSTaeyWpQKqvReVM5V5LJIFqXTp/mmfn1G2xqeeEKFQd97LzRsWGLZNFWEtWshL0kia9ZAXiqASkFmprIede/uaBs1Clq1gokTq8X16V7gdtWqVWSeOkVg69YY0tLIWrQI/+uvLzT1gThZqzIyMuy/+f3//ssd7dszAhjm70/H7GxqFzRGvXrsOH2a40D/IUPwq1MH/PzITU/n7z/+IBho6udHw7z8UR7H8PXlX4uFHcAOYDuwE/gPSEVpWyaTiWHDhvHPmjW0RGWQHwRcAdjuzBmAjBtH0NSpUL8ge5SmplDtLUqvvPKK9OzZU4KDgyU8PFyuuuoq+ffff136ZGZmyv333y/169eXoKAgufbaayU5Odmlz6FDh+TSSy+VgIAACQ8Pl8cee0xyihGBVVktSkUtblvQcq6Q5nOOf+SIZPfrJwKSA5L1zjvldOSaSoPVKvK//4lMmFDRkriybZtIo0ZqycioaGnKFI8pCtatE5k4UX0/Nv78UyQ+vtCxCgvzr4OKnnsMJOPGGyUBJPUcliBPSwbITpDvQMwPPyw3gXQGSTp40GWfniL49jv5JjkvdUBuAlnvtB9r/foiM2eK5exZ7bdUg6n2FqXhw4czcuRIevXqRW5uLk8//TTbtm1jx44dduvGfffdxy+//MKnn35K3bp1eeCBB/Dx8SE+Ph5Qc9XR0dFERkYyY8YMkpKSuP322xk7diyvvPJKkeSoChalwnyNSmN8d5oDv6J8CQAWApeXgQyaKoKII9N6VpaKeAwPrzh5cnLggguUXD/9BF26VJwslQGLBTp1gl27YN48uO02j90K+s07+xK5f+7VsiXpBw4QAYQDc959l9CAAPUd1KlDZq1aXH3rraQAh4GThYxrIzk5mfDwcC688EL7vbyoDAVeB2yes3HAGGCP9luqkVR7i5I7KSkpAsjKlStFROTMmTNSq1Yt+frrr+19du7cKYCszYtg+fXXX8XHx8fFyjRr1iwJDQ2V7CJG7VQFi1JZJGJz9l9wXnqBJOe9tZ0ASQd5qn37SpNQUFOBWK0iY8aINGsmsn59+ewzLU1kyhSRSy91taDs2qX95GykporcdZdIRIT634bJ5HLOipIPydNn93XOFDQmeX5LnixHtjGsVmuh+ypo8QXJfO01seRF4JpBUmfMcL0+NDWCMs+jVNlITU0FoH7evPPGjRvJyclhyJAh9j7t27fn/PPPZ+3atQCsXbuWLl26uLy1DBs2jLS0NLZv3+5xP9nZ2aSlpbksNRHn8hFmsxmzyUTWm2+S4O9PBGDp2pWA3buRfft4ZccOXatJo0pxrF0LR4+q/8sDsxleeQV+/RVWrHC0X3AB1KpV4GY1itBQVXpl/371v43bb1c+Zps2Aa7lZ2zExsbSsGFDl5I1DRs2tOdLcqehm++X85j9+vVzKfwbFBREnIeyKjaca/W5YzQasVgsmM1m+19jXrFtCxDw2GO0Sk/nLyAICH38ceWjlhelp9G4U+Uz/VmtVh566CFiY2Pt6QiSk5OpXbs2YWFhLn0jIiJITk6293E37do+2/q4M3XqVF544YVSPoKqif1GdfIk3HUX/PCDWjFsGL5ff01gSEjFCqipXNSrp5JSLl+uavyVBSYTxMXBpZeqz40bK0WpcWOVCFNTMM4pHVJSYMkSNVWalxbBuUhwQEAAmZmZ9np47sWD4+LiCHH6/aelpREUFJRvest9W8BlnHO9YDkXRnbGti+bIhUUFJSv8PEhYAgqyeZrvr4YFizAunEjhm+/xVBIWhvRxXprJFXeojR+/Hi2bdvGV199Veb7mjRpEqmpqfbl8OHDZb7PSs3y5dC1q0NJAvWQ0kqSxhN168LVVzs+Hz8Ol11WOpm8k5OhZUu46io4eNDR/vDDMHIk+Pp6v4+aQqNGysL02WfQoYO92TBnDkFLl+IDLsWC3YsHuysQPj4+BfoAOW/rPo4nK5azVcqmaNmsRYVh6+uMAG8A/S0WjgA+u3eTFRVF5ty5mM1mj8V4+/fvX2CxXk31pUorSg888AA///wzy5cvp2nTpvb2yMhIzp49yxk3E7/RaCQyMtLex/0HZvts6+OOv78/oaGhLkuNJCdHlXK4+GI4dgzatYP331c31gcfrGjpNFWFRx5R02K33goleeg4bxMZCd26qRD/pKTSk7GmEhnp6th9+jQ8/jhcdx0sXVouIjhP8VssFo/JIgubgvM0nifWAN2A34EAq5WAu+7i45AQekVFYbVa7eVT0tPTWZNXEiY+Ph6z2azLpNQUytZdqmywWq0yfvx4adKkiezevTvfepsz9zfffGNv+/fffz06czs7GH7wwQcSGhoqWVlZRZKjRjpz790r0q2bI6z37rt1ORJNyTh6VDlab9lSvO0yM0WmTRPp2tU1xN9oFMnNLV0ZNYrUVJFnnxUZMEAVB7Zx8GC+otbuTtplEVDijHtyzIKCR5z79evXL19SXh+QF53SCMSBDOnY8ZyFhS0Wi+dUDJpKTXGe31VSUbrvvvukbt26smLFCklKSrIvGU43zXvvvVfOP/98+euvv2TDhg0SExMjMTEx9vW5ubnSuXNnGTp0qCQmJsqSJUskPDxcJk2aVGQ5apyi9PnnIiEhDiUpMjLfTVKj8YpFi0R+/rnwPtnZKnoORD78sHzk0iicFQGLRaRjR5HWrUU2b7Y3l7eipMQqmqLi3K+gyLkrQM7k3eOSQAacI5KuTZs2dmWqMEVNU7mo9opSQRfsJ598Yu9jSzhZr149CQwMlGuuuUaSkpJcxjl48KCMGDFCAgICpGHDhvLoo49Wu4STpXKTOn1aZNQoh4IUEyNy0UWq9INGU1ocPSpSt666xn780dF+8qTIBx+4PqQXLRL55BOtqFcku3aJNGigvrMzZ+zNFaEolRR3K1NaWppSfkC25t3vckAeKkYKgsp8vBoH1T7hZGWh2ieczM2FDz5Q/khpacoh9vnn1WftHKspbTIz4bnnID4eVq1SBXazsuD885Xj919/weDBFS2lxhmzGbZsASen65zx45n4/vvMBbIpm6S3pYm4RbJZrVbS09OJDA3lQ2BUXr+vgLuB9HOMZzKZvCohpSkfivP8rtLO3JoyQkQ52XbtCg88oJQkgFdfVdXVtZKkKQsCAmDGDPjxR6UkAdSuDU2aqIABTeUjONhFSWLHDvxmzeJ9oDUqJ1Kgc+qB8iQ3V2VfX70asrML7OYebefj40NwcDAXREdzK/AgkAOMBBKAC4C2bdsWOJ6OiKt+aEVJ48q2bTB0qArb3rlTFQgdMADuvhvGjKlo6TTVmZwcFWnVvDnYUm989pmyWBw/Dn36VKx8mnPTqhWGd99FHniAdWazo7j2mjWQfi5bjBcsWgTXXqvKsNjIzYUrr1T3L+cI6P/+U+kPCsFgMLBx40aio6N5D1Vg9xjQCVgPbJk8GbPZ7DHpcGJiIhkZGV4fkqbyoBUljSIlBcaOVVakP/9Ub/SPPQZ79sDKlTBnTrWoqq6pxNSqpdJNZGTA99+rtgEDYMQINd3rbJnQb+yVkzp1YPx4DO++67DSpKaq/GotWsCBA2Wz3+3b1TXz44+Ottq1oVcvaNvW9d71xhvQujVMmlTokD4+PmzatAmz2cyStDS6AyuBUCBg1CiCXnwRH50eoEagFaWaTnY2TJ+ubiYffeR4AD30kJoGCQtzFDXVaEqLs2fhww9VxuzMTEf79Omwfj1MmKA+t2kDv/yiEkfa+OcfiI5W7ZrKz4EDSlFp0EBZC22UpJSNCCxeDH37Kuu3jTvugJdfVgq1DR8fWLdOJTR1dhc4fVqtc87WnpurLJpu2KblgoODaRMbyxDgqyZN1Mpp0wi89lou79ULoMDSLZpqQBk7lldrqnTUm9WqIociIx3RbD16iMycKbJggWuuFI2mtMnJETn/fHXdzZlTvG1vvFFtd8MNZSObpvTJyRHZs8fx2WoV6dBBpH9/EQ+58Arl0kvV9z96dMnlOXzY9R730UcirVqJOOXec8clBcHChSJ5hXWtDRpI5qefiikvYg5UUV9N5aY4z+8qX+utqiN5ERelSXphvgBWqyo9MnmycnIEZTV66y3lH1JAqQGNpsTk5sLPP8Pvv8PMmcpC6ecHU6aot/ubbireeLNnK8vE2LGOtpMnITERLrpIW0ArI35+yjpoY9s2Na1/5Ag419y0WPIHixw+rCxSeXXneP11iIpSVu+S4lTJAVDWzf37Yd++AjdxyQJ+443QuTOMGoUhMZE6Y8aQ+/33hAPHUQ7dmzZt0vXgqgtlr7dVX7y1KFmt1nzZYUt7sVuUjEaRV15RyeFsFiQ/PxFfX5EpU0rxrGg0bpw6JRIQoK65+Piy2cezzzoyxWuqBkePivzyi2vbFVcoi9HWrerzu++qa+ell8pWFrNZ5K23RJyrMuzbJ3LkSOHbZWeLPP+8upeCpIDcAWIAMRqNYjabxWw2i8ViEYu20lcqtEWpipCRkWGvHVQWxPbrR2BCgnpb+vprZU0CCA1V9bUefli96bVoUWYyaGoYNkfsPXuU1RKgXj0YP15ZK88/v2z2a7UqR+Lhwx1tOTnKF6oS5/Cp0TRpohYbKSkqLYnFoizcoPyaMjNVbi2RsrMWBgXBxImOzyJwzz0qWu/zz1VEnSdq11bX+VVXIWPGEL51K3OBscDwiAg2u3X3VK9OU/nRCSe9wNuEk86JIY1GY+klZTtxAr/PP6f2559jcK/MfuGF6makHx6asuDff1XFeV9fOHrUdVqlrDEaITzcMX38xReqSPOkSfDEE+Unh6bkLFoEGzYop35QCstVV6lCxy+9BMOGlY8cqakq2nLjRpUmpVWrc29z9izWt98m86mnCLJasQJzgBcAW5lmo9FIo0aNyk5uTZEpzvNbW5QqCUFBQd4pSiIqm/Hs2epmY7MeBQcr69GQIept7PLL1VuQRuMte/Yoa2VYGDzzjGpr3175b3TsWP6JSd2VssWLVWSVczSTiLIy+fuXp2SaojBvHowerXx/XnlFWbtFVBRkcrJrSgizWf0tqwzYdesqK9bWra5K0qefQpcu0KNH/m1q18bn8ccJvOUWch9+GL+vv+Ye4DbgXWAa6uVYRLTvUlWjrOcBqzPe+iiVSk22EydEZswQad/e4XtkW669VkRHX2hKC6tV5OxZx+dffnEUR87NrTi5CiI3V9WMO37c0RYfL1K/vkgxil9ryomTJ0UaNhS5806RtDRHe3KyisZ1ruv3zjsideqI/O9/5SffwYNqnwaDyIYN5+6/apXk9u1rvx+fBnkeZFDnzmKxWIpUxFdTdhTn+a0nS6siIhAXp97cGzWCxx9XUx5BQTBunMqHtHSp8kvSNYc0pcGsWerN+oMPHG1DhigLwMyZlTMBpK8vXHGFa7LBr7+GU6fUVI4ztkzgmvIhKwveftvVL6h+fWWl/PhjCAlxtEdEwP33O8ragLr/ZWWpqVYbZ88qi/qxY2Ujc+3acP31qt5g9+6O9oKSTg4YgE98PBNatmQLEAZMBn7Zto2Zvr50Cg5mwIAB9tpyUhl/QxpF2ett1ZdytSilpoosWSLy2GMq/4i79eiee1zfwjSakpKSIvLpp64RQG++qa6zIUMqTKxSITdXWcL++cfRduSIshJER4tkZFScbDWJzZvV9WQwuH4XRcVqVZFxztbCJUvUmM2aqfVlRXa26/9RUSryrYB7uMlkEgPI9SDrne7ZOSDfgtzXsqUYQGJjY7WFqRzRUW/VgaNHVZ6j+Hj1NzHR9a09MBBuvlk5zvbtC/366fwxmpJhtbrmz+rVCw4dgsaNVd0/gBtugJYtlRWpKuPrq8ppOLNunWoPDHTk6gEV7dSkiSqjov36vCMtTdXsGzBAfY6OVtakTp1KVvDYYFC+Qu5tMTGq3fleeOGFyio1fbq6hr3F+Vr45ht1XEYjPPlkAaIaEOCbvGUw8CQwDLgWuPbAAR4H5sTHk7FrF0Ht23svo6ZU0VFvXlBaUW8GwJyQQOCmTUopWrJEJdDzhI+PSrh2xx3K4VCjKSn//gv33aceYhs3OtrvuEPd/F96Kb9SUV05eVI5DHfqpD7n5qpp7dOnVZCE7QF/9qyqSadfSorOzp3qZc5gUFOcztNqZYFz0sojR6BZM3XfTElR6QYAVqxQxXEvvhjOO6/k+7Ja4dtv1fVy882O9ilT1LRvt26ICAMGDCA+Pp5+/foBsGbNGjoA44DRQD2nIWXAAAw336ym+ZynFjWlSrGe32Vt3qrOlHjqLSNDZOVKyX72WdkKkuU+jWZbwsJEHnxQpcs/ckQ5EOqpAU1JWLNG5MknRRYvdrSdOKGmPkAkKcnR7uw0W1M5dUo5FXfs6Ho+Jk8WOe885Vys8Ux2tmu5EotFpF075TJQkmk2b8jNFfn7b5EPPnBtHzlSXfeTJzvasrPVdJ63gQl//63G9ve3u0M4lz+xWq1iMpnsyYbrgNwGstL9/u/rq6a6335bZO9e72TS5ENPvVU2TpyAP/9Ubx7btqk0+Tk51AZsxmPx98fQvz/076+S8uXkwCWXuIamevPmo6kZiKippE2blGWoTh3VvnQpTJsGo0apvDSg3q6//FI5pjqH1vvp2wL16imnYndWrVLT4s7n6MQJZZmLjVXTSTXZ2rRhg7JCNmgAO3aoc+Hjo+5/TZqUf4kkX1/o00ctznTrpor1Dh7saNu4UbkwtGrlWsokI0NNyxaVunVh5EhlecyznhkMBoLmzoXWrWHIEIKDg1m9erW9fJXVaiU0NJSmwPiGDXm8aVN8ExPVefvzT3VdtW8Pl12mpsP79dOBOuWInnrzAo+mOxHYuxe++04pRRs2qCkOdyIjye3bl6WLF3MUuHXTJgK7dStX+TVVnPR0pRDl5jpu+CJqyujECaUw5VU2Z80a+OQTlUSvoCzDmnNjyxLdpYtDufzpJ7jySuUvuGOHo+9HHynF4NJLITKyYuQtS7KyVPRZ3brQu7dqM5nU9VevHiQkqGmvqsI338Cdd8LAgeo7tdGnj5oyXLRIvciCmoL19S08V5hzJvETJ5SimJMDu3bBBRe49BERunXrxpYtW+yb39S9OwtuuQXDL7+o85yb6xjbz0/9tgcNUktMjMuUpuTVEA0ICLArYwaDgYCAADIzMwEIDAys0fmc9NRbOWE33f35p8gbb6i8RRERnqfR2rQRCQlR1bL37hXJM8XibR4lTc1gwwaRjz9WVc9tfPmlurZiYlz73nKLyIgRIgkJ5StjTWXvXpGpU1VdMmdatlTfz19/Odp27FA1xdauLV8ZSwOrVU2j2Xj1VXV8l1/u2m/TJtd8W1WJ3Fw1JW0jO1vlTgJV+83Gp5+qGnT33ee6/dGjnqfujhwRGT9eZOhQ1/YJE0QGDRL5/XdJTk7OV6vTVi/OeuqUyMKFYh09WizNmuV7vlgNBslt317OjholmW++KXd27Sq1zlEHNDo6WkwmU43N51ScqTetKHmB/US7X7Q+PmI1GCSnf3/JXLRIzIcO2YsjOi9Go1ErShpXjh1TSveMGa7tsbHq+vryS0fbv/+KNG2q/C00lQuLRaXyuOgilUjRhi3NwrXXuvZ/4gmlbKWklKuYReb++0XCw0X++MPRlpgo0rixSk1SnR+0JpPy8XNWEh97TH2PEyY42qxWkeBgpVg5K1V79yrF2FkBs9GqlRrnp5/EYrEIIK1BngUZ4KTU9OvXT9LS0iQ6OloAGdGhg1g+/ljOjhol1ubNPb6cZ4FsBvkc5EmQS0HOL0Bp6tevn5hMphqlMGlFqZxwVpT+AnkCJBYkAqT2ObR590UrStWc9HSRQ4dc26ZOVRbGH390tNnyyzRs6Nr3qaeUY+fPP5e5qJoy5PvvRa6+Wjno2sjOVo674Fqtfu5cdX24W6qSk8suE/rhwyKjR4tcdplr+6hRSr7nn3e0Wa3VW0EqjNxckV27RPbvd7QZjcqB28/P1aL21FPq3I0f72izWkUeeUTk6aeV8pzn9G2xWMTy3nsiIEvdnhF3gIwACfTw/IgAuRzkBZDfQE4WFCAEkmYwyDqQL0Gm5DmSx4CEg0RHRRWqMLk7pbv/X5WsU1pRKidsJ7pFMZUi90UnGqvCuEeILVkiMmWK69TKP/94Vn5Gj1btL73kaEtNFbnhBnVzrYxlQTSlj8kk8uKLImPGuCoeEyao6+Pxxx1tOTlKqfL1dbU+LVsmMm2aKtHijPN46emu6z78UGTAAJFZsxxtJ044HqpnzjjaN29WYzsnIdXkJzc3/wvR5MkqCeYbbzjajEZHwk3nBJbPPisSGSnW7t0la8YMMRqNYgC5EUd0dGunZ8cgkP+5WZ+ioqIEkOu6d5eMr74Sy0sviXXkSLF26SLWWrUKVKAk76V/C8iq0FA5e+edkv3cc2L99FORv/4S665dMqhPH/s+YmJi7P/b9lmVnmfFUZS0M7cX2JzBjh07VqI8SjZqulNdpcFqVfl0zGbXxHRLlijH1EsuUdEmoKJievZUzpqnTjn6jhkDn32minpOmqTaTp1SUUDBwWp8W8K61atVnpdevVQ0jEbjzK5dsHmzcvy1lcw4fFhdmz4+ypnaFkX20EOqJMjddytn5JYt1fUZFqauvYwMlRPKbFbX8saNKr/RJ5+obebMgePHVf+334a2bVV0lXMCTk3pkZKi8uGdOeNaFujWW2H+fJgxAx57DBHhyj59+Gn9egSwRkdjWL+eHr16cVliIg8CEcD8hg0ZmZyMwWLBMG8e8tJLGNq3x7BwoXK2z81VpV1OnICsLKzJybBvH4Y9e9i4aBHhqak0A4oSk3gSMAIphfz9OSGBOo0bq327ObzbHMrd/zqvC8yLMszIyMj3fJQ8R3Vb+7k+F4R25i4G7733njRv3lz8/f2ld+/eklAMB1hvS5hoShmjUWT7dteyBqdOicyeLfL++659X31VZOBAkUWLHG27dqk3q9BQ17533qnaX37Z0eb85u38RvjZZyJ33eU6RWa1ipw+XXOnKTRFw2pV1+6ePa7+MOvWqemZpUvV59xckf/+E+nUSaRRI3VtffGFmh676SZ1TY4bp6bxyMvHExKi/t+5U2TiRPX/nXcqn7edO0UyMz1bkj75ROTKK5XzsrOcH3wgMn++2s7GyZNq6k67EZScY8dEVq92sUpZ9+2T3JgYsfbo4WizWiUnLxdUbvfuYv32W8f2tu/R19dhlZ4wQcTHx9VCmZkpMnKkWJs0kZwrrxRLSoqY16+XqeedJ1/nTeF9C/IHyL8g6YVYogpaLCCnQPaBbMgbaxHIByCvonyn7gG5BeQKkMEgPUGubtdOLunQQeqC9MibDrRYLGIymex+WtHR0S5+W+5+XDa/K1sBYudCxFarVY4dO6an3orCV199JbVr15a5c+fK9u3bZezYsRIWFiZGo7FI22tFyYnUVKWoON84zWbl8Lltm2vf+HiVRPPgQUfbkSPKRO3uxPzqqyJXXeV4SIgoZej880U6d3bte/316gf63nuOtj17VFtIiGtfT8rP8eOqrW5d12mvzz5TD55ffnG0WSwqgunECa0AVWcyM5Wy7fzwz8lRkV1//+363W/eLDJvnlJsbGRnq4fU3Xe7TlvNmqVqy73yiuu4toeMs+PvSy+ptrvvdpUtOFi1797taPvqK5HBg0Vee02Nt3+/ipjctcuhrH/+ucitt4rYHq4iKuEoqIeps5Jmm/6bNMnRlpHhkNP53vfss559cdq2VUqd8wvMt98qpe6jj1yPafp0Jfvp0462fftEfv01f7LKnTvVcbnXXktPrxlJU//9V72QOSf3PHxY5JJL1LU1f76j/bbb1HcTFKTOr4iK0LN9j07fu/WBB+zts+vVE1B+Uba2LINBxrdoITeBrKhXTyzBwWINCRFrly6yPThY9qPq2BVXqSpsyQAxguwHSQRZA7IM5GeQr1EO6x+CvA0yDWRynhI2AWQcyg/repQf14SOHeW+zp2lW95UoVaUzkHv3r1lvNOP2mKxSJMmTWTq1KlF2t6uKL35puv8f3y8mo/+7TfXDV59VfkiOEfBrFihHPq++MK179NPq5uUs3Pnn3+KjB2rwoudeeABkZtvVj8cG3/8oZxGnW9wIiJ33KFCVNevd7T9+qtI9+7qjdSZiy8WadJErbexeLFIrVoiXbq49u3RQ13Un33maFu6VLW1bOnad8AA1e5s5Vm9WrVFRLj2HTZMtU+f7miz+fwEB7v2vflmpeQ4P3yOHVPht+7Oqd99p5SklSsdbWfPquiWdetcHxb//adC7Z19DywW9aD8+2/Xm/Lhw8o/ydnJU0S1rVnj+rA8ckRdK84POhE15urVrlnYjx0TiYtTypl731WrlJ+LjeRkdVxbt+aX4c8/XR9Cx44pBdA9XP3PP0W++UaN5Szv/Pn5r+ufflIPPHfF9/33RRYscO37zTcir7/uehxHj6rvzD3b9RdfqOvXWfE4ckTk3nuVI6wzb70lct11rpa8Y8dU1NmIEa59J09W1++cOY62pCTlQ1a/vmvf8ePVtfbcc4621FTHTdz5+3z8cdX26KOOtoKUnylTHJYfZ4KD1eJ8Ln/6SUU2fviha9+4OJEtW0rPbyg3VymFziQkKOvR33872tLS1MvLRRe5vlBMmqQcmZ980tGWleU4fufr7vnnVZt7eL3Nh8Y5DcaMGart9ttd+4aFqXbn+97773uOKuzcWVnfnH8Tixer68BZsRNR98HBg10Vs/h4NaazM7uIupbGjVMvbzZ27lTnwN2KPXeu+t6d5T10SN3bPvnEte/ixeqFb9cuR1tKivqdOVvBRdQz5MsvXbN3p6aqe5zt3m02q32tWKHaDhxQ38crr6jfzUMPqd+8iHp2tWwp0ry5WB55REZ06CCNnJQWq8Eg1j//VNYZm3USRG65Raz794s5JcVFycmcOVMyfv9dzl53nb1tG8gckE9ArE59D4AcomTWq+IuqVpROjfZ2dni6+sr33//vUv77bffLldeeaXHbbKysiQ1NdW+HD58WJ1ocP2hDBmivox27VwHsH1Jq1Y52q6+WrU1b+7a11Za4ocfHG233qraIiNd+9oiZubOdbTdf79qc7/x+/urdmfHQltUhrviERSU/yExdapqq1PHta/tpjVxoqPto48897Xll3noIUfb7797lsGmVD3zjKNt2zbPfceMUe3TpjnabG9Nfn6ufW3nx/nYzpxxfEfOb6m2B+Bjjznazp519HV+uEyeXPgDwFnxnT698AeA801y5kzVdv31rn2bNFHtmzY52j79VLW5Kwht2qj21asdbQsXqraBA137du2q2n//3dH200+qrWdP174xMard+be0fLlq69jRta/tt+H8YrBuneffwFVXqXZnBcH23bs7xt98c/7r+sAB1RYQ4Np37FjV7uxEb7MmgquS/PDDqs354Z+ZqcqYtGzpqqDOnateQpydo0VE/vc/ta+8yCYRUcrxb7+ph6oz1cGB3/n85eY6FHTnY/v7b6Xc2h7OIsr6NHasus85P7w++US9yLkrKS1aqN/KgQOOtrfeUt+Xe8qMRo1Uu7OiZLs/ueeBsoXsr1njaFuwQLUNHuzat3Nn1e58HD/+qNp693bt27dv/nv6smWqzd06ftFFqt05HYitNEqLFq59r7hCtTsr/lu3qrZGjVz72qZmnaMu9+3zfD/Ns7pbX3lFKUXZ2eoFG9TzSURZs2bNcqQv+d//lHL86qsiffo4flOZmSoPVM+eYq1bVwTk7AMPiCUnR3KjosRqe4aBWFJSJOuVV8Rqy18F8ktYmHQCybY9F/OWrJdekrNXXunSltuunXwbESGZborRujxFrCSKUo2tVXDixAksFgsRzqUbgIiICP71lEkbmDp1Ki+88EL+FQaDq8NaeLhysmzY0LWfv79yqrOVlQBVlsTPT1VqdyY0VDlgOjuZtWihHIHPP9+1b6NGymHY+VjatFGOmM4lUEBte/QoNG/uaOvYUTkad+zo2rdLF+XwGRXlaOveHerXV+n0nRk4UGV/di4J0LWrks29Yne/furYnMsKNGmishe7fR906KAynTs7OwcGqv7uxTXr1VPn0zm1v48PNG2aP4NuvXoqa7BzYWGDIf+5tfVt3lw5ujr3bdHCsQ8bYWHqeG3FN220aqWy8jrLERamjqtRo/x909JUCQQbdesqB1v3DM+tW6vz4O/v2rd9+/xZkdu1U9ees4Nu/frQo0f+Cu7du6trz/n8hIfDRRfl7xsbq8Zx/u7Cw1UGcHcZLr5Y9bOdO1vfO+/M/3u5/HLVz1aoFtS5mjw5f/mGMWNU1uTYWNdxv/zStdo7qHIQN97oek3Vqwfbt6u+zg6g06apqvPO31udOsoJ35077lCLOy++mL+tbVu1uFNYpueqgvPvwddXFcR1x1NZEYMBPvwwf98xY9TizoED+dvGj1fO6e7ExSnn9zZtHG0jRsAff+T/rb77rvr9OX8/PXvC+++r+44zDz4IRqPrfbZlS3j44fzX/tVXq3ui8703MhJuvz1/eaqBA9Vvyvl+VLeu+k243y+iolSWfmfZAgPVfbZePde+rVqp37vzGLVrQ3R0/jItTZtCly4YGjUiKChItbVooe7Jtt9ImzZqOXFCBQM0aKDuRU8+qb6L6GjVz2CAG2/EcOON6jc1eza1IiLUsy8xUQXS5N0TfPz88J80SZ3D116DmTMZcdttDHz+eWrl5qqC3TfeCCL4jx4N48Yh69aR88UX1FqyBN+LLuKamTPJ+u03Ph87lmHHjuEH3ApYgRuBIUAHg0GpTEWgxka9HTt2jPPOO481a9YQExNjb3/iiSdYuXIlCQkJ+bbJzs4mOzvb/jktLY1mzZoVzWteo9FoNBpNuSHiKOXiHmGXm5tLWFhYkZ7fNdai1LBhQ3x9fTEajS7tRqORyALqMvn7++Pv/Oau0Wg0Go2mUmIwGOzWMPe/aWlpRR6nnEs5Vx5q165Njx49WLZsmb3NarWybNkyFwuTRqPRaDSamkuNtSgBPPLII4wePZqePXvSu3dv3nrrLdLT07nDk5+BRqPRaDSaGkeNVpRuuukmjh8/znPPPUdycjLR0dEsWbIkn4O3RqPRaDSamkmNdeYuDYqVAl2j0Wg0Gk2loDjP7xptUfIWi8UCwJEjR7SipNFoNBpNFcHmzG17jheGVpS8YO/evQB0cs7zotFoNBqNpkqwd+9eevXqVWgfPfXmBadPn6Z+/focPnxYW5Q0Go1Go6ki2PIgnjp1inruiTnd0BYlL/DNy6IbGhqqFSWNRqPRaKoYvkXIhl9j8yhpNBqNRqPRnAutKGk0Go1Go9EUQI1WlM6cOUPPnj2Jjo6mc+fOzJkzp6JF0mg0Go1GU4mo0T5KISEhrFq1isDAQNLT0+ncuTPXXnstDdyrSWs0Go1Go6mR1GiLkq+vL4GBgQBkZ2cjIuggQI1Go9FoNDaqtKK0atUqrrjiCpo0aYLBYGDx4sX5+sycOZMWLVpQp04d+vTpw7p161zWnzlzhqioKJo2bcrjjz9Ow4YNy0l6jUaj0Wg0lZ0qrSilp6cTFRXFzJkzPa5fuHAhjzzyCM8//zybNm0iKiqKYcOGkZKSYu8TFhbGli1bOHDgAF9++SVGo7G8xNdUAUSE9PR0l0VbHTUajabmUKUVpREjRvDSSy9xzTXXeFz/xhtvMHbsWO644w46duzI7NmzCQwMZO7cufn6RkREEBUVRVxcXIH7y87OJi0tzWXRVF9EhP79+xMcHOyyDBgwQCtLGo1GU0Oo0opSYZw9e5aNGzcyZMgQe5uPjw9Dhgxh7dq1ABiNRkwmEwCpqamsWrWKdu3aFTjm1KlTqVu3rn1p1qxZ2R6EpkLJyMhgzZo1+drj4+PJyMioAIk0Go1GU95UW0XpxIkTWCwWIiIiXNojIiJITk4G4NChQwwYMICoqCgGDBjAgw8+SJcuXQocc9KkSaSmptqXw4cPl+kxaCoPRqPRZVrWfUpOW5g0Go2melKj0wP07t2bxMTEIvf39/fH39+fmTNnMnPmzCJVHdZUD4KCglw+9+/fny1bttg/x8bGEhcXh8FgKG/RNBqNRlOGVFuLUsOGDfH19c3nnG00GomMjPRq7PHjx7Njxw7Wr1/v1TiaisNbJ21nJQnKdzrOWXZtydJoNJqypdoqSrVr16ZHjx4sW7bM3ma1Wlm2bBkxMTFejT1z5kw6duxIr169vBVTU0YUpgiVppP2/v37y0xuT7K4y64dyzUajaZsqdKKktlsJjEx0T59duDAARITE/nvv/8AeOSRR5gzZw6fffYZO3fu5L777iM9PZ077rjDq/1qi1LZ4knJKY7151yKUGk6abtPyXlzfFar9ZxKkLvs2rFco9FoypYq7aO0YcMGBg8ebP/8yCOPADB69Gg+/fRTbrrpJo4fP85zzz1HcnIy0dHRLFmyJJ+Dt6byYFNyPCkyzhTmE1SYInT8+HGXNtvUrPM1YVOm0tPTiyW7rX9gYGCBvkqFHV90dLSLz5xNCSqJMqbRaDSa0sEg2m5fbJyduXfv3k1qaiqhoaEVLVa1ID09neDg4CL1NZvNHpUI5zE8KULuYwD2/iaTiWHDhuVTZNz72TAajfnGtitxANnZkJkJBgP4+pKemUmDiAjOAkX54dmO0Vl5c99fQedBo9FoNJ5JS0ujbt26RXp+V2mLUkUxfvx4xo8fbz/RmrLBaDTmUwA8KQqFERQURGBgILGxscTHx7usi42NJTAw0GXqypM1yr1fINAGuACoO3s2ixo3RpKSaAI0BELi46FuXUhPB6vVVR4gC7AChIRAWBjW4GDidu7kKHAUOJL39z8AkwkJDCySlU2j0Wg0pY9WlEqATg9QPgQFBZWKpcRgMBAXF5fPl6ewKTIAY1ISwUYjAf/+i2HSJPwTEjgKNHHu9Pzz3OBp47xEpgXhY+tjMuEDDC6oY+PGWBs35sWkJP4FdgFbgEQgNa+LzeepKMek0Wg0muKhp968oDimO03RcJ428zSldK71Re3jqb8/kPTDD7x21VUMBC4JCcFQgMJzEmX16QoQFAQvv0xWvXoMHz2aZ4GLDAaYOhXDffchdepwauVKQoYO5QTQARjYqxc/zJuH4Z57YNUq5M47Odu6NT5Hj2LYswe/P/7AAvgWIvdeYBOQFBnJL8nJJABddD4njUajOSfFeX5rRckLtKJU+pRUUbL58Nj62KbnClWUrFbYtImzixez9uWX6QPUce9Tpw507QppafDvv7wHPAecBgKA0zNn4t+yJYwYYZfNBzW1Fh0dzapVq7jwwgvtTto+QJLRSHh4uFJm/v4bdu2CAQOgVSsAMn/9lYDLLmMrcEerVvjt3097YBLQHDABjTwdDrAN6HDnndQaNAj69VNjFkNpsp1HbZnSaDTVGa0olRNaUSp9SqIoFRZJlm+MM2fg99/h11/hhx/UZydyGzbE58QJfIDMH34g4NJLwc8Pjhwh/exZglu3LnB8EWHAgAH5fKGcKUoG7/T0dJoEB9MQcM7SdNDfn+bZ2QxEKUTdgEuB6wB/wGMa1YgIpTDFxiplrFs3qFXL436dz6PONK7RaKozxXl+V+k8ShWFTjhZObDlHzp+/LhHJcnmhE1KCsyeDX37QoMGcNNN8NlndiXJGhHBWKAtUOvECS5COWVbL75YKUkATZsS2LIlsbGx+cfPw+YLZTKZiI6OdpElOjoak8lUJOUjMDCQLrGxdiXJtm2Dw4cZBCQAp4BlwAmUlWkdSlG6FsiZMAGiopTsRiN8/z089hj06QNhYXDxxTB5MixbBnnRfODqyF6c/Ew2Hyn9zqXRaKoj2qLkBdqiVHKcp8qcOde02bnSB9gj5VJSCFyyBMM338Dy5eB8mXfsCJdeCp06QUICcvXVDHjxRRdLUEEWFWe5z5Uvyfn4ijuV5Wk/no69C3ADyldpcV6bOSmJoBYtIDwcZs6EnTth9WqIj4fTp1135OsL3btD//5k9epFs1tu4UTeKtu5LGpeqMpkhSrLKUQ9PanRVH301Fs5oRWlklHUpJKeFKXCprcu6dOHpXffjeGjj2DdOlflqEEDpSS89BJMmuRRJm8Um/KgqDmmMv78k4Crr4bISNi92+GjtHgxcvo0Z8+cwffvv/FduxbD4cP5tv8XiANW5/1t0q8fcatXezwf7jK5530qrfNYnPE8KW9AsbYvqK/VaqVHjx4kJiZWKsVQo9EUj2I9v0VTYlJTUwWQ1NTUihalSmE2mwWVb7HAJTY2VqxWq8ftrVarmM1mtaSlScZPP0nOyJFiDQgQUeqRWrp2FZk2TWT/fpH//hM5daqcj7R0cT9v0dHRHv83m80iGRkiO3Y4NrZaxdq6tQjIDc7n+OBBkS++EOs990hOu3au5y9vOQJy9tprRd59VyQxUSQ3t0CZTCaTWK1W6devn10ui8VS5GO0fbfO373FYrEfX79+/ez7KOp5MplMdnkKu65s+y+or9VqdTnP9nOt0WiqHMV5fmtFqQS899570qFDB7ngggu0olQCnB9kRqPRofQ4LYU9zEREZM8ekaeeEmnY0PXB3r69SOvWIhddJLJzZ/kcUDnhSQGwnS+TyZTvnFqtVofiYTbL2VtvlSMggU5jZCxeLJZ33pFBnTsLIPVBLgcxjx8vZ3v2lGwPipPUrSsyYoTIyy9Lxq+/Sl035c1ZFlvbuZQTs9ksFovFRUmxWCxiMpkkKiqqSIq0bRyj0ejSNzk52eVzWlqafX/u15r7ObatN5vNkpaWlk+OoihKnpQ/jUZTsWhFqZzQFqXCcbH8OC3OD7JivZGbzSIffyzSv7/rg9tgEBk3TiQhQcRqFSmGBaMq4ekhXtA6m/XFWfEwmUzi49ZnRWCgCMgLHpQQq9Uqfbt2lYEgz4BkDRok1uBgj1an/SDfgTwHkvzBB3J+ERUKd+uT8zaeFKSClBhnq5H7ct555xXZeumu5KWlpeWT61xKl7Ni5Hx8MTExYrFYtOIkWnnUVDxaUSontKJUMM4PiHM97M7Jtm0id98t4u/veDj7+IgMG6asR48/LlIDvgOr1SqxsbEeLSpFmc7cv3+//f+2bdsKIPeDrAdpk9dmMpnE+s8/Ii+8IPLff/kUh/59+8pNbdvKgyB/NWgglubNPSpOAmIG2QTyFYj54Ycla84csa5dK5KcbFdmiyJ3YUpKUa6xoiy2h3ZhSpH7uTOgrHPhIM1BOoDc3LatjO3cWfqA3N21q6SvXCndQKJBuub1uaZ7d2kA0rdrVzGlpXlUFpxfMtwtX87rqqKiUdj0pkZTXhTn+a2dub2gOjpzSwHRaJ4ozDG2KI7HhTrDZmfDd9+psP5Vqxzt/v4qtP222+C884okZ3XC9v24n/viFBMGde06J8KMjo5m48aN+Pj4wAMPqGi5G25AFi4sNDeU0WikXUQEUcBlTZoQfuwY0UAnwHO2pjxq1YImTbA0bszXf//NUVSqg9Oo1Aen8v5PRdXG69qrF2d9fFiRkICtcFCTJk04duxYvqE7tm7NkX37uLBnTyzp6ezfuZMAoEubNhzZu5dAyLe88swzkJnJ7DfesLcFeegXCDStV4/sM2eoUwq3TiuQ5eNDnQYNMDRogKFhQ6RBA76Pi2P3qVOcAJJR9f8adevGx0uXMuCSS9iyZQugfkOrVq0iMzOzUgYgeKKgAACNpjzRUW/lRHVTlKSI0Wg2ClN0nG+GnorbQgGK1oED8N578OGHjhw/vr4wfDjs2wcPPgj33gs+OgWYM+IUDRgdHW1XgArCbDa7Fvp1/i6++w7efReeeQaGDEFEOLF3L+9dcAFzgCSncYxGoz2dg8lkIiMjg4iICPyAlsDwli2pdeAAF6CKCLcFzjMYMHhx28kFLIDBaSHvb2ElX8qSTCAjbzmbJ4sP0Oy880g6ehSfvDZ/lLKVLwN8MTiOUpwOA/uArPPOY8XRo9Tq0IEfExPxqV27ROM6vySVNDqwIEXeuT0jI0MrSpoKR0e9lRPVbeqtJNMgBU2dOY91zum13FyRH39UDsIGg2P6JiBAZPJkkSNHyuBoqx/OTtG2KTpQvkrOvjYlme7ImjZNJG8qzfn7d/c3K8jh3LlfhzZtxLxzp5z8+We5HuQhkOkgH6H8nDaGhkpup05iadJErCEhIrVrFzi9V+hiMKhrqF49kSZNxNqqlewPCJAEkOUgv4B8DfIZyCyQuWFh8iLIJJC0KVNkLMgtIFeDDAXpD9IdJH3DBrEeOCCX9e4tgXlTcLbz7O5X5Tzd6bz4ghj37pWLO3WSVnnTcoNAkt99V+5B+YTNCQqSz0H+BPkXJL0Ix3zWYBDrBReIXHqpyMMPi3z0kciaNSJnzrhcI54c4Z2nMUsSHVjQlJpze79+/fI515c0clD7OWm8QfsolTHVNeqtKNFoRXXGLpKidPq0yNSp+SPXYmJEGjcWeeONsjvYao4nPxZvHiyZ338vK0HucXrAGUBSZsyQoEIUJdt3fy7/H5tTdIHyWSwi6ekiJ0+KHDki5p07pSnIeSBNQNL37BE5dkz5P505I5KVpRz7PZyXwhy/PSmAgEcl066Y5uY6nLePHpW0F16QR9zGexnkn8BAud5ZEdm/X6zt2snZbt1c+o4D+Rgk/euvXRTeXiDtQLqA5P74o7zUtKnMAPke5B+QzHMoUdamTWV1SIi8DvJK69aSvmyZmI8etR+Hp+/EltrB/drx9D0X9N27+7kV9rLlHgBSkP9WcVI+aDSe0IpSOVGdLUqFveUVpV+hff79V+T++0WCghw38jp1RB57TIX9i3h8yGkqDk8P0uE4It4MOByiC3I4d86H5LyU5EFX2H6Kur3N+mYymVzksqUmcB7fcvy4pP/9t+t+7rpLJDRUZN48R9vmzSIgyW7H+Hvey0DWjBkOBWDvXqXAhIW5KESf2BSbadPsSsGlPXuKgFhALJmZIqIUkMtAHkFZpAwgTUHubtVKMt9+W6wTJ4r1kkvE0qRJoQpUUq1akjVokLwJMhYkFpUmwllhclcUPVkO3ZXLojrIOyvT7gqsp1xWnpRc53uMxWIpVu4uTc1EK0rlhFaUiqEoWa0iS5aIxMa63qjPP1/l5Xn99TI6Kk1p4KyY2NIOXAGyG+R1tweadd06MRchmsvbyK3SnHqxy5WWJtadO0WOHXOMn5CgrtWICNeNxoxR7dOmOdpOnhTrzTfL/CZN7JYok8kk1nXr1PTy/v2OvpmZIitWiCxfLlar1T5NNwQkbdIkle7CJt+OHWoqsmlTe5vZbJb5eb+jx3FE4wXkKVuvNmkisX37CiDdW7WSGJC7Qd4AWYpKJFqYApUM8hfIeyDjQQaDRICYTaZ8ViJPqRw8WZlsi/OUpO0eUlDfc+Wych7DYrHY23KdLH1aedK4o6PeyonK7MwtxYhes3GuOmvO/WzOmAX1s/UJBE69+Sb+H3wA//7r6HDllfDQQ6qivdUKJXRA1ZQftmvKVgg4IyNDfXeZmQSGhyvn3T174IILVD299evBqWhwpSQ9HZyv31tvhfnzYepUeOop1WY2Q9260KyZuobr5Lli79kDOTnQokW+43Q+V0WNRLNarfj6Knd0i8WiIhDdsVhUcEPePma0bUvzfftY3bkzr6xZQ2hoKDHAGpTTfROnTW9BOZL/CthiBZuHhtI4LY2OQEcgNiyMPnXrYjh0qGA5g4LYZ7Hwb1YWB4FDwMG8MU+gnM1TAVNeMIbtXhEVFcWWLVuIjY1lyZIlhISEACoIIDg4mHSzmfCQEMKAdUuWcMvw4dQHvpo5k4+nTyft0CEaAPXzFtv/oUBovXpQqxYWHx+2JyeTnHf8u4Cc9u1Z9O+/HC7svGpqHNqZu5yorBalouYwKmwpqkWpIF+m4xs2yJsgp5zfUmvXVg6248eX49nQlCvffaemoy6/3LU9Pb1i5CmIkydFOnUSqVVLJTK1MWOGcgB/5hnX/iZTuYhVXMuHe3LL2NhYaQnyPMizbr/pDXm/w2fzfCtjY2Ml12iUXijn8jQnK6AlNVVuueACuQ3k40aNJHPYMNkNknsOK5RtyQGxNGokOS1bylaQBJDcfv0kd9AgsQ4cKLkxMfJ3nkwH/P3FEh4u1pI67RdxOQCScdNNIvPni6SmaitTDUdblMqJympRKm5OHXfOVeyzsPH7AxOBa1Hh0QDWVq3wmTgRrr5aFWht1qzEsmmqAGlpqgBx8+bqs8kErVrBJZfA++9DWFj5yrNtG3z6KTRuDI8+qtpElHyHD0N8PPTrp9ozMlSOp1qFZoGqtEieJSsgIMBevLdfv34sXbKE2lOnUmvtWvj8czLq1VPWri++gNtvRwYOxLBihcexnEP6/YHmeUsLoFu9etQ9fZrmQCTQMjgYH1tajxJiAQz167Pn1Cl7Tq2TOPJr+YaH8+/x4/Z2E+pe4wfUBhrmydIUZSXrAnTANa+X+PvzQ3Y2XwJfZWbiU8ebhA2aqkhxnt9+5SSTpoIoKIdRYZxruiAwMJDY2Fh7EkI/4HrgUaCnW99V9eszYNcu8NOXWo0hNFQtNpYsgRMnYONG1/ayYs8eaNRITZcB7NoFr78OnTo5FCWDAb7/XintjRo5tq3sU4XnwGAw2H/vmzZtcp3+e+UVez/7HcFkgrAwDDExjkFEIDYWQ9euBE2Z4jI1mQ3szlsAknfuJDIy0r7euG8fzSIiaAiE5+2nDtC9QwemT5mC4exZdS/w8yMzN5drb7qJdOAMKsHoGcAMmA4dYuSAAfnyge3fv5/mzZtz4YUXFpgE1RNBQCxwEXAV0D47m6uBq4HcZs0wjBtH5m23EdCuXZVI2qkpZ8rYulUtqezpAYqVw6iEWK1WMSclSdbUqWKpX98RglynjpwdM0YyFi6UjB9/FKs2bWtERDZuFPnzT8dnq1Vk+HA11VWa01rXX6+uxblzHW0nTqgItfnzdTSlJ3JzXb+DLVvUOQwKUg7non7vt3brJo2dpvI8Rgd6iGw0Go0FOvbbto2KirI7hNsCAzylFTAajfZtC0rzYDQa7WVfbH/T0tKkTZs29j6dQV4COeo2XfhLeLiYNm605//yVLtPO4hXD3TUWzlRWX2UylxROnxY1VerW9fVD2DgQJHjx0t/f5rqx9Kl6poJDrYnQywW2dki334rcu+9rkWQn39exM9P/dWUjPR0kZ9+EvnwQ5dm65AhKkXB3LmF5udyV3AKuwcVpITY1jmnTQDyKSZWq9VjWgJPeFK8/ECuA1nmdB+zoOoTdsS1sLTz/zExMQXKpKkaaB+lcqIq+CiVanmALVtgyhQ1ZWG7bNq1g6FDoWFDVSOsfv3S2ZemepOZCV9+Camp8MgjjvY33oDYWOjTJ/82ImrKDFQtwPBwNXW0Zg3Ypo5OnVJTO5Xo91gtsFph0CCIi4Pdu6FtW9W+YQP88AOMHKmmNindWm7i5HMFeIxYE3GU7ynMv9K5X79+/UhPT7fXzAPlNvAMajoOlK/UZ8BzwNFCZGzSpAmHDx+uUvX2NLrWW7lRIxQlEfjjD3jtNfXXRrt2MGMGXHaZrrumKR327VMPYBHYuxdat1bt27fD009Dbi788ouj/+OPqwf4/fc7+mrKlpQUV5+uBx9UtRlHj1YO81RM0VuRoqVjcO5nk3XYsGEu9S27AM8D1+V9zgTeAaai0h4UhktxaU2lRjtza7zn7FlYsEBZkPbvV20+Pio/Tp068Oab0L9/xcqoqV74+qoH7smTUK+eo33PHvjxR3X9nTihrJegFHVN+eKsJIGKZDx8GG6+2d5kSEpiO7AImFJOYjk7sbtgscCRIxAZCf7++foFBwezevVqu9UqMzOTgIAA0tPT6RsaynTgQuBJ4G6UxWkOYC1AjsTERHr06MGmTZu0ZakaodVejStnzsD06SqJ3pgxSkmqUwcmTlRv+Vu2qESCWknSlDYtWsDAgbB6NTz3nGpLT4c771SRV99/Dw0aVKiIGjeuvBIWL4Zhw+xNAb/+SkdgGNAvNtZuvSErq2xlmTwZWraEd95xtJ06pa6rOnXUNK2N1FRlocShZPn4+Nj/BgcH4xcby0DgcmA7KsHlbGAjcOqHHzCbzaSlpeUTIzExsdjJfjWVG60oaRSHDillqFkzePJJSEqCgADw94e334a33lI3IW1S1pQWIkrxPnnS0da4scrBtHq1Wr9vnwrzb9xYTfPa3tLL+qGrKTGGMWOQefPo9vXXDn+hnBw1PXrZZZCc7P1Odu5U7gDOmExw8CAYjY42i0Xdw+rWhbxM4IBSxCMi4OOPPR+DwUBcXBxms5mFZjPnnzrFA6gUBtFAvauuImjsWILPnCE2NhZQmcc11ZSy8ymv/lSLqLcNG0RuvFFlzLZFfnTqJPLJJ6ouVUkikjSaojBqlLre3n7b0ZaTI/LXXypk3blt3z7HZ6tVJDpa5IorRA4cKDdxNV6wcqX6rsPD1fdpIynJNWqxKKSmivj7q/E2bXK079ghsny5yKlTrv2tVpHTp13bundX2//wg6MtJ0dFU3rAFoHXEOT7iAix2u6XgYFifeklMZ886RJVV1ZpWTSlR3Ge3zXaPHD48GEGDRpEx44d6dq1K19//XW5yyAipKenl/pSKFYr/PorXHQR9OwJixY5otjuvRf++UdNu7Vs6Ujap9F4Q26uuuYsFkdb376qxl9KiqPNzw8GD7bXM7O3tWrl+JyYqCxRf/2lr8+qwoUXqjp5n3zimnz22mvVd+vkTJ0Pm+XRRmgoXH+9mvZztnB36KAi85z920BZId2zwSckwPLlysfKxuefq2CC+fPziWCzMB00m7kqKQnDhg0qOjMjA8P//kdQnz74/f67k8g6RqpaUeZqWyXm2LFjsnnzZhERSUpKkiZNmhTrTcBbi1Jp1GQ71+JyPFlZInPmiDRr5rAe+fqqN/s5c0R+/10n5NOUPlarslKCyK+/OtpNpvxv/0Vl1y6RhQtd2x5+WOTNN0XS0kosqqYcOX5c5WLz9VWWJRvJySIZGY4+ffuK1Kmj2m2URe6iAQPUNTpjRtH6W60iX3wh0rix/X76A0grkLZt24rJZLInvPSUcFNTsZRLwsmMjAw5cuRIvvZt27aVdMgKp2vXrvLff/8Vub+3ipLzFFlZLLYMt3LypMjLL4tERLgmiLzsMpFiHK9GUyROn1bJIJ158EE17TJvXtnsc/9+ER8fdV1v3Vo2+9CUPhkZarrMmdtvFwkLc2RS79tXZQlfurTsZXnvPdciybt3iyQmFr5dWprI44+L1c9PBCQT5AWQAKd7cUxMjE5MWckoc0Xp66+/lvPOO0+ioqKkS5cu8vfff9vXdevWrSRDloiVK1fK5ZdfLo0bNxZAvv/++3x93nvvPWnevLn4+/tL7969JSEhweNYGzZskE6dOhVr/6WpKBmNRjGbzaW6WPfuVaUbnKtyN22qfDsmThTxoOhqNF5x+rR6qIHInj2u7WfPlt1+MzJEZs8Wue8+1/bvvlMlOTRVg+xskSZN1PWzdq1q27lTZPt2VYqmPLFaRYYOVRavjz46d/+dO8V68cX2e+1BkGvcXl61slR5KHNFKSoqSpLzzKA2BWP+/PkiIhIdHV2SIUvEr7/+Ks8884x89913HhWlr776SmrXri1z586V7du3y9ixYyUsLMxeL8jGyZMnpWPHjhIfH1/o/rKysiQ1NdW+HD58uNQUpVJ1/vv7b1XzytlB+4ILlJm4LB9WmprHqVMiy5a5tl16qUjnziKrV1eMTDbS00VsdQjdrRaayodNMQGRhx5ydQN48UXlwP3yy+UnT0aGuo/WqaMsS0XBahXrN9+Ixcm9YQnIBU4vxJrKQZkrSh07dnT5fPLkSbnwwgvlhRdeKFeLkjOeFKXevXvL+PHj7Z8tFos0adJEpk6dam/LysqSAQMGyLwiTAk8//zzHqe4KoWiZLGILF4s0rOn6/Ra48YibduKxMV5N75G487OneohEhzsWlQ1La1y+LodO6YiOtu2dY2iO3CgwOgmTQXz3nsiISEiH3/s2n7ttep+5nyfPnu25D5uxWH/ftfPv/2WP4rOnfR0sT7zjFjzrPnZIK+CHNi6VfssVRLKXFEaNGiQbHEzZ2dnZ8vIkSPF19e3JEN6jbuilJ2dLb6+vvmUp9tvv12uvPJKEVHO1CNHjpTni1hAs1JalGxTDq1bO5QjPz+RMWOUr4bZXDkeWpqqz6lTruHYVqtSQrp2VVMjlZXMTMf/VqtIt24i550nsmZNxcmkUWzfLrJ3r+OzxaIUXHesVpF16xxO3iIiixYpRf3xx8teThv79okEBCgXhoMHz9k9fcsW+dHpxfUIyEiQfjExYjKZtMJUgZR5eoDPP/+cRm6p7GvXrs2CBQtYuXJlSYYsdU6cOIHFYiEiIsKlPSIiguS8hGfx8fEsXLiQxYsXEx0dTXR0NP/880+BY/r7+xMaGsrnn39O3759ufjii8v0GArl+HGVifb881VI/759KlTW1xfmzFFhuF26qIzGOpW+xluWL4cmTVSpClvos8GgEkMmJqrSNpWVOnUc/x89qpKpnjoFF1zgaNfh3OXP4sXQoweMGmXPko2Pj0ou6o7BAL16qSS4Nv78UyUe9fd37Ws2l5nImExw3nmq1mWzZufsHtClC89FR3M5sBc4D1gAvLJ2LTEhIQwYMECnEqgClKjWW9OmTQtcZ8tSWhXo378/VmtBVXsKZvz48YwfP95eVK9c2b0bpk2Dzz5z5KRp3hwefljlRGrdWtU10mi8IS3NUf4B1LXl56fyHhmNjmvMvfZXZadpU5W9edMm13Ioo0er39PkySqXjqbs6dFDKTlhYUoBcc9/dC5mz4Y77lD3PxuJidCvH9x+O8yaVfoviVFRah9msyOHk8WiCjd37Zqvuy3/UkhICH8Cj6LqxQ0ENgMz4+NJP3oUQ7165yzoq6k4SjXhZE5ODocPH2bXrl2cOnWqNIcuNg0bNsTX1xejczp7wGg0ElnVFAkRiI+Ha66B9u1h7lyHkvTYY6oG28SJKgFaVTs2TeXjm2/UW/ODDzraQkJg2zaV+K+qX2P+/hAT4/hsNMKXX6rlXMlaNd6xd6/j/2bNYN06+O234itJoJSgvn1dLVCLF0NmpqpZ6ax0OCc69ZagIFX+xMZrr0H37uoF1qOYSo5s4BWgPfA1ykoxEchu2ZLxwcFc2L+/ti5VUrxWlEwmE7NmzWLgwIGEhobSokULOnToQHh4OM2bN2fs2LGsX7++NGQtFrVr16ZHjx4sW7bM3ma1Wlm2bBkxzjfJEjBz5kw6duxIr169vBWzcCwW9dDq3FkVoV28WClNV1yh6rEtWgSvvuqa6VajKS45OcqCZKNrV/XGfOCAa0215s2r5zRuRIQq9PzKKxAd7Wi3TWFnZ1eYaNWG7GxltevYUVlkbFxwQeleU88/r6aD//c/R9vJk+rafeyx0v8uRVTdOYulQOtqYGCgfaYlOjqaw8CNwBBgJ9AgN5dPgelr1pC5enXpyqcpHbxxhnr99delfv360qtXL5kyZYosWbJEtm7dKnv27JGEhAT5+OOPZcyYMRIWFibDhg2T3UUNsSwiJpNJNm/eLJs3bxZA3njjDdm8ebMcOnRIRFR6AH9/f/n0009lx44dMm7cOAkLC7OnNvCW0syj5OLMbTar6I9WrVwj2K69VtUz0mhKiwULVN6aRx5xbd+4sWYHAWRkiDRsqH53ixZVtDRVH6tV5OqrVVLQmTPLd9/vvae+x+josrumV6xwHfvECZfPVqtVzGazWCwWiY2Ntd/3a4E8CpKWd4+3gFjHjSv/nFE1kHLJzC0iMnLkyCJl4s7MzJRZs2bJx+4hn16yfPlyj+H6o0ePtvd599135fzzz5fatWtL7969XZJjlpT33ntPOnToIBdccEHpKkpJSSqCIyTEoRzVr6+iim6/vUhRFhpNoVitrkVJf/lFXWft29dsxcid9HRVyqJ/f9fztWFD/nBxjWeys13TMKSkVExurdxckZ9+ElmyxLVt8GD1HZd2AdvsbKWUjRjhWnYlD6vVKiaTSaKiouz3/8Ygnzu/FNerJ/LWWzqNRRlSbopSTae0LEodQM6OHi1Sq5bjh9KihXrz0uH9mtJi4UKVCHLWLEdbbq7IN9/oG3JRsFpVnjIfn/x15jSubN+ulIWnn65oSTzzww/qPtuggWvKgdJg9WqVHLNBA8+pDvKwWCwSHR0tgF1pGgCS27mz4znQpo3KLq+fAaVOcZ7fpercsmzZMpYtW0ZKSkq+aLK5c+eW5q6qPiL4rFrFr8AIUFFsAIGBqiL6okUqHFajKS2OHlUO2Z9+qlJKgEoncd11FSpWlcFkgvr1lTP44MGO9tRU5ezuU6qxMVWbHTuUL1JSkvKnDA2taIlcufhi5YN29qxryoGHHlIRnjfckD/tQFGJjYWNG+HYMVdH89xcF39SHx8fNm3aREZGBiJCSEgIcUBmXBzBixbBs88q5/drr4UBA+D11/UzoYIotV/2Cy+8wNChQ1m2bBknTpzg9OnTLkt1witn7txc+OoriIoi4NJLGQFYgdwrr1SRbbt3w+HD+geh8Y5fflEPg+XLHW1jxsBbb8GSJRUlVdUmNBSWLoX9+yE83NH+wAPKSfmvvypOtsqAc8TW9dera23z5sqnJIGKXLv7brj/fkfbjh3w9tvK6dwtWrrYdOoEl1zi+Lzu/+3deVxU1fsH8M+A7CCIKIj7loUpKIopkBtu5VpaX+uruGQb5YKVWX21xbI0l1TSct/yq+ZPWxXTLwruu2kuCKLiAogoMMM+8/z+OM7GOsCFOwPP+/Wal86Zy71H7jj3mXOf85wT4j0SE2O0mUKhgJOTk1FZgODevUGTJokg6eOPRR2wmBggIEDUnLp5s3J9Y+Un1TCWl5eXScuA1CTluvWWkUG0aBFR8+a6YVXN48dIqdd6Y+zNN8X77MUX5e5JzaZU6pO+T52Suzfy2b6dKDBQ5HZZqtRUojlziN5+27h9zRpxO60yt7+0a9iNHl3syxqNRncbDo/XhNNV7U5MFDmq2ttxdnZEH35I9OhRxfvD5MlRcnd3pzjDUvS1gEm/6Nu3xQKP9vb6N3qDBkSff07Zq1dTq6pYFJfVLpcuEb31FtHj2Z66thkzjNtY1UhPF7MHDX37rbjgxsfL06fqpFSKmZMAkcE6mjXCw4dETk7i31aZJW/S08V14MGDEjfJyMgwmpQUGBhovMTJ6dNEvXoZX0eWLSs1v1A7246XSilKlkDpgw8+oM8//1yq3Zk1k2a9/f03UeEEbYBo9mxd8qCki+Ky2qtPH/HemjFD7p4wIqKcHKKGDcU52bxZ7t5Uj8hIopkza96kgHv3iCZOJOra1XhE6cgRojt3Krfvjz4SM9vUaiIiSk5OLjKDu8h1QaMh+vVXonbt9NeUVq3E++zxfsRmYmZdjx49CAD5+flRZmYmqdVqUiqVHDxR+QIlBZE0pUCnTJmCDRs2oGPHjujYsSNsbGyMXl+4cKEUhzEr2iVM0tPTUbduXfG23b8fmDULOHpUv+GzzwIeHsDAgcCYMbq1p1QqFZydnQEASqUSTk5OcvwzmCXJyAA2bgQmTNAnof72m6jWPn26KEzK5EUEHDwokuZXrgS0n4VRUaJi9NChIoneUuXlAZ99JnJwevWSuzfVQ6PRJ+trNGKttxs3gD//NM5FMtWZM2IJF0DkHz1eTsu60PuixOtCfr54b33+uS6fSt2hA6y+/hoYOBBBwcE4cuRIqV3o0aMHIiMji+RI1RZFrt+lkCxQ6m04C6TwQRQK/K8GJjrqftGpqai7e7coZX/+vH6D4cOBmTNFEl4xOFBi5UIkqmZfvCgCo/Hj5e4RMxWRWDbl+HFg3jzg/ffl7lHFffGF+DLYtClw5YqYqVubJCeLWXEXLgC3b4vEcEDMcvPwEOshloVIrEV37RqwaJGuWaPRQKVS6S7cycnJcHJyKnkdOJUKtGgRVJ9+CufHy7Tkde+OnkeP4piJ/5zAwEDExMTUumCpPIES11GqBN3QXYMG+mFQR0eR3Dl4sEjCKwXfemOlUquJDh40HvL/5huip54i2rFDvn6x8svLE7daGjUyLkKYmEiUnCxfvyoiM5MoIEAkcNdmhYtJDhxI5OVlXNiyPDIyiMLDSXn7dpFbcNp8peJyjpRKJbkDNB+gbIM0j52Pa/Rp96Gt1dS2bdsi+8/MzKzEL8IyccHJaqL7RQNEnp4ikTEtzeT79BwosRIVFBB16iQ+9AyrGefmcvE5S2ZY5ZtI5DHa2RGtXClLd0xy+TLR118bt/F70Fh6OlHjxkQKBZHhpKa8PNP38dprYjZ0cLDRMifaR1JSki7nyDDR2/A60gSglQAVaGdWW1mRJjSU1AkJuiArKSmpyL79/PxqXc6SbAUnAeDSpUu4desW8vLyjNqHDh0q9aFkExERgYiICKi1K1K7uooaKj4+8naMWbYHD4D69cXfra3FiuRxcUB8vChiB5g2rM/Ml+EC1mq1OLe5uYCvr769oECcf3O4FZKcLHJpsrLE4tzPPy/azaFv5qRuXbGI9JEjQOvW+vb33hMLLs+dC/TsWfo+Jk4EoqOhmDMHMcHByMrKgkqlgqenJwDAy8tLt+nhw4ehVCrh4uICMsieuQ1gEoAFAOYAeFGjAdavh2LLFuCNN+A0cyZUBnlQjRo1wr1793Du3Dncv38fDRo0qHW34EwiVXQWHx9PHTt2JIVCQVZWVqRQKHR/t7KykuowZkUbkd69cUM3k6A8D8NZDjyiVItlZxMNGyZGFgxn0iQlieF4VnNpNERnzhi3ffWVuLX111/y9Kmw8HCiAQPKTCVgheTm6mtsRUaa9jOFRhyzfvuNehQa/TF8ZGRkGK0ZV/iRFRUl1rTT3pKztyfVW29Rg8evx8fHl16SoAaT5dbb4MGDadiwYXT//n1ydnamS5cuUUxMDAUEBFB0dLRUhzEr2l+0FA8OlGqZwh9GQUHig2zNGnn6w8yDWk3UsqV4L8hRwLegQKwxef++vi0vj2+1VdS9e6LQsMHUfVq9mmjSJHFLszQPH5Lay4vUAA024Rri6+tbpBaTUrtW6L59RN276wKmTIC+Aijjxo1aey2SJVCqX78+nT9/noiI6tatS1euXCEiov3795Ofn59UhzErUgVKtSmKr/UyM0VSb/v2ot6O1qlTokgkY8nJIt/RMNfxjz/E+6aURVYlMXGiuJi+/HLVHqe2Uqv1NZC++670bR8+pLx//5suA2RvwnUkMzOTNBqNLr+pyHVFoyHavVss7KzNYXJxoU8Bcq2Fid2yBEpubm50/fp1IiJq1aoV/e9//yMiori4OHJwcJDqMGZFd+vt7t0K3Xrjwl+1UF6eSPoEiH76Se7eMEvRo4d4z3z0UdUe58QJIjc3ouXLeRSpKmg0RDExRK+8Ynxb/ehR8TsvtASMUqkkZ4MgJjk5mbIXLiS3Uu5KlFmNW6Mh+uUXIl9fXcCUBtBHADlDzIpTG46AmfTPsrwK4LIESkFBQbRz504iIho9ejQNHDiQDh06RGPHjqX27dtLdRizYFJlbsYKCoh27iQKCzNu/+knMb2/oECWbjELo9EQ/d//EfXsaTyidO0a0f/+V7mAJiaGaNcu4zbOi6t+gweLoGXaNKPmIiNE27cTAXSj0ChThe5KqNVE27eTxsdHFzDdB+g9gJ7p0KHY/RUXEGk0GqMK4OUNsuQiS6C0Z88e2vG4tktsbCy1a9eOFAoFeXh40P79+6U6jFkp16K4rPZJSiKytRUfQkePyt0bVtNMmCDeW++9V7Gf37NH/Ly7u+XVcqpJNBqiJUuI2rQhunpV3377NtHx48bByZEjpG7blj4vNMpUqZGcggKizZtJ07atLmBKAijnyy9JabBvw4AoMDBQtxxK4bwoSyk1YDZ1lB48eGARv7CK4kCJGUlIKLo46rRpYqXve/dk6RKrwaZNI3JwMA7CMzNNHxHKyxO1uiZOFPXfmLwKXyunTxeBy9SpxptlZVGv7t31I0m3bol8p8qOUOfnU/aKFRQPfdHKFIC+b96cNOnpRvWatMnjljw5SbZAKTo6ml599VV65pln6Pbt20REtGHDBoqJiZHyMGaDAyWmc+0akZWVGEHioIhVl4cPjZ9/8w2RqyvR0qVFt71xg+iTT4wvyIVyYpgZefddsaj677/r27KziR4+NB5lGjFCBDavv17pQyqVSqoD0DiArhkETBp3d8qdNYvqmjhBqaYFSo9X+au8HTt2YMCAAXBwcMDZs2eRm5sLAEhPT8dXX30l1WEYMw/5+WKdK602bYBnngGCg8XCp4xVBzc34+d79wLp6cDjNSR1srOBrl2BOXPEospatW2dNkuyZAlw6xYwaJC+beNGoEkTKObOFYvZAsCAAUCDBsA770hy2AIA6wA8CWAsgFgAirQ02H7+OW4A+A8AV0mOZDkkC5TmzJmDFStWYOXKlbDRrpYNseDemTNnpDoMY/K7dAlo1Qro21cETFp//QXs2wc8+aR8fWO12969wO+/A6NH69t++00s0D18uAjkO3eWq3esvLy8ACuDy3RkJKBSAQ4O4rlCAbz+OnDjBtChg3679euB7dvFeFAFqQFsBPAUgJw1a6B54gnUA/A5gJsAPgNQ7/G2PXr0QEZGRoWPZe4kC5SuXr2KZ599tki7q6srHvE3bGbpDJfkad1aLDNRUABcvapv52/nTG5WVmKZkbQ0YOxYIDYWWLhQBFBubsDBg2IpEmaZtm8XX8gmTNC3RUcDPXoAW7aI53fvAu++C7z0EvDHH5U+pAZA/siRSD1wAC8BuAAxojQLImBSTp6MQ7t2wcogoFOpVEZLqwAAERXbXtZr5kCyQMnLywtxcXFF2g8dOoRWrVpJdRjGqte1a8CQIUC/fvo2Ozvxze7WLb7oMPM0ebK4TTN5MrBmjfhzyhT9Gm1XrwLz54vbdMxyKBRASIhYX1Tr+++B8+dFEAwA7u5AeDgQFAQ891y5du/o6IjAx+tKtm3bVtdet25deHp7YzsAXwAvAjgPwAWA05IlULRsCZv//AcNHm/v6emJ4OBgXeBDRAgKCoKzs7NROwBoNBp07twZzs7OCAoKglKpLDVgKiuoqpKgS6rEqK+++op8fHzo2LFj5OLiQjExMbRp0yZq0KABLVmyRKrDmAWuo1SL3LkjEioVCqLYWLl7w1jJDJO0r10jCg4WFd+LM2kSV+CuKR48EEn8hkui3LpFNG4c0blz4nlBAdGQIUSbNpVZd0ubKK5Wq8nPz6/YpVIAkAKgoQAV+Pnpkr6zraxoEUCNC1X5zszMLJLsrdFoKDMzs9jZcyXVhSpcoqDwNmW9bkiWWW8ajYbmzJlDTk5OugVx7e3t6ZNPPpHqEGaHZ73VMPfvE332mZjOb2jdOuP6JoyZk5s3iV56iejzz03/mU2bxDI6hw7p29LTiU6flr5/rPrNmCGCl549xfONG8XzunWN1/ErQ+EAJzk5uWjQk5kpZuYFBOgCplyAfgRoyFNPFRtwZWZm6gKakh7FzZwrXKKg8DZlvW6oPNdvBZG0NwXz8vIQFxcHpVIJHx8fOBeefVGDZGRkwNXVFenp6ahbt67c3WGVdfiwGK62sxO31Ro2lLtHjJVt2zbg5ZfFTLfbt41vy5RG+9GvvR23YAHw3nsiOfiHH6qmr6x6nDghzue//y1SB3JzgXnzxC3XH3/U51Pm5AD29iXuRqVSGV3DlUolABRpc3JyEu+nfftAX34JxePbgGoA+SNGoOvOnbhosN/k5GR4enqW+k/Q7beM/hhuU9brhspz/ZYsR0nL1tYWPj4+CAgIqNFBErNwGg2wezewY4e+rUcPYOJEYO1aoF69kn+WMTkRAUlJ+uejRomclEOHTA+SABEgaYMkQOzT2hoICNC3aTTiIsssS0AAsHWrCJIA8eWvcWNg82bxZZAIuHABaN5c5DiVY7zEMI8pMDAQjtqgS6EA+vWD4sABZO3di98BWAOw37kTFwD8AiCghH2auzpS7iwnJwd///03UlJSoNFojF4bOnSolIdirHK2bRNTqJs2BYYNA+rUEf/RV62Su2eMlez6dTGbLS1NJPDa2Ij37YIFld/3/PlitpThSOru3cBrrwEzZ4qEcGa5HB2BFi2AV14R75lly4CUFFFO4u23Td6NQqFATEwMsrKy4OjoCIVhsP0Y9eiBIRCJ3zMBjAIw9PFjPwD13r1lHoceJ2WXdAzD7bR9Kev10vZTVmcksXv3bmrQoIEuP8nwYWVlJdVhzArnKFmQ27eJLl7UP8/OJmrblig8nBcBZZYjLY3Iw4PI0ZHo+PGqP95LL1VuPTlmXgoKxGcfEVF+vn6ZlMGDRZJ3RgbR+fO6zcuT82PIcDFfANQWoJ3u7pRnUO37KEBDHieFo5iHNsnbcKHdwvlRhrlOgYGBZb5umNwtS2Xud999F6NGjcK9e/eg0WiMHmq1WqrDMFZ+W7aIb1KGlWvt7UVl7QULABcX2brGWKmUSuDnn/XP69UD/vtfkWsSUA03MjZuBDZsEKUFtK5eBUaOBI4erfrjM2lZW+tzkurUEbfjrKwAT08xyvT110CnTsBnn1XqMNpRJ6VSCaVSibNKJfreuIHWAJYAyAbwDIBfIcoM/AviNp2h8+fPAwDOnTsHf39/aDQaBAcHG22jUqlw5MgRAMDhw4eRlZVl9HpWVlapr5tKskApOTkZ4eHhZSZomZsRI0agXr16GDlypNxdYVLRaIDMTP3zoCB9u0qlb7eSPEWPMelkZooq76NGASdP6tv79gWaNKmePtjaAmPGGB9v8WKR2zd3bvX0gVWdadPE7dxZs8Q4z+3b4nPyu++AWbPgaGdXfD6SCRQKBZycnHSP7OxsJAKYAqAFgLkAMgB0ALAFwBUAEwHYFrOvc+fOITU1FefOnTNqLxw4FaYy/LyvBMmuFCNHjsSBAwek2l21mTJlCjZs2CB3N5hUdu8WF5cPPtC3NW0qCkcePAiUMAOCMbPj4iKKC7ZqJUaWzMU774jK0O+/r2/LzAQiIsyrn8w0zZsDzZqJEaX168X5ffgQiIqCok4dxHzyCbJXr0bMwYMVz/EppG6bNvgIQHMAnwB4VKcO2gBYBSAewFQApX1St2nTBgBw7dq1Uo9TUrFrepz/ZCrJygNkZWVh1KhRaNCgATp06GC03hsATDbjRMADBw5g2bJl+NlwiNsEXB7ADB08CPTqBXh7AwkJ4hsxY5bgzBng88+B1auB+vVF26NHIgnX3N/HixeL0YlnnuFbcpauoADYuVMstNujB9C+PRAXJ9YI/PJLsQhvBQKmlJQU3R2npKQkODs7w8HBAdnZ2XAkAlauhGbePFg/ntGZBmAZgKUAUmFcUiApKQleXl5FjlFW2QGlUglHR0cEBQXpbsmZdP02NQesLKtWraI6deqQs7MzNW/enFq0aKF7tGzZUqrDGDl48CANHjyYGjVqRABo586dRbZZtmwZNW/enOzs7CggIICOF5MAGRUVRS+++GK5j8/J3DL75x9RfTYiQt+m0Yhieo8rwjJmETQaIl9fkegaHi53b8pvyxYxOeKHH/RtGo3xBApmeXJyiL78ksjTU7w3vb2JcnNFIng5JScnGxWuLI7ywQN6DaCrBknfKoCWAJRy4oTRz6OYBPCkpKQyi1gWTlCv1mTujz/+GJ999hnS09Nx48YNJCQk6B7Xr1+X6jBGVCoVfH19ERERUezrW7duRXh4OGbPno0zZ87A19cXAwYMQEpKSpX0h1WzQ4eAdetEITXthAGFAnj1VVF8jzFzlpZm/L6dN09M3X73XXn7VRH/+hdw+TIwfry+LTJSrIX44ovlqtPDzIidHfDRR8CRI2LE8MMPxejmv/4lHnPnihIDEnGsVw+n/PzwFMR6cicBOAJ4F0C9gABshMhpohLeT6bkLJX0s6Uqd1hYgnr16lFcXJxUuys3FDOiFBAQQGFhYbrnarWavL29ae7cuUbbmTqilJOTQ+np6bpHYmIijyhVl+xsolWriKKj9W1ZWUTjxxMdPSpfvxiriMWLxXISmzbJ3ZOq89VXRFZWRNOmGbcXFMjTHyaN+Hix9qWVlX5ZFBNG8E0ZUSIioyVPenTvTq+1akV7DEaYCCBVz54UXMrIUWmPwsupVOuIUmhoKLZu3SrV7iotLy8Pp0+fRkhIiK7NysoKISEhOFrBe+hz586Fq6ur7tG0aVOpusvK8sUXovCd4bRVBwexMvozz8jXL8YqIisLyMgwnvpf08ycCcTHG0+siIsTicNffcWjTJaqVSvg7FlRgDQgAHjhBTGCHx0tkvr/+adS59bKygpnzpyBUqnEocOHsej8eQwE0BnAfyGWRXE8eBDRAI4AGAagPBlThWfOmUKyytxqtRrz5s1DZGQkOnbsWCSZe+HChVIdyiSpqalQq9VFErs8PT1x5coV3fOQkBCcP38eKpUKTZo0wfbt29G9e/di9zlz5kyEh4frnmdkZHCwVFUuXxazfrTTkl9/XdRDGjRI/CeUaPYFY1VOrQY2bQL8/cWtKEBcZFq1ElP/a7IWLYyfr1oF3L0r1lXk/8OWy9cXWLRIfBbn5gKpqWK5FBsb8QXgiSdE4OTurvsRDw+PYv9eHG1pAe3fAeAsgNEAPgZw9pVXYPvTT+gOYBeAywDmAdgMIF+6f6WOZIHShQsX0KlTJwDAxYsXjV6TakphVdi3b5/J29rZ2cHOzg4RERGIiIjgQppV5YsvRF2PsDBRZh8QU1jj4rj2EbM8H3wALFwoLiS//iranJzEQra1zRdfAB06AI+ndwMQJQXeeAN46y0gMJADKEuiUIgClpcvA15e4ktBTo74kmsQJCE/H1Y2NrprplUlPsevA1CsWIHmP/2EKQDeBvAUgLUAvgCw0cMDX6WmQspCFZIFSlFRUVLtShIeHh6wtrZGcnKyUXtycnKx0wrLIywsDGFhYbryAKyS8h4XtrezE8+1H5aPHhmPHnGQxCyFWi2qIAMiCNi0CQgO5tFQGxsx2cLQ2rXATz+JFe+vXq3dvx9L1akTcPGiWFjZxUX8qVaL23IjRogAuU8fWH39tb70RQVlZGTA2dkZbQMD8fHhw/izQwd0v3AB0wA0ATAzNRVvAIiAqAKeWvl/XeULTs6aNQunT5+WoCvSsrW1hb+/P/bv369r02g02L9/f4m31kwVEREBHx8fdO3atbLdZGvXAi1bAj/+qG/r3VvkNmzaxB+azLKcPSuKRH76qb7tiSeAW7dEgUZ+PxfVr5/IP/zwQ/2XISIxo9Wwwj4zbzY2orivm5so+rt9uxhBfecdUf37t98kmY1sZWVltETKniNH8C2AlgBeA1DQujXcAfwHwC2IOkwtKnvQcmW7F2P8+PHUoEEDaty4Mb355pv0559/Um5ubmV3a5LMzEw6e/YsnT17lgDQwoUL6ezZs3Tz5k0iIvrvf/9LdnZ2tG7dOrp06RK9/vrr5ObmRklJSZIcn+soSeD778VMhqAguXvCWOXt3Cnez+7uYlYmq5i9e8XvsUkTorw8uXvDKiIzk2juXKLvviOKiSH6+WfRfuaMqLE1aRLRmjWiVlMpDBfYLbywLVHRhXuT796lEQAdN5gllw/QZoA6FjMLzpTrtyTlAdRqNUVHR9P7779PTzzxBLm4uNALL7xA69evpwcPHkhxiGJFRUUVO/0vNDRUt83SpUupWbNmZGtrSwEBAXTs2DHJjs+BUjkdOUI0fLj4ENRSqYg2bBBFzBizNGfOEB08qH+u0RDNmkWUkCBbl2qEP/8keuIJosmTjdtv3JCnP0wa58+L4KVjR/FnnTpEt2+X+WMajYaUSmWRIImomEDJoAxBL4B2FyotsBug3uUMlCRbwsTQ5cuX8dtvv+GXX37B6dOnERAQgKFDh2L06NFo3Lix1IerdobJ3LGxsbyEiammTAGWLAH69xfF6BizZNu2iYTsJ58U+RnWhdc/Z5Wi0QDZ2fr1GRMSRBJ4797A77+LJGJmWTZuFDl7AweK5VFSUkShVS3t7NCnnjJ5lyqVCs4Gt/SKW8bED8AHAF4CoP1fGgWgD0xbwqRKAiVD9+/fx6+//opff/0VwcHBeO+996rycNWK13orRUaGmAo8fLiYBg2ID7qvvhIVXn18ZO0eYxVimKSdkQG0bi1ybL7/XuRmsKqzfj0wcaLIAduzR99e2xPkLc29e2I9OW1pnUePxCLLr70mkr9zc4ELF/SlNMpgSqCk1QLAdAATABQAcEU1B0rZ2dkgIjg6OgIAbt68iZ07d8LHxwf9+/eX4hBmhwOlUrzwglhYcfJk4Lvv5O4NY5WTkAB8/LH4gN+2Td+eng7wzNfqc/MmoFLpv2ipVKLo4b/+Bbz3nihCyyzLp5+KQsJt24rzmpQkFlbWBr+XLokvJNpZ0YWUJ1DS8oBI/P4apgVKks23HjZsGDZs2AAAePToEQICArBgwQIMGzYMy5cvl+owZoFnvRXj5EnxoaX11lvilkSXLvL1iTGpZGUB//2vqKR944a+nYOk6tW8ufFo9JYt4kK6bp1Yg4xZntBQMZo0dy6waxdw8KAYJTxxAsjPF7fpWrYEzp+X7JCpEEGSqSQbUfLw8MDBgwfRvn17rFq1CkuXLsXZs2exY8cOzJo1C5cvX5biMGaFR5QeGztW3HuOiADeflu0aVPnuPYRs0RxceICPHSovm3RIpEf4+cnW7dYIfn5Ini1sQFGjhRtREB4uKjfExzMt+Us0c8/i6r1/fuL/L+CAjGaqM1Ly88X5xwVG1EyVK0jSllZWXBxcQEA7N27Fy+88AKsrKzwzDPP4ObNm1IdhpkDlcp4LZ+AAPGmvXdP36ZQcJDELNPJk0C7duILwMOH+vZp0zhIMjc2NsDo0fogCQCiooDFi8VyR+npsnWNVcK1a0CdOkD37uK29759xsn7gwaJ/Ndr14r8qKOjIwIDAyXtjmRXsjZt2mDXrl1ITExEZGSkLi8pJSWlxo221Opbb3PmiCQ8w0rs48eL2xFffCFbtxirlKws/d/9/cXtncBAvtBaohYtxNqQb71lnGD/++8iAZ+Zv5kzRRA0daq4pdqhg1hst18/YOtWYP9+4I8/ip35qC1GWXhVjsqQbAmTWbNm4ZVXXsG0adPQp08fXfXrvXv36taAqylq9RImSUniW/ZPPwF9+og2Jyf9FF7GLElioihbce2ayIGwshKPo0clqSLMZNCqFfDDD8ZtN2+KEQhnZyA2FmjYUJausXIovKDyl1+KkSVXV7G23OHD4kv749zYWQBUAJCeDoWTk25RXSlIFiiNHDkSQUFBuHfvHnx9fXXtffv2xYgRI6Q6DKtOf/4phrB//FH/pp0+XUzPHTJEzp4xJg0XF/HtNDNTJI8+84xo5yCpZrl7V8yqatzYOEi6fx9o0EC+fjHTff21CJK0E4WefBJ49AiOJ07gua5dMePkSTgCoNhYwNtb0kNLWkcpJycHf//9N1JSUqDRaIxeG2qYFFlD1Phk7n79RAQ/bZpY/ZwxS3fokHh8+KG+bccOUeCOa3vVbBoNkJYGeHiI59nZQLNmol7P5s2SX1xZNfjyS+CTT0CvvIK8oCDYxsRAsXkzoFBApVJhpLMz0gCcKGUXply/JRtR2rNnD8aMGYMHDx4UeU2hUECtVkt1KNkZVuauMVJSgJUrxWwRbS2SDz8Uyavvvitr1xiTRHy8fhbU0KH6wOjFF+XtF6seVlb6IAkAjhwRaQQJCXwrzlIVFAAODlAMHgy70aPFaJNGIx4FBfgeYrHcFwH8XyUOI9mIUtu2bdG/f3/MmjWrXFPzLFmNGVEiEheNK1eAFStEiXnGLB2RmGTQsqW+bfRooG5d4D//AZo0ka1rzEwkJor3SHCweE4EPP+8mMk7dSpXW7cEKSmAu7uYJQcA//d/wEcfIWfKFGx5+230B9AGQM7jzZtD1FHSVv2r1vIAycnJCA8PrzVBkkUjEolw2hhZoRDBUUBA0QQ6xixRUpLIN+rc2Xim008/iURfDpIYIJKBtUESIG7L7t4NfPONqNXDzF/DhvogCRDLCV29CquEBEwA0Br6IAkAVgJIBFCe9UIkC5RGjhyJAwcOSLU7VlU0GrEYYVAQEB2tb3/3XeDYMWDAAPn6xphUGjYUCdq5uSJJW4uLD7LSdO8uKrDPmWOc5L1oEXDggHH9OGaedu4E5s1DflgYACAXQDsAUwB4AmgGoC6A8pTAluzWW1ZWFkaNGoUGDRqgQ4cOsHlcNVNr8uTJUhzGrFjMrbfsbOM1kN56S1TSXrxYlI5nzJLl5ooFU//8Uwy7awudnjkjRo44/4RVRmKiKDlQUFCuxVqZvAwrdq8HMPbxn+MB+AM49Xi7al0Ud/Xq1XjzzTdhb2+P+vXrQ2HwzU2hUOD69etSHMasmH2gVFAgasRs2iTKwGtXa05OFkW86tWTt3+MSeHRIzF7KTMT+PVXLl3BpHX3rhhhunlTFDnUOnpU5HbWtlp6FsIwUBoH4GMALwM48/h1RwBZqOZAycvLC5MnT8aHH34Iqxq+dIXhrLfY2FjzDZQAURQyKgqYP1+srs2YpXvwQJStePllfduCBSJP4bXXuPgpqxpE+lu3OTligd7sbLGIaw0rqlwTFF4DTgHAMNiZAuA7VHOg5O7ujpMnT6J169ZS7M4imNWIUkEBsH07sGGDuEerLe1+/Lj4z9yzJ+dnMMt3/764DaJSieq87drJ3SNWG127Jip9Z2aKshPaVJPMTFHElMmucKBUWHkCJcmGfkJDQ7F161apdsfKiwiYMQPYs0fcatPq1g3o1YuDJGa5MjP1f2/QAOjdG/D1FbfcGJND27YineHQIX2QRCRWLejZE7h0Sd7+sTJ9V45tJSs4qVarMW/ePERGRqJjx45FkrkXcmVnaSUkiIrC06eLIMjGBpg1C7h3T3zTYczSPXwIvP22uM12/br+m/rGjaIWEgf/TE4KhciN04qLExMIrK2NC1syiydZoHThwgXd4rcXL140ek3BH2jSUirFasoqlagVExQk2nkGG6tJ6tYVF57UVDFSOmqUaOfkWWaO2rYVxSuPHTOeaTltmgjy332X15WzUJIFSlFRUVLtihWmVgOnT4uCkIBYsPOVV8QsDMNp/4xZKiJg717g55/FIswKhfhmvmKFmJ3p5yd3DxkrW+PGxkvi3L0LLFsmckiHDOFAyUJJksydn5+PgQMHYsWKFWjbtq0U/bII1ZLMnZYGdOmiL7XfuLFoLygwrkbKmCV79EiUr1AqxRTs556Tu0eMVZ5aLSbXHDwILF2qb//5Z7HsRu/efAu5ipSVzK1VbcncNjY2+Pvvv6XYlUWIiIiAj48PunbtWjUHyDEouO7uLi4gdesC//yjb+cgiVmynBwgMlL/3M1N5NtNmyYStRmrCaytgZEjjYOk3FxxG65vX+CXX+TrGzOZZOUBpk2bBjs7O3z99ddS7M4iSD6i9OCBKBAZHS2mn9rZifaEBMDTE3B0rPwxGJPbo0fAk0+KxSxjY4E2beTuEWPV59Ej4JNPgL/+EjPntBOfrl4Vn/O8EK8kpBxRkmxYoqCgAGvWrMG+ffvg7+8Pp0JF33jWmwlcXMR6QnfuiP9EgweLdsPVzxmzRIbL6Li5Af7+4iJx6xYHSqx2cXMTeUtqtRhx0powAfj7b2DrVr71bGYkC5QuXryIzp07AwBiY2ONXuNZb8XIzhbrUx0+LKY7A2JZkRUrgEaNxIWEMUuXni5GSSMjxfRp7ReoNWvEbeVCZUQYqzUMg6SHD4GMDCAvD3h8HQUgbtNp7yww2Uh26602qtStt6QkUQI/Lw84ckSsWs1YTaNWi9tscXFiVXbDZUcYY3pEolBl+/b6tgkTRBrG/PmiFAwzmdkkc9+6datc29+5c6cyh7NsFy6Ib9FaXl7ABx8AixfzatSsZtBoRHLqxIniQx8Q35q//17UluEgibGSKRTGQZJSKZalOnRIvj4xAJUMlLp27Yo33ngDJ0+eLHGb9PR0rFy5Ek8//TR27NhRmcNZrsuXgY4dgTffFJWztb74QtyW4LWBWE3w6BHw6qviC8Fff+nb+/UTS+kwxkzn7CwSvJctMx5NWr5cJIMnJcnXt1qmUjlKly5dwpdffol+/frB3t4e/v7+8Pb2hr29PR4+fIhLly7hn3/+QefOnTFv3jw8V1sS1HJzxWyeDh3E86eeAoKDxYwGw6n/jFmyjAwx+WDoUPHc3V1M8c/LE18MGGOV4+0NhIXpn+flAXPmiEKWbdsCoaHy9a0WkSRHKTs7G3/88QcOHTqEmzdvIjs7Gx4eHujUqRMGDBiAp8341tLvv/+O6dOnQ6PRYMaMGXitHMuAFJujdOGC+AZtbS2m9dvaivb8fE5cZTVHaqr4oM7IEF8KWreWu0eM1Xxqtbi9vWEDsG2b/vpy+LBY0qpfPy5g+ZiUOUq1Opm7oKAAPj4+iIqKgqurK/z9/XHkyBHUr1/fpJ/XBUopKairLU2flwe0aCECpchIwMen6v4BjFWnjAxR+FRr0CBRLX71aqBHD9m6xVitFxwscpm+/VaM6jLzSea2dCdOnED79u3RuHFjODs7Y9CgQdi7d2/5dzRsmP7vtrb61c45SGI1wYMHYv2qNm3Et1atTZtEtXgOkhiTT36+KClQrx4werS+PSlJLIHFAADXr1+v8M9adKAUHR2NIUOGwNvbGwqFArt27SqyTUREBFq0aAF7e3t069YNJ06c0L129+5dNNaunQagcePGFZuZd/SouP2g5ePDt9lYzeHqCpw7B9y/D+zfr2+vXx+wsuiPEMYsn40N8N13Im/J21vf/p//iOWvVq+Wr29mpHAR7PKw6E85lUoFX19fREREFPv61q1bER4ejtmzZ+PMmTPw9fXFgAEDkJKSIm1HTp8GnnhC2n0yJof8fDFSNGaMfop/nTrAypWikrY2cZsxZl7s7fV/12jE/9esLFHHTEut1v+/Ziaz6EBp0KBBmDNnDkaMGFHs6wsXLsSkSZMwfvx4+Pj4YMWKFXB0dMSax/WMvL29jUaQ7ty5A2/DiLyQ3NxcZGRkGD0A8BIMrObIyADeeEMES4ajR336GNd4YYyZLysrUcj46FHjW+OLF4vixhVJManFLDpQKk1eXh5Onz6NkJAQXZuVlRVCQkJw9OhRAEBAQAAuXryIO3fuQKlUYvfu3RgwYECJ+5w7dy5cXV11j6ZNm1b5v4OxKnXnDrB5s/55/fqiEOqcObyMDmOWTKEQ9Ze0s+CIgB9+AI4fBxIT5e2bhZFsrTdzk5qaCrVaDU9PT6N2T09PXLlyBQBQp04dLFiwAL1794ZGo8EHH3xQ6oy3mTNnIjw8XPc8IyODgyVmuW7fBlq1EsP0gYFitiYAzJ4ta7cYY1VAoQBiYoBVq0RhWK29e8UEpMmTgSZN5OufGauxgZKphg4diqEm5l3Y2dnBzs4OERERiIiIgFqtruLeMSYhIvFNslkz8bxJE6BnT1HSQnsbmTFWc3l6Ah9/bNw2d64oHAsA8+ZVe5csQY0NlDw8PGBtbY3k5GSj9uTkZHh5eVVq32FhYQgLC9PVUWLM7N26BQwfLgKlW7cABwfRvmsXUInZIIwxCzd9uqj7N3myvi0+HrhyRdRK45mtNTdHydbWFv7+/thvkJCq0Wiwf/9+dO/evVL7joiIgI+PD7p27VrZbjJWdQxnt3h7Aw8filkwp0/r2zlIYqx2GzxY3HozvO02f75of+cd+fplRix6REmpVCIuLk73PCEhAefOnYO7uzuaNWuG8PBwhIaGokuXLggICMDixYuhUqkwfvz4Sh2XR5SYWUtLE0Pop0+L/AOFQkzx37pVLDViYuV5xlgt1bChqML/8sv6NpVKPBo2lK9fMrHoJUwOHDiA3r17F2kPDQ3FunXrAADLli3D/PnzkZSUBD8/PyxZsgTdKrmSuWGOUmxsrEkl0BmrNqmpotBcTo5I3gwKkrtHjDFLo1SKEWftrLlFi4CZM0Uhy8J5Tmao8BImycnJRSZ3AbzWW5UrdlFcxqoTERAVBZw9a7zG05IlYhbb4MGcY8AYq7xRo4CffxYlBl5/XbRpwwczXIhXykCJP0EZs2T//AP07QvMmGFcG2XyZFFFm4MkxpgUtm0DoqNF1X6tPXuALl2AHTvk61c14E/RCuBkbiYbpRIwWK8QTz8NPP888OabYuYKY4xVBYUCCA7Wz5gFgGXLgDNnRBXwGoxvvVUC33pj1ervv0XdI1tb4OZN/dpORGY59M0Yq+EePABWrAD+/W+geXPRFhcnAqipU/VFbGXAt94Yqy1ycvR/f+opwMUFcHMDbtzQt3OQxBiTQ/36IrFbGyQBIun7u++Ad9+Vr18S40CJMXMUFyduqfXqpU+YtLEBDh4ELl82XhGcMcbMxQsvAP37A9Om6duUSmDnTsBCV7PgQKkCOEeJVbm6dYH9+0U+0uXL+vaWLTlBmzFmvvr2BSIjgT599G1r14oAavBg+fpVCfyJWwFhYWG4dOkSTp48KXdXWE2gVAJLlwIffaRva9gQWLMGuHoV8PGRr2+MMVZZREC9emImrmFboSXGzBUnc1cCJ3MzSZw8CQQEiOrZCQm8gjdjrOZRqcTMXO0klL17xQjTG2+IL4qSH066ZG6LXsKEMYt0+bJIxh40SDzv2hUYNw7o1o2XF2GM1UyF15XcuxfIz7eIsiYcKFWA4RImjJXL/v1ASAjg5SWCJTs70b52razdYoyxavXtt6Lat7e3vu36dZHLNHUqEBpqNjN6OUepAjhHiZlMrQbu3tU/f/ZZoFkzoHt34OFD+frFGGNy69ZNrEuptWwZcP68WMDbTIIkgEeUGKs6R48Cr74qRo+0lWttbIBLl4oOQzPGWG03a5b4vHzmGX2bSgV88gnw9ttA27aydIsDJcakZFglu2VL4M4dICNDjCpph5g5SGKMsaLc3IAPPjBuW78eWLwY+OMPMQtYhpEmvvXGmBSuXQPGjhVrrml5eYlFI2/dMr4PzxhjzDSdOoniu1On6oMkIuD334GCghJ/zNHREYGBgQCAwMBAODo6VrgLXB6gAgyTuWNjY7k8AAOOHxfDxTY2YvTIw0PuHjHGWM1hOFqvnRTj4yPWwCxh5hwRISsrC46OjsjKyjIqF6DFa71VEU7mruVyc0UxyA0b9G3duon764cPc5DEGGNSM7zllpIiPmf79DEOkgpNkFEoFHBycoKikrfreESpErjgZC21aRMwZoy4nZaQANjayt0jxhirXbKzxcPdXTy/cUOsgfnii8C6dWJ030DhApRaPKLEmBTi4oCzZ/XPX3pJjCBNm2axizwyxphFc3DQB0mASPbOzRWjTYWCpMriWW+MlWbjRlH4LDAQiIkRbba2wLFj8vaLMcaYXliYqE9neJstOxvo10/cAXj55QrvmgMlxgwVFIhFat3cxPO+fUVg5OoKZGUBlZg5wRhjrAp17mz8fONGkTd65w7wr39VeLccKDGm9ccfwDvviNkUK1eKNm9v4OZNoJjFFBljjJmx0aP1eUx19OHOLAD/BRBr4m44mbsSOJm7hjl8GAgKApo0AeLjOUmbMcZqCG0yd08ABwDcA+ANTuauMhEREfDx8UHXrl3l7gqrqIsXxX3r777Tt/XoAWzbBsTGcpDEGGM10AMA/wdgUzl+hkeUKoFHlCzYmjXAxIli9CghwWhYljHGWM3C5QEYK01ODrB6NXDggL7t1VeBSZOAnTs5SGKMMVYivkKwmu+rr4AvvgB69RIPALCzA378Uc5eMcYYswA8osRqnmvXgMRE/fPXXwdatwYGDwY0Gvn6xRhjzOJwoMRqlq+/Btq1A+bM0bc1aSKCp+nTASt+yzPGGDMdXzWYZSsoEGXrtXr0EKtMP3wo/tSq5KKIjDHGLJejoyP8/Pwq9LO1PlAaMWIE6tWrh5EjR8rdFVZemzcDbdoA33+vbwsOFmuzbdvGwRFjjDEAgEKhQIx2GapyqvWB0pQpU7Bhwwa5u8EqQqUSVbN/+knfplCIfCTGGGPMgKKCX55rfaDUq1cvuLi4yN0NVpZz54B//xvYs0ffNmYMsGoVEB0tW7cYY4xZBkdHRwQGBgIAunXrZvLPmXWgFB0djSFDhsDb2xsKhQK7du0qsk1ERARatGgBe3t7dOvWDSdOnKj+jrKqt3GjuNU2f76+zcFBFI10cJCvX4wxxiyC9vabUqlEZGSkyT9n1oGSSqWCr68vIiIiin1969atCA8Px+zZs3HmzBn4+vpiwIABSElJ0W3j5+eHp59+usjj7t271fXPYOWVkyNGiuLi9G1TpgCvvALMmydfvxhjjFk0hUIBJyenct2GM+uCk4MGDcKgQYNKfH3hwoWYNGkSxo8fDwBYsWIF/vjjD6xZswYffvghAODcuXOS9Sc3Nxe5BjOs0tPTAYilTJiEXnsN2L5djBYtXCja3NyA5cvF3/n3zRhjrBK0121TVnEz60CpNHl5eTh9+jRmzpypa7OyskJISAiOHj1aJcecO3cuPvvssyLtTZs2rZLj1XqrV4sHY4wxVgUyMzPh6upa6jYWGyilpqZCrVbD09PTqN3T0xNXrlwxeT8hISE4f/48VCoVmjRpgu3bt6N79+7Fbjtz5kyEh4frnms0GqSlpWHgwIE4depUqcfp2rUrTp48WaHXi3vNlLaMjAw0bdoUiYmJ1bpob1n/1qrYh6nbl/f3XNprfA4qtj2fg6rbhxznoKR2wzY+B+Xfrjy/65Laa+s5MOVniAiZmZnw9vYuc18WGyhJZd++fSZva2dnBzs7O6M2Nzc31KlTp8w3nrW1danblPZ6ca+Z2gYAdevWrdb/GGX9W6tiH6ZuX97fc2mv8Tmo2PZ8DqpuH3Kcg5Lai2vjc2D6duX5XZfUXlvPgak/U9ZIkpZZJ3OXxsPDA9bW1khOTjZqT05OhpeXV7X2JSwsrNLblPZ6ca+Z2iYHKfpR3n2Yun15f8+lvcbnoGLb8zmoun3IcQ5KajeH82Cp56C01/kcVN9xtRRkSiaTGVAoFNi5cyeGDx+ua+vWrRsCAgKwdOlSAOJWWLNmzfDOO+/okrlrs4yMDLi6uiI9Pb1av0EwPT4H8uNzID8+B/Ljc1BxZn3rTalUIs5ginhCQgLOnTsHd3d3NGvWDOHh4QgNDUWXLl0QEBCAxYsXQ6VS6WbB1XZ2dnaYPXt2kduFrPrwOZAfnwP58TmQH5+DijPrEaUDBw6gd+/eRdpDQ0Oxbt06AMCyZcswf/58JCUlwc/PD0uWLClXxU3GGGOMsZKYdaDEGGOMMSYni03mZowxxhirahwoMcYYY4yVgAMlxhhjjLEScKDEGGOMMVYCDpQYEhMT0atXL/j4+KBjx47Yvn273F2qlUaMGIF69eph5MiRcnel1vj999/Rrl07tG3bFqtWrZK7O7USv+/lx9eA0vGsN4Z79+4hOTkZfn5+SEpKgr+/P2JjY+Hk5CR312qVAwcOIDMzE+vXr8fPP/8sd3dqvIKCAvj4+CAqKgqurq7w9/fHkSNHUL9+fbm7Vqvw+15+fA0oHY8oMTRq1Ah+fn4AAC8vL3h4eCAtLU3eTtVCvXr1gouLi9zdqDVOnDiB9u3bo3HjxnB2dsagQYOwd+9eubtV6/D7Xn58DSgdB0oWIDo6GkOGDIG3tzcUCgV27dpVZJuIiAi0aNEC9vb26NatG06cOFGhY50+fRpqtRpNmzatZK9rluo8B8w0lT0nd+/eRePGjXXPGzdujDt37lRH12sM/n9hHqQ8D3wNKIoDJQugUqng6+uLiIiIYl/funUrwsPDMXv2bJw5cwa+vr4YMGAAUlJSdNv4+fnh6aefLvK4e/eubpu0tDSMHTsWP/74Y5X/myxNdZ0DZjopzgmrHD4H5kGq88DXgBIQsygAaOfOnUZtAQEBFBYWpnuuVqvJ29ub5s6da/J+c3JyKDg4mDZs2CBVV2usqjoHRERRUVH04osvStHNWqUi5+Tw4cM0fPhw3etTpkyhzZs3V0t/a6LK/L/g9710Knoe+BpQMh5RsnB5eXk4ffo0QkJCdG1WVlYICQnB0aNHTdoHEWHcuHHo06cPxowZU1VdrbGkOAdMWqack4CAAFy8eBF37tyBUqnE7t27MWDAALm6XOPw/wvzYMp54GtA6ThQsnCpqalQq9Xw9PQ0avf09ERSUpJJ+zh8+DC2bt2KXbt2wc/PD35+frhw4UJVdLdGkuIcAEBISAhGjRqFP//8E02aNOGLSSWYck7q1KmDBQsWoHfv3vDz88P06dN5xpuETP1/we/7qmXKeeBrQOnqyN0BJr+goCBoNBq5u1Hr7du3T+4u1DpDhw7F0KFD5e5Grcbve/nxNaB0PKJk4Tw8PGBtbY3k5GSj9uTkZHh5ecnUq9qFz4H54XMiPz4H5oHPQ+VxoGThbG1t4e/vj/379+vaNBoN9u/fj+7du8vYs9qDz4H54XMiPz4H5oHPQ+XxrTcLoFQqERcXp3uekJCAc+fOwd3dHc2aNUN4eDhCQ0PRpUsXBAQEYPHixVCpVBg/fryMva5Z+ByYHz4n8uNzYB74PFQxuafdsbJFRUURgCKP0NBQ3TZLly6lZs2aka2tLQUEBNCxY8fk63ANxOfA/PA5kR+fA/PA56Fq8VpvjDHGGGMl4BwlxhhjjLEScKDEGGOMMVYCDpQYY4wxxkrAgRJjjDHGWAk4UGKMMcYYKwEHSowxxhhjJeBAiTHGGGOsBBwoMcYYY4yVgAMlxhiTWV5eHtq0aYMjR45Iut89e/bAz8+PV4ZnrBI4UGKMSWrcuHFQKBRFHoZrUTFjK1asQMuWLdGjRw9dm0KhwK5du4psO27cOAwfPtyk/Q4cOBA2NjbYvHmzRD1lrPbhQIkxJrmBAwfi3r17Ro+WLVsW2S4vL0+G3pkXIsKyZcswceLEKtn/uHHjsGTJkirZN2O1AQdKjDHJ2dnZwcvLy+hhbW2NXr164Z133sHUqVPh4eGBAQMGAAAuXryIQYMGwdnZGZ6enhgzZgxSU1N1+1OpVBg7diycnZ3RqFEjLFiwAL169cLUqVN12xQ3AuPm5oZ169bpnicmJuKll16Cm5sb3N3dMWzYMNy4cUP3una05ttvv0WjRo1Qv359hIWFIT8/X7dNbm4uZsyYgaZNm8LOzg5t2rTB6tWrQURo06YNvv32W6M+nDt3rtQRtdOnTyM+Ph7PP/98OX/LwI0bN4odvevVq5dumyFDhuDUqVOIj48v9/4ZYxwoMcaq2fr162Fra4vDhw9jxYoVePToEfr06YNOnTrh1KlT2LNnD5KTk/HSSy/pfub999/HwYMH8csvv2Dv3r04cOAAzpw5U67j5ufnY8CAAXBxcUFMTAwOHz4MZ2dnDBw40GhkKyoqCvHx8YiKisL69euxbt06o2Br7Nix2LJlC5YsWYLLly/jhx9+gLOzMxQKBSZMmIC1a9caHXft2rV49tln0aZNm2L7FRMTgyeeeAIuLi7l+vcAQNOmTY1G7c6ePYv69evj2Wef1W3TrFkzeHp6IiYmptz7Z4wBIMYYk1BoaChZW1uTk5OT7jFy5EgiIurZsyd16tTJaPsvvviC+vfvb9SWmJhIAOjq1auUmZlJtra2tG3bNt3rDx48IAcHB5oyZYquDQDt3LnTaD+urq60du1aIiLauHEjtWvXjjQaje713NxccnBwoMjISF3fmzdvTgUFBbptRo0aRS+//DIREV29epUA0F9//VXsv/3OnTtkbW1Nx48fJyKivLw88vDwoHXr1pX4+5oyZQr16dOnSDsAsre3N/o9Ojk5UZ06dWjYsGFFts/OzqZu3brR4MGDSa1WG73WqVMn+vTTT0vsA2OsZHXkDdMYYzVR7969sXz5ct1zJycn3d/9/f2Ntj1//jyioqLg7OxcZD/x8fHIzs5GXl4eunXrpmt3d3dHu3btytWn8+fPIy4ursjITU5OjtFtqfbt28Pa2lr3vFGjRrhw4QIAcRvN2toaPXv2LPYY3t7eeP7557FmzRoEBATgt99+Q25uLkaNGlViv7Kzs2Fvb1/sa4sWLUJISIhR24wZM6BWq4tsO2HCBGRmZuKvv/6ClZXxzQIHBwdkZWWV2AfGWMk4UGKMSc7JyanEW02GQRMAKJVKDBkyBN98802RbRs1amTybDmFQgEiMmozzC1SKpXw9/cvdgZYgwYNdH+3sbEpsl/t9HoHB4cy+/Haa69hzJgxWLRoEdauXYuXX34Zjo6OJW7v4eGhC8QK8/LyKvJ7dHFxwaNHj4za5syZg8jISJw4caLYW3hpaWlG/0bGmOk4UGKMyapz587YsWMHWrRogTp1in4ktW7dGjY2Njh+/DiaNWsGAHj48CFiY2ONRnYaNGiAe/fu6Z5fu3bNaBSlc+fO2Lp1Kxo2bIi6detWqK8dOnSARqPBwYMHi4z0aD333HNwcnLC8uXLsWfPHkRHR5e6z06dOmH58uUgIigUinL3aceOHfj888+xe/dutG7dusjr2hGzTp06lXvfjDFO5maMySwsLAxpaWkYPXo0Tp48ifj4eERGRmL8+PFQq9VwdnbGxIkT8f777+N///sfLl68iHHjxhW5vdSnTx8sW7YMZ8+exalTp/Dmm28ajQ69+uqr8PDwwLBhwxATE4OEhAQcOHAAkydPxu3bt03qa4sWLRAaGooJEyZg165dun1s27ZNt421tTXGjRuHmTNnom3btujevXup++zduzeUSiX++eefcvzWhIsXL2Ls2LGYMWMG2rdvj6SkJCQlJSEtLU23zbFjx2BnZ1dmPxhjxeNAiTEmK29vbxw+fBhqtRr9+/dHhw4dMHXqVLi5uemCofnz5yM4OBhDhgxBSEgIgoKCiuQ6LViwAE2bNkVwcDBeeeUVvPfee0a3vBwdHREdHY1mzZrhhRdewFNPPYWJEyciJyenXCNMy5cvx8iRI/H222/jySefxKRJk6BSqYy2mThxIvLy8jB+/Pgy91e/fn2MGDGiQkUhT506haysLMyZMweNGjXSPV544QXdNlu2bMGrr75a6u0/xljJFFT4pj5jjFmAXr16wc/PD4sXL5a7K0XExMSgb9++SExMhKenZ5nb//333+jXrx/i4+OLTWqvqNTUVLRr1w6nTp0qtuAnY6xsPKLEGGMSyc3Nxe3bt/Hpp59i1KhRJgVJANCxY0d88803SEhIkLQ/N27cwPfff89BEmOVwMncjDEmkS1btmDixInw8/PDhg0byvWz48aNk7w/Xbp0QZcuXSTfL2O1Cd96Y4wxxhgrAd96Y4wxxhgrAQdKjDHGGGMl4ECJMcYYY6wEHCgxxhhjjJWAAyXGGGOMsRJwoMQYY4wxVgIOlBhjjDHGSsCBEmOMMcZYCThQYowxxhgrwf8DvUxiS//ARfwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "gs = plt.GridSpec(2, 1, hspace=0)\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "ax0.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - poisson) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "ax0.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax0.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + "\n", + "ax0.set_xlabel(\"Frequency (Hz)\")\n", + "ax0.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "ax0.legend()\n", + "\n", + "ax1.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - poisson) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "ax1.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax1.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + "\n", + "ax1.set_xlabel(\"Frequency (Hz)\")\n", + "ax1.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "ax1.loglog()\n", + "ax1.set_ylim([1e-1, None])\n", + "ax1.set_xlim([pds.freq[0], pds.freq[-1]]);" + ] + }, + { + "cell_type": "markdown", + "id": "10de5eef", + "metadata": {}, + "source": [ + "## Power colors\n", + "\n", + "Power colors ([Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract)) are an alternative to spectral colors but in the timing regime. The power colors are the ratio of the variability at different timescale, basically they inform us on the slope of the power spectrum in different Fourier frequency regimes. They can be used to understand the spectral state of an accreting source.\n", + "Stingray implements power colors both as a standalone function in the `stingray.power_colors` module, to be applied to a single periodogram, and as a method of `DynamicalCrossspectrum` and its children (see the `DynamicalPowerspectrum` tutorial for more information). Here we show one possible way to calculate power colors in the observation we are analyzing." + ] + }, + { + "cell_type": "markdown", + "id": "39e27093", + "metadata": {}, + "source": [ + "We use the same frequency edges `[1/256. 1/32, 1/4, 2, 16]` from [Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract). The colors are then calculated as \n", + "\n", + "+ PC1: the ratio of the variances in the intervals 0.25-2 Hz and 0.00390625-0.03125 Hz\n", + "+ PC2: the ratio of the variances in the intervals 2-16 Hz and 0.03125-0.25 Hz" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "ab95c32f", + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import DynamicalPowerspectrum\n", + "from stingray.power_colors import hue_from_power_color, plot_power_colors, plot_hues, DEFAULT_COLOR_CONFIGURATION, power_color" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "4d47264a-964d-4c32-9ccc-533e449e2d12", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 31.60it/s]\n" + ] + } + ], + "source": [ + "# We use a segment size of 256, corresponding to a minimum frequency of 0.00390625, and a time resolution\n", + "# of 1/256 = 0.00390625 seconds, corresponding to a Nyquist frequency of 128 Hz (well above our needs for\n", + "# the power colors).\n", + "\n", + "dynps = DynamicalPowerspectrum(events, segment_size=256, sample_time=1 / 256, norm=\"leahy\")" + ] + }, + { + "cell_type": "markdown", + "id": "ff26febf", + "metadata": {}, + "source": [ + "We slightly rebin the spectrum to gain some signal to noise" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "a72489d0", + "metadata": {}, + "outputs": [], + "source": [ + "dynps_reb = dynps.rebin_by_n_intervals(2, method=\"average\")" + ] + }, + { + "cell_type": "markdown", + "id": "bf53bfed", + "metadata": {}, + "source": [ + "We now calculate the power colors and the \"hue\", or the angle of the measured colors and the point PC1=4.51920 and PC2=0.453724 in the logPC1 vs logPC2 plane." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "7a8ea778", + "metadata": {}, + "outputs": [], + "source": [ + "p1, p1e, p2, p2e = dynps_reb.power_colors(\n", + " freq_edges=[1 / 256, 1 / 32, 0.25, 2, 16], poisson_power=res.p_opt[0]\n", + ")\n", + "\n", + "hues = hue_from_power_color(p1, p2)" + ] + }, + { + "cell_type": "markdown", + "id": "40e5a557", + "metadata": {}, + "source": [ + "It is useful to compare power colors with the fractional rms. This can be calculated as" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "55574e17", + "metadata": {}, + "outputs": [], + "source": [ + "rms, rmse = dynps_reb.compute_rms(1 / 64, 16, poisson_noise_level=res.p_opt[0])" + ] + }, + { + "cell_type": "markdown", + "id": "c7479416-c48b-41d2-9f9e-37b02b61fa21", + "metadata": {}, + "source": [ + "Once the colors are calculated, they can be plotted and compared to the ranges that can be associated with different spectral states. The configuration of the plots can be tweaked by modifying the entries of a configuration dictionary. All defaults are contained in the `DEFAULT_COLOR_CONFIGURATION` and are based on the original paper. The user can start a configuration by using the default, and then tweaking some of the entries. This will almost certainly be needed if the user selects different frequency ranges for the colors." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "ac7125ff-709c-4367-8f76-e1c26d96ce7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'center': [4.5192, 0.453724],\n", + " 'ref_angle': 2.356194490192345,\n", + " 'state_definitions': {'HSS': {'hue_limits': [300, 360], 'color': 'red'},\n", + " 'LHS': {'hue_limits': [-20, 140], 'color': 'blue'},\n", + " 'HIMS': {'hue_limits': [140, 220], 'color': 'green'},\n", + " 'SIMS': {'hue_limits': [220, 300], 'color': 'yellow'}},\n", + " 'rms_spans': {-20: [0.3, 0.7],\n", + " 0: [0.3, 0.7],\n", + " 10: [0.3, 0.6],\n", + " 40: [0.25, 0.4],\n", + " 100: [0.25, 0.35],\n", + " 150: [0.2, 0.3],\n", + " 170: [0.0, 0.3],\n", + " 200: [0, 0.15],\n", + " 370: [0, 0.15]}}" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "configuration=DEFAULT_COLOR_CONFIGURATION\n", + "configuration" + ] + }, + { + "cell_type": "markdown", + "id": "206c3938", + "metadata": {}, + "source": [ + "We can now plot the power colors and calculate the hue." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "1867b978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAG0CAYAAAC2QbdQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADK00lEQVR4nOxdd5zU1Np+UqfssruUpS+CgBSpAqJgAUEBO3pV7Irdq1eQe1W8iv1iveqnXjv2gl1UVJoNRRCRa8eLjbp0tsykJ98f2ZmdPkkmyWSWPL/fKDuTnHNykpz3vO15CU3TNPjw4cOHDx8+kkAWewA+fPjw4cOHF+ELSB8+fPjw4SMDfAHpw4cPHz58ZIAvIH348OHDh48M8AWkDx8+fPjwkQG+gPThw4cPHz4ywBeQPnz48OHDRwbQxR5AqUFVVWzatAmtWrUCQRDFHo4PHz58+DAJTdPQ0NCAzp07gySz64m+gDSJTZs2oaamptjD8OHDhw8fBWL9+vXo2rVr1t99AWkSrVq1AgA8dN8zoIIhjBkzocgj2nOhaRoEQUAwGLSpPaAlGAVEUQTLskXr3wvzKIoCGIb1rTwWoGkaJEkEywaKPRTH0NhYj+HDa+LreTb4AtIkYi/c/HdfRUQUcfTRf3H1JfTC4uMlcByHUChU7GF4CtFoBOFwWbGHYRl2POMcF0UoFLZnQB6Ek+tANBpBRUWlM403IUZwWuy1LN/a7QtIi5h9ze1gGRZCQx2oUBkYhnGlX7ceKKdeQLvbZdkABEFAIFD4btcrm49Cx0GSlH2DKQLsuAcU1bKXNieFoxsbCy+8Z0bgR7FaBMuwaFXeCjt+/w2Hjd0Xn366sNhDshUE0bzLs7tdO0FRJFRVtaUtr7y0hY6DoijsyTUIZFmGqhZ+/V6eQifGpiiKb5ZOgS8gC0R1m3Y4dP+D0aW6Y7GHUlKw8wVnGAaSJNnXYIlD9yEVbz6KLVgURUEwWLhFwS45Yfd8OGXpEATeUUtYsZ8LK/AFZIFgGRa3XnUb9m5dje0b12HFiqWu9u/kQ+fkRtLOtmmahizL9jVY4mAYpqhaQLEVkJasPTslHCMR5/3WxX4urMAXkDaBAPDskw9i6rnHobGxodjD2ePgC8lmEAQBWVaKPYyiQdPsMbnbBTs1USeEjCRJCAb9QLdMaNmebJdx2bmXYeLYSSAl0bU+3diVeSV4JRcYhgHHcaDplvFIFz7nxRMSxXxedD9aYebVUnje7YKqqpAksaSjnp2Er0HaCJZh0b93PwR5Ef+85mIsWvResYdkC0plsaAoqsVoToUH6hRvo1DI2Au1jvI8B5ouLIrXq8+7E+Piec5x4VjKFm9fQDoARZaxZcN6bPhjbbGHskeBZVmIonvaey5oWmELQ6GLSqluFArfGLiTbuU2nBAyoig6blotdW28pAXkp59+imOOOQadO3cGQRB46623ch7/8ccfgyCItE9tba2t42IYBo/f9QTOOupkcHW7sHnzRlvb95EddqZ9FAKCKGxhKHRRKeVFySr04JwSVldywO77qafCqDl5SO1AqT+HJS0gI5EIBg8ejIceesjUeWvWrMHmzZvjn/bt29s+NoIgQBIEli16H6NH98KPP35rex+ZUIrmDDvHzLIsBEGwpa1SnMsYKKo4ZAHFnDNBKC7FXgxOpHXY255OJWcXRWNLRklHNEyaNAmTJk0yfV779u1RVVVl/4Ay4KD9D8KNV96EHp3dITgvxaAde9vSrQJ27I5Lefcry1JRhEUx54wgCMc1ImPjsK8tJ0yUkiQhEPCFoxEU/2kqAoYMGYJOnTrh8MMPx+eff57zWEEQUF9fn/QxA5ZhcdZfzgLdGMEXnyzA4sXzCxm6J+AUy45dsMsXWeg1FnOOCKL06OYKnS/JxejxXLDzvtstHGPvhRc2EqWAPWqWOnXqhEceeQSvv/46Xn/9ddTU1GDMmDFYtWpV1nNmz56NysrK+MdqqSuGpvHSc4/h8UfvadGJzF5A7OUvdJ5L2Q9IUaX3ahcW/aoVzMdr12vpVQYeVVWhKKonzNClAkJrIas1QRB48803cfzxx5s679BDD0W3bt3w3HPPZfxdEIQkn1Z9fT1qamrw8ye/oFV57lIpqRAlEbwggG1fDTpc3mJy9rwIPb9LsmXRLJagK6RvQRBAkqRrJPrFBsdxCAaDPo9oDvC8gEDA51oFgIaGevTtW4m6ujpUVFRkPa70tpk2Y//998fatdnTMQKBACoqKpI+VsEyLCrKW2HXH39g3GED8PHHH1puy0dukCQJRSk8mrW4PjXr5+4pgjER/sKfHaIoxv3zPoxjjxeQq1evRqdOnVzts23rNhi13wHoUt3BtT6dshN42f7gFV9kMaBvEEozF9IKfJ9adiiK0mSC9k2rZlHSNr7GxsYk7e/333/H6tWr0aZNG3Tr1g0zZ87Exo0b8eyzzwIA7rvvPvTo0QP77rsveJ7HE088gSVLlmDBggWujptlWMy+5nZoAHZu3oBfN/yJESNGO9pnLLDG7g2klzekNE2B4woXkF6+xlwoBidpMUzSotiyKrnYPYc616oftWoFJS0gV65cibFjx8b/vvLKKwEAZ599Np5++mls3rwZ69ati/8uiiJmzJiBjRs3IhwOY9CgQVi0aFFSG25CJzh/AI+98BiWr/gTrVpZN98a6q9EF/pCwDAMRNEb+XFWUMhiWQy6ueI8Y4UH6HgFdgtHnudbfPFoJ9FignTcQn19PSorKy0F6WSCKIn45bdfsPegoQi3bmvDCH2kguM4hEJ7XrWCaJRDONzyr5vjogiFwkUdgxcp1RRFgaIojmwOvXi9ZuAH6ZQIWIbFgD4DEORF3Hj931oMwbmXsKeWwirlBcwMCKK4y5hXhUUpW068Al9AegSqomD972vxx68/O96XkzYDL9ojGIaBJLUsP5URuE03V4x7L0ly0SN2vSgco9GIo2ZnL16zE/CN0x4BTdN44q4noWoa+PrdqOd5tG/f0ZG+nHy4vfrikCQJWVYKLoVUSnCbbq7QMldWzpckoaByTV7V/gqBLMtgGNaP7LUB/gx6CARBgCJJLF+yAAceuDe+/351sYdkCV7UIgOBgGeoyNxCKdHNWRVSNF2Y9tjShCOgm1aLrVW3FPgC0oM4cNgBuO6K69Gz616O91Vo3cJM8O6iQxSV5s/trkuFbs7qvOjUaXtOrqcRNDY2Ihy2P2DJi5teN1Aab9AeBpZhce7J54JujGDF0iWOEpwXWrewlBAKBcHzfEFtFGOhsNpnLIrR67D6/BUzv8+LAsPJAsh7yhqRCt8H6WEwNI3nn30Ym7ZvwWGHTSo5mqiW6N8pxvVY7ZNlWaiqhiKVhnQcmqZZficKfTa9+FwriuxHrdoMX0B6HHdffw+iHAehoQ5MWauiFcK1AicWkUIXtlAoBJ7nC9I8rI7B7UVVD0wS0VJfc1W1rh0Xei+8tvmLRBpRVlZua5teu8ZiwDexehwsw6KqohJ169bhiMMHO05w7kXTUSLseGELpWArlUVDLxztnonVzWdH0zQwTHG0JbsEh13zxfM8QiHrkbw+ssMXkFbh8iLZurIKwwcMQ4fWbRztp1QW/0IQDIYK9kWWCtykGbPy7FgVEjzPFa1cnF3viB3tqKq+2SNJ+1/cPWEtyAdfQFpF04utqe5sm1mGxR3X3oG+HWqwq3YjVq5c5kq/dsFLmilBEEUh8i4EVudPlr0dpGN1ESZJqiD/Y0sBx0VtD1RqSfNTKHwBWSAIkkBcWrrRH4Dnn/oPzjhjIurqdrvWb6GIVRPxClg2aEspLDdhZf68rgVYfSYKSdcp5pzY+Q7wPG+739FHMlqm9951ELrkckkAXHTGRTjkgEPAOOxfsttJb/fCVFilCxKCUDpRf1Y3GG4FdbkZuCRJUkkFqyXCrndAkiTHmHK8vqlyE74GaRc0/T9umFxZhsXgfoMR5EX86+a/O0Zw7jWtLxWFvsgsy5YUR6uV65Vld67PzUVVD9CxxhRT7OfZjv5VVfWJyA3ADhIUX0DaCsLV4B1VUbB2zQ9Y+/N3jvXRkneTepWP0hGQVkCSpalp5UIh96xQvthCYcf7JEmSrWw5xd40OAU7SFB8E6vNcDOZP0ZwrgHg63ejURTRrl171/pvCaBpBoqilITJzooZ0y3Cajdz5opVANgLm0VRFEEQZMmRhriFmLC3a3p8DdJROL81I0kSFEli5SeLcMABPfDtt1873qcdsHPXWkhbDMNAFAX7BuMgrLz0iiLHUwGchFspHqIoFi29o9iQZf1esqy9ROQtSdbaTZ3pC0gHoalwzeS6/5D9cc1fZ6JXTQ/H+rBTqHkp+IeiaChKaaV9GAXLBopK0J4LVgW+FW3fo1NgCoqi2JrS0RLmxGn4AtJBECThWmQry7A4/9TzwUSi+HrZJ44QnHs9aMcqWJaFKFonDvDynBAEURKE5UZBkta0x1LXkgRBAEH4y7Xb2DNtFUWBBk2N5U06B4am8exTD+HP2g2OEJx7daEp1AdGkhRUVbXks/PqnAAxASkDcDbi0cr8mz1HVVWoqvPX4jVIkgSCIHzTahY46f/2BaRrIECQOvOO00LyruvvRiQaBV+/G2x5hecDUOx4wO1I+eA4HuGw+XJBXiZ1JgjClaAWN3IgJUlGKGR/rcNs8MJ91TQNqqoiEAgUdyAeROz+OHmPfJ3dZTgtHAHd3Nq6sgqRTRsxaeIwfPTRB473WQjsNN1abUcXJKQlf12xF9F88DrdnFFYNRVbfyasnWcneJ63NSjJy+4AM3Br8+ILyGLBhZtbUV6BIX0GorqyypH2vRi0U0g7DMNAELwd0epFujmvL7peEHRWoLPlULZagEp1LhLhpmbvC8hiwYVFhWVY3HndXdi3c3fs3roZq1Ytt7V9r75sVhfsmP/Rq1GfgLU597qJ3QhUVQXD7DkeIU3ToCgqAoE9y99qBG6uO76ALDqcX4wJAC8+/TBOPfVw7Nq10/H+io1CtchSIzHPB6fZgtxYsDjOWnkr62To1s6zCxwX9YVjAop1P/acLZln4c526PxTz8cB+x2IgIuVR0oRFEWVFD+rEbQEujmGYSxFZFsV3oVS0hVyviAIYNmALRHoXgg0sgPFugZfg/QInCY5ZxkW+w0YiiAv4s5/zcTChe/a2r4dxMCJbRUTNE23KC3SLbo5J1FKuZx2LOZ7KluQ11D6b04LQXN0q7PSQVNV/PzDavz8/Spb27Uz3LrYO16apl2hZ7MKsxsIWZY87VfNB0mSLFfvKDVEIo22pnQU+10qdfjbFM/B2SeaoqgkgvOIJKFt22pH+yxFUBTl6ZJCZkxnDKPTzXmF4NoKQcCekAfIcRyCQffyPL0Mr5iGfQ3Ss3Buxx8jOP/ms49wwAE98N//rrS9jxJWWADoPi+3tEizc2W+ooe36ObMjl9nAmrZ0DRNfy8pf0kGvCEcAV9AehgENM3ZAszDBg3D3y/6hyME53Y94HYI2kLSPmTZ+cXZaRYap6/D6c0QTbd882o0GtkjtORSgy8gPQyCIBxl3mEZFhedcRHYKIfVX32OJUved6wvq7BD0Fptg2VZS4LFa9qzzhLkXCSrk7t9QRBaRB5nLnBcFGVl5ba05bVnr9Th+yBLBhqc8k8yNI1nnnwA/1v3G8aMmdAioh5TUYhPw2xBZa+YhxIhywo86k7NCU3TXBGQxfJ5ybIMirJPQ/bis1fKaHkrYYsF4Wj8zh3/vBPP3vsMhIY6W31vXtnRWuV7DQaDlvIivXLdMXhh4Zw27RxMnXp8xt9GjuyOxx+/L+37+++/FYcfPiT+N8dFMXv2TIwa1RN77x3EwIHVOPHEQ/Hhh28XNLZizQ/P87ZX6fCRG6qqIhqNGDrW1yAtowgroBb7j/1vM8uwaFPJYsfmzTjh5HH4x9W34bDDJhXcbkwweWGBtjoGTdNMR4Fa6cvsPJk5vhTNlKqqpqWnXH31xfjmm+W45ZYHsM8+/bFr1w6sXPkFdu3aAcD9Z62Q/jguivJye0yrPoxBFEUoioxwuMzQ8SWtQX766ac45phj0LlzZxAEgbfeeivvOR9//DH2228/BAIB9OrVC08//bTF3gkURUg6rEm2KivHgN790bZVhW1t2rlgFaKZWT03FAp5ksTczLw6TTfnBGRZTst/XLhwHi6//FqMG3ckamq6Y9CgYZg69XJMmTIVgPsbMav96SlEflCOm4hGI6Bp2lTJtJIWkJFIBIMHD8ZDDz1k6Pjff/8dRx11FMaOHYvVq1dj2rRpOP/88/Hhhx9aHIE7yf1pcLA7lmFx13V3Y1BNT9RtrcXq1V8515nLKKSslpeJA4zAjZqQdiOTUK+u7oglS+ajsbEh7TevmbWzQVVVKIpcklp9ISjW/VEUBdFoBOFwmen4itJ7axIwadIkTJpk3Az4yCOPoEePHrjnnnsAAP369cPSpUtx7733YsKECQWMpDj2w1gKiBORrgSAl599BPc8eje+XP4H2rRpZ3sfVmBHYWUrZrFwOAye5xEMBg2fY7YfL5mji4F//etq3HnndfG/NU2DLEvo3bt//Ls773wMl112OgYMaIv+/QdjxIiDcPTRf8GIEaNLxrQqCELBhZ9L8Tkpxnh1rZE1bFJNRUkLSLNYtmwZxo8fn/TdhAkTMG3atKznCIKQZF6rr6/Peqymaq4URI4h3pdD1t5zT5mKYYOGI1hqb2IeWBVEmmZOi3Q6v9EMZFnyfJ7dxRf/AyeffA4APepW01Q899zD+PLLT+PHHHDAIVi27DesWvUlVq78AkuXLsbkyfdjxoybMH369a6NtRDTKsMUFk5cisLRfd+wBo6LWhaMMZS0idUsamtr0aFDh6TvOnTogPr6enAcl/Gc2bNno7KyMv6pqanJ2n6SwHITmi6c7SYVYBkWwwcNR5AXce9ds7Bo0Xu2tl9qCAa96Ys0ghjdnJfRpk079OjRCz169ELXrjXo3bsvqqrapB3HMAxGjjwYf/3r1XjppQX4+99vxv333+J5gnlJ0jlxabow06ovHHOD4zhIklSwcAT2MAFpBTNnzkRdXV38s379+vwnae4X3SVIAoRDd1NTVXy3+it8+82X9rZb4BQVcr417Y6AqnqHss0MCMJbdHP5QFG04ajhffbpD1mWIQi84fbd3ivoBZAVz2vxTsAt4ahpGqLRCBiGtY1DeY8ysXbs2BFbtmxJ+m7Lli2oqKhAKBTKeE4gELD0UDe/3M4l+Gfo1ZFWKYrC43c+ESc4j8oK2rRpW3C7dvgTC4GVnW0gEPQUibnRa6AoEqIoFr2MUn19Hb7/fnXSd61bpz9LsixlnOO//GUMjjvuVAwePBytW7fFL7/8iNtvvxajRo1FKxOR125rYV56ZpxGMUzAgiCAIAhbtMZE7FEC8sADD8T8+fOTvlu4cCEOPPBAB3uNOQiLYHe1sc9YxN3Xn3+KM/92Oua+shhDh+5vW/vFgJWXmCTJJvJsbyx2Rq+BJElPMCQtW/YxJkwYmvTdqaeel/S3JElg2czBUIceOgGvvvoMbr/9WvB8FB06dMb48Udj2rRZjo25UOimX6Lg+S8F32MxfI08z4GmGUdKohGa1x0TOdDY2Ii1a9cCAIYOHYp///vfGDt2LNq0aYNu3bph5syZ2LhxI5599lkAeprHgAED8Ne//hVTp07FkiVL8Le//Q3vvfee4SjW+vp6VFZW4udPfkGr8lYmR+yeoNRUTU+ZtPlpFSURT770BM48728ob+uNyNZCYOWFjvGzFlsbM4tolEM4nNlS4iWYjRb2MlRVhSR5P0DKDrgtHEVRhKpqCARY0+tcQ0M9+vatRF1dHSoqslseir+lLAArV67E0KFDMXSoviO98sorMXToUMyape8mN2/ejHXr1sWP79GjB9577z0sXLgQgwcPxj333IMnnniiwBQPM3A3wtWJ+n8sw+KSsy5FgOPx/arl+OijD2zvw01YyY2kadp0QIjZPoweb6Zdr2sfMZiNFvYy9hTTqpvCUdcaeWgaEAwGHK1zWtIaZDFQmAapw+10EE3TAM3+fMkZN1+JH39bg/fmf2WL+a7Ql8zNl1SSJFAUVXSzZeztNXLdxVyszdwbM+P0stkx5hezOudm7m2x4dZ9kCQJiqKAYZiCiBaMapClZSNqIXA6fzGtP8IZerrZM29HQ2MDhIY6BCuqPFOx3g0wDAOOi5pK+HZiETGjAWcLfHEDRq+b47gWIRxVVS1IOALevbZMcGOsoihC0zRXze8lbWItecTJx0sTLMOibeu24LdswbFHH4DFi+fnPykHih3VahYkSZuioHNqfMYDdYpHbWZUiJMk2SIo2PQqHS3ftOoGFEUBz/MgCNJ1X64vIIsO9/lc7baql4XC6L1XT1TZHGLtdQQCrGO5d5pmf66e3Rq+E/5PL2w4CoWuBbf8oBw3IIoiRFFEMBgEw7hv8PRNrJ6Be+kgdi+ULMPi37P+DQ1A/bYt+H3TegwePNzWPszCLfMbRelapBFfpFleVrthN92c3WPUhaOxRr1qXlVVFRRFWWbL8ep1uQ1N0yAIAiiKRihUPE3c1yA9Bbe1SXv7IQDMfe4x/OXEMdixY5utbbsFs1obwzAlQz9H0942+UmSjFDImH/JPI+uhQFZgCAUZlr1haOeRhWNRoumNSbC1yA9idJl3jn7pLMxqN8ghIvsR7K60Jg9jyD0BHCzBZXthhHNgyR1ujmv+vgkSUQg4IwQd6oQdSKi0UjBVTr2dHAcB5qmUVbmDXeNr0F6GE4QkDvdD8uwGDl0JAKcgAfuu6UkCc6taJE8X1wt0siCThBEnOTAiyi0yoVdsCIcFUUBTZtPWPehQ1VVRCKNCIVCjjDiWIUvID0MnYDcmRSNjP3YaXLVNHzz1RdY9dVSu5pz7VyzaxxJkk3pFt6OSKZp4wTgdsLItMiyDNLF3OBcsHIbddOqtYXd44+N4+B5HqIooqysvNhDSYNvYi0FxNNBnF5A7GufJEk8fucTUDUNQn0dOFVFVVVr29o3A6sywYypjWEYiKLoeUqxYlT0MDKHkiRlLRjgNsw+L5FIo+XFfU8PytG1xjLPbI5S4WuQJQM3A3js6YOiKDA0je++/AwjR3bH119bL5dlR+UOJ/ukKMrzGqTdsPNynfCLunE7RFEsyO+4pwpHURTB8zzKyso9KxwBX0Bahhu+wcxwg37HXrPuoH6DcPk5l2OfvXoW3JaXZZAVjla34dUAHVmWitq/ledKr/EoF51u0E648X41NjaCIMiSIKRvOXfWZdjuszPXe9P/HezfxqZZhsVl516GIC/gp/+uLArBeSFmVqOgaXPMOsUQ9nYKIiNzauQaJUlCMJjfvOqkL9la1Ko5qkGvw2lzryRJ4Dge5eXlRU/fMApfQBaEYgrJWP9uwJ5rZGgaTz1+P/5121WWfWFum6TM9kdRFCTJmBCy+1qMCBC36eaMXKMsS7YTLTgNQRAsC0evWkGcnF+Oi0LTNMN5rl5BaYhxT8Mbb62zFUII2/YCt159G+ob6yE21CFY2bpoUZVOdaunfPCGQtXtHoeRtuwyB9o5doKwd5/utCYkyzI0TbPkO/NaUI4bWqOiKAgEgiVpii69EXsdRXr4HU8HaYqkLdT3yjIs2rVuB3Hbdkw+fnTBBOde3I2TJGko37AYC6Uk2eMjtWvsuqDJvww5VffSyvMjioJl/5mXhCPg7HgEQYhX3yhF4Qj4AtJ+FHPBdrw6CAGCsueNCgWD6NGpGyqK4Ki3siiYWUhZljWckO+2gPdKMn4MPM8bChwyes/MkrybfRZ43rpp1Utw8rmTZRk8z4MkyZKvaOKbWB2FO+TjyUgM4HGgb80ecy7LsLj3xvugAWjYvhV/bN6AgQP3M92OWztyK9yfRmjdnPBD5mvTKLm6G6AoypCANGoKdPJ5EEURBEGUNFtObB6duoRi1Gx0Et54S1osivkiORdARJBEk6m18PYJAK+9+CSOP/4gbNu2xXI7VnfETu2kQ6Gg4WAdO5Fv4SMIwhayALvmTVGMadpmNEgnoKpqky/NvEbkJTeAU4JRVVXwvABNQ1HIMpyaY1+DdBVua5TOaZNxDdIGOXz65NPRp2cflBeBg9FJZUDTNFtJzO0IqKBp2hY+VqMpHrmO00tD5V+CjF63kwEneipKy/A72g1JkuKVWNzUrhPvt1Pd+hqkq3CeVzVrv06hSTgWErzDMixGDRuFACfg0YfusERw7sVFKBQKea4UFkEQkCR3CMvz3RNJkgz5qIzeW6e0TEEofdOqU4gF4oTDIdfnx43ufAHpNrS0f7jbvUMMQLZE6msaln/xMb78YokNjZnq1rHjVdV97tN8sGNhscOkZdS8ajfMXL+ubWslHWzihPlRURREoxGwLOv63LhpsvZNrEWD7scjKMJVWRlPB7G9z8JXXZIk8dgdj8cJznlNQ2Vllel2zJrazNeANH5sOFwGnufzmueMjNmuHbMddHN2jIWm3Tepm302zBRxTuwD8I5Vw+5xNGuNxanZ6Oa8+hpkEUGQRHE0SofTQQrRUmmaBssw+HHFFxg5ci989dUXptvwysIUg5GgGDvNg/mOKUbwUKYx5DPJOaEpmHk2BEGwtJlwMkrUCJzSsDRNi2uNLSVKNR98AekZuE1b5zCfa4ELxL599sXFZ1yCPt0LJzg3AycWl3A4bJsv0o5UB5p23nCUbx4VRcnLNlRMIRMT4FZrPBYTTsybzqMaRThctkf5Yn0B6SkQRagSYr9gTtaMrYFlWEw7fxrCoow133+Djz/+0J7BFQF6akV+f5tdwtlpH02+9r2U1mAViqKY8q21hGvOhsbGRpAkVTSTajHh+yA9hqQEfNeUSr1PZ/hcC0sxoSkKTz12H1Z8txIHH/ytJZOXGb+TU5vjYDAEUZRyaiT2cZvm/l2WpYJy1ezQYjUtd9WTYnKWRqNR0ybElqhUKYoCQdCrb+yp8AWklxFnrQHcyA9xhuy88DZv/sct2F1fV1SC80Kh87NyeU12bggGmnY26tBIekcgkFsAFesWS5IEiqI9wzRULESjETAMu0dqjYnYs5+CEoAutHRV0k3za/EKQqeDZVi0b1sNZecunHTioaYJzt2oBWkEDBOALOcO2HFHMOgEBsWCJIl5BZAdwUhmjwNgmS2npUBVVXCcXufSSEWaQhC7L142T/sCsmRAOFjOKkNvjlUH0d8GWZbx/BvP4fk3njPM7MIyDLpWd0LIhSATwH5hxTA0RJHPe5zTC4ZddHPZkG/8Rthz8pto7WfXiUQaTZtWvby4mwXP85BlGaFQ2BUrjdMsOHbAN7GWIFzLn4yng9j5BBOWtReWYXHfTfdDA9C4Yxv+rN2EffcdbOPYnAdNs3nJwu1K5M/WDk3TUNXcPsBCkGv8Ru69nTmhRo/jeQHBYMjYwU0olp/U7jxLVVUhCDwYhnUlwrmU4GuQFvHjLz8Wre9YlKg7ZjL700EIgoBmcIHOpGkSAN54aQ6OOeYAbNmy2bZxZYLZ8kn5wLIMOI4z1G8hyLV46nRzxcmFFASh4PQOo/fE3BxqpgPAiqX52JlnKYpiXGv0QvqPWzA6Dn+7YBEUzUNRJGzfuRNtW7ctys6r2QziBgl6zA9qTzAPUWAQxJTjTkX3mh6ocLhygBOLIMMwrmiR2dsurPFCNCeSJHNedzG0x0ikEWVle1akpq416r5gN32uXjCnmnl+fQ3SIsYcOASdOxK4ZOb5+Os/LynyaNx66oiEUlfFBcuwOGTkIQhwAuY8fq8lgvNigWVZ8HxuLdLpnXYhdHOFLHKynFtzNepXtOMYAOA4DqHQnhWpKYpiUyQxu0cGJJl5fn0NsgBQFIn/zL4VoiiCoRvw7U9/YMEni3HhGRchZNKfYS+c1SidCBbSVNWSVkkA+OyjDxFd8A5qazdiypSpjmnzdvqcaJrJWQrLaT+k0UoadkJVVbBsdo3f7aLIMS2edDH4zSzs9DdqmhYv+lyMmo2lCF+DLBD7DRyIA4YNQ3W7Mmyo/RGvz38FNK1CVVVEuWiRRuVeWS27tEmCJC35VAmCwH/+9TAmHXwEZD6KhoZ6W8aTuS/72mIYJq8WWShyjbcYLgGeF3L2a9f8GhW0HBf1vKCwy98oSRJ4nte5jku4MonbKHkB+dBDD6F79+4IBoMYOXIkVqxYkfXYp59+Ol7XLfaxk3T37JNOwk+ffIRuXYLghQ0YPmko3l9iLmfPNrhEgk6Q1qNSY4gF4rzw5vN5TXCZwNAMaJpC7R+/Y/Sonvjqq88LGo8bIAgCJEnlnDuvBDQkojCaucIuyKhp1YhAiUY5w35HL94HMxBFEaqqIhQK2VLJJRuKPU9O9F/SAnLu3Lm48sorccMNN2DVqlUYPHgwJkyYgK1bt2Y9p6KiAps3b45//vzzT1vHxDAMCIJAx/at8c8r/obxBw8GTQl4f8l8rPpula19GUOTz5BwsBYkYScnnnXtt2OHjph6ylT07ra3qfOK9WLTNJ2TxLxQzSHXdVnZiACFBdDkyn80cg/syo2UJMmUBu2FwBIr0JP+OVAU5aim7JXyXk70X9IC8t///jcuuOACnHvuuejfvz8eeeQRhMNhzJkzJ+s5BEGgY8eO8U+HDh0cGVt5WRn+cckl2KumE9pXM3jujSfw/BtzIMkiNM1dJpNYWojuO3SqXxvTQWIMGyYFOk3RmHb+dJTLKn7+bhVmzZqG559/LC8RQezFMnNL7GBxoSjK0YTs3CZWd81sgiDk9PXZMQ3GAnw0SJJYklU6zECSJAgC77jWCBRfMDqJkhWQoiji66+/xvjx4+PfkSSJ8ePHY9myZVnPa2xsxF577YWamhocd9xx+OGHH3L2IwgC6uvrkz5WsHjuXDx6x63o0E7F4qXzcPip41DvoL8sOwo3ieZr3y5aPKsCnaYoPP34/Zj39sumGGMIwrjgsyvVgKIo20phmUE+snC7QRCEa9RluSAIQovnF+W4KAiCRCgULvZQHIHducm5ULICcvv27VAUJU0D7NChA2prazOe06dPH8yZMwdvv/02nn/+eaiqilGjRmHDhg1Z+5k9ezYqKyvjn5qaGkvjpSgKlRUVCAZZ9OtdgyMPOwTt27GQZB4ffPQ+OBcDevREfSe5Xe1LB1EUFWv/+BWrf/gGy75eZljgzZp+Ay447QIoAm9qQ+D2blhntck9vlzDL2ShcJJuzu2+jJhXBUFs0UwxiqIgEmlsSvq3X2ssto8xBjcLUpesgLSCAw88EGeddRaGDBmCQw89FG+88Qaqq6vx6KOPZj1n5syZqKuri3/Wr19f8DhGDBmCu2fNQpvWLGR5Ey68+gLM/+idgts1A4JM4HZ16GErNB1k/pL3MPr4A/H4C4/ipbdewpRLT8bIo0dg/pL8OY8sw6KyVQW0SBSnn3qEaYJzI7BrJ0vTFARBzPp7blYca33qZAX2rnjZ5kJ3KdjaVRryl/iSoWmqIQHptiCwoz+Oi0JVVccID4pNq1e0OIHidFs42rVrB4qisGXLlqTvt2zZgo4dOxpqg2EYDB06FGvXrs16TCAQcNTB3bN7d/zy2Wfo2qkTBIHH32+5DVWVbXHFedMc6zMNCT4/pwjRU9tWFAW//vkrGhrr0bVjTRqzzPwl7+HCf1wALcXEWru1Fhf+4wI8dtfjOPKwo/L2S9EkOlS1hRMeNzMLRq4FhmGYvGZWqwtUtvNIkoQkCWAYe5aA3AFBMoJBZ4NEjAhIOyPW7UQhgkfTNEQiEcdqNsbmtth+xmL1X7ICkmVZDBs2DIsXL8bxxx8PQI/aWrx4MS677DJDbSiKgu+++w5HHnmkgyPNj7332gsAwLJAl05VCAWCkJVGcJyG2m2b0bvHPq6MQzeLJifsG620YQSaoifGv//R+7jxnlmo3aabwl966yVUtqrE0eOPwV+OPAmKomDWXdenCUcA0KCBAIFZd8/CuNHjQVEUZFmGqqhJ4419R4LEXdfdDYqmUbe1Fuu3bkbfvgPzjzUP2bdZ5I/+JCEIYlZmE6sLRLbzCMKaLzrXvGT7XhSFrJpNPuFmB/WcIIiGKogYba9Q2KWNcRwHkiRtF46JUaluC6bUiNhiC+aSFZAAcOWVV+Lss8/G8OHDsf/+++O+++5DJBLBueeeCwA466yz0KVLF8yePRsAcPPNN+OAAw5Ar169sHv3btx11134888/cf755xfzMpIwa/r0+L/vfOgRzLrnTqz64BtUVbR2pf+YcIyxvLw87yVb2//+5+/w3OvPpX1f11CHF958HhqhoTxcjs1bs5OQa9CwecsmnD3tTFS3rcbgAUOw6JOF4AUev677FT336gkNGlb+9yv9eEIDRVJY/s1yzPvwbVx19a2orLQ+n2eccaHlc7OBZXNrkbkWVasLrpXoRrPCEQAYJrv+bhfvajbozDGwTVO2A3Ys+jFfoxOFnYsplIotEFPhnafGAk455RRs27YNs2bNQm1tLYYMGYIPPvggHrizbt26pAdo165duOCCC1BbW4vWrVtj2LBh+OKLL9C/f/9iXUJOXHH+uRg1Yj/s3S2MbTvqcMWsmbjg9AsxuP8QW/vJpSWqigK7nJSqqmLegnk5j3lv4buYcOhEQ+1xPIcNmzdg0WeLUN+oRwR/9d+vUNmqEkeOOyquIamKCkIjMHTfoagob4UgRUFVFZCks+HvqTCiLcmynFFDdcIP6QbdnKqqWUtrOe3XiqVTeZ0txwz0pH/NEV9jsfyMXgahFbO0eAmivr4elZWVqPv5Z1S0auVav5tqazH5vPNx04zrsG+fEbZWEXn+jXSNLgZF1aMP9SoehfXz25+/4YkXH8973KSxR+L9j/IH1fTt2Rc///pz1t/3H7I/OnfsgmGDh4FKEIaqquGrH1fjuMmnY9y4/Ob1VLOPk5GQgiC4tqC70RfP8wgEAqbzPe1IPuc4HizLOJ4H6AY0TQPHRUHTrK05nDGhuKcJx4aGevTtW4m6ujpUVFRkPa6kNcg9CZ07dsTy994FoKc+nPrXi9GqrBJP3vO0o/3GBQupC0kgt6CM+QIzoaGxwVCfiz5bCJZhIUrZIzsrWlXi9/W/52znu5+/Q+cOnUFoBAit+e0nAfxvzQ/4ZMl8QwIydeHIpHGbEZq5zaUaFEXJuKjbvYhZEVpm+49ROpqFHaZViiI9IxwLuXeSJDVRxYVtJZZIHNOeJBzNwBeQJQiKIvHgrTeB43kwdAN+WrsB7yx8HxedcTHCFpKDpxx7qrkTcuTvv/DW81lPa1VuTOOWDNCgDR88DEuWLsl5DMdz+PF/P6JNmzbYu1vPZnM7AZx6/KkgCQrPP/0gFIJEIFBYhGOiXzLfYpjrt2AwCJ4XMi7sdi9iOqOMcROrFR+oosgAzGuphQiUmFHMC6TchUSBaprWxEBE2qrpux2ZWspa6h6VB9mSMGTAABw4fLheRWTzj3j9vbmgadlSFRGaps2ZDS0SoXev6Y6KVpWGj2cZNq1sWGWrSpx2wulo27qtoTZ++e0XzHlpDu78z534fs338e8pigJBApv/+B23334t1q5dk7ctRVGwfPmnWL7805yJ74VzqCqWI0zNIFfwjBlkF465y1tZaRPIf508z+Vl7XHLsVSI1igIIhiGsV3QuykYi9GvnfA1yBaA0yZPxklHHw2GYfD7H5sw4sjxmD3zThx7xLGm2rEjYjXRlJkKiqBwzPhj8MKb2bXMRIiSiFGDRmHLji2QZRn77N0Hg/oORJvWbfHrn7+aGld9Qx1efOMFnD75DAzoMyD+fYd27XHA0JHo0KYtpkyZmrMNWZbjO+FTTjnXMV9kKBR2xT+YLXgmG8xqAKLIO0J3lmsMekktxlGOWyMoRFvSo5kJR3NH3UBLMN/6GmQLQWzH3L59Fa6fdgUmHDoENCVgwScfYuW3K10ZQy7/YwwD+gzA6ZPPMFxQuqqyCu3btkfrytYIB0P4bd1vWP39N6BICkELZtF3F72TJBhoisbhBx+BIIDff/kBn322KG8bmV54WZaTPpKkf1K/j33yQTdN2odMGpNZ0nzz/kfzy0sh5bT01CQY4nx1etG20r4sywkm1eKbh1sarLDy+BqknfCAkb0sHMaVF10U//vFt55CRXkVBvcfBJrSF45su2vTvsgUxPyP+SJe9+27LxiWwdNzn8rbpqwoqG7bHoqqoGPHTti5ayckScKWHVvQsX1H/LH+D1NjrGuow+8bfsfeeyWXxCIJEjNnXopffv8fZsy4KaMPUFEUrFyp15rUNGt5hDHky6UMh8tMa5Fm/Z463ZzqWCCLE1pcriY5LpqXiNwDr2hGiKIIRVERCtnD9uPV6ywGUn2uZubFF5B2IrFukkeezg9eeB4NjY0IsCrefP993HzfXXjtsTfQOkOifKEmw8SI13zo1b0XQsEQOJ7LekwoGEIoGMK6DX+iS6eu2KvLXujetTt21+3Glm21aF3ZGgQIbN66GbzAGx5nQ6QhKe0jhqPHH42GSCMUgQMZKiu6mc5KgIuZR48gCMiy7IiAzBZolH9Mmb/Pd13RaBSBgDGrhJegaVoTmQFpi3D0CjWcl1DIXPgC0gl46OkkSRKVTXk++/TsjIljDkan9iE0NHJY8vknOGTkIbb5idI1UA3ZSAZkWcZPv/yEF958HgSIJFq52N8nTDoR/Xr3A9k0nwcPPwTdunYDoPtpbnvgVmzesglHHDIB36/5Dtt3bsea3/IH23Ru3xnjRo9HddvqjL9zPIeLrrsUZ597eVIaSMwHCQAnn6z7IJ3cC+m+yOz0c5lgRsBQFAVJMl442cy1kiRhK3tNrn5VVSchp6j8OzMPvZqQJAmSJNqavuHG9Xlo/58Rdo7PF5BuoshP1rBBgzBs0CAAQENkAy68+gLc+c/bccqxp9vSfiYNNEZSnokIfVD/QSDJM7Hw04VxXlYA6NShE276+804bPQ4LPpsYXzxWPrVZ+hfvy+2bt+CWXddn0RH16q8FYYPHoHabbWoa6jLOsaqiiq0b9ceiz9fhJ579cSQfYem+UMDgQDalFeAhZZ2TTH2ncTIX6duK0EQUBQJMEm1nmk82cZnhqosUxvZrl2WnWfpiYHnuZKr8cjzPEiStG3czrMSeTtVw6mcTl9AuonEO1fkJ22vrl3xv6VL0al9e4gij2v+dTtCoVa48sIZtvYTE4oESWTMnxzQdyCuv+IG3P3YXWhorMdxR0zGqOGj4ua5iWMmYc2va/BHEynAa+++kpHLtaGxAR99vgTnTTkPT778ZNbx3PKPW9G5Y2es/WMtfv3zV6zbuB5DBwxB7x77xAUxy7B48NaHoAGI7NyODdu2oE+ffbNfo4O3MRAIQpIkU8WGzYynULq5zEJTy0gObndFEgCIRiM5hYzXFnRVVRGNRm0hGHcj0T91/rwyl26Ny49iLRYS/ZVFQveaGgQCAbRqxaJr59aobhOELDcgEo1gza/5TZVAevRmzk9KVKeqqFAVFZqmoUfXHhjUdzBGDB4BTdOSjqtuU42BfQdBkqW8XK7zl8zHf/71CDpWJ5c8q2xVidMnnwGO56AoCobuOxSVraogCDy+/PpLvLvoXdRurU3qV5FlvP3Ks5g4cRjWrftdH7OqQFUVW6uc5IJuBs3MKGRPLUpje2QzfWUT6LnMv7mQ7TxZli3nWRYCq/PO8zwEQbSt+oYbwsprqRp2UBCagc/FahKOcbF6aKt73+NP4urbbsHX769Cm9btch6bi8c1FxRVwcrVerWNoYP2wzffrgIADB8yIimAJvG4qqrWmPNSdu0whgvPuAjdunTDhx99AF7gsW/fAagoq8D2XdvA83owjwYgFAgDhAY+IVCoul171HSuAUPrC7ysyPjlt/+hd/+BINlgPIp1+PDROPvsSyxdu1lIkgyCINKqxNvxyBiNlM3WV6bvOS6a0a9t9yNeStpjJNKIcLiwwC83rsdtAWQUdl+7z8VaakiNgC3i233p2Wdi2KAB6NW9HNt31WParGtx7pTzMHTAUNfHQpEURu53AABg9Q/fGDqnobEeJEnGg3D22XsfUCSFLp26oL6hHtt2bMWO3TvBC+mMQ9u2b8Wu3TvRtXMN2rdtD5qi0b93P6iChBWrlmPN2p9RVlaONm2qM3KmFnrbMp3PMDSi0QhoOlkY5GObSf0903eyLBkSkNmEYyZkq724JwpHPRBHsqX6hpsaoxfgBa5YX0B6DZmeCJffdpZlcfDIkQAAprEOG7f8Dk1rhCKL2L5rF9pUtYmb0KzmTsqyHGfdOWHSiaAJCgCBk48+JavZb68u3fHSW/nZfo47YjJGDB4Rbz9Tm4Io4I/1v2PtH7+irn4XMkXbtq5sjRGD90fb1m3x/pL5mP/BWxBEvWbjV199jvfeew0333w/jjzyhPg5he5tsp3HMCxUVTUcVJOpncy5kIUF0qS2qShKRoYeMxpovt8EQUTQINFEMRGJNCIQCCEctp9NaE+AF4S1LyBLAUV8UjpUV2PZO+8A0Lk1z55+OUiSwbP3vwCgsNxJsiksn6ZpkFR6dGgqRg0fhU7tO6F2a21SWkgiOnXojFHDR0HTtKT2U9ukaRr79hmAffsMwPad2/G/P37Bn+v/hJzAYLO7fjcWfrYAO3buwF0P35nWZ23tRlx44V/w2GOvpQnJXMhlxsomFBiGyas15UOmts3SzSUiG6NQJo0025yYJTfQ60vKIMncgr2Yi6uiKBBFsSCt0S1zqheEkFfGkQl+kE4pokhuY4oicf/NN+DGGZeDoRvw+/r/4e5H7kIkGrG5Jw2amn6NmqbhhitvAqDnSmbC9X+7Ph7kEwsCyhc8VFVRhRGD9sexRxyL/QYMQ2WrquZzJRmPPv9IRoEcc9/PmnUFBEEwHKykKPon22/Z6ekISJJkmK4uFZkFsmqJGD0bdLo351Y7nucc4Xe1CxwXbSpNVZiG62RUqtN9GB2DV/2difA1yFJEEf2VA/v1i//7oy9+wOvzX8Fl514IVVXBC7ylclvpIHSqupS0kBiZ+hknnoG3F8xDfUK+Y2VFJY49/Fg0RBvw8ryX9OCe/+rBPRqhZWTOyQVO4LB1+1b8+L8fc+ZVapqGzZs34Pbbr0XPnn1M9WHltomiEI/czEdXZwQ0zdoq1DTNukaaDzppQnbBU0xNJKY1BgJBU7mlbqOYwqgQyrdiwReQpYwi+ytPPvZYTJ40CQzDYN3GrRh59GG4acYtOOHIE+3pQIsRDQCJPsIBfQeiT6++8SjVwfsOQc+9etq6MJWFy9CjWw/sqttp6PiGLEI01+0wYopNT/inbBVoBBFLlyg8qV9VVdtKaKVCZ/zRcrLl2DElVl4fnuehU8V53y9aTJSCQEyFLyBbGlx+CmPBOu3atMKs6dMw4dD9QJM8PvjkM1SUV2D/oSMznkfTNM444cz434n/TkQz+46WFBAkyzIoQtcKTz4mPQgnMQhID9LRg4CMImbi3atLd8ydNzfv8Ucd9RccfPB4w+1bhaqqEAT7ykhRFGXIXJsqODIJEjsS4DNH32qQZclzplVFUSBJEiiKMkXk4DS87NMrNfgC0octCIdCuOL88+N/z533DCgqgKEDhsTNeIVpeEQ67VuOIJzsv2fnh82EUSNyBwYRINC+XXsMH7ifY/UhM8EqwXg6Awlh6L4Yoa6j6cKFRKZ2JUlCwEJpM7MwI1hEUYSqaggGnR+XGRRLOHogO80ReNdY7qOk8c4zT+PZ++9Gh3Yqvvx6EQ47eQy279xuXweEXlbLyomamjkIKBMoksJNM25pOjP5zSdAAARw69W3gY5Ecc6ZR2HRovesDMoUKIpqKqprHtkEUKHIVFsyW+yPmZggUdRZhDIJcbtj1Yws7LoGr8+9Fwsauy2cUgNtWpJwBHwBuefC4UhYkiRRVVmJYCiAnt07YNJhh6CmczlkhceCTz4sPPJVQ86akzET7hknnJmm2REkkUacngtHjT8Kj931ODq2T6av69ShEx6783EcedhRoEgSYSYATcwuuDTNnmmnKCqjD9Jo26nH2aH56pyuyRqk2bzHVOgpHWpW/6hdi7HReRNFEaIogmEY14jY86FYPGilEIGaCk3TIEkSolEuiT0rF3yqOZNIoppL9beU0tMSg8s2kY2bN2PvA0fhlqtuwhknnGO5HVmW41GtU46dAoqkTQk9KxAEAbf/Z3ZGUvUYNABRlsamHdvQu3e/zA3ZAD3VQ7FFizFbmDkTRFFMExqFPlqCIIBlWUfTRowipsl6QTC2NDOmk5BlOe4nliQJoVAIJEn6VHOuoCU8pS5fQ5dOnfDL0s/Qvm1byDKP6+68BwRB46pLry6gVXMaoVVQFIWee/UEABw47MCMfkACwPw3XsI/bv07li79BV277uXIWGiahqIoad9bWTyN0s3lgiSlC8hCHi29iDDhiHA0M0f6Auut9I2WsOw4BUVRoCgKZFkCRdEgyeboYiubG19AOgV/m5cVe3XtGv93185VEEUZitIIQSTw54Z16Feo5pWSP2n3eZqKnHE+x004Dq3KW6FdRWXudrLwpQLGHh2SJNM0NyPnpfZbaGqGpmlpbRTy+McEvxPamtlAHEVRPRc96zRKbeniOA4kScZ94MFg0LZnxxeQTsEIU3SpwMGx/+OSS5q60PDQnGcw/aYb8NX8lWjfroP1Rq06DbTYf3JfK0EiIUcz/ViWYTFxzETIDRG8Nv8NVLXrgPHjj0pvxyBfajYwDAOeNx+sUyjdXOrjEDOF5urDzCMkSZJj0aHGNhAaOC6KYDAEljWvNZbaq54agerlset+RL3snKapoCgagUDAMe3eGzaDPQFefuryIfb2OOiuJggCF511Opa8+gr69a6Cqtbjiusvx1dNbDjWYXbMzXmXeY8kiZw0bRRJ4sP33sD7775qcgzGp5okiYKjUM2y32TKU0xcoDKN3ejjz3F81mogbkCSJHBcFOFwmeVFt9BqLm5HhXg9AlWWFUSjEYiiCJ7XtcVgMIhQKAyWZR01ffsapA9jcOHtYRgmXkUkEKjH5q1/QlUboMgiduzejarKKrCmzYFWx03EU0Fy+TcJgsiqSRIEgYf+9R+oqgahvg4qwxg21xmtcMGyrOWUjxgoiimInSfVF1uIaZWiSDBMcZalaDSCYDAEhjFHCG+nxuhVIeUmYn5ERZFBECQoikog6Xc3SMoXkD48ieq2bbH07bcA6FVEzvvHNAiigpce0lltUpl4jMM4UYDRwJ9cx8UE+s/frcaUS0/Bfx5+GaNGjUkekYkFNttxsiwXlK4hy7IlNhhZlvOaaI1enyCICIfdp2tTVRU8z5mqlOKFWoUtCbqrQN+kNZO9Fz9i2BeQPjwPiiJx743XY+fu3WCZBqz9Ywtefvt1XHLWpWhV3spka4T1IB4DyKaJ7d2tB04++mT06tYjfUQFMpAEAgEIgmBZQNI0ZdhMmzpOVVXz+guNXFc0GilKMEw0GgHDsKbLiHldKHrdDypJElRVgySJYBgWLMt4Jko4Ed4bkY/8iDkqvJrC6sC49u3TBwePHIl2bcuwacvPeH3+K6BpXXuJclGT40v7h23IZqZkGRbXXn4t2pIM1v+6Bp99tjjlvML6VVU1Y9qHEZAkadi8mnqYopgvu5UKXXt1N99R07S4UDajORf6aLv1ynpNOKqqGvcjRqMcCIJAIMCivLwcgYCzfsRC4M1R+ciNWKhZYtkrLyGV1dpmnHDkkfht2Rfo2b0SBLEdBxyzP14xQCiejiY/oyOLSebrpkgSTz56L/4+Y2rBvsNEhEKhvKTjibci9bZYDfQhctEZGYQkSRmFlFOPNcfxTebcMtNCudAAHK8JLqcQK//F8zw4joOiKPGgmnA45CpvcSHwBWRLgIm37pxp03D81Klp33/8xRcgunTB7ro6AMDjL7yAwePHo7x3b1T164ehRxyB2Q88ED8+ynGYOXs2eo4aheDee6N64EAceuKJePvDD3OPzaZVL7agtm1djhtnTMfEMfuBoQV89PlifLlqmeF2CJKwqFHmOzb7Pbn28mvx2qOvQYk2mugvfepS/9ZD37OPK5mkPPk3KwuWoigFL3SRSGNamSinaMxiWiPLMkXhUW3pwlEURXBcNImST482DYFhGE8wIplFaYhxH65izssvY9oNN+D/brkFhx5wAARRxLc//YTvf/45fszFV1+N5d98gwduuQX999kHO3btwhcrV2LHrl25G7f5JQkGg7js3HPjf7/23vMQRAXDBw8DRTImq4jEnJOZx5gpMEhTVRA52s8U4coyLGo61UBojOD8GedhymkXZMyTTBsdkfvvUCgMnheSFv9ErcVuDUYQeNO+u+TzhTS/o1NaliiK0DStoPEahVPX4DUNVJKkeCkyiqI9xVFrF3wBuScjyxs3b8ECnHzMMTjv1Ob6i/v26ZN8zMKFuP+mm3DkuHEAgO41NRg2aJBtY7CKN558AnX19QgFVXzw8ceYcfP1ePWR19Gh2ijxQPa0jYxHk2TOdJDEepapgpcAwIKAZFCTzKRZpQfNyAAya0e5ptkK3Vwh5a00TYOqqmmbF7OPQj5tU9M08DwPmqYdXbydLPfklQT+WC3SmFmdoiiwLNvihGIifBOrjzR0rK7Gl6tW4c8NG3IeM3/JEjQ0mjMTpsFmfyVBEKiqrEQgwGLvbu0xaewh6F5TqVcR+XQBGiP5x5sk6AwsSsaqg2Rm3PnPvx7GxP0PRXTXDvz66y9pxyROSaZFMrYoxxAOlyX5No1auI3QzSX7MDXDQUGZ+tQDZApP6cglOGKmvkAg4HhBYztTPmLzVeyKGbHSXoIgIBqNQFEUBIMhBINBBINBTxWJdgolLyAfeughdO/eHcFgECNHjsSKFStyHv/qq6+ib9++CAaDGDhwIObPn+/SSL2DdxctQnnv3ijfZx/9/717Y9KZzabDG668ElUVFeg+ciT6HHwwzpk2Da/Mm5eU7/bYnXfii5Ur0XbAAIw48khMv+EGfP5Vgaw3NvsrB/brhwduvRWtq1gE2DpcfPUFeO29l8010kQpZ8Y/mbvWZKaiy8CHb7+CceMG4s8/f0v+LcPimDot+SJLjdRlzJbLmCqgY9CLGGfWOPONj+N4hMMplXBsRmyT4CQNmVMoZn6lLMvxaNMYz28gEEA4XFayfsRCUFpPTgrmzp2LK6+8EjfccANWrVqFwYMHY8KECdi6dWvG47/44guceuqpOO+88/DNN9/g+OOPx/HHH4/vv//e5ZEXF2NHjcLqBQuSPk/cdVf8904dOmDZO+/gu8WLccV550FWFJw9bRomnn56fCE95IAD8NuyZVg8dy7+ctRR+OGXX3Dw5Mm45d577RuojS9jh+pq/G/pUlxx3iloFeZw9yOz8a//u83YMEgCMf+kkULLubVJIqNWetS4o/DgrQ+hQ+s2+dvPMy2hUDhenin1+Gz/zkY3l03BT/TtmtnHKIoCkiScit2CJEmGTKqpWpoZeC1ovBBIkgRBEBGNRhGN6jRu4XAZWJZFMBjc4wRiKkq6HuTIkSMxYsQIPPjggwD0XXBNTQ0uv/xyXHPNNWnHn3LKKYhEInj33Xfj3x1wwAEYMmQIHnnkkYx9xEwMMdTX16OmpkavB9nKbJJ68XHOtGnYXV+Pt+bMSfr+4y++wNiTTsKuH39EVWV6FYqlK1bg4MmTsWTuXIwdPTrjKn3rfffh5vvuQ+Mvvzjjl7DRwXPv44+jvj6CqVMuhChR+G3db9h3n31taTsOC4QEsqLgvWVLUFbVxlDgTjZEoxFTASmCICIQMH7PzLYfQ2NjI8pT66iaQK5HQBBEAFrBpbus9l+MdsxCZw0SQBC6D1HTnJ0vLyFxzo3WgyxZDVIURXz99dcYP358/DuSJDF+/HgsW5Y5zH/ZsmVJxwPAhAkTsh4PALNnz0ZlZWX8U1NTY88FlBj69+4NAIhwXNb8y/777ANZlsHbmN+XBBtXlOkXXIAbZkxDTZcwlnz+BiaefgQ2bdlo+HxD+ZPx6iB5D4qDpii8N+8VzHvzBcNjibeU0FQwmD8vMhEEARM+Rc1QgE7q1pvn+YKEI5D5EdAXfR4URTq+2Ft9BIvlV4wFKYmiiEiksSkfUU+9iJlPWyIKIcxPRMlGsW7fvh2KoqBDh+ToxA4dOuDnhHSERNTW1mY8vra2Nms/M2fOxJVXXhn/O6ZBmoLX4rPz4JJrrkHnDh1w2EEHoWunTti8ZQtuvf9+VLdtiwOHDQMAjPnLX3Dqccdh+ODBaNu6NX785Rdce/vtGDtqVMlp1ueechL69OyBgX3bYceuBlx54/WYctyp2H/oyKznxPIn85N8679lTwdJp7578LaHoChqE8E5mxTMkvooZXu0SJIEz3OG8xQpimoiC08vAp0KnucNLaypPsvEts0Iilyvj16zUTZEU1fM19BNv6IsyxBFARRFQ9O0eMWLlhxtGoPdEb8lKyDdQiAQKHyXlS3Swqm48AIx/uCDMefll/Hwc89hx65daNemDQ7cbz8snjsXbdvoPrIJhx6KZ159FdfefjuiPI/OHTrg6PHjMWvatOIO3sJ80jSNQw44AAAQDDRi87Y/Icl1UFUJO3btRkWrCgTYbKkT2dM4ko4j9SKSmprBR9mkacZ+YxkWYID//fAtTrn0FDzw4AsYPXpslv4z/xsAWDZgWOjFBKQRkCRpKvBFVVXIspQkxIzeomy3U9O0OP8syxZWISWxL7Pj8wKa6yNq0DQVDBNwJd/TTRh9re2+byUrINu1aweKorBly5ak77ds2YKOHTtmPKdjx46mjncUubaUDgrNp++7L+P3Y0aNgrZRNzGeeNRROPGo3P6vmZdfjpmXX2738ApHpugPE3PZpnVrfPL66wD0KiIXX/N37Nxdj9ceezNfx0YGh+zMbAQICkma5F5d98IJEyejZ0335qOy5vtlZscx4yuUZSmrlpFMOJDfsZp4vCRJlojIs906WZYhCDzKyuyNhC0VoaiqKiRJgqLIoGkGqqoVhRnITRTr3ljyQXIch6VLl+LHH39M+43neTz77LMFDywfWJbFsGHDsHhxM+mzqqpYvHgxDjzwwIznHHjggUnHA8DChQuzHl80GInt92EMBeRZUhSJu2f9E7df+w+wTAM2bf0Ttz84G/UN9QbONiBEUiNiteTvWIbFdVdcj2o6gI2//w9Lly7J2la2qFCaZnIKtMSfchUqjrWv+zXzr1ax40VRNJ1mEePhz/QacBwHVVVtF45W4NYrmehHjEYjkGW5idM0Fm3aMoSjF5c40wLyl19+Qb9+/XDIIYdg4MCBOPTQQ7F58+b473V1dTg3gfrLSVx55ZV4/PHH8cwzz+Cnn37CJZdcgkgkEu//rLPOwsyZM+PHX3HFFfjggw9wzz334Oeff8aNN96IlStX4rLLLnNlvAUh1xbKi0+WF2FhG9q3Vy8ccsABehWR2p/w+vuvgCRFqKqKSDSSq7O8mlY25p3UvEuKJDHn0Xsx7YqzwPN8xray5R6yLAsuodpJvhzFfO3q5a2yL8iJx+umPzWeUG70Mc3kQ9I0Lc7bmkvLdQNuBNrIsgyOi8YFY4zGLSYUSzX9Itc98uIlmRaQV199NQYMGICtW7dizZo1aNWqFUaPHo1169Y5Mb6cOOWUU3D33Xdj1qxZGDJkCFavXo0PPvggHoizbt26JOE9atQovPjii3jssccwePBgvPbaa3jrrbcwYMAA18duK3yN0xpMztGxRxyBP778Evv0bAOK2omDJh+IF954PuvxsUUsb+5kKjtOLO8y4fur/3oNXnv0dahcZqGcK68wUYvMtQhlKl2Verwsp1f9yOa7UxQ5qVak1QVQr74hZNUajQosu6rEObGQK4oCjuPB8wIaGxtBEARCoTCCwSACgYAhP7LXYFckaTFhOg+yQ4cOWLRoEQYOHAhA39ldeumlmD9/Pj766COUlZWhc+fOlmvTeR319fWorKws2TxIAJ4MDMoJt6InTMyLIAh48qWXcOgBo9G+XXcs/OwLMDSL0SNGZ25a1UBQBDQlG89rlgCe2LlN34uShCtuuRInnnxOxjzJbJdgxBcZY07J1aYgCElBa9n643kBFEWBYeyo9hEuChuOk6+JHrgkxwsGx6JNS1UzLDUYzYM0/fRyXHLoOEEQePjhh3HZZZfh0EMPxYsvvmhtxD7cg8uBQQUjW+CN3WM2kj/RhEAggEvPOSf+91sfvIhduxsxcr8RoCk2jYg7lhYSM6GmC0I9gCdTOoj+fewcDZoogqvflfcSEhHTIgmCyHppqXRzqSHzkiSBJJM1mUzt6McRhoVjJg1QkiTIspxTa3TicU1s1+72eZ4HSZJQFAV6weBASaVeeHmJcAqmBWTfvn2xcuVK9OvXL+n7GJvNsccea8/IfLiLxOR/r78FiSuYU+M12ebcRx6JVxFZ/NlnuPz6a/Dyw6+gS8cu6U2TRNb8yczpIERcSLIMi0dufxQaAG73TtTu2okePXoByD0VNE2D5zmEQuEc+41kAZl6nCRJCIdzR6PqJOa5/ZSpSO1Hr9kYyEhmni/Pzap/0ImKGbIsQ5ZlaJoKiqJB03TJFArO9Cx5fVlwAqbtFpMnT8ZLL72U8bcHH3wQp556qqEwcB8ehZkENS/AI29tYhWRvWraYdJhh6DnXm0gKzwWfroQDY0Nacdrqhb/pLSWJ4BHd08ufOc1jB27L37/fW3e8em5i3TSu5kaLUqSmRfv2Cm5olxj4HkeLJs/KCeTL1CSZPA8j1AonCZIjAo+s0LOzoAbVVXBcVw82pQgiKaCwWGwLOs54VhqATPFQElzsRYDLcIHuafAKO2Mg9ixcye67b8/rrr07zj/1Euy+phyMfIkmmRjvkxogCiJeP+j9zHh+FMQrKjK0GZq0IwCURSzamaCwMdZV1IRo3MLh8NZpzFWQNeK2TAa5UDTVF4faKGw0zof8yPGCgYTBOHZihelYBhyE475IH34yAuvvI1ujCHPtbZt0wa/fPYZKlq1AgEBN9/7AOobI5g1/cak4xIjXlO1x8S/Y75MQM+TPO6I4yA3RPDekvcRKK/A+PFHZTUXUhQVj4ZMHTZBNLPpJFbpaPY/ynHBmo3ZRlVV06xTMTNkIMBmjdQs9DZm8itabZPnBcRugKZpCAaDnvEj5hL+XngdSxGmTaxLlixB//79UV+fnixdV1eHfffdF59++qktg/NRovCqmbZIvsounTqhVXk5ystZdO1cheo2YahqBDzP4bufvk1ujiSgZanNmJ6fr88fTVF4+80X8fqrz6SdkmrK1Dla+YzDTjUBxhZbAFBVJUkzSr110WjUtKDgeaEprzKYJLjzmWYz9Z8Lhdx2SZLjBYNFUQRNU/GCwaFQqGjaYq4UCl8Y2gfTJtZjjz0WY8eOxfTp0zP+/n//93/46KOP8Oab+ai5ShO+idUBeEXjdBlPvfwKzvv7lVg270vUdO5m8KzM6SCiJEJWFFBt2kBjA0n5h6lITNVI1ToikQjKytLTQaJRDuFwKOmcxPYoigJN04ZupW7qlUDTlCNV6Qt5nDRNA8dxoCgaiiKDYRhHxuijuHCs3NV///tfTJw4MevvRxxxBL7++muzzZYceFmGJMtZK7H7MAGvEh3YlVmeBWf+5QR8/NprGLJvBxBEI2bcPB1frPwi00AS/k1k1DJZhkU4GMKGn77HQQf1SqKlSx0+SZLxgsqpWkeiFtl8+Rpoutn8mXi71KagIaPCURRFSJKEYDBgm+BJ1SrNCEdVVSGKIjiOawqwkZqS81mEw2HXhKMXHncf6TDtg9yyZUvOh4amaWzbtq2gQZUCAiwLgmWhaBo4UdQXFk2DrChgGAaqqkJVVdA0DUWSQEGnDCNJ0pNOfM8h1xy5pXHmyiWw0n/KeYlVRMIhDlu2rYMk74aqSti5uw7lZeUIBoJAE6tOIslALB0k2e6qoaZzDY4ddwx6dM2skWoawDBMvAh4rkuJfc9xHAKBZo008RyOi8RzFXNNSYxgOxbZmdiOlViqQvyKsRxLiqLiVUbc8CP6PkJ3YUeMnmkB2aVLF3z//ffo1atXxt+//fZbdOrUyWyzJQdCVUE37eLjGwaCQCAWAUiS+geAxrJQoS9nXKwunqZBlmUwrJ5UrioKaIaB3CRM6SZBWgwGEc+j2EQHVvtJdOqltFFZUYElr74KAFBkBZdfdw02bK7F20+9qx+goZkoIG5iTR2HXipr1vQboGoaav/8Db9u+BOjRo1NGzpBEBmZc/SAmeRAG4qiMz6HHBdFKJSZnSfxMkVRgqJICAaTfXaZBJvR22jmFkiSnosYY60hCDIecOSUYMwlBH1hmBu5ngEzr7kdmxDTq++RRx6J66+/PiNpMsdxuOGGG3D00UebH0kLBqFpoDQNtKYhTNMINAnSMpYFCyBIkggzDFgAYZYFw7IAw0BQVQiaBkFVERFFiAB4VUVUkiBqGqKSBF6SICuKqerxLRKlsuoYSNSjaAp3/PNq3HX9NQiwjajdth7/euA27K7fjXiOZKY9QjyfUgNJEJjz2L24/LLTwPNckglP03TBkMmsl8k6lEobSRC6RqgLzszXErvMWNSnTlCQ/x7ZcRt1P2IUgiCA53moqgqWZVFWVg6WZQumv0vvL/27Unkc3YDRwKsYcs2d2/NqOkhny5Yt2G+//UBRFC677DL06dMHAPDzzz/joYcegqIoWLVqVZwwvKXBa0E6GkFAIwiITeYrQNcCGIaBqihQNQ00TUOWZZAEAUpf3UDT9J5t6i2hwKD3lyzBeX//O5a8sgDl4XbgeA5lcV7VVDNrM0RJxIbajejYax+EW7dNu2Se50FRdJLA4HkewWAwfqwkyQC0JMGpaTpHanl5eU7aumbmHmfnWdM0SJIEVVWTWGvstL6U0OPiGuzS9IoBo0E6logC/vjjD1x66aX48MMP0VwlgMCECRPw0EMPoUePHtZH7nF4TUCaQpMwlZo0Ak1Vm32miqL7TBkmLkxJgoCmKGBsXmw8CzuzyG2GLMugaRpbtu7CkCPG4W9Tr8DZJ5/b9GtKZKtuiY1DkmVcOfsqHDf59CSCc00DRDGZfFw3mzbTyaWSk2c6JhU8L0DT1IyEBInINM1Gp16WZYiiAJpmoCgyAoGgbc+oB2+/a9hTrt1RooDu3btj/vz52LVrF9auXQtN09C7d2+0bt3a8oB9uABNA6FpYGNvAEUhEEvOToheZBN8qhJJQmkSqnGfaUyY0jRkRdGFKUlClWUwFFW6gUi5nESJK4cT1C7ZfmsaTyy6tHVVGW6cMR0HDhsBmubx0ecroAE4ZOQhCefp/4kLTU2F2NiI+p3bkpqOmUoVRQFFUdC0dLo5WZYQCATix+vWiWS/XfO+QkM0GkU4nF1rzBRck/h9tqmQZRmKokJVZRAECZqmE6qTmPcjGglOainIFaySiTDCRzNMa5CqquKuu+7CvHnzIIoixo0bhxtuuCHvbrGloKQ1SIehaBo0gohHLKZG88qy3MQJSkKWJLA0DZIgQDR9fCD7yp1Fuz3jssuxYfMWPPt/LzZXEaHIeMRrrDqIqqoAQUAIBbC1bjf22mvveBuJwTocxyEYDMbvh16sNyaAdN9eprJZkiRBksS8JbWMT4PW5L9E01i0nLmdudtqeQu/GaHnIx2O5UHedtttuPbaa1FeXo4uXbrg/vvvx1//+teCBuujZYAiCNAAWJJEWSAAliQRpGmEWRYsSSLMsgjStP49y4KgKCgEgagoQlRV8JIU/3dUFMFLEkRVRUQQIMkyFEVByVAHWx1nTAimRjZk0W6fe+D/8Nacx9GxWsMPv3yJg08YjfUb18cjXmPpICRJgiSAJe++iTGH9sPatWviw5RlCaqqQdP0iNVYbq8giCAIMq7ZcRyHUKgs7dIikUaQJJkU0Wr28jVNgyiKEEURjY2NkCQJgQCLUCiIYDA38UH2NvX/txRhkelxyPR3S7leL8C0ifXZZ5/Ff/7zH1x00UUAgEWLFuGoo47CE088sWf4qXzYArLpLaYIAkzMx5Xw/CSG3zMsq2ummgZOkkDTdGafKUlCipl5gbi2WhQUYqbNpBpkOT5WRQQAajq3wZGHHYqe3VojynP4eNlS7D9kf1S0qowdjcPHHI67Z/0bXarbx7sKh8viWiRNU03BLoCmqXHtURDEJs2yue9YIE6mmo1GUjcURQHPc2AYFoqigGV1PtZ8qRdOpIK4hUK0Oy9eT0uHaRNrIBDA2rVrUVNTE/8uGAxi7dq16Nq1q+0D9Bp8E6v3oQFQoZsHqURhmuIzlSQJNEXpZl6kc5G6O+gC7WIp5++uq0O3Efvjb+dfjkvOvDzNhC1KEj7+dgWoYBDjxh0Vp5iLUa2Fw2EIggCWDcSrgMSo5gCdkk5PmWByWoWB5t/kJuapWNoIwzCeKwGVCfk0Ud+kWXpwLEhHluU0cwfDMJAkyfwoffhwAAQACkAopokkaqYJFSNYioLW5DeVZDkuSOPCVJJANgUdxYQpQRAgmlJnbPWbmvA7pv2eer6moaqyEms+/QRlZWUgCQH/euBhbNm+A7dcdSug6YFYb7z6LBSKxLhxR6GsrCzub9SreuiCjCCQJByb0zdCce08+zToZlNVVeKmW6OmUjeEjtE0hXzj8IVjy4VpAalpGs4555yk0G+e53HxxRcnkRy/8cYb9ozQhw8HQTRpj4GYJpMiQFP/rWoaZFWFrGlQJKk5z1SSdJMuRcWFKQBA06ynyRhdoWNICQXt1LFj/PuaLq0B8FDlRsgKg59//Rn/d+sDEEUJQl0dEAxBUZoDchRFL28lCIkBPDwoikwKxInJb70bDYIggiSJeI1EhmFAkoG0IRq9dLMwk5uXqw9f6PkALAjIs88+O+27M844w5bB+PDhdZAEEReWTIKvLJMw1TQNiqZBAZo0KTVOJxjzj0qyHBemmqaZS5MxuooTBC4566z4ny+8/ibO+Ntl+OzNz7B3t574fc2POPXyU3HnXU9g4MDhGDCgDwANP/zwS5OmSMTLWemFgZuFoqLoGiVJ6tdA03qSfqofMV8aRy74Qs9HsWBaQD711FNOjMOHjxYHgiBAN63KWYVpgg9OURSdFakpYjc1NSZRmCqKohPmA83aqUEJMOX4Y9G1c0eMGFyDXXVRPPTMAxi4zwD06FwDWY4VBFbiNSBlWY7XPtRNrFLTGGSwbCAttSMXD2m2Y6zm5vlCz4eT8L6H3IePPQSxosE0SQJNZA2JAjTx3ypFQQMgK4peLYaikn2msqy3QxCQY8JU09M9KIrCoQceCGgaysMCtu3YgJOP+QtaqRK+/e83ABoABFBX1wCAAEGQYFkGNM1A09Qm9woBggikcbxm0xJTA138NAUfpQBLVHOp2LVrFxYsWICNGzcCADp37owJEya0SGadeBTrjz/6Uaw+SgKapunmXlXVyzwlcPPGhGn3ffaBAmBX0pllAIIAZDz33Atxmrrt27ehqqp1SUSg+vCRCQ0N9dhnHweIAlLx5JNP4sADD8Ty5cvjEYDLly/HqFGj8OSTTxbavHcRK2flf/yPxz8EqQcPMSyLUFivfRgOhxEMhfDrunU464oroFEAGQIYKuEZZyJAcAdA1uM/D89GRNmCiLwdI0bshUefuBsRvgGffLYQkyePQW1tLRRFw5IlH+Kdd16HqgKqCqxfvw7RKB//2//4H698jKDgLeCdd96JVatWJUWwAsAtt9yC/fbbD+edd16hXfjw4SMTcjnucuQp/OPmm9Glayecf+5pIKoI1O7ehg+Xv4euXTshGo1i3wEHgZOBZauWoVV5K0iyhNZVrcEwCjRNxiPPPIzefXoj1KYB5dUi2neuBNt6NziSx9vvPYON6zfgsCNHgwCFgw/ug39ccwPOnXopVny5DHfMnoU5c95CdXUHLFr0HiKRBkyefBoAYO3aNejYsTPKy33LjA9vgCy0AYIg0NDQkPZ9Q0ODz6/pw4dZWC2clyPM86PPP8dBxx+PRqURfJCHFJBBtCJQ3iWMvoN7YfGSudh33z5o3boKlZUViNEqh0NhhENhVFdXQ4OGxsZGAMDhEw9H9x7dAQIYut9QPPzUw6hs3QrhMhb3PnI35r77EkKtVARaiXjm1adxzEmHIdi6EW26EOgzoAfC7RsgMOuw6ONX8fpbc8BhM3hsxeGHD8bzLz0EXq7DR5+8i8MOG4hNmzZAURS8997rePnlOfHL+v771di1a6eFCfbhwzgK1iDvvvtuHHrooRgwYAC6dOkCANiwYQN++OEH3HPPPQUP0IePkocTeQo5tEdN03D0WWfh6InjcfbZJ6O8axn26t0VfEhAuzbluO/+m+PHNjZGEA7r5OQcJwAgoDTV3qZICiRFxmnoGFqn9RMEAaFQSA8qiimpGoFYma34xlgDDh5zsB4UqwEDBg3APQ/dE//9zgduj40Ymibh1fdeQZeaLgi2jqBjjxAOPHQ4KrtykMj1WLbyfWzeuBnHTZkIAhSOPmYkZl53E84+52Is/eRjzLpuBl55dQk6tO+Md999FfX1dTj77EsAACtXLkP37j3Rrl377HPrw0cG2BKkoygKVqxYgU2bNgHQg3T233//eFReS4JPNecDQPHKKWQQhgRB4Km5c/HQM0/j84VvQaYU3Pive3DwISNx7LFHZGxGkiQoioJgUI9IbWyMoLw8DJ7n8be/3YBvf/gfXnzzJTAsA03RIKs6gxYBApqmQVZkCJyAQCgAiqJAgEBS3eamOs6x8SVfA5qP1QANzTVljU2Bhh+++wHtO7RH+w7t8cvPv+CVF17BlTOvBE0zuP3G27F5Uy3+/eCDIECh717d8M9Zt+DMsy/Epx8twTVXXY557yxFdbsueOutF1FfX4cLLpgGAFi6dAl69eqLjh07GxqLj9KEowWTjWL58uUYOXKkU80XBb6AbMEwWJuxmOOIFU6ub2jA8CMnYdZV0/GXk4/C8tXfYMGiT3HDDdMTkvQTJVEzIpEoWJYBw+gGJJ4X4hRw0SiHYJDFuu0C2KAuMIPBIBRFgSAKCIfDzU2jiXCc48EGWNCMTr+naZo5gQk0F15PPC/z8E1B0zT8tvY3tG7TGm3atsHa/63F26++jb9e+VfQNI27br0btZu24I577wE0Cn26dcP1N92GM88+Hx8tXITpV1yEBYtWon11Z7z6yrPYtWsnLr98JgBg0aL30LfvAHTtuhdUVYVftq104AkB2a1bN6xbt86p5osCX0CWGLzIJG1C2xRFESSpFwi+9o7bsXjpZ/h04etQaBV33PMfHHvsERg2bJChbmNaYyAQiC/kchMpQSDAQpYVxEgJNu7kQTBBcBEOwVAwThIgCAJC4VCaFqhqKrgIB4ZlwAZyVOOInWdQ+MUFamyVcvBWapqGTRs3oaysDFWtq/D7r7/j/Xfex/mXng+KonDfHfdhS+1W3Dz7XwBI9Knpjlk334YzzjoPixcswF8vOReffPod2ld3xgvPP4ndu3dixowbAQDvvvsaBgwYiu7de0KWdRu2nyZTPLgmIE8++eSM32uahvfffz/u2G8p8AVkEZBPyHlRCCbCxPg0TUNdfT2qKivxy2+/Yb8JE/Dqc49i3BGj8dnyr/DHH+tx3nmnmh0AeF4ASZJN2mWzdIpEoigr06NydDNrGb74YiWu/PuteHruc6ioqgDP6VokCEBVVfAcj3BZOM08GhNmjQ2NukYZ46DNJdya2iBA6P83zDuL5uMTVzCXHgNN07Br5y6wLIvyVuVY98c6LPpgEc6YegZomsaD/34Q27Zsxz9vmgVoJPrU9MANt/4Lp595LpYsWIjzzz0Ny1asQXW7TnjmqUewc+cOzJw5GwRB4LXXnsOQISPQq1dfCIIAWZYQDpf52qmNcKyaRyoWLVqE5557DuXlyTXhNE3Dp59+WmjzPloyLKYppMELC0euyht5xrepthadOnQAAJxwwfngJQFvvPo49hreBTfdPAP7Du8DtjyAceMOSuwQGW2YKYhpjTpHaiwmQD9OEASEw8H43yzLACBQXl6GrjVdIMkSNFVDrICy1sTEEwwFEY1EEQ6HdZNovFX93+Xl5QABRCNR0AwNiqKS4xESh0o0nxfzbya1l23qEs5D/BFqMu2maLdOCE2CINCmbZv43926d8PUi6fG//7b3/+WdPzPG34GCCAQEjFo/164+8G70alnADRdDwQaoNENEOh1gEbi7/84H7NuvgU1vdpi8ccLcMHUM/DFip/Qvm0nPP7YA9ixYwduuOEekCSJ5557FCNGjEbfvgPAcRyi0Ua0bt0Wfm1ee1CwBnnCCSdg2rRpOOSQQ9J+O/zww7Fw4cJCmvccfA0yD8xEbJYibAjGaWhsRENjIzq2b4+Pvvwc40+agq8/fx8Dh/XDZ58vB0mSGDNmVGrHMLvSi6IIAGlaY+w3giDANFHaqaoKUYz5IgnsbBTBa6yuqWkahNhvCZU7OI7Tza1IFlapfkaO4+ICMuYfjR2T0V8Zu+JE82oBj42RvrwERVHiBaRrN9fiy6Vf4ujJR4Omacx5dA52bN+Bv82YBk0lMKhnf1x7wyycesY5WPTBh7hw6ln48quf0K5tRzz04D3YsX07br31QVAUhSeeuB8HHHAoBgwYgkikEbt27UCnTl1bZDBlPnjCB9kSsUcKyJYu9HLBhuuTZRnf//wzhgwYAEkWsf/RR2PggL545JE7oFEa3n13ISZNOgwVFanPkxXJoEFR1DjJeUwAJv6uqlo8VSMGnufBsixIkoSmafh9/VYodDnKWukEIDGNEUDch5hYXDn2fTzYJoNg4zkeJKWbXFP9lNmCd7Jcoj1CrshmWjugabqGT1EUtm3dhq9XfI3xE8eDpmk8N+c57Nq5CxdffglUBRix7zD8feY1OPX0M/Hhex/g4vPPwfKvf0Lbth1w792zsW3rVtx99xMgSQoPPng7DjnkcAwePBwNDfWord2IHj16txi/qVEBWbJ6+M6dO3H66aejoqICVVVVOO+88/L6O8eMGROPNIt9Lr74YpdG7DFYTUhPRUsQjrnmwsL1aZqGNWvXYt3GjZBlCc+//TqGTpiA9fxGkJ1JPPTIbbjhlisRrgihrCyMU045LoNwBLI67XJAFCVIkqTnLaYJRx2SJKUVLiZJIm6W0zQNfXruj9defi0uCIPBoK6RNgnBmGAJBoPgeC4pBzIu6BLNnBoQDAV1DZIAREGEIAjNV9p0jqZp+S4xud38U5KznaSxEs0+1dh1F9S+CyAIIq4BVrevxsSjJ8aF2JlTz8Tf/v43sAEGwTCD737/FmdfeBrYMgWjxw3Di2++iI49wgi14dBr387oN6Q71LKNkAPr8dzzD+H7NZ9BpGrx0dLXMWZMf9TuWAtO2ombbp6Gv152GmRZL+F2112z8PXXXwIAdu/ehe++WwVJkoo2J3bCsgZ55ZVXZm6w6aXp1asXjjvuOLRp0ybjcYVi0qRJ2Lx5Mx599FFIkoRzzz0XI0aMwIsvvpj1nDFjxmCfffbBzTc3J0qHw+GcO4hUeFqD9EqaglfhoLa7fedOfPvjjxg7ejSiIodeB4zCaVMm4193XIMox+GXX37D8OGD85izrGmMaPLdxSJedcGYua1m0yqd9HtjYyPKy8vi373y6nvYq98g1OxVE+8mGokiXB5uNrM2BdcoigJJlpJMsGk+wAwamiRKcQ0oGEoW2CmXZ2YqnIl4TUxTKQEzrZ3YvWs31vy0BsNHDgdFUXjzlTdRX1eP0889HaqiYfyB43DptMtxwl9Oxgfvvo9Lzj8PX/33Z7SpqsatN12HLVu24D//eQEUyeDWW6/GhAnHYeTIg7Fz5w6sXfsTBg8e0VQhxj04bmIdO3YsVq1aBUVR0KdPHwDAL7/8Aoqi0LdvX6xZswYEQWDp0qXo37+/tavIgp9++gn9+/fHV199heHDhwMAPvjgAxx55JHYsGEDOnfOnOQ7ZswYDBkyBPfdd5/hvgRBSNrp1tfXo6amxj0BuSebNwuFg/MjSRKWfP45+vXujY4d2uG+OU/gxjv/ja2b/4uyijJ8++2P6Nmze5PQyTpA5F5ps+VEJP8tSSJEUdKDZnJcryTpO/5AIIhEKRIrMpBoPotEeeyWA01HNKeEgEhOT4iZRmVJhqLqKSSJZtY002kG4SXLMlRFhaIocZ9mxmlIv/TsSOzHoUCdjP0g4e89EI0Njfht7W8YMHgASJLEe2+/h/q6epxyxilQZAVHjT0KF/31Ehxz/GS8/858XHrBBfjqvz+hTetq3PDPq1G7eRMef+I10BSLf/7zbzj66JMwevRYbN++FT/8sBojRx6CYDBoziSfAY6bWI877jiMHz8emzZtwtdff42vv/4aGzZswOGHH45TTz0VGzduxCGHHILp06db7SIrli1bhqqqqrhwBIDx48eDJEksX74857kvvPAC2rVrhwEDBmDmzJmIRqM5j589ezYqKyvjn5qaGvMDLsTN29LNm4XCZvNoLvywZg3e/vBDyIqMBrERk88/D699/A7orgzOu/xU/PrrFyivLAdBEBg8eN8swtHIKpp6TanHNf8tCAJUVUNZWf40AEWJCcf0NlJ9S598/AXmz5ufpC3RNA2RF5MCdWKRpzRDgyRICIKgm1mbokkTTaeapsVNmYmXSdM02AALNsBCFEREGiPZLz/Bz5kTif3YZZI10k8JmmntRHmrcgwaOihurj/quKNw6lmn6pYNlsGCzxfgxNMmgw0DRxwzFh9/9TE67lWOYJWA8UcfjONOORJ01U4o4Y344acV2N6wBiK9EZ9/9TZOO20Cdkf/AKdsw/QZZ2HKqeMhyo1QVQnTp5+DTz/VA0K3bNmMDz98GxzHAdA3s1ZDbSx7XO+66y4sXLgwSfpWVlbixhtvxBFHHIErrrgCs2bNwhFHZKa6KgS1tbVo3z6ZV5GmabRp0wa1tbVZzzvttNOw1157oXPnzvj2229x9dVXY82aNXjjjTeynjNz5swkc3JMgwRgX5qCj/zIZiJ2cG7rGxrw0ltv4ejx41HdqS2eenMu3nrvAxx95ni0oVvj558/RU1NZxAEgbZtjboS8o03JQciy2+qqoLjeITDIUM76UxCMNdYXnrpLWzYvB1HHXdU0pCYAANFUUDRVLzfRCEpSzpXayAQSBIKaYEwGbqPpYMwLANRFCGJEsoybDISha6p/MmEaXXSVJro10xKRUkx05rK+2yBCIVD6N2nd/zvwycdHv83SZKYt3he/O+Jx43HlyO/RPuacpCkhMlTjkRDQwOYqjooioKNtWtRL/4BidmAL7+ej0svuAirvv8JZLAtrrrqCmxYvwEvvfweKJLFXy89E0cfnTl/PxWWBWRdXR22bt2aZj7dtm0b6uvrAQBVVVXxUHMjuOaaa3DHHXfkPOann34yP9gmXHjhhfF/Dxw4EJ06dcK4cePw66+/omfPnhnPCQQC2e3juUim9+AH3xa4xW2agg8++gj1jY04dtLh2C3V4bLrrkP73u0wedgkXH/LNPzr7mtANeUTduvWxYERZAvMaVZVdK1RRVlZOOX3zJAkCQSBhDzIZCTnzOltPfPMffhzO588JA1gGAbRxgRfZHwPqP+DYRlIohSnqEu7tAwm1qQ0jKYgH5ZlwbJsXFCGw2EQZPI1JgpoA9OQ8dzEMTQP0yEfY8pcJY276fe44E443oe+Dsf94QAOHXdo/N80TeOVd1+J/330XyZh9GH/Rdt2rUAQEk45+wQ0NjaCbd0ARVEQFXdCprca6teygDzuuOMwdepU3HPPPRgxYgQA4KuvvsLf//53HH/88QCAFStWYJ999jHc5owZM3DOOefkPGbvvfdGx44dsXVr8gXKsoydO3eiY8eOhvuL8cSuXbs2q4D04SByCb5cmw8bsW7jRjz87LP4x6UXo7xNGV54903sbqjDSRcejW5EV+za9WPcVFpZaSSYywmHV2IwTQRlZam+xuz9xYJgsm3yYkE7qW2RJAmGJtPdoBpAM7SuRVJURl8QwzIgJCJdSCZMTaKfMi4wMtznmKCURAmiKCIYDMY3KGlI9TdaFZga0q/bSSQ96snacVoqii8084KiKLSrbhf/e9TBo5J+e/bVZ9FQn16iMRMsC8hHH30U06dPx5QpU5K4Bc8++2zce++9AIC+ffviiSeeMNxmdXU1qqur8x534IEHYvfu3fj6668xbNgwAMCSJUugqqopcvTVq1cDADp16mT4HB8WUATzaC48/MwzaF1ViWOOOgK75N2YM/clnHTu0divw0DMefaepPSI3EE2iUjW8uyGJEkQRcngeJpXUo7jmyp2JH/f/DcSyM2b8dFHn+Oaf96Jl96aq0eYJpgn2QCLSGMEZeVlcW0nVVDSjE4zx0WbyQQyCYI8w4+DYRkwrF5uq7GhEcFQMHNOXqqstyJUMu093BSYyG+mjY1pTzfTOg3LQTrl5eV4/PHHsWPHDnzzzTf45ptvsGPHDjz22GMoK9Nf4iFDhmDIkCF2jTWOfv36YeLEibjggguwYsUKfP7557jsssswZcqUeATrxo0b0bdvX6xYsQIA8Ouvv+KWW27B119/jT/++APz5s3DWWedhUMOOQSDBhkje/ZhAR5IL1n13Xc4b8YMcDIHnuaxeMVSrPr9e5R1C2PQAf2xuXY19ttvIABkzR3MDyPXZy1QoLExApIkU0yq+cciSRKYJkGVeYwEZFlJaLO53fLyMtTUdElzkcQ0P5qhdQq6RLNhQhCMpmkgKRKBQADRSEIgXLahp8QuZcuHpGka5a3KQRIkIg2RpAjzjEjZD1jmRXEj4MfMOJr+nVh7MzF4KuV2+rCIgmkRysvLiyJgXnjhBVx22WUYN24cSJLEiSeeiP/7v/+L/y5JEtasWROPUmVZFosWLcJ9992HSCSCmpoanHjiibjuuutcH3uLQCbzqAUeUiegaRqumDULB40cgaOOGo86rR7//d+P2M3Uo1P7Dnj1jceSzHrO7sCtqx6KIkMQRBNabPr5wWBi2kS6/ZEkE1f+5hV1xIghePSJ+yCATdIOY4KQZVnwHJ9e2aOpKUJrMtVSJEKhkJ5DWRbOGiATy6mMN5Fq8kyZOpIiUdaqDJqmIdIQyV9FJDYuC/7KbG0ljTsxAKcYm8E8ZtrYMUUbX4miIAG5e/duPPnkk/HAmf79++O8885DZWWlLYPLhTZt2uQkBejevXvSbrGmpgaffPKJ4+NqcUjVAGNCMNNLVsQXb96CBXj+jdfx/GMPQCJlbNpVi3qyEWVdwhjbZTRWTnw/YZhujDOD1DCBaJQDTVPNNG5JyNZWc5+xyhzZzyPijDuZftc0Dbt27ASCFfExxBfXJkFDUmRagE0S1VzTkAiSSBKSSVpPSuBKRrNhFqEaOy9GhxcTlHSS1pwFBfgrU/uPtwcbBbANSGM0in3nm2kNw7KJdeXKlejZsyfuvfde7Ny5Ezt37sS9996Lnj17YtWqVXaO0UexkMk86pEXKRKN4qizzsTbiz8Ez3BQyxSorAqttYay9mG89sbjOP/80wrspRAbVapNLlO76e2rqtpUtDiQ0TdoBDrPaiZmmuR+RVHKKkgkSULvHsPwzlvvpF1CTAgyDAOe1yNd4xU5YjmQKUgUks1fIt3smajlJZ5PEMnCLAPKWpWBDbDgohxEUYSiKJkPTOw/ZSwFwyum2FzIYqZNNGv7ZlodljXI6dOn49hjj8Xjjz8ed5bLsozzzz8f06ZN80tdlRo8Yh7NhQfmzMHHX36BF596CGitoaK6FcIdQwhWh3D8SZNw/EmTbOrJasCNUbUhs/CMJdmHM7HJGGpbX+U1Tc1CaZfcr043lxksy+LFlx9Fr4FDE87WtY+YFhIrrpxmtssSKBMTkqmBOzFzbNo5qW2lIsuUxHInY1VECBBgWAO+5VR/pR2aVSaBafT6XEbitaZd9x5qpi1Ig7z66quTIslomsZVV12FlStX2jI4HzbDRdaZQhDTKP7csAEDDjsMS1Z+DrFMRPXebdBnUC+w7ViUtS3DSy/9B4cfnl5mrXBYnYt852Wefz3pn0soaGx9TI2N0RS/Y2bE6OVyjevoo8ehc9fOzYcQaGaJaQJN0/FAmYwaSNPQ46ZXkkAgEIiznMR+TwORfF7ab0gfSypCoRBYlm0q5SVCFIznZKdpVnYhRWDGGIY8X1QpYb+YRvrQgjVNyxpkRUUF1q1bh759+yZ9v379erTyGon3nopUrdBDQjARsZw6APjrtddie91OPP34vWi7TxUOGrM/2u/dFmwliymnHY8pRR6rNWRXF0RRjFfLSN6VG9EYk4/hOC4h0jU3JElKyI3M3M9HSz7DjoiGCUdNiAejpAbPUBQVr9yQSwNJDGQhKRIsw2YmE0i57FyaSlIwSo7jAk1pLqIoxufbDDl2qt/ONg0qiznZC/7LvMjiXk/zFXtQUzYDyxrkKaecgvPOOw9z587F+vXrsX79erz88ss4//zzceqpp9o5Rh/5kG336VGBqGla3He17OuVaDtgX/ywYQ3EChGjDh+OSceNRahdCOVV5XjkkdsxYEDfPC26DbPb5XRzraZpEAR9DgKBgAXhmAy9JiBpYOHW4v3rx2a/lmefeRVzn5+rX0GqNpVwSRRFQeCFePO5tL5YdxRNgabotDSNfFphpp8zpTpkQox0gCRIiIKYrMXmQ6ZAF6fgZf9lHiT5ioHkRz81FaUEYFmDvPvuu0EQBM466yzIsgxN08CyLC655BLcfvvtdo7RB5DZRxiDRwVhInbX1aGqshKqqmLcKSejV68euO/fN2GfA3pgxt8vQpuaKrDlLE4//QSHRlDIVtZsRGpuASeKOlUcywayBMkYGWNyH9EoZzAdRD9HUdSkvzO1OXfuI1i3Q0z6KVP6BcMw4GQu3lyqVpQY/RpfJAk9l1ITtWbuVuTXClPTQdIuLVFIZjks5o+UZRmiIGavIpILqdOWoz/LKCH/pSFk2GSkFaz22DVZLncVQzQaxa+//goA6NmzZ5aw9JYDR+tBFol/1AlwHAdBFFFZUYG578zDmZf/DRv+txJV7Svw9rsL0L59W4wZMyp/Q5ZhPf/Q3jaSEUu8txqhqiNdOGYO7MkM3f+ogKbzB66s38GDYoPZUyKa/i2JEjRo8etKFHCpwi71b0mUoGrpdHg5CcXzBdGYCLJRFAWKrECWZITKjJG/Z4NrASyJAqUUTLIm4IaZtqG+AX279s1b7sqUBpmtSHIm/Pvf/zbT9J6HmADMVvWjxISjqqr4fd069OzeHYIooOfo0Tj3zJPxz+uuwCHHjsST4btRXl2GQDiAk08+xoURpW6/nW4j9yolyxIkSUYgkE1rNIrkfvRcxlyCLl2acRxvyFf54Ycf44ab7sNr77+RPOYMyjTDMs1mVmTwR6bkPCYKkmwE5/HjtAxCMrd1OK7JGqnakVhFRBIlSJKUnK9pAqmakWMCM5NBw/79XFGQNl+5fJwOw5SA/Oabbwwdt6eEABtGrhSKEp6r39etQ0V5OaoqK3Hnow9h9v0PYvOfq8C2C+CxJ+5Anz49Ea4MIVwZwllnnVTs4RqAlZUlf0qIKOqFikMhk2a8jEjWxERRjFM7Jo8n9d/N52ar6pGKGN2cnleZMPYs00SQBCRRak6pyDGdqUKTYRmQMgmO45L6yhukk0e7MBrIEzs2XpeyqYpIKBQCSZnc0CSYmV0lGc9ikm1JaRmZ0k+cNNMWbGLd05DVxNqCzKPZsGv3bvy+fj2GDhiAnfU70WnwMNx+y0xcPm0qNm/Zij/+WI/Ro0dkycFzCt7dLmuaFicLL0xrzIxUYZJnNIjNU7Kmlnv+tjeIEMHmPjThe57jdXLz2PdA0oKdZPbM0J6qqLpATjUZ51n8jAqBNKafPIgJykAwkJkc3SyK6WtrIRqmYaTuFdH8tyMmVh85UMLm0WwQRRFfrFyJIfvui7LyMK77911458MF+N+apWjdqTUWLXoZgwf3BxNg0K1bF4fqIyYi0xtezJUmO2LVN4ymXZjtUxTFFD9mvjER8fOSNcjs52iahp07doAKVekCKzUwJS7nkgNnZFnWhUmqGZRAMilABkWXpEgEg8Fm7tb8w9R/NvjOmdEogYRyW5KESGMT52sh/uNiLg0ppsr41y1kvUpDJjM0kJUIPxPs39b6KGn8+MsvWLpiBSRZwp/bNmDsSSfh3RWLQHWhcPWsS7H087cQCOsa0SGHHGCwRmKhSN122/FCF2I4yd1/NBpNqb5hBxIFkARVVVI09VxjSr5WI8E5AFBf34A+PYZj4QcLcw0naYENhoKQJTl79xmGqSF5wcpIS5d+Um7k+T2RN9YIGIZBWXkZaIpGY0OjqULwOZGQFuOaMY9AnKQ/Pg8lmFJiFWmpKDnga5B7OHbu2oV5Cxbg5GOOAR2iceP992DD5s345NPX0bvb3vj++yXo1683SJJ0QUPMBrt2uM5qnqqqIBrlLVffMApJkk36MxODemTDGlBFRSs898J/0G+YXhA91WSVaC5N1MhUTWfpIUkyYzBNaqBFJg0mleA8I3IozTnTQWJ9pJCsG9GkSIpEeavyeBURmqHjRASWkMFf6TZ5eEaawD3NHJsFvg/SJBxN83AJ7y9ZgmAggANG7Idv1/6EA484Fp9+/AYOOmR/1NZuRVVVRTrDiasovbcyVn2jsPSN/BBFMR512YxcgTnJfyfmHBpBfSOHRi2UuelEpPyWkSXHAjRVA8dxmYWkEX+eCYFjNZgl2hgFRetRsLb6mj2QGxifkxYW8GPUB+mbWPcA/PrHH5j9wAMQJQE8eNz1+CN4et4rCHQLYMRhQ7Bt27c46JD9AQAdO7YvknDMY4fzKDRNRWNjBKFQMIdwTMxeN9xy2je6WU/LEASVxdmS8rcgCCkFofOP6cMPFmPxgsWZm049PeFvVVGTTYYWt+EESSAYDIKLZmC9icfE5WjcxKMU1+BM6gzh8jACwQAEToDAC/mriBgeELL6Dd1CppJZ+mBcH0pR4AvIFghN0/DAnDlYvPQzRKQoft60Fnc+/B9sIbcj2DmIee89hWeeuz9ejaFt2zbFGGXK314Qiubeep7nIYoSysvL8uyqU1Y6Q0g+XtO0OPuOOTRfk6IoKRpO/jE9NedlvPHyG0njyHh6yiWGy8LJfroc0aepf6d+R1IkAoFAnJ4wCURKukcGxH83cnsJk8cnIFQWQiAYgCTpOZ2SKJlrIO/Qmq+zWIa/NIHZwn2XvoBsIfjiq69w7e23Q1QFcCSHZ958FV/+bxXK9gpj4uSx2L7je9TU6D5Ep31kueGk3ajQt9TYmDRNQyQSBcMwpsyVhUAQBAPm20zX33xNydGrOdS/BMyb9zTuffiehNaa20sTZilNKHK6JpVvYY8FjqSCpEjQFJ1ZSOoDyy3UzO5REgWAyccqGAwiGAxCURUIgpDGN2sZCddgVdu1Haku/USB2QKEpi8gSxQcx2HGTTfh4y+/AE9w+GXLb5j/ySKo7TSEO4Wx4qv38M9/XgEAGXxWxYAbDhXntVBRFJqS88OuzakoCnFtPxnGtXBFUVJMf9lNsYmgaRoUmSGIAxmEWUpATigcShMOaVU+TBB/0wwNiqSyCxwrinouJLZnYbEPBoPxDZQgCNmFu1UQSAqS8oRAyiIwiy7ILcIXkCWEV+bNw4ybb4ZACJDLFHy2ajlqxW0Idgrh7AtOxur/Lor7D51ITDcPL/sVzdmGNE1DNBoFQZAGtEb7FoNYzcbM2mO+OU02r4ZC5tNO3n77Q5x2whlGukgbEkEQaVqkqYUyg4bEsAxIgsytlZnRXgyaXQ35O7MgEAggEAjEhbvtghLNqQuup4zkQqrGi2argyfGZwBeWEV9ZMHmLVsw+bzzsPy7byAGRGzht2PDzo1gO7Jo1bEcK76ajylTjgPg1WRfL44pBuPpHnrSv4hgMJgS5JKv7cKhB9ZYjYxtHoeipOQmGpQgrVqVoWPHDsnap4l9TyAYSPLFZXxOmzTPtEUzIQUiEXmFpInpz1teK7XpAoooM6xuko8VmeainO2CIjY+L/grMyEx/zJ+z70zvDT4eZAew23334/tu3fiXzddg1CnAOr4eiitZLBtWVw+bSounza12EPMgNJLyzAKQRBAEIRrvsbUvmmatmnzY8ykmorDDjsIA4fvD4loNien5RjmyCyhKAo8xzfzs8YOSU0XIJDMspM4zAyPF8MykCU5ezqJwSlLpL0zk38Yv34Ljz5N06BpGqqqQhIlW6qIZBhg8z+9Wk4qdQOUmHvZ9Hux4WuQRca3P/6I/SZMwNpNv0MMiwi2C6CqcyVCHUOo6liFJR+9ilGjRhR7mClINU964Em2GZIkgud5UJSR3Eb7IxJUVQFBEAY11vxtWW1H0zTs2L49qbhwrmoLmRAIBCDLyRpsRiabbO2k+DZjoBkaDM0YKnycV4uyGGRsVgNNBEmSYAMsQmUhSKKEaGPUOW0v1UzsRa0tV8BPkeALSJeQ+OCfdcXfcPXttyFCRdG2V2v0G9QbRGsCbBWLGf+4GDfcYLysWHFg3DxZitCrb2gIBoMGCKpj215754LjskWtml8tolHeMtF2be1W9Os5Aks/Xto8gtRFPIMfMvEYmqEh8unUbJnMp9kW72yCiKIpBNhA5jxJk7CS3pGkgVoUbrEqIuFyPTUm2hiFGi9obT886a9MReIrVUSB6QtIBxHz28xfvBhdhw/DDmEn+DIeQw8cgEEj+6GsQxhdunfCCy88iJ49uxd3sJ5AcV9UVVXB87xBk2psJbV/kxCNcgiFspE1mO8vd73I3KiubovnX3oEg/cbnDACcxokADABJn3Rz2RRzcKTmYs7NZHgPBsMc69a3esYyMc0gkAggHB5GIqqIBqJpmnedsLr/so0FCFC1vdB2oiYP0RRFOx/1JE4/piJuHL6heg5vDumnj8FRCWBYGUQ06+8sNhD9SiKp5GKogBFMVOz0ZmxqqoKms6U0mEUyUJb07SCmF1omsbRR49HREuYl0yXnrJXSBWiDMMg2hhFuDyc87xcyFUmywh3a67zbUPC4l0IpyrDMGAY3c8abcq5TfXj2oZS8FdmQkqErBN0eL4GWQBEUYz7Px56+il0G7k/+AAHqbWIqRedirGTRqOsXRn69OuJW265Cm3atC7yiHPBAwb/gmB93DzPgSBImwoaG0Xm8XIcb4EtJxHJC4MkpZbFMo/33l2AT5d8aqZbAOk7e5qh42krSedluXVZNYMsa5+hKiBoMteafVzMHm+TRkkzNMJNObfRSNS+KiK5kKpFl8qSEBOYiQFUBcIXkBZR39iA6kGD8PS8V8C34nHIMQfgX7OvAdmKQrA8hL/+9RwcdND+xR6mAaRuF72+bcwG8+OWZRmNjREEgyFbgmGMIfv2PBKJ2lAiK3lV0DRkIDQwt3I89sizePv1t3M3kcEPmbqLZwMs+Gh6DmAhgS6pMCIk42ZcM91afS1sep1IikS4LKxr4pGoI7mUWZE4V6UgLDOYYq3mX/rVPEwiVs1j29Zv8d78xRg9egR69epR7GFZQDFSM5zo01qbxn2Nif3AUl/JbWQ+X5YlAIQ9VesT0NgYKZhaUBRFbKrXwCbMVZoZK9P0ZLhcURDBsIxxE5jFR0ZVVAiikN8qYNYUatV06oD5z7EqIrkQ8/s1/cOb+df5UV9Xj341/fJW8/B9kBbBBlicffbJxR5GAWgJwhGm29Q0FZEIZ0FoOJGL2AxBEFFWVihHbvocFxKgEwPDMCCJZNNeplSPeJ3HhO9Sh8SwDLhohvJVVvYfOc4hKRIsw+Yvu9WUi2dYcJnVPBPPg70CJebP5SKczlXL0M7TH2YzY5aYnDR6H3wTqw+XUPw3SKf5EkwIR/vzGzNBN63aTyDP89bTOxLx6qvv4Jwp5yZ/aXRaUuUoQYCiqYw5kBlNrU0CKaOhKzGvLwMomgJN0YbIwg1HucJaOkgabHysYlVERFGEwAu2VxHJiVL1VxqELyBbJFrYU2rD9TQ2RsAwjMlAHPvzG1MhiiLCYbuCg9LHaofpraKiFarbV9sWTs8wTEYfWmK6QcoP2ZEnGIZm6PzcrVZQ6KORmKpg0+saCumCUtXUplJsLgT0pKLU/JV54JtYWxScSVo33q83zKiJkCQRsqx4oMRX+jWoqgJZVgqOMs0G4+a83Pdt4sSx2G/UaMiplTuM9pfSfKwySSa6uTQzbb62DYBhGUiiBEEQcvqci+JPi702NpoqY9cYu2ZoOieua0jRKAtJdyk2fA2yRaFYD6E3I2AjkaiF9A27t73ZhQ/HCRa0R2PjUxTFhMaX+76pqort27bZGjkZI+xOG0mOhTQnRVoe32CM4NzUNVh5FKz6JxM1SpsQI0cnSTJeRcTVmMym6/JcSS4T8AWkjxYHRVHAcRzC4ZAFH5ydQj67cBQEK8IRWdtLhaIoGYJTrK1Of/yxHvv22h9ffflV/uaymEhTF2aKokxrFdlYdhL7ySckcxZdzgQL+Y+W4bCgpGk6nrtdjOSFtPtXAsLSF5A+WhQ4jmuqfWhzdQRTyE1DJ0kSkNXsZM+qIUmZKMqs9delS0c8/9Kj6D+gf97msuU0ZrpWkiAh8Jl9g4Us4LnOjROcG+FuLcRbkS2wyCgceHRpmo7XphRFEVykOIIyjhLwV5asgLztttswatQohMNhVFVVGTpH0zTMmjULnTp1QigUwvjx4/G///3P2YFahteeHHciOq1CliXwPAeWZR3z6RlH9pVV0zRIkoxAwD6u1UygKKOvdv7+AoEAjjpqHNq2a5u/tWwBMxm+Y1gma/dZA3ZizeVj2clxLkVTCAQCeRl3mjvL3V7OcRQKB5YBktSLfgfDQeeriORDqkbpsSWmZAWkKIo46aSTcMkllxg+584778T//d//4ZFHHsHy5ctRVlaGCRMmuMtKYRhe8+sVI/jHGARBaKq+ETKZB+b+GymKYg4icnsgy7LthANvvzUfX3z2RfoPJqJOMy3CJEFmjrbMlvZhAEncnFlAUqQhWrrYWKzkPyYVBbYKB5eBxCoiMUHpZBWR3INp/sQZbzwgLEtWQN50002YPn06Bg4caOh4TdNw33334brrrsNxxx2HQYMG4dlnn8WmTZvw1ltvOTtYH45AURTwPK/X1bOkNbor9EVRaK6m7iAEQbRdQD780FN47+33jB2cRWhmum6GZdL5WeOnZNci8/KcGri1Rrlbk9o0u6fKct2W4ZDQiAlKRVUQbXS2ikg+xN+RRN91kYTlHpPm8fvvv6O2thbjx4+Pf1dZWYmRI0di2bJlmDJlSsbzBEFIirarr693fKzFQeIT6E1NMRGiKEDTdPNfKYSQK4oCVVURDDpPiM4wZl5rY6k5n3zyOmojGfbTmU7NoUFmulcEQUASpfRqFS7cViNVQNLGlNvF7CwSU2Ec6N/VKiIGEH9eErPIXJz7ktUgzaK2thYA0KFDh6TvO3ToEP8tE2bPno3Kysr4p6ampoBReMBmkBUJNg4PQ9O0pg0LUTLCEdDNntn9jlafi/TzNE2DLJspb2Vs/hiGAZGlP4NDy6r1BQKBrFpktrb0BlG4CRPNQtJw0WU7Ik0LsbomRoM6tKTEqoiQFIloJGo/0YIVFMFf6SkBec0118TV62yfn3/+2dUxzZw5E3V1dfHP+vXrLbRSooSFHoMkSeB5HgzDWDCpFm9zIopiHtNqrucinx0xGbIsI+hAUvgLL7yBC8+6KMMIskbZZEQ2v6LlupVGXikDt54g9Q1XrHydLf06eX5CO0766yiKQrgsDJZlvSUoE/yVAJzbKDjTrDXMmDED55xzTs5j9t57b0ttd+zYEQCwZcsWdOrUKf79li1bMGTIkKznxcKizSHVBrAnC0Z77CGiKELTtAJqNhbnHuhVOlBAZG22cWeeV0VRTJbuMnZ/KisrUF3drtDhZd0kBENBCLyQOcgqj1ktrxUhUdvKcahhgvOUdq1W6IiZSgtlmkk8185qIal9xEzQ0UhUnyuWda+KSI5x6f9IuHYbTbCeEpDV1dWorq52pO0ePXqgY8eOWLx4cVwg1tfXY/ny5aYiYY3BiwKxWD7GwvpSVQUcxyMUChX9ZbQCXaNzwu+YeV5V1Zl8hGOPPQIjDx0DUzpetoUqy/eqokJV1cz3Od8wjRhpiPwCJEakno+WLqnZJqJzs35BI9G2ZpFUZcOh1zwmKLkoB5IkdVJ4m4PCrCDVX6mhcF9t6a04TVi3bh1Wr16NdevWQVEUrF69GqtXr0ZjY2P8mL59++LNN98EoE/etGnTcOutt2LevHn47rvvcNZZZ6Fz5844/vjji3QVbqI0fIyJEEUxXgaqFIWjXk0jlzaXb2U0v3LSdLY0l8JWYVVVsW3r1swmNhOpHrkQKgvlrkRRYNSqflj+g6wQnOdl+cl3rg2+VL0x/X92FqHOhlBYJ0eXJRk8x7tbRSQfiJQNiMXpKL7Yt4hZs2bhmWeeif89dOhQAMBHH32EMWPGAADWrFmDurq6+DFXXXUVIpEILrzwQuzevRsHHXQQPvjgA2PmlDR4OeCmWLBv2xqJRBEKBT2Q9G8NsiyDJPMVQM43V+bmMhqN5niWC7svP/74CwYOHIe3F76N4SOHJ/0W36kb7TKHJifLMgLIrLll7ccMDEZBGiU4T0NMczFr5iSMCW/DzSUKB4f3xMGmvN5YuS2CJLzz3iZce5IJ1ujpWlG5hkoP9fX1qKysRF3dz6ioaFXs4aSgWLHn9kGWJZuKBxcXhv1YNiL7Ym7S1pkBkUgUb7+7BINGjkKbtm2MDcji45hz7gy0acQPZ9RXJ4kSFDUTr22uxi0KSSfhYpygJEqQFRkkQbpbRcQEGuoa0LemL+rq6lBRUZH1uNKzW/nIgmIIR3v3VrHqG4UJx+Lv9yKRqAGtw/5xalq2VAkr0bPJKCsLY9KR4zILx1xpGNmQ4/JzsrnYZEbNN4YYGJbRuVuNRrfqAzBVgDkbbI1OTQxUcvgVYVi97ipJ6dVTXK8iYgQGHxFfQLYYuCUc7Q/2UVUVkUgUZWVhk1RxqXB6k5D/JZckESzLGNAe7B2noiggCGdf5zdem4cVy1aYO8kCn2ooHMpb7Dfnghszo+aAGZ8hRVMIsAHjeZIJfcRp0yygEL9m5gbheP5kIhiGQTAYBMMwRa0iUgh8AenDJOxd2KNRDrIsocwIi0leOC0c87evKGqeNAv7A3P0fmUL6UjmcP+9j2Hh+wvTf8gTOZrt+2ybCIIgIGesRpJ8jJsgKRLBYNA4LV0TCIIo2LcY0yRtEy4uC0qKopKriES53MQQHkLJBunsmSgC11Ja3za1pqmIRrkC0zfcmgdj/TQ2RlBens887IxmKYoSWLbQfN3c+PLLd7FdMEk7ZvEWBYPBzPRzsWbz+RATQ/3zCVODx5mmpUscSwGIjcvOIJ7mxu1vMhtiVUQ0TYMoilAkBYFQoECrkbPwNciSQeJK46ZwtN+7z/M8RFGyIX3DrXnI34+xAsjObdezRw2aY+LJhWAwAJigljPURZbzSIpsqpuZpVkjGqTRyzOTu2iW4DwVhT4CDj1CMe3UDRMoQeisReHyMBRZJ0dXTNEjugdfQJYMihURZ1+/qqprjbHCrS0FmqZC0zQDwr6Qucy+cEmSlKNv++7fnDkv47LzL8v4W868u5w/Zf+RZdn89HNGfI0GYCaophAhqaHAwBuHloG4luqy6TpWRUTV1KJXEckEX0B6DqXlxDYKURQgyxJCoWCBrBtuzo+xviKRXPmHzsN6/Udzc1lZ2QrtshRNzmvuzPZTjvNohgbP5anVamQ9Nxi5aVZIBoNBS4E7RoKIig6Xx8cwDMLlYUADoo1RiELuIC234OdBmoSzeZCln8eYihhtl/WajWktwktzxHFcAfyw9kAURdcSs2vrRKhklr6y3Jp8/sJcv0uSBIqkQFI59vJ2PhImcxhVRYUgCtaeAZvyJZ0qf+VkWa18UBRF5+alKUesTQ31Dejb1c+DLDEUa+F3Zo8kimJ88bZvAXcrKCc/FEUpeoCBpmmQ8kR82gVFUbBty5acvsFMyBv8kuOeMgyTX4sEbM0XNBMMQ1IkGJoBzxsYY6a+TDK7ZGwmtbiwTXCjrFY2JFYR4aKctfm1Ab6A9AEnhI7OY6khEAiUII+qsfngOL7olFqyLBsIDrIHX3/9LQb1OQBrflqT+QCLxAD5FneKofLnPRqEISFiUijQDA2KpKyXgrLz9XNKkMXMwi4LSoIgEAqH4uZsnuddTREptZWrBaFYlm0t5f/2Qpb1mo0URVlIO8gEt+fJWH88zxtI6XAekiRbNNGZn9e+fXvh+ZceRU23zEXDCxFiua4hEAiAixjw9RmSfcbnygzhN8MypgnOUzorGLYTC6R1gKJplADigpLneXAc50pAj58H6RpSHSXFMKc6myoiiiJUVbU5YMXteTLAzymJRTetxpBbNuZyzpmf14qKVph05DjwRGaNNZfwyevPyuNHpBk6ty/TaOCLiTRisxsPywTnsXHZCRdc9cXyUYbDeg6qwAuQJRkURWXNly0UvgbpGoodWOLcG6OqKnieB0mSRY3mdAOqqkKSzBYlzgXrW3FN0/IIavvv9ysvv4lVX60y3R1BEHk1slwaKMMy+bXIYr9i0MdJkVThPrNCNTSn5yKBCalYcZ6BYADBUBAaNPAcn5ee0Ap8AdniEXMcOPPGSJIEjuMQDBaavhGDN02qMYiiaLPPz/p94Tje9UK199z1ED5a+JH9DeegngP032JaZE6Y0CINL+wmfW80Q5snOM/Wr9eR5765AZZlEQwFQYAAz/EQeItm7gzwTawtFjGh6NzDy3EcGIaxsTRVMVI4jPcniqJBgeTOddA05XoA1DerF2KXlMN86OCl0wwNjuPiJraMMMGeY9gfmSBQjQoDiqYQIHSC85CVDVUscEmzTwC5YhK1n3jLMBiWAQMmvmkHdMrCQubP1yBtg1e2e84/oaqqorExglAoZLMG4wEbWRZIku5fNXa97lyHXAR6rlAwkKOsVm4YSsTP8TNJkoZ8v7aWiYohJlBNtGuV4DzeZYzo3C6OcofSQZI70f/nyD0wCIbRy22xLAtBEAoqt+ULSNvghcXdec1Fjx6TPBHB6SYUxUzRXDtWhtxtKIoMhsklLJxZnR5++FnMuPTK7Afki1Yt8PmkqPz+PVPRnGbMpxaGXjB3a8wIZPftdFJ4ecA/CejPSjAYBMuylquI+AKyRcANu4aGxsZI0wNnF7NFMbVu430LggCaNhOUY8d9yN2GLCtgmFw5mM48C23aVKFN28x0c0D+BTFv6kSeYdM0bcxkZtTHaNYLYUFYFSwkE/sthXSQeEcJVoMivuqxKiLBUBCyLIOLcvk5fmPnOjw2H67A2ac9ZqYoLy+z0SFfTMo4432LoqgHiBj2PRrtvzAUw7wKAKedNhk33npt1t/zaYhGNMh8go0kyPyBGCaDR0xpOilCctrF0zD11Klph33x2RfoUtEFdbvrsOzzZejdqTc2b9qc9Fv/bv3TNOLVX69Gl4ou6FLRJen7F555AeNHj0fvTr3Rr6YfjjjoCDxwzwPGx50JLggur/DPEgQBlmURCocMVw/xBWRJwr0nrbExApqmEQzazdZSTJO0sb5j1eCNseWYEfj5jst/fxmmOPF1Ot3c1uxJ2vkuzUj+YZ6DGJYxZ0I1ADNE5YUgGAgmRbeWlZfhg3c+SDrmpedeQpeaZOH48nMv44ZrbsB5F5+HBZ8twFsfvoVLr7gUkUiksAG5+Rom+CeLTQHOBowxYPkCsqTgbMpGIiRJAs9zKC8v80xSvNvged7GfEczyH1/dfL34mwwli5dgcF9R+LP3/+03ki+tdFgIIkR1hozbDim/KMWGWVIigTLsPGcvZNOPQkvP/9y/HeO4zDv9Xk46dSTks5bMH8Bjpl8DE4961T06NUDffr1wfEnHY9rZl1jbgAeAEEQtnDQugFfQJYUnE3biCHS5CuxV2ssgbchAaIogKLMpFEYuS/2zIGmaSZ9ovaNY9Cgfnj+5cfQvkN7683bwGJjlKnG1ELskhmQoilQpL7pPHHKiVjxxQpsXL8RADD/7fno2q0rBg4ZmHROdYdqrPpqFTas29A8Vofgms/QC3GNeeDnQfqIQ5IkKIqCUCjoQH5dCbwNTdBNQEDAoBnGOLwyB9bH0bp1FSZOOgxCFro5oKmEU64+DJR5MppzKIlSfpoxJ6e9qe1FHyxC7069k35SlewRkxStC8iKigqMPXwsXnnhFUy/Zjpefv5lTDljStrxV15zJc4//XyMHDASe/faG8P2H4bDjjgMRx9/tP6u2mhYSoxAdYMEINaPW/2Zga9Behbualx6rpDOo1p61TfsRTTKOVClw2gIYn46NlUtrjb+0guv4ttvvs36e95FzkAAjRFzZyAQgKIaDFYyqUWa9ZGNOmQUFixdkPS564G78ndHEDhhygl45cVX8Ofvf2LVilWYfPLktOM6dOyAdxa/g8VfLsZ5l5wHRVYw/eLpOH3y6XrqglNyxa0gHhh4boqAPXsl9DTcSjbXq2/QNG1j+gbgDZOq+THwPI9AgDXxsppZeY20mS+9Q0YoVFy+29tv+z989vFnuQ/KNy02mGEBXZAZCdk344u0Qp8WDofRo2ePpE/Hzh3znsewDA4bfxi4KIcZl83A+Enj0aZtm6zH9+3fF+dccA4eeOIBvPT2S/j0o0+xbOkyAPbnHCamg7gaVOOFpaMJvonVM3A/7UEUxbjW6APQNNVESgdg7p7Zc39FUSpS4FAzfvjxEzQiB92bEdj0qIdCIb3yfJ5Asrgv0mHfnRUtKBQO4cRTTsQjDzyC519/3vB5vfvoJt1YfmXcTOkAnVyhBA8mO9NRRNq6GHwB6Rm49xQoigJZlkGSJFjWKeHoBXOJuTFEozzKysws/O4KR0DnXy02QkEW9VE1t1AykstvRKAYmDpVUaGqan7XgNlbYMBXmtR8Ab67q2+4Ghf/7WKUtcrMUHXN9GvQoWMHHHToQejUuRO21G7B/Xfdj7bt2mLY/sPSxmD7ZqAYr3MqOUIRxuALyD0MsZqNgUDAkzb/YiEa5UxW6bAz79FYezpNVvHtTw888CS+/nYt7n7w7oLasev5C5XpWmQgaNBFYPTWEdY0Jys5lSzLorpDNVRFzci4c/CYg/Hycy/juSefw66du9CmbRvst/9+mPvO3Mwm2Zgv1YSA9yQStckicIsQWrEzNksM9fX1qKysRF3dz6ioaGWxldiddu+Oa5oWZ4WxPwAl3gu8oTmag6qqkGXZwXmxBxwXRTAYyrPgGbkHhd2nOXNexjff/4qZN/2zmMNIQrQxilBZvrmxBkum0wKuTVM1vWqJKWuG/eMw1DYcbD9btzZEuzbUN6Bv176oq6tDRUVF1uN8DbIoIFL+7yxkWYYg6HUMnd1NFls4WlsNOM6sabU4oCjKwP0rPBAoH6ZOnYJNu/MUp3V+GEkIl4eNa5EmHxNLKQgF7H8TuVsLFpIuvO5up2e4mYbiR7G2cAiCAEWRUVYWduBhKn3jQyQS8YBwNDaPkpSF3s1lKIqCrbVbDBM+50ThmS9xZKW/S4UVoWXtJMuviC0E56lw8nUtwlIQvycO9u0LyBYKVVUQiUTBsiwCAScCcbxoTjU3HkkSPRLBm3/ciqIYZo/JjcJXkwULPsHQfgdgS+2WwrsyqGka8QSFy8JxCjdDMDMVFoWdBuusNDEhyUW5/AcbHYsDKFo6SFw+OtenLyBbIERRBM8LDmmNMXhNOJqD7pOVTfLMFk9jliTR5uLU1jF8+GA8P/dxVFVVFd6YCTJxI8dIomS8bxceYYIgClrACZJAIBBIIjgvZCyAs0LM1XSQWJ8Jkbt2X5svIFsYYtU3wuFimw2dw7ZtO3DJJdegW7cRCAR6oGPHIZgw4TR8/vlXAIDu3Ufivvsejx/fvftIEEQXvPzy2/HvolEOZWVh7LvvWBBEFzz99Nz4b//97w849thz0L79IASDe6N795E45ZSLsXXrDvcuMgXG6rzapbLlRnV1W0yYMDa/f8xGP6TRhS8UCjmuRZpdhAutFBIjOM9XKNrMeAA4s98r5r45RvBg43X5ArKFQJZlRCJRlJeXtXiquBNPvADffPM9nnnmPvzyy2eYN+8pjBlzIHbs2JX1nJqaznjqKV0IiqKIUCiIL7/8GrW1W5N8kNu27cC4caegTZsqfPjhi/jpp4/x1FP/RufOHeIk7vbC2NtsLP/RvYjo555+CT9890Pe44w1mP8Qo5oJSZGQzfpqTQpJK1aZmJC0KigpmgJN0YYqmBhFIeZfw30UI0kiITWk0P5LdiW97bbbMGrUKITDYcOmnnPOOSdeaiX2mThxog2jKW6wSmzhLn6wifPYvbsOn322HHfc8U+MHTsae+3VFfvvPxQzZ16OY489Iut5p59+Aj755Ev88cc6KIoCkiQxZ85cnH76CUmmy88//wp1dQ144om7MXToAPTo0Q1jx47GvffehB49uhkcpVm1JDd4nje46XHnOSQIArfcfA+Wf74893FGBbaNfkhAp29zMmDHKuJlniyCZmi9WLRNQjLRd+gU4hpdMZZIGzTKkhWQoijipJNOwiWXXGLqvIkTJ2Lz5s3xz0svvWTDaIpjV1BVNW4q9Ip/ymmUl5ehvLwMb731gamFokOHdpgw4VDMmTNXjw6Mcpg7dx6mTj0l6biOHashyzLefPN9i7tP+4OXSJI0eH/dew5/+30Fzr3o3NwHGRVqNvohAYBhGAi8SSFi9lY74O8yAoZlbBWSAJwXYARMbXAc6d8iSlZA3nTTTZg+fToGDhyY/+AEBAIBdOzYMf5p3bq1QyN0FtEoB1mWTbK/lD5omsLTT9+LZ555DVVV/TF69HG49trZ+PbbH/Oee+aZf8ELL7wJTdPw2mvvomfPvTBkyICkYw44YBiuvfZynHbaZWjXbgAmTToDd931MLZs2WZwhPYLKVvSKWxGKMgaWvAMa0xGrbEmtMhc5aaSYOWWWTS12oGYkLTLJ+mqACumsa2pbzPXWbIC0io+/vhjtG/fHn369MEll1yCHTtyB14IgoD6+vqkTzGhqgqiUQ6BAOt55hdnQODEE4/Cpk1fY968pzBx4hh8/PEy7LffxKRAm1QoioJJk8YgEoni00+/xJw5czF1anrdPQC47bZrUFv7DR555Hbsu+8+eOSR59C376H47ruf8ozN/q24F2vkAcBdd/4H1191ff4DbY4bMmq2ZVkW0agJn7FV1hurQqXAR4VhGdAUbUt0awzxYCKHhFjR0kHiA0gYh0HsUQJy4sSJePbZZ7F48WLccccd+OSTTzBp0qScO/TZs2ejsrIy/qmpqXFxxMkQBCGuNZpLT2h5CAaDOPzwQ3D99dPxxRfzcM45J+OGG+7JeKxeEklFWVkZzjzzRNxwwz1YvvwbnH765Kztt23bBieddAzuvnsWfvrpY3Tu3AF33/1InlE1bcVthCRJNuU/xmDPwtSuXRu0bl1loDej9lODHZuYXjZgTMuNw8LUWPZx2fCY0AyNABuwLU8ScDjCNbGfEkkT85SAvOaaa9KCaFI/P//8s+X2p0yZgmOPPRYDBw7E8ccfj3fffRdfffUVPv7446znzJw5E3V1dfHP+vXrLfdvFaqqguO4puobdi6WLQf9+/fOGWUaiwKdOnUKPvlkGY477ghDCzygayM9e+5lIIrV/lVFFCWDO14zdSkLx8UXn4kZV1+RvzebTaxmwLIsoo3Oa5GWkUjEbREkRSIQCNjLuGPDuAz34XF4KrJjxowZOOecc3Ies/fee9vW395774127dph7dq1GDduXMZjAoGAzTt4c9BrNmoIBoMOm9o8UHwtJ/Tglx07duKkky7C1KlTMGhQP7RqVY6VK/+LO+98GMcdNyHtLFHUgxliUaD9+vXG9u3fZfXdvvvuQrz88jxMmXIs9tlnb2iahnfeWYT585fgqaf+nWeM9s8dyxqt/ejufZNlGVs2b0aHrt1sKVllavgm4qAYljFtpnaTd9UOkBRpH3drDAk5n06b+GNavhddCZ4SkNXV1aiurnatvw0bNmDHjh3o1KmTa30aRWL1DXcEtPcezmTo4ysvL8PIkfvh3nsfx6+//glJklBT0xkXXHAarr328qQzFEWBpqW/eG1zVGzv338fhMMhzJhxM9av34RAIIDevXvgiSfuwpln/sX+y8oBffze5Lt9++0P8Ze/XIjvfv8uc7klCzC8GBPGj2VYBlyEQ7jcuOBwfaG2QcDaSnCeMC4ChOPCP82s66GlqGTLXa1btw47d+7EvHnzcNddd+Gzzz4DAPTq1Qvl5eUAgL59+2L27NmYPHkyGhsbcdNNN+HEE09Ex44d8euvv+Kqq65CQ0MDvvvuO8NCyJ5yV7khSRIURQHLsi0+6d9J8DzvUt1LsyuIsePtH799K11t7VYs+fRrjBwzBqGQPZHUTmkroiCCYRlz5l4rwyi0/qINt8fWUllJDTf93w3h5YI23uLLXc2aNQvPPPNM/O+hQ4cCAD766COMGTMGALBmzRrU1dUB0EsFffvtt3jmmWewe/dudO7cGUcccQRuueWWoppQU5FoUt2zUdhbIgiCwfJQdsBsH8aOLzSx3Gq/RtCxY3scPmEMJNL7aUY0Q4PneISMpkRZnaaYxlUIbNIkuShn/HoNNWxfU/mgQQOhOU9iYAQlq0EWC05pkIoiQxQlsCy7x0eoFgpFkaEoqoU0GG9VKIlEogbZkdwft6IouO//nsZ+ow9Cn359ch9sZnhGjzV5yaIggg2YfB6K8TjYpKmpigpBFGzT7uMoVEs2251DVgWjGqRvv/MARFFs4gf10zd0FLZni200zMM7wlFRFASNFP8FUIxxkySJWdfNxsrlK/Mea6aahZm0EFMJ35SFxHqryfOFsOzYFEFqN8F5HHZoyaa6K+47WbIm1pYATdP9BYFAYA9N+s8G6y9FjETBGpxWGYy3Lwiip1mSCILA+o2rwVPlho51agxGQdO0JUYitwslx87XNK1g4UDRFFRVhSAI9rqR3JRZRd6z+hpkkSDLMqJRDuFw2CWtsViMwWZQ2PgURQZNUwXMp9NvowkGD9I72mw2hIKMrRU7APPC1JQWaYWezeJtKLTEVaHnx+AId2sK3PLSFVINxSp8AVkERJuYL9yrvhHTXLy+6BY2PuumVStw7kX1Kr1cKm679T7c/M+b7W/YxNSa0bIYlrEWFW7VWlpgJQm7ahu6ISTdQDxozcW9vi8gXYSqqmhsjCAcDrlUfSP2JHl/sS0UjY2NLkf+OjengiA49HzYu6pUV7c1zEZkarqcOhb65sO0oLDqi/QQGJYBRVL2+yRRpLzRQs3YBuH7IF1CNMqBpimUl5e52GvLF4yAnjfqPNNQoTC+USFJ0iGzu73zc8UV52PDLtHWNgE4uqcLBAIQRfNjtuwPLJQEIDFop8A5oRkaBEGA4zj7o1tjcHE/7kY6iK9BOg4NjY0RhEJ+IE5mFL4NlCS5BOphGn+LJclgsV8AxfQrS5KE2k2bjB1sod6iI8dCt+RIomTupCLvvTTYU2WDov+/vXOPjqq6/vj3zsy9M3mQxCCQ8CwBTBCoDzQ00CWJpgZq/YmitZa6UPFFYyuNP1jQ/hSl5QcKmt+qRbSKAdG21loftVaKAlqRh0KogpASRIRAgoIkYTKPO3PP748wYwYmYe6959y5k+zPWrMWGc45d98z5959zj5n7+3kHuC8I7zkTAQrsoOQghRIIBBAIBBAZmYGJIm6Oj7m3jwRk7V1iN0AYYxFA6snRvLe3C+++DouHT0hsZetHjOlkbgLOn4Sj8ejy/UkguFUUB3imhqlozIwi8PpgMfj4Rvg/BRROS2et4lyB6G3tgAYY/B6vXA6nXC7rdwXS4WTqvwIBAIWHnSKYOSwU+K/STAYTBlLQ1nZeLzw5xVwJqjQdQcA14PO8uFwWLfbhyklJdkrGHfH2K1iLgDTkwLd1xOA3e1SKYeqqtC09tyD1mOfB1A0mhaGpmlJeOkY2WRJvHwoFIbbnRq/44AB+Sj/Xg5CzgQVuoiIOgZJS0uLhiPUhcWRZEQiJMB5zAXaV3ZWn8rmmR2EVpCciDj9M8Ysju3as1aNEdra/OIOGnSJ2AddllNnzhoIBLDq2edRv7eef+PiFulRtJAGTdP0VTK7EuSwquLpDyh8JQnrV8483UFIQXJAVVUEg4EkRcRJBf/Gjph/sP1+v8Wnga0hFArpfPEld2LkcDjwq7kL8fH2jxOrIFLpGdj3SstIQ0jXgahvMB1KzgS8g9hLDgkej0fYwR0AyRmqHNxBUme6alMCgcCpnI09PftGoph7sEMhNYXMW/rshOFwWKf1Ibn9IMsyjhzdiUAC4eai6OkSwfuQABBSQ/qDmMPcqii6urHRMHY4HVCU9titQvyJk3ivkZO1Rn4zWkEaJBRS4ff74Tw1sKyl55lUgYiTd9CkCdto3xk9vqjjCkynuc8GeNwucQcxjMQJ1ylLemY6ggGDvpwm461yeYw5HoRxupxwOV1CggmcgYWvsI4rbr19RQrSIOFwe85Gl0tOwtVtNPW0kGAwgPR0s4cJzHpsi0PTUm/i8+ADS/Dwrx9OvILAKDntVfRX0u0T2ZFk/2Scs2u4ZBecDqc1YemS0Hd6+4oUpEGMZ4wgjBAMBuFwmEmAnOw3WdfoN6/qRcz99+3bG9nZ2ULaBqBbbCP+jemZ6cYUglm9xGsVydnv0JLYrck6OqHzmrQHSQjG/GZLxGfN3KlVe7uD+P2ifTrF3P/s2T/FweM6TJR6h4NOsY1MoCRJQigYMj5BscN+otmQdqchKzLUoMo/VdbpcEoQLQpaQdqeVHfjMD/yQ6GQxYHIeaDvvvVFz7EPqqqi6ciRhMvrXeEZTVisl7T0NKiqAVMrr1Ukh0fcyOq5K0QGOI9iYeBxI5CCtD2p5sbBl3bTqiNJJ1etzHOn94COPd4oNTUvYty3v5twVBq9v6Oh393AC9fhdBg/rGM22wenR5xXDsmOuGQXZJcMn0+gCwjAdaLAE1KQhG1RVRWMMchyMg5CAcbfWvqe8vbwcnrNWBZ40idARUUpVr/4jK4Xs+6XuPgDxAAAt8eNcEhf+LlvLmePSWx0QsHx544EOBcZTABA+0QD1idF7gragyQ4w29TQdM0i6MS8UL/KslQIl99VxHS6pAhA+HJ7o2wM/FXiW5lYpHucblc8J70IsNIEAqJQ6JrnmHsOPeZw+kQG5buFDERcGww56AVJMGRyKg2P7LbfUyTuS9n3Sw2aMbNIMm0tfmwasXzOLD/QOKVdA4PQ1k0DP58iqKAGXS3MW3itIFC6AorwtK1X0hs83ogBUlwhM/IVtX2fUfzOR7NenKLpz12b+q6DIXDYfxq7m/w6c5PhV3DUBYNgwc/ZEVGW5txBWB29RddQdmUnqYkycRKcICfPYQxdsq0yuPUqk2esi4wdozeJvYnAJmZGThydBeCLkHh5szUMdhFsmJ8z5tL5gqeLhsC3CgiStLX5kOaBblYGWPtZvkkDHlaQRIc4DdyfT4/ZDl1V1R6MfZCtYdyBNpXPG5FpyncyKlPC29ZURR4T3oN1RVxktQUkTM7nGWSHBLcbrf4060waEHgBClIwjYEg0HIssuCAyv2Ibn7rHz41bz/RfXD1brqGFplGXnHG9QLLhNpx7goSZ6+gZIY063D6YAiK9bEbgWSYnruOW8iwvYk16XDelQ1aNFqQ+w1+vTJRVZ2lr5Khvz/9Vcy6jyvKAraTprbi7TVSlIQkQDnlsRulfjmwkwE2oNMCvbZQzIHv/s4edLbLXM8dgVjsMiNRexY+5//mYVDJ4zlVRSN0f1ASZJMrSK50HEVyeMn5ByOLoJLdoEFmfiwdEBMVg4rgofQCtJySDmejt/vR1paqoWSM0/IkFO6/VYlqqqi8fBhfZUsfASMrjicLqepJMLc/Bl59pWgsG6WBDjvQGSFLno1SQrSclJdOfL14o0M8OTvxZl50IzVdTiM9KH9xs8TT6zCZZdeLjxCjpnVoJGfyOl0mh6XdjWzipAroiSt2pOUJEl4BCMysQqnu6wYI/C9F6+3zSamVWt/o1BIhWzIhGe/8fRf/3Ul+g4cYsm1DJvWDHaZw+mAz+cznEkmqpzN/mS8o+wIilYjKzIkVYLf77cmwYDgR4EUpHDs9TKzE21tPsEpnqxC/28cCKgG791+46mgYAjSz+kLTefLm4HpXgFYHbTe5XJBC+sNJB+Lkfs8AwmQGL97FxnSzXXqJLpVfpJRBNwLmViJpKBpYbhcZhIgpzbGVo/2pKWlFauefR4NBxt01TPq6mHEPGjGpChJkqm9NW4nWnnvHwpMFORwOuB2WxDgvAMiAp2TghSCPfcd7ERbmw+K0nMCAnRE07SE00OZR/xY9PsDuH/eQtTtrtNX0WCWDqNJkY12hZnIOtHrg5Mfoo1zJ55OxwDnViBJEnd/z+4zjSVShrY2HzIzdYQm62aoqmphlhLxK/Q+fXrj8NFdCDot2ks2akoz0RWSJCEYCEIxGjc3hRQbTzrGbhWZBST2ot9YDMxaqFJyBfn5559jxowZGDp0KNLS0jBs2DDMnz8fwWDXCU/9fj8qKyvRu3dvZGZmYurUqWhqahIgYc80GyZCu3LomSvHjhiLFmTPN6wkSVBkA/dj9DFJwuOlKArf2KhmEKFsBQ4tywKcd7wmp9VkSirIPXv2QNM0PPXUU9i1axeqq6vx5JNP4pe//GWX9X7xi1/gb3/7G1566SW8++67OHz4MK677jqLpCY0TUMwqNrApSO5GPN/BOw88frvqgfxxP89obue0T0jw3tNJl6YTGNQzaQms+/P941sghRlxwDnlmKyz1PSxDpp0iRMmjQp+ndBQQHq6uqwfPlyLF26NG6d5uZmrFixAn/4wx9w+eWXAwBqamowcuRIbN68Gd/5zndMSGS/o/d2JBAIdJNTq8ZhjEHhsKel44qwYmz27dMbvbJ66a5n9HRnMg53uT3us1qpzgovsXlH2enQrqgoNR0DnBt1mzGECReZlFSQ8WhubkZubm6n/79t2zaoqory8vLod0VFRRg8eDA2bdrUqYIMBAIxJ9haWlrilCLleDaCwWCPPZTTEZ/P6qhB1ozNBQv+G4dOGFgZGxUvCfuQQHv+y3A4bMoKwk0BCfppRTrfdwxwbomfJNB+sMvgPaWkifV06uvr8fjjj+Ouu+7qtExjYyMURUFOTk7M9/369UNjY2On9RYtWoTs7OzoZ9CgQbzE7jGEQiFomsbJtGrPfbhEcTikbunaEgwG0aQ33JwZTHShGVeAtLQ00yeQef/+3KPiCD5Q5HQ54XQ4LQtLdwY67s1WCnLu3LnRzdXOPnv27Imp09DQgEmTJuGGG27AHXfcwV2mefPmobm5Ofo5ePAg92t0d1RV5ThbtINySSUlbY2s1dVPo2LiVforWh/hz/ThjZDaPuEzA2OM208jQUDmECM5O3VgdezWM0jw1mxlYr3vvvtwyy23dFmmoKAg+u/Dhw+jrKwM48ePx+9///su6+Xl5SEYDOLEiRMxq8impibk5eV1Ws/tdlt4JL/7EQgEuqFp1ZiSVlU1CbkurZlQXH/9VRhyXpH+imYyTJhZRZqIbpOekW46cwXXVSTnKDsxCNzClhUZalC1JAtIDFLiadBspSD79OmDPn36JFS2oaEBZWVlGDt2LGpqas764hk7dixkWcY777yDqVOnAgDq6urwxRdfoKSkxLTsxJkEgwFIktTNTq0af2MwpkFRuudka8SIAmSem29sUWT1PiTMK6hQMARFUcy1Y/NUVlZsBciKjJAasnZPEonfm61MrInS0NCA0tJSDB48GEuXLsWXX36JxsbGmL3EhoYGFBUVYevWrQCA7OxszJgxA1VVVVi/fj22bduGW2+9FSUlJSZPsBLx0DQNjIFWjx1QVXvmTOTB8eNfY9Uzq9HUaMCv2KglL0n7kACQ0SvDnMsHkDKprETjkl2QXTJ8PotdQBLAVivIRFm7di3q6+tRX1+PgQMHxvxfZOCrqoq6ujq0tX3jnFpdXQ2Hw4GpU6ciEAigoqICTzyh33ereyHGhsL31Kpd3GjMyeFydaeVdCwtLSfxwK/+F8NHjUa/vH7WXdjgT8Ijy4YaVI1H1umIXYZ3V/DMJhIHp8sJt+S2PsD5WZCYXROW2ZSWlhZkZ2ejuXkPsgz4ffUEIr5i9ls9Ju9NFNl/7F7m5m9gjOGrE21QXXZIXWYNjDEuSpK336EoP0ZR7cZcQ2Pw+XzCw9K1trSiaGARmpubkZWV1Wm5lDSxEvYlcrrPfsoRSOY0XVVD3VY5AibCzcHkic4kTu8lSTJvZoX5U7VntCdonHPLStLVNZIQlq4rSEH2WMQMdL8/AFm2MlJMamDOvJoaRp6fVc7DiuUrdNczvSpJgqtIhLT0NIRCHPaWRexFChg2PU1JkoLskYgxNfr9fiiKzNEMkxqK4WxommYi/ipg7pindfTr2xuZWcaytCR67P4Mkrx353A6EPBx8uVLkVyPQvwuT7+GTZRkSh7SIcwgRjlqmgaHwwGXi+eQsvvJhcQIhUIWh5eLYG3/LV78SzS0GHOgNzWpMnObHLrIneZGOBSG0+QhLDO+mZ22KWLfUKTfZcfLOCR4PJ6kHtyhFWSPQ8zA9vu7Y0AAPoTD4W4ZXu50VFVF05HOwzZ2SRLNpGZxuVzw+/2m2+G9FwkIXO0Jzv4RweF0wO12c+lfQ9dPylWJJCFmNHu9Xng8vB3gu4d5tSexcOFvMeXKa62/sA3yNCqKYjr8HAD+81cTgboTwbBpXAcOpwMuJ59JiF7IxNqjEGFaDUNRFAEh1Oyy4jJnkmaMmTQ7p4KTXDvTpl2H0WMvMVbZ7C2a7Caz5k1ZkeE96UVGJh83F66mUQFRdqJNW2QZcckuMMYsD0tHCpIwhc/HO8cjzyc5+cqlrc2HdFP7J6mhHAGgqGg4svoOMFzflFIw2U08XvQyxzyfIvYNbfA4mCIZsVvJxNqtEWv+OHnSKyABst2Uo7k2ZNnVI/YfAeDLL49h5TPP4dhXxwzVN2UKNDnUeezTKYoC70mv6XYAsZk0hCDIreR0rM4CQgqSMISqqgJOZvI+524W8/KYzR1oHOtfsF9+eQwP3b8YB/YfMFTf1H6WyfRMvA7I8FpFCplUiUxhdUpcKxS7rMhwOpyW7EmSibVbI27lEgyqNl498sKcPKqqcnZ70YP1fTly5AgcbNyJkMFwc2aVgtnDKDzcLGRZRpu3jV+oNN4ZOk6dahWlgCVmPsZtIrhOWWZ8Ph/S0sS5gNAKktCN1yvCtGpHzM2GGWM9KqqQmXBzAMybSU02wENpSJJk2h8ytkF+TUXak8DfnaRj+1bhdDnhVtoDnIuCFGS3RJyZIxAIID29JyhHwOzTHuQQpzPVuHNGFVY/u9pYZZPpmrisiniYWWUZPi/Hlzbvx1lglJ1o+xZZ+B1OBzwej7CIO6QguyViRr+madA0rcccOjGLYno/KsUOagDI69cHmb2MhZsDYHro2uFwi8Ph4LuKBIQMBaF9ZaGSFBmWjvYgiYTx+fw9xLRqnkAgwGH/MfUmIo8++gAaveb8RpM6AePleuiQ4Pf54eFxkE2QshG6H2kxHZUkz1RZtIIkEiIQ8Jv057OC5K8eIjDGunV6q85Q1SCONhoMNwfzB21ERo3RgyzL/INnCDC1Cu0vi8LRRS93Skny3JMkBUmcFVUNQpIcAmaaIjZX7EF3mJUb4f77l+KGH9xovAEbeOeYyk/ZAUmS+PnriRpOVplCLVSSbrcbPh8fJUkmVqJLNE2DqoYFrR5FKNwkxyzDN3u1PZHbbrsR3ymdaLg+Y6dcLYz+BBxe+Dx9IoOBoPmGIohWkiLbtxCH0wFFVuD3++HxmDNxk4IkukRMQABAzBOZ/Mg5QCS9ldkJRWrGBRs1qhA5+YMN1+einOwxDKLtBANBKG5OmW5Sc1hYjtPl5BK7lUysKYt4m0UwGIQkSYJMq933KTeXHDmCmf5J3l7skSNNWPn0czjx9QnDbZjOEMHh9nmd8FQUhW/GC4GrPDucAOaJS3aZDktHCpKISzgchqZpgnI82lU58nlBOBw8zLypyeHDTVjwwGIcbjhsuA3TEzIOw4tnbkamMQSD/EytvPZIT0dY7sgOWK2EzcZuJRNryiJWyYRCqsCI+XZdQZqXSdM0OJ1m551m5Uhe31588Rh8cWQnwrKJtE/22ErmEnoOADxpHq4KUtgBMAtCxUVkt9K9JJIFxMieJK0giTMIBPxwOJyCBrBdlSPAY1ru8/nhcvWc8HKnYzrcHDdBODTBcfyHw2G+getFhoqz4PGUJPGr1Y7Iimwo6bINRjJhJ0KhECTJISiGKG/laD83kZ6U3qozpv+kEi++8KLxBmzg6hFthtNLPC0tja+CFDzErFBeVvusumQXFFnR5SdJJladRAZOS8tJq68MK6Z2fn8AHo8bfj/vfGsi5LdfcmWvt63HRxvq3fscOJ1OtLa0JlsU83AcYm1tbfB4PHwDCIh6LVhl6EmCQUkLa9GcpWebCEisux1dEsyhQ4cwaNCgZItBEARBmOTgwYMYOHBgp/9PClInmqbh8OHD6NWrV1JMaS0tLRg0aBAOHjyIrKwsy69vFJLbWlJVbiB1ZSe5rcWM3IwxtLa2on///l2u6MnEqhOHw9HljMMqsrKyUmowRyC5rSVV5QZSV3aS21qMyp2dnX3WMnRIhyAIgiDiQAqSIAiCIOJACjLFcLvdmD9/vkAnfjGQ3NaSqnIDqSs7yW0tVshNh3QIgiAIIg60giQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIgiCIOJCCtDkLFy7E+PHjkZ6ejpycnITqMMbwwAMPID8/H2lpaSgvL8fevXvFChqH48ePY9q0acjKykJOTg5mzJiBkye7jmFbWloaTdIc+dx9991C5Vy2bBm+9a1vwePxYNy4cdi6dWuX5V966SUUFRXB4/FgzJgxePPNN4XK1xl65F65cuUZ/ao39Q8P3nvvPVx99dXo378/JEnCq6++etY6GzZswMUXXwy3243hw4dj5cqVwuU8Hb1yb9iw4Yz+liQJjY2N1gh8ikWLFuHSSy9Fr1690LdvX0yZMgV1dXVnrZfsMW5EbhFjnBSkzQkGg7jhhhswc+bMhOs88sgj+O1vf4snn3wSW7ZsQUZGBioqKnSnejHLtGnTsGvXLqxduxZvvPEG3nvvPdx5551nrXfHHXfgyJEj0c8jjzwiTMYXX3wRVVVVmD9/PrZv344LLrgAFRUVOHr0aNzyH3zwAW666SbMmDEDtbW1mDJlCqZMmYKdO3cKk5GH3EB7xJGO/XrgwAELJW7H6/XiggsuwLJlyxIqv3//flx11VUoKyvDjh07MGvWLNx+++1Ys2aNYElj0St3hLq6upg+79u3ryAJ4/Puu++isrISmzdvxtq1a6GqKq688kp4vd5O69hhjBuRGxAwxhmREtTU1LDs7OyzltM0jeXl5bElS5ZEvztx4gRzu93sj3/8o0AJY/n0008ZAPbhhx9Gv/vHP/7BJEliDQ0NndabOHEiu/feey2QsJ3i4mJWWVkZ/TscDrP+/fuzRYsWxS3/wx/+kF111VUx340bN47dddddQuU8Hb1yJzp+rAQAe+WVV7osM2fOHDZq1KiY72688UZWUVEhULKuSUTu9evXMwDs66+/tkSmRDl69CgDwN59991Oy9hljHckEblFjHFaQXYz9u/fj8bGRpSXl0e/y87Oxrhx47Bp0ybL5Ni0aRNycnJwySWXRL8rLy+Hw+HAli1buqz7wgsv4Nxzz8Xo0aMxb948tLW1CZExGAxi27ZtMX3lcDhQXl7eaV9t2rQppjwAVFRUWNq3RuQGgJMnT2LIkCEYNGgQrrnmGuzatcsKcU1hh/42w4UXXoj8/Hx873vfw8aNG5MtDpqbmwEAubm5nZaxY58nIjfAf4yTguxmRPY4+vXrF/N9v379LN3/aGxsPMOc5HK5kJub26UcP/7xj/H8889j/fr1mDdvHlavXo2f/OQnQmT86quvEA6HdfVVY2Nj0vvWiNyFhYV49tln8dprr+H555+HpmkYP348Dh06ZIXIhumsv1taWuDzJZ741mry8/Px5JNP4uWXX8bLL7+MQYMGobS0FNu3b0+aTJqmYdasWZgwYQJGjx7daTk7jPGOJCq3iDFO2TySwNy5c/Hwww93WWb37t0oKiqySKLESVR2o3TcoxwzZgzy8/NxxRVXYN++fRg2bJjhdns6JSUlKCkpif49fvx4jBw5Ek899RR+/etfJ1Gy7klhYSEKCwujf48fPx779u1DdXU1Vq9enRSZKisrsXPnTrz//vtJub5REpVbxBgnBZkE7rvvPtxyyy1dlikoKDDUdl5eHgCgqakJ+fn50e+bmppw4YUXGmqzI4nKnpeXd8aBkVAohOPHj0dlTIRx48YBAOrr67kryHPPPRdOpxNNTU0x3zc1NXUqY15enq7yIjAi9+nIsoyLLroI9fX1IkTkRmf9nZWVhbS0tCRJZYzi4uKkKad77rknelDubOn67DDGI+iR+3R4jHEysSaBPn36oKioqMuPoiiG2h46dCjy8vLwzjvvRL9raWnBli1bYmZXomUvKSnBiRMnsG3btmjddevWQdO0qNJLhB07dgBAjLLnhaIoGDt2bExfaZqGd955p9O+KikpiSkPAGvXruXSt4liRO7TCYfD+OSTT4T0K0/s0N+82LFjh+X9zRjDPffcg1deeQXr1q3D0KFDz1rHDn1uRO7T4TLGuR75Ibhz4MABVltbyx566CGWmZnJamtrWW1tLWttbY2WKSwsZH/961+jfy9evJjl5OSw1157jX388cfsmmuuYUOHDmU+n89S2SdNmsQuuugitmXLFvb++++zESNGsJtuuin6/4cOHWKFhYVsy5YtjDHG6uvr2YIFC9hHH33E9u/fz1577TVWUFDALrvsMmEy/ulPf2Jut5utXLmSffrpp+zOO+9kOTk5rLGxkTHG2M0338zmzp0bLb9x40bmcrnY0qVL2e7du9n8+fOZLMvsk08+ESYjD7kfeughtmbNGrZv3z62bds29qMf/Yh5PB62a9cuS+VubW2NjmEA7LHHHmO1tbXswIEDjDHG5s6dy26++eZo+c8++4ylp6ez2bNns927d7Nly5Yxp9PJ3nrrLVvLXV1dzV599VW2d+9e9sknn7B7772XORwO9vbbb1sq98yZM1l2djbbsGEDO3LkSPTT1tYWLWPHMW5EbhFjnBSkzZk+fToDcMZn/fr10TIAWE1NTfRvTdPY/fffz/r168fcbje74oorWF1dneWyHzt2jN10000sMzOTZWVlsVtvvTVGse/fvz/mXr744gt22WWXsdzcXOZ2u9nw4cPZ7NmzWXNzs1A5H3/8cTZ48GCmKAorLi5mmzdvjv7fxIkT2fTp02PK//nPf2bnnXceUxSFjRo1iv39738XKl9n6JF71qxZ0bL9+vVj3//+99n27dstlzni/nD6JyLr9OnT2cSJE8+oc+GFFzJFUVhBQUHMWLer3A8//DAbNmwY83g8LDc3l5WWlrJ169ZZLnc8mU9/X9hxjBuRW8QYp3RXBEEQBBEH2oMkCIIgiDiQgiQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIm1NaWopZs2YlWwyC6HGQgiQIIiFuueUWSJIESZKgKAqGDx+OBQsWIBQKRcs0NjbiZz/7GQoKCuB2uzFo0CBcffXVMemT3nvvPVx99dXo378/JEnCq6++moS7IYizQwmTCYJImEmTJqGmpgaBQABvvvkmKisrIcsy5s2bh88//xwTJkxATk4OlixZgjFjxkBVVaxZswaVlZXYs2cPAMDr9eKCCy7Abbfdhuuuuy7Jd0QQnUMrSIJIIQKBAH7+85+jb9++8Hg8+O53v4sPP/wwpkxrayumTZuGjIwM5Ofno7q6mpuZ1u12Iy8vD0OGDMHMmTNRXl6O119/HQDw05/+FJIkYevWrZg6dSrOO+88jBo1ClVVVdi8eXO0jcmTJ+M3v/kNrr32WtPyEIRISEESRAoxZ84cvPzyy1i1ahW2b9+O4cOHo6KiAsePH4+WqaqqwsaNG/H6669j7dq1+Ne//oXt27cLkSctLQ3BYBDHjx/HW2+9hcrKSmRkZJxRLicnR8j1CUIkpCAJIkXwer1Yvnw5lixZgsmTJ+P888/H008/jbS0NKxYsQJA++px1apVWLp0Ka644gqMHj0aNTU1CIfDMW1de+21OOecc3D99dfHfP/GG2+gsLAQI0aMwDPPPNOpLIwxvP3221izZg0uv/xy1NfXgzGGoqIi/jdOEEmCFCRBpAj79u2DqqqYMGFC9DtZllFcXIzdu3cDAD777DOoqori4uJomezsbBQWFsa0de+99+K5556L+S4UCqGqqgrr1q1DbW0tlixZgmPHjsWUeeONN5CZmQmPx4PJkyfjxhtvxIMPPgjKu050R0hBEkQPpLS0FL169Yr5buvWrRg1ahQGDBiAzMxMTJ48Gf/85z9jypSVlWHHjh3Yu3cvfD4fVq1ahYyMDIwYMQKSJEUP4hBEd4AUJEGkCMOGDYOiKNi4cWP0O1VV8eGHH+L8888HABQUFECW5ZiDO83NzfjPf/5z1vYPHz6MAQMGRP8eMGAAGhoaYspkZGRg+PDhGDx4MFyubw7B5+bmoqKiAsuWLYPX6z2j7RMnTiR8nwRhF8jNgyBShIyMDMycOROzZ89Gbm4uBg8ejEceeQRtbW2YMWMGAKBXr16YPn16tEzfvn0xf/58OBwOSJIkVL5ly5ZhwoQJKC4uxoIFC/Dtb38boVAIa9euxfLly6Nm4JMnT6K+vj5ab//+/dixY0f0ngjCLpCCJIgUYvHixdA0DTfffDNaW1txySWXYM2aNTjnnHOiZR577DHcfffd+MEPfoCsrCzMmTMHBw8ehMfj6bLt/v37x6wYGxoaYvYyz0ZBQQG2b9+OhQsX4r777sORI0fQp08fjB07FsuXL4+W++ijj1BWVhb9u6qqCgAwffp0rFy5MuHrEYRoJEa76wTRrfF6vRgwYAAeffTR6EoTADZs2IDf/e53+Mtf/gKg/ZDOyJEjsWHDBmRnZ2Ps2LH44IMP0Lt372SJThBJhVaQBNHNqK2txZ49e1BcXIzm5mYsWLAAAHDNNddEy5SXl+Pf//43vF4vBg4ciJdeegklJSV49NFHUVZWBk3TMGfOHFKORI+GVpAE0c2ora3F7bffjrq6OiiKgrFjx+Kxxx7DmDFjki0aQaQUpCAJgiAIIg7k5kEQBEEQcSAFSRAEQRBxIAVJEARBEHEgBUkQBEEQcSAFSRAEQRBxIAVJEARBEHEgBUkQBEEQcSAFSRAEQRBxIAVJEARBEHEgBUkQBEEQcfh/L5i40xqjZ9UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_power_colors(p1, p1e, p2, p2e, plot_spans=True, configuration=configuration)" + ] + }, + { + "cell_type": "markdown", + "id": "848abff8", + "metadata": {}, + "source": [ + "Here, acronyms indicate the spectral state (Low Hard State, Hard InterMediate State, Soft InterMediate State, High Soft State).\n", + "\n", + "Comparing with the results from [Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract), the source is right in the region of overlap between the soft state and the hard state. However, what distinguishes the states is the amount of fractional rms. We can plot the rms versus the hue, and it is immediately clear that the rms is far too high for a soft state. We overplot the approximate of rms in the various states from [Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "8c229dd5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMVUlEQVR4nO3de3RU5b0//ve+zN57JpNMEgIJYCBcrJcaCA2SRr8Wz88oth5bq7XRaqE5li6tWo+prVCPIOpprLaUrkqlKmgvnoLtUdtTKbWNYLWNUkGqqIAXIGCTkGQyM7nNff/+2J2BIRcyyczsubxfa82SzOyZ+WQ7JG+e/XmeR9B1XQcRERFRlhDNLoCIiIgokRhuiIiIKKsw3BAREVFWYbghIiKirMJwQ0RERFmF4YaIiIiyCsMNERERZRWGGyIiIsoqDDdERESUVRhuiIiIKKukRbhZv349KioqoGkaampqsHPnzhGPvfDCCyEIwpDbZZddlsKKiYiIKF2ZHm62bNmCxsZGrF69Grt378b8+fOxZMkSHDt2bNjjn3nmGbS1tUVve/fuhSRJuPrqq1NcOREREaUjweyNM2tqanDuuefi4YcfBgCEw2GUl5fj1ltvxYoVK075/HXr1mHVqlVoa2tDXl5essslIiKiNCeb+eZ+vx+7du3CypUro/eJooi6ujq0tLSM6TU2btyIa665ZsRg4/P54PP5ol+Hw2E4nU5MmjQJgiBM7BsgIiKilNB1Hb29vZg2bRpEcfQLT6aGm66uLoRCIZSWlsbcX1pain379p3y+Tt37sTevXuxcePGEY9pamrCmjVrJlwrERERme/IkSM47bTTRj3G1HAzURs3bkRlZSUWLVo04jErV65EY2Nj9Gu3240ZM2bgyJEjKCgoSEWZREREWSkQAA4fBkQRkJOcKFwuDy64oBz5+fmnPNbUcFNSUgJJktDR0RFzf0dHB8rKykZ9bn9/PzZv3ox777131ONUVYWqqkPuLygoYLghIiKagEAAsNsBVQUsltS851haSkydLaUoCqqrq9Hc3By9LxwOo7m5GbW1taM+99e//jV8Ph+uv/76ZJdJREREGcT0y1KNjY1YtmwZFi5ciEWLFmHdunXo7+9HQ0MDAGDp0qWYPn06mpqaYp63ceNGXHHFFZg0aZIZZRMREVGaMj3c1NfXo7OzE6tWrUJ7ezuqqqqwbdu2aJNxa2vrkK7o/fv345VXXsELL7xgRslERESUxkxf5ybVPB4PHA4H3G43e26IiIgmIBAADh5MTc+N0+lBZeXYfn+bvkIxERERUSIx3BAREVFWYbghIiKirJKz4cbrNbsCIiIiSoacDTf9/WZXQERERMmQs+HG7QaCQbOrICIiokTL2XDj9QIDA2ZXQURERImWs+HGYgFcLiC3VvkhIiLKfjkbbqxWoK8PGBw0uxIiIiJKpJwNN5Jk/Le319w6iIiIKLFyNtwAxuiNxwP4/WZXQkRERImS0+FGVQGfj9PCiYiIsklOhxvACDguFxAOm10JERERJULOhxur1ZgSztEbIiKi7JDz4UYUjZvHY3YlRERElAg5H24AwGYzpoVzvykiIqLMx3ADY0G/YNAIOERERJTZGG7+RdO43xQREVE2YLj5F00zVitmYzEREVFmY7j5F0HgflNERETZgOHmBDabMXLD3cKJiIgyF8PNCSL7TfHSFBERUeZiuDmJqhqbaYZCZldCRERE48Fwc5LIflM+n9mVEBER0Xgw3JxEFI19pgYHza6EiIiIxoPhZhiRS1OcNUVERJR5GG6GoarGVgy8NEVERJR5GG6GIcvGSsXca4qIiCjzMNyMwGIxLk0RERFRZmG4GYGqGk3Ffr/ZlRAREVE8GG5GoChGsOGlKSIioszCcDMKSeJqxURERJmG4WYUqmqEm2DQ7EqIiIhorBhuRhFZrZiXpoiIiDIHw80oBMG4cbViIiKizMFwcwqqCng8xpYMRERElP4Ybk5BUbiRJhERUSZhuDkFSTL2mOKlKSIioszAcDMGisKNNImIiDIFw80YRDbS5GrFRERE6Y/hZgxkGQgEOCWciIgoEzDcjJEsA319ZldBREREp2J6uFm/fj0qKiqgaRpqamqwc+fOUY93uVy4+eabMXXqVKiqio997GPYunVr0utUVWBgwBjBISIiovQlm/nmW7ZsQWNjIzZs2ICamhqsW7cOS5Yswf79+zFlypQhx/v9flx88cWYMmUKfvOb32D69Ok4fPgwCgsLk16rohjhxusFLJakvx0RERGNk6nhZu3atVi+fDkaGhoAABs2bMDzzz+PTZs2YcWKFUOO37RpE5xOJ/72t7/B8q+EUVFRkZJaI6sVDwwA+fkpeUsiIiIaB9MuS/n9fuzatQt1dXXHixFF1NXVoaWlZdjn/O53v0NtbS1uvvlmlJaW4pxzzsF3v/tdhEKhEd/H5/PB4/HE3MZLVY2+m1HejoiIiExmWrjp6upCKBRCaWlpzP2lpaVob28f9jkffvghfvOb3yAUCmHr1q24++678YMf/AD333//iO/T1NQEh8MRvZWXl4+7Zm6kSURElP5MbyiORzgcxpQpU/Doo4+iuroa9fX1uOuuu7Bhw4YRn7Ny5Uq43e7o7ciRI+N+f1HkasVERETpzrSem5KSEkiShI6Ojpj7Ozo6UFZWNuxzpk6dCovFAkmSovedddZZaG9vh9/vh6IoQ56jqipUVU1Y3apqrFZcXGyEHSIiIkovpv16VhQF1dXVaG5ujt4XDofR3NyM2traYZ9z/vnn4/3330f4hC26Dxw4gKlTpw4bbJIhsloxN9IkIiJKT6aOPTQ2NuKxxx7Dz372M7z77ru46aab0N/fH509tXTpUqxcuTJ6/E033QSn04nbbrsNBw4cwPPPP4/vfve7uPnmm1NWsyQZDcXsuyEiIkpPpk4Fr6+vR2dnJ1atWoX29nZUVVVh27Zt0Sbj1tZWiCdc+ykvL8cf//hH3H777Zg3bx6mT5+O2267DXfeeWdK645spFlYaEwPJyIiovQh6Hpu7XXt8XjgcDiwb58b+fkF43qNyD5TFRXGZSoiIqJcFAgABw8avwuTvcCt0+lBZaUDbrcbBQWj//5mS+w4WCzcSJOIiChdMdyMEzfSJCIiSk8MN+MU2UgzGDS7EiIiIjoRw804KQrg9/PSFBERUbphuBmnyCypgQFz6yAiIqJYDDcToGnGlPAT1hQkIiIikzHcTEBktWLuNUVERJQ+GG4mQBSNy1OcNUVERJQ+GG4mSNMAj8dY94aIiIjMx3AzQZpmbKLJxmIiIqL0wHCTAIoCuFxAbm1kQURElJ4YbhLAajVGbthYTEREZD6GmwSQJGM6OBuLiYiIzMdwkyCRxmJux0BERGQuhpsE0TRjzRs2FhMREZmL4SZBBAGwWAC3m43FREREZmK4SSCrFejv52aaREREZmK4SSBZBkIhI+AQERGRORhuEkzTjEtToZDZlRAREeUmhpsE0zRjvRs2FhMREZmD4SbBBMG4POXxmF0JERFRbmK4SQKr1VjQj43FREREqcdwkwQWi7FLOBuLiYiIUo/hJkk0zdhMMxw2uxIiIqLcwnCTJFyxmIiIyBwMN0kiikZzcW+v2ZUQERHlFoabJLLZjHDj95tdCRERUe5guEkiRTGCDRuLiYiIUofhJslU1VixmI3FREREqcFwk2SRzTQHB82uhIiIKDcw3CRZpLG4r8/sSoiIiHIDw00KaJqxHUMgYHYlRERE2Y/hJgU0DfD5uOYNERFRKjDcpIiiGCsW67rZlRAREWU3hpsUYWMxERFRajDcpIgkGaM2bCwmIiJKLoabFIo0FgeDZldCRESUvRhuUoibaRIRESUfw00KCQJgsRgrFrOxmIiIKDkYblIs0ljs9ZpdCRERUXZiuEkxWQZCIW6mSURElCwMNybQNOPSVChkdiVERETZJy3Czfr161FRUQFN01BTU4OdO3eOeOyTTz4JQRBibpqmpbDaidM0Y70bNhYTERElnunhZsuWLWhsbMTq1auxe/duzJ8/H0uWLMGxY8dGfE5BQQHa2tqit8OHD6ew4okTBOPylMdjdiVERETZx/Rws3btWixfvhwNDQ04++yzsWHDBthsNmzatGnE5wiCgLKysuittLQ0hRUnhtVqLOjHxmIiIqLEMjXc+P1+7Nq1C3V1ddH7RFFEXV0dWlpaRnxeX18fZs6cifLycnzuc5/D22+/PeKxPp8PHo8n5pYOLBZjl3A2FhMRESWWqeGmq6sLoVBoyMhLaWkp2tvbh33OGWecgU2bNuG3v/0tfvnLXyIcDuO8887D0aNHhz2+qakJDocjeisvL0/49zFemmZsphkOm10JERFR9jD9slS8amtrsXTpUlRVVWHx4sV45plnMHnyZPz0pz8d9viVK1fC7XZHb0eOHElxxSPjisVERESJJ5v55iUlJZAkCR0dHTH3d3R0oKysbEyvYbFYsGDBArz//vvDPq6qKlRVnXCtySCKRnNxby9gt5tdDRERUXYwdeRGURRUV1ejubk5el84HEZzczNqa2vH9BqhUAhvvfUWpk6dmqwyk8pmM8KNz2d2JURERNnB1JEbAGhsbMSyZcuwcOFCLFq0COvWrUN/fz8aGhoAAEuXLsX06dPR1NQEALj33nvxyU9+EnPnzoXL5cJDDz2Ew4cP46tf/aqZ38a4KYoxa2pgAEjTASYiIqKMYnq4qa+vR2dnJ1atWoX29nZUVVVh27Zt0Sbj1tZWiOLxAaaenh4sX74c7e3tKCoqQnV1Nf72t7/h7LPPNutbmDBVNVYsdjiMS1VEREQ0foKu59b+1B6PBw6HA/v2uZGfX2B2OQCM2VJuN1BRAeTlmV0NERHR2AQCwMGDxj/SLZbkvpfT6UFlpQNutxsFBaP//uY4QRqINBb39ZldCRERUeZjuEkTVquxHUMgYHYlREREmY3hJk2oqjFjiisWExERTQzDTRpRFKP3Jre6oIiIiBKL4SaNWK3GyM3goNmVEBERZS6GmzQiScaoDRuLiYiIxo/hJs1omtFYHAyaXQkREVFmYrhJM9xMk4iIaGIYbtKMIBgLIbGxmIiIaHwYbtJQpLHY6zW7EiIioszDcJOGZNnoueGaN0RERPFjuElTVqtxaSoUMrsSIiKizMJwk6Y0zVjvho3FRERE8WG4SVOCYFye8njMroSIiCizMNykMavVWNCPjcVERERjx3CTxiwWY5dwNhYTERGNHcNNmtM0wOViYzEREdFYMdykuciKxdxMk4iIaGwYbtKcKBq33l6zKyEiIsoMDDcZwGo1wo3PZ3YlRERE6Y/hJgMoCuD3c80bIiKisWC4yRCqajQWh8NmV0JERJTeGG4yhNVqjNywsZiIiGh0DDcZQhSNVYv7+syuhIiIKL0x3GQQq9XYjsHvN7sSIiKi9BV3uPnZz36G559/Pvr1t7/9bRQWFuK8887D4cOHE1ocxVJVY8YUG4uJiIhGFne4+e53vwur1QoAaGlpwfr16/Hggw+ipKQEt99+e8ILpFiKArjdgK6bXQkREVF6kuN9wpEjRzB37lwAwHPPPYerrroKX/va13D++efjwgsvTHR9dJLImjeDg4DNZnY1RERE6SfukRu73Y7u7m4AwAsvvICLL74YAKBpGgY5lSfpJMkYtWFjMRER0fDiHrm5+OKL8dWvfhULFizAgQMH8JnPfAYA8Pbbb6OioiLR9dEwIo3FxcWAHPf/QSIiouwW98jN+vXrUVtbi87OTvzv//4vJk2aBADYtWsXrr322oQXSEOpqrGZZn+/2ZUQERGlH0HXc6s11ePxwOFwYN8+N/LzC8wuZ9x6e42em9NOM9a/ISIiSrVAADh40PhHt8WS3PdyOj2orHTA7XajoGD039/juqjh9Xrx5ptv4tixYwifsB+AIAi4/PLLx/OSFCer1Ri58XqNPxMREZEh7nCzbds2fPnLX442FZ9IEASEQqGEFEajk2UgGDQCDsMNERHRcXH33Nx666344he/iLa2NoTD4Zgbg01qWa3Gmjc87URERMfFPXLT0dGBxsZGlJaWJqMeioOmAT09xorF+flmV0NERJRYgVAYP/v7+wCAy+dMGfPz4h65+cIXvoAdO3bE+zRKAkEwLk95PGZXQkRElD7iHrl5+OGHcfXVV+Pll19GZWUlLCe1R3/jG99IWHF0alarsaCf12uM5BAREeW6uMPNr371K7zwwgvQNA07duyAcMI8ZEEQGG5SzGIxpoX39zPcEBERAeMIN3fddRfWrFmDFStWQBTjvqpFSaBpgMsFFBYa2zMQERFlg7Cuo9cXQCAUxrG+gTE/L+5w4/f7UV9fz2CTRjTNmDU1OAjY7WZXQ0RENHGHnL3Y/l47dh/tRigchtPlGvNz404oy5Ytw5YtW+J92qjWr1+PiooKaJqGmpoa7Ny5c0zP27x5MwRBwBVXXJHQejKNKBo3j8fYVJOIiCgdBUJhPP7qATz+6gEEQuERjzvk7MXTew7hQJcbqiyhQFOQrypjfp+4R25CoRAefPBB/PGPf8S8efOGNBSvXbs2rtfbsmULGhsbsWHDBtTU1GDdunVYsmQJ9u/fjylTRp72dejQIdxxxx244IIL4v0WspLVakwLFwRjQ01VNbsiIiKi+IV1HS990AH3oB8VRXa4BwMAgDzL2CNL3OHmrbfewoIFCwAAe/fujXlMGMcmR2vXrsXy5cvR0NAAANiwYQOef/55bNq0CStWrBj2OaFQCNdddx3WrFmDl19+Ga44hqqylaIYwaa725g9VVICFBSwB4eIiDJLR+8gDvf0YUq+Nq5cAcQZbkKhENasWYPKykoUFRWN6w1P5Pf7sWvXLqxcuTJ6nyiKqKurQ0tLy4jPu/feezFlyhTccMMNePnllydcR7awWIxRm8FB4KOPjD6ckhIgL4+baxIRUWYY8AfhC4agyePfWyiucCNJEi655BK8++67CQk3XV1dCIVCQ1Y7Li0txb59+4Z9ziuvvIKNGzdiz549Y3oPn88Hn88X/dqTAyveWa3GZam+PqC1FSgq4qUqIiLKDDZFhipL8AaDsMZxKepEcTcUn3POOfjwww/H9WYT1dvbiy9/+ct47LHHUFJSMqbnNDU1weFwRG/l5eVJrjI9iKJxWSovz7hU1dpq9ORwHyoiIjJLZGq3c8CHNs8AwsPMginNt2JmkR3Her3QxzlLJu5IdP/99+OOO+7Afffdh+rqauTl5cU8XlBQMObXKikpgSRJ6OjoiLm/o6MDZWVlQ47/4IMPcOjQIVx++eXR+8Jho9talmXs378fc+bMiXnOypUr0djYGP3a4/HkTMABeKmKiIjSw8lTuwf8QcyalI/Fc0pRUXx8g0RRELB4Tik6egdxqKcP/lAIsiiiPxAY83vFHW4+85nPAAA++9nPxjT66LoOQRDi2hlcURRUV1ejubk5Op07HA6jubkZt9xyy5DjzzzzTLz11lsx9/3Xf/0Xent78aMf/WjY0KKqKlRej4HVaqyHc+KlqsJC4z6GHCIiSqbI1O6eQR9UWYIsynBYFRw45kZH7yC+WFURE3AqivPxxaoKbH+vHUddAxgIB9EbxwyZuMPN9u3b433KqBobG7Fs2TIsXLgQixYtwrp169Df3x+dPbV06VJMnz4dTU1N0DQN55xzTszzCwsLAWDI/TSUIBi7hweDgNNpjOJomnH5KtKnw7UZiYgokUac2q3IsBfbccjZh7980IEZRXaIJ/xru6I4H1+qtsHl9SMQCuPTsybhF2N8z7jDzeLFi+N9yqjq6+vR2dmJVatWob29HVVVVdi2bVu0ybi1tZWrISeYLBsjN8Eg4PMBbW1G8Dkx6FitDDpERDRxo03tFgQBk+0aDvX0oaN3EFMLbDGPi4KAfNVYT2+KPfax0YyvDTnBbrnllmEvQwHAjh07Rn3uk08+mfiCcoQsG7e8PKPR2OcDIu1PmmaM8thsRtDhejlERDQep5rabbVI6Or3YsAfTNh7pkW4IfNJkhFkbDYgHDaCTleXsZ2Dphl7VkWCjsxPDRERjdGppnYPBkJQZAk2JXG/XPhrioYQxeOXpnQd8HqN6eSdnUZfjt1ujPZomrEyMhER0UgiU7sPHHNjRlHsDGtd19HZ58UZUxwotql4/NUDAIBl586FRRp/bwTDDY1KEGKDjs8HuFxG2FEUI+TY7UbQ4aQ0IiI62YhTu30BdPX74LAq+NSc0phm4giLJOKrn/wYAMDpHPsivAw3NGaRpmNNM772+4HeXmNxQIvFuGyVn3886HCKORERAcNP7XZ7AzhjigOf+tc6N6PtEh6vMYWbBQsWjHnzqt27d0+oIMocinL8slQgAAwMGNPLZdkY6SkoOB6GGHSIiHLbyVO7r1kwC6cV5kVHbCKrFwdCYbR5BmIei9eYwk1kgT2ikVgsxg0wpph7vcaKyJJkBJ38/OMLCXKKORFRbjpxavfUAls0vIx19eKxGlO4Wb16ddwvTLlLlo0+HMCYYu71GmvpiKJxucrhOB50OMWciCh3BEJh7D7aDQD40idmwyKJca9ePBbsuaGkkiSj6Tgv7/gU8+HW0tE0TjEnIsp2YV2HLxhCWNfR7hnEjOK8Ma9eHI+4f52EQiH88Ic/xNNPP43W1lb4/f6Yx51OZ7wvSTnixCnmkaDT2Wk8pqqxM68il7iIiCg7RC49+UNhhMJh/Pz191GSp6LV1Y/pDtspVy+OZ0Ju3N0Pa9aswdq1a1FfXw+3243GxkZceeWVEEUR99xzT7wvRzkqEnQiG3iKojHrqrUVOHQI+Oc/AY/HmJFFRESZLXLp6UCXG6osoUBT4LAqeK/Lgw+7e+ENDD9TymqR4A+G4l69OO5w89RTT+Gxxx7DN7/5TciyjGuvvRaPP/44Vq1ahVdffTXelyOKTjEvLDRusmwEm0jQOXrUmIXl8xlr7RARUeaIbJzZM+hDT78P3f1eCIJx6amiyI6QruPDbg/0YX7Aj3f14rjDTXt7OyorKwEAdrsdbrcbAPDv//7veP755+N9OaIYgmBcoiooAIqLjanm/f3AkSNG0DlyxFhE0Otl0CEiygSRjTMn52kIhHUEw2H4g2Houg67ZsGUPA3H+rzo8wVinhdZvbiiyI7S/OH3pRpJ3OHmtNNOQ1tbGwBgzpw5eOGFFwAAf//736FyiVpKMEUxmo6Li43RHa/XGMk5dAg4fBhwOoHBQaOHh4iI0s+AP4ieAR/e7/KgzTOAPl8Qbb0DeKutB+5BP2ZPyockCjjo7MNRVz/+6e6HxxvAIWffqKsXjybuhuLPf/7zaG5uRk1NDW699VZcf/312LhxI1pbW3H77bfH+3JEY3byWjo+n9GbI0lDZ15xLR0iovTgHPDhn+4BhKFDFkVIYhiyKKJ7wId+fxCziu2YPSkfUwtsOOjsQyCsw+P1x6xeHK+4w80DDzwQ/XN9fT1mzJiBlpYWnH766bj88svjLoBoPGTZuOXlGWvpRKaYn3hZKxJ0uJYOEZE5wrqOt9tdkEURYV1HQAhDACAJAgo1Ba5BH/Z3enDxGdNxZeUM7G3rQVjX8ZVzT0fFJHtyVygeTW1tLWprayf6MkTjJklGkLHZhp9ifuIu5lxLh4godTp6B9Hq6seZpQX4oLsPPYN+hHUduq7DHw4jFAbC0PHxUse4g8xwxvWj/r333sP27dtx7NgxhE9qdli1alVCCiMajxPX0tF1o0enu9sIO5p2fEFBq5Vr6RARJduAPwhfMIQZhXaosgzPoB89wRB8oTB8wRAm52tQJBGDgRB+vedQzBo4Sd9+4USPPfYYbrrpJpSUlKCsrCxm0R1BEBhuKG0IQmzQ8fmMmVbd3caIjs1mjOpYrcc3ACUiosSxKTJUWYI3GEShVcEUu4ZgOIziPA2VU4sgAmjrHUTze23wh0Lmbb9w//3347//+79x5513xvtUItNE1tLRNONrnw/o7TUWDlSU2M09FYW7mBMRJUJpvhUzi+w4cMyNGUV5EAQBkijCapFgV2Qc7umHPxiGLIRQUWzi9gs9PT24+uqr430aUVpRVeMGGKsgDwwYCwVaLMaITqQhmZeuiIjGTxQELJ5Tio7eQRzq6UMgHEZpvhUfKylAa08/FFlEMCyitMBq7vYLV199dXRtG6JscPJaOgMDxxcNbGsD+vqMGVlERBS/iuJ8fLGqAh8rccAXDMPj9cPtDeCMKQ78f3OnwiKJ0EaY7THe7RfiHrmZO3cu7r77brz66quorKyE5aR/2n7jG9+I9yWJ0saJa+n4fMZlK6fTCD0Ox/FZV7xsRUQ0dhXF+fhStQ0urx+BUBjXLJiF0wrz0NE7iB0ftMMbDMJqGRpJYrZfCI494MQdbh599FHY7Xa89NJLeOmll2IeEwSB4YayRuTSVWTWVXu7Me3cajX2wLJaj1/aIiKi0YmCgHzV+Nfj1AIbREEY0pNzosj2C2dMcaA03wpXT++Y3yvucHPw4MF4n0KU0U6cdRUKGds9HD1qjPDY7UZ/jtXKNXSIiEZjkUR89ZMfi7nv5J4cfygEWRTR7wugq9+Xuu0XThTZwfPkJiCibCVJRqABjEbkyIwrq5WXrYiIxiPSk7P9vXYcdQ1gIByM9uSMd/uFce3A8/Of/xyVlZWwWq2wWq2YN28efvGLX4znpYgylqIYozZFRcbXHR1GE3Jrq7Gejt9vZnVERJnD6MmZjU+cNglV0yfhP2pOx/UL54wr2ADjGLlZu3Yt7r77btxyyy04//zzAQCvvPIKbrzxRnR1dXHzTMo5I122imz9ENnQk5t5EhGNbLienPGKO9z8+Mc/xiOPPIKlS5dG7/vsZz+Lj3/847jnnnsYbiinnXjZKjLbqqdn6GwrIiJKnrjDTVtbG84777wh95933nloa2tLSFFE2SAy2yocNmZbtbUZTch5eccXCWQTMhGRYbiG4/GKe6B87ty5ePrpp4fcv2XLFpx++ukJKYoom4iiEWQiiwT29R1fJLCz01g08F+9+URElABx/7txzZo1qK+vx1/+8pdoz81f//pXNDc3Dxt6iOi4yCKBkbVzjh0zenZsNmPtHJuNm3gSEU1U3OHmqquuwmuvvYYf/vCHeO655wAAZ511Fnbu3IkFCxYkuj6irDRSE3JkK4jIJp6SZHalRESZZ1xX/Kurq/HLX/4y0bUQ5aThmpAjWz4UFho9OqrKtXOIiMZqTOHG4/GgoKAg+ufRRI4jovgN14Qsy0bAcTjYhExE2ScQCuNnf38fALDs3LmwSBNfN2NMPyaLiorQ1taGKVOmoLCwcNgViXVdhyAICHH7ZKIJizQh22xAIGA0HbvdxmhOQYEx0qNpXDuHiDJfWNfR6wsgEAqjzTOA0wrzJrTGDTDGcPPiiy+iuLgYALB9+/YJvSERxefEJmSfD+jqMm422/G1c9iETESZ6JCzF9vfa8fuo90IhcMY8Acxa1I+Fo9z24WIMYWbxYsXR/88a9YslJeXDxm90XUdR44cGXchRDQ6QTBGazTNaEL2eoGPPjrehGy3G4GHTchElAkOOXvx9J5D6Bn0QZUlyKIMh1XBgWNudPQO4otVFeMOOHEPas+aNQudnZ1D7nc6nZg1a9a4iiCi+EiSMWJTXGyEG5fL2NPq0CFjVGdwkGvnEFH6Cus6XvqgA+5BPyqK7FAkEaIgIE+RUVFsh3vQj7980IHwOH+Qxd2aGOmtOVlfXx80ritPlHKKYtwia+d0dBwPP5GVkC0Ws6skIjquo3cQh3v6MCVfG5IpBEHAZLuGQz196OgdxNQCW9yvP+Zw09jYGH3Tu+++Gzbb8TcLhUJ47bXXUFVVFXcBRJQYJ66dEwzGNiFHLltZrWxCJiLzDfiD8AVD0GTrsI9bLRK6+r0Y8AfH9fpjDjdvvPEGAGPk5q233oJyQgejoiiYP38+7rjjjnEVQUSJJctGoIk0IXd3H29CLiwErFYdmsaFc4jIHDZFhipL8AaDsFqGRpHBQAiKLMGmjG/tizE/KzJLqqGhAT/60Y+4ng1RBjixCTkcNnpxPvoIcIU/wrSpAiYXFMBmsUES2YVMRKlTmm/FzCI7DhxzY0ZRXsxjuq6js8+LM6Y4UJo//MjOqcQ9QL1u3ToEg0OHiZxO5ykX+BvJ+vXrUVFRAU3TUFNTg507d4547DPPPIOFCxeisLAQeXl5qKqqwi9+8YtxvS9RLhFFow+nsFBHv9eHrgEnDrsP45DrELr6uzAYGITOLmQiSgFRELB4TikcVgWHevrgD4UQ1nX0+wI45OyDw6rgU3NKx73eTdzh5pprrsHmzZuH3P/000/jmmuuibuALVu2oLGxEatXr8bu3bsxf/58LFmyBMeOHRv2+OLiYtx1111oaWnBm2++iYaGBjQ0NOCPf/xj3O9NlMvyLDYUaUUAgPb+dhxyHcIRzxG4vW4EQgGTqyOibFdRnI8vVlXgYyUO+IJheLx+uL0BnDHFMaFp4AAg6HH+U624uBh//etfcdZZZ8Xcv2/fPpx//vno7u6Oq4Camhqce+65ePjhhwEA4XAY5eXluPXWW7FixYoxvcYnPvEJXHbZZbjvvvtOeazH44HD4cC+fW7k5/PSGuWecFjH2//8EKedBhSdMOQbDAcxGBhEIByAKqkoUAtgV+ywWqwQBXYhE9FQgQBw8KCxbcx4Z2X6giH85K/7EAiFcc2CWSOuUOx0elBZ6YDb7T5la0zcnTo+n2/Yy1KBQACDg4NxvZbf78euXbuwcuXK6H2iKKKurg4tLS2nfL6u63jxxRexf/9+fO973xuxXp/PF/16vJfOiLKdLMrIV41/KXmDXnQNdKF7sBtW2QqH5oAsypBFGZJgLLbFPh0iihgmFoyZCAm3nPfx6NehIDDcRk7xvEfc4WbRokV49NFH8eMf/zjm/g0bNqC6ujqu1+rq6kIoFEJpaWnM/aWlpdi3b9+Iz3O73Zg+fTp8Ph8kScJPfvITXHzxxcMe29TUhDVr1gy53+Ua/URZLMfXDyHKNZqsQZM1hPUwvEEv2nrboEOHACEm4Mhi8nbxVGUVJbaSYdfVIqL0IAjG78tAwFg5PZnC4bEfG/dPpvvvvx91dXX4xz/+gYsuuggA0NzcjL///e944YUX4n25ccnPz8eePXvQ19eH5uZmNDY2Yvbs2bjwwguHHLty5croGj2AMXJTXl6O004zFjg7ma4boae315hC29dnNGKqqhF0uLQ95RJREGGz2GCzGOta6bqOkB5CMBxEIByAP+xPyvvqug63zw1N1qKjSUSUfmQZKC9PzYro8Vx4iTvcnH/++WhpacFDDz2Ep59+GlarFfPmzcPGjRtx+umnx/VaJSUlkCQJHR0dMfd3dHSgrKxsxOeJooi5c+cCAKqqqvDuu++iqalp2HCjqipUVR1yf36+cRtJUZGRRH0+YzG0vj7jFgrFjurwH5WUSwRBgCwkd8QmotfXi+6Bbk5VJ0pzcvJ/HACIr6dnXCVVVVXhqaeeGs9TYyiKgurqajQ3N+OKK64AYDQUNzc345Zbbhnz64TD4Zi+mkQQhOMBJj8fmDzZCDperxFyvF4j9AiCsTAaL18RJZZdsaPH2wOX14VJtklml0NEGWRCecvr9cLvjx2Wjndxv8bGRixbtgwLFy7EokWLsG7dOvT396OhoQEAsHTpUkyfPh1NTU0AjB6ahQsXYs6cOfD5fNi6dSt+8Ytf4JFHHpnIt3JKonh8afsTR3X6+wGn0wg7+fkcySFKFEEQYJWtcA46YVfsUOWhI7BERMOJO9wMDAzg29/+Np5++ulhp32H4uwoqq+vR2dnJ1atWoX29nZUVVVh27Zt0Sbj1tZWiCdshtPf34+vf/3rOHr0KKxWK84880z88pe/RH19fbzfyoRYLMbNbjcWRuvqAnp6jFEc7h9KlBhWixU9gz1wDjpRZi9jczERjUnc69zcfPPN2L59O+677z58+ctfxvr16/HRRx/hpz/9KR544AFcd911yao1ISLr3Ixlnnw8QiEj3HR3G38uKOAGhZSeRlrnJl0Fw0H0+fowo3AG7Ird7HKIyCTx/P6Oe+Tm//7v//Dzn/8cF154IRoaGnDBBRdg7ty5mDlzJp566qm0DzfJIklAScnxURyX6/hlLCIav8iaOl39XbDKVjYXE9EpxT224HQ6MXv2bABGf43T6QQA/L//9//wl7/8JbHVZSCrFZg+3biFw8ZozkQWNyIio7m4L9AHj4+LcBLRqcUdbmbPno2DBw8CAM4880w8/fTTAIwRncLCwoQWl6lE0Wg6njHD+G9vr9F4TETjE2ku7hrogi+Y2JmRRJR94g43DQ0N+Mc//gEAWLFiBdavXw9N03D77bfjW9/6VsILzGSqCkydaixwJIrGrKoA9yMkGherxQpfyIceb4/ZpRBRmou7ofhkhw8fxq5duzB37lzMmzcvUXUlTbIaik8lEDDCTXe30Z9jt3PaOJkj0xqKT+QP+eENeDGzcCaslsyqnYgmJp7f33GN3AQCAVx00UV47733ovfNnDkTV155ZUYEGzNZLMCUKcalKlU1enESvO4gUdZTJAVhPQyX14UJ/ruMiLJYXOHGYrHgzTffTFYtWU8QjBGb004DysqMcON2x7cZGFGuy1Py4PK6MBgcNLsUIkpTcffcXH/99di4cWMyaskZsmxMG58xw5g67nIBg/w5TTQmFskCHTp6Bns4ekNEw4p7nZtgMIhNmzbhz3/+M6qrq5GXlxfz+Nq1axNWXLaz2YxRHJfL6MXp6TEW/+PO40Sjsyt2uL1uODQHF/YjoiHiDjd79+7FJz7xCQDAgQMHYh7j0ujxE0WguNgIOpGAo2nG10Q0PFmUIQgCegZ7kGfJ488eIoox5nDz4YcfYtasWdi+fXsy68lZmgZMm2b05ET2qbLb49vinSiX2BU7ev296PP3IV/NN7scIkojY+65Of3009HZ2Rn9ur6+Hh0dHUkpKlcJAuBwGOviTJpkLPzX1wewrYBoKEmUIAoinINOhHV25RPRcWMONyc37m3duhX9XHY3KRQFKC01Qo7FYozi+P1mV0WUfuyKHX3+PvT5+8wuhYjSCPetTlOCAOTnGwGntBTwejltnOhkoiDCIlngHODoDREdN+ZwIwjCkKY9NvElnywDkycbIcdmM2ZWeb1mV0WUPmwWG/oCfej19ZpdChGliTE3FOu6jq985StQVRUA4PV6ceONNw6ZCv7MM88ktkICYKyHo2nHp427XMbIDqeNU64TBRGqpMI56IRdsUMS+ZeCKNeNOdwsW7Ys5uvrr78+4cXQ6CTJaDTOyzNmVLlcnDZOBBijNz3eHvT6e1GoFZpdDhGZbMzh5oknnkhmHRSHk6eNO53G4n9y3KsWEWUHQRCgyRq6B7phV+yQRf5lIMpl/AmQoUQRKCwErFYj3PT0GCM7Fovx2Ik3olxgla3G6I2vF0XWIrPLISITMdxkOFU1NuHMyzMCTjAIBALGrKrI7WQMPqOTZWM6PvvlM4sgCLDK1mjvjUXiCphEuYrhJgsIgnFZqqAgNtScfAuFjFswaNw4rXwoXTfWFOrvN86rphlBh43bmcFqMcKNx+fBJNsks8shIpMw3GQZjshMXCAA+HzAwICxQnRfnxEEZdkYKbNYOKqTziKjN/lqPhRJMbscIjIBww3RSSwW42a3AyUlRtDx+YDeXmONob4+juqks8jojdvrxuS8yWaXQ0QmYLghGoUoGk3bVqvRwB0IGAFncNAIO729xqUsTTNuHNFJDzaLDT2DPShQC6DKqtnlEFGKMdwQxSEyqpOfb4zqREZyPB6joVuWjSDE3dzNpckaegI9cHldKLWXml0OEaUYww3ROImisYCizQYUFxs9Om630Yzc23t8NIc9UOawWWxweV1waA5osmZ2OUSUQgw3RAkgy8Zstfx8oz+nv99YQdrtNi5VWa1GMzKljiqrGAgMwOV1ocxeZnY5RJRCDDdECRRpNNY0oKjIGM2J9Ob09xsNyFYrm5BTJU/Jg2vQBYfqgNViNbscIkoRhhuiJBFFY8aV3W7sCRa5bBWZWs4m5ORTJAUD/gH0DPZAkzUIPNlEOYHhhigFFMW4ORzGTKv+fqMJ2eUyRnHYhJw8eUoe3D43HJoDeUqe2eUQUQow3BClkCAcb0I+8bJVXx+bkJPFIlmgB3S4vC7YLDaO3hDlAIYbIpNEmpALCowp5ZHRHI/HeJxNyIljV+xwe43RG7tiN7scIkoyhhuiNHByE3JkJCfShKxpRhii8ZFFGYIgoGewB3mWPI7eEGU5/rgkSiPDNSG7XEbICYWM0Rw2IY+PXbGj19+LPn8f8tV8s8shoiRiuCFKUxaL0YB84mUrt9tYCTnShKxwX8gxk0QJoiDCOehEnpIHUWBjE1G2YrghSnORRQCt1uOXrTye4zuWq6rxGJuQT82u2OHyutDn70OBWmB2OUSUJAw3RBlEkoxVkCMrIUcuW0VWQo707tDwREGEIilwDjiRZ8mDJHI1RaJsxHBDlKFU1bhF1s6JbODpdBqXtKxWNiEPJ7LnVJ+/Dw7NYXY5RJQE/NFHlOFEEcjLM24nbuA5MGA0IXMl5FiiIEKVVDgHnbArdo7eEGUhhhuiLDJSE7LLZYQgjuYYbBYberw96PX3olArNLscIkow/pgjykLDNSGfuBIyAOi6uTWaSRAEaLKG7oFu2BU7ZJE/ComyCf9GE2W5oU3IArwdGkJwwzXog2bRoEpqzi1sZ5WtxuiNrxdF1iKzyyGiBEqLyaPr169HRUUFNE1DTU0Ndu7cOeKxjz32GC644AIUFRWhqKgIdXV1ox5PRMepqjGSU33GVMydPBOTbJMQDoejv+SD4aDZJaaMIAiwylZ0D3QjEAqYXQ4RJZDp4WbLli1obGzE6tWrsXv3bsyfPx9LlizBsWPHhj1+x44duPbaa7F9+3a0tLSgvLwcl1xyCT766KMUV06UuURBRJ6Sh1J7KWYWzsQMxwzYLDYM+AfQM9iDwcAgwnrY7DKTzmqxwhvywuPzmF0KESWQoOvmXnmvqanBueeei4cffhgAEA6HUV5ejltvvRUrVqw45fNDoRCKiorw8MMPY+nSpac83uPxwOFwwO12o6CAi3gRRei6Dl/Ih35/P1xeF7xBb3R0Q5WzdwfPSJCbWTgTisQln4nSVTy/v00dufH7/di1axfq6uqi94miiLq6OrS0tIzpNQYGBhAIBFBcXDzs4z6fDx6PJ+ZGRENFmmwn2SahorACMwtnokgrQiAUQM9gj9nlJY3VYoUv5IPb6za7FCJKEFPDTVdXF0KhEEpLS2PuLy0tRXt7+5he484778S0adNiAtKJmpqa4HA4orfy8vIJ102U7SRRgl2xY2r+VMwonAFFUuANes0uK2lsFht6BnvgC/rMLoWIEsD0npuJeOCBB7B582Y8++yz0EZYc37lypVwu93R25EjR1JcJVFm02QNBWoBvIHsDTearCEQDsDldZldChElgKlTwUtKSiBJEjo6OmLu7+joQFlZ2ajP/f73v48HHngAf/7znzFv3rwRj1NVFaqavf0CRKlgV+zoHuhGKBzK2hV9I9syODQHNJkbdBFlMlNHbhRFQXV1NZqbm6P3hcNhNDc3o7a2dsTnPfjgg7jvvvuwbds2LFy4MBWlEuU0q8UKm8WW1ZemVFlFMBzk6A1RFjD9slRjYyMee+wx/OxnP8O7776Lm266Cf39/WhoaAAALF26FCtXrowe/73vfQ933303Nm3ahIqKCrS3t6O9vR19fX1mfQtEWU8URBRaC7O+JyVPyYNr0IXBwKDZpRDRBJi+QnF9fT06OzuxatUqtLe3o6qqCtu2bYs2Gbe2tkIUj2ewRx55BH6/H1/4whdiXmf16tW45557Ulk6UU6xWWxQJAW+oC9rp4YrkhJd60eTtZxbtZkoW5i+zk2qcZ0bovFr621Dj7cnqzebDIaD6Pf3Y4ZjBvKUPLPLIaJ/yZh1bogos+Sr+QCQ1asXy6IMHTpcXhdy7N9+RFmD4YaIxsxmscEqW7O+J8Wu2OH2utEf6De7FCIaB4YbIhozURBRqBXCF8ruxmJZlCEIAnoGezh6Q5SBGG6IKC42iw2KqMAf8ptdSlLZFTt6/b3o83MmJlGmYbghoriosgq7Ys/6S1OSKEESJDgHnVndY0SUjRhuiChuBVoBwno463/p5yl5HL0hykAMN0QUN6tshSZrWb1iMWD0GCmSAueAE6FwyOxyiGiMGG6IKG6SKBmNxVm+YjFg9Bj1Bfo4ekOUQRhuiGhcrBYrgOxe8wYwRm9USYVzkKM3RJmC4YaIxkWVVKiSmvWzpgBj9KY/0I9ef6/ZpRDRGDDcENG4SKIEq8WaE+FGEARosobugW4Ew0GzyyGiU2C4IaJxy1PycuaXvVW2YjA4CI/XY3YpRHQKDDdENG6qpEISpKzvuwGM0RurbIVz0IlAKGB2OUQ0CoYbIho3VVahSEpOzJoCjCZqb8gLt9dtdilENAqGGyIaN1EQYbPYcqLvJsIqW9Hj7cmp75ko0zDcENGE2Cw2hPTcmSJttVjhC/k4ekOUxhhuiGhCVFmFLMg5tQaMzWJDz2BP1u+vRZSpGG6IaEIUSYEiZ/8u4SfSZA2BcABHPUfR2d+ZMz1HRJmC4YaIJkQURNgVO3yh3PoFX2QtgiRK6OjvwGHXYXT0dWT9XltEmUI2uwAiynyarOXEdPCTabIGTdbgC/rQNdAFl9cFh+aAIilJescg8iw2qLKapNenpAmGAF0yu4rMFhj7EgwMN0Q0YaqkwiJaEAgFYJEsZpeTcqqsQpWNrSicg07oup6EdwlCxD8xvWAyVLkgCa9PSRMMAv/sArwl4K/dCegb++a1PMtENGGKpECVVATCuRluIhRJSeKoTQD9/qMwfmxz5Caj6DoQHAQkEeCo2/gNDIz5UIYbIpowQRBgV+w41n8MNovN7HKynAQgdwNkZvrX5RRZBiz8fzdu8tgjCxuKiSghVFlFGLnXd0NE6YfhhogSQpVVKGJuTQknovTEcENECaFISrSplojITAw3RJQwdsXOHbOJyHQMN0SUMJqsAUCSpkITEY0Nww0RJUxkKjQvTRGRmRhuiChhLJIFmqwx3BCRqRhuiCih7IodwXDQ7DKIKIcx3BBRQkX2PcrFvaaIKD0w3BBRQqmSClXilHAiMg/DDREllCRKsFqsDDdEZBqGGyJKuDwlj303RGQahhsiSjhVUiEJEvtuiMgUDDdElHCqrEKRFPiCPrNLIaIcxHBDRAknCiJsFhv7bojIFAw3RJQUNosNIT1kdhlElIMYbogoKVRZhSzICIUZcIgotRhuiCgpFEmBInOfKSJKPYYbIkoKURBhV+zwhdhUTESpZXq4Wb9+PSoqKqBpGmpqarBz584Rj3377bdx1VVXoaKiAoIgYN26dakrlIjipskap4MTUcqZGm62bNmCxsZGrF69Grt378b8+fOxZMkSHDt2bNjjBwYGMHv2bDzwwAMoKytLcbVEFC9VUmERLQiEAmaXQkQ5xNRws3btWixfvhwNDQ04++yzsWHDBthsNmzatGnY488991w89NBDuOaaa6CqaoqrJaJ4KZICVVIRCDPcEFHqmBZu/H4/du3ahbq6uuPFiCLq6urQ0tKSsPfx+XzweDwxNyJKDUEQYFfs8AfZVExEqWNauOnq6kIoFEJpaWnM/aWlpWhvb0/Y+zQ1NcHhcERv5eXlCXttIjo1VVYRBvtuiCh1TG8oTraVK1fC7XZHb0eOHDG7JKKcosoqFJFTwokodWSz3rikpASSJKGjoyPm/o6OjoQ2C6uqyv4cIhMpkgJVVuEL+aBIitnlEFEOMG3kRlEUVFdXo7m5OXpfOBxGc3MzamtrzSqLiJLArtg5Y4qIUsa0kRsAaGxsxLJly7Bw4UIsWrQI69atQ39/PxoaGgAAS5cuxfTp09HU1ATAaEJ+5513on/+6KOPsGfPHtjtdsydO9e074OIRqfJGgBA13UIgmByNUSU7UwNN/X19ejs7MSqVavQ3t6OqqoqbNu2Ldpk3NraClE8Prj0z3/+EwsWLIh+/f3vfx/f//73sXjxYuzYsSPV5RPRGCmSAkUy+m5UmZeJiSi5BF3XdbOLSCWPxwOHwwG3242CggKzyyHKGUfcRzAQGEC+mm92KRkqgH7/XpTmzUCBNsnsYigegQHgyAeANAew2MyuJmN5nE44KivH9Ps762dLEVF6sCt2BMNBs8sgohzAcENEKRG5HMW9pogo2RhuiCglVEmFKqlc74aIko7hhohSQhIlWC1WhhsiSjqGGyJKmTwlj303RJR0DDdElDKqpEISJPbdEFFSMdwQUcqosgpFUuAL+swuhYiyGMMNEaWMKIiwWWzsuyGipGK4IaKUsllsCOkhs8sgoizGcENEKaXKKmRBRijMgENEycFwQ0QppUgKFFnhpSkiShqGGyJKKVEQYVfs8IXYVExEycFwQ0Qpp8kap4MTUdIw3BBRyqmSCotoQSAUMLsUIspCDDdElHKKpECVVATCDDdElHgMN0SUcoIgwK7Y4Q+yqZiIEo/hhohMoVk0hMG+GyJKPIYbIjKFIilQRE4JJ6LEY7ghIlMokgJVVhluiCjhGG6IyDR2xc4ZU0SUcAw3RGQaTdYAALqum1wJEWUThhsiMo0qq1Ak9t0QUWIx3BCRaWRRhiZrDDdElFAMN0RkKrti52J+RJRQDDdEZCpVViFC5F5TRJQwDDdEZCpVYt8NESUWww0RmUoSJVgtVoYbIkoYhhsiMl2ekodgOGh2GUSUJRhuiMh0qqRCEiSEwiGzSyGiLMBwQ0Sm43o3RJRIDDdEZDpREGGz2BhuiCghGG6IKC3YLDaEdF6WIqKJY7ghorSgyipkQWZjMRFNGMMNEaUFRVKgyAp3CSeiCWO4IaK0IAoi7IodvpDP7FKIKMMx3BBR2tBkjdswENGEMdwQUdpQJRUW0cJLU0Q0IQw3RJQ2FEmBKqmcEk5EE8JwQ0RpQxAE2BU7R26IaEIYbogorWgWDWGEoeu62aUQUYZiuCGitKJIChRRQSDM0RsiGh+GGyJKK4qkQJXZd0NE45cW4Wb9+vWoqKiApmmoqanBzp07Rz3+17/+Nc4880xomobKykps3bo1RZUSUSrYFTvDDRGNm+nhZsuWLWhsbMTq1auxe/duzJ8/H0uWLMGxY8eGPf5vf/sbrr32Wtxwww144403cMUVV+CKK67A3r17U1w5ESWL1WKFKqnoGeyBL8hF/YgoPoJuctdeTU0Nzj33XDz88MMAgHA4jPLyctx6661YsWLFkOPr6+vR39+P3//+99H7PvnJT6KqqgobNmw45ft5PB44HA643W4UFBQk7hshooTyBr1we91we90IhAOwWqzQZM3sskwUQL9/L0rzZqBAm2R2MRSPwABw5ANAmgNYbGZXk7E8TicclZVj+v0tp6imYfn9fuzatQsrV66M3ieKIurq6tDS0jLsc1paWtDY2Bhz35IlS/Dcc88Ne7zP54PPd/xffm63G4ARcogovVlhhSiK6A30wj3gxrHQMSiSAgGC2aWZIABd74c15Ab8ufj9Z7CAD+jtB3QXIHvNriZjeVwuABjTTEpTw01XVxdCoRBKS0tj7i8tLcW+ffuGfU57e/uwx7e3tw97fFNTE9asWTPk/vLy8nFWTURERGbp7e2Fw+EY9RhTw00qrFy5Mmakx+VyYebMmWhtbT3lyckVHo8H5eXlOHLkCC/V/QvPyVA8J0PxnAzFczIUz8lQ4zknuq6jt7cX06ZNO+WxpoabkpISSJKEjo6OmPs7OjpQVlY27HPKysriOl5VVaiqOuR+h8PBD9lJCgoKeE5OwnMyFM/JUDwnQ/GcDMVzMlS852SsgxKmzpZSFAXV1dVobm6O3hcOh9Hc3Iza2tphn1NbWxtzPAD86U9/GvF4IiIiyi2mX5ZqbGzEsmXLsHDhQixatAjr1q1Df38/GhoaAABLly7F9OnT0dTUBAC47bbbsHjxYvzgBz/AZZddhs2bN+P111/Ho48+aua3QURERGnC9HBTX1+Pzs5OrFq1Cu3t7aiqqsK2bduiTcOtra0QxeMDTOeddx7+53/+B//1X/+F73znOzj99NPx3HPP4ZxzzhnT+6mqitWrVw97qSpX8ZwMxXMyFM/JUDwnQ/GcDMVzMlSyz4np69wQERERJZLpKxQTERERJRLDDREREWUVhhsiIiLKKgw3RERElFVyLtysX78eFRUV0DQNNTU12Llzp9klpcQ999wDQRBibmeeeWb0ca/Xi5tvvhmTJk2C3W7HVVddNWSxxEz3l7/8BZdffjmmTZsGQRCG7Eem6zpWrVqFqVOnwmq1oq6uDu+9917MMU6nE9dddx0KCgpQWFiIG264AX19fSn8LhLrVOfkK1/5ypDPzaWXXhpzTLadk6amJpx77rnIz8/HlClTcMUVV2D//v0xx4zl70traysuu+wy2Gw2TJkyBd/61rcQDAZT+a0kzFjOyYUXXjjks3LjjTfGHJNN5+SRRx7BvHnzoovQ1dbW4g9/+EP08Vz7jJzqfKT886HnkM2bN+uKouibNm3S3377bX358uV6YWGh3tHRYXZpSbd69Wr94x//uN7W1ha9dXZ2Rh+/8cYb9fLycr25uVl//fXX9U9+8pP6eeedZ2LFibd161b9rrvu0p955hkdgP7ss8/GPP7AAw/oDodDf+655/R//OMf+mc/+1l91qxZ+uDgYPSYSy+9VJ8/f77+6quv6i+//LI+d+5c/dprr03xd5I4pzony5Yt0y+99NKYz43T6Yw5JtvOyZIlS/QnnnhC37t3r75nzx79M5/5jD5jxgy9r68vesyp/r4Eg0H9nHPO0evq6vQ33nhD37p1q15SUqKvXLnSjG9pwsZyThYvXqwvX7485rPidrujj2fbOfnd736nP//88/qBAwf0/fv369/5znd0i8Wi7927V9f13PuMnOp8pPrzkVPhZtGiRfrNN98c/ToUCunTpk3Tm5qaTKwqNVavXq3Pnz9/2MdcLpdusVj0X//619H73n33XR2A3tLSkqIKU+vkX+ThcFgvKyvTH3rooeh9LpdLV1VV/9WvfqXruq6/8847OgD973//e/SYP/zhD7ogCPpHH32UstqTZaRw87nPfW7E52T7OdF1XT927JgOQH/ppZd0XR/b35etW7fqoijq7e3t0WMeeeQRvaCgQPf5fKn9BpLg5HOi68Yvr9tuu23E52T7OdF1XS8qKtIff/xxfkb+JXI+dD31n4+cuSzl9/uxa9cu1NXVRe8TRRF1dXVoaWkxsbLUee+99zBt2jTMnj0b1113HVpbWwEAu3btQiAQiDk3Z555JmbMmJEz5+bgwYNob2+POQcOhwM1NTXRc9DS0oLCwkIsXLgwekxdXR1EUcRrr72W8ppTZceOHZgyZQrOOOMM3HTTTeju7o4+lgvnxO12AwCKi4sBjO3vS0tLCyorK6OLkQLAkiVL4PF48Pbbb6ew+uQ4+ZxEPPXUUygpKcE555yDlStXYmBgIPpYNp+TUCiEzZs3o7+/H7W1tTn/GTn5fESk8vNh+grFqdLV1YVQKBRz4gCgtLQU+/btM6mq1KmpqcGTTz6JM844A21tbVizZg0uuOAC7N27F+3t7VAUBYWFhTHPKS0tRXt7uzkFp1jk+xzu8xF5rL29HVOmTIl5XJZlFBcXZ+15uvTSS3HllVdi1qxZ+OCDD/Cd73wHn/70p9HS0gJJkrL+nITDYfznf/4nzj///Ogq6GP5+9Le3j7sZynyWCYb7pwAwJe+9CXMnDkT06ZNw5tvvok777wT+/fvxzPPPAMgO8/JW2+9hdraWni9Xtjtdjz77LM4++yzsWfPnpz8jIx0PoDUfz5yJtzkuk9/+tPRP8+bNw81NTWYOXMmnn76aVitVhMro3R2zTXXRP9cWVmJefPmYc6cOdixYwcuuugiEytLjZtvvhl79+7FK6+8YnYpaWOkc/K1r30t+ufKykpMnToVF110ET744APMmTMn1WWmxBlnnIE9e/bA7XbjN7/5DZYtW4aXXnrJ7LJMM9L5OPvss1P++ciZy1IlJSWQJGlIt3pHRwfKyspMqso8hYWF+NjHPob3338fZWVl8Pv9cLlcMcfk0rmJfJ+jfT7Kyspw7NixmMeDwSCcTmfOnKfZs2ejpKQE77//PoDsPie33HILfv/732P79u047bTToveP5e9LWVnZsJ+lyGOZaqRzMpyamhoAiPmsZNs5URQFc+fORXV1NZqamjB//nz86Ec/ytnPyEjnYzjJ/nzkTLhRFAXV1dVobm6O3hcOh9Hc3BxzTTBX9PX14YMPPsDUqVNRXV0Ni8USc27279+P1tbWnDk3s2bNQllZWcw58Hg8eO2116LnoLa2Fi6XC7t27Yoe8+KLLyIcDkf/oma7o0ePoru7G1OnTgWQnedE13XccsstePbZZ/Hiiy9i1qxZMY+P5e9LbW0t3nrrrZjg96c//QkFBQXRYfpMcqpzMpw9e/YAQMxnJZvOyXDC4TB8Pl9OfkaGEzkfw0n65yPuFuQMtnnzZl1VVf3JJ5/U33nnHf1rX/uaXlhYGNOdna2++c1v6jt27NAPHjyo//Wvf9Xr6ur0kpIS/dixY7quG9MWZ8yYob/44ov666+/rtfW1uq1tbUmV51Yvb29+htvvKG/8cYbOgB97dq1+htvvKEfPnxY13VjKnhhYaH+29/+Vn/zzTf1z33uc8NOBV+wYIH+2muv6a+88op++umnZ/S059HOSW9vr37HHXfoLS0t+sGDB/U///nP+ic+8Qn99NNP171eb/Q1su2c3HTTTbrD4dB37NgRM211YGAgesyp/r5EprVecskl+p49e/Rt27bpkydPzthpvqc6J++//75+77336q+//rp+8OBB/be//a0+e/Zs/VOf+lT0NbLtnKxYsUJ/6aWX9IMHD+pvvvmmvmLFCl0QBP2FF17QdT33PiOjnQ8zPh85FW50Xdd//OMf6zNmzNAVRdEXLVqkv/rqq2aXlBL19fX61KlTdUVR9OnTp+v19fX6+++/H318cHBQ//rXv64XFRXpNptN//znP6+3tbWZWHHibd++XQcw5LZs2TJd143p4HfffbdeWlqqq6qqX3TRRfr+/ftjXqO7u1u/9tprdbvdrhcUFOgNDQ16b2+vCd9NYox2TgYGBvRLLrlEnzx5sm6xWPSZM2fqy5cvH/KPgWw7J8OdDwD6E088ET1mLH9fDh06pH/605/WrVarXlJSon/zm9/UA4FAir+bxDjVOWltbdU/9alP6cXFxbqqqvrcuXP1b33rWzHrmOh6dp2T//iP/9BnzpypK4qiT548Wb/ooouiwUbXc+8zMtr5MOPzIei6rsc/3kNERESUnnKm54aIiIhyA8MNERERZRWGGyIiIsoqDDdERESUVRhuiIiIKKsw3BAREVFWYbghIiKirMJwQ0RERFmF4YaI0tpXvvIVXHHFFUPu37FjBwRBGLI5IRERww0RERFlFYYbIsp499xzD6qqqmLuW7duHSoqKmLue/zxx3HWWWdB0zSceeaZ+MlPfpK6IokoZWSzCyAiSoWnnnoKq1atwsMPP4wFCxbgjTfewPLly5GXl4dly5aZXR4RJRDDDRGlvd///vew2+0x94VCobheY/Xq1fjBD36AK6+8EgAwa9YsvPPOO/jpT3/KcEOUZRhuiCjt/du//RseeeSRmPtee+01XH/99WN6fn9/Pz744APccMMNWL58efT+YDAIh8OR0FqJyHwMN0SU9vLy8jB37tyY+44ePRr9syiK0HU95vFAIBD9c19fHwDgscceQ01NTcxxkiQlulwiMhnDDRFlvMmTJ6O9vR26rkMQBADAnj17oo+XlpZi2rRp+PDDD3HdddeZVCURpQrDDRFlvAsvvBCdnZ148MEH8YUvfAHbtm3DH/7wBxQUFESPWbNmDb7xjW/A4XDg0ksvhc/nw+uvv46enh40NjaaWD0RJRqnghNRxjvrrLPwk5/8BOvXr8f8+fOxc+dO3HHHHTHHfPWrX8Xjjz+OJ554ApWVlVi8eDGefPJJzJo1y6SqiShZBP3kC9VEREREGYwjN0RERJRVGG6IiIgoqzDcEBERUVZhuCEiIqKswnBDREREWYXhhoiIiLIKww0RERFlFYYbIiIiyioMN0RERJRVGG6IiIgoqzDcEBERUVZhuCEiIqKs8v8DbxRKdtkawmQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_hues(rms, rmse, p1, p2, plot_spans=True, configuration=configuration)" + ] + }, + { + "cell_type": "markdown", + "id": "5ccf464a", + "metadata": {}, + "source": [ + "Another way to visualize the spectral state from the rms and hue together is by using a polar plot (here, intuitively, the radius is the rms and the hue is the angle):" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "de4215f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAG6CAYAAAB5tV2QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACodklEQVR4nOydd3zTdf7HX9mrSbqb7gUtLbNlFCiUISeKA9TzcB2enucdP/VUlLvTc53r3OvAcR6K41TUOwE9RAHZIGWV2b1XOtJm7+T7++NLQgttadok34zP8/HIg5LvN9/vO2n6fX3f88OiKIoCgUAgEAgEsJk2gEAgEAiEQIGIIoFAIBAI5yCiSCAQCATCOYgoEggEAoFwDiKKBAKBQCCcg4gigUAgEAjnIKJIIBAIBMI5iCgSCAQCgXAOIooEAoFAIJyDiCKBQCAQCOcgokgg+BmdTocHHngA6enpEIlEmD17Ng4fPuzeTlEUnnjiCSQmJkIkEmHRokWorq7ud4yDBw9iypQpyMjIwLp16/z9FgiEkIWIIoHgZ+666y5s27YNn3zyCU6dOoXLL78cixYtQmtrKwDgpZdewltvvYV3330Xhw4dgkQiweLFi2E2m93H+O1vf4vHH38cn332Gf7+97+jubmZqbdDIIQULDIQnEDwHyaTCVKpFJs2bcJVV13lfn7q1Km48sor8cwzzyApKQkPPfQQHn74YQCARqNBQkIC1q9fj5tuugkAkJ6ejl27diE+Ph7z58/HRx99hPz8fEbeE4EQShBPkUDwI3a7HQ6HA0KhsN/zIpEI+/btQ319PZRKJRYtWuTeJpfLUVRUhIMHD7qfe+KJJ5CXlwe5XI6ZM2cSQSQQvAQRRQLBj0ilUsyaNQvPPPMM2tra4HA48Omnn+LgwYNob2+HUqkEACQkJPR7XUJCgnsbQIdPVSoVurq68I9//MOv74FACGWIKBIIfuaTTz4BRVFITk6GQCDAW2+9hZtvvhlstmd/jhKJBFFRUT6ykkAIT4goEgh+Jjs7G7t374Zer0dzczNKS0ths9mQlZUFhUIBAOjo6Oj3mo6ODvc2AoHgO4goEggMIZFIkJiYiN7eXvzwww9YunQpMjMzoVAosGPHDvd+Wq0Whw4dwqxZsxi0lkAID0j1KYHgZ3744QdQFIXc3FzU1NRg9erVEAqF2Lt3L3g8Hl588UW88MIL+Oijj5CZmYnHH38cJ0+exNmzZy8q0CEQCN6Fy7QBBEK4odFo8Mgjj6ClpQXR0dG44YYb8Nxzz4HH4wEA/vSnP8FgMODuu++GWq3GnDlzsHXrViKIBIIfIJ4igUAgEAjnIDlFAoFAIBDOQUSRQCAQCIRzEFEkEAgEAuEcRBQJBAKBQDgHEUUCgUAgEM5BRJFAIBAIhHMQUSQQCAQC4RxEFAkEAoFAOAcRRQKBQCAQzkFEkUAgEAiEcxBRJBAIBALhHEQUCQQCgUA4BxFFAoFAIBDOQZaOIhB8iMlkQmdnJ7RaLfR6PXQ6nfvfvj/r9Xo4HA44nU44nU7Y7Xaw2ex+Dw6Hg4iICEilUve/F/4slUoRHx8PkUjE9FsnEIISsnQUgTACKIpCa2sramtr0dbWhvb2drS1tbkf7e3tUCqV0Gq1YLPZEIvFEIvFkEgkEIvFEIlE7p9d/3K5XLcAUhQFtVqNyMhIUBTlFkqj0QiDwQCj0djv0fc5p9MJuVyOhIQEJCYmIikpCUlJSUhOTnb/Pzs7G0lJSWCxWEx/lARCQEFEkUAYgt7eXlRVVaGqqgqVlZWoqKhAZWUlamtrYTabkZCQgPj4eMTHxyMuLg4KhQKJiYlIS0tDSkoK0tPTkZiYCA6H49F5bTYbtmzZgiVLlrgXHx4ODocD7e3taGhoQHNzM1paWtwC3dHRge7ubnR2dqKjowMikQjZ2dnIzc3FuHHjkJOT435ERUV5+lERCCEBCZ8SCKA9v7q6Ohw9ehRHjhzBkSNHcOLECfT09CAmJgZpaWnIyMjAmDFjsGTJEkyYMAETJkyAWCxm2vR+cDgcpKSkICUlZcj9DAYDzpw5g9OnT6OiogJnzpzB//73PzQ1NUGlUiE6OhqTJ0/G9OnTMW3aNEydOhWZmZnEsySEPMRTJIQdFEWhtrYWR44cwdGjR3H48GGUlZXBYDBgzJgxGD9+PAoLCzFjxgxMmTIFsbGxfrdxpJ6iN+ju7saxY8dQWlqK48eP4+zZs6ipqYFEIsGUKVPcQjlt2jRkZWURoSSEFEQUCSEPRVGorq7Grl278NNPP2HXrl1QqVQYO3Ys8vPzUVhYiNmzZ2PGjBkB4/kxKYoDYTQaUVpaigMHDuDYsWM4e/YsqqurERsbi/nz52PhwoWYP38+xowZQ0SSENQQUSSEHBRFoaam5iIRnDRpEmbOnIlf/OIXuOyyyxAREcG0qYMSaKI4EHq9Htu2bcP27dvx888/49SpUxeJZHZ2NhFJQlBBRJEQEpjNZuzcuRObNm3Ct99+i66uLkycOBEzZ87E5ZdfHvAieCHBIIoX4hLJbdu2uUUyISEB1157La699losWLAAAoGAaTMJhCEhokgIWrq6uvC///0PGzduxLZt2yCTyTB//nwsW7YMV111VVCJ4IUEoyheiFarxf/+9z9s2rQJu3btgl6vx+WXX46lS5fiqquuYiRXSyBcCiKKhKCipqYG//nPf/DNN9/gyJEjGDduHBYtWoRf/vKXmD17Ntjs0BjSFAqi2Ben04n9+/fj66+/xvbt21FZWYkZM2Zg2bJluOGGG5Cdnc20iQQCACKKhCCgs7MTGzZswEcffYSTJ0+iqKgIS5YswU033YTMzEymzfMJoSaKF1JbW4sNGzZgy5YtKC0txZQpU7BixQosX74ccXFxTJtHCGOIKBICEoPBgE2bNuHjjz/Gjh07MGnSJNxwww248847oVAomDbP54S6KPZFqVTigw8+wFdffYUzZ87gsssuw4oVK7B06dKAqQYmhA9EFAkBg8PhwPbt2/Hxxx9j48aNUCgUuO6663DXXXdh3LhxTJvnV8JJFPtSXl6O999/Hxs3bkRHRweuu+46rFixApdddpnHU4EIhJEQGgkYQlDT3t6OZ599FhkZGbjtttvA5/OxdetWVFdX45VXXgk7QQxn8vLy8Nprr6Gmpgbff/89uFwubr31VmRlZeG5556DUqlk2kRCiENEkcAIFEXhp59+wvXXX4/09HRs2bIFTz31FFpaWvDhhx9i7ty5IVM0Q/AcNpuNkpISrF+/Hi0tLXj88cfx7bffIi0tDTfccAN27doFEuQi+AJy1SH4Fb1ej3feeQf5+fm44YYbEB0djWPHjuHAgQP47W9/S/rYCBchEAhw11134eeff8bhw4chl8uxbNkyTJgwAe+99x4MBgPTJhJCCCKKBL/Q1taGhx9+GElJSXjrrbdw1113obm5Gf/6178wYcIEps0jBAmTJ0/GBx98gJaWFvzmN7/Ba6+9hqSkJKxevRrt7e1Mm0cIAYgoEnxKbW0t7r77bmRlZeHIkSP48ssvcebMGTz00ENB3VxPYJaIiAisXr0a5eXl+Oyzz1BaWorMzEz84Q9/QF1dHdPmEYIYIooEn3DixAksX74c+fn5aG9vx+7du7Fr1y5cccUVJFdI8BpsNhtXXXUVdu/ejZ07d6K5uRl5eXm4+eabcerUKabNIwQh5OpE8Cr79u3DlVdeiZkzZ4LFYqGsrAzffvstioqKmDaNEOLMmjUL//vf/3D06FE4nU5Mnz4dV111FQ4cOMC0aYQggogiwSv8/PPPmDdvHq688kqkpKSgoqICX3zxBfLy8pg2jRBmTJgwARs2bEBFRQUUCgUuv/xyzJ8/H6WlpUybRggCiCgSRkV5eTmWLl2KhQsXIj8/H3V1dXj//feRnp7OtGmEMCcjIwPr1q1DbW0tcnNzMX/+fFx//fWoqKhg2jRCAENEkTAimpubceedd6KgoAAikQhnz57FO++8Q+ZWEgKOhIQEvPfeezhz5gy4XC4mT56Mu+66C62trUybRghAiCgSPEKlUuHhhx9GTk4O2tracOjQIXzxxRfIyMhg2jQCYUgyMzPx5Zdf4tChQ2hqasKYMWPwpz/9Cb29vUybRgggiCgShoXVasWLL76IrKws7N+/H1u3bsXWrVsxefJkpk0jEDxiypQp+PHHH/H9999j9+7dyMzMxEsvvQSr1cq0aYQAgIgi4ZL8+OOPGD9+PP71r3/hgw8+wMGDBzFv3jymzSIQRsX8+fNx6NAhvP/++3jvvfcwceJE7Nixg2mzCAxDRJEwKE1NTbj++utxww034KabbsKZM2dwww03MG0WgeBVbrzxRpw9exa//OUvsXTpUtx4441oaWlh2iwCQxBRJFyExWLB888/j7y8PNhsNpw6dQrPPPMM+Hw+06YRCD5BIBDgueeew6lTp2A0GjFu3Di8+OKLJKQahhBRJPTjxx9/xIQJE/Dhhx9iw4YN+Pbbb0kRDSFsyMzMxP/+9z/8+9//xvvvv4+JEydi+/btTJtF8CNEFAkA6KrSm266CTfccANuvvlmnDlzBldffTXTZhEIjLB06VKcOXMGN954I6677jrccsst6OnpYdosgh8gokjAN998g3HjxqGtrQ0nT57E008/TUKlhLBHIBDg2WefRVlZGVpaWpCXl4fNmzczbRbBxxBRDGNUKhVuvvlm/OY3v8Fjjz2GXbt2ITMzk2mzCISAIjs7G7t27cJf/vIX3Hbbbbj11luJ1xjCEFEMUzZt2oS8vDy0tbWhrKwM999/P1m9gkAYBDabjQcffBDHjh1DU1MT8vPz8e233zJtFsEHkKtgmNHT04NbbrkFv/71r/Hoo49i586dxDskEIbJmDFjsHv3bqxevdr9d0Qm4oQWRBTDiJ9++gn5+floaWnB8ePH8cADDxDvkEDwEDabjYceegjHjx9HfX098vPzsWvXLqbNIngJckUMA+x2Ox5//HFcffXV+OMf/4hdu3YhOzubabMIhKBmzJgx2LNnD+655x4sWbIETz31FBwOB9NmEUYJEcUh2LNnD6655hokJSWBxWJh48aN/bY/9dRTGDduHCQSCaKiorBo0SIcOnSo3z4ZGRlgsVj9Hi+88EK/fVxLLRUUFFz0+tHS2tqKBQsW4N///jd27NiBRx99lHiHBIKXYLPZeOyxx/Djjz9i/fr1uOyyy9DW1ua387/wwgtgsVh44IEH3M/Nnz//omvOH/7wh36v27x5M3JycpCbm4vvvvvOb/YGA+TqOAQGgwGTJ0/G2rVrB9yek5ODNWvW4NSpU9i3bx8yMjJw+eWXo6urq99+Tz/9NNrb292P++67z72tqakJL730Er744gv89a9/xR133OE1+7ds2YJJkyYhJiYGx48fx6xZs7x2bAKBcJ45c+agrKwMUqkUkyZNwg8//ODzcx4+fBjvvfceJk2adNG23/3ud/2uOS+99JJ7m8ViwT333IO3334ba9aswcqVK8nknj5wmTYgkLnyyitx5ZVXDrr9lltu6ff/1157DevWrcPJkydx2WWXuZ+XSqVQKBQDHkOr1SIyMhKTJk2CQqGAyWQatd02mw2PPvoo3n77bTz33HP97iIJBIJviIyMxLfffovXXnsN119/Pe677z4888wz4PF4Xj+XXq/Hrbfeivfffx/PPvvsRdvFYvGg1xyLxQIOh4MpU6YAALhcLiwWC+lNPgfxFL2E1WrFP//5T8jl8ouWU3rhhRcQExODgoICvPzyy7Db7e5tEyZMwKRJkyCXyzF+/PgBv+Ce0NzcjDlz5mDjxo3Yu3cvEUQCwc+sWrUKu3fvxtdff42SkhKfDBe/5557cNVVV2HRokUDbv/3v/+N2NhYTJgwAY888giMRqN7m0wmwx133IHExEQkJSVh5cqVkEqlXrcxaKEIwwIA9c0331z0/LfffktJJBKKxWJRSUlJVGlpab/tr776KrVz507qxIkT1DvvvENFRkZSDz744EXH6e7upoxG46hs3L9/PxUbG0tdf/31lF6vH9WxCMxitVqpjRs3UlarlWlTCCNEp9NRy5Yto+Lj46mDBw967biff/45NWHCBMpkMlEURVHz5s2j7r//fvf29957j9q6dSt18uRJ6tNPP6WSk5Op66677qLjqNVqSqvVes2uUIGI4jAZTBT1ej1VXV1NHTx4kLrzzjupjIwMqqOjY9DjrFu3juJyuZTZbPaqfevWraNEIhH1t7/9jXI4HF49NsH/EFEMDRwOB/XEE09QIpGIWr9+/aiP19TURMXHx1MnTpxwP3ehKF7Ijh07KABUTU3NqM8fDhBRHCaDieKFjBkzhnr++ecH3X769GkKAFVRUeEVu2w2G3X//fdTcrmc+s9//uOVYxKYh4hiaPHll19SMpmMWrVqFWW320d8nG+++YYCQHE4HPcDAMVisSgOhzPgsfV6PQWA2rp162jeQthACm28jNPphMViGXR7WVkZ2Gw24uPjR32u3t5e3Hjjjaivr8e+ffswYcKEUR+TQCB4nxtvvBFjx47F9ddfj9OnT2PDhg2IjIz0+DiXXXYZTp061e+5O+64A+PGjcOf//xncDici15TVlYGAEhMTByJ6WEHEcUh0Ov1qKmpcf+/vr4eZWVliI6ORkxMDJ577jlce+21SExMRHd3N9auXYvW1lbceOONAICDBw/i0KFDWLBgAaRSKQ4ePIgHH3wQt912G6KiokZlW3l5Oa6++mokJyejtLQUMTExozoegUDwLVOmTEFpaSmWLVuG6dOn47vvvkNubq5Hx5BKpRfd/EokEsTExGDChAmora3FZ599hiVLliAmJgYnT57Egw8+iJKSkgFbNwgDwLSrGsjs3LmTAnDR4/bbb6dMJhN13XXXUUlJSRSfz6cSExOpa6+9tl+hzdGjR6mioiJKLpdTQqGQysvLo55//vlR5xO3bdtGyWQy6u677x5VKIYQuJDwaehis9moO++8k5LL5dRPP/006uP1zSk2NTVRJSUlVHR0NCUQCKgxY8ZQq1evpjQazajPEy6wKIqiGFVlgkd88cUXuPPOO/Hcc8/hwQcfZNocgo+w2WzYsmULlixZ4pM+NwLzvPrqq3j88cfx0UcfuaNLBOYh4dMg4s0338Sjjz6KdevW4eabb2baHAKBMAoeeughJCQk4De/+Q06Oztxzz33MG0SAUQUgwKKovDoo4/i3XffxTfffIPLL7+caZMIBIIXuO222xAXF4fly5dDqVTi6aefBovFYtqssIaIYoBjt9tx99134/vvv8eOHTtQWFjItEkEAsGLLF68GD/++COuueYaKJVKvPPOO+ByyaWZKciYtwDGaDRi2bJl2LNnD/bu3UsEkUAIUWbMmIF9+/Zhx44duOGGG7wyA5kwMogoBigajQaLFi1CW1sb9u/fjzFjxjBtEoFA8CFjx47FgQMH0NDQgF/84hfQarVMmxSWEFEMQNRqNS677DKwWCzs2bMHCQkJTJtEIBD8gEKhwN69e+FwOLBo0SJoNBqmTQo7iCgGGD09PVi4cCHEYjG2bduGiIgIpk0iEAh+RCaTYfv27eDxeLjsssvQ29vLtElhBRHFAEKlUmH+/PmQy+X48ccfIRaLmTaJQCAwgEQiwbZt2yAWi7FgwQL09PQwbVLYQEQxQOjp6XGPg3v99dchEAiYNolAIDCISCTCm2++CZFIRDxGP0JEMQBQq9VYtGgRoqOjsXHjRiiVSpSXl4MMGyIQwhOKonD27Fl0dnbi22+/hVQqxS9+8QuSY/QDRBQZRqPR4Be/+AUiIiKwdetWxMXFobi4GE1NTUQYCYQwxCWILS0tKC4uRmxsLLZu3QqBQIDLL7+cVKX6GCKKDGI2m3H11VeDz+dj69atEAqFAOhJ+EQYCYTw40JBdBXaicVi/Pjjj2CxWLj22muHXJ6OMDqIKDKEw+HATTfdBLVajS1btlxUVEOEkUAILwYTRBcSiQRbt25FV1cXbrnlFjgcDoYsDW2IKDIARVFYuXIlTpw4gR9//BFyuXzA/YgwEgjhwaUE0UVkZCR++OEHHDlyBH/84x/JNcEHEFFkgKeeegqbNm3C1q1bL7kaNhFGAiG0Ga4gukhJScHWrVvx5Zdf4tlnn/WTleEDWU/Rz7zzzjv4y1/+gh9//BFFRUXDfp1Op8P+/fuRlpaGvLw8Mkk/CKAoCjabDWazud/DYrH0+7/D4YDT6QRFUaAoyv0zALBYLLDZbLBYLPfPHA4HQqHQ/RAIBP3+LxQKwePxyHckCPBUEPuyf/9+XHnllXj11Vfxu9/9zodWhhdEFP3If/7zH/z617/Gf//7X1xxxRUev54IY2Bis9mg0WigVquh0WhgMBjc4ud0OsHlcgcULtdzLgHrK4AOhwM7d+7E/PnzweFw+ommS2gvFFfXc3a7HWw22318iUQCuVyOyMhIyOVysmhxgDAaQXTx3Xff4Ve/+hU+//xzLF261AdWhh9kfRI/sWfPHqxYsQLvvvvuiAQROB9K3b9/PwAQYWQAm80GtVrtFkC1Wg2DwQCRSOQWHoVC0U8ER7IMkM1mA0BXHXoqYna7vZ9I6vV6qFQq1NbWwmw2QyKRIDIy0i2SkZGRRCj9jDcEEQCuvvpqrFmzBrfccgt++OEHzJkzx8uWhh9EFP1AXV0dli1bhsceewwrVqwY1bGIMPoPiqLQ29sLlUrVzwsUiURuQUlNTUVkZGRATSDicrmIiIgY8EJrsVjcoq5SqVBXVweTyeQWSrlcjpiYGERFRZHvlY/wliC6uPPOO9HW1oalS5fi2LFjSE9P95Kl4QkJn/oYnU6HmTNnorCwEJ988olXj0tCqd7Hbrejq6sLSqUSHR0dcDqdiI2N7edZ+UMAbTYbtmzZgiVLlvjci+srlC6xZLPZSEhIgEKhQFxcHFn01kt4WxD7cvPNN+P06dM4ePAgWUhgFBBR9CFOpxPLli1DR0cH9u7dCz6f79XjE2H0DiaTCR0dHVAqlejq6oJIJIJCoYBCoUB0dDTYbP8XaftTFC/E6XRCpVJBqVRCqVTCbDYjLi7O/Zm4hkwQPMOXggjQNzdz5sxBSkoK/vOf/zDyvQ0FiCj6kL/+9a/45JNPUFpaCoVC4ZNzEGH0HIqioNVq3Rd9jUaDqKgo90U/IiKC8c+RSVHsC0VR0Ol07puG3t5eyOVy92clk8kY/6yCAV8Loov29nZMmzYNd911F/72t7/55ByhDomJ+IgNGzbgrbfews6dO30miADJMXqC0WhEU1MTmpqaYLVaER8fj8zMTCQkJARUTjCQYLFYkMlkkMlkGDt2LCwWi1sgq6urIRAIkJqairS0NLLU2SD4SxABIDExEf/5z3+waNEiTJw4Eb/85S99dq5QhXiKPuDo0aMoKSnBe++9h9tuu80v5yQe48A4nU4olUo0Njaiq6sLCQkJSEtLQ3x8PDgcDtPmDUqgeIpD4XA40NnZiaamJnR0dCAuLg4ZGRlISEggobtz+FMQ+7J+/Xrce++92LdvH6ZMmeKXc4YKRBS9TEdHBwoLC3HrrbfipZde8uu5iTCex2Qyob6+Hk1NTeBwOEhLS0NaWhpEIhHTpg2LYBDFvphMJjQ1NaGxsRFOpxPp6enIyMgIms/bFzAliC5WrVqFr776CseOHUNcXJxfzx3MEFH0Ik6nE7/4xS/A5XLx/fffM3K3HM7C6GqhqKurQ3t7uzs8GhcXF3SfQ7CJoguKotDV1YX6+np0dnYiMTERWVlZiI6OZto0v8K0IAL09Wjx4sVgs9mMXY+CEZJT9CJ///vfUV1djePHjzP2BQzHHKPT6URrayvq6uqg1+uRnp6OhQsXQiKRMG1a2MFisRAfH4/4+Hjo9XrU19e7WwSys7ORlJQU8hfnQBBEAGCz2fj8888xefJkvPzyy/jzn//MiB3BBvEUvcTevXuxePFifP/995g3bx7T5oSFx0hRFNra2lBeXg4AyMrKQmpqalB5VoMRrJ7iQNhsNjQ1NaGurg4sFgv5+flITEwM2e9kIAhiX3bs2IFrrrkG27dvx+zZs5k2J+AhougFuru7MWnSJNx999146qmnmDbHTSgLY2dnJ86ePQuLxYLc3FykpaWFlAcSSqLowul0orGxEZWVlRCJRMjPzw+pXFcgCqKLxx57DB999BFOnDgRdqFsTyGiOEooisLVV18Nk8mE7du3B9yFOdSEUa1W4+zZs1Cr1Rg7diwyMzNDctpKKIqiC7vdjrq6OlRXVyMqKgr5+fmIjIxk2qxREciCCNA3JAsXLoRcLsfGjRuD/jrgSwLrCh6EvP766zh+/Dg+//zzgBNEIHTWY9Tr9Th8+DD27dsHuVyORYsWYezYsSEpiKEOl8tFTk4OfvGLX0Aul2Pfvn04cuQI9Ho906aNiEAXROB8fvHQoUP4xz/+wbQ5AQ3xFEdBaWkp5s+fj2+++QaLFy9m2pwhCVaP0Ww2o7KyEk1NTUhNTUVubm5YlPmHsqd4ISaTCRUVFWhpaUFaWhpyc3ODZpRcMAhiX/73v//hxhtvxN69ezF16lSmzQlIiCiOEKPRiIkTJ+L666/Hyy+/zLQ5wyKYhNHhcKCqqgq1tbWIj49HXl4epFIp02b5jXASRRc6nQ7l5eXo7OxEdnY2cnJyAnrAQrAJootVq1bhu+++w4kTJ8LiBtNTiCiOkPvvvx+7d+/GkSNHgiqEFwzC2NPTg+PHj4PL5WLSpEmIiopi2iS/E46i6KKnpwenTp2C3W5HYWFhQP7+g1UQATqnW1BQgMsvvxyvvvoq0+YEHEQUR4Cr/WL//v0oKChg2hyPCVRhdDgcqKioQH19PXJzc5GdnR2QeVp/EM6iCNCFITU1NaiqqkJWVhZyc3MDxmsMZkF0cfToUcydO5e0aQxAeF5xRoHBYMDtt9+OBx98MCgFEQjM4puenh7s2rUL3d3dKCkpwdixY8NWEAl0YUhOTg5KSkrQ2dmJ3bt3o7e3l2mzQkIQAWDq1Km47777cPvtt8NkMjFtTkBBPEUP+eMf/4g9e/YEXdh0IALBY+zrHebk5GDMmDFEDEE8xb44nU5UV1ejurqaUa8xVATRhSs8vWjRIrz22mtMmxMwEFH0gD179uCKK67AgQMHQmbyPJPC2Nvbi2PHjoHL5aKgoAAymcxv5w50iChejFarxbFjx+B0OlFQUODXXGOoCaILVxh127ZtKC4uZtqcgIDckg8TV9h01apVISOIADOhVIfDgTNnzmD//v1ITU3F3LlziSASLolMJkNJSQmSk5Oxf/9+nD17Fg6Hw+fnDVVBBOgw6h//+EfcfvvtMBqNTJsTEBBPcZjcf//97rBpoCT8vYm/PEa9Xo/S0lKw2WwUFhYSMRwE4ikOjUajwfHjx0FRFKZPn+4zoQplQXRBwqj9IZ7iMCgrK8N7772HdevWhaQgAv7xGDs7O7Fnzx4kJCSgpKSECCJhxMjlcpSUlCAuLg579uxBZ2en188RDoII0BOG/vWvf+Htt9/GqVOnmDaHcYgoXgKn04mVK1dixYoVKCwsZNocn+IrYaQoCrW1tSgtLcXEiRMxfvx4UkxDGDVsNhsTJkzA+PHjUVpaitraWq9+Z8NBEF3MmDEDt9xyC1auXBkQ1ehMQq5Ml+Djjz9GfX190EytGS3eFkaHw4GysjJUV1dj9uzZSE1N9ZKlBAJNeno6Zs+ejerqapSVlY06zxhugujilVdeQVVVFf79738zbQqjEFEcArVajYcffhhPP/005HI50+b4DW8Jo9lsxv79+6HVajFv3jyyZA3BZ0RHR2PevHnQaDQ4cOAALBbLiI4TroII0J/hk08+iYceeggajYZpcxiDiOIQPPbYYxgzZgzuuusupk3xO6MVRrVajd27d0MikWDOnDlkxiLB54hEIvd3bffu3R5f2MNZEF2sXLkSaWlpePLJJ5k2hTGIKA5CWVmZO/kcrvmvkQpja2sr9u3bh6ysLBQWFoZscRIh8OByuZg6dSoyMjKwd+9etLa2Dut1RBBp2Gw21q5di3fffTdsi27C82p/CVzFNb/+9a9DvrjmUngijBRFoby8HGVlZZg2bRrGjh0bMHNVCeEDi8VCTk4Opk6dirKyMlRUVFzye0sE8TzhXnRDRHEAPvvsM9TX1+OVV15h2pSAYDjC6HQ6cezYMbS0tGDu3LlQKBQMWEognCcxMRFz585Fc3Ozu6fxQoggDoyr6GbDhg1Mm+J3iChegMViwaOPPoo///nPYVVccymGEkan04mjR49Co9GQ6TSEgEImk2HOnDno7e3F0aNH4XQ63duIIA5OdHQ0Vq9ejUceeQRWq5Vpc/wKEcULeOedd8Dn83HfffcxbUrAMZAwOhwOHD58GAaDAcXFxUGzYnqwQlGA0wnY7YDNBlitgMUCmEyA0QgYDIBeT/9ssdD79dGBsMRVgKPT6XDkyBE4nU4iiMPg/vvvB4vFwvvvv8+0KX6FjHnrg1arRWZmJl5//XWsWLGCaXMCFtdIuJSUFOh0OlitVsyaNQt8Pp9p04Iep5MWOpPJhj17tqCwcAlYLJ5b3Fx/ra6fXY++21xwOPSDzab/5fHOP1zP9d3O4QChnAK2Wq04cOAAhEIhJBIJ2traiCBegg8++AB//vOfUV9fHzafExHFPjz55JPYtGkTjh07FrYVp8NFrVZjz549EAgEWLBgARHEEeASQJfHZzLR3p3NRs8+ravbgjFj6NmnLBYtXgAtXK7/u37uux04L5QOB/3vhT9TVP/XuUQzIgIQCgE+n36EGlarFTt37oTVakVJSQlJkVwCp9OJKVOm4MYbb8Tjjz/OtDl+gYjiOTo7O5GVlYUvv/wSS5YsYdqcgMYVMjWZTDCbzUhPT2dsPcZggaJo4XOJoCu8abPRYgUAXC79oMXIhmPHaE+Rw/HdQHCKOi+WtBjTP/P5gEBAi6RAQD+CfS65K2Ta3NwMgUAAsViM6dOnkxvgS7B582bcdtttqKurQ2xsLNPm+Bwiiue47777cPLkSezevZtpUwIap9OJw4cPw2w2Y/bs2e6pNUwuVBzI2O20AGo09L92O/18XwEcqI3T4fCPKA4ERZ0XSFeNxUAiGUxrbF+YQxQIBNi/fz/EYjGmTZtGhPESzJkzB9OnT8frr7/OtCk+h4gigLq6OuTn52PXrl2YOXMm0+YELK4qU71ej+LiYnfIlMmFigMRiqJDoXo9oNUCZjMtICLR8L0tJkXxQlwi6fJ02Wz6fQiFgFQKiMWBHWodrKjGarVi3759kMvlKCwsDPvv7VDs378fl112GSorK5Gens60OT6FiCKAX//611Cr1fj222+ZNiVgoSgKx48fh1qtdt9p94UIIy0YRiOgVtP/UhQtHEKh5wUsgSSKF3JhKFggAGQyWiBFosAq1rlUlakr0hEdHY0pU6aE5fd2uFx99dWIi4vDhx9+yLQpPiXsYwYNDQ3YsGEDnn32WaZNCWiqq6vR3d2N2bNnXySIgH/WYwxEnE7aI2xvBxoagJYWWiykUiAqKvBEwhuwWLQQSqVAdDQd/u3uBhob6fev1Z7PkzLJcNouhEIhZs+ejc7OTtTU1DBgZfDw9NNP47PPPkNzc/OQ+61duxYZGRkQCoUoKipCaWnpoPvOnz8fLBbrosdVV13l3uc3v/nNRduvuOIKr72vCwl7UXz55ZexYMECTJ48mWlTApb29nZUVVVhxowZQ/YhhpMw2u1ATw9QX0+LQW8vHVKMjqbzbuE07lUopG8AJBLaQ25upm8QVCq6mIgJPOlDFIlEmDFjBiorK9HR0eFHK4OLwsJClJSUDDnpa8OGDVi1ahWefPJJHDt2DJMnT8bixYsHXQT6v//9L9rb292P06dPg8Ph4MYbb+y33xVXXNFvv88//9yr760vYR0+7ejoQEZGBn788UfMnTuXaXMCEq1Wi71792LKlClITk4e1mtCOZTq8gxVKrpR3hUe9XadRiCHTy+FK6dqNtO5RqmUDq+Kxf7xmkfamN/S0oITJ06gpKQEUqnUx1YGJ7t378aVV16JxsZGxMXFXbS9qKgI06dPx5o1awDQdQipqam477778Je//OWSx3/jjTfwxBNPoL29HRKJBADtKarVamzcuNGr72UwwtpTfOONNzB16lQiiINgtVpx6NAhZGVlDVsQgdD1GI1GoLWV9oTsdto7Eou9L4jBDotFfy7R0bQo9vbS3nRTE12F66rA9QWjmVSTkpKCzMxMHDp0KOxGmw2XefPmYfLkyXjzzTcv2ma1WnH06FEsWrTI/RybzcaiRYtw8ODBYR1/3bp1uOmmm9yC6GLXrl2Ij49Hbm4uVq5cCZVKNbo3MgRh++es0Wiwdu1aPPLII0ybEpC4Wi9kMhnGjRvn8etDSRitVqCjg76o63S01yORhF6u0Bfw+UBkJO0tWiz0DUVzM5139PZXwhuj2/Ly8iCVSt3j4AgX85e//AVr1qyBVqvt93x3dzccDgcSEhL6PZ+QkAClUnnJ45aWluL06dMXrV97xRVX4OOPP8aOHTvw4osvur1Vh48S12Erim+//Tays7P7JXQJ5zl9+jSsViumTp064vBnsAujw0HnDZuagK4uOkwaGRle+UJvweHQudaoKLpitaWFLk4ym71zfG/NMmWxWCgsLITZbMaZM2e8Y1yIcc011yAtLQ3vvvuuV4+7bt06TJw4ETNmzOj3/E033YRrr70WEydOxLJly/Ddd9/h8OHD2LVrl1fP7yIsRdFkMuG1117Dww8/zLQpAUlDQwNaW1tRVFQE7ig7tINRGCmK9gibm4G2NtojdIUCCaODxaLFMSKCDqs2NdH52dHc9Ht7uDePx0NRURGam5vR2Ng4qmOFImw2G6tWrcKrr74Kc5+7mtjYWHA4nIuKlTo6Oi65lJzBYMAXX3yB3/72t5c8f1ZWFmJjY31WLRyWorh+/XpERUXh5ptvZtqUgEOlUuH06dOYPn06xGKxV44ZTMJoNtNC2NxMh/tcbRUE78Ll0p8th0N7jM3NdAGTp18NX612IZFIMH36dJw6dcqn+atg5de//jWkUik++ugj93N8Ph9Tp07Fjh073M85nU7s2LEDs2bNGvJ4X331FSwWC2677bZLnrulpQUqlQqJiYkjfwNDEHaiSFEUXn/9dfzf//0fGe10AUajEaWlpZgwYYLXZxwGgzBqtXRYT6OhPRmplOQNfY1IRIuj2Ux7jUrl+dFyl8LXyz/FxcUhPz8fhw8fhtFo9Oqxgx0Oh4Pf//73eOONN/r9La9atQrvv/8+PvroI5SXl2PlypUwGAy44447AAArVqwYsI5j3bp1WLZsGWJiYvo9r9frsXr1avz8889oaGjAjh07sHTpUowZMwaLFy/2yXsLO1XYvn07uru7cffddzNtSkBBURSOHDmCpKQkZGRk+OQcgSqMTifdfN7SQnsqkZHBNdcz2GGxzhcvqVS0OKrVQ68D6a/1EDMzM6FQKHD06NGA+b4GCitXroRSqcTOnTvdzy1fvhyvvPIKnnjiCUyZMgVlZWXYunWru/imqakJ7e3t/Y5TWVmJffv2DRg65XA4OHnyJK699lrk5OTgt7/9LaZOnYq9e/cOOETEG4Rdn+I111yD5ORkryeJg52amho0NDRg/vz5o84jXopA6mO02+kiGpWKvij76O/MY4K5T3G0mEz0QyYDYmLo30tf/L1AsN1ux86dO5GVlYXs7GyfnivYuOuuu9Dd3e23HkJ/EFb3ww0NDfjhhx9IVdkF6HQ6VFRUYNasWT4XROC8x7h//34AYEwYzWa61cLVZkG8w8BAJKJvTnQ6ujc0Opp+cLn+F0QA4HK5KCgowM8//4yEhISwWWx3ODz88MOYNGkSGhsbQ2ZQeFiFT999913MnTsXY8eOZdqUgME16DsjI+OieL4vYTqUqtPR4VKDgc5pEUEMLNhsQC6n22A6O+nflV7vf0F0ERsbi7S0NBw/fpyEUfswbtw4FBcX45///CfTpniNsBFFq9WKdevW4Q9/+APTpgQUNTU1sFqtI2rQHy1MCKPTSYdK++YPSTFN4MLn0zctJhOFY8fOoqmpBTNn+lcQXeTn58NisaCurs7v5w5k7r77bvzrX/+CzWZj2hSvEDaiuHHjRgiFQlx//fVMmxIw6HQ6VFZWoqCgwC9h04HwpzDa7XS4tL2d9kAuzFURAhUKWu1Z6HQtSEgohlodASaKQblcLqZMmYLy8nLo9Xr/GxCg/OpXvwKXy8XmzZuZNsUrhI0ovv3227jlllvAIeNIADAXNh0Ifwij1UrPLVWp6PxhoBTUEIaGoii0tJyFStWCvLxiJCREuFfiGG3T/0iIjY1Feno6CaP2gcPh4KabbsI777zDtCleISxEsa6uDvv378d9993HtCkBgytsmpeXx7QpAHwrjDYb3f+m05H8YTDRVxDHjSuGUBgBFovONfJ4tMff1kZXqvqTvLw8WCwW1NbW+vfEAcx9992H3bt3h8QEoLAQxX//+9+YPXs2UlJSmDYlIHCFTQsLCwPKc/aFMDocdMhUq6UFkeQPg4OBBLEvrjm0rnF8PT1D9zV6E1c1akVFBXQ6nX9OGuBkZGSgqKgIn332GdOmjJqQF0WKovDJJ5/gpptuYtqUgMDpdOLYsWPIzMxEdHQ00+ZchDeF0emkKxfValJQE0xcShBdsNnnB7S3tdEPbw0YvxQxMTEkjHoBv/rVr/Dxxx8H/ecR8qJ47NgxtLW14dZbb2XalICgsbERNpuNkWrT4eINYXQ6zzfly+VkzcNgYbiC2BeRiBZHrZb2Gnt76bm1vr425+XlwWq1hkTI0BvcfvvtaGxsxMmTJ5k2ZVSEfHblk08+wcKFCyGTyZg2hXHsdjsqKysxadKkgAqbDsRoGvwpihbDri66qCaQ36rT6YTNZoHNZoLNZoHDYQdFOeF00ivxqlTNYLN54HC44PGE5x6CkJzbOxJBdOHyGk0muqCKx6OLqSQSOtTK59MPb0YLuFwu8vLycOrUKaSkpDBWwR0oyOVyLFiwAJ988gkmT57MtDkjJqTHvNntdiQnJ2PNmjW48cYbmTaHcSorK9HR0YG5c+cyOlrNE0YyEk6logtrJJLAWe7JZrPAYFDDaFTDYNDAbDbAZjPD4aCnX3M4AnA4ArDZPPd7NJm6IRLFgKIAp9MGh8MCh8Nybn8+uFwhBAIJxGI5pNJISCSR4PGCs6x2NII4EDYb/bDQHxe4XN+IJEVR2L17N5KTk8lQEACff/45HnroITQ3Nwf8jfdghLQo/vjjj7j11lvR3t4e9ndxVqsV27ZtQ1FRkddXwPA1ngijWk17CmIxs20XZrMearUSOp0KBoMaNpsZAoEEAkEkeLxIiMUREIsFEAqFEIkE4HDY4HBoj4fFokVw9+4tWLBgCdhsHhwOOiRsszlhNltgMplhNpthNhtgNKphMqlhsxnA5YogFsshk8UiKiph1OLiD7wtiAPhS5Hs7OzEkSNHsGjRIvAD5S6MIaxWKxITE/HVV19h4cKFTJszIkJaKT755BNcddVVYS+IAFBVVYXo6OigE0Rg+KFUrfZ8Y76/BZGiKOj1PVCrlVCrlbBYjJDJYiGTxSE6OhsUJQeXy4NYTIf5JBI6xDcYruEgItGF+7EBiM496FCxzUb3YRoMNqhUGmi1avT0dKKl5Sz4fDFkMgViYhSQSqMDLkLgD0EE6M+Qx6NvloDzItnZSf9/NCIZHx+PyMhIVFdXY/z48UPuu3btWrz88stQKpWYPHky/vGPf1y00ryL9evXu5dcciEQCPot7EtRFJ588km8//77UKvVKC4uxjvvvMOY18rn83HllVfi008/JaIYaJhMJnzzzTf43//+x7QpjGM0GlFfX4+SkhKmTRkxlxJGo5EOmfJ4/l0U2GjUoKurET09rQCAyMgEJCfnQSqNg9XKg8VCX2xlMnqNRpHIu0U/LNb5C3hEBA8JCbGw22NhtY6B0WiDUtkFlUqJ6upSsFhAZGQyFIoMiMXM59j9JYgD4alIikRD97fm5+dj3759yMrKgmiQL+CGDRuwatUqvPvuuygqKsIbb7yBxYsXo7KyEvHx8QO+RiaTobKy0v3/C29qXnrpJbz11lv46KOPkJmZiccffxyLFy/G2bNnIRQKh/+BeJE77rgD1113Hd5++23GbBgNIRs+/e6777By5Uo0NjaGZFGCJxw/fhxOpxNTp05l2pRRM1Ao1eGgQ6Z6Pe2F+Rqn04GenlZ0dtbDZNIhOjoZsbFpiIigPTGDgfbcJBLaHrHY89ymzWbDli1bsGTJEvCGcimHgcMBGI0U2tpUaG9vglbbBqFQhoSETMTEJDPy98GkIA6HC8OtQiHd5yqVDu7hHz58GDweD1OmTBlwe1FREaZPn441a9YAoIusUlNTcd999+Evf/nLRfuvX78eDzzwANRq9YDHoygKSUlJeOihh/Dwww8DADQaDRISErB+/XrG2tCcTieSk5Px4Ycf4oorrmDEhtEQsmqxadMmzJ8/P+wFUavVoqWlJaBbMDxhoHaN3l46dOrrAmOHw4a2tkqcOLEN7e1ViIlJxeTJi5GZWQCpNAYOBws9PbQnmJoKpKXRosh0monDAaRSFnJzYzF7diFmzVqMqKgUtLZWoqzsRzQ1VcLh8N8w50AXROC8FxkVdf5Gq60NaGykC7kGmn2dl5eH5ubmARv6rVYrjh49ikWLFrmfY7PZWLRoEQ4ePDioHXq9Hunp6UhNTcXSpUv7LXtXX18PpVLZ75hyuRxFRUVDHtPXsNlszJ8/H5s2bWLMhtEQkorhdDrx7bff4rrrrmPaFMYpLy9Heno6JCE0/bqvMJ48WY7ubgpise96EZ1OB5TKWpw8uR0aTReysgowYcJlSEjIApdLuw1GIz1dJSaGFkSZLDB7I/l8IC6Oh6lTs1BSchmyswug1XairGw7Wlpq4XT6dphoMAjihbBYdPjUNRGpvZ0Wx+5uOiLgIiIiAmlpaSgvL7/oGN3d3XA4HO4V6F0kJCRAqVQOeN7c3Fx88MEH2LRpEz799FM4nU7Mnj0bLS0tAOB+nSfH9BfXXXcdNm/eHJSN/AH4Zzt6jh49CoPBgKuuuoppUxilp6cHXV1dyMnJYdoUryOVSjFrVjFaWprQ1VUOgcD7f3wURaG7uwmnTu1Ad3cTMjMLMW5cMeTyBHdux+GgR4wBQEoKoFAw7xkOBzYbiIhgIS8vAfPmzUFubgF6ehpx4sRP6Oho9snFLBgFsS8ucYyOpn9WKmlx7Oo6H2bNyclBZ2cnent7R32+WbNmYcWKFZgyZQrmzZuH//73v4iLi8N777036mP7mquvvhoajQZlZWVMm+IxISmKmzZtQnFxMQRhvBSCa4Xy7OzsoEx2DwebTYrExGLodE1obfXuEHGdToUzZ3aitbUSycl5GD9+PiIjEy4q7tFo6Itkaio9OSfAijuHhUDAQk6OAvPmLUBaWi7a2spx8uQuaLUqr50j2AXxQlziyOHQs3UbG+kiHRZLhKysLJw9e7bf/rGxseBwOOjo6Oj3fEdHBxQKxbDOyePxUFBQgJqaGgBwv240x/QVYrEYs2bNCsoQasiK4tVXX820GYzS29sLjUaDMWPGMG2KTzAY6PBVVJQUubnF6O72jjA6HHY0Np5CVdVBxMSkYeLEhYiNTe0nhhRF90MCtBgmJobGUlQiEQsTJqRh7tzLEBOTgqqqg6irOw273T6q44aaIPZFKKTFkcejRbGxEZDLx6K3t7eft8jn8zF16lTs2LHD/ZzT6cSOHTswa9asYZ3L4XDg1KlTSExMBABkZmZCoVD0O6ZWq8WhQ4eGfUxfctVVV2Hjxo1Mm+ExISeKjY2NqKioCPsJNnV1dUhLSxt15WIg4nDQgkhRtBiJRN4RRto73AWjUY3x4+cjMXEM2Oz+UzlcgigSAcnJwesdDgaLBchkHEybNhbTps2D0diD06d3occVI/aQUBbEvggEtDjy+YBazYNUmoYzZ+r6LWu1atUqvP/++/joo49QXl6OlStXwmAwuHsRV6xYgUceecS9/9NPP40ff/wRdXV1OHbsGG677TY0NjbirrvuAkC3ZzzwwAN49tlnsXnzZpw6dQorVqxAUlISli1b5s+3PyDLly/H6dOn3TnQYCHk+hS/++47TJky5aLkczhhMpnQ3t4etM2zl6K39/zaiC5cwlhZSfcxJicPf1aq0+lAS8tZdHU1Ijl5HBISsgd8rdNJC2JEROh4h4PBZgNJSVLExs7F2bM1qKs7gN7eDGRm5l10ozAY4SKIfREI6AeXm4XKyp2orR2PmBgh5HLgV79ajq6uLjzxxBNQKpWYMmUKtm7d6r5WNTU19auW7+3txe9+9zsolUpERUVh6tSpOHDgAPLz8937/OlPf4LBYMDdd98NtVqNOXPmYOvWrQGRMklMTMSkSZPw3Xff4Q9/+APT5gybkOtTvOKKK1BYWIjnn3+eaVMY4+zZs9DpdCgqKmLaFK/To7GgpQWQigUDipLJpENl5X7ExqYNSxitVhNqakoBAJmZhRCJpAPu5xJEuRxISPB9MY03+xS9gVKpw4kTxwCwkJMzAwLB0BfdcBTEC6mq+hlCoRxSaR7YbLoi2dW3GkrRhaH405/+hDNnzgTVEJWQCp/abDbs27cPS5YsYdoUxnA4HGhsbERWVhbTpngdJ+VEh74T7cZmaEz6AffxJJSq1/fi7NndEImkGDduzqCC6HDQghgVRXuIwVBd6m0UCinmzJkDkUiCM2d2Q6sdvLqSCCJNQkIWVKoGyOUOSCR0UVZjIz1owmBg2jr/sGTJEuzduxcOh29bfbxJSInisWPHwOVyAyLJzBQtLS0QCARBOeP0UhisBjh5WsTFO9BpakFjZy+czotFbzjC2N3djMrK/VAoxiIjo2DQkKDdTl/MYmLodotwHqMrkXAwa1YhkpOzUVW1H0rlxbkiIojnkcniwOXy0dPTCi6X9hIjIujQf0sL3coTWnG6i5kzZw4oigqq1oyQEsVdu3Zh6tSpQbtkiTdobGxERkZGwA1+Hi1OyokeUw+4bC4U0VIkJ/Kgo9pQq+yC3eG8aP/BhJGiKDQ3n0FT0ymMGTMDCsXA+UOADplqtUBcHB0yDeOvlRsej4UpU8YgP386WltPoK7ubL/PlgjieVgsFuLjM9DVdX4RYi6XDsFzufSEHKVy4Ok4oQKXy0VhYSF27tzJtCnDJqREcceOHSguLmbaDMbQarXQarVITU1l2hSvo7fqobPqIOHTk3mipCJkJEtg43eiRqmE2Xpx28CFwuh0OtHYeAK9vW3Izy+BXD7wEGbgfJVpVBQtioE4nYYpWCxgzJgEzJhRAq22BdXVJ+FwOIkgDkBMTCoMBjVMJm2/50UiOseoUtHhVKORIQP9QHFxMX766SemzRg2IfOnbrPZcODAASxevJhpUxijoaEBSUlJAVGY4U2clBM9xh7wOXywWee/shEiPsakyMGJ6EFNZys0BvNFr3UJY1dXI86e3QWtthvjxs255EVbp6MHehNBHJyEBClmz54Dk6kLp0/vQnd3MxHEC+By+YiKSkJXV9MA2+ibLpOJDqeq1aEZTl28eDH27ds36n5XfxEyf+5Hjx4Fl8vFzJkzmTaFERwOB1paWpCens60KV7HYDVAb9NDzBNftI3P4yA7KQoRUQY09baiU31xAY5QGIGIiGiYTHrI5fHg8YaunDSZaG8oPj48i2o8QS4XISEhDlarHgJBNHi80Jmx6y3i4tKhUjUPOFeWxaLDqRwO7TF2dNB57FCiuLg4qPKKISOK4Z5PbGtrg0AgQHR0NNOmeBWKoqA2q8Flc/t5iX1hs1nIUEQiNt6OTlMrmrvU7gIciqLQ2HgCJpMOubmz0dvbNmRVqs0GmM10DjGEZqj7BNcowa4uJYqKZsNm06Km5iQcjhB0d0aBVBoDLpeH3t72QfcRiehlqbq7aXHs2/Qf7Ljyirt27WLalGERMqIY7vnElpYWpKWlhVyBjdluht46sJd4IYkxUiQpuNA429DQoYLd4URbWxU0mk7k5hZDJosdsirV6aTDprGx9N07YXBcgtjS0oLi4mIoFLEoLp4Nk6kDDQ1VcF5c+xS2sFgsxMamQaUaerKLK5xqMNDhVI0mdMKpwZRXDAlRdDqd+Pnnn/utKxZO2Gw2dHd3u2cihhI6qw5Oygkue3i9ENEyETKSxTBzlaioL4dSWYOxY2dCIKBXQx+qXUOrpcUwNjZ8mqtHwoWCGBFB5xBlMjFmziyCWl2N1tZ2Iox9iIxMhFbbBYdj6Ngoi0W3brBYtMfY2Un3yQY7ixYtwoEDB4JiKamQEMXq6mpYrdaQnOAyHLq6uiAWi90Xp1DB6rBCY9ZAxBN59LoIER/JUTyY1LXgylNhR//RNwMJo9lM36nHxZHWi6EYTBBdREfLMWVKITo7j6GjQxsSF3RvIBRGgM8XQavtGtb+YjEdvu/qosXRfHENWVAxc+ZMGAwG1NXVMW3KJQkJUTx69CjGjh0btktFKZVKxpeK8QV6ix4WuwVCrmdzHG1WGxrK65CYnghpAgeNPS3o1vYfIdJXGFtaymEwUIiOplc9IAzMpQTRRWpqErKzs9HVdQi9vZaQyo+NFBaLhchIBdTq4S/+y+PRXqNeT4dTtdrgDaeKxWKMGTMGR48eZdqUSxIyoth3SG44QVFUQKyf5m3sTjt6zb0QXqJS9EIoJ4Xa07WQyCRIzkxCVlIUouNsaNe3orVb02/fvsKo1ZZDJgvSK44fGK4gusjLy0VUlBw9PUdgtzuhViPsw6m0KHZ4FEJks2lhpChaGLu7gzecmp+fT0TRXxw+fBhTp05l2gxGcC3pE2pVp3qrHia7CSKuZ6HT9qZ22Kw2ZOZluouOkmNlSFSw0WNrRV17d78JOAIBvVCxVtuEmhrvLlQcKngqiADtGU2dWgiHwwyHoxYREXQfnmuF+nAkIiIaFOWEwTD43NjBkEjokGpHBz0JJxg/x4KCAhw+fJhpMy5J0Iui0+lEWVlZ2M47VSqVSEhICKmqU4fTgV5TLwQcgUfvy6g3or2hHZn5mRe15sTKxUhPEcHEVaJW2QGrjb7dNhiA6GgpZs8uRlNTE8rLiTD2ZSSC6ILL5aKgoAB1dZWQybRQKOjcmE43cBhw/fq1KCrKQFaWEFdfXYTjx0sHPfa///0+rrtuLvLzo5CfH4XlyxddtP8DD/wGycmsfo9bb71i2PZ7GzabDbk8waMQal/4fNpr1Gppr1Gn8659vmbWrFk4duxYwP99Bb0o1tbWwmw2Y8aMGUybwgihmE/UW/Uw2AzDasNw4XQ6UV9ej/jUeETIBr5wy8QCZKfIALEK1R1t0OitcDjoYd9yuRTFxUQY+zIaQXQRHR2NzMxMnDhxHNHRTqSm0hf33t7+Mz83bdqAv/1tFVatehJbtx5Dfv5k3HrrYnR3dw543IMHd2Hp0pvx5Zc7sXnzQSQlpeKWWy5He3trv/0WLLgCx4+3ux9r137u8XvwJp7mFS+EzabbNhyO8+HUYAlLu4ptGhoamDZlSIJeFF1FNoGwqKa/0ev1MBqNiIuLY9oUr+GknOg19YLP4XvkJSqblKCcFJIzk4fcT8jnIjs5EiK5Fk3qVggjLHBd66VSIowuvCGILsaNGwe73Y6amhpERAApKXTbi8Fwvkn9/fdfwy23/A7Ll9+BnJx8vPDCuxCJxPjiiw8GPOaaNf/Gb37zf5gwYQrGjBmHV175F5xOJ/bt29FvPz5fgPh4hfsRGRk14PH8hVweD7NZD4tldGtHRUTQRWFKJdDeHhxTcCQSCbKzswM+rxj0onjkyJGwLbLp6OhAbGxsSM06NVgNHnuJ7rBpXma/lcsHg8thIzVBiuh4E6KiHf16EokwelcQAYDD4aCgoABVVVXQarXg8eiJQUlJtLeoVltx8uRRzJ17vs+YzWZjzpxFOHr04LDOYTIZYbfbEBnZP7d+8OAuTJoUj7lzc/GXv6xET49qVO9ltHC5PEilMaPyFl0IBHRfbW8vnWe0Wr1goI/Jz8/HkSNHmDZjSIJeFE+ePIlJkyYxbQYjhFro1DXSjcPmDDrSbSCaa5oRlxwHiWz4c9nMdhPiIyWIlFxcyBPOwuhtQXQRHR2N9PR0nD17FsD5JvWkJKC7uxsOhwOxsQn9XhMXl4CuruGJx3PP/RkJCUn9hHXBgivw5psfY8OGHfjrX1/Ezz/vxq9/fSXjC96ONoTaFw6H/hx1uuDoZ5w4cSJOnjzJtBlDEvSiWFVVhfHjxzNtht+x2WxQqVRISEi49M5BgsFmgNaihcSDodLaHi0MWgOSMpKG/RqKomBz2hApjBw0RBuOwugrQXSRk5MDlUqF7u5u93MyGe01AiO/oK9Z8wI2b/4C//rXN/3SKEuX3oTLL78WeXkTccUVy/DRR9+hrOwwDhzYNYp3MXoiIxXQ6VRwOLyzkKKrbcNkooXRMLrIrE8ZP348qqqqmDZjSIJaFC0WC5qbmzFx4kSmTfE7vb29EIlEEIuHH2YMZCiKgsasAZvFBoc9vJEyFEWhpbYFiWmJ4PKGNwYOoOepCjlC99qMgxFOwuhrQQQAgUCAMWPG4OzZs/0+y8zMWHA4HHR3d0DfZ5GTrq4OxMUNHQl5991XsHbtC/jssx+Rnz90xCg9PQvR0bFoaKgZ1fsYLQKBBDyeEAaD2mvHdHneNhstjFrtJV/CCBMnTkRjYyNsAbyyclCLYm1tLfh8PrKyspg2xe+o1WpERkYybYbXMNvN0Fl0lxSqvvR29cJqsSI+dfDFggfC4rBAKpAOa55qOAijPwTRRXZ2NoxGI5TK8+FDPp+PqVOn4sQJukhGr4e7aGbq1MFbrd5++yW88cYz+PTTrZg8edolz93W1oLeXhUSEpifESwWy2EwaC69o4fIZLRAtrUF5vqMY8eOBZvNRn19PdOmDEpQi2JVVRXS0tLCcrkojUYDeQgt5WCwGmCn7MMe/E05KbTWtSIpM8mj3z9FUaAoyiPxDWVh9KcgAnTvYk5ODs6ePQtnn16CVatW4aOP3sfOnR+htrYcDz20EiaTAcuX3wEA+OMfV+Dvf3/Evf/atS/i5Zcfx6uvfoDU1Ax0dirR2amEwUC7mgaDHs88sxpHj/6M5uYG7N27A3feuRQZGWMwbx7zC5FLJJEwGtU+OjY9Iq61FejpCSxh5HK5SE1NDegQ6vBjTgFIVVVVSC6qOxzUanXIvHeH0wGNRePR9BpVpwoURSE2Mdajc1kcFgg4Ao/nqbqEcf/+/QCAvLy8oB+Y4G9BdJGRkYHa2lq0tbUhJSUFALB8+XJ0dXXh+eefgFKpxLhxU/DPf25FXBydcGxra+pXWfzxx+/AarXi7rt/2e/Yq1Y9iYceegpsNgfl5Sfx1VcfQatVIyEhCfPmXY7Vq58JiBnJYnEkurubfXZ8kYjONba30z2NsbH0/wOB9PR0Ioq+orKyMixDp1arFUajMWTCp0abESa7CVHC4fWQURSFjuYOJKQmDKsF48LXslgsOCnPO55DSRiZEkSAbrfIyspCXV2dWxQB4N5778W9994LgC4WcS22KxIBX3+9q98xDh1qGPIcIpEIn332g7dN9xoSSSQsFgPsdhu4XN+0VAkEtBC6lp+Kjw+MFWAyMzNRWVnJtBmDEiD3DiOjoqICubm5TJvhd9RqNcRiMfh8PtOmeAWtRQsOizNsgdFr9LCYLIhVeOYlAoCQK4TJboLKqBpRGDQUQqlMCqKLtLQ06HQ69+zeC5FI6Iu42RwcjemewuMJwOMJYTR6P6/Y/zx0nlGlor3GQKhvyc3NRUVFBdNmDEpQi2J1dXVYNu6HUj7R6rDCYDV4tGZiZ2snYhNjweF6ftvLYrEgE8jQY+qBzjqy4ZHBLIyBIIgAwOPxkJqaOuTIL7kciI4O7iWThsKXecW+cLl0ZapaHRjDxMePH4/q6mpmjRiCoBVFk8mErq4ujBs3jmlT/E4oVZ6a7WZYnVbwOcPzeu02O3q7ehGXNPLRdlw2F3wOH12GLlgdIxsDEozCGCiC6CIjIwNtbW2DluezWHQuTCIJvuHXw0EiifRqW8ZQuGam6vW0MDK5xmVubi7a29thDdARPEEriu3t7eBwOP1yEuGCRqMJGVE0WA3gsIbv8amUKkikEogGmETjCRK+BCa7Cd2G7hELWjAJY6AJIgDIZDLIZDI0Nw9ecMLj0WFUFivwp7V4ilgc6fPwaV9cvYxmM52v7dsT6k9SU1PBYrH6teUEEkEtijExMWHXjmGz2WAwGEJCFB1OBwxWAwTc4VcD9nT2IEYR45XzywQy9Jp7obWMvNM5GIQxEAXRRWpqKtrb24fcRyKhPUajMXgX2B0IiUQOs1nvtck2w4HFosPSDgftMTLR5M/n8xETE3PJ3ztTBLUoxsZ6XmgR7KjVaohEopAosnGFTgWc4YmizWqDXqtHZGykV87PZXMh4ArQaeiE3jry2+ZAFsZAFkQAUCgUUKlUlwylRUXRD43/HCufw+MJ/VJsMxBSKR1SbW2lB4r7+ysbGxtLRNHbhKsohlLo1GQzuVskhoNGpYE4Qgy+wHs3BGKeGBQotGhaoDarQyqUGuiCCNCtEzKZDB0dHUPux2YDcXF0ewZTYT9fQOcVmVF6sZhe27K9na5O9edXloiiD2hvbw+pdQSHi8lkCpl5p0a7ETzO8Hu01N1qRMV6fz28CH4EeBwe2nRt6DZ2j6iHEQgsYQwGQXShUCiGlV/i8+nh4Q4H8xWU3oLPF8FqZa7qRSSiH0ol3c/orwWL4+LiiCh6m9bWViQmMj/D0N+YzeaAmMgxWuxOOyx2C3js4Ymi0+GEpkfjtdDphYh4Ioh5YnQYOqDUKWF3jqw5LhCEMZgEEaBFsbOzs9/Yt8GIiKDbNJisnvQmPJ4QNhuzFUQCAR1O7eqixdEffaEKhQJtbW2+P9EIIKIYZJjN5n7L4wQrVocVVsfwWzF0ah24XC5EEaOrOh0KPocPuUCOHnMP2nRtsNhH5o4wKYzBJogAIJfLweVyoVINbwFgiYQO9QVAhHrU8PlC2GzMu708Hl2A09Pjnyb/xMREtLS0+PYkIyRoRbG9vT0s2zEsFkvIiCKF4ecT9Vo9IiIjfD5WjcPmIEoYBZ1FhxZtCwzWkS1Ox4QwBqMgAvRAhZiYmEGn21yIUEh7N6EQQg0ET9GFa8FijYauTPVlpW9ycjIJn3qbUFtgdzhQFBUynqLZZgabNfyvn1FnhEQ6/JUtRgOLxUKUKAo2pw2t2lZozCMrhPCnMAarILqQy+XQDLO0lMulvcVQ6FsMJFEEzi9YrNP5dmCCQqHot9h0IBG0oqjX60OmCnO42O12OByOkBBFMZ8uFhpu7s6gNfhNFF3IBDKw2Wy0alvRoe+AbQT9ZN4SxrVr1yIjIwNCoRBFRUUoLS11bxtIEL/66iuMGzcOQqEQEydOxJYtW/odj6IoPPHEE0hMTIRIJMKiRYsYHb0VGRkJtVo97P0jIkIjhMrjCeBw2OFwBM6AVzab9sZVKt+FUeVyOQyGkUVhfE1QiqLT6YTRaAyZ+Z/DxWw2g81mg8sN6sVNAABSvhSRgkjoLJe+HbVZbLBZbRBL/V91K+aJIeaL0WXsQpOmCRqzxmNhG60wbtiwAatWrcKTTz6JY8eOYfLkyVi8eDE6OzsHFMQDBw7g5ptvxm9/+1scP34cy5Ytw7Jly3D69Gn3MV966SW89dZbePfdd3Ho0CFIJBIsXrwYZobcr8jISJhMJliGGRMVCulq1ACdFDZsuFw+WCxWQHmLAF2RajL5ri/UJYqB0Lp0IUEpikajERRFhZ2n6AqdButyRX1hsViIEceAz+HDZBu6lNCgM0AoFo5oALg34HP4iBJGwUk50aJtQZuuDWa7Zxex0Qjja6+9ht/97ne44447kJ+fj3fffRdisRjr1q0bMGT65ptv4oorrsDq1auRl5eHZ555BoWFhVizZg0A2kt844038Nhjj2Hp0qWYNGkSPv74Y7S1tWHjxo0evS9vwePxIJFIhh1C5fHoPrtgzyuyWKxzIdTAeiMsFv359vb65jOOjIyE3W4f9k2QPwlKUdSf694NN1EMlSIbFwKuALHiWJjspiF7A406IyNeYl9YLBYkfAlkAhk0Zg2a1E1QGVVwOIdfjTASYbRarTh69CgWLVrkfo7NZmPRokXYtm3bgDnEgwcP9tsfABYvXoyDBw8CAOrr66FUKvvtI5fLUVRU5N6HCeRyucch1FBYVirQ8oouhEJaEHt7vX/sqCi631gfgJMYglIUdTodeDxeSAnEcAiVIpu+yIVyyAXyIeePWi1WCISB0ZvJYXMQKYoEh81Bu77d4wpVT4Wxu7sbDoejX1EZRVHgcDhoa2sbsKhGqVReVISWkJDgbpB3/TvUPkwgFoth8qABUSikPcZAWCNwNPB4AlitgSeKAH3joVbTc2e9iUgkAofDgS4Alz8JWlGUSPxbdBEIhErjfl/YLDZixDHgsDiDhlGtFit4At+sTj5SRDwRIoWRMNlNaNI0oUPfMeyQ6mhCqa4cok6ng1QqDboq06EQCoUe5TQFAjrEF+xVqIHqKQJ03tbp9P58VDabDbFYTETRW+j1eohEvmviDlRCLXzqQswTIyEiARa7ZUBhsVlt4PEDSxQBWtBlAhlEPBG6jd1oVDeiXdcOg/XSBQTDFcbY2FhwOBx0dHT0K6rh8XhISkoa8DUKheKiWaIdHR1QKBTu7a7nBtuHCTwVRSA0QqiB0sA/GFIpXXDj7UinWCwOjfDpnj17cM011yApKQksFuuixLxer8e9996LlJQUiEQid2FAX8xmM+655x7ExMQgIiICN9xww0V/oJs3b0ZOTg5yc3Px3Xff9dsWrp6iw+EI2aWyIoWRSIhIgMlmumjhX5vF5tUh4N6Gz+EjShQFAVeAXnMvGtWNaNY2Q2vRDplzHI4w8vl8TJ06Fdu3b3cL4qxZs7Bnzx7MmjVrwOPOmjULO3bs6Pfctm3b3PtnZmZCoVD020er1eLQoUODHtMfCIVCjwsv2EF5W98fNpsDpwe5aX/D4dAPlcq7Df2j8RSHalGqrKxEcXExUlJS8Oyzz3p8bI+/UgaDAZMnT8batWsH3L5q1Sps3boVn376KcrLy/HAAw/g3nvvxebNm937PPjgg/j222/x1VdfYffu3Whra8P111/v3m6xWHDPPffg7bffxpo1a7By5cp+S8uYTKaQCyMOB09WlAhGokXRiJfEQ2/Vu/sXKYoKWE/xQvgcPiKFkZAKpDDZTGjWNKNB3YAeY89FQu9iOML44IMP4v3338eHH36ImJgYrF69GgaDAXfccQcAYMWKFXjkkUfc+99///3YunUrXn31VVRUVOCpp57CkSNHcO+99wKgi4YeeOABPPvss9i8eTNOnTqFFStWICkpCcuWLfP+BzNMBAIBzGazx2X6AVjV7yEsAIH9JiQS2lP0ZrRTKBTCOIJk5VAtSgBw77334rbbbsOmTZuwadMmHDhwwKPjeyyKV155JZ599llcd911A24/cOAAbr/9dsyfPx8ZGRm4++67MXnyZLeSazQarFu3Dq+99hoWLlyIqVOn4sMPP8SBAwfw888/A6BFkcPhYMqUKSgoKACXy+13B+l0OsEOhVtEDwn19+1q04gTx7m9LLuNFsdgEEUXHDYHUoEUkcJIUKDQpm9Do7oRnYZOGG3GiypthxJGiqIwceJE3HXXXfjyyy9RXFyMsrIybN261V0o09TU1G9k1uzZs/HZZ5/hn//8JyZPnoyvv/4aGzduxIQJE9z7/OlPf8J9992Hu+++G9OnT4der8fWrVsZDc8LhUJQFHXJtRX7wmLRj2CGxWIFZL9eX/o29HsrXM1ms0f0vgdrUfrggw8AAL29vZg6dSomTZqEpKQkjyqaAR/kFGfPno3NmzejtbUVFEVh586dqKqqwuWXXw4AOHr0KGw2W79y8HHjxiEtLc1dDi6TyXDHHXcgMTERSUlJWLlyJaRSqXv/UBeHwQh1TxGg83Sx4lhEC6OhsWhgs9kAFsDmBN/vm8ViQcwTI1oUDQ6bgy5DFxp6G1DfW48OfQe0Fi0sdgsoihpUGCsrK9HS0oIXX3wRTU1NsFgsOHToEIqKitzn2bVrF9avX9/v3DfeeCMqKythsVhw+vRpLFmy5CLbnn76aSiVSpjNZmzfvh05OTk+/0yGwpUaGM5qGX0JcD25JCwWG9QIlyvzJ66Gfg81ZlDYbDYcHsZjh2pRcunH008/jUWLFkEsFoPNZmPx4sUencPro1H+8Y9/4O6770ZKSgq4XC7YbDbef/99lJSUAKDLwfl8/kU9hheWgz/55JN44IEHwGaz+wkiQEQx1OGwOYiPiAcAdPR2gIXgf89CrhBCrhBOygmL3QKVSQWn0QkemwcBR4AIfgSEAiFmzp6Jnw/8TN8MgF4NZs6cOSFVZToYLBYLLBbLI1H0tafopCh06EwwWu0Q87lIkIrA9vIJg8FTBPo39EuldPXv6I7n2e8aGLhFCaD1o6KiAgCwZMkSdHV1QavVjmjNXZ+I4s8//4zNmzcjPT0de/bswT333IOkpKSLGoovxWBj3JxO57nRSEHeoOQhDocDTqczbN53jDAGRp4RYAFGsxECbmjkkfksPvhcunDI5rDBbDVDZ6KTNTwODxnjM1B5rBIAUJCaCkFvL2y+6KAeCXI57TL4CIqioNVqwecPr7DKbqeLP3yxokNDjx576zrR2GuAxeGAgMNBepQEc7PikRHtvZsUtboDWm0XHCOYretveDw6t9jdDcTHj+5YJ0+exJYtW7B8+XLvGNcHgUAw4kXovSqKJpMJjz76KL755htcddVVAIBJkyahrKwMr7zyChYtWgSFQgGr1Qq1Wt3PW/SkHJzFYsFqtV405Dgc6O3txYkTJ5g2w++cOXCGaRMY4eeaGqZN8Dt9KwmHS329d21QGoHdShYMNhai+ACfA1gcwKFu4HRDJeYpKCi8PGTp2LHguZ556/OeOHGiR/v3bVHqizfbibwqijabDTab7aLQJofDcbvJU6dOBY/Hw44dO3DDDTcAoPMmTU1Nwy4Hdw3FvjBPEuocOnQISUlJSE1NZdoUv2E0GrF7924ULyxGh57+Q5AKpJd4VXBCURSa6xrR29mLsRP4qDhuAZ8DpMbEISc5hfnQucVCu2Tp6XSNvg/YsmULFixYMOw+ZIMBaGoCzk0N8woWuwPHjtaBI9ZjUpQEHDbbHaLNoCjU9xqgEspwRUGmV0Kp3d3NUKvbMWbMjFEfy1+o1XTQQKEYefh64sSJSEtL8+g1rhalHTt2uCulnU4nduzY4a6uHi0ei6Jer0dNn7vX+vp6lJWVITo6GmlpaZg3bx5Wr14NkUiE9PR07N69Gx9//DFee+01AHRI9Le//S1WrVqF6OhoyGQy3HfffZg1axZmzpw5LBvYbDacTid4vOCpSPQGHA4HbDY7rN43j8cDRVGIlkRDwBfQBSo2LWQCGTjs0OnZpCgKjdW1UHf1YvJ0KeJk6ajAaczMFeBQlQpsDhd5ycnMCiObTV8B+XyfNAi68mo8Hm/Y33Ee73wf3aUYbn7wdIsa++q7IeByoDs3fpDFAtgsFtgswOpw4pRSg26jHYmy0buLdC6VAw4neP6uXWsuWix0fnEkuMYVesqqVatw++23Y9q0aZgxYwbeeOONfi1Ko8VjUTxy5AgWLFjQz0AAuP3227F+/Xp88cUXeOSRR3Drrbeip6cH6enpeO655/CHP/zB/ZrXX38dbDYbN9xwAywWCxYvXoy333572Da4RDHcCJaEvDdx5ZZsNhsi+BHgyXjoNnaj19wLEVcEES/4JxtRFIX6qipourQomB6FxJgs2O307zkiQYFiSxv2N3YBALPC6HTSYuijIjdX29Vw84kuKOrSgtfQo8Pu2g409uphsTsg4HKQHhWBuVnxEPG4/V5ntDngpChw2ax+53BQFBznfrbYHTBavdObEIwFdK4bkZ4euodxJF+JkRZMLl++HF1dXXjiiSegVCoxZcqUfi1Ko8VjUZw/f/6QF2aFQoEPP/xwyGMIhUKsXbt20AEAl4LL5cIe7LOdRkA4iiKXywWHw4HZbAafz4eAK0CiNBESvgRdhi6oTWrIhDKwWcFZjex0OlBfXQltlwHTixSIj3aFxs9VjgijII3vRbGTjf0t9ErljAmj0zn6ksMhsFgs4PF4HnsPzVodvh1A8OZlJyAjWoqGHh2+LGuAxmRFvFQIIVcEs92O4y0q7KlTIkYsAI/Ddr8uP0GO3Hg5ZEIexDwunBQFiqLgPCe+eosdJhstot6AFsXg+/5KJHQYVaejQ6meYrfbR7w27L333uu1cOmFBOVqtRERER5N0w8VwtVDds3ElMlkAOhexkhhJIRcIS2MZnVQeo0Opw31VeXQd1tQNCsNsZED3Omy2IA8EVJjE4ozk7G/vhUAQ8Jot/tUFEcy8L66Q4fN5Q0wO/sLXlWnBh06E345OQO7a5RQm6zIjI5wf2Y2BwWN2QqV0QIui4WClBhY7A5UdWqg1BohE/DQpTMjIzoC3D7eDEVRUGpNyI2XI0Hqne8bRTmDzlMEaO9QIKArUSUSwFN9M5lMAdlqFJSiKJVKRzQeKNjh8XgeTfsIFQYbFC3kCpEsS4bEJEGPqQc9ph6IeWIIuYE/NN3mMKGxugr6bhtmzc5GlDx68J0FMkAeAalJheLcHOyvrALAgDA6nXQ+0Ud4ujSa00lhW3kHtBYrchLOC56Ez0NGNBcNPXp8X96MM0o1bE4KeqsNPDYbHBbQojFCb7VDyufCaLPDbHMgQnD+dfERHMhEfDT06BEXIYSIx4HJ5kCX3gy5iI+S7ASv9Sva7VZwucGTT+yLq29RowFiYjx7rcFguKgHPRAISlGMiIgIS1EUCoVh6SEPNSiazWIjWhyNCEEEtGYtekw96LX1QswTB2xfo9mmQWtdHQwqB4qLcyGXDePCIFUA+mpILXoU5+ZifyXdx+g3YaQoutrEh0Venopiq9qE2i4dNBYLKrsc4HM44HHY4HPYEPO5iIsQoqFHD72FDnXaHRTsDgcsdgdUBgvsTifsDjrycqZDDbmQBy6bDSGXDY3FhivHJeNshwaNvXp0G8zgcznIjZej5FxY1lvYbGYIhYHnMQ0HFotuW+3poVcs8cTRNxqNxFP0Fi5PMdwm2wiFQvQGShO3HxnOzQCfw0esJBZSgRQaiwa9pl4YbUaIeCIIOIKACU8ZrV1Q1jdD301hTnE+pNJhVi9yhUBkLNDeCako0v/CaLfTghhAomiw2qE307lXo9UBI8538MdIBEiRi+GkgHipEAqpGAIuG3YnBZXBjE69CVyKBZyblkRRFIxWBwAHhBFCWO0ORIsF+PW0bJ9PtLHZLJBKY716TH8iEtHeoloNDLfWxW63w2w2E0/RW0ilUlAUBZ1ON+jUm1DEtYpAuBEREYHW1tZh7SvgChDPjYdMIIPGrIHWokWvrRc8Ng9CrhA8hsreKcoJvbUNqsYu6LopzJ0zHhERHoZ5JXGAtBfQtEMqS/evMFqtdOjUh6Ko0+k86sEV87gQniuOEfLZsDqcsDmcsNodiBBwYbI5IBPyECMWol1rREafnGKkSAABlw2D1Y4oER+58XI4nBRsDiecANgOFsR8LtgsllfaLobCajWDxwv8kP9QuIpu5HJ6cPil0Gg0ABCQohiUbpbL5Q43r2kki7CGApGRkVCr1R5V3gq5QiREJCAjMgOpslSIeWKYbCb0mHpgtBndS1P5Aydlh9Zcj96mTmi7RiiIAMDmApEKgKsFrHpIRSIU5+aiqbsb5ecG8PsMq5WOj/lIeCmKumjK1aVIiBAhVS6F3mqDTMBDnESIJJkYGdFSRIsE6NKbkRktxZL8ZMjP5Qf1FhtEXDZEPA469WYIOGxkxUgh4fMgE/IRLRZAb7YhIyrCa4U0l8JmM4PHC8xQ/3DhcumU83BxXbsDcV3coPQU+Xw++Hy+x0uCBDtCoRBWqzXswsYymQxOpxMGg8HjHASPw4OcI4dMIIPFYYHBaoDWooXJZnILI5/DB4/DA4/N87q3ZXeaobc0QN9qhrqThTlz8kYmiC5E0UCkCuhWAvwxbmH0qcfoutr5cOapXq93rxYyXJxOFmamJKDHbBqyICYjWopfTcnArholKjo1MFltYAGQCrgQ8bjgsFhwOJ0+K6QZ+j044HDYwOcHt6dotw9/iAJAe4oikSggF00PSlEE6DsMrVbLtBl+xVWubrFYhj0GKxRwrZSi0WhGnJhnsVjulSqiRdGwOqywOqyw2C3QW/Ww2q3QO/WQ8qVeC7Fa7FqY7U0wtDnQ00mNXhBdyBIBQwNg7qX7GH0tjBYLHRPz4VqLGo0Gcrnco5s9hwNIlkqxvCDD3Zh/qYIYo9UOpc4Eq8MJPocDtcmKsrZeRIv5iBILkBMnQ74iEg4nhXat0Sc5xL7YbBYALHADtChsuDgcnotiIBbZAEEsilKpFCqVimkz/AqbzXbnFcNJFIHzIdTk5ORRH4vFYkHAFUDAFUAqkCJWEgubw4Zecy86DZ2I4EeAzxld64HZ1gO7owXGNhZ6OijMKfaSIAIAPwKQRwDtSkAgB1hs3wqjyUQPufThXb1arfa4PsDhoKO5GVFSpEVFDFoQ42reb9MY0WuygMNiI1LIhcXuAIfNgpjPgYTPRUFyNFQGC76vaB1wCIAvcIVOA6UQbKS45joM955GpVIFZD4RCNKcIkBPzhlu8UUoEa7FNi5R9BU8Dg9x4jgkSBKgt+pHlXPUW1tBUS0wtPHQrXSguHic9wTRhTQJkDoA4/nVAnySY7Tb6YSRj3M/nuYTAaDvCmqugpjsWBkSZWK3IDopCrtrO9ChM8Jks8PqcCJSxIOYz0OUWOCeVqMxW7HxdBOqOjWQC3lIi4yAXMhDVacGX5Y1oKFH58V3ex66yCa4vUSA/pp40sLa1tbmtVUtvE3QimJycnJYimK4FtvExcVBpVL5dC1JFouFWHEsooRRMFgNHr+eopzQmhsgYKugbxWiU2nxjSACAIdPt2hABTjOD3TwujAaDPTEZx+GTq1WK3p6ejxe/85kunQxbIfOhMZePUx2B1o0RvQaLajv0aNZrUeHzgwnBbRqjKjr1qO51wCD1Y5ekxVqkwUssJAWJYHGZMWe2g44fVDIZLOZwecHf9TH07kOra2tXon6+IKgDZ8mJSWhvb2daTP8zlCN7KGMRCJBREQEOjs7ffrHxGKxIBfKobFo4HA6hr0Sh8Nphd5aDynfip4mCZTtOt8JogtJPCBTA72tgCzT/bTXQqkOB920L5f7dHn7zs5OSKVSiMXDb32wWmlRvNSF2Gi1w2J3gHtubrB7sLfTAbPNAT6XA5PVDg6bBTabBa3FBpvzvPi53nZNtxYdOpPX2zNCofIUoL8mnox5a29vR1JSku8MGgVB6ykmJSWhs7OTaTP8Trh6igAdMlcqlT4/j4QngZQvhd6qH9b+VoceBls1ooVO9DZHoL3ND4II0HNRZQkATw9Y+hedecVj1OtpL9HHoVOlUulxKM1iocOnlxJFMZ8LAZcDhVSEGIkAqZESJMnFiJEIECHgQchlQ8DjIELARZRIgLRICeIjhJAKeeByWO4VOBxOymurYvSFFsXgrjx14UnKuauri4iit0lMTERXVxfTZvidiIiIsKu6daFQKNDR0eHzoegsFgvRInoWqc0xdLjWbOuFzdGAOJEAXU1itLVq/COILkRRQKQIMF98szAqYXSFqaOjfeolOp3OEa2abjINz6wEqQjpURHQW+yQC/kw2R0Q87iIFguRKBNBwOUgVS4GBRbkQh5SIiVIiZRgbKwMkxKjMDExCqmREgh4HK+titH/feiCdsSbC4eD9hI98RS7urqQmJjoO6NGQVCLYnd3N9Nm+J3IyEhotdqwXC0jKioKbDYbPT09Pj+XmCdGpDASOuvgBRYGazsotCBOLIOygY/Wll7/CqILWRIgsQKmi/8eRiyMOh29kqyPvUSVSgUOh+NRkY3TSZs3nDmbbBYL87ITECkWgMtmg8NmQW2ywmC1oddoAZvFgpjPQ6xEABHvwqs6C1w2CwaL3SfN/E6nE0ajFhJJpFeP62887VEEiCj6hKSkpLAURVdvj14/vNBeKMFisZCQkIC2tja/nCtGHAMhRwijrf/webqgph4CjgoJkni01rHQ0tLDjCACAE9M5/1sHcAAVbMeC6PRSDfqe7rswQhwVSF6kvO0WM5PnRsOrub9gpQYJMnE4LBZMFjt4LDZSJKLUZgSgztmjEWSXOyeeuNwOqG32NDQo/dZM7/ZrDvXZhV4U108wen0XBS7u7sDNnwatIU2iYmJ0Ov10Gq17nX2wgEWiwW5XA61Wh1W79tFWloaDh06hPHjx/t8Ggafw0ecJA4t2hbwOXxw2dxzBTUNkAmsiBaloK5Kh5YWFXOC6CIiAZBqAEMHEHFxIdKwi2/sdlp1UlJ8ukwUfSo7WlpaMGvWLI9eZ7GcbxYfLhnR53sZ9Rabu58xQsBz9zQmy8XDHgLgDQwGNcRiedD3KDoc9BJSw30bPT09MJlMAespBq0oxsTEgM/no7a2FgUFBUyb41dcPXtpaWlMm+J3oqOjIRAI0NbW5tHw6JEiE8gQLYqGyqSChMeH2d6MaBEQJcxEdWVPYAgicK5FI57uW7TH0KtqXMAlhZGiAK0WiI0F/HDD1dbWBpFIhKioKI9ep9ONbC75pYZ79xVOX66K4YIWxUifHNufeNqjWFdXB6FQ6HFfqr8I2vApm81GZmYmzpw5w7Qpfkcul7unzIcbLBYL6enpaGho8Nv54iRxkPIFsDkaEC/hIVY8JrAE0YU4FpDzAOPg4eUhQ6kaDV1tGhvr0+IaFw0NDUhPT/fIU7LZALPZd07sYEMAfIHRqA76fCJA30t5cpNy+vRpZGdnB6yHHLSiCAC5ubkoLy9n2gy/ExkZCY1G49tVEQKYtLQ0aDQavw2E57K5UEQkIFEajyhhLCrKlYEniMC5Fo1EgG8ALIPfNA0ojK7KlYQEz8oIR0hvby+0Wq3H0Q6LhX74OLLrc1xFNmJxaCx958lXpqKiArm5ub4zZpQEvShWV1czbYbfcc0M1Ol8M3oq0OHz+UhNTUVtba3fzingyhDBH4Py8h60tHQHniC6EMqBSAndokENXqHcTxjr60GxWPR8Ux9OrulLXV0d0tLSwPMwDmqz0U6sRkOLY7BiNuvAYrGDvh3DdV/uSX63pqaGiKKvyM3N9VsYLZDoW2wTrmRnZ6Otrc1vVbgUReHs2Ua0tOhQXJyOiAj/rcfoMbLEQVs0+iIViVCcmoomjQblRiMoDybKjAadToe2tjZkZ2d7/Fq5HEhPB6Ki6FxWTw/t5Ppw+p9PMBjUkEhCo8jG0x7FhoYGIoq+IicnB01NTUybwQjhnFcE6NaU1NRUv4TPaUE8i5aWFhQXz0VERAYAFoAAHaLAFQGR0YCjc8AWDTdaLaRCIYqnTUOTUony8nK/hOTLy8uRlpY2ogVm2Wx6rePERCAjA0hNpSsfTSZaIA0G+kId6BiNoVFk4+mSUQDQ1NSEnJwc3xk1SoJeFDs6OsJSHHy9akQwkJubi46ODp9+Dv0Fsfhcn2gEgCQAPAC9AAJwkEJEAiBlAYYB5gM7nUBvL10dkZwMaUICiouL0dTU5HNh7OnpQWdnp1c8BR6P9hxTUmiBTE6mn9Pp6LdnMp0P7wUaBoMGEknw5xM9FcWenh50dXURUfQV8fHxkEqlOHXqFNOm+B1XsU04TrZxIRKJkJmZibNnz/rk+AMLogsJgBQAMgBqANaBDsEcbC4QmQBw1EDf4QNWK6BW0y0XKSm0mwU6T+1rYaQoCuXl5cjOzobQi7lLFotOhUZFAWlptEDGx9Pb1Gr6EUj5R6fTAaNREzKe4nAmC7k4deoUIiMjEeOHwRAjJahFkcViYcyYMT67KAYyUqkUXC437BZavpCxY8dCrVZ7fTj80ILoQgDaY4wHYASgBxBArokoGpDx6RYNiqIHfBuNtGIkJV10NfO1MHZ2dkKj0WDMmDFePW5f2Gxa5+PiaHFMSwu8/KNOpwKXyw/6IhvA8x7F06dPY+zYsb4zyAsEtSgCQF5eXlh6iiwWy2+rRgQyfD4fY8eOxenTp+HwUjJpeILoggNaFFPP/dwLIEDcEhYbkCcCIjPQ20ZXQ6Sm0qI4SLzLV8LocDhw+vRp5OTkeFxxOlI4HLrtMtDyj2q1EpGRno22C1Q8XTLqzJkzGDdunO8M8gJBL4pTp04NS1EEzi+lFK79ii6ys7PBZrNRVVU16mN5Joh9kQJIB6AAHUrtBfMhVSsgcACRUUBiHO02SS89rswXwlhRUQEOh4OsrKxRH2skDJR/5HL9n3+kKApqtRJRUYG56rynsFieieKpU6cwbdo03xnkBUJCFMOxgR+gV6O3WCxh26/ogs1mo6CgALW1tejt7R3xcUYuiC64AGJBi2MMaI+xF4C/1780A+g5928sEDkRiMnw6OrlTWHs6elBfX09CgsLwWYze8npm39MT/d//tFk0sJut0IqjfXdSfyE00l/nsMtsnE6nSgvL8fUqVN9a9goCXpRLCgoQFdXFxobG5k2xe9wOBzExcWFfQgVoFtUxo4di+PHj48ojDp6QeyLELTHmAYgDnR1ag8AHXznPdrOHb8HgAN0SDcDQMI5ezzHG8LocDhw/Phx5OTkBNwAeybyj2q1EnJ5PNhs3w6z9weuHsXhimJdXR16e3sxZcoUn9o1WoJeFGUyGbKysrBv3z6mTWEEklc8z9ixY8Fms1F5buD1cPGuIPZFBFqc0kHnHMWgvcce0BWrJtBi5qnYUOdeZzp3HJdXKD53noxz5x19hedohbGiogJcLtenxTXeoG/+MT3dd/nH3l46nxgK2Gx0kc1wU8T79u3D2LFjR9Sf6k+CXhQBYNq0aSgtLWXaDEZISEiAWq2G2ezvEF3gwWazUVhYiLq6OnR1dQ3rNb4TxL7wAMhxXrDSQIdXAVrM1KCFrReABrTH5wqJ60EPCdCc2957bn/X7zvm3PEyzh1ffu583mOkwtjZ2Yn6+noUFBQwHjb1BD6/f/4xKck7+Uer1QSjUQO5PMHrNjOBxUIPUhhuvdDhw4cDPp8IhIgoTp8+PWyLbVxLsHR0dDBtSkAgk8kwadIkHD58GAaDYch9/SOIFyIA3duYACDz3CMDtKAlghY5Keg+SID2/mTnnk/EeWHNBJB17jiyc8f1HZ4Ko16vx5EjRzB58uSAC5sOF1f+MTr6fP4xLo7eNpL8o1rdgYiIKPB4vv1d+QPXr9+TdtNTp05h+vTpvjHIi4SEKBYWFoZtsQ1AQqgXkpaW5l6M2DZIUogZQbwQNgA+aAGUA4gGHfZMOvdAn5/jz22XndufD3rUnP8YrjDabDYcOnQI6enpflnz0h+48o/x8SPPP7paMUIBq5Vuc/VEFMvLy1FYWOg7o7xEyIiiUqlES0sL06YwgkKhQFdXl9f69EKB/Px8iEQiHD169KKLd2AIYnByKWGkKApHjhyBWCxGfn4+Q1b6lpHkHx0OO7TarpARRYsFEImGX9BcX18PlUoVFAvCh4QoyuVyjBkzBtu3b2faFEaQSqUQCATDzqOFA2w2G9OmTYNer+838YgI4ugZShjPnj0Lo9GIadOmhURz+qUYbv5Rq+0Cny8KiSk2AO0he/Kn89NPPyEnJyco/t5CQhQBYMGCBdi1axfTZjACi8VCYmIiWltbmTYloODxeCgqKkJTUxNqamqIIHqRgYSxqqoKTU1NKCoq8tvUmkBhqPxjby/Q0dEKmSwxJG4U7HZa+D2Zebpz504sXLjQd0Z5kZARxYULF+LQoUNMm8EYaWlpaGtrg9XK9BSVwEIqlWLWrFmoqqrCgQMHiCB6kb7CeODAAdTU1GD27Nlh/9lemH9MSrJCr2+HVJrmzj/aA3g5zkthtdIesieiWFpaigULFvjOKC8SMqI4b948VFVVhW0IUSaTQS6Xh21edSjkcjkSEhLQ3d2NtLS0sL9oexOpVIrU1FR0d3dDoVAEbaWpr+BwgN7eZkRHRyE3V+rOPxqN5/OPwbbQjdVKL7IyXKe3vb0dNTU1mDdvnm8N8xIhI4qJiYnIysrC999/z7QpjJGeno7Gxsawn4XaF1fItLu7G9OmTUN9fT2qq6uZNitkqKqqQmNjI6ZNm4bOzk6/LVQcLFAUhcbGRqSnp1+Uf0xMpMOQWm3gr//ogqLohydVp1u2bEFubi7iXfP0ApyQEUWADqHu2LGDaTMYIzk5GUajcVTzP0OJC3OIycnJKC4uRk1NDU6ePBnWa1GOFqfTiRMnTqCurq7fZ+uPhYqDiZ6eHpjNZiQlJbmfc+UfY2Lo/GN6ev/8o0YTWOs/9mUkodOffvopaPKJQIiJ4oIFC8I6r8jlcpGSkhKWc2AvZLCiGrlcjpKSEqhUKhw8eJDkYEeAxWLBwYMH0dPTg5KSEsjl9Ary/lioONhobGxESkoKOIMMCGWzAYnkfP4xPR2IjKR7HgMx/2i10q0YntRRBVM+EQgxUZw/fz6qq6vDerpLZmYmWltbYQnUW00/cKkqU4lEgrlz54LH42HPnj3QarUMWRp8aLVa7NmzBzweD3PnzoVYLO63nQjjeSwWC1pbW5GRkTGs/Qda/1EkCqz8o83mWStGa2sramtrUVJS4jujvExIiaJCoUB2dja2bNnCtCmMIZPJEBUVFbbe4nDbLrhcLqZPn46UlBTs3bsX7e3tfrY0+Ghra8PevXuRmpqK6dOngztI5zYRRpqGhgbExMSMqPjIlX9MTQ2c/KPDQQu3J6HT77//PqjyiUCIiSIAXH755WFdbAMAWVlZqK+vD7ucmad9iCwWC+PGjcOUKVNw7NgxlJWVDToWLpyx2Ww4fvw4jh8/joKCAowbN+6S/XbhLoxOpxP19fWjXlQ5kPKPI8knfv/997j88st9Z5QPCDlRXLp0KXbv3h12gtAXhUIBNpsdVt7PaBrzk5OTsWDBAhiNRuzcuROdnZ0+tDS46OjowE8//QSTyYQFCxb0Kxi5FOEsjG1tbeByuUhI8N6KGH3zjy6B9Gf+0Wymw7vDXfDE4XBgz549WLp0qe+M8gEhJ4rz5s2D0WjE3r17mTaFMVgsFjIzM1FbW8u0KX7BG5NqxGIxZs2ahZycHBw+fDjsvUaXd3jkyBGMGzcOs2bNuih/OBzCURgpikJtbS0yMzN9NsGGyx06/2g0ejf/6GrFEImG/5qdO3fCarVi7ty53jPED4ScKPL5fCxevBhff/0106YwSnp6OnQ6HVQqFdOm+BRvjm5jsVjIyMjAggULYDAY8NNPP6GxsTGsog5OpxMNDQ39vMP09PRRXdzDTRhVKhX0ej3S0tL8cr6B8o8cDp1/VKu9k390LSjsSX/if/7zH1xxxRVBN/Iv5EQRoEOo4Toc3AWPx0N2djbOnj0bshchX80yFYvFmD17NsaPH4/q6mrs3LkTbW1tIfs5AvRn2dbWhp07d6KmpgYTJkwYsXc4EOEijBRF4cyZMxgzZozfxWCg/GNsLL1ttPlH16oYnrylHTt2YNmyZSM7IYOEpCguWbIE1dXVYT+5JDs7G3q9PiTXWvT1cG8Wi4WUlBQsXLgQWVlZOHnyJPbu3Yvu7m6vnicQ6Orqwp49e3Dy5ElkZWVh4cKFSE5O9nroLxyEsb29HSaTCdnZ2YzaMVD+US4fef7R01aMiooK1NfX44orrvDceIYZ5mpYwUVMTAyKioqwYcMGPPbYY0ybwxg8Hg+5ubkoLy+HQqEIiQn9gH+Xf2Kz2cjMzERqaipqa2tx6NAhSKVSZGdnIzExEezhVh0EGE6nE21tbairq4NOp8PYsWORlZU1aJuFt3AJ4/79+wEAeXl5IfO9dDqdKC8vR25urs8/R09w5R+lUrqC1GSivUajkRZGoZB+DPZVdjjobZ6ETr/44gvMnj0bUVFR3nkTfiRwfnNe5rrrrsOmTZvCWhQBICMjA7W1tWhubvZbjsOXMLX8E5fLRW5uLrKystDU1ISzZ8/i9OnTSEtLQ3p6utfCjL7GYDCgqakJjY2N4HK5yMzMRFpaml9DfaEqjM3NzaAoCunp6UybMih8Pv2QyeiQqMFA5x41Gjr8KhDQ4tf312G10s970orxww8/YPny5d5/A36ARYViDAP0oOKJEyeivb0d0dHRTJvDKM3NzSgvL8dll1026LipYCCQ1kOkKAodHR1obGxER0cHYmJikJiYCIVC4RWBtNls2LJlC5YsWTJqwTIajVAqlWhvb4dKpUJCQgIyMjIQHx/PqBjpdDrs378faWlpQS+MDocD27dvx/jx45GSksK0OR7hdNLeo8FAh1VNJrpQRyikhVCtpvOUw+0u6e7uRmJiIioqKhgPI4+EkPUUc3JykJOTg48++ggPPvgg0+YwSkpKCmpqatDQ0BCUX1IgsAQRoHOOCoUCCoUCJpMJbW1taG9vx+nTpyGVSt3bIiMj/X6xpygKarUaSqUSSqUSOp0OMTExUCgUmDp1KoSexMF8SCh5jHV1dRAIBEhOTmbaFI9x5R8lEnqRZJOJFke9nhZKgF7uarh8+OGHmDBhQtBea0JWFAFgxYoV2LBhQ9iLIovFQn5+Po4dO+b3UJk3CDRBvBCRSITs7GxkZ2fDarWis7MTSqUSBw4cAABERkYiMjIScrkckZGRkEgkXrv4UxQFg8EAtVoNtVoNjUYDtVoNFouF+Ph4jB07FgkJCQH7Ow8FYbTZbKiursa0adOCzvYLGSj/aDJ51p/45ZdfYsWKFb4z0seEbPgUAFpaWpCZmYmqqipkZmYybQ6jUBSF/fv3IyYmBnl5eUybM2wCXRCHwul0QqvV9hMrrVYLNpuNiIgICIVCCAQCCIVC94PL5YLNZsPhcODAgQOYNWsW2Gw2bDYbLBYLzGYzzGaz+2e9Xg+n0wmZTNZPfGUyWVAVAQVzKPXs2bPo7e3F7Nmzg8puX1BdXY38/Hw0NTUhMTGRaXNGREiLIkCvnFFcXIznnnuOaVMYp6enBwcOHMCiRYsCJoQ2FMEsiIPhEkqj0egWuL4iZ7fbQVEUnE4nLBYLhEIh2Gw2uFyuWzj7CqlEIoFUKg0qARyMYBRGk8mEHTt2oLi4OCgrLb3Nn//8Zxw9ejSo+8RDXhQ/+OADvPLKKzh79izTpgQEpaWlEAgEmDx5MtOmDEkoCqIneLPQJpgINmF0jQOcPn0606YEBLm5ufjrX/8a1OHT4L+9vAQ33HADamtrceTIEaZNCQjy8vLQ3NyMnp4epk0ZlHAXxHAmmBr8VSoVWlpagiod4UsOHjyIpqYmXHfddUybMipCXhTlcjmuvvpq/Otf/2LalIBAKpUiJycHx48fh8PhYNqciyCCSAgGYbTb7Th+/DjGjRtHvqPnWLduHa699lpIpVKmTRkVIS+KAF2F+u2334bVYOehGDNmDLhcLioqKpg2pR9EEAkuAl0YKyoqwOfzg7btwNs4HA589913QR02dREWonjllVfCZDJh06ZNTJsSELDZbBQUFKC+vj5gwqhEEAkXEqjCqFKp0NDQgIKCgoDPefqL//73v7Db7UG3oPBAhIUo8vl83HnnnXj33XeZNiVgkMlkyM3NDYgwKhFEwmAEmjD2DZsGe5jQm7z33nv47W9/GxJFYWEhigDw+9//Hjt37kRzczPTpgQM2dnZjIdRiSASLkUgCWN5eTkEAgEJm/ahvr4ee/bswe9//3umTfEKYSOKY8eOxZw5c/DWW28xbUrAwGazUVhYyFgYlQgiYbgEgjCqVCo0NjaSsOkFvPXWW5g3bx6ysrKYNsUrhI0oAsD//d//4fPPP4fdk4XEQhypVIrc3FwcO3bMr2FUIogET2FSGEm16cBYrVZ88cUXWLlyJdOmeI2wEsWlS5fC6XTi888/Z9qUgGLMmDHg8/koLy/3y/mIIBJGClPCSMKmA/Ppp5+Cw+Hg2muvZdoUrxFWosjj8bBy5Uq8/fbbTJsSULBYLBQUFKChoQEqlcqn5yKCSBgt/hbG7u5uEjYdhHfffRf/93//F1CLKo+WsBJFALj77rtx7NgxHDt2jGlTAgqpVIq8vDwcOXIEZrPZJ+cggkjwFv4SRpPJhCNHjiA/P598Xy+gtLQUJ06cwO9+9zumTfEqYSeKCQkJ+OUvf4mXX36ZaVMCjqysLMTGxqK0tNTr+UUiiARv42thdDgcKC0tRXx8fNivsjMQr7zyCpYvX464uDimTfEqYSeKALB69Wps3LiRtGdcAIvFwpQpU0BRFE6cOOG1iwwRRIKv8JUwUhSFsrIysFgsTJ48mYRNL6ChoQGbN2/G6tWrmTbF64SlKE6ZMgXz5s3Ds88+y7QpAQeHw8GMGTPQ1dWF2traUR+PCCLB1/hCGGtqatDd3Y0ZM2aAw+F4wcrQ4plnnsFll12GiRMnMm2K1wlLUQSAv/71r/jss898XlgSjIhEIsyYMQMVFRXo6OgY8XGIIBL8hTeFUalUorKyEkVFRUGx7qi/6erqwoYNG/DXv/6VaVN8QtiK4ty5czFx4kS88MILTJsSkERFRWHy5Mk4cuQIdDqdx68ngkjwN94QRp1Oh6NHj6KgoACRkZHeNzIEeP7551FQUIDZs2czbYpPCFtRBGhv8YMPPoBer2falIAkNTUVGRkZOHToEGw227BfRwSRwBSjEUar1YpDhw4hKysLycnJPrQyeNFqtVi/fn3IeolAmIvikiVLkJSUhNdee41pUwIWVyn6kSNHhnWBIYJIYJqRCKPT6cSRI0cglUoxbtw4P1gZnLz66qtIT0/H4sWLmTbFZ4S1KLJYLDz66KN47733YLVamTYnIGGxWJg6dSqMRiPOnDkz5L5EEAmBgqfCeObMGZjNZhQWFpJK00GwWCz45z//ib/+9a8h/RmFtSgCwI033gg+n4+1a9cybUrAwuPxUFRUhKamJtTV1Q24DxFEQqAxXGGsra1FS0sLioqKQmLpI1+xZs0aRERE4Prrr2faFJ8S9qLI5XLxxBNP4NVXX/XZJJdQICIiAjNnzkR5eTkaGhr6bSOCSAhULiWM9fX1qKiowMyZMyGRSBiyMvAxGo149dVX8cQTT4R8i0rYiyIArFixAlKplFSiXoLo6GjMnDkTp0+fRlNTEwAiiITAZzBhbGxsxNmzZzFr1ixERUUxbGVg8/e//x3R0dG45ZZbmDbF5xBRBN2w/sILL+Af//gH1Go10+YENDExMSgqKsLJkyfR0tJCBJEQFFwojM3NzTh16hSKiooQHR3NtHkBjUqlwpo1a/Diiy+GvJcIACyKyWWsAwiKojBr1izMmDGDLEQ8DJRKJUpLS8HlclFSUkIE0cvYbDZs2bIFS5YsIXkuL6LT6bBnzx44HA4UFRUhISGBaZMCnnvuuQdlZWXYt29fSBfYuCCe4jlYLBZeeuklfPDBB2hpaWHanICGoiioVCpwuVw4HA7iXROCBrVaDYqiwOFwoFKp/LpQcTDS2NiI9evX4+WXXw4LQQSIKPajpKQEc+fOxaOPPsq0KQFL3xxiSUkJioqKUFZW5s4xEgiBSmNjI06cOIEZM2agpKTE7wsVByOPPPIIFi5cGLLTawaCiOIFvPjii/jyyy9RUVHBtCkBx0BFNfHx8e4c44VVqQRCoFBXV4fTp09j5syZiI+P9/tCxcHI6dOn8d///jfsChCJKF7ApEmTcMMNN+Dhhx9m2pSAYqgq07i4OMyaNQtnzpxBTU0NucAQAgaKolBdXY3y8nLMmjULsbGx7m1EGIdm9erVWL58OcaPH8+0KX6FiOIA/P3vf8dPP/2ErVu3Mm1KQDCctouYmBjMnj0bNTU1OHnyJJxOJwOWEgjncTgcKCsrQ21tLWbPnj1glSkRxoHZvHkz9uzZg+eee45pU/wOEcUBSEtLw6OPPor7778/7Me/edKHGBUVhZKSEvT29uLAgQOwWCx+tJRAOI/FYsGBAweg0Wgwb968IfsQiTD2x2KxYNWqVXj88ceRkpLCtDl+h4jiIKxevRp2ux3PP/8806Ywxkga88ViMebMmQOBQIDdu3dDo9H4wVIC4TwajQa7d++GSCTCnDlzIBKJLvkaIozneeaZZ8Bms7Fq1SqmTWEEIoqDIBAIsHbtWrz66qtobm5m2hy/M5pJNVwuF9OmTUN6ejr27t2LtrY2H1pKIJyntbUVe/fuRUZGBqZOnQoulzvs1xJhpMfevfnmm3j77bfB5/OZNocRSPP+JVi2bBkoisKmTZuYNsVveHN0W3t7O44dO4YxY8YgJycnbHqdRgtp3vcMiqJQWVmJ2tpaFBYWIjExccTH0ul02L9/P9LS0pCXlxdW39mrr74aQqEQX3/9NdOmMAbxFC/Bm2++iW3btoVN0Y23Z5kmJiZi7ty5aGpqwpEjR2C3271kKYFAY7fbcfjwYTQ3N2Pu3LmjEkQgfD3GzZs3Y+fOnXj99deZNoVRiChegvT0dHfRTahf0H013Fsmk6GkpAQWiwV79+6F0Wj0ynEJBKPRiL1798Jms2HevHmQyWReOW64CaPVasVDDz2Exx9/HKmpqUybwyhEFIeBq+jmb3/7G9Om+Axfr3YhEAjcZfG7d+9Ge3u7V49PCD/a29uxe/duxMTEYNasWV7PgYWTMD755JNgsVhhW1zTl+FnocMYgUCAdevWYcmSJfjlL3+JyZMnM22SV/HX8k9sNhuTJ09GVFQUjh8/jra2NkycODFsE/qEkWG1WnHq1Cl0dHRg4sSJPvVsXMK4f/9+AAjJHOOxY8fw5ptv4ocffiB/iyCFNh5xzz334ODBgzh8+HDILKHC1HqIJpMJJ06cgFqtxpQpU6BQKPxy3mCBFNoMTHt7O06cOIGoqChMnjwZQqHQL+cN1eIbu92OwsJCLFiwAG+++SbT5gQEJHzqAS+++CJ6e3vx1FNPMW2KV2BygWCRSISioiLk5+fj6NGjOHbsWNgPSiAMjtVqxdGjR3H8+HHk5+djxowZfhNEIHRDqY8//jgMBgP+/ve/M21KwEBE0QMiIiKwfv16vPrqqygrK2PanFHBpCC6YLFYSEtLw8KFC2GxWLBz504olUq/20EIbNrb2/HTTz/BZrNhwYIFSEtLY8RTCzVhdIVNP/74Y4jFYqbNCRhI+HQE3Hfffdi3bx+OHDkSlGHUQBDEgWxqamrC6dOnkZiYiIkTJ4Z12JCET/vnDidMmIDU1NSACFuGQijVFTa97LLLwr4F40KIpzgCXnjhBWg0Gjz55JNMm+IxgSiIAO01pqenu73Gn376CR0dHUybRWAIpVIZEN7hQISCx/jYY4/BaDSG5cDvS0E8xRGyZ88eXHHFFdi/fz8KCgqYNmdYBKogXkhfrzEmJgb5+fle6z8LFsLVU9RoNCgvL4dKpXJXlgaKGF5IsHqMR48exdy5c7Ft2zYUFxczbU7AQURxFDz44IPYunUrjh49GvAx+WARxL5YLBZUVVWhoaEBycnJGDduXMB/zt4i3ETRYDCgoqICbW1tyMzMxNixYyEQCJg265IEmzAaDAYUFhbimmuuwSuvvMK0OQEJEcVRYLFYMHPmTEyYMAGffPIJ0+YMSjAKYl+MRiPKy8vR1taGjIwM5OTkBMUFczSEiyhaLBZUVlaisbExaG98gkkYb775ZtTU1GD//v2kJ3EQSE5xFAgEAnz11VfYtGkT1q9fz7Q5AxLsggjQy1FNnToVJSUlMBgM2L59OyorK0N+7F4oY7PZUFFRgW3btsFkMmHevHkoLCwMOkEEgifH+K9//QtbtmzBl19+SQRxCIin6AW++OIL/P73v0dpaSlyc3OZNsdNKAjiQKhUKpw5cwZGoxE5OTnIyMgAmx1a93eh6ik6HA40NDSgqqoKERERyM/PR0xMDNNmeYVA9hjPnDmDWbNm4YMPPsAvf/lLps0JaIgoeom7774bhw4dQmlpaUCE9kJVEF1QFAWlUony8nI4HA6MGzcOycnJISOOoSaKTqcTLS0tqKysBIfDQX5+PhISEgJKOLxBIAqj2WzGtGnTUFJSgrfffptpcwIeIopewmQyYdq0aZg9ezbef/99Rm0JdUHsi6tStbq6Gna7HZmZmcjIyAiIG5PRECqiaLFY0NDQgPr6enC5XOTk5AR0Rak3CDRhvPPOO3HkyBGUlpb6dQpQsEIGgnsJkUiEr7/+GtOnT8eiRYuwfPlyRuwIJ0EEzvc3pqWloaOjA7W1taiqqkJKSgqysrIgl8uZNjEsUavVqKurQ2trK2JiYjBlypSQ9AwHIpCGiH/66af46quvcPToUSKIw4R4il7mo48+wgMPPIADBw4gLy/Pr+cON0EcDK1Wi7q6OrS0tEAulyM9PR1JSUngcoPnHjAYPUW73Y62tjY0NjZCo9EgNTUVmZmZYddj6oJpj/H06dOYM2cO1qxZg9tuu82v5w5miCj6gHvvvRc//PADDh8+jMjISL+ckwjixVitVjQ3N6OxsREmkwmpqalIT08PCu8xmERRo9GgoaEBLS0tEIlEyMjIQEpKCqlwBHPC2NPTg+nTp+Oaa67BG2+84ZdzhgpEFH2AzWbD5ZdfDhaLhW3btvl8PioRxKGhKAq9vb1obGxEa2srpFIpEhMToVAoIJVKAzKkF8iiSFEUdDodlEol2traoNfrkZycjPT0dERFRQXk58kk/hZGh8OByy67DFwuF1u3bg2qCEkgQETRR6hUKkybNg1LlizB2rVrfXYeIoieYbPZ0NbWBqVSia6uLggEAigUCigUCsTExARM9WqgiaLT6YRKpYJSqYRSqYTFYkFcXBwUCgWSkpICwsZAxp/C+Pvf/x7bt2/HkSNHEBUV5bPzhCrkFsJHxMTE4LvvvsPMmTMxadIk/P73v/f6OYggeg6Px0N6ejrS09Nht9vR3d0NpVKJo0ePwuFwICEhAQqFAgkJCWF/obdarejs7IRSqURHRwc4HA4UCgUmTpyIuLi4oFwhhin8VXyzZs0afPHFF/j555+JII4Q4in6mG+//RY33XQTvv/+e5SUlHjtuEQQvQtFUVCr1W5PSKfTISYmBgqFAnFxcX4PszLhKTqdTuj1enR1dUGpVEKlUkEmk7lvFCIjI0lodJT40mPctWsXlixZgq+//hpLlizx2nHDDSKKfuD555/HW2+9hUOHDiE9PX3UxyOC6HuMRqNbIHt6egAAcrkccrkckZGRiIyMREREhM/Crb4WRZcAqtVq90Or1QIAoqOjkZiYiISEhKAcuxbo+EIYGxoaUFRUhIceegh/+tOfvGBl+EJE0Q9QFIVbbrkFp0+fxr59+0ZV/UgE0f+4CkvUajU0Go37XwCQyWRukfSmUHpTFJ1O50X2uwSwr8jL5fKALTwKNbwpjGq1GrNnz0ZBQQE+/fRT8vsbJUQU/YTZbMbixYtht9vx008/jWjiChHEwMEllH1FUq1WA6AHmAsEAgiFwn6Pvs9dqiJwuKJot9thNpthNpthsVjcP/d9zmAwgMViuYWvr4CTCyhzeEMYzWYzFixYAJFIhO+//z7oJzkFAkQU/YhGo8HcuXORnp6OjRs3elSoQAQx8KEoCnq9Hkaj8SJh6vuz0+kEl8t1iySPxwOLxcL/t3fnYU3c+R/A3+GSKwFUgloEXDSUcquAUVyRKkTBQu2plUNZrVuwT+3TuovW9rG6wtp1u+zqA7vWE0pZ3a2iggeUQ6PhbBF0WQ6pog8QrAfBsFzJ9/fHYn5lVRQFBpLP63nm4cnMN5P3+DzmnZlkZng8HvT09MDj8cAYw82bN/HCCy+Ax+NBrVaDMQbGGLq7uzXr6unpgZ6eXp/C/d9CNjU1pQIcoZ6nGFUqFZYsWYKmpiYUFBTo7EUSBhuV4jBramqCWCxGQEAA9u3b91TPoULUHj8vtQdTT0+PpvAelF9PTw/q6uogEomgr6+vKUsejwcDA4M+pfegVMno9CzFqFarERUVBalUCplMBhsbm2FIqhuoFDlQW1sLsViM1atXIz4+vt+xVIi6aaSdp0iG1kCLccOGDThw4ABkMhkcHR2HKaVuGBlnKuuYadOm4cyZM9i1axcSExMfO44KkRDdMJAbFe/cuRPJyck4c+YMFeIQoFLkyIwZM/Dtt98iLi4O33zzzUPLqRAJ0S1PU4ypqanYvHkzjh07Bi8vLw5Saj8qRQ4tXLgQ+/fvR3R0NL799lvNfCpEQnRTf8V45MgRrFmzBocOHUJAQACHKbUbXeaNY2+99RY6OzsRHh4OfX19vPLKK1SIhOiwR10S7ujRo4iMjMSePXvw+uuvc5xQu1EpjgARERFQqVRYvnw5/vSnP8HOzo4KkRAd9vNiPH/+PD788EMkJSXhnXfe4Tqa1qNSHCFWrlyJrq4ufPDBBzh48CAVIiE6js/no7W1FevXr0diYiIiIyO5jqQTqBRHkHfffRc8Hg+RkZEwNDREaGgo15EIIRz55z//iVWrVmHXrl1YtWoV13F0BpXiCLNmzRoYGhpi2bJlSElJwWuvvcZ1JELIMDt8+DCioqKQnJyMiIgIruPoFCrFEWjlypUwMDBAeHg4lEol/acgRIfs27cPsbGx2LNnD32HyAEqxREqPDwcpqamCA8Ph1wux8cff8x1JELIEIuPj8e2bdvw9ddf49VXX+U6jk6iUhzBXnvtNYwbNw6hoaFobm7GF198MWT37yOEcEetVuPDDz/EgQMHBv2G5GRgqBRHOH9/f5w7dw6BgYGQy+U4ePDggO6uQQgZ2Xp6ehAeHo68vDycP38ebm5uXEfSabTbMQp4eHigsLAQMpkMwcHB6Ojo4DoSIWQQtLe3Y/HixSgtLUVhYSEV4ghApThKTJkyBTKZDC0tLZg3bx7u3LnDdSRCyHO4ffs25s2bh7t370Imk8HBwYHrSARUiv2Kj4+Ht7c3+Hw+hEIhwsLCUF1drVl+584drFu3Dk5OTjAxMYGdnR3ef/99tLa29lnPg/vg/XxKT0/vM2bLli2wtbWFn58fampqHplHKBSioKAAfD4fs2fPRm1t7eBvNCFkyFVXV2P27NmwsrJCXl4exo8f/8hxSUlJcHd3h0AggEAggFgsxqlTpzTL//a3v8Hf3x8CgQA8Hg/37t17aB0ODg4Pvf8kJCT0GbNnzx7Y29vDy8sLRUVFg7qtow2VYj8KCgoQExODwsJCZGdno7u7G4GBgVAqlQCAxsZGNDY24g9/+AMuX76MAwcO4PTp04iOjn5oXfv370dTU5NmCgsL0yy7cOECMjMzkZGRgeXLlyM2Nvaxmfh8PrKysuDn5wexWIwzZ84M+nYTQoZOVlYWZs+eDX9/f2RmZvZ79SpbW1skJCSgrKwMpaWlCAgIQGhoKK5cuQLgv4dfJRIJNm7c2O9rfv75533ef9atW6dZ1tDQgB07diA9PR2bNm3CypUrB2dDRytGnlpLSwsDwAoKCh475vDhw8zIyIh1d3dr5gFgR48efexzTpw4wUJDQ1lXVxcrLCxk3t7eT8yiVqtZYmIiMzExYTt37hzQdpCRr6urix07dox1dXVxHYUMoh07djATExO2e/fuZ16HlZUV++qrr/rMy8vLYwDY3bt3Hxpvb2/Pvvzyy8eur7Kyks2cOZPdv3+f1dfXMwcHh2fOpg1oT3EAHhwWHTt2bL9jBAIBDAz6/rA3JiYG48ePh4+PD/bt29fnljBBQUHo6OiAqakpJBIJ4uPjn5iFx+Ph/fffx/Hjx7F161ZERUWhq6vrGbeMEDKUurq6EB4ejvj4eGRmZuK9994b8DpUKhXS09OhVCohFosH9NyEhASMGzcOXl5e+OKLL9DT06NZ5urqCnd3d1hYWMDFxQXbtm0bcDatwnUrjxYqlYoFBwezOXPmPHbMrVu3mJ2dHdu4cWOf+Z9//jmTSqXs+++/ZwkJCWzMmDEsMTHxoefL5XLW2dk54Gy1tbXMycmJicVi1tLSMuDnk5GH9hS1R1NTE/Px8WEvvfQSu3r16oCfX1FRwczMzJi+vj6zsLBgmZmZD43pb09x586dLC8vj126dIklJSUxS0tLtn79+ofG/fTTT6y9vX3A+bQNleJTWrt2LbO3t2c3btx45PLW1lbm4+PDJBLJE9/INm/ezGxtbQc1X2trK1u0aBGzs7NjZWVlg7puMvyoFLVDSUkJmzx5MgsJCWEKheKZ1tHZ2clqa2tZaWkp++1vf8vGjx/Prly50mdMf6X4v/bu3csMDAxYR0fHM+XRdnT49CnExsbi5MmTyMvLg62t7UPL29raIJFIwOfzcfToURgaGva7Pl9fX9y8eROdnZ2DllEgEODEiRN4++23MW/ePCQnJw/augkhA7dr1y7Mnz8fK1asQEZGBvh8/jOtx8jICFOnTsWMGTMQHx8PDw8PJCYmPnMuX19f9PT04Nq1a8+8Dm1GV7TpB2MM69atw9GjR5Gfn48pU6Y8NEahUCAoKAhjxozB8ePHYWxs/MT1lpeXw8rKCmPGjBnUvPr6+vj9738PsViMqKgo5ObmYt++fXRvRkKGkUKhwMqVK5Gbm4u0tDQsWbJkUNevVquf6wN1eXk59PT0IBQKBzGV9qBS7EdMTAzS0tI0n/Kam5sBABYWFjAxMYFCoUBgYCDa29uRmpoKhUIBhUIBALC2toa+vj5OnDgBuVyOWbNmwdjYGNnZ2di+fTs++uijIcsdFhaGS5cu4a233oKXlxfS09MxY8aMIXs9Qsh/FRcXY9myZbCxsUFFRQUmT578XOuLi4vDokWLYGdnh7a2NqSlpSE/P19zKlZzczOam5tRV1cHAKisrASfz4ednR3Gjh0LmUyGoqIizJ8/H3w+HzKZDOvXr8eKFStgZWX13Nurlbg+fjuSAXjktH//fsbY/x/Hf9T0448/MsYYO3XqFPP09GTm5ubMzMyMeXh4sOTkZKZSqYY8f1dXF9uwYQMzNTWl0zZGGfpOcXRRqVSa0y3i4uL6nJL1PFatWsXs7e2ZkZERs7a2Zi+//DI7e/asZvlnn33W73tUWVkZ8/X1ZRYWFszY2Jg5Ozuz7du30/eJ/eAx9rNzA4hWOn36NFasWAGxWIyUlBRYWlpyHYk8QXd3N7KysrB48eInfkdNuHXnzh2Eh4ejuLgYX3/9NQIDA7mORJ4D/dBGB0gkElRUVEChUMDT0xPfffcd15EI0Qpnz56Fl5cX2tvbUVlZSYWoBagUdcSkSZOQm5uL1atXIyQkBGvWrEF7ezvXsQgZlZRKJaKjoxEaGoq1a9ciJycHEyZM4DoWGQRUijpEX18fmzZtQnFxMUpKSuDm5obc3FyuYxEyquTk5MDNzQ3l5eUoLS1FXFwc3eNUi1Ap6iA3NzcUFxcjKioKwcHBePfdd2mvkZAnaG9vx+rVq7FkyRJER0ejqKgILi4uXMcig4xKUUcZGhpi8+bNKCoqQlFREdzd3ZGfn891LEJGpO+++w6urq4oKytDSUkJNm3a9ND1jYl2oFLUce7u7igpKUF4eDgWLVqE1atXP3Q/SEJ0VWtrK6KjoxESEoJVq1ahqKgIrq6uXMciQ4hKkcDQ0BCfffYZCgsLUVlZCScnJ+zZswdqtZrraIRwQq1W469//SucnJxQVVWF4uJifPLJJ3R6jA6gUiQaHh4euHjxIuLj4xEXF4c5c+bghx9+4DoWIcOqrKwMYrEYn3zyCXbs2IELFy7Azc2N61hkmFApkj709PSwcuVK1NbWYvr06RCLxVizZg0dUiVa7969e1i9ejXmzJkDX19f1NbWIiIiAjwej+toZBhRKZJHsrKywu7duyGTyVBRUUGHVInWenCo9MUXX8SVK1dQVFSEP//5z3TlJx1FpUj65eXlhYsXLyIhIQFxcXHw9vbWXIyYkNHuzJkzmDlzZp9DpR4eHlzHIhyiUiRPpKenh6ioKFy9ehUSiQRLly5FQEAASktLuY5GyDMpLi6Gv78/li5diuDgYNTV1dGhUgKASpEMgIWFBX73u9+hrq4OTk5OmDNnDpYuXYra2lquoxHyVKqrqxEaGoq5c+fCxcUF9fX12Lp1KywsLLiORkYIKkUyYBMnTkRSUhKuXLkCAwMDuLu7Y9WqVZr7TRIy0jQ1NSEqKgoeHh4wMTHBv/71L+zevRs2NjZcRyMjDJUieWZTp07F4cOHIZVK0dDQgGnTpmHdunVUjmTEaGpqQkxMDEQiERobGyGTyZCeng5HR0euo5ERikqRPLcZM2YgJycHGRkZqKysxC9+8QvNd5CEcKGurg6RkZFwdHREVVUVTpw4obnNEyH9oVIkgyYgIAD5+fnIy8vDnTt34OLigtdffx2XLl3iOhrREeXl5Vi6dClcXFzQ2tqKgoIC5Obmwt/fn+toZJSgUiSDztfXF8ePH0dZWRmMjY3h4+MDiUQCqVTKdTSipc6dO4egoCD4+vrC3Nwc5eXlOHbsGLy9vbmORkYZKkUyZFxcXJCamorq6mo4Ojpi4cKFmD17NlJTU6FSqbiOR0a5np4epKSkQCwWIygoCCKRCDU1NTh06BCcnZ25jkdGKSpFMuQcHBywe/duXL9+HRKJBB999BHs7e2xceNGyOVyruORUUYulyMuLg4ODg7YsGEDFi9ejIaGBvzlL3+Bvb091/HIKEelSIaNUCjEp59+ihs3buCPf/wjCgoK4ODggLCwMOTk5NAl5MhjqdVqnDlzBqGhoXBwcIBUKsWXX36JhoYGbN68GdbW1lxHJFqCSpEMO0NDQ7z55pu4cOECioqKMGnSJLz66qtwdnbGtm3baO+RaMjlcmzduhXOzs544403YGtri+LiYpw/fx5vvPEG3cqJDDoeY4xxHYKQ+/fvIz09HUlJSaisrMTcuXOxbNkyLF++HKamplzHG3bd3d3IysrC4sWLde6NX6lUIi0tDd988w2kUik8PDywdu1avP322zAzM+M6HtFyVIpkxKmpqUFqaipSUlJw+/ZtLFy4EBEREQgJCYG+vj7X8YaFrpWiSqXC8ePHkZKSguzsbFhbWyMiIgLvvPMOpk2bxnU8okOoFMmIxRhDUVERUlJSkJ6eDkNDQ4SEhCAiIgJ+fn7Q09Peo/+6UIpqtRrnz5/HoUOHkJmZiZ6eHixbtgwrVqyAj48PXZybcIJKkYwK3d3dOHv2LFJSUnDy5Enw+XzMmzcPoaGhCA0N1bpDrNpaikqlEhkZGTh27BjOnTsHpVKp+aCzYMECrdpWMjpRKZJRp7OzE/n5+Th+/DgyMjJw9+5dzJo1C8HBwXjzzTdha2vLdcTnpk2lePPmTfz9739HZmYmCgsLMW7cOM2HmXnz5sHIyIjriIRoUCmSUY0xhoqKCmRkZCAjIwOXLl2Cq6sr5s6diwULFmDBggWj8scZo7kUlUolcnJykJ2dDalUisuXL8PT01NThG5ubnRolIxYVIpEqzQ2NiIrKws5OTnIy8tDa2sr3NzcIBaLNSU5Gg61jqZSfFCCOTk5KCwsREVFBaysrDB//ny8/PLLCA4OxsSJE7mOSchToVIkWosxhpqaGuTn5yM3Nxd5eXlQKBRwc3PDrFmzMGvWLPj5+Y3Iq6CM5FK8fv06pFIpZDIZCgsLUVlZCUtLS8yfPx8BAQHw9/fHtGnTaG+QjEpUikRnMMZQXV2N/Px85Ofno6SkBPX19RAKhXB2doa7uzt8fHzg5+cHBwcHTrOOlFL88ccfIZVKUVxcjIqKClRVVeHWrVtwdHSEt7c3/P394e/vD5FIRCVItAKVItFpCoUCP/zwA8rKylBSUoLS0lJcvXoV48ePh5OTExwdHSESieDi4gJXV1dMmTJlWE4FGc5SVKvVqK+vR2VlJaqqqlBTU4P6+npUVVXh9u3bmDp1KmbOnAlvb29Mnz4dXl5eEAgEQ5qJEK5QKRLyP9ra2lBeXo7y8nJUV1fj3//+N2pqanDz5k0YGxvD3t4ednZ2cHR0xNSpUzF58mTY2dnB3t4eQqFwUEpzMEtRrVZDLpfj+vXruHHjBm7cuIHa2lrU19fj+vXraGhoQEdHB2xtbSESifDiiy/CyckJnp6e8PT0BJ/Pf+7tIWS0oFIk5Cl1dHSgrq4ONTU1qKmpQXV1NWpra9HY2Ai5XI729nYYGRlh3LhxsLa2xvjx4yEUCiEUCiEQCMDn8yEQCDSThYUFBAIBLC0tYWFhAUNDQ+jr60NPTw9qtRqnTp1CYGAg9PX1oVKp0N3djdbWVty7dw8KhQKtra1QKBSaqa2tDQqFAi0tLWhpacGtW7fw008/4fbt2+jq6oKZmRlsbGwwceJEiEQiODk5QSQSQSQSwdHREcbGxlz/ExPCOSpFQgZJW1sbmpqaNFNjYyMaGxvR3NyMtrY2zXT//n3NX6VSiZ6engG9joGBAczMzGBubg4+n6/5KxAIYG5ujgkTJuCFF17AxIkT+0y0x0fIk1EpEsKxzs5OKJVKqFQqqNVqqNVqqFQq8Hg86OnpaSZ9fX2YmZlhzJgxXEcmRGtRKRJCCCG9tPeKyoQQQsgAUSkSQgghvagUCSGEkF5UioQQQkgvKkVCCCGkF5UiIYQQ0otKkRBCCOlFpUgIIYT0olIkhBBCelEpEkIIIb2oFAkhhJBeVIqEDJH4+Hh4e3uDz+dDKBQiLCwM1dXVmuXXrl0Dj8d75HTkyBHNuIaGBgQHB8PU1BRCoRAff/zxQ3fW2LJlC2xtbeHn54eampph20ZCtA2VIiFDpKCgADExMSgsLER2dja6u7sRGBgIpVIJAJg8eXKfW001NTVhy5YtMDc3x6JFiwAAKpUKwcHB6OrqwsWLF3Hw4EEcOHAAn376qeZ1Lly4gMzMTGRkZGD58uWIjY3lZHsJ0QZ0lwxChsmtW7cgFApRUFCAX/7yl48c4+XlhenTp2Pv3r0AgFOnTiEkJASNjY2wsbEBACQnJ+M3v/kNbt26BSMjI5w8eRJfffUVjhw5gu+//x7r1q1DcXHxsG0XIdqE9hQJGSatra0AgLFjxz5yeVlZGcrLyxEdHa2ZJ5PJ4ObmpilEAAgKCoJCocCVK1c0jzs6OmBqagqJRIL4+Pgh3ApCtJsB1wEI0QVqtRoffPAB5syZA1dX10eO2bt3L5ydnTF79mzNvObm5j6FCEDzuLm5GQBgaGiI06dPo6WlBZaWljAyMhqirSBE+1EpEjIMYmJicPnyZUil0kcu/89//oO0tDRs3rz5mV9DKBQ+83MJIf9Fh08JGWKxsbE4efIk8vLyYGtr+8gx//jHP9De3o6IiIg+8ydMmAC5XN5n3oPHEyZMGJrAhOgwKkVChghjDLGxsTh69Chyc3MxZcqUx47du3cvXnnlFVhbW/eZLxaLUVlZiZaWFs287OxsCAQCvPTSS0OWnRBdRb8+JWSIvPfee0hLS0NGRgacnJw08y0sLGBiYqJ5XFdXB5FIhKysLEgkkj7rUKlU8PT0xKRJk7Bjxw40NzcjPDwcv/rVr7B9+/Zh2xZCdAWVIiFDhMfjPXL+/v37ERUVpXm8ceNGpKam4tq1a9DTe/jgzfXr1/HrX/8a+fn5MDMzQ2RkJBISEmBgQD8JIGSwUSkSQgghveg7RUIIIaQXlSIhhBDSi0qREEII6UWlSAghhPSiUiSEEEJ6USkSQgghvagUCSGEkF5UioQQQkgvKkVCCCGkF5UiIYQQ0otKkRBCCOlFpUgIIYT0+j8SWxI+T2CMaAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_hues(rms, rmse, p1, p2, polar=True, plot_spans=True, configuration=configuration)" + ] + }, + { + "cell_type": "markdown", + "id": "405fced1-fb57-4d37-9dcf-6540fd3fc20e", + "metadata": {}, + "source": [ + "## Lags and coherence\n", + "\n", + "With the cross spectrum we can explore the time lags versus frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "c4eda41b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2729it [00:00, 6000.14it/s]\n" + ] + } + ], + "source": [ + "# Use shorter segments, rebin a little more heavily\n", + "cs = AveragedCrossspectrum.from_events(events_sub, events_ref, segment_size=2, dt=0.005, norm=norm)\n", + "cs_reb = cs.rebin_log(0.4)\n", + "\n", + "lag, lag_e = cs_reb.time_lag()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "45ba99f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAG1CAYAAAA/aGqTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ4ElEQVR4nO3deVxU9f4/8NcMuyAgiywK7rIoikIq5S6JabmEmmWJSnnz6jXX0hZLLdcW9Zp5+5bbTbtu5U0rlBTFEDfEUllcCQQGAmSXdc7vD3/MdWJxDnOGmYHX8/GYR87nfM5n3sfmnHn7OZ/z+cgEQRBARERERI0m13cARERERMaOCRURERGRlphQEREREWmJCRURERGRlphQEREREWmJCRURERGRlphQEREREWmJCRURERGRlkz1HUBLoFQqkZGRgdatW0Mmk+k7HCIiItKAIAgoKiqCu7s75PKG+6CYUDWBjIwMeHh46DsMIiIiaoS0tDS0b9++wTpMqJpA69atATz8H2Jra6vnaIiIiEgThYWF8PDwUP2ON4QJVROouc1na2vLhIqIiMjIaDJch4PSiYiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqoCZSVlWH+/PmYPXs2bty4AaVSqe+QiIhIQqb6DoCouUtMTMTBgwcRFRWFqqoqFBUVwdfXFxMmTICPj4++wyMiIgkwoSLSocTERGzevBnZ2dlo1aoVzMzM4OjoiPj4eKSlpWHevHlMqoiImgHe8iPSEaVSie+//x45OTnw8fGBhYUF5HI5bG1t4evri5ycHBw+fJi3/4iImgEmVEQ6kpqaiqSkJHh4eEAmk6ltk8lkaN++PRITE5GamqqnCImISCpMqIh0pKioCGVlZbC2tq5zu7W1NcrKylBUVNTEkRERkdSYUBHpSOvWrWFpaYmSkpI6t5eUlMDS0hKtW7du4siIiEhqTKiIdMTT0xPe3t5IS0uDIAhq2wRBwL179+Dj4wNPT089Rfh4SqUSKSkpuHr1KlJSUjjei4ioHnzKj0hH5HI5JkyYgLS0NCQmJqKsrAzm5uYoKChAZmYmnJycMH78eMjlhvnvmsTERHz//fdISkpCWVkZLC0t4e3tzekeiIjqYJhXcqJmwsfHB/PmzYO/vz8ePHiA3Nxc5OXloW/fvgY9ZULNdA9xcXG4efMmFAoF2rRpg/j4eGzevBmJiYn6DpGIyKCwh4pIx3x8fPDOO+/glVdeQVFREVq3bg1PT0+D7Zn663QPubm5AABbW1vY29sjISEBhw8fhpeXl8EeAxFRU2NCRdQE5HI5OnbsqO8wNCJmugd9HpNSqURqaqpRJKlE1PwxoSIiNZpM95Cenq7X6R44vouIDA0TKiJS8+h0D3UlVfqe7qFmfFdOTg48PDxgbW2NkpISLudDRHolOqEqLy/H+fPn8ccff6C0tBTOzs7o06cPOnXqpIv4iKiJ1Uz3EB8fDy8vL7VtNdM99O3bVy/TPTw6vsvLywu//vorAGDQoEHw9fXl+C4i0huNE6qYmBhs2rQJR44cQWVlJezs7GBlZYW8vDyUl5ejc+fOmDVrFl5//XVOVEhkxB6d7iE5ORl9+vSBtbU1iouLce/ePb1O92As47uIqOXR6Io4duxYvPDCC+jYsSOOHz+OoqIi5Obm4t69eygtLcXNmzfx7rvv4sSJE+jevTsiIyN1HTcR6VDNdA99+vRBbm4ubty4gdzcXL1P98DlfIjIUGnUQzVmzBgcOnQIZmZmdW7v3LkzOnfujLCwMCQkJCAzM1PSIImo6fn4+MDLy8ugnqQz9PFdRNRyaZRQ/e1vf9O4QV9fX/j6+jY6ICIyHIY23YOhje/i1A1EVEP0oPS0tDTVWAUAuHDhAvbu3QtfX1/MmjVL8gCJiGoY0vguTt1ARI8SfdV56aWXEBUVBQBQKBR4+umnceHCBbzzzjtYuXKl5AESET3KEMZ31UzdEB8fDycnJ3h5ecHJyYlL8xC1YKJ7qK5du4Z+/foBAPbv34+ePXsiJiYGx48fx+uvv47ly5dLHiQR0aP0Ob6LUzcQUV1EJ1SVlZWwsLAAAPzyyy8YO3YsAMDb25uD0YmoyehrfBenbiCiuoj+51OPHj2wbds2nDlzBpGRkRg1ahQAICMjA46OjpIHSERkSDh1AxHVRXQP1bp16zBhwgRs2LABYWFh6N27NwDghx9+UN0KJCJqrh6dusHW1hZDhw5V286pG4haJtEJ1dChQ5GTk4PCwkK0adNGVT5r1iy0atVK0uCIiAzNo1M3+Pr6qt320/fSPESkP41aHNnExEQtmQLAsQJE1CI8OnVDQkIC2rdvr1qgWd9L8xCR/sgEQRAeV6lPnz61Bl/W5/Lly1oH1dwUFhbCzs4OBQUFsLW11Xc4RCSBuuah8vHxwfjx4zkPFVEzIeb3W6MeqvHjx6v+XFZWhq1bt8LX1xdBQUEAgHPnzuH69ev4+9//3vioiYiMiCEuzUNE+qNRD9WjXn31Vbi5uWHVqlVq5e+//z7S0tKwfft2SQNsDthDRUREZHzE/H6LTqjs7Oxw6dIldOvWTa385s2bCAwMREFBgfiImzkmVERERMZHzO+36L5pKysrxMTE1CqPiYmBpaWl2OaIiKiRlEolUlJScPXqVaSkpECpVOo7JKIWS/RTfvPnz8fs2bNx+fJl1bxT58+fx/bt2/Hee+9JHiAREdXGxZmJDIvoW37AwzX8Nm3apFoA1MfHB2+88QYmT54seYDNAW/5aa+iogKrV68GALz99tswNzfXc0RE+lOzOHNOTg48PDxU0zakpaXBycmpyRaJJjIEuvx9kPwpv7+aPHkykyciIj14dHHmRycWtbW15eLMRHrUqIQKeJgRZmdn17pnz9mBiYh059HFmZVKJc6cOQMAGDRoEExMTJp0cWalUslpI0gyjf0+KZVK5Ofno7y8HCkpKejatatevoeiE6qbN29i5syZOHv2rFq5IAiQyWSorq6WLDgiIlKnyeLM6enpOl+cmWO4SEqN/T4lJibi4MGDiIqKQlVVFYqKiuDr66uX76HohGr69OkwNTXF0aNH4ebmpvEM6kREpD1DWJy5vjFc8fHxSEtL0/kYrpbWM9bcj7ex36ea/bKzs9GqVSuYmZnB0dGxyb6HfyU6obpy5Qri4uLg7e2ti3iIiKgB+l6cWd9juPTZM6aPxEZfx9tUx9rY79Oj+/n4+CA3N1e1n729vV7GEor+FF9fX+Tk5OgiFo18/vnn6NixIywtLdG/f39cuHChwfoHDhyAt7c3LC0t4efnh59++kltuyAIWL58Odzc3GBlZYXg4GDcvHlTrU5eXh6mTp2q+h8VHh6O4uJiyY+N6ldzjzwrK4vz7VCLVrM4s5OTExISElBQUICqqioUFBQgISFB54sz/3UM16lTp3Dq1ClUV1dDJpOpjeGSWk2PRHx8PJycnODl5QUnJyfEx8dj8+bNqifPdSExMRFr167F8uXLsWrVKixfvhxr167V+Wfq43ib8lgb+316dL+/3inT9fewPqLPuHXr1uHNN9/EqVOnkJubi8LCQrWXLu3btw8LFy7E+++/j8uXL6N3794ICQlBdnZ2nfXPnj2LF198EeHh4YiPj8f48eMxfvx4XLt2TVVn/fr12Lx5M7Zt24bz58/D2toaISEhKCsrU9WZOnUqrl+/jsjISBw9ehTR0dGYNWuWTo+V/icxMREbNmxAVFQUoqOjsXLlSp1fyIgMmY+PD+bNm4c+ffogNzcXN27cQG5uLvr27avz2xyajOEqKyuTfAzXX3sybG1tYWJiourJyMnJweHDh3Xyjy19JDb6Ot6mPtbGfp/09T1siOhbfsHBwQCAESNGqJU3xaD0Tz/9FK+99hpmzJgBANi2bRt+/PFHbN++HUuXLq1Vf9OmTRg1ahSWLFkCAFi1ahUiIyOxZcsWbNu2DYIgYOPGjXj33Xcxbtw4AMDu3bvh4uKCw4cPY8qUKUhMTERERAQuXryIwMBAAMA///lPjB49Gh9//DHc3d01jr+0ogqmFVW1yuUyGSzNTNTq1Uebug8qqiGg7mnHZJDByrxxdcsqq6FsYDqzVuamja6bkJCArZ9vwZ9/ZsPCqhVszMxha98GF+Pi1O6RP65dKzMT1b9iyquqUa2Upq6lqQnk8od1K6qUqGrg4iamroWpCUwaUbeyWonK6vrrmpvIYWoiF123qlqJigbqmpnIYdaIutVKAeVV9V8zTOVymJuKr6tUCiiTqK6JXAYL04ffd0EQ8KBSmrranvcdunTDvIWLkZaaiqLiIrS2aQ0PT0+Ympio7Sv1NaJmDFd+YRFsbW3x1KDBAAAlAGW1EoWFRTAzt1AbwyXFNeKPlBRcS0hUe7pRKQBPPvUUTExM4OrmjqvXE5B86w46/P+nG8Vce+o775VKJfYfPARFdjZ8fB7ekpLLZarE5uq1a9h/6DssWrykzl7Bxl4jbt15eLyu7u1QpRSAv/x/cW/XTtUD497eU5JrhFKpxKFD36mSOKUAKAUBVtY26ObljcTEBLVjleIaYWphBVNzC+QXFsHa2hrVggzyR461qLgYpuYWMLWwUvsu1+xXWFQM29Y2AABBeHh8SshQWFhUa7/GXiM0JTqhioqKEruLJCoqKhAXF4dly5apyuRyOYKDgxEbG1vnPrGxsVi4cKFaWUhICA4fPgwAuHv3LhQKhSpJBB6uVdi/f3/ExsZiypQpiI2Nhb29vSqZAh4mlXK5HOfPn8eECRNqfW55eTnKy8tV72t67vp9dAJyi1a16g/zcsaOGf1U7wNW/VLvhbh/Jwfs+1uQ6v3AdVHIK6mos26v9nb4Ye7A/8X96Wmk5z+os263tjaIXDhE9X7sll9xM7vu25rt7K0Qs3S46v3kf8Xi93t1r+HoYG2Oy+89rXoftv0Czt/Nq7OulZkJEleNUr1/ffdFHN79BSqybsPM0QMy006AAFy/kgtBMMdIeY7qHvnC/Vfw01VFne0CQMLKENXF9e3vruHQ5Xv11o17NxiONhYAgA+PJuLf5/6ot+6ZN4fBw+Hh/9OPjyfjy+g79dY9vmAwurs8/JH5POoWNp24WW/d/855Cr097AEAO2LuYs3PSfXW/fa1AQjq4vjwzxdSsfy/1+utu316IIZ7uwAADsenY8nB3+ut+/lLfTGmlxsA4Nj1LMzZe7neuhsm9sKkQA8AQPTNPzFz56V6664c1wPTgjoCAC7czcOL/3eu3rrLnvHG34Z0AQBcSy/AuM9rL3tV440R3bDg6e4AgFt/FmPkZ9H11p01uDPeHv2wFyc9/wEGra//uvbKgA5YNb4nACCvpAIBH/5Sb93Qvu3xyeTeAIAHldXwXX6s3rqj/VyxdWqA6n1DdTW/RiTr/BpRM4Zr077jKLNxqzWGqzI3Dc4dvdXGcElxjaj4MwVFl1MwP7QjTExMMHToUByOT8e26LsPP1tZjcq8DJxadwzmzh0BAClrx6j2b+w1oqogC/fPnISJlS2ism4DePj9aWVuCplMhvRKaxz7zwn8X7obTO1carXb2GvE/528jsOX7sLMoQIyee27MJP6uKt6YKS6RlQVZME34zf07PIwaT18+hLSlG1U25XlVTie/L9jleIaIQhKFKTJUXHp0sPrvMwNw7zawsTEBIIg4GryHVwubYOYrxMhkyWr2qvZr8u9JDwz8OF59ABm2BZ9V/U9NHfporZfY68RmhKdUA0ZMuTxlXQgJycH1dXVcHFR/8K6uLggKanuL5JCoaizvkKhUG2vKWuoTtu2bdW2m5qawsHBQVXnr9asWYMVK1ZoeGRUn+I8BSpz02Da2slg7pETtXQ1Y7i2Hj2Hotw0mLZ2hMzMEkJlGaqKcmFiZQsH36ckH8MlN7eC3NRc9XTjXwmVZZCZmkFubiXp5yorHkCoqoDMzEJVdjbmLIYNftgzZmZhBaGqEsqKuhPRxrK0sobM1BxCZTlkdfxD/MGD0v89zZknzZ0hZcUDlJfXfxtNZmYJoShP0mOVyeSw7haE6sI////13hHV1Q/HBN67dw92Do6wbtcfMpm8zv2ss6ORmJiIsrIyKM1MoCwvUX0PrbsF1dpPlxq19Ex+fj6+/vpr1b3UHj16YObMmbCzs5M8wBoZGRlo164dzp49i6Cg//3r680338Tp06dx/vz5WvuYm5tj165dePHFF1VlW7duxYoVK5CVlYWzZ8/iqaeeQkZGBtzc3FR1Jk+eDJlMhn379mH16tXYtWsXkpOT1dpu27YtVqxYgdmzZ9f63Lp6qDw8PJD5Z26dFwLe8qu77qXLV7B69Yfo3t0LABAT83Dus6eeehImJiaQCUrcuHED7733Hrp5+/KWH3jLryXd8tNFXTHnffxv1/DDD4eRnJyM8rIyWFhawsvbG889NxY+Pr6SXyOUSiU+2bAe137/TfU0WFW1EgIe/l0nJibAv09ftVtvUtzy+yMlBatWroCjo6Pq+m0ql6nq5t2/j5zcPLy3/H3VrcZHNfYaUVZRhXXr1uLKlXjVrcYagiAgOSkRgQEBeOutt1ClhCTXiD9SUrB61Qo4OzvD2toa0dFnoIRMdc0tLChAbt7/jlXKa0RSYiKO/PBfJCcno6K8DK2srODj44Pnxo5D527d6233ZnIyfjj8HQ4ePIjKqir06u0PH19fPPfcWHj/ZSxhY64ROl165tKlSwgJCYGVlZVqceRPP/0UH330EY4fP46+ffuKbVIjTk5OMDExQVZWllp5VlYWXF1d69zH1dW1wfo1/83KylJLqLKysuDv76+q89dB71VVVcjLy6v3cy0sLGBhYVGrvJW5qdoJXh9N6jSm7qMXOCnrPnpBlrKuk4M9bFq1QkXZA1hbW8NE9vACZ2Yih4mJHAUFRap/oYlpt+YHT+q65qZymGv4nIeu6j560ZKyrukjF04p65rIZRp/h8XUleuorkymm7qA7s57XV0j+vTuid5+vho9Wi/VNWLyxFAoMtKRkJCA9u3bw9raGqUlJbh37x5c27bF5NDnYWNZ9zpujb1GeHXtjJ6+PoiPj4eDvV2txCYzIwN9+/aFV9fOj+2VE3MuW5qbqo73ZnKS6nhL/v/xtnV2Vj3NaS6HJNcIr66d4ePjo5qSY9iwoWrHqsis/1i1vUb07e0Hf78eoqdq6O3XA17duiA3Nxfl5eVYsGCBRjOliznvNSW6L2zBggUYO3YsUlJS8N133+G7777D3bt38eyzz2L+/PmSBvcoc3NzBAQE4MSJE6oypVKJEydOqPVYPSooKEitPgBERkaq6nfq1Amurq5qdQoLC3H+/HlVnaCgIOTn5yMuLk5V5+TJk1Aqlejfv79kx0e11YzVSEtLw187Umvm2/Hx8eFyR0R6IpfL0bFjR/j5+aFjx446n+9HH0836nOaiqY+Xn1PydHY75OlpSU2btyIL774At27d9fbpKeib/lZWVkhPj6+1sSeCQkJCAwMRGlpqaQBPmrfvn0ICwvDv/71L/Tr1w8bN27E/v37kZSUBBcXF0ybNg3t2rXDmjVrADycNmHIkCFYu3YtxowZg//85z9YvXo1Ll++jJ49Hw4yXbduHdauXYtdu3ahU6dOeO+99/D7778jISEBlpaWAIBnnnkGWVlZ2LZtGyorKzFjxgwEBgZi7969GsUtpsuQ1D06E256ejrMzc3h7++PzMxMODk5NflMuESkf4YywaaPjw/Gjx/f7CYU1eexGhqd3vKztbVFampqrYQqLS1Np0sdAMALL7yAP//8E8uXL4dCoYC/vz8iIiJUg8pTU1PVvmRPPvkk9u7di3fffRdvv/02unXrhsOHD6uSKeDhGKySkhLMmjUL+fn5GDhwICIiIlTJFADs2bMHc+fOxYgRIyCXyxEaGorNmzfr9FjpoZp/oR08eBC3bt1CUVER8vLy0Ldv3xZ5chPR/3oympKPjw+8vLz0sgRMUx+vPo/VmInuoZo3bx6+//57fPzxx3jyyScBADExMViyZAlCQ0OxceNGXcRp1NhDpb2ysjIsXbpU1D1yIiIibei0h+rjjz+GTCbDtGnTUFX18OkRMzMzzJ49G2vXrm1cxESPIZfLYW9vDwBNMlaDiIhIDNEJlbm5OTZt2oQ1a9bg9u2Hk5x16dIFrVrVnieDiIiIqCUQnVAVFBSguroaDg4O8PPzU5Xn5eXB1NSUt7SIiIioxRF932TKlCn4z3/+U6t8//79mDJliiRBERERERkT0YPSHRwcEBMTU+vpqqSkJDz11FPIzc2VNMDmgIPSiYiIjI+Y32/RPVTl5eWqweiPqqysxIMH0q5lRERERGQMRCdU/fr1w5dfflmrfNu2bQgICKhjDyIiIqLmTfSg9A8//BDBwcH47bffMGLECADAiRMncPHiRRw/flzyAImIiIgMnegeqqeeegqxsbFo37499u/fjyNHjqBr1674/fffMWjQIF3ESERERGTQRA9KJ/E4KJ2IiMj46HRQOgDcvn0b7777Ll566SVkZ2cDAH7++Wdcv369Mc0RERERGTXRCdXp06fh5+eH8+fP49ChQyguLgYA/Pbbb3j//fclD5CIiIjI0IlOqJYuXYoPP/wQkZGRMDc3V5UPHz4c586dkzQ4IiIiImMgOqG6evUqJkyYUKu8bdu2yMnJkSQoIiIiImMiOqGyt7dHZmZmrfL4+Hi0a9dOkqCIiIiIjEmj1vJ76623oFAoIJPJoFQqERMTg8WLF2PatGm6iJGIiIjIoIlOqFavXg1vb294eHiguLgYvr6+GDx4MJ588km8++67uoiRiIiIyKA1eh6qtLQ0XL16FcXFxejTpw+6desmdWzNBuehIiIiMj5ifr9FLz1Tw8PDAx4eHqiursbVq1dx//59tGnTprHNERERERkt0bf85s+fj6+//hoAUF1djSFDhqBv377w8PDAqVOnpI6PiIiIyOCJTqgOHjyI3r17AwCOHDmCO3fuICkpCQsWLMA777wjeYBEREREhk50QpWTkwNXV1cAwE8//YTJkyeje/fumDlzJq5evSp5gERERESGTnRC5eLigoSEBFRXVyMiIgJPP/00AKC0tBQmJiaSB0hERERk6EQPSp8xYwYmT54MNzc3yGQyBAcHAwDOnz8Pb29vyQMkIiIiMnSiE6oPPvgAPXv2RFpaGiZNmgQLCwsAgImJCZYuXSp5gERERESGrtHzUJHmOA8VERGR8RHz+y16DBURERERqWNCRURERKQlJlREREREWmJCRURERKSlRq3lp1QqcevWLWRnZ0OpVKptGzx4sCSBERERERkL0QnVuXPn8NJLL+GPP/7AXx8QlMlkqK6uliw4IiIiImMgOqF6/fXXERgYiB9//FE1uScRERFRSyY6obp58yYOHjyIrl276iIeIiIiIqMjelB6//79cevWLV3EQkRERGSURPdQ/eMf/8CiRYugUCjg5+cHMzMzte29evWSLDgiIiIiYyB66Rm5vHanlkwmgyAIHJReDy49Q0REZHzE/H6L7qG6e/duowMjIiIiao5EJ1QdOnTQRRxERERERkujhOqHH37AM888AzMzM/zwww8N1h07dqwkgREREREZC43GUMnlcigUCrRt27bOMVSqxjiGqk4cQ0VERGR8JB9D9ejyMn9daoaIiIiopePiyERERERaYkJFREREpCUmVERERERaYkJFREREpCUmVERERERaYkJFREREpCVJEyq5XI7hw4cjLi5OymaJiIiIDJqkCdX27dsxePBgzJkzR8pmiYiIiAyaRjOlk3Y4UzoREZHxEfP7rXEP1cSJExEREQHmX0RERETqNE6o7t+/jzFjxsDT0xPLly/HnTt3dBkXERERkdHQOKE6ceIE7ty5g/DwcHzzzTfo1q0bhg8fjr1796K8vFyXMRIREREZNFGD0jt06IAPPvgAd+7cQWRkJNzd3fHaa6/Bzc0Nc+bM4dN9RERE1CJpPSi9qKgIe/fuxdtvv42CggJUVVVJFVuzwUHpRERExkfM77epNh909+5d7Ny5Ezt37kRBQQGCg4O1aY6IiIjIKImeh6qsrAzffPMNhg8fjm7dumH37t0IDw/H3bt3ERERoYsYiYiIiAyaxj1UFy5cwPbt27Fv3z6UlZVhwoQJiIiIwIgRIyCTyXQZIxEREZFB0zihGjBgAHr37o1Vq1Zh6tSpaNOmjS7jIiIiIjIaGt/yu3TpEuLj4zF37ly9JFN5eXmYOnUqbG1tYW9vj/DwcBQXFze4T1lZGebMmQNHR0fY2NggNDQUWVlZanVSU1MxZswYtGrVCm3btsWSJUvUBtafOnUKMpms1kuhUOjkOImIiMj4aJxQ9e3bV/XnM2fO4OWXX0ZQUBDS09MBAP/+97/x66+/Sh/h/zd16lRcv34dkZGROHr0KKKjozFr1qwG91mwYAGOHDmCAwcO4PTp08jIyMDzzz+v2l5dXY0xY8agoqICZ8+exa5du7Bz504sX768VlvJycnIzMxUvdq2bSv5MRIREZGREkQ6ePCgYGVlJbz66quChYWFcPv2bUEQBOGf//yn8Mwzz4htTiMJCQkCAOHixYuqsp9//lmQyWRCenp6nfvk5+cLZmZmwoEDB1RliYmJAgAhNjZWEARB+OmnnwS5XC4oFApVnS+++EKwtbUVysvLBUEQhKioKAGAcP/+/UbHX1BQIAAQCgoKGt0GERERNS0xv9+in/L78MMPsW3bNvzf//0fzMzMVOVPPfUULl++LFWepyY2Nhb29vYIDAxUlQUHB0Mul+P8+fN17hMXF4fKykq1qRy8vb3h6emJ2NhYVbt+fn5wcXFR1QkJCUFhYSGuX7+u1p6/vz/c3Nzw9NNPIyYmpsF4y8vLUVhYqPYiIiKi5kt0QpWcnIzBgwfXKrezs0N+fr4UMdWiUChq3WIzNTWFg4NDvWOZFAoFzM3NYW9vr1bu4uKi2kehUKglUzXba7YBgJubG7Zt24ZDhw7h0KFD8PDwwNChQxtMHtesWQM7OzvVy8PDQ9TxEhERkXERnVC5urri1q1btcp//fVXdO7cWVRbS5curXPA96OvpKQksSFKysvLC3/7298QEBCAJ598Etu3b8eTTz6Jzz77rN59li1bhoKCAtUrLS2tCSMmIiKipiZ6pvTXXnsNb7zxBrZv3w6ZTIaMjAzExsZi8eLFeO+990S1tWjRIkyfPr3BOp07d4arqyuys7PVyquqqpCXlwdXV9c693N1dUVFRQXy8/PVeqmysrJU+7i6uuLChQtq+9U8BVhfuwDQr1+/BgfgW1hYwMLCosHjIiIiouZDdEK1dOlSKJVKjBgxAqWlpRg8eDAsLCywePFi/OMf/xDVlrOzM5ydnR9bLygoCPn5+YiLi0NAQAAA4OTJk1Aqlejfv3+d+wQEBMDMzAwnTpxAaGgogIe3K1NTUxEUFKRq96OPPkJ2drbqlmJkZCRsbW3h6+tbbzxXrlyBm5ubqGMlIiKi5kv04siVlZUwMzNDRUUFbt26heLiYvj6+sLGxgY5OTlwcnLSSaDPPPMMsrKysG3bNlRWVmLGjBkIDAzE3r17AQDp6ekYMWIEdu/ejX79+gEAZs+ejZ9++gk7d+6Era2tKuE7e/YsgIfTJvj7+8Pd3R3r16+HQqHAK6+8gldffRWrV68GAGzcuBGdOnVCjx49UFZWhq+++gr//Oc/cfz4cYwYMUKj2Lk4MhERkfHR6eLIU6ZMwcGDB2Fubq7Wi5OVlYURI0bg2rVr4iPWwJ49ezB37lyMGDECcrkcoaGh2Lx5s2p7ZWUlkpOTUVpaqir77LPPVHXLy8sREhKCrVu3qrabmJjg6NGjmD17NoKCgmBtbY2wsDCsXLlSVaeiogKLFi1Ceno6WrVqhV69euGXX37BsGHDdHKcREREZHxE91A98cQT6NWrF77++mtVWWZmJoYPH44ePXrg4MGDkgdp7NhDRUREZHzE/H6Lfsrvp59+wtmzZ7Fw4UIAQEZGBoYOHQo/Pz/s37+/cRETERERGTHRt/ycnZ1x/PhxDBw4EABw9OhR9O3bF3v27IFcLjo/IyIiIjJ6ohMqAPDw8EBkZCQGDRqEp59+Gv/+978hk8mkjo2IiIjIKGiUULVp06bOhKm0tBRHjhyBo6OjqiwvL0+66IiIiIiMgEYJ1caNG3UcBhEREZHx0iihCgsL03UcREREREaLo8iJiIiItMSEioiIiEhLTKiIiIiItMSEioiIiEhLTKiIiIiItCRZQnX79m0MHz5cquaIiIiIjIZkCVVxcTFOnz4tVXNERERERkPjpWc2b97c4Pb09HStgyEiIiIyRhonVPPnz4ebmxvMzc3r3F5RUSFZUERERETGROOEqkOHDli3bh0mT55c5/YrV64gICBAssCIiIiIjIXGY6gCAgIQFxdX73aZTAZBECQJioiIiMiYaNxDtXLlSpSWlta73dfXF3fv3pUkKCIiIiJjonFC5evr2+B2MzMzdOjQQeuAiIiIiIyNVtMmrF27Fvn5+RKFQkRERGSctEqoVq9ejby8PKliISIiIjJKWiVUHIRORERExLX8iIiIiLSm8aD0uiQkJMDd3V2qWIiIiIiMklY9VB4eHlAqlVLFQkRERGSUNE6o9u/fr7a8zJYtW9ChQwdYWlrCyckJK1eu1EmARERERIZO41t+L774IjIzM9G2bVvs2LEDS5YswZtvvon+/fsjPj4ea9asgbu7O1599VVdxktERERkcDROqB59om/btm1YuXIllixZAgAYPXo0HBwcsHXrViZURERE1OKIGkMlk8kAAHfu3MHIkSPVto0cORK3bt2SLjIiIiIiIyHqKb+IiAjY2dnB0tKy1rp+ZWVlqoSLiIiIqCURlVCFhYWp/nzy5EkEBQWp3p87dw5dunSRLjIiIiIiI6FxQvW46RFcXFywZs0arQMiIiIiMjZaTez5qGeffVaqpoiIiIiMCpeeISIiItKSZAmVj48PTExMpGqOiIiIyGhIdstvzZo1KCgokKo5IiIiIqMhWUI1fvx4qZoiIiIiMiqNSqgKCgqgUCgAAK6urrCzs5M0KCIiIiJjImoM1VdffQVfX184ODjA19dX7c9ff/21rmIkIiIiMmga91Bt2LABH3zwAebNm4eQkBC4uLgAALKysnD8+HG88cYbuH//PhYvXqyzYImIiIgMkUx4dNXjBnTo0AEbNmzA5MmT69y+b98+LFmyBKmpqZIG2BwUFhbCzs4OBQUFsLW11Xc4REREpAExv98a3/LLzs6Gn59fvdv9/PyQk5OjeZREREREzYTGCdUTTzyBtWvXoqqqqta26upqrFu3Dk888YSkwREREREZA43HUG3ZsgUhISFwdXXF4MGD1cZQRUdHw9zcHMePH9dZoERERESGSuMxVABQVFSEb775BufOnVObNiEoKAgvvfQSxwfVg2OoiIiIjI+Y329RCRU1DhMqIiIi46OTQelEREREVDcmVERERERaYkJFREREpCUmVERERERa0jqhKiwsxOHDh5GYmChFPERERERGR3RCNXnyZGzZsgUA8ODBAwQGBmLy5Mno1asXDh06JHmARERERIZOdEIVHR2NQYMGAQC+//57CIKA/Px8bN68GR9++KHkARIREREZOtEJVUFBARwcHAAAERERCA0NRatWrTBmzBjcvHlT8gCJiIiIDJ3ohMrDwwOxsbEoKSlBREQERo4cCQC4f/8+LC0tJQ+QiIiIyNBpvJZfjfnz52Pq1KmwsbFBhw4dMHToUAAPbwX6+flJHR8RERGRwROdUP39739Hv379kJaWhqeffhpy+cNOrs6dO3MMFREREbVIotfy+/XXXzFw4EBdxdMscS0/IiIi46PTtfyGDx+OTp064Z133sH169cbHSQRERFRcyE6ocrIyMCiRYtw6tQp+Pn5wd/fHxs2bMC9e/d0ER8RERGRwROdUDk5OWHu3LmIiYnB7du3MWnSJOzatQsdO3bE8OHDdREjACAvLw9Tp06Fra0t7O3tER4ejuLi4gb3KSsrw5w5c+Do6AgbGxuEhoYiKytLrc68efMQEBAACwsL+Pv719nO77//jkGDBsHS0hIeHh5Yv369VIdFREREzYBWS8906tQJS5cuxdq1a+Hn54fTp09LFVctU6dOxfXr1xEZGYmjR48iOjoas2bNanCfBQsW4MiRIzhw4ABOnz6NjIwMPP/887XqzZw5Ey+88EKdbRQWFmLkyJHo0KED4uLisGHDBnzwwQf48ssvJTkuIiIiagaERvr111+F2bNnC87OzkLr1q2Fl19+Wfj5558b21yDEhISBADCxYsXVWU///yzIJPJhPT09Dr3yc/PF8zMzIQDBw6oyhITEwUAQmxsbK3677//vtC7d+9a5Vu3bhXatGkjlJeXq8reeustwcvLS+P4CwoKBABCQUGBxvsQERGRfon5/RbdQ7Vs2TJ06tQJw4cPR2pqKjZt2gSFQoF///vfGDVqlNT5HgAgNjYW9vb2CAwMVJUFBwdDLpfj/Pnzde4TFxeHyspKBAcHq8q8vb3h6emJ2NhYUZ89ePBgmJubq8pCQkKQnJyM+/fv17lPeXk5CgsL1V5ERETUfImehyo6OhpLlizB5MmT4eTkpIuYalEoFGjbtq1amampKRwcHKBQKOrdx9zcHPb29mrlLi4u9e5TXzudOnWq1UbNtjZt2tTaZ82aNVixYoXGn0FERETGTXQPVUxMDP7+979LkkwtXboUMpmswVdSUpLWn9PUli1bhoKCAtUrLS1N3yERERGRDonuoZLSokWLMH369AbrdO7cGa6ursjOzlYrr6qqQl5eHlxdXevcz9XVFRUVFcjPz1frpcrKyqp3n/ra+euTgTXv62vHwsICFhYWGn8GERERGTe9JlTOzs5wdnZ+bL2goCDk5+cjLi4OAQEBAICTJ09CqVSif//+de4TEBAAMzMznDhxAqGhoQCA5ORkpKamIigoSOMYg4KC8M4776CyshJmZmYAgMjISHh5edV5u4+IiIhaHq2mTWgqPj4+GDVqFF577TVcuHABMTExmDt3LqZMmQJ3d3cAQHp6Ory9vXHhwgUAgJ2dHcLDw7Fw4UJERUUhLi4OM2bMQFBQEAYMGKBq+9atW7hy5QoUCgUePHiAK1eu4MqVK6ioqAAAvPTSSzA3N0d4eDiuX7+Offv2YdOmTVi4cGHT/0UQERGRQdK4h6q6uhomJia6jKVBe/bswdy5czFixAjI5XKEhoZi8+bNqu2VlZVITk5GaWmpquyzzz5T1S0vL0dISAi2bt2q1u6rr76qNn9Wnz59AAB3795Fx44dYWdnh+PHj2POnDkICAiAk5MTli9f/tg5sIiIiKjl0HhxZFdXV0yfPh0zZ85E9+7ddR1Xs8LFkYmIiIyPThZHnjNnDg4ePAgfHx8MGjQIO3fuVOsNIiIiImqpNE6o3nvvPdy6dQsnTpxA586dMXfuXLi5ueG1116rd3JNIiIiopZA9KD0oUOHYteuXVAoFPjkk0+QmJiIoKAg9OjRA59++qkuYiQiIiIyaBqPoWrIjz/+iGnTpiE/Px/V1dVSxNWscAwVERGR8dHJGKq/Ki0txc6dOzFkyBCMHTsWjo6O+OijjxrbHBEREZHREj2x59mzZ7F9+3YcOHAAVVVVmDhxIlatWoXBgwfrIj4iIiIig6dxQrV+/Xrs2LEDN27cQGBgIDZs2IAXX3wRrVu31mV8RERERAZP44Rqw4YNePnll3HgwAH07NlTlzERERERGRWNE6qMjAzVWnY1ysrKYGlpKXlQRERERMZE40HpNcmUUqnEqlWr0K5dO9jY2ODOnTsAHs5T9fXXX+smSiIiIiIDJvopvw8//BA7d+7E+vXrYW5urirv2bMnvvrqK0mDIyIiIjIGohOq3bt348svv8TUqVPVFkvu3bs3kpKSJA2OiIiIyBiITqjS09PRtWvXWuVKpRKVlZWSBEVERERkTEQnVL6+vjhz5kyt8oMHD6JPnz6SBEVERERkTERP7Ll8+XKEhYUhPT0dSqUS3333HZKTk7F7924cPXpUFzESERERGTTRPVTjxo3DkSNH8Msvv8Da2hrLly9HYmIijhw5gqeffloXMRIREREZNNE9VPfu3cOgQYMQGRlZa9u5c+cwYMAASQIjIiIiMhaie6hGjhyJvLy8WuUxMTEYNWqUJEERERERGRPRCdWAAQMwcuRIFBUVqcqio6MxevRovP/++5IGR0RERGQMRCdUX331FTw9PfHcc8+hvLwcUVFRGDNmDFauXIkFCxboIkYiIiIigyY6oZLL5fjPf/4DMzMzDB8+HGPHjsWaNWvwxhtv6CI+IiIiIoMnEwRBeFyl33//vVZZUVERXnzxRYwZMwazZ89Wlffq1UvaCJuBwsJC2NnZoaCgALa2tvoOh4iIiDQg5vdbo4RKLpdDJpPh0aqPvq/5s0wmQ3V1tZbhNz9MqIiIiIyPmN9vjaZNuHv3riSBERERETVHGiVUHTp00HUcREREREZL9KB0IiIiIlLHhIqIiIhIS0yoiIiIiLTEhIqIiIhIS1onVFlZWUhNTZUiFiIiIiKjpHFCVVRUhJdffhkdOnRAWFgYKioqMGfOHLi5uaFTp04YMmQICgsLdRkrERERkUHSOKF6++23ERcXh8WLFyM1NRWTJ09GdHQ0zpw5g6ioKOTk5GDdunW6jJWIiIjIIGk0UzoAeHp6YteuXRg2bBgyMjLQvn17/PDDD3j22WcBAD/++CMWLVqEpKQknQZsjDhTOhERkfER8/utcQ9VdnY2unbtCgBwd3eHlZUVunfvrtres2dPpKWlNTJkIiIiIuOlcULl6OiIP//8U/V+3LhxsLe3V70vLi6GhYWFpMERERERGQONE6pevXrh4sWLqvd79+5F27ZtVe8vXrwIHx8faaMjIiIiMgIareUHAHv27IFcXn/+5eLigo8++kiSoIiIiIiMicYJlYODQ4Pbn3nmGa2DISIiIjJGWk3s6efnx4HoRERE1OJplVClpKSgsrJSqliIiIiIjBLX8iMiIiLSklYJ1aBBg2BlZSVVLERERERGSeNB6XX56aefpIqDiIiIyGg1OqESBAGnTp3CrVu34ObmhpCQEJiZmUkZGxEREZFR0DihGj16NL799lvY2dkhLy8Po0ePxoULF+Dk5ITc3Fx0794d0dHRcHZ21mW8RERERAZH4zFUERERKC8vBwC8++67KCoqwu3bt5GdnY0//vgD1tbWWL58uc4CJSIiIjJUjRqUfvLkSaxZswadOnUCALRv3x7r1q3DsWPHJA2OiIiIyBiISqhkMhkA4P79++jSpYvatq5duyIjI0O6yIiIiIiMhKhB6dOnT4eFhQUqKytx9+5d9OjRQ7VNoVDA3t5e6viIiIiIDJ7GCVVYWJjqz+PGjUNpaana9kOHDsHf31+ywIiIiIiMhUwQBEGKhkpKSmBiYgJLS0spmmtWCgsLYWdnh4KCAtja2uo7HCIiItKAmN9vrSb2fJS1tbVUTREREREZFcnW8vvvf/+L3bt3S9UcERERkdGQ7Jaft7c3bt68ierqaimaa1Z4y4+IiMj46OWWX1JSklRNERERERkVyW75EREREbVUkiVUJSUliI6Olqo5IiIiIqMhWUJ169YtDBs2TKrmiIiIiIwGb/kRERERaUnjQekODg4NbufTfURERNRSaZxQlZeXY/bs2fDz86tz+x9//IEVK1ZIFhgRERGRsdD4lp+/vz88PDwQFhZW52vcuHG6jBN5eXmYOnUqbG1tYW9vj/DwcBQXFze4T1lZGebMmQNHR0fY2NggNDQUWVlZanXmzZuHgIAAWFhY1LkWYUpKCmQyWa3XuXPnpDw8IiIiMmIaJ1RjxoxBfn5+vdsdHBwwbdo0KWKq09SpU3H9+nVERkbi6NGjiI6OxqxZsxrcZ8GCBThy5AgOHDiA06dPIyMjA88//3ytejNnzsQLL7zQYFu//PILMjMzVa+AgACtjoeIiIiaD8lmStelxMRE+Pr64uLFiwgMDAQAREREYPTo0bh37x7c3d1r7VNQUABnZ2fs3bsXEydOBPBw8lEfHx/ExsZiwIABavU/+OADHD58GFeuXFErT0lJQadOnRAfH19nD5YmOFM6ERGR8RHz+20UT/nFxsbC3t5elUwBQHBwMORyOc6fP1/nPnFxcaisrERwcLCqzNvbG56enoiNjRUdw9ixY9G2bVsMHDgQP/zwQ4N1y8vLUVhYqPYiIiKi5kujhErMeKHS0lJcv3690QHVRaFQoG3btmplpqamcHBwgEKhqHcfc3Nz2Nvbq5W7uLjUu09dbGxs8Mknn+DAgQP48ccfMXDgQIwfP77BpGrNmjWws7NTvTw8PDT+PCIiIjI+GiVUr7zyCkJCQnDgwAGUlJTUWSchIQFvv/02unTpgri4OI0+fOnSpXUO+H70pe81Ap2cnLBw4UL0798fTzzxBNauXYuXX34ZGzZsqHefZcuWoaCgQPVKS0trwoiJiIioqWk0bUJCQgK++OILvPvuu3jppZfQvXt3uLu7w9LSEvfv30dSUhKKi4sxYcIEHD9+vN6pFf5q0aJFmD59eoN1OnfuDFdXV2RnZ6uVV1VVIS8vD66urnXu5+rqioqKCuTn56v1UmVlZdW7j6b69++PyMjIerdbWFjAwsJCq88gIiIi46FRQmVmZoZ58+Zh3rx5uHTpEn799Vf88ccfePDgAXr37o0FCxZg2LBhj53886+cnZ3h7Oz82HpBQUHIz89HXFyc6um6kydPQqlUon///nXuExAQADMzM5w4cQKhoaEAgOTkZKSmpiIoKEhUnH915coVuLm5adUGERERNR8aT+xZIzAwUG1weFPw8fHBqFGj8Nprr2Hbtm2orKzE3LlzMWXKFNUTfunp6RgxYgR2796Nfv36wc7ODuHh4Vi4cCEcHBxga2uLf/zjHwgKClJ7wu/WrVsoLi6GQqHAgwcPVE/5+fr6wtzcHLt27YK5uTn69OkDAPjuu++wfft2fPXVV036d0BERESGS3RCpS979uzB3LlzMWLECMjlcoSGhmLz5s2q7ZWVlUhOTkZpaamq7LPPPlPVLS8vR0hICLZu3arW7quvvorTp0+r3tckTnfv3kXHjh0BAKtWrcIff/wBU1NTeHt7Y9++faqpGIiIiIiMYh4qY8d5qIiIiIxPs5uHioiIiMiQMaEiIiIi0hITKiIiIiItiR6U/uhA8EfJZDJYWlqia9euGDx4MExMTLQOjoiIiMgYiE6oPvvsM/z5558oLS1FmzZtAAD3799Hq1atYGNjg+zsbHTu3BlRUVFccoWIiIhaBNG3/FavXo0nnngCN2/eRG5uLnJzc3Hjxg30798fmzZtQmpqKlxdXbFgwQJdxEtERERkcERPm9ClSxccOnQI/v7+auXx8fEIDQ3FnTt3cPbsWYSGhiIzM1PKWI0Wp00gIiIyPjqdNiEzMxNVVVW1yquqqqBQKAAA7u7uKCoqEts0ERERkVESnVANGzYMf/vb3xAfH68qi4+Px+zZszF8+HAAwNWrV9GpUyfpoiQiIiIyYKITqq+//hoODg4ICAiAhYUFLCwsEBgYCAcHB3z99dcAABsbG3zyySeSB0tERERkiBq99ExSUhJu3LgBAPDy8oKXl5ekgTUnHENFRERkfMT8fjd6cWRvb294e3s3dnciIiKiZqNRCdW9e/fwww8/IDU1FRUVFWrbPv30U0kCIyIiIjIWohOqEydOYOzYsejcuTOSkpLQs2dPpKSkQBAE9O3bVxcxEhERERk00YPSly1bhsWLF+Pq1auwtLTEoUOHkJaWhiFDhmDSpEm6iJGIiIjIoIlOqBITEzFt2jQAgKmpKR48eAAbGxusXLkS69atkzxAIiIiIkMnOqGytrZWjZtyc3PD7du3VdtycnKki4yIiIjISIgeQzVgwAD8+uuv8PHxwejRo7Fo0SJcvXoV3333HQYMGKCLGImIiIgMmuiE6tNPP0VxcTEAYMWKFSguLsa+ffvQrVs3PuFHRERELVKjJ/YkzXFiTyIiIuOj08WRiYiIiEidRrf82rRpA5lMplGDeXl5WgVEREREZGw0Sqg2btyo4zCIiIiIjJdGCVVYWJiu4yAiIiIyWhxDRURERKQlJlREREREWmJCRURERKQlJlREREREWmp0QnXr1i0cO3YMDx48AABwflAiIiJqqUQnVLm5uQgODkb37t0xevRoZGZmAgDCw8OxaNEiyQMkIiIiMnSiE6oFCxbA1NQUqampaNWqlar8hRdeQEREhKTBERERERkD0YsjHz9+HMeOHUP79u3Vyrt164Y//vhDssCIiIiIjIXoHqqSkhK1nqkaeXl5sLCwkCQoIiIiImMiOqEaNGgQdu/erXovk8mgVCqxfv16DBs2TNLgiIiIiIyB6Ft+69evx4gRI3Dp0iVUVFTgzTffxPXr15GXl4eYmBhdxEhERERk0ET3UPXs2RM3btzAwIEDMW7cOJSUlOD5559HfHw8unTpoosYiYiIiAyaTOAEUjpXWFgIOzs7FBQUwNbWVt/hEBERkQbE/H6LvuUHAGVlZfj999+RnZ0NpVKptm3s2LGNaZKIiIjIaIlOqCIiIjBt2jTk5OTU2iaTyVBdXS1JYPR4FRUVWL16NQDg7bffhrm5uZ4jIiIiaplEj6H6xz/+gUmTJiEzMxNKpVLtxWSKiIiIWiLRCVVWVhYWLlwIFxcXXcRDREREZHREJ1QTJ07EqVOndBAKERERkXESPYZqy5YtmDRpEs6cOQM/Pz+YmZmpbZ83b55kwREREREZA9EJ1bfffovjx4/D0tISp06dgkwmU22TyWRMqIiIiKjFEZ1QvfPOO1ixYgWWLl0KuVz0HUMiIiKiZkd0RlRRUYEXXniByRQRERHR/yc6KwoLC8O+fft0EQsRERGRURJ9y6+6uhrr16/HsWPH0KtXr1qD0j/99FPJgiMiIiIyBqITqqtXr6JPnz4AgGvXrqlte3SAOhEREVFLITqhioqK0kUcREREREaLI8uNmFKpRH5+PrKyspCSklJroWoiIiJqGhr1UD3//PPYuXMnbG1t8fzzzzdY97vvvpMkMGpYYmIiDh48iKioKFRVVaGoqAi+vr6YMGECfHx89B0eERFRi6JRQmVnZ6caH2VnZ6fTgOjxEhMTsXnzZmRnZ6NVq1YwMzODo6Mj4uPjkZaWhnnz5jGpIiIiakIaJVQ7duzAypUrsXjxYuzYsUPXMVEDlEolvv/+e+Tk5MDHxwe5ubkAAFtbW9jb2yMhIQGHDx+Gl5cX5wojIiJqIhr/4q5YsQLFxcW6jIU0kJqaiqSkJHh4eNR6qlImk6F9+/ZITExEamqqniIkIiJqeTROqARB0GUcpKGioiKUlZXB2tq6zu3W1tYoKytDUVFRE0dGRETUcom6J8R5pvSvdevWsLS0RElJSZ3bS0pKYGlpidatWzdxZERERC2XqHmounfv/tikKi8vT6uAqGGenp7w9vZGfHw8vLy81LYJgoB79+6hb9++8PT01FOERERELY+ohGrFihV8yk/P5HI5JkyYgLS0NCQmJqKsrAzm5uYoKChAZmYmnJycMH78eA5IJyIiakKiEqopU6agbdu2uoqFNOTj44N58+bh4MGDuHXrFoqKipCXl4e+ffti/PjxnDKBiIioiWncjaHv8VN5eXmYOnWqanqA8PDwxz51WFZWhjlz5sDR0RE2NjYIDQ1FVlaWavtvv/2GF198ER4eHrCysoKPjw82bdpUq51Tp06hb9++sLCwQNeuXbFz506pD080Hx8fLFmyBMOGDcPgwYOxfPlyvPXWW0ymiIiI9MBonvKbOnUqrl+/jsjISBw9ehTR0dGYNWtWg/ssWLAAR44cwYEDB3D69GlkZGSozfQeFxeHtm3b4ptvvsH169fxzjvvYNmyZdiyZYuqzt27dzFmzBgMGzYMV65cwfz58/Hqq6/i2LFjOjtWTcnlctjb28PFxQUdO3bkbT4iIiI9kQn6zpQ0kJiYCF9fX1y8eBGBgYEAgIiICIwePRr37t2Du7t7rX0KCgrg7OyMvXv3YuLEiQCApKQk+Pj4IDY2FgMGDKjzs+bMmYPExEScPHkSAPDWW2/hxx9/xLVr11R1pkyZgvz8fERERGgUf2FhIezs7FBQUABbW1tRx96QiooKrF69GgDw9ttvw9zcXLK2iYiIWjoxv99G0aURGxsLe3t7VTIFAMHBwZDL5Th//nyd+8TFxaGyshLBwcGqMm9vb3h6eiI2NrbezyooKICDg4PaZz/aBgCEhIQ02EZ5eTkKCwvVXkRERNR8GUVCpVAoag2GNzU1hYODAxQKRb37mJubw97eXq3cxcWl3n3Onj2Lffv2qd1KVCgUcHFxqdVGYWEhHjx4UGc7a9asgZ2dnerl4eHxuEMkIiIiI6bXhGrp0qWQyWQNvpKSkpoklmvXrmHcuHF4//33MXLkSK3aWrZsGQoKClSvtLQ0iaIkIiIiQyRq2gSpLVq0CNOnT2+wTufOneHq6ors7Gy18qqqKuTl5cHV1bXO/VxdXVFRUYH8/Hy1XqqsrKxa+yQkJGDEiBGYNWsW3n333VrtPPpkYE0btra2sLKyqvOzLSwsYGFh0eBxERERUfOh14TK2dkZzs7Oj60XFBSE/Px8xMXFISAgAABw8uRJKJVK9O/fv859AgICYGZmhhMnTiA0NBQAkJycjNTUVAQFBanqXb9+HcOHD0dYWBg++uijOj/7p59+UiuLjIxUa4OIiIhaNqMYQ+Xj44NRo0bhtddew4ULFxATE4O5c+diypQpqif80tPT4e3tjQsXLgAA7OzsEB4ejoULFyIqKgpxcXGYMWMGgoKCVE/4Xbt2DcOGDcPIkSOxcOFCKBQKKBQK/Pnnn6rPfv3113Hnzh28+eabSEpKwtatW7F//34sWLCg6f8iiIiIyCAZRUIFAHv27IG3tzdGjBiB0aNHY+DAgfjyyy9V2ysrK5GcnIzS0lJV2WeffYZnn30WoaGhGDx4MFxdXfHdd9+pth88eBB//vknvvnmG7i5ualeTzzxhKpOp06d8OOPPyIyMhK9e/fGJ598gq+++gohISFNc+BERERk8IxiHipjx3moiIiIjE+zm4eKiIiIyJCxh6oJ6KqHioiIiHSHPVRERERETYgJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaclU3wG0BIIgAAAKCwv1HAkRERFpquZ3u+Z3vCFMqJpAUVERAMDDw0PPkRAREZFYRUVFsLOza7COTNAk7SKtKJVKZGRkoHXr1pDJZACAJ554AhcvXpSkfW3aauy+YvbTtO7j6hUWFsLDwwNpaWmwtbXVOFZjJeV3RFu6jsVQzofG7s/zQfda0vkg9Wc09W+E2H0M+ZwQBAFFRUVwd3eHXN7wKCn2UDUBuVyO9u3bq5WZmJhI9j9cm7Yau6+Y/TStq2k9W1vbFvEDIuV3RFu6jsVQzofG7s/zQfda0vkg9Wc09W+E2H0M/Zx4XM9UDQ5K15M5c+YYRFuN3VfMfprWlfLvpDkwpL8PXcdiKOdDY/fn+aB7hvT30RSxGMo5oevzQUx9Q/oO1IW3/MhoFBYWws7ODgUFBQbzL1UifeH5QKRO3+cEe6jIaFhYWOD999+HhYWFvkMh0jueD0Tq9H1OsIeKiIiISEvsoSIiIiLSEhMqIiIiIi0xoSIiIiLSEhMqIiIiIi0xoSIiIiLSEhMqahaOHj0KLy8vdOvWDV999ZW+wyHSuwkTJqBNmzaYOHGivkMh0qu0tDQMHToUvr6+6NWrFw4cOKCTz+G0CWT0qqqq4Ovri6ioKNjZ2SEgIABnz56Fo6OjvkMj0ptTp06hqKgIu3btwsGDB/UdDpHeZGZmIisrC/7+/lAoFAgICMCNGzdgbW0t6eewh4qM3oULF9CjRw+0a9cONjY2eOaZZ3D8+HF9h0WkV0OHDkXr1q31HQaR3rm5ucHf3x8A4OrqCicnJ+Tl5Un+OUyoSO+io6Px3HPPwd3dHTKZDIcPH65V5/PPP0fHjh1haWmJ/v3748KFC6ptGRkZaNeunep9u3btkJ6e3hShE+mEtucEUXMi5fkQFxeH6upqeHh4SB4nEyrSu5KSEvTu3Ruff/55ndv37duHhQsX4v3338fly5fRu3dvhISEIDs7u4kjJWoaPCeI/keq8yEvLw/Tpk3Dl19+qZtABSIDAkD4/vvv1cr69esnzJkzR/W+urpacHd3F9asWSMIgiDExMQI48ePV21/4403hD179jRJvES61phzokZUVJQQGhraFGESNYnGng9lZWXCoEGDhN27d+ssNvZQkUGrqKhAXFwcgoODVWVyuRzBwcGIjY0FAPTr1w/Xrl1Deno6iouL8fPPPyMkJERfIRPplCbnBFFLocn5IAgCpk+fjuHDh+OVV17RWSxMqMig5eTkoLq6Gi4uLmrlLi4uUCgUAABTU1N88sknGDZsGPz9/bFo0SI+4UfNlibnBAAEBwdj0qRJ+Omnn9C+fXsmW9QsaXI+xMTEYN++fTh8+DD8/f3h7++Pq1evSh6LqeQtEunB2LFjMXbsWH2HQWQwfvnlF32HQGQQBg4cCKVSqfPPYQ8VGTQnJyeYmJggKytLrTwrKwuurq56iopIf3hOEP2PIZ0PTKjIoJmbmyMgIAAnTpxQlSmVSpw4cQJBQUF6jIxIP3hOEP2PIZ0PvOVHeldcXIxbt26p3t+9exdXrlyBg4MDPD09sXDhQoSFhSEwMBD9+vXDxo0bUVJSghkzZugxaiLd4TlB9D9Gcz7o7PlBIg1FRUUJAGq9wsLCVHX++c9/Cp6enoK5ubnQr18/4dy5c/oLmEjHeE4Q/Y+xnA9cy4+IiIhISxxDRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURkJCoqKtC1a1ecPXtW0nYjIiLg7+8PpVIpabtELQkTKiLSi+nTp0Mmk9V6PbpmF6nbtm0bOnXqhCeffFJVJpPJcPjw4Vp1p0+fjvHjx2vU7qhRo2BmZoY9e/ZIFClRy8OEioj0ZtSoUcjMzFR7derUqVa9iooKPURnWARBwJYtWxAeHq6T9qdPn47NmzfrpG2iloAJFRHpjYWFBVxdXdVeJiYmGDp0KObOnYv58+fDyckJISEhAIBr167hmWeegY2NDVxcXPDKK68gJydH1V5JSQmmTZsGGxsbuLm54ZNPPsHQoUMxf/58VZ26enTs7e2xc+dO1fu0tDRMnjwZ9vb2cHBwwLhx45CSkqLaXtP78/HHH8PNzQ2Ojo6YM2cOKisrVXXKy8vx1ltvwcPDAxYWFujatSu+/vprCIKArl274uOPP1aL4cqVKw320MXFxeH27dsYM2aMyL9lICUlpc7ewKFDh6rqPPfcc7h06RJu374tun0iYkJFRAZq165dMDc3R0xMDLZt24b8/HwMHz4cffr0waVLlxAREYGsrCxMnjxZtc+SJUtw+vRp/Pe//8Xx48dx6tQpXL58WdTnVlZWIiQkBK1bt8aZM2cQExMDGxsbjBo1Sq2nLCoqCrdv30ZUVBR27dqFnTt3qiVl06ZNw7fffovNmzcjMTER//rXv2BjYwOZTIaZM2dix44dap+7Y8cODB48GF27dq0zrjNnzqB79+5o3bq1qOMBAA8PD7VewPj4eDg6OmLw4MGqOp6ennBxccGZM2dEt09EAAQiIj0ICwsTTExMBGtra9Vr4sSJgiAIwpAhQ4Q+ffqo1V+1apUwcuRItbK0tDQBgJCcnCwUFRUJ5ubmwv79+1Xbc3NzBSsrK+GNN95QlQEQvv/+e7V27OzshB07dgiCIAj//ve/BS8vL0GpVKq2l5eXC1ZWVsKxY8dUsXfo0EGoqqpS1Zk0aZLwwgsvCIIgCMnJyQIAITIyss5jT09PF0xMTITz588LgiAIFRUVgpOTk7Bz5856/77eeOMNYfjw4bXKAQiWlpZqf4/W1taCqampMG7cuFr1Hzx4IPTv31949tlnherqarVtffr0ET744IN6YyCi+pnqN50jopZs2LBh+OKLL1Tvra2tVX8OCAhQq/vbb78hKioKNjY2tdq5ffs2Hjx4gIqKCvTv319V7uDgAC8vL1Ex/fbbb7h161atnqCysjK122E9evSAiYmJ6r2bmxuuXr0K4OHtOxMTEwwZMqTOz3B3d8eYMWOwfft29OvXD0eOHEF5eTkmTZpUb1wPHjyApaVlnds+++wzBAcHq5W99dZbqK6urlV35syZKCoqQmRkJORy9ZsUVlZWKC0trTcGIqofEyoi0htra+t6b3E9mlwBQHFxMZ577jmsW7euVl03NzeNnw6UyWQQBEGt7NGxT8XFxQgICKjziTdnZ2fVn83MzGq1WzPtgJWV1WPjePXVV/HKK6/gs88+w44dO/DCCy+gVatW9dZ3cnJSJWx/5erqWuvvsXXr1sjPz1cr+/DDD3Hs2DFcuHChzluHeXl5asdIRJpjQkVERqFv3744dOgQOnbsCFPT2peuLl26wMzMDOfPn4enpycA4P79+7hx44ZaT5GzszMyMzNV72/evKnWK9O3b1/s27cPbdu2ha2tbaNi9fPzg1KpxOnTp2v1HNUYPXo0rK2t8cUXXyAiIgLR0dENttmnTx988cUXEAQBMplMdEyHDh3CypUr8fPPP6NLly61ttf0wPXp00d020TEQelEZCTmzJmDvLw8vPjii7h48SJu376NY8eOYcaMGaiuroaNjQ3Cw8OxZMkSnDx5EteuXcP06dNr3dYaPnw4tmzZgvj4eFy6dAmvv/66Wm/T1KlT4eTkhHHjxuHMmTO4e/cuTp06hXnz5uHevXsaxdqxY0eEhYVh5syZOHz4sKqN/fv3q+qYmJhg+vTpWLZsGbp164agoKAG2xw2bBiKi4tx/fp1EX9rD127dg3Tpk3DW2+9hR49ekChUEChUCAvL09V59y5c7CwsHhsHERUNyZURGQU3N3dERMTg+rqaowcORJ+fn6YP38+7O3tVUnThg0bMGjQIDz33HMIDg7GwIEDa43F+uSTT+Dh4YFBgwbhpZdewuLFi9VutbVq1QrR0dHw9PTE888/Dx8fH4SHh6OsrExUj9UXX3yBiRMn4u9//zu8vb3x2muvoaSkRK1OeHg4KioqMGPGjMe25+joiAkTJjRq8s1Lly6htLQUH374Idzc3FSv559/XlXn22+/xdSpUxu87UhE9ZMJfx1MQETUjAwdOhT+/v7YuHGjvkOp5cyZMxgxYgTS0tLg4uLy2Pq///47nn76ady+fbvOwfmNlZOTAy8vL1y6dKnOiVWJ6PHYQ0VE1MTKy8tx7949fPDBB5g0aZJGyRQA9OrVC+vWrcPdu3cljSclJQVbt25lMkWkBQ5KJyJqYt9++y3Cw8Ph7++P3bt3i9p3+vTpkscTGBiIwMBAydslakl4y4+IiIhIS7zlR0RERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKSl/wczurMrul24HQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, lag, yerr=lag_e, fmt=\"o\", color=\"k\", alpha=0.5)\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\n", + " f\"Time lag ({ref_band[0]:g}-{ref_band[1]:g} keV vs {sub_band[0]:g}-{sub_band[1]:g} keV, in seconds)\"\n", + ")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.semilogx()\n" + ] + }, + { + "cell_type": "markdown", + "id": "f1a2e785-7cf7-4807-9792-88a5579a7e4c", + "metadata": {}, + "source": [ + "Another interesting thing to measure is the coherence at different frequencies" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "a64e196a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/UUlEQVR4nO3de1yUdf7//+eAyiiCpylEhWjTYMZMUNGPmYWGkrYWmG6n9ZDl7rqUFh8r+7ab7me71dZu5bJNuZ/dSuvTmp1gd3N1TVeTLFMRTQM8pYEoGJocJoGFmd8f/ZyNAGWGGWZgHvfbjdvNud4X1zxBr+bV+3ofDA6HwyEAAIAAFOTrAAAAAL5CIQQAAAIWhRAAAAhYFEIAACBgUQgBAICARSEEAAACFoUQAAAIWBRCAAAgYHXxdQB/Z7fbdeLECYWFhclgMPg6DgAAaAWHw6GqqioNGDBAQUEt9/tQCF3EiRMnFBUV5esYAADADcXFxRo0aFCL7RRCFxEWFibp219keHi4j9MAAIDWqKysVFRUlPNzvCUUQhdx/nFYeHg4hRAAAB3MxYa1MFgaAAAELAohAAAQsCiEAABAwKIQAgAAASsgCqH3339fsbGxGjJkiP785z/7Og4AAPATnX7WWH19vTIyMrR582b16tVLI0eOVFpamvr16+fraAAAwMc6fY/Qjh07NHToUA0cOFA9e/bUlClTtGHDBl/HAgAAfsDvC6GtW7dq2rRpGjBggAwGg7Kzs5ucY7VaFRMTI6PRqDFjxmjHjh3OthMnTmjgwIHO1wMHDlRJSUl7RAcAAH7O7wshm82m4cOHy2q1Ntu+Zs0aZWRkaOnSpdq9e7eGDx+ulJQUnTp1qp2Ttp7dbtexY8e0b98+HTt2THa73deRAAAISH4/RmjKlCmaMmVKi+3PPfec5s+fr7vvvluStGLFCq1du1avvPKKlixZogEDBjTqASopKdHo0aNbvF5tba1qa2udrysrKz3wU/xHQUGBsrKyVFhYqJqaGhmNRsXFxSktLU1ms9mj7wUAAC7M73uELqSurk65ublKTk52HgsKClJycrI++eQTSdLo0aO1f/9+lZSUqLq6WuvWrVNKSkqL13zqqafUq1cv55cnN1wtKChQZmam8vLyZDKZFBsbK5PJpLy8PGVmZqqgoMBj7+Uv6P0CAPgzv+8RupDy8nI1NDQoIiKi0fGIiAgVFhZKkrp06aJnn31WEyZMkN1u18MPP3zBGWOPPvqoMjIynK/Pb9rWVna7XVlZWSovL5fFYmm0h5nFYlF+fr6ys7MVGxuroKAOXZ860fsFAPB3HboQaq2bb75ZN998c6vODQkJUUhIiMczFBUVqbCwUFFRUU02gDMYDBo0aJAKCgpUVFSkmJgYj79/ezvf+1VeXq6oqCiFhobKZrMpLy9PxcXFWrhwYYcohux2u4qKilRVVaWwsDBFR0d3mkIVANDBCyGTyaTg4GCVlZU1Ol5WVqb+/fv7KFXzqqqqVFNTo9DQ0GbbQ0NDVVJSoqqqqnZO5nmdpfeLHi0A6Pz891OoFbp166aRI0dq06ZNzmN2u12bNm3S2LFjfZisqbCwMBmNRtlstmbbbTabjEajwsLC2jmZ57nS++WvAnE8FwAEIr8vhKqrq7Vnzx7t2bNHknT06FHt2bPH+SGakZGhP/3pT1q1apUKCgq0YMEC2Ww25ywyd1mtVlksFiUmJrb1R5AkRUdHKy4uTsXFxXI4HI3aHA6Hjh8/LrPZrOjoaI+8ny+1pverpqbGb3u/vt+jFR4eruDgYGePVnl5ubKzs/164DeD1AGgdfz+0diuXbs0YcIE5+vzA5nnzJmjlStX6rbbbtNXX32lxx9/XKWlpYqPj9f69eubDKB2VXp6utLT01VZWalevXq16VrSt7PZ0tLSVFxcrPz8fA0aNMg5bub48eMymUxKTU3160dFrfXd3q/w8PAm7f7e+9XRx3PxSA8AWs/vC6GkpKQmPSjfd9999+m+++5rp0TuM5vNWrhwofNDqqSkREajUSNGjFBqamqn+ZA63/uVl5fXaIyQ9J/erxEjRvht71dHHs/VWQapA0B78ftCqLMxm82KjY3t1DOROnrvV0ft0eosg9QBoD3xX0MfCAoKUkxMjIYNG6aYmJhO+aF0vvcrISFBp0+f1sGDB3X69GmNGDHC73slOup4rs4wSB0A2hs9Qi2wWq2yWq1qaGjwdZQOq6P2fnXUHq2O/EgPAHyFQqgFnh4sHajO9351NB1xPFdHeaTHIpUA/AmFENCCjtaj1REGqTOjDYC/oRACLqAj9Wj5+yM9ZrQB8Ef++b+2ANzir4PUO8MilQA6J3qEgE7GHx/pdfRFKgF0XhRCLWDWGDoyf3uk990ZbQ0NDcrJyZEkjR8/XsHBwcxoA+AzFEItYNYY4Dnfn9GWlJTUqL29Z7Qxcw3AeRRCALzOn2a0MXMNwHdRCAHwOn+Z0cbMNQDfR18wgHbh6xltzFwD0Bx6hAC0G1/OaGPmGoDmUAi1gFljgHf4akYbM9cANIdCqAXMGgM6F3+buQbAPzBGCEBAOD9zrbi4WA6Ho1Hb+ZlrZrPZp3uxAWh/9AgBCAj+MnPtPNYyAvyDwfH9/zVCI+cfjVVUVCg8PNzXcQC0UXPrCJnNZqWmprbb1HnWMgK8r7Wf3/QIAQgovt6LjbWMAP9CIQQg4Phq5tr31zI6P43//FpG+fn5ys7OVmxsLI/JgHbCnQYA7cSVtYwAtA8KoRZYrVZZLBYlJib6OgqATuK7axk1JzQ0VDU1NaxlBLQjCqEWpKenKz8/Xzt37vR1FACdxHfXMmoOaxkB7Y9CCADaCWsZAf6HQggA2sn5tYxMJpPy8/NVUVGh+vp6VVRUKD8/v93XMgLAOkIXxTpCADzNH9YyAjo71hECAD/l67WMWNUa+A8KIQDwAV+tZcSq1kBjFEIAECBY1Rpoir5QAAgA31/VOjw8XMHBwc5VrcvLy5WdnS273e7rqEC7ohACgADw3VWt7Xa7tmzZoi1btqihoYFVrRHQeDTWAqvVKqvVqoaGBl9HAYA2++6q1sHBwUpKSmrUHhoaqpKSEla1RsChR6gFrCwNoDNhVWugeRRCABAAWNUaaB6FEAAEAFa1BprHytIXwcrSADoTVrVGoGBlaQBAE75e1RrwNxRCABBgfLWqNeCP+F8AAAAQsCiEAABAwKIQAgAAAYsxQgCAdmG32xmkDb/jciF09uxZZWVlKScnR19++aW++eYbXXLJJUpISFBKSoquueYab+QEAHRgzU3bj4uLU1paGtP24VOtLsVPnDihe++9V5GRkXriiSd07tw5xcfH64YbbtCgQYO0efNmTZo0SRaLRWvWrPFm5nZhtVplsViUmJjo6ygA0KEVFBQoMzNTeXl5MplMio2NlclkUl5enjIzM1VQUODriAhgre4RSkhI0Jw5c5SbmyuLxdLsOefOnVN2draWL1+u4uJiLV682GNB21t6errS09OdCzIBAFxnt9uVlZWl8vJyWSwWGQwGSVJ4eLgsFovy8/OVnZ2t2NhYHpPBJ1pdCOXn56tfv34XPKd79+664447dMcdd+j06dNtDgcA6NiKiopUWFioqKgoZxF0nsFg0KBBg1RQUKCioiLWNoJPtLr87tevn95//33Z7fZWnw8ACGxVVVWqqalRaGhos+2hoaGqqalRVVVVOycDvuVSP2RqaqqioqL02GOP6fDhw97KBADoJMLCwmQ0GmWz2Zptt9lsMhqNCgsLa+dkwLdcKoSOHj2qn/70p3rzzTcVGxur66+/Xq+//rrOnTvnrXwAgA4sOjpacXFxKi4u1vf3+HY4HDp+/LjMZrOio6N9lBCBzqVCKCoqSo8//riOHDmijRs3KiYmRgsWLFBkZKR+9rOfaefOnd7KCQDogIKCgpSWliaTyaT8/HxVVFSovr5eFRUVys/Pl8lkUmpqKgOl4TMGx/dLdBdVVVXpzTff1MqVK7V9+3ZdddVV2rt3r6fy+dz5WWMVFRUKDw/3dRwA6JCaW0fIbDYrNTWVdYTgFa39/G7zytJhYWG64YYb9OWXX6qwsFD5+fltvSQAoJMxm82KjY1lZWn4HbcLoXPnzuntt9/WK6+8opycHF1++eXKyMjQ3LlzPRgPANBZBAUFMUUefsflQmj79u165ZVX9NZbb6murk7Tp0/Xxo0bNWHCBG/kAwAA8BqXCiGLxaIDBw4oISFBTz31lO68805WXQYAAB2WS4VQcnKyVq9ereHDh3srDwAAQLtxqRDKzMx0/rm+vl5btmzRkSNHdOeddyosLEwnTpxQeHi4evbs6fGgAAAAnubWYOkvv/xSN954o4qKilRbW6tJkyYpLCxMTz/9tGpra7VixQpP5wQAAPA4t+YtLlq0SKNGjdLXX3+t7t27O4+npaVp06ZNHgsHAADgTW71COXk5Ojjjz9Wt27dGh2PiYlRSUmJR4IBAAB4m1s9Qna7XQ0NDU2OHz9+vNNsnGe1WmWxWJSYmOjrKAAAwEvcKoQmT56s5cuXO18bDAZVV1dr6dKlmjp1qqey+VR6erry8/PZPw0AgE7Mrb3Gjh8/rpSUFDkcDh06dEijRo3SoUOHZDKZtHXrVl166aXeyOoT7DUGAEDH09rPb7c3Xa2vr9eaNWu0d+9eVVdXa8SIEbrrrrsaDZ7uDCiEAADoeLxaCK1evVp33HFHs20PPfSQfvvb37p6Sb9FIQQAQMfT2s9vt8YILViwQOvWrWty/MEHH9T//d//uXNJAACAdudWIfTGG2/ojjvu0EcffeQ8dv/99+utt97S5s2bPRYOAIC2stvtOnbsmPbt26djx47Jbrf7OhL8iFvrCN1000168cUXdfPNN+uDDz7Qyy+/rL/+9a/avHmzrrzySk9nBADALQUFBcrKylJhYaFqampkNBoVFxentLQ0mc1mX8eDH3CrEJKkO++8U2fPntW4ceN0ySWX6MMPP9TgwYM9mQ0AALcVFBQoMzNT5eXlioqKUmhoqGw2m/Ly8lRcXKyFCxdSDKH1hVBGRkazxy+55BKNGDFCL774ovPYc8891/ZkAAC4yW63KysrS+Xl5bJYLDIYDJKk8PBwWSwW5efnKzs7W7GxsQoKcmuUCDqJVhdCeXl5zR4fPHiwKisrne3n/7EBAOArRUVFKiwsVFRUVJPPJYPBoEGDBqmgoEBFRUWKiYnxTUj4hVYXQgyCBgB0FFVVVaqpqVFoaKgaGhqUk5MjSRo/fryCg4MVGhqqkpISVVVV+TgpfM3tMUIAAPirsLAwGY1G2Ww2hYeHKykpqVG7zWaT0WjsNPtjwn08GAUAdDrR0dGKi4tTcXGxvr9usMPh0PHjx2U2mxUdHe2jhPAXFEIAgE4nKChIaWlpMplMys/PV0VFherr61VRUaH8/HyZTCalpqYyUBru7zUWKNhiAwA6rubWETKbzUpNTWXqfCfX2s9vxggBADots9ms2NhYFRUVqaqqSmFhYYqOjqYnCE4uF0KnT5/WZ599puHDh6tv374qLy/Xyy+/rNraWs2cOZMKGwDgV4KCgpgijxa5VAjt2LFDkydPVmVlpXr37q0PPvhAM2fOVJcuXWS32/Wb3/xGH330kUaMGOGtvAAAAB7jUt/gY489ppkzZ6qiokL/7//9P6WmpuqGG27QwYMHdfjwYd1+++369a9/7a2sAAAAHuXSYOm+fftq27ZtMpvN+ve//y2j0ahPPvlEo0ePliTt3r1bN998s44fP+61wO2NwdIAAHQ8rf38dqlHqK6uTt27d5ckde3aVT169JDJZHK2m0wmnT592s3IAAAA7culQigqKkpffPGF8/Wbb76pyMhI5+uTJ082KowAAAD8mUuDpW+//XadOnXK+fqmm25q1P63v/3N+ZgMAADA33l0QcVvvvlGwcHBCgkJ8dQlfY4xQgAAdDxeGSPUnG3btqm2tlaS1KNHD78sgtLS0tSnTx/NmDHD11EAAIAfaXMhNGXKFJWUlHgii9csWrRIr732mq9jAAAAP9PmQqgjbFWWlJSksLAwX8cAAAB+xuebrWzdulXTpk3TgAEDZDAYlJ2d3eQcq9WqmJgYGY1GjRkzRjt27Gj/oAAAoNNp86arf/zjHxUREeH299tsNg0fPlzz5s3T9OnTm7SvWbNGGRkZWrFihcaMGaPly5crJSVFBw4c0KWXXipJio+PV319fZPv3bBhgwYMGOBSntraWueYJ+nbwVYAAKBz8uissbYyGAzKyspSamqq89iYMWOUmJioF154QZJkt9sVFRWl+++/X0uWLGn1tbds2aIXXnhB77zzzgXPW7ZsmX71q181Oc6sMQAAOg6vzBr77hpCkrRnzx7NmTNH48aN04wZM7Rlyxa3wrakrq5Oubm5Sk5Odh4LCgpScnKyPvnkE4++13mPPvqoKioqnF/FxcVeeR8AAOB7LhVCkZGRzmLo448/1ujRo/Xll19q3Lhxqqys1KRJk7R161aPhSsvL1dDQ0OTR28REREqLS1t9XWSk5M1c+ZM/eMf/9CgQYMuWESFhIQoPDy80RcAAOicXBoj9N2naMuWLdOsWbP08ssvO4898MAD+tWvfqVNmzZ5LqEHbNy40dcRAACAH3J71tj+/fs1f/78Rsfmz5+vzz77rM2hzjOZTAoODlZZWVmj42VlZerfv7/H3gcAAAQmlwuhqqoqVVZWymg0NllF2mg06ptvvvFYuG7dumnkyJGNepjsdrs2bdqksWPHeux9mmO1WmWxWJSYmOjV9wEAAL7j8vT5K6+8UtK3j8l27dqlhIQEZ9vnn3/u8nT16upqHT582Pn66NGj2rNnj/r27avo6GhlZGRozpw5GjVqlEaPHq3ly5fLZrPp7rvvdjW6S9LT05Wenu4cdQ4AADoflwqhzZs3N3odGRnZ6PXRo0f1k5/8xKUAu3bt0oQJE5yvMzIyJElz5szRypUrddttt+mrr77S448/rtLSUsXHx2v9+vVtWrsIAABA8rN1hPwRu88DANDxtNvu8wAAAB2VRwuhOXPmaOLEiZ68pM8wWBoAgM7Po4XQwIEDddlll3nykj6Tnp6u/Px87dy509dRAACAlzBG6CIYIwQAQMfDGCEAAICL8GghVFxcrHnz5nnykgAAAF7j0ULozJkzWrVqlScvCQAA4DUuLaj4t7/97YLtX3zxRZvC+BOr1Sqr1aqGhgZfRwEAAF7i0mDpoKAgGQwGXehbDAZDpyoeGCwNAEDH45XB0pGRkXrvvfdkt9ub/dq9e3ebgwMAALQXlwqhkSNHKjc3t8X2i/UWAQAA+BOXxgg99NBDstlsLbYPHjy4ycasAAAA/ooFFS+CMUIAAHQ8LKjYRuw1BgBA50eP0EXQIwQAQMfT2s9vl8YIAQCA1rHb7SoqKlJVVZXCwsIUHR2toCAexPgbCiEAADysoKBAWVlZKiwsVE1NjYxGo+Li4pSWliaz2ezrePgOCiEAADyooKBAmZmZKi8vV1RUlEJDQ2Wz2ZSXl6fi4mItXLiQYsiPuNVHt2rVKq1du9b5+uGHH1bv3r11zTXX6Msvv/RYOAAAOhK73a6srCyVl5fLYrEoPDxcwcHBCg8Pl8ViUXl5ubKzs2W3230dFf8/twqhJ598Ut27d5ckffLJJ7JarXrmmWdkMpn04IMPejQgAAAdRVFRkQoLCxUVFSWDwdCozWAwaNCgQSooKFBRUZGPEuL73Ho0VlxcrMGDB0uSsrOzdeutt+onP/mJxo0bp6SkJE/mAwCgw6iqqlJNTY1CQ0PV0NCgnJwcSdL48eMVHBys0NBQlZSUqKqqysdJcZ5bPUI9e/bU6dOnJUkbNmzQpEmTJElGo1Hnzp3zXDofYh0hAICrwsLCZDQaZbPZFBwcrKSkJCUlJSk4OFiSZLPZZDQaFRYW5uOkOM+tQmjSpEm69957de+99+rgwYOaOnWqJOnzzz9XTEyMJ/P5THp6uvLz87Vz505fRwEAdBDR0dGKi4tTcXFxk703HQ6Hjh8/LrPZrOjoaB8lxPe5VQhZrVaNHTtWX331ld59913169dPkpSbm6s77rjDowEBAOgogoKClJaWJpPJpPz8fFVUVKi+vl4VFRXKz8+XyWRSamoq6wn5EVaWvghWlgYAuKq5dYTMZrNSU1OZOt9OvLqy9ODBg/XjH/9Yd911l4YMGeJ2SAAAOiOz2azY2FhWlu4A3PobSU9P19q1axUbG6vExET9/ve/V2lpqaezAQDQYQUFBSkmJkbDhg1TTEwMRZCfcutv5cEHH9TOnTtVWFioqVOnymq1KioqSpMnT9Zrr73m6YwAAABe4bExQtu3b9eCBQv02WefqaGhwROX9AuMEQIAoONpt93nd+zYob/85S9as2aNKisrNXPmzLZeEgAAoF24VQgdPHhQb7zxhlavXq2jR49q4sSJevrppzV9+nT17NnT0xkBAAC8wq1CKC4uTomJiUpPT9ftt9+uiIgIT+fyOavVKqvV2qke8wEAgMbcGiN06NChgJk2zxghAAA6ntZ+frs1ayxQiiAAANC5sagBAAAIWBRCAAAgYFEIAQCAgOVSIbR48WIVFhZ6KwsAAEC7cqkQ+utf/6qhQ4fqmmuu0SuvvCKbzeatXAAAAF7nUiF06NAhbd68WVdeeaUWLVqk/v37a968efr444+9lQ8AAMBrXB4jdN1112nlypUqLS3V73//ex06dEjXXnutzGazfve736msrMwbOQEAADzOI5uuHj58WK+++qpWrFih6upq1dbWeiKbX2BBRQAAOh6vLqj4XTabTTk5Ofrwww/19ddf6wc/+EFbLwkAANAu3C6EPvroI82bN0+RkZFauHChrrzySuXk5KigoMCT+XzGarXKYrEoMTHR11EAAICXuPRo7OTJk1q1apVWrlypgwcP6r/+6780b9483X777Z1213kejQEA0PG09vPbpd3no6Ki1K9fP82aNUv33HOPzGZzm4MCAAD4ikuF0FtvvaWbb75ZXbq49G0AAAB+yaUxQtOnT3cWQUeOHNEvfvEL3XHHHTp16pQkad26dfr88889nxIAAMAL3Bos/eGHH2rYsGH69NNP9d5776m6ulqStHfvXi1dutSjAQEAALzFrUJoyZIleuKJJ/TBBx+oW7duzuMTJ07U9u3bPRYOAADAm9wqhPbt26e0tLQmxy+99FKVl5e3ORQAAEB7cKsQ6t27t06ePNnkeF5engYOHNjmUAAAAO3BrULo9ttv1yOPPKLS0lIZDAbZ7XZt27ZNixcv1uzZsz2dEQAAwCvcKoSefPJJxcXFKSoqStXV1bJYLLruuut0zTXX6Be/+IWnMwIAAHhFmzZdLS4u1r59+1RdXa2EhAQNGTJE586dU/fu3T2Z0adYWRoAgI7Hq5uuLly4UNK3K01PnTpVP/rRjzRkyBDZbDZNnTrVvcQAAADtzK1CaO3atU3WC7LZbLrxxhtVX1/vkWAAAADe5tZeGRs2bND48ePVp08fPfDAA6qqqlJKSoq6dOmidevWeTojAACAV7hVCF1xxRVav369JkyYoKCgIK1evVohISFau3atQkNDPZ0RAADAK9zePfXqq6/W+++/r0mTJmnMmDF6//33O9UgaQAA0Pm1uhBKSEiQwWBocjwkJEQnTpzQuHHjnMd2797tmXQAAABe1OpCKDU11Ysx/I/VapXValVDQ4OvowAAAC9p0zpCgYB1hAAA6Hi8uo4QAABAZ0AhBAAAAhaFEAAACFgUQgAAIGBRCAEAgIDl0UKouLhY8+bN8+QlAQAAvMajhdCZM2e0atUqT14SAADAa1zaYuNvf/vbBdu/+OKLNoUBAABoTy4VQqmpqTIYDLrQGozNbcMBAADgj1x6NBYZGan33ntPdru92S/2GAMAAB2JS4XQyJEjlZub22L7xXqLAAAA/IlLj8Yeeugh2Wy2FtsHDx6szZs3tzkUAABAe2DT1Ytg01UAADqedtt0dfXq1RfsJQIAAPBXbS6EfvrTn6qsrMwTWQAAANpVmwshnqwBAICOir3GAABAwGpzIbRu3ToNGDDAE1kAAADalUvT55tz7bXXeiIHAABAu3OpR2jHjh1qaGhwvn7//fd1/fXXa+DAgRo1apRee+01jwcEAADwFpcKobFjx+r06dOSpL///e+65ZZbFBMTo8cee0wJCQm65557lJWV5ZWgAAAAnubSo7HvzhB75pln9PDDD+upp55yHrv88sv1zDPPKC0tzXMJAQAAvMTtwdIHDx7UjBkzGh279dZbVVhY2OZQnlRcXKykpCRZLBZdffXVevvtt30dCQAA+AmXB0vn5+ertLRU3bt3l91ub9JeX1/vkWCe0qVLFy1fvlzx8fEqLS3VyJEjNXXqVIWGhvo6GgAA8DGXC6EbbrjB+Yhs27ZtSkxMdLbl5eUpOjrac+k8IDIyUpGRkZKk/v37y2Qy6cyZMxRCAADAtUdjR48e1RdffKGjR4/q6NGjmjVrVqP2uro6PfLIIy4F2Lp1q6ZNm6YBAwbIYDAoOzu7yTlWq1UxMTEyGo0aM2aMduzY4dJ7nJebm6uGhgZFRUW59f0AAKBzcalH6LLLLrtg++zZs10OYLPZNHz4cM2bN0/Tp09v0r5mzRplZGRoxYoVGjNmjJYvX66UlBQdOHBAl156qSQpPj6+2UdyGzZscC72eObMGc2ePVt/+tOfLpintrZWtbW1zteVlZUu/0wAAKBjMDj8aLMwg8GgrKwspaamOo+NGTNGiYmJeuGFFyRJdrtdUVFRuv/++7VkyZJWXbe2tlaTJk3S/Pnzm/Rifd+yZcv0q1/9qsnxiooKhYeHt/6HAQAAPlNZWalevXpd9PPbo3uNJScn6wc/+IHHrldXV6fc3FwlJyc7jwUFBSk5OVmffPJJq67hcDg0d+5cTZw48aJFkCQ9+uijqqiocH4VFxe7nR8AAPi3Nm+x8V1paWkqLy/32PXKy8vV0NCgiIiIRscjIiJaPU1/27ZtWrNmja6++mrn+KPXX39dw4YNa/b8kJAQhYSEtCk3AADoGDxaCKWnp3vych5x7bXXNjvNHwAAoE2Pxr4/sNjTTCaTgoODVVZW1uh4WVmZ+vfv77X3BQAAgcHlQuiDDz7Q1KlT1adPH/Xo0UM9evRQnz59NHXqVG3cuNGj4bp166aRI0dq06ZNzmN2u12bNm3S2LFjPfpe32e1WmWxWBqtkwQAADoXlx6NrVq1Svfee69mzJih559/3jl2p6ysTBs2bNDUqVP18ssvt2pQ8nnV1dU6fPiw8/XRo0e1Z88e9e3bV9HR0crIyNCcOXM0atQojR49WsuXL5fNZtPdd9/tSnSXpaenKz093TnqHAAAdD4uTZ+/8sortWjRohbHAr344ot6/vnndejQoVYH2LJliyZMmNDk+Jw5c7Ry5UpJ0gsvvKDf/va3Ki0tVXx8vDIzMzVmzJhWv0dbtHb6HQAA8B+t/fx2qRAyGo3au3evYmNjm20/cOCA4uPjde7cOdcT+ykKIQAAOh6vrCM0dOhQvfzyyy22v/LKK7JYLK5cEgAAwGdcGiP07LPP6oc//KHWr1+v5OTkRmOENm3apC+++EJr1671StD2ZrVaZbVa1dDQ4OsoAADAS1zeYuPYsWN66aWXtH37dpWWlkr6dlf3sWPH6mc/+5liYmK8kdNneDQGAEDH45UxQoGIQggAgI7H42OEqJcAAEBn0+pCaOjQoXrzzTdVV1d3wfMOHTqkBQsW6De/+U2bwwEAAHhTqwdL/+EPf9Ajjzyin//855o0aZJGjRqlAQMGyGg06uuvv1Z+fr4++ugjff7557rvvvu0YMECb+YGAABoM5fHCH300Udas2aNcnJy9OWXX+rcuXMymUxKSEhQSkqK7rrrLvXp08dbedvNd2eNHTx4kDFCAAB0IAyW9hAGSwMA0PF4ZUFFAACAzoRCCAAABCwKIQAAELAohAAAQMCiEGqB1WqVxWJRYmKir6MAAAAvcXvW2JEjR/Tqq6/qyJEj+v3vf69LL71U69atU3R0tIYOHerpnD7DrDEAADoer84a+/DDDzVs2DB9+umneu+991RdXS1J2rt3r5YuXepeYgAAgHbmViG0ZMkSPfHEE/rggw/UrVs35/GJEydq+/btHgsHAADgTW4VQvv27VNaWlqT45deeqnKy8vbHAoAAKA9uFUI9e7dWydPnmxyPC8vTwMHDmxzKAAAgPbgViF0++2365FHHlFpaakMBoPsdru2bdumxYsXa/bs2Z7OCAAA4BVuFUJPPvmk4uLiFBUVperqalksFl133XW65ppr9Itf/MLTGQEAALyiTZuuFhcXa9++faqurlZCQoKGDBniyWw+xe7zAAB0XOw+7yGsIwQAQMfj1XWEbr31Vj399NNNjj/zzDOaOXOmO5cEAABtZLfbdezYMe3bt0/Hjh2T3W73dSS/18Wdb9q6dauWLVvW5PiUKVP07LPPtjUTAABwUUFBgbKyslRYWKiamhoZjUbFxcUpLS1NZrPZ1/H8lls9QtXV1Y0WUjyva9euqqysbHMoAADQegUFBcrMzFRubq4OHTqk0tJS9enTR3l5ecrMzFRBQYGvI/ottwqhYcOGac2aNU2Ov/nmm7JYLG0OBQAAWsdutysrK0vl5eUym80KCQlRUFCQwsPDZbFYVF5eruzsbB6TtcCtR2O//OUvNX36dB05ckQTJ06UJG3atEmrV6/W22+/7dGAAACgZUVFRSosLFRUVJQMBkOjNoPBoEGDBqmgoEBFRUWKiYnxTUg/5lYhNG3aNGVnZ+vJJ5/UO++8o+7du+vqq6/Wxo0bdf3113s6IwAAaEFVVZVqamoUGhrabHtoaKhKSkpUVVXVzsk6BrcKIUm66aabdNNNN3kyCwAAcFFYWJiMRqNsNluzxZDNZpPRaFRYWJgP0vk/twshSaqrq9OpU6eaPHeMjo5uUygAANA60dHRiouLU15enmJjYxu1ORwOHT9+XCNGjOCzuQVuFUKHDh3SvHnz9PHHHzc67nA4ZDAY1NDQ4JFwvvTdlaUBAPBXQUFBSktLU3FxsQ4cOKCEhASFhoaqurpax48fl8lkUmpqqoKC3Jof1em5tbL0uHHj1KVLFy1ZskSRkZFNBmcNHz7cYwF9jZWlAQAdQXPrCJnNZqWmpgbkOkKt/fx2q0doz549ys3NVVxcnNsBAQCA55jNZsXGxqqoqEhVVVUKCwtTdHQ0PUEX4VYhdH5dAgAA4D+CgoKYIu8it8rEp59+Wg8//LC2bNmi06dPq7KystEXAABAR+DWGKHz3WzfHxvUmQZLn8cYIQAAOh6vjhHavHmz28EAAAD8hVuFEKtHAwCAzsDtoeQ5OTn68Y9/rGuuuUYlJSWSpNdff10fffSRx8IBAAB4k1uF0LvvvquUlBR1795du3fvVm1trSSpoqJCTz75pEcDAgAAeItbhdATTzyhFStW6E9/+pO6du3qPD5u3Djt3r3bY+EAAAC8ya1C6MCBA7ruuuuaHO/Vq5fOnj3b1kwAAADtwq1CqH///jp8+HCT4x999JF+8IMftDmUP7BarbJYLEpMTPR1FAAA4CVuFULz58/XokWL9Omnn8pgMOjEiRN64403tHjxYi1YsMDTGX0iPT1d+fn52rlzp6+jAAAAL3Fr+vySJUtkt9t1ww036JtvvtF1112nkJAQLV68WPfff7+nMwIAAHiFyytLNzQ0aNu2bbr66qvVo0cPHT58WNXV1bJYLOrZs6e3cvoMK0sDANDxeG1l6eDgYE2ePFkFBQXq3bu3LBZLm4ICAAD4iltjhK666ip98cUXns4CAADQrtxeR2jx4sV6//33dfLkSXafBwAAHVKbdp+XGu9Az+7zAADAH7D7PAAAwEWw+zwAAAhY7D4PAAACFrvPAwCAgMXu8wAAIGCx+zwAAAhY7D4PAAACFrvPAwCAgMXu8wAAIGC5tbL0eXV1dew+DwAA/I5XV5Y+r1u3bp1293mr1Sqr1dqptgsBAACNudUjZLPZ9Jvf/EabNm3SqVOnZLfbG7V3pp3p6RECAKDj8WqP0L333qsPP/xQs2bNUmRkZKONVwEAADoKtwqhdevWae3atRo3bpyn8wAAALQbt6bP9+nTR3379vV0FgAAgHblViH061//Wo8//ri++eYbT+cBAABoN61+NJaQkNBoLNDhw4cVERGhmJiYRvuNSWK/MQAA0CG0uhBKTU31YgwAAID216YFFQMB0+cBAOh42mVBxdzcXBUUFEiShg4dqoSEhLZcDgAAoF25VQidOnVKt99+u7Zs2aLevXtLks6ePasJEybozTff1CWXXOLJjAAAAF7h1qyx+++/X1VVVfr888915swZnTlzRvv371dlZaUWLlzo6YwAAABe4dYYoV69emnjxo1KTExsdHzHjh2aPHmyzp4966l8PscYIQAAWma321VUVKSqqiqFhYUpOjpaQUFu9bN4lFfHCNnt9iZT5iWpa9euTfYdAwAAnVNBQYHeeecdvfPOO6qvr1dCQoIsFovS0tJkNpt9Ha9V3CrZJk6cqEWLFunEiRPOYyUlJXrwwQd1ww03eCwcAADwTwUFBcrMzNSePXvUo0cP9evXT/369VNeXp4yMzOdk6n8nVuF0AsvvKDKykrFxMToiiuu0BVXXKHLL79clZWV+sMf/uDpjAAAwI/Y7XZlZWWpvLxcZrNZISEhCgoKUnh4uCwWi8rLy5Wdnd0hnhK59WgsKipKu3fv1saNG1VYWChJMpvNSk5O9mg4AADgf4qKilRYWKioqKhGu05IksFg0KBBg1RQUKCioiLFxMT4JmQrub2OkMFg0KRJkzRp0iRP5gEAAH6uqqpKNTU1Cg0NbbY9NDRUJSUlqqqqaudkrnPp0di//vUvWSwWVVZWNmmrqKjQ0KFDlZOT47FwAADA/4SFhcloNMpmszXbbrPZZDQaFRYW1s7JXOdSIbR8+XLNnz+/2WlovXr10k9/+lM999xzHgsHAAD8T3R0tOLi4lRcXKzvr8LjcDh0/Phxmc1mRUdHt3iNuro6LVu2TMuWLVNdXZ23I7fIpUJo7969uvHGG1tsnzx5snJzc9scCgAA+K+goCClpaXJZDKpoKBANTU1stvtqqioUH5+vkwmk1JTU/1iPaGLcSlhWVlZs+sHndelSxd99dVXbQ4FAAD8m9ls1sKFCxUfH69z587p9OnTOnPmjEaMGKGFCxd2mHWEXBosPXDgQO3fv1+DBw9utv2zzz5TZGSkR4IBAAD/Zjab9dhjj2nWrFl+t7J0a7lUCE2dOlW//OUvdeONN8poNDZqO3funJYuXaof/vCHHg0IAAD8V1BQkN9Pkb8QlwqhX/ziF3rvvfd05ZVX6r777lNsbKwkqbCwUFarVQ0NDXrssce8EtRdZ8+eVXJysurr61VfX69FixZp/vz5vo4FAAD8gEuFUEREhD7++GMtWLBAjz76qHOkuMFgUEpKiqxWqyIiIrwS1F1hYWHaunWrevToIZvNpquuukrTp09Xv379fB0NAAD4mMsLKl522WX6xz/+oa+//lqHDx+Ww+HQkCFD1KdPH2/ka7Pg4GD16NFDklRbWyuHw9Fkqh8AAAhMbo9m6tOnjxITEzV69Og2FUFbt27VtGnTNGDAABkMBmVnZzc5x2q1KiYmRkajUWPGjNGOHTtceo+zZ89q+PDhGjRokB566CGZTCa38wIAgM7D58O6bTabhg8fLqvV2mz7mjVrlJGRoaVLl2r37t0aPny4UlJSdOrUKec58fHxuuqqq5p8nThxQpLUu3dv7d27V0ePHtVf/vIXlZWVtcvPBgAA/Jvbe415ypQpUzRlypQW25977jnNnz9fd999tyRpxYoVWrt2rV555RUtWbJEkrRnz55WvVdERISGDx+unJwczZgxo9lzamtrVVtb63zd3HYiAACgc/B5j9CF1NXVKTc3t9Gu9kFBQUpOTtYnn3zSqmuUlZU5N32rqKjQ1q1bnbPdmvPUU0+pV69ezq+oqKi2/RAAAMBv+XUhVF5eroaGhiYz0SIiIlRaWtqqa3z55ZcaP368hg8frvHjx+v+++/XsGHDWjz/0UcfVUVFhfOruLi4TT8DAADwXz5/NOZto0ePbvWjM0kKCQlRSEiI9wIBAAC/4dc9QiaTScHBwU0GN5eVlal///4+SgUAANrKbrfr7NmzKisr07Fjx2S3232Sw697hLp166aRI0dq06ZNSk1NlfTtL27Tpk267777vPreVqvVuVo2AADwnIKCAr3zzjvavHmz6uvrVVVVJYvForS0tHbfrNXnhVB1dbUOHz7sfH306FHt2bNHffv2VXR0tDIyMjRnzhyNGjVKo0eP1vLly2Wz2ZyzyLwlPT1d6enpqqysVK9evbz6XgAABIqCggJlZmbq1KlT6tGjh7p27ap+/fopLy9PxcXF7b5zvc8LoV27dmnChAnO1xkZGZKkOXPmaOXKlbrtttv01Vdf6fHHH1dpaani4+O1fv16v9vKAwAAXJjdbldWVpbKy8tlNpt1+vRpSVJ4eLh69+6t/Px8ZWdnKzY2tt12sPd5IZSUlHTRLS/uu+8+rz8KAwAA3lVUVKTCwkJFRUXJYDA0ajMYDBo0aJAKCgpUVFTUbjva+/VgaQAA0HlUVVWppqZGoaGhzbaHhoaqpqbGuf5fe6AQaoHVapXFYlFiYqKvowAA0CmEhYXJaDTKZrM1226z2WQ0GhUWFtZumSiEWpCenq78/Hzt3LnT11EAAOgUoqOjFRcXp+Li4ibDYhwOh44fPy6z2azo6Oh2y+TzMUIAACAwBAUFKS0tTcXFxSooKFBNTY26deumiooKnTx5UiaTSampqe02UFqiRwgAALQjs9mshQsXKj4+XufOndPp06d15swZjRgxot2nzkv0CAEAgHZmNpv10EMP6fTp06qtrdWDDz6owYMHt2tP0HkUQgAAoN0FBQWpd+/ekqSYmBifFEESj8ZaxKwxAAA6PwqhFjBrDACAzo9CCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQggAAAQsCqEWMH0eAIDOj0KoBUyfBwCg86MQAgAAAYtCCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQqgFTJ8HAKDzoxBqAdPnAQDo/CiEAABAwKIQAgAAAYtCCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQggAAAQsCiEAABCwKIRawMrSAAB0fhRCLWBlaQAAOj+Dw+Fw+DqEP6usrFSvXr1UUVGh8PBwX8cBAACt0NrPb3qEAABAwKIQAgAAAYtCCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQggAAAQsCiEAABCwKIQAAEDAohBqAXuNAQDQ+bHFxkWwxQYAAB0PW2wAAABcBIUQAAAIWBRCAAAgYFEIAQCAgNXF1wH83fmx5JWVlT5OAgAAWuv85/bF5oRRCF1EVVWVJCkqKsrHSQAAgKuqqqrUq1evFtuZPn8RdrtdJ06cUFhYmAwGgxITE7Vz506PXLut13Ln+135ntaee7HzKisrFRUVpeLi4oBYgsCT/0bayttZAul+cOV87onG/OWeaI8c/nJPcD982xNUVVWlAQMGKCio5ZFA9AhdRFBQkAYNGuR8HRwc7LG/qLZey53vd+V7Wntua88LDw8PiP/oe/LfSFt5O0sg3Q+unM890Zi/3BPtkcNf7gnuh29dqCfoPAZLuyg9Pd1vruXO97vyPa0915O/k87An34f3s4SSPeDK+f7078Bf+Avv4/2yOEv9wT3Q+vxaAxex+rcQGPcE8B/+Pp+oEcIXhcSEqKlS5cqJCTE11EAv8A9AfyHr+8HeoQAAEDAokcIAAAELAohAAAQsCiEAABAwKIQAgAAAYtCCAAABCwKIfjc+++/r9jYWA0ZMkR//vOffR0H8Km0tDT16dNHM2bM8HUUwKeKi4uVlJQki8Wiq6++Wm+//bZX3ofp8/Cp+vp6WSwWbd68Wb169dLIkSP18ccfq1+/fr6OBvjEli1bVFVVpVWrVumdd97xdRzAZ06ePKmysjLFx8ertLRUI0eO1MGDBxUaGurR96FHCD61Y8cODR06VAMHDlTPnj01ZcoUbdiwwdexAJ9JSkpSWFiYr2MAPhcZGan4+HhJUv/+/WUymXTmzBmPvw+FENpk69atmjZtmgYMGCCDwaDs7Owm51itVsXExMhoNGrMmDHasWOHs+3EiRMaOHCg8/XAgQNVUlLSHtEBj2vr/QB0Jp68H3Jzc9XQ0KCoqCiP56QQQpvYbDYNHz5cVqu12fY1a9YoIyNDS5cu1e7duzV8+HClpKTo1KlT7ZwU8D7uB+A/PHU/nDlzRrNnz9b//u//eieoA/AQSY6srKxGx0aPHu1IT093vm5oaHAMGDDA8dRTTzkcDodj27ZtjtTUVGf7okWLHG+88Ua75AW8yZ374bzNmzc7br311vaICbQLd++Hmpoax/jx4x2vvfaa17LRIwSvqaurU25urpKTk53HgoKClJycrE8++USSNHr0aO3fv18lJSWqrq7WunXrlJKS4qvIgNe05n4AAkVr7geHw6G5c+dq4sSJmjVrlteyUAjBa8rLy9XQ0KCIiIhGxyMiIlRaWipJ6tKli5599llNmDBB8fHx+u///m9mjKFTas39IEnJycmaOXOm/vGPf2jQoEEUSeiUWnM/bNu2TWvWrFF2drbi4+MVHx+vffv2eTxLF49fEXDRzTffrJtvvtnXMQC/sHHjRl9HAPzCtddeK7vd7vX3oUcIXmMymRQcHKyysrJGx8vKytS/f38fpQJ8g/sB+A9/uh8ohOA13bp108iRI7Vp0ybnMbvdrk2bNmns2LE+TAa0P+4H4D/86X7g0RjapLq6WocPH3a+Pnr0qPbs2aO+ffsqOjpaGRkZmjNnjkaNGqXRo0dr+fLlstlsuvvuu32YGvAO7gfgPzrM/eC1+WgICJs3b3ZIavI1Z84c5zl/+MMfHNHR0Y5u3bo5Ro8e7di+fbvvAgNexP0A/EdHuR/YawwAAAQsxggBAICARSEEAAACFoUQAAAIWBRCAAAgYFEIAQCAgEUhBAAAAhaFEAAACFgUQgAAIGBRCAGAl9XV1Wnw4MH6+OOPPXrd9evXKz4+vl126AY6KwohAC6ZO3euDAZDk6/v7imExlasWKHLL79c11xzjfOYwWBQdnZ2k3Pnzp2r1NTUVl33xhtvVNeuXfXGG294KCkQeCiEALjsxhtv1MmTJxt9XX755U3Oq6ur80E6/+JwOPTCCy/onnvu8cr1586dq8zMTK9cGwgEFEIAXBYSEqL+/fs3+goODlZSUpLuu+8+PfDAAzKZTEpJSZEk7d+/X1OmTFHPnj0VERGhWbNmqby83Hk9m82m2bNnq2fPnoqMjNSzzz6rpKQkPfDAA85zmutB6d27t1auXOl8XVxcrB/96Efq3bu3+vbtq1tuuUXHjh1ztp/vbfnd736nyMhI9evXT+np6fr3v//tPKe2tlaPPPKIoqKiFBISosGDB+vll1+Ww+HQ4MGD9bvf/a5Rhj179lywRyw3N1dHjhzRTTfd5OJvWTp27FizvW9JSUnOc6ZNm6Zdu3bpyJEjLl8fAIUQAA9btWqVunXrpm3btmnFihU6e/asJk6cqISEBO3atUvr169XWVmZfvSjHzm/56GHHtKHH36ov/71r9qwYYO2bNmi3bt3u/S+//73v5WSkqKwsDDl5ORo27Zt6tmzp2688cZGPVObN2/WkSNHtHnzZq1atUorV65sVEzNnj1bq1evVmZmpgoKCvTHP/5RPXv2lMFg0Lx58/Tqq682et9XX31V1113nQYPHtxsrpycHF155ZUKCwtz6eeRpKioqEa9bnl5eerXr5+uu+465znR0dGKiIhQTk6Oy9cHIKnd97sH0KHNmTPHERwc7AgNDXV+zZgxw+FwOBzXX3+9IyEhodH5v/71rx2TJ09udKy4uNghyXHgwAFHVVWVo1u3bo633nrL2X769GlH9+7dHYsWLXIek+TIyspqdJ1evXo5Xn31VYfD4XC8/vrrjtjYWIfdbne219bWOrp37+745z//6cx+2WWXOerr653nzJw503Hbbbc5HA6H48CBAw5Jjg8++KDZn72kpMQRHBzs+PTTTx0Oh8NRV1fnMJlMjpUrV7b4+1q0aJFj4sSJTY5LchiNxka/x9DQUEeXLl0ct9xyS5Pzz5075xgzZozjhz/8oaOhoaFRW0JCgmPZsmUtZgDQsi6+LcMAdEQTJkzQSy+95HwdGhrq/PPIkSMbnbt3715t3rxZPXv2bHKdI0eO6Ny5c6qrq9OYMWOcx/v27avY2FiXMu3du1eHDx9u0vNSU1PT6LHR0KFDFRwc7HwdGRmpffv2Sfr2MVdwcLCuv/76Zt9jwIABuummm/TKK69o9OjR+vvf/67a2lrNnDmzxVznzp2T0Whstu35559XcnJyo2OPPPKIGhoampw7b948VVVV6YMPPlBQUOPO/O7du+ubb75pMQOAllEIAXBZaGhoi4+CvlsUSVJ1dbWmTZump59+usm5kZGRrZ5tZjAY5HA4Gh377tie6upqjRw5stkZVJdcconzz127dm1y3fPTz7t3737RHPfee69mzZql559/Xq+++qpuu+029ejRo8XzTSaTs9D6vv79+zf5PYaFhens2bONjj3xxBP65z//qR07djT7iO3MmTONfkYArUchBMCrRowYoXfffVcxMTHq0qXpf3KuuOIKde3aVZ9++qmio6MlSV9//bUOHjzYqGfmkksu0cmTJ52vDx061KgXZMSIEVqzZo0uvfRShYeHu5V12LBhstvt+vDDD5v01Jw3depUhYaG6qWXXtL69eu1devWC14zISFBL730khwOhwwGg8uZ3n33Xf3P//yP1q1bpyuuuKJJ+/ker4SEBJevDYDB0gC8LD09XWfOnNEdd9yhnTt36siRI/rnP/+pu+++Ww0NDerZs6fuuecePfTQQ/rXv/6l/fv3a+7cuU0e/0ycOFEvvPCC8vLytGvXLv3sZz9r1Ltz1113yWQy6ZZbblFOTo6OHj2qLVu2aOHChTp+/HirssbExGjOnDmaN2+esrOzndd46623nOcEBwdr7ty5evTRRzVkyBCNHTv2gtecMGGCqqur9fnnn7vwW/vW/v37NXv2bD3yyCMaOnSoSktLVVpaqjNnzjjP2b59u0JCQi6aA0DzKIQAeNWAAQO0bds2NTQ0aPLkyRo2bJgeeOAB9e7d21ns/Pa3v9X48eM1bdo0JScn69prr20y1ujZZ59VVFSUxo8frzvvvFOLFy9u9EiqR48e2rp1q6KjozV9+nSZzWbdc889qqmpcamH6KWXXtKMGTP085//XHFxcZo/f75sNlujc+655x7V1dXp7rvvvuj1+vXrp7S0NLcWPdy1a5e++eYbPfHEE4qMjHR+TZ8+3XnO6tWrddddd13w8RyAlhkc33/oDgB+ICkpSfHx8Vq+fLmvozSRk5OjG264QcXFxYqIiLjo+Z999pkmTZqkI0eONDto3F3l5eWKjY3Vrl27ml3QEsDF0SMEAK1UW1ur48ePa9myZZo5c2ariiBJuvrqq/X000/r6NGjHs1z7NgxvfjiixRBQBswWBoAWmn16tW65557FB8fr9dee82l7507d67H84waNUqjRo3y+HWBQMKjMQAAELB4NAYAAAIWhRAAAAhYFEIAACBgUQgBAICARSEEAAACFoUQAAAIWBRCAAAgYFEIAQCAgEUhBAAAAtb/ByH9Vh6kjGfnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coh, coh_e = cs_reb.coherence()\n", + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, coh, yerr=coh_e, fmt=\"o\", color=\"k\", alpha=0.5)\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\n", + " f\"Coherence ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV)\"\n", + ")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.loglog()\n" + ] + }, + { + "cell_type": "markdown", + "id": "904811f2", + "metadata": { + "id": "904811f2" + }, + "source": [ + "# Spectral timing" + ] + }, + { + "cell_type": "markdown", + "id": "965a7273", + "metadata": { + "id": "965a7273" + }, + "source": [ + "Now let us explore the spectral timing properties of this observation, with no physical interpretation, just for the sake of data exploration." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "302ef79e", + "metadata": { + "id": "302ef79e" + }, + "outputs": [], + "source": [ + "from stingray.varenergyspectrum import CountSpectrum, CovarianceSpectrum, RmsSpectrum, LagSpectrum" + ] + }, + { + "cell_type": "markdown", + "id": "b53713b3", + "metadata": { + "id": "b53713b3" + }, + "source": [ + "Let us start with the lag spectrum with respect to energy, in different frequency bands.\n", + "This might be confusing for people coming from other wavelengths, so let us specify that\n", + "\n", + "+ \"frequency\" refers to the frequency of the variability.\n", + "\n", + "+ \"energy\" refers to the photon energy.\n", + "\n", + "The photons at 0.3-12 keV are modulated by oscillations and other stochastic noise up to ~100 Hz (see section above). As an example, we will now analyze the spectral timing properties using the variability up to 1 Hz and between 4 and 10 Hz." + ] + }, + { + "cell_type": "markdown", + "id": "0c530beb", + "metadata": {}, + "source": [ + "From [Kara et al. 2019](https://www.nature.com/articles/s41586-018-0803-x), figure 3" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "5eca6d3c", + "metadata": { + "id": "5eca6d3c", + "outputId": "07a6c11a-34fb-4893-bf7c-a51b2299da14" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:36<00:00, 1.08it/s]\n" + ] + } + ], + "source": [ + "energy_spec = np.geomspace(0.5, 10, 41)\n", + "segment_size = 10\n", + "bin_time = 0.001\n", + "freq_interval = [3, 30]\n", + "ref_band = [0.5, 10]\n", + "\n", + "# If not specified, the reference energy band is the whole band.\n", + "\n", + "lagspec_3_30 = LagSpectrum(\n", + " events,\n", + " freq_interval=freq_interval,\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " ref_band=ref_band,\n", + ")\n", + "energies = lagspec_3_30.energy" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "23efaaa4", + "metadata": { + "id": "23efaaa4", + "outputId": "ceb9952c-6ea2-4093-eb07-9bdde6492601" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAG1CAYAAADtOGDLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5U0lEQVR4nO3de3wU9b3/8fckSNCERJRb4q4EBaUIKHKrl0SQGBS10m209qAHlFLsA4GINzi2WuolVns0WK/VGulVbRItbSNabThEawuC2iICoqhhISAXN2TxF00yvz9stqyZXHZnL7O7r+fjMY8HOzs789nsMPve73znO4ZpmqYAAAAQJC3eBQAAADgRIQkAAMACIQkAAMACIQkAAMACIQkAAMACIQkAAMACIQkAAMACIQkAAMBCr3gX4BRtbW3auXOn+vbtK8Mw4l0OAADoAdM0dfDgQeXl5SktLbJtP4Skf9u5c6fcbne8ywAAAGGor6+Xy+WK6DoJSf/Wt29fSV/+kbOzs+NcDQAA6InGxka53e7A93gkEZL+rf0UW3Z2NiEJAIAEE42uMnTcBgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAjub3+2UYhgzDkN/vj9l2CUkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWkiokeb1eXXHFFTr22GN15JFHavTo0XrjjTfiXRYAAEhAveJdQKQcOHBAZ511lqZMmaIXXnhBAwYM0Hvvvad+/frFuzQAAJCAkiYk/eQnP5Hb7VZFRUVg3tChQ+NYEQAASGRJc7pt5cqVGj9+vC699FINHDhQY8eO1eOPP97p8s3NzWpsbAyaAAAA2iVNSPrggw/0yCOPaPjw4XrxxRf1/e9/XwsXLtSKFSssly8rK1NOTk5gcrvdMa4YAAA4mWGaphnvIiKhd+/eGj9+vP72t78F5i1cuFDr1q3T66+/3mH55uZmNTc3Bx43NjbK7XbL5/MpOzs7JjUDAIDu+f1+ZWVlSZKampqUmZkZeK6xsVE5OTlR+f5Ompak3NxcjRw5Mmje1772NX388ceWy2dkZCg7OztoAgAAaJc0Iemss87Sli1bguZt3bpVQ4YMiVNFAAAgkSVNSLruuuv097//XXfddZe2bdum3/72t/r5z3+u+fPnx7s0AACQgJImJE2YMEHPPfecfve732nUqFG6/fbbVV5erpkzZ8a7NAAAkICSZpwkSbrooot00UUXxbsMAACQBJKmJQkAACCSCEnd8Pv9MgxDhmHI7/fHuxwAABAjhCQAAAALhCQAAAALhCQAAAALhCQAAAALhKRutLa2Bv69Zs2aoMcAACB5EZK6UF1dHXQ/uOnTpys/P1/V1dVxrAoAAMQCIakT1dXVKikpkdfrDZrv9XpVUlJCUAIAIMkRkiy0trZq0aJFMk2zw3Pt80pLSzn1BgBAEiMkWairq9OOHTs6fd40TdXX16uuri6GVQEAgFgiJFnYtWtXRJcDAACJh5BkITc3N6LLAQCAxENIslBQUCCXyyXDMCyfNwxDbrdbBQUFMa4MAADECiHJQnp6upYvXy5JHYJS++Py8nKlp6fHvDYAABAbhKROeDweVVZWKi8vL2i+y+VSZWWlPB5PnCoDAACx0CveBTiZx+NRUVGRcnJyJEk1NTUqLi6mBQkAgBRAS1I3Dg9EhYWFBCQAAFIEIQkAAMACIQkAAMACIQkAAMACIQkAAMACV7d1IzMz0/JGtwAAILnRkgQAAGCBkAQAAGCBkAQAAGCBkAQAAGCBkAQAAGCBkBRhfr9fhmHIMAz5/f54lwMAAMJESAIAALBASAIAALBASAIAALCQtCHp7rvvlmEYKi0tjel2W1tbA/9es2ZN0GMAAJA4kjIkrVu3To899pjGjBkT0+1WV1dr5MiRgcfTp09Xfn6+qqurY1oHAACwL+lCUlNTk2bOnKnHH39c/fr1i9l2q6urVVJSIq/XGzTf6/WqpKSEoAQAQIJJupA0f/58XXjhhSoqKupyuebmZjU2NgZN4WptbdWiRYssb4TbPq+0tJRTbwAAJJCkCklPP/20NmzYoLKysm6XLSsrU05OTmByu91hb7eurk47duzo9HnTNFVfX6+6urqwtwEAAGIraUJSfX29Fi1apN/85jfq06dPt8svXbpUPp8vMNXX14e97V27dkV0OQAAEH+94l1ApKxfv1579uzR6aefHpjX2tqqNWvW6MEHH1Rzc7PS09MDz2VkZCgjIyMi287NzY3ocgAAIP6SJiRNnTpV//rXv4LmXXXVVRoxYoRuvvnmoIAUaQUFBXK5XPJ6vZb9kgzDkMvlUkFBQdRqAAAAkZU0Ialv374aNWpU0LzMzEwde+yxHeZHWnp6upYvX66SkhIZhhEUlAzDkCSVl5dbBjW/36+srCxJX16Zl5mZGdVaAQBAzyRNn6R483g8qqysVF5eXtB8l8ulyspKeTyeOFUGAADCkTQtSVZWr14d0+15PB4VFRUpJydHklRTU6Pi4uKIn+qj9QkAgOijJSnCDg9EhYWFUe0LBQAAooeQlAL8fr8Mw5BhGPL7/fEuBwCAhEBIAgAAjhavm8cTkuIsnA8+XjsLAACxFs+bxxOSIiwzM1Omaco0zW47VIfzwcdzZwEAIJbiffN4QlKchPPBh7uz0PIEAEg0Trh5PCEpDsL54MPdWWh5AgAkop7ePP5vf/tb1GogJMVBTz/4uro6W6+JdzMlAADh6ulN4RsaGqJWAyEpDnr6wR++XKivcUIzJQAA4erpTeEHDx4ctRoISXHQ0w/+8OVCfU04LU8AADhF+83j2++B+lWGYcjtduvMM8+MWg2EpDjo6QdfUFAQ9mvCaa0CAMAp2m8eL6nDd193N4+PFEJSHITzwYf6mnBaqwAAcJJ43zyekBQn4XzwobwmnNYqAACcxuPxaNOmTYHHNTU12r59e9QDkiQZplXP3hTU2NionJwc+Xw+ZWdnx3y70pcffHFxcbdNhz19TfvVbZKCOnC3B6dYpHAAAOzy+/3KysqSJDU1NQUN1hzN729akuLs8HBTWFjYo3OrPX1NvJspAQBIZL3iXQCiy+PxqKioKOTWKgAAUh0tSSkgnNYqAABSHSEpAYVyE91w+f1+GYYhwzDk9/ujsg0AAJyMkAQAAGCBPklx1t4qlOjbAAAg2dCSBEuH39NtzZo13OMNAJByCEnooLq6WiNHjgw8nj59uvLz81VdXR3HqgAAiC1CEoK0D0Dp9XqD5nu9XpWUlBCUAAApg5CEgNbWVi1atMiy/1L7vNLSUk69AQBSAiEJAXV1ddqxY0enz5umqfr6etXV1cWwKgAA4oOQhIBdu3ZFdDkAABIZIQkBubm5EV0OAKKFAW8RC4QkBBQUFMjlcskwDMvnDcOQ2+1WQUFBjCsDAOcjuCUfQhIC0tPTtXz5cknqEJTaH5eXl3PvNwBASiAkIYjH41FlZaXy8vKC5rtcLlVWVsrj8cSpMgAAYovbkqADj8ejoqIi5eTkSJJqampUXFxMCxIAIKUkTUtSWVmZJkyYoL59+2rgwIGaMWOGtmzZEu+yEtbhgaiwsJCABABIOUkTkv7v//5P8+fP19///nf95S9/0RdffKHi4mI6zwEAgLAkzem2VatWBT1+6qmnNHDgQK1fv16FhYVxqipxZWZmWo68DQBAqkiakPRVPp9PknTMMcdYPt/c3Kzm5ubA48bGxpjUBQAAEkPSnG47XFtbm0pLS3XWWWdp1KhRlsuUlZUpJycnMLnd7hhXCQAAnCwpQ9L8+fO1ceNGPf30050us3TpUvl8vsBUX18fwwqTD4OoAQCSTdKdbrv22mv1pz/9SWvWrJHL5ep0uYyMDGVkZMSwMgAAkEiSJiSZpqkFCxboueee0+rVqzV06NB4lwQAABJY0pxumz9/vn7961/rt7/9rfr27auGhgY1NDTos88+i3dpKaG1tTXw7zVr1gQ9tsLpOQCA0yVNSHrkkUfk8/k0efJk5ebmBqZnnnkm3qUlverqao0cOTLwePr06crPz1d1dXUcqwKQzEL9YQaEI2lCkmmaltPs2bPjXVpSq66uVklJibxeb9B8r9erkpKSToMSBzgA4eKHGWIlaUISYq+1tVWLFi2yHHSyfV5paWmHAMQBDkC4wv1hBoSDkISw1dXVaceOHZ0+b5qm6uvrVVdXF5jHAQ5AuML9YQaEKyIh6YsvvlB9fb22bNmi/fv3R2KVSAC7du0KaTkOcADsCOeHGWBH2CHp4MGDeuSRR3TOOecoOztb+fn5+trXvqYBAwZoyJAhmjt3rtatWxfJWuEwubm5IS1n9wDHFXFAagv1h1ki4LjmbGGFpPvuu0/5+fmqqKhQUVGRnn/+eb311lvaunWrXn/9dd12221qaWlRcXGxzj//fL333nuRrhsOUFBQIJfLJcMwLJ83DENut1sFBQWSkvMAByB2Qv1hFmtckJJ8wgpJ69at05o1a7R27Vr98Ic/1LRp0zR69GgNGzZMEydO1NVXX62Kigo1NDRoxowZNH0mqfT0dC1fvlySOgSl9sfl5eVKT0+XZP8AxwEISG2h/jCLJS5ISVImTNM0TZ/PZ0oyfT5fvEtJOFVVVeZxxx1nSgpMbrfbrKqqClqupaXFdLlcpmEYQcu2T4ZhmG6322xpaenRNlwuV4dtAEhuVVVVpmEYHY4j7fPicUxor8nqmNZdTU1NTYHlm5qaYlh1Yunq7xTN72/bHbc/++wzHTp0KPD4o48+Unl5uV588UW7q0aC8Hg82rRpU+BxTU2Ntm/fLo/HE7RcqC1P7bgiDkA7j8ejyspK5eXlBc13uVyqrKzscNyJNi5ISXJ2U9Z5551nPvLII6ZpmuaBAwfMQYMGmS6Xy+zTp4/58MMP2119zNCSZE8ov4Z62vJkmv9pfZJFy5O6aX0CkLzaj9mSzJqamrgdA2prazs9Ph0+1dbWWr6elqSeSdiWpA0bNgTO/1ZWVmrQoEH66KOP9Mtf/lIPPPCA3dUjCfW05Unikl8A1g5vcS4sLOzQAh0rXJCS3HrZXcGhQ4fUt29fSdJLL70kj8ejtLQ0ff3rX9dHH31ku0AkhszMTMvm5s709ADHAQiAkzn9ijvYY7sladiwYXr++edVX1+vF198UcXFxZKkPXv2KDs723aBSE7toco0TWVmZna6HAcgAE7m5CvuYJ/tkHTrrbfqhhtuUH5+viZNmqQzzjhD0petSmPHjrVdIFKbnQMQg7QBiLZwL0hBYrAdkkpKSvTxxx/rjTfe0KpVqwLzp06dqvvvv9/u6pHiOAABcDqnXXGHyInIvdsGDx6ssWPHKi3tP6ubOHGiRowYEYnVI8WFewBi8EkAsRLKBSlIHBEJSUC0hXoAYvRbALHmlCvuEDmEJCSMnh6AGHwSQLKir2VsEZKQMHpyRRyj3wIAIoWQhKTC4JMAgEixHZLuuOOOSNQBRASDTwIAIiWkEbdvuummoMemaeqJJ55QY2OjJOmee+6JXGVAGOwOPun3+5WVlSVJampq6nKgSwBAcgspJD377LM644wzdMEFFwT6d/Tq1UunnHJKVIoDQtU++KTX67Xsl2QYhlwuF6PfAgC6FdLptnfffVcnnnii/vjHP+qss87SrFmz1LdvX82aNUuzZs2KVo1Aj9kdfJKxlYDE0NNbGwF2hBSSjjzySN1xxx0qKyvTDTfcoJtvvpkvEThOuINPMrYSAOBwYXXcbr+p7VlnnaWZM2dGuibAtnAGn2RsJQCxRuu1s9m6um3ixIm66667IlULEFE9HXySsZUAxAOt185nKyQVFxdHqg4gbhhbCUCs0XqdGGyFJKtf3oBT9LRjJ2MrAYglWq8Th62Q9NWrh4BEZHdsJQAIBa3XiYPbkiDltY+t1FnoNwxDbrebsZUARASt14mDkISUZ3dsJQAIBa3XicNWSOJLA8ki3LGVACBUtF4nDlsh6c0334xUHRHz0EMPKT8/X3369NGkSZO0du3aeJeEBBHq2EoAEA5arxNHUp1ue+aZZ7R48WLddttt2rBhg0499VRNmzZNe/bsiXdpSBA9HVsJAOyg9ToxGKaN6/j37t2rJ598Uq+//roaGhokSYMHD9aZZ56p2bNna8CAARErtCcmTZqkCRMm6MEHH5QktbW1ye12a8GCBVqyZEmXr21sbFROTo58Pp+ys7NjUS4AIMW1f/dIX7ZeFxcXd/njzO/3KysrS5LU1NSUMvet6+p9R/P7O+yWpHXr1umkk07SAw88oJycHBUWFqqwsFA5OTl64IEHNGLECL3xxhuRrLVLn3/+udavX6+ioqLAvLS0NBUVFen111/vsHxzc7MaGxuDJgAAYonWa2frFe4LFyxYoEsvvVSPPvpoh3Oqpmnqmmuu0YIFCywDSjTs3btXra2tGjRoUND8QYMGafPmzR2WLysr07Jly2JSGwAACF/74MCxFnZL0ttvv63rrrvOsne+YRi67rrr9NZbb9mpLaqWLl0qn88XmOrr6+NdEgAAcJCwW5IGDx6stWvXasSIEZbPr127tkOrTjT1799f6enp2r17d9D83bt3a/DgwR2Wz8jIUEZGRqzKAwAACSbskHTDDTfoe9/7ntavX6+pU6cGAtHu3bv1yiuv6PHHH9dPf/rTiBXand69e2vcuHF65ZVXNGPGDElfdtx+5ZVXdO2118asDgAAkBzCDknz589X//79df/99+vhhx8O3IgvPT1d48aN01NPPaXLLrssYoX2xOLFizVr1iyNHz9eEydOVHl5ufx+v6666qqY1gEAQDQcftPbNWvWdHs1HOwJOyRJ0re//W19+9vf1hdffKG9e/dK+vK01xFHHBGR4sKp55NPPtGtt96qhoYGnXbaaVq1alVMT/sBABAN1dXVWrhwYeDx9OnT5XK5tHz5csZVihJb4yQlE8ZJQjhSdcwSpBb28+jp6d+2urpaJSUlHa7war94KpUHoHTkOEndqa+v19VXXx2t1QMAkBJaW1u1aNEiy0vg2+eVlpYGnYpDZEQtJO3fv18rVqyI1uoBR/hq/wAOUgAira6uTjt27Oj0edM0VV9fr7q6uhhWlRrC7pO0cuXKLp//4IMPwl01kBDoHwAgFnbt2hXR5dBzYYekGTNmyDCMLkfAtBpoEkgGnfUP8Hq9KikpSen+AQAiKzc3N6LLoefCPt2Wm5ur6upqtbW1WU4bNmyIZJ2AY9A/AEAsFRQUyOVyddrwYBiG3G63CgoKYlxZ8gs7JI0bN07r16/v9PnuWpmAREX/ACAx+f1+GYYhwzDk9/vjXU6Ppaena/ny5ZI6nqFpf1xeXs54SVEQdki68cYbdeaZZ3b6/LBhw1RbWxvu6gHHon8AEHmJGmBixePxqLKyUnl5eUHzXS4Xp/ejKOw+Sd0162VmZuqcc84Jd/WAY9npH8B4MwDC5fF4VFRUpJycHElSTU0NI25HWVgtSR9//HFIy3u93nA2AzgS/QMAxMvhgaiwsJCAFGVhhaQJEyZo3rx5WrduXafL+Hw+Pf744xo1apSqqqrCLhBwGjv9AxhXCYmI/RapKqyQtGnTJmVmZuq8887T4MGDdeGFF2ru3LlasGCBrrjiCp1++ukaOHCgnnzySd1zzz1BY8kAySCc/gHV1dUaOXJk4PH06dOVn5+v6urqqNcLhIv9FqnM1r3bPvvsM/35z3/Wq6++qo8++kifffaZ+vfvr7Fjx2ratGkaNWpUJGuNKu7dhnC07zdS1/0DuO8SElEs99tY9NdzYp/AUGty4nuIt2h+f3OD238jJCEcPTlgtba2Kj8/v9NhAwzDkMvl0vbt2+lfAMeI9X6bqiEpVMnwHiItIW9wC6SCzMxMmaYp0zQ7PVgxrlLycOJl6tGqif0WICQBUce4SkhE7LcAIQmIOu67hETEfgsQkoCoY1wl53Li6TOnYL8FCElA1HHfJThNT8Ih+23y4MdA+MK+LUm7xYsXW843DEN9+vTRsGHDdMkll+iYY46xuykgYbWPq7Rw4cKgEehdLpfKy8u5/B+OxH6LVGc7JL355pvasGGDWltbdfLJJ0uStm7dqvT0dI0YMUIPP/ywrr/+er366qtBA5IBqYb7LiERxWq//eqo3vzfgBPYPt12ySWXqKioSDt37tT69eu1fv167dixQ+edd56+853vyOv1qrCwUNddd10k6gUSGvddQiKK9n4bq1G9ub0KQmU7JN177726/fbbgwZwysnJ0Y9+9CPdc889Ouqoo3Trrbdq/fr1djcFJLyejKsE5+JLNvLaR/X+6o3QvV6vSkpKIhaUuL0KwmE7JPl8Pu3Zs6fD/E8++USNjY2SpKOPPlqff/653U0BQNw49Us2kYNba2urFi1a1OG2J5IC80pLS22/p1gFMSSfiJxuu/rqq/Xcc89px44d2rFjh5577jnNmTNHM2bMkCStXbtWJ510kt1NAUBcOPVL1qnBradXU8ViVO9YBTEkJ9sh6bHHHtPUqVN1+eWXa8iQIRoyZIguv/xyTZ06VY8++qgkacSIEXriiSdsFwsAkdSTVhinfsk6NbiFIhajenN7FWdKlGEJbIekrKwsPf7449q3b5/efPNNvfnmm9q3b59+/vOfB/pcnHbaaTrttNPsbgoAOhXqQbenrTBO/JJ1anALVSxG9eb2KrAjYoNJZmVlacyYMRozZkzgDsUAYi9RfqHFUyitME78krUb3JzSjykWo3pzexXYEbGQtGnTJq1atUorV64MmgDASUJthXHil6yd4OakfkyxGNWb26vAFtOm999/3xwzZoxpGIaZlpZmGoYR+HdaWprd1ceMz+czJZk+ny/epQC2NDU1mZJMSWZTU1O8y4mZnr7v2trawHJdTbW1taZpmmZLS4vpcrlMwzAslzMMw3S73WZLS0uM3mno76FdVVWV5ftoP25XVVVZbi/UfSrU5auqqszjjjsuqCa3291pPaFqf99ffe/dvW8nCuf/txOPCZGsKZrf37ZbkhYtWqShQ4dqz549Ouqoo/TOO+9ozZo1Gj9+vFavXm139QBC5JRTKU4VaiuME+9hFk7riJP7MXk8Hm3atCnwuKamRtu3b4/YbU/ab6+Sl5cXNN/lcqmyspLbq6BTtkPS66+/rh//+Mfq37+/0tLSlJaWprPPPltlZWVauHBhJGoE0ENOOpUSaz0Nh+GcPnPal2w4wc1OP6ZYDIIa7VG9ox3EkJxsh6TW1lb17dtXktS/f3/t3LlTkjRkyBBt2bLF7up75MMPP9ScOXM0dOhQHXnkkTrxxBN12223MYAlUkoyXBIerlDCYbh9VJz2JRtqcHNiB/RY47ZACJXtkDRq1Ci9/fbbkqRJkybpnnvu0WuvvaYf//jHOuGEE2wX2BObN29WW1ubHnvsMb3zzju6//779eijj+p//ud/YrJ9IN6cfCol2kINh3ZOnzntSzaU4ObEDugIHbc2ijG7nZpWrVoV6PT23nvvmSeffLJpGIbZv39/8+WXX7a7+rDdc8895tChQ3u8PB23kcjC7cjrZD3p2Nneqbqz99tVp+pwOgsncgfYWHZAd2rnYid+frHgxPedMh23p02bFvjVMmzYMG3evFl79+7Vnj17NHXqVLurD5vP59MxxxzT6fPNzc1qbGwMmoBElaqnUuz0s3Ha6bNoi2UHdC4eQLKI2DhJhzvmmGPk9Xr1ve99Lxqr79a2bdv0s5/9TPPmzet0mbKyMuXk5AQmt9sdwwqByErVUyl2w6HTTp9FWyw6oCfTxQMMzIqohCRJ2rdvn37xi1/YWseSJUsCO2hn0+bNm4Ne4/V6df755+vSSy/V3LlzO1330qVL5fP5AlN9fb2tWoF4StUB81I1HNoRzRa0VL54AMkpaiEpEq6//nq9++67XU6Hdw7fuXOnpkyZojPPPFM///nPu1x3RkaGsrOzgybAiXrya9aJY/nY1ZNTNqkaDu2KRgtaKl88gOTl6JA0YMAAjRgxosupd+/ekr78pTJ58mSNGzdOFRUVSktz9FsDIs5pY/nY0dNTNk4Ph6l0usaJNwIG7EqKJNEekI4//nj99Kc/1SeffKKGhgY1NDTEuzQgppKhM3Kop2xiGQ65/LpzqXrxAJJbr3Bf2N2B59NPPw131SH7y1/+om3btmnbtm1yuVxBz1k1/QKJ5KunnYqLi7tsGUnkzsjdnbIxDEOlpaW65JJLgt6Xx+NRUVGRcnJyJH0ZDrv7OyGy6B+GZBR2S9LhV4ZZTUOGDNF///d/R7LWTs2ePTvw6+6rE5DIkulKoZ6wc8omkcOhHU5p3aJ/WPJIpdPE3Qm7JamioiKSdQD4ivbTTl8N++2nnTo7ldT+pZmIYn3KJpH/Vk7T3j+spKREhmEE/V170j+MzwJOlBR9koBkk6pXCnHKJrEl08UDgERIAhwpVa8U4pRN4kuGiweAdoQkwIGcfqVQqH0Werq8nUv6ndI3B6nbPwzJh5AEOFAqn3ZKplM2Tr2HWaoGylR9307dDxMBIQlwoFQ/7ZQMp2xS7cpEOBP7oT0RCUl1dXW64oordMYZZwQGgPvVr36lV199NRKrB1KO00eSDvWXaTi/ZBP5lA33MIMTsB/aZzskVVVVadq0aTryyCP15ptvqrm5WZLk8/l011132S4QSFVOPe0U6i/TVPslm6pXJsJZ2A8jxLTptNNOM1esWGGapmlmZWWZ77//vmmaprlhwwZz0KBBdlcfMz6fz5Rk+ny+eJcCBGnfNyWZNTU1ZktLS9xqqaqqMg3DCNTTPhmGYRqGYVZVVdla/nBNTU2B5ZuamqL91iKmtra2w/u1mmpra+NdatQk6mf3VYn8Puzsh7F435HcRjS/v223JG3ZskWFhYUd5ufk5MT01iRAsnLKaadQf5mm6i9Zp1+ZiNTAfhgZtkPS4MGDtW3btg7zX331VZ1wwgl2Vw/AIUIdu8nuWE+JeiVSKl+ZmGwS+aow9sPIsB2S5s6dq0WLFukf//iHDMPQzp079Zvf/EY33HCDvv/970eiRiClOSUshPrLNFV/yab6lYnJItH70rEfRobtkLRkyRL913/9l6ZOnaqmpiYVFhbqu9/9rubNm6cFCxZEokYAUdaTwR5D/WWaqr9knX5lIrqXDFeFsR9GSKQ6NzU3N5vvvPOO+Y9//MM8ePBgpFYbM3TcRirrSSfKlpYW0+VyWXbE1r87Y7vd7kDH8lCXTzZVVVXmcccdF/Se3W53l53VEX/t+63VPpuI+204+yEdt/8jIuMk/b//9//01ltv6YMPPlBDQ4P++te/auXKlVq5cmUkVg/AAUL9ZZrqv2STYUDMVJRs901kP7Snl90VrFq1SldeeaX27dvX4TnDMBKqoxuQqr7aQbW4uNgyvLSP3bRw4cKgUxEul0vl5eUdDryhLp9snHJlInouGfvSsR+Gz3ZL0oIFC3TZZZdp165damtrC5oISIDzhdpBNdRfpvySRSJJ1b50sGY7JO3evVuLFy/WoEGDIlEPgBgKt4NqqL9M+SWLRMFVYTic7ZBUUlKi1atXR6AUALGUqoM9Al1J9b50CGa7T9KDDz6oSy+9VHV1dRo9erSOOOKIoOcXLlxodxMAoiCUDqqTJ08Oeq597CYgGaV6Xzr8h+2Q9Lvf/U4vvfSS+vTpo9WrVwclb8MwCEmAQ8WygyqhConG4/GoqKhIOTk5kr7sS9fZBQ1IXrZD0i233KJly5ZpyZIlSkuLyIgCAGKADqpA1+hLB9up5vPPP9e3v/1tAhKQYOigCgBds51sZs2apWeeeSYStQCIITqoRp9T7rsHIDy2T7e1trbqnnvu0YsvvqgxY8Z06Lh933332d0EgCihgyoAdM52SPrXv/6lsWPHSpI2btwY9FxnzfgAnIMOqgBgzXZIqq2tjUQdAOKIDqoA0BG9rQEAACyE1ZK0ePFi3X777crMzNTixYu7XJY+SYDzMY4RAHQUVkh688039cUXXwT+3Rn6JAEAgK86/HZHa9ascWw/yLBCUm1trX784x/rhhtuoE8SAADoserq6qC7cUyfPl0ul0vLly933BW1YfdJWrZsmZqamiJZCwCkPL/fL8MwZBiG/H5/vMsBIqq6ulolJSVBQ45IktfrVUlJiaqrq+NUmbWwQ5JT+y80NzfrtNNOk2EYeuutt+JdDgAA0Jen2BYtWmSZH9rnlZaWBp2KizdbV7c5sc/RTTfdpLy8vHiXAQAADlNXV6cdO3Z0+rxpmqqvr1ddXV0Mq+qarXGSTjrppG6D0v79++1sIiQvvPCCXnrpJVVVVemFF16I2XYBAEDXdu3aFdHlYsFWSFq2bFlglN542717t+bOnavnn39eRx11VLfLNzc3q7m5OfC4sbExmuUBAJAQonXlWW5ubkSXiwVbIenyyy/XwIEDI1VL2EzT1OzZs3XNNddo/Pjx+vDDD7t9TVlZmZYtWxb94gAASBDRvPKsoKBALpdLXq/Xsl+SYRhyuVwqKCiwtZ1ICrtPUiz6Iy1ZsiRwlUdn0+bNm/Wzn/1MBw8e1NKlS3u87qVLl8rn8wWm+vr6KL4TAECiaR9k1TRNZWZmxrucqIv2lWfp6elavny5pI4Zov1xeXm5o8ZLMswwL1NLS0tTQ0NDVFuSPvnkE+3bt6/LZU444QRddtll+uMf/xj0R29tbVV6erpmzpypFStWdLutxsZG5eTkyOfzKTs723btABAOv9+vrKwsSVJTU1NKfDkjunqyT7W2tio/P7/TjtXtrTzbt2+3HWLaW6sOD2Nut1vl5eVhtVZF8/s77JDkJB9//HFQn6KdO3dq2rRpqqys1KRJk+RyubpdByEJgBMQkhBpPdmnVq9erSlTpnS7rtraWk2ePNl2Te3fuZJUU1Njq99TNL+/bfVJcorjjz8+6HH7znDiiSf2KCABgFMkyu0akFxifeXZ4ft0YWGhY/dxW+MkAQAip7q6WiNHjgw8nj59uvLz8x03CjGSTyJeeRYLSXG6LRI43QYgnto7zX71kNze17KystJx97VC8mjvk9TdlWeR6JMkRfa0cjS/v2lJAoA4S8TbNSC5JOKVZ7FASAKAOEvE2zUg+Xg8HlVWVna4tZfL5UrZlsyk6LgNAIksEW/XgOTk8XhUVFQUsSvPEh0tSQAQZ3SahZMkypVnsUBIAoA4a79dQ2d3MjAMQ26321G3awBSASEJAOKMTrOAMxGSAMAB6DQLOA8dtwHAIeg0CzgLLUkA4CB0mgWcg5AEAABggZAEAADC5vf7ZRiGDMOQ3++PdzkRRUgCAACwQEgCAACwQEgCAACwQEgCAACwwDhJAOAgmZmZMk0z3mUAEC1JAAAAlghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFpIqJP35z3/WpEmTdOSRR6pfv36aMWNGvEsCAAAJqle8C4iUqqoqzZ07V3fddZfOPfdctbS0aOPGjfEuCwAAJKikCEktLS1atGiR7r33Xs2ZMycwf+TIkXGsCgAAJLKkON22YcMGeb1epaWlaezYscrNzdUFF1zQZUtSc3OzGhsbgyYAAIB2SRGSPvjgA0nSj370I/3gBz/Qn/70J/Xr10+TJ0/W/v37LV9TVlamnJycwOR2u2NZMgAAcDhHh6QlS5bIMIwup82bN6utrU2SdMstt+hb3/qWxo0bp4qKChmGod///veW6166dKl8Pl9gqq+vj+VbAwAADufoPknXX3+9Zs+e3eUyJ5xwgnbt2iUpuA9SRkaGTjjhBH388ceWr8vIyFBGRkbEagUAAMnF0SFpwIABGjBgQLfLjRs3ThkZGdqyZYvOPvtsSdIXX3yhDz/8UEOGDIl2mQAAJI3MzEyZphnvMhzB0SGpp7Kzs3XNNdfotttuk9vt1pAhQ3TvvfdKki699NI4VwcAABJRUoQkSbr33nvVq1cvXXnllfrss880adIk/fWvf1W/fv3iXRoAAEhAhkmbmiSpsbFROTk58vl8ys7Ojnc5AAAkBL/fr6ysLElSU1OTMjMzo/KazkTz+9vRV7cBAADES9KcbgMAAIkhUTqH05IEAABggZAEAABggZAEAABggZAEAABggZAEAABggZAEAABggZAEAADC1traGvj3mjVrgh4nOkISAAAIS3V1tUaOHBl4PH36dOXn56u6ujqOVUUOIQkAAISsurpaJSUl8nq9QfO9Xq9KSkqSIigRkgAAQEhaW1u1aNEiy1Gz2+eVlpYm/Kk3QhIAAAhJXV2dduzY0enzpmmqvr5edXV1Mawq8ghJAAAgJLt27Yrock5FSAIAACHJzc2N6HJORUgCAAAhKSgokMvlkmEYls8bhiG3262CgoIYVxZZhCQAABCS9PR0LV++XJI6BKX2x+Xl5UpPT495bZFESAIAACHzeDyqrKxUXl5e0HyXy6XKykp5PJ44VRY5hml1/V4KamxsVE5Ojnw+n7Kzs+NdDgAACaH9+1OSampqVFxcHNMWpGh+f9OSBAAAwnZ4ICosLEz4U2yHIyQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYSJqQtHXrVl1yySXq37+/srOzdfbZZ6u2tjbeZQEAgASVNCHpoosuUktLi/76179q/fr1OvXUU3XRRRepoaEh3qUBAIAElBQhae/evXrvvfe0ZMkSjRkzRsOHD9fdd9+tQ4cOaePGjfEuDwAAJKCkCEnHHnusTj75ZP3yl7+U3+9XS0uLHnvsMQ0cOFDjxo2zfE1zc7MaGxuDJgAAgHa94l1AJBiGoZdfflkzZsxQ3759lZaWpoEDB2rVqlXq16+f5WvKysq0bNmyGFcKAAAShaNbkpYsWSLDMLqcNm/eLNM0NX/+fA0cOFB1dXVau3atZsyYoYsvvli7du2yXPfSpUvl8/kCU319fYzfHQAAcDLDNE0z3kV05pNPPtG+ffu6XOaEE05QXV2diouLdeDAAWVnZweeGz58uObMmaMlS5Z0u63Gxkbl5OTI5/MFrQMAAHTO7/crKytLktTU1KTMzMyYbj+a39+OPt02YMAADRgwoNvlDh06JElKSwtuGEtLS1NbW1tUagMAAMnN0afbeuqMM85Qv379NGvWLL399tvaunWrbrzxRm3fvl0XXnhhvMsDAAAJKClCUv/+/bVq1So1NTXp3HPP1fjx4/Xqq6/qD3/4g0499dR4lwcAABKQo0+3hWL8+PF68cUX410GAABIEknRkgQAABBphCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALveJdAAAASFyZmZkyTTPeZUQFLUkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWesW7AKcwTVOS1NjYGOdKAABAT7V/b7d/j0cSIenfDh48KElyu91xrgQAAIRq3759ysnJieg6DTMa0SsBtbW16aSTTtL69etlGEbMtz9hwgStW7cuIbcR6fXaXV9jY6Pcbrfq6+uVnZ0dsboQH7H4v5EoEv1v4cT641UTx/zIrc/n8+n444/XgQMHdPTRR0esLomWpIC0tDT17t074im0p9LT06P+hR6tbUR6vZFaX3Z2NiEpCcTi/0aiSPS/hRPrj1dNHPMjv760tMh3s6bj9mHmz5+f1NuO1jYivd54fg5wHvaH/0j0v4UT649XTRzzo7e+SOJ0G5JOY2OjcnJy5PP5HPerFQAQWdE85tOShKSTkZGh2267TRkZGfEuBQAQZdE85tOSBAAAYIGWJAAAAAuEJAAAAAuEJAAAAAuEJAAAAAuEJAAAAAuEJKSUP/3pTzr55JM1fPhwPfHEE/EuBwAQZd/85jfVr18/lZSUhPxahgBAymhpadHIkSNVW1urnJwcjRs3Tn/729907LHHxrs0AECUrF69WgcPHtSKFStUWVkZ0mtpSULKWLt2rU455RQdd9xxysrK0gUXXKCXXnop3mUBAKJo8uTJ6tu3b1ivJSQhYaxZs0YXX3yx8vLyZBiGnn/++Q7LPPTQQ8rPz1efPn00adIkrV27NvDczp07ddxxxwUeH3fccfJ6vbEoHQAQBrvHfbsISUgYfr9fp556qh566CHL55955hktXrxYt912mzZs2KBTTz1V06ZN0549e2JcKQAgEuJ93CckIWFccMEFuuOOO/TNb37T8vn77rtPc+fO1VVXXaWRI0fq0Ucf1VFHHaUnn3xSkpSXlxfUcuT1epWXlxeT2gEAobN73LeLkISk8Pnnn2v9+vUqKioKzEtLS1NRUZFef/11SdLEiRO1ceNGeb1eNTU16YUXXtC0adPiVTIAwIaeHPft6hWRtQBxtnfvXrW2tmrQoEFB8wcNGqTNmzdLknr16qX//d//1ZQpU9TW1qabbrqJK9sAIEH15LgvSUVFRXr77bfl9/vlcrn0+9//XmeccUaPtkFIQkr5xje+oW984xvxLgMAECMvv/xy2K/ldBuSQv/+/ZWenq7du3cHzd+9e7cGDx4cp6oAANESi+M+IQlJoXfv3ho3bpxeeeWVwLy2tja98sorPW5WBQAkjlgc9zndhoTR1NSkbdu2BR5v375db731lo455hgdf/zxWrx4sWbNmqXx48dr4sSJKi8vl9/v11VXXRXHqgEA4Yr3cZ/bkiBhrF69WlOmTOkwf9asWXrqqackSQ8++KDuvfdeNTQ06LTTTtMDDzygSZMmxbhSAEAkxPu4T0gCAACwQJ8kAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAPiKffv2aeDAgfrwww8lfTnqr2EY+vTTT6O63SVLlmjBggVR3QaAniMkAQjb7NmzZRhGh+n888+Pd2m23HnnnbrkkkuUn59ve127d+/WEUccoaefftry+Tlz5uj000+XJN1www1asWKFPvjgA9vbBWAfIQmALeeff7527doVNP3ud7+L6jY///zzqK370KFD+sUvfqE5c+ZEZH2DBg3ShRdeqCeffLLDc36/X88++2xgW/3799e0adP0yCOPRGTbAOwhJAGwJSMjQ4MHDw6a+vXrF3jeMAw98cQT+uY3v6mjjjpKw4cP18qVK4PWsXHjRl1wwQXKysrSoEGDdOWVV2rv3r2B5ydPnqxrr71WpaWlgSAhSStXrtTw4cPVp08fTZkyRStWrAicFvP7/crOzlZlZWXQtp5//nllZmbq4MGDlu+npqZGGRkZ+vrXv97pez506JAuuOACnXXWWYFTcE888YS+9rWvqU+fPhoxYoQefvjhwPJz5szRK6+8oo8//jhoPb///e/V0tKimTNnBuZdfPHFnbY6AYgtQhKAqFu2bJkuu+wy/fOf/9T06dM1c+ZM7d+/X5L06aef6txzz9XYsWP1xhtvaNWqVdq9e7cuu+yyoHWsWLFCvXv31muvvaZHH31U27dvV0lJiWbMmKG3335b8+bN0y233BJYPjMzU5dffrkqKiqC1lNRUaGSkhL17dvXsta6ujqNGzeu0/fy6aef6rzzzlNbW5v+8pe/6Oijj9ZvfvMb3Xrrrbrzzjv17rvv6q677tIPf/hDrVixQpI0ffp0DRo0KHDX8sNr8Xg8OvroowPzJk6cqB07dgT6QwGIIxMAwjRr1iwzPT3dzMzMDJruvPPOwDKSzB/84AeBx01NTaYk84UXXjBN0zRvv/12s7i4OGi99fX1piRzy5Ytpmma5jnnnGOOHTs2aJmbb77ZHDVqVNC8W265xZRkHjhwwDRN0/zHP/5hpqenmzt37jRN0zR3795t9urVy1y9enWn7+mSSy4xr7766qB5tbW1piTz3XffNceMGWN+61vfMpubmwPPn3jiieZvf/vboNfcfvvt5hlnnBF4vGTJEnPo0KFmW1ubaZqmuW3bNtMwDPPll18Oep3P5zMldVkjgNigJQmALVOmTNFbb70VNF1zzTVBy4wZMybw78zMTGVnZ2vPnj2SpLffflu1tbXKysoKTCNGjJAkvf/++4HXfbV1Z8uWLZowYULQvIkTJ3Z4fMoppwRadH79619ryJAhKiws7PT9fPbZZ+rTp4/lc+edd56GDRumZ555Rr1795b0Zb+i999/X3PmzAl6D3fccUdQ/VdffbW2b9+u2tpaSV+2IuXn5+vcc88N2saRRx4p6ctTegDiq1e8CwCQ2DIzMzVs2LAulzniiCOCHhuGoba2NklSU1OTLr74Yv3kJz/p8Lrc3Nyg7YTju9/9rh566CEtWbJEFRUVuuqqq2QYRqfL9+/fXwcOHLB87sILL1RVVZU2bdqk0aNHB+qXpMcff1yTJk0KWj49PT3w7+HDh6ugoEAVFRWaPHmyfvnLX2ru3Lkdamk/DTlgwIDQ3yyAiCIkAYir008/XVVVVcrPz1evXj0/JJ188smqqakJmrdu3boOy11xxRW66aab9MADD2jTpk2aNWtWl+sdO3asfv3rX1s+d/fddysrK0tTp07V6tWrNXLkSA0aNEh5eXn64IMPgjpgW5kzZ46+//3v6xvf+Ia8Xq9mz57dYZmNGzfqiCOO0CmnnNLlugBEH6fbANjS3NyshoaGoOnwK9O6M3/+fO3fv1/f+c53tG7dOr3//vt68cUXddVVV6m1tbXT182bN0+bN2/WzTffrK1bt+rZZ58NdIw+vHWmX79+8ng8uvHGG1VcXCyXy9VlPdOmTdM777zTaWvST3/6U82cOVPnnnuuNm/eLOnLjullZWV64IEHtHXrVv3rX/9SRUWF7rvvvqDXXnrppTriiCM0b948FRcXy+12d1h/XV2dCgoKAqfdAMQPIQmALatWrVJubm7QdPbZZ/f49Xl5eXrttdfU2tqq4uJijR49WqWlpTr66KOVltb5IWro0KGqrKxUdXW1xowZo0ceeSRwdVtGRkbQsnPmzNHnn3+uq6++utt6Ro8erdNPP13PPvtsp8vcf//9uuyyy3Tuuedq69at+u53v6snnnhCFRUVGj16tM455xw99dRTGjp0aNDrjjrqKF1++eU6cOBAp7U8/fTTmjt3brd1Aog+wzRNM95FAEAk3HnnnXr00UdVX18fNP9Xv/qVrrvuOu3cuTPQ4borf/7zn3XjjTdq48aNXQa1SHvhhRd0/fXX65///GdIpx4BRAf/CwEkrIcfflgTJkzQscceq9dee0333nuvrr322sDzhw4d0q5du3T33Xdr3rx5PQpI0pcdtN977z15vV7LU2LR4vf7VVFRQUACHIKWJAAJ67rrrtMzzzyj/fv36/jjj9eVV16ppUuXBkLGj370I915550qLCzUH/7wB2VlZcW5YgCJhJAEAABggY7bAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFv4/6Zmkh+cbJ7gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_3_30.spectrum * 1e4,\n", + " yerr=lagspec_3_30.spectrum_error * 1e4,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " color=\"k\",\n", + ")\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time Lag ($10^{-4}$ s)\")\n", + "plt.xlim([0.5, 10])\n", + "plt.semilogx()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "30e4fea7", + "metadata": { + "id": "30e4fea7", + "outputId": "c7722841-f708-42a7-fef9-06e94b3eb031" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:37<00:00, 1.06it/s]\n" + ] + } + ], + "source": [ + "lagspec_01_1 = LagSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " ref_band=ref_band,\n", + ")\n", + "energies = lagspec_01_1.energy\n", + "energies_err = np.diff(lagspec_01_1.energy_intervals, axis=1).flatten() / 2" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "e36acc05", + "metadata": { + "id": "e36acc05", + "outputId": "143c4c06-c8f2-4f82-8871-3da7415c6017" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Time lag (s)')" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG1CAYAAADpzbD2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYZElEQVR4nO3de1xU9bo/8M9awwwDA4xcBIRQULyiqXlBTDPKJGtnppW1O2XG7na0i5Q77Wae6piVt5Kdu9PO2r9ya1bb006zjLRTShc1CzQvaF5xGBEYBgbmtub3x2xGJ4ZxBmaYC5/36zWvYs13rXkWwszD8/2uZwk2m80GIiIiInJJDHQARERERMGMyRIRERGRG0yWiIiIiNxgskRERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0mS0RERERuRAQ6gHAgSRIqKysRGxsLQRACHQ4RERF5wGazQa/XIy0tDaLYdv2IyZIPVFZWIiMjI9BhEBERUTucPHkSl1xySZvPM1nygdjYWAD2b3ZcXFyAoyEiIiJP1NfXIyMjw/E53hYmSz7QMvUWFxfHZImIiCjEXGwJDRd4ExEREbnBZImIiIjIjZCbhisuLsYrr7wCjUaDoUOH4vXXX8fo0aPbHL9hwwY888wzOHbsGPr27YslS5bguuuuczzf0NCA+fPnY+PGjTh37hyysrLw8MMP44EHHvBp3FarFWaz2afHJN9SKBRur4YgIqKuKaSSpfXr16OoqAirV69Gbm4uVqxYgYKCAhw8eBDJycmtxu/cuRO33347Fi9ejD/84Q9Yu3Ytpk6dij179mDw4MEAgKKiInz11Vd47733kJmZiS+++AL/+Z//ibS0NEyZMqXDMdtsNmg0GtTV1XX4WORfoigiKysLCoUi0KEQEVEQEWw2my3QQXgqNzcXo0aNwqpVqwDY+xtlZGTgoYcewvz581uNnzFjBhobG/Hpp586to0ZMwbDhg3D6tWrAQCDBw/GjBkz8MwzzzjGjBgxApMnT8YLL7zgUVz19fVQq9XQ6XStFnifOXMGdXV1SE5ORnR0NPswBamWXllyuRw9e/bkvxMRURfg7vP7QiFTWTKZTNi9ezcWLFjg2CaKIiZOnIjS0lKX+5SWlqKoqMhpW0FBATZu3Oj4euzYsfjkk09wzz33IC0tDdu3b8ehQ4ewfPnyNmMxGo0wGo2Or+vr612Os1qtjkQpMTHRk9OkAOrevTsqKythsVggl8sDHQ4REQWJkFmgUV1dDavVipSUFKftKSkp0Gg0LvfRaDQXHf/6669j0KBBuOSSS6BQKHDttdeiuLgYV1xxRZuxLF68GGq12vFoqyFlyxql6Ohoj86RAqtl+s1qtQY4EiIiCiYhkyz5y+uvv47vvvsOn3zyCXbv3o2lS5di9uzZ+PLLL9vcZ8GCBdDpdI7HyZMn3b4Gp3RCA/+diIjIlZCZhktKSoJMJkNVVZXT9qqqKqSmprrcJzU11e34pqYmPPnkk/jnP/+J66+/HgBw6aWXYu/evXj11VcxceJEl8eNjIxEZGRkR0/JKyaLhOJtFQCA2fnZUER0+TyXiIioU4TMJ65CocCIESNQUlLi2CZJEkpKSpCXl+dyn7y8PKfxALB161bHeLPZDLPZ3OpycZlMBkmSfHwGREREFIpCprIE2C/znzlzJkaOHInRo0djxYoVaGxsxKxZswAAd911F9LT07F48WIAwCOPPIIJEyZg6dKluP7667Fu3Trs2rULb775JgD77UkmTJiAefPmISoqCr169cLXX3+Nv//971i2bFnAztMVSbKhvskMk1XCqVoDMhNVEEVOGxEREflbyFSWAHsrgFdffRXPPvsshg0bhr1792LLli2ORdwnTpzAmTNnHOPHjh2LtWvX4s0338TQoUPx4YcfYuPGjY4eSwCwbt06jBo1CnfccQcGDRqEl156CS+++KLPm1J2RIVWj79+cxSlR8/h+6PnsLLkMN7YfgQVWr1fX7e4uBiZmZlQKpXIzc3FDz/84Hb8vn37MH36dGRmZkIQBKxYscKj1/n4448xadIkJCYmQhAE7N2796L7PPfccxg2bFir7ceOHfP4GERERJ4IqcoSAMyZMwdz5sxx+dz27dtbbbvllltwyy23tHm81NRUrFmzxlfh+VyFVo81O46hWm+EUi6DXBmB+CgFyit1qNQ1YdblmchOdn+35PbwtgEoABgMBvTu3Ru33HIL5s6d6/FrNTY2Yty4cbj11ltx7733+uoUiIiIfCKkKktdhckiwWSR0GyyYlOZBtV6I7KSVJDL7NNuUQoZeiepUK03YnOZBs0mK0wW366xWrZsGe69917MmjULgwYNwurVqxEdHY233367zX1GjRqFV155BbfddptXC+DvvPNOPPvss20uqO+Iu+++G4IgtHq4SqyJiCgwTBYJy7cewvKth3z+eeYLIVdZ6gparnqrbzKj9Og5KOUy1BhMqKxrAgDsQg1EQYDRYsXxMgNqG02Ii5Jj7jX9fPL67WkAGqxWrlyJl156yfH1Sy+9hH/84x8YMGBAAKMiIqJQwmQpiJmsEixWCXKl638muUxEg9ECk9W3Wbi7BqAHDhzw6Wt1RFlZGWJiYpy2/f7uPS2NQwH72qi//vWv+PLLL9tsN0FERPR7TJaC0Oz8bADAqVoDGowWxEcpEKWQYRdqAAAjeyVAJgrQN5tR12RG4bgsXBIf/F3C33//fdx///2Orz/77DOMHz++3cfr378/PvnkE6dtp0+fxpVXXtlq7E8//YQ777wTq1atwuWXX97u1yQioq6HyVIQamk4mZmoQr/kWJRX6tA7SQXx3x2mZaIAUQC0eiOGpKt93kagPQ1APTFlyhTk5uY6vk5PT2/3sQB7763s7GynbRERrX+kNRoNpkyZgj/96U8oLCzs0GsSEVHXwwXeQUwUBRQMTkGCSoEKbQOMFiskmw36ZjMOaxuQoFJgUk6Kz/sttacBqCdiY2ORnZ3teERFRfkiXLeam5tx4403YsCAAUHXO4uIiEIDK0tBLjs5FrMuz8SmMg2Ol9mn5eqazBiSrsaknBS/tA0ALt4AFGjdBNRkMmH//v2O/z99+jT27t2LmJiYVhWgC9XU1ODEiROorKwEABw8eBCAva1DR9cW3X///Th58iRKSkpw9uxZx/aEhATHjXOJiIjcYbIUArKTY3H/+GjUNZpgskooHJfl9w7eM2bMwNmzZ/Hss89Co9Fg2LBhTg1AAXsT0AtvFVNZWYnhw4c7vn711Vfx6quvYsKECW4v1f/kk0+ckrDbbrsNALBw4UI899xzHTqPr7/+GmfOnMGgQYOctm/bts3l2iYiIqLfE2y/v3yIvFZfXw+1Wg2dToe4uDjH9ubmZvz222/IysqCUqns0GvwRrr+58t/LyIi8lygPuPa+vz+PVaWQoQiQvRZHyUiIiLyHMsTRERERG4wWSIiIiJyg8kSERERkRtMloiIiIjcYLJERERE5AaTJSIiIiI32DogVFhMwDdL7f8//jEggt2niYiIOgMrS0RERERuMFkKFTYJaK4DGrRA3QlAkvz6cm+88QYuvfRSxMXFIS4uDnl5efjss88uut+UKVPQs2dPKJVK9OjRA3feeafjnm8tfvnlF4wfPx5KpRIZGRl4+eWX3R7z2LFjEAQBe/fubfXclVdeiUcffdSbUyMiIvIKk6VQcPYgsGMl8Ns3wPEdwNdLgG+X2bf7ySWXXIKXXnoJu3fvxq5du3DVVVfhxhtvxL59+9zul5+fjw8++AAHDx7ERx99hCNHjuDmm292PF9fX49JkyahV69e2L17N1555RU899xzePPNN/12LkRERB3BZCnYnT0IfLca0JQB8iggOgGISgDO/GLf7qeE6YYbbsB1112Hvn37ol+/fnjxxRcRExOD7777zu1+c+fOxZgxY9CrVy+MHTsW8+fPx3fffQez2QwAeP/992EymfD2228jJycHt912Gx5++GEsW7aswzFv374dgiC0etx9990dPjYREXVdTJaCkcVkf5ibgX0bgcazQGI2IFMAEABFNJDY1759///ax1lMfgvHarVi3bp1aGxsRF5ensf71dTU4P3338fYsWMhl8sBAKWlpbjiiiugUJxfoF5QUICDBw+itra2Q3GOHTsWZ86ccTy++uorKJVKXHHFFR06LhERdW28Gi4YtVz11lxnn3qTRwGGc4DupH37CQCCAFiMQM1R+3PKbkD+Ap+GUVZWhry8PDQ3NyMmJgb//Oc/MWjQoIvu98QTT2DVqlUwGAwYM2YMPv30U8dzGo0GWVlZTuNTUlIcz8XHx7d53LFjx0IUnfP7pqYmDBs2DACgUCiQmpoKADh37hz+9Kc/4Z577sE999zj0fkSERG5wspSMLOYAMkCyOSun5fJ7c/7qarUv39/7N27F99//z0efPBBzJw5E/v37wcAPPDAA4iJiXE8LjRv3jz89NNP+OKLLyCTyXDXXXfBZrN1OJ7169dj7969To+RI0e2Gmc2mzF9+nT06tULK1eu7PDrEhFR18bKUjAa/5j9v3UnAFODfY2SItpeUQKAnmMAQQYY64GmWiBvNtCtp8/DUCgUyM7OBgCMGDECP/74I1auXIm//vWv+K//+i88/vjjLvdLSkpCUlIS+vXrh4EDByIjIwPfffcd8vLykJqaiqqqKqfxLV+3VIXakpGR4YinRVRUVKtxDz74IE6ePIkffvgBERH8EScioo7hJ0kwamk4mdAb6N7fvpg7sa996g2wJ0qCCOg1QNpQ+zjR/0VCSZJgNBoBAMnJyUhOTvZoHwCO/fLy8vDUU0/BbDY71jFt3boV/fv3dzsF56lly5bhgw8+wM6dO5GYmNjh4xERETFZCmaiCAy8AdCdBqoP2tcoyeT2ipJeA6gSgQF/8EuitGDBAkyePBk9e/aEXq/H2rVrsX37dnz++edt7vP999/jxx9/xLhx4xAfH48jR47gmWeeQZ8+fRwLw//4xz9i0aJFKCwsxBNPPIHy8nKsXLkSy5cv73DMX375Jf785z+juLgYSUlJ0Gg0AOzVJ7Va3eHjExGFI5NFQvG2CgDA7PxsKCK4Quf3+B0Jdt37A2MeAFKHAOYmwFBjn3pLGwrkPmB/3g+0Wi3uuusu9O/fH1dffTV+/PFHfP7557jmmmva3Cc6Ohoff/wxrr76avTv3x+FhYW49NJL8fXXXyMyMhIAoFar8cUXX+C3337DiBEj8Nhjj+HZZ5/Ffffd1+GYv/32W1itVjzwwAPo0aOH4/HII490+NhERNR1CTZfrLzt4urr66FWq6HT6RAXF+fY3tzcjN9++w1ZWVlQKpUdexFzM/DlQvti7rzZnTb11pX49N+LiChEBENlKVAxtPX5/XuchgsVgmhvDwDYF3MzUSIiIuoUTJZCRYTC532UiIiIgoEk2VDfZIbJKuFUrQGZiSqIohDosByYLBEREVHAVGj12FSmQenRc7BYJTQYLeiXHIuCwSnITo4NdHgAmCwRERFRgFRo9Viz4xiq9UYo5TLIlRGIj1KgvFKHSl0TZl2eGRQJExe+EBERhRGTRcLyrYewfOshmCxSoMNpU7PJik1lGlTrjchKUkEus0+7RSlk6J2kQrXeiM1lGjSbrAGOlJWlTsELDkMD/52IiDrPki0HUHr0HJRyGWoMJlTWNQEAdqEGoiDAaLHieJkBtY0mLJySE9BYWVnyo5YO1QaDIcCRkCdMJvs99mQyWYAjISIKfyarBItVclSUfk8uE2GRJJisga+OsbLkRzKZDN26dYNWqwVgb9ooCMGzup/OkyQJZ8+eRXR0NO8nR0TUCQrHZaHBaEF8lAJRChl2oQYAMLJXAmSiAH2zGXVNZhSOywpwpEyW/K7l5rAtCRMFL1EU0bNnTya0RESdIDNRhX7JsSiv1KF3kgriv997ZaIAUQC0eiOGpKuRmagKcKRMlvxOEAT06NEDycnJMJvNgQ6H3FAoFBDZ7JOIqFOIooCCwSmo1DWhQtsAo8UKuUyEvtkMrd6IBJUCk3JSgqLfEpOlTiKTybgWhoiIgk4gG0JmJ8di1uWZ2FSmwfEyAxqMFtQ1mTEkXY1JOeyzRERERAEWDA0hs5Njcf/4aNQ1mmCySigcl8UO3kRERBR4wdQQUhQFxEXZryC/JD46qBIlgK0DiIiIuhSTRfK4IaQksf8cwMoSERFRWLnYGqTibRWobzJ71BDypuHpyEiIDtSpBA0mS0RERGHC0zVIjoaQStdpgFwmosFoQaPJ0lmhBzUmS0RERGHA0zVIs/OzcarW4FFDSJWCaQLANUtEREQ+E6ib2HpzU1pFhOhoCFmlb4YoAKIgQBQEp4aQ/VNikd4tqtPOIZgxZSQiIgpx3t6UNpQaQgYDVpaIiIgCwJdVqPbclLalIeSgdDWazRJqDSZHQ8jObBsQClhZIiIiCnHtvSltKDSEDAYhV1kqLi5GZmYmlEolcnNz8cMPP7gdv2HDBgwYMABKpRJDhgzB5s2bW4359ddfMWXKFKjVaqhUKowaNQonTpzw1ykQERH5lKdrkFzdlLalIWRSTGRQNoQMBiGVLK1fvx5FRUVYuHAh9uzZg6FDh6KgoABardbl+J07d+L2229HYWEhfvrpJ0ydOhVTp05FeXm5Y8yRI0cwbtw4DBgwANu3b8cvv/yCZ555BkqlsrNOi4iIqENa1iAlqBSONUiSzQZ9sxmHtQ1cg9RBIZUsLVu2DPfeey9mzZqFQYMGYfXq1YiOjsbbb7/tcvzKlStx7bXXYt68eRg4cCCef/55XHbZZVi1apVjzFNPPYXrrrsOL7/8MoYPH44+ffpgypQpSE5O7qzTIiKiMNHSELK6wYhTtYZO7YDNNUj+EzLJkslkwu7duzFx4kTHNlEUMXHiRJSWlrrcp7S01Gk8ABQUFDjGS5KETZs2oV+/figoKEBycjJyc3OxceNGt7EYjUbU19c7PYiIqGur0Orx12+OovToOXx/9BxWlhzGG9uPoEKr77QY7GuQeiOvdyJysxLxyNV98cCEPkyUOihkkqXq6mpYrVakpKQ4bU9JSYFGo3G5j0ajcTteq9WioaEBL730Eq699lp88cUXuOmmmzBt2jR8/fXXbcayePFiqNVqxyMjI6ODZ0dERKGspSHk/tM6KOUyxKsUjoaQa3Yc69SEiWuQfC9kkiV/kCT7JZQ33ngj5s6di2HDhmH+/Pn4wx/+gNWrV7e534IFC6DT6RyPkydPdlbIREQURDpyU9pATtmRd0KmdUBSUhJkMhmqqqqctldVVSE1NdXlPqmpqW7HJyUlISIiAoMGDXIaM3DgQHz77bdtxhIZGYnIyMj2nAYREYWR9t6U1tN7uFFwCJnKkkKhwIgRI1BSUuLYJkkSSkpKkJeX53KfvLw8p/EAsHXrVsd4hUKBUaNG4eDBg05jDh06hF69evn4DIiIKBx52hCy5aa0wTRlR54JmcoSABQVFWHmzJkYOXIkRo8ejRUrVqCxsRGzZs0CANx1111IT0/H4sWLAQCPPPIIJkyYgKVLl+L666/HunXrsGvXLrz55puOY86bNw8zZszAFVdcgfz8fGzZsgX/+te/sH379kCcIhERhRBvbkqrkImtpuxqDCYA56fsKrQN2FymwZz8GK41CiIhlSzNmDEDZ8+exbPPPguNRoNhw4Zhy5YtjkXcJ06cgCieL5aNHTsWa9euxdNPP40nn3wSffv2xcaNGzF48GDHmJtuugmrV6/G4sWL8fDDD6N///746KOPMG7cuE4/PyIiCi0X3pS2vFKH3kkqiII9ybmwIeSQdDU2/nQa+maL11N2FHghlSwBwJw5czBnzhyXz7mqBt1yyy245ZZb3B7znnvuwT333OOL8IiIqIvx9Ka0//r5zPkpO6Xrj1+5TESD0eKYsqPgEHLJEhERUbBpaQi5qUyD42X2abmWhpCTcuyLtmfnqzyeslMpOu/jWREhYu41/Trt9UIRkyUiIiIfuNhNab2ZskvvFhXIU2mTySKheFsFAPt6LUVE29eJeTM22DFZIiIi8pGWhpAAXDaE9HTKriOLu1kp8r3QTfOIiIhCEO/hFnpYWSIiIupkF5uy+71wmtIKRUyWiIiIAuBiU3YUPJiaEhEREbnByhIREZGPcHF1eGJliYiIiMgNVpaIiIgooIK9IsdkiYiIKACCPUGg8zgNR0REROQGkyUiIqIgJ0k21DeZUd1gxKlaAyTJFuiQuhROwxERUZcSag0eK7R6bCrToPToOVisEhqMFvRLjkXB4BR2++4kTJaIiIiCVIVWjzU7jqFab4RSLoNcGYH4KAXKK3Wo1DXx9iidJLjTaSIioi7IZJHQbLJiU5kG1XojspJUkMvsHb6jFDL0TlKhWm/E5jINmk3WAEcb/lhZIiKioBNqU2W+VrytAvVNZpQePQelXIYagwmVdU0AgF2ogSgIMFqsOF5mQG2jCQun5AQ44vDWtX76iIioywuVxdImqwSLVXJUlH5PLhNhkSSYrFKnxRQq3ztfY2WJiIi6jFBZLD07Pxunag1oMFoQH6VAlEKGXagBAIzslQCZKEDfbEZdkxmF47I6JaZQ+d75AytLRETUKUwWCcu3HsLyrYdgsrivhvijgtGyWHr/aR2UchniVQrHYuk1O46hQqvv8Gv4iiJCRGaiCv2SY1Glb4YoAKIgQBQEyEQBogBo9Ub0T4lFZqLK7/GE0vfOH5gsERFRUKnQ6vHXb46i9Og5fH/0HFaWHMYb24+0+wO5I4ulvUnwfE0UBRQMTkGCSoEKbQOMFiskmw36ZjMOaxuQoFJgUk4KRNH1NJ0vePO9C+cpOU7DERFRp2ipFpmsEk7VGpCZqGr1Qe+PS+VDebF0dnIsZl2eiU1lGhwvs0/L1TWZMSRdjUk5/p/+8uZ7d9PwdGQkRPs1nkBhskRERH7nyXqX31cwagwmAOcrGBXaBmwu0+C+8dFQKmRevb5jsbTS9ceeXCaiwWjp1MXSnspOjsX946NR12iCySqhcFyWy0TTXzz93jWaLE7bPUmOQwWTJSIi8itPq0VLthzwS/UnGBdLe0sUBcRFyQEAl8RHd1rS4c33TqU4n1KE22JwrlkiIiK/8HatkL8ulQ+2xdKhxJvvXXq3KADhuRiclSUiIvILb9cKFY7L8lv1p2WxdKWuybFYWi4ToW82Q6s3trlYOpymktrL0++dRbJBskh+m0oNJCZLRETkN96sFWqpYJRX6tA7SQVRsCclF1YwhqSr21398XaxdLhNJXWEJ9+75VsPhexC+othskRERH7h7Vqh9lZ/AM9vj+LpYmnewLY1T753obyQ3h0mS0RE5BcXrnfxtFrUGZfKX2yxtD+vygt17r534bCQvi1MloiIyG/aUy0K9KXy/roqL9y1JzkOFUyWiIjIr9pTLQrUpfJAcE4lKSJEzL2mX6e9Xnt1ZCo1mDFZIiIiv/N3tcibq9Yulnj486q8riDQXcf9gckSERF1Cn9Vi3x91Vq4TiV1pkBPpfoakyUiIgo6nk47+eOqtXCdSupsgZxK9TV28CYiok7RkgDNvaZfm5f2e8qb7uCSZPP6+C1TSYPS1Wg2S6g1mBxTSV2xbUBXx8oSERGFHG+6g980PB0ZCdFev0a4TSVR+zFZIiKikOTpVWuNJku7XyOcppKo/ZgsERFRu3naOdvXvGmAqFLwo446hmuWiIgo5FzYALFK3wxRAERBgCgITlet9U+JRXq3qECHSyGOyRIREbVbS3+j6gYjTtUa2rWYur1arlpLUCkcV61JNhv0zWYc1jbwqjXyGdYmiYioXXzd36g9/N0AMVQ6Z5N/MVkiIiKv+aO/UXvxqjXyNyZLRETkMZNFgiTZnPob1RhMAM73N6rQNmBzmQZz8mM6LWHhVWudo6tW2pgsERGRxzqjvxFRsOECbyIi8oqjv5HMdfVGLhNhkaQO9TciCiasLBERkceCtb9RV50eos7ByhIREXmM/Y2oK2JliYiIvNLS36hS1+TobySXidA3m6HVG9nfiMIOK0tEROS1lv5Gg9LVaDZLqDWYHP2NOrNtAFFnYGWJiIiceHq/N/Y3oq6CyRIREbUb+xtRVxBy03DFxcXIzMyEUqlEbm4ufvjhB7fjN2zYgAEDBkCpVGLIkCHYvHlzm2MfeOABCIKAFStW+DhqIqLAMVkkLN96CMu3HoLJIl10vDf3e2u5Cm3uNf3arEARhbqQ+slev349ioqKsHDhQuzZswdDhw5FQUEBtFqty/E7d+7E7bffjsLCQvz000+YOnUqpk6divLy8lZj//nPf+K7775DWlqav0+DiChoVWj1+Os3R1F69By+P3oOK0sO443tR1Ch1Qc6NKKAEWw2W+fdIrqDcnNzMWrUKKxatQoAIEkSMjIy8NBDD2H+/Pmtxs+YMQONjY349NNPHdvGjBmDYcOGYfXq1Y5tp0+fRm5uLj7//HNcf/31ePTRR/Hoo496HFd9fT3UajV0Oh3i4uLaf4JERH7QbLJiyZYDF11XdOH93qr0RshlAnJ6qFGlb0aCSsGF2xR2PP38DpnKkslkwu7duzFx4kTHNlEUMXHiRJSWlrrcp7S01Gk8ABQUFDiNlyQJd955J+bNm4ecnByPYjEajaivr3d6EBEFI08qRSaLhGaT1el+by3duVvu91atN2JzmcbtlBxRuAqZBd7V1dWwWq1ISUlx2p6SkoIDBw643Eej0bgcr9FoHF8vWbIEERERePjhhz2OZfHixVi0aJEX0RMRdb4LK0VKuQxyZQTioxQor9ShUtfkqBTxfm9E7oVMZckfdu/ejZUrV+Kdd96BIHh+BceCBQug0+kcj5MnT/oxSiIi73laKWo2WQHwfm9E7oRMZSkpKQkymQxVVVVO26uqqpCamupyn9TUVLfjv/nmG2i1WvTs2dPxvNVqxWOPPYYVK1bg2LFjLo8bGRmJyMjIDpwNEZF/LdlywKNKUW2jCQuuGxiU93sjChYhU1lSKBQYMWIESkpKHNskSUJJSQny8vJc7pOXl+c0HgC2bt3qGH/nnXfil19+wd69ex2PtLQ0zJs3D59//rn/ToaIyM88rRSZrBLv90Z0ESH1J0JRURFmzpyJkSNHYvTo0VixYgUaGxsxa9YsAMBdd92F9PR0LF68GADwyCOPYMKECVi6dCmuv/56rFu3Drt27cKbb74JAEhMTERiYqLTa8jlcqSmpqJ///6de3JERD5UOC7Lo0pR4bgsALzfG5E7IZUszZgxA2fPnsWzzz4LjUaDYcOGYcuWLY5F3CdOnIAoni+WjR07FmvXrsXTTz+NJ598En379sXGjRsxePDgQJ0CEVGnaKkUlVfq0DtJBfHf6zIvrBQNSVcjM1Hl2Kflfm+byjQ4Xmaflmu539uknBS2DaAuK6T6LAUr9lkiomDk3DepGXKZiEE94hyVorb6Jnnal4ko1IVdnyUiIvJOS6VoULoazWYJtQaTo1LkrsFky/3ekmIieb83IoTYNBwREXknOzkW94+PRl2jyeNKUcv93ojIjskSEVGYa6kUAWCliKgdmCwREYU5VoqIOobJEhFRkDBZJBRvqwAAzM7PhiKCy0qJggF/E4mIgoQk2VDfZEZ1gxGnag28aS1RkGBliYgoCFRo9dhUpkHp0XOwWCU0GC3olxyLgsGu+xuxCkXUebxKln799VesW7cO33zzDY4fPw6DwYDu3btj+PDhKCgowPTp03nPNCIiL13YD0kpl0GujEB8lALllTpU6prcXuZPRP7n0Z8ie/bswcSJEzF8+HB8++23yM3NxaOPPornn38e//Ef/wGbzYannnoKaWlpWLJkCYxGo7/jJiIKeSaLhGaTFZvKNKjWG5GVpHLcyy1KIUPvJBWq9UZsLtO0mpLjlB1R5/GosjR9+nTMmzcPH374Ibp169bmuNLSUqxcuRJLly7Fk08+6asYiYjCUvG2CtQ3mVF69ByUchlqDCZU1jUBAHahBqIgwGix4niZATcNT0dGQjQA76fsiKhjPEqWDh06BLlcftFxeXl5yMvLg9ls7nBgRERdgckqwWKVIFe6fjuWy0Q0GC1oNFkAcMqOKBA8SpYulijV1dU5VZw8SayIiLq62fnZOFVrv2FtfJQCUQoZdqEGADCyVwJkogB9sxl1TWYoZGKrKbsagwnA+Sm7Cm0DNpdpcN/4aCgVskCeGlFY8fryiSVLlmD9+vWOr2+99VYkJiYiPT0dP//8s0+DIyIKZ4oIEZmJKvRLjkWVvhmiAIiCAFEQIBMFiAKg1RvRPyUWG386jSVbDuCzsjOo0hux+0QtKuuaUFnXhF3Ha7DreC2q9M3YXHYGS7YcCPSpEYUVr5Ol1atXIyMjAwCwdetWbN26FZ999hkmT56MefPm+TxAIqJwJooCCganIEGlQIW2AUaLFZLNBn2zGYe1DUhQKTApJwWCIJyfspO5vl2JXCbCIkkwWaVOPgui8OZ1nyWNRuNIlj799FPceuutmDRpEjIzM5Gbm+vzAImIwl12cixmXZ6JTWUaHC+zT8vVNZkxJF2NSTn2Rduz81UeT9kVjssK8BkRhRevk6X4+HicPHkSGRkZ2LJlC1544QUAgM1mg9Vq9XmAREShzNPmkdnJsbh/fDTqGk0wWSUUjstCZqLKcdPbC6fsyit16J2kgijYn7twym5IuhqZiarOOTmiLsLrZGnatGn44x//iL59++LcuXOYPHkyAOCnn35Cdna2zwMkIgplLf2QTFYJp2oNTgnQ74migLgo+wUyl8RHtxrXMmVXqWtyTNnJZSL0zWZo9UbHlF1bxyei9vE6WVq+fDkyMzNx8uRJvPzyy4iJiQEAnDlzBv/5n//p8wCJiEKVt/2QFBEi5l7Tz+0xPZmyIyLfEmw2G9u+dlB9fT3UajV0Oh3i4uICHQ4RBYEL+yFV6Y2QywTk9FCjSt+MBJWiw/2Qmk1WLNlywOWUHRF5xtPPb4+uhvvuu+88fmGDwYB9+/Z5PJ6IKJx05BYm3lAqZFg4JQcv3jQEvbvHMFEi8iOPkqU777wTBQUF2LBhAxobG12O2b9/P5588kn06dMHu3fv9mmQREShonhbhcf9kE7/+9YmRBTcPFqztH//frzxxht4+umn8cc//hH9+vVDWloalEolamtrceDAATQ0NOCmm27CF198gSFDhvg7biKioOXtLUyIKLh5vWZp165d+Pbbb3H8+HE0NTUhKSkJw4cPR35+PhISEvwVZ1DjmiUiamGy2K96W1ly+Hw/pOOu+yE9Pqm/4+a4RNT5PP389vpquJEjR2LkyJEdCo6IKFx50w8pvVtUgKMlIk94nSwREZF77IdEFF68vjccERFdXEs/pEHpajSbJdQaTI5+SB1tG0BEnYuVJSIiP7nYLUyIKDQwWSIi8qOWfkhEFLo4DUdERETkhteVpddee83ldkEQoFQqkZ2djSuuuAIymazDwREREREFWrtupHv27FkYDAbEx8cDAGpraxEdHY2YmBhotVr07t0b27ZtQ0ZGhs8DJiLyNd5njYjc8Xoa7r//+78xatQoHD58GOfOncO5c+dw6NAh5ObmYuXKlThx4gRSU1Mxd+5cf8RLRORTFVo9/vrNUZQePYfvj57DypLDeGP7EVRo9S7HN5usWPTJPjz1zzIcPdvQofu7EVFo8LqDd58+ffDRRx9h2LBhTtt/+uknTJ8+HUePHsXOnTsxffp0nDlzxpexBi128CYKTRVaPdbsOIZqvRFVeiPkMgE5PdSo0jcjQaVodYl/hVaPTWUafFZ2BharhJx0Nfolx6JgcApbARCFIE8/v72uLJ05cwYWS+v7GVksFmg0GgBAWloa9HrXf5UREQWaySKh2WTFpjINqvVGZCWpIJfZp92iFDL0TlKhWm/E5jINmk1WAOcTq/2ndVDKZYhXKRAfpUB5pQ5rdhxrsxJFRKHP6zVL+fn5uP/++/HWW29h+PDhAOxVpQcffBBXXXUVAKCsrAxZWVm+jZSIyEeKt1WgvsmM0qPnoJTLUGMwobKuCQCwCzUQBQFGixXHywyobTThiWsHOCVWNQYTgPOJVYW2AZvLNLhvfDSUCl7cQhRuvE6W/va3v+HOO+/EiBEjIJfLAdirSldffTX+9re/AQBiYmKwdOlS30ZKRORDJqsEi1WCXOn6bVAuE9FgtMBklbBkywGPEyv2VCIKP14nS6mpqdi6dSsOHDiAQ4cOAQD69++P/v37O8bk5+f7LkIiIh+bnZ+NU7UGNBgtiI9SIEohwy7UAABG9kqATBSgbzajrsmMwnFZ+Nu3v3mcWBFR+Gl3B+8BAwZgwIABvoyFiKhTKCJEZCaq0C85FuWVOvROUkEU7GuWZKIAUQC0eiOGpKuRmahC4bgsjxMrIgo/7UqWTp06hU8++QQnTpyAyWRyem7ZsmU+CYyIyJ9EUUDB4BRU6ppQoW2A0WKFXCZC32yGVm9EgkqBSTkpEEXBq8SKiMKP18lSSUkJpkyZgt69e+PAgQMYPHgwjh07BpvNhssuu8wfMRIR+UV2cixmXZ6JTWUaHC+zT8vVNZkxJF2NSTnn2wF4k1gRUfjxus/S6NGjMXnyZCxatAixsbH4+eefkZycjDvuuAPXXnstHnzwQX/FGrTYZ4kotEmSDafrmtBoskCliEB6tyiXiY9TnyVJQk6aGv1TYp0SKyIKHZ5+fnudLMXGxmLv3r3o06cP4uPj8e233yInJwc///wzbrzxRhw7dqyjsYccJktEXQdvjUIUPjz9/PZ6Gk6lUjnWKfXo0QNHjhxBTo79Utnq6up2hktEFBqUChnbAxB1MV4nS2PGjMG3336LgQMH4rrrrsNjjz2GsrIyfPzxxxgzZow/YiQiIiIKGK+TpWXLlqGhoQEAsGjRIjQ0NGD9+vXo27cvr4QjIiKisOP1miVqjWuWiIiIQo/f1iwREYUCT69wIyK6GI+Spfj4eAiCZ28yNTU1HQqIiKijnC7xt0rISVejX3IsCgbzEn8i8p5HydKKFSv8HAYRkW9UaPVYs+MYqvVGKOUyyJURiI9SoLxSh0pdE2ZdnsmEiYi84lGyNHPmTH/HQUTk1sWm1UwWCZJkw6YyDar1RmQlqVBjsLc5iVLI0DtJhQptAzaXaTAnP4ZTckTkMTHQAXiruLgYmZmZUCqVyM3NxQ8//OB2/IYNGzBgwAAolUoMGTIEmzdvdjxnNpvxxBNPYMiQIVCpVEhLS8Ndd92FyspKf58GEXmhQqvH69sqcO/fd2HO+3vw6hcH8cb2I6jQ6h1jirdVYMmWA/is7Ayq9EbsPlGLyromVNY1YdfxGuw6XosqfTM2l53B6bqmAJ4NEYWakEqW1q9fj6KiIixcuBB79uzB0KFDUVBQAK1W63L8zp07cfvtt6OwsBA//fQTpk6diqlTp6K8vBwAYDAYsGfPHjzzzDPYs2cPPv74Yxw8eBBTpkzpzNMiIjdaptX2n9ZBKZchXqVwTKut2XHMKWEyWSVYrBLkMtdVI7lMhEWS0GiydFb4RBQGQqp1QG5uLkaNGoVVq1YBACRJQkZGBh566CHMnz+/1fgZM2agsbERn376qWPbmDFjMGzYMKxevdrla/z4448YPXo0jh8/jp49e3oUF1sHEPlHs8mKv35zFPtP65CVpMLuE7UAgJG9EiAKQIW2ATnpatw3vjdEUcCpWgNWlhxGfJQCUQoZdh2vcYyXiQL0zWbUNZnx+KT+yEiIDuSpEVEQ8PTzO2QqSyaTCbt378bEiRMd20RRxMSJE1FaWupyn9LSUqfxAFBQUNDmeADQ6XQQBAHdunVrc4zRaER9fb3Tg4h8z9NptSVbDkARISIzUYV+ybGo0jdDFABRECAKAmSiAFEAtHoj+qfEIr1bVKBPjYhCSLuTpYqKCnz++edoarLP/fu7QFVdXQ2r1YqUlBSn7SkpKdBoNC730Wg0Xo1vbm7GE088gdtvv91thrl48WKo1WrHIyMjw8uzISJPeDqtZrJKAABRFFAwOAUJKgUqtA0wWqyQbDbom804rG1AgkqBSTkpXNxNRF7xuinluXPnMGPGDHz11VcQBAGHDx9G7969UVhYiPj4eCxdutQfcfqd2WzGrbfeCpvNhjfeeMPt2AULFqCoqMjxdX19PRMmIj8oHJeFBqPl/LQaXE+rFY7LcuyTnRyLWZdnYlOZBsfLDGgwWlDXZMaQdDUm5bDPEhF5z+tkae7cuYiIiMCJEycwcOBAx/YZM2agqKjIb8lSUlISZDIZqqqqnLZXVVUhNTXV5T6pqakejW9JlI4fP46vvvrqouuOIiMjERkZ2Y6zICJvtEyrlVfq0DtJBfHfzXEvnFYbkq5GZqLKab/s5Fg8lB+DacPT2cGbiDrM62m4L774AkuWLMEll1zitL1v3744fvy4zwL7PYVCgREjRqCkpMSxTZIklJSUIC8vz+U+eXl5TuMBYOvWrU7jWxKlw4cP48svv0RiYqJ/ToCIvNaRaTVRFJCREI0BqXHISIhmokRE7eZ1ZamxsRHR0a2vIqmpqfF7taWoqAgzZ87EyJEjMXr0aKxYsQKNjY2YNWsWAOCuu+5Ceno6Fi9eDAB45JFHMGHCBCxduhTXX3891q1bh127duHNN98EYE+Ubr75ZuzZsweffvoprFarYz1TQkICFAqFX8+HiC6O02pEFGheJ0vjx4/H3//+dzz//PMAAEEQIEkSXn75ZeTn5/s8wAvNmDEDZ8+exbPPPguNRoNhw4Zhy5YtjkXcJ06cgCieL5aNHTsWa9euxdNPP40nn3wSffv2xcaNGzF48GAAwOnTp/HJJ58AAIYNG+b0Wtu2bcOVV17p1/MhIs9wWo2IAsnrPkvl5eW4+uqrcdlll+Grr77ClClTsG/fPtTU1GDHjh3o06ePv2INWuyzREREFHr81mdp8ODBOHToEMaNG4cbb7wRjY2NmDZtGn766acumSgRERFReAupDt7BipUlIiKi0OPp57fXa5YAe/PGX375BVqtFpIkOT3H+6oRERFROPE6WdqyZQvuuusuVFdXt3pOEARYrVafBEZEREQUDLxes/TQQw/hlltuwZkzZyBJktODiRIRERGFG6+TpaqqKhQVFbW65xoRERFROPI6Wbr55puxfft2P4RCREREFHy8vhrOYDDglltuQffu3TFkyBDI5XKn5x9++GGfBhgKeDUcERFR6PHb1XD/+Mc/8MUXX0CpVGL79u0QhPMddAVB6JLJEhEREYUvr5Olp556CosWLcL8+fOdbi1CREREFI68TpZMJhNmzJjBRImIOkySbDhd18T7vRFRUPM6WZo5cybWr1+PJ5980h/xEFEXUaHV4/PyKhw524BmixXKCBn6dI9BweAUZCfHBjo8IiIHr5Mlq9WKl19+GZ9//jkuvfTSVgu8ly1b5rPgiCg8VWj1WLPjGKr1RlTpjZDLBOT0UKO8UodKXRNmXZ7JhImIgobXyVJZWRmGDx8OACgvL3d67sLF3kREv2eySJAkGzaVaVCtNyIrSYUagwkAEKWQoXeSChXaBmwu0+C+8dFQKmQBjpiIqB3J0rZt2/wRBxF1AcXbKlDfZEbp0XNQymWoMZhQWdcEANiFGoiCAKPFiuNlBtQ2mrBwSk6AIyYiakdTSiKijjBZJVisEuQy15VouUyERZJgskounyci6mweVZamTZuGd955B3FxcZg2bZrbsR9//LFPAiOi8DM7Pxunag1oMFoQH6VAlEKGXagBAIzslQCZKEDfbEZdkxmF47ICHC0RkZ1HyZJarXasR1Kr1X4NiIjClyJCRGaiCv2SY1FeqUPvJBXEf7+3yEQBogBo9UYMSVcjM1EV4GiJiOw8SpbWrFmD//qv/8Ljjz+ONWvW+DsmIgpjoiigYHAKKnVNqNA2wGixQi4ToW82Q6s3IkGlwKScFPZbIqKg4fG94WQyGc6cOYPk5GR/xxRyeG84ovM8bTR5YZ8lo8WKyAgZspNjMCmHfZaIqHP4/N5wXt5vl4i6IG8aTWYnx6L3lTHs4E1EQc+r1gHso0REbWlPo0lRFJCREB2giImIPONVstSvX7+LJkw1NTUdCoiIQos3jSbn5MewckREIcerZGnRokW8Go6InHjTaPKm4emsJBFRyPEqWbrtttu4wJuIWnE0mlS6fkuRy0Q0GC1oNFk6OTIioo7zOFnieiUicsWbRpMqhdd3WCIiCjiPb3fCq+GIyJULG01W6ZshCoAoCBAFwanRZP+UWKR3iwp0uEREXvP4zzxJ4n2aiMg1NpokonDGmjgR+UR2cixmXZ7p1GhS32zBkHQ1G00SUUhjskREF+VpV242miSicMRkiYjc8qYrN8BGk0QUfjxe4E1EXU9LV+5fTtXhaHUjzuqNiFPKUV6pw5odx1Ch1Qc6RCIiv2OyREStmCwSmk1Wp67ccpl9Kq2lK3e13ojNZRpIEq+UJaLwxmk4ImqFXbmJiM5jZYmIXHJ05Za5Xpwtl4mwSBK7chNR2GNliYhaYVduIqLzWFkiolbYlZuI6Dz+SUhELrErNxGRHZMlImoTu3ITETFZIqKLYFduIurqmCwR0UWxKzcRdWVc4E1ERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0mS0RERERu8Go4oi5IkmxsBUBE5CEmS0RdTIVW72gy2WyxQhkhQ5/uMSgYzCaTRESuMFkKNZIE6E4CpgZAEQOoMwCxjdlUf43197HJbyq0eqzZcQzVeiOq9EbIZQJyeqhRXqlDpa4Jsy7PZMJERJ0vyD8nmCyFkrMHgV//BVQfBizNQIQSSOoLDLwB6N6/c8b6+9ihmOD5Mw4fajZZsalMg2q9EVlJKtQYTACAKIUMvZNUqNA2YHOZBveNj4ZSIfN7PEQ+FSwftvxD0nvefk4EQMglS8XFxXjllVeg0WgwdOhQvP766xg9enSb4zds2IBnnnkGx44dQ9++fbFkyRJcd911judtNhsWLlyI//mf/0FdXR0uv/xyvPHGG+jbt29nnI7nzh4EvlsNGM4B6nRArgLMjcCZXwDdaWDMA+d/qPw1tjOOHWoJnj/jAHz6xrtkywGUHj0HpVyG2sZmSLUnEY0mHLfEoyYiGc1WG46XGVDbaMLCKTl+i6NTxnaFOLwRLDH7a2yw/FEWqn9IBpK3nxMBElLJ0vr161FUVITVq1cjNzcXK1asQEFBAQ4ePIjk5ORW43fu3Inbb78dixcvxh/+8AesXbsWU6dOxZ49ezB48GAAwMsvv4zXXnsN7777LrKysvDMM8+goKAA+/fvh1Kp7OxTbM1iAmwSsG8j0HgWSOoPCP9eiCtXAYl9geqDwP7/BcY+bN/uj7GC6J84xj9u/yUOxQTPn3G0jPfhG6/JKsFilZAZUYnRjTsRbzkGBUyQNUThTERPfK/MQ7mUCpNV8vrYQTW2K8QBeP6BGCwx+3NsMPxRFqp/SAKBS9LNzZ5/psgD+3ks2Gw2W0Aj8EJubi5GjRqFVatWAQAkSUJGRgYeeughzJ8/v9X4GTNmoLGxEZ9++qlj25gxYzBs2DCsXr0aNpsNaWlpeOyxx/D4448DAHQ6HVJSUvDOO+/gtttu8yiu+vp6qNVq6HQ6xMXF+eBML7BtMdBcB/z2DSCPAiIiW4+xGAFzE5A13v61P8Yqu/knjlv/DqgvAXasBDRlzr8wAGCz2X9helx6PgnzdGxLguePY/srjoslj7rTQHSiZ2+8vxt79GwD1m3+EtfU/xOxkg6Hm7vBKESiZ5wAtakK9UIstsZNw23XTUTv7jFeHTtoxnaFOFrGe/KBGCwx+2Nsyx+SAf698ioOb947/BnzhQKZpH/2xPnPCZnCflzAfkxBcP5Mmbyk9Wv4gKef3yFTWTKZTNi9ezcWLFjg2CaKIiZOnIjS0lKX+5SWlqKoqMhpW0FBATZu3AgA+O2336DRaDBx4kTH82q1Grm5uSgtLW0zWTIajTAajY6v6+vr23tanrGYAMkCyOSun5fJAaPePg5o31ibrfUP6u/HXhiHJ+M9GVtaDEQozv/CNNW4OH8jUHPU/gYAeD729wmeL4/trzhyptmTRz9UBzPjZMiXvoPYfA7n1Nkwmuw/wxZZFGqUmVDoDuOqmO+RGVcQPBVNb8b6q/oZLHF4W4X15q/2YPneeTP22+VB8XvlVRzevHf4M+aWKo2/KlyeHtfbz7YACplkqbq6GlarFSkpKU7bU1JScODAAZf7aDQal+M1Go3j+ZZtbY1xZfHixVi0aJHX59Au4x8D6k7Ys/ioBCDSxZVKxnqgqRbIm23/2h9ju/X0TxwRCv8mg52RaPoyDj8mjyKAHP1O/GJNQF11FbrLJUQINpjrBOjNIroJIi7Vfwvxq+eCJ9H0ZmywxOyvOLz98PxyYeBj9vf3OQh+r7yKoyN/SBrOua68tCfma573PDn2JkmPz/Iu6c6b7d1nSgCFTLIUTBYsWOBUsaqvr0dGRoZ/XixCAST0tmfhZ34BlOrWZVu9Bkgbah8H+GesKPonjjGzAd2p0Erw/BmHn5PHONGIQd2sqDBYUGuKgMUGRAhAitKCPtES4izGjiea3lQdfXx+IZcc+7MK620MwfK983SsN39IduT36mI/z/76g/b3MQuC/b3EFzF/s9Q5OXaXiHmTpFstgFHneYJXsNi7z5QACplkKSkpCTKZDFVVVU7bq6qqkJqa6nKf1NRUt+Nb/ltVVYUePXo4jRk2bFibsURGRiIy0sU6HH8RRXuZU3caOHsAiEsHFNGAyQDUnwZUicCAP5yfN/bXWH/EIVf6Lxn0V4Lnzzj8mTz+e2xCVAJGKWJQb7TAbJEgjxARFxkBwaQHmnoEV6LpzdhgiTlYqrDe/NUeLN87b8Z684ekP3+v/PUHrT9jLtvgeSLmTYUra7x3CZ63nykBFDLJkkKhwIgRI1BSUoKpU6cCsC/wLikpwZw5c1zuk5eXh5KSEjz66KOObVu3bkVeXh4AICsrC6mpqSgpKXEkR/X19fj+++/x4IMP+vN0vNe9v73M2TJfrK+0zxenDbX/MF04X+yvsf46tj+TwVBLNP2ZPF4wVug+AOroiLbHBkui6c3YYIk5WKqw3sQQLN87b8cGy+9VqP0h2ZGqnLsEaOjt9kXf3iR43n4GBUjIJEsAUFRUhJkzZ2LkyJEYPXo0VqxYgcbGRsyaNQsAcNdddyE9PR2LFy8GADzyyCOYMGECli5diuuvvx7r1q3Drl278OabbwIABEHAo48+ihdeeAF9+/Z1tA5IS0tzJGRBpXt/e8nTkysR/DXWX8cOtQTPn3GEWoLn7zhCMeZg+PD0NoZg+d55W2kIht8rf713+Ctm0U9Vuah4+/u7t1Nr3n4GBUBItQ4AgFWrVjmaUg4bNgyvvfYacnNzAQBXXnklMjMz8c477zjGb9iwAU8//bSjKeXLL7/ssinlm2++ibq6OowbNw5/+ctf0K9fP49j8mvrgK4mFJsD+isOV1eedO/nOhHz19hgiSMUY/bXsS9caOvqAzH3gYtfwRTs3ztvYwYC/3vlbRzBELOnP0uSBHy7zJ4AdR/QOgE6e8CeAF0+t/VicE9+RgPI08/vkEuWghGTJfKbUEvwgmVsuMfh7Yd4MMTsz7HeCpY4vNGZXccDkaQHCJOlTsRkiYg6XbB8iFPoC5YkPQDCriklERFdQBSB+F6BjoLCgac/S96uLQqjn1EmS0REROSZMEqAvBFc9TAiIiKiIMNkiYiIiMgNJktEREREbjBZIiIiInKDyRIRERGRG0yWiIiIiNxg6wCiMCFJNpyua0KjyQKVIgLp3aIgisLFdyQiIreYLBGFgQqtHp+XV+HI2QY0W6xQRsjQp3sMCganIDvZxY0viYjIY5yGIwpxFVo91uw4hl9O1eFodSPO6o2IU8pRXqnDmh3HUKHVBzpEIqKQxmSJKESZLBKaTVZsKtOgWm9EVpIKcpl92i1KIUPvJBWq9UZsLtOg2WQNcLRERKGL03BEIap4WwXqm8woPXoOSrkMNQYTKuuaAAC7UANREGC0WHG8zIDaRhMWTskJcMRERKGJlSWiEGaySrBYJUdF6ffkMhEWSYLJKnVyZERE4YOVJaIg5u4Kt9n52ThVa0CD0YL4KAWiFDLsQg0AYGSvBMhEAfpmM+qazCgclxXI0yAiCmlMlog6yF+X7F/sCjdFhIjMRBX6JceivFKH3kkqiIL9dWWiAFEAtHojhqSrkZmo6nA8RERdFZMlog7w1yX7LVe4VeuNqNIbIZcJyOmhRnmlDpW6Jsy6PBPZybEQRQEFg1NQqWvC0epG5KTFIUohg8FkwRldMxJUCkzKSWG/JSKiDuCaJaJ2au8l+5Jkw8kaAw5o6nGyxgBJsjme8+YKt5b9spNjMevyTAxOU6POYMax6kbUGcwYkq52JFVERNR+rCwRtcPvE5oagwnA+YSmQtuAzWUa3Dc+GkqFzLHfxSpR3lzhdtPwdGQkRAOwJ0y9r4xhB28iIj9gskTUDku2HPD6kn1PptaAC65wU7r+9ZTLRDQYLWg0WZy2i6LgSJ6IiMh3mCwRtYOnCY3JKsFkkSBJNo8qUQ9O6INKXZNHV7ipFPz1JSLqDHy3JXLhYle4FY7L8viSfW+n1jy9wi29W1Tnf2OIiLogJktEv+PJFW7eXrLvzdQar3AjIgouTJaILuCPS/a9aR7ZMrXWcoVbS9JWVd+MyAgZhqSrMSmnY20JiIjIO0yWiACv1hW1XOHmaULz++aRfZNjMLZPkuO1bTaby6k1XuFGRBQcmCwRof03pfU0obmwEnVY24AeaiWiFDI0maxup9Z4hRsRUeAxWaIu42KLtr25wu1CniY0nFojIgpNTJaoS6jQ6rGpTIPPys7AYpWQk65Gv+RYx6LtzropLafWiIhCD5MlCnsXLtpWymWQKyMQH6VotWi7s25Ky6k1IqLQwnvDUdjy9j5rLeuKElQKxxVuIzPjYTBZcFjbwEv2iYi6KFaWKGy15z5rXFdERES/x2SJwlp77rPGdUVERHQhJksUttrTDLIF1xUREVELrlmisHVhM8gqfTNEARAFAaIgOC3a7p8Sy/usERFRm1hZorDG+6wREVFHsbJEYa9l0fbgNDXqDGYcq25EncGMIelqR9sAIiKitrCyRF0CF20TEVF7MVmiLoOLtomIqD04DUdERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0u8KaQJUk2Xt1GRER+x2SJQlKFVo9NZRp8VnYGFquEnHQ1+iXHomAwb3ZLRES+xWSJQk6FVo81O46hWm+EUi6DXBmB+CgFyit1qNQ1sdEkERH5FNcsUUhpNlmxqUyDar0RWUkqyGX2abcohQy9k1So1huxuUyDZpM1wJESEVG4YGWJQsqSLQdQevQclHIZagwmVNY1AQB2oQaiIMBoseJ4mQG1jSYsnJIT4GiJiCgcsLJEIcVklWCxSo6K0u/JZSIskgSTVerkyIiIKFyxskQhpXBcFhqMFsRHKRClkGEXagAAI3slQCYK0DebUddkRuG4rABHSkRE4YKVJQopmYkq9EuORZW+GaIAiIIAURAgEwWIAqDVG9E/JRaZiapAh0pERGEiZJKlmpoa3HHHHYiLi0O3bt1QWFiIhoYGt/s0Nzdj9uzZSExMRExMDKZPn46qqirH8z///DNuv/12ZGRkICoqCgMHDsTKlSv9fSrUAaIooGBwChJUChytbkROWhxGZsbDYLLgsLYBCSoFJuWksN8SERH5TMgkS3fccQf27duHrVu34tNPP8X//d//4b777nO7z9y5c/Gvf/0LGzZswNdff43KykpMmzbN8fzu3buRnJyM9957D/v27cNTTz2FBQsWYNWqVf4+HeqA7ORYzLo8E4PT1KgzmHGsuhF1BjOGpKvZNoCIiHxOsNlstkAHcTG//vorBg0ahB9//BEjR44EAGzZsgXXXXcdTp06hbS0tFb76HQ6dO/eHWvXrsXNN98MADhw4AAGDhyI0tJSjBkzxuVrzZ49G7/++iu++uorj+Orr6+HWq2GTqdDXFxcO86Q2oMdvImIqCM8/fwOicpSaWkpunXr5kiUAGDixIkQRRHff/+9y312794Ns9mMiRMnOrYNGDAAPXv2RGlpaZuvpdPpkJCQ4DYeo9GI+vp6pwf5hiTZcLLGgAOaepysMUCS2s7lRVFARkI0BqTGISMhmokSERH5RUhcDafRaJCcnOy0LSIiAgkJCdBoNG3uo1Ao0K1bN6ftKSkpbe6zc+dOrF+/Hps2bXIbz+LFi7Fo0SLPT4A8wluYEBFRMApoZWn+/PkQBMHt48CBA50SS3l5OW688UYsXLgQkyZNcjt2wYIF0Ol0jsfJkyc7JcZQ5Um1qOUWJvtP66CUyxCvUjhuYbJmxzFUaPUBiJyIiCjAlaXHHnsMd999t9sxvXv3RmpqKrRardN2i8WCmpoapKamutwvNTUVJpMJdXV1TtWlqqqqVvvs378fV199Ne677z48/fTTF407MjISkZGRFx1HF68WmSwSJMnmdAuTGoMJwPlbmFRoG7C5TIP7xkdDqZAF+IyIiKirCWiy1L17d3Tv3v2i4/Ly8lBXV4fdu3djxIgRAICvvvoKkiQhNzfX5T4jRoyAXC5HSUkJpk+fDgA4ePAgTpw4gby8PMe4ffv24aqrrsLMmTPx4osv+uCsqIUnN7z9189nUN9k5i1MiIgoaIXEAu+BAwfi2muvxb333osffvgBO3bswJw5c3Dbbbc5roQ7ffo0BgwYgB9++AEAoFarUVhYiKKiImzbtg27d+/GrFmzkJeX57gSrry8HPn5+Zg0aRKKioqg0Wig0Whw9uzZgJ1rODBZJI9veGuz2XgLEyIiCmohscAbAN5//33MmTMHV199NURRxPTp0/Haa685njebzTh48CAMBoNj2/Llyx1jjUYjCgoK8Je//MXx/IcffoizZ8/ivffew3vvvefY3qtXLxw7dqxTzsufTBYJxdsqAACz87OhiOic3Lh4W4XH1aK/3HEZAPAWJkREFLRCJllKSEjA2rVr23w+MzMTv28ZpVQqUVxcjOLiYpf7PPfcc3juued8GWZQkSQb6pvMMFklnKo1IDNR1WmX1zuqRUrXP2JymYgGowUmq4R+ybHolxyL8kodeiepIAr2GC+8hcmQdDVvYUJERAERMskSeadlYXXp0XOwWCU0GC2ddhn+7PxsnKo1eFQtUikiHLcwqdQ1oULbAKPFCrlMhL7ZDK3eyFuYEBFRQIXEmiXyTmdcht9ssmLRJ/vw1D/LcPRsg1M7AEWE6PENb9O7RQE4fwuTSy/pht5JMUiOjYS+2cJbmBARUcCxshRGOusyfE+qVu2pFmUnx6L3lTG8hQkREQUVJkthxJuF1e29DN+TdgAtCVNLtejz8iocOWtPmFqqRZNyXE8HttzChIiIKFgwWQoz3iys9uq4XlSt5uTHOKpBrBYREVGoY7IURrxZWO3tZfjeVK1uGp7uVB1itYiIiEIZF3iHEW8WVrfnMnxPm0c2miwdPRUiIqKgwcpSmGnvZfgXa2DpbTsAIiKicMHKUhhqWVg9KF2NZrOEWoMJdU1mt5fhtzSwrG4w4lStwakVANC+dgBEREThgCWAMJWdHIuH8mMwbXj6RRdWe9rAks0jiYioK2KyFMY8WVjtTSsA4HzValOZBsfL7NNyLVWrttoBEBERhTImS11Ys8nargaW3lStiIiIQh2TpS5syZYD7W5gyXYARETUVXCBdxfmaSsAbxtYEhERhRNWlrqwwnFZfmlgSUREFE5YWerC/NnAkoiIKFywstSFsRUAERHRxbGyFGJMFgnLtx7C8q2HYLJ0fC1RexpYEhERdSWsLIWYlk7bJquEU7UGZCaqOlz5YSsAIiKitjFZCiGedtpuD7YCICIico3JUojwttM2ERER+QbXLAU5k0Vq1Wm7pS9SS6ftar0Rm8s0rW5+S0RERB3HylKQK95Wgfoms0edtm8ans6pNCIiIh9jZSkEeNppu9Fk6eTIiIiIwh8rS0Fudn42TtUaPOq0rVLwn5OIiMjXWFkKcooI0eNO2+ndogIdLhERUdhhKSIEsNM2ERFR4LCyFCLYaZuIiCgwWFkKIdnJsbh/fDTqGk0wWSUUjsvySQdvIiIiahuTpRCjVMiwcEpOoMMgIiLqMjgNR0REROQGkyUiIiIiN5gsEREREbnBZImIiIjIDSZLRERERG4wWSIiIiJyg8kSERERkRtMloiIiIjcYLJERERE5AaTJSIiIiI3mCwRERERucFkiYiIiMgNJktEREREbjBZIiIiInKDyRIRERGRGxGBDiAc2Gw2AEB9fX2AIyEiIiJPtXxut3yOt4XJkg/o9XoAQEZGRoAjISIiIm/p9Xqo1eo2nxdsF0un6KIkSUJlZSViY2MhCIJPjz1q1Cj8+OOPPj1moF7P18f21fHae5z6+npkZGTg5MmTiIuL63Ac5B+d/TsUDELpnIMl1s6Mg++z3vHne63NZoNer0daWhpEse2VSaws+YAoirjkkkv8cmyZTNapH8T+fD1fH9tXx+voceLi4pgsBbHO/h0KBqF0zsESa2fGwffZ9vHXe627ilILLvAOcrNnzw6b1/P1sX11vM7+HlPn6or/vqF0zsESa2fGwffZ0MNpOKJ2qq+vh1qthk6nC4q/jImIwlEwvNeyskTUTpGRkVi4cCEiIyMDHQoRUdgKhvdaVpaIiIiI3GBliYiIiMgNJktEREREbjBZIiIiInKDyRIRERGRG0yWiIiIiNxgskTkJ59++in69++Pvn374q233gp0OEREYeemm25CfHw8br75Zr++DlsHEPmBxWLBoEGDsG3bNqjVaowYMQI7d+5EYmJioEMjIgob27dvh16vx7vvvosPP/zQb6/DyhKRH/zwww/IyclBeno6YmJiMHnyZHzxxReBDouIKKxceeWViI2N9fvrMFkicuH//u//cMMNNyAtLQ2CIGDjxo2txhQXFyMzMxNKpRK5ubn44YcfHM9VVlYiPT3d8XV6ejpOnz7dGaETEYWEjr7PdiYmS0QuNDY2YujQoSguLnb5/Pr161FUVISFCxdiz549GDp0KAoKCqDVajs5UiKi0BRK77NMlohcmDx5Ml544QXcdNNNLp9ftmwZ7r33XsyaNQuDBg3C6tWrER0djbfffhsAkJaW5lRJOn36NNLS0joldiKiUNDR99nOxGSJyEsmkwm7d+/GxIkTHdtEUcTEiRNRWloKABg9ejTKy8tx+vRpNDQ04LPPPkNBQUGgQiYiCimevM92pohOf0WiEFddXQ2r1YqUlBSn7SkpKThw4AAAICIiAkuXLkV+fj4kScKf//xnXglHROQhT95nAWDixIn4+eef0djYiEsuuQQbNmxAXl6ez+NhskTkJ1OmTMGUKVMCHQYRUdj68ssvO+V1OA1H5KWkpCTIZDJUVVU5ba+qqkJqamqAoiIiCh/B9j7LZInISwqFAiNGjEBJSYljmyRJKCkp8Uv5l4ioqwm291lOwxG50NDQgIqKCsfXv/32G/bu3YuEhAT07NkTRUVFmDlzJkaOHInRo0djxYoVaGxsxKxZswIYNRFR6Ail91ne7oTIhe3btyM/P7/V9pkzZ+Kdd94BAKxatQqvvPIKNBoNhg0bhtdeew25ubmdHCkRUWgKpfdZJktEREREbnDNEhEREZEbTJaIiIiI3GCyREREROQGkyUiIiIiN5gsEREREbnBZImIiIjIDSZLRERERG4wWSIiIiJyg8kSEZGPnDt3DsnJyTh27BgAe4diQRBQV1fn19edP38+HnroIb++BlFXxmSJiDrd3XffDUEQWj2uvfbaQIfWIS+++CJuvPFGZGZmdvhYVVVVkMvlWLduncvnCwsLcdlllwEAHn/8cbz77rs4evRoh1+XiFpjskREAXHttdfizJkzTo9//OMffn1Nk8nkt2MbDAb87W9/Q2FhoU+Ol5KSguuvvx5vv/12q+caGxvxwQcfOF4rKSkJBQUFeOONN3zy2kTkjMkSEQVEZGQkUlNTnR7x8fGO5wVBwFtvvYWbbroJ0dHR6Nu3Lz755BOnY5SXl2Py5MmIiYlBSkoK7rzzTlRXVzuev/LKKzFnzhw8+uijjoQCAD755BP07dsXSqUS+fn5ePfddx3TZY2NjYiLi8OHH37o9FobN26ESqWCXq93eT6bN29GZGQkxowZ0+Y5GwwGTJ48GZdffrljau6tt97CwIEDoVQqMWDAAPzlL39xjC8sLERJSQlOnDjhdJwNGzbAYrHgjjvucGy74YYb2qxCEVHHMFkioqC1aNEi3Hrrrfjll19w3XXX4Y477kBNTQ0AoK6uDldddRWGDx+OXbt2YcuWLaiqqsKtt97qdIx3330XCoUCO3bswOrVq/Hbb7/h5ptvxtSpU/Hzzz/j/vvvx1NPPeUYr1KpcNttt2HNmjVOx1mzZg1uvvlmxMbGuoz1m2++wYgRI9o8l7q6OlxzzTWQJAlbt25Ft27d8P777+PZZ5/Fiy++iF9//RX//d//jWeeeQbvvvsuAOC6665DSkqK4w7sF8Yybdo0dOvWzbFt9OjROHXqlGO9FBH5kI2IqJPNnDnTJpPJbCqVyunx4osvOsYAsD399NOOrxsaGmwAbJ999pnNZrPZnn/+edukSZOcjnvy5EkbANvBgwdtNpvNNmHCBNvw4cOdxjzxxBO2wYMHO2176qmnbABstbW1NpvNZvv+++9tMpnMVllZabPZbLaqqipbRESEbfv27W2e04033mi75557nLZt27bNBsD266+/2i699FLb9OnTbUaj0fF8nz59bGvXrnXa5/nnn7fl5eU5vp4/f74tKyvLJkmSzWaz2SoqKmyCINi+/PJLp/10Op0NgNsYiah9WFkiooDIz8/H3r17nR4PPPCA05hLL73U8f8qlQpxcXHQarUAgJ9//hnbtm1DTEyM4zFgwAAAwJEjRxz7/b7ac/DgQYwaNcpp2+jRo1t9nZOT46jwvPfee+jVqxeuuOKKNs+nqakJSqXS5XPXXHMNsrOzsX79eigUCgD2dUdHjhxBYWGh0zm88MILTvHfc889+O2337Bt2zYA9qpSZmYmrrrqKqfXiIqKAmCf6iMi34oIdABE1DWpVCpkZ2e7HSOXy52+FgQBkiQBABoaGnDDDTdgyZIlrfbr0aOH0+u0x5/+9CcUFxdj/vz5WLNmDWbNmgVBENocn5SUhNraWpfPXX/99fjoo4+wf/9+DBkyxBE/APzP//wPcnNzncbLZDLH//ft2xfjx4/HmjVrcOWVV+Lvf/877r333laxtExPdu/e3fuTJSK3mCwRUUi67LLL8NFHHyEzMxMREZ6/lfXv3x+bN2922vbjjz+2Gvcf//Ef+POf/4zXXnsN+/fvx8yZM90ed/jw4XjvvfdcPvfSSy8hJiYGV199NbZv345BgwYhJSUFaWlpOHr0qNNCbVcKCwvx4IMPYsqUKTh9+jTuvvvuVmPKy8shl8uRk5Pj9lhE5D1OwxFRQBiNRmg0GqfHhVeyXczs2bNRU1OD22+/HT/++COOHDmCzz//HLNmzYLVam1zv/vvvx8HDhzAE088gUOHDuGDDz5wLKC+sFoTHx+PadOmYd68eZg0aRIuueQSt/EUFBRg3759bVaXXn31Vdxxxx246qqrcODAAQD2BeyLFy/Ga6+9hkOHDqGsrAxr1qzBsmXLnPa95ZZbIJfLcf/992PSpEnIyMhodfxvvvkG48ePd0zHEZHvMFkiooDYsmULevTo4fQYN26cx/unpaVhx44dsFqtmDRpEoYMGYJHH30U3bp1gyi2/daWlZWFDz/8EB9//DEuvfRSvPHGG46r4SIjI53GFhYWwmQy4Z577rloPEOGDMFll12GDz74oM0xy5cvx6233oqrrroKhw4dwp/+9Ce89dZbWLNmDYYMGYIJEybgnXfeQVZWltN+0dHRuO2221BbW9tmLOvWrcO999570TiJyHuCzWazBToIIqJAevHFF7F69WqcPHnSafv/+3//D3PnzkVlZaVjYbY7mzZtwrx581BeXu42YfO1zz77DI899hh++eUXr6Ykicgz/K0ioi7nL3/5C0aNGoXExETs2LEDr7zyCubMmeN43mAw4MyZM3jppZdw//33e5QoAfaF3IcPH8bp06ddTpX5S2NjI9asWcNEichPWFkioi5n7ty5WL9+PWpqatCzZ0/ceeedWLBggSPZeO655/Diiy/iiiuuwP/+7/8iJiYmwBETUSAxWSIiIiJygwu8iYiIiNxgskRERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0mS0RERERuMFkiIiIicoPJEhEREZEbTJaIiIiI3Pj/swB8vs75v5IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=lagspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=lagspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time lag (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "5d13b5e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Phase lag (rad)')" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG1CAYAAADpzbD2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnpklEQVR4nO3deXxTVf4//te9adK0aelKW1qLbS2LlFWQWgERrRT1I4o4I44jUCsuA85I3WAU0FEHUETwJyMuA6MzqOiMX5cBq9ChDmJBQNEigpadlrSUbumWNLn5/ZFpINCG3DTbTV/PxyMPyM3Nzbld7n33nPd5H8FqtVpBRERERJ0S/d0AIiIiokDGYImIiIjICQZLRERERE4wWCIiIiJygsESERERkRMMloiIiIicYLBERERE5ASDJSIiIiInQvzdgGAgSRIqKysRGRkJQRD83RwiIiJygdVqhcFgQHJyMkSx6/4jBkseUFlZidTUVH83g4iIiNxw/PhxXHTRRV2+zmDJAyIjIwHYvti9evXyc2uIiIjIFY2NjUhNTbXfx7vCYMkDOobeevXqxWCJiIhIYS6UQsMEbyIiIiInGCwREREROcFhOB+RJAkmk8nfzSAnNBqN09kQRETUMzFY8gGTyYTDhw9DkiR/N4WcEEUR6enp0Gg0/m4KEREFEAZLXma1WnHy5EmoVCqkpqay5yJAddTKOnnyJPr27ct6WUREZMdgycvMZjNaWlqQnJyM8PBwfzeHnOjduzcqKythNpuhVqv93RwiIgoQ7ObwMovFAgAc2lGAju9Rx/eMiIgIYLDkMxzWCXz8HhERUWc4DKcQJrOEVVvKAQCzJ2RCE8I4l4iIyBd4xyUiIiJygsGSQkiSFY2t7ahpMuJEXQskyervJhEREfUIDJYUoLzagNe2HkLpodPYceg0Vhb/gldLDqK82uDVz121ahXS0tKg1WqRnZ2Nb775xun+P/74I6ZOnYq0tDQIgoAVK1a49DkffvghJk6ciLi4OAiCgD179lzwPU899RSGDx9+3vYjR464fAwiIiJXMFgKcOXVBqzddgT7KhqgVasQo9MgJkyDvZUNWLvtiNcCpvXr16OwsBCLFi3Ct99+i2HDhiEvLw/V1dVdvqelpQUZGRlYsmQJkpKSXP6s5uZmjB07FkuXLvVE04mIiDyKwVIAMpklmMwS2kwWbCjTo8ZgRHq8DmqVbbZWmEaFjHgdagxGbCzTo81kgcns2ergy5cvx6xZs5Cfn49BgwZh9erVCA8Px5o1a7p8z+WXX44XXngB06ZNQ2hoqMufddddd2HhwoXIzc31RNMdzJw5E4IgnPcoKSnx+GcREZH7TGYJL236GS9t+tnj97Tu4my4ANQx662xtR2lh05Dq1ahtsWEyvpWAMAu1EIUBBjNFhwta0Fdswm9wtSYe11/j3y+yWTC7t27MX/+fPs2URSRm5uL0tJSj3yGr6xcuRJLliyxP1+yZAneffddDBw40I+tIiIiJWGwFMBMFglmiwS1tvNvk1oloslohsni2Qi8pqYGFosFiYmJDtsTExOxf/9+j35Wd5SVlSEiIsJhm9XqmPgeFRWFqKgoALbcqNdeew2bN2+WNUxIREQ9G4OlADR7QiYA4ERdC5qMZsSEaRCmUWEXagEAoy6OhUoUYGhrR31rOwrGpuOimMBfSmXdunW477777M8/++wzjBs3zu3jDRgwAJ988onDtoqKClx99dXn7fvdd9/hrrvuwiuvvIIxY8a4/ZlERNTzMFgKQB0FJ9PidOifEIm9lQ3IiNdB/F+FaZUoQBSAaoMRQ1KikBangyh6rvp0fHw8VCoVqqqqHLZXVVV1q0dm8uTJyM7Otj9PSUlx+1iAbXmSzMxMh20hIef/SOv1ekyePBn33HMPCgoKuvWZRETU8zDBO4CJooC8wYmI1WlQXt0Eo9kCyWqFoa0dv1Q3IVanwcSsRI8GSoAtCBk5ciSKi4vt2yRJQnFxMXJyctw+bmRkJDIzM+2PsLAwTzTXqba2Ntx8880YOHAgli9f7vXPIyKi4MOepQCXmRCJ/DFp2FCmx9Ey27BcfWs7hqREYWJWIjITIr3yuYWFhZgxYwZGjRqF0aNHY8WKFWhubkZ+fr59n+nTpyMlJQWLFy8GYEsM37dvn/3/FRUV2LNnDyIiIs7rATpbbW0tjh07hsrKSgDAgQMHAABJSUndzi267777cPz4cRQXF+PUqVP27bGxsVzcmIiIXMJgSQEyEyJx37hw1DebYLJIKBib7vGht3PdfvvtOHXqFBYuXAi9Xo/hw4ejqKjIIen72LFjEMUznZOVlZUYMWKE/fmyZcuwbNkyjB8/3ulU/U8++cQhCJs2bRoAYNGiRXjqqae6dR5ffvklTp48iUGDBjls37JlS6e5TUREROcSrOdOHyLZGhsbERUVhYaGBvTq1cvhtba2Nhw+fBjp6enQarVufwYX0vU+T32viIhIPn/c55zdv8/GniWF0ISIHqujRERERK5j9wQRERGREwyWiIiIiJxQXLC0atUqpKWlQavVIjs7G998802X+77xxhsYN24cYmJiEBMTg9zc3PP272ztsEmTJnn7NIiIiEghFBUsrV+/HoWFhVi0aBG+/fZbDBs2DHl5eaiuru50/5KSEtxxxx3YsmULSktLkZqaiokTJ6KiosJhv0mTJuHkyZP2x7vvvuuL0yEiIiIFUFSwtHz5csyaNQv5+fkYNGgQVq9ejfDwcKxZs6bT/detW4ff/e53GD58OAYOHIg333zTXlzxbKGhofaaPklJSYiJifHF6RAREZECKCZYMplM2L17N3Jzc+3bRFFEbm4uSktLXTpGS0sL2tvbERsb67C9pKQECQkJGDBgAB544AGcPn3a6XGMRiMaGxsdHkRERBScFBMs1dTUwGKxOBRFBIDExETo9XqXjvH4448jOTnZIeCaNGkS3n77bRQXF2Pp0qX48ssvcf3118NisXR5nMWLF9tXs4+KikJqaqp7JyWH2QRsWWx7mE3e/zwiIiIC0IPqLC1ZsgTvvfceSkpKHAoOdlSLBoAhQ4Zg6NChuOSSS1BSUoJrr72202PNnz8fhYWF9ueNjY2+CZiIiIjI5xTTsxQfHw+VSoWqqiqH7VVVVRdcP2zZsmVYsmQJvvjiCwwdOtTpvhkZGYiPj0d5eXmX+4SGhqJXr14OD6+zSkBbPdBUDdQfAyTJqx/36quvYujQofbzy8nJwWeffXbB902ePBl9+/aFVqtFnz59cNddd9nXfOvwww8/YNy4cdBqtUhNTcXzzz/v9JhHjhyBIAjYs2fPea9dffXVeOihh+ScGhERkSyKCZY0Gg1GjhzpkJzdkaydk5PT5fuef/55PPPMMygqKsKoUaMu+DknTpzA6dOn0adPH4+02yNOHQC2rQQObwWObgO+XAp8tdy23UsuuugiLFmyBLt378auXbtwzTXX4Oabb8aPP/7o9H0TJkzA+++/jwMHDuBf//oXDh48iNtuu83+emNjIyZOnIiLL74Yu3fvxgsvvICnnnoKr7/+utfOhYiIqDsUEywBQGFhId544w289dZb+Omnn/DAAw+gubnZvgjr9OnTMX/+fPv+S5cuxYIFC7BmzRqkpaVBr9dDr9ejqakJANDU1IRHH30U27dvx5EjR1BcXIybb74ZmZmZyMvL88s5nufUAWD7akBfBqjDgPBYICwWOPmDbbuXAqabbroJN9xwA/r164f+/fvjueeeQ0REBLZv3+70fXPnzsUVV1yBiy++GFdeeSXmzZuH7du3o729HYBthqLJZMKaNWuQlZWFadOm4fe//z2WL1/e7TaXlJScVzNLEATMnDmz28cmIqKeS1HB0u23345ly5Zh4cKFGD58OPbs2YOioiJ70vexY8dw8uRJ+/6vvvoqTCYTbrvtNvTp08f+WLZsGQBApVLhhx9+wOTJk9G/f38UFBRg5MiR2Lp1K0JDQ/1yjgBsCdxmE9DeBvz4EdB8CojLBFQaAAKgCQfi+tm27/vYtp8Xk74tFgvee+89NDc3O+3FO1dtbS3WrVuHK6+8Emq1GgBQWlqKq666ChqNxr5fXl4eDhw4gLq6um6188orr3Sol/Wf//wHWq0WV111VbeOS0REPZviErznzJmDOXPmdPpaSUmJw/MjR444PVZYWBg+//xzD7XMg7a+aPu3rd429KYOA1pOAw3HbduPARAEwGwEag/ZXtNGAxPmd3FA95SVlSEnJwdtbW2IiIjA//t//w+DBg264Psef/xxvPLKK2hpacEVV1yBf//73/bX9Ho90tPTHfbvCHb1er3TGldXXnklRNExvm9tbcXw4cMB2IZqO/LXTp8+jXvuuQd333037r77bpfOl4iIqDOK6lnqccwmQDIDKnXnr6vUtte91Ks0YMAA7NmzBzt27MADDzyAGTNmYN++fQCA+++/HxEREfbH2R599FF89913+OKLL6BSqTB9+nRYrdZut2f9+vXYs2ePw6OzPLT29nZMnToVF198MVauXNntzyUiop5NcT1LPcK4h23/1h8DTE22HCVNuK1HCQD6XgEIKsDYCLTWATmzgei+Hm+GRqNBZmYmAGDkyJHYuXMnVq5ciddeew1/+tOf8Mgjj3T6vvj4eMTHx6N///649NJLkZqaiu3btyMnJwdJSUmdzmgEcMFZjampqfb2dAgLCztvvwceeADHjx/HN998g5AQ/ogTEVH38E4SiEL+l88TmwH0HmBL5o7rZxt6A2yBkiACBj2QPMy2n+j9TkJJkmA0GgEACQkJSEhIcOk9AOzvy8nJwRNPPIH29nZ7HtOmTZswYMAAjywzs3z5crz//vv4+uuvERcX1+3jERERMVgKZKIIXHoT0FAB1Byw5Sip1LYeJYMe0MUBA//PK4HS/Pnzcf3116Nv374wGAx45513UFJS4jTHa8eOHdi5cyfGjh2LmJgYHDx4EAsWLMAll1xiTwz/zW9+g6effhoFBQV4/PHHsXfvXqxcuRIvvfRSt9u8efNmPPbYY1i1ahXi4+Ptld3DwsIQFRXV7eMTEQUjk1nCqi222oKzJ2RCE8IMnXPxKxLoeg8ArrgfSBoCtLcCLbW2obfkYUD2/bbXvaC6uhrTp0/HgAEDcO2112Lnzp34/PPPcd1113X5nvDwcHz44Ye49tprMWDAABQUFGDo0KH48ssv7bMLo6Ki8MUXX+Dw4cMYOXIkHn74YSxcuBD33ntvt9v81VdfwWKx4P7773eY/fiHP/yh28cmIqKeS7B6IvO2h2tsbERUVBQaGhrOq+bd1taGw4cPIz093WGZFdna24DNi2zJ3DmzfTb01pN47HtFRKQggdKz5I92OLt/n43DcEohiLbyAIAtmZuBEhERkU8wWFKKEI3H6ygREREFCkmyorG1HSaLhBN1LUiL00EUBX83CwCDJSIiIvKz8moDNpTpUXroNMwWCU1GM/onRCJvcCIyEyL93TwGS0REROQ/5dUGrN12BDUGI7RqFdTaEMSEabC3sgGVDa3IH5Pm94CJiS9ERERBxGSW8NKmn/HSpp9hMkv+bk6XTGYJbSYLNpTpUWMwIj1eB7XKNuwWplEhI16HGoMRG8v0kCT/zkVjz5KPcNJh4OP3iIjId1ZtKUdjaztKD52GVq1CbYsJlfWtAIBdqIUoCDCaLTha1oIpI1KQGhvut7ayZ8nLVCoVAMBk8s76beQ5Hd+jju8ZERF5l8kiwWyR7D1K51KrRJglCc0ms49b5og9S14WEhKC8PBwnDp1Cmq1GiKn/AckSZJw6tQphIeHcz05IiIfmD0hEyfqWtBkNCMmTIMwjQq7UAsAGHVxLFSiAENbO+pb26HT+Pe6zLuClwmCgD59+uDw4cM4evSov5tDToiiiL59+0IQAmOqKhFRMNOEiEiL06F/QiT2VjYgI14H8X/XX5UoQBSAaoMRQ1KikBJ9/qLpvsRgyQc0Gg369evHobgAp9Fo2PNHRORDoiggb3AiKhtaUV7dBKPZArVKhKGtHdUGI2J1GkzMSvR7vSUGSz4iiiKX0CAiooDj72KQmQmRyB+Thg1lehwtsw3L1be2Y0hKFCZmsc4SERER+VGgFIPMTIjEfePCUd9sgskioWBsOit4ExERkX8FWjFIURTQK0wNALgoJjxgAiWApQOIiIh6FCUVgwwU7FkiIiIKIhfKQVJSMchAwWCJiIgoSLiag2QvBqntPAxQq0Q0Gc1+LwYZKBgsERERBQFXc5CUVAwyUDBniYiIyEP8tYitqzlIbSaLQzHIKkMbRAEQBQGiIDgUgxyQGOn3YpCBgiEjERGRwi0t2u9SDlJdswmLJmcpphhkoGDPEhERkR94shfK1QVpTZYzn9NRDHJQShTa2iXUtZjsxSB9XTYg0LFniYiISOEKxqa7lINUMDbd4X2BXgwyULBniYiISOFczUFKi9Od996OYpDxEaEBVwwyULBniYiISOGYg+Rd7FkiIiLykI6CkDVNRpyoa/FpBWzmIHkPe5aIiIg8IBAWpWUOkncwWCIiIuqmQFqUNpAXpFUqDsMRERG5qTuL0vpzyI7kYc8SERGRm9xdlDYQhuzIdYrrWVq1ahXS0tKg1WqRnZ2Nb775pst933jjDYwbNw4xMTGIiYlBbm7ueftbrVYsXLgQffr0QVhYGHJzc/HLL794+zSIiChIuFoQsmNR2o4hu30VDdCqVYjRaexDdmu3HUF5tcGXzScXKCpYWr9+PQoLC7Fo0SJ8++23GDZsGPLy8lBdXd3p/iUlJbjjjjuwZcsWlJaWIjU1FRMnTkRFRYV9n+effx4vv/wyVq9ejR07dkCn0yEvLw9tbW2+Oi0iIlKo2RMyUTA2HVkpUcjqE4VRF8ciOToMydFhGHVxLC5Pi8WgPr2QlRwFjUp0e8iO/EtRwdLy5csxa9Ys5OfnY9CgQVi9ejXCw8OxZs2aTvdft24dfve732H48OEYOHAg3nzzTUiShOLiYgC2XqUVK1bgySefxM0334yhQ4fi7bffRmVlJT766CMfnhkRESmRnEVpP/quAkuL9uOzspOoMhix+1gdKutbUVnfil1Ha7HraB2qDG3YWHYSFf8byqPAoJhgyWQyYffu3cjNzbVvE0URubm5KC0tdekYLS0taG9vR2xsLADg8OHD0Ov1DseMiopCdna202MajUY0NjY6PIiIqGfqKAgZq9PYC0JKVisMbe34pbrJXhBSEATZQ3YUGBST4F1TUwOLxYLExESH7YmJidi/f79Lx3j88ceRnJxsD470er39GOces+O1zixevBhPP/20nOYTEVEQ6ygIuaFMj6NlLWgymu0FISdm2ZK2Z0/Q4URdi0truOk0vrs9a0JEzL2uv88+T4kUEyx115IlS/Dee++hpKQEWq22W8eaP38+CgsL7c8bGxuRmpra3SYSEZGCXagg5NlDdnsrG5ARr4Mo2F47e8huSEoUUqLD/HkqXTKZJazaUg7Alq+lCel6gErOvoFOMcFSfHw8VCoVqqqqHLZXVVUhKSnJ6XuXLVuGJUuWYPPmzRg6dKh9e8f7qqqq0KdPH4djDh8+vMvjhYaGIjQ01I2zICKiYHahgpC+WMONPUWep5gwT6PRYOTIkfbkbAD2ZO2cnJwu3/f888/jmWeeQVFREUaNGuXwWnp6OpKSkhyO2djYiB07djg9JhERkbu4hpvyKKZnCQAKCwsxY8YMjBo1CqNHj8aKFSvQ3NyM/Px8AMD06dORkpKCxYsXAwCWLl2KhQsX4p133kFaWpo9DykiIgIREREQBAEPPfQQnn32WfTr1w/p6elYsGABkpOTccstt/jrNImIKMjJXcMtmIa0lEhRwdLtt9+OU6dOYeHChdDr9Rg+fDiKiorsCdrHjh2DKJ75AXr11VdhMplw2223ORxn0aJFeOqppwAAjz32GJqbm3Hvvfeivr4eY8eORVFRUbfzmoiIiJzhGm7KoahgCQDmzJmDOXPmdPpaSUmJw/MjR45c8HiCIOBPf/oT/vSnP3mgdURERBRsFBcsERERBSomVwcnDnoSEREROcGeJSIiIvK7QO6VY7BERETkB4EcHJAjDsMREREROcFgiYiIKMBJkhWNre2oaTLiRF0LJMnq7yb1KByGIyKiHkVpBR7Lqw3YUKZH6aHTMFskNBnN6J8QibzBiaz27SMMloiIiAJUebUBa7cdQY3BCK1aBbU2BDFhGuytbEBlQyuXR/GRwA6niYiIeiCTWUKbyYINZXrUGIxIj9dBrbJV+A7TqJARr0ONwYiNZXq0mSx+bm3wY88SEREFJKUNl3nSqi3laGxtR+mh09CqVahtMaGyvhUAsAu1EAUBRrMFR8taUNdswqLJWX5ucXDrOT95REREUE6ytMkiwWyR7D1K51KrRJglCSaL5LM2KeVr52nsWSIioh5DKcnSsydk4kRdC5qMZsSEaRCmUWEXagEAoy6OhUoUYGhrR31rOwrGpvukTUr52nkDe5aIiMgnTGYJL236GS9t+hkm84V7Qzzdi9GRLL2vogFatQoxOo09WXrttiMorzZ06/iepAkRkRanQ/+ESFQZ2iAKgCgIEAUBKlGAKADVBiMGJEYiLU7n9fYo6WvnDQyWiIgo4JRXG/Da1kMoPXQaOw6dxsriX/BqyUG3bsrdSZaWG+B5kigKyBuciFidBuXVTTCaLZCsVhja2vFLdRNidRpMzEqEKHY+TOcJTDS34TAcERH5REdPkcki4URdC9LidJ3e6D09XV7JydKZCZHIH5OGDWV6HC2zDcvVt7ZjSEoUJmZ5f/hLyV87T2KwREREXudKvovJLEGSrA69GLUtJgBnejHKq5uwsUyPORMiZPWo2JOltZ3f9tQqEU1Gs0+TpV2VmRCJ+8aFo77ZBJNFQsHY9C4DTW9w92vnanCsBAyWiIjIq1ztKZLTizFlRApSY8Nd+vxATJaWSxQF9ApTAwAuign3WdDh7tcu2JLBmbNEREReIzffxdXp8s0ms8ttCLRkaSVx52sXjMng7FkiIiKvWVq03+V8l/k3XOpyL4ZOI+/21ZEsXdnQak+WVqtEGNraUW0wdpksHUxDSe6S87U7Nzjuahj13nHh0GpUfj4z1zFYIiIir5GT73J2L8beygZkxOsgCrbA5OxejCEpUUiJDpPdFrnJ0sE2lNQdrn7t5ATHSkoGZ7BEREReUzA2XVa+i7s9QK4ujeJqsjQXsD2fK187JSfSO8NgiYiIvMbVnqKzc4W8PV3+QsnSwTqU5AkX+trJDY6VgsESERF5jbs9Rf6cLh+sQ0m+4E5wrAQMloiIyKvc7Sny13T5QBxK0oSImHtdf599nrvcDY4DHYMlIiLyOm/3FMmZtXahwCNYh5J8xd9Vx72BwRIREfmEt3qKPD1rLViHknzJ31XHPY3BEhERBSRXhp68MWstWIeSfM1fw6jewAreRETkEx3Bz9zr+nc5td9VJrPkcnVwSbLKPn7HUNKglCi0tUuoazHZh5J6YtmAno49S0REpDjeWkfubME2lETuY7BERESK5OqsNTnryJ0rmIaSyH0MloiIyG2uVs72tNkTMr22jhzRuZizREREinP2OnJVhjaIAiAKAkRBcJi1NiAx0q115IjOxmCJiIjc1lHfqKbJiBN1LW4lU7urY9ZarE5jn7UmWa0wtLXjl+omzlojj1FcsLRq1SqkpaVBq9UiOzsb33zzTZf7/vjjj5g6dSrS0tIgCAJWrFhx3j5PPfUUBEFweAwcONCLZ0BEFBzKqw14beshlB46jR2HTmNl8S94teQgyqsNPmuDt2eteXIGHymXogZy169fj8LCQqxevRrZ2dlYsWIF8vLycODAASQkJJy3f0tLCzIyMvCrX/0Kc+fO7fK4WVlZ2Lx5s/15SIiivixERD7njfpG7uKsNfI2RYXJy5cvx6xZs5Cfn49BgwZh9erVCA8Px5o1azrd//LLL8cLL7yAadOmITQ0tMvjhoSEICkpyf6Ij4/31ikQESmanPpGbSaLz9rVMWstPiKUs9a8qKf2tCmmC8VkMmH37t2YP3++fZsoisjNzUVpaWm3jv3LL78gOTkZWq0WOTk5WLx4Mfr27dvl/kajEUaj0f68sbGxW59PRKQUcuob1TWbsGhylp9bTNR9igkLa2pqYLFYkJiY6LA9MTERer3e7eNmZ2fjb3/7G4qKivDqq6/i8OHDGDduHAyGrsfcFy9ejKioKPsjNTXV7c8nIlIae30jVee9N2qVCLMkwWSRfNwyIu9QTM+St1x//fX2/w8dOhTZ2dm4+OKL8f7776OgoKDT98yfPx+FhYX2542NjQyYiKhHkFPfqGBsus/a5co6ckTuUkywFB8fD5VKhaqqKoftVVVVSEpK8tjnREdHo3///igvL+9yn9DQUKc5UEREwers+kZ7KxuQEa+DKNh6mM6ubzQkJQppcTo/t5bIMxQzDKfRaDBy5EgUFxfbt0mShOLiYuTk5Hjsc5qamnDw4EH06dPHY8ckIgomrG9EPY1igiUAKCwsxBtvvIG33noLP/30Ex544AE0NzcjPz8fADB9+nSHBHCTyYQ9e/Zgz549MJlMqKiowJ49exx6jR555BF8+eWXOHLkCL7++mtMmTIFKpUKd9xxh8/Pj4hIKbxd34gokChmGA4Abr/9dpw6dQoLFy6EXq/H8OHDUVRUZE/6PnbsGETxTPxXWVmJESNG2J8vW7YMy5Ytw/jx41FSUgIAOHHiBO644w6cPn0avXv3xtixY7F9+3b07t3bp+dGRBQoXF3vjfWNqKdQVLAEAHPmzMGcOXM6fa0jAOqQlpYGq9V56f333nvPU00jIupxOuobAWB9IwpaiguWiIhIHld7ijp0rPdmskg4UdfitLeIs9CoJ2CwREREduXVBmwo06P00GmYLRKajGb0T4hE3uBE5iFRj8VgiYgoyLnaUxRI672R8gVTryODJSKiIOZKT5HJLEGSrA7rvdW2mACcWe+tvLoJG8v0mDMhgnlJ1OMwWCIiClKu9hTJWe9tyogUpMaG+/nMiHxLUXWWiIjINW0mi0NPUcc6bh09RTUGIzaW6dFmsgBwfb23ZpPZZ+dAFChk9ywZjUbs2LEDR48eRUtLC3r37o0RI0YgPd13awAREZFzS4v2u9RTVNdswvwbLnV5vTedhgMS1PO4/FO/bds2rFy5Ep9++ina29sRFRWFsLAw1NbWwmg0IiMjA/feey/uv/9+REYyAZCIyJ/sPUXazi/zapWIJqMZJoska723lOgwX54GUUBwKViaPHkyvv32W/zmN7/BF198gVGjRiEs7MwvzKFDh7B161a8++67WL58Od5++21cd911Xms0ERE5VzA23aWeooKxtlGBjvXeKhta7eu9qVUiDG3tqDYYud4b9WguBUs33ngj/vWvf0GtVnf6ekZGBjIyMjBjxgzs27cPJ0+e9GgjiYhIHld7itLidPb3dKz3tqFMj6NltmG5jvXeJmaxzhL1XIL1QuuB0AU1NjYiKioKDQ0N6NWrl7+bQ0QEwHE2XJWhDWqViEF9etl7irqqm9RmsmBp0X6u90ZBz9X7N2fDEREFqY6eokEpUWhrl1DXYrL3FDkrMNmx3lt8RCjXeyOCi8NwMTExEATXfllqa2u71SAiIvKczIRI3DcuHPXNJpd7ioKp8jKRJ7gULK1YscL+/9OnT+PZZ59FXl4ecnJyAAClpaX4/PPPsWDBAq80koiI3NfRUwSAPUVEbpCdszR16lRMmDABc+bMcdj+yiuvYPPmzfjoo4882T5FYM4SERGR8ngtZ+nzzz/HpEmTzts+adIkbN68We7hiIjof0xmCS9t+hkvbfoZJrPk7+YQ0f/IDpbi4uLw8ccfn7f9448/RlxcnEcaRUTUE0mSFY2t7ahpMuJEXQskiZOViQKB7Lr1Tz/9NO655x6UlJQgOzsbALBjxw4UFRXhjTfe8HgDiYh6gvJqAzaU6VF66DTMFglNRjP6J0Qib3Dn9Y1MZgmrtpQDAGZPyIQmhJObibxFdrA0c+ZMXHrppXj55Zfx4YcfAgAuvfRSfPXVV/bgiYiIXHd2PSStWgW1NgQxYRrsrWxAZUOr02n+ROR9bq2ImJ2djXXr1nm6LUREPYrJLEGSrNhQpkeNwYj0eB1qW0wAgDCNChnxOpRXN2FjmR5zJkQ4zGLrGLIzWSScqGth4UgiL+rW8tFtbW0wmUwO2zgbjIjINau2lKOxtR2lh05Dq1ahtsWEyvpWAMAu1EIUBBjNFhwta8GUESlIjQ0HIH/Ijoi6R/Ygd0tLC+bMmYOEhATodDrExMQ4PIiIyHUmiwSzRYJa1XmvkFolwixJaDaZAZwZsttX0QCtWoUYncY+ZLd22xGUVxt82XyiHkF2z9Kjjz6KLVu24NVXX8Vdd92FVatWoaKiAq+99hqWLFnijTYSEQWl2RMycaLOtmBtTJgGYRoVdsG2CsKoi2OhEgUY2tpR39oOjUpEm8ni0pDdvePCodWo/HlqREFFdrD06aef4u2338bVV1+N/Px8jBs3DpmZmbj44ouxbt063Hnnnd5oJxFR0NGEiEiL06F/QiT2VjYgI14H8X9LS6lEAaIAVBuMGJIShY++q4ChzezSkF1dswmLJmf589SIgorsYbja2lpkZGQAsOUndawFN3bsWPz3v//1bOuIiIKcKArIG5yIWJ0G5dVNMJotkKxWGNra8Ut1E2J1GkzMSoQgCC4P2ZksLGhJ5Emye5YyMjJw+PBh9O3bFwMHDsT777+P0aNH49NPP0V0dLQXmkhEFNwyEyKRPyYNG8r0OFpmG5arb23HkJQoTMyyJW3PnqBzeciuYGy6n8+IKLjIDpby8/Px/fffY/z48Zg3bx5uuukmvPLKK2hvb8fy5cu90UYiIsVytXhkZkIk7hsXjvpmE0wWCQVj0x3KAcgZskuL0/nm5Ih6CNnB0ty5c+3/z83Nxf79+7F7925kZmZi6NChHm0cEZHSyamHJIoCeoWpAQAXxYSft1/HkF1lQ6t9yE6tEmFoa0e1wWgfsmO9JSLPEqxWq8uLD7W3t2PSpElYvXo1+vXr5812KYqrqxYTUc/SUQ/ps7KTMFskZKVEeaQeksNxJQlZyVEYkBhpH7IjIte4ev+W1bOkVqvxww8/dLtxRETBzptLmFxoyI6IPEv2bLjf/va3+Otf/+qNthARKZ7JLJ1XD6lj9lpHPaQagxEby/SQJJc79s+j1aiwaHIWnpsyBBm9IxgoEXmR7Jwls9mMNWvWYPPmzRg5ciR0OsdEQiZ5E1FP5u4SJkQUuGQHS3v37sVll10GAPj5558dXhME/mVDRGSvh6Tt/BKrVoloMprtS5gQUWCTHSxt2bLFG+0gIgoKcpYw0Wm6tZY5EfmI7Jwlf1u1ahXS0tKg1WqRnZ2Nb775pst9f/zxR0ydOhVpaWkQBAErVqzo9jGJiJw5ux5SlaENogCIggBREBzqIQ1IjERKdJi/m0tELnApWLr//vtx4sQJlw64fv16rFu3rluNcnbswsJCLFq0CN9++y2GDRuGvLw8VFdXd7p/S0sLMjIysGTJEiQlJXnkmEREF+LqEiZMyiZSBpfqLC1YsAAvv/wyxowZg5tuugmjRo1CcnIytFot6urqsG/fPnz11Vd47733kJycjNdff90rBSqzs7Nx+eWX45VXXgEASJKE1NRUPPjgg5g3b57T96alpeGhhx7CQw895LFjdmCdJSLqDOshEQU2j9ZZeuaZZzBnzhy8+eab+Mtf/oJ9+/Y5vB4ZGYnc3Fy8/vrrmDRpUvda3gWTyYTdu3dj/vz59m2iKCI3NxelpaU+PabRaITRaLQ/b2xsdOvziSi4sR4SUXBwObswMTERTzzxBJ544gnU1dXh2LFjaG1tRXx8PC655BKvz4SrqamBxWJBYmLiee3av3+/T4+5ePFiPP300259JhH1LB31kIhIudyaihETE4OYmBhPt0Ux5s+fj8LCQvvzxsZGpKam+rFFRERE5C2KmbcaHx8PlUqFqqoqh+1VVVVdJm9765ihoaEIDQ116zOJiIhIWRRTOkCj0WDkyJEoLi62b5MkCcXFxcjJyQmYYxKR8rSZLHj6kx/xxP8rw6FTTd1ahoSIgo9iepYAoLCwEDNmzMCoUaMwevRorFixAs3NzcjPzwcATJ8+HSkpKVi8eDEAWwJ3RzK6yWRCRUUF9uzZg4iICGRmZrp0TCIKbh0z1koPnYbZIqHJaEb/hEjkDe58xlqbyYKlRfuZsE3UgygqWLr99ttx6tQpLFy4EHq9HsOHD0dRUZE9QfvYsWMQxTOdZZWVlRgxYoT9+bJly7Bs2TKMHz8eJSUlLh2TiIJXebUBa7cdQY3BCK1aBbU2BDFhGuytbEBlQyvyx6Q5BExyAysiCg4u1Vki51hniUhZTGYJkmTFa1sPYV9FA9Ljddh9rA6AbUkSUQDKq5uQlRKFe8dlQKtROQRWVQYj1CoBWX2iUGVoQ6xOc15gRUSBz6N1ls42YsSITssECIIArVaLzMxMzJw5ExMmTJB7aCIin1i1pRyNre0oPXQaWrUKtS0mVNa3AgB2oRaiIMBotuBoWQvqmk14fNJAbCjTo8ZgRHq8DrUtJgBAmEaFjHgdyqubsLFMj3vHhUOrUfnz1IjIC2QneE+aNAmHDh2CTqfDhAkTMGHCBERERODgwYO4/PLLcfLkSeTm5uLjjz/2RnuJiDzCZJFgtkhQqzrPN1KrRJglCSaLhKVF+/FZ2UlUGYzYfawOlfWtqKxvxa6jtdh1tA5VhjZsLDuJpUXu1XwjosAmu2eppqYGDz/8MBYsWOCw/dlnn8XRo0fxxRdfYNGiRXjmmWdw8803e6yhRESeMntCJk7UtaDJaEZMmAZhGhV2oRaAbRhOJQowtLWjvrUdBWPT8devDtsCK23nl0y1SkST0QyTRfLlaRCRj8gOlt5//33s3r37vO3Tpk3DyJEj8cYbb+COO+7A8uXLPdJAIiJP04SISIvToX9CJPZWNiAjXgfxf+kFKlGAKADVBiOGpEQhLU6HgrHpLgdWRBR8ZA/DabVafP311+dt//rrr6HVagHYahV1/J+IKBCJooC8wYmI1WlQXt0Eo9kCyWqFoa0dv1Q3IVanwcSsRIiiYA+sqgxtEAVAFASIguAQWA1IjERanM7fp0VEXiC7Z+nBBx/E/fffj927d+Pyyy8HAOzcuRNvvvkm/vjHPwIAPv/8cwwfPtyjDSUi8rTMhEjkj0nDhjI9jpbZhuXqW9sxJCUKE7POlAPoCKwqG1rtgZVaJcLQ1o5qg9EhsCKi4ONW6YB169bhlVdewYEDBwAAAwYMwIMPPojf/OY3AIDW1lb77LiegKUDiJRNkqyoqG9Fs8kMnSYEKdFhnQY+HXWWPis7CbMkISs5CgMSIx0CKyJSDlfv36yz5AEMloh6DlbwJgoeXquzRETUk2k1KiyanOXvZhCRD8kOliwWC1566SW8//77OHbsGEwmk8PrtbW1HmscERERkb/Jng339NNPY/ny5bj99tvR0NCAwsJC3HrrrRBFEU899ZQXmkhERETkP7KDpXXr1uGNN97Aww8/jJCQENxxxx148803sXDhQmzfvt0bbSQiIiLyG9nBkl6vx5AhQwAAERERaGhoAAD83//9HzZs2ODZ1hERuUmSrDhe24L9+kYcr22BJHEuCxG5R3bO0kUXXYSTJ0+ib9++uOSSS/DFF1/gsssuw86dOxEaGuqNNhIRyeIwxd8iISslCv0TIpE3mFP8iUg+2T1LU6ZMQXFxMQBbgcoFCxagX79+mD59Ou6++26PN5CISI7yagPWbjuCfRUN0KpViNFpEBOmwd7KBqzddgTl1QZ/N5GIFKbbdZZKS0tRWlqKfv364aabbvJUuxSFdZaIfMNZ8UiTWYIkWfHa1kPYV9GA9Hgddh+rA2Bbw00UgPLqJmSlRGHOhEzWRiIiFqX0JQZLRN53oaG1lzb9jMbWdpQeOg2tWgW1SkBlfSsAIDk6DKIgwGi2oK1dwhvTRyE1NtzPZ0RE/ubRopSffPKJyx88efJkl/clInJFx9BajcFoC4S0IfahtcqGVuSPSQMAmCwSzBYJam3nlza1SkST0Yxmk9mHrScipXMpWLrllltcOpggCLBYLN1pDxGRXcfQ2oYyPWoMRqTH61DbYiuEG6ZRISNeh/LqJmws0+OB8ZegsqEVTUYzYsI0CNOosAu2IrmjLo6FShRgaGtHfWs7dBouXkBErnPpiiFJkrfbQUR0nlVbyh2G1mpbTPahtV2otQ+tHS1rwZQRKUiL06F/QiT2VjYgI14HUbDlJalEAaIAVBuMGJIShZToMH+eFhEpDP+8IqKAJmdoTRQF5A1ORGVDK8qrm2A0W6BWiTC0taPaYESsToOJWYlM7iYKRGYTsPVF2//HPQyEaPzbnrMwWCKigDV7QiZO1LXIGlrLTIhE/pg0bCjT42iZ7b31re0YkhKFiVmss0RE8jFYIqKApQkR3Rpay0yIxIMTInDriJROywwQEcnBYImIApq7Q2uiKLA8ABF5hOwK3kREvtYxtDYoJQpt7RLqWkz2obX8MWkcWiMir3KrZ+ngwYNYu3YtDh48iJUrVyIhIQGfffYZ+vbti6ysLE+3kYiIQ2tE5Deye5a+/PJLDBkyBDt27MCHH36IpqYmAMD333+PRYsWebyBREQdOobWBib1QmpsOAMlIvIJ2cHSvHnz8Oyzz2LTpk3QaM5M67vmmmuwfft2jzaOiIiIyN9kB0tlZWWYMmXKedsTEhJQU1PjkUYRERERBQrZwVJ0dDROnjx53vbvvvsOKSkpHmkUOSFJQN1RoOpH27+srk5ERORVshO8p02bhscffxwffPABBEGAJEnYtm0bHnnkEUyfPt0bbaQOpw4AP34E7PsYkMxAn2FA7wHApTfZ/iUiIiKPk92z9Oc//xkDBw5EamoqmpqaMGjQIFx11VW48sor8eSTT3qjjQTYAqXtqwF9GaAOA8JjgbBY4OQPtu2nDvi7hUREREFJdrCk0Wjwxhtv4NChQ/j3v/+Nf/zjH9i/fz/+/ve/Q6VSeaONPZvZBLS32XqUmk8BcZmASgNAADThQFw/2/Z9H3NIjoiIyAvcLkqZmpqKG264AVOnTkVzczPq6uo82a4urVq1CmlpadBqtcjOzsY333zjdP8PPvgAAwcOhFarxZAhQ7Bx40aH12fOnAlBEBwekyZN8uYpyLP1RWDzIlswZDgJHN8BNBy3PY5tB46X2rb/+JFtGxEREXmU7GDpoYcewl//+lcAgMViwfjx43HZZZchNTUVJSUlnm6fg/Xr16OwsBCLFi3Ct99+i2HDhiEvLw/V1dWd7v/111/jjjvuQEFBAb777jvccsstuOWWW7B3716H/SZNmoSTJ0/aH++++65Xz0M2s8mWo6RSd/66Sm173dTk23YRERH1ALKDpX/+858YNmwYAODTTz/FoUOHsH//fsydOxdPPPGExxt4tuXLl2PWrFnIz8/HoEGDsHr1aoSHh2PNmjWd7r9y5UpMmjQJjz76KC699FI888wzuOyyy/DKK6847BcaGoqkpCT7IyYmxqvnIcu4h4Gc2bZk7qRhQN8rgKhU26PvFUDfK4GkobbXNRH+bi0REVHQkR0s1dTUICkpCQCwceNG/PrXv0b//v1x9913o6yszOMN7GAymbB7927k5ubat4miiNzcXJSWlnb6ntLSUof9ASAvL++8/UtKSpCQkIABAwbggQcewOnTp522xWg0orGx0eHhNSEaIDbDNtvNcBKACAjC/x4qQBABgx5IGGgLoIiIiMijZAdLiYmJ2LdvHywWC4qKinDdddcBAFpaWrya4F1TUwOLxYLExMTz2qPX6zt9j16vv+D+kyZNwttvv43i4mIsXboUX375Ja6//npYLJYu27J48WJERUXZH6mpXg5SRNFWHiA8Dqg5AJiNgFUCjI3Aqf2ALg4Y+H+2/YgURJKsOF7bgv36RhyvbYEkWf3dJCKi88ius5Sfn49f//rX6NOnDwRBsPfc7NixAwMHDvR4A71t2rRp9v8PGTIEQ4cOxSWXXIKSkhJce+21nb5n/vz5KCwstD9vbGz0fsDUewBwxf22RO7aQ4DRALTWAcnDbIES6yyRwpRXG/D53iocPNWENrMF2hAVLukdgbzBichMiPR384iI7GQHS0899RQGDx6M48eP41e/+hVCQ0MBACqVCvPmzfN4AzvEx8dDpVKhqqrKYXtVVZV9WPBcSUlJsvYHgIyMDMTHx6O8vLzLYCk0NNR+3j7VewBw1aPAsGm2ZG5NhG3ojT1KpDDl1Qas3XYENQYjqgxGqFUCsvpEYW9lAyobWpE/Jo0BExEFDLfusrfddhvmzp2Liy66yL5txowZuPnmmz3WsHNpNBqMHDkSxcXF9m2SJKG4uBg5OTmdvicnJ8dhfwDYtGlTl/sDwIkTJ3D69Gn06dPHMw33NFEEYi4GErNs/zoLlLg0CgWgNpMFG8r0qDEYkR6vg1olAADCNCpkxOtQYzBiY5kebaauh8KJiHxJds8SADQ3N+PLL7/EsWPHYDKZHF77/e9/75GGdaawsBAzZszAqFGjMHr0aKxYsQLNzc3Iz88HAEyfPh0pKSlYvHgxAOAPf/gDxo8fjxdffBE33ngj3nvvPezatQuvv/46AKCpqQlPP/00pk6diqSkJBw8eBCPPfYYMjMzkZeX57Xz8AkujUIBamnRfpQeOg2tWoXaFhMq61sBALtQC1EQYDRbcLSsBXXNJiyanOXn1hIRuREsfffdd7jhhhvQ0tKC5uZmxMbGoqamBuHh4UhISPBqsHT77bfj1KlTWLhwIfR6PYYPH46ioiJ7EvexY8cgntXTcuWVV+Kdd97Bk08+iT/+8Y/o168fPvroIwwePBiAbejwhx9+wFtvvYX6+nokJydj4sSJeOaZZ/wzzOYpHUujNJ+yLY2iUp9ZGqWhwpb7xICJ/MRkkWC2SFBrO7/8qFUimoxmmCzsCSWiwCBYrVZZ00+uvvpq9O/fH6tXr0ZUVBS+//57qNVq/Pa3v8Uf/vAH3Hrrrd5qa8BqbGxEVFQUGhoa0KtXL/81xGyyzZLbttK2hlxcpq3iN2CryQTRNpuuz1Dgyt8Daq3/2ko91qFTTVhZ/AtiwjQI06iw62gtAGDUxbFQiQIMbe2ob23HH67th4zerB1G1GOYTbZVKwBbjcEQjdc/0tX7t+yepT179uC1116DKIpQqVQwGo3IyMjA888/jxkzZvTIYClgbH0RaKsHDm+19Si1nD6zBMox2GozmY222XQtp4Hrl/qztdRDpcXp0D8hEnsrG5ARr4Mo2HKWVKIAUQCqDUYMSYlCWpzOzy0lIrKRneCtVqvtQ10JCQk4duwYACAqKgrHj3NtMr9zdWkUs6nz14m8TBQF5A1ORKxOg/LqJhjNFkhWKwxt7filugmxOg0mZiVCFAV/N5WICIAbPUsjRozAzp070a9fP4wfPx4LFy5ETU0N/v73v9tzgchPxj0M1B+zlRUIiwU04bYeJcA2DCeobIUsW+tsS6icTZJsvVCuliSQuz/1GJJkRUV9K5pNZug0IUiJDjsv8MlMiET+mDR7nSWj2QJDmxlDUqIwMYt1loh6JKtkGx0xm2z3stiMgLmvyA6W/vznP8NgMAAAnnvuOUyfPh0PPPAA+vXr1+UabeQjZy+NcvIHIK6fbegNcFwaJXmYbb8OcmfOyd2fgVWPIafQZGZCJDKujrhgYEVEPUDHfeXw1jMLwwfQDG7ZwdKoUaPs/09ISEBRUZFHG0Td1LE0SkPFmaVRVGpbj5JBf/7SKHJnzrmzP0sY9AjuFJoURQGpseF+ajERBQQFzODmn/fBqGNplKQhQHsr0FJ7ZmmU7LN+6NrbbIFM8ynbzDmVBoBgG76L62fbvu9j235mk+v7dxS/7PgF0JfZfgHCY8/8AmxfbXudFM9kllhokojkc+e+4ieye5aqqqrwyCOPoLi4GNXV1Ti38oCzBWjJh1xZGmXzItdnzmmjXZ9pl3UrEHWR4y9Ay2nbvh2/ADUHbL8ALGGgeKu2lKOxtZ2FJolIHjkzuIfeblu1wk9kB0szZ87EsWPHsGDBAvtiuhSgOpZG6YorM+eMhjMz51zdv3SVLX+KJQx6DBaaJCK3uHpfMTX5tl3nkB0sffXVV9i6dSuGDx/uheaQT+XMdn3mXHRf12fahWjkB2KkWLMnZOJEXQuajOYzhSbReaHJgrHpfm4tEQUMOTO4Nf4tUCs7WEpNTT1v6I0USs7MOVF0ff8rZgMNJ3xTwoD8ThMistAkEcknZwZ3VKp/myr3DStWrMC8efPw2muvIS0tzQtNIp+RO3PO1f3VWvdLGPz0KVDzC2BuA0K0QHw/zpxTgI5Ck5UNrfZCk2qVCENbO6oNRhaaJKLOyb0P+YlLa8PFxMQ45CY1NzfDbDYjPDwcarXjMEttba3nWxngAmZtOHd1Nr0/YaDtB7SrOkvnBjW9+5+//9nTQQ0nbb8ASUPP/AKcPTOv032H2f4fHhcQU0fpws6us2Q0WxAaokJmQgQLTRKRc3LvQx7i6v3bpWDprbfecvmDZ8yY4fK+wULxwRLgvQrergRW7W1c/DfAuVKV2519iYjs2ttss7TNJluKhg8qeHt0Id2eGAD1OBeaOefu/r0H2IbhnAVWckoYcOacz8mpyg2w0CQRuUkQbWVqANukogDKV3W5JZIkYenSpRgzZgwuv/xyzJs3D62trd5sGwWLjsAqMcv277m/AFz8N2B1VOX+4UQ9DtU045TBiF5aNfZWNmDttiMorzb4u4lERF7ncoL3c889h6eeegq5ubkICwvDypUrUV1dzfXgqPvklDAgnzCZJUiS1aEqd22LLVjtqMpdXt2EjWV6zJkQwWE28j+zyVbkELBNSQ/R9Ox2kEe5HCy9/fbb+Mtf/oL77rsPALB582bceOONePPNNyEGUFcZKZA7M+fIq+RU5Z4yIoXDbkQU1FyOco4dO4YbbrjB/jw3NxeCIKCystIrDaMepGPqaHjcmamjVsnWo3Rqf8BMHe1p7FW5VZ33GqlVIsyShGaT2cctIyLyLZd7lsxmM7Rax5lIarUa7e3tHm8U9UAdi//+9ClQo7PNnGtrsPUoOZs6yiKWXiGnKrdOI7tcG5HnWSXbOmNmk60qtA9mUlHP4fJVzmq1YubMmQgNDbVva2trw/333w+d7kxV3g8//NCzLaSew5WZc2frrC5H7wFdF7FkYOUyOVW5U6LD/Nxa6vE6rgWHt9quBaYm59cCIplcDpY6Kx/w29/+1qONIXK5JMHZRSzVYbYZc2Gxtrynhorzi1iyOrhsrMpNiiD3WkDkBpeDpbVr13qzHUSuMZts3e0/fmS7OMZl2uovAbaZdHH9bHlP+z4Gxj1iC766qg7u7GLKXigAQGZCJPLHpDlU5Ta0mTEkJYpVucm/3LkW+AKHA4MSkw1IWba+aLsQuVLEMutWIOoi+RdT9kI5yEyIRMbVEazKTYFFzrVg6O3yiu66i8OBQYvBEimPK0UsjQagdJWtxomci6k7vVA9AKtyU0By9VpgavJ+W9wZDmRNJsVgsETKMu5hW9e2K0UsQzSuX0xb64CIRNd6obhGHZH/ybkWaCK8145AHQ4kj2KwRMoSonG9iOUVs4GGE65dTL9/17bdnTXqmN9E5HtyrgVRqd5rRyAOB5LHMVgi5ekoYtlQAZz+xTZMpgkHTM1AY8WZIpZqresX03aj7a9CV3qhzl6jjvlNRP5z9rWgo6CtSm37I8ig911B20AaDiSvYLBEyuRQxPIXwFBpC1TOLWLpamAVk+56l37HGnXMbyLyv45rwY8f2XpvOobVL1TQ1lMCZTiQvIrBEimXq0UsXQ2s5KxR197G/CaiQNF7ADDmD0Brra2XJ2e276bsB8pwIHkVgyVSNleLWLoSWMnp0v98kXv5TUBA5DhJkpWlACi4CCKgjbb9P7qvb3+nfDEcyJlzfsVgiXoOVwIrV9eoczVH4ez8JiAgcpzKqw32IpNtZgu0ISpc0jsCeYNZZJLIbe4MB7KApWIwWCI6lyu9UDmz5eU3AQGR41RebcDabUdQYzCiymCEWiUgq08U9lY2oLKhFflj0hgwkTKFaIAJ8/3bBjnDgSxgqSgMYYk609ELlZhl+/fci11HjoLhJADRNvQmCI45CgkDbfuZTefnOKk0AIQzOU7Np/63ILDktVNqM1mwoUyPGoMR6fE6qFW2YbcwjQoZ8TrUGIzYWKZHm8nitTYQBb2O4cCIhK6HAzv+cNKX2Ybyw2PPFLDcvtr2OgUUxQVLq1atQlpaGrRaLbKzs/HNN9843f+DDz7AwIEDodVqMWTIEGzcuNHhdavVioULF6JPnz4ICwtDbm4ufvnlF2+eAgWDjhyF8LgzOQpWydajdGq/Y47C1heBzYtswZDhJHB8h63XquE4cGw7cLzUtv3Hj87kPnnB0qL9+KzsJKoMRuw+VofK+lZU1rdi19Fa7DpahypDGzaWncTSov1eawNRjxYgfziRfIoKltavX4/CwkIsWrQI3377LYYNG4a8vDxUV1d3uv/XX3+NO+64AwUFBfjuu+9wyy234JZbbsHevXvt+zz//PN4+eWXsXr1auzYsQM6nQ55eXloa2vz1WmRUnXkKCQPt130IhLP5DdlnzOk5kqOU0dXvJeYLBLMFsneo3QutUqEWZJgsvAiTeQVAfKHE8mnqJyl5cuXY9asWcjPzwcArF69Ghs2bMCaNWswb9688/ZfuXIlJk2ahEcffRQA8Mwzz2DTpk145ZVXsHr1alitVqxYsQJPPvkkbr75ZgDA22+/jcTERHz00UeYNm2a706OlMmV/KYAqcNSMDYdTUYzYsI0CNOosAu1AIBRF8dCJQowtLWjvrUdBWPTvdYGoh6PBSwVSTE9SyaTCbt370Zubq59myiKyM3NRWlpaafvKS0tddgfAPLy8uz7Hz58GHq93mGfqKgoZGdnd3lMADAajWhsbHR4UA92ofyms+uwXCjHyYt1WNLidOifEIkqQxtEARAFAaIgQCUKEAWg2mDEgMRIpMXpvNYGoh5t3MO2pO8+w2yTO/peYfudj0q1/b/vlUDSUNvrLGAZUBTTs1RTUwOLxYLExESH7YmJidi/v/McC71e3+n+er3e/nrHtq726czixYvx9NNPyz4H6sFcrSTuxWnDoiggb3AiKhtacaimGVnJvRCmUaHFZMbJhjbE6jSYmJXIektE3eFsVl53CliyzIBfKSZYCiTz589HYWGh/XljYyNSU1mZlS7A1UriZ/NwAcvMhEjkj0mz11mqamxDaIgKQ1KiMDGLdZaIvM6dApY9pcxAIJR/6IJigqX4+HioVCpUVVU5bK+qqkJSUlKn70lKSnK6f8e/VVVV6NOnj8M+w4cP77ItoaGhCA0Ndec0qKdzdYkWwGsFLDMTIpFxdQQreBP5i5wClmfXZ1OH2QKrjjIDXIPSZxTTh6fRaDBy5EgUFxfbt0mShOLiYuTk5HT6npycHIf9AWDTpk32/dPT05GUlOSwT2NjI3bs2NHlMYm67UI5TsCZC2TlHuB0OdBUZavd4qE6LKIoIDU2HAOTeiE1NpyBErnPbAK2LLY9zq1YT13rKGCZPg64eAww/nFgzFzHVQJcLTPQztnb3qaYniUAKCwsxIwZMzBq1CiMHj0aK1asQHNzs3123PTp05GSkoLFixcDAP7whz9g/PjxePHFF3HjjTfivffew65du/D6668DAARBwEMPPYRnn30W/fr1Q3p6OhYsWIDk5GTccsst/jpN6snMJltugiuL9I57hDkLRErmbD27rS/acpTcXYOSPEpRwdLtt9+OU6dOYeHChdDr9Rg+fDiKiorsCdrHjh2DeNYP25VXXol33nkHTz75JP74xz+iX79++OijjzB48GD7Po899hiam5tx7733or6+HmPHjkVRURG0Wq4UT34g5wI59HbHte4CYIFe6oGYeOw97q5BSR4nWK1Wq78boXSNjY2IiopCQ0MDevXq5e/mkJJtWQw0VQNHt9mWQIBwJliKSrUFS1YJaKkFfrXWNpQHnEkA3fex7eLaZ1hwJoBSYPH2z53ZZPsDArBNuw/RdP+Y3jyuJ9vREXx+ufSs+mzbba+dW59t/ONAfKbv2x8EXL1/K6pniSjouVPAkgmg5A/8ufMuOWUGYjP829YegH2lRIFETgHLiEQmgJLvMfHYd+SsQUlexZ4lokDjagHLr15iAqgSBMKQjyfb4MvE42DPh3KlrpCcMgPkNQyWiAKRqwUsmQAa+ALhhu/pNvji586bhRgD4XsiR0eZgdZaW5tzZgd+m4MMgyWiQHWhApZy8ptyZvvtNIJOe5tt5XhXblqBUHnZnTY464nyxc+dN/OhAuF74g5nZQbOFQi9mUGGwRJRIOsoYNkZJoD6npwbbSAkQLvbBmc9L978ufN2nbFA+J6QIjFYIlIyXy3QyxpOrt9oA6Ww6LlJ2F214crfA+qz6sq5EhC6s76ZK7pTZ8wZOd+Tc78eRGCwRKR87izQK4eX1qgLKBcaWpMTeMhJvJdzw5dr8yL5Sdhyel7cSTx2ZXjI1XwoU5PrXwtWw/aPIBoOZLBEFAzkLNArx9k3T8NJ240qaVhwDVu40pMiJ/DQRnvnhi+XnCRsd3vDPJ147E6dMVdxMgR1A4MloiAhQUCFtTearTHQWUOQAsH9QmqBMpTkbXKG1ly90Xrzhi9HzmzXk7C7M/wlJ/H4QrPQ5ORDRaW6/rXgZAjqJgZLREGgvNqAz/dW4eCpJrSZLdCGqHBJ7wjkDU5EZkKk/AN6K3fEl5zlWcnNYZETeHjrhi+X3CRsd3vDXKkVBLieHO+NfChOhqBuYrBEpHDl1Qas3XYENQYjqgxGqFUCsvpEYW9lAyobWpE/Ju38gMmVhO1AGEpy14XWLJObw5K3WN6N1lsJ0HLIaYO3e8PkzkLzRiHGQPiedIerQSl5BYMlIoUymSVIkhUbyvSoMRiRHq9DbYst3yJMo0JGvA7l1U3YWKbHvePCodWobG90JWE7UIaS3OHKjRmQN7Tmzo02ECovu9oGb/aGuTsrzxuFGL2VlE5Bj8ESkUKt2lKOxtZ2lB46Da1ahdoWEyrrWwEAu1ALURBgNFtwtKwFdc0mLJqc5XrCdqAMJckhZ2ht7Fyg4YS8HBZ3brRyb/jeuDG72gZv9by4Myuvg5x8KFexGja5gcESkYKZLBLMFglqbee/ymqViCajGSaLJP8vfKUNW8jNs3Inh8WdG61a6/pUdG8tw+FqG7zRGxaIs9C8EYQFErk/R+w9uyAGS0QBTJKsqKhvRbPJDJ0mBCnRYRBF20199oRMnKhrQZPRjJgwDcI0KuxCLQBg1MWxUIkCDG3tqG9tR8HYdPf+wneo4aSzDdu1NXhuKEluscsL7S8nz8rdYFBO8CNHoCzD4emeFznJ8edino58gfJzFGQYLBF1k7OApjsuNMNNEyIiLU6H/gmR2FvZgIx4HcT/9Y6oRAGiAFQbjBiSEoW0OJ37f+F7s4aTsyRsufu7k2fl7WBQztcikJbh8GTPi9JnoSlp0d1A+zkKIgyWiLrB41P2zzquKzPcRFFA3uBEVDa04lBNM7KSeyFMo0KLyYyTDW2I1WkwMSvRFrx15y98Z2vUuUPuRd3V/d3Js/JWMOiKQK1n5ckenUAczvV0uYNA4G4iPbmEwRKRm9yasg/nPVFyZrjNmRABURSQmRCJ/DFp9qCtqrENoSEqDEmJwsSss4I2X/2Ff6GhMjkXdUGUH0y4c2P2dDDoqmCoZ+WKQJgZKJfSemm6k0hPF8RgicgNbSaL/Cn7uHBPlJwZblNGpCA1NhwAkJkQiYyrI5wPB/riL3xXyhLIXTpEbjARKENrrlJyPSs5lDQLTYm9NIGYSB9EGCwRuWFp0X55U/bhWk8U4PoMt2aT2WG7KAr24KlL3gwkXC1LIPei7k4w4c+hNTmUXM/KHUqZhabEXpruDLPTBTFYInKDnCn7cobWHhh/CSobWl2a4abTuPnr6+lAwptLh0T3dT+Y8NfQmhxKrGfVHUqZ3abEXhqlJ9IHOAZLRJ240Ay3grHpLk/Zlzu05uoMt5ToMPdP0JOBhDeXDhHF4A8mAjEBuqdTYi8Nf468isES0TlcmeEma8o+5A2tyZrhFijcXTrk9C+2oTpNOGBqBhorzr+o94SbgBIToIOZUntp+HPkNQyWiM7ijSn7copHdgytuTzDLRDIybs5d+mQjmRwQ6UtGbyri7rSkrbdoaQE6GCn5ACdP0dewWCJCO4tSutqQHNu8ch+CRG48pJ4+2dbrdZOh9ZcmuEWCOTk3Zy7dIic3CmlJG13h7eqg5N8Su6lCZREeiUV9LwABktEcHNRWrge0JzdE/VLdRP6RGkRplGh1WRxOrTm0gy3QOCr+kZKSNqm4MFeGvcpqaCnCxgsUY9xoaRtWYvSnsXVgEZRQ2vu6AlDZdTzBEovjTd5ugdIaQU9XcBgiXqE8moDNpTp8VnZSZgtErJSotA/IdKetC17UVo3KWZozV09YagsUHClePIET/cAKbGgpwsYLFHQOztpW6tWQa0NQUyY5rykbbkz3NylmKE1d3GozDeCKB+E/MQbPUBKLOjpAv5mUdAymaXzliVRq2wBUEfSdo3BiI1lekiS1Z5XFKvT2Ge4jUqLQYvJjF+qmwJzyj71TKcOANtW2m5KR7cBXy4Fvlpu2050IWbT+T1AKg0A4UwPUPMpWw+QJF3oaOcf+0JlRCRzYBX0dAF7lihoubPOWtDnFZHyBWE+SEBTStVxOby5gLMSC3q6gMESBTV31lkL+rwiUia5y8ooKB+E/MBbCzgrtaDnBTBYoqDlTjHIDkGfV0TKI3dZGQXlg5CHXag3zJsLOCu5oKcTimltbW0t7rzzTvTq1QvR0dEoKChAU5PziLetrQ2zZ89GXFwcIiIiMHXqVFRVVTnsIwjCeY/33nvPm6dCPnJ2McgqQxtEARAFAaIgOCRtD0iM7N46a0S+EqT5IORjZxeSNZwEINqCbUFw7AFKGOjemosdZUSShgDtrUBL7ZmCntnKHCZWTM/SnXfeiZMnT2LTpk1ob29Hfn4+7r33Xrzzzjtdvmfu3LnYsGEDPvjgA0RFRWHOnDm49dZbsW3bNof91q5di0mTJtmfR0dHe+s0yMcUuc4aUWfcWVaGqCve7gEKsoKeigiWfvrpJxQVFWHnzp0YNWoUAOD/+//+P9xwww1YtmwZkpOTz3tPQ0MD/vrXv+Kdd97BNddcA8AWFF166aXYvn07rrjiCvu+0dHRSEpK8s3JkM8xaZuCgrvLyhB1xdtLugRRQU9FBEulpaWIjo62B0oAkJubC1EUsWPHDkyZMuW89+zevRvt7e3Izc21bxs4cCD69u2L0tJSh2Bp9uzZuOeee5CRkYH7778f+fn5EISuexqMRiOMRqP9eWNjY3dPkbyMSdsUFII0H4T8KMh6gLxFEcGSXq9HQkKCw7aQkBDExsZCr9d3+R6NRnPekFpiYqLDe/70pz/hmmuuQXh4OL744gv87ne/Q1NTE37/+9932Z7Fixfj6aefdv+EyC+YtE1BQckLvFJgktMD1EMrx/s1WJo3bx6WLnU+Y+Onn37yahsWLFhg//+IESPQ3NyMF154wWmwNH/+fBQWFtqfNzY2IjXVjSQ4IiJ3sDeAyKf8Giw9/PDDmDlzptN9MjIykJSUhOrqaoftZrMZtbW1XeYaJSUlwWQyob6+3qF3qaqqyml+UnZ2Np555hkYjUaEhoZ2uk9oaGiXrxER+YRay/IARD7i12Cpd+/e6N279wX3y8nJQX19PXbv3o2RI0cCAP7zn/9AkiRkZ2d3+p6RI0dCrVajuLgYU6dOBQAcOHAAx44dQ05OTpeftWfPHsTExDAYIiIiIgAKyVm69NJLMWnSJMyaNQurV69Ge3s75syZg2nTptlnwlVUVODaa6/F22+/jdGjRyMqKgoFBQUoLCxEbGwsevXqhQcffBA5OTn25O5PP/0UVVVVuOKKK6DVarFp0yb8+c9/xiOPPOLP0yUiIqIAoohgCQDWrVuHOXPm4Nprr4Uoipg6dSpefvll++vt7e04cOAAWlpa7Nteeukl+75GoxF5eXn4y1/+Yn9drVZj1apVmDt3LqxWKzIzM7F8+XLMmjXLp+dG7pMkK2e4ERGRVwlWq9Xq70YoXWNjI6KiotDQ0IBevXr5uzk9Rnm1ARvK9Pis7CTMFglZKVHonxCJvMGsnURE5DI5M9y8ta+fuHr/VkzPEtHZyqsNWLvtCGoMRmjVKqi1IYgJ02BvZQMqG1qRPyaNARMREXkE55mSopjMEtpMFmwo06PGYER6vA5qlW3YLUyjQka8DjUGIzaW6SFJ7DQlIqLuY88SKcqqLeVobG1H6aHT0KpVqG0xobK+FQCwC7UQBQFGswVHy1owZUQKi1ASEVG3sWeJFMdkkWC2SPYepXOpVSLMkoRmk9nHLSMiomDEniVSlNkTMnGirgVNRjNiwjQI06iwC7UAgFEXx0IlCjC0taO+tR06DX+8iYio+3g3IUXRhIhIi9Ohf0Ik9lY2ICNeB/F/ix6rRAGiAFQbjBiSEoWU6DA/t5aISAFCNMCE+f5uRUBjsESKI4oC8gYnorKhFYdqmpGV3AthGhVaTGacbGhDrE6DiVmJrLdEREQewWCJFCkzIRL5Y9Lw+d4qHDzVhKrGNoSGqDAkJQoTs1hniYjI74Kox4rBEilWZkIkMq6OYAVvIiJfsUpAW72t4GT9MSA2AxCDf64YgyUKKHKXLxFFgeUBiIh84dQB4MePgMNbAckMmJqA3gOAS2+y/RvEGCxRwODyJUREAerUAWD7aqD5FKAOA1RqICwWOPkD0FABXHF/UAdMwd93Rn4nSVYcr23Bfn0jjte2dFpZu2P5kn0VDdCqVYjRaezLl6zddgTl1QY/tJyIqIczm4D2NluPUvMpIC4TUGkACIAmHIjrZ9u+72PbfkGKPUvkVa70Fp27fEltiwnAmeVLyqubsLFMj3vHhUOrUfnzdIiIepatL9pylA5vtfUotZwGGo7bXjsGQBAAsxGoPWR77fql/myt1zBYIq9xdbHbpUX7XVq+pK7ZhEWTs/x8VkREPYzZZMtRUqk7f12lBowG235BisESeZzJLEGSrC73FtmXL9F2/uOoVoloMpphski+PA0iIhr3sG3Wm6nJlqOkCbf1KAFA3ysAQQUYG4HWOiBntl+b6k0MloKYySxh1ZZyALZlQjQhvklRk7PYbV2zCQVj011avqRgbLpP2k9ERP8TorGVB+g9wJbMHdfPNvQG2AIlQQQMeiB5mG2/IMUE7yAmSVY0trajpsmIE3WdJ1Z7i6uL3Zoskn35kipDG0QBEAUBoiA4LF8yIDESaXE6n7WfiIj+RxRt5QHC44CaA7YcJatk61E6tR/QxQED/y+o6y2xZylIdSRWlx46DbNFQpPR7LNp+HIWuy0Ym+6wfEl5dROMZgvUKhGGtnZUG4xcvoSIyN96D7CVB/jxI1syt9FgG3pLHmYLlIK4bADAYCkouZpY3R1tJguWFu2HySKhYGw60uJ09mBGzmK3Hb1F5y5fYjRbYGgzc/kSIqJA0XsAMOYPQGutLZk7ZzYreJPyyE2sdncaviu9Vu70FnH5EiKiACeIgDba9v/ovj0iUAIYLAUVuYnV7kzDl9Nr5U5vEZcvISKiQMNgKch4axq+nF6rORMi7L1B7C0iIiKlY7AUROQmVsshp9dqyogUh94h9hYREZGS9YzBxh7i7MRqb0zDd7UcQLPJ3N1TISIiChjsWQoy7k7Dv1ABSzm9VjoNf6yIiCh4sGcpCHUkVg9KiUJbu4S6FhPqW9sxJCWqy7IBFypgKafXKiU6zFenSkRE5HXsAghSmQmReHBCBG4dkXLBxGpXC1iyeCQREfVEDJaCmCuJ1XILWHb0Wm0o0+NomW1YrqPXisUjiYgoGDFY6sHaTBa3CljK6bUiIiJSOgZLPdjSov1uF7BkOQAiIuopmODdg7laCkBuAUsiIqJgwp6lHqxgbLpXClgSEREFEwZLPVhHKYC9lQ3IiNdBFGw9TGeXAhiSEuVWAUsiIgpCIRpgwnx/t8LnFDMMV1tbizvvvBO9evVCdHQ0CgoK0NTU5PQ9r7/+Oq6++mr06tULgiCgvr7eI8cNFh2lAGJ1GnspAMlqhaGtHb9UN7EUABERERQULN1555348ccfsWnTJvz73//Gf//7X9x7771O39PS0oJJkybhj3/8o0eP608ms4SXNv2Mlzb9DJO5+7lE7hSwJCIi6kkEq9VqvfBu/vXTTz9h0KBB2LlzJ0aNGgUAKCoqwg033IATJ04gOTnZ6ftLSkowYcIE1NXVITo62mPH7dDY2IioqCg0NDSgV69e7p2ki9pMFiwt2g+TRULB2HSkxek80vMjSVZU1LeyFAAREfUYrt6/FZGzVFpaiujoaHtAAwC5ubkQRRE7duzAlClTfHpco9EIo9Fof97Y2OjW58vlaqVtd7AUABERUecUMQyn1+uRkJDgsC0kJASxsbHQ6/U+P+7ixYsRFRVlf6SmprrdBld1VNreV9EArVqFGJ3GXml77bYjKK82eL0NREREPZFfg6V58+ZBEASnj/379/uziZ2aP38+Ghoa7I/jx4977bNMZum8StsddZE6Km3XGIzYWKY/b/FbIiIi6j6/DsM9/PDDmDlzptN9MjIykJSUhOrqaoftZrMZtbW1SEpKcvvz3T1uaGgoQkND3f5cOVZtKUdja7tLlbanjEjhUBoREZGH+TVY6t27N3r37n3B/XJyclBfX4/du3dj5MiRAID//Oc/kCQJ2dnZbn++t47rafZK29rOv11qlYgmoxnNJrOPW0ZERBT8FJHgfemll2LSpEmYNWsWVq9ejfb2dsyZMwfTpk2zz1irqKjAtddei7fffhujR48GYMtJ0uv1KC8vBwCUlZUhMjISffv2RWxsrEvH9bfZEzJxoq7FpUrbOo0ivp1ERESKoogEbwBYt24dBg4ciGuvvRY33HADxo4di9dff93+ent7Ow4cOICWlhb7ttWrV2PEiBGYNWsWAOCqq67CiBEj8Mknn7h8XH/ThIj2SttVhjaIAiAKAkRBcKi0PSAxEinRYf5uLhERUdBRRJ2lQOeLOksds+FqDEZUGdqgVokY1KcXqg1GxOo0LCBJREQkk6v3b8X0LPV0rLRNRETkH0xyUZDMhEjcNy4c9c0mj1fwJiIios4xWFIYrUaFRZOz/N0MIiKiHoPDcEREREROMFgiIiIicoLBEhEREZETDJaIiIiInGCwREREROQEgyUiIiIiJxgsERERETnBYImIiIjICQZLRERERE4wWCIiIiJygsESERERkRMMloiIiIicYLBERERE5ASDJSIiIiInGCwRERERORHi7wYEA6vVCgBobGz0c0uIiIjIVR337Y77eFcYLHmAwWAAAKSmpvq5JURERCSXwWBAVFRUl68L1guFU3RBkiShsrISkZGREATBo8e+/PLLsXPnTo8e01+f5+lje+p43TlOY2MjUlNTcfz4cfTq1avbbSHP8/XvUCBQ0jkHSlt92Q4lXWc9dcxAvc5arVYYDAYkJydDFLvOTGLPkgeIooiLLrrIK8dWqVQ+vQl78/M8fWxPHc8Tx+nVqxeDpQDl69+hQKCkcw6UtvqyHUq6znrqmIF8nXXWo9SBCd4Bbvbs2UHzeZ4+tqeO5+uvMflWT/z+KumcA6WtvmyHkq6znjpmoHyf3cVhOKJuaGxsRFRUFBoaGgLir2MiomATCNdZ9iwRdUNoaCgWLVqE0NBQfzeFiCgoBcJ1lj1LRERERE6wZ4mIiIjICQZLRERERE4wWCIiIiJygsESERERkRMMloiIiIicYLBE5CX//ve/MWDAAPTr1w9vvvmmv5tDRBSUpkyZgpiYGNx2221e+wyWDiDyArPZjEGDBmHLli2IiorCyJEj8fXXXyMuLs7fTSMiCiolJSUwGAx466238M9//tMrn8GeJSIv+Oabb5CVlYWUlBRERETg+uuvxxdffOHvZhERBZ2rr74akZGRXv0MBktEnfjvf/+Lm266CcnJyRAEAR999NF5+6xatQppaWnQarXIzs7GN998Y3+tsrISKSkp9ucpKSmoqKjwRdOJiBSju9daX2GwRNSJ5uZmDBs2DKtWrer09fXr16OwsBCLFi3Ct99+i2HDhiEvLw/V1dU+bikRkXIp5VrLYImoE9dffz2effZZTJkypdPXly9fjlmzZiE/Px+DBg3C6tWrER4ejjVr1gAAkpOTHXqSKioqkJyc7JO2ExEpRXevtb7CYIlIJpPJhN27dyM3N9e+TRRF5ObmorS0FAAwevRo7N27FxUVFWhqasJnn32GvLw8fzWZiEhxXLnW+kqITz+NKAjU1NTAYrEgMTHRYXtiYiL2798PAAgJCcGLL76ICRMmQJIkPPbYY5wJR0QkgyvXWgDIzc3F999/j+bmZlx00UX44IMPkJOT49G2MFgi8pLJkydj8uTJ/m4GEVFQ27x5s9c/g8NwRDLFx8dDpVKhqqrKYXtVVRWSkpL81CoiouASSNdaBktEMmk0GowcORLFxcX2bZIkobi42ONdv0REPVUgXWs5DEfUiaamJpSXl9ufHz58GHv27EFsbCz69u2LwsJCzJgxA6NGjcLo0aOxYsUKNDc3Iz8/34+tJiJSFqVca7ncCVEnSkpKMGHChPO2z5gxA3/7298AAK+88gpeeOEF6PV6DB8+HC+//DKys7N93FIiIuVSyrWWwRIRERGRE8xZIiIiInKCwRIRERGREwyWiIiIiJxgsERERETkBIMlIiIiIicYLBERERE5wWCJiIiIyAkGS0REREROMFgiIvKQ06dPIyEhAUeOHAFgq04sCALq6+u9+rnz5s3Dgw8+6NXPIOrJGCwRkc/NnDkTgiCc95g0aZK/m9Ytzz33HG6++WakpaV1+1hVVVVQq9V47733On29oKAAl112GQDgkUcewVtvvYVDhw51+3OJ6HwMlojILyZNmoSTJ086PN59912vfqbJZPLasVtaWvDXv/4VBQUFHjleYmIibrzxRqxZs+a815qbm/H+++/bPys+Ph55eXl49dVXPfLZROSIwRIR+UVoaCiSkpIcHjExMfbXBUHAm2++iSlTpiA8PBz9+vXDJ5984nCMvXv34vrrr0dERAQSExNx1113oaamxv761VdfjTlz5uChhx6yBxQA8Mknn6Bfv37QarWYMGEC3nrrLftwWXNzM3r16oV//vOfDp/10UcfQafTwWAwdHo+GzduRGhoKK644oouz7mlpQXXX389xowZYx+ae/PNN3HppZdCq9Vi4MCB+Mtf/mLfv6CgAMXFxTh27JjDcT744AOYzWbceeed9m033XRTl71QRNQ9DJaIKGA9/fTT+PWvf40ffvgBN9xwA+68807U1tYCAOrr63HNNddgxIgR2LVrF4qKilBVVYVf//rXDsd46623oNFosG3bNqxevRqHDx/GbbfdhltuuQXff/897rvvPjzxxBP2/XU6HaZNm4a1a9c6HGft2rW47bbbEBkZ2Wlbt27dipEjR3Z5LvX19bjuuusgSRI2bdqE6OhorFu3DgsXLsRzzz2Hn376CX/+85+xYMECvPXWWwCAG264AYmJifbV189uy6233oro6Gj7ttGjR+PEiRP2fCki8iArEZGPzZgxw6pSqaw6nc7h8dxzz9n3AWB98skn7c+bmpqsAKyfffaZ1Wq1Wp955hnrxIkTHY57/PhxKwDrgQMHrFar1Tp+/HjriBEjHPZ5/PHHrYMHD3bY9sQTT1gBWOvq6qxWq9W6Y8cOq0qlslZWVlqtVqu1qqrKGhISYi0pKenynG6++Wbr3Xff7bBty5YtVgDWn376yTp06FDr1KlTrUaj0f76JZdcYn3nnXcc3vPMM89Yc3Jy7M/nzZtnTU9Pt0qSZLVardby8nKrIAjWzZs3O7yvoaHBCsBpG4nIPexZIiK/mDBhAvbs2ePwuP/++x32GTp0qP3/Op0OvXr1QnV1NQDg+++/x5YtWxAREWF/DBw4EABw8OBB+/vO7e05cOAALr/8codto0ePPu95VlaWvYfnH//4By6++GJcddVVXZ5Pa2srtFptp69dd911yMzMxPr166HRaADY8o4OHjyIgoICh3N49tlnHdp/99134/Dhw9iyZQsAW69SWloarrnmGofPCAsLA2Ab6iMizwrxdwOIqGfS6XTIzMx0uo9arXZ4LggCJEkCADQ1NeGmm27C0qVLz3tfnz59HD7HHffccw9WrVqFefPmYe3atcjPz4cgCF3uHx8fj7q6uk5fu/HGG/Gvf/0L+/btw5AhQ+ztB4A33ngD2dnZDvurVCr7//v164dx48Zh7dq1uPrqq/H2229j1qxZ57WlY3iyd+/e8k+WiJxisEREinTZZZfhX//6F9LS0hAS4vqlbMCAAdi4caPDtp07d563329/+1s89thjePnll7Fv3z7MmDHD6XFHjBiBf/zjH52+tmTJEkRERODaa69FSUkJBg0ahMTERCQnJ+PQoUMOidqdKSgowAMPPIDJkyejoqICM2fOPG+fvXv3Qq1WIysry+mxiEg+DsMRkV8YjUbo9XqHx9kz2S5k9uzZqK2txR133IGdO3fi4MGD+Pzzz5Gfnw+LxdLl++677z7s378fjz/+OH7++We8//779gTqs3trYmJicOutt+LRRx/FxIkTcdFFFzltT15eHn788ccue5eWLVuGO++8E9dccw32798PwJbAvnjxYrz88sv4+eefUVZWhrVr12L58uUO7/3Vr34FtVqN++67DxMnTkRqaup5x9+6dSvGjRtnH44jIs9hsEREflFUVIQ+ffo4PMaOHevy+5OTk7Ft2zZYLBZMnDgRQ4YMwUMPPYTo6GiIYteXtvT0dPzzn//Ehx9+iKFDh+LVV1+1z4YLDQ112LegoAAmkwl33333BdszZMgQXHbZZXj//fe73Oell17Cr3/9a1xzzTX4+eefcc899+DNN9/E2rVrMWTIEIwfPx5/+9vfkJ6e7vC+8PBwTJs2DXV1dV225b333sOsWbMu2E4ikk+wWq1WfzeCiMifnnvuOaxevRrHjx932P73v/8dc+fORWVlpT0x25kNGzbg0Ucfxd69e50GbJ722Wef4eGHH8YPP/wga0iSiFzD3yoi6nH+8pe/4PLLL0dcXBy2bduGF154AXPmzLG/3tLSgpMnT2LJkiW47777XAqUAFsi9y+//IKKiopOh8q8pbm5GWvXrmWgROQl7Fkioh5n7ty5WL9+PWpra9G3b1/cddddmD9/vj3YeOqpp/Dcc8/hqquuwscff4yIiAg/t5iI/InBEhEREZETTPAmIiIicoLBEhEREZETDJaIiIiInGCwREREROQEgyUiIiIiJxgsERERETnBYImIiIjICQZLRERERE4wWCIiIiJy4v8HT/yoYOrcLBIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "freq_01_1 = (1 + 0.1) / 2 * 2 * np.pi\n", + "freq_3_30 = (3 + 30) / 2 * 2 * np.pi\n", + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_01_1.spectrum * freq_01_1,\n", + " xerr=energies_err,\n", + " yerr=lagspec_01_1.spectrum_error * freq_01_1,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_3_30.spectrum * freq_3_30,\n", + " xerr=energies_err,\n", + " yerr=lagspec_3_30.spectrum_error * freq_3_30,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Phase lag (rad)\")" + ] + }, + { + "cell_type": "markdown", + "id": "ab201dc2", + "metadata": { + "id": "ab201dc2" + }, + "source": [ + "Interesting: the low-frequency variability has much longer time lags than the high-frequency variability, but the phase lags are on the same order of magnitude." + ] + }, + { + "cell_type": "markdown", + "id": "9e85f891", + "metadata": { + "id": "9e85f891" + }, + "source": [ + "## Covariance and RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "11a45edb", + "metadata": { + "id": "11a45edb", + "outputId": "d95b650d-03df-4e73-bafe-7813b0729935" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:35<00:00, 1.13it/s]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:35<00:00, 1.14it/s]\n" + ] + } + ], + "source": [ + "covspec_3_30 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"abs\",\n", + " ref_band=ref_band,\n", + ")\n", + "covspec_01_1 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"abs\",\n", + " ref_band=ref_band,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "a1d4d363", + "metadata": { + "id": "a1d4d363", + "outputId": "121ac01c-9046-44c6-9351-588a10cc3dc8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG1CAYAAAAfhDVuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABs8ElEQVR4nO3deXiU5dn38e/MZCZ7JgTIhmEzyCaLokIEVBABsSAVW2ldEHF9gj6CK9W61FLEPq6Vin2raFv3fSnSCgVXEIUiBAQF2bMBIZlsk8ks7x9jhgwJMJPMZJn8PscxR5j7vnPPNaCZM9d1Xudp8Hg8HkREREQilLG1ByAiIiISTgp2REREJKIp2BEREZGIpmBHREREIpqCHREREYloCnZEREQkoinYERERkYimYEdEREQiWlRrD6AtcLvd5Ofnk5iYiMFgaO3hiIiISAA8Hg/l5eVkZmZiNB57/kbBDpCfn09WVlZrD0NERESaYO/evZx00knHPK9gB0hMTAS8f1lJSUmtPBoREREJhM1mIysry/c5fiwKdsC3dJWUlKRgR0REpJ05UQqKEpRFREQkoinYERERkYimZSwREemwXC4XtbW1rT0MOQaz2YzJZGr2fRTsiIhIh+PxeCgsLKS0tLS1hyInkJycTHp6erNKwyjYERGRDqcu0ElNTSUuLk411togj8dDVVUVxcXFAGRkZDT5Xgp2RESkQ3G5XL5Ap3Pnzq09HDmO2NhYAIqLi0lNTW3ykpYSlEVEpEOpy9GJi4tr5ZFIIOr+nZqTW6VgR0REOiQtXbUPofh30jKWiIhIEzicbhat3A5A7phsLFGaP2irFOxI++F2Q9lecFSAJQGsWXCcxm8iIiLQystYzzzzDIMHD/a1acjJyeGjjz7ynbfb7eTm5tK5c2cSEhKYNm0aRUVFfvfYs2cPF110EXFxcaSmpnLHHXfgdDpb+q1IuB3YBp8/Biv/AJ884v36+WPe4yIircDt9mCrruVgRQ37Dlfhdntae0hyDK0a7Jx00kk8/PDDrFu3jm+++YaxY8dy8cUXs3nzZgDmzJnDBx98wBtvvMEnn3xCfn4+l1xyie/7XS4XF110EQ6Hgy+//JIXX3yRF154gfvuu6+13pKEw4FtsGYxFGyEuBTo3Mf7tWCj97gCHhFpYduLy3n2sx9Z/eMhvvrxEE+u+IFnVu1ge3F52F7zRBMExzJlyhS6d+9OTEwMGRkZXHnlleTn5/tds3HjRkaPHk1MTAxZWVk88sgjx73nrl27MBgMbNiwocG58847j1tvvTWYtxZ2rRrsTJ48mUmTJtGnTx9OOeUU5s+fT0JCAmvWrKGsrIznnnuOxx57jLFjxzJs2DCWLFnCl19+yZo1awD497//zZYtW/jHP/7B0KFDufDCC3nooYdYtGgRDoejNd+ahILTAbV22PwuVB7wBjnmeO85c7z3eeUB2PKed4lLRKQFbC8uZ8kXu9iyv4wYs4lO8RY6xVrIyy9jyRe7whbwnGiC4FjGjBnD66+/zrZt23jrrbfYsWMHl156qe+8zWZj/Pjx9OjRg3Xr1vHHP/6RBx54gL/85S9heR+toc0kPLhcLl599VUqKyvJyclh3bp11NbWMm7cON81/fr1o3v37qxevRqA1atXM2jQINLS0nzXTJgwAZvNdtx//JqaGmw2m99D2qDPHoXl93uDmfIC2PMlbHzV+9j9Bexd7T2++V1vLo+ISJg4nG4cTjd2h4t/birkYHkNvbrEYzZ5dwrFWkz07hLPwfIalm4qxO5w4XCG9pew400QHM+cOXMYMWIEPXr04Oyzz+buu+9mzZo1vq3cL730Eg6Hg+eff56BAwcyffp0brnlFh577LFmj3nVqlUYDIYGj6uvvrrZ9w5Gqycob9q0iZycHOx2OwkJCbzzzjsMGDCADRs2YLFYSE5O9rs+LS2NwsJCwFsBs36gU3e+7tyxLFiwgAcffDC0b0TCw+kAtxNM5sbPm8xQU+5NWhYRCZO6XVe26lpW/3iIGLOJkioH+aXVAHxDCUaDgRqni92bqjhc6SAp1sycC04Jy3hcLhdvvPGGb4IgUCUlJbz00kucffbZmM3en6urV6/mnHPOwWKx+K6bMGECCxcu5PDhw3Tq1KnJ4zz77LMpKCjwPf/uu++YNGkS55xzTpPv2RStHuz07duXDRs2UFZWxptvvsmMGTP45JNPwvqa8+bNY+7cub7nNpuNrKyssL6mNMHo26B0jzeQiU2B6MSG19TYoPqwd3eWiEiYOVxunC435pjGPz7NJiMVNU4crvAsrR9rguBE7rrrLp5++mmqqqoYMWIEH374oe9cYWEhvXr18ru+/sTB8YKds88+G+NRu2Krq6sZOnQoABaLhfT0dAAOHTrEtddeyzXXXMM111wT0PsNlVYPdiwWC9nZ2QAMGzaMr7/+mieffJLLLrsMh8NBaWmp3+xOUVGR7y8uPT2dtWvX+t2vbrdW3TWNiY6OJjo6OsTvREIuygIpvaFrX28ycowV6heX8nigvBAyh3i3oYuIhEnuGO/n1L7DVVTUOOkUayHWYuIbSgA4o0cKJqOBcnstpdW1zBrVi5M6hb5C87EmCAYMGMCNN97IP/7xD9+1FRVHZrzvuOMOZs2axe7du3nwwQe56qqr+PDDD5tdsO+1116jf//+fscuv/zyBtfV1tYybdo0evTowZNPPtms12yKVg92juZ2u6mpqWHYsGGYzWZWrFjBtGnTANi2bRt79uzxTdnl5OQwf/58X88MgI8//pikpKSAIl1pB4xG6D8ZyvbDga2Q1A0sceCoAtt+iO8M/X6mejsiElZ1BQN7do7nlNRE8vLL6N0lHuNPwYLJaMBogOLyGgZ1s9KzczxGY+grNB9rguDZZ5/ld7/7Hbfffnuj39elSxe6dOnCKaecQv/+/cnKymLNmjXk5OSQnp7eoKxLIBMHAFlZWb7x1KnrZ1XfTTfdxN69e1m7di1RUS0ferRqsDNv3jwuvPBCunfvTnl5OS+//DKrVq3iX//6F1arlVmzZjF37lxSUlJISkri5ptvJicnhxEjRgAwfvx4BgwYwJVXXskjjzxCYWEh9957L7m5uZq5iSRd+8KIG+G7D+DgD1CeD1Ex3hmdfj/znhcRaQFGo4EJp6aRX1bN9uIKapwuzCYj5fZaistrSIm3MH5gWlgCncbUTRAApKam+n7xP9H3AL7vy8nJ4Z577qG2ttaXx/Pxxx/Tt2/fZuXr1Hnsscd4/fXX+fLLL1ut8WqrBjvFxcVcddVVFBQUYLVaGTx4MP/617+44IILAHj88ccxGo1MmzaNmpoaJkyYwJ///Gff95tMJj788ENuuukmcnJyiI+PZ8aMGfzud79rrbck4dK1r3ereaAVlFVtWUTCJDs1kZkje/LPTYXs3uRd1iqtrmVQNyvjB6aRndpIfmEIHG+C4Fi++uorvv76a0aNGkWnTp3YsWMHv/3tbzn55JN9qyS//vWvefDBB5k1axZ33XUXeXl5PPnkkzz++OPNHvPy5cu58847WbRoEV26dPFtHoqNjcVqtTb7/oFq1WDnueeeO+75mJgYFi1axKJFi455TY8ePVi6dGmohyZtkdEInXqc+LoD247MAjnt3lmgLn28y2GhmAUKJpBS0CUSkbJTE7lhdByllQ4cLjezRvUK29JVnRNNEDQmLi6Ot99+m/vvv5/KykoyMjKYOHEi9957r28FxGq18u9//5vc3FyGDRtGly5duO+++7j++uubPebPP/8cl8vFjTfeyI033ug7PmPGDF544YVm3z9QBo/H0+HrW9tsNqxWK2VlZSQlJbX2cKQ56qotVx0Cazdv8cHaSm/OT1xn73JYcwKeYAKpcAddItIkdrudnTt30qtXL2JiYpp8HzUCbRnH+/cK9PO7zSUoizSJ0wEe95Fqy136Htm5VVdt+eA2b4HCs28BcxN+wB0rkCrY6A2m6gdSwVwrIu2SJcoYtjo6EloKdiQyfPYo2Eth52dgjvUGGXVVla1Z3sDHWQMlP3rPXbgw8HsHG0hBYNeOvl1LWiIiLUDBjkSO+tWWDQZI7u5/vq7asjPIvmnBBlJw5NrqkkbG+dO1gy8LLAdJRESaRcGORIZgqi3n5AZ//2ADqbprPZ6GgZFaXIiItCgFOxIZgqm2nNI7uHs3JZBSiwsRkTZDCQMSOeqqLcd19lZbttu8Myx2m/d5U6st1w+kygvAYASj6cjDYPQGUqn9vNcFeq1aXIiItAgFOxJZ6qotZwz25ssc2u79mjkEhjdjB1QwgVS4gi4REWkSLWNJ5Am22nIw9w20bUVTWlyoAKFI++J0eDcwgHe5O8rSuuORY1KwI5Ep0GrLwQomkArmWhUgFBEJG/3aKBKsukAqbaD36/FmXwK5tq4AYcFGiEvxBkhxKd7naxZ7z4tI2+Nxe8tSVBR7NzH81GAznBYtWkTPnj2JiYlh+PDhrF279rjXb968mWnTptGzZ08MBgNPPPFEQK/z9ttvM378eDp37ozBYGDDhg0n/J4HHniAoUOHNji+a9eugO8RLgp2RFqL0wG19iMFCDv38RYehCMFCCsPeAsQ1tpbdagicpQD2+CLJ701tXZ/AZ8shM8fC+svJ6+99hpz587l/vvvZ/369QwZMoQJEyZQXFx8zO+pqqqid+/ePPzww6Snpwf8WpWVlYwaNYqFC4MowNqGaRlLpLUcXazweAUIg636LCLhUzcbW3nA+/+uyewtNRHmdjCPPfYY1113HTNnzgRg8eLF/POf/+T555/n7rvvbvR7zjzzTM4880yAY17TmCuvvBLwzsqE2tVXX82LL77Y4PjKlSs577zzQv56oJkdEe/U8+HdULTZ+7UFpqJ96hcr9Hi8U+Gle7x/Bu9xtzP4qs8iElpORyOzsdlgsgAGsMQ1nI0N4f+3DoeDdevWMW7cON8xo9HIuHHjWL16dchepyU8+eSTFBQU+B7/+7//S2pqKv369Qvba2pmRzq21kwMDnfVZxEJnbpdV8dqHbOHhq1jYpJhzLyQvPzBgwdxuVykpaX5HU9LS2Pr1q0heY1Q2LRpEwkJ/gVTPXW/vP3EarVitVoBb27Qs88+y/Lly4NaZguWZnak42rtxOBgixWKSOurPxvbmHY2G/vSSy+RkJDge3z22WfNul/fvn3ZsGGD32Pp0qWNXvvf//6XK6+8kqeffpqRI0c263VPRDM70jHVn4o+URdzc0z4xlFXgLBsv7fgYFI373S4owps+1WAUKStGH2b92v92VhLnHdGB6D7CDCY/Gdjj+6h1wxdunTBZDJRVFTkd7yoqKhZMyJTpkxh+PDhvufdunVr8r0ALBYL2dnZfseiohqGGoWFhUyZMoVrr72WWbNmNes1A6FgRzqm5fe3ncTgphQgFJGWVVcwsH4Pvs59jvyiZKg3G1vXgy+Ev6RYLBaGDRvGihUrmDp1KgBut5sVK1Ywe/bsJt83MTGRxMRGltDDyG63c/HFF9OvXz8ee+yxFnlNBTvSMR2dGHyszuQtNRUdrqrPIhJa9WdjD27z/mJkMntndMoLwzobO3fuXGbMmMEZZ5zBWWedxRNPPEFlZaVvdxbAVVddRbdu3ViwYAHgTWzesmWL78/79+9nw4YNJCQkNJiBqa+kpIQ9e/aQn58PwLZt3mX99PT0ZufW3HDDDezdu5cVK1Zw4MAB3/GUlBQslvBUoVawIx1TTm7bSwwOV9VnEQmtutnYze96Z4Bryr0/L8I8G3vZZZdx4MAB7rvvPgoLCxk6dCjLli3zS1res2cPxnqBVn5+Pqeddprv+f/93//xf//3f5x77rmsWrXqmK/1/vvv+wVR06dPB+D+++/ngQceaNb7+OSTTygoKGDAgAF+x8O59dzgOTpNugOy2WxYrVbKyspISkpq7eFIS3C7vQXACjZC135HpqLBO9NzYKv3B9fIOZpdEYkwdrudnTt30qtXL2JimpGTV2v3Lok7Hd5fjEK8dCVex/v3CvTzWzM70jEpMVhEmstg9G4vB28ysn5etFkKdqTjUmKwiDRHlCVkdXQkvBTsSMemxGARkYinYEdEicEiIhFNv76KiIhIRFOwIyIiHZI2I7cPofh3UrAjIiIditns7WtVVVXVyiORQNT9O9X9uzWFcnZERKRDMZlMJCcnU1xcDEBcXByG+rW2pE3weDxUVVVRXFxMcnIyJpOpyfdSsCMiIh1OXcuDuoBH2q7k5ORmt6hQsCMiIh2OwWAgIyOD1NRUamtrW3s4cgxms7lZMzp1FOyIiEiHZTKZQvJhKm2bEpRFREQkoinYERERkYimYEdEREQimnJ2pHW53epLJSIiYaVgR1rPgW1HOo477d6O4136QP/J6jguIiIho2BHWseBbbBmMVQdAms3MMdDbSUUbISy/TDiRgU8IiISElovkJbldECtHTa/C5UHoHMfb6AD3q+d+3iPb3nPu8QlIiLSTJrZkZb12aNgL4Wdn4E51juzU7bXe86aBQYDOGug5EcYfBl06tGqwxURkfZPwY60PKcD3E4wmb3BTXJ3//MmM9SUe5OWRUREmknBjoTWiXZXjb4NSvd4z8emQHRiw3vU2KD6sPf7RUREmknBjoROILuroiyQ0tv7vGAjxFi9szt1PB4oL4TMId5ASUREpJkU7EhoBLO7ymj0BkBl++HAVkjqBpY4cFSBbT/Ed4Z+P1O9HRERCQl9mkjzBbq7qtZ+5Hu69vUGQBmDoboEDm33fs0cAsO17VxEREKnVYOdBQsWcOaZZ5KYmEhqaipTp05l27Ztftecd955GAwGv8eNN97od82ePXu46KKLiIuLIzU1lTvuuAOn09mSb6VjW36/N5gpL4C9q2HPl0cee1d7j29+13tdfV37wqi5MOY3cO6d3q8j5yjQERGRkGrVZaxPPvmE3NxczjzzTJxOJ7/5zW8YP348W7ZsIT4+3nfdddddx+9+9zvf87i4ON+fXS4XF110Eenp6Xz55ZcUFBRw1VVXYTab+cMf/tCi76fDqr+7yuNpuJW8bneV09Hwe41GbS8XEZGwatVgZ9myZX7PX3jhBVJTU1m3bh3nnHOO73hcXBzp6emN3uPf//43W7ZsYfny5aSlpTF06FAeeugh7rrrLh544AEsFktY34MAObmB7a7KyW35sYmISIfXpnJ2ysrKAEhJSfE7/tJLL9GlSxdOPfVU5s2bR1VVle/c6tWrGTRoEGlpab5jEyZMwGazsXnz5kZfp6amBpvN5veQZqjbXVVeAAYjGE1HHgajd3dVaj/vdRIabjcc3g1Fm71fVW1aROSYmjWzU1NTQ3R0dEgG4na7ufXWWxk5ciSnnnqq7/ivf/1revToQWZmJhs3buSuu+5i27ZtvP322wAUFhb6BTqA73lhYWGjr7VgwQIefPDBkIxb0O6qlqYGqiIiQQkq2Pnoo4949dVX+eyzz9i7dy9ut5v4+HhOO+00xo8fz8yZM8nMzGzSQHJzc8nLy+Pzzz/3O3799df7/jxo0CAyMjI4//zz2bFjByeffHKTXmvevHnMnTvX99xms5GVpZouzVK3u6ruQ7g83/shnDnEG+joQzg01EBVRCRoAQU777zzDnfddRfl5eVMmjSJu+66i8zMTGJjYykpKSEvL4/ly5fz0EMPcfXVV/PQQw/RtWvXgAcxe/ZsPvzwQz799FNOOumk4147fPhwALZv387JJ59Meno6a9eu9bumqKgI4Jh5PtHR0SGbkZJ6uvb1bjU/XgVlabr6W/y79D1SjLFui//Bbd5dcWffAuaYVh2qiEhbElCw88gjj/D4449z4YUXYmzkg+uXv/wlAPv37+dPf/oT//jHP5gzZ84J7+vxeLj55pt55513WLVqFb169Trh92zYsAGAjIwMAHJycpg/fz7FxcWkpqYC8PHHH5OUlMSAAQMCeXsSStpdFT7L7w+sgWrVIbhwYeuOVUSkDQko2Fm9enVAN+vWrRsPP/xwwC+em5vLyy+/zHvvvUdiYqIvx8ZqtRIbG8uOHTt4+eWXmTRpEp07d2bjxo3MmTOHc845h8GDBwMwfvx4BgwYwJVXXskjjzxCYWEh9957L7m5uZq9kcgSaAPVxrb4i4h0YAaPx+Npzg1cLhebNm2iR48edOrUKbgXr98TqZ4lS5Zw9dVXs3fvXq644gry8vKorKwkKyuLn//859x7770kJSX5rt+9ezc33XQTq1atIj4+nhkzZvDwww8TFRVYSpLNZsNqtVJWVuZ3X5E25eB2+GThibf4n3sXdMlu+fGJiLSwQD+/g96NdeuttzJo0CBmzZqFy+Xi3HPP5csvvyQuLo4PP/yQ8847L+B7nSjOysrK4pNPPjnhfXr06MHSpUsDfl2RdinQBqra4i8i4ifozNE333yTIUOGAPDBBx+wc+dOtm7dypw5c7jnnntCPkAR+UndFv+4zt4t/nabd1nLbvM+1xZ/EZFGBf1T8eDBg75dTkuXLuUXv/gFp5xyCtdccw2bNm0K+QBFpB41UBURCVrQy1hpaWls2bKFjIwMli1bxjPPPANAVVUVJpMp5AMUkaNoi7+ISFCCDnZmzpzJL3/5SzIyMjAYDIwbNw6Ar776in79+oV8gCLSCG3xFxEJWNDBzgMPPMCpp57K3r17+cUvfuHb3m0ymbj77rtDPkARERGR5mj21vNIoK3nEvHcbi17iUjECdvWcxFpZ9Q4VEQ6OAU7IpFMjUNFRILfei4i7YDT4d84tHMfb6ADRxqHVh7wNg51u1t1qCIi4RbwzM5//vMfzj33XG0vF2kPPnsU7KWBNQ4dfJl2dolIRAt4Zufaa6+la9eu/PrXv+a1117DZrOFc1wi0lyNNQ5N7n6kzYTJ7D3vqGjdcYqIhFnAMzs//vgjGzdu5P333+fRRx/l6quvZtSoUUyZMoWLL76Y7t27n/gmItIyRt8GpXu8gcyJGodaElp+fCIiLSionJ3Bgwdz7733snbtWnbs2MG0adP46KOP6Nu3L0OHDuW+++7jm2++CddYRSRQUZYjjUPLC8BgBKPpyMNg9DYOTe3nXdYSEYlgTU5QzszM5MYbb2Tp0qUcPHiQ3/72t+zatYuJEyfyhz/8IZRjFJGmUONQEREgDEUFXS4XJSUldO3aNZS3DSsVFZSI1lidna6neAMdbTsXkXas1YoKmkymdhXoiEQ8NQ4VkQ5ORQVFOgI1DhWRDky/2omIiEhEU7AjIiIiES3oYGf9+vVs2rTJ9/y9995j6tSp/OY3v8HhcIR0cCIiIiLNFXSwc8MNN/D9998D3kKD06dPJy4ujjfeeIM777wz5AMUERERaY6gg53vv/+eoUOHAvDGG29wzjnn8PLLL/PCCy/w1ltvhXp8IiIiIs0SdLDj8Xhw/9Qlefny5UyaNAmArKwsDh48GNrRiYiIiDRT0MHOGWecwe9//3v+/ve/88knn3DRRRcBsHPnTtLS0kI+QBEREZHmCDrYefzxx1m/fj2zZ8/mnnvuITs7G4A333yTs88+O+QDFBEREWmOkLWLsNvtREVFERXV/uoUql2EiIhI+xPo53fQMzu9e/fm0KFDDY7b7XZOOeWUYG8nIm2N2w2Hd0PRZu/Xn3L0RETaq6CnYXbt2oXL5WpwvKamhn379oVkUCLSShprGtqlj7d7upqGikg7FXCw8/777/v+/K9//Qur1ep77nK5WLFiBb169Qrt6ESk5RzYBmsWQ9UhsHYDczzUVkLBRijbDyNuVMAjIu1SwMHO1KlTATAYDMyYMcPvnNlspmfPnjz66KMhHZyItACnAzxu2PwuVB6ALn3BYPCeM8d7O6Yf3AZb3oOzbwFzTKsOV0QkWAEHO3W1dXr16sXXX39Nly5dwjYoEWlBnz0K9lLY+RmYY6G6pOE1zhoo+dE763PhwhYfoohIcwSds7Nz585wjENEWpPTAW4nmMzg8UDZXu9xa5Z3lsdkhppy73UiIu1Mk/aJr1ixghUrVlBcXOyb8anz/PPPh2RgItJCRt8GpXvAUQGxKRCd2PCaGhtUH4acXP/jbrc3MHJUgCXBGxwZg97kKSISVkEHOw8++CC/+93vOOOMM8jIyMBQt7YvIu1TlAVSenuTjws2Qoz1SM4OeGd6ygshc4j3ujrauSUi7UTQwc7ixYt54YUXuPLKK8MxHhFpDUajN0gp2w8HtkJSN7DEgaMKbPshvjP0+9mRWRvt3BKRdiTo+WaHw6G2ECKRqGtfb5CSMdibpHxou/dr5hAYXi94qbUf2bnVuY830IEjO7cqD3h3btXaW+2tiIjUF/TMzrXXXsvLL7/Mb3/723CMR0RaU9e+3oDleHk4y+/Xzi0RaVeCDnbsdjt/+ctfWL58OYMHD8ZsNvudf+yxx0I2OBFpBUYjdOpx7PPauSUi7UzQwc7GjRsZOnQoAHl5eX7nlKws0gHk5DZt55aISCsJOthZuXJlOMYhbZm2F0t9Tdm5JSLSippUZ0c6EG0vlqMFu3NLRKSVBR3sjBkz5rjLVf/5z3+aNSBpQ7S9WI6lbudWXSBcnu8NhDOHeAMd/XchIm1I0MFOXb5OndraWjZs2EBeXl6DBqHSTqkxpAQikJ1bIiJtQNDBzuOPP97o8QceeICKiopmD0jaADWGlECdaOeWiEgbELJfwa644gr1xYokR28vLt3jfXg83vMms/e8theLiEgbF7JgZ/Xq1cTEBLecsWDBAs4880wSExNJTU1l6tSpbNu2ze8au91Obm4unTt3JiEhgWnTplFUVOR3zZ49e7jooouIi4sjNTWVO+64A6fT2ez31GGNvs27bThjCKQPgR4jYfB076PHSOh+NqQP9p7X9mIREWnjgl7GuuSSS/yeezweCgoK+Oabb4KuqvzJJ5+Qm5vLmWeeidPp5De/+Q3jx49ny5YtxMd7S9DPmTOHf/7zn7zxxhtYrVZmz57NJZdcwhdffAGAy+XioosuIj09nS+//JKCggKuuuoqzGYzf/jDH4J9ewJNbwwpIiLSBhk8nrp1icDMnDnT77nRaKRr166MHTuW8ePHN2swBw4cIDU1lU8++YRzzjmHsrIyunbtyssvv8yll14KwNatW+nfvz+rV69mxIgRfPTRR/zsZz8jPz+ftLQ0wNus9K677uLAgQNYLJYTvq7NZsNqtVJWVkZSUlKz3kNEqb8bq7HtxcO1G0tERFpPoJ/fQc/sLFmypFkDO56ysjIAUlJSAFi3bh21tbWMGzfOd02/fv3o3r27L9hZvXo1gwYN8gU6ABMmTOCmm25i8+bNnHbaaQ1ep6amhpqaGt9zm80WrrfUvml7sYiIRIAmFxVct24d3333HQADBw5sNKgIhtvt5tZbb2XkyJGceuqpABQWFmKxWEhOTva7Ni0tjcLCQt819QOduvN15xqzYMECHnzwwWaNt8PQ9mIREWnngg52iouLmT59OqtWrfIFIaWlpYwZM4ZXX32Vrl27Nmkgubm55OXl8fnnnzfp+4Mxb9485s6d63tus9nIysoK++u2W9peLCIi7VjQv57ffPPNlJeXs3nzZkpKSigpKSEvLw+bzcYtt9zSpEHMnj2bDz/8kJUrV3LSSSf5jqenp+NwOCgtLfW7vqioiPT0dN81R+/Oqnted83RoqOjSUpK8nt0OG43HN4NRZu9X93u1h6RiIhIWAQ9s7Ns2TKWL19O//79fccGDBjAokWLgk5Q9ng83HzzzbzzzjusWrWKXr16+Z0fNmwYZrOZFStWMG3aNAC2bdvGnj17yMnJASAnJ4f58+dTXFxMamoqAB9//DFJSUkMGDAg2LfXMajflYiIdCBBBztutxuz2dzguNlsxh3k7EBubi4vv/wy7733HomJib4cG6vVSmxsLFarlVmzZjF37lxSUlJISkri5ptvJicnhxEjRgAwfvx4BgwYwJVXXskjjzxCYWEh9957L7m5uURHRwf79iKf+l2JiEgHE/TW84svvpjS0lJeeeUVMjMzAdi/fz+XX345nTp14p133gn8xY/RUHTJkiVcffXVgLeo4G233cYrr7xCTU0NEyZM4M9//rPfEtXu3bu56aabWLVqFfHx8cyYMYOHH36YqKjAYrkOsfW8rt/VF09C4Sb/flfgrZ1zcBtkDIbRtysBWURE2rxAP7+DDnb27t3LlClT2Lx5sy+pd+/evZx66qm8//77fjk37UWHCHZWLvDvd2WyeHdYgXd3lcHg7XdVWw2/ekUJySIi0uaFrc5OVlYW69evZ/ny5WzduhWA/v37+9XCkTaqfr8rgwGSu/ufN5mhpty7xVxERCRCNKnOjsFg4IILLuCCCy4I9XgkXEbf5m3k6aiA2BSITmx4TY0Nqg97a+mIiIhEiKATM2655RaeeuqpBseffvppbr311lCMScKhfr+r8gIwGMFoOvIwGL39rlL7eZe1REREIkTQwc5bb73FyJEjGxw/++yzefPNN0MyKAkTo9G7vTyuMxzYCnabd1nLbvM+j+/sbQOh5GQREYkgQX+qHTp0CKvV2uB4UlISBw8eDMmgJIzq+l1lDIbqEji03fs1c4gae4qISEQKOmcnOzubZcuWMXv2bL/jH330Eb179w7ZwCSM1O9KREQ6kKCDnblz5zJ79mwOHDjA2LFjAVixYgWPPvooTzzxRKjHJ+GiflciItJBBB3sXHPNNdTU1DB//nweeughAHr27MkzzzzDVVddFfIBikgEcbs1oygiLS7oooL1HThwgNjYWBIS2vdW5Q5RVFCktaknm4iEWNiKCtbXtWvX5ny7iHQU6skmIq0ooPnjiRMnsmbNmhNeV15ezsKFC1m0aFGzByYiEcDpgFo7bH4XKg94E+PN8d5z5njv88oDsOU97xKXiEgYBDSz84tf/IJp06ZhtVqZPHkyZ5xxBpmZmcTExHD48GG2bNnC559/ztKlS7nooov44x//GO5xi0h78Nmj/j3Zqg413pOt5EcYfJmS5kUkLAIKdmbNmsUVV1zBG2+8wWuvvcZf/vIXysrKAG/riAEDBjBhwgS+/vpr+vfvH9YBi0g7o55sItLKmpygXFZWRnV1NZ07d8ZsNod6XC1KCcoiYeJ0eHuyfbLwxD3Zxt6rmR0RCUqgn99N3vNptVpJT09v94GOiISRerKJSBugAhciEl7qySYirUw/XUQk/NSTTURaUbPq7IiIBEw92USklSjYEZGWo55sItIKmvQrVWlpKX/961+ZN28eJSUlAKxfv579+/eHdHAi9bndHvaWVLG10Mbekirc7iZ3OhERkQ4k6JmdjRs3Mm7cOKxWK7t27eK6664jJSWFt99+mz179vC3v/0tHOOUDm57cTn/yitix4EK7E4XMVEmTu6awIRT08hObWQ7s4iIyE+CntmZO3cuV199NT/88AMxMTG+45MmTeLTTz8N6eA6PLcbDu+Gos3erx20nP724nKWfLGLvPwykuPM9O6SQHKcmbz8MpZ8sYvtxeWtPcRj0myUiEjrC3pm5+uvv+bZZ59tcLxbt24UFhaGZFCCOkQDDqcbt9vDPzcVcrC8huzUBAwGAwBxlih6d4lne3EFSzcVMntMAkajoZVH7E+zUSIibUPQwU50dDQ2m63B8e+//15d0ENFHaIBWLRyO7bqWlb/eIgYs4mSKgf5pdUAZCbHYjQYqHG62L2pip+f1o2slLhWHvERdbNRJZUOMqwxxFliqXI4ycsvI7+smpkjezYIeNxuD/tLq6l0OIm3RNEtObbNBXAiIu1R0MHOlClT+N3vfsfrr78OeHtj7dmzh7vuuotp06aFfIAditMBHveRDtFd+np7CcGRDtEHt3k7RJ99C5hjjnu7SOBwuXG63JhjojAaDJzUyT+gMZuMVNQ4qXQ4W2xMxwtKmjobpVkgEZHwCTrYefTRR7n00ktJTU2lurqac889l8LCQnJycpg/f344xthxBNMhuuoQXLiwVYcbbrljstl3uIqKGiedYi0kxDT8z7XcXktpdS3xFv9z4ZolOVFQcvRsVGl1bYN7HD0b1ZRZIBERCVzQwY7VauXjjz/miy++4Ntvv6WiooLTTz+dcePGhWN8HU+gHaKdjtYZXwuyRBnp2TmeU1ITycsvIyn2yCwJgMfjobi8hkHdrHRLjvUdD9csSSBBCfjPRrk9ngZLb3WzUaVVtXRNcAU0C3T96DhiLKYmj11EpCNrclHBkSNHMnLkyFCORUbf5u0Q7ag4cYfonNyWH18rMBoNTDg1jfyyan4oriDDGkOsxUS1w0VBmZ2UeAvjB6b5LQeFepYkmKWpm849mfyy6oBmo95evw8goFmgw5UO7p8yMNi/PhERoQnBzi233EJ2dja33HKL3/Gnn36a7du388QTT4RqbB1P/Q7RBRshxnokZwfA4/F2iM4c4r2ug8hOTWTmyJ6+2Zoim53oKBODulkZP9A7WxNMQBLsLEmwidKBzkbZa10cqnQENAvkcHXMsgMiIqEQdLDz1ltv8f777zc4fvbZZ/Pwww8r2Gmuug7RZfu9HaGTuoElDhxVYNvfYTtEZ6cm0vu8hGPm4QQTkDRlliSYROlAZ6O6p8QHnJM0a1SvJv7NiYhI0MHOoUOHsFqtDY4nJSVx8ODBkAyqw6vrEF1XZ6c831tnJ3OIN9DpANvOG2M0Go67vTzQgCTYWZKmJEoHMhsFBDwL1LNzfFBjFhGRI4IOdrKzs1m2bBmzZ8/2O/7RRx/Ru3fHWVoJO3WIDkowAUmwsyRNTZQ+0WwUBJ+TJCIiwQs62Jk7dy6zZ8/mwIEDjB07FoAVK1bw6KOPagkr1NQhOmDBBCRHz5IEsk29qUHJiWajIPBZIBERaRqDx+MJulnPM888w/z588nPzwegZ8+ePPDAA1x11VUhH2BLsNlsWK1WysrKSEpKau3hSDMcvRvr6IDk6N1YwW5Tr399jdNFdJSJ7NSEkAQlqqAsIhKcQD+/mxTs1Dlw4ACxsbEkJCQ09RZtgoKdyBJoQNJwm3oUVQ7nMQOjOgpKRETahkA/v5tcZwdQLyxpkwLJlbE7ml7ML5ClKRERaTuCDnaKioq4/fbbWbFiBcXFxRw9MeRyuUI2OJGmOlFAsnDZ1rBtU5cQcbuVoC8iIRF0sHP11VezZ88efvvb35KRkeGXBCrSXoRrm7qEyIFtR0ovOO3e0gtd+nhrUHXQ0gsi0nRBBzuff/45n332GUOHDg3DcERaxqxRvVTMr606sA3WLPY2u7V2A3M81FZ6q4qX7ffWoFLAIyJBCHpOOCsrq8HSlUh7U7dNvajcjtEAJqPB9zAaoLi8hr5piSrm15KcDqi1w+Z3ofKAt86U+ae/f3O893nlAdjynneJS0QkQEHP7DzxxBPcfffdPPvss/Ts2TMMQxIJPxXza4M+exTspbDzMzDHemd2yvZ6z1mzvH3inDVQ8iMMvkw1qEQkYEEHO5dddhlVVVWcfPLJxMXFYTab/c6XlJSEbHAi4aRifm2Q0wFuJ5jM3uAmubv/eZMZasq9ScsiIgFq0syOSKQIZJu6tJDRt0HpHm8gE5sC0Y0EmzU2qD7s3Z0lIhKgoIOdGTNmhGMcIq1GdXPaiCgLpPT2Jh8XbIQYq3d2p47HA+WF3oa41qzWG6eItDvNKipot9txOBx+x1SBWESazGj0bi8v2w8HtkJSN7DEgaMKbPshvjP0+5nq7YhIUIL+iVFZWcns2bNJTU0lPj6eTp06+T2C8emnnzJ58mQyMzMxGAy8++67fuevvvpqDAaD32PixIl+15SUlHD55ZeTlJREcnIys2bNoqKiDa/nu91weDcUbfZ+7eC7StxuD3tLqthaaGNvSRVut3b6dXhd+3q3l2cMhuoSOLTd+zVzCAzXtnMRCV7QMzt33nknK1eu5JlnnuHKK69k0aJF7N+/n2effZaHH344qHtVVlYyZMgQrrnmGi655JJGr5k4cSJLlizxPY+OjvY7f/nll1NQUMDHH39MbW0tM2fO5Prrr+fll18O9q2Fnwql+Qm2CaccEfH9ubr29W41VwVlEQmBoBuBdu/enb/97W+cd955JCUlsX79erKzs/n73//OK6+8wtKlS5s2EIOBd955h6lTp/qOXX311ZSWljaY8anz3XffMWDAAL7++mvOOOMMAJYtW8akSZPYt28fmZmZAb12izQCPVahtLL9ENe5wxVKa2oTTlGQKCJSJ9DP76B/TSopKaF3796ANz+nbqv5qFGj+PTTT5s43GNbtWoVqamp9O3bl5tuuolDhw75zq1evZrk5GRfoAMwbtw4jEYjX331VcjH0iQqlObH4XT7NeHs3SWeOIt3grGuCefB8hqWbirUklYj6oLEvPwykuPM9O6SQHKcmbz8MpZ8sYvtxeWtPUQRkTYn6GWs3r17s3PnTrp3706/fv14/fXXOeuss/jggw9ITk4O6eAmTpzIJZdcQq9evdixYwe/+c1vuPDCC1m9ejUmk4nCwkJSU1P9vicqKoqUlBQKCwuPed+amhpqamp8z202W0jH7efoQmnVjdQh6kCF0hat3I6tutbXhLO0urbBNXVNOH9+WjftkqqnOZ3aRUQ6sqCDnZkzZ/Ltt99y7rnncvfddzN58mSefvppamtreeyxx0I6uOnTp/v+PGjQIAYPHszJJ5/MqlWrOP/885t83wULFvDggw+GYoiBqV8ozeNpWBW2gxVKq9+E0+3xNOg4XteEs9LhbOWRti3q1C4i0jRBBztz5szx/XncuHFs3bqVdevWkZ2dzeDBg0M6uKP17t2bLl26sH37ds4//3zS09MpLi72u8bpdFJSUkJ6evox7zNv3jzmzp3re26z2cjKClPdjg5WKO1EibO5Y7LZd7gqoCac8ZZmVUaIOOrULiLSNM3+NOnRowc9erTM0su+ffs4dOgQGRkZAOTk5FBaWsq6desYNmwYAP/5z39wu90MHz78mPeJjo5usKsrbDpQobRAEmctUUZfE868/DKSYo8sxwB4PB6Ky2sY1M1Kt+TY1norbZI6tYuINE1Awc5TTz3F9ddfT0xMDE899dRxr73lllsCfvGKigq2b9/ue75z5042bNhASkoKKSkpPPjgg0ybNo309HR27NjBnXfeSXZ2NhMmTACgf//+TJw4keuuu47FixdTW1vL7NmzmT59esA7sVpEByiU1nB3VSxVDid5+WXkl1X77a5SE86mCTRIbKxTe8RvVRcROY6Atp736tWLb775hs6dO9Or17F/azQYDPz4448Bv/iqVasYM2ZMg+MzZszgmWeeYerUqfz3v/+ltLSUzMxMxo8fz0MPPURaWprv2pKSEmbPns0HH3yA0Whk2rRpPPXUUyQkBL4k1CJbz6HxOjtdT/EGOu1427nd4eLZz35ky/4yv8RZ8H4Iby+uYGA3K9eP7u2XOFt/JqjG6SI6ykR2aoKacB7H0UHl0UFiY1v2tVVdRCJVoJ/fQdfZiUQtFuyAd3t5hBVKe/D9zb7E2eiohu+lxunCXusmp3fnBomzmnEIXjBBouoZiUgkC/TzO6icndraWvr168eHH35I//79mz3IDsloDM/28lYMogLdXdVY4qyacAYvkE7tDqcbt9sT0Fb12WMSFGCKSEQLKtgxm83Y7fZwjUWaqpXbUChxtuWdKEhUPSMRkSOC/tU/NzeXhQsX4nSqBkqbUNeGomAjxKV4KzLHpXifr1nsPR9mdYmzReV2jAYwGQ2+h9EAxeU19E1LbDRxVsLHN+NmMuD2eNh3uIp9h6tw/7RybTYZcbrdqmckIhEv6K3nX3/9NStWrODf//43gwYNIj7e/wPs7bffDtng5ATqt6Ho0vfIlva6NhQHt3nbUJx9C5hjwjYM7a5qe1TPSETkiKB/yiUnJzNt2rRwjEWCtfz+I20oqg41rMxc14ai6hBcuDCsQ8lOTWTmyJ6+xNkim53oKBODulm1u6oVqJ6RiMgRQQc7S5YsCcc4pCnqt6EwGCC5u//5ujYUTkeLDCeQxFlpOZpxExHx0vx1e5aTG1gbipzcFhuSdle1LU2ZcVM5ABGJNE0Kdt58801ef/119uzZg8PhP2uwfv36kAxMAhBoG4qU3q03Rml1wcy4qQChiESioHdjPfXUU8ycOZO0tDT++9//ctZZZ9G5c2d+/PFHLrzwwnCMUY6lrg1FXGdvGwq7zbusZbd5n0dAGwoJjboZt37pSWSlxB0z0FnyxS7y8stIjjPTu0sCyXFm8vLLWPLFLrYXl7fCyEVEmi/oT8E///nP/OUvf+FPf/oTFouFO++8k48//phbbrmFsrKycIxRjqdrXxhxI2QMhuoSOLTd+zVzCAy/sV23oZCW4XC6sTtcvgKEvbvEE/fTDq26AoQHy2tYuqkQu8Pl971ut4e9JVVsLbSxt6QKt7vDF2QXkTYo6GWsPXv2cPbZZwMQGxtLebn3t70rr7ySESNG8PTTT4d2hHJiXft6t5pHWBsKaRlHFyAsqXI0qIJdV4DwcKXD1/KjTS15RWAbFhEJnaCDnfT0dEpKSujRowfdu3dnzZo1DBkyhJ07d6I2W60oXG0opEOo3/LDaDBwUif/JPOjW34E0+U+7Fq5griItH1BBztjx47l/fff57TTTmPmzJnMmTOHN998k2+++YZLLrkkHGMUkTAKpgDhrFG9/Ja8jtdz6/rRcX5d7sOiroJ41SGwdvMW1Kyt9Cbtl+33LvEq4BHp8IIOdv7yl7/gdnt/u8vNzaVz5858+eWXTJkyhRtuuCHkAxSR8AqmAGHPzvE89OGWoJe8Qs7pAI+7TVQQF5G2L+hgx2g0Yqy3Fj59+nSmT58e0kGJSMsKpgBhsEteYfHZo2AvPVJBvLqk4TUtWEFcRNq2oIOd7OxsrrjiCn79619zyimnhGNMItIKAi1A2Ga63NevIO7xNGyX0sIVxEWk7Qo62MnNzeXll1/moYce4vTTT+eKK67gsssuIz09PRzjE5EWFEgBwmCWvMJm9G1QuqfNVRAXkbYp6L2Zc+bM4euvv+a7775j0qRJLFq0iKysLMaPH8/f/va3cIxRRFrQiQoQ1i15pcRb+KG4gnJ7LU63m3J7LT8UV7RMz60oy5EK4uUFYDCC0XTkYTB6K4in9lMFcRHB4AnBfvE1a9Zw0003sXHjRlwu14m/oY2x2WxYrVbKyspISkpq7eGItAv16+zUOF1ER5nITk1o2S739XdjJXUDSxw4qsC231tBXIU1RSJaoJ/fzWoEunbtWl5++WVee+01bDYbv/jFL5pzOxFpR9pEl/u6CuJ1dXbK8711djKHeFulKNAREZoQ7Hz//fe89NJLvPLKK+zcuZOxY8eycOFCLrnkEhISEsIxRhFpo9pEl3tVEBeREwg62OnXrx9nnnkmubm5TJ8+nbS0tHCMS0QkcKogLiLHEXSws23bNvr06ROOsYiIiIiEXNDBTl2gs27dOr777jsABgwYwOmnnx7akYmIiIiEQNDBTnFxMZdddhmffPIJycnJAJSWljJmzBheffVVunbtGuoxioiIiDRZ0Bl8N998MxUVFWzevJmSkhJKSkrIy8vDZrNxyy23hGOMIiIiIk0WdJ0dq9XK8uXLOfPMM/2Or127lvHjx1NaWhrK8bUI1dkRaRlut6d1t6qLSEQJW50dt9uN2WxucNxsNvu6oUtk0QeUhEL9IoR2p4uYKBMnd01gwqktWIRQRDqkoIOdsWPH8r//+7+88sorZGZmArB//37mzJnD+eefH/IBSuvSB5SEwvbicpZ8sYuSSgcZ1hjiLLFUOZzk5ZeRX1bNzJE99d+TiIRN0Dk7Tz/9NDabjZ49e3LyySdz8skn06tXL2w2G3/605/CMUZpJXUfUHn5ZSTHmendJYHkODN5+WUs+WIX24vLW3uI0sY5nG7sDhf/3FTIwfIaeneJJ87i/R0rzhJF7y7xHCyvYemmQtzuZneuERFpVNAzO1lZWaxfv57ly5ezdetWAPr378+4ceNCPjhpHQ6nG7fb4/uAyk490tm67gNqe3EFSzcVcv3oOGIsplYesbRVi1Zux1Zdy+ofDxFjNlFaXdvgmhqni92bqvj5ad1avxqziESkJvXGMhgMXHDBBVxwwQWhHo+0AUd/QJVUOcgvrQYgMzkWo8Hg+4A6XOng/ikDW3nE0pY5XG6cLjfmmCjcHk+D/5bMJiMVNU4qHc5WHqmIRKqAg53//Oc/zJ49mzVr1jTIeC4rK+Pss89m8eLFjB49OuSDlNA7UdJx/Q8oo8HASZ38f+Ou+4ByuJSULseWOyabfYerqKhx0inWQkJMwx855fZaSqtribc0qy+xiMgxBfzT5YknnuC6665rdGuX1Wrlhhtu4LHHHlOw0w6cKOk4mA+oWaN6tcI7kPbCEmWkZ+d4TklNJC+/jKTYI0uiAB6Ph+LyGgZ1s9ItObYVRyoikSzgBOVvv/2WiRMnHvP8+PHjWbduXUgGJeETSNJx/Q+oonI7RgOYjAbfw2iA4vIa+qYl0rNzfGu/JWnjjEYDE05NIyXewg/FFZTba3G63ZTba/mhuIKUeAvjB6apnIGIhE3AwU5RUVGj9XXqREVFceDAgZAMSkIv2F0x+oCSUMpOTWTmyJ6cmmmltKqWXQcrKa2qZVA3q7adi0jYBbyM1a1bN/Ly8sjOzm70/MaNG8nIyAjZwCS0gkk6rtsVU/cBVbfkVWSzEx1lYlA3K+MHqs6OBCc7NZHe5yWoQKWItLiAg51Jkybx29/+lokTJxITE+N3rrq6mvvvv5+f/exnIR+ghE6gScf1d8XoA0pCyWg0aHu5iLS4gHtjFRUVcfrpp2MymZg9ezZ9+/YFYOvWrSxatAiXy8X69etJS0sL64DDoSP0xnI43ew7XMWTK344YdLx7eP76gNJRETavJD3xkpLS+PLL7/kpptuYt68edTFSAaDgQkTJrBo0aJ2Geh0FNoVIyIiHVVQhS169OjB0qVLOXz4MNu3b8fj8dCnTx86deoUrvFJCNUlHeeXVfNDcQUZ1hhiLSaqHS4KyuxKOhYRkYgU8DJWJOsIy1j11a+zU+N0ER1lIjs1QUnHIiLSroR8GUsih5KOpT04UZVvEZFAKdjpoLQrRtqyE1X5FhEJhoIdEWlT6qp8l1Q6yLDGEGeJpcrhJC+/jPyyahUhFJGgBVxBWUQknIKt8i0iEqgmBTt///vfGTlyJJmZmezevRvwNgp97733grrPp59+yuTJk8nMzMRgMPDuu+/6nfd4PNx3331kZGQQGxvLuHHj+OGHH/yuKSkp4fLLLycpKYnk5GRmzZpFRUVFU96WiLSiRSu3s3DZVj7aVEBReQ3f7D7M17tKfI9vdh+mqNzO0k0F7P+p+reISCCCDnaeeeYZ5s6dy6RJkygtLcXlcgGQnJzME088EdS9KisrGTJkCIsWLWr0/COPPMJTTz3F4sWL+eqrr4iPj2fChAnY7XbfNZdffjmbN2/m448/5sMPP+TTTz/l+uuvD/ZttUlut4e9JVVsLbSxt6RKv81KxPNV+TYZcHs87Dtcxb7DVbh/2jRqNhlxut1+Vb5FRE4k6K3nAwYM4A9/+ANTp04lMTGRb7/9lt69e5OXl8d5553HwYMHmzYQg4F33nmHqVOnAt5ZnczMTG677TZuv/12AMrKykhLS+OFF15g+vTpfPfddwwYMICvv/6aM844A4Bly5YxadIk9u3bR2ZmZkCv3Ra3nitBUzoaVfkWkWAF+vkd9MzOzp07Oe200xocj46OprKyMtjbHfd1CgsLGTdunO+Y1Wpl+PDhrF69GoDVq1eTnJzsC3QAxo0bh9Fo5KuvvjrmvWtqarDZbH6PtqQuQTMvv4zkODO9uySQHGcmL7+MJV/sYntxeWsPUSTk6lf5Liq3YzSAyWjwPYwGKC6voW9aoqp8i0hQgg52evXqxYYNGxocX7ZsGf379w/FmAAoLCwEaNCCIi0tzXeusLCQ1NRUv/NRUVGkpKT4rmnMggULsFqtvkdWVlbIxt0cwSRo2h2uVh6tSOjVVflOibfwQ3EF5fZanG435fZafiiuUJVvEWmSoLeez507l9zcXOx2Ox6Ph7Vr1/LKK6+wYMEC/vrXv4ZjjCE3b9485s6d63tus9naRMCzaOV2bNW1rP7xEDFmEyVVDvJ/SsTMTI7FaDBQ43Sxe1MVhysd3D9lYCuPWCT0slMTmTmyp28Zt8hmJzrKxKBuVlX5FpEmCTrYufbaa4mNjeXee++lqqqKX//612RmZvLkk08yffr0kA0sPT0d8HZbz8jI8B0vKipi6NChvmuKi4v9vs/pdFJSUuL7/sZER0cTHR0dsrGGki9BMyYKo8HASZ388xLMJiMVNU4cLncrjVAk/FTlW0RCqUlFBS+//HIuv/xyqqqqqKioaLCUFAq9evUiPT2dFStW+IIbm83GV199xU033QRATk4OpaWlrFu3jmHDhgHwn//8B7fbzfDhw0M+pnDLHZPNvsNVVNQ4T5igOWtUr1YYoUjLUZVvEQmVoHN2xo4dS2lpKQBxcXG+QMdmszF27Nig7lVRUcGGDRt8OUA7d+5kw4YN7NmzB4PBwK233srvf/973n//fTZt2sRVV11FZmamb8dW//79mThxItdddx1r167liy++YPbs2UyfPj3gnVhtSTAJmj07x7f2cEVERNqFoGd2Vq1ahcPhaHDcbrfz2WefBXWvb775hjFjxvie1+XRzJgxgxdeeIE777yTyspKrr/+ekpLSxk1ahTLli0jJibG9z0vvfQSs2fP5vzzz8doNDJt2jSeeuqpYN9Wm1GXoJlfVs0PxRVkWGOItZiodrgoKLMrQVNERCRIAdfZ2bhxIwBDhw7lP//5DykpKb5zLpeLZcuW8eyzz7Jr166wDDSc2nqdnRqni+goE9mpCUrQFBER+Umgn98Bz+wMHToUg8GAwWBodLkqNjaWP/3pT00brTSgBE0REZHQCDjY2blzJx6Ph969e7N27Vq6du3qO2exWEhNTcVkMoVlkB2VEjRFRESaL+Bgp0ePHgC43dry3Bxut0ezNSIiIi0o6ATlv/3tb8c9f9VVVzV5MJFO/a5ERERaXtCNQDt16uT3vLa2lqqqKiwWC3FxcZSUlIR0gC2hJRKU6/pdlVQ6yLDGEGeJosrh9O2wmjmypwIekSbSjKlIxxTyBOU6hw8fbnDshx9+4KabbuKOO+4I9nYRz+F043Z7fP2uslMTMBi8P4Tr+l1tL65g6aZCZo9J0A9okSBpxlRETiTomZ1j+eabb7jiiivYunVrKG7XosI5s/P4x9/79buKjmpYx7HG6cJe6+b/XXWGEpJFgqAZU5GOLdDP76ArKB9LVFQU+fn5obpdRPH1uzIZcHs87Dtcxb7DVbh/ijPNJiNOt5tKh7OVRyrSPjicbuwOl2/GtHeXeOIs3onquhnTg+U1LN1UiN3hauXRikhrC3oZ6/333/d77vF4KCgo4Omnn2bkyJEhG1ikCKbfVbylSa3KRDqcRSu3+82YllbXNrimxuli96YqDlc6uH/KwFYYpYi0FUF/utb1papjMBjo2rUrY8eO5dFHHw3VuCJG/X5XefllJMUeydkBb7BYXF7DoG5WuiXHtuJIRdoX34xpI79AgHfGtKLGicPVzHIZbjeU7QVHBVgSwJoFxpBNiotICwg62FGdneC1RL8r7UaRjiSYGdNZo3r5nwgmeDmwDb77AA7+AE47RMVAlz7QfzJ07RuGdyYi4aB1kxaSnZrIzJE9fbtGimx2oqNMDOpmbXa/K+1GkY4mmBnTnp3jj3xjMMHLgW2wZjFUHQJrNzDHQ20lFGyEsv0w4kYFPCLtREDBTl038kA89thjTR5MpAtHv6uGu1FiqXI4ycsvI7+sWrtRJGIFPWMaaPDidIDHDZvfhcoD0KUv1AVS5njo3AcOboMt78Ho27WkJdIOBBTs/Pe//w3oZvV/s5LGhbLfVf3dKMer33P96DhiLOpbJpEn4BnTWntgwcvZt8Dnj4O9FHZ+BuZYqG6kUKqzBkp+hMGXQaceLfV2RaSJAgp2Vq5cGe5xSBMsXLZVu1GkwwtoxnT5/YEFL1WHICbZO7vjdoLJ3PiLmsxQU+7N+xGRNq9ZOTv79u0D4KSTTgrJYCQ49XejuD0e8kurAchMjsVoMIRuN4pIG3fCGdNAgxenA0bfBqV7vIFMbApEN7IMXGOD6sPeBGcRafOatBvr97//PY8++igVFd7fahITE7ntttu45557MGr9usXMGtWrabtRRDqanNzAgpecXIiyQEpvb/5OwUaIsR5Z9gLweKC8EDKHeHdy1adt6iJtUtDBzj333MNzzz3Hww8/7Csi+Pnnn/PAAw9gt9uZP39+yAcpjWvSbhSRjijQ4CWlt/eY0ejdoVW2Hw5shaRuYIkDRxXY9kN8Z+j3M/9ARtvURdqsoHtjZWZmsnjxYqZMmeJ3/L333uN//ud/2L9/f0gH2BJaout5uBy9G+vo3SjajSXyk/q7sRoLXoY3spW8sQCm6yneQKf+tcfa6VW2H+I6a5u6SJgE+vkddLATExPDxo0bOeWUU/yOb9u2jaFDh1JdXd20Ebei9hzsgH+dnRqni+goE9mpCc2u3yMScQINXuo73tJU3Tb1L56Ewk3+O73AO2t0cBtkDNY2dZEwCPTzO+hlrCFDhvD000/z1FNP+R1/+umnGTJkSPAjlWYLR/0ekYjUta93q3kweTVG47G3l3/2qLapi7QDQQc7jzzyCBdddBHLly8nJycHgNWrV7N3716WLl0a8gFKYEJZv0ckoh0veGmKpm5TVzKzSIsJOtg599xz+f7771m0aBFbt24F4JJLLuF//ud/yMzMDPkARUTarKZuU1cys0iLalKdnczMTO26EhFpyjZ19dwSaXFBz5kuW7aMzz//3Pd80aJFDB06lF//+tccPnw4pIMTEWnz6rapx3X2blO327zLWnab93ndNnW3079tRec+3kAHjrStqDzgbVtRa2/VtyQSaYLejTVo0CAWLlzIpEmT2LRpE2eccQa33XYbK1eupF+/fixZsiRcYw2b9r4bS0TagBPt9Fq5wD+ZOSq64T2cNVBbDb1Gw4ULW/wtiLQ3YduNtXPnTgYMGADAW2+9xeTJk/nDH/7A+vXrmTRpUtNHLCLSngWy0yuYthX1KZlZpFmCDnYsFgtVVVUALF++nKuuugqAlJQUbDZbaEcnItKeHG+nVzDJzDm5R44pmVmk2YIOdkaNGsXcuXMZOXIka9eu5bXXXgPg+++/V0NQEZFjCSaZua5thZKZRUIi6HnQp59+mqioKN58802eeeYZunXrBsBHH33ExIkTQz5AEZGIEWgys9GoZGaREAo6QTkSKUFZRFpUIG0rPrpLycwiJxC2BGUAl8vFO++8w3fffQdA//79mTp1KlFRTbqdiEjHEs5kZhFpIOjoZPPmzUyePJmioiL69vX+BrJw4UK6du3KBx98wKmnnhryQYqIRJwTta3IyQ0+mVlEGhV0zs61117Lqaeeyr59+1i/fj3r169n7969DB48mOuvvz4cYxQR6XjqkpnLC8BgBKPpyMNg9CYzp/Y7kswsIscU9MzOhg0b+Oabb+jUqZPvWKdOnZg/fz5nnnlmSAcnItJh1SUzl+33Ji8ndQNLHDiqwLbfP5lZRI4r6P9LTjnlFIqKihocLy4uJjs7OySDEhERvDM7I26EjMFQXQKHtnu/Zg6B4cfZdu52w+HdULTZ+9Xtbtlxi7QxAc3s1C8WuGDBAm655RYeeOABRowYAcCaNWv43e9+x8KF2hEgIhJSgSQz16cihCINBLT13Gg0YqhX/KruW+qO1X/ucrnCMc6w0tZzEYkIxypCWLbfW9tHRQglwoR06/nKlStDNjAREQkxpwM87iNFCLv0PVKdua4I4cFt3iKEo29Xno90OAEFO+eee25AN8vLy2vWYEREpAk+e9S/o3p1ScNrnDVQ8iMMvuz4W95FIlCzw/vy8nL+8pe/cNZZZzFkyJBQjElEJGzcbg97S6rYWmhjb0kVbvfxV/KDvb7VBFKE0O305v2IdDBNLnn86aef8txzz/HWW2+RmZnJJZdcwqJFi0I5NhGRkNpeXM6/8orYcaACu9NFTJSJk7smMOHUNLJTGxbuC/b6VhNMR3VLgv9xtzvw5GeRdiqoYKewsJAXXniB5557DpvNxi9/+Utqamp49913GTBgQLjGKCLSbNuLy1nyxS5KKh1kWGOIs8RS5XCSl19Gflk1M0f29Atggr2+VQXTUd2adeS4dm5JBxFw+D558mT69u3Lxo0beeKJJ8jPz+dPf/pTOMcmIhISdoeLf24q5GB5Db27xBNn8f6eF2eJoneXeA6W17B0UyF2hwuH0x3w9W1qSSuYjupwZOdWwUaIS/EmMceleJ+vWew9LxIhAp7Z+eijj7jlllu46aab6NOnTzjHJCISUguXbWX1j4eIMZsora5tcL7G6WL3pioOVzpIijVjq671XV9S5SC/tBqAzORYjAaD7/qfn9aNrJQ4333cbg/7S6updDiJt0TRLTkWo9HQ4PXCpq4IYd1sTXm+d7Ymc8iRjurB7Nw6+xYwx7Tc+EXCJOBg5/PPP+e5555j2LBh9O/fnyuvvJLp06eHc2w88MADPPjgg37H+vbty9atWwGw2+3cdtttvPrqq9TU1DBhwgT+/Oc/k5aWFtZxiUj74nC5cbrcmGMa/5FnNhmpqHHicLkbXG80GDipU1yj11c6nL5jbSa/50RFCI/euVV1yHsteK8zGI7s3Ko6BBfWKxar/B5ppwIOdkaMGMGIESN44okneO2113j++eeZO3cubrebjz/+mKysLBITQ/8/9MCBA1m+fPmRAUcdGfKcOXP45z//yRtvvIHVamX27NlccsklfPHFFyEfh4i0X7NG9aKixkmnWAsJjQQ85fZaSqtrmTWqFyd1imPf4aqAro//aXmrzeX3nKijev2dWwYDJHf3P28yQ02597o6yu+Rdizo3Vjx8fFcc801XHPNNWzbto3nnnuOhx9+mLvvvpsLLriA999/P7QDjIoiPT29wfGysjKee+45Xn75ZcaOHQvAkiVL6N+/P2vWrPG1shAR6dk5nlNSE8nLLyMpNqFBRfji8hoGdbPSs3M8RqMh4Ou7JkT75fdkpx65ti6/Z3txBUs3FTJ7TILfklarLXkFs3MrJ9f7/FiVmQs2eqszqzKztHFN3noO3iWlRx55hAULFvDBBx/w/PPPh2pcPj/88AOZmZnExMSQk5PDggUL6N69O+vWraO2tpZx48b5ru3Xrx/du3dn9erVxw12ampqqKmp8T2v3/tLRCKP0Whgwqlp5JdV80NxBRnWGGItJqodLgrK7KTEWxg/MM0XbAR6/TOf7GhSfk+rLnkFs3MrpTfU2pXfI+1es4KdOiaTialTpzJ16tRQ3M5n+PDhvPDCC/Tt25eCggIefPBBRo8eTV5eHoWFhVgsFpKTk/2+Jy0tjcLCwuPed8GCBQ1ygUQksmWnJjJzZE9fkFFksxMdZWJQNyvjBzYMMgK7viDo/J42seRVt3OrbL93p1ZSN7DEgaMKbPv9d2796/7AKjMfnd8j0oaEJNgJlwsvvND358GDBzN8+HB69OjB66+/TmxsbJPvO2/ePObOnet7brPZyMrKOs53iEgkyE5NpPd5CQEvH53o+twx2QHn91hMxoCXvK4fHUeMxeS7R1iWvALZuQWBVWY+Or9HpI1p08HO0ZKTkznllFPYvn07F1xwAQ6Hg9LSUr/ZnaKiokZzfOqLjo4mOjo6zKMVkbbIaDT4bRdvzvWWKGPA+T3v/nc/5XZnwFvg758yEAjzkteJdm6BN28nmPwekTaoXe0ZrKioYMeOHWRkZDBs2DDMZjMrVqzwnd+2bRt79uwhJyenFUcpIh1JXX5PSryFH4orKLfX4nS7KbfX8kNxhS+/x2AwHFnyMjU+K2M2GXG63b4t8HVLXnn5ZSTHmendJYHkODN5+WUs+WIX24vLQ/EGvDu30gZ6vx69lbwuv6e8AAxGMJqOPAxGb35Paj/vdSJtVJue2bn99tuZPHkyPXr0ID8/n/vvvx+TycSvfvUrrFYrs2bNYu7cuaSkpJCUlMTNN99MTk6OdmKJSIsKJL8nd0x8wEtes0b1avKSV8gFk98j0ka16WBn3759/OpXv+LQoUN07dqVUaNGsWbNGrp27QrA448/jtFoZNq0aX5FBUVEWtqJ8nuCWfLq2Tmehz7cEtAur/pLXmETaH7P0VSEUNqINh3svPrqq8c9HxMTw6JFi9RtXUTahBPlAwWzBT7QXV51S171hS2h+UT5PfWpCKG0IW062BERiTSBboEPpupzfWFNaD5RZeY6KkIobYyCHRGRFhbIFvhglrzqtHoNn2CajI6+XUta0mIU7IiItIKQLnk53bjdntZvW3F0k9HjFSEcfFlgs0QiIaBgR0SkjQp0yWvRyu1+bSuOV8Mn7G0r6hch9HgadlSvK0LoqGja/UWaQMGOiEgbFmjV5/oJzY1pkbYVwTQZtST4H9fOLQkjBTsiIm3ciZa8WqptxQkF02TUWq9Fj3ZuSZgp2BERaedaom0FBJjfE2wRQu3ckhagYEdEJAIEmtD8wbcFAS951a/hE1R+TyBFCLVzS1qQgh0RkQgRjrYV0MT8nhMVIdTOLWlBCnZERCJIqNtWNCu/50RFCOvv3GqMdm5JiCjYERGJMKGs4bNw2dYm5feckHZuSQtSsCMi0gEFWsOnKfk9AdHOLWlBCnZERDqoQGr4NLVHFwSwe0s7t6SFKNgREenATrTk1ZQeXRDE7q1Q79w6+xYwx4Tyr0gigIIdERE5pmDye+oEvXsr2J1bVYcatqGo27lVdQguXNhyf0HSLiijS0REjqsuv+fUTCulVbXsOlhJaVUtg7pZ/QIXh9Ptt3urd5d44ize36nrdm8dLK9h6aZC3G6P/4vU7dxKG+j9enTCcf2dWwYDJHf3PupmeExm73mnw//73G44vBuKNnu/uoPMLZKIoJkdERE5oUDye5rakBROkN8TzM6tnNwjx5TMLD9RsCMiIgE5UX4P+O/ecns85JdWA5CZHIvRYGjQkBQCyO8JZudWSm/vMSUzSz0KdkREJCSCaUga/9PyVsD5PcHs3Kq1K5lZ/CjYERGRkAimOnPXhOiAqzPPHpPgXdIKZOcWwPL7A2tDoWTmDkPBjoiIhEygu7ee+WRH0/J7uvbFnZJN4d7t1FSWEh2fTHpWNkZTvVYVgbahODqZWSKWgh0REQmpwKozFzQzv6cauzOKmKhqTv5xp3/9npzc4JOZ66gVRURSsCMiIiF3ot1bYc3vCTaZuY52b0UshasiIhIWdbu3+qUnkZUS57dNvX5+T1G5HaMBTEaD72E0QHF5DX3TEhvk9xyvfo/d4TqSzBzX2ZvMbLd5l7XsNu/zo9tQwJHdWwUbIS7Fm8gcl+J9vmax97y0W5rZERGRVhGO/B5f9/WfkpndWz6guuA7XA47JksMsZlDMPavl8wcTCuK0bf7B0ha8mo3FOyIiEiraUp+T2Ma676+3ZPJv5xTKKkdiMFZgceQQErtyUzwZJBdd1EwrSgGX+at7gxa8mpnFOyIiEirCmV+T133db/8nuTuxFqivPk9BeXk22r8+3M11oqivrrdW44K73MVLGx3FOyIiEirO1515mDq9/TsHB9w/Z7rR8cRE0wrClN04AULj17yklalYEdERNq8YLqvL1y2Nbj8nnq7tzzRSdhqXNS63JhNRpKiTRjqdm9tfB1qygIrWFh/yQuU39PKFOyIiEi7EFh+D8Hn9/y0e6u0aBcHv1vHflcKVViIw0E3Uwld0jJJ7vczyHs78IKFdUteoPyeNkDBjoiItBuBdF+fNapXUPk94E1m/tA5gZ7ulfQy7CeNWmowk+fuxS7nefzMk0n2UUteHksCthontU435igjSdFRGBzl3iUvS4L3xsrvaRMU7IiISLtyou7rweT3OJxu3G4P/9xUyHe1GdT2uZZiRxEWVxUOUxxlljS2H6jCuKmQ2WOyMf605FW+ax3f1XbjcHUtTrebKKORTrFm+pv3k9jrDEhIU0PSNkTBjoiIRJRg8nsWrfihkRo+MT89AMoa9OjanTqWwm83EmXfhjU+HU90PIbaSkwlhWyJ6UR61zH0+Pxx/y3twTQkVX5PyCnYERGRiBNofg8EnuNTWlVL1wQX7+5PpCT2Ys6P+5rO1bswVR/CZbRwMGUg//GcSef9icw2gLFefo/HAzaniVq3AbPRQ1KUC0NjDUmV3xMWCnZERCQiBZLfE0wNn7fX7wP4aRYonW2myXQxFBNjrMZuiOVgbSp2lwf7pgJ+fvn/kGU4AI4KDnsS+MFm5HCNA6fbQ5TRQKcoC6ckuUm2VhxpSKr8nrDRvJiIiESs4/XnguB6dCXGRB2ZBTIZ8BiMHIhKZ6+5Fwei0vEYjJhNRpxuN5UuA6T05mBcL/bt+ZFiWw0xlig6xUcTY4mi2FbD3j0/cjCul3fre/38ns59vIEOHMnvqTzgze+ptbf8X2IE0MyOiIh0aIHm+HRPiQ94FshiMmJ3eljqPIMens1kG/dR4Umj1hNLvKeaNGMRRa5ENjjP4BdODzEr7vfl93iqShouebmOkd8DyvEJgIIdERHp8ALN8Ql0p9e7/91Pud3J6h9jyI76GSMda8is2ovZ46DSYOF7cw++jBrO9h0x/LhsK/cbvPk9Ja5YtpfHctgRhdMDUQboZHGSHWckxX1Ufg8oxydACnZEREQILMcn0FmgD7490ry0KL4H70V3p4urmBjPT/k9plRcGHBWObzFDUfnYrMdZktJFKXGGBKTozCbjNS63BTbnThq7QxO6UJSXX4P+HJ83FUHqYhOxxGdisVjJ6HgW4zHyvHpoLNACnZERER+cqIaPhDYLFDumMaWvLr47tET/+KG9sRoNjkyiLVvwmA9BcNPAZY5ykSnOCMxZbvY5BjMsMQexDgd4HHD5ncpLyngO2cmh4vtON3V3uTnuK70t+eTeHSPrg48C6RgR0REJEgnmgUKtnnpQx9uYV/JqUxz7cR6aCu7aztRTTRdol10cR+k2JDI2yUDWf6v77k/8X2wl2L74Us2VqVQ6i4g0VWK2eCm1mKluNyEw1DF4LIPSKrr0dXBZ4EU7IiIiDTBiWaBgilu6HC52Uk3liVMZbh9NZmGvZg9ZdR6LOy0ZLM2OoedjnRSXW5cbg9uh4OiKihzxZAS7cSAtz2FBQ8pFielNTEUVRlIqCzBmJAW2CxQ/UrOB7bh3vIB1QXf4XJUY7LEEpvRH+OA9jkLZPB4PJ7WHkRrs9lsWK1WysrKSEpKau3hiIhIBNleXO5b8qpxuoiOMpGdmuCX+PzjgQqeXPGDd8kr2khSTaGvZYUtOp3yGhel1bX87/l9+GD9bijdw8Dti6k0Wak1xTd4TYuzgji3jQEDBpEZU1tvFiiORLMbs8FDrcdAea2RZEMlg+MPk9TnbO9OrwPbKF31Jw4W5bOvXlPUk+qaop53c6MBj9vlonDvdmoqS4mOTyY9KxujyRTWv9tAP781syMiIhJGgSQ+H73kVRnXjcqfzhk9HorLq3xLXm6jmUPmTHYbTmKAZyf7iD/SdwvA46Erh9hs7E0mnejq2HfULJCXxeAhxeL2zQLFOhyYa+0cXPs6BXv3sNuQRWKsmWSTkVqXha3V0fTYuwfn2jfoMv52v35eu7euJ3/Nm0SV/IDRVYPbFM3ulD5kjriUHv1OD/9f8gko2BEREQmzUC551VV9frX8Agbb3mGwp5BySyq1pljMrmoSHcWUxXSlOGkcbxp6YrUXMND1I05TNPmeRmaBjBXsdnViqX08//Ov+zmw+WuKnEmkRBdjqPjpGiAFKKoxYs77D1ZPOeafeev97N66nsKPn8BiP4wjPgPMcVBbheXAJgo/3gfc2uoBT/vMNGrEokWL6NmzJzExMQwfPpy1a9e29pBEREQCVrfL69RMK6VVtew6WElpVS2DulmZObKnb8mrLvnZmnUqS+MvpjihL3EuGyn2vcS5bBQn9OOj+ItJ7n4qCXGxHPhpFijVcxAP4DEYjjyArhxilzGLA+ZMPt9Zhs3upMYF5XYntnqPcrsThwtK7U4+31mGo8aOvaqSfV++RpS9BLv1ZDzmBDwY8ZgTsFtPJspewr7Vr+N2uVr17zYiZnZee+015s6dy+LFixk+fDhPPPEEEyZMYNu2baSmprb28ERERAISyJIXHJkJWlLWh1cqsuibVEaS0Y7NHcO2aiudEmL8qj4HMgt0zeiTeWf5FAaXFeAxJ1FubDgLFOOuoLzWw8YuU4j5x71UVDuIOZTHYUMMrprdDa6vdruJ3rOWwr3byezZeonNETGz89hjj3Hdddcxc+ZMBgwYwOLFi4mLi+P5559v7aGJiIgE5UT9vOrUzQQN7NaJ3a4ufFOdwW5XF049qZNvJiiYWaCeneP5+fmjsCdn08tiIzM5lsxOcUceybH0stiwJ/fh5+ePAsDldhHlceIymBsdo8tgxuRxUVNZGq6/roC0+5kdh8PBunXrmDdvnu+Y0Whk3LhxrF69utHvqampoaamxvfcZrOFfZwiIiKhFkzV5xPNAhmNBnp2SWRNz4kc+v5F0qt3Uh6ddmQWqKaIAk8iFT0n0LNLIidd8XsKd39P4Qe/Iym6E57oxIYDrLERVWMmOj655f5SGtHuZ3YOHjyIy+UiLS3N73haWhqFhYWNfs+CBQuwWq2+R1ZWVksMVUREJOQCmQkKZBao7l5nnTWC9RmXsYVeRNUcJrlqN1E1h9lCb/6bcRlnnjUCo9GAJTqGk04eiKvzKViqCzEABqPxyAOIri7C3fkU0rOyW/Yv5SjtfmanKebNm8fcuXN9z202mwIeERGJaIHmA2WnJvKz88/jX5v6sil/B8baCtzmBDp3O5mfnZrhC4wAjCYTmSMupfDjfVhKf6A2Ph23OR5jbSXmykKcMZ3IGHFp2OvtnEi7D3a6dOmCyWSiqKjI73hRURHp6emNfk90dDTR0dEtMTwREZE2I5DeX/BTYDQmgf2lJx03MAJ+2lZ+q6/OjrmyCLcpmtqug8hQnZ3QsFgsDBs2jBUrVjB16lQA3G43K1asYPbs2a07OBERkXYq0MAIvAFPVp8hLV5BOVDtPtgBmDt3LjNmzOCMM87grLPO4oknnqCyspKZM2e29tBEREQ6BKPJ1Krby48nIoKdyy67jAMHDnDfffdRWFjI0KFDWbZsWYOkZREREel41AgUNQIVERFpjwL9/G73W89FREREjkfBjoiIiEQ0BTsiIiIS0RTsiIiISERTsCMiIiIRTcGOiIiIRDQFOyIiIhLRIqKoYHPVlRqy2WytPBIREREJVN3n9olKBirYAcrLywHU+VxERKQdKi8vx2q1HvO8KijjbRyan59PYmIiBkPDjq7NceaZZ/L111+H9J6t9Xqhvneo7tec+9hsNrKysti7d6+qZ7dRLf3/UFvQnt5zWxlrS46jPf2cDdU92+rPWY/HQ3l5OZmZmRiNx87M0cwOYDQaOemkk8Jyb5PJ1KIfouF8vVDfO1T3C8V9kpKSFOy0US39/1Bb0J7ec1sZa0uOoz39nA3VPdvyz9njzejUUYJymOXm5kbM64X63qG6X0v/HUvL6oj/vu3pPbeVsbbkONrTz9lQ3bOt/Ds3lZaxpENTE1gRkfBqCz9nNbMjHVp0dDT3338/0dHRrT0UEZGI1BZ+zmpmR0RERCKaZnZEREQkoinYERERkYimYEdEREQimoIdERERiWgKdkRERCSiKdgROYYPP/yQvn370qdPH/7617+29nBERCLSz3/+czp16sSll14attfQ1nORRjidTgYMGMDKlSuxWq0MGzaML7/8ks6dO7f20EREIsqqVasoLy/nxRdf5M033wzLa2hmR6QRa9euZeDAgXTr1o2EhAQuvPBC/v3vf7f2sEREIs55551HYmJiWF9DwY5EpE8//ZTJkyeTmZmJwWDg3XffbXDNokWL6NmzJzExMQwfPpy1a9f6zuXn59OtWzff827durF///6WGLqISLvR3J+1LUXBjkSkyspKhgwZwqJFixo9/9prrzF37lzuv/9+1q9fz5AhQ5gwYQLFxcUtPFIRkfarvfysVbAjEenCCy/k97//PT//+c8bPf/YY49x3XXXMXPmTAYMGMDixYuJi4vj+eefByAzM9NvJmf//v1kZma2yNhFRNqL5v6sbSkKdqTDcTgcrFu3jnHjxvmOGY1Gxo0bx+rVqwE466yzyMvLY//+/VRUVPDRRx8xYcKE1hqyiEi7E8jP2pYS1aKvJtIGHDx4EJfLRVpamt/xtLQ0tm7dCkBUVBSPPvooY8aMwe12c+edd2onlohIEAL5WQswbtw4vv32WyorKznppJN44403yMnJCelYFOyIHMOUKVOYMmVKaw9DRCSiLV++POyvoWUs6XC6dOmCyWSiqKjI73hRURHp6emtNCoRkcjSln7WKtiRDsdisTBs2DBWrFjhO+Z2u1mxYkXIp05FRDqqtvSzVstYEpEqKirYvn277/nOnTvZsGEDKSkpdO/enblz5zJjxgzOOOMMzjrrLJ544gkqKyuZOXNmK45aRKR9aS8/a9UuQiLSqlWrGDNmTIPjM2bM4IUXXgDg6aef5o9//COFhYUMHTqUp556iuHDh7fwSEVE2q/28rNWwY6IiIhENOXsiIiISERTsCMiIiIRTcGOiIiIRDQFOyIiIhLRFOyIiIhIRFOwIyIiIhFNwY6IiIhENAU7IiIiEtEU7IiI/OTQoUOkpqaya9cuwFsd1mAwUFpaGtbXvfvuu7n55pvD+hoiHZmCHREJ2tVXX43BYGjwmDhxYmsPrVnmz5/PxRdfTM+ePZt9r6KiIsxmM6+++mqj52fNmsXpp58OwO23386LL77Ijz/+2OzXFZGGFOyISJNMnDiRgoICv8crr7wS1td0OBxhu3dVVRXPPfccs2bNCsn90tLSuOiii3j++ecbnKusrOT111/3vVaXLl2YMGECzzzzTEheW0T8KdgRkSaJjo4mPT3d79GpUyffeYPBwF//+ld+/vOfExcXR58+fXj//ff97pGXl8eFF15IQkICaWlpXHnllRw8eNB3/rzzzmP27NnceuutvoAA4P3336dPnz7ExMQwZswYXnzxRd9yU2VlJUlJSbz55pt+r/Xuu+8SHx9PeXl5o+9n6dKlREdHM2LEiGO+56qqKi688EJGjhzpW9r661//Sv/+/YmJiaFfv378+c9/9l0/a9YsVqxYwZ49e/zu88Ybb+B0Orn88st9xyZPnnzMWSARaR4FOyISNg8++CC//OUv2bhxI5MmTeLyyy+npKQEgNLSUsaOHctpp53GN998w7JlyygqKuKXv/yl3z1efPFFLBYLX3zxBYsXL2bnzp1ceumlTJ06lW+//ZYbbriBe+65x3d9fHw806dPZ8mSJX73WbJkCZdeeimJiYmNjvWzzz5j2LBhx3wvpaWlXHDBBbjdbj7++GOSk5N56aWXuO+++5g/fz7fffcdf/jDH/jtb3/Liy++CMCkSZNIS0vzdX+uP5ZLLrmE5ORk37GzzjqLffv2+fKFRCSEPCIiQZoxY4bHZDJ54uPj/R7z58/3XQN47r33Xt/ziooKD+D56KOPPB6Px/PQQw95xo8f73ffvXv3egDPtm3bPB6Px3Puued6TjvtNL9r7rrrLs+pp57qd+yee+7xAJ7Dhw97PB6P56uvvvKYTCZPfn6+x+PxeIqKijxRUVGeVatWHfM9XXzxxZ5rrrnG79jKlSs9gOe7777zDB482DNt2jRPTU2N7/zJJ5/sefnll/2+56GHHvLk5OT4nt99992eXr16edxut8fj8Xi2b9/uMRgMnuXLl/t9X1lZmQc47hhFpGk0syMiTTJmzBg2bNjg97jxxhv9rhk8eLDvz/Hx8SQlJVFcXAzAt99+y8qVK0lISPA9+vXrB8COHTt833f0bMu2bds488wz/Y6dddZZDZ4PHDjQN8Pyj3/8gx49enDOOecc8/1UV1cTExPT6LkLLriA7OxsXnvtNSwWC+DNu9mxYwezZs3yew+///3v/cZ/zTXXsHPnTlauXAl4Z3V69uzJ2LFj/V4jNjYW8C6ViUhoRbX2AESkfYqPjyc7O/u415jNZr/nBoMBt9sNQEVFBZMnT2bhwoUNvi8jI8PvdZri2muvZdGiRdx9990sWbKEmTNnYjAYjnl9ly5dOHz4cKPnLrroIt566y22bNnCoEGDfOMH+H//7/8xfPhwv+tNJpPvz3369GH06NEsWbKE8847j7/97W9cd911DcZSt7zXtWvX4N+siByXgh0RaRWnn346b731Fj179iQqKvAfRX379mXp0qV+x77++usG111xxRXceeedPPXUU2zZsoUZM2Yc976nnXYa//jHPxo99/DDD5OQkMD555/PqlWrGDBgAGlpaWRmZvLjjz/6JRo3ZtasWdx0001MmTKF/fv3c/XVVze4Ji8vD7PZzMCBA497LxEJnpaxRKRJampqKCws9HvU30l1Irm5uZSUlPCrX/2Kr7/+mh07dvCvf/2LmTNn4nK5jvl9N9xwA1u3buWuu+7i+++/5/XXX/clANefLenUqROXXHIJd9xxB+PHj+ekk0467ngmTJjA5s2bjzm783//939cfvnljB07lq1btwLeBOwFCxbw1FNP8f3337Np0yaWLFnCY4895ve9v/jFLzCbzdxwww2MHz+erKysBvf/7LPPGD16tG85S0RCR8GOiDTJsmXLyMjI8HuMGjUq4O/PzMzkiy++wOVyMX78eAYNGsStt95KcnIyRuOxfzT16tWLN998k7fffpvBgwfzzDPP+HZjRUdH+107a9YsHA4H11xzzQnHM2jQIE4//XRef/31Y17z+OOP88tf/pKxY8fy/fffc+211/LXv/6VJUuWMGjQIM4991xeeOEFevXq5fd9cXFxTJ8+ncOHDx9zLK+++irXXXfdCccpIsEzeDweT2sPQkSkOebPn8/ixYvZu3ev3/G///3vzJkzh/z8fF9i8fH885//5I477iAvL++4AVeoffTRR9x2221s3LgxqCU9EQmM/q8SkXbnz3/+M2eeeSadO3fmiy++4I9//COzZ8/2na+qqqKgoICHH36YG264IaBAB7yJyD/88AP79+9vdKkpXCorK1myZIkCHZEw0cyOiLQ7c+bM4bXXXqOkpITu3btz5ZVXMm/ePF+w8MADDzB//nzOOecc3nvvPRISElp5xCLSmhTsiIiISERTgrKIiIhENAU7IiIiEtEU7IiIiEhEU7AjIiIiEU3BjoiIiEQ0BTsiIiIS0RTsiIiISERTsCMiIiIRTcGOiIiIRLT/D39MrDwqmAFXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Absolute Covariance (counts / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "b302af8b", + "metadata": { + "id": "b302af8b" + }, + "source": [ + "This covariance, plotted this way, mostly tracks the number of counts in each energy bin. To get an unfolded covariance, we need to use the response of the instrument. Another way is to plot the fractional covariance, normalizing by the number of counts in each bin." + ] + }, + { + "cell_type": "markdown", + "id": "d138219a", + "metadata": { + "id": "d138219a" + }, + "source": [ + "To do this, we calculate the Count Spectrum and divide by it." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "fe618f01", + "metadata": { + "id": "fe618f01", + "outputId": "10552705-f6a2-4189-c5c1-215971fde843" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:06, 6.00it/s]\n" + ] + } + ], + "source": [ + "countsp = CountSpectrum(events, energy_spec=energy_spec)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "104dc4d9", + "metadata": { + "id": "104dc4d9", + "outputId": "2fed28f3-64ed-40e3-d9b7-ebdcea7bbf7a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHECAYAAADFxguEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgEklEQVR4nO3deXhTddo38G+SNt2btpSuFGhtKVBaZFEpOw6LwCPLjKAMCkLF5YF3BFxxA1QsqCi4DKA+AjOKuIMLyygCKiAiUi1gkb3QFeje0qRZ3j8yCU2btuecnjRLv5/rygU5OTm5E7S5+1vuW2EymUwgIiIi8hBKZwdAREREJCcmN0RERORRmNwQERGRR2FyQ0RERB6FyQ0RERF5FCY3RERE5FGY3BAREZFHYXJDREREHoXJDREREXkUJjdERETkUdp1cvP999/j1ltvRUxMDBQKBbZs2eLQ11uyZAkUCoXNrXv37g59TSIiovamXSc31dXV6N27N9588802e82UlBQUFBRYbz/++GObvTYREVF74OXsAJxp7NixGDt2bJOPa7VaPPnkk/jggw9QVlaGXr16YcWKFRg+fLjk1/Ty8kJUVJTk5xMREVHz2vXITUvmzZuHAwcOYPPmzfj9998xZcoU3HLLLTh58qTka548eRIxMTFISEjA9OnTkZubK2PEREREpDCZTCZnB+EKFAoFPv/8c0yaNAkAkJubi4SEBOTm5iImJsZ63siRI3HjjTfihRdeEP0a27dvR1VVFZKTk1FQUIClS5ciLy8PR48eRVBQkFxvhYiIqF1r19NSzcnOzobBYEC3bt1sjmu1WnTo0AEAkJOTgx49ejR7ncceewzLly8HAJspsLS0NNx0003o0qULPvroI2RkZMj8DoiIiNonJjdNqKqqgkqlwuHDh6FSqWweCwwMBAAkJCTgjz/+aPY6lkTInpCQEHTr1g2nTp1qfcBEREQEgMlNk/r06QODwYDi4mIMGTLE7jlqtbpVW7mrqqpw+vRp3HXXXZKvQURERLbadXJTVVVlM2py9uxZZGVlISwsDN26dcP06dMxY8YMrFy5En369MGlS5ewa9cupKWlYfz48aJf7+GHH8att96KLl26ID8/H4sXL4ZKpcK0adPkfFtERETtWrteULxnzx6MGDGi0fGZM2diw4YNqKurw/PPP49//etfyMvLQ3h4OAYMGIClS5ciNTVV9Ovdcccd+P7773HlyhV07NgRgwcPxrJly3DdddfJ8XaIiIgI7Ty5ISIiIs/DOjdERETkUZjcEBERkUdpdwuKjUYj8vPzERQUBIVC4exwiIiISACTyYTKykrExMRAqWx+bKbdJTf5+fmIi4tzdhhEREQkwYULF9CpU6dmz2l3yY2lzcGFCxcQHBzs5GiIiIhIiIqKCsTFxQlqV9TukhvLVFRwcDCTGyIiIjcjZEkJFxQTERGRR2FyQ0RERB6l3U1LCWUwGFBXV+fsMKgJ3t7ejRqaEhERAU5ObpYsWYKlS5faHEtOTkZOTo7d8zds2IBZs2bZHPPx8UFtba1sMZlMJhQWFqKsrEy2a5JjhISEICoqilv6iYjIhtNHblJSUvDtt99a73t5NR9ScHAwTpw4Yb0v9xebJbGJiIiAv78/vzhdkMlkQk1NDYqLiwEA0dHRTo6IiIhcidOTGy8vL0RFRQk+X6FQiDpfDIPBYE1sOnTo4JDXIHn4+fkBAIqLixEREcEpKiIisnL6guKTJ08iJiYGCQkJmD59OnJzc5s9v6qqCl26dEFcXBwmTpyIY8eONXu+VqtFRUWFza0pljU2/v7+4t8ItTnLvxPXRhERUX1OTW5uuukmbNiwATt27MCaNWtw9uxZDBkyBJWVlXbPT05OxrvvvoutW7fivffeg9FoxMCBA3Hx4sUmXyMzMxMajcZ6E1KdmFNR7oH/TkREZI/CZDKZnB2ERVlZGbp06YJXXnkFGRkZLZ5fV1eHHj16YNq0aXjuuefsnqPVaqHVaq33LRUOy8vLGxXxq62txdmzZxEfHw9fX99WvRed3og3d58CAMwdkQi1l9MHyTyOnP9eRETk2ioqKqDRaOx+fzfk9DU39YWEhKBbt244deqUoPO9vb3Rp0+fZs/38fGBj4+PXCESERGRi3Op4YSqqiqcPn1a8O4Xg8GA7Oxsl9wtYzSaUHG1DpertLhYWgOj0WUGyIhIDkYjUHoeKDpm/tNodHZERPRfTk1uHn74Yezduxfnzp3D/v37MXnyZKhUKkybNg0AMGPGDCxatMh6/rPPPov//Oc/OHPmDH799VfceeedOH/+PO655x5nvQW7ThVXYt0PZ3DgzBUcPHMFq3edxJo9p3Gq2P5aIjmsWbMGaWlp1p5Z6enp2L59e4vPmzBhAjp37gxfX19ER0fjrrvuQn5+vs05v//+O4YMGQJfX1/ExcXhxRdfbPaa586dg0KhQFZWVqPHhg8fjvnz54t5a0Su59IJ4MdXgN0vAHtfNP/54yvm40TkdE6dlrp48SKmTZuGK1euoGPHjhg8eDB++ukndOzYEQCQm5sLpfJa/lVaWoo5c+agsLAQoaGh6NevH/bv34+ePXs66y00cqq4Euv3ncPlSi18vVXw9vVCqJ8aR/PLkV9+FbMGdUViRMsdTcXq1KkTli9fjqSkJJhMJmzcuBETJ07EkSNHkJKS0uTzRowYgSeeeALR0dHIy8vDww8/jNtuuw379+8HYJ7jHD16NEaOHIm1a9ciOzsbs2fPRkhICO69917Z3wc5gdEIlF8AdFWAOhDQxAFKlxrUdS2XTgA/rQVqrgCaWMA7AKirBgp+B8rzgAH3Ax2TGz+PnzNRm3GpBcVtobkFSVIXqOr05uFoo9GEdT+cwfG8csSHB+BwbikAoH+XMCgVwKniKqTEanDvkAT4qh1flyUsLAwvvfSSoMXZFl988QUmTZoErVYLb29vrFmzBk8++SQKCwuhVqsBAI8//ji2bNnSZCXpc+fOIT4+HkeOHMH1119v89jw4cNx/fXXY9WqVdizZw9GjBjR6PkzZ87Ehg0bWoyVC4plcOkE8MeXwOWTgL4W8PIFwpOAHre27Re02Os6K1GoqwX2rQYKs4EOicCFg+bjnQcAUAKXTwDRacDAfwDe9f6bFPs5E1Ejbrug2F1ZdkVVXK3DgTNX4OutQkmNDvllVwEAv6AESoUCWr0B57NrUFqtw+IJTY+mtJbBYMDHH3+M6upqpKenC35eSUkJ3n//fQwcOBDe3t4AgAMHDmDo0KHWxAYAxowZgxUrVqC0tBShoaGS4xw4cCAKCgqs9//44w+MGzcOQ4cOlXxNEkHsCISjvqDFXteRCVlL5367GDj7A+DtZ/7cyi+Yj+cCUCgAvRYoOWN+bOyKa/FKGekhIsmY3MhIZzBCbzDC29f+x+qtUqJKq4fO4JiFh9nZ2UhPT0dtbS0CAwPx+eefC5qye+yxx/DGG2+gpqYGAwYMwFdffWV9rLCwEPHx8TbnR0ZGWh9rLrkZOHCgzbQiAFy9etU6mqNWq63Vpq9cuYJ77rkHs2fPxuzZswW9X5JIrwNMRuDYFqD6EhCebP5iBsxfvB2SzCMQx7cCQx42f7lL+YIWklRISbAclZAJOVevA4x6QOVt/7NVeQPaSvN5DT/nhiM99j5nKTjdRdQIkxsZzB2RCAC4WFqDKq0eoX5q+KlV+AUlAMzTUiqlApW1dSi7WoeMwfHNXU6y5ORkZGVloby8HJ988glmzpyJvXv3omfPnrj//vvx3nvvWc+tqqqy/v2RRx5BRkYGzp8/j6VLl2LGjBn46quvWl0k78MPP0SPHj1sjk2fPr3ReXV1dfjb3/6GLl26YPXq1a16TRLgh5VAbZn9EQhNnO0IRMpfAU0ncYkQICxRqKsVdt2B/wAUSvGJgphESOi56XPNSYRfGKD2N4/YWGJQqABtBXC11Hxec59zw5GetNuB0C7i/y2ljKbJOZJF5KKY3MjAUqCva4cAdIsIwtH8ciSEB0D53x/WKqUCSgVQXKlFaqwGXTsEOCYOtRqJieZEq1+/fjh06BBWr16NdevW4dlnn8XDDz9s93nh4eEIDw9Ht27d0KNHD8TFxeGnn35Ceno6oqKiUFRUZHO+5X5LPb7i4uKs8VhYekLV98ADD+DChQv4+eefW2ycSjIROgJx4E3ASy0sEbJ8QQtNFJqa4ml43ZorgG+I8EShYULWXCI08B/m40LPDUswx17wO9CxOxBfbwrVZAIqC4GY3ubzxHzOuirb444Y9bI8R86RLCIXxW8SGSmVCozpFYn88qs4VVwFrd4Ab5USlbV1KK7UIixAjdEpkVAq26ZtgNFotFZnjoiIQEREhKDnALA+Lz09HU8++STq6uqs63C++eYbJCcnt2q9jcUrr7yCjz76CPv372ez0rYy5CGgLFfYCISXWvgX9NVSIDBS+GiMmCkeQJ6EzN7aGEDcOpoet5qTh0s5QHCs+fPT1QAVeUBAB6D7/5gTETGfszrw2vsQO+rVUkJmWdhsSYaqLwGVBebPK6p360ayiFwUkxuZJUYEYdagrvg6uxDns83TVGVX65Aaq8HolEiHbAMHgEWLFmHs2LHo3LkzKisrsWnTJuzZswc7d+5s8jkHDx7EoUOHMHjwYISGhuL06dN4+umncd1111kXIv/973/H0qVLkZGRgcceewxHjx7F6tWr8eqrr7Y65m+//RaPPvoo3nzzTYSHh6OwsBCAeXRHo9G0+vrtVku/9XuphY9ADJgLlF8U9gX92wfm40JHY8RM8YR0dkxCZkmcxJzbMdn85W5JQCrzzQlITG9zYmP50hfzOWv+2/OutaNe9hKyUc81ntKzJHVqf+kjWa1ZJ0TkYExuHCAxIgj3DfFHWbUOOoMRGYPj0bVDgENHbIqLizFjxgwUFBRAo9EgLS0NO3fuxKhRo5p8jr+/Pz777DMsXrwY1dXViI6Oxi233IKnnnrK2rJCo9HgP//5D+bOnYt+/fohPDwczzzzjCw1bn788UcYDAbcf//9uP/++63HhW4FJzuETiUolcJGILx9hX9B12nNX4hCEwUxUzxKpWMSsvS55uNizgXMcXRIannqSOjnbNQDBoFrisSOeolZ+yNmJEvqOiEpuPaHRGJy4yBKpQLBfuYfPJ1C/R0+FfV///d/op+TmpqK7777rsXz0tLS8MMPPwi+bteuXdFU+aQ9e/ZY/75kyRIsWbJE8HXbNUeswRA6AiH0Czo0XvjoSvpc4de1vE9HJGSWtTFizrVQKoV9uQv5nHdniktAxIx6ZX/smJGshuuExBCTrDhy7U97SJosCS5gnir1Ujd/vodgcuMgai8lFozq5uwwyBPIvfOofnE5oSMQQhMhKUmFkOuKjUNs4iTmXCmEfM5iEpD6n3OHpGv/3gqVeWdZ/c9ZzNofMSNZ9dcJAcITBbGLmoWuExLr0gnz/zPHt5o/9+je5ms5Y8F0Xa15qlGvM/8bWEYr7WmnyYpYTG6IXJkjdh5ZistZiBmBaOkLWmxSIfS6YuOwnCc0cRKbZEnR3OcsNgGp/zlfOWn+wlf7A7rqxp+zUsTan4YjWc0lTpZ1QoDwhEVosmKvRlBT64SkrP2pH4e3nzkOvzDnLJi2JFlnfzAnWbqq5pMsk9E8yqfXmf+baS4RknK+h2ByQ+SKxBTak7LzSCohiZCUREFogiX2fDGJk9gkS05iFh9LGfWSOpLVUuIECE9YGu7wam5R84+vOqZGkJikqeEopyOmsMQmWWITIbHnexAmN0SuSEyhvYZrMHzs7MiztyjWkZyZKDQkJnESm2TJydGjXnKPZIlNFMTs8PINcUyNILGLq+u30JBzCktKkiUlEXKV0SknYHJD5KqkrsHw1Vwb5QGaXxTrSM5MFNyVo0e95BzJEpsoiPnvuTU1glpKQsSOcjoiSRD72Y1cKjwRslfNW84pPTfB5IbIWZr7DbPhD/eWRmOk/NZPrsnRo15yjmSJSRTE7PBqOE0nZO2PkCRE7NomMVNp9aewhBDz2Ykd9XJ02w83wOSGyBlaWoDZ8Ie7kNGYtlgUS23DHUa9xCYKYnZ4AcIXTdurEdTcSIWYOHYuEj+FZdHcDiixn92BNx1Tzbs12/ldHJMbR+F2PWqK0B1QbbHziEgqMaMrli92MQuVAflrBFlGKoTGIXWhfksLecV+do6q5t1wO78HYXJD1FbE7ICyzIW3xc4jIqnEJixS/nuWs0aQZaRCaBxikgoLoWt06n92l0+YEzCVt/malYW2n53YJFLslJ4HYnLjKO20tgA1Q8wOqPpz4RyNIVcmpRCj2P+e5aoRVH+kQkgcYpIKKbV5bD67APMUdW1580UpW0qEpJzvgZjcOIKTagu8+eabeOmll1BYWIjevXvj9ddfx4033tjk+ceOHcMzzzyDw4cP4/z583j11Vcxf/78Fl/ns88+w9q1a3H48GGUlJTgyJEjuP7665t9zpIlS7BlyxZkZWXZHD937hzi4+MFXcMjSJ0L52gMuTKxCYuc/z1LWXwsNA4xScJeETugpPzyYkmEjm0xX0NbaU7YWqrmLfR8D8PkRm5Oqi3w4YcfYuHChVi7di1uuukmrFq1CmPGjMGJEycQERFh9zk1NTVISEjAlClTsGDBAsGvVV1djcGDB2Pq1KmYM2eOXG/B84nZAeXBc+HkoVylRpDQ9TxCCR1dARz/y0vHZGDoI0DvO4RX8x70IHC1RFhrBw/C5EYOlsVkUitfyuCVV17BnDlzMGvWLADA2rVr8fXXX+Pdd9/F448/bvc5N9xwA2644QYAaPIce+666y4A5lEXud19993YuHFjo+O7d+/G8OHDZX89WbVUwVTMDigPngsncghH7hYUMroidXpMLLFJpEJp3h4OmBcbt4PEBmByIw/LrigplS9loNPpcPjwYSxatMh6TKlUYuTIkThw4IBsr9MWVq9ejeXLl1vvL1++HB988AG6d+/uxKgEENpbh/VoiBzHkevTWkoqWjM95kheamDEopbP8zBMbuTUVv19Grh8+TIMBgMiIyNtjkdGRiInJ0fW12qN7OxsBAba/sZiMpls7ms0Gmg0GgDmtT3r1q3Dt99+i6ioqDaLUzShW7stWI+GyHFcZXqsnS7kdRVMbuQw5CHzn2KKMrmB999/H/fdd5/1/vbt2zFkyBDJ10tOTsYXX3xhcywvL8/udNORI0dw11134Y033sCgQYMkv6bD1a9g2lJzy/pTkdwBReSZxKzRcTUeVJ+NyY0cLP8BiK3AKZPw8HCoVCoUFRXZHC8qKmrViMeECRNw0003We/HxsZKvhYAqNVqJCYm2hzz8mr8n2BhYSEmTJiAe+65BxkZGa16TYdrqiy6veaWDaciuQOKyDPxlxenY3IjJycNSarVavTr1w+7du3CpEmTAABGoxG7du3CvHnzJF83KCgIQUF2dvQ4UG1tLSZOnIju3bvjlVdeadPXlsRJU5FE5OL4y4tTMbmRm5NqCyxcuBAzZ85E//79ceONN2LVqlWorq627p4CgBkzZiA2NhaZmZkAzAuRjx8/bv17Xl4esrKyEBgY2GiEpb6SkhLk5uYiPz8fAHDixAkAQFRUVKvXxtx33324cOECdu3ahUuXLlmPh4WFQa12wSHS+hVMW2puSUTkyjyo+CyTG0dwQm2B22+/HZcuXcIzzzyDwsJCXH/99dixY4fNIuPc3Fwo68WQn5+PPn36WO+//PLLePnllzFs2DDs2bOnydf64osvbJKmO+64AwCwePFiLFmypFXvY+/evSgoKEDPnj1tjrvsVnCxzS2JiFyRk4rPOorC1HC7ioerqKiARqNBeXk5goODbR6rra3F2bNnER8fD1/fVtah8aCFWa5K1n+v1qi/W8re1u6bHFO4kYhIFvWLz1YWmKfTo3qb/+7fwWHFZ8Vq7vu7IY7cOEo7rS3gcVoqzAdwazcRuScp/bDcBJMboqYILcwHcHcEEbmf5pr5NtcPyw0wuSGyR2xhPoC7I4jI/Ujth+XimNwQ1ddwmFZMYT4iInfSVv2wnIDJjR3tbI2123LIv1Nzw7RCCvMREbkLV+2HJQMuCKjH29s8LFdTU+PkSEgIy7+T5d9NNkKGaY16FuYjIvdnKT7r3+Fa8VmT0TxicynHbfthceSmHpVKhZCQEBQXFwMA/P39oahft4RcgslkQk1NDYqLixESEgKVSiXfxRsO07IwHxF5OicVn3UkJjcNWCrsWhIccl0hISHydwtvOEzLwnxE1B44ofisIzG5aUChUCA6OhoRERGoq6tzdjjUBG9vb3lHbOqr3yPsUo79wnxuOExLRNQshRLwDTH/PaSzW/+MY3LTBJVK5bgvT3J9LMxHROS2mNwQNYWF+YioPfGgyvpMboiaw8J8RERuh7+CEhERkUfhyA21P0KaYRIRkdtickPti5hmmERE5JaY3FD7IaUZJhERuR2njsUvWbIECoXC5ta9e/dmn/Pxxx+je/fu8PX1RWpqKrZt29ZG0ZLb0uuAutprzTA7JJkTG+BaM8zqS+ZmmEajU0MlInILeh2wO9N8c8FWNE4fuUlJScG3335rve/l1XRI+/fvx7Rp05CZmYn/+Z//waZNmzBp0iT8+uuv6NWrV1uES+6oYTPMqyWNz7E0w0y7nbujiIjcnNNXUXp5eSEqKsp6Cw8Pb/Lc1atX45ZbbsEjjzyCHj164LnnnkPfvn3xxhtvtGHE5JbqN8M0mcz9o8pyzX8HrjXD1FU5N04iImo1p4/cnDx5EjExMfD19UV6ejoyMzPRuXNnu+ceOHAACxcutDk2ZswYbNmypcnra7VaaLVa6/2KigpZ4iY3IqYZpjqw7eMjIiJZOXXk5qabbsKGDRuwY8cOrFmzBmfPnsWQIUNQWVlp9/zCwkJERkbaHIuMjERhYWGTr5GZmQmNRmO9xcXFyfoeyA3Ub4ZZWWDun6JUXbsplOZmmBHdzdvCiYjIrTk1uRk7diymTJmCtLQ0jBkzBtu2bUNZWRk++ugj2V5j0aJFKC8vt94uXLgg27XJjViaYfp3MDfDrK0wT0PVVpjvsxkmEZFwJqN5LWNVsXlk3MU2Yzh9Wqq+kJAQdOvWDadOnbL7eFRUFIqKimyOFRUVISoqqslr+vj4wMfHR9Y4yU2xGSYRUetdOmHefXr2h2trFTsmu1S9MJdKbqqqqnD69Gncdddddh9PT0/Hrl27MH/+fOuxb775Bunp6W0UIbk9NsMkIpLOUi+s+pJ596nK27yW0cXqhTn1J/rDDz+MvXv34ty5c9i/fz8mT54MlUqFadOmAQBmzJiBRYuudSh98MEHsWPHDqxcuRI5OTlYsmQJfvnlF8ybN89Zb4HckaUZZmSK+U8mNkREzWtULywRUKkBKAC1v229sLpaZ0fr3JGbixcvYtq0abhy5Qo6duyIwYMH46effkLHjh0BALm5uVDW++IZOHAgNm3ahKeeegpPPPEEkpKSsGXLFta4ISIicqSG9cJqrphHwAEgF4BCca1eWM0VYOwKZ0br3ORm8+bNzT6+Z8+eRsemTJmCKVOmOCgicltshklE5Fj164XZo/IGtJUuUbHYpdbcEEnCZphERI7VsF6Y2t88YgMAnQcACtW1emHpc50aKuACFYqJWsWyuK3gd8A/zDzv6//fxW0/rTU/TkRErdOwXhiU5qkohcKc2NSvFxaW4OxomdyQm2IzTCKitlW/XtjlE+Y1NiajecTGxeqFcVqK3FNzi9s0cbaL29gMk4hIHpZ6Yce2mH++aivNU1EuVi+MyQ25L6GL29gMk4hIPh2TgUEPAldLzD+H0+eap6JcYMTGgskNuSc2wyQich6FEvANMf89pLNLJTYA19yQu2IzTCIiagKTG3JfbIZJRER28Kc+uTfL4rboNPP875VT5j9jegM3uUaPEyIialtcc0Puj80wiYjalpcaGLGo5fOcpNXJjVarhY+PjxyxEElnaYZJRETtnuhfbbdv346ZM2ciISEB3t7e8Pf3R3BwMIYNG4Zly5YhPz/fEXESERERCSI4ufn888/RrVs3zJ49G15eXnjsscfw2WefYefOnXjnnXcwbNgwfPvtt0hISMD999+PS5cuOTJu8nRGI1B6Hig6Zv6TVYaJiEgghclkMgk5MT09HU899RTGjh0LZTNrGfLy8vD6668jMjISCxYskC1QuVRUVECj0aC8vBzBwcHODofsYSNMIiJqQMz3t+DkxlMwuXFxlkaYNVcATay5T1RdNVCeZ97yPYA7oIiI2iMx39+ybCcxGAzIyspCaWmpHJej9kpoI8y6WqeGSURErk3Sbqn58+cjNTUVGRkZMBgMGDZsGPbv3w9/f3989dVXGD58uMxhUrvw7WJhjTBrrgBjVzg3ViIiclmSRm4++eQT9O7dGwDw5Zdf4uzZs8jJycGCBQvw5JNPyhogtSNCGmEa9ebziIiImiBp5Oby5cuIiooCAGzbtg1Tpkyx7qRavXq1rAFSO5I+V1gjzPS5bR8bERG5DUkjN5GRkTh+/DgMBgN27NiBUaNGAQBqamqgUqlkDZDaEaGNMMMSnB0pERG5MEkjN7NmzcLUqVMRHR0NhUKBkSNHAgAOHjyI7t27yxogtSOWRpjleebGl8GxgNof0NUAFXlshElERIJISm6WLFmCXr164cKFC5gyZYq1/YJKpcLjjz8ua4DkQYzGlvs/WRphWurcVOab69zE9DYnNtwGTkRELWCdG2obYgvzCUmEiIio3RDz/c2u4OR4TRXmK/jdPAVlrzAfG2ESEZFE/FWYHEevY2E+IiJqcxy5Icf5YSVQW8bCfERE1KZEjdx89913MBgMjoqFPBEL8xERURsTNXJzzz33oKysDLfccgsmTpyIsWPHclEuNW3IQ0BZLgvzERFRmxI1cnPmzBns2bMHPXv2xMqVKxEZGYlRo0bh9ddfR25urqNiJFdmNAKl54GiY+Y/jcZrj3mpWZiPiIjaXKu2gufn5+OLL77AF198gd27dyM5ORkTJkzAhAkT0L9/fznjlA23gstI6Pbu+rul7BXmu8nObikiIqJ6xHx/y1bnprq6Gjt27MDWrVuxbds2LFy4EE888YQcl5YVkxuZNLW9uzwP8O/QeHu3vUSoYzcW5iMiIkGcktzUZzAYUFJSgo4dO8p96VZjctNKeh1gMgL7VgOF2UB4snnXk4XJBFw+AUSnAUMeti28x8J8REQkkdOL+KlUKpdMbEgGYrZ3p91uW4iPhfmIiKgN8NdmEk/o9m5dVdvGRUREBBbxI7Eabu9W+wOWjXKdBwAK1bXt3epAp4ZKRETtE5MbEqf+9u6C34GO3YH4odceN5nM27tjepunqYiIiNqYrNNSer2e9W7aA6XSvN3bvwNwKQeorTBPQ9VWmO8HdDDvguJiYSIicgJZv32OHTuG+Ph4OS9Jrqpjsnm7d3QacLUEuHLK/GdMb9atISIip+K0FEnXMdnc2Zvbu4mIyIWISm769u3b7ONXr15tVTDkIsTUo+H2biIicjGikpvjx4/jjjvuaHLqqaCgAH/++acsgZGTCG2pQERE5KJEJTe9evXCTTfdhAceeMDu41lZWXj77bdlCYycoKmWCgW/m9sqNGypQERE5IJELY4YNGgQTpw40eTjQUFBGDp0aJOPk4vS64C6WuDYFqD6knmrd34WcH6feeSmQ5L5+PGttl2/iYiIXJBDeku5snbZW6qlNTS7M21bKqjU9lsq1F0Fpn3ANTZERNTmnN5bilyI0DU0QloqaCvZUoGIiFye4OQmNzcXnTt3FnzhvLw8xMbGSgqKZCJ0DU3Dlgo+QY2vxZYKRETkJgSvubnhhhtw33334dChQ02eU15ejrfffhu9evXCp59+KiqQ5cuXQ6FQYP78+U2es2HDBigUCpubr6+vqNdpN+qvoemQZE5sAPOf9dfQ1NXatlSoLAAUSkCpunZTKM0tFSK6s6UCERG5PMEjN8ePH8eyZcswatQo+Pr6ol+/foiJiYGvry9KS0tx/PhxHDt2DH379sWLL76IcePGCQ7i0KFDWLduHdLS0lo8Nzg42GZRs0KhEPw67cq3i6+toam5Yn8NTckZ82NjV1xrqVCeZ26hEBxrboqpqwEq8thSgYiI3Ibgb6oOHTrglVdeQUFBAd544w0kJSXh8uXLOHnyJABg+vTpOHz4MA4cOCAqsamqqsL06dPx9ttvIzQ0tMXzFQoFoqKirLfIyEjBr9WuCFlDY9Sbz7NgSwUiIvIAohcU+/n54bbbbsNtt90mSwBz587F+PHjMXLkSDz//PMtnl9VVYUuXbrAaDSib9++eOGFF5CSktLk+VqtFlqt1nq/oqJClrhdXvrca2to1P6ApZ9p5wGAQnVtDU36XNvnsaUCERG5Oafultq8eTN+/fXXZtfx1JecnIx3330XaWlpKC8vx8svv4yBAwfi2LFj6NSpk93nZGZmYunSpXKG7R4sa2gKfgc6dgfi69UfMpnMa2hiepvPa4gtFYiIyI05rc7NhQsX0L9/f3zzzTfWtTbDhw/H9ddfj1WrVgm6Rl1dHXr06IFp06bhueees3uOvZGbuLi49lHnpv5uKXtraDjVREREbkJMnRunJTdbtmzB5MmToVKprMcMBgMUCgWUSiW0Wq3NY02ZMmUKvLy88MEHHwh6XY8p4ie0uaW9Ojcdu5kXBzOxISIiN+EWRfz+8pe/IDs72+bYrFmz0L17dzz22GOCEhuDwYDs7GxRC5g9gpjmllxDQ0RE7YzTkpugoCD06tXL5lhAQAA6dOhgPT5jxgzExsYiMzMTAPDss89iwIABSExMRFlZGV566SWcP38e99xzT5vH7zRSmltyDQ0REbUjkn99//e//41BgwYhJiYG58+fBwCsWrUKW7dulS243NxcFBQUWO+XlpZizpw56NGjB8aNG4eKigrs378fPXv2lO01XVbD5pYtFeYjIiJqpyStuVmzZg2eeeYZzJ8/H8uWLcPRo0eRkJCADRs2YOPGjdi9e7cjYpWF2665EdPcMn6IuTAfERGRhxDz/S1p5Ob111/H22+/jSeffNJmbUz//v0braMhGUkpzEdERNTOSFpzc/bsWfTp06fRcR8fH1RXV7c6KLKjYXNLMYX5iIiI2hFJIzfx8fHIyspqdHzHjh3o0aNHa2Miexo2t1R6mwvzxQ81T1HVb25przAfERFROyFp5GbhwoWYO3cuamtrYTKZ8PPPP+ODDz5AZmYm3nnnHbljJAs2tyQiImqR5CJ+77//PpYsWYLTp08DAGJiYrB06VJkZGTIGqDc3HZBcX0szEdERO1Mm1YorqmpQVVVFSIiIlpzmTbjEckNILxCMRERkQdweIXis2fPQq/XIykpCf7+/vD39wcAnDx5Et7e3ujatauUy5IYLMxHRERkl6Rf9e+++27s37+/0fGDBw/i7rvvbm1MRERERJJJSm6OHDmCQYMGNTo+YMAAu7uoSCCjESg9DxQdM/9pNDo7IiIiIrcjaVpKoVCgsrKy0fHy8nIYDIZWB9UuiWmGSURERE2SNHIzdOhQZGZm2iQyBoMBmZmZGDx4sGzBtRuWZpgFvwP+YeY+Uf5h5vs/rTU/TkRERIJIGrlZsWIFhg4diuTkZAwZMgQA8MMPP6CiogLfffedrAF6NL0OMBmvNcMMTzb3iAKuNcO8fMLcDHPIw9wNRUREJICk5KZnz574/fff8cYbb+C3336Dn58fZsyYgXnz5iEsLEzuGD3XDyttm2HWXLHfDLPkDJB2O3dHERERCSApuQHMRfteeOEFOWNpn4Q0w9RWmuvZEBERUYskJzdlZWX4+eefUVxcDGODXT0zZsxodWDtgphmmOpAp4ZKRETkLiQlN19++SWmT5+OqqoqBAcHQ2FZJwLzTiomNwLVb4ZZ8DvQsbu5EaaFyWRuhhnT2zxNRURERC2StEL1oYcewuzZs1FVVYWysjKUlpZabyUlJXLH6NkszTD9O5ibYdZWmKepaivM99kMk4iISBRJvaUCAgKQnZ2NhIQER8TkUC7bW4rNMImIiJrk8N5SY8aMwS+//OKWyU2bEtPcsmOyees3m2ESERG1iqTkZvz48XjkkUdw/PhxpKamwtvbdqfPhAkTZAnOrUmpOMxmmERERK0maVpK2cxogkKhcOkWDG0yLWWpOFxzBdDEmgvy1VUD5XnmtTUD7udUExERkQhivr8lzXkYjcYmb66c2LSJutprFYfDEoD8LOD8PvPITYck8/HjW83nERERkewk17mhJny72H7F4VzYVhyuuQKMXeHUUImIiDyR5OSmuroae/fuRW5uLnQ6nc1j//jHP1odmNsSWnFYr7P/OBEREbWKpOTmyJEjGDduHGpqalBdXY2wsDBcvnwZ/v7+iIiIaN/JTfrcaxWHfYIaP26pOJw+t+1jIyIiagckrblZsGABbr31VpSWlsLPzw8//fQTzp8/j379+uHll1+WO0b3Yqk4XFkAKJSAUnXtplCaKw5HdDefR0RERLKTlNxkZWXhoYceglKphEqlglarRVxcHF588UU88cQTcsfoXlhxmIiIyKkkfcN6e3tbt4NHREQgN9fc7VGj0eDChQvyReeuOiabt3tHpwFXS4Arp8x/xvQGbuI2cCIiIkeStOamT58+OHToEJKSkjBs2DA888wzuHz5Mv7973+jV69ecsfonlhxmIiIyCkkfdO+8MILiI6OBgAsW7YMoaGheOCBB3Dp0iW89dZbsgbo1iwVhyNTzH8ysSEiInI4SRWK3ZnLNs4kIiKiJjm8QjERERGRqxK85qZv377YtWsXQkND0adPHygUiibP/fXXX2UJjoiIiEgswcnNxIkT4ePjAwCYNGmSo+IhIiIiahXRa24MBgP27duHtLQ0hISEOCgsx+GaGyIiIvfj0DU3KpUKo0ePRmlpqeQAiYiIiBxF0oLiXr164cyZM3LHQkRERNRqkpKb559/Hg8//DC++uorFBQUoKKiwuZGRERE5CyS6two6xWjq79rymQyQaFQwGAwyBOdA3DNDRERkfsR8/0tqf3C7t27JQVGRERE5GiSkpthw4bJHQcRERGRLCQlNxY1NTXIzc2FTqezOZ6WltaqoIiIiIikkpTcXLp0CbNmzcL27dvtPu7Ka26IiIjIs0naLTV//nyUlZXh4MGD8PPzw44dO7Bx40YkJSXhiy++kDtGIiIiIsEkjdx899132Lp1K/r37w+lUokuXbpg1KhRCA4ORmZmJsaPHy93nERERESCSBq5qa6uRkREBAAgNDQUly5dAgCkpqZKbpq5fPlyKBQKzJ8/v9nzPv74Y3Tv3h2+vr5ITU3Ftm3bJL0eEREReSZJyU1ycjJOnDgBAOjduzfWrVuHvLw8rF27FtHR0aKvd+jQIaxbt67Fhcj79+/HtGnTkJGRgSNHjmDSpEmYNGkSjh49KuVtEBERkQeSlNw8+OCDKCgoAAAsXrwY27dvR+fOnfHaa6/hhRdeEHWtqqoqTJ8+HW+//TZCQ0ObPXf16tW45ZZb8Mgjj6BHjx547rnn0LdvX7zxxhtS3gYRERF5IElrbu68807r3/v164fz588jJycHnTt3Rnh4uKhrzZ07F+PHj8fIkSPx/PPPN3vugQMHsHDhQptjY8aMwZYtW5p8jlarhVartd5newgiIiLPJmnk5scff7S57+/vj759+4pObDZv3oxff/0VmZmZgs4vLCxEZGSkzbHIyEgUFhY2+ZzMzExoNBrrLS4uTlSMRERE5F4kJTc333wz4uPj8cQTT+D48eOSXvjChQt48MEH8f7778PX11fSNYRYtGgRysvLrbcLFy447LWIiIjI+SQlN/n5+XjooYewd+9e9OrVC9dffz1eeuklXLx4UfA1Dh8+jOLiYvTt2xdeXl7w8vLC3r178dprr8HLy8tuIcCoqCgUFRXZHCsqKkJUVFSTr+Pj44Pg4GCbGxEREXkuSclNeHg45s2bh3379uH06dOYMmUKNm7ciK5du+Lmm28WdI2//OUvyM7ORlZWlvXWv39/TJ8+HVlZWVCpVI2ek56ejl27dtkc++abb5Ceni7lbRAREZEHalVvKQCIj4/H448/jt69e+Ppp5/G3r17BT0vKCgIvXr1sjkWEBCADh06WI/PmDEDsbGx1jU5Dz74IIYNG4aVK1di/Pjx2Lx5M3755Re89dZbrX0bRERE5CEkjdxY7Nu3D//7v/+L6Oho/P3vf0evXr3w9ddfyxUbcnNzrVvOAWDgwIHYtGkT3nrrLfTu3RuffPIJtmzZ0ihJIiIiovZLYTKZTGKftGjRImzevBn5+fkYNWoUpk+fjokTJ8Lf398RMcqqoqICGo0G5eXlXH9DRETkJsR8f0ualvr+++/xyCOPYOrUqaK3fxMRERE5kqTkZt++fXLHQURERE6k0xvx5u5TAIC5IxKh9mrVyhWnkryg+PTp01i1ahX++OMPAEDPnj3x4IMP4rrrrpMtOCIiIiKxJKVlO3fuRM+ePfHzzz8jLS0NaWlpOHjwIFJSUvDNN9/IHSMRERGRYJJGbh5//HEsWLAAy5cvb3T8sccew6hRo2QJjoiIiNqG0WhCxdU66AxGXCytQdcOAVAqFc4OSxJJu6V8fX2RnZ2NpKQkm+N//vkn0tLSUFtbK1uAcuNuKSIiIluniivxdXYhtmcXQG8wIiVWg24RQRjTKxKJEUHODg+AuO9vSdNSHTt2RFZWVqPjWVlZiIiIkHJJIiIicoJTxZVYv+8cjueVw9dbhdAANUL91DiaX471+87hVHGls0MUTdK01Jw5c3DvvffizJkzGDhwIADzDqoVK1Zg4cKFsgZIRERE8tPpjTAaTfg6uxCXK7WIDw9ASY0OAOCnViEhPACniquwLbsQ80YEutUUlaRpKZPJhFWrVmHlypXIz88HAMTExOCRRx7BP/7xDygUrvsBcFqKiIgIePWbP1FxtQ4HzlyBr7cK3ioF8suuAgBiQvygVCig1RtQW2fE2zP6Iy7MuYV6HV7ET6FQYMGCBViwYAEqK83DVUFBrjEnR0RERGYt1a7RGYzQG4zw9rWfDnirlKjS6lGt0zs8VjmJSm6uXr2Kb775BiNGjLAmM5Y/KyoqsGfPHowZMwY+Pj7yR0pERESymTsiERdLa1Cl1SPUTw0/tQq/oAQA0L9LGFRKBSpr61B2tQ4B6lb32W5TohYUv/XWW1i9erXdUZrg4GC89tpreOedd2QLjoiIyBUYjSZcKKlBTmEFLpTUwGgUvaLDKSzbuy9XaXGx1DZutZcSXTsEoFtEEIoqa6FUAEqFAkqFAiqlAkoFUFypRXJkEGJD/Jz4LsQTlYq9//77ePrpp5t8fP78+Xj22Wcxd+7cVgdGRETkCtxhm7Q9lrgPnLkCvcGIKq2+UdxKpQJjekUiv/wqThVXQas3wFulRGVtHYortQgLUGN0SqRbLSYGRI7cnDx5Er17927y8bS0NJw8ebLVQRERkWO46wiEs7jrNmkxcSdGBGHWoK7oGatBbZ0RpTU6lF2tQ2qsBrMGdXXpBK4pokZu9Ho9Ll26hM6dO9t9/NKlS9Dr3WvRERFRe3GquBI7jxbh9KUq1OoN8PVS4bqOgS4/AuEstTqDoG3S9w7xh69a1arXWbEjBzqDERmD41tVGVjq9u7EiCDcN8QfZdU6WeJwNlHJTUpKCr799lv069fP7uP/+c9/kJKSIktgREQkH8tv8iXVOkRrfOGv9kONTo+j+eXIL7/qtr+hO9KKHTnWbdIlNTrrNulfUGLdJn0+uwal1TosniDtu0/I1JEYb+4+ZbO9u7m4J/eJtdnerVQqEOznDQDoFOrvtokNIHJaavbs2Xjuuefw1VdfNXrsyy+/xLJlyzB79mzZgiMiotbR6Y02IxBdwvyRnVeOg2evwMfL/Jv85UottmUXcoqqAes2aZX9L3lvlRJ6oxE6g1HS9R015SU0bnfb3i2GqJGbe++9F99//z0mTJiA7t27Izk5GQCQk5ODP//8E1OnTsW9997rkECJiEi81vwm395lDI4XtE06Y3C8qOuKmToSO+XVmu3dai8lFozqJuq9uCrRG9ffe+89TJgwAZs2bcKff/4Jk8mE5ORkLF26FFOnTnVEjERE1AqeWqjN0SzbpI/mlyMhPADK/1bfr79NOjVWg64dAkRdV0zCKXbKq/727pbidrft3WJIqsozdepUJjJERC7AaDQhr+wqqnV6BKi9EBviZ7NWwpMLtbVWS59d/W3SZy5XIyUmGH5qFWp0ehSU17Zqm7TQhFPKlJenbu8Wo339l0xE5EGE7H5q+Jt8UkQgBl4Xbr2GyWRqF7/JNyR055hlm7Tl3KKKWvh4qZAaq8HoFGmLfsUknGKnvBrG/XV2Ic5nm1/Lsr1batz1tdTWwdmY3BARuSExu5/q/yZ/srgK0Rpf+KlVuKoztHoEwh1ZPrvLlVoUVWrhrVIgJVrT5M6xxIggJAwPbHaURwwxU0dip7zq87Tt3WK4VqpFREQtErr7qVZnsD7H8pt8rxgNymrqcO5yNcpqmi/U5ioF/+SKo+HOsfjwAOuOIstCXnufHWBOEOPC/NE9KhhxYS1vk24pZkvCGRagtk4dGU0mVNbW4WRxlWwJp2V7d3igj9tv7xaDIzdERG5Gav0VMSMQjiz419JaF0fF4ciFvA1jFtKuwdFTR4Bn7YASg8kNEZGbac1iVMsIRHOkFPwTmrCISVbETh8J4ciFvA1j9vVWwdvXy1q7pqkpr/83IhB/7RMrKNlz9bUurkJwcvPXv/5V8EU/++wzScEQEVHL2rL+yuHcUuu1myrdLzRhEZo0SW0hADSfZDlyIW9rYhaScNZ/fxVX66AzGHGxtMZpa2hcJY6mCE5uNBqN9e8mkwmff/45NBoN+vfvDwA4fPgwysrKRCVBRETUWEujIEJ3Pzmy/oql4J/Q0ZWGa12aSpruHeKPNXtPSyo82NJ0kCMX8rZFsUS5WzVI5SpxNEdwcrN+/Xrr3x977DFMnToVa9euhUplrpxoMBjwv//7vwgODpY/SiKidkLIKIgjdz8JnbYpq6lDx0DhjSXFrBMK9vMWXXhQ6HSQI2vAOLJYotjpLkdxlThaImnNzbvvvosff/zRmtgAgEqlwsKFCzFw4EC89NJLsgVIROSKxCyKFXq+mLUuzq6/8tmvFwFAcMIiZq2LmDjUKqXg7t2W6aCGn51Wb0Blrb7NPjuxxRLbqjt5cxzZMsIRJCU3er0eOTk51t5SFjk5OTAapS3CIiJyF2J38LR0vpi1LvW/OBxdf6W5Ka/aOgOuVOsEJyxi1gmJmT7aciQPlbV60dNBzqxdI7ZYYlt0J29JW+00k4uk5GbWrFnIyMjA6dOnceONNwIADh48iOXLl2PWrFmyBkhE5ErE7iQScv6XvxVI/uIQsxhVCKFTXp3DAkQtzhW71kVo64MvfyuQPB3kyM9OzikvR+/wcrc4hJCU3Lz88suIiorCypUrUVBQAACIjo7GI488goceekjWAImIXIWYRbFKpULwaIzJZHKpLw6hU15iFjZL6dMkJI65I4QnWW3RO8sRU16O2h0nRlu0jJCTpH9ppVKJRx99FI8++igqKioAgAuJicjjiV0UK3Q05p/T+wKAS31xCJm2EbuwWco6oZbicMUu2HJPebVFq4aWtFXLCLlITmP1ej327NmD06dP4+9//zsAID8/H8HBwQgMDJQtQCIiVyF2dEXM+d0ighyyvbs1hEzbiE1YpHzxtxSHI7t3SyXnlJerdPl2lTiEkJTcnD9/Hrfccgtyc3Oh1WoxatQoBAUFYcWKFdBqtVi7dq3ccRIROZ2Y6YFOof6ipkvcubml2IRF7rUulhjk3j3mStqiVYM7xdESScnNgw8+iP79++O3335Dhw4drMcnT56MOXPmyBYcEVFridmyLWfxPKVSIfh8y3SJO39BOyJhEUvu6SBXI7ZVgyPjcPVu45KSmx9++AH79++HWq22Od61a1fk5eXJEhgRUWuJ7WMkd/E8KaMxnv4F7WiukGQ5kqu8P0u3cQAu2W1cUnJjNBphMBgaHb948SKCglz3Nwsiaj/EbNl2ZPE8KaMxrvIFRuSuJCU3o0ePxqpVq/DWW28BABQKBaqqqrB48WKMGzdO1gCJiMRoWBAvMSIQiv/u6vBXezXasg3A4cXzOBpD1LYkJTcrV67EmDFj0LNnT9TW1uLvf/87Tp48ifDwcHzwwQdyx0hEJFhzlVRjQvwabdkGhLcQaE3xPI7GELUdSclNp06d8Ntvv+HDDz/Eb7/9hqqqKmRkZGD69Onw82ubOgJERE0Ru2XbVYrnEZE8FCaTyeTsINpSRUUFNBoNysvLWXiQyE01t6tJpzfiYmkNVu86eW0L9nn7W7Af/EsSAFjPDbST4NQ/N6Eja3gROYuY729JIzcqlQpDhw7Fp59+irCwMOvxoqIixMTE2F1sTEQkh5Z2NYlp/mgpiGc5N9jv2vqcps4lItenlPIkk8kErVaL/v3749ixY40eIyJyBMuupqP55Qjx90ZCeCBC/L1xNL8c6/edw6niSgDXtmCHBahxsrgKlbV10BuNqKytw8niKpst2GLOJSL3ICm5USgU+PTTT3HrrbciPT0dW7dutXmMiEgMo9GECyU1yCmswIWSGhiNtr8k6fRGm6aVXcL8kZ1XjoNnr8DHS4WE8ABcrtRiW3ah9bmWLdi9YjQoq6nDucvVKKsxV1Jt2LlbzLlE5PokTUuZTCaoVCqsXr0aKSkpuP322/HUU0/hnnvukTs+IvJwQornNbcDquGupsl9Yq27ksRsweZ2bSLPIWnkpr57770X27dvx6pVqzBjxgxRz12zZg3S0tIQHByM4OBgpKenY/v27U2ev2HDBigUCpubr69va98CETmJ0GkmoN4OKJX9ZMNbpYTeaES1Tm9z3LIFu3tUMOLCmq+kKuZcInJdkkZuunTpApVKZb0/YsQI/PTTT7j11ltFXadTp05Yvnw5kpKSYDKZsHHjRkycOBFHjhxBSkqK3ecEBwfjxIkT1vucBiNyT/WnmVoqtDd3RKJNE8rmdjUFqCX9WCMiDyLpp8DZs2cbHUtMTMSRI0dQVFQk+DoNk6Fly5ZhzZo1+Omnn5pMbhQKBaKiogS/hlarhVartd6vqKgQ/FwicpwVO3IEF9pbPCHFZgdUc7uaLE0oiaj9avW0VH2+vr7o0qWLpOcaDAZs3rwZ1dXVSE9Pb/K8qqoqdOnSBXFxcZg4cWKj3VoNZWZmQqPRWG9xcXGS4iMieQmdZrIUz+OuJiISSnARv7CwMPz5558IDw9HaGhos9NBJSUlggPIzs5Geno6amtrERgYiE2bNjXZn+rAgQM4efIk0tLSUF5ejpdffhnff/89jh07hk6dOtl9jr2Rm7i4OBbxI3KyM5eqJBXPq78AWas3wMdLhcSIwCabUBKRZ3BIEb9XX33V2vF71apVrQqwvuTkZGRlZaG8vByffPIJZs6cib1796Jnz56Nzk1PT7cZ1Rk4cCB69OiBdevW4bnnnrN7fR8fH/j4+MgWLxHJQ+g0U8PiedzVREQtcbn2CyNHjsR1112HdevWCTp/ypQp8PLyEtywk+0XiFyHZbdUSbUO0Rpf+KlVuKozoKC8FmEBataYISIrh4zciFmI25qkwWg02kwjNcdgMCA7O7vJaSwicm2W4nmWaaaiilr4eKmQGqvhNBMRSSY4uQkJCWlx27XJZIJCoRDcW2rRokUYO3YsOnfujMrKSmzatAl79uzBzp07AQAzZsxAbGwsMjMzAQDPPvssBgwYgMTERJSVleGll17C+fPnWTyQyAU119yyPk4zEZHcBCc3u3fvlv3Fi4uLMWPGDBQUFECj0SAtLQ07d+7EqFGjAAC5ublQKq9t6CotLcWcOXNQWFiI0NBQ9OvXD/v377e7PoeInEdI1eH6LMXziIjk4HJrbhyNa26IHKvhOhp/tRdqdHquoyGiVnHImht7ampqkJubC51OZ3M8LS2tNZclIhfV3FSTTm+E0WgSXHXYV61q7qWIiCSTlNxcunQJs2bNarIPlNA1N0TkPlqaamquuWVTVYeJiBxBUoXi+fPno6ysDAcPHoSfnx927NiBjRs3IikpCV988YXcMRKRAxmNJlwoqUFOYQUulNTAaGw8Uy20waXYqsNERI4gaeTmu+++w9atW9G/f38olUp06dIFo0aNQnBwMDIzMzF+/Hi54yQiB2hpNEbMVNMDw65DfvlVQc0tMwbHt/VbJaJ2RFJyU11djYiICABAaGgoLl26hG7duiE1NRW//vqrrAESkWM0XvjrhxqdHkfzy5FffhWzBnXFl78VCJ5qmtwnVnLVYSIiOUmalkpOTsaJEycAAL1798a6deuQl5eHtWvXIjo6WtYAiUheOr0RtTqDdTQmITwA/mrz7zmW0ZjLlVpsyy6EyWQSPNVUrdOzuSURuQRJIzcPPvggCgoKAACLFy/GLbfcgvfffx9qtRobNmyQMz4ikpmYhb//nN4XAARNNQX8N0Fi1WEicjZJyc2dd95p/Xu/fv1w/vx55OTkoHPnzggPD5ctOCJyDOtojJ1kBTCPxlRp9dAZjOgWESRoqik2xM96nFWHiciZWlXnxsLf3x99+/aV41JE5GBzRyTiYmmN4NEYy1RTfvlVnCyustvg0t5UE6sOE5GzSEpuTCYTPvnkE+zevRvFxcUwGm23dX722WeyBEdE8lN7KQUv/LWMxnCqiYjciaTkZv78+Vi3bh1GjBiByMjIFhtqEpFrkTIaw6kmInIXknpLhYWF4b333sO4ceMcEZNDsbcU0TX169xo9Qb4eKmQGBHI0RgicjkO7y2l0WiQkJAgKTgich0cjSEiTySpzs2SJUuwdOlSXL16Ve54iKiNWRb+do8KRlyYPxMbInJ7kkZupk6dig8++AARERHo2rUrvL29bR5nlWIiIiJyFknJzcyZM3H48GHceeedXFBMRERELkVScvP1119j586dGDx4sNzxEBEREbWKpOQmLi6OO42IXJTRaOICYSJq1yQlNytXrsSjjz6KtWvXomvXrjKHRERS1d/aXas3wNdLhes6BmJML27tJqL2Q1Kdm9DQUNTU1ECv18Pf37/RguKSkhLZApQb69yQOxIyGnOquBLr951DSbUO0Rpf+Ku9UKPTW4vyzRrUlQkOEbkth9e5WbVqlZSnEZEEQkZjanUGfJ1diMuVWiRGXGun4K/2QkJ4AE4VV2FbdiHuHeIPX7XKmW+HiMjhRCc3dXV12Lt3L55++mnEx8c7IiYi+q/GozF+qNHpcTS/HPnlV62jMSt25ODAmSvw9VahpEaH/DJzDaqYED8oFQpo9Qacz65BabUOiyekOPldERE5lugift7e3vj0008dEQsR/ZdOb7QZjUkID4C/2vy7iGU05nKlFtuyC1GrM0BnMEJvMMJbZX/hsLdKCb3RCJ3BaPdxIiJPImlaatKkSdiyZQsWLFggdzxEBODN3adQcbVO8GhMxuB4VGn1CPVTI9C38f/WlbV1KLtah4zBHG0lIs8nKblJSkrCs88+i3379qFfv34ICAiwefwf//iHLMERtWfW0Rg7yQpgHo2p0uqhMxjRtUMAukUE4Wh+OYL9Am0Ka5pMJhRXapEaq0HXDgF2r0VE5Ekk7ZZqbq2NQqHAmTNnWhWUI3G3FLkDnd6Ii6U1WL3rZIujMQ/+JQkJHQMbrc/xU6twVWfgbiki8ggO3y119uxZSYER0TXNbe9WeylFj8YkRgRh1qCu1p1VRRW18PFSITVWg9EprHNDRO2HpOSmPsvAD/tLEQknZHu3UqnAmF6RyC+/ipPFVXZHY0anRNrUu0mMCELC8EBWKCaidk30bimLf/3rX0hNTYWfnx/8/PyQlpaGf//733LGRuSRLNNHR/PLEeLvjYTwQIT4e+NofjnW7zuHU8WV1nMtozG9YjQoq6nDucvVKKupQ2qspslpJqVSgbgwf3SPCkZcmD8TGyJqdySN3Lzyyit4+umnMW/ePAwaNAgA8OOPP+L+++/H5cuXuYuKyA6d3gij0SSo2N68EYHWpISjMURE4kheULx06VLMmDHD5vjGjRuxZMkSl16TwwXF5CyvfvOnzfZub5XC7vbu2joj3p7RH3Fh/k6OmIjIdYj5/pY0LVVQUICBAwc2Oj5w4EAUFBRIuSRRuyC02F61Tt/GkREReQ5J01KJiYn46KOP8MQTT9gc//DDD5GUlCRLYESeZu6IRFwsrRFUbC9A3eq1/kRE7Zakn6BLly7F7bffju+//9665mbfvn3YtWsXPvroI1kDJPIUYrZ3x4b4OTFSIiL3Jmla6m9/+xsOHjyI8PBwbNmyBVu2bEF4eDh+/vlnTJ48We4YiTyGZXt3WIAaJ4urUFlbB73RiMraOpwsrrK7vZuIiMSRtKDYnXFBMTlKc0X5Gqpf50arN8DHS4XEiEAW2yMiaoLDKxQTkS0hRfnq4/ZuIiLHEZXcKJXKFisRKxQK6PXc6UHtR8OeTv5qP9To9DiaX4788qstFtsjIiJ5iUpuPv/88yYfO3DgAF577TUYjcZWB0XkLmp1BkFF+e4d4g9ftcrJ0RIRtQ+ikpuJEyc2OnbixAk8/vjj+PLLLzF9+nQ8++yzsgVH5OpW7MixFuUrqdHZLcp3PrsGpdU6LJ6Q4uRoiYjaB8m9pfLz8zFnzhykpqZCr9cjKysLGzduRJcuXeSMj8ilCS3KpzNwRJOIqK2IXlBcXl6OF154Aa+//jquv/567Nq1C0OGDHFEbEQuL2NwvKCifBmD450QHRFR+yRq5ObFF19EQkICvvrqK3zwwQfYv38/Extq1yxF+Yoqa6FUACqlwnpTKoDiSi2SI4PQtUOAs0MlImo3RNW5USqV8PPzw8iRI6FSNb048rPPPpMlOEdgnRuSW8PdUn5qFa7qDCgor0VYgLrJ3VJERCScw+rczJgxo8Wt4ETtTWJEEGYN6mqtc1NUUQsfLxVSYzUsykdE5AROrVC8Zs0arFmzBufOnQMApKSk4JlnnsHYsWObfM7HH3+Mp59+GufOnUNSUhJWrFiBcePGCX5NjtyQo4ipUExEROKI+f6WvFtKDp06dcLy5ctx+PBh/PLLL7j55psxceJEHDt2zO75+/fvx7Rp05CRkYEjR45g0qRJmDRpEo4ePdrGkVN7YTSacKGkBjmFFbhQUgOjsenfBSxF+bpHBSMuzJ+JDRGRk7hcb6mwsDC89NJLyMjIaPTY7bffjurqanz11VfWYwMGDMD111+PtWvXCro+R25IKLEtFYiIyHHcZuSmPoPBgM2bN6O6uhrp6el2zzlw4ABGjhxpc2zMmDE4cOBAk9fVarWoqKiwuRG1xLJI+Gh+OUL8vZEQHogQf28czS/H+n3ncKq40tkhEhFRE5ye3GRnZyMwMBA+Pj64//778fnnn6Nnz552zy0sLERkZKTNscjISBQWFjZ5/czMTGg0GustLi5O1vjJs+j0RpuWCgnhAfBXm9fdW1oqXK7UYlt2IWp1BidHS0RE9ji9K3hycjKysrJQXl6OTz75BDNnzsTevXubTHDEWrRoERYuXGi9X1FRwQSHmvTm7lOouFrHlgpERG7M6cmNWq1GYmIiAKBfv344dOgQVq9ejXXr1jU6NyoqCkVFRTbHioqKEBUV1eT1fXx84OPjI2/Q5NGsLRXsVBwGzC0VqrR6tlQgInJRTk9uGjIajdBqtXYfS09Px65duzB//nzrsW+++abJNTpEYs0dkYiLpTVsqUBE5MacmtwsWrQIY8eORefOnVFZWYlNmzZhz5492LlzJwBz0cDY2FhkZmYCAB588EEMGzYMK1euxPjx47F582b88ssveOutt5z5NsjNNFePRu2ltLZUOJpfjmC/QJvClSaTCcWVWqTGathSgYjIRTk1uSkuLsaMGTNQUFAAjUaDtLQ07Ny5E6NGjQIA5ObmQqm8tuZ54MCB2LRpE5566ik88cQTSEpKwpYtW9CrVy9nvQVyM0K2dyuVCozpFYn88qs4WVxlt6XC6JRI1rEhInJRLlfnxtFY56b9atgDyl/thRqdvskeUPUTIa3eAB8vFRIjAtlSgYjICRzWW4rIHen0RhiNJuv27sSIa1NNlu3dp4qrsC27EPNGBFpHZBIjgpAwPJAtFYiI3AyTG/J4YrZ3T+4Ti7gwf+tzLS0ViIjIfTi9iB9RW7Bu71bZH3XxVimhNxpRrdO3cWRERCQ3jtyQxxOzvTtAzf8liIjcHUduyOPV395dVFkLpQJQKRXWm1IBFFdqkRwZhNgQP2eHS0RErcTkhtoFy/busAA1ThZXobK2DnqjEZW1dThZXMXt3UREHoTJDbUbiRFBmDWoK3rFaFBWU4dzl6tRVlOH1FhNo23gRETkvrjAgNoVbu8mIvJ8TG7IIzTXUqEhbu8mIvJsTG7I7QlpqUBERO0Hkxtya41bKvihRqfH0fxy5Jdf5VoaIqJ2iAuKyS3p9EbU6gzWlgoJ4QHw/2+NGktLhcuVWmzLLoTR2K7apxERtXscuSG31JqWCkRE5Nk4ckNuiy0ViIjIHo7ckFtiSwUiImoKR27IJRmNJlwoqUFOYQUulNQ0WjfDlgpERNQU/kpLLkfo1m5LS4X88qs4WVyFaI0v/NQqXNUZUFBey5YKRETtFJMbcilit3ZbWipYkqGiilr4eKmQGqvB6BTWuSEiao+Y3JDLqL+1OzEiEAqFecTFsrX7VHEVtmUX4t4h/vBVq6zPY0sFIiKqj8kNtZmWWiSs2JEjaGt3abUOiyek2FybLRWIiMiCyQ21CSHraKxbu+3sfALMW7urtHroDMa2DJ2IiNwMkxtyOKHraDIGxwva2p0xON4J74KIiNwFt4KTw4hpkVCrMwje2t21Q4CT3xkREbkyjtyQw4hpkWBZR8Ot3URE1FocuSGHEtoiwbKOxrK1u1eMBmU1dTh3uRplNXVIjdWwwzcREQnCkRtyGDEtEuqvo+HWbiIiag0mN+Qw9VskHM0vR7Dftdo1AGAymVBcqUVqrKbROhpu7SYiIqmY3FCrtFS7hi0SiIiorTG5IcmE9oBiiwQiImpLTG5IEik9oLiOhoiI2gJ3S5EoYmrXGI0mm+da1tF0jwpGXJg/ExsiInIIjtyQKGJq10zuE8tFwURE1OY4ckOiCa1dU63Tt3FkREREHLkhkcTUrglQ8z8vIiJqexy5aQeMRhMulNQgp7ACF0pqGq2FEaN+7ZqWekDFhvjJ+C6IiIiE4a/WHk7odu36WLuGiIjcGZMbDyZ2u7blOaxdQ0RE7ozJjYeqv107MeJa2wPLdu1TxVXYll2Ie4f4w1etAsDaNURE5BmY3HioFTtyBG3XLq3WYdG4HjAaTdZkKD48AIdzSwEA/buE2SRD80YENpqi4nZvIiJyJUxuPJR1u7ad3UyAebt2lVYPncHYbO2aX1DC2jVERORWmNx4qIzB8YK2a2cMjsfWrHzByRBr1xARkatjcuOmWtrRZNmufTS/HMF+19bcAIDJZEJxpRapsRp07RDA2jVERORR+E3lhoTsaBKzXVutVAhOhli7hoiIXB2TGzcjZkeTmO3arF1DRESeQmEymaSXq3VDFRUV0Gg0KC8vR3BwsLPDEUynN8JoNGHdD2dwPK/cZns3YB5dOVVchZRYDe4dkmDd3g20PIVVX/1RIa3eAB8vFRIjAlm7hoiInErM97dTR24yMzPx2WefIScnB35+fhg4cCBWrFiB5OTkJp+zYcMGzJo1y+aYj48PamtrHR2uU4npxl1arcPiCSnW54rZrs3aNURE5O6cmtzs3bsXc+fOxQ033AC9Xo8nnngCo0ePxvHjxxEQENDk84KDg3HixAnr/fojGJ5MzPbu1mDtGiIicmdOTW527Nhhc3/Dhg2IiIjA4cOHMXTo0Cafp1AoEBUV5ejwWk3MdFBL54vZ0ZQxON5h74mIiMjVudSC4vLycgBAWFhYs+dVVVWhS5cuMBqN6Nu3L1544QWkpKTYPVer1UKr1VrvV1RUyBdwM8Q2rGzp/PrduIVs7yYiImqvlM4OwMJoNGL+/PkYNGgQevXq1eR5ycnJePfdd7F161a89957MBqNGDhwIC5evGj3/MzMTGg0GustLi7OUW/ByrKj6Wh+OUL8vZEQHogQf28czS/H+n3ncKq4UtL5lh1NYQFqnCyuQmVtHfRGIypr63CyuIo7moiIiOBCu6UeeOABbN++HT/++CM6deok+Hl1dXXo0aMHpk2bhueee67R4/ZGbuLi4hy2W6pWZxC8o0mpVAjeATVvRKI1aeGOJiIiam/cZreUxbx58/DVV1/h+++/F5XYAIC3tzf69OmDU6dO2X3cx8cHPj4+coQpiJiGlcF+3oJ3QNXv6cQdTURERE1z6rSUyWTCvHnz8Pnnn+O7775DfLz4hbAGgwHZ2dmIjo52QITiWXc0qewnGt4qJfRGo3VHk9DzG/Z0suxo6h4VjLgwfyY2RERE/+XUkZu5c+di06ZN2Lp1K4KCglBYWAgA0Gg08PMzl/mfMWMGYmNjkZmZCQB49tlnMWDAACQmJqKsrAwvvfQSzp8/j3vuucdp76M+MQ0rO4X6s6cTERGRzJw6crNmzRqUl5dj+PDhiI6Ott4+/PBD6zm5ubkoKCiw3i8tLcWcOXPQo0cPjBs3DhUVFdi/fz969uzpjLfQiGVHU1FlLZQKQKVUWG9KBVBcqUVyZBC6dgiw2QHV0vns6URERCSMyywobitt0X6hYf+nhj2a6vd/knI+ERFReyPm+5vJjYOI3dHEHVBERERNY3LTjLZsnClnhWIiIqL2zO22gnsqsT2a2NOJiIio9VymQjERERGRHJjcEBERkUdhckNEREQehckNEREReRQmN0RERORRmNwQERGRR2FyQ0RERB6FyQ0RERF5FCY3RERE5FGY3BAREZFHaXftFyyttCoqKpwcCREREQll+d4W0hKz3SU3lZWVAIC4uDgnR0JERERiVVZWQqPRNHtOu+sKbjQakZ+fj6CgICgU8nfcvuGGG3Do0CHZr9vWryX3teW6XmuuU1FRgbi4OFy4cMHhHeFJmrb8/8dVuNt7doV42zoG/qwVx1E/a00mEyorKxETEwOlsvlVNe1u5EapVKJTp04Ou75KpWqzL05Hvpbc15brenJcJzg4mMmNi2rL/39chbu9Z1eIt61j4M9aaRzxs7alERsLLiiW2dy5cz3iteS+tlzXa8vPl9pee/z3dbf37ArxtnUM/FnrftrdtBS1XxUVFdBoNCgvL3f6b55ERJ7KFX7WcuSG2g0fHx8sXrwYPj4+zg6FiMhjucLPWo7cEBERkUfhyA0RERF5FCY3RERE5FGY3BAREZFHYXJDREREHoXJDREREXkUJjdEAL766iskJycjKSkJ77zzjrPDISLySJMnT0ZoaChuu+02h74Ot4JTu6fX69GzZ0/s3r0bGo0G/fr1w/79+9GhQwdnh0ZE5FH27NmDyspKbNy4EZ988onDXocjN9Tu/fzzz0hJSUFsbCwCAwMxduxY/Oc//3F2WEREHmf48OEICgpy+OswuSG39/333+PWW29FTEwMFAoFtmzZ0uicN998E127doWvry9uuukm/Pzzz9bH8vPzERsba70fGxuLvLy8tgidiMhttPZnbVtickNur7q6Gr1798abb75p9/EPP/wQCxcuxOLFi/Hrr7+id+/eGDNmDIqLi9s4UiIi9+VOP2uZ3JDbGzt2LJ5//nlMnjzZ7uOvvPIK5syZg1mzZqFnz55Yu3Yt/P398e677wIAYmJibEZq8vLyEBMT0yaxExG5i9b+rG1LTG7Io+l0Ohw+fBgjR460HlMqlRg5ciQOHDgAALjxxhtx9OhR5OXloaqqCtu3b8eYMWOcFTIRkdsR8rO2LXm1+SsStaHLly/DYDAgMjLS5nhkZCRycnIAAF5eXli5ciVGjBgBo9GIRx99lDuliIhEEPKzFgBGjhyJ3377DdXV1ejUqRM+/vhjpKenyx4PkxsiABMmTMCECROcHQYRkUf79ttv2+R1OC1FHi08PBwqlQpFRUU2x4uKihAVFeWkqIiIPIur/axlckMeTa1Wo1+/fti1a5f1mNFoxK5duxwyFEpE1B652s9aTkuR26uqqsKpU6es98+ePYusrCyEhYWhc+fOWLhwIWbOnIn+/fvjxhtvxKpVq1BdXY1Zs2Y5MWoiIvfiVj9rTURubvfu3SYAjW4zZ860nvP666+bOnfubFKr1aYbb7zR9NNPPzkvYCIiN+ROP2vZW4qIiIg8CtfcEBERkUdhckNEREQehckNEREReRQmN0RERORRmNwQERGRR2FyQ0RERB6FyQ0RERF5FCY3RERE5FGY3BAREZFHYXJDRO3SlStXEBERgXPnzgEA9uzZA4VCgbKyMoe+7uOPP47/9//+n0Nfg6i9Y3JDRM26++67oVAoGt1uueUWZ4fWKsuWLcPEiRPRtWvXVl+rqKgI3t7e2Lx5s93HMzIy0LdvXwDAww8/jI0bN+LMmTOtfl0iso/JDRG16JZbbkFBQYHN7YMPPnDoa+p0Ooddu6amBv/3f/+HjIwMWa4XGRmJ8ePH49133230WHV1NT766CPra4WHh2PMmDFYs2aNLK9NRI0xuSGiFvn4+CAqKsrmFhoaan1coVDgnXfeweTJk+Hv74+kpCR88cUXNtc4evQoxo4di8DAQERGRuKuu+7C5cuXrY8PHz4c8+bNw/z5860JAAB88cUXSEpKgq+vL0aMGIGNGzdap4+qq6sRHByMTz75xOa1tmzZgoCAAFRWVtp9P9u2bYOPjw8GDBjQ5HuuqanB2LFjMWjQIOtU1TvvvIMePXrA19cX3bt3xz//+U/r+RkZGdi1axdyc3NtrvPxxx9Dr9dj+vTp1mO33nprk6M8RNR6TG6ISBZLly7F1KlT8fvvv2PcuHGYPn06SkpKAABlZWW4+eab0adPH/zyyy/YsWMHioqKMHXqVJtrbNy4EWq1Gvv27cPatWtx9uxZ3HbbbZg0aRJ+++033HfffXjyySet5wcEBOCOO+7A+vXrba6zfv163HbbbQgKCrIb6w8//IB+/fo1+V7KysowatQoGI1GfPPNNwgJCcH777+PZ555BsuWLcMff/yBF154AU8//TQ2btwIABg3bhwiIyOxYcOGRrH89a9/RUhIiPXYjTfeiIsXL1rX+xCRzExERM2YOXOmSaVSmQICAmxuy5Yts54DwPTUU09Z71dVVZkAmLZv324ymUym5557zjR69Gib6164cMEEwHTixAmTyWQyDRs2zNSnTx+bcx577DFTr169bI49+eSTJgCm0tJSk8lkMh08eNCkUqlM+fn5JpPJZCoqKjJ5eXmZ9uzZ0+R7mjhxomn27Nk2x3bv3m0CYPrjjz9MaWlppr/97W8mrVZrffy6664zbdq0yeY5zz33nCk9Pd16//HHHzfFx8ebjEajyWQymU6dOmVSKBSmb7/91uZ55eXlJgDNxkhE0nHkhohaNGLECGRlZdnc7r//fptz0tLSrH8PCAhAcHAwiouLAQC//fYbdu/ejcDAQOute/fuAIDTp09bn9dwNOXEiRO44YYbbI7deOONje6npKRYR1Dee+89dOnSBUOHDm3y/Vy9ehW+vr52Hxs1ahQSExPx4YcfQq1WAzCvmzl9+jQyMjJs3sPzzz9vE//s2bNx9uxZ7N69G4B51KZr1664+eabbV7Dz88PgHnqi4jk5+XsAIjI9QUEBCAxMbHZc7y9vW3uKxQKGI1GAEBVVRVuvfVWrFixotHzoqOjbV5HinvuuQdvvvkmHn/8caxfvx6zZs2CQqFo8vzw8HCUlpbafWz8+PH49NNPcfz4caSmplrjB4C3334bN910k835KpXK+vekpCQMGTIE69evx/Dhw/Gvf/0Lc+bMaRSLZbquY8eO4t8sEbWIyQ0ROVzfvn3x6aefomvXrvDyEv5jJzk5Gdu2bbM5dujQoUbn3XnnnXj00Ufx2muv4fjx45g5c2az1+3Tpw/ee+89u48tX74cgYGB+Mtf/oI9e/agZ8+eiIyMRExMDM6cOWOzMNiejIwMPPDAA5gwYQLy8vJw9913Nzrn6NGj8Pb2RkpKSrPXIiJpOC1FRC3SarUoLCy0udXf6dSSuXPnoqSkBNOmTcOhQ4dw+vRp7Ny5E7NmzYLBYGjyeffddx9ycnLw2GOP4c8//8RHH31kXbBbfzQkNDQUf/3rX/HII49g9OjR6NSpU7PxjBkzBseOHWty9Obll1/G9OnTcfPNNyMnJweAecF0ZmYmXnvtNfz555/Izs7G+vXr8corr9g8d8qUKfD29sZ9992H0aNHIy4urtH1f/jhBwwZMsQ6PUVE8mJyQ0Qt2rFjB6Kjo21ugwcPFvz8mJgY7Nu3DwaDAaNHj0Zqairmz5+PkJAQKJVN/xiKj4/HJ598gs8++wxpaWlYs2aNdbeUj4+PzbkZGRnQ6XSYPXt2i/Gkpqaib9+++Oijj5o859VXX8XUqVNx8803488//8Q999yDd955B+vXr0dqaiqGDRuGDRs2ID4+3uZ5/v7+uOOOO1BaWtpkLJs3b8acOXNajJOIpFGYTCaTs4MgIhJq2bJlWLt2LS5cuGBz/N///jcWLFiA/Px860Lg5nz99dd45JFHcPTo0WYTLLlt374dDz30EH7//XdRU3REJBz/zyIil/bPf/4TN9xwAzp06IB9+/bhpZdewrx586yP19TUoKCgAMuXL8d9990nKLEBzAuHT548iby8PLtTR45SXV2N9evXM7EhciCO3BCRS1uwYAE+/PBDlJSUoHPnzrjrrruwaNEia3KwZMkSLFu2DEOHDsXWrVsRGBjo5IiJyNmY3BAREZFH4YJiIiIi8ihMboiIiMijMLkhIiIij8LkhoiIiDwKkxsiIiLyKExuiIiIyKMwuSEiIiKPwuSGiIiIPMr/B/a6IBOgjtYeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum / countsp.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error / countsp.spectrum,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum / countsp.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error / countsp.spectrum,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Normalized Covariance (1 / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "40de3c8c", + "metadata": { + "id": "40de3c8c" + }, + "source": [ + "Alternatively, we can calculate the Covariance Spectrum in fractional rms normalization" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "ac4fc20b", + "metadata": { + "id": "ac4fc20b", + "outputId": "1d04917c-d24a-4988-9d89-4f47ef86c3c3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:40<00:00, 1.01s/it]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:38<00:00, 1.03it/s]\n" + ] + } + ], + "source": [ + "covspec_01_1 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")\n", + "covspec_3_30 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "5615406c", + "metadata": { + "id": "5615406c", + "outputId": "c74ddc36-c90c-4d32-d6d7-72820d5d2634" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG1CAYAAAARLUsBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABje0lEQVR4nO3deVzUdf4H8NfMwHDKHSCIAkGaJmoe5JW6kXSslpumbptGduh6rGKmbCtq6YJmRoUrm21mm626XWuXlfzErPBIszzxFuMUUYZDGJiZ3x/fZmQ4v99hTub1fDx4wHznO5/5DMp83/P5vD/vj0yn0+lARERE5ETktu4AERERkbUxACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoutu6APdJqtSgsLESXLl0gk8ls3R0iIiISQafTobKyEmFhYZDL2x7jYQDUgsLCQkRERNi6G0RERGSCy5cvo1u3bm2ewwCoBV26dAEg/AJ9fHxs3BsiIiISQ6VSISIiwnAdbwsDoBbop718fHwYABERETkYMekrTIImIiIip8MAiIiIiJyOXUyBrV+/Hi+//DKKi4vRr18/vPHGGxgyZEiL53700Uf4+9//jrNnz6K+vh6xsbFYuHAhHn/8ccM5Op0Oy5Ytw8aNG3H9+nUMHz4cGzZsQGxsrFn7rdFoUF9fb9Y2yXxcXV2hUChs3Q0iIrJDNg+Atm3bhuTkZGRlZSE+Ph4ZGRlITExEXl4egoODm50fEBCAF154Ab169YJSqcRnn32GpKQkBAcHIzExEQCwZs0avP7669i8eTOioqKwdOlSJCYm4sSJE3B3d+9wn3U6HYqLi3H9+vUOt0WW5efnh9DQUJYzICIiIzKdTqezZQfi4+MxePBgZGZmAhBq8ERERGDu3LlYsmSJqDbuvPNOPPjgg3jppZeg0+kQFhaGhQsX4rnnngMAVFRUICQkBO+88w6mTJnSbnsqlQq+vr6oqKhoMQm6qKgI169fR3BwMDw9PXlxtUM6nQ41NTUoLS2Fn58funbtausuERGRhbV3/W7MpiNAarUahw4dQkpKiuGYXC5HQkICcnNz2328TqfD//3f/yEvLw+rV68GAFy4cAHFxcVISEgwnOfr64v4+Hjk5uaKCoDaotFoDMFPYGBgh9oiy/Lw8AAAlJaWIjg4mNNhRERkYNMAqKysDBqNBiEhIUbHQ0JCcOrUqVYfV1FRgfDwcNTV1UGhUOAf//gH7r33XgBAcXGxoY2mberva6qurg51dXWG2yqVqtXn1uf8eHp6tvHKyF7o/53q6+sZABERkYHNc4BM0aVLFxw5cgRVVVXIzs5GcnIyoqOjMXr0aJPaS0tLw4oVKyQ9htNejoH/TkRE1BKbLoMPCgqCQqFASUmJ0fGSkhKEhoa2+ji5XI6YmBj0798fCxcuxMSJE5GWlgYAhsdJaTMlJQUVFRWGr8uXL3fkZYmmbtDi1W9O49VvTkPdoLXKcxIREZGNAyClUomBAwciOzvbcEyr1SI7OxtDhw4V3Y5WqzVMYUVFRSE0NNSoTZVKhf3797fappubm6HqM6s/ExERdX42nwJLTk7G9OnTMWjQIAwZMgQZGRmorq5GUlISAGDatGkIDw83jPCkpaVh0KBBuPXWW1FXV4cvvvgC//73v7FhwwYAwpTH/PnzsXLlSsTGxhqWwYeFheHhhx+21ctskVarg+pGPdQaLX69VoPIQC/I5ZyyIeostFodCq7fQLW6AV5KF4T7efBvnMhO2LwS9OTJk7F27Vqkpqaif//+OHLkCHbu3GlIYs7Pz0dRUZHh/Orqavz5z39Gnz59MHz4cHz44Yd477338NRTTxnOef755zF37lw888wzGDx4MKqqqrBz506z1AAyl7Ollfjn3vPIPX8V+89fxWvZZ7Ah5xzOllZa9HnXr1+PyMhIuLu7Iz4+HgcOHGjz/OPHj+ORRx5BZGQkZDIZMjIyRD3PRx99hLFjxyIwMBAymQxHjhxp9zHLly9H//79mx2/ePGi6DaI7MXZ0kpsyDmHV785jdezz+DVb05b5W+ciMSx+QgQAMyZMwdz5sxp8b6cnByj2ytXrsTKlSvbbE8mk+HFF1/Eiy++aK4umtXZ0kps+v4iyirr4O6qgKu7C/w9lDhWWIHCihtIGh6JmOD2d7KVSmrRSQCoqalBdHQ0Jk2ahAULFoh+rurqaowYMQKPPvoonn76aXO9BLIRjmRIo/8bL69Wo6uvOzyVHqhRN7T7N87fM5H12EUA5Az0Sc5arQ6fHy1GWWUdooK8UF6jBgB4KBWIDvLC2dIqfHG0GM+M9IS70rzLttetW4enn37aML2YlZWFzz//HG+//XarRScHDx6MwYMHA4DowpQADFuTXLx4sWOdbsETTzyBzZs3Nzu+e/duk1cCUuvOllbiq2MlOHelCrUNGri7KHDrLd5IvCPEqhdxqe3aKpioVWuM/sYP5V8DAAzqEdDm37jU3zMRdQwDICtZv/ssAEB1ox6556/C3VWB8ho1Cq/fAAD8iHLIZTLUNWhw6WgNrlWrsWx8H7M9f0eLTtqT1157Denp6Ybb6enp+M9//oNevXrZsFedk9SRDEtdxKW2a8mgrb1zV+88Jflv3NQRIyIyHQMgK1NrtGjQaOHq3vKv3lUhR1VdA9Qa8y6LN7XopLUdPXoU3t7eRsea7tbi6+sLX19fAEKu0T//+U/s2rWrzdIJJI26QWs0WhkT7G2oqeSpdDEayZgzxhtyucyki7iYwMOUIMxSQZuYc6X8jTf9Pbc1YqT/PROReTAAspLZY2IAAL9eq0FVXQP8PZTwUCrwI8oBCG92CrkMlbX1uH6jHjNGRNmyu6Jt2bIFzz77rOH2l19+iZEjR5rcXs+ePbFjxw6jYwUFBS1Obf300094/PHHkZmZieHDh5v8nNTc+t1nWx2tDPPzMBrJ+H1cV4T5ekgKlgBxwUTj6aS22n1mpCfkcpnkYEJKsCT23BkjokT/jbf1e246YjRhQDgiAkyrQG/J6UPmLZGjYgBkJUoXYcFdZKAXbgvugmOFFYgO8oL8tzd0hVwGuQworaxD33BfRAZ6mfX5TS062Z7x48cjPj7ecDs8PNzktgChNlRMTIzRMReX5v9Ni4uLMX78eDz11FOYMWNGh56TWiZ2JONf312AUiEXFSzpL+Jig4nWppOatnutWg0fD1fRwUTToK29XB0Aos+V+jcu9vdcrW4wOi428LDk9CHzlsiRMQCyMrlchsQ7QlBYcQNnS6tQ16CBq0KOytp6lFbWIcBLibF9Qsz+Capx0Ul9PSR90cnWVuCJ0aVLF3TpYt03utraWjz00EPo1asX1q1bZ9Xn7izau3jOHhNjNFrp3cLFWT+SoVTIRV/Er9fU4xZv8aM6UqeMzRG0tZSrA0BSXo/+b/x8WTX6hPnAQ6lAjboBRRW1Rn/jTX/PbY0YeSlvviaxgUfjFacllXVwVcjQp6tvu9OHYs5n3hI5OgZANhAT3AVJwyPx+dFiXDoqvPldv1GPvuG+GNvHcp+c2is6CTQvPKlWq3HixAnDzwUFBThy5Ai8vb2bjdQ0Vl5ejvz8fBQWFgIA8vLyAAhblXQ0V+fZZ5/F5cuXkZ2djStXrhiOBwQEQKlUdqhtZyDm4ql0kRuNZPh4eBvtq6bT6QwjGU8Oj0JhxQ1RwdJHh38F0HIw0dKojpTppG7+nqKDCSlBmz64knKu/m9c/3suUdXCzUXR7G+86e85Ntgbw24NavH3HO7nYfj3ExN4NF2N1taK05amD9s6HxA3Isa8JbJnDIBsJCa4C54d6Ynr1WqoNVrMGBFl8UrQkydPxpUrV5Camori4mL079/fqOgkIBSelMtv1scsLCzEgAEDDLfXrl2LtWvXYtSoUc1qNDW2Y8cOo8BqypQpAIBly5Zh+fLlHXode/bsQVFREXr37m103NmXwZs7objxaOWZ0ip09XWHh1KBG2qN0UiGu1IhOliqrdfgarVadDAhNjjQ/+2IPb9p0CYmH09q7l5McBdEj/Zu999E7O+5QauDtkEreipOymo0KdOHUkbEOpK3RGRpDIBsSC6XwcfDFQDQzd/TKp+U2io6CTQvPBkZGdlsFZYYTzzxBJ544glJj1m+fHmLwVHTPliitpCjM3dCsb4+jdiRDLEX8e4BXpIWAohtV/+3Y2rQ1l5wBUDSuXpyuUxUACDm9/zqN6clBSmWmj6UMiLWNG9JCnup++QMSd7qBq2hVMvsMTGGnNXOjgGQDSld5Fhw72227gY5OEskFDeuQSV2JENssCQ18BDbrtR+SA2upJxrCjG/ZylBiqWmD6WMiDXOWwLsI3FbirOllfj8aDG+PFqEBo0WfcJ9cVtwF5skedeqNVi985SoGQNnDWikYgBE5KCk1OoxJaG4MSkjGe1dxKUGHmLbldoP/XligyupgZgp2vo9S0mY1l8gLTF92HRErK2Vbvq8JcA+ErelsNWWRa315fOjxcg9fxUNGi2q6hraDMSkbrTtrBtzMwAiclBSavU0TShuK1G5ozWoxARLpgQTYoMwqedLCa6kBmLmJCVhWn8Bs8T0YdMRsfZWugHigxRLJW5LScZuqTil2C2LLDFdJjUQkxosST2/M2EAROTApIzqiE1UNncNqtbYMphoSkpwJTUQMyepQYqlpg/Fnis1mLBU4nbTZOy2AhUpxSmbbmdizukyUwIxU4IlexnlsgUGQER2rK03aqlTIqZMPVmaLYMJR2VKUGOJ6UMx50oNJiyVuN04GVtMoCK1H5YIJKT+7hbf18vmo2eOhgEQkZ1qL2dC6pQIYJ08FrI8qUGNpaYPxZxrD4nb+mRsMYGK1A8WUqbtGk+XAe1PmUn53Vlr9KwzYQBEZIfEruyyRkIx2SdHGD3rSOJ2e9uINE3cbuv8W7zdRAcqc8bESOrHS5+dkDxdBrQ/EiX1d/ev7y5YfPSss2EAZEsNamDvK8LPIxcCLqxi7OxM2YXdGgnFRKZoOkopJqiRklwt9vwNe85JHvEQ2w9TVleKnTKT8ruz9OhZZ9R5XxmRA5Kysqvx0DRHdcheSQ1qLJO4XSR5xENsP6QEHlISm/UfcMTuHWmp0bPGpQw6GwZAtqTTArXXhZGg6/lAQDQgt1zBqg0bNmDDhg2GSsp9+vRBamoq7r///jYfN378eBw5cgSlpaXw9/dHQkICVq9ejbCwMMM5v/zyC2bPno2DBw/illtuwdy5c/H888+32ubFixcRFRWFn376Cf379ze6b/To0ejfvz8yMjJMfakOzdShaY7qkL2ydeK2qZvOiumHlMDjtewzkkeixO4dKXWjbVttzG1PGADZypU84PgnwIW9gLYBUFcBt/QEbh8nfLeAbt26IT09HbGxsdDpdNi8eTMeeugh/PTTT+jTp0+rjxszZgz++te/omvXrigoKMBzzz2HiRMn4ocffgAAqFQqjB07FgkJCcjKysLRo0fx5JNPws/PD88884xFXktnJWUX9s48NE2djy0Tt6VMxTUd8WivH1IDCVM+4MQEd8HcMd74w4BwUYU9xW60bauNue0F30Ft4UoesC8LqL4CuHoAClfAIwAo+gWoKADummmRIGjcuHFGt1etWoUNGzZg3759bQZACxYsMPzco0cPLFmyBA8//DDq6+vh6uqKLVu2QK1W4+2334ZSqUSfPn1w5MgRrFu3rsMBUE5ODsaMGdPs+PTp0/HOO+90qG1baG/Vh5Rd2Dvz0DR1TvZSQ0nMVJwUTUe46ho0qKxtaBZImDoSpe+/2MKeUjbatsXG3PaCAZC1NAjzvNBphZGf6itAYAxQc1U4rvQEAmOBsjzgxP+AYfMAV3eLdUej0eC///0vqqurMXToUNGPKy8vx5YtWzBs2DC4ugobuebm5uLuu++GUnkziTsxMRGrV6/GtWvX4O/vb3I/hw0bhqKiIsPtkydP4oEHHsDdd99tcpu2InYrAHus10PUGViyDISYEa6OjERJ4a5UGK04M/f5nQUDIGvRr/aqvS5Me7l6CMFPxWXheD4AmQxoqAPKzwv33b/a7N04evQohg4ditraWnh7e+Pjjz9G7969233c4sWLkZmZiZqaGtx111347LPPDPcVFxcjKsp4+4SQkBDDfW0FQMOGDYO8Sd7TjRs3DHlBSqUSoaGhAICrV6/iqaeewpNPPoknn3xS1Ou1F2KXteuxXg+RZVhywYCYURrm3tgPBkDW1qAWcn4Uri3fr3AF6ipvjhiZWc+ePXHkyBFUVFTggw8+wPTp07Fnzx707t0bM2fOxHvvvWc4t6qqyvDzokWLMGPGDFy6dAkrVqzAtGnT8NlnnxlNz5hi27ZtuP32242OPfbYY83Oq6+vxyOPPIIePXrgtdde69BzWlvj+iPtbVjauFAaV3YRWYatFww4e+6NvWAAZC0jFwrfr+cLCc8eAcK0V/5v93e/C5ApgDoVcOMaMHS2RbqhVCoRExMDABg4cCAOHjyI1157Df/85z/x4osv4rnnnmvxcUFBQQgKCsJtt92G22+/HREREdi3bx+GDh2K0NBQlJSUGJ2vv60fvWlNRESEoT96Hh7Nh35nzZqFy5cv48CBA3Bxcaz/tq1VaG1pw9Kmw9C2fqMmIssQm9hsb9QNWqzffRaAkNOkdLHcymVLc6wriSPTFzkMiBYSnIt+EXJ+9CMoMgUgkwOVxUBYP+E8K9BqtairqwMABAcHIzg4WNRjABgeN3ToULzwwguGpGgA+Oabb9CzZ88O5f/orVu3Dtu3b8cPP/yAwMDADrdnbaYUSiOizo8fcGyLAZC1yeXCUveKAiHhuaHut2kvlRD8eAUCvX5vkXpAKSkpuP/++9G9e3dUVlbi/fffR05ODr766qtWH7N//34cPHgQI0aMgL+/P86dO4elS5fi1ltvNSRP//GPf8SKFSswY8YMLF68GMeOHcNrr72GV199tcN93rVrF55//nmsX78eQUFBKC4uBiCMEvn6+na4fWtoXCitrWXtM0ZEtfBoIiKyBMcdu3Jkt/QUlrqH9gXqbwA15cK0V1g/IN4yS+ABoLS0FNOmTUPPnj1xzz334ODBg/jqq69w7733tvoYT09PfPTRR7jnnnvQs2dPzJgxA3FxcdizZw/c3NwAAL6+vvj6669x4cIFDBw4EAsXLkRqaqpZagB999130Gg0mDlzJrp27Wr4+stf/tLhtq1Fv+qjpLIWcpmw2kP/pV/10TOki2HDUiIie6XV6qC6UY+yqjr8eq0GWq3O1l0ymUyn0zlu7y1EpVLB19cXFRUV8PHxMbqvtrYWFy5cQFRUFNzdO7hMvb4W2LVMSHgeOtvilaCdkVn/vTqg6Sqwpsvam64CIyKyN+1t4GoP2rp+N8UpMFuSyQF3P+Fnv+4MfhxUe8UNAS5rJyLHJnYDV0fCAMiWXJTAmBRb94I6QGxxQ4DL2onI8ZiygaujsIshh/Xr1yMyMhLu7u6Ij4/HgQMHWj1348aNGDlyJPz9/Q0bczY9v6qqCnPmzEG3bt3g4eGB3r17Iysry9Ivg5yM/hPRscIK+Hm6IjrIG36erjhWWIFN31/E2dLKZo/Rr/roFeqDiABPh3qzICLns373WazeeQpfHi1CSWUdDuVfQ+H1Gyi8fgM/XirHj5euoaSyFl8cLULBbyU+HIXNA6Bt27YhOTkZy5Ytw+HDh9GvXz8kJiaitLS0xfNzcnIwdepU7N69G7m5uYiIiMDYsWNRUFBgOCc5ORk7d+7Ee++9h5MnT2L+/PmYM2cOduzYYa2XRZ2YukFrVNwwOsgLnr/t26MvblhWWYcvjhajVq2xcW+JiDrGUMpD0fIHNleFHA1ardEGro7A5knQ8fHxGDx4MDIzMwEINWYiIiIwd+5cLFmypN3HazQa+Pv7IzMzE9OmTQMA3HHHHZg8eTKWLl1qOG/gwIG4//77sXLlynbbtFoSNFmcJf69Xv3mNFQ36g3FDV0VshaLG9bWazE0OtAp99ghos5B3aDFr9dq8Fr2mZsbuF5qeQPX58b2tHldIylJ0DYdAVKr1Th06BASEhIMx+RyORISEpCbmyuqjZqaGtTX1yMgIMBwbNiwYdixYwcKCgqg0+mwe/dunD59GmPHjm2xjbq6OqhUKqOv9nDxnGOw1L9T409EcpkM3fw90c3f07Cxof4TEYsbEpEja7yBq76Uh1wmvO81LeXRkQ1cbcGmSdBlZWXQaDSGjTP1QkJCcOrUKVFtLF68GGFhYUZB1BtvvIFnnnkG3bp1g4uLC+RyOTZu3NjqDuJpaWlYsWKFqOfTVzquqalpccsGsi81NTUAbv67mcPsMTH49VoNixsSkVPorBu4OvQqsPT0dGzduhU5OTlG0xtvvPEG9u3bhx07dqBHjx749ttvMXv27GaBkl5KSgqSk5MNt1UqFSIiIlp8ToVCAT8/P0OOkqenZ4c3BCXz0+l0qKmpQWlpKfz8/KBQKNp/kEiNPxEdK6yAj4e30f8BnU6H0so69A33ZXFDIuoUOuMGrjYNgIKCgqBQKFrcSLO9TTTXrl2L9PR07Nq1C3FxcYbjN27cwF//+ld8/PHHePDBBwEAcXFxOHLkCNauXdtiAOTm5maoaiyGvm+tJWqT/fDz82v3/5IpGn8iOlNa1WJxQ0f8RERE1JqY4C54dqQnrlerodZoMWNEFCIDvRz2fc6mAZBSqcTAgQORnZ2Nhx9+GICQBJ2dnY05c+a0+rg1a9Zg1apV+OqrrzBo0CCj++rr61FfXw95k6KCCoXCsIlnR8lkMnTt2hXBwcGor683S5tkfq6urmYd+WmKxQ2JyNnI5TL4eAgpBd38HbuUh82nwJKTkzF9+nQMGjQIQ4YMQUZGBqqrq5GUlAQAmDZtGsLDw5GWlgYAWL16NVJTU/H+++8jMjLSsDmmt7c3vL294ePjg1GjRmHRokXw8PBAjx49sGfPHrz77rtYt26dWfuuUCgseoEl+8fihkREjsnmAdDkyZNx5coVpKamori4GP3798fOnTsNidH5+flGozkbNmyAWq3GxIkTjdpZtmwZli9fDgDYunUrUlJS8Nhjj6G8vBw9evTAqlWrMHPmTKu9LnIe+uKGRESdndJFjgX33mbrbpiFzesA2SMpdQSIiIjIPnAzVKIOErPBKREROS4GQERNSNnglIiIHBMDIKJG9Bucller0dXXHZ5KD9SoG3CssAKFFTeQNDySQRARUSdg881QieyBlA1OtVqmzREROTqOABEBWL/7rNEGp+U16hY3OL10tAYTBoRz1RcRkYNjAET0G8MGpy3s7QUIG5xW1TWgWt1g5Z4RETkedYMW63efBSDsoah0sa9JJwZARJC2wamXkn82RESOzr7CMSIbabzBaUllLeQyQCGXGb7kMqC0sg49Q7og3M/D1t0lIqIOYgBE9Bv9BqcBXkqcKa1CZW09GrRaVNbW40xpFTc4JSLqRBgAETWi3+D0jjBfXK+px8WyalyvqUffcF8ugSci6kSYzEDUBDc4JSLqOK1WB9WNeqg1Wvx6rQaRgV529T7KAIioBdzglIjIdGdLK/H50WLknr+KBo0WVXUNuC24i11V1GcARERERGajr6hfVlkHd1cFXN1d4O+htLuK+swBIqeh1epwubwGp4pVuFxew4rORERm1LSiflSQF1wVwpSXh1JhVFG/Vq2xcW85AkROghucEhFZVlsV9X9EuVFF/WvVaiwb38em/WUARJ0eNzglIrIOsRX11RqtlXvWHAMg6rTUDVpotTrDcGxMsDdkMmE4Vr/B6dnSKnxxtBhzxnjb1eoEIiJH07SivodSgR9RDgAY1CMACrnMUFF/xogoG/eWARB1YtzglIjIehpX1D9WWIHoIC/If/vQ2biift9wX0QGetm4t0yCpk7OMByraHl0x1UhR4NWyw1OiYjMoHFF/bOlVahr0ECr09llRX2OAFGnxQ1OiYisT19R//Ojxbh0VHgPvn5DqKg/to/9LDzhuz51Wk2HY308buYAAYBOpzMMx3KDUyIi84kJ7oJnR3rierUaao0WM0ZEsRI0kTXph2MLK27gTGkVuvq6w0OpwA21BkUVtXY1HEtE1JnI5TL4eLgCALr5e9rd+yxzgKjT4wanRETUFEeAyClwg1MiImqMARA5DW5wSkREegyAiIiIyOyULnIsuPc2W3ejVQyAyGFptTpOaRERkUkYAJFD4uamRETUEQyAyOFwc1MiIuooLoMnh1Kr1hg2N40O8oLnbxWc9ZubllXW4YujxahVa2zcUyIismccASKHsnrnKVGbm16rVmPZ+D427i0REdkruxgBWr9+PSIjI+Hu7o74+HgcOHCg1XM3btyIkSNHwt/fH/7+/khISGjx/JMnT2L8+PHw9fWFl5cXBg8ejPz8fEu+DLICsZubqjVaK/eMiIgcic1HgLZt24bk5GRkZWUhPj4eGRkZSExMRF5eHoKDg5udn5OTg6lTp2LYsGFwd3fH6tWrMXbsWBw/fhzh4eEAgHPnzmHEiBGYMWMGVqxYAR8fHxw/fhzu7u7WfnlkZjNGRIna3HTGiCgb9I6IiByFTKfT6WzZgfj4eAwePBiZmZkAAK1Wi4iICMydOxdLlixp9/EajQb+/v7IzMzEtGnTAABTpkyBq6sr/v3vf5vUJ5VKBV9fX1RUVMDHx8ekNsgytFodNuScw7HCCsQGN9/c9ExpFfqG+2LmqFu5JJ6IyMlIuX7bdApMrVbj0KFDSEhIMByTy+VISEhAbm6uqDZqampQX1+PgIAAAEIA9fnnn+O2225DYmIigoODER8fj08++aTVNurq6qBSqYy+yD7pNzcN8FLiTGkVKmvr0aDVorK2HmdKq7i5KRERiWLTAKisrAwajQYhISFGx0NCQlBcXCyqjcWLFyMsLMwQRJWWlqKqqgrp6em477778PXXX2PChAn4wx/+gD179rTYRlpaGnx9fQ1fERERHXthZDKtVofL5TU4VazC5fIaaLXNByi5uSkREXWUzXOAOiI9PR1bt25FTk6OIb9HqxWSXx966CEsWLAAANC/f3/88MMPyMrKwqhRo5q1k5KSguTkZMNtlUrFIMgGpBQ35OamRETUETYNgIKCgqBQKFBSUmJ0vKSkBKGhoW0+du3atUhPT8euXbsQFxdn1KaLiwt69+5tdP7tt9+O7777rsW23Nzc4ObmZuKrIHMwpbghNzclIiJT2XQKTKlUYuDAgcjOzjYc02q1yM7OxtChQ1t93Jo1a/DSSy9h586dGDRoULM2Bw8ejLy8PKPjp0+fRo8ePcz7AqjD1A1aFjckIiKrs/kUWHJyMqZPn45BgwZhyJAhyMjIQHV1NZKSkgAA06ZNQ3h4ONLS0gAAq1evRmpqKt5//31ERkYacoW8vb3h7e0NAFi0aBEmT56Mu+++G2PGjMHOnTvx6aefIicnxyavkVq3fvdZqG7Us7ghERFZlc0DoMmTJ+PKlStITU1FcXEx+vfvj507dxoSo/Pz8yGX3xyo2rBhA9RqNSZOnGjUzrJly7B8+XIAwIQJE5CVlYW0tDTMmzcPPXv2xIcffogRI0ZY7XWReIbihi3U9QGE4oZVdQ0sbkhERGZj8zpA9oh1gKxH3aDFr9dq8Fr2mXaLG/7lnlhE3+Jtg14SEZEjcJg6QOQc2lrarnSRIzLQC7cFd0FJZS3kMkAhlxm+5DKgtLIOPUO6IDLQy4avgoiIOhObT4FR5yZmabu+uGFhxQ2cKa1CV193eCgVuKHWoKiilsUNiYjI7BgAkcVIWdquL26oD5ZKVLVwc1Ggb7gvxvZpXgeIiIioIxgAkdmpG7TQanWGpe0xjfbs0i9tP1tahS+OFmPOGG/DyA6LGxIRkbUwACKzk7K0fcKAcKNihixuSERE1sAkaLIIw9J2RcujN64KORq0WlSrG6zcMyIiIo4AkQXMHhODX6/VoKquod2l7V5K/hckIiLr4wgQmZ2Upe3hfh627i4RETkhBkBkEfql7QFeSpwprUJlbT0atFpU1tbjTGkVl7YTEZFNMQAii9Evbb8jzBfXa+pxsawa12vq0Tfct8Xd3YmIiKylQwkYtbW1cHd3N1dfyIFotTpRy9W5tJ2IiOyR5ABIq9Vi1apVyMrKQklJCU6fPo3o6GgsXboUkZGRmDFjhiX6SXZETHXnxri0nYiI7I3kKbCVK1finXfewZo1a6BUKg3H77jjDrz11ltm7RzZH31152OFFfDzdEV0kDf8PF1xrLACm76/iLOllbbuIhERUbskB0Dvvvsu3nzzTTz22GNQKBSG4/369cOpU6fM2jmyH+oGLWrVGkN15+ggL3j+toRdX925rLIOXxwtNtrslIiIyB5JngIrKChATExMs+NarRb19fVm6RTZn45UdyYiIrI3kkeAevfujb179zY7/sEHH2DAgAFm6RRZn1arw+XyGpwqVuFyeU2Lozis7kxERJ2F5BGg1NRUTJ8+HQUFBdBqtfjoo4+Ql5eHd999F5999pkl+kgWJiapmdWdiYioM5E8AvTQQw/h008/xa5du+Dl5YXU1FScPHkSn376Ke69915L9JEsSGxSM6s7ExFRZ2LSR/WRI0fim2++MXdfyMoaJzVHBXnhUP41AMCgHgGIDvLC2dIqfHG0GM+M9IS7UmGo7lxYcQNnSqvQ1dcdHkoFbqg1KKqoZXVnIiJyGJIDoIMHD0Kr1SI+Pt7o+P79+6FQKDBo0CCzdY4sa/XOUy0mNf+IcqOk5mvVaiwb3wfAzerO+imzElUt3FwU6Bvui7F9Wq4DREREZG8kB0CzZ8/G888/3ywAKigowOrVq7F//36zdY4sy5DU3EI+DyAkNVfVNUCt0RodZ3VnIiJydJIDoBMnTuDOO+9sdnzAgAE4ceKEWTpF1jFjRJSopOYZI6Ka3cfqzkRE5MgkJ0G7ubmhpKSk2fGioiK4uHD1jyMRm9QcGehl664SERGZleQAaOzYsUhJSUFFRYXh2PXr1/HXv/6Vq8AcjD6pOcBLiTOlVaisrUeDVovK2nqcKa1iUjMREXVaMp1OJ2nfgoKCAtx99924evWqofDhkSNHEBISgm+++QYREREW6ag1qVQq+Pr6oqKiAj4+PrbujsnE7tjeuA5QXYMGbi4KxAR7M6mZiIgcipTrt+QACACqq6uxZcsW/Pzzz/Dw8EBcXBymTp0KV1dXkzttTzpDACR1x3axwRIREZG9sngA1Nk5egCkL25YXq1GV193eCpdUKNuMNTqSRoeyZEdIiLqdKRcv03KWj5z5gx2796N0tJSaLXGS6RTU1NNaZLMQN2ghVark1TckIiIyBlJDoA2btyIWbNmISgoCKGhoZDJbk6TyGQyBkA21NaO7W0VNyQiInI2kgOglStXYtWqVVi8eLEl+kMdZGpxQyIiImciOQC6du0aJk2aZIm+UAdJ2bG9peKGREREzkJyHaBJkybh66+/Nmsn1q9fj8jISLi7uyM+Ph4HDhxo9dyNGzdi5MiR8Pf3h7+/PxISEto8f+bMmZDJZMjIyDBrn+2RlB3bWdyQiIicmeQRoJiYGCxduhT79u1D3759my19nzdvnqT2tm3bhuTkZGRlZSE+Ph4ZGRlITExEXl4egoODm52fk5ODqVOnYtiwYXB3d8fq1asxduxYHD9+HOHh4Ubnfvzxx9i3bx/CwsKkvkyHxR3biYiI2id5GXxUVOtTJzKZDOfPn5fUgfj4eAwePBiZmZkAAK1Wi4iICMydOxdLlixp9/EajQb+/v7IzMzEtGnTDMcLCgoQHx+Pr776Cg8++CDmz5+P+fPni+qToy+DB1jckIiInI9Fl8FfuHDB5I41pVarcejQIaSkpBiOyeVyJCQkIDc3V1QbNTU1qK+vR0BAgOGYVqvF448/jkWLFqFPn/ZXOtXV1aGurs5wW6VSSXgV9ok7thMREbVOcg6QOZWVlUGj0SAkJMToeEhICIqLi0W1sXjxYoSFhSEhIcFwbPXq1XBxcRE9HZeWlgZfX1/DV2fYzgO4uWN7r1AfRAR4MvghIiL6jUmFEH/99Vfs2LED+fn5UKvVRvetW7fOLB0TIz09HVu3bkVOTg7c3d0BAIcOHcJrr72Gw4cPG9UoaktKSgqSk5MNt1Uqld0GQdyygoiIqOMkB0DZ2dkYP348oqOjcerUKdxxxx24ePEidDod7rzzTkltBQUFQaFQoKSkxOh4SUkJQkND23zs2rVrkZ6ejl27diEuLs5wfO/evSgtLUX37t0NxzQaDRYuXIiMjAxcvHixWVtubm5wc3OT1HdbkLq/FxEREbVM8hRYSkoKnnvuORw9ehTu7u748MMPcfnyZYwaNUpyfSClUomBAwciOzvbcEyr1SI7OxtDhw5t9XFr1qzBSy+9hJ07d2LQoEFG9z3++OP45ZdfcOTIEcNXWFgYFi1ahK+++krai7Uj+v29jhVWwM/TFdFB3vDzdMWxwgps+v4izpZW2rqLREREDkPyCNDJkyfxn//8R3iwiwtu3LgBb29vvPjii3jooYcwa9YsSe0lJydj+vTpGDRoEIYMGYKMjAxUV1cjKSkJADBt2jSEh4cjLS0NgJDfk5qaivfffx+RkZGGXCFvb294e3sjMDAQgYGBRs/h6uqK0NBQ9OzZU+rLtbmm+3vFBHsbpvY8lS5G+3vNGePN6TAiIiIRJAdAXl5ehryfrl274ty5c4aVVmVlZZI7MHnyZFy5cgWpqakoLi5G//79sXPnTkNidH5+PuTymwNVGzZsgFqtxsSJE43aWbZsGZYvXy75+e1dW/t7hfl5GO3vNWFAOCICPG3cYyIiIvsnOQC666678N133+H222/HAw88gIULF+Lo0aP46KOPcNddd5nUiTlz5mDOnDkt3peTk2N0u6UcnvaY8hh7InZ/r2p1g5V7RkRE5JgkB0Dr1q1DVVUVAGDFihWoqqrCtm3bEBsba9UVYM6i6f5eHkoFfkQ5AGBQjwAo5DLD/l5eSpMW9RERETkdyVfM6Ohow89eXl7Iysoya4fIWOP9vY4VViA22BvDbg0y3K/T6VBaWYe+4b4I9/OwYU+JiIgch00LIZI4+v29AryUOFNahcraejRotaisrceZ0iru70VERCSRqBGggIAAnD59GkFBQfD392+zwGB5ebnZOkc3xQR3QdLwSEMdoBJVLdxcFOgb7sv9vYiIiCQSFQC9+uqr6NJFuMBmZGRYsj9OR0plZ+7vRUREZB6iAqDp06cDABoaGiCTyZCYmNhs/y6SzpTKzvr9vYiIiMh0knKAXFxcMHPmTNTW1lqqP06DlZ2JiIhsR3IS9JAhQ/DTTz9Zoi9Oo1atMVR27hHgiaMFFdh/4SrcXBSIDvJCWWUdvjhajFq1xtZdJSIi6pQkL4P/85//jIULF+LXX3/FwIED4eXlZXR/441JqWWrd55qsbLzjyg3qux8rVqNZeP72Li3REREnY/kAGjKlCkAgHnz5hmOyWQy6HQ6yGQyaDQctWiP2MrOao3Wyj0jIiJyDpIDoAsXLliiH05lxogoUZWdZ4yIsnFPiYiIOifJAVCPHj0s0Q+nIrayc2SgVxutEBERkalM3jzqxIkTyM/PN+wMrzd+/PgOd6qz01d2Lqy4gTOlVejq6w4PpQI31BoUVdSysjMREZGFSQ6Azp8/jwkTJuDo0aOG3B8AhurQzAESh5WdiYiIbEdyAPSXv/wFUVFRyM7ORlRUFA4cOICrV69i4cKFWLt2rSX62GmxsjMREZFtSA6AcnNz8X//938ICgqCXC6HXC7HiBEjkJaWhnnz5rFGkESs7ExERGR9kgshajQaw75gQUFBKCwsBCAkR+fl5Zm3d0REREQWIHkE6I477sDPP/+MqKgoxMfHY82aNVAqlXjzzTcRHR1tiT4SERERmZXkAOhvf/sbqqurAQAvvvgifv/732PkyJEIDAzEtm3bzN5BIiIiInOT6fTLuDqgvLwc/v7+hpVgjk6lUsHX1xcVFRXw8fGxdXeIiIhIBCnXb8k5QO+9955hBEgvICCg0wQ/RERE1PlJDoAWLFiAkJAQ/PGPf8QXX3zBuj9ERETkcCQHQEVFRdi6dStkMhkeffRRdO3aFbNnz8YPP/xgif4RERERmV2HcoBqamrw8ccf4/3338euXbvQrVs3nDt3zpz9swnmABERETkeKddvk/cCAwBPT08kJibi2rVruHTpEk6ePNmR5oiIiIisQvIUGCCM/GzZsgUPPPAAwsPDkZGRgQkTJuD48ePm7h8RERGR2UkeAZoyZQo+++wzeHp64tFHH8XSpUsxdOhQS/SNiIiIyCIkB0AKhQLbt29HYmIiFAqFJfpEREREZFGSA6AtW7ZYoh9EREREVmNSDtCePXswbtw4xMTEICYmBuPHj8fevXvN3TciIiIiizCpEnRCQgI8PT0xb948zJs3Dx4eHrjnnnvw/vvvW6KPRERERGYlOQBatWoV1qxZg23bthkCoG3btiE9PR0vvfSSSZ1Yv349IiMj4e7ujvj4eBw4cKDVczdu3IiRI0fC398f/v7+SEhIMDq/vr4eixcvRt++feHl5YWwsDBMmzYNhYWFJvWNiIiIOh/JAdD58+cxbty4ZsfHjx+PCxcuSO7Atm3bkJycjGXLluHw4cPo168fEhMTUVpa2uL5OTk5mDp1Knbv3o3c3FxERERg7NixKCgoACAs0T98+DCWLl2Kw4cP46OPPkJeXh7Gjx8vuW9ERETUOUmuBB0TE4NFixbh2WefNTqelZWFV155BWfOnJHUgfj4eAwePBiZmZkAAK1Wi4iICMydOxdLlixp9/EajQb+/v7IzMzEtGnTWjzn4MGDGDJkCC5duoTu3bu32yYrQRMRETkei1aCXrhwIebNm4cjR45g2LBhAIDvv/8e77zzDl577TVJbanVahw6dAgpKSmGY3K5HAkJCcjNzRXVRk1NDerr6xEQENDqORUVFZDJZPDz82vx/rq6OtTV1Rluq1QqcS+AiIiIHJLkAGjWrFkIDQ3FK6+8gu3btwMAbr/9dmzbtg0PPfSQpLbKysqg0WgQEhJidDwkJASnTp0S1cbixYsRFhaGhISEFu+vra3F4sWLMXXq1FajwbS0NKxYsUJS34mIiMhxmbQX2IQJEzBhwgRz90Wy9PR0bN26FTk5OXB3d292f319PR599FHodDps2LCh1XZSUlKQnJxsuK1SqRAREWGRPhMREZHtiU6CvnbtGt54440Wp4cqKipava8tQUFBUCgUKCkpMTpeUlKC0NDQNh+7du1apKen4+uvv0ZcXFyz+/XBz6VLl/DNN9+0ORfo5uYGHx8foy8iIiLqvEQHQJmZmfj2229bDA58fX2xd+9evPHGG5KeXKlUYuDAgcjOzjYc02q1yM7ObnN/sTVr1uCll17Czp07MWjQoGb364OfM2fOYNeuXQgMDJTULyIiIurcRAdAH374IWbOnNnq/c8++yw++OADyR1ITk7Gxo0bsXnzZpw8eRKzZs1CdXU1kpKSAADTpk0zSpJevXo1li5dirfffhuRkZEoLi5GcXExqqqqAAjBz8SJE/Hjjz9iy5Yt0Gg0hnPUarXk/hEREVHnIzoH6Ny5c4iNjW31/tjYWJw7d05yByZPnowrV64gNTUVxcXF6N+/P3bu3GlIjM7Pz4dcfjNO27BhA9RqNSZOnGjUzrJly7B8+XIUFBRgx44dAID+/fsbnbN7926MHj1ach+JiIiocxFdB8jPzw87d+7EXXfd1eL9+/btw3333Yfr16+bs382wTpAREREjkfK9Vv0FNiAAQPwySeftHr/xx9/jAEDBojuJBEREZGtiJ4CmzNnDqZMmYJu3bph1qxZUCgUAIRKzP/4xz/w6quvcjNUIiIicgiStsJ44YUXkJaWhi5duiA6OhqAsDdYVVUVFi1ahPT0dIt11Jo4BUZEROR4pFy/Je8FduDAAWzZsgVnz56FTqfDbbfdhj/+8Y8YMmRIhzptTxgAEREROR6L7gU2ZMiQThXsEBERkfMRnQRNRERE1FkwACIiIiKnY9JmqEREROSEGtTA3leEn0cuBFyUtu1PB3AEiIiIiJwOAyAiIiJyOqKmwAYMGACZTCaqwcOHD3eoQ0RERGSndFqg9rowFXY9HwiIBuSOOZYiKgB6+OGHLdwNIiIismtX8oDjnwAX9gLaBkBdBdzSE7h9nPDdwUguhOgMWAiRiIiokSt5wL4soPoKUFkEKFyB0H7Cz56BwF0z7SIIsshmqERERORkGtRAfa0w8lN9BQiMARRKADJA6QkExgrHT/wP0Gpt3VtJJC+D12g0ePXVV7F9+3bk5+dDrVYb3V9eXm62zhEREZEN7X1FyPm5sBdw9QBqrgIVl4X78gHIZEBDHVB+HoibDPj3sGVvJZE8ArRixQqsW7cOkydPRkVFBZKTk/GHP/wBcrkcy5cvt0AXiYiIyGYa1ELOj8K15fsVrjdzghyI5BGgLVu2YOPGjXjwwQexfPlyTJ06Fbfeeivi4uKwb98+zJs3zxL9JCIiImsbuVBY7aWuAjwChGmv/N/u634XIFMAdSrgxjVA6W3TrkoleQSouLgYffv2BQB4e3ujoqICAPD73/8en3/+uXl7R0RE5Ci0WuDaJaDkuPDdUXJiGtTA7jThq8E4rQUuSmGp+y09hYRnyIVpL5lMCH5kcqCyGAjuBfhG2KT7ppI8AtStWzcUFRWhe/fuuPXWW/H111/jzjvvxMGDB+Hm5maJPhIREdm3K3nAyU+BsjNAQy3g4g4ExTrsEnEjcrnwOioKgLI8IedH4SqM/FQWA16BQK/fO1w9IMm9nTBhArKzswEAc+fOxdKlSxEbG4tp06bhySefNHsHiYiI7Jp+iXjhEeDqWaCqBHD3A4p+EY5fybN1D9umL25YVSpMd7U0cnVLT2Gpe2hfoP4GUFMuTHuF9QPi7WMJvFQdrgOUm5uL3NxcxMbGYty4cebql02xDhAROTWtVljpo64S8jp8Ixzu073V1NcC378GFB8Vlohf3i8c734XALkwYtI1Dhg2D3B1t2lXW6Qvbnjif0Iic9d+bRc3rK8Fdi0TpsqGzra7StBSrt8d3g1+6NChGDp0aEebISIie9CZp3IsYdcycUvEa64C9682/XksEZQ2Lm7o6iFMa3kECCNXFQUtFzeUyYXRLQDw625XwY9UJgVAZ86cwe7du1FaWgptk6Gy1NRUs3SMiIisTH9BrLkK+IYDrl5AfXXbF0RnJ2aJeF1l8+RiKaSO0ojps05rXNyw5qpwn764YVme8Hwjn3PoIKctkgOgjRs3YtasWQgKCkJoaKjRJqkymYwBEBGRo2npgth4KsdJLogmGTpb3BLxobNNa9+UUZr2dOLihlJIDoBWrlyJVatWYfHixZboDxERWRsviKbTLxEv+kUIFPWDAo2XiIf1E86TQsoojSn5RWJHrpoWN3RRAmNSpD2XnZIcAF27dg2TJk2yRF+IiMhWTL0gOjtLLRGXEpRKzS/qxMUNpZAcAE2aNAlff/01Zs6caYn+EBGRubWXQMsLYuvEJB/rl4if/BQo8xKSx2srhJGfXr83PW/KUvlFjYsbtjdy5WDFDaWQHADFxMRg6dKl2LdvH/r27QtXV+N/GG6FQURkR8Ss6mp6QbylFxB19802dDqnuCA2I2VF3C09hUDCXCu1pASlpuQXWaO4YYNaGMnSvx4XpeltWYDkAOjNN9+Et7c39uzZgz179hjdJ5PJGAAREdkLKau6Gl8Qr5wCfMKFi666BlAVtH5B7Kw1gxonH1cWCcFBaL+2k4/lcvPlR0kZpZGaX6SnH7k6/okwlVZXebO4YUdGrhyE5ADowoULlugHERGZU32tuFVdjRNojaZyzgCVhcKoR2sXxM5YM8jSycdSWGOU5paewPC/ADfK7ba4oaV0qBCivoh046XwRERkB0wt0Cd2KsfeagaZayTKksnHTYmpqmyNUZpOVNxQCpNe5bvvvou+ffvCw8MDHh4eiIuLw7///W+TO7F+/XpERkbC3d0d8fHxOHDgQKvnbty4ESNHjoS/vz/8/f2RkJDQ7HydTofU1FR07doVHh4eSEhIwJkzZ0zuHxGRwxGTQKttaDmBVj+VE9JH+N74gtigNh5dCogW9sC69L0wAhQYKxw/8b/me0pJ2S1dyrlX8oDv1gG7/w7sWSN8/26d6XtwdeR3J9aVPGELjQt7hd/dntWt9/mWnsDdi4Cp/wEmbQJ+9zdg+ILWg5+2dndviX5p+5gUu8vTsSTJI0Dr1q3D0qVLMWfOHAwfPhwA8N1332HmzJkoKyvDggULJLW3bds2JCcnIysrC/Hx8cjIyEBiYiLy8vIQHBzc7PycnBxMnToVw4YNg7u7O1avXo2xY8fi+PHjCA8PBwCsWbMGr7/+OjZv3oyoqCgsXboUiYmJOHHiBNzd7XAvFiIic7NUgT5TawZJmS6Teq7UXJ22RossnXzctM9iixtKyS/Sb27aoBZei5NMaUkleTPUqKgorFixAtOmTTM6vnnzZixfvlxyjlB8fDwGDx6MzMxMAIBWq0VERATmzp2LJUuWtPt4jUYDf39/ZGZmYtq0adDpdAgLC8PChQvx3HPPAQAqKioQEhKCd955B1OmTGm3TW6GSkR2r70pH61WGFHQr+pqnKqg0wmJzmH9hJEEKRfH3WnCruGXvgc8AwDIbgZAvhHC8+i0wm7hkzYJo0itTZdVFACegcYX/NYCmsoi43P1uTpiNiJtXL1aTHDV+HcXGAtczv2t3WHCdJGpvztT+yyFubfN6AgbbJxq0c1Qi4qKMGzYsGbHhw0bhqKiIkltqdVqHDp0CCkpN6tKyuVyJCQkIDc3V1QbNTU1qK+vR0BAAAAhSbu4uBgJCQmGc3x9fREfH4/c3NwWA6C6ujrU1dUZbqtUKkmvg4jIqsRcxE1d1dUeKSMkCjdpydiA+OTj716VPhIldrTIHoobmlJx2xLbZphKH4hd2CsEYuoq2wVirTCpDtD27dvx17/+1ej4tm3bEBsbK6mtsrIyaDQahISEGB0PCQnBqVOnRLWxePFihIWFGQKe4uJiQxtN29Tf11RaWhpWrFghqe9ERO2Smpgr5nwpycdSV3WJIWV59i/bgboK8QnFgPhz3f3EFwq8cQ3wDpG2+aetixtKrbjdNNC01co1wL4CsTZIDoBWrFiByZMn49tvvzXkAH3//ffIzs7G9u3bzd7BtqSnp2Pr1q3IycnpUG5PSkoKkpOTDbdVKhUiIpyo2BcRmZ/UJeLtnS9lw9KmS9vNWaAPMB4huXpGGEVRegLqauPRpWMfSa9mLPZcKSNRP/9HOC515MWWxQ2lVtw2ddWfOdlTCQERJAdAjzzyCPbv349XX30Vn3zyCQDg9ttvx4EDBzBgwABJbQUFBUGhUKCkpMToeElJCUJDQ9t87Nq1a5Geno5du3YhLi7OcFz/uJKSEnTt2tWozf79+7fYlpubG9zc3CT1nYioVVKXiIs5/9hHpi/PNmeBPj0xo0umJBSLPVfKSFR9nXBBNmXkxVbFDaVW3LbUthlSWLOEgBmYVAdo4MCBeO+99zr85EqlEgMHDkR2djYefvhhAEISdHZ2NubMmdPq49asWYNVq1bhq6++wqBBg4zui4qKQmhoKLKzsw0Bj0qlwv79+zFr1qwO95mIqE1Scl5kcvGjOjqdfVzkGmtvhMSUasZituPQnyt2JMo/yn72OrNUfpGlVv1JZW//R9sgKgBSqVSGbOr2EoSlrppKTk7G9OnTMWjQIAwZMgQZGRmorq5GUlISAGDatGkIDw9HWloaAGD16tVITU3F+++/j8jISENej7e3N7y9vSGTyTB//nysXLkSsbGxhmXwYWFhhiCLiMhipExFuPuJ/8T86LvCcXu4yDXW3giJ2CBFf8GXmrgtNs/Jnjb/tER+kaW3zRDDGiUEzEhUAOTv74+ioiIEBwfDz8+vxcrPOp0OMpkMGo1GUgcmT56MK1euIDU1FcXFxejfvz927txpSGLOz8+HvNF/9g0bNkCtVmPixIlG7SxbtgzLly8HADz//POorq7GM888g+vXr2PEiBHYuXMnawARkeVJ/QQs9nxNHXDL7dJGSOyFlGRsUxK3xeTqSA3ELM3c+UXW2DajPdbYv8yMRNUB2rNnD4YPHw4XF5dmG6A2NWrUKLN1zlZYB4iIWtXeSq2ys0JVX8Mn4H3C8aafgEctFrYduJ4v7vzf/c14KXfN1ZZHSOLtY4VNi6SsirPUJqstJZvfclvn2fyzpTpAwb2s+/paLDcQdzMQs+D/USnXb8mFEPPz8xEREdFsFEin0+Hy5cvo3r279B7bGQZARE5G7MVWahE9MQUITSlY2Nkv4pbWWXew17NBAcJmbBSIWbQQYlRUlGE6rLHy8nJERUVJngIjIrIpscvVxa7sklqA0JSChZZY2u5MLLEqzp64utt8hZUj7DIvOQDS5/o0VVVVxRwbInIsYoIa/yjp9Xek5rGYkvfS2S/i5PjsfJd50QGQvlCgTCbD0qVL4enpabhPo9Fg//79rdbZISKyK1KKCmoapFUz1n/yljpKw1EdIqsSHQD99NNPAIQRoKNHj0KpVBruUyqV6Nevn2HzUSIiuyalYFvUSNNrm0gdpeGoDpHViA6Adu/eDQBISkrCa6+9xuRgInJsYoOaflOF0RgHqW1CROJIzgHKyMhAQ0NDs+Pl5eVwcXFhYERE9qGtlT5SCrZ5+AuPdcT6O0TUKskB0JQpUzBu3Dj8+c9/Njq+fft27NixA1988YXZOkdEZJL2VnY1LdjWVlCjD5ykrtQicnYuSmBMiq170SrJf6379+/HmDFjmh0fPXo09u/fb5ZOERGZTL+yq+gXwDNASCz2DBBu78sS7gduBjWegUJQU6sSpsRqVcLtpkGNfqVW1zhhae/Vs8L3sH72XXyQiFokeQSorq6uxSmw+vp63LhxwyydIiJqpr3idVJWdo18TnisKcvVuVKLqFOQHAANGTIEb775Jt544w2j41lZWRg4cKDZOkZEZCCmWKGUlV1xk2+utpIa1HClFlGnIDkAWrlyJRISEvDzzz/jnnvuAQBkZ2fj4MGD+Prrr83eQSJycmIrMAPiV3apq4yPM6ghcjqSA6Dhw4cjNzcXL7/8MrZv3w4PDw/ExcXhX//6F2JjYy3RRyJyVvW14iswN13Z5daleXv6lV1Kb6u+DCKyP5IDIADo378/tmzZYu6+EBEZ27VMWgXmxiu73H2bbyzaeGUXETk1kwIgvdraWqjVxpVPWQeIiMxGagVmLlcnIpEkB0A1NTV4/vnnsX37dly9erXZ/dwNnojMZuhscVNajSswm7KxKBE5HckB0KJFi7B7925s2LABjz/+ONavX4+CggL885//RHp6uiX6SETOSuyUVtMKzFyuTkTtkBwAffrpp3j33XcxevRoJCUlYeTIkYiJiUGPHj2wZcsWPPbYY5boJxE5o45MaXFlFxG1QfLHofLyckRHC5+2fHx8UF5eDgAYMWIEvv32W/P2joiIFZiJyAIkjwBFR0fjwoUL6N69O3r16oXt27djyJAh+PTTT+Hn52eBLhJRp9VedWc9TmkRkZlJDoCSkpLw888/Y9SoUViyZAnGjRuHzMxM1NfXY926dZboIxF1RmKqOzfGKS0iMiOZTqfTdaSBS5cu4dChQ4iJiUFcXJy5+mVTKpUKvr6+qKio4LJ+IqnEjOq0Vt25okDYnPQuTm0RkXRSrt+SRoDq6+tx3333ISsry1D1uUePHujRg5/KiAjtj+pI2bB02DzA1d2mL4eIOi9JAZCrqyt++eUXS/WFiOxVR0Z1Gu/Zdewj8RuW6qs7ExFZgOQcoD/96U/417/+xZo/RM5C6qhOUM+b9XpcvYxHdXQ66dWdiYgsQHIA1NDQgLfffhu7du3CwIED4eXlZXQ/E6GJOpGOjur4RhiP6jz6rnBcanVnIiIzkxwAHTt2DHfeeScA4PTp00b3yRpXaSUix2WpUR1NHXDL7aZVdyYiMiPRAdD58+cRFRWF3bt3W7I/RGQP9r5imVEdpTc3LCUiuyD6HSY2NhZXrlwx3J48eTJKSkos0ikisgNiRnW0DcKojn7PrsoiQCYH5IqbXzK5MKoT3EsIngBWdyYimxM9AtS0XNAXX3yBtLQ0s3eIiOzAyIXA9XzLjuqwujMR2ZDkHCAicgIuSvE7sTcd1dGvGKssFFaMhfUTgh9WdyYiOyL6o5ZMJmuW5GyOpOf169cjMjIS7u7uiI+Px4EDB1o99/jx43jkkUcQGRkJmUyGjIyMZudoNBosXboUUVFR8PDwwK233oqXXnqp2QgWEbVDP6rjGSiM6tSqhCmvWpVwu7VRnRHJwJi/AqOeF74PX8ApLSKyO5KmwJ544gm4ubkBAGprazFz5sxmy+A/+ugj0U++bds2JCcnIysrC/Hx8cjIyEBiYiLy8vIQHBzc7PyamhpER0dj0qRJWLBgQYttrl69Ghs2bMDmzZvRp08f/Pjjj0hKSoKvry/mzZsnum9EBI7qEFGnJXovsKSkJFENbtq0SfSTx8fHY/DgwcjMzAQAaLVaREREYO7cuViyZEmbj42MjMT8+fMxf/58o+O///3vERISgn/961+GY4888gg8PDzw3nvvieoX9wIjakLsru1ERDZkkb3ApAQ2YqjVahw6dAgpKSmGY3K5HAkJCcjNzTW53WHDhuHNN9/E6dOncdttt+Hnn3/Gd99912aBxrq6OtTV1Rluq1Qqk5+fqFPiqA4RdTI2S4IuKyuDRqNBSEiI0fGQkBCcOnXK5HaXLFkClUqFXr16QaFQQKPRYNWqVXjsscdafUxaWhpWrFhh8nMSERGRY+l0Y9jbt2/Hli1b8P777+Pw4cPYvHkz1q5di82bN7f6mJSUFFRUVBi+Ll++bMUeExERkbXZbAQoKCgICoWiWTHFkpIShIaGmtzuokWLsGTJEkyZMgUA0LdvX1y6dAlpaWmYPn16i49xc3MzJHcTERFR52ezESClUomBAwciOzvbcEyr1SI7OxtDhw41ud2amhrImyRnKhQKaLVak9sk6nS0WuDaJaDkuPCdfx9E5GRsWggxOTkZ06dPx6BBgzBkyBBkZGSgurrasOJs2rRpCA8PN1ScVqvVOHHihOHngoICHDlyBN7e3oiJiQEAjBs3DqtWrUL37t3Rp08f/PTTT1i3bh2efPJJ27xIImsRu1LrSt7NZe0NtcKy9qBYoeYP6/UQkZMQvQzeUjIzM/Hyyy+juLgY/fv3x+uvv474+HgAwOjRoxEZGYl33nkHAHDx4kVERUU1a2PUqFHIyckBAFRWVmLp0qX4+OOPUVpairCwMEydOhWpqalQKpWi+sRl8ORwxAY1V/KAfVnC5qa+4cLO7vXVwhYWnoFCzR8GQUTkoKRcv20eANkjBkDkUMQGNfW1wPevAcVHgaCezbe2KMsTNicdNg9wdbfd6yEiMpFF6gARkZ1pUAM6LXD8E6D6inFQ4+olbDRalgec+J8Q1OxaBlzYC7h6CMFSxW+rHX0jhMc11AHl54X77l9ts5dFRGQNDICIHNXeV4Da6+KDmga1sJeXwrXl9hSuQF2lcB4RUSfHAIjIkUkJaobOFhKkPQIAty7Nz61TATeuCecREXVyDICIHNXIhcD1fPFBTUC0kAtU9Avg7ts8B6iyWNjkNCDaeq+BiMhGOl0laKJOpa16PS7Km0FNZREgkwNyxc0vmVwIaoJ7CefJ5cKqMM9A4MopoFYljB7VqoTbXoHCDu/c5JSInABHgIjslZil7fqgpqJACGJ8wgGlJ6CuAVQFzYOaW3oKq8L07VYWCu2G9RPO4xJ4InISXAbfAi6DJ5uTWq+npWDplttaD2rEFk0kInIgXAZP5KikLG0f+ZzxyE5grPigRi4H/HtY5SUREdkjBkBE9kTK0va4ycZBDIMaIiLROOZNZG/ELG3XNggjPUREZBKOABHZEylL25Xe1u8fEVEnwREgInsiZWm7b4Ste0tE5LAYABHZG9brISKyOE6BEVmT2OXnrNdDRGRRDICIrEVMYcPGpC5tJyIi0RgAEVlDa4UNi34Rihs2LWyox6XtREQWwY+SRJZWX3uzsGFgrBD8ADcLG1ZfEQob1tfatJtERM6EI0BElrZrmbjChjVXgftX27avREROgiNARJYmtrBhg9q6/SIicmIcASKytKGzxRU2HDrb+n0jInJSHAEisjSxhQ0Dom3dUyIip8EAiMjSWNiQiMju8B2XyBr0hQ27xgE3yoGrZ4XvYf2A+FaWwBMRkcUwB4ioo6RUd2ZhQyIiu8AAiKgjpFZ3ZmFDIiK7wACIyFSmVncmIiKb49g7kVQNalZ3JiJycBwBIpJq7ytA7XVWdyYicmAcASIyBas7ExE5NI4AEUk1ciFwPZ/VnYmIHBhHgIhaotUC1y4BJceF71rtzftclKzuTETk4GweAK1fvx6RkZFwd3dHfHw8Dhw40Oq5x48fxyOPPILIyEjIZDJkZGS0eF5BQQH+9Kc/ITAwEB4eHujbty9+/PFHC70C6nSu5AHfrQN2/x3Ys0b4/t064bgeqzsTETk0m747b9u2DcnJyVi2bBkOHz6Mfv36ITExEaWlpS2eX1NTg+joaKSnpyM0NLTFc65du4bhw4fD1dUVX375JU6cOIFXXnkF/v7+lnwp1Fnol7YX/QJ4BggrujwDhNv7soyDIFZ3JiJyWDKdTqez1ZPHx8dj8ODByMzMBABotVpERERg7ty5WLJkSZuPjYyMxPz58zF//nyj40uWLMH333+PvXv3mtwvlUoFX19fVFRUwMfHx+R2yIE0qAGdFvj+NaD4KBDUU1jNpafTAWV5QrAz8jnjkR2xlaCJiMiipFy/bZYErVarcejQIaSkpBiOyeVyJCQkIDc31+R2d+zYgcTEREyaNAl79uxBeHg4/vznP+Ppp59u9TF1dXWoq6sz3FapVCY/PzkoKUvb4yYbV3NmdWciIodjs4+pZWVl0Gg0CAkJMToeEhKC4uJik9s9f/48NmzYgNjYWHz11VeYNWsW5s2bh82bN7f6mLS0NPj6+hq+IiIiTH5+cmBil7arq6zbLyIiMrtOtwxeq9Vi0KBB+Pvf/w4AGDBgAI4dO4asrCxMnz69xcekpKQgOTnZcFulUjEIcjZSlrYrva3fPyIiMiubjQAFBQVBoVCgpKTE6HhJSUmrCc5idO3aFb179zY6dvvttyM/P7/Vx7i5ucHHx8foi5yMlKXtvgyOiYgcnc0CIKVSiYEDByI7O9twTKvVIjs7G0OHDjW53eHDhyMvL8/o2OnTp9GjB3M0qB1c2k5E5DRsOgWWnJyM6dOnY9CgQRgyZAgyMjJQXV2NpKQkAMC0adMQHh6OtLQ0AELi9IkTJww/FxQU4MiRI/D29kZMTAwAYMGCBRg2bBj+/ve/49FHH8WBAwfw5ptv4s0337TNiyTHol/afvJToOwMUFkIuLgLS9t7/Z5L24mIOgmbLoMHgMzMTLz88ssoLi5G//798frrryM+Ph4AMHr0aERGRuKdd94BAFy8eBFRUVHN2hg1ahRycnIMtz/77DOkpKTgzJkziIqKQnJycpurwJriMvhOSspydS5tJyJyOFKu3zYPgOwRA6BO6ErezVGdhlphVCcoVpjy4qgOEVGn4BB1gIisRl/dueYq4BsOuHoB9dVCdeeKAmHKi0EQEZFT4Zg+dV4NaqC+Fjj+CVB9RdjWwtVLuM/VS7hdfQU48T/jzU6JiKjT4wgQdV5NqzvfKG9+TmvVnYmIqFPjCBB1bo2rO+t0QrHD6/nCzwCrOxMROSmOAFHnxerORETUCo4AkePSaoFrl4CS48L3pnk8rO5MRESt4AgQOSaxy9r11Z0rCoRqzj7hgNITUNcAqgJWdyYiclIMgMjxSF3WzurORETUBAMgciyNl7UH9QRkMuG4fll7WZ6wrH3YPMDV/ebjbukp3M/qzkREBAZAZG/a24Ji1zJxy9prrgL3rza+Ty7nUnciIgLAAIjsiZi8nqbL2isuC8d9I4TRIIUrUFcpnEdERNQKBkBkH8Tm9QydLW5Z+9DZ1n8NRETkMJgAQbYlZbuK+lrxy9oDom36soiIyL5xBIhsq+l2FTVXm09rNc3r4bJ2IiLqIF4lyPYa5/W0RL9dhT6vR7+svWuckAh99azwPawfEM+d3YmIqH0cASLbkrJdReO8Hi5rJyKiDmAARLbVeLuKol8Ad9+btX0AYaVXZbEwutM0r4fL2omIyEQMgMjy2qvtw+0qiIjIyhgAkWWJ3bOL21UQEZEVMQAiyzFlzy7m9RARkRXwykLmJ6W2j1Zr/Fh9Xk9IH+E7gx8iIrIAjgCR+Ump7RM3mYnMRERkdfx4TZYhtraPusq6/SIiIgJHgMgSpNT2UXpbv39EROT0GACRoL2l6lLOl1LbxzfCsq+LiIioBQyASPxSdSnns7YPERHZMQZAzk7qUnUp57O2DxER2SkGQM6s8VL1oJ43p6n0S9XL8oSl6sPmATI5oNOKO3/kczdHdljbh4iI7BADIGe2a5m4peo1VwF3P9OXtnPPLiIisjP8GO7MxC5Vb1BLO59L24mIyM7ZRQC0fv16REZGwt3dHfHx8Thw4ECr5x4/fhyPPPIIIiMjIZPJkJGR0Wbb6enpkMlkmD9/vnk77Qi0WuDaJaDkuPC9adXlobOBrv2A0H5Aj+FA3BThq8dwoPswIDROuH/obGFpu9jzubSdiIjsnM2nwLZt24bk5GRkZWUhPj4eGRkZSExMRF5eHoKDg5udX1NTg+joaEyaNAkLFixos+2DBw/in//8J+Li4izVffslZqWW2KXqAdHCNBaXthMRUSdh8xGgdevW4emnn0ZSUhJ69+6NrKwseHp64u23327x/MGDB+Pll1/GlClT4Obm1mq7VVVVeOyxx7Bx40b4+/tbqvv2Sb9Sq+gXwDNASEL2DBBu78sS7gduLlX3DBSWqteqhCmsWpVwu+lSdannExER2SmbXqnUajUOHTqEhIQEwzG5XI6EhATk5uZ2qO3Zs2fjwQcfNGq7NXV1dVCpVEZfDknKJqT1tcJx/VL1rnHAjXLg6lnhe1g/IH5m86XqUs8nIiKyQzadAisrK4NGo0FISIjR8ZCQEJw6dcrkdrdu3YrDhw/j4MGDos5PS0vDihUrTH4+uyFlE9Kaq8D9q4X7pC5V59J2IiJycDbPATK3y5cv4y9/+Qu++eYbuLu7i3pMSkoKkpOTDbdVKhUiIhw0j0XMSq26ypsru/SkLlXn0nYiInJgNg2AgoKCoFAoUFJSYnS8pKQEoaGhJrV56NAhlJaW4s477zQc02g0+Pbbb5GZmYm6ujooFAqjx7i5ubWZT2RR5tyDS8ompENnW+b1EBEROQCbBkBKpRIDBw5EdnY2Hn74YQCAVqtFdnY25syZY1Kb99xzD44ePWp0LCkpCb169cLixYubBT82Ze49uKRsQhoQbb3XSUREZGdsPgWWnJyM6dOnY9CgQRgyZAgyMjJQXV2NpKQkAMC0adMQHh6OtLQ0AELi9IkTJww/FxQU4MiRI/D29kZMTAy6dOmCO+64w+g5vLy8EBgY2Oy4TVlqDy5uQkpERNQumwdAkydPxpUrV5Camori4mL0798fO3fuNCRG5+fnQ97oYl1YWIgBAwYYbq9duxZr167FqFGjkJOTY+3um8bSe3BxE1IiIqI2yXQ6nc7WnbA3KpUKvr6+qKiogI+Pj/mf4MvFN1dqKZQtr9SqvwFEjWy+B1db50/9j3FistT8IiIiIgcm5fpt8xEgpyR1pZbY85vuwcWVWkRERC1iAGQLQ2eLX6nl1138yi7uwUVERCQK50NsQb9Sq7JIyPGRK25+yeTCSq3gXsJ5jVd2tXc+9+AiIiIShQGQLXAPLiIiIptiEnQLLJ4ErddSXZ9bbmt9pZbU84mIiJwIk6AdBffgIiIisgkGQLbGPbiIiIisjkMHRERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR0GQEREROR0GAARERGR0+FWGC3Q7w+rUqls3BMiIiISS3/dFrPPOwOgFlRWVgIAIiIibNwTIiIikqqyshK+vr5tniPTiQmTnIxWq0VhYSG6dOkCmUxm9vYHDx6MgwcPmr1daz+Xuds2V3sdaUelUiEiIgKXL1+Gj49Ph/tC5mfNvx974Wiv2R76a+0+8L1WGku91+p0OlRWViIsLAxyedtZPhwBaoFcLke3bt0s1r5CobDaxdWSz2Xuts3Vnjna8fHxYQBkp6z592MvHO0120N/rd0HvteaxhLvte2N/OgxCdoGZs+e3Smey9xtm6s9a/5+yfqc8d/X0V6zPfTX2n3ge63j4RQYUSMqlQq+vr6oqKiw+SdYIqLOyh7eazkCRNSIm5sbli1bBjc3N1t3hYio07KH91qOABEREZHT4QgQEREROR0GQEREROR0GAARERGR02EARERERE6HARARERE5HQZARCJ99tln6NmzJ2JjY/HWW2/ZujtERJ3ShAkT4O/vj4kTJ1r0ebgMnkiEhoYG9O7dG7t374avry8GDhyIH374AYGBgbbuGhFRp5KTk4PKykps3rwZH3zwgcWehyNARCIcOHAAffr0QXh4OLy9vXH//ffj66+/tnW3iIg6ndGjR6NLly4Wfx4GQOQUvv32W4wbNw5hYWGQyWT45JNPmp2zfv16REZGwt3dHfHx8Thw4IDhvsLCQoSHhxtuh4eHo6CgwBpdJyJyGB19r7UmBkDkFKqrq9GvXz+sX7++xfu3bduG5ORkLFu2DIcPH0a/fv2QmJiI0tJSK/eUiMhxOdJ7LQMgcgr3338/Vq5ciQkTJrR4/7p16/D0008jKSkJvXv3RlZWFjw9PfH2228DAMLCwoxGfAoKChAWFmaVvhMROYqOvtdaEwMgcnpqtRqHDh1CQkKC4ZhcLkdCQgJyc3MBAEOGDMGxY8dQUFCAqqoqfPnll0hMTLRVl4mIHI6Y91prcrH6MxLZmbKyMmg0GoSEhBgdDwkJwalTpwAALi4ueOWVVzBmzBhotVo8//zzXAFGRCSBmPdaAEhISMDPP/+M6upqdOvWDf/9738xdOhQs/eHARCRSOPHj8f48eNt3Q0iok5t165dVnkeToGR0wsKCoJCoUBJSYnR8ZKSEoSGhtqoV0REnYu9vdcyACKnp1QqMXDgQGRnZxuOabVaZGdnW2TYlYjIGdnbey2nwMgpVFVV4ezZs4bbFy5cwJEjRxAQEIDu3bsjOTkZ06dPx6BBgzBkyBBkZGSguroaSUlJNuw1EZFjcaT3Wm6FQU4hJycHY8aMaXZ8+vTpeOeddwAAmZmZePnll1FcXIz+/fvj9ddfR3x8vJV7SkTkuBzpvZYBEBERETkd5gARERGR02EARERERE6HARARERE5HQZARERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERG14urVqwgODsbFixcBCFVuZTIZrl+/btHnXbJkCebOnWvR5yBydgyAiKjDnnjiCchksmZf9913n6271iGrVq3CQw89hMjIyA63VVJSAldXV2zdurXF+2fMmIE777wTAPDcc89h8+bNOH/+fIefl4haxgCIiMzivvvuQ1FRkdHXf/7zH4s+p1qttljbNTU1+Ne//oUZM2aYpb2QkBA8+OCDePvtt5vdV11dje3btxueKygoCImJidiwYYNZnpuImmMARERm4ebmhtDQUKMvf39/w/0ymQxvvfUWJkyYAE9PT8TGxmLHjh1GbRw7dgz3338/vL29ERISgscffxxlZWWG+0ePHo05c+Zg/vz5hiABAHbs2IHY2Fi4u7tjzJgx2Lx5s2Gqqrq6Gj4+Pvjggw+MnuuTTz6Bl5cXKisrW3w9X3zxBdzc3HDXXXe1+pprampw//33Y/jw4YZpsbfeegu333473N3d0atXL/zjH/8wnD9jxgxkZ2cjPz/fqJ3//ve/aGhowGOPPWY4Nm7cuFZHi4io4xgAEZHVrFixAo8++ih++eUXPPDAA3jsscdQXl4OALh+/Tp+97vfYcCAAfjxxx+xc+dOlJSU4NFHHzVqY/PmzVAqlfj++++RlZWFCxcuYOLEiXj44Yfx888/49lnn8ULL7xgON/LywtTpkzBpk2bjNrZtGkTJk6ciC5durTY171792LgwIGtvpbr16/j3nvvhVarxTfffAM/Pz9s2bIFqampWLVqFU6ePIm///3vWLp0KTZv3gwAeOCBBxASEmLYFbtxX/7whz/Az8/PcGzIkCH49ddfDflHRGRmOiKiDpo+fbpOoVDovLy8jL5WrVplOAeA7m9/+5vhdlVVlQ6A7ssvv9TpdDrdSy+9pBs7dqxRu5cvX9YB0OXl5el0Op1u1KhRugEDBhids3jxYt0dd9xhdOyFF17QAdBdu3ZNp9PpdPv379cpFApdYWGhTqfT6UpKSnQuLi66nJycVl/TQw89pHvyySeNju3evVsHQHfy5EldXFyc7pFHHtHV1dUZ7r/11lt177//vtFjXnrpJd3QoUMNt5csWaKLiorSabVanU6n0509e1Ynk8l0u3btMnpcRUWFDkCbfSQi03EEiIjMYsyYMThy5IjR18yZM43OiYuLM/zs5eUFHx8flJaWAgB+/vln7N69G97e3oavXr16AQDOnTtneFzTUZm8vDwMHjzY6NiQIUOa3e7Tp49hJOa9995Djx49cPfdd7f6em7cuAF3d/cW77v33nsRExODbdu2QalUAhDyeM6dO4cZM2YYvYaVK1ca9f/JJ5/EhQsXsHv3bgDC6E9kZCR+97vfGT2Hh4cHAGGajYjMz8XWHSCizsHLywsxMTFtnuPq6mp0WyaTQavVAgCqqqowbtw4rF69utnjunbtavQ8pnjqqaewfv16LFmyBJs2bUJSUhJkMlmr5wcFBeHatWst3vfggw/iww8/xIkTJ9C3b19D/wFg48aNiI+PNzpfoVAYfo6NjcXIkSOxadMmjB49Gu+++y6efvrpZn3RTw3ecsst0l8sEbWLARAR2YU777wTH374ISIjI+HiIv6tqWfPnvjiiy+Mjh08eLDZeX/605/w/PPP4/XXX8eJEycwffr0NtsdMGAA3nvvvRbvS09Ph7e3N+655x7k5OSgd+/eCAkJQVhYGM6fP2+UzNySGTNmYNasWRg/fjwKCgrwxBNPNDvn2LFjcHV1RZ8+fdpsi4hMwykwIjKLuro6FBcXG301XsHVntmzZ6O8vBxTp07FwYMHce7cOXz11VdISkqCRqNp9XHPPvssTp06hcWLF+P06dPYvn27Icm48aiKv78//vCHP2DRokUYO3YsunXr1mZ/EhMTcfz48VZHgdauXYvHHnsMv/vd73Dq1CkAQpJ3WloaXn/9dZw+fRpHjx7Fpk2bsG7dOqPHTpo0Ca6urnj22WcxduxYRERENGt/7969GDlypGEqjIjMiwEQEZnFzp070bVrV6OvESNGiH58WFgYvv/+e2g0GowdOxZ9+/bF/Pnz4efnB7m89beqqKgofPDBB/joo48QFxeHDRs2GFaBubm5GZ07Y8YMqNVqPPnkk+32p2/fvrjzzjuxffv2Vs959dVX8eijj+J3v/sdTp8+jaeeegpvvfUWNm3ahL59+2LUqFF45513EBUVZfQ4T09PTJkyBdeuXWu1L1u3bsXTTz/dbj+JyDQynU6ns3UniIjMadWqVcjKysLly5eNjv/73//GggULUFhYaEhebsvnn3+ORYsW4dixY20GYeb25ZdfYuHChfjll18kTQcSkXj8yyIih/ePf/wDgwcPRmBgIL7//nu8/PLLmDNnjuH+mpoaFBUVIT09Hc8++6yo4AcQkp3PnDmDgoKCFqepLKW6uhqbNm1i8ENkQRwBIiKHt2DBAmzbtg3l5eXo3r07Hn/8caSkpBgCiOXLl2PVqlW4++678b///Q/e3t427jER2RoDICIiInI6TIImIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfz/032DyTdwB9uAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional Covariance\");" + ] + }, + { + "cell_type": "markdown", + "id": "5e8e484f", + "metadata": { + "id": "5e8e484f" + }, + "source": [ + "This should largely be equivalent to the RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "c85620f9", + "metadata": { + "id": "c85620f9", + "outputId": "f24abf3e-fc16-4b0a-91cd-9c3fa5e61be2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:09<00:00, 4.21it/s]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:09<00:00, 4.33it/s]\n" + ] + } + ], + "source": [ + "rmsspec_01_1 = RmsSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")\n", + "rmsspec_3_30 = RmsSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "658f5d53", + "metadata": { + "id": "658f5d53", + "outputId": "db261231-2c52-4840-ee73-1d17f8641d7c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG1CAYAAAAC+gv1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjbElEQVR4nOzdeXxU5dn4/885s2afJBBCYiALW0AQAUHcFRS17tatKIj+sC7YVmrd6oJLC25IVSotdakVHrXftvax+rCIS21FQRBFCSgECJJ9ncwkM3Nmzvn9MWZgSCAzIcMk4Xq/XnlJZu45c88ImSv3fV3XrRiGYSCEEEIIIULUeE9ACCGEEKKnkQBJCCGEEOIAEiAJIYQQQhxAAiQhhBBCiANIgCSEEEIIcQAJkIQQQgghDiABkhBCCCHEASRAEkIIIYQ4gDneE+itdF2nvLyclJQUFEWJ93SEEEIIEQHDMGhubiYnJwdVPfg6kQRIXVReXk5eXl68pyGEEEKILtizZw/HHHPMQe+XAKmLUlJSgOAbnJqaGufZCCGEECISTqeTvLy80Of4wUiA1EVt22qpqakSIAkhhBC9TGfpMZKkLYQQQghxAAmQhBBCCCEOIAGSEEIIIcQBJEASQgghhDiABEhCCCGEEAeQAEkIIYQQ4gASIAkhhBBCHEACJCGEEEKIA0iAJIQQQghxAAmQhBBCCCEOIAGSEEIIIcQBJEASQgghhDiABEhCCCGEEAcwx3sCQghxNDN0Ha28At3tRk1KwpIzEEXt+HdX3eOh+umFGJpGxswZWAcPPuhYIcThkQBJCCHixLtjB86VK3GuWAmBAPbiYmxDhpBy9lRsRUUdjnV/9hkEAugu10HHCtGdDJ+P2j/8EYB+P70JxWqN84yODAmQhBAiDrw7dlD/l78QqKtDTUgAsxnV4cBTsgWtsoKM664LBT7RjBVCdI8esTa7ePFi8vPzsdvtTJo0iXXr1h107N///ncmTJiAw+EgKSmJsWPH8pe//CVsjGEYPPjggwwcOJCEhASmTp3Kd999Fzamvr6e6dOnk5qaisPh4MYbb8TlcsXk9QkhRBvD50P3eHCuXEmgrg5Lfj6K2YwCmBITsOQXEKirw7lyFbrHE9XYnsjQdXzf78Wz7Vt83+/F0PV4T0lEydB1Ak4n/ro6fHuPnv+HcV9BeuONN5g7dy5Llixh0qRJLFq0iGnTprFt2zaysrLajc/IyODXv/41I0aMwGq18q9//YtZs2aRlZXFtGnTAHjiiSd49tln+fOf/0xBQQEPPPAA06ZNY8uWLdjtdgCmT59ORUUFq1evRtM0Zs2axU033cTy5cuP6OsXQsRHNLk/3an2D38k4HTi/uwz1IQE/PUNaBUVALRs2Aiqiu714t1dRqChASDisdm/vq/L84omvynS9y6aLUTRMx3NW7uKYRhGPCcwadIkTjjhBJ5//nkAdF0nLy+P22+/nXvuuSeia4wbN44f/ehHPProoxiGQU5ODr/85S+58847AWhqamLAgAG88sorXH311ZSUlDBy5EjWr1/PhAkTAFixYgXnn38+33//PTk5OZ0+p9PpJC0tjaamJlJTU7v46oUQ8dCVD+7uSqauee55/HV1tKxfj+pwoEAo6LEMHAiqiqHr6I2NJJ5wAkDEYwfOeyjm70ekY/ffFtSqa8Bsxl5cTKCmGlN6umwL9gJ99f9hpJ/fcV1B8vl8bNiwgXvvvTd0m6qqTJ06lbVr13b6eMMweP/999m2bRuPP/44ADt37qSyspKpU6eGxqWlpTFp0iTWrl3L1Vdfzdq1a3E4HKHgCGDq1Kmoqspnn33GpZde2u65vF4vXq839L3T6ezSaxZCxE4kQUxX8nm6M5m6309vwrd3L7rLhepwYEpMCK4GAYnjx4FqIuByoTc2kjFzBkBUY/cXyapQLHKhDtwW9NcHV8JMiQmo+QVopTtwrlxF5g2zUH9Y1e/N4rUaGSuGz4eh60fV/8OOxDVAqq2tJRAIMGDAgLDbBwwYwNatWw/6uKamJnJzc/F6vZhMJn7/+99z9tlnA1BZWRm6xoHXbLuvsrKy3fad2WwmIyMjNOZA8+fP5+GHH47uBQohjphIgpiufHDHIoCwDh6MbcgQPCVbUPMLoO3DVDWBqhKoqcY+chTWwYMBohp74PtxsEAt2g9BIOKx1U8vPCLbgtEEJrEKYvriNmK028CH8/+wJ4t7DlJXpKSksGnTJlwuF2vWrGHu3LkUFhZyxhlnxOw57733XubOnRv63ul0kpeXF7PnE6I3ifcHVaSBSTQf3AN+dWdMAoh+N/8URVVJOXsqWmUFWukOdK8XxWIh4HL9sH2RQcrUKaH3JZqxkb4fznf/L2a5UIamQSAA5o4/YhSLBcPtDo47QKS5ULHYFoxWX64uPJz/h31FXAOkfv36YTKZqKqqCru9qqqK7Ozsgz5OVVWGDBkCwNixYykpKWH+/PmcccYZocdVVVUxcODAsGuOHTsWgOzsbKqrq8Ou6ff7qa+vP+jz2mw2bDZb1K9RiL4u1h9Uhwqool0FieaHfqySqdMuugjrMbnYiorIuO46mle/h5JYiuH1oTc7sY8cRcrUKWHvR6Rjo3k/DMOI/kMwwrEZM2d0aVsw0oTgeLdIiOZ9bguIe5pD9TbqyjZwXxTXAMlqtTJ+/HjWrFnDJZdcAgSTtNesWcOcOXMivo6u66H8oIKCArKzs1mzZk0oIHI6nXz22WfccsstAEyePJnGxkY2bNjA+PHjAXj//ffRdZ1JkyZ13wsUoo+L9QdVZwFVtEFMNB/czn+9E5MAQne7Q7e1bbdp325Ab6xDdWRiGTYepYNr2IqKsBYUHHL1LZr345jfLQKiy2+KdGy0W4iR/v2w5uXFbFswmjyaaN7ntoD4SIi2EjHgdGJoGr69e8PGKlZrl/4f9jVx32KbO3cuM2fOZMKECUycOJFFixbhdruZNSv4l3vGjBnk5uYyf/58IJgLNGHCBIqKivB6vbz77rv85S9/4YUXXgBAURR+8Ytf8NhjjzF06NBQmX9OTk4oCCsuLubcc89l9uzZLFmyBE3TmDNnDldffXVEFWxCHO1imb8STe4PRLcVEM0P/VglU6tJSfsmV7MNpeRtrLXfgd8DlXao/RiKL4T+w9u/FlXt9MM24vfDp2EbOiQmuVDRbCFGterl96M3Nx+RFgmdbQVH+j7vHxDHUjTl+JGMjXYbuC+Ke4B01VVXUVNTw4MPPkhlZSVjx45lxYoVoSTrsrIy1P3+B7jdbm699Va+//57EhISGDFiBK+99hpXXXVVaMxdd92F2+3mpptuorGxkVNOOYUVK1aEeiABLFu2jDlz5jBlyhRUVeXyyy/n2WefPXIvXIherP1v0PUEqvaAotP6uQdDTUD3+br0QRVV7s/s/w+toiLiICaqH/pd+C06krGWnB+2/mu2wadLoKUO0nLBkgSaGyq+gqa9cOLN7YMkXYemPeBzgTUZ0vL2PQ/RbY2oSUkxzYWKdFswmtWYpEmTYrYtuL/OVi6jfZ9jLVYruW3/D50rV+LdXRYM+BobO9wG7oviHiABzJkz56Bbah9++GHY94899hiPPfbYIa+nKAqPPPIIjzzyyEHHZGRkSFNIIQ5D2weVqvow+2uwJNQCoPhbMdQk/KZM/IFABx9UBqqqgaKjGB4MI6HLuT9pF110QBCTj4IXhUAwiEhwtA9i2n7or1iBb9d2DJeGXpOKvXgMKWefHfZDPyYBhO6HgA7fvAXuGsgcAns+Cz7hoBMhcyjUboMt/4STfgaWH36xq9kGJW9D22qT2Q79hoatNkWzNdIWqMUiF2r/8Z1tC+7/d6mzQCbt4otRkxJj2iKhuysRQwFxDMRqJXf/vClbURGZN9xAoKHxqDskuUcESEKI3iX0G3RdOWrrLkyqGb+RioEJ84B+4HOhBlow98sP/6CyGZha9+DX3CiGjim1CZLMBOzHoHsHRp37o7vd+4KYnSVo61Zibq1CMRsEtjUS8Now5Q1vtxVgS/XTb1QLafYs9JYW1EQ3lqJmlFR/u+cKBQWrVqOYDAxPC3ptBfbiY9sFVBGN/WA+eBph58dgSQiuIDXtCV6gDFAU8HuhvjR433mPR7Xa1JWtkUgDmWjHts3nUNuC0azGmBwOLDkDY7It2JXE665sQUWTJ9SZWBcStFHt9j5byn8oEiAJITp0qB/kigrWnAHYEpvxfO9EHZSD0eQLPtBsBVMGgd17sQ93Yc0ZABY7thwHnrWrUdMVUCzoigmTNRFc1QTKKrFPPrvj3J8EO60bPECAhFFDINFBwOUO276wpfrJGOqm2eXH29QfPaCgaAb2dI2UoW5s+wc+PwQbSksd1tz9go2qzdBc3uHWli3Vj7W4Gc3a/ENAFTh4QBXJWL8PdD+YLB2/+SYLeJuD4zRP1KtN0a70ACiANckPFg2s7V9X2NgIcqEiFe2qV6y2BWu6kHgd7RZULI7tiHUhwdFMAiQhRDud/iD/+GkUTyMpKTvQLH600p0YPheKGQJVPgJuHZMNUpK3o7z/MEx9mJSBLjRrAK3JjuEjuMrjg0CTGZOtlZQcN0rAB1b7vg/MLz5DTXJj9e8EdNjjhsRMAq4E7ONOxJKVGQogbMmtWC86GW3Lf9F9Bmr+OCzpKSj13+4LIKBrW1uRBlSRjD31l9BY9sMWYAZYE4MrR23zUEzgdUJrA0y+Dd57KLrVph9EtdITwfZdmE5yoaIdG23Q05VtwUiCmK4kXtuKiuh3882kXXRxt3dw7yxR/IgUEkTpUO0DehsJkIQQYSL6QQ7g92FzGGSc4KD52xa8la0YAdC9BvYBVlKGJmJL+GEV5L2HsDV8TMZoM807XHgrmzC8oOs+7JkWUgot2Oo/hPcCcN7jwQ/M8UVon/4NrboZMIHZBgEzgZ27MKWmkDKuEOW/z4RtVyktdVipBCvg/hpaDgggIPJg4+xHwYgiVwgiG3vqnZBRGAw8Kr4K3qcowbGKKbg811wJOccFx0Wz2nSAiFaFok0WjyaYimJsrPKb2sZ2FsQcTuL1oVbUunpsRyQ9w7pSjh/vvKneRAIkIY4iUTVdHDyYQF0FGF5Mqoaan49WWhrMwfj/7kBxfg8+F7aEDKxjk9Ea3OgeDdVuwZKehKI171sFWbsYdD+2rFSs/UHb60T3gZrpwJJmQcGAlvrgh7zfB4aOzb2BjPEpNJdl4K1yYmgBdA/YhwwmJU/D1rIRDCP6ACLSsR8/HV2uEEQ2dsxVkD44GCQ07YW67yD7uOBKks8Nzr2QlAkjLgh+gE2+LfLVpv11Fpz88D5HHNSp6r5gyl0DzRXB9yv7uI6DqS5U6XV3flM0Y7uS4B6JrhzbEc1qU6y7sh/NJEAS4igRTdNFk81Aqd6EuSVYmebfVBasTAs49uVg5OxbBVH6j8DaP23fkxkG1O+3CrLfh7xiS8Gaf+Dk9vuQ3y8wsdkTsI6woKXs+SGgGoglrSm4FffNW3Dlq8HHtwUQtpQOXvgBAUSkwcbmv8Ym+PK5gt/3Hx4MEtqCmObyYBCTc1wwOGoLHvZfbeo/AgpOC3+f919tahNJcPL13yMPAEddBmnHhAdTbUGhNbHrq2n7b2X+oDvzm6IVq94/0eQJdeW8wGi2EWNdun+oBpS9jQRIQhwFQr+R1tai2hRUswU1wYRnyzftmi4q/hYstkZUQ8Ovm8BQMWFG1Zux0IrudwRzMFR13ypIzVZIzf1hFaSl/SrI/h/y9rR9W0rQ8Yf8foGJgoI15YfxaZbgY9uCjYAX+hdHd+1Ig40Dc4W6K/iyJu97fP/hwYDhUDk60bzP0awKRbP6tnZxMPm+u1fTDsibilo350JB1xLcD3XtaPOEunrQb6S5UNGOjUYsktDjSQIkIfqwsG2z8t1Yktyoyh4Uv46pxoWamIFW3vzDb6Qz0SrKqS1dh6omYEobhF5ZCYA5Ozv4wdZQjS3BipqYEHyCSFdBovmQjyaJ2Zoc3bUh8rGqNfrALpLgK+2AQ65VNbjldiiRvs/RbAseuPp2qPfZbI3dVmZXxSgXCro3wT3aPKHDOSQ2ZpWIbVvOEPz3aW6feN3VM++0gMbSzUsBmD16NpaD/Z2JAwmQhOjD2rbNWj79CKu5Dr3RT8DtB0PFUJwo9bWgmWj+v3LSsr7HmqBhM5XjqQUVD7gbgxdy+kFRCNR7sfdrxpK43w/fSFZB2sZF8iFvtka+rdQWbER67WjHxir46opI3+dIA5kDV98OlSx+4m3Q9H10uVBdyZuCyFZ6oslviiZvaj8RBRARXjuarbuuHvRLzbbgyuGWfwb//w88Lvi6DlaJqHmCFZJ+X/D/Q0bhwf9uGnow8Pb7gr+8HDC2K9uCvYEESEL0ZXoAw9OK6mtAtWnoJIERzIExMGMoZlSTC7WlAb3Vh2Lzk1KgorWoaHV+DI1g6b5XD5buJ5lJKdBR/C3hzxPJKghE/iEfbWASzbW7MjYWwVdXdPY+H87q26GSxS326HOhIq3S2193JpZ3lAt1qLwpSxQf3B3N42DX/iHBPdKGo106JHb/QM2SEAzUEjIOXYn4zVvBlUbdH/z7crBgKoKxXd0W7OkkQBKiF+u0T8rIZnzl9dR+5UGxWDDbAmhuDwCWxARQFQKtZix2D+rYS2DgAGw+Fxl5FppL6vFW/lA9ZjZhH55KSnF6sOni/nk00YommIo22Ij02tGOjVXw1d1iufrW1dW0zqr02kSyGhNNYvnh5kIdaiUrmq3MtqpFImsiGlWieBcCtaiCqQjHHs62YE8mAZIQvVREfVLMJqwOC7Z0BU+9gWozgokKEPpvwG1gz1Cw9EsNfbja/F9hPWc0WmPLvtJ9RyJK3TbI6iCPJlbiGWwcKFbBV3eL5epbLFbTovmQj2Vbh/1FkrMU6Tzaqhbbmoi6a7DqFZBkgezCDhuORlxpFk2gdriViIcY2+VtwR5OAiQheqFIqtJsRUVw6i9RGstIKa9BW1eH1hrAsKgoZpWArT+BxlZMmSopEzNR7KlhH65K3TasqbmQnhL8cK3bdvh5NF0Rz2Cjt4rl6lt3r6bFKrG8q7lQkaxkRbOVabK1Py4mgq2+iCvNekAlonXa/Oi3BXsBCZCE6GVCCZGdVqX9kBCZUYht1PFkBD6jucyMt8oa3DZr9WMfnElKnh/bseO6lvAseq5Yrr5192paLBLLo82Fina7KtJu6F+9Cd6mLm31dVqVFk2gFsNKxMPpH2X4NPL/GswjM4ZfDwlSxSaE6KLqpxdGVJUWSoj8YVXI1rQXa2Ytml6EHrCgmjQsagNKSvbhJTyLnqs3rL7FKrE82lyoj7qQV9R27dptwftMluBcmyv3Xfvrv3ftuJhIqtIOzDmLYyVirBtQxoMESEL0MpFWpRme1n0P+mFVSCl5G2vtd+BvCq4K9R/bPQnPQnRVT2rrEG1eUdi1k4L5Sp6m8GtHezgxRJdIvX/AeKhA7cBKxO5cffuBraiIzBtuINDQiKFpZMycIZ20hRBHTsaQyKrSMobUhz9QVoVET9UT2jpEu5IV6bWjWeXJKOxSvlIoUPvmreAKl7c5OM9DVSIeKpg6cPUtkrE/UFQVU2pqcMq5ub02OAIJkITocTor3Y+0Ks3q6OC3YFkVEj1VvNs6RBPIRNsNPZrAZOVDXWtN0H84nPYrOO7qyCoROwumoh3bB0mAJEQP4t2xA+eKFTSv+BcENGxDh2EbMYaUc/Y1klNOnhNZVdrJc+L8aoSIUrxXOaPNb4pGJNtx0LV8pf3nH2kl4sk/h9b6zjtpRzO2j5EASYgewrtjB/V/fI5A2VZspioUm4Hi1PF8vBNt11Yybro9GCRFWpV2YJdiIXqDeK9yxrKKM5IAcPJtXT+mJRoWe+QHBSsq2B3BPzsGHTI4UqxW+t/eN345kwBJiDgLHSj792UEdnyBJV0hELBiYMKcnIxqaUbb8QXOfywjc85dwdL9aKvShBCRi2eLhGgTqY8EsxXOvPfIPV8PIQGSEHFW+8ILBJqa8H76DmarB39TErorWIGmoYACit9Fy/vvEGiB7Acf7FpVmhAicvFayYo2kbqXM3Qds9uL4g+glZdjKSjsMYndEiAJEW9ln6A0NwR/AFqU4H99wco0vHrwN0g9AF4fyvf/2fe4eOdrCCFiI9J8pZ7I7wt2R4dgZaDZetCh3h07aPi//8Ox5XuUgE7975fQOnRo2HFJ8SQBkhBx1u/c0fj2lFFbWY6alIDJqqL9kIBpSU8Klu57AphpxXFifviD452vIYSIjT7+C1DbcUlaTS0BqxnDrGJypOEp2RJ+XFIc9Y13WoheTDnzLqwX3Ilt8DEE/CkYjmMguX/wKz0P0vII+FOw5R+D9YI74z1dIcSR0vYL0IBRwf/2geDI8Pn2HZdUV4c5fzCYVRRASUjAkl9AoK4O58pVGLoe17nKCpIQ8Wa2ovQbQsopE9De/jdaZTOGpgdL91v9BJpaMVn9pJxyEkq/IfGerRBCHJyhB49s8fuCjTcPaAlQ+4c/EnA6cX/2GWpCAkZ9PbbaZgBav/gCVTWhe714d5eRdtFFWI/JjdMLkQBJiCPC8PvRvt2A3liH6sjEMmw8inm/f36qiu2s68horqL5i514m1IwAqC7WrBn6KSMG47tzOv6xG+QQog+qu38uJ0fB3s5+Vztz48DDE2DQADMZsBodxnFYgme5eZ2H7m5d0ACJCFizLv+PZx/fYnWr7dg+HXMGQ5s+YNIufx6bCdM3Tew/3BsF9+Jdcj/ou34Gr2lBTUxEcuQ0SgjL+zZiZlCiKNbhOfH9fvpTfj27kV3uVAdDrDbqHJXAJBw/PGYzBYCLhd6YyNqUlJcX5IESELEkHf9e9QvfoJAUzOqzQpJZtTUZDzf7kBb/AQZt9EuSFJO+yXW4/pmYqYQog+K4vw4xWrHOngwtiFD8JRswTR4MMYPvZ4UkwlUlUBNNfaRo7DkDIzfa0ICJCFiwmh1YwT8OP/6IoEmJ5a8HPxVVQCYEhJQ8xLQyvbi/H8v0e/4M9ptt0llmhCi13gvuvPjFFUl5eypaJUVaDtKUbQAhklFd7nw19ZiSs8gZeqUuPdDkgBJiBiovf8GjNYmPNt3o1oU/Ltd6O5gbyPN0xT8oaEFaP3iC7RvN2AdOSnOMxZCiC7qwvlxtqIiMq67job/+z9M321CCegEGptIGDmKlKlT4l7iDxIgCREzRsCPEdAh4SD/zEwKhieA3lh3ZCcmhBDdqYvnx9mKikifdT1fbf8Pij/AyFtvJlE6aQvRt/V77CV8WzdQu+DXqKnJmBIT0SorAbBkZwebP7rcKE4XqiMzzrMVQojDcBjnxymqij/JBoAlJ6fHBEcgjSKFiAklIQnr6JOwFQwmUNcYTEJs+1JNgEqgrhFbYT6WYePjPV0hhOi6tvPjEjP3nR9n6MGVo5qtvfb8uN41WyF6EcVsJuXy6zGlpqDt3ovh9WEEdAJuF77dezClpZBy2czwBG0hhOiN2s6Pyx4NWiu01Ae31XKOg0k398o2JfKTWYgYsp0wlYzboPlvr+DdtQdD09CdbuzDh5By2czwEn8hhOjN+g+Hk38OrfXBhOzJt7XrpN2bSIAkRIzZTpiK9fgzDt1JWwgh+gJFBbsj+GfHoF4bHIEESEIcEYrZLKX8Qoi+z2yFM++N9yy6hQRIQnSRoeto5RXobjdqUhKWnIE9qgJDCCF6OsVqYdcVk0J/7kl6xE/zxYsXk5+fj91uZ9KkSaxbt+6gY5cuXcqpp55Keno66enpTJ06td14RVE6/HryySdDY/Lz89vdv2DBgpi9RtG3eHfsoO4Pf6TmqfnUPrOAmqfmU/eHP+LdsSPeUxNCCNEN4h4gvfHGG8ydO5eHHnqIjRs3ctxxxzFt2jSqq6s7HP/hhx9yzTXX8MEHH7B27Vry8vI455xz2Lt3b2hMRUVF2NdLL72EoihcfvnlYdd65JFHwsbdfvvtMX2tom/w7thB/R+fw/Pvt2DXf1FrN6I2bcHz8T+p/+NzEiQJIUQfEPcAaeHChcyePZtZs2YxcuRIlixZQmJiIi+99FKH45ctW8att97K2LFjGTFiBH/605/QdZ01a9aExmRnZ4d9/fOf/+TMM8+ksDC8SVVKSkrYuKQ4nxwsejbD50P3eHD+fRmBHV9gSfagWK0YaiKm5GQsyR4CO77A+Y9lGLoe7+kKIYQ4DHENkHw+Hxs2bGDq1H2lzqqqMnXqVNauXRvRNVpaWtA0jYyMjA7vr6qq4p133uHGG29sd9+CBQvIzMzk+OOP58knn8Tv9x/0ebxeL06nM+xLHF1qX3iB6ieeoOWDd1D8jfibfARcreguF1pVHf4mH4q/kZb330Hbb0VTCCFE7xPXJO3a2loCgQADBgwIu33AgAFs3bo1omvcfffd5OTkhAVZ+/vzn/9MSkoKl112WdjtP/vZzxg3bhwZGRl88skn3HvvvVRUVLBw4cIOrzN//nwefvjhiOYk+qiyT1CaG4LdYS1K8L++4AG0ePVgl2w9AF4feuUOyMuL73yFEEJ0Wa+uYluwYAGvv/46H374IXa7vcMxL730EtOnT293/9y5c0N/HjNmDFarlZ/+9KfMnz8fm83W7jr33ntv2GOcTid58gF4VOl37mh8e8qorSxHTUrAZFXRfjid2pKeFDxfzRPATCuqxYjzbIUQohfw+2Dnx8E/F88EU8+pZItrgNSvXz9MJhNVVVVht1dVVZGdnX3Ixz711FMsWLCA9957jzFjxnQ45uOPP2bbtm288cYbnc5l0qRJ+P1+du3axfDh7Vui22y2DgMncfRQzrwLa/0ubF/8DE+VDzUrHVp/+CeUPhBQCLjqsOdnYsnLj+dUhRBCHKa45iBZrVbGjx8flmDdlnA9efLkgz7uiSee4NFHH2XFihVMmDDhoONefPFFxo8fz3HHHdfpXDZt2oSqqmRlZUX3IsTRw2xF6TeElFMmYLL60Sqb0TUdw4BAqx9fpROT1U/KKRNQ0gfHe7ZCCCEOQ9y32ObOncvMmTOZMGECEydOZNGiRbjdbmbNmgXAjBkzyM3NZf78+QA8/vjjPPjggyxfvpz8/HwqKysBSE5OJjk5OXRdp9PJX//6V55++ul2z7l27Vo+++wzzjzzTFJSUli7di133HEH1157Lenp6UfgVYteS1WxnXUdGc1VNH+xE29TCkYAdFcL9gydlHHDsZ15Xa9ury+EEKIHBEhXXXUVNTU1PPjgg1RWVjJ27FhWrFgRStwuKytD3e/D5oUXXsDn8/HjH/847DoPPfQQ8+bNC33/+uuvYxgG11xzTbvntNlsvP7668ybNw+v10tBQQF33HFHWI6REAfVfzi2i+/EOuR/0XZ8jd7SgpqYiGXIaJSRF/bKU6uFEEKEUwzDkGzSLnA6naSlpdHU1ERqamq8pyPiQdehaQ/4XGBNhrQ8WTkSQogoaJ5mXv/ntVgCfi6f8jSW/sNi/nM00s/vuK8gCdFTRH22mqqC5BoJIUTX1GxD3fx3Tqj4FrOhY/r4ScgqhuKesRIvAZIQBI8Pca5ciXPFSggEsBcXYxsyhJSzp2IrKor39IQQom+p2QafLkFxVeExW/GrJoyEdKj4Cpr2wok3xz1Ikv0AcdTz7thB/V/+gnfLFlSbgjnVgppgwrPlm+DtcraaEEJ0D78PNA988xa4azAyitBUMwYKWBIhcyi4a2DLP4NpDHEkK0jiqKZ7PDhXriRQvhtLkhtV2YPi1zHVuFATM9DKm3GuXEXmDbNQD9KMVAghRIQ+fho8jcHmkJaEYDDkbQret+czUE3g90J9KYy5Kq5pDBIgiaNa9dMLafn0I6zmOvRGPwG3HwwVQ3Gi1NeCZqL5/8oJNDSQ/ev74j1dIYTo/fw+0P3Brtkd1YmZLOBtDhbAxJEESOKoZnhaUX0NqDYNnSQwgv8gDcwYihnV5EJtacDwtMZ5pkII0Qec+ktoLAsGPwkZYLbB9trgfXmTwGQNnnPZ2hCsDo4jyUESR7WMIfVY7B4UixlLYgBV8aAqHiyJfixJgeDtdg8ZQ+rjPVUhhOj9zFbIKAwmYDdXgKKCQvBLNQW/b66ErBHB1ilxJAGSOKpZHRZs6QoBt4GhABZb8EtVAAi4DWzpClZHzzlAUQghejVVDZbyJ2ai1H6LNaChGEZwW61mKyRlwogL4t5XTrbYxFFNOXkOKeU1aOvq0FoDGIqCYlYJWPsTaGzFlKmSMjET5eQ58Z6qEEL0Hf2Hw4k3Y2z+O7aqL0gyvCitDZBzXDA4kj5IQsRZRiG2UceTEfiM5jIz3iorhhZAb/VjH5xJSp4f27HjgkvCQgghuk//4egnzWF9zadYAn4Gn/or1CPQSTtSEiCJo9sPS722pr1YM2vR9CL0gAXVpGFRG1BSsnvEUq8QQvRJikqzNTH4Z0fPOq6p58xEiHj5YalXyT0Oa4IXu70Wa4IX5ZixMCn+3VyFEEIcebKCJPq0iM9X6z882MFVDp8VQgiBBEiiD4v6fDU5fFYIIY4ssxUKTt335x5EAiTRJ7WdrxaorUW1KajmfeeraZUVZFx3nRxCK4QQ4qBk/0D0KYbPF36+mqUam7IHq38XppoNWMxVBMp341y5Ct3jifd0hRBC9FCygiT6lNo//JGA0ynnqwkhhDgssoIk+hY9sO98NZOGTiIYwb/mBmZ0JRHVpKH65Hw1IYQQBycrSKJP6TeyGV95PbVfeVAsFsy2AJo7uJVmSUwAVSHQKuerCSFELGgBjaWblwIwe/RsLKbee0yTrCCJPkUxm8LPV8PYdxBi8Hg1OV9NCCFEp2QFSfQ6h+xtdOovURrLws9Xs6jB89Vscr6aEEJEqy+tCkVDAiTRq3Ta28hslfPVhBCil9ANHafPiRbQKHeVk5eah6r0jM0tCZBErxFxbyM5X00IIXq80sZSVu1axfqK9fgNP27NTZGjiCmDplDoiP8vsPIJIXq8aHobGboefJCcryaEED1WaWMpy0qWsbV+K3azHYfNQZotjZL6EpaVLKO0sTTeU5QVJNHzRdPbKO2ii7Aekxt8oJyvJoQQPYoW0NANnVW7VlHXWkd+aj4N3gYAEs2J5KfkU9pUyurdq5mdNjuu220SIImeb//eRjYNnSQwXECwt5GhmFFNLtSWBnRXc/hj5Xw1IYToMZZuXorT52R9xXrsZjsN3gYq3BUAbKzeiKqo+AI+9uzawwVFF5CbnBu3uUqAJOLukFVpRNfbSNWb4vUyhBBCREALaPgNP2a14xDErJpDOUnxJAGSiCvvjh00r34P785SDI8XxW7DVlC4ryqN8N5GnnoD1WaEehrt39vInqFgSU+MzwsRQgjRqdmjZ1PuKsetuUmzpZFoTmRj9UYAxmWNQ1VUXD4XTb4mkixJcZ2rBEgibkJVaXV1aNU1YDZjLy7GU7IlvCotmt5G9tR4vywhhBAHYTFZyEvNo8hRREl9Cfkp+aE8I1VRURWVGk8NxRnFDEwaGNe5SraqiItQVVpdHZbBg1FNflTDjUnVsOTnE6irw7lyFbrHE97baHwK9kH9UFMzwZIa6m2UMT4l2NsoLS/eL00IIcQhqIrKlEFTSLelU9pUii/gQzd0XD4XO5p2kG5LZ8qgKXHvhyQrSCIuqp9eiPuzzzDZDJTqTZhbagHwbyrDUJPwBxx4d5cRaGgg+9f3SW8jIYToQwodhUwvns6qXavYs3sPfsNPk6+J4oziHtMHSQIkEReGpqH4W7DYGlENDb9uAkPFhBlVb8ZCK7rfgaFp+x7U1tuo5G2std+BvwnMdug/NhgcSW8jIYToNQodhcw6dhaNvka0gMaMkTOkk7YQGddeTW3pOlQ1AVPaIPTKSgDM2dmgKNBQjS3BSsa1V4c/UHobCSFEn6EqKqnWYO5oTnJOjwmOQAIkESfWbS9iM5XjqQUVD7gbg3c4/aAoBOq92Ps1Y932Igx5IvzB0ttICCFEjEmAJOJC0TVSClS0FhWtzo+hgWKGgFcn4NYxJZlJKdBRdK3ziwkhhBDdTAIkER+Tb8Pmc5GRZ6F5Sx3e0h0YfgPdnIl9uIOU4nRsqX6YfFu8ZyqEEOIoJAGSiInOumOTUQj9h2Pzf4V12hi0xiHoHg3VbsHiSESp2wZZxwXHCSGEEEeYBEii23l37MC5ciXOFSshEMBeXIxtyJCw7thtZfs07UWp24Y1NRfSU8DXAnXbIClTyvaFEELEjQRIolvt3x1bTUgAsxnV4WjfHRtCZfuUvA2130FzebBsP+c4KdsXQggRVz3i1/PFixeTn5+P3W5n0qRJrFu37qBjly5dyqmnnkp6ejrp6elMnTq13fjrr78eRVHCvs4999ywMfX19UyfPp3U1FQcDgc33ngjLpcrJq+vrzB0Hd/3e/Fs+xbf93sxdH3ffT5fdN2x2/QfDqfMhTPvg9PvCv735DskOBJCCBFXcV9BeuONN5g7dy5Llixh0qRJLFq0iGnTprFt2zaysrLajf/www+55pprOOmkk7Db7Tz++OOcc845fPPNN+Tm5obGnXvuubz88suh7202W9h1pk+fTkVFBatXr0bTNGbNmsVNN93E8uXLY/die7HOts1q//BHAk5ndN2x20jZvhBCiB4m7itICxcuZPbs2cyaNYuRI0eyZMkSEhMTeemllzocv2zZMm699VbGjh3LiBEj+NOf/oSu66xZsyZsnM1mIzs7O/SVnp4euq+kpIQVK1bwpz/9iUmTJnHKKafw3HPP8frrr1NeXh7T19sbtW2beUtKUBMSUB2O0LZZ/V/+gnfHDmC/7thUoBrN6LoJPWCBUHfsChR/S3h3bCGEEKIHimuA5PP52LBhA1OnTg3dpqoqU6dOZe3atRFdo6WlBU3TyMjICLv9ww8/JCsri+HDh3PLLbdQV1cXum/t2rU4HA4mTJgQum3q1Kmoqspnn33W4fN4vV6cTmfYV1/XbtssPx/FbEYBTIkJWPILQttmmTfMJOPaq7H1s6ImJWAaWISanIaakoJ54DGYcopQExOw9eugO7YQQgjRw8R1i622tpZAIMCAAQPCbh8wYABbt26N6Bp33303OTk5YUHWueeey2WXXUZBQQE7duzgvvvu47zzzmPt2rWYTCYqKyvbbd+ZzWYyMjKo/OHIiwPNnz+fhx9+OMpX2Lvtv22mJiTgr29Aq6gAoGXDRlBVdK8X7+4y0rK+x5qgdb07thBCCNGDxD0H6XAsWLCA119/nQ8//BC73R66/eqr961QjB49mjFjxlBUVMSHH37IlClTuvRc9957L3Pnzg1973Q6ycvL6/rkewlD0yAQALMZMFBVDRQdxfBgGAkoFguG243u0VBs+3XHrg9gTjChmkH3GfhdfumOLYQQoteIa4DUr18/TCYTVVVVYbdXVVWRnZ19yMc+9dRTLFiwgPfee48xY8YccmxhYSH9+vVj+/btTJkyhezsbKqrq8PG+P1+6uvrD/q8NputXaJ3X9fvpzfh27sX3eVCtRmYWvfg19woho4ptQmSzATsx6B7B6KeegskBfZ1xy6px1vpxK8FUEwm7MNTpTu2EEL0Qrqh4/Q50QIa5a5y8lLzetShsrES1wDJarUyfvx41qxZwyWXXAIQSrieM2fOQR/3xBNP8Jvf/IaVK1eG5REdzPfff09dXR0DBw4EYPLkyTQ2NrJhwwbGjx8PwPvvv4+u60yaNOnwX1gvcqiO14rVinXwYGw5DjxrV6OmK6BY0BUTJmsiuKoJlFVin3w2lrwfqtDaumOfMxqtsUW6YwshRC9W2ljKql2rWF+xHr/hx625KXIUMWXQFAodfftnedy32ObOncvMmTOZMGECEydOZNGiRbjdbmbNmgXAjBkzyM3NZf78+QA8/vjjPPjggyxfvpz8/PxQzlBycjLJycm4XC4efvhhLr/8crKzs9mxYwd33XUXQ4YMYdq0aQAUFxdz7rnnMnv2bJYsWYKmacyZM4err76anJyc+LwRceDdsYPm1e/h3VmK4fGi2G3YCgr3dbz2+1AMnZSBLjRrAM1px2zWUS0Gug/8TWZMtlZSctwoIN2xhRCiDyltLGVZyTLqWuuwm+2YVTNptjRK6kuodFcyvXh6nw6S4h4gXXXVVdTU1PDggw9SWVnJ2LFjWbFiRShxu6ysDHW/D9QXXngBn8/Hj3/847DrPPTQQ8ybNw+TycRXX33Fn//8ZxobG8nJyeGcc87h0UcfDdsiW7ZsGXPmzGHKlCmoqsrll1/Os88+e2RedA+wf8drrboGzGbsxcXhHa/L3gRPI7aGj8kYbaZ5hwtvZTP+ACgJAeyZFlIKLdjqP4SmPcFeRtIdWwghejUtoKEbOqt2raKutY781HwavA0AJJoTyU/Jp7SplNW7V3N98vXYzH0z/STuARLAnDlzDrql9uGHH4Z9v2vXrkNeKyEhgZUrV3b6nBkZGUdlU0jD58PQ9bDSfX998C++KTEBNb8ArXQHzpWr6DfcQPH7QPdjy0rF2h+0vU50H6iZDixpFhQMaKkH335dyPsPh8yhwaDJ5wJrMqTlycqREEL0Aks3L8Xpc7K+Yj12s50GbwMV7mAF88bqjaiKii/gY8+uPTR4G7hn4j1xnnFs9IgASRw5UZXu/2gR1qRAMMhJyECxpWDNP+CCXie0NgSDoP1Jd2whhOi1tICG3/BjVjsOE8yqGb/hRwv03apkCZCOQuGl++3tX7pP3pDgilDFV2BPA0XZ70IGNFcGt8/S+n7LAyGEOBrMHj2bclc5bs1Nmi2NRHMiG6s3AjAuaxyqouLyuWjyNTFj5Iw4zzZ2JEA6yoSV7jscmBLstG7wAAESRg2BRAcBlxu9sRE1KSks8ZqarZCaC9bEYOK1c68kXgshRB9jMVnIS82jyFFESX0J+Sn5obJ+VVFRFZUaTw3FGcXkpfbdX44lQDrKhEr3hwzB88VnqElurP6dgA573JCYScCVgH3ciVhygm0RJPFaCCGOLqqiMmXQFCrdlZQ2leIL+DCrZlw+FzWeGtJt6UwZNKVP90M67ADJ7/fj8XhITk7ufLDoERRVJWV8Edqnf0OrbgZMYLZBwExg5y5MqSmkjCsM9UMCJPFaCCGOMoWOQqYXT2fVrlXs2b0Hv+GnyddEcUbxUdEHKeJPt7fffptXXnkl7Lbf/OY3JCcn43A4OOecc2hoaOju+Ynu5veB5sHm3kDG+BTsQwajpPQDcwq6B+xDBpMxPgVby0bQ9fDHtiVeDxgV/K8ER0II0acVOgqZdewsThh4AhMGTOCW427hxtE39vngCKIIkBYuXIjb7Q59/8knn/Dggw/ywAMP8Oabb7Jnzx4effTRmExSRM7QdXzf78Wz7Vt83+/FODDI+fhpeO8h2PJPbPZGMkc00n/IbvoVfU//431kjmjCZm+Eb94KrhYJIYQ4qqmKSqo1lcyETHKSc/r0ttr+It5i++abb1i4cGHo+//3//4fZ599Nr/+9a8BsNvt/PznPw8bI46sTjtjt/mhtxEmCwoK1pQfKtPSLMEqNZMFvM3hvY2EEEKIo0jEAVJzczOZmZmh7//zn/9wxRVXhL4fNWoU5eXl3Ts7EbGIOmMXFcGpv4TGslBvI6yJUPbDRQadCIrp4L2NhBBCiKNExOtkubm5lJSUAOByufjyyy856aSTQvfX1dWRmJjY/TMUndI9nrDO2IrZjEKwM7Ylv4BAXR3OlavQPR4wW4OHxfYfDs0VoFqg4LTgl8kKihrsbZQ1QnobCSGEiIpu6Dh9Tupa6yh3laMbeucP6qEiXkG64oor+MUvfsF9993Hu+++S3Z2NieeeGLo/s8//5zhw6XcOx6qn14YUWfsQEMD2b++T3obCSGE6HaljaWs2rWK9RXr8Rt+3JqbIkdRr614izhAevDBB9m7dy8/+9nPyM7O5rXXXsNkMoXu/5//+R8uvPDCmExSHFqknbENbb+W8NLbSAghRDcpbSxlWcky6lrrsJvtmFUzabY0SupLqHRXMr14eq8LkiIOkBISEnj11VcPev8HH3zQLRMS0cuYOWNfZ+zEhODKEZA4fhyoJgIuF3pjIxkzD2gJL72NhBBCHCav38uqXauoa60jPzWfBm+w5U+iOZH8lHxKm0pZvXs11ydfj81si/NsIyedtPuAUGfski2o+QX7AhzVBKpKoKYa+8hRWAd3cHisHCorhBDiMDyz8RnWV6zHbrbT4G2gwh1M89hYvRFVUfEFfOzZtYcGbwP3TLwnzrONXMQB0llnnRXRuPfff7/LkxEdM3QdrbwC3e1GTUrCkjMwrMu1oqqknD0VrbICrXQHuteLYrEQcLkI1FRjSs8gZeqU8M7YQgghRDfQAhp+w49Z7TikMKtm/IYfLaB1eH9PFXGA9OGHHzJ48GB+9KMfYbFYYjknsR/vjh04V67EuWIlBALYi4uxDRnSrreRraiIjOuuo3nVahSTgeFpQa+twF58LClnnx3eB0kIIUSfowU0lm5eCsDs0bOxmI7MZ/WMkTNwa27SbGkkmhPZWB1M8xiXNQ5VUXH5XDT5mpgxckYnV+pZIg6QHn/8cV5++WX++te/Mn36dG644QaOPfbYWM7tqLd/byM1IQHMZlSHo31vox/YUv1Yi5vRrM3oLS2oiQEsRc0oqf44vgohhBB9WV5qHkWOIkrqS8hPyQ912lYVFVVRqfHUUJxRTF5q72odE/Gey69+9Su2bNnCW2+9RXNzMyeffDITJ05kyZIlOJ3OWM7xqGP4fNH1NgKo2QafLkGp2ow1Nwf7yOOw5uagVG2GT5cE7xdCCCG6maqoTBk0hXRbOqVNpfgCPnRDx+VzsaNpB+m2dKYMmtLrjiiJeraTJ09m6dKlVFRUcNttt/HSSy+Rk5MjQVI3qv3DH6l+eiHOFSvRqmto3fgFWkUFWkUFLRs20rpxI76qapwrVlD99ELQPMGz09w1wSaQ5Ztg93+DZfuZQ4O3b/lncJwQQgjRzQodhUwvns6IjBF4/B4avY00+ZoozijulSX+cBhVbBs3buSjjz6ipKSEY489VvKSullUvY3eewh2fgyWBGip23fIbBnBs9X8XqgvDd533uNH7kUIIYQ4ahQ6Cpl17CwafY1oAY0ZI2eQl5rX61aO2kQVIJWXl/PKK6/wyiuv4HQ6ufbaa/nss88YOXJkrOZ3VOr305vw7d0beW+jr58NHT7bobbDZ/2+I/gqhBBCHG1URSXVmgpATnJOrw2OIIoA6fzzz+eDDz7gnHPO4cknn+RHP/oR5oOsbojDo1it0fU2Srlt3+GztpT2F2w7fHbybUf2hQghhBC9VMQRzooVKxg4cCBlZWU8/PDDPPzwwx2O27hxY7dN7mgW1tto107sxcWoiYnoLS34qyrDexu1HT5b8RXY04Lbam0MI3j4bM5xwXFCCCGE6FTEAdJDDz0Uy3mIDoR6G61+D+/OUvzV1Sg2K/aRo0iZOmVfib8cPiuEEEJ0KwmQejhbURHWwYPRvt2A3liH6sjEMmw8yoHbm3L4rBBCCNFtui2JyOPx8Pzzz3PnnXd21yUFQM02lJK3sdZ+B34PVNqh9uPgitGBQY8cPiuEEEJ0i6g+OWtqavjXv/7FqlWrCAQCAGiaxu9+9zvy8/NZsGBBTCZ51Pqh+SMVX0FiRjD4ScwIfn+w5o9th88OGBX8rwRHQgghRNQi/vT8z3/+w9ChQ7nooos477zzOOmkk9iyZQujRo3iD3/4A/PmzWPPnj2xnOvRw++T5o9CCCGiohs6Tp+TutY6yl3l6IYe7yn1ahFvsd1///2cf/753Hffffz5z3/m6aef5tJLL+W3v/0tP/7xj2M5x6PPx0+Dp1GaPwohhIhIaWMpq3atYn3FevyGH7fmpshRxJRBU3plF+ueIOIVpM2bN3P//fdz7LHH8sgjj6AoCk888YQER7Hi93Xe/FH3S/NHIYQ4ypU2lrKsZBlb67diN9tx2Byk2dIoqS9hWckyShtL4z3FXiniFaSGhgb69esHQEJCAomJiRx77LExm9hR7dRfQmOZNH8UQghxUFpAQzd0Vu1aRV1rHfmp+TR4GwBINCeSn5JPaVMpq3evZnba7F7d1Toeoqpi27JlC5WVlQAYhsG2bdtwu91hY8aMGdN9sztama3S/FEIIcQhLd28FKfPyfqK9djNdhq8DVS4KwDYWL0RVVHxBXzs2bWHC4ouIDc5t0vPYzFZuHXsrd059V4hqgBpypQpGIYR+v6CCy4AQFEUDMNAUZRQdZs4TNL8UQghRCe0gIbf8GNWO/44N6vmUE6SiE7EAdLOnTtjOQ/REWn+KIQQ4iBmj55Nuasct+YmzZZGojmRjdXB477GZY1DVVRcPhdNviaSLElxnm3vE3GANHjw4FjOQxyMNH8UQgjRAYvJQl5qHkWOIkrqS8hPyQ/lGamKiqqo1HhqKM4oZmDSwDjPtvfptk7aIobamj8KIYQQ+1EVlSmDplDprqS0qRRfwIdZNePyuajx1JBuS2fKoCmSoN0F8o4JIYQQvViho5DpxdMZkTECj99Do7eRJl8TxRnFTC+eLn2QukhWkIQQQohertBRyKxjZ9Hoa0QLaMwYOYO81DxZOToMEiAJIYQQfYCqqKRaUwHISc6R4OgwybsnhBBCCHGAiAKk448/nnHjxkX01RWLFy8mPz8fu93OpEmTWLdu3UHHLl26lFNPPZX09HTS09OZOnVq2HhN07j77rsZPXo0SUlJ5OTkMGPGDMrLy8Ouk5+fj6IoYV8LFizo0vyFEEII0bdEtMV2ySWXxGwCb7zxBnPnzmXJkiVMmjSJRYsWMW3aNLZt20ZWVla78R9++CHXXHMNJ510Ena7nccff5xzzjmHb775htzcXFpaWti4cSMPPPAAxx13HA0NDfz85z/noosu4vPPPw+71iOPPMLs2bND36ekdHCkhxBCCHEIWkBj6ealQLA3keVgZ2iKXiWiAOmhhx6K2QQWLlzI7NmzmTVrFgBLlizhnXfe4aWXXuKee+5pN37ZsmVh3//pT3/ib3/7G2vWrGHGjBmkpaWxevXqsDHPP/88EydOpKysjEGDBoVuT0lJITs7OwavSgghhGhPgqneI645SD6fjw0bNjB16tTQbaqqMnXqVNauXRvRNVpaWtA0jYyMjIOOaWpqQlEUHA5H2O0LFiwgMzOT448/nieffBK/33/Qa3i9XpxOZ9iXEEIIIfqmqKvYAoEAzzzzDG+++SZlZWX4fL6w++vr6yO+Vm1tLYFAgAEDBoTdPmDAALZu3RrRNe6++25ycnLCgqz9eTwe7r77bq655hpSU1NDt//sZz9j3LhxZGRk8Mknn3DvvfdSUVHBwoULO7zO/PnzefjhhyN8ZUIIIYToTE8+CDfqFaSHH36YhQsXctVVV9HU1MTcuXO57LLLUFWVefPmxWCKB7dgwQJef/11/vGPf2C329vdr2kaV155JYZh8MILL4TdN3fuXM444wzGjBnDzTffzNNPP81zzz2H1+vt8LnuvfdempqaQl979uyJyWsSQgjRu+iGjtPnpK61jnJXObqhx3tKohtEvYK0bNkyli5dyo9+9CPmzZvHNddcQ1FREWPGjOHTTz/lZz/7WcTX6tevHyaTiaqqqrDbq6qqOs0Neuqpp1iwYAHvvfceY8aMaXd/W3C0e/du3n///bDVo45MmjQJv9/Prl27GD68/SGwNpsNm80WwasSQghxtChtLGXVrlWsr1iP3/Dj1twUOYqYMmiKdLDu5aJeQaqsrGT06NEAJCcn09TUBMAFF1zAO++8E9W1rFYr48ePZ82aNaHbdF1nzZo1TJ48+aCPe+KJJ3j00UdZsWIFEyZMaHd/W3D03Xff8d5775GZmdnpXDZt2oSqqh1WzgkhhBAHKm0sZVnJMrbWb8VutuOwOUizpVFSX8KykmWUNpbGe4riMEQdIB1zzDFUVFQAUFRUxKpVqwBYv359l1ZY5s6dy9KlS/nzn/9MSUkJt9xyC263O1TVNmPGDO69997Q+Mcff5wHHniAl156ifz8fCorK6msrMTlcgHB4OjHP/4xn3/+OcuWLSMQCITGtOVLrV27lkWLFvHll19SWlrKsmXLuOOOO7j22mtJT0+P+jUIIYQ4emgBDa/fy6pdq6hrrSM/NR+zGtyQSTQnkp+ST11rHat3r2633Sbbcb1H1Ftsl156KWvWrGHSpEncfvvtXHvttbz44ouUlZVxxx13RD2Bq666ipqaGh588EEqKysZO3YsK1asCCVul5WVoar74rgXXngBn8/Hj3/847DrPPTQQ8ybN4+9e/fyv//7vwCMHTs2bMwHH3zAGWecgc1m4/XXX2fevHl4vV4KCgq44447mDt3btTzF0IIcXRZunkpTp+T9RXrsZvtNHgbqHAHFw42Vm9EVVR8AR97du3hgqILyE3OBWK/HdeTE557I8UwDONwLrB27VrWrl3L0KFDufDCC7trXj2e0+kkLS2NpqamTvObhBCiL9ENnQp3BW7NTZIliYFJA4+qc79+v+n31LXW8XnV5zhsDoBQgNT2XuiGTqO3kSdPf5Jh6cNC23F1rXXUtNZgVs2MyBhBTWsN6bZ0phdP7xM5S72hz1Okn9+HfVjt5MmTD5kvJIQQou9oWwVZvXs1fsNPcUbxUZeUPHv0bMpd5bg1N2m2NBLNiWys3gjAuKxxqIqKy+eiydeETbW1245r8DYA+7bjSptKWb17NdcnX4/NLMVAPUWXAqTvvvuODz74gOrqanQ9fP/0wQcf7JaJCSGE6Fn2XwWxm+2YVXMoKbnSXdlnVkE6YzFZyEvNo8hRREl9Cfkp+aEVNFVRURWVGk8NxRnF/Kv0XzRrzRFtxzV4G7hnYvsTJER8RB0gLV26lFtuuYV+/fqRnZ2Noiih+xRFkQBJCCH6GC2goRt6r14F6e6tH1VRmTJoCpXuSkqbSvEFfJhVMy6fixpPcNtsyqAprNi1Ai2g4Tf8oUTuA5lVM37DjxbQDmtOontFHSA99thj/OY3v+Huu++OxXyEEEL0MNEkJffUVZC26jEtoFHuKicvNe+w86YKHYVML57Oql2r2LN7D37DT5OvieKM4tCWYzTbcTNGzuiOlyq6SdQBUkNDA1dccUUs5iKEEKKH6s2rILGsHit0FDLr2Fk0+hrRAhozRs4IC76i2Y7LS80Lu3ZvSHjuy6IOkK644gpWrVrFzTffHIv5CCGE6GF68yrIkcibUhWVVGuwGionOafdylSk23FHUyVgbxB1gDRkyBAeeOABPv30U0aPHo3FEh7RRnPUiBBCiJ7vcFZB4tkSoCdVj0WyHSd6lqgDpD/+8Y8kJyfz0Ucf8dFHH4XdpyiKBEhCCNEHdWUVJN4tAZ7Z+EyPypvqbDtO9CxRB0g7d+6MxTyEEEL0cG2rIGvK1rCzaSfegJdmrbnDVZCe0BLgSOVNRdPBurPtONFzHFajyLYm3PuX+gshhOi7Ch2F5KflH3LbrKdsbc0YOaNX5k31Zn3puJMuha6vvvoqo0ePJiEhgYSEBMaMGcNf/vKX7p6bEEKIHkhVVHKTcxmWPozc5Nx2qyDPbHyG1btXU9Nawxc1X1DhrqDCXcHG6o18UfMFNa01rNq1imc2PhPTebblTdW01qCghPKl9s+bKnIUtcubEgK6sIK0cOFCHnjgAebMmcPJJ58MwH/+8x9uvvlmamtru3RgrRBCiPjqzmTqntISQKrHxOGIOkB67rnneOGFF5gxY9+S5EUXXcSoUaOYN2+eBEhCCNHLlDaWhuUV2Uw2CtIKupxM3ZO2tnpa9Vhf2oLq66IOkCoqKjjppJPa3X7SSSdRUVHRLZMSQghxZBzslPnDSabuakuAWOmt1WOx6P4tItelPkhvvvkm9913X9jtb7zxBkOHDu22iQkhhIidaM5Xm502O6oP5p64tWUz23rkESgHE8vu3yBduiMRdYD08MMPc9VVV/Hvf/87lIP03//+lzVr1vDmm292+wSFEEJ0v2jOV7ug6AJyk3Ojun40LQG6yuv38szGZ2KyKhTPAKIntEgQXQiQLr/8cj777DOeeeYZ3nrrLQCKi4tZt24dxx9/fHfPTwghRIxEmkzt1txdun4kLQG6KtYrLPHSU1okdJXPr7P4g+0A3HbmEKzm3rsl2KU+SOPHj+e1117r7rkIIYQ4QqI5Xy3JktTl52lrCdCdjsQKS7zyf3pa9++jWUQBktPpJDU1NfTnQ2kbJ4QQoueK5ny1gUkDj9i8DrVtFk3e1OGssMRzdaqntEgQEQZI6enpVFRUkJWVhcPh6LBztmEYKIpCIBDo9kkKIYSIXme9jXpaMnVngUk0eVNdXWGJd/5PT2qR0BW6buBs1fAFdL5vaCE/MwlV7Z2nbUQUIL3//vtkZGQA8MEHH8R0QkIIIQ5fpL2NjkQydaTz7SwwgditsMSyqi8aPa1FQjS2VzfzzuZK1pbW4Q/ouLx+hmWlMO3YAQzJSon39KIWUYB0+umnh/5cUFBAXl5eu1UkwzDYs2dP985OCCFE1KLtbRTLZOrORBOY3HjsjVS6K2OywhLrqr5I9bRVvUhtr27m5f/uorbZi91iwmI3k55g5evyJsqbWpl1cn6vC5KifocLCgqoqalpd3t9fT0FBQXdMikhhBDR0wJauyqotpWWtmCjrrWO1btXoxt62GM7O18tVpZuXhrx2W21ntqYnq8W66q+SLWt6o3IGIHH76HR2xjq/t0TS/w9vgDvbK6kttlLQb8kLKbgAkqC1URhvyRqm728u7kSj693peBEXcXWlmt0IJfLhd1u75ZJCSGEiF5PWQWJVjSBSaxWWI5UVV+kelP378dXbGVtaR12i4n6Fh/lja0AfE49qqLg9QfYvbmFBrePhy4aFefZRi7iAGnu3LkAKIrCAw88QGJiYui+QCDAZ599xtixY7t9gkIIISLXU1ZBItWVwCQW56v1xKo+VVFJtQYrw3OSc3pkcATgC+j4AzoWe8d/5ywmFZfXjy+gd3h/TxVxgPTFF18AwRWkzZs3Y7VaQ/dZrVaOO+447rzzzu6foRBCiIj0tFWQSHQ1MInFCktvzf+JtxtPKcDl9ZOeYCXBauJz6gGYMDgDk6rQ7NFobNW48ZTelYYTcYDUVr02a9Ysfve730m/IyGE6AadleJHoyeugkSiq4FJLM5Xi8Xq1P503WBvYytun58kq5lcR0KPL4PvrDt2fmYSw7JS+Lq8icJ+Sag/pOGYVAVVgepmL6Nz08jP7BlBeaSizkFatGgRfr+/3e319fWYzWYJnIQQIkKRluK3iSSY2j/Y2NW8i+KMYhLMCbT6W6lsqeyxqyCxDkyinUss8n/ayuD/b3MF/oDOqNy0Xl0G30ZVFaYdO4Dypla2V7vw+gNYTCrNHo3qZi8ZSVbOGTWgxweCB4o6QLr66qu58MILufXWW8Nuf/PNN/nf//1f3n333W6bnBBC9FXRluJHE0wd2NuoqqUKm8kWl2AjGoWOQm467iYuHHLhEW83cKDuzv/pzWXwkTR/HJKVwqyT83lncyW7N7fg8vppbNUYnZvGOaN6ZwAYdYD02WefsXDhwna3n3HGGfz617/ulkkJIURf1ZXjMqINpiC2vY1iuU0Ui7Pb4snn19F1I6wMvr7FB+wrg99e7eLdzZXcdGoidqspzjMOF03zxyFZKfz01EQa3T58AZ0bTyno+5209+f1ejvcYtM0jdbW1m6ZlBBC9FXRHpdxx7g7unz2WCyCje3Vzaz8uoodNS48/gB2s4mi/sm9fpvoQBaThVvH3tr5wE4s/mA7zlbtiJTBe3wBHl+xtduCk66seqmqQmqCBYBj0hN7bXAEXQiQJk6cyB//+Eeee+65sNuXLFnC+PHju21iQgjRV0VzXEZPOt297QOz3u1jYJqdRGsCLT5/r9gmiqeulsFHE6R15zEfvX3Vq7tEHSA99thjTJ06lS+//JIpU6YAsGbNGtavX8+qVau6fYJCCNGXRFOKP2PkDF7d8mrcT3fv6ANzQ1lwJWvC4Iyj5gOzK247cwjfN7TEtAy+u/ObDmfVy2pWuePsYV16HT1N1AHSySefzNq1a3nyySd58803SUhIYMyYMbz44osMHTo0FnMUQohe5VDVZtGU4uel5vWI092P5DZRX2M1qzErg49mpWfOmclRbXf11eaP0Yg6QAIYO3Ysy5Yt6+65CCFErxdJtVk0pfhH6nT3zhKv5QOz62JVBh9N4Hrp8bnkZSR2csWgI7Hq1Rt0KUBq4/F48Pl8YbdJHyQhRF8USQ+itmqzBm8D2YnZoaCno2qzSEvxj0Rfo84Sr+UD89AiqeprK4Nve5+9/gDNHv9hl8FHGri6fe2Lqw4mlqtevUnUAVJLSwt33XUXb775JnV1de3uDwR612m9QgjRmc5WhToq3f+iJng807iscWHVZrPTZoeCmUhL8WPZ1yjSxOv9PzCHZiVzUlG/0DUMwzgqPjA7Ek3zxyFZKRSekdxtLRKiCVyTrOEf97qh4/Q50QIa5a7ydo0wj1Tzx866dMdT1AHSr371Kz744ANeeOEFrrvuOhYvXszevXv5wx/+wIIFC2IxRyGEiJtIVoVW7FoRcen+BUUXhJXeR1qK3919jaJJvG7LX2n7wPyu2sXANDsJVhOtvgAVTZ6DfmD2xqM1ItXVMvhIt7o6E81KT64jIfS40sZSVu1axfqK9aGDi4scRe2C7b7Y/DEaUQdIb7/9Nq+++ipnnHEGs2bN4tRTT2XIkCEMHjyYZcuWMX369FjMUwghjqhoVoUMw4i4dN+tubs8p+7sa9SV/JUDt4mqnB5sZtNBPzB7Us+k7gzUYpkcHe2co13p2b/pqN1sx6yaSbOlHbTpaF9r/hiNqAOk+vp6CguDb15qair19cHlvFNOOYVbbrmlS5NYvHgxTz75JJWVlRx33HE899xzTJw4scOxS5cu5dVXX+Xrr78GYPz48fz2t78NG28YBg899BBLly6lsbGRk08+mRdeeCGsyq6+vp7bb7+dt99+G1VVufzyy/nd735HcnJyl16DEKJviaah48IzgqcLRFJtlmTpOVtQXclfiXSbqKs9k6IJZCId292BWqySow+cczRbd52t9ETTwX3/bWAAu9V0VFYmRh0gFRYWsnPnTgYNGsSIESN48803mThxIm+//TYOhyPqCbzxxhvMnTuXJUuWMGnSJBYtWsS0adPYtm0bWVlZ7cZ/+OGHXHPNNZx00knY7XYef/xxzjnnHL755htyc4O/WT3xxBM8++yz/PnPf6agoIAHHniAadOmsWXLFux2OwDTp0+noqKC1atXo2kas2bN4qabbmL58uVRvwYhRN8U6aqQV/cyxDEkomqzgUkDj+RLOKjDyV/pbJvI4wt0qWdSNIFMpGP33waravZiMSmMGph22IFaLJKjO5pzpFt3Q7JSuP3MZC47PrfDOR8Y8Ne1NrC1phLDUGn1biLRBpre8Tbw0SrqAGnWrFl8+eWXnH766dxzzz1ceOGFPP/882ia1uEZbZ1ZuHAhs2fPZtasWUCwI/c777zDSy+9xD33tO8Ke2B7gT/96U/87W9/Y82aNcyYMQPDMFi0aBH3338/F198MQCvvvoqAwYM4K233uLqq6+mpKSEFStWsH79eiZMmADAc889x/nnn89TTz1FTk5O1K9DCNG3RNPQMcmSdESqzaJ1qA/5A/NXDpV4vX/+SiQeX7E16p5J0aw4RRr0HBioRdoNujur+g4MLjvT1TlD54FrW8Cv+azUOa20urLBUPjen0CiXSc9GfyK67C2gaMVyUG48RJ1gHTHHXeE/jx16lS2bt3Khg0bGDJkCGPGjInqWj6fjw0bNnDvvfeGblNVlalTp7J27dqIrtHS0oKmaWRkZACwc+dOKisrmTp1amhMWloakyZNYu3atVx99dWsXbsWh8MRCo7aXouqqnz22Wdceuml7Z7H6/Xi9XpD3zudzqheqxCiZ+msbD+aho5tq0KxrDaLViQrLF1NvO5MND2Tou3SDUQcQBxOoNZZ8NWV5OhIdGXOkWgL+CubmyirUbBgwWquRlUMBib3o8UXwNPiZVD/zCO2Ddydx6PEQlQBkqZpnHvuuSxZsiSUzzN48GAGDx7cpSevra0lEAgwYMCAsNsHDBjA1q1bI7rG3XffTU5OTiggqqysDF3jwGu23VdZWdlu+85sNpORkREac6D58+fz8MMPRzQnIUTPFkkzR+haD6Joq81ilXMT6WpMtInXkbjxlIKIeyZF26UbiHjs4QZqnSVetwWXpbVuRuWkkmA10eLzH7HgMhqGYaK/PYcWdyZO/7cMtA+i1mMAwdVEm9nE3pZyWt3DGZCQHdW1u6K7j0eJhagCJIvFwldffRWruURtwYIFvP7663z44Yeh3KJYuffee5k7d27oe6fTSV7e4XWuFUIcedE0c4SurQpFWm3W3Tk3XSndh+7vzxNtz6Rog4JIx8YqUOtqVV8koplzNNpeX9meIvwJe9jt34k3EADDzPdNDQSURhQ9id17Cqlo8nZbK4IDHakKwO4Q9Rbbtddey4svvtgtPY/69euHyWSiqqoq7Paqqiqysw8dwT711FMsWLCA9957L2xrr+1xVVVVDBy4LxmyqqqKsWPHhsZUV1eHXc/v91NfX3/Q57XZbNhstohfmxCi5/H6vaEqnsK0QpQftkUSzAlhVTzXJ1+Pzbzv33t39yCCruXcdDb2cKqrurM/TzRbd13p0h3p2Gi7Qceyqi9Ssexg7QvoKFoWmbYpNLMRl7oVlAABxUKCMYgkfSwt/swuJZZH6khUAHaXqAMkv9/PSy+9xHvvvcf48eNJSgr/nxRNorbVamX8+PGsWbOGSy65BABd11mzZg1z5sw56OOeeOIJfvOb37By5cqwPCKAgoICsrOzWbNmTSggcjqdfPbZZ6E2BJMnT6axsZENGzYwfvx4AN5//310XWfSpEkRz18I0bs8s/GZDsv224KdtrL9Bm8D90wMLxLprh5Eh5tz09nYWFZXRSPS1ZWuHGsR6dhotsFiWdUXjVh1sA5/ff2xmofxr9JVgI8zc07EYcnG5Q10KbE8Wj3l72hnon4Xvv76a8aNGwfAt99+G3Zf229j0Zg7dy4zZ85kwoQJTJw4kUWLFuF2u0NVbTNmzCA3N5f58+cD8Pjjj/Pggw+yfPly8vPzQzlDycnJJCcnoygKv/jFL3jssccYOnRoqMw/JycnFIQVFxdz7rnnMnv2bJYsWYKmacyZM4err75aKtiE6MMiLdvXAlrM5hDLnJt7zy+OWXVVV0S6uhJtPk80Y2MRqEWbeN2V9627z2078PXlZ9oxG2kApFkGYFJVqptbYv76YlkB2N0ifvbS0lIKCgr44IMPunUCV111FTU1NTz44INUVlYyduxYVqxYEUqyLisrQ1X3LWO/8MIL+Hw+fvzjH4dd56GHHmLevHkA3HXXXbjdbm666SYaGxs55ZRTWLFiRVie0rJly5gzZw5TpkwJNYp89tlnu/W1CSGOrM4q02aMnBFR2f6MkTNiOs9Y5dzEsnS/qyJdXYkmnyfa3J9YBWqx1N1bd3DA6lRNC/6AiknVafb4qXW1HpHX15MC0c4ohmEYkQw0mUxUVFSEqr+uuuoqnn322XbVYkcLp9NJWloaTU1NpKamxns6Qhz1IqlM0w2dFze/SEl9CUVpRWGr3oZhsKNpB8UZxdw4+sbDyi86VLWZzx/s9/K7Nd/t+w16d8e/Qf98SrBaONKxhf2DJwEcmLN0YP5PT6gQOphYVPVFa/+EeK8/gM1sYkhWcp85f2x7dTNvf7mX5ZvWYegqJw0qZkT2kT1fLbydggeLSWXkwNTQNmIs/45G+vkdcYCkqmpYeXxKSgpffvll6NiRo40ESEL0HAerTGsrxd+/Mi2asfvrzmMtdN3ghQ93hFZ5DgzUvqt2MTo3jZtPLwKIeOz+8+nrH/Kx1pcP2QVobvVwwz9+RyCgsuDs2QzJSjviry/sOBVdZ1ROGsMHpMT872ikn9/x3eATQojDEM2Bsm2VaV0p24/2WIvOqs2ibdDYlWaOsdiiOZp0Z+J1T2S3mjhzZPDvbkH/+HSv7ukH4UYcICmK0i4JuytJ2UII0V2iOVB2/8q0aMr2Iwl6BmUkRd1/KJY5N236+oe86P1UVSE1wQLAMemJPSY4gigCJMMwuP7660O9gDweDzfffHO7Mv+///3v3TtDIYQ4hK5WpnVWth9NOb4/EEx0jba3SzSrPLIiJMSRFXGANHPmzLDvr7322m6fjBBCROPAA2WTLcntxnS1Mi2acvzJhZld7u0SzSqPrAgJceREHCC9/PLLsZyHEEJE7cADZVOtqe2SmNsOlM1LDT8aKJIk3EiDnsvGHUOSzdQrersIISIj/1KFEL3a/gfK7mja0WFl2oEHykaSdH1gQ7vkDoKktqDHkWgh15HQo/oPCdEbWM0qd5w9LN7T6FDXG30IIUQP0VaZVpxRTKO3kV3OXTR6GynOKG5Xtt+WdP11eROORAuF/ZJxJFr4uryJl/+7i+3VzUB4Q7uqZg+qEmxk1/bV1tBu+ICU0OrTtGMHkJFk5btqF80eDb+u0+zR+K7adUSbDAohDp+sIAkherTOumO3KXQUMihlMJsqdlLX2kxmQgpjBxZgNplCYzy+QCjpesh+PYUSreZ255rZraaoy/Fjcbq7ECI+JEASQvRYkXTHbhO+baZjN7v4rP/OsG2zx1ds7TDpOseR0O5cs4cuGgXE7lgLIUTPJgGSEKJHOljH65L6EirdlWFbZ5E2aIz2DLQ20QY9Um0mRO8nAZIQokc5sDt2YVphaCsswZwQ1h17ZtKNYCgRb5vdeEpBRJVmN55S0G5eEvQIcXSRAEkI0aMcqjt2W/5RW3fsqvJRGFp6xNtmD1wwMqJKs/zMpA7nJoQ4ekgVmxCix4m4O7bRum/bzNTxdpfFpOLXdXwBXSrNhBARkxUkIcQR1VlV2oHdsRPNiWys3ggED6BVFTXUHfvGMSPQtfSIehW1bZtJpZkQIhISIAkhjphIqtIO7I5dlFbEpIGTQtfYvzv2oLRcMJTQtllqQnK7TtodbZtJpZkQojMSIAkhDlskvYqiqUqLqju2QlS9itpI0rUQ4lAkQBJCHJZIVoW8fm9EVWnXJ1+PzWwD9nXHbrt2VUsVNpON4ozidn2QZNtMCNHdFMMwjHhPojdyOp2kpaXR1NREampqvKcjRFwcbFWobZWnbVVowboFoao0s2rusCrN4/dwwsATuGfiPWHP4Q8EDtkde3+RHEArhDi6Rfr5LStIQoioRdOr6Prk6yOvSgtoYbdH0h17f7JtJoToLhIgCSGiFk2vogZvAzNGzghVpSWZk2n2+tH8OhazSorNjFsLVqXNGDkj9ByRdscWQohYkABJCNEl0awKtVWlrS/fjLelP40twf5DZlXFkWjBlljDCTmjyUvNw+fX0XUj1B27oF8SG8oagGDH6/27Y885M1m20IQQMSEBkhAiagf2KupsVUhVVIYkn8g/67/BpZWSYetPkikBT6CV3c17SPakMWTYiaiKyuIPvsXZqnXYHftz6sO6Y196fK5sqQkhYkICJCFE1PbvVRTJqpDHF+CrnXbStbNIT/oaZ2AvzkAjJsXCoKShGO5j2bzTzuRjAgARHyrr9vmP5MsWQhxFJEASQnRJNKtCj6/45ocVoUzMradR3VyOoXgZkJKGh0x8foN3N1fQ4PZx7/nFfN/QElF37CSr/AgTQsSGnMUmhIiaz6+HrQrlJQ0loLhxBioIKG4GJQ0lXTuLzTvteHyBsPPSFFTUQCYmfw5Wox8Kath5aVazSn5mEsOyUqhq9qAqYFKV0JeqQHWzl+EDUsh1JMT7rRBC9FHy65cQImqLP9i+X55Q56tCN55SENV5aW2HykbbHVsIIbqLrCAJIbokmlWhSFeEDjwvbdbJ+Rybk0Zji8auWjeNLRqjc9OkxF8IEXOygiSEiNptZw6JOE/oxlMKurwiJIfKCiHiRQIkIUTU9s8T+rq8idSE5FAnbQDDMKhu9jI6Ny20KtTV89KkO7YQIh4kQBJCdElXVoVkRUgI0VtIgCSE6JBu6FS4K3BrbpIsSaEjRPbXlVUhWRESQvQGEiAJIdopbSxlTdkadjbtxBvwYjPZKEgrYMqgKRQ6CsPGyqqQEKIvkgBJCBGmtLGUZSXLaPA2kJ2YTYI5gVZ/KyX1JVS6K5lePL1dkCSrQkKIvkbK/IUQQPDwWa/fy6pdq6hrrSM/JZ8Ec7ARY4I5gfyUfOpa61i9ezW6ocd5tkIIEVuygiSEAGDp5qU4fU7WV6zHbrbT4G2gwl0BEMo/8gV87Nm1hwuKLiA3OTfOMxZCiNiRAEmIo0hniddaQMNv+DGrZjDAr1nQDRWvRcVuBbNqxm/4cWvuOL4KIYSIPQmQhDhKdJZ4PXv0bMpd5bg1N0YgkcoGSA4Mwq/rtDSr2BItZKfDwKQWkixJnT+hEEL0YpKDJMRRoC3xektdCSYjmRTTQExGMlvqSlhWsozSxlIsJgt5qXk4LMfwRfluqpu9JFhMZCTaSLCYqG728kX5btIteQxMGhjvlySEEDEV9wBp8eLF5OfnY7fbmTRpEuvWrTvo2G+++YbLL7+c/Px8FEVh0aJF7ca03Xfg12233RYac8YZZ7S7/+abb47FyxMirvZPvC5rrKKuPo0vy1pZt7OBL8taqatPo6yxitW7V+PR/Pg0A0/TKHR/IqqtGkPxoBsBDMWDaqtG9yfiaRoJhpTwCyH6trhusb3xxhvMnTuXJUuWMGnSJBYtWsS0adPYtm0bWVlZ7ca3tLRQWFjIFVdcwR133NHhNdevX08gEAh9//XXX3P22WdzxRVXhI2bPXs2jzzySOj7xEQpURZ9T1vi9X/KPqfBmUrAX4WfZhRFJ9GcQk2LCbWplQr3aqrKR2Fo6XxaasJqPZ0W3ybK/XtB8ZNosWE3BmLzjWHtVhN7J7ZKWb8Qok+La4C0cOFCZs+ezaxZswBYsmQJ77zzDi+99BL33HNPu/EnnHACJ5xwAkCH9wP0798/7PsFCxZQVFTE6aefHnZ7YmIi2dnZ3fEyhOixArqBR/PR6Aa/30qiNYDLHyzRV1WDBFsAt9dKoxt8CS0YgTT8AZ10NYfEQDYeVzmG4qVfSho2MjFUhQbdh9vnj/MrE0KI2IpbgOTz+diwYQP33ntv6DZVVZk6dSpr167ttud47bXXmDt3bthBmgDLli3jtddeIzs7mwsvvJAHHnjgkKtIXq8Xr9cb+t7pdHbLHIWIJW/tGTS7yvF5d2HBiuFPRPckA2BgwQDMtODzpvKjYwsYkDgQl9dPeoKVZLsZCP+Fo9mj0diqkWSV+g5xZAUCATRNi/c0RC9gsVgwmUyHfZ24/ZSrra0lEAgwYMCAsNsHDBjA1q1bu+U53nrrLRobG7n++uvDbv/JT37C4MGDycnJ4auvvuLuu+9m27Zt/P3vfz/otebPn8/DDz/cLfMSort0VrZvUizYyEL1D8CwlWMYiUDbLwsKKAaGqQnVm0uatT/5mUkMy0rh6/ImUhOSw36xMAyD6mYvo3PTyHUkHNkXKo5ahmFQWVlJY2NjvKciehGHw0F2dna7xZFo9OlfA1988UXOO+88cnJywm6/6aabQn8ePXo0AwcOZMqUKezYsYOioqIOr3Xvvfcyd+7c0PdOp5O8vLzYTFyICJQ2lvLe7jV8U/MdLX4PiWY7o/oPZergfeel3XbmEL5vaKF69clUK2vQlToGpGZiVmz4DS8teh2qkUFWwkmk2KyoqsK0YwdQ3tTKd9UuBqbZSbCaaPUFqGjykJFk5ZxRA+ScNXHEtAVHWVlZJCYmHtYHnuj7DMOgpaWF6upqAAYO7HrFbdwCpH79+mEymaiqqgq7vaqqqltyg3bv3s177713yFWhNpMmTQJg+/btBw2QbDYbNpvtsOclRHcobSzl9xtf5tvaKgLeNAw9GUXV2Fm/nm/ryrh13CwKHYVYzSr5mUkcnz2CdXsNSNxMU6CcVr0ek2Il01oI7mMZd8yI0KrQkKwUZp2cz8qvq9hR46LK6cFmNjE6N41zRg1gSFZKnF+9OFoEAoFQcJSZmRnv6YheIiEh+LOsurqarKysLm+3xS1AslqtjB8/njVr1nDJJZcAoOs6a9asYc6cOYd9/ZdffpmsrCx+9KMfdTp206ZNwOFFmkIcKV6/l//55l98WV6OKTCAVLsFi0lFC1hwtlr4sryc123v8MtJN2Ez28JWhepc2WSnuDCZfQT8Vpqak8lMtrdbFRqSlULhGcnsbWzF7fOTZDWT60iQlSNxRLXlHEmVsYhW298ZTdN6X4AEMHfuXGbOnMmECROYOHEiixYtwu12h6raZsyYQW5uLvPnzweCSddbtmwJ/Xnv3r1s2rSJ5ORkhgwZErquruu8/PLLzJw5E7M5/CXu2LGD5cuXc/7555OZmclXX33FHXfcwWmnncaYMWOO0CsXouueWr+QFdu/xOtNIslax85mFwDJlmQUFFwt8H/b/4uhuvj15GARRPiqkAWXO4DNbGLMMckHXRVSVUVK+UWPINtqIlrd8XcmrgHSVVddRU1NDQ8++CCVlZWMHTuWFStWhBK3y8rKUNV9Cafl5eUcf/zxoe+feuopnnrqKU4//XQ+/PDD0O3vvfceZWVl3HDDDe2e02q18t5774WCsby8PC6//HLuv//+2L1QIbrRp6VNOD0aJgOavX5aA8GSeyPgR0EhYIDXo/FpaRNM3vc4WRUSRzOfX2fxB9uBYG6e1Rz3Psmih4t7kvacOXMOuqW2f9ADwS7ZhmF0es1zzjnnoOPy8vL46KOPop6nED1Fge0sKlzVJJiTMJGIoTkASLZaAPDTgidgUGA7q91jZVVICCEiIyG0ED2Mbujsde3l24Zv2evai27oYff/7LQTyU0aTFJiC7lpCRRnp1GcncYxjkRy0xJISnSTm5TPz047MU6vQIieR9cNnK0atS4v3ze0oOud/7J9uCorK7n99tspLCzEZrORl5fHhRdeyJo1a2L+3G3+/ve/M2HCBBwOB0lJSYwdO5a//OUvnT7upz/9KUVFRSQkJNC/f38uvvjidi14ysrK+NGPfkRiYiJZWVn86le/wu8/dBNZRVF466232t1+/fXXh/KRe4q4ryAJIfYpbSxlTdkadjbtxBvwYjPZKEgrYMqgfaX7hf1SOKH/aXxU9Xea1O9JMvULle27A7Xo/iQmZp9KYT+pNhMCYHt1M+9srmRtaR3+gI7L62dYVgrTjo1dVeauXbs4+eSTcTgcPPnkk4wePRpN01i5ciW33XZbt/X760xGRga//vWvGTFiBFarlX/961/MmjWLrKwspk2bdtDHjR8/nunTpzNo0CDq6+uZN28e55xzDjt37sRkMhEIBPjRj35EdnY2n3zyCRUVFcyYMQOLxcJvf/vbI/LaYk1WkIToIUobS1lWsoyS+hIcNgf5qfk4bA5K6ktYVrKM0sZSILhNdvXxEyhO/BH4cnH5m2jyl+PyN4HvGIoTz+eqsRMkt0gIgsHRy//dxZa9TdgtJtKTrKQnWPm6vImX/7uL7dXNMXneW2+9FUVRWLduHZdffjnDhg1j1KhRzJ07l08//TQ0rqysjIsvvpjk5GRSU1O58sorQ+1vvv32WxRFaRdMPfPMMwdtSXOgM844g0svvZTi4mKKior4+c9/zpgxY/jPf/5zyMfddNNNnHbaaeTn5zNu3Dgee+wx9uzZw65duwBYtWoVW7Zs4bXXXmPs2LGcd955PProoyxevBifzxfFO9Xerl27Ojx0/owzzjis60ZLAiQh4kwLaHj9XlbtWkVdax2Dk/PR/BbqXD40v4XByfnUtdaxevdqvP7gcTdDslL42Wknc27uTxjEpfTzn88gLuW8Y67hZ6edLL2KxFHN59fx+XU8vgDvbK6kttlLQb8kLKbgLw0JVhOF/ZKobfby7uZKPL4APr/eyVUjV19fz4oVK7jttttISkpqd7/D4QCCFdcXX3wx9fX1fPTRR6xevZrS0lKuuuoqAIYNG8aECRNYtmxZ2OOXLVvGT37yk6jnZRgGa9asYdu2bZx22mkRP87tdvPyyy9TUFAQapC8du1aRo8eHXYaxrRp03A6nXzzzTdRz21/eXl5VFRUhL6++OILMjMzo5pzd5AtNiHibOnmpTh9TtZXrMcIJPL1963UtfgwdIVEq51Em05qkos9zato8DZwz8TgQc1DslK49cxk9jYeI1VpQuynrVrN2aqxtrQOu8VEfYuP8sZWAD6nHlVR8PoD7N7cQoPbR2qChTvOHtYtz799+3YMw2DEiBGHHLdmzRo2b97Mzp07Q4HHq6++yqhRo1i/fj0nnHAC06dP5/nnn+fRRx8FgqtKGzZs4LXXXot4Pk1NTeTm5uL1ejGZTPz+97/n7LPP7vRxv//977nrrrtwu90MHz6c1atXY7VagWB+VUdHhbXddyjXXHNNu95EXq831LfQZDKFGkZ7PB4uueQSJk+ezLx58yJ6vd1FVpCE6AG0gEaLT6e6MRGXx4RJ9WOxeLGYdNytJqobk2jx6WiB8MM626rSRmSnkpeRKMGREPvxBXT8AT20cnQgi0nFr+v4At23egREVG0NUFJSQl5eXtixVSNHjsThcFBSUgLA1Vdfza5du0LbcsuWLWPcuHGdBl/7S0lJYdOmTaxfv57f/OY3zJ07N1Ql/tvf/pbk5OTQV1lZWehx06dP54svvuCjjz5i2LBhXHnllXg8noif92CeeeYZNm3aFPZ10UUXdTj2hhtuoLm5meXLl4e1/TkSZAVJiDibWXwje5v3smFPJX6Tjf4pqSjKvt/MDMOgusWJzcjhqqHT4zhTIXqH284MNg7+vqEFl9dPeoKVBKuJz6kHYMLgDEyqQrNHo7FV48ZTCjgmvfvaXwwdOrTD3KGuyM7O5qyzzmL58uWceOKJLF++nFtuuSWqa6iqGmqmPHbsWEpKSpg/fz5nnHEGN998M1deeWVo7P5nl6alpZGWlsbQoUM58cQTSU9P5x//+AfXXHMN2dnZrFu3Lux52nKnOjsuLDs7O6y5MwSDuAMPJH7sscdYuXIl69atIyXlyKcNyAqSEHH2x3/vZvl/3dTUO2jW6tjb5GFrZTNbK5vZ2+ih3OnBpdVSU+dg+X/d8Z6uED2e1ayGziEclpVCVbMHVQFVUVAVBZOqoCpQ3exl+IAU8jOTurVxZEZGBtOmTWPx4sW43e3/zbYFAsXFxezZs4c9e/aE7tuyZQuNjY2MHDkydNv06dN54403WLt2LaWlpVx99dWHNT9d1/F6vaG5DhkyJPR14OkTbQzDwDCM0OMmT57M5s2bQ4fCAqxevZrU1NSwuXfV3/72Nx555BHefPPNiBPSu5sESEL0AJoOFs9oLCSjKRUYSisGOgFa8VGBhRQsvtFo3bsTIESf1nYOYUaSle3VLrz+ALph0OzR+K7aRUaStd05hN1l8eLFBAIBJk6cyN/+9je+++47SkpKePbZZ5k8OdjifurUqYwePZrp06ezceNG1q1bx4wZMzj99NOZMGFC6FqXXXYZzc3N3HLLLZx55pmhVZ69e/cyYsSIdis5+5s/f34o+bukpISnn36av/zlL1x77bUHfUxpaSnz589nw4YNlJWV8cknn3DFFVeQkJDA+eefDwQbMo8cOZLrrruOL7/8kpUrV3L//fdz2223HfbB7l9//TUzZszg7rvvZtSoUVRWVlJZWUl9ff1hXTdassUmRJzdduaQ0FaAyZpBrfE5Tf69BAwXJsVCmnkEmco49OQsbjylIN7TFaJXaTuH8J3NlezeHPx31tiqMTo37aDnEHaHwsJCNm7cyG9+8xt++ctfUlFRQf/+/Rk/fjwvvPACEGya+M9//pPbb7+d0047DVVVOffcc3nuuefCrpWSksKFF17Im2++yUsvvRS6XdM0tm3bRktLy0Hn4Xa7ufXWW/n+++9JSEhgxIgRvPbaa6FKuY7Y7XY+/vhjFi1aRENDAwMGDOC0007jk08+ISsrCwgmUv/rX//illtuYfLkySQlJTFz5kweeeSRw3nbAPj8889paWnhscce47HHHgvdfuCxYrGmGJFmk4kwTqeTtLQ0mpqaSE1Njfd0RC+n6wYvfLiDr8ubGNI/Ebdeh2a0YlESSFIz2V7TwujcNG4+vUgSscVRw+PxsHPnTgoKCrDb7Yd3LV+Ax1dsxRfQufGUAvIzk+TfUh92qL87kX5+ywqSEEeAbuhUuCtwa26SLEkMTBqIquzb4W7bCihvamV7TQsD09JJtfaj1Rdge1NLTLcChDgaqKpCakLwvMJj0qXiU3ROAiQhYqy0sZT3dq/hm5rvaPF7SDTbGdV/KFMH7zs+BPZtBaz8uoodNS6qnB5sZlPMtwKEOBpYzWq39TkSRwcJkISIodLGUn6/8WW+ra0i4E3D0JNRVI2d9ev5tq6MW8fNahckFZ6RzN7GVmn+KIQQcSRVbELEQNvxIf/zzb/4srwcX2s/kqyJpCfZSLIm4mvtx5fl5bz+zTvoRnhpmjR/FEKI+JMVJCFiYMmXf8TpdbJi+5d4vUkkWevY2ewCINmSjIKCqwX+b/t/uW70peSlHhPnGQshhNifBEhCxMC6nfU0etw4PRomA5q9floDfgCMgB8FhYABXo/Gzvp6CZCEEKKHkQBJiBg4LuUyyoy9VLiqSTAnYSIRQ3MAkGwNVtL4acETMMA4vKZqQgghup8ESEJ00aFK9392VjFl9XnsXrUWr7qHTEsmimPfWU+GYVCr1ZCp5zM4NTdeL0EIIcRBSIAkRBd0VrpvNasU9kvhhP6n8VHV32lSvyfJ1A+zYsNveHEHatH9SUzMPpW89KR4vxwh+j6/Dz5+OvjnU38JZmt85yN6PAmQhIhSpKX7qqpw9fETqP63l9KWT3FZqlEUP4ZhRtGOoThxEleNnSBVakII0QNJmb8QEepK6f6QrBR+dtrJnJv7EwZxKf385zOISznvmGv42WknS/NHIY4UQwdPI7iqobEM9Nif/FxZWcntt99OYWEhNpuNvLw8LrzwQtasWRPz597fX//6V0aMGIHdbmf06NG8++67hxxfUVHBT37yE4YNG4aqqvziF7+I6Hn+/e9/c+GFF5KTk4OiKLz11ludPuaVV17B4XB0eF+k14gVWUESIkJdLd0fkpXCrWcms7fxGGn+KEQ81GyDb96CnR+D7gefC/oPh+ILg/+NgV27dnHyySfjcDh48sknGT16NJqmsXLlSm677Ta2bt0ak+c90CeffMI111zD/PnzueCCC1i+fDmXXHIJGzdu5Nhjj+3wMV6vl/79+3P//ffzzDPPRPxcbreb4447jhtuuIHLLrusu15C3MgKkhARWreznk9Lm3B6NPx6sHS/xRf8avYEv/w6OH8o3d+fNH8UIk5qtsGnS6ByM1gSIDEDEjKg4qvg7TXbYvK0t956K4qisG7dOi6//HKGDRvGqFGjmDt3Lp9++mloXFlZGRdffDHJycmkpqZy5ZVXUlVVBcC3336LoijtgqlnnnmGoqKiiObxu9/9jnPPPZdf/epXFBcX8+ijjzJu3Dief/75gz4mPz+f3/3ud8yYMYO0tLSIX/N5553HY489xqWXXhrxYyI1b948FEVp9/XKK690+3O1kQBJiAgdl3IZBbazsJBGkjmJZFN/7Pox2PVjSDb1J8nUj0RzEhbSpHRfiHjy+4Jfmie4cuSugcwhYLICClgTIXNo8PYt/wyO8/u67enr6+tZsWIFt912G0lJ7Ysw2raUdF3n4osvpr6+no8++ojVq1dTWlrKVVddBcCwYcOYMGECy5YtC3v8smXL+MlPfhLRXNauXcvUqVPDbps2bRpr167twiuLnzvvvJOKiorQ11NPPUViYiITJkyI2XPKFpsQEZLSfSF6ibZqNU9jcFvNkgAtddC0J3h7GaAo4PdCfWnwPrsDzry3W55++/btGIbBiBEjDjluzZo1bN68mZ07d5KXlwfAq6++yqhRo1i/fj0nnHAC06dP5/nnn+fRRx8FgqtKGzZs4LXXXotoLpWVlQwYMCDstgEDBlBZWdmFVxYbTU1NJCcnH3JMcnJyaMynn37K/fffz5///OeDbhN2B1lBEuIHuqGz17WXbxu+Za9rb7sz0vYv3Q/4E2gKfI9mtGKgoxmtNAW+D5buZ0npvhA9gt8XzDkyWTq+32QJ3t+Nq0cQ/GUpEiUlJeTl5YWCI4CRI0ficDgoKSkB4Oqrr2bXrl2hbblly5Yxbty4ToOvWPr4449DAUtycnK7Fa5opaSksGnTpnZfHSkrK+OSSy7hzjvv5Morrzys5+2MrCAJQbB0f03ZGnY27cQb8GIz2ShIK2DKoGBfozZSui9EL3DqL4P/bSwLJmQnZAS31cp+uH/QiaCYwOuE1gaYfBs4BnXb0w8dOrTD3KGuyM7O5qyzzmL58uWceOKJLF++nFtuuSWqx7flNLWpqqoiOzu7y3OaMGFCWABz4ApVtFRVZciQIZ2Oc7vdXHTRRUyePJlHHnnksJ4zonnF/BmE6OFKG0tZVrKMkvoSHDYH+an5OGwOSupLWFayjNLG0rDxUrovRA9ntga/MgqDVWrNFYAa3FZTlGBwpKjQXAlZI4LjurFxZEZGBtOmTWPx4sW43e529zc2NgJQXFzMnj172LNnT+i+LVu20NjYyMiRI0O3TZ8+nTfeeIO1a9dSWlrK1VdfHfFcJk+e3K6twOrVq5k8eXKUr2qfhIQEhgwZEvpKSYn9zzzDMLj22mvRdZ2//OUvKErsfwmVAEkc1bx+L6t2raKutY7Byflofgt1Lh+a38Lg5HzqWutYvXs1Xr837HHB0v2h3DftZO6Zehb3TTuZW84YKsGRED2JqgZL+RMzoXZbMOfI0IMrRzVbISkTRlwQHNfNFi9eTCAQYOLEifztb3/ju+++o6SkhGeffTYUnEydOpXRo0czffp0Nm7cyLp165gxYwann356WPLxZZddRnNzM7fccgtnnnkmOTk5AOzdu5cRI0awbt26g87j5z//OStWrODpp59m69atzJs3j88//5w5c+aExtx7773MmDEj7HFt21wul4uamho2bdrEli1bDvmaXS5X2PbYzp072bRpE2VlZYd8XCTmzZvHe++9xx/+8AdcLheVlZVUVlbS2tp62Nc+GNliE0e1ZzY+w/qK9RiBRL7+vpW6Fh+GrpBotZNo00lNcrGneRUN3gbumXhP2GPbSveFED1Y/+Fw4s3Barb6UvA2B7fVco4LBkcx6oNUWFjIxo0b+c1vfsMvf/lLKioq6N+/P+PHj+eFF14Ago0Q//nPf3L77bdz2mmnoaoq5557Ls8991zYtVJSUrjwwgt58803eemll0K3a5rGtm3baGlpOeg8TjrpJJYvX87999/Pfffdx9ChQ3nrrbfCkpsrKiraBTHHH3986M8bNmxg+fLlDB48mF27dh30uT7//HPOPPPM0Pdz584FYObMmYddjv/RRx/hcrk46aSTwm5/+eWXuf766w/r2gejGJFmk4kwTqeTtLQ0mpqaSE1Njfd0RBc9uvZRPvl+I83NWfj9Jvw0oyg6ieYUfJoJk9lPSko1Jx0zjgcmPxDv6QpxVPF4POzcuZOCggLsdvvhXUzzwHsPBROyJ98W3FaLwcqR6BkO9Xcn0s9vWUESR7Wrhk5nw55K/CYb/VNSUZR9yYaGYVDd4sRm5HDV0OlxnKUQ4rAparCUH4IJ2RIciU5IgCT6NN3QqXBX4NbcJFmSGJg0EFXZ94Nx+X/d1NQ7CJi/x9dkxeXxA5Bit4Bi4DFqaW3JY/l/3cy7OF6vQghx2MzWbutzJI4OEiCJPiuS0n1NB4tnNGpyI5pSgaEkg2EjQCsBGrCQgsk3Gi3251oKIYToQSRAEr1OZ6tCsK90v8HbQHZiNgnmBFr9rZTUl1DprmR68XQKHYXceEoBLq8fkzWDWuNzmvx7CRguTIqFNPMIMpVx6MlZ3HhKQZxerRBCiHiQAEn0Kp2tCmkBDd3QQ6X7BamFuHwBWjw+LOZg6f5OZymrd6/m+uTryc9MYlhWCl+X6xzX/1Lceh2a0YpFSSBJzWR7TQujc1PIz5TO2EIIcTSRAEn0GpGsCq3YtQKnz7mvdH+vh1avim4oqIpBQgel+9OOHUB5Uyvba1oYmJZOqrUfrb4A25tayEiycs6oAdIZWwghjjISIIke78BVocK0wlAX1QRzAvkp+ZQ2BVeFDMNAC2i0+HSamxPx+9V9pfumFNytJjxaEikpbrSABgSbPs46OZ+VX1exo8ZFldODzWxidG4a54waIM0fhRDiKCQBkujxlm5eGloVspvtNHga2NNUi26oZCf1w24FTfexZ9ceFpzyFIZhRF26PyQrhcIzktnb2Irb5yfJaibXkSArR0IIcZSKeyOIxYsXk5+fj91uZ9KkSYdsmf7NN99w+eWXk5+fj6IoLFq0qN2YefPmoShK2NeBpx57PB5uu+02MjMzSU5O5vLLL293mJ/oWbSAht/wo/ms7K2109CURWNjf8pqEvi+1obPZ8Vv+Hn1s+2h0v1mrY69TR62VjaztbKZvY0eyp0eXFotNXUOlv83/Iykts7YI7JTyctIlOBIiD5EC2j8ftPv+f2m34dWj4U4lLgGSG+88QZz587loYceYuPGjRx33HFMmzaN6urqDse3tLRQWFjIggULDnkS8ahRo6ioqAh9/ec//wm7/4477uDtt9/mr3/9Kx999BHl5eVcdtll3fraRPeZPXo2M0bO4JjEobS29MNi9GNo+iBGZQ3mmJT+WPRMPC2ZHJM4FIuSECrdt5D8Q+l+KwY6AVrxUYGFFCxSui+EEOIQ4hogLVy4kNmzZzNr1ixGjhzJkiVLSExMDDtrZn8nnHACTz75JFdffTU2m+2g1zWbzWRnZ4e++vXrF7qvqamJF198kYULF3LWWWcxfvx4Xn75ZT755BM+/fTTbn+NonO6obPXtZdvG75lr2svuhEeuRiGif72HFrcmTj9taQnWrGaTCgoWE0m0hOtOP11tLr7cedZk7jxlAKOyx7OCRkXM8QxnLx+kNPPRUaKxhDHCCZkXMRxA4ZL6b4QRxHd0HH6nNS11lHuKm/3c6a7XX/99aFdDIvFQkFBAXfddRcejydsXNuYAz9/vF4vmZmZKIrChx9+GLr9o48+4qyzziIjI4PExESGDh3KzJkz8fl8B53LT3/6U4qKikhISKB///5cfPHFbN269ZDz37ZtG2eeeSYDBgzAbrdTWFjI/fffj6aFr7799a9/ZcSIEdjtdkaPHs277757yOu+8sorOByODu9TFIW33nrrkI8/kuKWg+Tz+diwYQP33ruvs6mqqkydOpW1a9ce1rW/++47cnJysNvtTJ48mfnz5zNo0CAgeOiepmlMnTo1NH7EiBEMGjSItWvXcuKJJ3Z4Ta/Xi9e770R3p9N5WHPsjSLpPxStSJo5Lv5gO85WjbI9RfgT9rDLX4rHE2zomGTXCSgNKHoSu/cUUufWpHRfCBGmtLGUVbtWsb5iPX7Dj1tzU+QoCvs5EwvnnnsuL7/8MpqmsWHDBmbOnImiKDz++ONh4/Ly8nj55ZfDPn/+8Y9/kJycTH19fei2LVu2cO6553L77bfz7LPPkpCQwHfffcff/vY3AoHAQecxfvx4pk+fzqBBg6ivr2fevHmcc8457Ny5E5PJ1OFjLBYLM2bMYNy4cTgcDr788ktmz56Nruv89re/BeCTTz7hmmuuYf78+VxwwQUsX76cSy65hI0bN4YdhttbxW0Fqba2lkAgwIABA8JuHzBgAJWVlV2+7qRJk3jllVdYsWIFL7zwAjt37uTUU0+lubkZgMrKSqxWa7sItrPnnT9/PmlpaaGvvLy8Ls+xNyptLOXFzS+y+IvF/OHLP7D4i8W8uPlFShtLD+uay0qWUVJfgsPmID81H4fNQUl9CctKloVd2xfQUbQsMvUp2PQ8DLUFw1yDrrhIMAaRqU9B8Wfh9vlRVYVpxw4gI8nK9poW8KeTasoDfzrba6R0X4ijSdvPma31W7Gb7ThsDtJsaR3+nOluNpuN7Oxs8vLyuOSSS5g6dSqrV69uN27mzJm8/vrrtLa2hm576aWXmDlzZti4VatWkZ2dzRNPPMGxxx5LUVER5557LkuXLiUhIeGg87jppps47bTTyM/PZ9y4cTz22GPs2bOHXbt2HfQxhYWFzJo1i+OOO47Bgwdz0UUXMX36dD7++OPQmN/97nece+65/OpXv6K4uJhHH32UcePG8fzzz0fxLnWso3xiRVF45ZVXDvvakYp7knZ3O++887jiiisYM2YM06ZN491336WxsZE333zzsK5777330tTUFPras2dPN804vjrb3oLoAplIef3eUNl+fko+CebgP+62sv261jpW716N1+/ltjOHcOMpBYzKTWNc9gjOz5vOxYNu4PxjruPs7Jmce8xPOD57OKNy0kiyBhdF20r3j81Jo7FFY1etm8YWjdG5acw6OV9K94Xow7SAhhbQwn/OpOZjVoM/HxLNie1+zsQ6cfvrr7/mk08+wWq1trtv/Pjx5Ofn87e//Q2AsrIy/v3vf3PdddeFjcvOzqaiooJ///vfXZ6H2+3m5ZdfpqCgIKpf9Ldv386KFSs4/fTTQ7etXbs2bDcGYNq0aYe9CwRw5513huUSP/XUUyQmJjJhwoTDvnak4rbF1q9fP0wmU7vqsaqqqkMmYEfL4XAwbNgwtm/fDgT/gvl8PhobG8NWkTp7XpvNdsi8p94o2q7Uh+o/NDttdlTbbc9sfGZf2b63gQp3BUBo284XCJbttzVz3Ldt1sTQhGTSTAeU7je3MDo3jVzHvt+ipHRfiKPT0s1LAcLbg+z3c2Zj9cZ2P2dSrancOvbWbp3Hv/71L5KTk/H7/Xi9XlRVPejqyg033MBLL73EtddeyyuvvML5559P//79w8ZcccUVrFy5ktNPP53s7GxOPPFEpkyZwowZM0hNTT3kXH7/+99z11134Xa7GT58OKtXr+4wWDvQSSedxMaNG/F6vdx000088sgjofsqKyu7tAvU1NREcnLyIcckJyeHxnz66afcf//9/PnPfz6iW3dxW0GyWq2MHz+eNWvWhG7TdZ01a9YwefLkbnsel8vFjh07GDhwIBCM1C0WS9jzbtu2jbKysm593u4UySpPtCJZFVq6eSnPbHyG1btXU9Naw4bqDbxd+jZvl77N51Wf80XNF9S01rBq16rQD55ItZXtm1UzGODXLPh8Nrw+FcMAs2oOlvX/8Fvd/ttm31W7aPZo+HWdZo/Gd9Wug26bSem+EEevsJ8zHTjw50x3O/PMM9m0aROfffYZM2fOZNasWVx++eUdjr322mtZu3YtpaWlvPLKK9xwww3txphMJl5++WW+//57nnjiCXJzc/ntb38bqtw+lOnTp/PFF1/w0UcfMWzYMK688spQwvioUaNCAcl5550X9rg33niDjRs3snz5ct555x2eeuqpLr4b+6SkpLBp06Z2Xx0pKyvjkksu4c477+TKK6887OeORlwbRc6dO5eZM2cyYcIEJk6cyKJFi3C73cyaNQuAGTNmkJuby/z584FgYveWLVtCf967dy+bNm0iOTmZIUOGAMFluQsvvJDBgwdTXl7OQw89hMlk4pprrgEgLS2NG2+8kblz55KRkUFqaiq33347kydPPmiCdjxFksQcja50pY7kB4xbC+8p1FlC94yRM3BrboxAIpUNkBwYhF/XaWlWsSVayE6HgUktzBg5I/QY6XgthIjE7NGzASh3lePW3KTZ0kg0J7KxeiMA47LGoSoqLp+LJl8TM0bOICc5p9vnkZSUFPpseumllzjuuON48cUXufHGG9uNzczM5IILLuDGG2/E4/Fw3nnnhXJnD5Sbm8t1113Hddddx6OPPsqwYcNYsmQJDz/88EHn0pY/O3ToUE488UTS09P5xz/+wTXXXMO7774bqk47MJepbRtu5MiRBAIBbrrpJn75y19iMpnIzs7u0i6Qqqqh9+VQ3G43F110EZMnTw5buTpS4hogXXXVVdTU1PDggw9SWVnJ2LFjWbFiRWjJrqysDFXd96FaXl7O8ccfH/r+qaee4qmnnuL0008PlUF+//33XHPNNdTV1dG/f39OOeUUPv3007ClymeeeQZVVbn88svxer1MmzaN3//+90fmRUch0hPpo9GuK/UhtrcWnrEQIKIfMEmWfRVhkQR1eal5OCzH8P6eLzD5s0m1W7CYLGgBnepmLxWtlUwpHEdeavgeuWybCSE6YzFZgODPmSJHESX1JeSn5Id+SVMVFVVRqfHUUJxRTF5q3mFX5HZGVVXuu+8+/v/27jwsqnKPA/h3ZpgFGBkWlU0FAkol9Kq54C0XRES92sXtdq8iApn6iE/q1fayMirttjwWZl111Mq0srw+pWn5aIuaqV3KJTUBN1aVdQZmYebcP5BznWFxkAEG/X6eZ57HOec973kPDmd+/N7lLF68GP/4xz8aHFSdmpqKcePG4fHHH290dpk9Hx8fBAYGQq/X37zwdYIgQBAEcWZ2SEiIQ8dZrVaYzWZYrVbIZDLExMRg7969WLhwoVjmm2++cUpvjCAImDFjBqxWKz744APxD/m21O6PGklPT0d6enqD+25c+wEAQkNDIQhCk/Vt2bLlpudUqVTIzMxEZmamw+1sS83J8sxSz4LS7f9joxyZiu9oVshoNSLCO0K8wYRrwjE4cLBYThAE8QYT6FnbheloUGcyCzCUR8FacwZyZTEEiR+sghKCxAip8hrMRg8YynvDZBagsusmr+s2IyJqilQixageo1CoL0ROeQ5MFhPcpG7QmXS4YrgCH6UPRvUY1erBUZ2pU6di6dKlyMzMxJIlS+rtT0hIwJUrVxodT/Tee+8hKysLiYmJCA8Ph8FgwKZNm3Dy5Em8/fbbDR6Tk5ODrVu3Ij4+Hl26dMHly5fx6quvwt3dHePGjWu0rR999BHkcjmio6OhVCpx9OhRPPnkk/jb3/4Gubw2AH300UcxfPhwvP766xg/fjy2bNmCo0eP4v3337+Fn46t559/Ht9++y327NkDnU4HnU4HoDYT1tSMPWdq9wCJ6mtOlqduEDPgWOZmdvRsh9POnnJPmxtMdnm2TdBTWFUo3mAsVgvMgtnhoG7F1+fwU44MCsVwVJmykF+TB0hq4CFXQiUEQmnqg0OnZVhhOo1lE6Pa4X+BiG4Hd3nfhem9pmPP+T24dOESaoQalJvK0cu3V6uvg2TPzc0N6enpWLlyJebNmwdPT9u12CQSic3CxvYGDRqEH3/8EXPnzkV+fj7UajWioqKwfft2m9llN1KpVPjhhx/w1ltvobS0FP7+/hg2bBgOHjyIrl27NtnWFStW4OzZsxAEASEhIUhPT8eiRYvEMkOHDsXmzZvxzDPP4KmnnkJkZCS2b9/ulIHU3333HXQ6HYYOHWqzXavVYtasWS2u3xES4WYpGWpQRUUFNBoNysvLbzp7oLlWZ63GteprOFp0FN5KbwCoFyBZBSvKjGW4z/8+PBvzbKOZm7og5sbuOKtgxbrj68Ss0I2pS0EQkF2ejV6+vZAWnSb+ZXWz4Gt11mqboM5N6tZgUGeoMWBg4EBU5o3H4Zxr8PFUQIAVeZX5ECRG+HfSQAk/CIIEpVUmDA7zQ0ZitFN/vkTUMRgMBuTm5iIsLAwqlapFdRlrjHjzlzdhtpgxs/fMNulWo/bT1GfH0e9vZpBcUHOyPDN7z6y31sd/r/xXLNtQd5yjWaEbbx53ed+FHp1CkFWQi2vVlfBz74Q/BYbB7YZ+8ubMGEm7Pww6Yw183BVQq9wA2E5nrTSYUVZt5uNAiMgppBIpvBS1X4ZB6iAGR3RTDJBckFwmtxlc2NTYn+5e3bHyyEqH1/qo646rSzvXZYWKqoqglCkbTTufK64UZ48ZaqxQuelwuEsuxtxbO3vMPqjzdFOj0lgDc40VcjcpOindoDf/P6jr3un/6xp5uavrZbGKK42IDtbwcSBE5BRymdzp6xzR7Y0BkotqTpbnVtf6uMv7LoRqQm86qPtccSW0B86jRG9CoEYFD4U7qkw1OJFfjvzyanFl6rqg7kj+cRiruqCsqnatIjepFN4ecig9rmBgUPT11Hbtukb55dX4o1iHQI0K7goZqk0WFJQb+DgQIiJqVwyQXJijWZ66NYU0Sg3U8vqrk97YHWdPKpEiWB3c4PlNNVZYrQK+Ol6Iq5VGRHT9f6bHQ+GGuzp74lyxDjuPFyJ9pLp2bQv1EPyn5CR05hz4KrvAU+YOg6UaFyovQW3QIOLuIWIAxnWNiIjIVTFAcnGOZHlu7I7zUnjV6666sTuuOTL3nUNFtRmHcq5BJZehpMqE/LLahykGebtDKpHAWGPBheNV+EufQARp3PFbrgo+5lj4eJ5AhSUPFZYyyCRy9PCMhKC/F8dzVYjpZoFKUTt2iesaERGRK2KA1AE0leWp29/cQdeOMlmsqLFYIVc1/FGRy6TQGWuw7sdcKGTS68GUH9yqh6H4hplpBvjBVCNg5/EClOpNNlP3ua4RERG5GgZIt4nmDrquY7UKjWZv5o+MwOXSKrvZZrbqZpspZFK7YEoCqcUPAKAQ3CGRSCCXCdAZa2CytPxZckRERK2JAdJtxNFB13VsZ6ZZoHKTIbyLWpyZpnCTItTPsdlmqX8OQ355tUPBFKfuExGRq2OAdJu5WXdcHUdnpkmljs02UylkDgdTnLpPRG1NMJlw9b3aR2B0nvMIJArFTY6gOx1XyrrDmGqsMJgs4sy0uzp7wkNRGyfXzUy7WmnEzuOFsFprF1mvm212b5AGZVVmnL+qR1mVGdHBGjGQAiAGU76eCvxRrEOloXaaf6XBjD+KdZy6T0REHQYDpDtM5r5zWPH1aew6XoCiSiN+Pl+CL/57GV/89zIO517D0QulKKo0YOfxAuRdn7EG1AZJ80aEY9Hou7FgVCQWjb4bc4eH15uK72gwRUTUlgSrFZaKCtRcuwZTXh4Ea+uOhZw1axYkEknt+Eu5HGFhYXjsscdgMBhsytWV+emnn2y2G41G+Pn5QSKR2Dy4/bvvvkNsbCx8fX3h4eGByMhIJCcnw2QyNdoWg8GA+fPnw8/PD2q1GpMnT0ZRUVGT7f/8888RHx8vtiErK8uh687IyMDQoUPh4eEBb29vh44ZMWIEFi5cWG/7hg0bHK6jNbCL7Q7k6Mw0vanGZrujs804dZ+IXIkxOxsVu3dDf/gwYLHAqtNBGRGBTqPjoAwPb7XzJiQkQKvVwmw249ixY0hOToZEIsGKFStsynXv3h1arRZDhgwRt33xxRdQq9UoKSkRt506dQoJCQlYsGABVq1aBXd3d/zxxx/Ytm0bLBZLo+1YtGgRvvrqK3z66afQaDRIT0/HpEmTcODAgUaP0ev1uP/++zFt2jTMnj3b4Ws2mUyYOnUqYmJisG7dOoePc0UMkDqApmaaNbes/cw0d4UMR1H7C3hfiC9kUok4mNpTcesfD07dJyJXYMzORskHH8By7Rqk7u6Amxuk3t4w/H4K5sIC+CYltVqQpFQqERAQAKA2CIqLi8M333xTL0BKTk7GqlWr8NZbb8Hd3R0AsH79eiQnJ2P58uViuT179iAgIAArV64Ut4WHhyMhIaHRNpSXl2PdunXYvHkzYmNjAQBarRa9evXCTz/9ZBOU3SgpKQkAcP78+WZd8wsvvACgNvvjbKGhobhw4UK97YIgOP1cAAMkl3ezmWbNLWs/My2yqxpDwzuLddw4mDrY271Nr5WIyBmE691NgtWKit27Ybl2DfLQUNSUlAIAZB7ukIaGwZyTjYrde+CXmgKJVNqqA7dPnDiBgwcPIiQkpN6+AQMGIDQ0FNu2bcOMGTNw8eJFfP/998jMzLQJkAICAlBQUIDvv/8ew4YNc+i8x44dg9lsRlxcnLitZ8+e6NGjBw4dOtRogOSKjhw5ImbKLBYLpkyZArlc3mrnY4Dkwhydadbcso7OTGOXGBF1RHWz1SwVFdAfPgypuztqSkphLqh9kHfVsV8AqRRWoxHGCxdhKS2FzMsLXRakO7UdX375JdRqNWpqamA0GiGVSvHOO+80WDY1NRXr16/HjBkzsGHDBowbNw5dunSxKTN16lTs3r0bw4cPR0BAAIYMGYJRo0Zh5syZ8PLyarDewsJCKBSKemN5/P39UVhY6JTrdIbVq1dj7dq1NttqamqgUqnE9zf+PB599FEUFBTgyJEjrdYmDtJ2Qc2ZaWYwWZpVtg4HUxPR7U4wmwGLBXBrOBcgkcsBi6W2XCsYOXIksrKycPjwYSQnJyMlJQWTJ09usOyMGTNw6NAh5OTkYMOGDUhNTa1XRiaTQavV4vLly1i5ciWCg4Px8ssvIyoqCgXXg7+2MnfuXKjVavHVUtOnT0dWVpbN68UXX2yw7Pvvv49169Zhx44d9YJIZ2IGyQU15xlopfraVLKjZW98xAcHUxPR7ajznEcAAKa8PFh1Oki9vSHzcK/NHAHwGNAfkMpg0elgLSuDb/JMKIJvvn5cc3l6eiIiIgJA7Ziivn37Yt26dUhLS6tX1s/PD3/5y1+QlpYGg8GAsWPHorKyssF6g4ODkZSUhKSkJCxfvhx333031qxZI47/uVFAQABMJhPKyspsskhFRUXi+Khb8eKLL2LJkiW3fLw9jUYj/qzqdO3atV65ffv2YcGCBfj444/Rp08fp52/IcwguShxppms4WBFLpOixmqFyWJtVll7dYOpewZ4obuvB4MjIurwJAoFJAoFFCEhUEZEwHKlGIJECkjrXjJAKoXlSjGUkZFQhIS0+sKRUqkUTz31FJ555hlUV1c3WCY1NRX79+/HzJkzIZPJHKrXx8cHgYGB0Ov1De4fMGAA5HI59u7dK247c+YMLl68iJiYmOZfyHVdu3ZFRESE+GoL586dw5QpU/DUU09h0qRJrX4+ZpBcUHOegVb32A4+4oOIyJZEKkWn0XEwFxbAnJMNq9EIiVwOi04Hy5ViyHx80SluFCTStskVTJ06FUuXLkVmZmaD2ZeEhARcuXKl0fFE7733HrKyspCYmIjw8HAYDAZs2rQJJ0+exNtvv93gMRqNBmlpaVi8eDF8fX3h5eWFBQsWICYmxmaAds+ePfHKK68gMTERAFBSUoKLFy8iPz8fQG1QBdRmpJrKPF28eFE81mKxiOsnRUREtKgrrrq6GhMmTEC/fv3wyCOP2IyfakkmrCkMkFxQc56BVvfYDj7ig4ioPmV4OHyTklCxezeMFy5C0OthLSuDqncUOsWNatV1kOy5ubkhPT0dK1euxLx58+DpaXtPlkgk6Ny5cyNHA4MGDcKPP/6IuXPnIj8/H2q1GlFRUdi+fTuGDx/e6HFvvvkmpFIpJk+eDKPRiDFjxmD16tU2Zc6cOYPy8nLx/Y4dO5CSkiK+f+ihhwAAy5Ytw/PPP9/ouZ577jls3LhRfN+vXz8AtV1jI0aMaPS4mykqKsLp06dx+vRpBAUF2exrrWn+EqG1ar7NVVRUQKPRoLy8vNFov6XsZ6bZzzRrahZbU2WJiDoCg8GA3NxchIWF2cxmuhVWgwHFr78BwWyuHXMUEtJmmSNqe019dhz9/mYGyYXVzTSrW9uoqMIApZsM0cEaxEfZroPUnLJERHcaiVQK2fUvQ0VwMIMjuikGSC6uOTPNOCuNiKhhEoXC6esc0e2NAVIH0JzHdvARH0RERC3HHCMRERGRHQZIRETk0jiXiJrLGZ8ZBkhEROSS6h5EWlVV1c4toY6m7jPTkofZcgwSERG5JJlMBm9vbxQXFwMAPDw8bNZ5I7InCAKqqqpQXFwMb29vh1ckbwgDJCIicll1qyTXBUlEjvD29m7xCtsMkIiIyGVJJBIEBgaia9euMJvN7d0c6gDkcnmLMkd1GCAREZHLk8lkTvnSI3IUB2kTERER2WGARERERGSHARIRERGRHY5BukV1i1BVVFS0c0uIiIjIUXXf2zdbTJIB0i2qrKwEAHTv3r2dW0JERETNVVlZCY1G0+h+icA13G+J1WpFfn4+OnXq5PSFywYOHIgjR444tc72Op+z63ZWfS2pp6KiAt27d8elS5fg5eXV4raQ87X175Ar6EjX7Cptbct2tPa5XPFe66r3WUEQUFlZiaCgIEiljY80YgbpFkmlUnTr1q1V6pbJZG36xdua53N23c6qzxn1eHl5MUByUW39O+QKOtI1u0pb27IdrX0uV7zXuvJ9tqnMUR0O0nZB8+fPv23O5+y6nVVfW/+MqW3dif+/HemaXaWtbdmO1j6XK95rXeX/+Vaxi42omSoqKqDRaFBeXu4SfwUTEd1uXOE+ywwSUTMplUosW7YMSqWyvZtCRHRbcoX7LDNIRERERHaYQSIiIiKywwCJiIiIyA4DJCIiIiI7DJCIiIiI7DBAIiIiIrLDAInIib788kvcc889iIyMxNq1a9u7OUREt6XExET4+PhgypQprXYOTvMncpKamhr07t0b+/btg0ajwYABA3Dw4EH4+fm1d9OIiG4r+/fvR2VlJTZu3IjPPvusVc7BDBKRk/z888+IiopCcHAw1Go1xo4diz179rR3s4iIbjsjRoxAp06dWvUcDJCIrvv+++8xYcIEBAUFQSKRYPv27fXKZGZmIjQ0FCqVCoMHD8bPP/8s7svPz0dwcLD4Pjg4GHl5eW3RdCKiDqOl99q2wgCJ6Dq9Xo++ffsiMzOzwf1bt27F4sWLsWzZMvzyyy/o27cvxowZg+Li4jZuKRFRx9VR7rUMkIiuGzt2LF566SUkJiY2uP+NN97A7NmzkZKSgt69e2PNmjXw8PDA+vXrAQBBQUE2GaO8vDwEBQW1SduJiDqKlt5r2woDJCIHmEwmHDt2DHFxceI2qVSKuLg4HDp0CAAwaNAgnDhxAnl5edDpdNi1axfGjBnTXk0mIupwHLnXthW3Nj0bUQd19epVWCwW+Pv722z39/fH6dOnAQBubm54/fXXMXLkSFitVjz22GOcwUZE1AyO3GsBIC4uDr/++iv0ej26deuGTz/9FDExMU5tCwMkIieaOHEiJk6c2N7NICK6rX377betfg52sRE5oHPnzpDJZCgqKrLZXlRUhICAgHZqFRHR7cWV7rUMkIgcoFAoMGDAAOzdu1fcZrVasXfvXqendYmI7lSudK9lFxvRdTqdDufOnRPf5+bmIisrC76+vujRowcWL16M5ORk3HfffRg0aBDeeust6PV6pKSktGOriYg6lo5yr+WjRoiu279/P0aOHFlve3JyMjZs2AAAeOedd/Daa6+hsLAQf/rTn7Bq1SoMHjy4jVtKRNRxdZR7LQMkIiIiIjscg0RERERkhwESERERkR0GSERERER2GCARERER2WGARERERGSHARIRERGRHQZIRERERHYYIBERERHZYYBERNQC165dQ9euXXH+/HkAtasESyQSlJWVtep5n3jiCSxYsKBVz0F0J2OARERtYtasWZBIJPVeCQkJ7d20FsnIyMCDDz6I0NDQFtdVVFQEuVyOLVu2NLg/LS0N/fv3BwAsWbIEGzduRE5OTovPS0T1MUAiojaTkJCAgoICm9fHH3/cquc0mUytVndVVRXWrVuHtLQ0p9Tn7++P8ePHY/369fX26fV6fPLJJ+K5OnfujDFjxuDdd991yrmJyBYDJCJqM0qlEgEBATYvHx8fcb9EIsHatWuRmJgIDw8PREZGYseOHTZ1nDhxAmPHjoVarYa/vz+SkpJw9epVcf+IESOQnp6OhQsXikEEAOzYsQORkZFQqVQYOXIkNm7cKHaF6fV6eHl54bPPPrM51/bt2+Hp6YnKysoGr2fnzp1QKpUYMmRIo9dcVVWFsWPH4s9//rPY7bZ27Vr06tULKpUKPXv2xOrVq8XyaWlp2Lt3Ly5evGhTz6effoqamhpMnz5d3DZhwoRGs01E1DIMkIjIpbzwwguYNm0afvvtN4wbNw7Tp09HSUkJAKCsrAyxsbHo168fjh49iq+//hpFRUWYNm2aTR0bN26EQqHAgQMHsGbNGuTm5mLKlCn461//il9//RVz5szB008/LZb39PTEQw89BK1Wa1OPVqvFlClT0KlTpwbb+sMPP2DAgAGNXktZWRlGjx4Nq9WKb775Bt7e3vjoo4/w3HPPISMjA7///jtefvllPPvss9i4cSMAYNy4cfD39xefan5jWyZNmgRvb29x26BBg3D58mVx/BMROZFARNQGkpOTBZlMJnh6etq8MjIyxDIAhGeeeUZ8r9PpBADCrl27BEEQhOXLlwvx8fE29V66dEkAIJw5c0YQBEEYPny40K9fP5syjz/+uHDvvffabHv66acFAEJpaakgCIJw+PBhQSaTCfn5+YIgCEJRUZHg5uYm7N+/v9FrevDBB4XU1FSbbfv27RMACL///rvQp08fYfLkyYLRaBT3h4eHC5s3b7Y5Zvny5UJMTIz4/oknnhDCwsIEq9UqCIIgnDt3TpBIJMK3335rc1x5ebkAoMk2EtGtYQaJiNrMyJEjkZWVZfOaO3euTZk+ffqI//b09ISXlxeKi4sBAL/++iv27dsHtVotvnr27AkAyM7OFo+zz+qcOXMGAwcOtNk2aNCgeu+joqLETM6HH36IkJAQDBs2rNHrqa6uhkqlanDf6NGjERERga1bt0KhUACoHUeUnZ2NtLQ0m2t46aWXbNqfmpqK3Nxc7Nu3D0Bt9ig0NBSxsbE253B3dwdQ241HRM7l1t4NIKI7h6enJyIiIposI5fLbd5LJBJYrVYAgE6nw4QJE7BixYp6xwUGBtqc51Y8/PDDyMzMxBNPPAGtVouUlBRIJJJGy3fu3BmlpaUN7hs/fjy2bduGU6dOITo6Wmw/APz73//G4MGDbcrLZDLx35GRkXjggQeg1WoxYsQIbNq0CbNnz67Xlrquxy5dujT/YomoSQyQiKjD6N+/P7Zt24bQ0FC4uTl++7rnnnuwc+dOm21HjhypV27GjBl47LHHsGrVKpw6dQrJyclN1tuvXz98+OGHDe579dVXoVarMWrUKOzfvx+9e/eGv78/goKCkJOTYzPYuiFpaWmYN28eJk6ciLy8PMyaNatemRMnTkAulyMqKqrJuoio+djFRkRtxmg0orCw0OZ14wy0m5k/fz5KSkrw97//HUeOHEF2djZ2796NlJQUWCyWRo+bM2cOTp8+jccffxxnz57FJ598Ig6CvjEr4+Pjg0mTJmHp0qWIj49Ht27dmmzPmDFjcPLkyUazSP/6178wffp0xMbG4vTp0wBqB6G/8sorWLVqFc6ePYvjx49Dq9XijTfesDl26tSpkMvlmDNnDuLj49G9e/d69f/www944IEHxK42InIeBkhE1Ga+/vprBAYG2rzuv/9+h48PCgrCgQMHYLFYEB8fj+joaCxcuBDe3t6QShu/nYWFheGzzz7D559/jj59+uDdd98VZ7EplUqbsmlpaTCZTEhNTb1pe6Kjo9G/f3988sknjZZ58803MW3aNMTGxuLs2bN4+OGHsXbtWmi1WkRHR2P48OHYsGEDwsLCbI7z8PDAQw89hNLS0kbbsmXLFsyePfum7SSi5pMIgiC0dyOIiNpaRkYG1qxZg0uXLtls/+CDD7Bo0SLk5+eLg6ub8tVXX2Hp0qU4ceJEk0Gas+3atQv//Oc/8dtvvzWru5GIHMPfKiK6I6xevRoDBw6En58fDhw4gNdeew3p6eni/qqqKhQUFODVV1/FnDlzHAqOgNrB2H/88Qfy8vIa7AZrLXq9HlqtlsERUSthBomI7giLFi3C1q1bUVJSgh49eiApKQlPPvmkGGA8//zzyMjIwLBhw/Cf//wHarW6nVtMRO2JARIRERGRHQ7SJiIiIrLDAImIiIjIDgMkIiIiIjsMkIiIiIjsMEAiIiIissMAiYiIiMgOAyQiIiIiOwyQiIiIiOwwQCIiIiKy8z+cjSGEwdgtqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"Cov. 3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"Cov. 0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " rmsspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=rmsspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"RMS 3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " rmsspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=rmsspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"RMS 0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional RMS\");" + ] + }, + { + "cell_type": "markdown", + "id": "e3f96dbf", + "metadata": { + "id": "e3f96dbf" + }, + "source": [ + "QED, except that the error bars in some points look underestimated. It is always recommended to test error bars with simulations, in any case, as analytic formulas are based on a series of assumptions (in particular, on the coherence) that might not be correct in real life." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "fa853e69", + "metadata": { + "id": "fa853e69" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:36<00:00, 1.08it/s]\n" + ] + } + ], + "source": [ + "from stingray.varenergyspectrum import LagSpectrum\n", + "\n", + "covspec_3_30 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "1842eadc", + "metadata": {}, + "outputs": [], + "source": [ + "def variable_for_value(value):\n", + " for n, v in globals().items():\n", + " if id(v) == id(value):\n", + " return n\n", + " return None\n", + "\n", + "\n", + "for func in [lagspec_3_30, lagspec_01_1, covspec_01_1, covspec_3_30]:\n", + " name = variable_for_value(func)\n", + " func.write(name + \".csv\", fmt=\"ascii\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61dc1445", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "X-ray Variability of an accreting BH with Fourier methods.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb.txt b/_sources/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb.txt new file mode 100644 index 000000000..66265cad2 --- /dev/null +++ b/_sources/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb.txt @@ -0,0 +1,2204 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start here to begin with Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "`StingrayTimeseries` is a generic time series object, and also acts as the base class for Stingray's `Lightcurve` and `EventList`. It is a data container that associate times with measurements.\n", + "The only compulsory element in such a series is indeed the `time` attribute.\n", + "\n", + "Many of the methods in `Lightcurve` and `EventList`, indeed, are implemented in this class. For example, methods that truncate, add, subtract the series, or that filter it in some way (e.g. by adding a mask or applying the good time intervals)\n", + "\n", + "\n", + "### Internal Class structure\n", + "\n", + "For most of this internal behavior, all turns around the concept of \"Array attributes\", \"Internal attributes\", \"Meta attributes\", and \"Not array attributes\". \n", + "\n", + "**Array attributes** Ideally, if one were to create a new object based on a table format, array attributes would be the table columns (so, they all have the same length of the `time` column).\n", + "Example array attributes are\n", + "\n", + "+ `counts`, the number of counts in each bin of a typical X-ray light curve;\n", + "+ `dt`, the sampling time, *if data are not evenly sampled*;\n", + "\n", + "Note that array attributes can have any dimension. The only important thing is that the *first dimension's size* is equal to the size of `time`. E.g. if time is `[1, 2, 3]` (shape (3,) ), an array attribute could be `[[4, 4], [2, 3], [4, 5]]` (shape (3, 2)), but not `[[1, 2, 3]]` (shape (1, 3))\n", + "\n", + "**Meta attributes** The most useful attributes are probably \n", + "\n", + "+ `gti`, or the Good Time Intervals where measurements are supposed to be reliable; \n", + "+ `dt`, the sampling time, when *constant* (evenly sampled time series);\n", + "+ `mjdref` the reference MJD for all the time measurements in the series\n", + "\n", + "**Internal array attributes** Some classes, like `Lightcurve`, expose attributes (such as `counts`, `counts_err`) that are not arrays but properties. This is done for a flexible manipulation of counts, count rates etc, that can be set asynchronously depending on which one was set first (see the `Lightcurve` documentation). The actual arrays containing data are internal attributes (such as `_counts`) that get set only if needed. Another thing that lightcurve does is throwing an error if one wants to set the time to a different length than its array attributes. The actual time is stored in the `_time` attribute, and this check is done when one tries to modify the time through the `time` property (by setting `lc.time`).\n", + "\n", + "**Not array attributes** Some quantities, such as GTI, might in principle have the same length of `time`. One can then add `gti` to the list of `not_array_attributes`, that protects from the hypothesis of considering `gti` a standard array attribute." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating a time series" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import StingrayTimeseries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `StingrayTimeseries` object is usually created in one of the following two ways:\n", + "\n", + "1. From an array of time stamps and an array of any name.\n", + " \n", + " ts = StingrayTimeseries(times, array_attrs=dict(my_array_attr=my_attr), **opts)\n", + "\n", + " where `**opts` are any (optional) keyword arguments (e.g. `dt=0.1`, `mjdref=55000`, etc.)\n", + " In principle, array attributes can be specified as simple keyword arguments. But when we use the `array_attrs` keyword, we will run a check on the length of the arrays, and raise an error if they are not of a shape compatible with the ``time`` array.\n", + "\n", + "2. A binned `StingrayTimeseries`, a generalization of a uniformly sampled light curve, can be obtained from an EventList object, through the `to_binned_timeseries` method.\n", + "\n", + " ev = EventList(times, mjdref=55000)\n", + " ev.my_attr = my_attr_array\n", + " ts = ev.to_binned_timeseries(ev, dt=1, array_attrs={\"my_attr\": my_attr}, **opts)\n", + "\n", + "as will be described in the next sections.\n", + "\n", + "An additional possibility is creating an empty `StingrayTimeseries` object, whose attributes will be filled in later:\n", + "\n", + " ts = StingrayTimeseries()\n", + "\n", + "or, if one wants to specify any keyword arguments:\n", + "\n", + " ts = StingrayTimeseries(**opts)\n", + "\n", + " This option is usually only relevant to advanced users, but we mention it here for reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Array of time stamps and counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 time stamps" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1000)\n", + "times[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 random Poisson-distributed counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.24828431, 1.65343943, 0.48755812, 0.53731942, 0.06821194,\n", + " 0.67721999, -1.52268207, 0.90104872, -1.54513351, 0.4345529 ])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_attr = np.random.normal(size=len(times))\n", + "my_attr[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Lightcurve object with the times and counts array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "ts = StingrayTimeseries(times, array_attrs={\"my_attr\": my_attr})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points can be counted with the `len` function, or through the `n` property." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 1000)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ts), ts.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. From an event list\n", + "\n", + "Often, you might have an event list with associated properties such as weight, polarization, etc. If this is the case, you can use the `to_binned_timeseries` method of `EventList` to turn these photon arrival times into a regularly binned timeseries." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import EventList\n", + "\n", + "arrival_times = np.sort(np.random.uniform(0, 100, 1000))\n", + "goofy = np.random.normal(size=arrival_times.size)\n", + "mickey = np.random.chisquare(2, size=arrival_times.size)\n", + "ev = EventList(arrival_times, gti=[[0, 100]])\n", + "ev.goofy = goofy\n", + "ev.mickey = mickey" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create the time series, it's necessary to specify the sampling time `dt`. By default, the time series will create histograms with all the array attributes of `EventLists` with the same length as `ev.time`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "ts_new = ev.to_binned_timeseries(dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can specify which attributes to use through the `array_attrs` keyword" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "ts_new_small = ev.to_binned_timeseries(dt=1, array_attrs=[\"goofy\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All attributes that have been histogrammed can be accessed through the `array_attrs` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['counts', 'goofy', 'mickey']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.array_attrs()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['counts', 'goofy']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new_small.array_attrs()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note the `counts` attribute, which is always created by the `to_binned_timeseries` method and gives the number of photons which concurred to creating each value of the time series." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time bins can be seen with the `.time` attribute" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5,\n", + " 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5,\n", + " 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5,\n", + " 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5,\n", + " 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5,\n", + " 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5,\n", + " 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5,\n", + " 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5,\n", + " 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.5, 96.5, 97.5, 98.5,\n", + " 99.5])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Good Time Intervals\n", + "\n", + "`StingrayTimeseries` (and most other core `stingray` classes) support the use of *Good Time Intervals* (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don't apply to the data within a `StingrayTimeseries` object, but become relevant in a number of circumstances, such as when generating `Powerspectrum` objects. \n", + "\n", + "If no GTIs are given at instantiation of the `StingrayTimeseries` class, an artificial GTI will be created spanning the entire length of the data set being passed in, including half a sample time before and after:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(times))\n", + "\n", + "ts = StingrayTimeseries(times, array_attrs={\"counts\":counts}, dt=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5.000e-01, 9.995e+02]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 96, 92, 92, 103, 101, 95, 112, 108, 97, 92, 102, 88, 82,\n", + " 82, 98, 107, 94, 90, 116, 97, 104, 109, 103, 90, 98, 104,\n", + " 91, 103, 89, 103, 116, 88, 96, 106, 106, 81, 92, 99, 88,\n", + " 88, 114, 95, 84, 102, 99, 89, 97, 84, 88, 100, 100, 89,\n", + " 86, 100, 100, 110, 106, 95, 117, 113, 101, 99, 95, 97, 108,\n", + " 107, 112, 82, 122, 101, 98, 94, 106, 109, 96, 103, 125, 105,\n", + " 107, 95, 91, 94, 92, 118, 90, 101, 96, 113, 95, 109, 92,\n", + " 101, 101, 97, 107, 109, 110, 113, 100, 113, 110, 91, 99, 103,\n", + " 98, 94, 99, 99, 87, 92, 96, 111, 105, 91, 88, 83, 107,\n", + " 78, 102, 90, 99, 96, 99, 107, 90, 111, 86, 129, 105, 98,\n", + " 91, 100, 118, 95, 97, 106, 96, 117, 107, 102, 101, 98, 89,\n", + " 105, 104, 104, 85, 113, 89, 89, 117, 111, 112, 117, 102, 129,\n", + " 105, 99, 106, 83, 83, 93, 114, 91, 116, 90, 117, 109, 95,\n", + " 103, 102, 90, 95, 83, 99, 108, 80, 104, 111, 107, 100, 87,\n", + " 87, 97, 100, 115, 107, 93, 106, 76, 105, 88, 100, 99, 99,\n", + " 89, 87, 89, 105, 106, 88, 113, 95, 120, 96, 107, 96, 114,\n", + " 97, 106, 106, 94, 83, 111, 91, 109, 93, 108, 106, 100, 85,\n", + " 84, 107, 126, 102, 99, 95, 100, 103, 90, 92, 89, 84, 120,\n", + " 114, 98, 117, 97, 109, 95, 100, 97, 84, 90, 110, 103, 108,\n", + " 92, 82, 115, 115, 97, 121, 104, 98, 89, 80, 99, 86, 98,\n", + " 97, 100, 96, 96, 125, 112, 95, 86, 94, 100, 91, 123, 98,\n", + " 76, 84, 109, 87, 92, 108, 89, 94, 94, 101, 110, 94, 94,\n", + " 106, 103, 99, 117, 87, 101, 97, 79, 117, 107, 111, 113, 107,\n", + " 106, 109, 104, 102, 99, 114, 89, 109, 95, 111, 75, 99, 115,\n", + " 91, 118, 112, 91, 87, 106, 94, 98, 102, 110, 92, 84, 97,\n", + " 118, 108, 89, 98, 99, 109, 122, 105, 101, 102, 107, 120, 87,\n", + " 90, 109, 100, 107, 107, 98, 96, 90, 100, 115, 92, 86, 100,\n", + " 114, 109, 91, 98, 96, 91, 105, 95, 93, 86, 85, 109, 107,\n", + " 97, 101, 101, 119, 98, 111, 102, 101, 107, 107, 89, 107, 93,\n", + " 98, 91, 102, 91, 116, 105, 98, 105, 95, 106, 99, 122, 111,\n", + " 108, 84, 100, 111, 91, 86, 95, 104, 95, 129, 103, 80, 90,\n", + " 105, 112, 97, 107, 113, 103, 96, 100, 99, 101, 111, 81, 110,\n", + " 101, 97, 98, 108, 96, 97, 95, 107, 91, 89, 108, 99, 85,\n", + " 97, 86, 103, 94, 111, 94, 83, 99, 91, 103, 96, 99, 98,\n", + " 94, 111, 101, 93, 88, 98, 105, 88, 125, 109, 107, 100, 95,\n", + " 104, 87, 97, 110, 98, 85, 114, 96, 116, 115, 99, 86, 96,\n", + " 101, 99, 84, 96, 96, 104, 85, 86, 98, 109, 102, 90, 111,\n", + " 104, 92, 107, 103, 101, 91, 106, 105, 93, 99, 108, 110, 85,\n", + " 88, 93, 105, 105, 120, 87, 103, 101, 125, 81, 94, 89, 107,\n", + " 96, 103, 104, 98, 98, 88, 108, 79, 92, 113, 112, 93, 99,\n", + " 105, 90, 87, 80, 105, 111, 102, 109, 95, 103, 93, 105, 92,\n", + " 113, 107, 94, 113, 108, 82, 100, 136, 88, 100, 89, 100, 113,\n", + " 94, 116, 100, 93, 100, 110, 100, 108, 93, 85, 105, 95, 109,\n", + " 99, 92, 96, 111, 110, 110, 108, 103, 92, 108, 95, 84, 106,\n", + " 94, 112, 110, 98, 103, 80, 87, 81, 104, 93, 97, 100, 97,\n", + " 89, 100, 108, 104, 98, 107, 91, 94, 94, 112, 92, 103, 99,\n", + " 109, 98, 115, 114, 89, 97, 95, 95, 101, 102, 117, 88, 109,\n", + " 92, 101, 97, 94, 115, 89, 102, 97, 89, 107, 99, 90, 116,\n", + " 89, 115, 117, 108, 104, 101, 115, 87, 93, 96, 97, 99, 104,\n", + " 94, 106, 111, 102, 104, 94, 97, 111, 90, 99, 103, 113, 87,\n", + " 111, 99, 89, 86, 112, 84, 98, 67, 91, 98, 93, 99, 99,\n", + " 116, 110, 106, 82, 88, 85, 88, 116, 116, 104, 104, 118, 106,\n", + " 101, 83, 104, 106, 101, 101, 116, 103, 108, 121, 87, 115, 97,\n", + " 79, 103, 109, 94, 91, 95, 99, 103, 111, 118, 90, 117, 91,\n", + " 81, 90, 102, 115, 105, 100, 91, 95, 97, 98, 94, 99, 105,\n", + " 94, 91, 113, 130, 116, 111, 95, 105, 101, 109, 108, 97, 105,\n", + " 106, 106, 109, 106, 110, 102, 124, 109, 103, 91, 105, 87, 117,\n", + " 99, 86, 107, 94, 98, 102, 108, 95, 99, 90, 110, 94, 66,\n", + " 98, 122, 100, 93, 103, 86, 101, 92, 107, 80, 122, 99, 112,\n", + " 99, 107, 120, 97, 89, 99, 111, 107, 98, 103, 112, 111, 97,\n", + " 88, 84, 96, 95, 91, 94, 101, 89, 102, 104, 70, 122, 98,\n", + " 104, 100, 101, 87, 97, 93, 84, 103, 95, 90, 96, 106, 86,\n", + " 100, 92, 93, 99, 110, 86, 100, 93, 107, 101, 87, 95, 105,\n", + " 114, 109, 100, 91, 99, 109, 97, 105, 93, 95, 103, 93, 93,\n", + " 82, 104, 93, 114, 107, 110, 99, 86, 86, 119, 107, 86, 89,\n", + " 95, 103, 85, 98, 99, 102, 107, 109, 108, 93, 93, 99, 116,\n", + " 118, 102, 94, 112, 88, 110, 96, 107, 110, 101, 90, 101, 100,\n", + " 96, 102, 125, 112, 93, 101, 88, 99, 80, 95, 108, 100, 113,\n", + " 97, 109, 100, 97, 93, 95, 92, 91, 93, 98, 89, 92, 99,\n", + " 96, 99, 96, 83, 100, 93, 106, 89, 113, 88, 79, 109, 105,\n", + " 93, 110, 94, 109, 102, 103, 87, 98, 120, 92, 104, 100, 117,\n", + " 102, 95, 106, 104, 103, 105, 107, 95, 97, 105, 102, 119, 101,\n", + " 99, 99, 101, 92, 87, 104, 104, 96, 107, 98, 88, 95, 102,\n", + " 86, 104, 101, 94, 114, 99, 98, 98, 100, 100, 98, 103, 127,\n", + " 98, 82, 106, 94, 101, 108, 101, 98, 76, 97, 88, 99, 108,\n", + " 92, 104, 83, 95, 104, 97, 84, 101, 107, 106, 94, 88, 103,\n", + " 96, 101, 100, 100, 102, 85, 103, 97, 95, 100, 99, 80])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "999\n", + "[[-5.000e-01 9.995e+02]]\n" + ] + } + ], + "source": [ + "print(times[0]) # first time stamp in the light curve\n", + "print(times[-1]) # last time stamp in the light curve\n", + "print(ts.gti) # the GTIs generated within Lightcurve" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "GTIs are defined as 2-dimensional array (or a list of 2-tuples):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0, 500), (600, 1000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "ts = StingrayTimeseries(times, array_attrs={\"counts\":counts}, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(ts.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll get back to these when we talk more about some of the methods that apply GTIs to the data.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Combining StingrayTimeseries objects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `StingrayTimeseries` object can be combined with others in various ways. The best way is using the `join` operation, that combines the data according to the strategy defined by the user.\n", + "\n", + "The default strategy is `infer`. Similar to what can be seen in `EventLists`, it decides what to do depending on the fact that GTIs have overlaps or not. If there are overlaps, GTIs are intersected. Otherwise, they are appended and merged. But one can select between:\n", + "\n", + "+ \"intersection\", the GTIs are merged using the intersection of the GTIs. \n", + "+ \"union\", the GTIs are merged using the union of the GTIs. \n", + "+ \"append\", the GTIs are simply appended but *they must be mutually exclusive* (have no overlaps).\n", + "+ \"none\", a single GTI with the minimum and the maximum time stamps of all GTIs is returned. \n", + "\n", + "The data are always all merged. No filtering is applied for the new GTIs. But the user can always use the `apply_gtis` method to filter them out later." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New gti: [[0.5 3.5]\n", + " [4.5 7.5]]\n", + "New time: [1. 1.1 2. 2.1 3. 4. 5. 6.5]\n", + "New blah: [1 2 1 2 1 2 2 2]\n" + ] + } + ], + "source": [ + "ts = StingrayTimeseries(\n", + " time=[1, 2, 3], \n", + " gti=[[0.5, 3.5]], \n", + " array_attrs={\"blah\": [1, 1, 1]},\n", + ")\n", + "ts_other = StingrayTimeseries(\n", + " time=[1.1, 2.1, 4, 5, 6.5], \n", + " array_attrs={\"blah\": [2, 2, 2, 2, 2]}, \n", + " gti=[[1.5, 2.5], [4.5, 7.5]],\n", + ")\n", + "\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "for attr in [\"gti\", \"time\", \"blah\"]:\n", + " print(f\"New {attr}:\", getattr(ts_new, attr))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New gti: [[0.5 3.5]]\n", + "New time: [1. 1.1 2. 2.1 3. 4. 5. 6.5]\n", + "New blah: [1 2 1 2 1 2 2 2]\n" + ] + } + ], + "source": [ + "ts_new = ts.join(ts_other, strategy=\"intersect\")\n", + "\n", + "for attr in [\"gti\", \"time\", \"blah\"]:\n", + " print(f\"New {attr}:\", getattr(ts_new, attr))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New gti: [[1. 6.5]]\n", + "New time: [1. 1.1 2. 2.1 3. 4. 5. 6.5]\n", + "New blah: [1 2 1 2 1 2 2 2]\n" + ] + } + ], + "source": [ + "ts_new = ts.join(ts_other, strategy=\"none\")\n", + "\n", + "for attr in [\"gti\", \"time\", \"blah\"]:\n", + " print(f\"New {attr}:\", getattr(ts_new, attr))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, `append` will fail, because the GTIs intersect." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "In order to append, GTIs must be mutually exclusive.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [23], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m ts_new \u001b[38;5;241m=\u001b[39m \u001b[43mts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mts_other\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mappend\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1961\u001b[0m, in \u001b[0;36mStingrayTimeseries.join\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1922\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mjoin\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 1923\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1924\u001b[0m \u001b[38;5;124;03m Join other :class:`StingrayTimeseries` objects with the current one.\u001b[39;00m\n\u001b[1;32m 1925\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1959\u001b[0m \u001b[38;5;124;03m The resulting :class:`StingrayTimeseries` object.\u001b[39;00m\n\u001b[1;32m 1960\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1961\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_join_timeseries\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1835\u001b[0m, in \u001b[0;36mStingrayTimeseries._join_timeseries\u001b[0;34m(self, others, strategy, ignore_meta)\u001b[0m\n\u001b[1;32m 1832\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1833\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1834\u001b[0m \u001b[38;5;66;03m# For this, initialize the GTIs\u001b[39;00m\n\u001b[0;32m-> 1835\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[43mmerge_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgti\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mall_objs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrategy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1837\u001b[0m all_time_arrays \u001b[38;5;241m=\u001b[39m [obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m all_objs \u001b[38;5;28;01mif\u001b[39;00m obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m]\n\u001b[1;32m 1839\u001b[0m new_ts\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate(all_time_arrays)\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1047\u001b[0m, in \u001b[0;36mmerge_gtis\u001b[0;34m(gti_list, strategy)\u001b[0m\n\u001b[1;32m 1045\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m join_gtis(gti0, gti)\n\u001b[1;32m 1046\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m strategy \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mappend\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 1047\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m \u001b[43mappend_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgti0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgti\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1048\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m gti0\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1090\u001b[0m, in \u001b[0;36mappend_gtis\u001b[0;34m(gti0, gti1)\u001b[0m\n\u001b[1;32m 1088\u001b[0m \u001b[38;5;66;03m# Check if GTIs are mutually exclusive.\u001b[39;00m\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m check_separate(gti0, gti1):\n\u001b[0;32m-> 1090\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIn order to append, GTIs must be mutually exclusive.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1092\u001b[0m new_gtis \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate([gti0, gti1])\n\u001b[1;32m 1093\u001b[0m order \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39margsort(new_gtis[:, \u001b[38;5;241m0\u001b[39m])\n", + "\u001b[0;31mValueError\u001b[0m: In order to append, GTIs must be mutually exclusive." + ] + } + ], + "source": [ + "ts_new = ts.join(ts_other, strategy=\"append\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Empty `StingrayTimeseries` will throw warnings but try to be accommodating" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "StingrayTimeseries().join(StingrayTimeseries()).time is None" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[1, 2, 3])\n", + "ts_other = StingrayTimeseries()\n", + "ts_new = ts.join(ts_other)\n", + "ts_new.time\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the data being merged have a different time resolution (e.g. unevenly sampled data, events from instruments with different frame times), the time resolution becomes an array attribute:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 1, 3, 3, 3])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[10, 20, 30], dt=1)\n", + "ts_other = StingrayTimeseries(time=[40, 50, 60], dt=3)\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "ts_new.dt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In all other cases, meta attributes are simply transformed into a comma-separated list (if strings) or tuples" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((1, 3), 'a,b')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[10, 20, 30], a=1, b=\"a\")\n", + "ts_other = StingrayTimeseries(time=[40, 50, 60], a=3, b=\"b\")\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "ts_new.a, ts_new.b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Array attributes that are only in one series will receive `nan` values in the data corresponding to the other series" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 3., 3., 3., nan, nan])" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[1, 2, 3], blah=[3, 3, 3])\n", + "ts_other = StingrayTimeseries(time=[4, 5])\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "ts_new.blah\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When using `strategy=\"infer\"`, the intersection or the union will be used depending on the fact that GTI overlap or not" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 3., 3., 3., nan, nan]), array([3, 3, 4, 4, 3]))" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[1, 2, 3], blah=[3, 3, 3], gti=[[0.5, 3.5]])\n", + "ts1 = StingrayTimeseries(time=[5, 6], gti=[[4.5, 6.5]])\n", + "ts2 = StingrayTimeseries(time=[2.1, 2.9], blah=[4, 4], gti=[[1.5, 3.5]])\n", + "ts_new_1 = ts.join(ts1, strategy=\"infer\")\n", + "ts_new_2 = ts.join(ts2, strategy=\"infer\")\n", + "\n", + "ts_new_1.blah, ts_new_2.blah\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Addition/Subtraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two time series can be summed up or subtracted from each other **if they have same time arrays.**" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "ts = StingrayTimeseries(times, array_attrs={\"blabla\":counts}, dt=1, skip_checks=True)\n", + "ts_rand = StingrayTimeseries(times, array_attrs={\"blabla\": [600]*1000}, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "ts_sum = ts + ts_rand" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counts in light curve 1: [ 96 92 92 103 101]\n", + "Counts in light curve 2: [600 600 600 600 600]\n", + "Counts in summed light curve: [696 692 692 703 701]\n" + ] + } + ], + "source": [ + "print(\"Counts in light curve 1: \" + str(ts.blabla[:5]))\n", + "print(\"Counts in light curve 2: \" + str(ts_rand.blabla[:5]))\n", + "print(\"Counts in summed light curve: \" + str(ts_sum.blabla[:5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Negation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A negation operation on the time series object inverts the count array from positive to negative values." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "ts_neg = -ts" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "ts_sum = ts + ts_neg" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.all(ts_sum.blabla == 0) # All the points on ts and ts_neg cancel each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count value at a particular time can be obtained using indexing." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[120]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([120]), array([99]), 120, 99)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[120].time, ts[120].blabla, ts.time[120], ts.blabla[120]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve can also be sliced to generate a new object." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "ts_sliced = ts[100:200]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ts_sliced.blabla)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other useful Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two time series can be combined into a single object using the `concatenate` method. Note that both of them must not have overlapping time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "ts_1 = ts\n", + "ts_2 = StingrayTimeseries(np.arange(1000, 2000), array_attrs={\"blabla\": np.random.rand(1000)*1000}, dt=1, skip_checks=True)\n", + "ts_long = ts_1.concatenate(ts_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method will fail if the time series have overlaps:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "In order to append, GTIs must be mutually exclusive.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [41], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mts_1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcatenate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mStingrayTimeseries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marange\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m800\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgti\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m800\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1749\u001b[0m, in \u001b[0;36mStingrayTimeseries.concatenate\u001b[0;34m(self, other, check_gti)\u001b[0m\n\u001b[1;32m 1747\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1748\u001b[0m treatment \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnone\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1749\u001b[0m new_ts \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_join_timeseries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mother\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtreatment\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1750\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m new_ts\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1835\u001b[0m, in \u001b[0;36mStingrayTimeseries._join_timeseries\u001b[0;34m(self, others, strategy, ignore_meta)\u001b[0m\n\u001b[1;32m 1832\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1833\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1834\u001b[0m \u001b[38;5;66;03m# For this, initialize the GTIs\u001b[39;00m\n\u001b[0;32m-> 1835\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[43mmerge_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgti\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mall_objs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrategy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1837\u001b[0m all_time_arrays \u001b[38;5;241m=\u001b[39m [obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m all_objs \u001b[38;5;28;01mif\u001b[39;00m obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m]\n\u001b[1;32m 1839\u001b[0m new_ts\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate(all_time_arrays)\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1047\u001b[0m, in \u001b[0;36mmerge_gtis\u001b[0;34m(gti_list, strategy)\u001b[0m\n\u001b[1;32m 1045\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m join_gtis(gti0, gti)\n\u001b[1;32m 1046\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m strategy \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mappend\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 1047\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m \u001b[43mappend_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgti0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgti\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1048\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m gti0\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1090\u001b[0m, in \u001b[0;36mappend_gtis\u001b[0;34m(gti0, gti1)\u001b[0m\n\u001b[1;32m 1088\u001b[0m \u001b[38;5;66;03m# Check if GTIs are mutually exclusive.\u001b[39;00m\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m check_separate(gti0, gti1):\n\u001b[0;32m-> 1090\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIn order to append, GTIs must be mutually exclusive.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1092\u001b[0m new_gtis \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate([gti0, gti1])\n\u001b[1;32m 1093\u001b[0m order \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39margsort(new_gtis[:, \u001b[38;5;241m0\u001b[39m])\n", + "\u001b[0;31mValueError\u001b[0m: In order to append, GTIs must be mutually exclusive." + ] + } + ], + "source": [ + "ts_1.concatenate(StingrayTimeseries(np.arange(800, 1000), gti=[[800, 1000]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Truncation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A light curve can also be truncated." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "ts_cut = ts_long.truncate(start=0, stop=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ts_cut)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : By default, the `start` and `stop` parameters are assumed to be given as **indices** of the time array. However, the `start` and `stop` values can also be given as time values in the same value as the time array." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "ts_cut = ts_long.truncate(start=500, stop=1500, method='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1499)" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_cut.time[0], ts_cut.time[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Re-binning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution (`dt`) can also be changed to a larger value.\n", + "\n", + "**Note** : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "ts_rebinned = ts_long.rebin(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Old time resolution = 1\n", + "Number of data points = 2000\n", + "New time resolution = 2\n", + "Number of data points = 1000\n" + ] + } + ], + "source": [ + "print(\"Old time resolution = \" + str(ts_long.dt))\n", + "print(\"Number of data points = \" + str(ts_long.n))\n", + "print(\"New time resolution = \" + str(ts_rebinned.dt))\n", + "print(\"Number of data points = \" + str(ts_rebinned.n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sorting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A time series can be sorted using the `sort` method. This function sorts `time` array and the `counts` array is changed accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "new_ts = StingrayTimeseries(time=[2, 1, 3], array_attrs={\"blabla\": [200, 100, 300]}, dt=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "new_ts_sort = new_ts.sort(reverse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([3, 2, 1]), array([300, 200, 100]))" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_ts_sort.time, new_ts_sort.blabla" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A curve can be plotted with the `plot` method. Time intervals outside GTIs will be plotted as vertical red bands. " + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgLklEQVR4nO3deXwTdfoH8E/StOnd9KAXtKVQoNyUu1widEFAvPWHyyLgtbsiiu7Pg1XQdVVc9KcuyMK6KrsqqOsusoqKi4AgWkoLlPsoUNpC6U2a3mmT+f1RCA1N2zSZZCbTz/v16uvVZiaTJ9Nk8mTm+T5flSAIAoiIiIgUSi11AERERESuxGSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRommkDkAOzGYzCgsLERQUBJVKJXU4REREZAdBEFBVVYXY2Fio1W2fv2GyA6CwsBBxcXGibzcYwPNXfn8ZgEH0RyBPdvX10U3qQEiWSsHjhqvxPeg+rn49FxQUoEePHm0uV7GDMlBZWQmdToeCggIEBweLtl1VURG0L74IAGh48UUI0dGibZs8n+X14ecHwd9f6nBIRlS1tUBdHY8bLsb3oHu48vVsMBgQFxcHvV6PkJCQNtfjmR3AcukqODhY1GQHNTWAjw8AwCcoCBBz2+T5rr4+dDogKEjqaEhOfHwAk4nHDVfje9A93PB67qgEhQXKREREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNEZIdGkxnGJrPUYRCRAzjrORFRB2qNTfj7T+dhFgT8amwCdP4+UodERJ3AMztERB3Q1zbCaDKjySygvNoodThE1ElMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGiSJju7d+/G7NmzERsbC5VKhc2bN1stf/HFF5GcnIyAgACEhoYiLS0NGRkZVutUVFRg7ty5CA4Ohk6nwwMPPIDq6mo3PgsiIiKSM0mTnZqaGgwdOhRr1qyxubxv37545513cOTIEezZswc9e/bEtGnTUFpaalln7ty5OHbsGLZt24YtW7Zg9+7dePjhh931FIiIiEjmNFI++IwZMzBjxow2l//yl7+0+vvNN9/E+++/j8OHD2Pq1Kk4ceIEtm7diszMTIwcORIAsHr1asycORNvvPEGYmNjXRo/ERHZp6iyHqeLq5DaOxzeXqygIPfymFec0WjEu+++i5CQEAwdOhQAkJ6eDp1OZ0l0ACAtLQ1qtbrV5a6WGhoaYDAYrH6IiMh1bnlnD+77YB/W/nBW6lCoC5J9srNlyxYEBgbC19cXb731FrZt24aIiAgAQFFRESIjI63W12g0CAsLQ1FRUZvbXLFiBUJCQiw/cXFxLn0ORERdXUlVAwDgyMVKiSOhrkj2yc6NN96I7Oxs/Pzzz7jppptwzz33oKSkxKltLl26FJWVlZafgoICkaIlIiIiuZF9shMQEICkpCSMHTsW77//PjQaDd5//30AQHR0dKvEp6mpCRUVFYiOjm5zm1qtFsHBwVY/REREpEyyT3auZzab0dDQfDo0NTUVer0e+/fvtyzfsWMHzGYzxowZI1WIXUpNQxP+tvscvj9ebPd9TlwyYNX2HOSX17owMhJbWXUD9p4rh77WKHUoRESdIulorOrqapw5c8byd25uLrKzsxEWFobw8HC88soruOWWWxATE4OysjKsWbMGFy9exN133w0A6N+/P2666SY89NBDWLduHRobG/Hoo49izpw5HInlJpuzL+KVb04AAI7+YToCtR2/pB74eyYKK+uRfrYcnzw81tUhkki2HCqEvq4ReeW1+J9RrHMjIs8habKTlZWFG2+80fL3k08+CQCYP38+1q1bh5MnT+If//gHysrKEB4ejlGjRuHHH3/EwIEDLffZsGEDHn30UUydOhVqtRp33nknVq1a5fbn0lVV1zdZfm9oNNmV7BRW1gMADhZcdllcJD59XSMA4FJlncSREBF1jqTJzuTJkyEIQpvLN23a1OE2wsLCsHHjRjHDIiIiIgXxuJodIiIios5gskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGiSDj0nIiIiedLXGvHloUIEajW4LaU71CqV1CE5jGd2iIiIqJWCy3WoqDEiv6IWhitNRT0Vkx0iIiJSNCY7REREpGhMdqhLqW80wVDv2adjiYioc5jsUJdR09CE8a/twMg/fo9jhZVSh0NERG7CZIe6jEJ9HcprjDCazDh5qUrqcIiIyE2Y7BAREZGiMdkhIiIiRWOy0wWYzQLSz5bjfFmN1KEoRp3RhJ0nS3C5xih1KIpQ32hCblk1jE1m0bctCELzJczqBtG3TeQsfa0RBRW1EARB6lAUjclOF7DlyCXc+7e9mPrmLtQ3mqQORxFe+PIoFv49EwvW75M6FEXYcvgS/pNdiO9PFIu+7QuX6/DPrAJ8tDcPtcYm0bdP5Kgmkxkfpufh3wcu4FQR6whdiclOF1BcWQ8AMJkFVDfwYC+GHSdLAQCHLnBUlxguXK4FAJwuFv+A3/I1X2tksk/y0WgSYL5yRqeKx2aXYrJDREREisZkh4iIiBSNyQ4REUnqXGk1/vx9Ds6UsG6FXIPJDhERSWrJZ9l46/vTeGTDAalDIYViskNERJI6fKXQ/3RxtcSRkFIx2SEiIiJFY7JDREREisZkh8hJeeU1WLThAD7Ykyt1KEREZAOTHSInfZSeh6+PXMJLW47DZGbLdyIiuWGyQ+SkWk7BQUQka0x2iIiISNGY7BAREZGiMdlRIEEQ8OjGA5j8+k4cvciJKpWkpKoef//5PL4+XAhBcF190OELerz34zkcuqB32WMQdUZlbSNuXv0jbn1nD6obmlBnNOGOv/yEmX/+EeXVDR3eXxAELP7kII+LXZRG6gBIfNUNTdhy+BIAYNvxYgRq+W9WivNlNdDXGqGvNaKhyQxfby+XPM6OkyUAgJ0nSzC0h84lj0HUGQcLLuPoRQOA5mRcq/HCgXw9AGB/3mVMGxjd7v1rjCZ8dagQAPDdsSIM6h7i0nhJXnhmR+E4NkhZXHgyh6jLMPON1OUw2SEiIiJFY7JD1AFjkxmVtY1Sh0EkOUEQUFrVcX0Mkdww2SFqR6PJjKlv/oDhL2/Dz2fKpA6HSFJPfJaNUa98j3d25EgdClGnMNkhaoe+thEFFXUwmQUcv2SQOhwiSW3Obi7wXf/TeWkDIeokSZOd3bt3Y/bs2YiNjYVKpcLmzZstyxobG/HMM89g8ODBCAgIQGxsLO677z4UFhZabaOiogJz585FcHAwdDodHnjgAVRXV7v5mRARdR0mFviSh5E02ampqcHQoUOxZs2aVstqa2tx4MABLFu2DAcOHMCmTZtw6tQp3HLLLVbrzZ07F8eOHcO2bduwZcsW7N69Gw8//LC7ngIRERHJnKQNWGbMmIEZM2bYXBYSEoJt27ZZ3fbOO+9g9OjRyM/PR3x8PE6cOIGtW7ciMzMTI0eOBACsXr0aM2fOxBtvvIHY2FiXPweSj1NFVahuaMLweB1UKpVd96lvNCH9XDmG9tAhLMDHxRGKq6y6AV5qFaKDfe1+vl1NeXUDCvV1UodBLlZsqMfu06VI7R0Ob6+uXZ3R0GRCob4O3XX+8NF07X3RkkfticrKSqhUKuh0OgBAeno6dDqdJdEBgLS0NKjVamRkZLS5nYaGBhgMBqsf8mwlVfWY/vZu3Ln2Z2TkVth9v5e/Po6F6zMx9722Xy9y9a/9F/BZZgGKDPVShyJLtcYmfLQ3D0fYLVfxlv3nGO77YB/W/XBW6lAk982RIvwnuxDfHSuSOhRZ8Zhkp76+Hs888wzuvfdeBAcHAwCKiooQGRlptZ5Go0FYWBiKitr+R69YsQIhISGWn7i4OJfGTq5XVmW0/F7ciQ//3aebR1id8ODi45qGJqlDkKU6I2ej72qOFjKxzSuvAQCcLWXtaksekew0NjbinnvugSAIWLt2rdPbW7p0KSorKy0/BQUFIkRJREREciT7SZOuJjp5eXnYsWOH5awOAERHR6OkpMRq/aamJlRUVCA6uu15UrRaLbRarctiJiIiIvmQ9Zmdq4lOTk4Ovv/+e4SHh1stT01NhV6vx/79+y237dixA2azGWPGjHF3uESyJwgCjl2sxOELes4PRCSS+kYTss5X4PyVS0hyVWtswr7cCly4XCt1KG4n6Zmd6upqnDlzxvJ3bm4usrOzERYWhpiYGNx11104cOAAtmzZApPJZKnDCQsLg4+PD/r374+bbroJDz30ENatW4fGxkY8+uijmDNnDkdiEdlQVm3EthPFAICwAB/0CPWXOCIiz3f4QiV+Pttc/7d4Sh94qeU5OnJfbgWyC/QAgCVpfaUNxs0kTXaysrJw4403Wv5+8sknAQDz58/Hiy++iC+//BIAMGzYMKv77dy5E5MnTwYAbNiwAY8++iimTp0KtVqNO++8E6tWrXJL/ESexmgyX/u9ydzOmkRkr5bF8IIgAJBnsmOo77qDGSRNdiZPnnzlhWFbe8uuCgsLw8aNG8UMi4iIiBRE1jU7RERERM5istPFNDSZ8ey/D+P5zUfQZBL3MsZLW47jqc8PoZp9XxxWXt2ALYcKcbRFIzxBELD7dCm+O1ZkdRmKyJW2nyjGg//IQvrZ8g7X/Sj9PH778X72dmnDmZIqfHmokN28JST7oeckrn255fg0s7mv0O0pPTAiIVS0bf/nyozIU/tH4aZBbQ/9p7btO1+BM6XVOFNajUHdQwAAl2sbcSD/MgAgPIAtE8g9HtlwAA1NZuSUVGHXUze2u+6y/xwDAIQG+ODV2we7IzyPsuXwJQCAoa4RvxqbIHE0XRPP7HQxjaZrdVBin9mxbNfMsw+Oqm9sve9aDhHncHFyl4YrBex55fYPU67uwgWw9jDUNUodQpfFZIeIiIgUjckOERERKRqTHQX4+WwZJvxpB5b/56jUoQAA/rjlOMa/tgO7T5dabhMEAb/+KAs9n/3a5n3+/H0OUldsx9dXrm1L4fa//IRao/in4XPLapD25i786r0M3PvuXvzizV0oqOh6HUzJMR29v08WGTDljR/w8IdZdrXrcKUvDxXiZJFzk+o+9slBTH59J45c4KSezvpgT26X7JZsC5MdBdiQkY8Ll+vwYXqe1KEAAIoNDbior8Pffz5vua2ixojvjhW3eZ+3vj+NS5X1ePv7026I0LaD+XocLxR/9vOfzpThTEk19pwpQ/q5cuSUVNs1woUI6Pj9/ePpMpwrq8F/jxejvMbo5uhaa/klxxFfHirE+fJabD0m3RcfpTDUN+LoRfGPaZ6IyY4CuKrQ2FmOdOit4bB1IityfX+7mpm1+KLgoIZmTHaIiIhI0ZjsSKysugHm677C1BlNqKrvOkMUpa4zoGaCILikZskZZhnGBAAms4D6RlPHK7qYIAgoq24QZTslVfWW92JpVetttpz/yRkmnrIhCbCpoIQ2ZOThuS+OYmKfCHz0wBgAQGVdI254fSdqjSZsWTwBfaOCJI7S9V7aclzqEAjA5uxC5JXX4MbkSKlDsdh04CIuXK5FWv8oS5NFqQkQ8NHePFTWGnFbSnckhAdIFstzm49iY0a+09v545YT+OCnXCwc3xO9uwXi+c3WxdCVtY2Y9PpOpx8HAHacLIEgCFCp5DlZptgq2VtHFnhmR0JXOw7/mFNmua2gohb62kYYm8w4WVQlVWhutf6n81KHQADyymsAACcvyaeg8epIktPF8nkvNDSZoa81QkBzMb6UxEh0AOCDn3IBNL8XbY2Cyq+oFfVDu6kLnd2paFE03i2IHdClwmSHiIjIDbQafuRKhXueiIiIFI3JDnkEQRBwqECPY4XuazRmNgvYe859/XDMgoALTjYbLDHUo9hQL1JE8lHVxeZcqqgxoqy6oVXxvtksIONceZuzi/9wqhTlIhQsd+TqpXZbKusasfNkiSwLy6nrYrJDHuFYoQG3rvkJs1btQX4nJiZ0xjdHL2HxJwfd8lgAcLzQAJMTI9MqaozYuC8fn+zLF2WEjpxcrjW2GrWoVLXGJvzrwAX8cKoEWXkVVsu2nyzB/7y7F1P/b5fNEZv/+/khzH0vwy1xrt6RY/P2NTvPYuHfM/HcF/Lo6E4EMNkhD1FUee1sRXGVe85ctHxMd3C2ALRlQ0Ylzj7tTCLoSWpbDPG+fgh4UYuzdvpa268Xdw1sOJivb3f5t0fZAZnkg8kOERERKRqTHSIiIlI0JjseoKCiFqu25+DoReXNAnxRXyf6Ntf/dB5fHSoUfbuuUGc04UDeZdEvmR3Iv9xmEaunKFFgoXVnnSmtkTqELq3RZMaBvMs4U2L7vXS80IBDBXpFzT+VX1GLzPMVsugQLiYmOx5g2X+O4s1tp7FgfabUoYhu+WbxixizC/RY/MlBu0Yl+ft4if74nXHogh5Z+Zfx7wMXRN1ufkUtvjpU6NBkrHKxOdszElZX+v5YsdQhdGk5xdXYnVOKLYcLW334V9QY8d/jRdh5qsTS/NLTCYKATQcu4KczZTiQf1nqcETFZMcDXO1oqrQRNkDzKCtXqbZjBvXekYEue3x7XC1KbnTRzNZNZs9Ndjh0GQj05Yw+UjI2XUtwrn+Ptvwi4clfKtpSY8fx05Mw2aEurWvMzkNE1LUx2SEiIiJFY7KjMJ251PXoJwfx111nLX9/lH4ePZ/9Gjev/lHUgtmSqnos+SxbtO3Z0laDM7l6+t+HkXnefd2ZxSYIAn44VYL/Hivy6FP4Wecr8M2RSzDYaNBX32jCd0eLsGp7Dr45cq1nzGEbE2V6gvNlNXhkw36svzLppzsp8RK8q1TUNGDL4UIcvqBvd71iQz2+OlSIk0XymbhXzpjsKECQr7fl9/92oqCxtKoBK749aSm8W/afYwCAoxcN2HJYvOLQ744WWc3sLjZ9rRHfHi1y2fZd5ZWvT0gdgsPKqo3ILtDj+CUD8p2c4kIqjSYz9pwpw+niKpywUTuWW1aDE0UGmAXBqv7LU6fj+Ef6eXxzpAh/+Op4q2koXK0zx6WuLut88+ivHSdL2l1vT04ZzpZWY6sHHvukwGRHAQK114oYHSlItTVssknE1vyNJtceWMWM1Z0u6j3zQxOwfs146rDblmHbeg0pbXqK2gbphhJ7cqG8uzXYeabUngEYdA2THSIiIlI0JjtERESkaEx23OQPXx3DpJU7sT/P9Y2aXvzyuMsfg665XGN0yXb1ta7Zrhg+2ZcvdQiiyjxf0fFKDqqqb8THe/PweVYBTO1cGks/W473fzzXZrdeMf119zmkrtiOTSI3s5SDi/o6TH9rN+a8m+6y/lWOOldWg2+P2J4g1ZWvQWKy4xZmQcCWw5eQX1GL/2RfdPnjid2Nl1pLCPe3/J7logTWUwt/PZFa5bqOSxf1dSirbsBFfR3Ka9oelZSRW46qhiZk5Lr+Q++1b0/iUmU9Vnx70uWP5W4Z58pxqrgKe89V4JwMp9s4VVxlcwSjK1+DxGTH7dr7ZkeeIyLQR+oQSERy+phx50ipqx28SXpyeg0qEZMdIiIiUjQmO2SX0qoGm984q+pdO/xRX2t0qmldW3HLUa3RvUOD7W0JUGc0dTgMu85o6vCsZX2j9TpmQXB6/itjk1nUugyzWUCdk/8HsWNyRnl1A0xmAVX1jahT2CzWttQ3ml1+TCLPxFnmqENrfziLP209iVlDYrDml8Mtt5+4ZMA7O8+47HH35JThvg8yEBfmj6Uz+nf6/n/ZeRb/PnABs4fGYvW9KS6IUFzHCt3bmffbo5eQEO4PX+/2Z37/6+6ziAjUtrn8XGlz0WVYgA9+NTYBKhu1B7llNfgy+yJ0/j6Yl5oAtUqFf++/gIv6OkwbEO1Q/Ia6RnyYngeVClgwricCtM4fzj7LKkCxoR43DXIsJn2tER/tzYOXSoUF43vC30e6Q+xnmfl45t9HEBmkhb6u0WWdrvee63wn8B9zSjElOUr0WHadLsWu06WWvz/NzMcLsweK/jjkeXhmhzr08d48AMDXh61HEZwqqnLp4x4trIRZAPLKa2228+/I1ULtrw6J1w1aTH0knnEdaLtmI8TP2+rv9tr9F+rrIAAorzG22eCxqLIeAoDLtUbLWY+L+joAwJlSx0YfVdQY0WRuPotSIdKIuKvdkc+XOVYcXl5thMkswGgyQ18rbT3Mlivv15KqBpdO6XHcRvfpjpx08bHjKkMdz/JQM0mTnd27d2P27NmIjY2FSqXC5s2brZZv2rQJ06ZNQ3h4OFQqFbKzs1tto76+HosWLUJ4eDgCAwNx5513oriYrcnF5CmXgTxNqL93xytJJEDCMxJERGKTNNmpqanB0KFDsWbNmjaXT5gwAX/605/a3MYTTzyBr776Cp9//jl27dqFwsJC3HHHHa4KmYiIiDyMpF/fZsyYgRkzZrS5fN68eQCA8+fP21xeWVmJ999/Hxs3bsSUKVMAAOvXr0f//v2xd+9ejB07VvSY5aa0qgG7W1yjdtT1BajlXXiW4jqjCXvPlTs9LPdcabXTBdLV9U3IL/ecfjs1DU3Q+Ts/LN+ZWbLrjCYUGerh79N+LZIYSgz1KDbUIyrYt9Wyy7VGxOr8rG5j64nW6u0onD5fVoO951zff8gsCLh4uQ7Bft6tLuW2p6qT81SdL69BsG/nHqM9NQ1NKK1uQFyof8crd1Eefa56//79aGxsRFpamuW25ORkxMfHIz09vc1kp6GhAQ0N1w6mBkPnrznLxT1/TUdumfONs747Zj1z7t9+zMVzswY4vV1P9NzmI9h0wLnmjzUNTZjyf7sAABP7RDi8nY378tw+SssZn2UW4Nc39HZqG1c7Djtq08ELKK1qQPfrEg1XOFNajTOl1bgvNQFhAdZF3NuOFyPpurqs7Hw9Yga7Pi5nXK2lcpdXvj7R7vL6RhOm/N8PcEeeeKLQgG0niuGlVuGRyUkue5xvrnRRvj2luyjb+zSzAFX1jRjdM0yU7SmRRxcoFxUVwcfHBzqdzur2qKgoFBW1Pe39ihUrEBISYvmJi4tzcaSuI0aiAwBFBusZuLty07xtx5yv+WpZUF1scHx2c09KdACIMrzZ2edcWtX8RcadH9rV9bZjrm+0Lgy2NVJNDpKjgyy/l1Q5/np1xI857Z+Zrm5ockuiAwCVV963JrPglrNwYs1cXnUl7kuV7v3feRKPTnYctXTpUlRWVlp+CgoKpA6JiEgygSIM2yeSM49+hUdHR8NoNEKv11ud3SkuLkZ0dNt9MrRaLbTatvuGEBERkXJ49JmdESNGwNvbG9u3b7fcdurUKeTn5yM1NVXCyDpvQ0Zeh11qHZFTXIVV23PaXSfz/GUcvuDehnZtKXTRadizdvZy+eZI25c/7bFqew5OFtlXA7bv/GXL6Wd7XbYxE3rGuYo2+xBdvYzS0GRC1vkK5Il02VNq1fVN2OfCCTNPFhlg7GQX5DMl1TiQ75pJYa86KpP3KQDsOVOGD/bkosGBHj6f7ivAxox8lFc34LyHFOBnF+hxMP+y3Ze36owmZJ6vwIXLjj+/zl4CL3DisZRO0jM71dXVOHPmWgfe3NxcZGdnIywsDPHx8aioqEB+fj4KC5ubwp06dQpA8xmd6OhohISE4IEHHsCTTz6JsLAwBAcHY/HixUhNTfW4kVjPfXEU/aKCOuxm21nfHu34w3v+B/vg6y2fvPdyjRGhAeLWDD32yUG8/T/DOlzvg59ynXqcP2/PwaaDF/DPX7sv2S6tbsDOkyUYHh/aatmJSwaMT4rA0YuV2HOmzG0xOcNgxyi43TmlKKx0bU3O6WL7G9/VN5ksRaeu9FmWvC65v7TlOIbH6zp9v/yKWvz+iyP44uAF8YNykf15zYlssK83etvREHR//mVknXcuIf/i4EX8xsmCf2om6SdcVlYWUlJSkJLS3Mr/ySefREpKCpYvXw4A+PLLL5GSkoJZs2YBAObMmYOUlBSsW7fOso233noLN998M+68805MmjQJ0dHR2LRpk/ufjAg6O3xRTGEiDBcWS60L5vA55kCXV0cVVLh3NAsAlBhsD9U2Xxn2Xtcoj7ma2hLa4vVnzxkVsTomt6czXYflMheWFJwpsnV1F3ZXsPeMX7UIc3TZMyyf7CPpmZ3Jkye324NkwYIFWLBgQbvb8PX1xZo1a9psTEhE8qdRy3OUEhEpg3yuXRARERG5AJMdN/uni6+5Xz9Zp6f6/ngxXvv2pKjbzC7Qi7q99rz6jbixe5IvswuRX1GLEkM9vjpUiBOX3HcJ0d7LSXVGE7Yec64YvaU9ObbroT78+Xy7E2Xuz6vA10cuOd2t21MZOrjU85/si/j1R/vdFI30quob7R5M4W6F+np8eagQZ0qqoK814uvDhch2cUG+mDx66LknajS5tlFVhgtHqLjTIxsPiL7Nlzvo1Comuc607g7nyqpRWlWPsEAt8sprcLa0GmMSw93y2AUV10ajeHup20x+zpVW45yIHyptNVM0CQLyK2yPkGkym/HjlSRJzpPCSunxT7OlDsFhPprOX5qVcw3TD6dKYDSZca60GsPidMgpqUZOSTWG2RgYIUc8s0Oy1JniUHt11W/PUqhqaEKNBAX35hY1gMG+bX+XMzkxX5loWoTQ5OIvQeR+3l6d/3iV89xpLQuzPbEgn8kOERERKRqTHSIiIlI01uxI5MUvj7m0A2xbnv/iqM3b7e1cPPX/fkBcmD/+PCcFSz7LbnddMZvYHci7Vgj39eFLGMXZfa3UGJtazVxvj0/25QOAS/ZnWbXt3j8dyS3tfJfnfx+4gNuGdTyD9Md78zCkRwgiAuU1XYwjnZd/9X6GCyKRj7U/nG1zmSAAC9bvc+njv7fnHDTqzp8PKKlqQKzOz9KEUA6yzlcgu0DfqieSIAj45mgRSg31mDkkBt0cfF+UGOrxzZFL6Bbsi5mDomU54S3P7Ejk7z+fl+RxO9sC/3pnS2vww6lS/NfOD9Zaozh1Gy0PHBcuu79pnydor7lbR31sMp3s9CqmChtTYtjD3oRBLlOjOCvPQ6ZZcIWL+jpUidC0rz3GJrNDx6+CNgrSpbTnTJnN44PRZEZOcRX0dY0458CXjKvOldVAX9eInOIqpz9jXIXJDjnE3WV0Lb8osP9c53nSLnM0VjkXd1LXIcOTGi4nh3r/jjDZIXKz9kYJERGR+HjUlbFL+jpFz41S32hGo0/nT3lePy+S3L/Rl1Y5VrtSa5Tufy/W5Ud3ajILaJD5HGDuJOZw9vIax17DnqLRZIa5ybOOtW31drqelMcROWGyI2Mrvj2J9/bk2v2i9kTlDkzomJV3GZ9l5uN/RsUDAO5a97PYYYnqcq1j/X32nisXORL7XLKzWF1uig312GbwzNjFZjYLSHfw9XO6uHWzxQXrM50NSbaMJjM+3ZePSi9f9IwIkDocu5wsMtj9RfjCZffWEJ0tqcGA2GC3PqY9eBlL5kqrGpiZ27ClxbQYUswy7qwHJiRKHQIpWIMLmnIqVU1DE+qbzDAJgsMjCN0tt8zxYmJX8GpRSKmvc2yAgasx2fFwrP/wTMtuHiB1CESy0DcqUOoQqAtgskNERESKxmSHXOp4oQGHL+hF32762XKYzALMMi9OllqjyYzcsmpZX9ZoMplR6oLLB52ZC80kCCi6rlbJkXoyuqb+SrF4VX0jdpwskTga8RSzLswj8RoIdcjLy/HGEXetSxcxkmuazAI+zypAkC9ni27P4QuVsm+i19as4M5q6mQi/Glmvkvi6Mou1xjxu88P4YdTpW2u42mToGYX6DGkR4jUYVAn8cwOdah/tPwq6wEgr6IWRfyWRSRb5TXGDs/qpPYOd1M04qmu56ART8NkhzqkceLMDnkOHy8eDsj9hsbppA6BugCHL2PV1NRg165dyM/Ph9FofW37scceczowIiIiIjE4lOwcPHgQM2fORG1tLWpqahAWFoaysjL4+/sjMjKSyY6D3vvxHGfzlrHsAr3UIXQJ7RUGN5rMOHyh0ul+KFLWMZ24ZEBDkxn9Y4Jc9hhymthVLjJzr+2T9T+dx+IpfeDrxPbOlLZuvuhJGk1mHMjTW/42mQWHjnHbjhehwAMmZ3bovPUTTzyB2bNn4/Lly/Dz88PevXuRl5eHESNG4I033hA7xi7jpzPlePv7HKnDoDb891ix1CF0eaeLqvBjTtvFrvaSqnlcZZ0R3x0rwg+nSpDvwlnL7/tgn8u27akW/v1aF+haownbTzg+Qqy+yYQsD08oz5RUIyP3WpftvPJa7Drd+ffWsUIDDJ0Y+SgVh5Kd7Oxs/O53v4NarYaXlxcaGhoQFxeHlStX4ve//73YMRLJQmiAuCO/enlIa3o5aTDJdwi9PYwtWgAYPfy5eLrqBsc/oBsV8L8zXteOQumvR4eSHW9vb6jVzXeNjIxEfn7zkM2QkBAUFBSIFx2Rgo1LipA6BKI2PTW9HyICtVKHQSQKh2p2UlJSkJmZiT59+uCGG27A8uXLUVZWho8++giDBg0SO0YiIiIihzl0ZufVV19FTEwMAOCVV15BaGgofvvb36K0tBTvvvuuqAF6OmOT2SOv7ZZVG/H7L45Icrr2gz25Ln+MLw5exK8/ysLxQoPLH0vpDPUdXw5oWRvww8lSbDte5MqQZEuJXZltzZLuak//67Ao2/lnZgEyHJgdftvxtuv3fj5bju9PKKO+70xJ5/+3+3IrcLq4CpW1jfj68CUcyL/sgsg6z6EzOyNHjrT8HhkZia1bt4oWkNIUGepc1iHW1TZm5OO2Yd3d/rjvuyHZ2XOmrM1lXmoVTJyGwmVOFDHBJHl4/b+n8ExDE+An7naPXpR313J7VTiYnH9z5BJGJIQip6QKOSVVGDYqWvKmflI/vuKZPbzmq0nhRWu29O7GwmFyjs6P05iQ59OoHW8o23IaEDl8dbT7zE5KSgpUKvue+IEDBxwOiIjI06md+JAgElt4gI8iL6F2ht3Jzm233ebCMIiIiIhcw+5k54UXXnBlHF3KTW/vdvi+d639GR8/OAa+3l4iRtR5YhUIknwovc+Gp/qOzSydlltWI3UINl3Sy2ciY32tuGd+Dl3Qi7o9Zzk8NxYAZGVl4cSJEwCAAQMGYMSIEaIEpXQni6ocvm9W3mWcLq7CkB468QJyM41ahSYWACMiwEfqEEjmzILy3yc9Qv3g5+2FukbXzST+89m2ByRIqbDSPdMsKP9V1DGHCpQvXLiAiRMnYvTo0Xj88cfx+OOPY9SoUZgwYQIuXLggdoykMJnPpUkdgixMHxQldQhEkgsL8MHe30/F/07rK3UokrKzJFYUXl2wpsyhZOfBBx9EY2MjTpw4gYqKClRUVODEiRMwm8148MEHxY6RFCaUZzSIqIUQP2+EBbBbM7mOQ5exdu3ahZ9//hn9+vWz3NavXz+sXr0aEydOFC04IqKrao0mno8nh9Q0NLW6rbrBdZfN7FVrNNn83dVMZgG1xtb7RMkcSnbi4uLQ2Ni6a6rJZEJsbKzTQREpGT+vHbP+J9c3m5Sbs6U1gKTzU3n+qzWvvAavfnOy1e1/3HIc3SSIp6X66+qU0h3o5uyojFzHO/tXesAs59dz6DLW66+/jsWLFyMrK8tyW1ZWFh5//HG88cYbogVHpETXzzZMJFf1jdav1SBfp8a0SEKK6SyUztHOylKyO9kJDQ1FWFgYwsLCsHDhQmRnZ2PMmDHQarXQarUYM2YMDhw4gPvvv9/uB9+9ezdmz56N2NhYqFQqbN682Wq5IAhYvnw5YmJi4Ofnh7S0NOTk5FitU1FRgblz5yI4OBg6nQ4PPPAAqqv54iZlmzc2AbE6kXvck0dbedcQAEBMiK9o21w8Jcny+/7n0/D7mf1F2zaRO9mdpr/99tuiP3hNTQ2GDh2K+++/H3fccUer5StXrsSqVavwj3/8A4mJiVi2bBmmT5+O48ePw9e3+Q09d+5cXLp0Cdu2bUNjYyMWLlyIhx9+GBs3bhQ9XiIiIvI8dic78+fPF/3BZ8yYgRkzZthcJggC3n77bTz//PO49dZbAQAffvghoqKisHnzZsyZMwcnTpzA1q1bkZmZaZmcdPXq1Zg5cybeeOMNxdYPGZvM2HmqBBAAQ33XKDI7W9q6KVjW+QpMHxgt+mNduNx+74sLl2vx85lr19ZLqxpEj4GU75yN17TSeNolWznWogiCYDVVkyAIHR6jxFBWbcRlkRoNFhnqESsIkHLAu9MXYOvr62E0Wu+Q4OBgZzeL3NxcFBUVIS3tWk+WkJAQjBkzBunp6ZgzZw7S09Oh0+msZmFPS0uDWq1GRkYGbr/9dpvbbmhoQEPDtQ8og8GzZmH+8/Yc/JgjzyZZrmJrFvLM85dd0km6vVERJrOAaW/tduvICVKms6XKv9z+0d7zUofg8YoM9YgJuXbJ+nRxtc3RZWIrNojX3fnrI5dwaw8tpOws5lCBck1NDR599FFERkYiICAAoaGhVj9iKCoqAgBERVnvnqioKMuyoqIiREZGWi3XaDQICwuzrGPLihUrEBISYvmJi4sTJWZ3EfNFeD0xr/e7gyv3hS2NJjMTHSI7mT3rxI4sXZ/YVLsh0XGFOomPmw4lO08//TR27NiBtWvXQqvV4r333sMf/vAHxMbG4sMPPxQ7RtEtXboUlZWVlp+CggKpQ5KN9QtHSR0CERGRqBy6jPXVV1/hww8/xOTJk7Fw4UJMnDgRSUlJSEhIwIYNGzB37lynA4uObq7FKC4uRkxMjOX24uJiDBs2zLJOSUmJ1f2amppQUVFhub8tV0eQERERkfI5dGanoqICvXr1AtBcn1NR0dycaMKECdi92/EZvVtKTExEdHQ0tm/fbrnNYDAgIyMDqampAIDU1FTo9Xrs37/fss6OHTtgNpsxZswYUeKQI3fOlPv6f09hx8mSjleUiDt7aBQbGrB6R07HKxJJqKGTRcEX9XXIyrvsklgEBTQllIvKukZ8c+QSfswplToUhy7lS1387VCy06tXL+TmNnczTU5Oxj//+U8AzWd8dDqd3duprq5GdnY2srOzATQXJWdnZyM/Px8qlQpLlizByy+/jC+//BJHjhzBfffdh9jYWNx2220AgP79++Omm27CQw89hH379uGnn37Co48+ijlz5ih2JBYAVLnxmu3BfH2rxmJd2ZqdZ0Xblo+X48XV3l4OvXWpC+hsw7c/f3/aRZEAZ0qUX4TtLt8fL8bp4iqpw3BYweVaSR/foSPmwoULcejQIQDAs88+izVr1sDX1xdPPPEEnnrqKbu3k5WVhZSUFKSkpAAAnnzySaSkpGD58uUAmmuDFi9ejIcffhijRo1CdXU1tm7daumxAwAbNmxAcnIypk6dipkzZ2LChAl49913HXla5Eb/uH+01CFILtjPG32jghy+L5EYXFnw6qnFtGIR80vJpUpxzuh31/lB5+/+yZh9JP6C5lDNzhNPPGH5PS0tDSdPnsT+/fuRlJSEIUOG2L2dyZMnQxDaPs2pUqnw0ksv4aWXXmpznbCwMDYQ9ECpvcKlDkEW4kL9sdfQuZ4ZCeEBLorGWniAD8o9sC08OaZvVKDHTq2w6Mbeop51FUuwr0Z27yGdvzdS4kOx5XCh1KG4lSgTnSQkJCAhIUGMTRERERGJyu5kZ9WqVXZv9LHHHnMoGCIich9jkxnfHGm7J5mzPPVMkdxknq9AE5sWOcXuZOett96yaz2VSsVkh8iFGkVqwR8V7Ov2poxEXYmfjxfg5KwgjSYBP53pWh3zXcHuZOfq6KvrXa25aTl3BxG5Tkq8zultzBwcg26BWvwj/bzT2yLxxYf5o/qiZ01jIxdTkpu76rfXMiPAxws1bujoG6h1vlLE3E5dqytN6tMN/j5e2HOmTBGF5g6XR7///vsYNGgQfH194evri0GDBuG9994TMzYiskFrYz6w8IDOja7oGxXkknnFqPNs/e8SI9xThK5Eo3qGYXRiWLvrdA/1a3c5AckxQUiOCUa/aMdGjMqNQ2nn8uXL8eabb2Lx4sWWBn/p6el44oknkJ+f3+7oKSIiIiJ3cijZWbt2Lf72t7/h3nvvtdx2yy23YMiQIVi8eDGTHaJ2dLbDLSmbmU2GXebfBy5g+sDWc20XidSzxh2O8nKmKBy6jNXY2IiRI0e2un3EiBFoavL8a3td1X2pbB/QFUR72Mz2Sid1G32pqFTNNS0xIc5fUorVXduGyWxGn8hAy996G/vXUO85n1MNTeLWFnXV7usOPet58+Zh7dq1rW5/9913RZkEtKsJ62S9hSv85obe+MMtA6UOQzLLbh7Q5rLRPcMwMiHUjdG4TkJ4AO4eESfKtsb1jhBlO9Q1ZT6XhvSlUxAiQjfwmwdbTw90Y79Ip7cppT6RQbjxSqG12EN/hvQIEXmLnsHuy1hPPvmk5XeVSoX33nsP//3vfzF27FgAQEZGBvLz83HfffeJH6XCRQT6dHo+G7HFh/l36RF1Xu089VidL0qqGtwXjAsF+2rgpRbn/xygbV3gHOzrDUN91zxTQZ0TEaiVOgTZ8vZSIcBHlJ6/dIXde/PgwYNWf48YMQIAcPZsc4vuiIgIRERE4NixYyKG59kMdY2oa3T98EYiIrLN0EUvE5I1u5OdnTt3ujIORfo0Mx9hhZVSh0FdAGtciWx7+esTUodAMtA1K5Xc5PAF+SQ6kUHuPWU8IiEUQSI01HKUVtO1XtqhEsxiHB3sC52/D4J9r9VcxLD4GQCgUXet1x+R3PEd6ULzxspndNOWxRPc+nj//u04eLVXCONC51+bhf8ZJU4Rblt2/O4GUToZi6VXN/c3ofPz8cKCcT0xr8UovkBfDW7o203Ux/ESuZZsVM/2G86JYWhc1ywCJfsEtfiC8IsBrYfGu5MrBsjIsUCcyQ4REREpGpMdIiIimSqXeKSuUjDZ6SLUIg03todfF5lzqdGk7E7IjrYiUHfhFgZEYhC7q7amxfG/q7YYYbKjAON6h2Nyv254flZ/jE8KR1xY646k7uxp8facYW57rOu9dsfgDtcZ3N12PcWLs9tuLGhL3yhlTJB3vYTwAPTuFuhwHZAz9UNSFFpfT4wmd2Rbd50fJvaJwMu3DZI6FFmLD/MXbTu9IgKQ1j8KSZGBGNJDB10XfX0z2XGTsb3C0cNFM+0uujEJf184Gg9O7IUND45FWn/bBW+3Dou1ebuYlt88ANMHRjt8f2dPQM0ZHd/hOjMHx+DZGcmtbl8wPhH32nH/q37Rxn72dDf0jcDsobGtmpp5e6nhb0ejsyBfb4xMcKwIeGRP6TtVy21E2et3DZE6hA5FBNqXpA6NC8FHD4zBrzoxeMPWrPBKFxUszpfT8UkRuGVYd0QG++LmIbGYkhzp9jM7cpmeQh5REBEREbkIkx0iIiJSNCY7MtBkcm3/26ungc+X17r0ceTELLCnMNmm9MJyOTtTUt3p+/jbmIONXE+sOfTkgsmODJhc+MF8//hEfLBgFACgupMTNCZGuL9RnVhuT+kudQgAgHtG9sBSG/VBBAyPl6Y+p0nsoS526hnuvvdTQrg/Hp/aB+t+NbzThfdim9OiwWd1fVOn7tu7WwBGOVj/JTfJ0Z4zoGHGoBhoNa2TTE96DtdjsqNwz8zoh6FxOofu+9vJvcUNxo0ig6QvMh3aIwQr7xqKX9/g+H50RXdTuRidqIwPMXuF21nEKwadnzee+EVf3DQoBgvGJ7rtcW35/az+Dt/3oYm93No2w5XiRBph5Q792khqPOk5XI/JDhERESkakx0iIiJSNCY7RCQJjUQTxdqjVwf1anKf1byitvNTDHQLcl/j0a6iZV+qtnpUtdVxPoCF2aKS9zuWqIWoYK1HF8iRNY1aDR8XNBxL6hbo9DamddAY01/rhXtHx+P2lO4Y1EZHbik9NLFXp9Yf1D1YsU0yxTQsToebBlm/Nsa0U3s2tlc4Zg6OwR0pPdpsKhug1WBc74hWt0cH+6JPpP3Hu1+OjodvF5mqxxFMdshjeKlUmNS3m0P37Rvl/Acgic8VRbs9HCiivL5Lrz0fGlHBvkgID0Cwb+fb7wdqO+5E7YzOTrsxuW+kxww17hkuXZGsv48GydHBSIq8djwJaOd/6aNRo29UEOLD/dHe3rXVMVmlUqGHjal/bN/fF5HB0g/KkDMmO0RERKRoTHbcqItONuvxjGxCR0QKJVXfKXdjsuNCcWF+lknXkiIDcfeIuA7u4V4+Xmro/JtPwffpYpd5OtNhOae4811fxRLkwCUS6jxbl3Cu1kt0dnZ7FZr7PDlyeQsA/H284KvhoZmcmwRVo1a3+RoMC7h2u6Guc81mPZVrLxx3cbE6f8weEoOGJjMCpyQBMTH4ZF8+LlXWSx0aAMDXW409z0xBrbFJFk34qLW+UYHIK6+ROgzZ667zw0V9nUP37RHqh0YbU7bMHBwNQ11z4ejp4iq7trVwXCK8NSr4+2hwX2oC3tl5plOxTEmORHJ0MEoKS20uf3xqH/x5e06ntkmeq0eo4/VJD05MbLP2LCyg642849cHF/PReCHI1xsqlQoqlQpxTrx4XSFQq2GiQx7Px4kzIV5tDCNXqVQI8fdGu5Wl19F6qy1DjDVeanh3crRZgFbT7nNxZxdm8mwcmWWNyQ4REREpGpOdLoSZPjmjM7OFC3Bv0aOK1f9Ocdf/y9eHxyCSBpOdLuQ3N/RGiF/7RZOJEQEY3D0EPUL9MKpn5yZqjA72RWrvcGdCdJlhDk6G2tWE+vsgxM/5SyVRHfT86OxrqyODu4fAz9sLA2Pl1+CvIxGBWoQHaKHz80a0RL1SUuIcn4E+MSIAQ3voWt0eGaTFjf26IUirwW8nNx97Fk9JanM7cp4YNiE8AAE+GiRI0OPHE1/TciT7ZKeqqgpLlixBQkIC/Pz8MG7cOGRmZlqWC4KA5cuXIyYmBn5+fkhLS0NODgv4bJk9NBaHXpjW7jpajRe+WjwBe56ZYtXx01bTq5YGxARj7++non9MsCixiumPtw1yeSt8MZsW/mKAOJ1s545JwJK0vkizozPuhKQILEnri/njeorSXK6tbrFXjU9q3THWGYkRAfj1Db1F23fu5KNRYV5qAhaMT2y3QZ0rjXIw0fj1Db2w838nt6olGhgbjH3PpWH9wtFQqVR45qZkHHphGm5P6dHmtpIiA/HwpM51fnaX21O646FJvTpM4l3hFwOiEKuzr7kgtU32yc6DDz6Ibdu24aOPPsKRI0cwbdo0pKWl4eLFiwCAlStXYtWqVVi3bh0yMjIQEBCA6dOno75eHiOeiIiISFqyTnbq6urw73//GytXrsSkSZOQlJSEF198EUlJSVi7di0EQcDbb7+N559/HrfeeiuGDBmCDz/8EIWFhdi8ebPU4RO5lgS9wIRO9CciIpILWSc7TU1NMJlM8PW1PnXo5+eHPXv2IDc3F0VFRUhLS7MsCwkJwZgxY5Cent7mdhsaGmAwGKx+pNTWrLeuFhMiv1Oj4YHu6f+gaeNSTWVd52eLlkpx1bWzl+6a16iu0WT5XS2TomAx4jB1kS6yrnL9Mawzxewd8VdgUXPLt6tM3kaKJ+tkJygoCKmpqfjjH/+IwsJCmEwmfPzxx0hPT8elS5dQVFQEAIiKsr5OHxUVZVlmy4oVKxASEmL5iYuTrrPx1ORIvHH3UMwaHIO0/pFuecw/zxmG8UnheOGWAU5t5/czk0WKCLh5SAzuHtEDf503QrRttmfm4Bibt1fUeE6y0/IDum9kEIbYKBJ1JTmM7osL88eMQe3PUG6PUCc61XqClXcNwQAX1tPNS02wKq7uFSFeDdt9qQmIdHHNnbvFhfmjT1QQBsaGIMJNX/C6OlknOwDw0UcfQRAEdO/eHVqtFqtWrcK9994LdRuNwOyxdOlSVFZWWn4KCgpEjNh+Nw2MxvsLRmFQ9xCsmTscr94x2C2Pe+uw7tjw4FiM6+14kWha/yg8PKm3aDG988vheP3uoRgeHwqfTjZic0SPUH/cPz7R5Y/jLmq1ClOSI3GTCB/89ugmkwP0ncN7oE8np3OwJambsqdLuWdkHD5+cIzLtp8UGYT1C0dZ/hbzdZgUGYS/Lxwt2vbkwMdLjVmDY/CLAVGyOUOqdLJPdnr37o1du3ahuroaBQUF2LdvHxobG9GrVy9ERze/oYqLi63uU1xcbFlmi1arRXBwsNUPERERKZPsk52rAgICEBMTg8uXL+O7777DrbfeisTERERHR2P79u2W9QwGAzIyMpCamiphtERERCQXsp8I9LvvvoMgCOjXrx/OnDmDp556CsnJyVi4cCFUKhWWLFmCl19+GX369EFiYiKWLVuG2NhY3HbbbVKH3mlajfQ1EGIaEBOMn8+WSx2GKGoamjp9n4TwgA7X0Xh1/hS2twP3saVlUXNn53DqzLblxl+EWiNnZqO+nq2ZqTUt/h/29t4J8JH94dxlvDXXXm+BNvZXkK8GVfWdfw/LRYifNwodnOiWmsn+zE5lZSUWLVqE5ORk3HfffZgwYQK+++47eHs3HyCefvppLF68GA8//DBGjRqF6upqbN26tdUILk8Q4ueNP88ZJnUYonnl9sH4zQ3WdT0fLBgpUTSt3ZYSa/e6Nw+xf10AGNojBM/M6LiAO8jXGxOSIqDz7/jD09/HC5P6dhOty66PRo0Zg2Iwtlc4kmOcr3tpSavxwoxBtovApTYsXuf0Nib3dX4wwR3De2BUzzCbXcejgrQY0kOHJ9L6YkgP6w66H94/GncM7467RvTA+oWj8MxNyXj19sGSdPeVC38fDdb8cjiWpPXB7cNbNy78x/2eXfMzrnc4RvUMw502nhvZR/ZfBe655x7cc889bS5XqVR46aWX8NJLL7kxKte5dVh3PP5pttRhiCIxIgDPzkjGul1nAQC9IgIwJVk+HW4701U5qZMdkp+anozudnY9HRATDHOAGd+fKG53vZT4UAyPd7ytvy39osVNcq7f9rdHL7ls+46IDPK1zErujBD/9qddsUd8mD/iw2wnKCqVCn2jgtB3TDwKrytgndS3Gyb17Wb5+8Z+zYnX0YuVTsfkyWYNiQHQnGCbr2slMDw+FA9OSMR7e3IliMx5Qb7eoncd72pkf2aHiIiIyBlMdoiIiDyYsUm8Jo5KxWTHzfR2dOidmuye5oKd4eqJNMWgxE6rShcdbH2pT4xLTPZwppGbPYXnYgryvbZP3NnfKMyDGy3KsXWNWqWy9NQJ9rO+DOrIBLAtm3pernW8Gaor+vwEaOV3LGay42YPTux4Vt837xmGNb8c7oZo7JcSJ26tiBgen9rH8vtjU5LwzWMTJYyGHDEuKRyzBsfgpkHRuGtED7d9mN+e0t2h+8WFitOxuTOCfL3xzWMTsX7hKEwb6L7HvnVY54ry5USlUqG/CztGO0KtVuFXYxMwe2gsBne3LjqPCNRiYGzn4rU16swR/j5euHd0fKfvZ+szYcagGNw2rDt6ybBJJ5MdN9P5dVzYGOLvfaXYrtnYXmGuDMkucvym1D302lmBaQOj0TPCvd+4yXneXmr0iQpCcnQweoS6bzSRI9+kAaBPVKAk02QMiA3Gjf0i3TqkX+NEl3o5SIyQ3+i0sAAf9O4WaPP/2F0nXbxRDozwjAhqfeavW5AWPSMCZNkV2rNfzUREREQdYLJDRNSCq2ZAF1psttqBJpVEHZHf+RT5YLJDbdKoVeh15dLQyJ7SX0pLvu4afO9ugVCrAD9vL/QIta+njbv0vO4U+tA4nd33DfHzhpdaBZVKhdB2mg1eve4/6Lrr/57M10ctapFyXzsnCW1ZjFvuopnva40ml2z3qh6hfvDz9oJa1fzeuF6Qr8bphpR9Il1bizGsE+8TZ7QsE+jI9U0d5ezqMcHW//96V2emHxjrOc/PGbJvKkjSUalU+ObxiaioMSJW54fHPjkoSRybHhmHYF8NEiMC8aetJy23D4gJRuZzafDWqG223JfK8psHtKo/+ddvUjH59R9w0Y6W7wE+Gjw0sZfVmQBbpiRHYmRCGIL9lPM21qjVWDi+J05eqsL2k+03WbTHhD4RGN87Aut/br+ZnCeMNuyIzt8HGc9NRWOTGeE2Cr29vdTY+b+TseVwIZ7612GHHmNkzzDsemoybnj9ByejtW3m4BhsfGgMfvm3DJds/6rX7xqCiAAffLOtos11UuJCMSxO51Hvr9Te4RgYG4IgO2K+eWgMquqbEOzrOc/PGV3jWZLDfL29EGtnJ2BX8ffxQlKk7W/otg7qUtPZ6K7r7aVG91A/u5Id4Nqw0rp2zgaoVCpROvnKjbeXWrShqyoAwQrcR23pKOn38/FyqBi1JVcnhjEhrj/eqFUqxLXRvdpCJU6nbHfqzDFBrVIhxI4BM0rBy1hERESkaEx2SBRab76UPEGTyTXFt66klvEM6qRcXfVV5+2lzGO5Mp9VF5EYEYDe3QIwSMICs/vHJ0Ln742H7GiWqCRxYf5IiQ9FQrg/+scEo4+dhbCuFhPih2A/b0QGaREa0HyKuuVlSGdGAQ3toXM2PIcM6REiSW8bpbq+oZ3cxIX6YXi8Dt11fhid2HpgxI3JkaJfShsep4NWo8b4pAj07hYIfx8Nkuwsxu4R6ocgkRr8SWlc7whoNWpM7KPMCUc9/z/UhW1/8gbJv/Uunz0Ay2cPkDQGd/vkobHw9lIjOsQXu566EQDwv58fkjiqZiF+3rh/fKLVbWK0/b9/fCKC/bxx6ILe4W30igjAubKazt+vWyAm9umGt78/bXW7K2dsV7LQAB+8cfdQ2bxmr6fxUmPTI+PbXD4sTocXZg/E6Fe+R0lVgyiPOSA2GCMHO9YlPixAiwdafNm7/nXqKUYnhtlMLpWCZ3aIiIhI0ZjsEBERkaIx2SG3cWamaWe17Flj7qiBjYK5u5A86MpQaFUn58ppuX5bV2rbKqRsub475uhp+XgynBLIYUp6Lu7kdWXHiTVRp6fz0cgjzZBHFKRoK+8cgglJEXhmRj/JYkgbEGX5XeiCyc7kfpGID/PHaDd3wp7aPxJxYf6Y2cmZwnuE+qFvVBD6xwQjMqh1X5iE8ACktNFtt1e3QPTqFojh8aEOT/jZGX2igpAYEYDRPcOg1SijkPre0XGKHZXjajMGRyMuzB9p/aM6XlnBJvXthoTwAIyId6wWSmxMPcnl7hkVh3tGxUkaQ+8I17a5l7thcTq3teJvqWd4AHqGN085cuKSwe77eXupMXNw2y39b0/p3uayQK0GtwyNtT9IJ4X4eePWYW3H44kW3ZgkdQgeKykyqM0mqF3J8PhQDI8PRX5FrdShAOCZHSIiIlI4JjtERESkaEx2PETP8A7mcaF2eWuuVVteLRz0bVFf4X/ltusn8LRXYYs5r8SctdurRfWrj5trKFrWbGi8pK9WDb4yj083Gc6H1pbIK83v/GTWFNHfR17xuIKtWq+WWr5Ppe5XphTeMjhOtIU1Ox7iL3NH4MtDhZjUNwJ7z5ZjaJyOb9BO8PfRYM0vhyOnpAq3D+8BoLm52tv/MwwFFbWW+pDfTeuLqGAtxveOwC/fs3/m5ZoWnYkn9+smWtw+mubalYoao9ub6CVFBqK6IRxBvt6iJnCOunlIDE4XVaN/jOfUQ6T1j8KxQgOSIgORXaCXOhyLKcmR0GrUaGgySx2KyzxyY28EajUY2dN2gezsoTGozeuF0fnhVl98qPPCA3wwPD7UMvpSjqQ/gpFdBsQGY0BsMIDmtt7UebOGxACwLnq97bpC15gQPzw1PdmpxxF7aoO+Ek1F4aNRY3RiuCSPbUtkkG+H39blJjTABxOutt8vkDaWlny9vfDI5CS85aHdfu0RGeSL/53e9gjQIF9vPDixF/ANz5o7a1TPMCTHBEsdRrt4GYuIiIgUjckOERERKRqTHbJbPxEvp3ipVZYiydgQ60sTaQMind7+1WJWwLMKWpUsQqbFutS2lrOLu6NBI3Us5MqxLVbnJ2kcLd/H/h7w2pB/hCQbHz4wGmNe3S7KtrzUKmxZPAHZBXqMuq6r72t3DoGxScD3J4od3n6Inze+fmwCSqsaMLGPeAXD5LjRPcMQGeRr9QFK8nbL0Fjo/L3RXecvei0aOeauET1QVFmPnhEBOHxBL1kcAVoN5oyKh7HJjLhQaRMvezDZIbtFBYtbHHq1rf/1gn29MWtItFPJDgAMjA1x6v4kLo2XGkmRXbuTtafReKkxJblrT3sgN0G+3rIZ9RQd4jkDBngZi4iIiBSNyQ4REREpGpMdN+vVLdDSFddVTeKGX5llNjEiAN5q/osdNfFKf5TbhytrkkfqHH8fL0u9SliAj8TRuE6fKwMQwgJ8EMGi/nYlXJncNrIL1J9FXylfCPHzhsaDP09Ys+NmSZGByHwuDVX1jYgPc00zq9lDYzGyZyhC/X3YZdkJ6xeMwqXKesSF+WPnqRKpwyGJeHupcf/4RDSazIoekTS2Vzj2PTcVAT4aFiN3YHD3ECSE+yNABp3FXa1PVBAeCPGFn7cXzpXVSB2Ow5T/n5KhsAAfl39DjAmRf3W83Gm81IhzUUJKnsVHo4aPxnO/1drL0zpUSylYJkXC7iCXgmhnKP/dS0RERF0akx0P4O3m2a6JHKWCvC+bevGyLlGXxE9RGZs7Jh6h/t6Yn9pT6lCI2qRRq9ArIhD+Phr06hYgdTg2DYvTwdfbCyMSdFKHAuDaIAIl6dUtAIO7hyAuzA8jEpT3/MizyTrZMZlMWLZsGRITE+Hn54fevXvjj3/8IwRBsKwjCAKWL1+OmJgY+Pn5IS0tDTk5ORJGLZ5Xbh+Mg8unIW0Am3qRfKlUKtwyLBYPT+oleQv7tkzuF4nf3NAbSZHSzCB/vUl9ldfVW6vxwleLJ+DHp6ew1o1kR9bJzp/+9CesXbsW77zzDk6cOIE//elPWLlyJVavXm1ZZ+XKlVi1ahXWrVuHjIwMBAQEYPr06aivr5cwciIiIpILWY/G+vnnn3Hrrbdi1qxZAICePXvik08+wb59+wA0n9V5++238fzzz+PWW28FAHz44YeIiorC5s2bMWfOHMliJyIiomaG+kY0mcySJR2yPrMzbtw4bN++HadPnwYAHDp0CHv27MGMGTMAALm5uSgqKkJaWprlPiEhIRgzZgzS09Pb3G5DQwMMBoPVD8mLV4vmVRoZFJW2jEHjJX08UvPzUW4fFn8XPTdvvm5EJfZcfVJreZhTq5TzWmn5vIxNZsnikPWZnWeffRYGgwHJycnw8vKCyWTCK6+8grlz5wIAioqKAABRUdY1LVFRUZZltqxYsQJ/+MMfXBc4OW1SnwjMHBwNnb8PekVIP3nkyIQw3DI0Fhq1CkN76KQORzJT+0chp7gKqb3DpQ5FdGn9o3C6uApje7nmuQ2L08FQ3+QRM0R7gudn9cfqHWdwh0I6nCeEByApMhD+Pl7Q+Xt+X5urokN80adbIFDeAJWESZysk51//vOf2LBhAzZu3IiBAwciOzsbS5YsQWxsLObPn+/wdpcuXYonn3zS8rfBYEBcXJwYIZNIdP4++MvcEVKHYeHn44VV96ZIHYbkBncPweDuypxNflD3EAxy4XMLD9Ti9hRlfDDLwZhe4RjjosRUCn4+Xrh5SKzUYYhOo1bjxuRIoNwLkPCMsKyTnaeeegrPPvuspfZm8ODByMvLw4oVKzB//nxER0cDAIqLixETE2O5X3FxMYYNG9bmdrVaLbRa5c9pQkRERDKv2amtrYX6uonHvLy8YDY3X/dLTExEdHQ0tm/fblluMBiQkZGB1NRUt8ZKRERE8iTrMzuzZ8/GK6+8gvj4eAwcOBAHDx7Em2++ifvvvx9Ac3+PJUuW4OWXX0afPn2QmJiIZcuWITY2Frfddpu0wRNdJy7UH/tyK6QOg64T5Cvrw6DstOxCHeKnnNoST9QtUIvS6gb+H+wg63f56tWrsWzZMjzyyCMoKSlBbGwsfv3rX2P58uWWdZ5++mnU1NTg4Ycfhl6vx4QJE7B161b4+iqrUp883/9O74voEC3G946QOhQCcHtKd1y4XIehcTqpQ/EoWo0X1v1qOE5cqsIvR8dLHU6XdtOgaJy4VIW+0dIP4pA7WSc7QUFBePvtt/H222+3uY5KpcJLL72El156yX2BETkgJsQPT01PljoMuiIhPAAJ4fKc3kLubhoUg5sGxXS8IrlUeKAWE/qw/tQesq7ZISIiInIWkx0iIiJSNCY71CmhV5pdDYiRx4SKREREHZF1zQ7Jz5ePTsCxQgMm91PerM1ERKRMTHaoU+LC/BEX5i91GERERHbjZSwiIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHPIqq41Uk4aPhW4mISK54hCaPMm1gFCICtfjFgCj4esvn5fvAhETo/L2xYFxPqUMhInKJmBBfhPh5o1ugFuEBPlKH0ylsKkgeZURCGLKeT5M6jFY4CzQRKV2QrzcWjk+UOgyHyOerMREREZELMNkhIiIiRWOyQyQDapXK5u9EROQ81uwQyUDPCH8kdQtEgFaDYD++LYmIxMSjKpEM+PtocPPQWKnDICJSJF7GIiIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKJvtkp2fPnlCpVK1+Fi1aBACor6/HokWLEB4ejsDAQNx5550oLi6WOGoiIiKSC9knO5mZmbh06ZLlZ9u2bQCAu+++GwDwxBNP4KuvvsLnn3+OXbt2obCwEHfccYeUIRMREZGMaKQOoCPdunWz+vu1115D7969ccMNN6CyshLvv/8+Nm7ciClTpgAA1q9fj/79+2Pv3r0YO3asFCETERGRjMj+zE5LRqMRH3/8Me6//36oVCrs378fjY2NSEtLs6yTnJyM+Ph4pKent7mdhoYGGAwGqx8iIlIuH821jzuVSsJASBKyP7PT0ubNm6HX67FgwQIAQFFREXx8fKDT6azWi4qKQlFRUZvbWbFiBf7whz+4MFIiIpKTu0fG4WRRFYbF6aDVeEkdDrmZR53Zef/99zFjxgzExsY6tZ2lS5eisrLS8lNQUCBShEREJEeJEQH4YMEoPDa1j9ShkAQ85sxOXl4evv/+e2zatMlyW3R0NIxGI/R6vdXZneLiYkRHR7e5La1WC61W68pwiYiISCY85szO+vXrERkZiVmzZlluGzFiBLy9vbF9+3bLbadOnUJ+fj5SU1OlCJOIiIhkxiPO7JjNZqxfvx7z58+HRnMt5JCQEDzwwAN48sknERYWhuDgYCxevBipqakciUVEREQAPCTZ+f7775Gfn4/777+/1bK33noLarUad955JxoaGjB9+nT85S9/kSBKIiIikiOPSHamTZsGQRBsLvP19cWaNWuwZs0aN0dFREREnsBjanaIiIiIHMFkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEi6oIGxAYDALrr/BDgw1nASdk8oqkgERGJ6xcDorB36VSE+HlD48XvvaRsTHaIiLqo6BBfqUMgcgum80RERKRoTHaIiIhI0XgZi4iIZK1XtwAM6h6MyrpGjEgIlToc8kBMdoiISNZ8vb2wZfFEqcMgD8bLWERERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBRNI3UAciAIAgDAYDCIul1VVRW0RiMAoKGqCkJAgKjbJ89meX3o9RCuvE6IAEBVWwsYjTxuuBjfg+7hytfz1c/tq5/jbcYgdLRGF3DhwgXExcVJHQYRERE5oKCgAD169GhzOZMdAGazGYWFhQgKCoJKpRJ12waDAXFxcSgoKEBwcLCo26ZruJ/dg/vZPbif3YP72T1cuZ8FQUBVVRViY2OhVrddmcPLWADUanW7GaEYgoOD+WZyA+5n9+B+dg/uZ/fgfnYPV+3nkJCQDtdhgTIREREpGpMdIiIiUjQmOy6m1WrxwgsvQKvVSh2KonE/uwf3s3twP7sH97N7yGE/s0CZiIiIFI1ndoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmTHhdasWYOePXvC19cXY8aMwb59+6QOyaOsWLECo0aNQlBQECIjI3Hbbbfh1KlTVuvU19dj0aJFCA8PR2BgIO68804UFxdbrZOfn49Zs2bB398fkZGReOqpp9DU1OTOp+IxXnvtNahUKixZssRyG/exeC5evIhf/epXCA8Ph5+fHwYPHoysrCzLckEQsHz5csTExMDPzw9paWnIycmx2kZFRQXmzp2L4OBg6HQ6PPDAA6iurnb3U5Etk8mEZcuWITExEX5+fujduzf++Mc/Ws2dxP3cebt378bs2bMRGxsLlUqFzZs3Wy0Xa58ePnwYEydOhK+vL+Li4rBy5UpxnoBALvHpp58KPj4+wgcffCAcO3ZMeOihhwSdTicUFxdLHZrHmD59urB+/Xrh6NGjQnZ2tjBz5kwhPj5eqK6utqzzm9/8RoiLixO2b98uZGVlCWPHjhXGjRtnWd7U1CQMGjRISEtLEw4ePCh88803QkREhLB06VIpnpKs7du3T+jZs6cwZMgQ4fHHH7fczn0sjoqKCiEhIUFYsGCBkJGRIZw7d0747rvvhDNnzljWee2114SQkBBh8+bNwqFDh4RbbrlFSExMFOrq6izr3HTTTcLQoUOFvXv3Cj/++KOQlJQk3HvvvVI8JVl65ZVXhPDwcGHLli1Cbm6u8PnnnwuBgYHCn//8Z8s63M+d98033wjPPfecsGnTJgGA8MUXX1gtF2OfVlZWClFRUcLcuXOFo0ePCp988ong5+cn/PWvf3U6fiY7LjJ69Ghh0aJFlr9NJpMQGxsrrFixQsKoPFtJSYkAQNi1a5cgCIKg1+sFb29v4fPPP7esc+LECQGAkJ6eLghC8xtUrVYLRUVFlnXWrl0rBAcHCw0NDe59AjJWVVUl9OnTR9i2bZtwww03WJId7mPxPPPMM8KECRPaXG42m4Xo6Gjh9ddft9ym1+sFrVYrfPLJJ4IgCMLx48cFAEJmZqZlnW+//VZQqVTCxYsXXRe8B5k1a5Zw//33W912xx13CHPnzhUEgftZDNcnO2Lt07/85S9CaGio1XHjmWeeEfr16+d0zLyM5QJGoxH79+9HWlqa5Ta1Wo20tDSkp6dLGJlnq6ysBACEhYUBAPbv34/Gxkar/ZycnIz4+HjLfk5PT8fgwYMRFRVlWWf69OkwGAw4duyYG6OXt0WLFmHWrFlW+xLgPhbTl19+iZEjR+Luu+9GZGQkUlJS8Le//c2yPDc3F0VFRVb7OiQkBGPGjLHa1zqdDiNHjrSsk5aWBrVajYyMDPc9GRkbN24ctm/fjtOnTwMADh06hD179mDGjBkAuJ9dQax9mp6ejkmTJsHHx8eyzvTp03Hq1ClcvnzZqRg5EagLlJWVwWQyWR38ASAqKgonT56UKCrPZjabsWTJEowfPx6DBg0CABQVFcHHxwc6nc5q3aioKBQVFVnWsfV/uLqMgE8//RQHDhxAZmZmq2Xcx+I5d+4c1q5diyeffBK///3vkZmZicceeww+Pj6YP3++ZV/Z2pct93VkZKTVco1Gg7CwMO7rK5599lkYDAYkJyfDy8sLJpMJr7zyCubOnQsA3M8uINY+LSoqQmJiYqttXF0WGhrqcIxMdsgjLFq0CEePHsWePXukDkVRCgoK8Pjjj2Pbtm3w9fWVOhxFM5vNGDlyJF599VUAQEpKCo4ePYp169Zh/vz5EkenHP/85z+xYcMGbNy4EQMHDkR2djaWLFmC2NhY7ucujJexXCAiIgJeXl6tRqwUFxcjOjpaoqg816OPPootW7Zg586d6NGjh+X26OhoGI1G6PV6q/Vb7ufo6Gib/4ery7q6/fv3o6SkBMOHD4dGo4FGo8GuXbuwatUqaDQaREVFcR+LJCYmBgMGDLC6rX///sjPzwdwbV+1d9yIjo5GSUmJ1fKmpiZUVFRwX1/x1FNP4dlnn8WcOXMwePBgzJs3D0888QRWrFgBgPvZFcTap648ljDZcQEfHx+MGDEC27dvt9xmNpuxfft2pKamShiZZxEEAY8++ii++OIL7Nixo9XpzREjRsDb29tqP586dQr5+fmW/ZyamoojR45Yvcm2bduG4ODgVh88XdHUqVNx5MgRZGdnW35GjhyJuXPnWn7nPhbH+PHjW7VOOH36NBISEgAAiYmJiI6OttrXBoMBGRkZVvtar9dj//79lnV27NgBs9mMMWPGuOFZyF9tbS3UauuPNi8vL5jNZgDcz64g1j5NTU3F7t270djYaFln27Zt6Nevn1OXsABw6LmrfPrpp4JWqxX+/ve/C8ePHxcefvhhQafTWY1Yofb99re/FUJCQoQffvhBuHTpkuWntrbWss5vfvMbIT4+XtixY4eQlZUlpKamCqmpqZblV4dFT5s2TcjOzha2bt0qdOvWjcOi29FyNJYgcB+LZd++fYJGoxFeeeUVIScnR9iwYYPg7+8vfPzxx5Z1XnvtNUGn0wn/+c9/hMOHDwu33nqrzeG7KSkpQkZGhrBnzx6hT58+XXpI9PXmz58vdO/e3TL0fNOmTUJERITw9NNPW9bhfu68qqoq4eDBg8LBgwcFAMKbb74pHDx4UMjLyxMEQZx9qtfrhaioKGHevHnC0aNHhU8//VTw9/fn0HO5W716tRAfHy/4+PgIo0ePFvbu3St1SB4FgM2f9evXW9apq6sTHnnkESE0NFTw9/cXbr/9duHSpUtW2zl//rwwY8YMwc/PT4iIiBB+97vfCY2NjW5+Np7j+mSH+1g8X331lTBo0CBBq9UKycnJwrvvvmu13Gw2C8uWLROioqIErVYrTJ06VTh16pTVOuXl5cK9994rBAYGCsHBwcLChQuFqqoqdz4NWTMYDMLjjz8uxMfHC76+vkKvXr2E5557zmo4M/dz5+3cudPm8Xj+/PmCIIi3Tw8dOiRMmDBB0Gq1Qvfu3YXXXntNlPhVgtCirSQRERGRwrBmh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4hkacGCBbjtttske/x58+ZZZijvyJw5c/B///d/Lo6IiBzFDspE5HYqlard5S+88AKeeOIJCIIAnU7nnqBaOHToEKZMmYK8vDwEBgZ2uP7Ro0cxadIk5ObmIiQkxA0RElFnMNkhIrcrKiqy/P7ZZ59h+fLlVjOCBwYG2pVkuMqDDz4IjUaDdevW2X2fUaNGYcGCBVi0aJELIyMiR/AyFhG5XXR0tOUnJCQEKpXK6rbAwMBWl7EmT56MxYsXY8mSJQgNDUVUVBT+9re/oaamBgsXLkRQUBCSkpLw7bffWj3W0aNHMWPGDAQGBiIqKgrz5s1DWVlZm7GZTCb861//wuzZs61u/8tf/oI+ffrA19cXUVFRuOuuu6yWz549G59++qnzO4eIRMdkh4g8xj/+8Q9ERERg3759WLx4MX7729/i7rvvxrhx43DgwAFMmzYN8+bNQ21tLQBAr9djypQpSElJQVZWFrZu3Yri4mLcc889bT7G4cOHUVlZiZEjR1puy8rKwmOPPYaXXnoJp06dwtatWzFp0iSr+40ePRr79u1DQ0ODa548ETmMyQ4ReYyhQ4fi+eefR58+fbB06VL4+voiIiICDz30EPr06YPly5ejvLwchw8fBgC88847SElJwauvvork5GSkpKTggw8+wM6dO3H69Gmbj5GXlwcvLy9ERkZabsvPz0dAQABuvvlmJCQkICUlBY899pjV/WJjY2E0Gq0u0RGRPDDZISKPMWTIEMvvXl5eCA8Px+DBgy23RUVFAQBKSkoANBca79y501IDFBgYiOTkZADA2bNnbT5GXV0dtFqtVRH1L37xCyQkJKBXr16YN28eNmzYYDl7dJWfnx8AtLqdiKTHZIeIPIa3t7fV3yqVyuq2qwmK2WwGAFRXV2P27NnIzs62+snJyWl1GeqqiIgI1NbWwmg0Wm4LCgrCgQMH8MknnyAmJgbLly/H0KFDodfrLetUVFQAALp16ybKcyUi8TDZISLFGj58OI4dO4aePXsiKSnJ6icgIMDmfYYNGwYAOH78uNXtGo0GaWlpWLlyJQ4fPozz589jx44dluVHjx5Fjx49EBER4bLnQ0SOYbJDRIq1aNEiVFRU4N5770VmZibOnj2L7777DgsXLoTJZLJ5n27dumH48OHYs2eP5bYtW7Zg1apVyM7ORl5eHj788EOYzWb069fPss6PP/6IadOmufw5EVHnMdkhIsWKjY3FTz/9BJPJhGnTpmHw4MFYsmQJdDod1Oq2D38PPvggNmzYYPlbp9Nh06ZNmDJlCvr3749169bhk08+wcCBAwEA9fX12Lx5Mx566CGXPyci6jw2FSQiuk5dXR369euHzz77DKmpqR2uv3btWnzxxRf473//64boiKizeGaHiOg6fn5++PDDD9ttPtiSt7c3Vq9e7eKoiMhRPLNDREREisYzO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRo/w9sSMJMvJrh2AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.gti = np.asarray([[1, 300], [600, 800]])\n", + "ts.plot(\"blabla\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If a given array attr has an error bar (indicated by the attribute name + `_err`), one can specify `witherrors=True` to plot the attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRWUlEQVR4nO3deXwTZf4H8M9M0oueQKGlUMp9X+UUREQtICB488NFVFRYFWVR1wMPdFkVdXXXlVVYcdeVXdT1QEQXUQQUESj3fR9yl6uUXtAmmef3R5p0kswkk8lcSb/v14sXzWQy8zRNJk+e5/t8vxxjjIEQQgghJEbxZjeAEEIIIURP1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKbZzW6AFQiCgJMnTyI1NRUcx5ndHEIIIYQowBhDWVkZcnJywPPy4zfU2QFw8uRJ5Obman7cNADP1fz8EoBSzc9Aopnn9dHI7IYQSzoLum7ojd6DxtH79Xzs2DE0a9ZM9n6OMigDFy9eREZGBo4dO4a0tDTNjssVFSHhxRcBAFUvvgiWna3ZsUn0874+kpLA6tUzuznEQrjKSuDSJbpu6Izeg8bQ8/VcWlqK3NxclJSUID09XXY/GtkBvFNXaWlpmnZ2UFEBxMcDAOJTUwEtj02in+f1kZEBpKaa3RpiJfHxgMtF1w290XvQGAa8nkOFoFCAMiGEEEJiGnV2CCGEEBLTqLNDCCGEkJhGnR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlp1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKZRZ4cQQgghMc1udgMIIcTyXNXAz2+6f77qccAWb257CCFhoZEdQgghhMQ06uwQQgghJKZRZ4cQQgghMY06O4QQQgiJadTZIYQQQkhMo84OIYQQQmIadXYIIYQQEtOos0MIIYSQmEadHUIIIYTENOrsEEIIISSmUWeHEEIIITGNOjuEEEIIiWnU2SGEEEJITKPODiGEEEJiGnV2CCGEEBLTqLNDCCGEkJhGnR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlp1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQggh+qquAF5Md/+rrjC7NaQOos4OIYQQQmIadXYIIYQQEtOos0MIIYSQmEadHRKZcOfiae4+OrmqgR9nuv+5qs1uDSGEhIU6O4QQQgiJadTZIYQQQkhMM7Wzs3LlSowaNQo5OTngOA4LFy6U3feBBx4Ax3F46623fLYXFxdj3LhxSEtLQ0ZGBu677z6Ul5fr23BCCCGERA1TOzsVFRXo3r073nnnnaD7ffnll1i7di1ycnIC7hs3bhx27tyJpUuX4ptvvsHKlSsxadIkvZpMCCGEkChjN/Pkw4cPx/Dhw4Puc+LECTzyyCP47rvvMHLkSJ/7du/ejSVLlmD9+vXo3bs3AGDWrFkYMWIE3njjDcnOESGEEELqFkvH7AiCgPHjx+OJJ55A586dA+5fs2YNMjIyvB0dACgoKADP8ygsLJQ9blVVFUpLS33+EUIIISQ2Wbqz89prr8Fut2PKlCmS9xcVFaFx48Y+2+x2Oxo0aICioiLZ486cORPp6enef7m5uZq2mxBCCCHWYdnOzsaNG/HXv/4V//rXv8BxnKbHnjZtGi5evOj9d+zYMU2PTwghhES9GMqvZdnOzs8//4wzZ86gefPmsNvtsNvtOHLkCB5//HG0aNECAJCdnY0zZ874PM7pdKK4uBjZ2dmyx05ISEBaWprPP0IIIYTEJlMDlIMZP348CgoKfLYNGzYM48ePx4QJEwAA/fv3R0lJCTZu3IhevXoBAJYvXw5BENCvXz/D20wIIYQQ6zG1s1NeXo4DBw54bx8+fBhbtmxBgwYN0Lx5czRs2NBn/7i4OGRnZ6N9+/YAgI4dO+L666/HxIkTMWfOHDgcDjz88MMYO3YsrcQihBBCCACTp7E2bNiA/Px85OfnAwAee+wx5OfnY/r06YqPMX/+fHTo0AHXXXcdRowYgYEDB+K9997Tq8kkmlFdLkIIqZNMHdkZPHgwGGOK9//1118DtjVo0AAfffSRhq0ihBBCSCyxbIAyIYQQQogWqLNDCCGEkJhm2dVYREPVFcArNQHbz5wE4pPNbU+0o+dTW65q4Oc33T9f9Thgi4+u4xOiFr02DUMjO4QQEoo4trDkGMAE89pCCAkbjewQQkgwZ/cC+5fW3t7+KZCQCrQZAjRqb167CCGK0cgOIYTIObsX2PklUF3mu72q3L397F5z2kUICQt1dgghRAoTgANLATAIjMNuoTkOC54yNDXTWgd+oCmtSFH+K2IA6uwQQoiUkmNAlXtE5wjLwndCH3wlXIlSVq9mBwZUlbr3I4RYGnV2CCFEimiUoQpxkj/770cIsSbq7BBCiBSlKQUo9QAhlkedHUIiRTEHsSkj173qCpzMDhyQkObejxBiadTZIYQQKRzvXl7uvuF/p/u/NgXu/QghlkbvUkIIkdOoPdD5ZsCe4Ls9IdW9nfLsEBIVKKkgIYQE06g9UN0I2H3OfbvtUKBpKxrRISSKUGcnFvnXbiKxw4haOlSvJxAnmsZKzaaOjhmkrmvh1KijmnZ1Gr1jCSGEEBLTqLNDCCGEkJhGnR1CCCGExDTq7BASDOXQIcSN3gskilFnhxBCCCExjTo7hBBCCIlp1NkhhBBCSEyjPDskNqjJoRHteTcoF05w4nxBJLZF8/tYS5QjSxaN7BBCCCEkplFnhxBCCCExjTo7hBBC9CW4an8+str3NiEGoM4OIYQQ/exaBLzTt/b2/NuAt7q4txNiEOrsEFKXuKqBH2e6/7mqzW4NiXW7FgGf3gWUnfLdXnrKvT1WOjzR8r6KlnbqgDo7hBBCtCe4gCVPAWAAgGpmQylLqrnTvQ1LnqYpLWII6uyQyIQ7F09z99GJsdqfS44BTDCvLSQ6HFkNlJ4EADiYDUOq/4SeVX/HGlfHmh0YUHoCOFZoXhtJnUGdHaJeuHPxNHcfnc7uBdbNrb29/VNg7bvu7YTIKT/t/bEEyTjCsuGEHTtZS9n9CNELdXbqmupKbYr5yc7Fn5Sei68rc/eRkppT99nmMLY95/YDO78Eqst8t1eVu7dThyc2hVP0U27flCxl51K6X7Sqw3EyVkKdHRI+0Vz8JRaPr11X4FfB74Ilnov3m7v/VcjC164rUMkSQHP3FndwBTx/o4ssGXuFXDiY3bsNB36gKS0iLW8AkJYDgJPZgQPSmgK5/YxsFamjqLNDwieai3/beTMecUzBTdUzRDvUzMUfWR2wPwDcVD0DjzimYJbzJun9iXWIRnT+6xqMb4W+WC10qtnCgKpSdwwPIf54G3D9azU3/Ds8Nbevf9W9HyE6o84OCZ9ojn0Paw4AKEGq/H5+c/KefXezPNnjEuupRCIA4Ayr73tHJNOhJLZ1Gg2MmQekNPbdnpbj3t5ptDntInUOFQKNBf4FLfWmdI49MT28/b+4D2g/3JxCfnoWEhT/fTyM+DsZpS4XXjRCqIK1Vipo+0pOYBs6jQYaDwDeqFl11fNu4KYh0iM61ZXW+V2iHRUE9UEjOyR8Iefia3jm4vMGAKlNguwY4jjEPPGpCBpzkZAGZOQa2SISjcQdm/otaOoqWsRQygnq7JDw+czFh9jP8/+QP8rsRB0dS2t9Tc0PMjEXbQoAji4jhMScGEs5QVcpoo5nLt6eoGz/DiOkt6flALfMlb6PmC+zLdD5ZiA+xXd7Qqp7e6P25rSLEKKfs3tjLuUEdXbMJJWfIpz8FmbrNBrIu1L943PygYfWAgvu165NRJ1guXwatQf6Tqy9ndwIuOJB/Ts6Vs1P4nJao12ea4V/PJja43iuOeVnA48pFXem1rI/WP/apiXx+8noPFlqMAE4sBTe9BK+d7r/i8KUE9TZIRGKYBoqqb6xc/dUqkI9TvR3tifQ1BUhsarkGFDlHtE5yRriH87hWOLqI9ohOlNO0BWL1A1SpSrEtwkhhPiMuu0VclGGetjDmkNgnOx+0YCWnpPY5ylV4T8sW1ZkSnMIIcSyRMv9hWAj91GWFoBGdkh0UBvL5FeqoojVxxlWk/9Hck5aRCp2QU+u6trcGGofb4VYEj38/Gbs/U5yXNXA6lnAlvnuvDNiPrXtKgMf+0qOMd+4g53nlZzoiDkk0jJy3QsQYizlBHV26gJxbMrRtea1wwyiUhUHhSa4ouod9Kt6BydZA/XHpNgfbRmZyyPKc4WQGGPFPDYcD7QZInen+78oTDlB01ixbs9iYOnztbc/vdO8tphBVILiKHNncmbgcYw1Rg5XHP7xdi0Cvn2y9vb820IkTCRBnd0L7F9ae3v7p+5vlW2GAA1aan8+8fFp2TwxU7DXvtmvzUbt3akldh4HnKLtCanujo7Z7VMhurpmJHwLJgJlp6Tv27PY2LaYQWmpCiX2LHbH/vg/nxT7o06oXB7n9kd2fLnHR3GuEBIjoiGPTaP2QOOOtbe73m5MygmdUGfH6iLOu8NwgaXgfedwbBZa+971w3Rzp2AElz4xMeKYAaWlLZRY+jw8cT6HhGy85xyJ4ywTPrE/4T6fLoc7PkMqv00kfn7T2rE7frk8TrP62CS0xSWW4N2G3YsiO/7BFQCAambHFqE1jgmNPHe6/7NqrhDx68Bxybx2GMXK0+zB4uCC5aYKxu+1v19oip1Ci5rVTia/NgN+X9F1M71Z1E1diUVvy4lis5w34SXneNxc7VeyofSkO+YklgUtbRFmB0g0ojPJ8RhecY7D49UP+O5zrDC8Y9ZVolweAPCp62qsFLphtdCpZkuI4HElx6/51ryDtcSPQg98IQyCi3kuedGZKyTm+KeEqAvT7KLXfglLxv+EK7BU6IVjzFMZnl6beqDOTh1whGXL3ymKaYlZntIWSfV9t6epj7U5wJoBAApZJ9876sLzqQW/UUoX3Mkli1mq5sd3jxZ5zsPL7kcM5kkJUdem2UWvuSrEi36Ok92PRI46O3WdljEtVtZpNHDDW7W3C2YAD+kwClNXns9I6Z2jQ+nxoyxXSMzwSwkhyexpdr3Qa9MU1NmJBeJ8GwG5N0JM1Xx4g/sbhDg2SOscGVrW1Ynk+Lzo5Z7dJfxSFalNEPL5FARlF+hXcqTzpESLSHP6KMnlEYmMXCA+2CgR5z7/1o/kfwfx77jnf7Xbt34UWdvMYmbdvWq/2KNjhd6UEADwuesqjK9+GhuEdrX7xOo0u9LX/taP5N9bsZxTSyfU2SFEqSGemKcgH8QfjwHe6uIeoifyfHJ5+D+fGgSTczzQ+hq5O93/tZK7n+jOb7r3944H8bPQDTMddwTdLyYoyWNDNEednVh3y1x34UYSuQ4j3LE/qUFioACg9JQ7FoE6PMF5cnnEp/huT0gFOo6K/PiZbaW3J6S6zyt3P9GfzHTvWWQo2i/qeV77cfV8t2v12icBqLMT6zqMAFpcVXt7zH/Ma0ss6DQamLwuYLODiafEauIQljwdmzEHWmrUHug7sfZ2SmN3Lg+9OiJdbonqXCExI7df6JQQaTnu1BGxqlF7oPNNtbeb99f3tV/HUWfHCC4H8EY7Y+bKqyt941f857ybX6Hv+esCv1if/zoHo2PVB3jacb9oKwNKT0QWcyCVu4NFuCRbiVAp7BmLrIaXP070gWdP0DeXR1pT6ePrWXtLSXyF2pwtapldv8onJYRMh6dghu97zb9Mi1PmuZSLTbJCmZfVb/u+DsSvxaNrAMEp/TgSMersxJoDP/jenn8b8OvP5rSljvin63o4YccnrmsD79Q65mDjB4HbIs00HOwc2z8F1r6r/TkI8aSEkJsW7jCi9mf/fDzzbwP+1CrwMXLL1aUe/1YXYN934bebRCXq7MSaxY8HbnNWGd+OOsQRrMSc1jEH1eWB23Z/rW16ef9zVJW7z0GI1vynhZMbB+4jl49HKsPwgomBHR65x5eeAhZNAUqOqms7iSrU2Yk57imIA0IOtgitA2c9KIZEvbCGvjn3lIkWMQeiP6KL8TgqNEYF8ws6P/BDZFNcfo+9xOJxRMiCk/GIOJsxiU1aXUvEU1X2xMBz1OTjYQzYKLTFYcE9EsQYsEVojQOCX9qJH6ZLPh5wXxc3e6+LNa/rExutWTaEaIqqnsegsywNBdVvAAD+Gz/D987j68M7mDiHzTMnfRNdVVcAB5cByFffWKXn/v2B8B8v126l/Ie459/mDposmAGgnuRD3GpiEK5/NXguH/+6R6vflt7v4nHvj4VCR6xjHZCGCtxrX1KztSa9vGg/RX5+E7jqccAWH/DYL1yDcA7p6MEdwGDbVgTt8LgctTE8nuMF7FPtu4/n/AAwYEp47ZY7ptR5wzqeI7CNZrcpElrmt5KaHnqnLzD8dXdgbbiqK5W9J4+s9ubjWS7k4z7HEwCA7Qn3YTdrjjHVLwAA1ic8gEZcKdyxcrX5e3DoJ+/tc6Lr4sdxf0R/2273/o5L7n3S0sP/PUjUoJGdGHSO1b5pi1gD3zsrzhrcmii1axGw6OHA7aWn3EPlYv4dmrQcdyxCp9HatEUUZHkK7r9nKSQ+KCIJNvV77Dm4X0NHmcS0Aqlb9iwOfM0DQFmRe3pIz7gXUczbKdG1rISl+Nw+yzKkHy+63vlcF+F3XYzmBJ9EERrZqWuSG4Xep64LmsqeIWD1SHpzoLgmLmrc50Dra8PPzhyMEenlKTU9kbP0eQR9L6x4Sb9zRxrzpvR6Fx9spJbEAhrZiTkhMnA262NMM6KBXMyBaOicMeCfzuvxjvNGVHtz6fhd+MVLp/MGaNvRAYD0ZqH3iU9Vtl8k54g2RizTrwtEgb3LXT0w0zEWp70jKUy+kKcW8gaEzscTTLM+IR7PuRP7pelYzsZI9JqXRSM70UzNnLzcB7H/MO4rOe5Yl2igpjry0bXA188Gbt/xJbBosvfmXpaLGc67AABduMO42rZN2fEjjTcC3DEkP85Utq/gBM6rPA/g22GLJGW9OA5ILXHcSySP9c/MDADnDwI5ndW3zZ9/fI44R47nuRBvcznMjeMJ5ZUcYIr8a/xex5MAgMtIwB/iPoz8fN73iUy9Md7mjpFbcL/0/aF48vl8eheky5IwoGmv2nw3UrFlSsjF28nxnKPrg+E9Too41kzqNX9uP5Cl4Ws+Spk6srNy5UqMGjUKOTk54DgOCxcu9N7ncDjw1FNPoWvXrkhOTkZOTg7uuusunDzp+wFcXFyMcePGIS0tDRkZGbjvvvtQXi6xPLeuGCHxIeG/wiGW7FokHU8Qyso/SX8j9YvTuYR40c8WKLshl3DPeVm75eGxMqUltUx/72Jtl+nXUadZfeNOJs6340Nhp9yTzye5oe/2tBxg9NtARvOImmcpRqSmiFKmdnYqKirQvXt3vPPOOwH3VVZWYtOmTXj++eexadMmLFiwAHv37sXo0b5Bn+PGjcPOnTuxdOlSfPPNN1i5ciUmTZpk1K9gPW0KfG9f+TugxUBz2qK3oLE1fvsFUDLcq1NF7ojInVvD4eteE7Q7ltGUDOMf+IGWGocjtQmCvhdSmxjZGrfRs4DEjND7ed77nUYDYz+u3T5gCjB1O9BumC7NMxS95hUxtbMzfPhwvPTSS7j55psD7ktPT8fSpUsxZswYtG/fHldccQX+9re/YePGjTh61J0Eavfu3ViyZAnef/999OvXDwMHDsSsWbPwySefBIwAiVVVVaG0tNTnX8zKbIeYraQriq25yJLxf1XP4e7qJ1HF/GZnjxXKHuIz5yAMrXoNC11X1mwJdeEw+blktR23z5xX4yvXALiY522s4KLnf2GUulByUfx6ES2hr2Jx+Nw1COuZXx2sqlJ3GQyizJA/ytxR8zq55jnDmuLF24DLF7w3H3c8gBurZnhz8HiJU23woo+7zLbax9Z5SJVY0VPpCZ+b64QO+I+zAEcFz0pKVvuaD1UKJoZFVYDyxYsXwXEcMjIyAABr1qxBRkYGevfu7d2noKAAPM+jsFD+A27mzJlIT0/3/svNzdW76UQPomWp64T2KGSd8JPQAztYS9n9/D3pnIR9LBfPOu4NvFNqSjAtx11J3gJOIBOHWROcR5qyB5zdC6zza/u6ubE1xC1aQn+SNcRxJrMax6yaUNGowwjp13xaE/f0kBmjIxXnfG7uZi2wlbXBcqGH334mpNrwlFgx6n3lF2+5WuiMc0jHOtbBd7/z+33f/0a302RR09m5fPkynnrqKdxxxx1IS3Nf3IuKitC4sW8eELvdjgYNGqCoqEj2WNOmTcPFixe9/44ds8C3vFdy9LkAfzUZOLA09LnfaKP9udUI53kQLUtlwUZcvpose0xW8xaoQFLgnf5TgoOecA99y8YQILz2z+7vvuDoyRMce3onsHMBUF3me391ObDzS+vUvio5pqwQplwQs1bL9H9+M7yCnJ5g8nADVaUUzva9Lf4wMysfjNRrvvQk8Ol4dW16o427UGe5b6cFFxWWbkjOlNwccB2INNWGf8B5sGKuYlU17ys1rwn/gPZQ9i+R3FzN4nw3HF8f+P73tLMOdHiiorPjcDgwZswYMMYwe/bs0A8IISEhAWlpaT7/SBSKaFmqisc0aq/f0LcmZH4nJgAHV3hvXmbxcPgvoz+0IvBx0UjJEvqENCCDRnOjWpMeQKKCIGk9U234TQFXsEQw5nkPWm0JeO21oZwlippe80MdiOmxfGfH09E5cuQIli5d6tMxyc7OxpkzZ3z2dzqdKC4uRna2TCXdui6WamN5lpWqZvHYlNJwlv4H+V1Kjnm/0Z1hGXjPNRLvu0agyvvNjwFVZfKPjyZK4o3aFMivaiOBQtWEM+OawvNA19sV7KfjlxNRfNgmoQ3mukbiK0FcC89KHR53W9a4OuF910gsEfr63lcH4tgs/Y73dHT279+PH374AQ0b+i4d7N+/P0pKSrBx40bvtuXLl0MQBPTr18/o5kaH96427lxq8t+Eq9NodTE0g54AUi3eId79lfJ9E1KAjqOk7xNNq51naRDAowrxKAta3ysGxElMTbYf4R6hI/IO/OB7e/5t7jpYcv51vb7tkZPTw5zzeojeV7uFPADAr8yC15ScXt4ft7DWANz5wwLEeBybqUkFy8vLceBAbSK0w4cPY8uWLWjQoAGaNGmC2267DZs2bcI333wDl8vljcNp0KAB4uPj0bFjR1x//fWYOHEi5syZA4fDgYcffhhjx45FTo5FM2J6kvXplcvk7W4AggzRl8vHMmluwUTAngC0uS68x1VXhpcsscMIACGmN1/JAW7aUHu7+RXAwHXAiz/LP+btbgBaK2+H+FxG6zNRflTD6Lw5nmR6np8B9cU+wyWOcWh1DbD7ou/9DWv+npEkLpQiF5cR7BziNhj1/CixWCKZXlmQ64bcAoA9i4FuIUZfHEHifcK9DhhNj/eVy6FN3JdYw9bASfeAQNDYxlC/z6q/ABwLfG+bXfBWIVNHdjZs2ID8/Hzk57urZj/22GPIz8/H9OnTceLECSxatAjHjx9Hjx490KRJE++/1atXe48xf/58dOjQAddddx1GjBiBgQMH4r333jPrV7I8B7NhsasvNgptIz+Y3/D1UldPrHZ1Em1hwLdPBRnmlhnmNWpY3Kj4mzB+n0ssATuFPJSx2lEJxoDDQjaOCI3lHxhs+iYj111OQv7BQEKw+6OVxacplRK/fsRLqZXsr4r7fXlIyMYXrqtQzhIRakpmk9AGi119RbFgAH6YHllbjq5V/1gjhFFipZilYrfQHNX+aTGMiJNhrOb9HSRXUh2IYzN1ZGfw4MFgQRIiBbvPo0GDBvjoI5lU4yTAd0JvPOz4HQBga8L9SOciWN3hl79mouP3AICV3FQ052tiqcpOuldDSTmyWvoVaORUmxHC+H2WCj1xiOWgEUowzr4MgLtC81eCOw9QCi6Ff36OB1pfA+xeJHWn+79WcvcTUx38EVg4q/b2gvtCP+advsDw18MfUfVzW/WLKEYattta4sW4ebL7lbEk3FI9AwDwdtwsjLatcd9RetL9Hm95lboGfHqnuscZJYx8VB+7roUDdvTh9uJK247aOyrOQvdO+Y7PAHsSpDusNeeuA3Fssf3bxToVMTHFrDbAu1xquXU4ZIavi+E3SiD3ISo4wzqu5oyIKQLCmjo8wtzL6c8iw7vtEqstUyEuXxGWTJmRvIQUoPPN8vcTc33/jPzr50eZ4PyyInctqAhf38U1+Zt21cSjyBFfR4qZ33t/r0HvMaux+15bHTXf6s77Xxudl41pj9x5ElLd7/86EMdGnR0zVFe6c0xEMh8tuIClz2vXJiU87X4xHSg/Kz9iEzGJbyDiJGJqc404qnyPYfTzp6ef3wwRHyKTr6OqzJ1/J6z4FQVD76HaE0w4+W3E51OS/2T1rJpcKUpy+ahoh1qycRpBRrc3yAXm1zzmh+mRtEgb2z7VZ1q6+jLw1UPaH1csVK4lufs63wJ0uEHZOQyrW+h5HYlGkbqOAfrc737/K80fJMdV7T5GpMfREXV2rERw+V4Ygi35PLLaW8hyi9Aaj1Q/jGWufAMaGdo/nMPxhGMSzrAM7zaBcXjVMRYDLktf1D9xDsZj1Q+KUpzr7OyegEKgs50yq5kidExohMeqH8Q85xD8wTEef3TcCSez8FtPtKTWUpTUAIpBod7fh4RsTK1+CJ+7xNNFTHnqAg07Iy8678ElJhp9rDznvlYpxMDhTcfteNZxr0/cWlRJb6Y8/iXSpIdBnEEGlrp6oZKJCxiL3kMZudFdGiZMpsbsED9vdfV98c2/Tb7InmiqZ7rjHmxjrfGNcAUO28yf5/66JtdEO+44Jtrdw9h7WC7muEbLPuZpp7t4a5qrAi/y8vEBmrlUErDpNecdGGP7EQ05bXPO/Ms1DAuEq7BAqP0wut62Hn2wW9PzaGbnAgC3mt2KQOvmAm2H1Ikhd7FQ7+93XTdioTAQC4WBuM0WZHWhlD2LNR/hXCV0wRDbptoN5aeBM0WAVKoDv2SWx1hjzHK5ayVewe/CKJvFg5TlKO1E6Bwns5O1QBa7gG7cIV3PEw0s/PUyhu37Tnr75RLg0gXfbXJLPkWlEjxxHsxif84q1KYrdyjsV5cyg5ZJJ2VIblbaznBIxUb5rFohvoplLszVdSe1vVio9/cF/ziZcCyYGDDCGamA99D5g9LL2QHgu2nKj0NUcVnsc8Es9CyYYblcFWEpomFH8XBz3gD5UZ9Y90ab2gRY1RXKY58WiWKMGnWou8+f1R35ReYOcWp7iSmtn9/UPkeJ6dROMyh9nJ5TgxyQmgNs+pfO54mQyxFeLJcSSqdc1S49V91Onaatwq3nZQLq7JihZnXFfOe16HH573hXFCtyhmXgmqo3MbzqFb+5Vvgu9eZtwJBwOk3W9bLjN6F38o8riDTOgOPDf/5cMqvHYgBjwCJXf8x1jsAp1sDcxlSXe9u00HUl3neOEMV/1aS2NzGuyAkbPnJeh385hxkQVxL8Q/MFx91YJvQM+3H+XnH8BvmX/45vXP3wb2cBul5+3+f+0ywDg6v+HNYxAQbk3xUQO/Q3541hHicKiV6f51mQ2otGV2W3dG0/fVFnx0SvOn+DEqTidecd3m2bhDY4zJpgN2uBPf4pvf2XZAervm0VaTlAvweD7jLXpWDlwn9u9r39Tl9gV4R5YcJ9/r56EPg+ylZwnT+oaDcH7DjEclCBJBwSQo14GXPZuIx4/MqyUY4k/MqyfO80MbV9MUvDGWSgBCk4yRqGfoCOPnQNk74jLrzp4PdcN+ACUjHHORpLhL4BpUQ2CW3lSyE0C1KaZ/2cgE3xiN0vDV6i1+dxVluhvR6qfPczaum5B1d3Ozs0KWqisGsTpWSF3sdqHip0f5tYIxOnpFSFb8FXby4RNXWx1GLMPU3icgBQmSjNaHsXu0t2hJHtNSoyD/vHthFfDnWdwcuIQ3q4DzpeCGC89H0SCwE4K09paUWm9IIdfiPShi09JzSyY4YUlcXick0ubvpGm/Af82quinxC0h+2B4QcnPcGY9ZcMHXMlcMYsFNoEXjHur/rdj4XIvvmdYGloIKJL6DMvbrKqWHui9IT2h0LCIyzkRiVcPqn2S/aHvq4e/8XWTsKQ9Rb01Epqxc4jQ33a2SX0BylMtNnW4VWYQa/q+vY7mPynedyloQdQl5sZAqQeg0oyemk9MuFjkvPJbmqQu8To6izY4ZrVX5AHys0rm6Uxaxw9UBB9Ru4quqvojweTPOVJGIfuobiOadEen6d6tmsYx0jevxxlokPXcPwD9dwXGZxvnfq+DxprnGngE3rWAffDdXapgewkvMsDZ8I12Cx0A9FolxVAPAfVwFGVL+K4VWvSj72xuqX8ITjt2GeMfwOzyGWg8Uu6UroTzp/ixuqZ+LvSqano1mw3pxFlp6HTfw7lRyDpQPLw2SxZ7qOaCczz55UH4hPkX/c/NuAt7pEHqtidaP/FrDpCHMnG6xEIkoQ5DkKR4h0+rIxCjr5VYhsmvIicz8vAnhUwm94/MLhiI5tKIlvn4mwZlZWPVwUpV8o8osJ2sZaAQBOQH5EYKEwUPnJbpkLpKp7nR9iwWO71gqBndaYcW4/sPEDs1uhrXP73bmsPLZ/CpyxaC4wFaizYyW/2wbc8Jfg+5SecseqxHqHR2/H17tzjNQVRdvMboFy0dTWaNdhBDB5ne+2HKnVXcTH7kXeVYMBFC4KsJzdXweOmFp0GbkaEXd2qqrq7hyg5l7NlfwA3ic0xTvOG2tKKdQMKy55Wv8pLQOmzA4IEvE8K15S+GhOMlfOe86RWOXqEvyhmz6E6iFaDYeey1gSNrM2uMA0Gq2qsUFojxOiVSC6Bh3rtAzct/0aMysfj8shqiEU+oOkiNXXv011YTlydQUwV1QFftEjilb0XWbx2CC081lR5SEwDtuEVtgj+K2aPbxSu9ImF49LT5trcfzqSr/6de5jHhBysEVoDafS2K8oyW8V9lX722+/xd13341WrVohLi4O9erVQ1paGq6++mq8/PLLOHlSYT0Wotgkx+P4k/P/8LjjgZotzB0kKs67o4e/dtO9MvhvHY8GbgwnvqR9YFzAd0Jf3Ol4Jnj9qUvFys/hr2+4MRHyCoWOWC+0x2KXtsHnu1gePnNdLdqi49z7zgW6HPYbob8ux40m3whX6HsCTd7fwTrSUbCyL4j1QjusErric5/3kttR1hjLhXwsEfr6Tq1Xl6n/AuA/KrRzAbD2Xd+s4Wf36jaFVskS8I3QHz8KPXCARVCo2oIUd3a+/PJLtGvXDvfeey/sdjueeuopLFiwAN999x3ef/99XH311fjhhx/QqlUrPPDAAzh71uBkSTHMEzuy3j9IU67shFYuXQAW3K/rKQ6ypsp2jJdIid/vAWDD+4HbayhJk96ZCzOWpd+DwHXarQDzXCTPIkOzY5LYkQi/0R8+XnpHtRZMjLzDc02Q90Ni2AvZLaU8SHqQ6mDlcNTmgdor8beoEpVJObvX/bPcFFqExL+H+PeLBYrz7Lz++uv4y1/+guHDh4PnAz9ExowZAwA4ceIEZs2ahf/85z949FGJb+1EOzp9o7akPvcDP/nlVtm1EJGOWMSFm+BMw44OIWFr1gfQOtb8h+kA3lD/+JZXAZCpV1ZX88jI5NkJTep6xgBwwP6lNQNlsbNCykiKOztr1qxRtF/Tpk3x6qvSyyLrJJfDHdV+nehNH3EsDAfUawhUngu4Ryo3h5zfVD+L+2zf4i77UgDu1PMfuoahO3cQ8+JnIp2rjLCdbruE5riz+pnIDiIVJ1Mz3eVkPB53BM/SrCvHJYQ7XP8bx3P4Wnhan/ZI4qDlRbKKxeF7oRfi4cIQfgN4LsSxxXP6PnEC4eCAhBSgSptl54xx+EHoiUuIxxB+I5I43xVfxSwVPwrdcdQve/NKoZv6k0aauyc5E8BFdacWOuAvzltxE/8Lxtp/rNnKAso5hO2fQwAErqAE4C2Ns1doHtk5/M0dDEBB3q+ja+UzpVdXAm+0A7ZfBpI0nm7b/qnqhx4VGqNQ6IDO/BF04o/UbGUBwcMHhBxsFtqiJ78frXktwkc0eg5Wvw1cVVP41fNe76Hd1L9amkRaulwubNmyBRcuUFbTABclErC9Fzj/q1zNC7LbGO+WbK42/mSd0F7xkY6wbEx3TgAAnGHp3tTzW1lrrBE6R9BGX/90DQ8/W3QYdrM8XY8fwH/YX2UOm3+6hmvQGHMcY41wkDXFbtbc2Cm4VtdodqhipGIna4FDLMdbWVxsp9AioKMDAFVmDu8rzd8i4TXHWKwVOuNp5yQNG6TMj0J3w88JAPj0Tne6Dp1jD1U7tSVg009Cd5xAI3wv9A760O+F3jiBzJD7ETdVnZ2pU6fiH//4BwB3R+fqq69Gz549kZubix9//FHL9kW3fd8BR1cHbvevcRWOtBxgzDygfe23lVyutpSCoLL/6v84JfEuSlUyfYeytWxrSHsWa7ZkvZQZ2EFrO1TTwzHRt0BmVBBqx1FAZlvNDhfqd9D9daV0ibJGq//OI0hBSp3xZk69lJ6ybpqJs3sCNpX758iS4Ymp0azz3T4Kai1GQNW76PPPP0f37u6e+tdff43Dhw9jz549ePTRR/Hss89q2sCoJbiAFS/DM3XgYhyqvCnvI3jjT90OdBoN5A2QXHYNqO/wRJ3UJjB8tcfS5xGVc+YNWml6OGeEZS1U0bCjYzQns4Exv9fq4Z98bjKGwOW+vB1IkAjOjxBjCMyyrQe1pXEidJnFQfA+39Z5vzphU7lqnHMv0khIhW7XvIatfW836aHPeUyi6lPx3LlzyM52v4gXL16M22+/3btSa/t2BTVr6oIjq93FKgG4GI/bHS+gZ9XfsVPIi+y4Mxq4I/15GzDkjwF3u8BjZPXMyM6hhJo6WZG4eCxwm8TvrzuJKatw4qTCUa7ziJhaJ5CJ74Q+ZjdDU+uEDqF3UumY0AizXaPwsesa3w6PaEUNY8AXwiDMdo32zUwsOIHL6mJ0gpnoeAxdqv6Br1w6L+9XWxonAqtcXdCtai5urv6DqGNhjQ7PDtYSiwXpNBPrZUMQal4zbYcAbYb4btOSf66cpAhyPLkcEcTm6UNVZycrKwu7du2Cy+XCkiVLMGSI+w9QWVkJm60OJKhSQjRVdQnxOMYaowJJ2CZo+A1bIvCuROPkdEjM0PZ4akkF/HUYIVlawgjJuOT9uQgNg+yp3jkW3ct2o4nNvxq1hk4gEy7YcAb1URVkTchx1ggu8CHLMGjhB6E3nLBjgesqfU8kVxpHR6uFzqhGPLayNqiEPl9EIrFfpogqD5maewmpQOebgUbt3f863xzBaq+6S/FqLLEJEyZgzJgxaNKkCTiOQ0FBAQCgsLAQHTro9w0pqqREVufIMi6XmN2C4NoNA/Bnw0/bgivCTtbS8PMSoiXD4q2IOi2ucocsiOO2GrUH0poCP1MC33CoGtl58cUX8f7772PSpEn45ZdfkJDg7j3bbDY8/bSRy2ktLG9ATYE9HS8mBlVAv8iSsdTVE2UsyWe7i3FYJXTV7bxVzI4Vrh6qU+ZfhLvdmk4H6RgndEqnESIAkunllYwCFiMNh4QmqAgyVecEj8NCNiqCPM9O5t5H/LcoZqk4KjQWxVYoIPo9GONwTGiE80y7wNtilopjQqPA+BqFPG0qZgribIIV/fWwqU8iWMES8IOrJ86zVKxydcERpYVtw1za72BBvjM7Awu4nkYDzaop+NsstMF20ZeQsGPL9GqYWk16SAeoR7Aqr65S1dmZN28eRo0ahUcffRTNmtUOyd1xxx24eFH7+eWoxNuAa3QM1t61CHinr37HF3nI8TtMdPwev3f45kr43HV1YOZQDb3jvAkTHE/ipqoZqh7/YPVUTHT8Hk84NMzxoGGckE1u2FoPErFG3whXKKp/s0gYgC9cg2TvX+3qjK+EK/3KU/haK3TCV8KV+NQ1GADgYDbMcw3BAuEq7FeaRfvnN4ELv3pvHmLZ+EIYhH+7hqBKg2DbambHPNdQfCEMwkGVU0n7WVN8IQzCPNfQ4J0AAGipIAVFRgvf27sWKm7LNMf9uN/xe/Sq+jvudISR5+r8fuX7AvjYFSQdwJb/SG5ez5SnyAjH/4T++FmUB+lLV5AK8FJxh1arZK5np0Ztzqef3wxd182CtbJUdXYmTJgg2akpKyvDhAkTIm5UzGg3DMjVtuYRAPfy50/vUp3fJVy/CO6imt8Jvp0rXQs1AtjG3PFNamNiNtZcUL+VCQhUpcMI99J/W+Qfrrn8mdA7aUUmfb3SzmpxkGXLJ+F+HfjUB/JzijUAAJTCHWtQDTs8I2QVSJJ7WKDq2kSX4sddRuRlFMTHCKtNIhWiZcPB4nMUq9dA9UOXCMZ8GQq69LlEYmEBgCKm/vcKxwUlI2xiOpVhIOZT1dlhjIGT6HEeP34c6ekUVOkjTeG31nBE6/LnWNFpNJAZ+TdTQweiwwxoTBEFYFtKnLpOiCUdXml2C/SXkRt6H1Krw2hl+1ltui0KhPXVIz8/HxzHgeM4XHfddbDbax/ucrlw+PBhXH/99Zo3kvgRjegsdF2JHzTIoHnK75vWVqE1Rtp0rqpuURuEdvja1R/7ZFZNAAg5vMwYMNs1Cg7Y4VAwVSRnh9ACmwUN8ssYFDB/kjVEDnc+omM4GY/1ESwF3y80xUnWEA250ojaocRqoTMuIx7d+UOB7WDNkM8d8NlWicTa4p7VSmJjjP1QO8CaIYsr0e6APe4Efnwl6C5bhNZB72cMeM91A+Y6R2rXLhkXWTI2C22Qx51GS75It/N87hqEVtxJNPV/r3B+ZV0uHnfnl/KP2yk9AfHXpV1CHs6zNPTmZWqUkfA6OzfddBMAYMuWLRg2bBhSUmqHrePj49GiRQvceuutmjaQyKtidkx1TNbkWF/75dtYIfTAM/hIk2Pr5pUcYMo2zQ97f/XjKIHM8Hd1pfu8VS8DkF+NtYO1xOvOOwD4ZrgOx2XE4wehl6rHBtg8T5vjhPC1qz9+a/8momMcY41RyDpK3+kIPeL0P+EKAEADpn9n5yJSsELIR2vuFFI437b9JHRHD+4AONGH114hF/1tu5Sf4PhGIClfq+YqcpFpuKxZCF1o92HHI0Hv38tyMdP5G61aFNRqoTP2slxsYW0wlf9Ct/McZ41wnDXCcN7vC2XxQfhcV3YucCcTbDvEvQoLAFzVNUWgaz9rPSUjktll7Rp5aAUAjWZqCucAbW7X5lgqhdXZeeGFFwAALVq0wNixY72rsIg5XBpmsfUfp0i26jSGAWQ7OmEQx39cYuriSbT8+8Kp4UUwiEsa5DUJuoImjFQIWrRFqWBtFnd2wl7qzUJ3FrSQgTLv675ax0UHUo6zxkHvjzgeKy1HcbFT/xWnenP6P9endyDgS1R1ObDzy9pcO0HouWAk2qmK2enUqRO2bNkSsL2wsBAbNmyItE0klFjJ4UNIuE7vMLsFscWWAIBDIgKXiMeEzrcAD0X7dHxNZ/nADwATKF5HJVWdncmTJ+PYscAo+xMnTmDyZG2mVeqae6t/D5fS3B6DnlJ83Dedt2OZ0DPoPv9yDsU/XNYoArdA0Cej6wqXsqrLzzsiW014TdWb+NalrJTCV64rwz6+1GjPR67rcJJJr1jzTEkcERrjQ+dQrBU6hX1OI51Ao+A71KyW2Sm0wHJBv+mdFUKPsEaGHLDhc9cg/KRBde/KIIUgNc94HEG9sTec/4fbq6arWrk2xfEI7q9+HItdOq8YS2/qTgOigb87b8DnrkGKY/AOCjn4l3MYNsiWgQhtl7e8EAOqSt2r2y4el91/jVHvb4NyvGlJVWdn165d6Nkz8AM0Pz8fu3aFMR9NvJYLPXFYaW6PNgWKj3uUhR4FetF5j/ydVikXEaG/OW9StN/SCIO9D7MmeLUmVsdI2wXp+KEjNX//Daw9LiAVF2H9NPNKplGWCz10b4dcB1LKWZaB4yxER00Dmk5tAkByJnDLXNUPX886hAwwlvOD0AsPO6aoPrcRxCNel5CA46wRzkBZktPVQieUIAVlqKf6/D/6d56rK2TTSBhq7btmtyBsqjo7CQkJOH36dMD2U6dO+azQIqiJmteYozL0PlqxermIt7uF3gfq86YEUFAAVfP6ZArIVbr3DHiHTHBnMt/aVKFHODX/0JcQTnxN1E4sCAKw4H7fbanhJVQM+jyFuFbJvW6tIpLEn1Ua5H6q9s9htPsrYO//Ij5u5FS84k0eDVL1Shs6dCimTZvmk1iwpKQEzzzzjLcoKIH7j3tqq+8mnbOrxEqAmpPxYX2zDsV/ab2eLiJFk4y+0aqUub/JMuaeRrNqiIGWZUTkOl/uJIry7/lqZkdlkFIcprBrWF4lQlXMrrpcTLTSopOkBwYOF1k97/u5lNULr9SLyVR9Mr7xxhsYNGgQ8vLykJ/vnjffsmULsrKy8O9//1vTBka14+sB5yVANAf/qvMOjLMv1+2UzzjvD71TFPhN9bPYx7RLSHYRKfhC7wrPImGl548x/3QNxyB+G0pYMrax1ujCHTbs3EcEZcH7e4TmWCIoi61SQi5+6AOXfN6xambHP1wjUAU7/s/2o2ZtiRUMHEZUz8RBpeVEYsBWlVOCRvhO6I19LBe9uH1I4BxYLXRGS+4UbrStNrtpiqjq7DRt2hTbtm3D/PnzsXXrViQlJWHChAm44447EBdXd7/RBqg4F7CpEUe1w5RYJ5dnJQKSwXsZecAFzU9V5+0VcnG6JrZhB2uJpjhryHnPi8paJKFKNsj4uM6lTpQoR5K31EKxXDFTLjZGatVwMT7yjs75gwDaadKecGVyF1Ee5lL2AyxHp9ZEzvPlczNrg1Tmnp5UHGdqAarfScnJyZg0aZKWbYk9yeZfUEkIJUcAaJChmFhO9AywB9G0B1Cs4/F/XQldZ01mX6HjwRXYuxjYY848ahyib8WSEu4Yreh7dymO2Vm7dq3ig1ZWVmLnzp2qGhRTmvUB7NI9+w2COd82flWwOiuYT51XY4fQAk7GY5EwIOi+BwTthp/FybcqVMZanNcqG6gF7WW5KFYRGL1K6IKVrm4o1yqAu8ZphStWpARNKihjl5CnqIL7dtYSJVpmCNaI3Gq6YB8qS1yRl4mRZFACylA+cl0b9P4fXAqzi/8wXdX5twktfQq7KuWJY9Fu9DDyjsU5lo4dQovAgGe4p373Cc0iir+5zOKwXWiJ83IjlBaguLMzfvx4DBs2DJ999hkqKqSXvu3atQvPPPMMWrdujY0bN2rWyKjF24AmgXk3LrF43Fb9ovHtAfDPCPPpPOn8LW6ofgXLhXz8yrKD7rtQGBjRucS+F13YPnUN1uy4scRT5V2KnZP+lrmTtcAm1hb/c5n7DVycZXi30DzsxxeyjtjJ8kLu97PQDQtdyl6XfAQrccJVhPAD6B9wPKZDS+BTe89MW5j8iOselouvQ3zZ8lKYPdnfcqEn9qqIGzzKGuMyizc0g3co/3UNliw9U8aS8KUwEIuFfjgWIpN1MGuEzlgm9LT0tVlxZ2fXrl0YOXIknnvuOWRkZKBz584YMmQIRo0ahYEDByIzMxM9e/bE4cOH8f333+Ouu+7Ss93RQ6LquZXeBGopWV6dBu3yQZSg9nxOiy9XtaJQfwtxrIsZbKLOjtoVhZUKR/zEr6VgYnUaIhZcYJGXdNHLZSRoW3KjfeQJX+XeUz5lbSKYzzxXM6JTJTFyZBWK/yJxcXGYMmUKpkyZgg0bNmDVqlU4cuQILl26hO7du+PRRx/FNddcgwYNjFviW2eZPQ9OItKWO479wSqq6yD6ZtgJAPeKznrarRojUSgj/JFOEkhV97N3797o3Vun+WLidW/1E/idfYHZzdDNjyqz4P7TNQK/tX+DLK4EAPBX5y3aNUoH55Ch6nFLtap4HqZfWZbmMTxGKGQdozi7n7YYk0hIp5D/9PQ61hHrHNqvjjRMapOgU3NOxmO10AWCyxZ+oVaTFIWRN0yLEibhuMzikchZr9YazQdYWAlS8Qfn3WY3w5K+drnn68+wdKzQsUaSHiLJymqEsyo7Z8Q6QsXTBaO2k2RZ1zwX9O6zLAN7WHNsYW2i5rX/k0tZ5nijiDs3hyN47emJOjskKlXVDEqqWbnjI0V9UJ5aPAR8GPeq4ecldUfE74tY0m5Y0LvFJStcUfKRWBpBvS09JIlqiFn1ObRmq2JBdQXwRjtg5xdmt4QEk6x/8UYprXl1K0QIiTXtuGP6nkBBPTsS+6izQ3RTimT0vzwLi4V+mh/7T86xOCI0xo+uHhEeKTrm6NVaJXTFO84bsZtZN8hxtdBZl1Uc4awwO4cM/NM1XPXjSaAfhR5gDHjRcRfec91gdnM085nrargYfXRGG/qLkZDqQX2SsVPQrpinv42sHfYZvKop2jhghwN2S1eXpimX2FWFOPwrSH0wAGjNRd8oZ5nFppFIaKqTAVRUVOCnn37C0aNHUV3tG3k9ZcqUiBtGrKMNdwLbmDUL1HG0/IaQqHYNvwXf6jD6S4iYqs7O5s2bMWLECFRWVqKiogINGjTAuXPnUK9ePTRu3Jg6OyptFtpEzdLHuqhKy0RhRFaw6SPGuIhKUXiYGeBZzFJ1X5F3lsVuaRS1zomekyMRls0BgIswqOxI4WxdDssYcJr5vpfOsIywj3Oa1VeWqkJwhn1sLaka23700UcxatQoXLhwAUlJSVi7di2OHDmCXr164Y033tC6jXXGE84H8KTzt2Y3o26pVp7l+a/OWzU7rZGlCGLJJtYWn7iuifg4RzX4sFPjLNIxzzUUH7iuD7sidjh+4wi+3LquqWY23Ol4xnv7Ledt+FVQ/xooY0n4ReiiRdNMs4218ikhsYc1x/+E8BPWfuy6VlmqA2buKLyqzs6WLVvw+OOPg+d52Gw2VFVVITc3F6+//jqeeeaZ0AcgxCouHFa8a32UaXbaJrqWso5dp8JIpmZFpaIipBT3YZwKiZGHExEU6rTa0m81Sv0K4iopARSRA0uBfd/pe44gVHV24uLiwPPuhzZu3BhHjx4FAKSnp+PYMZ2XEUaLPYvNbgGxMI4DruM3md0MQmT9yT7H7CaQWOK8DCyaAuxaZMrpVQUh5OfnY/369Wjbti2uvvpqTJ8+HefOncO///1vdOkS3UN7mhBcwNLnAQDVzI49Fl72K2cLa4uvXVdglG2t4efeJOifF2OFqwc2CO1QatS8ex13ArX5jDYLbSybeExvsbicfZ+KyuCRmuMapclxfnD1hI1Vhv24DUJ72fs2CW1Qykf/yA8AHGfh5yFbK3RCU+4c7HBhJ2uBPO40muA8vLVcljwNdBgJ8MauwlR1xXnllVfQpEkTAMDLL7+M+vXr48EHH8TZs2fx3nvvadrAqHRktbcWy2HWJKLU7WZ6xDHFW83WSL+pflb3c8xxjcafnGNxiOXofi7i6yehO1YJXc1uBoliWrxvLyAF05z3q+qAXoB81fUzqI/VQudImmYZwX5POeVIwhJXH6wUumGt0AlfuAaJ7mVA6Qn3Z6TBVBcC9WjcuDGWLFmiWYNiQvlp74/VUb6Cp5IlGn7Oy0gw/JxieVwRjkRpB5VYQxyccET5ez/WmXFtqytOowGcLEhJH9FnpFHq5liy3lLMWelBtJEAh9lNIFEuFeFPjRCil4YoNbsJvkz4jFT81SM/Px8cpywHzKZNdTzwMm8AkNoEKDsRcNchloMpjodVH/pFx114MW5eJK3TxL9cwYvrEUIixwBchM6rZOqAPYLxcUVKHI9gRZjWSjR+nclOD9bLdH9GGkxxZ+emm27SsRkxhrcBQ/4IfHiv5N2RxCv8y3U9ptq/QAanPD+MHnaxFqaePxY4qEwCCeGUhT4M9dKMO6v7OX4Suut+DjWKojyVgirdxhgenAyE0dl54YUX9GwHCYOV6xyF0hRn8Wb8bIytnm52U0x3p+0HHNSxdhiJfkIdyKjejT+EJfFPYYZzPFbrlKjPqmVlzGqXljnDwtZ+hCmnjSiCbsOGDdi9ezcAoFOnTujVq1eIR9QRoqXnJFAX7lezm2AJepcMiDVVTPvK6MQaOvDHkMedxmro09m5JLHowQoFaMVB7NWIQzyMKangAq968UxEJY1Ss02ZwgJUdnaOHz+OO+64A7/88gsyMjIAACUlJRgwYAA++eQTNGtWxytRi5aeE0IidxnxmO0abXYzDHeQUiNEbKPQVrLy+jPO+9HI5Ezm4izaF5CKCyz8pd5qlCIZ21kr1Y9XPQV/9TRTprAAlaux7r//fjgcDuzevRvFxcUoLi7G7t27IQgC7r//fsXHWblyJUaNGoWcnBxwHIeFCxf63M8Yw/Tp09GkSRMkJSWhoKAA+/fv99mnuLgY48aNQ1paGjIyMnDfffehvLxcza+lHdGyOvr2TggxUhq0ieeL53xHGWxwaXJco20T1H+oE2mVULls/6eZpmVQVtXZ+emnnzB79my0b1+bRbJ9+/aYNWsWVq5cqfg4FRUV6N69O9555x3J+19//XW8/fbbmDNnDgoLC5GcnIxhw4bh8uXL3n3GjRuHnTt3YunSpfjmm2+wcuVKTJo0Sc2vpR1aek50Ntm2ECm4ZHYziIW8bv87ACCb02q0guEafrP31sHE8Rhn+0GjY5M6qew08OldpnR4VE1j5ebmwuEIzEXicrmQk6N82HX48OEYPny45H2MMbz11lt47rnncOONNwIA5s2bh6ysLCxcuBBjx47F7t27sWTJEqxfv96b6HDWrFkYMWIE3njjjbDaoqkgS8+1cJEl4xehMy4xc5PvGUkqJf0GoZ0uOXFCFZvcIeRhJ2up+XlJ3bKXxf50vxXiYsIRUTyKQZzMJlnYVGvHVJSKkFPE6iMbxTCzZISqkZ0//elPeOSRR7Bhwwbvtg0bNuB3v/sd3njjDU0advjwYRQVFaGgoMC7LT09Hf369cOaNWsAAGvWrEFGRoZPRueCggLwPI/CwkLZY1dVVaG0tNTnn6Y8S8918pzzXjzimIInnb/V7RzR4CNXgS51ecqC1Ms6z1JxQ/VMzc9J6p6jLPZHgL90DTS7CVGvjPl2bNYJHQw5734NO+OLhAEoZZ74JHNKRige2alfv75PUsGKigr069cPdntNSminE3a7Hffee68mOXmKiooAAFlZvheErKws731FRUVo3Lixz/12ux0NGjTw7iNl5syZ+MMf/hBxG4PqoN/yurMsXbdjcxDAomhpu57PhRSjAggJiQVaJ6qriy4hAamiKeuzMPaap5UqxAGoqt1gcMkIxZ2dt956S8dmGGvatGl47LHHvLdLS0uRm2vNDJtG6sIdxlT7F7jf8Xuzm0IIISSW1TM2Yabizs7dd9+tZzsCZGe7CzGePn3aW2Hdc7tHjx7efc6cOePzOKfTieLiYu/jpSQkJCAhIXrjXULFlGjpMceD2MZaG3a+cOkxjSVnI2uP55wTDDsfIWqcZvXD2n+90B5FOiW3rEtxhXo7JjTCt0I/VJpcKFmtEpaCRuKRHYXlp7QS8XzF5cuXdYl/admyJbKzs7Fs2TLvttLSUhQWFqJ///4AgP79+6OkpAQbN2707rN8+XIIgoB+/fpp0g4rChZTorUNrH3oncIUZ1DiLD2sFTprdqz0CJYI8xbNCEvMF24trdcd/6dTS4CfIyiNQ3wtEgZEbUcHAE4yvw51hf5lQsRUdXYqKirw8MMPo3HjxkhOTkb9+vV9/ilVXl6OLVu2YMuWLQDcQclbtmzB0aNHwXEcpk6dipdeegmLFi3C9u3bcddddyEnJ8cbE9SxY0dcf/31mDhxItatW4dffvkFDz/8MMaOHWveSiwSUgLn9C6Trcvy+DPIQ/jz1pm4CBtH+ZuINtyxFNF37GiQikrNjuWIrOCBVyfuV03bpZTdP+ecwSlaVHV2nnzySSxfvhyzZ89GQkIC3n//ffzhD39ATk4O5s1TXpF7w4YNyM/PR35+PgDgscceQ35+PqZPn+49zyOPPIJJkyahT58+KC8vx5IlS5CYWJvQaP78+ejQoQOuu+46jBgxAgMHDsR7772n5tciBurN7zW7CZaQw50P+zFNVDxGjSTxkDOJee24Y2Y3QbUb+V/MboIko8o/hCOdq0Q+f8DEFnBAWlPDy0ao6ip+/fXXmDdvHgYPHowJEybgqquuQps2bZCXl4f58+dj3Lhxio4zePBgMCY/HM9xHGbMmIEZM2bI7tOgQQN89NFHYf8OhBBS163UuRq4kTF1scoFHl+4rjK7GRqpidO5/lXDy0aoGtkpLi5Gq1buFNxpaWkoLnZn7Bw4cGBYGZQJIeHTKpFiW06fpJeEEDct4hOLWSqOscahd4wGienAmHlAJ+Pr3Knq7LRq1QqHDx8GAHTo0AGffvopAPeIj6cwKCFEH134wwHbwi0dcY9tCU0lWkQ9XA7Y1o07ZEJLYsNz9n+HnNbKQJnu7chESVQvJLjL9j3usy3WNr7ncol2xwqTqs7OhAkTsHXrVgDA008/jXfeeQeJiYl49NFH8cQTT2jaQEJIaOGO9mRw2hSLJJFLQnXAtnT6+6iWxV1AKuf+gK6WidQwohMSp1nhVHNKWDTgypDKXZLsjKvHuUtFCMYXlVUVs/Poo496fy4oKMCePXuwceNGtGnTBt26ddOscVHNhD9mpLR9URM5u1gLs5tA9JaQCqXx3dH73V8bnAbPgODXIfDcnu26ES/YPwzYvxhpEZ/TKFuEyPOciZ8fc19volIRLY2NQ9JkLVteXh7y8vK0OFRs2LUI+PZJs1sRtgftX8MVRaUitJSCSpSjXugdY8AgfqvZTYh9VWWAwg9UoY6+51pzJ9CNO4RkLvJVf234ExCvbO7Kuad6k8Oc3rUiLV4f4oKszbkzKDIwMa0kg0tFAGF0dt5++23FB50yZYqqxsSEXYvcJezD6D+35E7hMGsSekcdzYubiUG27fjB1dPUdpjlBfs8POF8QPK+h21fYpEwICYKN17J70BPjZadDua34Eehh8+2+ijDBVD9MBLasgTtQh6u4zfhL7jde/tKfqdmxzbDFfwuxMOhy2q5xihBEUzu7BicYwcIo7Pzl7/8RdF+HMfV3c6O4AKWPAVPR+cXV2ecp3TphBBiigokYZHL2HwuJAQTcuwAYXR2PKuvSBBHVgOlJ703PxcG4UpsDPIAQrThgLE5KwDALhGAqV1QZnSrq9PBVrSZtTW7CUSsy62G59gBNKiNxRgLmhiwTvGbh7zIjKthFcpY23JDz/dW3DuGnk+sH7dL92ywt/I/6Xr8cLXkigw/ZxvuBHpy+3yWSXfgjxrejnAZkRm6DXcy9E6EAEiUWI0X7eoHW9q/epY73MNgqjs7//jHP9ClSxckJiYiMTERXbp0wfvvv69l26KP3zzkaH61SQ3xlYgq3G4z7sO5GXcGN9nMS9/+34SX0IzTt8jczLj30QgXdD1HOBpzJYafM5FzYJBtO7rzB2u3odryyQoHGBDP0YDTP48LiV4NUFsw+yp+m4kt8W2LVnrz+4LvYMLyc1WdnenTp+N3v/sdRo0ahc8++wyfffYZRo0ahUcffdRb16pOyhsApOXArLwIJIqM+9zsFhBCosD5KFomr4xo+bmBVC09nz17NubOnYs77rjDu2306NHo1q0bHnnkkaC1rGIabwOuf61mNZa1NEaJYecayO8w7Fz+1H5Lqqdi+etZ1Fd1LgCmLL0MVzIu4xLCD7DP5C5iP2uqQ4tIrLgiyldL6S0R1QG5gyKRw53HXlYPNgjg/auPm8Xga6CqkR2Hw4HevXsHbO/VqxecTutVeTVUp9Hu2h9Jvkv7GuKibqecE/cX/CfuFaxNmIw5cX9GC4n4jVz+LOwGVOC9lf8J0+3/1v08cmbFzQq5zzP2+chCsc+2BDjwQ/zvwzrXfbbFYe3vw4Sll0rdyq/E7baf0Ejl1Fgvbq9k8LIS+dx+VY/TUjfuYOidDDSSX2t2EzQz1rYcc+L+gtlxfzW7KZbWkdMm9u1G/hfcZvsJQ/kNuJH/BXfaloLnLBJja/A1UFVnZ/z48Zg9e3bA9vfee09xxfOY1mk08Mgmn01X2/Sbl+3IHcFA2w5kcxdwvW0DkmQyIXf3u4inaFnzpMYw2wZVoyRaUVIGoQl3HkNsgavk2vAnwxoZyuaKQ+8kp2nglwWraMIVoyl3LmB7Q4Vz+3ZOQCvulKpzZ3Laxw+EK1GjQqtaGcxvMbsJmklDJa63rUd9rly0lab9/Wk1+pLNXUAz7hxsnICWfJHf826MwJggzpTl54qnsR577DHvzxzH4f3338f333+PK664AgBQWFiIo0eP4q67rDeFYwp7vNkt8PJU3j3JMk1uCfE6scHsFhBiOC2nZkg0qvn7X/+q4cvPFXd2Nm/e7HO7V69eAICDB92jBZmZmcjMzMTOnTQXazUP2t3L/E6hYfAde9wJbNxlQIv0F2/AlJ1Sdjjh9H+rRUHMDoluPAS04IpwkjXEZRWxV3ooZhLBtqP/BiyaLPuYhriI80jXsVXEX55eqSxSs4Axb7pnPwymuLOzYsUKPdtBdLIj4V6kcAoLfLa6xqez86L9X3jReY8+DdPZ3bbvsEToa3obHrN/jsuIQ7+qd33vVDhfHcvlF263/YTPXFeb3QxV7HD51BtSoi13wrDA7ZH8WrwW9543yLxT1QeGnFfKjoR70aXqn/I7tBsme9cHca/heecEs6tXaqKA34gfhF5mNyOkRijBTbx06pAB/A6sFrqoO3BSfWDi10DTZhG0Tj1K8xnjFHd0ACDbtw5LPQOSr8WyRFQjnauQzirc+lrgwTUhj6FFRWirirPQ6FswUu0Md+TQZkJm6RTuMjgugqR1Q2dq1g61Yikjd7RM4MXDCU6PxtrjTcmc7EGdHb0s+6PZLQjfvJFmt6DuMPFNbxXR3ZGzdtvVlA8JCIq98Ks2janDxK9xude7XL8iWjpH0YI6O3r4/nmgMHC1muWVnzG7BUGlw/iVBEQ/Sld3maGAD17Tril3Dq24k2jLHTeoReERZ7VWqg+/13dDlXX/PmbJwoWAUbpgpRF68AeQhWK0447LpnKQWvkIAK3DLDnSl9sT1v51DXV2tOasBtb8zexWqGTtb6vtuWOqc6DoXSuLhE+vfB89uRCp6v0koSqgXlYX/tegj4mDE6NtazDSVojmXPjB5np39MItifGq/b3AaesEiWDirmMiaBWA3Mjj6IzIFyanJ78Pj9gX+kwNBuuUtOVP4A77CoywFcIms5w8Hk5cx28K2J7GVaIXt1fiERLn4Y5jgI0WBwVDnR2trZ8LMItkqCSEELXqtzC7BYRohjo7WhPNc4uT6yXjElpbrEBisij5YAp3ycSWGO8sU76UtdLEZbsuFbEXJDyhSmKkqUi+mYIYeD9xOnw8HFun/TFjWKR/AbnA+HhR4swqxEV4luhAnR2tib4NDeK3oRt3CJ24I/iNbTlmx71lWrOkdOMP4WX7+3jJ/g/0MDJF/u8PGHcuGeHUfHKoKyEXWlxSyF068kf0OTfxaiUzDXGb7ScM4HeiL79b8bEG81swlN+APP40hvHrw25LW+44buVXyt4fkzWlDv2I2A3Hjez3iuT9P4pfjXhOesqvnSjWrK58oaLOjtb6TPR+I0rkHGjHH0cn/ggyuVK0408gB9LBaGbgwDDOvhx32pcZWy9FiJ3lpHpLjYURAp3Vw+WIlrE3kSn70Yw7h778nrBSMPTgD6JTzQdURz78+kZ9+T3I5c/K3n8r/3PYx9SUHlP0S5+H1eMFVetxZ0QPV502AEBrXlyyxbfTJdcJimXU2dGaPR7o/7DZrbC24+F/4yXmU1MBncSYCh2+rJWpq6MWFSjFhGVQZ0cPQ/8I9HvQ7FYEGMmHTmLXjKv9Vim3JFLp42VVKNhHY1ncBcPPGY1scMkWIQwndomFGL7vyGk7Pdehpkq0mpVRAXidpi1lpHmL1zKkyBTx1VtzTmHaCWfgSCMHAamQLsDbvubv4hnR7hZkSXxn7ldlbTBYPdHfJJ3TvnhyMPFwaJN8s+3QyI8R5aizo5frnje7BQH+HDcbX8S/EHSfDvwxrIh/DD/HT0EOd967vSmCd1CG8uuxIv4xdFIydJ/cSFF7tfKK/X00CJILw2p6cEpimkLHAtzEr8JvbMu8HYFg+nG7cSP/C+63favJlGZPPvjy7wKJpbaRuIbfgjG2HzFaQYc+JEGDD5cOymv/5HDncZfte9xn+xZJnDlZywfYJGri2ROA1tfV3n7mJJDoG9j/oO0r/JIwJaCa9hB+AxbGP4/P4/8AAPg2YRoWxT+Lu23fy7ZhnG0ZOI2qfWupHqpwr+1b3GX7HtkyU556sXMC7rEtifxADVpFfowoR52dOiSBc6IXvz/IHu4P0JZ8EXJ531GdeiEuws24s2jJKywe16yPsv000kTUadOLlnl8GnEXFewVukPShCtGY65EfjWRvTZAuiFXipZ8kWYftqGyI9s4bT/UeI4hhzsPO2eReLD08GpgNeDKkBoNKyJTGvvcbMOfRI5EB4CHgB78Qe/vlM5VoBt/WLoMQWoTABw4DujKHda8yS25yKfJ0rhKNODM+cKUbFIHONZQZ6cOswd8izIoSPBYoTHnCcIusySziDUwuCXqlSP0aq6gcvK1aYjJtKifFGrajdSQWY7uH0gb1vM5xFNaR/oxkQTpEuJBnR2T5eAcHrN/hkxclJ331tot/Eqkoxy32370vaPPRCAlW/Fx+qtdBvvZXQGbGuEC+vM78YL9Q3XHDNNvbMslt+9nBlbkPbBMs0O15E6FX07j5GbNzm+WeDjQL4yl4XJ0Sy9gATzHMILX9wvGQ/ZFPreVjU7W6DACGDMPSJW+9ky2fxVJ08x1QTo2LZc7i3q4jFzuDBLrTMFlc79QUGfHRPfb/ofViVMwyrYWGxIfxIfxrxly3j/Hz8HWxEm4xrbV9452w4BJPyk6xnP2/+Bfcdq0tw13HOsTJ+Pj+Jcxwf6dJscMpcC2CUNV5EHRzK5FwOLfa3Ko+ihDPa4KE+zfoR8Xxge/RLCpUvlcsOlQY6ShAg/ZF3mXekfiCl4iZiWGvBv/VyyKf1a3499k+wVz497w3r7Ztkp6x1v+Ib2902hgsnTCwZttv+C9uDcjbaI5Dq+Q3NyYu4BJ9v/hVtvP+lQYJwGos0Nq5fajpZJGWfIUYja3CIkN5/ZB89dosHg9uvYQHVFnx0K0iD2ICG8D4utpdrgEibl2KyWzCidN+mUWH/bxg8YalLqz9oYK5JUiV1AwXOIl5pLHbNwxgmNbtyMnt7Q+HPERLgfmQjz34jaK3zNxQQKwIw7O5v3eD4XvAodNTmKokPjaqclSbYvJqJmi1uK1iwFT3P+Mpkf5kTBQZ8dCOnG/4l7bYrOboZk5cW8FTBU9Yf+vSa0JNJDfoXjf9nx4q616cPsxxv5jyP0acxcULQ0H3BfxftxuzVbtZKIUPbn96MIdRq7SPCsKNcJF9LTAVJeUVqFW59hCd2x78JGVPImHCwP57ejAHUVHib9/c5xGHleE+22LfVYTpqECT9o/RjPuDHpzezHTPhc38avwjH1+WJmeJQkOZdukJCqvNaeHdtxxTLJ9gztsyyXf1zPtc01olXYKbBvRhjuBkTrHXsWy2I3Ki0I2jmF63H/wT9cIs5uiiWtsWzCI34rWVfMBAHfYlmGEzTqFAHsESXDmbyi/AT8L3RTv/1bcu2iqYMm7nRMwiN8OF2fHVtY66L5D+I1oxx8Puk84OI5hkG2bZseTOvYmZ1tdjq9WT24fkrgQq3uyuwBF8sHbmbiIDC7yxQS9g+QiSuIc6MPvQx/7UayD7wjbQ/av8ZD9a+/tO+COC1ni0jmlQ7AyL/f/CPz1vtrbVzwMrDNu9IDjgGfiPvLeLmZpPvffYV+B+a4C7GAtDWuTlppx59DMdg4uVjs+kYJL6ldkMuuOvOqFRnYIMUNaDsxenUBkVIW5qq2uOFYoXxvLP96mUXv926NQKdNual6SzQpVw8O8llzU7ktTtKDOjsHOICPkPlpPKWihfhRkILbi8yary201P2jU4YlPCfMBnHbnjoB/mQKpOK9wXUb48VU+zgXP/qy69IjKANz6opQC9XVMbFeKZJ/bAVnH930H7Fig2/mxJ5IpfN/XcqqorMN56DzFlqYsgWQCaqcEk/xe5/63lRAvWT/Lwvgdzx8E9n4rOk6Qc3e8sSbpY3iSpKZUS08C1caW2xCjzo7B5PK7iP0n7hU8Y5/vvd0I5td1GmXTIA2/mAZz/HfYavPUPG3/CP+OmxnxMQ2zehbQ+16fLMYRqQ5zWqXjKBUdJO0N49fjGn4zruK34VZ+ZchM3UoICi5rt/IrVR27LXcCV/HbVT026DSQP3ti7Tn5E/gg7nX8Pe7P6MEpn3oNVzXz7YwN8M+jtX4u4JD5sDrwQ2Qn37UIWDBR/eNTsnxu+pev0JXctYy3AblXeG8mc5dxK78SI/hCtOB8s8234k4iVS7TuQzxNLkrnI/yvYsBV229ryzuAkbJlVmJT5beDun0EyP5tRjFr7FkLULq7BjM/0UuJY8/g/+z1eZnGGfXLvlcSDIXZE1XONzxKXDXotD7hSAuVDrWtgIteA2KQBpp7//cCdU0EeYcfGZboG8EHy4aSeYuozt/CL34/cjljSsQmxlO0juRztxhJIaK+QmXVIfXO/Lndo1tC4bZNhiak8UWTo20la+rP5HgijwVg0R+sAYoVX88LaRkBSy1z+XPoh1/PKD+HM8xtOPCm1oKayWnT4yO7+M4MLTmTwY+JiEVyMiVPWQmF/j8tuSKao5lvZgg6uxYwYg/a3u8xp3Cf8wzJ929eCNKObQcaL2cGqPelr+v21gdTsiAsiKgUv+6XT4adwaufsq94ijST06p5atth0R2TAvQ6zLtQO1r3qeCvFRyxzjlFeYtoVxhXTyxZ04CL14ETm31pmJQLTFVdMPgKdpgwb6q32OR/Q4BHaEKFVP8ra4xfbm4lmLnN4lmbQrMbkGt8trRkSzuAjJQBg6CpquA1PLPlNuZc99uirNIgd8HRhtzP3QbcyXen1NRiRyck97REfhB14ArBQeGeDiQFqSEiGeUMKwMwmd2AmvfBc7uVf4YA6WjXLZumRptFX5bFsenhJN/KRznRHEVJdB+CrENdwJ2OJGEywGxUEBtiQJZUkvu/XLvaFGaI4DomjPatlrdMcTxPrfMlS094TEgjLQTHfkQqSFOy0xrlp92x8eokZAMtA9/1NeTxiAg7YNErEwjlAAIjJuLVbT0nPgSzX3X46rwS8IUXEY8GppU8RcA1iQ8jGpmR3PuDG6s/qN3+zW2LVjHP4g0VMLuX0U7Jx/Q6rp8MbwcOx/EveYTexLHubA84XF0qJKo+xUXOIXRGCWYZPsfbHDhAlIDH1NjNL8a5UhCGhdm0F9VObDzS3fcTtD9ygAEGYFTeyEPIpmrwkTb/7CZtcFaQcUIpZ8R/DpcwC7Mcw0Nup+S6WWra8OfxPqEh2CHSzIXU32uHIUJkzHPNQR/ckqMVjbpDog/12+fB6xtBOyvjb8YbVuD+ijDeMcz2jVcdM253/4t0lCJJ52/De8Y4nifDiPcpW9e/J/s7vPiXsXN1TNQFGTBSAG/Ec25M6HfX3IjO4LLHR+jRo/xgD38sYih/Hr0x87A+B+JZLFjbStwCQlIkcvbtftrgLcDSJS+P8rQyI5e4pOBBzUO6lXK/833zEng9wqToOX287mZzFWF39FJywGeDq+DEEwqKpHHn5EcEW7MXUQi55f4LC0HyO6q2fnDLZiZzAV+ew5oIzj3t8/kTMljJHFVQbJNu58InmPhd3QAeCdqDknX7fEqC9EB+HWle0qs1z2123gbMPCx0E0IEhydwDk0q3TNcQxpARd+AwKzw1mOrGF76nPlQZNOpnKXfFZ3+TjtN9qRNwC+UynunyWDT8MoIBwgb4DPip8mCvJThRRimtzOCSHPwwEq318KiKeApaaDVU5/cZy7zQEP91kx5r7TxgnyHR0PtYHnPe9R9zgdUWcnBgS8LeRWTCihMpbGLk5jXnrSmNgfOQUztJ1rlnk+fT8GVER6XPMs1M/LSz+OkwgqlQ5NZDUjN0EIIYLSq8qAEolOrZIcHtWRr5Zhap+7vCsjPremNGuPsudD9rXqP6V6dC0CI5hkzjHoSUXnlsTbgF4TJM8g1VbpZdraRFr5lmPQ4pgWCdQN6P3Iv1Zqy44woKoUcKn44mHBpIXU2Yli3biDGMqvRzPObxVLqA8pjSRwTvzG9gM6cEcx2vaL753lQVZGRZRPQwHNVjhJu5rfgnjOhcH8FnTifsVN/Cpv7RrFbpnrHmpXI8iy8TbcSWTiIjpxR5BQM5qUK3p9MJVv+foow9X81sA7pJa8h7sMPoSr+O2SeZ5Ux/Y0aBVhixSQmuKT+7auVXtSGivabaDSpfOf3gkcEb2vg8XCRBp32LA2e3gP/gD6crvRl9stWZZjkv0btOZORHY+P/343aiPMozgC9GKO4UsXFAcy9KGP4mGULe6zxQdR0kuKe/L7UF9lKE35xfPx1S8z3Z+rrJx+qGYnSi2KOF56Tt44/6sr8T9U/qO4sPyD1owESh4Hwg31flVTwARpvPQwkt29+/chj+JxQnu2IWx1c+G9yWuwwjgvMqlsZltgYZtgFWBq/gyuYu40+77JImDpdW62/49nIzHT+jue4dUHo5LgdMc9VAFJ3hUqwj+bccdQy/7PrzlvNVne/cwyn2EJSMPKNsS2TGkYjXi6gHV2hRxlXTPEuBv+e6fb/kHsOA+yd1y+XOYZPsG77luCH1MpyjvkScW5pUr5PdXSxS3k8JdxqcJf5TddQC/E4/YF6LF5Y9k9wlXd+4Qutvd16w2CG9lWDZXjPGi95z/69RyMtu6X+NrZvlsHmDbiQHYGbg/Z0PYI1RyX3gOLAPygpfF0QuN7BjlvtDJBCPHuedmpb71S1UzVxrHE24bUnOALfOD77b6r9LbpwSp1ZQ/PvTpPUvow3XhV2B6sfR9cTqnm1fDf5RAVdyHzEjDVY+7Y3H8q2D7k8rDwRhQpGDkQK69Fkh0iAT5oHBTKH2fiqeg/fK7aEJwyU9z+19fbDJL5+PruZebv3jR933qF7cTPj2XmpuQadwWp00ZiqseBwZPcz/Xg6e5/wWknZD7/TggIU1RYVzFfv5TeMk1NUSdnZhR84K9/lXzqwD0ugcoc1eWFjelNjCSAeXGLnesDjWIuerPwJ9kvnFkNNe+QZE4J1FNvOXVsrvbRHEIvskhg3xbO7dfvg6Sh1QejksXgOraKSfPVFMD/wRkjXyLW3rVxPKIp6h84sFE4mSmsSRT1esoRXI5t8RzG0ksnRXoGYfH24AhcqM5Ki5oek+VK6BbcLORVE5P+l5zRO/TsiLgiMr0AhGizk6sSKoPjJkHdBptbjtumesz/85zDO/E/RUTbd/gHvsS05o10rY29E4S0y8A5HPSmJVwa/fXgR2ehvJDw3GcE0P5DejF7UVHTkFOnnP73UvTQ83VZ0pUNHf6djRusq1CD+4AruX9VrSFKBfSljuBPtxeFPAbkSRRQqIPtxdtZOI2evH70JPbjxt4BX9zDVzB70I+tx838r8E39GCQZty/h33SuDGYHF4WpCLtQuRMweA+7rjsWdxZKUn/IXMd+PbGbuJd7/mA8ptWFVbmbQMHUepLuiayDkwhN+I3txetOP9FjHo/TqSQZ0dK5CaYgqXPRHoMDJwu9ppHUDdNFeHEQF1akbaCvFs3EdorDJFvyp+GWg1z6My7nPgcYkRFh8104oaLsP3CrVs3E8n/giusu1AkpJSBwdXQPUqErvv896MO4fBtq1o4J++IDHNPcQuI4Fz4ErbDnThfw24LwvFuNK2wxuA7S+Fu4xBtm1ow8sEsYY7PdDllsBtnWu3pXGVuNq2DS15la8xPapmi6eLngk/O/FVNomke37va8XE15Fwr3XjPgcmrwu9n7ijtPR5aLoKKsgXCQBA2+t9brbgT2OwbSvSOb+4lY43atcmLfkHyHcd457GzuocuG+LqxQftjP/KwbadvgUQAWg/nUUIersxIqyk6YNDwYIOf/OAcmNpO/Saj5X0DIQVOLCmTcAOFU7WnGJScUoMKD0hA7D/wqWjYfEycemVEdw7KT6NccNMfXAmPRIhxVidpRQWOk6pgiC8fEWeQPCT4dRM4VumLQcZftFFJNkoIxc/UatU7Nr8jcZjzo7UaIV5/vtrAMnkcLcpOHBAEHn3wGAyUfrvz848vPvWgQsfNBnUyPRqFJ2TVK0LFE1+WzOHZw8sqb6by//5ZdSRM/3VtbG+3OWf5X6CP4uyaJ4kJAJwBSr6Yi0uiboXg1r4mwCvpkFPTSnrFTHri+BdXMDtweJPfIs7xcXgDWNwqRvnjIhbbjwR1f01JxT8Zr8eAzwTl/tG6OTa23uLyPdZSrFe0YNEyJNYBn0tSC6z8gqriaww+mXp0jCVU+YVheRlp5Hif/Gz8AOoRV68vuwUWiHbvyhwJ1MGh6UFCrXjVyw5uUgU13x9YCmPYHjQfbxzNe7OvhszuJK8G38U6hEorduTHP+DL6JfwbVsKMz9ysA4PW493CLsArd+YPoXTUn+O8g83zn8WcU7adECncJ42w/wAE7mkCjoqEJqe7AwwYtg+6Wzx1AJn8xcAoqlEbt3XEOe+XT9QOoCUbm4DNyFmTK4HbbTzjDMnzyBkmKT4ksaSHHu6fYfn5Tfh9bnHtly9m9wP6lsqNho21rcJI1RC53Fh+GKFkRMfEUUYjporG2FXjOKb00PaiyIgAKRzL0ctci4D8yAe4if7R/gOH8OvTkpaebH7AtQm/7bvQIJ7bmqsfdq5N+OgA4aj7Yg01Det5rjdrLJ+ezxbmP++P3ftvj3dmVVwcpUuwRlwQMDPGa1VE/bjc68UcCqrkHaHOdMQ2SQJ2dKNGIK8U1ti0AgGtr/q/FuYdStR4eNGmJoCzBFXp6Ksh8fUf/QDkgICYkmavCdbbNcDDxtw+Zb2R+pTUC1fxdQu4XXKOAWCcOSEhRN5XV+RZ3YDHHy19841OB6nLYOAEt1IwAAKHjHAC4/07Kv+0mc5fRUknsVY87gXUhOqpaadQeqN9CIueRuxOXyFWjFWfwtIoCdk5Af34n1gjiuAwlf4soCLJObQKUFSGJq8Z1NvlSL/GcCwNsuwCuCrosYe06xv2FwoiFDM7LxgTAyySszeNPB8YoeeT0BA4FKUBrEJrGihXXv1o7PCh+zR9Zrb7Tcnx9xM3SlJL26DJfL3MRUTIcK/67qCJzEQ4xBSUrvVnoi29rz7G1/QCwSQ5xK7lAh9kOracLQn2IxMT0hN8Im3drFHRu/AWdQteI+GkplZmi1DP2xR9jysq0RKpUxfU1qYH27VCBOjtW8ONrkT3+lrm1S853LQLO7au9b/5twFtd1OWdqPCdLuhUM9WjhRzuvHeF1EDed+XHPTaZJeoVIaYvRNrzx5GJEjRAKTrxEsutEzMCtyU1kN6ulvjvopbUSrqOo6SXfWslsy3Q+WbNg4X78HvBgaEHF+Yqv5BLf3W2T+L1KJXrSEyqzVbuFCVlSCaPu8X2M+LgRAG/wfg2qdVhhO9SdK2d3eubYmH3V/qdyw8PAU1xDja4AleYalymBYD7d60QTcuX/Or9sRFXgkRUIxmX0cC/nEuTfO3bEiGaxtJTckOgxzj3z1uDZBTeEOEb0xMfs2sR8OldgPCy7/2lp6TzTniWp8rxWzH1Yfyr6BMqjkWhRM6BZfGP4zLikeyXR+XFuHmIgxNz/dPZy63gktCAK8PahIcBuIfsfQx+BrjiQeBVUfbfMf9xP4+b5wNfPxLW7yJLixpdvSYEpHXXtaPjITs9o15Pfj+6cYdEhQYVCjUl5lnCrjZeIW8AcNSv82KLd0/57fwysEAm4M51xNsD85B4YjoA932e56/rGGAngOoQv7vn8SUy2bx/fwB4o430fZG4VCI5rXmDrRAF/KbwgtStQO17L1SMzLn97r89FJTa0IJfPBDHAbfZfoILvPu6Jr60ib8YiV+HoY4rF3N0dq/79S8Mlrw7FZWYaPsfOLDAWJ0GLX1Wq1oBjewYQXABGz/Q/xxLnoL0tIDKoWi/lPNafy+1cSygo+MheXFVkgI/tQk8LbVzQmBHBwB63h04tdS8pt7PipcD9zeTmaMBSs8tzrRcWRw083JgR8eE309JbAMTgANLEfS9c+CH4Fmmxc+ff1kNy5H/PRM5R/gvw3N7ImuOVUWSg0ojHCfxBY7j3FPUWlHy+gdg4wTpoGQLpmagzo4Rzu3zXhTFcQvSMQwqHVntnTtuwEmtRFHxBjVpiaAsJe3xztf7X51Ft+WOc2Q1UF5Us3ft8xV132qNdHYvsF1U4fjYOmDtu9JVv4P9TYyk5ItHyTFvADgnupjXvi4YUFXq3k8pmeBO6efKeIoSTsr9zfZ953tbwxFBS6lZdZcCrdJAaMSeqO0XI9HrP1HR68KPBadsaRrLCKJlsENsG/CT0A3ViMPNtlXanUOUy+Ux+2dgTmCkVLr8G98Bvposf5z45NqpLfEccEoWUBbkDR5OpuZb3gcW/x64XBJ4X2J68OXnoXQY4S6b8e2TvsHKqdmhg5dFz6GdE/CY/TOsF9pjrG0F1gid1LcpXP0nA2tnhd4vFM9QdnVF6OWroYa9pXiG9JlfcsKqcumq3/HJvkvCE1KBVoOB3YvCO68UW7x7KTgQOnahugIIVX1ddIxsFKM9dwwCODTlzsvuF9S5/YDTCSAp8L69i91TZipT82vlLtv3OMKycAW/S36ntCZAiej2qL8CKTvd0+fwj9Oo+cA7uib4dLlHfLL7OvKKyUvb/XnSDJze5Y3PuZrfikLW0ZuyQr9z17yuXdXBp2l5jT/KRa/rK/jdEAQebbgTqAr1vrEw6uwYQRTomcMV45/xb2h/DlEul178fnwUL1Hbxm+/sNyzBJgln/AtLB1GAO2G+cbMeNz/I/C3CIPbOo12f4h6jj/ucyCrK/DnEB8mfs/NFPuX3p8N7exEC9khfZkl5eL4I8+yXLnRDl0pGOUUddztnIDhNpmSBUo7+AdXAAiSav/AD7UpAUzSjj+Bf8e/Kr/DuM/daRReuaJ2myCEmD7ngCVPu0vZWG2kOFyiv3Uufxa5UL5gIuqIftcmXDFutf0MAFgnmNshjwRNYxkhs53+F7G8ATVpy+WGD2vqNKnN+aL1hUrueFqdR3wcpSnn8wYAKQqKDgLWy0FkhqBlJSQ+/PxjWEz8YA+qusId/xC07AUHJKQpj8UJ9VyFOyWmuSC/p4fU+6j4oPzSawDekil6l7Ix4v2YkausFIoWLh4PHg+mN01/V9G14Ph6066dFr3axBje5v5WG8yAKe4pphriOBFPmvyQ57jes4RdJjbi+lfdBRg9BQLVFggFgOteUFVgUNYzJ91tSsmU38c/LiAS8cmBhU55GzD0JWWPf6evuuX8erjqcffvM3ha0OKaeokXvVYNj29SMP0mjr+qJxUQf+mC73uh+CBQOBto7BnNk7ngtylQ3WFr5DMXVEOPpcNA7dR0yPeripiqy6XeH1O52qzoqfDLkB5JKZv4ZGDsR7W3j6wJ3MeIMhYcLyqFEmEnwDM1Nnia+/Xrn8pgxxfu2LezCsrW6EHL3/XIL7U/L5joToWyS4Op6zBZurPjcrnw/PPPo2XLlkhKSkLr1q3xxz/+EUy0moIxhunTp6NJkyZISkpCQUEB9u8PVY3aBIOfAvo9GLids7k7OkP/6DONksg58K+4V/G8fR5us61Udo5Oo93xKql+oxNpOe7tkeZ8MUKwDsSih6XjfLSkdMlqWZH0cv46KJW7hBF8Ia7hN2tfXV4DNk7ALfzPGMRvQ1fucOAOZ3YHdjSqyt3B1rl9pfMNdRwVUYzNCJtEcdhIvnxEasy8wCnu1OzQ+WoS07w/9uH2YqZ9Lv4c9y7acX4J7rQsZfOTxFRbmUGvu0bttc9BdXZvzXJ2P1Xl7qXfZnV4tPpdnX7Zk0tPuWO8DO7wWLqz89prr2H27Nn429/+ht27d+O1117D66+/jlmzaoM3X3/9dbz99tuYM2cOCgsLkZycjGHDhuHyZfPTUwe47nnf24OfAZ4tcnd0gIAppsG2bbjPvgQpXBi/S6fRwGRRfMG4z4Gp26OjoyO4aso9BBF0yNxIUZhZVkft+OPozh+Czbsk1lqrMZrzZ9CT348ETunIU83f98xuoI9EDakIcx3V918xGc6UmB46jQYm/eS7beKPoTv/DVp7p89tHMMd9hW4xbZKNGNZM32uaSmbEOk19J4madQe6Cv6otPxRvXHCrrEu2bbgR+MKQUhxf93bdxZfl+xoO2tuW/J04ZOaVm6s7N69WrceOONGDlyJFq0aIHbbrsNQ4cOxbp17g9zxhjeeustPPfcc7jxxhvRrVs3zJs3DydPnsTChQtlj1tVVYXS0lKff6bofS9gFw3BmxmvYgVHVodYMcXk6zmZIoILUCRlPCzPWh2dQErbVxNLY0QHu0l382OY/K8TSq4bxQeBYTNrbgSZPjfyGnRMYtRMa+L4s7QIVo+JlnhLq3kNhioFIbj06xCJf9fEdGWPKT0RsOkUxGUjDIrlErF0Z2fAgAFYtmwZ9u1zlz/YunUrVq1aheHDhwMADh8+jKKiIhQUFHgfk56ejn79+mHNGol53RozZ85Eenq6919urkUSfnmWXgYzZZsxbYmUVJyAJy5HbrheNK/flne/uRviIhKhUwcnjCrRnumZRFShoZIq4KGW4s+/DZh7jbtzN+ARIEfBCrSrHq+d49eCZ1mrwmPawJAM9yhjYHFSkYRU9/C3CfFDitgTAzbxYN7cKVlcie+d/lNcapbpA2jPuQOQm0lVbfevH2SLc2df//2+wNepJ+bO/1+I17Am/KeZ1/wN+G6a+zVs8PT59bz7S+//2Vb43iGVuuKZk0BOd13aERHRayuz5j1VD5cDc7A5qwJj8sTTS45KYJ2OJTLCVV0bs5VRM4pph8SXu0hiucJk6aXnTz/9NEpLS9GhQwfYbDa4XC68/PLLGDfOXYKhqMj9AZSV5TsfnJWV5b1PyrRp0/DYY495b5eWllqnw1OXieb1b7StQSfuKBpzJdJZkA12lW0HlnOPIZ2rkA5yDUYuDqnsNPDrESAjDYDCVWAm4jiGu2zfoxxJaMjJjIaKKz1bahSuRvMB7rwvfvlCOI5hvG0pypCEhvD73TSKpRnI70B7HAusI6ThOXS1Z3FNnJrfSEbpKWD1LODmvwNfTnJvG/c50PpaXUd0ZsXNwl6Wi46cX+07LeOD9Cb6u3fk3de7ZFwKzEos9fqoLg9+20yijncz7hz+j/8RLl5iRNXAv5WlOzuffvop5s+fj48++gidO3fGli1bMHXqVOTk5ODuu+9WfdyEhAQkJCRo2FKiibwB7nIPNVNZbXn/oVDO/Y3a8NQs7orQrXj/DrR0pWgfQeOQah77689A1m2RNdEgCZzDb8UVBySk1A7FW3lJOQAUbYfc30z6d0vVKA0/B45jaBywCqvmHJYvJ4Ga13GQfDrLXqzdpOv0uftDM45zoYtPUj/OPZqUNyAwKNaqPEu8q8oBMIkvEX6vDyWxMCH3M4BfuYh0rgLgGADPqKrob2UQC1+VgCeeeAJPP/00xo4di65du2L8+PF49NFHMXOme444O9v9bfj0ad+hsNOnT3vvsxSp5c5S+/hP/4gfY8RQtRT/8174VfuYE94mKvcgQzw/Ln5eQk2RRUxlqQNRHFLAclwA7jn5Mmt9K1Os5jlodY36Q4in0gZPky9KGNYxgxwjaL4bsZrfrU2Bb8yCyiksn2NKniPIpdhzTdD19Y3A97j/7VDxdKYuHvCLD1ISEmA0qWnjoEu8JV4fMrE7cf7fAEPF+Pi0K07dlHPfSYHbPFPt4lhUi8RyWbqzU1lZCZ73baLNZoMguKc1WrZsiezsbCxbtsx7f2lpKQoLC9G/f39D2xrz/HPcbPpQn9wWwVZ/jP4bkJih/TlDuWWuRDxCk9DLcgGfOelp9o9QH2V40v5x4H6uKKy/5YnNMaIKu8YSUY0WXBFSUYk8TiJuwPO7aVXCoeOowI5KQoq25zBIC64I+dx+5HFF6MuZUPDz6qcDt0VTeg1/cku8pV6DfvFjfbg9SEIV+vJ+fwe9cjap4f+6N+lvZelprFGjRuHll19G8+bN0blzZ2zevBl//vOfce+99wIAOI7D1KlT8dJLL6Ft27Zo2bIlnn/+eeTk5OCmm24yt/GxZtHDAPxqIBmV28Kj3TBg1W5jzwlIl7d4qFDZtxLRnPRv7MvxG/ty6f1scYiq5exWj80JgeOAm2y/SN/Z4ir38LqW03GZbYGMvNpyGQDQZyJgj77p9HjOhS8TXjCvAXn9gZ9Ftw2ID9Jdo/ZA/Ra1BVTF7y8xv47DlbaduBI7A49npRiwXhOAH2tq890yF+h/uyl/K0t3dmbNmoXnn38eDz30EM6cOYOcnBz89re/xfTp0737PPnkk6ioqMCkSZNQUlKCgQMHYsmSJUhMDFxxQSJhcm4Ls6lZlgsExCEFqpmTj08BpAJXrcrqsTly4lNrpgyDdCyb9NDnd/OvBG3BytBBpTap+YIj9dxx7tFOM6ayoim9RjBKyqkojR/TJM5MI+Lfq1kf0/5Wlu7spKam4q233sJbb70luw/HcZgxYwZmzJhhXMPqivhk4O5vgA9vAADEiZYOxvuXBThWCLQdAl34LOMWjex4luFaze8P1LaXtwHDX6+pCg34flDUXARaXAVcEl0QPKnkAflRE3GV71iitMqzUp5YBM+xWl9Tk63WP7hcdNuu0dJ+f1rEIwXjie0JdX91hbrK4kP+WLMaS+q5A1AwA1hwf/jH9W+jEZXPPc/DtCCxnRHFZ+nEp4Ms83fofHPoEUP/60cUjs6GKwq/mhFDiWJO0rkKPGv/D8balgemuzcwX0LUkSvjkZoFtBgINGxtTrvqosy2MvERGqb/j1UdRgQvR6O01ArRRkAMmMZxZjHG0iM7xAL88iBMtMvkjImm3BZm6DQaaDW4Nu5n3OdAvY7As8+Z2qw6SSo+Ir1Z7W0iT+p17ImXsVJQbF3Qa0JtDJhcjA/xos5ONAuVpVcLeQPc39xKT0F+rj7HfcEzhKgNR1abE5goft490wZP/6/2/qNr3d9yg8X55A0AzutQpkRqeks8faJ2KsV/Okjt49XwLI31P3ck0wz+8RF1iWeq6MV31D1e73I0oabj4hK1n+rq9wCQUZPFOtzp4fh6vtPOWky/KqEkxkcpxdPiouuvZeoUKkPdQBIcbwOuf03mToPzJexaBJzZVXt7/m3AW10Mr54bwP/8n95pjXYRQmoJokzsNAqlzolNtT/v+ca8dqhAnR0SWqfR0jlljMyXsGuRO8jXPx9N6Sn3drM6Fp52+TO7XYQQojVXmKVyLISmsYgy/sGHSnNbhBqSVkJwAUueQtBU9UueBjqMlG9PGEU/DW2XEcxauRXJio9gjw01fWX0SpNYXBnnmaqlEZDwxOJrQU3pCfHzYJGVXjSyQ9QxMrfFscIQ88MMKD3hjuEx0pHVGrZLdEG5eBxg5hc/JYSQsEpPWBh1doj1iZa132Jzp069mt8SdD9DiM430eaevx5n+yHofpLOHwROi7Kgbv8cWPsucHavFq0khBD1RKN7WSgBB4Z0lPsVzbU+msYi1ida1n6P/XuMsBUiExIrmYxe/i463zP2jzDRvhiNAqpaI3i7So4Cp38B7D18t1eVAzu/dNdUIoQQs4hW/ObxpzGJ+x/i4ADPRVF5G1BnJzr4Zwq2YtZgPeX281n+3pjz//1rlr/nDZA/hlTsULBtSrLMipblcxxD44COToh2CS7gxEbAHiTm59CPwNVPmZM/w0pZVqMxFsJKz5+/+GSgxSDg0HmzW6IfJRmlf78POD9N/+zW0cyv9EQSJxGknJAKXPGQpfP8WLdlhHj4LH/3rydk8PJ3sUjbdXw94Kh0HwpSMToMqCoFSo5p0VpCCAlfQIkKCa2usXRHB6DODokWciUXjFz+rnW7Ks55f+zIH0UWLiCf2w8b59fxoRUxhBArkEtim9nW2HaoQNNYRBmtC/TJDTEHm0YKlqpe6fH1EE67xJIzvT825kpwh3259H56Z8k2SjRORdV1Rr6PSGhmL+mO4hIV0dFKQjz0TlWvlpp2NesDxNWD7NAwOCAhre6VMyCEWJOWJSoMFj0tJSTW8Dagaa+aGzIxP20KouqCQgghVkTTWEZLaaT/sDANPUfO/znUK24mozmQkQacXAVUl9VuT0h1d3QatdfnvES5ujL9RtcN5erKawIwf+pMI9TZIcRsDVsDzToCq/7svh1lc+EkSjFX7c/VFbETG0aIBLqaEmIFUTwXTgghVkdXVEIIIYTENJrGsiqaPyfRwurxC1ZsX6jK7dGIrlnEwmhkhxBCiLU5RSUKHJfNaweJWtTZIYQQQkhMo2ksYk1WGxK3WnvMYMXpIK0Y8bvF8vNntFh8P8bq68MWDwx4BDh/3l3U2iQ0skMIIYSQmEadHUIIIXXLkdWA4Aq9H4kZNI1FiFECht5LTWtKnRerUwZGiMYppF2LgLMnAdTUmZt/G5CWA/R6ytRmRYRew2GhkR1CCCGxa9ci4NO7AJfTd3vpKWDRFKDkqDntIoaizg4hhJDYJLiAJU8BYBJ31mw7sRFggpGtIiagzg4hhJDYdGQ1UHoyyA4McFSG2IfEAorZIcpF41w9IaTuKj/t/bE9dxQ7WEukojJwv2qJbSSmUGeHEEJIbErJ8v44Le5jdHIdwRX87sD9TMz/QoxBnR1CCCGxKW+Ae9VV6SlkcqW4z77EbwcOiKvn3ofENIrZIYQQEpt4G3D9azU3OL87a2437QVw9FEY6+gvTAghJHZ1Gg2MmQekZvtuT8sBRr8NZDQ3p13EUNTZIYQQEts6jQYmr6u9Pe5zYOp2oN0w89pEDEUxOyS6WHVFmFXbRQhx4221P+cN8L1NlInirM00skMIIXUREyXao1pRJMZRZ4cQQuqaXYuAExtqb8+/DXiri3s7ITGIOjuEEFKXeGtFVftuLz3l3k4dHhKDKGaHECuI4rlwEkVC1origCVPAx1GWiumRVy7qmg70CrLWu0jlkcjO4QQUleIakU1QonEDgwoPeHezyp2LQIW/7729vfP0pQbCRuN7BBCSF0hqhX1qP0LJLmqcTW/Neh+pvJOufX03e6Zchszz72snJAQqLNDCCF1hahWVEu+CK/xc0PuZ5ponXIjlkTTWIQQUld4akUFlE7w4IC0pu79zCaacpNmwSk3YlnU2SGEkLpCSa2o61+1xkiJaCotk6tN2NkQpbL7ESKHprEIIaQu8dSK+vZJoOxU7fa0HHdHxyoxMKKptHzuAP4d9woSOAda8Kdl9yNEDnV2CCGkruk0Gmg1GHg113173OdA62utMaLj4ZlyKz0FjmO4yrbDbwfOfb8VptyI5dE0FiGE1EVWrxUVTVNuxPKos0MIIcSaPFNuqdm+29NyaNk5CQtNYxFCCLGuaJhyI5ZHIzuEEEKszepTbsTyqLNDCCGEkJhGnR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlptPScEEJI7ItPBl68GHo/EpNoZIcQQgghMY06O4QQQgiJadTZIYQQQkhMo84OIYQQQmIadXYIIYQQEtOos0MIIYSQmGb5zs6JEydw5513omHDhkhKSkLXrl2xYcMG7/2MMUyfPh1NmjRBUlISCgoKsH//fhNbTAghhBArsXRn58KFC7jyyisRFxeHb7/9Frt27cKbb76J+vXre/d5/fXX8fbbb2POnDkoLCxEcnIyhg0bhsuXL5vYckIIIYRYhaWTCr722mvIzc3FBx984N3WsmVL78+MMbz11lt47rnncOONNwIA5s2bh6ysLCxcuBBjx441vM2EEEIIsRZLj+wsWrQIvXv3xu23347GjRsjPz8fc+fO9d5/+PBhFBUVoaCgwLstPT0d/fr1w5o1a2SPW1VVhdLSUp9/hBBSp3gyCr940f0zITHM0p2dQ4cOYfbs2Wjbti2+++47PPjgg5gyZQo+/PBDAEBRUREAICsry+dxWVlZ3vukzJw5E+np6d5/ubm5+v0ShBBCCDGVpTs7giCgZ8+eeOWVV5Cfn49JkyZh4sSJmDNnTkTHnTZtGi5evOj9d+zYMY1aTAghhBCrsXTMTpMmTdCpUyefbR07dsQXX3wBAMjOzgYAnD59Gk2aNPHuc/r0afTo0UP2uAkJCUhISNC+wYQQQrRHRTxJhCw9snPllVdi7969Ptv27duHvLw8AO5g5ezsbCxbtsx7f2lpKQoLC9G/f39D20oIIYQQa7L0yM6jjz6KAQMG4JVXXsGYMWOwbt06vPfee3jvvfcAABzHYerUqXjppZfQtm1btGzZEs8//zxycnJw0003mdt4QgghhFiCpTs7ffr0wZdffolp06ZhxowZaNmyJd566y2MGzfOu8+TTz6JiooKTJo0CSUlJRg4cCCWLFmCxMREE1tOCCGEEKuwdGcHAG644QbccMMNsvdzHIcZM2ZgxowZBraKEEIIIdHC0jE7hBBCCCGRos4OIYQQQmIadXYIIYQQEtOos0MIIYSQmEadHUIIIYTENOrsEEIIISSmUWeHEEIIITGNOjuEEEIIiWnU2SGEEEJITKPODiGEEEJiGnV2CCGEEBLTLF8bywiMMQBAaWmppsflysqQUF0NAKgqKwNLTtb0+CS6eV8fJSVgNa8TQgCAq6wEqqvpuqEzeg8aQ8/Xs+dz2/M5LtsGFmqPOuD48ePIzc01uxmEEEIIUeHYsWNo1qyZ7P3U2QEgCAJOnjyJ1NRUcByn2XFLS0uRm5uLY8eOIS0tTbPjkkD0XBuDnmdj0PNsDHqejaHn88wYQ1lZGXJycsDz8pE5NI0FgOf5oD3CSKWlpdEbySD0XBuDnmdj0PNsDHqejaHX85yenh5yHwpQJoQQQkhMo84OIYQQQmIadXZ0lJCQgBdeeAEJCQlmNyXm0XNtDHqejUHPszHoeTaGFZ5nClAmhBBCSEyjkR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlp1NnR0TvvvIMWLVogMTER/fr1w7p168xuUtSYOXMm+vTpg9TUVDRu3Bg33XQT9u7d67PP5cuXMXnyZDRs2BApKSm49dZbcfr0aZ99jh49ipEjR6JevXpo3LgxnnjiCTidTiN/lajy6quvguM4TJ061buNnmftnDhxAnfeeScaNmyIpKQkdO3aFRs2bPDezxjD9OnT0aRJEyQlJaGgoAD79+/3OUZxcTHGjRuHtLQ0ZGRk4L777kN5ebnRv4pluVwuPP/882jZsiWSkpLQunVr/PGPf/SpnUTPc/hWrlyJUaNGIScnBxzHYeHChT73a/Wcbtu2DVdddRUSExORm5uL119/XZtfgBFdfPLJJyw+Pp7985//ZDt37mQTJ05kGRkZ7PTp02Y3LSoMGzaMffDBB2zHjh1sy5YtbMSIEax58+asvLzcu88DDzzAcnNz2bJly9iGDRvYFVdcwQYMGOC93+l0si5durCCggK2efNmtnjxYpaZmcmmTZtmxq9keevWrWMtWrRg3bp1Y7/73e+82+l51kZxcTHLy8tj99xzDyssLGSHDh1i3333HTtw4IB3n1dffZWlp6ezhQsXsq1bt7LRo0ezli1bskuXLnn3uf7661n37t3Z2rVr2c8//8zatGnD7rjjDjN+JUt6+eWXWcOGDdk333zDDh8+zD777DOWkpLC/vrXv3r3oec5fIsXL2bPPvssW7BgAQPAvvzyS5/7tXhOL168yLKysti4cePYjh072Mcff8ySkpLY3//+94jbT50dnfTt25dNnjzZe9vlcrGcnBw2c+ZME1sVvc6cOcMAsJ9++okxxlhJSQmLi4tjn332mXef3bt3MwBszZo1jDH3m5PneVZUVOTdZ/bs2SwtLY1VVVUZ+wtYXFlZGWvbti1bunQpu/rqq72dHXqetfPUU0+xgQMHyt4vCALLzs5mf/rTn7zbSkpKWEJCAvv4448ZY4zt2rWLAWDr16/37vPtt98yjuPYiRMn9Gt8FBk5ciS79957fbbdcsstbNy4cYwxep614N/Z0eo5fffdd1n9+vV9rhtPPfUUa9++fcRtpmksHVRXV2Pjxo0oKCjwbuN5HgUFBVizZo2JLYteFy9eBAA0aNAAALBx40Y4HA6f57hDhw5o3ry59zles2YNunbtiqysLO8+w4YNQ2lpKXbu3Glg661v8uTJGDlypM/zCdDzrKVFixahd+/euP3229G4cWPk5+dj7ty53vsPHz6MoqIin+c6PT0d/fr183muMzIy0Lt3b+8+BQUF4HkehYWFxv0yFjZgwAAsW7YM+/btAwBs3boVq1atwvDhwwHQ86wHrZ7TNWvWYNCgQYiPj/fuM2zYMOzduxcXLlyIqI1UCFQH586dg8vl8rn4A0BWVhb27NljUquilyAImDp1Kq688kp06dIFAFBUVIT4+HhkZGT47JuVlYWioiLvPlJ/A899xO2TTz7Bpk2bsH79+oD76HnWzqFDhzB79mw89thjeOaZZ7B+/XpMmTIF8fHxuPvuu73PldRzKX6uGzdu7HO/3W5HgwYN6Lmu8fTTT6O0tBQdOnSAzWaDy+XCyy+/jHHjxgEAPc860Oo5LSoqQsuWLQOO4bmvfv36qttInR1ieZMnT8aOHTuwatUqs5sSc44dO4bf/e53WLp0KRITE81uTkwTBAG9e/fGK6+8AgDIz8/Hjh07MGfOHNx9990mty52fPrpp5g/fz4++ugjdO7cGVu2bMHUqVORk5NDz3MdRtNYOsjMzITNZgtYsXL69GlkZ2eb1Kro9PDDD+Obb77BihUr0KxZM+/27OxsVFdXo6SkxGd/8XOcnZ0t+Tfw3Efc01RnzpxBz549YbfbYbfb8dNPP+Htt9+G3W5HVlYWPc8aadKkCTp16uSzrWPHjjh69CiA2ucq2HUjOzsbZ86c8bnf6XSiuLiYnusaTzzxBJ5++mmMHTsWXbt2xfjx4/Hoo49i5syZAOh51oNWz6me1xLq7OggPj4evXr1wrJly7zbBEHAsmXL0L9/fxNbFj0YY3j44Yfx5ZdfYvny5QFDm7169UJcXJzPc7x3714cPXrU+xz3798f27dv93mDLV26FGlpaQEfOnXVddddh+3bt2PLli3ef71798a4ceO8P9PzrI0rr7wyIH3Cvn37kJeXBwBo2bIlsrOzfZ7r0tJSFBYW+jzXJSUl2Lhxo3ef5cuXQxAE9OvXz4DfwvoqKyvB874fbTabDYIgAKDnWQ9aPaf9+/fHypUr4XA4vPssXboU7du3j2gKCwAtPdfLJ598whISEti//vUvtmvXLjZp0iSWkZHhs2KFyHvwwQdZeno6+/HHH9mpU6e8/yorK737PPDAA6x58+Zs+fLlbMOGDax///6sf//+3vs9S6KHDh3KtmzZwpYsWcIaNWpES6JDEK/GYoyeZ62sW7eO2e129vLLL7P9+/ez+fPns3r16rH//Oc/3n1effVVlpGRwb766iu2bds2duONN0ou383Pz2eFhYVs1apVrG3btnV6SbS/u+++mzVt2tS79HzBggUsMzOTPfnkk9596HkOX1lZGdu8eTPbvHkzA8D+/Oc/s82bN7MjR44wxrR5TktKSlhWVhYbP34827FjB/vkk09YvXr1aOm51c2aNYs1b96cxcfHs759+7K1a9ea3aSoAUDy3wcffODd59KlS+yhhx5i9evXZ/Xq1WM333wzO3XqlM9xfv31VzZ8+HCWlJTEMjMz2eOPP84cDofBv0108e/s0POsna+//pp16dKFJSQksA4dOrD33nvP535BENjzzz/PsrKyWEJCArvuuuvY3r17ffY5f/48u+OOO1hKSgpLS0tjEyZMYGVlZUb+GpZWWlrKfve737HmzZuzxMRE1qpVK/bss8/6LGem5zl8K1askLwm33333Ywx7Z7TrVu3soEDB7KEhATWtGlT9uqrr2rSfo4xUVpJQgghhJAYQzE7hBBCCIlp1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKZRZ4cQQgghMY06O4QQy7nnnntw0003mXb+8ePHe6uThzJ27Fi8+eabOreIEBIJyqBMCDEUx3FB73/hhRfw6KOPgjGGjIwMYxolsnXrVlx77bU4cuQIUlJSQu6/Y8cODBo0CIcPH0Z6eroBLSSEhIs6O4QQQxUVFXl//u9//4vp06f7VANPSUlR1MnQy/333w+73Y45c+YofkyfPn1wzz33YPLkyTq2jBCiFk1jEUIMlZ2d7f2Xnp4OjuN8tqWkpARMYw0ePBiPPPIIpk6divr16yMrKwtz585FRUUFJkyYgNTUVLRp0wbffvutz7l27NiB4cOHIyUlBVlZWRg/fjzOnTsn2zaXy4XPP/8co0aN8tn+7rvvom3btkhMTERWVhZuu+02n/tHjRqFTz75JPInhxCiC+rsEEKiwocffojMzEysW7cOjzzyCB588EHcfvvtGDBgADZt2oShQ4di/PjxqKysBACUlJTg2muvRX5+PjZs2IAlS5bg9OnTGDNmjOw5tm3bhosXL6J3797ebRs2bMCUKVMwY8YM7N27F0uWLMGgQYN8Hte3b1+sW7cOVVVV+vzyhJCIUGeHEBIVunfvjueeew5t27bFtGnTkJiYiMzMTEycOBFt27bF9OnTcf78eWzbtg0A8Le//Q35+fl45ZVX0KFDB+Tn5+Of//wnVqxYgX379kme48iRI7DZbGjcuLF329GjR5GcnIwbbrgBeXl5yM/Px5QpU3wel5OTg+rqap8pOkKIdVBnhxASFbp16+b92WazoWHDhujatat3W1ZWFgDgzJkzANyBxitWrPDGAKWkpKBDhw4AgIMHD0qe49KlS0hISPAJoh4yZAjy8vLQqlUrjB8/HvPnz/eOHnkkJSUBQMB2Qog1UGeHEBIV4uLifG5zHOezzdNBEQQBAFBeXo5Ro0Zhy5YtPv/2798fMA3lkZmZicrKSlRXV3u3paamYtOmTfj444/RpEkTTJ8+Hd27d0dJSYl3n+LiYgBAo0aNNPldCSHaos4OISQm9ezZEzt37kSLFi3Qpk0bn3/JycmSj+nRowcAYNeuXT7b7XY7CgoK8Prrr2Pbtm349ddfsXz5cu/9O3bsQLNmzZCZmanb70MIUY86O4SQmDR58mQUFxfjjjvuwPr163Hw4EF89913mDBhAlwul+RjGjVqhJ49e2LVqlXebd988w3efvttbNmyBUeOHMG8efMgCALat2/v3efnn3/G0KFDdf+dCCHqUGeHEBKTcnJy8Msvv8DlcmHo0KHo2rUrpk6dioyMDPC8/KXv/vvvx/z58723MzIysGDBAlx77bXo2LEj5syZg48//hidO3cGAFy+fBkLFy7ExIkTdf+dCCHqUFJBQggRuXTpEtq3b4///ve/6N+/f8j9Z8+ejS+//BLff/+9Aa0jhKhBIzuEECKSlJSEefPmBU0+KBYXF4dZs2bp3CpCSCRoZIcQQgghMY1GdgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKZRZ4cQQgghMY06O4QQQgiJadTZIYQQQkhMo84OIYQQQmIadXYIIYQQEtP+H9G+4b9v1taqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.blabla_err = ts.blabla / 10.\n", + "ts.plot(\"blabla\", labels=[\"Time (s)\", \"blabla (cts)\"], witherrors=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A plot can also be customized using several keyword arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on method plot in module stingray.base:\n", + "\n", + "plot(attr, witherrors=False, labels=None, ax=None, title=None, marker='-', save=False, filename=None, plot_btis=True) method of stingray.base.StingrayTimeseries instance\n", + " Plot the time series using ``matplotlib``.\n", + " \n", + " Plot the time series object on a graph ``self.time`` on x-axis and\n", + " ``self.counts`` on y-axis with ``self.counts_err`` optionally\n", + " as error bars.\n", + " \n", + " Parameters\n", + " ----------\n", + " attr: str\n", + " Attribute to plot.\n", + " \n", + " Other parameters\n", + " ----------------\n", + " witherrors: boolean, default False\n", + " Whether to plot the StingrayTimeseries with errorbars or not\n", + " labels : iterable, default ``None``\n", + " A list or tuple with ``xlabel`` and ``ylabel`` as strings. E.g.\n", + " if the attribute is ``'counts'``, the list of labels\n", + " could be ``['Time (s)', 'Counts (s^-1)']``\n", + " ax : ``matplotlib.pyplot.axis`` object\n", + " Axis to be used for plotting. Defaults to creating a new one.\n", + " title : str, default ``None``\n", + " The title of the plot.\n", + " marker : str, default '-'\n", + " Line style and color of the plot. Line styles and colors are\n", + " combined in a single format string, as in ``'bo'`` for blue\n", + " circles. See ``matplotlib.pyplot.plot`` for more options.\n", + " save : boolean, optional, default ``False``\n", + " If ``True``, save the figure with specified filename.\n", + " filename : str\n", + " File name of the image to save. Depends on the boolean ``save``.\n", + " plot_btis : bool\n", + " Plot the bad time intervals as red areas on the plot\n", + "\n" + ] + } + ], + "source": [ + "help(ts.plot)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The figure drawn can also be saved in a file using keywords arguments in the plot method itself." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfkklEQVR4nO3deXhMZ/sH8O9EVtkX2QiCNCGWxhZRWiSloWhtpbF28bZFbb9WvW/RUqV0UapUq32rtRRF7bVTRCSINfYQZEMkkUT28/uDzJuRbTJzzpyZk+/nunJdk7M8556Tmck95zzP/agEQRBAREREpFBmcgdAREREJCUmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBTNXO4AjEFxcTESExNhb28PlUoldzhERESkBUEQ8PDhQ3h7e8PMrOLrN0x2ACQmJsLHx0f0dh0AfPzk8WcAMkU/ApmyktdHHbkDIaN0F/zckBrfg4Yj9ev51q1bqFevXoXrVaygDGRkZMDJyQm3bt2Cg4ODaO2qkpNh9cknAIC8Tz6B4OkpWttk+tSvDxsbCLVryx0OGRFVTg7w6BE/NyTG96BhSPl6zszMhI+PD9LT0+Ho6FjhdryyA6hvXTk4OIia7CA7G7C0BABY2tsDYrZNpq/k9eHkBNjbyx0NGRNLS6CoiJ8bUuN70DAM8HquqgsKOygTERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhGRFvLz85GXlyd3GESkA856TkRUhezsbCxcuBDFxcV499134eLiIndIRFQNvLJDRFSFtLQ05OXno6CwEKmpqXKHQ0TVxGSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKJmuyc+jQIfTu3Rve3t5QqVTYtGmTxvpPPvkEAQEBsLW1hbOzM8LCwhAVFaWxTVpaGiIiIuDg4AAnJye8+eabyMrKMuCzICIiImMma7KTnZ2NVq1aYfHixeWuf+aZZ/Ddd9/h7NmzOHz4MBo2bIju3bvj7t276m0iIiJw/vx57N69G1u3bsWhQ4cwevRoQz0FIiIiMnLmch48PDwc4eHhFa5//fXXNX7/+uuvsXz5cpw5cwahoaGIi4vDzp07ER0djbZt2wIAFi1ahJ49e+LLL7+Et7e3pPETEZF27ty5g/Pnz6Nr166wsLCQOxyqYUymz05+fj6WLVsGR0dHtGrVCgAQGRkJJycndaIDAGFhYTAzMytzu6u0vLw8ZGZmavwQEZF02rVrhx49emDu3Llyh0I1kNEnO1u3boWdnR2sra3xzTffYPfu3XBzcwMAJCcnw93dXWN7c3NzuLi4IDk5ucI258yZA0dHR/WPj4+PpM+BiKimS0pKAgCcOHFC5kioJjL6ZKdr166IjY3F0aNH8dJLL2HQoEFITU3Vq82pU6ciIyND/XPr1i2RoiUiIiJjY/TJjq2tLZo0aYIOHTpg+fLlMDc3x/LlywEAnp6eZRKfwsJCpKWlwdPTs8I2rays4ODgoPFDREREymT0yc7TiouLkZeXBwAICQlBenq6xmXRffv2obi4GMHBwXKFWKNkZWXhq6++wpYtW7Te58yZM5g1axauX78uYWQkttTUVBw8eBBpaWlyh0JEVC2yjsbKysrC1atX1b/Hx8cjNjYWLi4ucHV1xezZs9GnTx94eXnh3r17WLx4Me7cuYOBAwcCAJo2bYqXXnoJb7/9NpYuXYqCggKMHTsWgwcP5kgsA1m5ciX+7//+DwCQmZkJe3v7Kvd5+eWXcevWLezfvx/79u2TOkQSyZo1a5D24AGuXr2KN998U+5wiIi0JmuyExMTg65du6p/nzRpEgBgxIgRWLp0KS5evIhff/0V9+7dg6urK9q1a4d//vkHgYGB6n1WrlyJsWPHIjQ0FGZmZujfvz8WLlxo8OdSU5UeyZabm6tVslPSR+rYsWOSxUXiS3vwAABw6/ZtmSMhIqoeWZOdLl26QBCECtdv2LChyjZcXFywatUqMcMiIiIiBTG5PjtERERE1cFkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0WQdek5ERETGKS0tDatXr4aDgwMiIiJgZma610dMN3IiIiKSTHx8PO7eu4dr168jPT1d7nD0wmSHiIiIFI3JDhERESkakx2qUR49eoSMjAy5wyAiIgNiskM1RlZWFho0aAB3d3fExsbKHQ4RERkIkx2qMRISEnD37l3k5+fjzJkzcodDREQGwmSHiIiIFI3JDhERESkak50aoLi4GAcOHMDVq1flDkUxcnJysH37dty/f1/uUBQhNzcXly9fRn5+vuhtC4KAW7duITU1VfS2ifSVlpaG+Ph4CIIgdyiKxmSnBli7di26du2KgIAAPHr0SO5wFGHcuHHo1asXwsPD5Q5FEf744w+sWr0amzdvFr3tGzduYPnPP+P7JUuQnZ0tevtEuiosLMR3332HX1eswNmzZ+UOR9GY7NQAd+7cAQAUFRXh4cOHMkejDNu2bQMAREdHyxyJMsTfuAEAOHf+vOhtZ2Zmqh8z2SFjkp+fj+InV3RKv05JfEx2iIiISNGY7BAREZGiMdkhIiJZXb58GTNnzkRcXJzcoZBCmcsdABER1WwRERGIiYnB2rVrce7cObnDIQXilR0iIpJVTEwMAOC8BB3UiQAmO0RERKRwTHaIiIhI0ZjsEOnp2rVrGDRoEL799lu5QyEionIw2SHS0/fff49169ZhwoQJKCoqkjscIiJ6CpMdIj2xKi8RkXFjskNERESKxmSHiIiIFI3JjgIJgoDBgwfDz88Pp06dkjscElFycjIWLVqEtWvXQngygaAUYmJi8PXXX3OiUzIaDx48QJs2bdC+fXs8fPgQOTk56NixI4KCgnD37t0q9xcEAUOGDIGfnx9OnjxpgIjJmLCCsgI9fPgQf/zxBwDgr7/+gr29vcwRkVguX76M+2lpuJ+WhtzcXNjY2EhynG3btkEAsG37drRr106SYxBVR1RUlDpJiYmJgbW1NSIjIwEAR48eRd++fSvdPysrC2vWrAEAbNy4Ea1bt5Y2YDIqvLKjcFJ++yfl4quGlKy4uFjuEMjAmOwQERGRojHZIapCfn4+Hjx4IHcYRLITBAEpKSlyh0FUbUx2iCpRUFCAgIAA1KlTB/v27ZM7HCJZDRs2DJ6enpg9e7bcoRBVC5MdokqkpaUhPj4eRUVFiI2NlTscIlmtXLkSADg1CpkcWZOdQ4cOoXfv3vD29oZKpcKmTZvU6woKCjBlyhS0aNECtra28Pb2xvDhw5GYmKjRRlpaGiIiIuDg4AAnJye8+eabyMrKMvAzISKqOTgtCpkaWZOd7OxstGrVCosXLy6zLicnBydPnsS0adNw8uRJbNiwAZcuXUKfPn00touIiMD58+exe/dubN26FYcOHcLo0aMN9RSIiIjIyMlaZyc8PBzh4eHlrnN0dMTu3bs1ln333Xdo3749EhISUL9+fcTFxWHnzp2Ijo5G27ZtAQCLFi1Cz5498eWXX8Lb21vy50DG49y5c3j48CE6dOgAlUql1T6PHj3CgQMH0K5dO7i5uUkcobhSUlJgbm6OunXrav18a5q7d+/i1q1bcodBErtz5w527dqFrl27wsLCQu5wZJWbm4uEhAQ0aNAAVlZWcodjNEyqz05GRgZUKhWcnJwAAJGRkXByclInOgAQFhYGMzMzREVFVdhOXl4eMjMzNX7ItCUnJ6NFixbo2LEjDh06pPV+kydPRs+ePREWFiZhdNL476+/4qfly3Hnzh25QzFK2dnZWPz994g5cULuUEhiY8aMQY8ePfDFF1/IHYrs1q9fj1WrV2Pjxo1yh2JUTCbZyc3NxZQpUzBkyBA4ODgAePwPzt3dXWM7c3NzuLi4IDk5ucK25syZA0dHR/WPj4+PpLGT9EoPh63OP/+///4bAHD69GnRYzKUhw8fyh2CUcrJyZE7BDIwTgMBXL12DQBw8dIlmSMxLiaR7BQUFGDQoEEQBAFLlizRu72pU6ciIyND/cPL3ERERMpl9HNjlSQ6N2/exL59+9RXdQDA09MTqampGtsXFhYiLS0Nnp6eFbZpZWXFe5lEREQ1hFFf2SlJdK5cuYI9e/bA1dVVY31ISAjS09NxotQ9+X379qG4uBjBwcGGDpfI6AmCgFOnTiEmJobzAxGJJDc3F0eOHMHVq1flDqVS2dnZ+Oeff3Dz5k25QzE4Wa/sZGVlabw44uPjERsbCxcXF3h5eWHAgAE4efIktm7diqKiInU/HBcXF1haWqJp06Z46aWX8Pbbb2Pp0qUoKCjA2LFjMXjwYI7EIipHamoq/tq8GQDg5uaGhg0byhsQkQJER0dj75MK69M+/hi1atWSOaLyHTp0CFHHjwMAPpkxQ+ZoDEvWZCcmJgZdu3ZV/z5p0iQAwIgRI/DJJ59g85MP5WeffVZjv/3796NLly4AHlf0HDt2LEJDQ2FmZob+/ftj4cKFBomfyNTk5eWV+5iIdJedna1+LAiCjJFULiMjQ+4QZCNrstOlS5dKXxjavGhcXFywatUqMcMiIiIiBTHqPjtERERE+mKyU8Pk5ubi7bffxnvvvYfCwkJR254wYQLeeOMN1n3RQ2pqKv744w+NeiGCIGDXrl3YtGkTcnNzZYyOapKtW7eib9++OHDgQJXbfv/99xgwYAAusbZLueLi4rBmzRokJCTIHUqNZfRDz0lchw4dwk8//QQAGDZsGEJCQkRru+R2Yu/evfHqq6+K1m5N8s8//yDu4kXEXbyI1q1bAwDu37+Po5GRAAD3OnXkDI9qkIEDByI3Nxfnz5+vcpTRmDFjADzu9L506VJDhGdS/li7FgCQnp6Od955R+ZoaiZe2alhCgoKyn0s1TGoeh49elRmWekh4hwuToZSchXx2pOKvNrg1DuVe/Dggdwh1FhMdoiIiEjRmOwQERGRojHZUYD9+/fD19cXY8eOlTsUAMDEiRPRsGFD7Nq1S71MEAT069cPKpWq3H1mzpwJHx8frFu3zlBhlhESEqJRL0MsV65cQbNmzfDiiy+iW7duCAwMRHx8vOjHIWWq6v199uxZ+Pv749VXX5W9xsvq1atx9uxZvdp4/fXX4efnp1EZn3SzYMEC3LhxQ+4wjAKTHQVYunQpbty4gcWLF8sdCgAgMTERN2/e1CjueO/ePWzcuLHCfWbMmIHbt2/jk08+MUCE5Tt27BhiY2NFb3fv3r2Ii4vDnj17sH//fly4cAH79+8X/TikTFW9v3ft2oXLly9j06ZNuHv3roGjK+vvv//Wa//Vq1fj6tWr2LBhg0gR1VzpGRmcCf4JJjsKYKwdgnWp0Mth60SajPX9LTV2xhcHz+NjTHaIiIhI0ZjsyCw1NbVM5p2Tk1OjhnDK3c+AHhMEQZI+S/ooLi42upgAoKioqNwyAYYmCAJSUlJEaSc5OVn9XiyvzZycHL2PA0D0YqZE2mCyI6MffvgBHh4eeOmll9TL0tPT4ePjA3d3d5w/f17G6Axn4sSJcodAeDyp7vwvv0R0dLTcoaj99ttvmP/ll0bV70AQBHz//feYN29etWrQSOHdd9/F/Pnz9W5n0qRJ8PLywsSJE7F06VJ4enpqrH/w4AHq1aun93EAYNu2bTXqC056errcIRCY7MiqpOLw7t271cvi4+ORlpaGvLw8vUc1mIpvv/1W7hAIwNUn/7jPnDkjcyT/E/9kJIkxJf65ubm4n5YGAY8748vphx9+EKWdBQsWAHj8XoyJiSmz/vr166IWxKtJV3dKdxr38vKSMZKajckOERGRAVhZWckdQo3FZIeIiIgUjckOmQRBEBAdHS1JHZyKFBcXazXjs5jH07fYYFJSkuy3VqRQ0/o93Lt3D6mpqWX6thQXF+PQoUMVzi6+Y8cOg9TaSUtLQ35+frnrHjx4gO3btxtlx3KquZjskEk4deoU2rdvj6CgIFy/ft0gx1y/fj0GDx5skGMBQGxsLIr0qIlx7949/LBsGZb9+KMoI3SMyf20tBpTLyQ7Oxv/XbEC23fswNGjRzXWbd26FS+88AICAgLKHbE5cuRIhIaGGiTOWbNmlbv8888/R69evTi7NxkVJjtkEu7cuaN+bKgrF6WPaQj6dgAtXZBRicUZi4qK5A7BIEpfEUlOTtZYV/o1mZaWVu7+hhrYcOzYsUrX//nnnwaJg0gbTHaIiIhI0ZjsEBERkaIx2TEBN27cwKxZs3Dq1Cm5QxFdQkKC6G0uXLgQf/zxh+jtSiE7OxvHjh0T/ZbZ0aNHK+zEaiqSkpLkDkF2cXFxcodQoxUUFCAyMrLCv8Pp06dx/PhxRfUnu379Og4fPmwUFcLFZC53AFS19957Dzt27MDixYvL3MM3dWPGjBG9zaioKAwePBidO3eGt7d3pdva2tqKfvzqiI6ORszNm8iPjkZwcLBo7V6Pj8f1+HhM/egjk63tsXLlSrlDkN1ff/0Fn/bt5Q6jxjp//jz+3rULADDlww9hY2OjXnfv3j1s3LQJAOBep44c4YlOEASs+O03AEB+fj4cHR1ljkg8vLJjAkoqmipthA0ASa9WadNJt2nTppIdXxslQ6rzJZrZ2pQr1WZx6LKi/tmYory8PPXjp2efL72u9GOlUNogByY7VKOpVCq5QyAiIokx2SEiIiJFY7KjMKmpqVpv+9prr2nMmPz9999DpVKhTZs2onaYTU5ORkREhGjtlaeiAmfG6s0338SRI0fkDkNngiBg586d+Ouvv0z6Ev6RI0ewfv16ZGRklFn36NEjbNy4EbNmzcK6devUy8ubKNMUXL16FQMHDsTChQsNfuzqfC7VdHfv3sXatWurfJ0lJiZizZo1NWbCaH0x2VGA0vf1Nz3pMKeN5ORkfPjhh+pe9yWdhU+ePIm1a9eKFt+GDRs0ZnYXW1pamkkWMJs0aZLcIegsNTUVx6KicCo21mAVrcVWUFCA3Xv24Nz58+VOQ3L58mWcPnMGRcXFyCzVf+GOiU7H8d1332H9+vUYP358mWkopFadz6Wa7ujRo7gQF4et27ZVut3u3btx8dIl/Llhg4EiM21MdhTAwcFB/fjpTnTaKG/YpC7tVETMtspjqp1wE27dkjsEnZWuZmyqw25Lx13ea8hUn1dFsrKyZDu21J8BSpKbm6vVdkrrQCw1JjtERESkaEx2iIiISNGY7BjIhAkT0LhxY0RGRkp+rPfff1/yY9D/3Lt3T5J2K5ro0Rgs+/FHuUMQ1T+HD0vWdmZmJpYsWYJffvml0slMDxw4gG+++cYgVZPnz58PHx8f/PakgJySJCQkoEWLFujatavR3T67dPlyhf0LD0v4GiQmOwZRXFyMP9auxfXr1w1SFfbXX3+V/Bg1XePGjdWPpRpVZaodf02RmYT1lm7evImU1FTcTEjA3bt3K9zuwMGDyMjMxMGDByWLpcSUKVNw+/ZtfPjhh5Ify9AOHjyIc+fO4cCBA0Y5ZcrZc+eQn59fZjlrfkmLyY6BVfbNjkyHh4eH3CGQiIzpH02xAUdKPXjwwGDHosoZ02tQiZjsEBERkaIx2SGtpKSklFubo7xibGJKS0sr95KvtiqK2xhlG3guKG37M+Tk5FQ5DDsnJ6fKq5aPHj0qM2Rd3+ecn5+v1+vjacXFxcjJydGrjby8PFFj0sfdu3dRVFSEzMxMvZ+XKXj06JHkn0lkmpjsUJW++OILeHp6YvDgwRrLz5w5g9mzZ0t23D179qBOnTpo1qyZTrV05syZA09PT7z++usSRCe+kxJOilqe9X/+qS4oWZl58+fjhx9+qHD9pUuXMP/JNhUllleuXMG8efOwZMkSdeL066+/Yv6XX5Zb0E8b6enpmD9/Pr788kvRao4sX74c8+fP17kqbVpaGubPn4+vvvrK4Mnr05YvXw53d3f4+PjA3d0dq1evluQ4uvQx2vVkJnGx7dy5E+PGjVP//tNPP0lyHDI9THaoSkuWLAGAMlWVpS5TfvLkSRQXF+PatWvq2cGro6Sj9po1a0SOTByBzZrJHUKFfTacnZw0fk+ppNx/QkICBACpd+9WeLXozp07EADcu39ffdXjZkICAODixYvVjht4PAquoLAQ+QUFoo2Iu5OYCAGPkzNdpKamorCoCHn5+bKPpit5vyYlJUk6pYcuyaqhpjjQ5XODlEnWZOfQoUPo3bs3vL29oVKpypQU37BhA7p37w5XV1eoVKpy31S5ubkYM2YMXF1dYWdnh/79+yMlJcUwT6CGUFolWWPh4uIidwgVsre3lzsEIiLRyJrsZGdno1WrVli8eHGF6zt16oQvvviiwjYmTpyILVu2YN26dTh48CASExPRr18/qUImIiIiE2Mu58HDw8MRHh5e4fphw4YBAG7cuFHu+oyMDCxfvhyrVq1Ct27dAAC//PILmjZtimPHjqFDhw6ix2xsUlJSsHPnTr3befrqTU2epTgnJwcHDhzQ+zbE5cuXkZycrNeVsczMTFy7dk2vOAwpKytLlCtW+lydzcnJwZ07d2Bra6t3HFVJTExEYmIivL29y6y7d+8efHx8NJaZ6jxuUtJmLqirV6/iwIEDksdSXFyMmzdvwsnJCc7Ozlrvl5GZWa3jXLlypdrHqMzDhw+RkpICX19fUdpTIlmTHX2dOHECBQUFCAsLUy8LCAhA/fr1ERkZWWGyk5eXp3EPO7OaL1Rj0rlzZ537F5S2ceNGjd+/+uorfPnll3q3a4reffddrFixQq82srKy4O/vDwDo3r27zu388MMPyDahUTQ//fST3oXqMjMzsWTpUp33/+2335CUnIwG9evrFYc24i5eRNzFixjz3nuoU6eOxrq/Nm9G06ZNNZZFRUWhXr16kselj5s3bxr0eJMnT650/aNHj+Dv72+Q2+mnT5/GX5s3w7xWLUydOlWy46xbvx4AMGzoUFHaW758OdIzMvB8586itKdEJt1BOTk5GZaWlnB6qjOlh4cHkpOTK9xvzpw5cHR0VP88/e3LlIiR6ACPO5CW5u7uLkq7pujpvmO6KN0x8ulzWx2mlOgAQI4Wo7uqou/s3ElP3vslHaANoaLRYE+PdjPWwnEtW7ZUP05KSjLosasamfXw4UOD9Rss6bBfWFRkkKtwYn3RTn8y3P7WrVuitKdEJp3s6Grq1KnIyMhQ//AFQkQ1GTukk9KZ9G0sT09P5OfnIz09XePqTkpKCjw9PSvcz8rKClZWVgaIkIiIiORm0ld22rRpAwsLC+zdu1e97NKlS0hISEBISIiMkVXfDz/8IMml2vPnz2PmzJmVbnP48GFER0eLfmxdSHWVTdsJAdc/uZeuq1mzZmldQ+Sfw4fVl5+1de/+/TLLDh48WGHV2JLbKLm5uThy5AiuXr1areMZq8zMTBw6dEiy9s+cPVvtKshxcXE4duyYRBE9duLECUnbr449e/bg22+/1aqD8dN+/PFHLFu2DHfv3jWZ12RUVBSioqK0nt8wJycHhw8fRnx8vM7HTExMrNb28RUM5iGZr+xkZWVpvNDj4+MRGxsLFxcX1K9fH2lpaUhISFD/wUv+YXl6esLT0xOOjo548803MWnSJLi4uMDBwQHjxo1DSEiIyY3Eeuedd9C8eXPUrl1b1Hb//PPPKrd56aWXYGNjI+px9XH//n24urqK2uaQIUPw+++/V7ndggUL9DrOp59+ihUrVkj6j/hpySkp2LZtW7kJ/unTpxEaGoqTJ09i9549BotJH9oUgtu1axcSJL79fO7cOa23ffTokbrTqZSWL18u+TGqY8KECTp9sbx+/Tr+9a9/4bfffpMgKmkcOXoUAODo6IiAgIAqtz969CgOHzmi1zF/++03TJkyRa826DFZr+zExMQgKCgIQUFBAIBJkyYhKCgI06dPBwBs3rwZQUFB6NWrFwBg8ODBCAoKwtJSIzW++eYbvPzyy+jfvz+ef/55eHp6YsOGDYZ/MiKQc1SYm5ubbMd+mhRl9k8ZcCoGfb7J6aqiTqUlVwuNfV4kt1LJrTbVfu/evStlOFrHUULbecaUSJ/PreoklMZC29eFGJ/nj3S4akblk/XKTpcuXSqdpHHkyJEYOXJkpW1YW1tj8eLFFRYmJCLjZ25u0t0HicjImXSfHSIiIqKqMNkxMKnvua9bt07S9g1ly5Ytot+rPn78uKjtVeaDDz4w2LGMzerVq3H9+nUkJSVhzZo1OHPmjMGOrW2n4pycnDKFNPVRUa2Y7777rtKJMo8ePYp169bV2Akrq3req1atwquvvmqYYIxAZmYm4nScGFdqt27dwpo1axAXF4e0tDSsXbsWUVFRcoelNV47NjCp7+0fPHhQ0vYNZeDAgaK3OWnSJNHbrIixzrRuCJeeTJNRp04dXL12DRcvXUKXF14wyLFL95eytLBAfgXvt0uXLuGiliP0tFFRMcWi4mJcu3693HWFhYXYtXs3AIjeIV8pIiIi5A5BZ7qUNzHUbPC62L59O/Ly83Hx0iV0CA7Ghbg4XIiLQ3BwsNyhaYVXdsgoVadzqLZKqqOS9DIyM/WuhKyL0uUbnq6sXpq2w4elVLq/IufMUh4LC4tq72MMr8uK5JW6airF57PUmOwQERGRojHZISIiIkVjnx2ZjB8/3qCF50q888475S7XtnJx06ZN4evri1WrVmFoFTP27hGxiN3RJwW9AGDt2rXo1KmTaG0rwcOsLJ063C778UcAQGcJzmdySopO+12+fLna+/y6YgWGatG/4/slS9CubVt4eHjoEppkjkZGVnufsLAwCSIxHnPnzq1wXXFxMcLDwyU9/jfffKNTSYSkpCT4+Pjo9DeVypEjRxAVFYXMpyasFQQB69evR1JSEgYNGqTz+yIpKQnr1q2Dl5cXBgwYYJQT3vLKjkwWLlwoy3GrWwL/aRcvXsSOHTu0nhlcrAKBpZOdmzdvitKm0jz9QVZaVR/a/xw+LHY4Ort3755O+0Vq+c8lOiZGp/aNzbVr1+QOQTYJCQkVTpEilty8PGTp8PklR1HRquzes6fcz4e8vDycv3ABaQ8eaD2lTnkuXbqEtAcPcP7CBaPtz8Nkh3RSWTFIKZT+pmBmxpdtdRnjN62K6BorO/kS6c7Qn+mGxv8aRAZW2SghIiISH/vsGLFbt27pNKOwqXj06JFOt9WenhfJ2L/RJycn67SfFHOEaUuOYeP6KiwsVPT7pbrErOlliLnI5FRQWIhiI739UhFt57uT83PEmPDKjhH78MMP4evra/STOOpDlw/RI0eOaFSiNvbOyvfv39dpv/0HDogbiJZu3b6NNBOsSXQnMRF/bd4sdxhGobi4GPv379dp3/Pnz5dZJnVnYDnl5+fjhx9+wLx585Camip3OFo5e/ZshYUsnxZ/44a0wTxFn74/UmKyY+SSk5OZmZdj7dq16sfG2CGwKhMnTpQ7BFIwXuHSXlZWFnLz8lBUXGwyyY4uIxalVKtWLfVjXb/cSY3Jjolj/w/T9PXXX8sdApFRCAwMlDsEqgGY7BAREZGiMdkhScXGxiI6Olr0dvft24eioiKNuZCorPz8fFy+fNloa18Aj2PUtQBhZaozF1pRcTHu3LmjsSxV4Z1ypfboSZ+SzMxMbNu2TeZoxJOUlCR3CKQDjsaiKulSRbSEVJ2HCwsL8csvv8DR0VGS9pUiOibG6IvoXZeoz1VBNUfp/fjTT5LEUZPdv38fI0aMwI4dOyrcRsxRY4ZwLCoKbdq0kTsMqiZe2aEqtWrVSu4QynXt2rUy38aJyHjcvXu3yqs63bp1M1A04nlYSbVyMk5MdqhK+lzZIdNhZWkpdwhUA7Vv317uEKgG0Pm/WHZ2Ng4ePIiEhIQyheHef/99vQMjIiIiEoNOyc6pU6fQs2dP5OTkIDs7Gy4uLrh37x5q164Nd3d3Jjs6+uqrr9C5c2e5w6AKHD9+XO4QaoTKOgbn5+cjJiYGKXrWQ5Gi07y2zpw5g9zcXElvDx82ooldjcU///yjfvztt99i2rRpsNajvbi4OP2DklFBQQGOHTum/r2oqEinz7i//voLNwxcuFAXOiU7EydORO/evbF06VI4Ojri2LFjsLCwwNChQzF+/HixY6wx9u7di71798odBlVg48aNcodQ450/fx67du/Wux19kyVdPXjwABuevI7s7OwkO06PHj0ka9tU9erVS/04OzsbW7ZswUAdB1A8evQIh48cESs0WcTFxeHAwYPq369du4ZEHUaanYqNFTEq6ejUZyc2NhaTJ0+GmZkZatWqhby8PPj4+GDevHn497//LXaMREbBzc1N1Pae8fMTtb2awJiH0GujdPym/lxMXWZmps77mtoIsvI8/fpT+utRp2THwsICZmaPd3V3d0dCQgIAwNHREbdu3RIvOiIFCw0NlTsEogp9/vnn8PDwkDsMIlHodBsrKCgI0dHR8PPzwwsvvIDp06fj3r17+O2339C8eXOxYyQiIiLSmU5Xdj7//HN4eXkBAGbPng1nZ2e8++67uHv3LpYtWyZqgKYuPz/fJDsLpqam4p133pHlcu2CBQskP8Zvv/2Gfv364dSpU5IfS+nSMzKq3KZ034AdO3bgr7/+kjIko6XEqszlzZIutTfeeEOUdn7++WedZoffVMnrd9/+/diyZYs+YRkNXTphH/rnH5w/fx4PHjzAunXrNDpBy0mnKztt27ZVP3Z3d8fOnTtFC0hpbt++LVmFWKn98MMPiIiIMPhxv/nmG8mPsWfPngrX1apVC0VFRZLHUFOdPnNG7hCIAAD/+fhjzJGg3RMnT0rQquHd1TE5X7d+PZ7r2BHnL1zA+QsX0L5pU9mL+sl9fMUz9bmblNARr7oCAgLkDoFMnIuzs9whEOlNn4Kypf93CIIgRjh60fqZBAUFQaVSabXtSYVktUREuqhVq5bcIRCpudepo8hbqNWhdbLzyiuvSBgGERERkTS0TnZmzJghZRw1ij6VUzt16oQ9e/bA2lqf2p/6E6uDIBmPvKemfSHjwGKW+rty5YrcIZTLmEq13E9LE7W94zJWKS+PXjM8xsTEqHtrN2vWjNPea+mMHh00jxw5gnPnzml0Ejc15ubmKCwslDsM2bGGCVWlJrxPGjZsiNq1ayMnJ0eyY+zbt0+ytvVROtnRtpuILoyhz4zcdOqgfPv2bXTu3Bnt27fH+PHjMX78eLRr1w6dOnXC7du3xY6RFCY5OVnuEIzCq6++KncIRLJzc3PDnTt38Nlnn8kdSo1hXgP7lOmU7Lz11lsoKChAXFwc0tLSkJaWhri4OBQXF+Ott94SO0ZSGFdXV7lDICIj4uTkhDp16sgdBimYTrexDh48iKNHj8Lf31+9zN/fH4sWLeKs3UQkiaysLF6OJ508fPhQq2WGlp2d/b/HOTkGe30XFhUhKyvLIMcyFjolOz4+PuXWXykqKoK3t7feQREpGf9h6+bbhQvlDsHgLl2+LOvxlfBavXbtGj744IMyyydOnAhPGeIpLefRI43f9x84YLBjHzx0SOd9Hzx4IGIkhqHTbaz58+dj3LhxiImJUS+LiYnB+PHj8eWXX4oWHJESKX12YVKOR0/9M3Z0dJQpEt3JMZ2F0ulaWVlOWic7zs7OcHFxgYuLC0aNGoXY2FgEBwfDysoKVlZWCA4OxsmTJ6s1JPnQoUPo3bs3vL29oVKpsGnTJo31giBg+vTp8PLygo2NDcLCwsoMIUxLS0NERAQcHBzg5OSEN998s8ZdnqOaZ8x776G+j4/cYZAR+fnnnwEA9erVE63NadOmqR+npqZi/vz5orVNZEha38aSYnLG7OxstGrVCm+88Qb69etXZv28efOwcOFC/Prrr/D19cW0adPQo0cPXLhwQV1nJiIiAklJSdi9ezcKCgowatQojB49GqtWrRI9XiIiIjI9Wic7I0aMEP3g4eHhCA8PL3edIAhYsGABPv74Y/Tt2xcAsGLFCnh4eGDTpk0YPHgw4uLisHPnTkRHR6vrzixatAg9e/bEl19+qdj+Q3l5edixYwcEQUB6errc4RjExYsXyyw7fPhwuUmyvm7cuFHp+ps3b2Lv3r3q3zmUnnRxWeb+OIZgards04ywL4ogCBo1eARBqPIzSgypqamiFRpMTExEPRsbSFdJqGp6TwSam5uLzMxMjR8xxMfHIzk5GWFhYepljo6OCA4ORmRkJAAgMjISTk5OGgX2wsLCYGZmhqioqArbzsvLkyRmQ5k5cyZ69uyJXr16yR2KwZQ3C/nhw4exc+dO0Y9VeoREeXEEBgaa3GuGjE9cOQm80ixevFjuEEzenTt3NH4/f/48Hhqgq8adxETR2vpj3TokJSWJ1p4udEp2srOzMXbsWLi7u8PW1hbOzs4aP2Io+bb8dJVZDw8P9brk5GS4u7trrDc3N4eLi0ul37bnzJkDR0dH9Y+PifV9ePrFLyYx7/cbgpTnojwFBQWVJkNE9D/FxcVyh2Dynh4ib6pftKSskK0NnZKdDz/8EPv27cOSJUtgZWWFn376CZ9++im8vb2xYsUKsWMU3dSpU5GRkaH+Mab5SeS2fft2uUMgIiISlU51drZs2YIVK1agS5cuGDVqFDp37owmTZqgQYMGWLlyJSIiIvQOzNPzcQWElJQUeHl5qZenpKTg2WefVW+TmpqqsV9hYSHS0tLU+5enZAQZERERKZ9OV3bS0tLQqFEjAICDgwPSnnRi6tSpEw7pUaioNF9fX3h6emp0BM3MzERUVBRCQkIAACEhIUhPT8eJEyfU2+zbtw/FxcUIDg4WJQ5jZMgrUf/5z3+wbds2gx2vugxZQyMxMRGzZs0y2PGIdJGbm1ut7RMSEnDkyBFJYlFCUUJj8eDBA6xfvx67du+WOxRk63BLSu5ChDolO40aNUJ8fDwAICAgAGvXrgXw+IqPk5OT1u1kZWUhNjYWsbGxAB53So6NjUVCQgJUKhUmTJiAzz77DJs3b8bZs2cxfPhweHt745VXXgEANG3aFC+99BLefvttHD9+HEeOHMHYsWMxePBgxY7EAgx7z/bYsWNlCovVZJ9//rlobelzddHCwkK0OEhZ7t27V63tP/30U4kiAeLi4iRru6bZvHkzzplwgcSSnEEuOiU7o0aNwunTpwEAH330ERYvXgxra2tMnDix3LLcFYmJiUFQUBCCgoIAAJMmTUJQUBCmT58O4HHfoHHjxmH06NFo164dsrKysHPnTnWNHQBYuXIlAgICEBoaip49e6JTp05YtmyZLk+LDEiKUVSmxtHREc0DA3XatzpfKogqI+WXJ1PtTCsWSxG/lNy+fVuUdho2aABXFxdR2qoOS0tLgx+zNJ367EycOFH9OCwsDBcvXsSJEyfQpEkTtGzZUut2unTpUullTpVKhZkzZ2LmzJkVbuPi4sICgiaoa9eucodgFHx9fXGgmt/WmjRuLFE0mtzr1EGqCZaFJ90EBgaa7NQK//73v0W96ioWJycno3sPOTs7Izg4GH88uSNTU+iU7DytQYMGaNCggRhNEREREYlK62RnYTVmHH7//fd1CoaIiAwnLy8P69evl6x9U71SZGwOHz6MgsJCucMwaVonO998841W26lUKiY7RBLKz88XpZ263t6iVkklIk21a9fWu438/HzsKTUqmXSjdbJTUU/qkj43pefuICLpdOjQocwyFYDqDPIdOGAAPD09sei770SLi8TTyNcXmTKPXjFVJdPoVFYyw87ODlkGmHLBwcFB7zbkGr7fo3t32NraYs+ePch8qoqzKdJ5bqzly5ejefPmsLa2hrW1NZo3b46ffvpJzNiIqBylRyOWqFOnTrXaCAwMhI2NjVghkR7cy/nbPfPMMzJEogydO3fG888/X+k27GNatZYtW6Jly5Zo0aKF3KGIQqcOytOnT8fXX3+NcePGqQv8RUZGYuLEiUhISKh09BQRERGRIemU7CxZsgQ//vgjhgwZol7Wp08ftGzZEuPGjWOyQ1SJ6la4JWXjZJnS+fXXX/Hqq6+WWW7oCYT1UXqGANKdTrexCgoK0LZt2zLL27Rpg0L2GDdZY8aMkTsEMoB6devKHQKVIncZfbmoVCrY29vDx8dH77bq16+vflxYWIhmzZqpfy+Zzqi09PR0vY9pKGJ/Oaqp80LqlOwMGzYMS5YsKbN82bJlokwCWtO4ubnJHQKmTJmCRYsWyR2GbCobbdi5c2c899xzBoxGOk0aN8aoUaNEaSu0WzdR2qGaKTk5Gbdv3xalGvigQYM0fu/Zs6febcopsFkz9HryHMQe/NOmTRtR2zMVWt/GmjRpkvqxSqXCTz/9hF27dqlHhkRFRSEhIQHDhw8XP0qF8/DwqPZ8NmJr1KhRjR5RV6tWrQrX1a9fH0lJSQaMRjpOTk6VPtfqsLOzK9u+oyPSMzJEaZ+Uzd3dXe4QjJalpSXs7e3lDkNRtE52Tp06pfF7SXZ47do1AI+vTri5ubGIVCkZGRnIzs6WOwwiohqrpt4mJE1aJzv79++XMg5F+umnn+D6ZEZ3IinJVYuDyNhNnjxZ7hDICOhcZ4eqFhMTI3cIal5eXgY9XseOHUUpqKWr8mrRKJmrq6vBj1m3bl24urjAydFRvUyMzqZKYCHibNdEpD8mOxJ699135Q5BzdDDF48cOQJzc1Hmma02QRDw5ptvSnqMS5culVvJWC7+/v4GP6atrS3GjRuH9957T73MwcEBL/XoIepxapmJ+zHVuVMnUdsrT7t27SQ/Bpmu0l8QXunbV8ZIgDoSDJDpZYQdxJnsEBERkaIx2SEiIjJSqXfvyh2CIjDZqSHEGm6sDTFm+jUFYs0+bqzMdLx9pOt+RPRYUVGRqO2V7lJQU9+fNfNZK0y3bt0QHh6Or776CqGhofD19S2zjSFrWqxcudJgx3rajz/+WOU2FRXVWrhwYbWO1bx582ptbyqaNG6MAH9/nSejDAgI0PnYri4uOu8rFhdnZ7lDUKwGDRrgxRdfLLcoLf1Po0aNRGmncaNG8H/mGfTp0wfNmjZFu7Zt4WIE7zE5MNkxkK5duqBhw4aStP3vf/8b27dvx6RJk7Bnzx706dOn3O1ef/11SY5f2oIFC/DKK6/ovL++3zreeuutKrcZOHAgvvjiizLLx40bh9GjR2t9rIrOs6nr0aMHBg8eXKaomaWFBexsbavc38HBAZ10rDjdyQCdh6tSr149uUPQ8Msvv8gdQpW0/TLVrl077Nq1C++8847WbdcpZ1Z4pasr0pQuoaGhGDJkCLy8vDBo0CD06tXL4MVjLY1kZCKTHSIiIlI0JjtERESkaEx2jEBBQYGk7ZdcBr569aqkxzEmxcXFcodARkrpHcuNWVxcXLX3KW8ONpKeXHXSpMJkxwiI3fO+tAkTJmDbtm0AgMzMzGrt6+fnJ0VIBjF06FC5QwAAvPHGG5g3b57cYRiljiEhshy3sLBQluP6NWlisGM1btwYM2bMwJ9//lntjvdiK92PrrqfQQEBAUbRj0sMLVu0kDsErQ3o3x9WVlZllpvSc3gakx2Fmzt3rs7VXKdOnSpyNIbj7e0tdwho164dli9fjg8++EDnNqSobmosnn/+eblDMChDdrR1cXHBJ598gn79+mHcuHEGO255vvzyS533nTx5skHLZkipvFGyxqqikaam9ByexmSHiIiIFI3JDhERESkakx0ikoUxd4D0r6KgooURxw4A9+7dq/Y+np6eEkRSs5XuXF1RR+uKKs6zY7a4mOyQyfD29kYLE+4gR5rMzc1hZWkpertN9ajgXKKqwph2dnYY/fbbGDZ0KNq0bq338cQ2efLkam3funVr9JV59m1T0CE4GP379dNY9kIlfc+6dOmCgQMGYPiwYRUWlbWzs0Not25lltetWxeBzZppHdu/Ro9GbRsbrbevaZjskMmoVasWevToodO+gYGBIkdDYpBiGhNdOlG6P9V52EaLfxre3t5o3LgxnJycqn08h6eqU4vNrZod28PDw02mI3ATA45qe5qtrS1atGiBZk2bqpc9XWm8NEtLSwQGBlY5/UN5AypUKpXWVffrenvDy8tLq21rKiY7REREpGhMdgzI0HOSkDjy8vLkDoGISBJy1Z0yNCY7EmrUqBHMniQ4AQEBGDVqlMwRabK0tFTPgNusGveGlaA6FZYvXLggYSSVc3R0lO3YNUl5t3BK+ks0r+YtUBUe35Zw0vFvZ1u7tla30Uj59KnNZGFuXuEt1tK3OR+kp+t8DFNi3EMKTFy9evXw2muvIS8vD/bTpgFeXli2bBlu374td2gAHo8CuHHjBrKzszkSw0gFBgbi6rVrcodh9BrUr4+bCQk67duwQYNyp5AYMGAAwp78Izh3/rxWbY1//31YWlrC1tYWY8aMwezPP69WLC/36oWWLVsi8dKlctfPmDEDn376abXaJNOlbZ+d8kyePBnW1tblrquJM8nzyo7ErKys4ODgAJVKBZVKZXQVKO3t7ZnokMkrr7S9tioaAq9SqeDs7FyttqytrWFrawsAsLCwgKWFRbX2t7e3h2UlI9Rq4j8p0k1FiU5NxWSHiIiIFI3JTg3CfgCkj/yCAq23FQRBwkjKMjPjR5k+DPX3qqiAHpHU+AlRg0yZMqXKy/LPPPMM2rRpg4YNG1Z7tuG6deuia9eu+oQomeDgYLlDMAlurq7qTuv6qGoi1s4iz2Tdpk0b1LaxQeugIFHbNQQPDw+416kDF2dn1K1bV5YYOnTooPO+fn5+aN++fZnlXl5e6NmzJxwcHPDRRx/B2dkZH3/8cYXtGPPEsE0aN4a9nR0aN25s8GOb4mvaGBl9svPw4UNMmDABDRo0gI2NDTp27Ijo6Gj1ekEQMH36dHh5ecHGxgZhYWG4cuWKjBEbr9deew1paWmVbmNlZYWYmBjEx8drdI6r6p/Xs88+i9u3b6Nly5ZihCqq77//XvJ+SWIWLezbp48o7bzzr3/hkxkz0Kd37yq3fTEsDJ/MmIGxY8eKUlyuqo6VoaGheh+jND8/P3z44YfoI9K5MyRLS0u89957eP/992WbIqBz58467ffhhx/i8uXLZYpDBgUFITExEdu2bYNKpcKcOXOQlpaGoUOHVthWQEAA/u///k+nOKQ2dOhQTJ48ucrPQSn06dMH9X18DH5cpTH6ZOett97C7t278dtvv+Hs2bPo3r07wsLCcOfOHQDAvHnzsHDhQixduhRRUVGwtbVFjx49kJubK3PkREREZAyMOtl59OgR/vzzT8ybNw/PP/88mjRpgk8++QRNmjTBkiVLIAgCFixYgI8//hh9+/ZFy5YtsWLFCiQmJmLTpk1yh0+kOIbui0NEJAajTnYKCwtRVFRUZgidjY0NDh8+jPj4eCQnJyMsLEy9ztHREcHBwYiMjKyw3by8PGRmZmr8yEmuTnv16tWT5biVkWKupPJUNNy4qtt8xiQxMVH92FAziGfn5KgfG0unYDMRKpMXFRWJEEnN9fRnWHl1i3RVMpRfSUq/d4zlfaR0Rn2W7e3tERISglmzZiExMRFFRUX4/fffERkZiaSkJCQnJwN43MGvNA8PD/W68syZMweOjo7qHx8Z74e+/PLL+O9//4uBAweitxZ9K8SwcuVKhIaGYuHChXq1M3/+fJEietyfaNSoUdi4caNobVZm4MCB5S6/d++eQY4vhsJS/6ADAwPRrm1bgx7fGEb3NfL1xYABA/Rup7oTZ5qan3/+Gc8++6xk7b/33nsanav9/f1Fa3vMmDGKm+TS19cXgc2aoXVQkMG+4NV0Rp3sAMBvv/0GQRBQt25dWFlZYeHChRgyZIhe2fDUqVORkZGh/rl165aIEWuvX79+2LJlC1q3bo21a9di2bJlBjnu66+/jj179ug1cqpPnz6idiZcs2YNfv75Z3To0KHSompiadCgASZMmCD5cQzFzMwMvXr1Qv9+/QxyPM+nvmDIZfjw4aJMddK01CzWSjRq1Cjs3r1bsvabNm2K7du3q3/vJ+LrsGnTptixY4do7RkDKysrDBw4EH369OGVHQMx+rPcuHFjHDx4EFlZWbh16xaOHz+OgoICNGrUSD3CJiUlRWOflJSUSkfflFQ1Lv1DREREymT0yU4JW1tbeHl54cGDB/j777/Rt29f+Pr6wtPTE3v37lVvl5mZiaioKISEhMgYLRERERkLo092/v77b+zcuRPx8fHYvXs3unbtqp5BXKVSYcKECfjss8+wefNmnD17FsOHD4e3tzdeeeUVuUOvNqXNZSJlHwFDe/jwYbX3adKkSZXb6NKxWKzbfKXr6Yh969BQHaZ1IUaHVzHnqCqv0KdFqb+HtrV35KrRYwxKv37Lu1LvqOMM9MaiunO0UVlGn+xkZGRgzJgxCAgIwPDhw9GpUyf8/fffsHgywd6HH36IcePGYfTo0WjXrh2ysrKwc+dOk0wcnJycsGrVKrnDEM3SpUsxZcoUjWVbt26VKZqyIiIitN72tddeq1bb7dq1w9y5c6vcztHRES+GhsJVi6rFtrVr46UePUSrsmtlZYUB/fuja5cuaNGihShtPt22MRKjmnZ4eLjebQwfNgydO3Uqt++ct5cX2rVti08/+QTt2rXTWPf3339j+PDhGDlyJLZv3465c+fihx9+kKW6r7GwtbXF2rVr8cknn2DYsGFl1u/cuVOGqMTTrVs3dO7UCSOGD5c7FJNlvF+/nhg0aBAGDRpU4XqVSoWZM2di5syZBoxKOkOGDMHrr78udxii8PPzw9y5c/HFF18AeDwVRa9evWSO6n+qU1W5up1gP//8c9SvX1+rbVu1aoWi2rWxecuWSrcLCQnRq6x/eZo3by5qe0+3vf7PPyVrXxfeXl6iXNkR45t2o0aN0KhRo3LXqVQqBAYGInD0aNwqLNRY1717d3Tv3l39e0nidfLkSb1jMmWlR1gWFxdrrOvQoQMmTZqEr7/+2tBhicLR0VH0quM1jdFf2SEiIiLSB5MdIiIiE5aXlyd3CEaPyY6BaVOh9+WXXzZAJNUj9USaYlBipVWle7r/kaE62epTJ6iJgfvGlO5ca8j3oSkXWlSJUFVbbLVq1VJX+3ZyctJYp8vr3qZUv9R79+/rHpcEdX6MsbM8kx0Dmzx5cpXbrFixAmvXrjVANNoTu6+IGGbMmKF+PG3aNMTGxsoXDOkkNDQUgwYORP9+/TBq5Mgy1dClUp3O6aX5NmyI/gbueO3g4IDY2Fhs377doKNMTbnvoEqlQqtWreQOQ4OZmRnee+89DBk8GG3atNFY5+HhgaBqjl4Vqz6cra0tRr/9drX361BOR/8B/ftjaESEqBW0xcJkx8BctBh14+zsrNHZrkuXLhJGpB1j/KbUoEED9eNXXnlFq6HeZFwsLCzQrFkztGjRQuPvKTV7e3ud9gsMDJRlmoxWrVohPDxco1yA1EpGvJoqPz8/uUMow83NDf7+/uX+HQ35+n+at7d3tfcp74uJp6cnmjRpYpRVoY0vIiIiIiIRMdkhIiql8Kmh3lLI1KFIJRHpjskOVcjc3BzPPPMMAKBTp04yRwO0bNlS4/eAgACYmZmhdu3aaNiwoTxBVeDpS+jt27fXel8XFxeYP+nMWFkn0bZP7vu3ad1atyCNUO3atWEnYkfz5oGBWm1X+jzfvXtXtOOXlpWVJUm7JRo2bIjatWvDzMwMAQEBZdY7OjrqXZBSjElXKyNGwUdtVFa77Wnt2raVMBJxtX0Sa9Ny/v5P83/y2d5aQZ8flTH6ooIkH5VKhdOnT+Pu3bvw8fHBkCFDZIkjMjISjo6OeOaZZ/DRRx+pl7dq1QrJycmwtLQ0qnLwCxYsKHP//fDhw/Dz88PNmzer3N/Ozg6TJ0+GIAiVbterVy8899xzZUZ2mDJzc3O8//77OHv2LLaIUG37xRdfRGhoKL5duLDS7UxhtGFVXFxckJiYiPz8/HKns7CwsMDly5exdu1ajBo1SqdjPPfcc7h69apk/eMGDBiAffv2oVu3bpK0X+Lnn3+Gu7s71n/3XYXbdAgORnBwsEm9v7p27YqgoCCtPg9fe+01ZGRkmNTz0weTHaqUtbU1fHx8ZI3B1tYWTZs2LXedmHMUiaW8TugWFhZo0KCBVskOAHUn2JycnAq3UalUipwzx9LSUtShq0o8RxWp6p9c7dq1deqMWprUiWG9evUkbR94PDKqourVJUzx/VWdmM3MzEzu+emDt7GIiIhI0ZjskChMceLVmqigoEDuEKrNkMOtiWo6SxMvOVARJjsmzM/PDwEBAbJ2MJswYQJcXFy0KpaoJL6+vujQoQMaN26MVq1aIVDLjrBS8/HxgbOTE7w8PdWdbktPSJqZmalz2+2fmn3bUNq1a4faMtS2UaqnC9oZG19fX4SEhKB+/fp4/vnny6zv1auX6LfSQoKDYW1lhbDQUDQNCIBdJbfOn9agQQM4ilTgT06h3brB2spKY5JZJWGfHRN28eJF2Ys3ffPNN/jmm29kjcHQ9u/fDwsLC9StWxdXr14FAJ07fIrNyckJ48eP11gmRtn/CePHw8nJCcejo3Vuw/+ZZ3Dp8uXq7+fvjxdffBGffPqpxvIWEs7YrmSurq7473//i5EjR8odSrnMzc1x9OjRCte3b98eCxYsgLe3N5KSkkQ55rPPPovnXnpJp33r1KmDiRMnqn9/+nVqKjp37ozOnTvLHYZkeGWHiIiIFI3JDhERESkakx0yGENN8lie0jVriouLZYtDboae16mkL4NZNedWK317tqJbtZaWljrvK6bSxzDGOeR0paTnYkgls4g76Dj/mtJYWVnJHQIAJjtkAMuXL0dYWBjmzp0rWwx9+vRRP66JyU7P8HA0btTI4Pfke/fujUa+vhgwYEC19mvQoAGaBwbi2Vat4OXlVWZ9k8aNK6y26+/vjwB/f4R06KDzhJ/VERgYiGf8/PB8586KGZX49ttvm/xEoHIZMGAAGvn6anzm1EQv9eiBJo0bo2PHjnKHAoAdlMkA3njjDbzxxhuyxuDv7y/r8eXWvn37ak1ZIZYmTZqoq+2ePn1a6/0sLS0rTZCGDh1a4Tp7e3sMHjxY+yD15OTkhNdff91gxzOE//znP3KHYLKaNm2q9UguJevQoQM6dOiA69evyx0KAF7ZISIiIoVjskNERESKxmTHREg18V5NUbozq8OTTrOlO+uWzMWk6+zpCQkJZdoSg7n5/+40V9QhVyql+2wYQ/8N5ycTFnrK2NG9ukr6GxlbUURbEWeWN1ZVzQFW+hzUMmePDjEYw+dERfgXNhHr16/H6tWr0aNHD+zfvx/t27eXvaCgKbG1tcXatWtx4cIFDBs2DMDj4mq///474uPj1f1DZs2aBW9vb4SGhiI0NFTr9h8+fKh+HB4eLlrclpaWGDhgAO7du4eWLVuK1q42mjVrhszMTDg6OhrFP8fXXnsN586dM/h50EefPn1w6tQpNG3aFFFRUXKHo9arVy9YW1sjNzdX7lAkM3XqVNjb26NTp07lrh88eDCyr17FC1FRsDaSEUOmyr1OHYSEhGg127pcmOyYiFatWqFVq1YAgK5du8ocjWkaOHBgmWUREREav9erVw+zZ8/W6zhij8iRayoKS0vLcsv1y8XT01PyGbfF5urqirCwMLnDKMPGxgZTp07FjBkz5A5FMp6envjss88qXO/g4PC48vHUqQaMSpk6depk9F9CeGmAiIiIFI3JDhERESkakx3SWnMRJ16sVauWuh+Ij4+PxjoxinE5PenMCsDkbn0oVUkFbWPrrEsVK/3eEbPjPenOxdkZAFC/fn1Z4yjdj88UXhvss0Na+/vvv1G3bl1R2qpVqxZOnjyJqKioMh0If/rpJ+Tn52Pz5s06t+/k5IRTp04hOTkZL774or7hkgg6d+4MLy8vJp8mZMiQIXBxcUGDBg0MPtUIlW/kyJG4ffs2mjRpguiYGNnisLOzw9tvvYW8vDz4+vrKFoe2mOyQ1qoaylldzzzzDJ555pkyyx0dHTFw4EC9kh0AePbZZ/Xan8RlYWHByrImxtzcHL169ZI7DCrFwcEBzZo1kzsMABDty68h8DYWERERKRqTHSIiIlI0JjsG5u/vj1q1agEAWrRoIckxQkJCAAB+fn5GXdHS2HXv3h0A1EUIqWays7NTd6quU6eOzNFIp6Sek5ubG9zd3WWOxrg1btwYAOBVA/qfldyqcnZyMun/J+yzY2ABAQFITk5GRkYGGjVqJMkxXnvtNTz33HNwc3NjlWU9bNu2Dbdu3YKvry927NghdzgkEwsLC0yYMAH5+fkmMepEVy+88AKSkpJgZ2fHzshVaNOmDZo0aaLo10OJZs2aYdLEibCxscHly5flDkdnTHZk4ObmBjc3N0mPUa9ePUnbrwnMzc1NYpQBSc/S0tLgc5PJgSPltGfMUyOIrWQ+QVPGr/1ERESkaEx2TEBN+EZJyqBSqeQOoVIl/eWIqGZhsmPE3nnnHbi6umLs2LFyh0JUIQsLC/g/8wzsbG3h7+8vdzjlCm7fHjbW1ujYsaPcoQAAOj4ZRKAk/v7+aNOmDXx9ffHcc8/JHQ6RBqNOdoqKijBt2jT4+vrCxsYGjRs3xqxZsyAIgnobQRAwffp0eHl5wcbGBmFhYbhy5YqMUYtnyZIluHfvHnr37i13KEQVUqlUGDJkCP7v//6vzNQfxiI8PBxTpkwxmqKGJSP9lMTKygoxMTG4fv06GjZsKHc4RBqMOtn54osvsGTJEnz33XeIi4vDF198gXnz5mHRokXqbebNm4eFCxdi6dKliIqKgq2tLXr06IHc3FwZIyciIiJjYdSjsY4ePYq+ffuqy5U3bNgQq1evxvHjxwE8vqqzYMECfPzxx+jbty8AYMWKFfDw8MCmTZswePBg2WInIiKix9IzMlBYWChb0mHUV3Y6duyIvXv3qsf2nz59GocPH0Z4eDgAID4+HsnJyQgLC1Pv4+joiODgYERGRlbYbl5eHjIzMzV+yLiYm5uX+1guxhaP3ErPeKw0Uj03DjQQl9hz9cmtdE00JdVHK/1c8vLyZIvDqD+1P/roI2RmZiIgIAC1atVCUVERZs+ejYiICABAcnIyAMDDw0NjPw8PD/W68syZMweffvqpdIGT3rp3744BAwbA1dXVKDq9PvfccxgyZAjMzc3Rvn17ucORTe+XX8aFCxfQtWtXuUMRXZ/evXH+/Hl06dJFkvbbt2+P9PR01m4Syddff41Zs2Zh+PDhcociiiZNmqBZ06awtbWFi4uL3OGIpl69emgWEADcvy/raE2jTnbWrl2LlStXYtWqVQgMDERsbCwmTJgAb29vjBgxQud2p06dikmTJql/z8zMNNqOlTWVi4sL1q1bJ3cYarVr18aqVavkDkN2bdq0QZs2beQOQxKtW7dG69atJWvf3d0dQ4cOlaz9mub555/H7t275Q5DNLVr18agQYPkDkN05ubm6NmzJ3D/PlC7tnxxyHZkLXzwwQf46KOP1H1vWrRogZs3b2LOnDkYMWKEutpnSkoKvLy81PulpKTg2WefrbBdKysrWFlZSRo7ERERGQejvjGYk5NT5t5lrVq1UFxcDADw9fWFp6cn9u7dq16fmZmJqKgo9WSYREREVLMZdbLTu3dvzJ49G9u2bcONGzewceNGfP3113j11VcBPK7vMWHCBHz22WfYvHkzzp49i+HDh8Pb2xuvvPKKvMETPYV9NYxTTZrjSAylO+g7OzvLGAl5Pumv6uzkJG8gJsCob2MtWrQI06ZNw3vvvYfU1FR4e3vjX//6F6ZPn67e5sMPP0R2djZGjx6N9PR0dOrUCTt37oS1tbWMkROV9dlnn6Fu3boIDQ2VOxQCMGzoUNy4caNGdzjXhZWVFf7880+cOXMGo0ePljucGq1fv344c+YMmjdvLncoRs+okx17e3ssWLAACxYsqHAblUqFmTNnYubMmYYLjEgH9erVw+zZs+UOg55o3LgxGjduLHcYJqlfv37o16+f3GHUeO7u7hqlV6hiRn0bi4iIiEhfTHaIiIhI0ZjsULW4uroCAFq1aiVzJERERNox6j47ZHyio6MRGxurnrKDiIjI2DHZoWrx9fXlEGoiIjIpvI1FREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjskElRqVRyh1AuKysruUMgIqIKMNkhk/LKK6/Aw8MDffv2hY2NjdzhqE2cOBEuLi4YN26c3KEQEUmiXr16cHZygqeHB+rUqSN3ONXCooJkUjp27Ijk5GS5wyiDs0ATkdI5Ojpi/PjxcoehE17ZISIiIkVjskNERESKxmSHyAiYmZmV+5iIiPTHPjtERsDPzw9NAwJgb28PJycnucMhIlIUJjtERsDW1havvfaa3GEQESkSr5cTERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkUz+mSnYcOGUKlUZX7GjBkDAMjNzcWYMWPg6uoKOzs79O/fHykpKTJHTURERMbC6JOd6OhoJCUlqX92794NABg4cCAAYOLEidiyZQvWrVuHgwcPIjExEf369ZMzZCIiIjIi5nIHUJU6depo/D537lw0btwYL7zwAjIyMrB8+XKsWrUK3bp1AwD88ssvaNq0KY4dO4YOHTrIETIREREZEaO/slNafn4+fv/9d7zxxhtQqVQ4ceIECgoKEBYWpt4mICAA9evXR2RkZIXt5OXlITMzU+OHiIiUy8rKSv3YzMyk/vWRCIz+yk5pmzZtQnp6OkaOHAkASE5OhqWlJZycnDS28/DwQHJycoXtzJkzB59++qmEkRIRkTEZNWoUzpw5g+DgYI3Eh2oGk0p2li9fjvDwcHh7e+vVztSpUzFp0iT175mZmfDx8dE3PCIiMlJ+fn7YunWr3GGQTEwm2bl58yb27NmDDRs2qJd5enoiPz8f6enpGld3UlJS4OnpWWFbVlZWzOyJiIhqCJO5cfnLL7/A3d0dvXr1Ui9r06YNLCwssHfvXvWyS5cuISEhASEhIXKESUREREbGJK7sFBcX45dffsGIESNgbv6/kB0dHfHmm29i0qRJcHFxgYODA8aNG4eQkBCOxCIiIiIAJpLs7NmzBwkJCXjjjTfKrPvmm29gZmaG/v37Iy8vDz169MD3338vQ5RERERkjEwi2enevTsEQSh3nbW1NRYvXozFixcbOCoiIiIyBSbTZ4eIiIhIF0x2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSKiGujZZ58FANSvXx92dnbyBkMkMZMoKkhEROLq06cPbt++DWdnZ41peIiUiK9wIqIaqm7dunKHQGQQvI1FREREisZkh4iIiBSNt7GIiMio+fv7o3Xr1njw4AGee+45ucMhE8Rkh4iIjJq1tTVOnDghdxhkwngbi4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaKZyx2AMRAEAQCQmZkparuqhw9hlZ8PAMh7+BCCra2o7ZNpU78+0tMhPHmdEAGAKicHyM/n54bE+B40DClfzyX/t0v+j1cYg1DVFjXA7du34ePjI3cYREREpINbt26hXr16Fa5nsgOguLgYiYmJsLe3h0qlErXtzMxM+Pj44NatW3BwcBC1bfofnmfD4Hk2DJ5nw+B5Ngwpz7MgCHj48CG8vb1hZlZxzxzexgJgZmZWaUYoBgcHB76ZDIDn2TB4ng2D59kweJ4NQ6rz7OjoWOU27KBMREREisZkh4iIiBSNyY7ErKysMGPGDFhZWckdiqLxPBsGz7Nh8DwbBs+zYRjDeWYHZSIiIlI0XtkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHQktXrwYDRs2hLW1NYKDg3H8+HG5QzIpc+bMQbt27WBvbw93d3e88soruHTpksY2ubm5GDNmDFxdXWFnZ4f+/fsjJSVFY5uEhAT06tULtWvXhru7Oz744AMUFhYa8qmYjLlz50KlUmHChAnqZTzH4rlz5w6GDh0KV1dX2NjYoEWLFoiJiVGvFwQB06dPh5eXF2xsbBAWFoYrV65otJGWloaIiAg4ODjAyckJb775JrKysgz9VIxWUVERpk2bBl9fX9jY2KBx48aYNWuWxtxJPM/Vd+jQIfTu3Rve3t5QqVTYtGmTxnqxzumZM2fQuXNnWFtbw8fHB/PmzRPnCQgkiTVr1giWlpbCzz//LJw/f154++23BScnJyElJUXu0ExGjx49hF9++UU4d+6cEBsbK/Ts2VOoX7++kJWVpd7mnXfeEXx8fIS9e/cKMTExQocOHYSOHTuq1xcWFgrNmzcXwsLChFOnTgnbt28X3NzchKlTp8rxlIza8ePHhYYNGwotW7YUxo8fr17OcyyOtLQ0oUGDBsLIkSOFqKgo4fr168Lff/8tXL16Vb3N3LlzBUdHR2HTpk3C6dOnhT59+gi+vr7Co0eP1Nu89NJLQqtWrYRjx44J//zzj9CkSRNhyJAhcjwlozR79mzB1dVV2Lp1qxAfHy+sW7dOsLOzE7799lv1NjzP1bd9+3bhP//5j7BhwwYBgLBx40aN9WKc04yMDMHDw0OIiIgQzp07J6xevVqwsbERfvjhB73jZ7Ijkfbt2wtjxoxR/15UVCR4e3sLc+bMkTEq05aamioAEA4ePCgIgiCkp6cLFhYWwrp169TbxMXFCQCEyMhIQRAev0HNzMyE5ORk9TZLliwRHBwchLy8PMM+ASP28OFDwc/PT9i9e7fwwgsvqJMdnmPxTJkyRejUqVOF64uLiwVPT09h/vz56mXp6emClZWVsHr1akEQBOHChQsCACE6Olq9zY4dOwSVSiXcuXNHuuBNSK9evYQ33nhDY1m/fv2EiIgIQRB4nsXwdLIj1jn9/vvvBWdnZ43PjSlTpgj+/v56x8zbWBLIz8/HiRMnEBYWpl5mZmaGsLAwREZGyhiZacvIyAAAuLi4AABOnDiBgoICjfMcEBCA+vXrq89zZGQkWrRoAQ8PD/U2PXr0QGZmJs6fP2/A6I3bmDFj0KtXL41zCfAci2nz5s1o27YtBg4cCHd3dwQFBeHHH39Ur4+Pj0dycrLGuXZ0dERwcLDGuXZyckLbtm3V24SFhcHMzAxRUVGGezJGrGPHjti7dy8uX74MADh9+jQOHz6M8PBwADzPUhDrnEZGRuL555+HpaWlepsePXrg0qVLePDggV4xciJQCdy7dw9FRUUaH/4A4OHhgYsXL8oUlWkrLi7GhAkT8Nxzz6F58+YAgOTkZFhaWsLJyUljWw8PDyQnJ6u3Ke/vULKOgDVr1uDkyZOIjo4us47nWDzXr1/HkiVLMGnSJPz73/9GdHQ03n//fVhaWmLEiBHqc1XeuSx9rt3d3TXWm5ubw8XFhef6iY8++giZmZkICAhArVq1UFRUhNmzZyMiIgIAeJ4lINY5TU5Ohq+vb5k2StY5OzvrHCOTHTIJY8aMwblz53D48GG5Q1GUW7duYfz48di9ezesra3lDkfRiouL0bZtW3z++ecAgKCgIJw7dw5Lly7FiBEjZI5OOdauXYuVK1di1apVCAwMRGxsLCZMmABvb2+e5xqMt7Ek4Obmhlq1apUZsZKSkgJPT0+ZojJdY8eOxdatW7F//37Uq1dPvdzT0xP5+flIT0/X2L70efb09Cz371CyrqY7ceIEUlNT0bp1a5ibm8Pc3BwHDx7EwoULYW5uDg8PD55jkXh5eaFZs2Yay5o2bYqEhAQA/ztXlX1ueHp6IjU1VWN9YWEh0tLSeK6f+OCDD/DRRx9h8ODBaNGiBYYNG4aJEydizpw5AHiepSDWOZXys4TJjgQsLS3Rpk0b7N27V72suLgYe/fuRUhIiIyRmRZBEDB27Fhs3LgR+/btK3N5s02bNrCwsNA4z5cuXUJCQoL6PIeEhODs2bMab7Ldu3fDwcGhzD+emig0NBRnz55FbGys+qdt27aIiIhQP+Y5Fsdzzz1XpnTC5cuX0aBBAwCAr68vPD09Nc51ZmYmoqKiNM51eno6Tpw4od5m3759KC4uRnBwsAGehfHLycmBmZnmv7ZatWqhuLgYAM+zFMQ6pyEhITh06BAKCgrU2+zevRv+/v563cICwKHnUlmzZo1gZWUl/Pe//xUuXLggjB49WnByctIYsUKVe/fddwVHR0fhwIEDQlJSkvonJydHvc0777wj1K9fX9i3b58QExMjhISECCEhIer1JcOiu3fvLsTGxgo7d+4U6tSpw2HRlSg9GksQeI7Fcvz4ccHc3FyYPXu2cOXKFWHlypVC7dq1hd9//129zdy5cwUnJyfhr7/+Es6cOSP07du33OG7QUFBQlRUlHD48GHBz8+vRg+JftqIESOEunXrqoeeb9iwQXBzcxM+/PBD9TY8z9X38OFD4dSpU8KpU6cEAMLXX38tnDp1Srh586YgCOKc0/T0dMHDw0MYNmyYcO7cOWHNmjVC7dq1OfTc2C1atEioX7++YGlpKbRv3144duyY3CGZFADl/vzyyy/qbR49eiS89957grOzs1C7dm3h1VdfFZKSkjTauXHjhhAeHi7Y2NgIbm5uwuTJk4WCggIDPxvT8XSyw3Msni1btgjNmzcXrKyshICAAGHZsmUa64uLi4Vp06YJHh4egpWVlRAaGipcunRJY5v79+8LQ4YMEezs7AQHBwdh1KhRwsOHDw35NIxaZmamMH78eKF+/fqCtbW10KhRI+E///mPxnBmnufq279/f7mfxyNGjBAEQbxzevr0aaFTp06ClZWVULduXWHu3LmixK8ShFJlJYmIiIgUhn12iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iMgojRw5Eq+88opsxx82bJh6hvKqDB48GF999ZXEERGRrlhBmYgMTqVSVbp+xowZmDhxIgRBgJOTk2GCKuX06dPo1q0bbt68CTs7uyq3P3fuHJ5//nnEx8fD0dHRABESUXUw2SEig0tOTlY//uOPPzB9+nSNGcHt7Oy0SjKk8tZbb8Hc3BxLly7Vep927dph5MiRGDNmjISREZEueBuLiAzO09NT/ePo6AiVSqWxzM7OrsxtrC5dumDcuHGYMGECnJ2d4eHhgR9//BHZ2dkYNWoU7O3t0aRJE+zYsUPjWOfOnUN4eDjs7Ozg4eGBYcOG4d69exXGVlRUhPXr16N3794ay7///nv4+fnB2toaHh4eGDBggMb63r17Y82aNfqfHCISHZMdIjIZv/76K9zc3HD8+HGMGzcO7777LgYOHIiOHTvi5MmT6N69O4YNG4acnBwAQHp6Orp164agoCDExMRg586dSElJwaBBgyo8xpkzZ5CRkYG2bduql8XExOD999/HzJkzcenSJezcuRPPP/+8xn7t27fH8ePHkZeXJ82TJyKdMdkhIpPRqlUrfPzxx/Dz88PUqVNhbW0NNzc3vP322/Dz88P06dNx//59nDlzBgDw3XffISgoCJ9//jkCAgIQFBSEn3/+Gfv378fly5fLPcbNmzdRq1YtuLu7q5clJCTA1tYWL7/8Mho0aICgoCC8//77Gvt5e3sjPz9f4xYdERkHJjtEZDJatmypflyrVi24urqiRYsW6mUeHh4AgNTUVACPOxrv379f3QfIzs4OAQEBAIBr166Ve4xHjx7ByspKoxP1iy++iAYNGqBRo0YYNmwYVq5cqb56VMLGxgYAyiwnIvkx2SEik2FhYaHxu0ql0lhWkqAUFxcDALKystC7d2/ExsZq/Fy5cqXMbagSbm5uyMnJQX5+vnqZvb09Tp48idWrV8PLywvTp09Hq1atkJ6ert4mLS0NAFCnTh1RnisRiYfJDhEpVuvWrXH+/Hk0bNgQTZo00fixtbUtd59nn30WAHDhwgWN5ebm5ggLC8O8efNw5swZ3LhxA/v27VOvP3fuHOrVqwc3NzfJng8R6YbJDhEp1pgxY5CWloYhQ4YgOjoa165dw99//41Ro0ahqKio3H3q1KmD1q1b4/Dhw+plW7duxcKFCxEbG4ubN29ixYoVKC4uhr+/v3qbf/75B927d5f8ORFR9THZISLF8vb2xpEjR1BUVITu3bujRYsWmDBhApycnGBmVvHH31tvvYWVK1eqf3dycsKGDRvQrVs3NG3aFEuXLsXq1asRGBgIAMjNzcWmTZvw9ttvS/6ciKj6WFSQiOgpjx49gr+/P/744w+EhIRUuf2SJUuwceNG7Nq1ywDREVF18coOEdFTbGxssGLFikqLD5ZmYWGBRYsWSRwVEemKV3aIiIhI0Xhlh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBTt/wEYZNWQ60zzhwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.plot(\"blabla\", marker = 'k', save=True, filename=\"lightcurve.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MJDREF and Shifting Times\n", + "\n", + "The `mjdref` keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don't become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time. \n", + "\n", + "`mjdref` is generally passed into the `Lightcurve` object at instantiation, but it can be changed later:" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91254\n" + ] + } + ], + "source": [ + "mjdref = 91254\n", + "time = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "ts = StingrayTimeseries(time, array_attrs={\"counts\": counts}, dt=1, skip_checks=True, mjdref=mjdref)\n", + "print(ts.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91253.99976851852\n" + ] + } + ], + "source": [ + "mjdref_new = mjdref - 20 / 86400 # Subtract 20 seconds from MJDREF\n", + "ts_new = ts.change_mjdref(mjdref_new)\n", + "print(ts_new.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 19.99999965, 20.99999965, 21.99999965, 22.99999965,\n", + " 23.99999965, 24.99999965, 25.99999965, 26.99999965,\n", + " 27.99999965, 28.99999965, 29.99999965, 30.99999965,\n", + " 31.99999965, 32.99999965, 33.99999965, 34.99999965,\n", + " 35.99999965, 36.99999965, 37.99999965, 38.99999965,\n", + " 39.99999965, 40.99999965, 41.99999965, 42.99999965,\n", + " 43.99999965, 44.99999965, 45.99999965, 46.99999965,\n", + " 47.99999965, 48.99999965, 49.99999965, 50.99999965,\n", + " 51.99999965, 52.99999965, 53.99999965, 54.99999965,\n", + " 55.99999965, 56.99999965, 57.99999965, 58.99999965,\n", + " 59.99999965, 60.99999965, 61.99999965, 62.99999965,\n", + " 63.99999965, 64.99999965, 65.99999965, 66.99999965,\n", + " 67.99999965, 68.99999965, 69.99999965, 70.99999965,\n", + " 71.99999965, 72.99999965, 73.99999965, 74.99999965,\n", + " 75.99999965, 76.99999965, 77.99999965, 78.99999965,\n", + " 79.99999965, 80.99999965, 81.99999965, 82.99999965,\n", + " 83.99999965, 84.99999965, 85.99999965, 86.99999965,\n", + " 87.99999965, 88.99999965, 89.99999965, 90.99999965,\n", + " 91.99999965, 92.99999965, 93.99999965, 94.99999965,\n", + " 95.99999965, 96.99999965, 97.99999965, 98.99999965,\n", + " 99.99999965, 100.99999965, 101.99999965, 102.99999965,\n", + " 103.99999965, 104.99999965, 105.99999965, 106.99999965,\n", + " 107.99999965, 108.99999965, 109.99999965, 110.99999965,\n", + " 111.99999965, 112.99999965, 113.99999965, 114.99999965,\n", + " 115.99999965, 116.99999965, 117.99999965, 118.99999965,\n", + " 119.99999965, 120.99999965, 121.99999965, 122.99999965,\n", + " 123.99999965, 124.99999965, 125.99999965, 126.99999965,\n", + " 127.99999965, 128.99999965, 129.99999965, 130.99999965,\n", + " 131.99999965, 132.99999965, 133.99999965, 134.99999965,\n", + " 135.99999965, 136.99999965, 137.99999965, 138.99999965,\n", + " 139.99999965, 140.99999965, 141.99999965, 142.99999965,\n", + " 143.99999965, 144.99999965, 145.99999965, 146.99999965,\n", + " 147.99999965, 148.99999965, 149.99999965, 150.99999965,\n", + " 151.99999965, 152.99999965, 153.99999965, 154.99999965,\n", + " 155.99999965, 156.99999965, 157.99999965, 158.99999965,\n", + " 159.99999965, 160.99999965, 161.99999965, 162.99999965,\n", + " 163.99999965, 164.99999965, 165.99999965, 166.99999965,\n", + " 167.99999965, 168.99999965, 169.99999965, 170.99999965,\n", + " 171.99999965, 172.99999965, 173.99999965, 174.99999965,\n", + " 175.99999965, 176.99999965, 177.99999965, 178.99999965,\n", + " 179.99999965, 180.99999965, 181.99999965, 182.99999965,\n", + " 183.99999965, 184.99999965, 185.99999965, 186.99999965,\n", + " 187.99999965, 188.99999965, 189.99999965, 190.99999965,\n", + " 191.99999965, 192.99999965, 193.99999965, 194.99999965,\n", + " 195.99999965, 196.99999965, 197.99999965, 198.99999965,\n", + " 199.99999965, 200.99999965, 201.99999965, 202.99999965,\n", + " 203.99999965, 204.99999965, 205.99999965, 206.99999965,\n", + " 207.99999965, 208.99999965, 209.99999965, 210.99999965,\n", + " 211.99999965, 212.99999965, 213.99999965, 214.99999965,\n", + " 215.99999965, 216.99999965, 217.99999965, 218.99999965,\n", + " 219.99999965, 220.99999965, 221.99999965, 222.99999965,\n", + " 223.99999965, 224.99999965, 225.99999965, 226.99999965,\n", + " 227.99999965, 228.99999965, 229.99999965, 230.99999965,\n", + " 231.99999965, 232.99999965, 233.99999965, 234.99999965,\n", + " 235.99999965, 236.99999965, 237.99999965, 238.99999965,\n", + " 239.99999965, 240.99999965, 241.99999965, 242.99999965,\n", + " 243.99999965, 244.99999965, 245.99999965, 246.99999965,\n", + " 247.99999965, 248.99999965, 249.99999965, 250.99999965,\n", + " 251.99999965, 252.99999965, 253.99999965, 254.99999965,\n", + " 255.99999965, 256.99999965, 257.99999965, 258.99999965,\n", + " 259.99999965, 260.99999965, 261.99999965, 262.99999965,\n", + " 263.99999965, 264.99999965, 265.99999965, 266.99999965,\n", + " 267.99999965, 268.99999965, 269.99999965, 270.99999965,\n", + " 271.99999965, 272.99999965, 273.99999965, 274.99999965,\n", + " 275.99999965, 276.99999965, 277.99999965, 278.99999965,\n", + " 279.99999965, 280.99999965, 281.99999965, 282.99999965,\n", + " 283.99999965, 284.99999965, 285.99999965, 286.99999965,\n", + " 287.99999965, 288.99999965, 289.99999965, 290.99999965,\n", + " 291.99999965, 292.99999965, 293.99999965, 294.99999965,\n", + " 295.99999965, 296.99999965, 297.99999965, 298.99999965,\n", + " 299.99999965, 300.99999965, 301.99999965, 302.99999965,\n", + " 303.99999965, 304.99999965, 305.99999965, 306.99999965,\n", + " 307.99999965, 308.99999965, 309.99999965, 310.99999965,\n", + " 311.99999965, 312.99999965, 313.99999965, 314.99999965,\n", + " 315.99999965, 316.99999965, 317.99999965, 318.99999965,\n", + " 319.99999965, 320.99999965, 321.99999965, 322.99999965,\n", + " 323.99999965, 324.99999965, 325.99999965, 326.99999965,\n", + " 327.99999965, 328.99999965, 329.99999965, 330.99999965,\n", + " 331.99999965, 332.99999965, 333.99999965, 334.99999965,\n", + " 335.99999965, 336.99999965, 337.99999965, 338.99999965,\n", + " 339.99999965, 340.99999965, 341.99999965, 342.99999965,\n", + " 343.99999965, 344.99999965, 345.99999965, 346.99999965,\n", + " 347.99999965, 348.99999965, 349.99999965, 350.99999965,\n", + " 351.99999965, 352.99999965, 353.99999965, 354.99999965,\n", + " 355.99999965, 356.99999965, 357.99999965, 358.99999965,\n", + " 359.99999965, 360.99999965, 361.99999965, 362.99999965,\n", + " 363.99999965, 364.99999965, 365.99999965, 366.99999965,\n", + " 367.99999965, 368.99999965, 369.99999965, 370.99999965,\n", + " 371.99999965, 372.99999965, 373.99999965, 374.99999965,\n", + " 375.99999965, 376.99999965, 377.99999965, 378.99999965,\n", + " 379.99999965, 380.99999965, 381.99999965, 382.99999965,\n", + " 383.99999965, 384.99999965, 385.99999965, 386.99999965,\n", + " 387.99999965, 388.99999965, 389.99999965, 390.99999965,\n", + " 391.99999965, 392.99999965, 393.99999965, 394.99999965,\n", + " 395.99999965, 396.99999965, 397.99999965, 398.99999965,\n", + " 399.99999965, 400.99999965, 401.99999965, 402.99999965,\n", + " 403.99999965, 404.99999965, 405.99999965, 406.99999965,\n", + " 407.99999965, 408.99999965, 409.99999965, 410.99999965,\n", + " 411.99999965, 412.99999965, 413.99999965, 414.99999965,\n", + " 415.99999965, 416.99999965, 417.99999965, 418.99999965,\n", + " 419.99999965, 420.99999965, 421.99999965, 422.99999965,\n", + " 423.99999965, 424.99999965, 425.99999965, 426.99999965,\n", + " 427.99999965, 428.99999965, 429.99999965, 430.99999965,\n", + " 431.99999965, 432.99999965, 433.99999965, 434.99999965,\n", + " 435.99999965, 436.99999965, 437.99999965, 438.99999965,\n", + " 439.99999965, 440.99999965, 441.99999965, 442.99999965,\n", + " 443.99999965, 444.99999965, 445.99999965, 446.99999965,\n", + " 447.99999965, 448.99999965, 449.99999965, 450.99999965,\n", + " 451.99999965, 452.99999965, 453.99999965, 454.99999965,\n", + " 455.99999965, 456.99999965, 457.99999965, 458.99999965,\n", + " 459.99999965, 460.99999965, 461.99999965, 462.99999965,\n", + " 463.99999965, 464.99999965, 465.99999965, 466.99999965,\n", + " 467.99999965, 468.99999965, 469.99999965, 470.99999965,\n", + " 471.99999965, 472.99999965, 473.99999965, 474.99999965,\n", + " 475.99999965, 476.99999965, 477.99999965, 478.99999965,\n", + " 479.99999965, 480.99999965, 481.99999965, 482.99999965,\n", + " 483.99999965, 484.99999965, 485.99999965, 486.99999965,\n", + " 487.99999965, 488.99999965, 489.99999965, 490.99999965,\n", + " 491.99999965, 492.99999965, 493.99999965, 494.99999965,\n", + " 495.99999965, 496.99999965, 497.99999965, 498.99999965,\n", + " 499.99999965, 500.99999965, 501.99999965, 502.99999965,\n", + " 503.99999965, 504.99999965, 505.99999965, 506.99999965,\n", + " 507.99999965, 508.99999965, 509.99999965, 510.99999965,\n", + " 511.99999965, 512.99999965, 513.99999965, 514.99999965,\n", + " 515.99999965, 516.99999965, 517.99999965, 518.99999965,\n", + " 519.99999965, 520.99999965, 521.99999965, 522.99999965,\n", + " 523.99999965, 524.99999965, 525.99999965, 526.99999965,\n", + " 527.99999965, 528.99999965, 529.99999965, 530.99999965,\n", + " 531.99999965, 532.99999965, 533.99999965, 534.99999965,\n", + " 535.99999965, 536.99999965, 537.99999965, 538.99999965,\n", + " 539.99999965, 540.99999965, 541.99999965, 542.99999965,\n", + " 543.99999965, 544.99999965, 545.99999965, 546.99999965,\n", + " 547.99999965, 548.99999965, 549.99999965, 550.99999965,\n", + " 551.99999965, 552.99999965, 553.99999965, 554.99999965,\n", + " 555.99999965, 556.99999965, 557.99999965, 558.99999965,\n", + " 559.99999965, 560.99999965, 561.99999965, 562.99999965,\n", + " 563.99999965, 564.99999965, 565.99999965, 566.99999965,\n", + " 567.99999965, 568.99999965, 569.99999965, 570.99999965,\n", + " 571.99999965, 572.99999965, 573.99999965, 574.99999965,\n", + " 575.99999965, 576.99999965, 577.99999965, 578.99999965,\n", + " 579.99999965, 580.99999965, 581.99999965, 582.99999965,\n", + " 583.99999965, 584.99999965, 585.99999965, 586.99999965,\n", + " 587.99999965, 588.99999965, 589.99999965, 590.99999965,\n", + " 591.99999965, 592.99999965, 593.99999965, 594.99999965,\n", + " 595.99999965, 596.99999965, 597.99999965, 598.99999965,\n", + " 599.99999965, 600.99999965, 601.99999965, 602.99999965,\n", + " 603.99999965, 604.99999965, 605.99999965, 606.99999965,\n", + " 607.99999965, 608.99999965, 609.99999965, 610.99999965,\n", + " 611.99999965, 612.99999965, 613.99999965, 614.99999965,\n", + " 615.99999965, 616.99999965, 617.99999965, 618.99999965,\n", + " 619.99999965, 620.99999965, 621.99999965, 622.99999965,\n", + " 623.99999965, 624.99999965, 625.99999965, 626.99999965,\n", + " 627.99999965, 628.99999965, 629.99999965, 630.99999965,\n", + " 631.99999965, 632.99999965, 633.99999965, 634.99999965,\n", + " 635.99999965, 636.99999965, 637.99999965, 638.99999965,\n", + " 639.99999965, 640.99999965, 641.99999965, 642.99999965,\n", + " 643.99999965, 644.99999965, 645.99999965, 646.99999965,\n", + " 647.99999965, 648.99999965, 649.99999965, 650.99999965,\n", + " 651.99999965, 652.99999965, 653.99999965, 654.99999965,\n", + " 655.99999965, 656.99999965, 657.99999965, 658.99999965,\n", + " 659.99999965, 660.99999965, 661.99999965, 662.99999965,\n", + " 663.99999965, 664.99999965, 665.99999965, 666.99999965,\n", + " 667.99999965, 668.99999965, 669.99999965, 670.99999965,\n", + " 671.99999965, 672.99999965, 673.99999965, 674.99999965,\n", + " 675.99999965, 676.99999965, 677.99999965, 678.99999965,\n", + " 679.99999965, 680.99999965, 681.99999965, 682.99999965,\n", + " 683.99999965, 684.99999965, 685.99999965, 686.99999965,\n", + " 687.99999965, 688.99999965, 689.99999965, 690.99999965,\n", + " 691.99999965, 692.99999965, 693.99999965, 694.99999965,\n", + " 695.99999965, 696.99999965, 697.99999965, 698.99999965,\n", + " 699.99999965, 700.99999965, 701.99999965, 702.99999965,\n", + " 703.99999965, 704.99999965, 705.99999965, 706.99999965,\n", + " 707.99999965, 708.99999965, 709.99999965, 710.99999965,\n", + " 711.99999965, 712.99999965, 713.99999965, 714.99999965,\n", + " 715.99999965, 716.99999965, 717.99999965, 718.99999965,\n", + " 719.99999965, 720.99999965, 721.99999965, 722.99999965,\n", + " 723.99999965, 724.99999965, 725.99999965, 726.99999965,\n", + " 727.99999965, 728.99999965, 729.99999965, 730.99999965,\n", + " 731.99999965, 732.99999965, 733.99999965, 734.99999965,\n", + " 735.99999965, 736.99999965, 737.99999965, 738.99999965,\n", + " 739.99999965, 740.99999965, 741.99999965, 742.99999965,\n", + " 743.99999965, 744.99999965, 745.99999965, 746.99999965,\n", + " 747.99999965, 748.99999965, 749.99999965, 750.99999965,\n", + " 751.99999965, 752.99999965, 753.99999965, 754.99999965,\n", + " 755.99999965, 756.99999965, 757.99999965, 758.99999965,\n", + " 759.99999965, 760.99999965, 761.99999965, 762.99999965,\n", + " 763.99999965, 764.99999965, 765.99999965, 766.99999965,\n", + " 767.99999965, 768.99999965, 769.99999965, 770.99999965,\n", + " 771.99999965, 772.99999965, 773.99999965, 774.99999965,\n", + " 775.99999965, 776.99999965, 777.99999965, 778.99999965,\n", + " 779.99999965, 780.99999965, 781.99999965, 782.99999965,\n", + " 783.99999965, 784.99999965, 785.99999965, 786.99999965,\n", + " 787.99999965, 788.99999965, 789.99999965, 790.99999965,\n", + " 791.99999965, 792.99999965, 793.99999965, 794.99999965,\n", + " 795.99999965, 796.99999965, 797.99999965, 798.99999965,\n", + " 799.99999965, 800.99999965, 801.99999965, 802.99999965,\n", + " 803.99999965, 804.99999965, 805.99999965, 806.99999965,\n", + " 807.99999965, 808.99999965, 809.99999965, 810.99999965,\n", + " 811.99999965, 812.99999965, 813.99999965, 814.99999965,\n", + " 815.99999965, 816.99999965, 817.99999965, 818.99999965,\n", + " 819.99999965, 820.99999965, 821.99999965, 822.99999965,\n", + " 823.99999965, 824.99999965, 825.99999965, 826.99999965,\n", + " 827.99999965, 828.99999965, 829.99999965, 830.99999965,\n", + " 831.99999965, 832.99999965, 833.99999965, 834.99999965,\n", + " 835.99999965, 836.99999965, 837.99999965, 838.99999965,\n", + " 839.99999965, 840.99999965, 841.99999965, 842.99999965,\n", + " 843.99999965, 844.99999965, 845.99999965, 846.99999965,\n", + " 847.99999965, 848.99999965, 849.99999965, 850.99999965,\n", + " 851.99999965, 852.99999965, 853.99999965, 854.99999965,\n", + " 855.99999965, 856.99999965, 857.99999965, 858.99999965,\n", + " 859.99999965, 860.99999965, 861.99999965, 862.99999965,\n", + " 863.99999965, 864.99999965, 865.99999965, 866.99999965,\n", + " 867.99999965, 868.99999965, 869.99999965, 870.99999965,\n", + " 871.99999965, 872.99999965, 873.99999965, 874.99999965,\n", + " 875.99999965, 876.99999965, 877.99999965, 878.99999965,\n", + " 879.99999965, 880.99999965, 881.99999965, 882.99999965,\n", + " 883.99999965, 884.99999965, 885.99999965, 886.99999965,\n", + " 887.99999965, 888.99999965, 889.99999965, 890.99999965,\n", + " 891.99999965, 892.99999965, 893.99999965, 894.99999965,\n", + " 895.99999965, 896.99999965, 897.99999965, 898.99999965,\n", + " 899.99999965, 900.99999965, 901.99999965, 902.99999965,\n", + " 903.99999965, 904.99999965, 905.99999965, 906.99999965,\n", + " 907.99999965, 908.99999965, 909.99999965, 910.99999965,\n", + " 911.99999965, 912.99999965, 913.99999965, 914.99999965,\n", + " 915.99999965, 916.99999965, 917.99999965, 918.99999965,\n", + " 919.99999965, 920.99999965, 921.99999965, 922.99999965,\n", + " 923.99999965, 924.99999965, 925.99999965, 926.99999965,\n", + " 927.99999965, 928.99999965, 929.99999965, 930.99999965,\n", + " 931.99999965, 932.99999965, 933.99999965, 934.99999965,\n", + " 935.99999965, 936.99999965, 937.99999965, 938.99999965,\n", + " 939.99999965, 940.99999965, 941.99999965, 942.99999965,\n", + " 943.99999965, 944.99999965, 945.99999965, 946.99999965,\n", + " 947.99999965, 948.99999965, 949.99999965, 950.99999965,\n", + " 951.99999965, 952.99999965, 953.99999965, 954.99999965,\n", + " 955.99999965, 956.99999965, 957.99999965, 958.99999965,\n", + " 959.99999965, 960.99999965, 961.99999965, 962.99999965,\n", + " 963.99999965, 964.99999965, 965.99999965, 966.99999965,\n", + " 967.99999965, 968.99999965, 969.99999965, 970.99999965,\n", + " 971.99999965, 972.99999965, 973.99999965, 974.99999965,\n", + " 975.99999965, 976.99999965, 977.99999965, 978.99999965,\n", + " 979.99999965, 980.99999965, 981.99999965, 982.99999965,\n", + " 983.99999965, 984.99999965, 985.99999965, 986.99999965,\n", + " 987.99999965, 988.99999965, 989.99999965, 990.99999965,\n", + " 991.99999965, 992.99999965, 993.99999965, 994.99999965,\n", + " 995.99999965, 996.99999965, 997.99999965, 998.99999965,\n", + " 999.99999965, 1000.99999965, 1001.99999965, 1002.99999965,\n", + " 1003.99999965, 1004.99999965, 1005.99999965, 1006.99999965,\n", + " 1007.99999965, 1008.99999965, 1009.99999965, 1010.99999965,\n", + " 1011.99999965, 1012.99999965, 1013.99999965, 1014.99999965,\n", + " 1015.99999965, 1016.99999965, 1017.99999965, 1018.99999965])" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.time" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 19.49999965, 1019.49999965]])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This changes the reference time and all the times referred to it. It's very useful when manipulating time series from different missions. Alternatively, one can shift the times (by a value in seconds) without modifying the MJDREF" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0,500), (600, 1000)]\n", + "ts.gti = gti" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first three time bins: [0 1 2]\n", + "GTIs: [[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(\"first three time bins: \" + str(ts.time[:3]))\n", + "print(\"GTIs: \" + str(ts.gti))" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "time_shift = 10.0\n", + "ts_shifted = ts.shift(time_shift)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shifted first three time bins: [10. 11. 12.]\n", + "Shifted GTIs: [[ 10. 510.]\n", + " [ 610. 1010.]]\n" + ] + } + ], + "source": [ + "print(\"Shifted first three time bins: \" + str(ts_shifted.time[:3]))\n", + "print(\"Shifted GTIs: \" + str(ts_shifted.gti))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Splitting by GTI\n", + "\n", + "A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "ts = StingrayTimeseries(time, array_attrs={\"blabla\": counts}, dt=1, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "ts_split = ts.split_by_gti()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [102 97 95 105 100 96 107 119 94 119 101 91 104 89 119 106 111 89\n", + " 100 110]\n", + "[1 2 3 4 5 6 7] [ 97 95 105 100 96 107 119]\n", + "[13 14 15 16 17 18 19] [ 89 119 106 111 89 100 110]\n" + ] + } + ], + "source": [ + "print(ts.time, ts.blabla)\n", + "for ts_tmp in ts_split:\n", + " print(ts_tmp.time, ts_tmp.blabla)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because I'd passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.\n", + "\n", + "You can also apply the GTIs *directly* to the original light curve, which will filter `time`, `counts`, `countrate`, `counts_err` and `countrate_err` to only fall within the bounds of the GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "ts = StingrayTimeseries(time, array_attrs={\"blabla\": counts}, dt=1, gti=gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Caution**: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array before applying GTIs:\n", + "ts.time" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.apply_gtis()" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19])" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array after applying GTIs\n", + "ts.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading/Writing Stingray Timeseries to/from files\n", + "\n", + "The `StingrayTimeseries` class has roundtrip reading/writing capabilities via the `read` and `write` methods. Most of the I/O is managed by the `astropy.io` infrastructure. We regularly test the roundtrip to Enhanced CSV (`.ecsv`) and Hierarchical Data Format v.5 (`.hdf5`) formats. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Converting StingrayTimeseries to pandas, xarray and Astropy Table/Timeseries\n", + "\n", + "`StingrayTimeseries` can be converted back and forth to `xarray`, `pandas`, `astropy.table.Table` and `astropy.timeseries.TimeSeries` objects through the relevant `to_FORMAT` and `from_FORMAT`, e.g. Refer to the methods' documentation for more information on how data are stored in each case.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_pandas())" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "xarray.core.dataset.Dataset" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_xarray())" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.table.Table" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_astropy_table())" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.timeseries.sampled.TimeSeries" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_astropy_timeseries())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/_sources/notebooks/StingrayTimeseries/Working with weights and polarization.ipynb.txt b/_sources/notebooks/StingrayTimeseries/Working with weights and polarization.ipynb.txt new file mode 100644 index 000000000..10ea4a97f --- /dev/null +++ b/_sources/notebooks/StingrayTimeseries/Working with weights and polarization.ipynb.txt @@ -0,0 +1,675 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "0a564915", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import numpy as np\n", + "from stingray import StingrayTimeseries, EventList, Lightcurve, Powerspectrum\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "id": "350ab06d", + "metadata": {}, + "source": [ + "## Why using weights?\n", + "\n", + "In some missions like Fermi, events are assigned a weight. The weight measures the probability that a given event is associated with the source, based on position and data quality.\n", + "\n", + "In this tutorial, we go beyond the concept of count light curves and show how to use weighted event lists. We will use `StingrayTimeseries` objects, that allow for more flexibility than `Lightcurve`s.\n", + "\n", + "Note that that weight can have any name. Here, we will call it `poids`, using the French term for `weight`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fbf90998", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# The FOV is assumed to be a detector with 1000 x 1000 pixels\n", + "center = 50\n", + "# The source is right at the center, with a Gaussian spread of 10 pixels\n", + "pixel_spread = 3\n", + "min_pixel = 1\n", + "max_pixel = 100\n", + "\n", + "# Create an event list with a pulsation\n", + "freq = 1.2\n", + "ampl = 1.\n", + "\n", + "# Input Light curve characteristics\n", + "t0 = 0\n", + "t1 = 1000\n", + "# Dt should be smaller and not an integer divisor of the period\n", + "dt = 1 / np.sqrt(971*3) / freq\n", + "times = np.arange(t0 + dt/2, t1 - dt/2, dt)\n", + "\n", + "# The actual number will be a random number, Poisson-distributed\n", + "raw_n_pulsed_counts = 2000\n", + "n_background_counts = np.random.poisson(200000)\n", + "\n", + "# Normalize so that the sum gives the number of expected counts\n", + "continuous_pulsed_counts = (1 + ampl * np.sin(2 * np.pi * freq * times))\n", + "continuous_pulsed_counts /= np.sum(continuous_pulsed_counts)\n", + "continuous_pulsed_counts *= raw_n_pulsed_counts\n", + "\n", + "# This light curve only serves the purpose of the simulation\n", + "continuous_pulsed_lc = Lightcurve(times, continuous_pulsed_counts, dt=dt, skip_checks=True)\n", + "\n", + "pulsed_ev = EventList(gti=np.asarray([[t0, t1]]))\n", + "pulsed_ev.simulate_times(continuous_pulsed_lc)\n", + "n_pulsed_counts = pulsed_ev.time.size\n", + "\n", + "unpulsed_ev = EventList(np.sort(np.random.uniform(t0, t1, n_background_counts)), gti=pulsed_ev.gti)\n", + "\n", + "# Now, give each event a position. \n", + "pulsed_ev.x = np.random.normal(center, pixel_spread, n_pulsed_counts)\n", + "pulsed_ev.y = np.random.normal(center, pixel_spread, n_pulsed_counts)\n", + "\n", + "unpulsed_ev.x = np.random.uniform(min_pixel, max_pixel, n_background_counts)\n", + "unpulsed_ev.y = np.random.uniform(min_pixel, max_pixel, n_background_counts)\n", + "\n", + "ev = pulsed_ev.join(unpulsed_ev)\n", + "\n", + "# The weight is a probability that an event is from the source, given the \n", + "# distance from the center of the FOV.\n", + "weight = 1 / (2 * np.pi * pixel_spread**2)*np.exp(-0.5 / pixel_spread**2 * ((ev.x - center)**2 + (ev.y - center)**2))\n", + "# weight[weight < 1e-10] = 0\n", + "ev.poids = weight\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "24499117", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcF0lEQVR4nO2deXhV5bX/VwKZgQRCSRjCDEFGGRQZqlZQRORCUVGverF6pY6Fen91aLXa1qrYap21WrXUqYh1uIg4gWIZlUEmMcicAElkOAlkhpzfH30uePb343VTb49R1+d5fJ5m9Qx7v/vd79m867u+KyEajUbNcRzHcRwnTiR+3QfgOI7jOM53C3/4cBzHcRwnrvjDh+M4juM4ccUfPhzHcRzHiSv+8OE4juM4Tlzxhw/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40vjrPoAg9fX1tnPnTmvatKklJCR83YfjOI7jOE4IotGo7d+/39q0aWOJif/73kaDe/jYuXOn5eXlfd2H4TiO4zjOP0FhYaG1a9fuf31Ng3v4aNq0qZmZTbrpBUtOTf9fX1u5s1Zi6W2SQ31P9b6DEkttrsPRtVuKxPaWHZJY4ZIDEktI1Se/aHW9xPJOaCKxkm16bh2667F0/J6e77y5ZRJrk58qsaKPKiVG40fjnJgWe26d+6bJa0pLdYzD0qqVXoudhXUSq9hcLbFGcB1rPyiVWMeL2kusRzsdYxpP4hDMqX6jMiW29oMKidH4Vddo5wO6ZuMnfE9im/fouKx6U88jubVe76Q0nbdt8pJi/v50/n55TbeTmkps/f0bJNaoWyuJZQ3Ue+AgnP/QARkS+2hTlcTatEqS2NbtOo/pO9Iz9fxLF+r5JqQ3khjNvSa5eiz0vbTWVMJ6sXGpzp8hp+o8K/xM75cWmXrM61fr+B0KfC/Nz83wPlpntr24S2LNT9U5sOevmyVGc4Vo3FbHrm6jrsm1az6VWMYP+0uMfgtawJq0fZ7eUzSXqyL6m1EH6wX9PtA9Grw+Zny++bA2RMr1WD5bGbuuZHTW6xjmN7O2utKm3zbx8O/4/0aDe/j4n1RLcmq6JafqQvN5DqboTZ2cGu7hoz5FBzI5VYcjLV0ndUqdXrzkZJ0MCSl6o0fr9b0p6Xqeyal6bqlwLOkZGkuGc0tJ18mUnKJpLRo/GufElNgFOjVdF6eUtH/+4SM1Xa9FcqoupnXJ+kPRCI7XGsPxwbinZ9A4hTuPQ8l6fGl0bfWS4fhFG+kPFF2z9Axd7NKqdO4lw/Elp+rBJMFDc2p67JgmJ+s8TqVzhXFvlKz/qEhJ0/cmJsCDAZxrCjwspaXrHEhJg3kM30GfR+ebkAwPHzD3wn4vrTX1ifBjBPMnLUPHL6WC5iPMC7jeh6Kx30vzMzlF34frTFK46x12rhCNU/R7E5J07KKJdH/T+qvrTwqtSXBP0bkdqob5A+sK/T7QPRq8PmZ8vnRP8u9X8Dv1WoT9zTSzUJKJBvfw8T+0aNU45mLv+Fj/JZc3UCdmrzydXJtLayS2fsk+iaWe0FxiFfCEed7ANhJ7LFIosX0f6L+WeozV7/hklh5LYrY+BLTK1In0/of6tNuIFmP60Wob7kHt7In6r49Nu2P/1ZPTTBfYKvjX3Z5incB1VTrGp52UK7GPMiMSq8jXG7OgQK93/bF6DjRXDtTojXnl+ZoGfHp+scT0apt1aak38fKiPRLbCO9NbaG3Z3DHyczs1Xf2Siyrtb43f0QziZWUhHuwKphbHvN3faGebdE2PdfO1+RLrHC57t7QvZLSTe/v5Z/qe2urw/XGzMnRMdm4Uv/1Xj5br+3JN3aTWMF2nWefrdN1qi7k8S2fqfMiukfPN/WElhJbMEf/BX7wI93ts0s7Sqh2h55HRtfYa7kPdnvrVum8K6zKkljH83W93PZWRGLpZ3aSGO3CDYBdGLoWqT31X/3Vp2fr6+Dha/sCnY/739XYMRe3lRixYZMeX/ehup5vWKS7Wp166BpHr2sKv1+0Bkd26T3ffnjsTgVdH5qLXQPnX10J//D7ArzaxXEcx3GcuOIPH47jOI7jxBV/+HAcx3EcJ640WM1HkHrQBZSDgnjWA6sklthSlbeUq6P8N+XW7l6pqmzKz2+Y9YDEck78hcQOFZRIrPlFXSVGec0zhmVJLKjHMDPbDNUzSamqA9k7R4/lhdWqKznw7uKYv7vcMkpe0y4nXP6PruOMpXocpcv0WmT1Vl1A5Q44V7g+sx9QnU6Lk1tI7P1nVCFPegTS2rz4gubdqUqiaRsdq8hazbEGc7NmZluf3ymxih+oxiW/veaOac43y9LjqwtoADIGab6a9A7Ve/Xzv9dLtTaRXXp9eh+ruf3doD34bJ2O05I/rpZYk4m9JEbjrsoLs6VQYUJ6BD43HYP05jDGK7fod/RXHQTpeQaeqHqet+D4iKC+w8wsOzf2O0ir1RTmWLsOOp6kqyFNG13vY9vqeT319A6JZXbRuZ2qlwKpBl1fK5jf+RN0bVizQed8MqyrNC8+flivdyfQ5BC0np14HFRNlqsgdgf8lgb1b4Ov0DJZWsuKtsV+fm21ft8X4TsfjuM4juPEFX/4cBzHcRwnrvjDh+M4juM4cSUhGo2GK0KPE+Xl5ZaZmWlX/G52jFkL5dF2Pq65+MQ8zcsRiS01B0f5dNIjkF8AaUPC+miQbmPG3ZoPbJSnecjho9XZ8K0r35VYcp7m8Ci/SOdbBjXq0arY1+15eY685tQ/nS+xZY+qziIhW/UTA8/Renx67w2/HySxh2ZvlxhpD7I76/U5c4B+74x5n0ksLORhQvl+onMHPT7ygqD8Oc29YB7fjK83aU2CXDdF/Tve2ag6nbUfab5/BOgT5r5fLjEaJzo20v1MGKpeGC8t2i2xUtCG9PnlAImtn6H57tR+eu/VgA9JDpxvCZwvXUfSCpAvBWky9oOX0Zhr1LOGdAFBf6Mtn+gaQP4TpCGq3KdzbPBgXctKy/S95C/SHFxaSVdC93dFRO9HGif6fThUoPde6wvUJbn4DX1dLviL0HkM65IlsScf0/WMjiUxT9/bpK/qQAhaH4PQeAbPobqywn41aZSVlZVZs2Y67z+P73w4juM4jhNX/OHDcRzHcZy40mDTLpfd9lpMb5fy2UXy2oRs3bqL7tH0B22NURkobRETVGJXsVHf26iFfsfQkzW1Q9bItN1K7HpWt+QonULbslhq+55aJhO05RyESgLJCpvsp+nY+nTXMXn/GU2JdDgtS2Jk6f1VUhNhrfPD2pcTlHahUlMqFaTyTtrqXgHNwTKydH4H51n2Wbp9T9vrVD5JZd/7d+rW/2mjsiRG6Zk62DI+fbymX1+48GWJXfLCORJ7cuLMUK87UKvfu3iNrj80v2mbm0q1D0Harmt/HdO+7fTavvCIrplEtFLHPsz9TWmxUwd++fvMuGwzmMo1M6tdqI0Hul6vjeBofcuH1gvULoNS5sSPLlJ7Bkrl0fWme4ruUYLWUSprp/FLSNNrRLb7jfJj00LUioFSjwcLYudY3aEqm/nx9Z52cRzHcRyn4eEPH47jOI7jxBV/+HAcx3EcJ640WHv1Fq0aW0r6kcOrO0XbMlcv0Xwbtb5+9+a1EotA+2bKiW8r1Xxo8RbNWUcrNd922vna0vm1Wz+RWM8r9ViotI1yrKRnoXbQlDslTrhdS1dXzI7o5wXacFOZMo0T5bDrNujxnjRZr/ffX1I9ylfRd1AetkMr1en8HcaT7NXX/V6vLbWUJw0JlZKTvoPeS3bolCemuUwal5ZQAhgJ3H9h28TnNNPxzOiu474G3kv6Dpo/VG6+rlBz4hmDdW6TLoL0HaRRyBuoc4Agu//+p+j9UlCg93xYzcz8Mh0rujdobaAS32AZLa1HNAfmr9PjIJ0X2YOPG6l27S+CZiEtRe8VupdpPImadwok1rh9DrxSNR/UjmLKnf0k9sdX1BI+rFZpOZRvV85aIbH/ePp0iS3dpK0xqnvpb0awdcW43q3lNQVz9dq2Oz32XGuqKsyukZchvvPhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TV74xPh8E5VLD1jpTnriiRvPJH96zSWLkcUA2zc0n9ZEY2W0H9RNmZvtnL5BY0zHDJUZaC8qJBlsfm5ldMkrzeg8+uU1ilJ8N5t7r4byonpzGjrwBXpoFVthP/LfE2v9sgsRoXpDmg14Xdl5Q3p0I62FCmg+y0SY9C0E+MZR7J+t8yju//2Fs7pjmMWmwDm7XnDi1tifL9TnPq4fLgDFZEiN/HtKGkI8GefaQfoBsucnbp75QNRVE6glq/05jQNoV0v3Q+tNuimoPaE7t+Fi/I+glQl4YV1/SQWILt6oui+4V8oQJa6dPY5yYp+sgzRWCtFXb3opI7IxLcyVGvi50zHQsNC7k7bNynp4vrVPk2UP3Kc35MPbqB4t0njRuF7vO1NZU2NN3j3efD8dxHMdxGh7+8OE4juM4Tlzxhw/HcRzHceJKg9V8XPRfr1hyyhHNB/UzoDbKE8ZqLnXTbn1dUYlqIAjy0M/soj0DKIeZ20nzd6THIKimmnrFNG2jMdIPUB8BytGHbW8fhGrq23XQYyPtCeXYSZ9AUI6Uri21uU7qrnniqlnrJTbuwSESC2ogvghq152QruNCra9pXIruWyWxtLHHSIx6CJHPB3l6UA48yKTjVLtz+/RPJZYKeiHKQ9O9ErZnTdg29mF7afx4vPo5EDOWqp6FvoP0J217qiaH1gZqKU/6E/JrCft5RPD+G9JH9XekR9n6iup0mp6gPY/oeLc8sVViaeDvRHyVtfaTWXqPkvdJImglqP/Q7Ls2S6zj+XoepLUJ07b+iyAvFvKumv/YTom1ODlW50W/IUEvEDOzVoNiP7+mqsLuu+YM13w4juM4jtPw8IcPx3Ecx3HiSoO1V//3cbmW0eTIVvRrK3TbnCjer1tPy2fqe2lbjcoxN09/VGK9f/4TiVG5bAfY8lqzQbfaqJ34aLBmLynX11EZFpXGkpUvladRaofGL5gmoLLVfZA2OGNYlsRefUfL82i7kEpeKd0zoK+m6PZAioW2vrcVqdX9W29GJEbQ52WcrimrErAND9tyu88vB+h7oXySUiy0Jd7rGk2fZKTo5wWt7Wdn6tYtlbLum67G6cnDukps8Egt711dpNu8NHZUAknW7EHLcDPeqn7yzV0Sozm17c5FEksfq9eHbNjJ5pzuPUo3U+otG9rMUwv01H5aoklrQ3ANofGkNW8MzCd6b688vVfKoQyf0tlkOU+WCNRqI7epzoGS4/X8yTY9CcqjqdS26Q/UJn5kT009PbNFv4PSzVt26ThXryqTWGJLHdPcpnpf0TUKppH3vqdrslXpmtIuUEJcValz+IvwnQ/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40mBLbecvXmZNPqf5+GhXRF676D3Nmx7aq3mprN6acyVb6TA24mZcXkWll1RORra91PqaSiCXTS+WWLBEysxs3wc6LlQuS5/XcbxqTajkcc/mWI0HlXaS3S9BehGyB6d8/4kX6vEWbNdrGzxeM9YoXDhGW2lPf1E1ALWLdewS87IkRlBZbdlMzVn/4De9JUZaDswnz9Z8MpWkBu2Rzbjcj8o7g1AJLUFlkaQBeOMVzTuTLou+l+5bKktvlqX3GekxLpmsbchbpqn24O6ntcySyv9fXxiRGK0Xe4qhRB40Gv2GqEaK7LuphHLn41oi3eayWL0E3T+kcaJ1i6iANYXsBag1xqFC1VmQloW0IaRfi1bqPUXrYBgb+i+iqkZ/Zsf10++g9hbdh/7vbUb+B9Iv0X1QM1e/o/M1+TF/U5nyuN7ajmPaHR/H/F1bW2nP//VcL7V1HMdxHKfh4Q8fjuM4juPEFX/4cBzHcRwnrjRYzcfFv/hvS049kuuifDXpGHKaaV6X6sypffULF74ssdwpp0qMWqKTzfeqxVADDnlnart+7imaDyTtAeXvUkZoq2tqeR+t0hp60seQD0lQ4zH/Pj0OahtObbNJozLxinYSe/EF9S2gfCi1/w7TJt6M8+7Uxp7GLmg1bMZ1++RdQB4UYa3ow9ovl5SoVoA0D9SyPagVoO+knDNdb4LGhOz/W4xWTQ6dA2klSBtC404W5HS+5K/ywW0fSyyxpeqhopWqoSDNEOmDwrYtoLlM15bWn+AaF7bVO1mQk8U+zeNUGE/SWdAaSpC+hXRjpPmgFggp3XRtJE0FrbXk9UK6CtK90Jqck6NjekFf1SU9+PctEiP9TlDnRa8Jo5mqqaywaZNPd82H4ziO4zgND3/4cBzHcRwnrjRYe/WktERL+tw23GAoqSSr8lU7dcudym8P1EDK4aIfSIy2ait36JZuDnR9pO03grZH/3T7BokNmqQ20iv2ardEKoGjcllKCVAKhLZ+g50RqRsuQVu8VGp8oFbHuP8pun3dpSXYT7fV600W6TQvklL1PGgruS1so4btEDt5hNob3zZxtsTIhjwDUjtUAremVMtUKU1A9vREcNudyjjJpjsH0hqU/qH0x4a9WRKj9AylXSg1Qd1LN8Ax0zyj67ivDLoEX6TXjNKWtIVNr6P1J2w6LmzKIj9fxz5osU/l61QOH6Yk24xTLBunrZRYV7CNJ2h9o++gVD2lxzc++rDETrr/WolR6qRzKx1PsmHfA2th/ghNVdD9Qh3db5qxTGI1HxVILHPS8RILQvMkslbTz82G670SFt/5cBzHcRwnrvjDh+M4juM4ccUfPhzHcRzHiSsNttT2+sfesJT0I/ntzQ9o7ur8ewdKjNqzk50z2ZxTeefby7V1MekWKOc6EEqzSso1X0s258ecq22ZqZSRcuWUDyT9CZWfLoeSZqL4jVib4qYnqMX3gdVayvqTn2mb64Vb9ZqtmB2RGLUcP/CC5jlTh6oteQ6UVpPmhVpJN8pTnQVZPNMYkBU22bqHLSVHe+g9+t6kfnpt6XupFJa0B8H3hrVqpzJLgiz2iTXTb5FYz1Ouk1ju6Tp2n61TDQTpecg6/7hru0hs7Ud6n2W11vMlHQSdL5Vjku08WQdMPbujxEj3M/sutX/P/aFqyYKllmS5v+vZ7RLLPkv1TKQjo7lCOoM+3fV11GKANB90vUmnEtml9yhdRyo/PVik30EaubAl8qQXIb0a6fqIglsXSKz11CESC/6mkWaKflfqVsXOsdq6SvvrWz/yUlvHcRzHcRoe/vDhOI7jOE5c8YcPx3Ecx3HiSoPVfDz1+ruWnnEkd0Z5TvIVoFx8UnetRaYW1Et+rvqBlJH5EkuCPHbYnD35I1D9dEZX9a8g/QB5VdB7KedItMsJZ10ctLGn60N6FKpZJ2hMwtbA03sJ+jzywiDL/lnXrZJY+pmdJEY2/jRWZNNMeV2yeietALWFJ+p3a86a9BL57WOvJdnpN+qeJbG6RYUSyzxH9RM0P0krEdYinSCfjzMuVb0D6bLI5yPsGA8YkyUx0ouQ/mbP33T80k5Rbx/StQ3uotqDGbepf5Cl6fwOas7CWvPT/CSdBemt0Odkg47xwYIiiZEfCLWsf3XVZxIjK35qoUH6k6VL9feGGDxYf2+CXklmZokt9TuS2+r8TgKtEumI6vdojOzkg3o18n4pKtH3ndQrdn2rrDhg54z8vms+HMdxHMdpePjDh+M4juM4caXB2qu/+ccdlpx0ZDs5tV+mvObQhojEOp6vW5JUVjuso5aEbf5xX4mVbdLy1todGjsR7N8XvadbhlTySlvfByp1m5dISIdum7CFHbbsjLbWqBRt5d7Yc6Otf+ouS6/b+opuhdL1rqrRrVrqXEndZYNpAzOzBXO0jDoslGKhNGDrppoCy+2k14JKBYndz72mx9J2gsTqC8OlBKhLbOkyvW5hOuemt9Wt/xPv6iexN17RElAzfS9tfddptgLTKVR+TCWldCzUKZmuT3uwlqa5TOXRPcZqWTam/K7Uebbu959IrBxs3V94RNMT1GmaCFq4U8qX0i5hLddPPE5TQstT9Zq1G6LXbPM2LSMv3qLphRnVJaGOhc6tEtbpv4dMj+9/V7tvb4O0GEFrF1k20Lryp5vXSYxSoZatxxJMZ1JakJi5LLbTem1tuJS3me98OI7jOI4TZ/zhw3Ecx3GcuOIPH47jOI7jxJUGW2p73rhnYjQfVqVahHNv6i6x1UWar26VqdIWKnOi9sMpx2qpbYuTNedI2hAq+yXGXKP6kwM1qvmgYx40SXOiwXbYZmbvP6O56BTIJRK9j9X8YrAVO5VA0vsqIHdOtr1UZloe0TGhslrKxVO7+2PbainYE/dukVjz4/XzhvTR3Cxds24tNbf92grVABTdp6W7ycM0j0+Q7Ty+DsrzqGTv3FNUvzT9xdjcLpWqL/zpfInl3zpcYmHLhaklPJWW0/Wm7yBNSlh9VGYX1QzRPU+ljR1Oy5IYzeWcHF2ngtoLM9bCUJkq2ZVTawgqqwwDtaInTRtpaArmarl5QtqX64rM+DqGHROC1hoqoz5UoPdto3wtSyfdBumo6HyjVTovDq7UdT9lRAc9FriXqYR/6Ml6vwRLhqk0+O8vqT7q+xNifwurKirs6h+O8FJbx3Ecx3EaHv7w4TiO4zhOXPGHD8dxHMdx4kqD9flIzE61xOQjubiMrloX//rCiMT2L9Ga/y3gGUEce8f3JUbeEmTHS3nNqhrNY9N7yW6b7NpJG0LvrV6l/hXRPWA7D62fKf+7cp7mP4P1/M2hBTO9j6AcLuVcyQ49slY/j/Lp1Fq6Aq43tfqm3P5yyDFTPT7pO8hamvQd5CFQPlu9GwzyzpdMbi+xGfNU91OxUfU2CztEJBZsM1/UWT+fWnWP7Kn37Z/AC2Mz2LA3ylcPkkTwKCB9B0G6ALxm0Co+Zyj4usB1TAJtCHlQUE6drLrJU4g0LqQXIS0V6UAIagMRhPQ3BOk7wlqG0/wkfVnFRh0n0lRUzlohsXKYt+S9lH2Wrr9hLdfD3o90fzfur95VXfvr2kDaRjqWFat1TIO/Ge/D7w95SlXUxF6LqtpwfkVmvvPhOI7jOE6c8YcPx3Ecx3Hiij98OI7jOI4TVxqsz8e/X/KiJScfycdm9dbcbNg6e+rzcNIUrZOmXiwTxmovhKWbDkiM8s7DR6vWpLRMNR/7oF039VPJaq05PepVQHnSsF4IiZB3pTxxsK/D1ue1Fp36hmCeHHLxBPWSIA0N5U2pDTlpY4Ktpc3YC4KuD+XnSbeRnavXkfoPYd8e+LwDq3U+knalbpXW6U+5U3uv3P3vb0ks2LKcdDV0fQjS85AGgNrEU48VugeovwbNR/JrmfO85uLDHh/dU/1P0XuPPDIoj39aD11/Hnxym8Sopwr1MyrYDr2qSIMUuCfps2gtI51J3Qa93qRfo3GndT/sPKO5Qvct9WRKaqH3KF1vgu4N8hwhvw3SYxC0xtMc7dRDY9RDaGTX2HtjS0R1Oi/N2i2xoBas9mCVzfj7ZPf5cBzHcRyn4eEPH47jOI7jxJUGm3a5Zfqblpp+ZEu0cyvdPnrrzYjEaubqlmTmOV0kRttWRNU7anudkt9ZYh3P1219KrFLb65bhvs+0G1JsvTu3EG3/ciunLbVCHrv+hm6XU10HB9rwU325cse1fJJS9MUzn/+XG3y99foNuWr72jagMrzKnfouJN9N23/U3oqLUXTQlSCTdB30FYyXVvamqctbCqjPvPWHhJ7/YliieWcqFuj7XL0GhWVxF4PsiCnNGOwFM/MbDekGWmrmtKqVJZNpZdUqh4WuvdOHajn9vZyTdvRvVxfGJEYpQFpW38rlCVTapBSeZSSbAcl8RsW6fwJWgfQfN84baXE0sYeIzGy/R43UltU0HjSHKCUCKWkqYx68Ro9V0qJkE08lemmDu0tMWpbQSlZsk1PP1NLuitf05YPxNi7NIVKVgy0ZgbnD/12UQonSHVlhf1q0ihPuziO4ziO0/Dwhw/HcRzHceKKP3w4juM4jhNXjspe/dChQ3brrbfaM888Y8XFxdamTRu7+OKL7aabbrKEhH/kxaPRqN1yyy32+OOPWyQSsWHDhtkjjzxi3bp1O6oD27y6ypI/1xr+kyK1TafcbNOL1Kaa8ukGNuKUY08bqXm0cya1ltj8dZpbGwH59D6tNNf5as4uiVEe1uA8tnyiuUSC2tvTdzTK09LDOrC+rq6OtfReCSWGVNpINtBPPqZ21qSLoDwxlT0P6KvnStqDYihNI9b/eYfEUk/QEkjKO0crVctAZKSEK3Euq9LrkwTtAw7U6PdS+S2VqS57Wa93/e5YLQPlpqmMszlogcJqoajsm7Ra9YWqszj3JtURzZyu9xmVLpPO4EAfKNGEEtWf/EzXuafnq9ZmwlCdP9Nf1OMLaqvMuCy7YqOOH2kK8m/qKTHSQwW1X8ec20pe026Kro00n0iD9eILqi2j631oQ0Ri1j1LjwXWN9J30LXNBEt8sk1/76N2EotWql6kap6Oe+NjdfzaXKZzhUqBqc0A/faVlIezuyd9UFBzRboQIjhPauvCa62Oaudj2rRp9sgjj9iDDz5o69evt2nTptldd91lDzzwwOHX3HXXXXb//ffbo48+akuXLrWMjAwbNWqUVVerQM1xHMdxnO8eR7XzsWjRIhs3bpyNGTPGzMw6duxozz//vH3wwQdm9o9dj3vvvdduuukmGzdunJmZ/eUvf7GcnBx75ZVX7Lzzzvs/PnzHcRzHcb5pHNXOx9ChQ23u3Lm2YcMGMzNbtWqVLViwwEaPHm1mZlu2bLHi4mIbOXLk4fdkZmba4MGDbfHixfiZNTU1Vl5eHvOf4ziO4zjfXo5q5+OGG26w8vJy69GjhzVq1MgOHTpkv/3tb+2CCy4wM7Pi4n/kNnNyYnNUOTk5h/+/IHfccYf96le/+tLvptpp0g+QT0UzyJsSV56vlr8PPLQ51HsJ8iGZm6YPV6QVoFxnEVgoH4J6dLLR3t1JfQUox0pQ/fhrt34S83enSzvKayg33ey0LIlR3p1q7ynvTt+RNlZ9EMingMad7LEbQY6ZcqLkfUE+GpTXnf+Y5okTW+r1Jh8SspEm62vyWyBrdtLqdO4Qe2+Qh0sEdDDkGUJztgwsroNeE2ZmWz6BOQvaHdIUhG3RQF4idC9TS/m3OqgF9d45JRJ7SSKs8SGvDppTpK3ZAC3lyWOF5k+Lk2P1VbSu0vwkjRP5nDTKz5aYwfyMVqpehOzq134UzreJoN8RakVPug3SiySn6rmFtbonbZ5BbPnMPRJbNgf0FuCrtGWenttx18Z6YRUU6LGRdX5CeuznJ9Tq930RR7Xz8cILL9izzz5rzz33nK1YscKmT59uv//972369OlH8zEx3HjjjVZWVnb4v8JCMKZyHMdxHOdbw1HtfPzsZz+zG2644bB2o0+fPrZt2za74447bNKkSZabm2tmZiUlJda69ZGKkJKSEjv22GPxM1NSUiwlJVzVgeM4juM433yO6uGjsrLSEhNjN0saNWpk9fX/2Lbr1KmT5ebm2ty5cw8/bJSXl9vSpUvtiiuuOKoDa5OfainpR7b1yKa6L5RefgxW03uKdRu+bOYmid2fH5FYB0gTUFktbXs2hy6V1MGWuko2/YFu8ZUu03NrNUi3ptsN0fQRbdNNvEJLx6h0ddZ1ajGfkB77wLjlia3ymuyz9Dhoi5e62tZRigDKR2lLt1Wmptloi5Mgi3DqdkzlalTi+/eXNAX2/Qk6b7eF7JhJUGoj2KXSzGxxplp1N4Et/Nl3aaqxMpBSoflJbN6m2+bUKZrSJAVz9T6jzp0EXUfaSieoIy6db3ZPTTtQ6TuVZVNnVrKYJzv0om2a7qE1hNJH9B3BDrZmZruf3hjzN6Ve33hF5zZeH0iZU2k1pacSsnV969JS77MVOyL6vUD+CJ3vrTL1Xv7kU7V2oN8CTItBGueVi56V2NAHz5UYpTuovDwxW69tInWyhnYMwRSLmdpMkL08dU6e98hvYv4+FNXx+CKO6uFj7Nix9tvf/tbat29vvXr1spUrV9o999xjl1xyiZmZJSQk2NSpU+22226zbt26WadOnezmm2+2Nm3a2Pjx44/mqxzHcRzH+ZZyVA8fDzzwgN1888125ZVXWmlpqbVp08Z+/OMf2y9/+cvDr7nuuuusoqLCJk+ebJFIxIYPH25vvPGGpabqU5PjOI7jON89jurho2nTpnbvvffavffe+4WvSUhIsF//+tf261//+qsem+M4juM430ISotFouN7gcaK8vNwyMzPtsttes+TUI/k+aptNrYaPB/tgyjtTnpPyppS/o5b19B17/qaVO5TDJAtl0kakwvcO7tJEYqRJoVKvBXO0hTXliTOy9HuDGheyIKc8OekiKBdPOWGysy6fXSQxGuOk7lqelwqtuauh5LPfEP08KllsCbofyuHmg7V/2FLB6iVayhm0PjczS8xTXQm1YqdrSxqSoGaIbKVzT9cSQ7LbRo0PXNswNtBmbFX+zseas6f3UusFarOQ3VlfRyXTuaDdofJtsjQvuHWBxIb94SSJzb/yNYllXfQDiVEpMJUb0xoXLE3f8bGWkdPnU6ltk766RtG1pe8YerLet7Ru3XR5vsSmf6jrL10LKt3Naab3QNBewIzLb8NaGBws0vMlS4k6WJPoO6hUm67tJ7P03gheI1qjVs7TdSZIbU2FPfvwBCsrK7NmzVRf83m8sZzjOI7jOHHFHz4cx3Ecx4kr/vDhOI7jOE5cOSrB6dfJhWPUt+ApyIURZNVNVtNEK2itPP++bRLL/WGuxHpeqW3HSRtBWoFVkP+k2mtqT06UwnecPl51AWQjXVelY3Xu4NjrsT5NvRHIuvt9iFF7aMrFk36i2Rj1KiFNwd731JPgtGvAD+VTzQl/eI96wpCHSdh8Mp0HWb2TTud9OL6UfnodSaNA9u/ZuZpjrgC9UeOAh0DTNnpepJkijwKyiE9L0WsW1udj4aaIxEgzVblP9Qgr1up7R5+vGqy57+uxkE18rzzw/gAPnC0fScgmPDFSYusK4ZpNHiExnD+gl9hWqmsh+YYENXak72jUAqzzJcJsfUU9Z0j7Rj451I7h1sv/LrGTb9SW9eVgh75idkRi5MVD/hjkp/PQ7O0S279EdRZBC3sz1j4lgQ6PtHNrNuhcGde7tcQ6t9IxWLwmVudEGrQfXdRWYvtrYudFZcUBe/ZheRniOx+O4ziO48QVf/hwHMdxHCeuNNhS23XL11nTJke2DW84+xV5bfNJfSRGW+5UbkRbjVRmSVTNWi+xVj/uK7HIWt0ir9+tW2NUBkqdaTuer51pafuSPo/Kug4VqJ1xy4u6SozKkovfiC29pC1TSgnVQNrgxAv1vVRORx0kqStp2FQHlW9TiW/YcjVKH9FWP22RU8oiaHFtxteHUlQLfzpfYh1uGCoxTO08o3MqmHYhaM4ec7Fu1dK9d+JxWo5JKTAaJ0qrtgXr863Pa+dgOr6SEl0HyA6doHJesg1PzNO5Qlv9lHYgi3Caj3TNaB2gNgsvPBJbwk5zm1KZjfK0LJ06dCdka7qPyrcHTdJ0NpVCU5kp3XtUtkrrCq3dB1fq/GmUr2mXS6dquv1Pt2+QGKVdyJ6B0j2UCqayXxr7JEjTBm0H6HeU7oHg709tXaX99dULvdTWcRzHcZyGhz98OI7jOI4TV/zhw3Ecx3GcuNJgNR8X/dcrlpxyJH9IZaZhrcCJsFbqGxZpfvHsiZpbW10E7e6hVTO1dt/1rJZmpZ2i+g7SCpQu0++lUrSw40LW2lR6GbRfXnfjHHnNoHvOkNg+sCUnC24q060vjEiMxolKIMmmubQsnMaHjrn45WKJtRit+V/Sy9A1oxLS6lWqeyE9D+kbtr0VkdjAc9T+fNl0PQ/6jmBpeu0Oncc070hXQ9ena399L2lDqMSQdBG1C1Uv0/X6/hIjXRLdZ0GNk5nZGCjVfv9Dnbf739UydJorpF8iDhXq/Dn3v1RnsGm3lkuGtY4Pni/NCXof3cvtOuiaQhqVhHTVFFDZM2mBSLtEpaekDyLCtpSn86Xy8oQ0Pbf6PeFsEkhvs+8DtTrvMVbbJ4QtVx88OFarQ79T1N4jeP/UVlfYn3/7b675cBzHcRyn4eEPH47jOI7jxBV/+HAcx3EcJ640WHv1zn3TLDX9SH6X8u4n9dKc0l9/vlZiYeuf+0zpILEqaH1NLev3bNb8XQa0Yg+2ojczK83XXHynHpqXozGg/F3lDj2WSnV1t+5D9fjID4Py7O/d8WnM373uGC2vyYAcIWloqM6e8pw5kNMkXQB5dRzbOktiT67eJTHK17YapONEniukH2gGLdYHjNFjQV1Np3DeKRSj/C/6I5ygryO9TfaJsfdaCeTdqU365gcKJEZeJWEhe3DSmrQfHk7fQffZlk/0HiDNQ9CS2ow1LvW7NT+fkwNW1SH1CAZeGjPu3iKxxJaqUSCPECKoBCIfjbB6MxpPgjyQXr16scSaTOwlsW2w1pAPCY0JHTPdA5Fd//zPJXkPbd6m87EPtPNokqLr2RzwIRnWJUtiQW2eGbceyG0aex8s2qxzth/8nhUGfFPqasLp6Mx858NxHMdxnDjjDx+O4ziO48SVBltqO+WB1y0l7cg2T2SXbudQuR9t3YXtHkhbplTuSFt3YcqXzHgLjcrzyOo9aIH7Ra+r26BbZmR/TttvBKWUgtuwtF24YrWmMPLzdZwyUvQZmMaJtrmJUwdmSuzt5XodaQ5Q6oDGiUrs6L3U6TYPUnmUEqD5TdvmG1fqONNcoflN30FzOQxJ0Ck67PWm0j6CSirJip/SqmRpTimw3ZDepM7TlKIkW+qw84yg+ZMYsiM3pUomDG0psXc+1rLXPcWx68oZw7LkNZTq+Ur26nvgXEPa0FNZbVhLfILueZp7tE7NfkAt0uk3iI6PujvT/U3WAdQWIedEXS9oPQ/a7pOtQesL2n/pZ9XWVNjTd4/3UlvHcRzHcRoe/vDhOI7jOE5c8YcPx3Ecx3HiSoMttR1+TFNLzzjSZvsvd74hr6EW4WaacyS9SPWS3RKj9tofz1OdQSMou7twjNolUxvlsDbFSamaryVL3cRsfS/lXcPabReVaLnfob0aSw4cM5VAUl67S0sta3t+6nKJJQ1V62qyNyabfNJ30NiRnXNdleZ1a6CslPLT2VB+S8e842PNT1MZWxHYfFPZ4pXn61g98NBmiWX11jx7Vmv9XrL7D+Z7yYZ/xeyIxDaDBoJanZPlOs27gd30HE4fr/n0zaV6XpQ7p/JjstY20OmQhqZio16f9sP1nu+Vp/Nic6m+N1qlY9U0ZAv4ZmC7T/qOMGtD8X49NtKR0dzWM+BS8E9m6euoDJbaIpDmjF5HpafbF+jaQOX18x/bKbFjzlUbB4L0HaQjImhtIBq30zEoum+VxJKHaal78Hp0bpUrrwmjZamp0nXhi/CdD8dxHMdx4oo/fDiO4ziOE1f84cNxHMdxnLjSYDUfJftrLa3+SJ6xcr/m28hrgVrHk4VyUZrm6jq30teVnKX59JwcHTbSdwyapHmz5TO1NbeB5oOslqlmm3LglJuzKv28ohL9PNLHkO9DMOdPVsHUIpx8C8be1U9iL136jsQGjh8pMfL+uObUjhK75Wn9PPredYWas+4Afi3kKxDWN4U0PjQv6laqj0LKyHyJPfy8Xm/yAyErejw+mPMl78e2FPgMtEbnTGotMWrrvjtLVQBbX1GPAtJHUTv1z9bptSA769NGZYX6vGA7eTOzHeCt0RY0Fdvg84KeGWZmiyM6b/f8Ta9jp0s7Sow0CuR9sXSpfge1HkiBNSSo/bp4WDt5zZoNerzoP1Gk14e0S6SjyofWEx/c9rHE9l3WTWKkB9v0m79JrP3PJkiM5lRqP/UPovPYNu9piQ2a9DOJ5TRTfcTc97V1Rx14OVFrDKLdFF3jyK8k2C5jH3h6nDRZNW1Bf55oVDVeX4TvfDiO4ziOE1f84cNxHMdxnLjiDx+O4ziO48SVBtvb5bLbXrPk1CN5LWp1TvXzlF+lfgukR0iCfhgE9Xuh/DT116BWzR1Oy5IYefzvg54T5NNPuegtT2yV2Hm395bY0k16fDSmwfOIVobTE1ALd9LphOknY2bWuYNqD1bO05w4XVvylgh7zchfhb6j8jXVbTTur7lT8jMom7lJYtSOnnqHDOirn0c9UNLb6nnQ9Qjmz8lXIlqp85PG6eyJqrd6cuJMPY7BgySWkK5zgO6fkT11npHHRdieOo1a6PfSfUZ6DLq25BHS+1h9HfmQ0H1A3imkdduwSD8vE3xDgpoz0nIQi97T8+/aX8/r44f1vqDeIQRp/ajHFX0veb2QBqs5eHCUlOh3lP5xtcT6/HKAxEgbMm6k6nTmr1PNB5Gaqvco+YbQ/KldXCyx4NiT9o8I3iu1tZX23JNne28Xx3Ecx3EaHv7w4TiO4zhOXGmwpbbpmYmW8rnytv27tfSpPKIlYtT6mcr91HyaLXqpXC26R2M1c/dKLPWcLhI7VFAisT19m0iM0ky0rX3GpVrO+/oTuq2WkK2lWQdqdWuNtqFzO+m2ZPXe2LE6WCQvwdJg2s7T0WSL673v6RiXgZU8tRz/8Xi1zr//d59KLKmNbi/Ttj5ZUqfD9nXZHi0hTW/bSWJEJswfShdSWSlZQeeermWLVI5YukyvSDB1QCnPsG3naWs57/rTJLb76Y0Sa5SvbQzKI3pfzJin4165Q+c2jV0BzB9MDUI6kkqcabuebNjJTp9SO2Rh3giOmbb6ye6frnewdDdYUmnG5aiUwvlklqa7mo3R0t1gObcZt4AoiOixUIqFxp2ge2DLLv0OWgcrJ/aSWAakRLLg2s6cvktfBy0QaN2je3kl2BgMH63lwdtgTgUtEOr36L3S/Hi9V5LSYsc9KaTdgJnvfDiO4ziOE2f84cNxHMdxnLjiDx+O4ziO48SVBqv52L2+2pJTjuSQ//Pn3eU1z8xW/cTqIs1fUhtlKk+kMjEi7RQtlaScHukbOl+j9tiUO6bc35A+qm8ge/EmoCHJz9dcLL2Xyk+p7DdYkprRWXPdVA5Gnz8Y7MvnL9E8MZXpUski2RH/8ZUdEiM757pqHTuCLKmp/HTCE2oJ/8YrmsO98CLVpJBlf7CFtZlaYZuxLqkiouNHJYqk59j6fKyGpGy33iuFQ9WWnajUS4Elv1RWTK0NCNI7EDR2dK/shjL30o2w1uTq8dF9uw5arFPrgbCQNoTWFbJJfzVTtQdz/+uDmL+T+qtOie4BagsRbNduxnqM+sKIxLq01OOla0ZrPJUf0ziRzu2rQK0myBKgFN5L+o76Qo3VVus6QHoeKq8/+JF+c/A3jfRr9JsZXD9qa8LpbMx858NxHMdxnDjjDx+O4ziO48QVf/hwHMdxHCeuNFh79esfe8NS0v/3tsFkZUxaiX0f6OuoZplyWu06qJUxWfQSZNtLtfEE+Q8se1RbWDfqniUxyulRXT1ZcJPuhTw3gvlFqpUnTwryASAoR0qeEZSfXzZdfU6oHXYSeCOQFT/ljkeAh8nsB/T6kPai55WaPyeNAh0faVzIppm8bQiyX6brHa2KHYN68N3pOP57EiMPjrCtDcjmPGzreBo78s4h2/SqWesldsLtavU+rKMey4ylqkMjO3A6luS2OpdpDMjvh3QV5Dex9iP93qp56gkT1ACQ9Tt9Fh0v2ctngzamGjwiwnjOmPE6QOsF+bXQ9aF1gDRddM2I9Oaq8aE1jtb4juerxpDGiiDvFPrtC2p1yMKfmDC0ZczfFQcO2OgTT3B7dcdxHMdxGh7+8OE4juM4TlxpsGmXaTPetrQvSbuM6a7bUQ+8vVViWOpWqNvGVHJVNv0DibW8/ASJUXqGyr9oGzoslBYiy+hDhbpVedJkHauw29W0BRlk7xzdbj73Ji2PLt6vW6GU6qGSOCr5pZI92s788B7tEJt9lpaGNoMSSNripK67E8a2lNhLs3ZLrG6Vls5R+ixvoKYQ5//kHol1nnS5xKjsjqB0GZVLBq/H1lfUvpzSLjR2xS+T/T+0SgjZOoC2kalkMWxaiO4zattAc7m0TOdj0TYdT9r+p5QspaMoBUIpBlobqKSZujY3bhd7vWlu//XnayXW6dKOEqN1tXqJ3hdJ/TSNRV2maT0Ke99SGodKy6l9AlkYEJQCovLbsGXjlD7LSNHYmg06f5JDrN1m2sWXuh/T3Ammz2oqK2za5NM97eI4juM4TsPDHz4cx3Ecx4kr/vDhOI7jOE5cabCaj1umv2mpX6L5WP9n9WnO/aHmicnmO2wJIOXdqaX10JM1b1hRozlHsmkmLcP6GVouS22UB4LF8eZSPQ8q5az5VEvHcqCElMYvmMelUjLKuw+apNeHyj2pRTjpUSh3Hsxfmpmt+fUKibWb0k9iRPEbeyR2zLmtJEb6E8rrFszV8jcqH6Rzo5w1tXGnNuaJ2ZqzJW1IuxzVL1UE8udUbk75ecp/d2mp5/rCI0USC+oOzLgMmHLR+98l82qF1gvSpFiajgnZ/YfVfpEegUo+6fPCWsfT/fLpnU9JLKfPqRJLzMuK+TshXe+phDSNEd2H6jpO85Ps2mldIU1O2NJlauWwrVQ1OWFLWXc+/qnEElvqb0FNwWaJpY8doO+Fa3Zorx4f6VRQW7NK7dUT0nVOdTgtK+bvXnl6782Fst0gtdUV9uff/ptrPhzHcRzHaXj4w4fjOI7jOHHFHz4cx3Ecx4kr4QqNvwY+nb/fkpOP6CMox9VidI7EKAdHrbnD6jsoj0Z55yYpmpukdsYEWY5T63TyllgOn0feDWShTD4XpG9IbKn5v6DNdW5TPYe//k2tgknz0rW/agAI0vgMmNJBYgXb9dqSvoO0LNSGnCzSybuhfLbqFvYPUU1BWLtp8hqgvDhpCsJqd0j7FEaDc7BIdU8DTlYfjXdvVi+IlUN13oVtdxBs4W1mduJx6r+wDsZzyxNb9XtBH1QL6wrpl0iPQVAbiAFjsiSW000/741X9HuHj9ZWAeTZs3+J6iqOvfNSiZGOKAjZ0Ndt0PMiTdfKefo6msekT+gUUltV9c4qiY1+YqTEFq/RcyXb9FaDVBtC43T8TT0ltmJ2RGIpafkSq98DPizgJVK+GDRI8HtI1vb0O7L76Y0S21oZu57tAT1TbifVVgXXy2hC+P0M3/lwHMdxHCeu+MOH4ziO4zhxpcGW2gbt1amDIln0Uirmq3S1JYtiSpOQpTdtN4a1vSar5WBnUTPeDqXSLCo7o23OpO46LpRmClq4f5XS032QiqEUE5Uz//0l3ZamLVPaXidaZerxhbUtpmtGVvfUYbcO0glkrU3Qe2mO0n1AltGXjGotsWC3VkrPUSl4ZJceG/FV7LYp/RF2Tp02KktiB2r0ve8/o3byYbqDmnF363MH6zr15Ju7JEbQ+dK9Rt2YD8G9TOmTYDkmnStZmhcu1xRG2PWS0hWUTkkbGa5Enrr/UjqS5gVB6WGyRKDU0/KZer/QsVAXWnodpdZPHajryuoiXX+oTD5M+4RGebquBsuoqysr7FeTRnmpreM4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwZbaZiQnWtrn2gaHLRWlPGQd5LXpdWSbTna39F4qTzz4keYDS6s0L065yegezZ2SnoXKxMj2mGyKa8Bmt2buNomljNBy1pqC2LLSqhots6Rj27/zn/9O0neQtTiVnlJOfO+cEoltBJ0BlZVSDpxKIBfMkRDaXqeHzIuT9om0IXugzLnZmHYSI03Tg0/q9QjeB1TCR3lo0nIc3K7jnjb2GP08KDHE7PyVnSQUNo//1psRiZGuZOIVOnZLN2krerpm1P78vl99HOr4aJxJz0L6DppndD1ST2gpsaAN+aL3VBcSFtLSLXtU52dint5TB2tAjwLrG2npaA6Q9qsCrveB1Xpt14M2hrRuC386X2L5tw6XGP3eVC/S0vTPstWGnfR/M2A9o2tL8zvY4uOkyW3kNWRhkBEo30+s91Jbx3Ecx3EaKP7w4TiO4zhOXPGHD8dxHMdx4kqD1XwsfrvMklOO5OnTTtEcFNXUh7XK7dBKtQctKR8IrZWppTV5a9z48FCJrSlV3UJYXn9Cc+Dk00BW3cGcnpnZfmhZnpCu40w+BZ+NjLULps8/VKC17RmgO8i+rJvEqK07+QDQtSB9C0EaGvTvAG8EyrGXlqmupPxFzf/m3TFaYmT9fertvSW2u5N+L+WOz4P3zl+nHgLtOui9EcYzgs6/5lO996iVeOak4yVG1s07TP0SyJOC5kC/IXpem7epBoD0CHT/vDRLtRJBy3kzM4PzWLlcj5ly6uQnQ5BNPllrj5ukfi2rwSOkbzsdq9cXRmL+Jo8L8os4fbxqVMjS/IbfD5LYOxtVs3Ds5H+X2Ix56kFREQnnX5IB86IO7u+9b74lscyO5C+imo/WU4dIjNoY0G8GeZiQlmxbKbR3iKhlfZ/uusaTFX9QR1QwV9cKanES1DrW1ny5Vf//cNQ7Hzt27LALL7zQsrOzLS0tzfr06WPLli07/P9Ho1H75S9/aa1bt7a0tDQbOXKkffqp9ltxHMdxHOe7yVE9fOzbt8+GDRtmSUlJNmfOHPv444/t7rvvtubNjzShueuuu+z++++3Rx991JYuXWoZGRk2atQoq64O91TvOI7jOM63m6NKu0ybNs3y8vLsqaeeOhzr1OlImVs0GrV7773XbrrpJhs3bpyZmf3lL3+xnJwce+WVV+y88877Pzpsx3Ecx3G+qRxVb5eePXvaqFGjrKioyObPn29t27a1K6+80i677DIzM9u8ebN16dLFVq5caccee+zh95100kl27LHH2n333SefWVNTYzU1R/KV5eXllpeXZ/9+yYuWnHwkh0X5Jmp/ngQ5e+pp0WOstgz+ZJa2oCY/h7JNml+l/gX0uvS2mhOmHHPYNtykg6CW7VS3fuKF6s1BuoXOrfTcyB8hCPViWbEafCrgmpX+cbXEmk/qI7H8fD026qlDXhjkeUBeAzSedM2Kt0CLbNCfkK6EoDw2jRV5SxDkN0E6A7pfGgf0QcFeEGac1w6rqaCeIJTrpvlDn0drA+X2s1rDdYS+NdSvg7wqqB/NpLNVe/HaCv0OgrwqmraB9vYwzhUbdayoFxRdy5E9Y9fH6S9q3xnyi6D7kbxpeh+r9xRpcva+pxq5ptDundj/rvos5f5QryP501APKtJC0bhXQ68l6o9FHlLkKUS9XaiPVLDPihlrN8gnJW9grF6EdGSkcQpqjWprK+25J8/+v+/tsnnzZnvkkUesW7du9uabb9oVV1xhP/nJT2z69OlmZlZc/A9BZE5OrJAvJyfn8P8X5I477rDMzMzD/+XlqXGY4ziO4zjfHo7q4aO+vt4GDBhgt99+u/Xv398mT55sl112mT366KP/9AHceOONVlZWdvi/wkL914TjOI7jON8ejkrz0bp1a+vZs2dM7JhjjrG//e1vZmaWm/uPLa2SkhJr3frIVmNJSUlMGubzpKSkWEqKbtUFoVJEslenLeicPrrVVlKupUpht7codULQttr+JZraMdhGpK0x2r6kbdSMLP3e7NOyJEZb2LRluNH0dUEoxUIlXZSGoK3VJhN7hTq2ZdN1PKmMkc518BS1cH/3ZrU33r9bt9Lbga3yuJH6OrLg7pWn29w0H3enahqDSsQXzCmTGKUswnKoQEseE7Nj77VqKEEf0ke3fak9PdnkZ/XWMkEqJ6RUQvF9CyQ28ZkfSuzhH94usfb9JkjsuGu7SCynmY47lWrTNvxLizS9hyXdsNbQGkLfQem45La6rlKbiu17teXDnwIt1amdOl2LZbC+hb0fyeo/qbuuK5Q+q4O1wdL0mmGZcrXO0Q2LdO2itAalYpIgLUa/S7vBJr8DrKMVNXq+ZBNftE3vF5oDnXporFVm7KMApV0Owbh/f0LsmldVkWLPPSkvQ45q52PYsGFWUFAQE9uwYYN16PCPRbxTp06Wm5trc+fOPfz/l5eX29KlS23IEK19dhzHcRznu8dR7Xz89Kc/taFDh9rtt99uEydOtA8++MAee+wxe+yxx8zMLCEhwaZOnWq33XabdevWzTp16mQ333yztWnTxsaPH/+vOH7HcRzHcb5hHNXDx3HHHWcvv/yy3XjjjfbrX//aOnXqZPfee69dcMEFh19z3XXXWUVFhU2ePNkikYgNHz7c3njjDUtN1a1mx3Ecx3G+exxVqW08KC8vt8zMTLtl+puWmn4kx7Z+BpRNna65yrBlcn+b9DuJDb5rqsSoDGvTb/4msfY/09wxlZ1Rnm/bWxGJUQvvTbs1T0rlaQTlmKmUk3QVZFVdVKL5xSCRXZCHBajklUoWqSSQNBBhNQU0JmHL7qj8eM7zavtM1v40R6l8kObP8pn6XiobJ8txgjQAPaFFfTC3Ta0NSPdD12L0+VrivRys2Uve1zLBlG56HSnfT5oXyp2HvX9Il0Tt1D9+eIvETr5R2weQnoXKjamEn6ztKR9PpbDls4sk1vqC9hIL6k9I59YOrNpJA0FaoM2l4eYn2R90AP0a6ajmwvyh0mrS2hDBclQzs/MGqp7lr8v1niKoJQVZ1mN7i5BaxLDl1sG5QrpB+r0Iahhr6yrtr69e+H9faus4juM4jvNV8YcPx3Ecx3Hiij98OI7jOI4TVxqs5uO8cc9YctKRHBvlxEmfQPa0QWtoM86jFd23SmIj7tb235Q7Dmtd3SxL67PJlhr9SsBrgHQGVNtNLctbQq14WCvkYCtlst6l9xGUdw+rxyAr8IHnqBaILNcpn076jvV/3iGxYy5uKzHSWfx4vL7uvht0npEnAc15ytmTRqOqRseKavfD2qQHr0fpMvVBoBYIlNem8WzUPUti3+ulx0ZzgO4p0lE16dtEYvumr5HYuAfVFoA0KaTdIU8LWgdIB0Gt56lFA1G/R+8h0gKRpoAIrqPUioHbuuvcIY0K6bya/kA1NOhfAjHy7yDIn6Zdjt57tA6StojmKGkjwrZjIAYP1rny1pXvSqzl5SdIjNpqkG4q6P1BGssWJ6sOL/g7VVVZYdefe6prPhzHcRzHaXj4w4fjOI7jOHGlwaZdgl1tr7mqs7z26fnarG7P37Q3TPIQLbWlssCC7brFSV0l61ZBp0XYMgzbcZUslKlz5d45antNTLmzn8ReXaXpGdqajlbqVipttwVLLes26HmNuUbt72c/oNeHtqqpu27YrpJUAkhpCNoiphJSImxn0eL73pZYl1tGhfoOgkrsqGMv2dgXTntLYhmDB0mMSkiDJY+0pU/Xh0pUrUrHmEqrqcSbSo3DtkWIVun1prJDSiEmQezasZruuuU/3pFYygi18f8qhC19D1uqXAMppWA569bntXz0P3+jLRDISp7SYlRWTPOYIHtwshanlE3YtGrqCS0lFrake/5jOlaJLTU9Q2X4lD6i1GUGvI7S17QmhS2jlddA2W797tj7zEttHcdxHMdpsPjDh+M4juM4ccUfPhzHcRzHiSsNVvNx2W2vWXLqkZwY5fEp70W5T8r/nj5ec8ykR6CWzmH1GLk/VK0JQWWL0UrNT1O+lspZycKd2FOsOUwqXyY9R7AMlPKIlL8knUVkreZ/w9qhU66ScpMDxmRJjMrpKJ9cMFdz50T+CM1xBltVm7GehXLWNOepVJI0CpTHD1ty/tENT0iszdnnxfx9qEC1FwnZmsMmfUf9bp1PdXtUk3SwRl9Hepldz26XGOm8yG58QF+9f7q11JLc2067S193w48kFrSbNjOL7tH7u/Gxqqshe2wq0Qx73xJd++v5htHqpPZTbQNZ89O403fSPZWQptqQQxsi+rpsXRuaH6/rNOk79sHaSOXbpJU48TidF+sK9bdlZE/VQy3cFJEYQesAra1nDlA7gScf0/sgo6uOPWkRKwIlyKSRo1YWi96LvUdrayrs6bvHu+bDcRzHcZyGhz98OI7jOI4TV/zhw3Ecx3GcuNJgNR9Bnw+ybiafikunau39/hrNo72+UN9bNnOTxNLP1M+jmv86aGkdti6c2o5TDTjZAAdzdWZs8127Q2NfxYZ9xexIzN+UW6Rc5UDQrZSU6/UJ2+o8rA5k/7tqF0wW6ZQTPqmX5i7fXl4msbB+BjQHiCYp+nlh24TTGNAcPfDCOomljMyXWPmL82P+Tu96jLxm/UePSywjQXPTkUT1VUg6pHqUXmN/JrH6wojEmo1pJ7GwkD4o7FwmDyDS39D1IZ0X6Zz6dNdxIbt2ajNwxqWqv5h912aJtRidI7Eg5NfScbxarpOmi6D2EdSiYulSHSdao8LqYCad3VpiT9y7RWI0dq8/ob5SQT8UM/blIC3H7keXSIws0qkFwOXTT5HYrv06l0mTsn2BzpXg7yu1YiCto9urO47jOI7zjcEfPhzHcRzHiSvh/Gy/BuqL9lt90pEtvJE928trZsBW2/QXd0mMtotoGz4xT8tvyaaaOk2SNTB1TV0wR7frCSofLMnLkhjZXNO2pG4Ymh2CbXhKsRBBW939hbqVZ2A5v7lUx47K7sj2OixUProfusYSkV06pzbl6HYmdeokwqbZ6mH8qKQwIV2vz2ewvUzzkebF1va65R5MsZiZ7a5YH/N3ZI3aiKdblsQ6J2tq4nspuvU9ZKD+O+iR12dKjEjMO0di1IV1/n3bJEbl8FR6iW0WoAS9EZSk0nsprbrz8U8ltu0aTYFRC4DEbL22TZJhDsD5kg17cF2JgD04pTrI0pzKVsOmVSnFTZ1paT0fc5225KCSV7IwoA7DZONPtvM0xtRdtvVU7Z5M6bO0sZripLJasmegEmSyHQh2Kac1lO6LoF1BbXW4rslmvvPhOI7jOE6c8YcPx3Ecx3Hiij98OI7jOI4TVxqs5qPpid+LsVd/bYXaOZPdLeXqSKNBLZPD6jvq92i+Mneg5g2ppCms3e1KsBqunLVCYhuyB0is/yma59sDuVPSfARzf2asmQnaztcuVlUJlXZSGfAlk1XPQ625qTyP7PRJt0Etran8jezVV87T60i2z1mQ6yWND5WNm2mM8sl1K9XGP6m/loNn9dLzLd6i8zZaqbHGKXosp6TE5ntn7dHPv/WsLIk9+d96/gN76nz670V6HM2zNNf9SeRlibUBHUzBdp1nVFJKrRdIq0UltF3PVU0T6ZcoF38mlHxOH6FjsPmBAoklDc3TGGh8lm5SnQHpT0gfE2wBENR4mZlVwhpFbSuWg9U/QdoT0mMUg4U98cYrqq2itZHueSq5p7lC+o7moJs76QotB3/hkSKJRSt1TTq0Vz+P5tShAl0bckAT2KUllJKfHDu/3715rbym5UVdJRa0k6irCWfzb+Y7H47jOI7jxBl/+HAcx3EcJ674w4fjOI7jOHGlwWo+KnfW2sGUI7nh/HzN1c15Xttwk0Ux5XCpjXsd5NYOfkR+IFkSW3fjHIllTx4hsfLZmudbW9VGYnmgISlucbzEyLqZCNtym7QbzS7tKLGg10D2WZqHJrtx8gZ4ZrbmKnsfC224C8BfBXwFyEqectaXXKU+ADOW6rHQtagGTUVYy2waA9LHDLpcx3TtR6pVIu0O2avTuBzarfnz9AMLJPbSwdh7rV2i6q1Sv6fnOryNagy6XaLW0C9dNVtiB/a9LbH2jQdLjK7tzsdVL3P8TT0lZqAjopYFVTCXSb9EkD/EjHm6dhGdweeDLPtpHSA/jAMvLJNYQeehEgt6OpBmitbGOVWqRfj+BNWBbCtVbQN52NA6sALmcf4I1d9QW/gP79EWGj2vVM1Ufnv9zSAtR0aq/vt9+UzVJ3a+VD9vIuhASKdDrezJK6jNZd0ktv7P2spg3O8HSez1hbG+IY3762/S3jmgN+sXe20TE8PvZ/jOh+M4juM4ccUfPhzHcRzHiSsNNu3SrFOKpaQd2aoiO16y4Katftq2WgQWxW17goVwW90ao9LY+e9KCKkt1LTLeSN7S2x1EWzhw9YqWd5SKVXOKB2D9z/ULb66bLV9pg6H9YGt/pwcPTbakqSUQw2V4sF2a7sOeg5U2kipjmZZmrZ78Em126ZSvGAHXzOz0edreeILv3pTYsltNfVGNufUCZNKfOn46N6gsuTlYPF8qErn2bZa/d70aFbM372a6fX5rz9+IrFfnKwlpS37jpfYj89fKrHlb+uxrek0XGKN8nTOErQdTqWc1I06kUpt++sYlEC5PpWQkh06pYcJsuynku7vQWqwyUTdcqc1JHg/l23S80oeomWmNCZUtknlwlSCTvdeApT4lpToNaPUerRSUzb03rApNbJnoDQbrbVkuU6ltoUwv8O2nzj3pu4Su/tp7WwcbBVwDJSRF23Ta1u5I3btqa/RVN8X4TsfjuM4juPEFX/4cBzHcRwnrvjDh+M4juM4caXBaj7Kt9RYcsr/fniUh+2Vp3nOknLNoxGkbeg3RPNtS36u5WpdbhklMbL5pjbKpO+gMjEq9erbS49v/jrNMVNed0BfzeEtgnw3tVcOlqKRnfX6GVqKR7nEklTN9R7bVvOmf7p9g8TO/S8tk3t9YURiZC2e3lbPi3QW1IKaLKObnX2SxKqXqE38jiotPaT27Fal83Yt2GhfOEZtw383+o8Sy/7haIkdrIEWAEn9JNZuUKzWYtnih+Q1RJuRPSS279N5EvvFX7T0tC5B5/ExOXodqe1Ay8tPkBhptYItwc14XgRz22Zsz090OC1LYuURLUklnQ6V/TZJ0XWg+1BdByb2Vb3abevUrv3UgaohCZZ8UkuJJNDL0JhQ2SaNMWrLoIw69/RsiZ3US9eL+VCGnzpcS5fDaNrMzGre0bGzib0kVAe/SwSV2r40S9cLOhZqeUH27y9CjHRjuwN6xw2L9DeJfm+DuqIaKLX+Inznw3Ecx3GcuOIPH47jOI7jxBV/+HAcx3EcJ64kRKNRFQN8jZSXl1tmZqad/r0fW1Likbxg66vHy2vJLrrVoHA1/0X3rZJY80l9JEa210mQ+1p7+/0S6zTxMolRK+Tmx2sObkgfPQ/SGVCL7FTQBZC9OrUJp/bSw7pkSeydj2NtubcvUO1Aclv9LPK4oPz3nr8VSoxs7ammnsaEdCth/A3M2K9kN7TcnnScehdMe0HtnMnXJOx5kAZp1WLNz542KktiNH82gTdJRl/VfBy34/mYvzP1423GGtVo/NeF6vNB/h3vleh76xI0J547eIzEDm5X2+fG+freFier1ibYJsDM7GCR5smb9FU7eeLE4/R11AaCdETLpmtrAzpm8jJqCXow0rPQ2kUEPXXoHqDjJT0GtR3I6Kp6M1pryUeDtDF0D5BvU1itDdmwt76gvcRI10djTOtvzVz1GRp7l957NH9o/EjDRzbstC6PGxk7z8jmnbyINq6MnWO1NRX29N3jrayszJo10zXt8/jOh+M4juM4ccUfPhzHcRzHiSv+8OE4juM4TlxpsD4feVPGWnLqkfx2xUbNX5J+gvooNG6nuT/qaRFW30G5tQNnXiIxqlHvOF57gmx7KyKx10DzQG3rSQNAudiEdK0LzwadAfU06NxKxz7Yrpv6LdDYUW+XjCx9HZ0rQdd74Dmadyb/Dup9QX0e9n2g7+0xtrnEbp/+qcQmjG0pMRupefxX39HcLPXJoDw+aXzI22bn43p8jVNUb2RpOlfe2hV7PTp8pvnqxMbqeXDTX5ZLrDZB77NTmqpXyZsV2ismr99FEgu29TZjH4SyTTq3k2DsdAaYZefq60hnsXiNriuHCrSnjDqTmKX2U78N8uCgubIH7jXSS1Tu0zVz14Ov6Ov+/cyYv/MGqqdHYku9f8JC2pg3XtHzIs8M6mVEOp1CWM/Jq6II/ECm3n+cxO771cf6eTAGdbAWkg/LJ0U652n+EPR7uA3mKK3Lh2Bc7hv7h5i/u93wI3lNEoxTcNwP1obriWPmOx+O4ziO48QZf/hwHMdxHCeuNNhS2/PPm2HJyUe2+hLSdfsof4SmDcK2WKftR0oT0FYTlbqFLeEqKNBtKdrS3fLEVolVblwvsZ+//h8Sq6jTjeOXFqltL50HlVPRmAbLtWjsKI01eDDYwT+2U2K0BU3fUTZTS+LaXNZNYhURPZYzhmVJbMbdW/7pY6HPoy1yKhGnFtlUHkxQSS6VUVOZM1Fw6wL4vNjrtmPHu6E+K7exlvdas5MlVLlf50DTVnodE9P1Xqb27LTNTS0LKA1I15Es++m+DaYjzbQVgZnZtlJNi1ELAKIOyjYpLULHQvdBmBLXsOWtQ0/WNN78+zRFR6kySiFTSTulqen3gdLylC6lefH2Nb+R2KkP3CwxumaU1qB7ORXKl+ma0evo92b30xsllpin49woT8c5aHdPaZ0wMoKaygqbNvl0L7V1HMdxHKfh4Q8fjuM4juPEFX/4cBzHcRwnrjRYzccFV75kySlHclNRaNX7/Qmaz6qo0ZwZ6Swoz0m5eILsabNaa/63OZTiUSkr6Qeo/XdRSbgW3lRS+YPf9JbYsa2zJPbgk5qfzeyix5Ic0MKEzV+2y1FtA5WPEqRZoJzrV9HudGilx0eaFGp33/F8bR1euBw0DwC1GKe8K2lDqKyU7OmTh+SGeu/eOWpXnpAdqymgHPuWFx6XWNfLr5QYlQYX3/e2xMjmPXgcZmx9vvvRJRLLv3W4xKidOh0fzZ/gPWDG+ptDe3WukF6N1gYql42s1TlFayHpSgjSvQTt1feB9iKstThpaHq0UO3FPbNUb0W25DSedF/QdQy7rtI6Ra+jda9Xnpbfbi7Va0vXm36D0MYAzo3WR9LHkBVBUL9D6wIRnIu1tZX23JNnu+bDcRzHcZyGhz98OI7jOI4TV/zhw3Ecx3GcuNJg7dUT0xItMeXIs1EjyHGFrZWnumvKB9ZAXTi1Oictx/oZpRJrN0lz7NVL1G+jrnuWxFbu0PMg7wKyAyffg0XvqUX4ihaqKahbpFqBMtPPGz461vuCPr8exp1y4uQN8P4z2ka6A3iEkK6k+GVoTT5arYwp102f1/QEzU8fWB2u5TTlZmugtf2J4zVnvxxs52urVaJF2pWcKztJDP1awH+gEczH3c+9FvN3l5vPktd0TrtcYnSf0dilZOm9kpin84I8e8j+Pm2k6kXo2hJ0fOQP8fHDqlFoNqadxMgi/JNZ+yRGaw35cpDfQmmZzmXSs5D/S6ceqoMIHl+H07LkNeTZQ+vAzOm7JJbcVv1vSLNQDrqafWCl3na4zhW6H5fPVKv75sfre6lFRYuT9R79bJ3ey/S9E/vqvHgvU79j6VIJ2QiYF2+9GZEY2f1vLlD9lplqPoJr9YSh2hbinY91zpYF9CgJieH3M3znw3Ecx3GcuOIPH47jOI7jxJUGm3apr6q3+vojW0Fte2r5EpUxYpdK2KbL7pklseq94bo0UoqFSi+p+yJ1DA1TympmVrRNv4NKAA9tiEjs9Os6S2z2XZsl1vmafInROC9d+uXdF+v36Pl/D7YQKX1GW6H0nWQ1XbF6FRyNbsNTesFMt36DZYdmZhthrtA2fEK2bk1H9+h5NEnWbVmy5V6xWlNlYS3xR5+vHZVnXadjdfxNPSW2Ku3fYv4OW+6Z21TP4VVIx9WtlBCmF3JydP5UdtNUDKVaKYVBaYjawogejGnapbawSGLVe8OVMw++UK/FgjllEqO1oWLpMj28c8+QEKW8qJvs+x9qmilYSk3lo7T1T52YNywK12ZhzQa93kQKXG9KoVZC6prSR1Rev6JarzdZzGd013GhlPFv4H5sD6kiSoE1SdbrSClt+r3p9f96hHpdkCcf2/6lrzHTkvHqSjN7ONRbfefDcRzHcZz44g8fjuM4juPEFX/4cBzHcRwnrjRYzUfXwRmWmn4kL7hhkebJg+WeZqwfSIM8WudWGiNG9tTc30tQ7kjtjHfdq5qKDjcMlRjloql80rI0hLqA6lYSW1eo+dRjLm4rMdKzJHXX3GTQ9plMxIdCXptokqLn+n6x5qHJanrlHx6UGFl6b3xUE5H33HmHxO7+97cklvTjvhIjSN+RkE42xfq6GXerXmQQlGpTHrsEdD+tBul3LF6j91CjfC1BDmN3Ty0GqLXBX658Q2LH3vF9iX1UpcfW7nQtCSQtC50r3VMZULp85ik6RxfCekFW2Cn5qqOiXDxBJanUQoK0X9mTR0iMSu4H9FX9xZznVY9A47c/oLeh9aN2sZaKbjSds9/rpboI0i6RlfqBF1Tf8h9Pny6xt5erXob0f1ue2Cqxremq5Rh0udoLkFaCtE+XTtUy9z/dvkFie4r1+tAcfX1bRGKkBdq/U3/76HekbJPO5eDcu2Rye3nNn25eJ7GM1KyYvxPrvdTWcRzHcZwGij98OI7jOI4TV/zhw3Ecx3GcuJIQjUZVwPA1Ul5ebpmZmXb9Y29Yyuc0H1THTTnNsMy/T1vH5/5Q85XEZ+s0/0l5zTMHaM76mdlqd5vVWnOTYVvPk58BeaKURzSfTLbU1J6c7KYbt4v9Dsr/Ugt38lwJfpZZ+HbYK+fpOSSCdwN9HuknyMKe2olTK21qX02eBGSXXFKu+VqygqbrUwdzoPexem/shvOg+4o+L6i3oVwy2TtTG3LSYxB0HETYVuI0duSTE9Zams6X7tHqVapHuOW3AyQ2e8POUJ9H6wW1fKiq0aWdLOap5UHQ/yQJ7ikau133LpbYsD+cJLEwXhNmrGMgbxaaA+RPRPf3xpU6xmHbApAfEelA9s9eILHcKadKjDQf2+5cJDEa0xWzIxIjL5EwvkBRaDUS9H6hz6+prLBpk0+3srIya9ZM17nP4zsfjuM4juPEla/08HHnnXdaQkKCTZ069XCsurrarrrqKsvOzrYmTZrYWWedZSUl1NzGcRzHcZzvIv90qe2HH35of/zjH61v39gyxJ/+9Kc2e/ZsmzlzpmVmZtrVV19tEyZMsIULFx7V56emJFjq57aHaDuqYLuWDFG6Ynx3ta4uvVi3m6lcLSdHh6iirW7xbfrVmxJ76mzdGjt7opbBUpllpJ+WEdNWegVso1I5YkZXfe+JUApL6SgkkCqhMlPauty/gbZRNTWRnavvpRQLQXbWdVAeTamyVplQngdlllT2G7Yr6XLoalu6TEtNqZMqzdE6qIzNSNH7Ze0WfSHZOdM2dHJgq5+6RxtsfVN6qjZVrwVZV69arGOSDV14qXsrbYdX7tOt5BW/nSaxCXPvkRhB29xkCd9xvN5nlGLJaabztiBN596uZ9X6ugK66VKasgK23D+D9NahvbH3KSVJyE5//8RBEqP7lu49Sv8QlHaitDKlWCgVRang/av0Hj1pSgeJvXLRsxI75rdn63es1LJsWuPI6j0y6XiJUTqOyt8pNUjz9uDK2PmYfqaWC2PX4cC410C5+BfxT+18HDhwwC644AJ7/PHHrXnzIwtkWVmZPfHEE3bPPffYKaecYgMHDrSnnnrKFi1aZEuWLPlnvspxHMdxnG8Z/9TDx1VXXWVjxoyxkSNHxsSXL19udXV1MfEePXpY+/btbfFiFSKZmdXU1Fh5eXnMf47jOI7jfHs56rTLX//6V1uxYoV9+OGH8v8VFxdbcnKyZWVlxcRzcnKsuFirIczM7rjjDvvVr351tIfhOI7jOM43lKN6+CgsLLQpU6bY22+/bamp4drPfxk33nijXXvttYf/Li8vt7y8PPvkT9ssufERnUKnSzvKe6lsjPKLu8tUx0C5tb7tNEdItr1UcpXRV1u2E/R5J01uIzFqRU7aEIJyzFR2tg1yjmQrTATLNstBZ0F5/KIsLT+mMkGyvw/bNpvKQOm9lGPO7aW6jazWmnencmuyc6ayWmpFntVbdS8f3fh3ibW8/ASJUS6W7Lspt70R8v2kmQlqV6j0EnUgAJWHF4Amh44jskuvI7VxJ20MHXPXYy+SGJXDE2RLTtb5pEkxKIentStvoM6LaihhP/E4LSPu00o1Ga+u3SUxmredetC5xUKau7oNeg6N8vSzSt7XHe6JV6hu5aVZuyVGmpfWF6gd+Po/75BYTYG2vMi/dbjEqJfF0qWqQRr/9AUSWzBH1/ixd+nvQ9cWqkt6dZXa39P9QvcylfWTvmP0+fr7sC5QMku/rVtf0WNrcbLOsbAcVdpl+fLlVlpaagMGDLDGjRtb48aNbf78+Xb//fdb48aNLScnx2pray0SicS8r6SkxHJz2UMjJSXFmjVrFvOf4ziO4zjfXo5q52PEiBG2Zs2amNiPfvQj69Gjh11//fWWl5dnSUlJNnfuXDvrrLPMzKygoMC2b99uQ4YM+b87asdxHMdxvrEc1cNH06ZNrXfv3jGxjIwMy87OPhy/9NJL7dprr7UWLVpYs2bN7JprrrEhQ4bYCSfodrHjOI7jON89/mmfjy/iD3/4gyUmJtpZZ51lNTU1NmrUKHv4YW1n/mWcfmM3S884ksck++mVoGOg+nHSd1BOvG3PcC2JDT0ENN9GvhwFBZonpRwh1ajXF+6VWOdr8iVGuffdz70G33GuxKh+vHaHHnMw300+GmTnTbneCrC9Ltqm14K8XpJSVRtCuUnKOx8q1Bzuiy9orpPy7pQnJ++P1279RGLRSh3PCfcOlNjbU3W3kLwq6HqTxf6481XP88dXNC9O7F8Say+ekK73VGK2ak/6n6L3CkE27OQRQr475GuTkKbXgq53zyvVz2BYlyyJUUv0kk91DKKVeh6JLfVaFG/Rc6M26WQTT/4vc+G+OjA4nOdCHbSyL9r25Rl5uh/pXGlNXv8LXY/ePv4siQ09WefPNpjbtMbXjs6RWFn3LIn1ytPP21yq92jla6q5+/sO1euRpfm6QtVozH6gUGJ0X9Wt1O8d96CuDe9/qFrEH1+l/iJPz9fiD1q/g5C+I/j7WJMMv5dfwFd++Hjvvfdi/k5NTbWHHnrIHnrooa/60Y7jOI7jfAvx3i6O4ziO48QVf/hwHMdxHCeuJESj0S9P9sSR8vJyy8zMtAdfnmtpGUfy9FRTHpZzB2vu774bVunrbuouMaozJ6jumnp91IbIrZlxDq4acrP0vWdcqmXNb7yiepFDGyISawQ5UcrbB7UhYduaN26n+dWwNevk00BQK3bK15JehvxACPIXIR0IHTPlyovu0/lYE9Hc7M9f/w+JzViqvhRnDlA/lRnzVAtTPrtIYsngIxHs01OxUbVB+SN0vlNfHBqTdh001009ZshH4phztV9SBuhFurRUDdbrCyMSo54b5HtAfXtoXqRDLygad/KqoJ4/5C9C+hiay7SGUL+coPdO2H5R9Pn9hujxDuuo+gHSH1XN0x44h3bvk1ijlqqDoXkc7Fljxj1q3rvjU4mlnQJ+TLDukYZk8Rq9jqQn3L5A5zdpSNKgR8/6GaUSS+qu761bpb8FTX8Qew9RXyDS8Glvlwp75GdjrKys7EttM3znw3Ecx3GcuOIPH47jOI7jxJVvTNplW6lul9G2Im3f0tYvWdbWQ4zKLGlrjLYgafufym+Xz9wjMUpPNILtavq8ZdN1u55KuH75iz4Sm/6hln9RW+ZgaSTZXhN0vNT+ndJstM1NY0wtt4vf0DGmssBGLXScaNyprJag9BnZ81OZaiJ8L1mOD+mj29pUeklznkoZyUY6eL77PtB7gKAU4JznNf0TrdQtXUpbkhU/tUmn8mOaF5SuoLJNKoendOSH92ySWDNodz+gr94H1J699dXjJbbnsbkSy51yqsSIsOmt4Dw7dWCmvKZ4v96jYeaOmdmev+k6Q2mNcSM1JdIpS+fFY3P185JTNTVBa0iwjNzM7Nz/0hLsmdPVmp5KugmyTtgHaQyC5ihZ9lN6K+xvSzD1Ta858MIyibUO2AF42sVxHMdxnAaLP3w4juM4jhNX/OHDcRzHcZy48n9ur/5/xaJZ+yw5+UhOkcrLKN8/rndriS3O1BwzQboSsuqmlvWUJybdwqrFmhNtAvbilIdMPUHLyciu/aTJmjulnPW0FzQ/TbqAlpBLpJby8llgZ22g+VixWnPOSZCv3f67lyTW6tJ/C3VspHkhnQ6VwZLOoFWm3jo0xjQGgyapDoKuI9Gnu+ZiyaY5tZ/m6Em7UloG5Zir9DxGXBNrzT5nrbY2IL0M6Tvqd+v1oZJAuo4RKGemckdqCRCRiNngwTq312zQ7615p0BiHyxSPdgPftNbYrQOkDaCIJ1K9eBBEgurW1hdpN972qgsiQWv26O/+Zu8psWo0yRGJfJkiW9nqdU/6UBmwFyk9ZcgHRrNbYIsFg4VqH6CynlJO1hSoscStlUAldqSPcHKefq9hwq0DP/Au5sl1uuO0TF/k66xww1DJRbWOoLwnQ/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40mB9Pi7+xX9bcqrmYz9P9RLNyx1zcVuJkQ8AEdYbgDQA6/+s1sBkVU5tszt30Jw1tbanennKG5KvCeXFia3Pq53xSVM6SCyYsw5rM0xtn8lqutOlHSVGecgBY7IkRu3ZLx6mXguvrtW6fbqOuT/UvC7lk8k2nOymyeKZyOqt+fMIaC1oDHKaqf6CLPbJ+puOOWivThbkZKdPGgDSFVEO+8QLNbdP+ol2OXqudP/QHCWvINL9kE9MzUeqAwn6HpixTof0ZeTdQL4udM+TZ8TOx9UiPP1M1YHQvA1e3y1PbJXXNMpXC3+CtEDB+WTG1vTks0TzbOA5eiwVYIlftE3HneY72fg3Bc0defbUF+rxkdcLzbP89vr7QBqk/Tv1PMgmn9Yp0jkF7ys6jjBeW7XVFfb4TWe6z4fjOI7jOA0Pf/hwHMdxHCeuNNi0y2W3vRaTdqGyWkpDVO7T7UfabqXS2EXv6VYblU3V79HtwbB2tC0vP0FiYTuEUhkW2fsOH61lllTOiqXKYGdM5XlBOrfSbToqs0xuq6+jbXiCtqBp+5G28KmcmSyuqfT0k1laxkjpBJpntF1NNtJkO79yns7Hqy/RFNhbn4TrvEzpOOLAC+skNu7B2HRC2C6ddP6JeVkSi1bqdQxbUknpCkptUbl+CdjQE82P13JHshyfv04/j+yxqUsuvY6g8yUmna22A0/cq92daS536hF7n1LH1PpCTeP99E/DJVZ8QNeeV9+BLtuwDlB5OJVRE2TZT1BrA4JSlJR+pN8WWlfW/HqFxJpM7CWx4LUw498CglK3lOYPpmlfvXqxvKbr9f2/9PtqKits2uTTPe3iOI7jOE7Dwx8+HMdxHMeJK/7w4TiO4zhOXGmwmo9gqW0dlENRy/G2PVV7kZaiVt1UckWQLoKomqclqtlgIUxlcsO6ZEnsnY9VZ0Ct7cmunVorv/2fz0vs1D+dLzEqUw3bxjwI5bX3bFa9DJWIUfkktYemfDWVkpHmhTQfFTV6zMumF0sssaXOs9Hnq0Zh+adaGhu2jXtuU831vr4wIjGao2HHgMr96BpFnn435u+gHbOZWXlEc+x1Ie2X6VpQWS0dG+myqIV5WItr0vh0OC1LYrSuZMC1pXuUNCmkUQirLaKS4X3T10is+aQ+EgtTDl5fqPqj1BNahjq2sBYGYSldpuNJFuT0vaQroflDkNaPtEpjrtF1/603IxKjdY9aCkSrdF6Q1o+g9g6kpQqWL59xqdoL0FpWEYkdOy+1dRzHcRynweIPH47jOI7jxBV/+HAcx3EcJ640WM3Heac9ZclJR/KdZHEdzDeZcSt2atWckK05YWq73mOsWupS7jgZvjdsu2HyRyANwHt3qF1yzyvVLjlsbpssmUnfQZ83pE/s+JF1dxJYKIe1IKd8KOX7Sd+y7FG93k1/0Eq/A2r0CbJ1p5wr5VdJG0IeLjTG+z7Q7yXLcfKnIe0T6QJIL0L5+GAu+nu99PPpfqQxplw8+ZwUFKjmg+ysaUz+ct40ifX/9RSJEXSvbFypehmyCG/XQe/bj278u8RSjs2XWIuT1WOHjoXmCq0hYbUWYdfRMJDPEunhTr6xm8RoHpNXCenhqC1EUj8dT/INCWv3T15B+5fosZD/CdHyoq6hXkfXNqxPzOAuesybdutcDt5rpMH6+0t6XsF1sLamwp59eIJrPhzHcRzHaXj4w4fjOI7jOHHln693+hfTqGumNUo5sqVO3fmo/Ja2+snOOqxlbdgUC0E2tlS2GYGt+e3wedQZsVVmuK62BdANlUr7ivfo66ir7YGa2PfSNjyVy4YtDaaupFSeOKyjbq3uPl/Pa+sravWeDSVnVD5JKRY63+INEYkNGAMla1AynHOiblGSZT/ZNNNWMqWKqByRXheRiFpLU7njJZPbS+yjHXpPVcPWP40JnT9ZYVPXz66XXykxgra0CdqGT2qj40mltmkj++nruuq2Nq0rdH+T1fk+SBnT+FEp5+nj9R7aXBq7hoS15ifr89YX6LxYMKdMYtTx+6mntct0/1N03PdAWpW65Hbtr+NOtgt1aVriTG0wKFVWtknXMxpjalEQtsM5Qb+HYbs2B1PfVJb//Ql6DsHu5tHq8I8UvvPhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TVxpsqe2UB163lLQjuTMqAaU8JNn7Bq1jzcK38CYNALWPX1eouVTSGVDpJbU9ppK1sNbApEegMqz5P7lHYifdf63EqIX3aaOyYv4m693il1XfUr9bNQbpZ2q5MJUEks5gwJgsiRGkKSD9AFn2Dz1Zc8yUE6UcM+WxCbIhp88Laxu+f6fOb9LMEKQFGnhOdszfGSk6TqRHITYs0utIc5YgzQLpvCj/TZB19f7ZCyTW5ZZREiMdGmnJCNJtEGTVHdRbmfF8pHLZsk26ZtLYF923KubvE24f9L8e5/9AmrbUfpkSo/Jb0uZRCXYFlJnSeDbK03uFzpXmFN23pA+itZHWCypTpfssIV2/g/RB+9/V8+14vo4fldou3aTl6kHovIi6VbHnVVtXaX9960deaus4juM4TsPDHz4cx3Ecx4kr/vDhOI7jOE5cabA+H5Vl9Xbwc+3NSfNRvUprxatbZ0uMPBQoz0faELJXn33XZomRluEHv+ktMfIk+CpQzTvZUpesVr+FThMvkxhZMpPHQbBGnTQGjbpnSYxszvPzNb+68KfzJUZ+CSvn6bgTZI1M1t/UFp7y6WQ/XArW2qRLIj0LaT5Iy1BVo68jfwjSAp0zSa2qn52s1t+XTz9FYjPmxeqXyBK/drHm+7PPUs1CWE8YmsdkYV+/R9/b/Hi9LyLgdUPeJzZ8tIS2PLFVXwd88mmWxGgNIT1C3kDVfpWU630V1iuHXkdjf1IvXR+XXt8/5m/STAV1QGbcomIErL8loOUgP4vN23Q9orYDuafrsdCc+vCeTRLrdGlHiZHWj+5lWhtzm7aUGOk2wkKW/evg94Ys12fctkFigy7XezK4jtI8IY1T14vbxh5DZYXZW/IyxHc+HMdxHMeJK/7w4TiO4zhOXGmwaZcWrRpbSvqRw6OukidN1tIiKvej7q2HwAqbuiASlDo48bjOEpv9gHZXZTte3c6jEkAqzSooCNdZc+Ne3Uaj0ksqFTxtfFuJvboqdhv+1IFaTjd/naZ6qPzW8nUbMP/W4RIb2VO3r19atFs/D6DOxtmw3bp3TonEaF5Qh2Hq1PnJp9r10lrrNjSlnmjbfFw/LQd/6xMdA7J6f32hlha3m6KprCcfU3P/0efHfu/rT+h1bJSvW9+U6qgv1C3j2tE5EqNywmMu1rlIpcZEoxZwX0xbKTEqKy2GMlAq6yc7a1p/KKVGKT8q16fSVUpPUGdouv80wWm26Vdvxvw96J4z5DVFJbp+kKU7lQZTuSxBKUVKY1FKpOR9XX8S0nVMqMUAdZ6m8m1K7z0/dbnEyE6AoPX3k1m6hrS5TNcakibAaotjHywtPnOA3svUKiE472qqwt2LZr7z4TiO4zhOnPGHD8dxHMdx4oo/fDiO4ziOE1carL36Zbe9ZsmpR8rHKCdOuSuybq6ctUJiqUO1DLa+MCKx827X1734guaiyZabSg9rC4skduwd35cYQedGuWOyYW/aRvPdE4ZqSdg7H2t+sXC55u2DZYFUpkzlrXVwbNSGm9o3L3pPc7OpcP6keSHIkpk0OQTlosOS317nMpVgD+mj5ZMvXfqOxDInHS+xPY/NlViTHwwJdXyUt2/bMzZGc4LK8ygPve73n0gs85wuErtklJYGP/y8aneorJjKVklTQRofKkUkfUMtlEcTWEYN84fK1Um3QVoGWrtIg0TzjI4vWEr+7s1r5TUJ6TqPqbSaxpi0OwVz9byS2+p30HpBbRZIMzVhrK55q4v0dWFL5Ad203kW1v6eSv175ek99MYras1O91rYdSXMfCQredJH9fnlgJi/qysr7FeTRrm9uuM4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwWo+nnr9XUvPOKIZIF+BMy7Nldhbb0YkFsxXm3FtN1ngZmSFez4rfkPth4noHs0vNhvTTmIVGzVHSD4fJ16ovg/vP6PeAB1Oy5IY5e3T22qOed/0NRILeiFQfpXGnXwLrEpz3Yl5Wj9fv1vzl4kt9TvIRyJaqT4IjY9VvxZi+Gj1VSjYrjlhIjU13PwhfwjSrlAumvwHug9VvUjRNh1nskmv2wDamoC3RHpzzQmTDmbXs+oZQl4LLcDngz5vz2a9jqRnIsjrJTEvS2KkeWkEmq4kiNF6QboXssknaF6Q/o18PsJCXiytBsXOH9K3dO6g15HaHZAujeZP5T5d36qXqIcN+e6QZxFxqEDX6Z5XqgcHeceQVoLuH/xeOD7StZE2hPRBpX9cLbEmE3tJjLxotj6/U2KpJ8RqYej65OR8uS2Yaz4cx3Ecx2mw+MOH4ziO4zhxxR8+HMdxHMeJKw22t8v8hfstOfVI/T7lYUnfQb4PYXUG+0ErkB+i/bCZ2THnqn6AejqYqWc+5bGDOVczs8/WqeahW0v10pi/Z5vEOrRSbUga6AKoh06wlttMc8yU09xTrNeCWolTm/SENM050ntJ27B+ho5TI9CQkL6F8qvUx6X1Be0lVhFRv4k9e8Pl4tHPAfLOlIvtDO3JSQNQNlPbiScN1flNuiSzWM0HeVKcNipLYrOz9fpQ+/PSZfqddA+EbR1PHHeteonshnuU9GAGfWHC9nYJqwfrOF7vUfLFWTZd9W9NT9B+Jycep2vDrOtWSSxlRAeJBTUepAtZBXOAIF+OQ1U6nl376zwuStN19dxTdJzIn4iuI+mNaM2j+5HmPB0z3bcRWB8XzCmTGK1JpH1q9eO+EiPfpmdmq8fKwe0aq+ueFfP3kBNVr/HarerPE/R18d4ujuM4juM0WPzhw3Ecx3GcuNJg0y5pWY0s5XNb73VQ1kZbkrTVOBdeR1umZL+8fKZumZKV8QbT7UFKJ9DWKm3xUYlm/R7dSv/T7RskZmm6pbmtVLf91t04R2I/f/0/JPbgk5rGCbZgpjQJlaFRmqSkREsHqayNyo+p9JRSao1aaNqFSoiTh3WVGJVC0/WpMJ1nlIogi/RDI7W1PVlLj4DtUCpDH3iOpjbqwMJ8/xLdrk6AVEmw5DFYmmdmtvxT3Zqn+R62zJ2gFAuV2p46UMujyUabUrKUFqKUWjW0dzhjWJZ+L5RMU5v0tBTdXq+BMU1I188jq+73PzwgMWrtTmmRzoH01rCT1NbgyTd3SYxKjSmtTKXLrTL1HDbu1XueUglE/gi9V1plankrWZDT9aZ5RsdMlG3S9ZFaANC9kdRbX0dl49MhLUTH3Dtgk2CmrUpKyvWzaB0Mlt9WV4Z/pPCdD8dxHMdx4oo/fDiO4ziOE1f84cNxHMdxnLjSYDUfu59aa0mNjuSBk/prrrL58ZrHf/Xqxfq6SX0kRiVxlTs0N0kW7ss/1VwiWShvXAn5T/heypMWb9FjoRb1lOulXPSWJ7ZKrNcdoyX26irNgZM98tKbb4/5u/vYa+Q1mXB9qG02tcMuKNA8NOVwKXdOVt3UInpPC50XZF1N7dTp+pDdNrXXTgN9B1ktN0nRY95cquNC98GxbXWsVs7bITHSD0T3qM6gUaAUjyAL7oqIzne63jTGpBWoB/1Wn+5ahr90k+od6N4jfRCdB5VgR3bp5724rlRi0SqdA2QdkAE6osRs1YMlwjwjaF1pB/N7JWizgiXIb32iNuf0+WG1EnTNSHtB15s+L4z1t1n4tgikV8uGdhHUyiKlm2o0qISW1hDSzu2doxoXagtA7Sx2fKxjSiXSpMEJQjrJYJlybY1qdL4I3/lwHMdxHCeu+MOH4ziO4zhxxR8+HMdxHMeJKw1W83HG74+39IwjGoe576tWgOxu203RfHq7HM0RrpgdCXUc5F1AOeGNmzXXhXbB0NacCNuue9tbEYnlgBcEeTdsnLZSYidADfh28AHIP3dqzN/RSs1rUx52/069FsEaczP29GjVV8ez1YXqI0GeJkRY62ryfSCb873v7ZXYUviOerDxb5Ki50E+DTQHSM/y1NOq7wh6s5iZRUCPkHOi6pyKX44dl0zQ1ZA3y+5Hl0is3R3fl9i2OxdJrOXlJ0iMtBfUhpy0UDSnErI1P0/jSTqqvavUHju1n/qL5HbS76DPo7lHPilo4Q76gUMw90pgHSUtWVAjFrTRNmPdxrZUarOgx0v6Dhr3StCbUTv5ziG8K8y+wJ8HdEnkz0O/BYcKVI+Re1q+xFqCJpA8pBLS9XXHXNxWYtS6o3C5Hh95idCxBDU+W5/fKa/ZA1b3NXNjPaBqD7rmw3Ecx3GcBspRPXzccccddtxxx1nTpk2tVatWNn78eCsoKIh5TXV1tV111VWWnZ1tTZo0sbPOOstKSsI50jmO4ziO8+0nIRqN6l7pF3D66afbeeedZ8cdd5wdPHjQfv7zn9vatWvt448/toyMf2zrX3HFFTZ79mz785//bJmZmXb11VdbYmKiLVy4MNR3lJeXW2Zmpl3/2BuWkn4kVRB2W5HKjWiLk8rkKNVB27wEbUEuek+31+tW6dY8kdRPSy/pvWOu6ywx2h4kqDyY7IIpjRHc4qPyPyrfGjdSz+v1hRGJlc8ukhiVl2197UmJte83QWI9r9RSbbJmpzk19GQtZaVOt2mntJHY9RPV0vy2RwskRuXMdVDuR6+7cIymQMJ2+SRbc0pHVQdSDJReoPunHViLE+tnaIlqYku9pyhl1fF8HXe65yldSt1aqZsu2qvD9aE536mHprvCQqXpYY+PUk9k4V5Vo+MStJ0fNElTcWs/0i12Olfq8lq5T9MGvaE7c04znT+UjqS2GmG7nh9YrZ+H5bLUUbqDlp9SOoVS4WHlAAdXagqEbPLp+CiVRbYLQS67u7/EqJVHsJtybXWFPX7TmVZWVmbNmuk5f56j0ny88cYbMX//+c9/tlatWtny5cvtxBNPtLKyMnviiSfsueees1NOOcXMzJ566ik75phjbMmSJXbCCZrDdRzHcRznu8VX0nyUlf3jX0MtWvzjX7PLly+3uro6Gzly5OHX9OjRw9q3b2+LF6v5l5lZTU2NlZeXx/znOI7jOM63l3/64aO+vt6mTp1qw4YNs969e5uZWXFxsSUnJ1tWVlbMa3Nycqy4WJXcZv/QkWRmZh7+Ly9PVdWO4ziO43x7+KdLba+66ipbu3atLViw4CsdwI033mjXXnvt4b/Ly8stLy/P8r6XZGkZR3Ji1P69yy2jJEY5zfKI5jTD5seoLGnlPM07a3N2s8jT70ose/IIiZEO4qVZamdMbcxfu/UTiSUP0fwsUbpXtRwZYH1NHNoQifk7CY6NNAsHakHHALqahHTNpZKN+MQrfimxt5drCeSGRdpOnXQq/YZoPp3KAs+8tYfEyNr/j631FqOSVypTHTdRS9to/B6dNE9iXa/XnG0WtOYu26S6l/6ngC1+YKzOPUVLQBduikiMxp3K/1DfsVvHPTFPj608ovoBsqQm233SvJQu02OmsTtjrM75+etAoxGy7XppGWhIWqguYCDoEdYV6liRtfbBIo0NPEdLybcHrgfpGIgtoV5lNniw3mdUMt1lmF4faoFAOrew5bIZoMcgfdC+D0Az1V3vA+LiYdqO/s8LVdeGep6uqhujkvudj6sOzS7qKiHSpgX1Wp/uVh1MUN9hpi1JamtUm/lF/FMPH1dffbW99tpr9v7771u7dkcGNTc312pray0SicTsfpSUlFhuLv8gpqSkWErKPy/IchzHcRznm8VRpV2i0ahdffXV9vLLL9u8efOsU6dYxe3AgQMtKSnJ5s6dezhWUFBg27dvtyFDhvzfHLHjOI7jON9ojmrn46qrrrLnnnvOXn31VWvatOlhHUdmZqalpaVZZmamXXrppXbttddaixYtrFmzZnbNNdfYkCFDvNLFcRzHcRwzO8qHj0ceecTMzE4++eSY+FNPPWUXX3yxmZn94Q9/sMTERDvrrLOspqbGRo0aZQ8//PBRH9i6jdWW8rn2whmD1T43bJ00tSmmvHOHVvp51Na8+1DNy5Fteu6UUyV2yajWEqN21eQXQD4K1WCbHra1cnJbTXeRJXEY6NhIs9A0Rce4bJP6l5DPCdnpv14d0dctUY8LylcSlNummn/KsSf119p7yvU+NrdQYuSHQfoBajM/7sFwu4pd+6le4mljIXiQoKfF9Bd3yWvqNmhO/GCB5rVbngIW/vCdCek6JpQTJ8vsHLCkJr+Jspmb9PggT06+FDOn6xgQ5KfTt104zQNBrSao3Tm1nq+E+zRorW2mawNp5Kh9QrDFuhl7a6AHEsyfYmipsGqxanJIy/IW3CvU8oL45H1dQxq303X17y/p2kWvI31Hfntdf8POAdL9VJyj2pAhfXSevfGKHnPNntix2gYeMaS1WRvwBIpWh3+kOKqHjzB+ZKmpqfbQQw/ZQw89dDQf7TiO4zjOdwTv7eI4juM4TlxpsF1t/21wtmU0OWKZ+xqUY9L2W/4ILZsi++DzBmq50bQ7PpbYpVN1K53KtciSOgvKLP/4inYbrYWusbS9TB0pk7rrVjrZaLcfrq+jjrhrXlgnsbSxx0gsWLZIpaKbdusW4rJH1aKXSiApxUKpKEpXZORrZRXZNJP9Mtkg07i3BCvo7dCR8t4Xt0qMbKSpfPtHF2nq4JldWkJaUq5jRemjHmN1niXDfbV5m25XB7fOqdT2ycf0OFqd3FdiBQVwHJAC/PF4Pf8HHtosMbJcj1bqOTTK15LSTNiqpjFpBmkNSljVwNrQuZWeG6XUqHwyI0u/NyxUbkwdUjMgbVUeSLPQ/Uj3/KSzNa1MVv87oAyfOvhSeobSynsgtRMsAzXj1Bulj6KVcL4bNEa283T/kP3935dp+oNKqyl91iRZj5laUhzo201iBz/SVgbB8ltqZ1II1ywoX6iBcfsifOfDcRzHcZy44g8fjuM4juPEFX/4cBzHcRwnriREw5SwxJHy8nLLzMy0y257zZJTj+geqD005aXKpn8gsfSxAyRG5bLUvppslcmGnY7lQEj9BEF5vrDfSxqSSya3lxhZ6GIJ3CrNTQat3qkV/bLHfiGxS5+6V2Kkd6DrQ1bdV1/SQWJPvqklkJRPJwvlsBb7lNelsrY5z38mMZpTlFMferLqdCpqdJxJ+0TljaRLIo0C2djvfS92DjTK03MNWu6bmf3nb3pJjMp06XgJKvcrKtGxo5Lkejj/aJWWmdL1IWiuoNX7e3r/kJ08Wb3TNaOy1wlD1ep9137VXC1eo3OFbMODlus03+n8w1q6Vy9aK7HWU7VkfM/ftCy98bFawh+W9LaqoTljWJbEXl8YkRjpy+g3g9oCEHQP0fEV3/e2xAbdc4bESNu4cdpKid30whiJ/e6xjTF/nw02CdS2IqiPqqmqsPuuOcPKysqsWTPVz30e3/lwHMdxHCeu+MOH4ziO4zhxxR8+HMdxHMeJKw3W56NyZ60d/JwVN7Vdr16ituRXvTBWYveNe05ifSeeI7EtbVUrQTXgYduzJw9Tm2bKbQetq83Ya2BPsb6u8jVtYp1+pnqTzJin2gPSQVBenKzOg14VpNvod/INEju2reYBdw/UPDmNMeVDK+pgTKC+v1LtVax+j75uP1gjF5OtPcy996s1T0p1+6QNeWtnRGIF23U+kk6F2P3oEollTjpeYqjvAH+I4BwgTVKZZUmM5h35tZC2oQ7ui6CdsxlbixPf66XX9rN1mp/f9Ju/SWz80xdIjPQ3RAT0HV9FS0Zrw1NP6wTP7KL6GNJ30BwI6mjKNulcjIBeJlqpMYL0HXRfLE9Vrdq5g9UXaOFW1dUsm65OLHWw/v7lojck1mSitgAogXH//gRdG8kinfQi1JKDOOnhMyVGOi/yP6HWC2T1fqgw9vPIo4m0S0Gfqdoana9fhO98OI7jOI4TV/zhw3Ecx3GcuOIPH47jOI7jxJUG6/Nxxe9mW0rakRwg5SrJfz+6R3Nh1NOBcvHUbpnycpS/oxrrwuXqoUCQp8W7VzwmsR88Mlli637/icRSRqj3Rb8h+h3USptyzEmQow+2raea9bAeClTLT9eM+n9Q/5ydj38qMdLB4Hm9q30Pcn+o/RuoVwNpd0hDQ7l40hZRT5DNpZp7p34VYaH+HMFra2aW2i8z5u9xIzXX/cIjmkumXjmksyD9TQq0Dae+OMse1flDPUyo3Tt5qZSW6XgO65IlMdJZkK6kdFm4HlS01pAuq/gN7dtzzLmqN2qVqXOKWsBTb5xgvyXyoTltVJbEqM8QeYSQboXuKVpr98G6Rb4u2Z1VCxTW/4V8Lmh+E036NpFYmHvKzKxTD/CxgXlBaw3pCckXh/o+BY95QF+9z0iDFhzP2poKe/ru8e7z4TiO4zhOw8MfPhzHcRzHiSsNNu0StFcvm7lJXtv5mnyJdWil23RkGU5bhmQ9HNZCmaCt9LBpHNpKp1K0udDunSyzG0MJ6YSxasm8dJNartOYLpgTa7Ub1g6dLLgbdc+SGJEU0oKbzj8xW7dgqTyaytXIXp0svSmdQNvwkV16baee3VFia0p1i/ytNyMSo9QBbZEStNVNZa/B9FbRfavkNSfcruWJH9z2scSojf2B1TDvTsuSGJWbE2FtyXfdu1hiw/5wksRWzI5IjMosKWVDKdm0FE07UGt7KmHvf4pebyorzT1dU5c094jg9j+tR2FTdtR2Puz9Q+X1YS32T+ql2/5kEU5rfHW1zh8aO0oDEnR8+e31PILr6hdB623fdhpbXaRrMBG8vlRuT+t08PrUVlfY4zed6WkXx3Ecx3EaHv7w4TiO4zhOXPGHD8dxHMdx4kqD1XxMm/G2paUfyWGt/UjL5KjMsvhlzX2SPTiVV5EeYcx1nSW2HDQFu57dLrHss/IkFtauPW+glhmS9mDhT+dLLH3sAIkd/EhLSNNOaSMxKvVa8+sVEmv1474SCxJZq+NEbcOzc3VMwuhMzMKXKXecMklipAGo3Kd6HrL5Ji0HlfHVLtb52OnSjhKjsmzK7ZP2gAhb0tzzSi1BJtbPiJ0/VFpNmhyyPqdy7kNwP5KFO0HXjDQ0D83We5TaNpAGYNtbEYlRKTB9b7BduZnZ6eN1TXrjFdX4ULn6JZPVcvylRWr3T+Wxh/ZqLCFNzzdYDo76DihLT8zTOUvaGCr5pfN68jG9ZnS8dYt0bpPlAGm6ti9QXQ2VQlPp8tKlunbTnO+Vp99LZfNbPoGWCjs0RmNA6wX9bhLB7xh9/vfkNfS7F9Tp1NZU2LMPT3DNh+M4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwWo+bpn+pqV+TvNRMFf9LMgi/eeTuknstkcLJHb1JZoPfOsTzZtSfXuf7pq/Iy8Ryi+O7NlcYpTXpJwbQT4fVfN2SuzkG3Vc6Jgpz05WyEGL50RoG07nMPsBzc22OFlzwoXT3pJYWhvV34y9q5/E5jyvbdzJQposuOl6d+6gOVxqaU06ItLuhNU8EGQZnQr+EBunrZQY+XAUFGg+uWIj6KsCGhKaE7WgCyCtAHlwDB6sGhLS+JA1PX1H5Q4YY9B0kR6MbKrJbjrs8YVtYx/Wx4c0BQR5VZA1e7AtOkHrAmm6BozJkhjdK9TKguzv6VqQL1LYVgSfzFIfEoJ8gcL6DJFGg7RudB9QywfSxJEGiXxxtj6vvwVB63xi73uqySEL/6Be0TUfjuM4juM0WPzhw3Ecx3GcuBJuH+lrIFJ+yFLqjpSZUWkRbUHfPl07mh4q1G2/GUvVPpbKZZuNaSexbaVarkbbkjs+VrvgPz2/Tt/7A93OotRB2E68W0xLaMn2mezVX3xBy+codWBVsWPQfrimWKh0sON4fR2lCFKy1JKZSufWFeoYU5lps+G6tRy2W+QqKFmkuUf2y2QHTlurBFk3U5qkXb7Oi63tdWuVuotSeoLKDIOdRKlzcK//10NiE/vq/bOsWOc2dUOl+/aay7Wlwm/+oBbudA7r4fPCpljWbNB5Rvb8VN5KJblU9vzWTp3zdav0Htq+Q+cybevTeQy8Rsv/ybI/WJIbgRLdaKWWAZONOHXUJtt4SmtQioVs6CnFQvc3pVMoVUaE7cQ7GEqLqSSXSv0plXXicbpm7oHOubTWDLpcr/eSny+TWPNJfSQWhNJiwbGrqQrfYdt3PhzHcRzHiSv+8OE4juM4Tlzxhw/HcRzHceJKgy21ndD5FktKPFK+mTq0t7yW2sST9oLysAeLNIdLuVnKy1FpH0H5SmqvTSVxJVBiRzSB3F9Glj5TUhlkWPtzItg6m7QcBLUSp/I3Oq+wufiyTZr/Jd0K6jEgr0vzpxHk+8POFWo7TlBLdCqVJKtzymNTyTBB2pDgGFAeP2z5MWklqCydLPZJb0XW9D+b3FVi9764VWIElT1/lfOg4yN9A30vrVPRPfp5Hc9XnRfN7xOP0/uK9GXtAxqp8ojqOyYMVc0Y2bx/lbLsA6sPSIzW6epVWvZM5f+kBSJtCK0D1BqDoDWe9H9hy41prRlxop4H6aZQIwa/S8ExoNfQOh0s762prLBpk0/3UlvHcRzHcRoe/vDhOI7jOE5c8YcPx3Ecx3HiSoP1+Rh8x3BL+5y9OtWFk0/F6wsjEqNa/v0bND9GvgqUx6ba+9wfao1+0Hr2iyA9QrRSjy+1X6bEKDdJdttmmk8O5nXNuL10clvVD9CxBCEbccrNDpqkY0etoMO2r94POVKyGaY8OelvKOea1VrnFOWxyRq5DsaOxoUYAz4N1Oq6XY7mbHeXad6e9AhhfA+6tNR7ZXmR6lES0lUHcwjaxO9Qq47Qmpz0tjoH/rywSGI0xqSr2bNZ5y1B6wppI+j+phbr5LdBurZ+5+gx0zpFLF6jryNfnLev+U3M392GXiqv+dMc9UqilgVESbVe27D6DvLJyQXNGc2fsPoOIuh1Y8Y+HwStIXQs9DqyayfbfVqTyMdnzfQ1EmsysVfM36f10N9W9EUKrJc1NeHGw8x3PhzHcRzHiTP+8OE4juM4TlxpsGmXtR9UWPLndn9/dJFu5320Q7eeqCMn2ZJTJ0fa6h96sr4uF9I9r76jqZj6PbrlVV8YkZgN7Cgh6vRKpbGdemg5E3UArl24UWLtpmhHWBor2s5rnqnb6Xpsun3fd2Qnia0u0q1g2lrNz9fPIztnKreua6EW9tQZ8sQLdft2EWzDk5U6lUo2y9Jxou1/SmPRli6V01Ga7di2Oi8ev0dt7Ftf0F5idG7BVONqKBOk8mjq3EnzgkoMqSz0/Q91a562lis26hY5UfxycajXJWTr9v+5sCZRh2qDtMbcLXqPhu0cWwGpQSrbpLQvdc6lFgXn/+XWmL/pPqOyb7qOdGxUflu9aK3EopVqp29wr1AJf5juzGZcQkvnQS0V6DtaDdIx3gNtG6ae3VFiv3tM12lak3Ftbaff+zqsId1/OUBiQcv6V1dp+TWV3wa7gFPq+YvwnQ/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40mDt1W+Z/qalfq7UNphbMgvf4nj3o0v0vXna6jv7LC1jJMhum8pvE/NULxK2vJVeR1BpKJVZUp54/YxSiZEl8aECze0GtQJUnkgW3KSroXJZKtOlUmgqHyWopJRKIGk8KY9JFu6k8aFSScodk51+0Lr4i6D5U79b8/ikIyLLdcrvB6H77NxTVC+zcFNEPx9K9kgbUgd58kOFqmMge/n+p4TTdFXN0xLsnleqLonuFfreQxsiEjtpSgeJrVitx1I2c5PEkoaGW5Oo3JhKV0mXQ6WmQev0GfNUAxBWX0flo6TpIu0O3VOky/r7S7r+JqRBmTfMH9L/0TGTziKsnULdokKJ9fp/PUK9l+zaqaSb7Omr4R4ibVFQm0brIN3zwVYeNVUVdt81Z7i9uuM4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwfp8bJgTseTkI/m+xGzNaVI+kF7XZOIgiVHei+q9Kd9WuU/zbadd11lirz+hHgLUJnwH5EnJGjiYXzNjTwby4CDNDNmak232zOkSstJlsbnOgys1d768KEdiOdAKGnUWYCm8G7QhVN+/5RN978GPNGdf3kXz6Xvf09xx0xOaS6z7UM33l5RoTnj301q3/1mVfm+PsfodYbUR5F1QuU+PhebtZgMPE/CWCHoXkE6AdAF0vOnNdX6eeJzOC7IC3wf3/PDR4JECNs+kM6jNV6vyjx/eIrHGx6pPDJF6gnoAUVsA0g9Ugr7je71UM0QaJJq3ZB1P68W+6esk9lGH2DWTtAPUdoE8gc4coMdBHk2byeYcrP63lep9QRonWt82b9PPI90T2dXT/UjrCnnnWK9uEiK9CF1vumY0f2iNbwceK60y9Rqt2RA7fjQmy99X7V/S8bF6Gff5cBzHcRynweIPH47jOI7jxJUGm3YZdm5LS8vQre3PM/8x3epPgi6II2CrH7d0oWyTrKup5LNrCy3XSummW4t0zGStTd1QB3fRMrmlqVpOt/7POyTW9Ae6bUxbi7t76hjQtn6wzHnT7M3ymuwztWQxbEmubmZyJ1Dq6EqE3Tan8klKMZD98qG9ui17/E09JUblwXTNkDSwWj5Xz209bMMfA6+jFNWAMVkSy0j58n+nLJijtvFUzkxlz++H3K6lUtH3n9F0D3WFpvQZnesK+F46j7Bdm+l7qWsobYcXbNfrQxYDCek6L4KpUTOzjK66dl0+/RSJUYl0ENr6p9TErv16r1A5917okkvrVktIK2+t0s8rKIC53VfPn9Ji2An9XV2V0k7Rztj57cOlihIhDUjXjNJbYa0n6HqYVn5LaTVdMyKYoq2tDfc+M9/5cBzHcRwnzvjDh+M4juM4ccUfPhzHcRzHiSsNVvOx4M+7LDnpSJ6VLHApl0ptf+eCdTVZN4fO60I52VvVuyVGUG42bO707Yjmk6l8slH3LIlhO2TIEVLp6g6wkw/qNCqmnCqvoRxp7g+1/I00ENFKjTVJ1nGn0i5qbZ8EOVyyI6by7WQofyN9xzVXabn1jKWax6ZjJgvu1y/9b4mldz1GYqTbIB0RlY3TffDhPWrzHcxtVy/R+d5itJZWkw00WZ8vn6llfCmg3yLIhn7rK+HKfkkXQGWbW59XC/tzb+ousfmwNlCp5AMPqUaKcvt0fTKh/JTGispeSXP16W7VjQXXn9NGZclr1hXqOJEdwFtvRiRGLQZo/vTprvcelVFTiXN+vo4TaWhojKnBQFI/bU9ArSFI+0RzvhzsHgxiVPpet1d1LwRZAvRtp7Fg6TO149j62pMS63r5lTF/N6oJ/0jhOx+O4ziO48QVf/hwHMdxHCeu+MOH4ziO4zhxpcFqPjqMaWkp6UdyU5OOU+vh6R9qm2LKfxOkASD/AcrVrZyn+d/SKs1tU+6YNB9Us025052Pfyqxlhd1lVgErMnJQ4B0JeRfQfne9z+MzRPT8R7I1jw0Wb/TNWt+vI77zOm7JEbaELLYb9tTc8d0vUk/sONjvY7kD7Fwq3prkE9M6TKYP2Dtn3XRDyR2sEiPhfLOG6etlFjxxF4Si8K8TR6iuhyxRIccO2loyCOFPEPomtF50bUgElvq9SZb92ArcTMzvTqsKXj1Hb3e1BYgaE1vZvYZ6AzI/n3EeNUZvPGKfi/pQEhrUrdBz64A9BcVG2PXgdkh9VsEtacfCBqVzaU6duTBUQPePuT/snmb6lvINpx0MPWgD6IYeY5Ug0aMdG009wpuXSCx5Lx2GoN7lPySSEu1sZ2u8TVzt8X8ndhS19+gvsNM/VASq13z4TiO4zhOA8UfPhzHcRzHiSv+8OE4juM4TlxpsJqPnQXVlpxyJCf2QkqRvIY8BKhmm9oUf7ZOc8eHCjW/uHKeHht58hvESBdAechTB6onw+sLIxLr9f96SIxqtl/cpLnT0jIdl8odeiyUO37t1k8kFsw5JqWqliUHeuqsn6G5Y/Jrodp2bh0PvWjA34D8S6gGvmCuesKMPv97EqP8dOdWOnZEOZwHvbekDfRvgPw8nVtSf+2rQ94c9btVA5AP8yzY/pu0Ir1D9oQJtu82Mxs+Wu8B7NmyR+fF1g069zqO12tGehHqh0E9cMgjhdafTj10zhMVbfU6Ut8R6kFF6w9pGQqqdY4m0b0G2pD2w2Nz/uURnbNhW71Tv5LZd6nPCfkTke8OrSvUT4XWPOpnVbcK+iBd3FZitDaQHwaNC9171Lfm2Du+LzHSxNE4E6SdozlfujfWx6e+UNcF0v4FPVxqa/Tcvwjf+XAcx3EcJ640uJ2PaPQf/8KorYn9F051pT5h1lTpU1ZtjT4l1sC/0mprYOejTv9V1QiKZxITwz2zVUHD1ZoqfZKvrFDVc221PqFXV+q/8Cor9F9ktTX0Xj0Weh2O6UHoVBh4b02VHls0qk/YtTDGtdX6r7baWr0+NVVwrtV6bWuqdFpXJ4VzBKyt1eOrrFAHyOpKuo5aPVRVqePJc0DPrQYmEI0pnRudRxTGvh6ubXWlzovgXInW6v1YBfMz8aDeKzVVem2rKuAeDXkO1li/twbPgeaUXjMazxrY+aB1pboy3JJaWw1zpYLWOD3m2hqaZ/Qd4Sr/6uBf7zWBrsC4hsK9Vw3zna5jPa61eh3ra/Vca6r0+lRVwG4DHUuNzvc6OBa8B+A8qitp7dZx53Uv3BpPn0fnllhP95quNbguB86Nrg+tg8F14X9+t//nd/x/IyEa5lVxpKioyPLytKzWcRzHcZyGT2FhobVrpyXCn6fBPXzU19fbzp07rWnTppaQoE9ozr+W8vJyy8vLs8LCQmvWLFz+2vnX4dejYeHXo2Hh16NhEY1Gbf/+/damTZsvzRA0uLRLYmLilz4xOf96mjVr5jdzA8KvR8PCr0fDwq9HwyEzU8XjhAtOHcdxHMeJK/7w4TiO4zhOXPGHDyeGlJQUu+WWWywlJVwdufOvxa9Hw8KvR8PCr8c3lwYnOHUcx3Ec59uN73w4juM4jhNX/OHDcRzHcZy44g8fjuM4juPEFX/4cBzHcRwnrvjDx3eQO+64w4477jhr2rSptWrVysaPH28FBQUxr6murrarrrrKsrOzrUmTJnbWWWdZSUnJ13TE3y3uvPNOS0hIsKlTpx6O+fWILzt27LALL7zQsrOzLS0tzfr06WPLli07/P9Ho1H75S9/aa1bt7a0tDQbOXKkffrpp1/jEX97OXTokN18883WqVMnS0tLsy5duthvfvObmP4hfj2+efjDx3eQ+fPn21VXXWVLliyxt99+2+rq6uy0006zioojTYJ++tOf2qxZs2zmzJk2f/5827lzp02YMOFrPOrvBh9++KH98Y9/tL59+8bE/XrEj3379tmwYcMsKSnJ5syZYx9//LHdfffd1rz5kXb0d911l91///326KOP2tKlSy0jI8NGjRpl1dXaCM75akybNs0eeeQRe/DBB239+vU2bdo0u+uuu+yBBx44/Bq/Ht9Aos53ntLS0qiZRefPnx+NRqPRSCQSTUpKis6cOfPwa9avXx81s+jixYu/rsP81rN///5ot27dom+//Xb0pJNOik6ZMiUajfr1iDfXX399dPjw4V/4/9fX10dzc3Ojv/vd7w7HIpFINCUlJfr888/H4xC/U4wZMyZ6ySWXxMQmTJgQveCCC6LRqF+Pbyq+8+FYWVmZmZm1aNHCzMyWL19udXV1NnLkyMOv6dGjh7Vv394WL178tRzjd4GrrrrKxowZEzPuZn494s1///d/26BBg+ycc86xVq1aWf/+/e3xxx8//P9v2bLFiouLY65HZmamDR482K/Hv4ChQ4fa3LlzbcOGDWZmtmrVKluwYIGNHj3azPx6fFNpcI3lnPhSX19vU6dOtWHDhlnv3r3NzKy4uNiSk5MtKysr5rU5OTlWXFz8NRzlt5+//vWvtmLFCvvwww/l//PrEV82b95sjzzyiF177bX285//3D788EP7yU9+YsnJyTZp0qTDY56TkxPzPr8e/xpuuOEGKy8vtx49elijRo3s0KFD9tvf/tYuuOACMzO/Ht9Q/OHjO85VV11la9eutQULFnzdh/KdpbCw0KZMmWJvv/22paamft2H852nvr7eBg0aZLfffruZmfXv39/Wrl1rjz76qE2aNOlrPrrvHi+88II9++yz9txzz1mvXr3so48+sqlTp1qbNm38enyD8bTLd5irr77aXnvtNXv33XetXbt2h+O5ublWW1trkUgk5vUlJSWWm5sb56P89rN8+XIrLS21AQMGWOPGja1x48Y2f/58u//++61x48aWk5Pj1yOOtG7d2nr27BkTO+aYY2z79u1mZofHPFht5NfjX8PPfvYzu+GGG+y8886zPn362EUXXWQ//elP7Y477jAzvx7fVPzh4ztINBq1q6++2l5++WWbN2+ederUKeb/HzhwoCUlJdncuXMPxwoKCmz79u02ZMiQeB/ut54RI0bYmjVr7KOPPjr836BBg+yCCy44/L/9esSPYcOGSen5hg0brEOHDmZm1qlTJ8vNzY25HuXl5bZ06VK/Hv8CKisrLTEx9qeqUaNGVl9fb2Z+Pb6xfN2KVyf+XHHFFdHMzMzoe++9F921a9fh/yorKw+/5vLLL4+2b98+Om/evOiyZcuiQ4YMiQ4ZMuRrPOrvFp+vdolG/XrEkw8++CDauHHj6G9/+9vop59+Gn322Wej6enp0Weeeebwa+68885oVlZW9NVXX42uXr06Om7cuGinTp2iVVVVX+ORfzuZNGlStG3bttHXXnstumXLluhLL70UbdmyZfS66647/Bq/Ht88/OHjO4iZ4X9PPfXU4ddUVVVFr7zyymjz5s2j6enp0R/+8IfRXbt2fX0H/R0j+PDh1yO+zJo1K9q7d+9oSkpKtEePHtHHHnss5v+vr6+P3nzzzdGcnJxoSkpKdMSIEdGCgoKv6Wi/3ZSXl0enTJkSbd++fTQ1NTXauXPn6C9+8YtoTU3N4df49fjmkRCNfs4mznEcx3Ec51+Maz4cx3Ecx4kr/vDhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TV/zhw3Ecx3GcuOIPH47jOI7jxBV/+HAcx3EcJ674w4fjOI7jOHHFHz4cx3Ecx4kr/vDhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TV/4/+43usITlM7MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist2d(ev.x, ev.y, bins=100, cmap=\"twilight\");" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "737473bb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcG0lEQVR4nO3de4zcZf3o8c/eu+1eetHutrbFldNYbOFYCqlLiRrZ2BhiQKqGpBgUj6gsSksCUrU1XqC03kgxtsLPIEYqP0hELeeoaYqu4VBKKYqC2BLpz/ZQdmvOYXd63Zbd7/njFycO3/lBty3P7nZfr2QS9plnZp/tN7Tv/c4z36nIsiwLAIBEKod7AQDA2CI+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgqerhXsCrDQ4Oxr59+6KxsTEqKiqGezkAwAnIsiwOHDgQ06dPj8rK1z63MeLiY9++fTFz5szhXgYAcBL27t0bM2bMeM05Iy4+GhsbIyJiW9e2aGhoGObVAAAn4uDBg7HwPQuL/46/lhEXH/98qaWhoSEaG17/BwAARo4T2TJhwykAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUkOKj4GBgVi5cmW0tbVFfX19nH322fH1r389siwrzsmyLFatWhXTpk2L+vr66OjoiOeff/60LxwAGJ2GFB9r1qyJ9evXx/e+97147rnnYs2aNbF27dq48847i3PWrl0b69atiw0bNsS2bdtiwoQJsXjx4jh69OhpXzwAMPpUD2XyY489FpdddllceumlERHx1re+NX7605/GE088ERH/edbjjjvuiC9/+ctx2WWXRUTEj3/842hpaYmf//znceWVV57m5QMAo82QznxcdNFFsWXLlti1a1dERDz99NPx6KOPxgc+8IGIiNi9e3d0d3dHR0dH8THNzc2xcOHC2Lp1a9nn7O/vj0KhUHIDAM5cQzrzccstt0ShUIg5c+ZEVVVVDAwMxK233hpLly6NiIju7u6IiGhpaSl5XEtLS/G+V1u9enV89atfPZm1AwCj0JDOfDzwwANx3333xcaNG+Opp56Ke++9N771rW/Fvffee9ILWLFiRfT19RVve/fuPennAgBGviGd+bjpppvilltuKe7dOPfcc+Pvf/97rF69Oq6++upobW2NiIienp6YNm1a8XE9PT3xzne+s+xz1tXVRV1d3UkuHwAYbYZ05uPw4cNRWVn6kKqqqhgcHIyIiLa2tmhtbY0tW7YU7y8UCrFt27Zob28/DcsFAEa7IZ35+OAHPxi33nprzJo1K+bOnRt/+MMf4jvf+U5cc801ERFRUVERy5Yti2984xsxe/bsaGtri5UrV8b06dPj8ssvfyPWDwCMMkOKjzvvvDNWrlwZ1113Xezfvz+mT58en/70p2PVqlXFOTfffHMcOnQorr322ujt7Y2LL744fv3rX8e4ceNO++IBgNGnIvvXy5OOAIVCIZqbm+PZHc9GY0PjcC8HADgBBw4eiLkL5kZfX180NTW95lyf7QIAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AIKkhx8eLL74YV111VUyZMiXq6+vj3HPPjSeffLJ4f5ZlsWrVqpg2bVrU19dHR0dHPP/886d10QDA6DWk+Hj55Zdj0aJFUVNTE7/61a/iL3/5S3z729+OSZMmFeesXbs21q1bFxs2bIht27bFhAkTYvHixXH06NHTvngAYPSpHsrkNWvWxMyZM+Oee+4pjrW1tRX/O8uyuOOOO+LLX/5yXHbZZRER8eMf/zhaWlri5z//eVx55ZWnadkAwGg1pDMfv/zlL+OCCy6Ij3zkIzF16tSYP39+3H333cX7d+/eHd3d3dHR0VEca25ujoULF8bWrVvLPmd/f38UCoWSGwBw5hpSfLzwwguxfv36mD17dvzmN7+Jz372s/H5z38+7r333oiI6O7ujoiIlpaWkse1tLQU73u11atXR3Nzc/E2c+bMk/k5AIBRYkjxMTg4GOeff37cdtttMX/+/Lj22mvjU5/6VGzYsOGkF7BixYro6+sr3vbu3XvSzwUAjHxDio9p06bFO97xjpKxc845J/bs2RMREa2trRER0dPTUzKnp6eneN+r1dXVRVNTU8kNGD7ZCLkBZ64hxceiRYti586dJWO7du2Ks846KyL+c/Npa2trbNmypXh/oVCIbdu2RXt7+2lYLgAw2g3p3S7Lly+Piy66KG677bb46Ec/Gk888UTcddddcdddd0VEREVFRSxbtiy+8Y1vxOzZs6OtrS1WrlwZ06dPj8svv/yNWD8AMMoMKT4uvPDCeOihh2LFihXxta99Ldra2uKOO+6IpUuXFufcfPPNcejQobj22mujt7c3Lr744vj1r38d48aNO+2LBwBGn4osy0bUy6uFQiGam5vj2R3PRmND43AvB85oJ/o//4nMqygzNljmkZVlZp7oOsp9j1OZB5w+Bw4eiLkL5kZfX9/r7t/02S4AQFLiAwBISnwAAEkNacMpMHqdyv6O7FWjAzGYm1NZ5neZVz8uIuJYNlDmsfldGtUV5X43ys8rt7+j3M9gHwiMHM58AABJiQ8AICkvu8AZqPxLJ3nl3gpb7qWSowOvlHxdVZn/veXYwLHc2JFXXsmNlTO+Jv9X0fiqmtzYQJZ/uae2ouqEvkc5XoqB4eHMBwCQlPgAAJISHwBAUvZ8wCh3Kvs7yo3948ih1/2eLxaO5MaOvpLfj/HKYP75K8pstKityv8e1Dwu/9dTW3P+ks1Hy/wMdWX2gVTY4QEjhjMfAEBS4gMASEp8AABJ2fMBY0S5a2QUjvfnxsps04inXuwrfdyh/HP9fVf+ucpcST3KXZZjwuT84IJzxufGqioO5MZmNTXmxgYqyuw1OcE9H3aGwBvPmQ8AICnxAQAk5WUXGEVO5W215d7iWug/nhv70778Sxt/+4/SS6f3PdabX8fh/HMVntyWn5flL7leWzcpNzZw43tyY21n5R87ocyl2VsnNOTGXinzSbw1ZT+JN89LMXB6OfMBACQlPgCApMQHAJCUPR8wRhwZyO+X+Mfh/Ntj/9Gbn/fyv+8u+To7lt/fcfb/+1+5sc1H9ufG5o+fkht7rpB/W23TSxflxl7Ib9uIt7fk1zKlPv8e39rK/Nt57e+A4eHMBwCQlPgAAJISHwBAUvZ8wCiXldm5MFjmmhZHX8nv5Th8LL834v88efh1v+ezf/tRbuwTV701N/a2p6fmxuZ8dE5u7DOrfpsba334udzYhP9xXm6s90h+z8f/rT2SG5s+IX8ZdmB4OPMBACQlPgCApLzsAqNcuU9rLTc2UObjag/1l3nv6vEyl2YfV1vy9czK+tycOzb25MZu+vRZubFpHdflxj79o7/mxh742//Ojc2Y8N9zY9VV+d+hqirzP//xMh+xW1vmI3ZP9NNvgZPnzAcAkJT4AACSEh8AQFL2fMAoV26HQv9gfn9DRUV+ZmWZXz+a5uT3cxxseHPJ1/ueyr9td3zkv2f97LNzYz2P/ig3tunvrbmxt8xrz41VV+d/hpcP59fy9ik1+cdW5H9Y+ztgeDjzAQAkJT4AgKTEBwCQlD0fMMqV+1j4+soy/2vX5oca6vLXuXjLjPx+iaf/7U8lXw9UHs3NOTSYf9z2O7fnxv7nfxRyY8diem6s+vz8PpDGCfnflybW53+GVwbLXL8EGDGc+QAAkhIfAEBS4gMASMqeDxgjBrL8PoipE/IbQcpd+eKlT5d+lH3Vvzfn5lTOnJgb+/2OXbmxSf9t0n+9yH8xfkZ+bedMz1+D5C2N43NjE2rK/Vyu6QEjhTMfAEBS4gMASMrLLjCKnPgLB/mZ46vyb4Wd1dSYG+sf6MuNvf3supKv91zTlpvTuz9/mfOoPSc3NHFBQ25sQmP+96CzWvMvndRW5efVVeX/GqutyL/9trLMn0m5P08vzsAbz5kPACAp8QEAJCU+AICk7PmAMaLcW01rKvN7I2Y1TciNNdeV7hd52+SB3JxnJh3KjZ19cf4tuQ21+b92XizkL9c+szn/ttrJ4+pyY+Or83tZBstcdL7Kbg4YMZz5AACSEh8AQFLiAwBIyp4PGOVOdCfDiV7nYkJ1/voag6/aQjGlzMfYv3l8fo9GVmbvxWCWH2t8U/57Ntbmx+rK7FEpt5el3M9ajl0gMDyc+QAAkhIfAEBSXnaBM9CpXIa9psylySfWjiv5ejDyn5Bb7vLt5ZR77ECZl2KqK/K/G1Wd4O9LLpsOI5szHwBAUuIDAEhKfAAASdnzAWPEqex5ePVbVysjvy+knHKXOa8u89iqivy8E327bDn2d8DI5swHAJCU+AAAkhIfAEBS9nzAGPZG74040Y+xL3eJ9PLzgDOBMx8AQFKnFB+33357VFRUxLJly4pjR48ejc7OzpgyZUo0NDTEkiVLoqen51TXCQCcIU46PrZv3x4/+MEP4rzzzisZX758eWzatCkefPDB6Orqin379sUVV1xxygsFhk/FCLkBZ4aTio+DBw/G0qVL4+67745JkyYVx/v6+uKHP/xhfOc734n3ve99sWDBgrjnnnvisccei8cff/y0LRoAGL1OKj46Ozvj0ksvjY6OjpLxHTt2xPHjx0vG58yZE7NmzYqtW7eWfa7+/v4oFAolNwDgzDXkd7vcf//98dRTT8X27dtz93V3d0dtbW1MnDixZLylpSW6u7vLPt/q1avjq1/96lCXAQCMUkM687F379644YYb4r777otx48a9/gNOwIoVK6Kvr69427t372l5XgBgZBpSfOzYsSP2798f559/flRXV0d1dXV0dXXFunXrorq6OlpaWuLYsWPR29tb8rienp5obW0t+5x1dXXR1NRUcgMAzlxDetnlkksuiT//+c8lY5/4xCdizpw58YUvfCFmzpwZNTU1sWXLlliyZElEROzcuTP27NkT7e3tp2/VAMCoNaT4aGxsjHnz5pWMTZgwIaZMmVIc/+QnPxk33nhjTJ48OZqamuJzn/tctLe3x7ve9a7Tt2oAYNQ67ZdX/+53vxuVlZWxZMmS6O/vj8WLF8f3v//90/1tAIBRqiLLsmy4F/GvCoVCNDc3x7M7no3GhsbhXg4AcAIOHDwQcxfMjb6+vtfdv+mzXQCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACCpIcXH6tWr48ILL4zGxsaYOnVqXH755bFz586SOUePHo3Ozs6YMmVKNDQ0xJIlS6Knp+e0LhoAGL2GFB9dXV3R2dkZjz/+eGzevDmOHz8e73//++PQoUPFOcuXL49NmzbFgw8+GF1dXbFv37644oorTvvCAYDRqSLLsuxkH/yPf/wjpk6dGl1dXfHud787+vr64s1vfnNs3LgxPvzhD0dExF//+tc455xzYuvWrfGud73rdZ+zUChEc3NzPLvj2WhsaDzZpQEACR04eCDmLpgbfX190dTU9JpzT2nPR19fX0RETJ48OSIiduzYEcePH4+Ojo7inDlz5sSsWbNi69atZZ+jv78/CoVCyQ0AOHOddHwMDg7GsmXLYtGiRTFv3ryIiOju7o7a2tqYOHFiydyWlpbo7u4u+zyrV6+O5ubm4m3mzJknuyQAYBQ46fjo7OyMZ555Ju6///5TWsCKFSuir6+veNu7d+8pPR8AMLJVn8yDrr/++nj44Yfj97//fcyYMaM43traGseOHYve3t6Ssx89PT3R2tpa9rnq6uqirq7uZJYBAIxCQzrzkWVZXH/99fHQQw/FI488Em1tbSX3L1iwIGpqamLLli3FsZ07d8aePXuivb399KwYABjVhnTmo7OzMzZu3Bi/+MUvorGxsbiPo7m5Oerr66O5uTk++clPxo033hiTJ0+Opqam+NznPhft7e0n9E4XAODMN6T4WL9+fUREvPe97y0Zv+eee+LjH/94RER897vfjcrKyliyZEn09/fH4sWL4/vf//5pWSwAMPqd0nU+3giu8wEAo0+y63wAAAyV+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJFU93At4tSzLIiLi4MGDw7wSAOBE/fPf7X/+O/5aRlx8HDhwICIiFr5n4TCvBAAYqgMHDkRzc/NrzqnITiRREhocHIx9+/ZFY2NjVFRUDPdyxpxCoRAzZ86MvXv3RlNT03AvZ8xzPEYWx2NkcTxGlizL4sCBAzF9+vSorHztXR0j7sxHZWVlzJgxY7iXMeY1NTX5n3kEcTxGFsdjZHE8Ro7XO+PxTzacAgBJiQ8AICnxQYm6urr4yle+EnV1dcO9FMLxGGkcj5HF8Ri9RtyGUwDgzObMBwCQlPgAAJISHwBAUuIDAEhKfIxBq1evjgsvvDAaGxtj6tSpcfnll8fOnTtL5hw9ejQ6OztjypQp0dDQEEuWLImenp5hWvHYcvvtt0dFRUUsW7asOOZ4pPXiiy/GVVddFVOmTIn6+vo499xz48knnyzen2VZrFq1KqZNmxb19fXR0dERzz///DCu+Mw1MDAQK1eujLa2tqivr4+zzz47vv71r5d8fojjMfqIjzGoq6srOjs74/HHH4/NmzfH8ePH4/3vf38cOnSoOGf58uWxadOmePDBB6Orqyv27dsXV1xxxTCuemzYvn17/OAHP4jzzjuvZNzxSOfll1+ORYsWRU1NTfzqV7+Kv/zlL/Htb387Jk2aVJyzdu3aWLduXWzYsCG2bdsWEyZMiMWLF8fRo0eHceVnpjVr1sT69evje9/7Xjz33HOxZs2aWLt2bdx5553FOY7HKJQx5u3fvz+LiKyrqyvLsizr7e3NampqsgcffLA457nnnssiItu6detwLfOMd+DAgWz27NnZ5s2bs/e85z3ZDTfckGWZ45HaF77wheziiy/+L+8fHBzMWltbs29+85vFsd7e3qyuri776U9/mmKJY8qll16aXXPNNSVjV1xxRbZ06dIsyxyP0cqZD6Kvry8iIiZPnhwRETt27Ijjx49HR0dHcc6cOXNi1qxZsXXr1mFZ41jQ2dkZl156acmfe4Tjkdovf/nLuOCCC+IjH/lITJ06NebPnx9333138f7du3dHd3d3yfFobm6OhQsXOh5vgIsuuii2bNkSu3btioiIp59+Oh599NH4wAc+EBGOx2g14j5YjrQGBwdj2bJlsWjRopg3b15ERHR3d0dtbW1MnDixZG5LS0t0d3cPwyrPfPfff3889dRTsX379tx9jkdaL7zwQqxfvz5uvPHG+OIXvxjbt2+Pz3/+81FbWxtXX3118c+8paWl5HGOxxvjlltuiUKhEHPmzImqqqoYGBiIW2+9NZYuXRoR4XiMUuJjjOvs7IxnnnkmHn300eFeypi1d+/euOGGG2Lz5s0xbty44V7OmDc4OBgXXHBB3HbbbRERMX/+/HjmmWdiw4YNcfXVVw/z6saeBx54IO67777YuHFjzJ07N/74xz/GsmXLYvr06Y7HKOZllzHs+uuvj4cffjh++9vfxowZM4rjra2tcezYsejt7S2Z39PTE62trYlXeebbsWNH7N+/P84///yorq6O6urq6OrqinXr1kV1dXW0tLQ4HglNmzYt3vGOd5SMnXPOObFnz56IiOKf+avfbeR4vDFuuummuOWWW+LKK6+Mc889Nz72sY/F8uXLY/Xq1RHheIxW4mMMyrIsrr/++njooYfikUceiba2tpL7FyxYEDU1NbFly5bi2M6dO2PPnj3R3t6eerlnvEsuuST+/Oc/xx//+Mfi7YILLoilS5cW/9vxSGfRokW5t57v2rUrzjrrrIiIaGtri9bW1pLjUSgUYtu2bY7HG+Dw4cNRWVn6T1VVVVUMDg5GhOMxag33jlfS++xnP5s1Nzdnv/vd77KXXnqpeDt8+HBxzmc+85ls1qxZ2SOPPJI9+eSTWXt7e9be3j6Mqx5b/vXdLlnmeKT0xBNPZNXV1dmtt96aPf/889l9992XjR8/PvvJT35SnHP77bdnEydOzH7xi19kf/rTn7LLLrssa2try44cOTKMKz8zXX311dlb3vKW7OGHH852796d/exnP8ve9KY3ZTfffHNxjuMx+oiPMSgiyt7uueee4pwjR45k1113XTZp0qRs/Pjx2Yc+9KHspZdeGr5FjzGvjg/HI61NmzZl8+bNy+rq6rI5c+Zkd911V8n9g4OD2cqVK7OWlpasrq4uu+SSS7KdO3cO02rPbIVCIbvhhhuyWbNmZePGjcve9ra3ZV/60pey/v7+4hzHY/SpyLJ/uUwcAMAbzJ4PACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJDU/wfbqvC3jF3qnwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist2d(ev.x, ev.y, weights=ev.poids, bins=100, cmap=\"twilight\");\n" + ] + }, + { + "cell_type": "markdown", + "id": "83c88589", + "metadata": {}, + "source": [ + "Now, let us create a `StingrayTimeseries` object from this event list. \n", + "\n", + "By default, the `to_binned_timeseries` method calculates a series from the weighted sum of all attributes of the same length of `ev.time` (such as `x` and `y`), plus the number of counts per bin (like in `Lightcurve`).\n", + "\n", + "However, one can specify a list of attributes to weigh on through the `array_attrs` keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "939cde48", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Attributes without the array_attrs keyword: ['counts', 'poids', 'x', 'y']\n", + "Attributes with the array_attrs keyword: ['counts', 'poids']\n" + ] + } + ], + "source": [ + "# Let's use a different dt\n", + "ts_dt = 1 / np.sqrt(89) / freq\n", + "ts_all = ev.to_binned_timeseries(ts_dt)\n", + "ts = ev.to_binned_timeseries(ts_dt, array_attrs={\"poids\"})\n", + "\n", + "print(\"Attributes without the array_attrs keyword:\", ts_all.array_attrs())\n", + "print(\"Attributes with the array_attrs keyword:\", ts.array_attrs())" + ] + }, + { + "cell_type": "markdown", + "id": "c563c288", + "metadata": {}, + "source": [ + "Since event lists might have many attributes, it is advisable to select which ones to transform in weights.\n", + "\n", + "Giving an empty dictionary (`array_attrs={}`) creates something very similar to a standard `Lightcurve` " + ] + }, + { + "cell_type": "markdown", + "id": "aba0cbaf", + "metadata": {}, + "source": [ + "Finally, for usage with `Powerspectrum`, let us assign a mean error for the weights. This will only work and make sense when the vast majority of events are from noise." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "06a72161", + "metadata": {}, + "outputs": [], + "source": [ + "ts.poids_err = np.zeros_like(ts.poids) + np.std(ts.poids)\n" + ] + }, + { + "cell_type": "markdown", + "id": "7ebae9e1", + "metadata": {}, + "source": [ + "## Timing analysis using StingrayTimeseries\n", + "\n", + "The timing analysis that can be done with a StingrayTimeseries object is very similar to the one doable with a `Lightcurve`. For example, we can call the `from_stingray_timeseries` method of `Powerspectrum`. \n", + "\n", + "Note that in this case we have to specify which attribute to use as flux (in the `from_lightcurve` method, `counts` was the default). For this, we use the `flux_attr` keyword.\n", + "\n", + "We can also, optionally, specify another attribute which will serve as an error bar for those normalizations where it makes sense. For this, we use the `error_flux_attr` keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d0d9a70c", + "metadata": {}, + "outputs": [], + "source": [ + "ps_counts = \\\n", + " Powerspectrum.from_stingray_timeseries(ts, flux_attr=\"counts\", norm=\"leahy\")\n", + "ps_weighted = \\\n", + " Powerspectrum.from_stingray_timeseries(\n", + " ts, flux_attr=\"poids\", error_flux_attr=\"poids_err\", norm=\"leahy\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4444acb3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDiklEQVR4nO3deXwUdZ7/8VdV5z66Q4AkHEFBUOQW5Ij3gaKiIyuOjuMo4zqXEx2V3xzLruPMOgeuzuE4IrjjeN8yoyiuIqKCSjiMghxygwmEHBDSnbuPqt8fFRojqIRjqkK/n49HP1LVXd396U7S9a7v91vfNmzbthERERHxENPtAkRERES+SAFFREREPEcBRURERDxHAUVEREQ8RwFFREREPEcBRURERDxHAUVEREQ8RwFFREREPCfJ7QIOhWVZVFRUkJ2djWEYbpcjIiIiB8G2berr6+nZsyem+dVtJJ0yoFRUVFBYWOh2GSIiInIIysvL6d2791du0ykDSnZ2NuC8QL/f73I1IiIicjBCoRCFhYXx/fhX6ZQBZW+3jt/vV0A5RsQsm4/L9gBwSp8u+Ex13YmIHKsOZnhGpwwocuyJWTbvbdwFwLDeOQooIiIJTgFFPME0YFBPf3xZREQSmwKKeEKSz2TC4AK3yxAREY/QPCgiIiLiOQooIiIi4jnq4hFPCEctHn5/CwDfO6MfKUnKziIiiUwBRTyjNWK5XYKIiHiEAop4QrLP4LunHR9fFhGRxKaAIp5gGAZdMlPcLkNERDxCHf0iIiLiOWpBEU+IWTardgQBGNoroJlkRUQSnAKKeELMsnlnXTUAg3r4FVBERBKcAop4gmnAgJTdENqJafdDvY8iIolNAUU8IclncumG/wIrBtu7Qd+z3C5JRERcpMNU8Q4r5vysK3O3DhERcZ0CioiIiHiOunjEEyIxi8eCowH4rgXJLtcjIiLuUkART7BtaLBS4ssiIpLYFFDEE5JMg2uzV7QtD3K3GBERcZ0CiniCaRrkJTU6K5oCRUQk4WmQrIiIiHiOWlDEE2KWzbrWPAAGWuBzuR4REXGXAop4QsyyebNpAAADbAUUEZFEp4AinmAa0Dd5T3xZREQSmwKKeEKSz2RS1lpnxTzd3WJERMR1GiQrIiIinqOAIiIiIp6jLh7xhEjM4qngSAC+o6nuRUQSngKKeIJtQ52VHl8WEZHEpoAinpBkGlyV/Unbsqa6FxFJdAoo4gmmadArqd5ZMXSesYhIotMgWREREfEctaCIJ1iWzaZwVwD620rOIiKJTgFFPCFq2bzWOBCAYgtSXK5HRETcpYAinmAY0DspGF8WEZHEpoAinpDsM/lm9mpnxTzN3WJERMR16uoXERERz1FAEREREc9RF494QiRm8XxoBABXa6p7EZGEp4AinmDbUBPLjC+LiEhiU0ART0gyDa7IWtO2PNjlakRExG0KKOIJpmlwXHKds6LTjEVEEp4GyYqIiIjnqAVFPMGybLZFugBwvKa6FxFJeAoo4glRy2ZOwyBAU92LiIgCiniEYUC+ryG+LCIiiU0BRTwh2Wfybf9KZ8U3zt1iRETEderqFxEREc85rIBy9913YxgGt912W/y6lpYWiouL6dq1K1lZWUyePJmqqqp29ysrK2PixIlkZGSQl5fHz372M6LR6OGUIiIiIseQQw4oy5cv56GHHmLYsGHtrr/99tt59dVXefHFF1m4cCEVFRVcccUV8dtjsRgTJ04kHA6zePFiHn/8cR577DHuvPPOQ38V0ulFYhbP1w/l+fqhRCy3qxEREbcdUkBpaGjg2muv5W9/+xtdunSJXx8MBvn73//On/70J8477zxGjRrFo48+yuLFi1myZAkAb775JmvXruWpp55ixIgRXHzxxfzmN79hxowZhMPhI/OqpNOxbaiI+qmI+jXVvYiIHFpAKS4uZuLEiYwfP77d9aWlpUQikXbXDxw4kD59+lBSUgJASUkJQ4cOJT8/P77NhAkTCIVCrFmz5lDKkWNAkmlwWeanXJb5KUkaGSUikvA6fBbPc889x0cffcTy5cv3u62yspKUlBRycnLaXZ+fn09lZWV8m8+Hk723773tQFpbW2ltbY2vh0KhjpYtHmeaBv1Tap0VnWYsIpLwOnSsWl5ezq233srTTz9NWlra0appP9OnTycQCMQvhYWF/7LnFhERkX+9DgWU0tJSqqurGTlyJElJSSQlJbFw4ULuv/9+kpKSyM/PJxwOU1dX1+5+VVVVFBQUAFBQULDfWT171/du80XTpk0jGAzGL+Xl5R0pWzoBy7Ipj/gpj/ixNAZFRCThdSignH/++axatYoVK1bEL6eeeirXXnttfDk5OZkFCxbE77N+/XrKysooKioCoKioiFWrVlFdXR3fZv78+fj9fgYNGnTA501NTcXv97e7yLElatnMbhjK7IahRHUWj4hIwuvQGJTs7GyGDBnS7rrMzEy6du0av/7GG29k6tSp5Obm4vf7ueWWWygqKmLcOGd20AsvvJBBgwZx3XXXcc8991BZWckdd9xBcXExqampR+hlSWdjGNDV1xRfFhGRxHbEp7r/85//jGmaTJ48mdbWViZMmMCDDz4Yv93n8zF37lxuuukmioqKyMzMZMqUKdx1111HuhTpRJJ9Jtf7P3ZWzDHuFiMiIq4zbLvzzToRCoUIBAIEg0F19xxLHjrb+Tn2hzDi2+7WIiIiR1xH9t+acUJEREQ8R99mLJ4QiVm8Uj8YgG9YkOxyPSIi4i4FFPEE24ayaE58WUREEpsCinhCkmlwUeaGtuWhLlcjIiJuU0ARTzBNg5NTapwVnWYsIpLwNEhWREREPEctKOIJlmVTHc0CIM9WchYRSXQKKOIJUcvm2frhABRbkOJyPSIi4i4FFPEEwwC/2RJfFhGRxKaAIp6Q7DO5MVDqrJij3S1GRERcp65+ERER8RwFFBEREfEcdfGIJ0RjFv/XMBCASyz9YYqIJDrtB8QTLBs2R7rGl0VEJLEpoIgn+EyD8RmbnGVDU92LiCQ6BRTxBJ9pMDS1ylnRyCgRkYSnXYGIiIh4jlpQxBNs22Z3LAOArra+L1BEJNEpoIgnRGI2T4ZOATTVvYiIKKCIh6QbEbdLEBERj1BAEU9ISTL5Uc4yZ8U30t1iRETEdRokKyIiIp6jgCIiIiKeoy4e8YRozGJ+44kAXKCp7kVEEp72A+IJlg3rwt0BOF9T3YuIJDwFFPEEn2lwdvoWZ1lT3YuIJDwFFPEEn2kwMm2ns6KRUSIiCU+7AhEREfEctaCIJ9i2TSiWCoBfU92LiCQ8BRTxhEjM5pHQqYCmuhcREQUU8ZBkI+Z2CSIi4hEKKOIJKUkmN+cscVZ8I1ytRURE3KdBsiIiIuI5CigiIiLiOeriEU+IxizeaewPwLma6l5EJOFpPyCeYNmwOpwPwNk6yVhEJOEpoIgn+EyD09I+c5aNYS5XIyIiblNAEU/wmQZj07c7KxoZJSKS8LQrEBEREc9RC4p4gm3bNFvJAKRrqnsRkYSngCKeEInZPBQcA2iqexERURePiIiIeJBaUMQTUpJMbu/ygbPi01k8IiKJTi0oIiIi4jkKKCIiIuI56uIRT4jGLN5v6gvAGZrqXkQk4Wk/IJ5g2fBxa08ATrNdLkZERFyngCKe4DMNxqSVO8ua6l5EJOEpoIgn+EyD09PLnBWNjBIRSXjaFYiIiIjnqAVFPMG2bSK2k5eTNdW9iEjCU0ART4jEbGbUFQFQbBma6l5EJMGpi0dEREQ8Ry0o4gnJPoPinBJn2RzucjUiIuI2BRTxBMMwSDGsthV3axEREfepi0dEREQ8Ry0o4gkxy2ZJcx8Axlngc7keERFxlwKKeELMslnWUgjAaFsBRUQk0SmgiCeYBpySWtG2rEGyIiKJTgFFPCHJZ3JOxlZnRSOjREQSnnYFIiIi4jkKKCIiIuI56uIRTwhHLWbsOR2A4hia6l5EJMGpBUVEREQ8p0MBZebMmQwbNgy/34/f76eoqIjXX389fntLSwvFxcV07dqVrKwsJk+eTFVVVbvHKCsrY+LEiWRkZJCXl8fPfvYzotHokXk10mkl+wx+GFjGDwPLSFZsFhFJeB3aFfTu3Zu7776b0tJSPvzwQ8477zwuv/xy1qxZA8Dtt9/Oq6++yosvvsjChQupqKjgiiuuiN8/FosxceJEwuEwixcv5vHHH+exxx7jzjvvPLKvSjodwzDIMCNkmBEMTXUvIpLwDNu27cN5gNzcXO69916uvPJKunfvzjPPPMOVV14JwLp16zj55JMpKSlh3LhxvP7661x66aVUVFSQn58PwKxZs/jFL35BTU0NKSkHN/IgFAoRCAQIBoP4/f7DKV+85KGznZ/jfgzDr3a3FhEROeI6sv8+5Mb0WCzGc889R2NjI0VFRZSWlhKJRBg/fnx8m4EDB9KnTx9KSpxvqS0pKWHo0KHxcAIwYcIEQqFQvBXmQFpbWwmFQu0ucmyJWTZLm3uztLk3MVtNKCIiia7DAWXVqlVkZWWRmprKj370I1566SUGDRpEZWUlKSkp5OTktNs+Pz+fyspKACorK9uFk723773ty0yfPp1AIBC/FBYWdrRs8biYZbO45TgWtxxH7LDa9ERE5FjQ4YBy0kknsWLFCpYuXcpNN93ElClTWLt27dGoLW7atGkEg8H4pby8/Kg+n/zrmQYMSaliSEoVphpQREQSXofnQUlJSaF///4AjBo1iuXLl/OXv/yFq6++mnA4TF1dXbtWlKqqKgoKCgAoKChg2bJl7R5v71k+e7c5kNTUVFJTUztaqnQiST6TCzI3OSvmBHeLERER1x32CZ2WZdHa2sqoUaNITk5mwYIF8dvWr19PWVkZRUVFABQVFbFq1Sqqq6vj28yfPx+/38+gQYMOtxQRERE5RnSoBWXatGlcfPHF9OnTh/r6ep555hneffdd5s2bRyAQ4MYbb2Tq1Knk5ubi9/u55ZZbKCoqYty4cQBceOGFDBo0iOuuu4577rmHyspK7rjjDoqLi9VCIiIiInEdCijV1dVcf/317Ny5k0AgwLBhw5g3bx4XXHABAH/+858xTZPJkyfT2trKhAkTePDBB+P39/l8zJ07l5tuuomioiIyMzOZMmUKd91115F9VdLphKMW/1vnBNkfaKp7EZGEd9jzoLhB86Ace8JRixl/uAOA4gkjSDnlKpcrEhGRI60j+299WaB4QrLP4N/9HzrL5gh3ixEREdcpoIgnGIZBwNfatuJuLSIi4j59LZuIiIh4jlpQxBNils3Klh4ADLfA53I9IiLiLgUU8YSYZbOwuR8AQ2wFFBGRRKeAIp5gGjAwpSa+LCIiiU0BRTwhyWdyceYGZ8W8wN1iRETEdRokKyIiIp6jgCIepD4eEZFEpy4e8YRw1OKRujEA/LumuhcRSXgKKOIZzXay2yWIiIhHKKCIJyT7DK7zf+wsm6e4XI2IiLhNAUU8wTAMuvma2lbcrUVERNynQbIiIiLiOWpBEU+IWTZrW/MBGKSp7kVEEp4CinhCzLJ5q6k/ACdpqnsRkYSngCKeYBpwQvLu+LKIiCQ2BRTxhCSfyTey1jkr5nh3ixEREddpkKyIiIh4jgKKiIiIeI66eMQTIjGLJ4KjALjeAs0pKyKS2BRQxBNsG0JWWnxZREQSmwKKeEKSaXBN9sq2ZU11LyKS6BRQxBNM06AgqcFZ0WnGIiIJT4NkRURExHPUgiKeYFk268PdAWcmWSVnEZHEpoAinhC1bN5oPBGAEyxIcbkeERFxlwKKeIJhQJ+kuviyiIgkNgUU8YRkn8nk7DXOinmuu8WIiIjr1NUvIiIinqOAIiIiIp6jLh7xhEjM4tmQM0HbNZrqXkQk4SmgiCfYNuyOZcSXRUQksSmgiCckmQZXZq1qW9ZU9yIiiU4BRTzBNA0Kk0POik4zFhFJeBokKyIiIp6jFhTxBMuy2RLOBaCfproXEUl4CijiCVHL5tXGkwEo1lT3IiIJTwFFPMEwoGdSKL4sIiKJTQFFPCHZZ3J1tnMWD+bZ7hYjIiKuU1e/eI+aUEREEp4CioiIiHiOunjEEyIxixdDwwH4pqa6FxFJeAoo4gm2DVWxrPiyiIgkNgUU8YQk0+DyrLVtyyNdrkZERNymgCKeYJoG/ZL3OCsaIysikvA0SFZEREQ8Ry0o4gmWZVMeyQGgUFPdi4gkPAUU8YSoZfPPhsGAproXEREFFPEIw4Duvsb4soiIJDYFFPGEZJ/Jd/wrnBXzTFdrERER96mrX0RERDxHAUVEREQ8R1084gmRmMXL9UMAmKSp7kVEEp4CiniCbcP2aCC+LCIiiU0BRTwhyTSYmLmubVlT3YuIJDoFFPEE0zQ4MWW3s6LTjEVEEp4GyYqIiIjnqAVFPMGybHZGswHooanuRUQSngKKeELUsnmhfhigqe5FREQBRTzCMCDHbI4vi4hIYlNAEU9I9pncEPjIWTFPd7cYERFxnbr6RURExHM6FFCmT5/O6NGjyc7OJi8vj0mTJrF+/fp227S0tFBcXEzXrl3Jyspi8uTJVFVVtdumrKyMiRMnkpGRQV5eHj/72c+IRqOH/2pERETkmNChgLJw4UKKi4tZsmQJ8+fPJxKJcOGFF9LY2Bjf5vbbb+fVV1/lxRdfZOHChVRUVHDFFVfEb4/FYkycOJFwOMzixYt5/PHHeeyxx7jzzjuP3KuSTicas3i5YRAvNwwiarldjYiIuM2w7UOfWLympoa8vDwWLlzIWWedRTAYpHv37jzzzDNceeWVAKxbt46TTz6ZkpISxo0bx+uvv86ll15KRUUF+fn5AMyaNYtf/OIX1NTUkJLy9edvhEIhAoEAwWAQv99/qOWLh4SjFjP+cAcAxReNJGXElS5XJCIiR1pH9t+HNQYlGAwCkJubC0BpaSmRSITx48fHtxk4cCB9+vShpKQEgJKSEoYOHRoPJwATJkwgFAqxZs2aAz5Pa2sroVCo3UWOLT7T4MKMjVyYsRGfzuIREUl4hxxQLMvitttu4/TTT2fIEOdbaCsrK0lJSSEnJ6fdtvn5+VRWVsa3+Xw42Xv73tsOZPr06QQCgfilsLDwUMsWj/KZBoNTqxmcWo1PQ7dFRBLeIe8KiouLWb16Nc8999yRrOeApk2bRjAYjF/Ky8uP+nOKiIiIew5pHpSbb76ZuXPnsmjRInr37h2/vqCggHA4TF1dXbtWlKqqKgoKCuLbLFu2rN3j7T3LZ+82X5SamkpqauqhlCqdhGXZ7IpmAtBNU92LiCS8Du0HbNvm5ptv5qWXXuLtt9+mb9++7W4fNWoUycnJLFiwIH7d+vXrKSsro6ioCICioiJWrVpFdXV1fJv58+fj9/sZNGjQ4bwW6cSils3T9SN4un6EzuIREZGOtaAUFxfzzDPPMGfOHLKzs+NjRgKBAOnp6QQCAW688UamTp1Kbm4ufr+fW265haKiIsaNGwfAhRdeyKBBg7juuuu45557qKys5I477qC4uFitJAnMMCDLDMeXRUQksXUooMycOROAc845p931jz76KN/97ncB+POf/4xpmkyePJnW1lYmTJjAgw8+GN/W5/Mxd+5cbrrpJoqKisjMzGTKlCncddddh/dKpFNL9pl8P7DcWfEVuVuMiIi47rDmQXGL5kE5Rj10tvPz9J/AkMnu1iIiIkfcv2weFBEREZGjQd9mLJ4QjVm80XASABdZ+sMUEUl0akERT7Bs2BjpxsZIN6xO1+koIiJHmg5UxRN8psG5GZudZWOUy9WIiIjbFFDEE3ymwYjUtq86ULueiEjC065AREREPEctKOIJtm1TF0sDIMcGzdUmIpLYFFDEEyIxm8dCztiTYgtSXK5HRETcpYAinpFqRN0uQUREPEIBRTwhJcnkxzlLnRXfWHeLERER12mQrIiIiHiOAoqIiIh4jrp4xBOiMYsFjf0BOF9T3YuIJDztB8QTLBvWhvMBOFdT3YuIJDwFFPEEn2lwZvo2Z9k41d1iRETEdQoo4gk+0+DUtB3OikZGiYgkPO0KRERExHPUgiKeYNs2DZYzf2yWproXEUl4CijiCZGYzcPB0YCmuhcREQUU8RATnb4jIiIOBRTxhJQkk1u7LHZWfKPdLUZERFynQbIiIiLiOQooIiIi4jnq4hFPiMYsFjX1A+AsTXUvIpLwtB8QT7BsWNnaA4AzNFZWRCThKaCIJ/hMg3FpZc6yproXEUl4CijiCT7ToCi93FnRyCgRkYSnXYGIiIh4jlpQxBNs26bV8gGQqqnuRUQSngKKeEIkZjMzOA7QVPciIqIuHhEREfEgtaCIJyT7DH6S40x1b5o6i0dEJNEpoIgnGIaBz2ibAEUDUEREEp66eERERMRz1IIinhCzbD5oOh6A0y3wuVuOiIi4TAFFPCFm2ZS29gJgnK2AIiKS6BRQxBN8psGo1B3Osqa6FxFJeAoo4gk+0+CsjG3OikZGiYgkPO0KRERExHPUgiKeYNs2lu2cX2xqqnsRkYSngCKeEInZzKg7DdBU9yIioi4eERER8SC1oIgnJPsMbgoscZY11b2ISMJTQBFPMAyDNDPWtuJuLSIi4j518YiIiIjnqAVFPCFm2SxrLgRgjKa6FxFJeAoo4gkxy2ZJSx8ARmEooIiIJDgFFPEE04DhqTvjyyIiktgUUMQTknwm52VscVY0MkpEJOFpVyAiIiKeo4AiIiIinqMuHvGEcNRi5h5nqvubYprqXkQk0SmgiGdYmqFNRETaKKCIJyT7DL4XWO4sm6NdrkZERNymgCKeYBgG2Wa4bcXdWkRExH0aJCsiIiKeoxYU8YSYZfNxSy8ATtFU9yIiCU8BRTwhZtm813w8AMNsBRQRkUSngCKeYBowKKUqviwiIolNAUU8IclnMiFzk7OikVEiIglPuwIRERHxHAUUERER8Rx18YgnhKMWD9eNBeB7MUNT3YuIJLgOt6AsWrSIyy67jJ49e2IYBi+//HK7223b5s4776RHjx6kp6czfvx4Nm7c2G6b2tparr32Wvx+Pzk5Odx44400NDQc1guRzq/VTqLVVmYWEZFDCCiNjY0MHz6cGTNmHPD2e+65h/vvv59Zs2axdOlSMjMzmTBhAi0tLfFtrr32WtasWcP8+fOZO3cuixYt4gc/+MGhvwrp9JJ9Bt/1l/JdfynJ6ngUEUl4HT5cvfjii7n44osPeJtt29x3333ccccdXH755QA88cQT5Ofn8/LLL/Otb32LTz/9lDfeeIPly5dz6qmnAvDXv/6VSy65hD/84Q/07NnzMF6OdFaGYdDF1xZidZqxiEjCO6LHqlu3bqWyspLx48fHrwsEAowdO5aSkhIASkpKyMnJiYcTgPHjx2OaJkuXLj3g47a2thIKhdpdRERE5Nh1RANKZWUlAPn5+e2uz8/Pj99WWVlJXl5eu9uTkpLIzc2Nb/NF06dPJxAIxC+FhYVHsmzxgJhls6K1gBWtBcQst6sRERG3dYre/mnTphEMBuOX8vJyt0uSIyxm2bzTdALvNJ1AzHa7GhERcdsRPWWioKAAgKqqKnr06BG/vqqqihEjRsS3qa6ubne/aDRKbW1t/P5flJqaSmpq6pEsVTzGNGBA8q74soiIJLYj2oLSt29fCgoKWLBgQfy6UCjE0qVLKSoqAqCoqIi6ujpKS0vj27z99ttYlsXYsWOPZDnSiST5TC7NWs+lWetJ6hTteiIicjR1uAWloaGBTZs2xde3bt3KihUryM3NpU+fPtx222389re/ZcCAAfTt25df/vKX9OzZk0mTJgFw8sknc9FFF/H973+fWbNmEYlEuPnmm/nWt76lM3hEREQEOISA8uGHH3LuuefG16dOnQrAlClTeOyxx/j5z39OY2MjP/jBD6irq+OMM87gjTfeIC0tLX6fp59+mptvvpnzzz8f0zSZPHky999//xF4OSIiInIsMGzb7nRDEkOhEIFAgGAwiN/vd7scOQIiMYvH/vhzAL578RkkD53kbkEiInLEdWT/rXnFxRNsGxqslPiyiIgkNgUU8YQk0+Da7BVty2PcLUZERFyngCKeYJoGeUmNzopOMxYRSXg6oVNEREQ8Ry0o4gkxy2Zdq/MVCANtA5/L9YiIiLsUUMQTYpbNm00DABhgo4AiIpLgFFDEE0wD+ibviS+LiEhiU0ART0jymUzKWuusmBe5W4yIiLhOg2RFRETEcxRQRERExHPUxSOeEIlZPBUcCcB3LEh2uR4REXGXAop4gm1DnZUeXxYRkcSmgCKekGQaXJX9SdvyWJerERERtymgiCeYpkGvpHpnRacZi4gkPA2SFREREc9RC4p4gmXZbAp3BaC/reQsIpLoFFDEE6KWzWuNAwEotiDF5XpERMRdCijiCYYBvZOC8WUREUlsCijiCck+k29mr3ZWzAvdLUZERFynrn4RERHxHAUU8SD18YiIJDp18YgnRGIWz4dGAHC1proXEUl4CijiCbYNNbHM+LKIiCQ2BRTxhCTT4IqsNW3L41yuRkRE3KaAIp5gmgbHJdc5KxqCIiKS8DRIVkRERDxHLSjiCZZlsy3SBYDjNdW9iEjCU0ART4haNnMaBgGa6l5ERBRQxCMMA/J9DfFlERFJbAoo4gnJPpNv+1c6K+Z4d4sRERHXqatfREREPEcBRURERDxHXTziCZGYxT/rhwJwhaa6FxFJeAoo4gm2DRVRf3xZREQSmwKKeEKSaXBZ5qdty5rqXkQk0SmgiCeYpkH/lFpnRacZi4gkPA2SFREREc9RC4p4gmXZ7Ig4Y1B6aap7EZGEp4AinhC1bGY3OGfxaKp7ERFRQBFPMAzo6muKL4uISGJTQBFPSPaZXO//2Fkxz3O3GBERcZ26+kVERMRzFFBERETEc9TFI54QiVm8Uj8YgG9oqnsRkYSngCKeYNtQFs2JL4uISGJTQBFPSDINLsrc0Lasqe5FRBKdAop4gmkanJxS46zoNGMRkYSnQbIiIiLiOWpBEU+wLJvqaBYAeZrqXkQk4SmgiCdELZtn64cDmupeREQUUMQjDAP8Zkt8WUREEpsCinhCss/kxkCps2Ke42otInLsicYsknzqPO5M9NsS71ETirSxLE2KI4fvjdU7ueqhEpZu2e12KdIBCijiGatb83ijccDXbxjcAQvvgbqyo1+UuGb5tlq++VAJizbUuF2KdHIz3tlMJGYza+Fmt0uRDlBAEU+Ixixuqp7E72rP5aPqr9n49Z/DutfglVv+JbUd69ZX1rN6R9DtMvZz16trCUct7p23/mu3tW2bf360nZLNR/YIuSUS45ZnP+bh97Yc0cd1QzhqsbGqPqFbpYLNkSP2WP+3aifvrPu6Dys5HAoo4gmWDa12Eq12Ejsav2bj4HbnZ3Pd0S7rmLayvI4ddc389MWVTPvnKkItR+7D+19tXWU9j36wjd//36cdvm+oJUJLJHbA2xZuqGHbrkbmrKg43BJd97f3tjD1hZXMW1Ppdimd3u6GVma+u5k/zd9wSIFvV0PrEQ1LxyoFlA6w935JjL4s5ojzWRH8Zgt+s6XDE8k2h52j3McXbzsapR207XuamPr8iiN+VBWOWkf8qHdTdT13vLyaX7y40ukqa6gm2NR5PzD3NIYP6X7B5gj//uhybn3u4wPebh9D/+tvrHaCyYul212upOP+pb+HcCNY1ldu0vy5QBvrYG1N4Sg3PLqc7zy89JDKSyQKKAdpU3UD3/n7Ul56eiY8/x2ItkI0DKWPw85P3C7vyNj4FhWzf0E0VLXfTXYsytbqelqjbf+YVWugau2Red5Nb+F7/GLSjSjpRrTDU92/9WkV23Y1MtvlD96nl5axsbqBP83fcPB3qt0Cjbu+9OaWSIzvPfEhP31x5RH9kN5U3QBAMFQHkWZo3oNdXw3hpvg2G6rqmbVwM3VNX9j5H0M77S01DbRGLSrqWg54u9GBAduWZfPSx9vZWFV/pMo7Kqwv/v6sGKx8Hmr2/7ttjUSJlPwvrHh235XbPoBF97b7WzmaFm2o4fpHlvHpztD+NzbUOLW3hGgOxyjZvHvfZ9QBfO1fbmgnPDEJ3vyvr9zs838XHf13qAzu+1uzLJsXPiznsr++z5NLPuvYA3XEimdgzctH7/GPEgWUgxHayVPPP0coGOSR9SlOF8O292DjPPjwEXj9F0flaXc3tLJ4065/WZ/xktce44efnMidT82PXxeNWYSaWij52+38ZOZL/OLZpc4H08s/hpdvgsiBP9g7ZNEfnQ/Jr/IVRzT7feB+iXB0/8dYUV7HrIWbaQpHD3ifrbsaWbShhvqD6P6oCnXwvQjthBdvgKcmf+kmm2sa2NMYZmN1w9HJBZ97UGvubTD3tvj63a+v47VPdvLMss8NRv7oCafeunLn8nmhnbD1va89+tzP2ldg04KO134EWJHWfWVU7L8DNDsQUN5cW8kj729j6gsr213f0BqFz0rg1Vud9+hgbZgHS2Z95R7w8cXb+OmLK2kOO/8/ZbubeODtjVTUNX/tw5d+Vsstz37MnP+bC0sehH9+v93t4ajFVQ8uYsq8KCyd5RyQAcz7T/h0Lqyd86WPbds2ZbubiMba/hY2vQXPXQvV6w647Ve5d9566poi/Pera/a/ce5tTu2v/oR7Zszg9y8tY9a7Bzle6EDPu+ktiIXhs8VfeVfzc38W9tfHni/cd9+d31xbxZMlTjB5YXnb/1Plauf9PVL/8KGdsPQheP/P+36HnYTmQfmCHz9dSnltMy/9+LR958wvnUUomAER374NbRt2b3KWI/sfSVQGW/CZBt2zU6ElBClZYO7LgyWbd5OZ6mNY75z4dZZl0xq1SEkyMQ246amP4k2J3zuzL5eP6AU4XRort9cxojCHtGQf1G6FpDTw9zjo1xmJWfgMA/Nz/2n/13gSAKtq9/1ZTJ6xCMuK0af+eIhF2LzxU+wN1eyOZdDN1+S89uQ0ALYsn8emkMkF540/+CPPDfMg0oRtQ7QtL+/dv732yU5Wl1Vze9I/SCn/AM7/JfQ7Z7+HOJidyJwVO3j4va3cMfFkxvbrGr/+rlfXEInZdMlI5urRfVi9I0hr1GLUcV0A+M9/rnJ2MMAfrxrOifnZB/e6DsbujV+7yec/o55eVsb7G2v4/b8NpWtW6pGro83OSBbH1+wbkFpT7+y811aECLVE+EfpdsZ/PJsuvmZSnruelxsGU3viN/nhZWc5v+83/gP2bIMJv4Pjz/ja57Ntm5lvrqTfmle4KHMj9D0LfMlffadoGJL2n2e43Ud5pBkM3wG3A+f/bMeuEPYL17G5pQ9YEyC9C7+Zu5ZnJwWgqRaOPx3YuyOyIRZxfhmGAeEmwlGLtdXNnBTdwLRlKZyQn4PPt+/vcM6KHVw+ohcvLC/nySWfMS32EKell8G70+Eb93/tewPAO793fhaOhl6j9hYPhsGclRXk+9OYvXwrxMK8/34NFwzuyX3vOmF2RXkdJxVk82+n9KJ/3gH+Zvd8xq9fWANp2Ty8NcIZOel09TVDUy21dhbLttZyQvdMrFAV9Vaq89K/uCMO7fjS0t9cW8UDb29iTN9cfnnpIFjwG+eGxX+FSTOc5WiYZ//2P8yrDvCHS4+n26hvfOXb0dh6gIOYvePRarfy4Z4zgQre+jSbW8cf+GxAA6C+Cup3Yr35S9Yf921OOPNqUpLaPpvtAzzH1vegfAmcdiuWmcxrq3ay4NN9rcwdyhHLH8asiwBDAWeA+n5euYUt4QCLPwsw6dwislK/sJuORZz6/YUA7T7DDyj6uQMnK8rXzdMdiVkke2S+GAWUz6kKtVBe6xx5/NuDi8nJSOZHZ5/A6TXridmjwP7ckaFtQ/mydvcv/ayW+pYoY3ok88MZb2KlZENSGleEX+WGwEcw8FI466dUV2zj989/COldePnW8/GZBuGoxQ+e/JDdDZ9LuNEWaN4DGd14+L2tDO0VoF/3LB5fvJXXVpZTNKCAHhnwb2tvI8fXAlNehQX/Df0vgBMnQM16yOkDKRnUNoZZvHkX5w3MA+CHT5bSu0s6068YFn8609j7n2bQHI5hrnoBa1cTGAZldk58u5kL1vD67iuZ2uV9zt1RCgMugJYgt77qfFj48isY1jOT7v6ML91JxLV9CEcw2R3LcF5221HXrIWbYc9njM4u57yMqHNqcd+z43e1bDDDTZib34LWbpDqZ8HaSqzSx7jguCRWZp1BsNXmrKIiHn5vKwB/fHMD147rg3/jy5ybvZ1I7BLAYOG6Ss6rf5VpKwZAcgYjCnP4zeCdNISikOp8wD+ztIxfXTboy8PXl3xQzVmxg9ZIjKsGZ0FGrvO3s2Qm7DqYs1NwjuiC23lh0R5I78L/ra7k22P6YPCFD6dIM7z2/6BgGPbYH8brtG3bWY5FYelMtqWdzIwPnFD5+Tlnfl97Lq/2esJZCTc6j5ecBrbFg7Pf5INdGfyz9nIAssxWGqxUWF3DiCG19OueSffabVTGsijY/hHG8We0DS7dwRWDA0SSMunbLbPde7dye5DX1+6GuiInoOz5DLqeEK/JNJzf8V7Lli9l9cLZlOWMZezY00lP8TGkV4Bunw9rtgXPXgMpmdjffALD97mDioYaSMnk70sqeeWtd4DL226ohvQuThB96UfOVZP/Dpnd2BlscbrgmmpZ9PQScvzZDNs5mxl7TudtYyyB5u0EU/LYvLsH40/Ojz/Vwws3cnleDU8uqYdYhEdCpzoBZWf71hVwxgP9ZcEmrhldyGlZlTD/Tjjt5s+98IeJnd0d35vTILidzUkn8HDtZEjzw26nteCTZVu4YOP7bAz/DoCqUCtVoVbe37SbOcWnt3s+y4Z5j94F9ac5e2zDYHs0wM9rLuYbsx9nLmdSGWxhSK9A/ODLwsDXvAfSAlRGs/hL3WlcuSedUbbttGB0OR4GTnSeYPFfeeCNDEjzs2yLTbh+F0l2W9irWu0c0ft7wOp/8MzOngA8M38xP/mqgBKLQEvdvvt+TlkkwJKWPvH1z/97VgZbeHTxVsCGcCMRM5ngk9cR8LUyu34oT25pYkzwE3458STwpR44bbx5h/Mz53j+Y8OJfLqz3unib94D2NhfaOFuicQINUfI86c5j/f+n5wD1NHfh4+eZEn9UEg6CXx7Pxtt2vVr2xb/U3s2FauCRLPLmdz8D36/KouxvVKZdHI2LP4rtg0/TZrGxuYsZn5nJL27ZDj/5021sHOF8znp27d7r4ulkWGGSfngL3DutC99m5ds2c3dr6/jB2f145KhB3/Ae7QooHzO3mbSveqaItz96kpeSd/Jlkhu/HrbhjmbogyoiTJ472fjJy/y61ei4O/NL3ssxWrpAi1OP/8/GeIElHVz4cQJBD94AVr6QrSFSTM+4Onvj+UXsz9xwokdA8OE1gYItZ05YFvg78Wtz63g1VvO4LUln0DTHkpaGyA5g6X1E/hz99eIPDqZymg2kc1/Z9NWk4cXl/Oz7n/krBt+x3+9sI7tDTbrdtYzqKefuqYIdU0RwlGL5/85m1OPC+zbv4YbuGrGO8xIfha4fL9/2td3FwDwaGgk5779W+gxAmvPvv7T+15ditlcywO93qL87D/Qu3sum3c1cNoJXUlN8vFlzLYK7M8Ws3FeNQSzIdpCvdX2Jocb4e3fYNnwRGgk/2gYwlV/aftnqx8GqQ3cN3cPNHRnc8U6Xmt0moRP6D+QvR8CzZEYDy/aDLvSGFKwAiLnQVIq5ZvX8O8b04By6HoCK9Zvhqo/Qeh6CPQGoPQz+MYDH3D/Nafw93fWsrKyhT9dNYIBO16mtLE7G7eFnU/HpFSo/hTyTiZm2Ty8aAvs2sB5y2fT7Ru/gbQc+OR5APbE0tgc6UpsYwUfbGvgW8O60LOr33mMytXEVi2DhgznA7qhGtICbN64jh9+WoE/I50/XtIT483/gsGTwEyGqjWEKz/l6o+GEo0576dpwAPfHknh7sW0fvISv6uOQfYQ5zkO8IEcjlqEnr8F6k4Hf0+M0B7WVW8DY1/LU8Pe34kd43evrQUMJjc7v5P0xTk8P7KWW55ZDfWVvLWoHgK9+G7/ZiZX3gen3wpDrth/bMs/boRTvgOjbqB848dYe5vSguXw0H/xmx3XAwMhFKS0eRNgMKSXn7su6AllS8HOgliUTUGDFKOe3z71Ibbh4+cTTmJAegM8921Wpo7ildCkA/8BtnUz2jYY/7iR39eeQ0lsYHysxb0bnADyYg8fbzedAMYugnaa00Kalcdby9rCR1Z3CFXwyFOvQPNwiEVpMT/3UbtxPuVdT2fl9jp6d8ngly99ApEm/ueVal7uOpOyepse839DiuHsWK77+FT4eD7/kWsyLDWFYEMT1Fc6nxNt3m3qRxIWZNjOvi7SDElpWM0NVPxjGj0vbRtT0RpiT10dD0ROc9YjzgHZU6ERVMeyeHhrMuQ6R9yfP/W8MpZFj6evxkxK4a7dF1EezWH1mgCzBpZSsPJFIrbJhlhfGla9yql1bwDfcd4Xw2TyvRuA6zkt/TOm5S6EZ79FxaAbCax+ArgG2Nd6uvrjJby/pY5/v/xCp1Vj2wdOGGisgXAj8+Y8SXX/q5h0chb2yufxA/fsOYvPIl3itdrV6/n1/avZnDHC+RtrbYCGqvgB5q2+S3ms4B+82jgQgGUflRKpvJ23mvqzyjqeH2WmEIqlkRuOkpGSxJyGk1nS0of/DlXx6UZzv7MH7bpyNhnd6Z6dim1ZXPe/70OwjNP6duGycYNp+ugjamPpXFTpjFV8MnQKdHFq+ayiEnZtgvQc5/LeH6mKZlER9QNQsnkX2dVbWB0axeo9FpP2/JWYbfBucz827tkB3U/kpqc+4vkfjuMnM1/huMZPOD9jM0W9n2VO8kUsqkrhiqbZ/E/tVQBcEVpNQe52JiSV8so2H/0GDGZYdwO6HE95bRO/e805C27mu5vpkpHCuH65HRqHdaQZdiccph4KhQgEAgSDQfx+/xF73C01Ddz67EdtzWA4CXf3pv3GR0zLfZfpkauhvoqz0rfys9z3ALhsx/Vf+tiz8l/Cb7ayufcV+La+w3/umuDckJUHqX5o2vXVp836ksH08cp1ffnGI22nUho4Ry612w7+Rfp7OEchvmTI6MpE611ea/tH/aIBKbvYGO72pQ+VakR5OP+fbIp05b49pxO00trd3ispyI5oAHL7xZvuT+/fjZr6Vi4d3oPymhDfWX1jvD937/t3YcZG3mza10T7vcByLs/ad/ro34KjeaXh5IN/zXvlHg9minNUGPzcgFrDOOCO+tyMLbzT1K/9lUmpzmtpbXDuF+jND+3ZPBQc226zZ3o8x7rM0ZwcXsU1oZ9AXRkDU6rJNCP8ostC1oTzmd/Un8XNx+2rIacQ9pTRMz3Cr26awmMz78aHxfvNx+974PQuzpFbajb4e/LiwEV8sHoTDVYKl2SuJ9mwWNJcyO98P3KOOOurnCPt7AJ+2KeCh0obvvItGp+xibcyJzqtb/HXnPLVfddtf0vU7zt9dWqX9/jTnjP32/SRgtl09zURS+/GpO3XOK9nzzb+2fMpnq8fxisNJ9Ns79/NMyilmrXhvPZXZuTGn/fy5KXMaRoG/p77JvDr1t/p6gGmjwxStvRlZtaNg24nwq4vDAjtfiI01PBUYBa31VzKiSm79v1uvmBU2g5KW3q1vzI9Z9//b1Ja+2b1Nt/KXklhUpABKbv4Ld+jbFe9s224Pt769r3Ach4OjqZvci33583l6dBwnmv7Es29kowYUftLgn5SqvO30bjLaf1qGyP2617L+XXNOU7I/6K0ALS0hRHDcNab65zWrN37JjYblFLNmLRyHgu1dTf5kp3fQX1bd0dKBoSb8JsthL7wWXAgxyXvaRcs/v20Qh5Z3DYOI9ALrCjX8Gb8S0Tjup0Ie7ZCLMKPc5bwYN24Az9BoDe0hpyg9AXTct9leu05X1lfVu/B3HD68fz1+decKwyzfSt6m4k9QrwWHQ3hBqjf2X4MVk5vqHM+a2bkzeG95uOd32dKFmTnt3t/MUzOTNvMe819nfXsfGffsGtfV/Ccnk8wu2GoE3IAktOdz3TLcrpX2xTnlDCjruhLX9tFmRt4o/FEAKfV9FtPc9kT2/bb7sfnnMDFR7glpSP7b1cDyowZM7j33nuprKxk+PDh/PWvf2XMmDFfe7+jFVA2lVdy+99e23dFZldo/PqJn9KMCPd2f51bqr+6D/WoSPMf8B/Qc0zf1w+E/QpXZX9Cga+Brr5GfrX7giNYWCeWU8jk6Ov8o2HI/rclp8ePjgFnx723Rc5lZ6Zv3fchnJXntAwdbV8SGr6oXW0u65NcR7/kWt79YkiWfw3TB5nd2wXvL9/W7Pjg8C/+j36RLxkyu3VsYPUhGJJaxZnpW53wnp4DWfu6Knt3SWfmd0Yd0efrFAHl+eef5/rrr2fWrFmMHTuW++67jxdffJH169eTl5f3lfc9WgFlQ8lr/L/XNYmRiIiI2f1E5tyyf0vo4ejI/tu1obp/+tOf+P73v88NN9zAoEGDmDVrFhkZGTzyyCNulcTSnYd+hC+HxwaCVipBK7WDJ+2JiMjRYB1gbpx/JVcCSjgcprS0lPHjx+8rxDQZP348JSUl+23f2tpKKBRqdzkaFq7eelQeVw5Oi51MywHGH4iISOJxJaDs2rWLWCxGfn5+u+vz8/OprNy/i2X69OkEAoH4pbCw8KjUdWXfzjvV97Eg22wl22z9+g1FROSoGzN8sKvP3ylOM542bRpTp06Nr4dCoaMSUi66dir93nmCny6M0jMpxCWZ63nLGEe4YQ+ZKSZbW/0MSqqgS2Yq+f2G8MmWnZybvYM36nrx/d5lbE8bQOlne1iyKx1wzoLpXlDIit0mTcldGZkbZnvFDqpbnBH4Y7u14E9LpnZXJX6zldFp5ZT7R5Gblc7K3fB+bYB7BnxK0871fNJawD/DY+NnGPXvmkJdSgGjoh8zuE8+I7PreG1PIR9UmpRV7XLOusjIdQZitdZDS4hTurQwJi9KtLaMPsPPJRyN8eHajcyr64WJxQl+i2t7VLCqvJZ/tIzm2u6beTo4FEwfhVYF5bHctkkGDH59yQCWbNhOS10VO1pSyIrWMSaynFxfM6/YZ3D26FPo7s+kcvMK3llTzskpNcxpOYUTM+rZYPVmTG4TA+sWYftSeTI4HCMplVm5LzM7eCJbI124ImsNF2Rsos5K46aqSTSndsVMSsWyYqRbDVwyOJ/ays/ompXC+poWTu7Tg3U76/hkt8HIPJOipnfI7tab5qRsHlgfIJacyZD8DFaHUp0Bk027MQ2DkeYGYpEI1/hX8oE9jNfq+jAgeRcjksoIFp7LoMx6ajNP4OyWd2jdWsLq1gLuD57O+KxtjAkEeahyAFHL4AeBZawKFzA/PJgRJ/XnjAKLNVu28cEOm+Myw1xiv8//Ri/hKvMdkomypMulbAkZ1De1OGcGpOdi2BbJoW1kZmRy2pD+pFYsZY/ZhXd2mJCSSXK0kf/KW8yCYE+iBaewdHsTmakpHBcw+UHvct77ZAPlkQCtdhIrWntwzvFpvFceIS+/B03NLaQ2V/GDk5poKVvB6xRx9ZBsGj5bQbilkRW+Ybyz02m9mt7tDRYkn8OmIDRYyexK7QOGSd/IJiZ030P+iaOZV27y8ZZKTvN9Sq7ZxD+aT4HkDLJ9ESwzmb6pIS6MvUd1wZlk+rvyt+W1WL4UTvBbBHLz+WhrFb/LmcuToRGsC+cxsItNYbcA87c0MySjlu55vfigEo5LDmE21WBiU0Y+jXYaJKXx3ZPCfFhWzzezVxEsOJ1asvls+w6+PTiNvD4nMvuFJ3gyNJIx6dvpl9FMUq8RfFCVzNZdjZCewwmxrRyXESG/SyavbrHpkR5jY0vAOZ07OY3Bx/Vgzdbt/KRLCSUNBYTTuzM2s4qtta3ssdKxU7IojfWHaAvXFFTQreUz6rP6ssPXm2jddq7gbd7JvZp/lqVzeuYORuU0saK1Bxl2I2/UFYLpY0jvXFbvqHP+p8ONXJ61jjm7ezMkYw8D87Mwdq1jkTGa3hkRSisjYMOYXqlcmL6OqpoaeqVH6UMFqzOL+N/KAfSObKMyqTdDza20dhvMiuoo4XAETB+9rJ2kGDFOHdiPFzdBfmQ7Z6dv4YV6Zx6k8V0q6Z6dRp8si5OaPuIPFcO4KvsTUrsdz8zKgVSFWmi1kzAyu/LIiUu45ZPjaYgl0zMnjUHh1SRlduGNxgHQWk+OHaLOyGZsTohtQYvemTa7rQzSWndTb6ViYTA8dSdV2UNZ35xNUxRSY820RqMM8ZWzmhOc9yTSwrkZm3mn6QROS/+MrNweVDT7uKxbFffuHM7Awnz8NLBsczXHWeWM7tJIcqCA9XUmJ/Q7ARqqeHZdjHOyyilrSmFL6knxs5rGdWuhzuxCZqArfTMjzN4Mo3JbySpfyMWZG+g39lJmf9pMpHoDGyLd6ZWTTnayRUlTbyrsrtBYzWUppZyQXMvToRHUWJlgQ4YZ5sQcg83RbtS3xJzPy1hr25lRewCD/vkBbjx7ANtXvsPKrZX0OfUSajcuIa+gkCc+acAALs2rYV2txWa7J76MXK4sqKSlNUxFZRUfp55KONzK4Nh6zh83kuomm4rt22iJwardBq2k0s0IkdfFT59YGeVNSYSsVL7ds4qdPS/g3Q8/oTm5C1XhVPD3YIi/lbSalaxsySOSlE1+aoRBxjb6jL6YPoXHH/H9bEe4Mkg2HA6TkZHB7NmzmTRpUvz6KVOmUFdXx5w5Xz6FMhy9QbIiIiJy9Hh+kGxKSgqjRo1iwYJ9379hWRYLFiygqOjLz92WY5dt2wSbIwSbI8fUN8iKiMihca2LZ+rUqUyZMoVTTz2VMWPGcN9999HY2MgNN9zgVkniokjM5pH3nUHKxef2JyXJvdkLRUTEfa4FlKuvvpqamhruvPNOKisrGTFiBG+88cZ+A2clcST7FEpERMShqe5FRETkX8LzY1BEREREvooCioiIiHhOp5gHRY590ZjFO+trADj3pO4k+ZSdRUQSmfYC4gmWDat3BFm9I4jV6UZFiYjIkaYWFPEEn2lw2gld48siIpLYFFDEE3ymwdh+Xd0uQ0REPEJdPCIiIuI5akERT7Btm+ZIDID0ZB+GoW4eEZFEphYU8YRIzOahhVt4aOEWIjGNkhURSXSdsgVl7+S3oVDI5UrkSAlHLVoaGwDn95qSpOwsInKs2bvfPphJ7DtlQKmvrwegsLDQ5UrkaPhPtwsQEZGjqr6+nkAg8JXbdMrv4rEsi4qKCrKzs4/4WIVQKERhYSHl5eX6np8O0nt3ePT+HR69f4dO793h0ft38Gzbpr6+np49e2KaX91S3ilbUEzTpHfv3kf1Ofx+v/7QDpHeu8Oj9+/w6P07dHrvDo/ev4PzdS0ne6mjX0RERDxHAUVEREQ8RwHlC1JTU/nVr35Famqq26V0OnrvDo/ev8Oj9+/Q6b07PHr/jo5OOUhWREREjm1qQRERERHPUUARERERz1FAEREREc9RQBERERHPUUD5nBkzZnD88ceTlpbG2LFjWbZsmdsldQqLFi3isssuo2fPnhiGwcsvv+x2SZ3K9OnTGT16NNnZ2eTl5TFp0iTWr1/vdlmdwsyZMxk2bFh8gqyioiJef/11t8vqtO6++24Mw+C2225zu5RO4de//jWGYbS7DBw40O2yjhkKKG2ef/55pk6dyq9+9Ss++ugjhg8fzoQJE6iurna7NM9rbGxk+PDhzJgxw+1SOqWFCxdSXFzMkiVLmD9/PpFIhAsvvJDGxka3S/O83r17c/fdd1NaWsqHH37Ieeedx+WXX86aNWvcLq3TWb58OQ899BDDhg1zu5ROZfDgwezcuTN+ef/9990u6Zih04zbjB07ltGjR/PAAw8Azvf9FBYWcsstt/Af//EfLlfXeRiGwUsvvcSkSZPcLqXTqqmpIS8vj4ULF3LWWWe5XU6nk5uby7333suNN97odimdRkNDAyNHjuTBBx/kt7/9LSNGjOC+++5zuyzP+/Wvf83LL7/MihUr3C7lmKQWFCAcDlNaWsr48ePj15mmyfjx4ykpKXGxMklEwWAQcHa0cvBisRjPPfccjY2NFBUVuV1Op1JcXMzEiRPbfQbKwdm4cSM9e/akX79+XHvttZSVlbld0jGjU35Z4JG2a9cuYrEY+fn57a7Pz89n3bp1LlUliciyLG677TZOP/10hgwZ4nY5ncKqVasoKiqipaWFrKwsXnrpJQYNGuR2WZ3Gc889x0cffcTy5cvdLqXTGTt2LI899hgnnXQSO3fu5L//+78588wzWb16NdnZ2W6X1+kpoIh4SHFxMatXr1Y/dgecdNJJrFixgmAwyOzZs5kyZQoLFy5USDkI5eXl3HrrrcyfP5+0tDS3y+l0Lr744vjysGHDGDt2LMcddxwvvPCCuhiPAAUUoFu3bvh8PqqqqtpdX1VVRUFBgUtVSaK5+eabmTt3LosWLaJ3795ul9NppKSk0L9/fwBGjRrF8uXL+ctf/sJDDz3kcmXeV1paSnV1NSNHjoxfF4vFWLRoEQ888ACtra34fD4XK+xccnJyOPHEE9m0aZPbpRwTNAYF5wNu1KhRLFiwIH6dZVksWLBAfdly1Nm2zc0338xLL73E22+/Td++fd0uqVOzLIvW1la3y+gUzj//fFatWsWKFSvil1NPPZVrr72WFStWKJx0UENDA5s3b6ZHjx5ul3JMUAtKm6lTpzJlyhROPfVUxowZw3333UdjYyM33HCD26V5XkNDQ7sjhq1bt7JixQpyc3Pp06ePi5V1DsXFxTzzzDPMmTOH7OxsKisrAQgEAqSnp7tcnbdNmzaNiy++mD59+lBfX88zzzzDu+++y7x589wurVPIzs7eb6xTZmYmXbt21Riog/DTn/6Uyy67jOOOO46Kigp+9atf4fP5uOaaa9wu7ZiggNLm6quvpqamhjvvvJPKykpGjBjBG2+8sd/AWdnfhx9+yLnnnhtfnzp1KgBTpkzhsccec6mqzmPmzJkAnHPOOe2uf/TRR/nud7/7ry+oE6murub6669n586dBAIBhg0bxrx587jgggvcLk0SwPbt27nmmmvYvXs33bt354wzzmDJkiV0797d7dKOCZoHRURERDxHY1BERETEcxRQRERExHMUUERERMRzFFBERETEcxRQRERExHMUUERERMRzFFBERETEcxRQRERExHMUUERERMRzFFBERETEcxRQRERExHMUUERERMRz/j/1md9Ttgg6WAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "higher = ps_weighted.power.max() > ps_counts.power.max()\n", + "\n", + "plt.plot(ps_counts.freq, \n", + " ps_counts.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if higher else 0))\n", + "plt.plot(ps_weighted.freq, \n", + " ps_weighted.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if not higher else 0))\n", + "plt.axvline(freq, ls=\":\", alpha=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "76d8e1b2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 1021.5756611715042)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGjCAYAAAAYW96wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP+0lEQVR4nO3deZwcVbk38F91z0ySCVkJBCJBRC56B0wCSYgoVwHDRVQUlyuKS+AqvurABfNeveT6yqIoKoqoaXYwLAbCloQACYQhJEC2yYTJNtkm6ySzb93T3dNb1Xn/qJlOz/RW1V3dp7r79/185pPepuukp7rqqXOe8xxFCCFAREREZAMO2Q0gIiIiGsTAhIiIiGyDgQkRERHZBgMTIiIisg0GJkRERGQbDEyIiIjINhiYEBERkW0wMCEiIiLbYGBCREREtsHAhIiIiGyDgQkRERHZRt4Dk97eXsyaNQszZszA+eefj0cffTTfTSAiIiKbUvK9iJ+qqggGg6isrITP58P555+PLVu24OSTT85nM4iIiMiG8t5j4nQ6UVlZCQAIBoMQQoALHBMREREAlJn9hXXr1uHee+9FXV0dWlpasHTpUlxzzTVDXuNyuXDvvfeitbUV06dPx9///ndcdNFF0ed7e3vx2c9+Fvv378e9996LSZMmGd6+pmlobm7GmDFjoCiK2eYTERGRBEII9PX1YcqUKXA4UvSLCJNef/118ctf/lK8/PLLAoBYunTpkOefe+45UVFRIZ544gmxa9cuceONN4rx48eLtra2uPdqbW0Vn/rUp0Rra2vS7QUCAeF2u6M/DQ0NAgB/+MMf/vCHP/wpwJ+mpqaUcUZWOSaKosT1mMyZMwezZ8/GwoULAeg9HFOnTsXNN9+M2267Le49fvrTn+Lyyy/HN77xjYTbuPPOO3HXXXfFPd7U1ISxY8dm2nQiIiLKI4/Hg6lTp6K3txfjxo1L+jrTQzmphEIh1NXVYcGCBdHHHA4H5s6diw0bNgAA2traUFlZiTFjxsDtdmPdunX4yU9+kvQ9FyxYgPnz50fvD/7Hxo4dy8CkSKiawAdHewAAF5w5AU4Hh+iIiIpVujQMSwOTzs5OqKqKyZMnD3l88uTJ2LNnDwDgyJEj+NGPfhRNer355pvxiU98Iul7jhgxAiNGjLCymWQzqibw7v5OAMC0M8YzMCEiKmGWBiZGXHTRRaivr8/3ZsnGHApQNWVs9DYREZUuSwOTSZMmwel0oq2tbcjjbW1tOO2006zcFBWRMqcDV57H/YOIiCyuY1JRUYGZM2eipqYm+pimaaipqcHFF19s5aaIiIioCJnuMfF6vWhsbIzeP3ToEOrr6zFx4kSceeaZmD9/PubNm4dZs2bhoosuwv333w+fz4cbbrghq4a6XC64XC6oqprV+xAREZF9mZ4u/M477+Cyyy6Le3zevHlYtGgRAGDhwoXRAmszZszA3/72N8yZM8eSBns8HowbNw5ut5uzcopEKKLhsfcOAgB+eMnZqCjj2pJERMXG6Pk772vlZIuBSfEJRTS41ui9cNWXncPAhIioCBk9f+d9Vg7RcOVOBdd/6qzobSIiKl0MTEg6RVEwYXSF7GYQEZENsM+ciIiIbIM9JiSdqgnsOO4GAHziQ+NY+ZWIqIQVTGDC6cLFS9UE1uxpBwBUnT6WgQkRUQnjrBySLqJqWLWrFQDw+fNOQ5mTI4xERMWGs3KoYJQ5HfjStCmym0FERDbAS1MiIiKyDQYmREREZBscyiHpwqqGRe8fBgBc/+mzUM4cEyKiksXAhKQTAvAGI9HbRERUuhiYkHRlDgXf+eSZ0dtERFS6CiYwYR2T4uVwKDh1zEjZzSAiIhtgHRMiIiLKOdYxoYKhagJ7Wj0AgI+fxsqvRESljIEJSadqAm/uagMA/MupYxiYEBGVMAYmJJ1DAT4yaXT0NhERlS4GJiRdmdOBay74kOxmEBGRDbCSFREREdkGAxMiIiKyDQ7lkHRhVcMzG48AAL77yQ+zJD0RUQkrmDOAy+VCVVUVZs+eLbspZDEhgF5/GL3+MEvSExGVOBZYI+k0TaDFEwAAnD52JBycmkNEVHRYYI0KhsOh4EPjR8luBhER2UDBDOUQERFR8WOPCUmnaQKNHV4AwDmnnMShHCKiEsYeE5Iuogm8tr0Fr21vQUQrqJQnIiKyGHtMSDpFAc6YMCp6m4iIShcDE5Ku3OnAf8yaKrsZRERkAxzKISIiIttgYEJERES2waEcki6salhS2wQAuHb2VJakJyIqYQVzBmBJ+uIlBNDRF0RHX5Al6YmIShxL0pN0mibQ1OMHAEydUMk6JkRERYgl6algOBwKPnzyaNnNICIiGyiYoRwiIiIqfuwxIek0TeBwey8A4KxTx3Moh4iohLHHhKSLhMNYvvhBLH/2IUQiEdnNISIiidhjQtIpgR5MVlv122EvUDFBcouIiEgWBiYkXbnTgevGbtPvsIYJEVFJ41mAiIiIbIOBCREREdkGh3JIurCq4eW+TwAAvqZqKJfcHiIikoeBCUknADRH9CqAhVWHmIiIrMbAhKQrcyi4evTu6G0iIipdBROYuFwuuFwuqKoquylkMYei4JyK7sE7chtDRERSFUzya3V1NRoaGlBbWyu7KURERJQjBdNjQsVLEwLHw3qOyYc0UTjRMhERWY6BCUkX0QRe9Oqzcqo1gQrJ7SEiInkYmJB0CoCTnX79NlNMiIhKGgMTkq7c6cD3x36g32FJeiKiksazABEREdkGAxMiIiKyDQ7lkHRhVcMrfecBAL7MkvRERCWNgQlJJwAcjYzXb7MkPRFRSWNgQtKVORR8fvS+6G0iIipdDExIOoei4F8rOgbvyG0MERFJxeRXIiIisg32mJB0mhBoj5wEADiVJemJiEoaAxOSLqIJPNs3HQBL0hMRlToGJiSdAmCsI6DfZooJEVFJY2BC0pU7HfjBuDr9DkvSExGVtII5C7hcLlRVVWH27Nmym0JEREQ5UjCBSXV1NRoaGlBbWyu7KURERJQjHMoh6SKawOvejwMAvqAK7pRERCWM5wCSThMCB8InR28TEVHpYmBC0jkVBXMrG/XbrPxKRFTSGJiQdE6Hgk+MaNPvMDAhIippBZP8SkRERMWPPSYknRACXWolAOBkIcA+EyKi0sXAhKQLawJPey4AAFSrLElPRFTKGJiQLYxSwrKbQERENsDAhKSrcDrw4/Gb9TtlTHsiIiplPAuQDbB2CRER6RiYEBERkW1wKIeki2gCq33nAgCuYEl6IqKSxnMASacJgT2hUwAAn2NJeiKiksbAhKRzKgo+O+qgfpuVX4mIShoDE5LO6VBw4cgW/Q4DEyKiksbkVyIiIrIN9piQdEIIeNQRAICxLElPRFTSGJiQdGFN4AnPLAAsSU9EVOoYmJAtlCuq7CYQEZENMDAh6SqcDtw0fqN+hyXpiYhKGs8CREREZBsMTIiIiMg2CmYox+VyweVyQVWZi1BsIprAGt85AIDLWJKeiKikFUyPSXV1NRoaGlBbWyu7KWQxTQjsDE3GztBkaCxJT0RU0nhxStI5FQWfGnlEv83Kr0REJY2BCUnndCiYM+qYfoeBCRFRSSuYoRwiIiIqfuwxIemEpqFfKwcAjGJJeiKiksbAhKQLawIPuy8CwJL0RESljkM5REREZBvsMSHpKpwO/GzC+/qdsv+R2xgiIpKKPSZERERkGwxMiIiIyDY4lEPSRTSB9/wfAQBcwpL0REQljecAkk4TAh8EpwAAPsWS9EREJY2BCUnnVBRcNLJJv83Kr0REJY2BCUnndCj49Kij+h0GJkREJY3Jr0RERGQb7DEh6YQQCAs9Ri5nSXoiopLGwISkC2sCrt6LAbAkPRFRqeNQDhEREdkGe0xIunKHgurxG/TbTg7kEBGVMgYmJJ2iKKhQtME7chtDRERScSiHiIiIbIM9JiSdqgls7D8TAPBJTcApuT1ERCQPAxOSThUaNgemAgBmMzAhIippDExIOoei4IIRzdHbRERUuhiYkHRlDgWXVh7S73BWDhFRSWPyKxEREdkGAxMiIiKyDQ7lkHQhVYOr59MAgOqIxpL0REQljD0mREREZBvsMSHpyh0K/s+4zfptJr8SEZU0BiYknaIoqHSEB+/IbQwREUnFoRwiIiKyDfaYkHSqJrCl/wwAwCxWfiUiKmkMTEg6VQisD3wYAHABAxMiopLGwISkcygKzq9oi94mIqLSlfcck6amJlx66aWoqqrCtGnT8MILL+S7CWQzZQ4FV4xuxBWjG1HGWTlERCUt7z0mZWVluP/++zFjxgy0trZi5syZ+MIXvoDRo0fnuylERERkM3kPTE4//XScfvrpAIDTTjsNkyZNQnd3NwMTIiIiMj+Us27dOlx99dWYMmUKFEXBsmXL4l7jcrlw1llnYeTIkZgzZw42b96c8L3q6uqgqiqmTp1quuFUPEKqhoW9n8TC3k8iFNFkN4eIiCQyHZj4fD5Mnz4dLpcr4fNLlizB/Pnzcccdd2Dr1q2YPn06rrzySrS3tw95XXd3N77//e/jkUceSbm9YDAIj8cz5IeKT1g4ERacj0NEVOoUIYTI+JcVBUuXLsU111wTfWzOnDmYPXs2Fi5cCADQNA1Tp07FzTffjNtuuw2AHmxcccUVuPHGG/G9730v5TbuvPNO3HXXXXGPu91ujB07NtOmk40IdzM8/7weADD2huehjBovtT1ERGQ9j8eDcePGpT1/WzorJxQKoa6uDnPnzj2xAYcDc+fOxYYNGwAAQghcf/31uPzyy9MGJQCwYMECuN3u6E9TU5OVTSYbUBQF45xBjHMGoXC6MBFRSbM0MOns7ISqqpg8efKQxydPnozW1lYAwPvvv48lS5Zg2bJlmDFjBmbMmIEdO3Ykfc8RI0Zg7NixQ36IiIioOOV9Vs4ll1wCTWOCI52gagLbAvpMrems/EpEVNIsDUwmTZoEp9OJtra2IY+3tbXhtNNOs3JTVERUIbC2/2wAwPkMTIiISpqlQzkVFRWYOXMmampqoo9pmoaamhpcfPHFVm6KiohDUfDxig58vKKDJemJiEqc6R4Tr9eLxsbG6P1Dhw6hvr4eEydOxJlnnon58+dj3rx5mDVrFi666CLcf//98Pl8uOGGGyxtOBWPMoeCq0bv0++wJD0RUUkzHZhs2bIFl112WfT+/PnzAQDz5s3DokWLcO2116KjowO33347WltbMWPGDKxatSouIdYsl8sFl8sFVVWzeh8iIiKyr6zqmMhgdB40FRBPC/Dst/Tb814BRo6T2x4iIrKc0fN33mflEA0XUjU80XsRAOA/IxoqJLeHiIjkYWBCttAvymU3gYiIbICBCUlX7lDwvbEf6LeZ/EpEVNIYmJB0iqJgktM/eEduY4iISCpL65gQERERZaNgAhOXy4WqqirMnj1bdlPIYqomsCM4GTuCk6FqBTVJjIiILFYwgUl1dTUaGhpQW1sruylkMVUIvOU/B2/5z2FgQkRU4phjQtI5FAUfLe+K3iYiotLFwISkK3Mo+PJJe/Q7nJVDRFTSCmYoh4iIiIofAxMiIiKyDQ7lkHRhVeAp90wAwPdVDawBS0RUuhiYkHQCAh5tpH6bk3KIiEpawQQmLpcLLpcLqqrKbgpZrMyh4NtjtkVvExFR6SqYHBPWMSleDkXBaWVenFbmhYOBCRFRSSuYwISIiIiKX8EM5VDx0oTA3tApAICPaYLRMhFRCWNgQtJFNIFVvnMBAB/VBCokt4eIiORhYELSKVBwZlmvfpspJkREJY2BCUlX7lTw9TG79DtODuQQEZUyngWIiIjINhiYEBERkW0UzFAOC6wVr7Aq8KznAgDAt1mSnoiopBVMjwkLrBUvAYEutRJdaiVL0hMRlbiC6TGh4lXmUPCNk3ZEbxMRUeliYELSORQFU8s9g3fkNoaIiKQqmKEcKmYcvyEiIh17TEg6TQgcDE0EAJzNkvRERCWNgQlJF9EEVvj+FQBQzZL0REQljYEJSadAwZQyPceEJemJiEobAxOSrtyp4Nox+qwclqQnIiptPAsQERGRbRRMYOJyuVBVVYXZs2fLbgoRERHlSMEEJqz8WrzCqsBiz3Qs9kxHWNVkN4eIiCRijglJJyDQpp6k32ZJEyKiksbAhKQrcyj4ykkN0dtERFS6GJiQdA5FwdnlPYN35DaGiIikKpgcEyIiIip+7DEh6TQh0BQeDwCYypL0REQljYEJSRfRBF72ngeAJemJiEodAxOSToGCU5w+/TZTTIiIShoDE5Ku3Kngu2Pr9TssSU9EVNJ4FiAiIiLbYGBCREREtsGhHJIuHNGwrO98AMA1qoZyye0hIiJ5GJiQdAICxyLj9NssSU9EVNIKJjBxuVxwuVxQVVV2U8hiZQ4FXxy9J3qbiIhKV8HkmHB14eLlUBScW9GFcyu64GBgQkRU0gomMCEiIqLiVzBDOVS8NCHQEhkDADidJemJiEoaAxOSLqIJPN83DQBL0hMRlToGJiSdAgXjHf36baaYEBGVNAYmJF25U8EN47bqd1iSnoiopPEsQERERLbBwISIiIhsg0M5JF1EE3jVWwUA+JIquFMSEZUwngNIOk0IHApPiN4mIqLSxcCEpHMqCv69cr9+m5VfiYhKGgMTks7pUHDeiHb9DgMTIqKSxuRXIiIisg32mJB0mhDojIwGAExiSXoiopLGwISki2gC/+ybAYAl6YmISh0DE5JOAXCSI6TfZooJEVFJK5jAxOVyweVyQVVV2U0hi5U7Fdw4rla/w5L0REQlrWDOAtXV1WhoaEBtba3sphAREVGOFExgQkRERMWvYIZyqHhFNIFV3o8BAD7PkvRERCWNPSYknSYE9ocnYX94EkvSExGVOF6cknRORcFllQf026z8SkRU0hiYkHROh4IZI1r1OwxMiIhKGodyiIiIyDbYY0LSCSHQq44EAIwXAuwzISIqXQxMSLqwJrDIMxMAUK2yJD0RUSljYEK2MEKJyG4CERHZAAMTkq7C6cBPx2/S75Qx7YmIqJTxLEBERES2wcCEiIiIbINDOSRdRBOo8Z0DAPgcS9ITEZU0ngNIOk0INIQmAwAuY0l6IqKSxsCEpHMqCv5t1GH9Niu/EhGVNAYmJJ1TAWaNPK7fYWBCRFTSmPxKREREtsEeE5JOCAGvptd7PYkl6YmIShoDE5IurAk85p4NgCXpiYhKHQMTsgUHOBuHiIgYmJANVDgduGXCev0OS9ITEZU0ngWIiIjINgomMHG5XKiqqsLs2bNlN4WIiArE8vrj+MWL2+DuD8tuChlUMIFJdXU1GhoaUFtbK7spZLGIJvC2/2y87T8bEZW5JkRkncfePYTdLX1YuaNFdlPIIOaYkHSaENgWPB0AcAlL0hNRDniDEdlNIIMYmJB0TkXBJ0ce1W+z8isRUUljYELSOR0KLh7VpN9hYEIAjnb5sflwN66efjpGlDllN4eI8oiBCRUeTQMcBZMeRRmoXrwVANAfiuB7F58ltzFElFc8upN0QgjsDk7CgdB4iHQ5JvWLgSevBtp356dxJNW+Nq/sJhBRnjEwIel6+iOY1/ZNfLv1OoTTzcrZ9DAQ8gK1j+encURElFcMTEi6Tn8G2fIhn/UNISIi6RiYkHRlioJTnV6c6vSi3MnkV7IHbzCCJ947hD2tHtlNISopDExIOkVRoAD6j8LAhOxh6dZjWPrBcfz2NeYz0VBpc+EoKwxMiEpYRNUK/iDb7glgwcs7sOlgl6Xvu6e1DwDQ62cpczqh1x/CD57cgmc2HpHdlKLFwISkUzWBPq0CfVoFVK2wT5KFxBMI49pHNuL3K/fIbkpSAun3h7+/3Yidx924mz0bSXmDERzt8stuRlF4se4YOvqCWFLbJLspRYuBCUmnQcAvKuAXDEzyad2+DoQiGtYfsLanId88AfZopHP7sp2oXrwVje2cfp2tAu9gLAgMTEg6BxRUKiFUKiETJel5dCAyav9AQLL1SI/klhClx8qvJJ3ToWCMIxS9TUREpYs9JiRdZhNxGMAQERUj9piQdEKcSHEUQjDkyDFfMILXtregyxeS3RQiojgMTEi6iCbQrp4EAAirAhWS21PsXqw7hhfrjsluhnRhVcM7eztQNWUsPjR+lOzm5IWRWU6UO32BMH7zagPmfORkfH3mGbKbY1scyqGC5+4PF3wtjnyqYwIkAKBmdxv+VrMfv3ud04wpP97c1YbdLX1YtP6w7KbYGgMTkq7MoeAUpxenZFCSfn1jJ7772CY8vO5gjlpnTGO7F/et3ocWd7/UdpiihoDug0B/YQcqmQ79fXC0FwBKqr6HwoHSrGVTnNofymBdsBLEwISkUxQFDug7o9mS9E9uOAwAeG17i+XtMuO+1XuxZk87Hl4rN0AyxdsGqGHA2y67JUREUQxMqEDZa+imqVvvKdl+rFduQ8yw10dIRASAya9kA6om4NXKo7edkttDVKyY/EqFgD0mJJ0QAj4xAj4xwkRJ+tIYK2eJfqI8EQLoOgCoucsD4bfZGAYmBrj7w3hnbzuCe94EDq2T3Zzisu05KCt/gVFKCKOUEBzZZJYVmUOdPnztgffx9EAeDVG2Ci35td0TwJbD3fmZdbd3JfDifwIbFuZ+WwMiqoa6Iz3oD6l522YhYGBiwC+X7sCfVzVg0fLVwJu/AiJFWJiqtwlo3ZH/7W58EGWKwFhHCGMdIZSZnJVTzBa9fwiaAJ7fUro1R3J5PuLVq/394MktuGtFQ36muG99Sv9319Lcb2vAUxuO4M5XduGelZyyHouBiQFHuvyAUPFe/4f1B7QinPK19MfA8pv0AIVKnj8UKaypz2SIqRyTSBDY9DDQuvPEY0c2AIfft75haew87s79RvJwXB9+2bVqZyuAE1PXc6L3aMFdTDMwyVTXAWDVAqCzUXZLrBEaWA6994jcdpAt3PbSDvzoqTo0ddu/xofZKea50NzbD9eaxoL4vIbwdgAbXID7ePxz9f8E6hcDy6v1+5EQsOo24I3/BYLe/LYzke5DwJ7Xc9utlkOaJtAfzvEQTtNmYMn3gGU/ye12LMbAJFMrbgGOrC+4P3jWNBWoexI4VmfZW4aFgjZ1NNrU0QhFNIO/VZgHoyE0yePKKc7nhzp9AIDtx/JwpVoEHninEat2tmLh2wV2obL6dmD788ArN8U/1zPsIkULn7gdtkFv2gvXA2v/ADTWoKHZg5fqjiGiGj1+yBF71Hp9Zx5qL+1bpf/bVVj7JQOTTAX79H/VwuoiS8atjsBK37nwhuJP+Ac7vLhrxS7sbe0DDqwBtjwBvDbf4hYoKJWZNgD0q71FXwI2PCC7Jbr9qwFfl+xWFKxtTXoA19DikdyS1OKSX9sb9H/93flvjFU6duNXy3di0frDeHd/p+zWGPbPjUdlN8G2GJiYUMzr3v6m+3I80PtJ/GVLYOgTQmDhivXYcqAd963eC7it/zKVQWCS04dJTh/KTO6RhTbLIGr780DYD2xfkvdNJxz5ePtu/eqTCEB/SMXv9k/FKt+/yG6KIYM9rUe6fJJbYpxaoENQ+cDAhAAAe0OnAAA2twwbXjjyPvYfbgK6D6K5N5DgN7PnUASc0H+M5wsUaEAyKJKbzzIrTZtSP79+od71n8cDKg/dyYUiGsImhy6MJr/W7GnDhp6xcPVenEnThurvBTr2Zv8+VDIYmBghSniOect22S0oWblK6sw4rtjxAnBwLdC5z9L2FL2GV4DNj1r6lqGIhh89vQU3L/4AWg6K8Hn6081QMbHN1/4v8PKPgLaGjNuTcmu9TYC/syCO0/m/nCrMCzgGJumsX6jPvAn5ePWWI6pQ4BPl8InyvFY63dPqKay1beyiSKbL56VoFwC8+2fgg2fM9RrUPqYHNEm0eQLo8oZwvLcfwYFhjKNdftTsbjP8/2rq9qNPqzDepkxPcoOJl8e3ZPb76TRt0vOjCmAxSpH0DsXiWjnp7HgBwPf1aXUM43JChQKvNkK/rQlTO2U2nQo/f0HvDXrmh3MwblR55m9EmenvBWp+DXz8C8A5c6U2ZePBLnzy7JNzu5GQwSm2nY3A1qf121VfNvz21Yu3AgAqyhz4t385JenrhBC4+dkPcKTLj7N6r8TfT11heBu2ZoeZQtnqbQLKK4HROd4XbU7KqfarX/0qJkyYgG984xsyNp+xfCa/rtvXgRe2lEaxMwcERiphjFTCUkrSu/3huMeEELhn5W48/t6hvLfHTgz/OY5s0KfPm7HlceB4HVDzG9PtimXFHvPb12xUedNoAJNEY3vy31egoKHFoxeNBHA4PCGrbZGF/N3Aku8Cz3xNdkukkxKY3HLLLXjqqadkbLpg3PvGXjy14Qj2t/XJbsoJORrDLVMExjmCGOcImihJn9t+0MZ2L9Y3dmHZBwkKT5W6niNAc/2J++F+vfDWqgVAyESBsaCN9u18sEHXvYBAWM1tQwJhFbWHuxGM2D/nQ6rhh7pcFLe0QfHBTEgJTC699FKMGTNGxqYLjrs//mo+X17Z1oy17aNOPNDZCAQKr+CWEML07IVITK7LxoPFVd/DzLEqYbrC2j/oBQYHq4VGgieeMzXbSOJBM9wP+HuQy2ihzRMo7BwmLbNjz99q9uPXKxqkFJuzQxVgyp7pwGTdunW4+uqrMWXKFCiKgmXLlsW9xuVy4ayzzsLIkSMxZ84cbN682Yq2SmeDC568ae7tx6PrDuJPu8cNe6I+p9uNOxG2NQBb/gGEM59ee9/qffj6g+vR3pfZe/z2td043lsE49dW82TZm6SkP/zkLD912U+B/W9m3WvTFwjHJZt29OmB2g+f3IJfLt2JPaFJWW1DBgGR+juX4g8zWOTsnb0dKbfR1OW1tkfYaCAV8ACNbyXo3cvzEb6UTigmmQ5MfD4fpk+fDpfLlfD5JUuWYP78+bjjjjuwdetWTJ8+HVdeeSXa2zPLmA4Gg/B4PEN+Sok3GMnf7IFh2825Dfo+FBIOtKuj0a6ORmh4z8YbC4C6RcDu4TMU9CsjIxdI7+ztgBDA69szLwHd7ZVb4fc3rzZgwcvbLZkaamZ3yukFqMyr2+6D+r+BzI8nO4+7cd2jm/CX1UOnT/9h1Z4h9wdrBFGMrgP46d+ex/xFa9Drt+i7ZXS/3viAnte09UlrtkuWMx2YXHXVVbj77rvx1a9+NeHz9913H2688UbccMMNqKqqwkMPPYTKyko88cQTGTXwnnvuwbhx46I/U6dOzeh9jNA0kZOaANn485v7ijcBc/vz0ZsCypDk4jV72lF7uFufuQEA7TZKTpRg86Fu7DzuQYtHfmE2IYAX+s5HbXPmw4yaJrDTUwmfJmE2VEivDpptMvuLdccAAGuG9Qwc7ZK/kF8g14vDZev9+/UdydcR7WHKm70r9X+3PZf+tZoGqCcu0pbUHsXy+mbz29Q0vfRE664UL8pFoF6YQ1uW5piEQiHU1dVh7twTU/8cDgfmzp2LDRs2ZPSeCxYsgNvtjv40NeVmpoo3GMFXXO/jK673bRecZPRFsIrRjyKLXp1yaDjZ6cPJTh/KnQraPAHct3offr0i84JMZphaCt4qNhsL/yBwetLnAmEVO4+7Mfi12BY6DU95LsSv38t89shbu9uwoGEq/m/HFzJ+j4y9d3/+t2khtz+c8uv28tbj+NYjG7HzeOJ8sKR73uBFQL5tf0HOdtMRQp8ls/ibgKYiFNHwTKbr2zRv1UtPNK42uGl7nYPyzdLApLOzE6qqYvLkyUMenzx5MlpbW6P3586di//4j//A66+/jjPOOCNl0DJixAiMHTt2yE8uPLLuYPR2X46HMUIRrXB2vP4eQ69pefI/cfydzHrFFEVfL6cMAgoUqQm/pao+mDgwUQDctaIBC17egRe95wMAutXKrLe3br/ey3A8Mi7NK3PguHUrY5tj8DufImjdedyN7z6+CfesjOlB7O/Wr8hjqJrA88nKDQgt8YXE3pUQQuS/t2XPqwkf7vGdGOLpl9EDFAnqeVR+vXibls0xO9Br+KV/6fk0bnyqDr58DKfblJRZOW+99RY6Ojrg9/tx7NgxXHyxBesxZMlId6IVdUyOdvlx3aMb8cA7BzL6/bCqoS0P3fmDi2IZEal/Hj86eAl+/LbFB7VIqoRT6wM7f+hEPk/OOzQkBqamZuUA0SvvN3znWt0Si9/PuA61En4RO4wkgNV36InWRggBqIkD6Fz2wC0dmL5+rKdfn74fcAOLvwXU3Bn32oTfYQFg3Z+AnoN6gBIr7Medr+zCfzy0wcDxMPf7b+wid4VyHZfOpkD6VIS3/R9FmyeATYeKazagGZYGJpMmTYLT6URbW9uQx9va2nDaaadZuSnbEkKg9nA32pMEDyu2NyMY0bBqZ2vC59P546o9+OGTW/STRdALvP4LYOfL2TQ5oVeTJorGHyFCMbFIJkmzqlDgF2Xwi7KhK266j6X9XStWFxYC2N/Wh2sf3oh737D3YmMye9qSBuY2G5ZKpyMyEj9s/Tp2BGOOSSE/cPAdPdE6jeX1x3H9fUtwePs6fYVoWTobgb6B48jBtQZ/SUDpPqDnTUTig4+tR3sBADW7E0xWKIC/c9omDuSLHA2Pw1OeC/KT5B/jaHi84dcmrHCgaVnNUCwUlgYmFRUVmDlzJmpqaqKPaZqGmpoaW/SKZMvIKaHuSA9+vaIBd61o0Hei5vohO1IkSXGjUEQztE7MxoPdAIA3G9r0JK6mTcD7fzXSfFP6PL0Jp1I2+Mfjhb7zERHWHaRUKOjTRqJPGzn0M9DM1R5JJ9WnO5jI+O7+TkQSHBEK4JiccxqA9f1nolMdncetmgzEIqlneDyz8Qj+88iV0OKCrCTbCXr0ei3BPn1/bKzBY2v3ocvtQ5c6Wl+jZfg7JWtybwb5Cf5u879ThCwJyH1dwJNXAwCq27+CF/o+gUfWxvRcp9mGLXptVt0GPP3VhPtdMTEdmHi9XtTX16O+vh4AcOjQIdTX1+PoUf1LN3/+fDz66KN48sknsXv3bvzkJz+Bz+fDDTfckFVDXS4XqqqqMHv27KzeJ7kTe12XN/Ms8fqmXgDA0W4/UP+MXojqjf9N+TthVcN3H9uE7z2+CQc7vMaSb4UwNW45KBhRsbz+OJrT1eVofAvwxCfd3tF0IZ7yXIh3+s82ve1kHBAYoUQwQokkL0mf48ggdppypzdkSU9MShIjHVPThWNud6mjcU/3pXjac4HlbUrL1wnsWqb3EiYTCQKPX6EPVSSxpLbJ3CKEnha9RPzWp4CGZfraPl0H0/5aQplcQAzOXBMC6NyfcPgon0tlyGJJUND8QVwP1742YwncmhD4r+c+sKARWWraBIT9OLD9fctz8bq8Qby7vyOvC6kmYzow2bJlCy644AJccIF+cJo/fz4uuOAC3H777QCAa6+9Fn/6059w++23Y8aMGaivr8eqVaviEmLNqq6uRkNDA2pra7N6HyNuea4eTd0WdNEOrg6aJtmuubcf/WEVfYEIbnmuHl9xvZ/9tpN4dtNRPPbuIfyfp1O3KdmhLiCcAJKvsZHJAaRcERjvCGC8I4Ayh9GDbJLXJRn3T0X+1zAFLaInIGv6eFm2lS0jqobDXb64x21/cnv3PuC9v6SuPeEfuIrcnWpRugz/2v29hpNmM96f2vcAa/+oLxg6aPD/dHwr8NIPgSPZHxuUYS1sj4zGY+5ZaA9Y0IGuqTD2CaTf3yzfI4XJYZuY75o3qKHVncUQiqGPxNj/eG9oEm59z4HvP77J3HumGQL6yTNb8cdVe/HajszrPVnF9J546aWXQggR97No0aLoa2666SYcOXIEwWAQmzZtwpw5c6xsc44M3Sk2H4rvQrX1wVvTgI590RNYMg0t1heos/pTyfj9eg4Dj83VT2DJqBH94J9iSXlblRH3HNeXc+/TDxZJu7Q7G4HnvgMcWJPy7f74xl57dEkDgMNp/LWDJ+TBGhRFou5IN+5+tUEvMlZzF7DnNWDTQ/EvPPC2/q83s0KVqfyq6wos91bhrvr0y4SEhAM7g5MTDnciEgSe+TrQmz43LJaR3dEuu2xUoDdaDydntAgCb9yFt998ZUgRusEZdKY7NmruSvn04MynrUcMzMTMMSmzcopa0AN42wA1iBd6zkFzZODL/vZvc7vdLY8DL98IvPvnlC+TsXpv3nzwjP7vrmXJX3N0vX7wH/Y5xQ7d/P3tRstGWhIGEv09xruWBq9y0h0Ea+7Uk4XfujPlyzYcsNHYtMkPeWvgdFzf9AXU2eDAmYqZfIg7X2nApkPdeGjtwRNDp77UpdwTOZigBzPpqOiw+80RvQTDUX9Zmq0oWOSZiQWdV2LpzoELN2/HiVyw5np93w7742f8ZCDb3kF3fzjt/p7RDKpIP9DXlj45P+ABVv5Pmh68FJrr8cL2bvzlvQ48mOEsziHMrv4tEQOTJBZvPooW97A8DCP78MG1erdvXxue6vpX/KXn0/rj+9/U/23fBXQfSJgRP4SvA+g5lHQ8PBjRcMwfc8U5eFLe81rKt836hBv7GQx2OWf5pmHhQIdaiQ61EmEzCa+eZuBYramy4n0eT1xMINzHoDRtSP83MckfiuBHT9fh4dgEu+NbgaeuOXEFbJV0bXcfB1belqOrvPi//+s7WvD/lu1Af8ia6eOaAO7ougJd6ijc+cqw6pn5iLX3vwkcfi/BE9Zcy3f7jE3PTfZfbQieamxDWXaXrfD+KwDg2Q86gaObgH9+A3jzl/Ev7D6QJjgx145Mkl9//sI2/O712IrR2ewoMdtXDQ4J7X4FOLoxZc5TKkokgNd8HwcArN+xr6QSoRmYRA3d8UMRDbc8Wz/ksX6RvHx2ze42NDR7TmTeh/WgZk9o2AHj6CZ9x/Z3pm6Ov1ufYZBkNd/1B7rwk40TsNvAOhxCiOgS5EZ7TIaPQyf06q3x28rgQC0AaHBAg8PEcVPoQzYhb3SY4+c7z8TTnhkA9HoxncOSmHe3eHDdm8Cfey4Z+lZr7gF6mwD34KwJAex9w+RKufFWN7Sh1R0YOvXaSBnsXNj0EHB0Q8KE5lx48J0D2Nbkxopt2W8vrGq4uePLFrQqcwdCEzMun5/1EHDrzrQXHPmmCgHsGEjMTXQlrmmAmmKGVMv2tNuIfmr+Tv17443vSdrQPxVLvVXxvwOgJS4nxOyxKcu/m5HilEa35+vUZ+OYVpg95AxMUjBabXB3iwf3v7Uf//NS+i9bVJpckKiBq45kmdLr+89M+xYPvHMA1z26CUe7/IY7Nwy9zECdESPKoGGiw4+JDr+J5FfEZdjv8Y7C833T0KWOQvXDr+Pmx94a8vzuFn3689phM4pavQN/i8Hemv5eKNsWAz1HzP1HpErzuXUNLEGf5Co26SHb1wF4W1OfZFLwh7KvE9HU7Y+r/7D5ULepIoDZurXjS7i7+/K8bW+I5dVD7/e1ItOemh3HPVjQeWX2bcpE7eOJp1en23d9XRDhfmDrorinftd9GZ5wzzK0+TWd4xESqU55yT9TKctWmNXbpF/4FoGCCUxyP10488gybsgnmSTdAUampv7vyzvMNGlIDZBVO1sRimhYsb3ZUI+J+RlJ2UXlDgUoVzSUKxqSxyXGt3EsMg4IuOHtNlbE7p7uS4c+YPGQTqakpQNFQnpVUQDYtRzod+t5Uzbym1cbkpdcz5GdQWMzC0UkpPdy6PeM/Y7RavUQei9qTL2W9/s/nPC1iWombTuWuAfWEkZ22DQJmGbfzpCQD+g5DE8ggqc8F1r0pmZZF9jEfixD1kN69VZg5S9i9r3CVTCBST6nC+dMkqOPkbwKU7NpDq0DFn0B2D90waiIKgwFJo+/dwiKktkXyRdUs8orEClX38wdO3Z4Slsh9ulr9Fk+mnpieCuUOFi9b/U+rGzQhyUTFd3bcLALrjWNCCcsYxnD6Lh9jBfMBCb+blP5Fd5gBNszPIlHOg/qvRxhf+Y1T9I68X/5W++nEvY67GmNL5CY+eYsOrF27Mls89l8Q93H9IsNNYwNw3uYzS5SqoZTJicf7fLjeLoaUckkODana96C2AtW30B6QIafsZ0UTGBSrDRN4Nbn6o3/gr8T6D4YnxQbu1Ov/aOe47Lmd3G/buQqJG3xtRT+a/FW/OTBFdA69hv+HU0A/aIM/aIMqt/gyUBoqYttWWzNnnb0BTIsaBT2A/sHhpVMXAZ29JkYPrGye2UwQdZAjs2aPe144N0mPOaehetavoWjPTG/E/KhuaUZq3a24I1daXqvHvsc0GVu5oHhU2XTZn18fv3fjb3+1fl4ZvFTptoynF8r14uzmSnmlgVDOWHZePqriacxp6KGcPzFBblpj1UOv2tudWN3U9JaSf0hFdWLt+LHT9dZVKQs++90U38Fftz2FazxW1cQMx8YmEhmeiVjX5f+xYhLrIrZiQdLySfIJ8hJDYvYk2KgB11dXQi++GPDv65CgUcbCY82Ekkq9ut2LQWgX5nvPNaDUHeGS5AnkO7A/mZDG55473Bmb97bBLz9G6D7UGa/H0MIYNXOFhzoMBmUZfiHN3rCW+6tQr8ox7LtMVeT7mN6wmK4f8hKsfr7Jjjobslsdeq0Bouy7XzJ2OuP1+HNw9kFFG5tBKzovj/WX461/rOifz5pw3v9PdHvn2GeFvx4+znYHDgj5csM1zEx8sKBXChPkouI4T0vAgA2LIxOVkj//skvTqKVWIWm9xAO+84FtKHTsYXQBhYqTTLEn2Gvday/HjgVxyPjcN/whH+bY2CSS3FXSxZGBQM7ffSLZvCINaGywtD7Jn+3+P/DkC9QBvkZQ0vSJ3mRrx14734AwMve87Cg8/N40jPT9LaS2RhIn0T81u4M8ixig0MLimO919gJ15oDSXvZ+rQKzF9Sj+89vgkLXt4B15rGrLdpRjhRZJnBME02OtRK3LViV3R5CEPbTzL7zQpDPhGT4/8/2fYR/KnnM1hvYP/Mv+Ff1sRf3t90XY6N/elX1Y1/d2XIPUN6jgJC4GdmeqEB4OmvmXt9Mv09+tIBh9bFPXV8oF5MlPuY3l5fmhmaaRzv7cctz30QPxFiz2sI9ZpfLNYOdYIYmFjA8LoqVndXxL5fzAkwLBzo19IVS0rCm9mqx9lwDilJn+RFMfU3/tk3AwDwykBNheGs6URNt6CXwa2YnjIY04YEu9Xhzpg6JJ379dWlOxsxeOBe5q3C/nYvev1h7DzuxqqdrYZyfpKN4VtW7bj3KPDiD/TqxGYY+JiHf//+2vNpbDncg18tMxEE5GRYMMFnV7/Y8G+3RU6K3t5joCxAWpoaP7sqTz0wv+2+TL8RCRqaKpxWssUa96wAan6N9r7EF0hJd6d0q0Qb/b4PXny8fXfal0b6B4LhaH2SRDkmSf5AMTVN/rJ6Hw42NQ9J4t9woAvrV0kqTWABBiapRDLPtUjM6sAk5oQT88X5YdvX8M2W6+KCE0OdKtFE3CRtzdOYebwTjRcxSZZmlhG3yj0rd+O7j28ytohWXJ6G8TNB2lcur9YX9VrxX9GHmodflcEmUx13vqRPWX79v43/TrgfYt8betFCE7rVUSYbZ72kJxT1xAmz9nDqglm3d82NeyyrXJLeo/qyDbkgRPqT+6BEBdkSSfUFaHwr+XMmihcO/p2EQPziqSbHzYa+fNjvbnwg7vURYWJJhuFihpT8Pu/AFHJdQAV+9/pu3NN9acraW3bGwCSVHutyGADERd3v7LV+3QsA6FYrAQCN4ZOtf/N8LLTS26QP3ZjR12K8NgxwYqkAk/oCYaxv7IKnP4K1+8yXDk/k0XUH8culO9LPXBlucNgsh2t2WJ5UGTQxU6SvWT8A1z6a8Om404bVCRie49n9fprm/HpFQ8rnEwWZWcmwFo0ha/8IrL7d2GuHVWo20isXtxdmULY/lbu7L8O8o1el7mkOZrHOWC6rtg7LewnHHEaCMcHP/T2fwvrG7IaN8qVgApPc1zExLq4bv7cJ0MzP2Pjzm/vio3QLbRtY7CkZtz+M52ub0OaJn32R8SE+g8AlIhzoVCvRqVYirAHKm78E/CaHQAKe6AnaSK2CW9q/ZLqdAPB+44kCUaqvG1j8LWDr03qdjwwDhFe2NWP7MTd2xNYk2Po00LE7+S/Z1DsHehM8Gr9PRPM/hrwst0Fvn5Ymv2qAKhSEhTPh8E44UYEuoel/++HtN5FbY4M+rezsfd3yt4yPMwc+pSMbUiZKv+X/6Ik7w3p4k33OmwNT0Rspx5bgh4Y8Hj08B/v0WVYp+GOGTDcEpsIbUaAKxfxie2kN79kZ9vSmh6OVxXsGLlIBoMZ/Du5ZWRhTiQsmMLFLHZM9oUm4blE9VvvOOfHghoUGe1fi99BES9BbZUnftJTbW/TuXjy9ch3+9lyGi0wlYuaKeIAAoMIBFQ5ofS14w39u8teK9FdY+0OT0m4zkGEX5yPrYqa0NtYg4mnF/7x+TF8fKctKuEMKYtU+BiVBUly6WVw5nzZaoILCietavmXote/2n5X0ubcTTbv0HNf/9p5jMBJi9IdUdPus7b04kKh3NOgBan6T+1VwrbJ3pb6WVAJCAId9FVhefxyhlf+b9C0OhCfir4PrkwHGZ9sMbiSGuz+MG9q+gft7PgU0vpn21//r2Q+it+/rvgS375iEG9q+jps7vjxw3DInq/6/BBV2Bx3p8mH+8/XYevTExV/a6fx5VjCBiV38ofuz8AZV/K33U0Of0CLQR/PN7U7v7h9+8hE5rTza2H7iKnDdjoNAJIDtx4Z2UXZZeNAUQqQtHV6uaJjg8GOCw4+y+mewypc8MHnLf07S53LC3zVk7HzIrBNNwwfBKWgYvh7SgGxXR01kRwZFv5J2RGS5FlDUsP9mfL2XHGZYNn+gLxiX5LA/WBK/PTLa8FvuDycPbP0iQa/LYPG5kD/ay5LqJPSzJfX4wZPmLrDSHVcSfi88LXouRqrVtrNh5f7duR+9NffD88r/6PfDASgNK4YMU/x2z2Q89u4hvOn7l6RvUxc7NVkLx8226lKH7gep/k7vNnahW61Ejf+cjBZL3t9XgR610mAenEjc656ggeG43JQTfwe3OiLtln73Sj32H+/EHctPFLNc+PbQ2XvSijsOYGBipZAvcVfvICNd1b7O3CWoDZfk2xaKaNiSpvZAOnXBD+EXL27DDYtq8Y2H1ietKwDoX6sKRUNFypL0un/2Tc+qXWn5u4CA+8RX3depD9UloQ2vdtp9CNj5cvL3jzmYP+aehd92XWq8bYFevbiemiBwzeQkYWYlZxPiplWbHObc12ai123FrUDnviE9dbEfxc9fGDYDJMsOpbi/93ADJ8J/xKzfMvRrr+B4b39M79hA0mivlflsItpTcDA8ITfLCcROCBTA7tApmc8EBNDX1YLvtX4T32n5lt6bVPsYsOnB6LFwT/hUtAb0Xs6dIWNLA6DnSFa9RbFF0jZ2Gw9sM9KxT9+X03ip7zw8N+wYGLtHfrf1WvSnWmwy7IfnyDb9s0nxvbz+H5szLyhpAQYmVgr3Y3vwtBQvMHBUzCJJ6kh4PP7Q/ZmhD+58SU8UU0PGr1vNXEk3bYbSFz/2+ofuz2J3Sx+6vCEIAWw6mGXy18DZRk25CJcFTNQUeLktwRTOsB94/6+Gfn+5t8pQ/ZSovjb9CrIvyxNNLpMgAXiDw662fJ0xV/ypvwN7d+/C/120JmnQnNTA/+nGtq8OuUI9OrDuk1XX9q/4Ek9RH25TwGDdDk8z0NsE0bYLqlDQGJqYXU5C0KPPfvIN5hjkfobSW/5z8IuOq/DNluvgMZDHk2ghvSOeoWt74XidfmdgP4idOm2YiWT4QRHhRG3gQ/ANGzJtDSQOuto8Adz35l4c6jQRAGXx/VtkoHZTs5oisT/2Ist9DNideBjfF1Sji57KwMAknxL0mGR+wDzxXgdCE7G+/0zc1P5lvDd8fPz9v+nBTqJemGTT+8ysqvv6z4GD7xh/fQICQEA4ERDOHCSKpaAGzZ8AxeDVqEBv2NqpeG0eo+PhiT4kE3tS96HEvS4ADnR4sT+UxWwuIYCm2uTBbapeQ38Xttf8Uw+kB3oeQhjWba1pGP7/j/2ftyaZbWVFFU3gxIw3y8Qk2P6199P4WceX8Gw2vYKeFv0zGvhut6Y6SYV8MLLfLHJfGDdEoAmBPx76CDrUSqyJWa37wd5PpnyvLYEP4evN38WLfeel3W6yv6XV/tpzYlj+n33T8euuz+H25cbW7Lr7td1Ys7cDty6pN77BFLWNEq03lZ7Jac3RjYWAdX/KYHu5l3nfW4lI3QNiIaEBIfNFnpZ7q7DcW2Xg/RMcmIN9yOkuEOwDRowZ2HzyE0MEDrg1/couWb5GTvIUug8D5YmvKJOeyPwd+oyh0ekTbOMlqw2jAloEjyxdjandYzDjsq/rbbAokfVghw+fGP5ggkX5QsKhV5Tt+KKxN1aDgBh2ou7v1tcfSZB4nVbHHiBw/sD79AIAvImuwPt7gFETzb+/zQ2uZ/J83zR8Z+y2Ic8t91ahDGmC6EBv3EMP9c7BF5EkL8ng9NeXvOfjcGQCbpvwzpDH3+2ZiC58Zsh3Nl2JgsEgwEjV5gfdcxI+/n7/WXjM7ccPxm5J+x7pKUPyc9oGgqF9bX34zDkToo8ny/EZLHhoanZlkmPhUm8VnogZAvzLjgogB3VICiFBnj0maTzsvsj4i9NdfftjMqXD/YDQ8GZD24nn0kxHs5oVVT0DWhl+1p7kROZpjt5c3ZB8+EHPMVFRoajYG04SmAx2f5ptcvue1Jn5ZrL2gRPTmH2dSDcskbipCR7tOahX3NVUvLbBgqqYw/zv0h1Y5Z6K6vYvp3xdUMQHqa7ei5P/grcjPn/BqsTtVN3dAzUsNKHn6dj/MGuNl7znpz6pJBvisyBJdXfoFNzQ9o24x4dfSGTyt0h2zZJqdt1yb1Vu6jRlTGQ0dBQrNigpdQxM0hheRTJZ4W4AgKbieGRc/LODX7zhZYpj80n6k+Rg+LvNDzfEyPXQyObAGWiKjE/7uj2tfXh+SxM2H4r/f5ZBwwRHPyY4+uFMdlU4OBRl8v+z5p9/0BMLRQ6yzK06CWta9G+ccbCY5uTjaj8/N1VyLV5jZviJN+HnEfOS5d4qNBqYHm7kUz0WHov/13kFdgYNJldmIsnfKenfPZBFUa9MaGrC74qAAq+WfsZH5j2b5n/Pn+OqprEz8F4+Hn9cB3Di2Oxp0XN7JOgOmDu2xc/qSUzagpEooMDETgXWBsUdwJKM228LDQwHde0f+kQ0xyPNJPcs1lv5Zst1Gf+uEeHhOQApPL3hCH7zaupql5atzTIguqpmllcziRmPkvaEJqHdl5tZMFbJKMEwA1vr6y39e2hZ7TMn/oa/674U24Kn42A4i2GiBD09ZvdpaT1AQugn185Gma3Ql1AwMJsm1y0cMjyTrAdvsDqw2fpNFi7t4Q2aO64YLVOfjyLfyRRMYGKXAmuxFnReOfSBJAtL+QfHyZP9pdOtOptFj0ls97zS0QC4mwa+9PbpADeTmNiryV8HJZbRq4qfd3wBv1iTi4XiBgwv7qZFgJ5DpmZ5/awjs2q4QyX+W9YFTlTUXL3yJX3ac+xvCeBV78ewO8HQgBVJkEbG1bs0CxJb1cymWHbE1FlJFchEnzF1IjS4k6Zoe8opqAapQkn4/a0Lfgju4LC/Ty6mOGcj2ZBvglwtQ/zJC6ARk1/TsvoKPqGBRL9cUw9vBELn6F+mcdnVKclaTBAXEQ50DQyZZXf1m0NqCHAaK2kOQK/D4B8686CrXw8wu9VR+HHbNUl/tbG9Dw92XJVwWNAwf5f+GUc6gMoEPQAWrzUSFQ4AI+Mfju2FUCDigu3NgTPw8PBkRzUCv6NiyKqpmbLpXhVlNOCOzrpLtrpuAt6IYn4oM2xR8b0YP++8KuHjz/dNg2OT9duzmyHnkkKpxisJA5M01IymbyWTXS9F/dHMh3SAYdUhLboiyeR/VN/Ui9GHV2OwfqMAEBkYErJLP86+4XkL3YeAk4Yn5ir4Tdflid9g69OA9+MAYp7XNODI+3ig97Kk3akKBH61bBe8GS5zH91b0/XDSuyn7VDji1UdT7JgXZ+hvIZCI/TeiazyR4z//R7b2Ar4TeY/ZDh8nGq3SpXMasdBTm/IuuHGXm0k5hud7WYTMnNMGJjkU5Yng5eWL7WoIdAPjJJ2vF8t2wn0BLFiIEXHOZD8OnjbDhLORkk35DZM3PBBXwswFuhKUwvDm2Y9nEFC6MHmlDIPzhuht00A+jCOyaTUvPQMDihThv6NvVqF4cJlmbJNj4kW0esEZZs4beKKO1WJ/eQyO1ZZsR+9s7cDezrnZv0+RqTKq1r6QXPS58x6fvj0+SyG50tBweSYyDJ8sbdEY9U5P+j5u/UTTbbLsNuUQzkxXdg2J5AcyrrY18Cv7wqdir/1fgq3dX5+6PNZJEvng3PYd+jZvulxa5ikVUBd4Yv7puPnHZ/XK5627sjpWljFoNUdQH1wSoJnhs3YyrA3e3OWy21kIi4MyUkyfvFgYCKb0WS5Pnut/micXQZnJDE5Vr814QE5sZYEwx8KYN3UaLM1XjKUcMXedNzHMmxf8v0xV0FxSJRhT+hUvO3/aI62YBEL+u4z/rZnmDScVIp9I+nwa5HIKjfNJhiYmBQQZbDuZCsAn7nhgYJjYFqcJvRl6YMG59cXs1CCImf50BBMUNjO6MwBt3Vd3qZEYk4+KZZ5B+xR7dKtjbT+BFwsTA6TAmmOwiYXjixIvk59SGhYPPlQb+KKuYWEOSYmebSR1i0XD5jKO7HbMMfB8AT8tefTqV+khgFH6qmGKhzRWQmGVw61sY39U9GijkE5VAw/fLrVESmTAGXJqopmsjWX8i1PPTyZesZzAUKFEnyraS4oQr6EeRL5DP/ymReVf0YWfO0CnGVJl9UoZAxMMpHBcvFCAEcj4201HTbbg8gjvSbK9afYugIMnMSBLYEzcvsJ5WE2ym+7LwMAXFZ5MO6533Qn6UY2Mf0zFTv0DNjNiq4peKQtm33VOnFJkHkQ0DI4zKe7+ErSw2E6VygLRw1UnLYtBdZEcQFPQeVbGcXAJJZQ9e4xLQKMNT7Wn+5kIADc2P61vFXWzBdDB4ZkgUDMibhM0TDRmYerXaFmXhApA8OXMwCAvRlOA07E1HFNZhnHAa/7zsUXRu/L+3YfaTkHQPHXyUimXS2w406CxQj1xz1A5YmevZRry9hsyCxnF1s57CWUeQldMDkmuS9JL/RSzP29+lLkFp7AdodOTRyUaGrBRrvHIuMKr8ZEZ2NGKzgnZZ/Or/SMzgKwYBpjosUAAeDB3k8CyGGvTqYno4Fy4yXX2yTUoQFrvtflSSbZYoRAfIXjZHyd1rQlG3kqnJkrMr8NBROY5Lwk/fArSgsDhqSLp5k8kGY9zdRCsSXGs7U2k1kZZuWibkCacfhtwdOt32aMSC6+vt3xw09mLfdWWdCQPOo+JLsFcawt7JhEBkPS0uWzJ0RYt57N0Pe12efe8IrsFsQpmMAk53qPDr1vYS2ID0xMAS06KaYg7g6dAiH0Og/d2ih0a6NyF6XbYCjDajUx00+f8cyw5k1zXF8hLyfcVHqPDL1v0/3CU2i9kcWo52j612TC7IJ/A3YlmjlnhXf/bLu6KgxMBvXY76op1/KS1e5Insb0i46roisvh4XT8HLcpItdWG2JhKTKTCzpmxZXPCvj/TCTK8/hScbZjtFbuEos2UxO/7bm9/m4QoqWklA4NAUmv1rATjNtzNDydfXq6wAcTmDURP12zMlgU/+ZAIDxjsQnCCHkrtlgVj6Dq+En9Bf6zsfa/rMBG88efLZvunVvlqp2ifuYHriMn2rd9hKxWZIlUUYCHmDUeECxR18FAxMLGF0ZNFtDT0Mi7hGz8tJjoob0kvqAfiIZdpX7bv9ZUACMUHLdlWjPLvuE0ib4Je4peMpzofVtKVSDOWLp6nHESJa0K0Nx1+goPfHD+TY7Hg2uNh6zEjmTXwuYEECZTRaes6XYMfwEXe9ubWR+2mGHLH2j0iVeR0JAMMUMCpuNF0vVewRGD7EcSqSMGFgupHn48hE2i0sApD6m5BkDk6jMrlC+3Px9i9tRbNJ/AwWAkHAgJBy5+77avCqoaZ6W5J9V0MIp0Xng0ypy9+aaykXzKLdMruRdKFjHpNAMdnvJZMeIOws9WiV6tErZzbBeDnsv2N1fvG5p/5LsJpS2gl001Zw/dH8Gx8Lxi4HKZp9B1UIiKeHNytohdsPhMKIT8pW3RknI7gXJ04Xne/1n2bJQJgOTKF59yqIAONmZuNJuszoGj7pn46Pl3bi88kB+G2ZzOR0CISJ5vK1AWX7y73bYcOFUBiZkaz9u+yoAoC5wBl7o+4Tk1tiLymCaqDgFPMBJeZoYYEPMMaGCwZyKoQq1fg4R2Ycm7BcG2K9FSeR+Eb/MSclDVUPyx0GN8LSkfYkA0KONRI82sthyenNKyC7vTkS5422X3QJpCiYwyfkifoWmyKa/hkQZQjYqcFUI+kV5+hcREWUgrMq7TOSZgGxhnCMguwmUbyznTmQfkSBiK4oLif3XDEws8Kb/X2Q3oaApAEYqXAyt5ATsU2mSiKDXXRpceFXiuHrBDOXY2ZHwBNlNIErORqWmiYjSYY8JSScARAYyw8sUzjWxnIEEZCKiISQeiNljMohnQ6m6tUp0F2NJeiIiMoU9JmQLTpakJyIiMDAhG1AATEpSkp6IiEoLh3KIiIjINhiYEBERkW1wKIekEwDcmr5g1ThHgHnIREQljIEJ2UKQ5eiJiOTztgHlo6BIvETk2YBsYSxL0hMRyRXsA/p79R+JGJhEcQBBFgXAKJakJyKSK2bFeplr5TD5lYiIiAYW8pOPgQnZQgQORLg7EhHZgswck4I5E7hcLlRVVWH27Nmym0IWEwC61Ep0qZUyF7QkIiIbKJjApLq6Gg0NDaitrZXdFMoBBwQcDEuIiEoek19JOgXAKU6f7GYQEZENFEyPCRERERU/BiZERERkGxzKIekEAI82AgAw1hFkRRkiohLGHhOyhYAoR0CUy24GEREBUCReIbLHhGxhjMMehX2IiAgQEidJMjAh6RQAlUpYdjOIiGiQUKVtmkM5g2T2WxEREdmJxPL0DEzIFlQoUJn2SkRkCwoX8aNSJgB0qqPRqY5m7VciohLHHBOyBZnRORER2QcDE5JOAXAqS9ITERE4lENERETDBTzSNs3AhIiIiIZqb5C2aQ7lkHQCQN9ASfoxLElPRFTS2GNCttAvytHPkvRERLagCE3attljQrZwksKS9EREdiFzniQDE5JOATDawZL0RES2IXGxHA7lEBERkW0wMIliyqVMGhRo/BsQEdmCorDHRD6JiT6lTgDoUEejgyXpiYjsQeJQTsHlmIiBD8vjsbb4SzgUhDowZZXySwDQND0wVBXBfhMiIsl8/oDl59nB9xNpgh5FpHuFTbhcLrhcLoRCIRw4cEB2c4iIiCgDTU1NOOOMM5I+XzCBySBN09Dc3IwxY8ZAUay7tvZ4PJg6dSqampowduxYy963VPDzyw4/v8zxs8sOP7/s8PMzTgiBvr4+TJkyBQ5H8kySghvKcTgcKSOtbI0dO5Y7Vxb4+WWHn1/m+Nllh59fdvj5GTNu3Li0r2HyKxEREdkGAxMiIiKyDQYmA0aMGIE77rgDI0ZwZk4m+Pllh59f5vjZZYefX3b4+Vmv4JJfiYiIqHixx4SIiIhsg4EJERER2QYDEyIiIrINBiZERERkGwxMiIiIyDYYmAxwuVw466yzMHLkSMyZMwebN2+W3aSCsG7dOlx99dWYMmUKFEXBsmXLZDepYNxzzz2YPXs2xowZg1NPPRXXXHMN9u7dK7tZBePBBx/EtGnTohU3L774YqxcuVJ2swrS73//eyiKgltvvVV2UwrCnXfeCUVRhvx8/OMfl92sosHABMCSJUswf/583HHHHdi6dSumT5+OK6+8Eu3t7bKbZns+nw/Tp0+Hy+WS3ZSCs3btWlRXV2Pjxo1YvXo1wuEw/v3f/x0+n0920wrCGWecgd///veoq6vDli1bcPnll+MrX/kKdu3aJbtpBaW2thYPP/wwpk2bJrspBeW8885DS0tL9Oe9996T3aSiwTomAObMmYPZs2dj4cKFAPSFAqdOnYqbb74Zt912m+TWFQ5FUbB06VJcc801sptSkDo6OnDqqadi7dq1+MxnPiO7OQVp4sSJuPfee/GDH/xAdlMKgtfrxYUXXogHHngAd999N2bMmIH7779fdrNs784778SyZctQX18vuylFqeR7TEKhEOrq6jB37tzoYw6HA3PnzsWGDRsktoxKjdvtBqCfXMkcVVXx3HPPwefz4eKLL5bdnIJRXV2NL37xi0OOf2TM/v37MWXKFJx99tn4zne+g6NHj8puUtEouNWFrdbZ2QlVVTF58uQhj0+ePBl79uyR1CoqNZqm4dZbb8WnP/1pnH/++bKbUzB27NiBiy++GIFAACeddBKWLl2Kqqoq2c0qCM899xy2bt2K2tpa2U0pOHPmzMGiRYvwsY99DC0tLbjrrrvwb//2b9i5cyfGjBkju3kFr+QDEyI7qK6uxs6dOzlObdLHPvYx1NfXw+1248UXX8S8efOwdu1aBidpNDU14ZZbbsHq1asxcuRI2c0pOFdddVX09rRp0zBnzhx8+MMfxvPPP89hRAuUfGAyadIkOJ1OtLW1DXm8ra0Np512mqRWUSm56aab8Oqrr2LdunU444wzZDenoFRUVOCcc84BAMycORO1tbX461//iocfflhyy+ytrq4O7e3tuPDCC6OPqaqKdevWYeHChQgGg3A6nRJbWFjGjx+Pc889F42NjbKbUhRKPsekoqICM2fORE1NTfQxTdNQU1PDsWrKKSEEbrrpJixduhRvv/02PvKRj8huUsHTNA3BYFB2M2zvc5/7HHbs2IH6+vroz6xZs/Cd73wH9fX1DEpM8nq9OHDgAE4//XTZTSkKJd9jAgDz58/HvHnzMGvWLFx00UW4//774fP5cMMNN8humu15vd4hVwmHDh1CfX09Jk6ciDPPPFNiy+yvuroaixcvxvLlyzFmzBi0trYCAMaNG4dRo0ZJbp39LViwAFdddRXOPPNM9PX1YfHixXjnnXfwxhtvyG6a7Y0ZMyYul2n06NE4+eSTmeNkwH//93/j6quvxoc//GE0NzfjjjvugNPpxLe//W3ZTSsKDEwAXHvttejo6MDtt9+O1tZWzJgxA6tWrYpLiKV4W7ZswWWXXRa9P3/+fADAvHnzsGjRIkmtKgwPPvggAODSSy8d8vg//vEPXH/99flvUIFpb2/H97//fbS0tGDcuHGYNm0a3njjDVxxxRWym0ZF7tixY/j2t7+Nrq4unHLKKbjkkkuwceNGnHLKKbKbVhRYx4SIiIhso+RzTIiIiMg+GJgQERGRbTAwISIiIttgYEJERES2wcCEiIiIbIOBCREREdkGAxMiIiKyDQYmREREZBsMTIiIiMg2GJgQERGRbTAwISIiItv4/8xrsGZMzAewAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(ps_counts.freq, \n", + " ps_counts.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if higher else 0))\n", + "plt.plot(ps_weighted.freq, \n", + " ps_weighted.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if not higher else 0))\n", + "plt.axvline(freq, ls=\":\", alpha=0.5)\n", + "plt.semilogy()\n", + "plt.ylim(2, None)" + ] + }, + { + "cell_type": "markdown", + "id": "356a267e", + "metadata": {}, + "source": [ + "As we can see, the analysis using weights has found the pulsation whereas the one considering just the events hasn't.\n", + "\n", + "This was a very trivial case, where the selection could have been done by just selecting events around the source position. But weights might take into account many other factors, such as the energy, the data quality, and more.\n" + ] + }, + { + "cell_type": "markdown", + "id": "8ff2add9", + "metadata": {}, + "source": [ + "## Polarimetric light curves\n", + "\n", + "\n", + "Another case that might be useful is when we are looking for a pulsation not in the flux, but in some other quantity. This might be the case, for example, in polarimetric light curves.\n", + "\n", + "In the following example, we introduce a significant periodic change of polarization in a signal which has no periodic modulation of the flux.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "cf2505cb", + "metadata": {}, + "outputs": [], + "source": [ + "def extract_varying_random_photon_angles(photon_times, psi_mean=0, psi_amp=0, pd_mean=0, pd_amp=0, freq=1., n_bins_per_cycle=16, N =100):\n", + " from scipy.interpolate import interp1d\n", + "\n", + " pulse_cycles = photon_times * freq\n", + " pulse_cycle_frac = pulse_cycles - np.floor(pulse_cycles)\n", + " order = np.argsort(pulse_cycle_frac)\n", + " disordered_photon_times = photon_times[order]\n", + "\n", + " sorted_cycle_frac = pulse_cycle_frac[order]\n", + "\n", + " random_angles = np.zeros_like(photon_times)\n", + "\n", + " idx0 = 0\n", + " delta_cycle_frac = 1 / n_bins_per_cycle\n", + " angles = np.linspace(0, np.pi * 2, N + 1)[:-1]\n", + " baseline = photon_times.size / n_bins_per_cycle\n", + " A_mean = pd_mean * baseline\n", + " A_amp = pd_amp * baseline\n", + " for cycle_no in range(n_bins_per_cycle):\n", + " idx1 = np.searchsorted(sorted_cycle_frac[idx0:], (1 + cycle_no) * delta_cycle_frac)\n", + "\n", + " sorted_cycle_frac_good = sorted_cycle_frac[idx0: idx0 + idx1]\n", + " n_phot = sorted_cycle_frac_good.size\n", + " mean_cycle_frac = (0.5 + cycle_no) * delta_cycle_frac\n", + " A = A_mean + A_amp * np.cos(2 * np.pi * mean_cycle_frac)\n", + " psi = psi_mean + psi_amp * np.cos(2 * np.pi * mean_cycle_frac)\n", + "\n", + " # TODO: be safe at edges of distribution\n", + " # The distribution is the one expected for polarization angles.\n", + " distr = A * np.cos(2 * (angles+ psi)) + baseline\n", + "\n", + " norm_distr = distr / distr.sum()\n", + " dph = 1 / distr.size\n", + " cdf = np.cumsum(norm_distr)\n", + " cdf = np.concatenate(([0], cdf))\n", + "\n", + " interp = interp1d(cdf, np.arange(0, 1 + dph, dph) * (2 * np.pi), kind=\"cubic\", fill_value=\"extrapolate\")\n", + "\n", + " # Generate random values of polarization angle with the inverse CDF method.\n", + " random_cdf_val = np.random.uniform(0, 1, n_phot)\n", + " random_angles[idx0: idx0 + idx1] = interp(random_cdf_val)\n", + " # Note that we searched from idx0 on\n", + " idx0 += idx1\n", + "\n", + " order = np.argsort(disordered_photon_times)\n", + " return random_angles[order]\n", + "\n", + "\n", + "def plot_angle_distribution_with_pulse_phase(photon_times, random_angles, freq):\n", + " pulse_phase = (photon_times * freq)\n", + " pulse_phase -= np.floor(pulse_phase)\n", + "\n", + " fig = plt.figure()\n", + " gs = fig.add_gridspec(2, 2, hspace=0, wspace=0, height_ratios=[1, 2], width_ratios=[2, 1])\n", + " # gs = plt.GridSpec(2, 2, height_ratios=[1, 2], width_ratios=[2, 1])\n", + "\n", + " (ax00, ax01), (ax10, ax11) = gs.subplots(sharex='col', sharey='row')\n", + "\n", + " h2, binsx, binsy, _ = ax10.hist2d(pulse_phase, random_angles, vmin=0, bins=(32, 16), cmap=\"twilight\")\n", + " ax10.set_ylabel(r\"$\\psi$\")\n", + " ax10.set_xlabel(r\"Pulse phase\")\n", + " mean_binsx = (binsx[:-1] + binsx[:-1]) / 2\n", + " mean_binsy = (binsy[:-1] + binsy[:-1]) / 2\n", + " for i in range(h2.shape[1]):\n", + " ax00.plot(mean_binsx, h2[:, i])\n", + " for i in range(h2.shape[0]):\n", + " ax11.plot(h2[i, :], mean_binsy)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "65f034f4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGwCAYAAABo5yU1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU5dqH79ma3U3vvZAQQkJooXcEBAQLgqAoIFhR7B797PXYj/XYG6KCIkUQEKT3DgkkIb33ttlstpf5/lgIxITm8Sge976uvTbZmXnnndnZmd/7vE8RRFEUcePGjRs3bty4uUSR/NkdcOPGjRs3bty4ORduseLGjRs3bty4uaRxixU3bty4cePGzSWNW6y4cePGjRs3bi5p3GLFjRs3bty4cXNJ4xYrbty4cePGjZtLGrdYcePGjRs3btxc0sj+7A78pzidTqqqqvDy8kIQhD+7O27cuHFzSeJwOCgoKCAhIQGpVPpnd8eNG0RRRK/XEx4ejkRybtvJX16sVFVVERUV9Wd3w40bN27cuHHzGygvLycyMvKc6/zlxYqXlxfgOlhvb+8/uTdu3Lhxc2lSUVFBSkqK+17p5pKhpaWFqKiotuf4ufjLi5VTUz/e3t7uH6AbN27cnIVT90f3vdLNpcaFuHC4HWzduHHjxo0bN5c0brHyH9CqbaK+tPjP7oYbN27cuHHzP41brPxGmqoqWfTIPXz96H1U5mT/2d1x48aNGzdu/mdxi5XfgL6xgWX/fBJTiw5RdLJl4cc4nY4/u1tu3Lhx48bN/yRusXKRmPQtLPvnU+gb6vELC0ehUlNXXEjWts1/dtfcuHHzP4K2upLyrGN/djfcuLlkcIuVi8BqMrLilWdpqizH0z+AaU+8yOBpNwCw67tFWIyGP7mHbty4+atjs1r4/rnHWPr845QcO/pnd8eNm0sCt1i5QOw2G6v+9RI1BXl4eHpxxYKnOL6jhRZtV/zCIjDqmtm34vs/u5tu3Lj5i5O1bTMGbRMAO79diOh0/sk9cuPmz8ctVi4Ap9PBz++9QdnxdGQKJTF95rLmw3LSN5ZxYncdwfGTADiybjVNVZV/cm/duHHzV8XpcHDop+Vt/9eVFJKzZ8ef2CM3bi4N3GLlPIiiyObPPiRv/24EQYpEeSWlmTKcdpGgaFfWvdJsT8ITe+F02Nn+9Wd/co/duHHzR+I02rCW6xGd4n/cVu7enejqalF5+zBwygwAdn33NXab7T9u242bvzJ/+Qy2/202fvI5x7esB0CmnohEFk10ij9pE2MJT/Bly6ITnNhTjdk6GIk0k6IjByk+eoi4Pv3+5J67cePmv4GjxYKluAVLsQ5riQ5bjREAz6Hh+F4Z/5vbFUWRA6uWAdB34lWkXXE1mds20lJfS8Yv60ibdPXv0n83bv6KuMXKWagu1LHx02+oL/4ZAJl6LF0HDCVtYgzBMadTVQ+9rivlJ5po1UJQl+HU5m9j66LPiE7thVQm/7O678aNm98BURRxNJmxFOtcAqVEh6PRDIDRKVJtdVJlE9E5RFK2lNM/yR+Prn4d2mlububAgQNkZGSg0Wjo27cvvXr1QqVSta1TnH6IhrIS5B4qel8+CbmHB0Oum8nGT/7NvpXf02P0WJRqzR927G7cXEr87cWKKIoYdVaaagxoqw1oq43Ulempzt2LzbgBgJCECUy862YCIjw7bK9UybhsVndWv5tOc30KSs1htFUVpG9YS9qka/7go3Hjxs3vhX5nBfqdlThbrKc/c4hU25zUIKA1t8+tdMzkRLUom76PD0Sict1aKyoq2Lt3L9nZ2Yiia5rIYDCwfv16Nm3aREpKCmlpaURFRXHgxx8A6DVuIh6erntNj1HjOLzmR5qqKji4ejnDrp/9Rxy6GzeXHH8bsSKKIi0NZrTVBpqqDWhrDGhrjGirDVh/ddNxWAuwGX8BoMdlk7n89jvOWWgpKtmflOHhZO2sQqYejsWwjr3LltB92CjUPr7/leMpzzpGc20NPUaNRZC4XY/c/O9RmXuCPT98S2tjA4Om3UDSkBEXVPDs98CU2YBubTGiKKID6pRyqkx2dHp72zqCAGEJvnTpE0RDmZ6cfTUcrLeg+SoT53A5e/fupaKiom39uLg4Bg4cSEtLC4cPH6a2tpaMjAwyMjIIUMqw5mQjkclIu+L0dI9EKmXYzDmsfuOfHF67it6XT8LTP+APOQdu3FxK/E+LFYvRRkWOlrKsRsqym2jVWjpdTxBA42tDIhRjbjlBS3MRIJIycux5hcophkxNoCy7iZaGRNQ+xzDqKtj1/ddcfvs9v+sxiaLIwdXL2bl4IQAV2ccZP/9+JFLp77ofN27+mzTXGvHwlOOh6ThVWldSxO7vv6boyMG2z9a9+zpH161m5OxbiejW/b/aN7vWTNOyfA43H6fcUoUoTUUiCwJAIhWITPInvk8QsT0DUXsrAHA6nLTWG6go1LM5ow5txVEcMhNSqZTU1FQGDRpEaGho2z769+9PRUUFhw8fJjMzE2PBCWSA1cufTTt2kpaWRmRkJIIgkNBvEOGJ3anKO8GeZYt/93uKGzd/BQTxlG3yL0pLSws+Pj7odDq8PL2oL9dTltVEWXYjNUUtv/LQdyJR2vEMVhAY6Y1fgIi5KY+KnMPUFua1azdp6Egm3v3gRYmAilwtq946itNeiVX/PQgCN738NiFxv93p7kzsNhubPv03WdtPZssVBBBFEgcN44p7HkYq66g9zQYbRen1JKQFo/D4n9ambv5LiKKIKIpIficLXk2RjhVvHCEgQsP0x/u3DQaaqirYvfRb8vbuBECQSOgxaixeAUEcXL0cm8XlK5I4eDgjZs7BJzj0rPv4rYgOkfpPjlGaW8SO6i8A1/3DM7A7vcZNoc/4AShV7X9HZrOZrVu3cvRwBuraJOQ2b5wSC13HyRk6diBeXl7n3GdFXg7fP/UwAK3xPRAVHgAEBQWRkpJC9+7dsWkb+P6ZRxEECXPeeJ+AyKiLPraKigqioqLQ6XR4e3uffwM3bv7LnPn8Pt81+T/z9NryzQmaiq2Y9O1D/HyCPTA566hzlGKTNyOxGtBWaanObUZqMbVb1z+mC90GD6PHsFF4BwVfdB8iu/mROiqS49tAoemO1XCCrQs/Ycazr/zH5mtji47V/3qJypwsBEHC6JtvwzMgkDVvvUrevl3YbVauvP//kCkUbduYDTZ+fPMojZWt1BbpGD3rvzsidfO/h1arZfny5TQ2NjJ48GAGDhyIUqn8ze2JosieFQWITpGG8laqC5rx9LWxd/kSsrZtRhRdCdCSho5kyHUz8QuLACB1zHj2LP2G41s3krd3J4UH99L3iqsZOGX67+p02rK5FGtpCwcbtwAiMoU3dpue1oYT7F5ygoqsPgycMp3I7j3aftNr1qwhMzMTAJ+EGhQFGqw2JQ07ZSjGe5x3n8c2rAEgcdAwek2dyeHDh8nKyqK+vp5t27axbds2/P398Y7pQktpETu/+4prHn7ydztmN27+CvzPWFZen7salUKDXCklMsmP6JQA8Gpl/c+raLUYUDQ34tXciNWsb9tWRMCh8cLu5YfdyxfxZPSOl5cXQUFB+Pj44Ovri4+PT9vf3t7eSM9hbbFZHHz34gF0tXVY9QsRnTYm3fcISUNG/OZjbKwoZ+Vrz6GrrUGhUjP5/keJ650GQHH6YVa/8U/sNisxPftw9cNPIFd6YDXZWfX2UepKXccrkQjc+PwgvANV59qVm78JTosD7fI85OGeeI2M7FRM5+bmsnLlSsxmc9tnGo2G4cOH069fP2SdWPLOR8nxBta+76p5IzoNePocp7nqAA67yxekS9oAhk6/ieDYLp1uX1dSxPavP6csMwMAlZc3Q667kZ5jJ/zHU6HmgmYaPj9OTkshGQ3LAAnTnnwTT38lB1ctI3vn1rZssuHdkhk0ZTrKkHA++eQTAGbMmEFSUhJNuU2sfCcDiwhhYWqufmIAUlnnVildXQ2f33c7otPpssJ2SQDAZDKRm5tLdnY2hYWFOBwOJBYT6qIsBCBm4hTSRl5GTEzMBVu83JYVN5caF2NZ+c1i5cMPP+TDDz+kpKQEgJSUFJ5++mkmTpwIuEyjDz30EN999x0Wi4Xx48fzwQcfEBIS0tZGWVkZ8+fPZ+vWrXh6ejJnzhxefvnli7oJnjrYjd8cpXv/GEK7+IAgsnXrVnbt2oXEZEBTUwEnRYpUriAyvDuhliiCFDHoZXZ0UU60/lZqGmppaGg45/4EQcDLy6tNwISHhzNgwIB2fa7Kb2blm0ewG/diN+/FKyCIuW99iFx5/lHWryk5dpQ1b72CxWjAJziEKY8+Q0BkdLt1yjIzWPna89gtFiKTezD5vifY8Fke1QU6PDRyvAM9qCvVkzw0zG1dcQNAy6ZSWjaVAeA9Phbv0aenFRwOB1u2bGH37t0ARERE0KdPH3bv3o1Wq3Vt4+3NqFGj6NWr1znF+5mITpHvXzpIQ3kLGs90mip2AS6REt2jJ0NnzCY8Men87YgixUcPsf3rz2mqcjmw+kdEMXLWPOJ69/tNVkxHq5Xad45i1Zn4sXIhDnsDoQkjuPGfj7Sto6ur4eDq5WRu3dgmrmQ+fug9/ek2eBjXXXdd27olqwpZ/3MpDiChVyCX35GKIOnYr02ff0jGL2uJ6dmHaU+80GnfLBYL+fn5nDhxguItPyNtqsOu8sQU0w21RkNSUhKpqanExcWd8xjdYsXNpcYfIlZ++uknpFIpXbt2RRRFvvrqK15//XWOHj1KSkoK8+fPZ+3atSxcuBAfHx8WLFiARCJpuwE6HA569+5NaGgor7/+OtXV1cyePZvbbruNl1566TcfbFNTE8uXL6eyrBRlfSUKbT0Acg8VQ6bdQM9xE1F4qHC0WNBtKMV4pNY1LS0T8BoWgWJwMHXNDWi1Wpqbm9HpdG3vOp0Oh8PRoQ+hoaFMmzaNwMDAts92/ZBP+qYibPqvcDpaGDxtJkOum3lR5zj9l3Vs+fIjRKeT8G7JXP3wE6i9fTpdtzInmxWvPIPVZMLDMwpReiVKjSfXPNAHu83JitcPu60rbgBXxtXqVw8iWk5fy75TEvAcGIZer2fZsmWUlpYCMHDgQMaNG4dMJsPhcHD06FG2b9+OXu8S//7+/owePZqUlJTzjvDzDtaw8fNsnLY9WFv3ASBIQ+l1+XTG3Hz5RR+Hw27n2Ob17PlhMWZ9CwDDrp/NwCnTz7ldXV0dXl5ebTlORKdI41dZmHO1HDBmUFy7HkHiwbx3PsU3uGPOlNamRg6tWUH6Lz/jsLnCmn3Dwplw5/1EJCW3tZn51mF25rcgAn3GRTNkakK7dgzNWj5bcAt2m5XpT79EVErP8x6ztraGhQ/Nx2mzYY/rjsnDNQU2YMAArrjiinNu6xYrbi41/hCx0hn+/v68/vrrTJs2jaCgIBYvXsy0adMAyMnJoXv37uzdu5dBgwbx888/M3nyZKqqqtqsLR999BGPPvoo9fX1KM7wvTgTi8WCxXI6qqelpaXtB1hSUsKan37CWV+NR10FgsM1+kkaOpKRN83rNOTPWtmKbm0RliIdABKNHO/LY9D0C0WQth8JOZ1ODAZDm4Bpampi7969mEwm5HI5EydOpE+fPgiCgN3q4Pt/HqSxPB2bYQ0yhZLL77iHwOhY/MIikMk7RkHYbDaysrIICgwkd9Najv78EwDJw0cz7o57O93mTCrzcln63JM47SYkshCu/b/niEmNBGD1O0cpP6EleVg4o286/+jVzf8uup+L0W+vQB6mwaObP/pt5SCAfowna45uwmAwoFAouPrqq0lJSemwvc1m49ChQ+zcuROj0ZW9NSQkhMsuu4zExMROLRsOh5PFz+5HW5mJzbAKgOSRN1KYEYxfqIaZzw78zX5dZkMre777hqO/rEEQJEx78kWie3R88DudTrZs2cKuXbvw8/PjzjvvRKlUot9ZgW5tMUbRwpqyTxCdRroNnc7ke8+e00QURT798AMaMtNRtTTitFmRSGVcNvcOeo1zWZftzWYOvnSQIy0uP7rhM7rS8wwL1q7vFrF/5VLCErpxw4tvXPDx71zyFQd+/AG/8EhG3PUQuXl5pKamEh3d3uL663tlZWUlycnJbrHi5pLhDxcrDoeDH374gTlz5nD06FFqamoYM2YMWq0WX1/ftvViYmK4//77eeCBB3j66adZvXo16enpbcuLi4vp0qULR44coU+fPp3u69lnn+W5557r8PnXX39NUeYxlDVlyEytAPgFhTP2zgWd3rjORBRFzCea0K0rxt7gcroVFFLkERoUEV4oIj2RR3giC1B1MOW2tLSwcuVKiouLAdd02OTJk1GpVNQU6Vj+2iEs+qWI9tMFDgVBgk9ICP4RUQREROEbGk69wUh6Th56fSvqqmKkrc2Aa6Q44JrrznsjczpFNn6eRd7+LKyty0A0ERgVw7QnX0Tj60d1QTMr3jjisq68MAjvANeo0m61Ul9WTG1hAQ3lpcT16Ud82oBz7svNXxeH3krNawcRbU4CZifj0d0f7cp8dh/exxFZEaIAwcHBTJ8+vZ2lsDMsFgv79u1jz549bQ/F8PBwQkJCkMvl7V7aQijeWYNVvxhEC10Gj2DMnLv47tnD2CwOrnmgDxHdOloxLpSGRdns2P41xa3HUam8mPXqe3iFnO6/1Wpl5cqVnDhxou2ztLQ0xvcZRd2HGeAQ2W7bQ03FTqSKAO767FMUys4HTODy51myZAkymYw7b7uVvYsXkrdvF+ByBr5s7p3I5HIMR2rZv+gEJ8wuX5cJt/cgvm8wFqORT++ei8Vo4KqHn6Br/8EXfKwWo4HP7r0Ns76FcbffQ88x4ztd72z3SrdYcXOp8IeJlePHjzN48GDMZjOenp4sXryYK664gsWLFzN37tx2qh5cpsrRo0fz6quvcvvtt1NaWsqGDRvalhuNRjQaDevWrWvzffk1Z7OsPD33RrwMzQiATJAzYOJ1DLjxuotKeS86nBj2VdOyuQyn0d5huaCUIg/3RBHh2U7AiIjs3r2brVu34nQ68fHxYerUqURHR7NnRQFH1mcjOg7iF2KkuboCi9Fw9j4IEgTRiShIGDrrFgZfQD0Q0SmyZdEJcvbVIJEKDLsugN3fvYFB24RfeCTXPfUiXv6B/PjmQcqz8wmJM+MT0EptcQGN5aU4z5jaUqjU3Pnxot/kX+Pm0qd5dSGte6pQRHkRdFcvTCYTK1asoKCgAIBEMZyr5kzFs8uFJx4zGo3s2bOHffv2Ybd3/N0gSvCr641DtwLR0YBDpcEY0w25Qkm0dCAtJRK69gvm8lt7/KZjMudrafg8E7vTxqaqRehsDQRrYrnmzsfx7BeGvlXPkiVLqK6uRiqVMnDgQPbs2QPAFcoBhOu80IU5WL/nLcDBkBn3M/jasWfdn9Pp5KOPPqKuro5hw4YxduzY0/mPlnwFokhYYhJXPfAYGj9/Gr/JZv/BekqsTqQygcn39KYqZzM7Fy/EPyKKm994/6ITOx5eu4ptiz7F08+fee980unv1W1ZcXOp84eFLnfr1o309HR0Oh3Lli1jzpw5bN++/T9p8rwolcpOQycVzfUIcjnRPsmMeWAB/t2jO9n63AhSCZ5DI9AMCsdeb8Ra0Yq1Uo+tshVrlQHR4sBarMNarDu9jUKKLFhFSlAwwb0m83PeNpp1Or788ktGjhzJkElDKTnWgLZmNHaHgon3JhIcIyV9726O7NmFsbEeicWM1GZBsFkRRCcSpQf6sDi2Hz9BbN8BhIWFnbXPoiiy/bs8cvbVIEgExt/agy59gohMeoUfXngCbVUFi598GLWXD/VlJYhOB+XHoPyMNlTePoR0SaC+pAhDs5a8fbtJGTnmos/ffxPRKVKc0cCRX0qxWRxcfX+ftoRcbi4Me7OZ1v3VAHiPj6GyspKlS5fS0tKCTCZjuFcv4qt9afkmD+UdPZGHuPwhbGYzglR61mlItVrN2LFjGThwIDk5OZjNZmw2W9urMQeairYjOhoQFEq8+w5B7nCi0+koNabjR1/yD9fSc0IIoZFBF3VMokOk+aciAHyHxTDR60GWffIMdYYSdn2+kKidg1hvP0yryYBareb6668nOjoam83GwYMH2W7O4DqfEezOXws4UPvEM/Cay865z+PHj1NXV4eHhwdDhw4FXI73A66eRlBMHGvffY3qvBy+efwBrnrwMUKuTaR3SQvmOjM1NpEf3zqIw7gcgAFXT/tNGah7XX4FR35eTUt9LUfWre7UT+fX98qWlpaL3o8bN5cK/5FYUSgUJCS4nMbS0tI4ePAg77zzDjNmzMBqtdLc3NxuGqi2trYti2NoaCgHDhxo115tbW3bsotFI/dlZNdrSX3gKmQB/5kDqSAVkIdqkIdq0PRz+dOIDvGkgNFjrWw9LWCsDmwVrdgqWtEAV9GHPfJcCqQ1bNu2jbx9WQxNHMoRk50WnZX1H2ci+Oqpl2ciytV4xHZj6LBhDBgwAKfNiq62Bs/AYL774QfKy8v5+uuvufnmmwkO7pj3RRRF9iwvIGtHJQgw9ubudOnjutn7hYZz/bOvsvSFx9HV1tDa6IpyksjUQBDBcQkMuGogIV0S8AoIQhAE9q9cyq7vFnF8yy9/qFixmk1s+eJjnE4HIXEJhMQnEBzbBYWHCqfDScHhOg6vL6Wp6rRFav+qQndk00Wi31wODhFlFx+qJFq+/fJbHA4H/v7+TJ8+nWC/IOo/O461rIX8f2+mJcVIWd4xKnOykUgkjJpzKz3HTjzrlKSXlxf9+/dv95nZYOPz1R/gtJ4AQWDao88Q3aMnoiiSn5/Pzp070ev0yO1eLHp3NYlDAhg2bNh5p6BOYdhfjb3OiEQtw3tsNL5qOeMk9/LzB/8iu3kPR6sbsXp64S/35oap1xMUHQ7AkIBe5DozaZGY2C4eQ1+fCQiMu+2OczoK2+12tm7dCsDQoUPbFSIEiOudxo0vvcWq11+ksaKM7599jDG3zKfrdf3p92Um6UYHJa3Z2C16BIkXuopQjJV6FJ4KJHIJglwKMuG8074yuZxhM25i3b//xYFVy0gdM/6szvdu3Pwv8Ls62F522WVER0fzzjvvEBQUxJIlS5g6dSrgmuNNSkrq4GBbXV3d9iD+5JNP+Mc//kFdXd0FJ546ZUbK+edmEhYMQ/oHjrZFhxN7oxl7nRFbndH1Xm/CXmckz1HJHnkuNsGBQpTR2xZHqV2OoyUAAQFRsBOeJmPCzEGo1eoObZvNZhYtWkRVVRWenp7MnTuXgID2pvn9PxVxaG0JAKNnJZE8NLxDO4ZmLdk7tuAbEkZIlwT0Wjk/vnkUiVTgphcG4+V/2nysb2rg07vmIYpO5r71Mf7hEZ0e9/r16yktLaV///707NnzN+XbaDuHosi6994gZ/evLHKCgMY3FIc9ELs9AIksBKU6lK79I8neXQ0CzHiiP4GR584O6saFrcFE7ZuHwAnCDZEsWudKKZCYmMi1116LaLdReuwoxYcPUbz/ICabvtN2koaOZNztC1B4XNiA4JfPNnN84zuAk+Ez5zLg6qntlouiyM5Vxzm+vgG71IQ28CCCRCA5OZnhw4efc+DiMNioeeMQosmO7zUJeA4Ka2vzmxeeoi4rHadUhk/MEMaK/VFI5HgOCkPVK4iGz45TbW9kjfwwXoWlYG8gMGYQc147d7K1/fv38/PPP+Pp6cm999571kAAq8nI+g/eJv+Aa7qp17iJ9Pa5DOOhOtaUf4LJoUOmGoXMoy8eAnRXSYmSnxQpAghyKRKVFKmvB1JfJTI/petvPyUyX9ffglzg68fup76kiL5XXM3oObeds+/uaCA3lxp/yDTQY489xsSJE4mOjkav17N48WK2bdvGhg0b8PHx4ZZbbuHBBx90ZV709uaee+5h8ODBDBo0CIDLL7+c5ORkZs2axWuvvUZNTQ1PPvkkd99992/KkBkyr9cfKlTANW0kD1YjD1Zz5q1bdIqENFvoVlTF6h0/U9NSzwFFPihAIfci2N4Li05G9SH4RZ/LqBu74RvcXrB4eHhw0003sXDhQurq6li0aBFz587Fy9Ob6kId+Ydqyd5ZBbiiDDoTKgAaXz/6X3X6AeEdBBHd/KjM1XJ4fSmjZnZrW+blH0hcnzSKjhwkc+svjLhxbof2ioqK2LfPFXa6evVqtm3bxtChQ+nbty/y80QrdcaxTevJ2b0dQSIhbdI1NFVWUJmbh8XQjEFbDVS3rWtrlVCaHolKFUyrLpId33sy5cH+f1hxu78yLZtKwQnOBBUrtq7CYrEQ7utNtNTJihefoKYgvy17LIBUIidYGU1kWBIpd0yi+PghdixeSM7u7dSVFHHVg4+1y/cjiiIOnQXR7EAWrEaQCDRU1JG5+TPASXi3NPpfdW2HfgmCwKAJyeRs2w1mFXHBPSiuzyQrK4usrCy6devGwIEDCQsL62DFaNlYimiyuyygA1yixm6389NPP1Fol6BWqpBaTHgJdXgmBmDN1dG6p4rWPa7fTUxCHDEVxTTZD4OgYOzt565obLFY2LFjBwAjR448q1ABl+/XlQ8+xv6VS9m99BsyNv5MfdcSovyTMJXoUMrU9I/qR3aTiNEhctTooEgKPTykBMoliFYHDqsDh84KpR3bNzlFWmQSvK390cqacGp9z9l3N27+6vxmy8ott9zC5s2bqa6uxsfHh549e/Loo48ybtw44HRSuCVLlrRLCnfmSKm0tJT58+ezbds2NBoNc+bM4ZVXXvlNSeEu1dGCw+Fg69atHD54iBhrIH1MMXgF+FLdzZ9DG8ux25xI5RIGXBlH7zFRSKTtTdCtra18+fE3GGoFPJ0hyG2+2C2nHyqDrulC2oTYi+pTVb6Wlf/qaF0RRZHCQ/tZ9caLqH18uf2Dhe3qDTmdTj7++GNqa2uJiYmhsbGR1lZX5JVGo2Hw4MH079//gsVmbXEhS556GIfNxpDps1GoB5CxpRyT3oboNCBXNhIUaQJnHXWlhRi0Tb9qQUFkch96Xz6auD5p7Ub7BoOBgoICunbt2qnl6r9JRXYmO5d8xdAZs84biXYxiKL4m4SZrcZA7TtHsIsONkbnUllXjY/ViLPoBJzx8w+IjCa2dxpxvdIIDoxF+3kOToMNRZwPQfN6UFl4gjVvv4pB24RMrmD48JnE+qa6rIr1RkSr67r0SPLH9/qufPHQo+gb8pEpA7jjww/w0Jw9Lf72xblk7qgkvm8wva8KZOfOnWRlZbVbx9PTk6CgIAIDA/FXeiPd0oSvU0PUrWmoEvwwGAx8//33lJWVIQgCowYN5NiSz7GaTAy4ehr9B1yNbm0xtmoDEo0cr3nd+PQf8xEdrTh8kkmYMIhrr+0oqE6xY8cOtmzZgp+fHwsWLLjgZHhFRw6y7r032jnWD7nuRgZPuwG7zcGxLRUc/rmkrfp7bIo/gy6Pxkstx641o682UF+mp6HWSJPWgtZkx3z6FoAoOkiK92PsI/3O2Q+3ZcXNpcaflmflz+BSFytnYqs30vB5Jo5mC1IfBYopXdm1vpSKHFdW0MAoTy6b1R3fUDVVec1t1aKba43t2vHwlBGTEkh8WjBxPc8+t6/X6yksLKSuro6BAwfi43N6TvvHt45QmdtMjxERjJzZDVNWA9ofC0Ap4cfMtzGZWjqEVB4+fJiffvoJDw8P7r33XuRyOenp6ezatQudzuV07OHhwaBBgxgwYMA5RYLFaOSbx+6juaaaqKQ+6OpGYz15JaoE6OohIVohQXrGw9lkb6XJWkOtuYSS1jxsjtNTFVKZnNiefUgYOIQWqYIdu/dgNptRqVSMHTuWPn36/G6F+M6F3WZj4UPz0dXWoFRruOHFNwiIuPiic6cQ7U6MxY38/NnbNDVVMvmhRwlPujhfnYZF2ZiyG9gemE9Bazkqgw5ZeQGIIrG9+tJ14FBie/XFO7C9c6u1spX6T44hWhzIQ9WITmitbWBfzWpqza7hfrxXb/r4j0EqkcGpvEQOkaPm3eRV7wJkXHHPi3Qfdu5In/pyPUv/eRCJRGDOK0NReytoaGhg165dFBYWtiWh6wylUklQUBB6vR6dTodSqeS6664jISGB3L27WPP2KwBM+b9niOvVD3O+FnmQmpUffEbZ8fVIZD60xHdFlMD1119PUlLHPERGo5F33nkHi8XC1KlTSU1NvYhvAJqqKln1xos0VZYjV3pw2wdfovI8PYVp0ls5sKaYrJ1ViE4RiUQgPNEXbbUBg87aoT1BAN9AFQGBHvh7yYnoGUh4v3P7+rnFiptLDbdYuYSx6yw0fH4ce50JiVpGwM0pFFW0sntZARajHUEiIJEIOOynh06CRCAoRkNlSx6tVBMQ6cXNN8/pYBZ3OByUl5dTUFBAQUEBNTU1bcsiIiKYN29e22iwMk/b5rty5dBQOHa6zEBG0zZydPuJCOjGlTf/A1VqIFbBznvvvYfBYGD8+PEMHjy43X6PHTvGrl27aGxsBFzO1/3792fw4MF4enq266coiqx521WA0SswiAD1TGr0UtQS6OYhJVIuIDmPBcHqdPKLtgKzJR+ZvQCLo/l0+ydrPok+AZi9/UCQEBERwaRJkwgP7zhdVl3QjEQmITjaq9OU6AANDQ0cOHAAk8lEr169iI+P79TKcfCnFez45ou2/31Dw5j5zzfbPZjOhdPiwFrWgqVY53qVtbC3ehXlhhzANT1zxd0Pkzhs6AW1Zy3XU/d+OgdlBWTISlHoGlFWl4Ao0nv8ZC6be8c5rTXmwmYavswE++nbhCiHE6b9HC/fDogEhcVwxR0PE5AYg7WilYz3VrCzfBkAoQnXceM/51xQX3945RB1JS0MnhJP3/Ex7fthNtPQ0EB9fT01J8qpPlFGs8SAXmLmzFuYr68vM2fObOeQvvmLj0jfsAYPTy9mvfoO3oHB1BRV8u1jdwN2+l01H2uwgt27d6PRaLj77rs7CO1ffvmFPXv2EBISwh13nNsJ92xYjEaOrFtFWEIisSdre/2apioDe1YUUJrZ2PaZIIBfmIagaC+Cor0IjvEmMNITufLiaiG5xYqbSw23WLnEcRhsNCzMwlauR1BICJidjCNIzc7v8yk8UgeAp7+S6JQAYpIDiEjyQ6mS0dDQwJdffonBYCAiIoLZs2djMpnaxElRURFWa/tRWFhYGE1NTVgsFkaPHs3IkSPblq145SDVJXpiFRJ6qaV4johAHqymZnc2P+55EwGByVHzUXt4czSoksPaE/j7+3PXXXd1OlXndDrJzs5m586dbZFdMpmMXr16MWjQIIKCXCP3o+t/YsuXHyORyhh82QIOH5IgANfOTyW4q+95z5/TZMdWZyR7TzX7DtYhE0SU3hlUtZ5Apm9fTdvXL57ayBCsdtd56devH5dddlnbw+j4tgp2fJcHgIennKju/sSk+BOVHIDKS05xcTF79+4lPz+/XR+CgoIYNGgQPXv2bPPVMbbo+Pze27CajAyfeTMZG9fRUl9HdI+eXPvY8+2m1NqOxWjDUtyCpcQlTmxVrXCGif9o42byWg4hEaT4e4TRYKpAQGDkdfNImzblvOeq/vPjZBRlsUueg6y5AVV1KSDSe/wkLpt75wVNK1nKWrCV65EFqZEFq5B6KxEkAiUZR1j73huY9S0o1Rom3PUAAZFRfP3o/dgsJqTKPlweM4H421JRRp//t5m9u4qtX+fgHejBTc8P7lQ4ijYnNW8ewqG14HVZFOrRETQ1NVFfX4/ZbCY5ObmD0LDbbHz39CPUFuUTlpjEjGde4at/PI+26ghKz2ju+vTfOBwOPvnkE+rr6+nRo0db5m1wJVF77733sNvtzJw5k8TExPMey39KZZ4WbbWBgAhPAqO8LlqYdIZbrLi51HCLlb8ATouDxq+zsRQ0g1TA//ok1KmBNFa2IkgE/ELVnT5IamtrWbhwISaTCaVS2SHxnlqtJj4+noSEBOLj4/H09CQjI4OVK1cikUi49dZbCQsLw7C3moIfC9jdYkcCTL89hYC+p4tMfvfkI1TmZ9Mr6jIi5D1YptiHQ3ByudCH7r1S0PQPRRHhSWeIokheXh47duygsvJ05t6EhASSoiLY+fE7OB12hk29mZztAbQ6RLp38+OyBzrPWnw27HYHXz+9E2OTE6O6EoN3IaldutPTK5qK7KMcPfYzIiL9gidT1UVJrq607RyNHTsWbyLY8GkWiCCTS7DbnO13oDJjkNRhUzZhk+tJ7NYVX19f0tPT20ShWq2mX79+9O/fn/3ff03GxnUEx8Zz08tv0VBeypKn/oHNYqbX5ZMYe8v8ds1bylpo+DyzXY0eAKmfEmWcDzkN+9m7fSkA8QNuwj8ghfr9SylpOgpA3+GTGXXX7WfN02Ep0nH0s61skGcg1dWjqi4BoNflkxgz78KEyvloaahnzTuvUp3nsvyofXwx6poRpOHER84kTSIFmYSAG5JQpZw70ZzN4mDho7uwmh1cdW9vopL9O+5vSxktv5Qi9VYQ8nA/JIoLe4jr6mr4+tH7sBgNRCanUZF9GIAJC14gZbjruqusrOSzzz5DFEWuu+66tlIDq1ev5siRI0RHRzN37ty/rEO3W6y4udRwi5W/CKLdSdP3uZiON4BwspjcgLMngDtFZWUlixYtwmKxIAgCkZGRJCQkkJCQQFhYWAcTtSiK/PDDD2RnZxPgH8B1XiOx57p8TPY4oF5vI3VkBCNuOB0ZlL1jCz+//yY+wSF49htDTnEe4UIAE029EHCFVwbc1B1Vytl9ZkRRpLS0lL1795KbmwsOO5ribCQ2K4FduxPrcS2ZFSaUMoGbXhmKh+eFR3NVVlaydu1a6ouN+Gp7AiKjbo8hpe/pYnE7vv6Sg2uWo5SoGB8xD523k72aAhr1WmRWb/y0PUGUkDw8nBHXJ1KSVcuhbSeoKzAgsbZ3BpUrJUR1DyBxYAgR3b05cuQI+/fvb/PVkVrNqIuyQBSZ/szLRCW7fBoKTjosI4qMmTef3uMnAa7pwLp/H8WptyH198Cjqy/KOB/kMd60WhwcWLWBzC2u6SSZagQyD5fzpNxDgp/zIGW1rlDvhKSBTH7q/zpkahZFkdx/72J5wzZEXe1/LFREp3jWKTKH3c7OxV9yeK2r5g+CGg/fWcx8ajSOjaWYc5pc1/dV8XgO7jxq7RQ7luRyfHsl8X2CmHBHe78Qh87iClW2OfG/vhvq3qenenL2VZO+sQynE+QKCTKFFJlCilx5+m99fRZ5e05P0fmF92XeW8+328fmzZvZuXMnarWau+66C7PZzPvvv48oisybN69D/Z2/Em6x4uZSwy1W/kKITpHmHwswHHD5l3hPiMV71PkdMhsbG6mvrycmJqaD70pnGI1G3n/33xjMRlLsUQwWu+FzRRy6QBWr3kpHIhOY9cJgPP1ckUE2i5mP7piN1WTEGJ2IQ+PNHbffgZ/Bg9bdVZhzmhDkEoLu6IniAnKdNDQ0sPyV52gtL8YpV2CK7o2/djCCKGXQFZGkXXVu07rT6cRkMmEwGNi/fz+HD7tGxkqlkijHYHQVTmJTA5h0d6+2bRx2G98+/iD1pcVE+CYy1PcaREHkeICWomI1EqcMi7KRrmNUOEWX382pqtrean8SQnshN/tRlavDbLC1tXuqvovD4SAnJ4e9e/fSuGcLMkMLNi9fQoeNZdCgQSQmJiKRSNj/4w/sWvIVgkTC1MeeJyoplfqPj2GrbEUeqsZnbgpVxXrKspsoy2qkuSYPW+tKwIFU2Qef8PF4h0vQVpuwaF2CQS3NQduwHhEn4aGJTHnxeTy8Tlu6GjIqWLjiG8wtlaiqXHWreo27gjG3zL8ooWI22Pjl8ywqcrRofBR4+Xvg6e+Bl78HXgEn30/+XZy+n02fL8PhTCP1sn6MmtnNlWF21enr22tkJN7jY88qfBorW/nuhQNIJAKzXx6Cxud0ZFnT97kYj9ahiPEm6M6eCIKAw+Fk97ICjm+tuKDjsRm34bAcAWTc+PL7hHZpn0vIbrfz6aefUltbS/fu3REEgezsbBITE5k58+Kqpl9quMWKm0uNPyzdvpsLw+Ew06TdTYD/MCSS9mG9gkTAd0oCErUc/bZyWtaXYM5tQh6kRuqrdCWEOpkMSuqtbKsEHRAQ0CFJ3NkQHU5s22sZpu/KBnkGWbJyek4aRGT/CLyA8K6+VOU3c2RDGSOud4kGudKDpKEjObbpZ+TNDfQaPoqwcJfVR9nFl8ZFWZhztTR8lUXw3b2R+Z67llDp/l20lhcjkclIuXIGuXsFBFGKTd7CuvTvKXemEhISgtFoxGg0YjAY2v4+9fo1PXv2ZNy4cdgNEr57/gAlxxspP9FEVHfX9IFUJueKBQ/xzWP3U9mcR1WPCgKqoqgt8kYigkxtpd7rBIePnJ7+iYiIYNCgQSQnJ7c5IzudIvVleo5tKSfvQC07v88jqrs/CpWMlJQU1FYTKzb+CIIEa0gUJSUllJSUEB8fz5QpUxhw9TSaKsrI3rmVn95+mUkD70ZeKeBQyciQSCl7bC9Op2vM4HTUYzOsBhwExfVh7B33s/fIdo4fPwYKUHlFoNHHYnQkIfNUYjesoaomj2/vv59pL7yIT3goVquVpT8t+5VQmXjRFhVDs4XV76a3ZQ5u1Vpo1VqgUNfp+kq1DFEyGYVSQv8rYgFXNmjfKQlIfZS0bCxFv70Cu86C/7REBFnH6auACE9Cu3hTU9TCiT3V9JvoasdS2oLxaJ3LQnNlFwRBwNhiZcOnmVTlNwPQ74pYIrr5Ybc4sFkd2K1O7Nb2f1tNMyhJ9ySmZ7cOQgVcPlbXXHMNn376abuih5dddu4U/G7cuPnv4hYr/2UcDjPpGXNpbj5ATPTtJCQ82mEdQRDwmRCLRC1Dt64Ya3EL1uJO6nhIQOp9SsAokVzgtImlWIetspUoAukRkkBmUwFrd24gukcXVCoV/SfHseqto2TtqqTv+Bg8/VyCyiM6DgCZXsvgM9KoC1IB/xuSqP/oGLYaAw1fZhE8vxcSj84vp6q8HHZ8+yUAo2bfikdBJIXmJkBEFa+judnRrvr2ufDw8CAoKIgxY8YQGxvr+tALeoyM4NjWCnYvy2f6EwOQnBy5B0bHMvT62ez45gv2H1yBf+Q8TKIHGgkMl6nR+Q/hiLIYb38fBg0aRFRUVIcHukQiEBLrzeibkqgpbqGl3sT+1UUMn5GIw25n29efA5A26Wp6XzmVAwcOcODAAQoLC/nwww+55pprGHf7PWhrqqjOz2Xjzs8YGzmbggBvSk5GffgEqQiJk7imKUQrEUkpjLpjPstXfkd9fT2CIJDSI4X6+nrqKw/j1dIVBXEInjOwGpbT3FrDF48soNe1s6hu0NHUWIjHSaHSc+wExsybf1E1aJrrjKx+Jx19oxm1j4IJt6ciSKC1yYK+0Yy+6eTr5N9Wkx3LyeKfvcZGofE9LcoFQcB7TDRSHyXaFfmY0utpaLESMCsZiarjNZMyPIKaohayd1WRdjIqqPmnQgDUaSEoIr2oK23h54+O06q1IPeQMvbmZLr0Pn9dodJj6RxevQOT7hj9Jw/H06+jX0xYWBgjRowgPX0JXl4NBAYNJCjIncrejZs/k/+ZaaDcshoSo0LOv8EfiNNp53jmXTQ0bAZAJvNi6JDdyGRnT45lrTZgq9Rj11pwNFtwNJuxN7v+xvHbvyrBQ4bf1K5IE7346KOP0Gq19OzZ05VqXRRZ+a8jVBfoCI7xIijGG4VKwsEje7GW/IzEqqf/NXPoO+FKVJ4KpHLXQ8/ebKHu/XSceivKrr4E3pyC8KukdqZWPV8/ei/6hnoSBw1j1Oi5/PhJFi1OSOobxJjbUykvL+fIkSPYbDbUanXbS6PRtPtbpVKdNRGX2WDjm6f2YjHaGXVjN1KGnx41O50Olj73OJU5WQjScHzCb2Ti2GjEPVWuRGZSAXXPIGQhrmzEsmA1Mj+PNivWmZRnN7H63XQQ4Lr/60dlzg62fPERKi9v5r3zCR4a11RMXV0dy5Yto67OFd01aNAgemviWPnhsxgdegJDuqG3TEQikXDlfb0JilTw3TOP0FhRRkBkND1n3MzPGzdis9nw9PRk2rRpbeLMZDJRWlpK5s4KatNFnNZWbK0rEZ1NiBIpVr8gFI01CEDPMRMYe+tdFyVUGir0rH43A1OLFZ8gFVfd1xvvwHNPNVpMdlqbzFiMdkLjfdrEYofvKU9L4zcnEK0OkAooorxQxvmgjPNBEeOFRCnDbnWw8P92YzHamXxPLwJNdrTL8hCUUkIf7kdBViNbv83FYXPiG6Jm4p2p+Ied/Td1ClEU+fbxB6ktckV2RSWnMu3JF5F0ck3V1P5MZuY9CILrNycIcry9euDr2x9f3wH4+KQhl/+1plLc00BuLjX+lj4rSY8u5/Fr0rhxQPRZb5R/JKLo5MSJR6muWYFEokAm88VqraNbtxeIjLj4uW/RKeJstZ4UMWbsWgtOk/2CtpXIJaj7hSI7OdotLy/niy++aBf1UJGrZdVbRztsazenYzdtQZAGovCahSAIyJVSAiM9GXVTEp5OkfqPMhBtTjQDQvGdktBmmRCdTn58/QWKjhzENzSMG556g8NvHONYsw2FXMJNLw9BdRFOtecjY3M5u37IR+Ul56bnB6M4OWoXnSLrPtxFzo63ACt9Jl7PZTffhF1rRruyAEuetmNjUgFZoKpNvMiDVciCXGJm41cnyD9YS0C4jMbSDzG36ts5z57CZrOxcePGtoKdAaIXafpgDtSsxOGwIlX2YeCUm+k/KYrlLz1NxYlMPP0CCB49kYwTruiauLg4pk6d2iFXzSmMLVa2L8mh8HA5VsNqRPvp6KseI8dx+Z33XJRQqcpvZu0Hx7Ca7AREenLVvb1/9+rWDYVayr/MJOjXl68A8nBPlHE+HC3Tk32skbjUAHprTThbbXhNiOV4nZmMLa6a4TGpAYybl4KyE+tMZ+Qf3MvqN/6JTKlEECTYzCYGXTuDoTNmtVuvsXE7GcfuQBRteHr2wGZrwGKp+VVrAp6eSSfFS398fdJQKIIv6Ught1hxc6nxtxQrUfcvRaJU0z/Wj5ev7UlCcOc39z8CURTJL3iJ8vIvEAQpqT0+wGyuIC//BdTqBAYNXP+n39RORT2oVCruuusuvLy8qMzV0lhlQNeo5+C+o4h2CUG+AdTnvA+iHaXPjQiS09YruYeUcXOTCZVLaPw6G0TwmRiH18hIV4G6JV9xcNUypHI5M1/8F/YdJtbsrcUmwogZXUkd/dszu3aGw+Hku+cP0FxrpO/4aAZPcUUG7V1ZwJENZTisWdgMG5BIZdz40psEx3ZBFEUs+c1Yy/XtilFid3a6D0EpRdY/hNWbKzE0bsZhOUxAZDSzX3uvbYRe2Wzi232lXN8/mugANSeOZvLjqlVYsCFDSpgxjObSHwG4bO58KrKPkbd/N3IPFfJeA6ltcZUwGDFiBKNGjbqgBGTFGfVs+yaL5urVOG15ePv1Zfw99xKVHHDB11rJsQbWf5qJw+YkLMGHSXf1RKm++HpP5+PBpemsOFJJJBJe6hdLD6cES0kLjiZz2zotDpGtejsCMM5bhiLAg6NyGZV5zYDLP2XA5Lg2R12jsZjKyiWEhU3F07Nbh32KTieLHrmHhvJSBlxzHYHRsax793UQBKY+9hyxvfoCoNXuIz1jHk6nheDgK+iR8jYgwWyuoLn5IM3NB9E2H8BkKumwD0GQIZf7Ipf7I5f7oVAEIJf7o5D7IVec/EwegK9vWgfftTOx2p18f6gcrcHK/FHxyKW/T+Zlt1hxc6nxtxQrH2zI4L1dVRitDhRSCfdclsAdI+NRdOLE99+mpORDCoveACC5++uEhV2L3a5n1+6hOBwG+vRehL//hWUg/W9ht9v57LPPqKmpISEhgRtvvLHtobZy5UoyMjKIjIzklltu4ed//4sTu7bRc+wERtx4B63NFnYsyWtzbOw/KZYkXwUta10+En4zu3EwfVVbKOvld9xLQlgamz88RqlVJCBEzfRnBv5XLGDFxxpY98ExJDKBG58dRMnxRnZ+70r6NnpWEnl7vqDw0D4Co2K48aW3kHVSjE50ijiaLafFS9u7CdHsMgfk2rSkV7iK9E285wmSh7ky+jqdIlM+3ENGeTPhPh4svXUQ8u/zaK5oZIcmh0a9DK+WROzmfdhNe9r2KUil2OK6Y5J7oFKpuPbaa+natetFHbvFZGfPigKyduQjCK5pEf9wDb3GRJE4IASZ/Ow5SXL317D5qxOITpHY1ADG39YD2QXmMLkY9hQ2MPPT/W3/qxVS1twzjC5Bnth1FqynMveWtLC1oIUmh0ikXKDZQ0ar3oZcKWXMzd2J73M6bNliqePgoWuxWKqRSJR0S3ye8PBp7fZ7Yvd21r37Okq1hlvf+xwPT082fvpvjm1aj8rLm1mvvYtTWsbR9Dk4HEYCA8eQ2uN9JJLOxZrFUkez7hDNzQdobj5Ia2sucGG3Uk/PJPqlLUMqbT+1Jooiv2TX8vK6E5Q0uhzKbxkWx1OTky+o3fPhFituLjX+lmJFp9Ohd8p5YuVxtuXWA5AU6sUrU3vSO8r3D+tPReVicnOfAqBrwhNER89rW5ab9xwVFYsIDBxDr56f/Ef7cTotOBwm5HLf39xGXV0dH3/8MQ6Hg0mTJtG/f3+qqqr45BNX32699VYiIyMpzzrG0ucfR6FSccf7CzFt24bDYCLTmcrxba5ph9iegfQP9sBysIbD2o0U6lxTSmPmzafniPFkv3KA7bWukfO1D/clLOG39/tciKLI6nfSqcjREhDhSWNVK4gw8Kou9LsiFqOuma/+sQCjrpl+V17LyJvmnb/RU207RUzHG2jZWMq2rG+pNOYjkcWSkDKHyY+mIUglLD1YziPLj7Vt87rSk8EWCRK1DOWMbix9Lx2nHQyafPzL1qKTuCw4Kg8f6uK6EhERwXXXXYevr+9vPge6eiPHtlRwYk81tpMJ51ReclJGRJA6MrLDtE7GlnJ2LXX5cSQODOGy2d2R/k6j+TOx2B1MfHsnRQ0GbhgQTXFDK/uKmkgJ92bFXUNQytqLoxPbK9iyJK/tf58gFRPnpxIQftpq6nAYOXzkBvT6TCQSBU6nK1lfWNg0uiU+i1SqwulwsPCh+Wirqxg6/SYGTb0eALvVyuKnHqa+pIiYfmEEDTiI3aHH328YPXt+glR64dXfnU4LVpsWm7UJq60Jm7UJm63J9ZmtCau1CZtNS2trNna7noiIG0nqdjrHS2aljhfWZLO/2FWs008tR2t0hcv/e2YfJvc8d36aC8EtVtxcavxtxYq3t7frYZVRxXM/ZdNksCIRYO7QOB66PBG14r8b/FRbt47MzHsBkdiY+cTHP9xuudFYzN59YwGBwYM2o1a3r39iNRnZ/vUXeAcFkzZ5CjJ556M6p9PO4SMzaGlJx1PTDf+AEQT4j+jUvCxarRgPH8YjtSdSz45OiHv37mXDhg3I5XLuvPNOVq9eTWlpKampqUydOtXVhijyxf2301xTTR8zhOW6IjMiP/yACmUS2xfn4rA78Qn2QNn8M2W1LqEydtZ8ek2eRNOyPH7eWkmzQySxfwjjbkn5Laf3gmmoaGXpPw+0FRROGRHByBsS2yxHhYf38+NrL4AgMP3pl9oSuF0oZceP8cOLjyMgoPCehSANZFCIipiJMUz8JYt6o5XbhsehPFDL9RYZDsBzdne2ry2lulBHQKSS0J0vEFhWRkGIH94mC2E6A02TJzHg5Zfb0vf/FiyWOloNeXh79cRpU5G9u5pjW8tpbXJlOpbIBBL7h9BrTDQBERoO/FTMoXUlAPS8LJJh07qeNQfKf8rbm/J4e1M+QV5KNj04EpPVwcR3dqA12pg7NJZnrmx/XditDr56bA9mg43olADGzUvGQ3P63Iiig2PH76KhYRNyuT/90n6gtm4tRUVvA048PZNI7fFvCvfl88vH76Ly8ubGf33MK5tL6B3lw4z+0WhrqvjhlduJGZeHTOXA16c/vXt/2cHqcS5sDif7ihqJD/Ik3Pfc2zU17eZo+mwAeqZ+jF0xlNc35LLyaCWiCEqZhNuGd+HOUfH8e0sBH20vRK2QsnrBUBKCL6y+1NlwixU3lxp/S7HS2FiBv//pCJAmg5UX1mSz8qhr5B/pp+LFa3owLCEQ2W8cNYqiSIvJTkWzkUqticpmE1KJwOhuwag5QkbGrYiijYjwG+jW7YVOfQXSM+bR2LidqKh5JHZ9ou1zp9PBqtdfpOjIQQD8I6K4/I57iejWscJuRcW35OY93eFzqVSNn99gAvxH4O8/HA9pKBXz78KwZw+CWo3PpEn4zpiBqkcKNpsWg6GQ1tY8Dh1ag81ejkbTSkNDOGWlg1iw4B58fX0RRRHDrl3seudfZEnt+LWaGFxUDaKIZvhwoj/9hNriFtZ9lE5z5SqctlwEBAYGTSa+Sxre42I4+kU26SYHcoWEG18Y3C7R13+Lbd/mkLWzitiegUy8M7XDlNOGj94lc+sveAcFM/u1f6M8R4XoM3E6HXz72IPUlRTSa+xE5OahZGY1oRLgMm8ZZYKTNT4CT13RHd2SXABexYSHRkVspQ25UsKw2q8R0vfglMnYN6A/IY1NxOe61vWZMoWw555FOGN6Smuw8vyabCqbDPz7xjSCvT3O6I8Vne4IjY07aGzaQWurKzeIRKIgMGAMoaFX4+c7guKMZjI2l1N7Rki8X6gabY1rumHgVXGkTYz9r/lSFda3MvHtnVgdTt67oQ9X9nJZCrbk1DJv4SEAPpvdj7HJ7SP6Gir0aGuMxPcN7vAd5uX/k/LyL5BIFPTp8w2+Pq7igE1Ne8jMuh+brRGpVEPl7mhqMmDkrFvYKE3i4+1FSARYcddQEgO07N83FSc6DLUeJCd+QELaSC6Gh5ZmsPyIKyldpJ+KAbH+DIjzp3+cP10CNR3OaX7+S5SVf45d9OapPY9SZ3CJkGt6h/OPCUlEnBQ8doeTWZ8fYG9RI/FBGlYtGIan8rcPuNxixc2lxt9SrKxZm0LXrtcTFTkHleq04+bW3DqeXJlJZbOruJ0ggI9Kjr9agb9GgZ9GQcAZ7/4aBX5qBS1mG1XNZirPECaVWhMGq6NDH+J8Snik3/sopBbU3pczKO3fCELn8/2NjdtJz5iHVOrJsKF72sKYd3z7JQdXL0cql6NUazDqmkEQ6H35FQy/YQ4KletharM1s3ffWGw2LfFdHsZDFUnTyQeV1Xq6cjIOCPzcC0W6pUMfbDESDEOtmPo5ETvN5XYTYy57DuOhQ9S9/TamQ4cxy6RsTY5BFARm3v0wzXfcBaJIl5/XIY2MZNUbL1OSfgCQIPecRGpgMgmI2ETYrLdjFWHotAR6j/1j0pU77E6q8poJ7+bb6ZSG1WRk0SP3oKurJWXUWCbMv/+C2s3cupENH72DUq1h3jufIPfwZMlz+9E3molSCvT9VWSKuWcA846XM00rQ4pAj7q1BGevQ+rjQ+SHH9AYFISPjw/21T9R+9JL4HSi7tePiPfeRebnx57CBp5ctJ204rUEWRowegYzbFQ3ArpYQFWMTn8Qh8Nwxh4FlIpgLNbatk/kcj+CgycRFno1xoYuHNtSQeHRekSnCAKMvD6RHiMjf8tpviBEUWTmp/vZW9TIiMQgvprbv90D/IU12Xy+qxg/tZx19w0nzOf8Vo3yiq/Jy3sWgB4p7xASMrndcoullsys+2ludkViNeeFkTjhB6755CiOkwn4+kWaub/PW1gs1WAN4vhiP+Ry37bKzBfCL1nVvPzRcuJMJbTKvKlVBFKnDMIkdf1eAz0V9D8pXgbE+ZMY4sXKI8VYauYRrqkgsyGJnY2P8eTkHm3T1Q67jeaaakDA6RPEle/tpqbFzBWpobw/s28H8WOzaZHL/c7bV7dYcXOp8bcUK6tWx6LRSAAJQUHjiI6ah49PGoIgYLDYeX1DLov3l2F1dB7lcTEEaBRE+KmI8FXhsBUzKew5PBVGshq68e7R24kN8mNij1DGp4SSEu7d7uYiik727b8co7GYbonPERl5E1nbN7P+g7cAuOKeh4ntncb2RZ+TtX0TAJ4BgYy79W669O3f5vei0XRlQP81SCSytnZbW3NcI+yG7QhvHUV1WECUizTeZQcB1LskqNIlCPaTocVKAcfwIBST09D6hpKTs4uo6CzkZQoit/fGsjcdAEGhwG/mTHbbWyk+fpR+V15Ll50HaN2+Ha+bZrJfaqck/TBSuZy4tDlU5LouujClBLkoUmYV8QtRM+PpAf+RL4TV2kBR8Tu0tubg6ZmEl1cPvL1S0Wi6ntUR8lxUnMjk++ceA1Fk2PWzCYqJQ+XljcrbB5WXNwqVqt13ZzWb+OK+2zE0axlx0zz6X3ktACXHG1j7/jGciPhFeTDaAqLVibKrL743dmfRiwcwN5jxbcykz/EPUUREEPXppyi7xLXrT+vOnVQ+8CDO1lbkUVH8MusRlhwuZHzdL/h6tRCYosUr0oCHX/vK2qJdjVrRi7CoiURETUAu96e19QQ1NT9SU7saq7W+bV2VKprQkGvwVE6iLENKULQ3MT3OngnZaLXz2vpcKrRG/jkllRDvc2cq7ozlhyt46IcMlDIJGx8YSXRAeyuWxe5g6od7yKxsYWCcP4tvG4RUcuZvRmz3PTQ0bCXj2O2Ak/guDxMb275A5CmsplZWfT4R/+QqAGpM8fzr4Cx6RHejoqGE25LfIFjdiFodT6/URax48VVXZeau3Zjx7Csd6i2didPp4MjWbaz6ahG+lsYOyy1KL6pkgdTIg6hXnhYwcqmAzSESpqnmmcFvIJfY8JLMwFLdjabKchorK9DVVuM8WfbBPyIK356DeD7bA63EkycndefW4V3a9lNXt57sE4+Q2uN9AgKGn/N7cIsVN5caf0uxUly8Fm3zUpqadrYt8/JKJTpqHsHBE5FI5NgdTnQmG00GK40GK9qT701nvLRG17tGIWsTJGe+h/uoUJ2MkjCZKjh8ZAYWSw02SXeWlTzC9vxWbGckb4v0UzEhJZTLugejlEkx2xyYtN8j6N/ELommvOFJdMvfBacDe+oYDKnjSAr15qre4TTmZrLx0/fQ1blGyUmje+CRuAJwnDWiSHQ6qX7iSXQrVyLKpGTN6U5rYgNh/jF0De+Bhy0MtpZiWrUdW0lZ23YeqalYhw3FengpsgMuJz9kUnynTiNw/p3IQ0NdRflefwG1jy8zZ95G2V3zOZwQSaNKgUyp5Jp/PEVMam+yd1WxfUkuzjPOw1X39yYqqWO20AtBFB1UVC6mqOhN7PaOmX0lEgWemiS8vFPx9uqBl1cqGk3CBQmYUxatzpDKZO3Ei81ipjo/F9+QMOb864M2n6JV6ZVs+jyLJJsM30gN0+/tja2kBY8kf/auLiJ9Uzlyq56BB1+kRONL0QPP88CMwZ3u01JQQPHtdyJWVWKSycmIDkIXJCf5hlKkCpdIcToFjI3etBQr0JdrMDV4AK6HuU9wCJHdU0kaOoKY1N4giDQ17aGm9kfq63/B4ThdtsDbuw9xcQsIDBjVaV8yK3Xcu+QoRQ0uy02kn4pvbhlIbOD5E7CdQmuwMubN7TQZrPxjfDfuHp3Q6XrFDQYmv7sTg9XBA2MTuW9sV+w2G+vefZ36smIm3/coIV0S0OuzOXzkehwOA2Fh19E96eWzTl0dWLWMnYsXEtpTSvDgEiS0YrBpSEx8mvKyD5A4Sqk3BpKS+i2pMQntKjOnTbqGUbNv7dCmw24je+dWDq5ahrbaJYLsEgV9xozDbjJQW1RAU3UldHJbbZV5opP4IMgkREha8Y8uImp4DU6HQN6KWMxNp4WgQqXCYbfjsJ2uSVXhEU6+VyKPzZ/O0JRoysq/JD//n4BIaMjVpKS8ec7vwi1W3Fxq/C3FyqmDbW3No7xiITU1P+J0uqZAlMpQIiNmERFx/X8UPSOKTvSt2a5pl8Yd6FqOIIoONJqupPVdglzuh85kY2tOHesza9iWV4fZ1tGS4yE188bIp1DJLGStS8BWLqdQHce64PGueSpcIZ1X9w5neq8QWvau5fCalcRNLMU7yoCSPgwd/UOHm7QoilQ9+xwt33+PQ5DwUv9Z7Al3OY8qZBKW3zmE1EiftnWNBw7S/P33tGzcCGfcFEUBTP0dKGYNo8fYz9v243Q4+OTuuRi0TUReeTOtK76gWS5BLpNx7ZMvEtm9R1sbNUU6fv74OEadlfi+QUy4/eKcWE+h0x0hN/dZ9K1ZAHh5pRAZMQujsYgW/XH0+kzsdn2H7SQSBV6eKcTG3k1g4Oiztl9SXMHWRx/CgQWJUoZVFLE47NidHaf7TnHVg4/TdeAQAFotdsb8axutzRbmm9QINpER1yeSOiqSyjwtP755BBDoefxDlBEezI6eglmm5LGJSdwxMr5D2z8ereSNJTt5dus7ROibcQK6q4Mwja9ErY6n0j6Lp9arMNlVvH9tIonUU3Eii8qcLOqKixDF09ebT0goqZeNp8eosWh8/XA4jNTXb6S6ZiVNTbsBJ4Igp0/vRfj5DWjbzukU+WJ3Ma+uz3FZAXw8UMgklDYaCfRU8NW8AaSEX1j6+UeWZbD0UAWJIZ6suWf4OVMJrDxawQPfZyARYPEtA2hY8wW5e12DD4VKxaQH76JK/yQWSw1+fkPo3euLs4cWGw18ds+tmFv1DJm7gP9Lb2R2t0+J9SlvW8doD+DZPQsI9Y/jx7uHIpdK2hLHAVz98JMk9B8EgM1qIXPLLxxcvQJ9o8tSZZIoOebTi0ceuIV+3U77y1lNRuqKi6gtLqCmMJ/a4kK01ZX46430K67GJJdxID4ci1xKwuRaPCO0iNYA/MRHCIiIJyAiCk//AKwmI3n7d3Ni5zbKs4+3CSCHICH5KlCFun4TERE30i3xmbNOPZ/CLVbcXGr8rcXKKazWRiorl1BR+U2bGVwiUeKp6YZGk4Bak4BGHY9GE4+HR1TbdMqvsVobaWraTWPTdhobd2KztTf5enml0jP1Qzw8wjpsa7I62J5Xz87dmUh3b+dIlzTsvv54yKVcFrKIFP9N6Eo9ydvbH8O4+ag1agRB4JfsGorqT/sh9Ijw5qYuRwhSvYvTIZDzfRfC4gYy7rYF+AS7HBK1BgsHH32OqE0rcSLwetoN7Inrx5TeEdS0mNmeV0+Er4o19wzDT9M+dNXe1IRu5Y+0bNiAPCIcj1mXcUz3D0TRRmLiM0RFzm5bd/Vnn5K/cVXb/zK7g+haK+9PeYoIP/VpK5SviiC5DEmNgbRh0SjOUjfobFitjRQUvk519Q+u/ci8ie/yMBER17e7KYuiiMlUil6fSYs+E33LcfStWe0ETFjYdSR2fQKZrH00xZr0cnQP3Eff6hP8GocgYJVJscokrnepFKtCjkqlJi4sEo/4BBTxXVjeIOP9Iic+4cG8lZbA3h8KkHtImfZoGqv+uQujXUFY9W4GpVoIe+YZPtlTxss/u7LTvja1J9P7u/yrWi12nl6Vycb9OUyqW0+IuZ7UinoitK7jaB3tIOHFb/ALGMAzqzL5am8paoWUZXcOITncdd1bjEaq8k5QdOQAJ3Zuw2J0XUMSqYyE/oPoOXYC0Sk9ESQSLJZ6cvOeob5+A3K5H/37rUSliqJeb+GhHzLYkef6zYxPCeHVqT2xOURmf3GAE9UteCllfH5zfwbEndtSdqC4iekf7wVg2Z2D6Rd7fsvaKWfVy1v3063+CBKplKCYOOrL8uh6TSmqADNqdQL90n44Z7r7PT98y95lS/APj+Ro/9tYfayG3pFqXh67laqqb1EoAont9hWTPyhDZ7K1s/psW/Qpx39cTmptMxFBoeimTObg7m0uPzJA5ePLblUqB5TduH1MEv8Yn3Te42rNyaX8phuh1fWdCCEhRHz6McrYAPYfmITV2kBk5Gy6JT7T6fYtDfUc37GVzWvWkDz4GH7xruui7mgUQb7T6TFqHKHx587L4xYrbi41/pZipe7IEYL69Omw3Om0UFu7lrLyL2ltze60DUFQoFbHojkpYNTqOAzGIpoad9CiP86ZyZ6kUo0r4iZgJAH+w9s583aG4cABKu9/AEdTE7LQUKI+/ABlt2789P6jaFJWIIrQM2kpwRFpbduIosj+4iYW7y9jfWYNTqeFF4a+RLC6kfKK/mg3WHDabcgUShLGTGavJhXZkq+Zkf0LAJ8NvIHoWTdw46BoAj2V6Ew2rvr3LkobjYxIDOLLm/u38wnoDJeJ+UUEQU6/tKV4e/ekTm9m1ptruTzbVZTQIvVgaG4JwQYDjwy9k+NBp038ComVG7v/wJDwAxjsvgiK3iRGDSMqdAgaTQKC0PkIWxQdVFZ9T2HhG9jtruq+YWHXkRD/DxSKC6wyLToxmcqorFxMWfkXgIiHRwTdu7+Kv99gjFY7z67Owv+Ld7m6aA8OQSAnLABBBDkSfGRSPJwiCrsDmcWKxGxGYu7oqHwmTk8v1F27sjdgGlq7DzLs2JHhYWpgYlojYfecrnj8ys85fLS9EIkAH9yYRpiPB/d+dxR7RT4T635B5TSj8vZh0n0P0/TdAjyWuablPEeOJPLf7+GQSLn5y4PsKmggwlfFj3cPJcirfYSVzWImd89Ojm1aT3VBbtvnvqFhbdYWpaeSw0euR6/PRKPpisn7Q/6xvICGVitKmYSnr0xm5oDotn7rTDZu++oQB0qaUMokfHBjX8Z077wel9Xu5Ip3d1JQ18oNA6J4+dqeF/TdGSx27n3ibZLLtwEw4e4HSRw4mC3rJiDzqcBmkhKmfp5eo68/axsmfQuf3XMLVpOJ+Bl3cf8BEYkAq+4eRmqkD3p9NkplKAqFPyuOVPDg0gwUUgnr7htGQrAXLdu3U3Lvvcgtrmm3VqWcffHhKMPC6H/VVD6tCWTdiUaSQr1YtWBoh/wwv8ah11Ny/Q1YCwvx6NEDh06HrbwcWVgYMQu/RO9ZQnqGK99Pr56fndUSaLM1s//wbViMR3A4JJTtjkV3wvW9p44Zz+W333POfrjFiptLjb+lWDmQ0JWwCRMIuPMOVCkd83i0NNZTmLGOgDgNDqoxGAsxGAoxGotwOl3JygQTqA5IUB+QYAsXabnGgagBT8/uBPiPICBgBD4+fZFIzl8rRRRFtN8upvaVV8BuB5kM7HYEtRrdVRPZdSKdLldU4B2lJypqLoldn+y0nSaDlU0H3yDA+TnNZm+e2P0kHmYzV+p34atzmbQj6g30qnLVLqmaNZ9hj97dMcFWdQtTPtiN2ebk3jFdeXBc4nn7fzzzburrN+DhEUlKrxXc+Hk2WVUtXKXfRU+5lmseegzzp1+gX7oUy5CR5M5/nEqtiWZ9IanqV/FXVnTatlPwJsCvPwH+A/DzHYCnZzISiQxdSwa5uU+j12cC4OmZTLduz7aFpAJUbvyFlpwTxM6dh8rz/HkntNoDZJ94BLPZda7Ufjfwwi8DGLH7B67Oc4XMHokJocb33OUZBKeIwuFAZbUTHxFNl9Ao0g/loqmpIMzQhHBS0Oo1ERzq9yiiIAXRybj+BhJvvbrDuf2/5cf5/lA5CqkEp9NJSvMxhjXtQYJISJcErnrocXSmn8nLfx5Nhie+XwmIZgshTz6J/003ojPauOaD3RQ3GEiL8WPxbQPP+tCsKyni2OYNnNi5BavJFRUnkcpIGDCYvpNHU1RzH1ZrHen1Kfz76G10C/Xh3Rv6kBjS8fyabQ7u/vYIm3PqkEoE3riuJ1P6dIwk+veWfN74JY8AjYLND43EV336N2NvbKR1+w4cOl0nfS3kxM6tABSrYkhJ60tsZCZVkTtwKqTkr4rCWKdi5E3z6HfSwfnXbP/mCw79tILAmDg+D5hCmdbUaR6XU9/FvIUH2ZpbT78IT/5t3I/2S5cYb1V7ILHZUdvsiNFRJCxdyoZSI/csOYpMIvDj3UPpEXHu6TDRbqd8/l0Ydu5EFhpK7NLvQRQpu3ku1uJiZEFBRH/5BSXOxVRUfIVcHsDAgetQKgLbtWMyVZKeMQ+jsQBR0PDGwbnkNibw0iAPfCuP0XPcFZ2mOTgTt1hxc6nxtxUrnidrs2iGDydw/p2o+/bF2KLjwKplZGxYi91mRaFSMeCa6aRdcTUyhQKn00HL4S1ov1uCedNBsJyurib4aQh67GH8r5xxUfknnBYLNc89j27FCgC8J08m+JF/UP1/j2HYswcRyAnzJ/bp6WjFd0+GMe9GJuv4wLRY6ti7bywOhwFFwLMsze7B+sxqbHYn8cYibs5ZTb9yVy6Z8u4JJL3wItE9enXar1OjSIAvb+7P6KRzh2fabC0cOHgVZnM5ZYY0nts9mwCNkuXzh7Q5WZrz8ii+6mqQSknYtJEmyRFO5Dzm6q8ikOi4V9hXoqOwYjdekkzifUtQSttHs0ilGjSaRFpa0gERmcyLLl0eJCJ8Ztv0nN1i5egD96HZsg0BqAj0wTzlKrqPHENc777njNyw21vJz3+ZqurvABCPKgj7DCQiVCXFE//sc0R0T2FrRgnP/3AAicVAkp+E2X0CwWzE1KLDpG/BoGumOi8HUXQiSKQc9uxBRkA/frpnBGH6eiyFhVgLiziaqyDf0ZXUHlJGLOg8Z4fd4WTB4qNsPF7B6MbtdG91ZWpNHj6asbcvwCnq2LtvHA5HK926vYBmp5SaZ59F6utL/MZfkHp5UVjfypT3d9NitnNt3wj+dV2vc16nNrOZnD07OLbpZ2oKXRlrpUoPCtIGMyn5UxRSG+XWKVw/5lU8zpGa3+Zw8siyY205jJ65Mpm5Q09HNpU0GBj/9g4sdidvzejFlD6R2Kqq0G/ahP6XjRgPH+7UAfVcOD1EVOOHUh3clX0HdgEw4OppDLthTrtjbtU28fm9t2G3WnCOm8f7BUpCvT3Y9NDIs+YoqdaZmPPcMhbs/oquOtcx+d5wPR43z0GbnYX9hZdcltG0fsxMuJ56C9w3pisPnEfwA9S+/ApNX32F4OFBzLfftA2k7A0NlM27BUteHlI/PyI/+4hjrY9iMOQREDCKXj0/azsuvT6L9IxbsFrrUSpD6d3rC97fJfLhNlfCuFV3D6VrJ8Ly17jFiptLjb+lWKk7cgTr4iW0rF0LTpeToS02mmMeEmoVEhAEVN4+mFpcozk/P38GRyagPHwUy8kKtwCKhHh8Jl+J7qefsBa6MrV6jh5N6DNPIw8NPW9/bDU1VNx7H+Zjx0AiIfjhh/GfezOCIFB1Iovjt99KdH0zAD7XXkvpFfsxWotJTHyWqMhZHdrLzv4H1TUr8PbuTb+0HxAECY2tFlYercRzy8/0WvJvAIojgjkR6LphxfcbyIgb5+If3nHE+9SPmXy9rxRvDxlr7hneIYz01+hajrP/4DSkgp3l+VO544rH6fWr8gWls+dgPHAApidTNSodAF/fgfRIeRul8rQgKm008OPRMvbn7sFLmkWibyFd/QrRyE1t6zQ5x5LVehM1ejVNJyOzFNWlPLTtA8L17UfidV5qjsaEIPfxoduQESQPH01Y124dHtg1Ta289s5CYk2rSU4pJfQ9AWmrgK1fKMkLf0YmOx2FcaRMy9wvD6Iz2UgM8WTRvIGE+pxe3lBWwtZFn1N23JWlV1SqueyGWfQaNxGp7FQYuYiuzoRPsOqs4kHf1EDOvj3s+OknaKpGkEgYNesW+ky8CkEQyMx6gNra1Xh79aRfv2XgECm6+hqshYUE3HYbwQ89CMDO/Hpu/vIgDqd4VqfdzijMyWXtJx9iqyzAJPGgekgi16Z8D0By99cIC5t6zu2dTpEX1mbz5e4SAO69LIFrQ40cXrOC/fhyCAWXezcxzViBbUcWFLSvbG2NdmIPvYBbjwiKUgmyutPn0REVSZZoodrXk+TLJzL21ruQSFziavMXH5G+YQ1+sV15WToWmxM+uimNCT06/+2Koohu5Y9UPPc8UosZvUJNwHPPEz/ldAVtU1YWZbPn4DQY2BOawsqrF7Dy3hHnLTDYvGwZ1U+6Sm9EvP023hPGt1tu12opv/U2zFlZSHx8CHz3SY6Z/oHTaW27HzQ27uR45t04HAY0mkR69/oCD48w7A4nc748wO6CRroEaVh191C8PM4d/eYWK24uNf6WYuXUwRoL8il4/nmkBw8jOXlorb7e+N1yC13m3ULO4q+p+eILgmobkJ1MDoVcjs8VE/GdPh1VX1fSJafVSuPHn9DwySdgsyHRaAh++CF8Z8ygqaqS/AN7KDi4l9amRvzCIvCPiCTI4kD59RLQ6ZD4+BDx5r/wHOoKL9Y3NvDt4w9g0DaRpvYj5MBRcDqR9Iym8qYCVMFdGDRwQztfDl1LBocOuUzd/dKW4+PTGwBHayvNy5ZR9+prIIr433wznvPvYN/y78jYuA7R6UQildLr8isYPPUGVF6nLwKL3cGMj/eRXt5McpirJsu5RtGvrc/hROFCbur+AyClX9r3+Pi09w1q+GkJ9f94HoenSO0/bcQkzCcu9j5qCgqozjtBTK++BEXHtq0viiLp5c2sPFrJmowK1JIyYn3KqNCHU9LSvgTBFSU7ueP4GhQOBzaJhJUpI8jXxPLwgW9QOu00qVUciQ3GKncJBXVgCL1GjaH78FH4BIWwYumPZK9dhsamR+pwMrS4Gk+DGWu0k8YH7Wj8k0lJfqNdpd7cmibu+norZksTcf42Hr08FD8PI1ZbE1KJkrV5Xfjup3xG6fbjY3Y5XPuFRTDipnnEpw04q0Bprq0h/8Ae8g/soTrvtED28PLmyvsfbbOINWn3cvToTYBA/34r8PZ2+Xvot26lYv5dCAoF8et/Rh7uygL71Z4SnlmdhSDAp7M6ZoEFl7jIqmphe14d2/PqOVLWjMRuYUr1akKs9aj9Axl5dwLVdV8iCAr69v2m3fRbZ4iiyL+3FPCvjXmkWo4zM2Y5oV5aNJkSPNIF5NWnr2VRELHGi5h7OzH3diIE+yCX+yGVqhCdMuqLy7CZHCjVvsSkDkAu98TmULD4YB0n6oKQ5Gm4x5BJSMY+17QqYJNIqPTzRDJ6JGOe+SfGZi2f33c7Toed7N4z2azzYWz3YD6d3a/T78TR0kLNs8/Rsm4dACVRSTyVPI2ElC4svnVQu4y5679dS9g//w+F0w4TJpH01uvntGIZDx6kdN4tYLMReM8Cgu6+u9P1HC0tlN9+B6b0dCQaDcoXr6FQ+SUSiZKYmDspKXkfUbTj5zuInj0/auck3thqYfJ7u6jWmbmyVzjv3dDRZ+9M3GLFzaXG31KsNDU2UHpwH/tWfo9B24SH1U53o52wqrq2sFypnx8O7ekRXquHgjJ/Lyr9vOgyfBTDZ87BJ7j9CMySn0/Vk09hznBNn7T4eXM02AeDxxl+K6JIdGMLyZUNSIAWDwXHusWi6tKFgIhI/COiyNu3m7qSQgKjYrjhhdexHjzkSgBmMGAPhsb5VlIv/5KAgBEnm3Ry6PB1tLSkExo6heSuL9O6ezctq39Cv3kzosXl8Ol7/QxCn3mm7cbZWFnOjm++aEvbr9RoGHjNdEK6JCBTKJErlTRZROZ+c4wGs5Or02J5bXqfTm+8X+8t4alVWYDIB1f8iNK+FQ9lOAMGrG7LmNnQsJWs4w8S8JgJabOA6v9m0hTSm+Ob19NQXtrWVny/QQyaMp3QhPamc5vDyfbcetZlVmO1O/E/mUU4QOog5sPnCTqW7jrv3p6E/etNoocPx2Cxc2jdDrxf/D88DHrqVd78lNSbALEWuXh6Gs+p1CCxuKIvLDI1Eww2VDk5yIKC8PxoPvlN/8Jm0yIIcry8emCzuYrNdZbL5ddUG4IJCrycwNZw9i/djqnFtU1USk9Gzb6V4NguiKJIY3kp+Qf2kn9gD/Wlxe3aCE/sTtcBg+k+fDQaX9f5dDqt7D8wGaOxkIiIm0jq9twZl5nL18G4fz/eV11JxGuvtX3+xI+ZLN5fhkYhZcVdQ+kW6kVDq4Wd+fVsz61nZ34DjYb202/xQRpmpPoh+/kDtFWV+IdH0HuWg6bmrcjlAScjhCLoDNHpxFpaiul4BhkrP8C7rgxFJUjMZyRzk4AxVo50WCL+V45FE9YND48IPDzC26Y8zYZWvnv6ERoryvCPiOL6519r54tUoTXy+MrMtuikfj4iz8qL8djwE7byM8KQA/0x9Egmv6IYohN402MsokbDxodGtaWvPxPjkaNUPfwwtqoqkEoJuuceDNfOZMJ7uzHZHLx4TQ9uGuQSzjU6M5e/tZ3uxRk8ffArJE4n/nPnEvzIPzr93VgrKiiZdh2O5ma8Jk4g4s03zylsHK0GKubPx3jwIIJKheWhWBrCM9qWh4ZcTffur3TqK3e0TMu93x3l7Rl9SIs5dxZbt1hxc6nxtxQr79x2EzadS4h4B4Uw5LqZdB82CqdWS9NXX6H9djFOoxFBLsdr/Hj8ZkzHEd+FPUu/JXPbRhBFpDIZfa+4moFTpqPwUFGZd4KCA3vI378HvxMFdKtpROYUcQoCDb1T8J87l4CoaHRvvg07dwPQGBbEkWAfbJ2Ui1d5eXPjS2+2CSJzXh4Vd87HVlWFUyVifyiFXje5EpRVV68kO/thlBUq4kquxrBhG46mpra2FHFx+E6fjv+c2QiSjubo0uPpbF/0GfVlJec/iRIJSg8VMqUSv7BwIrv3oNojnMd3t2AV5DwwNpG7R4Vy4OA1mEwlBASMpmfqhxQVv0Np6YcA+P4SjPrHZpo1KvYkuEb8MoWS0PiuVORktfkoxPTsw6ApM4hM7nHW7ujTj1J053wUzTpEoKlXCmkff4bqV5WIrSUllN1+O7aycmye3vwweT5HtM3E63KJMlUgQcQkUSL0GsNsZwuti75CUCqJ+XoRqp49sVjqycl9goaGzZ30QkAq86WuVUWjSYXJ7kVaXBxl9SUEKY8hl5zOw6JUhGHTRpO/rQF9pRyQEJ82kKbKcrTVladblEiISk6l64AhJPQfhKd/x+imktKPKSx8Dbncn8GDNiGXt3fgNGVlUTJ1GgCxy5ah6uHygbA5nMz6fD/7ipoI8/Eg0FPJ8cr202YahZShCYGM7BbEiK5BRPm7pgBbGupY8vQjtDY2ENY1ji6TCzEYc/H0TCKt71KkUjW20lJMmVmYs06+srNxtrZ26L9VJuNERHe69IvnSFk+BqvLeT00IZFh1892Jao7id1qZfnLT1ORnYmnnz83vPhGp2nuRVHkx/RKnv8pG63RhkSAW4bEcKePlsYvPse2fz+STu5iTokUeYAfMj9/pH5+SP39kPn5ITqcNC9bBg4H8shIIt54HVVvV7++3F3Mcz9lo1FI+eXBkYT7eLQ54PaM9GFhWB21T7hqegU99CCBt93Wbp+O1lZKb7gBS34BHikpxHzzNRLV+csHOE0mKhbcg2H3bgSFguY7JRiSWoiJuZP4Lg+dNXoOXN/9+aakwC1W3Fx6/C3FyotTLicgKJhB115P6pjLOzhcOnQ6TMeO4dGjBzK/9iOQupIitn/9OWWZrtGMyssbiVSKofm0FUamVNI1vhtxmXlw3JWMSdm1K4JahTnjGAgCQQ8+QMCtt+J0OGiuqT6ZPrucpspyDM1ahs6YRXhi+5wM9sZGyu66HUtGNqJEJOCxe/EePpasj2ag2GtCXnt6RCb198d70iR8rroKjx4p53X6dTodZG3bTOa2TViNBmwWMzaLBbvVgs1saZdArNPtEXD4RzBoSH8iu/fAN0rC8ROzcTqteHhEYja7on1aS2IoXydnVFYZUhGyhvcnftp0koePRqnW0FhZzsFVy8jeuRXxpD9RRFIyA6fMILbX6VonotNJxbvv0vLJJ0icIma5DHHeHPrc/9BZj9Xe2Ej5nfMxHz+OoFQS9OqrnIhPY3tGIfUlRUwcM5iBpelU/99jAIS/8QY+k0/7I4iiSHPzfmx2HXK5Pwq5P3K5H3K5D4IgpcVs49avDnGguKktVbqn3Mw3sxxILTtoaNyG03na50a0qWjMV9Jc5EVrpQapTE5Mzz50HTiU+LQB7abkfo3ZXMXefZfjdJpI7v46YWGdR7tUPvIILat/Qj1gANFfLWw7N1qDlWs+2E1p4+kstclh3ozsFsTIxCD6RvudNSlbY2U53z3zKGZ9C7F9EwgashexrIGA4/Eo99uwV9d02EaUi9giRcxhQERPHMMf4JsaGQvGJpEc7o2pVc+h1cs5sv4n7CctgVEpPRl2/SzCErqx5t3Xydu7E4VKxYxnXyU4tkuHfbTrY6uF59dksyrdlTk2yl/Fy1N6EtdcwNEnH8e/vgmFKEGwOVHbzx1qDi7H99BnnkbqddqS43SKTP94L4dKtYxIDGJyahiPLD+GQiZh7T3D6BriReOXC6l79VUAQp9/Dr/p013nw+Gg4u4FtG7bhiwoiNhlPyAP6Ty0uzOcViuV991P69atIJPh+9QdBF1+I1Jf39+lwKRbrLi51PhbipUtSxYxbMp1yJUXX7sEXA+t4qOH2Pb152irXA9hpVpDfNoAEgYOIbZnH+RKD1fl5TVrqP3nSziamwGQeHsT8a9/4Tl82G/at9NiIfvucUh31XdYJnh44DVmDD5XXYlmyBAE+cXXwOkMURSx22ws+Ho/u05UEekp473rkinPz2P5up0EGSrx7iQzbMwQCX6pLrHmsEko3x5Gc6E3MoWSIXobnjn5eF9zDRGvvNxhW11dDQdXLydz60YcJ/0OQrokMHDKdGJjE8i/az5CpisXTkOAL7FvvUXUgEHnPRan0Ujlgw/Rum0bCAIhTzyB/003Ai5zf9mcOYg2GwF33kHw/fdf9Lky2xwsWHyETSfqALh1WBxPTk52nQOHmaamndTVr6ehYUu7KSS5EEO3pGcICbuwKr7Hjs+nvv4XfH3607fvkrM+oGxVVRROmIhotRL54Qd4jT6dl6Os0cjCPSUkh3szomtguwrN56OmII8fn3qEoNoG4m1WlPWnv39BqUSR2AVzhJHmoEJsUSLWIKjL8icp5WHSJk4/a7uGZi37Vy7l2Kaf2753/4gomirLkUhlXPvYs+0sLudja04dT6w8TpXOZbWZlhbJPWk+7Nu4iWcLfDDL1Ky8tR8pGhFHUxP2Ji0OrRaHtgm7VotTp0M9YCBe4y/v9BwX1rcy8Z2dWO1OZBIBeyfOy3VvvkXjJ5+ARELEm2/iPWE8ta+/TtPnX7isd998jSr14rM2i1YrlY88in79+rbPBLUaeXgY8vBw1yvs5HuE610WFIQgPXeuF3CLFTeXHn9LsfJ7/QAddjvFRw8hUyiISkk9a0isvamJ+rfewlZZRegzT6OIiel0vQuloXEnha/Mw/snGaIA1kQnAVNnEX7t/Ug9z50D5D+hxWzjqvd2UdJoZHCXAMqajFQ2m+gd5cvHU7rQVJhDxYksKnKyaKosB0RC+9ejDjRTuScET6+u9Bw7keQRoxELiyiZPgNBoSBh21Zk/p1nLNU3NXB4zUoyNq3HbrEQoDfSp6IBhdWGQxCo7d+LQe9+0ObHcSGIdjs1L7xI8/euiBb/W+bhd8NMSmbMwNHYiNe4sUS8806nU2YXgs3h5I0NuZQ1GXltWs9OIy+cTita7X7q6zdQU/sTDodrmiQocBwJCY+iVsd12OYUruJ8tyIIUgb0/6mdw29n1P3rTRo//RRFly50Wb0KQXZxGYLb9dtoRL9pE7rVP2HYvbttyk6UCJh7ODANcOB72STqWja15SRqyvem5mAIY+Y8SvLws5czOJOW+jr2Ll9C1rbNbVa9K+55mO7DRl10n1stdt7YkMtXe0sQRVd1Y6VMSmWzidmDY3j+6rNPM14IH24r5NX1LifoPtG+LLtzSIfiijVPP0PzDz8gyOX4zpiB9ptvAAj/1xv4TJrUabsXgmi3U/f66+jWrMXR2LFIYgdkMgLmzm2LEDsbbrHi5lLDLVb+goiiyL79E7AWFuBUgW/cUHr3/up3Mf+ejzMTxgHEBWpYdudgAjzbZ0U16pqpzMmmIicLh91O92GjCE9MatfH4uumYz5+nKAHHiDwjtvPuV9Ds5acx/4P1dYdCIDeQ4HzlpsZcPe9baGoF4MoijR+/An1b78NgEStxmk0okxKIvbbb5BoLrwA33+K1dpIUfG7VFUtQRQdCIKMyIibiIu7p0N9KofDzP79EzGZy4iOuoWuXR8/b/sOvZ7Cy8fj0GoJffZZ/K6fcdF9NOw/QPPyZeg3bUY0np46Ir4LWRY9VT4aUucE4vTc07bIpgugeLMX1mYfrnzwMbr07X/R+22qquDo+jWEd+1G9wsUOmfjcGkTjy4/TkGdSxgGeynZ9NBIvM8Txns+7A4nMz/bT16tnuXzhxAf1HHAIDocVD7wIPpffmn7LGD+nQTfd99/tO8zcZrN2KqrsVVVtb3sVVXYKk/+X1sLDgdB999H4J13nrMtt1hxc6nxh4iVl19+mRUrVpCTk4NKpWLIkCG8+uqrdOt2ekRoNpt56KGH+O6777BYLIwfP54PPviAkDPmccvKypg/fz5bt27F09OTOXPm8PLLLyO7wJHi/4pYAaio+JbcvKcveHT9e3KqiFygp4IV84eeN//K2Wj+8Ueq/+8xZGFhJGz85awjfrtWS9Ujj2LY6SpUZx/YH98H7iOq97nDZS+4D08+BXY70oAA4n5Y2hbm+0fTasinoOAVGhu3ASCT+RAXdw+RETe2RXcUFb1Nccl7KJWhDBq4odPkgJ3R9M231L74ItKAAOI3bEDqeWFi7NTIvemrRW2fyaOj8bnySnyuuhJFTAzHNm9g4yfvASL953kj926mfI+G8gMmFCoNUx59ul3hyj8Ti93BB1sLWXu8mqcnJzMiMeh3adfhFLE7nedMp++0Wim/4w6Me/fhNW4cEe+8/Zutd78F0eHAXleHoFSe1ZJ5CrdYcXOp8YeIlQkTJnD99dfTv39/7HY7jz/+OJmZmWRnZ6M5OYKdP38+a9euZeHChfj4+LBgwQIkEgm7d7siZxwOB7179yY0NJTXX3+d6upqZs+ezW233cZLL730ux/spY7DYSYv7zm8vXsSEXHDH77/rCodYT4q/DXnLydwNpwWCwWjRuPQaol47128x43rsI4pPZ2KBx7EXl2NoFQS+vTT+E7t3Jn0t2LYtx/t998RcOutnZZf+KNpbNxJfsFLGAyuTLUqVQxdE/4PjaYr+w9cgdNppUeP9wgJvuKC2xRtNoomX4m1tPSCR/R2rZbKBx7EuG8fAD7TpuI7dSqq3r07WPEOrFrGzsULAdD4+mFo1qL28WXq48+f1xn274RotWI6dsx1Dv+D6bj/Nm6x4uZS40+ZBqqvryc4OJjt27czYsQIdDodQUFBLF68mGnTXKGWOTk5dO/enb179zJo0CB+/vlnJk+eTFVVVZu15aOPPuLRRx+lvr4eheL8D83/JbHyv8Ip50P1oEHELPyy7XNRFNF+/TW1r78BNhuKmBgi3n0Hj25/nAXpz0QUHVRV/UBh0Ztt1bulUk8cjlb8/YfTu9eXFz3t17JxI5X33Ivg4UH8hvXnjD4xZ2dTseAebFVVSNRqwl55Ge/LLz9Hf0V2fPslh346WTYiKIRpT76AX+ifY6Vy85/hFituLjUu5vn9u9krdSeLkvmfNEUePnwYm83G2LFj29ZJSkoiOjqavXtdZeP37t1Lampqu2mh8ePH09LSQlZWVqf7sVgstLS0tHu5ubTwu34GSCQY9+3DUlAAuPJPVN7/ALUvvQw2G17jxxO7fNn/nFARRZEPyupI3nWcV4qqsTlPjwUEQUpExPUMGbyF2Jj5SCRKHI5WBEFBt8RnfpN/ktfYsajS0hDNZurfefes6+nWrKVk5o3YqqqQx0QT+/135xQqrv4KjLhxLoOunUFC/0Hc8PxrbqHyF+LX90q9vmN0nxs3fxV+F7HidDq5//77GTp0KD16uOaxa2pqUCgU+P4qkVdISAg1NTVt64T8aiR46v9T6/yal19+GR8fn7ZXVFTU73EIbn5H5OHheI25DADt4sWYc3IonjoV/YYNIJcT8vjjRLz9Vvsop6qj0Fr3J/X490EURZ4vrOL5wiqabA7eLq3lmqP5lJra5/yQyTyJj3+YwYM2ER19G6k93jlnpNC5EASBkEf+AYBu5UrMOTntlot2O7WvvU7Vww8jms1oRgwnbulSlF27XnD7Q2fM4uqHn+w0iZ2bS5df3yuTk5P/7C65cfOb+V3Eyt13301mZibffffd79HcOXnsscfQ6XRtr/IzUm67uXTwu9GV56R5xUpKZlyPrbQMWVgYsd98jf/sWaetCKIIW1+CT0bBB4OgtnOL2qWO3SnyQE45H5a7cuXcFBaAt0zC4RYjYw/msrJW22EbD49wuib8H0FB57ZwnA9Vr154XzERRJG6115v+9zR3Ez57XfQ9MUXAATcfjtRH36I1MfnbE25+R/i1/fK7OzsP7tLbtz8Zv5jsbJgwQLWrFnD1q1biYw8XeU3NDQUq9VK88nEaaeora0l9GT14tDQUGprazssP7WsM5RKJd7e3u1ebi491AMHooiPRzSbES0W14h+xXJUvXqdXsnphHX/gO2ubKAYG+GrK/9ygsXscHJrVjHf1TQhFeCdpGjeSIpiU79u9PfWoHc4mZ9dyr0nSmm1O87f4G8g6MEHEeRyDHv20LpzF+bcXIqnXYdhzx4ElYqIt98i+MEHLih52KXEilotLxVWYXKcO9uym478+l7pdUamXjdu/mr8ZrEiiiILFixg5cqVbNmyhbi49mbstLQ05HI5mzefrruSm5tLWVkZgwcPBmDw4MEcP36currT5v+NGzfi7e3tNln+0Zi08N2NsPFpcNjOueqJVhNr6poxn+MBcmp6Qh4RQdD99xP10UftyxzYrbDiNjj4KSDAuBcgrPcZguWvMQrU2x3MPFbE+oYWlBKBL3rEMSPM5bcVrVKysk8CD8aGIAGW1mgZdyiX9JaTOU0Kt8Cia2DH62dt/0JRREbid9NNAFQ//TQl19+AraICeWQksd8twXvChN/cdoHRzJbGFv7olEzfVTdyV3Yp75bVMed4kVuwuHHzN+Y3RwPdddddLF68mFWrVrXLreLj44PqZOGu+fPns27dOhYuXIi3tzf33HMPAHv2uJJMnQpdDg8P57XXXqOmpoZZs2Zx6623/i1Dl/9U1jwAh1zTBcSNgOu+AnXHvA15BjNXHM6j1eEkUC5jTkQAN0cEEqS4iCRcVgMsnQ0Fm0AigykfQ+o0l2BadA1Up4M6EOb8BCGXrmitt9q4MaOIY60mPKUSFqV2YYhf5zlS9jW3cnd2KZUWG3IB/q95M/PTX0ByquDlTSsgYcz/s3fW4VFc6x//zPpusnE3IiQQwd2haIF6S12ou922t3LrbrfuflvqLVy0FGgp7h5CiLvLZjfrO/P7Y0JCSqDblrbcX+fzPHk2u3tmzpnZ3Tnfec8rv2s8PouF3ClT0XY4UgaMHk38v59H/TO/sV/DPqud03YW0u4TuS4xkgfS4v6URIU/NLVx8d5ifJJ8RyUCE0LNfNgvBaMfRfsUjkSJBlI40fhTooHeeOMNLBYLEydOJDY2tvPvi4505wAvvPACs2fP5qyzzmL8+PHExMTw7bffdr6vVqtZvHgxarWaUaNGcdFFF3HJJZfwyCOP/NZhKfwWqrbDto4QY60JStbAu1OgsbBbM4vHy2V7S7D5RDQCNHq8PF9ax5AN+7k1r5w8m6OHnf8MRwt8fIYsVLQmOP8LWagAGEPhkgUQOwDsjbKFpT7v+B7rcaLC6eb0HYXssTkI12r4dlDvowoVgJEhgazKjmSWtwyPBI8GT+b8/s9RF99RT2rRLeD6fdEaH1jdPHfmRbQbjHw27RT2Pv707xIqNS43F+8tob3DovFGRQP3FlQh/sEWlt1WO1fmluKT4OzoUL4Z1BuTWsVPLVbm7i1RLCwKCn9D/hbp9iVJ4s2KBv5T3cgdyTGcFXPsTI9/K0QfvHOSbM3ofx6Mvgk+Ow8sFWAIgXM/hpTxiJLEJXtLWNnURrxey5IhGWy22Hi7ooHtbV2p2seFBnJ1QiSTw4NQ/fwO3ForC5X6/WAIhgu+gqQRR47J3gz/OQ1q90BAJFy6GKL60uT2ctfBCkodLl7O7EV2oPHox1W9Ew5+Lwug4AQISYTgRDCG/O5Tlt/u5LzdRdS4PMTrtXw5MI000zEKBnpdsPlNWPMckquNeTGzuT/jVhyClnCNmpcPPsXkisUw7CqY9dxvGtOnNU3cfkB2Ns8y6tjvcKNXCXw5II0RIb++tlS718dpOwvZZ3OQYTJwUVwYDxZWIwEXxIbxbJ9E1L/FwuLzwM5PYOOrEJ0Ns/4NARGdb5c5XMzaXkCjx8v40EA+6Z+KTqViU6uNC/YUY/eJTAoz80FOCgbFwvKrUCwrCicaSm2gw7D7RG4/UM6C+lZANiW9kd2L06L8L5L3/5ot78DSO0AfDDdtg8AosNbB5xdA1TZ5mWbWv3k6dBovlNVhUAn8d3A6A8xd6fi3W9p5q7KBJQ2t+Dq+Tb1Neq5MiOScmFAC1GpoLpaXeFrLIDAGLv5WnqyOxs8Ey7ZzFnJ1tURT849o3KVIYefyZk4G0yIOi2wRfZC/FDa+DuUbet6vPkgWLSGJsog59H9gjDxpmsJlgXOU2kQ72tq5cHcxLV4fGSYDnw9IJc7QPXmhT/RR0FpAenBv1AcWwYoH5eMGiOkP05/gYNQwrttfSq7NiYDEP0ve5ZbyTxAuWwrJY37pU+vG/LoWrt9fhgRckxjJ/alxXJFbwvLGNkI0ahYOTicjwP/qyz5J4tIOYRqh1bB0SDpJRj1f1zZzc145InBmdCgv901Co/JTsIg+2PeNHPnVUtL1emAMnPkWpE6kye3llB0FFDtc5AQamT+oN+bDUt1vbLVx4f+6YGnIlwV4D0usfzSKWFE40VDESgflDheX7ytln82BRoBhwQFsbG1HI8D7OSndJ7r/pyyqb+X18nquSozkzOifCTRbPbwyFFwWmPkcDL+q6z2PA/57A+z7hsUR47ky+1EAXs1M4uyjWKYqnG7er2xgXk0TbV7ZVB+qUXNDmMiVy87HYKuC0BS4eD6E+ZFXxN6M9J9TeVedwcOp1+OT2omovhUkL25DDm2Rt/FA72SujTIg7JonWy9aSuVtVRroMxOQoLVCthTZ/ahgC4AgTyamcNl3xhQGARGsMfXhMtUI7KgZpHYwL7SBML0BdCbQGkFrwqvWc/v2Z/ixZj1jRT3/Li/EKElgjoXJD8jWq47aMU6fyAOFVfynWh7XrIbVvFz/OQFX/yDv0w+WNrRyVceSySVx4TydkYAgCNh9IufsKmR7m73TEhaj7/Irsre5WflBLsYgHcNmphAS3dXffQcrea+qEYMA3xrzGVzwJThaIX0qi+JncV2VD68EsyKDeSOrF7pj1cKRJDiwBH58XLaogTxZj7gG9n4NDQcAAfuY2zk79Fx2WB0kGLQsHtx9vIfY2Grjgt3FOMT/McEiSbDu37DqEfk7dd6nPVsV/0AUsaJwoqGIFWBts5Vr9pfS7PERodXwTqKG4bkfcFPwLL51B6ETBD7un8qEsP+/4XyfdSwNHPqAD911d94Nz78Wdn8m+4hc9eOR1gRJIm/1a8zyDcauNnFN+1Yenno+6I+9rGDz+vi8tpl3KxsodbgBSHTU8K/mpZx66n0IQT2Hpf+cNq+P2/YVsqRF9oUZVPsSle5tne+7jINoi7iZC+tX8WT+M+gkr2wVGXq5vKQSFNt9h+52sFR2iJfyjsdKWcjY6mUx42ztcSzfh4/myqyHcat0jG/Zxgf7/kWA2N1HRwTuCY9jaVBXfZhBLg+vpJ1P8Lg7QNdzocFPqpu452AFHgn6tBfzofYAKdN/ufLyD01tXLq3BI8kcU5MKC/1Teq29Nbk9nLqjgKKHC6yAgwsGJxOkEaNKEosenkXlQfk3C+CSqDvyBiGzkrmy6YK/lUlL+u9m/sAsxt/OvJc9DqDK3vdhFtQMyXMzLs9CQZJguIf4YfHZJ8okJf+xtwCw6+Rv0NuOyy/F+/2/3B59qN8HzGGUDUsHNKX9GNYgja0yBaW/xnB4vPCsju7HNgB1Do47TXoP6db03afj+0WO5sschXpm5Oij9uxKWJF4UTjby1WJEni7coGHi6sRgQGmI28HysS/+kp0N6AR1BzTdbDLI0YhxGRz/pGMTI24Rf7+V/jg6pG7jlYCcCQIFOnX8m40EDezEomvHozfDgTEODKVZBwZLXjVo+XGdsPUupwM7Z1J5/v/gea6Cy44HN5CeXneF3QVCjfLTccxNd4kK+bPTzZ61Jq9XIl3KFBJh7uHc+Q4GNXCM61ObhyXwklDjdaAf5V/RmfORbRpFFzXuRwvm3YihsJl3E4bRE3MKY9n3dj3IQOOMdvq0SP+DyyE3B7o+zka29iocXH9a5UvKiY6S7ijdaF6N1W8DjwulzUWGIotaTwYUg1W2K2IUgqhlaczN74VTjVTtJD03lryltEmo5eDXibpZ0rdh2gTlQT7LHyRi8TJ/U5egXq9S1WLtxTjFOUOCUyhDeyevW4JFPmcDF7RwENbi/jQgOZ1z+VXUvL2Lq4BI1ORVx6KOW5smWnIF7FF2OCkQSB+4ve4IbKzyFuMGSeIltDDiyRw619Ln4KHcpl2Y/jUBsY76vhg5RAApJHgVoD5Zvhh0ehVK6ojdYEI6+T/aGM3a17kiRx5+b1fOIIxOBz8WXefQwffyUMOO+YH9P6FisX7SnBIYqcFGbm/RNVsLjb4esr4OAyQIBpj0L5JjiwGICW8fexNedqNra1s6m1nb02O97DrshjQwL5sF8Kgceo/OwvilhRONH424oVbUAgd+RX8E1HttBzYkJ5JtSO8WNZqBDRBwQBV2MRl+U8zo9hIwj0tvNl/UcMThsEfWfL/gt/Ae1eHx9VN/FBVSN9Aww8nZFwhC+Ev7xZXs9DRdUAXJUQwSO941nSYOHmA+XYfSKJei0f7n+A7MqVMGQunPLiEfvwSRIX7Snmx2YrCQYty2PthH91PrQ34AuIxTrmWflC3FICzSXQUgyWKpC6R2oISPjSx/DBmId5taoVhyi/f0ZUCPemxZHYwzF+WtPEvQcrcYoS8Xot7+QkU1n5X+7b+iRRXi/fVVSz0WjgluhIvIKAN2AsLWFXkWoy8nH/lGM7u/5Kfu6n8VKfRNobnZTlNlGe20z1wRa8HpGdcSvY3EuegE63XEFCwUDqtJWsHPIuLd4mEgITeHva2ySaj/79qnV5uHLNKrZpYhAkkXtTorkxOY6i1iKe3vo0FdYKLsy8kLTok7kotxq7T2RqeBDv5SQfcylmj9XOGR3hxzMMJob+pxJBgskjS+nb/ha1VRJfqq/h2fGD8WgEhhTZuc9VxeAzhmGIS+6+M5cVClZA3iI21FVzcZ8HadeYGNm6mw8Ln8cQlIyhpsMao9bB0Ctg3O2yL1QP/Lu0lmdKahGA9+rnMTPvbfmNfnNg1vNgOPoFTBYsxThEiclhQbzfLxn9sZakkH3Ymjxemtxemj1emjwdj+5D//u6vRauVXF/7wSm/5YlY1sDfHaubFnSGOCsd2lIm8H6Ziubc39kkx3yAtOO2Cxer2VYcAArmtpo94kMMBv5tH8a4brfV9FZESsKJxp/S7Gyv66BW8qa2GNzoBbgobR4rtQ3IXx0CrTXy46Nl/xX9j9oOIgjbwkXWhPYYEonxNPGt7tvIau9GOIGQeapkH06hKX+4eNv9Xh5r7KRdysbaDksu2mQRsXj6QmcHR3aY14La7MTj8tHWGx3C8WLpbU8VSLXVbo5KYp7UmM7t8+zOZi7r4RShxujz8kLpa9x+gUv9ejs91hRNa+W12NUCSwanE6O2YTUUkbxm4+yrmIqNvHoVoKeUKkEXOE6fsgysDVahSQIaCU41aPjIl0AEYEGQtOCeLSugS9qmwGYHBbEK1lJhGrUnLv4XPKa87jFY+TKmlLofw4rkodw5+6X8Uk+VMFTqQu6mBCthndzkhkb+vuX9z6pbuLOfHkZbU5ECOcWeyneWk9bo7Nbu6LkLayInQfArf1v54pBc9m2tITNC0vwRFhYPugdKm0VRBgjeHPKm/QJO3rxRpetiXuXfsC8yCkIooN+nqXU1y/CJ3V9NySVGbt5BoMST2PewH5+WRRWN7dx0e5ivMCoPAc31WzhJPUDAFQZ4pg59G3q1Gb6tvg4c4UFtQQ6o4ZBU5Pof1ICOkPXROlx+WipbaelysLGkkIejgrCoVET3+Th/J9sDNF8z/jxNtST7jqm+P+sponbOiKYnkiP5/K4MFj7b1j9JEg+CE2Gs96DhKFH3cfhgmVSmJmZkcEdQsTXgxDx4hB/2+Xu1GANj+f08T+fUFMRfHKWLOaNobTM+YIXvAl8UNWI52eX3N72MkZ6qhk5cAYjYuI7BfzONjsX7imi2eMj3aTn8wFpxP/GGxhQxIrCicffUqxkfLcBi85ImFbN29nJjPVWw4ezO4RKP7hk4RGTss3r47wdeWxr9xLus7Fg+/WkO8q6GiQMl9eUc8467t77DW4Pb1c08EFVI7aOvBGpRj1XJETwdW0LO63yss3MiGCe7pPQeZFsrmlnx3dlHNxaB5LEabcOIr5PKJIk8VRJLS+VyeUK7kqJ4bZe0UcIndamCq77aTk/hsoTwPWJUdyXFtstDPW/9S1ckyufhzezenF6dCitdXbWfnGQ8v2ykFALbtQqCQRVx5+6w3G0e3+iKOF1d7e21ISoWTnQRGm0fEwmp8joA072puipC1ajAu5OjeXGpChUgsC22m3MXT4Xg9rAijOXEaINkB1agcXFi7l37b1ISJgjTqXYeDYalcDTGYlcGPfbC++9W9nAvwqqAJjl1TF8aSNehxcAlVogLj2EpKxwiiN28ci++xElkSv7Xcktg28BwOvx8dnDm2lrdJI2NYh3tE9ysOUgZq2Z16a8xqCoQUftW9y3gHs3vssigwWV2ApApmYEEfYM1piWI3jljM+B2kAuyLyAizIvItRw7Og20Sdyz3928VGyLGweKXiVqxu/wzbtSU71DWa/3UOfAAMLB/WmKbeFzQuLaa5uB8Bo1pI6KAprk4OWGjvW5u5irSZUzbwJZhx6FdEtXvqXuomMMDB0QiJBRi1GtQqTWoVRpcKoVmFUCeyzOTodg29OiuLetMOqOVdsgW+ugNZy2VF62JXdwpt/zjoplIvFQTjwb6lEJwhE6DSEaTWEazWEadWEH/5cDeE/PUZo2Wq+iZ7KG4nn4hM0hIhOHkoI4NyMnGMnxqvcBp/OAXsT7tBUPpo+j+cbfLR23IxkBxoYFRLIyOBARlhzifz6QnnpMSgezv8cYvt37qqg3cm5u4uo7giT/3xA2jH9eY6FIlYUTjT+lmIlctFaBkRH8n6/FBKtJb8oVA5h8Xg5Z1cRe2wOYrQqFuj2knzgKyj5qWtJQ6WB9GnQ/1zImAHa377MUO1080ZFPZ9UN3Xe5WUGGLilVzSnRIWgFgS8osSr5XU8X1qHR5II12q4PyyckLWNFO1qgMM+saAwLec+MIrHK+p4q1IuovdAWhzXJ/VsdufLS/DtX8RT/e/nlVC5MvKEUDNvZvciVKsh1+Zg9vYCHKLI9YlR3JMUzfalpexcWY7olVBrVAyansSQ6b3Q6HqeHLyilwPNB9het52ytjIu7XsZ4UTjsLlx2jw4bG7sVjdrHA4+0Dmp0XQdUIBD5JJ8L3Onp5GUJYuNW3+8lVXlqzgn4xweGPXAEf19ffBrHt74MACJseezQzsTgNntGm4ODSVjQBSGwJ7viCVJotxaTog+hGC9bOp/tayOx4prABhb7GbiVhsCEBYXwNCZyfTKCUdn0LCxeiM3rLoBj+jh7IyzeWDkA90msZI9jSx9fQ8qtcDse7L419672FG/A4PawPMTn2d8wvgjxlPUWsQTm59gS+0W+QV1JK1hl6FW5aAWod0gkeraRrhzKaVtxQAYNUbmZMzh0uxLj+oXs+m/RWxfVsbGTDUr+wcjSCJvJGj50mHih2YrkToNS4dkdN7Vi6JE4bY6tiwqwdJwZLI/o1lLaEwAoTEmQmMCaI7UcJOlkcZfWfvo7OhQXslMOnLyd1pg8e2w72u/9rMpuD+vJp6PShdIeMoowk0BR4iR8I7nAWrV0cWGJMnZnLd/IPvazHqevfkb+IdxHHvMskVsnKuM5/ok0itl8JHbH1gKX1+O5HWwvPdFPJJ6LcUu+Zz0DTDwUO84Job97KLcVASfngtNBaANgLPehb4zO9+udLo5b3cRhXYXYVo1n/ZPY2DQr/fLUsSKwonG31KsXLFpFy8P7YepuRA+nCULleh+cOnRhcohmtxeztxVSH67kwSDlv8OSife0yznhdj9uZzr4xD6YMg+TRYuSaM7w1ABOZeEtaYrVLa1vDPapMwt8UrsWXxhyMTTkTh4oNnEbcnRTO0pgRpyqvPrdpdQ4JFr9fQrdTFjh50s1Ub6ByxmZestWMVItk6G5RHyMT6RHs/lCUdZoilcKZumBTVcs4b/quK5Na8ChyjSy6Dj330TufVABRVONxNCA3lMCmLDVwXYml0AJGWHM+7cdEKiul8onV4nexv3sqNuB9vrtrOrYRcOb9cE1z+yPx+f/DEq4cjlCo8o8VF1Iy+V1pHsUzF5ZQvaBrm/tMGRJJ9sZM4PZyIhseC0BaSFHLnGD/DJ/k94eqtcEDHOdza7U04DwOgSyalwM0nUMyUjgtSBUZhCtOxp2MPKspWsLF9Jla0KrUrLlKQp+MwnMa81GgSBsbkOJu5zEBJpZPgpKfQeGo2qw4l1b8Nervj+ChxeB1N7TeXZ8c+i/lk0lSRJLHltD2X7mkjKCmPydRncueZO1lSuQSNoeHTso8xOnQ1Au6edt3a/xcf7P8YredGrdFxlsTKkOZFrsp6iKlwWW1GtXi5bbWPqWWnU9jrAO3veIa9ZzvKrU+k4I/0M5ubMJT4wvnMc5blNLHplFyAwJfh5Phg1iw+DR3e+b1QJfDsonUE9TIA+n8jBzXU017QTEmUkNDaAsJiAHsVfqcPFu5UN1FqclBS14vBJ+HQCxhgTXq2AwyfiEEXsPhGXKHFaVAgvZyYd3d9GkmD/Aij6sef3D6OkLoY9+4MxSvVEhdmJOv1GIjLiuy1f+cX6l2HF/YAghxd3iAZv1S7e2vETzxpH4lTrMfqc3GVdw1WDxqJJ7jiXW9+FpXeyJyCNh3L+xQZ9MgARWg13p8ZyXkzY0fPSOFrgq8ugeDWdjrijboSO60Kj28uFe4rYbXUQoBL4KFHFWOGQI3iTXFcrcdgxD00RKwonGn9LsTJz3kxu63cuk5c/hmCrg+gc2aIS4N9SQJ3Lwxk7Cyl2uEg16nmxbyISskOeo6UcR9kmHJW7sLsdONQGHCo9DmMk9qBEHF4PDq8XuyjiUBmwq/UdjwYcKgMOtR6Huivb6sjWXdxW/jHj1W0IsQNlP5m4gbJfjT4QyeOkcu0Gtv/QTFlzGD9lG9nY14CkEohxNvFS6ctMiAynuEzLdaGXsztFjyCJPB9YxwVDp3cXUIfwOOGNUXJytpHXw4wnAdhvc3DZ3hLKne7OpolaLf/Y46Fpj7zkEximZ9ycDFIGRCAIAq3OVvY17esUJ3sb9+IRuxc/NOvMDI4azLa6bbR72rl/5P3M6dM9TPNwJElCEARcDi9bF5WwZ3UlkiixMXUBu6N/ZHTsaN6a9lbP34FGB3tWV/Kfgg/YGLcIgAzreezrOwvLIf0geQlr2U948xbcml3YVZbO7TWCBq/k7Xzu1cSRYB3DmRUjGD8jh76jY1Ef5hdS3FrMJd9dgsVlYWTsSF6b/Bo6dc++BK11dj57dDOiV+Lka/uR2D+E+9ffz5LiJQDcPfxuwo3hPLv1Wert8vLOpMRJ/HP4Pwnfv54vPxRpIYrtk8yQEcapOxzUbZbbDZicyKgz09hQs56397zNroZdAKgFNYOiBjEmfgyDA4ay48UaXG492cbvmDi2Bd8pL3Nlfi3LGi2yY2tOMjMjQ4762fwW7G1ulr6xh7qSNlQqgQkX9CFrbNdSz6HP+3iw58dK1n55sJvFEQABQqJMRPUyE5lkJqpXEBGJgbRjJUAbcORntv+/cs0qgBlPyRFMP6OkMo879hezXiuLwQFtB/i39Xuyg4Oo2buIp1Ku5MvoGUiCgF4lcG1iFDcmRXVLbndUfB65Cvn2jtIXqZPk5c6OyDSb086lvf/J+tDB6EQ3b+1/mJOb1sltx/1DzuNzDBSxonCi8bcUK5lvZKI2qsl2ubhZCmXUhUsQAo++zt0TRTYLZ6//ElvbVkRNBHbzNCR1yHEb6yQaubX5e0aULYa2qiPelySBMv1sttWOp87dGwAVHvoaVyPlOLgv9RxKkB1qL40Lx+L1saC+FUGUuGBrBU87LkcTlw3TH4fksd13vvppWP2EnDH0xq3doiyaPV6uyy3jpxYrBgkuW2khotmL3WQhfLSIpo+dMlspxZZiSiwlNDubjxh7hDGCIdFDGBI9hMFRg0kPTUclqJiXN4+ntjyFWWtm4RkLiTD695k0Vtr4/otdPBdyKx6Nizm1t3DZaWeS2Des41xJ1Ba3sXtVOcU7Gzj0Ld6TuZwNIUsBuG/E/dSLgSwoXE6dZQsq0XZYD0bCnP0Y7RjK1F7jeKH9AHmGnzDYNyJIsmVHp9IxNXkq52Scw+CowQiCQLWtmouXXUy9vZ5+Ef14d9q7mLTHNslvWlDE9u/KMIcbuODBEai0Ak9veZpPD3zarV1CYAL3jLiH8QnjkSSJZW/upWR3I0HqWub0+wT91YuQBBXbl5WyeaGcBTa5XzhTr8hGq1ezrW4bb+95m001m7rt1+QOondbPOf3iWTs5McIMYbi8Im8VFZHP7ORWcdZqBzC6/Hxw38OULBV9qMaOCWRUWf27rRO/V4kUWLjgiJ2fl8OQN9RMQSb7NRvWkODI76bE7hLbacofBcFkduoCSoiUUjlpSGvk9q3Q4hWbpMtsl4nDL8aTn6m06pxRL+SxGeFB3m4ohWLoEcteZnVsIYV4aM6b0rOjA7lntTYHqPdjn1QEtKmNyj48UEkSaKPp/tNgFPQcX3m/SyNHI9KEnm+8VvOl0qh7ykw4Nxj7loRKwonGn9LsfL0cxl8HabB0WFVGBI9hJsH3czg6B7WlQ/DJ/rYVreNRUWLWFm+knZPe9ebghZjyGTCI8/AbIzqcA7scBZExGgpxehswWQwYzQFYwwIwxQQilGjwagSujkWBmnUhGoPM0nbGuR6PNU7Eat2U1QA2xtOoskrZ3ZVC26yEssYNCkS84CJYAqj3efj8aIa3q9q7NyNVhCYs91OaoGDwUELGWXquCvrOxumPgLhabI15bWR4HPB2e/jyzodi9tCi7NF/nO1UFFfx3935uNxVOPU1NIWUI9L6O5IeTiJ5kQGRw3uFCiJ5sQe75R9oo8Lll7A/qb9nJxyMs+Mf+bYH+hhHFraCXVFM2fH3Qio6D00il454exdXUV9aVvXeDJDGTA5icTMUJ7b8Rwf7//4iP2ZtMFoA4ZRoR2Ey5AFggaVTyKyzUddqPzZXOWErMQDzC/5tnN5BSAtOI0z0s/g64NfU9pWSmpwKh/O+PAXHVtBjp759KFN2FpcDD8lhWGzUuR6VXve5PVdr6NX67mi3xVcnnM5erUegF0ry1n/dSEqtcDZkfcTyV6Y9picqwQo2FbHqo/y8HlEwuMDmHl9f4LC5YmywlrB+sJFLNq4gP2GJrzqLquZgEBORA5j4scwJm4MORE5aFS/LyQWwOKysLN+J4WthUSbokkNSSUlKAWjxsi2paVsWdRdXP3q5Zmf4fOIrPpPXqcQGnl6KoOn95K/gw0H4cNZWNpcLAsfzPKoCHa6t+MTvN32kdY4iFnVV5Da10Rq1ZMkSmvQZJwkL/+of3l8dS4P9+0vZHGrq/O1YUEBPNw7jsE95BGSRAmPy4fWoD7ityJKInsb97KqbBUry1dSYZWjpKYFZXBP6llEhCR3ZFMOx2sI5q6Caj6tkW8abjaHcM+QXr9oqVLEisKJxt9SrFjuNuNJzOLdASfzZfFC3KJ8gR4bP5abBt1EVnhWt+0OthxkcfFilhQv6TS/A8QFxDEteRo76newp0H2VdEIGk5JO4Ur+l1Br6Bex23sPp9IwZY6tn9XRmudHP2j1UrkDDcx8NTBmIL1PW63ptnKbQfKafZ4eTs7mbRKN8ve3IuggnPGrCGy8CUkSaREZ2RdnwnsspXR5Gyi2WCmVR+AxWVBOsJmfiQaQUNiUCKpwanyX4j8mByU/IvWhMPZ37Sf85ecjyiJvDXlLUbHj/7FbXyij1MWnEKFtYK7B99D4v6h7FtdyeHfVrVGRcbwaAZMTiQ8viurriRJPL75cb7I/4JoUzRTek1hctJkBkcNRq1SU+fyML+uha9qmsm1y4JMJcEzqfFclBzZuY/cply+OvgVy0qWdfPBiQ2I5T8n/4eYAP8y8YIsLr5/Nxe1VsUFD44gKEIWFrmNuYQbw7vtq7bYwvzndiCKEuPPy6CfeRUsull+Ux/cWZSxTsphydZhOJxajAECMy9PJiYrGaq2U/ruEyypvRGf4CVxVhUlMS2sq15HQUtBt3EZ1AYywjLIDs8mKzyL7PBsUoJTflHANNgb2F6/ne2129lRv4OCloIev1OxAbGkhqQS5ozBul1LsC2K1JA0zrluNOaw3+ao7rJ7WPbmXqoOtqJSCZx0SV/6jJSzFUuSxO6G3SzK/ZjlpcuxHGbF6R3SmxnxMwm0h/FMyaOI+BhZdioDqycDoFW56DUgltQhsZ1O1MfC5xFx2Nwsrm1lQYuFSYKeEQ4VLpsXh82D0+bGYfXgbPfgsLpxtnuRRImoXmamXZlNQLiOHXU7WFm+klXlq7pdh/RqPV7Ri0/yYdaZuXPonZze+/ROQSJJEg8XVPFmx43LuT4DL03pe8zxKmJF4UTj7ylWnhtG0LVLISCC2vZa3tz9JgsKF3Tmp5jaayoXZ13M7vrdLC5eTH5Lfuc+zDoz05OnMzt1NoOiBqESVEiSxJbaLby95+3OyAyVoGJ68nSu6ncV6aHpv3nMXo+PAxtr2bG8DGuTPFnqTRpyJsXT1rcEUeMlNUQWBUfzhfCIEnafj+AOa83yd/exf2c5lpRyGHiADVU/UYO3x20PEaQLIlgbgq9Bi85pIlgbwqgR/egTlU5qcCqJQYloVX7mlfgFnt7yNJ/kfUJCYALzT5uPQXPsiWp1xWpu+uEmzDozK89eiUlroqHCyrovC7DU28kaF0/O+HhMQUc3s9e11xFlijrmHeeBdgdLGywMMpuYFN7zj8XmtrGkeAnfFHyD3WvnlZNeISXYj9pGhyFJEv99cSdV+a2kDozk5Gv79djOafPwxeNbsLW46D00imlXZMvB4Auuh92fHtHe6otgScu9NHlTUONmcugbRGsP8GXDM7gkM/1GhzD+ki7rYl17HRuqN7C+ej0bqzfS5m47Yp8GtYE+YX26CRi9Rt/po7S9bjvl1vIjtksOSiYzPJN6e/1RlwsPYfQGMjhyCHMGnMm4hHFo1f59z6zNTha/upvm6na0BjUnX92PhMxQilqLWF62nMVFi6m0VXa2j/RJzLJamW2Ip8/Fizud7T8/8DmPb34clQTXlwzC0HQaNm+XlUytUZGYFUZ0chAuu6cjiu2Q6PDgsHrwuH5d5BOAT/BSGZxPWdQ+KqNyafN1+U4FaAMYnzCeKUlTGBs/lnJrOQ9ueJD9TXJNpRExI3hw1IMkBiXSWmfnu3f2sSjQy6oBJm70GPnXtKPn7wFFrCicePw9xUp1MUGx3SeQ8rZyXtv1GstKlh1x16dRaZiQMIHZqbMZnzD+qKIAYFf9Lt7Z+w5rKtd0vnZS4klc3f9qsiOOUTn4Z3hcPnLXVrFzRTl2i2z5MZq1DJySRNhQgYe3Psi2uq7aNypBRUJgAqnBqaSEpJAanEpacBopwSkE6gIRJZH85nzWV69nTfladjfsQhS6cproBA1DPCKj2pqIyziFsCGXE6oPJcQQQog+hPYmNwv+vRNbi4vQ2ABOv23QMSf/30O7p51TF5xKvb2eq/pdxc2Dbz5m+yuXX8nm2s3MzZnL7UNuP27jkCSJRpubqlYHVS0Oqlrt1Fpc9I01c/rAeHSa45CyvSEf9n4Fgy+BkKTOl5uqbXzx2FYkUeKUmwaQlN3d+VsSJZa8LkcPBUcZmXPPMHTGw+7ue6xtVIG7qZYV+VMobZfzcwSqGrGJEUQlBXDmncNQa3s+JlESKWsrY3/TfvY37Se3KZe8pjzsXvsvHqKAQJ+wPp3LgIOiBh3hj9TibKHYUiz/tcr+ToUtRdQ5aru1CxDMTImfytn9zmBA5ICjisvGShuLX9lFu8WNKVhL+qU6tjk2sqp8FaVtpZ3tjBojU3tNZXbqbIarg1D/5zQ5g/VhiSElUeShL6bzrbsWsyjy+bgX0GtGUryzgaKd9VjqjwzX7vE8qAQMgVqMHX+GQJ38aD70mq7z/3zXfu7Zchct7i4RF4CZqWmTmZo8lRGxIzqXAQ/hFb18sv8TXtv1Gk6fE4PawHmRlxKwLAufU75+JF+Szkn9ftnKp4gVhRONv6dYOcbBHmw5yGs7X2NN1Rr6R/RnVuospidP78yr4S95TXm8s/cdVpat7BQ/Y+LGcOOgG8mJyOnW1uPyHZZXxEN9aRt7fqzEaZMd5gJD9QyalkTm6FgWlv2XZ7Y+g91rx6gxkh6STomlBKvHetSxRJmi8Ik+mpzdKwkHO6JIsmRy0YzTmJQ9FqOghdYyORvvYZOApcH+pwmVQ6wqW8Wtq29Fo9Lw9SlfHzUMOb85n7MXnY1aULPszGXEBnYUJJQk2PCyXH9o+hOgP3qW2opmO9vKmqloPiRKuv7cXrHHbeKCDVw9PpXzhidh0P7GWiy7v4DFt4LHDkEJcNnibhWm131ZwO4fKgiJNnHe/cNRHyaOdiwvY+P8ItQaFWffPYSIBP+z8IqixMZvDrJrley4rTdqmHPfsM7lJr/30yFgcptyO0VMXlMebtFNdnh2pzgZGDWQIN1vm/BarW0sWLiaH6pXkR+yDbuuy7oTpY7llN6zOSPrtG5LrhUHmlny5m4qtAVUJ+2nImofdc66zve1Ki2j4kYxM2UmkxIndV+mrD8AH82WBUvsALh4AWz/EPeqh5kbG80eg57eIb2ZN3MeJq0JSZJorm6neFcDbY0ODAFajGZdpyjpFCSBWvQmjV9RTd+Xfs89a+/BLbqJNEaS5RlK0O40YttSiUsNY/pV2QSGHt3aWNFWwUMbHmJLnWzljbAlcLb7Ki6bO4uAkJ6Xi3+OIlYUTjT+lmKlaF8lKZlxCMeINDhe4ZLFrcW8s/cdlhYvRUSe+LI8QxnXfBrmlkicNg9eT88TYlCkkSHTe9FnZAxN7kYe2vAQa6vkgm+Dowbz2JjHSAxKlC0AjsbOO9Oi1iJKLCUUW4ppdHQ52Bo1RkbEjmBs3FhGx41mzyctlO5pJKqXmbPuGoKqh1Ts3YRKjInTbx/8hwsVkM//zT/ezOqK1QyOGswHMz7oMffKA+sfYH7hfKYnT+e5Cc/JL4oiLL0Dtr0nP+8zC879pDNM2+nxsbmkmZ/yG/jpYD1FDe1H7PcQggDRZgPxoUbiQ4yEBehYureGeqvsKBkRqOPKcalcNLIXgXo/HUE9Tvjun7D9Q/m5xiBHlgQnwqWLOgWLy+Fl3gMbcVg9jDozjcHT5Am5uqCVBS/sRBIlJl7Yh+xx8Ufp6Njkbahm309VjDgttTOp3u9FlER8ku+4LQkewuvxUbynnqXbVrHW9gPFobu7OQNnGDI5I+s01PWBLNixlOLQPTi1XRFdRo2RcfHjmNJrCuPixxGoO0Y18Po8OVGkvRFCU+Q0+ED91Ic4t2ohjY5GpvaayvMTnj9uIdWH+Hj/xzy79VkkJE5KPImnxj+FUWOkeFcDqz7Kw+3wYgjUMvXyrKN+ZtZmJ9+9s5c1thVsSF6AW+NALai5LPsyrh1w7S8uq4IiVhROPP6WYuXZuQsJiwglKSuMpOwwEjPDMAYe/wlYkiTK9zez+b/FFNWVsC1hOQWRW5EECSSB9MYhDK04mWBXBGqNCqNZvgMzBenpMyKa3kOiUKlVLCtZxmObHqPN3YZWpeXmQTdzcdbFRyQW6/GY3W0UtxYjSiL9Ivp1W+9vb3Xx6cObcTu83SbDQ1gaHCz4945OoXLabYMIOIoj7x9Bja2G0/57Gg6vg4dHP8yZ6Wd2e7/J0cS0r6fhFt18fPLHDIwaKCfbW3gT7JoHCKDWgs9N8+AbmR92JT8dbGBzcROuwywmapXAgIRgekcFEh9i6hQmCaFGooMMRyz3OD0+vt5eyRuri6hqlZcAgo1aLhudzNwxyYSYdDQ5mmh2Nh/pr9RcIufnqN0jj2/CXTDkMvjoVDkraXCibGEJTQbgwMYaVn2Uh1av5oKHRqJSC3z5+BbaLW4yhkczZW7WcZ8wT3ScNg/7tpayaO93bJXWUBmcL/+mfkaQLoiJiROZkjSFUXGj/JqkOzlcsACMuA5Ofopd9buYu3wuXtHLzYNu5qr+Vx2XYxIlkee2dUWmndfnPO4efne337ilwc53b++jscIGAgybmczQWSndwrvLcptY+f5+nO0e9CYNgy+IZp7tbb4v+x6AXkG9eHDUgwyLUZLCKfxv8bcUKy9cswQth124BIjqFURSdhi9ssOJ6mXu0crwa6guaGXTf4uoKZSd4rR6NX1HxdIWVM8Cxzw22+QETWpBzempp3PtoGuPiBhpcbbw+ObHWV66HIDMsEyeGPsEvUN7/66xHU7ehmp++M8B1FoV5/1rOCHRskn8rxAqPVmzPsr9iOe2PUeQLoiFpy8k3Nh1N/nm7jd5bddr9Ivox7yZ8xBEL8y/Rs4mLKipnPQC6wsbObf8EQBudV/PAlHOKRMbbGBCRiQTMiIZ3TuCYOOvtwR4fCL/3VXN66sLKe6wzgTo1Izo42av9yWc1DMmfgw3DbqJ7PBsyFssO7+6LGAKhzPfgd5ydAnWWnly/JlgkUSJb5/bTm1xG+lDo3DavVTsbyY0xsTZdw/tMQrl0M/07yBiLA12tm46wKL8xew1bsKhaWdw4DAunHAmw+KG/T4LT91++OZKiB8Mp7wEHcLhUMkGAYFXJ7/aYymEX4PL5+Letfd2CorbhtzG3Oy5PX5+Xo+PtV8WsH+tXCk9oW8oUy/PxhCoZeviErYtKwUJIpPMzLg6p3Np74fyH3h80+PUO+o5Ne1UHh/7+DHHpIgVhRONv6VYaW5sob1BpHx/M+W5zTRV2bq105s0JPQNI6FPCLG9QwiLDTjmktHh1Je1sXlhMeW5HUX8NCpyJsYzZHovjOYu601uUy6v7HyF9VXrATmp2Hl9z+OKflcQZgjjp4qfeHDDgzQ5m1ALaq7ufzVX9b/quJvXJUli0Su7qdjfTGzvYM64fTDWZifz/70DW7OLkGgTp9/+xwqVqlYHz353gO/31/GvWVlcMKLL0dQrejlv8Xnkt+RzSuopPDHuCQDcPjfTv5lOo6ORp8c9zcykyfD15XBgMai0VE95lanfhdDu9nGn5nNu0CzEjZZlQ98lc9hk0qMCf9Nk7qmvRx0YiMrU5efgEyWW7avh5VX5HOwIK0fwoA3ZhjZ0I3pdHf/2hTCpYq/8XsJwOOdDCP7Z8o21Vk421lQIwUkdgqUXDeVWvnxya2fWVY1Wxdl3D+0Wgn2Idk87t/x4CwebD3JJ9iVc0PeCXxU6/kcjSRIbipp4b10JG4oaeez0fpw9JOG47Le+1IrH7SOhzy/ns/m9PLLxEb46+BVmrZlPZ31KcnDyb9qPxWXh5h9uZkf9DjQqDY+NeYxZqbN+cbv8zbWsnncAr1skIFhHcJSJ6oJWAHLGxzPmnN5ofuZLZXVbeXP3m1zV7ypCDCHH3L8iVhRONP6WYuXnB2trcVGR10R5bjMVec247N3DePUBGuJ6hxCXLouXyMTAIywvzTXtbFlUTNEOuUCgSiWQOSaWoTOTj+kMt71uOy/veJkd9TsAMGlMDIoe1CliUoNTeWLsE78qkujX0tbk4PNHtuBx+Rg8PYmDW+v+FKFic3l5c3UR76wt7lyWUasEPpw7jHHpXRlF9zbs5cKlFyIh8e60dxkRO4JFRYu4d929RBmj+O60BWi/mguFK0Ctp/30D5j1nYnSJjt9YrXcPa0/43beiubgMgiIgqt/hOBfP0FaFi2i+p57UZvNRNx4A6Fz5iBoZfG4vHQ5j258jKamGNxNk/E5EgGIpplXDc8yDLky9bqkASSf+REJIUcJZ26rkR08DxMsbpuK7+79looAOYR51CAvg6+ZdsSm7Z52rl1xbWcqfYBwQzhX9b+KczLOOSKKrcHqYntZC5mxZnqFH5mY7Hji9PhYuLua99eVcKC2yxncoFWx+Kax9I7q2UFYkiR21u/E5XORFZ71qx3d/yg8Pg9XfH8FO+t3khqcyryZ847tB9MDVbYqrlt5HSWWEgK1gbw06SWGxw73e/umahvL395HS60skDV6NZMu7EPGcP9z+hwNRawonGgoYuVniD6R+jIrFXnNVBe0Ultswevu7gCr1auJSQsmrncwkb2CKNxaR/7mWjkJmQAZw6MZPjuF4Ej/7mglSWJ99Xpe3vFyZyZUAYGLsy7mpkE3/bq19t/I3tWVrPn8YOfzP1Ko+ESJL7dV8Pz3B2m0yY6qI1LCCDXp+C63liCDhgU3jCE1suvi//imx/k8/3N6BfXim1O/4eKlF5PXnMfN/a/lqj3fQcka0BjxnfcZl68J4KeDDai0rRiTX+aKgedya86VqN4/Ger2ydW1L18OOv8n6Navv6bm/gc4PNOcLjWVwNtu4Hndjywr/Q6AvmF9eWzMYzQ1h7N51TdcUv0Y4UIbbZKRO72X8UOQgDF8O3NyxnN1/6uJMvVQ8bqtRrawNBchGqIo+c5Me6OK3JwrMFtK6V25jMS33iRgdFfCvHZPO9etvI6d9Tsx68xc3e9qvsj/ojOPSGxALNcNuI5ZKbPZUmLh0y1lfJ9bh7ejmndyuEleFusTycjUcEw6eXlJkiTaFi+h4dVX0Kf1JubBB9BGR/d8kiQJ8pdCSxn0mQFhqTTaXHyyqYxPNpXRaOsIwdeqOWdoAgV1NjYWN5EVG8T8G0aj/1lNHIvLwsMbH2ZF2YrO1+ID47tyukRkkxmW+ZcJmEZHI+cuOpd6Rz2TEifx4qQXe3QC74m8pjyuX3U9jY5Gok3RvD7ldTJCM371GNxOL+u/KcRSb2f8eX0Iiz0+olMRKwonGopY+QV8PpGGcivVBa3UFLRSU2Q5wvJyiNSBkQw/JaVH87w/SJLEyvKV/FD+A2eln8XQmKG/aT+/qW9RYsELO6kuaPVLqJQ0ttPu8pIRbf5V+UbWFjTw+JK8zrvr5HAT987MZGpWNG6fyPlvb2JHeSupEQHMv34MwSbZcmF1WzltwWk0OBoYnzCeNZVr0Kt1rHCFElqxFXSBcOFXPJ0Xxhuri0BwY0p+A7WhBoCTU07msexr0L0/XQ5LzTwVzvmo50KOP6P5k3nUPfYYACHnn4chI4OGl1/B19ICwJ5kgXlTNEydfBXX9rsGbUMe7PhYrqyLRENABjd4bmVLW0jnPtXGEozhO7hkWD+uHjD3CLO8ZKlCfGUCam8DbpuaupqxxDz7JnVPPY31++8RTCZ6ffgBxv79afe0c/3K69lRvwOzzsw7U98hOyIbj+hhfsF83trzFrVt7XgsQ8AyBrera3JPiQigotneKVoAdGoVw1PCGBMGfRd/QvSGlRxaMFMFBRFz/78Imj27+zJaxVZYfi9Ubul8qdSUwwfW4fzXM4JWzMQGG7h0dDLnD0si2KSlrs3JjBfX0GL3cPX4VO6dmdm57fa67dy99m5q22vRCBpiAmK6JXA7nITABLIjZAEzInaE7B/0J7GnYQ+XfXcZHtHDxVkXMzFhIgaNAYPGgFFjxKgxYlDLzw9l+t1QtYHbVt+G3WsnPTSd1ye//qsyHP8ZKGJF4URDESu/EkmUaKpul8VLYSt1pW2ExgQw/JQUopP/t3/UTpuHgm11pA2OOmp4siRJvLyqkBdWylYYnVpFZqyZnPhg+icEkxMfTEa0Ge3PlskK6608viSPH/PlZbJgo5ZbJqdz0che3cROg9XF6a+tp6rVwdjeEXw4dxiajn19V/odd/50Z2fbs3x6HiovAEMwXPQti5vjuPHTnQAY4j5lZv9oxsaP5dGNj+KVvAyLGcYr6RcRMO9c8Llh/F1w0n3HPCdN771H/bNySHTYZZcR9c+7sHvtvPjT46g/WcDMrRJaH6hNPmJmpWKObERoPixN/eBL4ORn8KkNrClo4NPN5azMq+sy0KjbMYXu5awBfbhj3FkEG4yIDgc1/7of+w8L6XVSIzqzDyk4CWHuEkRTDJXXXkv7ho2oQ0KI/uhdbi5+RhYqWjPvTHunc8lQFCU2FTfx8aYSvt9fh0/sEBcqJ5FRJdwycQgXDpiIzeVlY1ETPx1sYHV+Q2eE0yEinBZGh0BkVRHeOjlJm753OoGTTyJE1crI4lfJaJCdwN0qI0Wa3mS49qHuiNDxoKExdgKRYy5B02cGaLsshd/n1nL1x9sB+OSKEYxMC+GtPW/x9p63ESWRJHMSz4x/huyIbCwuC3nNeeQ2duV16UnA3DDwBq7pf82f5mA8v2A+D2w4dhVjkPO7GDQG2j3tiJLI8JjhvDjpRcw6/3Pk/FkoYkXhREMRKwp+4/GJ/Gv+Pr7YJhdOM+s1WF1HWpl0GhWZsUH0iw8iNUrL/uo25u9oxCdKaFQCl4xK5ubJvQkx9SyI9le3cfabG7C7fVw6qhcPnyYn0ZMkietXXc+6KjmSan5lDb01ZrhkAXmkcOqra/D4BLRhP3HhWBP3j7wftUrNhuoN3L76dto97fQO6c0HMdMIWXa33NnZ70POWUeMQZIkGl9/ncZXXgUg/Lpribz5ZrbVbeP+9fdTZasiUBR5VOjD2IJc9Jrazjx6EhroczLCsMug95Qj9l1rcfLF1nI+2lRIs+2wn5Qgkh6qYlDhHjIPbiPbUkH6rZcSYnkXobkYQnrBeZ8iBiRRdsVVOPfsoS1Yy90Xirgignh72tukBvWlqsXBDwfq+WxLOaVNXRlm+yWYSYgrY4f9Hew+2So0IHIA94+8nz5hfeQln6VL2f7Su2zWRLA9ui97otJxC0eGyAdi53rNQq5QL0MveBAlgS99E3jeew4NhBIjtHBH3D5mSj9hat7ftaEhGLJOh/7nQtIoUKm4d/5ePt1cToRZS5/szyhp3oJBEpmVeBLXZ12KURIgIh2MIUeMw+KydGbU3Vm/szNz9MyUmTwy5pEjsrwC4PNCS6lcuPM4CZp5efNYVLQIp9eJ0+fE4XXg8Dpwep091kGalTqLR0c/6nfpgD8bRawonGgoYkXBL9pdXm74dAer8xtQCfDwaTlcNCKJ8mY7e6ss7K20yI9VFqzOnpfJpmVFc/fJfbv5onTibJMjeezN4HFQXNPAT/tKMeBmZKKRlCABPHYqPW1cKdQzzN7Oow4NXLqQZlMqE19YSlu7DnXAQW44WeC2Ibd0u7POb87n+pXXU++oJ8oYxVeGvoTt+EROyDZ3KcQP6WwrSRIN/36BpnfeASDy1lspP2MYb+99m82V6xjjcHCOQ2Rcuw2VrysxmaM9jJZcH9YKI6rwOCKuvRbT8OHoknsh9LDc5BMlfsyv4411W9lVbsPn6f6dFIA+MWamxHu5rvQWAtrlGjuiWo/VmEhZtYcqZyS56gQOJIxhjzOen2d+D9RrOGNgDBflGOijbwVLBY7Gg+SXrsLWkEew10OFXk+vyImEb7DQuu4gkleFNjGR6PvuRTtmHJtLmllf2IjF7kEleRlS9RXTmz7ErJaFUL4vnUUpt7HYbqfKWoWgaUMbso2ksABmp83mjKA+xBWtlcsKtFUdNrgY0BqR3Hba29vQS260wlFq6GgDYNgVMOpGMB/FZwY5rPjxTY/jlbwMiBzAi5Ne7Ert73XB7s9g3QuyWBl3B0y+/6j7Oh5IkoRbdOP0dgkYjUpDojnxD+3396KIFYUTDUWsKPwiDVYXl3+4lb1VFgxaFa+cP5ipWd0nDJ/oY1vdNhYWLmJ54XZstjBC6+IIaE7A5PYxzLqaU0YNoc9JZ2DIzOyMogGgZrecKK2l1P9BmePg0kU4g5OY9NLX1DQGI2ibuPN0ieuHXNrjJjW2Gq5beR1FliKCNAEsdgURWr5ZnjSv/hGC4pAkibonnqTlk/+gC/QhzRnJzrAidC2lpLo9pHk8mA7/GUT2la0E/c5BCk6gbelS6p9/Hm91TWcTVUAAhsxMDDk5GLKzMWRndxMwkiRR/f7bHHz9I3LDUtiQkMq2+N64vV31c2Jo4t/aNxiiKkAveHo8Pp8kUC5FUapKQDCEkGlqI1KsR9VWDWLP2/wcSQKfJgp15gSEhKEQN1B2SNYFQMFK+P4+aDgAgFcVTs1PYKvS0Rqs5ZWTRfJSdYxNGMvmms3dqk/3j+jPrOQZzLQKBOxZgKZmLYLkPPpABJUsULQdJQDaO6oMawzy0trom+WK0j2wuWYzt62+DavbSlxAHK+Nf47exevl8guHiyVBBZd/D4nHTpD2d0QRKwonGopY+X9Om9PDe2tLqLU4OWNwPCNSwrpZHHyijxJLCfub95PbmEuZtYxwQzgxATHEBcQheaJ4fpGDmlYPYQE63rt0KIOSuvJYHGw5yOLixSwpXtJZtj69SuLSdRoyil09jkkwmTANHIBxyBCCouvR5b2B4HPJydCSRskTlC4ASWNkyYFWdta4kLQmrpvaj8jQENCZIHEELo2OWe+8S2FpMghu7jxd4IYRpx/zfFhcFm798Va21W0jGBVLm70EWSohdgBS+nScP81HsJSgM3s5aoLggCjodw4MOFcuePezpQTR6aRl3jysK1fhzMtDch45KasCAjBkZWHIzsZbX0fb0mUASDMm8PRECzss+xC9gUQJI8k0nUJpnZa82jYESSRFV0GK6gAZ6gomGHwkNuQSoWtBpzlGZV9BDUHx8gQfnIBXDMRR3oJtw040UiOGUA/qKDcmXQ+lHwSVvK1FXv7DGAYT74Ghc1m+9A30T7xJdIt8afCdMY3M+x7HVlvJji0LKdq1Gm9JGfGNInFNYHIfGo6EIcwNooDoE2g0CCwfcApfGUeAxsD8myaRFt3xG5UkOLgc1j4HlVs7TqAGBpwHY2+Xl3N+RqmllDu+v4Yx1Qe4tM1KmK/j3JhjYfRNULUD9n0N4b3h2nVdokgBUMSKwomHIlZ+Bx6fh+9Kv8MreskKzyI1JPW4JG0TnU5Uht8Xruz1iXy2tYIXVhykub1rqaJ3tJ5RmQ4MIfvJb8nlQPOBbnfAh+OzJ2GvvBR8AQjaRuLS55MUZiQ2MJYoUxTbareR35Lf2T6zxcjVm8zE75KzawpaLSHnnot+ykQ+/fZhzHmVZFVCgENCUIvEDLUQkiL3bbdFYYu8GCGge70TpyRwbX0MuR49KRo370fVEKiSEGMiuKFuN9sqxgBw7TQtd590ZO6RnnD73Ny37j6+K/2OBI+X+fWtGNxHVg92CAJlOh2+8DSSUqdijhsCEX1k/wk/Sh0ASF4vruJinLn7ce7bhzM3VxYwrp8JObWa6H/eRejFFyMhsaBwAS9sf4FWVysAs1NnMzfrWh7f/Cg7GjYToA3gralvMSByAI59uZRfcjEq0UbwpH5EzpmC4LXL4i9YFieSOQbngYNYv1+BdcUK3MXFnV1r4+OxXH8Ot3s/RbA1MNgncH3UKHrbbVCzC6wdViKVFkZcA+PvwKk18uSWJ/m24Fv0bol/bIlmYEdW1WPhE6A2FKoiBFoCILVWIrUO1CKICNw75mp2R6aTbq3hbdVegocNwTR0KNrERFR6PULlRljzLJTKNbIQVJB9Joz7B0Rnya/Zm2Hzm4ib3kDlkgsfVmk0VA44m+EzXkLQGsDRAq+NBFutvLQ0/dgZXf9uKGJF4URDESu/kd0Nu3low0MUthZ2vqZX6+kT2ofM8MzOXBBpIWmdIYtHQ5IkXAcLsK5YQcv3KyiuaSUpWE/IkEEYh8oXa11yst/RDT/m1/PEkjwK6uXMvOFBHrSmSmrrEkCSxZSgaUMbuhFtyGYCDBKZYZmdgsvisrDhoJ3V25MRRTUaYyX6hA9QaY4s+KdRaThVO5RTV9sxrZYT26FSEXzG6URefz3aeDlLq9Vt5fLll5PflMdMi5lHbE3oPHVIIjTsMdN0IBDo+fia9WZumXALjaYQhtYd4KGN71ESHMc/xt+IW63lbNcB7huRgGnYUHSpqX6dJ1ESeWH7C8zb/QFjm13cV+9EV+vF2abhqywtP/YNYUL2RVycfWm3FP/HA8nrxVVULAuXffvwNjcTev75BIzonhDM4rLw8o6X+ergV92cNA8XKodo37SZiquvRnK7CT7zTGIffwwkCcfOnZ0CxVN9mJjQagkYNRLz1KkEn3IKKoOBens9d625i+11cnTOhZkX8o8h/0Brb4K6XIjIgJBEytvKuX317eS35CMgcN3A67i639U4N22m+t778NbWIhgM6FJT0KemoU9LRdfxWBnsY0nFchYXL6amvYbJSZN5cOA/0eWVYN+2jdLtucwNn4JNZ+Lc/FVclres+8nTaFAZjZiifISlNRIQ1tr5lt2ZgKiPJkCzH8Eni2ApPJ35sSk8asvDKwjMyZjD3SPulm8qDi6HT+cAguy31Ksrb43octG+YQPta9ehiYwgaPZsdIm/389EdDhwl5Sg79u3Rz+mEwVFrCicaPxpYmXNmjU8++yzbN++nZqaGubPn8/pp5/e+b4kSTz44IO88847tLa2MmbMGN544w3S07sKwTU3N3PTTTexaNEiVCoVZ511Fi+99BKBgf7lNTkeYsXusfPKzleYlzcPCYkwQxhpIWnkNeVh89iOaK9X6+kT1oessKzORFapwamoUeHcuxfrihW0rViBu6ycrdGZvJszmwpzNEaPk2F1Bxhds5dhdQcwh5gxDR2KacgQTMOGos/IOOJid6C2jceX5LG2QC6+ptd5MIYt4x++JWR63PykD2KlbyJFbTNwu2Wzt04jcOageK4cl9qZRfTD9SU8vHg/kgRTMqN46byBeKR2qturqWmvocZWQ529jlSnmcFLCrEvXAodZvagmScTceNN6FOPzNDa6Gjkvc9mclPFQUyShBgQiXDOh3hUSdi3bpMtDr6enXPzRRPXuPrgQs3g9u2UaFJp0YcytDaPhza9j7pjMleHhmLqEHjGIUPRJcTjqa3FU12Dp7r6iD9fY1dVaq8K3jrHTPaZc7mg7wUnTLbU3MZcHtv0GPua9vUoVA5hXbmSyptvAVHENGIEruIifA1dxycYjQSOG4d56lQCJ05AbT4yZNYrenll5yu8v+99QPY1eW7Cc8QGxgKwsmwl96+/H5vHRpghjKfGPcWouFGd20seD96mJjRRUcecjEVJpN5eT7Qp+ghxuWRnBTd8sQcBiZfa1tNny0pE25G/LQB9iIeILCvmRGe31TinRUe7bhzaSVcRMG48n5R+zfPbnkdCYmTsSJ6f+DxBuiBYcAPs+gRCU/BdvIL2zduwrlhB5YZt/BDWh02xOQS7rEyq3Mm4OCPhp84maMYM1CEhRz22n+Oz2bCt/gnrihXY1qxBcjgwT59O/LPPIOj++ArmvwVFrCicaPxpYmXZsmWsX7+eIUOGcOaZZx4hVp5++mmefPJJPvroI1JSUrj//vvZu3cv+/fvx9CxJHLyySdTU1PDW2+9hcfjYe7cuQwbNoxPP/30uB9sT6yrWscjGx+hpl02i5+adip3Dr2TEEMIoiRSYa2Qwygbc9nfLOeBaPd0WSNUokTfConRBWpGHoQgi+z0WBIUyzv9T2NnhFygUC2A77AzrfV5GNRQwNjqPYyo2U+Qx44qKAjToEHo0tJoNYfxtj2C+Q0aREAl+DAErSM0fAUvNlcxzNl9yUGMyiY/dCKv1maypC6UQxaNCRmRxIUY+GyL7Jtw4YgkHj41uzPPySE8dXU0vfserZ9/juSRjyFw4kQib7kZQ2YmPeJ1yUnDtr4LwGaDno/6juO5WR/7VbumxFLCHUvmsX3PoM7X4kM0fDUqEO3uHdi3b8exa9eRyyt+IOp1NIRraLl8NtPOvYsA7R+bev63IEoiayvXkhycTK+gXkdt1/rNt9Tc15U7RmU2EzhpoixQxo5FZfTPN2N1xWruXXcvVreVYH0wj415jC21WzqrAg+OGswz458hOuDokTm/h39+vYcvtlUQF2xg6S3jCNKA5HAgdvxJTme3/2kqRFe9EKm1hqZdIm0HnBz6Xgt6PQHjxlI5OIF7xG9o0jpJDkpmdupskt06Jn33ADpfGw1FwXxdPYZViUPYEZWB+LOlviCXjQlVuzmpZjdDBqQQcuqpBE6ciKoHweFtacG2ahVtK1Zg37Cx83dyOIGTJhH/4guo9H9eJXN/UcSKwonGX7IMJAhCN7EiSRJxcXH84x//4I477gDAYrEQHR3Nhx9+yHnnnUdeXh5ZWVls3bqVoUPlzK7fffcdM2fOpLKykri4uF/s97eKlRZnC89sfYbFxYsBOeX3AyMfYHT86GNu52mzUL51NTU71uHcl0vovgpM7V2WgyqzmVeHzGBXyDBARZjQyo1Ry5luKqUk6XSWe8azNt/aLVeGWhLp11zCmMrdDKk7wJr4gXyRcRKOjkRbY6t2Mzd3KcnqOhLGN6E3+xB9aqyuHALiQG3ZhyB1OWI6zb34UTWKtxqy2CWmcegCf9eMPlw3Ia3rrtfnxV20F8sn7+JYuwKV2o0kCmjScgi55GqMQ8fJOTR6WoJpKYOvLoVqOWFb87DLOc2ymVaPldFxo3n1pFePmm+i1dnKm3ve5IsDX+CVvHgap+BsmIJJp2LBDWPJiO6yDkhuN47cXOzbtmHftg3Hjp2IVivq0FC0cXFo42I7HuPQxMWhjY1DGx+HOiTk/1WFYsvChTj27CVwwgQCRgz/zXfvldZK7vjpDnKbcru9Pjd7LjcNvum4F9U8nHaXl1kvr6W0yc6s/rG8ev4gvz8jSRRx7N6NdcVKefmroqLrTbWa/Ska9sR5yCqX6FsGTRlhnDRILjJ5vvs+NopyUr3oUCfD01UYpFh+zLXQeFjm6nhbA5MqdjC59SB9J4wg+NRT0CYkYF25CuuKFdi3bgWxy1lZl5KCedo0zFOn4mtppvLGm5BcLgJGjybhtVf9FpFHHKvbTeNbb+MuLSX86qsx9Pn1Kft7QhErCicaJ4RYKS4uJi0tjZ07dzJw4MDOdhMmTGDgwIG89NJLvP/++/zjH/+gpSPFOYDX68VgMPDVV19xxhlnHNGPy+XCddiddltbm/wDzF9PUMaxhQbIImppyVKe3vI0La4WVIKKCzMv5MaBNx5hDfDZbN2dKHNzcZeVHbFPVXAwrnEj+SBhAIsbwvH4VIwQDnCh4WtmSAfQHeab8L3JyFPhEYi6fki2gVhakmlt63nJK95ezjklCxncUEZCoIdewxtQ6yTc7Woq14ThssgTiy4+nMgZGQRGNKOq3AC+rvNj0UaxjoFkxwWRbHCAvQnsjUjWegR32y+eL1RaMIXLfwHhYIqQE3nt+xacrWAMhTPfgfSp7KrfxdUrrsbhdTAjeQZPjXsK9WF3sh6fh88OfMabe97E6pZT809ImMBtQ27jYIWJ3lGBpEcfO/On5PMheTy/21n574zb5+aZrc/wRf4XmLVmHhv7GCclnfSn9L27opWz3tiAV5S4cmwKg3uFEh9iJD7USHiAzi/xIkkSrvz8Dr+d73EVFOJWaagwR/FjwmBWJwyiyRjM45r3uFCzigopnFMDZuIOyUWll5fQBASmJs1gkPk8thUKLN9Xg8Pb9TvNbCrlpIrtDGoowKtS41Jrcal1+FLSUA0aAtn98IaG43D75D+Pj7byKhrXrMMpqfBGRCFk98PhA4dHft/h9uHyioxKC+ehU7KJNB9pfXGXllL1jztw5naISZWKkLPPJvLmm9BERBzR/lj8/FpZVVVFVlaWIlYUThhOCLGyYcMGxowZQ3V1NbGxsZ3t5syZgyAIfPHFFzzxxBN89NFH5Ofnd9tXVFQUDz/8MNddd90R/Tz00EM8/PDDR7xuuS+SoHNfh35nH3WMNbYaHt30KGur5KiD3iG9eWT0I/SL7Ccneioqwr5tO/bt23Hu3Yu7tLTH/Wjj4jrza+gHDGCFJpZnVxTgsDRwlnoNcw0/keDrShleExRDvsHIuPoS1ECbSuDZsFAWBAaAICC6w/Bas/FYcxAdvRA0reijviMxto6Lsi7kXKsdw/L7QPIhRg/CPeIxvHaB9g0bsMyf31nPBpUK84RRhE/shUEoQihcAe6e/QIOx+fTIQRFowqLl4WOvQnam8BzpPNtN+KHwjkfdsuNsb5qPTf+cCNe0cucjDn8a+S/AFhVvop/b/83FVb5jjgjNIM7ht7RzTdC4c9lf9N+okxRXQnW/iRe+7GQZ5fnH/G6XqPqFC7xIfJfXIiRQIOGlnY3Te1uWtrdNLe7abZ3PLa7abY6sXu7X8aCjVpOzwri7pLLMNprKM+Ywsr+s6i2VVNsKWZr7dbOthMTJnJh3yuorovg2x2VbChsoodg7+NKqEnL42f0Y2Y/+dooSRKW+QuofewxJLsddXAwxoEDsf30EwAqk4nwa64h7NJL/BbqR71WKmJF4QTh/7VYOapl5W4zQXpBzrcw+SFQy9E6rc5WNtZsZF3VOlaUrcDhdaBVabk252rOV4/CvWOnvLywfUfnpO9DwKHV41Lr8MbGI2VkIqX0RkxOwRefiEtnxOn20e72Mn9HJYbqzVygWcVM9RZ0dJiVdYGycBpyGcR1+GTU7EFaeCNCzW4AGmOy+WHAqRwUvFTbOhxd21pID+/FRVkXMDlhIpqVD8Gm1+Xt+82BU1/pVodFdLuxrlhB6xdfYt/SVXBOExNDyFmnETosCo31AO4mK7bNe7DvLcLnUuF1qTCMmEDYlTdhHDCw5w/V02GJaW/ssMg0dT0PjIIhc0Fz5HLEdyXfcdeau5CQmJMxhyJLUWc0SoQxgpsH3cypaad2s7oo/H3wiRLzNpextbSFqhY7Va0O6q0ufu+VSK9RMbFPJGcMSmBS30i54nPJGvjoFLnBxfMhTbYg5Tfn887ed/i+9PvOqKyRsSO5uv/VJBpzWLS7hvk7KihutGPUqTFq1Rh0akyH/tfKjyadGqNOjV4j/2/SqVE3NuD47BP0VgsBcVEk3nIT5rAQtGqJtRVb+Hy9j+pm2YJ0yoAYHpqcgvOpx2lbuhQA0/DhxD3zNNqYGOzbt1P31NM498pLWpq4WKJuu52gWTN/MfJIsawonOicEGLlj1oG+jmdB7vgboJ2ypO6NXEoX/Y7mR8adrK3cS8SEoIkkVEFU5pimdgchbDnAKK9ex4OwWBg/7CpPB45hibx2KHJATg4W72Gi9QrSVcdlkEzpj8MnSsnGNP3sKTh88ri48cnwOuQs3dOuhdG3tApsABwWeHrK6BALibHpH/B+DuOWffEVVxC65dfytYWi0V+UaVCn5aKq6Cw83nQzJmEX30VhozjsxbeE18c+ILHNj/W+dygNnBp9qVcnnO5X863Cn8v3F6RWouTylY7VS0OqlodnY92t4+wAF33P5P8GBqgI7zjMcig6XkZaemdsOVtCEqA6zfIflgdlFhKeG/veywuXoyvw+9rYORAru5/NWPjx/5mvydnfj7lcy/H19yMLr03+x+Yw2vl86iyVSFJatwNk3E3TQRUhLos3Lb9K4Y05lN49lCc555MvCmMUBFsphCcbjuqlRsI/mAR2kb5d92WFk3uhcOpSQ3G4XUwIXECU3tNPeaYFJ8VhRONE0KsHHKwveOOO/jHP/7RObCoqKgjHGy3bdvGkCFyHZfvv/+eGTNm/GoH2092fIJY+C1n71+FUZKo1Ki5JTqSgzodozxJXLqwnbCDdd22VZnNmAYP7sx7Mt8ezANLDuAT5VOiEsCk02DQdt1RJaobOd21mJPs32GS5GUSSWtC6He2bGmIG+RfIbXmYlh0i3znBxA7QLaaxA6A1nL49Dyoz5XFzOlvQM6Z/nwMgJxPwvr9Clq/+AL7tm3yi1otwaedSsRVV6HrdfTIk+PJe3vf443dbzCt1zRuHnwzMQExf0q/CgrdcLfDG6Pl0g+DLoLTXjuiSZWtig/2fcC3Bd/i6ShjkBmWyeU5lzMhcQJGza93lnUUFlB0yUWom9uoDoNHzlejio4kPSSdWms1ST9I7OJsKs1RAERoN+NMWcJIdxtPNDQR5fNRoNWyMsDISpOJEkHD7G1w+kYRY0dOyI19BT6ZoGHG6Mu5a8StxxyPIlYUTjT+NLFis9koLJTv2AcNGsS///1vJk2aRFhYGElJSTz99NM89dRT3UKX9+zZc0Tocl1dHW+++WZn6PLQoUN/dehy5huZqI1qMtxuXq5vIt7jwavW0WyYTfN/tiN5PAgmE4Hjxsm5TYYNRZ+ejqBW4xMlHl+Sx/vrSwA4bWAcT5zRD5NO3XVnVbEFNr4GeYvgUORNeG8Yca1cR8bwG378kgS75snhv06LnD59yGWQtxDaG+QU8Od/DglDfnFXR8NVXIxj5y4CRo1E64f4O96IkohKOHETZSn8TSjbAB/MBCS44CvI6Dkzcr29no9yP+Krg191ZoE2aoyMjR/L5KTJjE8Yj1n3C07gksS6qnW8svMVmgv388BnPiLbwBkVTNrH8zDqA6i+8y7sW7fiVGv5cPoV/FfXGw1e7jF8zlyW0tMvpt4QyN6IFPZqMmncHkRLvYHC4HiKg+O41FzBvx646ZjjUsSKwonGnyZWVq9ezaRJk454/dJLL+XDDz/sTAr39ttv09raytixY3n99dfJOGz5obm5mRtvvLFbUriXX375VyeFO/vLs5mYPpExcWPICYhH+Oh81PWyE13j/kDsIScT++DDndlXD2Fzebn5s538cECugfOPqRnceFJvWaT4vJD3X9j4OlRt69ooZQKMugF6T4XjkbHSWgfL7oL9C7pei+4H53921MJuCgoKv5Lv7oVNr8m1hK7fKEeySRJ4nbJ/lscObjt47LS11/Nj8RJ2VW3A4WjCIEoYJJFAVKQFxNI7IJ5EQwQG0SdvB5B9BtvCEnhl9+vsqJczP5s0Jq6OOoNxz6zCV1GJJjoayenEZ7EgmEzE3H8/waefxs5d2zEsvIYsSb752xFxGn3Pe4yW3FWwfyFR9evQSl0lNmqkMJb7hrJcHMYWsS+nBLt58Z6jBxeAIlYUTjz+1un2Rbudhpdeovnj/xDVz0J4ZsdSTdpkhLPfky9QHVS22Lnyo20cqLWi16h4fs4AZufEyDVGds2T17kPFXpT62QH15HXQUzOH3MwB5bAyofkirinvAx6/wSbgoKCH3gc8OZYaCqUHeAlqUNoHL9LYIlWw3vBQawIDuOcvudzRb8rCDWE4qmrp3zu3M76TYacHOKfexZdcjLs/hyW/APcNuxqM7c5rmC5OBxBoNPp2ISTCardzFBvZbJqJ4FCV+0vr8aMMOZm1JPuOubYFLGicKLxtxQrra2tqPfspfahh/BUyQ6vQaeeQsyZWahX3i07s4YkyQ6wHjs2m5WKuiZ0ooMAlYcIvQ+Nzym3OxxTBAy7EoZdIUfAKCgo/O9SsRU+nAk+95HvqXVypWZtQMejqaNauKnz/zbJS7mzkUJbNVWuZhwqAYcgEO31ca7VRnBH0jhfUDzqcbfDwIs6o/e8TU3UPf4EupQUIq65GkF0yiJl75dy/73GwJlvs6pay93f7qXB6iJQryE7Loj+CcHkxAfTLz6Y5GA1qtI18nLxgaXgaIbJD8K424956IpYUTjR+FuKlcG3fMyw2nyG1OczVG0l/YF7CRw3Tm5Uswc+vxAs5f7vOCpbtqL0O6dbqLCCgsL/OJYq2UfskCDRmUBj7B6N5wdVtipWlq1kVfkq8pvzmRE3ltvEIEJ2fALt8rIygTEw+kbZ+f5wS2nlNvjmCtnpV1DDxHtksdERzu/0+GiwuogPMaJSHcNh3+eF8g0QlgbB8UdvhyJWFE48/pZiJfHWL1Hp5ZBYtQCDe4UyISOSCRlRZMcFoXK2IO1fyA95NSzOs+BAT9/EKK6ZkoPRZO66izp08dKdeLVkFBQU/gfwOGDHx7D+JWjrSA5pDIOR18sW2u0fyKkLRC8EJ8FZ70LSiD98WIpYUTjR+FuKlffPvIKS2RezvlmiqKF75tXwAB3j0iOwu318v18OX756fCr/nNEX9bHuWhQUFBR+K1437PkC1v1bTlUAshXlUDRh9pkw+wW5fMWfgCJWFE40/pZipbWhgeCO2hkVzXbWFDTwU34D6wsbaXd3FfnTqAQePyOHc4cl/VVDVlBQ+Dvh88qRfmufh/r9sk/MzGdh4AX+5WQ6TihiReFE428pVo52sG6vyI7yFn462EBeTRvXjE9jVFr4XzBSBQWFvzWiCGXrITT5L0lJoIgVhRONXyNWfp1H2f8gOo2KkanhjExVBIqCgsJfiEoFKeP+6lEoKPxPoqQWVVBQUFBQUDihUcSKgoKCgoKCwgnN//wykM8nO89WVlYq67AKCgoKR6GiQs7GXV5eTkhIyF87GAUFZJ8V6JrHj8X/vFg5VEgxOzv7Lx6JgoKCwolPv379/uohKCh0o7CwkGHDhh2zzf98NFBLSwthYWEsfPwGAgz6Y7bVxyb7vV+N2T+HXHPcQL/aNWz70u++RZfLr3YBaYP8amc7sNnvvlVGo1/ttr+1y692iWn+rzRGjEjxq52/58fb1v7LjToo3dDiX9+/fAMAQPr0WL/7bthR61e7iP6RfrVrK2zyu++QzGi/2qkC/UuS6Cip9rvvoJHHvjgdwhDRy692zroSv/tu3bTtlxsBUbNO9audq7HS775dxQV+tYs97Ua/2tWvet+/di1Wzn/6IyoqKhQrtMIJQVtbG4mJiTQ3NxMaGnrMtv/zlhW1Wk5PHWDQE2j8BbFi8m8iBtAEmPxqZw48drn4QziM/qfsF/2c3wP8HCO/cF4OR+XnOI1qrV/tTFr/xUqAn+MUBf/0tdfl8btvo8a/4xH9TIsRYND53Xe71r++/d2n18/9/Zp9qvz8bFR6/4870M/fo8HP77nG5P9vzKP37xwF+tm31u5/3xo/z7nZz8rz7b9wk3aIAKNcDykoKEgRKwonFIfm8WOhONgqKCgoKCgonNAoYkVBQUFBQUHhhEYRKwoKCgoKCgonNIpYUVBQUFBQUDihUcSKgoKCgoKCwgnNCSFWqqqquOiiiwgPD8doNNKvXz+2bfMvtFBBQUFBQUHh/zd/eehyS0sLY8aMYdKkSSxbtozIyEgKCgp+MeZaQUFBQUFB4e/BXy5Wnn76aRITE/nggw86X0tJOXpyMJfLheuwpGCH0vUqKCgoKHTh9nrxeLuyGNqd7r9wNAoKv4+/XKwsXLiQ6dOnc8455/DTTz8RHx/P9ddfz1VXXdVj+yeffJKHH374Tx6lgoKCwv8WH63YwnvLN/7Vw1BQOC785WKluLiYN954g9tvv517772XrVu3cvPNN6PT6bj00kuPaH/PPfdw++23dz4/lK5XQUFBQaGLS6cO54JJQzqfN7TaOO+pD/+6ASko/A7+crEiiiJDhw7liSeeAGDQoEHs27ePN998s0exotfr0ev9Tx+voKCg8HdEp9Gg03Rd4tsNyjKQwv8uf7lYiY2NJSsrq9trmZmZfPPNN3/RiBQUFBQUFI4/3zda0KtUTAgz09ZYz77Vq9GahjFkei9U6u7BuQ0NDZSUlBCWnMmXhfX0Twsjy2wi1dR1s+6pt9NUUctu9z7SM3NI1kbT9P4HBF9xLrvrVrGsOgN7YSvjxjqZ1W5DOrCYvRYjxSmXEWMrIzSjFk/LdCITgigvfg5jXjIZI7LReQphxDUgCKzfsZ6a6krC6+PIGJNDfJ+jB7+IosTy3FrCAnSMSA3HZ2un9csvCT79NDRhYb/r3P3lYmXMmDHk5+d3e+3gwYP06uVfpVUFBQUFBYUTnY2tNubuK0EnqPg8O5H9TzxIc1UFat0OKvPOYtqV/QkIloWIxWLh9ddfR5Ik8sNaWRMSgM9l5c7kGP6REtO5T8feRrwrqigL2ceHDfN48gstju3bqfbtZ06/C3GoVGjrRb5b9BMznZ8jOFvpD9RWl1KbVk17rR1b7UoqGhrQBTVS0BaO8alW0rLrIGU8dmNvVixcAUB4fTBNFfmc/eDII45NFCW+31/LiysLOFBrpX9CMP+9YQxtS5ZQ/8wzWBYsIHXhf3/X+fvLxcptt93G6NGjeeKJJ5gzZw5btmzh7bff5u233/5V+9EnpP1iVWVNgP/h0Gqdf9VWvW7/opFEp93vvp3l1f713dLsV7vAfkd+uY5G5Wfz/WqXnPnLVTIB6kp9v9yog9BW/86lNjLCr3aVqyv87jt1nH+q32N1+tVu6+f+fYYAWSP9W9b0tvn3HRK9/lWlBij9ocqvdtF9/Ps9+Nz+f97aoCi/2u1/7j2/2oWl+VmF/A8gMGXILzfqwNfm3++28otn/Wqn8rPatOj2vwq5wvFnSJCJ8aFmfmy2cnFeBS+dNIPmT97F595H6U47Xzx2BjOuHkRcegjBwcGkp6dz8OBBhPqDqGOG4gNCtEe/7qbsrMNVbEI3/k4+EBtwV4jQC4RkI8b63QitrQC40KAeVI450I3o1VO1Lg5DqIVekyFqaBP2PUZq3X3Y+0EeheV1EAkIoFaJxGWGIYoSKpVcfl6SJL7fX8eLKwvIq5Gv32a9hol9ovD4JFq/+gqA4NNP/93n7y9PCjds2DDmz5/PZ599Rk5ODo8++igvvvgiF1544V89NAUFBQUFheOCTqXivZwURgQH0OYVuTMkjeE33olaq0X0FNNaNY/5z69n5/flSJJExoBhAKSpm0iIlG/Ew7RHty9ktA/ANuGf3B4Wy5f1OajL2kGScEcEcKmvtrNdQboBAt1YLSHkLxiLo6malsJg1I7+CCqoPk/HfOv9HCwNRRS7bnyWDnud0XMyUKkEWaTk1jLr5XVc8/F28mraCNRruOmk3qz95yRun5qBLz8P5759CFotwWec/rvP319uWQGYPXs2s2fP/quHoaCgoKCg8IdhUqv4uH8qZ+0sZK/Nwa36cN696yHWv/gkrvZaXJbPWPeVm5qiVr4Q7BhFMzEqKx7RDSotIZrulhVXS5c1ul0/hss8NqyAXu3k0vSF5EU8wIomK4G6TKAEEaiL0VNbGE/V+mjUzmpATUK/cylaHU7c2AfRmRuIHfIfVDuuI0Wn5hvZiEKtt5Y2Vxtbihy8uOog+6rkvgN0auaOSeHKcSmEmHSd4zlkVTFPnYrmOCR5/cstKwoKCgoKCn8XgjRqPhuQRrpJT5XLww12HdPvfwJzRCSS2Irb+hlF23NJ32Oj2hsHQIvHC0Boh2XF2+qi6bNcKnYVAqAStTzrMWEF+kQ6eXDUM5zSz8zVQfLSX7U+GoBWg5qSlfE0boxD7XSAoEdrPpvGyhicVi0tO69A8gmYk3aQmr6BXkPkZW9JArctgzNf38yV/9nGvqo2AnRqrp+Yxrp/nsQd0/t0EypiezttixYDEDLnnONy3k4Iy4qCgoKCgsLfhQidhi8GpHHqzgKKHS6ubRT4z4NPs+q5R2koK8Fl/ZKgwFOYZknGm9qIU6MFIMgt0rqoCNumGvBJlBtaifKG4/UFAALXjE9lQvi/cLQ3EmEeQZ8Fp9M37QkSXHUA7LFE0lYSjiTZEFQhaAPPQKUOJTRJy8jpfTBt0FO+SI31dC8NfT4k2VFApW8gu7xxtNUMow03Jp2aS0cnc9W4VMICdD0eX9uyZYjt7Wh7JWEaPvy4nDPFsqKgoKCgoPAnE2fQ8dWA3kTpNOTanFxT0cqs+x6jPTwFAQ9u2wJE+36cVVF41bJdwf7aDmzrq5F8IvOt5ezTNgKgloL46PLh3D4lEkf7LpAkTN8/g661hstqvyHFUQmArSkUSfIiaOIxhl2IT6+mOWILReJapLWFeKtEgndnoc0T2N3Sl9P3DmelJ4NGKRAENyMy21h71yT+OaPvUYUKQEvHElDoOecgqI6PzFDEioKCgoKCwl9AiknPFwPSCNGo2dZmZ85PRXxonkpBYDoCIqJjFUmCHGEnSCIV7kosjhruadzD8+YQ0Mp+IyOSkpiQEUlz0xp5v5UeAquqOeAcj/rgFNLssljZG9YHY3A2U668h74jk9F4A3Ghxud180PTNjCqyD/lbB7fdzsv7ryOQlsyWsFDtrqGsOQXSU3dQ3jgsaMXnQcO4Ny9B7Rags8447idK2UZSEFBQUFB4S8iM9DIpwNSOXvLQQq31SEIavqcfRUT8/MwVwVQGWwGQO/xsJR6NgixNEWkoNFYEdQOAGIC5XQOVdWfE1AdSP2e0ax2TMXuCwTHYqIC5HD5hYOm8vK4DPrHJfPts9sJVasZ5sthuWorW/Dypd5KQWMIBIegE91MTFnLjOQfqDg4jI817ZS3lf/i8bR+2eFYO3kymvDw43aeFLGioKCgoKDwFzI4KIBRNV42uUWm6/VM29pKsD0K1FCjsoFkQlNkZbGvN5JBIEqr5prTA6hdLW+vEdRsXPkKReuG0VZ7FRJqJNGBz/ENYYKcdLVJG0xJVA7zK7cyNGYYQo2N0YEqdkkGVrgHUIEGWn3oNQKntuRx+rovCLyyjka9BmOfDQTW6Cmzlh3zOESHA8vChQCEHifH2kMoYkVBQUFBQeEv5Me8OvS5zXxMAEkuNeDDZlKTMC2ZitpcdFsb8ba4AYE0oYVZDTHs2LKGRFGewvO3lrGjNbtzf5GGfbQ4d+Ny1xERbAOgPkCOLFrcouG21RWg9XGL4GYPPkCDCpG+6nqmJQhcnB5B/Sor+m/VlPUKISCwlTmRXt5scmNxWQjWB/d4HG3LvkO02dAmJmIa6X8yUn9QxIqCgoKCgsJfgCRJtOxpQPvFAR5BzsDsMap5NUnD14laTq2rYMXGdlSCFkGQGKsqJE3bisqgxlgexUBHDhjA59KhVtnJ1P9IuH4taxqScdhsBGpcjI8sBSAkpi8AjdZ0Ltyxh4OCnEBFp1ExIzuGVbtLGKiporVW5MCgQYQBrho9B/LGMnDwMvqYvExwC5S1ldE/sn+Px3Mot0rI2WcfN8faQyhiRUFBQUFB4U/GWdRK2/JS3OVWklFhFyTCJyURNyGBrNpmdN/uYFGdDwQtYpCWsQODGPT9PgSxP1p3CCnOaNR6WRAEGau53Hw7xe0BLCvPQvTZ0KlFLkzeiVEnggRuXQrGzVVIrXAQAY0E40PNPHn9cKKDDNxn0LB5m5Wx2hJW7d7NeZmZ+PLysNtDKC4eSnr6ZmYHeyhvWNejWHEePIhj507QaAg58/g51h5CiQZSUFBQUFD4k3BXWGl4dy+N7+zFXW7FicQnuGi+KIPwackUWxx89dU+PHVyFFCGqoUR5kBG/uBG7xyOzh2ChERx2G4ORm4BIIFcdrWEs6QyE9EnYY6IZGR4KYFaD+26SACe2eZFagVJAClBx1yrgZuGJBMdJNeWun1qBvXaaMp9IYiiSP5hVZJra9JpJBGNAOr69/B62484rtavvgbAPGkSmsjI437eFLGioKCgoKDwB+OpbafxP/upf20XrsJWUAssN4iciw3L8GhGZEXzxdZyTnl5HQcaHGTYndxVU8vsljgm5jpR27zoAwRU0bns7vUN3/d5Hwk5yqfKEcTa+hQAevUfhbWxnnZzKBe478XVUUS3UophktaFZ4wRV3Yk5QkaIhICO8cXHqjn1il92OBJxoWWA6Ehh41eoF0aRatXQCe2crDgkW7HJjqdWP4rV1UOmTPnDzl/yjKQgoKCgoLCH4h1XRWWJcUgAQKo+kXwksPGFwX1xAQZuGFSGjd+upMle2vQSnBFi5cwVSiSMRS1BBXhGrb31nFW4tNEOIooqgrH5DMw2CE7zTa7TIBEYEo0a2qHkJ8UyZeikTPV64gQ5FwsD+vScZ4WwI/Ve3Eyko19BMLju8SKJEkMTQ5F0ujJd4QyzVLG/sy+IAgIgo+K5q00G1UM0vioqfmaiJDJBFaFYd++g/Z16xDb2tDGxREwZvQfcg7/34iVDY8txajWHrNNk9X//YUE+NeuqlX65UZASqTgd9+F9f7tM8zg3z7T0yr87ttq8a9dSIR/fX99oO2XG3WQXib61S45tM6vdgcavX73PbS52a92Pp9/+1P5/3HT3uD2q13+Fpdf7b4tb/K774yjePX/nLACu1/tDL/iihK08VP/G/vBntwjTdNHw+vfV42kjR/71W53lZ9fDGBIL/UvNwLyq/y7DrhF/9pZvf59hgrHH2deE0ig6x3CqngdT2wqxeryIghwyahenPPGBmraXKh9Pq5qbCNAH4dXDXuTdGzrbaA2TAOSRFw7lDfrmdEyhDNbp2IUZKfcKsnCwSF92NY0htHmtdyrXsNY1V7UgvzdaFLFcmP2ekoah+MLkKN0NFoNpiAdtRYnC3ZVsWRjIcPzF/MvdxPWMDOOLAFLMPQLXoE5qAG1uvt3vOL+WzCt636coZdcfNwdaw/x/0asKCgoKCgonIgIGnkCf6OumQ8K5VDinPggekcF8uzyfCQgzN3GSKOeAH0cPgE+mWDGGmtgZriBLyvziat7m+SaXtzddBVmwYwkSGz0NPGFthZCjJzZVsKzhs8IErpEaYUmjvci0/g06XLaDKkAaLxOpnl9TIyI57pXl5G29Wt6iU3MSVHhG+8hIKSBGHMTKlV3Ra+ygq5QQFeoQn9QQFsF6ogITEOGYBoyGNOwYej79v3DzqEiVhQUFBQUFP4gKprt5NVYyAIsVhfhATouG92L7/bWsGBnNQCaSDX66FQy18vWwYLRIdw9PplJIQJ3Lb6YC8riuLjhCkIJwyFIfOVtZY2mglGGnTytXkuaqqazP4cUwpqgRJ6L7k1u1PmIWrniss7rYrJbTUpVBanb5hER3Mi0XipUZ9gJMLciCN0tdIJFwHBQkAVKgQpNLeh7JWMcOgTT9UMwDR2CNikJQfgVZuTfgSJWFBQUFBQUjjNOj483Vhfx5k9F3OnVkYWO0UmhZOSE8fx3B/CIIGkFPNmh6AN1nLWiDZUEccMiuf6iHNYe+IbnP1/EdbWXEU00Ffj4RGxA1GzmFON6blHtQ9UhMLySjgp1Fh9Havk4og/tIachaqIA0HvcTG6s4NSiVwk2N+JKkNCeJ6fpP9xxwmM1YMgH834PugIV6hYVxswsTEOHYDxbtp5oIiL+7NPYiSJWFBQUFBQUjhOSJPHdvloeW5JHVassCkLMBvZ4fbxgt1K1tB4AX7geT04o43UwZZ0bj0siMsnMsGkSL791HcPLJnC1dAUb8bBA2EqWeg3/Um/CLDg6+6p2Z7EvIJUX42o4GJSDPegURI0cNhzgtXN68yKmaBahi3FADIh0CRS7LQhHQyimPB9Ja+vQOrWYBg7ENGQIxqsGYxwwEHWgn86bfwKKWFFQUFBQUDgOFNRZeWhRLusLZSf3mBADUyen8GphIyV5bQiNIpIA+kQt5wS2cuXwoRQtrCa/xoIhQI0mYj7Fb/Zhiu98fqKaPer/ME29hvNUXUEFjQRRZJ3ONnMvPshYRqs5ElfQXDwa2eoRLLZwijCfk9Qr0EfKzvuSJGCzhWJtjcTWFI6mWEXm/jJy+qQTNGwkposHY8jKQtAeO0jlr0QRKwoKCgoKCr+DNqeHF1cU8NHGUnyihDpYR99hMRRqRD7YWo6mvB0BMOjgstbNXD/idIKGTGPPjxXkb64lSC2SrKvAUzyeItVaNNq3uFa1v3OZxyloKDbGsMUxjGr7UHZlLsYSE0Cr8VFsKrmycajUxCnMZ5KwCo3owWaNoN4SRVtrJO3NYfi8WtI87cweMISo08agS0n5wyJ3/ggUsaKgoKCgoPAbEEWJr3dU8sx3B2hwePDFGDFnhNCiF9jR5kS7txmNTU6hMFOt407BQq9n7kVlMFC1v45dXx+kv9FFq6EQh3oVo9WbOElwdu6/2BhOSwQcaJ2KPbgZY3AFdaHB7FHdRasgZ5gNkxqZLS5gsGUP9rZwDljGY7VEIHgEfBoNwXo106dMoP/o0Wg0/7tT/v/uyBUUFBQUFP4idlW08uDCXHa2tuNLNCHFRyCqBVokCW2pDc3BViRJIMRp5R57LWPChmDqn4RKq6bx6zfYv0FPfMhGktWrSVTVd+63VgimIioAV5IDm2hErRcJSVnLdqaxhOuxCKEAhHmbGNe8kbTqWhxtoRyQTkLl8yGq5Tw+mf0yGTVqFImJiX9axM4fiSJWFBQUFBQU/KTR5uKx5Xl8XdOCLyEAKSuq870ESYVhazWVLT4kBEbU7ueR/gbihp2JZUkxYvE8Nj1QSpCqgKlB+zu3s0kG9hkScKXZ8IZ7QHADanzAd5zMUk6jTZATOAY72xhYVkhGXQVqScIhhiKpZIGiNZkYPHgww4cPJzQ09M88LX84ilhRUFBQUFD4BdxeH09uKOaDykackXoIk8WAVhCYGRlMeq2N/ywvoFGlQ+91c33jFq6+8yL08UHUv3Enbdo6wpy5jNTKmahFSWCXKpXqaD2GlAYEbWtHTwLttmB+sJ7M4ogZ2HRmAIIcNgaXHSS9vgK15ONQaT9JpSY0NJSRI0cycOBA9Hr9n3xm/hwUsaKgoKCgoHAUWj1ent1XybyaJpxGNcQaAUjQargyKYqZIWZeeGcFrzaoQaWjt6WKJ/tA/1OTaPrmfAw+CzFCKzEdVRZKpWi2ByRBqoWQsGaMAD5QVwi4doSwLHw2C4dNxx4n9xNstzG4PJ/0+goMBh1uSeKQUElOTmbkyJFkZGSg+h9ylv0tKGJFQUFBQUHhMCRJYrOlnbdK61je3IYoCGBUg09iqF7PvdmJjAoNZMeuIs5/5Ueq1IEIksglLVu5KWsd3rYi9D+0EgcgQJtk5AfVAOpitMQnFxHobkMSLeh3C5jWqrA0xPDRrLP4YdYoXFodACF2K4PK8kmvr0KjEhAlcDvcqNVqcnJyGDlyJLGxsX/pefozUcSKgoKCgoIC0Oj28lVtM59UN1Hk6CgcKggIVg9jtHr+PSaDpCADXp/Icy8v4M0qFZGBNm41zOd0NhNrtKBvlQv+iZLAWimHHQG90EbYiHBpMNSPoH7/CAbv+wSxKYAD6Rl8M3UGW3vn4NbIOU5C29sY0FZPnagivb4SFXLUkclkYtiwYQwdOhSz2fwXnaG/DkWsKCgoKCj8rSlod/JsaS3LGix4pI4aOV4Rda2D/qKaf0/LJDNWdnDds3Ujn6//jKSQApYY9xPfYMfs6KqcXijGsYSRWExJxDtqaGtoIubgWTRq49G5y4hsXMS3w89hS59+5Man4ukQKVEuO2dKDoIt9XxsiCCrthQVoNPpOPnkk8nJyUF7Aidt+6NRxIqCgoKCwt+WHW3tXLC7mFavbBFRWdyoKtuJt0vcP6Mvs/rF4nY3snnDs5SWLyLHV8ydopPQUk/nPiySiUW+UexgFH086cS17MDnasSpG0tAoIr6KCsl0UWURkZSFn4X7Xpj57Yxznay2prwtDZzQBSJsrZwqj2/8/3zzjuP1NTUP++EnKAIkiRJv9zsj+Ohhx7i4Ycf7vZanz59OHDggF/bt7W1ERwczPCQKWiEY2uvEE2S3+Oyeet/uREQrEv0q11gaLLffbc07f/lRoBWZfKrndPb4nffPsnzy40Aj+T45UaAm3a/+05PP8+vdgcL3verXYAQ73ffdqnVr3aBqki/2lnFEr/7NhDjV7s2Va1f7QLEMP/7VgX71U6v8s/s7PRZ/O7b3++vSR/1y40Ah7vR777bvQ1+tUvqNd2/HXaEjvpDS8UOv9rZfU1+tQsP6OPf/rxtLKt5FYvFQlBQkF/b/H9nY6uNi/cUY/OJJKCifkMtKquHOUMTuHd6BNampZTkf4qpvYi4OidRDW40ojxl+iSBtWJ/vvWNB3EkM7wC9vZdlKq8uANCsZg9lEaGURYeQ2VoJF511/yk9XpJaGvF7GghvqmBOEsTWtHX+b6EQEBMDFNHDGfQoEF/+nn5szg0f/vznTwhLCvZ2dmsXLmy8/n/cpY9BQUFBYUTn9XNbczdW4JDlEjwCTT8WEm4ppk7Jxwkw/QM+9aWEVvnYmidE5NT7NyuWIzha98ElvnGMZhwhkk1NEm72WIQaYwOpCw8htLwGBqCuuc5MdvtJLa0EuywkNhcTZjD2u19n8FIVHIKo7IyyU7vjdFoRKGLE0IVaDQaYmL8u7tUUFBQUFD4PSxraOWa3DLckkSWu57hJV8xauh2ggJbiWxyE5vvJKzVw6G8r+2SgUW+kXzlm0CR1JsRKisTtWV4NCX8GBpBaVgm5eEx2AzdrYW92uuJrmsntL2ZhJYqtFKX6BEFAW1UDH0zMhibnUlMdPT/i0yzfxQnhFgpKCggLi4Og8HAqFGjePLJJ0lK6nnJxuVy4XK5Op+3tbX9WcNUUFBQ+J/BJ3kRpa6lBY/oPkbrvw/z61p4OHczU9nESd7VxGjKCYrxElvnInqfC62vyzNiky+TL30TWCYOxyBAlrqGyYb9VEVEsTt8IJWhUd2Wd3SSixxPIcm1beiqHYS4us9PXmMAkSmpjMzqw/+xd9/hcVV3/sff997po5lR712y5SLLHXdjG1dMMaaEULPpG1JID0l+KZvdhd1sEpJNIJRQQwnFdBuDbdx7k5ssS1bvfWY0febe3x9jDIRgX2ex5XJezzMPWPrqnnOPpnx0yznjhg27aCdwOxuGPKxMmTKFJ554grKyMtrb2/nlL3/JrFmzOHTo0D+8Pevee+/92DUugiAIwkdVe7ZS5dk81N04b/g91bxz+DF6A3v5DXWYwiqZXUGyOkIk+D8IdZ1qIs+r83gpNotmLYN0yUu5o4dApoODqaNY60iCDx0BSdJ6maDtYcRAG0q9RHjwg+vAYrKMkpFF2bDhzC0fRUZaqjh68k8a8rCyZMmSk/9fUVHBlClTKCgo4IUXXuALX/jCx+rvuecevvOd75z8t8fjIS9P30WugiAIl4oy53SGOaac/Lc/6mVN58ND2KNzz9e3j65jD9Hl2cqgwYdT1SjqC5PdESKlL8z7c76GNYW16kSejs1nmzoKDZlUs5+cnAjduQU0/d31I8VaLePZzdhoJcY2I+1tIwiHE4kBYbuD1BPXnkwcVoLJZDrn+30xGvKw8vcSExMZPnw4tbW1//D7ZrNZHDoTBEE4DUUyoHzoDkmjHDpF9cVjsH0TXbWP0OXbjc8U32d7KEpJY4j0rii2yAd3PNZoeTwXncuLsdl4sSGhYU9R8AxLpsX1weeMMRaiXD7ABHYznj1YAlFaW0bS0TmBCBakrByGl5ZyRfkostJSz/k+XwrOu7AyODjI8ePHuf3224e6K4IgCMJ5TlNVfE0r6ap7ks7QAfzmKAAGSSW3JURah0qy/4OpFjyanXXaJB6JLOKwVgiApEA0P4FoQQIBc/w2dGfATQWVTLFsZrR8EDNh3O50WlrG4usvxlw0jLk3VjC1tOSSnqztXBnysPK9732Pq6++moKCAtra2vj5z3+Ooih89rOfHequCYIgCOchLRphsPZvdDU/T1f0KH7ziYtiTRrJvREyWzTS3T4U4nffxJA5opXycmwWz8VmE9Li4UIzy0QLE4jl2sEgk9XTTpm7lpmOtYywHEQCNE2it6uQgeZpaLF8rlgyg9HjRg3Rnl+6hjystLS08NnPfpbe3l7S0tKYOXMm27dvJy1N3+RbgiAIwsVPCw3irX6KrpaX6aKegEUCBVDA6ouR0mggp2+QBDV48mc6tFQ2qRU8Il/JsXA2nMg0qt1AtCgBQ5qZ0q4WsuuPMMWymREZezAa46eOYlET0daJpDYtwGKyk3PNaIpGjxyCPRfgPAgrzz///FB3QRAEQTgPad4uPFV/oavzTbqUNoIWGSwAElIIEpps5HYPkv2hWbr9moU96gies17OGqYQ/tDdw2qSCWuOjfJwL0m9DRR1HKMw+yDpxfXIcvwojBZIJKlxIWmtc2m1ejAvzmXyZVPEXTxDbMjDiiAIgiC8T+upwV31F7p63qXT3EfYIoMdQCYWlTG0JJLdGaA41I6J+BILqiZxhBJeS5jKMylLGewyIg/E55XRAFuymSlWjVJ/C9GaRpKSW8nJqSIpuf1ku0Z3EWkNV5LQNYFWcy+N8zSmz70O5QyWUhDOHhFWBEEQhKGjqmitexg49gRtfZvoSvCjmjVwAcjEYgYCHWlktEcp87eSxLGTP9pOOq85Z/CX4hto8yahNAwiH4siE0aSYLTNzFUxD5K3hg5/L6npjeSMPIot4f11l2Qs3WNJr1uK1V1Kh6mXhmndzF1yNRajZShGQ/gEIqwIgiAI51Ysglb3Hh1H/0rD4AF8iQEkcxRS4t+ORo24u7NxtcsM93ZRyCEkKX7BiR8Lb7um81jhcnbbRqG0+DHsHcQYHgDAIklcg4HLpD5awkdwy2Gyco8ztWgvBkN8PR4ZK5a2qWQcvxJTII1ewwAHxtUy9+prmWTXvxCocO6IsCIIgiCcU4Mv3sAuyzFUZxjsIBEPKL29eXjbCynr9XKVshmb7OX9BXp2JIzjqdylrEydTTBoQGkaxNrSwfvL7aQhsUw2kmfy0O/vp0WTyRvVSFL2OjTiF82aTVmYm2eRfngOStSGWxlka9lBZl2zhOtTioZmMARdLpqwUrLoi5hMp15y3likb0l64ORV46cT7Y2cvgjQ+vWvy5GdO0Zf27Xe0xcBkvMMZlCM6txxg76LzdS6Pv1tq+rpa4AM0yRddUljp+luWgvq+z2qbn1jbml3nb7ohOTSy/QVmnXO5RCO6m5bsuh7bkQ7unXVKYn69xtN33NNSv34shv/SEKPvt8NQM4cfbNea/qekrrfLwAKUsp01QWa9U3ipjj0XVNh8HTDH/+oq/Zs0TSN2tonaEipQlZiRKNGPH2F9DaNIdI2ipmphyhnBUZj/H2jw5DOX7Ov5G9Zi2k2Z6L0BEjc0YfmjQ+4BhQjs9hooiPfSqjBQ9OAwqjZx0hKXomqBtAAh6OcrMTbcL+YQKIngaAUZk3+TiZePZfb8pZ8coeF88ZFE1YEQRCE81co1Mv2HV8nGt2JrIB7IB3Z96/0bkml3LaaKan/hjEaDylN5ix+W3gHL6UvJIpCWk0XWS2t9EclfCe2NwWZ4mQbB4psvBlSWbi/l+SKtYzIX4OmDqKq4HCMprjo24Q7C/A+eZzEqIUeQz97Lm/ljiu+iVEWk7ldKERYEQRBEM6qpqZ3OHr0BygGL6oq424oZHZrI8fce1mQ/gp2eQCi0GTJ5Hf5d/BixiLMfpVh+7vo6daIHzOTsABTlACGzEHWD69giyKx8ICbxeY3GXHlGmS8aCrY7cMpLr6btNSFHFq7DcfaRuyahVprM9yYwRdG/euQjodw5kRYEQRBEM6KWCzItu0/IhR6A8UAAb+LFG0581p+TUQyM9P5OADN5kx+V3A7L6Utoqg5wvhNPRwNxqg/sZ00DWZEmjhSspp1RcuJWMeR0R/mix3vMq78JUyG+GQqNlsxRUXfJCN9Kaqqsemp1yiuSgEM7Es5xtjPX0F+SuGQjIXwfyPCiiAIgvCp6+zcx779X8do7ABgcKCCifbLcO76c3ziWS1EizmD3xXcznuWeYyqizL2YC8HtdjJbZTEwkxxH8EcfYUX5yTQn/l9YoZs5nQc5TOu3+IcEb8F2WrJp6joG2RkXIMsGxjw9LHv4XcY1pMDwO7hx1l0+y1YjdaP9VO4MIiwIgiCIHxqVFVl567/xut9DKMxhj9kx9g7jZnNa0gJrQOgxZzOn3M+Q11gKlnVVmwhD5tPrOMjAxWhPkb2bSNrsJ6+xHZenZdDb+aPcMQUvhz8DeMztgFgMWdTWPR1sjKXI5+4/uTI8QO4/3qMYYEcwlKE5ssDLFv8uaEYCuFTJMKKIAiC8Kno729k2/avYjIfo45hyM0ZXNW6maxwfFmVVlMaryQvRR2cRuhICgcIs5X4Wj5mScJlU1l4+AWStD6M0Ri9SR3sn5lOe/YvmBQ9wJeMfyDBOIjZlEFh4dfIzr4RWTYD8TuNVm1+lfy3zeTFMnAbBjHenMvl5frurhTObyKsCIIgCP9ne/Y8wbGeR9hlvIzUtjLubH6TnFD8CEi7MZVNpqWE3FeyxyOxkSgx4tM5JEkyfSV2MmuPs6TyTYxKCEMsRndyO/ZxGodzfsKXeYjZhvcwGVMoLPgWOTm3oCgfzDDrj/j528t/4fLK0Zg0I52OAUq+PI3EtNQhGQvh0yfCiiAIgvBP6xno5o/bH2CXIYvR3Qv4TvMz5Ia6AOhVkqjTruOwdzF/Q6WKD65HKYzKJCRbqSsIU7C9mis7VmFQwigxlf6kDuYM6+TZ3G/zb8o9ZCtBCgt/QF7u7SjKR+fLqh+oY+3TL7O4dSoAXbmDjPviEhSL+Hi7mIjfpiAIgnBGNE3j4GCAPx3aywZfhKt6JR5q+h9yQ50AeKVE+iI38bfgXF4EuolPVKgAo0IKE0MGOoYH6O/dj7I7k6s63kSRYygxlcGkDj5b1Exjcjk3Op6lrOgL5OV9DoPh45MDvlOzmoEXa1jsiQeVwUkK45cvRpLFCskXGxFWBEEQBF16wlFWdPbxbGsPtT4/N3Wu593Gp8kLxe/4CZFEa+R6HojN5Q1NInRiPR/FqFGmmpnTJ+PQYsy0/YnfVc9il6OEf215BFkGWVXxJffy1bx6DLIJ/+gplE/6MUbjx2dFjsQiPLj5j5S/l8b04FiiUgzL1TmMmD7snI6HcO6IsCIIgiB8oqiqsa7Pw/Ptfbzb60GLRbixczVPNT5F/omQEtVcHI5ez//E5rEJOf6DEigJoOW4+Ex1lJwBFVWJMVZ9kO8FFnLMkcXX6v+MLCvIqspAapgfZx7FHIPWqT9j/LS7/mF/Onwd/O7N+/jswStIjSYSMkXIunMcthKxAOHFTIQVQRAE4WOqfUGeb+/lpc5+usNRDGqUG7re4XuNj5EbjK8VFZZs7AzfxK+ic6iW3l9nSsOQKuMrSiFJUbhtoxeXX8Mgx7BI+/iS7Vb8RpW76v+EJJuRVI2OLCvfSz+AOQr9OYvJWfCPg8rWtq2seP1pvtp4AxbNRChJo+CL0zCkiPlTLnYirAiCIAgAuCNRXu0a4Pn2PvZ5/QAoWpTb297ku81PkhmKr90TVIysDS/nF+GFdEtWkMCACrkmfEUpBG0GSrs93Lg+iCFiwCbHOBw8yEvpo5GVHr5e+yRgQ9I0erOdLLNVkxb1EjIlk3T7Ix/rl6qpPFz5MH1r67i7+xYAtGIrRXeMQxYX0l4SxG9ZEAThEqdqGj+uaeX59l6Cavw6E1lTmdn1Dg/UPEJqrAeAsFHidXUBvxj8DIMnQkqiGsAzLInBgiQwyjg0N8tb9lKwdQyaZsBlCPBctJXD6WXIhnbuqv0rkICkaQTSUhgx2MaUxOMAmG94CCzOj/Qtpsa4e93dTNyVzx3uqwGwTMsg5aphSIq4kPZScdGEFVORJzU3VgAAc61JREFUDZPFfsoao13WvT1/XVBfoapvbXjNF9bddqxD5wvQo7OPZn1LyANEj7bqqpNt+g67hjradLdtnThaV52lVd/cCe6DO3W3HY3pG8sER56uuqT88brbxqDz9xOK6CqL9vXrblpJSNBVJ1t1/r7b9T1/AKyzxuorNOp73UrJ+k8FRKo8+rbpMuvboKbvfQDA36av1pCnb3/UgKqrTgt+cp0nGuOp1h5UwCrL/MDSRcOe73JtfyKpsR4iBomGXBtv132G34TngwTl7iY+NzaNh5MT6EhLAeBm7Wnmua30b5vHoAZ5BQ4itas4nDYHgH/pfhm0BNA0XHmFlJeNIP3Qn5Al0EZfhzR84cf6tr19O7n77cx3T0WVNJKXDSNhSpaufRYuHvo/vQVBEISLUqLRwK+GxdfRCagq/t46rvZ2sN7RDoDbbqQp38peKR5KZrfs55G0DlLmzMZwrB1zJARAP8nIgS4G1fhfwvM+M5w537gDcyzCxO4D2PvjHzl+Wx/cvICsYWWkWXwASGVL/2Hf6ncd5tae+PdSbigTQeUSJcKKIAiCwBdy0/hlaTYAv7Zexp7U6+lxxe+wsXvjR4OOGzIBuKzzCIM9fXz7hf2EAxLzju4FYLW0lNpjMwDIN4PWOkjKuDEsSg0ze2ATmiRhiUZ48XIvDxz6I7bkQlLN8bASSSr9WJ8i3X6m7CwGoH9MDPvEjLM4AsL5TIQVQRAEAYCv5KXzk5T4LLP3Fn+ZcNk98VNDagRPfyJNviwkNMZ3HaP6WAsD/ghpqakU9HUyqa2BFE8MY0ceoOIY/QrBun4i4TDle54mapCxhqIcmTeBmMFJWO7kwbf+glmJEdMkWns+eppTDUbpeKISq2rmkK2WousnnfsBEc4bIqwIgiAIJ32j522+3/AYAC8FCmg0JwLQVjcCgMKENkwj54LHg9Ni4Jc3TgFgQk0lcw/E7yBqzo7hLV1DW/SvvH3Pt/FKGoZojHdS55Op9BK2x0/rbMpYh1+S6A3ZaK46crIPmqrR9+IxpN4oPYZ+Vk3YQ4JF3/VVwsVJhBVBEAThAzXv8J3GJ7nbEp9L5ZAjfiG05o9/XIzJqMQ2LZnMlBJ+c9M4huWkYjKZUFSZEa3xGwnWD0/mST5PTcu7HGtpBE0jZklif+pIGgLpjO3MJmZIx28I8qTLQXfQTt2+/Se74N3QTPBwL1Epxr/nPsKEosnndgyE844IK4IgCEKctxPa9yMBPyyv4Gt56RxJKAEgK9oLQEXqETqLXyGt4kZm2yxIkkRKSgqWQCYSEmEDNKYZaGnMp+lw/BqXCn8nruvi6/cc8RRz/YhifK4bAXjC5aQuZqOn6Thtx7oIVPfheacRgAezXqDa2sCs3FnneCCE840IK4IgCEJc7Zr4f7PHIzky+H8lWeQWxG/DHym1oCgxsq1daPYevDm76HnyMJGeAMnJKVj98buJTFFY3jbI8lV/RZMksga9TJrRzOzJw1CkGO2BDFKsiQxLmkFpRMMvy7yaZQI03v39O/Q+cxQ0cI9WWenaRE5CDkXOoiEaEOF8IcKKIAiCEFfzTvy/pQsAkCSJW8bNjn9JakFNs7Cq/wYAOopfRg2G6H38ENbBZJSYBcmgomkxyt/4I5qkkRAMcVXxEY6WJdDZci8jko8BsKvdx1fyEvlBT/xU0+6sID67xiRLCoRjSOk2Xi3aBMCsnFlIkpj87VJ3XoWV++67D0mSuPvuu4e6K4IgCJeWWASOvxf//2EfTM4mJRbgw4pJilHo6uGljGvZGp2JZBugO3Mt0d4gRTUGZEBJ86IMvIZf8mGIxVjkqGHnsAn8LvkeAsE2xqbEL6LdVO/hajqYFgwyORhFlaFujAmXMYGgqrG2aZAD1bUAzM6dfa5HQjgPnTdhZdeuXTz00ENUVFQMdVcEQRAuPc07IeQGazLkTDj55c21PRxR4zM3V2jvoUkyDxq+yV4m0Vn0ClFDGJcqMcEmE+jfhJ8GAKYFmskvGeDewi+zUZvExug1lCU0IqFytCuGv2EfAFeE0wGJPcm1HDXXcaTzON5gjKl7byLPN5zJmeLiWuE8CSuDg4PceuutPPLIIyQlJQ11dwRBEC49J08BzQc5vgSEPxzl2y9UUqUWAHDZ4HrMvq2oksLv+R5HEkay3/U6qqaRY1IoD8Znlx3e18+kcS3Ecq5lXlsuAG+FrsIQVRieFF8HqP3YbgA81jJCtukA/CH5CexHHySxvxpTzMLiI1+mr0HnsiLCRe28CCt33XUXS5cuZf78+aetDYVCeDyejzwEQRCEj4pFw4RDvpOPSNh/6h+oeTf+3xOngDRN46evHKLbG+Kolg/ATIMLR+9DTKjdR1Qycj8/oHZ0L/v8XgBGJE5lnHEUC0YfRTMaYd5PuL0hzOyeKKZQkEDAycSM/QCo7fH/upViBhNvQNIM1Cf2sHN2DmMPPkhS/1GUqJE3/reSthr9610JF6chDyvPP/88e/fu5d5779VVf++99+JyuU4+8vL0LSwnCIJwKTmw628888Dyk49XnvryJxe7W6DrMCBB6RUA/G1XMyv2xRemPHriNFCuz41RkrlyzW+pqDtKRDLxB8s32FP6Fgf74xfEluUsRXOM42DwKuTCUgx2Az8/ECA3EiYQcDAh/QCgkR9tBqBgIA/VkErEHm/3rcJW3rxMpeLgn0nqqyIaivHG/1bSWi0Cy6VsSMNKc3Mz3/rWt3jmmWewWCy6fuaee+7B7XaffDQ3N5/lXgqCIFx4KiZ/hlu/tuLk47o7Hv7k4vePquROAlsyh9vc/Oz1wye/3Z8QX7dH8XVxXfYsAqYY//7HXzN88DhhycyTY+7gXVsL7v49IMn0Rn7EscEbGOj0Yy5y4YrA0kCEQMBJksXNVFclLslPTFOYPJhNgiwzkLQMQ9SAOyHA87Mk1s5zUHHoIZJ7DxMNq7z5x0qaj/adzSETzmNDGlb27NlDV1cXEyZMwGAwYDAY2LBhA3/4wx8wGAzEYrGP/YzZbMbpdH7kIQiCIHyUYjBhMttPPowm2ycXN++M/7dlN/x5Ji3P3c1sdRcm4jPSNgzKdCjx61G+u38No1J9aNZ0lmzqYnTsICHJwrPXfJkvX1nAyqxWQrKFaXYHjX/ax2AsvgiiuaWfYMCBpsE813YAJFTMsf/ka/170GQ73qRlJ74u83KFTPhLyxlz+GFSeg8RjaisfvgQsYh6dgZMOK9JmqZpQ9W41+ulsbHxI1/7l3/5F0aMGMEPf/hDysvLT7sNj8eDy+ViYuLlGCTDKWsVArr7ppCqq07j44HqH9fpH2afrO+vhyQtV1edlxbdbVu0FF11Zsmrq8594s1OD1mz6qozENJVF+MUb85/xy7p228PjacvAkoMLt1tN0X0jaWqc39skr7xAQhpdl11Vuk01zuc4NH0//0joW/ujGSdm+xWo7rb1iR9r1tV0vfBmKjl6G7bQ7vOSn19TJKKddUFY362DLyG2+3++B95x9+DVT+AnmMf+fLBWCHfiH6DBi2L5fJGfmZ8mkQpvkqyP2bigHcKBzJcrJo8lR3ydFQpfmGuPRpgcUuEW5sl8v0QIsqgFGC1sZK0oh1kph8jdbeNyVrNybaqraX8MW8Za6U9KOHjSJqBzJ5ElnckMOutBrZO+xVhk5Prvjue7GHiRoyLwfuf3//wOfl3Tv3pfpY5HI6PBRK73U5KSoquoCIIgiB8Ckrmwtd3xafbb9wM9ZvQGjYzpreG9cp3aVbTWKNO4NvhfyVX7uZzyjuUKO1MTdzE5KBExbv1bE/axeGKfLZY5tBnSOXlQisvF8LoXi+fbTIwv9vB9eHJ9B0bzRHvBoIT1/Fy9S2M629jmbKFskAt/3vsf+gwOPlcTiGt8gBtaf086RpPtCVARv8xujIm0VLVJ8LKJWhIw4ogCIJwHnFkQPn1UH59/LiXpx0at5BTv4mba9bzL97VuDUbG9QK3o1MoEKuZ7pyhKnWw0wNHqZyWxGlWjtVRVk0ZZVSZangcIqDn6bAf4VCLG6NckdzEjNbr6K3cyaXV7zItjQn/1N1P9fLm7nD8A450V7eaDzAPWmprE6wMWh6l9/efAdjWrKZWK9RtW4fk68uFrPaXmKG9DTQp0GcBjo9cRro9MRpoFMTp4FO7YI/DaSXpw21fjM9B9egNG/BGWznsFqAKsmMlhowS/HfQYeWxFPRhayzjCaSaaYxbRiDzmSQJCRNo7zHwy3NKrO7FLoN/dQWvsv9LZfRF0piobKLrxveYKRUx70pSfzN6QBgmDyayoxvMLotRh6v8d3r7qLYpW/fhfPTmZwGEmHlE2tFWDkVEVZOTYSV0xNh5XTOw7Dyd2L9zdTveQd31Toye3Zg1oJYpTD2E8/BgGZiRWwWj8UW02FORElT6EnPQU02gyyRGAiwqGWQO5qNxIIxtkgDvBWz0WhQmWfZzb+whh1JzTyaFA8sN3qDpFku5/Hs5ST6DFxh6+Zr867BYXV8KvsjnFsirHwCEVZOT4SVUxNh5dREWDm9iymsfFhM1Thw6CD1u1dR2PQKI7Tj2KQPXv/rY2N5LLaYjWoFiqISSzUTTnegppqRDRIV3f3c3KQytstIbUhlpxajy+KlwHyUWMpqXk+Jvy9eNejjF919bEieyl9yricYK+cmLcgNMydiynaI00MXkAvmAltBEATh4qDIEuMrKhhfUUFM/QG763tp2PQMFQ1PMEKrY45SyRylkuNqJo/GlvJK50zojAIaapKZg2kWKkdZSBoVZlGLh+VNJtyDyTQPTiXgHst1nQ3synqPla5aPBky/9O1nYV926ix5vN4znW8vknh5gET88qysU/IwOAyD/WQCJ8icWTlE2vFkZVTEUdWTk0cWTk9cWTldC6sIyufJKZqHDy4n8DmBxjb/To24mv9DGpmVkgz+FNwOZ0kn6xX7QbUNAukmhgTcrO8KUZBh5XGMIQ1iMghWlzVBBOO8v3Qegrk+Hh6FRt/y1zMtoRrWNySweVJCdjHZ2AtT0E2i7/Lz0fiNNAnEGHl9ERYOTURVk5NhJXTu9TCyofFAm5a1j6M48BjJIfbAFCBA9Y8HtcW8aZ7NjHtg/dxzSijppmxOzSu8PmY12zA67Xg+9CvRTF2Mcy0i1HmzWQYjyFLKuuSLuPdxGWUd4/lcreEdXQK9gkZmEsSkRRxmuh8IcLKJxBh5fREWDk1EVZOTYSV07uUw8pJaozY0bfwbfhfnJ07T365z25ig3MELwTmsq97LMHYB8uwaBKQbCLbFGaJ10fKQARtMAPpQxOxGyQ/hebdFJr3km/eS4fNyZsp15DsvYKZXRaMDiO2senYJqRjzLKL61uGmLhmRRAEQTh/yQrKqGtwjroG2vajbn8ADq0g2RfmOt8BFpsO0TTcxibLCDa1TGFn/0QCUQv0hmkHHsOO4pQoSnYzLFqH3Q/57jGg2agNzqY2OBtQyTDWMK1nNxnWn7Ijdzhq+Eou2xJhcHMrhgwb9gkZ2MaloYjrW857IqwIgiAIQyd7HPLyh2HBv8GuR9F2P4bV30tZ/SAl8h4WZR6iqexZ6joLeK1hCQcNowkGZGJ+jVos1DIKg0EjN7OdwsgAw31O7JE0DNEEOiNldEbKYBBsvX0UmPdwNHEjEXsZ5V3jiK7y4367HnNJIrbx6VjLU5HNylCPiPAPiLAiCIIgDD1HJsz7KdKs78LBF2HbAxi6q8hrC5LbFmR4io9R4+sYDDg4sr2IFzNuoMGcQ2wgSjQKDdF0Gkhnk0Ulz+ImN1xHiWzBFU7GHHbhV5OpCiyAAMhE8FuOILs0yoJFJNVohGoHGHi1Fmt5Krbx6ZhLE5FkcZrofCHCiiAIgnD+MFphwh0w/naoWw/bH0CqeYe03jBpvWG8dh9p09wUq+0E1xvZYpvO+lHzaY/akLuDxELQQBINxiS2oJFu6ifPWksRkB22Yo0kEosk0hMcAUHoAkzGPrKsCll+J6l7O/Hv60J2mLCNS8M2Ph1TdsIQD4ogwoogCIJw/pGk+AKLJXOhpwZ2/Blt/zM4fAFGHRuk1Oije5KJTEsfs1s20t2VwtrSz7I9czhBdwy5K4jsjdCpJNNJMruBJOMgk+315GkhkmUzSV4b7kAx4YiTxgg0EkNWJEbYFEo9IQY3tTK4qRXzsERS7xyNZNB/Abnw6bpo7gZ6dO5SbAbjqWsH9G83rPMmFpvOG07yy/VfwPXymz5ddfMn6MuaQX03cgBgNOmr21Ol72lTmKr/MGogqK8uLU1fXVj/TTG0duur0/te5Q7pf1m1BPV1dNEIy+mLAKv+m6Dw6bsRiT0N+u5MybbrP99v0vmnkt5n0LDR+j9Iupr13eWTN+rU7ynvi/j0jQ+AqrN03z59fSzSd1MgfUE/397xzvlxN9A/y98He58itvUBFH/nyS/HZOhLNNGdZKLdn8BmbQnr0xdTZUlF6Q7Gg0tfCOnEyzJH6Wea0oBVjjKQ3suMfkjrSaA5NB6fGr8TNDk/gcuzbKi1AxDTSLymhITp2UOw0xevM7kbSMREQRAE4cJgS4aZd6N89zD+ZS/Q5lqGT3KhqJDWF2bU8UGuaO/gbt/TPOr5Fx7zf5nP2NdQNDJKeE4m0Xw7GtAaS+Kl6HhWO8YQGSzmdUsfbw+v5M60LzHX+Udiskpf0yDPH+7l4GWpaIBnbRNqUP/t8cKnS5wGEgRBEC4sihHbuEXYxi1CjcZo3rKNwa0vk+JfR7rSgMsbxeWNUsJx5pp/T0/KgzSkJPFuwSI2ps6h7rgd2R2hq9vCSvsoDCUTKIn18PWkGVwnbeYyy69Z6/s+iYNwbHUbK0bZmB5WuXZjM8kLi4Z67y9JIqwIgiAIFyzZoJB3+Uy4fCbubj+71lUS2vcmOdI28kyVWENR8tqC5LW1M1V5kt7kZ2kpdPJI6AbWHp9J1BdFPTDI0cwkDpYt5i15PoW97ZT2HCa5TyKzP5OKw4nsyLfx52AfX6q18tmiNOyKuMX5XBJhRRAEQbgouNJsTP7MNGLLp3B8fxcrN9ShNG+kyLyLQstObHjI7A6T2d3DBP5Mb9LjvBubxEN9y2nsyELpDhApdXI0v4CjWYUYoxHy+zop6m6gpCPEku3JPBz08Zv2bj6Xk8rnc1NJM+m7rkn4vxFhRRAEQbioKEaZ4ZMzGT45k962Cg5vamPL9jaSolUUmXdRYN5GqrGNNE+IW9jCLeYt1EvprIpMZc2xCRxrziUyKhF3ShrH03M5np7LeyNj5PR3U9xTS3q9h20pqbyUmsXs4SV8pSCT4XZ9F8AL/xwRVgRBEISLVkp2ArM/M5xpy0qo2T2cwxsnsb3xNpxKB/nmbRSaVpJn7qGILr5meJ2vGV6nO+Zk3f4JVLsyaBqRyW77VDrkbJpSMmlKyUTSNLLcPRR1txKu3s8vHS6cBUXcPGEsszNTxJpDZ4EIK4IgCMJFz2hWGDUjm1Ezsulq9HB4UxtHd2ZzyH8dRslNiu0vjIvtpcAWIM3k4TOG9eCD4G4j9dYX6Ms1sjJlNmvNV9AgFdOWmEZbYnwehTRPP0Wd7bz81JO8arEwsqyMayaMJSMtVQSXT4kIK4IgCMIlJb3ASXqBk+nXl3JsRwcHN7TQ0f4dXkqop9u4kcvadzE2GsWZFSbL0M/IYDvUwozav/JD20s0pDl4N2Uar9sXc0waSbcziW5nEjuLRpEcGOBoRyf7n3qG9FiMsSPKqCgfSUFBAQaD+Mj9Z4mREwRBEC5JZquBMXNyKb88h47jbja/qBLxlnMkq4idagBH5x6SvQ60fCczTYcYJx3H6Q9S0RikovF1vm54h5ZUOxvSxvCyayn75fH0WRPpK0hkX0EZzoiHbd3t5L++ihyvm8KsfMrHjWbEyOEkJIgp/M+ECCuCIAjCJU2SJLJKE7nxnvkc3p3Ki2+8SoJsxW77HANWCEf/wn29i6lPHsFcQyWL2MUs5RDmaJCSjiAlHeu5U9pClyOJbVn5vJy8hM3GGXiMTiqznVRml2GP+SgZaCJ3xzayV75Jqi2Z0tJhjJ88huycLHG66DREWBEEQRCEE0ZPGkd/0MuaNWsZdNTg6kjDLP+I67J+zgppM2s8N/OCeS6WWIjrAhv5fGQd+Sn9mBUPWZ4ulnu6uI699FmS2ZuWyRuZc1hpXcyg4uBAykgOpIBZCzLMd5yCrsNsfXwndtVIdloBo8eMZOzkkZgt+pdnuVScUVh55513GDduHOnp6WerP4IgCIIwpKZPn0FNTS2NjY34kpuINWyikoX8JP0Jvp34E+5Wb2FnYDbPWRfwnHUB84/v4gsDm0gZlUOedT9WpZGUYA8LmntY0HyIXxn+SmVyOmszpvBS4jX0yukcShjNoYTRGIoiDA8fo6S/kbrth1i1xozLnE5hfgnjLysnvzQTSRZHXc4orCxbtoxQKERGRgbjxo1j/PjxLFiwgDlz5pyl7gmCIAjCuSXLMsuWLePBBx8kDJiK8+k7vpc3wgXcmH+Qp6WneSGWyFPmYg6F01mTP5mtWeXcenQtxaY7MGXnUmHfTY5pF1b5IK7oALO7BpjddYwfSi+xLzGXranjWZG+hHpDMUfMozmSORopI8YwtYYR3hoGO49w8G/vIYdTSE/MZcSIMsonDSMx3XZJnjI6o7Di9XqpqqqisrKSyspKduzYwW9+8xumTZvGm2++id1uP1v9FARBEIRzJikpiSVLlvDaa6/htjoZPXs+9RvXsLU7nxlpjVzvehiH8m2kSDq/lP20G208Un4Vhe42FnTW0JS8EIt0JUVKNyUJB8kxHcAi78aGjxn9Nczor+FbNSvY5yxlW/JoXshaQp1pGMeUERxLHAGJUDT8OGNDlSR072Pj/r2s2+7EThoj8scyZdEo0vIdQz1M58wZhZXe3l7Ky8spLy/n1ltvBaCrq4vly5fzq1/9ivvuu++sdFIQBEEQzrVx48Zx9OhRqqurOdjjpnjBNezeupbsQQ9FCf0sUe9DtcjMjo3kGe0qfquNpMGVzSOubBQ1SF5EojiWRIl3DsP8paSZrmNYiheXshurvAOT3MEUz1GmeI5yW+u7PJ15FRtdo+m0ZVNvKaReKqHeUsIbuVEm5uxkXPdRArVeDtaGaT8S4qYfT8aVZh3qYTonJE3TNL3FsiyTmZnJ2LFjTz7GjRuHz+fjyiuvpKur62z29R/yeDy4XC7W/f4HJFhPfVGStWC07u3GAl5ddWo0pKsuWH9Md9umjCxddYMHjuiqMyTonwa6YWO3rrqSq4t11YW7+nS3HeoJ6KqTDPoOgdpyEnW37W8d0FVnTtF39DDU69Pddn9jUFddcqG+32PEF9PddtJkfb9Ha3G5rrpwZ4PutlH1vfVEujr1bS4U1t20dXiZrrqetTt11WXdcK3uts3JebrqwgNtuuoi3h5ddZ29/Sz5yv/D7XbjdDp1/YwAfr+fN998kyNH4u+3JqORfFOU8s5XyTe2k2z+4H2rT3PwUPRaXlUvo1NL/ch2UmISJRGFck8nFeE+ipNzSbeHsMrbsBtWYZDiv8eAbOK11IWM6FzKG2UuVrlU6mwfPGeytWYu6z9K2eZR5KSlc/33J6IY5XMwEp++9z+/9Twnz+jISk1NDZWVlRw4cIDKykpeeOEFGhoaMJlMRCIRbrvtNqZMmcK4ceOYNWuWrm0++OCDPPjggzQ0NAAwevRofvazn7FkyZIz6ZogCIIgfOpsNhs33XQTjY2NrF69mra2Nmoj0J1zB5PKR2NuP0ys6m0y1U7yLF3cY/wr9/BX6tVM3tQm8pI2maZoKb2KTK8SZaclBauaQpk/wOSWNi63jyUvcTkJ8lYchlexUsPNXW+C9CZlVZO4zLmMHZ4t7CrN40DeRNqkPF5NzsN8dZCJfXUEXjNw5w3jh3qYzrozCislJSWUlJSwfPnyk1/zeDy89957XHfddWiaxpNPPskPf/hD/H6/rm3m5uZy3333MWzYsJM/f+2117Jv3z5Gj9Z/JEQQBEEQzpaCggK++MUvcvDgQdasWYPb7Wbtlq3k5uay+K6/4DSbOLh7G7EdW8gN95BtqOLr8iq+Ib2FW7HzvDSBl2PTaQiPJiAb2J9gZX/CKB7TNMo8jUyypDHPeB+j5BochlexyDuwKrtZ5NtNBZlM3pnOnq3bOXb5BA5mlNEuZ7M1pYytwBPr1/O14SO4JjMds3xhHmU5nTMKK8nJyYwbN+7kKaAxY8aQkJDAypUrKSkp4ZlnngEgFtN/GPrqq6/+yL//4z/+gwcffJDt27eLsCIIgiCcN2RZZuzYsYwcOZKtW7eyZcsWWlpaePTRRxkzZgxXXHEFiUuuJeTz0bpyH9L+XhxaNRZ5H/8i7+UryiYCFoXHlCm8672WRvLoVySOONM5AjxFiNxwEpNi32K5MsA45S0SlHfJUjrISutgZrSancd6OXi8k5Jb5vKXhlZ2SRVUkcg3qjv4fzXN3JqTyR056RSc5rKIC80ZhZXHHnvs5J1Ar7322slTNzabjRdeeOFknaIo/1RnYrEYL774Ij6fj2nTpv3DmlAoRCj0wXUiHo/nn2pLEAThYhaORAhHoif/7QvouzZKOD2TycScOXOYMGEC69atY//+/Rw8eJCqqiqmTZvGzJkzKb5xJtp1KoM7JzHw7gwIqChSO7CHZdpmvmj5MW7FzpOBWzkUnMlxo0KrotJidNCCxquaC0f4ZhZKy7nNsI4xhpU4DH1cwRZmRXfQ+fwmXvrcAzy/dhNb0nvZYJpBn5rKn5p7eaC5hyuSHdyZk8a8FCfKRXCr8xnPs7Js2bKT//Z6vbS3t5OTk/N/um354MGDTJs2jWAwSEJCAq+88gqjRo36h7X33nsvv/zlL//ptgRBEC4Fj614h4dfXDXU3bioOZ1Oli1bxmWXXcbq1atpbGxk06ZN7Nu3j3nz5jFu3Dgc03OwT8rEt60dz3oDWiALuIqaQIiO4FpmsYqbrC9zVLqcg96rqVesHDeq1BuieGWZl7HwcuxKbNGFfFnZzrXGVyiS2smLHEJ7eDY3mHJIPvQlpqZspmNCO2uUaRyUxrGmb5A1fYPkWYzckZ3KZ7NSSDVduJPWn9HdQGdLOBymqakJt9vNSy+9xKOPPsqGDRv+YWD5R0dW8vLyxN1ApyDuBjo9cTfQqYm7gU7tfLwb6O+PrHT1DXDD3f8h7gY6SzRN4+jRo7z77rv09cXf9zIyMli0aBHFxfHXmRqM4t3UyuDmVrRQ/HXaE4lx2FOF1/8GmVYvRvMYmrX5hFUXLQaVBilAvRKk2/L+e4/GNPkI31RWMU3Ze7L9rkgJlf6lJC8ycty+m1WRSWxkLj4pPheLSZK4Oj2Rz+WkMsl5fkwsd9buBjpbTCYTpaWlAEycOJFdu3bx+9//noceeuhjtWazGbP54joXJwiC8GkzGY2YjMaT/xangc4uSZIYOXIkw4YNY9euXWzYsIHOzk6eeuopysrKWLBgAampqbgWFJAwPRvvhmYGt7aRisLlKeV0Okdy1LOfvv61hGNPkpxZRK52BQXhBGZH7Lj9g3SG6tiencV2dRTb1NEUR9v4vLKKG5SNpBuPs8D1B7xbkik1JTJtuoNqw0o2xspZwyLqGMbLnf283NnP6AQLd2ancn1GEnbDP3fZxrl2XoSVv6eq6keOngiCIAjChcBgMDBt2jQqKirYsGEDu3btorq6mpqaGiZPnszll1+OzW4j8cpiHDNy8LzXzOCONjKMChkpE2lzjKNucAtdfTupH/suVUm3MuuIj0SfA6dtNMnmrQQ1A2k76nmvZAL/nvA5fhO9kVuVtdxpeIc0pQ9ifVg2NKFEzJRVRLgiczvVWjZrWcQ2aTaHB+EHx1r4t+Nt3JSZzJ05qZTZ9R+BHwpDHlbuuecelixZQn5+Pl6vl2effZb169ezevXqoe6aIAiCIPxT7HY7V155JZMnT+add96hpqaGHTt2UFlZyZw5c5g0aRIGl5mkZaX4yw4ysPoYzo5pZJsUspJm0WyfTm7du6xf3M0fr8zh9qYtFO5PAsAiRTEVXMttLRvpklfS6CqiyjGF661XcplxO19QVjJSbibbHCV29Dg9h3IZnt5N6ciHuMXwFJuYwzr5atpiqTzW2sNjrT1MS7TzuZxUlqS6MJ2Htz8PeVjp6urijjvuoL29HZfLRUVFBatXr2bBggVD3TVBEARB+D9JS0vj1ltv5fjx46xevZquri7efvttdu7cycKFCykrKyNsaaGj4mEMl0VJqr6WcHU/+WYDuabF3HlE474pEn8rmMhv8+6ia/PVgISmGOnNuhIpMoGcwb+RHWhg3oCPNHk4L5feQ8jRyhXKm8xRKhlvbIZ+OLCpkMOm4eQU1/Fvad+k1lDGBuNn2BEtY9uAj20DPtJNBm7NSuG27BRyLKahHr6Thjys/OUvfxnqLgiCIAjCWVVSUsJXv/pV9u3bx7p16+jr6+P555+nqKiIYcM7ADBmJpA+vZxwi5fuV44ht/q5fkDiVXeMoy4rq+SryZejqKqRiP9tMExBMWZiSLiOyOAKOhLtxLzHuf7djciObHylV/JC/h1kGN9iqrKJCqWBilgDLcdSebJqAZXOHMozVrIk7RGOOK5hDbPpCkf5XWMnv2/sZFGqiztzUpid5EAe4gtyz79jPYIgCIJwEZJlmYkTJ/KNb3yDmTNnoigK9fX1vLPawLHqacRiKQCYch3kfGMiqV8sR7VH+Gpt/BrOd7WrkRQVgMSKo0S8zxD2voSEjNG2EIBuh4VXpl3PxiwbxsonGbPyz+RWFtDq/h1V0c8wqDnJlXr4ieE5/uL7E/k1EZ7ceDt7N5q5vOpxPu9ewWRrGBVY1ePm5so6Zuyo4s9NXfR/6O6yc02EFUEQBEE4hywWC/Pnz+frX/865eXlgERnZykvvFDHxo0biUQi8brSJPJ/OpclUxMYNRAmJBsIkwBASkk/+dckMSB5CA++QDR8EMU4EgCzv5JA6jU8uei/eWbcJBq61hFafR+GrT56W39CX+Tr+NRcHFKALxlWssH8bX4QfIWW+hKe3T6F5lU1zN3/Nlf0NZOARH0gzC+OtzF+62G+VdXEPo++5XQ+TSKsCIIgCMIQSEpK4oYbbmDipC04HN1EIirr1q3jkUceIRCIzzslSRKumRX8ZHp8rhavIT51R2vLSGxJB7j+thl0pi2iV/ITi1SBZAE0Ir6VFAyGybDfyE+W/ZYfzv4Ma61tuLf9nu41u+mqvZ3u4E8JxsZhkFSuUrbzmvlnLFG2MRBKZFvnGLbskhm2cSe/LstldIKFoKrxt44+luw5xiud/ed0rIb8mpVPixbwo2r6J8M6nahb3+RoMb++yb/kD813cDp9m/frqlOjqs4N6p9foXBOhq66YFOXrrqW/YO62y6aq69tvWIB/ZOERXz6Dm8G+/S9QN3dOn83QO5EfRN0Gez65hcK1eifiM+SW6qrzrtzo6462az/gjz3UX3PobBf3+s65+rJutsOtTTqqsv/ly/oqjNYXLrb7t38oq46vfN1aif+Cj+d0ID+16JwbuXnF2O1vk13dyENDbPo6uriueee4/bbb8d44rNjdloK0EJDSibjWmrp7i6ipyefpqw9ZCQs40F7ATe3vkBSZABNkpG0CBHf25icN+EbmcSuUUsYaLico5ve4iuH3iC490mOdjvIn/D/yFL2kGz6HQDflh7hctt+fuT/VwAMJje3ZSVxVVoi1+ytocYfQgKc53h+FnFkRRAEQRCG0JjyP1JY8GXS0xsYPeoNDIYoTU1NvPTSSycXBu4Mx0Pp7uJyloYmkqG60DSFzrZc3JbdXKnuxaX50CQjBtfVgAkt1k5fxmG6XQYyDTKPDWziK4feAGDXMImVi0pxSVYcxpcACLhN5CtRng/MByDN0s3nxz3NjuZ3WLonHlTsisxTY4q4IuXczoIswoogCIIgDCFZNlJa+kPGVjxKYpLEqFFrkeQY1dXVvPXWW2iaRlswfqQ4PaCSRiK2nrG48vbgSmxHBpLt4CsZQzh/NrKSi8kyCwDLsfcoaD7Ob39/H5HnngHgxSmJ3H+dia8O3oHL8DRGqRk1ImF2hrk78nX2a8NwWRT+J/N3NJmLufW4i7pAiFyLkTcnDGNBqv4jiZ/aGJ3zFgVBEARB+JjU1LlcNvkN8gvyGDFiE6Cyd+9e1q1bQ31lfI2s9JDKnkCMQRUSvR1UVKxhTMVqDCEPyDJhm5u+tJ3Y5BpM5gQUNcadrzxKWvMhYrLEmtHJvDhvkGv65pMePk6C4TUAZKPGvdFbeFu9DKMi8fANxdQpY/kvfooPG2OtQVZNHM7IBOuQjM1Fc82KIAiCIFzoLJYsJox/lsTE+4mE11BbO5VNm7bgyVJheAZOs5GOoEoYjUl9Gg1tVpLTB0gNjyDgS8Wf0EDE5KG5IB3UNMx9naj9nVRlp9Jvt7BiRoCkqJPbeueQZPo2EvFro56MLuCR2FUA/PcNY3lDGuTR0u8AMEPbwDfUlaQY3hqycRFHVgRBEAThPCLLBkpLvseSJfdQkh1fffuQ1QvAsfb4hdKDdpnO3tkM7M2iZfM3iPlKMUYd3HrbbcyvOkpaVxfIEqHUTHwlYzg2ajTucWX0pLi5s+taspQnMEhdaBq8F6ngF9E7AZgzLsgLcpBHu+J3I/2o8VG+afgrsWAtnZ2vDcFoxImwIgiCIAjnoUTLdOb1/Qsjotn4zPGFBjMC8TlOxqR2U9NTT9h9G/6uEciGAM65a8nNMpFceYC5695jznvvkTDQD7JMJCUTH8nM6ZjJYm8Mu+FdNA2Oqrl8JfJdNGSUpANU5w/jvT4vVhn+cvin3N30HIUFXwSgvuGPqKq+u88+bSKsCIIgCMJ5Rouq9P61Cm0gyghpBH0mBwDpUgNhqYPGQyswJVyHbMxDUvzkzb4fV3QFxz9z08lTO3vy8jH0tpAZSkMO+EGWyQs4cBn/AEA3iVwd+U/CshEpoZXwxNnUh1SyzEZeK0tiac8mAHJzb8doTCYQaKKj49UhGQ8RVgRBEAThPKJpGgOvHydc7yYgaXw74sNtsQOQEPLjTTqGZLsK2ZiLKkXJTnkZS089Jb+RUZuaAajPysbmkPnsL/+LopLLaTJ2UdAV4HptIwmSnw4thatC9xLFAAaJwOTxRBQ7Yx1WVk0cToXtg7nBFMVGQcFX4tsdoqMrIqwIgiAIwnlkcEsbvp0dqGj8TAvgcxqRLPH7YRyeME7vWBQlG8ngx1HxV3LkHLL/aEAZlAhmxY+qRJNc3P4fvyWjuJSY08ehosMsTJQpkapQNZmfRL9CFy4MBpXg9HQwGZlll3ll/DAyzR+fxDQ351ZMplSCwRba218+p+MBIqwIgiAIwnkjWN3HwJt1ADxAiMEcO499eSoxwBKKkduWgzHiQpUiBDO2Mnr3ThKefxlJlfBPitH3wwiRLJWZN91EQnJ8YcRt0ce4s2cKWcYnAXjafzlrY+XIkoZvcgZYDUxsOMqot19jy7q1+Hwfn5ldUawUFHwVgIaGP6Gq+mcI/zSIsCIIgiAI54Fgh4+2p44gAW8RxlOexAtfmUbUJGMJq9z+nhtFyQQtgt++m0mrN5GwRUKTNA5ek03tDQqYwDdXxTiyDAD3oRfZ7z3Cnb4DyJKPY2ox/6Z8Pt7e+FQkh0xOw1sU1TchqTG2bNnC/fffz7ubduDD8pH+5WR/FpMpnWCojbb2l87p2IiwIgiCIAhDzNsf4Nif9mGKaVQSxT8nhz/eMhGrSaGhx8Nt671kukFTQ5ilSuavfZm0nh7CRiN7Fo7iV4u+z3uRGwHwX6ayqvdvsO8ZXljzXX7emYdNriSimfhK5C5iKERGJWK1R8hsuY+w/Dz9BZexJjyMkNFJJBJhy65Kfs8XWKNOw++P34GkKBYKP3J0JXTOxkeEFUEQBEEYQi29Pnb8bjfJEY12VFhWwrcXj0CWJYKDEeoeOEBWf4ygQSWl7xBTNj2FLRBg0Gbl3QXzOZ5UQUl9D57OVAzNEpjAceyvBF6/i2ZpBBNiawD4VfQW6rUsooUJpJnd3Lbiz1y+s58SZzH/uWwyXVIyz3mHM3LGYjLTUwhjYjOTuP/++1m7di1+v5/s7JsxmzMJhTpobXvhnI2RCCuCIAiCMESq2tys/t0uRoQhgIbxpuEsnZoPQDgQ5fl/34h50IDPBAl97zDu0GMYYjG6UpLZUpxBf2r8upRxLbVc1dJI+uYYI6u9zOkc5GmHk+/3tSNLITar5Twdm08s08rkQA2/fvEhnINucrutzPWOIj/ZxlVjswCJB/b5+cLUNG7mNTLpJhwOs2nTJu6//34OHDhCRkZ8ptuGhgfO2dEVSdO7Dvl5yuPx4HK5+E7+Uszyx69g/rB0h/7ttnv0DYvLLOmqC0X1t10+Ql9dd4e+us4B/W3rfTYMRvUVplj0jQ9Ap1/VVVecrC9ju/26myZN57pcJxZAPa0Ot/62nZbT1wDk5eqrCwX0t+326Kvb26XvDWl0kll3250+fc+higJ9z6GaFt1NM2eBvn5W79K330nJ+tsO63xvN5r01Xl1/g77w35+cvAd3G43Tue5XTFX+McG/GH+9t/bWBqUUdGQry8ld3L2ye+/9cAmGg5EiEphKg78L5m98Qtvj48Yw4ryYRyZNJeC9iZmdFZSQRXjo4fQTAFeSbBh1zSWewMYUPFoNhaF/ovWxCzmhA5wxfa36HZakYi/tsLDxvNu4jzqek6c7iHGBvN36ZTSOaKM5ngsC7u9n7S0BjKzWjEaB070UGbmjM2YzRn/1P6///mt5zkp1gYSBEEQhHNMVVVWP7CHpcH4H1/Wq4pJ+1BQObxpLw2VQZAUJlY+QkpfHV57Ou/MX8zT06cxuesoP9/3Byqko+TQSYei8GhSAhYtgTvcXhwn/vLcGBvDr6K30Z2WzqKOdxnRdIQepw0JGLC4OGoZTmV4DOEeP8nSIPOUQ+Qpbh6VbsFmc5Oa1sjEtF3YbB+kYlm2kpZ6Bdk5N//TQeVMibAiCIIgCOfYxscPMKMnfsh9cHY2uTM/OHTa/Mbr7H2mCRJHkdJ7ECnSysbJN/OX5bNY3v4mK/d+nSKpBVnSqDMa+H/OJAzAVwc8ZJw4/HtILeS+6GfZbBvPWPkgX979AIqq4rE4OGoZzjF7Kf2mJJIkP4uVw2QrHoKSHYvFR0JaK0VpW7AnDJzskyybSEmZS0b6UlJT56IotnM5XCKsCIIgCMK5dHRFNaU1JxYmHJ3IvCtLAAg3NdH8q1/RfrgPT8VdSGqMI9lumiZdy1T5Xbbs/z1GKQYSHDCb+LM9CYMhxrf6ByiJxINPs5bG/0Ru5DVpBhVJZr5y8DHCksZ+1ziqbaX0GpNIlf1MVerJUY4QlcyYzT5S0hpIS2vE4eg92U9JMpKcPJOMjKtIS70Cg+EMrqX4lImwIgiCIAjnSOeaRhJ2dgGwLtPI7beVExsYoOfBP9P3zF9RYxo1k38CgDn5IN+zPYQzEF9pWZNglSWVx+12TKYg3+kbYEIofhFUn+bgj9Fl/DU2n0RnAn8OKqxv2MnLKYvpNSWRqfiYoLSQKx9DkwwYTX7SUhtJS2/C6ew62T9JUkhKnBYPKGkLMRp1XtB3lomwIgiCIAjngGdzK5E1TQC8ZFP5/OfH0Pf4E/Q8+CCqN36kpWn4XPy2TKyym1tNv8as+hnAzlP2Qt6wh7AqPn7Y1cuMWDzABDDxWHQxf45eg99k5V+Ndm72GPijNsgWVw5jlU7y5OMgyRiNQVJSm8hIb8Lh7ECS3r/IXSIx8TIy0peSnr4Ikyl1KIbnlERYEQRBEISzbHB7G54T0+g/TYhlJQN0XXctkdZWABRXjORxMTbLS0CDsc4X2WIZwZtmOzvsnRS4A/y/Fjczjb3IEsSQeDF2Ob+L3ECnlIzFHOUPQTN2pYeXjB2Y5R6ukCQUJUxqahMZmc04nW1I0gd3Xbqc40nPWEpG+pXn7ELZf5YIK4IgCIJwFvl2dTDw6nEAVvUcZlHLm/DqcSKAwRojbYwHV2GA97xfJRyw40vw893SZBw99ZS0RfmvsJ8pSW0YTfGg8Q6T+O/QTdRquWCWKIj2sFDtY4/FjSppKEqE9JRmsrJacTqbkaQP5lxwOEaTkX4V6elLsVpzhmI4/ikirAiCIAjCWeLb00n/yzWog010Hn6cme3xIymyQSVl5CBJw320RBJZ419Cu38+WrSRtvCrLFofZEpCkKmpzdgcEQD2KMO5z38zu7QRSAqUy+1M0FqQjRCToyQnt5KT3YrT1QRS5GQf7PbhZGRcRUb6ldhsRUMyDv9XIqwIgiAIwlng39vG4LNPoh19HV9dPwmaBJJGYomf5BFeDnqzecY7j05rAgn9Zsy+h0HzM1/qYUZ+A0mmIADHDTn8d+gmVgcnAVBi7OUyuRGLHCYpqY3c9FacyQ1Ihg8Cis1WRHr6UjLSl5KQMHxI9v/TJMKKIAiCIHxaNA1a9xB65zF8q1YzUGVAjcqAREJ2kOQyL73NNh7uXEhvgoypr4+USD8AebYBZmbUk22JXzzbZUjifm7ghcFZRDHgUoLMMtQyLOU4RYU92BNqgA+m6raYc+JHUDKWkpAwCknSP4P4+W7Iw8q9997LihUrOHr0KFarlenTp/Nf//VflJWVDXXXBEEQBEGfnho48ALagRdw7+uk+6CDqD++ZoIlKYyr2EddVwprW4bT5TKjhH04+gAkUiwh5mS0U2hrBmBQtvKg9Toe651PAAuKpDLHcYjrxuzDkXAUTfOebNYQTMTRPYWCOXeQnD/logooHzbkYWXDhg3cddddTJ48mWg0yo9//GMWLlzIkSNHsNvtQ909QRAEQfjHvB1w6GU48AK078fXaaJzv5NQfxIAss1EpDDI3lAWbUEH4WQFACWqEjaoeDIHuNYSYYqhBknSiKDwdOKV/LH/Kvp64xOwjUup5Y4xr+IyxW951jQwGlNItV2BYW0p1r5Skq8vw16QOTRjcI4MeVh5++23P/LvJ554gvT0dPbs2cPs2bM/Vh8KhQiFPlgJzOPRuYqXIAjCJSSixohqH9ymGoydwWqqwicLuqHqDTj4ItRvBE0l5DbQWZmMr82CBrgTHHTl59Es+QgZDHBijd2wQaUpw09/WpAbohLXRqvjM9ICryXN4X+CN9DcEV8VM83aw20jX6A89SgABoOL9LRFZGRchdM2ke7/PUisL4h1TCq2Sef3bcefhiEPK3/P7Y4vV5uc/I+XMb333nv55S9/eS67JAiCcMFZ3XGMle3VQ92Ni4OmwbG3ofI5qH4bYvE/mCN+me7DSbjrLHhNJlqznHSkpuKXo0AIMBBRVJoyArRmRrAbk7jea+HK4BGsUggk2OwYx39abudwaxaSCooUZWnRu1xZ9C4Wk5m0tOvISF9KcvIMZNmEGorS/0otsd4gSqKZpOXDLtpTPx92XoUVVVW5++67mTFjBuXl5f+w5p577uE73/nOyX97PB7y8vLOVRcFQRAuCIsyh3NFRunJfw+EA/zqyLoh7NEFytcLr90Fx1YB8dzi96bSd0hlsNnMgMXC8YIkOl3vX7YQRZWgOSNAc2aEBLOThX4rUwJ9FAcOY0AFCaqUAu5Vb2FjdzkgIQGjko9yS9mLWDqDFKb+gGEVtyFFDYQb3Hh3tRKqcxNu9YIKSJB8cxmy9bz6GD9rzqu9vOuuuzh06BCbN2/+xBqz2YzZbP7Y14+FSzDKH//6h9X5E3X3RXHqW7CpprdZV52qRU5fdMLG7fq26dW6Tl8ElGVfr7vt9vZPHvsPc9Omb4M+3U0jaYquuiPB3NMXAYOqvvEBsPYn6qrz0KFzi/oPuQ8zXqer7qU9K3XVZZrG6G67I7JHV52kWXTVHe5y6247XRmpq66pUd8h7rbB3brb3vySvjqbIUVXndqi//Ud0/lekJo8VlddT1+lrrpg7Lx6u78w1G+CFV8CbzsxzUSTp4zIji5ifQp9NgvHC5PodsZXH9aA/iSFmrxBrFY7C/wmvh7qpTh0CAMfTMpWrebycPQqXlFnoiIDGgWOZhbkraWkv57Bt0cydsbNZHWOpvehKsItJ8LJhyjJFpzz8jEXnh/r9pwL582z9+tf/zpvvvkmGzduJDdX34eRIAiCIHzqYlHYcB/axv8h6pNpqUvBX2NCCvfSm5BAbUkSfQlWIB5SejOt9GdpzI4EuDXSz7DIPowfCihH1TxWxqbwljqF41o2Kc4BZiVup9x5iBxfDyk9M8ntuxOXlgpJUTik4eWDP1qVJDPm4kTMxS7MxS4MSfr+eLiYDHlY0TSNb3zjG7zyyiusX7+eoqILc3Y9QRAE4cLX3LwV44qv4jjaTn9NIt5WK5oGPQ4bxwqT8VjNaEDMYiWUaafY4mUejYwJ1n5iQGl3pFCaVM/8pHf4pr0Ga3MpKd5FpHgWYvAooGrgBYgfdVMSzSeCSTygGJIvvXDy94Y8rNx11108++yzvPbaazgcDjo64ofZXS4XVqt1iHsnCIIgXMw0TeNw72HW1q1F2fYqN+yqwV9jod+digZ0Ou1U5abhNyqoFhuBxGQyHQEqlBomchST9NGA8lZsCqtsUwkkG5mYtI9vJD5Akj8Ra+NMkmpvx+JPRvrIaR0NxWWKB5OSeEBRksyXxEWzZ2LIw8qDDz4IwJw5cz7y9ccff5zPfe5z575DgiAIwkUtokbY07mHNcfWUFVdRUGjxmcOHcFSF6A/4kADWpKdHM1Jo9uRTo8rm2JbN1OUI0yT1nw8oBinsTZpEua0Qea41vPT6F+wd5XjqJ2N3bccSZM/0r7iNGEu+eC0jpJsEeHkNIY8rGiaNtRdEARBEC5y/oifLa1bWF+1nsbjjSS5ExndFOGrNY2ktvUAElFk9hXks754Mn32JEaaW7hC3stM+dWPBhQpjzfts9iWPpLktE4ui1bxM+9aXM0zsO//DrL20Y9W2WnC8qHTOkqKCCdnasjDiiAIgiCcDf3Bft5rfI9NhzbR19RH+mA6rqCJJfUqpTU7cXq9dFqTeKN0LluLy+my2JluPMIt8iZmygc/GlAMBbyZOItDufkkmNyM7Aryvd4A2UfnoKiLP9Ku7DB+cEFsSSIGEU7+z0RYEQRBEC4abYNtvFv7LrsO7SLYHiTDl4ELF7keiWE1R7F2uDmUXMrK8ts4nJKDaoiyUNnDN+UXPhZQqsyFrEyfSW16OgmxKJNbbFy1dwQJ4Y9OWionGD9yWseQahXh5FMmwoogCIJwwdI0jZqBGt458g6Hqg4hd8ukhlJJJRViKtYuD8E+lUpbAc8Mm07faCtOBlmo7OEL8ssfDyi2It5Jm0ZdcgpZQZmFjTncVDsc6UOndiS7jKUk+eQdO4Y0EU7ONhFWBEEQhAtKTI1R2VXJuwfe5XjNcRz9DhxRBxlaJoOaiYawDc+ghUZTKv1JVkjiREDZyZXyDmYqBzF96DbjKnsR61In0+LMYKQnhSub8rFWp5/8vl+JYSsxkTgyL37kJN0mwsk5JsKKIAiCcN4Lx8JsadrChsoNtNW1keJNwaSacWhFdKgO9qsuuqIJeGVT/AcS4gHlBmU915i2MU078pF5UKrsRWxMHU+fpZCKvlyuqilAUeOzoA+gsoMIao7CFYvLGVaaLMLJEBNhRRAEQTgvecNe1tWsY9uBbXiaPCT7U/BrNgbVCmpVJ52qE9/7SxoDyJDIIMssm1lo2s3kSDVGLRafZpb4KZ5tKePwG0cwtmMYV1anISExKAfYrEXZi8o+YowoT+O7i0ZQkpYwNDsufIwIK4IgCMJ5o9vfzaoDq6g8Ukm0PYYSyqBDzaVDddCpuj4aTgBZ0yg1dLDYuY0Z8iHG+2sxaVEIx79/1FbInqRxhBnL+LbRLKyx4ZV9HLbXsCP1AGsHRnE0moAGzBqWxP2LyqjITTzn+y2cmggrgiAIwpCq669j1d5VHKuqIdLjYiCaRoc6lg7VgR/TR2plDTIJUeaoYZprH+Nj9Yx112IKfLB4aLWtkAOu8WiRyxjbPprJ/UH222t42fkW1VnVoLqoal6O11sMQEWuix8uHsGM0tRzut+CfiKsCIIgCEOiy9fFv73wb7iaXAzEEtkYmYX371b4ljXIjsnkqDHSbHVUDNvMyMF2pvQcwdT7QUA5ZiugKmEiJv/llHTlUNRRz47EKn6Y9wb1llZsksRoz2U0NHyZLjXeRnGane8vLGNxeaa4JuU8J2kX+BSyHo8Hl8vF53/+BiaL/ZS1wbaw7u1qvujpiwACsdPXAJonqLttyWY6fRGAQT59DSAl6dweoHXr66fa6dHXtv0sLMBlN56+BiCs73cDEKo6rqvOlJmlq06y6uwjEDper6vOPHaEvg269T/XIm2duuqM+fr2WwvrfN1wBs9zWefz3GnW3bbmCenbZqK+bWpufdsDMIxK1FUXa/TrqpMz9b3GfN5uXnj0NtxuN06nU9fPnE11PXX89unfkupOpS3mZF2klCgKMirZUY28qJm8qEyCUcWTWEtRxj5m+fZR4a09uY1aaz611imYvbOwdKr0BprwGQ7zZlEN+zPiz0WXauby3gXs753GYU0BINNp5tsLhnP9hFwMir7nl/Dpe//zW89zUhxZEQRBEM6pnbU7efGFF0kNp1IfS2RzpJgYCtmSl2VuC3bViaZF2TeqkxLlPb7o2UB2RzcAIcnIbucsTIPLSexOZbDvPap8L5KS2MvGskF2pMXbSIhZuKZnCU39U3hWi19jazXK/OucUr48uxiLURm6ARDOmAgrgiAIwjnz+ubX2bl2J3bNzhHVxa5ICRoyZWorC/1ZKJKdtsJGxiSs5n/73sOmxo8U9hpdHEycRHb7beR1pFDj2cP2gRVkJLVQN3qQx1LjH2dm1ci1fVdA72yeVhX8J24FWjYumx8uGUGWyzpk+y7880RYEQRBEM66aDTK4ysep/VIK4pmYA92DoaHAzDM38HlpOEZ1sAc7XXmDuyEE2cz6+xZNKSnk9d6B6XNZXQHm9na9xdSnQdpmezj4RQzYMCgKSzpn0lRz3yexEKLGgM0xua6+NnVo5lYkDRk+y7834mwIgiCIJxVAwMD/OmJPxMZCKJpsE2yciw4CoBJSheTyhpY5vtfRvTHr99SkTiUks9AdoSEgbmUVl9POBJhj/s1HJbVNI33cX+SjZhkRtIk5ngmMaf7Sp43JvFsLAjESHeY+eHiEVw3PgdZFhfPXuhEWBEEQRDOikhM5W9rd3F020oMmkRQCrMTJ3XBctLo5/Mp67gptIaUbjcAftlMVWYGgZxBYqqNrMNfwtJfSqN/FyblGepG9PFsUgJBOX4zxWXecpb3XMUGRwHfi7pRI0FMBpkvzSria3NKsZvFR9zFQvwmBUEQhE9VtzfEszsa2Ll1E6VqMwYkuowD7I4NJy2o8lvjA1ylbMd04q7LTmMyDVl2Ark+YgY/iY0LSau9EXewkzC/oLqohscSXXiV+B0jo/wl3Np7Da2ZY/kxPbhPhJ3FozP58ZUjyU+xDdm+C2eHCCuCIAjCp2J/8wBPbm1gzYEmZstVDFMChBUjW7OtjGzX+N/ok0wxHz1Zf9RYSEuyDXl4J5oUwBhIJ3vfFzD05hHhCY5kruehZAfdhvj1JoXBbD7bfzWu0rnc7++mprYDgBGZDn529Siml4hJ3S5WIqwIgiAI/7RQNMbKg+08sbWRyuYB0iQv15mO0J+QyM6MHCZHK3mq6Qny6QYZoijsNYymxpyNa8RRrPYuNCRczXNIq74RSd3M0ZT/4g8pRhqN8ZCSEU7huu75TJp8Aw+3elm7uwGAZLuJ7y4czs2T81HEdSkXNRFWBEEQhDPW6QnyzPZGnt3ZRM9gGNCYZmpAzjSxJ6WMaz3r+M+GX+NQ45Pb9WkJbJfGc1QqJSWnhpz83UgSGILJZB7+PPY+I+0Jv+DXaf1UmeOncVzRBJa2zyQ/cAV1U/K4bX0dkZiGQZa4c3oh37xiGK4zmIBRuHCJsCIIgiDoomkaexr7eWJrA28f6iCqxucwSU8xkpfdT8xk5vaOV1lctQX5xPwmx9QcnoktIKikkJbQwYjh67A6fAA4W2eSdvRqgqYX+UX+PnbYzIAJS8zMFV0TKWycxUF7Ji86Vfq2NgAwtyyNnywdRWm6WBH5UiLCiiAIgnBKwUiM1yvbeHJrA4fb4kttaEDp6BTMmVGKe7bw5dYXqRisOfkzG9UKHoleyUGtlIXmKkZnbSGn5DiSrKGEXGQcvhPbQAcPZP2SlQ4AM7ImU+wpZglLqWsu4LGECF1KCPzxdXz+39JRzB2RPiRjIAwtEVYEQRCEf6h1IMBftzfy/M4m+v0RAIxWhWETMwnavCxs+huf2/UqGeE+AAKSwhpTMX/0fIFqLZ80aZAbE9YzfuQWzIleABztU0k/OI3X0l/isdIeVElC1iTGdheQGxtDOJDAS74Mjjnia7k5LAbunj+cO6YVYBTr+FyyRFgRBEEQTtI0je11fTy5tYF3jnSgnlhXJzXXQcroZFRfDbe2/DfXd76LRYsHij7JzvMOO3s9N7DOPR0VmWypny9kPkvh6BqQVZSwg/SDN3HcW83Xhj9ESAGQGN6TzgTzDL5w57e4+5FV7Aq5iBlkJOCWKfl8Z8FwUhL0L1IpXJxEWBEEQRAAePdIJ/+zuprqTu/Jrw0bk4Y734ZjoIqfVP6Cywf2nPxeC5m8Zs9kveLE2LuQrbEiQGKY1MTdE57EkhJffDChYxKWHcV8e+QK2tLjK1Tn9jsZ6xvD12/7EYe8ZpY9uo8Ob/zunwJZ43+/PIOKQjFFvhAnwoogCIIAwLf/tp/BUBSrUeG6CTncOa2QpcfqGYxGWXH8T0wf2IcKVDGM7UzgwDCZPb5DTG+dyouxQkCiQj7A1y9/AsUYRQ7bSay8HnPDu3xm6hEAUj1WKtrz+PzyHzJ20mW8sKuZH7y8F4AEQkw2NvPNq+eJoCJ8xEUTVkLdETRz5DRFqu7tae0+fYVWfUMoJZ7BSp9Gfedltd6AvrquQf1tm3Q+JaIxXWVyoVN302qHX1dd5FC9rjrj8HzdbZvS9F2052+sOX0RYEnN1d22edRwXXXB/VW66kxpmbrbNo0r0VUXq+vWVScn2nW3HTneom+bFouuOsOwbN1tS059pxXkFH11SqH+GVOjXWFddVKqvrY1ne9rWvj0ddNKUnj3SCdLK7L4z+vGADC23caWgUFSXekwAAGsvM4CQpgp1Fz0e/3UxlLRkMmT2vnS3EdRFDB78rHtuptj1fVkmNsAO/ZAMks3J5CcncaoirG8sq+FH644AMAopZcJhnpSHSmMmTBS1z4Jlw5xtZIgCIIAwL/OiYfX1/a30u6O/zF0Q2b8CMdOJQMAu9nAct4GwF3rJt9bwLFYGgBXlK7HpoDiTSV3z/fpGnTQk1qBUj+WYS0a3qRyYgmJ9Le18Js/v8B3X6hE02CcfZDJhjrMqpk77rwNg+Gi+Tta+JSIsCIIgiAAMCE/iSlFyURiGn/ZFD+CeVVaIhZZYo/hxBE72UgZdVw+3AVAZyyJQc2MVfEzJX830ZiB/F0/xhBx4M/aAkBtyQ1883WN9EAyRxd/hlpbEQ+1JqJqMDklwthoFbJmYFLJFSSnJQ7FrgvnuSEPKxs3buTqq68mOzsbSZJ49dVXh7pLgiAIl6z3j648u7OJfl8Yh0FhUaqLOuuJU5ux+On2y1P6sFgs1GrJAEzP2YXmldiw61uYosmovm6OD67AYPTgt2cRTpjNnSsr2Sdn8k7GIjRJpkxtY9TgfiQknP2jmLp41JDss3D+G/Kw4vP5GDt2LH/605+GuiuCIAiXvMuHpzEqy4k/HOOpbY0AXJ+RRJ0tHla0cPwauK72FrxRL42xeFiZ6tpJ7Zv55A2UAhDtPMjC5h4OFr4FQF3RUsZXtTPp5ZXEkChT25libUWSwOEuo3R4CUmZ+q95Ei4tQx5WlixZwr//+79z3XXXDXVXBEEQLnmSJJ08uvLE1nr84Shzk53EbGkMKlakE9Po7+kJ400ZRNUUihxN+NfbiPiMTJXia/VEOw6RF40yb2oZPbYWYgYb9YVX8bXKV1ji9DDV1oosgamrFaPHw9h5+i9KFy49Qx5WzlQoFMLj8XzkIQiCIHxULBYmHPadfETC+u4eBFhSnklBio1+f4S/7WrGKEssy0g+eSooKCtEhx1le9d4AKa7zPQEk3EZU0mTDGhqmFhPNQAFOePYUrQCgNbsGUQtaXxpzX9gJEiibMLU204suIaUnAvu40g4hy64Z8e9996Ly+U6+cjLyxvqLgmCIJx3Dux5gWcfveHk49Xnv6L7Zw2KzJdnFwPwyMY6wlGVGzKTqD8RVuqznDSH0+gKpJFglol4YgwoTrJs8Z+JBKpBjYBiYkN7O+3O4/S69oAkU112I5a2GFd0vkNKdAKykooa8/PuI39C07RPfyCEi8IFF1buuece3G73yUdzc/NQd0kQBOG8UzHxJm754ksnH8tufuiMfv76CbmkOcy0uYO8XtnGeIeNPkd87iKfmsh7TbMAWDgqi9fcaQwaEsiyxk8fhT2HAdhvH8FjO3YD0Jm9GYUQHucwulPHkfien2zLf+BIvwJZMXB893aObFz3ae2+cJG54MKK2WzG6XR+5CEIgiB8lKKYMJnsJx9G0xlMTAlYjApfmFkEwJ83HCcSGcRijZ92l3xG9nVXANDU4yEkGbFICqmW+JGXyMBhalw5fNP5JaJKFwBOm43x9lcBqB55MzHZSMar3Qyb9Vem3Ri/ZnHd4w/h6e76P++7cPG54MKKIAiCcG7cOiUfh8VAU28vG3fcSaphPwCZvn5UZPItAXY3e5G1GLNNNmRJxhtx04CJn8z4MoOSlYSEfgD6+xwUO98lQe4hojhoLL0axSPherYBOedlskcVEw74efvB+9FU/bONC5eGIQ8rg4OD7N+/n/379wNQX1/P/v37aWpqGtqOCYIgXOIcFiN3TM3gm+MfRopUYkuIL7ORE+vGTJieUHym2ckDeyiyxo/CtPnr+WnpF/Ca7JSpx4nJnQAkRJ3UZE9lmuNJAJqz5+G3JGE5LKO+XkXBghrMDoXmwwfYt/rNIdhb4Xw25GFl9+7djB8/nvHj41eVf+c732H8+PH87Gc/G+KeCYIgXNpisRCzU3/LyOQaAlEz3dr3GCR+OqlA6cSvGcmUfEwc2EeqnAVAY6AWtzGBYf3N3GB+kyhRJE1i+fzlKONvYphlM6mmGmJIVE7+AgDOVxUiNTWUf3YAxRxl0zNP0NsqrkcUPjDkYWXOnDlomvaxxxNPPDHUXRMEQbhkqWqIg4e+xqBnCzHNwv17v8q2PQO0aPF1gPKT+yFB4YrudaSa0rDIJiJqCHeggRG+eu4+toL9J+4OssfsjK8YT2rZFbgNDuY6/gxoBJQidpUPQ4pKJD5mRA23MOrGbjTFz6o//pZYNDqEIyCcT4Y8rAiCIAjnn7r6P9Dbux6ApJQlePypGIMDHFNzAPiu7zmuzdzF9rGX4cmbgAb4o4PIksyyjpUcGD+aQWN8bhdVCfCfL30JayTATstU0o115CfsACCa/S3a0gswdULS70xYW9yULm2js/4Yb/3+vwkOnsGq8cJFS9Iu8BvbPR4PLpeLeck3Y5BNp6ztUat1b1fSTr2t91nRdzdSjIjuto3oW24+hFdXXaKSr7vtmFqnq65P5/6ockx32wU4dNU1avrevKyq/iweQ98Ffaqkb3sa+l9WSVj0bVPK1lVnkPRtD6BLO6qrTtH5NhGTdA4QYNU5mBH0vRbPRK5tiq66xsAmXXV2LVV32yH03e1iIkVXnYq+11hIDbLHvR63263rLsqW1meprv45nHhtqJqR1q58jhyp4N/lxzBJ8Xb7cPB8ymLezL6GMk8m01r78FS/yEC4kz6ni52jauhMjoeWlLCZ4YFp/Lf7JUxhIy/2/ppBNQ1JUylofIuihtVIaARHqBwvSqSxLY2ElFSuvOs75I2u0LWfwoXj/c9vPc9JEVY+gQgrpybCyqmJsHJ6Iqyc2lCHFYBQqJOOjtdo71iBz1cTb0+TONI0GnuThcXqbnKlnhP9kFhvmcDjBcs54JrC6KYm0o++R05HI312hYPDOmnMHAQJrDEHk8ni/zUdYH//nRwPTQcgKdRC2f4/YwvE7yDqyUrisCsBn8XM5GuuZ8ZNt6IYjLr6Lpz/RFj5BCKsnJ4IK6cmwsqpibByehdSWHmfpml4Bw/T0f4KHZ2vE4n0AdA1mEp7dSmTvI3Mlg+erG+R03g64yqeKbyGQNTEsLpDlNUdxtHfSlVxF7V5blQZNDmZ6ZEUvlxtZI/nDqKaFRN+Sj1/I2PfLiRNQpMkmpMc1GQm4RpexpXf+B4pOWLm8ouBCCufQISV0xNh5dREWDk1EVZO70IMKx9pT43Q27eR9vYV9PSsRdMihKImjjaNJL1FY6m2kyQp/hoNo/BWwiyeKF7OjsQKbEEfw+qOUNBUhce8n2MFvUSMGprsYlFvLpOPz6M3El+1udC4kbymlzBWx/cvJks0pLhozM1g5ue/TMX8JUhn8HwTzj8irHwCEVZOT4SVUxNh5dREWDm9Cz2sfFgkMkBn10ra2l7G692PpkF9XwGB4+nM9NcwQa49WXvUkM/jOdfxUu5ifAYb1oCP4oYqLL69dDl3ELSEMcTs3HR8Aa7ey9GQcSodXKb8mdjeMFKPO96mLFOXnggLrmDhN76Lzen6VPZFOPdEWPkEIqycnggrpybCyqmJsHJ6F1NY+TC/v5629hU0tqyAWAcDISd1dWUUd3lYwm5sUggAHxZWJM7jLyU3cDQhvpaQOegnveswUTYToZL8gWIW1d6KIZKERIyJ9pco8qyn60ACitsPQNCg0FSYw5hf/BvFk/T9PoXziwgrn0CEldMTYeXURFg5NRFWTu9iDSvv0zSV/oEdVNe9gGfgHdDCVLWPxNRkY1FoPyVy+8navYYynshfxis5C4jI8QtnjeEAtsF9KOE9zD8ykrLuCQBkGKuZ77ifYGuEnoMOFH8YAJ/JQHjxAib9239gspzZ+kfC0BJh5ROIsHJ6IqycmggrpybCyuld7GHlw2IxPzWNb3Gk7nmcUiWt3gza64oZN9DGfGkvBin+uuvDwZuOy3m49EZqnYUnf16OBUgeaGBWdRplbTIWNcDljkcoM71He10y/YftKKH4/vucdrJ+dA/Z1y0X17JcIERY+QQirJyeCCunJsLKqYmwcnqXUlj5sF5PC+/tfQqrdyWauZ+DTeWktmpcre4kU4rfqhzTJPbIo1iRsZCX8uczaE04+fPGaIzhrVFGtoSZ3r+V5fY/YIr5aKtOwn3UhhyNv4ajWU5KfnQ3tgWfAVnMe3o+E2HlE4iwcnoirJyaCCunJsLK6V2qYeV9kWiMjevewdr+CqH0HRzxZjJYn8mMwRpmKodP1nVoyWwwX8aL2YvZnz6cQav95PeMUY2Sdh9XDbzGvw48jTkQov1IEt4aC5Iaf66quUYKPzMR+7zboXAWKGJ+lvONCCufQISV0xNh5dREWDk1EVZO71IPK++LDoape3o/Mf9WPNlbaXA0cLRxJMWdXq6VtuGU4hfShjUDexnFBttlrMuYQl1aFl7bB+8VhliUaf27uaXrHeY078BTacbXYEbSQJNgsNBJ6rggBRMmooy+FkquAHPCJ3VLOIfOJKwYzlGfBEEQBOEkQ4KJYV+djG97Lv1vTiJD9lCQuZ1jY7fxgG8GclMCS8L7GCM3MJUDTA0c4Kb6t9hfX87GhMlUpRVSn5qD257AptSpbEqdinFEmHkTd7K4aRNj1h5BqYviqPfgb5R550g7xlF/ZpT1h2SWjEUeeRWULQG7/qApDB0RVgRBEIQhIUkSCdOyMRW66HuuitzmBeQ0L+A1ZxP1mRvZkJDFi22TGdvfzlJ5B0VSO0W0s2BwE3sHR1PZUE61vYi61CzqUvMYSLCzOnUmq1NnYhoXZmbnXqZv28VlWyoprG4gctzA5hFj6AmlMLLmr5Tzc1ILypBGXAUjlkJS4VAPifAJxGmgTyBOA52aOA10auI00OmJ00CndrGfBvp7ajiG+806fDs7ABhIMvGzmBe7cSsjS2vw9RhJbY2xTN1Gkdx58ueq1AIqpXKqpRJ67EkcT8miOjMDnzX5ZI1BjTKp5iCzduxkxoHdmKMRjowexfGSEtKVXsqpppxqEjMKYeSJ4JJRDuKuorNKXLPyCURYOT0RVk5NhJVTE2Hl9ERYOTX/gW76V9SgBWNIZoXOYgevdnSwI9uNI7uZvO5aEhpizPId4wp5L4oUf272YWebNpZDlBOQ7PTZHFSnp3E8PYtBa9rJ7SuxGOOrD3HtxjWMOV5FfWkpTfn5BGw28mjjCjZTSCskFsDMu2HS54doJC5+l2RYeenma7GZTn21d39bVPd2VZ2fsYrOE2l+fZ+vgP677dwefXWJZzAb9c46fTs+LlfRVRfVP+R4fPrqDPqaxhvU33Zeur66Y236Xi4zp+jsJFB3VF9QytKXVTigP5PjMOury87UV3e8WX/bU6bpG6ODe/Q9J5u9+oPx5WP1tb3lgL7fzfRy/cE4GNBXl5iub5tHdPbRHfFzX907531YAYj2Bel7/ijhpg/+INMkqLWqbMmwUJ3Sj9G4E1dzN8O7erlB2kyaFJ+OP6wpbJZGs4kJeNR0HHKEJqfG4UwnBkcpxxMKTm4zs6eL69a/w5Kt7+FzJtBYUEhLXg6TTUe4QtuIgRhc/iOY8yNxlOUsEBfYCoIgCBcsQ7KFtK+MJXCwm2DtAKE6N7G+IMP8MsPqw1BvJyrN5YhT4mBhI7/UhlPcV8ucwSNMkI4zjwPM4wAHKOJldSYeTwnlfSpB55sk2qOMtg/njazpdKSm8+ANt/H41TewcPsmrn/vbSbu2UNbTjYvl93A7KS1ZG24D8KDsPDfRWAZQiKsCIIgCOcdSZGwjUvHNi5+2DPaHyRU5z7xGID+EBVujQp3PpBPVLqCQ2ldHLG/Q+nAHiYE6qmQ66mgnl7NwXPM47n+uSg+je3GFrLaXuFzTgerCiZwNKGI1y9fwOuXL2Dy4Uquf28Vk9dsptPkoCM/keE9D2ML+5CW/lZMNDdERFgRBEEQznuGJAuGiRbsEzOA+KmiUJ0b3/F+PLX9WLxRxnWlA7cBt9FqbCfiepLMwF5SYl6+bniNrypvsFqdxJO+RezUJvCk34elq5WblCq6h6WxPnMiu0aPZdfoseR1tXHdutUs2r6RpppUlO2rSFpVhet7D2AqLhnSsbgUibAiCIIgXHAMyRYMyRbskzJI0zRi/SFqj3TRXNVDSquf9GAWxp4f4SFGWNmG1fQCdupYquxkqbKTKjWPJ2KLeS08ndcpQjqgUnyoksRkqC4spDktiz/c/C/8ZdlnWLxtPdetW01sXRM9667CUjEG1zXX4rxyCYbk5NN3Vvg/E2FFEARBuKBJkoQh2cKImfmMmJmPNxLl7doujh7sIqM9wMS+WWQEZuKVGkhQ3sRqWMtIuZn/kh/hZ6aneIVp/Dl4HS1qOq09QI8fl+xGSjbgzUzi5WmLWDFnMVOOVXLDqpVMOHCQ4IGDdN57LwkzZ+K85moc8+YhW8Wqz2eLCCuCIAjCRcVhNHDjyGwYmU2l18/TLT3saOhlVE8Zk3tLmN51K5nSOsyG17HTy22s51bzeo5as3hBnsnz7oUEonboAWPPAEZATTCwO7WYnbd/j3ytm+WbNrLgvdWwYQODGzYg22w4Fi7Edc3V2KZMQVL03xEonJ4IK4IgCMJFa6zDxtiR+QwOy2FFZz9Pt/XyU6+Vsp7lfHZvCZOjR0m1b6FAqmdkoJ2f8yLft6xmf1IOLyvj2NtXQYMnD3kwijw4CA2DtCsy/1uwiIfuXsTC7mPc/M5K0ttqcb/6Ku5XX8WQlobzqqtwXXM15hEjkMRdRP9nIqwIgiAIF70Eg8IdOancnp1CpTfA0209/HdmIun1GSzY7KHYVsHoxAbGSkewRT1M7/YwhQb6bIepGmlns+LiUF8Zh3pG4gk7UbqDxLphFfmsvPwusi1+ljTWcuXWV7F3d9P3+OP0Pf44ptJSXNdcg+uqpRizdU6WJHyMCCuCIAjCJUOSJMY5bYxz5vOL0hxWlGTzzLBRHNn8Nh2HgryXUcEYezOXUUkq/aT5D5BWD5PVcXQ7XLQPq+GorYfKgRJ29EyidSATKRCjPWDmMedoHlsyinwpyLymY0yuXU9RbS3dv/0t3b/9LdbJk3FdczXORYtQzvOJ+c43IqwIgiAIlySHQeHOnFTuyE5hf3kxzx24nPCKp1Hbk9iVfislSiuXsY9SGrDK+8n37SftWDbFscXMcBZyW/peuocf4b1QCe/1zqGjJxUpoNKkWXkidyxP5I4lMRZhck89E5p2Mb7yMIFdu+j4t1/hmDsX1zVXY589G9n06S8pcbERYUUQBEG4pEmSxHinjfEzJ+OeMp7nV62i5/W/0eBModZ5HckMMFbax2TtMDalDavyGIl+C63H5hJSb+dOp4lbUo/QXn6MF0yj2Ng7k2CvAbkvxABG3s0YzrsZw5E0jWHeTia2HWTi7mpGvPstDHY7rqVLcF19NdYJE5DEpHP/kAgrgiAIgnCCy2jgK9dcTWDeHF57+nEa9uyiPzOP9wxz2cIMMq37mB86SD5eCi2rKGQVzb6xbHfPJdKyiK/YVL6esJP3CmO8WjGSWnchck8w/hiMcsyZyTFnJs+NWIA9EmR8VzUTt1cz8fWvk2Q1k3DNVWTfuBxziZh47sNEWBEEQRCEv2NNcHDzv36TjtpjrHzkAdq9bsJJaTQFpvAnZSrRlO1c5znG9HAveeZK8syVeKLpbO+/gh3uYST2xPiBpYlAShOv5uSxYXgJ4ZCM0hvE0uNB7gnhw8LmnLFszhkLQL6ng0m7q5nw1nfIM8Rg/gJKb76OnJL8IR6NoSfCiiAIgiB8gszS4Xzu3t+wf/VK3nv1JQZTsrCaLNA7hUcTZ/GfGe9wa3871w4O4DR0sdDwHHM1E4eDM9kanERXMEZRQyeLFB9HyuD1zDL6crJA0zAO+MnvrUHqidDqzqTJGX+sKL0cczTMmNo6Jnzj30kjQmzcBNKXLmbK6FxyEi+9yecu+LCiaRoA/kjktLX+aFT/dnWuNq/37GJAf9O618kK6uzjmbQdVvVtNBDTtyx9VGcfQf/+6H3ShvR1EdA/RiFV01Xnj+hvPKhzLP26+6i7aYyf8nPoTNrWO0bBmL5O6n3unknbIVXv70b/dQYhnWNpiujbpt7nTzAWf4/0eDz6OiB8ROmMy8kcOYbVj/8n9W0RIskZZHWGcPXM4qcjZX7tfZOlbg+3DETIo49ieS3FrOWx7p/RmdjBvoiBgS3j+Fy0g4GiRraU5FCVkEtNVilkwT3hn+HuS6Cqr4zqrrH0xczsTMxnZ2I+iUEPj774X6zdsZU3P/NV7r95/FAPx6fi/efi+5/jpyJpeqrOYy0tLeTl5Q11NwRBEARB+Cc0NzeTm5t7ypoLPqyoqkpbWxsOh+OSniXQ4/GQl5dHc3Mzzkv4/n0xDh8QYxEnxiEuFotRW1tLaWkpyqc8FfzFPsYX8/4N5b5pmobX6yU7Oxv5NKcULvjTQLIsnzaRXUqcTudF92L6Z4hx+IAYizgxDjB58uSzuv2LfYwv5v0bqn1zuVy66sQN3YIgCIIgnNdEWBEEQRAE4bwmwspFwmw28/Of/xyz2TzUXRlSYhw+IMYiTozD2Xexj/HFvH8Xyr5d8BfYCoIgCIJwcRNHVgRBEARBOK+JsCIIgiAIwnlNhBVBEARBEM5rIqwIgiAIgnBeE2HlAvKnP/2JwsJCLBYLU6ZMYefOnZ9Y+8gjjzBr1iySkpJISkpi/vz5p6y/kJzJOHzY888/jyRJLFu27Ox28Bw503EYGBjgrrvuIisrC7PZzPDhw1m5cuU56u3ZdaZjcf/991NWVobVaiUvL49vf/vbBIPBc9TbC8PGjRu5+uqryc7ORpIkXn311Y98X9M0fvazn5GVlYXVamX+/PnU1NR8pKavr49bb70Vp9NJYmIiX/jCFxgcHDyHe/GP3XvvvUyePBmHw0F6ejrLli2jurr6IzXBYJC77rqLlJQUEhISuP766+ns7PxITVNTE0uXLsVms5Gens73v/99omewBt3Z8uCDD1JRUXFyordp06axatWqk9+/IPdNEy4Izz//vGYymbTHHntMO3z4sPalL31JS0xM1Do7O/9h/S233KL96U9/0vbt26dVVVVpn/vc5zSXy6W1tLSc455/us50HN5XX1+v5eTkaLNmzdKuvfbac9PZs+hMxyEUCmmTJk3SrrzySm3z5s1afX29tn79em3//v3nuOefvjMdi2eeeUYzm83aM888o9XX12urV6/WsrKytG9/+9vnuOfnt5UrV2o/+clPtBUrVmiA9sorr3zk+/fdd5/mcrm0V199VausrNSuueYaraioSAsEAidrFi9erI0dO1bbvn27tmnTJq20tFT77Gc/e4735OMWLVqkPf7449qhQ4e0/fv3a1deeaWWn5+vDQ4Onqz56le/quXl5Wlr167Vdu/erU2dOlWbPn36ye9Ho1GtvLxcmz9/vrZv3z5t5cqVWmpqqnbPPfcMxS59xOuvv6699dZb2rFjx7Tq6mrtxz/+sWY0GrVDhw5pmnZh7psIKxeIyy67TLvrrrtO/jsWi2nZ2dnavffeq+vno9Go5nA4tCeffPJsdfGc+GfGIRqNatOnT9ceffRR7c4777wowsqZjsODDz6oFRcXa+Fw+Fx18Zw507G46667tHnz5n3ka9/5zne0GTNmnNV+Xsj+PqyoqqplZmZqv/71r09+bWBgQDObzdpzzz2naZqmHTlyRAO0Xbt2naxZtWqVJkmS1traes76rkdXV5cGaBs2bNA0Lb4vRqNRe/HFF0/WVFVVaYC2bds2TdPiYU6WZe3/t3fnMVHdWxzAv8PAAAOyyI4FyiJF4mgNptMpJpZCWLQWutgWLWLVEgWiFmiKpdQFJaQUxJpIWjXYpBbS0tBaJAaEoqEgVsIoWooLoAkBXCpKoQ7DzHl/NNzXEeUJT2ax55NM4tzf7/7mnJPr5DD33ty+vj5hTnFxMdnZ2ZFKpdJvAo/A0dGRDhw4YLK58WkgEzAyMoKWlhZEREQI28zMzBAREYGmpqZHWmN4eBhqtRozZ86crjCn3VTrsGPHDri6umLt2rX6CHPaTaUOR44cgUKhQEpKCtzc3DB37lzk5uZCo9HoK+xpMZVavPDCC2hpaRFOFXV2dqKqqgpLlizRS8xPgq6uLvT19enU3d7eHnK5XKh7U1MTHBwcsHDhQmFOREQEzMzM0NzcrPeYJ3Lnzh0AEL4fW1paoFardfILCgqCt7e3Tn4ymQxubm7CnKioKNy9excXLlzQY/QT02g0KCsrw9DQEBQKhcnmZvIPMvw3uHnzJjQajc6BAwBubm74/fffH2mNDz/8EJ6enjoHqKmZSh0aGhpw8OBBKJVKPUSoH1OpQ2dnJ+rq6rBy5UpUVVXh8uXLSE5OhlqtxtatW/UR9rSYSi1WrFiBmzdvYtGiRSAijI6OYv369fjoo4/0EfIToa+vDwAeWPexsb6+Pri6uuqMm5ubY+bMmcIcY6DVarF582aEhoZi7ty5AP6OXSKRwMHBQWfu/fk9KP+xMUNra2uDQqHAvXv3YGtri4qKCgQHB0OpVJpkbtys/Avk5eWhrKwM9fX1sLKyMnQ4ejM4OIiEhATs378fzs7Ohg7HoLRaLVxdXfHll19CLBYjJCQEPT09yM/PN+lmZSrq6+uRm5uLffv2QS6X4/Lly9i0aRNycnKQnZ1t6PCYnqWkpOD8+fNoaGgwdCiP1TPPPAOlUok7d+6gvLwciYmJOHHihKHDmjJuVkyAs7MzxGLxuKu1+/v74e7uPuG+n332GfLy8nD8+HHMmzdvOsOcdpOtw5UrV9Dd3Y1ly5YJ27RaLYC//8Lr6OiAv7//9AY9DaZyPHh4eMDCwgJisVjYNmfOHPT19WFkZAQSiWRaY54uU6lFdnY2EhISsG7dOgCATCbD0NAQkpKSkJWVBTMzPjv+v4zVtr+/Hx4eHsL2/v5+PPvss8Kc69ev6+w3OjqKP/74439+b+lLamoqKisrcfLkSTz11FPCdnd3d4yMjGBgYEDnF4h/Hlfu7u7j7jobOw6NIT+JRIKAgAAAQEhICH799Vfs2bMHb731lknmxv8rTYBEIkFISAhqa2uFbVqtFrW1tVAoFA/d79NPP0VOTg6OHTumc97YVE22DkFBQWhra4NSqRRer7zyCsLCwqBUKuHl5aXP8B+bqRwPoaGhuHz5stCsAcDFixfh4eFhso0KMLVaDA8Pj2tIxpo44kelPRJfX1+4u7vr1P3u3btobm4W6q5QKDAwMICWlhZhTl1dHbRaLeRyud5j/iciQmpqKioqKlBXVwdfX1+d8ZCQEFhYWOjk19HRgWvXrunk19bWptOQ1dTUwM7ODsHBwfpJZBK0Wi1UKpXp5maQy3rZpJWVlZGlpSUdOnSIfvvtN0pKSiIHBwfhau2EhATKzMwU5ufl5ZFEIqHy8nLq7e0VXoODg4ZK4bGYbB3u96TcDTTZOly7do1mzJhBqamp1NHRQZWVleTq6ko7d+40VAqPzWRrsXXrVpoxYwaVlpZSZ2cnVVdXk7+/P7355puGSsEoDQ4OUmtrK7W2thIAKiwspNbWVrp69SoR/f0d4+DgQD/++COdO3eOYmNjH3jr8oIFC6i5uZkaGhpo9uzZRnHr8oYNG8je3p7q6+t1vh+Hh4eFOevXrydvb2+qq6ujM2fOkEKhIIVCIYyP3d4bGRlJSqWSjh07Ri4uLkZx63JmZiadOHGCurq66Ny5c5SZmUkikYiqq6uJyDRz42bFhOzdu5e8vb1JIpHQc889R6dOnRLGFi9eTImJicJ7Hx8fAjDutXXrVv0H/phNpg73e1KaFaLJ16GxsZHkcjlZWlqSn58f7dq1i0ZHR/Uc9fSYTC3UajVt27aN/P39ycrKiry8vCg5OZlu376t/8CN2M8///zA75CxWmq1WsrOziY3NzeytLSk8PBw6ujo0Fnj1q1bFB8fT7a2tmRnZ0fvvvuuUfzB9KC8AFBJSYkw56+//qLk5GRydHQkqVRKr776KvX29uqs093dTTExMWRtbU3Ozs6Unp5OarVaz9mMt2bNGvLx8SGJREIuLi4UHh4uNCpEppmbiIh/92SMMcaY8eJrVhhjjDFm1LhZYYwxxphR42aFMcYYY0aNmxXGGGOMGTVuVhhjjDFm1LhZYYwxxphR42aFMcYYY0aNmxXGGGOMGTVuVti/1tNPP42ioiKDfX53dzdEIhGUSqXBYmCMMVPAzQozSatXr4ZIJIJIJBKeLrpjxw6Mjo4aOjTGGGOPmbmhA2BsqqKjo1FSUgKVSoWqqiqkpKTAwsICW7ZsMXRojDHGHiP+ZYWZLEtLS7i7u8PHxwcbNmxAREQEjhw5AgB48cUXsXnzZp35cXFxWL169QPXIiJs27YN3t7esLS0hKenJzZu3CiMq1QqZGRkYNasWbCxsYFcLkd9ff2E8YlEIhQXFyMmJgbW1tbw8/NDeXn5uHmdnZ0ICwuDVCrF/Pnz0dTUJIzdunUL8fHxmDVrFqRSKWQyGUpLS3X2Ly8vh0wmg7W1NZycnBAREYGhoSFh/MCBA5gzZw6srKwQFBSEffv2TRg3Y4wZG25W2BPD2toaIyMjU9r3+++/x+7du/HFF1/g0qVL+OGHHyCTyYTx1NRUNDU1oaysDOfOncPy5csRHR2NS5cuTbhudnY2Xn/9dZw9exYrV67E22+/jfb2dp05WVlZyMjIgFKpRGBgIOLj44XTWffu3UNISAiOHj2K8+fPIykpCQkJCTh9+jQAoLe3F/Hx8VizZg3a29tRX1+P1157DWPPJz18+DA++eQT7Nq1C+3t7cjNzUV2dja++uqrKdWJMcYMwmDPe2bs/5CYmEixsbFE9Pej6mtqasjS0pIyMjKIiGjx4sW0adMmnX1iY2OFx9sTEfn4+NDu3buJiKigoIACAwNpZGRk3GddvXqVxGIx9fT06GwPDw+nLVu2PDRGALR+/XqdbXK5nDZs2EBERF1dXQSADhw4IIxfuHCBAFB7e/tD1126dCmlp6cTEVFLSwsBoO7u7gfO9ff3p2+++UZnW05ODikUioeuzxhjxoavWWEmq7KyEra2tlCr1dBqtVixYgW2bds2pbWWL1+OoqIi+Pn5ITo6GkuWLMGyZctgbm6OtrY2aDQaBAYG6uyjUqng5OQ04boKhWLc+/vv/pk3b57wbw8PDwDA9evXERQUBI1Gg9zcXHz77bfo6enByMgIVCoVpFIpAGD+/PkIDw+HTCZDVFQUIiMj8cYbb8DR0RFDQ0O4cuUK1q5di/fee0/4jNHRUdjb20+6RowxZijcrDCTFRYWhuLiYkgkEnh6esLc/L+Hs5mZmXAqZIxarX7oWl5eXujo6MDx48dRU1OD5ORk5Ofn48SJE/jzzz8hFovR0tICsViss5+tre3/nYeFhYXwb5FIBADQarUAgPz8fOzZswdFRUWQyWSwsbHB5s2bhdNdYrEYNTU1aGxsRHV1Nfbu3YusrCw0NzcLDc3+/fshl8t1PvP+PBhjzJjxNSvMZNnY2CAgIADe3t46jQoAuLi4oLe3V3iv0Whw/vz5CdeztrbGsmXL8Pnnn6O+vh5NTU1oa2vDggULoNFocP36dQQEBOi83N3dJ1zz1KlT497PmTPnkXP85ZdfEBsbi3feeQfz58+Hn58fLl68qDNHJBIhNDQU27dvR2trKyQSCSoqKuDm5gZPT090dnaOi9vX1/eRY2CMMUPjX1bYE+mll15CWloajh49Cn9/fxQWFmJgYOCh8w8dOgSNRgO5XA6pVIqvv/4a1tbW8PHxgZOTE1auXIlVq1ahoKAACxYswI0bN1BbW4t58+Zh6dKlD133u+++w8KFC7Fo0SIcPnwYp0+fxsGDBx85j9mzZ6O8vByNjY1wdHREYWEh+vv7ERwcDABobm5GbW0tIiMj4erqiubmZty4cUNoiLZv346NGzfC3t4e0dHRUKlUOHPmDG7fvo20tLRHjoMxxgyJmxX2RFqzZg3Onj2LVatWwdzcHO+//z7CwsIeOt/BwQF5eXlIS0uDRqOBTCbDTz/9JFyTUlJSgp07dyI9PR09PT1wdnbG888/j5dffnnCOLZv346ysjIkJyfDw8MDpaWlQqPxKD7++GN0dnYiKioKUqkUSUlJiIuLw507dwAAdnZ2OHnyJIqKinD37l34+PigoKAAMTExAIB169ZBKpUiPz8fH3zwAWxsbCCTycbd1s0YY8ZMRPef2GeMPRYikQgVFRWIi4szdCiMMWbS+JoVxhhjjBk1blYYY4wxZtT4mhXGpgmfYWWMsceDf1lhjDHGmFHjZoUxxhhjRo2bFcYYY4wZNW5WGGOMMWbUuFlhjDHGmFHjZoUxxhhjRo2bFcYYY4wZNW5WGGOMMWbU/gMuhIhRgalu9QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n_photons = 100000\n", + "psi_mean = np.radians(22.5)\n", + "# Photon times are completely random. No pulsation\n", + "photon_times = np.sort(np.random.uniform(t0, t1, n_photons))\n", + "\n", + "# Here we generate polarization angles for all the photons\n", + "random_angles = extract_varying_random_photon_angles(\n", + " photon_times, \n", + " psi_mean=psi_mean, \n", + " psi_amp=0, # No change of polarization angle\n", + " pd_mean=0.5, # A mean polarization degree of 50%\n", + " pd_amp=0.1, # A *change* of polarization degree by 10%\n", + " freq=freq)\n", + "\n", + "plot_angle_distribution_with_pulse_phase(photon_times, random_angles, freq)\n" + ] + }, + { + "cell_type": "markdown", + "id": "65b47c0d", + "metadata": {}, + "source": [ + "The plot above shows the change of the modulation curve with pulse phase. Please note: there is no change of flux. There is no pulsation that can be seen in the here, in the pulsed profile (red bands indicate 1, 2, and 3 sigma deviations from the mean):" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "62e31e68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9ZklEQVR4nO3deXxU9b3/8fdkmRCWJBDIpiFEWcOikQHEgBspQXCrNhQNiMqFlhtAFimlFqWoQdaAyoWGq4HbgvqjFYu0iGERqLKGIoQlgKAgGmIJJKzZ5vz+sBkZCJCEZA7kvJ6PxzwezDmfnPM5M+Hw5ns2m2EYhgAAACzMy+wGAAAAzEYgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAludjdgM3C6fTqe+++04NGjSQzWYzux0AAFABhmHo9OnTioiIkJfXlceBCEQV9N133ykyMtLsNgAAQBUcPXpUt9566xXnE4gqqEGDBpJ+/EADAgJM7gYAAFREQUGBIiMjXf+OXwmBqILKDpMFBAQQiAAAuMlc63QXTqoGAACWZ3ogOnbsmPr376/g4GD5+/urffv22rZtm2v+s88+K5vN5vbq1auX2zLy8vKUlJSkgIAABQUFadCgQTpz5oxbzc6dO9W9e3fVqVNHkZGRmjp1qke2DwAA3PhMPWR28uRJxcXF6YEHHtCKFSvUpEkTHThwQA0bNnSr69Wrl9LT013v/fz83OYnJSXp+++/V0ZGhoqLi/Xcc89pyJAhWrx4saQfjx/27NlT8fHxmjdvnnbt2qXnn39eQUFBGjJkSM1vKAAAuKGZGoimTJmiyMhIt7ATHR19WZ2fn5/CwsLKXcbevXv1ySefaOvWrXI4HJKkt956S71799b06dMVERGhRYsWqaioSO+++67sdrvatm2rHTt2aObMmQQiAABg7iGzZcuWyeFwKDExUSEhIYqNjdX8+fMvq/vss88UEhKiVq1aaejQoTpx4oRr3saNGxUUFOQKQ5IUHx8vLy8vbd682VVz7733ym63u2oSEhKUnZ2tkydPlttbYWGhCgoK3F4AAKB2MjUQHTp0SHPnzlWLFi20cuVKDR06VCNGjNDChQtdNb169dL//d//afXq1ZoyZYrWrVunhx56SKWlpZKknJwchYSEuC3Xx8dHjRo1Uk5OjqsmNDTUrabsfVnNpSZPnqzAwEDXi3sQAQBQe5l6yMzpdMrhcCglJUWSFBsbq6ysLM2bN08DBw6UJPXr189V3759e3Xo0EG33367PvvsM/Xo0aPGehs/frxGjx7tel92HwMAAFD7mDpCFB4erpiYGLdpbdq00ZEjR674M7fddpsaN26sgwcPSpLCwsKUm5vrVlNSUqK8vDzXeUdhYWE6fvy4W03Z+yudm+Tn5+e65xD3HgIAoHYzNRDFxcUpOzvbbdr+/fsVFRV1xZ/59ttvdeLECYWHh0uSunbtqlOnTikzM9NVs2bNGjmdTnXp0sVVs379ehUXF7tqMjIy1KpVq8uuaAMAANZjaiAaNWqUNm3apJSUFB08eFCLFy9WWlqakpOTJUlnzpzR2LFjtWnTJn399ddavXq1HnvsMTVv3lwJCQmSfhxR6tWrlwYPHqwtW7bo888/17Bhw9SvXz9FRERIkp5++mnZ7XYNGjRIu3fv1gcffKDZs2e7HRIDAAAWZpjs448/Ntq1a2f4+fkZrVu3NtLS0lzzzp07Z/Ts2dNo0qSJ4evra0RFRRmDBw82cnJy3JZx4sQJ46mnnjLq169vBAQEGM8995xx+vRpt5ovv/zS6Natm+Hn52fccsstxhtvvFGpPvPz8w1JRn5+ftU3FgAAeFRF//22GYZhmB3KbgYFBQUKDAxUfn4+5xMBAHCTqOi/36Y/ugMAAMBsPO2+snJypLNnze4CAABUxOnTFSojEFXWxInSRXe8BgAAN7CiogqVEYgqy99fCgoyuwsAAFARp05VqIxAVFn+/lKDBmZ3AQAAKqKwsEJlnFQNAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz8fsBm46Z89Kfn5mdwEAACri7NkKlRGIKmvjRqlOHbO7AAAAFXHhQoXKCESV5eMj+fub3QUAAKiIkpIKlZkeiI4dO6Zx48ZpxYoVOnfunJo3b6709HQ5HI7Lan/961/rj3/8o1JTUzVy5EjX9Ly8PA0fPlwff/yxvLy89OSTT2r27NmqX7++q2bnzp1KTk7W1q1b1aRJEw0fPly/+c1vKt+wjw+HzAAAuFmcP1+hMlNPqj558qTi4uLk6+urFStWaM+ePZoxY4YaNmx4We3SpUu1adMmRUREXDYvKSlJu3fvVkZGhpYvX67169dryJAhrvkFBQXq2bOnoqKilJmZqWnTpmnixIlKS0ur0e0DAAA3B1NHiKZMmaLIyEilp6e7pkVHR19Wd+zYMQ0fPlwrV65Unz593Obt3btXn3zyibZu3eoaVXrrrbfUu3dvTZ8+XREREVq0aJGKior07rvvym63q23bttqxY4dmzpzpFpwAAIA1mTpCtGzZMjkcDiUmJiokJESxsbGaP3++W43T6dSAAQM0duxYtW3b9rJlbNy4UUFBQW6H2OLj4+Xl5aXNmze7au69917Z7XZXTUJCgrKzs3Xy5MlyeyssLFRBQYHbCwAA1E6mBqJDhw5p7ty5atGihVauXKmhQ4dqxIgRWrhwoatmypQp8vHx0YgRI8pdRk5OjkJCQtym+fj4qFGjRsrJyXHVhIaGutWUvS+rudTkyZMVGBjoekVGRlZ5OwEAwI3N1ENmTqdTDodDKSkpkqTY2FhlZWVp3rx5GjhwoDIzMzV79mxt375dNpvNo72NHz9eo0ePdr0vKCggFAEAUEuZOkIUHh6umJgYt2lt2rTRkSNHJEkbNmxQbm6umjZtKh8fH/n4+Oibb77RmDFj1KxZM0lSWFiYcnNz3ZZRUlKivLw8hYWFuWqOHz/uVlP2vqzmUn5+fgoICHB7AQCA2snUQBQXF6fs7Gy3afv371dUVJQkacCAAdq5c6d27NjhekVERGjs2LFauXKlJKlr1646deqUMjMzXctYs2aNnE6nunTp4qpZv369iouLXTUZGRlq1apVuVe0AQAAazE1EI0aNUqbNm1SSkqKDh48qMWLFystLU3JycmSpODgYLVr187t5evrq7CwMLVq1UrSjyNKvXr10uDBg7VlyxZ9/vnnGjZsmPr16+e6RP/pp5+W3W7XoEGDtHv3bn3wwQeaPXu22yExAABgXaYGok6dOmnp0qV677331K5dO7366quaNWuWkpKSKrWcRYsWqXXr1urRo4d69+6tbt26ud1jKDAwUJ9++qkOHz6sjh07asyYMXr55Ze55B4AAEiSbIZhGGY3cTMoKChQYGCg8u+4QwFBQWa3AwAAKqDg1CkFfvml8vPzr3o+sKkjRAAAADcCAhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8H7MbAAAA1ceQdN7L15R1+zuLZTNlzdePQAQAQC1hSPpF26eV2eAWU9bvKPhWS/a8d1OGIg6ZAQBQS5z38jUtDEnStoBbTRudul6MEAE3KIa9AVyPbdvmqK6z2CPrOuflK4cj2SPrqikEIuAGxLA3gOtV11nssUBUG3DIDLgBMewNAJ7FCBFwg2PYGwBqHoEIuMEx7A0ANY9AhJsGJxkDAGoKgQg3BU4yBgDUJAJRZRUXS4WFZndhOTfEScbFTs8duvJy/vTnwkKptq8XQPVg33G54or1QiCqrO+/l06cMLsLSf85hORjN2Xd/iVFnh0t8bFL3X/847b3R6puiWdC6TkfPzn6zfrxzTdfSyVFHlnvxdtrifUCqB7sOy5XVLFeCERV4WP+x2ZI+kXPscoMaW7K+h25B7Xk02meC0XeP33mdY1S1ZXzKsXVyCi9pAcPrfei7bXEegFUD/YdlyMQ1RAvrxsiEJ33tpsWhiRpW0hznferq7qlHvpfwMV/2Xx8JJsJf8lZL4AbHfuOy3lV7JaL5v/Ljuu2bek41fXQ8OQ5H7scP5/ikXUBAOApBKJaoG5JkedGagAAqIV4dAcAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA80wPRsWPH1L9/fwUHB8vf31/t27fXtm3bXPMnTpyo1q1bq169emrYsKHi4+O1efNmt2Xk5eUpKSlJAQEBCgoK0qBBg3TmzBm3mp07d6p79+6qU6eOIiMjNXXqVI9sHwAAuPGZGohOnjypuLg4+fr6asWKFdqzZ49mzJihhg0bumpatmypt99+W7t27dI///lPNWvWTD179tQPP/zgqklKStLu3buVkZGh5cuXa/369RoyZIhrfkFBgXr27KmoqChlZmZq2rRpmjhxotLS0jy6vQAA4MbkY+bKp0yZosjISKWnp7umRUdHu9U8/fTTbu9nzpypd955Rzt37lSPHj20d+9effLJJ9q6dascDock6a233lLv3r01ffp0RUREaNGiRSoqKtK7774ru92utm3baseOHZo5c6ZbcAIAANZk6gjRsmXL5HA4lJiYqJCQEMXGxmr+/PlXrC8qKlJaWpoCAwN1xx13SJI2btyooKAgVxiSpPj4eHl5ebkOrW3cuFH33nuv7Ha7qyYhIUHZ2dk6efJkuesqLCxUQUGB2wsAANROpgaiQ4cOae7cuWrRooVWrlypoUOHasSIEVq4cKFb3fLly1W/fn3VqVNHqampysjIUOPGjSVJOTk5CgkJcav38fFRo0aNlJOT46oJDQ11qyl7X1ZzqcmTJyswMND1ioyMrJZtBgAANx5TA5HT6dRdd92llJQUxcbGasiQIRo8eLDmzZvnVvfAAw9ox44d+uKLL9SrVy/17dtXubm5Ndrb+PHjlZ+f73odPXq0RtcHAADMY2ogCg8PV0xMjNu0Nm3a6MiRI27T6tWrp+bNm+vuu+/WO++8Ix8fH73zzjuSpLCwsMvCUUlJifLy8hQWFuaqOX78uFtN2fuymkv5+fkpICDA7QUAAGonU0+qjouLU3Z2ttu0/fv3Kyoq6qo/53Q6VVhYKEnq2rWrTp06pczMTHXs2FGStGbNGjmdTnXp0sVV89JLL6m4uFi+vr6SpIyMDLVq1crtijYAQM0xJJ33tl+zrib4lxbJZsqacbMwNRCNGjVK99xzj1JSUtS3b19t2bJFaWlprsvhz549q9dff12PPvqowsPD9e9//1tz5szRsWPHlJiYKOnHEaVevXq5DrUVFxdr2LBh6tevnyIiIiT9eKXaH/7wBw0aNEjjxo1TVlaWZs+erdTUVNO2HQCsxJD0ix6jldnkdlPW7/jhKy1ZPZNQhCsy9ZBZp06dtHTpUr333ntq166dXn31Vc2aNUtJSUmSJG9vb+3bt09PPvmkWrZsqUceeUQnTpzQhg0b1LZtW9dyFi1apNatW6tHjx7q3bu3unXr5naPocDAQH366ac6fPiwOnbsqDFjxujll1/mknsA8JDz3nbTwpAkbWtyu2mjU7g5mDpCJEkPP/ywHn744XLn1alTRx9++OE1l9GoUSMtXrz4qjUdOnTQhg0bqtQjAKD6bFs6TnVLijyyrnM+djl+PsUj68LNzfRABACwlrolRapb6plABFSU6c8yAwAAMBuBCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB5XmQEo1zkfz9+zhbsJAzBLlQLR9u3b5evrq/bt20uS/va3vyk9PV0xMTGaOHGi7HZufgXc7My4dwt3EwZgliodMvvVr36l/fv3S5IOHTqkfv36qW7dulqyZIl+85vfVGuDADzHv7RIjh++Mm393E0YgFmqNEK0f/9+3XnnnZKkJUuW6N5779XixYv1+eefq1+/fpo1a1Y1tgjAU2ySlqye6fFQwt2EAZitSoHIMAw5nU5J0qpVq1yP3oiMjNS///3v6usOgMfZJO4iDMByqnTIzOFw6LXXXtOf/vQnrVu3Tn369JEkHT58WKGhodXaIAAAQE2rUiBKTU3V9u3bNWzYML300ktq3ry5JOkvf/mL7rnnnmptEAAAoKZV6ZDZHXfcoV27dl02fdq0afLx4Up+AABwc6nSCNFtt92mEydOXDb9woULatmy5XU3BQAA4ElVCkRff/21SktLL5teWFiob7/99rqbAgAA8KRKHd9atmyZ688rV65UYGCg631paalWr16t6Ojo6usOAADAAyoViB5//HFJks1m08CBA93m+fr6qlmzZpoxY0a1NQcAnmBIpt0QkseVADeGSgWisnsPRUdHa+vWrWrcuHGNNAUAnmJI+kWP0cpscrsp6+dxJcCNoUqXhB0+fLi6+wAAU5z3tpsWhqSfHlfCzTABc1X5GvnVq1dr9erVys3NdY0clXn33XevuzEA8LRtS8epbolnggmPKwFuLFUKRH/4wx80adIkORwOhYeHy2ZjsBfAza9uSREjNYBFVSkQzZs3TwsWLNCAAQOqux8AAACPq9J9iIqKinhEBwAAqDWqFIj+67/+S4sXL67uXgAAAExRpUNmFy5cUFpamlatWqUOHTrI19fXbf7MmTOrpTkAAABPqFIg2rlzp+68805JUlZWltu82n6C9TkfuxpIrnuGFHl5q8TmLW/DKT9nyU91/7nJW53SYnnJkCQV27xU7OUjL8OpOlWsPe/tK0M2lV70OZfYvHTO2y4vGapTWnxZrZ+zWN6G4aot8vK5rPaCt6+cssnuLJGP8eNVg6U2mwq9fC+rvXi9ZcpqbTLkf/FyvXzktHnJ11ki30uWW5Fap2y64O3r+ozKFHr5qNTmJR+jVHZnqVutJLcTY8urvfhGfBffGK/s+7y4tsw5b3u5tRX57iv7e3Lp9krlf5/X+j2pzHd/vb8nl32flan1unxXdKXv82q/J5fWXuu7v/QE6nPe9kr9nlzp+6xM7cWqcx9Rke+zpvYRV6otT3XtI6Tyv/siL2/XNKdsrs+yOvcRVf09uZ59xJW++0t/rzy9jyjruSb2ERX97surrYgqHTJbu3btFV9r1qypyiJvGp2fmq08v/qu92mt4xWTmKpXOvZ1q+v48zcUk5iqY/Uauqb9X4v7FJOYqnGd+7vVdntkkmISU3UwIMw17S/RdysmMVXD73nerTa+9wTFJKZqT8NbXdNWRMYqJjFV/9X9V261j/Ycp5jEVG1p0tw1bXVEO8Ukpirp/uFutX0fHKWYxFStD2vjmvZFSCvFJKbq5/EvlvtZrLqlvevP/wqOVkxiqh7q9Tu3mqHdBismMVUfNevsmrYv8BbFJKbq/j4T3WpH3z1QMYmpeu/2bq5p39Rv/GPtw6+41f6u01OKSUxVessHXNNy/QMUk5iqDk9Od6t9LfYJxSSmak5Mgmtaga+/YhJTFZOY6hbsprd/VDGJqZre/tHLttfxxBQV+Pq73s+JSVBMYqpei33Cra7Dk9MVk5iqXP8A17T0lg8oJjFVv+v0lFttl8deV0xiqr6p/9NNTt+7vZscT1x+Ofb9fSYqJjFV+wJvcU37qFlnxSSmami3wW61D/X6nWISU/Wv4J8epbPy1jsUk5iqgff9t1vtz+NfVExiqr4IaeWatj6sjWISU9X3wVFutUn3D1dMYqpWR7RzTdvSpLliElP1aM9xbrX/1f1XiklM1fKmHV3TshpGKiYxVfG9J7jVvnj3M5dt78GAMMUkpqrbI5Pcpo/r3F8xian6vxb3uaYdq9dQMYmp6vjzN9xqX+nYVzGJqUprHe+aludX3/XdX8rxxBTNbtvb9f68t91Ve/GdrGe37a2YxFS9ccdjbj9fVluRfUS3R923S6refURWw0jXtOVNO3p0HzHwvv9WTGKqVt56h2val42iLtteqfr2EV0ee92ttmwf8acW97qm/eDfoEb2ESU2L1etp/YRMYmpGn23+xMj7u8z8bJ9h6f3EdKPf4+qex8x/J7nFZOYqr9E3+2aVpl9REVUKRABAADUJjbD+M/4VyU88MADVz00VhtHiQoKChQYGKjvQ8MVWsd+Qxwya/+LH8/V2vmXMfIxnB4ZDj/3n/8xl603oOSCW21NHjIr+5/PniWj5G04PXLI7OLt3fbhOAUXnfHIcHi+b1237a1bWlSrD5nl+dbVXU9Oc9teTx0yu/Q7Dig575FDZv+217/sO67Nh8xO+/i59lll23ul77O6D5nd+Z8Roawlo12fX209ZHbW28/t98rXWeKRfcSlf4+Cis/dMIfMCs6cUeCJE8rPz1dAwE+jcpeq0jlEZecPlSkuLtaOHTuUlZV12UNfa5u6JUWy6aehc7uzVHaVXl5Xzs3dfA2nfMuZXpla/4uCSRkfw1nuMvwvOa5bVutTTm155wh5G8ZVb1JX9gt8tdqL/wJWpdZL5df6XWetTeV/7lf6PvWfelsFaiuz3Ct99xX9Pq/1e3Kxynz31fF7UqnaSnyf1/t7cqXvXv+ZfvG5Y5X9PamO77669hEXu9L3WVP7iCvVlqfm9xE/7Ssv+Pi67kRe3jlcJTZvlXh7Xza9vAf/VrS2vIf31tTviX9psYxL1ubpfYQkySYVefno0rnGRedwXeziWv/S8m+Oer37iIqoUiBKTb382LskTZw4UWfOnKlSIwAA1CQzHpVixYf3Xs/nfPHooadV+Vlm5enfv786d+6s6dOnX7sYAIAa5l9aJMcPX2mbSQ/w3dbkdp3wq+/RZ+SZwezPuTpUayDauHGj6tSpU52LBACgymySlqyeWe5hr5p08cN7rfAQ3+r6nP1NfJZglQLRE0+4X0JoGIa+//57bdu2TRMmTLjCTwEA4HlXO2+sppg9YuL44SuPhwszPufqVKVAFBgY6Pbey8tLrVq10qRJk9SzZ89qaQwAgJuVWSNTZco7mRtXV6VAlJ6eXt19AABQq9zsIyZWc13nEGVmZmrv3r2SpLZt2yo2NrZamgIAAPCkKgWi3Nxc9evXT5999pmCgoIkSadOndIDDzyg999/X02aNKnOHgEAAGpUlR7dMXz4cJ0+fVq7d+9WXl6e8vLylJWVpYKCAo0YMaK6ewQAAKhRVRoh+uSTT7Rq1Sq1afPTQ/5iYmI0Z84cTqoGAAA3nSqNEDmdTvn6+l423dfXV06ns5yfAAAAuHFVaYTowQcf1AsvvKD33ntPERERkqRjx45p1KhR6tGjR7U2CAC1nRl3F+aybMBdlQLR22+/rUcffVTNmjVTZGSkJOno0aNq166d/vznP1drgwBQ2/GMLcB8VQpEkZGR2r59u1atWqV9+/ZJktq0aaP4+PhqbQ4Aaiuz72S8rcntOu9t5z45wH9UKhCtWbNGw4YN06ZNmxQQEKCf/exn+tnPfiZJys/PV9u2bTVv3jx17969RpoFgNriRnjGFoCfVCoQzZo1S4MHD1ZAQMBl8wIDA/WrX/1KM2fOJBABQAVwJ2PgxlGpq8y+/PJL9erV64rze/bsqczMzOtuyioMSee87VV7mXASJgAAtVWlRoiOHz9e7uX2roX5+OiHH3647qas4ry3XTGJqWa3AQCA5VVqhOiWW25RVlbWFefv3LlT4eHh190UKs7xw1fyZ8gdAIDrUqkRot69e2vChAnq1auX6tSp4zbv/PnzeuWVV/Twww9Xa4O1mX9pkfYsGXXdy+CyWQAArk+lAtHvf/97ffjhh2rZsqWGDRumVq1aSZL27dunOXPmqLS0VC+99FKNNFobcUIlADN58lxEznvEja5SgSg0NFRffPGFhg4dqvHjx8swDEmSzWZTQkKC5syZo9DQ0BppFABQvbj8HvhJpW/MGBUVpX/84x86efKkDh48KMMw1KJFCzVs2LAm+gMAVCOzbwjJeY+4UVXpTtWS1LBhQ3Xq1Kk6ewEA1DCzbghZhvMecaOqciACANycOH8RuFylLrsHAACojQhEAADA8ghEAADA8ghEAADA8kwPRMeOHVP//v0VHBwsf39/tW/fXtu2bZMkFRcXa9y4cWrfvr3q1auniIgIPfPMM/ruu+/clpGXl6ekpCQFBAQoKChIgwYN0pkzZ9xqdu7cqe7du6tOnTqKjIzU1KlTPbaNAADgxmZqIDp58qTi4uLk6+urFStWaM+ePZoxY4brnkbnzp3T9u3bNWHCBG3fvl0ffvihsrOz9eijj7otJykpSbt371ZGRoaWL1+u9evXa8iQIa75BQUF6tmzp6KiopSZmalp06Zp4sSJSktL8+j2AgCAG5Opl91PmTJFkZGRSk9Pd02Ljo52/TkwMFAZGRluP/P222+rc+fOOnLkiJo2baq9e/fqk08+0datW+VwOCRJb731lnr37q3p06crIiJCixYtUlFRkd59913Z7Xa1bdtWO3bs0MyZM92C08UKCwtVWFjoel9QUFCdmw4AAG4gpo4QLVu2TA6HQ4mJiQoJCVFsbKzmz59/1Z/Jz8+XzWZTUFCQJGnjxo0KCgpyhSFJio+Pl5eXlzZv3uyquffee2W3/3QjsoSEBGVnZ+vkyZPlrmfy5MkKDAx0vSIjI69zawEAwI3K1EB06NAhzZ07Vy1atNDKlSs1dOhQjRgxQgsXLiy3/sKFCxo3bpyeeuopBQQESJJycnIUEhLiVufj46NGjRopJyfHVXPpM9bK3pfVXGr8+PHKz893vY4ePXpd2woAAG5cph4yczqdcjgcSklJkSTFxsYqKytL8+bN08CBA91qi4uL1bdvXxmGoblz59Z4b35+fvLz86vx9QAAAPOZGojCw8MVExPjNq1Nmzb661//6jatLAx98803WrNmjWt0SJLCwsKUm5vrVl9SUqK8vDyFhYW5ao4fP+5WU/a+rAaVd87Hc89C8uS6AADWY2ogiouLU3Z2ttu0/fv3KyoqyvW+LAwdOHBAa9euVXBwsFt9165dderUKWVmZqpjx46SpDVr1sjpdKpLly6umpdeeknFxcXy9fWVJGVkZKhVq1auK9pQeY6fTzG7BQAAqoWp5xCNGjVKmzZtUkpKig4ePKjFixcrLS1NycnJkn4MQ7/4xS+0bds2LVq0SKWlpcrJyVFOTo6Kin58MGGbNm3Uq1cvDR48WFu2bNHnn3+uYcOGqV+/foqIiJAkPf3007Lb7Ro0aJB2796tDz74QLNnz9bo0aNN2/ablX9pkRw/fGXa+h0/fCV/HkoJAKhmpo4QderUSUuXLtX48eM1adIkRUdHa9asWUpKSpL0400bly1bJkm688473X527dq1uv/++yVJixYt0rBhw9SjRw95eXnpySef1JtvvumqDQwM1Keffqrk5GR17NhRjRs31ssvv3zFS+5xZTZJS1bP1Hlvcw5h+ZcWyWbKmgEAtZmpgUiSHn74YT388MPlzmvWrJkMw7jmMho1aqTFixdftaZDhw7asGFDlXqEO5ukuozSAABqEdMDEQBczNMn0HPCPgCJQATgBsPJ+gDMYPrDXQHA7JP1JU7YB6yOESIApjP7ZH2JE/YBqyMQAbghcLI+ADNxyAwAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFge9yGqLKdTKikxuwt4inHR/xlKSqRSD333Zq0XAGobp7NCZQSiqiAQWchFwaS0xIPfvVnrBQBrIhBVVni4FBBgdhfwFC/fn/4c1UxyFtfu9QJAbVNQIJ08ec0yAlFl+fpKfn5mdwFPuTiY+PlJTg+ddmfWegGgtvH1vXaNOKkaAACAQAQAAEAgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlmd6IDp27Jj69++v4OBg+fv7q3379tq2bZtr/ocffqiePXsqODhYNptNO3bsuGwZFy5cUHJysoKDg1W/fn09+eSTOn78uFvNkSNH1KdPH9WtW1chISEaO3asSkpKanrzAADATcDUQHTy5EnFxcXJ19dXK1as0J49ezRjxgw1bNjQVXP27Fl169ZNU6ZMueJyRo0apY8//lhLlizRunXr9N133+mJJ55wzS8tLVWfPn1UVFSkL774QgsXLtSCBQv08ssv1+j2AQCAm4OPmSufMmWKIiMjlZ6e7poWHR3tVjNgwABJ0tdff13uMvLz8/XOO+9o8eLFevDBByVJ6enpatOmjTZt2qS7775bn376qfbs2aNVq1YpNDRUd955p1599VWNGzdOEydOlN1uv2y5hYWFKiwsdL0vKCi43s0FAAA3KFNHiJYtWyaHw6HExESFhIQoNjZW8+fPr9QyMjMzVVxcrPj4eNe01q1bq2nTptq4caMkaePGjWrfvr1CQ0NdNQkJCSooKNDu3bvLXe7kyZMVGBjoekVGRlZhCwEAwM3A1EB06NAhzZ07Vy1atNDKlSs1dOhQjRgxQgsXLqzwMnJycmS32xUUFOQ2PTQ0VDk5Oa6ai8NQ2fyyeeUZP3688vPzXa+jR49WYssAAMDNxNRDZk6nUw6HQykpKZKk2NhYZWVlad68eRo4cKCZrcnPz09+fn6m9gAAADzD1BGi8PBwxcTEuE1r06aNjhw5UuFlhIWFqaioSKdOnXKbfvz4cYWFhblqLr3qrOx9WQ0AALAuUwNRXFycsrOz3abt379fUVFRFV5Gx44d5evrq9WrV7umZWdn68iRI+rataskqWvXrtq1a5dyc3NdNRkZGQoICLgskAEAAOsx9ZDZqFGjdM899yglJUV9+/bVli1blJaWprS0NFdNXl6ejhw5ou+++06SXAEqLCxMYWFhCgwM1KBBgzR69Gg1atRIAQEBGj58uLp27aq7775bktSzZ0/FxMRowIABmjp1qnJycvT73/9eycnJlT8sVlIiXXT1GWo5L+dPfy4slJzFtXu9AFDbVPCeg6YGok6dOmnp0qUaP368Jk2apOjoaM2aNUtJSUmummXLlum5555zve/Xr58k6ZVXXtHEiRMlSampqfLy8tKTTz6pwsJCJSQk6H/+539cP+Pt7a3ly5dr6NCh6tq1q+rVq6eBAwdq0qRJlW+6pEQ6f75qG4ybj/dFf5EunJdKPRRMzFovANQ2FQxENsMwjBpupVYoKChQYGCg8p99VgGNGpndDjzknLwU43u/JGlP8WeqK+fVf+AmXy8A1DYFeXkKXLBA+fn5CggIuGKdqSNEN6V69aQGDczuAp5ieEllR0jrN5BsHgomZq0XAGqbCp7mYvqzzAAAAMxGIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJbnY3YDwM3inLwkw4PrAgB4DIEIqCBHYazZLQAAagj/DQWuwl9OOWynTVu/w3Za/nKatn4AsApGiICrsNmkJfZ9Om/S/x385ZTNZsqqAcBSCETANdhsUl1GaQCgVuOQGQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwfsxu46Zw/L50+bXYXAACgIs6fr1AZgaiyzp+XSkvN7gIAAFREUVGFymyGYRg13EqtUFBQoMDAQOVnZyugQQOz2wEAABVQcPq0Alu1Un5+vgICAq5YxwhRZYWFSVf5QAEAwA2kXr0KlXFSNQAAsDwCEQAAsDzTA9GxY8fUv39/BQcHy9/fX+3bt9e2bdtc8w3D0Msvv6zw8HD5+/srPj5eBw4ccFtGXl6ekpKSFBAQoKCgIA0aNEhnzpxxq9m5c6e6d++uOnXqKDIyUlOnTvXI9gEAgBufqYHo5MmTiouLk6+vr1asWKE9e/ZoxowZatiwoatm6tSpevPNNzVv3jxt3rxZ9erVU0JCgi5cuOCqSUpK0u7du5WRkaHly5dr/fr1GjJkiGt+QUGBevbsqaioKGVmZmratGmaOHGi0tLSPLq9AADgxmTqVWa//e1v9fnnn2vDhg3lzjcMQxERERozZoxefPFFSVJ+fr5CQ0O1YMEC9evXT3v37lVMTIy2bt0qh8MhSfrkk0/Uu3dvffvtt4qIiNDcuXP10ksvKScnR3a73bXujz76SPv27atQr66rzK5xljoAALhxVPTfb1NHiJYtWyaHw6HExESFhIQoNjZW8+fPd80/fPiwcnJyFB8f75oWGBioLl26aOPGjZKkjRs3KigoyBWGJCk+Pl5eXl7avHmzq+bee+91hSFJSkhIUHZ2tk6ePFlub4WFhSooKHB7AQCA2snUQHTo0CHNnTtXLVq00MqVKzV06FCNGDFCCxculCTl5ORIkkJDQ91+LjQ01DUvJydHISEhbvN9fHzUqFEjt5rylnHxOi41efJkBQYGul6RkZHXubUAAOBGZWogcjqduuuuu5SSkqLY2FgNGTJEgwcP1rx588xsS5I0fvx45efnu15Hjx41uyUAAFBDTA1E4eHhiomJcZvWpk0bHTlyRJIUFhYmSTp+/LhbzfHjx13zwsLClJub6za/pKREeXl5bjXlLePidVzKz89PAQEBbi8AAFA7mRqI4uLilJ2d7TZt//79ioqKkiRFR0crLCxMq1evds0vKCjQ5s2b1bVrV0lS165dderUKWVmZrpq1qxZI6fTqS5durhq1q9fr+LiYldNRkaGWrVq5XZFGwAAsCZTA9GoUaO0adMmpaSk6ODBg1q8eLHS0tKUnJwsSbLZbBo5cqRee+01LVu2TLt27dIzzzyjiIgIPf7445J+HFHq1auXBg8erC1btujzzz/XsGHD1K9fP0VEREiSnn76adntdg0aNEi7d+/WBx98oNmzZ2v06NFmbToAALiRGCb7+OOPjXbt2hl+fn5G69atjbS0NLf5TqfTmDBhghEaGmr4+fkZPXr0MLKzs91qTpw4YTz11FNG/fr1jYCAAOO5554zTp8+7Vbz5ZdfGt26dTP8/PyMW265xXjjjTcq1Wd+fr4hycjPz6/ahgIAAI+r6L/fPO2+grgPEQAAN5+K/vvN0+4rqCw3cj8iAABuHmX/bl9r/IdAVEGnT5+WJO5HBADATej06dMKDAy84nwOmVWQ0+nUd999pwYNGshms1XbcgsKChQZGamjR49a4lAc21u7WW17JettM9tbu9XG7TUMQ6dPn1ZERIS8vK58LRkjRBXk5eWlW2+9tcaWb7V7HbG9tZvVtley3jazvbVbbdveq40MlTH1snsAAIAbAYEIAABYHoHIZH5+fnrllVfk5+dndisewfbWblbbXsl628z21m5W296LcVI1AACwPEaIAACA5RGIAACA5RGIAACA5RGIAACA5RGITDZnzhw1a9ZMderUUZcuXbRlyxazW6oRkydPVqdOndSgQQOFhITo8ccfV3Z2ttltecwbb7whm82mkSNHmt1KjTl27Jj69++v4OBg+fv7q3379tq2bZvZbdWI0tJSTZgwQdHR0fL399ftt9+uV1999ZrPSrpZrF+/Xo888ogiIiJks9n00Ucfuc03DEMvv/yywsPD5e/vr/j4eB04cMCcZqvJ1ba5uLhY48aNU/v27VWvXj1FRETomWee0XfffWdew9fpWt/xxX7961/LZrNp1qxZHuvPDAQiE33wwQcaPXq0XnnlFW3fvl133HGHEhISlJuba3Zr1W7dunVKTk7Wpk2blJGRoeLiYvXs2VNnz541u7Uat3XrVv3xj39Uhw4dzG6lxpw8eVJxcXHy9fXVihUrtGfPHs2YMUMNGzY0u7UaMWXKFM2dO1dvv/229u7dqylTpmjq1Kl66623zG6tWpw9e1Z33HGH5syZU+78qVOn6s0339S8efO0efNm1atXTwkJCbpw4YKHO60+V9vmc+fOafv27ZowYYK2b9+uDz/8UNnZ2Xr00UdN6LR6XOs7LrN06VJt2rRJERERHurMRAZM07lzZyM5Odn1vrS01IiIiDAmT55sYleekZuba0gy1q1bZ3YrNer06dNGixYtjIyMDOO+++4zXnjhBbNbqhHjxo0zunXrZnYbHtOnTx/j+eefd5v2xBNPGElJSSZ1VHMkGUuXLnW9dzqdRlhYmDFt2jTXtFOnThl+fn7Ge++9Z0KH1e/SbS7Pli1bDEnGN99845mmatCVtvfbb781brnlFiMrK8uIiooyUlNTPd6bJzFCZJKioiJlZmYqPj7eNc3Ly0vx8fHauHGjiZ15Rn5+viSpUaNGJndSs5KTk9WnTx+377k2WrZsmRwOhxITExUSEqLY2FjNnz/f7LZqzD333KPVq1dr//79kqQvv/xS//znP/XQQw+Z3FnNO3z4sHJyctx+pwMDA9WlSxdL7LvK5Ofny2azKSgoyOxWaoTT6dSAAQM0duxYtW3b1ux2PIKHu5rk3//+t0pLSxUaGuo2PTQ0VPv27TOpK89wOp0aOXKk4uLi1K5dO7PbqTHvv/++tm/frq1bt5rdSo07dOiQ5s6dq9GjR+t3v/udtm7dqhEjRshut2vgwIFmt1ftfvvb36qgoECtW7eWt7e3SktL9frrryspKcns1mpcTk6OJJW77yqbV9tduHBB48aN01NPPVWrHoB6sSlTpsjHx0cjRowwuxWPIRDB45KTk5WVlaV//vOfZrdSY44ePaoXXnhBGRkZqlOnjtnt1Din0ymHw6GUlBRJUmxsrLKysjRv3rxaGYj+3//7f1q0aJEWL16stm3baseOHRo5cqQiIiJq5fbiJ8XFxerbt68Mw9DcuXPNbqdGZGZmavbs2dq+fbtsNpvZ7XgMh8xM0rhxY3l7e+v48eNu048fP66wsDCTuqp5w4YN0/Lly7V27VrdeuutZrdTYzIzM5Wbm6u77rpLPj4+8vHx0bp16/Tmm2/Kx8dHpaWlZrdYrcLDwxUTE+M2rU2bNjpy5IhJHdWssWPH6re//a369eun9u3ba8CAARo1apQmT55sdms1rmz/ZLV9l/RTGPrmm2+UkZFRa0eHNmzYoNzcXDVt2tS1//rmm280ZswYNWvWzOz2agyByCR2u10dO3bU6tWrXdOcTqdWr16trl27mthZzTAMQ8OGDdPSpUu1Zs0aRUdHm91SjerRo4d27dqlHTt2uF4Oh0NJSUnasWOHvL29zW6xWsXFxV12G4X9+/crKirKpI5q1rlz5+Tl5b779Pb2ltPpNKkjz4mOjlZYWJjbvqugoECbN2+ulfuuMmVh6MCBA1q1apWCg4PNbqnGDBgwQDt37nTbf0VERGjs2LFauXKl2e3VGA6ZmWj06NEaOHCgHA6HOnfurFmzZuns2bN67rnnzG6t2iUnJ2vx4sX629/+pgYNGrjONQgMDJS/v7/J3VW/Bg0aXHZ+VL169RQcHFwrz5saNWqU7rnnHqWkpKhv377asmWL0tLSlJaWZnZrNeKRRx7R66+/rqZNm6pt27b617/+pZkzZ+r55583u7VqcebMGR08eND1/vDhw9qxY4caNWqkpk2bauTIkXrttdfUokULRUdHa8KECYqIiNDjjz9uXtPX6WrbHB4erl/84hfavn27li9frtLSUtc+rFGjRrLb7Wa1XWXX+o4vDXy+vr4KCwtTq1atPN2q55h9mZvVvfXWW0bTpk0Nu91udO7c2di0aZPZLdUISeW+0tPTzW7NY2rzZfeGYRgff/yx0a5dO8PPz89o3bq1kZaWZnZLNaagoMB44YUXjKZNmxp16tQxbrvtNuOll14yCgsLzW6tWqxdu7bcv68DBw40DOPHS+8nTJhghIaGGn5+fkaPHj2M7Oxsc5u+Tlfb5sOHD19xH7Z27VqzW6+Sa33Hl7LCZfc2w6glt1YFAACoIs4hAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAnBTaNasmWbNmmXa+p999tmb+tEUAK6OQASgxj377LOy2Wyy2Wyy2+1q3ry5Jk2apJKSErNbc2nWrJmrx3r16umuu+7SkiVLzG4LgIcQiAB4RK9evfT999/rwIEDGjNmjCZOnKhp06aZ3ZabSZMm6fvvv9e//vUvderUSb/85S/1xRdfmN0WAA8gEAHwCD8/P4WFhSkqKkpDhw5VfHy8li1bJkm6//77NXLkSLf6xx9/XM8++2y5yzIMQxMnTlTTpk3l5+eniIgIjRgxwjW/sLBQL774om655RbVq1dPXbp00WeffXbNHhs0aKCwsDC1bNlSc+bMkb+/vz7++GO3munTpys8PFzBwcFKTk5WcXGxa96f/vQnORwO13Kefvpp5ebmuuafPHlSSUlJatKkifz9/dWiRQulp6e75h89elR9+/ZVUFCQGjVqpMcee0xff/31NfsGcP0IRABM4e/vr6Kioir97F//+lelpqbqj3/8ow4cOKCPPvpI7du3d80fNmyYNm7cqPfff187d+5UYmKievXqpQMHDlR4HT4+PvL19XXrce3atfrqq6+0du1aLVy4UAsWLNCCBQtc84uLi/Xqq6/qyy+/1EcffaSvv/7aLdRNmDBBe/bs0YoVK7R3717NnTtXjRs3dv1sQkKCGjRooA0bNujzzz9X/fr11atXryp/TgAqzsfsBgBYi2EYWr16tVauXKnhw4dXaRlHjhxRWFiY4uPj5evrq6ZNm6pz586ueenp6Tpy5IgiIiIkSS+++KI++eQTpaenKyUl5ZrLLyoq0owZM5Sfn68HH3zQNb1hw4Z6++235e3trdatW6tPnz5avXq1Bg8eLEl6/vnnXbW33Xab3nzzTXXq1ElnzpxR/fr1deTIEcXGxsrhcEj68bylMh988IGcTqf+93//VzabTZKUnp6uoKAgffbZZ+rZs2eVPisAFcMIEQCPWL58uerXr686derooYce0i9/+UtNnDixSstKTEzU+fPnddttt2nw4MFaunSp6wTtXbt2qbS0VC1btlT9+vVdr3Xr1umrr7666nLHjRun+vXrq27dupoyZYreeOMN9enTxzW/bdu28vb2dr0PDw93OySWmZmpRx55RE2bNlWDBg103333SfoxpEnS0KFD9f777+vOO+/Ub37zG7fzk7788ksdPHhQDRo0cPXcqFEjXbhw4Zp9A7h+jBAB8IgHHnhAc+fOld1uV0REhHx8ftr9eHl5yTAMt/qLz825VGRkpLKzs7Vq1SplZGTov//7vzVt2jStW7dOZ86ckbe3tzIzM93CiyTVr1//qj2OHTtWzz77rOrXr6/Q0FDXSE0ZX19ft/c2m01Op1OSdPbsWSUkJCghIUGLFi1SkyZNdOTIESUkJLgOeT300EP65ptv9I9//EMZGRnq0aOHkpOTNX36dJ05c0YdO3bUokWLLuurSZMmV+0bwPUjEAHwiHr16ql58+blzmvSpIm+//571/vS0lJlZWXpgQceuOLy/P399cgjj+iRRx5RcnKyWrdurV27dik2NlalpaXKzc1V9+7dK9Vj48aNr9jjtezbt08nTpzQG2+8ocjISEnStm3bLqtr0qSJBg4cqIEDB6p79+4aO3aspk+frrvuuksffPCBQkJCFBAQUKUeAFQdh8wAmO7BBx/U3//+d/3973/Xvn37NHToUJ06deqK9QsWLNA777yjrKwsHTp0SH/+85/l7++vqKgotWzZUklJSXrmmWf04Ycf6vDhw9qyZYsmT56sv//97zW2DU2bNpXdbtdbb72lQ4cOadmyZXr11Vfdal5++WX97W9/08GDB7V7924tX75cbdq0kSQlJSWpcePGeuyxx7RhwwYdPnxYn332mUaMGKFvv/22xvoG8CMCEQDTPf/88xo4cKCeeeYZ3XfffbrtttuuOjoUFBSk+fPnKy4uTh06dNCqVav08ccfKzg4WNKPJyM/88wzGjNmjFq1aqXHH39cW7duVdOmTWtsG5o0aaIFCxZoyZIliomJ0RtvvKHp06e71djtdo0fP14dOnTQvffeK29vb73//vuSpLp162r9+vVq2rSpnnjiCbVp00aDBg3ShQsXGDECPMBmXHrgHgAAwGIYIQIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJb3/wH0NAISptGWMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phases = (photon_times / freq) % 1\n", + "\n", + "profile, _ = np.histogram(phases, bins=np.linspace(0, 1, 17))\n", + "\n", + "mean = profile.mean()\n", + "for nsigma in range(1, 4):\n", + " plt.axhspan(mean - nsigma * np.sqrt(mean), mean + nsigma * np.sqrt(mean), alpha=0.5, color=\"red\")\n", + "plt.plot(profile, ds=\"steps-mid\", zorder=10)\n", + "plt.axhline(mean, ls=\":\")\n", + "plt.xlabel(\"Pulse Phase\")\n", + "plt.ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "id": "99e027ab", + "metadata": {}, + "source": [ + "Now, let us put the polarimetric information in the form of Stokes parameters in an `EventList` object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e2a4ad9b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['counts', 'q', 'u']" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev_polar = EventList(time=photon_times, gti=[[t0, t1]])\n", + "ev_polar.q = np.cos(2 * random_angles)\n", + "ev_polar.u = np.sin(2 * random_angles)\n", + "\n", + "ts_polar = ev_polar.to_binned_timeseries(dt=ts_dt, array_attrs=[\"q\", \"u\"])\n", + "ts_polar.array_attrs()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "98dfd14f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSLElEQVR4nO3deXhTddr/8XdaaAstLSKUtQUERNksIktB2UQREEFHZBgVUGRGLQjD6CDoI65PnQdR8AcijiOMo4grMC6AiOyCsguoCKiUrSwqLS2lLc35/XHoEpq0SZpysnxe13WuJiffnNxJk5w739VmGIaBiIiISJAIszoAEREREV9SciMiIiJBRcmNiIiIBBUlNyIiIhJUlNyIiIhIUFFyIyIiIkFFyY2IiIgEFSU3IiIiElSU3IiIiEhQUXIjIiIiQSWkk5s1a9YwcOBAGjRogM1mY9GiRR4fwzAMXnjhBS6//HIiIyNp2LAhzz33nO+DFREREbdUsToAK2VnZ3PVVVdx7733ctttt3l1jHHjxvH555/zwgsv0LZtW3777Td+++03H0cqIiIi7rJp4UyTzWZj4cKFDB48uGhfbm4ujz32GO+88w6nTp2iTZs2/OMf/6Bnz54AfP/997Rr145du3bRsmVLawIXERERByHdLFWeMWPGsGHDBhYsWMC3337LkCFDuOmmm9i7dy8AH3/8MZdddhmffPIJTZs2pUmTJtx3332quREREbGQkhsX0tLSmDt3Lu+//z7XXXcdzZo14+GHH+baa69l7ty5APz0008cOHCA999/nzfffJN58+axZcsWbr/9doujFxERCV0h3eemLDt37qSgoIDLL7/cYX9ubi6XXnopAHa7ndzcXN58882icv/617/o0KEDe/bsUVOViIiIBZTcuJCVlUV4eDhbtmwhPDzc4baYmBgA6tevT5UqVRwSoCuvvBIwa36U3IiIiFx8Sm5caN++PQUFBRw/fpzrrrvOaZlu3bpx7tw59u/fT7NmzQD48ccfAWjcuPFFi1VERESKhfRoqaysLPbt2weYycyLL75Ir169qFWrFomJidx1112sX7+eadOm0b59e06cOMGKFSto164dAwYMwG6307FjR2JiYpg+fTp2u52UlBRiY2P5/PPPLX52IiIioSmkk5tVq1bRq1evUvtHjBjBvHnzyM/P59lnn+XNN9/k8OHD1K5dmy5duvDUU0/Rtm1bAI4cOcLYsWP5/PPPiY6Opl+/fkybNo1atWpd7KcjIiIihHhyIyIiIsFHQ8FFREQkqCi5ERERkaAScqOl7HY7R44coUaNGthsNqvDERERETcYhsHp06dp0KABYWFl182EXHJz5MgREhISrA5DREREvHDw4EEaNWpUZpmQS25q1KgBmC9ObGysxdGIiIiIOzIzM0lISCg6j5cl5JKbwqao2NhYJTciIiIBxp0uJSGX3EjwycvLY8aMGQCMGzeOiIgIiyMSERErhdw8N5mZmcTFxZGRkaGamyCRnZ1dtN5XVlYW0dHRFkckIiK+5sn5WzU3EvCqVKnCiBEjii6LiEho05lAAl5kZCTz5s2zOgwRESlHQUEB+fn5Lm+PiIgod5i3O5TciIiISKUyDIP09HROnTpVZrmwsDCaNm1a4b6TSm5ERESkUhUmNvHx8VSvXt3piKfCSXaPHj1KYmJihSbaVXIjAS87O5uGDRsCcPjwYXUoFhHxIwUFBUWJzaWXXlpm2Tp16nDkyBHOnTtH1apVvX5MJTcSFDIyMqwOQUREnCjsY1O9evVyyxY2RxUUFCi5kdBWrVo1fvzxx6LLIiLif9xpZvLVmo9KbiTghYWF0aJFC6vDEBERP1Hx8VYiIiIifkQ1NxLw8vPzee211wD485//XKF2WhERCXxKbiTg5eXlMWbMGABGjhyp5EZExA+5s9qTr1aEUrOUBLzw8HCuvPJ24HZWrw63OhwRESmh8AfnmTNnyi2bl5cHmN/rFaGaGwl4UVFRfP/9+wA88gj0729xQCIiUiQ8PJyaNWty/PhxgDIn8Ttx4gTVq1ev8DqBSm5ERESkUtWrVw+gKMFxJSwsrMKzE4OSGxEREalkNpuN+vXrEx8fr4UzRdxhtuOa89zY7XuB8mfBFBGRiy88PLzC/WncoeRGAp7Zu/5I4TUrQxERET+g5EYCXlRUFLANAJstytpgRETEcpYOBZ89ezbt2rUjNjaW2NhYkpOTWbJkicvy8+bNw2azOWzmiU1CmVnFmQQkYbNpKLiISKiztOamUaNGPP/887Ro0QLDMPj3v//NoEGD2LZtG61bt3Z6n9jYWPbs2VN03VeLbImIiEhwsDS5GThwoMP15557jtmzZ7Nx40aXyY3NZisaUiYCnO95/zYAdvudgGYoFhEJZX4zQ3FBQQELFiwgOzub5ORkl+WysrJo3LgxCQkJDBo0iN27d1/EKMUfmTNa3gPcg2HkWR2OiIhYzPIOxTt37iQ5OZmzZ88SExPDwoULadWqldOyLVu25I033qBdu3ZkZGTwwgsv0LVrV3bv3k2jRo2c3ic3N5fc3Nyi65mZmZXyPMQ6Zp+bwmmJ1edGRCTU2QxfrVLlpby8PNLS0sjIyOCDDz7g9ddfZ/Xq1S4TnJLy8/O58sorGTZsGM8884zTMk8++SRPPfVUqf0ZGRnExsZWOH7xD4Vdr668Er77ztpYRETE9zIzM4mLi3Pr/G15cnOhPn360KxZM+bMmeNW+SFDhlClShXeeecdp7c7q7lJSEhQchNklNyIiAQ3T5Ibv+lzU8hutzskI2UpKChg586d1K9f32WZyMjIoqHmhZuIiIgEL0v73EyaNIl+/fqRmJjI6dOnmT9/PqtWrWLZsmUADB8+nIYNG5KamgrA008/TZcuXWjevDmnTp1i6tSpHDhwgPvuu8/KpyEWM5dfuAoAu30HWn5BRCS0WZrcHD9+nOHDh3P06FHi4uJo164dy5Yt44YbbgAgLS3NYQGt33//ndGjR5Oens4ll1xChw4d+Oqrr9zqnyPBy2xZ3Vd4zcpQRETED/hdn5vK5kmbnQSGgoICqlTZCMAVV3Th++81YkpEJNh4cv62fCi4SEWZQ8G7AcUdi0VEJHT5XYdiERERkYpQzY0EvHPnzgELATCMW9HbWkQktOksIAHPnDrgDgAMIwu9rUVEQpvOAhLwzBF1PQqvWRmKiIj4ASU3EvCqVasGrAIgTLmNiEjI06lAREREgoqSGwkqoTVrk4iIOKPkRgJeTk4OkAQkYbfnWByNiIhYTX1uJODZ7XZgR+E1K0MRERE/oORGAl5UVBTwOQA2W5S1wYiIiOWU3EjAM5dfMBdb1fILIiKiPjciIiISVFRzIwHPXH5hGQCG0Re9rUVEQpvOAhLwzOUXbga0/IKIiOgsIEHAXH7hGgAMQy2tIiKhTsmNBDxz+YVNgJZfEBERdSiWIKPRUiIiouRGREREgoqSGwl45vIL3YBuWn5BRETU50YCn7n8wleF16wMRURE/ICSGwl4kZGRwEIAbLZIa4MRERHLKbmRgFelShVgMKAOxSIioj43EmQMw+oIRETEaqq5kYBXUFAArAXAMK4Dwi2NR0RErKXkRgLe2bNngV5A4fIL0ZbGIyIi1lJyIwHPZrMBrQqvWRmKiIj4ASU3EvCqV68O7Aa0/IKIiKhDsYiIiAQZJTciIiISVJTcSMAzl1+4AbhByy+IiIj63EjgM5df+AIAw9DyCyIioU7JjQQ8c/mFtwAtvyAiIkpuJAiYyy/cCWi0lIiIqM+NiIiIBBnV3EjAM5df2AqAYVyNll8QEQltltbczJ49m3bt2hEbG0tsbCzJycksWbKkzPu8//77XHHFFURFRdG2bVs+++yzixSt+Ctz+YVOQCcM46zV4YiIiMUsTW4aNWrE888/z5YtW9i8eTO9e/dm0KBB7N6922n5r776imHDhjFq1Ci2bdvG4MGDGTx4MLt27brIkYs/MZdfaHx+0/ILIiKhzmYYhmF1ECXVqlWLqVOnMmrUqFK3DR06lOzsbD755JOifV26dCEpKYlXX33VreNnZmYSFxdHRkYGsbGxPotbrGU7n9O0bAk//GBtLCIi4nuenL/9pkNxQUEBCxYsIDs7m+TkZKdlNmzYQJ8+fRz29e3blw0bNrg8bm5uLpmZmQ6bBC//StVFRMQKlic3O3fuJCYmhsjISO6//34WLlxIq1atnJZNT0+nbt26Dvvq1q1Lenq6y+OnpqYSFxdXtCUkJPg0fhEREfEvlic3LVu2ZPv27Xz99dc88MADjBgxgu+++85nx580aRIZGRlF28GDB312bPEPZofiwcBg7HZ1KBYRCXWWDwWPiIigefPmAHTo0IFNmzYxY8YM5syZU6psvXr1OHbsmMO+Y8eOUa9ePZfHj4yMPD+DrQQrcyj44sJrVoYiIiJ+wPKamwvZ7XZyc3Od3pacnMyKFSsc9i1fvtxlHx0JDREREcBrwGvYbBFWhyMiIhaztOZm0qRJ9OvXj8TERE6fPs38+fNZtWoVy5YtA2D48OE0bNiQ1NRUAMaNG0ePHj2YNm0aAwYMYMGCBWzevJnXXnvNyqchFqtatSowGigeNSUiIqHL0uTm+PHjDB8+nKNHjxIXF0e7du1YtmwZN9xwAwBpaWmElVgsqGvXrsyfP5/HH3+cyZMn06JFCxYtWkSbNm2segoiIiLiZ/xunpvKpnlugo/dbic8/HsAWrS4kh9/9LvWVhERqSBPzt+WdygWqaicnBzArL2z27OAaEvjERERaym5kSBR2+oARETETyi5kYAXHR0NnAAgTC1SIiIhT6cCCSoaLSUiIkpuREREJKgouZGAZy6/cCdwp5ZfEBERJTcS+MzlF+af37T8gohIqFOHYgl45vILLwFo+QUREVFyI4HPXH5hvNVhiIiIn1CzlIiIiAQV1dxIwLPb7UAaAIaRiHJ2EZHQpuRGAp65/EJTAAxDyy+IiIQ6JTcSJKpbHYCIiPgJJTcS8MzlF7IBLb8gIiLqnCAiIiJBRsmNiIiIBBUlNxLwcnNzgdHAaOz2XKvDERERiym5kYB37tw54HXgdQzjnNXhiIiIxdShWAKeOUPxswDYbFWtDUZERCyn5EYCnrm21GMA2GzWxiIiItZTs5QEFSU3IiKimhsJeIZhACfPX64NKMMREQllSm4k4J05cwaIB7T8goiIqFlKREREgoxqbiTgmcsvGID63IiIiGpuREREJMgouREREZGgouRGAp65/MJ4YDyGoeUXRERCnZIbCXjm8gszgBlafkFERNShWAKfufzCZEDLL4iIiJIbCQLm8gvPARotJSIiapYSERGRIKOaGwl45vILZwCw26uj5RdEREKbam4k4JnLL8QAMRjGGavDERERiym5ERERkaBiaXKTmppKx44dqVGjBvHx8QwePJg9e/aUeZ958+Zhs9kctqioqIsUsfij6tWrA1lAFjZbdavDERERi1ma3KxevZqUlBQ2btzI8uXLyc/P58YbbyQ7O7vM+8XGxnL06NGi7cCBAxcpYvFHNpsNcyXwaMLC1N9GRCTUWdqheOnSpQ7X582bR3x8PFu2bKF79+4u72ez2ahXr15lhyciIiIByK/63GRkZABQq1atMstlZWXRuHFjEhISGDRoELt3774Y4YmfysvLAx4DHsMw8qwOR0RELOY3yY3dbmf8+PF069aNNm3auCzXsmVL3njjDRYvXsxbb72F3W6na9euHDp0yGn53NxcMjMzHTYJLvn5+cD/Av+LYeRbHY6IiFjMb+a5SUlJYdeuXaxbt67McsnJySQnJxdd79q1K1deeSVz5szhmWeeKVU+NTWVp556yufxiv+oUqUKMA4Am81v3tIiImIRv6i5GTNmDJ988gkrV66kUaNGHt23atWqtG/fnn379jm9fdKkSWRkZBRtBw8e9EXI4kciIyOB6ee3SEtjERER61n6M9cwDMaOHcvChQtZtWoVTZs29fgYBQUF7Ny5k/79+zu9PTIy8vzJT0REREKBpclNSkoK8+fPZ/HixdSoUYP09HQA4uLiqFatGgDDhw+nYcOGpKamAvD000/TpUsXmjdvzqlTp5g6dSoHDhzgvvvus+x5iIiIiP+wNLmZPXs2AD179nTYP3fuXEaOHAlAWloaYWHFrWe///47o0ePJj09nUsuuYQOHTrw1Vdf0apVq4sVtvgZc16kGADs9izMOW9ERCRU2Qxz1cGQkZmZSVxcHBkZGcTGxlodjvhAdnY2MTFmctO0aRY//aTkRkQk2Hhy/tbQEgl45vILxwG0/IKIiCi5kcBnLr9Q5/xla2MRERHr+cVQcBERERFfUc2NBDxz+YWpANjtjwARlsYjIiLWUnIjAc9cfuFxAAxjPEpuRERCm5IbCXjm8gvmPEdafkFERHQmkIBnzkD9T0AdikVERB2KJcgouRERESU3IiIiElSU3EjAM5dfiAaisduzrQ5HREQspj43EiTOWB2AiIj4CSU3EvDMFeR/LrxmZSgiIuIHlNxIwDNXjW8CqEOxiIioz42IiIgEGa9qbn7++WfWrl3LgQMHOHPmDHXq1KF9+/YkJycTFRXl6xhFymTOUDwLAMNIAapaGo+IiFjLo+Tm7bffZsaMGWzevJm6devSoEEDqlWrxm+//cb+/fuJiorizjvvZOLEiTRu3LiyYhZxYK4t9VcADGM0Sm5EREKb28lN+/btiYiIYOTIkXz44YckJCQ43J6bm8uGDRtYsGAB11xzDa+88gpDhgzxecAiFwoPDwf+VHjNylBERMQP2AzDMNwpuGzZMvr27evWQX/99Vd++eUXOnToUKHgKkNmZiZxcXFkZGQQGxtrdTjiI4UdiS+7DPbvtzYWERHxPU/O327X3Lib2ABceumlXHrppW6XFxEREfEVr0dL7d+/n8cff5xhw4Zx/PhxAJYsWcLu3bt9FpyIp9yrhxQRkWDmVXKzevVq2rZty9dff81HH31EVlYWADt27GDKlCk+DVCkPObyC3WAOlp+QUREvEtuHn30UZ599lmWL19ORERE0f7evXuzceNGnwUn4r6T5zcREQl1Xs1zs3PnTubPn19qf3x8PCdP6gQjF5e5/MIuAGw2Lb8gIhLqvKq5qVmzJkePHi21f9u2bTRs2LDCQYl4wlx+oTXQGptNk26LiIQ6r84Ef/zjH5k4cSLp6enYbDbsdjvr16/n4YcfZvjw4b6OUcRtWltKRES8Sm7+93//lyuuuIKEhASysrJo1aoV3bt3p2vXrjz++OO+jlGkTObyC/8E/olh5FsdjoiIWMztSfycSUtLY9euXWRlZdG+fXtatGjhy9gqhSbxCz7Z2dnExMQA0KRJFj//HG1xRCIi4muVMomfM4mJiSQmJlbkECIVZi6/MAgAw9DyCyIioc6r5KagoIB58+axYsUKjh8/jt1ud7j9yy+/9ElwIu4wV6JfBECY+hOLiIQ8r5KbcePGMW/ePAYMGECbNm2wqReniIiI+AmvkpsFCxbw3nvv0b9/f1/HIyIiIlIhXlXiR0RE0Lx5c1/HIuKVM2fOAE2AJtjtZyyORkRErOZVcvO3v/2NGTNmUIGBViI+Y74PD5zf9J4UEQl1XjVLrVu3jpUrV7JkyRJat25N1apVHW7/6KOPfBKciDvMDsXfAGCzRVkbjIiIWM6r5KZmzZrceuutvo5FxCvmUPCOgGYoFhERL5ObuXPn+joOEZ9QS6mIiFRoVpATJ06wbt061q1bx4kTJzy+f2pqKh07dqRGjRrEx8czePBg9uzZU+793n//fa644gqioqJo27Ytn332mTfhS5A4d+4c8DbwNoZxzupwRETEYl4lN9nZ2dx7773Ur1+f7t270717dxo0aMCoUaPOj1xxz+rVq0lJSWHjxo0sX76c/Px8brzxRrKzs13e56uvvmLYsGGMGjWKbdu2MXjwYAYPHsyuXbu8eSoSBHJzc4G7gLswjFyrwxEREYt5tbbUX/7yF7744gtmzpxJt27dALOT8UMPPcQNN9zA7NmzvQrmxIkTxMfHs3r1arp37+60zNChQ8nOzuaTTz4p2telSxeSkpJ49dVXy30MrS0VfHJycqhe/RYAEhP/y4ED1SyOSEREfK3S15b68MMP+eCDD+jZs2fRvv79+1OtWjXuuOMOr5ObjIwMAGrVquWyzIYNG5gwYYLDvr59+7Jo0SKn5XNzc8//sjdlZmZ6FZv4r2rVqgHLAS2/ICIiXjZLnTlzhrp165baHx8f71GzVEl2u53x48fTrVs32rRp47Jcenp6qceuW7cu6enpTsunpqYSFxdXtCUkJHgVnwQGjZYSERGvkpvk5GSmTJnC2bNni/bl5OTw1FNPkZyc7FUgKSkp7Nq1iwULFnh1f1cmTZpERkZG0Xbw4EGfHl9ERET8i1fNUjNmzKBv3740atSIq666CoAdO3YQFRXFsmXLPD7emDFj+OSTT1izZg2NGjUqs2y9evU4duyYw75jx45Rr149p+UjIyOJjIz0OCYJHGZtoTnPjd2+CahuaTwiImItr2pu2rRpw969e0lNTSUpKYmkpCSef/559u7dS+vWrd0+jmEYjBkzhoULF/Lll1/StGnTcu+TnJzMihUrHPYtX77c6xojCXxmn/jvgO+0JIiIiHhXcwNQvXp1Ro8eXaEHT0lJYf78+SxevJgaNWoU9ZuJi4s730kUhg8fTsOGDUlNTQVg3Lhx9OjRg2nTpjFgwAAWLFjA5s2bee211yoUiwQuc/mFlYCWXxARkQokN3v37mXlypUcP34cu93ucNsTTzzh1jEKR1WVHHUF5gzII0eOBCAtLY2wEkNgunbtyvz583n88ceZPHkyLVq0YNGiRWV2QpbgZi6/0BNQh2IREfFynpt//vOfPPDAA9SuXZt69ephK3FGsdlsbN261adB+pLmuQlOhW/BJk3g558tDUVERCpBpc9z8+yzz/Lcc88xceJErwIU8SVz+QVzUkfDuJkKVEiKiEgQ8Oos8PvvvzNkyBBfxyLiFXOSRnOVesPIQsmNiEho82q01JAhQ/j88899HYuIV8w+WV3Pb5qiWEQk1Hn1E7d58+b8z//8Dxs3bqRt27ZUrVrV4faHHnrIJ8GJuMMcWbce0PILIiLiZYfisuajsdls/PTTTxUKqjKpQ3FwKuxQ3Lgx/PKLpaGIiEglqPQOxT9rOIqIiIj4KVXiS8DLycnBXH6hI3Z7jtXhiIiIxdxObp5//vnzJ5Hyff3113z66adeByXiCXMSyc3nN3s5pUVEJNi5ndx89913JCYm8uCDD7JkyRJOnDhRdNu5c+f49ttveeWVV+jatStDhw6lRo0alRKwyIXMhVE/AT7BZtMiqSIioc7tPjdvvvkmO3bsYObMmfzpT38iMzOT8PBwIiMjz6/KDO3bt+e+++5j5MiR59f7Eal8VapUAQYAWn5BRES8HC1lt9v59ttvOXDgADk5OdSuXZukpCRq165dGTH6lEZLBSctvyAiEtwqfbRUWFgYSUlJJCUleXN3EZ8qKCgAvgTAMHoD4ZbGIyIi1tI89RLwzp49C9wIgN2eBURbGo+IiFhLyY0EPHP5hasKr1kZioiI+AElNxLwzOUXtgNafkFERPQzV0RERIKMx8lNfn4+VapUYdeuXZURj4iIiEiFeJzcVK1alcTExPMjVESsZ86c3RPoqeUXRETEu2apxx57jMmTJ/Pbb7/5Oh4Rj5nLL6w+v2n5BRGRUOdVh+KZM2eyb98+GjRoQOPGjYmOdhx6u3XrVp8EJ+IOc/mF9wC0/IKIiHiX3AwePNjHYYh4z1x+YYjVYYiIiJ/wKrmZMmWKr+MQERER8Qmvh4KfOnWK119/nUmTJhX1vdm6dSuHDx/2WXAi7jA7t68H1mMY6uguIhLqvKq5+fbbb+nTpw9xcXH88ssvjB49mlq1avHRRx+RlpbGm2++6es4RVwyl1+4FgDD0PILIiKhzquamwkTJjBy5Ej27t1LVFRU0f7+/fuzZs0anwUn4g6bzQY0P7/ZLI5GRESs5lXNzaZNm5gzZ06p/Q0bNiQ9Pb3CQYl4onr16sBeQMsviIiIlzU3kZGRZGZmltr/448/UqdOnQoHJSIiIuItr5KbW265haeffpr8/HzAbBZIS0tj4sSJ/OEPf/BpgCKesKlVSkQk5HmV3EybNo2srCzi4+PJycmhR48eNG/enBo1avDcc8/5OkaRMpkdigcAA7Dbz1odjoiIWMyrPjdxcXEsX76cdevW8e2335KVlcXVV19Nnz59fB2fSLnMoeCfAWgouIiIeJfcnD17lqioKK699lquvfZaX8ck4pGIiAhgLgA2W4S1wYiIiOW8Sm5q1qxJp06d6NGjB7169SI5OZlq1ar5OjYRt1StWhUYCajPjYiIeNnn5osvvuCmm27i66+/5pZbbuGSSy7h2muv5bHHHmP58uW+jlFERETEbTbDMIyKHODcuXNF8968/fbb2O32830g/FNmZiZxcXFkZGQQGxtrdTjiAwUFBVSpshOAhIS2pKWFWxyRiIj4mifnb6+apcCc02bVqlVFW25uLjfffDM9e/b09pAiXjFHS7UHtPyCiIh42SzVsGFDunTpwtKlS+nSpQtLlizh5MmTLFy4kHHjxrl9nDVr1jBw4EAaNGiAzWZj0aJFZZZftWoVNput1KZZkUObufxCg/ObOt2IiIQ6r5KbOnXqcObMGdLT00lPT+fYsWPk5OR4fJzs7GyuuuoqZs2a5dH99uzZw9GjR4u2+Ph4jx9bgoe5/MJh4DA2W3WrwxEREYt51Sy1fft2Tp06xZo1a1i9ejWTJ0/mu+++IykpiV69erk9kV+/fv3o16+fx48fHx9PzZo1Pb6fiIiIBD+vlxmsWbMmt9xyC5MnT2bSpEncfvvtbNq0ieeff96X8TmVlJRE/fr1ueGGG1i/fn2ZZXNzc8nMzHTYREREJHh5ldx89NFHPPTQQ7Rr1466devywAMPkJWVxbRp09i6dauvYyxSv359Xn31VT788EM+/PBDEhIS6NmzZ5mPmZqaSlxcXNGWkJBQafGJNcwOxUOAIRiGll8QEQl1Xg0Fj4+Pp3v37vTs2ZMePXrQtm3bigdis7Fw4UIGDx7s0f169OhBYmIi//nPf5zenpubS25ubtH1zMxMEhISNBQ8iGRnZxMTEwNAw4ZZHDqk0VIiIsGm0oeCHz9+3KvAKkOnTp1Yt26dy9sjIyOJjIy8iBHJxWYuvzAT0PILIiJSgXluCgoKWLRoEd9//z0ArVq1YtCgQYSHX9wJ1LZv3079+vUv6mOKfzGXX0gBtPyCiIh4mdzs27eP/v37c/jwYVq2bAmYfVsSEhL49NNPadasmVvHycrKYt++fUXXf/75Z7Zv306tWrVITExk0qRJHD58mDfffBOA6dOn07RpU1q3bs3Zs2d5/fXX+fLLL/n888+9eRoShJTciIiIV8nNQw89RLNmzdi4cSO1atUC4Ndff+Wuu+7ioYce4tNPP3XrOJs3b6ZXr15F1ydMmADAiBEjmDdvHkePHiUtLa3o9ry8PP72t79x+PBhqlevTrt27fjiiy8cjiGhx263A/sBMIxmVGAQoIiIBAGvOhRHR0ezcePGUh2Jd+zYQbdu3cjKyvJZgL6mtaWCjzoUi4gEv0rvUBwZGcnp06dL7c/KyjrfuVPkYouzOgAREfETXtXf33zzzfz5z3/m66+/xjAMDMNg48aN3H///dxyyy2+jlGkTNHR0cAp4BRhYaq1EREJdV4lNy+//DLNmjUjOTmZqKgooqKi6NatG82bN2fGjBm+jlFERETEbV41S9WsWZPFixezb9++oqHgV155Jc2bN/dpcCIiIiKe8ii5sdvtTJ06lf/+97/k5eVx/fXXM2XKFKpVq1ZZ8YmUy5yB+i8AGMYcQJM2ioiEMo+apZ577jkmT55MTEwMDRs2ZMaMGaSkpFRWbCJuOXfuHPBv4N8YxjmrwxEREYt5VHPz5ptv8sorr/CXv5i/kr/44gsGDBjA66+/TliY5hYRa5gzFP8fADZbVWuDERERy3mU3KSlpdG/f/+i63369MFms3HkyBEaNWrk8+BE3GFOP/CI1WGIiIif8Ki65dy5c0RFRTnsq1q1Kvn5+T4NSkRERMRbHtXcGIbByJEjHVbZPnv2LPfff//5uUZMH330ke8iFCmHufzCUQAMoz5afkFEJLR5lNyMGDGi1L677rrLZ8GIeCMnJwcwm0UNIwvQRH4iIqHMo+Rm7ty5lRWHSAV5NWWTiIgEIZ0RJOCZTaJmvy8N2hMREZ0KREREJKgouZGgYrNZHYGIiFhNyY0EPHP5hRQgBbs91+pwRETEYkpuJOCZyy+8Aryi5RdEREQdiiXwmcsvTAG0/IKIiCi5kSBgLr/wJKA+NyIiomYpERERCTKquZGAZxgGkHH+chyg6hsRkVCm5EYC3pkzZ4BLAC2/ICIiapYSERGRIKOaGwl41atXB/LOX9NbWkQk1OlMIAHPZrMBVc9ftjYWERGxnpqlREREJKgouZGAl5eXBzwCPIJh5JVXXEREgpySGwl4+fn5wAvACxhGvtXhiIiIxdTnRgKeufzCw4CWXxARESU3EgTM5RemAupQLCIiapYSERGRIKOaGwl45vIL585froKWXxARCW2quZGAZy6/EAFEYBhnrA5HREQspuRGREREgoqapSTgmcsv/A6AzVbd2mBERMRySm4k4JnLL9Q8f9nSUERExA9Y2iy1Zs0aBg4cSIMGDbDZbCxatKjc+6xatYqrr76ayMhImjdvzrx58yo9ThEREQkcliY32dnZXHXVVcyaNcut8j///DMDBgygV69ebN++nfHjx3PfffexbNmySo5U/Jm5/MKTwJNafkFERLAZ5jhay9lsNhYuXMjgwYNdlpk4cSKffvopu3btKtr3xz/+kVOnTrF06VK3HiczM5O4uDgyMjKIjY2taNjiB7Kzs4mJiQGgfv0sjhyJtjgiERHxNU/O3wHV52bDhg306dPHYV/fvn0ZP368y/vk5uaSm5tbdD0zM7OywhOLVKlSBXiw8JqVoYiIiB8IqKHg6enp1K1b12Ff3bp1yczMJCcnx+l9UlNTiYuLK9oSEhIuRqhyEUVGRgKzgFnYbJFWhyMiIhYLqOTGG5MmTSIjI6NoO3jwoNUhiYiISCUKqDr8evXqcezYMYd9x44dIzY2lmrVqjm9T2Rk5Plf9iIiIhIKAqrmJjk5mRUrVjjsW758OcnJyRZFJP4gOzsbqApUxW7PtjocERGxmKXJTVZWFtu3b2f79u2AOdR7+/btpKWlAWaT0vDhw4vK33///fz000/8/e9/54cffuCVV17hvffe469//asV4YtfOUfh4pkiIhLaLG2W2rx5M7169Sq6PmHCBABGjBjBvHnzOHr0aFGiA9C0aVM+/fRT/vrXvzJjxgwaNWrE66+/Tt++fS967OI/zCbJQwDYbM6bJ0VEJHT4zTw3F4vmuQlOhcsuNGgAhw9bG4uIiPieJ+fvgOpzIyIiIlKegBotJeKMufzCDAAMYxwQYWk8IiJiLSU3EvDy8/OBvwNgGA+i5EZEJLQpuZGAZy6/MAIAm01vaRGRUKczgQQ8c5LGeUBxx2IREQld6lAsIiIiQUXJjYiIiAQVJTcS8MzlF2oCNbX8goiIqM+NBIsMAEJrSkoREXFGyY0EPHP5hR8BLb8gIiJKbiQIhIWFAS0AjZYSERH1uREREZEgo5obCXjmDMWvAWAYfwaqWhqPiIhYS8mNBDxzbakxABjGSJTciIiENiU3EvDCw8OB2wGw2cKtDUZERCyn5EYCXlRUFPA+oA7FIiKiDsUiIiISZJTciIiISFBRciMB78yZM0BDoCGGccbqcERExGLqcyMBzzAM4EiJyyIiEsqU3EjAMzsUbwPAZouyNhgREbGckhsJeOZQ8CRAo6VERER9bkRERCTIqOZGAp65/MLbABjGnWiGYhGR0KbkRgKeufzCPQDY7UNQciMiEtqU3EjAM/vc9Ae0/IKIiCi5kSBgjpb6FFCHYhERUYdiERERCTJKbkRERCSoKLmRgGcuv9ACaKHlF0RERH1uJPCZSy7sK3FZRERCmZIbCXhmh+J1gJZfEBERJTcSBMyh4N2sDkNERPyE+tyIiIhIUFHNjQS8c+fOAQvPX7sVva1FREKbX9TczJo1iyZNmhAVFUXnzp355ptvXJadN28eNpvNYTP7XEioys3NBe4A7sAwcq0OR0RELGb5T9x3332XCRMm8Oqrr9K5c2emT59O37592bNnD/Hx8U7vExsby549e4qu2zQtbUgLCwsDegBgs/lFvi4iIhay/Ezw4osvMnr0aO655x5atWrFq6++SvXq1XnjjTdc3sdms1GvXr2irW7duhcxYvE31apVA1YBq7DZqlkcjYiIWM3S5CYvL48tW7bQp0+fon1hYWH06dOHDRs2uLxfVlYWjRs3JiEhgUGDBrF7926XZXNzc8nMzHTYREREJHhZmtycPHmSgoKCUjUvdevWJT093el9WrZsyRtvvMHixYt56623sNvtdO3alUOHDjktn5qaSlxcXNGWkJDg8+chIiIi/sPyZilPJScnM3z4cJKSkujRowcfffQRderUYc6cOU7LT5o0iYyMjKLt4MGDFzliqWw5OTlAEpCE3Z5jcTQiImI1SzsU165dm/DwcI4dO+aw/9ixY9SrV8+tY1StWpX27duzb98+p7dHRkYSGRlZ4VjFf9ntdmBH4TUrQxERET9gac1NREQEHTp0YMWKFUX77HY7K1asIDk52a1jFBQUsHPnTurXr19ZYYqfM6cC+Pz8pmkBRERCneVDwSdMmMCIESO45ppr6NSpE9OnTyc7O5t77rkHgOHDh9OwYUNSU1MBePrpp+nSpQvNmzfn1KlTTJ06lQMHDnDfffdZ+TTEQubyCzcAoFkBRETE8uRm6NChnDhxgieeeIL09HSSkpJYunRpUSfjtLS08/OYmH7//XdGjx5Neno6l1xyCR06dOCrr76iVatWVj0FERER8SM2wzAMq4O4mDIzM4mLiyMjI4PY2FirwxEfOHfuHFWrLgMgPr4vx45ZnrOLiIiPeXL+1llAAp65/MLN569lobe1iEho01lAAp7ZbHlN4TUrQxERET+g5EYCnrn8wiZAHYpFREQ/c0VERCTIKLmRkPLDD9C7N6xaZXUkIiJSWdQsJQHPXH7BXHzVML4AXK8M/oc/wHffwcqVEFrjBEVEQodqbiTgmcsvfHV+K3v5hSNHLkZE3jEMM/HKz7c6EqlMBw+am4hUHiU3EvDMtcMWnt/KXkfMnzscv/EGtG5t1i5J4Ni8GV591b2awLw8SEw0t9zcyo9NJFQpuZGAV6VKFWAwMBibreyWVn9Obl580fz78cfWxiGe6dgRHngAPvqo/LKnThVfzsystJDEC3l50KkT3H+/1ZF4bts2uPxy+PBDqyPxH0pu/IjdDvfcA9OnWx2JWMGfEy9PrFkDd98Nx49bHcnFtWuXZ+WD5f8dLJYuhU2bYM4cqyPx3B/+AHv3wu23++Z4u3bB//t/cO6cb45nBXUo9iPLl8O8eebl8eOtjCSwFBQUAGsBMIzrgHBL4/FWZZ3sMjPN91a/flC9euU8Rkk9eph/8/Lg3Xcdb8vJMWPp3RtiYio/FhF3FRRYHYH3srN9e7y2bc2/NhuMGeO8zAcfwI8/wuTJvn1sX1HNjR85fdrqCALLxo3w5JOQmXkW6AX0wjDOlnkff/61XFmx3X67uaWkVM7xXfnpp9L7UlJg0CD4058ubiy+cvw4HD3q/f2DcYSeYcAf/wiPP251JOKNnTthyBBzMMOFtmxxfb8hQ+Cxx2D9+sqLrSKU3EjASk6Gp56CO+6wAa3Ob2VnCMGW3BiG+cvqf//XdZnly82/hbWCVpo71/zrj/2KsrPh9dfh2DHntxcUQN260KABnDlT8cdz9v/OyYH33oPff/fumK++CuPGuU6iFi50r2+QJzZuNGvonnvOt8e92Pz5u6EyXXutWQtz/fXe3d/V58VqSm78SKh+uCrqiy+qA7uB3dhsZbe7BNtrvGsXzJpl/oKywqFDcPKkb4518iT885/WdbQdNw5Gj4ZevZzfXnJ0k7df6GX9EgZ45BEYOhT69/fu+A88AC+/DKtXl74tKwtuu83sn5GV5fmxDxyAt94q3Q/jbNmVpR775Rfvk7uKCMZaNXcUft7S062Nw9eU3PgRfzrx5uRYHUHocfX/L+tk74saBG+dOgUJCVCnjm+Od/PN8Oc/w733lr7t8GGzs2dlKqzR+P778ssW/q/KOiHanUy5VLJ/grP7/uc/5t+NG8uPoSwlR2UVKvmZ9ubz3aSJ2VH8lVcc9/syKTh8GJo2hVq1Knact9+Gq682E6VQYOW5w1+TQiU3fsQfkpszZ8wvserVYe1aq6MxfxWuX++7zn5Wv8ZHjrhOVpzFNmUKxMWZzQmV7bffzD5M+/cXX//6a9fl9+zx7eMXPpaz4ayNGpnDdD0dkeQJT7+kDcOxKn/DBpgxw9y/aRPUrAkzZzrep+T/2Nnj+er96esTzubNxZe//NK3xy7pm298c5y77jKHR1/sfmbl8ddEwJVAi7ckJTd+4PffS//Ks+pNNXasWf0MZhW51f7wB7NNuKw+JZAD3ADcgGGU/ZPUyuTm+HFo2NBMVpxxFtvTT5t/L/ySfuUVuOIKeO0138U3erTZh+maa8zrzZtDly7mEFlnwnzw7VFQAD17uj+3yIYNFX9MVzz9zJ06ZS7jUWjZMnOU40cfwYgR5gCBsWM9e7zKfH96+51SUGDO5VPIbjef4yOPmJf96QQ4dao530shT5rffPnaOxu9lJNjfmZHjPDd4zhz+jT84x/FP1Kc2bvXbIY9dKjij2cYkJZmfnf40/QPSm4qid3uXpPBd9+ZVbAXduZavNh5+f/7P3j+edfHy8szf/n++qv7sZb05pve3a+yfPaZ+ff//b+yStmBL85vZS+/UNKZM65rUVavdj56wBnDgL//Hd55p+xy5fW32Lat7McoKSXFrDl54w33YnTHmjXm38ImjcJ+D646/5ZXC+GOtWvN19rduUUu5sl/9GgYNcrz47jTrOXs8cA/a24u7GPz8cfmj44XXvB95+QLGYZnJ8y//908cVtp4UJzmoMLf5B9/LE5dLqyv2P/+ld49FFo1851mWuvNftm3XZb2cdy5/1oGObUDk8+CXfc4VGolUrJTSXp0weio8vvpPWvf5l/V61yfCNd2AxhGGZHw4kTYdIk88Rz/Lj5KyU1tbjcU0+Zw3579vTFs7DOgQOOTRBlf1lHAm+d35wvv7B5szn8uGRH0Jo1zVqUC5PQn34yX7/Wrd2LdckS8xdjecObwysw/Y6z/htWmDXL7FRqtzsO9S7r/5Ob6/z2X38tPyG80MVKbn7/3Rw59cYbxR2mS95us7mO5auv3EtwnP1PfZWUlHecX34xR8iMHVt+k29Zr7mvO6FeGMvYseYItQvnS7pYjh71fB2wwoS4ZCd/u73sWjxvfPed8x9gb71l/i3rx3VhwlhePzZ33o+GUVxL5Kwju1WU3FSSwurq8qbDLvnFUdaXyMqV5hDRQnl55i+DvXvNTort2pnT98+fb97urG/CoUNwyy2wYoV7z8HXTp6E//63/FkvT50y+/0UTiQF5X3IqgB3nt+cz0vZsWPpE2nhApUXVt+625fEbjebU9wdAlulAlNm+kPV/4ED5rDzu++G+Hgz2S7kKvk6dcpMIJ0NM61d23Wz2htvmLN1X8wZUku+xiVPsoWXSz5Hu911UrBkifP92dmOzSQX/k8fesh5R+BChw7BtGmQkeG6jKtjX7ivUydznpKZM4tPhp4cq5Cvk80L+yjNmmX+nTz54n8G7HZz2H9iovuT5BmG8+bahQsda6CWLjU/T6tWmf9TT5/b2bPmj6/Wrc1m5JI/2iq6ZlnhMjCBTsmNH3H1RWEYMHJk6f15ecWXd+6Ev/2t9P1Kuu8+s2q0Tx/3Y/r117I/eIZR9hdySR07mhO4zZhhxv7ll6WHkebnw6WXOn+cQp99Bjfd5N5juqOwaccwzPbqkp0nXcnNNZOlOXPMX+qF0tJcf7mUrLnxpvNqeU6fNn+NF34RHzjg2VIe5T1Gyf/zhc2erpKbjz82X4+SfVPcMWqUOS/PggWO+z05mT7zjGdNAOU9/5LJzJVXmqN63FVQADVqwL59rh+v7KZX6NYNHn4Y/vIX9x/XHUeOlH27J/+7Q4fM1+bCJAXMWoLffiv7/q5++f/0k5loeNoMW5Hkq/DHD7hXQ2W3Q9euzrsEnDjheL1fP/MHXK9e5v/0k088i63khK/lNXd76sLzSHn84YeXM0puKplhFH8pfvih+eY/cMDs3zB2rOuqw5JvmL/8xf2q0ZL3u/xyx46aaWnFl/v1K//XyNdfm7+unQ3NLfTgg3DJJfDFF+XHVjgs88MPzQ/Q9deXTtrWrCm/un7AALPzZrECYNP5zfNhVdOnw+7d0KEDxMbCE0+UXf6HHyAqyhyRcaHGjc0hqM6UTG5KfnFC+V8Q7nyB3Hmn+Wu8sFq8Y0ez/b2kpUu9rw0p60Th7H+2ebPjScGbGbgvPFG4e7LassX8P3rSedPVa1z4mCVPrLm57j+fsWPh009LH9/Tk0Lh59dVzVBJR486/vg5exYGDnRe1tlghpkzi4ej9+vn+nFsNsfnMXGi+fm4sAlm2TKztuiyy8qPvWTMJaWnm+9tTzrBGoZZW+YqgTt2zOx74mxenZLPKz3drLV0ViN+9qz5Pk1LKz2Ev/A5lPe+dTabN5jJeZcuxfH//jt8+61vOvMHPSPEZGRkGICRkZFRqY9jfjQMY/hww4iMNIypU4v39etXfLnk9t//Fl+++27zOFu3Oi979KhhPPBA6f2JiaX3FbrySsf9qamGUVDgGHeVKs4fzxm7vfj2Ll3cf006d3Z97IULnT9+zZqlj1O8ZRnA+S3L+OUXw/jb3wyjb1/DOHPG1X0ct4ED3Xvey5aVfyxXr9f69cW35+Q43lZQ4Hj/nTsd465Vy7z+zDOGccMN7j2+q9uqVTOM334rHV/t2sVlduwovvzgg+bt27e7Pmbh61zW47ZrZxg2m3uvX+H20kuOr82MGc5f20IvvmgYI0YYxpIlZf8vCq1bZ37uDMN8XQrvc/x48eWWLQ1j6VL3XndPtgMHHGMp7z1UuD8qyjAmTzaMtWtdlwHDaNOmeP/Mma7jeOopx2P83/+59z4Cw3jlFcNYvrz4esnXaNcu8/4//lj+Z8NZ/Nde6/pxd+wo//5gGJdcUnz50KHS5a+6qvj2F190jDEnp/j6ZZcVX1650vzuy883jDvuKN7/9delH/+PfzSPNWdO2a/j9OlmObu9+LshJcWxzJYthlGjhnn5s8/ce4+NGVP8+S3rdXL1/05ONs9hP/xg3rZggWHMn+9Y7oUX3P//VpQn5+9KDsX/XOzkxtnWpYvz/RcmN3v2mCd1Z2WPHjWM++8vvT8hwfWX5BVXOP/wb95s3n72bNlv+guV/PK57LLi/XZ72a9Jp07Oj/3OO64fPy6urNc224DG57dsh9sKT4bufBGU97xLJnPlbYWvwY4d5hdbQYFhbNhQfHtWluOx8/Md7z91qmGcO1d8PTras+dRXtk77ij9/ymZ3JTc3EluCr/8ynvcsDDPXv+ICMOIj3fct3278/dXyce+7rriy3/9a+lk8sLy775rJg2F10smN4Wbr5ObX35xHsuF773jxw3j1lvLf3+WdYznnnMdx5QpxeX27vXsfVQyEbpwCw837z98eNkxlxW/q+3xxz2//7vvul/eMMyE3dXtixeX/r668CRf8livvVZ2bIXJTd++5utWMjkv3Bo3Lr48dqxn77Xjx91/3s72N2xoGNnZxdd//931MW64ofR721c8OX+rcsvHcnJg69ayyxiG8/0lqy4/+ghatnTdn2XwYHMdGXeOvXGj6ynSf/+9uOo+KspVxM6tW1d8ubBadedOc8bal192LFtyyLWrZpG773b9WK5eM1N14Jfzm+PyC75aLXfPHnNosLsKn8tVV5nNiu++6/j/vbApwNn1kgsR+nrV38Jh3554+23Xtz34oPexlCUvr/RQ4KQkxyYXZ0pOQPnSS+X3PRo61PE9Vvb7zTfKmyW4Xz8zjocf9n4Sx8LmT3ebFC9sXi5vaYV//tP1bYXN8VZPnFmo8Hl+843ZxFTeEg9ljVD85JPSn8myRp2524y0bJl5HGdNgSWbQT2dSLGiHfMPH3b8zJX1fbR8edldGS4WJTc+Vr262XfDGyVn53SnP4wzzr6Uk5PLn8/AE3v3XtjnxXT8uNkf5tdfiyeImjjR7GtTcq6UC5O/778358xw5wPo6SRRFf1iNQyzk+MVVxQP23fHhYnA9u2OX3DNmkGbNmanwn37nPd7KGs+o4pKTy/u+JyX595rP3Wq69u+/NK9qe59daJr2tQcaeKuffvM13TrVvP5pqWV/gKu6CgTT115ZdlJ2tKlZr+lw4e9f4yICPOzWJbC995bb5lrU5VUXv+e8pJMKP0///774olCL6bC78bOnc1RWBMmlF225MSFFzp3rvToR1fJjc3mXj+p8pR8HXfv9uy+drvZvzEhwft5gErO+VRe8v/ll9atEVekciqP/FdlN0u5U0XoqlnKF1tcnOf3ad26/NhPnDC3Tz91/7glq/l9sdnthvHtt57dJznZMHr08P4x+/f3/r4lX9NJk8w2c2flbrrJscoXDGPo0NLlfv3V/cd+/HH3yqWmGkZsrGE0a1Z+s1R5xyrsF+TL/3l5W2HfpPI+fzabYfTubV6++WbD6Nix7OOmp1+c+N1pzruwj1rJ7fXXzb+NGjk2a3uyPfqoYXz8sXf3bdKk7NsNwzDuucf5bfPnF/9vTp707L3z+ONm09CoUYbx3Xdms+6F/dYu3N5+27G58cLm8ZLbXXeVH8OFTU3PPOP9+6CwWaqsMq4+n+5she8TMIzu3V2Xc/UddeGWllZ+mZQUX59d1eemTP6Q3JT1ZWXFlphYfuwXdka2Yps82VUbf44Bg85vOZbHWbhd+JoWnlwv3Hr3NozTp62Pt1Yt17e524HR3c+AL7fC/k0rV/rumEePXpzY3e2rFKhbhw7ulRs+3LPXwFny/p//lH2fvn0r97nWq+f9fd3pG1injvX/z8LtwAH3yvmaJ+fvCkwrJsEiLc1ci6Qs7k4pX5lcry9VACwucdk/XBivq3byrVvN1bCtVlafgf793TvGjh2+icUTYWHmJJbffuu7YxqG745Vnq1bzcktg5G7c7CUnP/HHc8+W3pfWX32wHlTui9VZLbmceO8myrBKiUnlPVXNjNbDB2ZmZnExcWRkZFBbGysT4+9aBHcemv55Tp3Lnu1ZfFUPjDv/OWRQFXLIpHgcNNNrhcM9aUffjD7c4W65GRzMkx/6Xzsj+Lj/WthSnf4Orvw5PytmhsfciexkcpQFfBgKJNIOS5GYgPuzYYdCkLrJ7Z3Ai2xsZpGS1nA0ypYEQlOzma5DkUbN3q+QKVIWVRz4yOetLc6W3tEKsIOFHYKuhLl7CKBJzHR6ggkmCi58ZHyJruSypQDtDl/OQuItjAWERGxmpIbHwmknu7BqbbVAYiIiJ/wi/r7WbNm0aRJE6KioujcuTPflJyq14n333+fK664gqioKNq2bctnn312kSJ1zdlqsXKxRAMnzm+qtRERCXWWJzfvvvsuEyZMYMqUKWzdupWrrrqKvn37ctxF1/CvvvqKYcOGMWrUKLZt28bgwYMZPHgwuyzOLiIiLH14EREROc/yeW46d+5Mx44dmTlzJgB2u52EhATGjh3Lo48+Wqr80KFDyc7O5pNPPina16VLF5KSknjV2UqSF6iseW7++18YNMhnhxMREQloVs5zY2nNTV5eHlu2bKFPnz5F+8LCwujTpw8bNmxwep8NGzY4lAfo27evy/IXS3i4pQ8f4s4Cd57f1LNbRCTUWdqh+OTJkxQUFFC3bl2H/XXr1uWHH35wep/09HSn5dNdjMXOzc0lt8Ryv5mVtFRpw4aVclhxSwEw//zl16wMRCTohYeXvVSHCEC/ftY+vuV9bipbamoqcXFxRVtCQkKlPE5SEtQ+P2CnSgVTxpJroNx0E/TuDR07OpZZvLj48pgxMHSoZ49xYfkXX4SVK6FHD+jeHbp0Kf8YX30Fc+ZAixbwt7+5Lrd7N5w6BUOGwOWXw+23uy6blATdusG2bTByJFx/vePtJf99bdsWXooAXgJeIiIigkcfdT2N+6hRxZcbNHAdx623wssvQ0oKPP88DBwI69ZB166OZQYPNi9fcglcdx385z/wyiuOcfbtC61ama/Xu++6fkwwk+QOHczn/fDD0L694+1Nm5Z9/8LnGB0N1arBgw8W7x8zBqZNg/vucyx//fWONY/PPut+H7LkZHNdrOuvh1mz4J57YOxYc1K2kv79b/O1Gj8eWrc29z33HFxzTXGZsWPhf/6n+Prf/158uW9faN7cdRzDhzvfX9hUXLNm8Xve2XNr0cL5/adPhwEDiq8nJZn/4xUrHMtFRRVfvukm82/HjvDSS6Xfw+6oU8f5/ksvdb7/wAFo1sy83LevuaTDsGGOZaKjHeMsPF7NmrB2rdmE8PHH8MADrmPevx/OnYO33ip92/Dh5ue70PXXQ9Wqjp+Zslx9Ndx4Y+n90dHmcxo2rPT3UuEkiPv2mc/hQo0awdy5jp+bli2LL8fEmGvr/fWvEBdXdnyffQZt2hR/zxdq0gRSU0vvB3O9s2rViq9HRpp/b7sNfvzR/Ky7+q5t3hwmTnQdT82azveX/NxUq2Z+nv/4x5Lfl6arrzbfN8uWwWOPQadOkJ0N69c7luvRAyZMMP+P7do5f8xHH4W334bHHzevDxsGn37qOvaLwdI+N3l5eVSvXp0PPviAwYVnCWDEiBGcOnWKxSXP4OclJiYyYcIExo8fX7RvypQpLFq0iB1OVu1zVnOTkJBQKWtLiYiISOUImD43ERERdOjQgRUlfgbZ7XZWrFhBcnKy0/skJyc7lAdYvny5y/KRkZHExsY6bCIiIhK8LJ/Eb8KECYwYMYJrrrmGTp06MX36dLKzs7nnnnsAGD58OA0bNiQ1NRWAcePG0aNHD6ZNm8aAAQNYsGABmzdv5rXX1NciVNntdtLS0gCzZi8sLOhbW0VEpAyWJzdDhw7lxIkTPPHEE6Snp5OUlMTSpUuLOg2npaU5nKy6du3K/Pnzefzxx5k8eTItWrRg0aJFtGnTxtVDSJDLycmh6flG9aysLKKjNZGfiEgos3yem4utsua5EetkZ2cTHx8PwPHjx5XciIgEIU/O35bX3IhUVHR0NNnZ2VaHISIifkKdE0RERCSoKLkRERGRoKLkRgJebm4uo0ePZvTo0Q5zGomISGhSh2IJeNnZ2cTExAAaLSUiEqzUoVhCStWqVXn22WeLLouISGhTzY2IiIj4vYBZfkFERETE19QsJQHPMAxOnjwJQO3atbG5WhJcRERCgpIbCXhnzpwpmqFYHYpFRCTkkpvCLkaZmZkWRyK+UnJ24szMTAoKCiyMRkREKkPhedudrsIhl9ycPn0agISEBIsjkcrQoEEDq0MQEZFKdPr0aeLi4sosE3Kjpex2O0eOHKFGjRo+75uRmZlJQkICBw8e1EgsD+m1qxi9fhWj1897eu0qRq+f+wzD4PTp0zRo0ICwsLLHQ4VczU1YWBiNGjWq1MeIjY3Vm9RLeu0qRq9fxej1855eu4rR6+ee8mpsCmkouIiIiAQVJTciIiISVJTc+FBkZCRTpkwhMjLS6lACjl67itHrVzF6/byn165i9PpVjpDrUCwiIiLBTTU3IiIiElSU3IiIiEhQUXIjIiIiQUXJjY/MmjWLJk2aEBUVRefOnfnmm2+sDilgrFmzhoEDB9KgQQNsNhuLFi2yOqSAkZqaSseOHalRowbx8fEMHjyYPXv2WB1WQJg9ezbt2rUrml8kOTmZJUuWWB1WwHr++eex2WyMHz/e6lACwpNPPonNZnPYrrjiCqvDChpKbnzg3XffZcKECUyZMoWtW7dy1VVX0bdvX44fP251aAEhOzubq666ilmzZlkdSsBZvXo1KSkpbNy4keXLl5Ofn8+NN97osN6WONeoUSOef/55tmzZwubNm+nduzeDBg1i9+7dVocWcDZt2sScOXNo166d1aEElNatW3P06NGibd26dVaHFDQ0WsoHOnfuTMeOHZk5cyZgLvGQkJDA2LFjefTRRy2OLrDYbDYWLlzI4MGDrQ4lIJ04cYL4+HhWr15N9+7drQ4n4NSqVYupU6cyatQoq0MJGFlZWVx99dW88sorPPvssyQlJTF9+nSrw/J7Tz75JIsWLWL79u1WhxKUVHNTQXl5eWzZsoU+ffoU7QsLC6NPnz5s2LDBwsgkFGVkZADmSVrcV1BQwIIFC8jOziY5OdnqcAJKSkoKAwYMcPgOFPfs3buXBg0acNlll3HnnXeSlpZmdUhBI+TWlvK1kydPUlBQQN26dR32161blx9++MGiqCQU2e12xo8fT7du3WjTpo3V4QSEnTt3kpyczNmzZ4mJiWHhwoW0atXK6rACxoIFC9i6dSubNm2yOpSA07lzZ+bNm0fLli05evQoTz31FNdddx27du2iRo0aVocX8JTciASJlJQUdu3apXZ7D7Rs2ZLt27eTkZHBBx98wIgRI1i9erUSHDccPHiQcePGsXz5cqKioqwOJ+D069ev6HK7du3o3LkzjRs35r333lOzqA8ouamg2rVrEx4ezrFjxxz2Hzt2jHr16lkUlYSaMWPG8Mknn7BmzZpKX/U+mERERNC8eXMAOnTowKZNm5gxYwZz5syxODL/t2XLFo4fP87VV19dtK+goIA1a9Ywc+ZMcnNzCQ8PtzDCwFKzZk0uv/xy9u3bZ3UoQUF9biooIiKCDh06sGLFiqJ9drudFStWqO1eKp1hGIwZM4aFCxfy5Zdf0rRpU6tDCmh2u53c3FyrwwgI119/PTt37mT79u1F2zXXXMOdd97J9u3bldh4KCsri/3791O/fn2rQwkKqrnxgQkTJjBixAiuueYaOnXqxPTp08nOzuaee+6xOrSAkJWV5fBr5eeff2b79u3UqlWLxMRECyPzfykpKcyfP5/FixdTo0YN0tPTAYiLi6NatWoWR+ffJk2aRL9+/UhMTOT06dPMnz+fVatWsWzZMqtDCwg1atQo1bcrOjqaSy+9VH2+3PDwww8zcOBAGjduzJEjR5gyZQrh4eEMGzbM6tCCgpIbHxg6dCgnTpzgiSeeID09naSkJJYuXVqqk7E4t3nzZnr16lV0fcKECQCMGDGCefPmWRRVYJg9ezYAPXv2dNg/d+5cRo4cefEDCiDHjx9n+PDhHD16lLi4ONq1a8eyZcu44YYbrA5NQsChQ4cYNmwYv/76K3Xq1OHaa69l48aN1KlTx+rQgoLmuREREZGgoj43IiIiElSU3IiIiEhQUXIjIiIiQUXJjYiIiAQVJTciIiISVJTciIiISFBRciMiIiJBRcmNiIiIBBUlNyIiXsjLy6N58+Z89dVXPj3u0qVLSUpKwm63+/S4IqFEyY2IMHLkSGw2W6lNKxS79uqrr9K0aVO6du1atM9ms7Fo0aJSZUeOHMngwYPdOu5NN91E1apVefvtt30UqUjoUXIjIoB5Uj169KjD5myV8by8PAui8y+GYTBz5kxGjRpVKccfOXIkL7/8cqUcWyQUKLkREQAiIyOpV6+ewxYeHk7Pnj0ZM2YM48ePp3bt2vTt2xeAXbt20a9fP2JiYqhbty533303J0+eLDpednY2w4cPJyYmhvr16zNt2jR69uzJ+PHji8o4q+moWbOmw4KpBw8e5I477qBmzZrUqlWLQYMG8csvvxTdXlgr8sILL1C/fn0uvfRSUlJSyM/PLyqTm5vLxIkTSUhIIDIykubNm/Ovf/0LwzBo3rw5L7zwgkMM27dvL7PmasuWLezfv58BAwZ4+CrDL7/84rSWrOTipwMHDmTz5s3s37/f4+OLiJIbEXHDv//9byIiIli/fj2vvvoqp06donfv3rRv357NmzezdOlSjh07xh133FF0n0ceeYTVq1ezePFiPv/8c1atWsXWrVs9etz8/Hz69u1LjRo1WLt2LevXrycmJoabbrrJoQZp5cqV7N+/n5UrV/Lvf/+befPmOSRIw4cP55133uHll1/m+++/Z86cOcTExGCz2bj33nuZO3euw+POnTuX7t2707x5c6dxrV27lssvv5waNWp49HwAEhISHGrHtm3bxqWXXkr37t2LyiQmJlK3bl3Wrl3r8fFFBDBEJOSNGDHCCA8PN6Kjo4u222+/3TAMw+jRo4fRvn17h/LPPPOMceONNzrsO3jwoAEYe/bsMU6fPm1EREQY7733XtHtv/76q1GtWjVj3LhxRfsAY+HChQ7HiYuLM+bOnWsYhmH85z//MVq2bGnY7fai23Nzc41q1aoZy5YtK4q9cePGxrlz54rKDBkyxBg6dKhhGIaxZ88eAzCWL1/u9LkfPnzYCA8PN77++mvDMAwjLy/PqF27tjFv3jyXr9e4ceOM3r17l9oPGFFRUQ6vY3R0tFGlShVj0KBBpcrn5OQYnTt3Nm6++WajoKDA4bb27dsbTz75pMsYRMS1KtamViLiL3r16sXs2bOLrkdHRxdd7tChg0PZHTt2sHLlSmJiYkodZ//+/eTk5JCXl0fnzp2L9teqVYuWLVt6FNOOHTvYt29fqRqSs2fPOjTZtG7dmvDw8KLr9evXZ+fOnYDZxBQeHk6PHj2cPkaDBg0YMGAAb7zxBp06deLjjz8mNzeXIUOGuIwrJyeHqKgop7e99NJL9OnTx2HfxIkTKSgoKFX23nvv5fTp0yxfvpywMMeK9GrVqnHmzBmXMYiIa0puRAQwkxlXzTAlEx2ArKwsBg4cyD/+8Y9SZevXr+/2KCubzYZhGA77SvaVycrKokOHDk5HDtWpU6foctWqVUsdt3AodbVq1cqN47777uPuu+/mpZdeYu7cuQwdOpTq1au7LF+7du2i5OlC9erVK/U61qhRg1OnTjnse/bZZ1m2bBnffPON0+at3377zeE5ioj7lNyIiMeuvvpqPvzwQ5o0aUKVKqW/Rpo1a0bVqlX5+uuvSUxMBOD333/nxx9/dKhBqVOnDkePHi26vnfvXofaiquvvpp3332X+Ph4YmNjvYq1bdu22O12Vq9eXapGpVD//v2Jjo5m9uzZLF26lDVr1pR5zPbt2zN79mwMw8Bms3kc04cffsjTTz/NkiVLaNasWanbC2um2rdv7/GxRUQdikXECykpKfz2228MGzaMTZs2sX//fpYtW8Y999xDQUEBMTExjBo1ikceeYQvv/ySXbt2MXLkyFJNL71792bmzJls27aNzZs3c//99zvUwtx5553Url2bQYMGsXbtWn7++WdWrVrFQw89xKFDh9yKtUmTJowYMYJ7772XRYsWFR3jvffeKyoTHh7OyJEjmTRpEi1atCA5ObnMY/bq1YusrCx2797twatm2rVrF8OHD2fixIm0bt2a9PR00tPT+e2334rKbNy4kcjIyHLjEBHnlNyIiMcaNGjA+vXrKSgo4MYbb6Rt27aMHz+emjVrFiUwU6dO5brrrmPgwIH06dOHa6+9tlTfnWnTppGQkMB1113Hn/70Jx5++GGH5qDq1auzZs0aEhMTue2227jyyisZNWoUZ8+e9agmZ/bs2dx+++08+OCDXHHFFYwePZrs7GyHMqNGjSIvL4977rmn3ONdeuml3HrrrV5NtLd582bOnDnDs88+S/369Yu22267rajMO++8w5133llm05iIuGYzLmzwFhGpJD179iQpKYnp06dbHUopa9eu5frrr+fgwYPUrVu33PLffvstN9xwA/v373fasdpbJ0+epGXLlmzevNnpJIoiUj7V3IhISMvNzeXQoUM8+eSTDBkyxK3EBqBdu3b84x//4Oeff/ZpPL/88guvvPKKEhuRClCHYhEJae+88w6jRo0iKSmJN99806P7jhw50ufxXHPNNVxzzTU+P65IKFGzlIiIiAQVNUuJiIhIUFFyIyIiIkFFyY2IiIgEFSU3IiIiElSU3IiIiEhQUXIjIiIiQUXJjYiIiAQVJTciIiISVJTciIiISFD5/8TYZJMlyO9RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr=\"q\").plot()\n", + "ax.axvline(freq, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "d6988516", + "metadata": {}, + "source": [ + "A pulsation in the Q Stokes parameter! Let us see the U parameter:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "844eda9e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQB0lEQVR4nO3deXgT1foH8G9aum8IpaWFFviBIrK1rJa1KIqACC7IRZQWEeVaFOTqRVxAFEUvoOBl9aJUvLKpLFdUFlkKIiD7orJVoAgtFJCWbumS+f1xmjZps3fSySTfz/PkaTKZTN6kk8ybM+ecVyNJkgQiIiIiN+GldABEREREcmJyQ0RERG6FyQ0RERG5FSY3RERE5FaY3BAREZFbYXJDREREboXJDREREbkVJjdERETkVpjcEBERkVthckNERERuxaOTm507d2LQoEGIjo6GRqPBunXr7N6GJEmYNWsW7rjjDvj5+aFRo0Z499135Q+WiIiIbFJH6QCUlJ+fj/bt2+Ppp5/GI4884tA2xo8fj82bN2PWrFlo27Ytbty4gRs3bsgcKREREdlKw8KZgkajwdq1azFkyJCKZVqtFq+//jpWrFiBmzdvok2bNvjggw+QmJgIAPj999/Rrl07nDhxAi1btlQmcCIiIjLi0aelrBk3bhz27NmDlStX4tixYxg6dCgeeOABnDlzBgDw7bff4v/+7/+wYcMGNGvWDE2bNsUzzzzDlhsiIiIFMbkxIyMjA0uXLsVXX32Fnj17onnz5nj55ZfRo0cPLF26FADwxx9/4MKFC/jqq6+wbNkypKam4uDBg3jssccUjp6IiMhzeXSfG0uOHz+OsrIy3HHHHUbLtVot6tevDwDQ6XTQarVYtmxZxXqffvopOnbsiFOnTvFUFRERkQKY3JiRl5cHb29vHDx4EN7e3kb3BQcHAwCioqJQp04dowSoVatWAETLD5MbIiKi2sfkxoz4+HiUlZXh6tWr6Nmzp8l1unfvjtLSUqSnp6N58+YAgNOnTwMAmjRpUmuxEhERUSWPHi2Vl5eHs2fPAhDJzIcffog+ffqgXr16iI2NxZNPPondu3dj9uzZiI+PR3Z2NrZu3Yp27dph4MCB0Ol06Ny5M4KDgzFnzhzodDqkpKQgNDQUmzdvVvjVEREReSaPTm527NiBPn36VFuelJSE1NRUlJSUYPr06Vi2bBkuXbqE8PBw3H333Zg2bRratm0LALh8+TJeeOEFbN68GUFBQejfvz9mz56NevXq1fbLISIiInh4ckNERETuh0PBiYiIyK0wuSEiIiK34nGjpXQ6HS5fvoyQkBBoNBqlwyEiIiIbSJKEW7duITo6Gl5elttmPC65uXz5MmJiYpQOg4iIiBxw8eJFNG7c2OI6HpfchISEABBvTmhoqMLREBERkS1yc3MRExNTcRy3xOOSG/2pqNDQUCY3REREKmNLlxKPS27I/RQXF2Pu3LkAgPHjx8PX11fhiIiISEkeN89Nbm4uwsLCkJOTw5YbN5Gfn19R7ysvLw9BQUEKR0RERHKz5/jNlhtSvTp16iApKaniOhEReTYeCUj1/Pz8kJqaqnQYRERkRVlZGUpKSsze7+vra3WYty2Y3BAREZFTSZKErKws3Lx50+J6Xl5eaNasWY37TjK5ISIiIqfSJzYREREIDAw0OeJJP8luZmYmYmNjazTRLpMbUr38/Hw0atQIAHDp0iV2KCYiciFlZWUViU39+vUtrtugQQNcvnwZpaWl8PHxcfg5mdyQW8jJyVE6BCIiMkHfxyYwMNDquvrTUWVlZUxuyLMFBATg9OnTFdeJiMj12HKaSa6aj0xuSPW8vLxw++23Kx0GERG5iJqPtyIiIiJyIWy5IdUrKSnBJ598AgB49tlna3SeloiI1I/JDalecXExxo0bBwBITk5mckNE5IJsqfYkV0UonpYi1fP29karVo8BeAxpad5Kh0NERAb0PzgLCgqsrltcXAxAfK/XBFtuSPX8/f3x++9fAQBeeQUYMEDhgIiIqIK3tzfq1q2Lq1evAoDFSfyys7MRGBhY4zqBTG6IiIjIqRo2bAgAFQmOOV5eXjWenRhgckNEREROptFoEBUVhYiICBbOJLKFOI8r5rnR6c4AsD4LJhER1T5vb+8a96exBZMbUj3Ru/6y/paSoRARkQtgckOq5+/vD+AwAECj8Vc2GCIiUhyTG1I90cQZBwCQqSwJERGpGOe5ISIiIrfClhtSPdHz/ksAgE43AgBnKCYi8mRMbkj1xIyWowAAkjQUTG6IiDwbkxtSPdHnRj8tMcsvEBF5OiY3pHpitNR3AAAZ5n4iIiKV46GAiIiI3AqTGyIiInIrTG5I9SrLL9wOna5A6XCIiEhh7HNDqifKL5zV31IyFCIicgFMbkj1RIfinwCw/AIRETG5ITcghoJ3B8DyC0RExD43RERE5GbYckOqV1paCmAtAECSHgZ3ayIiz8ajAKmeVqsF8DgAQJLywN2aiMiz8ShAqufl5QWgt/6WkqEQEZELYHJDqhcQEABgBwCWXyAiIv7MJSIiIjfD5IbcisQ5/IiIPB6TG1K9wsJCAHEA4qDTFSocDRERKY19bkj1dDodgKP6W0qGQkRELoDJDameKL+wGQDLLxAREZMbcgOi/MJ9AFh+gYiI2OeGiIiI3Axbbkj1RPmFTQAASeoH7tZERJ5N0ZabGTNmoHPnzggJCUFERASGDBmCU6dOWX3cV199hTvvvBP+/v5o27Ytvv/++1qIllyVKL/wIIAHIUlapcMhIiKFKZrcpKWlISUlBXv37sWWLVtQUlKC+++/H/n5+WYf8/PPP2P48OEYPXo0Dh8+jCFDhmDIkCE4ceJELUZOrkSUX+hUfuGZViIiT6eRJNeZ9iw7OxsRERFIS0tDr169TK4zbNgw5OfnY8OGDRXL7r77bsTFxWHRokVWnyM3NxdhYWHIyclBaGiobLGTsvQdie+8E/j9d2VjISIi+dlz/Hapn7k5OTkAgHr16pldZ8+ePejbt6/Rsn79+mHPnj0m19dqtcjNzTW6EBERkftymeRGp9NhwoQJ6N69O9q0aWN2vaysLERGRhoti4yMRFZWlsn1Z8yYgbCwsIpLTEyMrHETERGRa3GZ5CYlJQUnTpzAypUrZd3u5MmTkZOTU3G5ePGirNsn5YnyC90BdGf5BSIico0xs+PGjcOGDRuwc+dONG7c2OK6DRs2xJUrV4yWXblyBQ0bNjS5vp+fH/z8/GSLlVyPKL/ws/6WkqEQEZELULTlRpIkjBs3DmvXrsW2bdvQrFkzq49JSEjA1q1bjZZt2bIFCQkJzgqTXJxIXtcCWAuNhoksEZGnU7TlJiUlBcuXL8f69esREhJS0W8mLCwMAQEBAICRI0eiUaNGmDFjBgBg/Pjx6N27N2bPno2BAwdi5cqVOHDgAD755BPFXgcpq06dOgCGAGD5BSIiUrjlZuHChcjJyUFiYiKioqIqLqtWrapYJyMjA5mZmRW3u3XrhuXLl+OTTz5B+/bt8fXXX2PdunUWOyGT53CdiQ2IiEgpLjXPTW3gPDfup6ysDHXq7AIA3HFHT5w65a1wREREJDd7jt8u0aGYqCaKiooA9AEASFIegCBF4yEiImUxuSHV02g0AO7S31IyFCIicgFMbkj1AgMDAfwKAPBymZmbiIhIKTwUEBERkVthckNERERuhckNqZ4ov3AfgPtYfoGIiNjnhtRPlF/4UX9LyVCIiMgFMLkh1RPlF/4LACy/QERETG5I/UT5hREAWH6BiIjY54aIiIjcDFtuSPXKysoAHAIASFIHACy/QETkyZjckOqJ8gtdALD8AhERMbkhNyDKLzTR31IyFCIicgFMbkj1RPmF8wBYfoGIiNihmIiIiNwMkxtyK5KkdARERKQ0JjekeqJD8RAAQ6DTFSkcDRERKY19bkj1xFDw9fpbSoZCREQugMkNqZ6vry+ATwAAGo2vssEQEZHimNyQ6vn4+AAYA4DlF4iIiH1uiIiIyM2w5YZUT6fTAfi9/FYrMGcnIvJsTG5I9QoLCwG0AcDyC0RExOSG3EY4AM5zQ0RETG7IDQQFBQHIBsDyC0RExM4JRERE5GaY3BAREZFbYXJDqifKL4wAMILlF4iIiMkNqZ8ov7C8/MLyC0REno4dikn1RPmFjwCw/AIRETG5ITcgyi9MAMDyC0RExNNS5GY4zw0REbHlhlRPlF/IAABIUiyYsxMReTYmN6R6ovxCMwAsv0BERExuyG0EKh0AERG5CCY3pHqi/EI+AJZfICIidk4gIiIiN8PkhtwKh4ITERGTG1I9rVYLYAyAMdDptEqHQ0RECmNyQ6pXWloKYAmAJZCkUqXDISIihbFDMamemKF4OgBAo/FRNhgiIlIckxtSPVFb6nUA7HNDREQ8LUVERERuhi03pHqSJAG4Vn49HACbb4iIPBmTG1K9goICABEAWH6BiIh4WoqIiIjcDFtuSPVE+QUJAMsvEBERW27IzUiS0hEQEZHSmNwQERGRW2FyQ6onyi9MADABksTyC0REno7JDameKL8wF8Bcll8gIiJ2KCb1E+UXXgPA8gtERMTkhtyAKL/wLgCWXyAiIp6WIjfD5IaIiNhyQ6onyi8UlF8PBMsvEBF5NrbckOqJ8gvBAIKh0xUoHQ4RESmMyQ0RERG5FZ6WItULDAwEkAcA0GgClQ2GiIgUx+SGVE+j0UBfCZwdiomIiKeliIiIyK0wuSHVKy4uBvA6gNchScVKh0NERApjckOqV1JSAuA9AO9BkkqUDoeIiBTGPjekenXq1AEwHgCg0XCXJiLydDwSkOr5+fkBmKN0GERE5CIUPS21c+dODBo0CNHR0dBoNFi3bp3F9Xfs2AGNRlPtkpWVVTsBExERkctTNLnJz89H+/btMX/+fLsed+rUKWRmZlZcIiIinBQhERERqY2ip6X69++P/v372/24iIgI1K1bV/6ASJXy8/Mhyi8AOl0e9HPeEBGRZ1LlaKm4uDhERUXhvvvuw+7du5UOh4iIiFyIqjoUR0VFYdGiRejUqRO0Wi2WLFmCxMRE7Nu3Dx06dDD5GK1WC61WW3E7Nze3tsKlWiLKL1wFwPILRESksuSmZcuWaNmyZcXtbt26IT09HR999BG++OILk4+ZMWMGpk2bVlshkgJE+YUGAAAvVbZFEhGRnFR/KOjSpQvOnj1r9v7JkycjJyen4nLx4sVajI6IiIhqm6pabkw5cuQIoqKizN7v5+dXPg8KuStRfmEmAECSXgHgq2g8RESkLEWTm7y8PKNWl3PnzuHIkSOoV68eYmNjMXnyZFy6dAnLli0DAMyZMwfNmjVD69atUVRUhCVLlmDbtm3YvHmzUi+BXIAov/AGAECnmwAmN0REnk3R5ObAgQPo06dPxe2JEycCAJKSkpCamorMzExkZGRU3F9cXIx//OMfuHTpEgIDA9GuXTv8+OOPRtsgzyPKLzwDgOUXiIgI0EiSJCkdRG3Kzc1FWFgYcnJyEBoaqnQ4JBONRvxt3hyw0AWLiIhUyp7jt+o7FBMREREZYnJDREREboXJDameKL8QBCAIOl2+0uEQEZHC2PuS3ESB0gEQEZGLYHJDqhcQEADgHABAowlQNhgiIlIckxtSPS8vLwBNlQ6DiIhcBPvcEBERkVtxqOXm3Llz2LVrFy5cuICCggI0aNAA8fHxSEhIgL+/v9wxElkkZiieDwCQpBQAPorGQ0REyrIrufnyyy8xd+5cHDhwAJGRkYiOjkZAQABu3LiB9PR0+Pv7Y8SIEZg0aRKaNGnirJiJjIjaUi8BACRpDJjcEBF5NpuTm/j4ePj6+iI5ORnffPMNYmJijO7XarXYs2cPVq5ciU6dOmHBggUYOnSo7AETVeXt7Q3gCQCARuOtbDBERKQ4m8svbNq0Cf369bNpo9evX8f58+fRsWPHGgXnDCy/4J5YfoGIyL3Zc/y2ueXG1sQGAOrXr4/69evbvD4RERGRXBweLZWeno433ngDw4cPx9WrVwEAP/zwA3799VfZgiMiIiKyl0PJTVpaGtq2bYt9+/ZhzZo1yMvLAwAcPXoUU6dOlTVAImtE+YUGABqgrIzlF4iIPJ1Dyc2rr76K6dOnY8uWLfD19a1Yfs8992Dv3r2yBUdku2vlFyIi8nQOzXNz/PhxLF++vNryiIgIXLvGAwzVLlF+4QQAll8gIiIHW27q1q2LzMzMassPHz6MRo0a1TgoInuI8gutAbSGRsNJt4mIPJ1DR4K//e1vmDRpErKysqDRaKDT6bB79268/PLLGDlypNwxEhEREdnMoeTmvffew5133omYmBjk5eXhrrvuQq9evdCtWze88cYbcsdIZJEov/AfAP+BJJUoHQ4RESnM5kn8TMnIyMCJEyeQl5eH+Ph43H777XLG5hScxM/95OfnIzg4GADQtGkezp0LUjgiIiKSm1Mm8TMlNjYWsbGxNdkEUY2J8guD9beUDIWIiFyAQ8lNWVkZUlNTsXXrVly9ehU6nc7o/m3btskSHJEtRCX6dQAqyzAQEZHncii5GT9+PFJTUzFw4EC0adMGGh5RiIiIyEU4lNysXLkSq1evxoABA+SOh4iIiKhGHBot5evrixYtWsgdC5FDCgoKADQF0BQ6XYHC0RARkdIcSm7+8Y9/YO7cuajBQCsi2Yj98AKAC9BouE8SEXk6h05L/fTTT9i+fTt++OEHtG7dGj4+Pkb3r1mzRpbgiGwhOhT/AgDQaPyVDYaIiBTnUHJTt25dPPzww3LHQuQQMRS8MwCOliIiIgeTm6VLl8odBxEREZEsajSJX3Z2Nk6dOgUAaNmyJRo0aCBLUET2KC0tBbAKAKDTDUMNd2siIlI5hzoU5+fn4+mnn0ZUVBR69eqFXr16ITo6GqNHjy4fuUJUe7RaLYAnATwJSdIqHQ4RESnMoeRm4sSJSEtLw7fffoubN2/i5s2bWL9+PdLS0vCPf/xD7hiJLPLy8gLQt/zi0C5NRERuxKHCmeHh4fj666+RmJhotHz79u14/PHHkZ2dLVd8smPhTPek70jcrBnwxx/KxkJERPKz5/jt0M/cgoICREZGVlseERHB01JERESkKIeSm4SEBEydOhVFRUUVywoLCzFt2jQkJCTIFhwRERGRvRwaVjJ37lz069cPjRs3Rvv27QEAR48ehb+/PzZt2iRrgETWiNZCMc+NTrcfQKCi8RARkbIcSm7atGmDM2fO4Msvv8TJkycBAMOHD8eIESMQEBAga4BE1ohuY7/pbykZChERuQCHJwQJDAzEmDFj5IyFyCGi/MJ2/S0lQyEiIhfgcHJz5swZbN++HVevXoVOpzO6b8qUKTUOjMhWovxCIgCWXyAiIgeTm//85z/4+9//jvDwcDRs2BAagyOKRqNhckNERESKcSi5mT59Ot59911MmjRJ7niI7CbKL2wAAEjSg2D5BSIiz+bQUeCvv/7C0KFD5Y6FyCGi/IK+Sn0emNwQEXk2h+a5GTp0KDZv3ix3LEQOEeUXupVfWH6BiMjTOfQTt0WLFnjzzTexd+9etG3bFj4+Pkb3v/jii7IER2QLMf3AbgCAF3MbIiKP51BtqWbNmpnfoEaDP1y4uA9rS7kn1pYiInJv9hy/HWq5OXfunEOBERERETkbG/FJ9QoLCyHKL3RGWVmh0uEQEZHCbE5u3n///fKDiHX79u3Dd99953BQRPYQk0geKL/orKxNRETuzubk5rfffkNsbCyef/55/PDDD8jOzq64r7S0FMeOHcOCBQvQrVs3DBs2DCEhIU4JmKgqPz8/iHluNkCj8VM6HCIiUpjNfW6WLVuGo0ePYt68eXjiiSeQm5sLb29v+Pn5lVdlBuLj4/HMM88gOTm5vN4PkfPVqVMHwEAALL9AREQOjpbS6XQ4duwYLly4gMLCQoSHhyMuLg7h4eHOiFFWHC3lnvRJTdOmAPu7ExG5H6ePlvLy8kJcXBzi4uIceTiRrMrKygBsAwBI0j0AvBWNh4iIlMV56kn1ioqKANwPAJCkPABBisZDRETKYnJDqifKL7TX31IyFCIicgFMbkj1RPmFIwDYoZiIiPgzl4iIiNyM3clNSUkJ6tSpgxMnTjgjHiIiIqIasTu58fHxQWxsbPkIFSLliZmzEwEkQpJYfoGIyNM5dFrq9ddfx2uvvYYbN27IHQ+R3UT5hbTyC8svEBF5Ooc6FM+bNw9nz55FdHQ0mjRpgqAg46G3hw4dkiU4IluI8gurAYDlF4iIyLHkZsiQITKHQeQ4UX5hKACOliIiIgeTm6lTp8odBxEREZEsHB4KfvPmTSxZsgSTJ0+u6Htz6NAhXLp0SbbgiGwhOrfvBrAbOh07uhMReTqHWm6OHTuGvn37IiwsDOfPn8eYMWNQr149rFmzBhkZGVi2bJnccRKZJcov9ADA8gtERORgy83EiRORnJyMM2fOwN/fv2L5gAEDsHPnTpu3s3PnTgwaNAjR0dHQaDRYt26d1cfs2LEDHTp0gJ+fH1q0aIHU1FQHXgG5E41GA6BF+YWdboiIPJ1Dyc3+/fvx3HPPVVveqFEjZGVl2byd/Px8tG/fHvPnz7dp/XPnzmHgwIHo06cPjhw5ggkTJuCZZ57Bpk2bbH5Ocj+BgYEAzgA4Ay+vQKXDISIihTl0WsrPzw+5ubnVlp8+fRoNGjSweTv9+/dH//79bV5/0aJFaNasGWbPng0AaNWqFX766Sd89NFH6Nevn83bISIiIvflUMvNQw89hLfffhslJSUAxGmBjIwMTJo0CY8++qisARras2cP+vbta7SsX79+2LNnj9Oek4iIiNTFoeRm9uzZyMvLQ0REBAoLC9G7d2+0aNECISEhePfdd+WOsUJWVhYiIyONlkVGRiI3N7d8Cv7qtFotcnNzjS7kXkSH4oEABkKSipQOh4iIFObQaamwsDBs2bIFP/30E44dO4a8vDx06NChWquKK5gxYwamTZumdBjkRGIo+PcAAEniUHAiIk/nUHJTVFQEf39/9OjRAz169JA7JrMaNmyIK1euGC27cuUKQkNDERAQYPIxkydPxsSJEytu5+bmIiYmxqlxUu3y9fUFsFR/S8lQiIjIBTiU3NStWxddunRB79690adPHyQkJJhNLuSUkJCA77//3mjZli1bkJCQYPYxfn5+5bWHyF35+PgASAbA8gtERORgn5sff/wRDzzwAPbt24eHHnoIt912G3r06IHXX38dW7ZssXk7eXl5OHLkCI4cOQJADPU+cuQIMjIyAIhWl5EjR1asP3bsWPzxxx/45z//iZMnT2LBggVYvXo1XnrpJUdeBrkhJjdERKSRJEmqyQZKS0uxf/9+LF68GF9++SV0Ol15HwjrduzYgT59+lRbnpSUhNTUVCQnJ+P8+fPYsWOH0WNeeukl/Pbbb2jcuDHefPNNJCcn2xxvbm4uwsLCkJOTg9DQUJsfR66rrKwMdeocBwDExrbFhQveCkdERERys+f47XByc/r0aezYsaPiotVq0atXLyQmJmL8+PEOBV4bmNy4n/z8fAQHBwMAYmLykJHB8gtERO7GnuO3Q31uGjVqhMLCQiQmJiIxMRGTJk1Cu3btyqfBJ6pdYr+L1t9SMhQiInIBDvW5adCgAQoKCpCVlYWsrCxcuXLF7DwzRM4myi9cAnCJ5ReIiMix5ObIkSPIysrCq6++Cq1Wi9deew3h4eHo1q0bXn/9dbljJCIiIrJZjTsUX79+HTt27MD69euxYsUKuzoUK4F9btyT/oxobCxw4YKysRARkfyc3udmzZo1FR2Jf/vtN9SrVw89evTA7Nmz0bt3b4eCJnKUKL/wFABAkr4A4K9oPEREpCyHkpuxY8eiV69eePbZZ9G7d2+0bdtW7riIbCZaCr8GAEhSqqKxEBGR8hxKbq5evSp3HEQOE+UX5gEANBqWXyAi8nQOJTeA+LW8bt06/P777wCAu+66C4MHD4a3NydQo9olyi+kAOAMxURE5GByc/bsWQwYMACXLl1Cy5YtAYjq2zExMfjuu+/QvHlzWYMkIiIispVDQ8FffPFFNG/eHBcvXsShQ4dw6NAhZGRkoFmzZnjxxRfljpHIIp1OB+AMgDOQJJ3S4RARkcIcarlJS0vD3r17Ua9evYpl9evXx/vvv4/u3bvLFhyRLcQEkncAACQpDwDLLxAReTKHkhs/Pz/cunWr2vK8vLzyzp1EtS0MAFCzWZuIiMgdOHRa6sEHH8Szzz6Lffv2QZIkSJKEvXv3YuzYsXjooYfkjpHIoqCgIAA3AdyElxdbbYiIPJ1Dyc3HH3+M5s2bIyEhAf7+/vD390f37t3RokULzJ07V+4YiWzG0VJEROTQaam6deti/fr1OHv2bMVQ8FatWqFFixayBkdERERkL7uSG51Oh5kzZ+J///sfiouLce+992Lq1KkICAhwVnxEVmm1WgDPAQAkaTEAP0XjISIiZdl1Wurdd9/Fa6+9huDgYDRq1Ahz585FSkqKs2IjsklpaSmAzwF8DkkqVTocIiJSmF0tN8uWLcOCBQvw3HPiV/KPP/6IgQMHYsmSJfDycqj7DlGNiRmK/wUA0Gh8lA2GiIgUZ1dyk5GRgQEDBlTc7tu3LzQaDS5fvozGjRvLHhyRLcT0A68AYIdiIiKy87RUaWkp/P39jZb5+PigpKRE1qCIiIiIHGVXy40kSUhOToafX2WHzaKiIowdO7Z8rhFhzZo18kVIZIUov5BZfj0KDs5wQEREbsKu5CYpKanasieffFK2YIgcIcoviNOiLL9ARER2JTdLly51VhxENeTQlE1EROSGeEQg1ROnREW/Lw7aIyIiHgqIiIjIrTC5ISIiIrfC5IZUT5RfSAGQAknSKh0OEREpjMkNqZ4ov7AAwAKWXyAiInYoJvUT5RemAmD5BSIiYnJDbkCUX3gLAMsvEBERT0sRERGRm2HLDameJEkAcsqvhwFg8w0RkSdjckOqV1BQAOA2ACy/QEREPC1FREREboYtN6R6gYGBAIoBABoNd2kiIk/HIwGpnkajAeBTfl3ZWIiISHk8LUVuRZKUjoCIiJTG5IZUr7i4GMArAF6BJBUrHQ4RESmMyQ2pXklJCYBZAGZBkkqUDoeIiBTGPjekeqL8wssAWH6BiIiY3JAbEOUXZgJgh2IiIuJpKSIiInIzbLkh1RPlF0rLr9cByy8QEXk2ttyQ6onyC74AfCFJBUqHQ0RECmNyQ0RERG6Fp6VI9UT5hb8AABpNoLLBEBGR4pjckOqJ8gt1y68rGgoREbkAnpYiIiIit8KWG1I9UX7hPQCAJL0G0bmYiIg8FZMbUj1RfmEaAECSXgGTGyIiz8bkhlSvTp06AJ4HAGg03KWJiDwdjwSken5+fgDmA2CHYiIiYodicjOSpHQERESkNCY3RERE5FaY3JDq5efnA/AB4AOdLl/pcIiISGHsc0NuolTpAIiIyEUwuSHVCwgIAPAnAECjCVA2GCIiUhyTG1I9Ly8vAI0AcLQUERGxzw0RERG5GbbckOqJ8gtzAQCSNB6coZiIyLMxuSHVE+UX/gkAkKTnweSGiMizMbkh1RPlF5IAsPwCERExuSE3IMovpAJgh2IiImKHYiIiInIzLpHczJ8/H02bNoW/vz+6du2KX375xey6qamp0Gg0Rhd/f/9ajJaIiIhcmeLJzapVqzBx4kRMnToVhw4dQvv27dGvXz9cvXrV7GNCQ0ORmZlZcblw4UItRkyuRpRfqAugLssvEBGR8snNhx9+iDFjxmDUqFG46667sGjRIgQGBuKzzz4z+xiNRoOGDRtWXCIjI2sxYnJNOeUXIiLydIomN8XFxTh48CD69u1bsczLywt9+/bFnj17zD4uLy8PTZo0QUxMDAYPHoxff/21NsIlFyXKL5wGcJrlF4iISNnk5tq1aygrK6vW8hIZGYmsrCyTj2nZsiU+++wzrF+/Hv/973+h0+nQrVs3/PnnnybX12q1yM3NNbqQexHlF24vvyjeGElERApT3ZEgISEBI0eORFxcHHr37o01a9agQYMGWLx4scn1Z8yYgbCwsIpLTExMLUdMREREtUnR5CY8PBze3t64cuWK0fIrV66gYcOGNm3Dx8cH8fHxOHv2rMn7J0+ejJycnIrLxYsXaxw3uRYxQ/F8APMhSSVKh0NERApTNLnx9fVFx44dsXXr1oplOp0OW7duRUJCgk3bKCsrw/HjxxEVFWXyfj8/P4SGhhpdyL2I2lLjAIyDJBUrHQ4RESlM8RmKJ06ciKSkJHTq1AldunTBnDlzkJ+fj1GjRgEARo4ciUaNGmHGjBkAgLfffht33303WrRogZs3b2LmzJm4cOECnnnmGSVfBinI29sbwGMAAI3GW9lgiIhIcYonN8OGDUN2djamTJmCrKwsxMXFYePGjRWdjDMyMso7jAp//fUXxowZg6ysLNx2223o2LEjfv75Z9x1111KvQRSmJjE8SsALL9ARESARpIkSekgalNubi7CwsKQk5PDU1RuRJ/UREcDly4pGwsREcnPnuO36kZLEREREVnC5IZUr6CgAEAjAI0gSQVKh0NERApTvM8NUU2JM6uXDa4TEZEnY3JDqic6FB8GAGg0rBBPROTpmNyQ6omh4HEAOFqKiIjY54aIiIjcDFtuSPVE+YUvAQCSNAKAj6LxEBGRspjckOqJ8gtiRmtJGgomN0REno3JDame6HMzAADLLxAREZMbcgNitNR3ANihmIiI2KGY3AynuSEiIiY3REREVVy6BJw6pXQU5CieliLVE+UX2gMAJOkogEBF4yEi9WvcWPy9ehVo0EDZWMh+bLkh1RMlF84COMvyC0QuJjsbOHZM6Sgcd/q00hGQI5jckE22bAHWrFE6CtNEh+KfAPzE8gvk0V59FWjVCsjNVTqSShERQPv2wPHjSkdCnoTJDdnk/vuBRx8V56FdjRgK3h1Adw4FJ4/2wQfAyZPAJ58oHUl1O3cqHYFz3boF/PQToNMpHQkBTG7ITtnZSkdARNaUlSkdgefp1Qvo2dM1E0tPxOSGVK+0tBTAV+WXUoWjISJPdOSI+JuaqmQUpMfkRgF//gkkJQGHDikdif1csb+uVqsF8DiAx6HTaZUOx6UUFCgdARFR7WNyo4Dhw4Fly4COHZWOxD14eXkB6A2gN0pLuUvrbd0KBAUBkycrHQm5m61bgX/8A9Dyt0Q1+/YpHQEBTG4U8dtvSkdgn5q21mRkAMOGAXv3yhNPVQEBAQB2ANiB69cDnPMkTnTiBLBkifwdESdMEH/ff1/e7RL17Qt8+CHw738rHYmQkwO88AKwZ4/SkZCr4CR+ZBdHEp0nnwR27QJWr3bN01pKa9tW/A0IAEaMkG+7rLNFznbunO3rOnN/fP11YP58YN48fseQwJYbN3f4MNC8uUgslHLmjHLPrSZy98EydzC5elXsD8XF8j4fuae8PKUjsO733523bf5IUCcmN25u6FDgjz/EaSFHGf4ScuRXkbO/HAoLCwHElV8KnftkbqBrV7E/vPee0pHYRqcDiorM379zJ7BjR62F41GWLAFCQkSriCtz5ncMW4LUicmNmyuU+Vjvih90nU4H4Gj5xbaOKxcvAqNGVQ7fdEfmvvDPnxd/nTXjtCTJu5/cfbfoGH3zZvX7ioqA3r2BPn1qv4Xhjz+A2bPV0bLhqDFjxN9x42q+LVsTkDVrxIShpv7fRLZickNW1fRA5eyWG1F+YXP5xXr5BZ1OtFykpgLx8c6NzR6ulDiePw+0aCH6MNijrAzo3BkYMEC+WPbvF/+zH3+sfp9hi05tlxxo3Rp4+WVR8oDk8+ijIsF5+23bH+PM7xiellInJjekeqL8wn3lF8vlF4qKxEHbE0ZVWPtStpRMvfwykJ4uRqAAYr6cJ54AvvrK8jZPnQIOHgQ2bqydZM3wNdZ2cqhPrHhKzDmuXFE6AmH7dqUjcF3Z2cDUqZWtwa6EyQ15lK1b7Rvh4amqzl/y4YfAihXA44/bvg25k42aJGvk3pzZuvLGG8Du3c7bvpqNGCFa2Hr0UDqS6pjcuJlly8QByFIHTHvVtEOxIWdM+iXKL3xXfrFcfsGTmpjlfK1ZWfY/p9zJhqntKdlyo/TzqkFJidIRyOPnn5WOwDXpW7VcsaAykxuVy8sTHSrnzBG3k5LEqYOFC53zfDUdLTVlinyx6InyCw+WXzhlqq2cfVB299NS9jzvrVui7IotTp50nVMyNbV4ce08jyf8aLl5E5g1SwyGIOuY3KjcvHliKOxLLxkvv3FDvueQs0OxfoROYaH5mZpLSoDx44Fvv7Vt+6L8QqfyC3dpPbm+8OfMsX1btZ1syPl8paVAfr79j7PleRs0AGJirB+YLl4EWrUCGja0Pw5HlZY6r4XlwgXnbFftcnPFqV57+qo89xzwyitA9+5OC8tucs+qLiceCVSutkeIyHXA6tZNjDbZsKH6fZ9+Cnz8MfDQQ5bj0DeFivIL+8svlssv2HPAlyT5h9K7milTRIdAS156yfggtXOnbduujdNScp4yvfNOIDhYTOUvN/3p2J9+srxebRfTlSTRwb5RI5HkeJKMDFHnb//+6vc5OzF//nlRm6tZM5G02GLjRvFXjpYbuSbwZHJDTnP8uNIRWGfq17V+fpnPPxd/i4oq77Plw/vss0DjxsCXX8oWZjUDBwKBgUBmpvOew9BHH8m7PVOJ3GefVV6/cQN45x3RIdDaAd3w/t69bXtOwwPEhg2iNc5cC0FpKbBtm/0tJ3ImN+np4q+9I+nseV5r69aktc1w27m5tiUrBQUicc3OFgd7Z7L3tZ0+XfPn/Okn4OuvTd83fDiwciXQpUvNn8de+kQFAD75xLbHyNUS+/HHgJ8f8P338mzPVTG5IassfSFLUs2atL28RAtMQADwyCO2P27JEvHXVB8euX51/fCD+LtihfHynBzxpai2ydsKCoDRoytvG/7frP0PHXlPDR8zaJD4UjVMrgxNmwbcey8weLD9z2Pq+dzB5MligICt1q2rvP7ee0D79tYf48gB09Ff67b8SJg7t/L6gQNiagH9/9XS85p7HT17ilnaTSVKciRPjjK3r1ZdXlYm+lDK2c9m/Hjx11odO7V/npjckF2q7vB9+wJRUY71VQDEl5L+gGf45WwPUX6he/mlEDEx5ltBHPkyr9qEO3So+NX37LP2b2vrVpGQlZXZ/1hrCgqM/z9VX6utSWhRkeOn46z1gTHXqXbRIvF369bKZVX3KWeflnJ0O3IeBAzfv/ffFwMEbHX0qPFtc33aaur++x17nLlJ+c6fB/77X9HSpK9kr3fnneKU2W23ARERjick9iYHSnS2X7hQ9M0ynDV9yRIx+rV5c/k7TVva3oIFot/XiRPyPmdtYnKjcrXRgdPSdrdtA65fd3wiM43G/g9t1TknRPmFn8svOly6BEyc6Fg8Op1IjPbtq1xWNbnZskX8rdqiY8mmTcBTT4lk8J13bP9FLknAv/9t/VRJerooUTB0aOWyqu+rLe+zTgdERhonGYAotmkv/X5jeJA1ty9Vje2FF0T/F3vmF1HLL80//xS1mky1/NX2qB9L3x/mTlVW3Tf01q4VB2J7+wE2ayY+G4mJpu/PzBQjha5fF5NLmmLtfXO10VSm9tXnnxev8emnK5dt2iT+lpTI/xq8LBz9U1LEZ15ffkON6igdANVMbY9OMfccW7aIA7efX/X7LH0oHfnAVp0wys/PD8Ba/S2Lj7X2fCtWVE+M5GhleeAB49t//GF5/fR08cVWrx7w4otimaX/r76w4TffmF/H0mvXb7uoyPTB6dQpy/Gaeg79Nlu3rr7MGn3ZB2tTB6ix5aZrV+DyZeDYsepDpWtyAJPz4FdSAtSta99j9KeVmzUDPvjA/ud05kR59r43Sk6T4Ix92pTr162v48odhq1hy42Ls+d0j7Vme3tcvgx06AD85z+2rT93ruj9by8vr5p/odepUwfAkPKL5Xzd2nOZasrXP6aoCHjtNftjdMTtt4tfTyNHOr4NR95XS7/m7GXPvmcuVmvJuzO+/B1NbnJygKVLgb/+srz+5cvir75Pl1zkfC9qMpWErRM+ysmRfd3exxhOjCpJ4jSguU7bixaJ+moFBfbHZcjSaWayjMlNLSgoAJ580nyvfXPmzhVN8//9r/l1zH351/SD8NprwOHDol+Jrb8k9K0Hevrhr5YOUNbivHbN8v21WUph5kxgxgznPof+15T+fbK1n4wtBzb9QdWUhQuNR6w5yvD/qdPZ3o/K8HFV+47YSulJ/EaOFKcUHnvM+rqA6X4gtX0Aq61Wgtp28aJoGdMzfF9v3RKj9yzNll71vfj8czHoITVV3H7/fSAuzriDvqG//10kr1W/E81t315yzmNmSKutnItM7Zjc1II5c8SQZcP+ELbQd6576inz6xh+aPWzFNvi5Eng11/N31/TXxzr1wP+/qK/iDWWvtAbNACmTzd/v04H5OSUAdhRfpG/p64+Pmd10DRkbR4Uexi+rwUFonOmOVOn2leF2RaSBDz8cPVl1sTFVV63p57Uhx+K59MnhCdPAmPH2j+R3Lx54gve1k6o+hj+9z/xd9s22+K1x6+/itO+cp+6kSu5Meyjtn69bY/55Rdg82b7nkeSRF+lDh2M52equp/ExhqPFjO8f/BgMXrPnr5B+u/KUaPE33feEX+t9Z3LzRV9hqp2hLb1vTb3g7V+fdH/qKZzE5WVAe++W7lfvfmmqMpeE3KW/qkJJje1oLaaaV95xbb1SkrELKht2lSe9iopEV9QpaXAsGHmqz/b2v/kb38Tf1980XrLjbWOr2++afm5MjKKAPQpv1j+ZNXkl7HhKAZbpaebnkpfoxHvfdWWKVviO33a9gOIni3T+W/dKm/LjT2nkWx53dZiW7xYtBStXi1ud+smltk7vHzjRvEFHxtb/b7cXOunneyVlSV+mNy4Yf59GDRI/H9qq0ChvZ+Tu++uvJ6TIybGGzOmekd0w75bXbsC/frZ9zySJE6VHz7seDJuS5XvAwcs329PX5ToaKBlS8ufQcPO24bbtrTPz54NfPGF7XGYkpoqCoPq9ytLZwlsMX++aOHSfwaVxOTGBSxeLGYJPXvW8nqSJD7Uhs2p5r6E9Bm9qfsNM+vLl4G9e8UsmXffLVqLqu6Yhh+wTz+1HKOe4QfU0hTjpvp42HuA9fLSALir/FL9BZ89W7OOcfp4Tp6073E//yz+r+am0r/tNtEyZa+WLYEhQ4xbCKwVlTS1H1R9jCTJe2pCqQ7u+lFI+iTE8DTXyZOiBW7/fvvj0+mAsDDRybtq/4uaeOABMQu0pRbamhYmXL5cJBNVJ+oz1XIjx+y1XbqIYcxVWzbathV/a/Lr3jC+X34R+7a1CensTdYSEizf78j3ye+/V16vus8Y/gA2t21THYD//LNm+59hsvnbbzWbsPSFF4Bx48T1YcMc345cmNzUAmudNMeOFb/wX3jB8no+PqI51t/feguKrX1DHn5YfJCXLhW3zZ0j1vv8c9vmmrD1A1e15ebJJ8UEZPbw9w8E8Gv5JdDovkWLROdcw+GVtcVaDZia1vM5eLDyurUv29rqy2Gt5cbcKDFbOhTbo2pr6ZQpIslt1UqM3urSpfI0kiUbN4oDcVGR8Y8KS/2XAPEZmTbNtlIO+uTr++/Nv15vb9PLtVqxH0mSGC5tzogRIhGoOo9M1f/Rtm1ixKOp0U4TJtR85KB+nx8wwLHHf/cd8Oqrlbe7drXtcfr3Va5yNY4kN5ZaZMx9bqx9j+blidPN+hGV1liaeNRwVGNVpaWW9y+gcoSjq2ByUwts/SVUVCQ+uOaGURp+seh3JEtf/ikppr+EDR9jqd+NXtUPWMuWog+HpS86Wz/8VeN3pJyCpS+At94Sf/VlHky9Xx9/XHndVJ8GZyQGchzMDftFmerbZE9/FUvLTBkypHIODnPPaao/gKmOkHl5jp+WMhfvqlXGt995R5TTMLXOpUvmv/T79xfN7KGhxhMb6juWmovhrrvEvmfrQUfP3PtQx8QgwGXLxA8dX18xDNtwdl9zrB3c9R1kP/yw+n1z59o3t5MltpwacgZ9X5macqS1RKcT+9mqVdVHwRr+37VaMW+YVmv9eb74QiTStvRtBKqfzrb1+6Z3b9HSrKZCqExuasHChebvM2yePXpUJDaGv0zM0fdotzbLpLMEBRl3/KzKnuSmpv0tnnnGtucyZ/x48QXRrh2QllazbdnK3Cgve7409YmbOYatBqbe46r/I3sSq/Xrq8/dU3Ub5g6E+/eL5OD6ddFKFxJivSVEz9SpNFuZ6tT555+iRllkpOXHlpQYF7U0PEiaikGf+P/8s/HyqsmFLZ91wLjlRl+41HD2YnOj0qzNMFu1lcDaPmDqtMXy5ZYfU1VNBys4Qv+65ChjoNM59uNNkkSHZH1/REOGrYhnzwJ9+og+S9b2b1vjWLDA8nHIGv1+vHix+DFYW/X2aoLJjcLGjq28bthRsepOvWuX8W39F5yScx9Y+uK09aBj6zw3VUfdGEpLKwRwX/nFsboBo0c7VoTU3GOs/UI21xFQrmq9gPHoLlv73DhSRuPGDdOd5rOzTT9nly7iSz48HHj9dcvbNoy7pATo2FGcurTG1oRZ/zmqyQHX0r5eta9MSorx7aqttOb+T4antnv3Nj8Euaqqv7SrttTae2rU1P5prUZRVUFB9q0vB3u+J61NsHnPPca3LZ2uqZo8mpsOxNTMy198IU+/tZwcsd89/3z1Fkpr78svv4iOy3ozZogfg5aK57oKJjcK058uqarqTt2rl+n17PnQOnq+uep5ejnZGv/69SKZMn0w1AH4sfxi+aeMueezNATbUozt2lUeIDIzRRL67LOi46kjxo+3beZQe9mS3ADidIo95s0Tw1KjosT8IYb9UuSedC8tTXSoNzx1WZPtZWXZ13fCkedytEZX1eet+v8zV4C0qvx8475fhknotWsiwTR8HmveeMP4thyvrzaZ+ywbvvbERMvbqNq6a2tnb3tHhsnF8DPpyI8nU4nXmTOOx1NbWH7BRTljpElYmJhXomlT+x5n6yzFgPhlEBxs/v6qp2PsqS2lH2lRnR+A/xpcF44dqz780hktXYWForN3dHTNt3X5svEBx9C+faLlwpovv6z+a9rW5MbeycEMO8H/8QfwxBOW17c2ItASU4mIuX4mtvRBuH5dnsnQ5Pysmjt96OjM0ZZGrVTtV3PokP3D3PUDEVzJ449XX6Z/X819/r28RKfzadPsP3Uld3kZQ84ecehImQxbFRQAgYHW13MWttw4SVER8NBD1kcfmeOsnfr++4E77nDOtgHRf8Kelh55ko06AEaUXyrzdcNJvADRvOqs6fpr4xfs3XcD//yn8bK0tOodd598snpnb1Pvs6WRE46yViSz6lBka6yNvjI1sm75ctuTqPHjbY/F0ar1//qX7etWPf0MiORG7qR8167qIypHjLA+IkYNTM3RJUli7iJLHaLffhto0sT+55s3z3kzpdszR9rNm+J/WLWsh7O6LlibFsTeSWtlJ3mYnJwcCYCUk5Mj+7bPnpWkq1fF9SVL9LOGGF/ee0+S6tUzfZ/h5dYt6+tIkvV1XPFiGPfYsZI0c2btPff48fY/Zto0y+9127aSdOqUcu/nm29WXzZrlvHtS5esb6dNm5rFceSI8e1XX635a+vZs/J6WFjldb2abLt1a3ne/6goSfrmG+f9f8+dk6TISPm2V1goSX37Oi9eV7xMn67M8w4d6tztG+4XiYmV1ydMkKSiIvEZyc6uXD53bu2+frnZc/zmaSmZZGaKCdsAMXy0cWPT69laeNFaR0vAtjk0XJHhhFurVjlWcNNYGQD9UJYOAMxMCgIxn5Dcjh9XdoikqeGtVc+Tf/ut9e1YG1ljLzkqChu2ZBju799/X71lzl6SVLPH62Vm1nzKekuaNZN3e02b2jZjtTuxVEfKmczN9C4Xw1aZHTsqr8+ZIz5/c+dWr/fmKZjcyOTw4crrclT7teVg5MjIFldgON/IX39V76RovyIAXcqv5wEwPxzD0S91awdCuQ6UzmI4Kq+21HTCN0sGDqx5BfPaqBXmijwtsQHc96Bu6Xvn44/FyDTD79uXXnJ+TK6CfW5clC3ncBs1cn4c6qAB0KT8YvkE8/799m996lTrHePc9cuzJpyZ3AB8z8l27rqvWPtRNWNG7dUjczVsuZGJq/9yd2+BAM479Rms1cIx1RHU01Sd1LHqBHZESrGlZIwaVS1MSpXYciMTd/1lQLaxtx6WJ/jlF6UjIBK++UbpCKi2MbkhIiIit8LkRiY8LaWkIgBDyi9Wzh8REZHbY58bcgNlANYbXCciIk/G5EYmbLlRki+ATwyuExGRJ2NyIxMmN0ryATBG6SCIiMhFsM+NTHx8lI6AiIiIALbcyKZTJ6Uj8GQ6AL+XX28F5uxERJ6NyY1MOM+NkgoBtCm/brn8AhERuT8mNzJhcqO0cKUDICIiF+ES7ffz589H06ZN4e/vj65du+IXK1ObfvXVV7jzzjvh7++Ptm3b4nvDMtMKYXKjpCAA2eUXttoQEXk6xZObVatWYeLEiZg6dSoOHTqE9u3bo1+/frhqpmjGzz//jOHDh2P06NE4fPgwhgwZgiFDhuDEiRO1HLkxf39Fn56IiIjKaSRJ2UHMXbt2RefOnTFv3jwAgE6nQ0xMDF544QW8+uqr1dYfNmwY8vPzsWHDhopld999N+Li4rBo0SKrz5ebm4uwsDDk5OQgNDRUvhcCQGO5IDUREZHHkDu7sOf4rWjLTXFxMQ4ePIi+fftWLPPy8kLfvn2xZ88ek4/Zs2eP0foA0K9fP7Pr16bkZKUj8FRFAEaUX1h+gYjI0yma3Fy7dg1lZWWIjIw0Wh4ZGYmsrCyTj8nKyrJrfa1Wi9zcXKOLs8yYYfn+nj2d9tQ2W79eVGsODlY6EjmVAVhefnGs/EJCAtCxo5wxUW1o2VLpCFzbu+8qHQGRMhTvc+NsM2bMQFhYWMUlJibGac/VsKHoWDxqFHDPPcDJk8CUKcC//iWSip07gb/9Taxbp3yc2s6dwPz5QGIiMGyYOMg++qj4W9WKFcDateJ6u3bA3r3AgQOV95uaa6dDh8rrv/8OPPQQ0LkzcOsW8PHHYvmoUZXrTJkCjB1r+vX9/e/ArFnieuvWwJgxYt3nnhPP/e9/A1otcPAgsGqVWO+ll4D33hPXe/QAzp4Fnn0WePNNID4eOHYMMNO9Cnv2ALt3V94+cwY4cUK8xzk5wCOPAE8+Ccya5Yu33/4I//rXR/jgA1+cOiXep/Hjq2/zxAng/feBAQOA3Fzg3Dngiy+ADRuAH34A7r1XrDd8OHD4sIhfLy0NmDfPOCZDAwcCEycCTZqI2+++K2J9/nnggw+qr9+ihXj/9P3hQ0OB0aPF9YiIyvXCw4F//rPy9qVLQFkZcOUKMHeueC8vXRL7zNChYjtPPQVs3Ag88YR4rQsXmo55xQrxmOho8X968UVg+3axn1Q1fTowYYLYn9u0qVw+ebLxelVbi194AVi5svI9GDgQyM4W7+WhQ8anczMzgbw84H//E7eTk0U8J08CrVoBjRqJ5fHx4r09eVLsF02aAHPmiGbwoiLgu+/EvlFVdHT1Zb/+KrZVXAwYntnOzATeeqvyNT7wADBoEDB4sPjsvPUW8NVXQEkJ8MYbwNtvAzt2AMuWif3m7rsrt/Xpp8CQIdWfGwDuuKP6srffFvvpv/8tPjNPPw28/jqQnl753gDi//Tcc+L6U0+J/XnLFvHZGDYMePll8fnS71emxMcDSUmm76tfX/z/QkOBr78W3xuvvSa2d/Cg+A6aMQN48EHx/ixYINb9z38qtxFU3sf/zTfF/zMgwPg5xo0zvv3RR8DMmWK/BIDLl4Ft2yrvX7oUOH9efJ8AwB9/AA0aiOsjR4r4unUDLl4U+8SUKZWfp337xGd84EDxXfbKK2L5yy+Lv889J74Xhg8X77NOJ77LNm0S761+3169Gpg9W1yfMwdISRGP/fvfxbZWrRKfvzvuAO66S/zNyRH75ZQpld+PgPhfAeK9mzlTXB8wQDz3b79VrvfWW+K7R78Pd+5ceV9goPhMrVtXuUx/JkH/PTRggPg/PfEE8PDD4r7HHgNu3hTvFyD2WW9v8X0xf76Ip08fcd9ttwH9+ol4r14V+77+PSsrE/vdo4+K1z9mjPiuVZKifW6Ki4sRGBiIr7/+GkMMPvlJSUm4efMm1q9fX+0xsbGxmDhxIiZMmFCxbOrUqVi3bh2OHj1abX2tVgutVltxOzc3FzExMU7pc0NERETOoZo+N76+vujYsSO2bt1asUyn02Hr1q1IMNV0ASAhIcFofQDYsmWL2fX9/PwQGhpqdCEiIiL3pfgkfhMnTkRSUhI6deqELl26YM6cOcjPz8eo8nMlI0eORKNGjTCjvEPL+PHj0bt3b8yePRsDBw7EypUrceDAAXzyySeWnobcmE6nQ0ZGBgDRsufl5fZnW4mIyALFk5thw4YhOzsbU6ZMQVZWFuLi4rBx48aKTsMZGRlGB6tu3bph+fLleOONN/Daa6/h9ttvx7p169DGsBMAeZTCwkI0a9YMAJCXl4egIE7kR0TkyRSf56a2OXOeG1JGfn4+Isp7DF69epXJDRGRG7Ln+K14yw1RTQUFBSE/P1/pMIiIyEWwcwIRERG5FSY3RERE5FaY3JDqabVajBkzBmPGjDGa04iIiDwTOxST6uXn5yO4vJ4ER0sREbkndigmj+Lj44Pp06dXXCciIs/GlhsiIiJyeaopv0BEREQkN56WItWTJAnXrl0DAISHh0NjWGaaiIg8DpMbUr2CgoKKGYrZoZiIiDwuudF3McrNzVU4EpKL4ezEubm5KCsrUzAaIiJyBv1x25auwh6X3Ny6dQsAEBMTo3Ak5AzR0dFKh0BERE5069YthIWFWVzH40ZL6XQ6XL58GSEhIbL3zcjNzUVMTAwuXrzIkVh24ntXM3z/aobvn+P43tUM3z/bSZKEW7duITo6Gl5elsdDeVzLjZeXFxo3buzU5wgNDeVO6iC+dzXD969m+P45ju9dzfD9s421Fhs9DgUnIiIit8LkhoiIiNwKkxsZ+fn5YerUqfDz81M6FNXhe1czfP9qhu+f4/je1QzfP+fwuA7FRERE5N7YckNERERuhckNERERuRUmN0RERORWmNzIZP78+WjatCn8/f3RtWtX/PLLL0qHpBo7d+7EoEGDEB0dDY1Gg3Xr1ikdkmrMmDEDnTt3RkhICCIiIjBkyBCcOnVK6bBUYeHChWjXrl3F/CIJCQn44YcflA5Ltd5//31oNBpMmDBB6VBU4a233oJGozG63HnnnUqH5TaY3Mhg1apVmDhxIqZOnYpDhw6hffv26NevH65evap0aKqQn5+P9u3bY/78+UqHojppaWlISUnB3r17sWXLFpSUlOD+++83qrdFpjVu3Bjvv/8+Dh48iAMHDuCee+7B4MGD8euvvyodmurs378fixcvRrt27ZQORVVat26NzMzMistPP/2kdEhug6OlZNC1a1d07twZ8+bNAyBKPMTExOCFF17Aq6++qnB06qLRaLB27VoMGTJE6VBUKTs7GxEREUhLS0OvXr2UDkd16tWrh5kzZ2L06NFKh6IaeXl56NChAxYsWIDp06cjLi4Oc+bMUTosl/fWW29h3bp1OHLkiNKhuCW23NRQcXExDh48iL59+1Ys8/LyQt++fbFnzx4FIyNPlJOTA0AcpMl2ZWVlWLlyJfLz85GQkKB0OKqSkpKCgQMHGn0Hkm3OnDmD6Oho/N///R9GjBiBjIwMpUNyGx5XW0pu165dQ1lZGSIjI42WR0ZG4uTJkwpFRZ5Ip9NhwoQJ6N69O9q0aaN0OKpw/PhxJCQkoKioCMHBwVi7di3uuusupcNSjZUrV+LQoUPYv3+/0qGoTteuXZGamoqWLVsiMzMT06ZNQ8+ePXHixAmEhIQoHZ7qMbkhchMpKSk4ceIEz9vboWXLljhy5AhycnLw9ddfIykpCWlpaUxwbHDx4kWMHz8eW7Zsgb+/v9LhqE7//v0rrrdr1w5du3ZFkyZNsHr1ap4WlQGTmxoKDw+Ht7c3rly5YrT8ypUraNiwoUJRkacZN24cNmzYgJ07dzq96r078fX1RYsWLQAAHTt2xP79+zF37lwsXrxY4chc38GDB3H16lV06NChYllZWRl27tyJefPmQavVwtvbW8EI1aVu3bq44447cPbsWaVDcQvsc1NDvr6+6NixI7Zu3VqxTKfTYevWrTx3T04nSRLGjRuHtWvXYtu2bWjWrJnSIamaTqeDVqtVOgxVuPfee3H8+HEcOXKk4tKpUyeMGDECR44cYWJjp7y8PKSnpyMqKkrpUNwCW25kMHHiRCQlJaFTp07o0qUL5syZg/z8fIwaNUrp0FQhLy/P6NfKuXPncOTIEdSrVw+xsbEKRub6UlJSsHz5cqxfvx4hISHIysoCAISFhSEgIEDh6Fzb5MmT0b9/f8TGxuLWrVtYvnw5duzYgU2bNikdmiqEhIRU69sVFBSE+vXrs8+XDV5++WUMGjQITZo0weXLlzF16lR4e3tj+PDhSofmFpjcyGDYsGHIzs7GlClTkJWVhbi4OGzcuLFaJ2My7cCBA+jTp0/F7YkTJwIAkpKSkJqaqlBU6rBw4UIAQGJiotHypUuXIjk5ufYDUpGrV69i5MiRyMzMRFhYGNq1a4dNmzbhvvvuUzo08gB//vknhg8fjuvXr6NBgwbo0aMH9u7diwYNGigdmlvgPDdERETkVtjnhoiIiNwKkxsiIiJyK0xuiIiIyK0wuSEiIiK3wuSGiIiI3AqTGyIiInIrTG6IiIjIrTC5ISIiIrfC5IaIyAHFxcVo0aIFfv75Z1m3u3HjRsTFxUGn08m6XSJPwuSGiJCcnAyNRlPtwgrF5i1atAjNmjVDt27dKpZpNBqsW7eu2rrJyckYMmSITdt94IEH4OPjgy+//FKmSIk8D5MbIgIgDqqZmZlGF1NVxouLixWIzrVIkoR58+Zh9OjRTtl+cnIyPv74Y6dsm8gTMLkhIgCAn58fGjZsaHTx9vZGYmIixo0bhwkTJiA8PBz9+vUDAJw4cQL9+/dHcHAwIiMj8dRTT+HatWsV28vPz8fIkSMRHByMqKgozJ49G4mJiZgwYULFOqZaOurWrWtUMPXixYt4/PHHUbduXdSrVw+DBw/G+fPnK+7Xt4rMmjULUVFRqF+/PlJSUlBSUlKxjlarxaRJkxATEwM/Pz+0aNECn376KSRJQosWLTBr1iyjGI4cOWKx5ergwYNIT0/HwIED7XyXgfPnz5tsJTMsfjpo0CAcOHAA6enpdm+fiJjcEJENPv/8c/j6+mL37t1YtGgRbt68iXvuuQfx8fE4cOAANm7ciCtXruDxxx+veMwrr7yCtLQ0rF+/Hps3b8aOHTtw6NAhu563pKQE/fr1Q0hICHbt2oXdu3cjODgYDzzwgFEL0vbt25Geno7t27fj888/R2pqqlGCNHLkSKxYsQIff/wxfv/9dyxevBjBwcHQaDR4+umnsXTpUqPnXbp0KXr16oUWLVqYjGvXrl244447EBISYtfrAYCYmBij1rHDhw+jfv366NWrV8U6sbGxiIyMxK5du+zePhEBkIjI4yUlJUne3t5SUFBQxeWxxx6TJEmSevfuLcXHxxut/84770j333+/0bKLFy9KAKRTp05Jt27dknx9faXVq1dX3H/9+nUpICBAGj9+fMUyANLatWuNthMWFiYtXbpUkiRJ+uKLL6SWLVtKOp2u4n6tVisFBARImzZtqoi9SZMmUmlpacU6Q4cOlYYNGyZJkiSdOnVKAiBt2bLF5Gu/dOmS5O3tLe3bt0+SJEkqLi6WwsPDpdTUVLPv1/jx46V77rmn2nIAkr+/v9H7GBQUJNWpU0caPHhwtfULCwulrl27Sg8++KBUVlZmdF98fLz01ltvmY2BiMyro2xqRUSuok+fPli4cGHF7aCgoIrrHTt2NFr36NGj2L59O4KDg6ttJz09HYWFhSguLkbXrl0rlterVw8tW7a0K6ajR4/i7Nmz1VpIioqKjE7ZtG7dGt7e3hW3o6KicPz4cQDiFJO3tzd69+5t8jmio6MxcOBAfPbZZ+jSpQu+/fZbaLVaDB061GxchYWF8Pf3N3nfRx99hL59+xotmzRpEsrKyqqt+/TTT+PWrVvYsmULvLyMG9IDAgJQUFBgNgYiMo/JDREBEMmMudMwhokOAOTl5WHQoEH44IMPqq0bFRVl8ygrjUYDSZKMlhn2lcnLy0PHjh1Njhxq0KBBxXUfH59q29UPpQ4ICLAaxzPPPIOnnnoKH330EZYuXYphw4YhMDDQ7Prh4eEVyVNVDRs2rPY+hoSE4ObNm0bLpk+fjk2bNuGXX34xeXrrxo0bRq+RiGzH5IaI7NahQwd88803aNq0KerUqf410rx5c/j4+GDfvn2IjY0FAPz11184ffq0UQtKgwYNkJmZWXH7zJkzRq0VHTp0wKpVqxAREYHQ0FCHYm3bti10Oh3S0tKqtajoDRgwAEFBQVi4cCE2btyInTt3WtxmfHw8Fi5cCEmSoNFo7I7pm2++wdtvv40ffvgBzZs3r3a/vmUqPj7e7m0TETsUE5EDUlJScOPGDQwfPhz79+9Heno6Nm3ahFGjRqGsrAzBwcEYPXo0XnnlFWzbtg0nTpxAcnJytVMv99xzD+bNm4fDhw/jwIEDGDt2rFErzIgRIxAeHo7Bgwdj165dOHfuHHbs2IEXX3wRf/75p02xNm3aFElJSXj66aexbt26im2sXr26Yh1vb28kJydj8uTJuP3225GQkGBxm3369EFeXh5+/fVXO9414cSJExg5ciQmTZqE1q1bIysrC1lZWbhx40bFOnv37oWfn5/VOIjINCY3RGS36Oho7N69G2VlZbj//vvRtm1bTJgwAXXr1q1IYGbOnImePXti0KBB6Nu3L3r06FGt787s2bMRExODnj174oknnsDLL79sdDooMDAQO3fuRGxsLB555BG0atUKo0ePRlFRkV0tOQsXLsRjjz2G559/HnfeeSfGjBmD/Px8o3VGjx6N4uJijBo1yur26tevj4cfftihifYOHDiAgoICTJ8+HVFRURWXRx55pGKdFStWYMSIERZPjRGReRqp6glvIiInSUxMRFxcHObMmaN0KNXs2rUL9957Ly5evIjIyEir6x87dgz33Xcf0tPTTXasdtS1a9fQsmVLHDhwwOQkikRkHVtuiMijabVa/Pnnn3jrrbcwdOhQmxIbAGjXrh0++OADnDt3TtZ4zp8/jwULFjCxIaoBdigmIo+2YsUKjB49GnFxcVi2bJldj01OTpY9nk6dOqFTp06yb5fIk/C0FBEREbkVnpYiIiIit8LkhoiIiNwKkxsiIiJyK0xuiIiIyK0wuSEiIiK3wuSGiIiI3AqTGyIiInIrTG6IiIjIrTC5ISIiIrfy/47SzIT1Q67SAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr=\"u\").plot()\n", + "ax.axvline(freq, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "7df924b1", + "metadata": {}, + "source": [ + "Of course, different mean polarization angles will lead to very different contributions in the U and Q parameters. Our choice of 22.5 degrees was made on purpose, to have similar contributions in the two parameters." + ] + }, + { + "cell_type": "markdown", + "id": "619fe79a", + "metadata": {}, + "source": [ + "To reiterate that this pulsation cannot be seen in the flux, we plot the standard power spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "e85807ea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAGwCAYAAACAZ5AeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpCUlEQVR4nO3dd3wT9f8H8FdnuihltmxQFGTIlFpAVETKUMGBiFUBEfQLKIgiAgouBMEByhQV9CeCoCICAlZG2XsPWYIg0BaEtnSPfH5/XJMmbdomuUvuLnk9H4979Hr55O6dy4137j73+fgIIQSIiIiISBZftQMgIiIi8gRMqoiIiIgUwKSKiIiISAFMqoiIiIgUwKSKiIiISAFMqoiIiIgUwKSKiIiISAH+agfgTYxGIy5fvowKFSrAx8dH7XCIiIjIDkII3Lx5EzVr1oSvb+nXo5hUudHly5dRp04dtcMgIiIiJ1y8eBG1a9cu9XUmVW5UoUIFANKXEh4ernI0REREZI+0tDTUqVPHfB4vDZMqNzLd8gsPD2dSRUREpDPlVd1hUkUkQ25uLmbMmAEAGDFiBAIDA1WOiIiI1OLDDpXdJy0tDRUrVkRqaiqvVHmIjIwMhIWFAQDS09MRGhqqckRERKQ0e8/fvFJFJIO/vz/69+9vHiciIu/FswCRDAaDAQsXLlQ7DCIiKkdBQQHy8vJsvhYQEAA/Pz/Zy2BSRURERB5LCIHExESkpKSUWS4iIgJRUVGy2pFkUkVEREQey5RQVa9eHSEhISWSJiEEMjMzkZycDACoUaOG08tiUkUkQ0ZGBmrVqgUAuHTpEiuqExFpSEFBgTmhqlKlSqnlgoODAQDJycmoXr2607cCmVQRyZSamqp2CEREZIOpDlVISEi5ZU1l8vLymFQRqSE4OBinTp0yjxMRkfbYU09KiT55mVQRyeDr64vbbrtN7TCIiEgDSu9qmYiIiIjsxitVRDLk5eXhyy+/BAAMGTIEAQEBKkdERERqYVJFJENubi6GDx8OABgwYACTKiIiF8nJAfz9AWfqkNvTI58SvfYxqSKSwc/PD0888YR5nIiIlJeRAVSpAjRqBBw6ZP/7TD90MzMzy32YKDMz0+o9zmBSRSRDUFAQli1bpnYYREQebft26UrV4cOOvc/Pzw8RERHmhj3La/wzIiJC1g9kJlVERETksaKiogDAnFiVxtRNjRxMqoiIiMhj+fj4oEaNGqhevTo7VCbSsszMTHM7VadPn7ar1V4iInI/Pz8/l9d9ZVJFJIMQApcvXzaPExGR92JSRSRDUFAQDhw4YB4nIiLvxaSKSAY/Pz+0bNlS7TCIiEgD2E0NERERkQJ4pYpIhry8PCxatAgAEBcXxxbViYhcoFjTUprFpIpIhtzcXAwcOBAA0KdPHyZVRERejEkVkQx+fn7o0aOHeZyIiLwXkyoiGYKCgrB69Wq1wyAiIg1gRXUiIiIiBTCpIiIiIlIAkyoiGUzd1Nx2223IzMxUOxwiIo+klw4rWKeKSAYhBM6cOWMeJyIi78WkikiGoKAgbN261TxORETKYztVRF7Az88PHTp0UDsMIiLSANapIiIiIlIAr1QRyZCfn4/ly5cDAB599FH4+3OXIiLyVjwDEMmQk5ODJ598EgCQnp7OpIqIyIvxDEAkg6+vL+69917zOBEReS8mVUQyBAcHY9OmTWqHQUREGsCf1kREREQKYFJFREREmqaXdqqYVBHJkJWVhZYtW6Jly5bIyspSOxwiIlIR61QRyWA0GnHo0CHzOBEReS8mVUQyBAUF4Y8//jCPExGR92JSRSSDn58fHnzwQbXDICIiDWCdKiIiItI0IdSOwD68UkUkQ35+PtatWwcAiI2NZYvqRERejGcAIhlycnLw0EMPAWA3NURE3o5nACIZfH190bZtW/M4EREpTy/tVDGpIpIhODgYe/bsUTsMIiLSAP60JiIiIlIAkyoiIiIiBTCpIpIhKysLHTp0QIcOHdhNDRGRl2OdKiIZjEYjtm/fbh4nIiLvxaSKSAaDwYDly5ebx4mIyHsxqSKSwd/fH71791Y7DCIi0gDWqSIiIiJNYztVRF6goKAAW7ZsAQDcc8898PPzUzkiIiJSC5MqIhmys7Nx//33A5C6qQkNDVU5IiIiUguTKiIZfHx80KRJE/M4ERF5LyZVRDKEhITg2LFjaodBROTRhFA7AvuwojoRERGRAphUERERESmASRWRDFlZWXjwwQfx4IMPspsaIiIvxzpVRDIYjUb8+eef5nEiIlKeXp4DYlJFJIPBYMD3339vHiciIu+l6u2/goICvP3222jQoAGCg4Nx66234v3334ewqOYvhMCECRNQo0YNBAcHo0uXLjh9+rTVfK5fv464uDiEh4cjIiICgwYNQnp6ulWZw4cP45577kFQUBDq1KmDqVOnlohn2bJlaNy4MYKCgtC8eXP8/vvvVq/bEwt5F39/f8TFxSEuLg7+/vyN4m7//gsUFKgdBRGRRNWk6qOPPsKcOXMwc+ZMnDhxAh999BGmTp2KL774wlxm6tSp+PzzzzF37lzs2rULoaGhiI2NRXZ2trlMXFwcjh07hvj4eKxatQqbN2/GkCFDzK+npaWha9euqFevHvbt24dp06bhnXfewZdffmkus337dvTr1w+DBg3CgQMH0Lt3b/Tu3RtHjx51KBYico/ffwfq1AF69VI7EiKiQkJFPXv2FM8//7zVtMcee0zExcUJIYQwGo0iKipKTJs2zfx6SkqKMBgMYvHixUIIIY4fPy4AiD179pjLrFmzRvj4+IhLly4JIYSYPXu2qFSpksjJyTGXGTNmjGjUqJH5/yeffFL07NnTKpbo6Gjx4osv2h1LeVJTUwUAkZqaald50r78/Hyxe/dusXv3bpGfn692OF6lSxchpNZr1I6EiFxt/Xp193d7z9+qXqlq37491q9fj1OnTgEADh06hK1bt6J79+4AgHPnziExMRFdunQxv6dixYqIjo7Gjh07AAA7duxAREQE2rZtay7TpUsX+Pr6YteuXeYynTp1QmBgoLlMbGwsTp48iRs3bpjLWC7HVMa0HHtiKS4nJwdpaWlWA3mW7OxstGvXDu3ateMVSyIiL6dqJZA333wTaWlpaNy4Mfz8/FBQUIBJkyYhLi4OAJCYmAgAiIyMtHpfZGSk+bXExERUr17d6nV/f39UrlzZqkyDBg1KzMP0WqVKlZCYmFjucsqLpbjJkyfj3XfftWNNkF75+PigXr165nEiIvJeql6pWrp0KRYtWoQffvgB+/fvx7fffouPP/4Y3377rZphKWbs2LFITU01DxcvXlQ7JFJYSEgIzp8/j/PnzyMkJETtcIiISEWqXqkaPXo03nzzTTz11FMAgObNm+Off/7B5MmT0b9/f0RFRQEAkpKSUKNGDfP7kpKS0LJlSwBAVFQUkpOTreabn5+P69evm98fFRWFpKQkqzKm/8srY/l6ebEUZzAY+Jg9ERGRTHq5EaDqlarMzEz4+lqH4OfnZ25EsUGDBoiKisL69evNr6elpWHXrl2IiYkBAMTExCAlJQX79u0zl9mwYQOMRiOio6PNZTZv3oy8vDxzmfj4eDRq1AiVKlUyl7FcjqmMaTn2xEJERERezE0V523q37+/qFWrlli1apU4d+6c+OWXX0TVqlXFG2+8YS4zZcoUERERIVasWCEOHz4sevXqJRo0aCCysrLMZbp16yZatWoldu3aJbZu3Spuu+020a9fP/PrKSkpIjIyUjz77LPi6NGjYsmSJSIkJETMmzfPXGbbtm3C399ffPzxx+LEiRNi4sSJIiAgQBw5csShWMrCp/88T1ZWlujVq5fo1auX3dsBKYNP/xF5jw0b9PH0n6qHo7S0NDFixAhRt25dERQUJG655RYxfvx4q6YPjEajePvtt0VkZKQwGAzigQceECdPnrSaz3///Sf69esnwsLCRHh4uBg4cKC4efOmVZlDhw6Jjh07CoPBIGrVqiWmTJlSIp6lS5eK22+/XQQGBoqmTZuK1atXW71uTyxlYVLledLT0wUAAUCkp6erHY5XYVJF5D300qSCjxAWzZeTS6WlpaFixYpITU1FeHi42uGQAvLy8rBw4UIAwIABAxAQEKBuQF7kwQeBwm4XwaMYkWfbsAF44AFpXI393d7zN/vVIJIhICAAgwcPVjsMIiLSAFUrqhMRERF5Cl6pIpLBaDTixIkTAIA77rijxNOsRETkPZhUEcmQlZWFZs2aAQDS09MRGhqqckRERJ5HL+1UMakikqlq1apqh0BERBrApIpIhtDQUFy9elXtMIiISANYAYSIiIhIAUyqiIiIiBTApIpIhuzsbMTFxSEuLg7Z2dlqh0NERCpiUkUkQ0FBAX744Qf88MMPKCgoUDscIiJSESuqE8kQGBiIzz77zDxORETei0kVkQwBAQEYOXKk2mEQEXk0vbRTxdt/RERERArglSoiGYxGIy5cuAAAqFu3LrupISJyASHUjsA+TKqIZMjKykKDBg0AsJsaIiJvx6SKSKaQkBC1QyAiIg1gUkUkQ2hoKDIyMtQOg4iINIAVQIiIiIgUwKSKiIiISAFMqohkyMnJweDBgzF48GDk5OSoHQ4RkUdiO1VEXiA/Px9fffUVvvrqK+Tn56sdDhERqYgV1YlkCAgIwAcffGAeJyIi78WkikiGwMBAjB8/Xu0wiIhIA3j7j4iIiEgBvFJFHuH8eelv/fruXa4QAteuXQMAVK1aFT56qU1JRESKY1JFupeTAxT2FIPsbMBgcN+yMzMzUb16dQDspoaIyNvx9h/pXkpK0XhammphEBGRl+OVKiIZQkNDIfTSfToRkU7ppWYFr1QRERGRpunltyuTKiIiIiIFMKkikiEnJwcjR47EyJEj2U2Nm+nldgAReQ8mVeRR3H2JOD8/HzNmzMCMGTPYTY2b6eV2ABF5D1ZUJ91T84pFQEAAxo0bZx4nIiLvxaSKSIbAwEBMmjRJ7TAUl54OjBoF9OkDPPig2tEQEekDb/8RUQkffADMnw907ap2JERE+sErVUQyCCGQmZkJAAgJCfGYbmrOnVM7AiKiIno5tPJKFZEMmZmZCAsLQ1hYmDm5IiIi78SkioiIiEgBvP1HJENISAjS09PN456CzRUQETmOSRWRDD4+PggNDVU7DCIi0gDe/iMiIiJSAJMqIhlyc3Mxfvx4jB8/Hrm5uWqHQ0REKmJSRSRDXl4ePvzwQ3z44YfIy8tTOxzFsE4VEZHjWKeKPIq7kwF/f3+MGDHCPE7uo5d2a4jIe/AsQLqn5snVYDBg+vTp6gXgxXg1jYi0hrf/iIiISDe0/IOKSRWRB0tLA06csJ529izQrx9w8KAqIREReSwmVUQyZGRkwMfHBz4+PsjIyFA7nBLq1weaNAH27Cma1qsXsGQJ0KqVamEREXkkJlVEHuzGDenvqlVF04pfuSIiImUwqSK3MBqBceOA1avVjkRZISEhSE5ORnJyMrupISLycnz6j9xiyRJg8mRp3JNO2D4+PqhWrZraYRARkQbwShW5xcWLakdARKRf+fnA5ctqR6EevbRLx6SKSIbc3FxMmjQJkyZN0nQ3NXo5IBGRbV26ALVqAVu2qB0JlYVJFZEMeXl5eOutt/DWW2/pppsaexIsT7pFS+QJEhKkv19+qW4cWqDl4xPrVBHJ4O/vjxdeeME8TkRE3otnAfIo7v4FYzAYMH/+fPculIiINIm3/8gtXFmnh/WFyueJ68gTPxMR6RuTKiLSJS3XqyAi78SkikiGjIwMhIaGIjQ0VJPd1BCRZ+GPCW1jnSoimTIzM9UOgYiINED1K1WXLl3CM888gypVqiA4OBjNmzfH3r17za8LITBhwgTUqFEDwcHB6NKlC06fPm01j+vXryMuLg7h4eGIiIjAoEGDkJ6eblXm8OHDuOeeexAUFIQ6depg6tSpJWJZtmwZGjdujKCgIDRv3hy///671ev2xEK2ufLXleW83V3PJjg4GOfOncO5c+cQHBzs3oUTEZGmqJpU3bhxAx06dEBAQADWrFmD48eP45NPPkGlSpXMZaZOnYrPP/8cc+fOxa5duxAaGorY2FhkZ2eby8TFxeHYsWOIj4/HqlWrsHnzZgwZMsT8elpaGrp27Yp69eph3759mDZtGt555x18adHgx/bt29GvXz8MGjQIBw4cQO/evdG7d28cPXrUoVhIXe6+NO7r64v69eujfv368PVV/TeKYniLgYi0StPHJ6GiMWPGiI4dO5b6utFoFFFRUWLatGnmaSkpKcJgMIjFixcLIYQ4fvy4ACD27NljLrNmzRrh4+MjLl26JIQQYvbs2aJSpUoiJyfHatmNGjUy///kk0+Knj17Wi0/OjpavPjii3bHUlx2drZITU01DxcvXhQARGpqarnrxtN89JEQ0q6g/LyvXi2a95Urys9fz0zr5Z13iqb5+ZX/XTz6qOu+L6V06aL9GImUYtrW4+LUjkQdCQlF6yA/3/3LT01Ntev8repP699++w1t27ZFnz59UL16dbRq1cqqzZ9z584hMTERXbp0MU+rWLEioqOjsWPHDgDAjh07EBERgbZt25rLdOnSBb6+vti1a5e5TKdOnRAYGGguExsbi5MnT+LGjRvmMpbLMZUxLceeWIqbPHkyKlasaB7q1Knj1Hoi7crLy8P06dMxffp0TbeobnlblE0RECnvwgUgJUXtKEhtDldUP3fuHLZs2YJ//vkHmZmZqFatGlq1aoWYmBgEBQU5NK+///4bc+bMwahRozBu3Djs2bMHr7zyCgIDA9G/f38kJiYCACIjI63eFxkZaX4tMTER1atXt/5Q/v6oXLmyVZkGDRqUmIfptUqVKiExMbHc5ZQXS3Fjx47FqFGjzP+npaUxsfIwubm5ePXVVwEAgwcPRkBAgMoREZG7XbkC1KsnjWv61hS5nN1J1aJFizBjxgzs3bsXkZGRqFmzJoKDg3H9+nWcPXsWQUFBiIuLw5gxY1DPtHWVw2g0om3btvjwww8BAK1atcLRo0cxd+5c9O/f37lPpCEGgwEGg0HtMMiF/Pz88PTTT5vHPQVPDET2s3i2irycXbf/WrVqhc8//xwDBgzAP//8gytXrmDfvn3YunUrjh8/jrS0NKxYscKcJC1btsyuhdeoUQNNmjSxmnbHHXfgwoULAICoqCgAQFJSklWZpKQk82tRUVFITk62ej0/Px/Xr1+3KmNrHpbLKK2M5evlxULeJygoCIsWLcKiRYscvlJLRESexa6kasqUKdi1axeGDh1q8/aVwWDAfffdh7lz5+Kvv/7CLbfcYtfCO3TogJMnT1pNO3XqlPlKV4MGDRAVFYX169ebX09LS8OuXbsQExMDAIiJiUFKSgr27dtnLrNhwwYYjUZER0eby2zevNmqzkt8fDwaNWpkftIwJibGajmmMqbl2BMLlc5d9Xh4hcU21qkiIj3TzXHLTRXnbdq9e7fw9/cXkyZNEqdPnxaLFi0SISEh4vvvvzeXmTJlioiIiBArVqwQhw8fFr169RINGjQQWVlZ5jLdunUTrVq1Ert27RJbt24Vt912m+jXr5/59ZSUFBEZGSmeffZZcfToUbFkyRIREhIi5s2bZy6zbds24e/vLz7++GNx4sQJMXHiRBEQECCOHDniUCxlsffpAU80darrntS6dq1o3pcvKz9/PTOtl3ffLZoWEMCn/4iU9Ntvrt8WTfN/+mnXLUPLNm/Wx9N/Tm0CZ86cEePHjxdPPfWUSEpKEkII8fvvv4ujR486PK+VK1eKZs2aCYPBIBo3biy+/PJLq9eNRqN4++23RWRkpDAYDOKBBx4QJ0+etCrz33//iX79+omwsDARHh4uBg4cKG7evGlV5tChQ6Jjx47CYDCIWrVqiSlTppSIZenSpeL2228XgYGBomnTpmL16tUOx1IWJlWel1Slp6eLqlWriqpVq4r09HT3LtwOtpIqf//yv4vevbWfsDz4oPZjJO/ApMr1LJOqvDz3L9/e87ePEI7dMElISED37t3RoUMHbN68GSdOnMAtt9yCKVOmYO/evfjpp59ccUHNI6SlpaFixYpITU1FeHi42uG43KVLQM2a0mXbqVOBMWOk6UrfovvvP6BqVWn88mWgRg1l51+WjIwMhIWFAQDS09MRGhrqvoXbwXTJ/L33gLfflsYDAoD8fGm8tO/i0UeBX38tu4zaunYF4uOlca3GSN5h5UrgkUekcaW2xbw8aV81Me3LTz8NLFqkzDL0ZMsWoFMnaTwvD/B3cyd79p6/HW6n6s0338QHH3yA+Ph4q3afOnfujJ07dzoXLXmcb74BatcGXn7ZvctVo5uao0eP4ujRo+ymxs2YSJGnWrwYCAwElixROxJylMNJ1ZEjR/Doo4+WmF69enVcu3ZNkaBI/0xXpWbNcv2y1Dy5+vr6omnTpmjatKluuqnRTYVPIi9V2EoL+vVTNw5ynMNngYiICFy5cqXE9AMHDqBWrVqKBEWehydyfeFVICLSEr0ckxxOqp566imMGTMGiYmJ8PHxgdFoxLZt2/D666/jueeec0WMRHZz946Xl5eH+fPnY/78+brppoaIiFzD4aTqww8/ROPGjVGnTh2kp6ejSZMm6NSpE9q3b4+33nrLFTESlUnNhCE3NxdDhgzBkCFDkJubq14gREQeTC8/DB2uPx8YGIj58+fj7bffxtGjR5Geno5WrVrhtttuc0V8pFN6uVQrl5+fH3r16mUeJyIi5a1Zo3YE9nH6ocS6deuibt26SsZCpDtBQUH41dT2gIY52qK6tyTFRKR9iYnA5MlF/5uOT6mpwOuvSxX7779fndiKczipKigowMKFC7F+/XokJyfDaDRavb5hwwbFgiPPoZdLt56KSRIR6VWxLnfN3noL+OoradDKMc7hpGrEiBFYuHAhevbsiWbNmsGHZ0sij8PdWp/y8qTvzt0NI1L54uOB334Dpk0D5PS97o7k4eRJqfHmzp1dvyw5/v5b7QhKcnjXW7JkCZYuXYoePXq4Ih4iWdz9ayUzMxNNmjQBABw/fhwhISHuDcAJWvlFR8rKz5d6EwgNBc6fZ2KsNV27Sn9r1gTGjlU3lvI0biz9PXIEaNZM3Vj0xqmK6g0bNnRFLOTBXHkiV/PkIYTAP//8Yx7XKkfXkYY/CpXin3+kLpv++w/IzQUMBrUjIlvOn1c7AvsxqXKcw00qvPbaa5gxY4amTyDkvdydYAUFBWH37t3YvXs3guRc03cjT7mC4Smfg7wLT53K0Op6dPhK1datW7Fx40asWbMGTZs2RYBlj48AfvnlF8WCI9I6Pz8/3HXXXWqHQUQq0uoJ3lP9/DMwfDiQlaV2JCU5nFRFRETY7PuPqCyuvKrAA5p34vdOesTtVj4t94nocFK1YMECV8RBpEv5+fn48ccfAQB9+/aFv0Yfu2KdKtIKUys8Oul/3C6O7F/ctzyb02eAq1ev4uTJkwCARo0aoVq1aooFRfqn1oHDnuVmZ8t7pNlSTk4OnnnmGQBA7969NZtUkWcTAhg8WO0oyicEEB0t7YOHDnlWYkUEOFFRPSMjA88//zxq1KiBTp06oVOnTqhZsyYGDRqEzMxMV8RIVCZHfiXu3g0EBwMjRyqzbF9fX3Tp0gVdunSBr07OEKzg7XmOHgU2blQ7ivKlpwN790rxXrqkdjTq4JUqz+bwWWDUqFFISEjAypUrkZKSgpSUFKxYsQIJCQl47bXXXBEjkWLGj5f+zpihzPyCg4MRHx+P+Ph4BAcHKzNT8hh//gns2+f65WRnu34Z5H20kgDq6Yegw0nVzz//jK+//hrdu3dHeHg4wsPD0aNHD8yfPx8//fSTK2IknRs9Whq82YoVwJYtakehTx99BLRpI/XzpScXLgAPPgi0bat2JORJtJLokG0OJ1WZmZmIjIwsMb169eq8/Uc2ffyx/Hns3QtMmiQ1aqg3588DvXsDnTqpHYlEbwflN98E9u8HPvtM7UgcU9gmLBHJpKdjlsNJVUxMDCZOnIhsi+vNWVlZePfddxETE6NocEQmd90ldZ75xRdqR2ItMzMTTZs2RdOmTUv9UeGtdUeUlpOjdgSucfkysG6dvk4c5Dw9fc96uu2mFQ4/qjRjxgzExsaidu3aaNGiBQDg0KFDCAoKwrp16xQPkMjS0aNqR2BNCIHjx4+bx7XK8uBoz4FSwx/F49SqJf1dvly6oukMPZ/85syRbpVOnqx2JKSmffuAr74C3nsPKN6YgJ62b4eTqmbNmuH06dNYtGgR/vrrLwBAv379EBcXx4q6pAo1d7igoCBsLHzsylXd1Pz9N3D4MNCrl74OLkrz9ERv/Xrnkyo9GzpU+vvkk0CrVurG4ixHtk1P346dZap7mJQE6LljFqca1QkJCcFgPTSKQuRifn5+uO+++1y6jFtvlf6uWAE88ohLF6V7p04Bfn5F64y0q3hykZamThzkuKtXpbqyzz8PNGqk7LyPHVN2fu7mVFJ1+vRpbNy4EcnJyTCamsctNGHCBEUCIyJr27YxqbJU/KpdRkbRAT4vD2A7rKRFerpSVVqsAwcCq1dLdVz5fJo1hw878+fPx//+9z9UrVoVUVFR8LE4svn4+DCpIgDuPXA4siylb5/l5+dj1apVAICHHnpIsy2qe0M3NdeuFY3n5HhPUrVjB9Cnj9pR6FNqqtSye8eO8lp397ZuanbskP5qsUNjtTl82Pnggw8wadIkjBkzxhXxELmU0ge0nJwccwfj6enpNpMqrR1EPaVeltbWa3Huiq99e/csR2nFt0M1vs927aRbxt98I119IZLL4dz8xo0b6MOfRaSS8g687j4w+/r6on379mjfvr3Lu6nRehJBpDenTkl/lyxRNw7yHA6fBfr06YM//vjDFbEQ6U5wcDC2bduGbdu28elXsuIpVwRJW7Tw44rbdukcvv3XsGFDvP3229i5cyeaN2+OgIAAq9dfeeUVxYIj/XLVTueq+Z44Afz2G/Dyy0BIiLLz5gFIGVo4mRDJpaftmMcuxzmcVH355ZcICwtDQkICEhISrF7z8fFhUkUA9HXgAIAmTaS///0HTJ2qbiyl4QGOiLSAx6LSOZxUnTt3zhVxkIqMRunx2LvuAqKi1I6mbK5O1nbtcqx8VlYWOhV26rd582beAiSyk95+eClFK5/74kWpP83hw4FbblE7mrLpKYnzkoeOqSwLFwKDBgEVKtjXAN/Fi0Dt2vra0F3FaDRi79695nFXknMw9rTv6ubNktO0crIi76PHbe+hh6SeGn7+ufTOv7XyubQShz3sqqg+ZcoUZNnZIMWuXbuwevVqWUGRe5m+LlsnquJmzADq1gX02KJGXp7yyYXBYMCqVauwatUqGAwGZWeuIi0fxH77DQgPB/78U+1IyFGeltw7o6x9a84cYOTIst9f2jrMygLy86Vx09+yHD4s/b1wofyyZD+7kqrjx4+jbt26GDp0KNasWYOrV6+aX8vPz8fhw4cxe/ZstG/fHn379kWFChVcFjCpy7TDT5umzvKdPSj/8gsQGAjExysbj7+/P3r27ImePXuW2vCnlhMUPXr5ZdvTtXbC5vdeklbXibvjKm15Q4dKP1wdfW9mpnSnoVEjYO1awGAAvv5afpzkOLuSqu+++w5//vkn8vLy8PTTTyMqKgqBgYGoUKECDAYDWrVqhW+++QbPPfcc/vrrL3MdE/JerjpILVzo3Psef9y+clo7MRN5Ki00/qkUR44b27YB1asDixcrt/wDB4CCAqnz9V69pHqyL7yg3PzdSe/HYLvrVLVo0QLz58/HvHnzcPjwYfzzzz/IyspC1apV0bJlS1StWtWVcRKVyp0H419+kX4JzpwpXfkqKCjAhg0bAACdO3eGn5+f+4JxgOWBSq2D1pYtwLvvSuuucWPH36+3k67eTw7exJ3f1fnz0t+nnwb69XPfcpXkyvVlaz/X077kcEV1X19ftGzZEi1btnRBOETaZrri1by5dBsqOzsbXbt2BSB1UxMaGqpidMpxRQJjuoDdqxdw8qTy86ciektAiTwFn/4jl9DTLwtnJCZKf319fdGiRQvzuC2evi4cdfmyc+8zrUeuTyJ1uXsf1NOPBNd2VkbkZu7e+YKDg7Fz50H06nUQR46wjSpX0tOBVW16SDz5fTrHnetND9uR1jCpIpfwpgPmJ58A770HREe7djlKrNPMTM/9bjz1c5H7CAFMngysWKF2JNqglX1KT8kdkyqysnmz2hHoz9GjZb+ulQPThQtAaCiQna12JN5Bzveemwts2gTk5Dg/j//+A/74Q3oSjMpm+q42bQLGjQN693bu/d5CT0mOuzmUVOXl5cHf3x9HyzuLkG7de29RfSEqnekgmpWVhfXr7wNwHwD7GshVy4IFakdA9ho2DLj/fuCll5yfR+vWQGws8NVXysUll9ZPxs7W9/M2SieRGRlF41rfRsrjUFIVEBCAunXroqCgwFXxkAZcuqR2BPphNBpx9WoCgAQArr0kIOdgo/cDFVD+gdwTPqOJKRFytl02oKil7J9/lh2OWzh6ov7+e+kp3DNnXBOPVnnSdm7y6qtF484mbHPmALNnKxOPHA7f/hs/fjzGjRuH69evuyIeIlU5esAyGAxo334pgKUAyu+mhl1CaMOsWezmRg1KXuF49lnp1rucq3l6pIVbjUondsuXy5/H0KHSFd7UVPnzksPhJhVmzpyJM2fOoGbNmqhXr16Jdnn279+vWHCkX1rY8d3B398fdev2wfbt9pWvV8/5dSN3nTryfi1+f3IO5EIAO3cCzZoBBw8Cw4cXTXcVT7yioCSl1o/lrSNnyY2F37V25Oaqu3yHk6rejtbgI93R4gnVXQ4dAtq0AT78UKqPUhoeRN3PtF06s+6//RYYOBBo2tT+zsCPHZNuJ7z1FlCjhuPLVJM378NycL8muRxOqiZOnOiKOMjD6PXgdOOGNHTrVvaJyfRaQUEBrl3bWTj1bgAlu6nRwrrQQgxq+r//k/4eO2b/e1q2BPLzgRMngMKeiEhBWkz8tBhTcfn57ltWaetD6eOJHta7vZxqUiElJQVfffUVxo4da65btX//flxiDWdSgZo7ZHZ2Nv78syOAjgBst1XgaHwFBUBamuzQSsTgSQcuW5T+fKaTl95rNOjte1fidp4n++UXbTWT0aoV8Pzzys1P7z8AHU6qDh8+jNtvvx0fffQRPv74Y6SkpAAAfvnlF4wdO1bp+Ig0zcfHB2FhDQE0BKDM0eCuu4CKFdV9vFtvJ+LyyPk8atWB80avvQaEhQEJCe5drpxby2pwV2Xs0taH5fSDB9lciyWHk6pRo0ZhwIABOH36NIKCgszTe/Togc1sOZIKecsJJSQkBA89dBrAaQAhiszzwAHpr5KtOvv46OeE4WqOrgdv2Zbdobx1/+mn0t8333R9LHr23XfqLt+V+4SteTuyz6p9nHM4qdqzZw9efPHFEtNr1aqFRLYa6dWMRqBzZ6BvX/Vi4AnQe5V1MJX75KCeqX2SsZee17O7Yx850r3LU5uenlx2uKK6wWBAmo0KH6dOnUK1atUUCYqcd/261L9b7druX/aJE8DGjdJ4xYruX74z8vOlvvv0JicH2LEDaN8eCAy07z1qH2z0iuvNswgh/QD0K/lMiUPzyM4Ggr20D3W9JOpqcPhK1SOPPIL33nsPeXl5AKQ6JRcuXMCYMWPw+OOPKx4gOaZKFaBOHanfL3fTUuVJe82dK+9WQ3Z2NhISegLoidIqqjur+Mnc8v8hQ6RuTF5+WdFFapoa9aLk0NuJx2gE/v3XtcvQQoLavj1w661A4SmsVL//Xvprzz8PhIQAx48rGxvpn8NJ1SeffIL09HRUr14dWVlZuPfee9GwYUNUqFABkyZNckWM5AQ5O7sWDnzucuSIvPcXFBTgypXfAfwOwH3dN5nqVHz5pX3l9XaCL4u7P4u37A9xcdIPsl9+cc/y1Nomd+4E/vnHuiN0W7H07Fn6PEzdB02bpmhomvX++0DbtsDNm66Zv+U+pvdjlcO3/ypWrIj4+Hhs3boVhw8fRnp6Olq3bo0uXbq4Ij7SEb3vDM4IDAxEdPQC7NoFALbvwyl1UnZk/X72GbBnjzLL9QSurFO1aRNQv740aIVlzPZuf0uWSH8nTwYee0z5mIrzpGTVU499pu9owgTp79y5wOjR7v+8elq/DidV2dnZCAoKQseOHdGxY0dXxERO+uYbZeajxAas1gHT3TtfQEAAGjQYUJhUaceoUSWnqXkSO33a9cuwp7FWpee7e7d0G1buMoDyt938fMDf4SO2dxFCaufN0fXkSQmeK6ndBYw91E7AHL79FxERgU6dOuHtt9/Ghg0bkJWV5Yq4yAmDBhWNe3IdkuTk0l9z9HO7I2alluHO71TpZbVoUf7ydu60r9FTd/TTZpkElrUuykqmHV2HZZWfM0eqFG16EIRs69EDqFbN+dtUzmxbRqP0/XgTVx439Z7gOpxU/fnnn+jWrRt27dqFRx55BJUqVULHjh0xfvx4xMfHuyJGcjMlNmpX7hg2WvRwO8tuam7cOAjgIIrXqcrIALTym0PtdqrKWw+LFgExMUC7duXPy55tS85n3bIFuP1259/vCkOHSleqnn7a8feq/cvdkqtjWbsWSEkpu5K50pYsAdasce69ajxQ5Iji35ceEh61Y3Q4qerYsSPGjRuHP/74AykpKdi4cSMaNmyIqVOnolu3bk4HMmXKFPj4+GCkRQMc2dnZGDZsGKpUqYKwsDA8/vjjSEpKsnrfhQsX0LNnT4SEhKB69eoYPXo08ot1jrRp0ya0bt0aBoMBDRs2xEJTLUMLs2bNQv369REUFITo6Gjs3r3b6nV7YiH30NITN9nZ2Vi3rhWAVrB8+i83V2oZOiJCG09Far2bmkWLpL8nTyozPzmf1VS3SIl5kb44c6X70CHnl/fFF86/l7TJqb7/Tp06hS+//BLPPfccHn/8caxcuRIPPfQQPjU1h+ugPXv2YN68ebjzzjutpr/66qtYuXIlli1bhoSEBFy+fBmPWdSgLCgoQM+ePZGbm4vt27fj22+/xcKFCzHBVKsOwLlz59CzZ0/cf//9OHjwIEaOHIkXXngB69atM5f58ccfMWrUKEycOBH79+9HixYtEBsbi2SL+0zlxULWnD0R5eQA991XVDHSlcsqz6uvlt9dho+PD4KDawKoCctuakzdYObmSp/JGTyZWytvfbjqKoinfA9XrqgdQdk8ZT07QktXEbVC7+vE4aSqVq1auPvuu7F27VrcfffdWLNmDa5du4bly5djxIgRDgeQnp6OuLg4zJ8/H5UqVTJPT01Nxddff41PP/0UnTt3Rps2bbBgwQJs374dO3fuBAD88ccfOH78OL7//nu0bNkS3bt3x/vvv49Zs2Yht7BG3dy5c9GgQQN88sknuOOOOzB8+HA88cQT+Oyzz8zL+vTTTzF48GAMHDgQTZo0wdy5cxESEoJvCmt+2xMLWe8Mzh4gly2TEpn331cmJjmmT5cSvLKEhISgd+9LAC5BqW5qSiPnYONJXbPosUmFw4eBoCCgdWvp9pQ7YxECmDoVqFkTYKs3ZfOk/UTvMjOBPn2KrmLbS+2kzOGkqlq1asjMzERiYiISExORlJQkq7L6sGHD0LNnzxJNMuzbtw95eXlW0xs3boy6detix44dAIAdO3agefPmiIyMNJeJjY1FWloajh07Zi5TfN6xsbHmeeTm5mLfvn1WZXx9fdGlSxdzGXtisSUnJwdpaWlWg7eQc6VKD9TYcXkAd56rmlQo6zXLZfboIW3bBw5Ij6S725gx0t+33nL/si1pdRtW+gfL6dPavzKoJba2i88+A376CXjmGffHI4fDSdXBgweRmJiIN998Ezk5ORg3bhyqVq2K9u3bY/z48Q7Na8mSJdi/fz8mT55c4rXExEQEBgYiIiLCanpkZKS5j8HExESrhMr0uum1ssqkpaUhKysL165dQ0FBgc0ylvMoLxZbJk+ejIoVK5qHOnXqlFpWD9S6/eIIdx20S1tOcjJwxx3SlQF3x1QercShBrU/u2X1S8tGJ8k2LRxL7OHjU3LbSk6WHnSoWVOdmJRU2n7jju/n2jXXL8MVnGr1JCIiAo888gg6dOiA9u3bY8WKFVi8eDF27dpld6vqFy9exIgRIxAfH4+goCBnwtC8sWPHYpRFg0FpaWluS6xccRJZuVLd5buC3INDdnY2tm59tvC//8OkSUH46y/gr79kh6a4P/+0v6wj60UI4I03gObNgeeeczwupWitGRFXxGPv96KX/c9S4c0FAO6PX8nlnTih3Lzc7cQJ4I8/1I1Bj9uuJYeTql9++QWbNm3Cpk2bcPz4cVSuXBkdO3bEJ598gnvvvdfu+ezbtw/Jyclo3bq1eVpBQQE2b96MmTNnYt26dcjNzUVKSorVFaKkpCRERUUBAKKioko8pWd6Is+yTPGn9JKSkhAeHo7g4GD4+fnBz8/PZhnLeZQXiy0GgwEGg8HONaIeew/U584pMx9Xz8MRcnfggoICXLz4U+F/CzXbOJ6Pj9QOlL2uX7e/7IYNwMcfS+PPPuv679Ad7VRZclWjosXZE5feTzhlsXjwW1fcWdfR1Zo0sa+c1uK2pPY+4vDtv5deegmXL1/GkCFDcODAASQnJ+OXX37BK6+8ghbltfBn4YEHHsCRI0dw8OBB89C2bVvExcWZxwMCArB+/Xrze06ePIkLFy4gJiYGABATE4MjR45YPaUXHx+P8PBwNCncOmJiYqzmYSpjmkdgYCDatGljVcZoNGL9+vXmMm3atCk3Fj0rq+NepebpjCtXgL175c/HlaTtZyaAmSitmxotH4BsOXrUsfVueZne19f5NnvspcerGJbbQGnbg6s+lz3bnxaa/bBHWprUYroSXLW+Ledb3npVKwFwtjUgtRMWPXD4SlVyWc1ZO6BChQpo1qyZ1bTQ0FBUqVLFPH3QoEEYNWoUKleujPDwcLz88suIiYnB3XffDQDo2rUrmjRpgmeffRZTp05FYmIi3nrrLQwbNsx8heill17CzJkz8cYbb+D555/Hhg0bsHTpUqxevdq83FGjRqF///5o27Yt2rVrh+nTpyMjIwMDBw4EIPV3WF4spDxTnQRH2oFxNIGRm/AEBATg9tuHYd8+efOxRa0D2Pz58t7fo4drYndknkomsvZWRtezxYvdsxw56+vKFemY0KIFcPCgYiG51K+/uqcfRUfFxakdQelM24i9ncWX9n61OFWnqqCgAL/++itOFN48btKkCXr16gU/Pz9Fg/vss8/g6+uLxx9/HDk5OYiNjcXs2bPNr/v5+WHVqlX43//+h5iYGISGhqJ///547733zGUaNGiA1atX49VXX8WMGTNQu3ZtfPXVV4iNjTWX6du3L65evYoJEyYgMTERLVu2xNq1a60qr5cXizewrHxdHiVPqsUfsFR7pyHtU/uBBVcu7//+D1i4EFi6FKhSxb73lOfvv4vGndm//voLqFpVGlzlt9+kv3Ia27Rk63MqfWzRaovpZTy0bkXNY21mpnrLlsPhpOrMmTPo0aMHLl26hEaNGgGQnnKrU6cOVq9ejVtvvdXpYDZt2mT1f1BQEGbNmoVZs2aV+p569erh93L6JLjvvvtw4MCBMssMHz4cw4cPL/V1e2LREyGkbi8CAkq+VtqOdPlyyWlz5kiPic+dW3L+anD3co1GI27ePFv4361wsj1dckBp26e3JNumhwEmTABccThydB86e1Z64tXyvadPS7eQn3rKue/FW75LkujhyXJ7OXwGeOWVV3Drrbfi4sWL2L9/P/bv348LFy6gQYMGeOWVV1wRI7lA165A9epAenrJ1xw5qA4dKt0uWrdOmcY/bXFFnS8TuTtrVlYWVq26HcDtAGy316ZUvK5IGH/5Rfl5OkNPB01LZcXtis9kOU85jYgW58i2lZwMZBf1yITt20uWuf12qZ/CH3+UH5s7uftHmVa2eyGA5cttTyfHOHylKiEhATt37kTlypXN06pUqYIpU6agQ4cOigZHzitvZzA9Xq9UH9h6bddUzkEjOxsYNw7w8alono9eGi81efzxkutAjVal9XrwvnlT3eW7Iineuxc4fx6oX7/ka//8I02vXRu4eLH8ee3YIV2tssXepyp/+EFqjV6JBMQV7S7Zk1g78jStOxSPec0ax+p+uTIZtPUd6en44PCVKoPBgJs2jiTp6ekIDLT99BN5B7WaVFBrh5s2Dfj881AIkQIgBUAoFiwoWU4LBwS5382//9q+/QtILR9rgb0naaVOCDNmAGW1d+yKE7jlPIWQkmJHLV4MdO4sXXEqzbPP2p5uqmnx77/2LUvuVebkZKlS9eOPA3l5jr03Lw946SWpVW6TJ56wHYtpvKzv5vz5kkm0rcY/bZk+vfwyrrRli3Sb1qR4zPbWsaLyOZxUPfTQQxgyZAh27doFIQSEENi5cydeeuklPPLII66IkRRWvFchV/wCdGUioeSvJDnzOnVKuTi0LCsLqFMHqFVLqodXXLGm4lxOK7dMHGlXyZ6YZ84s6ohbrrKSyKefBjZulK6ylqa0BFpJ9qyT1NSicUebfViwAJg3T+o/zsTZK3tnzgANGgA1apRf1layVlpC6OofXEOHAm3aAJ06AQ0byp+fO34gamX/dpbDSdXnn3+OW2+9FTExMQgKCkJQUBA6dOiAhg0bYsaMGa6IkRTWv7/1/1q4kqI3y5bZX9bZg4Tc23JKsbyiocTtTWe3N9P7nHm/Xg7UffsqP8/S1teNG66df3mvlUWJfurL63vPkW3C1ERhRobz8biL5eeaMwfYv9+1y3CH48fduzw5HK5TFRERgRUrVuDMmTPmJhXuuOMONFQiDSa3KJ4QuKJehpae/lu6VPnlnD0LSO2+5gB4sXDqPAAlW9BX6gDkycmvrXX02mtAsQeCdcvelvZd0d6Zp9Dq9i/nYQV7jg379gFlPJhegj3ryZ1JUVaW1HZdt25FHXs7yhU/NlzF7qTKaDRi2rRp+O2335Cbm4sHHngAEydORHBwsCvjIxfT0pN0riJ3h/zsM+DVV0t7NR/At4Xjs2ArqdICperxmOTlAd9+K9XNcVUsn35q//vKa5NYqydkNTmzTorf2vLxce1+r/R26w5KL/f++5V/IMLZ6hqm78OR72XhQunH0aZNzidVemL37b9JkyZh3LhxCAsLQ61atTBjxgwMGzbMlbGRnS5dAqKjlZuf1p7mKm9e5V3ml8uiT2wbAgBMLRxsNPqFkvGfPw/07g1s3apEdMqz55f3p58CgwcDzjRLl54OWHRoAMC+7aWsysSRkdaNBWo5iTp92nZTJoB7416+HLhwwfnlTphQfhktfw/O+vbb8ss4o7TbsWo/YWrJmVvw9jTi6Unbid1J1XfffYfZs2dj3bp1+PXXX7Fy5UosWrQIRr10GuXBRo0qWVnY0V8eSlDrSlXLluosVxIIYHThYPvp1+LfRb9+wIoVwD33uDo2+zizC5d3W668RPehhxxfZnnKqlytpauoV68Ct90mfz5l7eP21pd6+mnHlmm5Hj/4wLH3yuXId6j09225rgcMsH/ZjsRRThvWinLn/uBJCZM97E6qLly4gB49epj/79KlC3x8fHDZHY+JUJm00EaUUk//aenk5yrnz6sdgbWJE5Wf5w8/KD/P8riiwrQcZW3LiYnOzdPezzFtmn3lTp92Lg5Lch88sJcjHVE7cuVTae7a1n76yf66eiZr19p+gtdR3nCcdpbdSVV+fj6CgoKspgUEBCDP0cZDyGOtXFk07soDS36+1N7Mxx/Ln5f8g4MRwKXCQbtXbcvqg8yZKw5qHlTlLttdsav5C714sylqcWc1ACXoKVno0wew6ObWLt27259wK8XbrlTZXVFdCIEBAwbAYCiqiJudnY2XXnoJoaGh5mm/aKXfC3K7suseKefsWWn4+Wfg9detX3P/DpwFoHbheDqA0BIl7D1Qnz9v/fSXkp/l/feVmxeg/MnHcn6ZmbbbAJOzPuTG+7//AffeW3rr4O7iyttarigv9/32dH1lzzpJTwe2bXP8feWVVbv6xLJljv8o+v57x5dj4m0JkjPsTqr6F2/cCMAzzzyjaDDkflrul04/HGuZpLSDZ4MGCoTiAsW/2wMHXPvof6dOZc9f7lNrzpg7VxrUTqrs/Rzu3B/LSgZmzwaaNpUaoXTkfUrr1QvYsMH59zuyPtU+Frpjverpip672X02WGCr/w3SBLV3YkC5lqBt0Wrr7NJ7QwG45xZ4aevhzBnppPXmm841cQBIDQS2bl1+udxc+8rJ6T+wtITKNE9H65Hoiac0A2Bp2DDbSZU9lGpSwVZCZVldQYllaIVWj5eOsOeJwdKonfA53PgneRalNsA33lBmPo5y9+0IJZetlH79pE5w4+Odj6ljx6IDWVnbhL0tSrti3QghJY6mZgBcRS+dYmul8r09ceTnS20U3XWXY8tzRZ+NJko9oKH2SdwZcnt5cOT9jj40kJkJhJasRaEbTKo8gLMHutKocbA2NSToiVy9PvfulT8PrVRsLs9HH9lXztl1fuwY8PXXzr3XGzi7XhcsKNmYq1JsxaSVY4kSLao7SskruWqcCy5elPd+tX/sOtz3H5FcBQXW/7/2GnD77VLTEO4+GMpfXg6AYYWDay9xaOFE4aoYlJivEvNwd9tLcmitkd6yOHt1Ual+M13Fxwf4+2/143CUI3EdOeK6OEy00CyQUphUebnydq7cXKltEyU7Eu3Vy3rZn34q1Qv69FP5TxC6/yCWD2B24WC7ARhP6vvP3s+iRgK4Zo195dwVm1LLcbZNK5P4eGXiKI3aiY8S69mZ21qAdFXzxx/lL9eZZbuDj49rGur1ZEyqqATLnfvNN6W2TR5/XLn5r14NjBsH1K4NJCUVTX/3XeD6deWW42rSegoAMLFwsN1Nje33la/4SefmTakfLXevIy0kc/Zw1e0lZyn1lOLo0fJj0St7mlRQktLLMMVf2nx/+knZH6z2ciSBK69fTbLGOlVUguUBYM4c6e+6dcouY/Jk6e/UqY7Foz2BAN5xy5K++koa2rd3zfxLW8+WXdK46te0Vr5jLV4tSEkpGld7PSldf1MrlPzeHb21NniwOj0QuIu7tw+192FeqfJyam+Acql5QFdr2du3u2a+vr7Agw+WnP7NN0XjavQp6U6ekCA4w9XtXymxXuU00yHXmTPy3l9W7IsXy5u3GvS6f7sDkypSVfFK6/ojAKQUDraP4no6Ua9fDyjR85RS/brJmacrZGerHYGytLBOnWEZt5JP/5X2vk8+cW5+nkDNZmv0iEmVh5K7Ie/eDUyZ4vqkZ+FC187flaQDcCaASoWDjBbrNKSsE5Kn/0It7/Op3QuXvXWMtHYis7Ve5WxLvjxzqcLZCv2WZs8GZs1SJh5b1N72WafKy5W2AUZHu2f5qanKzs8VV0jkUqMiqpIs16mrbj3qhVHlPrPd2VSAFtgTR2n1vLTyGeylZrylbVcDB1pfuT59Wl5L9OnpUgv7ABAXB0REOD8vrWJSRZqn7VsuIQBMre3Z3p1+/dX6f70d7C3Z+xSo2p9R7V+rztJK3FqJw5IrO3+Oj1fmtrde2Lt/Fl8nP/wgr1K95fyyslyTVKl97OFFVNK8efNKf039g78PpKYUAgrHlaP+Z3MfV39WrbcHVJZVq9SOQD5bbTlpbfueNk2Z+Wh9W1P6Vmx5LNeH5W1bta/6ugqTKg918qR95bS40xf3339qR6COjz4CHntM7SicM2qU1FK+FsnprNUdzp8v/TVXJSKuTnBOn3bt/JXw889qR+AeQpT8vt2V4FomVfp/SMk2JlUeasQI59+rtV+QWkj8/v5banyzpFwAowsH251uObs+ExOB5csde8/77zu3LEvF17ez8TvSGKerv2PL+ZfVAnZ5cbhj32jQwPXLMNHavu4MpT7D2bPKzMednPnsx49LdZvcpbQrd7xSRbqSn1/UcCfJd+utQM2atl7JA/Bx4aB+pYwJE9SOwH7vv2//FVVAuZOnng/m7mphXAs/ZAB5TSM4un5SU4Fdu5xbnqV//rGOw5X0cAXQkrtbyFcDkyoPNnSodWvYtnjahu3I5xEC2LrV/vK2f90FAHi9cLDdTY3e1rG74p0wAWjc2D3LIseUtg1ocVtWMnFZtkz+PAYPLho3ra/y1tv06cCLLzq3PKWfoFZaad+Pnn/clIVJlQcoa4c9d859cejNjz8CBw/KnUsggGmFQ6Bd73D1r1e5Jz6lbv+R48pb165u+bw8s2e7Zr72KO0z7dwp9SdavKwz+5nS6y011b66Q6++CqSlObcMJfoCdVdFdUs9e3rmsYVJFTnNXY8gl1VRXc5O6akVU+V2wOuJBzqlePu6OX68/DL21tdR8kT+0EPAjRvW07TwXb36KnDXXdq5nVoad60ry+WcPAn89Zd7lutOTKo8QFk77IQJJX/FKeXyZdfMV66ffgL27nXX0gSkulR5KK2bGncfUJXuUkMLJye59PIZ3L2tlLZe/v5bakfo5k2gc2fHrlC98IIysTnK2Ss9llyx/g8cUH6eelLWvueJtwCZVHm4f/+VfsWVRs5BRIsnqv37gT59pF+HW7a4Y4mZkG77BcIbuqnRi7K2TS1/Pkf2qZ9+cu1yv/kGmDED2LixqBVse5T1dGV5y5TDFccj20/8aosS2/OHH8qfR2kWLXLdvLWISZWX02JiJIfl02SdOqkXh6Xvv7f+/8oVdeLwZkolUp62v5QlM1P9pELpjpEdFR4u/TAl5504UTRefP/R8g8cZ7GbGipBzyeO4rG7/umyEAA3LMbLp/VG77T6/cuJy973euJBnuRRou6lVvcpUh6vVHkA7rBFiq+LstpByrXdVqeDfABEFA6eeUbW6/a1YQOwb5807s7GDuXQ67p2FXe3a8SkWv/U3oeYVFEJejqwyNmBfvtN3rL1tJ7kkLOOJ09WLg5H/Psv8MADQNu2UmOMpuRK79Q+Ybibs5/X3e8rjyuPFd5yHNILJlUewJ6dSpmrMtrnzpOOtKxcAO8UDo6v5KNHlYxIe8aNU2e5lq1af/edcvN19fallaf/HHl/Tk7R/9euyZuf3FjK+t9ZTFqU4w0/CphUeYnS6vHYOmCo3cCgvuQBeLdwcLzhrrFjlY6H9CI+vuRTV+XVt3PVCd7ZfblbN+v26jIylInHxN0JDRMo9/LE9c2K6l4iKQmIigKCgqyny0mMXnlFXkyewR/AUItx0rodO9SOQNK1q+vm7a4fPH/8AfTu7dxyHT2hrl/vWHkt4Q9Q78ErVR7Anh22QQPbT8LJ2dlXrXL+va7i/oOXAcCswsHg7oW7hKtuo5Tm4kXXzr84OY1EOtq3pNLK6l3Akjs72nW2Mrk9ZS3n7cjxxhOvgGhdfLzaEWgDf1p7Ect6JiZPPOH+OJTk7gTAkpIH7sOHlZuX3tStC1SqVH45Pv1lP0c6Cpfrf/9z/r28giOfVrbZHj3K77rMG75vXqnyMikpakdAtmj56TS5B8KzZ8svU7zfNnf5/HPXzVsrJ7uypKQAx46pHYVtjtY31PKTe3rYFtTgivWiduLGpMoDOLJh2nNFQM/c//RfBoCAwkHhWroeols3ZeYza5Zz77t0qfTXRoxwbp62/PGH9ht2taVZM2324zllivPvdfY4cOGC88v0dpbr/Nw54MgR9WJRE5MqItnyCwfnqf3rqixyf02eOaNMHM4qqwFYR5X1PcXGOp/4qc2yKxE5rl5VZj7OGDnS+v98ebskyXDLLcCdd0oPSHkbJlVEsgQD+LdwCFY5FtfQcsJnD1fEn5Vle7q9nQlrjVLrKDpamfmYOJLQr1xp/b/RqGwscuh9H7KHre+q+AMTxddD9+7A+fMuC0kVrKjuAfTQ27u7uL+iui+AWgrNS5v0vD0AQEKC8vN0ZV0sNdjzHavVkKszfHy0vU8pSSuf05njxPnzwKBBysahdjLNK1Wka2o+/ectuE5LsqcOkp7Wmz2fR40uh6ZOdf69Wkk2ANfHYuvJbi2w53MrfZt2wQJl5+coJlVEsuQCmFY4eElfQDqgtZbHte7ff92/zJs3y28zTM4VQU/9rmyJi1M7Anm9cyhp6VL3L9MSkyoPoPQJREu/8Bzl/qf/8gC8UTg43k2NFhVfh3reHhxl72f1lhO2K58KbN4ciIhw3fzJvUrbJ55+uuwynlZ9hXWqqAS1N0p98QfQ32Jc/4p346LH7UELMes9GZ08Wb32w+Tav1/erUNyTl4eEBBQ9L8QQGBg0f/PPOP6GNTe9z3jLECkAumkaQCwUN1AFLZ/v/X/ah+ktMS0LspLmHJygN27XR+PK+k1oQKAjz5Sbl5KXK1z5T6kleS9oAAICwMGDCi9zO+/uz6OQ4eAgweBli1dvyxbePvPA/CkV8Sd60Ltp0zchduX/UwnuCeeAEaPVjcWUoa37OdKyM0Fvvyy6H8fn/KPH1u2KB+Hmj9omFSRrqn59N/337tvWeQYV/96L207M03XYmfj5BwluvFx5faolStVtqj1g0zNdcKkikrQ85UJ98eeASCicHC8m5qcHOmvlte5lg/aSpP7WbdvVyYO0o7Vq9WOoGxaPnYA2o9PaaxT5QG86aRX3KFDakcAAKlOvzM+Hrh4UcFQXMCbDorlfVZ761QRuYuS3TApzRuvVDGpohL0dMK4+261IwgGcMpi3HF16yoWjEt4U1JlL64TcoQrt5cuXVw3b71iUkWy8ABfxP2dqPoCuM3dCyUX0dMPCiKts6eiuquWqxbWqaIS9JykffKJ2hGQJ9PzvkHkbkIwqXKryZMn46677kKFChVQvXp19O7dGyeL3SDOzs7GsGHDUKVKFYSFheHxxx9HUlKSVZkLFy6gZ8+eCAkJQfXq1TF69GjkF7tksWnTJrRu3RoGgwENGzbEwoULS8Qza9Ys1K9fH0FBQYiOjsbuYs9l2hMLeZs8ALMKB89oUb04PSYSzsScnQ3s22dfWV7RIkdwe3Evr02qEhISMGzYMOzcuRPx8fHIy8tD165dkZFR9BTVq6++ipUrV2LZsmVISEjA5cuX8dhjj5lfLygoQM+ePZGbm4vt27fj22+/xcKFCzFhwgRzmXPnzqFnz564//77cfDgQYwcORIvvPAC1q1bZy7z448/YtSoUZg4cSL279+PFi1aIDY2FsnJyXbHQt4oF8DwwsEz+/47ckTtCNyjWzf7H5/XY6JJ5G5qXalSldCQ5ORkAUAkJCQIIYRISUkRAQEBYtmyZeYyJ06cEADEjh07hBBC/P7778LX11ckJiaay8yZM0eEh4eLnJwcIYQQb7zxhmjatKnVsvr27StiY2PN/7dr104MGzbM/H9BQYGoWbOmmDx5st2xFJednS1SU1PNw8WLFwUAkZqa6tT6KU23bqZNV5lhyxZl5+fZQ5YAnigcsjQQDwdAiMhI+8ua2FN23jyp7Msvl17GaFT/83PQ1vDmm+rHoMawaZMQcXHuX+7ChYqeYoUQQqSmpgp7zt+aqlOVmio9ml65cmUAwL59+5CXl4cuFo83NG7cGHXr1sWOwg7KduzYgebNmyMyMtJcJjY2FmlpaThW+LNzx44dVvMwlTHNIzc3F/v27bMq4+vriy5dupjL2BNLcZMnT0bFihXNQ506dZxbMaRhQQCWFQ5BKsdCJo7clT95UmoB3R5ClF/mww/tXzZ5B3u2G0+k1m04r739Z8loNGLkyJHo0KEDmjVrBgBITExEYGAgIop1ZR4ZGYnExERzGcuEyvS66bWyyqSlpSErKwvXrl1DQUGBzTKW8ygvluLGjh2L1NRU83DRRQ0SKb3Drl+v7PyItCw2Fvj5Z8fe88UXpb/21lvy4iHP461JVUEB8N9/7l8um1QAMGzYMBw9ehRbt25VOxTFGAwGGAwGtcNw2DvvqB0Bkfv884/aEZCnmzpV7QjU0bmzOsv1+itVw4cPx6pVq7Bx40bUrl3bPD0qKgq5ublISUmxKp+UlISoqChzmeJP4Jn+L69MeHg4goODUbVqVfj5+dksYzmP8mIhb5QJoFbhkKlyLEREpCZVkyohBIYPH47ly5djw4YNaNCggdXrbdq0QUBAANZb3I86efIkLly4gJiYGABATEwMjhw5YvWUXnx8PMLDw9GkSRNzmfXF7mnFx8eb5xEYGIg2bdpYlTEajVi/fr25jD2xkDcSAC4XDl56jd+LzJkDvPii2lEQUVlUbcJC+Try9vvf//4nKlasKDZt2iSuXLliHjIzM81lXnrpJVG3bl2xYcMGsXfvXhETEyNiYmLMr+fn54tmzZqJrl27ioMHD4q1a9eKatWqibFjx5rL/P333yIkJESMHj1anDhxQsyaNUv4+fmJtWvXmsssWbJEGAwGsXDhQnH8+HExZMgQERERYfVUYXmxlMfepwccpfTTfxwcGfIFcKBwyNdAPBw4cODg3cOiRYqeYoUQ9p+/ofyi7QfA5rBgwQJzmaysLDF06FBRqVIlERISIh599FFx5coVq/mcP39edO/eXQQHB4uqVauK1157TeTl5VmV2bhxo2jZsqUIDAwUt9xyi9UyTL744gtRt25dERgYKNq1ayd27txp9bo9sZSFSRUHDhw4cODg2uGHHxQ9xQoh7D9/+wghhFpXybxNWloaKlasiNTUVISHhys2327dAIt2TImIiLzW4sXAU08pO097z9+aefqPSJ/yACwqHI8DEKBiLEREpCYmVUSy5AIYWDjeB0yqiIjUxXaqiHTLD0APi3EiIlITkyqShT2gqykIwGq1gyAiokJe3/gnycNHDYiIiNTHpIqIiIhIAUyqiGTJBHBb4cBuaoiIvBnrVBHJIgCcsRgnIiJvxaSKSJYgAFstxomISE18+o9k4dN/avID0EHtIIiISANYp8oD8Ok/IiIiiZrnRF6pIpIlH8DywvFHwV2KiMh78QxAJEsOgCcLx9PBXYqISF2sU0WkW74A7rUYJyIib8WkikiWYACb1A6CiIg0gD+tPQCf/iMiIlIfkyoPwKf/iIiI1MekikiWLAAtC4csVSMhIiJ1sU4VkSxGAIcsxomIyFsxqSKSJQjAHxbjRETkrZhUEcniB+BBtYMgIiINYJ0qIiIiIgXwShWRLPkA1hWOx4K7FBGR9+IZgEiWHAAPFY6zmxoiIm/GMwCRLL4A2lqMExGRmtj3H5FuBQPYo3YQRERUSM0GsfnT2gOwmxoiIiL1ManyAOymhoiISH1MqohkyQLQoXBgNzVERGpjnSoi3TIC2G4xTkRE3opJFZEsBgDLLcaJiMhbMakiksUfQG+1gyAiIg1gnSoiIiIiBfBKFZEsBQC2FI7fA6mDZSIi8kZMqohkyQZwf+F4OoBQFWMhIiI1MakiksUHQBOLcSIiUhObVCDSrRAAx9QOgoiICrGbGiIiIiKdY1JFREREpAAmVUSyZAF4sHBgNzVERGpjnSoi3TIC+NNinIiIvBWTKiJZDAC+txgnIiI1qVlRnUkVkSz+AOLUDoKIiDSAdaqIiIjIY7BOFZFuFQDYXzjeGuymhojIezGpIpIlG0C7wnF2U0NE5M2YVBHJ4gOgnsU4ERF5KyZVRLKEADivdhBERKQBrKhOREREpAAmVUREREQKYFLlAXbvVjsCb5YNoHfhkK1qJEREpC7WqfIAN26oHYE3KwCwwmKciIjUxHaqiHQrEMCXFuNERKQmdlNDpFsBAAarHQQRuUiVKsB//6kdBekF61QRERGVQs1bSeQcNb8zJlWkG0OHAhUqqB1FcUYAxwoHo8qxEOlX27ZqR2BbSIjaEZCeMKki3WjZUu0IbMkC0KxwyFI5FiL90t4PJsn48WpHQHrCpIp046mntHopvmrh4F4LF7p9kapJSVE7AvJWVd2/a5OOManyAHfdpXYE7lGhghaTqlAAVwsH93am/Nhjbl2cqipWVDsCshQc7Fj5N990TRzeJipK7Qj04d571Vs2kyoHzZo1C/Xr10dQUBCio6OxWwMtb955p9oRuI6/P1CzJvDXX9L/9iZV99/vupi04Nw57d4uUdqttzpWfsoUx5eRmgrExgJvvOH4e7Xu3Dng1CmgSRPl5lm/vv1ld+4EmjVTbtnezNXJwq5dwCefuHYZ7lC5snrLZlLlgB9//BGjRo3CxIkTsX//frRo0QKxsbFITk5WNa6gIPnz+Pff8sv07Cl/OY7KzQUuXQIaNbL/PcHBwOLFrotJC/z8rP+W55VXXBeLLX//XX6ZunWVX+60acCYMY6/LzwcWLsW+Ogj5WNSW/36wG23KXuV96efSk4LC7P+gbdwIXD1KhAdDdx+e/nztFXm5En74qlWzb5yzii+3v74w3XLKs3Zs8C8ecBrr8mf17p1wPbtJR8MuOsuoF07YNQo+cvwaoLs1q5dOzFs2DDz/wUFBaJmzZpi8uTJdr0/NTVVABCpqamKxrV0qRBSc2fWQ//+tqfbGoQo+/VatYTIyyt/PjNm2L/M8obg4JKftVKlkuV+/tn6/0cflcpeuCBEr17KxWMaZs60/D9LAE8XDlnm6ffeK8Qff5R875tvClG9uvwYLlyQPuO5c/aVz8sTIj+/5PRPPxXi5ZeVWzft2wuRkCDFNnasEEFBQvz1l+2yL7xg3zy7dZPm17t3ydcyMqz/nzev/G0ZEOKTT6z/tzRpkvVrd99t/f8jjxSNR0YK8cwz1q8r8f2ahmrV5M/DpEkT6+nXrgnxwAOlv8/WvgYI0aOHNL/27a2nf/mlEIsW2V6nQgjxww9CfP556ctLSys5LT1diI8/FqJ+fSGefLL0937zjRBRUfLX1alTQvTsaf3dX7pUcn06M+9vvik5zcfHse8wL0+IRo2sXwsMdCyO/fuL5pecLMTx40JMmyZEYmLRdEc/W0RE+WWqVJH//XTr5tj6UpK9528XLd7z5OTkCD8/P7F8+XKr6c8995x45JFHbL4nOztbpKammoeLFy/a9aU4ymgU4vvvpZPXgAHWG9auXfZvhKW91r170bKSkqQT+cqVQrzyihBnzgjh62s9ny1bhGja1LGdpXNnIW6/XYi1a4umnT9f8rPecov1+7KypOkpKUXTiq/espZ7+LAQs2dbT0tPF2LWLCEuXpSSlx9/FOLGDSG2bxfip5+EuH7dsny6ACAAiBs30s3T8/KkZZ84UXTyuXJFmrZzZ9H7Y2OF2LRJiN9/F+LyZWmdHj8uxMSJRWUqVCgZ96VLRZ/v6afLX78FBVLZxYuFCAkpmr5lizS9+MnVFL/RKESXLtK0OXOk779PH+l/Pz8hfvut7IOZaT516liXGz7cOumsWrX02E2f1Wi0nl6tWsnv9//+T5pmSrRtnciio6UyAweWHrdl+QsXitYBIMT69UK89ZaUQBiN0md85ZWi199/X/rbsaO0LRZf/sGDQnToII2PHi3E6tVS8j9vnnW5iAhpW+ze3Xr6/fdb/5CIj5f+fvedtK3a2reFKJnQmPad1auFWLJE+iw7d0rb+uLF1snEDz8UjZsOgf/9J8SLLxZN//NPIc6eLX2dCiGd0IvHN2eOEPv2Sa+bts1ataTjjKWrV0smFKbh11+FyMkR4qGHpHVa/PVJk4R44w0p8TNN8/Ut2u63b5f2a5PUVCHmz5cSTyGEOHlSKnfHHdL/ixdbz3/s2PKPtUaj9Dm/+qpo39+2TTpWrl9f+vuK/7gsKJAS0BYthJgwQZpvUpL1j5Rt26TtpPi87rhD+nFVntJisfy+TcPdd0sxJCSUfK1Bg6Lx1q2FqFGj6P9r10pfTk6OEJUrC1GvnvSdPfaYENnZUmxGo7QPh4RI+8HBg0I8/7wQAQHSe196qfzP5wwmVQq7dOmSACC2b99uNX306NGiXbt2Nt8zceJEYTrhWg5KJ1WWbtwQYswYIQ4dKpqWny+d3J94QkqGsrKEWLOmaAP+6COp3KJF0i+Bp54SYtkyIaZOlQ5k5TEahRgyRIgvvrCenp0txM2b0kY/dKiULPzxhxDr1knjQ4YI8d579i3D5NAhIVq2lE40S5bY954PP5QOMFeuSL9427aVDv5JSUVlLl2SdkzTSbk8Fy5IB+ErV3LFuHGfic8++0zk5uba/TkuXJC+q7JkZUnr1mgUYvDgou9ryBDrcomJ0tWDqCgpeenbV4iuXYVo1UqIDRukxLe4WbOkxMZolP6/ckU6IUVGSomtoy5flk6ypcnNLTqhrVkjTcvPl5KVkSOlOHJzhdi6Vbqics89QoSFSYmCpY0bhWjcWLpaaEoUf/1Vmu9tt0kHYxPT+DffSCeg4kn6jRtScnT8eMl4TUnS669L/1+8KJ0gBg8u/TOePi3E339Ln2vjRmnbF0JKui5dkq5emj5PeroQmzdbn+Byc6VE7NVXi9aHENK6feYZaZ6WsrKKTvqWfv9dSrROn7bexgoKpBP/p58K8fXXpX8OS998I13JNBqlZGrs2KJtxmTOHGk/Nk3fscP2NieEVOaRR6TjwRdfSNunpb/+EuK116yvmhS3ZIn03Xz7rbRNDRlStC2YZGVJcT/zjJSAWFq1SoiGDaXEw2gs+XppsrOtvy+jUfrsph8mQkj71eefS0nYqVPSd/jDDyW3vb/+Kvp+TXbskOK66y4hFi6U1tH//Z/98RmN0nJNyYcQ0nf22mtSwrNhQ8nvrjRXr0rbKyDEww9Licr48VKyOWCAEM2bS0nv9OnW+316urTuf/ml6Efkli3S1b8zZ6SkumNHaT8XQjpWAdKPs+3bhfjf/4TYu1d6LSen6EeZvf77z/7P6Ch7kyofIYRQ5b6jzly+fBm1atXC9u3bERMTY57+xhtvICEhAbt27SrxnpycHOTk5Jj/T0tLQ506dZCamorw8HC3xE1ERETypKWloWLFiuWev9n3n52qVq0KPz8/JCUlWU1PSkpCVCnPuRoMBhgMBneER0RERCrj0392CgwMRJs2bbB+/XrzNKPRiPXr11tduSLvYjQacf78eZw/fx5GI7upISLyZrxS5YBRo0ahf//+aNu2Ldq1a4fp06cjIyMDAwcOVDs0UklWVhYaNGgAAEhPT0doqHsbACUiIu1gUuWAvn374urVq5gwYQISExPRsmVLrF27FpGRkWqHRioKYY+rREQEgBXV3cjeim5ERESkHfaev1mnioiIiEgBTKqIiIiIFMCkikiGnJwcDB48GIMHD7Zqk4yIiLwP61S5EetUeZ6MjAyEhYUB4NN/RESeio1/ErlBQEAAPvjgA/M4ERF5L16pciNeqSIiItIfPv1HRERE5Ea8/UckgxAC165dAyD1D+nj46NyREREpBYmVUQyZGZmonr16gBYUZ2IyNsxqXIjU/W1tLQ0lSMhpWRkZJjH09LSUFBQoGI0RETkCqbzdnnV0JlUudHNmzcBAHXq1FE5EnKFmjVrqh0CERG50M2bN1GxYsVSX+fTf25kNBpx+fJlVKhQQdG6N2lpaahTpw4uXrzIpwqdwPUnD9ef87ju5OH6k4frz35CCNy8eRM1a9aEr2/pz/jxSpUb+fr6onbt2i6bf3h4OHcMGbj+5OH6cx7XnTxcf/Jw/dmnrCtUJmxSgYiIiEgBTKqIiIiIFMCkygMYDAZMnDgRBoNB7VB0ietPHq4/53HdycP1Jw/Xn/JYUZ2IiIhIAbxSRURERKQAJlVERERECmBSRURERKQAJlVERERECmBS5QFmzZqF+vXrIygoCNHR0di9e7faIenC5s2b8fDDD6NmzZrw8fHBr7/+qnZIujF58mTcddddqFChAqpXr47evXvj5MmTaoelG3PmzMGdd95pbnQxJiYGa9asUTssXZoyZQp8fHwwcuRItUPRhXfeeQc+Pj5WQ+PGjdUOy2MwqdK5H3/8EaNGjcLEiROxf/9+tGjRArGxsUhOTlY7NM3LyMhAixYtMGvWLLVD0Z2EhAQMGzYMO3fuRHx8PPLy8tC1a1erDqapdLVr18aUKVOwb98+7N27F507d0avXr1w7NgxtUPTlT179mDevHm488471Q5FV5o2bYorV66Yh61bt6odksdgkwo6Fx0djbvuugszZ84EIPUvWKdOHbz88st48803VY5OP3x8fLB8+XL07t1b7VB06erVq6hevToSEhLQqVMntcPRpcqVK2PatGkYNGiQ2qHoQnp6Olq3bo3Zs2fjgw8+QMuWLTF9+nS1w9K8d955B7/++isOHjyodigeiVeqdCw3Nxf79u1Dly5dzNN8fX3RpUsX7NixQ8XIyNukpqYCkBIDckxBQQGWLFmCjIwMxMTEqB2ObgwbNgw9e/a0Ov6RfU6fPo2aNWvilltuQVxcHC5cuKB2SB6DHSrr2LVr11BQUIDIyEir6ZGRkfjrr79Uioq8jdFoxMiRI9GhQwc0a9ZM7XB048iRI4iJiUF2djbCwsKwfPlyNGnSRO2wdGHJkiXYv38/9uzZo3YouhMdHY2FCxeiUaNGuHLlCt59913cc889OHr0KCpUqKB2eLrHpIqIZBk2bBiOHj3KehkOatSoEQ4ePIjU1FT89NNP6N+/PxISEphYlePixYsYMWIE4uPjERQUpHY4utO9e3fz+J133ono6GjUq1cPS5cu5a1nBTCp0rGqVavCz88PSUlJVtOTkpIQFRWlUlTkTYYPH45Vq1Zh8+bNqF27ttrh6EpgYCAaNmwIAGjTpg327NmDGTNmYN68eSpHpm379u1DcnIyWrdubZ5WUFCAzZs3Y+bMmcjJyYGfn5+KEepLREQEbr/9dpw5c0btUDwC61TpWGBgINq0aYP169ebpxmNRqxfv551M8ilhBAYPnw4li9fjg0bNqBBgwZqh6R7RqMROTk5aoeheQ888ACOHDmCgwcPmoe2bdsiLi4OBw8eZELloPT0dJw9exY1atRQOxSPwCtVOjdq1Cj0798fbdu2Rbt27TB9+nRkZGRg4MCBaoemeenp6Va/zs6dO4eDBw+icuXKqFu3roqRad+wYcPwww8/YMWKFahQoQISExMBABUrVkRwcLDK0Wnf2LFj0b17d9StWxc3b97EDz/8gE2bNmHdunVqh6Z5FSpUKFF3LzQ0FFWqVGGdPju8/vrrePjhh1GvXj1cvnwZEydOhJ+fH/r166d2aB6BSZXO9e3bF1evXsWECROQmJiIli1bYu3atSUqr1NJe/fuxf3332/+f9SoUQCA/v37Y+HChSpFpQ9z5swBANx3331W0xcsWIABAwa4PyCdSU5OxnPPPYcrV66gYsWKuPPOO7Fu3To8+OCDaodGHu7ff/9Fv3798N9//6FatWro2LEjdu7ciWrVqqkdmkdgO1VERERECmCdKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIincnNzUXDhg2xfft2Ree7du1atGzZEkajUdH5EnkLJlVEpKoBAwbAx8enxGDZLyNZmzt3Lho0aID27dubp/n4+ODXX38tUXbAgAHo3bu3XfPt1q0bAgICsGjRIoUiJfIuTKqISHXdunXDlStXrIYGDRqUKJebm6tCdNoihMDMmTMxaNAgl8x/wIAB+Pzzz10ybyJPx6SKiFRnMBgQFRVlNfj5+eG+++7D8OHDMXLkSFStWhWxsbEAgKNHj6J79+4ICwtDZGQknn32WVy7ds08v4yMDDz33HMICwtDjRo18Mknn+C+++7DyJEjzWVsXdmJiIiw6kz74sWLePLJJxEREYHKlSujV69eOH/+vPl101Wgjz/+GDVq1ECVKlUwbNgw5OXlmcvk5ORgzJgxqFOnDgwGAxo2bIivv/4aQgg0bNgQH3/8sVUMBw8eLPNK3b59+3D27Fn07NnTwbUMnD9/3uZVQcuOsR9++GHs3bsXZ8+edXj+RN6OSRURadq3336LwMBAbNu2DXPnzkVKSgo6d+6MVq1aYe/evVi7di2SkpLw5JNPmt8zevRoJCQkYMWKFfjjjz+wadMm7N+/36Hl5uXlITY2FhUqVMCWLVuwbds2hIWFoVu3blZXzDZu3IizZ89i48aN+Pbbb7Fw4UKrxOy5557D4sWL8fnnn+PEiROYN28ewsLC4OPjg+effx4LFiywWu6CBQvQqVMnNGzY0GZcW7Zswe23344KFSo49HkAoE6dOlZXAw8cOIAqVaqgU6dO5jJ169ZFZGQktmzZ4vD8ibyeICJSUf/+/YWfn58IDQ01D0888YQQQoh7771XtGrVyqr8+++/L7p27Wo17eLFiwKAOHnypLh586YIDAwUS5cuNb/+33//ieDgYDFixAjzNABi+fLlVvOpWLGiWLBggRBCiP/7v/8TjRo1Ekaj0fx6Tk6OCA4OFuvWrTPHXq9ePZGfn28u06dPH9G3b18hhBAnT54UAER8fLzNz37p0iXh5+cndu3aJYQQIjc3V1StWlUsXLiw1PU1YsQI0blz5xLTAYigoCCr9RgaGir8/f1Fr169SpTPysoS0dHR4qGHHhIFBQVWr7Vq1Uq88847pcZARLb5q5vSEREB999/P+bMmWP+PzQ01Dzepk0bq7KHDh3Cxo0bERYWVmI+Z8+eRVZWFnJzcxEdHW2eXrlyZTRq1MihmA4dOoQzZ86UuCKUnZ1tdWusadOm8PPzM/9fo0YNHDlyBIB0K8/Pzw/33nuvzWXUrFkTPXv2xDfffIN27dph5cqVyMnJQZ8+fUqNKysrC0FBQTZf++yzz9ClSxeraWPGjEFBQUGJss8//zxu3ryJ+Ph4+Ppa37QIDg5GZmZmqTEQkW1MqohIdaGhoaXe7rJMsAAgPT0dDz/8MD766KMSZWvUqGH3U4M+Pj4QQlhNs6wLlZ6ejjZt2th8Eq5atWrm8YCAgBLzNTVJEBwcXG4cL7zwAp599ll89tlnWLBgAfr27YuQkJBSy1etWtWctBUXFRVVYj1WqFABKSkpVtM++OADrFu3Drt377Z5G/H69etWn5GI7MOkioh0pXXr1vj5559Rv359+PuXPITdeuutCAgIwK5du1C3bl0AwI0bN3Dq1CmrK0bVqlXDlStXzP+fPn3a6upM69at8eOPP6J69eoIDw93KtbmzZvDaDQiISGhxBUkkx49eiA0NBRz5szB2rVrsXnz5jLn2apVK8yZMwdCCPj4+Dgc088//4z33nsPa9aswa233lriddOVuFatWjk8byJvx4rqRKQrw4YNw/Xr19GvXz/s2bMHZ8+exbp16zBw4EAUFBQgLCwMgwYNwujRo7FhwwYcPXoUAwYMKHGLq3Pnzpg5cyYOHDiAvXv34qWXXrK66hQXF4eqVauiV69e2LJlC86dO4dNmzbhlVdewb///mtXrPXr10f//v3x/PPP49dffzXPY+nSpeYyfn5+GDBgAMaOHYvbbrsNMTExZc7z/vvvR3p6Oo4dO+bAWpMcPXoUzz33HMaMGYOmTZsiMTERiYmJuH79urnMzp07YTAYyo2DiEpiUkVEulKzZk1s27YNBQUF6Nq1K5o3b46RI0ciIiLCnDhNmzYN99xzDx5++GF06dIFHTt2LFE365NPPkGdOnVwzz334Omnn8brr79uddstJCQEmzdvRt26dfHYY4/hjjvuwKBBg5Cdne3Qlas5c+bgiSeewNChQ9G4cWMMHjwYGRkZVmUGDRqE3NxcDBw4sNz5ValSBY8++qhTDXTu3bsXmZmZ+OCDD1CjRg3z8Nhjj5nLLF68GHFxcWXegiQi23xE8UoFREQe6L777kPLli0xffp0tUMpYcuWLXjggQdw8eJFREZGllv+8OHDePDBB3H27FmbFfadde3aNTRq1Ah79+612fgqEZWNV6qIiFSSk5ODf//9F++88w769OljV0IFAHfeeSc++ugjnDt3TtF4zp8/j9mzZzOhInISK6oTEalk8eLFGDRoEFq2bInvvvvOofcOGDBA8Xjatm2Ltm3bKj5fIm/B239ERERECuDtPyIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUsD/A7TdV7oDcKqkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr=\"counts\").plot()\n", + "ax.axvline(freq, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33ce87b1", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/notebooks/Transfer Functions/Data Preparation.ipynb.txt b/_sources/notebooks/Transfer Functions/Data Preparation.ipynb.txt new file mode 100644 index 000000000..461505f14 --- /dev/null +++ b/_sources/notebooks/Transfer Functions/Data Preparation.ipynb.txt @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting Up Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use `Image` module from Python Imaging library to digitize 2-d plot from Uttley et al. (2014)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "im = Image.open('2d.png')\n", + "width, height = im.size" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize an intensity array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "intensity = np.array([[1 for j in range(width)] for i in range(height)])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, we retrieve each pixel and then calculate darkness value. The perceived brightness is given by:\n", + "\n", + "_0.2126*R + 0.7152*G + 0.0722*B_\n", + "\n", + "To get darkness, the formula is corrected as follows:\n", + "\n", + "_0.2126*(255-R) + 0.7152*(255-G) + 0.0722*(255-B)_" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "for x in range(0, height):\n", + " for y in range(0, width):\n", + " RGB = im.getpixel((y, x))\n", + " intensity[x][y] = (0.2126 * (255-RGB[0]) + 0.7152 * (255-RGB[1]) + 0.0722 * (255-RGB[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Invert along Y-axis to account for some conventions." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "intensity = intensity[::-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "np.savetxt('intensity.txt', intensity)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py310", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb.txt b/_sources/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb.txt new file mode 100644 index 000000000..d2b4c7bc6 --- /dev/null +++ b/_sources/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb.txt @@ -0,0 +1,481 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating TransferFunction object, obtaining time and energy resolved responses, plotting them and using IO methods available. Finally, artificial responses are introduced which provide a way for quick testing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set up some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction\n", + "from stingray.simulator.transfer import simple_ir, relativistic_ir" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A transfer function can be initialized by passing a 2-d array containing time across the first dimension and energy across the second. For example, if the 2-d array is defined by `arr`, then `arr[1][5]` defines a time of 5 units and energy of 1 unit.\n", + "\n", + "For the purpose of this tutorial, we have stored a 2-d array in a text file named `intensity.txt`. The script to generate this file is explained in `Data Preparation` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "response = np.loadtxt('intensity.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize transfer function by passing the array defined above." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(524, 744)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer = TransferFunction(response)\n", + "transfer.data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, time and energy spacing across both axes are set to 1. However, they can be changed by supplying additional parameters `dt` and `de`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Time-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The 2-d transfer function can be converted into a time-resolved/energy-averaged response." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.time_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `time` parameter which can be accessed by `transfer.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, energy interval over which to average, can be specified by specifying `e0` and `e1` parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Energy-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Energy-resolved/time-averaged response can be also be formed from 2-d transfer function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.energy_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `energy` parameter which can be accessed by `transfer.energy`" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.energy[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plotting Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction() creates plots of `time-resolved`, `energy-resolved` and `2-d responses`. These plots can be saved by setting `save` parameter. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.plot(response='2d')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.plot(response='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.plot(response='energy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By enabling `save=True` parameter, the plots can be also saved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction can be saved in pickle format and retrieved later." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.write('transfer.pickle')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Saved files can be read using static `read()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer_new = TransferFunction.read('transfer.pickle')\n", + "transfer_new.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Artificial Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For quick testing, two helper impulse response models are provided." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1- Simple IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "simple_ir() allows to define an impulse response of constant height. It takes in time resolution starting time, width and intensity as arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApVklEQVR4nO3df3DV9Z3v8Vd+kASRhEqu5xgIBru0AYmJEhKD3mKnmYYdtjbaXWOGSi5l6riLCMZFCOXH7Vg36oqDSsaU3Wmd3UphmSqLFLMbI9J6iQQSWIs/kLvlEgY8CaxLDgZJ6Pl+7x+QL5waQk6acI7vPB8zZ2K+53O++Xw/8yV5+fn1jXNd1xUAAEAMi492BQAAAK6EwAIAAGIegQUAAMQ8AgsAAIh5BBYAABDzCCwAACDmEVgAAEDMI7AAAICYlxjtCgwGx3F0/PhxjR49WnFxcdGuDgAA6AfXdXX69GllZGQoPr7vPhQTgeX48ePKzMyMdjUAAMAAHD16VOPHj++zjInAMnr0aEnnLzg1NTXKtQEAAP0RDAaVmZnp/R3vi4nA0jMMlJqaSmABAOBLpj/TOZh0CwAAYh6BBQAAxDwCCwAAiHkEFgAAEPMILAAAIOYRWAAAQMwjsAAAgJhHYAEAADGPwAIAAGLegAJLTU2NsrKylJKSosLCQjU1NV227Pvvv6/vfe97ysrKUlxcnNauXfsnnxMAAAwvEQeWTZs2qbKyUqtXr1ZLS4tyc3NVUlKi9vb2XsufOXNGN910k5566in5/f5BOScAABhe4lzXdSP5QGFhoaZPn65169ZJkhzHUWZmphYuXKhly5b1+dmsrCwtXrxYixcvHrRzSucfnpSWlqaOjg6eJQQAwJdEJH+/I3r4YXd3t5qbm1VVVeUdi4+PV3FxsRobGwdU2YGcs6urS11dXd73wWBwQD8bAKxqOvyp6g4E5Cqi/ycFLisxPk4/mj0lej8/ksInT55UKBSSz+cLO+7z+fTRRx8NqAIDOWd1dbV+/OMfD+jnAcBwsOxX7+n3JzujXQ0YkpQY/+UJLLGiqqpKlZWV3vfBYFCZmZlRrBEAxJbg2T9Iku6fnqmx1yZFuTawICE+uguLIwos6enpSkhIUFtbW9jxtra2y06oHYpzJicnKzk5eUA/DwCGA+fC9MQf3DlRX/ONjnJtgD9dRHEpKSlJ06ZNU0NDg3fMcRw1NDSoqKhoQBUYinMCwHAXcs4Hlvi4uCjXBBgcEQ8JVVZWqqKiQvn5+SooKNDatWvV2dmpefPmSZLmzp2rcePGqbq6WtL5SbUffPCB99/Hjh3T/v37de211+rP/uzP+nVOAEBknAuBJSGewAIbIg4sZWVlOnHihFatWqVAIKC8vDzV1dV5k2ZbW1sVf8k41/Hjx3Xrrbd63z/77LN69tlnNXPmTL399tv9OicAIDI9Q0IJ9LDAiIj3YYlF7MMCAOGyV76hs+cc/fbxbyrzumuiXR2gV5H8/eZZQgBgkOOc/8qQEKwgsACAQSGXOSywhcACAAaxSgjWEFgAwJieFUISPSywg8ACAMaELllLwSohWEFgAQBjQpf0sER5N3Vg0HArA4AxjsuQEOwhsACAMZd0sDDpFmYQWADAmLAhIQILjCCwAIAxrBKCRQQWADDm0lVC5BVYQWABAGMcb9M4KY4hIRhBYAEAY9iWHxYRWADAGLblh0UEFgAwhic1wyICCwAY4w0J0cMCQwgsAGBMz0638fSwwBACCwAYc+kqIcAKAgsAGMMqIVhEYAEAY1glBIsILABgDKuEYBGBBQCM6RkSoocFlhBYAMCYniEhelhgCYEFAIxxmHQLgwgsAGBMiGXNMIjAAgDGOMxhgUEEFgAwhlVCsIjAAgDGsEoIFhFYAMAYh1VCMIjAAgDGeJNuCSwwhMACAMZ4zxIir8AQAgsAGMOQECwisACAMUy6hUUEFgAwhq35YRGBBQCMudDBQg8LTCGwAIAxrBKCRQQWADCGVUKwiMACAMawSggWEVgAwBhWCcEiAgsAGEMPCywisACAMUy6hUUEFgAwJnRhWXMCQ0IwhMACAMa4LkNCsIfAAgDG9AwJ0cECSwgsAGDMxX1YSCywg8ACAMawSggWEVgAwJiQc/4rq4RgCYEFAIxhSAgWEVgAwBiGhGARgQUAjGFrflhEYAEAYy72sES5IsAg4nYGAGMcl635YQ+BBQCM8VYJMSQEQwgsAGCMwyohGERgAQBjeFozLCKwAIAx7MMCiwgsAGAMq4Rg0YBu55qaGmVlZSklJUWFhYVqamrqs/zmzZuVnZ2tlJQU5eTkaPv27WHvf/bZZ3r44Yc1fvx4jRw5UlOmTFFtbe1AqgYAwx5DQrAo4sCyadMmVVZWavXq1WppaVFubq5KSkrU3t7ea/ldu3apvLxc8+fP1759+1RaWqrS0lIdOHDAK1NZWam6ujr94he/0IcffqjFixfr4Ycf1tatWwd+ZQAwTDEkBIsiDizPPfecfvjDH2revHleT8g111yjn/3sZ72Wf/755zVr1iwtWbJEkydP1hNPPKHbbrtN69at88rs2rVLFRUVuuuuu5SVlaUHH3xQubm5V+y5AQB8EVvzw6KIAkt3d7eam5tVXFx88QTx8SouLlZjY2Ovn2lsbAwrL0klJSVh5WfMmKGtW7fq2LFjcl1XO3bs0Mcff6xvf/vbvZ6zq6tLwWAw7AUAOO9CXmEfFpgSUWA5efKkQqGQfD5f2HGfz6dAINDrZwKBwBXLv/jii5oyZYrGjx+vpKQkzZo1SzU1NfrGN77R6zmrq6uVlpbmvTIzMyO5DAAw7eKzhKJcEWAQxcQc8hdffFHvvvuutm7dqubmZq1Zs0YLFizQm2++2Wv5qqoqdXR0eK+jR49e5RoDQOxiSAgWJUZSOD09XQkJCWpraws73tbWJr/f3+tn/H5/n+U///xzLV++XK+99ppmz54tSbrlllu0f/9+Pfvss18YTpKk5ORkJScnR1J1ABg2WCUEiyLqYUlKStK0adPU0NDgHXMcRw0NDSoqKur1M0VFRWHlJam+vt4rf+7cOZ07d07x8eFVSUhIkOM4kVQPACC25odNEfWwSOeXIFdUVCg/P18FBQVau3atOjs7NW/ePEnS3LlzNW7cOFVXV0uSFi1apJkzZ2rNmjWaPXu2Nm7cqL1792r9+vWSpNTUVM2cOVNLlizRyJEjdeONN2rnzp36p3/6Jz333HODeKkAMDzQwwKLIg4sZWVlOnHihFatWqVAIKC8vDzV1dV5E2tbW1vDektmzJihDRs2aMWKFVq+fLkmTZqkLVu2aOrUqV6ZjRs3qqqqSnPmzNGnn36qG2+8UU8++aQeeuihQbhEABheQhdWCdHDAkviXPdC3+GXWDAYVFpamjo6OpSamhrt6gBAVH3/H3frnf97UmvL8lR667hoVwe4rEj+fsfEKiEAwOBhSAgWEVgAwBgm3cIiAgsAGOOwcRwMIrAAgDEMCcEiAgsAGMMqIVhEYAEAY9iaHxYRWADAGIaEYBGBBQCMYZUQLCKwAIAxF3tYolwRYBBxOwOAMSF6WGAQgQUAjOl54ApzWGAJgQUAjPGGhOhhgSEEFgAwJsSyZhhEYAEAY1glBIsILABgDKuEYBG3MwAY4/WwMCQEQwgsAGCMN4eFISEYQmABAGPYmh8WEVgAwBiHpzXDIAILABjTM4eFfVhgCYEFAIxhlRAs4nYGAGNYJQSLCCwAYAyrhGARgQUADHFd15t0yyohWEJgAQBDesKKRA8LbCGwAIAhoUsSCz0ssITAAgCG9Ey4lZh0C1sILABgSFhgYUgIhhBYAMCQS4eEyCuwhMACAIY4zsX/ZkgIlhBYAMCQEENCMIrAAgCGsEoIVhFYAMAQtuWHVQQWADCEbflhFYEFAAzhSc2wilsaAAzxhoToYYExBBYAMIQHH8IqAgsAGOINCdHDAmMILABgCKuEYBWBBQAMoYcFVhFYAMAQb1kzv91hDLc0ABjCKiFYRWABAEMu7sNCYIEtBBYAMIRJt7CKwAIAhoSc818ZEoI1BBYAMKSnh4UhIVhDYAEAQxxvWXOUKwIMMgILABgSctmHBTYRWADAkIv7sBBYYAuBBQAMYZUQrCKwAIAhPauEGBKCNQQWADCEISFYRWABAEPYmh9WEVgAwJCLW/NHuSLAIOOWBgBDmHQLqwgsAGCIwz4sMGpAgaWmpkZZWVlKSUlRYWGhmpqa+iy/efNmZWdnKyUlRTk5Odq+ffsXynz44Ye6++67lZaWplGjRmn69OlqbW0dSPUAYNhilRCsijiwbNq0SZWVlVq9erVaWlqUm5urkpIStbe391p+165dKi8v1/z587Vv3z6VlpaqtLRUBw4c8Mr853/+p+68805lZ2fr7bff1nvvvaeVK1cqJSVl4FcGAMOQwyohGBXnuhf6D/upsLBQ06dP17p16yRJjuMoMzNTCxcu1LJly75QvqysTJ2dndq2bZt37Pbbb1deXp5qa2slSffff79GjBihf/7nfx7QRQSDQaWlpamjo0OpqakDOgcAWPDLplZVvfo7FU/26R8r8qNdHaBPkfz9jqiHpbu7W83NzSouLr54gvh4FRcXq7GxsdfPNDY2hpWXpJKSEq+84zj69a9/ra997WsqKSnR9ddfr8LCQm3ZsuWy9ejq6lIwGAx7AQAu3YclyhUBBllEt/TJkycVCoXk8/nCjvt8PgUCgV4/EwgE+izf3t6uzz77TE899ZRmzZqlf//3f9c999yje++9Vzt37uz1nNXV1UpLS/NemZmZkVwGAJjFKiFYFfUM7jjnZ4h997vf1aOPPqq8vDwtW7ZMf/EXf+ENGf2xqqoqdXR0eK+jR49ezSoDQMzy9mFh0i2MSYykcHp6uhISEtTW1hZ2vK2tTX6/v9fP+P3+Psunp6crMTFRU6ZMCSszefJkvfPOO72eMzk5WcnJyZFUHQCGBbbmh1UR9bAkJSVp2rRpamho8I45jqOGhgYVFRX1+pmioqKw8pJUX1/vlU9KStL06dN18ODBsDIff/yxbrzxxkiqBwDDXs8yCnpYYE1EPSySVFlZqYqKCuXn56ugoEBr165VZ2en5s2bJ0maO3euxo0bp+rqaknSokWLNHPmTK1Zs0azZ8/Wxo0btXfvXq1fv94755IlS1RWVqZvfOMb+uY3v6m6ujq9/vrrevvttwfnKgFgmAixcRyMijiwlJWV6cSJE1q1apUCgYDy8vJUV1fnTaxtbW1V/CUPsZgxY4Y2bNigFStWaPny5Zo0aZK2bNmiqVOnemXuuece1dbWqrq6Wo888oi+/vWv61e/+pXuvPPOQbhEABg+WCUEqyLehyUWsQ8LAJz3YsMhran/WOUFmaq+95ZoVwfo05DtwwIAiG0MCcEqAgsAGMLW/LCKwAIAhtDDAqsILABgSM/TmulhgTUEFgAwhK35YRWBBQAM6ZnDwogQrCGwAIAhPXNYEkgsMIbAAgCGsEoIVhFYAMAQVgnBKgILABjCKiFYRWABAEMYEoJVBBYAMIQhIVhFYAEAQxye1gyjuKUBwBCHHhYYRWABAENC5/MKgQXmEFgAwBAm3cIqAgsAGBK6EFjiCSwwhsACAIawNT+sIrAAgCGsEoJV3NIAYAj7sMAqAgsAGBJi0i2MIrAAgCE9+7AQWGANgQUADHEuPPyQISFYQ2ABAEOYwwKrCCwAYAirhGAVtzQAGEIPC6wisACAIWzND6sILABgiNfDQmCBMQQWADAkdGGVEFvzwxoCCwAYwpAQrCKwAIAhTLqFVQQWADCEnW5hFYEFAAzpGRIir8AaAgsAGMIqIVhFYAEAQxxWCcEoAgsAGBJilRCMIrAAgCGsEoJVBBYAMIR9WGAVgQUADAm5PK0ZNnFLA4AhIYchIdhEYAEAQy50sDAkBHMILABgCD0ssIrAAgCGsHEcrCKwAIAh3iohelhgDIEFAAy52MMS5YoAg4xbGgCMcF334qRbelhgDIEFAIzomXArsUoI9hBYAMCInuEgiUm3sIfAAgBG9DypWWJICPYQWADACOfSHhYCC4whsACAEeFDQlGsCDAEuKUBwAjn0km39LDAGAILABjBKiFYRmABACN6hoTi4qQ4elhgDIEFAIzoWSXEcBAsIrAAgBE8+BCWDSiw1NTUKCsrSykpKSosLFRTU1Of5Tdv3qzs7GylpKQoJydH27dvv2zZhx56SHFxcVq7du1AqgYAwxYPPoRlEQeWTZs2qbKyUqtXr1ZLS4tyc3NVUlKi9vb2Xsvv2rVL5eXlmj9/vvbt26fS0lKVlpbqwIEDXyj72muv6d1331VGRkbkVwIAw1zPpFsm3MKiiAPLc889px/+8IeaN2+epkyZotraWl1zzTX62c9+1mv5559/XrNmzdKSJUs0efJkPfHEE7rtttu0bt26sHLHjh3TwoUL9corr2jEiBEDuxoAGMacSybdAtZEFFi6u7vV3Nys4uLiiyeIj1dxcbEaGxt7/UxjY2NYeUkqKSkJK+84jh544AEtWbJEN9988xXr0dXVpWAwGPYCgOGuJ7DQwwKLIgosJ0+eVCgUks/nCzvu8/kUCAR6/UwgELhi+aefflqJiYl65JFH+lWP6upqpaWlea/MzMxILgMATAqxSgiGRX2VUHNzs55//nm9/PLL/d43oKqqSh0dHd7r6NGjQ1xLAIh9PXNYWCUEiyIKLOnp6UpISFBbW1vY8ba2Nvn9/l4/4/f7+yz/29/+Vu3t7ZowYYISExOVmJioI0eO6LHHHlNWVlav50xOTlZqamrYCwCGO29IiB4WGBRRYElKStK0adPU0NDgHXMcRw0NDSoqKur1M0VFRWHlJam+vt4r/8ADD+i9997T/v37vVdGRoaWLFmif/u3f4v0egBg2GKVECxLjPQDlZWVqqioUH5+vgoKCrR27Vp1dnZq3rx5kqS5c+dq3Lhxqq6uliQtWrRIM2fO1Jo1azR79mxt3LhRe/fu1fr16yVJY8eO1dixY8N+xogRI+T3+/X1r3/9T70+ABg2Lm4cF+WKAEMg4sBSVlamEydOaNWqVQoEAsrLy1NdXZ03sba1tVXxl/xrmTFjhjZs2KAVK1Zo+fLlmjRpkrZs2aKpU6cO3lUAANg4DqbFua7rXrlYbAsGg0pLS1NHRwfzWQAMW02HP9V9P23UTf9jlN567K5oVwe4okj+ftNxCABGeKuE6GGBQQQWADCCVUKwjMACAEawDwssI7AAgBEhb2v+KFcEGALc1gBgBKuEYBmBBQCMYEgIlhFYAMAIJt3CMgILABjR87RmelhgEYEFAIyghwWWEVgAwAiHZwnBMG5rADCCnW5hGYEFAIzoCSwJzGGBQQQWADCCOSywjMACAEawSgiWEVgAwIgQPSwwjMACAEY4zGGBYQQWADCCrflhGYEFAIy4OOk2yhUBhgCBBQCM8DaOYw4LDCKwAIARrBKCZQQWADCCfVhgGYEFAIxg0i0sI7AAgBEXt+aPckWAIcBtDQBGMCQEywgsAGAEQ0KwjMACAEawNT8sI7AAgBEX8gpb88MkAgsAGNEzJBRHDwsMIrAAgBGsEoJl3NYAYASrhGAZgQUAjGCVECwjsACAEfSwwDICCwAYQQ8LLCOwAIARPU9rZlkzLCKwAIARDAnBMgILABjRE1gYEoJFBBYAMMKbw0JegUEEFgAwwhsSIrHAIAILABhxsYeFwAJ7CCwAYASrhGAZgQUAjGCVECwjsACAEWwcB8sILABgxMVJt1GuCDAEuK0BwAgm3cIyAgsAGOFtHEdggUEEFgAwwmGVEAwjsACAESF6WGAYgQUAjOiZw0IPCywisACAEawSgmXc1gBgBKuEYBmBBQCMYEgIlhFYAMAItuaHZQQWADCCrflhGYEFAIy40MHCHBaYRGABACNCrBKCYdzWAGAEq4Rg2YACS01NjbKyspSSkqLCwkI1NTX1WX7z5s3Kzs5WSkqKcnJytH37du+9c+fOaenSpcrJydGoUaOUkZGhuXPn6vjx4wOpGgAMWw6rhGBYxIFl06ZNqqys1OrVq9XS0qLc3FyVlJSovb291/K7du1SeXm55s+fr3379qm0tFSlpaU6cOCAJOnMmTNqaWnRypUr1dLSoldffVUHDx7U3Xff/addGQAMM2zND8viXLdnmlb/FBYWavr06Vq3bp0kyXEcZWZmauHChVq2bNkXypeVlamzs1Pbtm3zjt1+++3Ky8tTbW1trz9jz549Kigo0JEjRzRhwoQr1ikYDCotLU0dHR1KTU2N5HIAwIz8n7ypk5916Y1F/1OTb+B3IWJfJH+/I+ph6e7uVnNzs4qLiy+eID5excXFamxs7PUzjY2NYeUlqaSk5LLlJamjo0NxcXEaM2ZMr+93dXUpGAyGvQBguLu4NT89LLAnosBy8uRJhUIh+Xy+sOM+n0+BQKDXzwQCgYjKnz17VkuXLlV5efll01Z1dbXS0tK8V2ZmZiSXAQAmMekWlsXUKqFz587pvvvuk+u6eumlly5brqqqSh0dHd7r6NGjV7GWABCb6GGBZYmRFE5PT1dCQoLa2trCjre1tcnv9/f6Gb/f36/yPWHlyJEjeuutt/ocy0pOTlZycnIkVQcA8xyvhyXKFQGGQEQ9LElJSZo2bZoaGhq8Y47jqKGhQUVFRb1+pqioKKy8JNXX14eV7wkrhw4d0ptvvqmxY8dGUi0AgFglBNsi6mGRpMrKSlVUVCg/P18FBQVau3atOjs7NW/ePEnS3LlzNW7cOFVXV0uSFi1apJkzZ2rNmjWaPXu2Nm7cqL1792r9+vWSzoeVv/zLv1RLS4u2bdumUCjkzW+57rrrlJSUNFjXCgCmOc75rwwJwaKIA0tZWZlOnDihVatWKRAIKC8vT3V1dd7E2tbWVsXHX+y4mTFjhjZs2KAVK1Zo+fLlmjRpkrZs2aKpU6dKko4dO6atW7dKkvLy8sJ+1o4dO3TXXXcN8NIAYHgJMYcFhkW8D0ssYh8WAJCylv1akrTnR8X6H6OZ54fYN2T7sAAAYlPPhFuJHhbYRGABAANCl3SWJzDpFgYRWADAgNAlPSzx/GaHQdzWAGDApbMRGRKCRQQWADDg0iEh9mGBRQQWADAgbEiIwAKDCCwAYACrhGAdgQUADAgfEopiRYAhQmABAAMuffBhHENCMIjAAgAGsC0/rCOwAIABIYcnNcM2AgsAGMCTmmEdgQUADHB6hoToYYFRBBYAMKBnDgt5BVYRWADAgJ5VQgwJwSoCCwAYwCohWEdgAQADWCUE6wgsAGAAq4RgHYEFAAzoGRKihwVWEVgAwIAQk25hHIEFAAxwmHQL4wgsAGDApQ8/BCwisACAAcxhgXUEFgAwgFVCsI7AAgAG0MMC6wgsAGAAW/PDOgILABjg7XRLYIFRBBYAMMB7lhB5BUYRWADAAIaEYB2BBQAMYNItrCOwAIABFzpYCCwwi8ACAAYwJATrCCwAYACrhGAdgQUADGCVEKwjsACAAQwJwToCCwAYwCohWEdgAQAD6GGBdQQWADCASbewjsACAAaELuzDksCQEIwisACAAa43hyXKFQGGCIEFAAxgSAjWEVgAwICL+7AQWGATgQUADGCVEKwjsACAASHn/FeGhGAVgQUADGBICNYRWADAAIaEYB2BBQAMYGt+WEdgAQADnJ4hIX6rwyhubQAwoGdIiB4WWEVgAQADWCUE6wgsAGCAwyohGEdgAQAD2Jof1hFYAMAA9mGBdQQWADDg4j4sUa4IMES4tQHAAIaEYB2BBQAMYEgI1g0osNTU1CgrK0spKSkqLCxUU1NTn+U3b96s7OxspaSkKCcnR9u3bw9733VdrVq1SjfccINGjhyp4uJiHTp0aCBVA4Bh6UJeYWt+mBVxYNm0aZMqKyu1evVqtbS0KDc3VyUlJWpvb++1/K5du1ReXq758+dr3759Ki0tVWlpqQ4cOOCVeeaZZ/TCCy+otrZWu3fv1qhRo1RSUqKzZ88O/MoAYBjpGRKKo4cFRsW5bk8u75/CwkJNnz5d69atkyQ5jqPMzEwtXLhQy5Yt+0L5srIydXZ2atu2bd6x22+/XXl5eaqtrZXrusrIyNBjjz2mv/3bv5UkdXR0yOfz6eWXX9b9999/xToFg0GlpaWpo6NDqampkVwOAJiwYEOLfv3eJ/rf35mi/3XHxGhXB+iXSP5+J0Zy4u7ubjU3N6uqqso7Fh8fr+LiYjU2Nvb6mcbGRlVWVoYdKykp0ZYtWyRJhw8fViAQUHFxsfd+WlqaCgsL1djY2Gtg6erqUldXl/d9MBiM5DL67Q8hR09u/3BIzg0Ag+n9Yx2SGBKCXREFlpMnTyoUCsnn84Ud9/l8+uijj3r9TCAQ6LV8IBDw3u85drkyf6y6ulo//vGPI6n6gDiu9PP/8/+G/OcAwGBJHTki2lUAhkREgSVWVFVVhfXaBINBZWZmDvrPiY+TFnzzq4N+XgAYCteNSlbJzf5oVwMYEhEFlvT0dCUkJKitrS3seFtbm/z+3v+R+P3+Psv3fG1ra9MNN9wQViYvL6/XcyYnJys5OTmSqg9IYkK8lpRkD/nPAQAAfYtolVBSUpKmTZumhoYG75jjOGpoaFBRUVGvnykqKgorL0n19fVe+YkTJ8rv94eVCQaD2r1792XPCQAAhpeIh4QqKytVUVGh/Px8FRQUaO3aters7NS8efMkSXPnztW4ceNUXV0tSVq0aJFmzpypNWvWaPbs2dq4caP27t2r9evXSzq/BG/x4sX6yU9+okmTJmnixIlauXKlMjIyVFpaOnhXCgAAvrQiDixlZWU6ceKEVq1apUAgoLy8PNXV1XmTZltbWxUff7HjZsaMGdqwYYNWrFih5cuXa9KkSdqyZYumTp3qlXn88cfV2dmpBx98UKdOndKdd96puro6paSkDMIlAgCAL7uI92GJRezDAgDAl08kf795lhAAAIh5BBYAABDzCCwAACDmEVgAAEDMI7AAAICYR2ABAAAxj8ACAABiHoEFAADEPAILAACIeRFvzR+LejbrDQaDUa4JAADor56/2/3ZdN9EYDl9+rQkKTMzM8o1AQAAkTp9+rTS0tL6LGPiWUKO4+j48eMaPXq04uLiBvXcwWBQmZmZOnr0KM8p6gfaKzK0V//RVpGhvSJDe0VmsNrLdV2dPn1aGRkZYQ9O7o2JHpb4+HiNHz9+SH9GamoqN3EEaK/I0F79R1tFhvaKDO0VmcForyv1rPRg0i0AAIh5BBYAABDzCCxXkJycrNWrVys5OTnaVflSoL0iQ3v1H20VGdorMrRXZKLRXiYm3QIAANvoYQEAADGPwAIAAGIegQUAAMQ8AgsAAIh5BJYrqKmpUVZWllJSUlRYWKimpqZoVynqqqurNX36dI0ePVrXX3+9SktLdfDgwbAyZ8+e1YIFCzR27Fhde+21+t73vqe2trYo1Ti2PPXUU4qLi9PixYu9Y7RXuGPHjun73/++xo4dq5EjRyonJ0d79+713nddV6tWrdINN9ygkSNHqri4WIcOHYpijaMjFApp5cqVmjhxokaOHKmvfvWreuKJJ8KeyzKc2+o3v/mNvvOd7ygjI0NxcXHasmVL2Pv9aZtPP/1Uc+bMUWpqqsaMGaP58+frs88+u4pXcfX01V7nzp3T0qVLlZOTo1GjRikjI0Nz587V8ePHw84xlO1FYOnDpk2bVFlZqdWrV6ulpUW5ubkqKSlRe3t7tKsWVTt37tSCBQv07rvvqr6+XufOndO3v/1tdXZ2emUeffRRvf7669q8ebN27typ48eP6957741irWPDnj179NOf/lS33HJL2HHa66L//u//1h133KERI0bojTfe0AcffKA1a9boK1/5ilfmmWee0QsvvKDa2lrt3r1bo0aNUklJic6ePRvFml99Tz/9tF566SWtW7dOH374oZ5++mk988wzevHFF70yw7mtOjs7lZubq5qaml7f70/bzJkzR++//77q6+u1bds2/eY3v9GDDz54tS7hquqrvc6cOaOWlhatXLlSLS0tevXVV3Xw4EHdfffdYeWGtL1cXFZBQYG7YMEC7/tQKORmZGS41dXVUaxV7Glvb3cluTt37nRd13VPnTrljhgxwt28ebNX5sMPP3QluY2NjdGqZtSdPn3anTRpkltfX+/OnDnTXbRokeu6tNcfW7p0qXvnnXde9n3HcVy/3+/+/d//vXfs1KlTbnJysvvLX/7yalQxZsyePdv9wQ9+EHbs3nvvdefMmeO6Lm11KUnua6+95n3fn7b54IMPXEnunj17vDJvvPGGGxcX5x47duyq1T0a/ri9etPU1ORKco8cOeK67tC3Fz0sl9Hd3a3m5mYVFxd7x+Lj41VcXKzGxsYo1iz2dHR0SJKuu+46SVJzc7POnTsX1nbZ2dmaMGHCsG67BQsWaPbs2WHtItFef2zr1q3Kz8/XX/3VX+n666/Xrbfeqn/4h3/w3j98+LACgUBYe6WlpamwsHDYtdeMGTPU0NCgjz/+WJL0H//xH3rnnXf053/+55Joq770p20aGxs1ZswY5efne2WKi4sVHx+v3bt3X/U6x5qOjg7FxcVpzJgxkoa+vUw8/HAonDx5UqFQSD6fL+y4z+fTRx99FKVaxR7HcbR48WLdcccdmjp1qiQpEAgoKSnJu4l7+Hw+BQKBKNQy+jZu3KiWlhbt2bPnC+/RXuF+//vf66WXXlJlZaWWL1+uPXv26JFHHlFSUpIqKiq8Nunt3+Zwa69ly5YpGAwqOztbCQkJCoVCevLJJzVnzhxJoq360J+2CQQCuv7668PeT0xM1HXXXTfs2+/s2bNaunSpysvLvYcfDnV7EVjwJ1mwYIEOHDigd955J9pViVlHjx7VokWLVF9fr5SUlGhXJ+Y5jqP8/Hz93d/9nSTp1ltv1YEDB1RbW6uKiooo1y62/Mu//IteeeUVbdiwQTfffLP279+vxYsXKyMjg7bCkDl37pzuu+8+ua6rl1566ar9XIaELiM9PV0JCQlfWKnR1tYmv98fpVrFlocffljbtm3Tjh07NH78eO+43+9Xd3e3Tp06FVZ+uLZdc3Oz2tvbddtttykxMVGJiYnauXOnXnjhBSUmJsrn89Fel7jhhhs0ZcqUsGOTJ09Wa2urJHltwr9NacmSJVq2bJnuv/9+5eTk6IEHHtCjjz6q6upqSbRVX/rTNn6//wuLLP7whz/o008/Hbbt1xNWjhw5ovr6eq93RRr69iKwXEZSUpKmTZumhoYG75jjOGpoaFBRUVEUaxZ9ruvq4Ycf1muvvaa33npLEydODHt/2rRpGjFiRFjbHTx4UK2trcOy7b71rW/pd7/7nfbv3++98vPzNWfOHO+/aa+L7rjjji8sk//444914403SpImTpwov98f1l7BYFC7d+8edu115swZxceH/xpPSEiQ4ziSaKu+9KdtioqKdOrUKTU3N3tl3nrrLTmOo8LCwqte52jrCSuHDh3Sm2++qbFjx4a9P+Tt9SdP2zVs48aNbnJysvvyyy+7H3zwgfvggw+6Y8aMcQOBQLSrFlV//dd/7aalpblvv/22+8knn3ivM2fOeGUeeughd8KECe5bb73l7t271y0qKnKLioqiWOvYcukqIdelvS7V1NTkJiYmuk8++aR76NAh95VXXnGvueYa9xe/+IVX5qmnnnLHjBnj/uu//qv73nvvud/97nfdiRMnup9//nkUa371VVRUuOPGjXO3bdvmHj582H311Vfd9PR09/HHH/fKDOe2On36tLtv3z533759riT3ueeec/ft2+etaulP28yaNcu99dZb3d27d7vvvPOOO2nSJLe8vDxalzSk+mqv7u5u9+6773bHjx/v7t+/P+x3f1dXl3eOoWwvAssVvPjii+6ECRPcpKQkt6CgwH333XejXaWok9Tr6+c//7lX5vPPP3f/5m/+xv3KV77iXnPNNe4999zjfvLJJ9GrdIz548BCe4V7/fXX3alTp7rJycludna2u379+rD3HcdxV65c6fp8Pjc5Odn91re+5R48eDBKtY2eYDDoLlq0yJ0wYYKbkpLi3nTTTe6PfvSjsD8gw7mtduzY0evvqoqKCtd1+9c2//Vf/+WWl5e71157rZuamurOmzfPPX36dBSuZuj11V6HDx++7O/+HTt2eOcYyvaKc91LtkQEAACIQcxhAQAAMY/AAgAAYh6BBQAAxDwCCwAAiHkEFgAAEPMILAAAIOYRWAAAQMwjsAAAgJhHYAEAADGPwAIAAGIegQUAAMQ8AgsAAIh5/x8uvy+k5PrzdQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = simple_ir(dt=0.125, start=10, width=5, intensity=0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2- Relativistic IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: time_resolution, primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEzklEQVR4nO3deXhU5fk38O+ZNetMNjJZyMYuW4gBYkRFJYpIaV3aolJBrPbVUoumrRIVkFqJ/qwWqwiKILaKoFRxAVGMAqIIJBAWZU8gISEbIZmsM5mZ8/6RzCSBBDLJJGfOzPdzXXMBZ86ZuY9j7tzzPPd5jiCKoggiIiIiiSikDoCIiIi8G4sRIiIikhSLESIiIpIUixEiIiKSFIsRIiIikhSLESIiIpIUixEiIiKSFIsRIiIikpRK6gC6wmazobi4GIGBgRAEQepwiIiIqAtEUURNTQ2ioqKgUHQ+/iGLYqS4uBgxMTFSh0FERETdUFhYiP79+3f6vCyKkcDAQADNJ6PT6SSOhoiIiLrCaDQiJibG8Xu8M7IoRuxTMzqdjsUIERGRzFyuxYINrERERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCmni5Ht27dj2rRpiIqKgiAI2LBhQ5eP/f7776FSqTBmzBhn35aIiIg8lNPFSF1dHRITE7F06VKnjquqqsLMmTMxadIkZ9+SiIiIPJjT96aZMmUKpkyZ4vQbPfTQQ7jnnnugVCqdGk0hIiIiz9YnPSNvv/028vLysHDhwi7tbzKZYDQa2z2I6NLqzRYs23oSpyrqpA6FiMgpvV6MHD9+HPPmzcO7774LlaprAzGZmZnQ6/WOR0xMTC9HSSR/G/YV44XNR7Dk62NSh0JE5JReLUasVivuueceLFq0CEOGDOnycRkZGaiurnY8CgsLezFKIs9w+lzziEh5rUniSIiInON0z4gzampqkJ2djX379uFPf/oTAMBms0EURahUKnz11Ve48cYbLzpOq9VCq9X2ZmhEHudMVQMAoKbRInEkRETO6dViRKfT4eDBg+22vf766/jmm2+wfv16JCQk9ObbE3mVYhYjRCRTThcjtbW1OHHihOPf+fn5yM3NRUhICGJjY5GRkYGioiL85z//gUKhwMiRI9sdHx4eDh8fn4u2E1HPtBYjTRJHQkTkHKeLkezsbNxwww2Of6enpwMAZs2ahdWrV+Ps2bMoKChwXYREdFlmiw1lNc29IkaOjBCRzAiiKIpSB3E5RqMRer0e1dXV0Ol0UodD5HYKztXjuhe/dfz76D9ugVallDAiIqKu//7mvWmIPEBRyxSNHftGiEhOWIwQeYBiFiNEJGMsRog8wMUjI2xiJSL5YDFC5AE4MkJEcsZihMgDcGSEiOSMxQiRB7CPjPiqm6+gMTZwZISI5IPFCJHMiaLoGBkZYggAABg5MkJEMsJihEjmztc3obHJBgAYbAgEwJ4RIpIXFiNEMmefoukXqEVogAYAixEikhcWI0Qyd+Z8czESHeQLnY8aABtYiUheWIwQyZx9ZCQ6yBeBPs23m+LICBHJCYsRIpmzFyNRQT6txYiJIyNEJB8sRohkrrjaXoz4IlBrn6bhyAgRyQeLESKZKzrPaRoikjeV1AEQUc8UVTUCaB4ZUQgCADawEpG8sBghkrHGJisqak0AmkdGak3NIyJGjowQkYywGCGSsbPVzaMivmolgvzUjpERs8UGk8UKrUopZXhERF3CnhEiGXNc1hvsC0EQEODT+v2CfSNEJBcsRohkrKiq9UoaAFAqBPhrmkdDWIwQkVywGCGSsdYFz3wc2wK5CisRyQyLESIZa3tZrx0v7yUiuWExQiRjbRc8s9P5cmSEiOSFxQiRjBW3WWPEzj4ywst7iUguWIwQyZTNJjoaWNtP03BJeCKSFxYjRDJ1rs4Ms8UGQQAi9G0bWO09I5ymISJ5YDFCJFP2K2kMgT5QK1t/lNnASkRyw2KESKaKHWuM+LTbruOlvUQkMyxGiGTqwgXP7DgyQkRyw2KESKaK2iwF3xaLESKSGxYjRDJV3MGVNAAQqOU0DRHJC4sRIplyTNPoOTJCRPLGYoRIpjpa8AxoXWeEi54RkVywGCGSoQazFZV1ZgCX6hnhNA0RyQOLESIZst+TJkCrgq6l+LCzX9prsthgttj6PDYiImexGCGSIfvdeqOCfCAIQrvnAtoUJxwdISI5YDFCJEOdXUkDAEqFAH+NEgCbWIlIHliMEMlQcScLntnxZnlEJCdOFyPbt2/HtGnTEBUVBUEQsGHDhkvu/9FHH+Gmm25Cv379oNPpkJqaii+//LK78RIRgDOXLUbYxEpE8uF0MVJXV4fExEQsXbq0S/tv374dN910EzZt2oScnBzccMMNmDZtGvbt2+d0sETU7FLTNEBrMcLLe4lIDlSX36W9KVOmYMqUKV3ef8mSJe3+vXjxYnzyySf47LPPkJSU5OzbExFa1xi58LJeu0DeLI+IZMTpYqSnbDYbampqEBIS0uk+JpMJJpPJ8W+j0dgXoRHJgs0m4mx1V6dpODJCRO6vzxtY//nPf6K2tha//e1vO90nMzMTer3e8YiJienDCInc28nyWjRZRfiqlTAEajvchw2sRCQnfVqMrFmzBosWLcIHH3yA8PDwTvfLyMhAdXW141FYWNiHURK5t92nKgEASbFBUCk7/hHWsYGViGSkz6Zp1q5diwceeAAffvgh0tLSLrmvVquFVtvxNz4ib5d96jwAYGx851OdnKYhIjnpk5GR999/H7Nnz8b777+PqVOn9sVbEnmsPS0jI+PigzvdxzFNY+LICBG5P6dHRmpra3HixAnHv/Pz85Gbm4uQkBDExsYiIyMDRUVF+M9//gOgeWpm1qxZeOWVV5CSkoKSkhIAgK+vL/R6vYtOg8g7nK1uwJnzDVAIQFLspYqRlkt7GzgyQkTuz+mRkezsbCQlJTkuy01PT0dSUhIWLFgAADh79iwKCgoc+7/55puwWCyYM2cOIiMjHY+5c+e66BSIvId9imZElB4B2s6/S/DSXiKSE6dHRq6//nqIotjp86tXr273761btzr7FkTUieyWKZqxl5iiAdgzQkTywnvTEMnInpaRkXGXaF4FuAIrEckLixEimTA2NuFwSfMCgGPjLj0youM0DRHJCIsRIpnYe/o8RBGIC/VDuM7nkvvaR0ZMFhvMFltfhEdE1G0sRohkwrG+SNylp2gAtGtu5egIEbk7FiNEMtGV9UXsVEoF/DRKAGxiJSL3x2KESAbMFhtyC6sAAOMSLj8yAvCKGiKSDxYjRDJwqLgaJosNIf4aDAjz79IxXGuEiOSCxQiRDOzJb1lfJC4YgiB06Rhe3ktEcsFihEgGurq+SFscGSEiuWAxQuTmbDYROae7tvJqWzr2jBCRTLAYIXJzeRW1OF/fBB+1AiOiun5zydaRERYjROTeWIwQuTn7FM2YmCBoVF3/kW0dGeE0DRG5NxYjRG6udX2RrveLALy0l4jkg8UIkZvL7kbzKtBmmsbEkREicm8sRojcWKmxEQWV9VAIQFJskFPHcmSEiOSCxQiRG7NP0VwRqXOMdHSVfX+uM0JE7o7FCJEb253fvX4RoO3ICKdpiMi9sRghclN1Jgs+yS0GAEwYFOb08ZymISK5YDFC5KbW7ilEdUMTEsL8ceOwcKeP13EFViKSCRYjRG7IbLHhre/yAAB/uG4AlIqu3Y+mLfvISGOTDU1Wm0vjIyJyJRYjRG7o0/3FOFvdiH6BWtyeFN2t1wjQqhx/51QNEbkzFiNEbsZmE/HGtpMAgPsnJMBHrezW66iUCvhpmo/lVA0RuTMWI0RuJutIGY6X1SJQq8KMq2J79FpsYiUiOWAxQuRmlreMisy4Ks7RhNpdrWuNcGSEiNwXixEiN7LnVCVyTp+HRqnA/RPie/x6HBkhIjlgMULkRpZvbR4VuTM5GuE6nx6/nuP+NCxGiMiNsRghchNHS2qQdaQMggD84bqBLnlNrsJKRHLAYoTITdivoJkyMgIJYf4ueU0dp2mISAZYjBC5gZPltfh0f/PS7w9NdM2oCNB2moYjI0TkvliMEEms1NiIWat2w2ITce3gMIzuH+Sy1w7UcmSEiNwfixEiCVXVm3Hvyl04c74B8aF+ePm3Y1z6+ryahojkgMUIkUTqzRbMXr0Hx0prYdBp8d/fp6BfoNal78F1RohIDliMEEnAZLHi//03B/sKqhDkp8Z/f5+CmBA/l78PR0aISA5YjBD1MatNRPq6/fjueAX8NEq8fd84DDEE9sp7sYGViORAdfldiMhVKmpN+PtnP2PjwbNQKwW8cW8ykmKDe+39ODJCRHLAYoSoD9SbLVj5XT7e2J6HWpMFCgF45a4kXDu4X6++r44rsBKRDLAYIepFFqsNH2SfwZKvj6GsxgQAGN1fjydvvQJXDQjt9fe3j4w0NFnRZLVBreTMLBG5H6cz0/bt2zFt2jRERUVBEARs2LDhssds3boVV155JbRaLQYNGoTVq1d3I1QiebDZRPxcbMQb205i8pLtePLjgyirMSEmxBev3p2EDX+c0CeFCAAE+LR+3+DoCBG5K6dHRurq6pCYmIj7778fd9xxx2X3z8/Px9SpU/HQQw/hvffeQ1ZWFh544AFERkZi8uTJ3QqayJ2Iooiz1Y34Me8cvjtege+OV6Ci1uR4PthPjT9PGowZKXHQqPp2ZEKtVMBXrURDkxU1jU0I8df06fsTEXWF08XIlClTMGXKlC7vv3z5ciQkJOCll14CAFxxxRXYsWMH/vWvf7EYIdmwWG0ormrE6co6nDpXj9MVdThdWY+Cc/U4XVmHxiZbu/191UqkDgzFdYPDcEdyf0fvhhQCfVQtxQhHRojIPfV6z8jOnTuRlpbWbtvkyZPx6KOPdnqMyWSCydT6zdJoNPZWeEQdqqwzY/m2kzhWWoPT5+pRWFkPi03sdH+FAFwRqcN1Q/rhusH9cGVcELQqZR9G3LlAHxXKakxc+IyI3FavFyMlJSUwGAztthkMBhiNRjQ0NMDX1/eiYzIzM7Fo0aLeDo2oU+v2FOLN7XnttmlUCsSF+CEu1A9xof6IC/VDbIgf4kP9ER3s67bNocF+GgB1KDOaLrsvEZEU3PJqmoyMDKSnpzv+bTQaERMTI2FE5G3sowgTh/TD/5s4APGh/ojQ+UChECSOzHmj+wch+/R55Jw+j9uSoqUOh4joIr1ejERERKC0tLTdttLSUuh0ug5HRQBAq9VCq3XtPTqInNFkae4BGRYZiKsHhkkcTc+MTwjBqu/zsTu/UupQiIg61OvjyqmpqcjKymq3bcuWLUhNTe3ttybqtiZrczGicdOpF2eMi29e4fVoaQ3O15kljoaI6GJOZ9ra2lrk5uYiNzcXQPOlu7m5uSgoKADQPMUyc+ZMx/4PPfQQ8vLy8Pjjj+PIkSN4/fXX8cEHH+Cxxx5zzRkQ9QKztblZ1V37QJwRGqDFoPAAAMCeUxwdISL343Smzc7ORlJSEpKSkgAA6enpSEpKwoIFCwAAZ8+edRQmAJCQkICNGzdiy5YtSExMxEsvvYS33nqLl/WSW7OPjHhCMQI0T9UA4FQNEbklp3tGrr/+eohi55c4drS66vXXX499+/Y5+1ZEkmktRuTXsNqRlIQQrNlVgN0cGSEiN+QZX/uIXMzRM9LHK6b2lnHxzSMjh4qqUWvi4mdE5F48I9MSuZjZ4jk9IwAQFeSLmBBf2EQg5/R5qcMhImrHMzItkYt5Ws8IAIyPb7453+78cxJHQkTUnudkWiIX8rSeEaC5bwRgEysRuR8WI0Qd8KR1RuzsV9TsL6xGY5NV4miIiFp5TqYlciFPWmfELi7UD+GBWpitNuQWVkkdDhGRg+dkWiIXsi8Hr/aQq2kAQBAErjdCRG7JczItkQt5Ys8IwL4RInJPLEaIOuCJPSMAMD6h+YqanNPnHedIRCQ1z8q0RC7S5IE9IwAwODwAQX5qNDRZcaioWupwiIgAsBgh6pDZA9cZAQCFQnCsxsqpGiJyF56VaYlcpHU5eM/qGQHYN0JE7ofFCFEHHFfTeNjICNC63sieU5Ww2Tq/6SURUV/xvExL5AKe2jMCAMMjdfDXKGFstOBoaY3U4RARsRghupAoih7bMwIAKqUCV8YFA+BUDRG5B8/LtEQ9ZGkzdeFpl/basW+EiNyJZ2Zaoh5ou/6G2gMbWIHW9UZ25Z+DKLJvhIikxWKE6AJNltZfzp44TQMAiTF6+KqVqKg1s2+EiCTnmZmWqAfs/SKCAKgUnjkyolUpHVfV7DheIXE0ROTtWIwQXaCpTfOqIHhmMQIA1wwKAwDsOMFihIikxWKE6AKeel+aC10zuLkY2ZVXCZPFKnE0ROTNPDvbEnWDp96x90JDDYEIC9CgocmKfQVVUodDRF6MxQjRBcwWz13wrC2FQsAE+1QN+0aISEKenW2JuqHJgxc8uxD7RojIHXh+tiVyUutN8jz/x8PeN3LgTBWq65skjoaIvJXnZ1siJ5m9pGcEACL1vhjYzx82EdiZx9ERIpIGixGiC3jyTfI6wqkaIpKad2RbIic0WbynZwQArhncDwCbWIlIOt6RbYmc4C3rjNhdNSAESoWAU+fqUVhZL3U4ROSFvCPbEjnB0TPioTfJu1CgjxpjYoIAAN9zqoaIJMBihOgC3tYzArBvhIik5T3ZlqiLvGmdETv7Jb4/nDwHm028zN5ERK7lPdmWqIu8rWcEAMbEBCFAq0JlnRk/nzVKHQ4ReRnvybZEXWS2eM86I3ZqpQJXDQgBwKkaIup7LEaILuCNPSMAeJ8aIpKMd2Vboi5w9Ix4wXLwbV3b0jey+1QlGpusEkdDRN7Eu7ItURd4Y88IAAzsFwCDTguzxYbsU+elDoeIvEi3su3SpUsRHx8PHx8fpKSkYPfu3Zfcf8mSJRg6dCh8fX0RExODxx57DI2Njd0KmKi3edO9adoSBAHXDGpejfW74+USR0NE3sTpYmTdunVIT0/HwoULsXfvXiQmJmLy5MkoKyvrcP81a9Zg3rx5WLhwIQ4fPoyVK1di3bp1ePLJJ3scPFFvaLJ4Z88IAEwc2lyMfHu0459nIqLe4HS2ffnll/Hggw9i9uzZGD58OJYvXw4/Pz+sWrWqw/1/+OEHTJgwAffccw/i4+Nx88034+67777saAqRVLxxnRG7iYP7QakQcKy0lkvDE1GfcSrbms1m5OTkIC0trfUFFAqkpaVh586dHR5z9dVXIycnx1F85OXlYdOmTbj11ls7fR+TyQSj0djuQdRXHD0jXtbACgB6PzXGxgUDAL45wtERIuobTmXbiooKWK1WGAyGdtsNBgNKSko6POaee+7B3//+d1xzzTVQq9UYOHAgrr/++ktO02RmZkKv1zseMTExzoRJ1CPe2jNiN+mKcABAFosRIuojvf7Vb+vWrVi8eDFef/117N27Fx999BE2btyIZ599ttNjMjIyUF1d7XgUFhb2dphEDt66zojdjcOav2z8ePIc6kwWiaMhIm+gcmbnsLAwKJVKlJaWttteWlqKiIiIDo+ZP38+7r33XjzwwAMAgFGjRqGurg5/+MMf8NRTT0GhuDjha7VaaLVaZ0Ijcpkmi/f2jADAwH7+iAv1w+lz9dhxogKTR3T8s01E5CpOZVuNRoPk5GRkZWU5ttlsNmRlZSE1NbXDY+rr6y8qOJRKJQBAFHlDLnI/3rrOiJ0gCLhhaPNUzTeHOVVDRL3P6Wybnp6OFStW4J133sHhw4fx8MMPo66uDrNnzwYAzJw5ExkZGY79p02bhmXLlmHt2rXIz8/Hli1bMH/+fEybNs1RlBC5E0fPiMo7e0aA1r6Rb46W8S6+RNTrnJqmAYDp06ejvLwcCxYsQElJCcaMGYPNmzc7mloLCgrajYQ8/fTTEAQBTz/9NIqKitCvXz9MmzYNzz33nOvOgsiFvPnSXrvxCSHw1yhRXmPCoeJqjO4fJHVIROTBBFEGcyVGoxF6vR7V1dXQ6XRSh0Me7s5lPyDn9Hm8cW+yV/dLPPTfHGz+qQRzJw3GYzcNkTocIpKhrv7+9t6vfkSdMFu8u2fE7kb7VA0v8SWiXubd2ZaoA5ymaWZvYj1YVI1SI+8lRUS9x7uzLVEHvH3RM7t+gVokxgQBAL7l6AgR9SIWI0QXcIyMeOFy8BeaNIyrsRJR72O2JbqA/a693t4zAgA3thQjO45XoLHJKnE0ROSpmG2JLsCekVYjonQw6LRoaLLix7xzUodDRB6K2ZboAuwZaSUIguNeNbyqhoh6C4sRogtwZKQ9R9/I4TLewoGIegWzLdEF7Hft1bCBFQAwYVAYtCoFiqoacLS0RupwiMgDMdsStWG1ibC23IuFIyPNfDVKXDs4DADwxcESiaMhIk/EbEvUhn2KBmDPSFtTRkYCAL44dFbiSIjIE7EYIWqjfTHCHw+7tCsMUCsFHCutxYkyTtUQkWsx2xK1Ye8XAViMtKX3U2PCIE7VEFHvYLYlasM+MqJUCFAqOE3T1q0tUzWbDrEYISLXYjFC1Ib9jr3sF7nYzSMMUCkEHD5rRH5FndThEJEHYTFC1AbXGOlckJ8GqQNDAbCRlYhcixmXqA3HGiMsRjp066iWq2rYN0JELsSMS9QGR0Yu7ebhBigE4GBRNQor66UOh4g8BDMuURuO+9Ko2DPSkdAALa4awKkaInItFiNEbTRZODJyOVNapmo2cqqGiFyEGZeoDfaMXN7kEQYIArC/sApnznOqhoh6jhmXqA32jFxeeKAPxsWHAAA2c80RInIBZlyiNhw9I1xn5JJuHRkBAPiCxQgRuQCLEaI2ODLSNfa+kZzT51FS3ShxNEQkd8y4RG3YixGNij8al2LQ+WBsXDAAYDOvqiGiHmLGJWqjydLcwMqRkcuzj45s4lU1RNRDzLhEbbBnpOtuHRUBQQB2n6rkVTVE1CMsRojaYM9I10XqfXFVQvMCaBv2FUkcDRHJGTMuURuOnhEWI11yx5XRAICP9hVBFEWJoyEiuWLGJWrDvugZR0a6ZsqoSPioFcgrr8OBM9VSh0NEMsWMS9SG2cJ70zgjQKvCzcOb1xz5mFM1RNRNLEaI2mDPiPNub5mq+XR/seO/HxGRM5hxidpgz4jzrh0UhrAALSrrzNh2tFzqcIhIhphxidpgz4jzVEoFfpkYBYBTNUTUPcy4RG2YOU3TLfararYcLkV1Q5PE0RCR3DDjErXRxAbWbhkRpcMQQwDMFhu+OMjl4YnIOSxGiNpgz0j3CIKA25P6A2hec4SIyBndyrhLly5FfHw8fHx8kJKSgt27d19y/6qqKsyZMweRkZHQarUYMmQINm3a1K2AiXoTe0a677akqObl4fMrUVjJ5eGJqOuczrjr1q1Deno6Fi5ciL179yIxMRGTJ09GWVlZh/ubzWbcdNNNOHXqFNavX4+jR49ixYoViI6O7nHwRK7GnpHui9T7InUAl4cnIuc5nXFffvllPPjgg5g9ezaGDx+O5cuXw8/PD6tWrepw/1WrVqGyshIbNmzAhAkTEB8fj4kTJyIxMbHHwRO5WhNvlNcjd1zZPFXzMZeHJyInOFWMmM1m5OTkIC0trfUFFAqkpaVh586dHR7z6aefIjU1FXPmzIHBYMDIkSOxePFiWK3WTt/HZDLBaDS2exD1BUfPiIojI91xy8iI5uXhK+qwn8vDE1EXOZVxKyoqYLVaYTAY2m03GAwoKSnp8Ji8vDysX78eVqsVmzZtwvz58/HSSy/hH//4R6fvk5mZCb1e73jExMQ4EyZRtzVZ2DPSEwFaFSaPaF4e/oPsQomjISK56PWMa7PZEB4ejjfffBPJycmYPn06nnrqKSxfvrzTYzIyMlBdXe14FBYyqVHfYM9Iz00f1/zl4ZN9Rag1WSSOhojkQOXMzmFhYVAqlSgtLW23vbS0FBERER0eExkZCbVaDaVS6dh2xRVXoKSkBGazGRqN5qJjtFottFqtM6ERuQSnaXoudUAoBoT5I6+iDp/mFuOelFipQyIiN+dUxtVoNEhOTkZWVpZjm81mQ1ZWFlJTUzs8ZsKECThx4gRsttYbaB07dgyRkZEdFiJEUmIDa88JgoC7xzcXIGt2n5Y4GiKSA6e//qWnp2PFihV45513cPjwYTz88MOoq6vD7NmzAQAzZ85ERkaGY/+HH34YlZWVmDt3Lo4dO4aNGzdi8eLFmDNnjuvOgshF7OuMcNGznrkzuT80SgUOFRlx4EyV1OEQkZtzapoGAKZPn47y8nIsWLAAJSUlGDNmDDZv3uxoai0oKIBC0ZrIY2Ji8OWXX+Kxxx7D6NGjER0djblz5+KJJ55w3VkQuYjZwp4RVwjx12DKqAh8kluMNbsKMLp/kNQhEZEbE0QZLAZgNBqh1+tRXV0NnU4ndTjkwcY/9zXKakzY9OdrMTyK/6/1xO78Svz2jZ3w0yjx45OToPNRSx0SEfWxrv7+5tc/ojZaG1jZM9JT4+KDMSg8APVmKz7hiqxEdAksRoja4L1pXEcQBNzT0sj63q4CrshKRJ1ixiVqg+uMuNadV/aHVqXAkZIa7CuskjocInJTzLhELURRbHNpL380XEHvp8bU0ZEAgDW7CiSOhojcFTMuUQurTYR9JoGX9rrOjJQ4AMDnB4pR3dAkcTRE5I6YcYla2PtFAEDNBlaXuTI2CMMiAtHYZMPHe89IHQ4RuSEWI0Qt7P0iAKdpXEkQBMeS8GxkJaKOMOMStWhqU4yoFBwZcaXbkqLhq1bieFktduadkzocInIzLEaIWjjWGFEqIAgsRlxJ56PGr5P7AwBWfpcvcTRE5G5YjBC1aLLY1xhhIdIbZk+IhyAAWUfKcLK8VupwiMiNsBghauFYY0TFH4veMKBfACYNa76H1codHB0holbMukQtuMZI73vw2gQAwP9yzqCyzixxNETkLph1iVq07Rmh3jE+IQSjovUwWWx478fTUodDRG6CWZeoRevICHtGeosgCHigZXTknZ2nYbJYJY6IiNwBixGiFmYLb5LXF24dFYlIvQ8qak34JLdY6nCIyA0w6xK1YM9I31ArFbjv6ngAzZf5chE0ImLWJWrRxKtp+sxd42Phr1HiaGkNdpyokDocIpIYsy5Ri9YGVvaM9Da9rxq/HRcDAFjBRdCIvB6LEaIWZit7RvrS/RMSoBCA7cfKcbSkRupwiEhCzLpELZos7BnpSzEhfrhlZAQA4K3v8iSOhoikxKxL1IINrH3vgWsHAAA+3leEwsp6iaMhIqkw6xK1cPSMqNgz0leujA3GNYPCYLGJWLbtpNThEJFEWIwQtWDPiDTmpg0GAHyYXYiiqgaJoyEiKTDrErXgNI00xsWHIHVAKJqsIpZv5egIkTdi1iVqwQZW6dhHR9btKcTZao6OEHkbZl2iFlxnRDpXDQjF+IQQmK02jo4QeSEWI0Qt2DMirUcnNY+OvL+nEKXGRomjIaK+xKxL1ILLwUsrdWAoxsYFw2yxYTmvrCHyKsy6RC3YwCotQRAcvSNrdhWgrIajI0TeglmXqAV7RqR3zaAwJMUGwWSx4c1tXJWVyFuwGCFqYeLVNJITBAFzW3pH3t11GuU1JokjIqK+wKxL1KKJDaxuYeKQfkiMCUJjkw1Lvz0hdThE1AeYdYlaONYZYQOrpARBwOOThwIA3v3xNE5V1EkcERH1NmZdohbsGXEfEwaFYeKQfrDYRLz45VGpwyGiXsZihKiFmVfTuJV5U4ZBEICNB89iX8F5qcMhol7ErEvUgpf2upcrInW488r+AIDMTUcgiqLEERFRb2HWJWrBBlb385ebh0CrUmD3qUp8fbhM6nCIqJd0K+suXboU8fHx8PHxQUpKCnbv3t2l49auXQtBEHDbbbd1522JepWjZ0TFnhF3Ean3xe+vSQAAPP/FYVhaPiMi8ixOFyPr1q1Deno6Fi5ciL179yIxMRGTJ09GWdmlv7WcOnUKf/3rX3Httdd2O1ii3mTmOiNu6aHrByLYT42T5XVYl10odThE1Auczrovv/wyHnzwQcyePRvDhw/H8uXL4efnh1WrVnV6jNVqxYwZM7Bo0SIMGDCgRwET9Rb2jLgnnY8af25ZCO1fW46jzmSROCIicjWnsq7ZbEZOTg7S0tJaX0ChQFpaGnbu3NnpcX//+98RHh6O3//+9116H5PJBKPR2O5B1NvYM+K+ZqTEIS7UDxW1Jqz4jsvEE3kap7JuRUUFrFYrDAZDu+0GgwElJSUdHrNjxw6sXLkSK1as6PL7ZGZmQq/XOx4xMTHOhEnULa3rjLAYcTcalQKPTx4GAHhjWx7OVjdIHBERuVKvZt2amhrce++9WLFiBcLCwrp8XEZGBqqrqx2PwkLOE1Pvc0zTsIHVLd06KgJj44LR0GTFs5//LHU4RORCKmd2DgsLg1KpRGlpabvtpaWliIiIuGj/kydP4tSpU5g2bZpjm83WnPBVKhWOHj2KgQMHXnScVquFVqt1JjSiHmMDq3sTBAHP3jYSv3h1BzYdLMH2Y+W4bkg/qcMiIhdwKutqNBokJycjKyvLsc1msyErKwupqakX7T9s2DAcPHgQubm5jscvf/lL3HDDDcjNzeX0C7kVe88Ip2nc1xWROsxKjQcALPz0J5gsVmkDIiKXcGpkBADS09Mxa9YsjB07FuPHj8eSJUtQV1eH2bNnAwBmzpyJ6OhoZGZmwsfHByNHjmx3fFBQEABctJ1IaryaRh4eu2kwPj9QjPyKOry5LQ+PtFxpQ0Ty5XQxMn36dJSXl2PBggUoKSnBmDFjsHnzZkdTa0FBARQKJnOSF5tNhMVmv5qGPSPuLNBHjaemXoG5a3Px2rcncFtSNGJC/KQOi4h6QBBlcMMHo9EIvV6P6upq6HQ6qcMhD2SyWDH06c0AgAPP3Aydj1riiOhSRFHEjLd24YeT5zBpWDhW3jdO6pCIqANd/f3NIQwitPaLAOwZkQNBEPD3X42EWikg60gZtvxcevmDiMhtMesSAWiytN7zhD0j8jAoPAAPXNu8ovMzn/6EBjObWYnkilmXCK3NqwoBUCrYMyIXj9w4CNFBviiqasC/vzkudThE1E0sRogAmHkljSz5aVRYOG04AODN7XnYX1glbUBE1C3MvETgGiNydvOICPwyMQpWm4i/frgfjU2criGSG2ZeIrRdCp4/EnK06JcjEBagxfGyWiz5mtM1RHLDzEuEtkvBs19EjoL9NVh8e/NCim9uP4m9BecljoiInMFihAhcfdUT3DwiAnckRcMmgtM1RDLDzEsE9ox4ioXTRiA8UIu88jq89NVRqcMhoi5i5iUCR0Y8hd5PjefvHAUAeGtHPrJPVUocERF1BTMvEdpc2qtiz4jc3TjMgN8k94fYMl1Tb7ZIHRIRXQaLESK0rsDKkRHP8PQvhiNS74NT5+qx6NOfpQ6HiC6DmZcIrT0jLEY8g95XjZd+mwhBANZlF2LDviKpQyKiS2DmJUJrzwgbWD3H1QPD8OcbBwMAnvz4IPLKayWOiIg6w8xLhLbLwbNnxJP8edJgXDUgBPVmK+as2cfLfYncFIsRIvBqGk+lVAh45a4khPprcPisEf/YyP4RInfEzEuENg2sXA7e4xh0PvjX9DEAgHd/LMDGA2elDYiILsLMSwQueubprhvSD3+8fiAAYN7/DuD0uTqJIyKitph5icCeEW+QftMQjI0LRo3Jgjlr9rJ/hMiNsBghQpuraThN47FUSgX+fXcSgv3UOFRkxN/WH4AoilKHRURgMUIEgA2s3iIqyBfLfpcMlULAZ/uL8frWk1KHRERgMUIEgD0j3uSqAaFY9KsRAIAXvzyKr34qkTgiImLmJQJg5nLwXmVGShxmpsYBAB5dl4sjJUaJIyLybsy8ROA0jTea/4vhuHpgKOrNVjzwTjbO1ZqkDonIazHzEqFNMcK79noNtVKB12dcibhQP5w534CH39vrGCEjor7FYoQI7BnxVkF+Grw1cywCtCrszq/EvI94hQ2RFJh5idB2nRH+SHibwYZAvHp3EpQKAR/tLcLzXxyROiQir8PMS4Q2y8GzGPFKNwwLx/N3jAIAvLE9D29u5yW/RH2JmZcIbRtY2TPirX4zNgbzpgwDACzedATrc85IHBGR92AxQoQ2PSNcgdWr/b/rBuDBaxMAAE/87wCyDpdKHBGRd2DmJQJ7RqiZIAjImHIF7rgyGlabiD++txfZpyqlDovI4zHzEoHrjFArhULAC3eOxo3DwmGy2HD/6j04VFQtdVhEHo2ZlwjsGaH21EoFlt5zJZLjgmFstOCeFT/iwJkqqcMi8lgsRogANFm4zgi156tRYvXscY6CZMZbu5BbWCV1WEQeiZmXCG1XYOWPBLUK9FHjnfvHY1x8MGoaLbj3rV3YV3Be6rCIPA4zLxHYwEqdC9CqsHr2eIyPD0GNyYJ7V+5GzmkWJESuxMxLBPaM0KX5a1V4e/Y4pCSEoNZkwcyVu7CHV9kQuUy3ipGlS5ciPj4ePj4+SElJwe7duzvdd8WKFbj22msRHByM4OBgpKWlXXJ/Iinw3jR0OfaCJHVAKOrMVty7che+/pnrkBC5gtOZd926dUhPT8fChQuxd+9eJCYmYvLkySgrK+tw/61bt+Luu+/Gt99+i507dyImJgY333wzioqKehw8katwOXjqCj+NCqvuG4frh/ZDY5MNf/hvNtbuLpA6LCLZE0Qnb1GZkpKCcePG4bXXXgMA2Gw2xMTE4JFHHsG8efMue7zVakVwcDBee+01zJw5s0vvaTQaodfrUV1dDZ1O50y4RF0y9OkvYLLY8P28GxEd5Ct1OOTmmqw2ZHx00LFk/KNpgzF30mAIAqf5iNrq6u9vp74Gms1m5OTkIC0trfUFFAqkpaVh586dXXqN+vp6NDU1ISQkpNN9TCYTjEZjuwdRb2LPCDlDrVTgxV+Pxp9uGAQAWPL1cTz58UFYWv4/IiLnOFWMVFRUwGq1wmAwtNtuMBhQUlLSpdd44oknEBUV1a6guVBmZib0er3jERMT40yYRE6x2kTYWsYH2TNCXSUIAv46eSievW0kFALw/u5CPPRuDurNFqlDI5KdPs28zz//PNauXYuPP/4YPj4+ne6XkZGB6upqx6OwsLAPoyRv09Tm2yx7RshZ914Vh2W/S4ZWpcDXh8vw62U7UVhZL3VYRLLiVOYNCwuDUqlEaWn7DvLS0lJERERc8th//vOfeP755/HVV19h9OjRl9xXq9VCp9O1exD1FjOLEeqhySMi8N4DKQj11+Dns0b8aun32HnynNRhEcmGU5lXo9EgOTkZWVlZjm02mw1ZWVlITU3t9Lj/+7//w7PPPovNmzdj7Nix3Y+WqBfYr6QB2DNC3Tc2PgSfPXINRkbrUFlnxu9W7sLq7/Ph5DUCRF7J6a+B6enpWLFiBd555x0cPnwYDz/8MOrq6jB79mwAwMyZM5GRkeHY/4UXXsD8+fOxatUqxMfHo6SkBCUlJaitrXXdWRD1gH2NEbVS4NUQ1CNRQb5Y/9DVuD0pGlabiGc++xl/W38AjU1WqUMjcmsqZw+YPn06ysvLsWDBApSUlGDMmDHYvHmzo6m1oKAACkVrjbNs2TKYzWb8+te/bvc6CxcuxDPPPNOz6IlcoIlLwZML+aiVePm3iRgRpcPiTYexPucMjpfW4LV7rkRMiJ/U4RG5JafXGZEC1xmh3nSyvBaTXtoGva8a+xfeLHU45EF2HK/AnDV7Ud3QhECtCovvGIVpiVFSh0XUZ3plnREiT8SREeot1wwOw8Y/X4PkuGDUmCx45P19eHz9fl7+S3QBZl/yek0W+31p2C9Crtc/2A/r/nAVHrlxEAQB+CD7DH7x6g78VFwtdWhEboPFCHk9+6W9ahV/HKh3qJQK/OXmoVjzwFUw6LTIK6/D7Ut/wFvf5cFqc/uZcqJex+xLXo/TNNRXUgeG4ou51yHtinCYrTb8Y+Nh/Gb5DzhRxqsLybsx+5LXYzFCfSnEX4MVM8di8e2jEKBVYW9BFW7993dYtvUk721DXovZl7yevRhhzwj1FUEQcE9KLL567DpMHNIPZosNL2w+gjuW/YAjJbwxKHkfFiPk9cwW+6Jn/HGgvhUV5IvVs8fhn79JhM5HhQNnqjHt1R14/osjqDPxihvyHsy+5PU4TUNSEgQBv07uj6/TJ+Km4QY0WUUs33YSk17ahk/3F3M5efIKzL7k9Zp4NQ25gXCdD968NxlvzRyL2BA/lBgb8ef39+GuN3/k1A15PGZf8nrsGSF3IQgC0oYb8NVj1+EvNw2Bj1qBXfmVmPrvHVj4ySGcqzVJHSJRr2AxQl7PbGXPCLkXH7USj0wajK/TJ2LKyAhYbSLe2XkaE1/cile+Ps5+EvI4zL7k9cwW9oyQe+of7Idlv0vGew+kYFS0HrUmC/719TFMfPFb/GfnKcf/u0Ryx+xLXo8NrOTuJgwKwydzJuDVu5MQF+qHilozFnzyE9Je3ob/5Zzh+iQke8y+5PWaWr5dalTsGSH3pVAImJYYha/TJ+LZX41AWIAWBZX1+MuH+3HDS1vx/u4CmCxWqcMk6hYWI+T1ODJCcqJWKnBvajy2/e16PH7LUIT6a1BY2YCMjw7i+he3YvX3+WhsYlFC8sLsS16PDawkR/5aFf54/SDseOJGLPjFcBh0WpytbsQzn/2Ma174Bku+PobyGl59Q/LA7EtejyMjJGe+GiXuvyYB2x+/Ac/dPhL9g31RUWvGkq+PY8Lz3+AvH+zHoaJqqcMkuiSV1AEQSY3rjJAn0KqUmJESh9+OjcGXP5Vg5Y587Cuowv/2nsH/9p7B+IQQzL46HmnDDSy8ye2wGCGvx5ER8iRqpQK/GB2FX4yOwr6C83j7+1PYdPAsdudXYnd+JcICNLgzuT/uGheLhDB/qcMlAsBihKj1RnlcDp48TFJsMJJig5Fx6zD8d+dpfJB9BhW1JryxLQ9vbMvDVQNCcPf4WEweEQEftVLqcMmLsRghr8eREfJ0kXpfPH7LMDx20xBkHS7D2j0F2HasHD/mVeLHvEoEaFW4ZWQEbhsTjdSBoVAqOGVJfYvFCHk99oyQt1ArFbhlZARuGRmBoqoGfLCnEOtzzqCoqgHrc85gfc4ZhAdq8cvEKPxqTDRGRusgCPy5oN7HYoS8HkdGyBtFB/nisZuGYO6kwcg+fR4bcouw8cBZlNWY8NaOfLy1Ix/9g31xy4gITBkVgaSYYCg4YkK9hMUIeT2uM0LeTKEQMD4hBOMTQvDMtBHYerQMn+QWI+tIKc6cb3AUJuGBWtw8woCbh0dgfEIIe0zIpViMkNezLwfPBlbydhqVAjePiMDNIyLQYLZi27EybD5UgqzDZSirMeHdHwvw7o8F8FUrMWFQGG4Y1g/XDw1HdJCv1KGTzLEYIa/HnhGii/lqlLhlZCRuGRkJs8WG709W4MtDJfj2aBlKjSZ8fbgUXx8uBQAMNQTimsFhmDAoFOMTQhGg5a8Wcg7/jyGvx54RokvTqBS4YWg4bhgaDlEU8fNZI7YeLce3R8qwt+A8jpbW4GhpDVbuyIdKISAxJggTBoYidWAYkmKDOKVDl8VihLwee0aIuk4QBIyI0mNElB5zbhiE83Vm7DhRgR9OVuD7E+dQUFmPnNPnkXP6PP79zQmolQJGRusxPj4E4+JDMDY+GEF+GqlPg9wMixHyehwZIeq+YH8NpiVGYVpiFACgsLIe35+owPcnz2FX3jmU1Ziwr6AK+wqq8Mb2PADAwH7+GBMTjDExeoyJCcawyED+/Hk5FiPk9Rw9Iyr2jBD1VEyIH+4aH4u7xsdCFEUUVjZg96lKZJ+qxO5Tlcgrr8PJlsf/9p4BAGhVCoyI0mFktB4jo/QYHqXDEEMgNGwq9xosRsjrOa6m4TczIpcSBAGxoX6IDfXDr5P7AwDO1Zqw/0wVcguqsK+wCvsLq2BstGBvQRX2FlQ5jlUrBQwxBGJ4pA5DIwIxLEKHIREB6Beg5UJsHojFCHk99owQ9Z3QAC1uHGbAjcMMAABRFJFfUYcDZ6rxU3E1DhUZ8VNxNYyNFvxUbMRPxcZ2x4f4azDUEIjBhgAM7NfyCPdHhM6HRYqMsRghr8eeESLpCIKAAf0CMKBfAG5LigbQXKCcOd+An4qrcfhsDY6W1OBYaQ1OnatDZZ0ZO/POYWfeuXav469RYkC/AMSH+SM+1A/xof6ID/NDXKg/Qv01LFTcHIsR8nqt64ywGCFyB4IgICbEDzEhfrhlZKRje2OTFcdLa3G0tAYnympxsrz5cfpcPerMVhwsqsbBouqLXs9fo0RMiB/6B/uhf7Bv82sH+yIqyBfRQb4I8lOzWJEYixHyeo6RETawErk1H7USo/rrMaq/vt12s8WGgsrmptjT5+pw6lx9858V9SiubkCd2YojJTU4UlLTyesqHIVJpN4HETofhOua/4zQ+8Cg80Gov4b35ulFLEbIq4miiCb2jBDJmkalwKDwQAwKD7zoucYmK4qqGlBYWY/C8w04U1mPwvP1KKxswNnqBlTUmtHYZENeeR3yyus6fQ+lQkBYgAb9ArXoF6Bt/jNQi1B/LUIDNAgLaP4z1F+LYD81VMwnTmExQl7NXogALEaIPJGPWulodO1IY5MVJdWNKK5qQHF1I85WNaDE2IhSY2PLnyZU1JpgtYkoNZpQajR16X31vmoE+6kR7K9BiJ8GQX4aBPupEeSnht5XDb2fBkG+LX/3VUPnq0agj8pr81C3ipGlS5fixRdfRElJCRITE/Hqq69i/Pjxne7/4YcfYv78+Th16hQGDx6MF154Abfeemu3gyZyFfsUDcCeESJv5KNWNje9hvl3uk+T1YZztWaU15hQXtvY/GfLo6LOjMpaM87VmXCu1ozKejNEEahuaEJ1QxNOnat3Kh4/jRI6HzV0vioEaFUI8GkuUgK1KgT6qOCvbd7ur7X/XQl/TfPf/TRKx59+GhWUMppWcroYWbduHdLT07F8+XKkpKRgyZIlmDx5Mo4ePYrw8PCL9v/hhx9w9913IzMzE7/4xS+wZs0a3Hbbbdi7dy9GjhzpkpMg6q62xYiaN8ojog6olQpE6Jv7RwD9Jfe12kRU1Ztxvr4J5+vNqKwz43xdc5FSXd+EqvrmIqWqwez4e02jBbUmCwCg3mxFvdmKEuMl36ZLtCoF/DRK+KqV8G0pUHzVSvholPBVK+Cjbn7Op+UxIyUWMSF+PX/jbhBEURQvv1urlJQUjBs3Dq+99hoAwGazISYmBo888gjmzZt30f7Tp09HXV0dPv/8c8e2q666CmPGjMHy5cu79J5GoxF6vR7V1dXQ6XTOhEt0SWU1jRj/XBYEAchbfCs76olIEharDbUmC4wNlpYCpQnGliKlprEJtY0W1Jia/13X8qh1/NuKerMF9SYr6swW2Jz6rd7qoz9ejStjg116Xl39/e3UyIjZbEZOTg4yMjIc2xQKBdLS0rBz584Oj9m5cyfS09PbbZs8eTI2bNjQ6fuYTCaYTK3zckajC0rEDqzckY8z550bQiPPUtfybUStVLAQISLJqJQKBLX0lvSEKIowWWyoM1lQb7aiscnqGG2x/72xyYqGpuY/W/9uQ4TOx0Vn4zynipGKigpYrVYYDIZ22w0GA44cOdLhMSUlJR3uX1JS0un7ZGZmYtGiRc6E1i0bDxS3W36YvFewn1rqEIiIekwQBMe0S6jUwTjBLa+mycjIaDeaYjQaERMT4/L3uTO5P1IHyunjot5y/dCL+52IiKhvOFWMhIWFQalUorS0tN320tJSREREdHhMRESEU/sDgFarhVardSa0bpmREtfr70FERESX5tS1jBqNBsnJycjKynJss9lsyMrKQmpqaofHpKamttsfALZs2dLp/kRERORdnJ6mSU9Px6xZszB27FiMHz8eS5YsQV1dHWbPng0AmDlzJqKjo5GZmQkAmDt3LiZOnIiXXnoJU6dOxdq1a5GdnY0333zTtWdCREREsuR0MTJ9+nSUl5djwYIFKCkpwZgxY7B582ZHk2pBQQEUitYBl6uvvhpr1qzB008/jSeffBKDBw/Ghg0buMYIERERAejGOiNS4DojRERE8tPV399c/5qIiIgkxWKEiIiIJMVihIiIiCTFYoSIiIgkxWKEiIiIJMVihIiIiCTFYoSIiIgkxWKEiIiIJMVihIiIiCTl9HLwUrAvEms0GiWOhIiIiLrK/nv7cou9y6IYqampAQDExMRIHAkRERE5q6amBnq9vtPnZXFvGpvNhuLiYgQGBkIQBJe9rtFoRExMDAoLCz32njeefo48P/nz9HPk+cmfp59jb56fKIqoqalBVFRUu5voXkgWIyMKhQL9+/fvtdfX6XQe+T9YW55+jjw/+fP0c+T5yZ+nn2Nvnd+lRkTs2MBKREREkmIxQkRERJLy6mJEq9Vi4cKF0Gq1UofSazz9HHl+8ufp58jzkz9PP0d3OD9ZNLASERGR5/LqkREiIiKSHosRIiIikhSLESIiIpIUixEiIiKSlFcXI0uXLkV8fDx8fHyQkpKC3bt3Sx1St2zfvh3Tpk1DVFQUBEHAhg0b2j0viiIWLFiAyMhI+Pr6Ii0tDcePH5cm2G7IzMzEuHHjEBgYiPDwcNx22204evRou30aGxsxZ84chIaGIiAgAHfeeSdKS0slith5y5Ytw+jRox2LDqWmpuKLL75wPC/387vQ888/D0EQ8Oijjzq2yfkcn3nmGQiC0O4xbNgwx/NyPre2ioqK8Lvf/Q6hoaHw9fXFqFGjkJ2d7XhezrkmPj7+os9QEATMmTMHgPw/Q6vVivnz5yMhIQG+vr4YOHAgnn322Xb3jJH08xO91Nq1a0WNRiOuWrVK/Omnn8QHH3xQDAoKEktLS6UOzWmbNm0Sn3rqKfGjjz4SAYgff/xxu+eff/55Ua/Xixs2bBD3798v/vKXvxQTEhLEhoYGaQJ20uTJk8W3335bPHTokJibmyveeuutYmxsrFhbW+vY56GHHhJjYmLErKwsMTs7W7zqqqvEq6++WsKonfPpp5+KGzduFI8dOyYePXpUfPLJJ0W1Wi0eOnRIFEX5n19bu3fvFuPj48XRo0eLc+fOdWyX8zkuXLhQHDFihHj27FnHo7y83PG8nM/NrrKyUoyLixPvu+8+cdeuXWJeXp745ZdfiidOnHDsI+dcU1ZW1u7z27JliwhA/Pbbb0VRlP9n+Nxzz4mhoaHi559/Lubn54sffvihGBAQIL7yyiuOfaT8/Ly2GBk/frw4Z84cx7+tVqsYFRUlZmZmShhVz11YjNhsNjEiIkJ88cUXHduqqqpErVYrvv/++xJE2HNlZWUiAHHbtm2iKDafj1qtFj/88EPHPocPHxYBiDt37pQqzB4LDg4W33rrLY86v5qaGnHw4MHili1bxIkTJzqKEbmf48KFC8XExMQOn5P7udk98cQT4jXXXNPp856Wa+bOnSsOHDhQtNlsHvEZTp06Vbz//vvbbbvjjjvEGTNmiKIo/efnldM0ZrMZOTk5SEtLc2xTKBRIS0vDzp07JYzM9fLz81FSUtLuXPV6PVJSUmR7rtXV1QCAkJAQAEBOTg6ampraneOwYcMQGxsry3O0Wq1Yu3Yt6urqkJqa6lHnN2fOHEydOrXduQCe8RkeP34cUVFRGDBgAGbMmIGCggIAnnFuAPDpp59i7Nix+M1vfoPw8HAkJSVhxYoVjuc9KdeYzWa8++67uP/++yEIgkd8hldffTWysrJw7NgxAMD+/fuxY8cOTJkyBYD0n58sbpTnahUVFbBarTAYDO22GwwGHDlyRKKoekdJSQkAdHiu9ufkxGaz4dFHH8WECRMwcuRIAM3nqNFoEBQU1G5fuZ3jwYMHkZqaisbGRgQEBODjjz/G8OHDkZub6xHnt3btWuzduxd79uy56Dm5f4YpKSlYvXo1hg4dirNnz2LRokW49tprcejQIdmfm11eXh6WLVuG9PR0PPnkk9izZw/+/Oc/Q6PRYNasWR6VazZs2ICqqircd999AOT//ycAzJs3D0ajEcOGDYNSqYTVasVzzz2HGTNmAJD+d4VXFiMkX3PmzMGhQ4ewY8cOqUNxuaFDhyI3NxfV1dVYv349Zs2ahW3btkkdlksUFhZi7ty52LJlC3x8fKQOx+Xs3y4BYPTo0UhJSUFcXBw++OAD+Pr6ShiZ69hsNowdOxaLFy8GACQlJeHQoUNYvnw5Zs2aJXF0rrVy5UpMmTIFUVFRUofiMh988AHee+89rFmzBiNGjEBubi4effRRREVFucXn55XTNGFhYVAqlRd1QpeWliIiIkKiqHqH/Xw84Vz/9Kc/4fPPP8e3336L/v37O7ZHRETAbDajqqqq3f5yO0eNRoNBgwYhOTkZmZmZSExMxCuvvOIR55eTk4OysjJceeWVUKlUUKlU2LZtG/79739DpVLBYDDI/hzbCgoKwpAhQ3DixAmP+PwAIDIyEsOHD2+37YorrnBMR3lKrjl9+jS+/vprPPDAA45tnvAZ/u1vf8O8efNw1113YdSoUbj33nvx2GOPITMzE4D0n59XFiMajQbJycnIyspybLPZbMjKykJqaqqEkbleQkICIiIi2p2r0WjErl27ZHOuoijiT3/6Ez7++GN88803SEhIaPd8cnIy1Gp1u3M8evQoCgoKZHOOHbHZbDCZTB5xfpMmTcLBgweRm5vreIwdOxYzZsxw/F3u59hWbW0tTp48icjISI/4/ABgwoQJF11Sf+zYMcTFxQHwjFwDAG+//TbCw8MxdepUxzZP+Azr6+uhULT/la9UKmGz2QC4wefX6y2ybmrt2rWiVqsVV69eLf7888/iH/7wBzEoKEgsKSmROjSn1dTUiPv27RP37dsnAhBffvllcd++feLp06dFUWy+XCsoKEj85JNPxAMHDoi/+tWvZHO5nSiK4sMPPyzq9Xpx69at7S69q6+vd+zz0EMPibGxseI333wjZmdni6mpqWJqaqqEUTtn3rx54rZt28T8/HzxwIED4rx580RBEMSvvvpKFEX5n19H2l5NI4ryPse//OUv4tatW8X8/Hzx+++/F9PS0sSwsDCxrKxMFEV5n5vd7t27RZVKJT733HPi8ePHxffee0/08/MT3333Xcc+cs81VqtVjI2NFZ944omLnpP7Zzhr1iwxOjracWnvRx99JIaFhYmPP/64Yx8pPz+vLUZEURRfffVVMTY2VtRoNOL48ePFH3/8UeqQuuXbb78VAVz0mDVrliiKzZdszZ8/XzQYDKJWqxUnTZokHj16VNqgndDRuQEQ3377bcc+DQ0N4h//+EcxODhY9PPzE2+//Xbx7Nmz0gXtpPvvv1+Mi4sTNRqN2K9fP3HSpEmOQkQU5X9+HbmwGJHzOU6fPl2MjIwUNRqNGB0dLU6fPr3d+htyPre2PvvsM3HkyJGiVqsVhw0bJr755pvtnpd7rvnyyy9FAB3GLPfP0Gg0inPnzhVjY2NFHx8fccCAAeJTTz0lmkwmxz5Sfn6CKLZZfo2IiIioj3llzwgRERG5DxYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCSp/w/ZCdN0aTpNywAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = relativistic_ir(dt=0.125)\n", + "plt.plot(r_ir)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py310", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/notebooks/Window Functions/window_functions.ipynb.txt b/_sources/notebooks/Window Functions/window_functions.ipynb.txt new file mode 100644 index 000000000..ea3fd311a --- /dev/null +++ b/_sources/notebooks/Window Functions/window_functions.ipynb.txt @@ -0,0 +1,848 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Stingray` now has a bunch of window functions that can be used for various applications in signal processing.\n", + "\n", + "Windows available include:\n", + "1. Uniform or Rectangular Window\n", + "2. Parzen window\n", + "3. Hamming window\n", + "4. Hanning Window\n", + "5. Triangular window\n", + "6. Welch Window\n", + "7. Blackmann Window\n", + "8. Flat-top Window" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All windows are available in `stingray.utils` package and called be used by calling `create_window` function. Below are some of the examples demonstrating different window functions. " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.utils import create_window\n", + "\n", + "from scipy.fftpack import fft, fftshift, fftfreq\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`create_window` function in `stingray.utils` takes two parameters. \n", + "\n", + "1. `N` : Number of data points in the window\n", + "2. `window_type` : Type of window to create. Default is `uniform`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Uniform Window " + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGN5JREFUeJzt3X2UXXV97/H3xwREtCUouV5MgCBGNFirOEUUURDbi4py\nl0st+Ix6ufYigtV60dqLdumydalVqsJCRfCKoKWooPh0i4BYRYYHkfBQIyhJQAlaAaEFwe/9Y++R\n45iZ+SXkZCZz3q+1Zs35/fY+e39/k8n+zH44e6eqkCRpJg+Y7QIkSVsGA0OS1MTAkCQ1MTAkSU0M\nDElSEwNDktTEwNBISHJCkr8ZaP9Fkp8l+VWSh81mbVNJsm+Sa+/H+yvJozZlTRpt8XMY2hIkKWB5\nVa0a6HsH8KiqetkGLmsr4DZg76r6/iYtdA5Z389Muj/cw9AoejiwDbByQ9+Yjv9vNJL8xde8kGS/\nJGuSvCnJzUluSnLYwPSTk7wryaOBicM8v0xybj/9qUkuTnJr//2pA+89L8m7k3wbuBN4ZN/3riT/\n2h/WOjvJw5KcmuS2fhnLpqj1lCRv6l8v6Q8dHdG3d0vyiyQPmBjTwPt+nOTNSa7o6/xskm0Gpv9V\nP+4bk7x60jq3S/KpJOuS/CTJ2yeCr28/qX/90r6ePfr2a5J8YWP/XTS/GBiaT/4rsB2wBHgN8JEk\n2w/OUFX/BuzRNxdV1TOTPBT4MnAc8DDgA8CXJ53beDlwOPAHwE/6vkP6/iXAbsB3gE8CDwWuBo6d\nos7zgf36188ArgOePtD+VlX9Zor3vhg4ENgVeDzwKoAkBwJvBv4UWA48a9L7/pHuZ/PIfh2vACYC\ndaZ6zp+iFo0YA0Pzya+Bv62qX1fVOcCvgN0b3vdc4IdV9X+r6p6qOg24BnjewDwnV9XKfvqv+75P\nVtWPqupW4CvAj6rq/1XVPcA/AU+cYn3nA0/r/8J/OvBeYJ9+2kwb6OOq6saq+gVwNvCEvv/FfT1X\nVtUdwDsm3pBkAV24vbWqbq+qHwPvpwu7iXqe0b/eF3jPQNvA0G8ZGNpS3AtsNalvK7qQmPDzfmM9\n4U7gIQ3LfgT37TVM+AndnsOE1et5388GXv/HetrrXXdV/Qi4g25jvy/wJeDGJLsz8wb6pwOvB8f3\niEk1Do5nB7qf1U8mTZ8Y3/nAvkl2BBYAnwP26Q+pbQdcPk09GiEGhrYUNwDLJvXtyu9v6DfGjcAu\nk/p2BtYOtDf15YTnAy8Etq6qtX37lcD2bNwG+iZgp4H2zgOvb6EL1l0mTV8L0F9FdSdwJHBBVd1G\nF0yHAxdOc3hMI8bA0Jbis8DbkyztTwg/i+6Q0RmbYNnnAI9O8pIkC5P8ObCC7i//YTkfeD1wQd8+\nr29fWFX3bsTyPge8KsmKJNsycP6kX97ngHcn+YMkuwB/CXx6PfVM7N2cN6ktGRjaYvwt8K/AhcC/\n0x33f2lVXXl/F1xVPwcOAt4E/Bx4C3BQVd1yf5c9jfPpTqBPBMaFwLYD7Q1SVV8BPgicC6zqvw86\nku4w2HX9uj4DnDRNPZPbkh/ckyS1cQ9DktTEwJAkNTEwJElNDAxJUpOFs13AprTDDjvUsmXLZrsM\nSdpiXHLJJbdU1eKWeedVYCxbtozx8fHZLkOSthhJmj/86iEpSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVKToQVGkpOS3JzkyimmJ8lxSVYl\nuSLJnpOmL0hyWZIvDatGSVK7Ye5hnAwcOM30ZwPL+6/DgeMnTT8KuHoolUmSNtjQAqOqLgB+Mc0s\nBwOfqs53gUVJdgRIshR4LvDxYdUnSdows3kOYwmweqC9pu8D+CDwFuA3My0kyeFJxpOMr1u3btNX\nKUkC5uBJ7yQHATdX1SUt81fViVU1VlVjixcvHnJ1kjS6ZjMw1gI7DbSX9n37AM9P8mPgdOCZST69\n+cuTJA2azcA4C3hFf7XU3sCtVXVTVb21qpZW1TLgEODcqnrZLNYpSQIWDmvBSU4D9gN2SLIGOBbY\nCqCqTgDOAZ4DrALuBA4bVi2SpPtvaIFRVYfOML2AI2aY5zzgvE1XlSRpY825k96SpLnJwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUZWmAkOSnJzUmunGJ6khyXZFWSK5Ls2ffvlOSbSa5KsjLJUcOqUZLU\nbph7GCcDB04z/dnA8v7rcOD4vv8e4E1VtQLYGzgiyYoh1ilJajC0wKiqC4BfTDPLwcCnqvNdYFGS\nHavqpqq6tF/G7cDVwJJh1SlJajOb5zCWAKsH2muYFAxJlgFPBC7abFVJktZrzp70TvIQ4J+Bo6vq\ntmnmOzzJeJLxdevWbb4CJWnEzGZgrAV2Gmgv7ftIshVdWJxaVWdOt5CqOrGqxqpqbPHixUMrVpJG\n3WwGxlnAK/qrpfYGbq2qm5IE+ARwdVV9YBbrkyQNWDisBSc5DdgP2CHJGuBYYCuAqjoBOAd4DrAK\nuBM4rH/rPsDLgR8kubzve1tVnTOsWiVJMxtaYFTVoTNML+CI9fRfCGRYdUmSNs6cPektSZpbDAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNZkxMJJsm+Rv\nknysby9PctDwS5MkzSUtexifBO4CntK31wLvGlpFkqQ5qSUwdquq9wK/BqiqO/H245I0cloC4+4k\nDwIKIMludHsckqQR0vIApWOBrwI7JTmV7ol4rxpmUZKkuWfGwKiqbyS5FNib7lDUUVV1y9ArkyTN\nKVMGRpI9J3Xd1H/fOcnOVXXp8MqSJM010+1hvL//vg0wBnyfbg/j8cA49101JUkaAVOe9K6q/atq\nf7o9iz2raqyqngQ8ke7SWknSCGm5Smr3qvrBRKOqrgQeO7ySJElzUctVUlck+Tjw6b79UuCK4ZUk\nSZqLWgLjMOAvgKP69gXA8UOrSJI0J7VcVvufwD/0X5KkETVjYCS5nv5T3oOq6pFDqUiSNCe1HJIa\nG3i9DfAi4KHDKUeSNFfNeJVUVf184GttVX0QeO5mqE2SNIe0HJIa/MT3A+j2OFr2TCRJ80jLhv/9\nA6/vAa4HXjycciRJc1VLYLymqq4b7Eiy65DqkSTNUS2f9D6jse93JDkpyc1JrpxiepIcl2RVkisG\nD30lOTDJtf20YxpqlCQN2XR3q30MsAewXZIXDEz6Q7qrpWZyMvBh4FNTTH82sLz/ejLdhwGfnGQB\n8BHgT4E1wMVJzqqqqxrWKUkakukOSe0OHAQsAp430H878D9mWnBVXZBk2TSzHAx8qqoK+G6SRUl2\nBJYBqyYOgyU5vZ93aIHxzrNXctWNtw1r8ZI0VCse8Ycc+7w9hr6eKQOjqr4IfDHJU6rqO0NY9xJg\n9UB7Td+3vv4nT7WQJIcDhwPsvPPOm75KSRIw/SGpt1TVe4GXJDl08vSqesNQK2tUVScCJwKMjY39\n3ifSW2yOZJakLd10h6Su7r+PD2nda4GdBtpL+76tpuiXJM2i6Q5Jnd1/P2VI6z4LeH1/juLJwK1V\ndVOSdcDy/tLdtcAhwEuGVIMkqdF0h6TOZj03HZxQVc+fbsFJTgP2A3ZIsgY4lm7vgao6ATgHeA6w\nCriT7jbqVNU9SV4PfA1YAJxUVSvbhyRJGobpDkm97/4suKp+77zHpOkFHDHFtHPoAkWSNEdMd0jq\n/InXSbYGHkO3x3FtVd29GWqTJM0hLTcffC5wAvAjIMCuSf5nVX1l2MVJkuaO1psP7l9VqwCS7AZ8\nGTAwJGmEtNxL6vaJsOhdR/dpb0nSCGnZwxhPcg7wObpzGC+iu7/TCwCq6swh1idJmiNaAmMb4GfA\nM/r2OuBBdPeXKsDAkKQRMGNgVNVhm6MQSdLc1nKV1K7AkXR3kf3t/DN9cE+SNL+0HJL6AvAJ4Gzg\nN8MtR5I0V7UExn9W1XFDr0SSNKe1BMaHkhwLfB24a6Kzqi4dWlWSpDmnJTD+CHg58EzuOyRVfVuS\nNCJaAuNFwCO9f5QkjbaWT3pfSfdcb0nSCGvZw1gEXJPkYu47h1FVdfDwypIkzTUtgXHswOsA+9I9\nBU+SNEJmPCTVPxfjNuAg4GS6k90nDLcsSdJcM90jWh8NHNp/3QJ8FkhV7b+ZapMkzSHTHZK6BvgW\ncNDAszDeuFmqkiTNOdMdknoBcBPwzSQfS3IA3TkMSdIImjIwquoLVXUI3bO8vwkcDfyXJMcn+bPN\nVaAkaW5oOel9R1V9pqqeBywFLgP+99ArkyTNKS0f3Putqvr3qjqxqg4YVkGSpLlpgwJDkjS6DAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1GSogZHkwCTXJlmV5Jj1TN8+yeeTXJHke0keNzDtjUlW\nJrkyyWlJthlmrZKk6Q0tMJIsAD4CPBtYARyaZMWk2d4GXF5VjwdeAXyof+8S4A3AWFU9DliAz+CQ\npFk1zD2MvYBVVXVd/zzw04HJT+lbAZwLUFXXAMuSPLyfthB4UJKFwLbAjUOsVZI0g2EGxhJg9UB7\nTd836Pt0d8UlyV7ALsDSqloLvA+4ge6OubdW1deHWKskaQazfdL774BFSS4HjqS7seG9Sban2xvZ\nFXgE8OAkL1vfApIcnmQ8yfi6des2V92SNHKGGRhrgZ0G2kv7vt+qqtuq6rCqegLdOYzFwHXAs4Dr\nq2pdVf0aOBN46vpW0t8McayqxhYvXjyMcUiSGG5gXAwsT7Jrkq3pTlqfNThDkkX9NIDXAhdU1W10\nh6L2TrJtkgAHAFcPsVZJ0gyme0Tr/VJV9yR5PfA1uqucTqqqlUle108/AXgscEqSAlYCr+mnXZTk\nDOBS4B66Q1UnDqtWSdLMUlWzXcMmMzY2VuPj47NdhiRtMZJcUlVjLfPO9klvSdIWwsCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU2GGhhJDkxybZJVSY5Zz/Ttk3w+yRVJvpfkcQPTFiU5I8k1Sa5O\n8pRh1ipJmt7QAiPJAuAjwLOBFcChSVZMmu1twOVV9XjgFcCHBqZ9CPhqVT0G+GPg6mHVKkma2TD3\nMPYCVlXVdVV1N3A6cPCkeVYA5wJU1TXAsiQPT7Id8HTgE/20u6vql0OsVZI0g2EGxhJg9UB7Td83\n6PvACwCS7AXsAiwFdgXWAZ9MclmSjyd58PpWkuTwJONJxtetW7epxyBJ6s32Se+/AxYluRw4ErgM\nuBdYCOwJHF9VTwTuAH7vHAhAVZ1YVWNVNbZ48eLNVLYkjZ6FQ1z2WmCngfbSvu+3quo24DCAJAGu\nB64DtgXWVNVF/axnMEVgSJI2j2HuYVwMLE+ya5KtgUOAswZn6K+E2rpvvha4oKpuq6qfAquT7N5P\nOwC4aoi1SpJmMLQ9jKq6J8nrga8BC4CTqmplktf1008AHguckqSAlcBrBhZxJHBqHyjX0e+JSJJm\nR6pqtmvYZMbGxmp8fHy2y5CkLUaSS6pqrGXe2T7pLUnaQhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWqSqprtGjaZJOuAn2zk23cAbtmE5WwJRnHMMJrj\nHsUxw2iOe0PHvEtVLW6ZcV4Fxv2RZLyqxma7js1pFMcMoznuURwzjOa4hzlmD0lJkpoYGJKkJgbG\nfU6c7QJmwSiOGUZz3KM4ZhjNcQ9tzJ7DkCQ1cQ9DktTEwJAkNRn5wEhyYJJrk6xKcsxs1zMsSXZK\n8s0kVyVZmeSovv+hSb6R5If99+1nu9ZNLcmCJJcl+VLfHoUxL0pyRpJrklyd5CnzfdxJ3tj/bl+Z\n5LQk28zHMSc5KcnNSa4c6JtynEne2m/frk3y3+7Pukc6MJIsAD4CPBtYARyaZMXsVjU09wBvqqoV\nwN7AEf1YjwH+paqWA//St+ebo4CrB9qjMOYPAV+tqscAf0w3/nk77iRLgDcAY1X1OGABcAjzc8wn\nAwdO6lvvOPv/44cAe/Tv+Wi/3dsoIx0YwF7Aqqq6rqruBk4HDp7lmoaiqm6qqkv717fTbUCW0I33\nlH62U4D/PjsVDkeSpcBzgY8PdM/3MW8HPB34BEBV3V1Vv2SejxtYCDwoyUJgW+BG5uGYq+oC4BeT\nuqca58HA6VV1V1VdD6yi2+5tlFEPjCXA6oH2mr5vXkuyDHgicBHw8Kq6qZ/0U+Dhs1TWsHwQeAvw\nm4G++T7mXYF1wCf7Q3EfT/Jg5vG4q2ot8D7gBuAm4Naq+jrzeMyTTDXOTbqNG/XAGDlJHgL8M3B0\nVd02OK26a6znzXXWSQ4Cbq6qS6aaZ76NubcQ2BM4vqqeCNzBpEMx823c/TH7g+nC8hHAg5O8bHCe\n+TbmqQxznKMeGGuBnQbaS/u+eSnJVnRhcWpVndl3/yzJjv30HYGbZ6u+IdgHeH6SH9Mdbnxmkk8z\nv8cM3V+Ra6rqor59Bl2AzOdxPwu4vqrWVdWvgTOBpzK/xzxoqnFu0m3cqAfGxcDyJLsm2Zru5NBZ\ns1zTUCQJ3THtq6vqAwOTzgJe2b9+JfDFzV3bsFTVW6tqaVUto/u3PbeqXsY8HjNAVf0UWJ1k977r\nAOAq5ve4bwD2TrJt/7t+AN15uvk85kFTjfMs4JAkD0yyK7Ac+N7GrmTkP+md5Dl0x7kXACdV1btn\nuaShSPI04FvAD7jveP7b6M5jfA7Yme7W8C+uqskn1LZ4SfYD3lxVByV5GPN8zEmeQHeif2vgOuAw\nuj8Q5+24k7wT+HO6KwIvA14LPIR5NuYkpwH70d3G/GfAscAXmGKcSf4aeDXdz+XoqvrKRq971AND\nktRm1A9JSZIaGRiSpCYGhiSpiYEhSWpiYEiSmhgY2iIk+ev+TqRXJLk8yZOHvL7zkoxtwPwnJ1mb\n5IF9e4f+A4Obopb9Ju60u6kkOTrJK2aY54+SnLwp16stm4GhOS/JU4CDgD2r6vF0n+pdPf27ZsW9\ndNe7zymT707a35zv1cBnpntfVf0AWJpk5yGWpy2IgaEtwY7ALVV1F0BV3VJVNwIk+T9JLu6fgXBi\n/ynfiT2Ef0gy3j8P4k+SnNk/L+Bd/TzL+udFnNrPc0aSbSevPMmfJflOkkuT/FN/P671+SDwxn6D\nPPj+39lDSPLhJK/qX/84yXv6vabxJHsm+VqSHyV53cBi/jDJl/tnGpyQ5AHT1dYv9++TXAq8aFKd\nzwQurap7Bn5Wf5/ke0n+Lcm+A/OeTfcpecnA0Bbh68BO/cbso0meMTDtw1X1J/0zEB5Etycy4e6q\nGgNOoLtVwhHA44BX9Z/2Btgd+GhVPRa4DfhfgytOsgPwduBZVbUnMA785RR13gBcCLx8A8d3Q1U9\nge6T+CcDL6R7Zsk7B+bZCziS7rktuwEvaKjt51W1Z1WdPml9+wCTb8i4sKr2Ao6m++TwhHFgXyQM\nDG0BqupXwJOAw+lu2/3Zib/Qgf2TXJTkB3R/Oe8x8NaJ+4L9AFjZPxPkLrpbZUzckG11VX27f/1p\n4GmTVr833Ub620kup7tPzy7TlPse4K/YsP9bg3VeVFW3V9U64K4ki/pp3+uf23IvcFpf50y1fXaK\n9e1I93McNHEzykuAZQP9N9Pd/VVi4cyzSLOv31CeB5zXh8Mrk5wOfJTuKWurk7wD2GbgbXf1338z\n8HqiPfG7P/neOJPbAb5RVYc21vnDfuP94oHue/jdANnmd9+10XXOVNsdU/T/xzQ13Mvvbhe26eeX\n3MPQ3Jdk9yTLB7qeQHeDtYmN3i39sfsXbsTid+5PqgO8hO6Q0qDvAvskeVRfy4OTPHqGZb4bePNA\n+yfAiv6OoYvo7qS6ofbq76r8ALob7F24kbVBdxfXRzWu99HAlTPOpZFgYGhL8BDglCRXJbmC7jDM\nO/rHjn6MboP2Nbrb1W+oa+meb341sD1w/ODE/tDQq4DT+nV/B3jMdAusqpXApQPt1XR3Er2y/37Z\nRtR5MfBhuo399cDnN6a23lfoHuHaYn/gyxtcreYl71arkZXuUbVf6k+Yj5QknwfeUlU/nGaeBwLn\nA0+buKJKo809DGk0HUN38ns6OwPHGBaa4B6GJKmJexiSpCYGhiSpiYEhSWpiYEiSmhgYkqQm/x/6\n0mpI7TkJ/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Uniform window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcZUddNv587770Pt09PftkJwlbQkCRRZBFkCUIrwKC\nL1EU9eUVFF71RVFxiSg/QRZB2SWgifEVSNghQDbINiEJycwks+89Pb3dfb+3fn9U1Tl16pzqe+7M\ndPftmXo+n/70vXXrnFNn+z71XYsYY7CwsLCwsDAhstoDsLCwsLDob1iisLCwsLBYEpYoLCwsLCyW\nhCUKCwsLC4slYYnCwsLCwmJJWKKwsLCwsFgSligsLFYQRHQZET1MREUiekfIbRgRXbzcYwsDItpJ\nRC8Qn4mIPk9Ei0R0/yoPzQgi+lMi+sxpbvsCIjp2tse01hBb7QGcyyCiQwDWA2grzZcyxk6szogs\n+gB/DOCHjLGnB/1IRLcD+BJj7LQE21IQAv5LjLHNp3tMxtiVytfnAngJgM2MsfJZHOpZBWPs71Z7\nDGsdVqNYfryKMTag/PlIgojOK8I+385XwzYAO1d7EGcJ2wAcOh2SOM+fgTUHSxSrACLaLswJbyWi\nIwB+INp/loh+TEQ5InpEqvjitwuI6A5hsvgeEf0zEX1J/OZTj4noEBG9WHyOENH/JaL9RDRPRDcT\n0Zg2lrcQ0REimiOiP1P2ExWq+35x7AeJaAsRfZyIPqgd81Yi+kPDOTMiejsR7QWwV7Q9SZzLAhE9\nQUS/qvT/JSLaJY55nIj+j3quYkxz4jzfpGw3TEQ3ENEsER0movcSUUT8dh0R3U1E/yjMJQeJ6OXK\nttcR0QFxzIPafn+TiHaL7b5DRNuWuL+vFiaaHBHdTkSXi/YfAHghgH8mohIRXaptdz2A5ym//7Py\n84uJaK/Y58eJiE5nbN1ARO8Tz8cN4jrsJKJrlN8PEdGLieitAD4D4NlirH8lfv9tIton7umtRLRR\n2TboGWBE9L/EuRWJ6G+I6CLxHhTEWBKGsR4momeIz28S+7pSfH8rEX1VOSf5rnR73tNE9G/iWu4C\n8EztmJeLe5oT1+bVov0C0SaftU8T0Slluy8S0R+c7n1ZdTDG7N8y/QE4BODFAe3bATAANwDIAkgD\n2ARgHsAvgRP4S8T3CbHNPQA+BCAJ4PkAiuDmAgB4AYBjpmMDeCeAewFsFtt/EsCN2lg+LcbxNAB1\nAJeL3/8IwKMALgNA4vd1AJ4F4ASAiOg3DqACYL3hWjAA3wMwJo6TBXAUwG+Am0CvAjAH4ArRfxrA\n88TnUQBXK+faUq7FzwMoA7hM/H4DgFsADIpz2wPgreK36wA0Afw2gCiA3xPnQGI8BWU/GwBcKT5f\nC2AfgMvFWN8L4MeG87xUjOclAOLgpqZ9ABLi99sB/NYSz4zvd3Htvg5gBMBWALMAXnYaY/M9J/ox\nAbwPQA38OYwCeD+Aew3P1XUA7lZ++wVxD68W9+ZjAO40PQNK2y0AhgBcCf7sfR/AhQCGAewC8BbD\n+dwA4N3i86cA7Afwe8pvf6ick3xXtmPp5/3vAdwlxrgFwGPymon7uQ/AnwJIiPMtKs/MEQDPEJ+f\nAHBA2e8RAFettkw6bVm22gM4l//ES1UCkBN/XxXt8mG9UOn7JwC+qG3/HQBvEcKhBSCr/PYfCE8U\nuwG8SPltA7jAjClj2az8fj+AN4jPTwC41nB+uwG8RHz+3wC+ucS1YAB+Qfn+egB3aX0+CeAvxecj\nAH4HwJDW5wUB1+JmAH8OLtgaEGQjfvsdALeLz9cB2Kf8lhHjmgInihyA10EIMaXftyDIRnyPgJPi\ntoDz/HMAN2t9jwN4gfh+O06PKJ6rne//PY2x+Z4T/ZjgQvU25bcrAFQNz9V18BLFZwF8QPk+IJ6z\n7UHPgNL2HOX7gwD+RPn+QQAfNlyrtwK4VXkWfwvATeL7YbiTi/fBTxSm5/0ABAmL72+DSxTPA3AS\nYnIk2m4E8D7x+YsA3iWepycAfADA7wK4QDxbkaDzWAt/1vS0/HgNY2xE/L1G++2o8nkbgF8R6muO\niHLgzsINADYCWGReW/DhHsawDcBXlP3uBnewr1f6nFQ+V8BfcoDPqvYb9vsFAG8Wn98M/qIsBf18\nf0Y73zeBv2QAF9i/BOAwcZPbs5Vtg67FRnCtJg7vtTkMrq1JOOfJGKuIjwNif68Hf7GniegbRPQk\nZawfUca5AK6FqPuV2KgenzHWEecd1LcXmO5PL2NrgV8fHXFwgW46VorC+RT0cy+Ba8XqWI7qGwGY\nUT5XA74PIBh3AHgeEW0AnyTcDOA5RLQdXBt5eImxmq7nRm2M6rO0EcBRcU/V3+X53QFOxs8HcCc4\nAf+8+LtL225NwRLF6kIt3XsUXKMYUf6yjLG/BzfDjBJRVum/VflcBp8dA+B+BQAT2r5fru07xRg7\nHmKMRwFcZPjtSwCuJaKngZs+vtplX/r53qGNaYAx9nsAwBh7gDF2LYBJsd+blW2DrsUJcLNHE1x4\nqr+FOU8wxr7DGHsJODk/Dm6ekGP9HW2sacbYjwN2c0I9vvAlbAk7BnivURj0MrYjAMaJyBG8Ynzb\n0NvEwwT93LPgZkr13Hs9PyMYY/vAhfzvg5u4CuAE8DZwTed0BPM0+P2SUN+zEwC2SD+E8rs8vzvA\ntY4XiM93A3gOOFHccRpj6RtYougffAnAq4joF4k7kFPEHbebGWOHAewA8FdElCCi5wJ4lbLtHvBZ\n3yuIKA5up04qv/8rgOulk5OIJojo2pDj+gyAvyGiS4jjqUS0DgAYY8cAPACuSfw3Y6zaw/l+HcCl\nRPTrRBQXf88UzsKEcE4OM8aa4L4D/aWX1+J5AF4J4L8YY21wQrmeiAbF+b4L/NouCSJaT0TXCuFW\nBzcZymP+K4D3KI7SYSL6FcOubgbwCiJ6kbgX7xb7CxLcQZgBt8+HReixMcaOALgPwD8Q0QARJcF9\nUE1wH9aZ4kYAv0FETxf7/jsA9zHGDp2FfZtwB7jZUwri27XvveJm8Os5SkSbwUlI4j5wYvpj8by+\nAPw9vAkAGGN7wTWgN4NPggrg9/N1ZzCevoAlij4BY+wouGPyT8GdlUfBX2J5j34NwM+Amxb+EtxZ\nJ7fNA/hf4EL9OLiGoUZBfQTArQC+S0RFcKHwMyGH9iHwl+e74AL7s+BOQIkvAHgKupudPGCMFQG8\nFMAbwGdqJwH8A1yC+3UAh4ioAG4OepOy+UkAi2K7fwfwu4yxx8Vvvw9+/gfAZ3T/AeBzIYYUASeV\nE+DX+OfBnd1gjH1FjO0mMZ7HALw8aCeMsSfABcXHwDWcV4GHSDdCjAHg9+p/iKibj3br3MvYBF4P\nrqXtA39WXgTgFYyxWsjxLTWW28B9NP8NPjO/CPz+LifuAA9cuNPwvVf8Fbh2dRD8mXeea3EPXwV+\nfecAfALA/1SePXn8efE+y+8E4CenOZ6+AAknjMUaAxG9D8DFjLE3d+u7zON4PviMfRtbgYeJDElj\nFhYWywerUVicNoRp5Z0APrMSJGFhYbE6sERhcVognkSWA3f8fniVh2NhYbGMsKYnCwsLC4slYTUK\nCwsLC4slcU4U5hofH2fbt29f7WFYWFhYrCk8+OCDc4yxiW79zgmi2L59O3bs2LHaw7CwsLBYUyCi\nUImW1vRkYWFhYbEkLFFYWFhYWCwJSxQWFhYWFkvCEoWFhYWFxZKwRGFhYWFhsST6liiI6GXEl8fc\nR0T/d7XHY2FhYXG+oi+JQqyn8HHwKo1XAHgjEV2xuqOysLCwOD/Rr3kUzwJfsvIAABDRTeAluHed\nzYM02x1c/43dWCg3sH1dpvsG5xKIVnsEK47z74zPy9sMOk/uNAPDyXwNv/ncC3Dp+sFlPVa/EsUm\neJcjPAZt/QQiehv4SlbYulVdhCo8irUW/u3Hh5R9ntZu1hxseS8Li3MH64dSuPQl5ydRdAVj7FMA\nPgUA11xzzWmJvrFsAt98x/Pwyo/dhbe/8GK8+6WXndUxWlisJs7Hgp/nyym3Ogw/9/c/wJaxNN7x\nokuW/Xj9ShTH4V23djPCrzncE67YOITnXDyOrzx0HO96yaWg80WtsDjncT4+y+fLKd+zbw5zpTr+\n9jVXIhpZ/pPuS2c2+DrMlxDRBUSUAF9O8dblOtirnroRxxar2DNTWq5DWFhYWJw1/PDxU0jHo3jB\nZZMrcry+JArGWAt8gfTvANgN4GbG2M7lOt6zL1oHALj/4PxyHcLCwsLirOGBQwu4ausIUvHoihyv\nL4kCABhj32SMXcoYu4gxdv1yHmvzaBobhlO4/9Dich7GwsLC4oxRqrewe7qAa7aPrdgx+5YoVhJE\nhCdvGsbu6cJqD8XCwsJiSTx6LI8OA67eOrJix7REIfCkqUEcnCuj1myv9lAsLCwsjNh3qggAuGxq\neUNiVViiEHjS1BDaHYZ9p6xD28LCon+x71QJA8kYpoZSK3ZMSxQCF08OAAAOzpVXeSQWFhYWZuyb\nLeGiieyKhj9bohDYMpYGABxZqKzySCwsLCzM2HeqhIvExHalYIlCIJOIYWIwiSPzligsLCz6E7Vm\nGzOFOravy67ocS1RKNg6lrEahYWFRd9iplADAGwYXjn/BGCJwoMto2kcXbREYWFh0Z+YzkuiSK/o\ncS1RKFg/lMKpYv28LKZmYWHR/5jOVwEAU1ajWD1MDqXQaHWQrzZXeygWFhYWPrgahSWKVcPkYBIA\ncKpYX+WRWFhYWPhxMl/DUCqGbHJlC39bolCwXiSwSIeRhYWFRT9hOl9bcf8EYInCA0ejKFiNwsLC\nov8wX6pjfDCx4se1RKFgcogTxWzJEoWFhUX/YbHSxGjGEsWqIh2PIhGLIFexzmwLC4v+w0K5gbGs\nJYpVBRFhJB1HrtJY7aFYWFhYeNBqd1CoWY2iLzCSiVuNwsLCou+QrzbBGKxG0Q8YSSeQq1qNwsLC\nor+wKCwdo5YoVh/DVqOwsLDoQyyUuVwazcRX/NiWKDSMpOM2M9vCwqLvIH2n1kfRBxjJxB0Vz8LC\nwqJfUKq3AAADK5yVDVii8GEkk0Ct2bFrZ1tYWPQVyoIoVrp8B2CJwgfJ1pK9LSwsLPoBpTqfvFqN\nog8g2bpStxqFhYVF/6BcbyFCQCq+8mLbEoWGbCIKACg3uEZxqlDDHXtm7RoVFhYWK4pcpYHbds2g\n0+Gyp1RvIZuMgYhWfCyWKDRkhEYh7YHXff4BvOVz9+Pbj51czWFZWFicZ/j9Gx/Cb92wA/+54ygA\nThSrYXYCLFH4MJCUGkUbJ3JV7JouAAC++vDx1RyWhYXFeYS5Uh0/2jcHAPj6T08A4JPX1XBkA5Yo\nfMgkpI+ihR2HFwEAl0wO4CdHctb8ZGFhsSL4yeFFdBjwpKlB/PRYHowxx/S0GrBEoUGNejoyXwYA\nvPbqzZgt1jFj16mwsLBYAeyeLoIIeM1Vm1CstTBbrKNcbzkWj5WGJQoNGeHMrjTaOLJQweRgEldu\nHAIAHBLEYWFhYbGc2HOqiK1jGVw8MQCAr2xXrretj6JfIFW7cqOFIwsVbBnLYNu6DADgyEJlNYdm\nYWFxnuBErorNo2lMDfPlmafzNWt66ickYxEQAdVGG3OlBiYHk9g4kkY0Qjgyb4nCwsJi+TGd42tj\nbxBEcTJfRa3ZRjpuTU99ASJCMhZBvdVBrtLASCaBeDSCycEkZgq11R6ehYXFOY5Wu4NTxRo2DKcw\nlk0gHiXMFOuotzpIxixR9A1S8SiqjTZylSZGREnf8YGkXUvbwsJi2XGqWEeHARuG0yAiDIuK1o1W\nB4nY6ohsSxQBSMYiWCg30Oowp/b7xGASs0VLFBYWFsuL6Ty3XEiz05BYnrnR7iBpiaJ/kIpHcVKY\nmUZE7feJgSTmFI3iwGwJv3/jQ3j8ZGFVxmhhYXFu4IZ7DuH939rt5GktlPkyB+sGuOwZTsedSepq\naRSr40LvcyRjEZwUrD6SFqanwQTmSg10OgyRCOED334C3955EgvlOv79t352NYdrYWGxRnE8V8Vf\n3LITAPCci8bx/EsnnIXThoXsGU7HcXCOh+ZbjaKPkIxFHVYfSHEuHUkn0O4wlBstMMbw4/08vf6+\nAwt27QoLC4vTwvd2ujXk7twzCwA+osgmY1gU8ui8Igoi+v+I6HEi+ikRfYWIRpTf3kNE+4joCSL6\nxdUYXyoeQVUI/5QIRxtKc8Io1Fo4NF9BodbCLzxpEq0Oc+pBWVhYWPSCx04UMD6QxJM3DeGJmSIA\nlygGU5woMvEoCjVepPR8c2Z/D8CTGWNPBbAHwHsAgIiuAPAGAFcCeBmATxDRiseDqSFoKfF5SNy0\nQrWJA7MlAMBrr94EAHh8urjCI7SwsDgX8MTJIi7fMIhL1w9ijyCKQrWJwVQM0QgvJy6rRQA4v8Jj\nGWPfZYzJJeTuBbBZfL4WwE2MsTpj7CCAfQCetdLjU1k7nZAahUsUJ3JVAMAzto0iHiUcXbSJeBYW\nFr3j4FwZF00MYPu6LGYKddRbbeSrTcfsBLhLHwDnn0ah4jcBfEt83gTgqPLbMdHmAxG9jYh2ENGO\n2dnZszqgWMRdGESuJuVoFLUWTuRriEcJ6wdT2DSSxlFb2sPCwqJHlOotlOotTA2nMDmYBADMFut+\nooirGsU5RhREdBsRPRbwd63S588AtAD8e6/7Z4x9ijF2DWPsmomJibM5dMSjikah+yiERrF+KIVI\nhLBlLIOji1Wn//FcFa//5D24ecdRWFhYWABAo9XB737xQfz113Y5bTKycmoohckhThSnAogirZie\nzrnwWMbYi5f6nYiuA/BKAC9i7kIPxwFsUbptFm0rilhU1Si8Pop8tYmFcgMTYgYwMZjEgVm3quxn\n7zqI+w4uYNeJAn75qk0e0rGwsDg/8YPHZ/BtEeH0az+zBRdPDuKUyNVaP5TCoIiuPFWoo1Bt4uLJ\nAWdbuUYOACRWSZ6sVtTTywD8MYBXM8ZUu82tAN5AREkiugDAJQDuX+nxxSLuZZGqnmT1atNrQxwf\nSGK+XHeSZe49MA8AKNZb2HXCRkNZWFgAP3j8lPP5R/u4jJBJvR7TU6mOSqPtJQdFi0ieZ0UB/xnA\nIIDvEdHDRPSvAMAY2wngZgC7AHwbwNsZYyuepBAXGkUqHnEWMpdVZWsaUazLJlBrdlBptFFvtfH4\nyQKuffpGAMBOSxQWFhYAdk0X8NyLx7Eum8DOE3kALlGsH0p6gmVqzTbSCVc0xxULx2ppFKuSmc0Y\nu3iJ364HcP0KDseHmEMULnsTEdJqsUBJFAN8JjBXqqPdYegw4HmXTOAHu09ht82vsLA479HuMOw5\nWcJ1z9mOarPtrGuTqzSRjkeRScTAGEM8SijVW6hq5cRVckjEyLf/lYA1oAdA+hX02u/peBSVZhuF\nmqJRiHosc6WG8wBsW5fBlrEMjudcJ3e53sLb//0n+MxdB1biFCwsLFYBxVoTb7thB754zyGnbb5U\nR6PdwZaxDLaOZXB0gcuFfKXpBMkQEQZTcRRrTR9RqH7OaOQ88lH0O+SNSWlEkYpHcapQB2PAcMYt\n2AUAhVrTiX7aMprBxpG0k28BAF9+6Di+8eg0/vYbu53yIBYWFucW/mvHMXx31wz+/JadKNV5qti0\nEt20ZTSN6XwVzXbHF900kIxhodwAY15fRFzxUaih+ysJSxQBkDdDtQ0C3GcxW+Q3fUhEKQyKZJhS\nrYV5UV12fCCBzaNpj0Zx7/555/N9B9zPFhYW5w5++ITrtH7oyCIAb9nwiaEUOgxYrDRQqDWdaEqA\nE4WsEuvVKFw5FLFE0T+ICY0iQt6bkk5EsVhpOp8Bt2hgqd7CQrmB4XQcsWgEU8MpFGstlMWs4qEj\ni3jpFesRjZB1cltYnINgjGHniQJ+8cr1AOBEPZ7M8wnj1HAKY8ISsVBu+DSKwZRCFIlgH0WULFH0\nDeIG1k7Ho1iscLORrAElC3eVapwo1mX5gzCWdR+IequN6UINV2wcwkUTWc8aFs12B++86SH83Td3\nL9v5WFhYnF1M56t4w6fuwa2PnHDaZot1LJQbePaF67BhOIUnTvLaTdOFGhLRCMYyCYxmubyQRDFk\nIgqDj2KVXBR2PYogxAwhaKl4FEVRxVH6LzLxKIh43sRipYFRQRCjYuawWGmg2e6AMe672DqWwTEl\nk/vuvXO45WH+sP3yVZtw+YahZTsvCwuLs4NP3XkA9x5YwN6ZEl7xlA2IRsgxNW8Zy2DzaBonhCYx\nV2xg3UACkQg5E8jFchOFatMxYQPc9FRuyKrVanis1Sj6EtIm2HESxjlU57a8kZEIYSARQ7HWxEK5\n6RDEmJg5LFZcJ/fWdRlsGknjuEIUtys2zR/vt74LC4u1gDvE2hHz5YZTTdopyTGcwtRw2vmumpgc\n01OlgWqz7Sn455UvatkOlxxiNuqpfyCd2RpPeNRB9UYOpGIo1VrIVRoYEWtsyyVUF8sNzBTcqIeN\nI2kU6y0UatzXsXu6iGduH8X6oSQeO573HO8bP53Gfz947OyenIWFRWjkKg188LtPeAp/luotHJwr\n4xVP2QAAzno0JwQxbBxOY8NwCicLNTDGUFCIQsqF2WIdzTYzypR+Mz1ZogiAND1pPOFRB9XPg6mY\n47geEDME1WklV6cazSYwJRZMnxEP1YG5Ei4cH8AVG4Y8CXonclW8/T9+gnf/1yM+ArGwsFgZfOA7\nT+BjP9iHv7jlMadt70wRjAGvfOoGxCLk+CJO5qtIxiIYycSxfiiFWpOHwKq+iEQsgkQ04kRIpg2V\nYZPGPApreuobyGgn/Zaovgt1AZF0PIpqs80TZbT1K3LVJhYqDSSiEWQTUazL8kzuxUoThVoTc6UG\nLpjIYvNoxpN3cfsTbun023bPnNXzs7Cw6A7GGG4XNZru2jvnLHksw123rctiajjlfJ/O17BhOAUi\nwqiwLOQqTV90UzYZxZwgilQimCjUkFi1SKkeiblSMDqzieijIbYvMMbeexbH0xeQfKDflHjEX1UW\n4OxfqrfQbDNkxY2PRmTJjxby1SZGs3EQkWOaWig3HK1ig9AyCrUWirUmBlNxPHx0EeuyCYxk4j6N\n4kPf24Pd0wV85A1P9xQPs7CwOD3cs38e//Dtx/HX116Jp27mKzOfyNdwIl/Dsy4Yw/0HF7DvVAlP\n3jTsEMPGkRQ2DKcwLZzWC+WGU9JHEkO+2vRUcgD4GtjzJW5lSGtyRMLkwO5HjeJaAA92+Xvdcg9w\nNSALAerkrd48rxkq6piX0orgziajKDfampPbjYaaFbOKicEkNo2kAcCJnDgwW8ZFkwN4yqZhTxXa\nU8UaPvr9vfjerhknWsrCwuLM8P5v7cbDR3P48G17nTbppP7lq/jaadIXMZ2rIhWPYDjNTUxBTmv5\nf77Mq8HqGdhzXUxPJnPTakU9LTUd/SfG2BeW2piIRs/yePoCppsRi3rJwfkci2BeEEVWUSUziRgq\nMmw24w+blWvhTg4mnQdjtljHk6b4EokvuWI9JodSuPWRE2i2O4hHI7hrz5yz/3v2z+ONz9rqfH/8\nZAEPH8nhV6/ZsmoZnBYW/YxjixV8f/cpvOFZWxzzcb7axKNCa79n/zw6HYZIhHBonjuwn3/pBCIE\nHBMO7elCDRuH0yAiTA2l8L1dM2CMIV9t4tL1gwBc0/OJHCeRbFKdQMacEHm1SmzSUKojYvi8kjAS\nBWPsw902DtNnLUJGFpBuehK2wmiENO0iinzVm7EN8EXRy402yvUWxsYyzu/peBQLpYbzoI4PJCE9\nIgvlBqqNNubLDWwZy2BiIIkO46F3W8Yy2DVdQCoewfMumXAeboDbU9/yufsxU6gjHo3gdc/YDAsL\nCy9+/8aH8NCRHEr1Ft7+Ql7E+tFjeTAGvPppG3HrIydwZKGC7eNZHJ4rIxWPYONwChODScfkdDJf\nw/ohbi4eG0ig3uqg3uoEahRycSJVc8gkok4dqFRM1Si6m55WC0bTExGliOgtRPRq4vgTIvo6EX2E\niMZXcpArDaMzWzCIXhNeNUNlEt6ZQ6XRQqXR9mgaQ+kYSvUW5kp1xCKE4XRcScRpOGrpxGASm0a5\nSUrOQA7OlbF9XRZXbBjCwbmy42B7YqaImQLf7jtiJS2J47kqbrz/CJrtTu8Xw8JiDeLgXBn/+cAR\ndDpu7OJssY6HjuQAAN9V3pGD83yFylc8lYe7Pi6imGaKdUwNcef01HDaWT9isdLAmKgaLWs1LVYa\nKNVbjiYhiUJu49UcFGuE6sxW5IjqwF4tv4SKpUxPNwBoAsgCeDeAx8AXHHougH8DX8b0nIS8MTqR\ny5unt6tmqKymURRrLVQaLa/vIsGJIhblJEEk/wMLlabruxhIOuG0JwsuUVy+YRCbBYFM52u4YDyL\nBw/zAmRXbR3xOb/feeND2HF4kZdAfv5Fp3VNLCzWChhjeNOn78WJfA3xaASvvZpr1/K9eNqWEeye\nLqDV7iAWjeCQ0Byu2cYt6TL6cLZYE9o+MDWUxME5TiiFAM3h+GKVV5UW31PxKBLRiDN58zqtXUIw\n5UvElYSJ1Yp0UrGUM/sKxtibAPwPAJcxxt7OGPu2iHLassR2ax4RozM7OBHPkyijEMWAQaPIJKOo\nNNoo1VpOUcFohDCSjnONoiir0Cad2lGL5SYYY5jOV7FpJI3No9yUJR/qg7P8YX/ZlVM4ka85zvWF\ncgMPiiqW337Mq2k8djyPP7jpIRyZr8DCYi3iyz85hvd+9VGPtrx/tuQkv31LeealM/p1V29Co9Vx\nBP+RhQq2jGYwlk0gEYs4WsBcqeEQxcRgEnOlhuOL0Ini6CJ/h9SSHLyIqKgNZ3Baq0Shag79plEs\nRRQNAGCMtQDo4TUrvjzpSsI1PXlvkDQ9MS0Vz3PjNWd2qcZXrMpo7eV6CyUlQQ/gju4FJRpqfDCB\noVQcEXJV21qzg/GBpKNRyHIgB4RJavt4FoBrqvrJ4UUwBjxt8zB2nuCzKIm//voufPXhE/jH7z7h\nuwayOJmFRT+g2mgjLyo3S+QqDbzr5kfwpXuP4GtKcb77D/KJ0dM2eyMGjy5UMD6QdMJfD4sJ0myx\njvXCxLRMGVJlAAAgAElEQVRByYuYK9UxPuiuO5Ov8kWFmm3mIwq5jeq0ziSiwWGwsWDtQvVFeHMn\nwlyh5cVSRLGZiD5KRB9TPsvvm1ZofKsCeWNMGkWH6e3KUoVR1V8RxbxYiEQ1PXFNo41izUsUg6IU\niHSMj2Z4IbGRTAIL5QbmxEM3MZjEhLIYO8Bfgm2ilhQAHM/xl0DOml579WbUWx0cEN+LtaZjrrp7\n3xyYoibdeP8RPPP62/CJ2/eFul4WFsuJequNV37sLrzwg7c7Gc0AcO+BBefznXvcBNX9syWk4hG8\n9MopHM9VnffpeK6KTaNpTAlH9HRBIQThc1g/lMJMvoZmu4NcpeloFEOpONod5kQxSd+EJAqZE5XW\nynBIjSJtTKxTiEIhB9X0pAfVrAaWIoo/As+V2KF8lt//ePmHtnpwfRR61JPQKDTbk8r+8ag33K3e\n4jP4bFKPhuIaxWDK7/wu1VqIR8l5oEYzcSxWXCf3+EASqXgUmYSbvzFXqmNi0NU0jimaxlg2gads\nHgYAp2bNrhMFtDsML758EgvlhmeRpZvuPwIA+OI9hz3nenShgv/5ufvxg8dtprjF2Uenw/AXtzyG\nv/n6Ls9zd9+BBeyfLWOh3MA3FVPSQ0cWkYhG8LxLxh0HNAAcEtr1JZMDAIDDwll9fLGKzSNpTAwm\nEY0QZvK8FhMnCk4I4wNcq5dVon0mJvH+yO/SeS19EXphv4qoBmuq6aQSgikkth9gJArG2BeW+lvJ\nQa40upXw0H0U6s1OeOq1BNsis4kYKvW2z/TETVKupiGJaiwrNArFdwG4pqpmu4PFShMTAykMp+NI\nxSNOEtDRhQq2jmWwWUvok5rGq562EQDw+DR/0Qq1Jn56PI+RTBzT+ZrzAgDAJ+/cjzv3zOLPv7rT\n8yLXW218+LY9eORoznBFLSxcMMbwbz86iO/t8k44frx/HjfccxifvfsgHjvumozuPTCPWIQwmIw5\nq8YBfBK0bV0GT9k0jH2nSmiISdmhed6+YZg/8/JdOFmoYWo4hWiEMDGQxMlCDeVGm5tzB13NIV9t\noiSIQq43IwnhmPRFiLWupUl5oezXHFRzs8lH4fFF9IHmYMJS4bFfI6JbTX8rOciVRsQQ9WQqP27S\nKBJRhRxUQkhGuY+i1tIScaJco6i7Tm6AP7zFmltxVpYBGcsmsFhuOHbQ8cEEiAjrsklnJb7ZYh2T\ng0mMDySRiEYcn8bBuTIS0QiedcEYAG9GOGPAG57JE/nUXA1ZWvl4rupZU+Om+4/iw7ftxW/dsANt\nxS7HGMOX7j2Mhy2BnJdod4Lv/+17ZvG+r+3Cb9+ww+N3+NF+N5n0rn2uKemJk0VcPDmAq7aNOhMa\ngGsK28ez2L4ui1aHOVWaTxXq2DCcxvphLvxnCjXUmm1UGm0nDH1yKMkXGhLvjgwakb4I+a7JiZzu\ni5AkkIxFRLSi3xehkkZ6jYTBmrCU6ekfAXwQwEEAVQCfFn8lAPuXf2irB8dHobW7zmytXQ1rU258\nwuDkziZiKDdaKAZpFI7vwk35zyg+DcBdfnU0m8BCpekxSfH2uGMb5Q65JCIRwvrhpBPRcSxXxcaR\nFNYPppCIRdzoqTletuAlV/DlHA8JzSNfbeLoQtUprawSyPdF4bTZYt2ppAkA3999Cu/96mN4/Sfv\nQb3lxj8wxvD5Hx30RWFZrE1UGi186LtP4KfHvITwtUdO4L1ffQzXff5+zwTiDqXg5d37XHJ4+EgO\nT9sygk0jaQ8hHJwv44LxLC5bP4B9syUwxsAYw+H5CraNZZwQ8uk8J4RivYXxgQTGs0nEIoTpfM15\nH2RlBJ0QhhRTUqPVcSotyCgmPS9CaghEvKabo1GEKBueMITBqqTRb1jK9HQHY+wOAM9hjL2eMfY1\n8fdrAJ63ckNceUjTk58QgsNj1WKBHo0i5vVXSKQTUXQY0Gh1fDkYlXoLpXoTg6qmkYg6UVL8uyCK\nDA+nlS/BmLK63kK5gVa7g4WKG+I3lkk4msZcsY7JwRQiEcKmkTSOOURRQYSAp2waxkAy5jNVvfwp\nUyCCQwiMMTx0ZBE/eyHXTNQcDln1tt7q4IGDrslgx+FF/NXXduF3v/Sgk7kq9/W3X9+Fv7zlMZ8f\nqNXu2ITBFYRM5FRxaK6Mt3zufvxIEe4A8PkfHcJHf7AP77jxIc99+4GYQOQqTTyikMgDhxbwzO2j\niEbIU1r/0HwZF01k8aSpQWe54HaH4ajIlN44kkaj1cFCuYFivYV6q4P1QymnqObJQs0zaYpECBOD\nSWeJUsBdUGwoHUeh2nTeqUFNc5Cat5yUSc0/KIopk3CJImUoyWFyYHvKc6xF05OCLBFdKL8Q0QXg\nSXjnLEy3y5Rf4dUogokiEQ1+aNQ+mWQMlWYbharX9JRJxJy8i2wi6qioA4rzG4DjGB/NJJCrNLAg\nIq5khNSoMFUBPFpKhv5NipcJ4ElG6waSSMQinEAWvZrGk6aGMDmYdAhkvswdfy++fD0yiagTqw4A\nDx5exDNEEpNHA9ntrup3515X6Dx0NIfP3H0QX7jnMO4/6Ea0dDoMb/z0vXj+B37oiXoBgN3TBdzy\n8HEfsVh0x2yxji/ec8hHCv+14ygu/4tv4+YdRz3tH75tD+7YM4u/+fouT7tcpfHQfMWpjwQAOw4t\nOPd/pwhTZYzh4FwZT940jAvH3fXja802pvM1bF+XxdZ1GUdQz5X4Aj+bRtIOIUzna66/bjCB9bI9\nV/VEBgKu5pCruJGEarvuixjWfBGyXRJDUBRTN82ByCsjTCam1Vq9LgzCjOwPAdxORLcT0R0Afgjg\nncs7rP6Esfy4wc6YDEEgKmlkE1Ewxl+OgaRehbaFos+nIZzfYlbkLJqUTWC+3HC0B7mI0pjQNACu\nUUxITUMlkKIbAbJpNO2YpGRY4KaRtGc51wOzXNO4eHIAW0bd9cDbHW4auGb7KDaNpD0E8vDRRTxt\nywgyiahHA7lHWQpWXRZ254kCHji0iOl8zbOYfbvD8IZP3Yt33vQwblPIBwA+/sN9ePb7v499p0qe\n9sPzZXzktr0oi2sm0ekw7JkprgnCKdaanig1iYeOLOLTdx7wlK0AgH+9Yz9+9u++jz0zRU/7H/2/\nR/Dnt+zEx3/oDYP+7N0HwRjwubsPOm2MMfxI3JPHTxadiUWz3cEjR/N49oXrAMDRECqNFk7ka3jh\nZRMYSsWc9tkSr6a6fV0WF05kcUREEUnBvHUsgw3DKWGCbTrHGR9IOvWVZgo1hxDGB5IYTMaQiEU8\nAR+y3PeQIAT53I9qvohiXfgixCRLmqDk9ZXvVFp3Wse7O63lOx/XCCBmIIq16qMAADDGvg3gEnBy\neAd4lvZ3l3tgqwrD/aIuNaB0JAzRDQkDacj1c+dKdV+CnkMgKW9CT7XZRkHEiQ8Kv8ZQipcIKQr7\n66Di08hVGqi32ijUWopPI+HMlGZLDSemfExtL9YxmIwhnYhi02jGeZHkC75lLOMhluOLVTTaHVw4\nnsW2dRmnHwDsny3j0skBXL5hyEMgDx3J4aIJHtaoaiDSjp2MRfCTI64J45FjOSdGXvV3VBttfOT7\nezGdr+ELPz4EFe/58qP4p9v2+ITjv9yxHy/9pzvxmbsOetrvOzCPq//me/h/2pK0J3JVvPFT9+Ib\nP532tBdrTfzhfz6Mbz7qbW+0OnjPl3+KG0XosUSr3cG7bn4Y7//mbk97u8Pw65+9D6/9xI88M/5W\nu4PXfuLH+IV/vN0J+wS4wH7TZ+7D9d/cjVseOe457oe+uwcnCzV8/kfuuVUbbceEpGYvL5YbePxk\nEal4BI+fLDrP0Il8DbPFOn7pKVMAXEKQ9/kVT93gMSVJAtg+nsVFkwNO9r9MctsqopKkc/iUiK6b\nHEpiSolWcuueJZRyNl4TkyyBo/ocRqTPQUQxFTWtezgdFw7wuqddVlA4pbU7GkXZn2ktf4tpxULl\nO6/7Hkyhr2uSKIjoavmZMVZnjD0i/upBfc4l6BnZEtEupT10mExPpvaMeOA6zNtH5mDMFGua74J/\nPiVmUbJfJsmJRc7GJLmMZRMoN9rOSzDi+DTiWKzwEiFzxbqjtqtEIZ3iADdVyRdV/p8cTGLjSMoh\nkKPODDGLTSMugchZ4gUTWWwdc00MAF8W9pLJQVyxccjjFN87U8SG4RRecNmERwN58JCbgau2P3Is\n54RKPnDINWEtlhuOpqKGZsroLAC46QGvIP/E7fuxUG7go9/f62n/zF0Hcc+BefzlrTs9jtr/fOAo\nvvLQcfzBfz7sEfDfemwaN95/FO/58qMe89nd++bw5Z8cxyfvPOCx1+84tIC79s7hJ0dy+OHjrrb0\n8NEc9p4qod7qeNYjeex43onZv22X2//R43k0hG9HNec9ciyHZpvhqZuHcWC2hKrYdrcwBcny9fI+\nyKCGVz5VhFOLfocEWV02NYiNIymHIA7N8f/bxrKexX3ks7dhOIWp4RSKNe57mxMCeGIg6SbE5b2a\ngzQb5SpN5xquG9BMSXVvwMew8EVUGsK/Z/JFaJqDfO6lxp+IRRCLEMriOnn9D3wbVcsAXI1C1yDO\nNY3i80Q0SkRjpj8An12pgfYDTKU91FmEikQI01MYn4asSDtTqPvCbHl7Del41LGDylmRDBeU5CIj\nOE5q7aOZBNodhkKt5Uk+GsnEUWt2UG20MauZqiqNNmpN3p6KRzCQjGHDcBr5ahO1ZtslkCFeAfdU\nsY5Gq+MQydYxnkV+slBDq90BYwzHF6vYMpbG5lHeLgXw/tkSLpoYwGXrB3F4vuw4tffPljCWTeD5\nl05g76miI5ilwP3VazZj76mS0y61l6u3jmC/IhxnCnVM52uYHExi/2zZmZW2Owz3HeTEcmSh4nG8\n376HC+O5Ut1Z4AZwHbiNVgc/PZb3tQPejGKVBFQn8Z17Z50Jyf0K2cnPE4NJT96KzLK/Ztsodp5w\njysjkd74rC04MFd2BKY0yb32qk3oMF59GHBn/C+7kmsOe2ZKnvanbxnBYDLmmCJl+7YxTUMoitUb\nR1KYGuLtMrkNANZlXUI4qfocBpKO8A9KMk3EIihUmygIDUHNkDZpDvlqE+U6v9dyMiaJYTpf8yS3\nSmGfqzSRiEU8Sbfyt3Q86mmPx/hnNewVcN9nXT6YfRRrkyiG0X2Fu6Zx6zUMU/CBY2EyVJXV4SGE\nMNqF4bMU/POaSSrrEEjN5/wGeJlkwJ1dZZT+gNenAfDa+fVWxyEU6dtYEC+sdH6PKOsBzwoNhK8T\nnPC0A1ygbRhOgTEuPGT75GAKG0fSaHcYZop1zBbrqLc62DKWcdvFOA/O8fDIjSNpdJg7/gOzZWHa\nyjprdgDAnpkixrIJPO+SCbQ7zInYkgTyK9ds8QjHXdNcsP7qNbzW5U6R7MXLuHfwetH+mBDA5XoL\nB+fKePmTuTBVHbWPHc/jxZevF+2uwN55ooAXXDaBWISc4/ExFXHNtlFMDiY9ZrgnTpZw8cQArto6\n4qlXtHu6iM2jaTznonWe/vtnS1iXTeDnL53AofmKM7M+PF9BNhHFz186AcaA/afcQniJWAQ/d/G4\n6MfbD82XEY8Srto6igjB0QSOLFSQiEYwNcQ1AakhnirWEI0Qxgf4fZb3YK5YR4T4JGTDcIqHd4vS\n+kT8mZOa61ypjrlSHVFRcl9dRnRRrDcvn3tVc1AF/HA6jkKNE0UiGnFm+cPpOMqNNvLVJpKxiDOZ\nkkJ/rsQnX1Lwy3ckV214tAbA1TZURzagag4RrT3Y9GQyVa9JjYIxtp0xdiFj7IIl/p61koNdbXRb\np0KHNxEvOL8ijHlKPpi6SSqj2FO9pUC8GoUkBLfda39VZ1fq95GMu0ZGvtrCcNp1igPucq5upri7\nHvhssY5ELILBZGxJAgG4gHfWIR5Oe5aFrTW5P2VqmBML4DrWjy1WsFWpb+X4R3I1bB5NO2t5qMJu\nKBXDVVtHnO0BV3i+XNjfpdDcK4jk2qs2iu98dr33VAmM8az2eJSc8hFzpQYKtRZ+7qJ1WJdNOLkA\nzXYHh+bKuGLDEC6aGPDkCOybLeFi4a9R2/fPlnDJ+gE8aWrI44Q+Mi/KU6wfxHS+5mgIh+f5tZBF\nIaVJ5chCBVvXZd1qw+JaHJorY6sgZfXeH1vk1YkTsQjWD7kF8uSEIBIhbBhx12aYKzYwluU1yaYE\nUXQ6DHNl3h4VIaq8bx1zpQbGMgmHFAA4zma5H9meq/CopMGUK8jVaCW1eoFLIE3PpEl+ni3VfQX7\n+DEansWDJIHUmh1P8T7A9UsYTUzRYEuDLh8MBoi1SRTnM0y3S97IpaKeVKgPSK9aRBiTlHzwTxW9\nmoYsQHiqwGdvUvNw2wUhaDHipxwNhL+oquZQqjcdYlEJJFdpOsQhI0pylYZjqiIip10SCMCJQu3v\nxLkPJJzollmhaQDcdr1RKXjIGMNsieeC6OuNn8xXMTWktvPzPZGrYeNIWiEc3n86X0MmEcWl6wcR\nIZVw+P/Lp4YwmIo5QlMK4e3rsp7ZtTRBXTQ5gC1jrsP/6EIFrQ7DhRPe9nyFC8gLJ7LYPJp2hHi7\nw3BkoYILxnn7YqXpmMkOL3BC2DiScs4JgJN85rTn3WNvHUu7SWni2DOFGjYMpzCQjPFzk+HOJddH\nNaVqCErhvA0KgcyX3YnCxEASjXaHaw7FOtZl3RBVgBPCXKnu8SvI9mKt5Wiy8WgE2UTU0RxUwa9q\nFL72StNXaNPRHLR3RC4YlKs2jYmxukYh33OfiUlGN0X1/sG14aKmiaUlirUFU7VGU1VZ00xAbdeL\nBTqfQ4TNGvMuxENdqrc8sx9pqjpZqGEgEXOiLPy+i7hnP067pmkUak3Umh3Hp+GsxlfxvrCjiqlq\nsdLAqEhukprGoiCQVJwLAre96WTCrssmPOuKO4s4DSYdH8l8iRNUs80wMZj0ZOYCwLQghImBJOJR\ncgT7yUIVG4ZTGErFPXb26Txvj0f5LPq4015DKh7BSCbOQ4IdYuH/N46ksHE47XyXs+xNIylsHEk5\nwloK242i3SE00X/DMCevnCCE+VId7Q7DlJJMNp2volxvIVdpYvNo2qljNJ2vgjFuppsaTvvqG80J\nMh3LJJCIRpSKqQ3nem4YTjnrN6hrMEwNpZwxzpfrTsjp2AAPp+Zk7UbJydDSQpXfz3Vae77aRKHa\nxIjQTIfF/c9XmijWW07OAuDXHNT2nEMIbv+sssbLYMqvOcyX686ESW3PVZpaMhw5762fKCKiXdco\nhIlJkwOSQHyJuwZ50W+FAFVYougBJtNTGOeUqQZUKN+F0t80+wlyfs8W6771MQBXQOkahe781glE\n9pf/S3XviyyJYbHM186QROQ1YTUxmuE1qUYyrkaxqMS56z4QgBPFYCqGCIl2JdpKmrgWKw2U67w0\nyvohnnU+PuBGaE3nak7o5YYRVxM4ka85WsbGEVfwT+er2DicdtYpUHNKMokohtNxbBxJO4QjI3om\nBjmBnMhxIX5K8ctsGE47kT7S4bt+KOXRBE4V3f24hFBzsoInBpLYKNtzNRSqLbQ6DOMDCUwOJrlv\nIVdFSxSLXDfATTqTQ0mnYup82Y1imxhMOlFE88qMfySTcBLV5ooNTz2kVoehIkjNCX5QCCFfbTr3\nUdUcyg13YjGQ4PeTE0LTI+CHnDwHr+AfSsVQrHs1XIBrDq0Ow0Kl4TExyed/rtRwgj8AIBN3+6ga\nAhEhpUQ6qXCd0wYTk0+jCK7kcK45swEAYr3sNxPRX4jvW4nonPZNGJ3ZTngsBbbrCOWjCGFiMpqk\nDH2kLyJfbXpeAtkuBZoTEhgPJgQ12gpws1SlZiLrTzkVNsX/Qo0nB8r9SAGyqJkGhlIxRCOExUoD\n8+UG4lFeITQVj/Ja/krBQynsRjIJRzMB3PpWI1k+08yJvApZqmFEZKl3hBCZGHDLnOSUcibS3DI+\nkHCOOVOoO2aw9UMpR4DPFGvKWsopzBRqghBqSMYiGErFMDWcQq3ZQaHqEsLkUNIhhJP5qnNdJweT\nmBrign8mX1MIxNWWZgo1zJXdc54cctcjUdtj0QhGMzzhUhaqW6dEq+WqTRGx1nEE/0g6gXy16RKL\nYjIqVJsOsch1ouX9zAkNQS/FrWsCpvZIhBxC0Cspq1FMquaQTsRQlc+dhxD458Vyw7cmBMDNnqpG\noZbaSOgCPiY1h2CNQhfocROBxKRGoZuezq3wWIlPAHg2gDeK70UAH1+2EfUxnHUqtHYjURgWH1Ef\niDD+il4/d9M05ssNxCLkbCNnYCc1Qsg4xOJ1crux5k002h1nZpeMRRCNkPsii/ZYlM/4pUCQ7TxS\niudwLJYbjqYBcHMVXxeg6RnTSEYQgizJ4Ji3OIHkhHCUwknuv1hv8TWNM27kVq7K+0otB+BCU8bQ\n5xTz2UgmgbzINeHtbg5Kq8OEhlDH5JA3Amyx0sCpAje3qY79xUrTQyDyOLlq0yWQoZRjnuO5A25N\nr1Q8ilQ8gny16SFTgJt01PZxRRPIKUUk9exlmcmv+hAagjyCVnXLiVUXHULw+LRcAe9xTpt8DpqJ\nKZvkhKBrDplEFNVGG+V6K9g5XfWakkxZ06YV54AwJqZgH4WPQGQR0ZAaxVonip9hjL0dQA0AGGOL\nABLLOqpVhul2SVmv2xxNJVpMN75n7SKET8PbRzVVqaXOXU0jyNcxKwhBagwy5vyk5rtIRHny0Smt\nnYiQictyI01txhcVBNJ0nOUAPDNKacsGXLNHsdZChNwxSULwEwgveCgztWWEluwvy1m7BJIQArCD\nUr3lzJJHsnHkxCyam09cYmm0O6g02shVmm7/tBvRtVBuOLNxVfDLdm5uc4XmQonPfjMJb2SYJMGx\nTAKDqTiI5H68SWYjaa4tzSu5CbzdSxRjWtkKt+6RS7589i4qqWrBDNLHM6gRwkyhhg6Dojm65KgS\nQiIWQToedTQEPWm0Iispa+tNyzpmAxohVJpcI0oFrPci8x/U/UgkYt2LdwLue6g7rc3RTTIMNjhf\nQp9IGn0Ua7woYJOIohDykYgmAJyXZTzljdfXozDdYFM0lEejMBULDFG63LNtCAJRwwB1xzk3AXFB\nkZQlCaIRJGMRNxoqqRBCIuoLvwW4FiIXZVKdk1lR8FC3OTszxEbLIQOALwxTrHHhpYZBSg3Bqfrp\nONLjyCmE4NjHpQYitAdHwAuTVE7rP5pJoNHqoNr0EoIzsxeCdjjjFaZ5nxnG9b8Uam77iNJerLWc\nBXCcWXeV949HCak4vy9DqTjywjwHKIQgzm1R065ckvWW0B4R18jJXpZh0Ok4mm2mZPh7xyTDiNVs\nZ8Cf1eyu2eAlFrnPfLWJeqvjE/xl+bxo0Ur8uWj7tALGeIa/OVopWItQ31NTcAn/jffTTVIJoy8i\n2PTkEoWnua+d1iaEIYqPAvgKgEkiuh7A3QD+7mwcnIjeTUSMiMaVtvcQ0T4ieoKIfvFsHKf3cQW3\nywctLFGEMUmZ/A9xo4bQmxlKJZCIYm5SXwIp+KtNf3kCtYSy7hif0Xwdsn2uVEeHwedsrNRbvhll\nRswoy/WWYxpz270+EIBrEOV6C4VaC0TcIQpwYaf6KFzBH/eE36rtzTZzhJpjknKEYxWtDlMcsmpI\ncMMR+COKiUk1t6maQ6GqtGcVYqk1ndm7NCXx/k2hSZCzr5yYjcci5Mykh9O8vRwg+HPVhq9YpPRF\nSALpVs5CXgu3QJ7XFyVL08tzS8X5Ij7Oc6FNCE4V/e1p8XwxBp8pqdxoo9HqBJqSyo22hxAyCcM7\notZeUgR0NKJENxnyIkwaRVw3MYl2PezVXQAtnEbRz4h168AY+3ciehDAi8CtMq9hjO3usllXENEW\nAC8FcERpuwLAGwBcCWAjgNuI6FLGmL84/iqAnP+6Mzu4f69hs6pKa9QQQjiz5UvQ7rBAtbrR6vja\nM4moU/5A92vIME9Pe9IlkEyiu0BYKnyRr53BsHEk7mmvNvwaiDRJFGtNT+hvRpRcd01PrlDrMDd0\ndkTTBGRZbFXTANz1N1xC4L/PluooN9oewgEEIdSa7uxdseMXak1sGeMJb4NJ14Ff1K6FNCXVmm52\nvNxXrsK1EjWLeCQTx6G5im+dkiHRXyeQ4XTck8E+qGkIJ7SKqfL+yWsnTZdSoM8WAjTNeNSngQLi\nuZCmTa1d+oQ8PoRE1CmlogpyEyGopGEKJ9cFeSIaQbXT9juzTT6K2NKmJx2yNpw/jyK4fx9bnpYs\nCqjWdDoF4EYA/wFgRrSdKf4JwB/Da/K/FsBNogjhQQD7APRNhJXpRppufBiTlLqtSdPwfnYf3lg0\n4pCUSU02hfjp6rZsj0XIoxpnk1HHGectKxJzXnDd3yFt5t5lIXlYY7XZ9q7el+AEUmn4nZPS1zGk\naBQZsWC9LmQz8SiabYZcpYkIucf254jI3BEhBIVwdFY4E/uUs+shx5TE/x8VRe98jl1Rf0gXvjLS\nS/XjSKeySiyAa0rS24eE5mCKDCrVudlO3rfhtFg6t+othCfHIIMWZLusWjxT1KPeRDCDEPx63o0M\nUfaGo8Z8CZ283SUEvTKyNP95nqN4zH3ulGfbtPa0+k6ZFgnSM6JNCXTmqCeTL4J/18WA7ObPowgW\nu6ZipP2ApUxPDwLYIf7PAtgDYK/4/OCZHJSIrgVwnDH2iPbTJgDqainHRFvQPt5GRDuIaMfs7GxQ\nlxWD0fQUwsmtbmqKhjK1q9+N7UYCMUV6ePubXsx0Ioq6qNDqNQ3EXF+HlgS4WG6KfXr7V+otYYsO\nNj2ZSqurJil3vYC6p2ibDJt0ViZLeAlE2v2lfyTttHtnxbL/nDZblkI2X2mg0eo4pBaLRpCKR/hY\nNbKT2hXPRtb8OA1+bmr7QJJfo6DIoLIw2wVFAM2VeBkV+SykHcGvlXbRSmu70W0yH8cr+OU60Xp/\neWzTmg0OIUS9z5GsbuvVZM3+tKB2Ux/vpCzcpCnp+By0dhkGqzGCaZ0ak6naVMKjn2E0PTHGLgAA\nIgpQld4AACAASURBVPo0gK8wxr4pvr8cwGu67ZiIbgMwFfDTnwH4U3Cz02mDMfYpAJ8CgGuuuWaF\nVpvpLaMyjI9C7RNbghBM7XxfflNS3KBRyEqXpkgPU7v+m+lFziZdX4fubNRLN8v9VJrcFp1NeAVL\ntdFGtdHWFqnnM835ckMzbbmEkE74TRW68EorwlT97hCFQyxeITuv+WvcHBS+nyHNL1MSS9iqGkI6\nzs1nnOxi/vZay8nfkO3VpnD4J73nJovtecjUKclS8/mDAJ6IGYsoFVM1zcFHIFoZe2likmSa0a63\njJLzTCziMWdi4dUclIlIPIzgDzY3hck78oWvdnlHdEuBfG91jUK+w36NwpRwZ9Ao+leh6O6jAPCz\njLHfll8YY98iog9024gx9uKgdiJ6CoALADwiZn2bAfxEJPEdB7BF6b5ZtK0wlrYh6gk0Jh+FiSg8\nGoXaX3W2GbbVNQTZS3/Yk4bZkhP6Z5gtmTQT/bNpZpdWM141U5VcL8Frc46hXG+h2WaOgOPtPNO2\nWG95orWksFooN5zkNdkf4IJct3Xz9rpnYRkpNHUCkRm7khBSjglL6y/2GxUCVzdtyW3minUwBl9y\nWLXZCQwJnS83UNE0hJQgzVK97SGiTCKGdodhsdzwzurjroD3rIioaA5BFVNni7yCq9T4dNL0aHzJ\nmJNNr08IGkGEYHI2GyP9ugt+U7uJQHyCX5qeDNq1/v7K7U3RTbrckO+zL5zeIC/6mCdCRT2dIKL3\nEtF28fdnAE503coAxtijjLFJUZ12O7h56WrG2EkAtwJ4AxElxdrclwC4/3SPdbZhupEmoW5qV5tN\nZGKqN6ULfvkQ+kxMRsEfDWw3zq4MznNTeGHKMCv0CArNxNBs87PIapoDwJ3ByYB4+cVKw/OCy/b5\nsrY6oJKZG7R8pS74XeEoZ8sxbf/BZhWTQ9ZpV88tHkGl3kKj1fFlEVcbLdRa3hyBjNQo6v6cAkAQ\nQkLVrryEoI4H4L6FgQACmS/XkYq5azAkojw8VwYI6PetJdYLMd1nU72yMOajXiP6TH0iEXI0CZ0o\nIs55mqKYPM3O9v5qsHJ7zcRkcGb3sy/ChDBE8UYAE+Ahsl8BMAk3S/usgjG2E8DNAHYB+DaAt/dL\nxJMK/UabhDoZrq5KDuZQ3OB23W4qF/cxaQ5+U5LB9ORoINHAdn0RlzBVb70EEmxiMGXOSuHVbLPA\n7HK9mJsz4y/phOBqAh4TlhT8YrYstRaTqSoqQovdSC/vvqRfRk8Cc9q1scowXj3Es9rkC0J5SFC0\n+3wUSjVg3aEM+ElT9uEk69UCAF5aW72X0sQkoc6kVS3PE74doqZZ0pDP432OKLC/5/mKd3/u1N90\n05MU5LrpWB7blCjnW9rU8UV4mo2mJ9M7b5Ij/YAw4bEL4OtlLwuEVqF+vx7A9ct1vHAIdnl0qyqr\nw6RRqP275Wx0O1ab+Wd16vewUU+ORmFwfuumqoRB1Q81WzREsagzPk8ClYFYghKuyo12oOlprtTA\ntnUZ337my7y8hhQWPs1Bs78HR3RFHTOMLuBlnkZS659zNBDvtag02qhrGkU6wSPPctWGV1sSmkOh\n1vL0zyqC3+sn4O1MW9dEPRefCTMeQbEefqIQ5p4bk0ZDPEempFTT/gEu+KtNPyHI7/p76kQxGfqb\nVqzTNQeTM9uE/qWJEERBRD9EgORkjP3Csoyoj+EqmOHiosOYlcx9DGPQfpAPp+nh9Qn4blFSJmIx\nLPMIhHM2emaIBsGkzvi80VbBcfSmmj5BzmxANxfxR7/W7Di5EAAXBql4xMkp8WwTjzrluPXkQ5l3\noZvJ3AgwU7t3rPK4psV0wmTapzxaQHeTjwyz1hfGApaYKBjJIUS0UojS+qFMnkbnt64VRwG0jGtX\n+3wR4qvPOU3BJiy3YgMC23XhaX63g9v7AWGc2f9H+ZwC8DoAreUZTn/DeIO7OL+X3KehPaxGwYmD\n+R5ex3fRo+YQNBsL6t+r78I4+zM4G00CJAyBBPki9G1lFjFj/hXLMokYas0GohHyEFyQ6Up+lkIi\npY1JmgZTcVN78Mw+yC8DhFvQyhyAEGwikv1qzU54X5djxyfPfTOVm+l5zfhQWkrwRMQfGRgs4CVM\nmoMv3NVQkiNq0BxkP7/pqY8ZwYAwpic9Z+JHRNQ3DubVgI8YTKanEKn6vWoUvoeaZP9wmobJad0t\nEc/UPx71JugZZ4hqu8G2HKYGlnEBqIAZOGCuGEpEIhzVG36r9sso+RiAX4sIak9qJqOgsZoql6YN\npJY2mNuMZr4Qwld/LhJRThS+duc+G54LQ/Rc2HGYJg2m++zVTL1akfs5eMavm5jkvdUTqx3fhU/T\nMAStdMm0DssL/UwgYUxPahZ2BMAzAAwv24j6AoYbD6lKalEMPfoZwmwb1h9iiuEmg5osZ1dGE4NB\nAzGFEPqJqPuM0pwQRV37qxVAvYSjmK2WiLBSkYxFgolCfE9p7RlD6K/JHGYkLA8h9EYsPc/MQwhr\n/p2bZ3qdKCyVdxNmnXjTBKJXv4QKo0DXGEF+80++DM7saLCJyQmD9RnoTXJk7SGM6elBcEsGgZuc\nDgJ463IOql9hNj0FI0ztr14d5L5YbcNDbdI03FhwTT3vEg1lip7SX8owM0eTpqGGHYaKelHbDYJF\nhke2OsxY5C1lIMGU1l9un4xFPMLFZA7zag4hNIoQxNJzaKmmsZlqgBnzaLokYi71vKjP3pmYJE3n\npmsOEuZE19766zwku/kyrQ2mJ0ej0Pbbx4qDEWGI4nLGWE1tIKLkMo1nTcIYHnsGT0R4H0Vwu0nT\nkC+Lvnsn9M+wKIsxEU/bT5iX3ZwQFbB/7XOYmXOQua3VaYc3w3Xxy5hqAAFecjGRlzoOU96JqX8o\ngbuU5hAVhfB61RxCmp6ca7SU8zuEg91MDl7iC4KpdI7+Tsmv+n5ck5GugUing77f4OOZ3v5zNY/i\nxwFt95ztgfQXTOGxKzeCsE5u8/Kswf3dAmbB7aayBXq7FAj6OL3VcEMI+Jj64ofQQEK0+0s1GEhQ\nbG9eX0DTuozamEHLMYQBm3IK1PElQzmwDfkIS5Cm44syBTP4+kd9+1f7mUxVca1dPZ5J0zBNCNTr\not5boyYQUqMwTbK6EYgpikk/LBnezXNKoyCiKfCCfGkiugquTBgCkDFtdz5iOe672SRletiDHXWm\nipamdp+mEQ1+O+SLrL80uoBw+6umpO4C3hgGaRDK0Qg5UUwmwa/6N9Qx6UXe5Dn7NBCHWDRzmyRN\n8p6nul/POavtJj+LIbQ4zHVZKqegq3PapF31qIH4JhCx4OfZ48cwPAvq7YmGIArd5yADO6IGn4Z/\nP8Hvjvyq50vIX3yJuIFHO/d8FL8I4DrweksfUtqL4EX9zmH0ZkpajhmCUZ0NqebK734fRReNwqCx\n6A58k73X5GA0F21TXnyVKAyzblXg6LNZAicu08IyukbhFnkz9NfbTRqFaE/FvFFS6jmoGoVKZCoh\nxAwkYCw/b3AcR0RYb7MdvB6Jvh/1u1EDOQ1ntgp9vxLqNfbkF6l1zww10HqusWYwJfW68JiObnkR\na5EYdCxVPfYLAL5ARK9jjP33Co6pb7GSNsfQGoVsjwT3M5UhMK26ZepvXCBeazcSiMfE1H0WGSp6\nSnM2k1ApfBqFIBef4DeYnuSY4tpFNUZ6SWGqjSdm0igMIZ5mrUu9XsHXRS8bL/Nr9DpGp+20Nmlp\nBtLUZ/Wm58JUSVXtH4ZAVJgIxGR6MpmY9HeBOb8Hv4M+05NJLqxB5ljK9PRmxtiXAGwnonfpvzPG\nPhSw2TmNlcyoDKtRdLOD+k1MJpOU3E9wu7+mvqHdEInicUIabNTqC6vWD/Iu7qR+9msUfJ/BGoI/\nd0BoCAYNRDeXxJ1Zd7CmYXL4AmZ/jemzNwLMoFEYyMQ0BvW7L7HSoDmYHP6mMGtp3tFHYyKEMLkJ\nPWsORlIKZ6oy9ZePuk9772JpCE0gfYylTE9Z8X9gJQZi4UVYjeJstXfTHMKWJwjjSPQscu8Jj1Xb\ng80N6nUxzQT1maMU4Kb1CEyhwjoRSULwtfdqbjGYUvQ1nfXx6Ptcav0SaUfXycutmGoQ/CHDpo1h\n1qbnIvhSmIX6EvdZotd1YHzPi9Pf20++A752BDNFr2L/nHJmM8Y+Kf7/1coNp79xJqU6ej6WcRYV\nrt0ciRHc362dH6w5mJZz1IklTKy6+oJ7CMTgzA4dKiy8FLopyRH8BvOJ0fRk1EyCNQ1duzJdC5Uc\nowYSMCUfqoJcJU1dE5DErgcXmEq7yOP1Sgg6TAXyjCYm03rTqs+lx1yjnjUN3cQkxh42vN0YTut8\nDSaotYQwmdkTAH4bwHa1P2PsN5dvWKuN3sJjl0OV7HWdip41CoMN2Sj4Dcs5mkxSOsIkR5lm2sa4\neENYii7I5TH8JiYK7G9yfrump2ChqWtdutB19qPs12SGixnI1BxV5m2XtaR0DcGkaRhDfw1BDlKQ\nm8hRvxbdiEWH10cR2MVcnVm7RHIo+hjkGP1RUkuPTYcxsa7HoJh+RpiEu1sA3AXgNgB9tzbESsJ0\ne1fSR2EK2TPZQfWXxhTpYTIxRQztcoboNzH0Rlgmc0s4p2XwTM3kuzBqFD5CEEJTt9dL05MeHmvU\nKExCPfjcYtHg81fHYYwqMxCI3t5xaoBpEwWxX1NlVP1Uupsqw00gzKX4gycNKkwCV+8vx+IjBPH0\n+p3WQqPQ9uv6KPTnbmlLwxrkBR/CEEWGMfYnyz6SvkJvd3Y5noNeZyNhNQpzkhF5fpdwbc4Gs4op\nGkqD0SR1GoTg9PeZDMSxDNpLWFOSFPAmJ7ffvyOIQmNTk4PZlF1sjAAzhMcGja1buxy7qQaYKRrO\nFGZtIkf9WpyJRtGr6UkfqxyKPgZXc0Bge9jgFYdYfO+UYfvg5r6GQan34OtE9EvLPpK1gJAP5lk5\nVEiNwm3vjVh0IjLt17RKVzefhmk/S7X3WotH7+7OloPt8qb1CEwagimcVr8WkhD87d01CnVIsRCa\nRhgHuQrzhEC//xTY3xQl55qYDD4tw/PiG7fJR2HQLk19lmqXpOVrd5zWukbBYarIbNY0vJDvmK99\nDTJFGKJ4JzhZVImoQERFIios98D6EcZZ/jIcq/coJu93o+Yg/usCvhvRmDQNUzSUb3whZo7GEMqQ\n+5RCy2+LFu2akJXnZpp1+5ziJue06NdmukbRfZavCqOYwXdh8t2oMJVw8WsCsh3B/bWnOWbQohwT\nUweB7f7gh3BaoUSYyVevpid/uGuw6anTjRB6fOHP9fBYAABjbHAlBrIWsJJ5FGGP1c0OajI9mdbx\n1XdjVu+D23s2PYWwRYfVouQp6QJaCjPdFGReHVD01w5sMtv06sA35jyoJilDxnJYTTMaIXTazJ/P\n4GgOwedg0hx0yHadHE2aRq8abxh0WwdCouOYmEJqJg4hGDQN6M9RcH/3nTLM1tYQwkQ9XR3QnAdw\nmDF2Xq50p2M5TE/hNYpgU4LbX+vdo+bgqs/BQlPfW6/mI89sucey0b732+CjcGeUwY5dn+B3CCE4\nVFQfTq++FaPPRTU9Ge9TYHOAkCIAzH8sg4nJ0UANJOgT/F20PJ/pqcdJQBh0M5dKuJqmHgHG//t9\nDqJd22+v/U2nthZNT2Gc2Z8AcDWAR8X3pwB4DMAwEf0eY+y7yzW4fsNK3t9eZ/K9zth000C3KCu/\nqcJALCEIwbOfED6KsKYnIv4ymwok6pYgk10+YiCEiHG2LI7jG3fgsEOVnjDPlnsTuGaHqmnCEW57\npwaY4Vr4+ptCnM9AaoYlYpPT2pkoGHwRpjGbEFbbX4M8EcpHcQLAVYyxZzDGngHg6QAOAHgJgA8s\n5+D6DeS8HCt3LB29raVtDiENO+PrtRCi6SUwzUDDjCF0RJdhbPKrf3Yd3G5aiMZp1+zy5lLvp38+\nJtI0zlINSV29LrWr7ydqeOaNJCj7h/aBBe8nDMw5Qt7vJo1SjtDk5A7rk/RXk/X2XIvEoCMMUVzK\nGNspvzDGdgF4EmPswPINqz/RDzfcNGs5U9XeKOC7aRoGk5Rv/yHGYdY6gvub1kA2+WVCC3JjjgD/\nHzZHIGyyY1D/XvdpvL5hSdNpD3c8t6qw1m40PRmGtww+Cn3MMvnQHx4bnIHtRj1Baw8mBLc1+LnT\nca4m3O0kon8BcJP4/noAu8Qqd81lG1kfYzXvc1hB0U0g9Ho8n6HC4P3u1TSmwuSjCGuvjxDPCDUu\n7qRvbxibqQyFa27RjhsJ3n+vSWZq/541uR6ve9gJh/zqN1V2PwftCIbxGbqHgNFHYTA9mU1SwQSi\ng5kYxABXww3W9tYSwmgU1wHYB+APxN8B0dYE8MLlGlg/oh8mAmdaOx/Oi+99GUwRHUT6B89uAqKk\nejOZqAiTpevpr/sonKxz7dgGIWjys7imp+Dj+XJHztBM2K1dhVkM93qssOTbRaMwaA7hfWCn/1KF\nNc+64dHBmoOPWAz7Nzmtex1fP8iRXhEmPLYK4IPiT0fprI+oL2Co9YTgl2MlYXrGTDNB//ZLP6W9\nCopenZ9L4YyrhEolx0BqoQmkS4in0b+jE06P53MmuQMm85yJ+MPeJ3NIaZftQ/vAgvdzJtCvRdvx\nUQRrDr4xOBqI3h7c3xQN1Sup9zPChMdeAuD9AK4AkJLtjLELl3Fc/Yk+uL9nK8wwLNn1btI4fYEQ\nNrtYQhdWZkIgz39/u7Zf06zYGCrqPX7XcZ/RLNrQ3qNGEfY+ddv+TGt9nalpNMw+HROTT9MQ7YZw\nWl++hPgf1sndq5mwnxHG9PR5AP8CoAVuaroBwJeWc1Crj95m3SsJMghH05h0M0mvYzf7KOTxdXNO\n8H7CHLfX8h8m04DfxBQ8BoMiYC6VbTJJnYHTuleYNcreNjBl7JtCi8PnRfQ2UViOdynsc2QsCthj\nraduFoi1SAw6whBFmjH2fQDEGDvMGHsfgFcs77D6E45WvYqmp7ARPT3KDeM5dTMx+dVt02zrDMwq\nJh9FSKHUjUCMmoOvPIXof6aVUXuMz1cRVhMwmdWcMYTUTN1u+jkHj8+Nhgo3QVkJjULC56MwFQXs\nUj1Wx+mW9lhLCBP1VCeiCIC9RPS/ARzHebrqXT88B706Bc0Pt+7M7q0C5nI4ak0ILey6RLeEHYNJ\n2Ml2XaPoVmhPR9h1DoLHZvolnDmkW7s/aKGLNneGocLL8U6drWgov8ZqIBDxP+zCZmuRUMIWBcwA\neAeAZwD4dQBvWc5B9Sv6If6514Q7Hd21IoPGYtiP7yhGdf30r53ZKWw6Vo/tXb7r4zDlUfjs+8uQ\njdxzdFOvjnMWrAn4ckq6PIdnaqo6E4Q2PRmLAvL/Z2ouM+VdnJPObMbYA+JjCcBvLO9w+hv9eHtN\nCxFJ+Ir/9XgW3bKOw2cj93TYUNv6iwIabM7iv79sdPB+u4UK+53fvWkOZyQceyRiEwmaTExhrapd\nE+58/YP3sxxzL2NVWZ+PIrgdZ9n0ZAw5X0MwEgUR3brUhoyxV5/94Vh0Q68Jdyb0KhB8x+u1/xlF\n+oSdIRrGYJg5Kgfopdn44uuEsbKk6f3uOlLD3Y+eJxDdSnj4NJOz/1z0ClN0k2kpVHPGtsEkFfzY\n+bAGeWJJjeLZAI4CuBHAfVib53dW0Q8zgZ59FNr3kBaHrv0du7zeHtx9WWB2Wgf319v///bOPNqO\notrD3y83MyEJmSdCAkkwA0TkJkxhDiCDIJMgU4IiSxkVUUFcGmVFEcWBpz5lElARUQYRGQQkDkRk\nJiTwkCg4IA8eyCAKwYT9/ug6N+ee7j6nO/fMd39r3XX77K7u2tV9Tu2qXVW70oxl+g+8fOlK9Rk1\nZAA3nbqA4YP7lehRfaMZn8pZMI7J9+l5aJeCQeguzxLwsFGkRY9N+17E5BVaV1nHKFqRcoZiHFHg\nv/cCRwE/B35YHPept9EMvsWslUylZHlnbpXerutHVOqXr2cLMeZKqhC7p7Qy7Qr+lkysKBWL1j1B\nRx8xZ+KwyvfNQWZdu+TVcX9lNQhpLqymGN+LzW4K8tgYRcpCvEDWnkNqqMAmeBZ5SR3MNrN1Znar\nmS0CticK47EszHxyGkTeGRTpkS27kxY2Oj3f5B5FPW1p2lhEWkswXreVrxBK6bKNPSxjTyqK7K5H\nhfQpeefsWcb1COlTtsLNGhSwnsR7FBVWWqf00krpksbukzzW0QSPIjdlB7ND4L/9iXoVU4ALgetr\nr5aTRtb9JSpNlyz90hd2XXtzXffFA+nrK5L1qWeFkH91eFqPIluF0HWf2H3LJq8qeacrx3tRyeM1\necuQf21L46vHtAZE2grstHmwmcOPF+Q9fNbNQLnB7CuBOcDNwGfNbGXdtGpSWvEFx0jxLffvG7W2\n1q7L1wOJ375+Dyl9+mmyPPO0xpSaIuv4QCPIO5Uz8xhFSs8hbYwi78ZK9SRzOPG0PbMrpE/Nt4Ie\nrUC5dRTHANOJ1lEsl/Rq+PunpFd7mrGkUyX9j6RVks4vkp8tabWkJyTt09N82p2uHkJaaOSU9KUU\nuuX/KelRDOrXAcC/1qxLzj82RpGmafVJX1iXNrCb0qPIWMk2w88760ystPTrXYYZx7pIcyWl9Chq\nMSW4RqT1rgrEvy/JBqRA1unXrUhqj8LMehBooDySdgcOAuaa2RpJY4J8FnAkMBuYANwhaYaZJddS\nTuaQDqWUfocH9oted+kPffzwKA7k28ZtnHiffiXxD+o6mF1hQLVApZXZaS3HrNSzDsy/Ir42Lfyu\nnkbGhXil4TOagfU72ZXK8w1md8nTMmq+oucmSwiPWvAh4DwzWwNgZs8H+UHA1UH+lKTVwHzgd41R\ns/nZYswQnnn5dQb07egmXzBtFLc/9hxTRm7UTf6uuRP4+p1PcuDc8d3ku205hpN224L3L5jaTT5q\nyAB+ftoCNh/VPWrLmrVRz2PqqO73rye5/fUpPY3U+6fl18DWcd7KKO9sqKyTH1LVSGle9k8LDlWG\nX31sNzYaEK+iLjp220T9F+84hUefeSUm32naSO5e/WJMPmPsEO57+iX69e2uW6EXnTadtpT0R9Y+\nXYpGGYoZwM6SlgJvAGeGFeATgXuK0v0tyGJIOhE4EWDy5MlVVW70kAEAdG62STd5oQW7cNbYxOu2\nmzoiJuvoI2ZPGBqT7zN7LK+tWRuTf/HQrVj5TNyzd8vpO3Pf0/+Iyb9x1DY89JeXGb3xgG7y43bY\njH3njGPM0IHd5NPGDOHp8+IxHTv6iI+/823xQgGzJ8SneG4xeiM+tf9MDt6m++tp5PTYNB3yRwNN\nSdcE8+Tz76VeMs7SdR8S5fEMo3+pa05KPm/IYPZ3F89LNAibjUxuhOw9e1yifMmBsxPlly2ex+tv\nxp0SFx/XycpnXmVISd7nHbo1V/7uz7Hf8/t3nsoDf3mJQ98xqZt8u82jdEdv170eGr1x9Ns7an5y\n/XTA1uMT5VNGDk6UN5KaGQpJdxCtxSjlnJDvCKJpt/OAayTl2t/CzC4CLgLo7OysqumePHIwd5yx\nS6w13q+jD8vP2oORQ/rHrnl0yd6xVj3AHz+/X2Ie3zm2M1F+xLzJHDEvLp85figzx8cNztCB/dh1\nxuiYXFLMSFQTSZywc/yVNaMbJm2+fGpLsMIU4UZ6ErK6zwq61mJnuXJsSMDD3d82pgaarGdA347E\n3+bwwf1ZMH1UTD5qyADO2GtGTD5+2CCuP2mnRHlS42vYoH6JcoBHPrM3G/WP63TfOQsZnCC/95N7\n0ncDemXVomaGwswWpp2T9CHgOov6ufdKegsYRRSZdtOipJOCrO5MG5Psk58wfFCifOOB/RLlvY1C\nBVQPl1TegHfplWy22TCkyOs56yn/Arra9ILyuv2c7gwblFxflHoGCtSy0ZeFRrmebgB2B+6SNAPo\nD7wA3AhcJekrRIPZ04F7G6SjswF09BEXH9fJ3Elxd1W9SJu+mLZAr5S0+fXps11yKlgDejoNtkDe\nsCalYxrl8rvqhO0Yn9LQcpqbRhmKy4DLJK0E3gQWhd7FKknXAI8R7ah3ss94aj32ShnDqRe5W7VZ\nxy6awCCkUXHfiErXp64RyZdfOdfTjtPibh6nNWiIoTCzN4nWaSSdWwosra9GTr0Y0Lf2ftbMYclz\nx7vKV5nWk7TZRtVa11JphliXHuEZTxvTK/c2a1sa1aNweiHXnbQj44fV3teatvApdaOjks95V9o2\nA3lb/mlkXWldrqNy9YnbM90NRVvhhsKpG++YvEnlRFUgPuupsKK2OusomjF2T+ZpsCkL5dLoujzH\nGoLtNx+Z7eZOy9C4+VaOUyPyupjSYgDF0qXfIYtaNSU2gJ8ir0RWb9xG/aM25mZNOOffqT7eo3Aa\nzs9OWcDgAfG54xtK1lDclVrJeQd4G0lP96TOa1AmjxzMpYs6mZ+wyNRpP9xQOA1nqypPpc0ai8dS\n5On3bfzK7KwUVIq7pKLPeUN1JKXec2ZjZ7c59cNdT07bkeaGKSVt45qs920msi4OzDp7qcCAECxy\nUMJqYaf34D0Kp2m56oTteGNt/mU0Wd0tqfsLpKVPiRnVDPYjs7utS54tKOC+c8Zzxl7/4vidpvRE\nPafFcUPhNC0bukArdR+BvOvwMob8aAayTo/N63rq6CNO23N6T1Rz2gB3PTltR1pQwNLqNHUrzLRN\noFKDBTbecMS3NlWQZ7u+GY2f0zy4oXBajqO3m8zEMjGD8lbcWXsO+afN1o+8LqZS3r3NBKD2kVyd\n1sRdT07LsfTgrfJdkDK2UMn5kjMga0PJGzG3tOxbTxqeGhLbcbxH4bQ9eafB5o4B1YSGo0DMgDSx\nrk7z4obCaXvWD2ZnG4so0EIdilRK7URhS9JWKoPTeNz15LQNN526gLtXv5D7uqx+/DS70koDwV8+\nfC6X3f0U86b4imonO24onLZhzsRhzJkYX+Wd5npK3wc6eTptmryVGDdsIJ/cb2aj1XBaDHc9c/dt\nPQAADkdJREFUOW1P2kK5AvEw44X0tYmTVA+aUCWnhXFD4fQaYi6inIPWudM7TpvghsJpe75wyFbM\nHD+UcSmbJuWeNtsC7fWvHvF25k4a1hUO3HF6gn+LnLZnp2mjuOX0nWPyvBsXdclTNgNqJhbOGsvC\nBu9d7rQP3qNwej1ZewjueXJ6K24onF5L2nRXS5kmlTo9thm7FI5TRdxQOL2WtNlQaXtsF8i694Pj\ntAs+RuH0Ws7ZfyZr33qL3bfsWSC8gn3IG/qjGly6qJPfPJl/kaHj5MENhdNr2XTEYC5ZNC8mT3VJ\npfQ0GtmT2HPmWN+S1Kk57npynBRiLqkKC/ccp11xQ+E4PaQV1lU4Tk9wQ+E4JXRFm22wHo7TLLih\ncJyMpO5w5xbFaXPcUDhOCftvHW0LevA2E3NdV0uDsXjHKcyf6qHBncbgs54cp4SpozZK3BY0baOj\nekyPXXLg7Nrd3HEq4D0Kx8lI14Jt9zU5vQw3FI6TEzcTTm/DDYXjOI5TFjcUjlMl3CPltCtuKBwn\nK74y2+mluKFwnIysj/XkOL0LNxSOk5FNBvcHYOqoIYnnGxE91nHqga+jcJyMbDN5E65833y233xk\nzfK486O7eo/FaToa0qOQ9HZJ90h6WNL9kuYXnTtb0mpJT0japxH6OU4au8wYTf++yT+baoxdbDF6\nCJuPTu6xOE6jaFSP4nzgs2Z2i6T9wufdJM0CjgRmAxOAOyTNMLN1DdLTcRyn19OoMQoDhobjYcDf\nw/FBwNVmtsbMngJWA/MTrnccx3HqRKN6FB8GbpP0ZSJjtWOQTwTuKUr3tyCLIelE4ESAyZMn105T\nx3GcXk7NDIWkO4BxCafOAfYEPmJm10p6D3ApsDDP/c3sIuAigM7OTp9v4jiOUyNqZijMLLXil3Ql\ncHr4+GPgknD8DLBpUdJJQeY4TY9Pj3XalUaNUfwd2DUc7wE8GY5vBI6UNEDSVGA6cG8D9HMcx3EC\njRqj+ADwdUl9gTcIYw1mtkrSNcBjwFrgZJ/x5LQKHtrDaVcaYijM7LfAtinnlgJL66uR4ziOk4aH\n8HAcx3HK4obCcRzHKYsbCsdxHKcsbigcp4cU9tAe2M9/Tk574tFjHaeHjN54AB/bZ0sO2Hp85msu\nOHwuEzcZVEOtHKd6uKFwnCpw8u7TcqU/dNtJNdLEcaqP95Udx3GcsrihcBzHccrihsJxHMcpixsK\nx3EcpyxuKBzHcZyyuKFwHMdxyuKGwnEcxymLGwrHcRynLLI22JZL0v8Bf260HhvAKOCFRitRZ7zM\nvQMvc2uwmZmNrpSoLQxFqyLpfjPrbLQe9cTL3DvwMrcX7npyHMdxyuKGwnEcxymLG4rGclGjFWgA\nXubegZe5jfAxCsdxHKcs3qNwHMdxyuKGwnEcxymLG4o6ImmEpNslPRn+b1ImbYekhyTdVE8dq02W\nMkvaVNJdkh6TtErS6Y3QtSdIeqekJyStlnRWwnlJujCcXyHpHY3Qs5pkKPPRoayPSlouaW4j9Kwm\nlcpclG6epLWSDqunfrXCDUV9OQu408ymA3eGz2mcDjxeF61qS5YyrwU+amazgO2BkyXNqqOOPUJS\nB/BNYF9gFvDeBP33BaaHvxOB/66rklUmY5mfAnY1s62Ac2nxwd6MZS6k+yLwi/pqWDvcUNSXg4Ar\nwvEVwLuTEkmaBOwPXFInvWpJxTKb2bNm9mA4/ieRgZxYNw17znxgtZn9yczeBK4mKncxBwFXWsQ9\nwHBJ2TfZbj4qltnMlpvZS+HjPUCr7/+a5T0DnApcCzxfT+VqiRuK+jLWzJ4Nx/8LjE1J9zXg48Bb\nddGqtmQtMwCSpgDbAL+vrVpVZSLw16LPfyNu6LKkaSXyluf9wC011aj2VCyzpInAwbR4j7GUvo1W\noN2QdAcwLuHUOcUfzMwkxeYmSzoAeN7MHpC0W220rC49LXPRfYYQtcQ+bGavVldLp1FI2p3IUCxo\ntC514GvAJ8zsLUmN1qVquKGoMma2MO2cpOckjTezZ4PbIalruhNwoKT9gIHAUEnfN7NjaqRyj6lC\nmZHUj8hI/MDMrquRqrXiGWDTos+TgixvmlYiU3kkbU3kQt3XzF6sk261IkuZO4Grg5EYBewnaa2Z\n3VAfFWuDu57qy43AonC8CPhpaQIzO9vMJpnZFOBI4JfNbCQyULHMin5VlwKPm9lX6qhbtbgPmC5p\nqqT+RO/txpI0NwLHhdlP2wOvFLnkWpGKZZY0GbgOONbM/tAAHatNxTKb2VQzmxJ+vz8BTmp1IwFu\nKOrNecBekp4EFobPSJog6eaGalY7spR5J+BYYA9JD4e//Rqjbn7MbC1wCnAb0UD8NWa2StIHJX0w\nJLsZ+BOwGrgYOKkhylaJjGX+NDAS+FZ4p/c3SN2qkLHMbYmH8HAcx3HK4j0Kx3EcpyxuKBzHcZyy\nuKFwHMdxyuKGwnEcxymLGwrHcRynLG4oWhxJJumCos9nSlpSZx0uL0TJlHRJTwP6SZoiaWXKuS+F\nCLNf6kkezUR4fk9Vc4pl8TvpjUhaLOkbFdIcEaLAtnSE5nrgK7NbnzXAIZK+YGYv5L1YUt8wP7wq\nmNkJ1bpXCicCI8xsXbGw2uVoAB8zs580WolqIqmj9D01E2b2I0nPAWc2Wpdmx3sUrc9aovDNHyk9\nEVrmvwx7AtwZVsoWWpvflvR74HxJSyRdIek3kv4s6RBJ54d9BG4N4TWQ9GlJ90laKekiJQSzkbRM\nUqekA4sWzz0h6alwfltJv5L0gKTbChFUg/wRSY8AJycVVNKNwBDggdAaLC3HRpIuk3Svor08DgrX\nDZJ0taTHJV0v6feSOsO514ruf5iky8PxaEnXhvLeJ2mnIF8S8lgm6U+STiu6/rjwrB+R9D1JG4ee\nQuH5DS3+nIaksUHPR8LfjpI+J+nDRWmWKuzbIekT4V09Ium8hPulPfPTFO0BskLS1QnXLZb001DW\nJyV9pujcMeE5PyzpO4pCayPpNUkXhPe4Q8n9YvlJmi/pd+F9LZe0ZVHeNyjaw+RpSadIOiOku0fS\niJBumaSvBz1WSpqfUI7Ed+nkwMz8r4X/gNeAocDTwDCi1tGScO5nwKJw/D7ghnB8OXAT0BE+LwF+\nC/QD5gL/JorNA3A98O5wPKIo3+8B7yq632HheBnQWaLjNUSVfz9gOTA6yI8ALgvHK4BdwvGXgJVp\n5S06Li3H54FjwvFw4A/ARsAZRflsTWRcOxPudxhweTi+ClgQjicThRcpPKvlwACiWD4vhnLNDvmN\nKn5WwHeLnt+JwAUJZep6fuHzj4gCIwJ0hPc6BXgwyPoAfyRa9bxv0GdwSb6Xh/KUe+Z/BwYUnleC\nXouBZ0M+g4CVRLGMZhJ9t/qFdN8CjgvHBrwn5d3F8iP67vYNxwuBa4vyXg1sDIwGXgE+GM59tej5\nLAMuDse7EL434fpvlHuX4fNuwE2N/h03+5+7ntoAM3tV0pXAacDrRad2AA4Jx98Dzi8692Pr7ha4\nxcz+I+lRosrp1iB/lKiSAthd0seBwcAIYBVRhZFKSP+6mX1T0hxgDnB76Ix0AM9KGk5Ucfy6SNd9\nMxW+ezn2JgqoWHAlDCSqGHYBLgQwsxWSVmS470JgltZ3moYqim4L8HMzWwOskfQ8Uej0PYIuL4R8\n/hHSXkIUMv4G4HjgAxny3gM4LtxnHVEl+YqkFyVtE/J7yMxelLQQ+K6Z/bsk3wJbkvDMw7kVwA8k\n3RD0S+J2C8H8JF1HFAF2LbAtcF+45yDWB3tcRxTcMYmk/IYBV0iaTmRkintbd1m0P8k/Jb3C+u/a\no0QGv8APQ9l/HXptw0vyTXyXZvYaTibcULQPXwMeJGrBZuFfJZ/XAFgUHvk/FppbRHti9JU0kKjl\n2Glmf1U0YD6wXAahEjucqKIGELDKzEpdEqU/7DwUl0PAoWb2RMn9y11fHMOmuDx9gO3N7I2Ee60p\nEq2jzO/IzO5W5ALcjajnkzhIn5FLiFrK44DLMl6T+MwD+xO9m3cB50jayuLjPKUxfizc8wozOzvh\nnm9Y+rhELD+ine/uMrODFe1FsqwoffFzfqvo81t0f+ZJOhaT+C6d7PgYRZsQWpLXEMX9L7CcKMIl\nwNHAb3qQRaESfSG0rMvOqJG0GdG2kYebWaGX8wQwWtIOIU0/SbPN7GXgZUmF/QqO3kAdbwNOVajN\nQ+sb4NfAUUE2h+6t0eckzZTUh2jDmQK/INqprFCet1fI+5fA4ZJGhvQjis5dSeT+yGrE7wQ+FO7T\nIWlYkF8PvBOYR1RWgNuB4yUNTsgXUp55KO+mZnYX8Amilv0Q4uylaN/zQUS7E94d9DtM0phCnuF9\np1Imv2GsD9W9uPxjSeWIkMcCoqi8r5Scz/sunRLcULQXFxD5zQucSlSJrCCKznr6ht44VOYXE/mp\nbyMKuVyOxUS+7RvCQOPNFm0feRjwxTDY+TCwY0h/PPBNSQ8TtVg3hHOJXBcrJK0KnyHabWyIpMeB\nzwEPFF1zFtE4x3LWu2QgcuN1hoHXx4CyU1fNbBWwFPhVKFtxuPQfAJsQXCQZOJ3Izfdo0HVWyONN\n4C6iqKXrguxWolDX94dn120GT5ln3gF8P+TxEHBheMel3EvkSlpBNH5wv5k9BnwK+EX4bt0OVNrW\nNS2/84EvSHqIDfdwvBGu/zbdG0oFcr1LJ45Hj3V6HZKWAWeaWV3CXitaz3CQmR2bcv5yogHVstNj\nQ6v8QaJe2pNVVzSe32IiV+Mptc5rQ+npuwwuwTPN7IBq6tVueI/CcWqIpP8i2oPj3DLJXgHOVZkF\nd4oWMa4G7qyHkegNSDqCaNztpUbr0ux4j8JxHMcpi/coHMdxnLK4oXAcx3HK4obCcRzHKYsbCsdx\nHKcsbigcx3Gcsvw/9zNZB2vXBA8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Uniform window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parzen Window" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N, window_type='parzen')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8lfX5//HXlQ0kECBhZLOX7DAUUNyioNYJbmu1fh21\nw7b2Z1s7vv12WrVVa6l7AnUhuLUCIjLC3hBCyGKEEQgJ2dfvj3Ogh0iSk5CT+4zr+Xich+e+z33u\n874xOVc+9+e+Px9RVYwxxhiAMKcDGGOM8R9WFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCVYUjDHG\nnGBFwZg2JiKTRGTrabxfRaRva2Yy5jgrCsZviUiuiBwTkaMisldEXhSRWKdznS5V/VJVBzidw5hT\nsaJg/N00VY0FRgGZwM+buwMRiWj1VMYEKSsKJiCoaiHwIXAGgIjcLiKbRaRURHJE5LvHtxWRySJS\nICI/FZE9wAsiMs/d4jj+qBOR29zbDxSRT0XkoIhsFZHrPPb1oog8JSLvuz9rmYj0OVVGEXlJRH7k\nfp7sPs1zr3u5j3v/YcfzebwvV0QeFJF1InJYRGaLSIzH6z8Wkd0iUiQi3673mZ1E5GURKRaRXSLy\ncxEJc7+2S0RGu5/f6M4zxL18h4i8ezr/T0xwsqJgAoKIpAKXAqvdq/YBU4GOwO3AYyIyyuMtPYAu\nQDpwl6pOU9VYd6vjWmAP8LmIdAA+BV4HugHTgadFZLDHvqYDvwY6A9nA7xqIuRCY7H5+DpADnO2x\n/KWq1jXw3uuAS4BewDDgNvdxXwI8CFwI9AMuqPe+vwOdgN7uz7jF/e/hTZ6FDWQxIcyKgvF374pI\nCbAY15fY/wGo6vuqukNdFgKfAJM83lcHPKKqlap67PhKEekPvARcp6r5uApLrqq+oKo1qroaeAtX\n4TjuHVVdrqo1wGvAiAayLgQmuv9SPxv4EzDB/VpTX8J/U9UiVT0IzPP4jOuAF1R1g6qWAb/yOJZw\nXAXrZ6paqqq5wKPAzR55znE/nwT83mPZioI5JSsKxt9dqarxqpquqvcc/4IXkSkistR9SqYEVysi\nweN9xapa4bkjEekEzAV+rqqL3avTgXEiUnL8AdyIq6Vx3B6P5+XAKTu7VXUHUIbrC30SMB8oEpEB\nNP0l3NBnJAH5Hq/t8nieAETWW7cLSHY/XwhMEpGeQDgwB5ggIhm4WhdrGsljQpR1wJmAIyLRuP6a\nvwWYq6rV7vPj4rGZ1ntPGK5TRF+o6kyPl/KBhap6YSvFWwhcA0SpaqGILARuxXXqqSVfwruBVI/l\nNI/n+4FqXIVtk8frhQCqmi0i5cD9wCJVPeLuY7kLWNzIqSwTwqylYAJRFBANFAM1IjIFuKiJ9/wO\n6AA8UG/9fKC/iNwsIpHuxxgRGdTCbAuB+4BF7uUF7uXFqlrbgv3NAW4TkcEi0h545PgL7v3NAX4n\nInEikg78EHj1FHmOt1IW1Fs25iRWFEzAUdVS4Hu4vhAPATcA7zXxthnAeOCQxxVIN7r3dRGuc/NF\nuE7j/BFX0WmJhUAc/y0Ki4H2HsvNoqofAo8D/8HVyf2fepvcj+uUVY77s14Hnm8kT/1lY04iNsmO\nMcaY46ylYIwx5gQrCsYYY06womCMMeYEKwrGGGNOCLj7FBISEjQjI8PpGMYYE1BWrly5X1UTm9ou\n4IpCRkYGWVlZTscwxpiAIiK7mt7KTh8ZY4zxYEXBGGPMCVYUjDHGnGBFwRhjzAlWFIwxxpzgs6Ig\nIs+LyD4R2dDA6yIifxORbPc0hKNOtZ0xxpi248uWwou4phdsyBRc0wv2wzW++z98mMUYY4wXfHaf\ngqoucs/w1JArgJfVNUzrUhGJF5GeqrrbV5mM8QVVpehwBTnFR8kpLqOiupZeCR3ondiBtC4diIqw\ns7QmcDh581oyJ08zWOBe942iICJ34WpNkJaWVv9lYxxRVlnDv7PyeXFJLrkHyk+5TVxMBNPHpHLr\nWRmkdG7fxgmNab6AuKPZPX3iTIDMzEybAMI4qrq2jqe/2MGzi3MorahhVFo8d0zqTd/EWPokdiA6\nMpzc/WXk7D/K55v38fxXuTz/VS6XDe3JL6cNJiG2pfP3GON7ThaFQk6eezbFvc4Yv7XrQBkPzFrD\nmvwSLhnSg++e05uRaZ2/sd3w1HiGp8bzrZEpFJUc46UlubywJJclO/bz52uHc+6Abg6kN6ZpTp7s\nfA+4xX0V0njgsPUnGH82d00hlz7xJTnFR3nyhpE8c/PoUxaE+pLi2/GzSwcx776JdO0Qze0vrODX\n8zZSU1vXBqmNaR6ftRRE5A1gMpAgIgW4JhyPBFDVZ4APgEtxzTtbDtzuqyzGnK6XluTyyHsbGZvR\nhcemjyA5vl2z9zGgRxxz75vAHz7cwgtf5bLncAVPTB9pHdHGr/jy6qMZTbyuwL2++nxjWss/F+7g\n9x9u4aLB3fn7DSOJjghv8b5iIsP51eVDSO3Snt/O30TVqyt56sZRxES2fJ/GtCb7E8WYRvz98+38\n/sMtTBuexFM3jjqtguDpjom9+O2VZ/D5ln3c+XIWFdW1rbJfY06XFQVjGvDvrHwe/XQbV41M5vHr\nRxAZ3rq/LjePT+dP1wzjy+37eeitdbgaz8Y4KyAuSTWmrWXlHuThdzZwVp+u/PGaYYSHiU8+57rM\nVPYeruDRT7fRr3sc957b1yefY4y3rCgYU0/+wXK++8pKkuJjePrGUa3eQqjvvvP6sn3fUf788Vb6\ndovl4iE9fPp5xjTGTh8Z46GiupY7X86iqraOZ28dQ3z7KJ9/pojwp2uGMTylE9+ftYZte0t9/pnG\nNMSKgjEe/vDhFrbsKeVvM0bSt1tsm31uTGQ4/7olk/ZR4XzvjdVU1ljHs3GGFQVj3BZuK+bFJbnc\ndlaGI3ccd+sYw5+uGcaWPaU8+sm2Nv98Y8CKgjEAHCyr4sF/r6V/91gemjLQsRznD+rOjePS+NeX\nOSzJ3u9YDhO6rCiYkKeq/OztdRwur+bx60c6fiPZzy8bTK+EDvxwzlpKyqsczWJCjxUFE/LeX7+b\njzfu5cGL+zM4qaPTcWgXFc4T14+k+Gglf/hwi9NxTIixomBC2pGKan4zbxNnJHfkjom9nY5zwtCU\nTtwxsRezVuSzIveg03FMCLGiYELaox9vpfhoJf/3raE+u0Gtpb5/QT+S49vx8DvrqbYRVU0bsaJg\nQtba/BJeXrqLW8anMywl3uk439A+KoJfXT6EbXuP8uyXO52OY0KEFQUTkmrrlIffXU9ibDQ/uniA\n03EadOHg7lw0uDtPfL6N/IOnnvLTmNZkRcGEpDlZ+WwoPMIvpg6mY0yk03Ea9avLhyCIdTqbNmFF\nwYSco5U1PPrJNjLTOzN1WE+n4zQpKb4dd53dm/fX72blLut0Nr5lRcGEnH8u3MH+o5U8fNkgRPyr\nc7kh3z2nN93iovnf9zfbENvGp6womJCy+/Ax/vVlDtOGJ3k1v7K/aB8VwYMXDWB1Xgnvr7epzI3v\nWFEwIeUvH2+jrg5+4sedyw25enQKA3vE8cePttiAecZnrCiYkLGp6Ahvry7g9gkZpHZp73ScZgsP\nEx6+bBD5B4/xyte7nI5jgpQVBRMy/vrpNmKjI7hncuDObjapXyIT+ybw9IIdlFXWOB3HBCErCiYk\nrM0v4bPNe7lzUm86tffvS1Cb8sOL+nOwrIoXl+Q6HcUEISsKJiQ89tk24ttHcvuEDKejnLZRaZ05\nd0AiMxflcKSi2uk4JshYUTBBb+WuQyzYWsx3z+5DnJ/fqOatH144gMPHqnl+sQ1/YVqXFQUT9P76\n6VYSYqO49ax0p6O0mqEpnbhocHee+3KnzblgWpUVBRPUluUc4KvsA9x9Th/aR0U4HadV/eDC/pRW\n1thgeaZVWVEwQe2pBTtIiI3ipvHB00o4blDPjkw5owcvfZ1rfQum1VhRMEFrfcFhFm0r5o6JvR2f\nYtNX7pncl9KKGl5davctmNZhRcEEracXZBMXE8FN49OcjuIzQ1M6cXb/RJ77cifHquwuZ3P6rCiY\noJS9r5SPNu7htrMyguaKo4bcO7kPB8qqmL0iz+koJghYUTBB6ekFO4iJCOf2Cb2cjuJz43p3ZUxG\nZ2YuyqGqxqbtNKfHp0VBRC4Rka0iki0iD53i9U4iMk9E1orIRhG53Zd5TGjIP1jO3DVF3DAujS4d\nopyO0ybuObcvRYcreHd1odNRTIDzWVEQkXDgKWAKMBiYISKD6212L7BJVYcDk4FHRSQ0fouNzzy3\neCdhAt+ZFPythOMm909kcM+OzPwyh7o6m2/BtJwvWwpjgWxVzVHVKmAWcEW9bRSIE9dMJ7HAQcBG\n+TItdri8mjlZ+UwbnkTPTu2cjtNmRIQ7z+5F9r6jLNxW7HQcE8B8WRSSgXyP5QL3Ok9PAoOAImA9\n8ICqfuOkqIjcJSJZIpJVXGw/8KZhry3fRXlVLXdO6u10lDY3dVgSPTrGMHNRjtNRTABzuqP5YmAN\nkASMAJ4UkY71N1LVmaqaqaqZiYmJbZ3RBIiqmjpe/CqXSf0SGNTzGz9GQS8yPIzbJ2Twdc4BNhQe\ndjqOCVC+LAqFQKrHcop7nafbgbfVJRvYCQz0YSYTxN5bW8S+0sqQbCUcN2NcGrHRETz7pbUWTMv4\nsiisAPqJSC935/F04L162+QB5wOISHdgAGA/zabZVJVnv8xhYI84JvVLcDqOYzrGRHL9mFTmrdtN\nUckxp+OYAOSzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8FzhKR9cDnwE9Vdb+vMpng9eX2/WzZU8p3\nJvXGdd1C6Do+Z4RNwmNawqfDRqrqB8AH9dY94/G8CLjIlxlMaHjhq50kxEYzbXhPp6M4LqVze6ac\n0YM3lufxwPn96BAdXKPDGt9yuqPZmNO2c38ZX2wt5qbxaURHBOfAd811+4QMSitqeMduZjPNZEXB\nBLyXluQSGS7cMC54B75rrlFpnRma3IkXl+SiajezGe9ZUTABrbSimjdXFjBtWBLd4mKcjuM3RITb\nJ2SQve8oX2UfcDqOCSBWFExAe2tlAUcra7j1rAyno/idy4b1JCE2iheX2MxsxntWFEzAqqtTXvp6\nF6PS4hmeGu90HL8THRHODePS+XzLPnYdKHM6jgkQVhRMwFq4rZid+8u4LQSGx26pm8alES5il6ca\nr1lRMAHr5a9z6RYXzZQzejgdxW916xjDpUN78ubKAsqrbKxJ0zQrCiYg5R0oZ8G2YmaMTSMy3H6M\nG3PLmemUVtQwd02R01FMALDfJhOQXlu2izARZoy1y1CbMjq9MwN7xPHK17vs8lTTJCsKJuBUVNcy\nOyufi4d0p0cnuwy1KSLCLWdmsGn3EVbllTgdx/g5Kwom4Ly/bjcl5dXcND7d6SgB44oRScRFR/Dq\n0l1ORzF+zoqCCTgvL91Fn8QOnNm7q9NRAkaH6AiuHp3C++t2s/9opdNxjB+zomACyrqCEtbml3Dz\n+PSQHw21uW4an0ZVbR1zsvKb3tiELCsKJqC8tjSPdpHhXDU6xekoAadvtzjO7N2V15bmUVtnHc7m\n1KwomIBxpKKa99YWccWIJDrGRDodJyDdOD6NwpJjLNpuc52bU7OiYALGu6sLOVZda6OhnoaLBvcg\nITaK15flOR3F+CkrCiYgqCqvLc1jaHInhqXYOEctFRURxrWZqXy+eS+7D9t0neabrCiYgLAq7xBb\n95ZaK6EVzBiTRp3C7BXW4Wy+yYqCCQivLcsjNjqCy4cnOR0l4KV1bc+kfgnMXpFPTW2d03GMn7Gi\nYPxeSXkV89ft5ooRSTbfcCu5cVwauw9X8MVW63A2J7OiYPzeW6sKqaqp48Zxdgdzazl/UHe6xUXz\n+jK7w9mczIqC8WuqyhvL8xieGs/gpI5OxwkakeFhXD8mlQXbiikssQ5n819WFIxfW7nrENn7jnLD\n2FSnowSd6zJd/6ZzrMPZeLCiYPza68tdHcxTh1kHc2tL7dKeSf0SmZOVb3c4mxOsKBi/dfhYNR+s\n383l1sHsMzPGpLL7cAULt+1zOorxE1YUjN+au6aQiuo6ZoyxexN85fxB3UmIjeKN5XYKybhYUTB+\nydXBnM8ZyR0ZmtLJ6ThBKyoijGtGp/KfLfvYd6TC6TjGD1hRMH5pXcFhNu8+wnRrJfjc9DGp1NYp\n/15Z4HQU4wesKBi/NGuFa4jsK0ZYB7OvZSS4JiyatSKPOutwDnlWFIzfKaus4b01RUwd1pM4GyK7\nTUwfm0r+wWMs2XHA6SjGYT4tCiJyiYhsFZFsEXmogW0mi8gaEdkoIgt9mccEhvfX7aasqpbpY+3U\nUVu5eEgP4ttHMmuFDakd6posCiLSXkR+ISL/ci/3E5GpXrwvHHgKmAIMBmaIyOB628QDTwOXq+oQ\n4NoWHIMJMrNW5NGvWyyj0myI7LYSExnOt0Ym88nGvRwsq3I6jnGQNy2FF4BK4Ez3ciHwv168byyQ\nrao5qloFzAKuqLfNDcDbqpoHoKp2sXSI27a3lFV5JVw/JtXmYG5j149Jpaq2jndWFzodxTjIm6LQ\nR1X/BFQDqGo54M1vazLgefFzgXudp/5AZxFZICIrReSWU+1IRO4SkSwRySoutlEdg9ms5flEhgtX\njbI5mNvawB4dGZEaz+wVeahah3Oo8qYoVIlIO0ABRKQPrpZDa4gARgOXARcDvxCR/vU3UtWZqpqp\nqpmJiYmt9NHG31TW1PL26gIuGtKDLh2inI4TkqaPSWXb3qOszi9xOopxiDdF4RHgIyBVRF4DPgd+\n4sX7CgHPUcxS3Os8FQAfq2qZqu4HFgHDvdi3CUKfbNxLSXk108fY4HdOmTo8ifZR4cxabh3OoarJ\noqCqnwJXAbcBbwCZqrrAi32vAPqJSC8RiQKmA+/V22YuMFFEIkSkPTAO2Ox9fBNMZq/IJzm+HRP6\nJDgdJWTFRkcwbVgS89bu5mhljdNxjAMaLAoiMur4A0gHdgNFQJp7XaNUtQa4D/gY1xf9HFXdKCJ3\ni8jd7m0242qFrAOWA8+q6obTPSgTePIPlrM4ez/XZaYSFmYdzE66fmwqx6prmb+2yOkoxgGNDT35\nqPu/MUAmsBZXB/MwIIv/Xo3UIFX9APig3rpn6i3/Gfiz95FNMPp3Vj5hAtdmWgez00amxtO/eyyz\nVuTbvSIhqMGWgqqeq6rn4mohjHJ39I4GRvLNvgFjWuz4uDtn908kKb6d03FCnohwXWYqa/JL2Lqn\n1Ok4po1509E8QFXXH19wn94Z5LtIJtQs2l7M7sMV1sHsR64alUJkuDDbZmULOd4UhXUi8qx7OIrJ\n7jub1/k6mAkds5fn07VDFOcN7O50FOPWpUMUFw3uwdurC6isqXU6jmlD3hSF24GNwAPuxyb3OmNO\n2/6jlXy2eS9Xj04hKsLGZ/Qn149JpaS8mk837XU6imlDTc5xqKoVwGPuhzGt6u1VBdTU6YlJ5I3/\nmNg3geT4dsxekW9zZIcQbwbE2ykiOfUfbRHOBDdVZfaKfDLTO9O3W6zTcUw9YWHCtZkpfLl9P/kH\ny52OY9qIN+31TGCM+zEJ+Bvwqi9DmdCwctchdhSXcZ11MPutazNTEcFmZQsh3tzRfMDjUaiqj+Ma\nq8iY0zJrRT6x0RFMHdbT6SimAcnx7Ti7XyL/zsqn1mZlCwnenD4a5fHIdN+N3GRfhDGNOVJRzfvr\ndjNteBLto+zHyZ9dPyaV3YcrWLTdRigOBd78Nj7q8bwG2Alc55s4JlTMW1vEsepauzchAFwwqDtd\nOkQxe3k+5w7o5nQc42PeFIU7VPWkjmUR6eWjPCZEzF6Rz8AecQxL6eR0FNOEqIgwrh6VzAtf5VJc\nWkliXLTTkYwPedPR/KaX64zxyqaiI6wrOMx0m10tYFw/JpWaOuXtVdbhHOwabCmIyEBgCNBJRK7y\neKkjrkHyjGmROVn5REWEceXI+hPxGX/Vt1scmemdmZ2Vz11n97ZiHsQaaykMAKYC8cA0j8co4E7f\nRzPBqKK6lndWF3LJkB7Et7fZ1QLJdWNSySkuY0XuIaejGB9qsKWgqnOBuSJypqp+3YaZTBD7cMNu\nDh+rZvpY62AONFOH9eQ38zYxa0UeY3t1cTqO8ZHGJtk5PuXmDSLyt/qPNspngsys5fmkd23P+F5d\nnY5imql9VASXj0jig/Wuwm6CU2Onj45Pi5kFrDzFw5hmySk+yrKdB7l+jM2uFqhmjEmjorqOuWts\nSpVg1djpo3nu/77UdnFMMJu9Ip/wMOGa0Ta7WqAamtKJIUkdeWN5PjePT7cO5yDU2NVH84AG72tX\n1ct9ksgEpaqaOt5cWcD5A7vRLc4uXgtk08ek8ou5G1lfeJhhKfFOxzGtrLGb1/7SZilM0Pts814O\nlFUxw+b8DXhXjEzmdx9s5o3l+VYUglBjp48WHn8uIlHAQFwth62qWtUG2UwQeWN5HkmdYji7f6LT\nUcxp6hgTyWVDk3hvTSE/v2wQHaJt7Kpg4s2AeJcBO3ANmf0kkC0iU3wdzASP/IPlLM7ezzWZqYRb\nB3NQmDE2lbKqWuavK3I6imll3gxz8ShwrqpOVtVzgHOxWdhMM8xekY+ADX4XREand6Zft1heX57v\ndBTTyrwpCqWqmu2xnAOU+iiPCTLVtXXMznKNrpkU387pOKaViAg3jEtjbX4JG4sOOx3HtCJvikKW\niHwgIreJyK3APGCFiFxVb0wkY77h8817KS6ttA7mIHTVyBSiI8J4fVme01FMK/KmKMQAe4FzgMlA\nMdAO1zhIU32WzASF15fn07NTDJMHWAdzsOnUPpLLhvVk7poiyiprnI5jWkmTlw2o6u1tEcQEn/yD\n5Xy5vZjvndePiHBv/v4wgeaGsWm8vaqQeWuLmG6twaDQZFFwT6hzP5Dhub3dvGaaMmtFHoJrLH4T\nnEand6Z/91jeWJ5nRSFIeHOB8bvAc7j6Eup8G8cEi+raOuZkFVgHc5ATEWaMTePX8zaxofAwZyTb\nTHqBzps2fYWq/k1Vv1DVhccfPk9mAtqnm1wdzDeMs78eg91VI1OIiQzjNetwDgreFIUnROQRETlT\nREYdf/g8mQlory7dRXJ8OybbRO9Br1P7SKYNS2LumkKOVNiQ2oHOm6IwFNdMa3/AdSPbo3g5LpKI\nXCIiW0UkW0QeamS7MSJSIyLXeLNf49+y9x1lyY4D3DAuze5gDhE3jU+nvKqWd1bZkNqBzps+hWuB\n3s0d70hEwoGngAuBAlz3NrynqptOsd0fgU+as3/jv15btovIcOG6TOtgDhXDU+MZltKJV5fu4pYz\nbUjtQOZNS2EDrnmam2sskK2qOe6CMgu44hTb3Q+8BexrwWcYP3Osqpa3VhZwyRk9SYyLdjqOaUM3\njUtn+76jLN950Oko5jR4UxTigS0i8rGIvOd+zPXifcmA58AoBe51J4hIMvAt4B+N7UhE7hKRLBHJ\nKi4u9uKjjVPmrS3iSEUNN1kHc8iZNjyJjjERvGodzgHNm9NHj3g8F2ASML2VPv9x4KeqWtdYc1NV\nZwIzATIzMxuc+Mc479Vlu+jfPdYmdg9B7aLCuXp0Cq8u3UVx6WBrKQaoJlsK7stPj+Aa0uJF4Dzg\nGS/2XQh4nlROca/zlAnMEpFc4BrgaRG50ot9Gz+0Nr+EdQWHuXGcnVMOVTeOS6e6VpmTZaOnBqoG\ni4KI9HdfiroF+DuQB4iqnquqf/di3yuAfiLSyz1Jz3TgPc8NVLWXqmaoagbwJnCPqr7b0oMxznrp\n61w6RIVz1ajkJrc1walvt1gm9k3g1aW7qKm1e10DUWMthS24WgVTVXWiuxDUertjVa0B7gM+BjYD\nc1R1o4jcLSJ3n05o43/2H61k/trdXD06hbiYSKfjGAfdcmY6uw9X8OmmvU5HMS3QWJ/CVbj+uv9C\nRD7CdfVQs84JqOoHwAf11p3y1JOq3tacfRv/Mmt5HlW1ddxyZobTUYzDzh/UnZTO7XhxSS5ThvZ0\nOo5ppgZbCqr6rqpOxzU38xfA94FuIvIPEbmorQIa/1dTW8erS/OY1C+Bvt1inY5jHBYeJtw8Pp1l\nOw+yZc8Rp+OYZvKmo7lMVV9X1Wm4OotXAz/1eTITMD7ZtJc9RyqslWBOuC4zleiIMF5assvpKKaZ\nmjXIvaoeUtWZqnq+rwKZwPPiklxSOrfjvIE2zpFx6dwhiitHJPPu6kIOl9t4SIHEZj4xp2Xz7iMs\n33mQW85Mt3GOzEluOSudY9W1zM6ym9kCiRUFc1qeW7yTdpHhNs6R+YYhSZ0Y26sLLy2xy1MDiRUF\n02L7Sit4b00R12amEN8+yuk4xg99Z2IvCkuO8fFGuzw1UFhRMC326te7qK6r4/YJvZyOYvzU+YO6\nk961Pc8uznE6ivGSFQXTIhXVtby6LI/zB3anV0IHp+MYPxUeJnx7Qi9W55Wwctchp+MYL1hRMC3y\nzupCDpZVccdEayWYxl0zOoWOMRE8v3in01GMF6womGZTVZ5bvJMhSR0Z39tGQzWN6xAdwYxxaXy4\nYTf5B8udjmOaYEXBNNuCbcVk7zvKHRN72Wioxiu3npmBiPDiklyno5gmWFEwzfbMgh306BjD1GFJ\nTkcxASIpvh3ThvXkjeV5lJQ3a2Zf08asKJhmWZV3iGU7D/KdSb2IirAfH+O9uyf3obyqlpe/tqEv\n/Jn9VptmeWbBDjq1i2TGWJtu0zTPwB4dOW9gN15cksuxKq9H4TdtzIqC8Vr2vlI+2bSXW89Mp0O0\nNzO5GnOyu8/pw8GyKpuZzY9ZUTBe++fCHGIiw7j1rAyno5gANSajM6PTOzNzUQ7VNvSFX7KiYLxS\nVHKMd9cUMn1MGl1jbUJ20zIiwv+c04fCkmO8v26303HMKVhRMF6ZuSgHVexmNXPazhvYjf7dY3nq\ni2zq6tTpOKYeKwqmSXuPVPD68jyuHpVCapf2TscxAS4sTLj/vH5s33eUDzZYa8HfWFEwTfrHgh3U\n1in3ntvX6SgmSFw6tCf9usXyxGfbrbXgZ6womEb9t5WQTFpXayWY1hEeJnzvfGst+CMrCqZRx1sJ\n953bz+lEPPffAAAUHklEQVQoJshYa8E/WVEwDdp3pII3rJVgfMRaC/7JioJp0JNfZFNjrQTjQ8db\nC499us2m7PQTVhTMKeXuL+P1ZXlMH5NqrQTjM+Fhwo8uGsCO4jLeXFngdByDFQXTgL98spXI8DAe\nON9aCca3Lh7SnZFp8Tz22TYbE8kPWFEw37CuoIT563Zz56RedOsY43QcE+REhJ9NGcTeI5W8sMRm\nZ3OaFQVzElXlDx9uoUuHKO48u7fTcUyIGNurCxcM6sY/FuzgUJnNt+AkKwrmJIu272fJjgPcf15f\n4mIinY5jQsiPLx5IWWUNT32R7XSUkGZFwZxQXVvH/87fRFqX9tw4Lt3pOCbEDOgRxzWjU3jp61x2\n7i9zOk7I8mlREJFLRGSriGSLyEOneP1GEVknIutFZImIDPdlHtO4V77exfZ9R/nF1ME2q5pxxIMX\nDyA6IpzfzNvodJSQ5bPffBEJB54CpgCDgRkiMrjeZjuBc1R1KPBbYKav8pjG7T9ayWOfbePs/olc\nMKib03FMiOoWF8MD5/fji63F/GfLXqfjhCRf/jk4FshW1RxVrQJmAVd4bqCqS1T1kHtxKZDiwzym\nEX/+aCvHqmr55dTBiIjTcUwIu/WsDPokduA38zZRWWOXqLY1XxaFZMBzzr0C97qG3AF8eKoXROQu\nEckSkazi4uJWjGgA1uaXMGdlPrdPyKBvt1in45gQFxURxiPThpB7oJznF+c6HSfk+MWJYxE5F1dR\n+OmpXlfVmaqaqaqZiYmJbRsuyNXU1vGLuRvo2iGa++1GNeMnzu6fyIWDu/O3z7eTf7Dc6TghxZdF\noRBI9VhOca87iYgMA54FrlDVAz7MY07hxSW5rCs4zCPTBtPRLkE1fuRXlw8hTODhdzegaqOothVf\nFoUVQD8R6SUiUcB04D3PDUQkDXgbuFlVt/kwizmFvAPl/OWTrZw/sBtTh/V0Oo4xJ0mOb8ePLx7A\nom3FzF1T5HSckOGzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8EugJPi8gaEcnyVR5zMlXl4XfXEy7C\nb688wzqXjV+6+cwMRqbF8+t5GzlwtNLpOCHBp30KqvqBqvZX1T6q+jv3umdU9Rn38++oamdVHeF+\nZPoyj/mvt1YV8uX2/fx0ykCS4ts5HceYUwoPE/549TCOVtbw2/mbnI4TEvyio9m0rcKSY/x63kZG\np3fmJrtz2fi5/t3juGdyX95dU8RHNhmPz1lRCDF1dcqDc9ZSW6f89brhhIXZaSPj/+47ry/DUjrx\n0Nvr2Xukwuk4Qc2KQoh5bvFOvs45wCPTBpPetYPTcYzxSmR4GI9dP4KK6lp+/OY6uxrJh6wohJDN\nu4/w54+3ctHg7lyXmdr0G4zxI30SY3n40kEs2lbMy1/vcjpO0LKiECLKKmv43hur6dgukt9fNdSu\nNjIB6abx6UwekMj/fbCZTUVHnI4TlKwohABV5f+9s57s4qM8fv0IusZGOx3JmBYREf5y7XDi20fy\nP6+t5PCxaqcjBR0rCiHg1aW7mLumiB9d2J+J/RKcjmPMaUmIjeapG0ZReOgYP/73WutfaGVWFILc\n6rxD/Gb+Js4b2I17Jvd1Oo4xrSIzowsPTRnIJ5v2MnNRjtNxgooVhSC290gF97y2iu4dY+zyUxN0\n7pjYi0uH9uCPH21h4TYbPbm1WFEIUuVVNXznpSwOH6vmnzePJr59lNORjGlVIsKfrhlO/+5x3Pfa\nKrbtLXU6UlCwohCE6uqU789aw8aiwzx5w0iGJHVyOpIxPhEbHcHzt40hJiqc219YQXGpjY90uqwo\nBKE/fLSFTzbt5RdTB3PewO5OxzHGp5Li2/HcrZkcKKvkrleyOFZls7WdDisKQebpBdnMXJTDLWem\nc9tZGU7HMaZNDEuJ54npI1mbX8Ldr66kqqbO6UgBy4pCEHnl61z+9NFWrhiRxCPThtgNaiakXDyk\nB3+4ahgLtxXzwKzV1NRaYWgJKwpB4q2VBfxi7kYuGNSdv1w7nHC70siEoOvGpPKLqYP5cMMefvrW\neurq7B6G5opwOoA5fXNW5PPQ2+uY0LcrT94wkshwq/UmdN0xsRdllTX89VPXZI5/vHooEfY74TUr\nCgHu+cU7+c38TUzql8DMmzOJiQx3OpIxjrv/vL4I8Oin2yivquHx6SOIjrDfDW9Y+QxQqsrfPt/O\nb+Zv4pIhPXj21kzaRdkPvTHguofh/vP78Uv3qaQ7X15JeVWN07ECghWFAFRVU8dP31rHXz/dxlUj\nk3nyhpH2V5Axp/Dtib3409XDWLy9mOv++TV7DtsEPU2xohBgDpVVcfNzy5iTVcD3zuvLX64dbudL\njWnEdWNSefbWTHYWl3HFU4tZX3DY6Uh+zb5NAsjGosNc+fRXrM4v4fHrR/DDiwbYeEbGeOG8gd15\n656ziAgL49p/LuGd1QVOR/JbVhQCgKryyte5fOvpJVRU1/LGneO5cmSy07GMCSgDe3Tk3XsnMCw5\nnh/MXstP3lxr/QynYFcf+blDZVX8v3fW8+GGPUwekMij1w63SXKMaaHEuGhev3Mcj3+2nacWZLM6\nr4Qnpo9kcFJHp6P5DWsp+ClVZf66Ii7460I+3bSXn00ZyPO3jrGCYMxpiggP48GLB/DKt8dxqLya\ny59czKOfbKWyxsZMAisKfqngUDnffWUl972+muTO7Zh3/0S+e04f6z8wphVN7JfApz84m8tHJPH3\n/2Rz2d8WsyzngNOxHCeBNpVdZmamZmVlOR3DJ0orqvnHgh08u3gnYQI/vLA/357Qy64uMsbHFmzd\nx8PvbKCw5BiXDOnBQ1MGkpHQwelYrUpEVqpqZpPbWVFwXnlVDa8vy+OZhTvYf7SKq0Ym8+DFA0iK\nb+d0NGNCxrGqWp5bnMPTC3ZQXVvHjLFpfPecPiQHye+hFYUAUFJexWvL8nhu8U4OllVxZu+uPDRl\nIMNT452OZkzI2nekgsc+28a/swoQgatGpvDdc3rTOzHW6WinxYqCn1JV1uSX8OrSPOavK6Kypo5z\nByRy33l9GZ3exel4xhi3gkPlzFyUw6wV+VTV1DGhb1duGpfOBYO7B+Sgk1YU/Ez2vlLmrd3N/HVF\n7Cguo31UOFeOTOamcel2OZwxfqy4tJLZK/J4Y3k+hSXH6NIhikvO6MHUYT0Z16trwAxTb0XBYWWV\nNSzPPcjCrcUs2l5MTnEZIjA2owuXj0ji8uFJxMVEOh3TGOOl2jplwdZ9vLO6kM837+NYdS1dO0Qx\nsV8C5/RPZGK/BLrFxTgds0F+URRE5BLgCSAceFZV/1DvdXG/filQDtymqqsa26c/FoVjVbVs31fK\nlj2lrC84zKq8Q2zefYQ6heiIMMb37sq5AxKZMrQn3Tv67w+NMcY75VU1/GfLPj7fvI9F24o5UFYF\nQGqXdoxK68yI1HgG9ujIgB5xdOkQ5XBaF8eLgoiEA9uAC4ECYAUwQ1U3eWxzKXA/rqIwDnhCVcc1\ntt+2KgqqSmVNHaUVNRypqObIsWoOHK2i+GglxaWVFB46Rv6hcvIOllNYcozj/4yx0REMT+3EqLTO\njMnowtheXWyOA2OCWF2dsrHoCEtzDrAq7xCr8g6x90jlidcTYqNI7dKetC7tSencju4dY0iMjSYh\nLppO7SLpGBNJXEwE7SLDfXovkrdFwZfDXIwFslU1xx1oFnAFsMljmyuAl9VVmZaKSLyI9FTV3a0d\nZuG2Yn47/78fraoooOpqFtbU1lFTp9TUKRXVtRyrrqWxepkQG01ql3aMTu/MNaNTGNgjjgE9OpLW\npX3AnGM0xpy+sDBhaEonhqZ0AlzfLcWllWzZU8rWPaVk7ztK3sFyVu46xLy1RTQ2Q2h0RBgxkeFE\nhocRGS5EhAvhIoSJIALTx6Rx59m9fXo8viwKyUC+x3IBrtZAU9skAycVBRG5C7gLIC0trUVhYqMj\nGNA97qR1IhAmQpi4bn2PCHP9T4iJCKddVDgxkeHExUTQqZ2rknftEE1iXDRdY6Ns/gJjzCmJCN06\nxtCtYwxn90886bXaOuVgWRX73WccXGchXGcjjlXVnviDtLr2v3+o1qlSp1CnSmKc74e5CYgB8VR1\nJjATXKePWrKP0emdGZ3euVVzGWNMc4SHCYlxrj8uB/V0Os2p+fJi20Ig1WM5xb2uudsYY4xpI74s\nCiuAfiLSS0SigOnAe/W2eQ+4RVzGA4d90Z9gjDHGOz47faSqNSJyH/AxrktSn1fVjSJyt/v1Z4AP\ncF15lI3rktTbfZXHGGNM03zap6CqH+D64vdc94zHcwXu9WUGY4wx3gu8ATyMMcb4jBUFY4wxJ1hR\nMMYYc4IVBWOMMScE3CipIlIM7Grh2xOA/a0YJ1CE4nGH4jFDaB53KB4zNP+401U1samNAq4onA4R\nyfJmQKhgE4rHHYrHDKF53KF4zOC747bTR8YYY06womCMMeaEUCsKM50O4JBQPO5QPGYIzeMOxWMG\nHx13SPUpGGOMaVyotRSMMcY0woqCMcaYE0KmKIjIJSKyVUSyReQhp/P4goikisgXIrJJRDaKyAPu\n9V1E5FMR2e7+b9DNNiQi4SKyWkTmu5dD4ZjjReRNEdkiIptF5MwQOe4fuH++N4jIGyISE2zHLSLP\ni8g+Edngsa7BYxSRn7m/27aKyMWn89khURREJBx4CpgCDAZmiMhgZ1P5RA3wI1UdDIwH7nUf50PA\n56raD/jcvRxsHgA2eyyHwjE/AXykqgOB4biOP6iPW0SSge8Bmap6Bq5h+acTfMf9InBJvXWnPEb3\n7/h0YIj7PU+7v/NaJCSKAjAWyFbVHFWtAmYBVzicqdWp6m5VXeV+XorrSyIZ17G+5N7sJeBKZxL6\nhoikAJcBz3qsDvZj7gScDTwHoKpVqlpCkB+3WwTQTkQigPZAEUF23Kq6CDhYb3VDx3gFMEtVK1V1\nJ675aca29LNDpSgkA/keywXudUFLRDKAkcAyoLvHjHZ7gO4OxfKVx4GfAHUe64L9mHsBxcAL7tNm\nz4pIB4L8uFW1EPgLkAfsxjVb4ycE+XG7NXSMrfr9FipFIaSISCzwFvB9VT3i+Zp7YqOguQ5ZRKYC\n+1R1ZUPbBNsxu0UAo4B/qOpIoIx6p0yC8bjd59GvwFUUk4AOInKT5zbBeNz1+fIYQ6UoFAKpHssp\n7nVBR0QicRWE11T1bffqvSLS0/16T2CfU/l8YAJwuYjk4joteJ6IvEpwHzO4/hosUNVl7uU3cRWJ\nYD/uC4CdqlqsqtXA28BZBP9xQ8PH2Krfb6FSFFYA/USkl4hE4eqUec/hTK1ORATXOebNqvpXj5fe\nA251P78VmNvW2XxFVX+mqimqmoHr/+t/VPUmgviYAVR1D5AvIgPcq84HNhHkx43rtNF4EWnv/nk/\nH1ffWbAfNzR8jO8B00UkWkR6Af2A5S3+FFUNiQdwKbAN2AE87HQeHx3jRFxNynXAGvfjUqArrqsV\ntgOfAV2czuqj458MzHc/D/pjBkYAWe7/3+8CnUPkuH8NbAE2AK8A0cF23MAbuPpMqnG1Cu9o7BiB\nh93fbVuBKafz2TbMhTHGmBNC5fSRMcYYL1hRMMYYc4IVBWOMMSdYUTDGGHOCFQVjjDEnWFEwfkVE\nHnaPgLlORNaIyDgff94CEfF68nMReVFECkUk2r2c4L5xrjWyTD4+ymtrEZHvi8gtTWwzVERebM3P\nNYHLioLxGyJyJjAVGKWqw3DdvZrf+LscUQt82+kQ9dUfGdM9YNy3gdcbe5+qrgdSRCTNh/FMgLCi\nYPxJT2C/qlYCqOp+VS0CEJFfisgK9xj6M913sx7/S/8xEclyzykwRkTedo85/7/ubTLccw685t7m\nTRFpX//DReQiEflaRFaJyL/dY0idyuPAD9xfup7vP+kvfRF5UkRucz/PFZHfu1s/WSIySkQ+FpEd\nInK3x246isj77nHxnxGRsMayuff7RxFZBVxbL+d5wCpVrfH4t/qjiCwXkW0iMslj23m47gg3Ic6K\ngvEnnwCp7i+sp0XkHI/XnlTVMeoaQ78drhbFcVWqmgk8g+vW/3uBM4DbRKSre5sBwNOqOgg4Atzj\n+cEikgD8HLhAVUfhulP4hw3kzAMWAzc38/jyVHUE8CWu8fKvwTXvxa89thkL3I9r3o8+wFVeZDug\nqqNUdVa9z5sA1B8oMEJVxwLfBx7xWJ8FTMKEPCsKxm+o6lFgNHAXrmGhZx//Sxs4V0SWich6XH8B\nD/F46/FxrNYDG9U1r0QlkMN/BwrLV9Wv3M9fxTUkiKfxuL6IvxKRNbjGlklvJO7vgR/TvN8hz5zL\nVLVUVYuBShGJd7+2XF3zftTiGupgohfZZjfweT1x/Tt6Oj5I4kogw2P9PlyjjpoQF9H0Jsa0HfeX\n4QJggbsA3Cois4Cncc22lS8ivwJiPN5W6f5vncfz48vHf8brj+dSf1mAT1V1hpc5t7u/oK/zWF3D\nyUUi5uR3tThnU9nKGlh/rJEMtZz8+x/j3t6EOGspGL8hIgNEpJ/HqhHALv77xbbffS79mhbsPs3d\nkQ1wA67TP56WAhNEpK87SwcR6d/EPn8HPOixvAsY7B6tMh7XCJ7NNdY9mm8YcL07Z0uygWv00L5e\nfm5/XAPMmRBnRcH4k1jgJRHZJCLrcJ0y+ZW6ppn8F64vrY9xDYXeXFtxzVm9Gddoov/wfNF9Guc2\n4A33Z38NDGxsh6q6EVjlsZwPzHHnnAOsbkHOFcCTuL7QdwLvtCSb24e4puz0xrnA+81Oa4KOjZJq\ngp64piad7+6kDiki8g7wE1Xd3sg20cBCYOLxK5VM6LKWgjHB7SFcHc6NSQMesoJgwFoKxhhjPFhL\nwRhjzAlWFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCf8fcGqGIouq0A4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Parzen window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYJFd57n9fp+nJYWd2NszmIGmVpVUCIZGERBQ5Y+MA\nxgabiwPRvsb2BV9jA8ZggcHmGhEtEAIBQiABCkhIYldxg1abd2Znd3Lomc7d5/5Rdaqrezqcmt1J\n2nqfp5/pqTpddarq1HnPl0UphQ8fPnz48DEbBBa6Az58+PDhY+nCJxEfPnz48DFr+CTiw4cPHz5m\nDZ9EfPjw4cPHrOGTiA8fPnz4mDV8EvHhw4cPH7OGTyI+fCxCiMhZIvK4iMRE5M8Mf6NEZPNc920p\nQ0Q+KiL/OcvfPl9E+k53n5Y6fBJZBBCRIyKSEJEp12fVQvfLx4Lig8CvlFLNSql/K90pIveIyB/O\nxYlFZL1NSHosHhGRD8/FueYbSqlPKqXm5L6dqfBJZPHglUqpJtenv7SBiIQWomMLhTPtekuwDti9\nwH1oU0o1AW8B/reI3OD1AGf4Mzwj4JPIIoZrRfgHInIM+KW9/UoReVBExkXkCRF5vus3G0TkXlsN\ncpeIfEFEvmHvmyGO26vMF9vfAyLyYRE5KCIjInKLiHSU9OV3ReSYiAyLyMdcxwnaqoKD9rl3isga\nEfl3Efl0yTlvF5EPVLhmJSLvFZH9wH5729n2tYyKyD4ReaOr/ctEZI99zuMi8pfua7X7NGxf59tc\nv2sVkZtFZEhEjorIX4tIwN73ThH5tYj8i4iMichhEXmp67fvFJFD9jkPlxz390Vkr/27n4nIuirP\n91Uistt+jveIyDn29l8CLwC+YEsCW0t+9wngea79X3DtfrGI7LeP+e8iIrPpmxtKqd9gEdp59nE+\nJyK9IjJpP+fnuc7xcRH5noh8Q0QmgXfafdFSzbT9jNfb7V8hltpu3B7TF7iOdURE/lJEnhSRCRH5\nHxGJVriXR0XkUvv72+xznGv//wci8gNX//T7UGtM14vIf9v3aw9wWck5z7Gf27j9HF9lb99gb9Pj\n6SsiMuj63ddF5H+Z3PslAaWU/1ngD3AEeHGZ7esBBdwMNAL1wGpgBHgZ1iLgOvv/Lvs3vwE+A9QB\n1wAx4Bv2vucDfZXODbwfeAjosX//H8C3S/ryFbsfFwIp4Bx7/18BTwFnAWLvXwZcDvQDAbtdJxAH\nuivcCwXcBXTY52kEeoHfA0LAxcAwsM1ufwJ4nv29HbjEda1Z1724FpgGzrL33wz8EGi2r+0Z4A/s\nfe8EMsC7gCDwx/Y1iN2fSddxVgLn2t9vBA4A59h9/WvgwQrXudXuz3VAGEt9dQCI2PvvAf6wypiZ\nsd++dz8G2oC1wBBwwyz6pp91yL7m59rP7EX2/rfbzzYE/AVwEoja+z5u37tXY43P+pJjfxK4z77m\ni4FB4Ar7Pv8u1nisc43NR4BV9njYC7ynQp9vBv7C/v5l4CDwx659H3D17xsl11lpTP9f4H773GuA\nXdjvj93/A8BHgQjwQqx3TY+LY8Cl9vd9wCHXcY8BFy/0vHPa5q+F7oD/cV6WKWDc/vzA3q4H+UZX\n2w8BXy/5/c/sF3At1sTZ6Nr3LcxJZK+eKOz/V9oTQsjVlx7X/keAN9vf9wE3Vri+vcB19vf3AXdU\nuRcKeKHr/zcB95e0+Q/gb+3vx4A/AlpK2jy/zL24BfgbrAkrjU1E9r4/Au6xv78TOODa12D3awUW\niYwDr2PmBPlTbCKy/w9gTb7rylzn3wC3lLQ9Djzf/v8eZkciV5dc74dn0Tf9rMeBMfv5/VmVvowB\nF9rfPw7cV6Hdm+zxphc8XwT+oaTNPuBa19h8u2vfp4AvVTj2HwC3u8bbHwLfsf8/SmFx8XFmkkil\nMX0Im4Tt/99NgUSeh0WeAdf+bwMft79/Hfhze8zss/v+HmCDfV8D5a5jKX58ddbiwauVUm3259Ul\n+3pd39cBb7DF5XERGQeuxprwVwFjSqlpV/ujHvqwDrjNddy9QA7odrU56foeB5rs72uwVn/l8DWs\n1Sv236/X6Efp9V5Rcr1vw3o5wZrMXwYcFUuNd5Xrt+XuxSosaShM8b05iiXlaTjXqZSK21+b7OO9\nCWtCOCEiPxGRs119/Zyrn6NYK3n3cTVWuc+vlMrb112urRdUej5e+qbRqZRqV0qdo1zGfVvFtNdW\nMY0DrVj3VKO39EAicjHwBeA1SqkhV5/+ouTZrsG6N7WupxT3As8TkZVYi4RbgOfaarNW4PEq11np\nHKtKrsU9XlYBvfZzc+/X9/NerIXMNViS1z1Y0vC1WIsi9++WNHwSWRpwp1ruxZJE2lyfRqXU/8VS\n7bSLSKOr/VrX92msVTVg2TGArpJjv7Tk2FGl1HGDPvYCmyrs+wZwo4hciKVO+UGNY5Ve770lfWpS\nSv0xgFLqt0qpG4Hl9nFvcf223L3ox1KHZbAmMfc+k+tEKfUzpdR1WMT9NJY6RPf1j0r6Wq+UerDM\nYfrd57dtF2tM+0DxPTKBl75VhG3/+CDwRqBdKdUGTGARUtm+iYh+Nu9VSj1W0qdPlPSpQSn1bY/X\nhlLqABYB/CmWJDSJRQ7vBn49y0n7BNYz0XC/S/3AGm33cO3Xz+9eLGnl+fb3X2OpBa+1/3/WwCeR\npYdvAK8UkevFMmZHxTIi9yiljgI7gL8TkYiIXA280vXbZ4CoiLxcRMJYevE61/4vAZ/QBlcR6RKR\nGw379Z/AP4jIFrFwgYgsA1BK9QG/xZJAblVKJTxc74+BrSLyDhEJ25/LbKNmxDaitiqlMli2itLJ\nQt+L5wGvAL6rlMphkc0nRKTZvt4/x7q3VSEi3SJyo01OKSw1pD7nl4CPuAy6rSLyhgqHugV4uYi8\nyH4Wf2Efz3RSHwA2Grb12rdqaMZSEw4BIRH530BLpcZieWd9D0uFdEvJ7q8A7xGRK+wx02iPzeZZ\n9Ausyfl9FCbpe0r+94pbsO5Zu4j0YBGUxsNYpPVBe0w+H+td+w6AUmo/kMCSvO+1SW0AS3L2ScTH\nwkEp1YtlJP0o1ovci2XU1s/yrViGylHgb7GMivq3E8CfYE34x7EkE7e31ueA24Gfi0gMy8h+hWHX\nPoP10v0cazL/LyxjpcbXgPOprcoqglIqBrwEeDPW6u8k8E8UyO8dwBGxPIHeg6Xq0jiJpa/vB76J\nZZR92t73p1jXfwhrlfgt4KsGXQpgEU4/1j2+FsvwjlLqNrtv37H7swt4abmDKKX2YU0wn8eSjF6J\n5eadNugDWM/q9bbn0Iw4kjLnM+5bDfwMuBNrQXIUSFJGfeVCD9aK/H9JcRzUWqXUDiznhS9gPacD\nWPao2eJeLJK7r8L/XvF3WNd4GGtcO2PXfk6vxLqHw8BNwO+4xpc+/4j9zur/BXh0lv1ZlBDbCOTj\nWQoR+TiwWSn19lpt57gf12Ct9NepeRh09srwG0qpnrk+lw8fZzJ8ScTHnMNW17wf+M/5IBAfPnzM\nH3wS8TGnECuAbhzLCP2vC9wdHz58nGb46iwfPnz48DFr+JKIDx8+fPiYNZ71ydE6OzvV+vXrF7ob\nPnz48LGksHPnzmGlVFetds96Elm/fj07duxY6G748OHDx5KCiBhlu/DVWT58+PDhY9bwScSHDx8+\nfMwaPon48OHDh49ZwycRHz58+PAxa/gk4sOHDx8+Zo0lRyIicoNYJVIPiMiHF7o/Pnz48HEmY0mR\niF3/4t+xMmduA94iItsWtlc+fPjwceZiqcWJXI5VtvQQgIh8Byst+p7TfaIHDwzzx998lJedv4Ku\nprraP/DhYzYQqd3Ghw8PyOTy3L1ngDddtoY/fJ6XkjOzw1IjkdUU1y7oo0y9CxF5N1ZFM9auXVu6\n2whff+goE4kM336k1z7mrA7jw0dF+GnrfMwl/s9P9vokMlsopb4MfBlg+/bts3pVb3rbJRwcmuYv\nvvsEe/on+Na7ruSy9R2ntZ8+fPjwcboQT2d57U0P0jsa51Ovv5AbzlsxL+ddUjYRrGp87prHPZjX\npPYEEWHz8iZu/r3LWdVWz19+9wmSmdxcnMqHDx8+Thmf+fkzPH0yxk1vv5SXX7CSYGB+1CdLjUR+\nC2wRkQ0iEsEqmXr7XJ6wtSHMP772fI6OxPmvXx+ey1P58OHDx6xwZHiarz5wmLdcvpZrt9bMmXha\nsaRIRCmVBd6HVed5L3CLUmr3XJ/3OZs6ecFZXfzXrw8TT2fn+nQ+fPjw4Qn/cd9BQsEAH7huy7yf\ne0mRCIBS6g6l1Fal1Cal1Cfm67zvfcFmRqfT/OCx/vk6pQ8fPnzUxMhUilt3HucNl/awvDk67+df\nciSyULh0XTtndTfz3Z29tRv78OHDxzzhR0/0k87l+Z2r1i/I+X0SMYSI8IbtPTx2bJyDQ1ML3R0f\nPnz4AOC2x/s5Z2ULZ61oXpDz+yTiAS87fyUAP989sMA98eHDhw84NhLnid5xXnPxqgXrg08iHrCq\nrZ7zVrdw916fRHz48LHwuPeZQQCu2zY/MSHl4JOIR7z4nG4ePTbG6HR6obviw4ePMxz3PjPEmo56\n1i9rWLA++CTiEVdv7kQpeOTw6EJ3xYcPH2cw0tk8Dx4c4dqtXcgC5mXyScQjLuhpIxoO8PDhkYXu\nig8fPs5gPNk3Tjyd4+rN8xtcWAqfRDwiEgpw6bp2HjrkSyI+fPhYODzeOw7AJevaFrQfPonMAtvX\ndfD0yUmmU370ug8fPhYGjx0bp6e9fkECDN3wSWQWOH91K0rBnhOTC90VHz58nKF47NgYF69tX+hu\n+CQyG5zf0wrAruMTC9wTHz58nIkYmEzSP5Hk4jULq8oCn0RmheXNdXQ21fGUTyI+fPhYAOzpt7Qg\nekG7kPBJZBYQEc5f3cLu4746y4cPH/OPfQMxALYuX5hUJ274JDJLbO1u5vDwNLm8X+PUhw8f84tn\nBmJ0t9TR2hBe6K74JDJbbOpqIp3L0zcWX+iu+PDh4wzD/oEptnYvvBQCPonMGpuWNwL4GX19+PAx\nr8jnFfsHY2xZBKos8Elk1tjY2QTAoaHpBe6JDx8+ziT0TyRIZvJsXt600F0BfBKZNdobI3Q0RnxJ\nxIcPH/OKY6OWCn3dAiZddMMnkVPAxs5GXxLx4cPHvKJvLAFAT3v9AvfEgk8ip4Ce9nr6JxIL3Q0f\nPnycQegbjRMQq77RYoBPIqeAVW31nBhP+m6+Pnz4mDf0jiVY2VpPOLg4pu/F0QsXROTjInJcRB63\nPy9z7fuIiBwQkX0icv1C9hMsEsnmFUOx1EJ3xYcPH2cIekfji0aVBYuQRGx8Vil1kf25A0BEtgFv\nBs4FbgBuEpHgQnZytf0gj4/7Ki0fPnzMD/rGEvS0Lw6jOixeEimHG4HvKKVSSqnDwAHg8oXs0Oo2\nn0R8+PAxf8jk8gzEks4CdjFgsZLIn4rIkyLyVRHRuY5XA72uNn32thkQkXeLyA4R2TE0NDRnndSG\nrf4KJJLM5Dg8PI1Svs3Ehw8fZhieSjE8VV5FPjqdRikrCexiwYKQiIjcLSK7ynxuBL4IbAQuAk4A\nn/Z6fKXUl5VS25VS27u65q50ZFNdiIZIsKxNZHAyyUs+ex8v+Jd7eN+3H/OJxIcPHzXxkydPcNU/\n/oIrP/kLfvLkiRn79VzTtYhIJLQQJ1VKvdiknYh8Bfix/e9xYI1rd4+9bUHR2VRXlkQ+9bN9nJxM\n8sbtPdyyo49rt3bxxu1ryhzBhw8fPiyC+NCtT7JtVStKKT5621Ncs7WT5mi4qA0sLhJZdOosEVnp\n+vc1wC77++3Am0WkTkQ2AFuAR+a7f6Xoaq6bIXqOx9P84LHjvPXytfzT6y7ggp5WvnTvQfK+K7AP\nHz4q4JsPH2U6neUzb7yQj7/qXCYSGe54qlgacUikySeRaviUiDwlIk8CLwA+AKCU2g3cAuwB7gTe\nq5TKLVw3LXQ2RWaQyF17BsjmFa+9ZDUiwu9etZ5DQ9M8emxsgXrpw4ePxYx8XnHro308d1Mnm7qa\nuHhNGxs7G/lxiUpraMqXRGpCKfUOpdT5SqkLlFKvUkqdcO37hFJqk1LqLKXUTxeynxqdTXUMT6WL\ntj14cISu5jrOX21VHbvu3G7CQeGuPQML0UUfPnwscuw5MUnvaIIbL1oFWIXvrtnaxY4jY2Ryeafd\nUCxFczRENLyg0Q1FWHQkstTQ2VTH6HS66EE/dmyMS9a2ISIAtETDXL6hg3ufmTtPMR8+fCxdPHBg\nGIBrthYcgS7f0EEik2OXqwz3UCy1qKQQ8EnklNHZFAFgLG5JI2PTaY6MxLloTXtRu8vWd7BvIMZk\nMjPvffThw8fixgMHR9i8vInulqiz7aI1bQDs7i+U4R6eSrGsMTLv/asGn0ROES31lufEZMIihwN2\navizVxYXjLlsfQdKwWPHxue3gz58+FjUUErx+LExLlvfUbR9ZWuUxkiQA4OFchOTySyt9T6JPKvQ\napPIRCILwGE7NfzGzsaidhetaSMglqrLhw8fPjT6xhJMJrOct7qlaLuIsLm7uZhEEhlnzlks8Enk\nFFEqiRwemSYcFCclikZjXYi1HQ3sH/CLWPnw4aOA3f2WzePcVa0z9m3uaioikYlEhpb6BQnvqwif\nRE4RBUnEJpGhadZ0NBAqk6Z58/JmnhmIVTxWLq+4c9cJfntkdG4668OHj3nFiYkEt+7sq5rpe0//\nJAGBs1fMrJm+ur2egViSTC5PNpdnKpVddJLI4qK0JYhSEjkxmZwhhWhs7W7inn2DpLN5IqGZJPPh\nW5/kuzv7APin153Pmy5bO0e99uHDx1yjfzzBy//tfsbiGVa0RPnxn11NZ5kgwYND06ztaCjrtruy\nNYpSlldWvb1/sZGIL4mcIlqixeqs4SoueFu7m8nmFYeHZ5bU3Xl0jO/u7OOdz1nPVRuX8X9+spex\n6XSZo/jw4WMp4BN37CWZyfPpN1zI8FSKL/zyQNl2R0amWV9iQ9VY0Wp5a52YSDoL1ZaoTyLPKkRC\nAerDQSYSGZSyClQtb46WbbvBHijHRuMz9n37kWM01YX44A1n8Tev2EYsmeX7jy14ajAfPnzMAoOT\nSe7cdZJ3XLWO113awysuWMmtj/aRzBQn2VBKcWwkzrqO8vVBVtguvycnkk54gC+JPAvRWh9mIpFh\nPJ4hnctXTNOsq5H1lpBILq/42e6TXH/uChoiIbatauGCnlZ+4JOIDx9LEj98vJ9cXvHmy6ykq6+9\npIdYMsuDB4eL2o1Op4mlsqxbVl4SWelIIglHEmlt8EnkWYeW+hCTyQyDNTJsdjRGaIgE6Rsrrj+y\nu3+CWDLLNVs7nW0v2dbNU8cn/NK7PnwsQdy3f4gty5vY2NUEWNHnkVCA3xwcKWp31F5QrltWXhJp\nrQ8TCQYYmkoRS1phBM3RxWXK9knkNKA+EiKezjEYSwKVC8aICD3t9fSNFUsiDx+yvLGu2rjM2abT\nH+h0CD58+FgaSGZyPHJ4lKu3FBaF0XCQS9a28dChYs9LrZVYW0GdJSK0NoSZTGSYTlkk0hjxSeRZ\nh4ZwkEQ6x1jcEjeXNVWOKF3dVj9DEtlzYpKVrVGWu1IebFvZQn04yBN91SPcdx4d47bHZupaffjw\ncfrx8KERfvj4cdLZfMU2Tx2fIJXN85xNnUXbL+hpY99AjGxJQkWg6N0vRVt9mPF4hoT9jtdHFk/y\nRfBdfE8LGiJBTkxkiNmGr+Yq3hPdLVF2uXLhAOw9MTnDRzwUDHDuqhae7JugEu7cdYL3fONRAL7/\n6HFu/v3LnaSPPnz4OL347o5e/up7TwJw53knueltl5R933bbCRN1Fm+Ns1c0k87mOTIyzebl1vs+\nFEsRCQVoqaKiamuwSCSetkikYZGRiC+JnAbUR4IkMjkm7dQn1VzwuprrGJlKkbMLVGVyeQ4OTXH2\nypYZbc/vaWV3/0TRykUjk8vzt7fv5rzVLfzV9Wdx//5hfvLUzHKaPnz4OHXEkhn+/sd7uGJDB+97\nwWZ+uuskDxwYKdt2z4lJljVG6G4pVmufvaLF3l8IOB6Kpehqqqu6+GutjzCeKJBINOSTyLMODZEg\n8XSWWDJDOChEw5Vva2dTHXlVyPrbP54gk1Mzcm0BnLeqlWTGWrmU4hd7BxmYTPGBF2/lPdduYmNn\nIzc/ePT0XZQPHz4c/OiJE8SSWT780rP50xdtpr0hzLcfOVa27e7+SbataplBDBu7rHf8qCtObDCW\nYnlL9dTubQ1hJuJpEuks9eEggcDi0jb4JHIa0GAb1ieTGZqj4aqrCu25pXWh2j6ypoxhbdNyy7Pj\n0NBMErlz1wmWNUa4dmsXwYDwukt7eOTI6AyjvQ8fPk4d33+0j7O6m7loTRt1oSCvvHAVv3h6gFS2\n2BaZzyv2D06VTWESDQfpaq4rsolqSaQaWuvDjiSy2FRZ4JPIaUF9xDKsTyayVXWbgJP2QJfU1ZO+\njiFxQwcnlka4K6V44OAIV2/pdHJ0vWRbNwD376/uzZVI53i8d7yqYdCHjzMFBwZjnJhIVG0TS2Z4\nrHec67Z1OwvEa7Z0kczkefRosePLYCxFOpuvGPexuq2evvG4q32ypiTSaKvL4+ncojOqg08ipwUN\n4SDZvGJ0Ou1k9a0EXcTKLYkEA+JEprrRWh+msykyg0QOD08zFEsVuQRvXt7EipYov67iEjyRyPDy\nz9/Pq//9AV73xQeJp7PG1+jDx7MN//aL/bz4M/dxzad+xa+eHqzY7pHDo+TyiudsLrxvV2zsICDw\n0KFiu8ixGi67Pe31HLclkXQ2z1g8Q1dTZc8ssEIIlK0C9yWRZyn06mAolqrpw73MlkRG7bxYfWMJ\nVrREy2b9BVi3rHGGTWSvbZg7z+X9ISJsX9/O41WKXn32rmc4OhLnT56/iaeOT/Dl+w7VuDIfPp6d\n2Hcyxr/e/QzXn9vNpq4mPnTrkzNUUxqPHB4lEgxwydpCtdLmaJiNXU3sOVHsaXnUflcrk0gDx8cT\n5POKcdsu2lElJAAK3lgjU2nqF1mMCCwQiYjIG0Rkt4jkRWR7yb6PiMgBEdknIte7tl8qIk/Z+/5N\nFpEva4P9YMfi6apGdYDmuhAihay/QzUMaytbo5ycSBZte/rkJMGAsNm2mWhc0NPK8fEEI1Mzo9xj\nyQzf3dHLqy9azQdvOJuXbOvm/z1wpOKL48PHsxn//eBh6kJB/ul1F/CRl53DYCzFnbtOlm2758Qk\nW1c0zciyu21lC3tK3PV7R+MExErhXg7dLXVkcoqJRMY4F1a9QyIpGspk+l1oLJQksgt4LXCfe6OI\nbAPeDJwL3ADcJCL6rn0ReBewxf7cMG+9rYE6O637ZDJTNp2zG4GA0FwXckhkdDpNR0PllciqtnpO\nTCRRSjnb9p6IsbGzcca5zl9t1WR+6vjM2JL79w8znc7xxu09ALzlirVMJDLcu2+o5vUN2vUMfPhY\n7BicTJZ1iXcjnc3z4ydO8NLzV9DWEOF5mztZ1Rrljgou8ntPxBz3XDfOWdnC8fFCTiuw1FkrW+sJ\nV9AsLHPZRCcN05joFPBj8UzZEhILjQXpkVJqr1JqX5ldNwLfUUqllFKHgQPA5SKyEmhRSj2krNn0\nZuDV89jlqtAPNpnJO4RSDa0N4WISaaxMIitaoqRs3anGMwMxzirj/aG3uSuhady/f5imuhCXrLNE\n8qs3d9JcF+JXNUjk47fv5vJP/ILrPnNvTQOkDx8LBaUUH/rek1z+yV9w/b/eVzXn3OO948RSWV6y\nbQVgLeyuPWs5DxwYmeFwMhRLMTyV4pwycVza8cWdUHVgMsWqtso2jk77XR+eSjvlI2qldtfqrEQm\nV5GcFhKLrUergV7X/332ttX299LtZSEi7xaRHSKyY2io9kr7VOFeHdSSRMASXyft1PGj0+mqOlE9\nIPvHrQk8m8vTP54om7CtozFCW0OYQ2XqlTxwYJirNi1zBmE4GOCKjR385mBlQ/yv9g3y3w8e4YZz\nVzAYS/EPP95T89p8+FgI/HTXSf5nRy+vuGAlvWMJPnnH3optf31gmIAU56q7enMnU6nsDBuHrkRa\nzmVX2z3cpR2GpirXEwLotPeNTBckkdYa5W7dHlmR0KLR4juYMxIRkbtFZFeZz41zdU4NpdSXlVLb\nlVLbu7q65vp0RILeSWQikWEqlSWdy7OsiiSystXSrWq7yEAsRTavWN1W3nC3sbORQ0PFkshEPMOx\n0TiXrmsv2n7lxmUcGYk7iSNL8dVfH2Zla5TPv/Vi/vB5G7njqZNlC2r58LHQ+M/7D7Gxq5HPvfli\n3nHlOn70RH/Fcf3I4RHOXdValFL9wjWWk0qpKri3SpbdNR3Wu1lEIjXiPvS7PhxLeZBECiRzRkki\nSqkXK6XOK/P5YZWfHQfWuP7vsbcdt7+Xbl8UcEsidTUM61AgEe2h1V7FJqKTOeq22j2wkuFuY1fT\njIn+6ZPW6qpUBaa9u3aXGAfB0tnev3+YN2xfQzgY4K2Xr0WEmjVOekfjvPebj/KR7z/p5BLz4WM2\n+ObDR3nHfz3MT2uk8zk0NMWjx8Z582VrCAaEt1y+lmxecceTM3+nlGJP/2SRZyNY8RvtDWF2leSq\n6x2LE6rggt8cDdPRGHFIJJXNMZHIVJVEtBF93GVYrxUW4HbrDQXOIBKZJW4H3iwidSKyAcuA/ohS\n6gQwKSJX2l5ZvwNUI6N5RRGJGOS1aaoLMZ3KMWITQ7Wsv9peMmq7Ax63A5Uq1XFf3VbvBDxp7Ksg\nkm9bZefyKUMiD9p1D1549nLAKtO5fV07v9pX2Z8+nc3zrpt3cPfeAf7nt7186NYnK7b14aMa7tx1\ngo/dtotHj47x3m89ymPHxiq2/aUd4/GKC1YBVszU+mUN3Fcm8LZ/IslkMuuMfQ0RYduqFp4eiBVt\n7xtLsLKtsgv+qrYoJ2xV81CNekJgJVZtiASJJbNMJrJEgoGadtT68OJWZ1VUxonIvxn8flIp9dde\nTyoirwE+D3QBPxGRx5VS1yuldovILcAeIAu8VymlfVD/BPhvoB74qf1ZFChWZ9Xm5YZIiOl0tlCp\nrL4yidQpO7oaAAAgAElEQVSHg9SFAk699f5xS0SvZLxb1RZFKRiYTDqpVJ4+GaO1PjxjNdUSDbO2\no2GGHhjggf3DtERDRZlIn7Opk8//cj8T8UzZ6mo/eaqfp0/G+NLbL2XfyRifvfsZnuqb4Pye1hlt\nffioBKUUn7pzH2d1N3PLH13FCz99D1/45QH+652XlW3/0KFR1i9rYJVrYXXN1i6+t7OPXF4RdOWa\n2msvmLatnGnj2NDZyI+eKJZeekfj9FRQHYOVgWJ4yno3TUgELG+sWDJDKBigORqqmXnbrd1Yauqs\nG4GdNT6vm81JlVK3KaV6lFJ1SqlupdT1rn2fUEptUkqdpZT6qWv7Dlsdtkkp9T7l9nldYBQZ1g0k\nEZ0mRReZaaqrbFgTEToaI446a3TailptqBB05NhQJgv64MND02zqaiw7WDd2NXKkjJ3jsd4xtq/v\nKHoBr9q0jLyCncdGZ7QHuOW3faxb1sBLtnXze1evpy4U4Hs7e8u21Tg5keTNX/4N133mXh45XP64\nPpY+JpMZ/vBrO7j2n3/Fz3aXj8fQ2Hl0jEPD07z7mo20NoR52xVr+cXTgwxOzrRx5POKRw6PcKXL\nSA5w0Zo24uncDPuglsrPKuOyu35ZIxOJjLNgA0sS0baPcrBIxCIPnVS1mnoarMWbJYlkjKoUuhep\nS02d9Vml1NeqfYD/mK+OLmZ4tYk0Rqw0Kdptt7GuOvG0N0ScAVrLJVjXZNbeXADHxxOsbi+/mlq/\nzCIRNyens3kODU3PUH85NpTjMyWXqVSW3x4Z5WXnryQQEFqiYV50znLu2HWSSnyvlOIvv/sET/ZN\nMJ3K8p5v7HT0xD6eXfi72/dwz75BBHj/dx4rcostxU93naQuFOCG8ywX3JeevxIoqK3cODoaZzKZ\nLYomh8JYLTWU943FWdYYKbtwW2/nuzpsR52ns3kGY6kiCacUmkSUUk4piFrBg5YkkiWZyVVcDLrh\nlj7Ci1CdVXHGU0r9a60fm7Q5E1CkzjKSRKyBo8XfapIIMEMSqerNZQ/4E7Y3Vz6vODGRqGhDWb+s\ngel0jiFXlPvBoSmyeTXDEN9UF2JDZyO7+mcGMz5yeIRsXnH15kI1t2u2dDEUS7G/TNwKWP76vz4w\nzF+85Cz+4x3bGZ1O8/Xf1E5n/+v9w3zu7v1+3MoCIpvL882Hj/K1B4/UTOZ5bCTO9x/r4w+u3sC3\n3nUl2Zziqw8crtj+oUMjXLqunUb7vTh7RTMrW6PcXyYv3L6TWrIoHqubupqIhgMznEZ6RxP0VEhJ\noj2wNMHpd66qy25TZEYEei1DeXM0TCxpVSo0SagYChaII7KU1FkiEhWR3xWRV4mFD4nIj0XkcyLS\nWel3ZyK8xok0uHJtAc7LUgntjRFHahmdTtNehUSa6kI0RIIM28cemkqRyamK3lzr7YCpoyOFlaF+\nMctF6W5b2eLk7nLjoUOjREKBIjfi59qE8puD5Yv3fG9nHw2RIG/c3sP5Pa1cvr6DWx/tqyi5APzq\n6UHe8dWH+ezdz/D6L/6mKFrYx/zh7360h4/dtou/vX13TQeK7z9mhXi987nrWdVWzw3nreAHjx13\nCrO5MRHPsOfEZJF6SkS4ZF35vHA6jmNLd3EKoGBAHCnbjb6xeNmM2QDdthQ/OGm9O1pN1VnFZVcT\nzPBUwWW3loqqIInkjWyo4cDStYncDLwE+H3gHmAt8AUghmXg9mEj5LIbmKQlcJNIJBSoOTCsGstm\n6iyw1F/am0vXLuipIImsKpFcwIp4DwbEKaLjxsauRvrG4jNWn3tPTLK1uzi/UE97PZ1NkbJpWADu\n2z/Eczd3OuWEX3nRKg4NTZcNlgRLqvqHH+9hU1cT337XlRwfT/DVX1de0Wo80TvO3/9oj29zqYKh\nWIpP3fk033nkWFUSB2vi/sbDR3nnc9bzvhds5rbHjrOrwjMGuHvvAJet63Dsddefu4KxeKasx9Wj\nvWMoBZet7yjafvGaNo6PJ2ZEou8biLG2o6GsWmjdsoai5KW5vOL4eII1FVS7zXUhouGAE1+ivSc7\nq3hPaoIZiqWZTGaJhgM1PTSbo2FiqSyJdK7I86oS3EWo3FLJYkG12WubUuptwOuBs5RS71VK3Wl7\nY62p8rszDkGPD1kP+KGpFI0G4myj7RIMtdVZYKm/tHFwyH4hKiV57G7Wq68CiRwftzILlyO39csa\nyStmFL96+mSMs7rLuU22lo1DOTYSp3c0wXM3FVacz7MllwcrpLN/5Mgoh4aned8LNnPVpmW86Ozl\nfPPho2VXtBoHBmO85SsP8dUHDvPWrzzE472Vsxy7MR5P18zBtNgxOp0mX+XeaGRzeX7nq49w0z0H\n+fD3n+Kmew5Wbf/dHb2EAsL7X7SFd12zkYZIkG8+XF4NOZHIsLt/siiN+jVbuxChbHnZZ2wp+JyV\n5e1xOuZJ4+DgFFtKEpFqrO9spHc04YwPKwecqiiJiAjLm6MMaEnEJqxljbXjPiaTGSYTmZqBg2B5\nXCbTOZLZHHUeEyouKXUWkAZQSmWB/pJ9fupXF9wrhaBBcmEtiQzHUjVVWQBNdUHSuTyTth61mjoL\nLPXXqK3+cmJRKrwILfXW6sudKfj4WBUbSqe1inOv8Ean0wzFUmVTQ5y3qoX9A7EZ2YIfPmxNIM9x\n2VDWLWtgVWuUhypIDHc8dYL6cJCXnGsV4HrNJasZnkqz82jlGILP3rWfoAh3feAa2hsj/MvPyqVs\nK8a/3v0MF/39Xbzw0/caV4ocjCUdHboJcnnlKallOpvncIkDRCXk85bDwiX/cBevvumBmiq/7+3s\nY++JSb709ku4/txu/v1XByr+Jp9X/OiJE1y7dTntjRFa68O88Ozl3LVnsCxh/fbwKEpRpJ5qrQ+z\nuauJx3tnPrd9AzG6W+poK/Fw0lLxwRL72vHxREVSWL+skbSdJggK7vGVxjZYWXYLkohNIlUkEa26\niiWzTCYzNe0hAPWRAIlMjqShJOLGUlNn9dgp1z/v+q7/r5i36kyEmzhCBvWPNYkMxpI1jepQMLzr\nl6GW90dHQ9iRRPTf9sbyvxERuluiDLjUBJY3V+UXE+DI8EwbSrmkkJuXN5HNK3pHi43gT5+MEQ0H\n2NRVWEWKCBf0tLG7gmrkoUMjXLahw5Hkrt3aRTgoZb12wLr2O3ef5K1XrGVLdzO//9wN/PrA8Ay3\nTzd2Hh3lX+/ez/PP6mJsOs3HbttVsa3G9x/t46p//CVX/uMvuHvPQM32sWSGTR+9gy0f+6mRim08\nnualn7uPF/zLPbzr5h1VJS+AHz5xnO/t7OPl569kd/8kn/55deK8ZUcvZ69o5vpzV/CnL9xCPJ3j\nh4+Xz0xwYGiKk5NJrreJHODF53QzPJUqK3E+3jtOMCBctKataPtFa9p4vHd8Bik+MxBja/fMcdTV\nVEdzNMRBV6noyWSGWDJb0XtKeyoO2FK2LpFQzVC+vDnq2ERGptJEQoGq76iWPGLJjFFlU7AkkWxe\nEUtljWwibiw1ddZfYcWC7HB91/9/cO67tnTgVmcFDEhE2w0yOWVkiNfSihazaxW+aneps0am0zTV\nharqabtbogzYkkg2l+fkZLLiaq2jMUIkFHBeTIBjo9aLrbOauqEN96UGzn0nY2xZ3lx07wDOXdXC\nkZH4jJQpY9NpnhmY4ooNBV15czTMeatbebSCJPLLpwfJ5RUvv8ByEX3VRVZE88+rTPRfvOcQHY0R\nbnrbJbzn+Zu495mhGSoUN4anUnz0tqe4aE0bm7ua+KvvPVGzYqSbmN51846y9V/c+OQde+kdTfCW\ny9dw995BbtlROfZGKcVNvzrIOStb+PxbLub1l/Rwy45ex6ZWit7ROI8eG+fGi1YjIpy3upVNXY3c\nVeEe/faIRXqXu56D/v5oGRvHvoEYG8qULTh3VQtj8UyRV2A+r9g/MMVZZUhERNjU1cRB1wLghBN4\nW36sLteq2pg2lNfOENHVXOfYXXSZhmrBgE2zkET0vYgls0benG4sKUnEIEbEh40im4gBibgHgomO\ns8khEeulqaUC62iIEEtlSWfzRob45c0FEX54Kk0ur1jRWj4i3pJc6oqCGY+PJQgIZX+zQUsuJdUZ\n91VIZ3/uasuu8vTJYg8wPUGVGlwvWdvOE33la8b/8ulBulvqnKj71W31bFvZUrEU6mQyw73PDPLa\ni1fTEAnx1svXEgwIP3qiVJtbwNd/c5R0Ns8/v/4C/uHV5zIWz3Drzr6K7Q8Mxrj9iX7e94LN/PwD\n1zCRyPDNh49VbD8YS3LbY8d56xVr+eRrzufCnla+ct+himqtp0/G2D84xVuvWEsgILz9ynUkM/mK\nxPmgncX5um3LnW0vPHs5Dx0aIZGeqbXecWSMzqa6osp9K1ujLG+uK2tvemYgVpYUNtl2jIODhXEx\nPJ0ilc2ztkyyQ7Cy5mpHEShI5pVIpNu2A5ZKItXeh9Z6y+idyyumUllaamTYDQcD1IeDTCYydvCg\niTorWPa7CZaUTUREfiQit1f6zGcnFzvc6qzSlXU5uHPlmHhzadIYdEik+sBrs1+S8Xja2JtrPKFt\nKNqtsXqNk4EiQ3yS7gqG+LaGMC3RUBGJjNk2lHKTy8ZOa3IpTSKpI41LDa4Xrmkjlc2zf3Cm2/Hj\nveNctr6jaCV5xcYOnugbL2uPuP+ZYTI55QS5tTdGuGJDBz/fXVly+clTJ7hy4zI2djVx6boOzl7R\nzI/KJP7T+MFj/QTEcnfd2t3M87Z08j+/7a1ICnfvGSSTU7zl8rWIWMkFDw1Pl3WzBvjFXquvL7Wv\n4bzVLaxoifLLveWJ87dHxmhvCBepFS/fsIxMTpWNB3qyb5yL1rQV3VOthiz1wounsxwbjZddLOjz\nuSWLWjYLXeVT36s+m0QqtW9viBAKiCOJjEynaY5Wl8odQ7mdZdtE3axddhOZnFHlQbcdxEQT4caS\nkkSAfwE+DRwGEsBX7M8UUN194wxDkWHdgEQiHklEi8xanVVrYDfb+2OprBGJtNlFsvJ55RiHO6p4\npHS3FDxYwEoKWelFFhF62hsc1QMUUmeXS6/d015PKCAz1F8HBqZY0RKdsdLTRFRaiGt4KsXx8QQX\n9hTr4i9d104yky+bdHLH0VGi4QAXuvT312ztYv/gVFmV05HhaQ4MTnH9uSucbS85dwU7jowWpc5w\n4+69A2xf3+G4hr7s/JUcH0/wzEB5O80v9g7Q017PVjsO4rpt3YhYxymH3x4Z46zuZuf4IsI1Wzt5\n+PBIWaLaedRKb+MmBW2/KI3LyOTyHB2JO31xY0t3E0dHpovI+dDQNEpR1ntqRUuUhkiwhESqSxYr\nWqOkc3lnjJ4YTxAKSEUbRyAgLG+ucxY8w1PV07SD9S6A5VUWS2ZpMpAsmqMhYqmMcdzHqZDIkrKJ\nKKXuVUrdCzxXKfUmpdSP7M9bgefNXxeXFoxIxJ3GwGBQaNI4aajO0u2nU1nG45mauXxa68MoZelo\nCyRS+TfdLcUrwv7xZNXUECtao0XqLz1ZlDPeh4IB1nQ0zFB/HRiamhFQBpYdJhQQJ+hM4yk7pXdp\n8kdNKuWMwI8eG+eCnrai1Z4Onny0TKDbDtsWc9Wm4uJGeUVZj7GTE0mePhnjxecUVEcvOMv6ft8z\nM4un5fKK3xwa4QVnLXcm+WVNdZzV3ezYJkrbP3p0jO3ri1OAXLy2nbF4piigFCxj8OHh6RlG767m\nOla1RmdIFkdHpsnmFZvLkMKmriYyOVWUzuS4/ZzXlIkQDwSEnvb6ovQ8tUhEG8p1TNPIlLVAqvbO\ndbVEHRvHyFS6qj0ECpKIrvfTbOL4YufCSmRyRqTgTo3k1bBuMl/MN0yuoFFENup/7BTtMy2oPgCz\nBGnFkoi5+KsjaGtJIppkplJZYsnaSd60O+V4Im1IInUkMjmm7ASSQ7EUy6t4vHS31JWov3QAZKV8\nXg1F3l9KKQ4MThWpXDQioQDrOxtnrOT32sbw0pTfq9vqaYgEZ6i/kpkce/onuHht8YR6/upWQgEp\n64762LExmutCbHb164Ieq/3OMkbmJ/osItrusuusaI2ypqO+rD3h0NAU8XRuRp+2r2/nsWPjM7y0\nDgxOEUtlZxQf0yShz6+hPZ3KkcKW7mYODRffUy3tlSeRxqJjgolkUV8U5No3lqCpLlTRw6m0QNto\n3ERVG2bcdncfi6dnuA6Xwl3vYyppps6qDwdIpHOks3kjEinKheVRPRUwCCGYb5hcwQeAe0TkHhG5\nF/gV8P657dbShcmYcJOIycpCr1z0BG8qiUwls0ync7VtKPrFiVuFsgJS2Fa2vSadeIZEOkcik6ta\n4re7JcrwVNpRdfSNJWiMBCsaLVe21RdJLkOxFPF0rmwEPcC6joYZCf2OjViJ9kqDvwIBYfPyJvaX\nkM6RkWkyOcW5q4oll2g4yPrORvadnKlueuzYOBetbStSZ0bDQbatauGJMqTwVN8EwYCwraRe94U9\nbWVJ5EktTZUUULpoTTtTqewMu1GhlGvx8bcsbyIcFMcVW6M6KTRxcHC6KPZDE0Q5Mt/gpM8pJpFo\nOEB7mbIBACtbokUk0j+eYFVbtKI3VLddykCPjbHptJGUrWNeTCQLtzprKpV1VMnVUB8OOjZF7yTi\njRRqpY1fCNSc8pRSd2IVh3o/8GdY0es/n+uOLVUEDSSRUEDQY6FWQRooDMwR20WxlvFOk8botOVp\nVYt09IszbldbbG+IVHVV1i/uWDxdCMiqof6Cgqtlvx2HUnGyaI4yOp12AhT1RLOqtfyKtqe93pFu\nNI6OxMvaXAC2LG+eIYkctifIjWXclLd2N3GgpH0ur9g/GJtBCGDZacrZOJ48PsHW7uYZE80FPa0c\nH0/MCFZ86vgEDZEgG0smbW0H2j8wkxREmEG2oWCAdcsai+wPun04KKwro27a2NVIIpMrIvPe0Tid\nTXVlx1NrfZj6cLCEFCw1Z6XnvLItyvBUoYDa0FTKccstBx3rpN2VxwwkkbYSEqlFCvraYklzw3p9\nJOjYwOpNcmGdQmr3xUch1b2zLtHflVIppdQT9idVro0PCyYR6yLiDCQTcVYTzVQqSyQUqBmL0lTn\nzRDvkEg8zVi8eoJHwFlZjsXNSvzqYlhFBs4q6q8VrdY+HfSlJ6ZKbser2+uJJbNFUdZHR6ZZt6y8\n5LK2o4GByVRRFL3O11Uu1mXL8maOjsZJZgrtj48lyORUWeloa3czw1OpGcb1fScnZ3iX6eMDM4Ig\n9w/G2NI9M5Zm8/ImRJhBVAeGpuhpry+7Gt7Y2VikagLLM2r9ssayVfv0fXDbpk5MJCsWQxMRx3tK\n4/h45cwHYNk4lMJxLx+r4QRSFwrSVBdidFqrpzIVg2g1WuvDTCYzlsuugXqqIWztH45Zz86k3kc0\nHHRKNZhJIlL2ezXoaWURCiJVJZH/JyLtItJR6QP813x1dKkgaDgo6uwX18TvOxIMFCQXk7gS7c1l\nv5y1ghN1ZUXtkWJsQ4kXbCjVDJaalPSkanmMVYkadiQXq/8n7ZTvKyuRiG1b0fXnU9kcJyaTRbEM\nRe1tg36/y2Ps0NA03S3lV9kbuxpRquBVBjj2glIpAQoZZd3G/kQ6x8BkyombcaOcuyvY0lSZa6iP\nBFnT3jBDmjo4OFVknyk6x/ImjgxPF+UDswoulb9HpdHeACcmEmVrjWusaI0WpefvH09UfGZQeM56\nsWNJwdVJoa0hzFjckrDH41YwYDW0NkRQylq4ZPOqpiRS78omAbUXYGCps7TWzyTuYzaSiJ5VlppN\npJXalQ39PNwlMAk2hIJdxMTFV0QcacSkfX04SEBwotBrqbM0aUylskYivJZcxqbTRi7BbskFdCRw\n5clCT1QnJwqSSCQUqLhKLZCCNYH1jSVQiookonMtHXcFrh0ennJiVMzaV5ZcHPuAi3Q0AZULpFvd\nXk8kFCiSFNJZK+fT+goquXXLGuh19UcpxdGROBsqXMOa9gayeeWoFMEi50qTvDZiu4n2RA0vvJUu\nQ7lSipHpdFWJs8O1GMnk8kwmszWl4I5Gq0DbZCJDXlGzvTaU6yDFWjaRSChAKCCFWj+GNhGNWhl8\noYREjCURq93io5AqNdaVUuvnsR/PGpiuFPTgMfXOiIaDJDN5o/YiQkMk5KSUqEUKdSFL0tEle7ur\n6KXBZYhPZMjaS7BqK8K2MpNFVUnEnngcSWQyyYqWygZXd00HKKjBKksu1kToTq7YP57k6i3ly+Ro\nSadvvJhEmqOhsragla31iBSTjjY4l1OxBQPC2o6GIqP08fEEeQVrK6jkVrfVs9cVQDiZsFxMK6mb\n3O6xq9rqSaRzjMUzFe9RfSRIW0PYUU/FkhliqWxVyWJFq+WFp6O9c3lVVc2pFwWj02nHg8okMHZs\nOu0YsttqSC56gaQlJCNSiASdsdRgIFm4pQ8Tl93ILLyzAmJnvV2ELLL4wh+XOEwlES3+mkgWUKiY\naNq+LhRwDPG1vLNEhIZwkOlUztIb13jRQsEA0XCA6ZRlhxCprjtuiYYIBoSxeNpRaVXz5mpriCBS\nIrlUmVz0RK4zFmvy7KywCl7ZGiUgBckll1cMTaUqqmqWN9cRDkoRKfSPJ+hpbyhLbJFQgOXNdUXG\nfifAsor6yG2UPuKQTgWVXFs9w1Mpx07T76j8KsRYtGnpzjrHiRrtwZIIdTu9Mq9UUgCs2hp5ZUV7\njxm4ijtqznjaMZabeFtp91uAprrqJOIkO3Xsg7WDBxsiBW8rE8nC7RxjkpXXXeLWdL4oSCKLj0V8\nEjnNMLWJ6EA901w42s3XmHTCQefFNKnjXB8JkciYqbPAkm6mUjkrqjcSqmrsFxHa6sOMxTOu1PSV\nJ4ugXaNd998KmKz88kfDlsFVrx51HYhK0cmhYID2hgjDTpLKFLm8cnItlSIQEFa1FXuADUymKrYH\na5J3k86x0TjN0VDFlfOqMjETQMUCSlqFp/vkkEIlSaSlvqidJpNK7aGY2LThuJoE6UgWtoMGVCeF\nxkiQcFAYnTZz0ABLkpi21a76GNWgx/6ABxtHQyTkSEYm75tbmjAxrLvtIOWcGsohsEQN63MGEXmD\niOwWkbyIbHdtXy8iCRF53P58ybXvUhF5SkQO2CnpF+HtNPPOApxAMVNS8OLNBdbqaNpOoGdabTGe\nzhnFlVjtQ8TTWaZTWaOaKG0N4SJDvEmQ2JgrSKzW5LKsKeJIXkNTKUIBqZoy32pfrP7qqqLG626O\nFhXuGphMVlX7rW5vKCKdwclUVZXcitYSd9dYCpHKOcy0Sq7fIRGbFCqom1rqrbLJup2W1qoFiS5r\nqnOVFLCeRTUyd1y/p10kUuU5i4hVhXM65bSvpZ6yFi/WuIPa9j6niqj9jE28repdCzCTRZ7X4EGv\nGSugoCZfjJNezSu266u/XUT+t/3/WhG5/BTPuwt4LXBfmX0HlVIX2Z/3uLZ/EXgXVszKFuCGU+zD\nnMAk7QkU1FmmpKDFXmN1lmtFZEoiY/GMUVwJ6GqLWabTWSPSaYqGmUrlnDrUtWqitDZEiiSR1hqT\ny7LGiENQw7EUnU11VaWjDld77YFUTbJY1hRxpKhsLs/wVHVJpLu5zpGMwJq0qxmZV7VZ7q66L0Ox\nFMsaIxVXqqV2oIGJJAGhYpyFVbWvkDlgzGDl39FYKLM8aiBZuG0c2g23pvdUvZUyJGarp2pVBmyM\nhEhmrAJtYE4i2qHATBIpeFvVmcR9eAweLlZnefTOMpxf5hMmV3ATcBXwFvv/GPDvp3JSpdRepVTt\nEnM2RGQl0KKUekhZeqCbgVefSh/mCuY2kdlJIiYuvlCSKdjgN/WRYMEjxbDaouXNlTNuP53KEktp\nXXaNmih2uop0Ns9UKmsgiRQm7eGpFJ3NtdtryWXQ0fdXliyWNblIaipNXlVv39EUIZ7OObVFhmxi\nq4TSaOxa7XWlSn0No3ZKj2qLmI7GiKOmGY1btqxqZN7eECGZyRNPZz3bOGoVQ9NonCFZmAXSmpKC\nNnrrBYCJC667jZEkUlQe26vkcgZIIsAVSqn3AkkApdQYUP0NPTVssFVZ94qITvS4GnAXaeijSnVF\nEXm3iOwQkR1DQzMT280ljP24HUnErL2eHNyrmGpwe4mYvAiNkZDLI8VUErG8uUw8XhojtuRiTCIR\nxhNpJ4CwVvzAssaCpDAaz1TV3QN0utsb2Gk6GusYs+uu69V8NVVQZ8kkXyvAUpPCqMs5oFr7lvoQ\noYA47cemMzVVQW7pazyepiUarjrpLXNJFmPxDJFgoKq3kvbaG4tnGE+kCQWk5nN21FO26tXUHf2k\n475uZhOZsCUpkwwRRS67HtOYmCwiQx5JB3DYYzEq8U2uICMiQexpT0S6gJrFoUXkbhHZVeZzY5Wf\nnQDWKqUuAv4c+JaIzMwrUQNKqS8rpbYrpbZ3dXV5/fkpwfQhFyJQzX6gycbYEB/yps6qjwSZiGuP\nFLMaJ9OpLFPJbM1gRihMFtqrptZk0VhneYuNO7ry6uuWlvqwUw3RJOlkR2MdEwlL0plMZIiEAlWN\nop1NVtDaWDzj6O+rBVi6VTvTqSzxdK4qKZSm9BiOVScREaHdRQomdiM3iRjVmXGCRC1vq/bGcNXx\n2hCx4pOccVEXqjm+m+oKi4tQQGqOPae2jmEgrSaEMS+Gco9SvLu9SdyH+56Yai5cv/bYfu5R++2H\nfwNuA5aLyCeA1wN/XetHSqkXe+2MnVIlZX/fKSIHga3AcaDH1bTH3rboYEoKWrIwHRJad2runeWt\nZklDJEjajmY2qnESsUghHKxeg9o5fp1luJ9KW6lbap1DqzmM4wHqLF15JpdnKlk70Z52MR6PW9JO\nLRuNW1KYMLDraIIZmU7RGrPaVatlUchHlkEpy+W4Vu2LZY0Rp+Tr6HSangqeXM45bBuHUorxeG3J\nxQkqjacZNSApEaGxzirQZKrmbKwLWYlCU1kaIsGa74+7VHRDJFjTRhC0iSlhu0KbZohwvhu8C5Gg\nm4K2oqcAACAASURBVBS8pnY3bG9rLhajJFLzKSulvikiO4EXYc15r1ZK7Z2LzthSzqhSKmenn98C\nHFJKjYrIpIhcCTwM/A7w+bnow3xBq728BieapI53twsGxMjYH/UouTTUBa3018G8sSFeSyJGNRoi\nIdLZvKNbr6kWcdW6NkndotONT+ra2DUlF5sUplKOc0C1etpum0V7Q217QkMkSCQYYCyeJpnJk87m\nazsTNFmeTWA5H5y/uoY6qyFCOptnOp1jLJ6umsIEiuvSxJKZmkZv/RtL8jJzuGiOhjza1qw2Q7GU\nUSAgWPc2lc0TDIihzaLwvphI5aeSldcj5yxCOaR6AkZ3jqxB4NvAt4ABe9usISKvEZE+LIP9T0Tk\nZ/aua4AnReRx4HvAe5RSuvrOnwD/CRzAqqz401Ppw0LDa0K1gouvofor4E395SYOE+N9Xch6MZOZ\nnFGUriaF8UTGiHQa7DbDTsBkLV15QR2UyORqBpU1O6STMZJEtLppIpHxKImkHc+jasQmIpYb9HTG\nUcvVqtfd0VjH6LQlWZgkztSkN5W0DOW1VIR6wo6lskynzFy/HbVlKmtoWwsybWdKMBkXWj01kcgY\nj23dD9P2blLw6uJrbOOwYbqI1An5F2NkQ7WnthOr7wKsBcbs723AMWDDbE+qlLoNS0VWuv1W4NYK\nv9kBnDfbcy4+aEnErLXWnZqsjMBliDclHY8ifDQcsNRfOe914k0miyZ7wtIeY7UigZ3qj7bBtZYk\noifoKTvqvpbqyJlQ7WzB0XCgajRzQyRIKCBM2kkt3eesBCcvlOPuWlua0hX1Utl87UA9p1iZlcKk\nUj0XDX0PtSv32rrq6jIo9rYyVWfl8oqR6ZTRuNALllgyU9Omo+ElT11R+2DtjNng3bDuhteEiovQ\nw7dqedwNSqmNwN3AK5VSnUqpZcArAL+eyCmiMHa8TfKmqym9IjJXf3kLmCoy3AfNVqhguWY2Gaxo\nZxhQa0wwesLVAX61SKSUFGpJIs22ZBNLmbUXEUdVU5Asaie2HI8XJJFa6qOmaMjpD9SOvWlyqfCm\nU7UdIpwKmXb7JgPJQl9z3DBo1T0uTNrrcZdXXiQLbzFWkaBX0nGndvcmiZhygs5wsVTTnlyplLpD\n/6OU+inwnLnr0pmBQmpns/YFycLbi2MqubiNgyYvj/u4JgFZus1EImOUj0hPcFoSqaX/1qv8E8aS\nSGGCnIjXJoUmd3sDEtG/mXIF0tUkkXpLEjFt31yn7UY68M5MWhux41xqEXM4GKAuFGAqnSWeytFg\nQv4R65qnDEgKCrY403FRFP/kNcbKY3uvxwfvkoJXSWQRarOMvLP6ReSvgW/Y/78N6J+7Lp1ZMNVx\nasO6aW6uoMcI94jHl7POYxyKniC0O20tNLpWqAGpPQHoCbRAImaSxWRSq3aqtw8GhIZIkKmUmQ0F\nrGR/MVsSEantjtpYFyKezhmrv5ziY4Z5oQrFysxiLKw+WCqz6bRhTjVbEklmckbqqTpHPZU1G0ce\nMzHA7EnBVDXlJgLPNotFSApeYXJX3wJ0YdkwbgOWU4he9zFLeI1ADdtuHKbirFf1l1djoldvLj1Z\n5JXZitDJeRRL0RCpHW/Q4EguhhNqtCDpKINVuT5mLJllMpE18lRqrgsRS2aYNEhSCdrIbK7+arL7\noHN61TJkN7nsUibtrT6FGI6ljCQXsGxXyUyOeNpMctGLi1xeeZaAjZ1GvL4LtnrKlA9Ma4KUg6nk\nUjCsz/pUcwYTF99RrPrqPk4j9GAwdfHTA9WrIX42kojJJF/nMQ7Fqxoi6gSJpY2rywEM2d5ctaLo\ngwGhPhw0NtyDvSp33FfNVuWDsaSRyzHYSS1TOWN1VmkZ5FqShRPtPamJ1kw9NWDfo1oZc8EyfCcz\neVLZvJF6yms802zUWbqduWq3sOAxgWnS1XLwKrksRptIzZEtIr+iQIQOlFIvnJMenWHwKlmYx5V4\ndAn26J3lniCMSKfIEG8+WcTTuarpRTSiEau9jvg2IQUr6aR5+6Zo2PGGMiWdQ0NZplKZmqopsCb1\ndC7PaDxtpP4qJYXaWQCKScesREDQpf4yUE+Fgk5gn+dx4aHKZyqb96Ce0vZBMycT/S7kDVnkVJIi\nGksiSp9r1qeaM5jYRP7S9T0KvA7Izk13zhzosWO6EHEi3D1KIqZZhb3aRCIe1QqzNcSDVeukZn/s\nOvTaU8lU2tHpMKIGq+zGSJBEOksinTNK5KfVX14kEbAy8jbV1VZ/OZLIhFkKkHAwQCQYcKQvU5da\nnbTRpFaGW7IwWcB4zfEGzIJEZmcTyRqSyClJIh4liyUpiSildpZsekBEHpmj/pwxcCqVGQ7AQlEa\nb4Z4U0Q82kTcmUtN40oKxzfXlVvtzfIRWXUgzPN/RcMBRxKJGpJOLJklmckbTagNEWtVPp3K1gzs\ng4I6amgqZeTZpO1GuriWkQ0iHHDyZ5kY1qOhoFMAyshWFvYqcXqTaMGlnjK2cXgjEb0A0261tWC6\nUCsH83ytylP7+YSJOssdnR4ALgVa56xHZxhMx58mD9P22hCfM1xNuV8wk6hbdxsz10yPhnhXG9OX\ntD5s5ecyPUd9JMjRkbjz3eT40+ks6VzeSJ0VDVskYpGOiTOB9TqOxdNG0pqesHXqkwbDPo0nzFV4\nUY/eUMU2i9NvE4FZeB56NKxrCdDQJHKK6iyvksjig4k6yx25ngUOA38wl506E+CkPZkjcVa/aDnD\nN8FrpG3QoyRyKoZ4UxLxugqOhoKOEdtkQq1zqXbqI2aTvFJWVLxRbIwtGYxNZ8wC7+x7OjqVpi4U\nMCL/aDjAUMw80ab7ORgFoXolHY/PDApJDr0ayk2lc+ddmBfD+ty2nw+YkMg5Sqmke4OI1LZ0+qgK\nr7mzvAYnan20qXHQq/or5JFEIkWSi5kBNRIKkLYT55lAT6p1oYCR2s8tfZiop+rDQUcVZGYfsNqM\nx9OGbs12MOB0io7GZuPjT6dzNVOkOL9xkdmckILXKn8exxG4k5F6c9k1XfV7lSxORZ1lnDvLeY0X\nH4uYPIUHy2z7zenuyJkGLVF4XVmYDnC9KjVVZ3kVq92kY7KCdL9opitI3c40vbbXdBVuIvBCCubt\nrX5Mp3Oe1FPJTN7MpuNRRQjeJUK3usnMzuTNxuFVonX/xtzGEZhxrqrHF2/qrFOyiRi2031ZjLmz\nKi5fRGQFVvXAehG5mML1tgC1M7H5qIrZqrNMoSWFvKFx0GsdBHd7k5fZa3uw7CgxssbEWUhvYebK\n6Z7wTG0i5b6btDfpk5uMTUgqHBQC4i2PVNSjq7W7HyaSS9hj+hy3Cs50XOgFj4mDhru9V09IY8P6\nvKqzFh+LVJOBrwfeiVUA6jOu7THgo3PYpzMKxisLj+ovLSmYkojX1VTIY82F2Ugi2ivL1F7jNV+Y\ne8IzMzK73I49Si4mffIa8CkiRG1ngvAspC+zRJunsFgwmOSL1KKGRKgnd2Mbh04Z5LFgnLlh3bBh\nGXgPNlx8qEgiSqmvAV8TkdfZKdp9zAGMB5GubGY4jAppVebGJdj98psQkFcbChTyhJkSnOdEewH3\nyt+bO6qJ5FKsCvKWXNBE/WWdwyYRU0kkXFDtmNxXr0GoIc+SiPdxoce26bjwWgDOYyJez6rgWWEp\nVjYUkbcrpb4BrBeRPy/dr5T6TJmf+fCIudJxiqPXnStJpPCmmbxEgaIVp5kawtFlG745XutGhD2m\n8PYqfbmJw4ykvJEOFOJbvOZIM81k4CZ/k9+4JRGv7U3J3yER05gp+xpM1aJBu0+GQvy8TuxLLdiw\n0f7bNB8dOVNhPAA9jh3HODhHboruycWrOO/V1dI0c/FsU367z2Xa3sw+4G2C9KrOAld6G4/tTUmn\nSA1pop7yKFnMxrDu1bNRk4dx2QWPC7D5nNiXlCSilPoP++/fzV93zkTMzajwKuF4lUTc7b2K8151\n095tIoaFuFwpv03Uiu6J14QIiyQXAxuKexI1May7z2ES1Q+ussmzIFq35Fb5+N6JUCNouBrxqp7y\nXG3Q46JofrRZphaa+YdJxHoX8C5gvbu9Uur3565bz344CdU8DkDj1dEpuOyawD1ZeCYRYzdlb2oL\nrzmS9PG9Gmjd56oGr7ExXttD4Tl4jrEwrpDpzfAdnIXa0vmtcRzHzHOZ9MnYZdejFD8fKCRgXHyi\niEmE0g+B+7HK5ObmtjtnHkwne68is8egW8/qLLeKyeu4Nne19Obf7zVORBOBV5ICs9VtsQ3FRBUU\nIBgQcnnlQZ0lM/pW6xxgrv5yLxZMIuK9uvi6YTqOCpKIWfuCy67h8R31lzfD/Xxg8VGIGYk0KKU+\ndDpPKiL/DLwSSAMHgd9TSo3b+z6ClVYlB/yZUupn9vZLgf8G6oE7gPcrU0fuRQgtUczVwsKresrr\nCqfYJjJHkojHTMQOKXhsb4qwR0nEq00ECpOEVyI0Lpus1VmzkETM2ntT+blhvKDymLy0sEgwtXHo\n8xg1n1/D+iJkEZOR9GMRedlpPu9dwHlKqQuAZ4CPAIjINuDNwLnADcBNIqKXcF/EUqttsT83nOY+\nLQjmyijndXXkOWL9FGwi5q6WHkkk5E395bX4kGfDuttTyaPR2JgUPKYACXkkHRPpo6i92/Xb87jw\n1s7YxdejJFIIBDZsb9juVOBUNlyEsojJCHk/FpEkRGRSRGIiMnkqJ1VK/VwppWuSPIQV0AhwI/Ad\npVRKKXUYOABcLiIrgRal1EO29HEz8OpT6cNiwVytLLwe17M6q4hEvJ3Lq0HU1DCq3UW9Vos0tTOF\nPa6yi1yIDa9BTxLm0po3byuvFS+9GqVDRWrOuZGGvaqzCmUUzNp7lXTmM4p8MUoiJvVEameCOzX8\nPvA/9vfVWKSi0Wdvy9jfS7eXhYi8G3g3wNq1a09nX0875mpQeH+BvR3f/eJ4l0TM2umJ1DztiTdd\ntld1VpFh3eCGuWMg5kzl59hEvLX3SjqmcF+zeA7a89bOvBaPo6Ayau9ZnWXW7LRgEXKIkXfWJWU2\nTwBHXdJEud/dDawos+tjSqkf2m0+hpVe/ptm3TWDUurLwJcBtm/fvqjtJl7FU2PjoONhMjcJGE/l\nt15tIqYTmVeDqJ5ITe+pVxdf98Rues1aKjJ3a/bonRXQhvU5Itp5UHNq8jCVnj1nzHayPZi2N2x4\nCtDv8VLLnaVxE3AJ8JT9//nALqBVRP5YKfXzcj9SSr242kFF5J3AK4AXuQzkx4E1rmY99rbjFFRe\n7u1LFl5rJnvP9mufx7D9qaWz9tbe2CDqeGd5WzV7XcWb3iOvRmP3BDxXqh19zV5tKHOWDucUvPaM\n75HXd6fkr2l702cwHxO7YxNZfBxiZBPpBy5WSl2qlLoUuAg4BFwHfGo2JxWRG4APAq9SSsVdu24H\n3iwidSKyAcuA/ohS6gQwKSJXivXEfgfL9XjJY6ka1k/tXGbt9IRnuhjWK1Ov2Vq99gcM1Vmu9t7V\nQh4lEY+G8rnK7nxKxGlaW8PxbDRtb8E4wt2jJDKfWIx9MpFEtiqldut/lFJ7RORspdShU2DgLwB1\nwF32MR5SSr1HKbVbRG4B9mCpud6rlNKxKX9CwcX3p/ZnyWK2wYammKuJvRw8G/E9qqeMI5kD3lbZ\nQY/qr6IJ0iRNiqvfnl2ujfvkTRLR5GRaZ8bU1qLhvk7vac69tfda0Ml0XBTUX4tvyl6MfTIhkd0i\n8kXgO/b/bwL22NUNM7M5qVJqc5V9nwA+UWb7DuC82ZxvMWPuDOv2F9PcWadSWGeOVpy6nemq3GvO\nI93eq8uxKQKzsA/oCc88it72SDOWpqz2piTiOTHnPNhECgsw0/banuCpO4uqANT/b+/M4+Uqqjz+\n/RGWBEKAQFhDCEtEISJOAoZVYKISQIIIAwqE4EgmAwiouPDBDzIwEYRhxmFcGGQwRKOIIssgq5Go\nIxMkQEgCiATQDzARATWIYCTJmT9u9Xs3L/3eq+ru2327+3w/n37vLnVvnbrbqTp16lSvIiwfMdWX\n6WSutueG3zNh25vAoUUJ1i0UVbNI9QZqZjiFojriay1z7FH1TD6U2reQ2hKJfY4qcqyKnTY50ZxV\nl9deZFaps/z1jrGIlCPRm6uZlLAhEuXi+wZwZfj15bWGS9RlFPVMNLNPJJXUDtFUb67o1lfiqLIy\nerClztpXuUaxzgT1PBbJQUALcj7oqcUX5M3VTNrSnCVpHHApsAcwtLLdzHYpUK6uIT52VhpFv8D1\nUE/Y+QHPmxpoL1Hp1DODXT1moYHo1YOxz1ExyqxqXon3OTZ9xTyV2rEeL0f4n3hcMyihDokyZ32D\nLOTIKjLz1RzgW0UK1U0U3bHejCk+U4n9WKxJ/Fgkj40JF7+oKYTzJIcjTyxzUXGemtpCTTRPRadP\n7BNJvabNpIQiRSmRYWY2D5CZ/cbMLgKOLFas7iF9sGFsKPi09M38WEQPvEvsZE6eEyVR0dbTWksO\ncBlZ5kqq1Ai4sSMsm9m5XNRYmgrxrbXa5GkGbWnOAlZKWg94StJZZIP8fLbDOkmtHRXlRtuTvoQ1\nzooHUXStPNGc1TMgMzFEeC2kByMsxhSU7nZbPoeLdO+s7H/qu1a+z3U5ZYoNwLgxcDYwATgFOLVI\nobqJ6EG6iYbdomt19RArW8XMlOzim9ixHm3OqqslEpeuIkmsV1TN7tXR5rKk09dF4oD1BPNXqLBF\ny5Hm8dZMSihSlHfWg2HxNeC0YsVxGkWZfNz7EquwKl6osa2qyguWPFlRXPK6FG2qq2xqOJz4uFNh\noY3NnBXZY5V6ckskLllLKGMo+H6ViKTbBjrQzI5uvDjdR9FmiDJGn4z9VlRaCNFKpPI/0fzVjAGZ\n6R5psZNYpXasF2tWq4f0MCbFpK+ka6azSSzt1hLZD3gO+A7wAOVW0G1H0R/3MnYKVoj9oCYrkTRL\nTc0j3Gsh9YMUGy8s1X6fHiwzLX09JLulp44TiTxvT2WkhJ+8Mr7WAymRbcmCLH4I+DDwQ+A7+Tha\nTv2kPhPRs7MlS9I84l18s/+p/QOpMZJiqadmmmrOio0X1tv6ijtvmfvK4seJZP9TW7TpLZe48zeT\nMiq2fp9UM1ttZneZ2anAJLLQJ/ODh5bTZMr48NRKfA2y0hJJO3+87TtN6TS1JZJo5iyqctFcF9+4\ndD0d5bGVkTVpDhqpgxmbSQlFGrhjPQRZPJKsNTIWuAq4uXixOp9Ub6tUUj8uzSS9TyTuC9zjNh0p\nR2qIpHq8deI7gdNMeKmDSjuhT6RC7DVaXVEKiQ4dJfxel1KmgTrW55BFzb0D+CczW9o0qZy6qdSu\nY+39zST2ZV6dXIMM5y/ow1fPWZPH7cSmD8li3ZQTfQma2yeSfJ/jzltpicS3JMurRcrodjxQS+Rk\n4M9k40TOzgkvwMxsRMGyOR1K/DiRkD61Bhndsgj/45LXRcp84GvMoj+QqWbOcrdE4tKlVhZWJ5pF\ni66M1EMZXff7VSJmVkIHt86jhM9p4aSadqJbIj228jg50t1j49LVw3rrqVcbRpBqtixsytoGUFRe\nq9eE83eCOauEHwxXFC2iVjNT+YxT6cS+B6mDDXs/pMV4ZzXlBa5xYFxRMdLKGDur19sq7ryr12Ra\nJLryklgZ6XZcibSYotxRK5SzY72YcSKprpm95qzu+VqUUnH25BWX7o+vZxOqbjZsg6j0lZZIamWk\njOasMuJKpEFM2GmLpPQn7jMGgBHDYmJgwgG7bQXAfrtuGZV+5PANQz47Jsl10LitotNO2mUk244Y\nOnjCPsS+zD0doonG8tT+hFJ9K7TOQtxhiaOxYyljS2T6AWMB2HrTuGfvsLduDcCkXeLencozfdyE\n0VHpKxyy+6jotGO33DhpeoAPv2tMkizNJO4L5gzK9/5hvyRT07mTx3HWYbv1zHk9GJN22ZKnZk2J\nTj98o/V5+gtHJH0Efn1ZWoT/G2bsl5S+QrQSqZizUgeJJbbuyqRDKhSl2MrcJxL7XMx8967MfPeu\n0ec9cNxWPHvpEdEKdItNNkx+d5bNmpJ0reZ98pD4kwOzjhnPxUfvmXRMs3Al0iCS5zaQeubHjiVW\ngVSoJ9ZTGUg2Z3VQoL2i6J24Ky19MyjycU1tgSXPRFnwuykpeo6ZZtMSc5akKyT9UtJiSTdL2jxs\nHyvpDUmLwu/q3DETJC2RtEzSVSqjm4LTUFJddtfUONiwjI9S4oiGhp+3J30TL00Z74MzOK3qE7kX\nGG9mewG/As7P7XvazPYOv5m57V8DTgfGhd/hTZPWaQlrEiel6m2JRKuR3N9yUdQHtczjRJz2pCVK\nxMzuMbNVYXUBMGAPlqTtgBFmtsAyX8Y5wDEFi+k0mE+9b/eeTs4YUudYT3X97MbvY3qfSDFy5PmX\n49/B+B187HK7UoY+kY8A382t7yxpEbAC+JyZ/QzYAXg+l+b5sK0qkmYAMwDGjCmvV0O3ceahuyWl\nX5M40rhC6lzaZWyKRJuzEu1ZRfcN1MJxE0Yne0I55aEwJSLpR2Th5PtygZndGtJcAKwC5oZ9y4Ex\nZvaKpAnALZKSXRLM7BrgGoCJEyeWcKSEE0OqeSp9Lu0ym7Pi0qUOjEufT6SMV8cpE4UpETObPNB+\nSdOBo4C/DSYqzGwlsDIsPyTpaeAtwAusbfIaHbY5HczqRHNW6lzabe68thbxbs3BO6sjYh84ZaBV\n3lmHA58Gjjaz13PbR0kaEpZ3IetAf8bMlgOvSpoUvLKmAbe2QHSniaxJHDyYGrCxzCPVo2VLNmel\ny+I4A9GqPpEvAxsB94aa0YLgiXUwcLGkN4E1wEwz+3045gxgNjAMuDP8nA5mTSVwXuKXrxNcfFNJ\nndmwzArUaS9aokTMrGoPq5ndBNzUz76FZPObOF3CpkOzxzN2kJX1DllPoow6pOgR627OchpFGbyz\nHKcq103fh7uW/pbtNhsWlb53sGGxQS2dgfn26e/ijb+ubrUYTpNwJeKUlu03H8ZHDtw5+bjoAIwl\n9s6KpYztif13jQ/i6bQ/HsXX6RgqI9xTY2eVsU8kOWR7dLryldVpb1yJOB1DZ0XxLVaqMs4z47Qn\nrkScjiE9im8Z1UcasTMaOk5RuBJxOobe0duJLZES6pIyR9t1nDyuRJyOoSd0fGR6VVkqC0UpBVc2\nTqNxJeJ0DFP33h6Ao8P/QfEPahR7bj+Cj09+S6vFcEqKu/g6HcOuo4anTfGb2IfSTGL7a5rRJfLD\nsw8qPhOnbfGWiNO11DjAvZSkOgl4f7zTKFyJOF1PKVsiJZTJcarhSsTpWspcGy9qjvWe87uSchqE\nKxGn6+mE8SKpSqHMCtRpL1yJOE4ZaX+95nQJrkScrqXM4dDL5J3lOAPhSsTpWoaEcL9bbbphiyVp\nHhutn73yIzfpnjI7xeLjRJyuZetNh3LZsW/nsLdu3WpR1qGoju9x22zKPx8zninjty0mA6frcCXi\ndDUn7jum1SKsRTO6Qk6etFMTcnG6BTdnOU6JSB0AWeZ+Hac7cCXiOCUkNhJxb/h7d+dyWkNLlIik\nSyQtlrRI0j2Sts/tO1/SMklPSnpfbvsESUvCvqvkb43TgdT6UPvL4LSKVrVErjCzvcxsb+B24EIA\nSXsAJwJ7AocDX5U0JBzzNeB0YFz4Hd50qR2nYDopnpfTHbREiZjZq7nVTeh9d6YCN5jZSjN7FlgG\n7CtpO2CEmS2wbCq3OcAxTRXacZpI8hzrrnWcFtEy7yxJs4BpwArg0LB5B2BBLtnzYdubYbnv9v7O\nPQOYATBmTLm8bxxnIFwXOO1GYS0RST+StLTKbyqAmV1gZjsCc4GzGpm3mV1jZhPNbOKoUaMaeWrH\nKZRec5arE6c9KKwlYmaTI5POBe4APg+8AOyY2zc6bHshLPfd7jidSaQOMY974rSYVnlnjcutTgV+\nGZZvA06UtJGknck60H9hZsuBVyVNCl5Z04Bbmyq045QYb7c4raJV3lmXBdPWYuC9wDkAZvYYcCPw\nOHAXcKaZrQ7HnAFcS9bZ/jRwZ9OldhzggN22LDyP2I7yyXtsA8DEsSMLlMZx+qclHetm9sEB9s0C\nZlXZvhAYX6RcjjMYSXO410Bqi+KgcaMKl8lxBsJHrDtOifBxIk674UrEcUqIB2Rw2gVXIo5TIlx1\nOO2GKxHHKRFuznLaDVcijlNC3JrltAuuRBynRLjucNoNVyKOU0I87InTLrgScRzHcWrGlYjjlBDv\nE3HaBVcijuM4Ts24EnEcx3FqxpWI4ziOUzOuRBzHcZyacSXiOI7j1IwrEccpERtvOKTVIjhOEi2Z\nT8RxuoW5H30XL7+2Mjr992buz7wnXmToBq5MnPbAlYjjFMgBu22VlH63rYez29bDC5LGcRqPm7Mc\nx3GcmnEl4jiO49SMKxHHcRynZlyJOI7jODXTEiUi6RJJiyUtknSPpO3D9rGS3gjbF0m6OnfMBElL\nJC2TdJV8EmrHcZyW06qWyBVmtpeZ7Q3cDlyY2/e0me0dfjNz278GnA6MC7/Dmyeu4ziOU42WKBEz\nezW3ugm9U0tXRdJ2wAgzW2BmBswBjilQRMdxHCeClvWJSJol6TngJNZuiewcTFk/kXRQ2LYD8Hwu\nzfNhW3/nniFpoaSFL730UsNldxzHcTKUVewLOLH0I2DbKrsuMLNbc+nOB4aa2eclbQQMN7NXJE0A\nbgH2BN4CXGZmk8MxBwGfMbOjIuR4CfhN/SVqKlsBL7daiCbjZe4OvMztw05mNmqwRIWNWK988COY\nC9wBfN7MVgIrw/EPSXqaTIG8AIzOHTM6bIuRY9CLUDYkLTSzia2Wo5l4mbsDL3Pn0SrvrHG51anA\nL8P2UZKGhOVdyDrQnzGz5cCrkiYFr6xpwK04juM4LaVVsbMuk7Q7sIbM1FTxwjoYuFjSm2HfTDP7\nfdh3BjAbGAbcGX6O4zhOC2mJEjGzD/az/Sbgpn72LQTGFylXibim1QK0AC9zd+Bl7jAK61h3AwaE\nIgAACjhJREFUHMdxOh8Pe+I4juPUjCsRx3Ecp2ZciZQASSMl3SvpqfB/iwHSDpH0iKTbmyljo4kp\ns6QdJd0n6XFJj0k6pxWy1oukwyU9GeK+fbbKfoV4cMtCTLm/aYWcjSSizCeFsi6RdL+kd7RCzkYy\nWJlz6faRtErScc2UryhciZSDzwLzzGwcMC+s98c5wBNNkapYYsq8Cvikme0BTALOlLRHE2Wsm+Cy\n/hVgCrAH8KEqZZhCb0y4GWRx4tqWyDI/C7zbzN4OXEKbdz5HlrmS7ovAPc2VsDhciZSDqcD1Yfl6\n+okLJmk0cCRwbZPkKpJBy2xmy83s4bD8JzLl2W+4m5KyL7DMzJ4xs78CN5CVPc9UYI5lLAA2D/Hi\n2pVBy2xm95vZH8LqAtYeTNyOxNxngI+ReaD+rpnCFYkrkXKwTRhQCfBbYJt+0n0J+DTZGJp2J7bM\nQDZNAPBO4IFixWo4OwDP5darxX2LSdNOpJbn72n/cV+DllnSDsAHaPOWZl9aNdiw6xgollh+xcxM\n0jp+15KOAn4XwsEcUoyUjaXeMufOM5ys9nZunwjQTpsj6VAyJXJgq2VpAl8ii/m3ppOmQ3Il0iQG\niiUm6UVJ25nZ8mDGqNbUPQA4WtIRwFBghKRvmdnJBYlcNw0oM5I2IFMgc83sBwWJWiQvADvm1qvF\nfYtJ005ElUfSXmSm2Slm9kqTZCuKmDJPBG4ICmQr4AhJq8zsluaIWAxuzioHtwGnhuVTqRIXzMzO\nN7PRZjYWOBH4cZkVSASDljnESfsv4Akz+9cmytZIHgTGSdpZ0oZk9+62PmluA6YFL61JwIqcqa8d\nGbTMksYAPwBOMbNftUDGRjNomc1sZzMbG97h7wNntLsCAVciZeEy4D2SngImh3UkbS/pjpZKVhwx\nZT4AOAU4TL1TJh/RGnFrw8xWAWcBd5M5BtxoZo9JmimpEjPuDuAZYBnwdbI4cW1LZJkvBLYEvhru\n68IWidsQIsvckXjYE8dxHKdmvCXiOI7j1IwrEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgS\n6VAkmaQrc+vnSbqoyTLMrkQqlXRtvcETJY2VtLSffVeESL9X1JNHmQjX79lGuojm70k3Imm6pC8P\nkuaEEIm3rSNlNwsfsd65rASOlXSpmb2cerCk9YPve0Mws4826lz9MAMYaWar8xsbXY4W8Ckz+36r\nhWgkkob0vU9lwsy+K+lF4LxWy9IOeEukc1lFFl774313hBr9j8N8DvPC6OFKLfVqSQ8Al0u6SNL1\nkn4m6TeSjpV0eZgD4q4QkgRJF0p6UNJSSdeoSmAgSfMlTZR0dG7g4JOSng37J0j6iaSHJN1diWIb\ntj8q6VHgzGoFlXQbMBx4KNQi+5ZjE0nXSfqFsrlYpobjhkm6QdITkm6W9ICkiWHfa7nzHydpdlge\nJemmUN4HJR0Qtl8U8pgv6RlJZ+eOnxau9aOSvilp09DCqFy/Efn1/pC0TZDz0fDbX9LFks7NpZml\nMO+KpM+Ee/WopMuqnK+/a362sjlcFku6ocpx0yXdGsr6lKTP5/adHK7zIkn/qSz0OZJek3RluI/7\n9TnfOvlJ2lfS/4b7db+k3XN536JsDppfSzpL0idCugWSRoZ08yX9e5BjqaR9q5Sj6r10EjEz/3Xg\nD3gNGAH8GtiMrFZ1Udj338CpYfkjwC1heTZwOzAkrF8E/A+wAfAO4HWyOEcANwPHhOWRuXy/Cbw/\nd77jwvJ8YGIfGW8kUwwbAPcDo8L2E4DrwvJi4OCwfAWwtL/y5pb7luMLwMlheXPgV8AmwCdy+exF\npngnVjnfccDssPxt4MCwPIYsJEvlWt0PbEQWF+mVUK49Q35b5a8V8I3c9ZsBXFmlTD3XL6x/lywI\nJcCQcF/HAg+HbesBT5ONBJ8S5Nm4T76zQ3kGuub/B2xUuV5V5JoOLA/5DAOWksWFehvZs7VBSPdV\nYFpYNuDv+rl36+RH9uyuH5YnAzfl8l4GbAqMAlYAM8O+f8tdn/nA18PywYTnJhz/5YHuZVg/BLi9\n1e9xO/zcnNXBmNmrkuYAZwNv5HbtBxwblr8JXJ7b9z1b29Rwp5m9KWkJ2YfrrrB9CdkHDOBQSZ8G\nNgZGAo+RfUz6JaR/w8y+Imk8MB64NzRihgDLJW1O9lH5aU7WKVGFX7sc7yULXlkxTwwl+2gcDFwF\nYGaLJS2OOO9kYA/1NrZGKIsyDPBDM1sJrJT0O7Lw9ocFWV4O+fw+pL2WLKz/LcBpwOkReR8GTAvn\nWU32AV0h6RVJ7wz5PWJmr0iaDHzDzF7vk2+F3alyzcO+xcBcSbcE+apxr4WgiZJ+QBaFdxUwAXgw\nnHMYvYE1V5MF0qxGtfw2A66XNI5MAeVbafdZNr/MnyStoPdZW0JWGajwnVD2n4bW3uZ98q16L83s\nNZxoXIl0Pl8CHiar+cbw5z7rKwEsC1/9poVqGtmcJutLGkpW45xoZs8p67wfOlAG4QN3PNlHHEDA\nY2bW18zR96VPIV8OAR80syf7nH+g4/PxgPLlWQ+YZGZ/qXKulblNqxng/TKznyszKx5C1mKq6jAQ\nybVkNextgesij6l6zQNHkt2b9wMXSHq7rduv1DdekoVzXm9m51c551+s/36QdfIjm+3wPjP7gLK5\nZObn0uev85rc+hrWvubVZMxT9V46aXifSIcTaqA3ks3ZUOF+siijACcBP6sji8oH9uVQIx/Q80fS\nTmTTiB5vZpXW0ZPAKEn7hTQbSNrTzP4I/FFSZa6Jk2qU8W7gYwpf+lBrB/gp8OGwbTxr12JflPQ2\nSeuRTSRU4R6y2ekq5dl7kLx/DBwvacuQfmRu3xwyk0qsgp8H/GM4zxBJm4XtNwOHA/uQlRXgXuA0\nSRtXyRf6ueahvDua2X3AZ8haBMNZl/dIGilpGNmslD8P8h0naetKnuF+98sA+W1Gbyj16QNfln45\nIeRxIFlk5BV99qfeS6cKrkS6gyvJ7PQVPkb2gVlMFiX3nFpPHD70Xyezi99NFhJ7IKaT2dJvCZ2e\nd1g2nehxwBdDx+siYP+Q/jTgK5IWkdV0a+ESMnPIYkmPhXXIZpgbLukJ4GLgodwxnyXrV7mfXjMP\nZKbBiaET+HFgQPdbM3sMmAX8JJQtH9J+LrAFwewSwTlkpsMlQdY9Qh5/Be4jixy7Omy7iywU+cJw\n7dbyNBrgmg8BvhXyeAS4KtzjvvyCzDy1mKy/YqGZPQ58DrgnPFv3AoNN89tffpcDl0p6hNotJn8J\nx1/N2pWoCkn30qmOR/F1nICk+cB5ZtaUsOTKxmtMNbNT+tk/m6xzd0AX31Cbf5isdfdUwwVdN7/p\nZObLs4rOq1bqvZfBzHiemR3VSLk6EW+JOE4LkPQfZHOoXDJAshXAJRpgsKGyAZzLgHnNUCDdgKQT\nyPr5/tBqWdoBb4k4juM4NeMtEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgScRzHcWrm/wFZ\n/Tb2voD4tQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Parzen window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hamming Window" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hamming')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUZCJ5BQQiAhCaGDEBABBQQFbCx2XSu6\nrGv3VVfd3Xctq2t511UUFNF10dVVsQMWBKSJBQLSEkpCTSgJoUNIv98/ZpIds5QAmZwp9+e65mLO\nmTMzvwPk3HnOc87ziKpijDHGAIQ4HcAYY4zvsKJgjDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYY\nY6pYUTDmGEQkQ0SGOPj9fxCRN07xvUNEJLe2M5nAZ0XBOEZENovI8GrrbhKR75zK5ElVu6rqPAe/\n/6+qeqtT32+CkxUFY4wxVawoGJ8mIg+LyAYROSgimSIyxuO1m0RkkYi8ICL7RGSjiAxwr88RkXwR\nudFj+yki8oqIfCUih9zvbSUiL4rIXhFZKyJneGxf1ZIRkcdEZKqIvO3OkiEiaR7b9haRn92vfSgi\nH4jIk8fYpy0i0sf9/NcioiLS1b18i4h85vGd77ifJ7i3u1FEtopIgYj80eMzo9z7t1dEMoG+1b6z\ns4jMc/89ZYjIJe71ie51Ie7l10Uk3+N9/xKRe0/hn874KSsKxtdtAM4GmgCPA++ISGuP188EVgLN\ngX8D7+M6ICYD1wETRKShx/ZXAn8CWgDFwA/AMvfyR8Dfj5PlEvfnNwWmARMARCQC+BSYAkQD7wFj\njv4RAMwHhrifDwY2Aud4LM8/znsHAanAMODPItLZvf5RIMn9GAF4FsNwYDrwDRAL3AW8KyKpqroJ\nOABUFsNzgEMen3uiPCbAWFEwTvvM/ZvqPhHZB7zi+aKqfqiq21W1QlU/ALKAfh6bbFLVf6pqOfAB\nEA88oarFqvoNUIKrQFT6VFWXqmoRrgN5kaq+7fH+Mzi271T1S/e2/wJ6utf3B8KAl1S1VFU/ARYf\n53Pm4zrYgqvgPe2xfKKD8OOqekRVVwArPDJcCTylqntUNQd4yeM9/YGGwDOqWqKq3wIzgGs884hI\nK/fyR+7lRKCx+3tMkLCiYJz2K1VtWvkAbvd8UURuEJHlHkWjG67f6ivleTw/AqCq1dc1PM72x9u2\nup0ezwuBSBEJA9oA2/SXo0vmHOdz5gNnu1s8ocBUYKCIJOBqES0/iQyVedtU+84tHs/bADmqWlHt\n9TiPPENwtRIWAPNwFafBwMJq7zMBzoqC8Vki0h54HbgTaO4uGqsBcTTYf9sBxImIZ674Y22sqtm4\nDuh3AQtU9QCug/04XK2RUzkI76j2ne08nm8H4iv7DTxe3+Z+Ph9Xi2WI+/l3wEDs1FFQsqJgfFkD\nQIFdACJyM66Wgq/5ASgH7hSRMBEZzS9PcR3NfFzFrvKgO6/a8smaCjwiIs1EpC2uglPpJ1xF6Pci\nEu6+9+JiXP0jqGoWrlbSdcB8d5HKAy47jTzGT1lRMD5LVTOB53EddPOA7sAiR0MdhaqWAJcCtwD7\ncB1cZ+DqyD6W+UAjXKdrjrZ8sh7HdUpoE64O5X9Vy3cxMAoowNVvc4Oqrq2WZ7e7P6JyWXB1wpsg\nIjbJjjG1T0R+Aiap6j+dzmLMybCWgjG1QEQGu+95CHPfG9ED+NrpXMacrDCnAxgTIFJxnddvgOu+\ng8tVdYezkYw5eXb6yBhjTBU7fWSMMaaK350+atGihSYkJDgdwxhj/MrSpUsLVDXmRNv5XVFISEgg\nPT3d6RjGGONXRGTLibey00fGGGM8WFEwxhhTxYqCMcaYKlYUjDHGVLGiYIwxporXioKIvOmeDnH1\nMV4XEXlJRLJFZKWI9PZWFmOMMTXjzZbCFGDkcV4fBaS4H+OAV72YxRhjTA147T4FVV3gnknqWEYD\nb7tnq/pRRJqKSGsbL8b4gyMl5SzZvIflOfsoKz/KnDgidG7ViP4dmtOsQUTdBzTmFDl581ocv5w+\nMNe97r+KgoiMw9WaoF27dtVfNsbrSssrWJGzj0XZu1m0oYCft+6ltNw1bpgcZR64yiHFRKBL68YM\nTG7BgKTm9EuMpn6E390zaoKIX/zvVNXJwGSAtLQ0G8HP1Jm8A0VMnJvNx0tzOVxSjgh0bdOYsQMT\nGZDcgr4JzY56kC8tr2BlrquIfL+hgCmLNjN5wUbCQ4VhnVpy33kdSW3VyIE9Mub4nCwK2/jlnLJt\n+c+cscY4as/hEibN38Bb32+mvEIZ3SuO4Z1jOSupOU3rn/h0UHhoCH3aR9OnfTR3D0vhSEk56Vv2\nsGD9Lt5fnMPMzJ1c0rMN9w7vSGKLBnWwR8bUjJNFYRquOW3fB84E9lt/gnHa/iOl/GPhRv7x3SYK\nS8sZ0yuOe4an0L756R24oyJCOTslhrNTYrh9SDKTF25kyqLNzFi5g8t7t+Xu4SnENY2qpb0w5tR5\nbT4FEXkPGAK0wDW/7qNAOICqThIRASbgukKpELhZVU840l1aWpragHimtqkq//pxC89/s579R0q5\nsHtr7h2eQkpL753iyT9YxKvzNvDuj1sBuHFAex4YkUq9sFCvfacJXiKyVFXTTridv02yY0XB1LaD\nRaU89PFKvly1k7NTWvDQyE50i2tSZ9+/fd8Rxs/O4oP0HHq0bcLEa3sTH12/zr7fBAcrCsbUwNqd\nB7j9nWVs2VPIgyNS+e05HZCjXU5UB2Zm7OSBqSsICRFeuKon53Zq6UgOE5hqWhRsmAsTtD5emsuv\nJi7iYHEZ7956JrcNTnKsIACM6NqKGXcPIq5pFGOnpPO3mesor/CvX9qM/7OiYIJOUWk5j3yykvs/\nXEGv+KZ8cfcg+ndo7nQsANo3b8Antw/g6r7xTJibzfX/+IldB4udjmWCiBUFE1T2F5Zy1Ws/8N7i\nHG4fksQ7t5xJbKNIp2P9QmR4KM9c1oP/u7wHS7fs5aKXF5Kdf9DpWCZIWFEwQWN/YSm//sePrNlx\nkNeu78PvR3YiLNR3fwSuSIvn09sHUl4BV0/+iez8Q05HMkHAd38ijKlFlQVh/c5DvHZ9H0Z0beV0\npBrp0qYx7487E4CrJ/9ohcF4nRUFE/D2F5Zy3T9+qioIQzvFOh3ppCTHNqoqDNe8boXBeJcVBRPQ\nKgvCup0H/bIgVKosDKpWGIx3WVEwAWt/YSnXv+kqCJOu7+23BaFScmwj3vvNfwrDhl1WGEzts6Jg\nAtLh4jKuf/Mn1u5wFYRAuREspeV/CsPVk39ky+7DTkcyAcaKggk4FRXK/0xdzupt+3n1usApCJUq\nC0NpeQW3vpXOwaJSpyOZAGJFwQScF+dkMTMjjz9d2IVhnQOrIFRKadmIV67tzcaCw9z3wXIq7M5n\nU0usKJiA8sXKHbw0J4sr+rTl5oEJTsfxqgHJLfjzRV2YvSaf52etczqOCRB+MfOaMTWRsX0/D3y4\ngt7tmvLkmG6OjmNUV244qz1rdx5g4twNdGrVmIt7tnE6kvFz1lIwAaHgUDHj3l5K0/rhTLq+T9DM\nSSAiPH5JN/omNOPBj1awKne/05GMn7OiYPxeSVkFv3tnKQWHipl8fZrPjWXkbRFhIbx6XR+i60cw\n7l/p5B8scjqS8WNWFIxfU1UenbaaJZv38tzlPejetu4mx/ElLRrW4/Ub09hbWMLv3llGcVm505GM\nn7KiYPzah+m5VSOeju4V53QcR3Vt04Tnr+jF0i17eeqLNU7HMX7KioLxW1t2H+ax6Rn07xDN/een\nOh3HJ1zYozW3DErk7R+2MHdtvtNxjB+yomD8Ull5Bfd+sJzQEOHvV/YiNCTwrzSqqQdHpNKpVSMe\n/Ggluw/ZBD3m5FhRMH5pwtxsft66j6fGdKdN0yin4/iUyPBQXry6FweOlPLQx6vwt3nYjbOsKBi/\ns2zrXl7+NpsxZ8RxiV2Xf1SdWjXm9yNTmb0mj/eX5Dgdx/gRKwrGrxwuLuO+D5bTqnEkj4/u6nQc\nnzZ2YCKDklvwxPRMNhXYwHmmZqwoGL/yxPRMtu4p5O9X9qRxZLjTcXxaSIjwtyt6EhEWwr3v/0xp\neYXTkYwfsKJg/MbXq3fyQXoOvxucxJkdmjsdxy+0ahLJ05d2Z0Xufl6ek+V0HOMHrCgYv5B/oIhH\nPllJt7jG3Du8o9Nx/MoF3VtzeZ+2TJibzdIte5yOY3ycFQXjF/702WoKS8p58aoziAiz/7Yn69GL\nuxDXLIoHPlxJUand7WyOzX66jM+bmbGTbzLzuO+8jiTHNnQ6jl9qFBnO02N6sKngMK/MzXY6jvFh\nVhSMTztUXMajn2fQqVUjbhmU6HQcvzYopQVjzojj1fkbyM4/6HQc46OsKBif9reZ68g7WMRfL+1O\neKj9dz1df7qwMw3qhfGHT1bbbG3mqOynzPisFTn7eOuHzVx3Znt6t2vmdJyA0LxhPf4wqjOLN+/h\nw6V2U5v5b1YUjE8qK6/gkU9WEdOwHg+OtMHuatMVaW3plxjNX79cS4GNjWSqsaJgfNKU7zeTueMA\nj13S1W5Sq2Uiwl/HdKewpIwnZ2Q6Hcf4GCsKxufk7i3k+W/WM6xTLKO6tXI6TkBKjm3I74Yk89ny\n7SzM2uV0HONDvFoURGSkiKwTkWwRefgorzcRkekiskJEMkTkZm/mMb5PVXn08wwAHh/dFREbEttb\nbh+SRIcWDfjjp6vt3gVTxWtFQURCgYnAKKALcI2IdKm22R1Apqr2BIYAz4tIhLcyGd/39eqdzFmb\nz/3nd6Rts/pOxwlokeGhPDmmG1v3FPKSDYFh3LzZUugHZKvqRlUtAd4HRlfbRoFG4vp1sCGwByjz\nYibjwwpLynhiRiZdWjfmpgEJTscJCgOSWnBZ77a8vnCjjaRqAO8WhTjA85q3XPc6TxOAzsB2YBVw\nj6r+11COIjJORNJFJH3XLjv/Gahem7+RHfuLeOySroTZPQl15qFRqdQLC+WpL6zT2Tjf0TwCWA60\nAXoBE0SkcfWNVHWyqqapalpMTExdZzR1YPu+I7y2YAMX9mhNv8Rop+MEldhGkdwxNJnZa/Kt09l4\ntShsA+I9ltu613m6GfhEXbKBTUAnL2YyPurZr9eiCo+Msn9+J4wdlEC76Pr8ZUYmZTbvQlDzZlFY\nAqSISKK78/hqYFq1bbYCwwBEpCWQCmz0Yibjg5Zu2cvny7cz7pwO1rnskHphofzhgs6szzvEe4u3\nOh3HOMhrRUFVy4A7gZnAGmCqqmaIyG0icpt7s78AA0RkFTAHeEhVC7yVyfieigrliekZxDaqx22D\nk5yOE9RGdG1J/w7R/H3WevYXljodxzjEq30KqvqlqnZU1SRVfcq9bpKqTnI/366q56tqd1Xtpqrv\neDOP8T2fLd/Gitz9PDSyEw3qhTkdJ6iJCH++qCv7j5Qy3i5RDVpOdzSbIHa4uIxnv15Lz/imjDmj\n+oVpxgld2jTmqr7tePuHzWTnH3I6jnGAFQXjmEnzN5B3oJg/X9SFkBC7c9lX3H9+R6LC7RLVYGVF\nwTgid28hkxds5JKebejT3obF9iUtGtbjrmHJzF23i3nr8p2OY+qYFQXjiGe+WosIPGyXoPqkmwYk\nktDcdYlqqV2iGlSsKJg6tzxnHzNW7mDc2R1o0zTK6TjmKCLCQvjDBZ3ZsOswU9NtMp5gYkXB1ClV\n5dmv1tK8QQTj7BJUn3Zel5aktW/G+NlZHCmxUVSDhRUFU6cWZBXww8bd3HVuMg3tElSfJiI8PKoT\n+QeLeXPRJqfjmDpiRcHUmYoKVyshPjqKa89s73QcUwNpCdEM7xzLpPkb2FdY4nQcUwesKJg6M33l\ndjJ3HOD+81KJCLP/ev7iwRGdOFRcxivzNjgdxdQB+8k0daKkrILnv1lP59aNuaRnG6fjmJOQ2qoR\nl57Rlinfb2bbviNOxzFeZkXB1In3Fm9l655Cfj8y1W5U80P3nZcCCi/OWu90FONlVhSM1x0uLuPl\nb7M4MzGaIR1tPgx/1LZZfa4/qz0fL8slK++g03GMF1lRMF73xsJNFBwq4eFRnXDNvGr80R1Dk2kQ\nEcZzM9c5HcV4kRUF41W7DxUzecEGRnZtxRntbDgLfxbdIILfDu7ArMw8lm7Z43Qc4yVWFIxXTZib\nzZHSch4Ykep0FFMLxg5KJKZRPZ79ah2q6nQc4wVWFIzX5O4t5N0ft3JlWjzJsQ2djmNqQf2IMO4e\nlsLizXuYa4PlBSQrCsZrXp6TDQL3DE9xOoqpRVf3jadddH3+Pmu9tRYCkBUF4xWbCw7z0bJcru3X\njtZNbNC7QBIeGsLdw1JYve0AMzPynI5japkVBeMVL32bRXiocPtQG/QuEP2qVxs6tGjAC7PWU1Fh\nrYVAYkXB1Lrs/EN89vM2ru/fnthGkU7HMV4QFhrCPcNTWJd3kC9W7XA6jqlFVhRMrRs/J4vI8FBu\ns6GxA9pFPdqQEtuQF2evp9xaCwHDioKpVet2HmTGyu3cNCCB5g3rOR3HeFFoiHDfeR3ZsOsw01Zs\nczqOqSVWFEytemHWehpEhDHunA5ORzF1YGTXVnRu3Zjxs7Mos2k7A4IVBVNrVm/bz9cZOxk7KJGm\n9SOcjmPqQEiI8D/ndWTz7kI+WWathUBgRcHUmhdnr6dxZBi3DEp0OoqpQ8M7x9KzbRPGz8mipMxa\nC/7OioKpFctz9jF7TT7jzulAk6hwp+OYOiTi6lvYtu8IU9NznI5jTpMVBVMr/j5rPc3qh3PTQGsl\nBKPBHWPo3a4pE77Npqi03Ok45jRYUTCnbemWPSxYv4vfDk6iYb0wp+MYB4gI95+fys4DRby3eKvT\nccxpOGFREJH6IvK/IvK6ezlFRC7yfjTjL16cnUXzBhHccFZ7p6MYBw1Iak6/xGgmzd9grQU/VpOW\nwj+BYuAs9/I24EmvJTJ+ZemWvSzMKuC3gztQP8JaCcFMRLh3WAp5B4r5YIn1LfirmhSFJFV9DigF\nUNVCwKbPMoDr7uXmDSK4rr+1EgycldScvgnNeHXeBorLrLXgj2pSFEpEJApQABFJwtVyMEHu5617\nWbB+F785x1oJxkVEuGdYR3YeKGKqtRb8Uk2KwqPA10C8iLwLzAF+79VUxi+Mn5NFdIMIrrdWgvEw\nMLk5fdo34xVrLfilExYFVZ0FXArcBLwHpKnqPO/GMr5uec4+5q3bxa1nJ9LArjgyHkSEe4ensGN/\nER+m5zodx5ykYxYFEeld+QDaAzuA7UA797oTEpGRIrJORLJF5OFjbDNERJaLSIaIzD+VnTB1b/zs\n9TStH84NZyU4HcX4oEHJLejdrimvzttgdzn7meP9ive8+89IIA1YgauDuQeQzn+uRjoqEQkFJgLn\nAbnAEhGZpqqZHts0BV4BRqrqVhGJPdUdMXVnRc4+5q7bxYMjUu2+BHNUIsI9wzty45uL+WhpLtee\n2c7pSKaGjtlSUNWhqjoUVwuht6qmqWof4Axcl6WeSD8gW1U3qmoJ8D4wuto21wKfqOpW93faTOB+\n4KU5WTSJCrf7EsxxnZPSgl7xTZk4N9taC36kJh3Nqaq6qnJBVVcDnWvwvjjA8/KDXPc6Tx2BZiIy\nT0SWisgNR/sgERknIukikr5r164afLXxllW5+5mzNp9bByXSKNLGODLH5motpLBt3xE+WWZ9C/6i\nJkVhpYi84T73P8R9Z/PKWvr+MKAPcCEwAvhfEelYfSNVnexuqaTFxMTU0lebUzHe3Uq4cWCC01GM\nHxjSMYaebZswYW42pTbfgl+oSVG4GcgA7nE/Mt3rTmQbEO+x3Jb/Pu2UC8xU1cOqWgAsAHrW4LON\nA1Zv28/sNXncMiiRxtZKMDVQ2VrI3XuET22+Bb9Qk0tSi1T1BVUd4368oKpFNfjsJUCKiCSKSARw\nNTCt2jafA4NEJExE6gNnAmtOdidM3Xj52ywaRYZxk7USzEkYmhpLD3drwWZn8301GRBvk4hsrP44\n0ftUtQy4E5iJ60A/VVUzROQ2EbnNvc0aXDfGrQQWA2+4+yyMj1mz4wAzM/IYO9BaCebkiAh3nZvC\n1j2FfL58u9NxzAnU5HrCNI/nkcAVQHRNPlxVvwS+rLZuUrXl/wP+ryafZ5wzYW42DeuFMdbmSzCn\nYHjnWDq3bszEudn86ow4QkNs+DRfVZPTR7s9HttU9UVcHcMmSGTnH+TLVTu4cUB7mtS3VoI5eSLC\n3ecms7HgMDNWWmvBl52wpVDt7uUQXC0Hu2MpiEz4Npuo8FBuGdTB6SjGj43o2oqOLRsy4dtsLu7R\nhhBrLfikmhzcn/d4XgZsAq70ThzjazYVHGbaiu385uwORDeIcDqO8WMhIcKd56Zw93s/83XGTi7o\n3trpSOYoanJJ6i2Vdzer6nmqOg4o8XYw4xsmzs0mIiyEW8+2VoI5fRd2b02HmAa8NCeLigp1Oo45\nipoUhY9quM4EmK27C/n0521c2689MY3qOR3HBIDQEOHOocms3XmQ2WvynI5jjuKYp49EpBPQFWgi\nIpd6vNQY11VIJsC9Oj+b0BDht4OtlWBqzyU92zB+ThYvf5vNeV1aImJ9C77keC2FVOAioClwscej\nN/Ab70czTsrdW8hHS3O5um88LRvb7wCm9oSFhnDHkGRWbdvPvHU2lpmvOWZLQVU/Bz4XkbNU9Yc6\nzGR8wKT5GwC4bXCSw0lMIBrTO47xc7IYPyeLIakx1lrwIcebZKdyys1rReSl6o86ymccsHN/EVOX\n5HJ5n3jaNI1yOo4JQOGhIdw+NInlOfv4LrvA6TjGw/FOH1WOQZQOLD3KwwSoSfM3UK7K7UOslWC8\n5/I+bWndJJKX5mShalci+YrjnT6a7v7zrbqLY5yWf7CI9xZvZcwZccRH13c6jglg9cJCuW1wEo9O\ny+DHjXs4K6m505EMx7/6aDpwzPKtqpd4JZFx1OsLNlJaXsGdQ5OdjmKCwFV945k4N5uX5mRZUfAR\nx7uj+W91lsL4hIJDxbzz41Z+1SuOhBYNnI5jgkBkeCi/HZzEX2ZksnjTHvol1misTeNFx5ujeX7l\nA/gB2AvsAX5wrzMB5o2FmygqK+eOc62VYOrOtf3a0aJhBC9/m+V0FEPN5lO4ENgAvARMALJFZJS3\ng5m6tedwCW//sJmLe7QhKaah03FMEImKCGXcOR1YmFXA0i17nY4T9GoyzMXzwFBVHaKqg4GhwAve\njWXq2pvfbeJIaTl3WivBOODXZ7YnuoG1FnxBTYrCQVXN9ljeCBz0Uh7jgP2FpUz5fjMXdGtNx5aN\nnI5jglCDemHcenYi89btYkXOPqfjBLWaFIV0EflSRG4SkRuB6cASEbm02phIxk+9uWgTh4rLrJVg\nHHXDWQk0rR9urQWH1aQoRAJ5wGBgCLALiMI1DtJFXktm6sSBolLeXLSJEV1b0rl1Y6fjmCDWsF4Y\ntwxMZPaafFZv2+90nKB1wkl2VPXmughinPHWos0cLCrjrnNTnI5iDDcOTOD1hRt5+dssXrs+7cRv\nMLWuJtNxJgJ3AQme29vNa/7vUHEZb3y3ieGdY+kW18TpOMbQODKcsYMSeXF2Fmt2HLDWqwNqcvro\nM2Az8DKuK5EqH8bPvf3DZvYfKbVWgvEpNw9IpFG9MCZ8m33ijU2tq8kczUWqaqOiBpjDxWW8sXAT\nQ1Jj6Bnf1Ok4xlRpUj+cmwYmMGFuNuvzDtoVcXWsJi2F8SLyqIicJSK9Kx9eT2a86u0ftrDncAl3\nD7NWgvE9Ywcm0iAijPFz7EqkulaTlkJ34HrgXKDCvU7dy8YPHSouY/KCDQzuGEPvds2cjmPMf2nW\nIIKbBiQwcV4263YeJLWVtRbqSk1aClcAHVR1sKoOdT+sIPixt3/YzN7CUu4dbq0E47tuPbuytbDe\n6ShBpSZFYTWueZpNAHC1EjYyJDWGM6yVYHxY0/oR3DwwgS9X7WTtzgNOxwkaNSkKTYG1IjJTRKa5\nH597O5jxjre+38y+wlLuHd7R6SjGnNAtg1xXIo2fbX0LdaUmfQqPejwX4Gzgau/EMd50sKiU1xdu\n5NxOsfSyK46MH6hsLbz0bTaZ2w/QpY3dt+BtJ2wpuOdOOIBrSIspuDqYJ3k3lvGG/7QSrC/B+I9b\nBnWgUaT1LdSVYxYFEenovhR1La4b17YC4u5ofrnOEppacaColNcXbmJYp1h6tLVWgvEfTeqHM3Zg\nIjMz8sjYbmMiedvxWgprcbUKLlLVQe5CUF43sUxte2uR6+5l60sw/mjsoERXa8H6FrzueEXhUmAH\nMFdEXheRYbj6FIyfOeDuSxjeuSXd29oYR8b/NIkK55ZBiXyTmWcjqHrZ8eZo/kxVrwY6AXOBe4FY\nEXlVRM6vq4Dm9E1ZtJkDRWXWl2D82s0DE2kcaXc5e1tNOpoPq+q/VfVioC3wM/BQTT5cREaKyDoR\nyRaRh4+zXV8RKRORy2uc3NTIgaJS3li4kfO6tLSRUI1fc7UWOjArM49VudZa8Jaa3KdQRVX3qupk\nVR12om1FJBSYCIwCugDXiEiXY2z3LPDNyWQxNfPGgo3WSjAB4+ZBCTSJCufvs9Y5HSVgnVRROEn9\ngGxV3aiqJcD7wOijbHcX8DGQ78UsQangUDFvfLeJC3u0pmsbayUY/9c4MpzbBicxd90u0jfvcTpO\nQPJmUYgDcjyWc93rqohIHDAGePV4HyQi40QkXUTSd+3aVetBA9Wr8zZQVFrOfXbFkQkgNw5oT4uG\n9Xhu5jpU1ek4AcebRaEmXgQeUtWK423kPmWVpqppMTExdRTNv+3Yf4R//biFy3q3JTm2odNxjKk1\n9SPCuOvcZBZv2sPCrAKn4wQcbxaFbUC8x3Jb9zpPacD7IrIZuBx4RUR+5cVMQeOlOdmoqs2XYALS\n1f3iiWsaxd++sdZCbfNmUVgCpIhIoohE4BovaZrnBqqaqKoJqpoAfATcrqqfeTFTUNhccJip6Tlc\n268d8dH1nY5jTK2rFxbKPcNTWJm7n5kZeU7HCSheKwqqWgbcCcwE1gBTVTVDRG4Tkdu89b0GXpy9\nnvBQ4Y5zk52OYozXXHpGHB1iGvD8N+sor7DWQm3xap+Cqn6pqh1VNUlVn3Kvm6Sq/zWgnqrepKof\neTNPMFihjIrmAAATaElEQVS78wCfr9jOTQMSiW0U6XQcY7wmLDSE+89LJSv/ENNWVD8zbU6V0x3N\nppY9/816GkaEcdvgDk5HMcbrRnVrRZfWjXlhVhYlZce9XsXUkBWFALI8Zx+zMvP4zTkdaFo/wuk4\nxnhdSIjw4IhUtu4pZGp6zonfYE7IikIA+dvMdUQ3iGDsoESnoxhTZ4akxpDWvhkvf5tFUakN5Hy6\nrCgEiO83FPBddgG3D0miYb2aTKhnTGAQER4YkUregWLe/mGz03H8nhWFAFBRoTz95VpaN4nkuv7t\nnY5jTJ3r36E553SMYeLcDewvLHU6jl+zohAApq/czqpt+3ng/FQiw0OdjmOMIx4Z1YkDRaVMmGtD\na58OKwp+rqi0nOe+XkeX1o0Zc0bcid9gTIDq3LoxV/Rpy1vfbyFnT6HTcfyWFQU/99b3m9m27wh/\nvLAzISE2MZ4Jbv9zXiohIfDcTBta+1RZUfBjew+XMGFuNkNTYxiY3MLpOMY4rlWTSMad3YHpK7az\nPGef03H8khUFP/bSt1kcLi7jkQs6Ox3FGJ8xbnASLRpG8Ncv1thgeafAioKf2lxwmHd+3MJVfePp\n2LKR03GM8RkN64Vx33kdWbx5D7MybbC8k2VFwU89N3Mt4aEhNoGOMUdxVVo8ybENeeartZSW2/AX\nJ8OKgh9aumUvX67aybhzOhDb2Aa9M6a6sNAQHhnViY0Fh3l/8Van4/gVKwp+RlV56otMYhrV4zdn\n26B3xhzLuZ1i6d8hmhdnZ3GwyG5oqykrCn7m69U7WbZ1H/ef15EGNpyFMcckIvzxgi7sPlzCq/M2\nOB3Hb1hR8CNFpeU89eUaUls24oq0+BO/wZgg171tE8acEccb321iy+7DTsfxC1YU/Mir8zaQu/cI\nj13SlVC7Uc2YGnl4VCfCQ4Qnpmc6HcUvWFHwE1t3F/Lq/A1c3LMNZyU1dzqOMX6jZeNI7hmewpy1\n+cxZY5eonogVBT/xxIwMwkOEP9qNasactJsHJpIc25DHp2fanAsnYEXBD3y7No/Za/K5e1gKrZrY\nJajGnKzw0BCeuKQrW/cU8tr8jU7H8WlWFHxcUWk5j03LJCmmATcPtBnVjDlVA5JbcGGP1rwyL9tG\nUT0OKwo+bvKCjWzdU8gTo7sREWb/XMacjj9d2JnQEOGJGdbpfCx2lPFhOXsKmTg3mwu7t7ZRUI2p\nBa2bRHHXuSnMysxj7rp8p+P4JCsKPuwvMzIJEeGPF1rnsjG15ZZBiXSIacDj0zIoLrNO5+qsKPio\neevy+SYzj7uGJdOmaZTTcYwJGBFhITx2cVc27y7k9QXW6VydFQUfdKSknEenZZDYogG3DLLOZWNq\n2zkdYxjZtRUT5mbbnc7VWFHwQX/7Zh1bdhfy1Jhu1AsLdTqOMQHp0Uu6EB4Swu8/WklFhU3GU8mK\ngo9ZumUPby7axHX92zEgyTqXjfGW1k2i+NNFnflp0x7e/WmL03F8hhUFH1JUWs6DH66kTZMoHh5l\nncvGeNuVafGcndKCp79aa/cuuFlR8CEvzFrPxoLDPHtZDxrasNjGeJ2I8MxlPQgR4eFPVtqczlhR\n8Bk/b93L6ws3ck2/dgxKsdNGxtSVuKZRPHJBJxZl7+a9xTlOx3GcFQUfUFRazoMfraRV40j+cEEn\np+MYE3Su7deOAUnN+euXa9i274jTcRxlRcEHjJ+TRXb+IZ6+rAeNIsOdjmNM0BERnr2sBxWqPPxx\ncJ9GsqLgsBU5+3ht/gauTGvL4I4xTscxJmjFR9fn4VGdWJhVwNT04D2N5NWiICIjRWSdiGSLyMNH\nef3XIrJSRFaJyPci0tObeXyN67TRCmIa1eOPF3ZxOo4xQe+6M9tzZmI0T84I3tNIXisKIhIKTARG\nAV2Aa0Sk+pFvEzBYVbsDfwEmeyuPL3p8eibr8w7xzGU9aBJlp42McVpIiPDc5a7TSHf9exml5RVO\nR6pz3mwp9AOyVXWjqpYA7wOjPTdQ1e9Vda978UegrRfz+JTPl2/jvcVbuW1wEkNTY52OY4xxa9+8\nAc9c1oNlW/fx3NdrnY5T57xZFOIAzxNzue51x3IL8NXRXhCRcSKSLiLpu3btqsWIzsjOP8Qjn6yi\nb0IzHji/o9NxjDHVXNyzDdf3b8/rCzfxTcZOp+PUKZ/oaBaRobiKwkNHe11VJ6tqmqqmxcT4d2fs\nkZJy7nh3GZHhobx8TW/CQn3in8AYU82fLupM97gmPPDhiqC629mbR6RtQLzHclv3ul8QkR7AG8Bo\nVd3txTw+4c+fr2Z9/kFevKqXzbdsjA+rFxbKxGt7o8Ad/14WNHMveLMoLAFSRCRRRCKAq4FpnhuI\nSDvgE+B6VV3vxSw+4cP0HD5cmstdQ5M5xy4/NcbntWten/+7vCcrc/fz9JfB0b/gtaKgqmXAncBM\nYA0wVVUzROQ2EbnNvdmfgebAKyKyXETSvZXHaet2HuR/P1/NWR2ac89w60cwxl+M7NaKWwYlMuX7\nzXyxcofTcbxO/O3OvbS0NE1P96/acai4jNETvmP/kTK+vGcQsY3stJEx/qSkrIIrX/uB7PxDTL9r\nEIktGjgd6aSJyFJVTTvRdtbL6WUlZRX87p2lbN5dyEvX9LKCYIwfiggLYeKvexMeKtz8z8UUHCp2\nOpLXWFHwoooK5aGPV7Iwq4CnL+1uk+YY48fimkbxxo192XmgiLFTlnC4uMzpSF5hRcGLnp25lk9/\n3saDI1K5Mi3+xG8wxvi0Pu2bMfHa3mRsP8Dv3g3MO56tKHjJP77bxGvzN3LDWe25fUiS03GMMbVk\nWOeW/HVMNxas38VDHwXeiKo2vZcXTFuxnb/MyGRUt1Y8enFXRMTpSMaYWnRV33bkHyjm+VnriW0c\nycOjAmceFCsKtez77ALun7qcfonRvHBVL0JDrCAYE4juPDeZvINFTJq/gdhG9Rg7KNHpSLXCikIt\nWpm7j3H/WkqHFg15/YY0IsNDnY5kjPESEeHxS7qx62Axf/kik+YNIxjd63jDu/kH61OoJfPX7+Ka\nyT/SJCqcKWP72lDYxgSB0BBh/NVn0C8hmns/WM6b321yOtJps6JQCz5Mz2HslCW0a96AT24fQOsm\nUU5HMsbUkcjwUN4a24/zu7TkiRmZPPVFJhUV/tv5bEXhNKgqL83J4sGPVjIgqTlTf9uflo3t5jRj\ngk1keCiv/LoPN57lGm77ng+W++0AetancIrKyiv4389X897iHC7tHcczl/YgIsxqrDHBKjREeOyS\nrrRuGsUzX60l/0ARk29I87tTyXYUOwWFJWWM+9dS3lucwx1Dk3j+ip5WEIwxiAi3DU5i/NW9WLZ1\nL1dM+p7tfjbXsx3JTtLSLXsZPWER89bl8+SvuvHgiE52H4Ix5hdG94rjrZv7sWNfERe//B3TV2z3\nm5vcrCjU0OHiMh6blsHlk77ncHEZU27ux3X92zsdyxjjowYkt+CT2wcQ1yyKu977md+8nc6O/b7f\narChs2tg3rp8/vjparbvP8IN/dvz4MhONKxn3THGmBMrK6/gn4s28/ysdYSFhPDQqE78ul87Qur4\nxtaaDp1tReE49hwu4YnpGXy2fDvJsQ159rLu9GkfXSffbYwJLFt2H+YPn65iUfZu+iY04+lLe5Ac\n27DOvt+KwilSVZbn7OODJTlMX7GdkvIKfjckmTuGJlEvzO5QNsacOlXlw6W5PDkjk8Ml5QzrFMvV\n/eI5JyWGsFDvns2vaVGwcyBuew+X8OnP2/hgSQ7r8g4SFR7KRT1a85tzOtCxZSOn4xljAoCIcGVa\nPENSY3hj4SY+XprLN5l5tGocyRVpbbkyLZ746PrOZgy2lkJ5hbLzQBE5ewrZuqeQ3D2FrMs7yNy1\nuygpr6Bn2yZc1bcdF/dsTaNI/7q+2BjjX0rKKvh2bR7vL8lh/vpdqMKApOZ0b9uEdtH1iW9Wn3bR\n9WnTNOq0L3u300fVzF2bz+PTM9i27wil5f/Z5xCB1k2iOK9LS65Mi6dLm8a1GdcYY2pk274jfJSe\ny4yV29myu5ASjwl8Ko9TNw9M4NazO5zS59vpo2qiG0TQNa4JI7u1dlXg6CjaRdendZPTr8DGGHO6\n4ppGcc/wFO4ZnkJ5hZLncUYjZ+8RcvYUEtOontdzBE1LwRhjgllNWwr2K7IxxpgqVhSMMcZUsaJg\njDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYYY6pYUTDGGFPF725eE5FdwJZTfHsLoKAW4/iTYN13\n2+/gYvt9bO1VNeZEH+R3ReF0iEh6Te7oC0TBuu+238HF9vv02ekjY4wxVawoGGOMqRJsRWGy0wEc\nFKz7bvsdXGy/T1NQ9SkYY4w5vmBrKRhjjDkOKwrGGGOqBE1REJGRIrJORLJF5GGn83iLiLwpIvki\nstpjXbSIzBKRLPefzZzM6A0iEi8ic0UkU0QyROQe9/qA3ncRiRSRxSKywr3fj7vXB/R+VxKRUBH5\nWURmuJcDfr9FZLOIrBKR5SKS7l5Xa/sdFEVBREKBicAooAtwjYh0cTaV10wBRlZb9zAwR1VTgDnu\n5UBTBtyvql2A/sAd7n/jQN/3YuBcVe0J9AJGikh/An+/K90DrPFYDpb9HqqqvTzuTai1/Q6KogD0\nA7JVdaOqlgDvA6MdzuQVqroA2FNt9WjgLffzt4Bf1WmoOqCqO1R1mfv5QVwHijgCfN/V5ZB7Mdz9\nUAJ8vwFEpC1wIfCGx+qA3+9jqLX9DpaiEAfkeCznutcFi5aqusP9fCfQ0skw3iYiCcAZwE8Ewb67\nT6EsB/KBWaoaFPsNvAj8HqjwWBcM+63AbBFZKiLj3Otqbb/DTjed8S+qqiISsNchi0hD4GPgXlU9\nICJVrwXqvqtqOdBLRJoCn4pIt2qvB9x+i8hFQL6qLhWRIUfbJhD3222Qqm4TkVhglois9XzxdPc7\nWFoK24B4j+W27nXBIk9EWgO4/8x3OI9XiEg4roLwrqp+4l4dFPsOoKr7gLm4+pQCfb8HApeIyGZc\np4PPFZF3CPz9RlW3uf/MBz7FdXq81vY7WIrCEiBFRBJFJAK4GpjmcKa6NA240f38RuBzB7N4hbia\nBP8A1qjq3z1eCuh9F5EYdwsBEYkCzgPWEuD7raqPqGpbVU3A9fP8rapeR4Dvt4g0EJFGlc+B84HV\n1OJ+B80dzSJyAa5zkKHAm6r6lMORvEJE3gOG4BpKNw94FPgMmAq0wzXs+JWqWr0z2q+JyCBgIbCK\n/5xj/gOufoWA3XcR6YGrYzEU1y95U1X1CRFpTgDvtyf36aMHVPWiQN9vEemAq3UArtP//1bVp2pz\nv4OmKBhjjDmxYDl9ZIwxpgasKBhjjKliRcEYY0wVKwrGGGOqWFEwxhhTxYqC8Ski8kf3aJ8r3aNA\nnunl75snIjWe8FxEpojINhGp515u4b6BqjayDKkc7bO2iMi9InLDCbbpLiJTavN7jf+yomB8hoic\nBVwE9FbVHsBwfjlmla8oB8Y6HaI692jAnsthuHL++3jvU9VVQFsRaefFeMZPWFEwvqQ1UKCqxQCq\nWqCq2wFE5M8iskREVovIZPcdzJW/6b8gIukiskZE+orIJ+5x5Z90b5MgImtF5F33Nh+JSP3qXy4i\n54vIDyKyTEQ+dI+jdDQvAve5D7qe7//Fb/oiMkFEbnI/3ywiT1eOgS8ivUVkpohsEJHbPD6msYh8\nIa65PyaJSMjxsrk/91kRWQZcUS3nucAyVS3z+Lt6VlzzL6wXkbM9tp2O685gE+SsKBhf8g0Q7z5g\nvSIigz1em6CqfVW1GxCFq0VRqcQ9rvwkXLf33wF0A25y3+kJkAq8oqqdgQPA7Z5fLCItgD8Bw1W1\nN5AO/M8xcm4FvgOuP8n926qqvXDdeT0FuBzX3A+Pe2zTD7gL17wfScClNci2W1V7q+r71b5vILC0\n2rowVe0H3IvrbvdK6cDZmKBnRcH4DPe8AH2AccAu4IPK37SBoSLyk4iswvUbcFePt1aOY7UKyHDP\nrVAMbOQ/AyHmqOoi9/N3gEHVvr4/rgPxInENQ30j0P44cZ8GHuTkfoY8c/6kqgdVdRdQXDl+EbDY\nPe9HOfCeO+eJsn1wjO9rjevv0VPlQIFLgQSP9flAm5PYFxOgbOhs41PcB8N5wDx3AbhRRN4HXgHS\nVDVHRB4DIj3eVuz+s8LjeeVy5f/x6uO5VF8WXHMRXFPDnFnuA/SVHqvL+GWRiPzlu04554myHT7G\n+iPHyVDOL3/+I93bmyBnLQXjM0QkVURSPFb1wjW4V+WBrcB9Lv3yU/j4du6ObIBrcZ3+8fQjMFBE\nkt1ZGohIxxN85lPAAx7LW4AuIlLP/Zv/sFPI2c89mm8IcJU756lkA9fsc8k1/N6OuEbbNEHOioLx\nJQ2Bt0QkU0RW4jpl8ph7noDXcR20ZuIaCv1krcM1b/MaoBnwqueL7tM4NwHvub/7B6DT8T5QVTOA\nZR7LObhGqlzt/vPnU8i5BJiA64C+Cfj0VLK5fQWcU8PvHQp8cdJpTcCxUVJNwBPX9Jwz3J3UQUVE\nPgV+r6pZx9mmHjAf14xeZXUWzvgkaykYE9gextXhfDztgIetIBiwloIxxhgP1lIwxhhTxYqCMcaY\nKlYUjDHGVLGiYIwxpooVBWOMMVX+HwMypbVyYD+xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hamming window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HcW5/z+vepcsS26S3LuNO2C66R1DSAIJLSGB8AOS\nkNzcEAIJaeTmphBCQggEcsGUUEIwhGZMMwZ3Y2Nb7t2SbFm2JEu2ZdX5/bG7R3tWZ6VjtaPyfp5H\nj87Ozu6+uzsz35l3ZmfEGIOiKIqitIaoSBugKIqidF9URBRFUZRWoyKiKIqitBoVEUVRFKXVqIgo\niqIorUZFRFEURWk1KiKK0smIyBgRWS0ilSLynTCPMSIysqNtizQiMlhEDotIdARteFtEbmrlsT8T\nkWfb26auTEykDejpiMhOoD9Q7woebYwpioxFShfgh8CHxpgpoXaKyEfAs8aYJ9r7wiIyFNgBxBpj\n6lzhTwEFxpj72vuax4MxZjeQEmEbLo7k9bsb2hLpHC43xqS4/poIiIj0KkHvbffrYQiQH2kjFKU9\nUBGJECIy1HZRfENEdgMf2OEzRWSRiJSLyOciMst1zDARWWC7QeaLyF+cprOIzBKRAs81dorIefbv\nKBH5kYhsE5GDIvKSiGR6bLlJRHaLyAERudd1nmgR+bF9bKWIrBSRPBF5RET+4Lnm6yLyPZ97NiJy\nh4hsAbbYYWPteykVkU0i8mVX/EtEZL19zUIR+YH7Xm2bDtj3eZ3ruHQRmSMiJSKyS0TuE5Eoe9/X\nROQTEfm9iJSJyA4Rudh17NdEZLt9zR2e894sIhvs4+aJyJBm3u8VIpJvv8ePRGScHf4BcDbwF9tt\nM9pz3APAGa79f3HtPk9EttjnfEREpDW2hYOIvCwi+0TkkIh8LCITXPueEpG/2m6fwyLyqYgMEJGH\n7OtvFJGprvg7ReS/RWSNiBwRkSdFpL99fKWIvCcifey4TlqMsbc/EpFf2teoFJF3RSTLde4b7Xd8\nUER+4k7znvsZZj83Jx38XUT2u/Y/IyJ3ua75Tft3S+llmLjyJJDlua5fOvi6iPzHFW+LiLzs2t4j\nIiFbql0OY4z+deAfsBM4L0T4UMAAc4BkIBHIAQ4Cl2AJ/Pn2drZ9zGLgQSAeOBOoxHJ7AMzCckeE\nvDbwXWAJkGsf/xjwT48tf7ftmAxUA+Ps/f8NrAXGAGLv7wucBBQBUXa8LOAo0N/nWRhgPpBpXycZ\n2AN8Hcu1OhU4AIy34+8FzrB/9wGmue61zvUszgKOAGPs/XOA14BU+942A9+w930NqAVuAaKB/2ff\ng9j2VLjOMxCYYP+eDWwFxtm23gcs8rnP0bY95wOxWO6rrUCcvf8j4JvNpJkm++1n9waQAQwGSoCL\nWmGb865jPOFPAb9ybd9sP7944CFgtSfuAWA6kIBVAdoB3Gg/019huevc6XAJlls3B9gPfGa/b+f4\n+0PZZz+LbfYzTbS3f2PvGw8cBk4H4oDf2++2SX6z4+8Gptu/NwHbaUzju4Gp3uffXHoJI0/6pgNg\nOFCOlc8HAbuw86+9rww7X3X1v4gb0NP/7Ax02E4w5cBcO9zJLMNdce8GnvEcPw+4CavgqAOSXfue\nJ3wR2QCc69o30M4cMS5bcl37lwHX2r83AbN97m8DcL79+07grWaehQHOcW1fAyz0xHmMxgJlN/At\nIM0TZ1aIZ/ES8BM7o9dgC5G971vAR/bvrwFbXfuSbLsGYIlIOXA1kOi55tvYQmRvR2EJ5pAQ9/kT\n4CVP3EJglr39Ea0TkdM99/ujVtjmvOtyz18NLhHxHJNhH5Nubz8F/N21/9vABtf2CUC5Jx1e59p+\nBXjUc7w3X7hF5D5X3NuBd+zfP8WuCLneZQ3+IvIM8H37XW8CfgvcBgyzn0GU65puEfFLLy3lyZbS\nwR5gGnAt8DhWnhuLVal6/XjKmUj+qTurc7jSGJNh/13p2bfH9XsI8CW76VsuIuVYtayBWLWVMmPM\nEVf8XcdhwxDgVdd5N2B19vd3xdnn+n2Uxg7OPKzaYCieBq63f1+PlVGbw3u/J3vu9zqsDApWYX4J\nsMt2GZziOjbUsxiE1RqKJfjZ7MKqATsE7tMYc9T+mWKf7xqsgmWviLwpImNdtv7JZWcpVuvFfV4H\np2bpXKPBvu9QcY8Hv/dzPLY5ZLnSZAZW4QcE3Je/Ect9WYElAhDsqil2/a4Kse3tHD/e+G787nsQ\nrvRkv8uDzZxnAVYF5EzgYyyxOMv+W2i/p2av704vtJwnW0oHbnsWeOxZ0Mx9dClURCKPexrlPVgt\nkQzXX7Ix5jdYrp0+IpLsij/Y9fsIVi0JsAoCINtz7os9504wxhSGYeMeYITPvmeB2SIyGcudMreF\nc3nvd4HHphRjzP8DMMYsN8bMBvrZ533JdWyoZ1GE5WapxSpY3fvCuU+MMfOMMedjCfdGLBefY+u3\nPLYmGmMWhThNkfv6dt9FXrg2EPyMwuF4bAuHr2K5yM4D0rFaB2AJU1diL5Z7FgARScRys/qxAKu/\naZb9+xPgNFpfaLeUJ1tKB46InGH/XoCKiNJGngUuF5EL7dpgglidyLnGmF3ACuDnIhInIqcDl7uO\n3QwkiMilIhKL5RePd+3/G/CA0+EqItkiMjtMu54Afikio8Rikoj0BTDGFADLsVogrxhjqo7jft8A\nRovIDSISa/+dKCLj7Hu8TkTSjTG1WH0V3pqi8yzOAC4DXjbG1GOJzQMikmrf7/exnm2z2J29s+1C\noRrLDelc82/APWJ3MIvVef8ln1O9BFwqIufa7+K/7POFW6gXY/nFw+V4bAuHVCx7D2JVTH7dhnN1\nJP/Cyi+nikgc8DOaETpjzBasVs/1WJWXCqxnfTWtKLTDyJMtpYMFWIMsEu18tBC4CEsIVx2vPZFC\nRaQLYYzZg1UD/DFWx+kerE5t5z19FTgZy11xP1YHsnPsISx/8RNYNZ0jgHu01p+A14F3RaQSq6Pz\n5DBNexArQ7yLVZg/idXJ6fA0lh+8JVdWEMaYSuACLJ9wEZbb4H9pFL8bgJ22S+U2LFeXwz6szsci\n4DngNmPMRnvft7HufztWbfN54B9hmBSFJThFWM/4LKyOVIwxr9q2vWDbsw4I+T2BMWYTVkH1Z6yW\n0eVYw7xrwrABrHf1RXs00MMtRT4e28JkDpYbphBYj5VWuhzGmHysd/0CVqvgMFanfXUzhy0ADtp5\nzdkWrI7+1tBcnmw2HRhjNts2L7S3K7DS7Kd2Zahb4IwwULohIvIzYKQx5vqW4nawHWdi1fSHmE5I\nUGINe37WGJPbUlyl9yAiKVgd5KOMMTsibU9vQVsiSpuwm+nfBZ7oDAFRFDcicrmIJNkuyN9jDUXf\nGVmrehcqIkqrsT+cKsfqhH4owuYovZPZWO7HImAU1rB0rcx0IurOUhRFUVqNtkQURVGUVtPjJ8HL\nysoyQ4cOjbQZiqIo3YqVK1ceMMZktxSvx4vI0KFDWbFiRaTNUBRF6VaISFgzYqg7S1EURWk1KiKK\noihKq1ERURRFUVqNioiiKIrSalREFEVRlFbT7URERC4SaxnVrSLyo0jboyiK0pvpViJir5HxCNYM\npeOBr4jI+MhapSiK0nvpbt+JnIS1VOV2ABF5AWvunPXtfaFPthzgm3OWMyUvg+lD+hAtXW09HkVR\nlKbsKati4ZYSvnXmCG4583iWpWkd3U1EcgheXrWAEGtiiMitwK0AgwcP9u4Oi2eX7OJYbQNLtpey\nZHupfd5WnUpRFKXD8U6D+MBbG1REWosx5nGshe+ZMWNGq2aYfPT6aVRU1fHBpmL+OH8LheVV/HL2\nRL56cutESVEUpaPYuv8wN/1jGSWHq/nm6cP48ow8BmcmtXxgO9DdRKQQa41ih1zCX7f6uBAR0pNi\nuWpqLueN68+3/7mKH7+6luT4aGZPyemISyqKohw3xRXHuPHJpdTUG1657VROyE3v1Ot3q451rLW8\nR4nIMHtN5WuxlnztUFITYvnb9dM5aWgmP3plLVv3H+7oSyqKorRIfYPhjuc+o7yqlqe+fmKnCwh0\nMxExxtQBdwLzgA3AS/Y6yx1OQmw0f/7qVBJio/ivl1bT0KDrsCiKElmeWrSTFbvK+OXsiUzM6XwB\ngW4mIgDGmLeMMaONMSOMMQ905rX7pyXw08vH83nBIV75rKAzL60oihLEwcPVPPjuJs4Z248vTIuc\ni73biUikmT05hyl5GTw4fzM1dQ2RNkdRlF7K3xZso6q2nh9fMhaJ4NBRFZHjJCpK+O55o9h76Biv\nf14UaXMURemFlB6pYc7iXVw5NYeR/VIjaouKSCuYNTqbsQNSeWLhdnSNekVROpt/rdxDdV0Dt501\nItKmqIi0BhHhuplD2LivkvyiikiboyhKL6KhwfDc0t2cNDST0f0j2woBFZFWc/mkgcRFR2kHu6Io\nncqqPWXsOniUa0/KazlyJ6Ai0koykuI4b3w//vN5kQ73VRSl03hn3T5io4XzxvePtCmAikibuGD8\nAA4crmFN4aFIm6IoSi/AGMPb6/Zx2sgs0hJiI20OoCLSJs4anU2UwAcb90faFEVRegFb9h+moKyK\nCycMiLQpAVRE2kCf5DimDu7Dgs0lkTZFUZRewJLtBwE4fWRWhC1pREWkjZw8LJP8wkNU1dRH2hRF\nUXo4S7YfJCcjkdw+iZE2JYCKSBuZMbQPdQ2G1XvKI22Koig9GGMMy3aUcvKwzIh+oe5FRaSNTB+c\nCcDKXaURtkRRlJ5MQVkVBw7XMG1In0ibEoSKSBtJT4plcGYSG/ZVRtoURVF6MBv2Wh82jx+UFmFL\nglERaQdG909ls4qIoigdyIa9lYjA2AGR/0rdjYpIOzBmQAo7Dhyhuk471xVF6RjW7z3E0L7JJMV1\nrQVpVUTagdH9U6lrMGwvORJpUxRF6aFsLznCyH4pkTajCSoi7cCIbOvF7jqoIqIoSvtjjKGgrIq8\nPkmRNqUJKiLtQE6GNWa7sPxYhC1RFKUnUnqkhqraevIyu873IQ4qIu1ARlIsSXHRFJZVRdoURVF6\nIAV22ZKrLZGeiYgwKCORwvKjx31sTV0DD7+/hV+/tYFDR2uD9m3df5gFm0uo11mCFaXbsGlfJQu3\nlAQtWGeM4YVlu7lv7lp2HDh+t7cjIo7XoyvRtbr5uzH9UuM5eLjGd/+mfZV878XVGOCha6Ywxh6m\n98s31vPMkl0A5Bcd4tlvnIyIsGjrAW76v2XU1huunDKIh66dCkBtfQO/+M96lu8s5dvnjOLSSQMD\n19hfcYxlO0s5Y1Q26YldY4ZPRenOGGP4eMsB0hJimDq48SO/grKj3P3KGmrrDf979SSGZSUD8G7+\nPr717EqMgRtmDuGXV04E4MXle/jRv9cC8MGG/bz3X2eRFBdDdV09d/9rDUt3lHLH2SO5fuaQkHaU\nHqkGIDs1viNvt1VoS6Sd6JMcR+mR0CJSXVfP/3tuJcUVxyiuOMZ3X1hFQ4PhwOFqnl+2m+tnDuZn\nl4/n060HWb6zDGMMv3hjPTkZiXzt1KHMXV3E8p3WF/FPfrKDZ5bsovxoLXe9uCpQqymuOMbFf1rI\nnc+v4qpHPqXyWGOr5u8fb+fM337I/76zMah2VHqkhqcX7WRdiKnsj9XW6zopSrfmWG19k+Wry4/W\nMGfxzibTFC3cUsL5Dy7gljkrgvLOA29u4KZ/LOOqvy7ilZXWAnTGGO56YTWrdpezoaiCO5//DGMM\n9Q2GB97awJj+qXx5Ri7PLNnF5uJKGhoMj3y0lWmDM3jpW6dQdOgYLyzbA8ATC3cwd3URKfEx3Dd3\nHZ/tLgt5L+W2l6IrVg67nIiIyM9EpFBEVtt/l7j23SMiW0Vkk4hcGEk7vfRNjuPgkRo27qtgT2mw\nW+vNNXvZXnKE335xEvdeMo6N+ypZvrOUt9bupb7BcMPMoXxpRh4JsVG8saaI9Xsr2LivklvOHM6P\nLh5LSnwML6/YQ0OD4alPd3LGqCxe//ZpCMKcxTsBePj9LVRW1/HTy8az/cARnl5khS/edpAH3tpA\ngzE8+tE2XltdBFgZ7MuPLeb+1/O56q+fBmWqpz7dwcT753HhQx+zv6JxsEBB2VG+/+JqfvP2Ro7V\nNn4TY4zho037WbT1QJPncqy2nqM1de30lJWeTn2D4VBVbZPw3QePMndVYZN9b6/dy23PrGT++uJA\nmDGG++auZexP3uHGfywLpNWaugaufXwJP30tny8+uihQMSs9UsMdz33G4eo6Pti4n1+/tRGAPaVH\nefLTHXxhag7Th/Thf+x0v66wghW7yvjhhWO4/4oJ5BdVsGR7KYu3HWTXwaPcec5IfnTxOGKjhVdW\nFrBqTxl7Squ4fuYQThqWyfiBabyxpoj6BsMzi3dx1uhs5t5xGtmp8Tz03pag+ztWW8/KXaWUV9WS\nFBdNXEyXK7K7nojY/NEYM8X+ewtARMYD1wITgIuAv4pIdCSNdNMnKY5DVbVc+vAnXPKnhZRUVgf2\nvbyigGFZyZwzth8XThxAXHQU720oZsn2gwzOTGLMgFSS42M4aVhflu8sY/E2a7rn88f1JyE2mrNG\nZ/Pp1oOsKTzEvopjXD0tl36pCZw9Npt31u2jrr6B1z8v4tITBnLz6cM4dURf/r2qEID/+3QHWSnx\nvPf9sxg7IJW/L9xu2bSygK37D/PbL06iT1Icv5tnZZydB47wizfWMzkvgz1lR/nFG+sBK3N/8+kV\nvPZ5EX9bsI3fvrMpcH9/nL+Zr/3fcr76xFKesM8P8NnuMk7+9ftM/cV83lm3LxBecayWO57/jKv+\n+imrXDUvYwwvLt/N/a+tY/fBYCHeUlzJC8t2U340uLVXVVPPyl1lIT/0LDtS06QmqoRHxbFaausb\nmoRv2ldJYXnwABJjDPPy9zF/fXHQ866tb+CRD7fyP28H9/cdrq7jO/9cxexHPmXlrsb3v7/yGBf8\ncQFTfvEuD87fHAjfXnKYSx9eyF0vrubLf1scEIWVu8q4/fnPeG9DMbc9u5L8IqtFPX99Mc8u2c3p\nI7NYuOUAT36yA4C5qwrZuK+S33zhBPqlxvM7Ow2/trqQimN1PHnTiVxzYh6vrCyg8lgtL68sQIAf\nXDiGO88eyYHD1SzedpA31hQRFx3FVdNyueQEKz+/v6GYhVtKiI0Wzhnbj0x7mYhF2w6ydIclVueM\n7QfA2WOz+bzgEKv3lLOv4hhXTB5EcnwM156YxydbSih2Vdy+9+Jqrn50MU9+sqNLtkKg64pIKGYD\nLxhjqo0xO4CtwEkRtilAcrylZ/UNhsrqusDa6zV1DazcXca5Y/shIqTExzBuUBrrCitYU3CIE3LT\nA+eYkpvOpn0VLN5mTffcLy0BgKmDMygsr2JevlUQnzzcmvTxlOF92XvoGO9t2E/lsTrOthPphRMG\nsL3kCNtKDrNwywEuOWEACbHRXDU1h/yiCvYequI/nxcxdkAqX5qey/Uzh/Dp1oPsrzjGP5fvJjpK\nePS6adx0ylDeWruXkspqPti4n437KvnjNVO4ZkYezy7dRemRGvZXHOPRBdu49ISBzBqTzR/nb+ZQ\nVS0NDYYf/msNKfExDM9O4e5X1nCk2mqRPPDGBt5Zt4+dB45w6zMrAy2Vl1cWcPcra3l68S6uf3Jp\nYHr9DXsruOzPn/Cjf6/ly481FiKHqmq59M8LufrRRUGFS0OD4dv/XMXUX87nuieWBgnMEwu3c8L9\n87hlzoqg8A837ueCPy7grhdWBU3rv2FvBTc8uZS7/7UmqEVVXHGM7724mh+/ujbI/VF5rJafvZ7P\nfXPXUuZyb9bUNfDg/M3c8++1QYVEQ4PhsQXb+O+XP2enq8PVGMPTi3Zy5/OfsaYg2PXy/NLd3PzU\ncj7cFLwY2gvLdvPFRxfx/NLdTcLP+cNH/OqN9UEuymeX7OKEn83jpn8s43B14709+ckOpvz8XWb9\n7qOgb58e+XArFz70MbN+92HQGjoPzt/Mt55ZyS1zVvDnD7YGwn/z9kZ+N28Tjy3Yzp3//CwgML9+\nawNvrCmioPQot85ZEUgXv3l7I3vKqjh9ZBYPv78l4GZ9cP5mEPjpZePZVFzJi8stV9DfP95O3+Q4\nFt59Nslx0fxtgVWBeXH5HgamJ/DU10/k9JFZ/HPZbowxvPZ5IUP7JnHNiXlcN3MIy3aWsvdQFW+u\n2cu4gWmMH5TG1dNyqKlvYMHmEj7deoDJeRkMykjklBF9SYiN4uMtJazYVcYJuemkJ8aSFBfD1MEZ\nrNxdxqo95ZyQkx74ovykoZnkFx1ixc4yhmUlk5EUB8Ck3AzqGwzP2X2hJw2z8vPlkwfRYOD9DdZ7\nLSg7ytuuypeKyPHxbRFZIyL/EBGnNysH2OOKU2CHNUFEbhWRFSKyoqSkcxaMSoxtbBRNyk0PNK/X\n762gpq4haObN8QPTWLm7jIKyKsa55sEZMyDNSkQb9wfNjzMxxxKaf39WQFZKPAMC4mKd03FpzbCv\nMSUvA4CXlu+hqraeU0dYC9icPsr6/9GmEj7bVcasMZawOTWkT7YeYMGmEmYMyaRfWgKXTbIS9Sdb\nS3g3fx/pibFcMnEA188cQk1dAx9t2s+ba/dSW2/4/gWjueu80Rypqefd/H0s21nK1v2H+cGFo/nV\nlRM5VFXLG2uKOHi4mn+vKuCGmUN4/MYZlFRW89pqa536P3+whSl5GTz7jZPZXXo0IMR/eHczyfEx\n/OrKiWwuPsxLK6xk8NiCbZYQnTmczwsO8ZxdeL7+eRH/+byI88b1Z9G2g/zjE+v5rCko51dvbiAv\nM4n564t59KNtgO3OeP4zKqrqmLu6iIfet2rBNXUNfPPpFazaXc5LK/fw67c2AFYBf+fzn/Gfz4v4\n57Ld3Dd3XeBd/fjVdTy1aCfPLd3NXS+uDoT//t1NPPz+Fl5Yvptb5qwIFOZPfrKD/3l7Iy+vLAhy\nvfz7s0Lufz2ft9bu5aZ/LOPgYatl+/6GYn786lo+2XqAbz2zkm0lhwFYtqOUH/17LZuKK/nxq2tZ\ntM1yLa4rPMQ9r66lqqaeJz7ZwYv2s9tSXMlPX1tHbp8kPt5Swp/es+5518Ej/PqtDcwYmknFsVp+\n/h+rJVpYXsVD723mnLH9GNI3mZ/MXRfo13v0o21cPnkQF00YwCMfbuXg4WoOHa1lzuKdXDMjj59c\nNp6FWw7w2e5yKo7V8q+VBVx70mAev3EGB4/UMHd1IZXHanlzzV6+PCOXR66bRmJsNC8u30PlsVrm\nry/mC1NzuPn0YUwYlMZrdvwPNu3nskmDGJieyKWTBvLBhmLKj9bw8ZYSLps0kJjoKC6bNJCCsirW\nFVawdHspF04cEJTmF245wJqCQ5xp541JuRnExUSxYmcZawsOceJQq4BPiI1m/MA01hdVsK7wEJNz\nM1z5NpUtxYfZXnI46IvyUf1TaDDWyqfu8PEDrQkU31y7l9SEmMDaIKP6pdAvNZ7F9sJTS7dbLRhH\nZFREXIjIeyKyLsTfbOBRYDgwBdgL/OF4z2+MedwYM8MYMyM7O7udrQ9Ngi0iqQkxnDK8L2sKyjlW\nW89ndnN9mmtkx4jsZGrqLFfBgPTGIXvuD4kGZiQEfg/pa40NL66oZmjfpMBaAsOzrREhi7YdJDE2\nmoHp1jFjBqQSHSW8/nlRYBtgVL9UYqKEt9fto67BMCXPEqfxA9NIiI1ixa4yNu6rDLR0JgxKIy0h\nxnKxbT/IqSP6EhMdxYRBaWQmx/Hp1oN8uvUAQ/smMSI7hcm56WSnxrNwywEWbC4hJko4f/wApg3O\nYGB6Ah9tKuHjLSXU1huunpbLjCF9GNI3iffWF5NfVMGe0ipumDmE00b2ZWS/FN5Zt49DVbV8sLHY\nqj2ePJgJg9KYu6oQYwz/WlnAOWP78+NLxlmdlnYN9fmluxmenczfb5zOqSP68tzSXRhjmLN4F6nx\nMbx02ymcN64/zyzeRX2D4dklu6iqrefZb57EFZMH8fyS3VTV1PPm2iIKy6v481em8pWTBvPS8gLK\nj9awbEcpy3eWcf/l47ntrBG8/nkRBWVH2VN6lDfWFHH7rBHcc/FYFmwuYW3BISqO1fLM4l18YWoO\nv//iZNYUHGLBlhJq6xt4fOF2zhiVxZybT2J36VFe/7wIYwyPfbyNCYPSePM7Z1B2tDbQunj84+3k\nZSay4L9nIRBw1Tz5yXYyk+P45O5z6J8Wz+MfW7XypxftJDE2mnnfO5PJuemB+M8t3U1sdBTPffNk\nLp80iBeW7+FYbT0vryjAGMOfvzKVm08bxoeb9lNUXsVrqwuprTf8/IoJfOfcUewuPcrSHVa/Xl2D\n4c6zR/Ltc0dSXdfAu+uLeSffqlxcP3MIX56RS1x0FG+v3cv7G4qpqWvg6mm5TBucwbCsZN7NL2bh\nlgNU1zUwe0oOaQmxnDk6iw827mfp9lKq6xq4aKI1CvHccf1ZtaecRdsOUlPXEBCD00dmc6SmnldX\nWXaePKwvYK33A/Dyyj3UNRim2hWsUf1SiI+JYu6qQmrqGwIVtdjoKMYNSGVe/j5q6hsY07+xMjey\nXwpLd1j2DMtq/F5jVP9UDlfXceBwDcOyGsViSN/kwO9B6Y35eUB6AlEC1XUN5GQkBvKziHDKiL4s\n2X4QYwyr9pSRGh/DrDFWGRbVhdYQcRMRETHGnGeMmRji7zVjTLExpt4Y0wD8nUaXVSGQ5zpNrh3W\nJUiMs0QkMTaak4ZlUltvLVT12e4yBqUnMMCTiBz6pzUO2RvkGgM+0CUu/VMTiIkSO37jsakJsfRN\ntprIuX0aE2NCbDQD0hLYe+gYcdFR5Nk1nbiYKIb0TeJj2xXhTNcSFSWMyE7h3Xyr9TTazjhRUcLo\n/qmsLThEQVlVoAYVFSVMGJTG5uJK8osqAi0iEWHa4Azyiw6xenc5E3LSSYmPsTLH8L58truMZTtK\nSU+MZcKgNESE00ZmsWxHKZ/aNeczRmchIswanc2yHaV8vLmEBgNn262mc8f2Y/WeclbsKmN/ZTUX\nTOgPwAUTBrCpuJKt+ytZubuMSyYORES41K6Jbis5zEeb9nPOuH6kxMdwxZRBHDxSw5qCct7fUMy0\nwX0Y2S/fi8YPAAAgAElEQVSVL83IpbK6jiU7DvJufjED0xOYNSaba0/Mo6a+gQ827mdefjHxMVF8\ncXoeXz1pMMbAO+v28ebavRgD180cwjUnDiY6SpiXv4/3NxRTVVvPDacM4Yopg0hNiOHd/H0s2X6Q\nkspqrp85hDNGZTE4M4l56/axcV8lm4sPc93JQxg3MI0Th/Zh3vp97K84xtIdpVwzI4+B6YmcP74/\n89cXc7TG6hC+amoO6YmxXDklh0+3HuBwdR3z8vdxyQkDSUuI5QvTctm6/zC7Dh5h/vpizhqdTWZy\nHFdOHUTlsTo+21XG+xv3c/KwvvRPS+CySQMxBj7ZcoCPNpVwQk46eZlJnDu2H9FRwqJtB/h4cwnD\nspIZMyCV8QPTGJiewKdbD7B420H6pcYzMSeN1IRYpg/pw7KdpazcZRWMU/MyEBFmDu/L6j3lfL6n\nnLjoqEANf/qQPhSWV/HxlhJErNY9wKScdIyx+hkBTrAL/wn29OiOq8txEw/LSiExNjowsmqcnYZj\noqMY3T+VRXb/46j+jYX/iH4p7D10LJCvAuHZjXFyXOHuOIMzG8XFnbfdlcXY6KhAPvZ+9zF9SB9K\nKqspLK9i1e5yJudlkJVinedobdec4LXLubNEZKBr8yrA8RW8DlwrIvEiMgwYBSzrbPv8SIixRKTB\nmEChunpPOat2lzPVs4jMgDS3iDT+djdXB7qEJipKAv5U7zhxJ4HlZQZ/yTrIbskMykggJrrxNTvj\n2aMEBvdtPGZEdgoHbJeJO7OM6p/CWts3PcLVJB/Zzwrfe+gYI7Iba1yj+qWy8+BRNu6rYFRQ0z6V\n4opqVu0uZ0z/VKJsURw3MI3K6joWbCphYHoC/VItu0/ITaemvoG31u4lylWITB3chwZDoNXhuBuc\n/88t3U19gwm0pmYOt2qkc1cVceBwDaeOsLad/x9vPsCawkOcZm9PH9KHmChhxc5Slmw/yGkjLVGb\nMCid1IQYVuyyWmUnDs0kMS6avMwk8jITWbGzjOU7ShmenUxORiLpibFMyctg0bYDLNtRRmpCDJNz\nM4iNjuLUEX2t4dw7SokSAtc4c3QWi7cfZJndEXuG7WI5Y1Q26woreH+j5Ss/fZRVMz1zVDYlldW8\n8plV+z5tpHUPp43Morbe+rit4lgdpwx3wq3/b63dR2F5VcBNMn1IJiKWO3NzcWWg9j4iO4WMpFiW\n7Swlv/AQUwdbBXxyfAzjBqayclcZawsPMdl+NyLCCTnprC+qYG3hISblpgcqNhNz0ti4r5LVe8qZ\nkJMWeP8TBqVxqKqWd9cXM3ZgamD00YRBjgu3kGFZySTHW/0Mzloa720opn9aPH3sStTgzCQSY6PZ\nuK+SpLho+tn5JDpKGNI3iSN2P5e7cuYu/PunNuY3d97LdeWrfi5RcH85npXcGJ5p2wONedN7TrAG\n4kCwxwFgap717BdtO8jGfZVMHZxBqn3v1SoiYfNbEVkrImuAs4HvARhj8oGXgPXAO8Adxpgu81Sd\nlkh9gyEzOY4hfZOYl29lVqcJ7dDHldD6uUQh1lXYu+MAxNuZyy06VjxLeLJSguM78TI953ESdmZy\nHPExjf047tZRblAtqzGzDHU1z4e7hMb9e2S/FOobDGVHa4PFyBaUjfsqGdEvuUn44u0HA+455zwA\n7+TvI7dPUsBd6NQY5+XvIy46KlDzC4TbHZFOa2pIZpLlSlm3Nyg8KyWerJQ43l2/D2NgrF1DTYqL\nYVT/VD7ZcoCyo7WB1ld0lDA5N4PP95Szbf/hQM0XrIy/pqCctYWHAoUAWAXkluLDrCkoZ0pehqvg\nTGd36VGW7SxldP9UUuxCYuKgdI7W1PPOun1kpcQF3oNzrbmrComNlsC2U6C+Zo/Ec2rxTm37P2us\ne57kqpXHRUfx2morvlOLT0+MZVjfZOauKqS+wQQKcKfF+d6GYo7U1DNxUOMgkHED0lixq4ziiuqg\nRZLGD0pj+4EjbCs5EnCjAowdkEZNXQPrCiuC+gec97HjwJGgWryTFg5X1wXV1gekJRAb3bRVHhUl\ngYK6X2p80PKxTnhmclzQEFknzcdGCxlJ7gpc8PUcMl1i4RaIrNTGPObkR+u8jddynx8stzc0ionD\n2IGpxMdE8ewSy9U6dXAGKXZcxwXe1ehyImKMucEYc4IxZpIx5gpjzF7XvgeMMSOMMWOMMW9H0k4v\nTiHnTFEyOTeDVbutUTXe5SzTEhoTlCM+Tc4XExzu5Ik+nsTY107YKfHeRGptuxM+QF9bbLyddH1d\nYpPkssktTu7Mku0KH5geumUVJEau/h63r3iIqzXktJIAhtu+ZWMIEpdB6YkkxkZTcayOoVlJRNsF\nc1pCLP3T4ik6dIyU+JiAOMdERzE8O5lt9jT9XsHLL7JWixsRJIrJfF7QtPU1PDuZ/KIKauobgsJH\nZKdQdOgY+yutPiv3+Sur68gvqgi6T6cQXbK9NEiYR7gEdUjf5EBB6MRfuqOUnIzEQOHkPJcVu8pI\niY8JVBiyUuJIS4jhc/vbH6eVGh0lDMtKZqO9gNow13MdmpVMke3Ccds6tG9y4EM39/scmtXYr+d2\nw7qFwF0A54RR63enneyUeOxXG2idgiUWzrY7HBpFoV+aT7inFe8cn2y7XB3cFS8nfUFwHnFGY0Kw\nEGR6RMHBPfAGIN7eTvCEx0ZHcUJOOmvs9Dclrw9xjhh1zS6Rrici3ZWEWOtROgMoJ7taHxM8y1k6\nNU+gMYH4nM/BSYTej43SEq1zObWVxmtY8TOTg8XCEZWYqODz9HXVrNwZqq9LhNyZxV0TCw5v/O3O\ndO7z+IW7C4XEuOhAM95dM4yKkoBbYZDHn+zEc/cPQaPfOSMpNkg83QWeu+B0T7c9zFXIu+O7BW9w\n39Bi6Y7jPqdbFN0F8/Cs0OG5fZICtW93yzApLiZQULvvWUQC185OjQ8qqJz7jJLgZx/k2nEVwu5n\n7HbnuAt/93tzt2jdhblbUNzncV/LXcjHREcF0pg7vnVM6PBAfI9Y9PFxBTtpwZsH/UZBucPdrfh4\nV55MTQh9bLxHLOKiG/svvTijK3MyEslMjiPGjqsd6z0cp3bovOZptv/4hJz0oAQHwYlOfBKGN3E5\nNaJYT4JvsFu4KfHB8Z2WiTe+UzC7a1gAGT4Zx+1Wc5/LLTruOH7h7haUW3Tcouh14WXagtS09WWF\ne2t9joD19bj2nO2+yd5wy9bkuOig5+3X+nKfN8id4fqdk5EUOtxVSLvD3YW3+7m4w6OjJFA7doe7\n7WsSbl/D23Hr3HPflPigNOCcXyT4ebufWbZLLPxcsn6i4C7A3aLjfv9eV61TIevvKfxT7II6OyU4\n3KlQZTUJD50XnPjeCU6TfLwDfl4Ddx72+6LcWyl0KnHeFgo0ei6cPisnblTX1BCdgLG9CIiInaCm\n5GXwqysncordYesmKozUEK6I1NsfcCXHB79Kp7ld7fGjJsUHu9284V5S4kMnEXd4mqsV5K6tuQvF\nmGb6exy8ouDUEL39Ok5B6D2PU7P2+pkD8b3h9vGxnozvvp47k/f16UANamX5tMT8Wm5u0Y2KEqKj\nhPoGE3RO55jiiuomzyLT556dZ+MVYKdl6i2AnfPGRkcFFYruZ+x+z+535W4RuN+/uyUS7CINPYmg\n93062cRbu3cqYcmeNOvE8xbkTt7wfoHv2OQN9xMLP3Fx462cOXjd006+TYxrKjrnj+/PfZeO44rJ\ng4LO2VVbIioi7YQzBNd5zyLiOyNnOHhrLk5CiosJTkgNdmL0Nsmdjrsqz4gOJyPUNMlQoZOCX8Zx\nh7sLHXcm8mZyh/TE0NfyuhGcjOYNdwp2bwHpdF42KVCTQhcu3gI5VLifr9xdoLqFwy2u7kLRHe5+\nRl6Rjo+J4mhNfZNw5316KwuOUHndmY6t3vjOs2nPZ+FOO+7+vmSfNBKq4ISmadix0Wur49rzVqic\ndOEtaxPs470VJ6dg94aHah2447cGb6XQuWaoa8VGR/HNM4YHtruodgRQd1Y74ST09nrfTTvWQ2cc\np3binSHKcaF5546KP86M49u094nvxq9pHxftk0m9wmnfm7dm6GSqRI/wOYWZ9zxOQerNjE58bw0v\nNSG0yLnD3YWiO9xdaLvflbcw9wt3BMYrCo6NXtscMfOKTsDf36QPzQr3jvRxavHecL+WqF+6cF/P\nm1YdvP1xjccGv4foFtJ8jCfcaaF4Z592CvA6b7jTEgkzL4TjQfDDmyad1o+3ryQUThbuqi0RFZF2\nIjrQEmmfF92kw81OSd4M5Te/YKBF5JE1JyF684NfM9ybUQPnCSNDxfoUFrExoY/13puz7RfudE46\nNLonQvu4/cM97ozY0AVnOCPpknwKBb9WmTfcKQC94uKIfrJHOJ078hb2TvrxvoPEQIEafM8Jvr78\n4+sfcBMT7fOefa7lfc+NLtzg8zitfu/7d+J7540MiIhnhyM63nC/vNAWvM+xzk6LfnnEjeNtCCNq\nROiiZnU/GmsLbTvPmaOtD8niPRnNKSz8andeGkfqBIf7jfSI8RORNtyQn9D43UOTGqe96XVzOIWK\n9/xObc9PFLy17IBrzyfci5/Lz22H3z2H07cEjbVlb7hf35cT32uzU8BGewragIjUh66te/HWoAPh\nYbh2fCsRPuLibaH49QNG+VTYGkUk+H06rSNvfauxwzp0Ras9cL4z8uZnR8T9hNZNQxdviWifSDvR\nNzmOCyf0D/JltoY/fGkyJZXVTQojR6T8akneUMeN5c1oUT7i4nfejqiV+bq5vP09dlnQZDCBnau8\nmcopJLzhfoWWX+ES71twtr7O5e8uDN2yaNJCMaHDAy1R7wt13Jyem3PEwtsn5tviaINrx7cSEaY7\nK8rHneVtXTs49+pN87E+HdPRUaHzQlvcVl7mfOMkiiuONbHJaRWHUykcNzCVs0Zn88OLxrSbXe2J\nikg7ERUlPHbDjDafJzs1PuQSmMYuXsJN3oEmsI9YeMXB153VESISZkukIeDC8w4msP57TWtoaP6e\nveEBQfXYEe1T42uLoHoLkZOHZbJ0R2mTe3O2vM/didb0vVn/vX1f0QERCQ4PCKdHXPyEPdyW7/EQ\nrjvLsdErLn55wU9PAy0XT3w/F3R7JnlrZoSm+dlpifhVcNzEx0Tz9M1dZtWLJqg7q5vQWMsKL75T\ni/crIP1qZV46oiUSrjvLuWdvodMokKHFxc/N4XfPTdwZfq29dnQnXDRxQLP7/a51vC4Nr1g4j9jb\nGPCrLHTM+w/PzemIRZP04vOe/RYgc2L5uXD9xKUjOXuMNfuw99uY7oi2RCLE2p9dcFzxW1qgz7vb\nz7XjHoLsxtdN1gF+WL9r+X0D4225+I1W8ROXloTTr4USCfzeGz7hfq4dP6J8noWfcHZES9TPneXt\nH3Des7evJNDi8Bzvny5CHxDlV4nohPd/13mjuWHmkCZTtHRHVEQihN/0CC0RbqHR4NMn0nieYBoL\n2laZ1S54xaLBZ0Sa32gVPxeec7Pe+H4Fqp87qz1pqVLg9x7CfT+NlYXg8Gif2ndntkT8BKtJZcHH\nhsb+Pjzx/dxcocO933YF7OuE9x8dJT1CQEBFpNvwl69O5e8LdwTNmArNuLf8+g18CuDoLjA/j3fo\nb6Am6tsn4hPuMygh/I7V47G6bfhVCnzD2/h6/PsBOq8l6kdTd2boSoFf34efy9cv3LdPrBXC+dsv\nTmrqDuglqIh0E4Znp/A/Xzgh7PgNPrU1vwLYz+XTmfiNwvK2DBp8Rmf533Po8MA9hznIoDNwrtxe\nr6Fpn0ho4ewIt9Xx0rRPxMJXFDzFf2P88IQ5xtedFZ69br48I6/lSD0U7Vjvofj51v3cXH7uj87E\nW5D5d6D7DPH1EUi/cKfFEQmfeEv4uXxacoO1eF6f2nd7DmttLU063AP3GhzufHPhbaE64d7hyoH3\n7yntAq9ZvOGRfxbdCW2J9FD8at+Oi8CbXxNiohmencxd541ucq7ff2ky4wamNgl/6JopIYcvfv20\noVTVNF0vLCcjkcLyKl+bm462ccKD4/n1fTT4tFzqfYTTr3+gM0SkJS3w3tvxFmy+Xk6fkU2RbImc\nPSabDzeVNLHp/ism8JO565rMUHzvpePITInjognBI9yuO3kI5Udr+X+zRgSFT8pLJyslnu950nZX\nn06ku6Ai0kPxKyzGD0xn7IBU7r10fFB4VJTwwX/NCnmuL07PDRl+5dSckOH3Xz4hZPi8750ZUlxe\nvf3UwFrXbs4ak83zS3cHTeoH/kN5/b4f8fOtO2IT7ki1DsG3Az10Z3KTw4/TVKeTOdxpb9qT5755\nMpuLK5uEP3r99MDCV27OGp3Nxz88u0l4RlIc91w8rkl4XEwU3zu/aSUoLSGWFfed1zTcXsL4u+eO\nCvcWlBCoiPRQAi0RT3hiXDTv3HVm5xuENZVHqOk/pg7uE1iX3s3Pr5jA7bNGkO6Zrfe7545iw96K\nwNrhDs4UHUmeazjfzHhbKI0uv+DrRtKz49cP0PrzBYuPX39Ca0TkS9NzmywMBfD5/Rc0mQQRrLXf\nTxuZ1SQ8ITaaAemtnyG3tURHCXPvOK3Tr9vTUBHp5vj5yP06n7sTsdFRQSv5OUzMSeeTu89pEv61\n04ZSXdfA108bGhTuiFBeZvC5/KaS6Qo+8eP9/iNcWhpkMKZ/U7fln66dErR8sMPvvjQ55DX8VgZU\neiYqIj2Uc8f152f/Wc81J/aeUSPxMdF8J4Rr4sShmTx2w3RmjckOCnem+hgVouDsaFr+utoTfrx9\nIj7RnZage414sNyZz3/zZMYMaPosZk8J7bbsyeT2SeSrJw+OtBndAhWRbo5fYZGXmcTO31zaucZ0\nYS6c0HSakczkOJ79xslMykuPgEUWfu8v7D4Rn/M6w2W9I5WG9E3mqa+fGFh61c2pIVxNvZVQLV0l\nNBEZ4isiXxKRfBFpEJEZnn33iMhWEdkkIhe6wqeLyFp738PSFXwOXQCnZumdaloJj9NHZTXpuAf4\n5ZUTefu7Z0TAIou2uiEvnzyIO88eyX9f2HTm11lj+vlOa68ox0ukUtI64AvAY+5AERkPXAtMAAYB\n74nIaGNMPfAocAuwFHgLuAh4uzON7or88KIx9EuL57JJgyJtSo/ihmaWNg7Vb9DeSJNvGkKLyszh\nfXl68S4meGYyiI2O4gchBERpG4/fMD3kLNu9mYiIiDFmA4TMGLOBF4wx1cAOEdkKnCQiO4E0Y8wS\n+7g5wJWoiJAUF8Pts0ZG2oxeQ/7PLwxrIaG2Em5L5OITBrLqJ+cHreeudBwXhHCL9na6mg8kB9jj\n2i6ww3Ls397wkIjIrSKyQkRWlJSUdIihSu8kOT4msE59e+AnFd7wiXZLIyOpqViogCiRpMNaIiLy\nHhBKtu81xrzWUdcFMMY8DjwOMGPGjF46LZrSmXxy99ntOpzae657Lx3PVdNyGdmv6VBbRYkkviIi\nIg+HcXyFMea+UDuMMU0/EW2ZQsA9JjXXDiu0f3vDFaVLEOp7lrbg1aO4mCim5GW06zUUpT1ozp01\nG1jZwt/V7WzP68C1IhIvIsOAUcAyY8xeoEJEZtqjsm4EOrQ1oygdSVsnUlSUrkJz7qw/GmOebu5g\nEWk6V0UYiMhVwJ+BbOBNEVltjLnQGJMvIi8B64E64A57ZBbA7cBTQCJWh3qv71RXuj6zxmSTX1Th\nu987uOQ7547id/M2dcja5orSEYjfR0w9hRkzZpgVK1ZE2gxFCeLvH2/ngbc2sO7nF4acT0xRIo2I\nrDTGzGgpnm91R0QSROQmEblCLO4WkTdE5E8iop+2KoqiKM32icwBLgBuBj4CBgN/ASqx3EqKorQS\n7+y6itJdaa4dPd4YM1FEYoACY8xZdvg7IvJ5J9imKD0enbtH6e401xKpATDG1AFFnn1NVxZSFEVR\neh3NtURy7W9FxPUbe7v3zQ2tKIqiNKE5Eflv12/v8CYd7qQobaCHD4pUehG+ItLSNyKKorQdXdBA\n6e40N+3Jf8B/CIkx5ooOsUhRFEXpNjTnzvq9/f8LWBMpPmtvfwUo7kijFEVRlO5Bc+6sBQAi8gfP\nV4v/ERHtE1GUNqBdIkpPIZwJepJFZLizYU+MmNxxJilK70H0SxGlmxPOpD3fAz4Ske1Yw3uHALd2\nqFWKoihKt6BFETHGvCMio4CxdtBGe/laRVEUpZfT3ASM05zfxphqY8zn9l91qDiKooSPfiei9BSa\na4n8n4jMovnpfZ4EprarRYrSi9DvRJTuTnMiko61emFzybykfc1RFEVRuhPNDfEd2ol2KIqiKN0Q\nXYNTUSKAriei9BRURBRFUZRWoyKiKIqitJoWRcReX/16EfmpvT1YRE7qeNMURVGUrk44LZG/Aqdg\nTbwI1hrrj3SYRYrSC9DvRJSeQjgicrIx5g7gGIAxpgyIa8tFReRLIpIvIg0iMsMVPlREqkRktf33\nN9e+6SKyVkS2isjDIjrCXun+aCpWujvhiEitiERjTzwqItlAQxuvuw5rivmPQ+zbZoyZYv/d5gp/\nFLgFGGX/XdRGGxRFUZQ2Eo6IPAy8CvQTkQeAT4Bft+WixpgNxphN4cYXkYFAmjFmiTHGAHOAK9ti\ng6IoitJ2wpmA8TkRWQmci/X1+pXGmA0daNMwEVkNHALuM8YsBHKAAlecAjssJCJyK/ZMw4MHD+5A\nUxVFUXo3zS2Pm+na3A/8073PGFPa3IlF5D2sFRG93GuMec3nsL3AYGPMQRGZDswVkQnNXScUxpjH\ngccBZsyYoV2YSpdF1xNRujvNtURWYvWDCDAYKLN/ZwC7gWHNndgYc97xGmPPEFxt/14pItuA0UAh\nkOuKmmuHKYqiKBHEt0/EGDPMGDMceA+43BiTZYzpC1wGvNsRxohItt2Jj72a4ihguzFmL1AhIjPt\nUVk3An6tGUVRFKWTCKdjfaYx5i1nwxjzNnBqWy4qIleJSAHW9ydvisg8e9eZwBq7T+RfwG0ut9nt\nwBPAVmAb8HZbbFCUSGL0QxGlhxDO8rhFInIf8Ky9fR1Q1JaLGmNexRrx5Q1/BXjF55gVwMS2XFdR\nuhr6nYjS3QmnJfIVIBur0H8V6Efj1+uKoihKLyacIb6lwHc7wRZF6TWoN0vpKbQoIiLyITRd/MAY\nc06HWKQovQj1ZindnXD6RH7g+p0AXA3UdYw5iqIoSnciHHfWSk/QpyKyrIPsURRFUboR4biz3F+u\nRwHTgfQOs0hRegHaJaL0FMJxZ7m/XK8DdgDf6EijFKW3oCsaKN2dcERknDHmmDtAROI7yB5FURSl\nGxHOdyKLQoQtbm9DFEVRlO5Hc7P4DsCabj1RRKbSOBoxDUjqBNsUpcei34koPYXm3FkXAl/DmjH3\nQVd4JfDjDrRJUXoN2iOidHd8RcQY8zTwtIhcbc9ppSiKoihBNOfOut4Y8ywwVES+791vjHkwxGGK\noihKL6I5d1ay/T+lMwxRlN6E0S9FlB5Cc+6sx+z/P+88cxSld6GfiSjdnXC+WM8GbgGGuuMbY27u\nOLMURVGU7kA4Hxu+BizEWia3vmPNURRFUboT4YhIkjHm7g63RFF6EfqdiNJTCOeL9TdE5JIOt0RR\neiE6d5bS3QlHRL6LJSRVIlIhIpUiUtHRhimKoihdn3DWE0ntDEMURVGU7keLLRERmRbib4SIhNOf\n4nfO34nIRhFZIyKvikiGa989IrJVRDaJyIWu8Okistbe97CoH0DpxmiXiNJTCMed9VdgCfB3+28J\n8DKwSUQuaOV15wMTjTGTgM3APQAiMh64FpgAXAT8VUSi7WMexRpqPMr+u6iV11YURVHaiXBEpAiY\naoyZboyZDkwBtgPnA79tzUWNMe8aY5x12pdgTfIIMBt4wRhTbYzZAWwFThKRgUCaMWaJMcYAc4Ar\nW3NtRVEUpf0IR0RGG2PynQ1jzHpgrDFmezvZcDPwtv07B9jj2ldgh+XYv73hIRGRW0VkhYisKCkp\naSczFUVRFC/h9Gvki8ijwAv29jXAent1w1q/g0TkPWBAiF33GmNes+Pci7Xk7nPHZXULGGMeBx4H\nmDFjhrqfla6Hfiii9BDCEZGvAbcDd9nbnwI/wBKQs/0OMsac19xJReRrwGXAubaLCqAQyHNFy7XD\nCml0ebnDFaXbokNDlJ5AOEN8q4A/2H9eDrfmoiJyEfBD4CxjzFHXrteB50XkQWAQVgf6MmNMvf2N\nykxgKXAj8OfWXFtRFEVpP8KZgHEU8D/AeCDBCTfGDG/Ddf8CxAPz7ZG6S4wxtxlj8kXkJWA9lpvr\nDmOMM1/X7cBTQCJWH8rbTc6qKIqidCrhuLP+D7gf+COW++rrhNch74sxZmQz+x4AHggRvgKY2Jbr\nKkpXQXtElJ5COGKQaIx5HxBjzC5jzM+ASzvWLEXp+WiXiNITCKclUi0iUcAWEbkTq0NbVztUFEVR\nwp6AMQn4DjAduAG4qSONUhRFUboH4YzOWm7/PIzVH6IoShvRz0SUnoKviIjI680daIy5ov3NUZTe\ng84hqvQEmmuJnII1Bck/sb7N0BSvKIqiBNGciAzAmmTxK8BXgTeBf7rn0VIURVF6N74d68aYemPM\nO8aYm4CZWDPqfmSP0FIUpQ0Y/VJE6SE027FuT7J4KVZrZCjwMPBqx5ulKD0f9Q8rPYHmOtbnYH0h\n/hbwc2PMuk6zSlEURekWNNcSuR44gvWdyHdcI0kEMMaYtA62TVEUReni+IqIMaZN82MpiuKPfiei\n9BRUKBQlQuhnIkpPQEVEURRFaTUqIoqiKEqrURFRlAigXSJKT0FFRFEihOiXIkoPQEVEURRFaTUq\nIoqiKEqrURFRlAig34koPQUVEUWJFNolovQAVEQURVGUVhMRERGR34nIRhFZIyKvikiGHT5URKpE\nZLX99zfXMdNFZK2IbBWRh0WXhVMURYk4kWqJzAcmGmMmAZuBe1z7thljpth/t7nCHwVuAUbZfxd1\nmjMOQFAAAA81SURBVLWK0s7oeiJKTyEiImKMedcYU2dvLgFym4svIgOBNGPMEmOMAeYAV3awmYrS\noWhTWukJdIU+kZuBt13bw2xX1gIROcMOywEKXHEK7LCQiMitIrJCRFaUlJS0v8WKoigK0MLKhm1B\nRN7DWqfdy73GmNfsOPcCdcBz9r69wGBjzEERmQ7MFZEJx3ttY8zjwOMAM2bMUL+BoihKB9FhImKM\nOa+5/SLyNeAy4FzbRYUxphqotn+vFJFtwGigkGCXV64dpijdE63aKD2ESI3Ougj4IXCFMeaoKzxb\nRKLt38OxOtC3G2P2AhUiMtMelXUj8FoETFeUdkPHFyo9gQ5ribTAX4B4YL49UneJPRLrTOAXIlIL\nNAC3GWNK7WNuB54CErH6UN72nlRRFEXpXCIiIsaYkT7hrwCv+OxbAUzsSLsURVGU46MrjM5SlF6H\ndokoPQUVEUWJELqeiNITUBFRFEVRWo2KiKIoitJqVEQUJQIYXVBE6SGoiChKhNDvRJSegIqIoiiK\n0mpURBRFUZRWoyKiKBFAu0SUnoKKiKJECO0SUXoCKiKKoihKq1ERURRFUVqNioiiRADtElF6Cioi\nihIhRD8UUXoAKiKKoihKq1ERUZQIoEN8lZ6CioiiRAh1Zik9ARURRVEUpdWoiCiKoiitRkVEUSKA\n0UG+Sg9BRURRIoV2iig9gIiIiIj8UkTWiMhqEXlXRAa59t0jIltFZJOIXOgKny4ia+19D4sOslcU\nRYk4kWqJ/M4YM8kYMwV4A/gpgIiMB64FJgAXAX8VkWj7mEeBW4BR9t9FnW61oiiKEkRERMQYU+Ha\nTKZxFojZwAvGmGpjzA5gK3CSiAwE0owxS4y1rugc4MpONVpR2hH9TkTpKcRE6sIi8gBwI3AIONsO\nzgGWuKIV2GG19m9vuKJ0W9Qfq/QEOqwlIiLvici6EH+zAYwx9xpj8oDngDvb+dq3isgKEVlRUlLS\nnqdWFEVRXHRYS8QYc16YUZ8D3gLuBwqBPNe+XDus0P7tDfe79uPA4wAzZsxQx4GiKEoHEanRWaNc\nm7OBjfbv14FrRSReRIZhdaAvM8bsBSpEZKY9KutG4LVONVpRFEVpQqT6RH4jImOABmAXcBuAMSZf\nRF4C1gN1wB3GmHr7mNuBp4BE4G37T1G6LTpKXekJREREjDFXN7PvAeCBEOErgIkdaZeiKIpyfOgX\n64qiKEqrURFRlAhg9EMRpYegIqIoEUK7RJSegIqIoiiK0mpURBRFUZRWoyKiKBFAe0SUnoKKiKJE\nCO0SUXoCKiKKoihKq1ERURRFUVpNxKaCV5TezIRBaVTV1LccUVG6OCoiihIBrjlxMNecODjSZihK\nm1F3lqIoitJqVEQURVGUVqMioiiKorQaFRFFURSl1aiIKIqiKK1GRURRFEVpNSoiiqIoSqtREVEU\nRVFajfT0FdZEpATYFWk7jpMs4ECkjehk9J57B3rP3YchxpjsliL1eBHpjojICmPMjEjb0ZnoPfcO\n9J57HurOUhRFUVqNioiiKIrSalREuiaPR9qACKD33DvQe+5haJ+IoiiK0mq0JaIoiqK0GhURRVEU\npdWoiHQBRCRTROaLyBb7f59m4kaLyCoReaMzbWxvwrlnEckTkQ9FZL2I5IvIdyNha1sRkYtEZJOI\nbBWRH4XYLyLysL1/jYhMi4Sd7UkY93ydfa9rRWSRiEyOhJ3tSUv37Ip3oojUicgXO9O+jkJFpGvw\nI+B9Y8wo4H1724/vAhs6xaqOJZx7rgP+yxgzHpgJ3CEi4zvRxjYjItHAI8DFwHjgKyHu4WJglP13\nK/BopxrZzoR5zzuAs4wxJwC/pJt3Pod5z068/wXe7VwLOw4Vka7BbOBp+/fTwJWhIolILnAp8EQn\n2dWRtHjPxpi9xpjP7N+VWOKZ02kWtg8nAVuNMduNMTXAC1j37mY2MMdYLAEyRGRgZxvajrR4z8aY\nRcaYMntzCZDbyTa2N+G8Z4BvA68A+zvTuI5ERaRr0N8Ys9f+vQ/o7xPvIeCHQEOnWNWxhHvPAIjI\nUGAqsLRjzWp3coA9ru0CmgphOHG6E8d7P98A3u5QizqeFu9ZRHKAq+jmLU0vMZE2oLcgIu8BA0Ls\nute9YYwxItJk3LWIXAbsN8asFJFZHWNl+9LWe3adJwWr9naXMaaifa1UIomInI0lIqdH2pZO4CHg\nbmNMg4hE2pZ2Q0WkkzDGnOe3T0SKRWSgMWav7cYI1dQ9DbhCRC4BEoA0EXnWGHN9B5ncZtrhnhGR\nWCwBec4Y8+8OMrUjKQTyXNu5dtjxxulOhHU/IjIJyzV7sTHmYCfZ1lGEc88zgBdsAckCLhGROmPM\n3M4xsWNQd1bX4HXgJvv3TcBr3gjGmHuMMbnGmKHAtcAHXVlAwqDFexYrtz0JbDDGPNiJtrUny4FR\nIjJMROKw3t3rnjivAzfao7RmAodcrr7uSIv3LCKDgX8DNxhjNkfAxvamxXs2xgwzxgy18/C/gNu7\nu4CAikhX4TfA+SKyBTjP3kZEBonIWxG1rOMI555PA24AzhGR1fbfJZExt3UYY+qAO4F5WAMDXjLG\n5IvIbf+/vXONsauq4vjv32lDW0pbB6t+UfliCFBfYSQWSYOkGokiWqc2EaxTowQVipIqGg1OaBBt\n06gIBG1TplSUpx0VsaUpHYpUoe9pC6lUwJhIMK1SrdARyvLDWteeuXPu7Z3bsUOn65fcZJ+999lr\nr73P3c9z1pZ0eUR7AHga2AMsAb44LJkdIhrU+VrgVOCWqNdNw5TdIaFBnUckafYkSZIkaZqciSRJ\nkiRNk51IkiRJ0jTZiSRJkiRNk51IkiRJ0jTZiSRJkiRNk53ICEWSSVpcuJ4vqfMY56GrYqlU0tKj\nNZ4o6TRJO2uELQpLv4uORsZriSi/Z4byFdFinZyISOqQdNMR4swOS7zHtaXsY0V+sT5y6QNmSrrB\nzPYO9mZJo+Pd9yHBzD43VGnV4DKg1cwOFT2HWo9h4Ktmdu9wZ2IokdRSXU+vJczsLknPA/OHOy/H\nAzkTGbm8gpvX/kp1QIzoH4rzHNbG18OVUeqtkh4DFkrqlLRc0iOS/ixppqSFcQbEqjBJgqRrJW2U\ntFPST1RiGEhSj6Q2SR8tfDi4W9IzEX62pIclbZa0umLFNvy3S9oOfKlMUUm/AiYAm2MUWa3HyZKW\nSXpcfhbLxXHfOEl3SnpS0kpJj0lqi7ADhfTbJXWFe4qk+0LfjZLeF/6dIaNH0tOS5hXunxNlvV3S\nCkmnxAyjUn4Ti9e1kPTGyOf2+J0r6TpJXy7EuV5x7oqka6Kutkv6bkl6tcp8nvwMl15Jd5bc1yHp\nl6HrU5K+XQi7NMp5m6Qfy02fI+mApMVRj9Oq0hsgT9I5kn4f9bVB0ukF2d3yM2ielXSFpKsj3h8k\ntUa8Hkk/jHzslHROiR6ldZkMEjPL3wj8AQeAicCzwCR8VNUZYb8GPhPuzwLd4e4C7gda4roT+B0w\nBngn8CJu5whgJfCxcLcW5K4ALiqk1x7uHqCtKo934x3DGGADMCX8ZwPLwt0LTA/3ImBnLX0L7mo9\nvgNcGu7JwB+Bk4GrC3LegXe8bSXptQNd4f4ZcF6434KbZKmU1QbgJNwu0r7Q66yQ9/piWQG3Fcrv\nMmBxiU7/K7+4vgs3QgnQEvV6GrAl/EYBf8K/BL8w8jO+Sm5X6FOvzP8KnFQpr5J8dQDPhZxxwE7c\nLtQZ+LM1JuLdAswJtwGfrFF3A+Thz+7ocM8A7ivI3gOcAkwB9gOXR9j3C+XTAywJ93TiuYn7b6pX\nl3F9PnD/cP+Pj4dfLmeNYMzsn5JuB+YBLxWCpgEzw70CWFgIu8f6LzX81sxelrQDb7hWhf8OvAED\neL+krwHjgVZgF96Y1CTiv2RmN0uaCkwF1sQkpgV4TtJkvFFZX8jrhQ0p31+PD+LGKyvLE2PxRmM6\ncCOAmfVK6m0g3RnAmTo82ZootzIM8Bsz6wP6JP0NN29/QeRlb8j5e8Rdipv17wbmAp9vQPYFwJxI\n5xDegO6XtE/Su0PeVjPbJ2kGcJuZvVglt8LplJR5hPUCd0jqjvyVscbCaKKkX+BWeF8BzgY2Rprj\nOGxY8xBuSLOMMnmTgOWS3oZ3QMVZ2jrz82X+JWk/h5+1HfhgoMLPQ/f1MdubXCW3tC7N7ABJw2Qn\nMvL5AbAFH/k2wr+rrvsAzM1Xv2wxTMPPNBktaSw+4mwzs7/IN+/H1hMQDdwsvBEHELDLzKqXOar/\n9IOhqIeAT5jZ7qr0691ftAdU1GcU8F4zO1iSVl/B6xB1/l9m9qh8WfF8fMZU+sJAgyzFR9hvApY1\neE9pmQcfxuvmIuCbkt5uA/eVqu0lWaS53My+UZLmQau9DzJAHn7a4Toz+7j8LJmeQvxiOb9auH6V\n/mVelscipXWZDI7cExnhxAj0bvzMhgobcCujAJcAjxyFiEoDuzdG5HXf/JH0VvwY0VlmVpkd7Qam\nSJoWccZIOsvMXgBekFQ5a+KSJvO4GrhS0dLHqB1gPfCp8JtK/1Hs85LOkDQKP0iowoP46XQVfd51\nBNkPAbMknRrxWwtht+NLKo128GuBL0Q6LZImhf9K4EPAe3BdAdYAcyWNL5ELNco89H2zma0DrsFn\nBBMYyAcktUoah59K+Wjkr13SGyoyo75rUkfeJA6bUu+oXyw1mR0yzsMtI++vCh9sXSYlZCdyYrAY\nX6evcCXewPTiVnKvajbhaOiX4Oviq3GT2PXowNfSu2PT8wHz40Tbge/Fxus24NyIPxe4WdI2fKTb\nDAvw5ZBeSbviGvyEuQmSngSuAzYX7vk6vq+ygcPLPOBLg22xCfwEUPf1WzPbBVwPPBy6FU3a3wG8\njlh2aYCr8KXDHZHXM0PGf4B1uOXYQ+G3CjdFvinKrt+bRnXKvAX4acjYCtwYdVzN4/jyVC++X7HJ\nzJ4AvgU8GM/WGuBIx/zWkrcQuEHSVppfMTkY999K/0FUhUHVZVJOWvFNkkBSDzDfzI6JWXL59xoX\nm9mna4R34Zu7dV/xjdH8Fnx299SQZ3SgvA58+fKK/7esZjnauoxlxvlm9pGhzNdIJGciSTIMSPoR\nfobKgjrR9gMLVOdjQ/kHnHuAtceiAzkRkDQb3+f7x3Dn5XggZyJJkiRJ0+RMJEmSJGma7ESSJEmS\npslOJEmSJGma7ESSJEmSpslOJEmSJGma/wL71//A3XXO4gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hamming window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hanning Window" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hanning')" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUYCodcQEggQehMCKiBFUMHG2pG1gbus\na/dVV91m2XVXXd0VBUV0XXR17Q2QFQFpYoEE6RASIJDQQugQ0u/3j5nEMQvJAJmcKffnuubKnDJz\nfgeSuec55XlEVTHGGGMAwpwOYIwxxn9YUTDGGFPBioIxxpgKVhSMMcZUsKJgjDGmghUFY4wxFawo\nGAOISKKIHBWRcAcz/FdEbj7N1z4mIm/VdCYTeqwoGL8hIlkiMrLSvFtE5Gtfb1tVt6tqrKqW+npb\nVWQYrapvOLV9Y8CKgjHGGA9WFExAEZGHRWSziBwRkfUicoXHsltE5GsReVZEDojIVhEZ7bF8oYj8\nSUSWul//pYg0cy9rJyIqIhHVretefpOIbBORfSLyhxO1ctzrJYnIQREJc0+/KiK5Hsv/LSL3emzz\nF17uS5KILHJnmws0q7Tdy0VknXvbC0Wkq3v+eBGZ6bFehoh84DGdLSJ9TuO/xgQJKwom0GwGzgMa\nAo8Db4lInMfys4F0XB+SzwD/FBHxWD4OGA+0AKKAB6rY1gnXFZFuwEvAz4E4d5b4E72Bqm4FDgNn\nuWcNAY6Wf0gDQ4FFJ9l+VfvyHyDNvexPQMW5CBHpBLwD3As0B2YDM0Ukyr2t80QkTERau/frXPfr\n2gOxwOoq/k1MkLOiYPzNp+5vtwdF5CCuD98KqvqBqu5U1TJVfQ/IAAZ4rLJNVV91nxt4A9eHdkuP\n5f9S1U2qehx4H6jqW/HJ1r0amKmqX6tqEfBHoKpOxBYBQ0WklXv6Q/d0EtAAWHWS151wX0QkEegP\n/EFVC1V1MTDT43XXAZ+r6lxVLQaeBWKAgaq6BTji3pchwBxgp4h0wVWglqhqWRX7YoKcFQXjb36m\nqo3KH8Dtngvdh21WehSNHvz00Mnu8ieqmu9+Gnui5UB+pWWVnWzd1kB2pe3sq+J9FgHDcH0ILwYW\n4voAru5D+GT70ho4oKrHPNbd5vG8tee0+/2z+bE145lnUaU8J2u1mBBhRcEEDBFpC7wK3Ak0dReN\ntYBU+cKatwto45ErBmhaxfqLcB3yGuZ+/jUwiNP/EN4FNBaReh7zEj2e7wTaeuQTIAHY4ZFnmDvT\nIvfDioIBrCiYwFIP12GaveA6aYqrpVDbPgQuE5GB7uP0j1FFYVLVDOA4cAOwSFUPA3uAqziND2FV\n3QakAo+LSJSIDAYu81jlfeASERkhIpHA/UAh8I17+SJgOBCjqjnAEmAUrsL2w6nmMcHFioIJGKq6\nHngO+BbXh2pPYKkDOdYBdwHv4vrWfhTIxfXBezKLgH2qmu0xLcCK04wxDteJ6P3Ao8CbHvnScRWg\nF4E8XAXjMvf5D1R1kzvzEvf0YWALsNTJ+zSMfxAbZMeYMyMiscBBINl9tZExActaCsacBhG5TETq\nuo/rPwusAbKcTWXMmbOiYMzpGYPrhO5OIBkYq9bsNkHADh8ZY4ypYC0FY4wxFSKcDnCqmjVrpu3a\ntXM6hjHGBJS0tLQ8VW1e3XoBVxTatWtHamqq0zGMMSagiMi26teyw0fGGGM8WFEwxhhTwYqCMcaY\nClYUjDHGVLCiYIwxpoLPioKIvC4iuSKy9iTLRUReEJFMEVktIn19lcUYY4x3fNlSmI6rO96TGY2r\ne4BkYCLwsg+zGGOM8YLP7lNQ1cUi0q6KVcYAb7r7i/lORBqJSJyq7vJVJmNqyvGiUpZn7Wdl9kFK\nSk8wcJoIXVvV55z2TWlcL6r2Axpzmpy8eS0ejyENgRz3vP8pCiIyEVdrgsTExMqLjfG54tIyVmUf\nZGnmPpZuzuOH7QcoLnX1GyYnGF6nvEsxEegW14BBHZsxsENTBiQ1oW5UwN0zakJIQPx2quo0YBpA\nSkqK9eBnas2ewwVMWZDJR2k5HCsqRQS6t27AhEFJDOzYjP7tGp/wQ764tIzVOa4i8s3mPKYvzWLa\n4i1EhgsjurTkvgs60blVfQf2yJiqOVkUduAaN7ZcG34cQ9YYR+0/VsTURZt545ssSsuUMX3iGdm1\nBed2aEqjutUfDooMD6Nf2yb0a9uEu0ckc7yolNRt+1m8aS/vLstmzvrdXN67NfeO7ERSs3rVvp8x\ntcXJojADuFNE3sU1rOAhO59gnHboeDH/XLKFf369lfziUq7oE889I5Np2/TMPrhjosI5L7k55yU3\n5/ZhHZm2ZAvTl2Yxa/Uuru7bhrtHJhPfKKaG9sKY0+ez8RRE5B1gGNAM13i6jwKRAKo6VUQEmIzr\nCqV8YLyqVtvTXUpKilqHeKamqSr//m4bz325iUPHi7mkZxz3jkwmuaXvDvHkHing5YWbefu77QDc\nPLAtD1zUmToR4T7bpgldIpKmqinVrhdog+xYUTA17UhBMQ99tJrZa3ZzXnIzHhrVhR7xDWtt+zsP\nHmfSvAzeS82mV5uGTBnXl4QmdWtt+yY0WFEwxgsbdx/m9rdWsG1/Pg9e1JlfDWmPnOhyolowZ91u\nHnh/FWFhwj+u6835XVo6ksMEJ2+LgnVzYULWR2k5/GzKUo4UlvD2L87mtqEdHCsIABd1b8WsuwcT\n3yiGCdNTeXZOOqVlgfWlzQQ+Kwom5BQUl/LIx6u5/4NV9EloxOd3D+ac9k2djgVA26b1+Pj2gYzt\nn8DkBZnc+M/v2Xuk0OlYJoRYUTAh5VB+Mde98i3vLMvm9mEdeOvWs2lRP9rpWD8RHRnOU1f14m9X\n9yJt2wEufXEJmblHnI5lQoQVBRMyDuUX8/N/fseGXUd45cZ+/GZUFyLC/fdP4JqUBD65fRClZTB2\n2vdk5h51OpIJAf77F2FMDSovCJt2H+WVG/txUfdWTkfySrfWDXh34tkAjJ32nRUG43NWFEzQO5Rf\nzA3//L6iIAzv0sLpSKekY4v6FYXh+letMBjfsqJgglp5QUjffSQgC0K58sKgaoXB+JYVBRO0DuUX\nc+PrroIw9ca+AVsQynVsUZ93fvljYdi81wqDqXlWFExQOlZYwo2vf8/GXa6CECw3giW3/LEwjJ32\nHdv2HXM6kgkyVhRM0CkrU/7v/ZWs3XGIl28InoJQrrwwFJeW8Ys3UjlSUOx0JBNErCiYoPP8/Azm\nrNvD7y/pxoiuwVUQyiW3rM9L4/qyJe8Y9723kjK789nUECsKJqh8vnoXL8zP4Jp+bRg/qJ3TcXxq\nYMdm/PHSbszbkMtzc9OdjmOCRECMvGaMN9btPMQDH6yib2Ij/nxFD0f7MaotN53blo27DzNlwWa6\ntGrAZb1bOx3JBDhrKZigkHe0kIlvptGobiRTb+wXMmMSiAiPX96D/u0a8+CHq1iTc8jpSCbAWVEw\nAa+opIxfv5VG3tFCpt2Y4nd9GflaVEQYL9/QjyZ1o5j471RyjxQ4HckEMCsKJqCpKo/OWMvyrAM8\nc3UverapvcFx/Emz2Dq8enMKB/KL+PVbKygsKXU6kglQVhRMQPsgNaeix9MxfeKdjuOo7q0b8tw1\nfUjbdoAnP9/gdBwToKwomIC1bd8xHpu5jnPaN+H+Czs7HccvXNIrjlsHJ/Hmt9tYsDHX6TgmAFlR\nMAGppLSMe99bSXiY8Pdr+xAeFvxXGnnrwYs606VVfR78cDX7jtoAPebUWFEwAWnygkx+2H6QJ6/o\nSetGMU7H8SvRkeE8P7YPh48X89BHawi0cdiNs6womICzYvsBXvwqkyvOiudyuy7/hLq0asBvRnVm\n3oY9vLs82+k4JoBYUTAB5VhhCfe9t5JWDaJ5fEx3p+P4tQmDkhjcsRlPzFzP1jzrOM94x4qCCShP\nzFzP9v35/P3a3jSIjnQ6jl8LCxOevaY3URFh3PvuDxSXljkdyQQAKwomYHyxdjfvpWbz66EdOLt9\nU6fjBIRWDaP565U9WZVziBfnZzgdxwQAKwomIOQeLuCRj1fTI74B947s5HScgHJxzziu7teGyQsy\nSdu23+k4xs9ZUTAB4fefriW/qJTnrzuLqAj7tT1Vj17WjfjGMTzwwWoKiu1uZ3Ny9tdl/N6cdbv5\ncv0e7rugEx1bxDodJyDVj47kr1f0YmveMV5akOl0HOPHrCgYv3a0sIRHP1tHl1b1uXVwktNxAtrg\n5GZccVY8Ly/aTGbuEafjGD9lRcH4tWfnpLPnSAF/ubInkeH263qmfn9JV+rVieC3H6+10drMCfn0\nr0xERolIuohkisjDJ1jeUERmisgqEVknIuN9mccEllXZB3nj2yxuOLstfRMbOx0nKDSNrcNvR3dl\nWdZ+Pkizm9rM//JZURCRcGAKMBroBlwvIt0qrXYHsF5VewPDgOdEJMpXmUzgKCkt45GP19A8tg4P\njrLO7mrSNSltGJDUhL/M3kie9Y1kKvFlS2EAkKmqW1S1CHgXGFNpHQXqi2vcxFhgP1Diw0wmQEz/\nJov1uw7z2OXd7Sa1GiYi/OWKnuQXlfDnWeudjmP8jC+LQjzg2T7Ncc/zNBnoCuwE1gD3qKrddhni\ncg7k89yXmxjRpQWje7RyOk5Q6tgill8P68inK3eyJGOv03GMH3H6zN1FwEqgNdAHmCwiDSqvJCIT\nRSRVRFL37rVf4GCmqjz62ToAHh/THVcj0vjC7cM60L5ZPX73yVq7d8FU8GVR2AEkeEy3cc/zNB74\nWF0yga1Al8pvpKrTVDVFVVOaN2/us8DGeV+s3c38jbncf2En2jSu63ScoBYdGc6fr+jB9v35vGBd\nYBg3XxaF5UCyiCS5Tx6PBWZUWmc7MAJARFoCnYEtPsxk/Fh+UQlPzFpPt7gG3DKwndNxQsLADs24\nqm8bXl2yxXpSNYAPi4KqlgB3AnOADcD7qrpORG4Tkdvcq/0JGCgia4D5wEOqmuerTMa/vbJoC7sO\nFfDY5d2JsHsSas1DoztTJyKcJz+3k84GInz55qo6G5hdad5Uj+c7gQt9mcEEhp0Hj/PK4s1c0iuO\nAUlNnI4TUlrUj+aO4R15+ouNLMnYy3nJdog2lNnXMeMXnv5iI6rwyOj/OaVkasGEwe1IbFKXP81a\nT4mNuxDSrCgYx6VtO8BnK3cycUh7O7nskDoR4fz24q5s2nOUd5ZtdzqOcZAVBeOosjLliZnraFG/\nDrcN7eB0nJB2UfeWnNO+CX+fu4lD+cVOxzEOsaJgHPXpyh2syjnEQ6O6UK+OT09xmWqICH+8tDuH\njhczyS5RDVlWFIxjjhWW8PQXG+md0Igrzqp8s7txQrfWDbiufyJvfptFZu5Rp+MYB1hRMI6Zumgz\new4X8sdLuxEWZncu+4v7L+xETKRdohqqrCgYR+QcyGfa4i1c3rs1/dpat9j+pFlsHe4a0ZEF6XtZ\nmJ7rdBxTy6woGEc89d+NiMDDdgmqX7plYBLtmrouUS22S1RDihUFU+tWZh9k1updTDyvPa0bxTgd\nx5xAVEQYv724K5v3HuP9VBuMJ5RYUTC1SlV5+r8baVoviol2Capfu6BbS1LaNmbSvAyOF1kvqqHC\nioKpVYsz8vh2yz7uOr8jsXYJql8TER4e3YXcI4W8vnSr03FMLbGiYGpNWZmrlZDQJIZxZ7d1Oo7x\nQkq7Jozs2oKpizZzML/I6TimFlhRMLVm5uqdrN91mPsv6ExUhP3qBYoHL+rC0cISXlq42ekophbY\nX6apFUUlZTz35Sa6xjXg8t6tnY5jTkHnVvW58qw2TP8mix0Hjzsdx/iYFQVTK95Ztp3t+/P5zajO\ndqNaALrvgmRQeH7uJqejGB+zomB87lhhCS9+lcHZSU0Y1sn66g9EbRrX5cZz2/LRihwy9hxxOo7x\nISsKxudeW7KVvKNFPDy6CyLWSghUdwzvSL2oCJ6Zk+50FONDVhSMT+07Wsi0xZsZ1b0VZyVadxaB\nrEm9KH41tD1z1+8hbdt+p+MYH7GiYHxq8oJMjheX8sBFnZ2OYmrAhMFJNK9fh6f/m46qOh3H+IAV\nBeMzOQfyefu77VybkkDHFrFOxzE1oG5UBHePSGZZ1n4WWGd5QcmKgvGZF+dngsA9I5OdjmJq0Nj+\nCSQ2qcvf526y1kIQsqJgfCIr7xgfrshh3IBE4hpap3fBJDI8jLtHJLN2x2HmrNvjdBxTw6woGJ94\n4asMIsOF24dbp3fB6Gd9WtO+WT3+MXcTZWXWWggmVhRMjcvMPcqnP+zgxnPa0qJ+tNNxjA9EhIdx\nz8hk0vcc4fM1u5yOY2qQFQVT4ybNzyA6MpzbrGvsoHZpr9Ykt4jl+XmbKLXWQtCwomBqVPruI8xa\nvZNbBrajaWwdp+MYHwoPE+67oBOb9x5jxqodTscxNcSKgqlR/5i7iXpREUwc0t7pKKYWjOreiq5x\nDZg0L4MSG7YzKFhRMDVm7Y5DfLFuNxMGJ9GobpTTcUwtCAsT/u+CTmTty+fjFdZaCAZWFEyNeX7e\nJhpER3Dr4CSno5haNLJrC3q3acik+RkUlVhrIdBZUTA1YmX2QeZtyGXikPY0jIl0Oo6pRSKucws7\nDh7n/dRsp+OYM2RFwdSIv8/dROO6kdwyyFoJoWhop+b0TWzE5K8yKSgudTqOOQM+LQoiMkpE0kUk\nU0QePsk6w0RkpYisE5FFvsxjfCNt234Wb9rLr4Z2ILZOhNNxjANEhPsv7MzuwwW8s2y703HMGai2\nKIhIXRH5g4i86p5OFpFLvXhdODAFGA10A64XkW6V1mkEvARcrqrdgWtOYx+Mw56fl0HTelHcdG5b\np6MYBw3s0JQBSU2YumiztRYCmDcthX8BhcC57ukdwJ+9eN0AIFNVt6hqEfAuMKbSOuOAj1V1O4Cq\nWreLASZt2wGWZOTxq6HtqRtlrYRQJiLcOyKZPYcLeW+5nVsIVN4UhQ6q+gxQDKCq+YA3w2fFA56/\nGTnueZ46AY1FZKGIpInITSd6IxGZKCKpIpK6d+9eLzZtasuk+a5Wwg3nWCvBwLkdmtK/XWNeXriZ\nwhJrLQQib4pCkYjEAAogIh1wtRxqQgTQD7gEuAj4g4h0qrySqk5T1RRVTWne3Mb49Rc/bD/A4k17\n+eUQayUYFxHhnhGd2H24gPettRCQvCkKjwJfAAki8jYwH/iNF6/bASR4TLdxz/OUA8xR1WOqmgcs\nBnp78d7GD0yan0GTelHcaK0E42FQx6b0a9uYl6y1EJCqLQqqOhe4ErgFeAdIUdWFXrz3ciBZRJJE\nJAoYC8yotM5nwGARiRCRusDZwAbv4xunrMw+yML0vfzivCTq2RVHxoOIcO/IZHYdKuCD1Byn45hT\ndNK/ZhHpW2lWef+4iSKSqKorqnpjVS0RkTuBOUA48LqqrhOR29zLp6rqBhH5AlgNlAGvqera090Z\nU3smzdtEo7qR3HRuO6ejGD80uGMz+iY24uWFm7k2JYGoCLslKlBU9RXvOffPaCAFWIXrBHMvIJUf\nr0Y6KVWdDcyuNG9qpem/AX/zPrJx2qrsgyxI38uDF3W2+xLMCYkI94zsxM2vL+PDtBzGnZ3odCTj\npZOWb1UdrqrDcbUQ+rpP9PYDzuJ/zw2YEPLC/AwaxkTafQmmSkOSm9EnoRFTFmRan0gBxJs2XWdV\nXVM+4T6809V3kYw/W5NziPkbc/nF4CTqR1sfR+bkXK2FZHYcPM7HK+zcQqDwpiisFpHX3N1RDHPf\n2bza18GMf5rkbiXcPKid01FMABjWqTm92zRk8oJMim28hYDgTVEYD6wD7nE/1rvnmRCzdsch5m3Y\nw62Dk2hgrQTjhfLWQs6B43xi4y0EhGrPEqpqAfAP98OEsBe/yqB+dAS3WCvBnILhnVvQy91auLJv\nPBHhdiWSP/OmQ7ytIrKl8qM2whn/sWHXYeas28OEQdZKMKdGRLjr/GS278/ns5U7nY5jquHN9YQp\nHs+jcfVk2sQ3cYy/mrwgk9g6EUyw8RLMaRjZtQVd4xowZUEmPzsrnvAwb7pPM07w5o7mfR6PHar6\nPK6+ikyIyMw9wuw1u7h5YFsa1rVWgjl1IsLd53dkS94xZq221oI/q7alUOnO5jBcLQe7YymETP4q\nk5jIcG4d3N7pKCaAXdS9FZ1axjL5q0wu69WaMGst+CVvPtyf83heAmwFrvVNHONvtuYdY8aqnfzy\nvPY0qRfldBwTwMLChDvPT+bud37gi3W7ubhnnNORzAl4cxnAreV3N6vqBao6ESjydTDjH6YsyCQq\nIoxfnGetBHPmLukZR/vm9XhhfgZlZep0HHMC3hSFD72cZ4LM9n35fPLDDsYNaEvz+nWcjmOCQHiY\ncOfwjmzcfYR5G/Y4HcecQFW9pHYBugMNReRKj0UNcF2FZILcy4syCQ8TfjXUWgmm5lzeuzWT5mfw\n4leZXNCtJSJ2bsGfVNVS6AxcCjQCLvN49AV+6ftoxkk5B/L5MC2Hsf0TaNnAvgOYmhMRHsYdwzqy\nZschFqbb8Lr+5qQtBVX9DPhMRM5V1W9rMZPxA1MXbQbgtqEdHE5igtEVfeOZND+DSfMzGNa5ubUW\n/MhJWwoiUj7k5jgReaHyo5byGQfsPlTA+8tzuLpfAq0bxTgdxwShyPAwbh/egZXZB/k6M8/pOMZD\nVYePyofFTAXSTvAwQWrqos2UqnL7MGslGN+5ul8b4hpG88L8DFTtSiR/UdXho5nun2/UXhzjtNwj\nBbyzbDtXnBVPQpO6TscxQaxORDi3De3AozPW8d2W/ZzboanTkQxVX300Ezhp+VbVy32SyDjq1cVb\nKC4t487hHZ2OYkLAdf0TmLIgkxfmZ1hR8BNV3dH8bK2lMH4h72ghb323nZ/1iadds3pOxzEhIDoy\nnF8N7cCfZq1n2db9DEiyvjadVtUYzYvKH8C3wAFgP/Cte54JMq8t2UpBSSl3nG+tBFN7xg1IpFls\nFC9+leF0FIN34ylcAmwGXgAmA5kiMtrXwUzt2n+siDe/zeKyXq3p0DzW6TgmhMREhTNxSHuWZOSR\ntu2A03FCnjfdXDwHDFfVYao6FBiOjcIWdF7/eivHi0u501oJxgE/P7stTepZa8EfeFMUjqhqpsf0\nFuCIj/IYBxzKL2b6N1lc3COOTi3rOx3HhKB6dSL4xXlJLEzfy6rsg07HCWneFIVUEZktIreIyM3A\nTGC5iFxZqU8kE6BeX7qVo4Ul1kowjrrp3HY0qhtprQWHeVMUooE9wFBgGLAXiMHVD9KlPktmasXh\ngmJeX7qVi7q3pGtcA6fjmBAWWyeCWwclMW9DLmt3HHI6TsiqdpAdVR1fG0GMM95YmsWRghLuOj/Z\n6SjGcPOgdry6ZAsvfpXBKzemVP8CU+O8GY4zCbgLaOe5vt28FviOFpbw2tdbGdm1BT3iGzodxxga\nREcyYXASz8/LYMOuw9Z6dYA3h48+BbKAF3FdiVT+MAHuzW+zOHS82FoJxq+MH5hE/ToRTP4qs/qV\nTY3zZozmAlW1XlGDzLHCEl5bspVhnZvTO6GR03GMqdCwbiS3DGrH5AWZbNpzxK6Iq2XetBQmicij\nInKuiPQtf/g8mfGpN7/dxv5jRdw9wloJxv9MGJREvagIJs23K5FqmzdFoSeukdae4sdDR171iyQi\no0QkXUQyReThKtbrLyIlInK1N+9rzszRwhKmLd7M0E7N6ZvY2Ok4xvyPxvWiuGVgO2av2UX6brst\nqjZ5UxSuAdqr6lBVHe5+nF/di0QkHJgCjAa6AdeLSLeTrPc08OWpRTen681vsziQX8y9I62VYPzX\nL84rby1scjpKSPGmKKzFNU7zqRoAZKrqFlUtAt4FxpxgvbuAj4Dc09iGOUWuVsIWhnVuzlnWSjB+\nrFHdKMYPasfsNbvZuPuw03FChjdFoRGwUUTmiMgM9+MzL14XD2R7TOe451UQkXjgCuDlqt5IRCaK\nSKqIpO7dawN9n4k3vsniYH4x947s5HQUY6p162DXlUiT5tm5hdrizdVHj3o8F+A8YGwNbf954CFV\nLatq4G5VnQZMA0hJSbFx+07TkYJiXl2yhfO7tKCPXXFkAkB5a+GFrzJZv/Mw3VrbfQu+Vm1LwT12\nwmFcXVpMB84Hpnrx3juABI/pNu55nlKAd0UkC7gaeElEfubFe5vT8GMrwc4lmMBx6+D21I+2cwu1\nparhODsB17sfecB7gKjqcC/fezmQ7L4jegeu1sU4zxVUNclje9OBWar66ansgPHO4YJiXl2ylRFd\nWtCrjbUSTOBoWDeSCYOSmDQ/g3U7D9G9td1970tVtRQ24moVXKqqg1X1RaDU2zdW1RLgTmAOsAF4\nX1XXichtInLbmYQ2p+6Npa67l+1cgglEEwYnuVoLdm7B56o6p3Alrm/3C0TkC1xXD538wP8JqOps\nYHaleSc89KSqt5zKexvvHXafSxjZtSU929i3LBN4GsZEcqu7T6S1Ow5ZX10+VNUYzZ+q6ligC7AA\nuBdoISIvi8iFtRXQnLnpS7M4XFBi5xJMQBs/KIkG0XaXs695c6L5mKr+R1Uvw3Wy+AfgIZ8nMzXi\ncEExry3ZwgXdWtq3KxPQXK2F9sxdv4c1OTbegq94c59CBVU9oKrTVHWErwKZmvXa4i3WSjBBY/zg\ndjSMieTvc9OdjhK0TqkomMCSd7SQ177eyiW94uyKDRMUGkRHctvQDixI30tq1n6n4wQlKwpB7OWF\nmykoLuU+u+LIBJGbB7alWWwdnpmTjqrdy1rTrCgEqV2HjvPv77ZxVd82dGwR63QcY2pM3agI7jq/\nI8u27mdJRp7TcYKOFYUg9cL8TFTVxkswQWnsgATiG8Xw7JfWWqhpVhSCUFbeMd5PzWbcgEQSmtR1\nOo4xNa5ORDj3jExmdc4h5qzb43ScoGJFIQg9P28TkeHCHed3dDqKMT5z5VnxtG9ej+e+TKe0zFoL\nNcWKQpDZuPswn63ayS0Dk2hRP9rpOMb4TER4GPdf0JmM3KPMWFW5r01zuqwoBJnnvtxEbFQEtw1t\n73QUY3xudI9WdItrwD/mZlBUUuZ0nKBgRSGIrMw+yNz1e/jlkPY0qhvldBxjfC4sTHjwos5s35/P\n+6nZ1b8xswjhAAAUCklEQVTAVMuKQhB5dk46TepFMWFwUvUrGxMkhnVuTkrbxrz4VQYFxV535GxO\nwopCkPhmcx5fZ+Zx+7AOxNbxZkA9Y4KDiPDARZ3Zc7iQN7/NcjpOwLOiEATKypS/zt5IXMNobjin\nrdNxjKl157RvypBOzZmyYDOH8oudjhPQrCgEgZmrd7JmxyEeuLAz0ZHhTscxxhGPjO7C4YJiJi+w\nrrXPhBWFAFdQXMozX6TTLa4BV5wV73QcYxzTNa4B1/RrwxvfbCN7f77TcQKWFYUA98Y3Wew4eJzf\nXdKVsLBTGhjPmKDzfxd0JiwMnpljXWufLisKAezAsSImL8hkeOfmDOrYzOk4xjiuVcNoJp7Xnpmr\ndrIy+6DTcQKSFYUA9sJXGRwrLOGRi7s6HcUYvzFxaAeaxUbxl883WGd5p8GKQoDKyjvGW99t47r+\nCXRqWd/pOMb4jdg6Edx3QSeWZe1n7nrrLO9UWVEIUM/M2UhkeJgNoGPMCVyXkkDHFrE89d+NFJda\n9xenwopCAErbdoDZa3YzcUh7WjSwTu+MqSwiPIxHRndhS94x3l223ek4AcWKQoBRVZ78fD3N69fh\nl+dZp3fGnMz5XVpwTvsmPD8vgyMFdkObt6woBJgv1u5mxfaD3H9BJ+pZdxbGnJSI8LuLu7HvWBEv\nL9zsdJyAYUUhgBQUl/Lk7A10blmfa1ISnI5jjN/r2aYhV5wVz2tfb2XbvmNOxwkIVhQCyMsLN5Nz\n4DiPXd6dcLtRzRivPDy6C5FhwhMz1zsdJSBYUQgQ2/fl8/KizVzWuzXndmjqdBxjAkbLBtHcMzKZ\n+Rtzmb/BLlGtjhWFAPHErHVEhgm/sxvVjDll4wcl0bFFLI/PXG9jLlTDikIA+GrjHuZtyOXuEcm0\namiXoBpzqiLDw3ji8u5s35/PK4u2OB3Hr/m0KIjIKBFJF5FMEXn4BMt/LiKrRWSNiHwjIr19mScQ\nFRSX8tiM9XRoXo/xg2xENWNO18COzbikVxwvLcy0XlSr4LOiICLhwBRgNNANuF5EulVabSswVFV7\nAn8CpvkqT6CatngL2/fn88SYHkRFWMPOmDPx+0u6Eh4mPDHLTjqfjC8/ZQYAmaq6RVWLgHeBMZ4r\nqOo3qnrAPfkd0MaHeQJO9v58pizI5JKecdYLqjE1IK5hDHedn8zc9XtYkJ7rdBy/5MuiEA9ke0zn\nuOedzK3Af0+0QEQmikiqiKTu3bu3BiP6tz/NWk+YCL+7xE4uG1NTbh2cRPvm9Xh8xjoKS+ykc2V+\ncTxCRIbjKgoPnWi5qk5T1RRVTWnevHnthnPIwvRcvly/h7tGdKR1oxin4xgTNKIiwnjssu5k7cvn\n1cV20rkyXxaFHYDnbbdt3PN+QkR6Aa8BY1R1nw/zBIzjRaU8OmMdSc3qcetgO7lsTE0b0qk5o7q3\nYvKCTLvTuRJfFoXlQLKIJIlIFDAWmOG5gogkAh8DN6rqJh9mCSjPfpnOtn35PHlFD+pEhDsdx5ig\n9Ojl3YgMC+M3H66mrMwG4ynns6KgqiXAncAcYAPwvqquE5HbROQ292p/BJoCL4nIShFJ9VWeQJG2\nbT+vL93KDeckMrCDnVw2xlfiGsbw+0u78v3W/bz9/Tan4/gNCbTh6lJSUjQ1NThrR0FxKRdPWkJh\nSRlz7htCrPWCaoxPqSo3vb6MtG0HmHPvEBKa1HU6ks+ISJqqplS3nl+caDYu/5i7iS15x3j6ql5W\nEIypBSLCU1f1IkyEhz9ebWM6Y0XBb/yw/QCvLtnC9QMSGZxsh42MqS3xjWJ45OIuLM3cxzvLsqt/\nQZCzouAHCopLefDD1bRqEM1vL+7idBxjQs64AYkM7NCUv8zewI6Dx52O4ygrCn5g0vwMMnOP8ter\nelE/OtLpOMaEHBHh6at6UabKwx+F9mEkKwoOW5V9kFcWbebalDYM7RQaN+YZ448SmtTl4dFdWJKR\nx/upoXsYyYqCg1yHjVbRvH4dfndJ5b4CjTG17Yaz23J2UhP+PCt0DyNZUXDQ4zPXs2nPUZ66qhcN\nY+ywkTFOCwsTnrnadRjprv+soLi0zOlItc6KgkM+W7mDd5Zt57ahHRjeuYXTcYwxbm2b1uOpq3qx\nYvtBnvlio9Nxap0VBQdk5h7lkY/X0L9dYx64sJPTcYwxlVzWuzU3ntOWV5ds5ct1u52OU6usKNSy\n40Wl3PH2CqIjw3nx+r5EhNt/gTH+6PeXdqVnfEMe+GBVSI3UZp9IteyPn61lU+4Rnr+uj423bIwf\nqxMRzpRxfVHgjv+sCJmxF6wo1KIPUrP5IC2Hu4Z3ZIhdfmqM30tsWpe/Xd2b1TmH+Ovs0Di/YEWh\nlqTvPsIfPlvLue2bcs9IO49gTKAY1aMVtw5OYvo3WXy+epfTcXzOikItOFpYwu1vpxFbJ5JJ1/ch\nPEycjmSMOQUPjepCn4RGPPTRarbmBfegPFYUfKyopIxfv5VG1r58Xri+Dy3q23kEYwJNVEQYU37e\nl8hwYfy/lpF3tNDpSD5jRcGHysqUhz5azZKMPP56ZU8bNMeYABbfKIbXbu7P7sMFTJi+nGOFJU5H\n8gkrCj709JyNfPLDDh68qDPXpiRU/wJjjF/r17YxU8b1Zd3Ow/z67eC849mKgo/88+utvLJoCzed\n25bbh3VwOo4xpoaM6NqSv1zRg8Wb9vLQh8HXo6oN7+UDM1bt5E+z1jO6Rysevaw7InZi2Zhgcl3/\nRHIPF/Lc3E20aBDNw6ODZxwUKwo17JvMPO5/fyUDkprwj+vsSiNjgtWd53dkz5ECpi7aTIv6dZgw\nOMnpSDXCikINWp1zkIn/TqN9s1hevSmF6MhwpyMZY3xERHj88h7sPVLInz5fT9PYKMb0iXc61hmz\ncwo1ZNGmvVw/7TsaxkQyfUJ/6wrbmBAQHiZMGnsWA9o14d73VvL611udjnTGrCjUgA9Ss5kwfTmJ\nTevx8e0DiWsY43QkY0wtiY4M540JA7iwW0uemLWeJz9fT1lZ4J58tqJwBlSVF+Zn8OCHqxnYoSnv\n/+ocWjawm9OMCTXRkeG89PN+3Hyuq7vte95bGbAd6Nk5hdNUUlrGHz5byzvLsrmybzxPXdmLqAir\nscaEqvAw4bHLuxPXKIan/ruR3MMFTLspJeAOJdun2GnILyph4r/TeGdZNncM78Bz1/S2gmCMQUS4\nbWgHJo3tw4rtB7hm6jfsDLCxnu2T7BSlbTvAmMlLWZiey59/1oMHL+pi9yEYY35iTJ943hg/gF0H\nC7jsxa+ZuWpnwNzkZkXBS8cKS3hsxjqunvoNxwpLmD5+ADec09bpWMYYPzWwYzM+vn0g8Y1juOud\nH/jlm6nsOuT/rQYJlOpVLiUlRVNTU2t1mwvTc/ndJ2vZeeg4N53TlgdHdSG2jp2OMcZUr6S0jH8t\nzeK5uelEhIXx0Ogu/HxAImG1fGOriKSpakq161lROLn9x4p4YuY6Pl25k44tYnn6qp70a9ukVrZt\njAku2/Yd47efrGFp5j76t2vMX6/sRccWsbW2fSsKp0lVWZl9kPeWZzNz1U6KSsv49bCO3DG8A3Ui\n7A5lY8zpU1U+SMvhz7PWc6yolBFdWjB2QAJDkpsTEe7bo/neFgWfHgMRkVHAJCAceE1Vn6q0XNzL\nLwbygVtUdYUvM53MgWNFfPLDDt5bnk36niPERIZzaa84fjmkPZ1a1ncikjEmyIgI16YkMKxzc15b\nspWP0nL4cv0eWjWI5pqUNlybkkBCk7rOZvRVS0FEwoFNwAVADrAcuF5V13usczFwF66icDYwSVXP\nrup9z7SlUFqm7D5cQPb+fLbvzydnfz7pe46wYONeikrL6N2mIdf1T+Sy3nHUjw6s64uNMYGlqKSM\nrzbu4d3l2SzatBdVGNihKT3bNCSxSV0SGtclsUldWjeKOePL3v2hpTAAyFTVLe5A7wJjgPUe64wB\n3lRXZfpORBqJSJyq1vjo2As25vL4zHXsOHic4tIfC2GYQFzDGMadnci1KQl0a92gpjdtjDEnFBUR\nxqgecYzqEceOg8f5MDWHWat38q+vsyjyGMCn/HNq/KB2/OK89j7N5MuiEA9ke0zn4GoNVLdOPPCT\noiAiE4GJAImJiacVpkm9KLrHN2RUjzhXBW4SQ2KTusQ1PPMKbIwxZyq+UQz3jEzmnpHJlJYpezyO\naGQfOE72/nya16/j8xwBcV2lqk4DpoHr8NHpvEfvhEZMGde3RnMZY4wvhIcJrRvF0LpRDGe3b1qr\n2/blV+QdgOfAxG3c8051HWOMMbXEl0VhOZAsIkkiEgWMBWZUWmcGcJO4nAMc8sX5BGOMMd7x2eEj\nVS0RkTuBObguSX1dVdeJyG3u5VOB2biuPMrEdUnqeF/lMcYYUz2fnlNQ1dm4Pvg95031eK7AHb7M\nYIwxxnt22Y0xxpgKVhSMMcZUsKJgjDGmghUFY4wxFQKul1QR2QtsO82XNwPyajBOIAnVfbf9Di22\n3yfXVlWbV/dGAVcUzoSIpHrTIVQwCtV9t/0OLbbfZ84OHxljjKlgRcEYY0yFUCsK05wO4KBQ3Xfb\n79Bi+32GQuqcgjHGmKqFWkvBGGNMFawoGGOMqRAyRUFERolIuohkisjDTufxFRF5XURyRWStx7wm\nIjJXRDLcPxs7mdEXRCRBRBaIyHoRWSci97jnB/W+i0i0iCwTkVXu/X7cPT+o97uciISLyA8iMss9\nHfT7LSJZIrJGRFaKSKp7Xo3td0gUBREJB6YAo4FuwPUi0s3ZVD4zHRhVad7DwHxVTQbmu6eDTQlw\nv6p2A84B7nD/Hwf7vhcC56tqb6APMMo9Nkmw73e5e4ANHtOhst/DVbWPx70JNbbfIVEUgAFApqpu\nUdUi4F1gjMOZfEJVFwP7K80eA7zhfv4G8LNaDVULVHWXqq5wPz+C64MiniDfd3U56p6MdD+UIN9v\nABFpA1wCvOYxO+j3+yRqbL9DpSjEA9ke0znueaGipceIdruBlk6G8TURaQecBXxPCOy7+xDKSiAX\nmKuqIbHfwPPAb4Ayj3mhsN8KzBORNBGZ6J5XY/vt00F2jP9RVRWRoL0OWURigY+Ae1X1sIhULAvW\nfVfVUqCPiDQCPhGRHpWWB91+i8ilQK6qponIsBOtE4z77TZYVXeISAtgrohs9Fx4pvsdKi2FHUCC\nx3Qb97xQsUdE4gDcP3MdzuMTIhKJqyC8raofu2eHxL4DqOpBYAGuc0rBvt+DgMtFJAvX4eDzReQt\ngn+/UdUd7p+5wCe4Do/X2H6HSlFYDiSLSJKIRAFjgRkOZ6pNM4Cb3c9vBj5zMItPiKtJ8E9gg6r+\n3WNRUO+7iDR3txAQkRjgAmAjQb7fqvqIqrZR1Xa4/p6/UtUbCPL9FpF6IlK//DlwIbCWGtzvkLmj\nWUQuxnUMMhx4XVWfdDiST4jIO8AwXF3p7gEeBT4F3gcScXU7fq2qVj4ZHdBEZDCwBFjDj8eYf4vr\nvELQ7ruI9MJ1YjEc15e891X1CRFpShDvtyf34aMHVPXSYN9vEWmPq3UArsP//1HVJ2tyv0OmKBhj\njKleqBw+MsYY4wUrCsYYYypYUTDGGFPBioIxxpgKVhSMMcZUsKJg/IqI/M7d2+dqdy+QZ/t4ewtF\nxOsBz0VkuojsEJE67ulm7huoaiLLsPLePmuKiNwrIjdVs05PEZlek9s1gcuKgvEbInIucCnQV1V7\nASP5aZ9V/qIUmOB0iMrcvQF7Tkfgyvmfql6nqmuANiKS6MN4JkBYUTD+JA7IU9VCAFXNU9WdACLy\nRxFZLiJrRWSa+w7m8m/6/xCRVBHZICL9ReRjd7/yf3av005ENorI2+51PhSRupU3LiIXisi3IrJC\nRD5w96N0Is8D97k/dD1f/5Nv+iIyWURucT/PEpG/lveBLyJ9RWSOiGwWkds83qaBiHwurrE/popI\nWFXZ3O/7tIisAK6plPN8YIWqlnj8Wz0trvEXNonIeR7rzsR1Z7AJcVYUjD/5Ekhwf2C9JCJDPZZN\nVtX+qtoDiMHVoihX5O5Xfiqu2/vvAHoAt7jv9AToDLykql2Bw8DtnhsWkWbA74GRqtoXSAX+7yQ5\ntwNfAzee4v5tV9U+uO68ng5cjWvsh8c91hkA3IVr3I8OwJVeZNunqn1V9d1K2xsEpFWaF6GqA4B7\ncd3tXi4VOA8T8qwoGL/hHhegHzAR2Au8V/5NGxguIt+LyBpc34C7e7y0vB+rNcA699gKhcAWfuwI\nMVtVl7qfvwUMrrT5c3B9EC8VVzfUNwNtq4j7V+BBTu1vyDPn96p6RFX3AoXl/RcBy9zjfpQC77hz\nVpftvZNsLw7Xv6On8o4C04B2HvNzgdansC8mSFnX2cavuD8MFwIL3QXgZhF5F3gJSFHVbBF5DIj2\neFmh+2eZx/Py6fLf8cr9uVSeFlxjEVzvZc4M9wf0tR6zS/hpkYj+6atOO2d12Y6dZP7xKjKU8tO/\n/2j3+ibEWUvB+A0R6SwiyR6z+uDq3Kv8gy3PfSz96tN4+0T3iWyAcbgO/3j6DhgkIh3dWeqJSKdq\n3vNJ4AGP6W1ANxGp4/7mP+I0cg5w9+YbBlznznk62cA1+lxHL7fbCVdvmybEWVEw/iQWeENE1ovI\nalyHTB5zjxPwKq4PrTm4ukI/Vem4xm3eADQGXvZc6D6Mcwvwjnvb3wJdqnpDVV0HrPCYzsbVU+Va\n988fTiPncmAyrg/0rcAnp5PN7b/AEC+3Oxz4/JTTmqBjvaSaoCeu4TlnuU9ShxQR+QT4japmVLFO\nHWARrhG9SmotnPFL1lIwJrg9jOuEc1USgYetIBiwloIxxhgP1lIwxhhTwYqCMcaYClYUjDHGVLCi\nYIwxpoIVBWOMMRX+H7AincKiXlzgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hanning window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4HGd9+D/fvbVa3Zdt2ZZv546TmBxcIRAgBEJCuQIE\nSCkNtNCmQAuFtlB+EEpbyhmuFCgkHGlSEgghJCEhd5w4dg7ftmTJsu772JV2V1rt+/tjZlazox17\nrcM6/H6eZx/tzrHzzmpmvu/3FqUUGo1Go9FMB898D0Cj0Wg0ixctRDQajUYzbbQQ0Wg0Gs200UJE\no9FoNNNGCxGNRqPRTBstRDQajUYzbbQQ0WjmGRHZLCIvikhURP42z32UiGyY67HNNSLyPhF5cJ7H\nEBORddPc91ER+fBsj2kxoYXISUZEjohI3LxwrdeK+R6XZl75NPCIUqpIKfVt58q5fFCJyBpTIPkc\ny38qIl+ei2PaUUr9Qin1hrk+znHGEFFKNc7nGBYzWojMD1eZF671andu4Lyplzqn2vk6qAP2zvcg\nNJrpoIXIAsE2I/wLETkK/MlcfrGIPC0igyLykoi8xrbPWhF5zDSD/FFEbhaRn5vrXiMirY5jHBGR\ny833HhH5RxE5LCJ9InKHiJQ7xvJBETkqIr0i8k+27/GKyOfMfaMislNEVonId0XkvxzHvEdEPuFy\nzkpEPiYi9UC9uew081z6ReSgiLzLtv2VIrLPPGabiPy9/VzNMfWa5/k+234lInKriPSISLOI/LOI\neMx114vIkyLyNREZEJEmEXmTbd/rRaTRPGaT43s/JCL7zf0eEJG6Y/x/3yoie83/46Micrq5/E/A\nZcDNpla6ybHfTcCrbOtvtq2+XETqze/8rojIdMaWDyJyp4h0isiQiDwuImfa1v3UPP7vzd/pWRFZ\nb1uvROSjucZq/f55busVkf8y/8dNIvJxyaFFmdv+uYj8zva5XkTutH1uEZEttmNuyPNcXi8iB8zf\n4WbA/pt7zGurWUS6zWuuxFz3MxH5lPm+1rr2zc/rzet9cT6PlVL6dRJfwBHg8hzL1wAKuBUoBAqA\nWqAPuBJD4L/e/Fxl7rMN+DoQBF4NRIGfm+teA7S6HRu4EXgGWGnu/0PgV46x/Lc5jnOBJHC6uf4f\ngN3AZoyb6FygArgQaAc85naVwChQ4/JbKOCPQLl5nEKgBfhzwAecB/QCZ5jbdwCvMt+XAefbzjVl\n+y0uBUaAzeb6W4HfAkXmuR0C/sJcdz0wDvwl4AX+yjwHMcczbPue5cCZ5vurgQbgdHOs/ww87XKe\nm8zxvB7wY5ivGoCAuf5R4MPHuGamrDd/u3uBUmA10ANcMY2xWf9rn2P5T4Ev2z5/yPz9gsA3gRcd\n2/aZ/38f8Avg9jzHej3wZJ7bfhTYh3HNlgEP5Rq7ue06YBDjvlkBNGPeD+a6ASavUwVsON65YFzP\nUeAd5v/xExjX3Ydtv1GD+f0R4C7gNtu635nv3wscBv7Xtu638/1smvYzbb4HcKq9MB7kMfMCHwR+\nYy63buZ1tm0/Y12EtmUPAB80b7AUUGhb90vyFyL7gdfZ1i3HeJj6bGNZaVu/HbjWfH8QuNrl/PYD\nrzfffxy47xi/hQJea/v8buAJxzY/BL5gvj8KfAQodmzzmhy/xR3Av2AIhjFMQWSu+wjwqPn+eqDB\nti5sjmsZhhAZBN4OFDiO+QdMQWR+9mAIzLoc5/kvwB2ObduA15ifH2V6QuSVjvP9x2mMzfpfDzpe\nY9iEiGOfUnOfEvPzT4Ef2dZfCRzIc6zXM1WIuG37J+AjtnWX4yJEzPUtwPnAtcAtGNfwaRiTlHsc\nx9xwvHMBPgA8Y1snQCuTQuRh4K9t6zczeU+txxRcwA8wrkFLqP0M+OSJPksWymtxqk+Ln2uUUqXm\n6xrHuhbb+zrgnaZaPygig8ArMR74K4ABpdSIbfvmExhDHXC37Xv3AxNAjW2bTtv7UYzZFcAqjJlU\nLn4GXGe+vw647TjjcJ7vRY7zfR/GAx2Mh/mVQLMYZrxLbPvm+i1WYMwe/WT/Ns0YWp5F5jyVUqPm\n24j5fe/GmAF3mCaO02xj/ZZtnP0YDxX791pYM2HrGGnzvHNteyK4/X9OZGwWlbZrshRjQgJkzEhf\nFcN8OYwxGQHjtz3eWPJdn8+2K8i+Xuzvc/EYxgTj1eb7RzG01EvNzzM6vjIkgH0MWf9n870PQxM/\njKGNbsEwT94LtIvI5jzGs6DRQmThYS+r3IKhiZTaXoVKqa9imHbKRKTQtv1q2/sRjFk1YDwIgCrH\nd7/J8d0hpVRbHmNswZhZ5eLnwNUici6GOeU3x/ku5/k+5hhTRCn1VwBKqeeUUlcD1eb33mHbN9dv\n0Y5hDhvHeLDa1+VzniilHlBKvR5DcB/AMPFZY/2IY6wFSqmnc3xNu/34po1/Vb5jIPs3yocTGVs+\nvBfDRHY5UIKhvYDNH3CS6MAwZVmsOs72lhB5lfn+MfITIsc6fuaYtv+jRdb/mUlrQZdtPO/AMGO2\nmZ8/iGGae3Ea41kQaCGysPk5cJWIvNGcDYbEcCKvVEo1AzuAL4pIQEReCVxl2/cQEBKRN4uIH8Mu\nHrSt/wFwk+VwFZEqEbk6z3H9CPiSiGwUg3NEpAJAKdUKPIehgfxaKRU/gfO9F9gkIu8XEb/5epmI\nnG6e4/tEpEQpNY7hq0g79rd+i1cBbwHuVEpNYAibm0SkyDzfT2L8tsdERGpE5GpTOCUxzJDWMX8A\nfFZMB7MYzvt3unzVHcCbReR15v/iU+b35ftQ78Kws+fLiYwtH4owxtuHMTH5ygy+aybcAdxoOqZL\nMcy9x+IxjKCFAvO6fAK4AsN/98I0jv974EwR+TPTmf+3TGrJAL8CPiFGwEsE43f6X6VUyjaejwOP\nm58fNT8/aV6nixItRBYwSqkWjBng5zAcjC0YTm3r//Ze4CIMc8UXMBzI1r5DwF9jPPDbMDQTe7TW\nt4B7gAdFJIrhZL8oz6F9HeOGfhDjYf5jDMe4xc+Aszm+KSsLpVQUeAOGDbsdw6zw70wKv/cDR0yT\nykcxTF0WnRg253YMZ+hHlVIHzHV/g3H+jcCTGKaan+QxJA+GwGnH+I0vxXC8o5S62xzb7eZ49gBv\nyvUlSqmDGKa972BoRldhhHmP5TEGMP5X7xAj0mpKHkmO4+U9tjy5FcM004bh2H5mBt81E/4b45rb\nhSEE7sOY6ed8ACulDmEI/ifMz8MY18BT03loK6V6gXcCX8UQqBuBp2yb/ATjmn8caAISGNeexWMY\nAtkSIk9iCOXHWcSI6djRLAFE5F8xHITXHW/bOR7HqzFm+nXqJFxgYoQ9/1wptfJ422qWDmKEYv9A\nKVV33I01c4bWRDSzimmuuREjwkXPUDSzhogUiJEr5BORWgzt++75HtepjhYimllDjAS6QQwn9Dfn\neTiapYcAX8QwW76AEVH4+XkdkUabszQajUYzfbQmotFoNJpps+SL3lVWVqo1a9bM9zA0Go1mUbFz\n585epVTV8bZb8kJkzZo17NixY76HodFoNIsKEcmrAoY2Z2k0Go1m2mghotFoNJppo4WIRqPRaKaN\nFiIajUajmTZaiGg0Go1m2iw6ISIiV4jRNrVBRP5xvsej0Wg0pzKLSoiYPTG+i1GR9AzgPSJyxvyO\nSqPRaE5dFlueyIUYrUwbAUTkdoxS6ftm+0BPN/Ty0Z/v5HWn17CqrOD4O2g0Gs0CYHRsggf3dfH+\ni+v4y1efSBua6bHYhEgt2e0oW8nRA0NEbgBuAFi9erVzdV7c9kwzw4kUd78w2XxOTnYfN41GozkB\n7KUQb7pvvxYi00UpdQtwC8DWrVunVWHye+87n9aBOF+9/wC/39XBJy7fxI2Xb5zVcWo0Gs1ssadt\niHf/cBsVkSD/9mdnc8m6ipNy3MUmRNrI7mm8kvz7VJ8QIsKq8jA3v+c8gj4P33joEFvXlPGKDZVz\ncTiNRqOZNiPJFB//5fOUFPi54yOXsKwkdNKOvagc6xi9uzeaPYwDGG1U75nLA4oIN11zNusqC/nH\nu3YxlnK29dZoNJr55dsP19PcP8rX373lpAoQWGRCxGx4/3HgAYyGNHcopfbO9XELAl7+5aozaOmP\nc/tzR+f6cBqNRpM3HUNxfvr0Ed52Xi0XnyQTlp1FJUQAlFL3KaU2KaXWK6VuOlnHfc2mKi5cU853\nH2lgfEJrIxqNZmHww8caSSvFJy7fNC/HX3RCZL4QEW549Tq6hpM8tK9rvoej0Wg0jI6l+PXOVq48\nezmrysPzMgYtRE6Ay06rpra0gNueyavMvkaj0cwp97zYTjSZ4rqL6+ZtDFqInABej/CuravY1thH\n13Bivoej0WhOcX7zYhvrqwrZWlc2b2PQQuQEefM5y1EKHtjbOd9D0Wg0pzA90STbm/p58zkrkHnM\nhNZC5ATZUB1hY3WE+3Z3zPdQNBrNKcyD+zpJK7jy7GXzOg4tRKbBFWctY3tTP0Px8fkeikajOUX5\n0/5u6irCbK4pmtdxaCEyDV6xoZK0gmcb++Z7KBqN5hQkNZHm2aZ+Xrmhcl5NWaCFyLQ4b3UpIb+H\npw9rIaLRaE4+L7UOEUumFkQZJi1EpkHQ5+Vla8p5qqF3voei0WhOQZ42nz3zkaHuRAuRaXLJ+grq\nu2MMjIzN91A0Gs0pxnPNA5y2rIjywsB8D0ULkemyZWUpALvahuZ5JBqN5lRCKcWu1kHONZ9B840W\nItPkrJUlAOxqGZznkWg0mlOJ1oE4g6PjnLOqZL6HAmghMm2KQ37WVxXyUqsWIhqN5uSxq9WwfpxT\nqzWRRc85K0vZrc1ZGo3mJLKrdZCA18PmZfObH2KhhcgM2FRTRNdwUicdajSak8a+jmE2LYsQ8C2M\nx/fCGMUiZWN1BICG7tg8j0Sj0ZwqHO6OsbF6YWghoIXIjNhYYwmR6DyPRKPRnAqMJFO0DyVYX1U4\n30PJsOCEiIj8p4gcEJFdInK3iJTa1n1WRBpE5KCIvHE+xwmwsixM0OehvktrIhqNZu5p6h0BYH1V\nZJ5HMsmCEyLAH4GzlFLnAIeAzwKIyBnAtcCZwBXA90TEO2+jxOgvsr4qQr02Z2k0mpPA4R7jWbO+\nWgsRV5RSDyqlUubHZ4CV5vurgduVUkmlVBPQAFw4H2O0s7aykKP9o/M9DI1GcwpwuDuGR6CuYn5a\n4eZiwQkRBx8C/mC+rwVabOtazWVTEJEbRGSHiOzo6emZ0wHWlhXQNhgnnVZzehyNRqM52j/K8pIC\ngr55NcJkMS9CREQeEpE9OV5X27b5JyAF/OJEv18pdYtSaqtSamtVVdVsDn0KtaUFjKXS9I4k5/Q4\nGo1G0z6UoLa0YL6HkYVvPg6qlLr8WOtF5HrgLcDrlFLWFL8NWGXbbKW5bF5ZWWb8Q1sH4lQXheZ5\nNBqNZinTPhjngnnsp56LBWfOEpErgE8Db1VK2Z0N9wDXikhQRNYCG4Ht8zFGO7WmEGkbiM/zSDQa\nzVImnVZ0DSdYXqI1keNxMxAE/mh27HpGKfVRpdReEbkD2Idh5vqYUmpiHscJkFEt2wa1ENFoNHNH\nbyzJ+IRiRenCsngsOCGilNpwjHU3ATedxOEcl6KQn6Kgj67hxHwPRaPRLGGsieqKBaaJLDhz1mKk\nIhKgL6abU2k0mrnDmqguK1lYmogWIrNARSRIb0xHZ2k0mrmjz+yiWhkJzvNIstFCZBaoKNSaiEaj\nmVusVtylYf88jyQbLURmgYpIkD6dJ6LRaOaQ/pFxCgNeQv6Fk2gIWojMCpWRAP0jY0zorHWNRjNH\nDI6OUVYYmO9hTEELkVmgojBAWsHAqDZpaTSauaF/dIxyLUSWJqVh4x87rDscajSaOWJgZIyysBYi\nS5JI0Ei3iSVTx9lSo9FopofWRJYwkZApRBIpHtzbyblffJBv/PHQPI9Ko9EsZl5qGeRlNz3EP9z5\nEgBDo+MUhxZcfrgWIrOBpYlEkym+/sdDDMXHufmRBlp0nxGNRjNNvnTvPnqiSe7c2cqBzmHi4xMU\nBrUQWZIUmbODlv5RDnRGue7i1UykFb/b1T7PI9NoNIuRtsE4O5oH+OAldQA8erCH8QlFOLCwwntB\nC5FZwdJEnmzoBeDNZ6/grNpiHjs4tw2xNBrN0uSRA90AfODla1hWHGJ7Uz8A4YDWRJYklk/kYGcU\nMFrmbq0rZ3fbkM4d0Wg0J8xLLYOUFwZYV1nImsowBzqGAbQmslQJ+rwEfB46hhJ4PUJVUZBzVpYw\nOjbB4Z7YfA9Po9EsMna1DnHuyhJEhJVlYdqHjOKLYe0TWbpYM4TqoiBej3BWbQkA+9qH53NYGo1m\nkTGWSlPfHc08Q2qKJwsuhhdYyRPQQmTWCHiNn7Km2CjTvLo8jAg09+kILY1Gkz+tA6OklWEWB7IS\nDMNBLUSWLEG/8VNaFTZDfi8rSgpo7huZz2FpNJpFhjXxrKsIA5MVMUA71k8IEfmUiCgRqbQt+6yI\nNIjIQRF543yOz0nQZ8wQIjabZV1FmCNaiGg0mhPAembUVRiaSGnBZOn3Qu1Yzw8RWQW8AThqW3YG\ncC1wJnAF8D0RWTC/qGXOcgqRozrhUKPRnABH+0cJB7xUmCVOimxZ6tZkdSGxIIUI8A3g04A9PvZq\n4HalVFIp1QQ0ABfOx+ByYZmz7EKkuihE38gY4xPp+RqWRqNZZPREk9QUhxARgKz+IT6vzNewXFlw\nQkRErgbalFIvOVbVAi22z63mslzfcYOI7BCRHT09Jyfhz+8xfkp7WYKqoiBKQb/ZkSw1kWZ0TBdp\n1Gg0k0ykFSO24q19sbGMFgKTE1TQQiSDiDwkIntyvK4GPgd8fibfr5S6RSm1VSm1taqqanYGfRzS\nylCa7MlAVUVGaF5PNEl8bILXf+NxLrrpYQ506rBfjUZjTCyv+9GznPvFB3n8kDHh7RtJZvVRD9lM\nWD7Pgpv3z48QUUpdrpQ6y/kCGoG1wEsicgRYCTwvIsuANmCV7WtWmssWBF6PMUPweyd/UrsQueuF\nVpp6R4gmU3zrofp5GaNGo1lYPHKwh22NfaTSipv/1ABAb2yMikhuTcR6ziwkFpRYU0rtVkpVK6XW\nKKXWYJiszldKdQL3ANeKSFBE1gIbge3zONwsrH+uXd2sLDSESG8syVMNvdSWFnD9y9fw8IFu4mMT\n8zJOjUazcPjNi21UFAb4yKXr2NHcTzQxzsDoGBUumohfm7Omj1JqL3AHsA+4H/iYUmrBPIk9phPM\nPlOwoiqiiRTPNw+ydU0Zrz2tmrFUmu1H+udlnBqNZmGglOLZxj4u3VzF+avLSCvYdrgPpaDKponY\nHetaEzlBTI2k1/b5JqXUeqXUZqXUH+ZzbE5MGYLP9k+2CjP2xJJ0DifYUBVhy+pSAHa3Dp70MWo0\nmoVD60Cc3tgY560q5YzlxQA8fbgPgDK7Y91nc6xrn8jSx2v7J/u9Hgr83kwFzpXlBRSH/KyrLGR3\n29B8DVGj0SwAdrUaz4BzV5WyorQAn0c41GVUArdHeXpsE1OtiZwC+Bz/5KKQj/0dxoWxqswoY7Ch\nOkJjj85k12hOZazM9A3VEbweoaY4REO3UfW7cAGWN3FDC5FZxjlTKAr56Bw2yjhbxRnXVBbS3D9K\nWvca0WhOWZr7RqgqCmbqYdUUB+mOJoGF2TfEDS1EZgkru3SqJjJZ96bYfF9XEWYslabDFC6ATkLU\naJY4ifGJrOoVR/tHWV0eznzOLrSohcgpSy5NxMJytK8oLQCgcygOwL/ff4AzPv8AP3js8EkapUaj\nOZkc6oryspse4opvPk7MzE5v6Y9nCxF7ocUF2HzKDdeRisi389h/WCn1z7M4nkWLJTqcQsSaUUSC\nvsy6ajMJsXs4SV8syS2PNwLw7Yfrec+FqymxXUwajWbx882HDhFNpIgmUtz9Qhvvu3A1HUNxVpSG\nMtuUhCfv+6WiiVwN7DzO6+1zPcDFghXiK47giYCZKFQcyi7MCNAdTfJkQy8TacUXrjqD0bEJHj3Y\nfVLGq9FoTg6J8QkeOdDDBy6pY3V5mMcO9jAYHyetyCpvUhyyC5EloIkA31BK/exYO4tI2SyPZ9Hi\nFnhnlYi3+0YqCgN4PUJ3NEFT7wjhgJfrLq7jWw/X82R9L1dvyVlXUqPRLEJ2HBkgPj7BZZurSYxP\n8PD+bvpHDAd6uS0fpCCwsJMK3XDVRJRS3zzezvlsc6qhHAFXVt0bu2/E4xEqCgP0RJM09o6wrqoQ\nv9fDllWlOn9Eo1li7Gk37unzV5exoTpC38gYh80Q/+xCi4vTRe06ahEJicgHReStYvAZEblXRL5l\n7zaoMbCis5xCJNOsKpSt9JWG/QzHUzT2xFhXGQHgjOXFHO6JMZbS/Uc0mqXCwc4oy4pDlIT9rDXv\n9R1m2SO7JmIvb7KYOJbouxWju+CHgEeB1cDNQBT46VwPbLHhpnxaJQsC3uyfujjkZ2B0jPbBOKvK\njWitTTVFjE8ojvZPJiImxidQTsmk0WgWLM579kBnlM3LioDJvulWtvpSFyJnKKXeB7wD2KyU+phS\n6n4zGmvVMfbT2AiYQsTvECIlBX5aB+KkFVSY1X4tYdLSb4T+PlnfyzlffJDrfvwsEzoxUaNZ8Ny+\n/Sinf/5+vnDPXsAostjcZ5isAapM81Vzn9E2294JNeRfYuYsYAxAKZUC2h3rFkz13IWG81EfdLFz\nlhT4aRs0hIXVO8Aqi9IyYFxg33r4EGOpNE819PHIAR21pdEsZBLjE3zlvv0oBbdua6alf5RoMsXo\n2ATLS4yIzJICP36vZKpYFNi0j+AS1ERWisi3ReQ7tvfWZx0+5MAK7XWanixNJO1YbveRlJmZqlVF\nQYI+D60DcQZHx3juyAB/+7qNVEYC3POSU45rNJqFxFMNvQwnUvzrVWcA8NihHrodJY88HsmYsEJ+\nT1ZxxYJFKkSOFeL7D7b3OxzrnJ9PeW549Xoe2t/N+XXZUc+WL8QpROwXjHVRiQiVkSC90SQvthil\n4i9eV05T7wjPNvWhlMo48DUazcJi+5F+Al4P77loNd9/7DA7mwdYU2GYsSwhAka4f9dwckouyLF8\nIpduqspKTFxIuAqR4+WIaLK5cG05R7765inLrWRDp0vDfsHYewdURAL0jYxxoNOo/HtWbQlb62L8\n7qV2OocTLC8pmIPRazSambK7dYjTlhcR9HnZVFPE4Z4YXQ5NBCb9IM6sdGfdPTs/+9CFczDi2eFY\nIb6/E5F73F5zOSgR+RsROSAie0XkP2zLPysiDSJyUETeOJdjmC0sf7rz+rAnFtmdaxWFAfpHxmgd\nGKU07Kc45GdTjRHZcagrltmuqXeEhu7o3A1co9G4MhQfZ3tTf6YSt1KK3W1DnFVbAsDaykKaekZs\nFbwn80GsnDGnEHEG3ywWjmXO+pr598+AZcDPzc/vAbrmakAichlGyZVzlVJJEak2l58BXAucCawA\nHhKRTQupRW4urLa5HocZym7OyjZtBTnYGaV1IM7KMiv014gtr++KcummKhq6Y1z5rSdIK8Vdf/1y\nzllZOtenodFoTFITad71g20c7Iryics3cePlG+kfGSOaSLGhyrhX11QUEk2maOodIeT3ZJmurElj\ngcOc5VuA/dPz4VgZ648ppR4DXqGUerdS6nfm673Aq+ZwTH8FfFUplTTHYYUlXQ3crpRKKqWagAZg\n4ep4JvkIEb/t4rHMWa0DcWrNar8VkSBFQR+tA0Y010+fbmJsIs2EUvzwsca5PgWNRmPjof3dHOyK\n4vUItz1zhIm0ykRa1poTP8t81dQ7QiSYXVDVqtAbdvhA/Auw9W0+5DPqQhFZZ30QkbVA4dwNiU3A\nq0TkWRF5TEReZi6vBVps27XiEiUmIjeIyA4R2dHT0zOHQz0+1nXh9IeHbKqs3VleUuAnmUrTNZTI\nKomwvDREu3mhPlHfy+WnV/OeC1fz2KEeneGu0ZxEHjvUTVHIx3+981x6Y2Psah2kzZzgWRO/KrNS\nd1PvSFbJI5g0YxUGHT6RRaqJ5FMq8hPAoyLSiJGYXQfcMJODishDGCYyJ/9kjqkcuBh4GXCHXYjl\ng1LqFuAWgK1bty6ILD1nQTW3cL5C8wKLJlNZJeGXlRTQMZRgYGSM5r5R3nfRalaVhfnls0fZ2z7E\neat1LUyN5mTwVEMfl6yrYOsa457b2z5MYtywqltCpNLM/eofGcsss7Byx5zRWEtWiCil7heRjcBp\n5qIDlqlpuiilLndbJyJ/BdyljISL7SKSBiqBNrIz5VeayxY0VmSv05zld7lg7M1oim1CZEVJiH3t\nQxzuMZzrG6ojbKw2HO77OoYzQqR1YJR97cO87vSaRVUJVKNZiOxpGyKaSHHJ+goAoolxjvaPcu2F\nq6gtLaAo5GN/xzBBn5dwwEup2RPEfu86NZGgGbHpjMZacuYsETnfem/6IV4yX8lc28wivwEuM79/\nExAAeoF7gGtFJGia1DYC2+fg+LOKVa7Eac5yi8SwR2rZNZGKiBG1ZQmR9VURVpZNXsQAI8kU7/rB\nNm64bSfffrh+Nk9DoznlqO+KcvV3n+I9//0MfzpgxBI1mtV311dFEBHWVRZytH+UvpEklZFgxjRt\nv48jQacQsXLHso+3WDWRY4m+/xGRMhEpd3sBP56DMf0EWCcie4DbgQ8qg73AHcA+4H7gYws9Mgsm\nNRHvFE0k908ftmsith4kpQUB0soo5iZiqM0iwpqKQo6atbYe2t9F+1CCSNDHrduOkEwt+J9Ho1mw\n/OSpI3jEyCz/xTNHAbImcWA40DuHEgyOjme0EDBMVW4VvK32EKl0ti9zKYb4lmB0LzyWeJx1r7VS\nagy4zmXdTcBNs33MucTKVHeas9xmHRGbs82uiVjvG3tGKA8H8JkX3Krygkxi4iMHuqmMBPnyNWfy\n0Z8/z0stQ1y4tnz2TkajOUVQSvH4oR5ee1o1y0sK+OX2o4yl0jT2jOD1SKY3+rKSENsa+ygM+qa0\ntS4K+egbGaPIoYn4TLOVszj3sZINFzLHCvFdo5Rap5Rae4zXgg+xnW9Sps7qNHc6S8NbWPZSyLal\nWjbWxt5h8Fn+AAAgAElEQVRYVvnolWVhoxpwWrG3fZgtq0q4eF0FIvBsY1/Wd48kUzM6F41mqTI6\nlsokDoJRSbttMM4rNlRy3upSxlJpDvfE6BhKUF0UzNTEqykOEU2k6BpOZPlBYPL+DTkz080JpLMU\n0mL1YS5O/WkRkZowVFanquqmiQRsVX/tWe2WqtzSH89U/QVYXhJiLJWmK5rgcE+MM5YXUxoOUFce\nZn/ncGa77z3awJlfeICv/uHAzE9Ko1lCPH90gAu+9BBX3fxkJsrKunfOXVnKGcuLjWUdw/TEkpnw\nXYBq833HUIJShxCxJoTOCaOliTh9Iou1Lp4WInOMpYlMESIukRj27ewXX7aTffIitrSSPW3DpBWs\nqTRSeDZUF1FvlkmJJVN88yHD0f6jJxrpjiamfT4azVLjvx48SHx8gr3tw/x+Vwcw6UBfV1VInVlE\nsaU/Tk80mREckB2F5TRnWZrF1Hs/dxfUxYoWInPMmKmJODUPN9XVHvrrt2kl9ou1zObAs4TIvnZj\n5rTM7FuwsSZCU+8IE2nDtjuWSvOVt51NKq14YO+cVa3RaBYVw4lxth3u469fs57lJSEe3NcJQGNP\njKqiIEUhPwGfh8pIgM5hQ4jYNZFcJmcnTiHizQiRpSFFjitEzP7q14nI583Pq0VE+0JOELuvA6YW\nZLQIuGgi9uREey6J1YtkX4fRbnOZWW6htrSAVFrRF0vyUssgAa+Hd25dybLi0BRfyZ62IQZGxqZx\nVhrN4mEirdjZPEB8bDJq8dnGftIKXrWxiovWlrPbbFvb2DvCusrJwhzLSkK0DyboN0N5LewRlM4E\nYss65cwJc/OJLFby0US+B1yCUXgRjB7r352zES0xPnjJGj5wSR0feXV20r0zWsvCzZxlb50Z9tuq\n/kYsIZKtiVjCpGMowb6OYTYti+D3eji/rpTdbUOZ/W/ffpS3fOdJrrr5SUbHtONds3T5yn37efv3\nn+ZDP30uowXsbh3EI3De6lLOWFFMu1kVoms4wQpbpvmy4gIae2OklUP7CNnDenM/TgO+3KbsXCLk\n8285g/+94eLpnuK8kI8QuUgp9TEgAaCUGsBIANTkQWHQx/+7+qws7eFY2E1Y9osv5LNrIrZeJKYm\n0tIfp8DvzVQLtYRJx1CCxp4RNpnZ7RurizjaP0pifAKlFLc83ogItA7EufeljmmepUazsBkcHeO2\nbc2IwLbGvsyk63DvCKvKw4T83kwFiMbeGL0OB3pVUYAWMx/Lfi/b70VnGZNJTSS3OcvpWAf40CvX\nctG6imme5fyQjxAZFxEvpuAUkSpAV/ybIZ58fCK291ltNAPZF661nT2pyRIi7YNxo5mV2RVtQ3UE\npQzHYetAnMbeEf71qjNZVV7AH/drX4lmafJ4fS9jE2l+9IGtiMDD+43i4E09k2Yr6x6p74qRGE9n\n6l9BtsZRaCvhbp/oOU3WFu6O9VPHnPVt4G6gWkRuAp4EvjKnozoFcPOJ2Ovn+Nyy2h1x55b2UZTD\nV1LfHWUirTIdEa0kqdaBUXY2DwDwsjXlXLKugueOTDbZSaYm+Pgvn+fG21/IhD1qNIuBXz57lHd8\n/2leMltMAzzX1E9R0MdrNlezrrKQ3W1DKKVo6h1hbaWRfW7dI7tMc2+VSxSWXROxCw6nOUuworOy\nb/bJyt6LM6TXyXGFiFLqF8CngX8DOoBrlFJ3zvXAljpuPhE3DcWOszezVfnXrol4PUJxyMe+DiOb\nfbnlKzH/dg0nONQVxecRNtVE2LKqjMHRcdqHDJX9tm3N3Lurg9++2M4vnz16gmen0cwPbYNxvnDP\nHnY0D/C5u3dnlh/sirJpWRFej3DmihL2tQ/TPzJGfHyCVeWG8CgO+QgHvOwxhUhFod2BntuEZRcQ\nbj3SnXkiS0V4WByrAKO9RlY38Cvgl0CXuUwzA2ZyHQUdjjrLvFXoEC6l4QCHu41cEWtWVRkJ4vUI\nncMJmvtHqS0rwOf1sKHamI01mNv/7qV2zl1ZwrkrS7jrhdbpD1ajOYnct6uD8QnFBy+pY2/7MC39\noyilONQVzbSZXldVSPtQnI4hI1/KujdEhOqiIE29Ro6I3YFeZDNn2Qsq2gVCvj6Rpcaxzm4nsMP8\n2wMcAurN9zvnfmhLGzlmSbJj48wxsdRrZ6G30rCfmFnqxLoJvB6hKhKkcyjJ0b7RjHnLLkTiYxPs\nbhvi0k1VvPa0Gva2DzMUH898790vtPL53+7JWqbRnGxu3XaEL9+7Lytk96nDvWysjvD+S+oAePpw\nL72xMQZHxzNtpleUFKAU7G03NA57yG5JgZ9owrhn7GYrux/SLUjGLTrL71vaQsQ1ZEgptRZARP4b\nuFspdZ/5+U3ANSdneEuXmZTJcVYEtnwkzkJvhTn6OoMx8+qNJekYinNWrVHSoSzsJxzw0j5ohASn\nFZxVW0Ik6EMpeLFlMNPf/VN3vERaGRm3X7rmrOmfiEYzTbY39fP53+4FjMnT312+CTCSbl+5sZJ1\nlREK/F4OdsbYvMy4xq0Jk+VA39U6VYjYfR9236Nd+3eWdrdw0zj8zpvd9KcvFaNWPiLyYkuAACil\n/gC8fO6GdGrg5hPJa1+XLonOGZL9JrCr5qVhP4PxcQZGxzMZ7yLCsuKQUYPLNGmdtqyYzcsME4Bl\n5rrnRaMP2GtPq+b/drbqcvOaeeH27UcpKfCzta6Mu19oQylFTzRJdzTJmStK8HiEDdUR6rujdJpm\nK6vvuZX/YeVL2aOw7KVLIi4O9IJAbt+HWxXepeYDcZKPEGkXkX8WkTXm65+A9rke2FJnJkLEac6y\nwgzDjp7N1sXu90rWTKq4wE/bwCgTaZWJ4gKoLg7SPZygdTCOiDFjKy8MUBr2Z/ooPNHQy5ZVpbzn\nwtXExycyEV4AT9T38JHbdmSyfjWamTI6luIff72Lr//xUCYkVinFEw29vHpTFW85ZznNfaN0Dieo\n7zKCSE43Jz5rKws50jeSqRVnCZEKc+LU1DOCSHb4bkmWJmITIjZTlVsHQrd7eonLkLyEyHuAKoww\n37uBaiaz1zXTRGZgJp3aatf4MmcUiKWJRIK+rNlQaYGf3phR5sQuRGqKQ3QOJ2gfjFNTFMLv9SAi\nxs3YO0I6rTjQEeXcVaVcuMaIrXipxRAY8bEJPvG/L/LA3i4+cceLWWW1NZrpcsvjjdz+XAvffrg+\nk9vRMZSgJ5rkwjVlnLOqFDBMU22DRmThyrLJXh/dw0k6hxL4PJIRHkUhPyIQTaYI+73ZOVj+ycq7\n2Tkgk+/d6t65LXcuVeTudrpYySfEt18pdaNS6jzzdaNSqv9kDG4pM6uaiCk8nMutmZTT4W6fbdl7\nk1RGgvTFxmgfjLPCtBuDER7cNZygdSBOfHyCzTVFlIT9LC8JcdAsmf1kg+HAvGbLChq6Y7xgi9HX\naKaDUoo7d7Tyyg2VVBQGuNs0pdabptWNNUWcbvo7DnVGaR9MIAI1JYaPo7ooSDKV5kjfCGWFgYyw\n8Hok4z8MO0zAVoSVU6u3m7OceR8WrkLETUNxOe/FRj4FGB8RkT85X3M1IBHZIiLPiMiLIrLDXuxR\nRD4rIg0iclBE3jhXYzgZzOQCcjrWrZvDaZMtyDjcs6uL2n0lZYXZ9uDRsQk6hxNZzsbqImNG19Rn\nlcc2olw21RRxyCw3/1RDLwV+L5+78nRE4Mn63sz+Tzf0svXLD/H/frdveiesWfI8WW9cI1/47Z7M\nsiN9o7QNxrnirGW8elMVzzUZc1fLP7exOkJBwEtlJEDbYJy2wVGqIsHMA98K3T3cPZLlEwQj/B2m\nJu5aEVZOrd4eeeUmFBZrU6mZko9R5e+BfzBf/wK8iBH6O1f8B/BFpdQW4PPmZ0TkDOBa4EzgCuB7\nZjmWRcnMHOvZny2h4nWsCJuzKmcZens8u/3msjSU1v54lrZSXRwkmkxxxIyftxIXV5eHMyaE/R3D\nnLa8iOriEBurI+xqNTQRpRT/+ru99MaS/OSpJg7YGmVpNGBcI1/+/T56Y0l+tq05c41Y19DWNWWc\nu7KE7qgRUdjQHaMs7M/01aktLaBt0Oz1UZw9+QGjL7o9zwMmnebOxF3r3nAKBLeSJnackzuLpWK2\nciMfc9ZO2+sppdQngdfM4ZgUUGy+L2HSiX81cLtSKqmUagIagEVbkn4mF5bzArdkh1MTsZyBzhI9\n9hvHXr7aEhxjE+msUMeaouyQSGuGt7w0xFB8nJFkioNdUU4zHZqblxVz0HRyHu6Jcagrxidfvwmf\nR/jdS9kxGTubBzJOe83SJ5ZM8fD+rqxSOvXdMQ50RvnU6zfh9Qj3mY2hDnfH8IjhILfCdA93j9A5\nFM+qsLuyLEzbQJzB+HiWj6+s0LiGU2mVlXEO9gRdh9nKvB8mHD69oEsOiB23ahNTfCJLzF2Yjzmr\n3PaqNM1IJXM4pr8D/lNEWoCvAZ81l9cCLbbtWs1lucZ8g2kK29HT0zOHQ50+M/KJTNl30tZrx3K4\nK0fR6YKAvcT8VCEC2RErlt/kUFeU0rA/s0+teSMf7IoyODrOWrOQ3eaaCK0DcUaSKZ5vNmaTbz5n\nOWevLGF706Q77aF9Xbz9+09z5bee4GjfaJ5nr1msKKX46G07+Yuf7eDv73wps/zpBsP0ec15tZy2\nrCjjT6vvjlFXUUjQ582UJmkdGKXb0V2wqihITyzJUHw8a/JjD9F15nZY5ilnuK7lQHcKEad5Kxfu\nPpHc2y+V0N98zFn2zPVtwKeAv5jJQUXkIRHZk+N1NfBXwCeUUquATwA/PtHvV0rdopTaqpTaWlVV\nNZOhzhkzMZ86ZzzWteg0W2WEiGPmY9c+st7bbqjiAt+U9w3dsayb1+pZ8uJR46a3QihXmUldHUNx\ndrUNUhTysbaikPNXl7GrdSjTd/5HTzYS9HlIptL8YntzPqeuWcTs6xjmyYZeQn4P9+3uyORv7OsY\npjISYFV5mHNWlvJSyyBKKQ73xFhfZUxMlhWH8HqE1oG4KUQmAz/KwgGiiRS90WRWn3O7L9DpE8nk\nVrmYs8YnsguV5zPpc8sTWTou9NzkI0ROV0qtU0qtVUptVEq9AXhuJgdVSl2ulDorx+u3wAeBu8xN\n72TSZNUGrLJ9zUpz2aJkJrMQpyYijr8W1uzJGW1bYI9/t4Uu2gWKXROx3sfHJ7KWWw2xLBu2JVSs\naqjtgwmO9I6yriqCxyNsrikimUrTNhhndCzF9qZ+Pvyqtbx6UxV/3DdZhl4pxRd+u4e/vHUHQ6O6\ntMpi5OY/1fO+Hz1DsxmMAUb5dRH4n+svJK2MiD4w2hKsN4M11lcVMpxIMTg6TsdQIqPt+rwelpeE\naO4fpS+W7fuwzFbDiVSWNm0vlBhxBJe4RWGFzPthfCL7psnHaZ5vnsgpZ84Cns6xbNtsD8RGO3Cp\n+f61GPW6AO4BrhWRoIisBTYC2+dwHHOKdU1eUFd2wvs6L2jrInVem35f7r4FdmFh12rspi27WcCt\nDLYV4XKg0/B/WBWCLcd751CCloFRVpUZD4I1prmrqXeEXa1DpBVsrSvnorXlNPaMZATGH/Z08rNt\nzfxxXxfffbTB9XfQLEz2tA3xtQcP8VRDH1+5b39m+a7WQdZXRbhobTlFIR/PHzUSVQ/3xFhv1m6z\ntNiGnhjRRIrq4kmNozISpLHH6C5YYYsqtPtBSsOT16rP68lMkpxh7hkh4uITSaWdmsjxzzvfPBHL\np2hVg1jsuNbOEpFlGD6HAhE5j8nfohgIz+GY/hL4loj4MLop3gCglNorIncA+4AU8DGl1KKtuSEi\n3Ps3r2R1xYn/lFPMWea/xpngF/AaN4Rz5uNs12mR1cfdpWSKfXZnmQ7qu7IrBVtmrdbBOO2Dca48\nezkAayqNcz3SO5LRxM6sLc6Y3Xa3DfHKjZXc82I71UVBtqwq5a7n2/jsm07LbD8wMsb+jmEuXleR\nV9l8zdxS3xVlQilOW1acWXb3C20EfB7etqWWu19sI5ZMEQn62NU6xCs3VOLxCGcsL+ZQZ5SBkTEG\nRsczjaFWmYmCViWEKluoeXlhgB1HDJ9axF5V16VdLRgmpiRThYV1rTvrXVl1rpz3TD6WA7fL0bnv\nuatKufOjl3CemSi52DlWz9Y3AtdjmI2+blseBT43VwNSSj0JXOCy7ibgprk69snmrNrpxSdMyRMx\nPzrNVtbMyHn9u9luQzaHu2trXpspzOf1UBT0EU2m8Igt29fnoTjk43BPjPEJldFMKguD+L1C53CS\nsVSacMBLVSTIRLUx8Ka+EV6xoYJnm/q4/PQaXramnAf3ddHQHWNjTRGpiTTv+uE26rtj/N3lGzNF\n9zTzw8HOKG/5zhNMpBV3fvTlGa36yfpeLlpbzlvOXc7/7mjhxaODnLGimO5okjNWGMKmriLMIwd7\nMuXYLbOVleS6O0djqLJwgGGzwq7dUR528evZcQoLy7HuvJdmkutxIibql61ZOt00XM1ZSqmfKaUu\nA65XSl1me71VKXWX236auceZJ2JdvE5zlnU/OG21bpqI3Zxl38bjkcxnZ5HHTBl6Z2mVcCCTV2KZ\nvTweoaLQqCB8tN8oQy8i1BSFCPk9NPeO0DGUYGB0nLNqS9i6xngoWWaPPx3opr47RsDr4cdPNOni\nj/PMj55oJK2M6+/WbUcAoyNmQ0+MLatKOWuFMUna2z5E64ARfWdV0l1dHqYnmqTFXF5pCovikB+v\nRzhkmkjtSa92U1WWELFNbKb29DCuyYA39z3g1GZ9mYjG2WOp68vHakp1nfl2jYh80vk6SePT5MAt\nqcnp+7BmVU6h46aJ2M1ZU2ZuGSHiaM0bnKzPZacs7M8IkTLbzW+VoW8bjGdmnx6PUFdeyJG+0Ux+\nyenLi6mrKCTg83C4x/ieRw/1EAn6+Na1W4gmU+w8kl388e3ff5r793TkPDfN9OkcSvD+Hz/LV/9w\nIHONpdOKRw5285ZzlvP282v50/5u0mlFY88IE2nFxpoiygoDLCsOcbArSuuAkZRaa/rHLN/Hi2Y4\nryUsPB6hvDBAc78hXLJNqbnNqnbnuFt3wal9zo3PzlvJKmmyVPqfnwyO5VgvNP9GgKIcL8084eZY\nd2JpIE6h49r3wJvbnGUcw/iOKZqIW32ucIARs1lQaYG9PleA3liS/pFkJroLjKz4nliSdjMDflV5\nAV6PsK6yMFPm4sWjg5xfV8arNlUhAs+aOSepiTSf+b9d7Gwe4DO/3s2I2YhLMzv85wMHeaK+lx88\ndphnGo3f/EjfCL2xMV6+voIL6sqMigZ9IxwyJwGbzS6Cq8oLaB+M02YKkZWlhvCwfB0HOozIPns5\n9orCAGMpw7GdJTgC9mgruyZiEyLO69b8O1WI5I5Gse4tLULy51jmrB+af7+Y63Xyhqhx4uZYd06e\nPBmfSH5CxI4zucpKvnLG1Wcyfx3CpSgrimtSE6mMBOmJJhkYzc4uNoo/GkLE65FMHsCaikKa+4zZ\n7eGeGJtrIkSCRt7JQdPk8fzRQdqHEnzgkjqG4uM8crA7ayz1XVGiCR0qfDyUUuxpG8rKJk+MT3Dv\nrnb+7PxaCgNe7jErDtTbes5Yvr297cM0m0mjVhDF8pIC2gcT9MSSBH2eTM6RVbLkUFeMoM+TJRTc\nAjnCLt0Fw353c5aFs7ugLxP+nn3TuOVWadzJJ2O9SkQ+JyK3iMhPrNfJGJwmN1PyRDKTquwrf9In\nkr2/MykxF05NxBIiziiXwkBuc5bdwWkXIiUFfrpMx7q9+GNFYcCsIJzIJJaBWc47mqSlf5RkKs3G\naqu0SlEmP+Wphl48Ap98/SaKQj6eapgs/njnjhZe/43Hufq7T2U9HDVT+dqDB3nLd57kQz99LmPO\neb55gGQqzZvPXs5F6yoy0VGWdri+OpKpVHC0f5Su4QQVhYFMrakVpQV0DMXpi41RFg5kJjSWFto2\nGDdLs09ek5aPQyTbxGr3fdg1X/u1NkWImF/r9IlYcyRnMIp7wqDGjXzyRH6LUebkIeD3tpdmnphS\nO8stOitTmNHhPMzjRnFT/53CJWxzrGctdzE92G9+u6+ksihIfHyCpt4RauxF9IqDRBOpTH2tlWb5\ni7qKQtoG40aPk85h1lQUUhoOsGVVaSayRynF9x49DBgJbQ/s7TzueZ+qRBPj/OTJIwA8fbiPve2G\ngLb+nr+6jHNWltDQEyOWTFHfFaW2tIBI0Ec44KMs7KdtME7XcDIrt2NZcZDxCcWRvpEpkwkLp5/N\nul4KA9nBGvbt7BqxvTS7a59zx/VsmXqdmojPpeGUxp18frGwUuozSqk7lFK/tl5zPjKNK85oK+uz\nW2y705wlecSLOIWFZQ5wHtsK/3Was6zZYcDnyTp+JEeyIti6zfWOZFcQLsoO+bQ+15aGGJ9Q9MaS\nHOqKZRK3NtcUUd8VYyKtaOwdoal3hC9dcxbLikNZQkQpxV3Pt/LgKShYjvSOcMvjhxkYGcsse/pw\nH/HxCX74/gsQgYf2GxUEGrpjVBQGKCsMcNqyIpQy9m8bjLOybLIIYm1ZAW0DcbqjiaxJgKVtHunN\nFiJ+WyKgs5JuOGMidQRx2LazT4zs19eU6Czzr5uPz3nP5KOla7LJR4jcKyJXzvlINHnj1Cwsm/Tm\nZZGs5ZZ5y6l45NNV0dl4x+Oi1Vg35xQNxbRTO49tFyIlObLinUX0rFpde0whYj2grNIqrYNxWvpH\nMyaVTWZplZb+0UxNr4vWlnPRunJ2Ng9kzDS/393BJ+94iRtu28lzR06dHmtjqTTX/892vnLfAT7z\n612Z5c829hPye7hsczWbqosyUVMNtmxyq2Ngpn6VTeNYUVJA51CC7uFkVoKg9T/uGxnL8oGBXeNw\nmEhtmoidoEtoup18gkZg8rp0RmEdT0u3C06NQT5C5EYMQRIXkWERiYqIbgoxjziv86vOXcHDn7qU\n155Wk7Xc8mM4VfR8isk5+0hbu0zJOTGFjd8xKGs26axBZDdnuZm87FnH1oOnvjtGOODNbLfcTErb\n2z5MKq0yJVesm7x9KM7e9mFCfg/rqyJsWVVK13CSnmgSgF88c5Sa4iDFIR+3bTt1ij8+Ud/Dkb5R\nNlZHeGh/F13DRrLfoa4om2uKCPg8nL2yJGPGauyJZepaWb9t68Ao3cPZlXTLCwP0j44xnBjPmhy4\nlSSByWvBmSBoaSDOulZu+U123JIF3c1Z2dv5jhF08uznXscfbnzVccdwqpFPP5EipZRHKVWglCo2\nPxcfbz/N7PNms3xIrsxY60a3kzLvkCkhwXkcy62kiJsm4myIZT0YnCW17YIjq8yKXYjkqCDc3DdK\neeGkY9bKK9hnPuwsM9cyW90uK6HR6xE2mLPpxt4REuMT7Gju55ottbzhzGU8Ud+TVTLm+aMD3Lur\nfdHnCuxpG+Ku51uz/gePHOwmEvTxH+84h7SCZxr7AENYWB0r11QYiYCDo0ZJklpTYJcU+CkMeDnY\nGSU+PpElRErDAfpiSUbHJrImCm7tBWBS05hSSdc0kTobQeUTVTg1/N1KNsy975RqDscwZ9UUh6Y0\ntwIyWvCpyrHKngAgIufnWDwENCuldED+SeSb127hy9eclff2aRchMp1eJtYeznvREiLOm8/N9GDV\n84Js+7WbJmJ/H8kRNpypIFySXUG4YyhB68BophbTmgrjRj/SO4Lf62F8QnHe6jKiiXH+b2crh3uM\n0ipHekd49w+3MT6hGH5bivdetDrneSx0eqJJ3vmDbcTHJ+gYSvCxyzYAsLttmLNqizm7toQCv5cX\njg5y+ek1tA8lJutXmYmAVl8Pq/SIiFBZFMzkgmSXJPFnZvWuORz+3A50N43DKcTzMWc5zVGW49x5\nfbpNEKYTnfWHG1/FmKN0/KlEPuas7wHPAP9tvp7BKNF+UETeMIdj0zjwez1ZYbHHw1UTmYHvcKo5\ny3gAOL/SzfSQVZPLTYjYe0K4ZCwHfV4KA14aHMUfCwJeSsN+OocStA7EMw/EFaUFBLwejvSNctgM\nTz19eVGmlpPVK/6OHS1MpBXVRUF+9vQRl19h4XPHjhYSqQmWFYe4/bmjKKUYn0izv2OYs2tL8Hk9\nbKqJcLgnlsntWGv27rB8Hy9YRRAd9auOZrLJJ/9PdlOV/X8Wsmuezn7mAZdKum6NofIQIlMmSCr3\ncuubndftdKKzQn7vFC3rVCKfX6wdOE8pdYFS6gJgC9AIvB6z/7lmYTLpE5kFTcTcxXmTZTSTKeUj\n3ByckxvaHyr22ahdWPi8Hlu0TrbiXBoOEE1OLchXHg7QMZQglkxlHoBej1AZCdATNep2eT3CitIC\n1ldFEJnMe3jsUA8Xri3nhlev42BXlI6heM7zWOg8erCbs2tL+JvXbaClP05T7wjNfaOMpdKcvtwQ\nnKvKwxztH6U7avhFrH4wVvDCPjObvCoy6UAvLwwwYJbst0dP2XvU2Ht3uDVAg0lh4TRnBUwz1oRL\nIuCxcNMk8r3kdZ7IiZOPENmklNprfVBK7QNOU0o1zt2wNLOBNTuyZuMWM9JEXIo/OsOG3W747OrA\ntjIrtu2dZgtLY4k4zB72Ga/T1HWkbyTz3qLSrNvV3D9KbWkBfq+HkN9LbWkBTb0xkqkJDnVF2bKq\njAvXGlVWn7PV5/qfp5p41w+3ZTLlFwJjqTSfvONFPnrbzky5l/GJNC+2DHLxugq2mOXG97QPTymC\nWFdh9Ca3nOuWwK0oNP5aWen28jRuRRCzSpLY/i/268CZw2H9z51mLusaSU2nMVSePT2Ot3/dNFo0\nnKoc1ycC7BWR7wO3m5/fDewTkSCga0ksYF6xoYLvve98Lj89O2prdvu758bN9GAXEPZImGPV7Qq5\n5BNYmkyB35v1gCkNB9jVaoQEO0urdA4lGB1LZUqOg9FEq3M4weHuEcYnFGeuKOb05cX4PMKBjmHe\neu4KmvtG+PLv9zORVnzhnj3cfsMlef0Oc83/7WzlrueNBp9nP13Cxy7bQHPfKOMTis01RWyqKcLv\nFdKjlzIAACAASURBVPa1D2f6lFtFEGtLw6TSKhOcYAUrFAS8FPi9GTNXxEVY2zXDApdIOztOYWFp\npc7Z/2QRxOz9Z3LdunUXzBWk8osPX8TGmqmBKprc5KOJXA80AH9nvhrNZePAZXM1MM3MERGuPHv5\nlIfyTDR21+5tLtVQndgd627f64ykmdREchd/nGLmKvBn/EHZdbus4o9jlNt8SzXFIbqGk5mZel1F\nGL/Xw+qKMI1mBeEH9nYykVa896LVPNPYT9vgwjBz/e6ldjbXFHH+6lLu32MkTjZ0G5rSxpoIfq+H\nFaUFtA6M0jYQx2erSzbZ3jhKgd+b9Tvafx+7uckuyIuCuZfnK0SsScSUcuweqxz7iWsi7uS/7ys2\nVGb1cNccm3xCfONKqf9SSr3NfH1NKTWqlEorpWInY5Ca2WUm/d2dN7wV5ZKvg9Jq2XssnELPalk6\nNYPZ+FzkqCAczuq+mK2J9Jud9OwaSk1xiM6hREYwWCXq11dFMuVWnmnsZ0N1hPdfXAfAtsN9xz2P\nuWZ0LMWO5n5es7mKSzdVs7ttiGhiPNNp0gr7ri01Kun2RJNURoKZh7FVObe+O5ZlsoLJ3zrk92Q9\nvAvdiiDalrtFUTl9Im79bnwumki+WrCdjAM9t79dMwvkU4Bxo4j8n4jsE5FG6zWTg4rIO0Vkr4ik\nRWSrY91nRaRBRA6KyBttyy8Qkd3mum/LTJ6EmhPG8nm43cjOxdYDwrncLV7fjtOfYn2F05yVyWw+\nRnmMskJ71JChofQ7sqdrio26XQc7o4T8nswsvLa0INN572BnlDOWF7O5poiikI8Xjk76SoBM6fK5\nJDWRzgpN3dM2zPiE4qJ15VlRZu1DcSojgczvs6LUqKQ7MDqepZlZvo/+kbGpWp5L1njYRXDYBYRb\nroVbwt+UAqEu5dhnUtbK7WGhnyIzJ59/y/8A38foa34ZcCvw8xkedw/wZ8Dj9oUicgZwLXAmcAXw\nPRGxrs7vY/Rf32i+rpjhGDTTwGlScMvHszQWp707nzBNN0HjnMmG3SoI51H51f4wtQTKgc4oNcWh\njKZWUxwilkzRHTW0lM3LivB4hE1mfS6Lrz94kNM/fz+3PTN3me9Heke4+N8e5g3feJyY6UC3tKSN\n1UWcZtYOO9gZNbPJs30+XdEEA6PZwrPIpXoA2EqSTDEhTm5nn8fZfSJuWqhbqPmUAqGZcuyzZ86a\nEuK7yBNJFxL5CJECpdTDgCilmpVS/wq8eSYHVUrtV0odzLHqauB2pVRSKdWE4Yu5UESWA8VKqWeU\n8d+/FbhmJmPQnBhuN/xkvH3uMGLnzZtXLxNn8Udv7rpdlo19ymzZ9kCzC6QiF5u/lVXdOjBKaY66\nXS+YNbisiJ1NNREOmX6HvliS7z56mIm04j/uPzBn5ea/+0gDvbEx6rtj3P18KwCHu41eHLWlBawo\nNZp4tQ2OmnWtsnM7lDJKtWdFV7nk4MDkb+oULvn0MHd72E+p4eZSINRVE5lFx3pm+ZJvXjv35CNE\nkiLiAepF5OMi8jaMbodzQS3QYvvcai6rNd87l+dERG4QkR0isqOnp2dOBnqq4qaJOG9Sy+zl1ETy\nyTp2aiLWzNSt5ErQETpqN7nYHfzZjY+mliXvjY1lF380H8S7W63ij8bsvq6ikMHRcWLJFA8f6GYi\nrfjsm04jmkjxZP1kL5PZIp1WPLC3k3dcsJL1VYU8uM+osHvYLFXi8Qhej1AVCdI1nKRrOOEoSWKc\nU080mSVEgj5v5rd2Cgu3tsfOUiQWgaxIOzeTp3OiYfx1bp75P89mdJaLsNDmrJmTbwHGMPC3wAXA\n+4EPHm8nEXlIRPbkeF09syEfH6XULUqprUqprVVVVXN9uFMC617L90bOFGx0qWV0LJyaiFtfFOvB\n5RxT2GbOsu+T1cjItk2xS30nK29iT7shRKxkvOWZ+lxxdrUOUhT08cGXryHg9bB9DioCH+iMMpxI\n8YoNFVy4tpxdrUMopWgbjLPKVlW2piRE13CCvpGxTLguZIc5lxTkdqBP8TdZmsgUIXL8JNJ8NRG3\na8lNCM3EnOUW4quZOcfNE1FKPWe+jQF/nu8XK6Uun8Z42oBVts8rzWVt5nvncs1JZqo5K3d0ltfF\nJ5IPrg8RZ8mVTI2l7O3CbnZ7e/Z0YPJhmCVEbMUfLQ2l3lFaxRImHUMJ9rYPc/qKYkJ+L2fVFk9x\nuM8GO5sNwbS1rpxYcoJfbW+hzYy2spIiAWqKguzvHGYirbI1rXDu8wNDsA6MjruWHnGWaXfzadmv\nCzefiFsfnCnN1DIhvs79c37ttHCGD2umj6sQEZF7jrWjUuqtsz8c7gF+KSJfB1ZgONC3K6UmzDL0\nFwPPAh8AvjMHx9e4YD2MnQ9yS0iMO54Ebv1H8mHKg8pFq7E0EWd3OrcHnT8rKz53ZFGu4o9tg3GK\ngr6MDyZT5HEwwdG+Ud5wppHMuXlZMffv6Tj2yU2Dwz0jFAa8rCwrYIMZttvQHWNgdDyrJEllUZCW\nfUaYslvJ/bAjOMEt18YyETpLo7v5tOzC2i06yylErI9TuwtaIb7Ksf3s+0Q0M+dYmsglGP6JX2E8\nuGft32D6Vb4DVAG/F5EXlVJvVErtFZE7gH0Y0WAfU0pZnsq/Bn4KFAB/MF+ak4xzkmmZQeJj2Q5l\n61kzHTu2W+l65/PL0lichfryKbmS3Zc7t1YSDhiZ8BNplfWQtXIqOk3TkSVU1lcVMjA6PiWZcaY0\n9Y5QV1GIiGRMaVa/D3txRHu0VVYioN9WENGlxIgz8u1EC2vamXH9qjnoLugmgLRsmTnHEiLLMIos\nvgd4L0Zf9V/Z62hNF6XU3cDdLutuAm7KsXwHkH8ddM2c4LwZz1lpdFU8c0Vxzu2mo4m4CR7ncm+e\nXews7PZ8+0MzZNNK7I5kEaHYNPfYc1HCAS8+j2RKoltl6NeZVXCbemOUF5ZztG+Uhw908fYLVp5Q\nldff7+ogHPRy2eZqAJr7RjhzRUnWsXa1GhFjlbYkQbey+aFAbuEJk1qAM9fG0kSmCujj/z/dHtj5\nTijcorMsXr6+Iq/vyRqT23ItRWaMqxAxNYD7gfvNOlnvAR4VkS8qpW4+WQPULGy2rinniU9fNqVt\nqJszfCY4be3Ww2ZKQqNLVrxduNiFiN1M5nQcFwYNITJFuBT4M4UYV5iaiKWRdA0nUUrxkZ/vZH/H\nMC+1DPLNa8/L6xwfOdDNx375PAD3/s0rOW1ZES0Dca40G5KF/F7Kwv5M6frspk+5c2LsTnNndJVl\nMZqioZi/VSqdnUQ5o1wNh2x3q1+V8YnkkCLbP/e6LG0xX5zXiKVZ5moypTkxjulYN4XHmzEEyBrg\n27hoEJrFxfffd/6sFZlzVgmGyVnkdB46brNDp4JhCappVRD2u4SqulQQdvoMSgr8NPUadbUs05UV\nAtxpOtz3dwxTGPBy764OPn/VmXmZuH61/SjhgJf4+AS/eaGNGy5dx0RaZcxYYJiwDps1vbI7QubW\nRLIDClzqV81h6RELN01kSlCGWJrIVCli7+t+IjivkXdvXUV8bIL3X1I3re/TTOJq4BSRW4FtwPnA\nF5VSL1NKfUkppaOilgBvOns5G6qLTni/fDN9J1waYuWD84Z36+/ucdFE8ull4maWce5r+UucQqQ4\n5MsUebR8EWVhPwGvh65ogp1mQ6d/f8c5pNIqr1pbifEJHq/v4R0XrORldeW80DJIb3QMICtktzjk\nz/y+2V0EcxdBtP8PQr7c2tyUrHG3CKkZZY1nf87UXZuShGitn/ahpjC1Da6HD79qnWveiyZ/juUl\nuw4jOupG4GkzOmpYRKIiMnxyhqdZKHz6is1A9sPsWGSEyDRmrlMym3F70OUWIm6OXbuW4TYrnlL8\n0Zc76S5X90URobo4SNdQgt1tQ1RGgrzx/7d37nF2VFW+//76ke7O+9UkIQkGBHlFeTWaCChi9AOC\n8hDEOwqCMzD4Qq+XC/pxrjI6MyqOL9RhRMYJoDPqiKBXGCMgDF4RJeGRhxkkCMwEoiQBEpJAku6s\n+0ft6q5T59Tp6tPn2Vnfz6c/XbVr135Ude9Ve+211zp8NuPHtfPbx4cXIv/5xxd4afceFh8wg0Pn\nTOI/N2xl47adAMxICpFE3YXRHttKpidJz0SGnCAW5st6hqOZiYzUumokQuS0V83huAOz10oasfRR\nTVVuM1NuTWQU7s6c0fDVdx45qt25teD0I+dy+pGZTgKKGNVMJGthNh2hMRYiRTOXDAGRmGVkfVEX\nq7PimUjh4DslYyCPI//t7B9gQXApf8jsSazNEchqbYgkePi+U3h2xy627xpg9VPRRsekl90pGWqr\nZNvzhCeGbNcj7YNmtpRMr4S8IWor4et/dnT5DA34d7r6nUex9N4neOXcKfWvvI7kCUrl1JmRDNbN\nyv4zJzBnSjefOPXQEd+b9f+e/jrOypcd82T4kaQolklHef9c3Z1tBSqwKT2dbHlxN5u37+To/aYB\ncMicydy6cgNmVrYNv3t6KxO7Opg3rWfQHX3scmXmhKQ6K2pLmwrNk5MCIu9MYsj1SOk1kbRCq5rq\nrCxmTe5m/vQePnXa4RXXVVx3/aXI/Onj+T+nHVb3euuNCxGnJvSMa+fXH39jRfdm6cizvmTT0mQ0\nWoTiWCbBP1emmqvQumdKTydPbt7BhudfYt4RkSA4sHciW17czXM7dpddXH9803Zevk/kC2vfIERi\nM+LkHpDuRMz5pFAqjBqZT5DGAjdtOZU5E6niwnqWdda4jjZ+eflJFddTiuaa148tXGXlNB1ZX+vp\nAS1emM1yp1EJ6ZnIuEHnj2khEp2nA2JNHd/Jfz27g/49Rm9Yx4jNn+PIiVk8/fyLzAvCI773yWd3\n0NPZnjJDjv1dlXZVAuVcj6TPVfB72PtHE9OjgSO5hx+qHS5EnKZnuP//9OXRqFzS1llDHoQL83Vl\nrJUk9x3EC+DzpkUm0Oufyw6pGztUjGO/x/dGu+UL64hVWOmBPmlplO0EsfT6UdFGzowNf1WdiVDa\nOqsWuAipHS5EnJYhvW8gyw19NdVZg2sGGQN22kQ06ZsqFihzc8xEnt2+i539ewbVWO1tGlz7SHvY\njetMm1vncUmSFi5ZIWqznmE1F9ZjajnAZ5kRO9XDhYjTsgw58CtMH83XclqdNWReXJgvVh2lnQcm\nTWhjVdfk7g66OtrYtG1XZr1PPx+F4Y2FCMDU4MI9S23Vn+p4nlgtxQK3dP9i0oKquvtEKi5qxHjw\nqdrhQsRperIGgFjl8/yOwsF5NPrv9va0uif6nf6KjgfstG+pUkJEEjMndrEp7PkoxZ+2RkJkVmJH\nduy2vcjDboYAyzMTyQoTm35mgxv+Mu6vaEaSdYvrs1oat85yWob0l+viA2ZwwkEzi8yIR6POymte\n3BXUVv0DhY1KzhqSDhFnTBzH5jIzkeeCIJyWiP0RuytJz0RiVyzpmUie0MNZFm5FayWUts4a39nO\nKQtnc96ikbsLqeU+keFwdVbtcCHiND1ZA0B3Zzs3/vlritJrobdPl5k5E+ksnokAzJgwbnD3eSme\n37EbgGkJE+CsGPKD6qyUAMujxstSKRXJn4yi2trENe8+Zth6StedZeJbUXEjwmVI7XB1ltMy5FWh\nVzN4UVaY3/irf6BoTaS0/6oZE7uGnYl0tKkgDsigKW+Rm/bofPdAoYfdPN3OjquRYVY9fJG5KZbt\n9VsUcRPf2uFCxGl64gE77zAwqljcOfMN+u1KpXcXbPhLBLvq7uSFl/ozy3tux26mju8sDOcb1Fjp\ngFGdGT7D8gyURTORwXtTZcXXq7j6PVIB5rQGDREiks6RtEbSHkl9ifQ3SVohaVX4fVLi2jEhfZ2k\nq+WfFnsNnz3rlbz3uP057sCZufJnORXMQ94/qywPwlmL2xO72tm2s589aVOywPM7dg1aY8XEAim9\nHpPlMywPaQGbvbA+8rK/9I4j+OZ52aquRlpnObWjUWsiq4GzgG+m0jcBbzWzpyUtBJYBsSOpa4CL\niEL13gacjIfI3SuYNbmbT741vw+iWPeeteu6HMVjZ3n3H2k9f9bidhwkasfugSKPwAAvvNRfEFQK\nhtZE0qq09gwBloe8wmFoJpK/7LOOnlf2evpZxU4lYys0pzVpyNszs7VQ/AdtZg8mTtcAPSEw1nRg\nspndF+67ATgDFyItyb9etKjAK221iQervgXTRnxveojNMnXNUpllzURiM93tO/tLCpEXdw8UbSqM\n1VlFM5HBYFwjJ2t2lk6OXf4fMnvkMWey6y6s5dI3HsR+08dzaojaWEuqqZZzCmnmT4C3Aw+Y2U5J\nc4H1iWvrGZqhOC3G4gpiZI+EcR1t/PRDx7Ng5oQR35vX79aQOivnTCQIjkf++ALX3P0Y7zvx5cya\n3M1X73iUQ+ZM4sVdA0xLqbNiK6ysmUglPsKyLKTSHLbvZH54yWKOmD91xHVkkW5uV0c75x67X9XK\nL0VXZzvbdw3UtI69nZoJEUl3ALNLXPqEmf14mHsPBz4PvLnCui8GLgbYb7/a/pGONZZeeCzPbs+2\nImoVFlYYwyFrgTlNe8ZsIMsFeyxEvnrno6x48jkmdnXwtiP35ct3/B6IXOcXha5tiw0KUkIkbmQF\nU5FM1yMlkvsWTB95BRXUXUt+8JeLuG3VHz2Weg2pmRAxsyWV3CdpHlEc9/PN7LGQ/BSQVLjOC2lZ\ndV8LXAvQ19fn89gRcOLB+zS6CQ0lc7G6yP1H4e+Y4dRZcdjcFU8+x/6JmdLjm7bz6tSgPRjnPKVM\nG5X1WZF1VlhYr4OFVCMC/R24zyQufWP1VHJOMU1l4itpKnAr8DEz+1WcbmYbgK2SFgWrrPOBsrMZ\nx6mIjH0iaYZmIqVVTWnS6yD/9ewOHt+0vSCtOHRt+Y2PlYzJxdZZFRRSIc0WrdOpDo0y8T1T0npg\nMXCrpGXh0geBA4FPSnoo/MSfxu8HrgPWAY/hi+pODcj6Ws67sJ41UKZdlzy95UUefaYwZG53aj/I\nYFFFIWpDXRV82jd017jLkDFJo6yzbiZSWaXT/wb4m4x7lgMLa9w0Zy+naL9Exvd+1j6RrHE9qeY6\ncJ+JrHtmG49t3M7Leyfw2MZoRpIWNBkypC7WWbXAt3aNTZpKneU4jSbvMBfnSw+MWbODpIv5BTOi\nIFVPbNrO3BCwCop3pmfRnmEZlgcfyJ1q40LEcRJkqaPSawdxvt39e0qmp0ma/saRDvv3GDOTDhfT\nM5F4j0qq8iGniaMXCIOL9i5bnApp5n0ijlN3shwwpgfyQ+ZM4sj5U7n85IML0vOos+IQuDAUEwUK\noyJCtjv22VO6OXL+VK44+ZDMfuRlcE3EpYhTIS5EHKcMWUNrV0c7t3zguKL0PDOR3kldg8dJIdKZ\nYR6cXhPp7ixddyW4/bszWlyIOE6CtBD4yJJXsH3XAO84dn5F98d0JiImTp+QECIJf1npeCBDs6Bc\nVQPwV6ceygG9I9+pX8ulkjYVhzB2xg4uRJym4WcfOYEnN+9oaBvSg+m0CeP4+3OOyH1/pvVTouAZ\niXWQyT2djGtvY9fAnuw45yOYL/zFCQfkzhsKj9o3srtGxB0ffT1rnt5awxqcRuJCxGkaDpk9mUNm\nT25oG0Y7mOZZ7J6eECI9ne10dURCpBru2EfK4I71GtZ1QO9EDuidWLPyncbi1lnOXsVr9p/OkkOz\nXbuMdld1nsE4ucje3dk+aBac1zKsmlz8upcD8IpZPsg7leEzEWev4vt/ubjs9Xpso0gKi+7OtoRX\n3lRbat8U3nTYLJ743Kl1qMkZq/hMxHES1EOFlFxA7+poHxQq6ZmI7wt0WgEXIo5TZ5T4rxvX0TY4\nA8kSGh5QyWlmXIg4Tp1JzkQ62jSozkovymf5znKcZsKFiOPUmaTaqrO9rYw6q/SOdcdpJnxh3XGq\nzJSeTt7z2gWZ15OyoqNdCYeKhflOPLgXgLcfMw/HaVZciDgOUXjadJCoSnn4U+WjOifVVp1tQ2si\n6ZnIy2ZMcMspp+lxIeI4wE3vey1PbK6OEBmOpLDoaNfgmkctI//9+uMn8ez2XTUr39l7cSHiOES7\nyJM7yWtJW0qdNeTavXZ1zpnSw5wpPbWrwNlraVR43HMkrZG0R1Jfiev7Sdom6bJE2jGSVklaJ+lq\neXQdp0VJ/ul2trWVTHecVqFR1lmrgbOAezKuf4niGOrXABcBB4Wfk2vWOsepMV8590guOmF/JnZ3\nDPqvqqU6y3FqRaNirK+F0l9eks4AHge2J9LmAJPN7L5wfgNwBsWCxnFagjOOmssZR80tSKtCoELH\nqTtNtU9E0kTgCuCvU5fmAusT5+tDWlY5F0taLmn5xo0bq99Qx6ki8ZqIz0ScVqRmQkTSHZJWl/g5\nvcxtVwJfNrNto6nbzK41sz4z6+vt7R1NUY5Tc1yIOK1MzdRZZrakgtteA5wt6SpgKrBH0kvATUBy\nx9U84KnRt9Jxmoe2ptILOE4+msrE18xOiI8lXQlsM7Ovh/OtkhYBvwHOB77WkEY6To3wmYjTijTK\nxPdMSeuBxcCtkpbluO39wHXAOuAxfFHdGWP4wrrTijTKOutm4OZh8lyZOl8OLKxhsxynIcSu3n2f\niNOKuBbWcRpMPdyeOE6tcCHiOE1CuwsRpwVxIeI4DSY28XUZ4rQiLkQcp0lo85V1pwVxIeI4DWbI\nd1aDG+I4FeBCxHEazKA6C5ciTuvhQsRxmgRfE3FaERcijtNgbPgsjtO0uBBxnCbBJyJOK+JCxHEa\njPlUxGlhXIg4TsMZXFl3nJbDhYjjNJiece2AW2c5rUlTuYJ3nLHM0guPZdvO/qL0G9/7Gm5dtYHe\nSV0NaJXjjA4XIo5TJ048eJ+S6QtmTuADbziwzq1xnOrg6izHcRynYlyIOI7jOBXjQsRxHMepmEaF\nxz1H0hpJeyT1pa69StKvw/VVkrpD+jHhfJ2kq+Vh4BzHcRpOo2Yiq4GzgHuSiZI6gO8Al5jZ4cCJ\nwO5w+RrgIuCg8HNyvRrrOI7jlKYhQsTM1prZIyUuvRlYaWYPh3ybzWxA0hxgspndZ1FA6huAM+rY\nZMdxHKcEzbYm8grAJC2T9ICky0P6XGB9It/6kFYSSRdLWi5p+caNG2vYXMdxnL2bmu0TkXQHMLvE\npU+Y2Y/LtOd44FhgB3CnpBXAlpHUbWbXAtcC9PX1uWcix3GcGlEzIWJmSyq4bT1wj5ltApB0G3A0\n0TrJvES+ecBTeQpcsWLFJklPVtCWRjIT2NToRtQZ7/Pegfe5dXhZnkzNtmN9GXC5pPHALuD1wJfN\nbIOkrZIWAb8Bzge+lqdAM+utWWtrhKTlZtY3fM6xg/d578D7PPZolInvmZLWA4uBWyUtAzCz54Av\nAfcDDwEPmNmt4bb3A9cB64DHgH+ve8Mdx3GcAhoyEzGzm4GbM659h0h9lU5fDiyscdMcx3GcEdBs\n1llOxLWNbkAD8D7vHXifxxgyD6vmOI7jVIjPRBzHcZyKcSHiOI7jVIwLkSZA0nRJt0t6NPyeViZv\nu6QHJf20nm2sNnn6LGm+pLsk/S445PxwI9o6WiSdLOmR4Dz0YyWuKzgVXSdppaSjG9HOapKjz+8K\nfV0l6V5JRzSindVkuD4n8h0rqV/S2fVsX61wIdIcfAy408wOAu4M51l8GFhbl1bVljx97gf+l5kd\nBiwCPiDpsDq2cdRIage+AZwCHAb8jxJ9OIUhx6IXEzkbbVly9vlx4PVm9krgM7T44nPOPsf5Pg/8\nvL4trB0uRJqD04Hrw/H1ZDiXlDQPOJVov0yrM2yfzWyDmT0Qjl8gEp6ZPtOalFcD68zsD2a2C/ge\nUd+TnA7cYBH3AVOD09FWZdg+m9m9YV8YwH0UeqRoRfK8Z4APATcBz9SzcbXEhUhzMMvMNoTjPwKz\nMvJ9Bbgc2FOXVtWWvH0GQNIC4CgijwWtxFzgvxPnpZyH5snTSoy0P39O628eHrbPkuYCZ9LiM800\nzeb2ZMxSziFl8sTMTFKR3bWk04BnzGyFpBNr08rqMto+J8qZSPT19hEz21rdVjqNRNIbiITI8Y1u\nSx34CnCFme0ZSzH1XIjUiXIOKSX9SdKc4CNsDqWnuscBb5P0FqAbmCzpO2b27ho1edRUoc9I6iQS\nIN81sx/VqKm15ClgfuK8lPPQPHlaiVz9kfQqItXsKWa2uU5tqxV5+twHfC8IkJnAWyT1m9kt9Wli\nbXB1VnPwE+A94fg9QJGrfDP7uJnNM7MFwDuBXzSzAMnBsH0OIZD/CVhrZl+qY9uqyf3AQZL2lzSO\n6N39JJXnJ8D5wUprEbAloeprRYbts6T9gB8B55nZ7xvQxmozbJ/NbH8zWxD+h38IvL/VBQi4EGkW\nPge8SdKjwJJwjqR9gzv8sUiePh8HnAecJOmh8POWxjS3MsysH/ggkYfqtcAPzGyNpEskXRKy3Qb8\ngci56LeInI22LDn7/ElgBvAP4b0ub1Bzq0LOPo9J3O2J4ziOUzE+E3Ecx3EqxoWI4ziOUzEuRBzH\ncZyKcSHiOI7jVIwLEcdxHKdiXIiMUSSZpC8mzi+TdGWd27A09lQq6brROk+UtEDS6oxrXwiefr8w\nmjqaifD8Hq+miWjyneyNSLpA0teHyXNu8MTb0p6y64XvWB+77ATOkvRZM9s00psldQTb96pgZn9R\nrbIyuBiYbmYDycRq96MB/G8z+2GjG1FNJLWn31MzYWbfl/Qn4LJGt6UV8JnI2KWfyL32/0xfCF/0\nvwjxHO4Mu4fjr9R/lPQb4CpJV0q6XtIvJT0p6SxJV4UYED8LLkmQ9ElJ90taLelalXAMJOluSX2S\n3pbYOPiIpMfD9WMk/YekFZKWxV5sQ/rDkh4GPlCqo5J+AkwEVoSvyHQ/Jkj6tqTfKorFcnq4r0fS\n9yStlXSzpN9I6gvXtiXKP1vS0nDcK+mm0N/7JR0X0q8Mddwt6Q+SLk3cf3541g9LulHSpDDDZg7F\nDgAABdpJREFUiJ/f5OR5FpJmhXY+HH5eK+nTkj6SyPO3CnFXJF0R3tXDkj5XorysZ36pohguKyV9\nr8R9F0j6cejro5I+lbj27vCcH5L0TUWuz5G0TdIXw3tcnCqvqD5Jr5b06/C+7pV0cKLuWxTFoHlC\n0gclfTTku0/S9JDvbklfDe1YLenVJfpR8l06I8TM/GcM/gDbgMnAE8AUoq+qK8O1/wu8Jxy/F7gl\nHC8Ffgq0h/Mrgf8HdAJHADuI/BwB3AycEY6nJ+q9EXhroryzw/HdQF+qjT8gEgydwL1Ab0g/F/h2\nOF4JvC4cfwFYndXfxHG6H38HvDscTwV+D0wAPpqo51VEgrevRHlnA0vD8b8Ax4fj/YhcssTP6l6g\ni8gv0ubQr8NDfTOTzwr458Tzuxj4Yok+DT6/cP59IieUAO3hvS4AHghpbcBjRDvBTwntGZ+qd2no\nT7ln/jTQFT+vEu26ANgQ6ukBVhP5hTqU6G+rM+T7B+D8cGzAOzLeXVF9RH+7HeF4CXBTou51wCSg\nF9gCXBKufTnxfO4GvhWOX0f4uwn3f73cuwznJwI/bfT/cSv8uDprDGNmWyXdAFwKvJi4tBg4Kxzf\nCFyVuPZvVqhq+Hcz2y1pFdHA9bOQvopoAAN4g6TLgfHAdGAN0WCSScj/opl9Q9JCYCFwe5jEtAMb\nJE0lGlTuSbT1lFydL+zHm4mcV8bqiW6iQeN1wNUAZrZS0soc5S4BDtPQZGuyIi/DALea2U5gp6Rn\niNzbnxTasinU82zIex2RW/9bgAuBi3LUfRJwfihngGgA3SJps6SjQn0PmtlmSUuAfzazHal6Yw6m\nxDMP11YC35V0S2hfKW634DRR0o+IvPD2A8cA94cyexhyrDlA5EizFKXqmwJcL+kgIgGUnKXdZVF8\nmRckbWHob20V0cdAzL+Gvt8TZntTU/WWfJdmtg0nNy5Exj5fAR4g+vLNw/bU+U4Ai9xX77bwmUYU\n06RDUjfRF2efmf23osX77nIVhAHuHKJBHEDAGjNLqznS//QjIdkPAW83s0dS5Ze7P+kPKNmfNmCR\nmb1UoqydiaQByvx/mdmvFKkVTySaMZU0GMjJdURf2LOBb+e8p+QzD5xK9G7eCnxC0iuteF0p7S/J\nQpnXm9nHS5T5kmWvgxTVRxTt8C4zO1NRLJm7E/mTz3lP4nwPhc+8VBuTlHyXzsjwNZExTvgC/QFR\nzIaYe4m8jAK8C/jlKKqIB9hN4Yu8rOWPpJcRhRE9x8zi2dEjQK+kxSFPp6TDzex54HlJcayJd1XY\nxmXAhxRG+vDVDnAP8GchbSGFX7F/knSopDaiQEIxPyeKThf358hh6v4FcI6kGSH/9MS1G4hUKnkF\n/J3A+0I57ZKmhPSbgZOBY4n6CnA7cKGk8SXqhYxnHvo738zuAq4gmhFMpJg3SZouqYcoKuWvQvvO\nlrRPXGd435mUqW8KQ67ULyj/WDI5N9RxPJFn5C2p6yN9l04JXIjsHXyRSE8f8yGiAWYlkZfcD1da\ncBjov0WkF19G5BK7HBcQ6dJvCYuet1kUTvRs4PNh4fUh4LUh/4XANyQ9RPSlWwmfIVKHrJS0JpxD\nFGFuoqS1wKeBFYl7Pka0rnIvQ2oeiFSDfWER+HdAWfNbM1sD/C3wH6FvSZf23wWmEdQuOfgwkepw\nVWjrYaGOXcBdRJ5jB0Laz4hckS8Pz67A0qjMM28HvhPqeBC4OrzjNL8lUk+tJFqvWG5mvwP+Cvh5\n+Nu6HRguzG9WfVcBn5X0IJVrTF4K9/8jhR9RMSN6l05p3Iuv4wQk3Q1cZmZ1cUuuaL/G6WZ2Xsb1\npUSLu2VNfMPX/ANEs7tHq97Q4vouIFJffrDWdVXKaN9lUDNeZmanVbNdYxGfiThOA5D0NaIYKp8p\nk20L8BmV2WyoaAPnOuDOegiQvQFJ5xKt8z3X6La0Aj4TcRzHcSrGZyKO4zhOxbgQcRzHcSrGhYjj\nOI5TMS5EHMdxnIpxIeI4juNUzP8HWIkMz2GBd4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hanning window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Traingular Window" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='triangular')" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVIW5//HPsxQBpTelo3SQusEaATWKESUYCwgk5iZR\nbIFoVNRf4tVYkptrQ1Q0idErKBgFG6Yo9s4urPQWehEWkCJtXXh+f8yZdVjZ3WHZs9O+79drXs4p\nc+Y5JHueOe17zN0REREByEp0ASIikjzUFEREpIiagoiIFFFTEBGRImoKIiJSRE1BRESKqClISjOz\nKmb2tZm1SnAdZ5vZyhCWe7yZfX0En19rZv0rsCRJc2oKUqmCDXj0dcDM9sQMDz/c5bn7fnc/xt1X\nh1Fvorn7cnc/JtF1SOaomugCJLPEbuCCX9a/cPe3SprfzKq6e2Fl1BaWdFgHyRzaU5CkYmZ3m9kU\nM3vezHYCI8zsFDP71My2mdkGMxtnZtWC+auamZtZm2B4YjD9H2a208w+MbO2Mcs/z8yWmNl2M3vE\nzD4ysytivvvpmHnbmZnHDP/CzBYGy/2Pmf2ilPVYa2Y3mdlcYNchpt9jZg8G748K9pjuC4aPMbO9\nZlb3EDV8aGZ3mtnHQR3/NLMGMdOvMLNVZrbZzMYW+84awb/NBjNbZ2YPmFn1YNpHZjY4eN8v+Dc9\nNxg+18xyyvrfTtKDmoIkoyHAc0BdYApQCIwGGgGnAQOBq0r5/OXAb4EGwGrg9wBm1gR4AbgpWNYK\noO9h1LUROB+oA/wSeMTMupcy/1DgPKDeIaa9B/QP3p8ErAfOCIZPBea7+/YSlns58FOgKXA0cAOA\nmZ0IjA+mNweaAcfGfO53QDbQHehF5N/y1kPU0w9YHlNPv2C6ZAA1BUlGH7r7a+5+wN33uPtMd//M\n3QvdfTnwJJENVUledPccd/8GmAT0DMYPAvLc/ZVg2oPA5niLCmpa7hFvAzOA75fykYfdfa277znE\ntI+BLmZWj8jG90mgrZnVouyN8F/dfam77wb+HrN+lwAvu/tH7r4PuA2wmM8NB/7b3fPdfRNwFzAy\nmPYe3/6bngHcFzOsppBB1BQkGa2JHTCzTmY23cy+NLMdRDZmjUr5/Jcx73cD0fMYzWKX7ZE0yLXx\nFmVmg8zsMzPbambbgHPKqGNNSRPc/WtgNpEN8BnAu8CnwCmUvRGOd/2+BrbGzNsMWBUzvIrIHgXA\nR0BXM2sMdAOeAY43s4ZAH+CDUuqRNKKmIMmoeHTvE8A8oJ271yFyGMS+86mybQBaRAfMzPh2owiR\nY/+1YoaPjZm3JvAikV/QTd29HvDvMuooK4L4PeBs4EQgNxg+j8ghnvJshDcALWNqPobIIbSo9UDr\nmOFWwDooaiB5wK+J7E19A3wG3AgscvevylGPpCA1BUkFtYHtwC4z60zp5xNK8zrQ28wuMLOqRM5T\nNI6Zngf0M7OWwWGd2BO1RwHVgXxgv5kNAs4qZx1R7wFXAHOCq5PeBa4EFrv71lI+V5K/A4ODE/NH\nAXdzcGN6HvidmTUK9gh+C0wsVs91fLuX8m6xYckAagqSCm4kcmJ1J5G9hinlWYi7bwQuAx4AtgAn\nEDmEsy+Y5Z/ANGAu8DnwasxntxH5FT2NyCGZi4k0mSPxIZE9k/eD4blETqq/X+InSuHuc4g0uheI\n7AF8ycGHmu4EviCy1zWHyJ7AfTHT3yPSgN8vYVgygOkhO5KpzKwKkUMqF7u7jpmLoD0FyTBmNtDM\n6gWHV34LfENkr0BEUFOQzHM6kWvw84FzgSHB5Zsigg4fiYhIDO0piIhIkZQLxGvUqJG3adMm0WWI\niKSU3Nzcze7euKz5Uq4ptGnThpwcZXOJiBwOM1tV9lw6fCQiIjHUFEREpIiagoiIFFFTEBGRImoK\nIiJSJLSmYGZPmdkmM5tXwnQLHg24zMzmmFnvsGoREZH4hLmn8DSRxyaW5DygffC6Eng8xFpERCQO\noTUFd3+fg5/6VNxg4P+CRxt+CtQzs+PCqkekou0uKGTKzNXsKdif6FJEKkwizyk05+DHFa7l4Kdg\nFTGzK80sx8xy8vPzK6U4kdK4Ozf9fQ63vDSXW16agzLEJF2kxIlmd3/S3bPdPbtx4zLv0hYJ3V8+\nWMH0uRvo07o+r36xnqc+WpnokkQqRCKbwjpinidL5Nm56xJUi0jcPvnPFv7wz0Wc1+1Y/n7VKZzT\npSn3vrGQz5ZvSXRpIkcskU3hVeAnwVVIJwPb3X1DAusRKdOG7Xu47rlZtGlYiz9d0oOsLOP+S3vQ\nukEtrn1uNht37E10iSJHJMxLUp8HPgE6mtlaM/u5mY0ys1HBLG8QedjJMuDPwDVh1SJSEfYV7ufq\nibPY+81+nhiZzTFHRfIka9eoxhMj+7C7oJCrJ+ZSUHggwZWKlF9oKanuPqyM6Q5cG9b3i1S0O19b\nQN6abUwY0Zt2TY45aFr7prX508U9uPa5Wdw9fQF3De6WoCpFjkxKnGgWSbQXctbw3GerGdXvBAZ2\nO/SV0+d3P45ffr8t//fJKqbOWlvJFYpUDDUFkTLMXbud//fyPE5r15DfnNOh1HlvGdiJk49vwK1T\n5zJ//fZKqlCk4qgpiJTiq10FjJqYS6OjqzNuaC+qVin9T6ZqlSzGX96b+rWqM2piLtt2F1RSpSIV\nQ01BpAT7Dzi/mjyb/J37eHxEHxoec1Rcn2t0zFE8NqI3X27fy+jJeew/oBvbJHWoKYiU4P5/L+aD\npZu5a3BXerSsd1if7d2qPndc0JX3luTz8FtLQqpQpOKpKYgcwr/mf8lj7/6HYX1bMrRvq3ItY/hJ\nrbikTwvGvb2MtxZsrOAKRcKhpiBSzH/yv+bGF76gR4u6/PeFXcu9HDPj9z/qRrfmdfj1C3ms3Lyr\nAqsUCYeagkiMXfsKGfVsLtWrZvH4iD4cVbXKES2vRrUqPD68D1WyjKuezWV3QWEFVSoSDjUFkYC7\nc/OLc/hP/teMH9aLZvVqVshyWzaoxbihvViyaSdjX5qrRFVJamoKIoFo8unNAztxartGFbrsMzo0\n5jfndOTVL9bzNyWqShJTUxDh4OTTq844PpTvuLrfCfwgSFT9fEVpz58SSRw1Bcl4xZNPzSyU74km\nqrZqUItrJs1SoqokJTUFyWglJZ+GpU6NakwIElWvmTRLiaqSdNQUJKNFk0//95Ie30k+DUuHprX5\nn4u7k7vqK+6evqBSvlMkXmoKkrFik0/PO/HQyadhGdS9mRJVJSmpKUhGOpzk07AoUVWSkZqCZJzD\nTT4NixJVJRmpKUhGKW/yaVhiE1XHTMnjgBJVJcHUFCSjPPBm+ZNPwxJNVH13cT4PzVia6HIkw6kp\nSMb49/wvefSd/zD0e+VPPg3L8JNacXGfFoybsZQZC5WoKomjpiAZYXmQfNr9CJNPw2Jm3B0kqo6Z\nokRVSRw1BUl7u/YVctWzuVQLkk9rVDuy5NOwxCaqjpqoRFVJDDUFSWvuzs0vRZJPHxnWi+YVlHwa\nlmii6uKNO7l1qhJVpfKpKUha+8sHK5g+ZwM3nduJ0yo4+TQsZ3RozI0/6MAreUpUlcqnpiBpK5p8\nOrDrsYzqF07yaViu6d+OszsrUVUqn5qCpKUN2/dw/fPR5NPuoSWfhiUry3jgsh60VKKqVDI1BUk7\n0eTTPQX7eWJkH2rXqJboksqlTo1qTBjRh137lKgqlUdNQdLOXUHy6Z8u6UG7JrUTXc4R6Xjst4mq\n9yhRVSqBmoKklb/nrGHSZ6u56ozj+WElJ5+G5YIezfj56W155pNVTJutRFUJl5qCpI1567Zz+8vz\nOPWEhtx0bsdEl1Ohxp7Xib5tI4mqC9bvSHQ5ksbUFCQtfLWrgKuejSSfPjIsccmnYalWJYtHL+9N\n3ZrVGDUxl+27v0l0SZKmQv3LMbOBZrbYzJaZ2dhDTK9vZtPMbI6ZfW5m3cKsR9JTsiWfhqVx7aN4\nfEQfNmzfw5gps5WoKqEIrSmYWRXgUeA8oAswzMy6FJvtNiDP3bsDPwEeDqseSV8PvrmED5Zu5s4k\nSj4NS+9W9fndBV15Z3E+DytRVUIQ5p5CX2CZuy939wJgMjC42DxdgLcB3H0R0MbMmoZYk6SZNxds\nZPw7y7gsuyXDkiz5NCwjTmrFj3u34OEZS3l7kRJVpWKF2RSaA2tihtcG42J9AVwEYGZ9gdZAi+IL\nMrMrzSzHzHLy8/NDKldSzfL8r7lhSh7dW9TlzsHJl3waFjPjniHd6NqsDmMm57FqixJVpeIk+mzc\nH4B6ZpYHXA/MBvYXn8ndn3T3bHfPbty4cWXXKElo175CRk3MpWoV47HhvZM2+TQsNapVYcKIPpgZ\nVz2by56C7/zZiJRLmE1hHdAyZrhFMK6Iu+9w95+5e08i5xQaA8tDrEnSgLtzy0tzWLbpax4Z1psW\n9WsluqSEaNmgFuOGRRNV5yhRVSpEmE1hJtDezNqaWXVgKPBq7AxmVi+YBvAL4H1310XYUqq/friC\n1+ds4DfnduT09qmRfBqWfh0ac8PZHXg5bz3PfLwy0eVIGqga1oLdvdDMrgP+BVQBnnL3+WY2Kpg+\nAegMPGNmDswHfh5WPZIePl2+hfv+sYhzuzbl6n4nJLqcpHDtgHZ8sXYbd09fSNfmdflemwaJLklS\nmKXaLmd2drbn5OQkugxJgA3b93DBIx9Sp2Y1Xrn2tJQNugvD9j3fMHj8h+wq2M/060+nSZ0aiS5J\nkoyZ5bp7dlnzJfpEs0hc9hXu55pJQfLpiNRNPg1L3ZrVeGJkNl/vVaKqHBk1BUkJv399AbNXR5JP\n2zdN7eTTsEQTVXNWfcW9byxMdDmSokI7pyBSUV7MXcvET9Mr+TQsF/RoRt6abfz1wxX0aFmXIb2+\nc9uPSKm0pyBJbd667dw+bS6nHJ9+yadhUaKqHAk1BUlaX+0qYNTEXBocXZ1HLk+/5NOwKFFVjoT+\nyiQp7T/gjJ6Sx6YdkeTTRmmafBqWxrWP4rHhSlSVw6emIEnpobeW8P6SfO4c3JWeaZ58GpY+rZWo\nKodPTUGSzpsLNvLI25mVfBoWJarK4VJTkKSyYvOujEw+DUvxRNWVm5WoKqVTU5CksWtfIaOezdzk\n07DEJqqOmpjL7oLCRJckSUxNQZJCNPl06aadGZ18GpaWDWrxSFGi6lwlqkqJ1BQkKUSTT286t1PG\nJ5+G5YwOjbnxBx14JW89TytRVUqgpiAJF00+Hdj1WEb1Oz7R5aS1a/q34+zOTbln+kJmrtya6HIk\nCakpSEJt2L6H656bRZuGtfjTJd0xs0SXlNaysowHLutBywa1uGbSLDbt2JvokiTJqClIwhQUHvg2\n+XSkkk8rS50a1Zgwoo8SVeWQ1BQkYe56fX5R8mm7Jko+rUxKVJWSKCVVEkLJp4mnRFU5FO0pSKVT\n8mnyUKKqFKemIJUqmnza8OjqjFfyacIpUVWK01+kVJr9B5xfTZ5dlHzaUMmnSUGJqhJLTUEqzYNv\nLuGDpZu5c3BXeij5NKn0aV2f3w3qwjuL8xn3thJVM5maglSKf8//kvHvKPk0mY04uTUX9W7OwzOW\n8s6iTYkuRxJETUFCtzz/a2584QslnyY5M+PeISfS+dg6jJ48m1VblKiaidQUJFS79hUyaqKST1NF\njWpVeGJkJFH1qmdz2VOwP9ElSSVTU5DQRJNPl236WsmnKaRlg1o8PLQnizfu5LZpSlTNNGoKEppo\n8ulvzu2o5NMU079jE244uwPTZq/j/z5ZlehypBKpKUgoosmn53ZtytX9Tkh0OVIO1w5ox9mdm/D7\n1xcoUTWDqClIhYsmn7ZuWIv/vaSHkk9TVFaWcf+lPWlRv6YSVTOImoJUqH2F+7lm0ix2F+zniRFK\nPk11dWtW44mR2Xy9t5Brn5vFN/uVqJru1BSkQv3+9QWR5NOLe9C+qZJP00HHY2vzx4u7M3PlV9wz\nXYmq6S7UpmBmA81ssZktM7Oxh5he18xeM7MvzGy+mf0szHokXNHk0yvPOJ7zuyv5NJ1c2KMZ/3Va\nW57+eCXTZq9NdDkSojKbgpnVMrPfmtmfg+H2ZjYojs9VAR4FzgO6AMPMrEux2a4FFrh7D6A/cL+Z\nVT/MdZAkEJt8erOST9PSrT9UomomiGdP4W/APuCUYHgdcHccn+sLLHP35e5eAEwGBhebx4HaFjkT\neQywFSiMp3BJHtHk0wZHV+cRJZ+mrWpVshh/eS8lqqa5eP56T3D3/wG+AXD33UA8l5M0B9bEDK8N\nxsUaD3QG1gNzgdHu/p0zWWZ2pZnlmFlOfn5+HF8tlWX/AWf0lDw27djHY8N700jJp2mtSe0aPDa8\ntxJV01g8TaHAzGoS+VWPmZ1AZM+hIpwL5AHNgJ7AeDOrU3wmd3/S3bPdPbtx48YV9NVSER56awnv\nL8nnjgu70KtV/USXI5WgT+sGSlRNY/E0hTuAfwItzWwSMAO4OY7PrQNaxgy3CMbF+hkw1SOWASuA\nTnEsW5LAmws28sjby7ikTwsuV/JpRlGiavoqsym4+5vARcAVwPNAtru/G8eyZwLtzaxtcPJ4KPBq\nsXlWA2cBmFlToCOwPN7iJXFWbN7FDVPy6Na8Dr//UTfdoJZhlKiavkpsCmbWO/oCWgMbiBz7bxWM\nK5W7FwLXAf8CFgIvuPt8MxtlZqOC2X4PnGpmc4nsgdzi7puPbJUkbLsLChn1bCT5dMKIPko+zVBK\nVE1PVlICopm9E7ytAWQDXxA5wdwdyHH3Uw75wZBlZ2d7Tk5OIr5aiCSf/mpyHtPnrOeZ/+rL99vr\nHE+me3fxJn729EwG92jGg5f11F5jkjKzXHfPLmu+EvcU3H2Auw8gsofQOzjR2wfoxXfPDUiGeOqj\nlbz2xXpuPKejGoIAkUTVX5/dgZfz1vPMxysTXY4coXhONHd097nRAXefR+QyUskwny3fwr1vLOSc\nLk25pr+ST+Vb1wWJqndPX6hE1RQXT1OYY2Z/MbP+wevPwJywC5PksnHHXq59bjatG9Ti/kuVfCoH\nU6Jq+oinKfwMmA+MDl4LgnGSIQoKD3D1xFx2FxTyxEgln8qh1a1ZjQkj+yhRNcXFc0nqXnd/0N2H\nBK8H3V0/AzLI3dMXMEvJpxKHTsfW4Q8/PlGJqimsalkzmNkKgruZY7n78aFUJEnlpdy1/N8nq/jl\n99sq+VTiMrhnc75Ys52nPlpBr1b1GNyzeLqNJLMymwKRy1GjagCXAA3CKUeSybx127lt2lxOPr4B\ntwzUjeYSv1t/2Il567dzy0tz6NC0Np2P+056jSSpeA4fbYl5rXP3h4DzK6E2SaBtuwu4elIk+XT8\n5b2VfCqH5TuJqnuUqJoq4nmeQu+YV3ZwN3I8exiSovYfcEZPzmPjdiWfSvlFE1XXb9vDDVPylKia\nIuLZuN8f876QSGjdpeGUI8ng4beW8N6SfO4Z0k3Jp3JE+rRuwG8HdeF3r8znkbeXMfrs9okuScoQ\nT1P4ubsfFFJnZm1DqkcS7K0FGxmn5FOpQCNPbk3e6m08NGMJ3VvWZUDHJokuSUoRz4HiF+McJylu\n5eZd/PoFJZ9KxTIz7hlyIp2OrcPo52ezesvuRJckpSgtJbWTmf0YqGtmF8W8riByFZKkkd0FhVz1\nbC5VsozHhyv5VCpWzepVeGJEkKg6UYmqyay0PYWOwCCgHnBBzKs38MvwS5PK4u6MfWkuSzbtZNzQ\nXrRsUCvRJUkaatWwFg8N7cmiL3dw+7S5lJTQLIlV4jkFd38FeMXMTnH3TyqxJqlkf/toJa9+sZ6b\nzu3IGR2UfCrhGdCxCWPO6sCDby2hZ6t6/OSUNokuSYopsSmY2c3u/j/A5WY2rPh0d/9VqJVJpfhs\n+RbuCZJPr+6n5FMJ3/VntmPO2m3c9doCuhxXh+w2uhc2mZR2+CgaXJID5B7iJSmuePJpVpZOLEv4\nsrKMBy6LSVTdqSi1ZFLik9eSlZ68VjEKCg8w7M+fsnDDDl659jQF3UmlW/TlDoY8+jHdmtfhuV+e\nTDXdNR+qeJ+8Vtrho9c4RBBelLtfWM7aJAncPX0Buau+YvzlvdQQJCGiiaqjJ+dx7xsLueOCroku\nSSj95rX/rbQqpFJNnfVt8umg7s0SXY5ksME9m5O3Zht/+2glPVsqUTUZlHb10XvR92ZWHehEZM9h\nsbsXVEJtEoL567dz61Qln0ryuO2HnZm/bocSVZNEPIF45wP/AcYB44FlZnZe2IVJxdu2u4BRE3Op\nX0vJp5I8qlXJYvzwXtSpoUTVZBDPVuF+YIC793f3fsAA4MFwy5KKduCAM2ZKJPn08RFKPpXk0qR2\nDR4foUTVZBBPU9jp7stihpcDO0OqR0Ly0IylvLs4nzsu7KLkU0lK0UTVGYs28cjby8r+gIQinpTU\nHDN7A3iByDmFS4CZZnYRgLtPDbE+qQBvLdjIuBlLlXwqSe+gRNUWdRnQSYmqlS2ePYUawEagH9Af\nyAdqEslBGhRaZVIhosmnJzavq+RTSXrRRNXOx9Zh9OTZrNqyK9ElZRzdvJbGdhcUMuTRj9m0cy+v\nXX86Leor6E5Sw5qtuxn0yIc0q1eTqVefSs3qSu09UvHevBbP1UdtzewBM5tqZq9GXxVTpoQlmny6\ndNNOxg3rpYYgKaVlg1o8HCSq3qZE1UoVzzmFl4G/Aq8BB8ItRypKbPLp99sr+VRST/+OTfj12R14\n4M0l9GxZj5+e2ibRJWWEeJrCXncfF3olUmFik0+v6a/kU0ld1w2IJKr+/vUFdG2mRNXKEM+J5ofN\n7A4zO8XMekdfoVcm5VI8+VQnliWVZWUZ91+qRNXKFE9TOJHIk9b+QORGtvuJMxfJzAaa2WIzW2Zm\nYw8x/SYzywte88xsv5npp0A5FRQe4OqJuewuKOSJkX2oXaNaoksSOWJ1a1Zjwsg+7NxbyHWTZvPN\nfh3FDlM8TeES4Hh37+fuA4LXmWV9yMyqAI8C5wFdgGFm1iV2Hnf/k7v3dPeewK3Ae+6+9fBXQyCS\nfDpr9Tb+dHEPJZ9KWokmqn6+civ3vrGw7A9IucXTFOYReU7z4eoLLHP35UGA3mRgcCnzDwOeL8f3\nCPBS7rfJp+d3Py7R5YhUuME9m/Oz09rwt49W8kreukSXk7biOdFcD1hkZjOBfcE4d/fSNvAAzYE1\nMcNrgZMONaOZ1QIGAteVMP1K4EqAVq10R25x89Zt57ZpczmprZJPJb0pUTV88ewp3AEMAe4FHgBm\nAu0quI4LgI9KOnTk7k+6e7a7ZzdurMsrY23bXcDVkyLJp48OV/KppDclqoavzC1I8FyFHUQiLZ4G\nzgQmxLHsdUDLmOEWwbhDGYoOHR22/Qec0ZPz+HL7Xh5T8qlkiGii6rqvlKgahhKbgpl1CC5FXQQ8\nAqwmEosxwN0fiWPZM4H2wR3R1Yls+L9zJ7SZ1SWSq/RKudYggz381hLeW5LPHRd0pbeSTyWDKFE1\nPKWdU1gEfAAMikZnm9mv412wuxea2XXAv4AqwFPuPt/MRgXTo3sbQ4B/u7uSrw7DWws2Mu7tZVzc\npwXDT9J5Fsk8PzmlNXlrgkTVlnUZ0FGJqhWhxEA8M/sRkV/3pwH/JHL10F/cvW3llfddCsSLJJ9e\nMP5DWjesxYujTqVGNYWFSWbaU7Cfix7/mHVf7eb1679Pq4bK+CrJEQfiufvL7j6UyLOZ3wHGAE3M\n7HEzO6fiSpXDsbugkKuezaVKlvH48D5qCJLRalavwoQRkYCFqybmsqdgf4IrSn3xnGje5e7PufsF\nRE4WzwZuCb0y+Y5o8umSTTsZN7QXLRvoV5FI64ZH8/CwXiz6cge3K1H1iB3W9Yvu/lVweehZYRUk\nJYsmn/7mnI6c0UGX5opEDejYhDFndWDq7HU8++mqRJeT0nRRe4r4fEXk9v4fdGnK1f2UfCpS3PVn\ntuOsTk2467UF5K5SWk55qSmkgI079nLNpFm0CpJPs7KUfCpSXFaW8cBlPWlevyZXT1SianmpKSS5\ngsIDXDNpFrsLCpkwsg91lHwqUqK6NasxYUQfduz9Romq5aSmkOTumb6A3FVf8T8Xd6eDkk9FytT5\nuDr88cfd+XzlVu57Y1Giy0k5agpJbNrstTzzySp+cXpbBnVvluhyRFLG4J7NueLUNjz10Qolqh4m\nNYUktWD9Dm6dGkk+HXuekk9FDtft53fme23qM/aluSz6ckeiy0kZagpJaNvuAq6amEO9mtUZf7mS\nT0XKo1qVLB69vDfH1KjKqGeVqBovbW2SzIEDzpgpkeTTR4f3pnFtJZ+KlFeTOjV4fHhv1ipRNW5q\nCknmoRlLeXdxJPm0T2sln4ocqew23yaqjn9HiaplUVNIIjMWbmTcjKVKPhWpYD85pTVDejXnwbeW\n8M7iTYkuJ6mpKSSJlZt3MWZKHt2a1+HuH3XDTDeoiVQUM+PeISfS6dg6jJmcx+otuxNdUtJSU0gC\nuwsKGTVRyaciYYomqro7o5SoWiI1hQRzd26dOpfFG5V8KhK21g2P5uGhvVj45Q5uf1mJqoeippBg\nT3+8klfy1nPjDzoo+VSkEgzo1ITRZ7Vn6qx1TFSi6neoKSTQzJVbuWf6Qs7u3JRr+rdLdDkiGeNX\nZ7bnzE5NuOt1JaoWp6aQINHk05YNavHAZUo+FalMWVnGg5f2pFm9mlwzSYmqsdQUEiCafPr13kIm\njFDyqUgi1K0VSVTdvkeJqrHUFBIgNvm047FKPhVJlM7H1eEPFylRNVbVRBeQaWKTTy/ooeRTkUT7\nUa/m5K3ZxlMfraBHy7oM7tk80SUllPYUKpGST0WSkxJVv6WmUEm27/6GURNzlXwqkoSUqPotbZkq\nQST5dDYbtu/hsRFKPhVJRrGJqje+kLmJqmoKleDhGUt5Z3E+v7ugK71bKflUJFllt2nA/zu/M28t\n3MSjGZqoqqYQsrcXbeThGUv5ce8WjFDyqUjS++mpbfhRz2Y88NYS3s3ARFU1hRCt2rKLMZPz6Nqs\nDvcMUfKpSCowM+67qDsdm9Zm9OQ81mzNrERVNYWQ7C4o5KpnczEzJoxQ8qlIKqlZvQpPjOyDu3PV\ns5mVqKqyU5RzAAANqUlEQVSmEIKDkk+HKflUJBW1bng0Dw3tyYINmZWoGmpTMLOBZrbYzJaZ2dgS\n5ulvZnlmNt/M3guznsoSm3zaT8mnIinrzE5NGXN2ZiWqhnZHs5lVAR4FfgCsBWaa2avuviBmnnrA\nY8BAd19tZk3CqqeyKPlUJL386sz2zFm7nbteX0CXZnXT/tnpYe4p9AWWuftydy8AJgODi81zOTDV\n3VcDuHtKn+rfpORTkbQTTVQ9rm5NrpmUm/aJqmE2hebAmpjhtcG4WB2A+mb2rpnlmtlPDrUgM7vS\nzHLMLCc/Pz+kco+Mkk9F0lfdWtV4YmSQqPpceieqJvpEc1WgD3A+cC7wWzPrUHwmd3/S3bPdPbtx\n4+Q8Rn/vGwvJUfKpSNoqSlRdsZU//CN9E1XDTEldB7SMGW4RjIu1Ftji7ruAXWb2PtADWBJiXRVu\n2uy1PP3xSn6u5FORtBZNVP3rhyvo0bIeF6bh33uYewozgfZm1tbMqgNDgVeLzfMKcLqZVTWzWsBJ\nwMIQa6pw0eTTvko+FckIt/2wM9mt63PLi3PSMlE1tKbg7oXAdcC/iGzoX3D3+WY2ysxGBfMsBP4J\nzAE+B/7i7vPCqqmiRZNP69asxqOX96aakk9F0l71qlk8Njx9E1Ut1W7IyM7O9pycnESXwYEDzs+f\nmcmHyzYz+cpT0v4yNRE52MyVWxn25Kf079iYJ0dmJ/3VhmaW6+7ZZc2nn7blFJt8qoYgknm+l6aJ\nqmoK5aDkUxGBgxNV30mTRFU1hcMUTT7tcpyST0UyXWyi6pjJeazekvqJqmoKh2FPwf6i5NMnRir5\nVEQOTlQdNTH1E1XVFOLk7oydOkfJpyLyHemUqKqmEKdo8ukNZyv5VES+68xOTRl9VuonqqopxOHb\n5NMmXDtAyacicmijz2rPgI6Nuev1BeSu+irR5ZSLmkIZDk4+7Zn01yKLSOJkZRkPXdYrpRNV1RRK\noeRTETlcqZ6oqqZQinumL1DyqYgctthE1fveSK1E1TBTUlPatNlreeaTVUo+FZFyiSaqPvXRCnq0\nrMvgnsUfJ5OctKdwCEo+FZGKEE1UHfvS3JRJVFVTKEbJpyJSUVIxUVVbvBgHDjhjpsxmw/Y9PDa8\nD41rH5XokkQkxTWpU4PHhvdm7Vd7uPGFPA4cSO4b29QUYhQlnw7qouRTEakw32vTgNtTJFFVTSEQ\nTT69qHdzRpzcOtHliEiaueLUNgwOElXfTeJEVTUFDk4+vXfIiUo+FZEKF0lUPZGOTWszenIea7Ym\nZ6JqxjcFJZ+KSGWpVb3qQYmqe79JvkTVjG4K7s6tQfLpw0N7KvlUREIXTVSdv34Ht0+bl3SJqhnd\nFJ75eCUvB8mn/Ts2SXQ5IpIhoomqL81ay8TPVie6nINkbFOYuXIrdyv5VEQSpChR9bX5SZWompFN\nIZp82qJ+Te6/VMmnIlL5iieq5u/cl+iSgAxsCrHJp0+MzKZuTSWfikhi1K1VjQkjoomqsyhMgkTV\njGsK976xkJxVX/FHJZ+KSBLo0qwO9110Ip+t2Mof/pH4RNWMagrTZq/l6Y9X8vPT23Khkk9FJEkM\n6dWCn57Smr98uILXvlif0Foypiko+VREktnt50fidW5+cQ6Lv9yZsDoypins3PsNbRsdo+RTEUlK\nByWqTsxlx97EJKpmzNbxpOMbMv3605V8KiJJq2mQqLpm625umPJFQhJVM6YpALr0VESS3reJqht5\n7N3KT1TNqKYgIpIKoomq97+5hPeW5Ffqd6spiIgkmYMTVWdXaqJqqE3BzAaa2WIzW2ZmYw8xvb+Z\nbTezvOD1uzDrERFJFbWqV2XCiD7sP1C5iaqhNQUzqwI8CpwHdAGGmVmXQ8z6gbv3DF53hVWPiEiq\nadPoaB66rHITVcPcU+gLLHP35e5eAEwGBof4fSIiaeeszpWbqBpmU2gOrIkZXhuMK+5UM5tjZv8w\ns66HWpCZXWlmOWaWk59fuSddREQSbfRZ7bmwRzOaVsIl9VVD/4bSzQJaufvXZvZD4GWgffGZ3P1J\n4EmA7Ozs5HoihYhIyLKyjHHDelXOd4W47HVAy5jhFsG4Iu6+w92/Dt6/AVQzs0Yh1iQiIqUIsynM\nBNqbWVszqw4MBV6NncHMjjUzC973DerZEmJNIiJSitAOH7l7oZldB/wLqAI85e7zzWxUMH0CcDFw\ntZkVAnuAoZ5sDywVEckglmrb4OzsbM/JyUl0GSIiKcXMct09u6z5dEeziIgUUVMQEZEiagoiIlJE\nTUFERIqk3IlmM8sHVpXz442AzRVYTirJ1HXXemcWrXfJWrt747IWlHJN4UiYWU48Z9/TUaauu9Y7\ns2i9j5wOH4mISBE1BRERKZJpTeHJRBeQQJm67lrvzKL1PkIZdU5BRERKl2l7CiIiUgo1BRERKZIx\nTcHMBprZYjNbZmZjE11PWMzsKTPbZGbzYsY1MLM3zWxp8N/6iawxDGbW0szeMbMFZjbfzEYH49N6\n3c2shpl9bmZfBOt9ZzA+rdc7ysyqmNlsM3s9GE779TazlWY218zyzCwnGFdh650RTcHMqgCPAucB\nXYBhZtYlsVWF5mlgYLFxY4EZ7t4emBEMp5tC4EZ37wKcDFwb/G+c7uu+DzjT3XsAPYGBZnYy6b/e\nUaOBhTHDmbLeA9y9Z8y9CRW23hnRFIC+wDJ3X+7uBcBkYHCCawqFu78PbC02ejDwTPD+GeBHlVpU\nJXD3De4+K3i/k8iGojlpvu4e8XUwWC14OWm+3gBm1gI4H/hLzOi0X+8SVNh6Z0pTaA6siRleG4zL\nFE3dfUPw/kugaSKLCZuZtQF6AZ+RAeseHELJAzYBb7p7Rqw38BBwM3AgZlwmrLcDb5lZrpldGYyr\nsPUO7clrkpzc3c0sba9DNrNjgJeAMe6+I3jaK5C+6+7u+4GeZlYPmGZm3YpNT7v1NrNBwCZ3zzWz\n/oeaJx3XO3C6u68zsybAm2a2KHbika53puwprANaxgy3CMZlio1mdhxA8N9NCa4nFGZWjUhDmOTu\nU4PRGbHuAO6+DXiHyDmldF/v04ALzWwlkcPBZ5rZRNJ/vXH3dcF/NwHTiBwer7D1zpSmMBNob2Zt\nzaw6MBR4NcE1VaZXgZ8G738KvJLAWkJhkV2CvwIL3f2BmElpve5m1jjYQ8DMagI/ABaR5uvt7re6\newt3b0Pk7/ltdx9Bmq+3mR1tZrWj74FzgHlU4HpnzB3NZvZDIscgqwBPufs9CS4pFGb2PNCfSJTu\nRuAO4GXgBaAVkdjxS929+MnolGZmpwMfAHP59hjzbUTOK6TtuptZdyInFqsQ+ZH3grvfZWYNSeP1\njhUcPvqNuw9K9/U2s+OJ7B1A5PD/c+5+T0Wud8Y0BRERKVumHD4SEZE4qCmIiEgRNQURESmipiAi\nIkXUFEREpIiagiQVM7s9SPucE6RAnhTy971rZnE/8NzMnjazdWZ2VDDcKLiBqiJq6R9N+6woZjbG\nzH5SxjwnmtnTFfm9krrUFCRpmNkpwCCgt7t3B87m4MyqZLEf+K9EF1FckAYcO1yVSJ3PlfY5d58L\ntDCzViGWJylCTUGSyXHAZnffB+Dum919PYCZ/c7MZprZPDN7MriDOfpL/0EzyzGzhWb2PTObGuTK\n3x3M08bMFpnZpGCeF82sVvEvN7NzzOwTM5tlZn8PcpQO5SHg18FGN/bzB/3SN7PxZnZF8H6lmd0X\nzcA3s95m9i8z+4+ZjYpZTB0zm26RZ39MMLOs0moLlvtHM5sFXFKszjOBWe5eGPNv9UeLPH9hiZl9\nP2be14jcGSwZTk1Bksm/gZbBBusxM+sXM228u3/P3bsBNYnsUUQVBLnyE4jc3n8t0A24IrjTE6Aj\n8Ji7dwZ2ANfEfrGZNQL+H3C2u/cGcoAbSqhzNfAhMPIw12+1u/ckcuf108DFRJ79cGfMPH2B64k8\n9+ME4KI4atvi7r3dfXKx7zsNyC02rqq79wXGELnbPSoH+D6S8dQUJGkEzwXoA1wJ5ANTor+0gQFm\n9pmZzSXyC7hrzEejOVZzgfnBsxX2Acv5Nghxjbt/FLyfCJxe7OtPJrIh/sgiMdQ/BVqXUu59wE0c\n3t9QbJ2fuftOd88H9kXzi4DPg+d+7AeeD+osq7YpJXzfcUT+HWNFgwJzgTYx4zcBzQ5jXSRNKTpb\nkkqwMXwXeDdoAD81s8nAY0C2u68xs/8GasR8bF/w3wMx76PD0f+PF89zKT5sRJ5FMCzOOpcGG+hL\nY0YXcnCTqHHwp8pdZ1m17Sph/J5SatjPwX//NYL5JcNpT0GShpl1NLP2MaN6Egn3im7YNgfH0i8u\nx+JbBSeyAS4ncvgn1qfAaWbWLqjlaDPrUMYy7wF+EzO8CuhiZkcFv/zPKkedfYM03yzgsqDO8tQG\nkafPtYvzezsQSduUDKemIMnkGOAZM1tgZnOIHDL57+A5AX8mstH6F5Eo9MO1mMhzmxcC9YHHYycG\nh3GuAJ4PvvsToFNpC3T3+cCsmOE1RJIq5wX/nV2OOmcC44ls0FcA08pTW+AfwBlxfu8AYPphVytp\nRympkvYs8njO14OT1BnFzKYBN7v70lLmOQp4j8gTvQorrThJStpTEElvY4mccC5NK2CsGoKA9hRE\nRCSG9hRERKSImoKIiBRRUxARkSJqCiIiUkRNQUREivx/gDjbhNwyqfkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Traingualr window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecJUd5Lvy8J6eJOzObo3ICI4TAXIJMFGCQ74dtkfwh\ng40Dtrm2sQ02RtfwCZtLNCDbBGMLZNCVwSCECUKgnHclraRdabU5zOzkOWdOjvX9UaGr+3Sd6dHu\nzJzdref3m9+cU12nu7q7qt56nzcUMcZgYWFhYWFhQmilG2BhYWFh0d2wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOsIKCgsLCwuLjrCCwsLCwsKiI6ygsLA4ySCi84jocSLKE9GfBPwNI6Kzl7pthmvf\nRkTvXIlra22IiGewZZmv+24i+vFz/O3ZRHRGxBeQjaM4MRDRIQCrATS14nMZY2Mr0yKLlQYR/SuA\necbYnxqO3wngRsbY17QyBuAcxti+E7juywHISY8ApAAUtSoXMsaOPNfzLyWIKAKgDmArY+zQCjcn\nEIRg38sYo5Vuy1LDahQnB29mjGW0vzYhIQbCGYMz7X492Axg13JflDF2j+yDAC4Sxf1av3QJCSIK\nEdEpPwec4X1tWXDKd5JuBRFtEar0e4noCIBfiPKXENH9RJQlop1EdIX2m61EdJegLH5GRF8iohvF\nsSuI6JjnGoeI6DXic4iIPkRE+4lohohuJqJBT1veTURHiGiaiP5GO0+YiP5a/DZPRDuIaCMRXU9E\nn/Fc8wdEZFopMyJ6PxHtBbBXlJ0v7mWWiPYQ0W9q9d9IRLvFNUeJ6IP6vYo2TYv7fKf2uz4i+gYR\nTRHRYSL6iJzwiOgaIrqXiD5NRHNEdJCI3qD99hoiOiCuedBz3vcQ0dPidz8los0d3u9biGiXeI93\nEtEFovwXAH4FwJeIqEBE53p+dx2Al2vHv6Qdfg0R7RXnvJ6ISPtd4LZ1gng2HyeiB8C1jU2i7Bpx\n/BwiukO8r2ki+iYR9Wm/P0ZEf0ZETxJRjoi+TURx7fiHiWhcvM/fJY1O0q8jvv8Oce3K9HwfJ6J5\n0Wf/Vjt2tjjvbxMfW7f5/P4+IrpKfH6lqP968f31RLTd2wZy6K/fI6J94ll/QTtnmIg+R3x8HQBw\npeeaG4joh+LZ7SWi94jyFBFViGhAfL+WiOpElBbf/56IPt35za0wGGP27wT+ABwC8Bqf8i0AGIBv\nAEgDSAJYD2AGwBvBhfRrxfdh8ZsHAHwWQBzAKwDkwSkKALgCwDHTtQF8AMCDADaI338ZwLc9bfmq\naMfzAVQBXCCO/wWAJwGcB05ZPB/AKgCXAxgDEBL1hgCUAKw2PAsG4GcABsV10gCOAvhtABEALwAw\nDU6BAMBxAC8XnwcAXKrda0N7Fq8En9TOE8e/AeAWAD3i3p4F8F5x7BpwCuN3AYQB/IG4BxLtmdfO\nsxbAReLzVQD2AbhAtPUjAO433Oe5oj2vBRAF8JfitzFx/E4Av9Ohz7QdF8/uhwD6AWwCMAXgysW2\nzaf/RTzl94p+c4Foe0SUXaPd26sBxACMALgPwKe13x8D72drRB95Vt4LgF8Vz/oC8ay/LdqwRbv2\nNdq5fgfAneJzxFP3VeBaUQi8P04D+FVx7GxR99/A6bWkz/1/AsDnxOePAtgP4Drt2Gc6tOEWAH3i\nGc7CGWN/BK4pbhD3fjcApl3zPgBfBJAAcKlo8yvFsfsBXCU+/0K057XasTev9FzWsT+tdANO9T8x\n6AoAsuLv+6JcDtRtWt2/AvBNz+9/CuDd4JNDA0BaO/YtBBcUTwN4tXZsLfiEGdHaskE7/jCAt4nP\ne2Qn9rm/p7UO/UcAftThWTAAr9K+Xw3gHk+dLwO4Vnw+AuD3APR66lzh8yxuBvC34JN/DULYiGO/\npw32awDs046lRLvWgE9eWQBvhWdyAef236t9D4ELxc0+9/m3AG721B0FcIX4fieem6B4med+P7TY\ntml15Dv3ExQf9Sm7xnCeXwfwiPb9mOw34vtnAXxJfP4GgI9rx87HcxQUPu34EoBPic9SUGzqcP+v\nB/Co+Hy7uNa94vt9AN7SoQ0v0c7zXwA+KD7frb838AUfE5+3go83vc9+CsDXxOe/F88qCmAcwJ8C\n+P9E/6yAU4QrPp+Z/iz1dHLwa4yxfvH3a55jR7XPmwH8hqAWskSUBfAy8El9HYA5xphufDy8iDZs\nBvA97bxPgxvYV2t1xrXPJQAZ8Xkj+ArHDzcAeJf4/C4A31ygHd77fbHnft8JPmkDfMJ+I4DDxCm3\nX9Z+6/cs1oFrNVG4n81hcG1NQt0nY6wkPmbE+a4G8PsAjhPRfxPR+Vpb/1Fr5yy4FqKfV2Kdfn3G\nWEvct1/dxcD0fhbTtiA4ajpARGuI05ajRDQP4N/Bn3mQdq7znNt4nYVARL8sKL0pIsqBT+jednQ6\n/30ALiKiYQAXg/fjbUS0CsALAdzT4bdB70/vg+sATPv0WfmO7gJfAL0IwGMAfg6uKb8UwNOMsWyH\n9qw4rKBYejDt81FwjaJf+0szxv4BnIYZkLylwCbtcxF89QGA86UAhj3nfoPn3AnG2GiANh4FcJbh\n2I0AriKi54NTCt9f4Fze+73L06YMY+wPAIAx9ghj7CpwiuP74KtoCb9nMQauztfBJ0/9WJD7BGPs\np4yx14IL52fA6TjZ1t/ztDXJGLvf5zRj+vWFLWFj0DbA/YyCYDFtO9HrfxKclryEMdYLrqEF9eo5\nDk7LSGz0HHf1YTgLBj/cBOC7ADYyxvoAfM3bDrmU9wNjrADgcfCV++OMsTqAhwD8OYBnGGNznW/F\nF8fhvid9fI4BGPLps7JP3AdOpb0FXGg8CT7mrhTfuxpWUCwvbgTwZmFMCxNRgrjhdgNj7DCA7QD+\njohiRPQyAG/WfvssgAQRvYmIouA8dVw7/i8ArpNGTiIalsa8APgagI8LQyYR0fPEyguMsWMAHgHX\nJL7LGCsv4n5/COBcIvotIoqKvxcR0QXiHt9JRH1iEM8DaHl+L5/Fy8H57/9kjDXBBcp1RNQj7vfP\nwJ9tRxDRaiK6SgzmKjhlKK/5LwA+TEQXibp9RPQbhlPdDOBNRPRq8S7+XJwv6MQ9AWBbwLqLbduJ\nogd8Qs8R0UYAH1zEb28G8F7icSQpcIpOx+MA3kpESeJG/vcs0I5ZxliFiF4C4G2LaIfEXeB0qZyI\n7/R8XyxuBvC/iGi9GB9/JQ8wxg6Cj99PEFGciH4J3DZ3ozieB7ATwB+CL54YuOB63wm0Z9lgBcUy\ngjF2FNww+dfgxsqj4IZk+R7eAeDF4NTCteCcr/xtDryTfQ18lVIE54sl/hHADwDcRkR5cIPjiwM2\n7bPgg+A28An7X8GN0RI3ALgEC9NOLojB8TrwQT4GrtJ/Eo6A+y0AhwTF8fvgtJTEOIA58bv/APD7\njLFnxLE/Br//A+C897cAfD1Ak0LgQmUM/Bm/EtzYDcbY90TbbhLteQrAG/xOwhjbA07DfRFcw3kz\nuDGyFqANAH9Xv+71qjFhMW07CbgW3IkhB96fvhv0h4yxWwH8MziXvxd8FQ1wIQoAnwbXZibB31cn\n4f4HAP5e9OW/hlvbDIq7wAXO3Ybvi8U/g1NGT4Ivnr7jOX41gHPA++53APw1Y+xOT3vC4AJFfs+g\nMw3WFbABd10MIvrfAM5mjL1robpL3I5XgA/qzZ3U/ZN4vSvAjfgbFqpr0b0goksAPAogLuw4Fqco\nrEZh0RGCWvkAuPeGXVVYdAQR/U9BFw4C+AcAt1ghcerDCgoLI4gHkWXBDb+fX+HmWJwaeD84HbcP\n3O3z/SvbHIuTAUs9WVhYWFh0hNUoLCwsLCw64rRIpjU0NMS2bNmy0s2wsLCwOKWwY8eOacbY8EL1\nTgtBsWXLFmzfvn3hihYWFhYWCkQUKPuDpZ4sLCwsLDrCCgoLCwsLi46wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOqJrBQURXUl868x9RPShlW6PhYWFxZmKrhQUYq+F68EzZF4I4O1EdOHKtsrCwsLi\nzES3xlFcDr6d5QEAIKKbwNNz7z6ZF6k3W/jYrbsxU6zi7OHMwj+w4KCg+9hYAMF3/bHgsN0rGBgD\nnhzN4cNvOB/nrO5Z0mt1q6BYD/eWg8fg2VuBiN4HvukHNm3SN5oKjnylgW8+6MSb2A66MGxqMAuL\n7sILNw+csYJiQTDGvgLgKwBw2WWXPafpazAdw30fehWu/NzdeMV5w7j+HZee1DZaWFgsDjZJaTBM\n5at46T/8Aq+/aA3+8ArTLsYnD90qKEbh3pt2A4LvR7worO9P4u0v3oSv3XMAk/kKRnoSS3EZCwuL\nACCr1gfCf+44hkaL4YOvP29ZnllXGrPBtxk8h4i2ElEMfCvNHyzVxf6fS9ejxYDbd08u1SUsLCws\nThp+8tQ4Xrh5AFuH0styva4UFIyxBvgm6D8F8DSAmxlju5bqeuet7sGmwRR+8czEUl3CwsLC4qRg\nulDFk6M5XHHugklfTxq6lXoCY+xHAH60HNciIrx46yBuf3oCjDGr/lpYWHQt7t8/AwB4xTIKiq7U\nKFYCL9w8gLlSHQeniyvdFAsLCwsjdh7NIh4J4aJ1vct2TSsoBF64eQAA8OiR7Aq3xMLCwsKMJ4/l\ncOG6XkTCyzd9W0EhsG04g3gkhD3j8yvdFAsLCwtftFoMu8ZyuGR937Je1woKgXCIcNZwBnsnCyvd\nFAsLCwtfHJktoVhrLivtBFhB4cI5qzPYO2EFhYWFRXdC2lDPWuaUQ1ZQaDh3dQ9Gs2UUqo2VboqF\nhYVFG6SgWK74CQkrKDScNcwf/iHr+WRhYdGFODhdRE8igsF0bFmvawWFhg0DKQDAsbnyCrfEwsLC\noh2HZorYNpRe9lgvKyg0rO9PAgCOzZVWuCUWFhYW7Tg0U8TmVctLOwFWULjQn4oiHQtjNGs1CgsL\ni+5Cq8UwkatinVjQLiesoNBARFg/kMSopZ4sLCy6DLOlGmrNFtb0xpf92lZQeLC+P2ltFBYWFl2H\n8VwFALCmz2oUK451/Ukcz1lBYWFh0V2QgmJt3/LvmWMFhQfDPXHMleqoN1sr3RQLCwsLhePzVlB0\nDYZ7OP83U6itcEssLCwsHIznyoiECKsy1kax4hgSL2EqX13hllhYWFg4mJyvYigTRzi0/PvlWEHh\ngdQopgtWUFhYWHQP5kq1ZY/IlrCCwoNhq1FYWFh0IeZKdQykoytybSsoPJAaxZTVKCwsLLoIc8Ua\nBlJWo+gKJKJhJKIhZEvWmG1hYdE9mCtZQdFV6E/GkCvXV7oZFhYWFgCAZoshW65jwNoougd9ySiy\nJSsoLCwsugPz5ToYAwZS1kbRNehLRq1GYWFh0TWYFVS49XrqIvRaQWFhYdFFkDbTfmuj6B70p6KY\nt4LCwsKiSzBb5PPRoBUU3QNLPVlYWHQT5MK1NxlZketbQeGDvmQUxVrTJga0sLDoChRrDQBAOm4F\nRdegL8k9C6xWYWFh0Q0oVLmgyFhB0T2QL6NUba5wSywsLCz4XBQOEeKRlZmyraDwQToeBuCoexYW\nFhYriUK1gVQsDKLlzxwLWEHhi1RMaBRWUFhYWHQBitXGitFOgBUUvlAahaWeLCwsugDFWmPFDNmA\nFRS+sBqFhYVFN6FYbVpB0W1IC0FhNQoLC4tuQLHaQDoWXrHrW0Hhg5Q1ZltYWHQRClVLPXUdrEZh\nYWHRTSjVmmeeMZuIPkVEzxDRE0T0PSLq1459mIj2EdEeInr9SrQvEQ2BiNsoWi2GT/30Gdy2a3wl\nmmJhYXEGotZo4eM/3I3bd08A4NRT6gyknn4G4GLG2PMAPAvgwwBARBcCeBuAiwBcCeCfiGjZnw4R\nIRkNo1xr4u69U7j+jv143zd3oNawKT0sLCyWHrfuHMO/3nsQH/zOTjDGUK43zzxBwRi7jTEmDQAP\nAtggPl8F4CbGWJUxdhDAPgCXr0QbY5EQas0WHjo4q8p2HsuuRFMsLCzOMDxwYAYAkC3VMZaroNpo\nIbZCUdlAd9go3gPgx+LzegBHtWPHRFkbiOh9RLSdiLZPTU2d9EbFIyFU6y0cmi4iGeWS/NmJvDpe\nrDbwsVt340HxQi0sLCwWi1aL4R9v34tbHh91le8am1caxNNj82i2GOKR01CjIKLbiegpn7+rtDp/\nA6AB4D8We37G2FcYY5cxxi4bHh4+mU0H4GgUY7kKXrh5AMloGPsni+r4DQ8cwtfvO4g/uHGHzTJr\nYWHxnPCTXeP43O3P4gM3PY6xbBkAFx77Jwt47YWrAQCHZvi8c1pqFIyx1zDGLvb5uwUAiOgaAL8K\n4J2MMSZ+Ngpgo3aaDaJs2RGPhFFtNDGWLWN9fxJbh9I4OF1Qx3/8JDduz5XqeMJSUhYWFs8B0lgN\nAHfsmQQATBerqDVbeP6GfoQIODJbAoAVSwgIrJzX05UA/hLAWxhjJe3QDwC8jYjiRLQVwDkAHl6J\nNsbCIRSrTUzlq1jbn8CavgQm81UA3CNhz3geV1/GZdqDB2Y7ncrCwsLCFw8dnMUbLl6DgVQUT43m\nAADHsxUAwIaBJIYycSUoTkuNYgF8CUAPgJ8R0eNE9C8AwBjbBeBmALsB/ATA+xljKxLMEIuEMF3g\ngmEgFcNwJo4pISj2TxVQa7bw0rNXYX1/Ens124WFhYVFEJRqDYxmy7hwbS/OHskoavt4jlNQ6/qT\nGEjFMDnP551YeOUExYpEcDDGzu5w7DoA1y1jc3wRj4QwnuOSPROPYKQ3julCFc0WUxJ+21AG24bT\n2DdV6HQqCwsLizYcmubzyNbhNEazZdwmaCjJXIz0xtGXjOLANBcg8ehpaMw+1RGLhDBbrAEAMokI\nhnviaDFgtlhTAmRtfwJnDWdwcKoIx8xiYWFhsTCkkXrLqjQ2DqYwW6yhUm8iW+I7aw6kYuhNRhSz\nsZIahRUUBsSF1xMA9CQiGEzHAHBBMZYrIxYOYTAVw7r+BIq1JvJVmxfKwsIiOA4KTWHLUBrDmTgA\nYCpfRbZURyYeQTQcQq/Ylhk4A43ZpwJ0n+WeeBS9Cf7C8pU6xnMVrO6LIxQirO5NAAAmhJZhYWFh\nEQRT+Sp6EhFk4hEM93JBMZmvIluuoU8ICDnvAFZQdCV0D4NMIoKeBDfnzFfqmC3WsCrNX+waISjG\n562gsLCwCI7pQhVDQpPQNYpcqY7+FBcQCc0usZJeTyuXjrDLoUvvnkQELWGDyFcayJXriopa0ycE\nhdUoLCwsFgEuKPg8MtwjBEWhimxZFxTOPHRaRmaf6nBpFHFdo+CCQqqGUmDMlbjhu1ht4Kov3YsP\n3PTYMrfYwsKiW3F0toRXfuoOXH/HPlU2U3CYCTmf5Ct1ZEsO9ZTsEo3CCgoDdA+DeCSkuML5ct0l\nKDLxCCIhUp4KP35qHDuP5XDL42Nt8RVHZ0uYE55UFhYWpx8YY3j8aLZtG+Ub7j+EwzMlfP72Z1Ft\n8NCwmWINq4RGEY+EEA0T8pUGyrWm2hMnGbOCoqshX0osHAIRIR4JIRYOKUHRLwQFEaE/FUW2zAXF\nY0fm1DkeOeR8PjJTwqs/exde/dm7ULAeUhYWpyW+99gofu36+/An33YzCjIbbL3J8MzxPBrNFuZK\nNWWjICJk4hEUKg2U6k0lIBIRKyi6GpEQAQCiYf6fiNCTiGAsVwFjcLmt9SWjyAmN4qnRHH552yr0\nxCPYfTyn6vzoqeOoNVqYLdbw86cnYGFhcfrhP7cfAwDc/vSkisOqN1vYO1HAay7gSf72TRYwV6qD\nMSiNAgB6ElEUqg2Uapqg0DQKOSetBKygMCAc4o8molFQiWgYE8K7SRcUA6mYslEcni1h23Aa56/t\nwbPjTsT2A/tncNZwGulYGDsOO5qGhYXF6YFqo4lHj8zhkvV9AICdR3my0MMzRdSaLbzuotWIhgl7\nJwuKVdDdXzPxCHLlOmqNFlJRTj0lNC0iRFZQdB2kfNCleDIWRlYIBN3I1J+KYq5UR7nGoyrX9Sex\nvj+JMZGzBeCriEvW9+Hi9X3YeczRNCwsLE4PHJgqotpo4bdeshlEwBNinI+KJH9bVqWxti+J47ky\nChUuKNLaPtiZRETlk0vG+ASkp+0IW42i+xASLyWkvZxENIQ5QTHpgqInEUWx2lDJvNb2JbC2P4mJ\n+QpaLYZKvYnRbBnbhjM4d3UPDtrcUBYWpx0OTPFI64vW92J1T0LlhDuedeaFoUwM04Uq8lU+j2Q0\nQdGbiCjGIimM2VFt/gmvoEZhjKMgoi8E+P08Y+wjJ7E9XQOpSbg0iqijUeiBMMlYGKVaQ8VSrOlL\noFhtoN5kmC5UlXDZMpRGIhpqc7FljKHeZCtqrLKwsFgcap7tSeV+NVuH0tgwkMSxOS4oxnIVEPF5\nYbgnjoPTRRSr3PNJut0DXGhMibxOciGqaxGhFZweOl36KgA7Fvh761I3cKUg+UCdF0xEw6g3mfjs\nPLp0LIxSrakEwqp0HGv6kgCAifmqWiWs7Utg40AKAHeVBYBGs4X/+U/34/Wfv9t6Q1lYnCK4bdc4\nLvzoT3Djg4dV2ViuglXpGFKxCDYOpnBsjmsSk/MVrErHEQ2HMNzDtyso+GgUiWgYMreo3AZVt5Gu\npI2iU2T25xhjN3T6MRENnOT2dA2kJhEOuQWF3+dkLIJSrYlsmWsbvckIBkRk5VyppnjH4UxcRXyP\nZcu4eH0fHj44i8eF0eunT43jrS/cAIBrGX/xnSdwYKqAf7vmcvSlHKOXhYXF8uAnT43jo7c8hU++\n9Xn4lfNHVPnX7jmIRovha/ccwLteshkAT78hI6z5RmcVMMYwV6phMM3H71AmjrlSXcVdpT2CQkJq\nFDqj0ZU2CsbY5xf6cZA6pyrCBupJwqtRAFx7ALi7rAzBz5brKk3wUE9c+U1L17lHRdxFJETYftjZ\nKe/ZiQK+s+MYHj2SxXcePXZyb87CwiIQPn/7s5jMV/H5n+9VZdK7KRIiHJpxgmj13E2DqRjqTYZC\ntYFsqY7+JHeDlV5OMjecTj3paYOke6yLeupGryciShDRu4noLcTxV0T0QyL6RyIaWs5GrgRMxmzn\nsyM0UmJVMJ4rIxIiJKNh9ImOkRMaRTIaRjoWVik/ZkTnevp4HpsGU3jRlkHsPu5Ect+zd4qfOxbG\nA/tnluIWLSwsOmAyX8Ez43kkoiE8ecyJtt43WUCjxfDrQvt/+vg8AHfupgGZ2qcoMjmIhWMmIeeK\nCsIhcgkH/bOcX6Ia9dSVGgWAbwB4HYD3ALgTwCbwLUzzAP59qRu20pCahP5qomGDoBCfj+cq6E1G\nQUTKUJ0t1VWoPhEhEQ2jJ+5sRrJ/qoBzV2dw3poe7J3Iqw2Qdo3NY21fAq+7cLXaS9fCwmL5IMfd\nNS/dihYDnhTurnsnuNH6Lc9fBwDYN1UAYwzTeSfSWlJNM0W+v4SkoqVNYqZQQyoaBmlagu4KK1MI\nuTWKk3+PQdFJUFzIGHsngF8HcB5j7P2MsZ8IL6eNy9O8lYNU8/R960yCIh3nn8dzFSUgYpEQ0rEw\n5kp15Ct1V2DNYCaGmQLXKI7nKljXn8SGgSRKtSbmy3zVcmC6iG3DaVy4rhfj8xUV+Q0AdzwziY/d\nulvljLGwsDgx7DyaxUe+/yRmxAIOAPaIgNmrfokLBLkj3ahwd33+xn5EQoTxXAXFWhPlehNDPVJQ\n8P9zpRrmSjX0p7iGIW0SM8Vam5ejrlHIjBDyPwCXUFludBIUNQBgjDUAjHmOnfYzlJ+ap7+0hItP\nFOrkfMXFOfanYsiWa8hXGkrlBHjG2dliDeVaE7lyHat7E1grvKRkkN7BqQK2DWWwaZB7SR3Lci+p\nerOFP/yPR/H1+w7i5keOutp38/ajuPrLDyiPKgsLCzduevgIrv7yA2qyl/jQfz2JGx88guvv2K/K\nxrJl9CWjOGckg3CIcHSW/+Z4roz+VBTpeASrexMYz1UwKxZ+qwTlJDWI47kKqo2WlkSULypni9W2\njYh0jSLqo1GsJDoJig1E9AUi+qL2WX5fv0ztWzHIF6TvhS1d1SIhcrmtSWN2vtJQbm0Aty+Ua00U\nqg30uAJroshXG8qgtaY3gbX9zr4WxWoD85UG1g8ksb5fCArharfj8BzKdS6nf/HMpDpnvdnCtbfs\nwkMHZ/Hlu53ObmFhwVFtNHHtD/gY+erdB1T5xHxF2RnuFrZBgAuKdf1JRMIhrO1LqLiI8VxFLexW\n98YxPl/BfIVr/L1JN8UkPR7lHJGJ8+OzC2gUkbB0pumO2KpO7rF/oX3e7jnm/X7aQQkKrUxKeZ12\nAtwbiuifkyK+Il9p4JwRd2DNsbmSiq9Y3Ztw7ZQnO9dITxwbBniHlFrC7jHeoV9+zhCe1ozfjx/N\nKgFy797p53jXFhanL7YfmkO10QIA3LvPGSMyJ9PLzxnCffumUao1kIrxBKDrxMZk6/qTGBOpOCbm\nq1gtti5d3ZvAsxN5FQMlF4SSYpK2SOnFJGnqepO1bUSkCwppo4iEu1yjYIzd0OlvORu5ElDh8pqk\nkOH0XqowZvBcSEbDKNe5RpHxRGAWqg3Mi9Tk/akoBgSHmS3VVXTmUCaO/lQUsXBIle2bKqAvGcXL\nzxnC+HxFueZJQ9s1L92CQzMl5CuOTeOJY1n81XeeUIJJR73ZCv5QLCy6DK0W87XV3bpzDNf9t9uO\nt2uMj5H/95c348BUARWxsNovUm+85fnr0GKOsXosW1aa/lAmhlmRlWGuVMOgGK/9qSjmKw2Vu0mO\n83gkBCIoW6Skp/UAO69Goe+Bo7MX3YBO7rG3EtEPTH/L2ciVgK9GIV4sY+66uu0i7kntUa41Uag0\nlMoJ8M5UqHB6CeBUVCIaQiwSQrasBej1xEFEGEhHlUA4OFXEWcNpbB3KAIDKJ3NguoDeRASvOJd7\nLu8Zd7SNa3+wC/93+1F8/vZnXe3+v48cwcXX/hTf3WHjNCxOPbRaDL/55Qfw8k/eocYMAJRrTfzx\ntx/DV+85iP96dFSV750oYLgnjpdsW+USCAemChjKxHHB2l4AXEBU6tx+KCmmgVRMjcFcyXF37U1E\nMV+uK41y9SbxAAAgAElEQVRCCgIiQjoWcQSFmBdSMf+4CcDtii/nlFPBRvFpAJ8BcBBAGcBXxV8B\nwGlPgvu9ICndWx5JYdIoUrEwsuUaas1WW06XYq2p8kb1JiN8AySxr8W0plEA3INCBuhNzHN+dK1Q\niY+L/FIHp4vYNqwZv4VNY7pQxWNHuGp9xzMO/woAX73nIKqNFv75rtP+dVqchthxZA7bD89hMl/F\n9x9zBMKDB524I51iOjDNF1mbV8kxwhdZo9kyNg7yjM8AT8Uhtw2Qmv5gmm8lUGu0kK82nAC6ZBTV\nRkuNWZ05SMXCmC5W1WeACwDJSHg1iohLUIRc/1canainuxhjdwH4H4yxqxljt4q/dwB4+fI1cWXg\nZ8yWL82rUZippwim87zDpTUjtxQacpLvEa6z/akosqW6coV19uWOqgA9mSbAERRcIIxlK9gwkMQ6\n0dmlV8czwo5xxXnDGJ+vKIEznqtg3yRfYe2bLKhygAcafezW3S6tRGKmUHU9EwuLk4lCtaEoIR3f\nfOAQvqnlVQKAhw/yTAb9qagrq8HOo1kQAb9y3rCiZAHe59f1JZWWIMffVL6KkR5O8yaiIRzPlpHT\naGGAC4wWczR4WS6N12osa8xBKhbWqCc+/olIUUxejUJfnPqlEFpJBBFXaSLaJr8Q0VYA6aVrUneg\nkzHbq1HEwyZjdkgZmHVKSqqnY9kyeuIRdS3pTluoNvjWq6IjSY2iXGsiX21gpDeOwXQMsUjI09kT\nSMUiGEzHlKB4VuzbLX3BpXfH0+P8/zsu3wTAMZIDwOd+thdfv+8g/uZ7T7ru8449k7j8Ez/Hh77r\nLrewOBmYzFfwiv9zB970hXtctoW9E3n87S278Lfff8oVfLrzaBbbhtO44txh7DzqlB+YKmJ9fxIv\n3DyAI7MllGtNMMbUImsgFUUsElJeh5Ni7BAR1vQmMJGvqlxM/WqxFhPn5nSVEhQJZyyHQ+TK3pCK\nRZTA0dP/qG2W2zSK9ijsrrdRaPhTAHcS0Z1EdBeAOwB8YGmbtfKQxmxdJkgPBO96OhrRbRTujiKh\nG6oyWufybqmaLdUxX2koLQMABlPcRuF4Q/FOPSTiMUq1BgrVBoZ6eGde05vAhBAgh2aK6ElE8KIt\ngwCcFdFBYcB70/PWAgD2TDjaw93Pcopq++E5RY8B3Ae92WK4ecdRNQAk9k8VUK6d9uE1FicJh2eK\nLocLAPjxk+OYLdawf6qIe551KKM79jhu4Hc9O6Wdo4RtQxmcNZzB+HxFaSIHpgvYNpzBBpGpeTRb\nxny5gVqzpex+a/sSGMuWUW1wW8SICJTrT8WQLdWUoFC2iCQfs5LSleNW/h/LlpGOuSOtpYcTAJfb\nvNQkvF5PuvYgz7OSQXY6FhQUjLGfADgHXDj8CXiU9m1L3bCVhqNROGIhpqgnj41Cj9jWXn7CZxUB\nOKuLyXzVZbvoiUdQFJO+Xp4WNo0ZwXfKoJ6+VAzZUl3RW8PKpuFszcptGgms7k2AyG3T6ElEcM5I\nBsloGGNCA5nMVzCaLeMV5w4DgHLBZYzh/v0z2LwqBca4J5XE/fun8erP3IV3fO1B13PJlet4+1ce\nxHX/vdv7eC3OAIxly7jy83fj+jv2ucqfGs3hik/fiauuvw/NljOW7t03jbV9CURChB1HnO2CHzuS\nxeZVKWwdSitXVsYYDs8WsXlVChs9drnRuTI2ajTsWLaMyTzv9zK761CGa+nTghqSEdV9SW6czolM\n0JL+lYs+6X0oWQGpUUzmq4pekkhqC8WkT3oOr0bRLTSTHzp5PV0qPzPGqoyxneKv6lfndINjo3DK\npEbR8qgUevCdW6PwFxRyJZEt1ds3QKo2ka/UXW506XgEzRZTnVqubvqTUeTKNUwV+CCQnX0gHVN7\nY0zMc7U6Gg5hOBPHuLBpjM9XsL4/CSLCuv6EEhTSE+Stl/KYSklVjc9XkK808JuX8ewtOlV1604e\nuP/YkSz2a7v3ff+xUTxwYAZfvecgDk4XXc/srmenXMJGolhttGkrFt2DOc2WJdFotnDrzjFl0JX4\nj4cO45nxPD710z2uFDS3PjEGxjhFJFPsA5wmvXTzAM4eyeCZ407/OjhdxNnDGVy4rldRqVP5Kir1\nFjYNprBx0Ik1qjVamCvVMdKTwPoBx16na+MAFwC5smMPlBRTfyqKbNlJAy4FRTomczS5NxZKir2t\nc+V628Sf8oxtiVhkYRtFt6GTRvFvRDRARIOmPwD/ulwNXW6E/ARFyF+j0OGNo5DQO5HkMcv1pqt+\nOs73tShUPBqF6GSSU5Wutsr4LSZW5aGRiirj9OR8BSMiOGhtX8Jl05CrKx5M5KzGAODSTQPoiUcc\n91tBVb1gUz9W98bx7IQjEB7YP4Ntw9xs9fgRZ+Df/eyU8vC4f79DJeydyOPdX38YV11/nyu3TrnW\nxOs+dzde/Zm7XBMLADRbDC2vhLZYMjR9nvV3dhzDCz7+M3zuZ24363+//xD++NuP4Q9u3OEqv3PP\nlJr8Hj7kGJsfPDCLbUOivwhBUak3cXS2hLOGeYJM2b9aLSY8+viucWNZvr3wpJj4V/cmtE3CKkpY\njfTGFZ00na8qTWBY0xxy5bqivySF1C/Kix5315SgkaRxWi7wpAAo1ZouZgHwjvkgNopTU1D0YeEd\n7k7bpV9YcYRaWWhh3lDnHfWoyni4XaMAPFloYzxAL1du1ygAKG1AChG5+slX3J16IB1DrlxHvdnC\nVKGqVlFDmbjq6FP5qqKq1vQm1F4ax+ZKCIltG9f2J5RX1QGhEWwb4tyvFCzVRhOHZ0t448VrEY+E\n8My4sxLcfXwev/ZL69GTiCjNBABu2z0BgAvhO/Y4nPMdeyYxmi1julDFj546rsoZY3j31x/Gyz75\ni7ZV65fv2o/f+teHfFe6NpjQgd/Ef9uucVx1/X1qlS5x8/ajOPcjP8Ytj4+6yuVubt944JDrfLft\n4u/zkUNziuKpN1vYO1HAO1/MnSX2iH7BGMO+iTxece4wVqVjqvzobAktBpwlBMLEfAXNFsNUoYpq\no4VNq9LY0J9ETfTpaTXxxxQVO1N0bxIWDYeQiUcwpy2mpBG6T7iiy7Ejx5QUIMVaE0ktu6tkB6ZF\nP5Pf9cWg1+agu7bqQkDW62Sj6DZ0co/dwhjbxhjb2uHv8uVs7HIi5Cso5DHz79wZILWQfB+Nwls/\nrfGg3khuABjPuX21+5IxV2eXfKn00BjLllFvMpXyuC/FB4HuAQJIqooPgGPZsqKq1vQl1T7gk/MV\nhAjKNVcmLzwyUwJjwNkj3Ki4d5KvBAvVBo7nKjh7JIML1vQqN10AeOTQLM4eySATjyjOWZYnoiH0\nJiLYcdjhqJ8+nse9+6Yxlqvge1oA1Xyljr//8TO4Z+80vvXwEdd7uO6/d+PSj/2sjd76wc4xvOoz\nd7rcJgGuzfzkqeNtrpmtFsNDB2Z8XTZNgshvUpblftqoSVs6NldyUXkSB6YKvnuUfPZnz+JXv3hP\nmzD9xI+exkXX/sR1z4wx/N2tu7HzaBZf/IXbhvDlu/aj2WL46j1OPqR8pY4njmWxvj+JuVJdUYm1\nRguPHZ3DCzb1A+Dp8QFOF9WaLVy6aQDr+hIq+nkqX0Wx1sS24TTOXd2j+oue92xNXxKNFsNMoepJ\nZ+PYImZUEr44EtEwUrGwy+FDtznIxJyAM5b6kjzfWlYIEOk80peKgTGunbjztvlTT/pYbou0Fk4u\nsXDItbiU9aKe9Bzdkq7DD90RzdGF8FMalCcCzC805hIU7Z0D8OSG8uExvbYLqVHIFBwZ0Wl7kxHU\nmu3BPjKluXSRVXEaSe7Rka9yDxAZ0DeQiqHaaKFca2K6UHOoql43VbUqE0c4RFjfn8TxHKcADs1w\namrLUBrrBxzBckhpIDzA6eick9F2/1QB56/pwUXrerFb0zSeGs3h4nV9uGzLoGuCv3efs4mT7i9/\nn5bTSqe2yrUm/u2+Q8hXG/j3+w6p8laL4f/85BkcmCq2GVg/8aOn8fs3PopP/XSPq/yGBw7h6q88\niL+7dZerfMfhWTz/727DZ25z1z8wVcDl192Oa295ylUuXT//6FuPucrnK3W85rN34Te+/AAamuDJ\nlmq48vP34E1fuMeVeqVUa+DNX7wXb//qg66Jf7pQxRd+vhdPjc7jWw8dcdX/yt0HUKm3cMMDzrM4\nPFNS/eO+fdNKgE3OV7B/qohMPIJdY/OKgtk7WUCLAW97kbBRifd2ZLaEepPhKrE3g1wQyNxkm1el\nsG04o9xKpYDZsiqNdf36QsShktaKvGdjuYorS4Fc2ExrGoWyy6W4B6BDw7rp2XylgVg4pMaVtD1I\nqlVqFDK763Sh2qbty3LAGasmhxXAWSh6BYCkqLw71oW7xMPJD1ZQGOCnBgZ5kW51c3Eahcv4rWen\njcuNkcrIxCPKfiI1kMl8FWGxs55+HjkIe7WAvmKtqVIiS6O4HFSzpRqyWu784Z44pgtVtFrMRVWt\n7k2g1mghW66rSWxNb8JlA5H/1/XzKPLJfBX1ZgvVRhPH5srYNpzB5lUpFR0L8Eln61Aa24bSODJb\nUpPXnvECVvfG8doLV+MJbXLcfXweIQJ+87INeOJoTq3KHzk0i0aLIR0Lu7xnDs0UlWfMgwdn1Pmb\nLYYfPcmprh/sHHOt+m96mKdy//5jYy4N4psPHEap1hSTsKNt3PTIUcwUa7jhgcOulf33HxvFaLaM\n/37yOPZqVM9tuyZwcLqIHYfn8NBBRwjesWdSBJ+1VNsA4KEDsygKN+QfPuFk/3/wgKNh6NrG9kP8\n/tOxMLZrdoKdQhC//fKNmC3WFPUoBcA7XrwJjAHPiKBL6U79uovWIETAPnEPcuJ//kZuu5Ia0Jh4\n/2v7kljX7/QLaVtY25fAmr44JvNVNFsME4KyGumNY02fk0lZp5LU9sKlGmaKNcTFni8AsCoTw0yx\npmwOcnE0kOLacqFad2npUlDI/icFhfRUmi3WXOMxGuZxTZV6C0S6i2tILSq9xumoIV+TrO+dY05J\n6ulMh9/+tI6Nwvw7/WW7qCeXZ5T/3tumCG9Ho3C708pVzUSugkw8ojQeWd+J/HZsGoCPppGS2zby\nTVb01ViLAYVagwcl9UqqyhmwcjJclYlhTV8CuXIdpVrDoQx641jbnwRjfJI4NlcGY8DmwRQ2DKQw\nMV9FtdFEpd7ExHxVeLGkUKm3lAHywDTfm+OckQyO5ypaMrcCNq9K45IN/chXG2oSkpz7O1+yGYdn\nSioWRNIi73rJJmRLdbW/wMHpAmaKNVyyvg9T+aqiQfKVOvZM5HH2SAblelN5hDHGcM/eafTEI6g2\nWuq8ADfgy8nrUY0+u/vZaVX+yCGn/J69Uyrj6Hat/KEDs+hLRjHSE3cJx4cOziIaJpy7OuMqf/JY\nDrFwCFdfthG7xnKunRL5PW/GoZmSykl0YKoIIuCNl/A4GhmAKSf+N1y8BgCUUDs4XUQ4RNg2nMZI\nT0IJgsMzjoawpi+pFg7Hs3xb4OGeOEZ6Epgp1rjNQdMQ1vQm0BQU0+R8FZl4BKlYRG0jyj36nPrS\nWWOuVMd8uY4+sZsk4AiENptDyrFFuF3OHQeRWCSktHzpqTRTqLW5u+p2CT3OIaFsDv6CwqtpSHgF\nQ7ekFPfDgi0T+2W/i4g+Kr5vIqKTYpsgoj8nIqbvwU1EHyaifUS0h4hefzKu81zgJ9ylgOgsKJzP\nZurJn4ZyCRMf20Wh2nAZz2T5RN69YZLs0HLQSo8OuYqStECPx6aRLdWRLdbVgJS/y5XqmC3WVL1+\nbcBOF6oYSEW5TUNQBhPzVWXUHMo46UbGc46b4urehEqhPjpXViv9jS53RzmRS68Xt7/8AZEgcaM4\nj1wd7p8qYDAdw+UiyFDSY3vG8wiHCG9+ntzCkk+C+wRPLvdAlpSOjCGR0esyKnimyFe0bxeG2ifF\n6rzebGH/VAG/cdlGhAh4Uosi3jORx5UXr0VfMuouH8/jRVsHcdZwuq3+Ret68bwNfa7yfZN5nDWc\nwQs3D7oEwoFpHlNw8YY+zFecvU4OTRcxlInhMvEs9Il/fX8SZ4/w5JLSOeHQdBE98QguXt+HEDma\nwfh8BSM93ECsOzlM5vkGPP2pqIuqHM9VsLo3gXCIMNIbR7PFMFvkE380zLcKXq2l1p8raf1L9rty\nHdlSDcloWNkhYuEQFwiejMw9CZ6ROV9tIBENqUlaGqd5Yk59kSXTgNdc5XLszBRrbdsJyPGW8ggQ\nudhrzwbbeU+JNo3iFLdR/BOAXwbwdvE9D+D6E70wEW0E35P7iFZ2IYC3AbgIwJUA/omIwv5nWFqE\nOlBPnWwUuiYSMWgUUYNAiBk+m+pIlz25GpMwaRRy4vdqFJKCmilWka82lKDQB+y8tp2rU15z7RPs\npErnRsXBdAzRcEgdny3WNW+VuJoopvJuo+Vazd2xUm8iW6pjbZ8jWKRAcLaRbRcg24bS2DDorj+W\nLWNNbwJbhWumrC81hVdfMAIAOCrK5daXv3L+CCIhwuHZoqv+y84eQk8iogy1h2eKqDcZnrehD1tW\npRUNI5/HeWu46+e+ST5ZN5otHJgq4pyRDM5f06vKAT5hbxlK46yRDI7MlBStdlAIhLOG05ivODEn\nsr58RnLiPzhTxJZVaZXwTvaJY3MlbBpMYaSHT+bKPTpbwfqBJI+76YnjeNYRCNLddF2fszfDVL6K\noQyPdl7Tl1B052yJ7xMPOIGg8j3L+gPaAiVfaWjBbWFEQqTKZf8lIm5zKHL3VX0zsHQsomKQ9KwG\naW1PGD+BkC3VPLtV+kdTA87Y8woQOZ69Xkyyvmlh6aWyT3UbxYsZY+8HUAEAxtgcgNhJuPbnAPwl\n3BkxrgJwkwjwOwhgH4AV8awK+QiF0KKpJ3+NQq+TMLjXBREaUk2e9ax+2jSKhDtoSBnF5SYrcitX\nMcgltSQHLud4G8qrSlEAxTpmilU1Ich0B9kyFwhDslw7j049OFRCzYk6z8Rd7o66YHEibSsqDbS+\nudOoNqmt7kuoyVEaLEezZazrT2AoE0csElKC4thcGUOZONb3J5GMhlX9sWwZRMD6/iTW9idUfUm3\nbB3iE7CzGi855QNJdZ7DM7I8gw36Bjj5KmrNlqo/lquAMYZcuY65Uh1bVqWwXriEThc5l390tuya\n+EezZTDGcGyujE2DKa28ou5h42AK68S+CrKt3G2aOyes6U3guKg/XXC84db2JZVmonvJjfTGMTnf\nXn+kN45CtYFSrYFsqa7e+5BmhJ4paP1FX4iU6+0CodxOGQ2k+L4QhUpDLYgAvmgq1hoi/Y1bcyjX\nm5iv1N3lYrzMlWouKjhliKYGnMWet1xRTJ44ClMSUQnvYvRUt1HUxaqeAQARDQM4IQd1IroKwChj\nbKfn0HoA+kbQx2DYdpWI3kdE24lo+9TUlF+VE4LfK3OEhxn6qsDkHqvDqFEY4i5iPraLRou5y6WR\nWxgoJR/rCBBe3qsMeE5KEUBzIUw5eWwYcxsIAaiB3OehtubLdcyXGy4jOsAprKl8FZEQT6kuqYbZ\nYl0FCA6mY2qlOVuoqTaN9CRUfV3gjPQkkIiGkYlHlFCR2UB7ElH0JiJKgEgNJCQ8t+REPpmvYHUv\nX+VuGEhiNOtoIMNCqOj1J+bd9Jk8vzTIrhFCalTtiOYY/Nf188m30Wwpwby6L4F1fdxBYKZYU7TO\n+v4U1vU5wnG2yFPWr+tPYq3UELIVFGtNlOtNd1ZhIUCkwO5LRpGMhnFcCCN94l+jOSHw+k58zbhP\ngOZAKoZirYlao+Uql6m3c2UetyApStkP5is8j5n8rvpLxa2xymO5Ei/PaOU9Yi+XQtWtIaRjEaU5\neDUK2Wf8FlOVesvoUOK1Ucicbt7U39KryeT1xNqyw3F4maZTNeBO4gsAvgdghIiuA3AvgE8s9CMi\nup2InvL5uwrAXwP46Ik0nDH2FcbYZYyxy4aHh0/kVIEhJb6foVtCXyXoL9672pCIGymmxWkXcR9K\nSu7IpQx1Hk2jx6NpyIlW1nM8Q/jEJTnhnkQEREBOGA9lpLi+QsxX65rLIc+Qmy1zY3l/KoZQiJQA\nmSvVlF+8tHf0JiKYLVZdGojuL69y9/Rq+a20BIl6kOFssQbGGMbnK4ruGsrElBaj0yprNZfNsWxF\nTcjrhEswr1/BKpG91ytAiKC0k+lCVRjp5Za3XCviXj5VtSpf3ZNw0sPPlVXurqFMzJWvSN+nRG7R\nOZYrY1rzDOpJRJGJRzA+X1FeUzo1NKGV6xN/1je+hq/qWy2G2WIVq9IycZ7znqcLNSf3mPb+50o1\nRVHKfpAXO8H1eNy4c3JhkXR7Jcn4h17d/haPoFRr8H6XcGsUTdHOjJ6MTwiTuZI7xYZpAyFTZgVA\n2yPCEFHdZsw2bHQmcSrZKDrtmQ0AYIz9BxHtAPBq8MX0rzHGng7wu9f4lRPRJQC2AtgpPAc2AHhU\nGMhHAWzUqm8QZSsGXSao9/ocvJ4iJkHhop78BUI4RIiECI0WM2oX3v12IyFCrdFCNEyqTSlNIBA5\nRrhE1H/bRici3G3rCAlX3FKt6UpgKCcKyS1vE7vwyU2Z5kS5HPiJaBhpkbO/1mxiIBVVz2lVJs6N\nxgVH0wAc6kGWD6WdoMGZYk1pUWqVm4pirlRDpd5CrdFS2tBAKqYoocl8FZes7+PXSUVVDMh0oapo\nrUHhpw9wgaAnl8tXG6g2mpicr2BVmht8Jd0iXU/DIcKqjBYLoHlXre6NoyZcb2eKVcyXuefOUE9c\n8fAzxZqaWFdlYup5zBQcz6Ah7Z75BlhS4Gjl5bpL+MryXWM5FKoNVBstjTLkAZ2FWgMt5rxfqSnk\nytzt1OssMVfkGoX0nnMERV3kMYuK9x9CLBzCfLnRplFkEtIIXVe0GcDjHMayTRRr7RoFwLXQ1T0J\nrZyPl1qj5d4CIADl69Uc5GIv6pngTd5NMUO2aQkv9XRKahSenE6TAL4N4FsAJkTZcwJj7EnG2IiI\n/N4CTi9dyhgbB/ADAG8jorjY9+IcAA8/12udbChNokPKoZCBejIhZqCn2qM823lQU30iUmqze38M\nqYbXhf+34+KXiobbNAppA5kQE4uu0qdiYZTkfuBiwEbD3K8958Mt96WiyApbh74SlFHhuXJDTUAA\n1yy4u6M7F4/UHOQ2snJyWiXOI7UoucodTMcwW6yryHO5Gh5Mc4HTEu6Zrih1ueWlRp8MpGMo17kb\n71S+ghGhmfRrBlldM9HtL1IDCYdITZ6SPouECAOpmFOuGfyH0nFF/+U0V+ShTBwRoXXlynWXRiGv\nPafXV9QQDz6T0cjq3kRQmtqDIeVoCLVmSwlf5WYtnvlUngtgKczksz02x6P1+8R50jGugeYrjTbj\ndG8yitliFaVa05VyPx0Loyw0B/dmQBEUq402LybZZ2dLNWNiTtNCTK9vSruh/8YbQCcXYu3ZYGVg\nHXzhNV53YipWGp00ih3gUyIB2ARgTnzuB/dU2nqyG8MY20VENwPYDaAB4P2Msa7Z5EB2CO/GRX51\ngGAh+RGDwdtLVcUjIZ54zFDHr34e/gF9zRZzDTKAaxHTnv19I2G+4pucd2sUvH4YswXuG+92U4yq\nlaMuWHriERSqTe6t4t0WttrgAXIaZSBXlPlKAyFyVoYD6RhmS3UtsMoxsD9zfN5JZyIz7KZi2DU2\nr21tGVXnmStyakNfLQ+kYshXG6g3W66YEn3iz5brynNqUCvPlevKEUCf+Pnq2u1aLJM59iWjgoZz\nzjNdqCEWDqktclOxMOZKdSSiboHQn3ILR8d9mWtvcuIf1K69b6rQlvKlP8WFoNxF0TvxH1VBaVHf\n8oxHo5TGenmeUIiQiUf43tI1N5XUm4woSi8dd/cvqbHq/UsuRBot5hIC8rfc5uCvLRgFhUGL8FJB\npu1J5XTgLXdS/vjPA36eld0K45JX5HLaBuB2AG9mjA0xxlYB+FUAJ20/CqFZTGvfr2OMncUYO48x\n9uOTdZ1Ft8unTL7wTklM9VWCyS7hd05vfS/f6ZdxMm5Qn/VzeQdBxLD6ScXaNQqAc79SgLjKoxFl\nJ8h4vE/mSnXUm6xNsFREZlyvK2+pxgWIzhtn4mG+chQai9R+5H4Bkp7Rgwml9wwv1zSHorYRjTC4\nrkrH0GgxlbNK0h7SkD6eq6BSb6kJXObLmi3WhIdOu0CYL9fbzjNXqrn4d12jmK801Cq6Jx5BiKQA\nqaHXJ5gsV66DSBeOXBMoVLzPgieFLFTdwlRujCWFrNe2NOqxRXltVF6K0Sn3bgtaVu9cojcRxfh8\nBYy17ysthXjCowmUalyDc8UOif4CeFzFg2gOHjpXztP62NE9Fb0aRVTFRXg0gZB/fTm2TYKim91h\nvQhizH4JY+xH8ouYvF+6dE3qLuivMsgCQI+tCbJicGsgZuop7hP9aaKh9O9xr4ufIRe+XwI0gNNP\nWY9RHOCTgOTGvcF+jluuXh5BqS4nfjeFVaw1fDnnUrUh3Bq9fvEN5Ct17m8vnkFaUGHzlfbJsdpo\nGV1/ZRp170Qus+XK1bMTvS48dzSNBeD++K5YEy3dRE4TII6rsBQszqpbagheA67MV1SoNpCJOSlc\n+oQRulDlWpd8h9weVFMCRJ/485WGEpreiH2lIUiNQgoET4CmXL1Petys5X9pA9H7VI/mfeaiMKMR\nzBV5e/RNv1KxCPKVOlrMf9MvwN3/TSn9TUJD/67XISIlEMIhb31H09ZhEgjOnjYGrydDao9uRBBB\nMUZEHyGiLeLvbwCMLfirUxzSoPd2EZUbFPrLD7JiMMVdBNEoTHEa+vcg5wE8boGeRIUNoUJ5aSzl\nfusSLBFlaPb6pJdr7f7sMlCqWG26qId0XETatvnF882dvMbPdDzC04Qo11/p0eXey0OWy0nN6wGm\nBIiIlXAoI0Gr5MpotpimOegTvyZAklq6iYpj8JW2BSVYNF7eJRA8gkJO/K7yJLf7yGAyqYEo7cqT\nMdCcbHUAACAASURBVNWbwkWeK9PmtBB1HZfR2bKt3ngcKdTCIUI8ElIUllcTkN5cel9LuDQKt/tq\nvdne7+KulDeLEw6mNOD6OeV9AGaNwssUKEFhME6bGAhv/U6BvDI770phQa8n8Ijsa8FdZAHgbjhR\n2qctehJRHPqHN7lWA0Ekvi4cgmggen1daJg2NfEarWOREGqNltGHu01QGIKDdJogadAuvKp+tcE9\ndby79MmBrw9AnXP2aiDFGve2Sbs4ZxlR2y5YirV2AZLSJv5wiByDvGeVKyc5eY/HPYkT5f16Y0pS\nYiezCc+kKY9nyzWU6011Hp4/KIRCtaHyEkn0JKIoiKhq6f4q2zBfqaNca7q0q0w8gql8tS12oDfJ\nYwraYgeE0JwW6TJkHzBlIVYaQt5ti1Lu1B6vN+klJ+NJvFSS9A7T+1EiGlJR5PqEnRLec7KOfh6J\nIFq0O9vBwq7l+rna9oUgqVGQb32TMdtrkpQCxBxHEUyF8M5DK4Eg7rGz4Ptln5Fwb1K08IvVVwlB\nNkZ3UU+GbLP6ueKeCT4aItRg1hxMaQW8lJSe6TJI3EaygwCRA9/rjpgt1cGYRxAJgVCtuzWKVCwi\n9iSoqT2RZf0W426hfrsAHvckSNRz9/B28+9q0sz5T45eu0wq7q+ZSMEizyO9lORvZf6hXs9kWqo1\nXUGJsrwiPMk2pbV7FtHFhao7GlkKzULVs9GVFi/j9yxkyhfZV+XKX038cSlMvfE1jrdSKupQj17N\n0VdQRPimXED7AkLCZISOGdLym+IfTILFPEb8NYR2jUKOEW99/t+UDdYcR+H+3mm6CDKXLCUWFBRE\ndAd8bLuMsVctSYu6GI53bPubJ+IdwqQhmOCiqgzBeoDDc5oEiHG1FDUMDkO6gfY8Nv5aTsrACScN\nK0G5e5/eNoBPdoUK3x8j7VlFAzzVxLlrelz1AWC6WFVRyPz8zmrZz79+plB1CUGVin3eX1DMFt37\nDnjplh6NbolFQmqS7fHYZabyVVdUu7xGqc61JV2AJKOOa3HGQ7eVfbWxCCr1FnLlels5b2vV4zFk\neEYa9USarUO+Y0UNuYI6I8p2lfBM/JKqkloYr6P1C+396+UJg5uqOSjVUN+UkTnq3+fbBIXUEAwT\nv3fDITJQTyED9SQFh9em0cUmikDU0we1zwkAbwV3XT3j0OlFErg01TtXIOrJWMld3lR2Av8ciab9\nek3Uk0mAtG2yYshuqwsEfeCYNnJJGFaCqVhEBZvp1JOTtK3u0WTE5FWsYcuqtCqXrrUzxZqL5pH1\nZwo138y70p4iJ0snKNHNs0u6ZUrVd7dVraKj7glexmQkPNReSQS3eWk7JRDibgEi91KXGXr1Nkzm\neXp2b/nEfMUloJJKCLqfUVppXVWk9O0/xXmy5ToP+gy7Bf9Uvn3xomsXiZj/JG2KczD1HdPEb/xs\nijUKu8eOHHpet1ZZ7l2sye/eMaI0CmOSv2DG7G5GEOpph6foPiLqmiC4lUAno5NLUAToCEYfa09x\n06BRNH0MzYCZf5X12gSLYZMV3c1WV3/jhs2XTKp+ykAx6BOuPlHoK15XfTERzXkEiJzo54o1FfSm\n158pVtsoL14uPbrcmsaMgW6ZK7Z7gKWiYZUORF8Vp2NhFeOQ8EymMrGg14DrFzsgtbH2DKiO/eV8\nTevSy1frgkU9u5oKMOTPwolBGNCos1g4hHCI0GyxtoWFK7I57BZ23nZ471OfsE0begXJexY3CIS4\noW1GzaFt4pflJiN3MGN22KBReI9LrDS91AmhhSroEdpENCT2iOhbhrZ1HTq9SPIxgAWJtDStKtp+\ny/zrmzSNhbye2tVwf3VbCRavsVy3pxgGvmsyjZkmB6dcX6mZBFEq7j/w5STI05y0ayDTno1o9Ekz\npglBOQE66Uz0STDiaAgeumWu1G6odWkUbQb/ett5UrEIsmUexOji/WNhMMbb6g4y45/zlYav8K02\nWr7PrsXMOY28zhKSfjL1I+9n133qtJLLzhDACG3Y6CsQ9RRA6wA0o7VhnLbHS/jTvGrHuoDusaYd\n7rpXTASjnvQI7QaAgwDeu5SN6lY4imT7EiFEQBPuCX6x7rHu83nKDZ1LRonLzJYSzgbu/gPclBLZ\nu1oyGcVNmXFjBq7YRCvon91JFA1UlSHIMIjGkvSZxJqeCF+ZxyovdoLzTszSsOu+hrMnhXfidwSC\nWwPxcwlNxsKo1Fvi/tvvuerxbjPFFJi8fkz5jcIhUppDW/xONIR81RzQ6b1GTHMhdafTX1jrdFNM\n5FsnWILMYF5PpiSfzHNcQvbP9gm+s02jaVAp2mwUXSwpggiKCxhjFb2AiOKmyqczOnolCCuF3lkC\nudMaBIVBThjywzBjsI9XrVbusYYVopd/lZpGe2ZMfyN3EH92U+oRV5S64TwuW4dB64h7Jmvnc7tA\nKNebbZOgpHqiYXIJxKTh2qYJ2Oseqp9fLjJd5QZhanJRNvH4QdxJ22xU4RDKraaRkjTatELk6sOm\nBHmm92a0bxm11IU1Cm9CTb9rAWYjtNQAzJHWrmI1VtuM2V088S8WC1JPAO73KXvgZDfkVEAn24Ra\n8S/W68kgTdoEhaFTq05qMKSZXPxMK8Q23/EFjOJ6Hf383nKTpuHSKEx5rwznNxo/Dato7/4CevZc\nHZKiadsK02A3SZkEgsujx01h+Z0naaLnYv4TqImqWazBF3DeScyrOS5AYZoWHG2rcf3dGnZ7TBg0\nAVMuJv08nQSChDmVhvt7y0DzmtxdyUhhkev4QuhmG4VRoyCiNeCbBiWJ6AVwFrW9AFKm350J8BMY\nssSVwuNkUk+q3P/3Jo3CWy4HrJeS0uModMiJyRTQxz+bNAHd/uA/wF1J2EL+dYKkVjdx3XrbdI8k\n/VzeSVAKF9PeyN7PJqOtLlgSQQSLrjn4UE9AUE3OIEAMwlo/FjQozS+XGKAnzvOnbfi1w231vb8x\n3U+noFQJo0Aw2AS85Y5G4U9VeYkkNfYNmoYJKxxDtyh0op5eD+Aa8D0hPquV58E3Hjrj0CmOwi/f\ny4m4x5p8rL31Teqw2RfcRDGFxHWCaRSmFaJpIg+iLbgnE4MGEsBo6Ze7p95s99wxaVey3LQVJpF5\n0jX5/CcMVFXCpVH4n9OlaRjjCxbm5U3CV68XNCht0RqFYRGgf9ZX1KZ0Nq4+YnAVDzymqP26gNlG\nIat5s0ebqCfyHJeQAan6++52GAUFY+wGADcQ0VsZY99dxjadkuhPRVHOuTOiB4vM9i9vp574/6Cd\n3ZSGIGLQNOQA9w4C04QQNQzwmGGAm6kqf6rONJlEI/4TRSREKujRTyDUmz78u9EDLOT67y33ugrr\nHmAJw2rZXe6/unbx8gatK0jwmak8FNKE5iIFgslGYdJAvKtx/Z5dnyP+Y6TTPfiV6wisUZB/uZQU\nXu1aLaK81JM8v4lG9nyX59VjWbodnaindzHGbgSwhYj+zHucMfZZn5+d1ug079/0vpfgF89MuuiG\nIDB16nZjtv/Eb9IoFqak3PXl4PUKCqNgMUg4r3ul9zyAmRpx1wmgUUTd14qFQ8Il1E9DaBpjRBIG\nWqVNUIg2tUWvGzx0TNHCEZcAWVjrMlEyz8UWEZNC0+vdJJ6B0ZhtiMdpf9aGBYpRc/DvR7qgMWUs\nMNsifIuNmoZ3glcahSGwzssnODmd3NA3BtPxj29/AX64cwxnDWf8G9qF6DSrybDXU+duVhCbV6Xx\n2/9j66J/5115SZg0h6AahQoa8pzeNPEvnCrZfR7TADeWB1zx+pXrK23TeeRvvLED+rm8ex0bNQox\n8XsnooV4+Ygnetmk/cQMmkYQBwGTLcZLz0jtyo8aKtaai6aSvPWNgkXzhtJh2ubT1F9M8Ugu93PT\nxB+YzhV93uBybmqzKS6irdzzX2J9fxK/98qzfM/drehEPX1Z/P+75WtOd2MpvBIMcsLoX2VaLbVr\nFPJ/yFNusGkogeMud1IluweBaTVn0jSihoSHpq0njVRKB57d2eTeoCF0iDp3tdWgUSgNxGC7MJXz\nYyYB4q9RLNa+49XkoqEQas32rMKmuBgZ5Ww2ZgcTLMrW5e1Hi+wven19xa+XL3bnOBP11MY8Gbye\nnN95y00ahe/PT0kESQo4DOB3AWzR6zPG3rN0zepOLMV7X6zXk8lzo13TEBqFQUNos2nIcviXeweB\nd3UuYZoQXN46AXzeTRSTia/X22iKOvduOGNOhBjyvRd5D16qypRczuTKqWuRbg8tgxZlOI9JmALO\nJOWdyOW1jRO/QUPwCk1HKPvX92qgJs05iEZBIf9yk01gsTvKtXk9wd/ryeSk5GgUnnLlHmv44SmE\nIIT6LQDuAd8StWv2r14JLMULD+6h4a8mOzyo6fz+522jnkL+5zFqFIaB79VgnPMszKGbeGmTv3y7\nW2N7fcA88RsnxwWM2V4DbMTAy5sM/iYtyhSDYtLGTIZtwJnUgtiS9HsIGohp2lJXXq8ZUAM1LSz0\nvmDKdmDUHIyahvu7aZFl0ihkub8+AXhFyekgICSCCIoUY+yvlrwlpwA6Btw9Rxg9JQyderGrKLMa\n7t8Ok6bhXS0FNQxKuASCvi+xwevJZQg3THYme41X21HRwkYB4q+BmKgnrzCU9byZGoz0nCZowgZv\nIJegMMROmKg6AGgZkkW2DMklTRO/2SkiZChfeOIPUj9sEA6m8+gwL5qCahTyWv6ahncaMGkUWg3T\ngVMGCz914IdE9MYlb8kZClPHb1u1iILFB+j5T6Ym47f3LHJC8I6BxRoSTZxzpz04FnstkzA1Zf2U\nk6hXDpmCD81BiZJu8Xct9kJvRxCNwhSD4HZLdtNhJoHgd139Gm2CwuRmbfCScyhMN7weRBJGmkir\nr1cxncevDW3lBu+mdhsF63geL8xeT+7/pzKCCIoPgAuLMhHNE1GeiOaXumHdiKV44V4+XSLwxK/K\n3fVkZ29Xk58b9eSdBE3xH0YqwaA5BEl5EjTNialtsp4pj1Wbz/8CXlJemFyLg3iG6e/BaIswCJBO\nbZPajbfcmBJbalEG5wdTPI53FW2iNs1UpUkDWbi/mGBcTBmoJBP15O0vDvXkv/hqC8Q7DTQJiSD7\nUfQsVOdMwVK8di81IGF2j/U/T/B8Mv7nkXOR9zQL5bfxwjRITSthk11Ch4ltWGxUu5d6khNH+6RG\nrv+qXFFMnlgTycu3ggoKfy3KRD2ZvJ50mJ6FOU7Bf+Jv84aTgsKgpXmfhdJMvQuOE4h5COISG+ic\nnka1DJqDiXqSMMU4tY8RefzURxCvp0t9inMADjPGzqyd7pbgjZsm3MXyrGYBEqx8oTiKNorhBD1L\n1HW1eWyx1FNQzzA18D2TlUqcaEhn0m7MFs/CIxAc6gm+9b1w57daWKMwlesIsjIHnOdtes+LjfBv\np57ge57FJ+rTBUV7OzshqL1OaRRt5VKABCFcFk7tcTogyJP4JwAPAviq+HsQwH8C2ENEr1vCtnUd\nTqYq+eKtg52vZVi1GLPHBuRTveeTcFaC/uc3aRpeLNp2EUCjWLQbpCmAKuxPq7QnTvQ3cocMD0Ma\nm9vSnwSgnkzeUPocZUpzoqM9/by6gqvcuHfCAguFdqrK34BvsnUt1pitX48MQsOExRqtvfcs78m0\nb7337C87ewgAcPaIOzb5THOPHQPwXsbYLgAgogsBfAzAXwL4LwC3LV3zTl98472Xo1JrGY+bqCfz\npBnsurKaN7GhyQjpDHx/weKFmWIIolEYaLgTFEpiS+42KslJnOj9Pf8f82ogJkPtIg3+Zk1DEwja\n83JPlAs/R3ntVpMZM5oGTi4ptS6jjcLQj05wYWFCEIo1aByF0hyCaqbSRuGpfvWLNuJVF4xgpCfh\nKneop1NfUgQRFOdKIQEAjLHdRHQ+Y+xAN+dPXwqczNuNR8LG7JeAmWc3YbE2CpMR0kRJebHY1X8g\njcIwgS5WOJomhDaNQtEqwcoX8ttvFyDPXcAF3dDKVJ/3h/YNrcxxNPK/v2Zi2u/Eq1GYtLSgzhkn\nA6b35BWmDvXkfx6TBtJuzKY2IcHrnT4IIih2EdE/A7hJfL8awG6xy119yVrWhVjOF2+aBNtdtf0H\npsmnWwoU0+q3XaOQv/PW9z//ooOgaOE6Qb1YTOXOfua+1dtpmwXsQEGfxYkICrPtanHPt53CNLXB\nf6Fg1EAMGoWpfabJeJEKRSAEtZ+1FqlRSASVbSba9lREEBvFNQD2Afhf4u+AKKsD+JWlalg3Qk2y\ny7DhSNuAI/+BKbFY6skLOdmZIsLbr2cYRIbzmyZf/fyLFggBJwT5rX1vZKlp+K+W2+g5g+Zgsu+c\nqBHeD6YabbYlw7WUTcv4/oK1bSFtzhSns9B5TwaCeFIBmo0ioCPA4sf9aSAhBIK4x5YBfEb8eVE4\n6S3qYqzka1/o2osd+G31jNTT4q53IlSC0espKOcsyw0G/6BCz1ktw7f8RAXCYrWuIOc0Trht6w2p\nXZkEiLu+KZ2FKQeY8nrylC+2H50IgixKAGfRFdx7zt+YbYJjozj1EcQ99hwAfw/gQgCKiGOMbVvC\ndnU1VkKVNF3zuaq3bSk5FjBae09/omq5H4zRuwa9Nyhfb7oHZvBucWJHgrkEKwGyQDsWOk8gjWKB\nlXxb2wyahpE6DGgPWmih0H54+TSKIAIXWDhLbFtSQGWkCLj4UtVPfVERhHr6NwD/DKABTjV9A8CN\nS9mobkU3vG+T9ht4ZUbyPP7eKqY8Nt6bXywdFASL1igC2gBMBll13OAqajLUtgmERdtWfIsDTSim\nGkFtACZjttMG03UXRyW1G7P9z7s01FNAQSHbEFij4AiuUXTBhHGSEERQJBljPwdAjLHDjLH/DeBN\nS9us7oQpArMb4B0cDTHLte/j638PslbQleNi02oEwcmKzWhrs5oc3cXOROH5fUgKCv8AqnZjtr+Q\nXSwlFQSLjYg3pZs40bYtpJG0U5gn/1mYEDBOzomLMDShbeGyQH0vTh8xEczrqUpEIQB7ieiPAIzi\nTN31bgXfvLx00AleppNY3Rt31zfcg9n1z30diRNZFZuwELXTVh5wlboQBdAefMb/mz3Dgj2jxUav\nB0FQ6slkczDtUyJhEqbt7fBfcJjsOEEprZOBoFpKawHqyWjrCGz3C1TtlEAQQfEBACkAfwLg4wBe\nBeDdS9mobsVKvvhPvvV5+PRte3DJ+j7f496B+eevOxdDmf+/vTOPtqOo9vD3y80IZCAkEAgJQQlD\nwiRcIAxChKBMgiIICgqIRgUZVFCR93woCwcUn/rUh4gIOICogKgMAhIckEmEMLgUHuhSQQVUFJVA\n7t3vj66Te9Knq0/3PfPJ/ta663ZXV1ft6j5du2pX1a4J7L/1hoXSjy0mKtujaOTDb97K7GyZYgO1\ncdfq5dyWFB7kbuAhxU1PKTNJpGyKxI+Fr7qe7i2tmhmWHZ5Opeh4UjNI/y6uO+Wl3P+HZ2riVcyv\naRm+9uZd+O59j2fEL8catTLbzO4Kh88Cx7VWnN6gEy9+/gaT+cIbBqPX09/btLXGc8qS+TXxYqKv\nmtERURRRc0uNHO0zq8TWjtROg42lHylznVlPhU1MJU1mRShrwolY4XJMVQXliK6jyc636JqXZpB+\nFlttOIWtNpxSE294ODv+7pvNYPfglqOaWGNqTSCqKCRdk3ejmR3cSMaSTgJOJNk17/tm9p4QfgZw\nfAg/2cxuaCSfZhIz/3SSERNDuV9vurUcq2QjdWN8QVgpKYpRdkpobLZKfAZp2vSUnEc9o6bla2CR\nYVnKm56yTUCx9RVFWXV/pNdVeDC7BbVuWUVcNHrZ6bGxxlcvktej2BX4HXAZcAdNrAMkvQw4BNjO\nzFZIWj+ELwCOBBYCGwE3SdrczLpiC9ZunsVQVFFEvu+aSnEkfrlKuhXPqOxU3BpXDZXwSA8kRu3+\n4dn5jpieVg+fOmkcABtNXd29Q0O9rshnWHQKcb0eRZrYM6r3/muUacnfUSMUrvhLblA02h5Fv/t6\nmgXsC7wOeD3wfeCyar9PDfB24KNmtgLAzP4cwg8BLg/hj0l6BNgZ+FkT8myYbn7dxWdiZEeMmWdG\nZvpkt7rTtGJwsuzUyrKKpeizq7t2IBU+afwA28+ZxpSgMOrJV4T0FrmxNEc2qErdP+qcVye2q1ts\nJlGjz74MRRsrw5FedLPS7ybLQ6NEJ5KZ2ZCZXW9mxwCLSNx4LAsznxplc+Clku6QdKuknUL4bJJe\nTIXfh7AaJC2VdLeku5988skmiFSfbuxQxNyP1yP2gRdeWNWCWU8xyvo3Kjv4nSb2fdeb9ZSV/tCw\n1U6/bahHkU3MPUnMFUysB1m0bouVITZ7ruykiHYQG8yOxx8d3VhvlCV3MDs4/juQpFcxD/gMcFWR\nhCXdRNIrSXNmyHc6iQLaCbhCUqmV3mZ2AXABwODgYB/p7tFR9LcYMz2NbPOYHT8d3s4eRYyoS4aC\n899jLb6YiaHeLJYshTY0bIX9JBWhrAmn5n2G/0Vbu+mFmSNyZKczsno5X44KrTA9FSU2LlcvfuH0\nS8rTzeQNZl8KbA1cC3zQzB4ok7CZLclJ++3AlZZ82XdKGgZmkKzRmFMVdeMQ1hX0g60xRsWePnf6\nWpnXi856auczKrqrW3yDmuxeVGwQcjSDk8NWqygaITouUzMNVpnhI6JYZvw0K4eSeOnd/mJlqjyj\noj3TTo77jZieisUv+/5jGx31Ink9iqOBf5Ksozi56oUKMDOrnW9WnKtJ3IHcImlzYDzwFHAN8HVJ\nnyQZzJ4P3NlAPk2lG7uQ5QfWEtItxcF50zn/6B1ZvMXM1cLruSuvCS+4KrYZFHU0F+sh1LdRF3u4\nee9gZUaPopHKMTqYXVSBrDI9ZcdPv+8Xwq5P6b26R9zVZ8+eK2p6Gg03nLpnk1KKmOfyo5duDHXz\nJJiiRBWFmbXyk78IuEjSA8DzwDGhd/GgpCuAh0h8S53YLTOeup3C3dycH+1+W2dZCsNtBT+OVrhk\niOaVqh2feyGp1NaekP2zrlUg+d5D08QqwTyGh2s3D2qEMmavrPgx01Ms3edXJs801qOImjDT+Tax\nNtli1uSmpDMckbUeJfVKX1BkZXbTMbPnSXosWdfOAc5pr0RrHkXtrZUK4fmh+Lat1TRTTUwYO4YV\nK4tvFzt2QDw/NGJGqzBiDomYniI7n6WJOQ/NUxxDZlFnh6Oh0UqtokSLijRzcuICZsY641cLj41R\nDUeUbzsbEEUpaxoa9WD2KO/rJjqiKJzmUfZHOGJ6Ksb0tZMK4oWIothl0+mrnTezQvjhaYv57dP/\njF5PV1ZXnrAbdzz6l8J7HdczPdUOfsfWmkRFZOWQNXX1cWmzRyr+Jw7fjq/e/lt2mLtuofvfue/m\nLJw9lb02X90kWW+6a3ozqHrKcnCTYvI0k9jYVTR+WcXSR10KVxQ9TmxLyhgLN0qGlhZkuDTIYt56\na3Hqkvkcsn3tLOU73r9PTes975v79JHb15gw8pg9bRKzp02KXk/3BLacNYUtZ9WWK7Yye8iybdT1\nnmQZm/OwWVOngBbVOaum7Kae0czJE3jnvptH70v/jiaOG+Dg7TYqLN9uL57Bm3bflLfutfokxvE5\n7/2O9+/DlInjasI/fti2bDg1/v7TTF97PH/55/OF41ceZfHB6XLxqwY1eh5XFCWo/EDmRGYGNYOX\nzp/Bjx9+qnD8i4/bicvu/F1uhVrNyxfOYtlpi5k3Y+1C8SVx6pLsimWDKRkbyud8FFnKphEaXSg1\nXHHFHmsdp87jnlTjeQ4NW03ruhHKLvZqtcmnZgOsMeIDr1xQEy+vV5X1OwI4fHBOZniMW09fnGuq\nTHPZ0kVcdc8faho7Mfbecn0u/MljLHrReoXirzMhSXf7jacVlqlbcUVRggljBzj/6B3ZYW7xF3/r\n6YuZOG6gcPyvHL9LKZk2W38y/3lQ7YeZR1ElMRraaYsu21JPy/aKhbO47oE/1jqMi+07MIoG4lCz\nB7NT5/tvnZShaPxG43UzkyeOo8ww95azpnDGAcUnb+622Qwe+8gBhZX1rKkT+c6Ju5cafP/q8buw\n0bRsxdlJXFGUJG9mUBabrNe6SrkbqXxCk0oox1HnVXL2SbpR+6qXzGb/bWYxYexAZvy0fT82j77e\nYHYr11F87vU7rNqkKite2amZZc3qfWSGL0TZ57ndnHK9iT3m13qt7QZcUThNZezAGN6z3xbss+UG\nLc+ruBmmMghZGz+tJPKo9Aynr7X6DKB6pqfmKorUbKIxYnxO+sXHNMqa8ZL/RcfGAM559dZsvkFz\nprY67cUVhdN0Tli8WadFyKTsoGWaXV+0Hh88eCGH7lB8rCXx9VS8Er586aKWKpampTsKY9VRu2zS\nAkmcduCKwlljKD/4nT4Xx+w2rzZeThrvfvkWbLVh8VZ00YHSonTQlZLTR7iicPqeVTOACs7MLWNO\nqcfxe2zatLRGQ9mWf9Gid+H6OaeFtNEzj+N0hpGdycouVisYrwsrzbJrBEZLPy0qc+K4onD6ntZX\nZl2oKQKN7lMSY/LExBixZQmzmtO7uOnJ6Tg3vWvPUmtNWk1st79epFUl2HjdtfjG0kVs2weLyZz6\nuKJwOs5m67enVdrorKdG0+0EZfdSL8MuTR54d7oXNz05fU9k07W68fuBblZiTu/gisLpeyzmkqMO\nReN3c13sisJpBq4oHKdBunkso+zakWZODXb6B1cUTt8zUvWVc/nRDxRVE5WtTpu5yZLTP/hgttNz\nXPHWXfnNU/ENjWoY7ZaXRffMLpdsW6j0cor2KE7aez7Dw8brdpnbSrGcHsUVhdNz7LzpdHZO7ayX\nR9nB7ApdbFEqTFFFsc6EsZx5YDl39c6ag5ueHCeFldx3oqsVSjfL5vQMrigcJ4WNcoJsNyqMbpTJ\n6T1cUTh9j0X2xq5H8emxlX3LSyXvOD2DKwqn7xntGEVRurHV3oUiOT2MKwqn77GSs568Z+A4vIbK\nOgAADbdJREFUq+OKwul79tlqfQCmThpX6r5uXkhXj8re7uMH/BN3Gsenxzp9z5kHbMXb93ox01J7\nXccYbYeim/TKhw/dhtP326KrvPI6vYs3N5y+Z+zAGNafMrFw/NFOj+0mk9W4gTGsP7l4mR0nD1cU\njhOj6KynbupKOE4LcEXhOClGu47CcfoVVxSOE6GXfT05TjNxReE4KUY71uAWKKdfcUXhOBEKr8zu\nwsFsx2kmrigcp0GKmqgcp1dxReE4Ebz6d5wEVxSOk6LsDnc+NuH0O74y23FSHD44h6vvfZyjFm1S\n6r5WKoz3H7Aljz5ZYlc/x2kiHVEUkrYHzgcmAiuBE8zsznDtDOB4YAg42cxu6ISMzprLBlMmctO7\n9iocv6IfWjmYvXTPF7cuccepQ6d6FOcCHzSz6yQdEM4XS1oAHAksBDYCbpK0uZkNdUhOx3GcNZ5O\njVEYMCUcTwUeD8eHAJeb2Qozewx4BNi5A/I5Tml8rMLpVzrVozgVuEHSJ0iU1W4hfDZwe1W834ew\nGiQtBZYCzJ07t3WSOo7jrOG0TFFIugmYlXHpTGAf4J1m9m1JrwW+BCwpk76ZXQBcADA4OOhLnRzH\ncVpEyxSFmUUrfkmXAqeE028CF4bjPwBzqqJuHMIcp+vxldlOv9KpMYrHgcq0kr2Bh8PxNcCRkiZI\n2hSYD9zZAfkcx3GcQKfGKN4CfFrSWOA5wliDmT0o6QrgIZJpsyf6jCenV/DBbKdf6YiiMLOfADtG\nrp0DnNNeiRzHcZwY7sLDcRzHycUVheM0CR/MdvoVVxSO4zhOLq4oHKdJ+GC206+4onAcx3FycUXh\nOI7j5OKKwnGahA9mO/2KKwrHcRwnF1cUjtMkfDDb6VdcUTiO4zi5uKJwHMdxcnFF4TgNomBzmjjO\nPyenP+mU91jH6RtmTp7A6a/YgoO23bDwPecdvh2z153UQqkcp3m4onCcJnDiyzYrFf81O27cIkkc\np/l4X9lxHMfJxRWF4ziOk4srCsdxHCcXVxSO4zhOLq4oHMdxnFxcUTiO4zi5uKJwHMdxcnFF4TiO\n4+Qi6wMn+pKeBH7baTlGwQzgqU4L0Wa8zGsGXubeYBMzm1kvUl8oil5F0t1mNthpOdqJl3nNwMvc\nX7jpyXEcx8nFFYXjOI6TiyuKznJBpwXoAF7mNQMvcx/hYxSO4zhOLt6jcBzHcXJxReE4juPk4oqi\njUiaLulGSQ+H/+vmxB2Q9AtJ32unjM2mSJklzZF0i6SHJD0o6ZROyNoIkvaT9CtJj0h6X8Z1SfpM\nuL5c0g6dkLOZFCjzUaGs90u6TdJ2nZCzmdQrc1W8nSStlHRYO+VrFa4o2sv7gJvNbD5wcziPcQrw\ny7ZI1VqKlHkl8G4zWwAsAk6UtKCNMjaEpAHgc8D+wALgdRny7w/MD39Lgf9tq5BNpmCZHwP2MrNt\ngLPp8cHegmWuxPsY8IP2Stg6XFG0l0OAS8LxJcCrsiJJ2hg4ELiwTXK1krplNrMnzOyecPwPEgU5\nu20SNs7OwCNm9qiZPQ9cTlLuag4BLrWE24Fpkopvst191C2zmd1mZn8Np7cDvb7/a5H3DHAS8G3g\nz+0UrpW4omgvG5jZE+H4j8AGkXifAt4DDLdFqtZStMwASJoHvAS4o7ViNZXZwO+qzn9PraIrEqeX\nKFue44HrWipR66lbZkmzgVfT4z3GNGM7LUC/IekmYFbGpTOrT8zMJNXMTZZ0EPBnM/u5pMWtkbK5\nNFrmqnTWIWmJnWpmf2+ulE6nkPQyEkWxR6dlaQOfAt5rZsOSOi1L03BF0WTMbEnsmqQ/SdrQzJ4I\nZoesrunuwMGSDgAmAlMkfdXMjm6RyA3ThDIjaRyJkviamV3ZIlFbxR+AOVXnG4ewsnF6iULlkbQt\niQl1fzN7uk2ytYoiZR4ELg9KYgZwgKSVZnZ1e0RsDW56ai/XAMeE42OA76QjmNkZZraxmc0DjgR+\n2M1KogB1y6zkq/oS8Esz+2QbZWsWdwHzJW0qaTzJe7smFeca4I1h9tMi4Jkqk1wvUrfMkuYCVwJv\nMLNfd0DGZlO3zGa2qZnNC9/vt4ATel1JgCuKdvNRYF9JDwNLwjmSNpJ0bUclax1Fyrw78AZgb0n3\nhr8DOiNuecxsJfAO4AaSgfgrzOxBSW+T9LYQ7VrgUeAR4IvACR0RtkkULPMHgPWAz4d3eneHxG0K\nBcvcl7gLD8dxHCcX71E4juM4ubiicBzHcXJxReE4juPk4orCcRzHycUVheM4jpOLK4oeR5JJOq/q\n/DRJZ7VZhosrXjIlXdioQz9J8yQ9ELn28eBh9uON5NFNhOf3WDOnWFa/kzURScdK+mydOEcEL7A9\n7aG5HfjK7N5nBXCopI+Y2VNlb5Y0NswPbwpm9uZmpRVhKTDdzIaqA5tdjg5wupl9q9NCNBNJA+n3\n1E2Y2Tck/Qk4rdOydDveo+h9VpK4b35n+kJomf8w7Alwc1gpW2ltni/pDuBcSWdJukTSjyX9VtKh\nks4N+whcH9xrIOkDku6S9ICkC5ThzEbSMkmDkg6uWjz3K0mPhes7SrpV0s8l3VDxoBrC75N0H3Bi\nVkElXQOsA/w8tAbT5Vhb0kWS7lSyl8ch4b5Jki6X9EtJV0m6Q9JguPZsVfqHSbo4HM+U9O1Q3rsk\n7R7Czwp5LJP0qKSTq+5/Y3jW90n6iqTJoadQeX5Tqs9jSNogyHlf+NtN0ocknVoV5xyFfTskvTe8\nq/skfTQjvdgzP1nJHiDLJV2ecd+xkr4TyvqwpP+qunZ0eM73SvqCEtfaSHpW0nnhPe6aSq8mP0k7\nS/pZeF+3SdqiKu+rlexh8htJ75D0rhDvdknTQ7xlkj4d5HhA0s4Z5ch8l04JzMz/evgPeBaYAvwG\nmErSOjorXPsucEw4fhNwdTi+GPgeMBDOzwJ+AowDtgP+ReKbB+Aq4FXheHpVvl8BXlmV3mHheBkw\nmJLxCpLKfxxwGzAzhB8BXBSOlwN7huOPAw/Eylt1nC7Hh4Gjw/E04NfA2sC7qvLZlkS5Dmakdxhw\ncTj+OrBHOJ5L4l6k8qxuAyaQ+PJ5OpRrYchvRvWzAr5c9fyWAudllGnV8wvn3yBxjAgwEN7rPOCe\nEDYG+D+SVc/7B3nWSuV7cShP3jN/HJhQeV4Zch0LPBHymQQ8QOLLaCuS39a4EO/zwBvDsQGvjby7\nmvxIfrtjw/ES4NtVeT8CTAZmAs8AbwvX/rvq+SwDvhiO9yT8bsL9n817l+F8MfC9Tn/H3f7npqc+\nwMz+LulS4GTg31WXdgUODcdfAc6tuvZNW90scJ2ZvSDpfpLK6foQfj9JJQXwMknvAdYCpgMPklQY\nUUL8f5vZ5yRtDWwN3Bg6IwPAE5KmkVQcP6qSdf9ChV+9HC8ncahYMSVMJKkY9gQ+A2BmyyUtL5Du\nEmCBRjpNU5R4twX4vpmtAFZI+jOJ6/S9gyxPhXz+EuJeSOIy/mrgOOAtBfLeG3hjSGeIpJJ8RtLT\nkl4S8vuFmT0taQnwZTP7VyrfCluQ8czDteXA1yRdHeTL4kYLzvwkXUniAXYlsCNwV0hzEiPOHodI\nnDtmkZXfVOASSfNJlEx1b+sWS/Yn+YekZxj5rd1PovArXBbK/qPQa5uWyjfzXZrZsziFcEXRP3wK\nuIekBVuEf6bOVwBY4h75BQvNLZI9McZKmkjSchw0s98pGTCfmJdBqMQOJ6moAQQ8aGZpk0T6wy5D\ndTkEvMbMfpVKP+/+ah821eUZAywys+cy0lpRFTREzndkZj9VYgJcTNLzyRykL8iFJC3lWcBFBe/J\nfOaBA0nezSuBMyVtY7XjPGkfPxbSvMTMzshI8zmLj0vU5Eey890tZvZqJXuRLKuKX/2ch6vOh1n9\nmWfJWE3mu3SK42MUfUJoSV5B4ve/wm0kHi4BjgJ+3EAWlUr0qdCyzp1RI2kTkm0jDzezSi/nV8BM\nSbuGOOMkLTSzvwF/k1TZr+CoUcp4A3CSQm0eWt8APwJeH8K2ZvXW6J8kbSVpDMmGMxV+QLJTWaU8\n29fJ+4fA4ZLWC/GnV127lMT8UVSJ3wy8PaQzIGlqCL8K2A/YiaSsADcCx0laKyNfiDzzUN45ZnYL\n8F6Slv061LKvkn3PJ5HsTvjTIN9hktav5Bned5Sc/KYy4qr72PzHEuWIkMceJF55n0ldL/sunRSu\nKPqL80js5hVOIqlElpN4Zz1ltAmHyvyLJHbqG0hcLudxLIlt++ow0HitJdtHHgZ8LAx23gvsFuIf\nB3xO0r0kLdbRcDaJ6WK5pAfDOSS7ja0j6ZfAh4CfV93zPpJxjtsYMclAYsYbDAOvDwG5U1fN7EHg\nHODWULZqd+lfA9YlmEgKcAqJme/+IOuCkMfzwC0kXkuHQtj1JK6u7w7PbrUZPDnPfAD4asjjF8Bn\nwjtOcyeJKWk5yfjB3Wb2EPAfwA/Cb+tGoN62rrH8zgU+IukXjN7C8Vy4/3xWbyhVKPUunVrce6yz\nxiFpGXCambXF7bWS9QyHmNkbItcvJhlQzZ0eG1rl95D00h5uuqC1+R1LYmp8R6vzGi2NvstgEjzN\nzA5qplz9hvcoHKeFSPofkj04zs6J9gxwtnIW3ClZxPgIcHM7lMSagKQjSMbd/tppWbod71E4juM4\nuXiPwnEcx8nFFYXjOI6TiysKx3EcJxdXFI7jOE4urigcx3GcXP4fOGc3BGgZWBkAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Triangular window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Welch Window" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='welch')" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXJ4MkEJIACSuDhL1nCCAq4MSJ+hNExa2I\no9X+bKudtr/W2tbWWqui1oEWFaniqihOEGWGDQISVgYjCSHMDJJ8fn/cA71ECAFyc+74PB+P++De\nc849532AnE++Z3y/oqoYY4wxAGFuBzDGGOM/rCgYY4w5woqCMcaYI6woGGOMOcKKgjHGmCOsKBhj\njDnCioIJKSIyRUR+X4/lZovI7Q287etF5JNT/G66iKiIRDRkJmNqs6Jg/JqI/ExEPqo1bcNxpo1v\n3HQnR1VfU9UL3M5hTF2sKBh/9xVwhoiEA4hIOyASGFBrWmdnWWPMabCiYPzdYjxFoL/z+SzgS2B9\nrWkbVXUbgIh0F5FPRaRERNaLyLjjrVxExojIchHZKyIbRWS01+wOIvKNiOwTkU9EJPE465gjIv/j\nvB/unOa5xPl8rogsd97fLCJfe31PRWSS08opFZGnRUSceeEi8hcRKRaRTcAltbbZXkTed/YxR0Tu\ncKZHi0jZ4awi8gsRqRKROOfz70TkiRP9pZvQZUXB+DVVrQQWAmc7k84G5gJf15r2FYCINAM+BV4H\nWgPjgWdEpGftdYtIFvAq8BMgwVnPFq9FrgNucdbTBPjxcWLOAUY670cAm7yyjXDmH8+lwGCgLzAO\nuNCZfoczbwCQCVxd63vTgHygvTPvDyJyjqqW4ymkI7y2vxUYXs88JsRZUTCBYA7/PciehacozK01\n7fCB7lJgi6q+rKpVqroMeBsYe4z13ga8pKqfqmqNqhao6jqv+S+r6neqWgZM578tk2PlO3wQPht4\nlKMPynUdhP+oqqWqmounBXR4G+OAJ1Q1T1VLnHUCICKpeA7yD6pquaouB14AbvTO41yU7gs86XyO\nxlOA7DSbOS4rCiYQfAWcKSItgSRV3QDMw3OtoSXQm/8e6DoAQ5zTMaUiUgpcD7Q9xnpTgY11bHeH\n1/uDQOxxlpsPdBWRNngO6q8Cqc4pnCzqPggfbxvtgTyveVu93rcHSlR1X635yc77wy2XgcAqPC2n\nEcBQIEdVd9WRx4Q4u73NBIL5QDyeUyrfAKjqXhHZ5kzbpqqbnWXzgDmqen491psHdDrdcKp6UESW\nAPcBq1W1UkTmAf+L51pH8SmsdjueonVYmtf7bUBLEWnuVRjSgALn/TygG3Alnr+Lb0UkDbgYO3Vk\nTsBaCsbvOadvsvEcZOd6zframeb9m/h/8PzWfoOIRDqvwSLS4xirfhG4xbkYHCYiySLS/RRjzgHu\n5b8H3dm1Pp+s6cAPRSRFRFoADx2eoap5eA78jzoXlvviORU21Zl/EFgC3OO1/XnApNPIY0KEFQUT\nKObgueD7tde0uc60I0XB+c35AjwXmLfhOT3zJyCq9gpVdRGeC8l/A/Y42+hwGvmae2Wp/flk/ROY\nBawAlgIzas2/FkjHs4/vAA+r6me18kQCixoojwkRYoPsGGOMOcxaCsYYY46womCMMeYIKwrGGGOO\nsKJgjDHmiIB7TiExMVHT09PdjmGMMQFlyZIlxaqadKLlAq4opKenk52d7XYMY4wJKCKy9cRL2ekj\nY4wxXqwoGGOMOcKKgjHGmCOsKBhjjDnCioIxxpgjfFYUROQlESkUkdXHmS8i8qQzlOBKERnoqyzG\nGGPqx5cthSnA6DrmXwR0cV4Tgck+zGKMMaYefPacgqp+JSLpdSwyBnhVPd20LhCRBBFpp6rbfZXJ\nmNNRU6PsOlDJjj3l7NjreRXvq+B4PQ23aNaEtnHRtImPpm1cNK2bRxERbmdsjX9z8+G1ZI4ebjDf\nmfa9oiAiE/G0JkhLS6s925gGt+fgIZbnl7Iiz/Nat2MfhfvKOVT9/QIg8v3vH6tOiEBSbBSdkmLp\nl5pA/9R4+qe2oG18tA/2wJhTExBPNKvq88DzAJmZmTYAhGlwxfsr+OzbnSzYtIsV+XvYXHwA8BzI\nOyfFkpnegvYJMZ7f/OOiaRcfTdv4aBJjowgP+35VUFVKDlSyY285O/eWs2NPBTv2lrO9tIz1O/fx\n4tebjhSYNnFR9E9NYHB6S87v2YYOrZo16r4b483NolDA0WPQpvDfMWaN8bn83QeZtWYns9bsIHtL\nCTUKrZtHMSAtgbGZKfRPSaB3Sjxx0ZEnvW4RoVVsFK1io+jVPv5788sPVbN2+15W5JWy3HnNWrOT\n33+4lu5tmzO6d1su7NWW7m2bI8dqihjjI24WhfeBe0VkGjAE2GPXE4yvlRyoZHp2Hh+u3M6qgj0A\ndGvTnHvP6cKFvdrQs11coxyEoyPDGZDWggFpLY5Myys5yKw1O5i1Zgd//3wDT3y2gbSWTbmoT1uu\nz+pAWqumPs9ljM+G4xSRN4CRQCKwE3gYz5ixqOqz4vnJewrPHUoHgVtU9YQ93WVmZqp1iGdO1uqC\nPbwybwvvrdhGZVUN/VITuMj5bTwj0f9O1xTtq+DTb3fy8ZodzMspplqVUd1ac9MZ6ZzVOZGwY5yy\nMqYuIrJEVTNPuFygjdFsRcHUV2VVDR+t3s6r87eyZOtuYiLDuWpgMjedkU7XNs3djldvO/aU8/qi\nXF5fmEvx/go6JjbjhmEduHpQCs1P4dSWCU1WFEzIOlRdw7TFeTz1xQZ27q0gvVVTbhiWztWDUoiP\nCdyDaEVVNR+v3sGUeVtYlltKsybh3DI8g4kjOp7SdQ8TWqwomJBTU6N8sHIbj3/6HVt3HWRwegvu\nHtmZEV2Tgu50y8r8Up77ahMfrtxOQtNI7h7ZiRuHpRMdGe52NOOnrCiYkKGqzF5fxJ9nrWft9r10\nb9ucB0d3Z2S3pKC/c2d1wR4em7WeOd8V0TYumvvP68LVg1LsITnzPVYUTEhYs20Pv33/WxZtKSGt\nZVMeuKArl/VtH3QtgxOZv3EXf561jmW5pXRMbMYvL+3BOd3buB3L+BErCiaolVVW88Tn3/HC3M20\naBrJfed15ZrMVJpEhO5vyKrKp9/u5M+z1pNTuJ9L+7bj4ct6kdQ8yu1oxg/UtygExBPNxnj7ekMx\nv3h3FVt3HWRcZgo/v7gHCU2buB3LdSLCBb3aMrJba56ds5Gnvsjhq++K+MUlPRiXmRr0p9JMw7CW\nggkYuw9U8vsP1/L20nzSWzXlD1f14YxOiW7H8ls5hfv5+YxVLNpSwtCOLXn0qr5++UyGaRx2+sgE\nlY9X7+AX76xiT9khJp7dkR+e28XutKmHmhrlzew8/jBzLRVVNTxwflfuOKtjyF1zMXb6yASJ8kPV\nPDpzLa/M30qf5Him3j6EHu3i3I4VMMLChGuz0ji3e2t+9d5qHv1oHd9s3MXj4/qRGGvXGsz3he5V\nOeP3Nhcf4H8mz+OV+Vu5/cwM3r7rDCsIp6h1XDTPThjEI1f2ZsGmXVz897nM37jL7VjGD1lRMH7p\nveUFXPrkXApKy3jhxkx+eWnPkL6zqCGICNcP6cC7dw8nNiqC619YwBOffUd1TWCdQja+ZT9lxq+U\nVVbz0NsruW/acnq0i2PmD8/ivJ52v31D6tk+jg9+cCZj+ifzxGcbmPDCQgr3lrsdy/gJKwrGb2wr\nLeOqyfN4MzuPe0Z1YtrEobRPiHE7VlBqFhXB4+P68djVfVmeV8rFT37NstzdbscyfsCKgvELK/NL\nueLpb8grOchLNw3mJxd2t64afExEGJuZynv3DiemSRjjn1/AhyttSJNQZz91xnUfr97OuOfmExke\nxtt3ncGo7q3djhRSurZpzrt3D6dPcjz3vL6Up77YQKDdqm4ajhUF4xpVZfLsjUyaupQe7eJ4957h\ndGsbOOMcBJNWsVFMvX0IY/q35y+ffMcD/15BRVW127GMC+w5BeOKyqoafvnuKqZn53Np33b8ZWw/\nexjNZdGR4TxxTX86Jsbyt8++I7+kjGdvGETLZtaFSCixloJpdPsrqrj55UVMz87nh+d05snxA6wg\n+AkR4b7zuvDktQNYnl/Klc98Q+6ug27HMo3IioJpVHsOHuL6FxaycHMJfx3bj/+9oJt1ueCHLu/X\nnjfuGErpwUOMe24+OYX73Y5kGokVBdNoivdXMP6fC1i7bS+Trx/I/wxKcTuSqcOgDi2YNnEoVTU1\nXPPcfNZu3+t2JNMIrCiYRrFjTznXPDefzcX7eeGmTC7o1dbtSKYeerSLY/qdw2gS4blldXleqduR\njI9ZUTA+l1dykLHPzWPn3gpevXUIZ3dNcjuSOQkdk2KZfucw4mMimfDCQhZusj6TgpkVBeNTG4v2\nM+65+ewtq+K124eQldHS7UjmFKS2bMq/Jw2jbXw0N728iK++K3I7kvERKwrGZ3IK93PNc/M5VF3D\ntIlD6Zea4HYkcxraxEXz5sShdEyM5fZXsvlyXaHbkYwPWFEwPpFXcpAJLywEhDfvHGZdXgeJVrFR\nvHHHULq1bc6kqUtYYKeSgo4VBdPgCveWM+HFhZQdqmbq7Vl0Sop1O5JpQPFNI3nl1izSWjbltimL\nWWEXn4OKFQXToHYfqGTCiwsp2lfBlFsG072ttRCCUctmTZh6+xBaxjbhppcXsX7HPrcjmQZiRcE0\nmH3lh7jp5UVs2XWQF27KZEBaC7cjGR9qExfNa7cNJSoijAkvLmRL8QG3I5kGYEXBNIiyympueyWb\nb50H087olOh2JNMI0lo1ZeptQ6iqruH6FxayfU+Z25HMabKiYE5bZVUNd722hMVbSnj8mv6c28NG\nSgslXdo059Vbh7C3zNOFSfH+CrcjmdNgRcGcFlXloRkrmb2+iEeu6MPl/dq7Hcm4oE9KPC/ePJht\npWXcNmUxZZXW7Xag8mlREJHRIrJeRHJE5KFjzI8XkQ9EZIWIrBGRW3yZxzS8p77IYcbSAu4/rwvX\nDUlzO45xUVZGS54cP4CVBXv40ZvLqamxgXoCkc+KgoiEA08DFwE9gWtFpGetxe4BvlXVfsBI4K8i\nYp23B4j3lhfw10+/48oBydx3bhe34xg/cEGvtvzi4h58vGYHf/p4ndtxzCnw5SA7WUCOqm4CEJFp\nwBjgW69lFGguIgLEAiVAlQ8zmQaSvaWEn/x7JVkZLfnj//TB809oDNx2ZgZbdh3gua820aFVM2tB\nBhhfnj5KBvK8Puc707w9BfQAtgGrgPtUtab2ikRkoohki0h2UZH1ueK2LcUHuOPVbJJbxPDchEFE\nRdgAOea/RITfXNaLEV2T+NV7q62fpADj9oXmC4HlQHugP/CUiHzvaSdVfV5VM1U1MynJeth0U+nB\nSm6dshgFXrp5MC1sqEZzDBHhYTx13QC6tI7lnteW2sNtAcSXRaEASPX6nOJM83YLMEM9coDNQHcf\nZjKnobKqhjv/tYT83WU8f0MmGYnN3I5k/Fjz6EheunkwMU3CuXXKYgr3lbsdydSDL4vCYqCLiGQ4\nF4/HA+/XWiYXOBdARNoA3YBNPsxkTsOv31vNws0l/PnqvtYFtqmX9gkxvHjTYEoOVDLx1SVUVNmt\nqv7OZ0VBVauAe4FZwFpguqquEZFJIjLJWex3wBkisgr4HHhQVYt9lcmcujcW5TJtcR73jOrEFQNq\nXxoy5vj6pMTz+Lh+LM8r5f8++PbEXzCu8uXdR6jqTGBmrWnPer3fBlzgywzm9C3PK+Xh99Zwdtck\n/vf8bm7HMQHooj7tuHNER56bs4l+qQmMy0w98ZeMK9y+0Gz83K79Fdw9dQmt46L4+zX9CQ+zW0/N\nqfnJBd04o1Mrfvnualbl73E7jjkOKwrmuKqqa/jBG8vYdaCSZycMsjuNzGmJCA/jH9cOILFZEyZN\nXcLuA5VuRzLHYEXBHNdjn6xn3sZd/P6K3vROjnc7jgkCrWKjmDxhEEX7KvjhtGVUW1cYfseKgjmm\nj1Zt57k5m7h+SBpj7fyvaUD9UhP47ZhezN1QzOOfrnc7jqnFioL5npzCffz43yvon5rAry+r3V2V\nMafv2qw0rslM5ekvN/LJmh1uxzFerCiYo5RVVnPX1KXENAln8oSB1oWF8ZnfjulF35R4Hpi+gryS\ng27HMQ4rCuYov/vwW3KK9vPENQNoFx/jdhwTxKIjw3n6uoEg8MNpyzhU/b1uz4wLrCiYIz5atZ3X\nF+Zy59mdOLOLDadpfC+1ZVP+cGUfluWW8sRn37kdx2BFwTgKSst48O2V9EtN4IELurodx4SQy/q1\n55rMVJ6ZvZF5OdahgdusKBiqqmu4f9oyahSeHN+fyHD7b2Ea18OX9yQjsRk/mr6cEnt+wVX202/4\nxxc5LN6ym99f0ZsOraznU9P4mjaJ4MnxA9h94BA/fWsFqvb8glusKIS4RZtL+McXG7hqYLJ1dGdc\n1Ts5nocu6s5nawt5df5Wt+OELCsKIaz0YCX3T1tGWsum/N+Y3m7HMYZbhqczqlsSj8xcy9rte92O\nE5KsKIQoVeWht1dRuK+CJ68dQGyUTzvMNaZeRITHxvYjPiaSH7yxjLJKG3+hsVlRCFHvLCvg4zU7\n+PGF3eibkuB2HGOOSIyN4vFx/cgp3M9js6wbjMZmRSEE7dhTzm/eX0NmhxbccVZHt+MY8z1ndUni\nxmEdeHneZhZu2uV2nJBiRSHEqCo/m7GSyuoaHhvbz8ZHMH7rwdHdSW3RlJ+8tZIDFVVuxwkZVhRC\nzL+z8/lyfREPje5ORqLdfmr8V7OoCP4yth95uw/yp4/XuR0nZFhRCCEFpWX87j/fMiSjJTcOS3c7\njjEnlJXRklvOyODV+Vv5xp52bhRWFEKE526jlVSr8tjV/Qiz00YmQPzkwm5kJDbjp2+tZF/5Ibfj\nBD0rCiHi9UW5zN1QzM8v7kFaq6ZuxzGm3mKahPOXsf3YvqeMP8y000i+ZkUhBOSVHOSRD9dyZudE\nrh+S5nYcY07aIOdOuTcW5TLnuyK34wQ1KwpBrqZG+elbKwkT4U9X90XEThuZwPSj87vSuXUsD761\nkj1ldhrJV6woBLlpi/OYv2kXv7ykB8kJNmiOCVzRkeH8dWw/CveV88eP7DSSr1hRCGKF+8p59KO1\nDOvYimsGp7odx5jT1i81gVuHZ/DGolwWbylxO05QsqIQxP7vg2+pqKrhkSt722kjEzR+dH5XkhNi\n+PmMVVRW2RCeDc2KQpD6cn0h/1m5nXtHdaZjUqzbcYxpMM2iIvjdFb3YULif5+ZsdDtO0LGiEIQO\nVlbxy3dW07l1LJNGdHI7jjEN7pzubbikTzv+8WUOm4r2ux0nqFhRCEJPfLaBgtIyHr2qD00i7J/Y\nBKeHL+tJVEQYv3hntY3U1oDsiBFk1mzbw4tfb+barFQGp7d0O44xPtM6LpoHR3dn/qZdzFha4Hac\noOHToiAio0VkvYjkiMhDx1lmpIgsF5E1IjLHl3mCXXWN8rMZq2jRtAkPje7hdhxjfO66rDQGdWjB\n7z/8lpIDlW7HCQonLAoi0lREfiUi/3Q+dxGRS+vxvXDgaeAioCdwrYj0rLVMAvAMcLmq9gLGnsI+\nGMer87ewMn8Pv76sJ/FNI92OY4zPhYUJf7iyD/vKq3jkw7VuxwkK9WkpvAxUAMOczwXA7+vxvSwg\nR1U3qWolMA0YU2uZ64AZqpoLoKqF9Uptvmf7njL+Mms9Z3dN4rK+7dyOY0yj6da2ORPP7sjbS/OZ\nZz2pnrb6FIVOqvpn4BCAqh4E6nPTezKQ5/U535nmrSvQQkRmi8gSEbnxWCsSkYkiki0i2UVF1u/J\nsfz+P2upqlEeucKeSTCh54fndqFDq6b86r3V9uzCaapPUagUkRhAAUSkE56WQ0OIAAYBlwAXAr8S\nka61F1LV51U1U1Uzk5KSGmjTwWNeTjEfrtrO3SM7k9rSekA1oSc6MpxfX9qTjUUHeGXeFrfjBLT6\nFIWHgY+BVBF5Dfgc+Gk9vlcAePetkOJM85YPzFLVA6paDHwF9KvHuo2jqrqG33ywhpQWMdw5wsZb\nNqHr3B5tGNUtib9/voHCveVuxwlYJywKqvopcBVwM/AGkKmqs+ux7sVAFxHJEJEmwHjg/VrLvAec\nKSIRItIUGALY1aKT8K8FW/lu535+dWlPoiPD3Y5jjKt+fVkvKqtq+KMN33nKjlsURGTg4RfQAdgO\nbAPSnGl1UtUq4F5gFp4D/XRVXSMik0RkkrPMWjytkJXAIuAFVV19ujsVKor3V/D4p99xVpdELujZ\nxu04xrguI7EZt52VwYylBSzZutvtOAFJjvckoIh86byNBjKBFXguMPcFslV12DG/6GOZmZmanZ3t\nxqb9zoNvreTtpfl8fP/ZdG5t/RsZA3Cgoopz/jqb1s2jefee4YTb0LMAiMgSVc080XLHbSmo6ihV\nHYWnhTDQudA7CBjA968NmEa2Iq+U6UvyuGV4uhUEY7w0i4rg5xf3YFXBHqZn5534C+Yo9bnQ3E1V\nVx3+4JzescdlXVRTozz8/hoSY6P44bld3I5jjN+5vF97stJb8tis9ew5aKO0nYz6FIWVIvKC0x3F\nSOfJ5pW+DmaO7+2l+SzPK+Wh0d1pHm1PLhtTm4jwm8t7UXqwksc/Xe92nIBSn6JwC7AGuM95fetM\nMy7YW36IP328noFpCVw5oPazgMaYw3q2j+P6IR3414KtrNux1+04AaM+t6SWq+rfVPVK5/U3VbWb\ngF3yj883sOtABb+9vDdhdgHNmDo9cEFX4mIi+c37a6x77XqqT4d4m0VkU+1XY4QzR8vddZAp87Yw\ndlAKfVLi3Y5jjN9LaNqEB87vyoJNJXy21rpWq4+IeizjfQtTNJ6eTK2jfhf8adY6IsLCeOCCbm5H\nMSZgjM9K4+V5W3j0o7WM7JZEZLgNI1OX+pw+2uX1KlDVJ/D0VWQa0ZKtu/lw5XYmnt2RNnHRbscx\nJmBEhofxs4t6sKnoANMW5bodx++dsKVQ6+nlMDwth/q0MEwDUVX+MHMtSc2jmHi29W9kzMk6r0dr\nhmS05G+fbWDMgGTi7K6946pPO+qvXq9HgYHAOF+GMkf7ePUOlmzdzQPnd6VZlNVjY06WiPCLS3pQ\ncqCSZ2dvdDuOX6vPEeY2VT3qwrKIZPgoj6nlcOde3do0Z2xm6om/YIw5pr4pCVzRvz0vfr2ZCUM7\n0D4hxu1Ifqk+LYW36jnN+MDUBVvZuusgP7u4u/XhYsxp+vGF3VDgL5/YA23Hc9yWgoh0B3oB8SJy\nldesODx3IRkf23PwEE9+sYGzuiQyoqsNLmTM6Upp0ZRbh2fw3FcbuXV4Br2T7dbu2upqKXQDLgUS\ngMu8XgOBO3wfzTw9O4c9ZYf42UU9bIhNYxrI3aM6kRATySMfrrUH2o7huC0FVX0PeE9Ehqnq/EbM\nZIC8koNM+WYLVw9MoWf7OLfjGBM04qIjuf+8rjz8/hq+XF/IOd1tLBJvdQ2yc3jIzetE5Mnar0bK\nF7L+PGs9YWHYg2rG+MB1Q9LISGzGH2auo6q6xu04fqWu00eHh8XMBpYc42V8ZHXBHj5YsY3bz+xI\n23i7fGNMQ4sMD+PB0d3IKdzPjGU2PIy3uk4ffeD8+UrjxTEAf/1kPfExkdxhD6oZ4zMX9mpL35R4\n/v7ZBsb0b09UhI1xDnXfffQBcNyrMKp6uU8ShbjFW0r4cn0RD47uTnyMPXVpjK+ICD+5sBs3vLiI\nNxbmcvNwe/wK6n547S+NlsIAnu4sHvt4PUnNo7jpjA5uxzEm6J3ZOZGhHVvy1Jc5jBucStMm1mNA\nXWM0zzn8AuYDu4ESYL4zzTSwrzYUs2hLCT84p7P95zSmERxuLRTvr+Tlb7a4Hccv1Gc8hUuAjcCT\nwFNAjohc5OtgoUZVeWzWOlJaxDB+cJrbcYwJGYM6tOTc7q15bs5GG8+Z+neIN0pVR6rqCGAU8Dff\nxgo9H6/eweqCvdx/XleaRFh/78Y0pgcu6Mbe8iqen2ud5dXn6LNPVXO8Pm8C9vkoT0iqrlH+8sl6\nOreOtXGXjXFBz/ZxXN6vPS99vYWifRVux3FVfYpCtojMFJGbReQm4ANgsYhcVatPJHOK3llWwMai\nA/z4gq7W6Z0xLvnR+V2prK7h6S9zTrxwEKtPUYgGdgIjgJFAERCDpx+kS32WLERUVFXzt0+/o09y\nPBf2aut2HGNCVkZiM8ZlpvD6wlzydx90O45rTniLi6re0hhBQtWbi/MoKC3j0av6WKd3xrjsB+d0\n4e2lBTz5+Qb+fHU/t+O4oj53H2WIyOMiMkNE3j/8aoxwwa6sspp/fJHDkIyWnNUl0e04xoS89gkx\n3DC0A28tyWdj0X6347iiPqeP3gW2AP/g6KE5zWl6beFWivZV8MAF3ayVYIyfuGtkJ6Iiwnnqi9C8\ntlCfJ6TKVdV6RW1g5Yeqee6rTZzRqRVZGS3djmOMcSTGRnHDsA68MHcTPzinMx2TYt2O1Kjq01L4\nu4g8LCLDRGTg4ZfPkwW51xfmUrSvgvvO7eJ2FGNMLXec1ZEmEWE8FYJ3ItWnKPTBM9LaH/nvqaN6\n9YskIqNFZL2I5IjIQ3UsN1hEqkTk6vqsN9CVH6rm2TkbGdqxJUM6tnI7jjGmlqTmUUwY0oH3lm9j\nS/EBt+M0qvoUhbFAR1UdoaqjnNc5J/qSiIQDTwMXAT2Ba0Wk53GW+xPwyclFD1zTFuVSuK+C+87t\n6nYUY8xxTBzRkYgwCbnWQn2Kwmo84zSfrCwgR1U3qWolMA0Yc4zlfgC8DRSewjYCTvmhaibP2UhW\nRkuGdbJWgjH+qnXzaK4f0oF3lhWwdVfotBbqUxQSgHUiMsvrltT36vG9ZCDP63O+M+0IEUkGrgQm\n17UiEZkoItkikl1UVFSPTfuv6dl57Nxbwf12LcEYvzfJaS2E0lPO9SkKD+M5cP8BeBxYDHRuoO0/\nATyoqnUOkqqqz6tqpqpmJiUlNdCmG19FVTWTZ29kcHoLayUYEwBax0VzbVYaM5YWkFcSGk85n7Ao\nOGMn7MXTpcUU4Bzg2XqsuwBI9fqc4kzzlglME5EtwNXAMyJyRT3WHZCmZ+ezfU85953b1Z5LMCZA\n3DWyE2EV3iM/AAATtUlEQVQh1Fo4blEQka7Orajr8Dy4lguIc6H5H/VY92Kgi/NEdBNgPHDUk9Cq\nmqGq6aqaDrwF3K2q757qzviziqpqJn+Zw6AOLRje2VoJxgSKNnHRXJeVxltL8kOitVBXS2EdnlbB\npap6plMIquu7YlWtAu4FZgFrgemqukZEJonIpNMJHYj+nZ3Ptj3l3HduF2slGBNgJo3oRJgIz8wO\n/tZCXU80X4Xnt/svReRjPHcPndTRTFVnAjNrTTvmqSdVvflk1h1IKqtqmDx7IwPSEqyPI2MCUNv4\naMZnpfL6wlzuGdWZlBZN3Y7kM3WN0fyuqo4HugNfAvcDrUVksohc0FgBg8E7y/IpKC3jh9ZKMCZg\n3TXS01p4bs4mt6P4VH0uNB9Q1ddV9TI8F4uXAQ/6PFmQqK5Rnp2ziV7t4xjZNXDvnDIm1LWLj+Gq\ngclMz84L6tHZTmowYFXd7dweeq6vAgWbWWt2sLn4AHeP7GytBGMC3J0jOlFZXcPL32x2O4rP2Ajx\nPqSqPDM7h4zEZozubaOqGRPoMhKbcXHvdvxr/lb2lh9yO45PWFHwobkbilldsJc7z+5oYy8bEyTu\nGtmJfRVVTF2w1e0oPmFFwYcmz95Im7gorhyYfOKFjTEBoXdyPGd3TeKlr7dQfqjed+kHDCsKPrIs\ndzfzN+3ijrM6EhUR7nYcY0wDumtEJ4r3V/DvJfluR2lwVhR85JnZG4mPiWR8VprbUYwxDWxox5YM\nSEvg+a82UlVdZ9dtAceKgg9s2LmPT7/dyU1npBMbVZ8RT40xgUREuGtEJ/JKyvhw1Xa34zQoKwo+\nMHnORmIiw7n5jHS3oxhjfOS8Hm3o0jqWybM3oqpux2kwVhQaWP7ug7y/fBvjs1Jp2ayJ23GMMT4S\nFibcNbIT63bs44t1wTNGmBWFBvbPrzYh4hn42xgT3C7r157khBieCaLWghWFBlS8v4Jpi/O4on8y\n7RNi3I5jjPGxyPAwJp7dkSVbd7N4y2634zQIKwoN6NV5W6isruHOEZ3cjmKMaSTjMlNp1awJk4Ok\nW20rCg2krLKafy3Yynk92tC5dazbcYwxjSSmSTg3Dkvny/VF5BTuczvOabOi0EDeWprP7oOH7FqC\nMSFowtA0oiLCeGFu4HeUZ0WhAdTUKC99vZm+KfEMTm/hdhxjTCNrFRvFVQNTmLGsIOC71bai0AA+\nX1fI5uID3H5WR+se25gQdduZGVRW1fCvAO8oz4pCA/jn3E0kJ8RwsXWPbUzI6tw6lnO7t2bqgq0B\n3VGeFYXTtDK/lEWbS7hleDoR4fbXaUwou/2sjpQcqOTtpYHbUZ4dxU7TP+dupnlUBNcMTnU7ijHG\nZUM7tqR3chwvzt1MTU1gPsxmReE0FJSWMXPVdsZnpdI8OtLtOMYYl4kId5zVkU3FBwK26wsrCqfh\n5a89t5/dPDzD5STGGH9xcZ92tIuP5p9zN7kd5ZRYUThFe8sPMW1xHpf0aUeydWlhjHFEhodxy/B0\nFm4uYVX+HrfjnDQrCqfozUV57K+osofVjDHfMz4rjdioiIBsLVhROAWHqmt4+ZvNDMloSZ+UeLfj\nGGP8TFx0JNcMTuXDVdvZVlrmdpyTYkXhFHy0egfb9pRbK8EYc1y3DE8HYMq8La7mOFlWFE7Bi19v\npmNiM87p3trtKMYYP5XSoikX9W7LGwtzOVBR5XacerOicJKW5e5mRV4pNw9PJyzMurQwxhzfLcMz\n2FdRxYwAepjNisJJmjJvC82jIrhqYIrbUYwxfm5gWgJ9U+KZMm9LwIzM5tOiICKjRWS9iOSIyEPH\nmH+9iKwUkVUiMk9E+vkyz+kq3FvOzFXbGZuZSmxUhNtxjDF+TkS4+Yx0NhYd4OucYrfj1IvPioKI\nhANPAxcBPYFrRaRnrcU2AyNUtQ/wO+B5X+VpCK8tzKWqRrlxWAe3oxhjAsQlfduRGNuEKd9scTtK\nvfiypZAF5KjqJlWtBKYBY7wXUNV5qnp4YNMFgN+ek6moqua1hbmM6taa9MRmbscxxgSIqIhwrstK\n44v1hWzddcDtOCfky6KQDOR5fc53ph3PbcBHx5ohIhNFJFtEsouKihowYv3NXLWd4v0V3HxGuivb\nN8YEruuHdiBchFfn+/9YC35xoVlERuEpCg8ea76qPq+qmaqamZSU1LjhHFPmbaVjUjPO7JzoyvaN\nMYGrTVw0F/Vpx/TFeX5/e6ovi0IB4N2fdIoz7Sgi0hd4ARijqrt8mOeUHbkN9Qy7DdUYc2puPiM9\nIG5P9WVRWAx0EZEMEWkCjAfe915ARNKAGcANqvqdD7OcFrsN1RhzugLl9lSfFQVVrQLuBWYBa4Hp\nqrpGRCaJyCRnsV8DrYBnRGS5iGT7Ks+pKtxbzocr7TZUY8zpCZTbU316TUFVZ6pqV1XtpKqPONOe\nVdVnnfe3q2oLVe3vvDJ9medUvLYwl2q121CNMacvEG5P9YsLzf7KbkM1xjSkQLg91YpCHew2VGNM\nQ/P321OtKNTBbkM1xjQ0f7891YrCcazML2VFXik3Du1gt6EaYxrUTcM6sK+iivdXbHM7yvdYUTiO\n1xbkEhMZzlWD7DZUY0zDGtShBd3bNmfqgq1+d3uqFYVj2FN2iPdWFDCmf3vioiPdjmOMCTIiwvVD\nO7Bm216W55W6HecoVhSOYcbSfMoP1TBhqN2GaozxjSsHJNOsSThTF+S6HeUoVhRqUVVeW5hLv9QE\neifHux3HGBOkYqMiuGJAMv9ZuY3Sg5VuxznCikItCzaVkFO4nwlD0tyOYowJchOGdqCiqoa3lvhP\nf0hWFGqZunAr8TGRXNavvdtRjDFBrke7OAZ1aMFrC3OpqfGPC85WFLwU7itn1uodXD0ohejIcLfj\nGGNCwIShaWwuPsC8jf7RSbQVBS/TF+dRVaNcb6eOjDGN5KLe7WjRNJKpC/zjCWcrCo7qGuWNRXkM\n79yKjkmxbscxxoSI6MhwxmWm8unanezcW+52HCsKh81eX0hBaRkThthtqMaYxnXdkDSqa5Rpi/JO\nvLCPWVFwTF2wldbNozivZxu3oxhjQkyHVs04u2sSbyzKpaq6xtUsVhSAvJKDzP6uiPFZaUSG21+J\nMabxTRiSxo695Xy+rtDVHHYEBF5flIsA4wennnBZY4zxhXO6t6ZdfLTrF5xDvihUVtUwfXEe5/Zo\nQ/uEGLfjGGNCVER4GOMHpzF3QzFbit0bgCfki8In3+5g14FKuw3VGOO68VmphIcJ0xa7d8E55IvC\nm4vzSE6I4ewuSW5HMcaEuDZx0ZzTvTVvLcnnkEsXnEO6KOSVHGTuhmLGZabaQDrGGL8wfnAqxfsr\n+HytOxecQ7ooTM/OI0xgbKYNpGOM8Q8juibRNi6aNxe706V2yBaFquoapmfnMaJrkl1gNsb4jYjw\nMMZmpjDnuyK2lZY1+vZDtijMXl/Ezr0VjM+yC8zGGP8yLjMVxXM2o7GFbFGYtjiPxNgozune2u0o\nxhhzlNSWTTmzcyL/zs6nupG71A7JorBzbzlfri9kbGaKPcFsjPFL4wenUVBaxtwNRY263ZA8Ir61\nxFN9r8m0J5iNMf7p/J5taNmsCW828jMLIVcUamqUaYtzGdaxFemJzdyOY4wxx9QkIoz/GZjMp9/u\npGhfRaNtN+SKwvxNu8grKWN8lrUSjDH+7ZrBaVTVKDOWNt4YziFXFN5YlEt8TCQX9mrrdhRjjKlT\n59axDE5vwZuL81BtnAvOIVUUSg5U8smanVw5INnGYDbGBITxg9PYVHyAhZtLGmV7Pi0KIjJaRNaL\nSI6IPHSM+SIiTzrzV4rIQF/mmbE0n8rqGjt1ZIwJGBf3aUfz6IhGu+Dss6IgIuHA08BFQE/gWhHp\nWWuxi4AuzmsiMNlXeVSVaYvz6J+aQPe2cb7ajDHGNKiYJuFc0T+Zmau2s+fgIZ9vz5cthSwgR1U3\nqWolMA0YU2uZMcCr6rEASBCRdr4IszR3NzmF+7nWWgnGmAAzPiuViqoa3l1e4PNt+bIoJAPe7Z18\nZ9rJLoOITBSRbBHJLio69Qc5zu6axKV925/y940xxg292sczpn97WjRr4vNtRfh8Cw1AVZ8HngfI\nzMw8pUvwgzq05NVbsxo0lzHGNJa/jx/QKNvxZUuhAPA+V5PiTDvZZYwxxjQSXxaFxUAXEckQkSbA\neOD9Wsu8D9zo3IU0FNijqtt9mMkYY0wdfHb6SFWrROReYBYQDrykqmtEZJIz/1lgJnAxkAMcBG7x\nVR5jjDEn5tNrCqo6E8+B33vas17vFbjHlxmMMcbUX0g90WyMMaZuVhSMMcYcYUXBGGPMEVYUjDHG\nHCGN1R1rQxGRImDrKX49EShuwDiBJFT33fY7tNh+H18HVU060YoCriicDhHJVtVMt3O4IVT33fY7\ntNh+nz47fWSMMeYIKwrGGGOOCLWi8LzbAVwUqvtu+x1abL9PU0hdUzDGGFO3UGspGGOMqYMVBWOM\nMUeETFEQkdEisl5EckTkIbfz+IqIvCQihSKy2mtaSxH5VEQ2OH+2cDOjL4hIqoh8KSLfisgaEbnP\nmR7U+y4i0SKySERWOPv9W2d6UO/3YSISLiLLROQ/zueg328R2SIiq0RkuYhkO9MabL9DoiiISDjw\nNHAR0BO4VkR6upvKZ6YAo2tNewj4XFW7AJ87n4NNFfCAqvYEhgL3OP/Gwb7vFcA5qtoP6A+MdsYm\nCfb9Puw+YK3X51DZ71Gq2t/r2YQG2++QKApAFpCjqptUtRKYBoxxOZNPqOpXQEmtyWOAV5z3rwBX\nNGqoRqCq21V1qfN+H54DRTJBvu/qsd/5GOm8lCDfbwARSQEuAV7wmhz0+30cDbbfoVIUkoE8r8/5\nzrRQ0cZrRLsdQBs3w/iaiKQDA4CFhMC+O6dQlgOFwKeqGhL7DTwB/BSo8ZoWCvutwGciskREJjrT\nGmy/fTrIjvE/qqoiErT3IYtILPA2cL+q7hWRI/OCdd9VtRroLyIJwDsi0rvW/KDbbxG5FChU1SUi\nMvJYywTjfjvOVNUCEWkNfCoi67xnnu5+h0pLoQBI9fqc4kwLFTtFpB2A82ehy3l8QkQi8RSE11R1\nhjM5JPYdQFVLgS/xXFMK9v0eDlwuIlvwnA4+R0SmEvz7jaoWOH8WAu/gOT3eYPsdKkVhMdBFRDJE\npAkwHnjf5UyN6X3gJuf9TcB7LmbxCfE0CV4E1qrq416zgnrfRSTJaSEgIjHA+cA6gny/VfVnqpqi\nqul4fp6/UNUJBPl+i0gzEWl++D1wAbCaBtzvkHmiWUQuxnMOMhx4SVUfcTmST4jIG8BIPF3p7gQe\nBt4FpgNpeLodH6eqtS9GBzQROROYC6ziv+eYf47nukLQ7ruI9MVzYTEczy9501X1/0SkFUG8396c\n00c/VtVLg32/RaQjntYBeE7/v66qjzTkfodMUTDGGHNioXL6yBhjTD1YUTDGGHOEFQVjjDFHWFEw\nxhhzhBUFY4wxR1hRMH5FRH7h9Pa50ukFcoiPtzdbROo94LmITBGRAhGJcj4nOg9QNUSWkYd7+2wo\nInK/iNx4gmX6iMiUhtyuCVxWFIzfEJFhwKXAQFXtC5zH0X1W+Ytq4Fa3Q9Tm9Abs/TkCT87X6/qe\nqq4CUkQkzYfxTICwomD8STugWFUrAFS1WFW3AYjIr0VksYisFpHnnSeYD/+m/zcRyRaRtSIyWERm\nOP3K/95ZJl1E1onIa84yb4lI09obF5ELRGS+iCwVkX87/SgdyxPAj5yDrvf3j/pNX0SeEpGbnfdb\nROTRw33gi8hAEZklIhtFZJLXauJE5EPxjP3xrIiE1ZXNWe+fRGQpMLZWznOApapa5fV39SfxjL/w\nnYic5bXsB3ieDDYhzoqC8SefAKnOAesZERnhNe8pVR2sqr2BGDwtisMqnX7ln8XzeP89QG/gZudJ\nT4BuwDOq2gPYC9ztvWERSQR+CZynqgOBbOB/j5MzF/gauOEk9y9XVfvjefJ6CnA1nrEffuu1TBbw\nAzzjfnQCrqpHtl2qOlBVp9Xa3nBgSa1pEaqaBdyP52n3w7KBszAhz4qC8RvOuACDgIlAEfDm4d+0\ngVEislBEVuH5DbiX11cP92O1CljjjK1QAWzivx0h5qnqN877qcCZtTY/FM+B+BvxdEN9E9ChjriP\nAj/h5H6GvHMuVNV9qloEVBzuvwhY5Iz7UQ284eQ8UbY3j7O9dnj+Hr0d7ihwCZDuNb0QaH8S+2KC\nlHWdbfyKczCcDcx2CsBNIjINeAbIVNU8EfkNEO31tQrnzxqv94c/H/4/Xrs/l9qfBc9YBNfWM+cG\n5wA9zmtyFUcXieijv3XKOU+U7cBxppfVkaGao3/+o53lTYizloLxGyLSTUS6eE3qj6dzr8MHtmLn\nXPrVp7D6NOdCNsB1eE7/eFsADBeRzk6WZiLS9QTrfAT4sdfnrUBPEYlyfvM/9xRyZjm9+YYB1zg5\nTyUbeEaf61zP7XbF09umCXFWFIw/iQVeEZFvRWQlnlMmv3HGCfgnnoPWLDxdoZ+s9XjGbV4LtAAm\ne890TuPcDLzhbHs+0L2uFarqGmCp1+c8PD1Vrnb+XHYKORcDT+E5oG8G3jmVbI6PgLPrud1RwIcn\nndYEHesl1QQ98QzP+R/nInVIEZF3gJ+q6oY6lokC5uAZ0auq0cIZv2QtBWOC20N4LjjXJQ14yAqC\nAWspGGOM8WItBWOMMUdYUTDGGHOEFQVjjDFHWFEwxhhzhBUFY4wxR/w/H6igK+FfyYwAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Welch window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYZFd55/95K1dXV+cwWROUhQCBEBhMBhMMyGkXbGBh\nvQs2Bi+/BRsMmF17sRzWNrZZwQK2scGkFWAwJgkEiiiMRkgahZFGEztM51hdOZzfH/eeW/feqttT\n0zM9HeZ8n6efrjo3nVv33PM9bxalFAYGBgYGBitBaK07YGBgYGCwcWFIxMDAwMBgxTAkYmBgYGCw\nYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWDEMiBgbrGCJymYg8JCIZEflvLR6jROTi1e7bmUJE\nTojIK1rY75z3X0Q+LSIfXeGxbxeRu85lfzYTDImsI9gvWV5Ellx/29a6XwZrig8Atyql0kqpT/g3\nishtIvJfV+PCInKziHzQ9X27PcE3a9uyGn04V1BK/bZS6mNr3Y/NCEMi6w+vV0q1u/5O+XcQkcha\ndGytcKHdrw8XAY+t0bXvAF7k+v4i4IkmbU8ppcbPZ8cM1g8MiWwAiMhue7X3X0RkCPiJ3f48Eblb\nROZF5GEReYnrmD0icrutBvmRiNwoIl+0t71EREZ813BUDSISEpE/EJGjIjIjIjeJSI+vL28TkSER\nmRaRj7jOExaRD9vHZkTkARHZKSKfFJG/9l3z2yLy3wPuWYnIu0XkKeApu+1y+15mReRJEfmPrv1f\nKyKP29ccFZHfc9+r3adp+z7f7DquU0S+ICJTInJSRP5QREL2treLyF0i8lciMicix0XkNa5j3y4i\nx+xrHved9zdF5JB93M0ictEyz/cNIvKY/RxvE5Er7PafAC8FbrSl0kt9x90AvNC1/UbX5leIyFP2\nOT8pIrKCvt0BvED/Hva1/ha41td2h+vcrxNL/TZvj82nB9xz03HSSv9d50iIJbn32d8/IiIVEemw\nv39MRP7W/vzPIvIn9mc9Jt4vIpMiMiYi/9l13l57bC6KyH5gn++6zxeR+0Vkwf7/fLv9pSLyiGu/\nH4nI/a7vd4rILwX81hsXSinzt07+gBPAK5q07wYU8AUgBSSB7cAM8FqsxcAr7e/99jH3AB8H4lir\nxQzwRXvbS4CRoGsD7wXuBXbYx38G+IqvL39v9+MZQBG4wt7++8AjwGWA2Nt7geuAU0DI3q8PyAGD\nAb+FAn4E9NjXSQHDwH8GIsA1wDRwpb3/GPBC+3M38CzXvVZcv8WLgSxwmb39C8C/AWn73g4D/8Xe\n9nagDLwDCAPvsu9B7P4sus6zFbjK/nw9cAS4wu7rHwJ3B9znpXZ/XglEsdRXR4CYvf024L8uM2Ya\nttu/3XeALmAXMAW8egV9iwN54Br7+6PAXuCnvrb/ZH++BpgEnmv/Xm/DGlfxJmOs6Tg5Xf+b9PEO\n4Fftzz8EjgKvcW37ZfvzPwN/4hsT/8v+zV+LNRa77e1fBW6yn/HTgFHgLntbDzAHvNX+/X7d/t6L\nNU4LWGM7CkzYx6btbXl9j5vpb807YP5cD8N6yZaAefvvW3b7bvvF2uva94PAv/iOv9l+cXfZL0nK\nte3LtE4ih4CXu7ZtxZpMI66+7HBt3w+8yf78JHB9wP0dAl5pf34P8L1lfgsFvMz1/Y3Anb59PgP8\nT/vzEPBbQIdvHz1huH+Lm4CPYk10JWwisrf9FnCb/fntwBHXtja7X1vsCWYe+FUg6bvm97GJyP4e\nsiepi5rc50eBm3z7jgIvsb/fxspI5Od99/sHZ9o31/nfizV5Dtttf+5qq+ljgf8LfMx3/JPAi5uM\nseXGSWD/m+z7MeAT9tgct/v150AC16RNI4nkgYjrPJPA8+wxUQYud237U+ok8lZgv68P9wBvtz/f\nCfyKfa4f2n1/NZZEefBs54j1+GfUWesPv6SU6rL//KLvsOvzRcB/sMX9eRGZB34ea8LfBswppbKu\n/U+eQR8uAr7pOu8hoAoMuvZx68BzQLv9eSfWarAZPg+8xf78FuBfTtMP//0+13e/b8aa0MGazF8L\nnBRLjfdzrmOb/RbbqK8YT/q2bXd9d+5TKZWzP7bb53sj8NvAmIh8V0Qud/X171z9nMVabbvPq7HN\nfX2lVM2+72b7ngmCns+Z9A3qdpEXYkkgAHe52oaVUrr/FwHv9z2jnVj36Mdy42S5/vtxOxYpPAtL\nsvkRlrT5PKwFwEzAcTNKqUqTa/RjEZJ77LnHxzYa3yX3mNH9eZH9+Ta7Py+2v286GBLZWHCnXB7G\nkkS6XH8ppdSfY6l2ukUk5dp/l+tzFmtVDVj6aayXx33u1/jOnVBKjbbQx2F8OmQXvghcLyLPwFKn\nfOs05/Lf7+2+PrUrpd4FoJS6Xyl1PTBgn/cm17HNfotTWOqwMtbk597Wyn2ilLpZKfVKLOJ+AkvF\np/v6W76+JpVSdzc5zSn39W3d/85W+4D3N2oFZ9I3sEjkhViT4p1220+BF9htd7j2HQZu8J27TSn1\nlYB+BI2TM8HdWCqxX8YaH49jPcPXsrJJewpLcnXbZ9zvjud5ubbr5+UnkdsxJGKwTvFF4PUi8irb\nSJmwDYY77JXhAeCPRSQmIj8PvN517GEgISK/KCJRLL143LX908AN2uAqIv0icn2L/foH4GMicolY\neLqI9AIopUaA+7EkkG8opfJncL/fAS4VkbeKSNT+e46IXGHf45tFpFMpVcayVdR8x+vf4oXA64Cv\nKaWqWGRzg4ik7ft9H9ZvuyxEZFBErrfJqYilhtTX/DTwIRG5yt63U0T+Q8CpbgJ+UURebj+L99vn\nC5rU/ZjAslO0ijPpG1iqmi4syfFOAKXUHNZk+xa8JPL3wG+LyHPtZ5+yx1i6yXkDx8mZwJYOHwDe\nTX2SvhtLQjzjSdseE/8K/JGItInIlVgqYo3vYY3D3xCRiIi8EbgSa3zqa1+GZQPcr5R6DFuKxvtb\nbRoYEtmgUEoNYxlJP4z1Qg9jGSv1M/0NrIE7C/xPLAOyPnYB+B2sF3kUSzJxe2v9HfBt4IciksEy\nsj+3xa59HGti/CHWZP6PWEZFjc8DV3N6VZYHSqkM8AvAm7BWg+PAX1Anv7cCJ0RkEWsCebPr8HEs\n4+cp4EvAbyulnrC3/S7W/R/DUtN8GfhcC10KYRHOKazf+MVYhneUUt+0+/ZVuz+PAq9pdhKl1JNY\nk/H/wZKMXo/l5l1qoQ9gPatfE8vTqiGOpMn1Wu6bvX8Wa5KO2ftq3Ikl9d3h2vcAlhPCjVi/9xEs\nu1IznG6cnAlux1JL7nd9T7PySfs9WKqtcSxbyj/pDbZ67HVYZD+D5QjxOqXUtL09C/wMeMz1DO8B\nTiqlJlfYn3UNsY1BBpscIvJHwMVKqbecbt9V7seLsFb6F6nzMPjEcnv+olJqx2pfy8DgQoSRRAzO\nG2x1zXuBfzgfBGJgYLD6MCRicF4gVgDdPJYR+m/XuDsGBgbnCEadZWBgYGCwYhhJxMDAwMBgxdj0\nie36+vrU7t2717obBgYGBhsKDzzwwLRSqv90+216Etm9ezcHDhxY624YGBgYbCiISEtZLow6y8DA\nwMBgxTAkYmBgYGCwYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWjA1HIiLyarFKox4RkT9Y6/4Y\nGBgYXMjYUCRi1734JFbW0SuBX7dTNRsYGBgYrAE2WpzIdVjVyo4BiMhXsdKhP36uL3T3kWl+72sP\n8/pnbCMe2VBcu/khstY9MPDBPJH1hXuPzfCLT9/Kf/q53at+rY1GItvxlq0coUmdCxF5J/BOgF27\ndvk3t4Qv3TfEqYUCn7njmH3OFZ3G4BzDpHozMGgN9x2fNSSyUiilPgt8FuDaa69d0bRz429cw2se\n2cLvfuVB3vZzu/mjN1x1TvtoYGBgcK5x4MQsv/bpe3j9M7bxl7/29PNyzY2mpxnFW/t4B63Xoj4j\niAive/o23vLci/jCPSc4OZNdjcsYGBgYnDP8yXcPsaUjwV/86tUkouHzcs2NRiL3A5eIyB4RiWGV\nSv32al7wPS+7mHBI+KefnljNyxgYGBicFQ6OzPPQ8Dzvesk+2mLnT8m0oUhEKVXBqn98M3AIuEkp\n9dhqXnOwI8Grn7aVbz00SrlaW81LGRgYGKwYX9k/RDIa5peftf28XndDkQiAUup7SqlLlVL7lFI3\nnI9rvuEZ25jPlbn76Mz5uJyBgYHBGaFaU9z82AS/cNUgHYnoeb32hiORtcALL+kjFQvzw8fG17or\nBgYGBg14eGSe2WyJl18xeN6vbUikBSSiYZ67t5d7jCRiYGCwDvGTQ5OEQ8KLLzltDalzDkMiLeL5\n+3o5Np1lbCG/1l0xMDAw8OC+4zNcvb2Tzrbzq8oCQyIt43l7ewHYf3x2jXtiYGBgUEe5WuPgyALP\n2tW9Jtc3JNIiLtuSJh4J8cjIwlp3xcDAwMDBobFFipUaz7qoa02ub0ikRUTDIa7c1sFBQyIGBgbr\nCA8OzQNwjZFE1j+esaOLR08tUK2ZBE4GBgbrA4+fWqQ3FWNbZ2JNrm9I5AxwxdY0uVKVkbncWnfF\nwMDAAIDDkxkuGWxH1ihLrCGRM8DFA2kAjkwurXFPDAwMDEApxZGJJS6x56a1gCGRM8DFA+0APGVI\nxMDAYB1gYrFIpljhksH2NeuDIZEzQGcyykA6biQRAwODdYGnJjMARhLZSNjX387RKUMiBgYGa4+j\n9oJWa0nWAoZEzhA7e5KMzpmodQMDg7XH8FyeRDREX3tszfpgSOQMsaO7jclMkUK5utZdMTAwuMAx\nOpdnR3fbmnlmgSGRM8b2riQAp+aNNGJgYLC2GJnPsaM7uaZ9MCRyhtAPbNSQiIGBwRpjZC7vLGzX\nCoZEzhDbbRIZMXYRAwODNcRSscJ8rsyO7rY17YchkTPElo4EITHqLAMDg7XFmD0Hbetam3QnGoZE\nzhCRcIieVJypTHGtu2JgYHABQ89BA2lDIhsO/ek400uGRAwMDNYO09kSwJq694IhkRWhrz1mJBED\nA4M1xYy9kO1tj69pPwyJrACWJFJa624YGBhcwJheKhIOCV3J818S1w1DIitAf7tlE1HK1BUxMDBY\nG8wslehJxQiF1i7QEAyJrAj96Tilao3FQmWtu2JgYHCBYnqpRN8aq7LAkMiK0N1mGbLmskalZWBg\nsDaYXiquuVEdDImsCJ22DnIhX17jnhgYGFyomMkW6U0ZEmmAiPyliDwhIgdF5Jsi0uXa9iEROSIi\nT4rIq9aqj51thkQMDAzWFvO5Ml1thkSa4UfA05RSTwcOAx8CEJErgTcBVwGvBj4lIuG16KCRRAwM\nDNYSSimWihXSichad2X9kYhS6odKKW2xvhfYYX++HviqUqqolDoOHAGuW4s+GhIxMDBYS+RKVZSC\n9rghkdPhN4Hv25+3A8OubSN2WwNE5J0ickBEDkxNTZ3zThkSMTAwWEssFa11dvuFKomIyC0i8miT\nv+td+3wEqABfOtPzK6U+q5S6Vil1bX9//7nsOgCJaJh4JMSiTSJz2RL3HJ2hVjNxIwYGBquDI5NL\nPDVh1VTP2OEF60ESWZMeKKVesdx2EXk78Drg5aoe0TcK7HTttsNuWxOk4hGypQpKKX7z8/fz4NA8\nH3rN5fzWi/etVZcMDAw2KYZmcrz2E3dSrSl+9N9f5EgixibSBCLyauADwBuUUjnXpm8DbxKRuIjs\nAS4B9q9FHwGS0TC5UpWh2RwPDs0D8C/3njRR7AYGBuccX7l/iFKlRrWm+NZDp1hyJJG1TXkC65BE\ngBuBNPAjEXlIRD4NoJR6DLgJeBz4AfBupdSaFTpPxcPkilXuOToDwG+9aC8jc3kOTyytVZcMDAw2\nKW59YpIXXNzL1ds7OXBilqWipUpfD+qsdUciSqmLlVI7lVLPtP9+27XtBqXUPqXUZUqp7y93ntVG\nMhYhV65ydGqJeCTEf7jW0rQ9NDy3lt0yMDDYZMiVKhyeyPDsi3q4dDDNsamsYxMx6qwNjLZomHyp\nwsmZHLt62tjblyKdiPDwyMJad83AwGAT4dDYIjUFV2/v5KLeNsYXC04W8fUgiax9DzYoUvEwp+bL\nZAo5LuptIxQSLh5o5/hUdq27ZmBgsInw+JjlkXXVtg5yJUsCOTS2CFgOPmsNI4msEMlYhHy5ylSm\nyECHVZ5yd2+KkzOGRAwMDM4dhmayxCMhtnYm2GLPNSdnc4RDQiyy9lP42vdgg6ItGiZbrDCfL9Nt\n59La3Zvi1EKBQnnN7P0GBgabDMOzeXZ0JxEReu2svRMLBWLh9TF9r49ebEC0xcNMZopUa4qupPVg\nd/e1AXByJrfcoQYGBgYtY3gux84ea27RZSjGFwvrQgoBQyIrRlusnvtRZ/Xd1pUErAdsYGBgcC4w\nPJtjZ7dFIl1tMcQuZGhIZIMjHqmTiK5xPJC2qoxNGhIxMDA4B8iXqiwWKmzptGwh4ZCQilnGdKPO\n2uCIuh6gzuk/kLYe9GSmuCZ9MjAw2FyYyVpzibv4lNaCxI0ksrERDYvzWQf8JGNh0vEIU4ZEDAwM\nzgHmslZkeo+LRLRbr1FnbXC4H2AyWldt9afjTC1ZJDKbLfHiv7yVX/rkTylWjMeWgYHB8vjM7Ue5\n6n/8gO8eHANckki7m0Ss+caQyAaHW52VcJFIRzLqpIj/yv4hTs7keGh4npsfmzjvfTQwMNg4WCpW\n+NtbniJbqvI3txwGrIUoQE8q7uzXZmwimwPuB+jWTXa1RZ1iVXcfnebKrR30p+Pc/Nj4ee+jgYHB\nxsE9R2fIl6u84ooBjkwuMbFYqJOIq5Z6KmYkkU2BaKS5JNKZtEikVlMcHF7gWRd18dw9PTxkp4s3\nMDAwaIYDJ2aJRUK87fm7AXhiPMNMtkQkJHQk6+lNtGeoMaxvcMRchnX3w9QkMrVUJFOscNlgmmfs\n6GJ0Ps/0kjG4GxgYNMeTExn29bfztG2d1vfxReZzJbraoojU5xu9gF0vksjaZ+/aoHDbREKh+gPu\ntG0iI3NW1Pr27iThkLXv0ckl+trjGBgYGPjx1MQS1+7upjsVo6styshcnmyx2pCpN2rPNzFXrNpa\nYn1Q2QZENMCo1ZmMUlPw5LhVnGp7Vxu7e+10KLMmHYqBgUEjlooVRufzXDqYBqzA5YnFAtlixTGk\na+i5Z70Y1o0kskIEiZI6ZuTwhJW+eVtXgmQ0TCQkJsOvgYFBU5yazwM4ObIG0gkmM0XikZDj0qsR\nCWtJZH2QyProxQZEkCSStFcNo/N5YuEQ7fEIkXCILZ0JTs3X06EopUy2XwODCxS1mqJWU873CTtV\nkk71PpCOM7lYJFeqNtQM0XOPMaxvcERcdhA32mxPrfGFAh3JukFsIB1nMlMnkQ98/SBP/+Mfcsfh\nqdXvrIGBwbrBUrHCyz9+Oz/35z92nG0mFq3/gx2WzbS/I85UpshSseLkytLQ2TKC5qDzDUMiK0Q4\niERsH+6xhYLHLa/fXllY2/J87YERSpUaN/7kyOp31sDAYN3g3x4a5fh0lonFIjcdGAbqkojOv9eR\niFKq1pjLljwZw6EuiQTNQecbhkRWCAl4fm226Dm9VKTTzu4L1uDQ6VC09PGqqwZ5YGiOxUJ5dTtr\nYGCwbnDL4xNc1NvGFVs7+OmRacAikY5EhKRNGB22bXUuV25QZ0W0Kn19cIghkZUiFMAinjojLhLp\nT8eZz5UpVqocGsuQioV56/N2U60pHjSBiAYGFwweGV3kObt7uHp7B4fGMiilmFysl9kGSCfqc4ff\nsK5j1Nw2lbVEoHeWiHyiheMXlVJ/eA77s2EQRCLuZIwdroGgS+gu5iscGlvksi1prtzWAcBTExle\nfGn/KvbWwMBgPWAqU2R6qcgVWzsICdx0YISppSLz+ZIntYlbFR7k4lutnZ8+nw7LufheD/yP0xz/\nB8AFSSJBLtrxaH2DeyB02FLJYqHM6Hye5+zuoScVo689zpPjmVXtq4GBwfrAE+OLAFyxJU3Bzuw9\nOpdnMV9hW1ddEmmP1xegfi8src6qqXUuiQB/o5T6/HIHi0j3Oe7PhoEESCLuAKBmUsl8rszEYoFB\nW3Td25fyBCHWaop7js3w9B2dHpHWwMBgY0Epxf7js1wymHbqgQzZ7/qe/pSTXHF8ocBioczlibRz\nrHvu8MeDaO+s6jpRZwXaRJRSf3u6g1vZZ7MiSJ3lfuDuErpaKjk5k6VcVWy1y11u7UowtpB39rvx\n1iO8+R/u4x1fOLAa3TYwMDhP+Or9w7zxs/fyxs/c40z44wsFwiFhIJ1ga2cSsDw5F/NlR1sBXo2G\nPzJdzz2V9U4iIpIQkbeJyBvEwgdF5Dsi8nci0rfaHROR94uIcl9LRD4kIkdE5EkRedVq92E5BHnX\neeuMuFRbtlTxpB3JriWRbV1JxhcKVGsKpRRfe8By+bv32CzHp02Eu4HBRsWX7xsC4KnJJR4atpxn\nxhYK9LfHCYeE7rYosUiIsYU8mWLF8cgCSLgWoEGBzUEeoucby3lnfQH4BeA3gduAXcCNQAb459Xs\nlIjstK895Gq7EngTcBXwauBTIrJmGciCJBF3AJBXErFI5OS0Jc7qSmXbupKUq4rppSLDs3mGZ/O8\n80V7AUwgooHBBsVCrswjowv85gv2AHDvsRnAcuXdYmshRITeVIyh2RxKESyJ+NRZWv5YJxyyLIlc\nqZR6M/BrwGVKqXcrpX5ge2PtXOV+/Q3wAeq/F1iG/q8qpYpKqePAEeC6Ve5HIEIBoojbVtJMEhm1\nc+ToHFv9NplMLxUdo9trnraFvvY4j4wunPuOGxgYrDoeO2W9uy+5rJ/dvW08Pma922MLBSe1CVhh\nAMOz3jkBTiOJ2Ab1jSCJlACUUhXglG/bqiV9EpHrgVGl1MO+TduBYdf3Ebut2TneKSIHROTA1NTq\nrOZbCRZ1SyKJaAgRGLcjU7XRvNt265vLlp2kjZcMprlia9ohFQMDg40FTRpXbutgd1+KE7Zq2nKq\nqZeD6EhGnTnB7crrlkT83ll1SWR9sMhy3lk77FgRcX3G/t508m4VInILsKXJpo8AH8ZSZa0YSqnP\nAp8FuPbaa1fF+hRuYRngHggiQjIaZipjRa3rVUe37bUxlysxMpenrz1OezzCJQNpvrJ/CKUUIsJc\ntsTb/mk/WzsTfOrNz143KQ8MDC50/L/7h/jEj4/wv66/ipdfMQhYWbz72uP0tcfZ3Zti//FZKtUa\nmUKFLlc8SFcy6nhpucnCbUxf7zaR5Ujk912f/a5CZ+U6pJR6RbN2Ebka2AM8bKuFdgA/E5HrgFG8\narQddtuaIMjF1424r2hMMhomV6oiAu32qsORRHIlW19qrVJ2dCfJl6vM5cr0pGJ85f4hDo4scHBk\ngduenHQGq4GBwdqhVKnxFz94ktlsib/4wRPOezm2UGB7t+V9tbOnjVypysicpbZyZ7Lw2kHq84Vb\nXR4Ne+eadRIe4iCQRE4XI7IaUEo9Agzo7yJyArhWKTUtIt8GviwiHwe2AZcA+893HzVaU2d5VxC6\nFnt7LOIMki47kn0uW2Z8sci2zrrXFlh1BnpSMW59YpLLt6QZmctzy6EJQyIGBusAB07MMpstcd2e\nHvYfn2VyscBAR4LxhQL7+tsB6LPtntrb0k0c7jRJiYDU7n7Dug4yXCeCyLJpT/4dr2HbA6XUG1al\nR8HXe0xEbgIeByrAu5VSa1aQI8g7yw2/ykkb2t0GtGg4RDoRYS5XYnKxwDW7ugDYbpPI6HyeK7d2\n8MjoAr9x3UUcn17iZydNri0Dg/WAB23X3fe89GL+0/H9PHByjtdcvZXxhQIvuNiKTuhNWdqFYzaJ\nuCURd1ChWxJxI1idtT5oZDl11l/Z/38Fy37xRfv7rwMTq9kpDaXUbt/3G4Abzse1T4cg7yw3/CSi\nM3S2J7w/ezoeYbFQZiZbcmqwD9pqrcnFAsNzOQrlGpcOtpOIhrjzqWmKlaqjLvvZ0BxDMzmuf+a2\ndTOwDAw2Gx4anufo5BK/fM125/1/dHSB3b1tXLvbSt5xbDpLplAmU6w4AcXanf/YlFUy20MiLkkk\nqMhUg4vvBlJn3Q4gIn+tlLrWtenfReSCD6duRZ3ln8/1qiPhW3Gk4hGn1ogOOKrbSsoctQffJYPt\ntMUjVGqKY1NZrtjawWy2xJs+cy+lao1KTfFrz95xNrdlYGDQBAu5Mv/x0/dQqtaoKsV/vNYyz56c\nybGnL0VbLMJAOm7XCbGrFPpIpK7Oqk+7HkkkgET8Wg/HO2udrBdbSQWfEpG9+ouI7AFSq9eljYFW\n1Fn+fTR5+AdLKh5xUp9oVZdWc81mS4wvWASzrSvJLrsG86htpPvJE5OU7HSe//bQmvkZGBhsanz/\n0THnPfv3h+sRD8NzOacu+u6+FCdnsszlrPpAOl+Wzs57csYKNHbnxHNLIv7FpYZfo6Ecm8j6YJHl\n1Fka/x24TUSOYdlyLgLeuaq92gBoxcXWTyI6mt0vnqbiYY5MWtKGO3tnTyrmeG2JQJ+dLgHqQYt3\nH52mrz3G9c/czr/cc5JSpdZwfgMDg7PDfcdnGUjHedVVW/jGz0aoVGtkS1UyhQo7uy0S2dKR4ODI\nPAs2iWi1VSQcIhENMZO1FoNu6aM1SaR5nzaMJKKU+gGWJ9R7gf+GFb3+w9Xu2HpHKw/Q//B1Cme/\n628qFmGpWAG8Rvfuthiz2RKTmQK9qTjRcIi+VJxYJMQpm0Semljiiq0dPH1HJ6VqzVF9Adx3bIb/\n76sPOgRlYGCwPCrVGjd893E+eau3bPXDw/M8c2cXz9zZRa5U5cRMlmE7I+8O25W3JxVjZqnEQt4i\nEXc9ofZ4hELZkmTcZOGxiQRIIq1oPdYSyyVgfJb+bKcaedj+Kzbb50JDKw/Wb+TW/t7+rJztrvKX\nXhKJ2pJIkYG0ZWgPhYQtHQnGFgrUaoojk0tcOpjmyq1WgatDdqRstab44DcO8q2HTvHH//7YCu7Q\nwODCw7cfPsXf33mcv7z5SQ6cmAWgXK1xYibLZVvS7Om3NPknZ3KML1i2D+2O39ceI1OsOGWw3QZ0\nd4nboKAh4LuPAAAgAElEQVTCQEmkQZ1l/V8v1LKcJPJPItItIj1Bf8A/nq+Orje0ZhPxfo+ErJ/b\nr25yR7a7SaQjGSVTqDCXKzn6VairuaaXiuTLVXb3pbioN4VIXe/6xPgiJ2ZyDHbEufvojCNiGxgY\nBOO7B8foa48RC4f4waPjgJW+vaZgZ3cbu3stEjkxk2M2Z0Wa63ez1/asPD7VGA+SsoOLIyGp10jH\nOxcEufL65xHFxsmd1Qk8cJq/C3ZmasU7y2830TYR/4rDrd7y1laOkC1WWSpUAiUUgMG0peIaSMcd\nW8mBE3MAfPDVl1OtKR4YmnWOL5SrfOm+k5ycManmDS5MFCtV/t/9Qx71b62m2H9illdeuYWrtndw\ncMRKouiorXqSdLdFScXCDM/mmLdJRKcu6rX/H5teIh2PeN5/rW3wG8/9WolmaPDO0pLIOmGR5Vx8\nd5/Hfmw4tPIAGwzr4eaG9SAdaSoWJlusEAmJR+XVnYpxeGLJcSV01ybRtpInxjN0t0V5xZWDzveX\nXW59vvEnR7jx1iPs7m3jx+9/icnDZXDB4dO3HeNvbjnMju4kt//+SwmHhFMLeTKFCldv7yQaFr7x\nwAhKKYbnLBLZ2d2GiNCfjjObLZGIhomFQ6Tsd1arr0bm8p5FH0BbvLlnZrQFJxj/VLPOwkRacvE1\nWCH8D1+LsX4S8VZDrH9OxSPky1UW8mWPhNLTZnttZbwkst1FIidnsuzuS9GRiLK9K+nUcVdK8Y2f\njQCWSP7g0Ny5uFUDgw0DpRQ3HbASgo/M5Z2CUTqOY3dfG/v628mWqkwvlRidyxOSetxHTyrGTLbI\nXLZEdyrqLCi13WN6qUgi1lzi8EsiQSosN4KSva6XpZ8hkVWEXxKJBrj4BhnatPSRL1c9Ue7dqRi5\nUtWpQ6Bz8/S1x5mxM4KenMk5+tuLetsckXxkLs/YQoH3vfJSwHJd1KhUa/zlzU/wL/eeXOktGxis\nKzw6usAHv37QUyV0ZC7P6Hye99vvwN1HpgGcdO17+9o9aYdmsiW622LOhN/bHmdmqcRcruQEBUP9\nfS1XlaceCNTf+QZJJHzmGg21zqpSGRJZRfgfftg2rEd86iM3qbjVZG6Pjg6fwR2sAd4ejzgSTndb\njEyhQrFSZWwh77wIlprLklp0sZwXXdrP3r4UB0fqebi+/fApPnnrUT76rUd51BTEMtjgUErxvpse\n4v8dGOaj33rUadfF3l56+QA7upNOyerj0zmS0TCDHXHH42p0Lm+Rhcuxpa89xvRSicVC2ePG6/HA\nijbXNvjdeFuRRPzzSG2dBRue9g7s+upvEZH/YX/fZadmNzgN/KYGverwDwp/3IiGuzKi2yaidbAT\nCwWvwT1ll+CdyVFTdQllW1eSiUyBcrXGUdtz5NLBdvYNtHNsqr5C+/eHT9GZjBISHM8UjWyx4qjK\nDAzWG3KliuNUovHkRIbDE0v0pGLcfXSaTMHyA6qrrVJcOpjmqQnLuD62kGdbVwIRcRZgYwt5ZrMl\nutsag4BzparHhul+R/2SSDxAEmnJyzNgll4ndvWWJJFPAT+HlXgRrBrrn1y1Hm0i+P27tWHdb5QP\nijB3k4tbnaVXPGOLea/B3Rat9UuhXQ63dSZQyqqqNjKXpzcVoy0WYV9/OydmslSqNZRSPDQ8z6uv\n2sLV2zu57/iMc95Cucqr/vYOXvyXt3okFwOD9YBqTfErn7qbn/+Ln/BTWzUF8MBJy973+6+6jJqC\nA/b3E9NZ+tNW8bc9fSm7xrliZqmeALUjaXlXzWZLzOfKHrVVOhGlWlPMZkveVO7RkOOk0iCJODYR\nb7tfK9EMQUSzTjikJRJ5rlLq3UABQCk1B8SWP8QAgtVZ/ocfmL3TJeq2NVnxTCwUPZKI9lfXEeo6\n8Ztun8+VGZnLOcVydvW0Ua4qJjNFRufzzOXKPG1HJ8/c2cWhsYyTo+fHhyYZmctTrio+f3ejvaRW\nW2/+IgabFZVqrWG83XtshifGMygF/3z3Caf94PACXW1RXvu0rQActp1LTsxk2WPbC7d0JMiXq2SK\nFaaXivTZQb0iQlcyyny+zGzWG6elF3FTmaJHEhERpyZIkE3Eb1hfSfoktYFqrGuURSSM7VkmIv1A\nbVV7tUngHx/ay6Lmy+UcKIlE3Qb3+uDThFKq1mh36WR1gasjtu+7XlVpfe5stsSp+bqtRFdRnFgs\nOEGKF/e3s7e/naVixSnle9eRaToSEV511SD3HqtLKAB//v0nuPyjP+Dmx7zqLwODc425bImX/fXt\nvPJvbndUUwC3H54iFg7xy9ds575jM1Rtkjk+k+Xi/nY626L0pGKcsOOiRubyTtLEAbve+cRCgaml\nIn0usuhsi7KQKzOfL9PpUmelbRIpVmqexR24bR/NbSL+uJBWSkr41VnrLRV8KyTyCeCbwICI3ADc\nBfzpqvZqk6BRErH+V30rqUiA0jMWENkalCZFt4/Yfu2aVNwleGddNUsG0pbL4mSm6ByzozvpVGTT\nZHRwZJ6n7+jieXt7GZ3PO+keZrMl/uHOY5SqNW78iTfXEFi1UIyUYrASzGZLFCvemnP/+uAoQ7M5\njk5l+dZD9Uy6B0fmuWJbBy+4uI/FQsWxeYzO5Z28Vrt72zg2lXXUVv22xLHFdo8fnsuRKVScdwOs\n92ZqqUipUnMizsFrQG+LeeNBYkGSiL0IbHD7Pyt11voQRVpJwPgl4APAnwFjwC8ppb622h3bKNA5\nq5rB/+z1qqOq/CTSfDC4PTncJOIWidNNBrSWIDSpaKPgbNZKDqfJRceXTNq2knBI2NqZcF68sXmL\nBJ6aXOKKrWkuG0wDOFG+9x6boVJTvPzyAR4ZXXCuC3DT/cNc96c/5sPffCTg1zEwaI6fHpnm2j/5\nEW/9x/2O6gbgx4cmuHxLmu1dScctF6xA2qu2dbDPzmt1Ytqy840vFthhZ9jd3t3G+GKBTLFCqVpz\nnE4G7HdAq4C7XBJHVzLqlGhwSxypePMsvOBWWzWXRCpV77u/kpISV2235pynbe887bHnA8slYHTn\nyJoEvgJ8GZiw2y543P+RV/CNdz0/cHuDJKLVWb7VeTjAVzwwUVvUbStplEQmM0VE6qshHUmrvba6\n2uppGkJi7T+2UGAgHScSDtVF/EyBaXsltqunjb22hKIrtP3s5BzxSIh3vMgqN+M2un/yNksyuenA\nMHN27Iq+95sODDvJ7QwuXMxlS/zjXcedzAsan73jGDUF+4/POuVnazXFIyMLXLu7m+v29DhG86Vi\nhflcmV09bezps0jk+HSW8cUC1Zpy7H997TGmM0VmlqyxqO2F2nV+zJau3Q4snW1RxmzXeG8mCbdU\n0jyo0O/Kq9/lcoMW4sxz8L3s8kHu/MBLefXTtpz22POB5SSRB4AD9v8p4DDwlP35gdXv2vpHfzru\nGVx+tJpOJGgguaUPT1R72OsR4v4cEihVarRFw47kE7ELXGmdcJdNKqGQkE5EWcyXmXMZD9tiEdJ2\ntcVhu/jVju42BjviJKNhTtj2k6NTS+ztb+fKbdbKSPvbD8/mOGmX660py6ai8a2HRvnA1w/yps/e\ny8xSXXIBa6Iw6q/NiWbP9SPfeoSPfedx3n/Tw05bqVLj3mMz/MqztgNwz1HLBjcylydTrPC0bZ1c\nMtjOZKZIplB2irNt70rS1Rajqy3KydmsExe13cmwGydbqjpBt7ruuc4Eocki5VuUVex+e2uhu9MU\n+dVZdvVSn51Te2YqnxaiFZtIsxRL2qazHhBIIkqpPUqpvcAtwOuVUn1KqV7gdcAFX0+kFQRJqv5B\nEUQ28YB0KB6Duy9QUb8E/sHdHo84cR46ngQsV8bFQoVZX/Rtf0ecyUzBsZVs704iIgx2xJ2V4/Hp\nLHvt1CpbOxOOa7FOI/Fff34vsUjII6F8/QEr5Uqlprj5sQmnPV+q8tpP3MmL/+pWpn3kYrCx8ZFv\nPsLVf3Qz97mcMhYLZef533Vk2llQHBpbpFip8YorBtnTl3LGks5ftbsvxd4+SyI+MZ1jdL4+PgH6\n2+NMZ0rM2gWgtMTRb9s6DtsLHb1gikVCxCMhR23ltje6F4hudZbHa9Inceg32S+JaK2E3yjeiiSy\n3tGKYf15Sqnv6S9Kqe8DwTocAwdBtZH9CDSsB5BIkMEd6one/GJ2WyzsrM46k3Wy6LAlkflc2aMP\n1i+jFv/7Xcb4yUyRak0xPJdnd5+1ItrZ3eaQ1LGpLCJWTfh9/e0ctsmlUq3x4NA8b3/+bvraYx6V\n1s2PjfPEeIbh2Txf3T/k6ftN9w/zji8ccF50g/UHpRR/9r1D/ME3DnoM4idnsnzpviGypSqfvO2o\n037/8VmqNcUfvOZyAO49Zo2FY9PWWNE1co7atgq3xKHH3MnZrNO+wyVxTC8VmbdLH+iFUV/a+q+l\ncX/JhWbqLE8FQteiLMg+CfV33O+2r8nC75m5GZKftkIip0TkD0Vkt/33EeDUaY8yCE7h7NsvaCAF\nkYVbBPZHu+v9/F4jqXi9emK7J51KvWaJm0Q6k1EWC2XmcyVCUk+10t8RZypTZC5XolpTjofXls6E\n8yIem15iW2eSRDTMpYPtjtHyyNQS+XKVa3Z1cc2ubh5ySSi3HJpgsCPOVds6uOOpuvprIVfmw998\nhB89PsHf3fKU556eHM/w+197mCfGF5v+fgbnHoVylRu++zg33T/sab/32CyfueMYX71/mH/92ajT\nrp/lSy/r575jMxTKFsE8YcdsvPHanYQEnrSf4dBMHhHLS3BHT5KRuTy1mmJ03mof7EgwaI+5qUyR\n8cUC4ZA4XlV96ThTS0WnzrkmEf1fL6RSPg/HSdspxOt51VwScb9z/txX+tX0Sxj6nfVLIusl1uNs\n0AqJ/DrQj+Xm+01ggHr0usEyCFxktOjm5yaXoFiSxmSOtiTis9W4db0JXxGsuZzlteWPys3Yaq6u\ntpjTl4F0nMnFguOJpV0lt3YlGF8oWKmzZ3Nc1GutFnd0Jx0jp05wt6+/nYsH2hmayVGpWiFHj51a\n5Jqd3Tx/Xy8PDc87btA/fmKCSk2xpy/FLYcmPTrlD3/zEb72wAgf+PpBz71OZYr87lce5N8eGsVg\nZTgxneU9X/4Ztz4x6Wn/0n1D/P2dx/nANw46zxPgB4+OkYiG6E/H+fGhuprywaE5BtJx3vicXRQr\nNSeb9LGpLIMdcbpTMXb1tDnpeE7OZtnSkSARDbOrp41StcZEpsDofJ4Bu25OZzJKNCxMZSyJoysZ\ndSZpS4IuMp8vEYuEnLGuJQ/tnu51k/eWsdVwSx/JAE/JiI9EdC4sv60jKEZsvbjpng1acfGdVUq9\nVyl1jf33XqWUca1pAX7bhwpQaAVJIm41V1CitrivXUsvfoO/W73lFsE7klFOzedRylvOsyMZsQzu\nPjVXbypGtlR11Ahuf/tStcZstsTUUr2c75bOJNWaYnqpyJBt1NzV28bu3jYqNcWp+QLZYoUTM1mu\n3NbBJYNpSpWaYwB9eHie9niEd75oL9NLRWeyGZ3P88DJOXpTMQ6OLHhUXZ+89Qj//vApfu9rDzPr\n8gzLFiv8yqd+yts+t59y1RsvO71U3NRJJ6cyRSf5phufv/sEP/8XP+Eul/QHcMP3DvGdg2P83tce\ndoge4PuPjDku47e4yOKBoTmefVE3r7higP3HZx2yPzaV5eKBdi4ZtGOPbKn02PSSY9vY19/uuI0P\nz+Yco7F2z7UyT+edpIghW/KYyhQbAgF7263xObFQoLutnqa9PW7toyUXt7qpo0lKIfASh1cScZGI\nTxUdDUhtpN9x/wxwQUgiInKriPzE/3c+OrfR4SeHujqrNcO6uz2opkBQZGzKp85yr6oSnkqKEbKl\nqr2Pt8JiplhhOlOkxyehQD2JnbaVaEPlXK7M5GLR8b/fav8fXygwNJujMxmlIxHlIqfMaJbhuRxK\n1SUUgKfsyebRU4tcubWDq22f+Kdsw+hDQ5Yq7AOvvgyA+2ydulKK7z4yxo7uJOWq4s6nppy+f/X+\nYX42NM/th6c8CSaLlSqv+8RdvO7/3MUdh+v7A/zwsXHe9rn9Tu169zHfOXiqqRPAXLbUQFKngz8A\nVd/L9FKxwaOnVlP84NFxh2g1SpUav/e1h/nYdx73HFOsVLn+xrv4xU/cxe2u+8sWK/zVzU8yMpfn\nr3/0pNOeL1W54/AUWzsTzGRLTs6pYqXKQ8PzvOm6XeztTznZCyrVGocnlrhyaweXb+lgsWBlO1BK\ncWxqib39KS7qaSMaFue5Hp/OOvXKt3YlHGeNsYWC41GlKwXOLJWYy5ad72AtXqaXiizYkoiGljhG\n5vJ0JWMN7TrflXuS95BFAHEkAwzrfklEv9sN2Sp0g1+dxcZHK+qs3wN+3/77KPAQluuvwWkQpM5q\nCEIMIAi3mitoxeJPoxCUdiHIu8vzorglFPulG53PeyQR/TKenLVIRKvAtBQzPJejWKk55KIL+Ywt\nFJhYLLLV/q4jhacyRccgv7Ur4dRA0RPk8eks+wba2WtPOHol+8joAtGw8IZnbCcWDnHI1qmPzueZ\nyhR5xwv3ko5HPPVSbntykn39Kbrboh41zS2PTzJuT2JfdNVSqVRrfOhfH+H2w1P86fcOeX7Pj//o\nMO/58oO84wsHPBP2o6MLPO/PfszrPnGXh0hKlRrX33gXL/zfP2lwbf7Qvz7CM//4hw2xM5/48RGu\n/ZNb+JsfHfa0f+GeE/z2Fx/gTZ+913ONbz98iq8/MMI/3nXcQxa3PD7JqYXG+7v/xCyZYoXr9vTw\n0PC8o6I8ODJPsVJzjN66X0cml6jUFFdu7eCKLR2Ow8TQbI5SpcZlWzociePwxBJzuTKLhQp7+tqJ\nhENO5c1ipcp8ruwsMAbSCeZyZUqVmidPlfas0upWd83y7raYlRwxX3LinsCltloseIzkFnFYn90q\nK6h7UsUiIY8ayhOb5Vp4uffxSyL6Go3ZKgLUWZtAFGlFnfWA6++nSqn3AS9ZzU6JyO+KyBMi8piI\n/G9X+4dE5IiIPCkir1rNPpwLtBKNCsEEEfKQyOljSaBOFv7BrfcT8RKKWyrxqLlsiWNiseAx0mtJ\nZNznzaJJRHvTaDVXt5P8seSZIHSiu6mlIqMun/7utiixSIiJTIFcqcJstsSO7iRtsQjbOhOOBHR8\neoldPW0kY2F297U5Ke21SuoZO7u4cluHo4Ov1RQ/OznH8/f18dw9vU4QG1iR9+3xCL/27B3sPzHr\nxDTcf2KOmWyJvX0p7jk64zgmVGvKMR4/ODTPMZdt4F/uOWnp/icy3PZkfSL/3iNjPDyyYHmfuYzS\nw7M5vrJ/iEyxwidvraeOqVRrfO6nxwH43E9PeMji63ZlytH5PPe7iOcHj44xkLZieX58qE6S9xyb\ndu7v/hN1VdMDJ+cIh4Tfeck+lKr/djre57o9PWzvSjpkod1jL9+S5pLBdobncuRLVScF+87uZH0R\nMJdzFgK7bPXUYNqSOKZtjz89BrTqc2QuR65UdcaIXqBYmXRLHsmiI2k7hGS9kohWW01mih7bn4jQ\nbo/jlJ9E9MLLtyBzSxl+iSOovU4i3v0cF1/f8RufQlpTZ/W4/vrsyXvV4u1F5KXA9cAzlFJXAX9l\nt18JvAm4Cng18Ck7MeS6RUNtZKeYjG+/s7hGQ6ld+0Xwe404kbSRkIeQ3MThlkT0iq5cVU3bT80X\nSEbDzgpLrwa13UNLL5pc5vNlZpaKTnr6VCxMMhpmOlNkbD5PxNZzO7EoCwVHQqknjEw4JYFH5+tJ\n9Pb21XXqOhByX3+Kvf0pJ7p+fLFAtlTlsi1pLt2S5sRM1vEUenhknqfv6OQ5u7uZz5UdN1Ado/D+\nX7iMik1CYAVZTmWK/O7LLgbg7qP1+IfbDk/yqqsGSURDnrTkdxyeojcV4+rtnfzEJQXd+qT1+WWX\nD3DvsVmHLB4cnmchX+aXnrmNpWLFufZCrsyjo4v8zkv2EQmJY8tQSvHg0DwvvrSf6/b0sN8lgT04\nNM8zd3bx7Iv0/Vm/0eGJDLt727hmVzdQ95h6YjxDRyLClo4El21JO+QxYlfS3GlHhysFo/M55zlt\n60rSn44jgk0WXueLAduzb1o7ZbTX2wGH8DWJJKJhUrEwE/az80vEi4Uyiz4JRY/PUqXWkJJESxxB\nJOJ/l9x2yCDnl6hvsabJIkhl7VdNbgJBpCV1ljty/R7g/cB/WcU+vQv4c6VUEUAppd+464GvKqWK\nSqnjwBFgXRfHCkycJv7vKx9JfluJfhH8K6SgVNTu1Zo3Ere5PjhIXaDJYmTOG7SVioWJhISFfJmZ\nbMnRa4sIfekY00tFq+hPqu4BZq1Y6xKKNqgOdljt+jo6x9e2rqQjGQ3P5uhqi5JORNnb185czorG\n15LK3v4Ulw2mUcpSzyilODK5xGVb0lxi5wbT+z4+tsj2riTP22tl+dH6fG2gft3Tt9HdFuVx+/tk\nxlLZXbenl2fu7PJIOw8MzfGc3T1ct6eHR0cXHBvIQ8Pz9LXH+dVn7SBfrvL4KUst95gtFbzzRfsA\nyzak+wTw3L29XDzQ7kz8k5kiM9kSV23r4PKtaY5NLzl1Yo5PZ7lksJ3Lt9i5z9x2ib52OpNRtnQk\nHFXh6FyeXb1tiAi7etocSePUQoHeVIxENOzkXRtfsJ6TiEXy0XCI3lTcQyI6T5X1/FztNrno6HEt\n8bjTrve0xxzpszPpJ5EKuXK1aZkEaBzrmiz8AYJaVeV3Xokso7bS8NszHRIJ8MBsNKxvfBZphUSu\nUErttSPYL1FK/QJw/yr26VLghSJyn4jcLiLPsdu3A27n9BG7rQEi8k4ROSAiB6ampprtcl4QWBvZ\nh7MZR0EFrhrUWboojr/iWoAkkgj4rNVcs9mSL97Em0FYE4yI0JmMMrNUJFOoeCYIKzCs5Lhpagx0\nWL7+OurYSZaXtianXMnKl6TJZaAjTq5UZalY8ZCLjmIeWyhwfKZeP3tnj9V+yq6fnStVuainzakx\noSWRo5NLXDrYTm97nJ5UjCOT9ZV6LBxiX3+KiwfqcTCHxqztV27t4NLBNMdskiqUqwzN5rh8a5rL\nt6QpVmqctK9xaCzD07ZbEz/Uk1s+MZ6hJxXjiq1pelIxpxaGjom5wia9p+w+aWK4dDDNxf3tlKuK\nodkck5kiuVKVPX0pR600NJujVlOcmMmxxw7c29aVcDzcxhbybO2sS3+ZQoWlYsVq7/LatMYXC0wu\nFuhNxZ1JeLAjzviCS22lYzgaUo9Yz1UvTLQU63Y170hEnf3dkkhHIkqpUqNaUy2NW+t78wWWXjz5\nJRGPOitIEglUZzWPE9mMWX1aIZG7m7TdczYXFZFbROTRJn/XAxGgB3geljH/JjlDulZKfVYpda1S\n6tr+/v6z6epZwT/u9Pjxi7pnsxbx/zKaLILquPtflKCXzm03aabOAq/bcCQcIhULOzmI3ATTmYw6\n9Uq6PSoJywPMMo76Ah3tKHrrmHrG1Uyh4rgX96W8OvXJxYJnAnTaMwWmFguExFKtaGP/+GLB43bc\nnYrRmYw6JDI6n3fcTPf0pZx7GJnLs707SSQc4uKBdsftWJ9rT1+Kff3tZOyaLFblPKv9Ulva0VLQ\n8GyO3b0pdna3EQ6Js+o+Np1lX38KEeGSgXYnLf/wbJ5kNEx/Os7F/e0Mz+YplKuMzNdznOlEmSdm\nsk6fd/W00ZOKkYqFGZrNMZcrUarUHFXhVpc0N7ZQYJv9G2lHiPGFAuMLBbZ01MkFLLXVXK5EjyuV\nTr8d8De9VKQ9HnHGVUfSm+xQq6HaHek2b48Lr8utlj6blYgG/xhuPm6hLnH43414gPTuXogF5biK\nBLje+wUXffjGlzsaEQnaICJbsFb6SRG5hvr9dwBnlf1LKfWKZa77LuBflaU83C8iNaAPGAV2unbd\nYbetW7TKfWcj0vpXPHV1VnPDul/8TgSQhcdWEmue5sHv5ZKMhZ3VZzrujjmJOt5PHiO9nc+rWBZP\nQrmORJQFO0ZFXNHyWorRE6022jsp7TNFZrNlnn2RnS9JG+8zRaaWivSk4lZ0cypOJCSMLxScc2qp\nZktHgsnFIkvFCgv5sqfd8QCbqxf22t6VZDZbolC2YmeiYWEgHXeCLYdmc8zYsSp7+lIOwY0vFpjL\nlVkqVtjZ00YsEmJHd9K5t7GFPM+ybRXbu5KOO+2p+byTx0xLBVOZIqNzeUelpLNCTy4WycYtu8/W\nTuuY7d2Wh9SUY6+ou2L/+NAE2WKFTKHCVtd9g0Uic7kSz9jR5YyDdDxSD/hzSQ+dySjHp7PMZUue\nPG3aKUN7imki0GNl0iYLv3oqb9uughY83iSkzdWwUJc4wr4Z3vG88ue1CjCme/YJUGf538vNEFQY\nhOUkkVdhGbV3AB8H/tr+ex/w4VXs07eAlwKIyKVYpXingW8DbxKRuIjsAS4B9q9iP1aMwY5403Yn\nTqTBc2Pl1/KfS5OEX8zWqgb//sEvZnM1l1tCaUYiGm4pxZ2byN2eiodZKlQa1FkdySjFSo3JxQId\niahzT1qVVld7WN+1usTKmVRPJOkuujW5WA+ADIWEwQ4rwn7Gr3Kx7TRjjrHYdkPtiDuT3KirOuSA\nKwXH6LwVEBcKie/a1r1v7UzSm4oRDQun5guOmmZnt5fAajXF+ELBIZzBTitfWa2mOOUKuht0qZRG\n5/MMphPEIiHHYD2xWGwwbvem4lZAqC/jwJbOBIVyzZHC/G62s7lSQ361Dic1TmOsxmLeIsj2eKPR\ne3zBkqb0QicRDREJiRMrEpT4MIgs4q2qs04jifg1TUEBvm4EeWf54Ugim5BLAiURpdTngc+LyK8q\npb5xHvv0OeBzIvIoUALeZkslj4nITcDjQAV4t1Kqusx51gzf/J0X8Nip4HxOjd5ZZyOJND93kIuv\nH0FqK48bsKtdxIr2LVZqDV4ubdGIvX/IIwm1RcOUKpbXUdKTajtKtlihXKt5o+V1LMpMzqf+qrdD\n3f21YCcAACAASURBVCNMt4/NF6jUlDMBJmNh2uMRppcsSURPmGBNkrO5EjPZEiJ1lVl/e5wHhuYa\nJ9mOhCOdTC8VGeyskwtYap2JhYKzctftk4sFZrNW/rGeVIxQSNjSmWB8Ie9cQ5NBfzrOY6cWmV4q\nUq4qtnfVVUqVmmI6a9V9uWJLh9Mnfe0Z1/3FIiF6UjEmMwWKFYuE9STf0x7j0KnFhvtz4ny0/cH+\nrol7crFAsVLzSBwdySiLeSvv2jN3drmeX9Sxo7S7FxMuzz732BER2hMRR33ZrEYOeGM1ghY5Cc+4\n9UkcWhIJcDrxe061kmHX/54FSSIrecVved+LnIXLesZy6qy3KKW+COwWkff5tyulPr4aHVJKlYC3\nBGy7AbhhNa57LrGtK+msFt0ISntydqsTn/He/t9gPLQn9YbSvAHFrpZVC9gk4g90TNj7uVef/uO9\nqoowGZ0U0pdVFSyJo8818ev2k/ZE1+MzzPoDIMGauDIFK97kYttWANakuZAvM5st0pWsSzt9dvbi\n+bzfHmP1w7Jl1KUgtyptLldyIu572mJEQuK0a1UaWJP/uE0u7vvoT9susD7pSF9jYqFo1X1xvJ2s\n7eMLBWZ9UoLlhFCkbFfx0zr93lSMmWzJkVC0pOEuXOb+7n4W4DduWxLHfL5Ml09tVakpppdKjpQF\n3tQju3z1MNIuEnGTQirA2ypIKnGP50abSHN7oZba/XaPII+sZsdq6G8NhnXH9bd1XDyQ5uKB9Bkc\nsTZY7ldK2f/bgXSTP4MzhLPQOQcyrR7vDcZ7+xpBhnV/eU73SxAPWMUF+dv7iUq7TrptKNa5Akgk\n0XyC0Kvf8cVC05WsXi3riS4ViyBSnwDdHmDtiQhL9qo47XNJXsiXmVkqObErYLmd5svVeu0Vm0R0\noJv2qnJSjLtUaXO5kmOn0fmdJjNFpjIljxTUmYyxkLeSW7r725+Os1SsOAZmverX20fnc1RqyiMl\nhAQW8mWPGs861nJOmFkqOS60YKmzLPK07E26vLK+1gmflJeIholFQnXpz6d21JUvOxLu9nqyQ3+2\nXLAWMv5SBZpgEtGQx27ncUEPkI79EodGkGHdbxfUNhL/xN+KTcR/rqBgw02oxXKwnDrrM/b/Pz5/\n3bkw4B9QrVQ3aziHCCgVmOTRb1gPSrvg1vu6z+VWHQSv6LzX0BKHX0LxJrLzqrM03GoI92TjzfNV\nj6KPR+qTTSgktMcjjt3FTRaWB1iZpUKlQdpZzJetKHqfSyk0rrz1xFhXpUU919LJKt3qt662qKP+\n0m7Kuv3Q2CKz2RLxSMghVk1IRyez3ms32ILqROWuTOn3fNNkq/sOOFLM8GyO9njEeeZ+dZZbvdiZ\njDZt70hEHTtGW6zxOVnqrEYSgUZ7mjay+0sYxMLNVVhB6iw3/Kl/NCn4AwT1gsv/FrZmWPeeq273\nbO7iuxkRSCIaItIPvAPY7d5fKfWbq9etzYkgF/GzGV7+sam1VX4xux4x693fv59/f4BogFuwfxWm\nX+aYLxbFLZmkAozvgQb+JoGOOV/0MngntKTPu2dsIU+lpjykpSWRpWLFsS24rzE8myMeCdXdUwMm\n8kQ0TCwcYnTeSnff7cvjpKWg7S71ZmcyynzOKvjVk4o5E04QgTWomnx2Ip2jyp9DKlOoEBJxnAOs\na2g327wjhXiuMeslMH2MDjh0SxYdSVfyziZ51/z7+0vPuqElZT8hxFqQjv0GdI2GDLuh5jYRPY6r\n/gVWC+qs0xnSnf1Oe6aNi1biRP4NK83JLcB3XX8GZwqd9sQ/wM7Cc8NvlNfvQZBO1m+XaUXv6z9X\nkG5Zr9z8RvxkgH2llSAxf24vTXr+yUZPmv5t6USkHrviU2eVq4rZbMnTJ20DGJ7Le20rzkTeZJJN\nRhia9Xo1WdeuS0FuwuxMRsmWqkwvFX2Gam/QnVah+dsbgvHmGmNwOhKW55RfGtAT+cRiMTDjQCQk\nnmfQmYxSKFuOEe72dIC9IsimEQqJ8/wCo8ljy5FIkE2ktWhyTR5BNpGG0rUtSCKtlsDezDitJAK0\nKaU+uOo9uYDQGGx45kY3FUBIWt4Jcv1tkEQCvLbcCA7O8qsFmieyc3tktQWWGQ1YcfrtK5Ew5Wql\nKYk0u0Y6EXGM981W3mMLBc8KWZ9n1BX5DnUpQa/I3TaAdCLqVMxzT9jt8QhHpyoNrq6agMYXCt4y\nrYl6JmR3QaVk1Eod09S4nYw4Eorf/rBUrBANh7zSQLwuibg9qrSbbaWmPNIfeH9PjwdfC4uA9rif\nLKzn15DzrQUS8eSyCsiw64Z/8RO1x3GQTcSv6m1lgRXkWRn0Lm9GcmlFEvmOiLx21XtyASBInVX3\nIW99gAXZ6INqlgTl7mnFjdH/0kUDouKjAZKI+3tQtcbACSkgTYt/JRtUhc4/qdf3b54nTKti8uWq\npz0RDRENixM97T9mslkwpTteosmq/9RCvmlespG5PB2Jur1CRKyATdvm45W0ok5pV/+5lLLT0yQa\nSbKmoN1FhCJ16cO/sg8i+CAPviAvP3BlzG0YI2H7WN/+AbEa0YBx5EYQWTRI0AELrJVIIkHv+CbM\nduKgFRJ5LxaR5EVkUUQyImKKWq8AQcGGZ6MwbZBqgnS0AVlEW0lXH1Qbwf+SBqmzgojKW68hSG3R\nfBLyux17Iu89dhcXiSSaE02gbcZFYCLiGIz96fTTiairsJe3Xdf6dq/INZllChWfFGSdv1SpNdx3\npx2A6b+/jkTUcdv2k4tzvVijJAJeycx97/6VfXBgn+uZRZpLBkHxSv5AviAVaRBBeB1Cmu4SuMjx\nR6wHOZ0EFYJbDsEaAgubTw5pQZ2llDLuvOcYjRyyEnWW9d8vcevVq99IqF8I/2orqKricvvoF8Rv\nlNcTht87K5BEgogjgBCs/ZobYPXkFnbp3f3n9daZb+4x5lXXNLftJCLeynhpDzkFeSNFXfs0d3le\nzlgctM1NTkESmNe43Zw8oU6A/vsOtEW4PfgCIsuDVKFBxdSC0vX44ZYSgib7hjrnoeY2Ef29toLs\niMFqK+/3oOSrmwGteGc9q0nzAnBSKVU5913avAgKNjyblAit6mQ12fh70Mpqy69R0Nf0r+iC1FlB\nagEPibhXrwESivW9uTrLkVCi3gk+FhBMGTSRL+c6qo/3E1uQ44CHRNwxMQFp9oPidPzfE0HkG3Af\n7msv57rtJslm1xbx/p7BqXHqn/0LEL0tuJiaTxIJUme52gPLS/vjPgIkaJz3rzWp3ruPz7HltPuf\n/pwbDa0Y1j8FPAt4xP5+NfAo0Cki71JK/XC1OrfZEKTOOrsEjK3tV5dEfOqsFhSarZTvhfrk31iX\noflFvBNSQMBYkCTSJIq+abvrvO7rBednCpYG9OSa8E+AQa6nrsk0SGJwXzsUEhLREIVyrclEbn2P\nhiWQZIPS1gRJV0FedP5nodv9BB2kgnS3+xcQ0cjydrMGFVRL6qwgScT7XY/8oBogfrTyXrb65vrf\nu82EVmwip4BrlFLPVko9G3gmcAx4JfC/lz3SoCkaVjzO/zMnk1b5x/HOCmhv5Vg/GiaIUPMJIigW\nJUid5UbQZJpsqCFfn+iatfuvFxQAGQ5JvfZKgDTg914KWt0HSVpB17au0VzSCmoPqgfjnsjd/XAT\naVBZgCCbSFCf/J/d125QhdJ8jGgDekMxtQBJxH3eViURbTsKiuFYkSbgDI/ZjNl8WyGRS5VSj+kv\nSqnHgcuVUsdWr1ubE4HBhnUWOWO0KsXUDeu+9hUY1jWCJBE//GovDY93VsCKM0ht1TiZNreVxAIm\n01bUVkGTZtD+EKyecl+7LUAKcp87kMCWmci9HlLNySwUEmcSdUeDu8/VeG2r3T/5JgLu2z0O/FKo\nONduLon4x2cs0sIiJ2B8+sml5tgR/Wor7QV32ks1oEGdFeAduXnlkNbUWY+JyP8Fvmp/fyPwuIjE\ngfKq9WwTIriy4Zkb1p1jW9wvSJ21Ehffertf4tATgT/JY/Pj4+HmE4/3nM29dfyTUFBhoaCJ/HRq\nnUyh0ro0EKlPsp5cZAHXSCxDIo40EKBKC0pB4++Xuz3ITdZvQA8iaP1bB1XRhGBp0z++tAeUf9Gg\nx1JjmYQWVEoBu/jHrR6XjYG49nnOpZQQaHE/d5dYL2hFEnk7Vj3z/8/+O2a3lbHrfhicGc5lxHor\nLxmcJ3WW/b0hU3DA8VHXKjOoG41J8UJN+6Qncv+140GqHM9q2XcuvepvUPc0l3Z0ezgkgfnHglRb\ngUQVGB8T7DkVpM7y2xV0H/1ErPfzT/DRgEhvt5QRKA34xki1ps/pt5vphVRzj6rlELzIaVGddQ4n\n9sA4kU0sirTi4punXpDKj6Vz3qNNjMBU8M7/1bOJOETV0H7m6iz9Mga5Svrdi4MM6+6JJIgMGwId\nXUkX3XCyFPtIpBV7gF8K0t1vCHwL9AyzvvufXxCBeaWV5oQUZNwOUu8td94gu0KDcduxBXmvoX8f\n/xNyXy9woRG4APFeWz/PlUgigS6+vnZHnRUQqLUZPafOB1px8b0E+DPgSsDJ5KaU2ruK/dqcCNCX\nno1OtlVJ5GxE9UbdsmraHnHUWd7jA5M8uvoedB8NNR60JOJPaeHkP/JLIl7vp/r+wR5EzYL3rHM1\nn+DrlfGCr+2esL0uyP77WN7ms5xNJMhzyk8WEtAelNdKk4s/jCLSgodUY9Em67+f1xxJJCCwdTkE\nZcgNGrfB6qzVw2YmqFbUWf8E/F+saoIvBb4AfHE1O3WhYjXHmX6XV+JOHPQy+lUSQeqsoInA/fK3\nmg01yNc/SF0XZLB3r5D92VodvX1AKvGGYlz2pOuXgpazuzjX9huYAzzDtAQWpGrywyuhBNhEGs4V\natpXfd+NEubpx5KfoIMq/7WqkjoTtLr4caeXOVs4EesN7Wd96nWLVkgkqZT6MSBKqZNKqT8CfnF1\nu7U5EZzvauUjrNVx36rE0gxBuuVWE9m1Uqs6UJ3VEADWnESiAdGUQZOQe8JoqJNtTwF+ctH34V/5\nBmWBDbLBePZpsFdY//1utnrV35BUsIVgPD9ZBHlI6WP8j0K3+yO6W3mujTEZug/NScT/tM5m3Daq\ns5rbRFZDEgkipM0okLTinVUUkRDwlIi8BxjFqnZosEI0rFJ0+wpemKCXzE9LZzN4/RO5nkv8K9HT\nTRDLIWiXhuI+jjqkNUmktTrZARNawGTq/z2C7i/IvbjZOU/X7kzkLUoD7nb/tfUiIMi43UhUAZJI\nS0Wbmi8C/N0O+s1beX6tXluP28Y4rdWf2oPsoZsBrUgi7wXagP8GPBt4K/C21ezUZkWQxJGKRRhI\nx/mTX3raGZ+zdcP6WdhdfKNE34ffOBpkvA9SuXiu0aJhPUgdEgmwibRCYI1G3ubHOpPsMl5KzfaH\n5dJ3NCck/+6Bnm8tBOP5ySIUIM1pT6r/v70zj7ekqu7999dNzyPdNA3dTTNJkG4QkQtpwEiDjTIo\nCAFBBYTkyQdEweThQEgITx4xwfhieNEYJAoYI0GRIYogIgQjYWgUmumDtBIVxAE0IFGm7pU/ap97\nT1fVPrdOnaoz3fX9fO7n1nT2WrvqnL1qr7X32tkGPhLrKpDuIBYTybiz2nRzFaHoEN9ORkfGSBe1\ncsk8Zk6dzJmv36k6IX1CkdFZd4fN54CT61VnuGnMTp6Zyp46eZK465w1pcqMpmzIXFeqeCBn5m/D\niERdRZvuF1qXIaJfzGOSDczGGvIiDV2+UYgPL97080VWh4w19mn9Yr2B0SSBGVfh+O669DVJ2Zb5\nkjSec3aYbfK/TMqceEwk//rM97aDL276s+MN8a1zrY95M6bw0IcPrq38XhI1IpKua/VBMzu8enWG\nm9NW78j0KZM5bq9tKiuz6Ne+kx9IJkC5Mf94TKcib5NRH3LErx1L552ZB1OgFxRzKWXcWW0Gf4sY\nsKJB3s1G3VnFZLfSY9IkYEP8rT8bM8iXUWj4baZ+jf/F3LBl0rHHPtuYo5KZsV6hO6tMePNTx7+G\nZZvPrEyHbtOqJ7IP8GPgC8CdDGdMqKtMnzKZ01bvWGmZhdOeRFxNZWSMjc5Kuwtiny8hNJBuCEaT\n6GXiFflv6mVGEI3KjgwvbjRGY7IjLqUCBiybWyohrfZo/UoEt2NzL7K91db3If14ixiR9P2PLd8c\nHZ1XxOEeIeaGzQ7WCP/Li8rQznf+4F23rlBy92llRLYiSbL4NuDtJOuqf6E5j5bTe7oxOitNrDdg\nkcBlJxQd+jnWMLbvU88Ef1NljpUVzmfcdbGeSAnZsZhBIy5RQkbRuFJjv2hvoEgDn4lLjMoa/7Ot\nZJf57OjorJTeVcZEhjmAHiP6NTCzDWZ2g5m9E1hFkvrk1jBCy+kTio7OalBFAx+bsT46yqxCmdnh\n0PlljjW+m15frCeS/zMo6taJ9WSKyI75/LPB7fzPF3GZFQ0kN2Sme5TRVOsFnmusp5T+bKwXW+XQ\n9NiM9VjSxE4Yxmy9MVoG1kOSxcNIeiPbARcBV9evllOUTIMduW40rUQFMhs/unTjaWO/xkI6FSHb\nk8hffrTdSWzNxBr72Jt6+upYluJyvaBQj8gcnHRwu0gbW3Q4bUNmZpnYUeuSLrf9XtB4y8em6eSd\nJ/1ysGFUdsSITJx2v1KirzGSLgf+g2RBqv9jZnuZ2flm9kSdCkl6taQ7JN0raa2kvZvOnS1pvaRH\nJL2xTj0GhcxbVfS69suelcow22Dc0VkVvoVlJoxtzD8+uh9pMFuReVuOupRi9c2nSA8sFniODYHN\nxCVKDFqIuf4aZIP3+eUW+U7F5moUHbpbphe7aM40IPv9jcVEnM5o1RM5HvhvknkiZzQ9TAFmZnNr\n0ulCEqP1NUmHhv3VklYAxwErgSXANyT9jpltqEmPwSDye8j2UNr/4dxy1mp+9MvfZI5HYyKRcjr5\nzRYdwhxrfIvUO56WJV9GrBdUhni8Iv+67How7cscm6ux6fFGNdJ+/VispIyRHIuJFFO8TP2uPX0/\nfvrs8xn9YkN8q4xjbLtwFt9e/zTzZkyprMx+J2pEzKyDcREdYUDDQM0jWVkR4AjgCjN7AXhM0npg\nb5Le0tByw/t+r+UInKI/skmRBrAVW86dzpZzp2eON3oDmZ7IqM+5uIzxyDZCkUzI4zSMZYitQBmT\nXYai631HDV1H8aZ8A5Y2VJ1M+Cs6fDo6OqtE/ZbMn8GS+TMyx2Mz1mMjxspw7ptWsGaXLdlt2byO\nyxoUiqQ96TbvA26U9Nck7rZ9w/GlwB1N1z0ejmWQdApwCsDy5cvr07QLvHKr1h2+wt39Chv2sVEu\n+Q18poEomeLeLOetMeK/Hs9FU4bY8OK0jE4an8zKf5EyY+8RZURbxNg39tPDiMeMS/tv7BkDFJk1\nHqNKz1NjmHR8gmbnMqZPmcyBr1zceUEDRE+MiKRvkAwhTnMO8Hrgj8zsKklvBf4RaGs6t5ldDFwM\nMDIyMtRj7mLf+3Yq/fFjX83cGcW/ChsjvuU6MpXGYj6ZdPqN/xX0RGINeYxJkaG/rVi+YCY/+uVv\nchIwxtxZ+UN8O+uJbLofM9AdpR6JPL/i7qzqrMiHj9iVpfNnsP/vLNpUp6FuIeqnJ0bEzKJGIQT0\nzwy7XwQuCdtPAM1TvZeFYxOabAygfd6yR26HLsrozN98b1bOeint66RQXrq3szEyAqxxXZmYSIxY\nLyh7XaMXVJzbPnBA7vGYMRxtjNOpR0rc3HYTfnZiRDK91UgvqI6Jqmm2mD2Ncw5bkTke60E7xehV\n3KMVPwH2D9sHAo+G7euA4yRNk7Q9sBNwVw/06yva/+J3/kuJurMib7JlJI6mfC8YWB8NFkeC4WUo\nmrcpllSwDLEiomldOumJFLyuyhjXqOyi7qwuzreYSHM7qqQfYyLvAv5W0mbA84TYhpk9KOlK4CGS\nBbJOn/Ajs8hxScQurLDL/sqt5nD795/OrFNRxxtdZgpGdFZ8rCfSPmMupWK+8/Gub0t2+B8Lbmcm\nApZ4DYxls431UGKjs8rQ+I4UHQBRhwFL4/NEOqPvjIiZ/TtJyvm8cxcAF3RXo/4m9vZU5+/hUyfs\nyUM/eZY50zcdxjjWwHXeFYnFJeKz4hv/06606txZ8esawkuLypCNS4wjuw3GjEXqeL6nMGrAytDu\nSKhW1932/gP47Uudv0c2etZuQ8rRd0bEaY+iDV1j9u5W86Z1LHPu9Cms2mFh9HyVb3RF8x/FGsBO\nVMm66/Ibm9i8izLE2umxwHo6JlJCxngNeWbUVvXNaxWjs5YvrCbzbWN548YkRac93IgMOEVTai+Y\nNZW/OXZ39nvFFrXpEu0llBziC9nG5oWXkqj+wlnpH3xkeHENvaA0dQwvzg4jbi27HdodqjsWj+m8\nKxJzHcUD6/X3D3bZei4X/v6reOPKvAGjzni4ERlwInPVcjlyj2W16hLLi1SuIU/GZ6V7HH/25hVs\nu3BmxhjGkuvV4c4qmvyxSmITAavMBhAzEq1GZ130tj2YWiDlfYONke9Ir3lrhWv8TDTciAw43XhT\na5dKJ/ylGrCl82dw9qG7ZK7bGElp0QmxIH16idrRVCVdiAJn056Uj4nEEgDHJlPm9RYO331J2/Lz\nZDiDSz8O8XUGlKhLokxhbQ6bbXfuQ0vREdnTgu/8xZc35l5fJPX7eIznaap0smHqycRkdzJPJCrb\nbcjQ4EZkyOjl5Nt203y3ot0iRgPuNY6QmhoGJ7yYWtqw0ZBX2djGXIKZdc7LiBwnx1k2pUwJGTHR\nXZhU6HQXd2cNKb34TVa5KNVVp+3Ldff9JDMXJSq7wiR6DdJFzZme/Fwy82NqkJ3RJTaUO8icMSU/\nbX/LMosOYS5hRf7hhD356TPPZ4777PDhw43IkNKLHkmVy+PuunQeuy4tngm1GwHbNbss5v1v3Jnj\nV22bK7sKI1Lmuf3FkbuxaocFbcuIPafMPJESkw1jI53qWEXQ6S1uRIaMfvxpdkOnKnsDjQYuE8Se\nJE4/4BWZ6xuB9jpiB6M6tSj67b9bLlN1usjY0N9uxEQ8CeLg4jERpzLqWJSqKGM9ke6b0YZ7a6fF\ns2uTMXta8r63/RazOi4rmvZkvPQfVcxY77wIp8/wnsiA8oYVi/n6Qz/rtRqbsHJJsvbJXtsVd61U\nxe7L5iPBqfvv0HXZW86dzuV/sDd7LJ/fcVmx3sA2C2by2ZP3qvTeFrW3UydPYt6MKZx9yCs7lhmb\n9T+eLu2467rB7svmcd/jz/Rajb7AjciA8sl3vKaSvEFVsmqHhdz1J6/PrIbYDf/35rOm8thHDquk\nrDKdmdel1qiogwN23rKSctpe02OSuO/P31CJ7Abt3ON7zz2IGVPbHzhQJ188dV9eSo3Sm6i4ERlQ\nNps8iTktls3tFXnL6TrtU6dbLhZ/iK0HU6nsEp+ZP3Nq5Xp0ytTNJmUWFJuo+F1w6qcfo/0FGNZg\n72g69oLrwVQsPMgY0C+Fk8GNiOOk2DZkh+2FC6WbdqsXzbinXR8+3J3l1M6gvXT+9TG7c9Rrnq5k\nJFTbRFLal+H6M34vX0QXJkfGmBVGmaWHDQ9rr28i4EZkyBjZbnM+f+eP2HnxnF6rMkqrpurSk/fi\npQ391YLMmT6l52nBq2jfV4TRckVljM4m71x0lItPHOHae59g+YJq1gLpBss2n9FrFfoaNyJDxpF7\nLON3t1/IkvmD8cVfXdGIo2GhijU7xpeREJ3wV2MPZen8Gbx7dXbCZr/2Vu899yAPoI+DG5EhpN8M\niAdR26cbw6I99cj49OPIsH7DTazjTDTGy+LbPU2cIcCNiFM7E71R2mFR8QD9QSsWA7DzVvWlUGmQ\n7iH2dhmBHgp3OsLdWU7tTGRv1vf+7yFtrcdx5B7LOHjl1rUOLx6dJ1JwPRHHaYUbEcepkTJB2W7N\nT8nERHrYHXDDNbi4O8upHQ/g9hejM9MLrrHuOK1wI+I4E4zYCpQelnDK4EbEqZ1+cFUsnjut1yr0\nDbH1RF6x5exN/jtOEXoSE5F0DHAesAuwt5mtbTp3NvCHwAbgDDO7MRzfE7gUmAFcD5xpscUXHKeJ\nb33gAOZOn9JrNfqOtHE/fPcl7LhodlvLEjtOr3oiDwBHAbc1H5S0AjgOWAkcDHxSUiPK+PfAu4Cd\nwt/BXdPWGWi2WTCTeTPdiDSIrSciyQ2I0zY9MSJm9rCZPZJz6gjgCjN7wcweA9YDe0vaGphrZneE\n3sflwFu6qLLTAf3gznIcpx76LSayFPhx0/7j4djSsJ0+noukUyStlbT2F7/4RS2KOs6g0sssvs7w\nUVtMRNI3gLxUqOeY2bV1yQUws4uBiwFGRkY8btJjfMhof+I2xKmC2oyIma0p8bEngG2a9peFY0+E\n7fRxx3FK4j0Rpwr6zZ11HXCcpGmSticJoN9lZk8Cz0papSThz4lArb0Zpzq8repP+umx+DjLwaUn\nRkTSkZIeB/YBvirpRgAzexC4EngIuAE43cw2hI+9G7iEJNj+feBrXVfcKUU/NVYObDV3OuDG3amG\nnswTMbOrgasj5y4ALsg5vhbYtWbVnAnEV894LU8992Kv1eg6XzptH+754a/6ap2XPlLFaRNPwOjU\nTj81Vs2sXDIx50Qs23wmyzYfnOVpnf6m32IijuM4zgDhRsSpnf7shziOUwVuRBzHcZzSuBFxaqdP\nQyKO41SAGxGndvo1sO44Tue4EXEcx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzHcUrjRsRx\nHMcpjRsRx3EcpzRuRBzHcZzSuBFxHMdxSuNGxHEcxymNGxHHcXrO5ElJapypk71JGjR8USqnK5z7\nphXss+PCXqvh9CmH7bY1Dz/5a07bf8deq+K0icys1zrUysjIiK1du7bXajiO4wwUku4xs5HxrvO+\no+M4jlMaNyKO4zhOadyIOI7jOKVxI+I4juOUxo2I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO3DnV\nxAAACq5JREFU45Rm6CcbSvoF8MNe69EmWwBP9VqJLuN1nhh4nQeHbc1s0XgXDb0RGUQkrS0yU3SY\n8DpPDLzOw4e7sxzHcZzSuBFxHMdxSuNGpD+5uNcK9ACv88TA6zxkeEzEcRzHKY33RBzHcZzSuBFx\nHMdxSuNGpA+QtEDSTZIeDf83b3HtZEnflfSVbupYNUXqLGkbSbdIekjSg5LO7IWunSLpYEmPSFov\n6UM55yXponB+naTX9ELPKilQ53eEut4v6XZJu/dCzyoZr85N1+0l6WVJR3dTv7pwI9IffAi42cx2\nAm4O+zHOBB7uilb1UqTOLwP/28xWAKuA0yWt6KKOHSNpMvAJ4BBgBfC2nDocAuwU/k4B/r6rSlZM\nwTo/BuxvZrsB5zPgweeCdW5c91fA17urYX24EekPjgAuC9uXAW/Ju0jSMuAw4JIu6VUn49bZzJ40\ns++E7V+TGM+lXdOwGvYG1pvZD8zsReAKkro3cwRwuSXcAcyXtHW3Fa2QcetsZreb2a/C7h3Asi7r\nWDVFnjPAe4GrgJ93U7k6cSPSHyw2syfD9k+BxZHrPg58ANjYFa3qpWidAZC0HbAHcGe9alXOUuDH\nTfuPkzWERa4ZJNqtzx8CX6tVo/oZt86SlgJHMuA9zTSb9VqBiYKkbwBb5Zw6p3nHzExSZty1pDcB\nPzezeyStrkfLaum0zk3lzCZ5e3ufmT1brZZOL5F0AIkReW2vdekCHwc+aGYbJfVal8pwI9IlzGxN\n7Jykn0na2syeDG6MvK7ufsDhkg4FpgNzJf2TmR1fk8odU0GdkTSFxIB83sy+XJOqdfIEsE3T/rJw\nrN1rBolC9ZH0KhLX7CFm9nSXdKuLInUeAa4IBmQL4FBJL5vZNd1RsR7cndUfXAe8M2y/E7g2fYGZ\nnW1my8xsO+A44Jv9bEAKMG6dlfza/hF42Mz+Xxd1q5K7gZ0kbS9pKsmzuy51zXXAiWGU1irgmSZX\n3yAybp0lLQe+DJxgZt/rgY5VM26dzWx7M9su/Ia/BLx70A0IuBHpF/4SOEjSo8CasI+kJZKu76lm\n9VGkzvsBJwAHSro3/B3aG3XLYWYvA+8BbiQZGHClmT0o6VRJp4bLrgd+AKwHPg28uyfKVkTBOp8L\nLAQ+GZ7r2h6pWwkF6zyUeNoTx3EcpzTeE3Ecx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzH\ncUrjRmRIkWSSPta0f5ak87qsw6WNTKWSLuk0eaKk7SQ9EDn30ZDp96OdyOgnwv17rMohos3PZCIi\n6SRJfzfONceGTLwDnSm7W/iM9eHlBeAoSR8xs6fa/bCkzcLY90ows/9VVVkRTgEWmNmG5oNV16MH\nvN/MvtRrJapE0uT0c+onzOxfJP0MOKvXugwC3hMZXl4mSa/9R+kT4Y3+m2E9h5vD7OHGW+qnJN0J\nXCjpPEmXSfqWpB9KOkrShWENiBtCShIknSvpbkkPSLpYOYmBJN0qaUTS4U0TBx+R9Fg4v6ekf5N0\nj6QbG1lsw/H7JN0HnJ5XUUnXAbOBe8JbZLoesyR9RtJdStZiOSJ8boakKyQ9LOlqSXdKGgnnnmsq\n/2hJl4btRZKuCvW9W9J+4fh5Qcatkn4g6Yymz58Y7vV9kj4naU7oYTTu39zm/RiSFgc97wt/+0r6\nsKT3NV1zgcK6K5I+GJ7VfZL+Mqe82D0/Q8kaLuskXZHzuZMkXRvq+qikP286d3y4z/dK+gclqc+R\n9Jykj4XnuE+qvIw8SXtL+o/wvG6XtHOT7GuUrEHzn5LeI+mPw3V3SFoQrrtV0t8GPR6QtHdOPXKf\npdMmZuZ/Q/gHPAfMBf4TmEfyVnVeOPevwDvD9h8A14TtS4GvAJPD/nnAvwNTgN2B35DkOQK4GnhL\n2F7QJPdzwJubyjs6bN8KjKR0vJLEMEwBbgcWhePHAp8J2+uA14XtjwIPxOrbtJ2ux18Ax4ft+cD3\ngFnAHzfJeRWJ4R3JKe9o4NKw/c/Aa8P2cpKULI17dTswjSQv0tOhXiuDvC2a7xXw2ab7dwrwsZw6\njd6/sP8vJEkoASaH57od8J1wbBLwfZKZ4IcEfWam5F4a6tPqnv8EmNa4Xzl6nQQ8GeTMAB4gyQu1\nC8l3a0q47pPAiWHbgLdGnl1GHsl3d7OwvQa4qkn2emAOsAh4Bjg1nPubpvtzK/DpsP06wvcmfP7v\nWj3LsL8a+Eqvf8eD8OfurCHGzJ6VdDlwBvDbplP7AEeF7c8BFzad+6Jt6mr4mpm9JOl+kobrhnD8\nfpIGDOAASR8AZgILgAdJGpMo4frfmtknJO0K7ArcFDoxk4EnJc0naVRua9L1kEKV37QebyBJXtlw\nT0wnaTReB1wEYGbrJK0rUO4aYIXGOltzlWQZBviqmb0AvCDp5yTp7Q8MujwV5PwyXHsJSVr/a4CT\ngXcVkH0gcGIoZwNJA/qMpKcl7RHkfdfMnpa0Bvismf0mJbfBzuTc83BuHfB5SdcE/fK4yULSRElf\nJsnC+zKwJ3B3KHMGY4k1N5Ak0swjT9484DJJO5EYoOZe2i2WrC/za0nPMPZdu5/kZaDBF0Ldbwu9\nvfkpubnP0syewymMG5Hh5+PAd0jefIvw36n9FwAsSV/9koXXNJI1TTaTNJ3kjXPEzH6sJHg/vZWA\n0MAdQ9KIAwh40MzSbo70j74dmush4PfN7JFU+a0+35wPqLk+k4BVZvZ8TlkvNB3aQIvfl5l9W4lb\ncTVJjyl3wEBBLiF5w94K+EzBz+Te88BhJM/mzcA5knazbFwpnS/JQpmXmdnZOWU+b/E4SEYeyWqH\nt5jZkUrWkrm16frm+7yxaX8jm97zPB2byX2WTnt4TGTICW+gV5Ks2dDgdpIsowDvAL7VgYhGA/tU\neCNvOfJH0rYky4geY2aN3tEjwCJJ+4RrpkhaaWb/BfyXpMZaE+8oqeONwHsVWvrw1g5wG/D2cGxX\nNn2L/ZmkXSRNIllIqMHXSVana9Tn1ePI/iZwjKSF4foFTecuJ3GpFDXwNwOnhXImS5oXjl8NHAzs\nRVJXgJuAkyXNzJELkXse6ruNmd0CfJCkRzCbLAdJWiBpBsmqlN8O+h0tacuGzPC8o7SQN4+xVOon\ntb4tUY4NMl5Lkhn5mdT5dp+lk4MbkYnBx0j89A3eS9LArCPJkntm2YJDQ/9pEr/4jSQpsVtxEokv\n/ZoQ9LzekuVEjwb+KgRe7wX2DdefDHxC0r0kb7plOJ/EHbJO0oNhH5IV5mZLehj4MHBP02c+RBJX\nuZ0xNw8krsGREAR+CGg5/NbMHgQuAP4t1K05pf3ngc0JbpcCnEniOrw/6LoiyHgRuIUkc+yGcOwG\nklTka8O922SkUYt7Phn4pyDju8BF4RmnuYvEPbWOJF6x1sweAv4U+Hr4bt0EjLfMb0zehcBHJH2X\n8h6T58PnP8WmL1EN2nqWTj6exddxApJuBc4ys66kJVcyX+MIMzshcv5SkuBuyyG+4W3+OyS9u0cr\nVzQr7yQS9+V76pZVlk6fZXAznmVmb6pSr2HEeyKO0wMk/X+SNVTOb3HZM8D5ajHZUMkEzvXAzd0w\nIBMBSceSxPl+1WtdBgHviTiO4zil8Z6I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO45TGjYjjOI5T\nmv8BB6iJV+uXCzUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Welch window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Blackmann's Window" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='blackmann')" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX6//H3nU4ghJLQUkiA0JsYQGmCDVTsDTusK+ta\ndl3Lrtvd/a1bv/aGggqWFbE37ArSBZReAwmEHmpCQvr9+2NO2DESGCCTM+V+XddcmVNmzudAMvec\nc57zPKKqGGOMMQARbgcwxhgTOKwoGGOMOcyKgjHGmMOsKBhjjDnMioIxxpjDrCgYY4w5zIqCCQgi\nMllE/naS7zFcRLbUV6ZAIyIHRaTDCb52hoj8tL4zmdBjRcE0CBHJE5FDzgfbPhH5SETS3M4VTFS1\niapudDuHCW1WFExDulBVmwBtgZ3AEy7nMcbUYkXBNDhVLQXeBLofabmINBeRD0WkwDmq+FBEUr2W\ntxCRF0Vkm7P83Tre5xciskpEUmtOLYnIr0Vkl4hsF5FLROR8EVknIntF5Hderx0gIvNEZL+z7pMi\nEuO1XEXkVhFZ76zzlIiIs2ysiMwWkf9z8uWKyHl1ZBwnIh94Ta8XkTe8pvNFpK/XNjs5zyc72/xI\nRIpEZIGIdPR63TkiskZEDojIk4B4LYsQkT+IyCbn3+IlEUl0lk0RkXuc5ynONm93pjs6/072uRHC\n7D/XNDgRiQeuBubXsUoE8CLQHkgHDgFPei1/GYgHegCtgEeOsI0/AWOBM1S15jpDGyAOSAH+BEwE\nrgdOBYYCfxSRTGfdKuBXQBJwOnAWcFutzYwG+gO9gauAkV7LBgJrndf/G3i+pmjUMhMY6nxQtwNi\nnO3hXD9oAiw7wusAxgB/AZoDOcCDzuuSgLeBPzjb3wAM9nrdWOcxAqjZRs2/70xguPP8DGAjMMxr\nepaqVteRx4QCVbWHPfz+APKAg8B+oALYBvTyWj4Z+Fsdr+0L7HOetwWqgeZHWG84sBV4GJgNJNZa\ndgiIdKYTAAUGeq2zGLikjgx3Ae94TSswxGt6GnC/83wskOO1LN5Zv00d750P9MPzIf8c8C3QFRgH\nvF9rm528/r0meS07H1jjPL8RmO+1TIAtwE+d6S+B27yWd3H+T6KAjsA+PIV5AvAzYIuz3hTgbrd/\nl+zh34cdKZiGdImqNsPzbf0OYKaItKm9kojEi8izzumNQuAboJmIRAJpwF5V3VfHNpoB44F/qOqB\nWsv2qGqV8/yQ83On1/JDeL41IyKdndNWO5wMf8fzrdvbDq/nJTWvrb1MVUucp97LvdV8Ox/mPJ+B\n51v5Gc50Xerafjs8haZm++o97Szf5DW9CU9BaK2qG4BiPIV4KPAhsE1EuviQx4QAKwqmwalqlaq+\njecUzZAjrHIPnm+vA1W1Kf87fSF4PtxaiEizOt5+H57TOi+KyOA61vHFM8AaIMvJ8Du8zsvXs5qi\nMNR5PhPfikJdtuMpngA4p628W3ptw3NqrkY6UMn/CuRM4AogRlW3OtM34TlNteQE8pggYkXBNDjx\nuBjPh8zqI6ySgOdb+34RaQH8uWaBqm4HPgaedi5IR4vIMO8Xq+oM4DrgbREZcIIxE4BC4KCIdAV+\nfoLv44uZeM7vN1LP9Y9ZwCigJfD9CbzfR0APEblMRKKAX+C5nlLjNeBXIpIpIk3wHAW9rqqVXnnu\nwHOEBp4jlzuA2V5HWiZEWVEwDekDETmI58P2QeAmVV15hPUeBRoBu/FcjP6k1vIb8JwDXwPswnO+\n/wdU9XPgJ842+51A1nuBa4EiPBekXz+B9/CJqq7Dc71lljNdiOcC75wT+RBW1d3AlcA/gT1AFjDH\na5UX8Fys/wbIBUqBO72Wz8RTFGuKwmw810W+wYQ88ZxuNMYYY+xIwRhjjBcrCsYYYw6zomCMMeYw\nKwrGGGMOi3I7wPFKSkrSjIwMt2MYY0xQWbx48W5VTT7WekFXFDIyMli0aJHbMYwxJqiIyKZjr2Wn\nj4wxxnixomCMMeYwKwrGGGMOs6JgjDHmMCsKxhhjDvNbURCRF5yh/lbUsVxE5HERyRGRZSfYaZkx\nxph65M8jhcl4uv+ty3l4em/MwjMoyjN+zGKMMcYHfrtPQVW/EZGMo6xyMfCSMyrUfBFpJiJtnf7y\njQl4ObuK+GTFDsorfzxksYgwuFMS/TOac+ShmY0JTG7evJbCD4cI3OLM+1FREJHxeI4mSE9Pb5Bw\nxhxJZVU1X67ZxUvz8piTsweAI33mq8JjX66na5sEbhqUwcV92xEfE3T3ipowFBS/par6HJ4BzcnO\nzrYBIEyD23OwjNcX5fPq/M1s3X+Idolx3DeyC2P6p9GySeyP1j9UXsV7S7YyZd4mfvv2cv4xfTVX\nZadx/WntyUhq7MIeGOMbN4vCVn44bmyqM8+YgKGqTJi5kUe+WEd5ZTWDO7XkTxd256yurYiKrPuS\nXKOYSMYMSOfq/mks3rSPKfM2MXluHpNm53JVdip/vbgncdGRDbgnxvjGzaLwPnCHiEwFBgIH7HqC\nCSSlFVXc/9Yy3l2yjfN6tuHuczqT1TrhuN5DRMjOaEF2Rgt2XdCNibM2MnFWLut3HeTZG06lVUKc\nn9Ibc2L8VhRE5DVgOJAkIlvwDL4eDaCqE4DpwPlADlACjPNXFmOO167CUm55eTFL8/dz38gu3Da8\n40lfMG7VNI7fX9CdfunNuXvaUi5+cg4Tb8ymZ0piPaU25uQF3RjN2dnZar2kGn9avuUAt7y0iMLS\nCh6+qi+jerap922s2HqA8S8tYl9JBQ9d1Yfze7Wt920Y401EFqtq9rHWszuajfHy4bJtXPnsXCIj\nhDdvHeSXggDQMyWRd+8YTLe2Cdz26nc89sV6gu0LmglNVhSMcTz3zQbu+O/39GyXyHt3DKZ7u6Z+\n3V6rhDheG38al/VL4ZEv1vGr15dQXW2FwbgrKJqkGuNv05dv5+/T13BBr7Y8fHUfYqMapmVQbFQk\nD13Zh4yWjXn483WkNo/n3pFdGmTbxhyJFQUT9lZsPcDd05ZwSnozHrqq4QpCDRHhzjM7sW3/IZ78\nOoes1k24uG9Kg2YwpoadPjJhbVdhKbe8tIgW8TE8e8Oprt07ICL89eKeDMhswX1vLmNJ/n5Xchhj\nRcGErdKKKsa/vJj9JRVMvCnb9XsGYqIimHD9qbRKiOWWlxax/cAhV/OY8GRFwYQlVeX+tzzfyB+5\nug892gXGvQItGsfw/E39KSmr5JaXFnGovMrtSCbMWFEwYemZmRt4d8k27jmnM6N6BtY9Al3aJPD4\nNaewclsh976x1JqqmgZlRcGEnc9W7uA/n67lwj7tuOPMTm7HOaKzurXm/lFd+Wj5dh77cr3bcUwY\nsaJgwsr2A4e4Z9pSeqUk8p8regf0WAfjh3Xgsn4pPPrFeuZt2ON2HBMmrCiYsKGq/OGdFVRUV/PE\nNacEfC+lIsKDl/QivUU8v317mV1fMA3CioIJGx8s286Xa3Zx77ldaN8yOMY0aBQTyT8v70XenhIe\n/WKd23FMGLCiYMLC3uJyHnh/JX3SmjFucKbbcY7LoI5JXDMgjYmzNrJsi92/YPzLioIJC3/9YCVF\npRX8+/LeREYE7nWEutx/XjeSE2L59ZvLjjgmtDH1xYqCCXlfrdnJu0u2cdvwTnRpc3yD5ASKxEbR\n/O2SXqzZUcSzMze4HceEMCsKJqQVlVbw+3dW0Ll1E24b0dHtOCflnO6tGd27LU98lcP6nUVuxzEh\nyoqCCWn/+mQNOwpL+dflvRu8ozt/eOCiHsTHRvKbt5ZRZd1sGz+womBC1oKNe3hl/mZ+MjiTU9Kb\nux2nXiQ1ieXPF3bnu837eWlenttxTAiyomBCUlllFfe/vZy0Fo2459zObsepV5f0TWF4l2T+/cla\ntuwrcTuOCTFWFExIemnuJnJ3F/O3S3oRHxNaw4aICA9e2gtF+c+na92OY0KMFQUTcvaXlPPEV+s5\no3MyZ3ROdjuOX6Q0a8TNQzJ5b8k2lm854HYcE0KsKJiQ8/SMDRSVVXL/eV3djuJXPzujIy0ax/D3\n6autJ1VTb6womJCSv7eEyXPyuLxfKt3aNnU7jl81jYvmF2d2Yt7GPcxYV+B2HBMirCiYkPLw5+sQ\nIeQuLtfl2oHtyWgZzz+nr7EmqqZeWFEwIWPF1gO88/1Wbh6SSdvERm7HaRAxURH8elRX1u4s4q3F\nW9yOY0KAFQUTElSVv09fTfP4aG4dHtx3Lh+v83q2oW9aMx76fK11r21OmhUFExJmritg7oY9/OKs\nLJrGRbsdp0GJCL87vxs7C8t4YU6u23FMkLOiYIJeVbXyz4/XkN4inusGtnc7jisGZLbgnO6teWbG\nBvYcLHM7jgliVhRM0Hvruy2s2VHEr0d1ISYqfH+lfzOqK4cqqnjcxnQ2JyF8/4JMSDhUXsXDn62j\nT1ozLujV1u04rurUqglj+qfx6oLN5O4udjuOCVJWFExQe3XBJnYUlvK787oiEnyD59S3X56dRUxU\nhA3daU6YX4uCiIwSkbUikiMi9x9heaKIfCAiS0VkpYiM82ceE1pKK6p49puNDOrYkoEdWrodJyC0\nSojj+tPa88HSbXa0YE6I34qCiEQCTwHnAd2Ba0Ske63VbgdWqWofYDjwkIjE+CuTCS2vL8ynoKiM\nO8/McjtKQPnp0EyiIyN4+usct6OYIOTPI4UBQI6qblTVcmAqcHGtdRRIEM9xfxNgL1Dpx0wmRJRV\nVjFh5gb6ZzTntA4t3I4TUFolxHHNgHTe+X4r+Xuta21zfPxZFFKAfK/pLc48b08C3YBtwHLgl6r6\no1HJRWS8iCwSkUUFBdbHi4G3v9vK9gOl3Hlmll1LOIKfndGBCBEm2HjO5ji5faF5JLAEaAf0BZ4U\nkR/1Yqaqz6lqtqpmJyeHZlfIxncVVdU8PSOHPqmJDM1KcjtOQGqb2IgrslN5Y9EWdhwodTuOCSL+\nLApbgTSv6VRnnrdxwNvqkQPkAqHd37E5ae8t2Ub+3kN2lHAMPz+jI9WqdrRgjos/i8JCIEtEMp2L\nx2OA92utsxk4C0BEWgNdgI1+zGSCXFW18vTXOXRv25SzurVyO05AS2sRz6WnpPDat5vZVWRHC8Y3\nfisKqloJ3AF8CqwGpqnqShG5VURudVb7f8AgEVkOfAn8RlV3+yuTCX4fLd/Oxt3F3HlmJztK8MHt\nIzpRUVXN87OsTyTjG78OXquq04HpteZN8Hq+DTjXnxlM6KiuVp78aj2dWzdhZI82bscJChlJjbmo\nTztenr/p8EhtxhyN2xeajfHZZ6t2sG7nQW4f0YmICDtK8NXtIzpxqKKKF2bb0YI5NisKJiioKk98\nlUNmUmNG927ndpygktU6gfN6tmHK3DwOHKpwO44JcFYUTFD4eu0uVm4r5LbhHYm0o4TjdseILIrK\nKpk8J8/tKCbAWVEwQWHCjI2kNGvEJafUvv/R+KJ7u6ac3a0VU+bl2ehs5qisKJiAtyR/P9/m7eXm\nIZ4+fcyJGT+sI3uLy3nrOxvL2dTN/sJMwJs4ayMJcVFc1T/t2CubOvXPaE6f1ESen51LdbW6HccE\nKCsKJqDl7y3h4+XbuW5ge5rE+rUFdcgTEW4Z1oHc3cV8sXqn23FMgLKiYALa87NziYwQxg7KcDtK\nSBjVow2pzRsxcZZ1HGCOzIqCCVgHSiqYtiifi/qk0CYxzu04ISEqMoKbh2SyMG8f32/e53YcE4Cs\nKJiA9eq3mygpr+KnQzPdjhJSrspOo2lcFJOs6wtzBFYUTEAqq6xi8pw8hmYl0a3tj3pTNyehcWwU\n153Wno9XbGfzHhuEx/yQFQUTkN5fso1dRWWMH9bB7SghaeygDCIjhBfm2NGC+SErCibgqCqTZuXS\ntU0CQzrZIDr+0LppHBf1SeH1hfnsLyl3O44JIFYUTMD5Zv1u1u4s4pahHax7bD+6ZVgmhyqqeHXB\nZrejmABiRcEEnInfbKR101gu7GMd3/lT1zZNGdY5mclz8yirtK4vjIcVBRNQVm47wOyc3YwbnElM\nlP16+tv4oR0oKCrjvSXb3I5iAoT91ZmA8vysXBrHRHLNgHS3o4SFwZ1a0rVNApNmbUTVur4wVhRM\nANlVWMoHy7ZxZXYaiY2i3Y4TFkSEnw7twLqdB5mTs8ftOCYAWFEwAeOV+ZuorFbr0qKBXdinLUlN\nYqx5qgGsKJgAUeq0gjmzSysykhq7HSesxEZFcu3A9ny1Zhe5u4vdjmNcZkXBBIQPlm5jT3E54wZb\nlxZuuP60dKIjhSlz89yOYlxmRcG4TlV5cU4enVs3YXCnlm7HCUutEuK4sHc73liUT2GpjeMczqwo\nGNd9m7uXVdsLGTso025Wc9G4wZkUl1fxxiIbmS2cWVEwrntxTh7N4qO51MZfdlWv1ESy2zdnytw8\nqmxktrBlRcG4Kn9vCZ+t2sGY/uk0iol0O07YGzc4k817S/hqzS63oxiXWFEwrnp5/iZEhBtPb+92\nFAOM7NGadolxvGjNU8OWFQXjmpLySqZ+u5lRPdrQrlkjt+MYPCOz3XB6BnM37GHNjkK34xgXWFEw\nrnnru60UllYybnCG21GMl2sGpBEXHcHkOXluRzEusKJgXFFdrUyek0uvlERObd/c7TjGS7P4GC49\nJZV3vt/K3mIbayHcWFEwrpiVs5sNBcWMG5xhzVAD0LjBGZRVVvPatzbWQrixomBc8eKcXJKaxHJB\n77ZuRzFH0Lm1Z9S7l+dtoqKq2u04pgEdsyiISLyI/FFEJjrTWSIy2pc3F5FRIrJWRHJE5P461hku\nIktEZKWIzDy++CYYbSw4yIy1BVx/WjqxUdYMNVCNG5zBjsJSPl25w+0opgH5cqTwIlAGnO5MbwX+\ndqwXiUgk8BRwHtAduEZEutdapxnwNHCRqvYArvQ9uglWL83bRHSkcO1AGzMhkI3o0or2LePtgnOY\n8aUodFTVfwMVAKpaAvhyEngAkKOqG1W1HJgKXFxrnWuBt1V1s/PedsdMiCsqreDNxVsY3bsdrRLi\n3I5jjiIiQrjx9AwWbdrHiq0H3I5jGogvRaFcRBoBCiAiHfEcORxLCpDvNb3FmeetM9BcRGaIyGIR\nufFIbyQi40VkkYgsKigo8GHTJlC9tXgLB8squcnGTAgKV2anEh8TyWTrPTVs+FIU/gx8AqSJyKvA\nl8Cv62n7UcCpwAXASOCPItK59kqq+pyqZqtqdnJycj1t2jS06mplyrxN9E1rRt+0Zm7HMT5oGhfN\n5f1SeX/pNvYc9OW7oAl2xywKqvo5cBkwFngNyFbVGT6891YgzWs61ZnnbQvwqaoWq+pu4Bugjw/v\nbYLQN+sLyN1dbDerBZmbBrWnvLKaqQvzj72yCXp1FgUR6VfzANoD24FtQLoz71gWAlkikikiMcAY\n4P1a67wHDBGRKBGJBwYCq09kR0zgmzw3j+SEWM7rac1Qg0mnVgkMzbLmqeEi6ijLHnJ+xgHZwFI8\nF5h7A4v4X2ukI1LVShG5A/gUiAReUNWVInKrs3yCqq4WkU+AZUA1MElVV5zMDpnAVNMM9a6zs4iJ\nsttjgs3YQRncPGURn67cweje7dyOY/yozqKgqiMARORtoJ+qLnemewIP+PLmqjodmF5r3oRa0/8B\n/nNcqU3QsWaowa2meeqUuXlWFEKcL1/ZutQUBADnm3w3/0UyoeZgWSVvLt7CBb3aWjPUIBURIdxw\nWnsW5lnz1FDnS1FYJiKTnDuPhzt3Ni/zdzATOmqaoY4dnOl2FHMSrsxOIz4mkinWPDWk+VIUxgEr\ngV86j1XOPGOOqbpamTI3z5qhhoDERp7mqe9Z89SQ5kuT1FJVfURVL3Uej6hqaUOEM8Hvm/UFbNxd\nzFi7WS0kWPPU0OdLh3i5IrKx9qMhwpngN8Vphnp+L2uGGgpqmqe+Mt+ap4YqX04fZQP9ncdQ4HHg\nFX+GMqEhd3cxX68t4LqB6dYMNYSMHZTB9gPWe2qo8uX00R6vx1ZVfRRPtxTGHNXkObnWDDUE1TRP\nfdF6Tw1Jvpw+6uf1yHZuPjvaTW/GUOj0hnqh9YYaciIihJtOz2Dxpn0s27Lf7TimnvlyTP+Q1+Mf\nQD/gKn+GMsFv2sJ8isurGGfNUEPSldmpNImNsqOFEORLUbhZVUc4j3NUdTxgo3mbOlVVK1Pm5ZHd\nvjm9UhPdjmP8ICEumitOTeXDZdvYVWiNEUOJL0XhTR/nGQPAl6t3kr/3ED8ZYkcJoWzsoAwqq5VX\n5m9yO4qpR3VeGxCRrkAPIFFELvNa1BRPJ3nGHNELc3JJadaIc7u3djuK8aOMpMac1bUVry7YzG0j\nOhEXbeNth4KjHSl0AUYDzYALvR79gFv8H80Eo9XbC5m/cS83nN6eqEhrhhrqxg3OZE9xOR8s3eZ2\nFFNPjtZL6nvAeyJyuqrOa8BMJoi9OCeXuOgIxvRPO/bKJugN6tiSLq0TeHFOHlecmoqIL8O3m0B2\ntEF2aobcvFZEHq/9aKB8JojsOVjGu0u2cVm/VJrFx7gdxzQAEWHs4AxWbS9kQe5et+OYenC04/ua\nEdAWAYuP8DDmB177djPlldWMs36Owsqlp6TQPD6aF+fkuh3F1IOjnT76wPk5peHimGBVXlnNy/M3\nMTQriazWCW7HMQ0oLjqSawakM2HmBvL3lpDWIt7tSOYkHO300Qci8n5dj4YMaQLfxyu2s7OwjJ/Y\nzWph6YbT2yMivDQvz+0o5iQdrbuK/2uwFCbovTAnjw5JjTmjc7LbUYwL2iY24ryebZi6MJ+7zu5M\n41jrCSdY1XmkoKozax7APGAfsBeY58wzBoDvNu9jaf5+bhqUQUSEtT4JV+MGZ1JUWslb321xO4o5\nCb50iHcBsAFPl9lPAjkicp6/g5ng8fysXBLiorj81FS3oxgX9UtvRp+0ZrwwO5eqanU7jjlBvnaI\nN0JVh6vqGcAI4BH/xjLBYvOeEj5esZ3rBraniZ0yCGsiwvihHcjbU8Lnq3a6HcecIF+KQpGq5nhN\nbwSK/JTHBJkX5uQSGSE23KYBYGSP1qS1aMSkWTY4Y7DypSgsEpHpIjJWRG4CPgAWishltfpEMmFm\nf0k50xblc2GfdrRJtO6wDERFRvCTwZks2rSP7zbvczuOOQG+FIU4YCdwBjAcKAAa4ekHabTfkpmA\n9+qCzZSUV3HL0A5uRzEB5KrsNJrGRdnRQpA65klgVR3XEEFMcCmrrGLK3DyGZiXRrW1Tt+OYANI4\nNorrTmvPszM3sHlPCekt7Wa2YOJL66NMEXlYRN62m9dMjfeXbGNXUZkdJZgjGjsog8gI4QXr+iLo\n+NJc5F3geTzXEqr9G8cEA1Vl0qxcurZJYGhWkttxTABq3TSOi/qk8PrCfO46O8s6SAwivlxTKFXV\nx1X161o3tJkw9c363azdWcRPh3awrpJNnW4ZlsmhiipeXbDZ7SjmOPhSFB4TkT+LyOki0q/m4fdk\nJmBN/GYjrZvGclGfdm5HMQGsa5umDM1KYvLcPMoqq9yOY3zkS1HohWektX/iuZHtIXzsF0lERonI\nWhHJEZH7j7JefxGpFJErfHlf455V2wqZnbObsYMyiYmykdXM0Y0f1oGCojLeW2IjswULX64pXAl0\nUNXy43ljEYkEngLOAbbgubfhfVVddYT1/gV8djzvb9wxadZG4mMiuXZAuttRTBAY0imJrm0SmDRr\nI1fayGxBwZeveivwjNN8vAYAOaq60SkoU4GLj7DencBbwK4T2IZpQNsPHOL9pdu4un8aifHRbscx\nQUBEuGVoB9btPMjMdQVuxzE+8KUoNAPWiMinXk1S3/PhdSlAvtf0FmfeYSKSAlwKPONrYOOeyXPy\nqFa1MRPMcbmwTztaN43luW/sZrZg4Mvpoz97PRdgKDCmnrb/KPAbVa0+2mGliIwHxgOkp9tpCzfs\nLynnlfmbGN27nY2sZY5LTFQENw/J5O/T1/D95n2ckt7c7UjmKI55pOA0Py3E06XFZOBMYIIP770V\nSPOaTnXmecsGpopIHnAF8LSIXHKEDM+paraqZicn2yAubnhxTh7F5VXcPqKT21FMELpuYHuaxUfz\n1Nc5x17ZuKrOIwUR6Qxc4zx2A68DoqojfHzvhUCWiGTiKQZjgGu9V1DVw+chRGQy8KGqvns8O2D8\n72BZJZPn5nFO99Z0aWPjL5vj1zg2inGDMnnki3Ws3l5oXaMEsKMdKazBc1QwWlWHqOoTgM+NjVW1\nErgD+BRYDUxT1ZUicquI3HoyoU3DemX+Jg4cquAOO0owJ2HsoAyaxEbZ0UKAO9o1hcvwfLv/WkQ+\nwdN66Ljak6nqdGB6rXlHPPWkqmOP571NwyitqGLSrFyGZiXRJ+1EGqEZ45EYH831p7Xn2W82cHfB\nQTokN3E7kjmCo43R/K6qjgG6Al8DdwGtROQZETm3oQIad72+MJ/dB8vsWoKpFzcPySQmMoJnZmxw\nO4qpgy8XmotV9b+qeiGei8XfA7/xezLjuvLKap6duYHs9s0ZmNnC7TgmBCQnxHLNgHTe+X4rW/aV\nuB3HHMFx9VOgqvuclkBn+SuQCRzvfr+VbQdKuf3MTnYnqqk344d1QAS7byFAWec15oiqqpVnZm6g\nZ0pThne2ZsCm/rRr1ojLTkll6sJ8dhWVuh3H1GJFwRzRR8u3k7u7mNuH21GCqX8/H96Ryqpqnp9l\ng/AEGisK5keqq5Wnv86hU6smjOzRxu04JgRlJDVmdO92vDJ/E/tLjquvTeNnVhTMj3y5ZhdrdhRx\n2/CORETYUYLxj9tHdKK4vIoX5+S5HcV4saJgfkBVefKr9aS1aGSD6Bi/6tImgXO6t+bFObkUlla4\nHcc4rCiYH/hs1U6WbjnAnSOyiIq0Xw/jX788K4vC0komWUukgGF/9eawqmrloc/W0iG5MZf1Szn2\nC4w5ST1TErmgV1smzc5l98Eyt+MYrCgYLx8s3ca6nQe5+5zOdpRgGsyvzulMaUWV3eUcIOwv3wBQ\nUVXNw5+vo3vbppzfs63bcUwY6dSqCZf3S+Xl+ZvYfuCQ23HCnhUFA8C0Rfls3lvCfSO7WIsj0+B+\neXYWqsr3Nn0sAAAUtUlEQVTjX1oPqm6zomAoraji8S/Xk92+OcO72N3LpuGlNo/nuoHtmbYon7zd\nxW7HCWtWFAwvz9vEzsIy7h3Zxe5eNq65bURHoiOFR75Y53aUsGZFIcwVlVbw9IwchmYlcVqHlm7H\nMWGsVUIc4wZn8v7SbazeXuh2nLBlRSHMvTA7j30lFdw3sovbUYzhZ8M60CQ2ioc+s6MFt1hRCGP7\nisuZOGsjo3q0oXeqjapm3NcsPoafDevAF6t38t3mfW7HCUtWFMLYhJkbKC6v5J5zO7sdxZjDxg3O\npGXjGP7v07VuRwlLVhTC1JZ9JUyem8elfVPIap3gdhxjDmscG8VtIzoxd8MeZqzd5XacsGNFIUz9\nY/oaROAeu5ZgAtD1p6WT0TKev364ivLKarfjhBUrCmFo3oY9fLR8O7ee0ZGUZo3cjmPMj8RGRfKH\nC7qzsaCYl+bluR0nrFhRCDOVVdX85YOVpDRrxM+GdXQ7jjF1OqtbK87onMxjX6ynoMg6y2soVhTC\nzGsL81mzo4jfnd+NRjGRbscxpk4iwh9Hd+dQRZVddG5AVhTCyP6Sch76bC0DM1twfi8bZtMEvk6t\nmjB2UAbTFuezfMsBt+OEBSsKYeSRz9dReKiCBy7qYd1ZmKDxi7OzaNk4hgc+WImquh0n5FlRCBNr\ndxTxyoLNXDswnW5tm7odxxifNY2L5r6RXVi8aR/vLdnmdpyQZ0UhDKgqf/lgJU1io7jnHGuCaoLP\nlaem0SslkX98vJriskq344Q0Kwph4NOVO5i7YQ93n9OZ5o1j3I5jzHGLiBAeuKg7OwvLeHqGjbng\nT1YUQlxpRRV/+2g1XVoncN3AdLfjGHPCTm3fgkv6tmPirFw27ylxO07IsqIQ4h75fB1b9h3izxd1\nt3GXTdC7/7xuREcIv3tnuV109hO/fkqIyCgRWSsiOSJy/xGWXyciy0RkuYjMFZE+/swTbr7fvI+J\nszZyzYA0BnVMcjuOMSetTWIcv7ugG7NzdjN1Yb7bcUKS34qCiEQCTwHnAd2Ba0Ske63VcoEzVLUX\n8P+A5/yVJ9yUVlRx35vLaN00jt+e383tOMbUm2sHpDOoY0se/Gg1W/cfcjtOyPHnkcIAIEdVN6pq\nOTAVuNh7BVWdq6o1nabPB1L9mCesPPblenJ2HeQfl/WiaVy023GMqTciwr8u7021Kve/tcxOI9Uz\nfxaFFMD7+G6LM68uNwMfH2mBiIwXkUUisqigoKAeI4ampfn7eXbmBq7KTmV4l1ZuxzGm3qW1iOe3\n53Vl1vrdTFtkp5HqU0BceRSREXiKwm+OtFxVn1PVbFXNTk5ObthwQaassop731hKq4Q4fn9B7bN1\nxoSO6wa257QOLfjbh6vZfsBOI9UXfxaFrUCa13SqM+8HRKQ3MAm4WFX3+DFPWHjiyxzWO6eNEhvZ\naSMTuiIihH9f3ofKauW3b1trpPriz6KwEMgSkUwRiQHGAO97ryAi6cDbwA2qaiN1n6TlWw7wzMwN\nXN4vlRFd7bSRCX3pLeP5zaguzFhbwJuLt7gdJyT4rSioaiVwB/ApsBqYpqorReRWEbnVWe1PQEvg\naRFZIiKL/JUn1JVXVnPvG0tp2TiGP42200YmfNx4egYDMlrw1w9XseNAqdtxgp5frymo6nRV7ayq\nHVX1QWfeBFWd4Dz/qao2V9W+ziPbn3lC2X8+XcPanUX8/dJeJMbbaSMTPiIihH9f0ZuKqmrueWMJ\nVdV2GulkBMSFZnNyPlmxnYmzcrn+tHTO7t7a7TjGNLiMpMb85aIezMnZw6Nf2Jnok2FFIchtLDjI\nvW8so09aM/5op41MGLu6fzpXZafyxFc5fLVmp9txgpYVhSBWUl7Jz1/5juhI4enr+hEbZcNrmvD2\n14t70r1tU+6auoT8vdZp3omwohCkVJXfv7OCdbuKeGzMKaQ0a+R2JGNcFxcdyYTrTwXg1lcWU1pR\n5XKi4GNFIUi9smAz73y/lV+d3Zlhne2GPmNqpLeM5+Gr+rJyWyEPvL/S7ThBx4pCEFqSv5+/frCS\n4V2SuWNEJ7fjGBNwzu7emttHdGTqwnymWW+qx8WKQpDZW1zOba8splVCHI9e3ZeICHE7kjEB6e5z\nujC4U0v++N4KVmw94HacoGFFIYiUVlTx81cWs/tgOROuP5Vm8Ta0pjF1iYwQHhtzCs3jY/jZy4vt\nxjYfWVEIEpVV1dzx3+/5Nm8v/7myN71SE92OZEzAS2oSy8QbszlwqIIbnl/A/pJytyMFPCsKQaC6\nWvnNW8v5YvVO/nJRDy7ue7QeyI0x3nqlJvLcjaeyaW8JY19cSHFZpduRApoVhQCnqvx9+mre+m4L\nvzq7MzeenuF2JGOCzqCOSTxxzSks27KfW19ZTFmlNVWtixWFAPf0jA1Mmp3L2EEZ/OIsa2lkzIka\n2aMN/7y8N7PW7+bu15daH0l1iHI7gKnbfxds5j+fruWSvu340+juiFhLI2NOxlXZaewvKefv09eQ\nGB/Ng5f0tL+rWqwoBKiPlm3n9+8u58yurfjPlX2s6akx9WT8sI7sK6ngmRkbaNYomvtGdrHC4MWK\nQgD674LN/OHd5Zya3pynru1HdKSd5TOmPv16ZBf2l5Tz9IwNlJRX8cfR3Ym0L16AFYWAoqo8/Pk6\nnvgqhxFdknny2n40irFO7oypbyLCg5f0onFMFJNm57LjQCmPjulLXLT9vdlX0ABRUVXNvW8s44mv\nchjTP42JN2bTONZqtjH+EhEh/GF0d/44ujufrtrBdZMWsK/Y7mOwohAAikor+MnkhYebnf7jsl5E\n2SkjYxrEzUMyeerafizfeoDLJ8wN+y637ZPHZTsLS7n62fnM3bCHf1/Rm1+enWUXvYxpYOf3assr\nNw9kz8FyLn16Lsu3hG9fSVYUXPRt7l4ufWoOeXuKeWFsf67KTnM7kjFha0BmC976+enERkVw9XPz\nePu7LaiG370MVhRcUF5Zzb8/WcPVz80jOiqCaT87nTNsTARjXNepVQLv3DaIHu2acve0pdzx2vdh\n11+SXclsYDm7irjr9SWs2FrImP5p/HF0d7ugbEwAadU0jqnjT+fZbzbw8GfrWJy3j/+7sg9DspLc\njtYg7EihgagqL83L44LHZ7NtfynP3nAq/7y8txUEYwJQZIRw2/BOvHv7YBrHRnL98wv4fx+uCovh\nPe0TqQFs2lPMn95bycx1BQzvksy/r+hNq4Q4t2MZY46hZ0oiH945lH9+vJrnZ+cye/1u/n5ZL05t\n39ztaH4jwXYhJTs7WxctWuR2DJ8UFJXx5FfreXXBZqIjI/jd+V25/rT21rrImCA0Y+0ufv3mMnYV\nlTGyR2vuG9mVTq2auB3LZyKyWFWzj7meFYX6d7CskonfbGTirI2UVVZzdf80fnlWFq2b2tGBMcGs\nuKySF2bn8uw3Gykpr+Sq7DTuOrszbRID/2/bioILyiqrmPptPo9/uZ49xeWc36sN957bhQ7JwfNt\nwhhzbHsOlvHU1xt4eX4eESKMG5zJrWd0COghcq0oNKB1O4uY+m0+b3+/hf0lFZzeoSW/Oa8rfdOa\nuR3NGONH+XtLeOTzdbyzZCsxkRGc36stV/dPY2Bmi4A7TWxFwc+Kyyr5aNl2Xlu4me837yc6Uji3\nRxuuG5DO6R1bBtwvhDHGf9buKOLl+Xm89/02isoqyUxqzNX907i8XyrJCbFuxwOsKPjFjgOlzM7Z\nzez1BXyxehcHyyrpmNyYawakc+kpKbRsEhj/+cYYdxwqr+Kj5dt5feFmFubtIypCOKNzMsM6JzO4\nUxIdkxu79oXRikI9OFBSwbd5e5mTs5tZ6wvYUFAMQIvGMYzo0ooxA9LIbt/cjgqMMT+Ss8tzWvmT\nlTvYsu8QAG2axjG4UxJDslpyeockWjeNbbDPj4AoCiIyCngMiAQmqeo/ay0XZ/n5QAkwVlW/O9p7\n1ldRUFUOVVRRXFZFYWkFm/eUsKHgIBsKitno/Nx9sAyAuOgIBma2ZEinJAZ3SqJrmwQbCc0Y47PN\ne0qYnbObOTm7mbNhN/tLKgBIiIuiY3ITOiQ3pmNyEzomNyYzqQnN4qNpHBtFfHRkvX3WuF4URCQS\nWAecA2wBFgLXqOoqr3XOB+7EUxQGAo+p6sCjve+JFoUZa3fx1w9XUVxWSUlZFcXllRxp3O7m8dF0\ncP5zOiQ3oXdqIqe2b05slA2+YYw5edXVyqrthSzM28vGgmI2FBxkY0ExOwpLj7h+fEwkjWOjaBIb\nxbUD0rllWIcT2q6vRcGfdzQPAHJUdaMTaCpwMbDKa52LgZfUU5nmi0gzEWmrqtvrO0zTRtF0a9OU\nxrH/+weOj4miSWwkTeKiSGseT4fkJrRoHLhNyowxwS8iQuiZkkjPlMQfzD9YVkluQTF5e4opLK2g\nuKySg2VVni+y5Z7nDXHR2p9FIQXI95regudo4FjrpAA/KAoiMh4YD5Cenn5CYfqlN6ffdaF7a7ox\nJrg1iY2iV2oivVITj72yHwVFh3iq+pyqZqtqdnKydTFtjDH+4s+isBXwHjUm1Zl3vOsYY4xpIP4s\nCguBLBHJFJEYYAzwfq113gduFI/TgAP+uJ5gjDHGN367pqCqlSJyB/ApniapL6jqShG51Vk+AZiO\np+VRDp4mqeP8lccYY8yx+XU8BVWdjueD33veBK/nCtzuzwzGGGN8FxQXmo0xxjQMKwrGGGMOs6Jg\njDHmsKDrEE9ECoBNJ/jyJGB3PcYJJuG677bf4cX2u27tVfWYN3oFXVE4GSKyyJe+P0JRuO677Xd4\nsf0+eXb6yBhjzGFWFIwxxhwWbkXhObcDuChc9932O7zYfp+ksLqmYIwx5ujC7UjBGGPMUVhRMMYY\nc1jYFAURGSUia0UkR0TudzuPv4jICyKyS0RWeM1rISKfi8h652fIjTYkImki8rWIrBKRlSLyS2d+\nSO+7iMSJyLcistTZ778480N6v2uISKSIfC8iHzrTIb/fIpInIstFZImILHLm1dt+h0VRcMaLfgo4\nD+gOXCMi3d1N5TeTgVG15t0PfKmqWcCXznSoqQTuUdXuwGnA7c7/cajvexlwpqr2AfoCo5xu6EN9\nv2v8EljtNR0u+z1CVft63ZtQb/sdFkUBr/GiVbUcqBkvOuSo6jfA3lqzLwamOM+nAJc0aKgGoKrb\nVfU753kRng+KFEJ839XjoDMZ7TyUEN9vABFJBS4AJnnNDvn9rkO97Xe4FIW6xoIOF629Bi/aAbR2\nM4y/iUgGcAqwgDDYd+cUyhJgF/C5qobFfgOPAr8Gqr3mhcN+K/CFiCx2xq+Hetxvv46nYAKPqqqI\nhGw7ZBFpArwF3KWqhSJyeFmo7ruqVgF9RaQZ8I6I9Ky1POT2W0RGA7tUdbGIDD/SOqG4344hqrpV\nRFoBn4vIGu+FJ7vf4XKkEO5jQe8UkbYAzs9dLufxCxGJxlMQXlXVt53ZYbHvAKq6H/gazzWlUN/v\nwcBFIpKH53TwmSLyCqG/36jqVufnLuAdPKfH622/w6Uo+DJedCh7H7jJeX4T8J6LWfxCPIcEzwOr\nVfVhr0Uhve8ikuwcISAijYBzgDWE+H6r6m9VNVVVM/D8PX+lqtcT4vstIo1FJKHmOXAusIJ63O+w\nuaNZRM7Hcw6yZrzoB12O5Bci8howHE9XujuBPwPvAtOAdDzdjl+lqrUvRgc1ERkCzAKW879zzL/D\nc10hZPddRHrjubAYiedL3jRV/auItCSE99ubc/roXlUdHer7LSId8BwdgOf0/39V9cH63O+wKQrG\nGGOOLVxOHxljjPGBFQVjjDGHWVEwxhhzmBUFY4wxh1lRMMYYc5gVBRNQROT3Tm+fy5xeIAf6eXsz\nRMTnAc9FZLKIbBWRWGc6ybmBqj6yDK/p7bO+iMhdInLjMdbpJSKT63O7JnhZUTABQ0ROB0YD/VS1\nN3A2P+yzKlBUAT9xO0RtTm/A3tNReHL+92ivU9XlQKqIpPsxngkSVhRMIGkL7FbVMgBV3a2q2wBE\n5E8islBEVojIc84dzDXf9B8RkUUislpE+ovI206/8n9z1skQkTUi8qqzzpsiEl974yJyrojME5Hv\nROQNpx+lI3kU+JXzoev9+h980xeRJ0VkrPM8T0T+UdMHvoj0E5FPRWSDiNzq9TZNReQj8Yz9MUFE\nIo6WzXnff4nId8CVtXKeCXynqpVe/1b/Es/4C+tEZKjXuh/guTPYhDkrCiaQfAakOR9YT4vIGV7L\nnlTV/qraE2iE54iiRrnTr/wEPLf33w70BMY6d3oCdAGeVtVuQCFwm/eGRSQJ+ANwtqr2AxYBd9eR\nczMwG7jhOPdvs6r2xXPn9WTgCjxjP/zFa50BwJ14xv3oCFzmQ7Y9qtpPVafW2t5gYHGteVGqOgC4\nC8/d7jUWAUMxYc+KggkYzrgApwLjgQLg9Zpv2sAIEVkgIsvxfAPu4fXSmn6slgMrnbEVyoCN/K8j\nxHxVneM8fwUYUmvzp+H5IJ4jnm6obwLaHyXuP4D7OL6/Ie+cC1S1SFULgLKa/ouAb51xP6qA15yc\nx8r2eh3ba4vn39FbTUeBi4EMr/m7gHbHsS8mRFnX2SagOB+GM4AZTgG4SUSmAk8D2aqaLyIPAHFe\nLytzflZ7Pa+Zrvkdr92fS+1pwTMWwTU+5lzvfEBf5TW7kh8WibgfvuqEcx4rW3Ed8w8dJUMVP/z7\nj3PWN2HOjhRMwBCRLiKS5TWrL57OvWo+2HY759KvOIG3T3cuZANci+f0j7f5wGAR6eRkaSwinY/x\nng8C93pNbwK6i0is883/rBPIOcDpzTcCuNrJeSLZwDP6XCcft9sZT2+bJsxZUTCBpAkwRURWicgy\nPKdMHnDGCZiI50PrUzxdoR+vtXjGbV4NNAee8V7onMYZC7zmbHse0PVob6iqK4HvvKbz8fRUucL5\n+f0J5FwIPInnAz0XeOdEsjk+Bob5uN0RwEfHndaEHOsl1YQ88QzP+aFzkTqsiMg7wK9Vdf1R1okF\nZuIZ0auywcKZgGRHCsaEtvvxXHA+mnTgfisIBuxIwRhjjBc7UjDGGHOYFQVjjDGHWVEwxhhzmBUF\nY4wxh1lRMMYYc9j/ByIchgUrJJgtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Blackmann window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8FdXZx79P9j0hISwBQtgREFEQcF+qdauitX1datVq\ntS5t7f62tW/tpt03W6u1m1L3XVQQQVlERPZ9CSFsCSEJAUISQtbz/jEzN3Mn9yaXkOTmhuf7+dzP\nnTlzZs5zZs45v7PNGTHGoCiKoigdISrcBiiKoiiRi4qIoiiK0mFURBRFUZQOoyKiKIqidBgVEUVR\nFKXDqIgoiqIoHUZFRFG6EBEZIyJrRaRKRL4e4jlGREZ2tW12WLtE5JITvMZPROSZzrKpJyEi54nI\nthM4v9ueZbhQEelE7AxZKyLVrl9OuO1Swsr3gAXGmFRjzKPegyKyUES+3BUBi0ieXYg5abFURP4m\nIrFdEV5vxBjzoTFmTLjt6MmoiHQ+VxtjUly/fV4PIhITDsPCxckWXw9DgU1htiHDGJMCnAqcBdwf\nZnuUXoSKSDfgqhHeKSJ7gA9s9+kislREDovIOhG50HXOMBFZZHeDzBORvzpdBiJyoYgUecLwdUuI\nSJSIfF9EdohIhYi8JCKZHltuE5E9InJARB50XSdaRH5on1slIqtEZIiIPCYiv/eEOUtEvhkkzkZE\n7heR7cB2222sHZeDIrJNRP7H5f9KEdlsh1ksIt9xx9W26YAdzy+4zksXkZkiUi4iu0XkRyISZR+7\nXUSWiMjvROSQiOwUkStc594uIoV2mDs9171DRLbY580VkaFtPN9rRGST/RwXisgptvsHwEXAX+2W\nwGjPeQ8D57mO/9V1+BIR2W5f8zERkY7Y5sYYUwbMA8YFicdUEfnYDrPETnNxruPjXc+vVER+GOAa\nsSLyvIi8KiJxYnV1vSwiz9j3eYOIjBaRH4hImYjsFZFPu87/kh23KvvZfMV1zEkL37bPLRGRL7mO\nP2Xfq3fs8z8RkRFB4vq0iHzb3h7kpFd7f4Qdxyjx5DU7/X1HRNaLSKWIvCgiCa7j37Xt2icid3jC\nbCut7haRyfb2F2x7xtv7d4rIG4Gfag/AGKO/TvoBu4BLArjnAQaYCSQDicAgoAK4EkvML7X3s+1z\nPgb+AMQD5wNVwDP2sQuBomBhAw8Ay4DB9vl/B5732PIP247TgDrgFPv4d4ENwBhA7ONZwFRgHxBl\n++sLHAX6B7kXBqvAyrTDSQb2Al8CYoDTgQPAONt/CXCevd0HOMMV10bXvbgAqAHG2MdnAm8CqXbc\n8oE77WO3Aw3AXUA0cK8dB7HtOeK6zkBgvL09AygATrFt/RGwNEg8R9v2XArEYnVfFQBx9vGFwJfb\nSDOtjtv37m0gA8gFyoHLO2Cb86xj7P0cYB1wR5B0MxmYbl83D9gCfMM+lmo/o28DCfb+NPvYT4Bn\n7Of8DvAUEO06dgy4zL7uTGAn8KB9v+4CdrrsuQoYYT+jC7DSmDct/Mw+90r7eB/7+FNYeWiqHdaz\nwAtB7s0dwFv29s3ADuBF17E3A+U1+34tt+9lpn2P7rGPXQ6UAhOw0tdz9v0fGUJanQl8295+0rbn\nXtexb4a7fAuahsNtQG/62QmsGjhs/96w3Z3MPNzl93+B/3rOnwvchlVwNALJrmPPEbqIbAE+5To2\nEKswjXHZMth1fDlwo729DZgRJH5bgEvt7a8Cs9u4Fwa42LV/A/Chx8/fgYfs7T3AV4A0j58LA9yL\nl4D/wxKGemwhso99BVhob98OFLiOJdl2DbAz+WHgeiDRE+YcJ3Pb+1FYhdXQAPH8P+Alj99i4EJ7\nfyEdE5FzPfH9fgdsc561kx4NsNR9jwlS8bGPfQN43d6+CVgTxN9PgFnAIuBRQDzH5rn2r8bKI47I\npNp2ZQS59hvAA660UIstirZbGTDd3n4K+Kfr2JXA1iDXHQEcsu/fE3a6KbKPPQ18K1Bes+/XLa79\n3wBP2Nv/Bn7lOjbajttI2k+rdwKzXPnsy9gCCOzGFtKe+NPurM7nWmNMhv271nNsr2t7KPB5u+vg\nsIgcBs7FKvBzgEPGmBqX/93HYcNQ4HXXdbcATUB/l5/9ru2jQIq9PQSrFhSIp4Fb7O1bgP+2Y4c3\nvtM88f0CVoEOVmF+JbBbrG68s1znBroXOVitoVj8781urFaegy+expij9maKfb0bgHuAErsLZKzL\n1j+77DyIVTN2X9chxx2+MabZjncgv8dDsOdzPLY59DXGZGCJ6EdYlZVW2N1Mb4vIfhE5AjyCdY+h\n7XQBVgtmIlYh6l3VtdS1XQscMMY0ufZx4iciV4jIMrs76TBWmujrOr/CGNPo2nffGwh+3/wwxuzA\nakFOwupSfBvYJyJjsFpAi9qIa7AwcvBP8+502V5aXQScJyIDsQTnJeAcEckD0oG1bdgTVlREuhd3\n5tqL1RLJcP2SjTG/wuo26CMiyS7/ua7tGqwCAbDGMYBsz7Wv8Fw7wRhTHIKNe7FqaYF4BpghIqdh\ndae010/rje8ij00pxph7AYwxK4wxM4B+9nVfcp0b6F7sw+oOa8AqWN3HQoknxpi5xphLsYR7K1YX\nn2PrVzy2Jhpjlga4zD53+PbYxZBQbcD/HoXC8djmH5AxtVi19eki0jeAl8ex7sMoY0wa8EMsgXLC\nHd7G5d8Dfgm8LyL92/AXFBGJB14FfofVTZoBzHbZ0NksAj6H1fVYbO/fhtWd2pFCuwTr2Tu482yb\nadUYU4AlSF8DFhtjjmCJ1d3AErty0iNREQkfzwBXi8hlYg1mJ9iDeIONMbuBlcBP7cHJc7G6ARzy\ngQQRuUqs6Zo/whovcHgCeNgZcBWRbBGZEaJd/wR+LiKjxGKiiGQBGGOKgBVYLZBX7UIpVN4GRovI\nF+3B11gROVNETrHj+AURSTfGNGCNVXgzjXMvzgM+A7xs12ZfsuOaasf3W1j3tk1EpL+IzLDFqQ6r\ni8UJ8wngB66BzXQR+XyQS70EXCUin7Kfxbft67VbqNuU0nbh7OV4bPPDLqS/iFU4VQTwkop176vt\nVtm9rmNvAwNF5BsiEm/f72nuk40xv8Hqdn0/iEi1RxxWOi4HGsWaBPHptk85IRZhdcsutvcX2vtL\nXC2l4+El4HYRGSciScBDzoEQ06pjj9MKWujZ75GoiIQJY8xerEHSH2Jlmr1Yg9rOM7kZmIbVXfEQ\n1uCac24lcB9WgV+M1TJxz9b6M1Yf9XsiUoU1yO6X4dvgD1iJ/T2sAuVfWAOmDk9jTRVtryvLD2NM\nFVaBcCNW7X0/8GtaxO+LwC67G+UerK4uh/1Y/df7sAZL7zHGbLWPfQ0r/oXAEqxC7N8hmBSFlYn3\nYd3jC7ALTWPM67ZtL9j2bASuCHQRY8w2rK69v2DVNq/GmuZdH4INYD2rz4k106rVeyQBwgvZNheH\nRaQaS7DOAq4J0OUE8B2sdFeF1Sp70RVuFdbkgauxnsd2rJlnXvt+jtWSnC/2jMBQscP4Olb6O2Tb\nMut4rnGcLMISTkdElmC18BcHPaMNjDFzgD9hzb4ssP/dtJdWvfZ493skEjgtKT0NEfkJ1iyPW9rz\n28V2nI9VexoapCDq7PAuxJpQMLirw1IU5fjRlogSMnZ3zQNYM2C09qEoioqIEhpivUB3GGsQ+k9h\nNkdRlB6CdmcpiqIoHUZbIoqiKEqH6fUL4/Xt29fk5eWF2wxFUZSIYtWqVQeMMdnt+ev1IpKXl8fK\nlSvDbYaiKEpEISIhrZKh3VmKoihKh1ERURRFUTqMioiiKIrSYVREFEVRlA6jIqIoiqJ0mIgTERG5\nXKxPqxaIyPfDbY+iKMrJTESJiP3djMewVi0dB9wkIgG/F60oiqJ0PZH2nshUrM+dFgKIyAtYy6lv\n7uyAlmw/wB1PryAvK4npw7PISIzt7CAURVE6lcZmw6rdh9i07wj3XTSC+y4c2eVhRpqIDML/85NF\nBPhOhojcjfVFMHJzc72HQ+KZZbupb2wmv7Sa/NJq17U7dDlFUZQuI9ASiL95d5uKSEcxxjwJPAkw\nZcqUDq0w+fgtZ1BT38S2/VW8tW4fL67YS5TAT64Zz+enDGn/AoqiKN3AjvJq7n1mFfml1Zw7si83\nT8vlzLxM+qbEdUv4kSYixfh/w3gwoX/L+rgQEVLiY5g8tA+Th/bhznOH8b1X1vPdV9azq6KG73x6\nDKLNEkVRwsjynQe58+kVxEZH8a/bpvCpUzr0efsTIqIG1rG+7z1KRIaJSBzWp1a78vOZPoZkJjHz\nzqncNHUIjy3YwV8+KOiOYBVFUQKyvugwdzy1guzUeN68/5ywCAhEWEvEGNMoIl8F5gLRwL+NMZu6\nK/zY6CgevvZU6hsNf5iXz9CsJGZMGtRdwSuKogBQduQYdzy1koykWJ778nQGpCeEzZaIEhEAY8xs\nYHa4wo+KEn59/ansOVjDD1/bwIRB6YzITgmXOYqinGQ0NRu+/sIaqusaePbL54ZVQCDyurN6BDHR\nUTx60+nExUTx3ZfX0dysX4dUFKV7+O/Hu1hWeJCfz5jAmAGp4TZHRaSjDExP5MGrxrF6z2FeWrm3\n/RMURVFOkJLKWn47dxvnj87mc5MHh9scQEXkhLj+jEFMG5bJr97dStWxhnCboyhKL+d3c/NpbDY8\nfO2EHjM7VEXkBBARHrzqFA4fbeDfS3aF2xxFUXoxBWVVvL6miFvPGsqQzKRwm+NDReQEmTg4g0vH\n9eefSwqpPKqtEUVRuoY/zt9OYmw093bDW+jHg4pIJ/CNS0ZRdayRF1bsCbcpiqL0QvYePMqcDSXc\nctZQMpO75030UFER6QTG56QzbVgm/122myadqaUoSifzzLLdiAi3nZUXblNaoSLSSdx+dh5Fh2p5\nf0tpuE1RFKUXUVvfxPPL93D5+AHkZCSG25xWqIh0EpeO60//tHheWKHTfRVF6TzmbSnlyLFGbpk+\nNNymBERFpJOIiY5ixqRBLM4v51BNfbjNURSll/DGmmJy0hOYNiwz3KYEREWkE7nmtBwamw1zNu4P\ntymKovQCKqrrWJRfzjWTBhEV1TPeC/GiItKJjM9JY0R2MrPWdcnq9IqinGTM21xKU7PhmtNywm1K\nUFREOhER4bLxA1ix6xBH9A12RVFOkA+2lpGTnsApA8O/RlYwVEQ6mYvG9qOp2bBk+4Fwm6IoSgRT\n19jEkoIDXDS2X49Z4iQQKiKdzOlDMkhLiGHB1rJwm6IoSgSzfOdBjtY3cfHYfuE2pU1URDqZmOgo\nzhudzZKCAxijLx4qitIxlmw/QFx0FGeP6BtuU9pERaQLmDYsk5LKYxQfrg23KYqiRCgrdh3k1MHp\nJMZFh9uUNlER6QKmDLXmc6/cdSjMliiKEokca2hiY/ERpgztE25T2kVFpAsYMyCV1PgYlu86GG5T\nFEWJQDYUV1Lf1MxkFZGTk+goYVJuBuv2Hg63KYqiRCCrdlu9GCoiJzHjBqaxvbSahqbmcJuiKEqE\nsWnfEQZlJJKVEh9uU9pFRaSLOGVgGvVNzRSW14TbFEVRIoz8/VWMHdBzXzB00+NERER+IiLFIrLW\n/l3pOvYDESkQkW0iclk47WyPcTlpAGwuqQyzJYqiRBL1jc3sKK9mTISISEy4DQjCH40xv3M7iMg4\n4EZgPJADzBeR0caYpnAY2B7D+yYTEyVsL60OtymKokQQhQeqaWw2ESMiPa4l0gYzgBeMMXXGmJ1A\nATA1zDYFJSY6isF9Etl98Gi4TVEUJYLYaXeBj8hOCbMlodFTReRrIrJeRP4tIs70hEGA+4tPRbZb\nK0TkbhFZKSIry8vLu9rWoORmJbOnQkVEUZTQKTpkvaQ8JDMpzJaERlhERETmi8jGAL8ZwOPAcGAS\nUAL8/nivb4x50hgzxRgzJTs7u5OtD52hmUnsrtCBdUVRQqfo0FFSE2JIT4wNtykhEZYxEWPMJaH4\nE5F/AG/bu8XAENfhwbZbjyU3M4kjxxqprG2ImAShKEp4KTpUy+A+kdEKgR7YnSUiA1271wEb7e1Z\nwI0iEi8iw4BRwPLutu946JdmzfEur6oLsyWKokQKRYdqGZSRGG4zQqYnzs76jYhMAgywC/gKgDFm\nk4i8BGwGGoH7e+rMLIfslBYRGdkvMgbJFEUJLweq65iS1/PfVHfocSJijPliG8ceBh7uRnNOiL6p\nlogcqNaWiKIo7WOM4XBtA32S4sJtSsj0uO6s3kTfFBURRVFC58ixRpqaDRlJkTOGqiLShWQkxhIl\nUFFdT1OzfqBKUZS2OXy0HkBbIopFVJSQHBfDkx8WMu7H7zJ/c2m4TVIUpQdSWdvAxb9fyOV/+hCA\nPsnaElFskuNjqG9spq6xmUc/2N5l4RhjmL+5lMX55a0+y/vB1lKe+mgn1XWNfu4FZVW8uGKPr/bj\nUFvfxMc7Kqjx+AerptSsrSqlB1F5tKFVS98Yw5o9hyg6dLSV+9xN+5m/udQvnxhjeG/Tfp5euouj\n9f7pfteBGl5ZVUTl0YYui8PLK/dSWF5DbYM1VyhDWyKKQ3ysdYtFYH1RpW+676GaeqqOHX+i/PP8\n7Ux4aC53zVzJsYaWyWm/fncbX565klv/vZzHF+3wub+0ci93PLWSn7y1mbueXunLOJv3HeGqR5fw\nv69u4HNPfOy7VnVdI9c+9hE3/WMZV/9lCUdcNv5k1iYm/WweV/91iZ/wfLC1lPN/s4A7nlpBZW2L\n/32Ha3nghTX8+M2NfgLW0NTMfz7ayZOLd1DX6D/BbtXuQ7y7sYRGzxL6B2vq2Vhc2Uogm5sNB2v8\nRVA5cbz32aGmrrFVIQtQfLiWgrKqVu4biip5Z30J9Y3+z3PB1jJ+N3dbq0LeSq8rWrXaH1+4g7N+\n+T4/fWuTn22/fncrp/3sPa7482IqXGOPv3hnC9f9bSkX/24RH++o8Ln/7r1tfOW/q/jyzJX85YMC\nn/vzy/dy939X8dCsTXzlv6t8YeSXVnHlox/ynZfXcd3fPvJLxzM/3sXEn8zlxic/Pu402NRsKD5c\n6wtnUb7/yhpJPfyTuG5URLqYmjqrkLx2krVCy8biShZsK2PaI+8z/ZH3WbrjQKtz/rVkJ9Memc+M\nxz6isLxlAcf5m0v54/x8xgxIZd7mUv78vtWy2VNxlCcX7+Czpw/i0nH9efT97VRU19HY1Mxv527j\nzLw+PHT1OD4urGDBtjIA/jAvn+T4GB657lQKyqp57pM9ADyzbDfbSqv46kUj2VVRw99tQVpacICn\nlu7i4rH92Lq/ij/OywegorqOrz23BoNhcX45v5y9BbAKoXueWcXsDSXM/Hg3P5m1yRePR2Zv4adv\nbeaR2Vv5wWsbfO5vr9/H9Y8v5Z5nVvN9l3t+aRUX/W4hn/nLEv731fU+98raBmY89hFn/HweP3x9\ngy9DNjcbvv/qesb8aA4PvbnRr9CZ+fEuLvjtAn7+9ma/FtXi/HI+9/hSHpm9xU/A8kuruHvmSn45\ne4tfQVhWdYzvv7qeX87e4ifmNXWN/HLOFh5+Z3Mr4XxsQQE/fWuT30QLYwxPL93Fg69vYK9nnbWX\nV+7lOy+vY/O+I37ub63bx/3PrmbJdv+08+7G/dz27+W8tHKvn/v8zaV89m8f8du5W/3i/MHWUi7+\n/ULue3aVnzAs2FrG5F/M5/I/LfazacHWMqb8Yj5TH/ZPtwu2lnHhbxdwyR8W84/FhX7uMx5bwv3P\nrearz632PYcF28r40lMr+OuCAm58cpkv7EX55XzvlfUsKTjAPc+sIr/UEqWlOw7w63e3khAbzX8+\n2sXLq4oAWLv3MI8v3MEFo7PZeaCG387d5ntm/1qyk2sn5ZCTkcBDs6w0UHbkGE8sKmTGpByumDCA\nvy4o4EB1HfWNzfxpfj7ThmXy4JWn8OH2AywpsOL3x3n5xEQJv7l+IoUHanh66S7AyscPzdrEsOwU\nVu85zP+9udEX74amZn7w2gYm/ew97nt2lV/FCloqauf86gO+8/J6mpsNq3cf4oYpLe9Sx0ZHTtEc\nOZZGKNV1VgI6d2RfwErgj7yzhQHpCfRPS+DbL62jtr6lEHp1VRE/f3szeVnJ7D14lK/8d5WvUHti\n0Q5yM5N48e7pXH1aDs98vJu6xibeWFuMAb5z2Ri+eclojjU08+6m/SwrPEh5VR13nDOMW6YPpU9S\nLG+s2cfBmnoWbivj85MHc/O0XCYOTufNtdbL/899soezhmfxncvGcPHYfry8sghjDM8t30NmchyP\n33IGMybl8OrqYo41NPHyqiJq6pv4z+1nctPUXF5bXUzl0QaWFR5kfVElv7h2Al8+dxivrS5i3+Fa\nyo4c49lle7hhyhDuuWAEr60uprC8mqZmwy/e3sLEwencdtZQXllVxMZiaxn9X7yzhSiB688YzEsr\ni1i+0/rs8GMLCti4r5JLTunHc5/sYaFdm3t1dREvrNjL2AGpPP3xbt7ZUALAmj2H+PGbm2g2hn8t\n2ekrbEuPHOMr/11FQXk1Ty4u5D8f7QKs71x/6T8rWJRfzt8XF/KoLdrGGO59ZjUvrtzL3xcX8rO3\nN/ue3w9f38DfFxXyjw938u2X1vrc/zAvn9/O3cZ/PtrlV9Od+fFuHpq1iWc/2cOt/17ua5nN3lDC\nd19ZzyurirjlX5/4arqfFFbwtefXMGdjCXc8tYIddiVj6/4j3P/capYVVvC9V9bzkV0IFh06yn3P\nrmZHeQ2PLdjB8yusykJ5lSX+x+qbmLNxP7+ba1UKauoa+caLa0lPjKXoUC0PvmEVjnWNTXz3lfUM\n7pNIdmo833tlPQ1NzTQ3G370xkaG903h/NHZ/Pa9bZQdOYYxhkdmb2FEdgpfuWA4720u5RP7uf15\n/naG9U3m6TumUnSolhdXWM/hH4sLGZSRyIffu4iE2GifID29dBdZyXHMeeA8xuek+Z7PzI93kRof\nw2NfOIPPTR7C62uKqa5r5NVVRcRECf/3mXHcd+FI8kur2Vh8hLfXl9DUbPjaxSN54JJR1Dc2M2fj\nfhbnl1NWVcc9F4zg1rOHkp4Yy5tr93Gopp65m/Zz87Sh/M+ZQzh7RBav2AL27Cd7SIiJ5r93TuWu\n84Yxe0OJb528Jxbu4PnlezgzL5P3NpXy9efX+Lee5mxl075KLhqTzauri3h/axk19U2cOjjd5yc2\nKnKK5sixNEJx0s6QzCSyU+OZt7mU7WXV3H3+cH5x3QRKKo8xa51VgB9raOJX725l8tA+PHfXdH5x\n7QS2l1Uzb3MpZVXHWLn7EDecOYSY6CiunZRDVV0jnxQeZMG2Mk4fkkFORiKnDExlSGYii/PL+XB7\nOXHRUVw0th+x0VFcMDqbZYUVfFJYQWOz4bIJAwC45JT+rCuqZGNxJXsOHuVy2/3T4wZQVlXHttIq\nFuWX8+lx/YmPiebq03Kormtk5a5DzNtcysTB6Yzsl8r1kwdT39TMwvwy3lq/j5T4GGZMGsTN03Jp\nNvD+llLe3bSf+qZm7jp/OHeck4cIvL2+hGWFFew/cox7LhjBty8bQ1x0FK+vKWZ/5TE+3F7ObWfn\n8fB1E0iNj+HllXtpaGrm5ZV7ufLUgTx+y2T6pcbzvKs1NXZAKq/eezbD+ybz3493A/DU0l1kJMUy\n54HzmTg43VcYPbPMEuNZ95/LeaP68q8lO2lqNsxat4/iw7X8+/Yz+czEgTy1dJc1XlRYwardh3jk\nulO59ayhvLhiL+VVdew6UMOba/dx/0Uj+OYlo5m7qZTtpVVU1zUyc+kuZkzK4ZefPZVVuw/xUUEF\njU3NPLFoB9OGZfKf289k54Ea3lpnCd7jC3cwql8Kb3/tXA7W1PPsMisOjy3cQXZqPIu+exFRUVar\nFeDJRYXEx0Sx+HsXMTA9gSfsFuRTH+2i2RjmPHAeZ+Rm8I/FhRhjeHW1Jf4z75zKZ08fzPPL93C0\nvpHX1xRTWdvA7z5/GvdeOILF+eUUllfzwZYyDlTX8eBVp/D9K8ZSdKiWJdsPsKywguLDtXz14pE8\ndPU46hubeWt9CRuLj7C9rJo7zh3GNy8ZTXJcNG+u3cfuihrW7j3MjWcO4YLR2YwbmMY760s4UF3H\n0h0HuO70QfRPS+DT4/rz3uZSjtY3smBrOddMyiEhNpoZk3LYUnKE4sO1LM4v55Jx/UmJj+GqUwdS\n19jMil0HWbitnLNGZJGVEs+l4/ojAgu3lbEov5xR/VIY2S+VMf2tfPLxjgMs3VFBfEwUZ4/MIj4m\nmnNH9uXD7eUs3VFBs4FLx/UHrP+dB2rYXVHDuxtL+PT4/qQlxHLztKEYA3M37aeusYl/LtnJpeP6\n849bp/DDK09hUX45C7dZFZyK6jpeXLmXG84cwp9uOJ3oKPGJ5dCslqVOYmOkk0uirkNFpItxRCQu\nJoqcjERWur6dfNbwLIZnJ/PqaktE5m7aT3lVHd+6dDTRUcJl4weQlRzHu5v2+/p1zx9lLSh51ogs\nRGD5zoNs2neEKXmZAIgIpw3OYNO+I2zcV8nYgakkxFr9q6fn9qGsqo65m/YTGy2Mtz+cddqQDMCq\nXQG+t2WnDbeu+dKKIqqONfq+9zx5aB8r7F0H2VBcybRhlr8JOWkkxUWzavchVu46yOShfUiIjWZY\n32QGZSSydEcFHxUcYEhmIiP7pdAvLYFTBqTxyc4KPt5RQXSUcMHobNISYpk2PNPn3xi4bPwAEmKj\nuWhsPxbll7Nu72EOHW3g6okDiY2O4vIJA1i8vZySylrWFVUyY9IgYqKj+MxpOSzfdZCDNfW8v6WM\ny8cPICU+huvPGMy20ip2V9Qwd9N+pg3LIjcric9PGcL+I8dYu/cwczaUMLhPImePyOLmqblU1zWy\neHs5szeUkBgbzbWTBvGFaUNpaja8t3k/szdaAvCFaUO5eVouUbZAzt9cSk19E7eelcdnzxhEclw0\n724qYfmug5RUHuPWs/K4cEw2QzITeXdjCTvKq9lQXMnN03KZMCidqXmZvLtpP5W1DSzZXs7/TBnM\nkMwkLh8/gNkbSmhoambe5lKunphD/7QEPnvGID4qOMCRYw3M3byfC8f0Iycjkf+ZMoRdFUfZXlbN\nnA0lnJ7JcwIoAAAgAElEQVSbwch+qVx3+iBqG5pYWlDBgq1lDOubzOShfbjmtBzA6uqbt6WUrOQ4\nzhuVzQWjs0mKi2bBtjI+2FpGXEwUl47rz4jsFEb1S2HhtjI+LLAKTee5nTcqmw+3l/vSsVMwXzQ2\nmzV7D/sK7IvG9gPg3FF9qaxt4PU1xdQ3NTN9eBYAZ4+wWvSvririQHU90+00OnloH2KihEXbyskv\nq/Kl1T7JceRlJbNxn1VJctK6k0/W7a1kQ/FhTh2UTnyMk08yKD1Sx6L8MmKjhYl2C+FMO4+9vb6E\nQ0cbOMu2aVBGIqP6pfBhwQEW5x+gsraBm6flAvDFs4bSLzWe55ZbeWve5lLqG5v54vQ80pNiGd0/\nleW7rBba0MxkX7kRoy0RxaGx2eqKiouOop/9BntcdBSj+qUgIlw+fgCrdx+ipq6RdzfuJzs13pc4\no6OE80b15eMdFazZc5jkuGjfFxOT4mIYmpnEnI3WoKUjCGB9VbHoUC0rdh5i3MAWd+dzm7M37mdE\ndoov00ywz317/T5EWr5jMKRPEomx0cxat8/yN8jKTGkJsQzLSmbW2mLqG5t97jHRUZw6KJ1Vuw+x\nvayaSa4MO2FQGvmlVWzdX8XEwRk+m6bk9WHtnsOs2XuIsQNSSY63FlGYNCSD/NIqPi6sICU+htH9\nLdtPz83wCSHAGbktwnasoZmXVljdDVOHWe5T8zIxxip0qusafcLo/C/OLye/tJqzR1j33Ln3q3Yf\nZPWew5w3qi8iwuS8PsRFR9kCeYgzh2WSGBfN6P4p9E2JZ+Uuy31UvxRyMqwun7ED0li5+yCf7DxI\nakIMk4ZkEB8TzfThWXxUUMGKnYcQgfNGW2GcPyqbj3dU+Lrrzh+dbf/3ZdO+I8zbXEqzaalInD2y\nL4ePNvDGmmKq6ho5b7RVwJ4zoi/Nxho72XuwlnNH2nGz47g4v5xN+4744nrmsD7ERgsrdx9i+a6D\nvgJ7SGYSgzIS+WTnQdbuPczpuX2IjhISYqOZODid9UWVrCs6zIScNF9F5YzcPmzad4T1eysZmpVE\nZrI1y2jikHSr9VJwgNSEGIb1tQrMUwel09RseG11EVGCL706aerllUW+9AAwsl8KUQJzNlrP30kX\niXFWZeWdDSUYA+NzWrqGxuWksTj/ABU19X75YXxOOsWHa9lQXOn37Y5R9jXnbiplaFayb3zCCftV\nu0vLESRne0vJEVbuOkhcdJQvPcVGR3HNaTks3FZGdV0j728tY5DdYwAwpn9LuM5ae9Z52hJRbJp9\nLRHxiUh2ajwxdsKcPjyLxmbDqt2HWLqjgovGZBMV1ZKAxuekU1ZVx+o9hxienUK069jo/qnssD9g\n417106nR1Dc1k+NayC3Xbi7XNzYzMD3B556ZHEdyXDRVxxoZlJHoKxCiooRhfZN9A8GD+7Rca2hW\nErvsPuDhfVsywvDsZDbtO4Ix/s3zkf1S2FFew+6Ko4zom+znXlPfxCeFBxnTv+VLbuNz0mhqNry7\ncT9jBqT64n2qXbi8trqYfqnx9Euz4uEI00sr99qFkeVv4hDr3xkLcPyN6pdKYmw0zy+3+uOd/ujs\n1HgG90nknQ1Wzd8pzOJjLAFfvvMg28uqmWi7iwhn5Gawbu9hNhRX+vVrTx7ax1fTnTQkwxeHCYPS\n2VVRw8rdBxnVL4W0hFife409RpGeGMtw+z6Nt8N6e72/mJ+Ra8XF6aefYBecTuH2xppiv/NzM5Po\nkxTLa6uLaWw2vnsRHxPN8L4pfFRwgKpjjb4CznkO64sqKSyv8d17gLEDrErBlpIqvwJ77MBUDtbU\n81HBAb8C+5QBTkWlhFMGpCEivusALNxWztCsZBLtWUkjslOIiRLW7j1MfExLBSwhNpq8rGS2lFiT\nDbxpz5n96F7AcFhWsm/q7CBXGnbS87GGZvJcaXJEtrVdWdvg23bCzs1MovBAje9+Oozpn0p5VR0L\nt5UzLifNV0EDqzLQ0GQNnq/efYjpw7N88R+Qnmg/gyhfvgMdWFcCEBcd7VsO3l3jcFoW728ppbK2\ngUlD/BdeG223HtYXVfoVyoCfQAxwiYJ7Ozu1Jaz+qQm+gsztR0R813ILBUB/29aU+BhSE1pegHJ/\nMMcdH7e7W9iG+WX2lu28LCuTNjYbBmYktDq3uq4xoBBW1NT72Tq4TyJRYk01zU6N9xVGaQmx9E2J\no7C8BpGWjB8dJQzNSmKzXRi5a6LD+iazbu9hAEa63Edkp7B272Gamg2jXDXIEf1SKDxQQ3lVnZ8Q\njshOprqukY3FR1oJqjHw4fYDvvg77mC1FPKyknwFjWPDwm3lDExP8LXWcjOTiY4SPtl5kNho8d2P\n5PgYBqYnsGKX1XXqiJGIMDw7xRdnt02jB6SywZ7I4LZpRL8Uig/X+u6xw6j+KRytb6K6rtGvYHbu\nY1VdIwPT/SsdDu605362/VxpNTpK6G9XEAb1SfTdC2cfICMplnTX8iAD0lquOzBIfnCH4bY7J8Pt\nJ7B9gM+mtIQY33OAlme3rbSq1RcJz7C7f9/dtJ+KmnomDEpzXS+eQMRoS0TxEhcT5SuEU1yJLys5\njj5JsbyzwWqej3N1SwHkuTJfrudLZ+7C2505gmWaqCghya7t9HdlOGgRG6f7oeX8hFbX9PrLcm33\nTQ6cSd1i5rbb7e7OsO4CK8ctiinxxMVYydZdSMVGR/n2B3ji5ghbVnK8Xw0vN4gQBivw3O7u+zc0\nM4i7q3Y7xCWow121W7fQDu8b2H1QRqIvzsNcfqxxtgRfXGJccXPCS02I8XtWfvfVdb/dNXe3iLgL\nY7+COUiB7Y7/gPT4gO7ugjMuJsq3xlw/z3Nz4uZdFt1ZHTvLm1Zd52cEERe3H/f5qQkteTIuJopE\nO58EC8ObH9zpxx1vsPL7wLQE37sv7oqGk/4bPO9F6ewspRVxMVEkx1sJs9k13U/Ev8vIm2GcDAa0\n+rBVdoq7D7XlUfZxZSB3rQqsGn8gd0fYvGv29E2NaxWW2190lPgVXn2CiIt7212oueOX4xIFd1wH\nelpNmXbY3ozcNyWwe5YtbN5an7PKcp+kWL/uB7dN7vvkJ4SpgYXQz911HbcouP27C/U+SXE4FW63\nAEdFCX3te+a+vttW7/N0nlu/1Hi/WrzjPzkumjRXwem2yb3khju8gX6thsCC0t+vMG3x7661eysw\nThjeuDlvbXsL8iz7ObdKq7Z7lOAXZ3d83M/E3bJOivNf0NxpsfdpValy0pJ/HPzE03MMIK9vMmV2\nV5v7Pjr5zm0v4Nel3dNREekm4mKiiAvSz+kkwLjoqFYZxp35kuL9E3qwryUmuvpWvX4S7DfovW/E\nBhMRJ6N50rivpudN6m6BiI9pia+7YM5MCiwo7tqgO1NlegTMaep7C500O67eDO7Y6s3cjth6/bvv\nQaLrPvmJs+scd0HjrpH28RPLlm339ft6WopOGvGKdpa97y3UHIH0tiCd+926oLXcUxNiPeLS4s9d\noPoLahDhdN0Ld3rzPp9A50LLILLX3UmTyZ5079yDRE8adsaWvKvypLnEIs6VJt3pLdkjIk5Fz3v/\nnGt58487TXvTE3hbsS3xdOIYyQu0qoh0E3HRUX4J2I2Tefqnx7dZA0mK9RT8CYE/B+MuHLx9q47A\nxHtscWzzZlgno3mb205h0ehJ/OmJgYXAbau7H9s9USAhNvBSD954O7Z6M7JTc03xFjp2eF5BzUiM\n87tey3UCi7O7QPF2STpkp7gmLLj8u++ru9WYEu8fh/h2nkNmkNq3d8E+R1RSPWkk0/ZX2+C/3Iw7\nbu5n4r5n7sqJ+7ru5+B+5sGW7kj0PE/nfiR7/Dstd+/zdPajPXklWH7wVr684brDcoiy4+EVKsef\nt9B351uvoEOL2KfGx/iJtLcFFImoiHQTsdHiK6y8yxI5Cay95Z+9Cd2buQLhFREnk3sLTqfw8k4t\ndAoCb0XJ3f3jJpgQuAuOYC2yoOfGeQtaWwi9omrfD+91fIvZBWlNHa0PXqAGvI7XPdEtFi1hu+32\nFuY+/55CxOka9D5rJ82kewTOibPbBre79zk74tTsSYRe0fJdx2W3u6B0C0RCkLTgTSNO2vLa5KTR\nGE+6cNKM1zan4PUW5MEK5IQglTc33jAcm7xjE44/b+XJTaC84YixNy1H0lTeYKiIdBMiEnTaXlpi\n4IztxZtJgrVs3HgzgbPrPdexzZsxHfdoT39WsLCDZWR3rdHb/+vgzWAOThdci01iu3taKLa7t5Xl\nFHjBCh3vqsRBW0TB7ItrCc9bO3YIVkh73Z004K0g+Ao1TxpybPW6t4hF4PC8cfaKVnt2u59hfGzg\ntOB9DkIQEYlyKjAe/0EqPM5zaGzyj8PxVk4CXbO1TZ50HyQ/+PkJkDcc8feKj1c4I5HIb0v1cF65\n5yw+tBfKC1bw+mo3TW2LiDejhzKX3NsScZrp3tqSk7ajvGIR3bIKsRtvAeHg7ao4HoLVGL2FgCMG\nXv9OTdlbkDvnt25N2S1DT3jBnlOwwtJdeAUTyGCtRq+7U7h7C28njBhP3Hzib7wC6RS0/t2QTteg\n13+w1kSwgtlNsLTQ6n5J4Gu2CKR/3IKtJBwT5DkHe26hiYj3+RjbNk8FJsbJD8FFJND9cFoitZ5W\nr/d5zrxjqu8dmEhBRaSLmZKX6VuSxMk83ryREqSLwUtibOCCpS1a1e6ccz0J3Qnbmzccf63EJUiG\nDVYTD4VgLRGvMDli4C0cnNqht8XhtGS89zeYKATrYghWGLVVoPjCCtZyiw8ct9bdXIFbIr6gTeAW\npNc2p1D0tlCDvZcQSkUlWPy9FZVgac95bt6lPpwoeWv9Thrzjh8Ge26hpEmvH+c5eK8Z64TdxiUD\n5Y1UXzeYv6g74TpRPH90tm+lgkgh8ttSEUSwdOeIgbeg9uJtiYTUneUpBFpaIqGJgOPfO209mICF\nUJ4GJVht2CsuTm3dGwenUPG2OKId44OM63hrvMHuTTD7QsFb0Drvinjvo1PIeLvwHBO9hb0jjN4C\n1ffcvCIS5Yw/BG7ReDmRSkGr5xOke6rFhsBhmVZtRdu2oBWe47EyMM599d4Xx5K28mqg+CUG6VJ1\nnkNb3WM9HRWRMODNFC0Di20nJG+TO5RaYqtCQJxz/d2dxO3NHI6l0R4VCVYQtCeEbRFsZpq38HYy\nuLdl4ITtbXE4l23VEolxWij+4cVFBxaLzhwE/eL0oW0e994Lx0Zvbb052HOz4+pNIsEGsbtimY1W\nYyJBurNa0lho9zdYWvWN33WCijj31fvM2+stgMCVEN/4m+d053lG0nshXsIiIiLyeRHZJCLNIjLF\nc+wHIlIgIttE5DKX+2QR2WAfe1RC6UOIEEIZrIPWLRGn3/uW6bkhh+VkPG9eCFajnTQkgzH9U7n3\nghH+NgcVkZBNCRnv1E3nZcLWImL9eweNnQFdb5yd7iyvqAeLW3cmuWCi4O1DbxnL8j+/yScigQva\nWI97Vyyz4RWqYN1ZJkhXast5gePsfR59kuKYODidv9x0escM9rPJ+veKtrNO2Dn2opaBCJR+gk3K\niA6he6ynE64xkY3AZ4G/ux1FZBxwIzAeyAHmi8hoY0wT8DhwF/AJMBu4HJjTnUZ3FU5Caq8G5a2R\nJ8RGs+b/Lg36XkMg8rKSKSirDjCw7tTu/P2nJ8Yy95vnt7pOdxa03lryfReOJC0h1m/5EGgpYL21\nvWAtkWBjVKF0E54o7VVovRWKFpEnoLv3vgcraH1prVVf//HH+WczxlN65FjI/oPNtvLZGqTD1yvy\nwVpZcTFRzPrquSHb0xa+7iyPrcP6JrP2x5f6vcDoJVBXb7DxvhYRiVwVCYuIGGO2QMACZwbwgjGm\nDtgpIgXAVBHZBaQZY5bZ580EriXCRMRZePCzpw/2c2+wZ2W1V3gFavJ632Bujz/ccBofbT/gW8jQ\nwRnvCzUxhzKof6L85abTW30CFqwlzZ1lzd3ced5w9hw8yu3n5Pm5O/fNW27HBhGR7py77y04ja/w\n9/cXTBSCzaoL3s1l/XtFo604f/vS0UxwrU7scOtZeQH9P3bzGXywtayVu68lEqQ7K+igoYdgrayO\n8M7Xz8Uz1g24BtYDhBHsfSGHQBWpYC0R517ccc6wdiztufS02VmDgGWu/SLbrcHe9roHRETuBu4G\nyM0NvaunqxmQnsDOX17ZKpE5n0R1LyjoZuyAVLbur+oUG9ISYrni1IGt3IO1RILRHSJy9Wk5XG1/\nGCkU0hNj+dONrbsypuZlkpkcx30X+nfJBdPL7miJtEfrMZHjG/tw/Hu1wRm493ZfRUcJI/ultOq2\nBPjap0Ydl+1XTRzIVRNbp7GR/VNYs+dwq8Lf150V5HpeoQ02JtIR3MvYuwk2sN4Wp+dmsGbP4YDH\nnF4Eb76Ji4li16+uCjqdORIIKiIi8mgI5x8xxvwoyPnzgQEBDj1ojHkzRPs6hDHmSeBJgClTpvSo\npxOolnLB6Gzuv2gEd5/XOgMDvHrv2VTXNXapXcFqusFwCrmp9lcNT4T53zqfmrqm9j12kD7Jcaz+\nv0tbuTs1ymtP9xeq7hDIYDi339udZXwtDn//wQpUn7vnBGctrBmT/OtgIsL8b13QYbtD4V+3ncm6\nvYf9Fj4Ed9xCS3vOYpYTA7SOOotgs+Ha4tkvT+NIbeB8GhUl/PSa8b4PfnmJ5CHetloiM4Aft3P+\n94GAImKMuaQD9hQDQ1z7g223Ynvb694riImO4ruXjQ16PDk+Juibw52FM8gcbHprIBZ858Kgi+wd\nDyP7pbbvqQtIiY9h408va7U2V7C++84kWM0mmFgEa4kEE39n0kGgBRg3/vSyVutUdQeZyXG+z9+6\nccY8Qi1HJw/tw+yvn+f7UmdX0JGWSFJcTJtrYd12dt6JmtUjaatk+qMx5um2ThaRPm0d7wCzgOdE\n5A9YA+ujgOXGmCYROSIi07EG1m8F/tLJYZ/UfP+KsWQlx3FVgK6uYLi/bRGpBHuT/M83TvL7kl+X\nEaTgDNad1XqsJHA35JWnDmR/5TFuCTCVOJQ118JBsIH1QHi/u9Mef7np9FarBLdFTLTQ2GxazYZT\nWhM0NRlj/tTeyaH4CYSIXIclAtnAOyKy1hhzmTFmk4i8BGwGGoH77ZlZAPcBTwGJWAPqETWo3t08\n9aUzKakMfeZMWkIs3/70mC60CH712VODzlLpaXi7e9y4l03vKoK2ODwF7Xi7MHW+rOcQHSXcdf7w\nrjOwE/n19RP56wcFvu/edwXHM7YG8Nq95zBvc2mvWNuqq2lrTCQBuAE4BLwFfA84D9gB/NwY03ra\nTIgYY14HXg9y7GHg4QDuK4EJHQ3zZOPCMa27DcLNjVN7ziSHjrLsB5/qFCFsbyC19ZhI4BbH5yYP\nZtKQDEb1D0+XYGcwuE8Sv7p+YtDjwd5Y70rG5aQdd2vnZKUtmZ0JfBq4A1gI5AJ/BaqwWgSKctIx\nID0h6MfAOkLQF+w8OdOZBOB9wVJEIlpAlMinrc7RccaYCSISAxQZY5ypG++KyLpusE1RIobnvjyt\nU7s+vC2R31w/kbdG7evSGUk9leMZK1G6n7ZEpB7AGNMoIvs8x7puPqaiRCBnj+zbqdfzjon0SY4L\n+nKfooSTtkRksP2uiLi2sfeDjzoqinLCRPBrA8pJRlsi8l3X9krPMe++oigdwKsVU4dl8uH2AxG9\nlpJyctHWFN823xFRFKV9lj/4KY7VB1icKQhP3DKZPQeP9oilVxQlFNqa4vsWwV+sxRhzTZdYpCi9\niH6pCQHdg83wTY6P4ZSBOrVUiRza6s76nf3/Waw1sJ6x928CSrvSKEVRFCUyaKs7axGAiPzeGOP+\ncNRbIqJjIorSCUTywnuKAqF92TBZRHzrJ4jIMCDyF01SFEVRTphQVmL7JrBQRAqxJpMMxf5Wh6IE\n4usXj9R+/XYIx1Iekca9F45gz8Gj/M+ZQ9r3rISNdkXEGPOuiIwCnLXKt9pfHlSUgHyrixdy7E1o\nZ1ZwslLiefLWKe17VMJK0O4sETnD2TbG1Blj1tm/ukB+FEVRlJOPtloi/xGRC2m7svQvoPX3SBVF\nUZSTgrZEJB1YRdsiUt655ijKyUEEf1JbUfxoa4pvXjfaoSgnJTrDV4l0dG0FRVEUpcOoiChKGNDe\nLKW3oCKiKGFEP7ikRDrtiohY3CIiP7b3c0VkatebpiiKovR0QmmJ/A04C2vhRbC+sf5Yl1mkKIqi\nRAyhiMg0Y8z9wDEAY8whIO5EAhWRz4vIJhFpFpEpLvc8EakVkbX27wnXsckiskFECkTkUdGV65QI\nRqf4Kr2FUESkQUSisccCRSQbCP0rO4HZiLXE/OIAx3YYYybZv3tc7o8DdwGj7N/lJ2iDooQdrQop\nkU4oIvIo8DrQT0QeBpYAj5xIoMaYLcaYbaH6F5GBQJoxZpkxxgAzgWtPxAZFURTlxAllAcZnRWQV\n8Cmst9evNcZs6UKbhonIWqAS+JEx5kNgEFDk8lNkuwVERO7GXmk4Nze3C01VFEU5uWnr87iZrt0y\n4Hn3MWPMwbYuLCLzsb6I6OVBY8ybQU4rAXKNMRUiMhl4Q0TGtxVOIIwxTwJPAkyZMkV7n5Uehy4F\nr/QW2mqJrMIaBxEgFzhkb2cAe4BhbV3YGHPJ8RpjrxBcZ2+vEpEdwGigGBjs8jrYdlMURVHCSNAx\nEWPMMGPMcGA+cLUxpq8xJgv4DPBeVxgjItn2ID721xRHAYXGmBLgiIhMt2dl3QoEa80oiqIo3UQo\nA+vTjTGznR1jzBzg7BMJVESuE5EirPdP3hGRufah84H19pjIK8A9rm6z+4B/AgXADmDOidigKOFE\np/gqvYVQPo+7T0R+BDxj738B2HcigRpjXsea8eV1fxV4Ncg5K4EJJxKuovQ0dIqvEumE0hK5CcjG\nKvRfB/rR8va6oiiKchITyhTfg8AD3WCLoiiKEmG0KyIisoAAK1cbYy7uEosURVGUiCGUMZHvuLYT\ngOuBxq4xR1FOLnQpeCXSCaU7a5XH6SMRWd5F9iiKoigRRCjdWe4316OAyUB6l1mkKIqiRAyhdGe5\n31xvBHYCd3alUYrS2zH6oojSSwhFRE4xxhxzO4hIfBfZoygnFfqeiBLphPKeyNIAbh93tiGKoihK\n5NHWKr4DsJZbTxSR08E3jSQNSOoG2xSl16K9WUpvoa3urMuA27FWzP2Dy70K+GEX2qQoJw3am6VE\nOkFFxBjzNPC0iFxvr2mlKIqiKH601Z11izHmGSBPRL7lPW6M+UOA0xRFUZSTiLa6s5Lt/5TuMERR\nTiZ0SETpLbTVnfV3+/+n3WeOopxciM7xVSKcUN5YzwbuAvLc/o0xd3SdWYqiKEokEMrLhm8CH2J9\nJrepa81RlJMDneKr9BZCEZEkY8z/drkliqIoSsQRyhvrb4vIlV1uiaKchOiIiBLphCIiD2AJSa2I\nHBGRKhE50tWGKYqiKD2fUL4nktodhijKyYTRSb5KLyGU2VlnBHCuBHYbY/QLh4pyAugMXyXSCaU7\n62/AMuAf9m8Z8DKwTUQ+3ZFAReS3IrJVRNaLyOsikuE69gMRKRCRbSJymct9sohssI89KjrBXlEU\nJeyEIiL7gNONMZONMZOBSUAhcCnwmw6GOw+YYIyZCOQDPwAQkXHAjcB44HLgbyISbZ/zONb7KqPs\n3+UdDFtRFEXpJEIRkdHGmE3OjjFmMzDWGFPY0UCNMe+5usKWYa0UDDADeMEYU2eM2QkUAFNFZCCQ\nZoxZZqxPws0Eru1o+IoSbvQ9EaW3EMp7IptE5HHgBXv/BmCz/XXDhk6w4Q7gRXt7EJaoOBTZbg32\nttc9ICJyN3A3QG5ubieYqChdg/bKKpFOKC2R27FaBN+wf4W2WwNwUbCTRGS+iGwM8Jvh8vMg1nfb\nn+14FFpjjHnSGDPFGDMlOzu7My+tKIqiuAhlim8t8Hv756W6jfMuaeu6InI78BngU3YXFUAxMMTl\nbbDtVkxLl5fbXVEiEu3NUnoL7bZERGSUiLwiIptFpND5nUigInI58D3gGmPMUdehWcCNIhIvIsOw\nBtCXG2NKgCMiMt2elXUr1ppeiqIoShgJZUzkP8BDwB+xuq++RGjdYG3xVyAemGf3CS8zxtxjjNkk\nIi8Bm7G6ue43xjiLPt4HPAUkAnPsn6IoihJGQhGRRGPM+yIixpjdwE9EZBXw444GaowZ2caxh4GH\nA7ivBCZ0NExFURSl8wlFROpEJArYLiJfxRqL0K8dKsqJoHN8lV5CqAswJgFfByYDXwRu60qjFOVk\nQGf3Kr2BUGZnrbA3q7HGQxRFURQFaENERGRWWycaY67pfHMURVGUSKKtlshZwF7geeAT9Ps5itJp\n6IiI0ltoS0QGYC2yeBNwM/AO8Lx7HS1FUTqO1sqU3kDQgXVjTJMx5l1jzG3AdKylTxbaM7QURVEU\npe2BdXuRxauwWiN5wKPA611vlqL0bnSGr9JbaGtgfSbWy32zgZ8aYzZ2m1WKchKgK/gqvYG2WiK3\nADVY74l83ZXgBTDGmLQutk1RFEXp4QQVEWPMia6PpSiKovRyVCgUJQwYneSr9BJURBQlTOiIiNIb\nUBFRFEVROoyKiKIoitJhVEQUJQzoeyJKb0FFRFHChL4movQGVEQURVGUDqMioihhQHuzlN6Cioii\nhAnRSb5KL0BFRFEURekwKiKKoihKhwmLiIjIb0Vkq4isF5HXRSTDds8TkVoRWWv/nnCdM1lENohI\ngYg8KroEqhLB6BRfpbcQrpbIPGCCMWYikA/8wHVshzFmkv27x+X+OHAXMMr+Xd5t1ipKV6DVIKUX\nEBYRMca8Z4xptHeXAYPb8i8iA4E0Y8wyY4wBZgLXdrGZiqIoSjv0hDGRO4A5rv1hdlfWIhE5z3Yb\nBBS5/BTZbgERkbtFZKWIrCwvL+98ixVFURSgnc/jnggiMh8YEODQg8aYN20/DwKNwLP2sRIg1xhT\nIa8meHkAAA6xSURBVCKTgTdEZPzxhm2MeRJ4EmDKlCna+6z0OHQpeKW30GUiYoy5pK3jInI78Bng\nU3YXFcaYOqDO3l4lIjuA0UAx/l1eg203RYlYdEhE6Q2Ea3bW5cD3gGuMMUdd7tkiEm1vD8caQC80\nxpQAR0Rkuj0r61bgzTCYriiKorjospZIO/wViAfm2TN1l9kzsc4HfiYiDUAzcI8x5qB9zn3AU0Ai\n1hjKHO9FFSVi0N4spZcQFhExxowM4v4q8GqQYyuBCV1pl6J0J/qmk9Ib6AmzsxRFUZQIRUVEURRF\n6TAqIooSBnRIROktqIgoSpjQpeCV3oCKiKIoitJhVEQUJQwYXcZX6SWoiChKmNApvkpvQEVEURRF\n6TAqIoqiKEqHURFRlDCgQyJKb0FFRFHChA6JKL0BFRFFURSlw6iIKIqiKB1GRURRwoAOiSi9BRUR\nRQkToi+KKL0AFRFFURSlw6iIKEoY0Cm+Sm9BRURRwoR2Zim9ARURRVEUpcOoiCiKoigdRkVEUcKA\n0Um+Si9BRURRwoUOiii9gLCIiIj8XETWi8haEXlPRHJcx34gIgUisk1ELnO5TxaRDfaxR0Un2SuK\nooSdcLVEfmuMmWiMmQS8DfwYQETGATcC44HLgb+JSLR9zuPAXcAo+3d5t1utKIqi+BEWETHGHHHt\nJtOyCsQM4AVjTJ0xZidQAEwVkYFAmjFmmbG+KzoTuLZbjVaUTkTfE1F6CzHhClhEHgZuBSqBi2zn\nQcAyl7ci263B3va6B7v23cDdALm5uZ1ntKJ0Itofq/QGuqwlIiLzRWRjgN8MAGPMg8aYIcCzwFc7\nM2xjzJPGmCnGmCnZ2dmdeWlFURTFRZe1RIwxl4To9VlgNvAQUAwMcR0bbLsV29ted0VRFCWMhGt2\n1ijX7gxgq709C7hRROJFZBjWAPpyY0wJcEREptuzsm4F3uxWoxWlk9EJhkpvIFxjIr8SkTFAM7Ab\nuAfAGLNJRF4CNgONwP3GmCb7nPuAp4BEYI79UxRFUcJIWETEGHN9G8ceBh4O4L4SmNCVdimKoijH\nh76xrihhwOgcX6WXoCKiKGFCh0SU3oCKiKIoitJhVEQURVGUDqMioihhQEdElN6CioiihAkdElF6\nAyoiiqIoSocJ2wKMinIyMz4njdr6pvY9KkoPR0VEUcLADWfmcsOZusK0Evlod5aiKIrSYVREFEVR\nlA6jIqIoiqJ0GBURRVEUpcOoiCiKoigdRkVEURRF6TAqIoqiKEqHURFRFEVROoz09o/jiEg51id4\nI4m+wIFwG9HNaJxPDjTOkcNQY0x2e556vYhEIiKy0hgzJdx2dCca55MDjXPvQ7uzFEVRlA6jIqIo\niqJ0GBWRnsmT4TYgDGicTw40zr0MHRNRFEVROoy2RBRFUZQOoyKiKIqidBgVkR6AiGSKyDwR2W7/\n92nDb7SIrBGRt7vTxs4mlDiLyBARWSAim0Vkk4g8EA5bTxQRuVxEtolIgYh8P8BxEZFH7ePrReSM\ncNjZmYQQ5y/Ycd0gIktF5LRw2NmZtBdnl78zRaRRRD7XnfZ1FSoiPYPvA+8bY0YB79v7wXgA2NIt\nVnUtocS5Efi2MWYcMB24X0TGdaONJ4yIRAOPAVcA44CbAsThCmCU/bsbeLxbjexkQozzTuACY8yp\nwM+J8MHnEOPs+Ps18F73Wth1qIj0DGYAT9vbTwPXBvIkIoOBq4B/dpNdXUm7cTbGlBhjVtvbVVji\nOajbLOwcpgIFxphCY0w98AJW3N3MAGYai2VAhogM7G5DO5F242yMWWqMOWTvLgMGd7ONnU0ozxng\na8CrQFl3GteVqIj0DPobY0rs7f1A/yD+/gR8D2juFqu6llDjDICI5AGnA590rVmdziBgr2u/iNZC\nGIqfSOJ443MnMKdLLep62o2ziAwCriPCW5peYsJtwMmCiMwHBgQ49KB7xxhjRKTVvGsR+QxQZoxZ\nJSIXdo2VncuJxtl1nRSs2ts3jDFHOtdKJZyIyEVYInJuuG3pBv4E/K8xpllEwm1Lp6Ei0k0YYy4J\ndkxESkVkoDGmxO7GCNTUPQe4RkSuBBKANBF5xhhzSxeZfMJ0QpwRkVgsAXnWGPNaF5nalRQDQ1z7\ng2234/UTSYQUHxGZiNU1e4UxpqKbbOsqQonzFOAFW0D6AleKSKMx5o3uMbFr0O6snsEs4DZ7+zbg\nTa8HY8wPjDGDjTF5wI3ABz1ZQEKg3TiLldv+BWwxxvyhG23rTFYAo0RkmIjEYT27WR4/s4Bb7Vla\n04FKV1dfJNJunEUkF3gN+KIxJj8MNnY27cbZGDPMGJNn5+FXgPsiXUBARaSn8CvgUhHZDlxi7yMi\nOSIyO6yWdR2hxPkc4IvAxSKy1v5dGR5zO4YxphH4KjAXa2LAS8aYTSJyj4jcY3ubDRQCBcA/gPvC\nYmwnEWKcfwxkAX+zn+vKMJnbKYQY516JLnuiKIqidBhtiSiKoigdRkVEURRF6TAqIoqiKMr/t3eu\nMXZVVRz//TttaEtpy2jVLypfDAGqaBiJRdIgqUaiiNQpTQTr1CjRCEVJFY1GJzSItmlUBIPSlCkV\n5SF2UJSWpnQoMgqlj5lOIRUUjIkE0yqjFTrCsPyw1nH23Dn39s7t2KHT/Utuss/e++y1H+fu5zlr\nNUweRDKZTCbTMHkQyWQymUzD5EFkgiLJJK1OrpdLaj/KeegoNJVKWnOkyhMlnSKpr0rYqtD0u+pI\nZLyWiPp7ZixfEU3b5HhEUpukGw8TZ3Fo4j2mNWUfLfIX6xOXAWChpOvNbP9ob5Y0Od59HxPM7NNj\nlVYVLgeazWww9RzrcowDXzKzn493JsYSSU2V7fRawszulPQ8sHy883IskFciE5dXcPXaX6wMiBn9\ng2HPYUt8PVzMUm+W9CiwUlK7pHWSHpb0Z0kLJa0MGxAbQyUJkr4habukPkk/VoliIEldklokfST5\ncHCfpGci/CxJD0naIWlTocU2/Hsk9QCfLyuopF8CM4AdMYusLMeJktZKekxui+WiuG+apDskPSlp\ng6RHJbVE2MEk/VZJHeGeI+meKO92Se8N//aQ0SXpT5KWJfcvibrukbRe0kmxwijqb2Z6XQ1Jb4x8\n9sTvHEnXSvpCEuc6hd0VSddEW/VI+nZJetXqfJnchkuvpDtK7muTdG+U9SlJ30zCLot63i3pR3LV\n50g6KGl1tOO8ivRGyJN0tqTfRXt1Szo1kd0pt0HzrKQrJF0d8X4vqTnidUn6fuSjT9LZJeUobcvM\nKDGz/JuAP+AgMBN4FpiFz6raI+xXwCfD/SmgM9wdwH1AU1y3A78FpgBnAi/ieo4ANgAfDXdzInc9\ncGGSXmu4u4CWijzehQ8MU4BuYE74LwbWhrsXmB/uVUBftfIm7spyfAu4LNyzgT8AJwJXJ3LegQ+8\nLSXptQId4f4pcG6434KrZCnqqhs4AdeLdCDKdUbIe31aV8CtSf1dDqwuKdP/6i+u78SVUAI0Rbue\nAuwMv0nAH/EvwS+I/EyvkNsR5alV538FTijqqyRfbcBzIWca0IfrhToNf7amRLwfAkvCbcAlVdpu\nhDz82Z0c7gXAPYnsp4GTgDlAP/DZCPtuUj9dwC3hnk88N3H/jbXaMq7PA+4b7//xsfDL21kTGDP7\np6TbgGXAS0nQPGBhuNcDK5Owu234VsP9ZvaypD14x7Ux/PfgHRjA+yR9GZgONAN78c6kKhH/JTO7\nSdJcYC6wORYxTcBzkmbjncq2JK8X1FX44eX4AK68stiemIp3GvOBGwDMrFdSbx3pLgBO19Bia6Zc\nyzDAr81sABiQ9Ddcvf35kZf9IefvEXcNrta/E1gKfKYO2ecDSyKdQbwD7Zd0QNK7Qt4uMzsgaQFw\nq5m9WCG34FRK6jzCeoHbJXVG/srYbKE0UdIvcC28rwBnAdsjzWkMKdYcxBVpllEmbxawTtLb8AEo\nXaVtNbcv8y9J/Qw9a3vwyUDBz6Ls22K1N7tCbmlbmtlBMnWTB5GJz/eAnfjMtx7+XXE9AGCuvvpl\ni2kabtNksqSp+Iyzxcz+Ij+8n1pLQHRwi/BOHEDAXjOr3Oao/NOPhrQcAj5mZvsq0q91f6oPKC3P\nJOA9ZnaoJK2BxGuQGv8vM3tEvq14Hr5iKn1hoE7W4DPsNwFr67yntM6DD+FtcyHwNUlvt5HnSpX6\nkizSXGdmXy1J85BVPwcZIQ+3drjVzC6W25LpSuKn9fxqcv0qw+u8LI8ppW2ZGR35TGSCEzPQu3Cb\nDQXduJZRgEuBh49ARNHB7o8Zec03fyS9FTcjusjMitXRPmCOpHkRZ4qkM8zsBeAFSYWtiUsbzOMm\n4EpFTx+zdoBtwMfDby7DZ7HPSzpN0iTckFDBA7h1uqI87zyM7AeBRZJeF/Gbk7Db8C2Vegf4LcDn\nIp0mSbPCfwPwQeDdeFkBNgNLJU0vkQtV6jzK+2Yz2wpcg68IZjCS90tqljQNt0r5SOSvVdIbCpnR\n3lWpIW8WQ6rU22pXS1UWh4xzcc3I/RXho23LTAl5EDk+WI3v0xdciXcwvbiW3KsaTTg6+lvwffFN\nuErsWrThe+mdcej5G3Nzoq3Ad+LgdTdwTsRfCtwkaTc+022EFfh2SK+kvXENbmFuhqQngWuBHck9\nX8HPVboZ2uYB3xpsiUPgJ4Car9+a2V7gOuChKFuq0v524GRi26UOrsK3DvdEXk8PGf8BtuKaYwfD\nbyOuivzxqLthbxrVqPMm4CchYxdwQ7RxJY/h21O9+HnF42b2BPB14IF4tjYDhzPzW03eSuB6Sbto\nfMfkUNx/M8MnUQWjastMOVmLbyYTSOoClpvZUVFLLv9e4yIz+0SV8A78cLfmK74xm9+Jr+6eGvOM\njpTXhm9fXvH/ltUoR9qWsc243Mw+PJb5mojklUgmMw5I+gFuQ2VFjWj9wArV+NhQ/gHn08CWozGA\nHA9IWoyf8/1jvPNyLJBXIplMJpNpmLwSyWQymUzD5EEkk8lkMg2TB5FMJpPJNEweRDKZTCbTMHkQ\nyWQymUzD/Be7EGrwo8OjJAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Blackmann window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flat Top Window" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='flat-top')" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOWV4P3fUWmXbO3etFiWLGO8bxgLbIPZwmIgGwmB\nZICkx/12epLQ05l0Mt096fTbebt73nRCd0imA0kI3UmAQCAEYgKGgDdkY9ngfZElL7Ika7UsWbuq\nzvxRV1AotizLVbq1nO/nUx/Vrbp177mS6tRT5z73eURVMcYYE/3i3A7AGGPM+LCEb4wxMcISvjHG\nxAhL+MYYEyMs4RtjTIywhG+MMTHCEr5xnYgUi4iKSLzbsQSTiLwiIg+M8bV/JyI/D3ZMJrZZwjfj\nRkSOi0iPiJwLuE27xG1cLyKnLrJOWHyAqOptqvqkmzEYE8gSvhlvd6pqesCt3u2AjIkVlvBN2BGR\nh0TkoIh0ikiNiPyp83ga8Aow7SLfEDY5P9uddcpFJE5E/kZETohIk4j8h4hkONsd+kawTkTqRaRB\nRL56gdhmiEi7iMQ5y4+LSFPA8/8pIg87998SkT9x7j8oIltE5DsickZEjonIbcO2u9E55g1A7rD9\n3iUi+519vyUiVwb8rl4KWK9KRJ4NWK4VkUWj/uWbqGYJ34SjJmAtMBF4CPieiCxR1S7gNqD+It8Q\nVjs/M511KoAHndsaoARIBx4d9ro1QBlwC/BXInLT8A2r6jGgA1gcsK9zQwkYuA7YeIHjuho4jD+Z\n/2/gJyIiznO/BHY6z/2/wPu1fxGZBTwFPAzkAeuBl0Qk0dnXKucDbRqQCJQ7rxs6zj0XiMfEGEv4\nZrz9xmmltovIb863gqr+TlWr1W8j8Bqw6jL3ez/wXVWtUdVzwDeAe4fV+b+lql2quhd4AvjMBba1\nEbhORKY4y885yzPwf0jtvsDrTqjq46rqBZ4EpgKTRaQIuAr4W1XtU9VNwEsBr/s08DtV3aCqA8B3\ngBTgGlWtATqBRfg/fF4F6kVkNv4Pn82q6hvl78hEuajqFWEiwkdV9fWRVnBKHd8EZuFvlKQCe0dY\n/1zA4pwLrDYNOBGwfAL////kgMdqhz0//wLb2gjcBZzCXz56C/gc0MvICfb00B1V7XYa9+n4W/Vn\nnG8wgfsvPF/squoTkVogPyCe64GZzv12/Mm+nAt/2zAxyFr4JqyISBLwa/yt2Mmqmom/hDFU+vij\n4V2HnQQ+eb51gHpgesByETAINAY8Vjjs+QudUN6I/xvH9c79LcC1jFzOGUkDkOWcowjc/3ljd8pA\nhUBdQDzXOzFtdG7XXUY8JkpZwjfhJhFIApqBQae1f0vA841AztAJ1wtoBnz4a/VDngL+wjk5mg78\nf8AzqjoYsM7fikiqiMzFf+7gmfNtXFWrgB7gs8BGVe1w4voEY0iwqnoCqAS+JSKJIrISuDNglV8B\nd4jIjSKSAPwl0Ae87Ty/Ef/5hxRVPQVsBm4FcoB3LzUeE72spGPCiqp2isiX8Se5JPy17N8GPH9I\nRJ4CakTEA8wZfuLWKZd8G9jqJMhbgZ/iL41sApLx17q/NGz3G4Gj+BtC31HV10YIdSOwQlVrA5Zn\nA7vGcNgA9+Gv67cBFcB/AJnO8RwWkc8C38dfxnkPf/fWfuf5I05Za7Oz3CEiNUCzc77AGADEJkAx\nsU5EioFjQMKwFr8xUcVKOsYYEyMs4RtjTIywko4xxsQIa+EbY0yMCKteOrm5uVpcXOx2GMYYEzF2\n7tzZoqp5o1k3rBJ+cXExlZWVbodhjDERQ0ROXHwtPyvpGGNMjLCEb4wxMcISvjHGxAhL+MYYEyMs\n4RtjTIywhG+MMTHCEr4xxsSIsOqHb0y4eG3/afbVnT3vc4unZ7HmiknjHJExl88SvjHDvPDuKf7i\nGf+0tO9PMe5Q9T/2o88u5Za5U87zamPClyV8YwK8Xd3C157bQ3lJDk9+fjmJ8R+uevb0e7n38W18\n+el3eXpdOYsKM12K1JhLZzV8YxxHGjv50//cSXFOGv/+uaV/lOwBUhI9/OSBZUyakMwXfraDk63d\nLkRqzNhYwjcGaOro5aEndpCc4OGJh64iIyXhguvmpifxxENX4VXlwSfe4UxX/zhGaszYWcI3Ma+r\nb5DPP7mDM939PPHgVRRkpV70NaV56Tz+X5Zxqr2Hdf9ZSe+ATR1rwp8lfBPTBr0+vvTUuxyo7+AH\n9y1hXn7GqF97VXE23/3UQnYcP8NXn92Nz2eTCZnwZidtTUz7u5f284dDTXz7Y/NYM/vSu1quXTCN\nujM9/OMrh8jPSuEbt10ZgiiNCQ5r4ZuYteN4Gz/fdpJ1q0u4/+rpY97OutUl3Hd1ET/aWMOB+o4g\nRmhMcFnCNzHrRxtryEpN4C9umnVZ2xER/uojs0lN9PD45pogRWdM8FnCNzHpaNM5Xj/YyOfKi0lJ\n9Fz29jJSE7j3qiJe2l1PfXtPECI0Jvgs4ZuY9OPNNSTFx/FA+dhLOcN9fmUxCvx0y7GgbdOYYLKE\nb2JOU2cvz++q45NLC8hJTwradguyUlm7YCpPvXOSsz0DQduuMcFiCd/EnCffPs6Az8efrCoJ+rbX\nrS6hq9/LL7efDPq2jblclvBNTOnqG+Tn207ykTlTmJGbFvTtz52WwcqZuTyx9Rh9g3YxlgkvlvBN\nTHlmRy1newZYd13wW/dD1q0uoamzjxffqw/ZPowZC0v4JmYMen38ZMsxrirOYklRVsj2s6oslyun\nTuTxTTV29a0JK5bwTcz43d4G6tp7WLe6NKT7ERHWrZ5BVdM53jrSFNJ9GXMpLOGbmKCqPLaphtK8\nNG4cwxAKl2rtgmlMy0jmRxvtQiwTPizhm5jwdnUr++s7+K+rSoiLk4u/4DIleOL4/MoZbD/Wxu7a\n9pDvz5jRsIRvYsKPNtWQm57ERxfnj9s+711exITkeB7bZK18Ex4s4Zuod/h0J5uONPPQtcUkJ1z+\nMAqjlZ4Uz/1XT+eVfQ3UttnMWMZ9lvBN1HvxvTo8ccJnlheN+74/Vz4dn8JLe6yLpnFfyBO+iHhE\n5F0ReTnU+zJmOFVl/d4GrinNITstcdz3n5+ZwuKiTNbvbRj3fRsz3Hi08L8CHByH/RjzRw42dHK8\ntZvb5091LYbb501lX12HTXhuXBfShC8iBcAdwI9DuR9jLuSVfQ3ECdwyZ7JrMdw6b8r7sRjjplC3\n8B8Bvgb4LrSCiKwTkUoRqWxubg5xOCaWqCq/29vAipKcoI6KeakKs1NZUJDB+n2nXYvBGAhhwheR\ntUCTqu4caT1VfUxVl6nqsry8vFCFY2LQkcZz1DR3uVrOGXL7/Knsrm3n1Bkr6xj3hLKFfy1wl4gc\nB54GbhCRn4dwf8Z8yPq9DYjAR+ZOcTsUbnPKOr+3Vr5xUcgSvqp+Q1ULVLUYuBf4g6p+NlT7M2a4\nV/Y1sLw4m7wJ7pVzhkzPSWPutInWW8e4yvrhm6h0tKmTI43nwqKcM+T2+VPZdbLd5rw1rhmXhK+q\nb6nq2vHYlzEA6/eeRuSDHjLhwMo6xm3WwjdRaf3eBpZNz2LyxGS3Q3lfSV46s6dMsO6ZxjWW8E3U\nqWk+x6HTndw2L3zKOUNunz+VyhNnaOzodTsUE4Ms4Zuo84pTMgmncs6Q2+dPQdXKOsYdlvBN1Fm/\nt4HFRZlMy0xxO5Q/MnPSBMompVtvHeMKS/gmqpxo7WJ/fQe3h2E5Z8ht86fyzvE2mjv73A7FxBhL\n+CaqDJVzbpsffuWcIXfMn4oqvLrfyjpmfFnCN1Fl/d4GFhZkUJCV6nYoFzRrcjoleWlW1jHjzhK+\niRq1bd3sOXWW28LoYqvzERFunzeVbTWttJ6zso4ZP5bwTdQYKpGEc/1+yG3zp+BTeO1Ao9uhmBhi\nCd9EjbcONzNrcjpFOeFbzhkyZ+pE8jNT2HjYhgQ348cSvokKPf1e3jnexuqyyBhiW0RYVZbL1uoW\nBr0XnC7CmKCyhG+iwvZjrfQP+lg1KzISPsCqsjw6ewfZfard7VBMjLCEb6LCpiMtJMbHcfWMbLdD\nGbVrZ+YQJ7DxSIvboZgYYQnfRIXNVc1cPSOb5ASP26GMWmZqIgsKMtlcZXV8Mz4s4ZuIV9/eQ1XT\nOVaV5bodyiVbPSuP3bXtnO0ecDsUEwMs4ZuIt6XKXxJZHUH1+yGry3LxKWyttrKOCT1L+Cbibaxq\nZtKEJK6YPMHtUC7ZosJMJiTFs+mIlXVM6FnCNxHN61O2Hm1hVVkeIuJ2OJcs3hPHNTNz2FzVgqq6\nHY6JcpbwTUTbV3eW9u4BVs+KvPr9kNWz8qhr76GmpcvtUEyUs4RvItpQKWTlzAhO+M7FYlbWMaFm\nCd9EtM1VLczLn0hOepLboYxZYXYqM3LT2FxlJ25NaFnCNxGrs3eAXSfPRMxwCiNZVZZLRXUrfYNe\nt0MxUcwSvolYFdWtDPqUVVGQ8FeX5dEz4GXniTNuh2KimCV8E7E2VTWTmuhh6fQst0O5bCtKc4iP\nEzbZMAsmhCzhm4i1uaqF8pIcEuMj/984PSmepdOzbJgFE1KR/04xMelEaxcnWrsjcjiFC1k9K4/9\n9R02ubkJGUv4JiJtiuDhFC5k6MNr61Er65jQsIRvItKmI83kZ6YwIzfN7VCCZt60DLJSE6w/vgkZ\nS/gm4gx4fVRUt7J6VmQOp3AhcXHCyrI8NtkwCyZELOGbiPPuyXbO9Q2yOorq90NWl+XScq6Pgw2d\nbodiopAlfBNxNlc1EydwTQQPp3AhQ9cUWG8dEwohS/gikiwi74jIbhHZLyLfCtW+TGzZXNXCwsJM\nMlIS3A4l6KZkJDNrcjpb7MStCYFQtvD7gBtUdSGwCLhVRFaEcH8mBpzrG2Rv3VmuKc1xO5SQuaY0\nl8rjZ+gf9LkdiokyIUv46nfOWUxwbnYmylyWHcfa8PqU8pLoK+cMWVGSQ8+Al92n2t0OxUSZkNbw\nRcQjIu8BTcAGVd1+nnXWiUiliFQ2N1vd0oysoqaVBI9ExXAKF7KiJBsR/1hBxgRTSBO+qnpVdRFQ\nACwXkXnnWecxVV2mqsvy8qLnIhoTGhXVrSwuyiIl0eN2KCGTmZrIlVMmWsI3QTcuvXRUtR14E7h1\nPPZnotPZ7gH21Z+lvCR66/dDyktz2HnyDL0DNlyyCZ5Q9tLJE5FM534KcDNwKFT7M9Fv+7FWVP3J\nMNqVl+TQP+hj10kbLtkETyhb+FOBN0VkD7ADfw3/5RDuz0S5ippWkuLjWFyU6XYoIbe8JJs4gW1W\n1jFBFB+qDavqHmBxqLZvYk9FdStLp2eRFB+99fshE5MTmJ+fQUWNJXwTPHalrYkIbV39HDrdGRP1\n+yErSnN4r7adnn6r45vgsIRvIsJ2p6UbC/X7IeUlOQx4lcoTbW6HYqKEJXwTESpqWklJ8LCgIPrr\n90OuKs4mPk6se6YJGkv4JiJUVLeyrDgrKqYzHK20pHgWFFgd3wRP7Lx7TMRq7uyjqulcTJVzhpSX\n5rDn1FnO9Q26HYqJApbwTdjbNlS/j6ETtkPKS3Lx+pQdx62Oby7fRRO+iKSKyN+KyOPOcpmIrA19\naMb4VdS0kp4Uz/z8DLdDGXdLp2eR4BHrj2+CYjQt/CfwD3Vc7izXAf8QsoiMGWZbdSvLZ2QT74m9\nL6QpiR4WF2ZZHd8ExWjeQaWq+r+BAQBV7QaiZyJRE9YaO3qpaemKyXLOkBWlOeyrO0tH74DboZgI\nN5qE3++MhaMAIlKKv8VvTMgNdUmMxRO2Q8pLcvApvFNjdXxzeUaT8L8J/B4oFJFfAG8AXwtpVMY4\nKqpbmZgcz5VTJ7odimsWF2WSGB9nZR1z2S46lo6qbhCRXcAK/KWcr6iqTbhpxkVFTStXl+TgiYvd\nKmJygoelRVl2AZa5bBds4YvIkqEbMB1oAOqBIucxY0Kqrr2Hk23dMV2/H1JemsPB0x20d/e7HYqJ\nYCO18P/F+ZkMLAN242/hLwAq+aDXjjEhYfX7D5SX5vDdDbCtpo1b501xOxwToS7YwlfVNaq6Bn/L\nfokzDeFS/EMe141XgCZ2VVS3kpWawBWTJ7gdiusWFmSSkuB5/yI0Y8ZiNCdtr1DVvUMLqroPuDJ0\nIRkDqsq2mlZWlOQQF8P1+yGJ8XEsK7Y6vrk8o0n4e0TkxyJyvXN7HNgT6sBMbKtt66GuvcfKOQFW\nlORwuLGT1nPWK9qMzWgS/kPAfuArzu2A85gxIVNR4+8IZidsPzD04bfN+uObMRpNt8xe4HvOzZhx\nUVHdSm56EjMnpbsdStiYn59BWqKHipoW7lgw1e1wTAS6aMIXkWM4V9kGUtWSkERkYp6qUlHTyoqS\nbESsfj8kwRPHVTOyrY5vxmw0k5gvC7ifDNwDZIcmHGPgWEsXjR19Vr8/j/KSHN463ExTRy+TJia7\nHY6JMBet4atqa8CtTlUfAe4Yh9hMjKqI4fHvL2boQ9CGWTBjMZqSTuBVtXH4W/yj+WZgzJhUVLcy\neWISM3LT3A4l7MydlsGE5Hi21bRy96J8t8MxEWY0iftfAu4PAseAT4UmHBPr/P3v21g5M8fq9+fh\niROutjq+GaPRJPwvqGpN4AMiMiNE8ZgYd7TpHC3nrH4/khUlObx+sImGsz1MzUhxOxwTQUbTD/+5\nUT5mzGX7oH6f63Ik4ev9Or618s0lumALX0RmA3OBDBH5eMBTE/H31jEm6CqqW8nPTKEw21quF3Ll\nlIlkpiZQUd3Kx5cUuB2OiSAjlXSuANYCmcCdAY93Av81lEGZ2OTz+cfPuWH2ZKvfjyBuqI5vPXXM\nJbpgwlfVF4EXRaRcVSvGMSYTow43dnKme8Dq96NQXpLDq/sbqW3rpjA71e1wTIQYqaTzNWfy8vtE\n5DPDn1fVL4c0MhNzhob+tYR/ceWl/nMc22paLeGbURuppHPQ+Vk5HoEYU1HdSlF2KvmZVr+/mFmT\n08lOS6SippV7lhW6HY6JECOVdF5yfj45lg2LSCHwH8Bk/GPxPKaq/zqWbZno5/Mp24+18ZG5k90O\nJSKICCtKstlW3Yqq2jkPMyojlXRe4jyDpg1R1bsusu1B4C9VdZeITAB2isgGVT0wtlBNNDvQ0MHZ\nHqvfX4rykhzW7z3NybZupufYVcnm4kYq6Xzncjasqg34p0dEVTtF5CCQj388fWM+ZJv1v79kgf3x\nLeGb0RippLNx6L6IJAKz8bf4D6tq/6XsRESK8c+Fu/08z60D1gEUFRVdymZNFKmobmVGbhpTMuwS\nj9EqzUsnb0ISFTWt3Lvc3jvm4i56pa2I3AFUA/8GPAocFZHbRrsDEUkHfg08rKodw59X1cecCdKX\n5eXljT5yEzUGvT7eOdbGChsd85L46/g5VDh1fGMuZjRDK/wLsEZVr1fV64A1jHL2KxFJwJ/sf6Gq\nz489TBPN9td30Nk3aPX7MSgvyaGps4+ali63QzERYDQJv1NVjwYs1+C/2nZE4u828BPgoKp+d4zx\nmRgwdMXoihKbV+dS2bg65lKMJuFXish6EXlQRB4AXgJ2iMjHh42xM9y1wOeAG0TkPed2ezCCNtGl\norqVmZPSmTTB6veXqjgnlSkTk22YBTMqoxkeORloBK5zlpuBFPzj6yhw3lKNqm4BrHOwGdGA18eO\n4218wgYBGxMRobw0h81VzdYf31zURRO+qj40HoGY2LTnVDvd/V6r31+G8tIcXni3jsONncyeMtHt\ncEwYG80UhzOALwHFgeuP4sIrYy5q05EWROAaS/hjtnKm/9qFLVUtlvDNiEZT0vkN/pOvLwG+0IZj\nYs2Woy0sKMgkMzXR7VAi1rTMFErz0thc1cKfrCpxOxwTxkaT8HtV9d9CHomJOR29A7xX286fXVfq\ndigRb1VZHk/vOEnfoJekeI/b4ZgwNZpeOv8qIt8UkXIRWTJ0C3lkJupVVLfi9Smrymw4hcu1qiyX\n3gEfO4+fcTsUE8ZG08Kfj9O9kg9KOuosGzNmW6paSE30sLgoy+1QIt7VJTnExwmbj7ZwzUz7ADXn\nN5qEfw9Qcqnj5xhzMZurmllRkkNi/Gi+aJqRpCfFs6Qoi81VzfzVrbPdDseEqdG80/bhn9fWmKCp\nbevmeGu3lXOCaFVZLvvrO2jrsraZOb/RJPxM4JCIvCoiv3VuL4Y6MBPdthxtAbCEH0Qry3JRha3O\n79aY4UZT0vlmwH0BVgH3hiYcEys2VzUzZWIypXnpbocSNRYUZDIxOZ7NVc3cuXCa2+GYMHTRFr4z\nLn4HsBb4Gf6Ttf8e2rBMNPP6lK1HW1lVlmtDAQSRJ064dmYuW6pabLhkc14XTPgiMsvpjnkI+D5w\nEhBVXaOq3x+3CE3U2Vd3lrM9A6y0ck7QrSzLpf5srw2XbM5rpBb+Ifyt+bWqutJJ8t7xCctEs81V\nzQBca90Hg27VTP8kQpuPNLsciQlHIyX8j+Ofk/ZNEXlcRG7ERr80QbC5qoW50yaSm57kdihRpygn\nlek5qe+fFDcm0AUTvqr+RlXvxT+X7ZvAw8AkEfk/InLLeAVooktX3yC7Tp6xck4IrZyZS0V1KwNe\nG/rKfNhoTtp2qeovVfVOoAB4F/irkEdmotL2Y60MeJXVZTZ/caisKsujq9/Luyfb3Q7FhJlLusRR\nVc84k47fGKqATHTbXNVCUnwcS6fbcAqhUl6aQ5zAliqr45sPs2vazbjaXNXC8hnZJCfYiI6hkpGS\nwMLCTDZVWR3ffJglfDNuGs72cLTpnJVzxsGqsjz2nGrnbPeA26GYMGIJ34ybzU6L007Yht6qslx8\nCm9XWyvffMASvhk3W6payE1PYvaUCW6HEvUWFWaSnhTPZuueaQJYwjfjwudTth5tseEUxkmCJ44V\nJTlssTq+CWAJ34yLAw0dtHb1vz/htgm9VWW5nGzr5kSrDbNg/Czhm3Hx1uEmwIZDHk+rZ/lPjr95\nqMnlSEy4sIRvxsWGA40sLMxk0sRkt0OJGTNy0yjNS2PDwUa3QzFhwhK+CbnGjl52nzrLLXMmux1K\nzLl5zhS217Rxtse6ZxpL+GYcbDjgb2Fawh9/t8ydzKBP3y+pmdhmCd+E3GsHGinOSWXmJJvdarwt\nKsgkb0ISr+23so6xhG9CrLN3gIrqFm6eM9m6Y7ogLk646cpJvHW4ib5Bm84i1lnCNyG18UgzA17l\n5jlT3A4lZt08ZzJd/V4qqlvdDsW4zBK+CakNBxrJTku00TFddE1pLqmJnvfPpZjYFbKELyI/FZEm\nEdkXqn2Y8Dbg9fGHQ03cOHsSnjgr57glOcHDdbPy2HCgEZ/PJjePZaFs4f8MuDWE2zdhbntNG529\ng9xsvXNcd/OcyTR19rGn7qzboRgXhSzhq+omoC1U2zfhb8OB0yQnxLHKhkN23Q3Ot6wNB067HYpx\nkes1fBFZJyKVIlLZ3Gwz9EQLVWXDgUZWleWRkmiTnbgtMzWR5cXZVsePca4nfGfKxGWquiwvz1qC\n0WJ/fQf1Z3utnBNGbp4zmSON5zjeYoOpxSrXE76JTq8daCRO4MbZk9wOxTiGPnytlR+7LOGbkNhw\noJGl07PISU9yOxTjKMxOZfaUCZbwY1gou2U+BVQAV4jIKRH5Qqj2ZcJLbVs3Bxs6uMUutgo7t8yd\nQuWJNtq6+t0OxbgglL10PqOqU1U1QVULVPUnodqXCS+vO8PxWv0+/NwyZzI+hTdsyOSYZCUdE3Sv\n7W+kbFI6xblpbodihpk7bSLTMpJ5zco6MckSvgmq9u5+3jneZq37MCUi3DRnMpurmunpt8HUYo0l\nfBNUbx5uwutTbplr9ftwdcucKfQO+Nhy1CY4jzWW8E1Qvby7gSkTk1mQn+F2KOYCri7JJiMlgZf3\n1LsdihlnlvBN0DR19vLWkWY+tiSfOBssLWwleOK4a+E0fr/vtE19GGMs4ZugeWFXHV6fcs/SArdD\nMRdxz7IC+gZ91sqPMZbwTVCoKr+qrGXp9CxK8mwqw3A3Pz+DKyZP4FeVp9wOxYwjS/gmKN6tbae6\nucta9xFCRLhnWQG7a9upaux0OxwzTizhm6B4tvIUyQlx3LFgqtuhmFH66OJ84uOEZ3daKz9WWMI3\nl62n38vLu+u5fd5UJiQnuB2OGaXc9CTWzJ7E87vqGPD63A7HjANL+Oayvbr/NJ19g3xymZVzIs09\nSwtoOdfHxsM2F0UssIRvLtuzO2spzE5hxYwct0Mxl2jN7Enkpify7M5at0Mx48ASvrkstW3dbD3a\nyieXFFrf+wiU4InjY4vzeeNgEy3n+twOx4SYJXxzWX696xQi8Iml+W6HYsbonmWFDPqU37xb53Yo\nJsQs4Zsx8/mU53ae4prSHAqyUt0Ox4zRrMkTWFiQwXM7T6GqbodjQsgSvhmzbcdaOXWmh3uWFrod\nirlMn1xWyKHTneyr63A7FBNClvDNmD1XeYoJSfF8xEbGjHh3LZhGYnycnbyNcpbwzZh09g6wfl8D\naxdOIyXR43Y45jJlpCbwkblTePG9enoHbJz8aGUJ34zJy3sa6B3wcY/1vY8a9ywt4GzPgE1yHsUs\n4ZtLpqr8cvtJSvPSWFyY6XY4JkiunZnLtIxkfrn9pNuhmBCxhG8u2ZuHm9hbd5Y/WVWCiPW9jxae\nOOHzK2dQUdPKO8fa3A7HhIAlfHNJVJVHXq+iICuFT9rImFHn/qunk5uexPc2HHE7FBMClvDNJXnj\nYBN7Tp3lSzfMJMFj/z7RJiXRw59dX0pFTSvbalrdDscEmb1jzaipKo+8cYSi7FQ+vsRa99Hq/quL\nmDTBWvnRyBK+GbUNBxrZV9dhrfsol5zg4YvXl7L9WBtvV7e4HY4JInvXmlHx+ZTvvV5FcU4qH1ts\n4+ZEu3uXFzFlYjKPbKiy4RaiiCV8MyqvHTjNwYYOvnRDGfHWuo96yQkevrimlHeOt7H1qNXyo4W9\nc81F+Xz+njkzctO4e9E0t8Mx4+TTVxUyNSOZ771+xFr5UcISvrmo3+8/zaHTnXz5xpnWuo8hSfEe\nvrhmJjtPnGFzldXyo4G9e82IfD7lX1+voiQvjbsWWu0+1nxqWQHTrJUfNSzhmxGt39fA4cZOvnJj\nGR6b0SqDof+MAAAP2klEQVTmJMV7+PMbZvLuyXY2HrF5byNdSBO+iNwqIodF5KiIfD2U+zLB1zfo\n5ZHXq5g5KZ21C6x2H6vuWVpIfmYK391whEGvz+1wzGUIWcIXEQ/wA+A2YA7wGRGZE4p9dfUN0tPv\npW/Qy4DXh8+n9vUzCP7plUMcbTrHN26bba37GJYYH8fXbr2CPafO8m9vVLkdTsRTVXw+ZcDro3fA\nS0+/l+7+wXHZd3wIt70cOKqqNQAi8jRwN3Ag2Dta9g+v03OeMbzjBOI9cSTHx5Gc4HFu/vupiR4y\nUxLJSksgMzWRrNQEMlMSyU5LJD8rhcLsVNKTQvnrCW+v7j/NE1uP8+A1xdx45WS3wzEuu3tRPpur\nWvj+m0dZPiOHlWW5bofkmo7eAWrbuqlv76Wtq4/27gHOdA/Q3t3Pme5+2rsH6Bnw0jvgpXfA5/z0\n0jvoY9Drw3eetmjehCR2/PVNIY89lBktHwicPucUcPXwlURkHbAOoKioaEw7+upHrqB/0IfP+eT0\nKXiHfYr2DvjoHfzgj9DVN0h18znOnPD/oQbP81fITE2gMCuVwuwUCrNSmT11AvOmZVCSlx7VLd7a\ntm7+x7O7mZ+fwTdun+12OCZM/P3dc9ld287Dz7zH+q+sZNKEZLdDCplBr4/q5i721p3l8OkOatt6\nqD3TzakzPZztGfij9RM88n7DMSMlgey0RJLjP2hgJid4SEqII9ETh4jgESFOIC5O8MQJaeM0iZDr\nTVhVfQx4DGDZsmVjqsN8YeWMy42Brn4vZ7r6ae3qp+6M/49b29ZN7ZkeDp3u5PWDTfQP+uuXqYke\n5kydyLz8DObnZ3BVcTZFOdExiXf/oI8vPfUuqvCD+5aQFG+zWRm/1MR4fnD/Eu56dAsPP/0e//mF\nq6Oi4aOqHGvpovLEGfbVnWVv3VkONnTQO+B/vyfFx1HgfOtfUpT1/v38zBRy0hPJSk0kNdETEUOF\nhzLh1wGBs1sXOI+FHREhPSme9KR4CrNTWXSeST0CP/H3ObdndtTys7ePA1Cck8rqWXmsLsujvDSH\ntAgtB/3/rx7ivdp2fnj/kqj5EDPBM2vyBP7+rnl87dd7ePQPR/nKTWVuhzQmHb0DvH20lU1VzWw6\n0sypMz0ApCV6mDstg/uWT2d+wUTm52cwIzd6vtGHMivtAMpEZAb+RH8vcF8I9xdS8Z44rpgygSum\nTHh/HHivT6luPsfbR1vYVNXCs5Wn+I+KEyR4hCVFWdx45STWLpjGtMwUl6MfnTcONvL45mN8bsV0\nbp8/1e1wTJi6Z1kBFTWt/OsbR1g+I5vy0hy3QxqV2rZuXtpTz5uHmth1sh2vT0lL9FBemsufri6h\nvDSXktw04qIkuZ+PhLI3i4jcDjwCeICfquq3R1p/2bJlWllZGbJ4Qq1v0MvO42fYWNXMpiMtHGzo\nAOCq4izuWjiN2+dPJSc9yeUoz6+uvYc7/m0z0zJSeP6L15CcYKUcc2FdfYPc+egWOnsHWf/lVeRN\nCM//66aOXl7e08Bvd9fzXm07APPzM1g9K5fVZXksmZ4V8SO/ishOVV02qnXDqftipCf84Y63dPHy\nnnp+u7ueI43n8MQJ187M5e6F07ht/hRSE8Oj7NM74OX+H2/nUEMHL395FTNy09wOyUSAgw0dfPQH\nW1k+I5ufPHAVifHhkTg7ewdYv7eBF9+rZ1tNKz6FOVMncufCady5cCoFWdFVqrSEH4YOne7gt+/V\n89KeemrbekhPiufOhVO5Z1khiwszXTvhc7K1mz/7xU7213fw/c8s5s6FdoGVGb2n3znJ15/fy9Lp\nWTx632KmZrhTvlRVdhw/wzM7alm/t4GeAS8zctO4c+E07lo4lZmTJrgS13iwhB/GVJXKE/5/zN/t\n8f9jlk1K59NXFfKxxfnjWvJ5bf9p/vLZ3QjwvU8vsv72Zkx+t6eBrz23m6QED498ehGrZ+WN276b\nOnp5btcpnq08xbGWLqchNY1PLStgkYsNqfFkCT9CnOsb5OXd9TxTWcu7J9uJjxPWzJ7EJ5bks2b2\npJB1iRzw+vjOq4f50aYa5udn8MP7l1CYHV1fc834qm4+xxd/vosjTZ18+YYyvhzCsZd6B7xsONDI\n87tOsamqBa9PWV6czaeuKuT2MCqVjhdL+BGoqrGTZ3ee4oV362ju7CMjJYG1C6by8SUFLCkKXkul\nsaOX//bLXew4fobPrZjO36y90vram6Do6ffy17/Zy/O76lhVlssjn14UtG+sPp+y43gbz++qY/3e\nBjr7BpmakcxHF+dzz9ICSvLSg7KfSGQJP4INen1srW7l+V2neHX/aXoHfBTnpHLTlZO5dmYuy2dk\nX3Iff1XlcGMnbxxs4omtx+jq8/JPn5jP3YtsuGMTXKrKMztq+V+/3U92aiIPXVvMjVdOojQv/ZIb\nLR29A2yvaWPr0RZeP9jIqTM9pCZ6uG3eVD6xJJ8VJTlR3YVytCzhR4nO3gF+v+80L75XzzvH2uj3\n+oiPExYVZnLNzFyuKc1h5qR0UhM9JMd7PvTP3zvgZVtNK3841MQbB5uoa/dfWLKkKJN//sQCyiZH\n70ks4759dWf5ny/sZc+pswBMz0nlhtmTuHH2ZJbPyP5Qjx6fT+kZ8NLd76WqsZOt1S1sPdrK3rqz\neH1KUnwcV5fk8LHF0/jI3Ngr2VyMJfwo1DvgpfL4GbZWt/D20Rb21p39o0GYUhP9g8KlJHpoPddP\nd7+X5IQ4Vs7M48YrJ3HD7ElMnhi945+Y8FPf3sMbh5r4w8FGtla30j/oIz0pnqy0BLr7/El++MCH\nnjhhYUEG187M5ZrSXBYXZdp1ISOwhB8DzvYMsL2mldMdvXT3+9843X2DdDvDrU5IjmfNFZMoL82x\nN4sJC939g7x9tJW3jjTR1ecNaKDEk5roIS3RQ35WClcVZzMhOcHtcCOGJXxjjIkRl5Lww+PSOGOM\nMSFnCd8YY2KEJXxjjIkRlvCNMSZGWMI3xpgYYQnfGGNihCV8Y4yJEZbwjTEmRoTVhVci0gycGOPL\nc4GWIIYTKey4Y4sdd2wZzXFPV9VRTUIQVgn/cohI5WivNosmdtyxxY47tgT7uK2kY4wxMcISvjHG\nxIhoSviPuR2AS+y4Y4sdd2wJ6nFHTQ3fGGPMyKKphW+MMWYElvCNMSZGRHzCF5FbReSwiBwVka+7\nHU8oichPRaRJRPYFPJYtIhtEpMr5meVmjMEmIoUi8qaIHBCR/SLyFefxaD/uZBF5R0R2O8f9Lefx\nqD7uISLiEZF3ReRlZzlWjvu4iOwVkfdEpNJ5LGjHHtEJX0Q8wA+A24A5wGdEZI67UYXUz4Bbhz32\ndeANVS0D3nCWo8kg8JeqOgdYAfy58zeO9uPuA25Q1YXAIuBWEVlB9B/3kK8ABwOWY+W4Adao6qKA\n/vdBO/aITvjAcuCoqtaoaj/wNHC3yzGFjKpuAtqGPXw38KRz/0ngo+MaVIipaoOq7nLud+JPAvlE\n/3Grqp5zFhOcmxLlxw0gIgXAHcCPAx6O+uMeQdCOPdITfj5QG7B8ynkslkxW1Qbn/mlgspvBhJKI\nFAOLge3EwHE7ZY33gCZgg6rGxHEDjwBfA3wBj8XCcYP/Q/11EdkpIuucx4J27PGXG50JH6qqIhKV\n/WxFJB34NfCwqnaIyPvPRetxq6oXWCQimcALIjJv2PNRd9wishZoUtWdInL9+daJxuMOsFJV60Rk\nErBBRA4FPnm5xx7pLfw6oDBgucB5LJY0ishUAOdnk8vxBJ2IJOBP9r9Q1eedh6P+uIeoajvwJv7z\nN9F+3NcCd4nIcfwl2htE5OdE/3EDoKp1zs8m4AX8ZeugHXukJ/wdQJmIzBCRROBe4LcuxzTefgs8\n4Nx/AHjRxViCTvxN+Z8AB1X1uwFPRftx5zkte0QkBbgZOESUH7eqfkNVC1S1GP/7+Q+q+lmi/LgB\nRCRNRCYM3QduAfYRxGOP+CttReR2/DU/D/BTVf22yyGFjIg8BVyPf8jURuCbwG+AXwFF+IeW/pSq\nDj+xG7FEZCWwGdjLBzXd/4m/jh/Nx70A/wk6D/6G2a9U9e9FJIcoPu5ATknnq6q6NhaOW0RK8Lfq\nwV9u/6WqfjuYxx7xCd8YY8zoRHpJxxhjzChZwjfGmBhhCd8YY2KEJXxjjIkRlvCNMSZGWMI340JE\n/toZ9XGPMxLg1SHe31siMurJn0XkZyJSJyJJznKuc/FPMGK5fmjUx2ARkYdF5L9cZJ35IvKzYO7X\nRDZL+CbkRKQcWAssUdUFwE18eAykcOEFPu92EMM5o8IGLsfjj/OXI71OVfcCBSJSFMLwTASxhG/G\nw1SgRVX7AFS1RVXrAUTkf4nIDhHZJyKPOVfWDrXQvycilSJyUESuEpHnnTHB/8FZp1hEDonIL5x1\nnhOR1OE7F5FbRKRCRHaJyLPOuDzn8wjwF05CDXz9h1roIvKoiDzo3D8uIv84NH65iCwRkVdFpFpE\n/p+AzUwUkd+Jf+6GfxeRuJFic7b7zyKyC7hnWJw3ALtUdTDgd/XP4h8//4iIrApY9yX8V6waYwnf\njIvXgEInGf1QRK4LeO5RVb1KVecBKfi/CQzpd8YE/3f8l5P/OTAPeNC5+hDgCuCHqnol0AF8MXDH\nIpIL/A1wk6ouASqB/36BOE8CW4DPXeLxnVTVRfivCP4Z8En8Y/d/K2Cd5cCX8M/bUAp8fBSxtarq\nElV9etj+rgV2DnssXlWXAw/jvwJ7SCWwCmOwhG/GgTOu+1JgHdAMPDPUQgbWiMh2EdmLv+U6N+Cl\nQ+Mi7QX2O2Pj9wE1fDBoXq2qbnXu/xxYOWz3K/An2a3iH2r4AWD6COH+I/A/uLT3RmCc21W1U1Wb\ngb6h8XCAd5x5G7zAU06cF4vtmQvsbyr+32OgoUHldgLFAY83AdMu4VhMFLPhkc24cBLdW8BbTnJ/\nQESeBn4ILFPVWhH5OyA54GV9zk9fwP2h5aH/3eFjgwxfFvxjyX9mlHFWOcn3UwEPD/LhD4DkD79q\nzHFeLLauCzzeM0IMXj78vk521jfGWvgm9ETkChEpC3hoEf5BoIaSVotTu/7kGDZf5JwUBrgPf0km\n0DbgWhGZ6cSSJiKzLrLNbwNfDVg+AcwRkSSnxX7jGOJc7ozqGgd82olzLLGBf9avmaPc7yz8Iy4a\nYwnfjIt04EnxT0S+B38Z4++ccd4fx5+QXsU/3PWlOox/ntuDQBbwfwKfdEorDwJPOfuuAGaPtEFV\n3Q/sCliuxT9a4T7n57tjiHMH8Cj+ZH0MeGEssTleAVaPcr9rgN9dcrQmKtlomSZiiX/Kw5edE74x\nRUReAL6mqlUjrJMEbMQ/i9LguAVnwpa18I2JTF/Hf/J2JEXA1y3ZmyHWwjfGmBhhLXxjjIkRlvCN\nMSZGWMI3xpgYYQnfGGNihCV8Y4yJEf8Xqz66jDo2m7oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Flat-top window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNW5uN9PvVuSJTfJstw7GCxsh15DTUwNNUAgEH5A\nINyUG1IJCZcU0kjh4pBcILSQQscU04wxNi7YuNuybFmWZFmSVW1LVjm/P2ZmNTvSSmtZ0mrX3/s8\n++zMmfbN7sz5zlfOOWKMQVEURVF6Q1SoBVAURVHCF1UiiqIoSq9RJaIoiqL0GlUiiqIoSq9RJaIo\niqL0GlUiiqIoSq9RJaIogwQRmSwia0SkQUTuCvIYIyIT+lmuG0VkSX9eIxSISKOIjOvlse+LyFf7\nWqZwRJVIiBCRnSJy0H6Qnc+oUMulhJTvAO8ZY1KNMQ97N/ZnxSUi+bZCcj+Pa3txnvtE5Kke9hkU\nSskYk2KMKQq1HOFOTKgFOMr5gjFmUXc7iEiMMaZ1oAQKNUfb/XoYAzwXYhnSj+LfX+kFaokMMlwt\nwptFZBfwrl0+T0SWikitiKwVkdNdx4wVkQ9sN8jbIvJHpzUoIqeLyG7PNXaKyNn2cpSIfFdEtotI\ntYg8LyKZHlluEJFdIlIlIt93nSdaRL5nH9sgIqtEZLSI/ElEfu255ssick+AezYicoeIbAO22WVT\n7HvZJyJbRORLrv0vEJGN9jVLReRb7nu1Zaqy7/Na13FDRORJEakUkWIR+YGIRNnbbhSRJSLykIjU\niMgOETnfdeyNIlJkX3OH57w3icgm+7g3RWRMN//vF0Vkg/0/vi8iU+3yd4EzgD/aVsAkz3EPAKe4\ntv/RtflsEdlmn/NPIiK9kS1YROT3IlIiIvX2f36KXX4e8D3gykCWjH2//wt8zt6n1i7v6b/5yH6u\n60Rks4icFUC2r4jIK671bSLyT9d6iYjMspd9rkARedz+7V6z/+PlIjLeddw59nXr7N/e/RtH2fIW\ni8he+z6G2NueEJFv2ss5zrNur4+3n+/wroeNMfoJwQfYCZzdRXk+YIAngWQgEcgBqoELsBT/OfZ6\ntn3Mx8BvgHjgVKABeMredjqwO9C1gbuBZUCuffyjwLMeWf5iy3Es0AxMtbd/G1gHTMZ6qY4FhgJz\ngDIgyt4vCzgADA/wWxjgbSDTvk4yUAJ8BctaPg6oAqbZ+5cDp9jLGcDxrnttdf0WpwH7gcn29ieB\nl4BU+962Ajfb224EWoBbgGjg/9n3ILY89a7zjASm28vzgUJgqi3rD4ClAe5zki3POUAslvuqEIiz\nt78PfLWbZ6bTdvu3exVIB/KASuC8Xsjm/NcxXWy7EVjiWr/O/p9jgG8Ce4AEe9t92M9eN/fhd74g\n/5tW4B77d7sSqAMyuzj3OKAW6z0ZBRRjP//2tho6nksDTLCXH8d6p+bY9/U08Jzr+W0ALrevf48t\nz1ft7TfZv/M4IAX4D/B317ZX7OVrgO3AP1zbXgp1XXTEdVmoBThaP1gVeaP9wNcCL9rlzss8zrXv\nfzsPpavsTeAGu+JoBZJd254heCWyCTjLtW0kVmUa45Il17X9E+Aqe3kLMD/A/W0CzrGX7wRe7+a3\nMMCZrvUrgQ89+zwK/Nhe3gV8DUjz7HN6F7/F88APsRTDIWxFZG/7GvC+vXwjUOjalmTLNQJLidQC\nlwGJnmsuxK7s7PUoLIU5pov7/CHwvGffUuB0e/19eqdETvbc73d7IZvzX9e6Pt9y/TZLupGrBjjW\nXr6Pw1QiQf43ZYB4nsMvBzh/CXA8cBWwwN53Claj5GXPb+dWIo+5tl0AbLaXrweWubYJsJsOJfIO\ncLtr+2Q63qHx9u8ThWWBfY0OpfYE8F/B1hmD9RPeZlT4c7ExJt3+XOzZVuJaHgNcYbsram0XwMlY\nFf4ooMYYs9+1f/FhyDAGeMF13k1AGzDctc8e1/IBrNYWwGisllVXPIHVYsX+/nsPcnjvd67nfq/F\nqtDBqswvAIrFcuN9znVsV7/FKKzWZCz+v00xlpXn4LtPY8wBezHFPt+VwG1Aue3ymOKS9fcuOfdh\nVTLu8zo4LWPnGu32fXe17+EQ6P85HNkcslzP5ENd7SAi37JdZHX2eYdg/b5d7XuKdATqNwS6Jj3/\nN6XGrnld2wMlonyA1aA41V5+H8sqPc1eD0Sg33EUrufTlsP9vPr9r/ZyDJblvR3L+pyF5Y58FSgT\nkclByBMWqBIZvLhfmBIsSyTd9Uk2xvwcy7WTISLJrv3zXMv7sVrVgBXHALI95z7fc+4EY0xpEDKW\nYLW0uuIpYL6IHIvlTnmxh3N57/cDj0wpxpj/B2CMWWGMmQ8Ms8/7vOvYrn6LMix3WAtWxereFsx9\nYox50xhzDpbi3ozl4nNk/ZpH1kRjzNIuTlPmvr4duxgdrAz4/0bBcDiyBYUd//gO8CUgwxiTjuVa\ncmIEfjIaYz60/7sUY8z0APcRzH+T44710PG/doWjRE6xlz8gOCUSiHKs/wnw+98c/P5XOrwDFS55\nLsdyW5ba6zdguWLX9EKeQYUqkfDgKeALInKuWMHsBLGCyLnGmGJgJfATEYkTkZOBL7iO3QokiMiF\nIhKL5RePd23/X+ABJ+AqItkiMj9IuR4DfioiE8XiGBEZCmCM2Q2swLJA/m2MOXgY9/sqMElEviwi\nsfbnBBGZat/jtSIyxBjTghWraPcc7/wWpwAXAf80xrRhKZsHRCTVvt//wvptu0VEhovIfFs5NWO5\nIZ1r/i9wr4hMt/cdIiJXBDjV88CFInKW/V980z5fsJV6BZbfPVgOR7ZgScWqICuBGBH5EZDmkTG/\nh2BxBZArInEAQf43w4C77GfhCqyGyesBzv8BVpJCov0cfgichxXH+fSw7tbiNWC6iFwqIjHAXXRY\nxQDPAveIleCSAvwPVtzDyXL7AMulu9hef99eX2Lfe1ijSiQMMMaUYAVJv4f18pZgBbWd/+8aYC6W\nu+LHWEFK59g64HasCr8UyzJxZ2v9HngZeEtEGrCC7HODFO03WC//W1iV+V+xAuMOTwAz6dmV5Ycx\npgH4PJZPuwzLzfALOpTfl4GdIlKP5WK61nX4HiwfdBlWcPQ2Y8xme9vXse6/CFiCFTv6WxAiRWFV\namVYv/FpWIF3jDEv2LI9Z8uzHji/q5MYY7Zgufb+gNX6/gJWmvehIGQA67+6XKxMq079SLq4XtCy\nHQZvAm9gNU6KgSb8XTtOJlS1iKwOcI53gQ3AHhGpsst6+m+WAxOxfrcHgMuNMdVdndwYsxVL0X9o\nr9fb5/2oN5W2MaYKuAL4OVbwfSLwkWuXv2E944uBHVi/yddd2z/AUr6OElmC5R1YTAQg/m5GJRIQ\nkfuwAobX9bRvP8txKlZrcowZgAdNrLTnp4wxuf19LWXgEJEbsYLYJ4daFqUzaoko/YLtrrkbK+NF\nWyqKEqGoElH6HLE6lNViBaF/F2JxFEXpR9SdpSiKovQatUQURVGUXhPxAzBmZWWZ/Pz8UIuhKIoS\nVqxatarKGJPd034Rr0Ty8/NZuXJlqMVQFEUJK0QkqJEv1J2lKIqi9BpVIoqiKEqvUSWiKIqi9BpV\nIoqiKEqvUSWiKIqi9JqwUyIicp5Y06UWish3Qy2PoijK0UxYKRF7Low/YY1EOg24WkSmhVYqRVGU\no5dw6ycyB2sK0yIAEXkOa4j0jX19ofc27+Urj68gOkqIiRJio6OIiRaS42LIzUhkXHYy2SnxPZ9I\nURSlHzjY0sa2vY2U7DtA9f5DHDzURnNrx9Q63zh7It84e1K/yxFuSiQH/7kLdtPF3BcicitwK0Be\nXp53c1A888kuANraDW3txvfn1B5oobT2IMt37PNcs1eXURRFCZrDGerwd4u2qRLpLcaYBcACgIKC\ngl6NMPmX6wtobze0thta2tppbTO0tLfT2NRKSc0BNpc3sHR7FUsKq2hpM5w1ZRj3XjCV8dkpPZ9c\nURTlMDhwqJUFi4tYsLiIA4famDoyjVMnZXHc6AzyMpPITo0nKS6ahNhooqMGtkUbbkqkFP+5jXMJ\nfn7qwyYqSoiLEuJiOkJHWSnx5Gclc8rEbG45dRzVjc08s3wXjy4u4vzffch/nz+Fm07KR9Q0URSl\nD1hbUstdz31KcfUBLpg5gttPn8CMnCGhFstHWA0Fb89vvBU4C0t5rACuMcZsCHRMQUGBGYixs6oa\nm/nuv9exaFMFXzh2FL++4lg/5aMoinK4vLSmlG/9cy3ZKfH85spZzBs3dMCuLSKrjDEFPe0XVpaI\nMaZVRO7Emuc5GvhbdwpkIMlKiecv18/mkQ+288s3tlB3sIW/XD+b+JjoUIumKEoY8tSyYn7w4nrm\njs3k0S/PJj0pLtQidUnYNZWNMa8bYyYZY8YbYx4ItTxuRITbT5/ALy6byeKtlfzX82tpbw8fS09R\nlMHBa5+V88OX1nPWlGE8cdOcQatAIMwskXDhyhPyqD3QwoMLNzMuK5lvfn5yqEVSFCVMWF9axz3P\nr2F2XgZ/uvZ4EmIHtzcj7CyRcOHWU8dxxexc/vheIUu2VYVaHEVRwoCGphbufGY1Q5PjWHB9waBX\nIKBKpN8QEX4yfzrjs1O45/k11B1sCbVIiqIMcu5/ZSMlNQd5+OrjyEwevC4sN6pE+pGkuBh+d+Us\nqhub+dWbm0MtjqIog5hlRdX8c9Vubj11HCfkZ4ZanKBRJdLPzMgZwg0n5vP08l2sKakNtTiKogxC\nWtra+cGL68nNSOSuMyeGWpzDQpXIAPBf50xiaHI8P1+4iXDql6MoysDwz5W7KdzbyI8umkZi3OCP\ng7hRJTIApCbEcscZ41lWtI+l26tDLY6iKIOIppY2/vDuNo7LS+ecacNDLc5ho0pkgLh6Th4jhyTw\n0Ftb1BpRFMXHs5/soryuiW9/fnJYDpekSmSASIiN5vbTx/PprlpW76oJtTiKogwC2toNf12yg4Ix\nGZw4ISvU4vQKVSIDyGWzc0lLiOFvS3aGWhRFUQYBizZVsLvmIDedPDbUovQaVSIDSFJcDFfPyeON\nDXsorT0YanEURQkxj3+0k5z0RD4fhrEQB1UiA8x188bQ1m74z6rdoRZFUZQQUlTZyMdF1Vw3bwwx\n0eFbFYev5GHK6Mwk5o7N5IVPSzXArihHMS9+WkqUwKXH54RalCNClUgIuOz4XIqq9mvnQ0U5SjHG\n8MKaUk6akMXwtIRQi3NEqBIJAefPHEF8TBQvftpvkzIqijKIWb2rhpJ9B7l4VnhbIaBKJCSkJsRy\n2qRs3t5YoS4tRTkKWbhuD3HRUXx+evgG1B1UiYSIs6cNp6yuiQ1l9aEWRVGUAebdzXuZN34oqQmx\noRbliFElEiLOnDIMEStPXFGUo4eiykaKqvZz1pRhoRalT1AlEiKyUuI5Pi+DdzfvDbUoiqIMIM47\nf6YqEeVIOXlCFutL63TCKkU5ilhSWMW47GRGZyaFWpQ+QZVICJk3bijtBlbs2BdqURRFGQBa29pZ\nubOGeeOGhlqUPkOVSAg5Li+duJgoPi7S4eEV5WhgY3k9jc2tzB0bPjMX9oQqkRCSEBvN8XnpLFMl\noihHBcuLLK+DWiL9iIjcJyKlIrLG/lzg2naviBSKyBYROTeUcvYVx+dlsGVPA00tbaEWRVGUfmZl\n8T7yMpPCvpe6m0GnRGx+a4yZZX9eBxCRacBVwHTgPODPIhJe80h2wTG56bS2GzaWa38RRYl01pfW\nc0zukFCL0acMViXSFfOB54wxzcaYHUAhMCfEMh0xzgO1bnddiCVRFKU/qdl/iNLag8zMUSUyEHxd\nRD4Tkb+JSIZdlgOUuPbZbZd1QkRuFZGVIrKysrKyv2U9IkYOSSArJZ61u3UwRkWJZNaXWQ3FGapE\njhwRWSQi67v4zAceAcYBs4By4NeHe35jzAJjTIExpiA7O7uPpe9bRITpo9LYXN4QalEURelH1pda\nLuvpo9JCLEnfEhOKixpjzg5mPxH5C/CqvVoKjHZtzrXLwp4Jw1JYvqOa9nZDVJSEWhxFUfqBbRUN\njEhLID0pLtSi9CmDzp0lIiNdq5cA6+3ll4GrRCReRMYCE4FPBlq+/mDCsBSaWtp1ylxFiWC2V+1n\nXHZyqMXoc0JiifTAL0VkFmCAncDXAIwxG0TkeWAj0ArcYYyJiLzYicNSACjc2xgxQyEoitKBMYai\nykbmzxoValH6nEGnRIwxX+5m2wPAAwMozoAwwaVEzoiQQdkURemgqvEQDU2tjMtKCbUofc6gc2cd\njaQnxZGaEMPumgOhFkVRlH5gR9V+gIh0Z6kSGSTkpCdqTERRIpQy+92ORHe1KpFBQk56IrtrVIko\nSiRSVme92yMiaLgTB1Uig4ScjERfa0VRlMhiT10TaQkxJMcPujD0EaNKZJCQk55IfVMrDU06QZWi\nRBrldU2MSk8MtRj9giqRQUJWSjwA1Y2HQiyJoih9zZ66JkYMiTxXFqgSGTRkJlu9WPcdUCWiKJFG\nZUMz2XZDMdJQJTJI8CkRtUQUJeKoO9hCelJsqMXoF1SJDBJ8SmS/KhFFiSSaW9s42NLGkERVIko/\nMjTFUiLVLiXS2tbO3vqmUImkKEov2N/cSr0rQabuoLWsSkTpV5LiYoiLjvI9cK1t7Xzp0Y+Z8z/v\n8PA720IsnaIowfDZ7lrm/c87zH3gHT6z5wiqt9/pNFUiSn+TGBfNwUOtALy2rpzVu2oZm5XM7xZt\npXBvY4ilUxSlO4wx/PClDcTHRhEbLfz27a2AWiLKAJIcF82BQ9bAxO9u3ktWSjzPf+1zREcJzyzf\nFWLpFEXpjrW761hbUss950ziqjl5fFRYzcFDbapElIEj0aVEVhXXMHdcJtmp8ZwxeRhvrC/HGBNi\nCRVFCcTr68qJjRYuOmYUBWMyONTWzuY99TS1tAOWyzoSUSUyiEiKi+G1deXc8481lNUeZHyWNeLn\nqZOyKatr8o0EqijK4GPJtirmjM1kSGIsU0ZYU+A+vnQntz+9GoCY6MictVSVyCDCmRr3hU9LaTeQ\nm2GN+HnShCwAPtmxL2SyKYoSmAOHWtm8p57ZeRkAjBiSgAi8tKbMt09sVGRWt5F5V2HKvv3Nfuu5\nmdZYO2Myk0iKi2bznoYez1HZ0Myf3itk6fYqv/K3N1Zw3u8W870X1nGotd1v2566Jr+UREWJRNra\nDTuq9tPW7u8WfnltGef+djH3vbyBdte2ivom/vjuNlbs7Lnxtm53He0GZuWlAxAXE+UbysghNiYy\nLZHIdNKFKXUH/CtyZ5iEqChh8ohUNu+p7/b4lrZ2rntsOVsqGogSeO7WzzFnbCZltQe585nVDEmM\n5ZnluxiZlsDXz5oIwN+W7OCnr20kJT6Gp26ey7Gj033nqz1wiJY2Q3ZqZA7XoEQmTS1tVDY0+83d\ncai1nWsfW8aKnTXMHZvJ32+eS1xMFEWVjXzr+bUMSYrl8aU7GZuVzA0n5tPU0sZVC5axo2o/MVHC\n87d9juNtK6MrCiut7EnHjQUwNDmOyoaOhmGMWiJKf+NtIbmHjZ4yIpWtFd2n+b7waSlbKhr49RXH\nMiw1gd+/Y6UYPrWsmNZ2w39uP5Gzpgzj8aU7OdTaTkV9Ew8u3MS8sUNJjY/hu/9Z5wvef7itknkP\nvsO8B9/hhU93+13HGENTS0RMb6+EMa1t7TS3+j+HZbUHOevXH3DKL9/jxy+t95X/30c7WLGzhkuO\ny2H5jn08+4mV7fjkx8WIwGt3ncyc/EweW1KEMYaX1pSyo2o/f7j6ODKT4/jNW1u7lWVX9QHiYqL8\n5gtJjIv22ydWYyJKf9PSjRIZnZnEvv2HOGD3I+mK1z4rJ39oEpcen8OXCnL5eHs1tQcOsWhTBXPH\nZpKbkcQVBaOp3n+IT3fV8J/VpbS0GR68dCZ3nz2RTeX1fFpSS1u74d7/rGNUeiIzc4bwwxc3UGsP\nDFnZ0Mz5v/+Q6T9+kwWLt/fPD6EoPbCxrJ4Tf/4ux93/Nm9vrPCVP7hwMzUHDnH+jBE88XExq4r3\nYYzhuRUlzB2byW+vnMWxo9N5bkUJ7e2GhevLOX1yNsNSE7jk+BxK9h1kS0UDr9rv0kXHjOSauXl8\ntL2KvQ2BR4/YWb2f0RmJvrgmQJT4K43Y6MisbiPzrsKUTpaIqyUz0h5Gek9d1w/ywUNtfLy9mrOn\nDkdEOG1yNu0GFm3ay9aKRl9w/sQJQ4kS+LiomiWFlUwZkUp+VjLnTR9JdJTw7qa9LN1exe6ag3zz\nnMk8cMkMGptbeeWzcgB+8cZmiqr2MzsvgwcXbmZTueViM8bws1c3csIDi/jNW1s0HVnpE5YVVXP6\nr97j8keW+oYAam83fPtfa+3kk0S+86+17G9upaqxmYXryrl6Th4PXXEsqfExPL9iN9v2NrKjaj/z\nZ+UA8Plpw+0GUw0V9c2cPnkYACfb78iKnTWsLq7hlInZiAhnTx2OMbC0sDqgnMXVBxgz1H/+dO87\noNlZSr/jVSIxrpbLiDQryB5IiWzaU8+htnbmjM0EOnyzr6y1skOmjkwFIC0hljFDk9myp4G1JXWc\nkG/tPyQplmkj01hTUsvS7dXERgtnThnGtJFpjMtO5u2NFTQ0tfDK2jKuLBjNX64vID4miqeWFQPw\n6mflPLZkB0MSY3n43ULecrUOF2+t5PJHlvLg65s63aOiALyzqYLLH1nKQ29u8QW3G5tb+fqzn9Lc\n2s6Gsnq+/6Llnvq0pJYNZfV859zJPHDJTGoOtPDG+j18uK2S1nbDJcflkBwfw8kTs1i8rZJPd9UA\nMG9cpt/308ssl9aMUUMASyGlxMfwxvpy9h9q45hcq3zKiFQSY6NZU1IbUP499U2MSu9+vhDNzupD\nROQKEdkgIu0iUuDZdq+IFIrIFhE511U+W0TW2dseFpHIVOsBcCyRMpcS+Xh7Ncfd/xa/fmsLm8ut\nzK2pIy3lkRwfQ25GIh9srQRg0vBU33Hjs5NZVlRNY3MrE4al+MqnjkxlU3k9q4prmD5qCIlx0YgI\nc8dmsmZXDcuK9tHc2s4FM0cyJCmWs6YMZ9GmCowx/P3jYsZlJ/P6XaeQPzSJvy7ZAVgZLrc9tYpt\next5dHERf11S5Lve3oYmvvfCOn7xxmaNsRwlvL6unK8/+ykfFXZkD5bsO8D/e3o12/Y28sf3Cnlu\nRQlgNYAqG5r5w9XHccup43h7YwVltQdZuK6cuJgozp85gtl5GWSnxvPelr18smMfaQkxvndg9pgM\nyuua+GBrJakJMYy1+10578Jr6yzreuJw6x0QESYNT+Ej2+Jw3o2Y6CimjUpjY3k9q4r3UfCzRfz0\n1Y0++dvbDXUHW8hIiuv23t2urkgiVKpxPXApsNhdKCLTgKuA6cB5wJ9FxPHpPALcAky0P+cNmLSD\ngAx7qPjKhmZK9h0A4E/vFVJzoIVH3t/O6l01JMRGkZvRMQVnvsu8dqcbjstOocbOBBuX3bHPpOGp\nvnjJpOEdyuWY3HTqm1p59bMyogSOHW210OaNy6SivpkNZfV8snMfXzhmFHExUVx6fC6f7NhHVWMz\nTy/fxcGWNl6+8yROnZTNgsVFtLS1Y4zhjqdX8+wnu3jk/e3c73kpn1m+iz+8s01Tj8MQYwwvry3j\nN29t8ctOWlZUze1Pr+bVz8r4yuMrKLIzmpwGxxvfOIXj8tJ57EMruP36OisuMXtMBl88diRgDQe0\nsriGWaPTSU2IJSpKKBiTwYayerbsaWDaqDSi7craUQIfbKkkLzMJp92ZmhDL0OQ4mlvbGZocR0Js\nh9s4J6Mjo8s9E2FeZhKlNQd55P3tVDU289clOyivO0jN/kPs2ncAYzoPa3K0WN0hUSLGmE3GmC1d\nbJoPPGeMaTbG7AAKgTkiMhJIM8YsM5aj8Ung4gEUOeSkxscgYsUkTvnleywtrOLjomrm5GfS2m5Y\nuK6c4WkJuA00JzU3NlqIj+n4q4e5UnZzXS+No4Ba2oxfufMyLly/h/HZKb7hG46zUx6ftsf1clxj\nJ00YClhDt7y7uYITxmQyZmgy18zJo6rxECt31vDJjn2s2FnDT+fP4MYT8/nHihLKag8C8MgH2/ne\nC+v49dtbuePp1X6+5Y1l9TyzfJcv0K+EDmMMb6zfw+vryv36V/xndSl3PfspD79byA1/+4TWNqtf\n0sPvbGN4WjyLv30GAvzfRztpb7fOcfqkbEYOSeTS43IoqtrPtr2NrNi5j9MnD0NEGJ+dwtDkOFbv\nqmFTeT3H5AzxXW/i8FSKq/eztaLRZ21Ax3O7/1AbOZ75zR0F4U1fd94NEf+GV25GImV1B1lWtI/j\n7L4gi7dWcvGfP+L0h94HIN1jiRwdKqQbJWK7jHr6/KyP5ckBSlzru+2yHHvZWx5I9ltFZKWIrKys\nrOxjEUNDVJSQ4srW+t2ibbS1G750wmjAelGGeV6ILHuOkuT4GD/l4kyABZDpevCHu9IT3RaNs3yo\ntZ0cV7ljxbz6mRV3mWm/2DNyhhAbLSwtrGJDWT0n2krllIlZRAks3V7F2xsriIuJ4rLjc7nxxHza\n2g1vbtjDwUNt/O/72zln2nB+/IVpfLitiqXbLffCZ7trufhPH/G9F9Zx5aPL/NI7Dx5qY2lhFQ1q\nufQ5xhhWFe9jd80Bv/I/vFvIbU+t4vanV/PQW1absK3d8Ms3N3N8Xjq/v2oWG8vreWtjBfv2H+Lj\nomqunpPH6Mwkzpk2nIXr91BU1cie+ibOnjocgM+Nt4Lb/169m6aWdt8zJWL1lVq8tZLm1nafCwpg\n4rAU2o0VQ3EHt93P8yivEknrXokkxET7ZVPlpCdi7Gt8qWA0SXHRPPNJCcXVHb9JeoQOsNgT3Vki\n84FVPXwuC3SwiCwSkfVdfOb3nfhdY4xZYIwpMMYUZGdn9/flBowYl0/1E7sX7azR6b4Wk/eFyEyO\n73ScVd6hOFITOhST+3h3vvuwVGsIB4DhqR3lSXExZKXE09DUSmp8DEPs6T/jY6IZnZnEok17MaYj\nyJ8cH8P47BQ2ldezbEc1BWMySIyLJj8rmXFZyXy4rYrF2yppaG7lxhPzuWZuHqnxMby0phSAh97a\nSlpiLA8ZTFGsAAAgAElEQVReOpMtFQ38w/adN7W0cekjS7nmseVc+PCSTrND7m9uPWpcC0dKQ1NL\np6yiH720gcse+Zgzf/0Bq4qt525vQxN/fLeQC2aO4AvHjuKxD3ewt6GJ5Tuqqahv5uaTx/GFY0aR\nnRrPG+v3sHR7FcZY48ABfG78UDubag8Ax9gu0rFZySTERvGKPVzIlJEdsbyJw1KosqePdisIt9tp\npGs5NjqKONsCH5bm/244VoP3nXGmsPX26XBbJflDkxkzNJm1nkC7d/rbyIyAdKY7JfJbY8wT3X2A\nRwMdbIw52xgzo4vPS91csxQY7VrPtctK7WVveUTx4h0n8e1zJwfc3tBk9RFxP+A56YmMGGIrEc8w\nCynxlq/Xm4PgNrvdwT63pZPiUi7RUUKK7cIantZ1y234EP/MlPyhyZTa7im3i2HqyDQ2ltVTuLfR\nFwAFOHZ0OpvK61mxYx9xMVEU5GcQHxPNqZOy+aiwmurGZpZsq+SqE0Zz9Zw8ZuSk8a9VlnH61LJi\nNpXX8/UzJ1Bae5A/vNsxideCxduZed+bnPPbD6jQWSIDYozVN2jmfW9x1YJlvv5Ia0pq+fuyYi49\nLofslHjuf8WKXS1ct4dDbe3cc/Ykvn7mBA61tfP2xgo+2Frpy+yLihJOmZDF0u1VrNlVS0JslM8N\ndWyu5RL656rdxEZb7iqwnrUJw1J8CSQjh3RYECP8ljuet6GuRpE3uJ1gK5HUeP/BOdISrfW0BP+K\nP9Veb/U0OtwTSo0YkuCzzqNd70+gSae+9flJ3PeFaV1uiwQCKhFjzO96OjiYfQ6Tl4GrRCReRMZi\nBdA/McaUA/UiMs/Oyroe6E4ZhSWzRqdzxxkTAm53HuxpduWbEBtFYly0T3l4H2Kns6K3RZTk6Unb\nUd7xoiV7Xro2u3WaneavLJwW3kiPEnG71sYMTfJbLqtroqml3S+oP2VEKuV1TSwprGLGqDTiYywZ\nZ41Op7T2IG9trKDdwBlTrJbsudNGsK60jroDLfxndSmzRqfzzc9P5sKZI3nh01IOtbZTVNnIgws3\nU5CfSXltEz95ZYPveqW1B7nlyZXc9eynVDf6j1kWyRhjePSD7Xzp0Y95Y/0eX/nbGyt49pNdnDop\nm+U79vHXD61g979X7SYhNor7L57BzSePZe3uOnZU7WfRpgomDEth4vBUJg5LISc9kY8Kq1i3u46p\nI9N8vbWnjUqz4mDFNeQPTfalrTv//a59BxgxJMHPdeSks8dGCxmu1n0gSznLVe61BuLs58g7DLvT\nYIqL8a8Cnee+pc1/fDm3xZ6VEud7vt1u34QY//fKUUMnTcjixpPGEql0FxNJEJEbROSLYvHfIvKq\niPxeRLKO5KIicomI7AY+B7wmIm8CGGM2AM8DG4E3gDuMMY7j+3bgMaxg+3Zg4ZHIEM7k2mMCRdsW\nhvOCxHteCEdZeHvOBlIi7hfK23JzWlzeDBTHNeZ1Czjmf3xMlF/2i7tlOdblv3aslc17Gvz82jPs\nlus/VpQQHSVMG2mtz87PwBh4b8teNpbXc840y6d+wcyR1B5oYU1JLf9YWUJMlPCna47nKyfls3D9\nHirqmzDGcOczq1m8tZKF68v59r8+85N9W0UDy4qqw77D5M6q/SzZVuXnynt5bZnVSbSsnq8/u5rt\ndobU35cVMzozkb/dUMCpk7L5x8oSjDG8tXEPp08aRkp8jO83Xry1knWldRSMsRIrRITpo9LYvKeB\nzXsafI0cgPF2cHtNSa1fo8FxhUJnC9qxdi03audEEfB/Dt3PanqiN83Wundvo8j9TLpJtMu93k93\nAy0xNtpnsbitoEADLEZ6b4Tu3FlPAp8HbgLeB/KAPwINwONHclFjzAvGmFxjTLwxZrgx5lzXtgeM\nMeONMZONMQtd5Sttd9h4Y8ydJtzf8CMgy35wnR/AqfzjPS0hZ8C3hFj/vzkxwAvkxvvSOeeO8/iK\nHXdAimf/oXZQ/5CnRed2h7lbkG73hLt151gxa0pqGZOZ5GvhTreVyT9XWXGRWfbAkSfkWxXb6l01\nfLi1itljrH4E82flYIyVIrqquIZPd9Xyoy9M455zJvHu5r1sLLN63r+3eS/n/f5DrlqwjJ+80pF2\nHG4sL6rm879dzHV/Xc5//9tSksYY/vReIZOHp/LON09DEP7+cTF1B1v4eHs1F8wcSUx0FBfMGMHu\nmoMsKayior7Z1zkvNyORjKRY3tm8l9oDLUx3ZUhNHpFKUeV+9u0/5Pf/jXO5Mt0DIkJH4kegBojz\nDDmkuawBd8XsXnZbDNChDJLj/Z/5ONvyaW3zr0acd6XdU724zxsTHeVbd7uz4iJ0WJOe6O6upxlj\nrgUuByYbY+4wxrxhjPkB/nELZYAZar9kTgc9J3DuNc1jAymXIB52r7XivKfe8X+cl9NrBTktRa+q\nT3X5oN3+6xEBMsOGpyX4YkDu4OiQpFiyUuJ8HcMmj7ACsENT4slJT2R1cQ2b9tQzZ6yVGTZpeApZ\nKfGs3FnDO5v3EhMlfPHYUVx9Qh5Rgm/myJ++tpFxWclcdnwujy/d6VMuAIs2VvCLNzb7+ukMBlra\n2vnrkh088v523/NgjOFHL21gWFo8V88Zzb9W7WZ9aR07qw+wtaKR6+blMSwtgTOmZPP2xgo+3VVD\na7vhtImWq9BJ3X5+pRVzmtFFhhRYUxQ4uONebmtzqMvKcLfaocP15B0y3Wn1e1vw3oZKV3jfAaet\n6XVnOZV/W7t/I8exULzPrbfh5SiRFpcSivVcO7Ltjw66q00OARhjWoEyzzbtXhxCnAfYeXydF8I7\nNk+sXe61RKKD6DnrfYGdNa8ScV6uzi6zrl94d0Xg9l+7g/1OVpkjq6NshnviMU7aZlx0lF8FNS47\nmfe3VmJMR18Bx+WysbyelTv3cUzuEFITYslIjuO4vAw+LKzis911FFXu55ZTx/Gji6YRFxPls3Q+\n2FrJV59cySPvb+eqBctobA48EOZA8sBrm/jpqxv5xRub+aE9LMiGsnq2VDRw5xkTuPeCqcRFR/Hy\n2jKW2L3ET7aVxZyxQymtPcj7WyylMN0e/mNcdjJx0VEstHt0O0FvgLFZHctu69GtCEa6hv9wj//m\nDXo7rievcnGe72bPKAZe67grvErEiSN6G0XOO+B1WwWy0r0Zjo6MrS4l5LVEjhZXSXdKJNfuC/IH\n17KzHrCPhtL/OBWx01pyMqzavW+E/dzHx3rdXIffRnJ0hPcldZRNsK1Gt1vArZDc5/W6HhyrxqtE\nHF/68CHxftcfnZnkm3jL7U6ZMjKVwr0NbK1oZLJr3oeZOUPYsqeBj4ssq+b0ydkMSYrllAlZvLt5\nLwB/fHcbeZlJPP3VuZTWHuRpe8wwsGa1W72rptNkX31N4d4GX8YbWMOF/H1ZMdfOzeOWU8byr9W7\nKdl3gDc37CE6SjhvxgjSEmI5YWwGi7daY0hlp8aTb7sIj7XHhnppTSkjhyT4UrRjo6PIG5pEa7sh\nLibKT9m7Eybc6d5uJTLMVe7+X7xKJMmxYj3Pp1Phe11K3mevKzo926brcsdC8YYr4mO7vob3+U6M\ntZ5jt7c20Ci9kW6RdPevfBurL8hK17Kz/p3+F00JhNfvG+Mzzf1fOqdS87qavFbD4eB9UZyX0fvu\nOi+j91LBtCZT4/2D906rMcvjI3d86SPT/DuSuSs0d0/l3IwkWtqscY7GZ7vTjlM5cKiN1z4rZ3Rm\noq8SPGFsJsXVB9ha0cCKnTV8qSCXkyZkMXtMBi98amWYNzS1cNEflnDpn5dyzV+W9ZsieezDIs7+\nzWJO/9V7LNlmWRQL15fT1m647bTxXDN3DMbAok0VrCmpZcqIVJ91NzMnne2VjWzf28j47GRfhZhv\nK9iaAy2dsus6gtvxAYPbTpos+P83gRI3UjzPrTMgobeCd7KcvG2iYIZSDxTE9pY7p/buHSjg7sVx\nsbrT7YOx8COR7lJ8e+ojooSIFE8l6ygFb257s0+J9IElYr9uXpPduaT33fXFaTz7B+PX9loiTjDd\n62pwKslMjzvEXaG5ldbINP+xkBzG2e6adaV1fuONOb2lnZGKnd7Un582nM17Gtjb0MTjH+2kqHI/\nN56Yz8riGt++fUlFfRO/fHMLp07KJjcjiZ+8sgFjDIs27WXayDRGZyYxNiuZ0ZmJrNxZw7rSOp/s\nYLn0WtoMa3fX+bmjrHGjrP/HG9x2rAzvKAhu15O7Ynb/zoEqYm8Hvuhoxw3r/4wkxAawRHoRuHbO\n0MlA8T23XgsjOCXiKIxgFEeku7UCvtEi8grd3L8x5ov9IpHSI94WXYd/1//vcgLUp07yz8juzWii\ngdxZPpdagAl4vC9+MC4Jr6JxWqzeY7vKkAEY6oqpuI9xZ4O5M3/cQX13BpETT3llbRnRUVZMBaDA\nyQArruXFNaXMG5fJfV+czvrSOp5aXsxNJ/dtn4B/rCihpa2dn82fwYeFlXz/hfVsLK9nQ2kdVxR0\n5LhMGZHG6l011B5o8UundS+PzuywzESEzKQ4yuqaOgW3A6Vue589B3fl67V8HaI9Q6E7DQ3v4+iL\n4XWyRHrf0vc+n4EqNue5ddKZA+HsF6nDux8O3TULH7K/LwVGAE/Z61cDFV0eoQwIXnfWZHto6zxP\nCuX0UUP46LtnMsrjqugNHYF178tovY7ebBYnyB+M0vCS5LVWAmWG2RZKqyfDJlBF51ZObv+8u6Ic\n7Rp4MjslnriYKGoOtJCTnuhrITt9VZbvqGZ75X4un21V5F+cNYofvbSB7ZWNjM9OYfWuGt7bvJfL\nZ+d2mrAoEM2tbfz942LiY6O5dk4eUVHCO5v3cmxuOnlDkzgzxppA6fkVJew/1Ma0UR2xnUnDU3yz\n/Ll7d7v7YWQl+yuF1IRYqGvqpCycLDrvbx7IknQ3TAJZIl4LODqAGzaQJXIk7qJOSiRATATgk++f\n1ak/lIP33QsqSSVIGcOVgErEGPMBgIj82hjjnvPjFRFZ2e+SKQHxdgS8oiCXCcNTON5OzXTjHb30\nSPFWKk6GlNe6cfqo9GZKUG9l46x5FZITkBXPa5oS33Ul5q4A3C4wd6XndtdERQkj0hLYte+AX3px\nYlw0w1LjedWe7dEZ1dWZPXJVcQ1x0VFcvWAZza3t/HPlbt6859SAFZObn7yykWfsUZGbW9q48oTR\nfLa7lrvPmghYVlNmchxvbrCUhTtxwD3IoDvG4ba6vD26nUrQG/R2FLE3xuOdN7wrAlWs3vJALqWO\nvhr+xx9Jp71ABoP32QH/xAA3737zNJ8L1enRHqmzFR4OwbzhySIyzlmxhyMJrlml9ClT7L4Q3hdZ\nRLpUIH1JRxaWf/llx+fygwuncttp4/zKnfqiN5aIt9UYqI+K4yrzVhDBpBcHalF7rRhn2I0Rnsyw\nvMwk31wZThxl7NBkUuNjWFtSy5Mf76TdGB798mz21Dfxfx/t6PJ6bnZU7eeZ5bu4+eSxnDh+KH9b\nsoPNexowBt8seyLClBGp7LHHAXNnrLldUm553b9Hhid+5DxL3v/JcU953T5HMk94oFictzQuumtL\nBOD3V83i3W+edtjX7myJOOXBn2Ncdoqv8eF0UozUedMPh56jnHAP8L6IFGH932OAW/tVKqVLnr1l\nHkVV+zsFygcS73sdHSV89ZRxnfZzOmH1Rol4W6y+oL7nXE4r0NuaDPRiu7OGArWWvdljaQHSi3Mz\nEllZXEN0lPhcQVFRVme8wr2N1B1sYd64oZw7fQQnTRjKS2vKuPusid22pv+1qoQogVtPHceSbVV8\n859redHOAnOnJLstDreF5DcsSNLhuWO8FbwT1/D+30fSK7uzJdK1S8lpFHQ1JoUzT/rh4lUi7d24\ns4LBcaFGRwlLv3smtQcCT0Fw1AbWHYwxb4jIRGCKXbTZGHP0jFg3iMhIjmN2cpzv5TsSV1V8TBRf\nnjcm6P3/duMJ/H3ZzqCv6aSIHs41HAK1Dju5uQJYR4ECsIGGynDjtVAcF5TXFeW4NYalxvtVjnlD\nk3h7QwUNza1cONOaje+iY0Zx73/W2f1TUgnEe5srmTM2k+FpCb4Jvl5fV05stPjFtZyMqfSkWL8G\nhXs+C+9ggA5eBRvry5DyupSc4w+/r0YgYjwmY6A0W6e1f91hPDu/u3JWtx1Avc/UmVOG8eDCzVx4\nzKigr+HGse5y0hMZZX+OVrrLzjreGLMawFYaa7vbRxk4RIS/3lDg62HcG7b87PzD2n/yiFR+dvHM\noPdPT4pj588v7NUghp16y9urXoujo4+KJx5zBK1lrxJJCuDucSwUbwpsbnoiDXZlNtbOijpxvDX0\nysrifQGVSH1TC5v21HPXmVbsIzcjkXg7qD9qSNcDEXqVqlv2QIq0c3Db6avRdRZdb/pqBCLam5QR\nICaSFBfDzp9feFjnvvi47i0U7zUmDk897Gu4OWViFg9dcSwXHTOyx30jPWrS3RPxfyKSISKZgT7A\nXwdKUMWfs6YO9xt2YrDSFyOYOqcwnlaxc25v8Df2CLJ4vB3lHAXldeOkeYaecRjaRUfHvMwkhibH\nsWZXLYFYW1KLMR1TDEdFiS/bzps55VhFLZ7BA91ZbYF+d6+CdX6qTn047N28cYkjCSR7FdiRupSC\nwWlo9HVHQBHh8tm5QXdOjGS6c2cNweqh3t2vHxlzzw4yhiTGasDOhWOBeI2akydkkRIfw40n5fuV\nH4klEqiSDGSJeBWYO+vLmUpYxJpoyRl2vSsK91rbJo3o6AyYlRLPtr2NnZSIE7dp9YyQHExHuc7D\nfzjl3sEDu/7Nk+NiGDUkgW+cM6nHa3nxVuTtASyR/iAUnckvnpXDZ7vrIt7V1V2Kb/4AyqG4WP3D\nc0ItwqCiwxLxJzM5jvU/ObfT/kfSWo4O4ErznjM5zhmAz18qd4qwu0/GuOwUFq4vD3jdosr9pMbH\n+PXpyEh25qzwKBH72i2eawdTUXYKbjvl0V3fd1d9NZbee1bPF+qCztlZXQ+Z0x+EYk6Pr5yUz3Xz\nxhxRHCkcCCY7SxlgjtYxeAJx++kT+Hh7tW9q1Z5wehH35nfsXNl03SJ3Kgav0nEPde/uOzMuK5na\nAy3UHWjpMnOqeN8B8rOS/a7vBO+9Kd2Brh1MRentYR0ortSbSvfsqcM7jcjrJmA/kQGIGoRiXigR\nIS7ARFWRhCoRJSQ4weZg+Nz4oRT+zwVB7+/49289tXPqcU90Si92rCCPFnGu4a2ckgJ0dHRScV9d\nV8a/V+3mhxdNY+rINO5+7lOmjkyjurG5Uxqxk23lbcn6lEgvlKTX4nDwlk60h3w5nJTax24o6Ha7\n12V23owRPLeixDeMTH8S+VV56FAlogw4R5IVEwwx0VHseDB4peOmU+s+wH6BKvJAI9g6vaC//4I1\n58ev39rKZbNzeHNDBW9uqCBKYKprWlnoiHEESmHuTes62OD2qPREiv7ngl6NsxYI7291+uRh/f4s\nOET6FLWhpEdnnT2/+nUi8iN7PU9E5vS/aIrSe0SkVxWHeN6IQPEYX295zzUCdcbzBsc/2bHPN84V\nWEFmryvIlyAQoMNfb4b0DxRY7+pcfalAurr2QOAMqKke4v4jGEvkz0A7cCZwP9Yc6/8GTuhHuZQQ\n8cY3TqGxaXDM2hcKvJaIgzcmEqiCDZQZ5p4f/NRJ2SzeWsmbGyqYk5/JJzv3AZ2HtHcu4Q1uO5l7\nvXJnBbJEDvtMh09fK6Vg+PvNc1lVvC/gUDjKkRNM2sBcY8wdQBOAMaYGCBw9U8KaKSPSKLD7KhyN\neCtZp4XujYnk2mmbV54w2q88UCc/dx+OgjFWDKCt3TBlZEfnQ68S6YjH+J/LGf/q+s8d/mgAnSZn\nCtRtPELITo3nvBk9dwhUek8w6rlFRKKxjWoRycayTBQl4vAaIufNGMGTHxczz5MIMCwtgY33n9up\nb4Y3eOyQ5NrPGUwR/Ifv97aWHQXm7TU+JDGWjfef22XrOiZKOH3ysC5l6Iru3FmKEgzBKJGHgReA\nYSLyAHA58IN+lUo5KnngkhksL9oXUhm87qwTx2cFDP4GqsS7wu3KmTS8w/rITo0nJT6GxubWgO6p\nrkazDeSeOZwsNksu67s/Vcjvr5rFy2vK+vEKSigJZgDGp0VkFXAW1rN2sTFm05FcVESuAO4DpgJz\njDEr7fJ8YBOwxd51mTHmNnvbbOBxIBF4Hbjb9GZgJmXQcu3cMVw79/BdNIfDQ1ccG3DmPTjyPjrB\n+P3dQ2WkxMdYmV7NnV1hA2EdPHTFsSxYXNSvLsz5s3J6PfquMvjpbgBG91O1F3jWvc0YcyRNxvVY\nMyY+2sW27caYWV2UPwLcAizHUiLnAQuPQAblKOTy2bndbh+IVFB37/fk+Bif8ugcj7G++7OtlJuR\nxP3zZ/Tb+ZXIpztLZBVWHESAPKDGXk4HdgFje3tRx5IJ9oUVkZFAmjFmmb3+JHAxqkSUMMTdazwl\nPibgLJApdu93dy94RRlsdDd21lgAEfkL8IIx5nV7/XysCry/GCsia4A64AfGmA+BHGC3a5/ddlmX\niMit2BNn5eXl9aOoSqRw7Oh01pYEHmX3cPjTNcczdWTgeUO8lkhMAEvkkuNyqDvYwrVzj/wZHpIY\nS93BwBMnKUpvCSawPs8Yc4uzYoxZKCK/7OkgEVkEjOhi0/eNMS8FOKwcyDPGVNsxkBdFZHoQMvph\njFkALAAoKCjQuInSI0/dPIeK+r6Za+3CHuaYcAffk+OifRlSnYdjF24+udcGvx/vf+t0Go7i/j9K\n/xGMEikTkR8AT9nr1wI9ploYY84+XGHsya+a7eVVIrIdmASUAm5ndq5dpih9QmpC7IC5jUSE9KRY\nag+0EBcT5ZsnJTpAenBfkJEc12l+dUXpC4J5aq8GsrHSfF8AhtllfY6IZNt9UhCRccBEoMgYUw7U\ni8g8sQIp1wOBrBlFGfTcfdZE33LHnB7aV0MJP4JJ8d0H3N2XFxWRS4A/YCmn10RkjTHmXOBU4H4R\nacHq0HibKwvsdjpSfBeiQXUljHEnXPmUyBHMg6IooaJHJSIi79F5/DmMMWf29qLGGMeq8Zb/G2tc\nrq6OWQloLqISUQjiS+EN1NtdUQYzwcREvuVaTgAuAzRCpyh9hNNCU3eWEo4E485a5Sn6SEQ+6Sd5\nFOWowG3aqztLCWeCcWe5e65HAbOB4OYpVRSlewRXdpYqESX8CMad5e653grsAG7uT6EUJdJxD2XS\nriPpKmFMMEpkqjGmyV0gIvGBdlYUJXhEOtxZqkKUcCSYdJClXZR93NeCKMrRijMvu84DroQj3Y3i\nOwJrfKpEETmOjoZSGpAU6DhFUbrmiZvm0NDUefyqJ2+aw2vryjvNw64o4UB37qxzgRuxhhj5jau8\nAfheP8qkKBHJaZOyO5UJkJ+VzB1nTBh4gRSlD+huFN8ngCdE5DK7E6CiKH2ETqemRArdubOuM8Y8\nBeSLyH95txtjftPFYYqiHAYaB1HCne7cWcn2d8pACKIoiqKEH925sx61v38ycOIoytGB6TwcnaKE\nJcH0WM/Gmts8372/Meam/hNLUY4O1JmlhDvBdDZ8CfgQWAS09a84iqIoSjgRjBJJMsb8d79LoihH\nEZqdpUQKwfRYf1VELuh3SRTlKESTs5RwJxglcjeWIjkoIvUi0iAi9f0tmKJEMmqIKJFCMPOJpA6E\nIIpyNCIaWlfCnGCys47vorgOKDbG6AyHiqIoRzHBBNb/DBwPrLPXZwLrgSEi8v+MMW/1l3CKEqlo\nYF2JFIKJiZQBxxljZhtjZgOzgCLgHOCX/SmcokQ6GlhXwp1glMgkY8wGZ8UYsxGYYowp6j+xFCWy\n0R7rSqQQjBLZICKPiMhp9ufPwEZ7dsPOkyMEgYj8SkQ2i8hnIvKCiKS7tt0rIoUiskVEznWVzxaR\ndfa2h0VHrlMURQk5wSiRG4FC4Bv2p8guawHO6OV13wZmGGOOAbYC9wKIyDTgKmA6cB7wZxGJto95\nBGv4lYn257xeXltRFEXpI4JJ8T0I/Nr+eGnszUU9wfhlwOX28nzgOWNMM7BDRAqBOSKyE0gzxiwD\nEJEngYuBhb25vqKEGg2sK5FCj5aIiEwUkX+JyEYRKXI+fSjDTXQogxygxLVtt12WYy97ywPJfKuI\nrBSRlZWVlX0oqqL0LeqUVcKdYNxZ/4flSmrFcl89CTzV00EiskhE1nfxme/a5/v2eZ/unfhdY4xZ\nYIwpMMYUZGd3npJUURRF6RuC6SeSaIx5R0TEGFMM3Cciq4AfdXeQMebs7raLyI3ARcBZxviM+1Jg\ntGu3XLus1F72liuKoighJBhLpFlEooBtInKniFzCEc52KCLnAd8BvmiMOeDa9DJwlYjEi8hYrAD6\nJ8aYcqBeRObZWVnXYw1RryhhjQ57ooQ7wVgidwNJwF3AT4EzgRuO8Lp/BOKBt+1M3WXGmNuMMRtE\n5HlgI5ab6w5jjDOHye3A40AiVgxFg+pK2GI0sq5ECMFkZ62wFxuBr/TFRY0xE7rZ9gDwQBflK4EZ\nfXF9RRksaGBdCXcCKhERebm7A40xX+x7cRRFUZRwojtL5HNY6bbPAsvR6aAVpc9Qb5YSKXSnREZg\nDbJ4NXAN8BrwrHscLUVRjgxtmSnhTsDsLGNMmzHmDWPMDcA8rKFP3heROwdMOkVRFGVQ021g3R5k\n8UIsayQfeBh4of/FUpTIRr1ZSqTQXWD9SaxsqNeBnxhj1g+YVIpylKCDUSvhTneWyHXAfqx+Ine5\nHnYBjDEmrZ9lU5SIRQPrSqQQUIkYY4Lpza4oyhGgdogS7qiiUBRFUXqNKhFFCQE6Pa4SKagSUZQQ\nonF1JdxRJaIoIUAD60qkoEpEUUKIpvgq4Y4qEUVRFKXXqBJRlBCg3iwlUlAloiiKovQaVSKKoihK\nr1EloiihQNOzlAhBlYiihAhNzFIiAVUiihIC1A5RIgVVIooSItQQUSIBVSKKoihKr1EloighQOPq\nSlLEdDIAAA92SURBVKQQEiUiIr8Skc0i8pmIvCAi6XZ5vogcFJE19ud/XcfMFpF1IlIoIg+Ljheh\nhDn6CCuRQKgskbeBGcaYY4CtwL2ubduNMbPsz22u8keAW4CJ9ue8AZNWUfoYHQpeiRRCokSMMW8Z\nY1rt1WVAbnf7i8hIIM0Ys8wYY4AngYv7WUxF6VfUDlEigcEQE7kJWOhaH2u7sj4QkVPsshxgt2uf\n3XZZl4jIrSKyUkRWVlZW9r3EiqIoCtDNHOtHiogsAkZ0sen7xpiX7H2+D7QCT9vbyoE8Y0y1iMwG\nXhSR6Yd7bWPMAmABQEFBgfoNlEGHBtaVSKHflIgx5uzutovIjcBFwFm2iwpjTDPQbC+vEpHtwCSg\nFH+XV65dpihhi8bVlUggVNlZ5wHfAb5ojDngKs8WkWh7eRxWAL3IGFMO1IvIPDsr63rgpRCIriiK\norjoN0ukB/4IxANv22mOy+xMrFOB+0WkBWgHbjPG7LOPuR14HEjEiqEs9J5UUcIF9WYpkUJIlIgx\nZkKA8n8D/w6wbSUwoz/lUpSBRDQ/S4kABkN2lqIcdWhgXYkUVIkoSqhQQ0SJAFSJKIqiKL1GlYii\nhAAd9kSJFFSJKEqIUG+WEgmoElGUUKCGiBIhqBJRlBChPdaVSECViKIoitJrVIkoSghQb5YSKagS\nUZQQoT3WlUhAlYiiKIrSa1SJKEoIMDruiRIhqBJRlBCh2VlKJKBKRFFCgBoiSqSgSkRRQoQaIkok\noEpEURRF6TWqRBQlBKg3S4kUVIkoSogQjawrEYAqEUVRFKXXqBJRlBCg2VlKpKBKRFFChDqzlEhA\nlYiihACd2VCJFEKiRETkpyLymYisEZG3RGSUa9u9IlIoIltE5FxX+WwRWWdve1g0KqmEO/oEKxFA\nqCyRXxljjjHGzAJeBX4EICLTgKuA6cB5wJ9FJNo+5hHgFmCi/TlvwKVWFEVR/AiJEjHG1LtWk+lI\nm58PPGeMaTbG7AAKgTkiMhJIM8YsM9bIdU8CFw+o0IrSh2hgXYkUYkJ1YRF5ALgeqAPOsItzgGWu\n3XbbZS32srdcUcIW9WYpkUC/WSIiskhE1nfxmQ9gjPm+MWY08DRwZx9f+1YRWSkiKysrK/vy1Iqi\nKIqLfrNEjDFnB7nr08DrwI+BUmC0a1uuXVZqL3vLA117AbAAoKCgQB0HyqBEc0OUSCBU2VkTXavz\ngc328svAVSISLyJjsQLonxhjyoF6EZlnZ2VdD7w0oEIriqIonQhVTOTnIjIZaAeKgdsAjDEbROR5\nYCPQCtxhjGmzj7kdeBxIBBbaH0UJS3RmQyVSCIkSMcZc1s22B4AHuihfCczoT7kUZSBRb5YSCWiP\ndUVRFKXXqBJRlBCgziwlUlAloighQr1ZSiQQss6GinI0M31UGgcPtfW8o6IMclSJKEoIuPKEPK48\nIS/UYijKEaPuLEVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVR\nFKXXqBJRFEVReo1E+pDUIlKJNdx8OJEFVIVaiAFG7/noQO85fBhjjMnuaaeIVyLhiIisNMYUhFqO\ngUTv+ehA7znyUHeWoiiK0mtUiSiKoii9RpXI4GRBqAUIAXrPRwd6zxGGxkQURVGUXqOWiKIoitJr\nVIkoiqIovUaVyCBARDJF5G0R2WZ/Z3Szb7SIfCoirw6kjH1NMPcsIqNF5D0R2SgiG0Tk7lDIeqSI\nyHkiskVECkXku11sFxF52N7+mYgcHwo5+5Ig7vla+17XichSETk2FHL2JT3ds2u/E0SkVUQuH0j5\n+gtVIoOD7wLvGGMmAu/Y64G4G9g0IFL1L8HccyvwTWPMNGAecIeITBtAGY8YEYkG/gScD0wDru7i\nHs4HJtqfW4FHBlTIPibIe94BnGaMmQn8lDAPPgd5z85+vwDeGlgJ+w9VIoOD+cAT9vITwMVd7SQi\nucCFwGMDJFd/0uM9G2PKjTGr7eUGLOWZM2AS9g1zgEJjTJEx5hDwHNa9u5kPPGkslgHpIjJyoAXt\nQ3q8Z2PMUmNMjb26DMgdYBn7mmD+Z4CvA/8G9g6kcP2JKpHBwXBjTLm9vAcYHmC/3wHfAdoHRKr+\nJdh7BkBE8oHjgOX9K1afkwOUuNZ301kRBrNPOHG493MzsLBfJep/erxnEckBLiHMLU0vMaEW4GhB\nRBYBI7rY9H33ijHGiEinvGsRuQjYa4xZJSKn94+UfcuR3rPrPClYrbdvGGPq+1ZKJZSIyBlYSuTk\nUMsyAPwO+G9jTLuIhFqWPkOVyABhjDk70DYRqRCRkcaYctuN0ZWpexLwRRG5AEgA0kTkKWPMdf0k\n8hHTB/eMiMRiKZCnjTH/6SdR+5NSYLRrPdcuO9x9womg7kdEjsFyzZ5vjKkeINn6i2DuuQB4zlYg\nWcAFItJqjHlxYETsH9SdNTh4GbjBXr4BeMm7gzHmXmNMrjEmH7gKeHcwK5Ag6PGexXrb/gpsMsb8\nZgBl60tWABNFZKyIxGH9dy979nkZuN7O0poH1LlcfeFIj/csInnAf4AvG2O2hkDGvqbHezbGjDXG\n5Nvv8L+A28NdgYAqkcHCz4FzRGQbcLa9joiMEpHXQypZ/xHMPZ8EfBk4U0TW2J8LQiNu7zDGtAJ3\nAm9iJQY8b4zZICK3icht9m6vA0VAIfAX4PaQCNtHBHnPPwKGAn+2/9eVIRK3TwjyniMSHfZEURRF\n6TVqiSiKoii9RpWIoiiK0mtUiSiKoii9RpWIoiiK0mtUiSj/v71zjbGrquL4799pQ1tKW0arflH5\nYghQRcNILJIGSTUSRaROaSJYp0aJRihKqmg0OqFBtE2jIhiUpkypKA+xg6K0NKVDkVEofcx0Cqmg\nYEwkmFYZrdARhuWHtY6z5865t3duxw6d7l9yk3323mev/Th3P89ZK5PJZBomDyITFEkmaXVyvVxS\n+1HOQ0ehqVTSmiNVnijpFEl9VcJWhabfVUci47VE1N8zY/mKaNomxyOS2iTdeJg4i0MT7zGtKfto\nkb9Yn7gMAAslXW9m+0d7s6TJ8e77mGBmnx6rtKpwOdBsZoOp51iXYxz4kpn9fLwzMZZIaqpsp9cS\nZnanpOeB5eOdl2OBvBKZuLyCq9f+YmVAzOgfDHsOW+Lr4WKWerOkR4GVktolrZP0sKQ/S1ooaWXY\ngNgYKkmQ9A1J2yX1SfqxShQDSeqS1CLpI8mHg/skPRPhZ0l6SNIOSZsKLbbh3yOpB/h8WUEl/RKY\nAeyIWWRlOU6UtFbSY3JbLBfFfdMk3SHpSUkbJD0qqSXCDibpt0rqCPccSfdEebdLem/4t4eMLkl/\nkrQsuX9J1HWPpPWSTooVRlF/M9Prakh6Y+SzJ37nSLpW0heSONcp7K5IuibaqkfSt0vSq1bny+Q2\nXHol3VFyX5uke6OsT0n6ZhJ2WdTzbkk/kqs+R9JBSaujHedVpDdCnqSzJf0u2qtb0qmJ7E65DZpn\nJV0h6eqI93tJzRGvS9L3Ix99ks4uKUdpW2ZGiZnl3wT8AQeBmcCzwCx8VtUeYb8CPhnuTwGd4e4A\n7gOa4rod+C0wBTgTeBHXcwSwAfhouJsTueuBC5P0WsPdBbRU5PEufGCYAnQDc8J/MbA23L3A/HCv\nAvqqlTdxV5bjW8Bl4Z4N/AE4Ebg6kfMOfOBtKUmvFegI90+Bc8P9FlwlS1FX3cAJuF6kA1GuM0Le\n69O6Am5N6u9yYHVJmf5Xf3F9J66EEqAp2vUUYGf4TQL+iH8JfkHkZ3qF3I4oT606/ytwQlFfJflq\nA54LOdOAPlwv1Gn4szUl4v0QWBJuAy6p0nYj5OHP7uRwLwDuSWQ/DZwEzAH6gc9G2HeT+ukCbgn3\nfOK5iftvrNWWcX0ecN94/4+PhV/ezprAmNk/Jd0GLANeSoLmAQvDvR5YmYTdbcO3Gu43s5cl7cE7\nro3hvwfvwADeJ+nLwHSgGdiLdyZVifgvmdlNkuYCc4HNsYhpAp6TNBvvVLYleb2grsIPL8cHcOWV\nxfbEVLzTmA/cAGBmvZJ660h3AXC6hhZbM+VahgF+bWYDwICkv+Hq7c+PvOwPOX+PuGtwtf6dwFLg\nM3XIPh9YEukM4h1ov6QDkt4V8naZ2QFJC4BbzezFCrkFp1JS5xHWC9wuqTPyV8ZmC6WJkn6Ba+F9\nBTgL2B5pTmNIseYgrkizjDJ5s4B1kt6GD0DpKm2ruX2Zf0nqZ+hZ24NPBgp+FmXfFqu92RVyS9vS\nzA6SqZs8iEx8vgfsxGe+9fDviusBAHP11S9bTNNwmyaTJU3FZ5wtZvYX+eH91FoCooNbhHfiAAL2\nmlnlNkfln340pOUQ8DEz21eRfq37U31AaXkmAe8xs0MlaQ0kXoPU+H+Z2SPybcXz8BVT6QsDdbIG\nn2G/CVhb5z2ldR58CG+bC4GvSXq7jTxXqtSXZJHmOjP7akmah6z6OcgIebi1w61mdrHclkxXEj+t\n51eT61cZXudleUwpbcvM6MhnIhOcmIHehdtsKOjGtYwCXAo8fAQiig52f8zIa775I+mtuBnRRWZW\nrI72AXMkzYs4UySdYWYvAC9IKmxNXNpgHjcBVyp6+pi1A2wDPh5+cxk+i31e0mmSJuGGhAoewK3T\nFeV552FkPwgskvS6iN+chN2Gb6nUO8BvAT4X6TRJmhX+G4APAu/GywqwGVgqaXqJXKhS51HeN5vZ\nVuAafEUwg5G8X1KzpGm4VcpHIn+tkt5QyIz2rkoNebMYUqXeVrtaqrI4ZJyLa0burwgfbVtmSsiD\nyPHBanyfvuBKvIPpxbXkXtVowtHR34Lvi2/CVWLXog3fS++MQ8/fmJsTbQW+Ewevu4FzIv5S4CZJ\nu/GZbiOswLdDeiXtjWtwC3MzJD0JXAvsSO75Cn6u0s3QNg/41mBLHAI/AdR8/dbM9gLXAQ9F2VKV\n9rcDJxPbLnVwFb51uCfyenrI+A+wFdccOxh+G3FV5I9H3Q1706hGnTcBPwkZu4Aboo0reQzfnurF\nzyseN7MngK8DD8SztRk4nJnfavJWAtdL2kXjOyaH4v6bGT6JKhhVW2bKyVp8M5lAUhew3MyOilpy\n+fcaF5nZJ6qEd+CHuzVf8Y3Z/E58dffUmGd0pLw2fPvyiv+3rEY50raMbcblZvbhsczXRCSvRDKZ\ncUDSD3AbKitqROsHVqjGx4byDzifBrYcjQHkeEDSYvyc7x/jnZdjgbwSyWQymUzD5JVIJpPJZBom\nDyKZTCaTaZg8iGQymUymYfIgkslkMpmGyYNIJpPJZBrmv/jnK9qSdwCGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Flat-top window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/pulsar.rst.txt b/_sources/pulsar.rst.txt new file mode 100644 index 000000000..f51f5ebe6 --- /dev/null +++ b/_sources/pulsar.rst.txt @@ -0,0 +1,18 @@ +Analysing Pulsar Data +********************* + +The subpackage ``stingray.pulse`` implements a set of tools for +analysing (X-ray) pulsar data, in particular periodicity searches. + +Many of these methods are generally applicable for searchsing for +and analysing strictly periodic signals (with a possible frequency +derivative) in the presence of instrumental noise. + +Below, we show examples of how this functionality can be implemented and +used in practice. + +.. toctree:: + :maxdepth: 2 + + notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb + notebooks/Pulsar/Phase Dispersion Minimization.ipynb diff --git a/_sources/simulator.rst.txt b/_sources/simulator.rst.txt new file mode 100644 index 000000000..84e78ed92 --- /dev/null +++ b/_sources/simulator.rst.txt @@ -0,0 +1,227 @@ +Stingray Simulator (`stingray.simulator`) +***************************************** + +Introduction +============ + +`stingray.simulator` provides a framework to simulate light curves with given variability distributions. In time series experiments, understanding the certainty is crucial to interpret the derived results in context of physical models. The simulator module provides tools to assess this uncertainty by simulating time series and spectral data. + +Stingray simulator supports multiple methods to carry out these simulation. Light curves can be simulated through power-law spectrum, through a user-defined or pre-defined model, or through impulse responses. The module is designed in a way such that all these methods can be accessed using similar set of commands. + +.. note:: + + `stingray.simulator` is currently a work-in-progress, and thus it is likely + there will still be API changes in later versions of Stingray. Backwards + compatibility support between versions will still be maintained as much as + possible, but new features and enhancements are coming in future versions. + +.. _stingray-getting-started: + +Getting started +=============== + +The examples here assume that the following libraries and modules have been imported:: + + >>> import numpy as np + >>> from stingray import Lightcurve, sampledata + >>> from stingray.simulator import simulator, models + +Creating a Simulator Object +--------------------------- + +Stingray has a simulator class which can be used to instantiate a simulator +object and subsequently, perform simulations. We can pass on arguments to +this class class to set the properties of the desired light curve. + +The simulator object can be instantiated as:: + + >>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + +Here, `N` specifies the bins count of the simulated light curve, `mean` specifies +the mean value, `dt` is the time resolution, and `rms` is the fractional rms amplitude, +defined as the ratio of standard deviation to the mean.. Additional arguments can be +provided e.g. to account for the effect of red noise leakage. + +Simulate Method +--------------- + +Stingray provides multiple ways to simulate a light curve. However, all these methods follow a common recipe:: + + >>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + >>> lc = sim.simulate(2) + +Using Power-Law Spectrum +------------------------ + +When only an integer argument (beta) is provided to the `simulate` method, that integer defines the shape of the power law spectrum. Passing `beta` as 1 gives a flicker-noise distribution, while a beta of 2 generates a random-walk distribution. + +.. plot:: + :include-source: + + from matplotlib import rcParams + rcParams['font.family'] = 'sans-serif' + rcParams['font.sans-serif'] = ['Tahoma'] + + import matplotlib.pyplot as plt + from stingray.simulator import simulator + + # Instantiate simulator object + sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + # Specify beta value + lc = sim.simulate(2) + + plt.plot(lc.counts, 'g') + plt.title('Random-walk Distribution Simulation', fontsize='16') + plt.xlabel('Counts', fontsize='14', ) + plt.ylabel('Flux', fontsize='14') + plt.show() + +Using User-defined Model +------------------------ + +Light curve can also be simulated using a user-defined spectrum, which can be +passed on as a numpy array. + +.. plot:: + :include-source: + + from matplotlib import rcParams + rcParams['font.family'] = 'sans-serif' + rcParams['font.sans-serif'] = ['Tahoma'] + + import matplotlib.pyplot as plt + from stingray.simulator import simulator + + # Instantiate simulator object + sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + # Define a spectrum + w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:] + spectrum = np.power((1/w),2/2) + # Simulate + lc = sim.simulate(spectrum) + + plt.plot(lc.counts, 'g') + plt.title('User-defined Model Simulation', fontsize='16') + plt.xlabel('Counts', fontsize='14') + plt.ylabel('Flux', fontsize='14') + plt.show() + +Using Pre-defined Models +------------------------ + +One of the pre-defined spectrum models can be used to simulate a light curve. +In this case, model name and model parameters (as list iterable) need to be +passed on as function arguments. + +Using Impulse Response +---------------------- + +In order to simulate a light curve using impulse response, we need the original light curve and impulse response. Stingray provides `TransferFunction` class which can be used to obtain time and energy averaged impulse response by passing in a 2-D intensity profile as the input. A detailed tutorial on obtaining impulse response is provided `here `__. + +Here, for the sake of simplicity, we use a simulated impulse response. + +.. plot:: + :include-source: + + from matplotlib import rcParams + rcParams['font.family'] = 'sans-serif' + rcParams['font.sans-serif'] = ['Tahoma'] + + import matplotlib.pyplot as plt + from stingray import sampledata + from stingray.simulator import simulator + + # Obtain a sample light curve + lc = sampledata.sample_data().counts + # Instantiate simulator object + sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + # Obtain an artificial impulse response + ir = sim.relativistic_ir() + # Simulate + lc_new = sim.simulate(lc, ir) + + plt.plot(lc_new.counts, 'g') + plt.title('Impulse Response based Simulation', fontsize='16') + plt.xlabel('Counts', fontsize='14') + plt.ylabel('Flux', fontsize='14') + plt.show() + +Since, the new light curve is produced by the convolution of original light curveand impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter `full`. However, at times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to `filtered`. For a more detailed analysis on lag-frequency spectrum, follow the notebook `here `__. + +Channel Simulation +================== + +The `simulator` class provides the functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where we can create a di↵erent simulation channel for each energy range. The module provides options to count, retrieve and delete channels.:: + + >>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0) + >>> sim.simulate_channel('3.5 - 4.5', 2) + >>> sim.count_channels() + 1 + >>> lc = sim.get_channel('3.5 - 4.5') + >>> sim.delete_channel('3.5 - 4.5') + +Alternatively, assume that we have light curves in the simulated energy channels `3.5 - 4.5`, `4.5 - 5.5` and `5.5 - 6.5`. These channels can be retrieved or deleted in single commands. + + >>> sim.count_channels() + 0 + >>> sim.simulate_channel('3.5 - 4.5', 2) + >>> sim.simulate_channel('4.5 - 5.5', 2) + >>> sim.simulate_channel('5.5 - 6.5', 2) + >>> chans = sim.get_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5']) + >>> sim.delete_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5']) + +Tutorials +========= + +Important Concepts +------------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Concepts/Simulator.ipynb + notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb + notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb + notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb + + +The Simulator Object +-------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Simulator Tutorial.ipynb + +Available Spectral Models +------------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Power Spectral Models.ipynb + +An Example Lag Analysis +----------------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Simulator/Lag Analysis.ipynb + +Transfer Functions +------------------ + +.. toctree:: + :maxdepth: 2 + + notebooks/Transfer Functions/Data Preparation.ipynb + notebooks/Transfer Functions/TransferFunction Tutorial.ipynb + +Window Functions +---------------- + +.. toctree:: + :maxdepth: 2 + + notebooks/Window Functions/window_functions.ipynb diff --git a/_sources/timeseries.rst.txt b/_sources/timeseries.rst.txt new file mode 100644 index 000000000..54322bc1f --- /dev/null +++ b/_sources/timeseries.rst.txt @@ -0,0 +1,9 @@ +Working with more generic time series +************************************* + +.. toctree:: + :maxdepth: 2 + + notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb + notebooks/StingrayTimeseries/Working with weights and polarization.ipynb + notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 000000000..81415803e --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/astropy_linkout.svg b/_static/astropy_linkout.svg new file mode 100644 index 000000000..483249635 --- /dev/null +++ b/_static/astropy_linkout.svg @@ -0,0 +1,75 @@ + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/astropy_linkout_20.png b/_static/astropy_linkout_20.png new file mode 100644 index 000000000..432267972 Binary files /dev/null and b/_static/astropy_linkout_20.png differ diff --git a/_static/astropy_logo.ico b/_static/astropy_logo.ico new file mode 100644 index 000000000..16d5af740 Binary files /dev/null and b/_static/astropy_logo.ico differ diff --git a/_static/astropy_logo.svg b/_static/astropy_logo.svg new file mode 100644 index 000000000..1d7e10143 --- /dev/null +++ b/_static/astropy_logo.svg @@ -0,0 +1,87 @@ + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/astropy_logo_32.png b/_static/astropy_logo_32.png new file mode 100644 index 000000000..fc3d93099 Binary files /dev/null and b/_static/astropy_logo_32.png differ diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 000000000..7ebbd6d07 --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,914 @@ +/* + * Sphinx stylesheet -- basic theme. + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin-top: 10px; +} + +ul.search li { + padding: 5px 0; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/bootstrap-astropy.css b/_static/bootstrap-astropy.css new file mode 100644 index 000000000..1c6c6494e --- /dev/null +++ b/_static/bootstrap-astropy.css @@ -0,0 +1,664 @@ +/*! + * Bootstrap v1.4.0 + * + * Copyright 2011 Twitter, Inc + * Licensed under the Apache License v2.0 + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Heavily modified by Kyle Barbary for the AstroPy Project for use with Sphinx. + */ + +@import url("basic.css"); + +body { + background-color: #ffffff; + margin: 0; + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; + font-size: 13px; + font-weight: normal; + line-height: 18px; + color: #404040; +} + +/* Hyperlinks ----------------------------------------------------------------*/ + +a { + color: #0069d6; + text-decoration: none; + line-height: inherit; + font-weight: inherit; +} + +a:hover { + color: #00438a; + text-decoration: underline; +} + +/* Typography ----------------------------------------------------------------*/ + +h1,h2,h3,h4,h5,h6 { + color: #404040; + margin: 0.7em 0 0 0; + line-height: 1.5em; +} +h1 { + font-size: 24px; + margin: 0; +} +h2 { + font-size: 21px; + line-height: 1.2em; + margin: 1em 0 0.5em 0; + border-bottom: 1px solid #404040; +} +h3 { + font-size: 18px; +} +h4 { + font-size: 16px; +} +h5 { + font-size: 14px; +} +h6 { + font-size: 13px; + text-transform: uppercase; +} + +p { + font-size: 13px; + font-weight: normal; + line-height: 18px; + margin-top: 0px; + margin-bottom: 9px; +} + +ul, ol { + margin-left: 0; + padding: 0 0 0 25px; +} +ul ul, ul ol, ol ol, ol ul { + margin-bottom: 0; +} +ul { + list-style: disc; +} +ol { + list-style: decimal; +} +li { + line-height: 18px; + color: #404040; +} +ul.unstyled { + list-style: none; + margin-left: 0; +} +dl { + margin-bottom: 18px; +} +dl dt, dl dd { + line-height: 18px; +} +dl dd { + margin-left: 9px; +} +hr { + margin: 20px 0 19px; + border: 0; + border-bottom: 1px solid #eee; +} +strong { + font-style: inherit; + font-weight: bold; +} +em { + font-style: italic; + font-weight: inherit; + line-height: inherit; +} +.muted { + color: #bfbfbf; +} + +address { + display: block; + line-height: 18px; + margin-bottom: 18px; +} +code, pre { + padding: 0 3px 2px; + font-family: monospace; + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; +} +tt { + font-family: monospace; +} +code { + padding: 1px 3px; +} +pre { + display: block; + padding: 8.5px; + margin: 0 0 18px; + line-height: 18px; + border: 1px solid #ddd; + border: 1px solid rgba(0, 0, 0, 0.12); + -webkit-border-radius: 3px; + -moz-border-radius: 3px; + border-radius: 3px; + white-space: pre; + word-wrap: break-word; +} + +img { + margin: 9px 0; +} + +/* format inline code with a rounded box */ +tt, code { + margin: 0 2px; + padding: 0 5px; + border: 1px solid #ddd; + border: 1px solid rgba(0, 0, 0, 0.12); + border-radius: 3px; +} + +code.xref, a code { + margin: 0; + padding: 0 1px 0 1px; + background-color: transparent; + border: none; +} + +/* all code has same box background color, even in headers */ +h1 tt, h2 tt, h3 tt, h4 tt, h5 tt, h6 tt, +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code, +pre, code, tt { + background-color: #f8f8f8; +} + +/* override box for links & other sphinx-specifc stuff */ +tt.xref, a tt, tt.descname, tt.descclassname { + padding: 0 1px 0 1px; + border: none; +} + +/* override box for related bar at the top of the page */ +.related tt { + border: none; + padding: 0 1px 0 1px; + background-color: transparent; + font-weight: bold; +} + +th { + background-color: #dddddd; +} + +.viewcode-back { + font-family: sans-serif; +} + +div.viewcode-block:target { + background-color: #f4debf; + border-top: 1px solid #ac9; + border-bottom: 1px solid #ac9; +} + +table.docutils { + border-spacing: 5px; + border-collapse: separate; +} + +/* Topbar --------------------------------------------------------------------*/ + +div.topbar { + height: 40px; + position: absolute; + top: 0; + left: 0; + right: 0; + z-index: 10000; + padding: 0px 10px; + background-color: #222; + background-color: #222222; + background-repeat: repeat-x; + background-image: -khtml-gradient(linear, left top, left bottom, from(#333333), to(#222222)); + background-image: -moz-linear-gradient(top, #333333, #222222); + background-image: -ms-linear-gradient(top, #333333, #222222); + background-image: -webkit-gradient(linear, left top, left bottom, color-stop(0%, #333333), color-stop(100%, #222222)); + background-image: -webkit-linear-gradient(top, #333333, #222222); + background-image: -o-linear-gradient(top, #333333, #222222); + background-image: linear-gradient(to top, #333333, #222222); + filter: progid:DXImageTransform.Microsoft.gradient(startColorstr='#333333', endColorstr='#222222', GradientType=0); + overflow-x: hidden; + overflow-y: hidden; + width: 100%; +} + +div.topbar a.brand { + font-family: 'Source Sans Pro', sans-serif; + font-size: 26px; + color: #ffffff; + font-weight: 600; + text-decoration: none; + float: left; + display: block; + height: 32px; + padding: 8px 12px 0px 45px; + margin-left: -10px; + background: transparent url("astropy_logo_32.png") no-repeat 10px 4px; + background-image: url("astropy_logo.svg"), none; + background-size: 32px 32px; +} + +#logotext1 { +} + +#logotext2 { + font-weight:200; + color: #ff5000; +} +#logotext3 { + font-weight:200; +} + +div.topbar .brand:hover, div.topbar ul li a.homelink:hover { + background-color: #333; + background-color: rgba(255, 255, 255, 0.05); +} + +div.topbar ul { + font-size: 110%; + list-style-type: none; + margin: 0; + padding: 0 0 0 10px; + float: right; + color: #bfbfbf; + text-align: center; + text-decoration: none; + height: 100%; +} +div.topbar ul li { + float: left; + display: inline-block; + height: 30px; + margin: 5px; + padding: 0px; +} + +div.topbar ul li a { + color: #bfbfbf; + text-decoration: none; + padding: 5px; + display: block; + height: auto; + text-align: center; + vertical-align: middle; + border-radius: 4px; +} + +div.topbar ul li a:hover { + color: #ffffff; + text-decoration: none; +} + +div.dropdown { + position: relative; /* Fixed this to relative */ + display: inline-block; + z-index: 999999; +} + +div.dropdown-content { + display: none; /* Fix this at none */ + background-color: DimGray; + color: White; + width: 235px; + height: 155px; + box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2); + padding-top: 3px; + padding-right: 15px; + position: fixed; +} + +div.dropdown:hover .dropdown-content { + display: block; +} + +div.dropdown-content a { + display: block; +} + +div.dropdown-content a:hover { + color: white; +} + +div.dropdown a:hover { + color: #FF5000; +} + +div.dropdown z:hover { + color: #FF5000; + width: 10px; + display: none; +} + +div.dropdown z { + color: white; +} + +div.dropdown:after { + content: ""; + position: absolute; + right: -13px; + top: 9px; + width: 0; + height: 0; + border-left: 5px solid transparent; + border-right: 5px solid transparent; + border-top: 5px solid white; + z-index: 999999; +} + +div.dropdown:hover { + cursor: pointer; +} + +div.topbar ul li a.homelink { + width: 112px; + display: block; + height: 20px; + padding: 5px 0px; + background: transparent url("astropy_linkout_20.png") no-repeat 10px 5px; + background-image: url("astropy_linkout.svg"), none; + background-size: 91px 20px; +} + +div.topbar form { + text-align: left; + margin: 0 0 0 5px; + position: relative; + filter: alpha(opacity=100); + -khtml-opacity: 1; + -moz-opacity: 1; + opacity: 1; +} + +div.topbar input { + background-color: #444; + background-color: rgba(255, 255, 255, 0.3); + font-family: "Helvetica Neue", Helvetica, Arial, sans-serif; + font-size: medium; + font-weight: 200; + line-height: 1; + padding: 4px 9px; + color: #ffffff; + color: rgba(255, 255, 255, 0.75); + border: 1px solid #111; + -webkit-border-radius: 4px; + -moz-border-radius: 4px; + border-radius: 4px; + -webkit-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0px rgba(255, 255, 255, 0.25); + -moz-box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0px rgba(255, 255, 255, 0.25); + box-shadow: inset 0 1px 2px rgba(0, 0, 0, 0.1), 0 1px 0px rgba(255, 255, 255, 0.25); + -webkit-transition: none; + -moz-transition: none; + -ms-transition: none; + -o-transition: none; + transition: none; +} +div.topbar input:-moz-placeholder { + color: #e6e6e6; +} +div.topbar input::-webkit-input-placeholder { + color: #e6e6e6; +} +div.topbar input:hover { + background-color: #bfbfbf; + background-color: rgba(255, 255, 255, 0.5); + color: #ffffff; +} +div.topbar input:focus, div.topbar input.focused { + outline: 0; + background-color: #ffffff; + color: #404040; + text-shadow: 0 1px 0 #ffffff; + border: 0; + padding: 5px 10px; + -webkit-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); + -moz-box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); + box-shadow: 0 0 3px rgba(0, 0, 0, 0.15); +} + + +/* Relation bar (breadcrumbs, prev, next) ------------------------------------*/ + +div.related { + height: 21px; + width: auto; + margin: 0 10px; + position: relative; + top: 42px; + clear: both; + left: 0; + right: 0; + z-index: 999; + font-size: 100%; + vertical-align: middle; + background-color: #fff; + border-bottom: 1px solid #bbb; +} +div.related ul { + padding: 0; + margin: 0; +} + + +/* Footer --------------------------------------------------------------------*/ + +footer { + display: block; + margin: 10px 10px 0px; + padding: 10px 0 0 0; + border-top: 1px solid #bbb; +} +.pull-right { + float: right; + width: 30em; + text-align: right; +} + + +/* Sphinx sidebar ------------------------------------------------------------*/ + +div.sphinxsidebar { + font-size: inherit; + border-radius: 3px; + background-color: #eee; + border: 1px solid #bbb; + word-wrap: break-word; + /* overflow-wrap is the canonical name for word-wrap in the CSS3 text draft. + We include it here mainly for future-proofing. */ + overflow-wrap: break-word; +} + +div.sphinxsidebarwrapper { + padding: 0px 0px 0px 5px; +} + +div.sphinxsidebar h3 { + font-family: 'Trebuchet MS', sans-serif; + font-size: 1.4em; + font-weight: normal; + margin: 5px 0px 0px 5px; + padding: 0; + line-height: 1.6em; +} +div.sphinxsidebar h4 { + font-family: 'Trebuchet MS', sans-serif; + font-size: 1.3em; + font-weight: normal; + margin: 5px 0 0 0; + padding: 0; +} +div.sphinxsidebar p { +} +div.sphinxsidebar p.topless { + margin: 5px 10px 10px 10px; +} +div.sphinxsidebar ul { + margin: 0px 0px 0px 5px; + padding: 0; +} + +div.sphinxsidebar ul ul { + margin-left: 15px; + list-style-type: disc; +} + +/* If showing the global TOC (toctree), + color the current page differently */ +div.sphinxsidebar a.current { + color: #404040; +} +div.sphinxsidebar a.current:hover { + color: #404040; +} + + +/* document, documentwrapper, body, bodywrapper ----------------------------- */ + +div.document { + margin-top: 72px; + margin-left: 10px; + margin-right: 10px; +} + +div.documentwrapper { + float: left; + width: 100%; +} + +div.body { + background-color: #ffffff; + padding: 0 0 0px 20px; +} + +div.bodywrapper { + margin: 0 0 0 230px; + max-width: 55em; +} + + +/* Header links ------------------------------------------------------------- */ + +a.headerlink { + font-size: 0.8em; + padding: 0 4px 0 4px; + text-decoration: none; +} + +a.headerlink:hover { + background-color: #0069d6; + color: white; + text-decoration: none; +} + + +/* Admonitions and warnings ------------------------------------------------- */ + +/* Shared by admonitions and warnings */ +div.admonition, +div.warning { + padding: 0px; + border-radius: 3px; + -moz-border-radius: 3px; + -webkit-border-radius: 3px; +} +div.admonition p, +div.warning p { + margin: 0.5em 1em 0.5em 1em; + padding: 0; +} +div.admonition pre, +div.warning pre { + margin: 0.4em 1em 0.4em 1em; +} +div.admonition p.admonition-title, +div.warning p.admonition-title { + margin: 0; + padding: 0.1em 0 0.1em 0.5em; + color: white; + font-weight: bold; + font-size: 1.1em; +} +div.admonition ul, div.admonition ol, +div.warning ul, div.warning ol { + margin: 0.1em 0.5em 0.5em 3em; + padding: 0; +} + +/* Admonitions only */ +div.admonition { + border: 1px solid #609060; + background-color: #e9ffe9; +} +div.admonition p.admonition-title { + background-color: #70A070; +} + +/* Warnings only */ +div.warning { + border: 1px solid #900000; + background-color: #ffe9e9; +} +div.warning p.admonition-title { + background-color: #b04040; +} + + +/* Figures ------------------------------------------------------------------ */ + +.figure.align-center { + clear: none; +} + +/* This is a div for containing multiple figures side-by-side, for use with + * .. container:: figures */ +div.figures { + border: 1px solid #CCCCCC; + background-color: #F8F8F8; + margin: 1em; + text-align: center; +} + +div.figures .figure { + clear: none; + float: none; + display: inline-block; + border: none; + margin-left: 0.5em; + margin-right: 0.5em; +} + +.field-list th { + white-space: nowrap; +} + +table.field-list { + border-spacing: 0px; + margin-left: 1px; + border-left: 5px solid rgb(238, 238, 238) !important; +} + +table.field-list th.field-name { + display: inline-block; + padding: 1px 8px 1px 5px; + white-space: nowrap; + background-color: rgb(238, 238, 238); + border-radius: 0 3px 3px 0; + -webkit-border-radius: 0 3px 3px 0; +} diff --git a/_static/copybutton.js b/_static/copybutton.js new file mode 100644 index 000000000..52a9baad5 --- /dev/null +++ b/_static/copybutton.js @@ -0,0 +1,63 @@ +$(document).ready(function() { + /* Add a [>>>] button on the top-right corner of code samples to hide + * the >>> and ... prompts and the output and thus make the code + * copyable. */ + var div = $('.highlight-python .highlight,' + + '.highlight-python3 .highlight,' + + '.highlight-default .highlight') + var pre = div.find('pre'); + + // get the styles from the current theme + pre.parent().parent().css('position', 'relative'); + var hide_text = 'Hide the prompts and output'; + var show_text = 'Show the prompts and output'; + var border_width = pre.css('border-top-width'); + var border_style = pre.css('border-top-style'); + var border_color = pre.css('border-top-color'); + var button_styles = { + 'cursor':'pointer', 'position': 'absolute', 'top': '0', 'right': '0', + 'border-color': border_color, 'border-style': border_style, + 'border-width': border_width, 'color': border_color, 'text-size': '75%', + 'font-family': 'monospace', 'padding-left': '0.2em', 'padding-right': '0.2em', + 'border-radius': '0 3px 0 0' + } + + // create and add the button to all the code blocks that contain >>> + div.each(function(index) { + var jthis = $(this); + if (jthis.find('.gp').length > 0) { + var button = $('>>>'); + button.css(button_styles) + button.attr('title', hide_text); + button.data('hidden', 'false'); + jthis.prepend(button); + } + // tracebacks (.gt) contain bare text elements that need to be + // wrapped in a span to work with .nextUntil() (see later) + jthis.find('pre:has(.gt)').contents().filter(function() { + return ((this.nodeType == 3) && (this.data.trim().length > 0)); + }).wrap(''); + }); + + // define the behavior of the button when it's clicked + $('.copybutton').click(function(e){ + e.preventDefault(); + var button = $(this); + if (button.data('hidden') === 'false') { + // hide the code output + button.parent().find('.go, .gp, .gt').hide(); + button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'hidden'); + button.css('text-decoration', 'line-through'); + button.attr('title', show_text); + button.data('hidden', 'true'); + } else { + // show the code output + button.parent().find('.go, .gp, .gt').show(); + button.next('pre').find('.gt').nextUntil('.gp, .go').css('visibility', 'visible'); + button.css('text-decoration', 'none'); + button.attr('title', hide_text); + button.data('hidden', 'false'); + } + }); +}); + diff --git a/_static/css/custom.css b/_static/css/custom.css new file mode 100644 index 000000000..1dd0a11af --- /dev/null +++ b/_static/css/custom.css @@ -0,0 +1,7 @@ +div.topbar a.brand { + background-image: url(''); +} + +div.sphinxsidebarwrapper { + overflow: scroll; +} diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 000000000..0398ebb9f --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,149 @@ +/* + * Base JavaScript utilities for all Sphinx HTML documentation. + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 000000000..7e4c114f2 --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 000000000..a858a410e Binary files /dev/null and b/_static/file.png differ diff --git a/_static/graphviz.css b/_static/graphviz.css new file mode 100644 index 000000000..30f3837b6 --- /dev/null +++ b/_static/graphviz.css @@ -0,0 +1,12 @@ +/* + * Sphinx stylesheet -- graphviz extension. + */ + +img.graphviz { + border: 0; + max-width: 100%; +} + +object.graphviz { + max-width: 100%; +} diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 000000000..c4c6022f2 --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 00 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 000000000..d96755fda Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 000000000..4919ca882 --- /dev/null +++ b/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css new file mode 100644 index 000000000..a3fb27c30 --- /dev/null +++ b/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css new file mode 100644 index 000000000..365c27a96 --- /dev/null +++ b/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 000000000..9dca7588f --- /dev/null +++ b/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/plot_directive.css b/_static/plot_directive.css new file mode 100644 index 000000000..d45593c93 --- /dev/null +++ b/_static/plot_directive.css @@ -0,0 +1,16 @@ +/* + * plot_directive.css + * ~~~~~~~~~~~~ + * + * Stylesheet controlling images created using the `plot` directive within + * Sphinx. + * + * :copyright: Copyright 2020-* by the Matplotlib development team. + * :license: Matplotlib, see LICENSE for details. + * + */ + +img.plot-directive { + border: 0; + max-width: 100%; +} diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 000000000..7107cec93 Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 000000000..0d49244ed --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #eeffcc; } +.highlight .c { color: #408090; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #007020; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #408090; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #408090; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #007020 } /* Comment.Preproc */ +.highlight .cpf { color: #408090; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #408090; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #408090; background-color: #fff0f0 } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #FF0000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #00A000 } /* Generic.Inserted */ +.highlight .go { color: #333333 } /* Generic.Output */ +.highlight .gp { color: #c65d09; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #007020; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #007020; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #007020; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #007020 } /* Keyword.Pseudo */ +.highlight .kr { color: #007020; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #902000 } /* Keyword.Type */ +.highlight .m { color: #208050 } /* Literal.Number */ +.highlight .s { color: #4070a0 } /* Literal.String */ +.highlight .na { color: #4070a0 } /* Name.Attribute */ +.highlight .nb { color: #007020 } /* Name.Builtin */ +.highlight .nc { color: #0e84b5; font-weight: bold } /* Name.Class */ +.highlight .no { color: #60add5 } /* Name.Constant */ +.highlight .nd { color: #555555; font-weight: bold } /* Name.Decorator */ +.highlight .ni { color: #d55537; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #007020 } /* Name.Exception */ +.highlight .nf { color: #06287e } /* Name.Function */ +.highlight .nl { color: #002070; font-weight: bold } /* Name.Label */ +.highlight .nn { color: #0e84b5; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #062873; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #bb60d5 } /* Name.Variable */ +.highlight .ow { color: #007020; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #208050 } /* Literal.Number.Bin */ +.highlight .mf { color: #208050 } /* Literal.Number.Float */ +.highlight .mh { color: #208050 } /* Literal.Number.Hex */ +.highlight .mi { color: #208050 } /* Literal.Number.Integer */ +.highlight .mo { color: #208050 } /* Literal.Number.Oct */ +.highlight .sa { color: #4070a0 } /* Literal.String.Affix */ +.highlight .sb { color: #4070a0 } /* Literal.String.Backtick */ +.highlight .sc { color: #4070a0 } /* Literal.String.Char */ +.highlight .dl { color: #4070a0 } /* Literal.String.Delimiter */ +.highlight .sd { color: #4070a0; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #4070a0 } /* Literal.String.Double */ +.highlight .se { color: #4070a0; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #4070a0 } /* Literal.String.Heredoc */ +.highlight .si { color: #70a0d0; font-style: italic } /* Literal.String.Interpol */ +.highlight .sx { color: #c65d09 } /* Literal.String.Other */ +.highlight .sr { color: #235388 } /* Literal.String.Regex */ +.highlight .s1 { color: #4070a0 } /* Literal.String.Single */ +.highlight .ss { color: #517918 } /* Literal.String.Symbol */ +.highlight .bp { color: #007020 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #06287e } /* Name.Function.Magic */ +.highlight .vc { color: #bb60d5 } /* Name.Variable.Class */ +.highlight .vg { color: #bb60d5 } /* Name.Variable.Global */ +.highlight .vi { color: #bb60d5 } /* Name.Variable.Instance */ +.highlight .vm { color: #bb60d5 } /* Name.Variable.Magic */ +.highlight .il { color: #208050 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 000000000..2c774d17a --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,632 @@ +/* + * Sphinx JavaScript utilities for the full-text search. + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename, kind] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +// Global search result kind enum, used by themes to style search results. +class SearchResultKind { + static get index() { return "index"; } + static get object() { return "object"; } + static get text() { return "text"; } + static get title() { return "title"; } +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename, kind] = item; + + let listItem = document.createElement("li"); + // Add a class representing the item's type: + // can be used by a theme's CSS selector for styling + // See SearchResultKind for the class names. + listItem.classList.add(`kind-${kind}`); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms, anchor) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = Documentation.ngettext( + "Search finished, found one page matching the search query.", + "Search finished, found ${resultCount} pages matching the search query.", + resultCount, + ).replace('${resultCount}', resultCount); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; +// Helper function used by query() to order search results. +// Each input is an array of [docname, title, anchor, descr, score, filename, kind]. +// Order the results by score (in opposite order of appearance, since the +// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. +const _orderResultsByScoreThenName = (a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString, anchor) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + for (const removalQuery of [".headerlink", "script", "style"]) { + htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); + } + if (anchor) { + const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); + if (anchorContent) return anchorContent.textContent; + + console.warn( + `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` + ); + } + + // if anchor not specified or not found, fall back to main content + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent) return docContent.textContent; + + console.warn( + "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.setAttribute("role", "list"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + _parseQuery: (query) => { + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; + }, + + /** + * execute search (requires search index to be loaded) + */ + _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // Collect multiple result groups to be sorted separately and then ordered. + // Each is an array of [docname, title, anchor, descr, score, filename, kind]. + const normalResults = []; + const nonMainIndexResults = []; + + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase().trim(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + const score = Math.round(Scorer.title * queryLower.length / title.length); + const boost = titles[file] === title ? 1 : 0; // add a boost for document titles + normalResults.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score + boost, + filenames[file], + SearchResultKind.title, + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id, isMain] of foundEntries) { + const score = Math.round(100 * queryLower.length / entry.length); + const result = [ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + SearchResultKind.index, + ]; + if (isMain) { + normalResults.push(result); + } else { + nonMainIndexResults.push(result); + } + } + } + } + + // lookup as object + objectTerms.forEach((term) => + normalResults.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) { + normalResults.forEach((item) => (item[4] = Scorer.score(item))); + nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); + } + + // Sort each group of results by score and then alphabetically by name. + normalResults.sort(_orderResultsByScoreThenName); + nonMainIndexResults.sort(_orderResultsByScoreThenName); + + // Combine the result groups in (reverse) order. + // Non-main index entries are typically arbitrary cross-references, + // so display them after other results. + let results = [...nonMainIndexResults, ...normalResults]; + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + return results.reverse(); + }, + + query: (query) => { + const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); + const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + SearchResultKind.object, + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + if (!terms.hasOwnProperty(word)) { + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + } + if (!titleTerms.hasOwnProperty(word)) { + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); + }); + } + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (!fileMap.has(file)) fileMap.set(file, [word]); + else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + SearchResultKind.text, + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords, anchor) => { + const text = Search.htmlToText(htmlText, anchor); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sidebar.js b/_static/sidebar.js new file mode 100644 index 000000000..15d87f3ac --- /dev/null +++ b/_static/sidebar.js @@ -0,0 +1,160 @@ +/* + * sidebar.js + * ~~~~~~~~~~ + * + * This script makes the Sphinx sidebar collapsible. + * + * .sphinxsidebar contains .sphinxsidebarwrapper. This script adds + * in .sphixsidebar, after .sphinxsidebarwrapper, the #sidebarbutton + * used to collapse and expand the sidebar. + * + * When the sidebar is collapsed the .sphinxsidebarwrapper is hidden + * and the width of the sidebar and the margin-left of the document + * are decreased. When the sidebar is expanded the opposite happens. + * This script saves a per-browser/per-session cookie used to + * remember the position of the sidebar among the pages. + * Once the browser is closed the cookie is deleted and the position + * reset to the default (expanded). + * + * :copyright: Copyright 2007-2011 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +$(function() { + // global elements used by the functions. + // the 'sidebarbutton' element is defined as global after its + // creation, in the add_sidebar_button function + var bodywrapper = $('.bodywrapper'); + var sidebar = $('.sphinxsidebar'); + var sidebarwrapper = $('.sphinxsidebarwrapper'); + + // for some reason, the document has no sidebar; do not run into errors + if (!sidebar.length) return; + + // original margin-left of the bodywrapper and width of the sidebar + // with the sidebar expanded + var bw_margin_expanded = bodywrapper.css('margin-left'); + var ssb_width_expanded = sidebar.width(); + + // margin-left of the bodywrapper and width of the sidebar + // with the sidebar collapsed + var bw_margin_collapsed = 12; + var ssb_width_collapsed = 12; + + // custom colors + var dark_color = '#404040'; + var light_color = '#505050'; + + function sidebar_is_collapsed() { + return sidebarwrapper.is(':not(:visible)'); + } + + function toggle_sidebar() { + if (sidebar_is_collapsed()) + expand_sidebar(); + else + collapse_sidebar(); + } + + function collapse_sidebar() { + sidebarwrapper.hide(); + sidebar.css('width', ssb_width_collapsed); + bodywrapper.css('margin-left', bw_margin_collapsed); + sidebarbutton.css({ + 'margin-left': '-1px', + 'height': bodywrapper.height(), + 'border-radius': '3px' + }); + sidebarbutton.find('span').text('»'); + sidebarbutton.attr('title', _('Expand sidebar')); + document.cookie = 'sidebar=collapsed'; + } + + function expand_sidebar() { + bodywrapper.css('margin-left', bw_margin_expanded); + sidebar.css('width', ssb_width_expanded); + sidebarwrapper.show(); + sidebarbutton.css({ + 'margin-left': ssb_width_expanded - 12, + 'height': bodywrapper.height(), + 'border-radius': '0px 3px 3px 0px' + }); + sidebarbutton.find('span').text('«'); + sidebarbutton.attr('title', _('Collapse sidebar')); + document.cookie = 'sidebar=expanded'; + } + + function add_sidebar_button() { + sidebarwrapper.css({ + 'float': 'left', + 'margin-right': '0', + 'width': ssb_width_expanded - 18 + }); + // create the button + sidebar.append('
«
'); + var sidebarbutton = $('#sidebarbutton'); + + // find the height of the viewport to center the '<<' in the page + var viewport_height; + if (window.innerHeight) + viewport_height = window.innerHeight; + else + viewport_height = $(window).height(); + var sidebar_offset = sidebar.offset().top; + var sidebar_height = Math.max(bodywrapper.height(), sidebar.height()); + sidebarbutton.find('span').css({ + 'font-family': '"Lucida Grande",Arial,sans-serif', + 'display': 'block', + 'top': Math.min(viewport_height/2, sidebar_height/2 + sidebar_offset) - 10, + 'width': 12, + 'position': 'fixed', + 'text-align': 'center' + }); + + sidebarbutton.click(toggle_sidebar); + sidebarbutton.attr('title', _('Collapse sidebar')); + sidebarbutton.css({ + 'color': '#FFFFFF', + 'background-color': light_color, + 'border': '1px solid ' + light_color, + 'border-radius': '0px 3px 3px 0px', + 'font-size': '1.2em', + 'cursor': 'pointer', + 'height': sidebar_height, + 'padding-top': '1px', + 'margin': '-1px', + 'margin-left': ssb_width_expanded - 12 + }); + + sidebarbutton.hover( + function () { + $(this).css('background-color', dark_color); + }, + function () { + $(this).css('background-color', light_color); + } + ); + } + + function set_position_from_cookie() { + if (!document.cookie) + return; + var items = document.cookie.split(';'); + for(var k=0; k { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/_static/stingray_logo.ico b/_static/stingray_logo.ico new file mode 100644 index 000000000..ac5cd7c87 Binary files /dev/null and b/_static/stingray_logo.ico differ diff --git a/_zenodo.html b/_zenodo.html new file mode 100644 index 000000000..563e7d612 --- /dev/null +++ b/_zenodo.html @@ -0,0 +1,157 @@ + + + + + + + + <no title> — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + + +
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/acknowledgements.html b/acknowledgements.html new file mode 100644 index 000000000..58f56696d --- /dev/null +++ b/acknowledgements.html @@ -0,0 +1,108 @@ + + + + + + + + Acknowledgements — stingray v + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Acknowledgements

+

Thank you to JetBrains for the free use of PyCharm.

+

Stingray participated in the Google Summer of Code in 2018, 2020, 2021, 2022, 2023, 2024 under Open Astronomy, in 2017 under the Python Software Foundation, and in 2016 under Timelab.

+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/api.html b/api.html new file mode 100644 index 000000000..302078c43 --- /dev/null +++ b/api.html @@ -0,0 +1,16144 @@ + + + + + + + + Stingray API — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray API

+

Library of Time Series Methods For Astronomical X-ray Data.

+
+

Base Class

+

Most stingray` classes are subclasses of a single class, stingray.StingrayObject, which +implements most of the I/O functionality and common behavior (e.g. strategies to combine data and +make operations such as the sum, difference, or negation). This class is not intended to be +instantiated directly, but rather to be used as a base class for other classes. Any class wanting +to inherit from stingray.StingrayObject should define a main_array_attr attribute, which +defines the name of the attribute that will be used to store the “independent variable” main data array. +For example, for all time series-like objects, the main array is the time array, while for the +periodograms the main array is the frequency array. +All arrays sharing the length (not the shape: they might be multi-dimensional!) of the main array are called +“array attributes” and are accessible through the array_attrs method. +When applying a mask or any other selection to a stingray.StingrayObject, +all array attributes are filtered in the same way. Some array-like attributes might have the same length +by chance, in this case the user or the developer should add these to the not_array_attr attribute. +For example, stingray.StingrayTimeseries has gti among the not_array_attrs, since it is an +array but not related 1-to-1 to the main array, even if in some cases it might happen to have the same numbers +of elements of the main array, which is time.

+
+

StingrayObject

+
+
+class stingray.StingrayObject(*args, **kwargs)[source]
+

This base class defines some general-purpose utilities.

+

The main purpose is to have a consistent mechanism for:

+
    +
  • round-tripping to and from Astropy Tables and other dataframes

  • +
  • round-tripping to files in different formats

  • +
+

The idea is that any object inheriting StingrayObject should, +just by defining an attribute called main_array_attr, be able to perform +the operations above, with no additional effort.

+

main_array_attr is, e.g. time for StingrayTimeseries and +Lightcurve, freq for Crossspectrum, energy for +VarEnergySpectrum, and so on. It is the array with which all other +attributes are compared: if they are of the same shape, they get saved as +columns of the table/dataframe, otherwise as metadata.

+
+
+add(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)[source]
+

Add two StingrayObject instances.

+

Add the array values of two StingrayObject instances element by element, assuming +the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None)[source]
+

Apply a mask to all array attributes of the object

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Returns:
+
+
ts_newStingrayObject object

The new object with the mask applied if inplace is False, otherwise the +same object.

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current object. Otherwise, return a new one.

+
+
filtered_attrslist of str or None

Array attributes to be filtered. Defaults to all array attributes if None. +The other array attributes will be set to None. The main array attr is always +included.

+
+
+
+
+
+ +
+
+array_attrs() list[str][source]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of array attributes.

+
+
+
+
+
+ +
+
+data_attributes() list[str][source]
+

Clean up the list of attributes, only giving out those pointing to data.

+

List all the attributes that point directly to valid data. This method goes through all the +attributes of the class, eliminating methods, properties, and attributes that are complicated +to serialize such as other StingrayObject, or arrays of objects.

+

This function does not make difference between array-like data and scalar data.

+
+
Returns:
+
+
data_attributeslist of str

List of attributes pointing to data that are not methods, properties, +or other StingrayObject instances.

+
+
+
+
+
+ +
+
+dict() dict[source]
+

Return a dictionary representation of the object.

+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso[source]
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso[source]
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso[source]
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+get_meta_dict() dict[source]
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+internal_array_attrs() list[str][source]
+

List the names of the internal array attributes of the Stingray Object.

+

These are array attributes that can be set by properties, and are generally indicated +by an underscore followed by the name of the property that links to it (E.g. +_counts in Lightcurve). +By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of internal array attributes.

+
+
+
+
+
+ +
+
+meta_attrs() list[str][source]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of meta attributes.

+
+
+
+
+
+ +
+
+pretty_print(func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) str[source]
+

Return a pretty-printed string representation of the object.

+

This is useful for debugging, and for interactive use.

+
+
Other Parameters:
+
+
func_to_applyfunction

A function that modifies the attributes listed in attrs_to_apply. +It must return the modified attributes and a label to be printed. +If None, no function is applied.

+
+
attrs_to_applylist of str

Attributes to be modified by func_to_apply.

+
+
attrs_to_discardlist of str

Attributes to be discarded from the output.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso[source]
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+sub(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)[source]
+

Subtract all the array attrs of two StingrayObject instances element by element, assuming the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+to_astropy_table(no_longdouble=False) Table[source]
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+
Other Parameters:
+
+
no_longdoublebool

If True, reduce the precision of longdouble arrays to double precision. +This needs to be done in some cases, e.g. when the table is to be saved +in an architecture not supporting extended precision (e.g. ARM), but can +also be useful when an extended precision is not needed.

+
+
+
+
+
+ +
+
+to_pandas() DataFrame[source]
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+

Since pandas does not support n-D data, multi-dimensional arrays are +converted into columns before the conversion, with names <colname>_dimN_M_K etc.

+

See documentation of make_nd_into_arrays for details.

+
+ +
+
+to_xarray() Dataset[source]
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+write(filename: str, fmt: str | None = None) None[source]
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+
+

Data Classes

+

These classes define basic functionality related to common data types and typical methods +that apply to these data types, including basic read/write functionality. Currently +implemented are stingray.StingrayTimeseries, stingray.Lightcurve and +stingray.events.EventList.

+

All time series-like data classes inherit from stingray.StingrayTimeseries, which +implements most of the common functionality. The main data array is stored in the time +attribute. +Good Time Intervals (GTIs) are stored in the gti attribute, which is a list of 2-tuples or 2-lists +containing the start and stop times of each GTI. The gti attribute is not an array attribute, since +it is not related 1-to-1 to the main array, even if in some cases it might happen to have the same number +of elements of the main array. It is by default added to the not_array_attr attribute.

+
+

StingrayTimeseries

+
+
+class stingray.StingrayTimeseries(time: TTime = None, array_attrs: dict = {}, mjdref: TTime = 0, notes: str = '', gti: npt.ArrayLike = None, high_precision: bool = False, ephem: str = None, timeref: str = None, timesys: str = None, skip_checks: bool = False, **other_kw)[source]
+

Basic class for time series data.

+

This can be events, binned light curves, unevenly sampled light curves, etc. The only +requirement is that the data (which can be any quantity, related or not to an electromagnetic +measurement) are associated with a time measurement. +We make a distinction between the array attributes, which have the same length of the +time array, and the meta attributes, which can be scalars or arrays of different +size. The array attributes can be multidimensional (e.g. a spectrum for each time bin), +but their first dimension (array.shape[0]) must have same length of the time array.

+

Array attributes are singled out automatically depending on their shape. All filtering +operations (e.g. apply_gtis, rebin, etc.) are applied to array attributes only. +For this reason, it is advisable to specify whether a given attribute should not be +considered as an array attribute by adding it to the not_array_attr list.

+
+
Parameters:
+
+
time: iterable

A list or array of time stamps

+
+
+
+
Attributes:
+
+
time: numpy.ndarray

The array of time stamps, in seconds from the reference +MJD defined in mjdref

+
+
not_array_attr: list

List of attributes that are never to be considered as array attributes. For example, GTIs +are not array attributes.

+
+
dt: float

The time resolution of the measurements. Can be a scalar or an array attribute (useful +for non-evenly sampled data or events from different instruments). It can also be 0, which +means that the time series is not evenly sampled and the effects of the time resolution are +considered negligible for the analysis. This is sometimes the case for events from +high-energy telescopes.

+
+
mjdreffloat

The MJD used as a reference for the time array.

+
+
gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Good Time Intervals

+
+
high_precisionbool

Change the precision of self.time to float128. Useful while dealing with fast pulsars.

+
+
+
+
Other Parameters:
+
+
array_attrsdict

Array attributes to be set (e.g. {"flux": flux_array, "flux_err": flux_err_array}). +In principle, they could be specified as simple keyword arguments. But this way, we +will run a check on the length of the arrays, and raise an error if they are not of a +shape compatible with the time array.

+
+
dt: float

The time resolution of the time series. Can be a scalar or an array attribute (useful +for non-evenly sampled data or events from different instruments)

+
+
mjdreffloat

The MJD used as a reference for the time array.

+
+
gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Good Time Intervals

+
+
high_precisionbool

Change the precision of self.time to float128. Useful while dealing with fast pulsars.

+
+
timerefstr

The time reference, as recorded in the FITS file (e.g. SOLARSYSTEM)

+
+
timesysstr

The time system, as recorded in the FITS file (e.g. TDB)

+
+
ephemstr

The JPL ephemeris used to barycenter the data, if any (e.g. DE430)

+
+
skip_checksbool

Skip checks on the time array. Useful when the user is reasonably sure that the +input data are valid.

+
+
**other_kw

Used internally. Any other keyword arguments will be set as attributes of the object.

+
+
+
+
+
+
+analyze_by_gti(func, fraction_step=1, **kwargs)[source]
+

Analyze the light curve with any function, on a GTI-by-GTI base.

+
+
Parameters:
+
+
funcfunction

Function accepting a StingrayTimeseries object as single argument, plus +possible additional keyword arguments, and returning a number or a +tuple - e.g., (result, error) where both result and error are +numbers.

+
+
+
+
Returns:
+
+
start_timesarray

Lower time boundaries of all time segments.

+
+
stop_timesarray

upper time boundaries of all segments.

+
+
resultarray of N elements

The result of func for each segment of the light curve

+
+
+
+
Other Parameters:
+
+
fraction_stepfloat

By default, segments do not overlap (fraction_step = 1). If fraction_step < 1, +then the start points of consecutive segments are fraction_step * segment_size +apart, and consecutive segments overlap. For example, for fraction_step = 0.5, +the window shifts one half of segment_size)

+
+
kwargskeyword arguments

These additional keyword arguments, if present, they will be passed +to func

+
+
+
+
+
+ +
+
+analyze_segments(func, segment_size, fraction_step=1, **kwargs)[source]
+

Analyze segments of the light curve with any function.

+

Intervals with less than one data point are skipped.

+
+
Parameters:
+
+
funcfunction

Function accepting a StingrayTimeseries object as single argument, plus +possible additional keyword arguments, and returning a number or a +tuple - e.g., (result, error) where both result and error are +numbers.

+
+
segment_sizefloat

Length in seconds of the light curve segments. If None, the full GTIs are considered +instead as segments.

+
+
+
+
Returns:
+
+
start_timesarray

Lower time boundaries of all time segments.

+
+
stop_timesarray

upper time boundaries of all segments.

+
+
resultlist of N elements

The result of func for each segment of the light curve. If the function +returns multiple outputs, they are returned as a list of arrays. +If a given interval has not enough data for a calculation, None is returned.

+
+
+
+
Other Parameters:
+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving window), +this indicates the ratio between step step and segment_size (e.g. +0.5 means that the window shifts of half segment_size)

+
+
kwargskeyword arguments

These additional keyword arguments, if present, they will be passed +to func

+
+
+
+
+

Examples

+
>>> import numpy as np
+>>> time = np.arange(0, 10, 0.1)
+>>> counts = np.zeros_like(time) + 10
+>>> ts = StingrayTimeseries(time, counts=counts, dt=0.1)
+>>> # Define a function that calculates the mean
+>>> mean_func = lambda ts: np.mean(ts.counts)
+>>> # Calculate the mean in segments of 5 seconds
+>>> start, stop, res = ts.analyze_segments(mean_func, 5)
+>>> len(res) == 2
+True
+>>> np.allclose(res, 10)
+True
+
+
+
+ +
+
+apply_gtis(new_gti=None, inplace: bool = True)[source]
+

Apply Good Time Intervals (GTIs) to a time series. Filters all the array attributes, only +keeping the bins that fall into GTIs.

+
+
Parameters:
+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+change_mjdref(new_mjdref: float, inplace=False) StingrayTimeseries[source]
+

Change the MJD reference time (MJDREF) of the time series

+

The times of the time series will be shifted in order to be referred to +this new MJDREF

+
+
Parameters:
+
+
new_mjdreffloat

New MJDREF

+
+
+
+
Returns:
+
+
new_tsStingrayTimeseries object

The new time series, shifted by MJDREF

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+concatenate(other, check_gti=True)[source]
+

Concatenate two StingrayTimeseries objects.

+

This method concatenates two or more StingrayTimeseries objects along the time +axis. GTIs are recalculated by merging all the GTIs together. GTIs should not overlap at +any point.

+
+
Parameters:
+
+
otherStingrayTimeseries object or list of StingrayTimeseries objects

A second time series object, or a list of objects to be concatenated

+
+
+
+
Other Parameters:
+
+
check_gtibool

Check if the GTIs are overlapping or not. Default: True +If this is True and GTIs overlap, an error is raised.

+
+
+
+
+
+ +
+
+estimate_segment_size(min_counts=None, min_samples=None, even_sampling=None)[source]
+

Estimate a reasonable segment length for segment-by-segment analysis.

+

The user has to specify a criterion based on a minimum number of counts (if +the time series has a counts attribute) or a minimum number of time samples. +At least one between min_counts and min_samples must be specified. +In the special case of a time series with dt=0 (event list-like, where each time +stamp correspond to a single count), the two definitions are equivalent.

+
+
Returns:
+
+
segment_sizefloat

The length of the light curve chunks that satisfies the conditions

+
+
+
+
Other Parameters:
+
+
min_countsint

Minimum number of counts for each chunk. Optional (but needs min_samples +if left unspecified). Only makes sense if the series has a counts attribute and +it is evenly sampled.

+
+
min_samplesint

Minimum number of time bins. Optional (but needs min_counts if left unspecified).

+
+
even_samplingbool

Force the treatment of the data as evenly sampled or not. If None, the data are +considered evenly sampled if self.dt is larger than zero and the median +separation between subsequent times is within 1% of self.dt.

+
+
+
+
+

Examples

+
>>> import numpy as np
+>>> time = np.arange(150)
+>>> counts = np.zeros_like(time) + 3
+>>> ts = StingrayTimeseries(time, counts=counts, dt=1)
+>>> assert np.isclose(ts.estimate_segment_size(min_counts=10, min_samples=3), 4.0)
+>>> assert np.isclose(ts.estimate_segment_size(min_counts=10, min_samples=5), 5.0)
+>>> counts[2:4] = 1
+>>> ts = StingrayTimeseries(time, counts=counts, dt=1)
+>>> assert np.isclose(ts.estimate_segment_size(min_counts=3, min_samples=1), 3.0)
+>>> # A slightly more complex example
+>>> dt=0.2
+>>> time = np.arange(0, 1000, dt)
+>>> counts = np.random.poisson(100, size=len(time))
+>>> ts = StingrayTimeseries(time, counts=counts, dt=dt)
+>>> assert np.isclose(ts.estimate_segment_size(100, 2), 0.4)
+>>> min_total_bins = 40
+>>> assert np.isclose(ts.estimate_segment_size(100, 40), 8.0)
+
+
+
+ +
+
+property exposure
+

Return the total exposure of the time series, i.e. the sum of the GTIs.

+
+
Returns:
+
+
total_exposurefloat

The total exposure of the time series, in seconds.

+
+
+
+
+
+ +
+
+fill_bad_time_intervals(max_length=None, attrs_to_randomize=None, buffer_size=None, even_sampling=None, seed=None)[source]
+

Fill short bad time intervals with random data.

+
+

Warning

+

This method is only appropriate for very short bad time intervals. The simulated data +are basically white noise, so they are able to alter the statistical properties of +variable data. For very short gaps in the data, the effect of these small +injections of white noise should be negligible. How short depends on the single case, +the user is urged not to use the method as a black box and make simulations to measure +its effect. If you have long bad time intervals, you should use more advanced +techniques, not currently available in Stingray for this use case, such as Gaussian +Processes. In particular, please verify that the values of max_length and +buffer_size are adequate to your case.

+
+

To fill the gaps in all but the time points (i.e., flux measures, energies), we take the +buffer_size (by default, the largest value between 100 and the estimated samples in +a max_length-long gap) valid data points closest to the gap and repeat them randomly +with the same empirical statistical distribution. So, if the my_fancy_attr attribute, in +the 100 points of the buffer, has 30 times 10, 10 times 9, and 60 times 11, there will be +on average 30% of 10, 60% of 11, and 10% of 9 in the simulated data.

+

Times are treated differently depending on the fact that the time series is evenly +sampled or not. If it is not, the times are simulated from a uniform distribution with the +same count rate found in the buffer. Otherwise, times just follow the same grid used +inside GTIs. Using the evenly sampled or not is decided based on the even_sampling +parameter. If left to None, the time series is considered evenly sampled if +self.dt is greater than zero and the median separation between subsequent times is +within 1% of the time resolution.

+
+
Other Parameters:
+
+
max_lengthfloat

Maximum length of a bad time interval to be filled. If None, the criterion is bad +time intervals shorter than 1/100th of the longest good time interval.

+
+
attrs_to_randomizelist of str, default None

List of array_attrs to randomize. If None, all array_attrs are randomized. +It should not include time and _mask, which are treated separately.

+
+
buffer_sizeint, default 100

Number of good data points to use to calculate the means and variance the random data +on each side of the bad time interval

+
+
even_samplingbool, default None

Force the treatment of the data as evenly sampled or not. If None, the data are +considered evenly sampled if self.dt is larger than zero and the median +separation between subsequent times is within 1% of self.dt.

+
+
seedint, default None

Random seed to use for the simulation. If None, a random seed is generated.

+
+
+
+
+
+ +
+
+classmethod from_astropy_timeseries(ts: TimeSeries) StingrayTimeseries[source]
+

Create a StingrayTimeseries from data in an Astropy TimeSeries

+

The timeseries has to define at least a column called time, +the rest of columns will form the array attributes of the +new time series, while the attributes in table.meta will +form the new meta attributes of the time series.

+
+
Parameters:
+
+
tsastropy.timeseries.TimeSeries

A TimeSeries object with the array attributes as columns, +and the meta attributes in the meta dictionary

+
+
+
+
Returns:
+
+
tsStingrayTimeseries

Timeseries object

+
+
+
+
+
+ +
+
+join(*args, **kwargs)[source]
+

Join other StingrayTimeseries objects with the current one.

+

If both are empty, an empty StingrayTimeseries is returned.

+

Standard attributes such as pi and energy remain None if they are None +in both. Otherwise, np.nan is used as a default value for the missing values. +Arbitrary array attributes are created and joined using the same convention.

+

Multiple checks are done on the joined time series. If the time array of the series +being joined is empty, it is ignored. If the time resolution is different, the final +time series will have the rougher time resolution. If the MJDREF is different, the time +reference will be changed to the one of the first time series. An empty time series will +be ignored.

+

Note: join is not equivalent to concatenate. concatenate is used to join +multiple non-overlapping time series along the time axis, while join is more +general, and can be used to join multiple time series with different strategies (see +parameter strategy below).

+
+
Parameters:
+
+
otherStingrayTimeseries or class:list of StingrayTimeseries

The other StingrayTimeseries object which is supposed to be joined with. +If other is a list, it is assumed to be a list of StingrayTimeseries +and they are all joined, one by one.

+
+
+
+
Returns:
+
+
`ts_new`StingrayTimeseries object

The resulting StingrayTimeseries object.

+
+
+
+
Other Parameters:
+
+
strategy{“intersection”, “union”, “append”, “infer”, “none”}

Method to use to merge the GTIs. If “intersection”, the GTIs are merged +using the intersection of the GTIs. If “union”, the GTIs are merged +using the union of the GTIs. If “none”, a single GTI with the minimum and +the maximum time stamps of all GTIs is returned. If “infer”, the strategy +is decided based on the GTIs. If there are no overlaps, “union” is used, +otherwise “intersection” is used. If “append”, the GTIs are simply appended +but they must be mutually exclusive.

+
+
+
+
+
+ +
+
+plot(attr, witherrors=False, labels=None, ax=None, title=None, marker='-', save=False, filename=None, plot_btis=True, axis_limits=None)[source]
+

Plot the time series using matplotlib.

+

Plot the time series object on a graph self.time on x-axis and +self.counts on y-axis with self.counts_err optionally +as error bars.

+
+
Parameters:
+
+
attr: str

Attribute to plot.

+
+
+
+
Other Parameters:
+
+
witherrors: boolean, default False

Whether to plot the StingrayTimeseries with errorbars or not

+
+
labelsiterable, default None

A list or tuple with xlabel and ylabel as strings. E.g. +if the attribute is 'counts', the list of labels +could be ['Time (s)', 'Counts (s^-1)']

+
+
axmatplotlib.pyplot.axis object

Axis to be used for plotting. Defaults to creating a new one.

+
+
axis_limitslist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
plot_btisbool

Plot the bad time intervals as red areas on the plot

+
+
+
+
+
+ +
+
+rebin(dt_new=None, f=None, method='sum')[source]
+

Rebin the time series to a new time resolution. While the new +resolution need not be an integer multiple of the previous time +resolution, be aware that if it is not, the last bin will be cut +off by the fraction left over by the integer division.

+
+
Parameters:
+
+
dt_new: float

The new time resolution of the time series. Must be larger than +the time resolution of the old time series!

+
+
method: {``sum`` | ``mean`` | ``average``}, optional, default ``sum``

This keyword argument sets whether the counts in the new bins +should be summed or averaged.

+
+
+
+
Returns:
+
+
ts_new: StingrayTimeseries object

The StingrayTimeseries object with the new, binned time series.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes dt_new with +f*self.dt

+
+
+
+
+
+ +
+
+shift(time_shift: float, inplace=False) StingrayTimeseries[source]
+

Shift the time and the GTIs by the same amount

+
+
Parameters:
+
+
time_shift: float

The time interval by which the time series will be shifted (in +the same units as the time array in StingrayTimeseries

+
+
+
+
Returns:
+
+
tsStingrayTimeseries object

The new time series shifted by time_shift

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+sort(reverse=False, inplace=False)[source]
+

Sort a StingrayTimeseries object by time.

+

A StingrayTimeseries can be sorted in either increasing or decreasing order +using this method. The time array gets sorted and the counts array is +changed accordingly.

+
+
Parameters:
+
+
reverseboolean, default False

If True then the object is sorted in reverse order.

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
Returns:
+
+
ts_new: StingrayTimeseries object

The StingrayTimeseries object with sorted time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [2, 1, 3]
+>>> count = [200, 100, 300]
+>>> ts = StingrayTimeseries(time, array_attrs={"counts": count}, dt=1, skip_checks=True)
+>>> ts_new = ts.sort()
+>>> ts_new.time
+array([1, 2, 3])
+>>> assert np.allclose(ts_new.counts, [100, 200, 300])
+
+
+
+ +
+
+split_by_gti(gti=None, min_points=2)[source]
+

Split the current StingrayTimeseries object into a list of +StingrayTimeseries objects, one for each continuous GTI segment +as defined in the gti attribute.

+
+
Parameters:
+
+
min_pointsint, default 1

The minimum number of data points in each time series. Light +curves with fewer data points will be ignored.

+
+
+
+
Returns:
+
+
list_of_tsslist

A list of StingrayTimeseries objects, one for each GTI segment

+
+
+
+
+
+ +
+
+to_astropy_timeseries() TimeSeries[source]
+

Save the StingrayTimeseries to an Astropy timeseries.

+

Array attributes (time, pi, energy, etc.) are converted +into columns, while meta attributes (mjdref, gti, etc.) +are saved into the meta dictionary.

+
+
Returns:
+
+
tsastropy.timeseries.TimeSeries

A TimeSeries object with the array attributes as columns, +and the meta attributes in the meta dictionary

+
+
+
+
+
+ +
+
+truncate(start=0, stop=None, method='index')[source]
+

Truncate a StingrayTimeseries object.

+

This method takes a start and a stop point (either as indices, +or as times in the same unit as those in the time attribute, and truncates +all bins before start and after stop, then returns a new +StingrayTimeseries object with the truncated time series.

+
+
Parameters:
+
+
startint, default 0

Index (or time stamp) of the starting point of the truncation. If no value is set +for the start point, then all points from the first element in the time array +are taken into account.

+
+
stopint, default None

Index (or time stamp) of the ending point (exclusive) of the truncation. If no +value of stop is set, then points including the last point in +the counts array are taken in count.

+
+
method{index | time}, optional, default index

Type of the start and stop values. If set to index then +the values are treated as indices of the counts array, or +if set to time, the values are treated as actual time values.

+
+
+
+
Returns:
+
+
ts_new: StingrayTimeseries object

The StingrayTimeseries object with truncated time and arrays.

+
+
+
+
+

Examples

+
>>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+>>> count = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+>>> ts = StingrayTimeseries(time, array_attrs={"counts": count}, dt=1)
+>>> ts_new = ts.truncate(start=2, stop=8)
+>>> assert np.allclose(ts_new.counts, [30, 40, 50, 60, 70, 80])
+>>> assert np.allclose(ts_new.time, [3, 4, 5, 6, 7, 8])
+>>> # Truncation can also be done by time values
+>>> ts_new = ts.truncate(start=6, method='time')
+>>> assert np.allclose(ts_new.time, [6, 7, 8, 9])
+>>> assert np.allclose(ts_new.counts, [60, 70, 80, 90])
+
+
+
+ +
+ +
+
+
+

Lightcurve

+
+
+class stingray.Lightcurve(time=None, counts=None, err=None, input_counts=True, gti=None, err_dist='poisson', bg_counts=None, bg_ratio=None, frac_exp=None, mjdref=0, dt=None, skip_checks=False, low_memory=False, mission=None, instr=None, header=None, **other_kw)[source]
+

Make a light curve object from an array of time stamps and an +array of counts.

+
+
Parameters:
+
+
time: Iterable, `:class:astropy.time.Time`, or `:class:astropy.units.Quantity` object

A list or array of time stamps for a light curve. Must be a type that +can be cast to :class:np.array or :class:List of floats, or that +has a value attribute that does (e.g. a +:class:astropy.units.Quantity or :class:astropy.time.Time object).

+
+
counts: iterable, optional, default ``None``

A list or array of the counts in each bin corresponding to the +bins defined in time (note: use input_counts=False to +input the count range, i.e. counts/second, otherwise use +counts/bin).

+
+
err: iterable, optional, default ``None``

A list or array of the uncertainties in each bin corresponding to +the bins defined in time (note: use input_counts=False to +input the count rage, i.e. counts/second, otherwise use +counts/bin). If None, we assume the data is poisson distributed +and calculate the error from the average of the lower and upper +1-sigma confidence intervals for the Poissonian distribution with +mean equal to counts.

+
+
input_counts: bool, optional, default True

If True, the code assumes that the input data in counts +is in units of counts/bin. If False, it assumes the data +in counts is in counts/second.

+
+
gti: 2-d float array, default ``None``

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +Good Time Intervals. They are not applied to the data by default. +They will be used by other methods to have an indication of the +“safe” time intervals to use during analysis.

+
+
err_dist: str, optional, default ``None``

Statistical distribution used to calculate the +uncertainties and other statistical values appropriately. +Default makes no assumptions and keep errors equal to zero.

+
+
bg_counts: iterable,`:class:numpy.array` or `:class:List` of floats, optional, default ``None``

A list or array of background counts detected in the background extraction region +in each bin corresponding to the bins defined in time.

+
+
bg_ratio: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None``

A list or array of source region area to background region area ratio in each bin. These are +factors by which the bg_counts should be scaled to estimate background counts within the +source aperture.

+
+
frac_exp: iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None``

A list or array of fractional exposers in each bin.

+
+
mjdref: float

MJD reference (useful in most high-energy mission data)

+
+
dt: float or array of floats. Default median(diff(time))

Time resolution of the light curve. Can be an array of the same dimension +as time specifying width of each bin.

+
+
skip_checks: bool

If True, the user specifies that data are already sorted and contain no +infinite or nan points. Use at your own risk

+
+
low_memory: bool

If True, all the lazily evaluated attribute (e.g., countrate and +countrate_err if input_counts is True) will _not_ be stored in memory, +but calculated every time they are requested.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
**other_kw

Used internally. Any other keyword arguments will be ignored

+
+
+
+
Attributes:
+
+
time: numpy.ndarray

The array of midpoints of time bins.

+
+
bin_lo: numpy.ndarray

The array of lower time stamp of time bins.

+
+
bin_hi: numpy.ndarray

The array of higher time stamp of time bins.

+
+
counts: numpy.ndarray

The counts per bin corresponding to the bins in time.

+
+
counts_err: numpy.ndarray

The uncertainties corresponding to counts

+
+
bg_counts: numpy.ndarray

The background counts corresponding to the bins in time.

+
+
bg_ratio: numpy.ndarray

The ratio of source region area to background region area corresponding to each bin.

+
+
frac_exp: numpy.ndarray

The fractional exposers in each bin.

+
+
countrate: numpy.ndarray

The counts per second in each of the bins defined in time.

+
+
countrate_err: numpy.ndarray

The uncertainties corresponding to countrate

+
+
meanrate: float

The mean count rate of the light curve.

+
+
meancounts: float

The mean counts of the light curve.

+
+
n: int

The number of data points in the light curve.

+
+
dt: float or array of floats

The time resolution of the light curve.

+
+
mjdref: float

MJD reference date (tstart / 86400 gives the date in MJD at the +start of the observation)

+
+
tseg: float

The total duration of the light curve.

+
+
tstart: float

The start time of the light curve.

+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +Good Time Intervals. They indicate the “safe” time intervals +to be used during the analysis of the light curve.

+
+
err_dist: string

Statistic of the Lightcurve, it is used to calculate the +uncertainties and other statistical values appropriately. +It propagates to Spectrum classes.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
detector_iditerable

The detector that recoded each photon, if relevant (e.g. XMM, Chandra)

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
+
+
+
+
+analyze_lc_chunks(segment_size, func, fraction_step=1, **kwargs)[source]
+

Analyze segments of the light curve with any function.

+
+

Deprecated since version 2.0: Use Lightcurve.analyze_segments(func, segment_size)() instead.

+
+
+
Parameters:
+
+
segment_sizefloat

Length in seconds of the light curve segments

+
+
funcfunction

Function accepting a Lightcurve object as single argument, plus +possible additional keyword arguments, and returning a number or a +tuple - e.g., (result, error) where both result and error are +numbers.

+
+
+
+
Returns:
+
+
start_timesarray

Lower time boundaries of all time segments.

+
+
stop_timesarray

upper time boundaries of all segments.

+
+
resultarray of N elements

The result of func for each segment of the light curve

+
+
+
+
Other Parameters:
+
+
fraction_stepfloat

By default, segments do not overlap (fraction_step = 1). If fraction_step < 1, +then the start points of consecutive segments are fraction_step * segment_size +apart, and consecutive segments overlap. For example, for fraction_step = 0.5, +the window shifts one half of segment_size)

+
+
kwargskeyword arguments

These additional keyword arguments, if present, they will be passed +to func

+
+
+
+
+
+ +
+
+apply_gtis(inplace=True)[source]
+

Apply GTIs to a light curve. Filters the time, counts, +countrate, counts_err and countrate_err arrays for all bins +that fall into Good Time Intervals and recalculates mean countrate +and the number of bins.

+
+
Parameters:
+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+baseline(lam, p, niter=10, offset_correction=False)[source]
+

Calculate the baseline of the light curve, accounting for GTIs.

+
+
Parameters:
+
+
lamfloat

“smoothness” parameter. Larger values make the baseline stiffer +Typically 1e2 < lam < 1e9

+
+
pfloat

“asymmetry” parameter. Smaller values make the baseline more +“horizontal”. Typically 0.001 < p < 0.1, but not necessary.

+
+
+
+
Returns:
+
+
baselinenumpy.ndarray

An array with the baseline of the light curve

+
+
+
+
Other Parameters:
+
+
offset_correctionbool, default False

by default, this method does not align to the running mean of the +light curve, but it goes below the light curve. Setting align to +True, an additional step is done to shift the baseline so that it +is shifted to the middle of the light curve noise distribution.

+
+
+
+
+
+ +
+
+bexvar()[source]
+

Finds posterior samples of Bayesian excess variance (bexvar) for the light curve. +It requires source counts in counts and time intervals for each bin. +If the dt is an array then uses its elements as time intervals +for each bin. If dt is float, it calculates the time intervals by assuming +all intervals to be equal to dt.

+
+
Returns:
+
+
lc_bexvariterable, :class:numpy.array of floats

An array of posterior samples of Bayesian excess variance (bexvar).

+
+
+
+
+
+ +
+
+check_lightcurve()[source]
+

Make various checks on the lightcurve.

+

It can be slow, use it if you are not sure about your +input data.

+
+ +
+
+estimate_chunk_length(*args, **kwargs)[source]
+

Deprecated alias of estimate_segment_size.

+
+ +
+
+estimate_segment_size(min_counts=100, min_samples=100, even_sampling=None)[source]
+

Estimate a reasonable segment length for segment-by-segment analysis.

+

The user has to specify a criterion based on a minimum number of counts (if +the time series has a counts attribute) or a minimum number of time samples. +At least one between min_counts and min_samples must be specified.

+
+
Returns:
+
+
segment_sizefloat

The length of the light curve chunks that satisfies the conditions

+
+
+
+
Other Parameters:
+
+
min_countsint

Minimum number of counts for each chunk. Optional (but needs min_samples +if left unspecified). Only makes sense if the series has a counts attribute and +it is evenly sampled.

+
+
min_samplesint

Minimum number of time bins. Optional (but needs min_counts if left unspecified).

+
+
even_samplingbool

Force the treatment of the data as evenly sampled or not. If None, the data are +considered evenly sampled if self.dt is larger than zero and the median +separation between subsequent times is within 1% of self.dt.

+
+
+
+
+

Examples

+
>>> import numpy as np
+>>> time = np.arange(150)
+>>> count = np.zeros_like(time) + 3
+>>> lc = Lightcurve(time, count, dt=1)
+>>> assert np.isclose(
+...     lc.estimate_segment_size(min_counts=10, min_samples=3), 4)
+>>> assert np.isclose(lc.estimate_segment_size(min_counts=10, min_samples=5), 5)
+>>> count[2:4] = 1
+>>> lc = Lightcurve(time, count, dt=1)
+>>> assert np.isclose(lc.estimate_segment_size(min_counts=3, min_samples=1), 3)
+>>> # A slightly more complex example
+>>> dt=0.2
+>>> time = np.arange(0, 1000, dt)
+>>> counts = np.random.poisson(100, size=len(time))
+>>> lc = Lightcurve(time, counts, dt=dt)
+>>> assert np.isclose(lc.estimate_segment_size(100, 2), 0.4)
+>>> min_total_bins = 40
+>>> assert np.isclose(lc.estimate_segment_size(100, 40), 8.0)
+
+
+
+ +
+
+static from_astropy_table(ts, **kwargs)[source]
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+static from_astropy_timeseries(ts, **kwargs)[source]
+

Create a StingrayTimeseries from data in an Astropy TimeSeries

+

The timeseries has to define at least a column called time, +the rest of columns will form the array attributes of the +new time series, while the attributes in table.meta will +form the new meta attributes of the time series.

+
+
Parameters:
+
+
tsastropy.timeseries.TimeSeries

A TimeSeries object with the array attributes as columns, +and the meta attributes in the meta dictionary

+
+
+
+
Returns:
+
+
tsStingrayTimeseries

Timeseries object

+
+
+
+
+
+ +
+
+static from_lightkurve(lk, skip_checks=True)[source]
+

Creates a new Lightcurve from a lightkurve.LightCurve.

+
+
Parameters:
+
+
lklightkurve.LightCurve

A lightkurve LightCurve object

+
+
skip_checks: bool

If True, the user specifies that data are already sorted and contain no +infinite or nan points. Use at your own risk.

+
+
+
+
+
+ +
+
+join(other, skip_checks=False)[source]
+

Join two lightcurves into a single object.

+

The new Lightcurve object will contain time stamps from both the +objects. The counts and countrate attributes in the resulting object +will contain the union of the non-overlapping parts of the two individual objects, +or the average in case of overlapping time arrays of both Lightcurve objects.

+

Good Time Intervals are also joined.

+

Note : Ideally, the time array of both lightcurves should not overlap.

+
+
Parameters:
+
+
otherLightcurve object

The other Lightcurve object which is supposed to be joined with.

+
+
skip_checks: bool

If True, the user specifies that data are already sorted and +contain no infinite or nan points. Use at your own risk.

+
+
+
+
Returns:
+
+
lc_newLightcurve object

The resulting Lightcurve object.

+
+
+
+
+

Examples

+
>>> time1 = [5, 10, 15]
+>>> count1 = [300, 100, 400]
+>>> time2 = [20, 25, 30]
+>>> count2 = [600, 1200, 800]
+>>> lc1 = Lightcurve(time1, count1, dt=5)
+>>> lc2 = Lightcurve(time2, count2, dt=5)
+>>> lc = lc1.join(lc2)
+>>> lc.time
+array([ 5, 10, 15, 20, 25, 30])
+>>> assert np.allclose(lc.counts, [ 300,  100,  400,  600, 1200,  800])
+
+
+
+ +
+
+static make_lightcurve(toa, dt, tseg=None, tstart=None, gti=None, mjdref=0, use_hist=False)[source]
+

Make a light curve out of photon arrival times, with a given time resolution dt. +Note that dt should be larger than the native time resolution of the instrument +that has taken the data.

+
+
Parameters:
+
+
toa: iterable

list of photon arrival times

+
+
dt: float

time resolution of the light curve (the bin width)

+
+
tseg: float, optional, default ``None``

The total duration of the light curve. +If this is None, then the total duration of the light curve will +be the interval between the arrival between either the first and the last +gti boundary or, if gti is not set, the first and the last photon in toa.

+
+

Note: If tseg is not divisible by dt (i.e. if tseg/dt is +not an integer number), then the last fractional bin will be +dropped!

+
+
+
tstart: float, optional, default ``None``

The start time of the light curve. +If this is None, either the first gti boundary or, if not available, +the arrival time of the first photon will be used +as the start time of the light curve.

+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +Good Time Intervals

+
+
use_histbool

Use np.histogram instead of np.bincounts. Might be advantageous +for very short datasets.

+
+
+
+
Returns:
+
+
lc: Lightcurve object

A Lightcurve object with the binned light curve

+
+
+
+
+
+ +
+
+plot(witherrors=False, labels=None, ax=None, title=None, marker='-', save=False, filename=None, axis_limits=None, axis=None, plot_btis=True)[source]
+

Plot the light curve using matplotlib.

+

Plot the light curve object on a graph self.time on x-axis and +self.counts on y-axis with self.counts_err optionally +as error bars.

+
+
Parameters:
+
+
witherrors: boolean, default False

Whether to plot the Lightcurve with errorbars or not

+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axis_limitslist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
axislist, tuple, string, default None

Deprecated in favor of axis_limits, same functionality.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.pyplot.axis object

Axis to be used for plotting. Defaults to creating a new one.

+
+
plot_btisbool

Plot the bad time intervals as red areas on the plot

+
+
+
+
+
+ +
+
+classmethod read(filename, fmt=None, format_=None, err_dist='gauss', skip_checks=False, **fits_kwargs)[source]
+

Read a Lightcurve object from file.

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • hea : FITS Light curves from HEASARC-supported missions.

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a time column and a counts or countrate column. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all lightcurve attributes such as dt, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
lcLightcurve object
+
+
+
Other Parameters:
+
+
err_dist: str, default=’gauss’

Default error distribution if not specified in the file (e.g. for +ASCII files). The default is ‘gauss’ just because it is likely +that people using ASCII light curves will want to specify Gaussian +error bars, if any.

+
+
skip_checksbool

See Lightcurve documentation

+
+
**fits_kwargsadditional keyword arguments

Any other arguments to be passed to lcurve_from_fits (only relevant +for hea/ogip formats)

+
+
+
+
+
+ +
+
+rebin(dt_new=None, f=None, method='sum')[source]
+

Rebin the light curve to a new time resolution. While the new +resolution need not be an integer multiple of the previous time +resolution, be aware that if it is not, the last bin will be cut +off by the fraction left over by the integer division.

+
+
Parameters:
+
+
dt_new: float

The new time resolution of the light curve. Must be larger than +the time resolution of the old light curve!

+
+
method: {``sum`` | ``mean`` | ``average``}, optional, default ``sum``

This keyword argument sets whether the counts in the new bins +should be summed or averaged.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with the new, binned light curve.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes dt_new with +f*self.dt

+
+
+
+
+
+ +
+
+sort(reverse=False, inplace=False)[source]
+

Sort a Lightcurve object by time.

+

A Lightcurve can be sorted in either increasing or decreasing order +using this method. The time array gets sorted and the counts array is +changed accordingly.

+
+
Parameters:
+
+
reverseboolean, default False

If True then the object is sorted in reverse order.

+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with sorted time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [2, 1, 3]
+>>> count = [200, 100, 300]
+>>> lc = Lightcurve(time, count, dt=1, skip_checks=True)
+>>> lc_new = lc.sort()
+>>> lc_new.time
+array([1, 2, 3])
+>>> assert np.allclose(lc_new.counts, [100, 200, 300])
+
+
+
+ +
+
+sort_counts(reverse=False, inplace=False)[source]
+

Sort a Lightcurve object in accordance with its counts array.

+

A Lightcurve can be sorted in either increasing or decreasing order +using this method. The counts array gets sorted and the time array is +changed accordingly.

+
+
Parameters:
+
+
reverseboolean, default False

If True then the object is sorted in reverse order.

+
+
inplacebool

If True, overwrite the current light curve. Otherwise, return a new one.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with sorted time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [1, 2, 3]
+>>> count = [200, 100, 300]
+>>> lc = Lightcurve(time, count, dt=1, skip_checks=True)
+>>> lc_new = lc.sort_counts()
+>>> lc_new.time
+array([2, 1, 3])
+>>> assert np.allclose(lc_new.counts, [100, 200, 300])
+
+
+
+ +
+
+split(min_gap, min_points=1)[source]
+

For data with gaps, it can sometimes be useful to be able to split +the light curve into separate, evenly sampled objects along those +data gaps. This method allows to do this: it finds data gaps of a +specified minimum size, and produces a list of new Lightcurve +objects for each contiguous segment.

+
+
Parameters:
+
+
min_gapfloat

The length of a data gap, in the same units as the time attribute +of the Lightcurve object. Any smaller gaps will be ignored, any +larger gaps will be identified and used to split the light curve.

+
+
min_pointsint, default 1

The minimum number of data points in each light curve. Light +curves with fewer data points will be ignored.

+
+
+
+
Returns:
+
+
lc_splititerable of Lightcurve objects

The list of all contiguous light curves

+
+
+
+
+

Examples

+
>>> time = np.array([1, 2, 3, 6, 7, 8, 11, 12, 13])
+>>> counts = np.random.rand(time.shape[0])
+>>> lc = Lightcurve(time, counts, dt=1, skip_checks=True)
+>>> split_lc = lc.split(1.5)
+
+
+
+ +
+
+to_astropy_table(**kwargs)[source]
+

Save the light curve to an astropy.table.Table object.

+

The time array and all the array attributes become columns. The meta attributes become +metadata of the astropy.table.Table object.

+
+
Other Parameters:
+
+
no_longdoublebool, default False

If True, the data are converted to double precision before being saved. +This is useful, e.g., for saving to FITS files, which do not support long double precision.

+
+
+
+
+
+ +
+
+to_astropy_timeseries(**kwargs)[source]
+

Save the light curve to an astropy.timeseries.TimeSeries object.

+

The time array and all the array attributes become columns. The meta attributes become +metadata of the astropy.timeseries.TimeSeries object. +The time array is saved as a TimeDelta object.

+
+
Other Parameters:
+
+
no_longdoublebool, default False

If True, the data are converted to double precision before being saved. +This is useful, e.g., for saving to FITS files, which do not support long double precision.

+
+
+
+
+
+ +
+
+to_lightkurve()[source]
+

Returns a lightkurve.LightCurve object. +This feature requires Lightkurve to be installed +(e.g. pip install lightkurve). An ImportError will +be raised if this package is not available.

+
+
Returns:
+
+
lightcurvelightkurve.LightCurve

A lightkurve LightCurve object.

+
+
+
+
+
+ +
+
+truncate(start=0, stop=None, method='index')[source]
+

Truncate a Lightcurve object.

+

This method takes a start and a stop point (either as indices, +or as times in the same unit as those in the time attribute, and truncates +all bins before start and after stop, then returns a new Lightcurve +object with the truncated light curve.

+
+
Parameters:
+
+
startint, default 0

Index (or time stamp) of the starting point of the truncation. If no value is set +for the start point, then all points from the first element in the time array +are taken into account.

+
+
stopint, default None

Index (or time stamp) of the ending point (exclusive) of the truncation. If no +value of stop is set, then points including the last point in +the counts array are taken in count.

+
+
method{index | time}, optional, default index

Type of the start and stop values. If set to index then +the values are treated as indices of the counts array, or +if set to time, the values are treated as actual time values.

+
+
+
+
Returns:
+
+
lc_new: Lightcurve object

The Lightcurve object with truncated time and counts +arrays.

+
+
+
+
+

Examples

+
>>> time = [1, 2, 3, 4, 5, 6, 7, 8, 9]
+>>> count = [10, 20, 30, 40, 50, 60, 70, 80, 90]
+>>> lc = Lightcurve(time, count, dt=1)
+>>> lc_new = lc.truncate(start=2, stop=8)
+>>> assert np.allclose(lc_new.counts, [30, 40, 50, 60, 70, 80])
+>>> lc_new.time
+array([3, 4, 5, 6, 7, 8])
+>>> # Truncation can also be done by time values
+>>> lc_new = lc.truncate(start=6, method='time')
+>>> lc_new.time
+array([6, 7, 8, 9])
+>>> assert np.allclose(lc_new.counts, [60, 70, 80, 90])
+
+
+
+ +
+ +
+
+
+

EventList

+
+
+class stingray.events.EventList(time=None, energy=None, ncounts=None, mjdref=0, dt=0, notes='', gti=None, pi=None, high_precision=False, mission=None, instr=None, header=None, detector_id=None, ephem=None, timeref=None, timesys=None, rmf_file=None, skip_checks=False, **other_kw)[source]
+

Basic class for event list data. Event lists generally correspond to individual events (e.g. photons) +recorded by the detector, and their associated properties. For X-ray data where this type commonly occurs, +events are time stamps of when a photon arrived in the detector, and (optionally) the photon energy associated +with the event.

+
+
Parameters:
+
+
time: iterable

A list or array of time stamps

+
+
+
+
Attributes:
+
+
time: numpy.ndarray

The array of event arrival times, in seconds from the reference +MJD defined in mjdref

+
+
energy: numpy.ndarray

The array of photon energy values

+
+
ncounts: int

The number of data points in the event list

+
+
dt: float

The time resolution of the events. Only relevant when using events +to produce light curves with similar bin time.

+
+
mjdreffloat

The MJD used as a reference for the time array.

+
+
gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Good Time Intervals

+
+
piinteger, numpy.ndarray

PI channels

+
+
high_precisionbool

Change the precision of self.time to float128. Useful while dealing with fast pulsars.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
detector_iditerable

The detector that recoded each photon, if relevant (e.g. XMM, Chandra)

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
+
+
Other Parameters:
+
+
dt: float

The time resolution of the events. Only relevant when using events +to produce light curves with similar bin time.

+
+
energy: iterable

A list of array of photon energy values in keV

+
+
mjdreffloat

The MJD used as a reference for the time array.

+
+
ncounts: int

Number of desired data points in event list. Deprecated

+
+
gtis: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Good Time Intervals

+
+
piinteger, numpy.ndarray

PI channels

+
+
notesstr

Any useful annotations

+
+
high_precisionbool

Change the precision of self.time to float128. Useful while dealing with fast pulsars.

+
+
missionstr

Mission that recorded the data (e.g. NICER)

+
+
instrstr

Instrument onboard the mission

+
+
headerstr

The full header of the original FITS file, if relevant

+
+
detector_iditerable

The detector that recorded each photon (if the instrument has more than +one, e.g. XMM/EPIC-pn)

+
+
timerefstr

The time reference, as recorded in the FITS file (e.g. SOLARSYSTEM)

+
+
timesysstr

The time system, as recorded in the FITS file (e.g. TDB)

+
+
ephemstr

The JPL ephemeris used to barycenter the data, if any (e.g. DE430)

+
+
rmf_filestr, default None

The file name of the RMF file to use for calibration.

+
+
skip_checksbool, default False

Skip checks for the validity of the event list. Use with caution.

+
+
**other_kw

Used internally. Any other keyword arguments will be ignored

+
+
+
+
+
+
+apply_deadtime(deadtime, inplace=False, **kwargs)[source]
+

Apply deadtime filter to this event list.

+

Additional arguments in kwargs are passed to get_deadtime_mask

+
+
Parameters:
+
+
deadtimefloat

Value of dead time to apply to data

+
+
inplacebool, default False

If True, apply the deadtime to the current event list. Otherwise, +return a new event list.

+
+
+
+
Returns:
+
+
new_event_listEventList object

Filtered event list. if inplace is True, this is the input object +filtered for deadtime, otherwise this is a new object.

+
+
additional_outputobject

Only returned if return_all is True. See get_deadtime_mask for +more details.

+
+
+
+
+

Examples

+
>>> events = np.array([1, 1.05, 1.07, 1.08, 1.1, 2, 2.2, 3, 3.1, 3.2])
+>>> events = EventList(events, gti=[[0, 3.3]])
+>>> events.pi=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1])
+>>> events.energy=np.array([1, 2, 2, 2, 2, 1, 1, 1, 2, 1])
+>>> events.mjdref = 10
+>>> filt_events, retval = events.apply_deadtime(0.11, inplace=False,
+...                                             verbose=False,
+...                                             return_all=True)
+>>> assert filt_events is not events
+>>> expected = np.array([1, 2, 2.2, 3, 3.2])
+>>> assert np.allclose(filt_events.time, expected)
+>>> assert np.allclose(filt_events.pi, 1)
+>>> assert np.allclose(filt_events.energy, 1)
+>>> assert not np.allclose(events.pi, 1)
+>>> filt_events = events.apply_deadtime(0.11, inplace=True,
+...                                     verbose=False)
+>>> assert filt_events is events
+
+
+
+ +
+
+convert_pi_to_energy(rmf_file)[source]
+

Calibrate the energy column of the event list.

+

Defines the energy attribute of the event list by converting the +PI channels to energy using the provided RMF file.

+
+
Parameters:
+
+
rmf_filestr

The file name of the RMF file to use for calibration.

+
+
+
+
+
+ +
+
+filter_energy_range(energy_range, inplace=False, use_pi=False)[source]
+

Filter the event list from a given energy range.

+
+
Parameters:
+
+
energy_range: [float, float]

Energy range in keV, or in PI channel (if use_pi is True)

+
+
+
+
Other Parameters:
+
+
inplacebool, default False

Do the change in place (modify current event list). Otherwise, copy +to a new event list.

+
+
use_pibool, default False

Use PI channel instead of energy in keV

+
+
+
+
+

Examples

+
>>> events = EventList(time=[0, 1, 2], energy=[0.3, 0.5, 2], pi=[3, 5, 20])
+>>> e1 = events.filter_energy_range([0, 1])
+>>> assert np.allclose(e1.time, [0, 1])
+>>> assert np.allclose(events.time, [0, 1, 2])
+>>> e2 = events.filter_energy_range([0, 10], use_pi=True, inplace=True)
+>>> assert np.allclose(e2.time, [0, 1])
+>>> assert np.allclose(events.time, [0, 1])
+
+
+
+ +
+
+static from_lc(lc)[source]
+

Create an EventList from a stingray.Lightcurve object. Note that all +events in a given time bin will have the same time stamp.

+

Bins with negative counts will be ignored.

+
+
Parameters:
+
+
lc: :class:`stingray.Lightcurve` object

Light curve to use for creation of the event list.

+
+
+
+
Returns:
+
+
ev: EventList object

The resulting list of photon arrival times generated from the light curve.

+
+
+
+
+
+ +
+
+get_color_evolution(energy_ranges, segment_size=None, use_pi=False)[source]
+

Compute the color in equal-length segments of the event list.

+
+
Parameters:
+
+
energy_ranges2x2 list

List of energy ranges to compute the color: +[[en1_min, en1_max], [en2_min, en2_max]]

+
+
segment_sizefloat

Segment size in seconds. If None, the full GTIs are considered +instead as segments.

+
+
+
+
Returns:
+
+
colorarray-like

Array of colors, computed in each segment as the ratio of the +counts in the second energy range to the counts in the first energy +range.

+
+
+
+
Other Parameters:
+
+
use_pibool, default False

Use PI channel instead of energy in keV

+
+
+
+
+
+ +
+
+get_energy_mask(energy_range, use_pi=False)[source]
+

Get a mask corresponding to events with a given energy range.

+
+
Parameters:
+
+
energy_range: [float, float]

Energy range in keV, or in PI channel (if use_pi is True)

+
+
+
+
Other Parameters:
+
+
use_pibool, default False

Use PI channel instead of energy in keV

+
+
+
+
+
+ +
+
+get_intensity_evolution(energy_range, segment_size=None, use_pi=False)[source]
+

Compute the intensity in equal-length segments (or full GTIs) of the event list.

+
+
Parameters:
+
+
energy_range[en1_min, en1_max]

Energy range to compute the intensity

+
+
segment_sizefloat

Segment size in seconds. If None, the full GTIs are considered +instead as segments.

+
+
+
+
Returns:
+
+
intensityarray-like

Array of intensities (in counts/s), computed in each segment.

+
+
+
+
Other Parameters:
+
+
use_pibool, default False

Use PI channel instead of energy in keV

+
+
+
+
+
+ +
+
+join(other, strategy='infer')[source]
+

Join two EventList objects into one.

+

If both are empty, an empty EventList is returned.

+

GTIs are crossed if the event lists are over a common time interval, +and appended otherwise.

+

Standard attributes such as pi and energy remain None if they are None +in both. Otherwise, np.nan is used as a default value for the EventList where +they were None. Arbitrary attributes (e.g., Stokes parameters in polarimetric data) are +created and joined using the same convention.

+

Multiple checks are done on the joined event lists. If the time array of the event list +being joined is empty, it is ignored. If the time resolution is different, the final +event list will have the rougher time resolution. If the MJDREF is different, the time +reference will be changed to the one of the first event list. An empty event list will +be ignored.

+
+
Parameters:
+
+
otherEventList object or class:list of EventList objects

The other EventList object which is supposed to be joined with. +If other is a list, it is assumed to be a list of EventList objects +and they are all joined, one by one.

+
+
+
+
Returns:
+
+
`ev_new`EventList object

The resulting EventList object.

+
+
+
+
Other Parameters:
+
+
strategy{“intersection”, “union”, “append”, “infer”, “none”}

Method to use to merge the GTIs. If “intersection”, the GTIs are merged +using the intersection of the GTIs. If “union”, the GTIs are merged +using the union of the GTIs. If “none”, a single GTI with the minimum and +the maximum time stamps of all GTIs is returned. If “infer”, the strategy +is decided based on the GTIs. If there are no overlaps, “union” is used, +otherwise “intersection” is used. If “append”, the GTIs are simply appended +but they must be mutually exclusive.

+
+
+
+
+
+ +
+
+property ncounts
+

Number of events in the event list.

+
+ +
+
+classmethod read(filename, fmt=None, rmf_file=None, **kwargs)[source]
+

Read a EventList object from file.

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • hea or ogip : FITS Event files from (well, some) HEASARC-supported missions.

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a time column. Other recognized columns are energy and +pi. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all eventlist attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
ev: EventList object

The EventList object reconstructed from file

+
+
+
+
Other Parameters:
+
+
rmf_filestr, default None

The file name of the RMF file to use for energy calibration. Defaults to +None, which implies no channel->energy conversion at this stage (or a default +calibration applied to selected missions).

+
+
kwargsdict

Any further keyword arguments to be passed to load_events_and_gtis +for reading in event lists in OGIP/HEASOFT format

+
+
+
+
+
+ +
+
+simulate_energies(spectrum, use_spline=False)[source]
+

Assign (simulate) energies to event list from a spectrum.

+
+
Parameters:
+
+
spectrum: 2-d array or list [energies, spectrum]

Energies versus corresponding fluxes. The 2-d array or list must +have energies across the first dimension and fluxes across the +second one. If the dimension of the energies is the same as +spectrum, they are interpreted as bin centers. +If it is longer by one, they are interpreted as proper bin edges +(similarly to the bins of np.histogram). +Note that for non-uniformly binned spectra, it is advisable to pass +the exact edges.

+
+
+
+
+
+ +
+
+simulate_times(lc, use_spline=False, bin_time=None)[source]
+

Simulate times from an input light curve.

+

Randomly simulate photon arrival times to an EventList from a +stingray.Lightcurve object, using the inverse CDF method.

+
+
..note::

Preferably use model light curves containing no Poisson noise, +as this method will intrinsically add Poisson noise to them.

+
+
+
+
Parameters:
+
+
lc: :class:`stingray.Lightcurve` object
+
+
+
Returns:
+
+
timesarray-like

Simulated photon arrival times

+
+
+
+
Other Parameters:
+
+
use_splinebool

Approximate the light curve with a spline to avoid binning effects

+
+
bin_timefloat default None

Ignored and deprecated, maintained for backwards compatibility.

+
+
+
+
+
+ +
+
+sort(inplace=False)[source]
+

Sort the event list in time.

+
+
Returns:
+
+
eventlistEventList

The sorted event list. If inplace=True, it will be a shallow copy +of self.

+
+
+
+
Other Parameters:
+
+
inplacebool, default False

Sort in place. If False, return a new event list.

+
+
+
+
+

Examples

+
>>> events = EventList(time=[0, 2, 1], energy=[0.3, 2, 0.5], pi=[3, 20, 5],
+...                    skip_checks=True)
+>>> e1 = events.sort()
+>>> assert np.allclose(e1.time, [0, 1, 2])
+>>> assert np.allclose(e1.energy, [0.3, 0.5, 2])
+>>> assert np.allclose(e1.pi, [3, 5, 20])
+
+
+

But the original event list has not been altered (inplace=False by +default): +>>> assert np.allclose(events.time, [0, 2, 1])

+

Let’s do it in place instead +>>> e2 = events.sort(inplace=True) +>>> assert np.allclose(e2.time, [0, 1, 2])

+

In this case, the original event list has been altered. +>>> assert np.allclose(events.time, [0, 1, 2])

+
+ +
+
+to_binned_timeseries(dt, array_attrs=None)[source]
+

Convert the event list to a binned stingray.StingrayTimeseries object.

+

The result will be something similar to a light curve, but with arbitrary +attributes corresponding to a weighted sum of each specified attribute of +the event list.

+

E.g. if the event list has a q attribute, the final time series will +have a q attribute, which is the sum of all q values in each time bin.

+
+
Parameters:
+
+
dt: float

Binning time of the light curve

+
+
+
+
Returns:
+
+
lc: stingray.Lightcurve object
+
+
+
Other Parameters:
+
+
array_attrs: list of str

List of attributes to be converted to light curve arrays. If None, +all array attributes will be converted.

+
+
+
+
+
+ +
+
+to_lc(dt, tstart=None, tseg=None)[source]
+

Convert event list to a stingray.Lightcurve object.

+
+
Parameters:
+
+
dt: float

Binning time of the light curve

+
+
+
+
Returns:
+
+
lc: stingray.Lightcurve object
+
+
+
Other Parameters:
+
+
tstartfloat

Start time of the light curve

+
+
tseg: float

Total duration of light curve

+
+
+
+
+
+ +
+
+to_lc_iter(dt, segment_size=None)[source]
+

Convert event list to a generator of Lightcurves.

+
+
Parameters:
+
+
dt: float

Binning time of the light curves

+
+
+
+
Returns:
+
+
lc_gen: generator

Generates one stingray.Lightcurve object for each GTI or segment

+
+
+
+
Other Parameters:
+
+
segment_sizefloat, default None

Optional segment size. If None, use the GTI boundaries

+
+
+
+
+
+ +
+
+to_lc_list(dt, segment_size=None)[source]
+

Convert event list to a list of Lightcurves.

+
+
Parameters:
+
+
dt: float

Binning time of the light curves

+
+
+
+
Returns:
+
+
lc_list: List

List containing one stingray.Lightcurve object for each GTI or segment

+
+
+
+
Other Parameters:
+
+
segment_sizefloat, default None

Optional segment size. If None, use the GTI boundaries

+
+
+
+
+
+ +
+ +
+
+
+
+

Fourier Products

+

These classes implement commonly used Fourier analysis products, most importantly Crossspectrum and +Powerspectrum, along with the variants for averaged cross/power spectra.

+
+

Crossspectrum

+
+
+class stingray.Crossspectrum(data1=None, data2=None, norm='frac', gti=None, lc1=None, lc2=None, power_type='all', dt=None, fullspec=False, skip_checks=False, save_all=False)[source]
+
+
+classical_significances(threshold=1, trial_correction=False)[source]
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is important! +If there are other sources of (aperiodic) variability in the data, this +method will not produce correct results, but instead produce a large +number of spurious false positive detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be corrected +for the number of trials (frequencies) in the power spectrum before +being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be corrected +by the number of frequencies before being applied. This decreases +the threshold (p-values need to be lower to count as significant). +Default is False (report all powers) though for any application +where threshold` is set to something meaningful, this should also +be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (index, p-value) tuples for all powers that have p-values +lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()[source]
+

Compute Coherence function of the cross spectrum.

+

Coherence is defined in Vaughan and Nowak, 1996 [1]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+
+
Returns:
+
+
cohnumpy.ndarray

Coherence function

+
+
+
+
+

References

+ +
+ +
+
+deadtime_correct(dead_time, rate, background_rate=0, limit_k=200, n_approx=None, paralyzable=False)[source]
+

Correct the power spectrum for dead time effects.

+

This correction is based on the formula given in Zhang et al. 2015, assuming +a constant dead time for all events. +For more advanced dead time corrections, see the FAD method from stingray.deadtime.fad

+
+
Parameters:
+
+
dead_time: float

The dead time of the detector.

+
+
ratefloat

Detected source count rate

+
+
+
+
Returns:
+
+
spectrum: Crossspectrum or derivative.

The dead-time corrected spectrum.

+
+
+
+
Other Parameters:
+
+
background_ratefloat, default 0

Detected background count rate. This is important to estimate when deadtime is given by the +combination of the source counts and background counts (e.g. in an imaging X-ray detector).

+
+
paralyzable: bool, default False

If True, the dead time correction is done assuming a paralyzable +dead time. If False, the correction is done assuming a non-paralyzable +(more common) dead time.

+
+
limit_kint, default 200

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
n_approxint, default None

Number of bins to calculate the model power spectrum. If None, it will use the size of +the input frequency array. Relatively simple models (e.g., low count rates compared to +dead time) can use a smaller number of bins to speed up the calculation, and the final +power values will be interpolated.

+
+
+
+
+
+ +
+
+static from_events(events1, events2, dt, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two event lists

+
+
Parameters:
+
+
events1stingray.EventList

Events from channel 1

+
+
events2stingray.EventList

Events from channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc1, iter_lc2, dt, segment_size, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 1. If arrays, use them as counts

+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 2. If arrays, use them as counts

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

If True, save the cross spectrum of each segment in the cs_all +attribute of the output Crossspectrum object.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc1, lc2, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
lc1stingray.Lightcurve

Light curve from channel 1

+
+
lc2stingray.Lightcurve

Light curve from channel 2

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_stingray_timeseries(ts1, ts2, flux_attr, error_flux_attr=None, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)[source]
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
ts1stingray.Timeseries

Time series from channel 1

+
+
ts2stingray.Timeseries

Time series from channel 2

+
+
flux_attrstr

What attribute of the time series will be used.

+
+
+
+
Other Parameters:
+
+
error_flux_attrstr

What attribute of the time series will be used as error bar.

+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_time_array(times1, times2, dt, segment_size=None, gti=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True)[source]
+

Calculate AveragedCrossspectrum from two arrays of event times.

+
+
Parameters:
+
+
times1np.array

Event arrival times of channel 1

+
+
times2np.array

Event arrival times of channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for AveragedCrossspectrum.

+
+
gti[[gti0, gti1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
+
+
+
+ +
+
+initial_checks(data1=None, data2=None, norm='frac', gti=None, lc1=None, lc2=None, segment_size=None, power_type='real', dt=None, fullspec=False)[source]
+

Run initial checks on the input.

+

Returns True if checks are passed, False if they are not.

+

Raises various errors for different bad inputs

+

Examples

+
>>> times = np.arange(0, 10)
+>>> counts = np.random.poisson(100, 10)
+>>> lc1 = Lightcurve(times, counts, skip_checks=True)
+>>> lc2 = Lightcurve(times, counts, skip_checks=True)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> c = Crossspectrum()
+>>> ac = AveragedCrossspectrum()
+
+
+

If norm is not a string, raise a TypeError +>>> Crossspectrum.initial_checks(c, norm=1) +Traceback (most recent call last): +… +TypeError: norm must be a string…

+

If norm is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, norm=”blabla”) +Traceback (most recent call last): +… +ValueError: norm must be ‘frac’…

+

If power_type is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, power_type=”blabla”) +Traceback (most recent call last): +… +ValueError: power_type not recognized!

+

If the user passes only one light curve, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=lc1, data2=None)
+Traceback (most recent call last):
+...
+ValueError: You can't do a cross spectrum...
+
+
+

If the user passes an event list without dt, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=ev1, data2=ev2, dt=None)
+Traceback (most recent call last):
+...
+ValueError: If using event lists, please specify...
+
+
+
+ +
+
+phase_lag()[source]
+

Calculate the fourier phase lag of the cross spectrum.

+

This is defined as the argument of the complex cross spectrum, and gives +the delay at all frequencies, in cycles, of one input light curve with respect +to the other.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)[source]
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')[source]
+

Rebin the cross spectrum to a new frequency resolution df.

+
+
Parameters:
+
+
df: float

The new frequency resolution

+
+
+
+
Returns:
+
+
bin_cs = Crossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class +AveragedPowerspectrum, too.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes df with f*self.df

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)[source]
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+time_lag()[source]
+

Calculate the fourier time lag of the cross spectrum. +The time lag is calculated by taking the phase lag \(\phi\) and

+

..math:

+
\tau = \frac{\phi}{\two pi \nu}
+
+
+

where \(\nu\) is the center of the frequency bins.

+
+ +
+
+to_norm(norm, inplace=False)[source]
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+type = 'crossspectrum'
+

Make a cross spectrum from a (binned) light curve. +You can also make an empty Crossspectrum object to populate with your +own Fourier-transformed data (this can sometimes be useful when making +binned power spectra). Stingray uses the scipy.fft standards for the sign +of the Nyquist frequency.

+
+
Parameters:
+
+
data1: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None``

The dataset for the first channel/band of interest.

+
+
data2: :class:`stingray.Lightcurve` or :class:`stingray.events.EventList`, optional, default ``None``

The dataset for the second, or “reference”, band.

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
power_type: string, optional, default ``real``

Parameter to choose among complete, real part and magnitude of the cross spectrum.

+
+
fullspec: boolean, optional, default ``False``

If False, keep only the positive frequencies, or if True, keep all of them .

+
+
+
+
Attributes:
+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples

+
+
power: numpy.ndarray

The array of cross spectra (complex numbers)

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging more than one spectra). Note that for a single +realization (m=1) the error is equal to the power.

+
+
df: float

The frequency resolution

+
+
m: int

The number of averaged cross-spectra amplitudes in each bin.

+
+
n: int

The number of data points/time bins in one segment of the light +curves.

+
+
k: array of int

The rebinning scheme if the object has been rebinned otherwise is set to 1.

+
+
nphots1: float

The total number of photons in light curve 1

+
+
nphots2: float

The total number of photons in light curve 2

+
+
+
+
Other Parameters:
+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the input +Lightcurve GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the Lightcurve objects before making +the cross spectrum.

+
+
lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data1, but no +stingray.events.EventList objects allowed

+
+
lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data2, but no +stingray.events.EventList objects allowed

+
+
dt: float

The time resolution of the light curve. Only needed when constructing +light curves in the case where data1, data2 are +EventList objects

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!)

+
+
+
+
+
+ +
+ +
+
+
+

Coherence

+

Convenience function to compute the coherence between two stingray.Lightcurve +objects.

+
+
+stingray.coherence(lc1, lc2)[source]
+

Estimate coherence function of two light curves. +For details on the definition of the coherence, see Vaughan and Nowak, +1996 [2].

+
+
Parameters:
+
+
lc1: :class:`stingray.Lightcurve` object

The first light curve data for the channel of interest.

+
+
lc2: :class:`stingray.Lightcurve` object

The light curve data for reference band

+
+
+
+
Returns:
+
+
cohnp.ndarray

The array of coherence versus frequency

+
+
+
+
+

References

+ +
+ +
+
+
+

Powerspectrum

+
+
+class stingray.Powerspectrum(data=None, norm='frac', gti=None, dt=None, lc=None, skip_checks=False)[source]
+
+
+_initialize_empty()[source]
+

Set all attributes to None.

+
+ +
+
+_initialize_from_any_input(data, dt=None, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)[source]
+

Initialize the class, trying to understand the input types.

+

The input arguments are the same as __init__(). Based on the type +of data, this method will call the appropriate +powerspectrum_from_XXXX function, and initialize self with +the correct attributes.

+
+ +
+
+_normalize_crossspectrum(unnorm_power)
+

Normalize the real part of the cross spectrum to Leahy, absolute rms^2, +fractional rms^2 normalization, or not at all.

+
+
Parameters:
+
+
unnorm_power: numpy.ndarray

The unnormalized cross spectrum.

+
+
+
+
Returns:
+
+
power: numpy.nd.array

The normalized co-spectrum (real part of the cross spectrum). For +‘none’ normalization, imaginary part is returned as well.

+
+
+
+
+
+ +
+
+_operation_with_other_obj(other, operation, operated_attrs=None, error_attrs=None, error_operation=None, inplace=False)
+

Helper method to codify an operation of one time series with another (e.g. add, subtract). +Takes into account the GTIs, and returns a new StingrayTimeseries object.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
operationfunction

An operation between the StingrayTimeseries object calling this method, and +other, operating on all the specified array attributes.

+
+
+
+
Returns:
+
+
ts_newStingrayTimeseries object

The new time series calculated in operation

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

The function used for error propagation. Defaults to the sum of squares.

+
+
+
+
+
+ +
+
+_rms_error(powers)[source]
+

Compute the error on the fractional rms amplitude using error +propagation. +Note: this uses the actual measured powers, which is not +strictly correct. We should be using the underlying power spectrum, +but in the absence of an estimate of that, this will have to do.

+
+\[r = \sqrt{P}\]
+
+\[\begin{split}\delta r = \\frac{1}{2 * \sqrt{P}} \delta P\end{split}\]
+
+
Parameters:
+
+
powers: iterable

The list of powers used to compute the fractional rms amplitude.

+
+
+
+
Returns:
+
+
delta_rms: float

The error on the fractional rms amplitude.

+
+
+
+
+
+ +
+
+add(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Add two StingrayObject instances.

+

Add the array values of two StingrayObject instances element by element, assuming +the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None)
+

Apply a mask to all array attributes of the object

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Returns:
+
+
ts_newStingrayObject object

The new object with the mask applied if inplace is False, otherwise the +same object.

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current object. Otherwise, return a new one.

+
+
filtered_attrslist of str or None

Array attributes to be filtered. Defaults to all array attributes if None. +The other array attributes will be set to None. The main array attr is always +included.

+
+
+
+
+
+ +
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of array attributes.

+
+
+
+
+
+ +
+
+classical_significances(threshold=1, trial_correction=False)[source]
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is +important! If there are other sources of (aperiodic) variability in +the data, this method will not produce correct results, but +instead produce a large number of spurious false positive +detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be +corrected for the number of trials (frequencies) in the power spectrum +before being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be +corrected by the number of frequencies before being applied. This +decreases the threshold (p-values need to be lower to count as +significant). Default is False (report all powers) though for +any application where threshold` is set to something meaningful, +this should also be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (p-value, index) tuples for all powers that have +p-values lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()
+

Compute Coherence function of the cross spectrum.

+

Coherence is defined in Vaughan and Nowak, 1996 [3]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+
+
Returns:
+
+
cohnumpy.ndarray

Coherence function

+
+
+
+
+

References

+ +
+ +
+
+compute_rms(min_freq, max_freq, poisson_noise_level=None)[source]
+

Compute the fractional rms amplitude in the power spectrum +between two frequencies.

+
+
Parameters:
+
+
min_freq: float

The lower frequency bound for the calculation.

+
+
max_freq: float

The upper frequency bound for the calculation.

+
+
+
+
Returns:
+
+
rms: float

The fractional rms amplitude contained between min_freq and +max_freq.

+
+
rms_err: float

The error on the fractional rms amplitude.

+
+
+
+
Other Parameters:
+
+
poisson_noise_levelfloat, default is None

This is the Poisson noise level of the PDS with same +normalization as the PDS. If poissoin_noise_level is None, +the Poisson noise is calculated in the idealcase +e.g. 2./<countrate> for fractional rms normalisation +Dead time and other instrumental effects can alter it. +The user can fit the Poisson noise level outside +this function using the same normalisation of the PDS +and it will get subtracted from powers here.

+
+
+
+
+
+ +
+
+data_attributes() list[str]
+

Clean up the list of attributes, only giving out those pointing to data.

+

List all the attributes that point directly to valid data. This method goes through all the +attributes of the class, eliminating methods, properties, and attributes that are complicated +to serialize such as other StingrayObject, or arrays of objects.

+

This function does not make difference between array-like data and scalar data.

+
+
Returns:
+
+
data_attributeslist of str

List of attributes pointing to data that are not methods, properties, +or other StingrayObject instances.

+
+
+
+
+
+ +
+
+deadtime_correct(dead_time, rate, background_rate=0, limit_k=200, n_approx=None, paralyzable=False)
+

Correct the power spectrum for dead time effects.

+

This correction is based on the formula given in Zhang et al. 2015, assuming +a constant dead time for all events. +For more advanced dead time corrections, see the FAD method from stingray.deadtime.fad

+
+
Parameters:
+
+
dead_time: float

The dead time of the detector.

+
+
ratefloat

Detected source count rate

+
+
+
+
Returns:
+
+
spectrum: Crossspectrum or derivative.

The dead-time corrected spectrum.

+
+
+
+
Other Parameters:
+
+
background_ratefloat, default 0

Detected background count rate. This is important to estimate when deadtime is given by the +combination of the source counts and background counts (e.g. in an imaging X-ray detector).

+
+
paralyzable: bool, default False

If True, the dead time correction is done assuming a paralyzable +dead time. If False, the correction is done assuming a non-paralyzable +(more common) dead time.

+
+
limit_kint, default 200

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
n_approxint, default None

Number of bins to calculate the model power spectrum. If None, it will use the size of +the input frequency array. Relatively simple models (e.g., low count rates compared to +dead time) can use a smaller number of bins to speed up the calculation, and the final +power values will be interpolated.

+
+
+
+
+
+ +
+
+dict() dict
+

Return a dictionary representation of the object.

+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+static from_events(events, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)[source]
+

Calculate an average power spectrum from an event list.

+
+
Parameters:
+
+
eventsstingray.EventList

Event list to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)[source]
+

Calculate the average power spectrum of an iterable collection of +light curves.

+
+
Parameters:
+
+
iter_lciterable of stingray.Lightcurve objects or np.array

Light curves. If arrays, use them as counts.

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)[source]
+

Calculate a power spectrum from a light curve.

+
+
Parameters:
+
+
eventsstingray.Lightcurve

Light curve to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+static from_stingray_timeseries(ts, flux_attr, error_flux_attr=None, segment_size=None, norm='none', silent=False, use_common_mean=True, gti=None, save_all=False)[source]
+

Calculate AveragedPowerspectrum from a time series.

+
+
Parameters:
+
+
tsstingray.Timeseries

Input Time Series

+
+
flux_attrstr

What attribute of the time series will be used.

+
+
+
+
Other Parameters:
+
+
error_flux_attrstr

What attribute of the time series will be used as error bar.

+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
silentbool, default False

Silence the progress bars

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+static from_time_array(times, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)[source]
+

Calculate an average power spectrum from an array of event times.

+
+
Parameters:
+
+
timesnp.array

Event arrival times.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(data1=None, data2=None, norm='frac', gti=None, lc1=None, lc2=None, segment_size=None, power_type='real', dt=None, fullspec=False)
+

Run initial checks on the input.

+

Returns True if checks are passed, False if they are not.

+

Raises various errors for different bad inputs

+

Examples

+
>>> times = np.arange(0, 10)
+>>> counts = np.random.poisson(100, 10)
+>>> lc1 = Lightcurve(times, counts, skip_checks=True)
+>>> lc2 = Lightcurve(times, counts, skip_checks=True)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> c = Crossspectrum()
+>>> ac = AveragedCrossspectrum()
+
+
+

If norm is not a string, raise a TypeError +>>> Crossspectrum.initial_checks(c, norm=1) +Traceback (most recent call last): +… +TypeError: norm must be a string…

+

If norm is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, norm=”blabla”) +Traceback (most recent call last): +… +ValueError: norm must be ‘frac’…

+

If power_type is not one of the valid norms, raise a ValueError +>>> Crossspectrum.initial_checks(c, power_type=”blabla”) +Traceback (most recent call last): +… +ValueError: power_type not recognized!

+

If the user passes only one light curve, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=lc1, data2=None)
+Traceback (most recent call last):
+...
+ValueError: You can't do a cross spectrum...
+
+
+

If the user passes an event list without dt, raise a ValueError

+
>>> Crossspectrum.initial_checks(c, data1=ev1, data2=ev2, dt=None)
+Traceback (most recent call last):
+...
+ValueError: If using event lists, please specify...
+
+
+
+ +
+
+internal_array_attrs() list[str]
+

List the names of the internal array attributes of the Stingray Object.

+

These are array attributes that can be set by properties, and are generally indicated +by an underscore followed by the name of the property that links to it (E.g. +_counts in Lightcurve). +By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of internal array attributes.

+
+
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of meta attributes.

+
+
+
+
+
+ +
+
+modulation_upper_limit(fmin=None, fmax=None, c=0.95)[source]
+

Upper limit on a sinusoidal modulation.

+

To understand the meaning of this amplitude: if the modulation is +described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See stingray.stats.power_upper_limit, +stingray.stats.amplitude_upper_limit +for more information.

+

The formula used to calculate the upper limit assumes the Leahy +normalization. +If the periodogram is in another normalization, we will internally +convert it to Leahy before calculating the upper limit.

+
+
Parameters:
+
+
fmin: float

The minimum frequency to search (defaults to the first nonzero bin)

+
+
fmax: float

The maximum frequency to search (defaults to the Nyquist frequency)

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c +probability.

+
+
+
+
Other Parameters:
+
+
c: float

The confidence value for the upper limit (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pds = Powerspectrum()
+>>> pds.norm = "leahy"
+>>> pds.freq = np.arange(0., 5.)
+>>> # Note: this pds has 40 as maximum value between 2 and 5 Hz
+>>> pds.power = np.array([100000, 1, 1, 40, 1])
+>>> pds.m = 1
+>>> pds.nphots = 30000
+>>> assert np.isclose(
+...     pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99),
+...     0.10164,
+...     atol=0.0001)
+
+
+
+ +
+
+phase_lag()
+

Calculate the fourier phase lag of the cross spectrum.

+

This is defined as the argument of the complex cross spectrum, and gives +the delay at all frequencies, in cycles, of one input light curve with respect +to the other.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+pretty_print(func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) str
+

Return a pretty-printed string representation of the object.

+

This is useful for debugging, and for interactive use.

+
+
Other Parameters:
+
+
func_to_applyfunction

A function that modifies the attributes listed in attrs_to_apply. +It must return the modified attributes and a label to be printed. +If None, no function is applied.

+
+
attrs_to_applylist of str

Attributes to be modified by func_to_apply.

+
+
attrs_to_discardlist of str

Attributes to be discarded from the output.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')[source]
+

Rebin the power spectrum.

+
+
Parameters:
+
+
df: float

The new frequency resolution.

+
+
+
+
Returns:
+
+
bin_cs = Powerspectrum object

The newly binned power spectrum.

+
+
+
+
Other Parameters:
+
+
f: float

The rebin factor. If specified, it substitutes df with +f*self.df, so f>1 is recommended.

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+sub(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Subtract all the array attrs of two StingrayObject instances element by element, assuming the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+time_lag()
+

Calculate the fourier time lag of the cross spectrum. +The time lag is calculated by taking the phase lag \(\phi\) and

+

..math:

+
\tau = \frac{\phi}{\two pi \nu}
+
+
+

where \(\nu\) is the center of the frequency bins.

+
+ +
+
+to_astropy_table(no_longdouble=False) Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+
Other Parameters:
+
+
no_longdoublebool

If True, reduce the precision of longdouble arrays to double precision. +This needs to be done in some cases, e.g. when the table is to be saved +in an architecture not supporting extended precision (e.g. ARM), but can +also be useful when an extended precision is not needed.

+
+
+
+
+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+

Since pandas does not support n-D data, multi-dimensional arrays are +converted into columns before the conversion, with names <colname>_dimN_M_K etc.

+

See documentation of make_nd_into_arrays for details.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+type = 'powerspectrum'
+

Make a Powerspectrum (also called periodogram) from a (binned) +light curve. Periodograms can be normalized by either Leahy normalization, +fractional rms normalization, absolute rms normalization, or not at all.

+

You can also make an empty Powerspectrum object to populate with +your own fourier-transformed data (this can sometimes be useful when making +binned power spectra).

+
+
Parameters:
+
+
data: :class:`stingray.Lightcurve` object, optional, default ``None``

The light curve data to be Fourier-transformed.

+
+
norm: {“leahy” | “frac” | “abs” | “none” }, optional, default “frac”

The normaliation of the power spectrum to be used. Options are +“leahy”, “frac”, “abs” and “none”, default is “frac”.

+
+
+
+
Attributes:
+
+
norm: {“leahy” | “frac” | “abs” | “none” }

The normalization of the power spectrum.

+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
power: numpy.ndarray

The array of normalized squared absolute values of Fourier +amplitudes.

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging power spectra of segments of a light curve). +Note that for a single realization (m=1) the error is equal to the +power.

+
+
unnorm_power: numpy.ndarray

The array of unnormalized powers

+
+
unnorm_power_err: numpy.ndarray

The uncertainties of unnorm_power.

+
+
df: float

The frequency resolution.

+
+
m: int

The number of averaged powers in each bin.

+
+
n: int

The number of data points in the light curve.

+
+
nphots: float

The total number of photons in the light curve.

+
+
+
+
Other Parameters:
+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] – Good Time intervals. +This choice overrides the GTIs in the single light curves. Use with +care, especially if these GTIs have overlaps with the input +object GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the input object before making +the power spectrum.

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!).

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

AveragedCrossspectrum

+
+
+class stingray.AveragedCrossspectrum(data1=None, data2=None, segment_size=None, norm='frac', gti=None, power_type='all', silent=False, lc1=None, lc2=None, dt=None, fullspec=False, save_all=False, use_common_mean=True, skip_checks=False)[source]
+
+
+add(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Add two StingrayObject instances.

+

Add the array values of two StingrayObject instances element by element, assuming +the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None)
+

Apply a mask to all array attributes of the object

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Returns:
+
+
ts_newStingrayObject object

The new object with the mask applied if inplace is False, otherwise the +same object.

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current object. Otherwise, return a new one.

+
+
filtered_attrslist of str or None

Array attributes to be filtered. Defaults to all array attributes if None. +The other array attributes will be set to None. The main array attr is always +included.

+
+
+
+
+
+ +
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of array attributes.

+
+
+
+
+
+ +
+
+classical_significances(threshold=1, trial_correction=False)
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is important! +If there are other sources of (aperiodic) variability in the data, this +method will not produce correct results, but instead produce a large +number of spurious false positive detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be corrected +for the number of trials (frequencies) in the power spectrum before +being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be corrected +by the number of frequencies before being applied. This decreases +the threshold (p-values need to be lower to count as significant). +Default is False (report all powers) though for any application +where threshold` is set to something meaningful, this should also +be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (index, p-value) tuples for all powers that have p-values +lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()[source]
+

Averaged Coherence function.

+

Coherence is defined in Vaughan and Nowak, 1996 [4]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+

Compute an averaged Coherence function of cross spectrum by computing +coherence function of each segment and averaging them. The return type +is a tuple with first element as the coherence function and the second +element as the corresponding uncertainty associated with it.

+

Note : The uncertainty in coherence function is strictly valid for Gaussian statistics only.

+
+
Returns:
+
+
(coh, uncertainty)tuple of np.ndarray

Tuple comprising the coherence function and uncertainty.

+
+
+
+
+

References

+ +
+ +
+
+data_attributes() list[str]
+

Clean up the list of attributes, only giving out those pointing to data.

+

List all the attributes that point directly to valid data. This method goes through all the +attributes of the class, eliminating methods, properties, and attributes that are complicated +to serialize such as other StingrayObject, or arrays of objects.

+

This function does not make difference between array-like data and scalar data.

+
+
Returns:
+
+
data_attributeslist of str

List of attributes pointing to data that are not methods, properties, +or other StingrayObject instances.

+
+
+
+
+
+ +
+
+deadtime_correct(dead_time, rate, background_rate=0, limit_k=200, n_approx=None, paralyzable=False)
+

Correct the power spectrum for dead time effects.

+

This correction is based on the formula given in Zhang et al. 2015, assuming +a constant dead time for all events. +For more advanced dead time corrections, see the FAD method from stingray.deadtime.fad

+
+
Parameters:
+
+
dead_time: float

The dead time of the detector.

+
+
ratefloat

Detected source count rate

+
+
+
+
Returns:
+
+
spectrum: Crossspectrum or derivative.

The dead-time corrected spectrum.

+
+
+
+
Other Parameters:
+
+
background_ratefloat, default 0

Detected background count rate. This is important to estimate when deadtime is given by the +combination of the source counts and background counts (e.g. in an imaging X-ray detector).

+
+
paralyzable: bool, default False

If True, the dead time correction is done assuming a paralyzable +dead time. If False, the correction is done assuming a non-paralyzable +(more common) dead time.

+
+
limit_kint, default 200

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
n_approxint, default None

Number of bins to calculate the model power spectrum. If None, it will use the size of +the input frequency array. Relatively simple models (e.g., low count rates compared to +dead time) can use a smaller number of bins to speed up the calculation, and the final +power values will be interpolated.

+
+
+
+
+
+ +
+
+dict() dict
+

Return a dictionary representation of the object.

+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+static from_events(events1, events2, dt, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two event lists

+
+
Parameters:
+
+
events1stingray.EventList

Events from channel 1

+
+
events2stingray.EventList

Events from channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc1, iter_lc2, dt, segment_size, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 1. If arrays, use them as counts

+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 2. If arrays, use them as counts

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

If True, save the cross spectrum of each segment in the cs_all +attribute of the output Crossspectrum object.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc1, lc2, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
lc1stingray.Lightcurve

Light curve from channel 1

+
+
lc2stingray.Lightcurve

Light curve from channel 2

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+static from_stingray_timeseries(ts1, ts2, flux_attr, error_flux_attr=None, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
ts1stingray.Timeseries

Time series from channel 1

+
+
ts2stingray.Timeseries

Time series from channel 2

+
+
flux_attrstr

What attribute of the time series will be used.

+
+
+
+
Other Parameters:
+
+
error_flux_attrstr

What attribute of the time series will be used as error bar.

+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_time_array(times1, times2, dt, segment_size=None, gti=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True)
+

Calculate AveragedCrossspectrum from two arrays of event times.

+
+
Parameters:
+
+
times1np.array

Event arrival times of channel 1

+
+
times2np.array

Event arrival times of channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for AveragedCrossspectrum.

+
+
gti[[gti0, gti1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(data1, segment_size=None, **kwargs)[source]
+

Examples

+
>>> times = np.arange(0, 10)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> ac = AveragedCrossspectrum()
+
+
+

If AveragedCrossspectrum, you need segment_size +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) +Traceback (most recent call last): +… +ValueError: segment_size must be specified…

+

And it needs to be finite! +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) +Traceback (most recent call last): +… +ValueError: segment_size must be finite!

+
+ +
+
+internal_array_attrs() list[str]
+

List the names of the internal array attributes of the Stingray Object.

+

These are array attributes that can be set by properties, and are generally indicated +by an underscore followed by the name of the property that links to it (E.g. +_counts in Lightcurve). +By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of internal array attributes.

+
+
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of meta attributes.

+
+
+
+
+
+ +
+
+phase_lag()[source]
+

Return the fourier phase lag of the cross spectrum.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+pretty_print(func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) str
+

Return a pretty-printed string representation of the object.

+

This is useful for debugging, and for interactive use.

+
+
Other Parameters:
+
+
func_to_applyfunction

A function that modifies the attributes listed in attrs_to_apply. +It must return the modified attributes and a label to be printed. +If None, no function is applied.

+
+
attrs_to_applylist of str

Attributes to be modified by func_to_apply.

+
+
attrs_to_discardlist of str

Attributes to be discarded from the output.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')
+

Rebin the cross spectrum to a new frequency resolution df.

+
+
Parameters:
+
+
df: float

The new frequency resolution

+
+
+
+
Returns:
+
+
bin_cs = Crossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class +AveragedPowerspectrum, too.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes df with f*self.df

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+sub(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Subtract all the array attrs of two StingrayObject instances element by element, assuming the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+time_lag()[source]
+

Calculate time lag and uncertainty.

+

Equation from Bendat & Piersol, 2011 [bendat-2011]__.

+
+
Returns:
+
+
lagnp.ndarray

The time lag

+
+
lag_errnp.ndarray

The uncertainty in the time lag

+
+
+
+
+
+ +
+
+to_astropy_table(no_longdouble=False) Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+
Other Parameters:
+
+
no_longdoublebool

If True, reduce the precision of longdouble arrays to double precision. +This needs to be done in some cases, e.g. when the table is to be saved +in an architecture not supporting extended precision (e.g. ARM), but can +also be useful when an extended precision is not needed.

+
+
+
+
+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+

Since pandas does not support n-D data, multi-dimensional arrays are +converted into columns before the conversion, with names <colname>_dimN_M_K etc.

+

See documentation of make_nd_into_arrays for details.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+type = 'crossspectrum'
+

Make an averaged cross spectrum from a light curve by segmenting two +light curves, Fourier-transforming each segment and then averaging the +resulting cross spectra.

+
+
Parameters:
+
+
data1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object

A light curve from which to compute the cross spectrum. In some cases, +this would be the light curve of the wavelength/energy/frequency band +of interest.

+
+
data2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object

A second light curve to use in the cross spectrum. In some cases, this +would be the wavelength/energy/frequency reference band to compare the +band of interest with.

+
+
segment_size: float

The size of each segment to average. Note that if the total duration of +each Lightcurve object in lc1 or lc2 is not an +integer multiple of the segment_size, then any fraction left-over +at the end of the time series will be lost. Otherwise you introduce +artifacts.

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
+
+
Attributes:
+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
power: numpy.ndarray

The array of cross spectra.

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging power spectra of segments of a light curve). +Note that for a single realization (m=1) the error is equal to the +power.

+
+
df: float

The frequency resolution.

+
+
m: int

The number of averaged cross spectra.

+
+
n: int

The number of time bins per segment of light curve.

+
+
nphots1: float

The total number of photons in the first (interest) light curve.

+
+
nphots2: float

The total number of photons in the second (reference) light curve.

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals.

+
+
+
+
Other Parameters:
+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
dtfloat

The time resolution of the light curve. Only needed when constructing +light curves in the case where data1 or data2 are of :class:EventList

+
+
power_type: string, optional, default ``all``

Parameter to choose among complete, real part and magnitude of +the cross spectrum.

+
+
silentbool, default False

Do not show a progress bar when generating an averaged cross spectrum. +Useful for the batch execution of many spectra

+
+
lc1: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data1, but no +stingray.events.EventList objects allowed

+
+
lc2: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects

For backwards compatibility only. Like data2, but no +stingray.events.EventList objects allowed

+
+
fullspec: boolean, optional, default ``False``

If True, return the full array of frequencies, otherwise return just the +positive frequencies.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average. Use with care. +This is likely to fill up your RAM on medium-sized datasets, and to +slow down the computation when rebinning.

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!)

+
+
use_common_mean: bool

Averaged cross spectra are normalized in two possible ways: one is by normalizing +each of the single spectra that get averaged, the other is by normalizing after the +averaging. If use_common_mean is selected, the spectrum will be normalized +after the average.

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

AveragedPowerspectrum

+
+
+class stingray.AveragedPowerspectrum(data=None, segment_size=None, norm='frac', gti=None, silent=False, dt=None, lc=None, large_data=False, save_all=False, skip_checks=False, use_common_mean=True)[source]
+
+
+add(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Add two StingrayObject instances.

+

Add the array values of two StingrayObject instances element by element, assuming +the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None)
+

Apply a mask to all array attributes of the object

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Returns:
+
+
ts_newStingrayObject object

The new object with the mask applied if inplace is False, otherwise the +same object.

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current object. Otherwise, return a new one.

+
+
filtered_attrslist of str or None

Array attributes to be filtered. Defaults to all array attributes if None. +The other array attributes will be set to None. The main array attr is always +included.

+
+
+
+
+
+ +
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of array attributes.

+
+
+
+
+
+ +
+
+classical_significances(threshold=1, trial_correction=False)
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is +important! If there are other sources of (aperiodic) variability in +the data, this method will not produce correct results, but +instead produce a large number of spurious false positive +detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be +corrected for the number of trials (frequencies) in the power spectrum +before being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be +corrected by the number of frequencies before being applied. This +decreases the threshold (p-values need to be lower to count as +significant). Default is False (report all powers) though for +any application where threshold` is set to something meaningful, +this should also be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (p-value, index) tuples for all powers that have +p-values lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()
+

Averaged Coherence function.

+

Coherence is defined in Vaughan and Nowak, 1996 [5]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+

Compute an averaged Coherence function of cross spectrum by computing +coherence function of each segment and averaging them. The return type +is a tuple with first element as the coherence function and the second +element as the corresponding uncertainty associated with it.

+

Note : The uncertainty in coherence function is strictly valid for Gaussian statistics only.

+
+
Returns:
+
+
(coh, uncertainty)tuple of np.ndarray

Tuple comprising the coherence function and uncertainty.

+
+
+
+
+

References

+ +
+ +
+
+compute_rms(min_freq, max_freq, poisson_noise_level=None)
+

Compute the fractional rms amplitude in the power spectrum +between two frequencies.

+
+
Parameters:
+
+
min_freq: float

The lower frequency bound for the calculation.

+
+
max_freq: float

The upper frequency bound for the calculation.

+
+
+
+
Returns:
+
+
rms: float

The fractional rms amplitude contained between min_freq and +max_freq.

+
+
rms_err: float

The error on the fractional rms amplitude.

+
+
+
+
Other Parameters:
+
+
poisson_noise_levelfloat, default is None

This is the Poisson noise level of the PDS with same +normalization as the PDS. If poissoin_noise_level is None, +the Poisson noise is calculated in the idealcase +e.g. 2./<countrate> for fractional rms normalisation +Dead time and other instrumental effects can alter it. +The user can fit the Poisson noise level outside +this function using the same normalisation of the PDS +and it will get subtracted from powers here.

+
+
+
+
+
+ +
+
+data_attributes() list[str]
+

Clean up the list of attributes, only giving out those pointing to data.

+

List all the attributes that point directly to valid data. This method goes through all the +attributes of the class, eliminating methods, properties, and attributes that are complicated +to serialize such as other StingrayObject, or arrays of objects.

+

This function does not make difference between array-like data and scalar data.

+
+
Returns:
+
+
data_attributeslist of str

List of attributes pointing to data that are not methods, properties, +or other StingrayObject instances.

+
+
+
+
+
+ +
+
+deadtime_correct(dead_time, rate, background_rate=0, limit_k=200, n_approx=None, paralyzable=False)
+

Correct the power spectrum for dead time effects.

+

This correction is based on the formula given in Zhang et al. 2015, assuming +a constant dead time for all events. +For more advanced dead time corrections, see the FAD method from stingray.deadtime.fad

+
+
Parameters:
+
+
dead_time: float

The dead time of the detector.

+
+
ratefloat

Detected source count rate

+
+
+
+
Returns:
+
+
spectrum: Crossspectrum or derivative.

The dead-time corrected spectrum.

+
+
+
+
Other Parameters:
+
+
background_ratefloat, default 0

Detected background count rate. This is important to estimate when deadtime is given by the +combination of the source counts and background counts (e.g. in an imaging X-ray detector).

+
+
paralyzable: bool, default False

If True, the dead time correction is done assuming a paralyzable +dead time. If False, the correction is done assuming a non-paralyzable +(more common) dead time.

+
+
limit_kint, default 200

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
n_approxint, default None

Number of bins to calculate the model power spectrum. If None, it will use the size of +the input frequency array. Relatively simple models (e.g., low count rates compared to +dead time) can use a smaller number of bins to speed up the calculation, and the final +power values will be interpolated.

+
+
+
+
+
+ +
+
+dict() dict
+

Return a dictionary representation of the object.

+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+static from_events(events, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)
+

Calculate an average power spectrum from an event list.

+
+
Parameters:
+
+
eventsstingray.EventList

Event list to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)
+

Calculate the average power spectrum of an iterable collection of +light curves.

+
+
Parameters:
+
+
iter_lciterable of stingray.Lightcurve objects or np.array

Light curves. If arrays, use them as counts.

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True, save_all=False)
+

Calculate a power spectrum from a light curve.

+
+
Parameters:
+
+
eventsstingray.Lightcurve

Light curve to be analyzed.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+static from_stingray_timeseries(ts, flux_attr, error_flux_attr=None, segment_size=None, norm='none', silent=False, use_common_mean=True, gti=None, save_all=False)
+

Calculate AveragedPowerspectrum from a time series.

+
+
Parameters:
+
+
tsstingray.Timeseries

Input Time Series

+
+
flux_attrstr

What attribute of the time series will be used.

+
+
+
+
Other Parameters:
+
+
error_flux_attrstr

What attribute of the time series will be used as error bar.

+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
silentbool, default False

Silence the progress bars

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average.

+
+
+
+
+
+ +
+
+static from_time_array(times, dt, segment_size=None, gti=None, norm='frac', silent=False, use_common_mean=True)
+

Calculate an average power spectrum from an array of event times.

+
+
Parameters:
+
+
timesnp.array

Event arrival times.

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency).

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for +AveragedPowerspectrum.

+
+
gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], …]``

Additional, optional Good Time intervals that get intersected with +the GTIs of the input object. Can cause errors if there are +overlaps between these GTIs and the input object GTIs. If that +happens, assign the desired GTIs to the input object.

+
+
normstr, default “frac”

The normalization of the periodogram. abs is absolute rms, frac +is fractional rms, leahy is Leahy+83 normalization, and none is +the unnormalized periodogram.

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or +on the full light curve. This gives different results +(Alston+2013). By default, we assume the mean is calculated on the +full light curve, but the user can set use_common_mean to False +to calculate it on a per-segment basis.

+
+
silentbool, default False

Silence the progress bars.

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(*args, **kwargs)[source]
+

Examples

+
>>> times = np.arange(0, 10)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> ac = AveragedCrossspectrum()
+
+
+

If AveragedCrossspectrum, you need segment_size +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) +Traceback (most recent call last): +… +ValueError: segment_size must be specified…

+

And it needs to be finite! +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) +Traceback (most recent call last): +… +ValueError: segment_size must be finite!

+
+ +
+
+internal_array_attrs() list[str]
+

List the names of the internal array attributes of the Stingray Object.

+

These are array attributes that can be set by properties, and are generally indicated +by an underscore followed by the name of the property that links to it (E.g. +_counts in Lightcurve). +By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of internal array attributes.

+
+
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of meta attributes.

+
+
+
+
+
+ +
+
+modulation_upper_limit(fmin=None, fmax=None, c=0.95)
+

Upper limit on a sinusoidal modulation.

+

To understand the meaning of this amplitude: if the modulation is +described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See stingray.stats.power_upper_limit, +stingray.stats.amplitude_upper_limit +for more information.

+

The formula used to calculate the upper limit assumes the Leahy +normalization. +If the periodogram is in another normalization, we will internally +convert it to Leahy before calculating the upper limit.

+
+
Parameters:
+
+
fmin: float

The minimum frequency to search (defaults to the first nonzero bin)

+
+
fmax: float

The maximum frequency to search (defaults to the Nyquist frequency)

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c +probability.

+
+
+
+
Other Parameters:
+
+
c: float

The confidence value for the upper limit (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pds = Powerspectrum()
+>>> pds.norm = "leahy"
+>>> pds.freq = np.arange(0., 5.)
+>>> # Note: this pds has 40 as maximum value between 2 and 5 Hz
+>>> pds.power = np.array([100000, 1, 1, 40, 1])
+>>> pds.m = 1
+>>> pds.nphots = 30000
+>>> assert np.isclose(
+...     pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99),
+...     0.10164,
+...     atol=0.0001)
+
+
+
+ +
+
+phase_lag()
+

Return the fourier phase lag of the cross spectrum.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+pretty_print(func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) str
+

Return a pretty-printed string representation of the object.

+

This is useful for debugging, and for interactive use.

+
+
Other Parameters:
+
+
func_to_applyfunction

A function that modifies the attributes listed in attrs_to_apply. +It must return the modified attributes and a label to be printed. +If None, no function is applied.

+
+
attrs_to_applylist of str

Attributes to be modified by func_to_apply.

+
+
attrs_to_discardlist of str

Attributes to be discarded from the output.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')
+

Rebin the power spectrum.

+
+
Parameters:
+
+
df: float

The new frequency resolution.

+
+
+
+
Returns:
+
+
bin_cs = Powerspectrum object

The newly binned power spectrum.

+
+
+
+
Other Parameters:
+
+
f: float

The rebin factor. If specified, it substitutes df with +f*self.df, so f>1 is recommended.

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+sub(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Subtract all the array attrs of two StingrayObject instances element by element, assuming the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+time_lag()
+

Calculate time lag and uncertainty.

+

Equation from Bendat & Piersol, 2011 [bendat-2011]__.

+
+
Returns:
+
+
lagnp.ndarray

The time lag

+
+
lag_errnp.ndarray

The uncertainty in the time lag

+
+
+
+
+
+ +
+
+to_astropy_table(no_longdouble=False) Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+
Other Parameters:
+
+
no_longdoublebool

If True, reduce the precision of longdouble arrays to double precision. +This needs to be done in some cases, e.g. when the table is to be saved +in an architecture not supporting extended precision (e.g. ARM), but can +also be useful when an extended precision is not needed.

+
+
+
+
+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+

Since pandas does not support n-D data, multi-dimensional arrays are +converted into columns before the conversion, with names <colname>_dimN_M_K etc.

+

See documentation of make_nd_into_arrays for details.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+type = 'powerspectrum'
+

Make an averaged periodogram from a light curve by segmenting the light +curve, Fourier-transforming each segment and then averaging the +resulting periodograms.

+
+
Parameters:
+
+
data: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object

The light curve data to be Fourier-transformed.

+
+
segment_size: float

The size of each segment to average. Note that if the total +duration of each Lightcurve object in lc is not an integer +multiple of the segment_size, then any fraction left-over at the +end of the time series will be lost.

+
+
norm: {“leahy” | “frac” | “abs” | “none” }, optional, default “frac”

The normalization of the periodogram to be used.

+
+
+
+
Attributes:
+
+
norm: {``leahy`` | ``frac`` | ``abs`` | ``none`` }

The normalization of the periodogram.

+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
power: numpy.ndarray

The array of normalized powers

+
+
power_err: numpy.ndarray

The uncertainties of power. +An approximation for each bin given by power_err= power/sqrt(m). +Where m is the number of power averaged in each bin (by frequency +binning, or averaging power spectra of segments of a light curve). +Note that for a single realization (m=1) the error is equal to the +power.

+
+
unnorm_power: numpy.ndarray

The array of unnormalized powers

+
+
unnorm_power_err: numpy.ndarray

The uncertainties of unnorm_power.

+
+
df: float

The frequency resolution.

+
+
m: int

The number of averaged periodograms.

+
+
n: int

The number of data points in the light curve.

+
+
nphots: float

The total number of photons in the light curve.

+
+
cs_all: list of :class:`Powerspectrum` objects

The list of all periodograms used to calculate the average periodogram.

+
+
+
+
Other Parameters:
+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] – Good Time intervals. +This choice overrides the GTIs in the single light curves. Use with +care, especially if these GTIs have overlaps with the input +object GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the input object before making +the power spectrum.

+
+
silentbool, default False

Do not show a progress bar when generating an averaged cross spectrum. +Useful for the batch execution of many spectra.

+
+
dt: float

The time resolution of the light curve. Only needed when constructing +light curves in the case where data is of :class:EventList.

+
+
save_allbool, default False

Save all intermediate PDSs used for the final average. Use with care. +This is likely to fill up your RAM on medium-sized datasets, and to +slow down the computation when rebinning.

+
+
skip_checks: bool

Skip initial checks, for speed or other reasons (you need to trust your +inputs!).

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

Dynamical Powerspectrum

+
+
+class stingray.DynamicalPowerspectrum(lc=None, segment_size=None, norm='frac', gti=None, sample_time=None)[source]
+
+
+add(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Add two StingrayObject instances.

+

Add the array values of two StingrayObject instances element by element, assuming +the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None)
+

Apply a mask to all array attributes of the object

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Returns:
+
+
ts_newStingrayObject object

The new object with the mask applied if inplace is False, otherwise the +same object.

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current object. Otherwise, return a new one.

+
+
filtered_attrslist of str or None

Array attributes to be filtered. Defaults to all array attributes if None. +The other array attributes will be set to None. The main array attr is always +included.

+
+
+
+
+
+ +
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of array attributes.

+
+
+
+
+
+ +
+
+classical_significances(threshold=1, trial_correction=False)
+

Compute the classical significances for the powers in the power +spectrum, assuming an underlying noise distribution that follows a +chi-square distributions with 2M degrees of freedom, where M is the +number of powers averaged in each bin.

+

Note that this function will only produce correct results when the +following underlying assumptions are fulfilled:

+
    +
  1. The power spectrum is Leahy-normalized

  2. +
  3. There is no source of variability in the data other than the +periodic signal to be determined with this method. This is important! +If there are other sources of (aperiodic) variability in the data, this +method will not produce correct results, but instead produce a large +number of spurious false positive detections!

  4. +
  5. There are no significant instrumental effects changing the +statistical distribution of the powers (e.g. pile-up or dead time)

  6. +
+

By default, the method produces (index,p-values) for all powers in +the power spectrum, where index is the numerical index of the power in +question. If a threshold is set, then only powers with p-values +below that threshold with their respective indices. If +trial_correction is set to True, then the threshold will be corrected +for the number of trials (frequencies) in the power spectrum before +being used.

+
+
Parameters:
+
+
thresholdfloat, optional, default 1

The threshold to be used when reporting p-values of potentially +significant powers. Must be between 0 and 1. +Default is 1 (all p-values will be reported).

+
+
trial_correctionbool, optional, default False

A Boolean flag that sets whether the threshold will be corrected +by the number of frequencies before being applied. This decreases +the threshold (p-values need to be lower to count as significant). +Default is False (report all powers) though for any application +where threshold` is set to something meaningful, this should also +be applied!

+
+
+
+
Returns:
+
+
pvalsiterable

A list of (index, p-value) tuples for all powers that have p-values +lower than the threshold specified in threshold.

+
+
+
+
+
+ +
+
+coherence()
+

Averaged Coherence function.

+

Coherence is defined in Vaughan and Nowak, 1996 [6]. +It is a Fourier frequency dependent measure of the linear correlation +between time series measured simultaneously in two energy channels.

+

Compute an averaged Coherence function of cross spectrum by computing +coherence function of each segment and averaging them. The return type +is a tuple with first element as the coherence function and the second +element as the corresponding uncertainty associated with it.

+

Note : The uncertainty in coherence function is strictly valid for Gaussian statistics only.

+
+
Returns:
+
+
(coh, uncertainty)tuple of np.ndarray

Tuple comprising the coherence function and uncertainty.

+
+
+
+
+

References

+ +
+ +
+
+compute_rms(min_freq, max_freq, poisson_noise_level=0)
+

Compute the fractional rms amplitude in the power spectrum +between two frequencies.

+
+
Parameters:
+
+
min_freq: float

The lower frequency bound for the calculation.

+
+
max_freq: float

The upper frequency bound for the calculation.

+
+
+
+
Returns:
+
+
rms: float

The fractional rms amplitude contained between min_freq and +max_freq.

+
+
rms_err: float

The error on the fractional rms amplitude.

+
+
+
+
Other Parameters:
+
+
poisson_noise_levelfloat, default is None

This is the Poisson noise level of the PDS with same +normalization as the PDS.

+
+
+
+
+
+ +
+
+data_attributes() list[str]
+

Clean up the list of attributes, only giving out those pointing to data.

+

List all the attributes that point directly to valid data. This method goes through all the +attributes of the class, eliminating methods, properties, and attributes that are complicated +to serialize such as other StingrayObject, or arrays of objects.

+

This function does not make difference between array-like data and scalar data.

+
+
Returns:
+
+
data_attributeslist of str

List of attributes pointing to data that are not methods, properties, +or other StingrayObject instances.

+
+
+
+
+
+ +
+
+deadtime_correct(dead_time, rate, background_rate=0, limit_k=200, n_approx=None, paralyzable=False)
+

Correct the power spectrum for dead time effects.

+

This correction is based on the formula given in Zhang et al. 2015, assuming +a constant dead time for all events. +For more advanced dead time corrections, see the FAD method from stingray.deadtime.fad

+
+
Parameters:
+
+
dead_time: float

The dead time of the detector.

+
+
ratefloat

Detected source count rate

+
+
+
+
Returns:
+
+
spectrum: Crossspectrum or derivative.

The dead-time corrected spectrum.

+
+
+
+
Other Parameters:
+
+
background_ratefloat, default 0

Detected background count rate. This is important to estimate when deadtime is given by the +combination of the source counts and background counts (e.g. in an imaging X-ray detector).

+
+
paralyzable: bool, default False

If True, the dead time correction is done assuming a paralyzable +dead time. If False, the correction is done assuming a non-paralyzable +(more common) dead time.

+
+
limit_kint, default 200

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
n_approxint, default None

Number of bins to calculate the model power spectrum. If None, it will use the size of +the input frequency array. Relatively simple models (e.g., low count rates compared to +dead time) can use a smaller number of bins to speed up the calculation, and the final +power values will be interpolated.

+
+
+
+
+
+ +
+
+dict() dict
+

Return a dictionary representation of the object.

+
+ +
+
+classmethod from_astropy_table(ts: Table) Tso
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+static from_events(events1, events2, dt, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two event lists

+
+
Parameters:
+
+
events1stingray.EventList

Events from channel 1

+
+
events2stingray.EventList

Events from channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_lc_iterable(iter_lc1, iter_lc2, dt, segment_size, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 1. If arrays, use them as counts

+
+
iter_lc1iterable of stingray.Lightcurve objects or np.array

Light curves from channel 2. If arrays, use them as counts

+
+
dtfloat

The time resolution of the light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
save_allbool, default False

If True, save the cross spectrum of each segment in the cs_all +attribute of the output Crossspectrum object.

+
+
+
+
+
+ +
+
+static from_lightcurve(lc1, lc2, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
lc1stingray.Lightcurve

Light curve from channel 1

+
+
lc2stingray.Lightcurve

Light curve from channel 2

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+classmethod from_pandas(ts: DataFrame) Tso
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+static from_stingray_timeseries(ts1, ts2, flux_attr, error_flux_attr=None, segment_size=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True, gti=None)
+

Calculate AveragedCrossspectrum from two light curves

+
+
Parameters:
+
+
ts1stingray.Timeseries

Time series from channel 1

+
+
ts2stingray.Timeseries

Time series from channel 2

+
+
flux_attrstr

What attribute of the time series will be used.

+
+
+
+
Other Parameters:
+
+
error_flux_attrstr

What attribute of the time series will be used as error bar.

+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be averaged. +Only relevant (and required) for AveragedCrossspectrum

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
gti: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
+
+
+
+ +
+
+static from_time_array(times1, times2, dt, segment_size=None, gti=None, norm='none', power_type='all', silent=False, fullspec=False, use_common_mean=True)
+

Calculate AveragedCrossspectrum from two arrays of event times.

+
+
Parameters:
+
+
times1np.array

Event arrival times of channel 1

+
+
times2np.array

Event arrival times of channel 2

+
+
dtfloat

The time resolution of the intermediate light curves +(sets the Nyquist frequency)

+
+
+
+
Other Parameters:
+
+
segment_sizefloat

The length, in seconds, of the light curve segments that will be +averaged. Only relevant (and required) for AveragedCrossspectrum.

+
+
gti[[gti0, gti1], …]

Good Time intervals. Defaults to the common GTIs from the two input +objects. Could throw errors if these GTIs have overlaps with the +input object GTIs! If you’re getting errors regarding your GTIs, +don’t use this and only give GTIs to the input objects before +making the cross spectrum.

+
+
normstr, default “frac”

The normalization of the periodogram. “abs” is absolute rms, “frac” is +fractional rms, “leahy” is Leahy+83 normalization, and “none” is the +unnormalized periodogram

+
+
use_common_meanbool, default True

The mean of the light curve can be estimated in each interval, or on +the full light curve. This gives different results (Alston+2013). +Here we assume the mean is calculated on the full light curve, but +the user can set use_common_mean to False to calculate it on a +per-segment basis.

+
+
fullspecbool, default False

Return the full periodogram, including negative frequencies

+
+
silentbool, default False

Silence the progress bars

+
+
power_typestr, default ‘all’

If ‘all’, give complex powers. If ‘abs’, the absolute value; if ‘real’, +the real part

+
+
+
+
+
+ +
+
+classmethod from_xarray(ts: Dataset) Tso
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+initial_checks(data1, segment_size=None, **kwargs)
+

Examples

+
>>> times = np.arange(0, 10)
+>>> ev1 = EventList(times)
+>>> ev2 = EventList(times)
+>>> ac = AveragedCrossspectrum()
+
+
+

If AveragedCrossspectrum, you need segment_size +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1) +Traceback (most recent call last): +… +ValueError: segment_size must be specified…

+

And it needs to be finite! +>>> AveragedCrossspectrum.initial_checks(ac, data1=ev1, data2=ev2, dt=1., segment_size=np.nan) +Traceback (most recent call last): +… +ValueError: segment_size must be finite!

+
+ +
+
+internal_array_attrs() list[str]
+

List the names of the internal array attributes of the Stingray Object.

+

These are array attributes that can be set by properties, and are generally indicated +by an underscore followed by the name of the property that links to it (E.g. +_counts in Lightcurve). +By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of internal array attributes.

+
+
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of meta attributes.

+
+
+
+
+
+ +
+
+phase_lag()
+

Return the fourier phase lag of the cross spectrum.

+
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the amplitude of the cross spectrum vs. the frequency using matplotlib.

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of the matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for the``matplotlib.pyplot.axis()`` method.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default ‘-’

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+
+power_colors(freq_edges=[0.00390625, 0.03125, 0.25, 2.0, 16.0], freqs_to_exclude=None, poisson_power=None)[source]
+

Return the power colors of the dynamical power spectrum.

+
+
Parameters:
+
+
freq_edges: iterable

The edges of the frequency bins to be used for the power colors.

+
+
freqs_to_exclude1-d or 2-d iterable, optional, default None

The ranges of frequencies to exclude from the calculation of the power color. +For example, the frequencies containing strong QPOs. +A 1-d iterable should contain two values for the edges of a single range. (E.g. +[0.1, 0.2]). [[0.1, 0.2], [3, 4]] will exclude the ranges 0.1-0.2 Hz and +3-4 Hz.

+
+
poisson_levelfloat or iterable, optional

Defaults to the theoretical Poisson noise level (e.g. 2 for Leahy normalization). +The Poisson noise level of the power spectrum. If iterable, it should have the same +length as frequency. (This might apply to the case of a power spectrum with a +strong dead time distortion)

+
+
+
+
Returns:
+
+
pc0: np.ndarray
+
pc0_err: np.ndarray
+
pc1: np.ndarray
+
pc1_err: np.ndarray

The power colors for each spectrum and their respective errors

+
+
+
+
+
+ +
+
+pretty_print(func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) str
+

Return a pretty-printed string representation of the object.

+

This is useful for debugging, and for interactive use.

+
+
Other Parameters:
+
+
func_to_applyfunction

A function that modifies the attributes listed in attrs_to_apply. +It must return the modified attributes and a label to be printed. +If None, no function is applied.

+
+
attrs_to_applylist of str

Attributes to be modified by func_to_apply.

+
+
attrs_to_discardlist of str

Attributes to be discarded from the output.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+rebin(df=None, f=None, method='mean')
+

Rebin the cross spectrum to a new frequency resolution df.

+
+
Parameters:
+
+
df: float

The new frequency resolution

+
+
+
+
Returns:
+
+
bin_cs = Crossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class +AveragedPowerspectrum, too.

+
+
+
+
Other Parameters:
+
+
f: float

the rebin factor. If specified, it substitutes df with f*self.df

+
+
+
+
+
+ +
+
+rebin_by_n_intervals(n, method='average')
+

Rebin the Dynamic Power Spectrum to a new time resolution, by summing contiguous intervals.

+

This is different from meth:DynamicalPowerspectrum.rebin_time in that it averages n +consecutive intervals regardless of their distance in time. rebin_time will instead +average intervals that are separated at most by a time dt_new.

+
+
Parameters:
+
+
n: int

The number of intervals to be combined into one.

+
+
method: {“sum” | “mean” | “average”}, optional, default “average”

This keyword argument sets whether the powers in the new bins +should be summed or averaged.

+
+
+
+
Returns:
+
+
time_new: numpy.ndarray

Time axis with new rebinned time resolution.

+
+
dynspec_new: numpy.ndarray

New rebinned Dynamical Cross Spectrum.

+
+
+
+
+
+ +
+
+rebin_frequency(df_new, method='average')
+

Rebin the Dynamic Power Spectrum to a new frequency resolution. +Rebinning is an in-place operation, i.e. will replace the existing +dyn_ps attribute.

+

While the new resolution does not need to be an integer of the previous frequency +resolution, be aware that if this is the case, the last frequency bin will be cut +off by the fraction left over by the integer division

+
+
Parameters:
+
+
df_new: float

The new frequency resolution of the dynamical power spectrum. +Must be larger than the frequency resolution of the old dynamical +power spectrum!

+
+
method: {“sum” | “mean” | “average”}, optional, default “average”

This keyword argument sets whether the powers in the new bins +should be summed or averaged.

+
+
+
+
+
+ +
+
+rebin_log(f=0.01)
+

Logarithmic rebin of the periodogram. +The new frequency depends on the previous frequency +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
f: float, optional, default ``0.01``

parameter that steers the frequency resolution

+
+
+
+
Returns:
+
+
new_specCrossspectrum (or one of its subclasses) object

The newly binned cross spectrum or power spectrum. +Note: this object will be of the same type as the object +that called this method. For example, if this method is called +from AveragedPowerspectrum, it will return an object of class

+
+
+
+
+
+ +
+
+rebin_time(dt_new, method='average')
+

Rebin the Dynamic Power Spectrum to a new time resolution.

+

Note: this is not changing the time resolution of the input light +curve! dt is the integration time of each line of the dynamical power +spectrum (typically, an integer multiple of segment_size).

+

While the new resolution does not need to be an integer of the previous time +resolution, be aware that if this is the case, the last time bin will be cut +off by the fraction left over by the integer division

+
+
Parameters:
+
+
dt_new: float

The new time resolution of the dynamical power spectrum. +Must be larger than the time resolution of the old dynamical power +spectrum!

+
+
method: {“sum” | “mean” | “average”}, optional, default “average”

This keyword argument sets whether the powers in the new bins +should be summed or averaged.

+
+
+
+
Returns:
+
+
time_new: numpy.ndarray

Time axis with new rebinned time resolution.

+
+
dynspec_new: numpy.ndarray

New rebinned Dynamical Cross Spectrum.

+
+
+
+
+
+ +
+
+shift_and_add(f0_list, nbins=100, rebin=None)[source]
+

Shift-and-add the dynamical power spectrum.

+

This is the basic operation for the shift-and-add operation used to track +kHz QPOs in X-ray binaries (e.g. Méndez et al. 1998, ApJ, 494, 65).

+
+
Parameters:
+
+
freqsnp.array

Array of frequencies, the same for all powers. Must be sorted and on a uniform +grid.

+
+
power_listlist of np.array

List of power spectra. Each power spectrum must have the same length +as the frequency array.

+
+
f0_listlist of float

List of central frequencies

+
+
+
+
Returns:
+
+
output: AveragedPowerspectrum

The final averaged power spectrum.

+
+
+
+
Other Parameters:
+
+
nbinsint, default 100

Number of bins to extract

+
+
rebinint, default None

Rebin the final spectrum by this factor. At the moment, the rebinning +is linear.

+
+
+
+
+

Examples

+
>>> power_list = [[2, 5, 2, 2, 2], [1, 1, 5, 1, 1], [3, 3, 3, 5, 3]]
+>>> power_list = np.array(power_list).T
+>>> freqs = np.arange(5) * 0.1
+>>> f0_list = [0.1, 0.2, 0.3, 0.4]
+>>> dps = DynamicalPowerspectrum()
+>>> dps.dyn_ps = power_list
+>>> dps.freq = freqs
+>>> dps.df = 0.1
+>>> dps.m = 1
+>>> output = dps.shift_and_add(f0_list, nbins=5)
+>>> assert isinstance(output, AveragedPowerspectrum)
+>>> assert np.array_equal(output.m, [2, 3, 3, 3, 2])
+>>> assert np.array_equal(output.power, [2. , 2. , 5. , 2. , 1.5])
+>>> assert np.allclose(output.freq, [0.05, 0.15, 0.25, 0.35, 0.45])
+
+
+
+ +
+
+sub(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Subtract all the array attrs of two StingrayObject instances element by element, assuming the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+time_lag()
+

Calculate time lag and uncertainty.

+

Equation from Bendat & Piersol, 2011 [bendat-2011]__.

+
+
Returns:
+
+
lagnp.ndarray

The time lag

+
+
lag_errnp.ndarray

The uncertainty in the time lag

+
+
+
+
+
+ +
+
+to_astropy_table(no_longdouble=False) Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+
Other Parameters:
+
+
no_longdoublebool

If True, reduce the precision of longdouble arrays to double precision. +This needs to be done in some cases, e.g. when the table is to be saved +in an architecture not supporting extended precision (e.g. ARM), but can +also be useful when an extended precision is not needed.

+
+
+
+
+
+ +
+
+to_norm(norm, inplace=False)
+

Convert Cross spectrum to new normalization.

+
+
Parameters:
+
+
normstr

The new normalization of the spectrum

+
+
+
+
Returns:
+
+
new_specobject, same class as input

The new, normalized, spectrum.

+
+
+
+
Other Parameters:
+
+
inplace: bool, default False

If True, change the current instance. Otherwise, return a new one

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+

Since pandas does not support n-D data, multi-dimensional arrays are +converted into columns before the conversion, with names <colname>_dimN_M_K etc.

+

See documentation of make_nd_into_arrays for details.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+trace_maximum(min_freq=None, max_freq=None)
+

Return the indices of the maximum powers in each segment +Powerspectrum between specified frequencies.

+
+
Parameters:
+
+
min_freq: float, default ``None``

The lower frequency bound.

+
+
max_freq: float, default ``None``

The upper frequency bound.

+
+
+
+
Returns:
+
+
max_positionsnp.array

The array of indices of the maximum power in each segment having +frequency between min_freq and max_freq.

+
+
+
+
+
+ +
+
+type = 'powerspectrum'
+

Create a dynamical power spectrum, also often called a spectrogram.

+

This class will divide a Lightcurve object into segments of +length segment_size, create a power spectrum for each segment and store +all powers in a matrix as a function of both time (using the mid-point of +each segment) and frequency.

+

This is often used to trace changes in period of a (quasi-)periodic signal +over time.

+
+
Parameters:
+
+
lcstingray.Lightcurve or stingray.EventList object

The time series or event list of which the dynamical power spectrum is +to be calculated. If stingray.EventList, dt must be specified as well.

+
+
segment_sizefloat, default 1

Length of the segment of light curve, default value is 1 (in whatever +units the time array in the Lightcurve` object uses).

+
+
norm: {“leahy” | “frac” | “abs” | “none” }, optional, default “frac”

The normaliation of the periodogram to be used.

+
+
+
+
Attributes:
+
+
segment_size: float

The size of each segment to average. Note that if the total +duration of each input object in lc is not an integer multiple +of the segment_size, then any fraction left-over at the end of the +time series will be lost.

+
+
dyn_psnp.ndarray

The matrix of normalized squared absolute values of Fourier +amplitudes. The axis are given by the freq +and time attributes.

+
+
norm: {``leahy`` | ``frac`` | ``abs`` | ``none``}

The normalization of the periodogram.

+
+
freq: numpy.ndarray

The array of mid-bin frequencies that the Fourier transform samples.

+
+
time: numpy.ndarray

The array of mid-point times of each interval used for the dynamical +power spectrum.

+
+
df: float

The frequency resolution.

+
+
dt: float

The time resolution of the dynamical spectrum. It is not the time resolution of the +input light curve. It is the integration time of each line of the dynamical power +spectrum (typically, an integer multiple of segment_size).

+
+
m: int

The number of averaged cross spectra.

+
+
+
+
Other Parameters:
+
+
gti: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] – Good Time intervals. +This choice overrides the GTIs in the single light curves. Use with +care, especially if these GTIs have overlaps with the input +object GTIs! If you’re getting errors regarding your GTIs, don’t +use this and only give GTIs to the input object before making +the power spectrum.

+
+
sample_time: float

Compulsory for input stingray.EventList data. The time resolution of the +lightcurve that is created internally from the input event lists. Drives the +Nyquist frequency.

+
+
+
+
+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+

CrossCorrelation

+
+
+class stingray.CrossCorrelation(lc1=None, lc2=None, cross=None, mode='same', norm='none')[source]
+

Make a cross-correlation from light curves or a cross spectrum.

+

You can also make an empty Crosscorrelation object to populate +with your own cross-correlation data.

+
+
Parameters:
+
+
lc1: :class:`stingray.Lightcurve` object, optional, default ``None``

The first light curve data for correlation calculations.

+
+
lc2: :class:`stingray.Lightcurve` object, optional, default ``None``

The light curve data for the correlation calculations.

+
+
cross: :class: `stingray.Crossspectrum` object, default ``None``

The cross spectrum data for the correlation calculations.

+
+
mode: {``full``, ``valid``, ``same``}, optional, default ``same``

A string indicating the size of the correlation output. +See the relevant scipy documentation [scipy-docs] +for more details.

+
+
norm: {``none``, ``variance``}

if “variance”, the cross correlation is normalized so that perfect +correlation gives 1, and perfect anticorrelation gives -1. See +Gaskell & Peterson 1987, Gardner & Done 2017

+
+
+
+
Attributes:
+
+
lc1: :class:`stingray.Lightcurve`

The first light curve data for correlation calculations.

+
+
lc2: :class:`stingray.Lightcurve`

The light curve data for the correlation calculations.

+
+
cross: :class: `stingray.Crossspectrum`

The cross spectrum data for the correlation calculations.

+
+
corr: numpy.ndarray

An array of correlation data calculated from two light curves

+
+
time_lags: numpy.ndarray

An array of all possible time lags against which each point in corr is calculated

+
+
dt: float

The time resolution of each light curve (used in time_lag calculations)

+
+
time_shift: float

Time lag that gives maximum value of correlation between two light curves. +There will be maximum correlation between light curves if one of the light curve +is shifted by time_shift.

+
+
n: int

Number of points in self.corr (length of cross-correlation data)

+
+
auto: bool

An internal flag to indicate whether this is a cross-correlation or an auto-correlation.

+
+
norm: {``none``, ``variance``}

The normalization specified in input

+
+
+
+
+

References

+ +
+
+cal_timeshift(dt=1.0)[source]
+

Calculate the cross correlation against all possible time lags, both positive and negative.

+

The method signal.correlation_lags() uses SciPy versions >= 1.6.1 ([scipy-docs-lag])

+
+
Parameters:
+
+
dt: float, optional, default ``1.0``

Time resolution of the light curve, should be passed when object is populated with +correlation data and no information about light curve can be extracted. Used to +calculate time_lags.

+
+
+
+
Returns:
+
+
self.time_shift: float

Value of the time lag that gives maximum value of correlation between two light curves.

+
+
self.time_lags: numpy.ndarray

An array of time_lags calculated from correlation data

+
+
+
+
+

References

+ +
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)[source]
+

Plot the Crosscorrelation as function using Matplotlib. +Plot the Crosscorrelation object on a graph self.time_lags on x-axis and +self.corr on y-axis

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() function.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default -

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional (default=False)

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+ +
+
+
+

AutoCorrelation

+
+
+class stingray.AutoCorrelation(lc=None, mode='same')[source]
+

Make an auto-correlation from a light curve. +You can also make an empty Autocorrelation object to populate with your +own auto-correlation data.

+
+
Parameters:
+
+
lc: :class:`stingray.Lightcurve` object, optional, default ``None``

The light curve data for correlation calculations.

+
+
mode: {``full``, ``valid``, ``same``}, optional, default ``same``

A string indicating the size of the correlation output. +See the relevant scipy documentation [scipy-docs] +for more details.

+
+
+
+
Attributes:
+
+
lc1, lc2::class:`stingray.Lightcurve`

The light curve data for correlation calculations.

+
+
corr: numpy.ndarray

An array of correlation data calculated from lightcurve data

+
+
time_lags: numpy.ndarray

An array of all possible time lags against which each point in corr is calculated

+
+
dt: float

The time resolution of each lightcurve (used in time_lag calculations)

+
+
time_shift: float, zero

Max. Value of AutoCorrelation is always at zero lag.

+
+
n: int

Number of points in self.corr(Length of auto-correlation data)

+
+
+
+
+
+
+cal_timeshift(dt=1.0)
+

Calculate the cross correlation against all possible time lags, both positive and negative.

+

The method signal.correlation_lags() uses SciPy versions >= 1.6.1 ([scipy-docs-lag])

+
+
Parameters:
+
+
dt: float, optional, default ``1.0``

Time resolution of the light curve, should be passed when object is populated with +correlation data and no information about light curve can be extracted. Used to +calculate time_lags.

+
+
+
+
Returns:
+
+
self.time_shift: float

Value of the time lag that gives maximum value of correlation between two light curves.

+
+
self.time_lags: numpy.ndarray

An array of time_lags calculated from correlation data

+
+
+
+
+

References

+ +
+ +
+
+plot(labels=None, axis=None, title=None, marker='-', save=False, filename=None, ax=None)
+

Plot the Crosscorrelation as function using Matplotlib. +Plot the Crosscorrelation object on a graph self.time_lags on x-axis and +self.corr on y-axis

+
+
Parameters:
+
+
labelsiterable, default None

A list of tuple with xlabel and ylabel as strings.

+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() function.

+
+
titlestr, default None

The title of the plot.

+
+
markerstr, default -

Line style and color of the plot. Line styles and colors are +combined in a single format string, as in 'bo' for blue +circles. See matplotlib.pyplot.plot for more options.

+
+
saveboolean, optional (default=False)

If True, save the figure with specified filename.

+
+
filenamestr

File name of the image to save. Depends on the boolean save.

+
+
axmatplotlib.Axes object

An axes object to fill with the cross correlation plot.

+
+
+
+
+
+ +
+ +
+
+
+

Dead-Time Corrections

+
+
+stingray.deadtime.fad.FAD(data1, data2, segment_size, dt=None, norm='frac', plot=False, ax=None, smoothing_alg='gauss', smoothing_length=None, verbose=False, tolerance=0.05, strict=False, output_file=None, return_objects=False)[source]
+

Calculate Frequency Amplitude Difference-corrected (cross)power spectra.

+

Reference: Bachetti & Huppenkothen, 2018, ApJ, 853L, 21

+

The two input light curve must be strictly simultaneous, and recorded by +two independent detectors with similar responses, so that the count rates +are similar and dead time is independent. +The method does not apply to different energy channels of the same +instrument, or to the signal observed by two instruments with very +different responses. See the paper for caveats.

+
+
Parameters:
+
+
data1Lightcurve or EventList

Input data for channel 1

+
+
data2Lightcurve or EventList

Input data for channel 2. Must be strictly simultaneous to data1 +and, if a light curve, have the same binning time. Also, it must be +strictly independent, e.g. from a different detector. There must be +no dead time cross-talk between the two time series.

+
+
segment_size: float

The final Fourier products are averaged over many segments of the +input light curves. This is the length of each segment being averaged. +Note that the light curve must be long enough to have at least 30 +segments, as the result gets better as one averages more and more +segments.

+
+
dtfloat

Time resolution of the light curves used to produce periodograms

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
+
+
Returns:
+
+
resultsclass:astropy.table.Table object or dict or str

The content of results depends on whether return_objects is +True or False. +If return_objects==False, +results is a Table with the following columns:

+
    +
  • pds1: the corrected PDS of lc1

  • +
  • pds2: the corrected PDS of lc2

  • +
  • cs: the corrected cospectrum

  • +
  • ptot: the corrected PDS of lc1 + lc2

  • +
+

If return_objects is True, results is a dict, with keys +named like the columns +listed above but with AveragePowerspectrum or +AverageCrossspectrum objects instead of arrays.

+
+
+
+
Other Parameters:
+
+
plotbool, default False

Plot diagnostics: check if the smoothed Fourier difference scatter is +a good approximation of the data scatter.

+
+
axmatplotlib.axes.axes object
+
If not None and plot is True, use this axis object to produce

the diagnostic plot. Otherwise, create a new figure.

+
+
+
+
smoothing_alg{‘gauss’, …}

Smoothing algorithm. For now, the only smoothing algorithm allowed is +gauss, which applies a Gaussian Filter from scipy.

+
+
smoothing_lengthint, default segment_size * 3

Number of bins to smooth in gaussian window smoothing

+
+
verbose: bool, default False

Print out information on the outcome of the algorithm (recommended)

+
+
tolerancefloat, default 0.05

Accepted relative error on the FAD-corrected Fourier amplitude, to be +used as success diagnostics. +Should be +` +stdtheor = 2 / np.sqrt(n) +std = (average_corrected_fourier_diff / n).std() +np.abs((std - stdtheor) / stdtheor) < tolerance +`

+
+
strictbool, default False

Decide what to do if the condition on tolerance is not met. If True, +raise a RuntimeError. If False, just throw a warning.

+
+
output_filestr, default None

Name of an output file (any extension automatically recognized by +Astropy is fine)

+
+
+
+
+
+ +
+
+stingray.deadtime.fad.calculate_FAD_correction(lc1, lc2, segment_size, norm='frac', gti=None, plot=False, ax=None, smoothing_alg='gauss', smoothing_length=None, verbose=False, tolerance=0.05, strict=False, output_file=None, return_objects=False)[source]
+

Calculate Frequency Amplitude Difference-corrected (cross)power spectra.

+

Reference: Bachetti & Huppenkothen, 2018, ApJ, 853L, 21

+

The two input light curve must be strictly simultaneous, and recorded by +two independent detectors with similar responses, so that the count rates +are similar and dead time is independent. +The method does not apply to different energy channels of the same +instrument, or to the signal observed by two instruments with very +different responses. See the paper for caveats.

+
+
Parameters:
+
+
lc1: class:`stingray.ligthtcurve.Lightcurve`

Light curve from channel 1

+
+
lc2: class:`stingray.ligthtcurve.Lightcurve`

Light curve from channel 2. Must be strictly simultaneous to lc1 +and have the same binning time. Also, it must be strictly independent, +e.g. from a different detector. There must be no dead time cross-talk +between the two light curves.

+
+
segment_size: float

The final Fourier products are averaged over many segments of the +input light curves. This is the length of each segment being averaged. +Note that the light curve must be long enough to have at least 30 +segments, as the result gets better as one averages more and more +segments.

+
+
norm: {``frac``, ``abs``, ``leahy``, ``none``}, default ``none``

The normalization of the (real part of the) cross spectrum.

+
+
+
+
Returns:
+
+
resultsclass:astropy.table.Table object or dict or str

The content of results depends on whether return_objects is +True or False. +If return_objects==False, +results is a Table with the following columns:

+
    +
  • pds1: the corrected PDS of lc1

  • +
  • pds2: the corrected PDS of lc2

  • +
  • cs: the corrected cospectrum

  • +
  • ptot: the corrected PDS of lc1 + lc2

  • +
+

If return_objects is True, results is a dict, with keys +named like the columns +listed above but with AveragePowerspectrum or +AverageCrossspectrum objects instead of arrays.

+
+
+
+
Other Parameters:
+
+
plotbool, default False

Plot diagnostics: check if the smoothed Fourier difference scatter is +a good approximation of the data scatter.

+
+
axmatplotlib.axes.axes object
+
If not None and plot is True, use this axis object to produce

the diagnostic plot. Otherwise, create a new figure.

+
+
+
+
smoothing_alg{‘gauss’, …}

Smoothing algorithm. For now, the only smoothing algorithm allowed is +gauss, which applies a Gaussian Filter from scipy.

+
+
smoothing_lengthint, default segment_size * 3

Number of bins to smooth in gaussian window smoothing

+
+
verbose: bool, default False

Print out information on the outcome of the algorithm (recommended)

+
+
tolerancefloat, default 0.05

Accepted relative error on the FAD-corrected Fourier amplitude, to be +used as success diagnostics. +Should be +` +stdtheor = 2 / np.sqrt(n) +std = (average_corrected_fourier_diff / n).std() +np.abs((std - stdtheor) / stdtheor) < tolerance +`

+
+
strictbool, default False

Decide what to do if the condition on tolerance is not met. If True, +raise a RuntimeError. If False, just throw a warning.

+
+
output_filestr, default None

Name of an output file (any extension automatically recognized by +Astropy is fine)

+
+
+
+
+
+ +
+
+stingray.deadtime.fad.get_periodograms_from_FAD_results(FAD_results, kind='ptot')[source]
+

Get Stingray periodograms from FAD results.

+
+
Parameters:
+
+
FAD_resultsastropy.table.Table object or str

Results from calculate_FAD_correction, either as a Table or an output +file name

+
+
kindstr, one of [‘ptot’, ‘pds1’, ‘pds2’, ‘cs’]

Kind of periodogram to get (E.g., ‘ptot’ -> PDS from the sum of the two +light curves, ‘cs’ -> cospectrum, etc.)

+
+
+
+
Returns:
+
+
resultsAveragedCrossspectrum or Averagedpowerspectrum object

The periodogram.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.check_A(rate, td, tb, max_k=100, save_to=None, linthresh=1e-06, rate_is_incident=True)[source]
+

Test that A is well-behaved.

+

This function produces a plot of \(A_k - r_0^2 t_b^2\) vs \(k\), to visually check that +\(A_k \rightarrow r_0^2 t_b^2\) for \(k\rightarrow\infty\), as per Eq. 43 in Zhang+95.

+

With this function is possible to determine how many inner loops k (limit_k in function +pds_model_zhang) are necessary for a correct approximation of the dead time model

+
+
Parameters:
+
+
ratefloat

Count rate, either incident or detected (use the rate_is_incident bool to specify)

+
+
tdfloat

Dead time

+
+
tbfloat

Bin time of the light curve

+
+
+
+
Other Parameters:
+
+
max_kint

Maximum k to plot

+
+
save_tostr, default None

If not None, save the plot to this file

+
+
linthreshfloat, default 0.000001

Linear threshold for the “symlog” scale of the plot

+
+
rate_is_incidentbool, default True

If True, the input rate is the incident count rate. If False, it is the detected one.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.check_B(rate, td, tb, max_k=100, save_to=None, linthresh=1e-06, rate_is_incident=True)[source]
+

Check that \(B\rightarrow 0\) for \(k\rightarrow \infty\).

+

This function produces a plot of \(B_k\) vs \(k\), to visually check that +\(B_k \rightarrow 0\) for \(k\rightarrow\infty\), as per Eq. 43 in Zhang+95.

+

With this function is possible to determine how many inner loops k (limit_k in function +pds_model_zhang) are necessary for a correct approximation of the dead time model

+
+
Parameters:
+
+
ratefloat

Count rate, either incident or detected (use the rate_is_incident bool to specify)

+
+
tdfloat

Dead time

+
+
tbfloat

Bin time of the light curve

+
+
+
+
Other Parameters:
+
+
max_kint

Maximum k to plot

+
+
save_tostr, default None

If not None, save the plot to this file

+
+
linthreshfloat, default 0.000001

Linear threshold for the “symlog” scale of the plot

+
+
rate_is_incidentbool, default True

If True, the input rate is the incident count rate. If False, it is the detected one.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.non_paralyzable_dead_time_model(freqs, dead_time, rate, bin_time=None, limit_k=200, background_rate=0.0, n_approx=None)[source]
+

Calculate the dead-time-modified power spectrum.

+
+
Parameters:
+
+
freqsarray of floats

Frequency array

+
+
dead_timefloat

Dead time

+
+
ratefloat

Detected source count rate

+
+
+
+
Returns:
+
+
powerarray of floats

Power spectrum

+
+
+
+
Other Parameters:
+
+
bin_timefloat

Bin time of the light curve

+
+
limit_kint, default 200

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
background_ratefloat, default 0

Detected background count rate. This is important to estimate when deadtime is given by the +combination of the source counts and background counts (e.g. in an imaging X-ray detector).

+
+
n_approxint, default None

Number of bins to calculate the model power spectrum. If None, it will use the size of +the input frequency array. Relatively simple models (e.g., low count rates compared to +dead time) can use a smaller number of bins to speed up the calculation, and the final +power values will be interpolated.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.pds_model_zhang(N, rate, td, tb, limit_k=60, rate_is_incident=True)[source]
+

Calculate the dead-time-modified power spectrum.

+
+
Parameters:
+
+
Nint

The number of spectral bins

+
+
ratefloat

Incident count rate

+
+
tdfloat

Dead time

+
+
tbfloat

Bin time of the light curve

+
+
+
+
Returns:
+
+
freqsarray of floats

Frequency array

+
+
powerarray of floats

Power spectrum

+
+
+
+
Other Parameters:
+
+
limit_kint

Limit to this value the number of terms in the inner loops of +calculations. Check the plots returned by the check_B and +check_A functions to test that this number is adequate.

+
+
rate_is_incidentbool, default True

If True, the input rate is the incident count rate. If False, it is the +detected count rate.

+
+
+
+
+
+ +
+
+stingray.deadtime.model.r_det(td, r_i)[source]
+

Calculate detected countrate given dead time and incident countrate.

+
+
Parameters:
+
+
tdfloat

Dead time

+
+
r_ifloat

Incident countrate

+
+
+
+
+
+ +
+
+stingray.deadtime.model.r_in(td, r_0)[source]
+

Calculate incident countrate given dead time and detected countrate.

+
+
Parameters:
+
+
tdfloat

Dead time

+
+
r_0float

Detected countrate

+
+
+
+
+
+ +
+
+
+
+

Higher-Order Fourier and Spectral Timing Products

+

These classes implement higher-order Fourier analysis products (e.g. Bispectrum) and +Spectral Timing related methods taking advantage of both temporal and spectral information in +modern data sets.

+
+

Bispectrum

+
+
+class stingray.bispectrum.Bispectrum(lc, maxlag=None, window=None, scale='biased')[source]
+

Makes a Bispectrum object from a stingray.Lightcurve.

+

Bispectrum is a higher order time series analysis method and is calculated by +indirect method as Fourier transform of triple auto-correlation function also called as +3rd order cumulant.

+
+
Parameters:
+
+
lcstingray.Lightcurve object

The light curve data for bispectrum calculation.

+
+
maxlagint, optional, default None

Maximum lag on both positive and negative sides of +3rd order cumulant (Similar to lags in correlation). +if None, max lag is set to one-half of length of light curve.

+
+
window{uniform, parzen, hamming, hanning, triangular, welch, blackman, flat-top}, optional, default ‘uniform’

Type of window function to apply to the data.

+
+
scale{biased, unbiased}, optional, default biased

Flag to decide biased or unbiased normalization for 3rd order cumulant function.

+
+
+
+
Attributes:
+
+
lcstingray.Lightcurve object

The light curve data to compute the Bispectrum.

+
+
fsfloat

Sampling frequencies

+
+
nint

Total Number of samples of light curve observations.

+
+
maxlagint

Maximum lag on both positive and negative sides of +3rd order cumulant (similar to lags in correlation)

+
+
signalnumpy.ndarray

Row vector of light curve counts for matrix operations

+
+
scale{biased, unbiased}

Flag to decide biased or unbiased normalization for 3rd order cumulant function.

+
+
lagsnumpy.ndarray

An array of time lags for which 3rd order cumulant is calculated

+
+
freqnumpy.ndarray

An array of freq values for Bispectrum.

+
+
cum3numpy.ndarray

A maxlag*2+1 x maxlag*2+1 matrix containing 3rd order cumulant data for different lags.

+
+
bispecnumpy.ndarray

A`` maxlag*2+1 x maxlag*2+1`` matrix containing bispectrum data for different frequencies.

+
+
bispec_magnumpy.ndarray

Magnitude of the bispectrum

+
+
bispec_phasenumpy.ndarray

Phase of the bispectrum

+
+
+
+
+

References

+

1) The biphase explained: understanding the asymmetries invcoupled Fourier components of astronomical timeseries +by Thomas J. Maccarone Department of Physics, Box 41051, Science Building, Texas Tech University, Lubbock TX 79409-1051 +School of Physics and Astronomy, University of Southampton, SO16 4ES

+

2) T. S. Rao, M. M. Gabr, An Introduction to Bispectral Analysis and Bilinear Time +Series Models, Lecture Notes in Statistics, Volume 24, D. Brillinger, S. Fienberg, +J. Gani, J. Hartigan, K. Krickeberg, Editors, Springer-Verlag, New York, NY, 1984.

+

3) Matlab version of bispectrum under following link. +https://www.mathworks.com/matlabcentral/fileexchange/60-bisp3cum

+

Examples

+
>> from stingray.lightcurve import Lightcurve
+>> from stingray.bispectrum import Bispectrum
+>> lc = Lightcurve([1,2,3,4,5],[2,3,1,1,2])
+>> bs = Bispectrum(lc,maxlag=1)
+>> bs.lags
+array([-1.,  0.,  1.])
+>> bs.freq
+array([-0.5,  0.,  0.5])
+>> bs.cum3
+array([[-0.2976,  0.1024,  0.1408],
+    [ 0.1024,  0.144, -0.2976],
+    [ 0.1408, -0.2976,  0.1024]])
+>> bs.bispec_mag
+array([[ 1.26336794,  0.0032   ,  0.0032    ],
+    [ 0.0032   ,  0.16     ,  0.0032    ],
+    [ 0.0032   ,  0.0032   ,  1.26336794]])
+>> bs.bispec_phase
+array([[ -9.65946229e-01,   2.25347190e-14,   3.46944695e-14],
+    [  0.00000000e+00,   3.14159265e+00,   0.00000000e+00],
+    [ -3.46944695e-14,  -2.25347190e-14,   9.65946229e-01]])
+
+
+
+
+plot_cum3(axis=None, save=False, filename=None)[source]
+

Plot the 3rd order cumulant as function of time lags using matplotlib. +Plot the cum3 attribute on a graph with the lags attribute on x-axis and y-axis and +cum3 on z-axis

+
+
Parameters:
+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() method.

+
+
savebool, optionalm, default False

If True, save the figure with specified filename.

+
+
filenamestr

File name and path of the image to save. Depends on the boolean save.

+
+
+
+
Returns:
+
+
pltmatplotlib.pyplot object

Reference to plot, call show() to display it

+
+
+
+
+
+ +
+
+plot_mag(axis=None, save=False, filename=None)[source]
+

Plot the magnitude of bispectrum as function of freq using matplotlib. +Plot the bispec_mag attribute on a graph with freq attribute on the x-axis and y-axis and +the bispec_mag attribute on the z-axis.

+
+
Parameters:
+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() method.

+
+
savebool, optional, default False

If True, save the figure with specified filename and path.

+
+
filenamestr

File name and path of the image to save. Depends on the bool save.

+
+
+
+
Returns:
+
+
pltmatplotlib.pyplot object

Reference to plot, call show() to display it

+
+
+
+
+
+ +
+
+plot_phase(axis=None, save=False, filename=None)[source]
+

Plot the phase of bispectrum as function of freq using matplotlib. +Plot the bispec_phase attribute on a graph with phase attribute on the x-axis and +y-axis and the bispec_phase attribute on the z-axis.

+
+
Parameters:
+
+
axislist, tuple, string, default None

Parameter to set axis properties of matplotlib figure. For example +it can be a list like [xmin, xmax, ymin, ymax] or any other +acceptable argument for matplotlib.pyplot.axis() function.

+
+
savebool, optional, default False

If True, save the figure with specified filename and path.

+
+
filenamestr

File name and path of the image to save. Depends on the bool save.

+
+
+
+
Returns:
+
+
pltmatplotlib.pyplot object

Reference to plot, call show() to display it

+
+
+
+
+
+ +
+ +
+
+
+

Covariancespectrum

+
+
+class stingray.Covariancespectrum(data, dt=None, band_interest=None, ref_band_interest=None, std=None)[source]
+

Compute a covariance spectrum for the data. The input data can be +either in event data or pre-made light curves. Event data can either +be in the form of a numpy.ndarray with (time stamp, energy) pairs or +a stingray.events.EventList object. If light curves are formed ahead +of time, then a list of stingray.Lightcurve objects should be passed to the +object, ideally one light curve for each band of interest.

+

For the case where the data is input as a list of stingray.Lightcurve objects, +the reference band(s) should either be

+
    +
  1. a single stingray.Lightcurve object,

  2. +
  3. a list of stingray.Lightcurve objects with the reference band for each band +of interest pre-made, or

  4. +
  5. None, in which case reference bands will +formed by combining all light curves except for the band of interest.

  6. +
+

In the case of event data, band_interest and ref_band_interest can +be (multiple) pairs of energies, and the light curves for the bands of +interest and reference bands will be produced dynamically.

+
+
Parameters:
+
+
data{numpy.ndarray | stingray.events.EventList object | list of stingray.Lightcurve objects}

data contains the time series data, either in the form of a +2-D array of (time stamp, energy) pairs for event data, or as a +list of light curves. +Note : The event list must be in sorted order with respect to the +times of arrivals.

+
+
dtfloat

The time resolution of the stingray.Lightcurve formed from the energy bin. +Only used if data is an event list.

+
+
band_interest{None, iterable of tuples}

If None, all possible energy values will be assumed to be of +interest, and a covariance spectrum in the highest resolution +will be produced. +Note: if the input is a list of stingray.Lightcurve objects, then the user may +supply their energy values here, for construction of a +reference band.

+
+
ref_band_interest{None, tuple, stingray.Lightcurve, list of stingray.Lightcurve objects}

Defines the reference band to be used for comparison with the +bands of interest. If None, all bands except the band of +interest will be used for each band of interest, respectively. +Alternatively, a tuple can be given for event list data, which will +extract the reference band (always excluding the band of interest), +or one may put in a single stingray.Lightcurve object to be used (the same +for each band of interest) or a list of stingray.Lightcurve objects, one for +each band of interest.

+
+
stdfloat or np.array or list of numbers

The term std is used to calculate the excess variance of a band. +If std is set to None, default Poisson case is taken and the +std is calculated as mean(lc)**0.5. In the case of a single +float as input, the same is used as the standard deviation which +is also used as the std. And if the std is an iterable of +numbers, their mean is used for the same purpose.

+
+
+
+
Attributes:
+
+
unnorm_covarnp.ndarray

An array of arrays with mid point band_interest and their +covariance. It is the array-form of the dictionary energy_covar. +The covariance values are unnormalized.

+
+
covarnp.ndarray

Normalized covariance spectrum.

+
+
covar_errornp.ndarray

Errors of the normalized covariance spectrum.

+
+
+
+
+

References

+

[1] Wilkinson, T. and Uttley, P. (2009), Accretion disc variability in the hard state of black hole X-ray binaries. Monthly Notices of the Royal Astronomical Society, 397: 666–676. doi: 10.1111/j.1365-2966.2009.15008.x

+

Examples

+

See the notebooks repository for +detailed notebooks on the code.

+
+ +
+
+
+

AveragedCovariancespectrum

+
+
+class stingray.AveragedCovariancespectrum(data, segment_size, dt=None, band_interest=None, ref_band_interest=None, std=None)[source]
+

Compute a covariance spectrum for the data, defined in [covar spectrum]_ Equation 15.

+
+
Parameters:
+
+
data{numpy.ndarray | list of stingray.Lightcurve objects}

data contains the time series data, either in the form of a +2-D array of (time stamp, energy) pairs for event data, or as a +list of stingray.Lightcurve objects. +Note : The event list must be in sorted order with respect to the +times of arrivals.

+
+
segment_sizefloat

The length of each segment in the averaged covariance spectrum. +The number of segments will be calculated automatically using the +total length of the data set and the segment_size defined here.

+
+
dtfloat

The time resolution of the stingray.Lightcurve formed +from the energy bin. Only used if data is an event list.

+
+
band_interest{None, iterable of tuples}

If None, all possible energy values will be assumed to be of +interest, and a covariance spectrum in the highest resolution +will be produced. +Note: if the input is a list of stingray.Lightcurve objects, +then the user may supply their energy values here, for construction of a +reference band.

+
+
ref_band_interest{None, tuple, stingray.Lightcurve, list of stingray.Lightcurve objects}

Defines the reference band to be used for comparison with the +bands of interest. If None, all bands except the band of +interest will be used for each band of interest, respectively. +Alternatively, a tuple can be given for event list data, which will +extract the reference band (always excluding the band of interest), +or one may put in a single stingray.Lightcurve object to be used (the same +for each band of interest) or a list of stingray.Lightcurve objects, one for +each band of interest.

+
+
stdfloat or np.array or list of numbers

The term std is used to calculate the excess variance of a band. +If std is set to None, default Poisson case is taken and the +std is calculated as mean(lc)**0.5. In the case of a single +float as input, the same is used as the standard deviation which +is also used as the std. And if the std is an iterable of +numbers, their mean is used for the same purpose.

+
+
+
+
Attributes:
+
+
unnorm_covarnp.ndarray

An array of arrays with mid point band_interest and their +covariance. It is the array-form of the dictionary energy_covar. +The covariance values are unnormalized.

+
+
covarnp.ndarray

Normalized covariance spectrum.

+
+
covar_errornp.ndarray

Errors of the normalized covariance spectrum.

+
+
+
+
+

References

+
+ +
+
+
+

VarEnergySpectrum

+

Abstract base class for spectral timing products including +both variability and spectral information.

+
+
+class stingray.varenergyspectrum.VarEnergySpectrum(events, freq_interval, energy_spec, ref_band=None, bin_time=1, use_pi=False, segment_size=None, events2=None, return_complex=False)[source]
+
+
+property energy
+

Give the centers of the energy intervals.

+
+ +
+
+from_astropy_table(*args, **kwargs)[source]
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+from_pandas(*args, **kwargs)[source]
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+from_xarray(*args, **kwargs)[source]
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+main_array_attr = 'energy'
+

Base class for variability-energy spectrum.

+

This class is only a base for the various variability spectra, and it’s +not to be instantiated by itself.

+
+
Parameters:
+
+
eventsstingray.events.EventList object

event list

+
+
freq_interval[f0, f1], floats

the frequency range over which calculating the variability quantity

+
+
energy_speclist or tuple (emin, emax, N, type)

if a list is specified, this is interpreted as a list of bin edges; +if a tuple is provided, this will encode the minimum and maximum +energies, the number of intervals, and lin or log.

+
+
+
+
Attributes:
+
+
events1array-like

list of events used to produce the spectrum

+
+
events2array-like

if the spectrum requires it, second list of events

+
+
freq_intervalarray-like

interval of frequencies used to calculate the spectrum

+
+
energy_intervals[[e00, e01], [e10, e11], ...]

energy intervals used for the spectrum

+
+
spectrumarray-like

the spectral values, corresponding to each energy interval

+
+
spectrum_errorarray-like

the error bars corresponding to spectrum

+
+
energyarray-like

The centers of energy intervals

+
+
+
+
Other Parameters:
+
+
ref_band[emin, emax], floats; default None

minimum and maximum energy of the reference band. If None, the +full band is used.

+
+
use_pibool, default False

Use channel instead of energy

+
+
events2stingray.events.EventList object

event list for the second channel, if not the same. Useful if the +reference band has to be taken from another detector.

+
+
return_complex: bool, default False

In spectra that produce complex values, return the whole spectrum. +Otherwise, the absolute value will be returned.

+
+
+
+
+
+ +
+ +
+
+
+

RmsEnergySpectrum

+
+
+stingray.varenergyspectrum.RmsEnergySpectrum
+

alias of RmsSpectrum

+
+ +
+
+
+

LagEnergySpectrum

+
+
+stingray.varenergyspectrum.LagEnergySpectrum
+

alias of LagSpectrum

+
+ +
+
+
+

ExcessVarianceSpectrum

+
+
+class stingray.varenergyspectrum.ExcessVarianceSpectrum(events, freq_interval, energy_spec, bin_time=1, use_pi=False, segment_size=None, normalization='fvar')[source]
+

Calculate the Excess Variance spectrum.

+

For each energy interval, calculate the excess variance in the specified +frequency range.

+
+
Parameters:
+
+
eventsstingray.events.EventList object

event list

+
+
freq_interval[f0, f1], list of float

the frequency range over which calculating the variability quantity

+
+
energy_speclist or tuple (emin, emax, N, type)

if a list is specified, this is interpreted as a list of bin edges; +if a tuple is provided, this will encode the minimum and maximum +energies, the number of intervals, and lin or log.

+
+
+
+
Attributes:
+
+
events1array-like

list of events used to produce the spectrum

+
+
freq_intervalarray-like

interval of frequencies used to calculate the spectrum

+
+
energy_intervals[[e00, e01], [e10, e11], ...]

energy intervals used for the spectrum

+
+
spectrumarray-like

the spectral values, corresponding to each energy interval

+
+
spectrum_errorarray-like

the errorbars corresponding to spectrum

+
+
+
+
Other Parameters:
+
+
ref_band[emin, emax], floats; default None

minimum and maximum energy of the reference band. If None, the +full band is used.

+
+
use_pibool, default False

Use channel instead of energy

+
+
+
+
+
+
+add(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Add two StingrayObject instances.

+

Add the array values of two StingrayObject instances element by element, assuming +the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+apply_mask(mask: npt.ArrayLike, inplace: bool = False, filtered_attrs: list = None)
+

Apply a mask to all array attributes of the object

+
+
Parameters:
+
+
maskarray of bool

The mask. Has to be of the same length as self.time

+
+
+
+
Returns:
+
+
ts_newStingrayObject object

The new object with the mask applied if inplace is False, otherwise the +same object.

+
+
+
+
Other Parameters:
+
+
inplacebool

If True, overwrite the current object. Otherwise, return a new one.

+
+
filtered_attrslist of str or None

Array attributes to be filtered. Defaults to all array attributes if None. +The other array attributes will be set to None. The main array attr is always +included.

+
+
+
+
+
+ +
+
+array_attrs() list[str]
+

List the names of the array attributes of the Stingray Object.

+

By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of array attributes.

+
+
+
+
+
+ +
+
+data_attributes() list[str]
+

Clean up the list of attributes, only giving out those pointing to data.

+

List all the attributes that point directly to valid data. This method goes through all the +attributes of the class, eliminating methods, properties, and attributes that are complicated +to serialize such as other StingrayObject, or arrays of objects.

+

This function does not make difference between array-like data and scalar data.

+
+
Returns:
+
+
data_attributeslist of str

List of attributes pointing to data that are not methods, properties, +or other StingrayObject instances.

+
+
+
+
+
+ +
+
+dict() dict
+

Return a dictionary representation of the object.

+
+ +
+
+property energy
+

Give the centers of the energy intervals.

+
+ +
+
+from_astropy_table(*args, **kwargs)
+

Create a Stingray Object object from data in an Astropy Table.

+

The table MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+from_pandas(*args, **kwargs)
+

Create an StingrayObject object from data in a pandas DataFrame.

+

The dataframe MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+

Since pandas does not support n-D data, multi-dimensional arrays can be +specified as <colname>_dimN_M_K etc.

+

See documentation of make_1d_arrays_into_nd for details.

+
+ +
+
+from_xarray(*args, **kwargs)
+

Create a StingrayObject from data in an xarray Dataset.

+

The dataset MUST contain at least a column named like the +main_array_attr. +The rest of columns will form the array attributes of the +new object, while the attributes in ds.attrs will +form the new meta attributes of the object.

+
+ +
+
+get_meta_dict() dict
+

Give a dictionary with all non-None meta attrs of the object.

+
+ +
+
+internal_array_attrs() list[str]
+

List the names of the internal array attributes of the Stingray Object.

+

These are array attributes that can be set by properties, and are generally indicated +by an underscore followed by the name of the property that links to it (E.g. +_counts in Lightcurve). +By array attributes, we mean the ones with the same size and shape as +main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of internal array attributes.

+
+
+
+
+
+ +
+
+main_array_attr = 'energy'
+

Base class for variability-energy spectrum.

+

This class is only a base for the various variability spectra, and it’s +not to be instantiated by itself.

+
+
Parameters:
+
+
eventsstingray.events.EventList object

event list

+
+
freq_interval[f0, f1], floats

the frequency range over which calculating the variability quantity

+
+
energy_speclist or tuple (emin, emax, N, type)

if a list is specified, this is interpreted as a list of bin edges; +if a tuple is provided, this will encode the minimum and maximum +energies, the number of intervals, and lin or log.

+
+
+
+
Attributes:
+
+
events1array-like

list of events used to produce the spectrum

+
+
events2array-like

if the spectrum requires it, second list of events

+
+
freq_intervalarray-like

interval of frequencies used to calculate the spectrum

+
+
energy_intervals[[e00, e01], [e10, e11], ...]

energy intervals used for the spectrum

+
+
spectrumarray-like

the spectral values, corresponding to each energy interval

+
+
spectrum_errorarray-like

the error bars corresponding to spectrum

+
+
energyarray-like

The centers of energy intervals

+
+
+
+
Other Parameters:
+
+
ref_band[emin, emax], floats; default None

minimum and maximum energy of the reference band. If None, the +full band is used.

+
+
use_pibool, default False

Use channel instead of energy

+
+
events2stingray.events.EventList object

event list for the second channel, if not the same. Useful if the +reference band has to be taken from another detector.

+
+
return_complex: bool, default False

In spectra that produce complex values, return the whole spectrum. +Otherwise, the absolute value will be returned.

+
+
+
+
+
+ +
+
+meta_attrs() list[str]
+

List the names of the meta attributes of the Stingray Object.

+

By array attributes, we mean the ones with a different size and shape +than main_array_attr (e.g. time in EventList)

+
+
Returns:
+
+
attributeslist of str

List of meta attributes.

+
+
+
+
+
+ +
+
+pretty_print(func_to_apply=None, attrs_to_apply=[], attrs_to_discard=[]) str
+

Return a pretty-printed string representation of the object.

+

This is useful for debugging, and for interactive use.

+
+
Other Parameters:
+
+
func_to_applyfunction

A function that modifies the attributes listed in attrs_to_apply. +It must return the modified attributes and a label to be printed. +If None, no function is applied.

+
+
attrs_to_applylist of str

Attributes to be modified by func_to_apply.

+
+
attrs_to_discardlist of str

Attributes to be discarded from the output.

+
+
+
+
+
+ +
+
+classmethod read(filename: str, fmt: str = None) Tso
+

Generic reader for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

Files that need the astropy.table.Table interface MUST contain +at least a column named like the main_array_attr. +The default ascii format is enhanced CSV (ECSV). Data formats +supporting the serialization of metadata (such as ECSV and HDF5) can +contain all attributes such as mission, gti, etc with +no significant loss of information. Other file formats might lose part +of the metadata, so must be used with care.

+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values should be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Path and file name for the file to be read.

+
+
fmt: str

Available options are ‘pickle’, ‘hea’, and any Table-supported +format such as ‘hdf5’, ‘ascii.ecsv’, etc.

+
+
+
+
Returns:
+
+
obj: StingrayObject object

The object reconstructed from file

+
+
+
+
+
+ +
+
+sub(other, operated_attrs=None, error_attrs=None, error_operation=<function sqsum>, inplace=False)
+

Subtract all the array attrs of two StingrayObject instances element by element, assuming the main array attributes of the instances match exactly.

+

All array attrs ending with _err are treated as error bars and propagated with the +sum of squares.

+

GTIs are crossed, so that only common intervals are saved.

+
+
Parameters:
+
+
otherStingrayTimeseries object

A second time series object

+
+
+
+
Other Parameters:
+
+
operated_attrslist of str or None

Array attributes to be operated on. Defaults to all array attributes not ending in +_err. +The other array attributes will be discarded from the time series to avoid +inconsistencies.

+
+
error_attrslist of str or None

Array attributes to be operated on with error_operation. Defaults to all array +attributes ending with _err.

+
+
error_operationfunction

Function to be called to propagate the errors

+
+
inplacebool

If True, overwrite the current time series. Otherwise, return a new one.

+
+
+
+
+
+ +
+
+to_astropy_table(no_longdouble=False) Table
+

Create an Astropy Table from a StingrayObject

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the meta dictionary.

+
+
Other Parameters:
+
+
no_longdoublebool

If True, reduce the precision of longdouble arrays to double precision. +This needs to be done in some cases, e.g. when the table is to be saved +in an architecture not supporting extended precision (e.g. ARM), but can +also be useful when an extended precision is not needed.

+
+
+
+
+
+ +
+
+to_pandas() DataFrame
+

Create a pandas DataFrame from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+

Since pandas does not support n-D data, multi-dimensional arrays are +converted into columns before the conversion, with names <colname>_dimN_M_K etc.

+

See documentation of make_nd_into_arrays for details.

+
+ +
+
+to_xarray() Dataset
+

Create an xarray Dataset from a StingrayObject.

+

Array attributes (e.g. time, pi, energy, etc. for +EventList) are converted into columns, while meta attributes +(mjdref, gti, etc.) are saved into the ds.attrs dictionary.

+
+ +
+
+write(filename: str, fmt: str | None = None) None
+

Generic writer for :class`StingrayObject`

+

Currently supported formats are

+
    +
  • pickle (not recommended for long-term storage)

  • +
  • any other formats compatible with the writers in +astropy.table.Table (ascii.ecsv, hdf5, etc.)

  • +
+

..note:

+
Complex values can be dealt with out-of-the-box in some formats
+like HDF5 or FITS, not in others (e.g. all ASCII formats).
+With these formats, and in any case when fmt is ``None``, complex
+values will be stored as two columns of real numbers, whose names
+are of the format <variablename>.real and <variablename>.imag
+
+
+
+
Parameters:
+
+
filename: str

Name and path of the file to save the object list to.

+
+
fmt: str

The file format to store the data in. +Available options are pickle, hdf5, ascii, fits

+
+
+
+
+
+ +
+ +
+
+
+
+

Utilities

+

Commonly used utility functionality, including Good Time Interval operations and input/output +helper methods.

+
+

Statistical Functions

+
+
+stingray.stats.a_from_pf(p)[source]
+

Fractional amplitude of modulation from pulsed fraction

+

If the pulsed profile is defined as +p = mean * (1 + a * sin(phase)),

+

we define “pulsed fraction” as 2a/b, where b = mean + a is the maximum and +a is the amplitude of the modulation.

+

Hence, a = pf / (2 - pf)

+

Examples

+
>>> a_from_pf(1)
+1.0
+>>> a_from_pf(0)
+0.0
+
+
+
+ +
+
+stingray.stats.a_from_ssig(ssig, ncounts)[source]
+

Amplitude of a sinusoid corresponding to a given Z/PDS value

+

From Leahy et al. 1983, given a pulse profile +p = lambda * (1 + a * sin(phase)), +The theoretical value of Z^2_n is Ncounts / 2 * a^2

+

Note that if there are multiple sinusoidal components, one can use +a = sqrt(sum(a_l)) +(Bachetti+2021b)

+

Examples

+
>>> assert np.isclose(a_from_ssig(150, 30000), 0.1)
+
+
+
+ +
+
+stingray.stats.amplitude_upper_limit(pmeas, counts, n=1, c=0.95, fft_corr=False, nyq_ratio=0)[source]
+

Upper limit on a sinusoidal modulation, given a measured power in the PDS/Z search.

+

Eq. 10 in Vaughan+94 and a_from_ssig: they are equivalent but Vaughan+94 +corrects further for the response inside an FFT bin and at frequencies close +to Nyquist. These two corrections are added by using fft_corr=True and +nyq_ratio to the correct \(f / f_{Nyq}\) of the FFT peak

+

To understand the meaning of this amplitude: if the modulation is described by:

+

..math:: p = overline{p} (1 + a * sin(x))

+

this function returns a.

+

If it is a sum of sinusoidal harmonics instead +..math:: p = overline{p} (1 + sum_l a_l * sin(lx)) +a is equivalent to \(\sqrt(\sum_l a_l^2)\).

+

See power_upper_limit

+
+
Parameters:
+
+
pmeas: float

The measured value of power

+
+
counts: int

The number of counts in the light curve used to calculate the spectrum

+
+
+
+
Returns:
+
+
a: float

The modulation amplitude that could produce P>pmeas with 1 - c probability

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain pmeas. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence value for the probability (e.g. 0.95 = 95%)

+
+
fft_corr: bool

Apply a correction for the expected power concentrated in an FFT bin, +which is about 0.773 on average (it’s 1 at the center of the bin, 2/pi +at the bin edge.

+
+
nyq_ratio: float

Ratio of the frequency of this feature with respect to the Nyquist +frequency. Important to know when dealing with FFTs, because the FFT +response decays between 0 and f_Nyq similarly to the response inside +a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq

+
+
+
+
+

Examples

+
>>> aup = amplitude_upper_limit(40, 30000, 1, 0.99)
+>>> aup_nyq = amplitude_upper_limit(40, 30000, 1, 0.99, nyq_ratio=1)
+>>> assert np.isclose(aup_nyq, aup / (2 / np.pi))
+>>> aup_corr = amplitude_upper_limit(40, 30000, 1, 0.99, fft_corr=True)
+>>> assert np.isclose(aup_corr, aup / np.sqrt(0.773))
+
+
+
+ +
+
+stingray.stats.classical_pvalue(power, nspec)[source]
+

Note: +This is stingray’s original implementation of the probability +distribution for the power spectrum. It is superseded by the +implementation in pds_probability for practical purposes, but +remains here for backwards compatibility and for its educational +value as a clear, explicit implementation of the correct +probability distribution.

+

Compute the probability of detecting the current power under +the assumption that there is no periodic oscillation in the data.

+

This computes the single-trial p-value that the power was +observed under the null hypothesis that there is no signal in +the data.

+

Important: the underlying assumptions that make this calculation valid +are:

+
    +
  1. the powers in the power spectrum follow a chi-square distribution

  2. +
  3. the power spectrum is normalized according to [Leahy 1983]_, such +that the powers have a mean of 2 and a variance of 4

  4. +
  5. there is only white noise in the light curve. That is, there is no +aperiodic variability that would change the overall shape of the power +spectrum.

  6. +
+

Also note that the p-value is for a single trial, i.e. the power +currently being tested. If more than one power or more than one power +spectrum are being tested, the resulting p-value must be corrected for the +number of trials (Bonferroni correction).

+

Mathematical formulation in [Groth 1975]_. +Original implementation in IDL by Anna L. Watts.

+
+
Parameters:
+
+
powerfloat

The squared Fourier amplitude of a spectrum to be evaluated

+
+
nspecint

The number of spectra or frequency bins averaged in power. +This matters because averaging spectra or frequency bins increases +the signal-to-noise ratio, i.e. makes the statistical distributions +of the noise narrower, such that a smaller power might be very +significant in averaged spectra even though it would not be in a single +power spectrum.

+
+
+
+
Returns:
+
+
pvalfloat

The classical p-value of the observed power being consistent with +the null hypothesis of white noise

+
+
+
+
+

References

+
    +
  • +
  • +
+
+ +
+
+stingray.stats.equivalent_gaussian_Nsigma(p)[source]
+

Number of Gaussian sigmas corresponding to tail probability.

+

This function computes the value of the characteristic function of a +standard Gaussian distribution for the tail probability equivalent to the +provided p-value, and turns this value into units of standard deviations +away from the Gaussian mean. This allows the user to make a statement +about the signal such as “I detected this pulsation at 4.1 sigma

+

The example values below are obtained by brute-force integrating the +Gaussian probability density function using the mpmath library +between Nsigma and +inf.

+

Examples

+
>>> assert np.isclose(equivalent_gaussian_Nsigma(0.15865525393145707), 1,
+...                   atol=0.01)
+>>> assert np.isclose(equivalent_gaussian_Nsigma(0.0013498980316301035), 3,
+...                   atol=0.01)
+>>> assert np.isclose(equivalent_gaussian_Nsigma(9.865877e-10), 6,
+...                   atol=0.01)
+>>> assert np.isclose(equivalent_gaussian_Nsigma(6.22096e-16), 8,
+...                   atol=0.01)
+>>> assert np.isclose(equivalent_gaussian_Nsigma(3.0567e-138), 25, atol=0.1)
+
+
+
+ +
+
+stingray.stats.fold_detection_level(nbin, epsilon=0.01, ntrial=1)[source]
+

Return the detection level for a folded profile.

+

See Leahy et al. (1983).

+
+
Parameters:
+
+
nbinint

The number of bins in the profile

+
+
epsilonfloat, default 0.01

The fractional probability that the signal has been produced +by noise

+
+
+
+
Returns:
+
+
detlevfloat

The epoch folding statistics corresponding to a probability +epsilon * 100 % that the signal has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.fold_profile_logprobability(stat, nbin, ntrial=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
statfloat

The epoch folding statistics

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
logpfloat

The log-probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.fold_profile_probability(stat, nbin, ntrial=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
statfloat

The epoch folding statistics

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
pfloat

The probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.p_multitrial_from_single_trial(p1, n)[source]
+

Calculate a multi-trial p-value from a single-trial one.

+

Calling p the probability of a single success, the Binomial +distributions says that the probability at least one outcome +in n trials is

+
+\[P(k\geq 1) = \sum_{k\geq 1} \binom{n}{k} p^k (1-p)^{(n-k)}\]
+

or more simply, using P(k ≥ 0) = 1

+
+\[P(k\geq 1) = 1 - \binom{n}{0} (1-p)^n = 1 - (1-p)^n\]
+
+
Parameters:
+
+
p1float

The significance at which we reject the null hypothesis on +each single trial.

+
+
nint

The number of trials

+
+
+
+
Returns:
+
+
pnfloat

The significance at which we reject the null hypothesis +after multiple trials

+
+
+
+
+
+ +
+
+stingray.stats.p_single_trial_from_p_multitrial(pn, n)[source]
+

Calculate the single-trial p-value from a total p-value

+

Let us say that we want to reject a null hypothesis at the +pn level, after executing n different measurements. +This might be the case because, e.g., we +want to have a 1% probability of detecting a signal in an +entire power spectrum, and we need to correct the detection +level accordingly.

+

The typical procedure is dividing the initial probability +(often called _epsilon_) by the number of trials. This is +called the Bonferroni correction and it is often a good +approximation, when pn is low: p1 = pn / n.

+

However, if pn is close to 1, this approximation gives +incorrect results.

+

Here we calculate this probability by inverting the Binomial +problem. Given that (see p_multitrial_from_single_trial) +the probability of getting more than one hit in n trials, +given the single-trial probability p, is

+
+\[P (k \geq 1) = 1 - (1 - p)^n,\]
+

we get the single trial probability from the multi-trial one +from

+
+\[p = 1 - (1 - P)^{(1/n)}\]
+

This is also known as Šidák correction.

+
+
Parameters:
+
+
pnfloat

The significance at which we want to reject the null +hypothesis after multiple trials

+
+
nint

The number of trials

+
+
+
+
Returns:
+
+
p1float

The significance at which we reject the null hypothesis on +each single trial.

+
+
+
+
+
+ +
+
+stingray.stats.pds_detection_level(epsilon=0.01, ntrial=1, n_summed_spectra=1, n_rebin=1)[source]
+

Detection level for a PDS.

+

Return the detection level (with probability 1 - epsilon) for a Power +Density Spectrum of nbins bins, normalized a la Leahy (1983), based on +the 2-dof \({\chi}^2\) statistics, corrected for rebinning (n_rebin) +and multiple PDS averaging (n_summed_spectra)

+
+
Parameters:
+
+
epsilonfloat

The single-trial probability value(s)

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of independent trials (the independent bins of the PDS)

+
+
n_summed_spectraint

The number of power density spectra that have been averaged to obtain +this power level

+
+
n_rebinint

The number of power density bins that have been averaged to obtain +this power level

+
+
+
+
+

Examples

+
>>> assert np.isclose(pds_detection_level(0.1), 4.6, atol=0.1)
+>>> assert np.allclose(pds_detection_level(0.1, n_rebin=[1]), [4.6], atol=0.1)
+
+
+
+ +
+
+stingray.stats.pds_probability(level, ntrial=1, n_summed_spectra=1, n_rebin=1)[source]
+

Give the probability of a given power level in PDS.

+

Return the probability of a certain power level in a Power Density +Spectrum of nbins bins, normalized a la Leahy (1983), based on +the 2-dof \({\chi}^2\) statistics, corrected for rebinning (n_rebin) +and multiple PDS averaging (n_summed_spectra)

+
+
Parameters:
+
+
levelfloat or array of floats

The power level for which we are calculating the probability

+
+
+
+
Returns:
+
+
epsilonfloat

The probability value(s)

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of independent trials (the independent bins of the PDS)

+
+
n_summed_spectraint

The number of power density spectra that have been averaged to obtain +this power level

+
+
n_rebinint

The number of power density bins that have been averaged to obtain +this power level

+
+
+
+
+
+ +
+
+stingray.stats.pf_from_a(a)[source]
+

Pulsed fraction from fractional amplitude of modulation.

+

If the pulsed profile is defined as +p = mean * (1 + a * sin(phase)),

+

we define “pulsed fraction” as 2a/b, where b = mean + a is the maximum and +a is the amplitude of the modulation.

+

Hence, pulsed fraction = 2a/(1+a)

+

Examples

+
>>> pf_from_a(1)
+1.0
+>>> pf_from_a(0)
+0.0
+
+
+
+ +
+
+stingray.stats.pf_from_ssig(ssig, ncounts)[source]
+

Estimate pulsed fraction for a sinusoid from a given Z or PDS power.

+

See a_from_ssig and pf_from_a for more details

+

Examples

+
>>> assert np.isclose(round(a_from_pf(pf_from_ssig(150, 30000)), 1), 0.1)
+
+
+
+ +
+
+stingray.stats.pf_upper_limit(*args, **kwargs)[source]
+

Upper limit on pulsed fraction, given a measured power in the PDS/Z search.

+

See power_upper_limit and pf_from_ssig. +All arguments are the same as amplitude_upper_limit

+
+
Parameters:
+
+
pmeas: float

The measured value of power

+
+
counts: int

The number of counts in the light curve used to calculate the spectrum

+
+
+
+
Returns:
+
+
pf: float

The pulsed fraction that could produce P>pmeas with 1 - c probability

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain pmeas. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence value for the probability (e.g. 0.95 = 95%)

+
+
fft_corr: bool

Apply a correction for the expected power concentrated in an FFT bin, +which is about 0.773 on average (it’s 1 at the center of the bin, 2/pi +at the bin edge.

+
+
nyq_ratio: float

Ratio of the frequency of this feature with respect to the Nyquist +frequency. Important to know when dealing with FFTs, because the FFT +response decays between 0 and f_Nyq similarly to the response inside +a frequency bin: from 1 at 0 Hz to ~2/pi at f_Nyq

+
+
+
+
+

Examples

+
>>> pfup = pf_upper_limit(40, 30000, 1, 0.99)
+>>> assert np.isclose(pfup, 0.13, atol=0.01)
+
+
+
+ +
+
+stingray.stats.phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=1)[source]
+

Return the detection level for a phase dispersion minimization +periodogram..

+
+
Parameters:
+
+
nsamplesint

The number of time bins in the light curve

+
+
nbinint

The number of bins in the profile

+
+
epsilonfloat, default 0.01

The fractional probability that the signal has been produced +by noise

+
+
+
+
Returns:
+
+
detlevfloat

The epoch folding statistics corresponding to a probability +epsilon * 100 % that the signal has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.phase_dispersion_logprobability(stat, nsamples, nbin, ntrial=1)[source]
+

Calculate the log-probability of a peak in a phase dispersion +minimization periodogram, due to noise.

+

Uses the beta-distribution from Czerny-Schwarzendorf (1997).

+
+
Parameters:
+
+
statfloat

The value of the PDM inverse peak

+
+
nsamplesint

The number of samples in the time series

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
logpfloat

The log-probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.phase_dispersion_probability(stat, nsamples, nbin, ntrial=1)[source]
+

Calculate the probability of a peak in a phase dispersion +minimization periodogram, due to noise.

+

Uses the beta-distribution from Czerny-Schwarzendorf (1997).

+
+
Parameters:
+
+
statfloat

The value of the PDM inverse peak

+
+
nsamplesint

The number of samples in the time series

+
+
nbinint

The number of bins in the profile

+
+
+
+
Returns:
+
+
pfloat

The probability that the profile has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
+
+
+
+ +
+
+stingray.stats.power_confidence_limits(preal, n=1, c=0.95)[source]
+

Confidence limits on power, given a (theoretical) signal power.

+

This is to be used when we expect a given power (e.g. from the pulsed +fraction measured in previous observations) and we want to know the +range of values the measured power could take to a given confidence level. +Adapted from Vaughan et al. 1994, noting that, after appropriate +normalization of the spectral stats, the distribution of powers in the PDS +and the Z^2_n searches is always described by a noncentral chi squared +distribution.

+
+
Parameters:
+
+
preal: float

The theoretical signal-generated value of power

+
+
+
+
Returns:
+
+
pmeas: [float, float]

The upper and lower confidence interval (a, 1-a) on the measured power

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain the result. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence level (e.g. 0.95=95%)

+
+
+
+
+

Examples

+
>>> cl = power_confidence_limits(150, c=0.84)
+>>> assert np.allclose(cl, [127, 176], atol=1)
+
+
+
+ +
+
+stingray.stats.power_upper_limit(pmeas, n=1, c=0.95)[source]
+

Upper limit on signal power, given a measured power in the PDS/Z search.

+

Adapted from Vaughan et al. 1994, noting that, after appropriate +normalization of the spectral stats, the distribution of powers in the PDS +and the Z^2_n searches is always described by a noncentral chi squared +distribution.

+

Note that Vaughan+94 gives p(pmeas | preal), while we are interested in +p(real | pmeas), which is not described by the NCX2 stat. Rather than +integrating the CDF of this probability distribution, we start from a +reasonable approximation and fit to find the preal that gives pmeas as +a (e.g.95%) confidence limit.

+

As Vaughan+94 shows, this power is always larger than the observed one. +This is because we are looking for the maximum signal power that, +combined with noise powers, would give the observed power. This involves +the possibility that noise powers partially cancel out some signal power.

+
+
Parameters:
+
+
pmeas: float

The measured value of power

+
+
+
+
Returns:
+
+
psig: float

The signal power that could produce P>pmeas with 1 - c probability

+
+
+
+
Other Parameters:
+
+
n: int

The number of summed powers to obtain pmeas. It can be multiple +harmonics of the PDS, adjacent bins in a PDS summed to collect all the +power in a QPO, or the n in Z^2_n

+
+
c: float

The confidence value for the probability (e.g. 0.95 = 95%)

+
+
+
+
+

Examples

+
>>> pup = power_upper_limit(40, 1, 0.99)
+>>> assert np.isclose(pup, 75, atol=2)
+
+
+
+ +
+
+stingray.stats.ssig_from_a(a, ncounts)[source]
+

Theoretical power in the Z or PDS search for a sinusoid of amplitude a.

+

From Leahy et al. 1983, given a pulse profile +p = lambda * (1 + a * sin(phase)), +The theoretical value of Z^2_n is Ncounts / 2 * a^2

+

Note that if there are multiple sinusoidal components, one can use +a = sqrt(sum(a_l)) +(Bachetti+2021b)

+

Examples

+
>>> round(ssig_from_a(0.1, 30000), 1)
+150.0
+
+
+
+ +
+
+stingray.stats.ssig_from_pf(pf, ncounts)[source]
+

Theoretical power in the Z or PDS for a sinusoid of pulsed fraction pf.

+

See ssig_from_a and a_from_pf for more details

+

Examples

+
>>> assert round(ssig_from_pf(pf_from_a(0.1), 30000), 1) == 150.0
+
+
+
+ +
+
+stingray.stats.z2_n_detection_level(n=2, epsilon=0.01, ntrial=1, n_summed_spectra=1)[source]
+

Return the detection level for the Z^2_n statistics.

+

See Buccheri et al. (1983), Bendat and Piersol (1971).

+
+
Parameters:
+
+
nint, default 2

The n in $Z^2_n$ (number of harmonics, including the fundamental)

+
+
epsilonfloat, default 0.01

The fractional probability that the signal has been produced by noise

+
+
+
+
Returns:
+
+
detlevfloat

The epoch folding statistics corresponding to a probability +epsilon * 100 % that the signal has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
n_summed_spectraint

Number of Z_2^n periodograms that are being averaged

+
+
+
+
+
+ +
+
+stingray.stats.z2_n_logprobability(z2, n, ntrial=1, n_summed_spectra=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
z2float

A Z^2_n statistics value

+
+
nint, default 2

The n in $Z^2_n$ (number of harmonics, including the fundamental)

+
+
+
+
Returns:
+
+
pfloat

The probability that the Z^2_n value has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
n_summed_spectraint

Number of Z_2^n periodograms that were averaged to obtain z2

+
+
+
+
+
+ +
+
+stingray.stats.z2_n_probability(z2, n, ntrial=1, n_summed_spectra=1)[source]
+

Calculate the probability of a certain folded profile, due to noise.

+
+
Parameters:
+
+
z2float

A Z^2_n statistics value

+
+
nint, default 2

The n in $Z^2_n$ (number of harmonics, including the fundamental)

+
+
+
+
Returns:
+
+
pfloat

The probability that the Z^2_n value has been produced by noise

+
+
+
+
Other Parameters:
+
+
ntrialint

The number of trials executed to find this profile

+
+
n_summed_spectraint

Number of Z_2^n periodograms that were averaged to obtain z2

+
+
+
+
+
+ +
+
+

GTI Functionality

+
+
+stingray.gti.append_gtis(gti0, gti1)[source]
+

Union of two non-overlapping GTIs.

+

If the two GTIs “touch”, this is tolerated and the touching GTIs are +joined in a single one.

+
+
Parameters:
+
+
gti0: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
gti1: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
+
+
Returns:
+
+
gti: 2-d float array

The newly created GTI array.

+
+
+
+
+

Examples

+
>>> assert np.allclose(append_gtis([[0, 1]], [[2, 3]]), [[0, 1], [2, 3]])
+>>> np.allclose(append_gtis([[0, 1], [4, 5]], [[2, 3]]),
+...             [[0, 1], [2, 3], [4, 5]])
+True
+>>> assert np.allclose(append_gtis([[0, 1]], [[1, 3]]), [[0, 3]])
+
+
+
+ +
+
+stingray.gti.bin_intervals_from_gtis(gtis, segment_size, time, dt=None, fraction_step=1, epsilon=0.001)[source]
+

Compute start/stop times of equal time intervals, compatible with GTIs, +and map them to the indices of an array of time stamps.

+

Used to start each FFT/PDS/cospectrum from the start of a GTI, +and stop before the next gap in data (end of GTI). +In this case, it is necessary to specify the time array containing the +times of the light curve bins. +Returns start and stop bins of the intervals to use for the PDS.

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
segment_sizefloat

Length of each time segment.

+
+
timearray-like

Array of time stamps.

+
+
+
+
Returns:
+
+
spectrum_start_binsarray-like

List of starting bins in the original time array to use in spectral +calculations.

+
+
spectrum_stop_binsarray-like

List of end bins to use in the spectral calculations.

+
+
+
+
Other Parameters:
+
+
dtfloat, default median(diff(time))

Time resolution of the light curve.

+
+
epsilonfloat, default 0.001

The tolerance, in fraction of dt, for the comparisons at the +borders.

+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving +window), this indicates the ratio between step step and +segment_size (e.g. 0.5 means that the window shifts by half +segment_size).

+
+
+
+
+

Examples

+
>>> time = np.arange(0.5, 13.5)
+
+
+
>>> gtis = [[0, 5], [6, 8], [9, 10]]
+
+
+
>>> segment_size = 2
+
+
+
>>> start_bins, stop_bins = bin_intervals_from_gtis(gtis,segment_size,time)
+
+
+
>>> assert np.allclose(start_bins, [0, 2, 6])
+>>> assert np.allclose(stop_bins, [2, 4, 8])
+>>> assert np.allclose(time[start_bins[0]:stop_bins[0]], [0.5, 1.5])
+>>> assert np.allclose(time[start_bins[1]:stop_bins[1]], [2.5, 3.5])
+
+
+
+ +
+
+stingray.gti.check_gtis(gti)[source]
+

Check if GTIs are well-behaved.

+

Check that:

+
    +
  1. the shape of the GTI array is correct;

  2. +
  3. no start > end

  4. +
  5. no overlaps.

  6. +
+
+
Parameters:
+
+
gtilist

A list of GTI (start, stop) pairs extracted from the FITS file.

+
+
+
+
Raises:
+
+
TypeError

If GTIs are of the wrong shape

+
+
ValueError

If GTIs have overlapping or displaced values

+
+
+
+
+
+ +
+
+stingray.gti.check_separate(gti0, gti1)[source]
+

Check if two GTIs do not overlap.

+
+
Parameters:
+
+
gti0: 2-d float array

List of GTIs of form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
gti1: 2-d float array

List of GTIs of form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
+
+
Returns:
+
+
separate: bool

True if GTIs are mutually exclusive, False if not.

+
+
+
+
+

Examples

+
>>> gti0 = [[0, 10]]
+>>> gti1 = [[20, 30]]
+>>> assert check_separate(gti0, gti1)
+>>> gti0 = [[0, 10]]
+>>> gti1 = [[0, 10]]
+>>> check_separate(gti0, gti1)
+False
+>>> gti0 = [[0, 10]]
+>>> gti1 = [[10, 20]]
+>>> assert check_separate(gti0, gti1)
+>>> gti0 = [[0, 11]]
+>>> gti1 = [[10, 20]]
+>>> check_separate(gti0, gti1)
+False
+>>> gti0 = [[0, 11]]
+>>> gti1 = [[10, 20]]
+>>> check_separate(gti1, gti0)
+False
+>>> gti0 = [[0, 10], [30, 40]]
+>>> gti1 = [[11, 28]]
+>>> assert check_separate(gti0, gti1)
+
+
+
+ +
+
+stingray.gti.create_gti_from_condition(time, condition, safe_interval=0, dt=None)[source]
+

Create a GTI list from a time array and a boolean mask (condition).

+
+
Parameters:
+
+
timearray-like

Array containing time stamps.

+
+
conditionarray-like

An array of bools, of the same length of time. +A possible condition can be, e.g., the result of lc > 0.

+
+
+
+
Returns:
+
+
gtis[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

The newly created GTIs.

+
+
+
+
Other Parameters:
+
+
safe_intervalfloat or [float, float]

A safe interval to exclude at both ends (if single float) or the start +and the end (if pair of values) of GTIs.

+
+
dtfloat

The width (in sec) of each bin of the time array. Can be irregular.

+
+
+
+
+
+ +
+
+stingray.gti.create_gti_mask(time, gtis, safe_interval=None, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001)[source]
+

Create GTI mask.

+

Assumes that no overlaps are present between GTIs

+
+
Parameters:
+
+
timenumpy.ndarray

An array of time stamps

+
+
gtis[[g0_0, g0_1], [g1_0, g1_1], ...], float array-like

The list of GTIs

+
+
+
+
Returns:
+
+
maskbool array

A mask labelling all time stamps that are included in the GTIs versus +those that are not.

+
+
new_gtisNx2 array

An array of new GTIs created by this function.

+
+
+
+
Other Parameters:
+
+
safe_intervalfloat or [float, float], default None

A safe interval to exclude at both ends (if single float) or the start +and the end (if pair of values) of GTIs. If None, no safe interval +is applied to data.

+
+
min_lengthfloat

An optional minimum length for the GTIs to be applied. Only GTIs longer +than min_length will be considered when creating the mask.

+
+
return_new_gtisbool

If True`, return the list of new GTIs (if min_length > 0)

+
+
dtfloat

Time resolution of the data, i.e. the interval between time stamps.

+
+
epsilonfloat

Fraction of dt that is tolerated at the borders of a GTI.

+
+
+
+
+
+ +
+
+stingray.gti.create_gti_mask_complete(time, gtis, safe_interval=0, min_length=0, return_new_gtis=False, dt=None, epsilon=0.001)[source]
+

Create GTI mask, allowing for non-constant dt.

+

Assumes that no overlaps are present between GTIs.

+
+
Parameters:
+
+
timenumpy.ndarray

An array of time stamps.

+
+
gtis[[g0_0, g0_1], [g1_0, g1_1], ...], float array-like

The list of GTIs.

+
+
+
+
Returns:
+
+
maskbool array

A mask labelling all time stamps that are included in the GTIs versus +those that are not.

+
+
new_gtisNx2 array

An array of new GTIs created by this function.

+
+
+
+
Other Parameters:
+
+
safe_intervalfloat or [float, float]

A safe interval to exclude at both ends (if single float) or the start +and the end (if pair of values) of GTIs.

+
+
min_lengthfloat

An optional minimum length for the GTIs to be applied. Only GTIs longer +than min_length will be considered when creating the mask.

+
+
return_new_gtisbool

If True, return the list of new GTIs (if min_length > 0).

+
+
dtfloat

Time resolution of the data, i.e. the interval between time stamps.

+
+
epsilonfloat

Fraction of dt that is tolerated at the borders of a GTI.

+
+
+
+
+
+ +
+
+stingray.gti.create_gti_mask_jit(time, gtis, mask, gti_mask, min_length=0)[source]
+

Compiled and fast function to create GTI mask.

+
+
Parameters:
+
+
timenumpy.ndarray

An array of time stamps

+
+
gtisiterable of (start, stop) pairs

The list of GTIs.

+
+
masknumpy.ndarray

A pre-assigned array of zeros of the same shape as time +Records whether a time stamp is part of the GTIs.

+
+
gti_masknumpy.ndarray

A pre-assigned array zeros in the same shape as time; records +start/stop of GTIs.

+
+
min_lengthfloat

An optional minimum length for the GTIs to be applied. Only GTIs longer +than min_length will be considered when creating the mask.

+
+
+
+
+
+ +
+
+stingray.gti.cross_gtis(gti_list)[source]
+

From multiple GTI lists, extract the common intervals EXACTLY.

+
+
Parameters:
+
+
gti_listarray-like

List of GTI arrays, each one in the usual format +[[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
+
+
Returns:
+
+
gti0: 2-d float array

[[gti0_0, gti0_1], [gti1_0, gti1_1], ...] +The newly created GTIs.

+
+
+
+
+
+

See also

+
+
cross_two_gtis

Extract the common intervals from two GTI lists EXACTLY

+
+
+
+

Examples

+
>>> gti1 = np.array([[1, 2]])
+>>> gti2 = np.array([[1, 2]])
+>>> newgti = cross_gtis([gti1, gti2])
+>>> assert np.allclose(newgti, [[1, 2]])
+>>> gti1 = np.array([[1, 4]])
+>>> gti2 = np.array([[1, 2], [2, 4]])
+>>> newgti = cross_gtis([gti1, gti2])
+>>> assert np.allclose(newgti, [[1, 4]])
+
+
+
+ +
+
+stingray.gti.cross_two_gtis(gti0, gti1)[source]
+

Extract the common intervals from two GTI lists EXACTLY.

+
+
Parameters:
+
+
gti0iterable of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]
+
gti1iterable of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

The two lists of GTIs to be crossed.

+
+
+
+
Returns:
+
+
gtis[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

The newly created GTIs.

+
+
+
+
+
+

See also

+
+
cross_gtis

From multiple GTI lists, extract common intervals EXACTLY

+
+
+
+

Examples

+
>>> gti1 = np.array([[1, 2]])
+>>> gti2 = np.array([[1, 2]])
+>>> newgti = cross_two_gtis(gti1, gti2)
+>>> assert np.allclose(newgti, [[1, 2]])
+>>> gti1 = np.array([[1, 4]])
+>>> gti2 = np.array([[1, 2], [2, 4]])
+>>> newgti = cross_two_gtis(gti1, gti2)
+>>> assert np.allclose(newgti, [[1, 4]])
+>>> gti1 = np.array([[1, 2]])
+>>> gti2 = np.array([[2, 3]])
+>>> newgti = cross_two_gtis(gti1, gti2)
+>>> len(newgti)
+0
+
+
+
+ +
+
+stingray.gti.find_large_bad_time_intervals(gtis, bti_length_limit=86400)[source]
+

Find large bad time intervals (BTIs) in a list of GTIs, and split the GTI list accordingly.

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
bti_length_limitfloat

Maximum length of a BTI. If a BTI is longer than this, an edge will be +returned at the midpoint of the BTI.

+
+
+
+
Returns:
+
+
bad_interval_midpointslist of float

List of midpoints of large bad time intervals

+
+
+
+
+

Examples

+
>>> gtis = [[0, 30], [86450, 86460], [86480, 86490]]
+>>> bad_interval_midpoints = find_large_bad_time_intervals(gtis)
+>>> assert np.allclose(bad_interval_midpoints, [43240])
+
+
+
+ +
+
+stingray.gti.generate_indices_of_gti_boundaries(times, gti, dt=0)[source]
+

Get the indices of events from different GTIs of the observation.

+

This is a generator, yielding the boundaries of each GTI and the +corresponding indices in the time array.

+
+
Parameters:
+
+
timesfloat np.array

Array of times.

+
+
gti[[gti00, gti01], [gti10, gti11], …]

Good time intervals.

+
+
+
+
Yields:
+
+
g0: float

Start time of current GTI.

+
+
g1: float

End time of current GTI.

+
+
startidx: int

Start index of the current GTI in the time array.

+
+
stopidx: int

End index of the current GTI in the time array. Note that this is +larger by one, so that time[startidx:stopidx] returns the correct +time interval.

+
+
+
+
Other Parameters:
+
+
dtfloat

If times are uniformly binned, this is the binning time.

+
+
+
+
+

Examples

+
>>> times = [0.1, 0.2, 0.5, 0.8, 1.1]
+>>> gtis = [[0, 0.55], [0.6, 2.1]]
+>>> vals = generate_indices_of_gti_boundaries(times, gtis)
+>>> v0 = next(vals)
+>>> assert np.allclose(v0[:2], gtis[0])
+>>> assert np.allclose(v0[2:], [0, 3])
+
+
+
+ +
+
+stingray.gti.generate_indices_of_segment_boundaries_binned(times, gti, segment_size, dt=None)[source]
+

Get the indices of binned times from different segments of the observation.

+

This is a generator, yielding the boundaries of each segment and the +corresponding indices in the time array

+
+
Parameters:
+
+
timesfloat np.array

Array of times, uniformly sampled

+
+
gti[[gti00, gti01], [gti10, gti11], …]

good time intervals

+
+
segment_sizefloat

length of segments

+
+
+
+
Yields:
+
+
t0: float

First time value, from the time array, in the current segment

+
+
t1: float

Last time value, from the time array, in the current segment

+
+
startidx: int

Start index of the current segment in the time array

+
+
stopidx: int

End index of the current segment in the time array. Note that this is +larger by one, so that time[startidx:stopidx] returns the correct +time interval.

+
+
+
+
+

Examples

+
>>> times = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7]
+>>> gtis = [[0.05, 0.55]]
+>>> vals = generate_indices_of_segment_boundaries_binned(times, gtis, 0.5, dt=0.1)
+>>> v0 = next(vals)
+>>> assert np.allclose(v0[:2], [0.05, 0.55])
+>>> assert np.allclose(v0[2:], [0, 5])
+
+
+
+ +
+
+stingray.gti.generate_indices_of_segment_boundaries_unbinned(times, gti, segment_size, check_sorted=True)[source]
+

Get the indices of events from different segments of the observation.

+

This is a generator, yielding the boundaries of each segment and the +corresponding indices in the time array.

+
+
Parameters:
+
+
timesfloat np.array

Array of times.

+
+
gti[[gti00, gti01], [gti10, gti11], …]

Good time intervals.

+
+
segment_sizefloat

Length of segments.

+
+
+
+
Yields:
+
+
t0: float

Start time of current segment.

+
+
t1: float

End time of current segment.

+
+
startidx: int

Start index of the current segment in the time array.

+
+
stopidx: int

End index of the current segment in the time array. Note that this is +larger by one, so that time[startidx:stopidx] returns the correct +time interval.

+
+
+
+
Other Parameters:
+
+
check_sortedbool, default True

If True, checks that the time array is sorted.

+
+
+
+
+

Examples

+
>>> times = [0.1, 0.2, 0.5, 0.8, 1.1]
+>>> gtis = [[0, 0.55], [0.6, 2.1]]
+>>> vals = generate_indices_of_segment_boundaries_unbinned(
+...    times, gtis, 0.5)
+>>> v0 = next(vals)
+>>> assert np.allclose(v0[:2], [0, 0.5])
+>>> # Note: 0.5 is not included in the interval
+>>> assert np.allclose(v0[2:], [0, 2])
+>>> v1 = next(vals)
+>>> assert np.allclose(v1[:2], [0.6, 1.1])
+>>> # Again: 1.1 is not included in the interval
+>>> assert np.allclose(v1[2:], [3, 4])
+
+
+
+ +
+
+stingray.gti.get_btis(gtis, start_time=None, stop_time=None)[source]
+

From GTIs, obtain bad time intervals, i.e. the intervals not covered +by the GTIs.

+

GTIs have to be well-behaved, in the sense that they have to pass +check_gtis.

+
+
Parameters:
+
+
gtisiterable

A list of GTIs.

+
+
start_timefloat

Optional start time of the overall observation (e.g. can be earlier +than the first time stamp in gtis).

+
+
stop_timefloat

Optional stop time of the overall observation (e.g. can be later than +the last time stamp in``gtis``).

+
+
+
+
Returns:
+
+
btisnumpy.ndarray

A list of bad time intervals.

+
+
+
+
+
+ +
+
+stingray.gti.get_gti_extensions_from_pattern(lchdulist, name_pattern='GTI')[source]
+

Gets the GTI extensions that match a given pattern.

+
+
Parameters:
+
+
lchdulist: `:class:astropy.io.fits.HDUList` object

The full content of a FITS file.

+
+
name_pattern: str

Pattern indicating all the GTI extensions.

+
+
+
+
Returns:
+
+
ext_list: list

List of GTI extension numbers whose name matches the input pattern.

+
+
+
+
+

Examples

+
>>> from astropy.io import fits
+>>> start = np.arange(0, 300, 100)
+>>> stop = start + 50.
+>>> s1 = fits.Column(name='START', array=start, format='D')
+>>> s2 = fits.Column(name='STOP', array=stop, format='D')
+>>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI005XX')
+>>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='GTI00501')
+>>> lchdulist = fits.HDUList([hdu1])
+>>> gtiextn = get_gti_extensions_from_pattern(
+...     lchdulist, name_pattern='GTI005[0-9]+')
+>>> assert np.allclose(gtiextn, [1])
+
+
+
+ +
+
+stingray.gti.get_gti_from_all_extensions(lchdulist, accepted_gtistrings=['GTI'], det_numbers=None)[source]
+

Intersect the GTIs from the all accepted extensions.

+
+
Parameters:
+
+
lchdulist: `:class:astropy.io.fits.HDUList` object

The full content of a FITS file.

+
+
accepted_gtistrings: list of str

Base strings of GTI extensions. For missions adding the detector number +to GTI extensions like, e.g., XMM and Chandra, this function +automatically adds the detector number and looks for all matching +GTI extensions (e.g. “STDGTI” will also retrieve “STDGTI05”; “GTI0” +will also retrieve “GTI00501”).

+
+
+
+
Returns:
+
+
gti_list: [[gti00, gti01], [gti10, gti11], …]

List of good time intervals, as the intersection of all matching GTIs. +If there are two matching extensions, with GTIs [[0, 50], [100, 200]] +and [[40, 70]] respectively, this function will return [[40, 50]].

+
+
+
+
+

Examples

+
>>> from astropy.io import fits
+>>> s1 = fits.Column(name='START', array=[0, 100, 200], format='D')
+>>> s2 = fits.Column(name='STOP', array=[50, 150, 250], format='D')
+>>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501')
+>>> s1 = fits.Column(name='START', array=[200, 300], format='D')
+>>> s2 = fits.Column(name='STOP', array=[250, 350], format='D')
+>>> hdu2 = fits.TableHDU.from_columns([s1, s2], name='STDGTI05')
+>>> lchdulist = fits.HDUList([hdu1, hdu2])
+>>> gti = get_gti_from_all_extensions(
+...     lchdulist, accepted_gtistrings=['GTI0', 'STDGTI'],
+...     det_numbers=[5])
+>>> assert np.allclose(gti, [[200, 250]])
+
+
+
+ +
+
+stingray.gti.get_gti_from_hdu(gtihdu)[source]
+

Get the GTIs from a given FITS extension.

+
+
Parameters:
+
+
gtihdu: `:class:astropy.io.fits.TableHDU` object

The GTI HDU.

+
+
+
+
Returns:
+
+
gti_list: [[gti00, gti01], [gti10, gti11], …]

List of good time intervals.

+
+
+
+
+

Examples

+
>>> from astropy.io import fits
+>>> start = np.arange(0, 300, 100)
+>>> stop = start + 50.
+>>> s1 = fits.Column(name='START', array=start, format='D')
+>>> s2 = fits.Column(name='STOP', array=stop, format='D')
+>>> hdu1 = fits.TableHDU.from_columns([s1, s2], name='GTI00501')
+>>> gti = get_gti_from_hdu(hdu1)
+>>> assert np.allclose(gti, [[0, 50], [100, 150], [200, 250]])
+
+
+
+ +
+
+stingray.gti.get_gti_lengths(gti)[source]
+

Calculate the length of each Good Time Interval.

+
+
Parameters:
+
+
gti[[gti00, gti01], [gti10, gti11], …]

The list of good time intervals.

+
+
+
+
Returns:
+
+
lengthsnp.ndarray

List of GTI lengths.

+
+
+
+
+

Examples

+
>>> gti = [[0, 1000], [1000, 1001], [3000, 3020]]
+>>> assert np.allclose(get_gti_lengths(gti), [1000, 1, 20])
+
+
+
+ +
+
+stingray.gti.get_total_gti_length(gti, minlen=0)[source]
+

Calculate the total exposure during Good Time Intervals.

+
+
Parameters:
+
+
gti[[gti00, gti01], [gti10, gti11], …]

The list of good time intervals.

+
+
minlenfloat

Minimum GTI length to consider.

+
+
+
+
Returns:
+
+
lengthfloat

The total exposure during GTIs.

+
+
+
+
+

Examples

+
>>> gti = [[0, 1000], [1000, 1001], [3000, 3020]]
+>>> assert np.isclose(get_total_gti_length(gti), 1021)
+>>> assert np.isclose(get_total_gti_length(gti, minlen=5), 1020)
+
+
+
+ +
+
+stingray.gti.gti_border_bins(gtis, time, dt=None, epsilon=0.001)[source]
+

Find the indices in a time array corresponding to the borders of GTIs.

+

GTIs shorter than the bin time are not returned.

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...].

+
+
timearray-like

Array of time stamps.

+
+
+
+
Returns:
+
+
spectrum_start_binsarray-like

List of starting bins of each GTI

+
+
spectrum_stop_binsarray-like

List of stop bins of each GTI. The elements corresponding to these bins +should not be included.

+
+
+
+
Other Parameters:
+
+
dtfloat or array of floats. Default median(diff(time))

Time resolution of the light curve. Can be an array of the same dimension +as time

+
+
epsilonfloat, default 0.001

The tolerance, in fraction of dt, for the comparisons at the +borders.

+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving +window), this indicates the ratio between step step and +segment_size (e.g. 0.5 means that the window shifts by half +segment_size).

+
+
+
+
+

Examples

+
>>> times = np.arange(0.5, 13.5)
+
+
+
>>> gti_border_bins([[16., 18.]], times)
+Traceback (most recent call last):
+    ...
+ValueError: Invalid time interval for the given GTIs
+
+
+
>>> start_bins, stop_bins = gti_border_bins(
+...    [[0, 5], [6, 8]], times)
+
+
+
>>> assert np.allclose(start_bins, [0, 6])
+>>> assert np.allclose(stop_bins, [5, 8])
+>>> assert np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5])
+>>> assert np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5])
+
+
+
>>> start_bins, stop_bins = gti_border_bins(
+...    [[0, 5], [6, 13]], times, dt=np.ones_like(times))
+
+
+
>>> assert np.allclose(start_bins, [0, 6])
+>>> assert np.allclose(stop_bins, [5, 13])
+>>> assert np.allclose(times[start_bins[0]:stop_bins[0]], [0.5, 1.5, 2.5, 3.5, 4.5])
+>>> np.allclose(times[start_bins[1]:stop_bins[1]], [6.5, 7.5, 8.5, 9.5, 10.5, 11.5, 12.5])
+True
+
+
+
+ +
+
+stingray.gti.join_gtis(gti0, gti1)[source]
+

Union of two GTIs.

+

If GTIs are mutually exclusive, it calls append_gtis. Otherwise we put +the extremes of partially overlapping GTIs on an ideal line and look at the +number of opened and closed intervals. When the number of closed and opened +intervals is the same, the full GTI is complete and we close it.

+

In practice, we assign to each opening time of a GTI the value -1, and +the value 1 to each closing time; when the cumulative sum is zero, the +GTI has ended. The timestamp after each closed GTI is the start of a new +one.

+
(g_all)    0     1     2     3     4     5     6     7     8     9
+(cumsum)   -1   -2    -1     0    -1    -2     -1   -2    -1     0
+GTI A      |-----:-----|     :     |-----:-----|     |-----:-----|
+FINAL GTI  |-----:-----------|     |-----:-----------------:-----|
+GTI B            |-----------|           |-----------------|
+
+
+

In case one GTI ends exactly where another one starts, the cumulative sum is 0 +but we do not want to close. In this case, we make a check that the next element +of the sequence is not equal to the one where we would close.

+
(g_all)    0    1,1         3,3          5
+(cumsum)   -1   0,-1       -1,-2         0
+GTI A      |-----|           |-----------|
+FINAL GTI  |-----------------------------|
+GTI B            |-----------|
+
+
+
+
Parameters:
+
+
gti0: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
gti1: 2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
+
+
Returns:
+
+
gti: 2-d float array

The newly created GTI

+
+
+
+
+
+ +
+
+stingray.gti.load_gtis(fits_file, gtistring=None)[source]
+

Load Good Time Intervals (GTIs) from HDU EVENTS of file fits_file. +File is expected to be in FITS format.

+
+
Parameters:
+
+
fits_filestr

File name and path for the FITS file with the GTIs to be loaded.

+
+
gtistringstr

If the name of the FITS extension with the GTIs is not GTI, the +alternative name can be set with this parameter.

+
+
+
+
Returns:
+
+
gti_listlist

A list of GTI (start, stop) pairs extracted from the FITS file.

+
+
+
+
+
+ +
+
+stingray.gti.split_gtis_by_exposure(gtis, exposure_per_chunk, new_interval_if_gti_sep=None)[source]
+

Split a list of GTIs into smaller GTI lists of a given total (approximate) exposure.

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
exposure_per_chunkfloat

Total exposure of each chunk, in seconds

+
+
+
+
Returns:
+
+
gti_listlist of 2-d float arrays

List of GTI lists, split into chunks of the given exposure / separated by more +than the given limit separation

+
+
+
+
Other Parameters:
+
+
new_interval_if_gti_sepfloat

If the GTIs are separated by more than this time, split the observation in two.

+
+
+
+
+

Examples

+
>>> gtis = [[0, 30], [86450, 86460]]
+>>> new_gtis = split_gtis_by_exposure(gtis, 400, new_interval_if_gti_sep=86400)
+>>> assert np.allclose(new_gtis[0], [[0, 30]])
+>>> assert np.allclose(new_gtis[1], [[86450, 86460]])
+>>> gtis = [[0, 30], [40, 70], [90, 120], [130, 160]]
+>>> new_gtis = split_gtis_by_exposure(gtis, 60)
+>>> assert np.allclose(new_gtis[0], [[0, 30], [40, 70]])
+>>> assert np.allclose(new_gtis[1], [[90, 120], [130, 160]])
+
+
+
+ +
+
+stingray.gti.time_intervals_from_gtis(gtis, segment_size, fraction_step=1, epsilon=1e-05)[source]
+

Compute start/stop times of equal time intervals, compatible with GTIs.

+

Used to start each FFT/PDS/cospectrum from the start of a GTI, +and stop before the next gap in data (end of GTI).

+
+
Parameters:
+
+
gtis2-d float array

List of GTIs of the form [[gti0_0, gti0_1], [gti1_0, gti1_1], ...]

+
+
segment_sizefloat

Length of the time segments

+
+
fraction_stepfloat

If the step is not a full segment_size but less (e.g. a moving +window), this indicates the ratio between step step and +segment_size (e.g. 0.5 means that the window shifts by half +segment_size).

+
+
+
+
Returns:
+
+
spectrum_start_timesarray-like

List of starting times to use in the spectral calculations.

+
+
spectrum_stop_timesarray-like

List of end times to use in the spectral calculations.

+
+
+
+
+
+ +
+
+

I/O Functionality

+
+
+stingray.io.common_name(str1, str2, default='common')[source]
+

Strip two strings of the letters not in common.

+

Filenames must be of same length and only differ by a few letters.

+
+
Parameters:
+
+
str1str
+
str2str
+
+
+
Returns:
+
+
common_strstr

A string containing the parts of the two names in common

+
+
+
+
Other Parameters:
+
+
defaultstr

The string to return if common_str is empty

+
+
+
+
+
+ +
+
+stingray.io.get_file_extension(fname)[source]
+

Get the extension from the file name.

+

If g-zipped, add ‘.gz’ to extension.

+

Examples

+
>>> get_file_extension('ciao.tar')
+'.tar'
+>>> get_file_extension('ciao.tar.gz')
+'.tar.gz'
+>>> get_file_extension('ciao.evt.gz')
+'.evt.gz'
+>>> get_file_extension('ciao.a.tutti.evt.gz')
+'.evt.gz'
+
+
+
+ +
+
+stingray.io.get_key_from_mission_info(info, key, default, inst=None, mode=None)[source]
+

Get the name of a header key or table column from the mission database.

+

Many entries in the mission database have default values that can be +altered for specific instruments or observing modes. Here, if there is a +definition for a given instrument and mode, we take that, otherwise we use +the default).

+
+
Parameters:
+
+
infodict

Nested dictionary containing all the information for a given mission. +It can be nested, e.g. contain some info for a given instrument, and +for each observing mode of that instrument.

+
+
keystr

The key to read from the info dictionary

+
+
defaultobject

The default value. It can be of any type, depending on the expected +type for the entry.

+
+
+
+
Returns:
+
+
retvalobject

The wanted entry from the info dictionary

+
+
+
+
Other Parameters:
+
+
inststr

Instrument

+
+
modestr

Observing mode

+
+
+
+
+

Examples

+
>>> info = {'ecol': 'PI', "A": {"ecol": "BLA"}, "C": {"M1": {"ecol": "X"}}}
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode=None)
+'BLA'
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="B", mode=None)
+'PI'
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="A", mode="M1")
+'BLA'
+>>> get_key_from_mission_info(info, "ecol", "BU", inst="C", mode="M1")
+'X'
+>>> get_key_from_mission_info(info, "ghghg", "BU", inst="C", mode="M1")
+'BU'
+
+
+
+ +
+
+stingray.io.high_precision_keyword_read(hdr, keyword)[source]
+

Read FITS header keywords, also if split in two.

+

In the case where the keyword is split in two, like

+
+

MJDREF = MJDREFI + MJDREFF

+
+

in some missions, this function returns the summed value. Otherwise, the +content of the single keyword

+
+
Parameters:
+
+
hdrdict_like

The FITS header structure, or a dictionary

+
+
keywordstr

The key to read in the header

+
+
+
+
Returns:
+
+
valuelong double

The value of the key, or None if something went wrong

+
+
+
+
+
+ +
+
+stingray.io.lcurve_from_fits(fits_file, gtistring='GTI', timecolumn='TIME', ratecolumn=None, ratehdu=1, fracexp_limit=0.9, outfile=None, noclobber=False, outdir=None)[source]
+

Load a lightcurve from a fits file.

+
+

Note

+

FITS light curve handling is still under testing. +Absolute times might be incorrect depending on the light curve format.

+
+
+
Parameters:
+
+
fits_filestr

File name of the input light curve in FITS format

+
+
+
+
Returns:
+
+
datadict

Dictionary containing all information needed to create a +stingray.Lightcurve object

+
+
+
+
Other Parameters:
+
+
gtistringstr

Name of the GTI extension in the FITS file

+
+
timecolumnstr

Name of the column containing times in the FITS file

+
+
ratecolumnstr

Name of the column containing rates in the FITS file

+
+
ratehdustr or int

Name or index of the FITS extension containing the light curve

+
+
fracexp_limitfloat

Minimum exposure fraction allowed

+
+
noclobberbool

If True, do not overwrite existing files

+
+
+
+
+
+ +
+
+stingray.io.load_events_and_gtis(fits_file, additional_columns=None, gtistring=None, gti_file=None, hduname=None, column=None)[source]
+

Load event lists and GTIs from one or more files.

+

Loads event list from HDU EVENTS of file fits_file, with Good Time +intervals. Optionally, returns additional columns of data from the same +HDU of the events.

+
+
Parameters:
+
+
fits_filestr
+
+
+
Returns:
+
+
retvalsObject with the following attributes:
+
ev_listarray-like

Event times in Mission Epoch Time

+
+
gti_list: [[gti0_0, gti0_1], [gti1_0, gti1_1], …]

GTIs in Mission Epoch Time

+
+
additional_data: dict

A dictionary, where each key is the one specified in additional_colums. +The data are an array with the values of the specified column in the +fits file.

+
+
t_startfloat

Start time in Mission Epoch Time

+
+
t_stopfloat

Stop time in Mission Epoch Time

+
+
pi_listarray-like

Raw Instrument energy channels

+
+
cal_pi_listarray-like

Calibrated PI channels (those that can be easily converted to energy +values, regardless of the instrument setup.)

+
+
energy_listarray-like

Energy of each photon in keV (only for NuSTAR, NICER, XMM)

+
+
instrstr

Name of the instrument (e.g. EPIC-pn or FPMA)

+
+
missionstr

Name of the instrument (e.g. XMM or NuSTAR)

+
+
mjdreffloat

MJD reference time for the mission

+
+
headerstr

Full header of the FITS file, for debugging purposes

+
+
detector_idarray-like, int

Detector id for each photon (e.g. each of the CCDs composing XMM’s or +Chandra’s instruments)

+
+
+
+
+
+
Other Parameters:
+
+
additional_columns: list of str, optional

A list of keys corresponding to the additional columns to extract from +the event HDU (ex.: [‘PI’, ‘X’])

+
+
gtistringstr

Comma-separated list of accepted GTI extensions (default GTI,STDGTI), +with or without appended integer number denoting the detector

+
+
gti_filestr, default None

External GTI file

+
+
hdunamestr or int, default 1

Name of the HDU containing the event list

+
+
columnstr, default None

The column containing the time values. If None, we use the name +specified in the mission database, and if there is nothing there, +“TIME”

+
+
return_limits: bool, optional

Return the TSTART and TSTOP keyword values

+
+
+
+
+
+ +
+
+stingray.io.mkdir_p(path)[source]
+

Safe mkdir function

+
+
Parameters:
+
+
pathstr

The absolute path to the directory to be created

+
+
+
+
+
+ +
+
+stingray.io.pi_to_energy(pis, rmf_file)[source]
+

Read the energy channels corresponding to the given PI channels.

+
+
Parameters:
+
+
pisarray-like

The channels to lookup in the rmf

+
+
+
+
Other Parameters:
+
+
rmf_filestr

The rmf file used to read the calibration.

+
+
+
+
+
+ +
+
+stingray.io.read_header_key(fits_file, key, hdu=1)[source]
+

Read the header key key from HDU hdu of the file fits_file.

+
+
Parameters:
+
+
fits_file: str

The file name and absolute path to the event file.

+
+
key: str

The keyword to be read

+
+
+
+
Returns:
+
+
valueobject

The value stored under key in fits_file

+
+
+
+
Other Parameters:
+
+
hduint

Index of the HDU extension from which the header key to be read.

+
+
+
+
+
+ +
+
+stingray.io.read_rmf(rmf_file)[source]
+

Load RMF info.

+
+

Note

+

Preliminary: only EBOUNDS are read.

+
+
+
Parameters:
+
+
rmf_filestr

The rmf file used to read the calibration.

+
+
+
+
Returns:
+
+
pisarray-like

the PI channels

+
+
e_minsarray-like

the lower energy bound of each PI channel

+
+
e_maxsarray-like

the upper energy bound of each PI channel

+
+
+
+
+
+ +
+
+stingray.io.ref_mjd(fits_file, hdu=1)[source]
+

Read MJDREFF, MJDREFI or, if failed, MJDREF, from the FITS header.

+
+
Parameters:
+
+
fits_filestr

The file name and absolute path to the event file.

+
+
+
+
Returns:
+
+
mjdrefnumpy.longdouble

the reference MJD

+
+
+
+
Other Parameters:
+
+
hduint

Index of the HDU extension from which the header key to be read.

+
+
+
+
+
+ +
+
+stingray.io.savefig(filename, **kwargs)[source]
+

Save a figure plotted by matplotlib.

+

Note : This function is supposed to be used after the plot +function. Otherwise it will save a blank image with no plot.

+
+
Parameters:
+
+
filenamestr

The name of the image file. Extension must be specified in the +file name. For example filename with png extension will give a +rasterized image while .pdf extension will give a vectorized +output.

+
+
kwargskeyword arguments

Keyword arguments to be passed to savefig function of +matplotlib.pyplot. For example use bbox_inches='tight' to +remove the undesirable whitespace around the image.

+
+
+
+
+
+ +
+
+stingray.io.split_numbers(number, shift=0)[source]
+

Split high precision number(s) into doubles.

+

You can specify the number of shifts to move the decimal point.

+
+
Parameters:
+
+
number: long double

The input high precision number which is to be split

+
+
+
+
Returns:
+
+
number_I: double

First part of high precision number

+
+
number_F: double

Second part of high precision number

+
+
+
+
Other Parameters:
+
+
shift: integer

Move the cut by shift decimal points to the right (left if negative)

+
+
+
+
+

Examples

+
>>> n = 12.34
+>>> i, f = split_numbers(n)
+>>> assert i == 12
+>>> assert np.isclose(f, 0.34)
+>>> assert np.allclose(split_numbers(n, 2), (12.34, 0.0))
+>>> assert np.allclose(split_numbers(n, -1), (10.0, 2.34))
+
+
+
+ +
+
+

Mission-specific I/O

+

This module contains functions to interpret data from different missions.

+

The key functions are:

+ +

Whenever a given mission needs complicate processing, its functions can be made available +for specific missions in their own separate modules. For example, the RXTE mission has its +own module, rxte.py, which contains functions to interpret RXTE data.

+
+
+stingray.mission_support.missions.get_rough_conversion_function(mission, instrument=None, epoch=None)[source]
+

Get a rough PI-Energy conversion function for a mission.

+

The function should accept a PI channel and return the corresponding energy. +Additional keyword arguments (e.g. epoch, detector) can be passed to the function.

+
+
Parameters:
+
+
missionstr

Mission name

+
+
instrumentstr

Instrument onboard the mission

+
+
epochfloat

Epoch of the observation in MJD (important for missions updating their calibration).

+
+
+
+
Returns:
+
+
function

Conversion function

+
+
+
+
+
+ +
+
+stingray.mission_support.missions.mission_specific_event_interpretation(mission)[source]
+

Get the mission-specific FITS interpretation function.

+

This function will read a file name or a FITS astropy.io.fits.HDUList +object and modify it (see, e.g., rxte_pca_event_file_interpretation() for an +example)

+
+ +
+
+stingray.mission_support.missions.read_mission_info(mission=None)[source]
+

Search the relevant information about a mission in xselect.mdb.

+
+ +
+
+stingray.mission_support.missions.rough_calibration(pis, mission)[source]
+

Make a rough conversion between PI channel and energy.

+

Only works for NICER, NuSTAR, IXPE, and XMM.

+
+
Parameters:
+
+
pis: float or array of floats

PI channels in data

+
+
mission: str

Mission name

+
+
+
+
Returns:
+
+
energiesfloat or array of floats

Energy values

+
+
+
+
+

Examples

+
>>> rough_calibration(0, 'nustar')
+1.62
+>>> rough_calibration(0.0, 'ixpe')
+0.0
+>>> # It's case-insensitive
+>>> rough_calibration(1200, 'XMm')
+1.2
+>>> rough_calibration(10, 'asDf')
+Traceback (most recent call last):
+    ...
+ValueError: Mission asdf not recognized
+>>> rough_calibration(100, 'nicer')
+1.0
+
+
+
+ +
+
+stingray.mission_support.rxte.pca_calibration_func(epoch)[source]
+

Return the appropriate calibration function for RXTE for a given observing epoch.

+

This function has signature func(pha, detector_id) and gives the energy corresponding +to the PHA channel for the given detector (array values allowed).

+

Internally, this is done by pre-allocating some arrays with the energy values for each +PHA channel and detector group (1-4 and 0, due to a damage that PCU 0 incurred in 2000), +and then returning a function that looks up the energy for each channel.

+

This does not require any interpolation, as the calibration is tabulated for each channel, +and it is pretty efficient given the very small number of channels supported by the PCA (255).

+
+
Parameters:
+
+
epochfloat

The epoch of the observation in MJD.

+
+
+
+
Returns:
+
+
conversion_functioncallable

A function that converts PHA channel to energy. This function accepts +two arguments: the PHA channel and the PCU number.

+
+
+
+
+

Examples

+
>>> conversion_function = pca_calibration_func(50082)
+>>> float(conversion_function(10, 0))
+3.04
+>>> conversion_function = pca_calibration_func(55930)
+>>> float(conversion_function(10, 0))
+4.53
+>>> float(conversion_function(10, 3))
+4.49
+>>> assert np.array_equal(conversion_function(10, [0, 3]), [4.53, 4.49])
+>>> assert np.array_equal(conversion_function([10, 11], [0, 3]), [4.53, 4.90])
+
+
+
+ +
+
+stingray.mission_support.rxte.rxte_calibration_func(instrument, epoch)[source]
+

Return the calibration function for RXTE at a given epoch.

+

Examples

+
>>> calibration_func = rxte_calibration_func("PCa", 50082)
+>>> assert calibration_func(10) == pca_calibration_func(50082)(10)
+>>> rxte_calibration_func("HEXTE", 55930)
+Traceback (most recent call last):
+...
+ValueError: Unknown XTE instrument: HEXTE
+
+
+
+ +
+
+stingray.mission_support.rxte.rxte_pca_event_file_interpretation(input_data, header=None, hduname=None)[source]
+

Interpret the FITS header of an RXTE event file.

+

At the moment, only science event files are supported. In these files, +the energy channels are stored in a column named PHA. However, this is not +the PHA column that can be directly used to convert to energy. These are +channels that get changed on a per-observation basis, and can be converted +to the “absolute” PHA channels (the ones tabulated in pca_calibration_func) +by using the TEVTB2 keyword. This function changes the content of the PHA column by +putting in the mean “absolute” PHA channel corresponding to each local PHA +channel.

+
+
Parameters:
+
+
input_datastr, fits.HDUList, fits.HDU, np.array

The name of the FITS file to, or the HDUList inside, or the HDU with +the data, or the data.

+
+
+
+
Other Parameters:
+
+
headerfits.Header, optional

Compulsory if hdulist is not a class:fits._BaseHDU, a +fits.HDUList, or a file name. The header of the relevant extension.

+
+
hdunamestr, optional

Name of the HDU (only relevant if hdulist is a fits.HDUList), +ignored otherwise.

+
+
+
+
+
+ +
+
+

Other Utility Functions

+
+
+stingray.utils.baseline_als(x, y, lam=None, p=None, niter=10, return_baseline=False, offset_correction=False)[source]
+

Baseline Correction with Asymmetric Least Squares Smoothing.

+
+
Parameters:
+
+
xarray-like

the sample time/number/position

+
+
yarray-like

the data series corresponding to x

+
+
lamfloat

the lambda parameter of the ALS method. This control how much the +baseline can adapt to local changes. A higher value corresponds to a +stiffer baseline

+
+
pfloat

the asymmetry parameter of the ALS method. This controls the overall +slope tolerated for the baseline. A higher value correspond to a +higher possible slope

+
+
+
+
Returns:
+
+
y_subtractedarray-like, same size as y

The initial time series, subtracted from the trend

+
+
baselinearray-like, same size as y

Fitted baseline. Only returned if return_baseline is True

+
+
+
+
Other Parameters:
+
+
niterint

The number of iterations to perform

+
+
return_baselinebool

return the baseline?

+
+
offset_correctionbool

also correct for an offset to align with the running mean of the scan

+
+
+
+
+

Examples

+
>>> x = np.arange(0, 10, 0.01)
+>>> y = np.zeros_like(x) + 10
+>>> ysub = baseline_als(x, y)
+>>> assert np.all(ysub < 0.001)
+
+
+
+ +
+
+stingray.utils.check_isallfinite(array)[source]
+

Check if all elements of an array are finite.

+

Calls _check_isallfinite_numba if numba is installed, otherwise +it uses np.isfinite.

+

Examples

+
>>> assert check_isallfinite([1, 2, 3])
+>>> check_isallfinite([1, np.inf, 3])
+False
+>>> check_isallfinite([1, np.nan, 3])
+False
+
+
+
+ +
+
+stingray.utils.contiguous_regions(condition)[source]
+

Find contiguous True regions of the boolean array condition.

+

Return a 2D array where the first column is the start index of the region +and the second column is the end index, found on [so-contiguous].

+
+
Parameters:
+
+
conditionbool array
+
+
+
Returns:
+
+
idx[[i0_0, i0_1], [i1_0, i1_1], ...]

A list of integer couples, with the start and end of each True blocks +in the original array

+
+
+
+
+

Notes

+ +
+ +
+
+stingray.utils.create_window(N, window_type='uniform')[source]
+

A method to create window functions commonly used in signal processing.

+

Windows supported are: +Hamming, Hanning, uniform (rectangular window), triangular window, +blackmann window among others.

+
+
Parameters:
+
+
Nint

Total number of data points in window. If negative, abs is taken.

+
+
window_type{uniform, parzen, hamming, hanning, triangular, welch, blackmann, flat-top}, optional, default uniform

Type of window to create.

+
+
+
+
Returns:
+
+
window: numpy.ndarray

Window function of length N.

+
+
+
+
+
+ +
+
+stingray.utils.excess_variance(lc, normalization='fvar')[source]
+

Calculate the excess variance.

+

Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source +intrinsic variance: if a light curve has a total variance of \(S^2\), +and each point has an error bar \(\sigma_{err}\), the excess variance +is defined as

+
+\[\sigma_{XS} = S^2 - \overline{\sigma_{err}}^2;\]
+

the normalized excess variance is the excess variance divided by the +square of the mean intensity:

+
+\[\sigma_{NXS} = \dfrac{\sigma_{XS}}{\overline{x}^2};\]
+

the fractional mean square variability amplitude, or +\(F_{var}\), is finally defined as

+
+\[F_{var} = \sqrt{\dfrac{\sigma_{XS}}{\overline{x}^2}}\]
+
+
Parameters:
+
+
lca Lightcurve object
+
normalizationstr

if fvar, return the fractional mean square variability \(F_{var}\). +If none, return the unnormalized excess variance variance +\(\sigma_{XS}\). If norm_xs, return the normalized excess variance +\(\sigma_{XS}\)

+
+
Returns
+
——-
+
var_xsfloat
+
var_xs_errfloat
+
+
+
+
+ +
+
+stingray.utils.find_nearest(array, value, side='left')[source]
+

Return the array value that is closest to the input value (Abigail Stevens: +Thanks StackOverflow!)

+
+
Parameters:
+
+
arraynp.array of ints or floats

1-D array of numbers to search through. Should already be sorted +from low values to high values.

+
+
valueint or float

The value you want to find the closest to in the array.

+
+
+
+
Returns:
+
+
array[idx]int or float

The array value that is closest to the input value.

+
+
idxint

The index of the array of the closest value.

+
+
+
+
Other Parameters:
+
+
sidestr

Look at the numpy.searchsorted documentation for more information.

+
+
+
+
+
+ +
+
+stingray.utils.get_random_state(random_state=None)[source]
+

Return a Mersenne Twister pseudo-random number generator.

+
+
Parameters:
+
+
seedinteger or numpy.random.RandomState, optional, default None
+
+
+
Returns:
+
+
random_statemtrand.RandomState object
+
+
+
+
+ +
+
+stingray.utils.heaviside(x)[source]
+

Heaviside function. Returns 1 if x>0, and 0 otherwise.

+

Examples

+
>>> heaviside(2)
+1
+>>> heaviside(-1)
+0
+
+
+
+ +
+
+stingray.utils.is_int(obj)[source]
+

Test if object is an integer.

+
+ +
+
+stingray.utils.is_iterable(var)[source]
+

Test if a variable is an iterable.

+
+
Parameters:
+
+
varobject

The variable to be tested for iterably-ness

+
+
+
+
Returns:
+
+
is_iterbool

Returns True if var is an Iterable, False otherwise

+
+
+
+
+
+ +
+
+stingray.utils.is_string(s)[source]
+

Portable function to answer whether a variable is a string.

+
+
Parameters:
+
+
sobject

An object that is potentially a string

+
+
+
+
Returns:
+
+
isstringbool

A boolean decision on whether s is a string or not

+
+
+
+
+
+ +
+
+stingray.utils.look_for_array_in_array(array1, array2)[source]
+

Find a subset of values in an array.

+
+
Parameters:
+
+
array1iterable

An array with values to be searched

+
+
array2iterable

A second array which potentially contains a subset of values +also contained in array1

+
+
Returns ——- array3iterable An array with the subset of values
+
contained in both ``array1`` and ``array2``
+
+
+
+
+ +
+
+stingray.utils.make_dictionary_lowercase(dictionary, recursive=False)[source]
+

Make all keys of a dictionary lowercase.

+

Optionally, if some values are dictionaries, they can be made lowercase too.

+
+
Parameters:
+
+
dictionarydict

The dictionary to be made lowercase

+
+
+
+
Other Parameters:
+
+
recursivebool

If True, make all keys of nested dictionaries lowercase too.

+
+
+
+
+

Examples

+
>>> d1 = {"A": 1, "B": 2, "C": {"D": 3, "E": {"F": 4}}}
+>>> d2 = make_dictionary_lowercase(d1)
+>>> assert d2 == {"a": 1, "b": 2, "c": {"D": 3, "E": {"F": 4}}}
+>>> d3 = make_dictionary_lowercase(d1, recursive=True)
+>>> assert d3 == {"a": 1, "b": 2, "c": {"d": 3, "e": {"f": 4}}}
+
+
+
+ +
+
+stingray.utils.nearest_power_of_two(x)[source]
+

Return a number which is nearest to x and is the integral power of two.

+
+
Parameters:
+
+
xint, float
+
+
+
Returns:
+
+
x_nearestint

Number closest to x and is the integral power of two.

+
+
+
+
+
+ +
+
+stingray.utils.optimal_bin_time(fftlen, tbin)[source]
+

Vary slightly the bin time to have a power of two number of bins.

+

Given an FFT length and a proposed bin time, return a bin time +slightly shorter than the original, that will produce a power-of-two number +of FFT bins.

+
+
Parameters:
+
+
fftlenint

Number of positive frequencies in a proposed Fourier spectrum

+
+
tbinfloat

The proposed time resolution of a light curve

+
+
+
+
Returns:
+
+
resfloat

A time resolution that will produce a Fourier spectrum with fftlen frequencies and +a number of FFT bins that are a power of two

+
+
+
+
+
+ +
+
+stingray.utils.order_list_of_arrays(data, order)[source]
+

Sort an array according to the specified order.

+
+
Parameters:
+
+
dataiterable
+
+
+
Returns:
+
+
datalist or dict
+
+
+
+
+ +
+
+stingray.utils.poisson_symmetrical_errors(counts)[source]
+

Optimized version of frequentist symmetrical errors.

+

Uses a lookup table in order to limit the calls to poisson_conf_interval

+
+
Parameters:
+
+
countsiterable

An array of Poisson-distributed numbers

+
+
+
+
Returns:
+
+
errnumpy.ndarray

An array of uncertainties associated with the Poisson counts in +counts

+
+
+
+
+

Examples

+
>>> from astropy.stats import poisson_conf_interval
+>>> counts = np.random.randint(0, 1000, 100)
+>>> # ---- Do it without the lookup table ----
+>>> err_low, err_high = poisson_conf_interval(np.asanyarray(counts),
+...                 interval='frequentist-confidence', sigma=1)
+>>> err_low -= np.asanyarray(counts)
+>>> err_high -= np.asanyarray(counts)
+>>> err = (np.absolute(err_low) + np.absolute(err_high))/2.0
+>>> # Do it with this function
+>>> err_thisfun = poisson_symmetrical_errors(counts)
+>>> # Test that results are always the same
+>>> assert np.allclose(err_thisfun, err)
+
+
+
+ +
+
+stingray.utils.rebin_data(x, y, dx_new, yerr=None, method='sum', dx=None)[source]
+

Rebin some data to an arbitrary new data resolution. Either sum +the data points in the new bins or average them.

+
+
Parameters:
+
+
x: iterable

The dependent variable with some resolution, which can vary throughout +the time series.

+
+
y: iterable

The independent variable to be binned

+
+
dx_new: float

The new resolution of the dependent variable x

+
+
+
+
Returns:
+
+
xbin: numpy.ndarray

The midpoints of the new bins in x

+
+
ybin: numpy.ndarray

The binned quantity y

+
+
ybin_err: numpy.ndarray

The uncertainties of the binned values of y.

+
+
step_size: float

The size of the binning step

+
+
+
+
Other Parameters:
+
+
yerr: iterable, optional

The uncertainties of y, to be propagated during binning.

+
+
method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum``

The method to be used in binning. Either sum the samples y in +each new bin of x, or take the arithmetic mean.

+
+
dx: float

The old resolution (otherwise, calculated from difference between +time bins)

+
+
+
+
+

Examples

+
>>> x = np.arange(0, 100, 0.01)
+>>> y = np.ones(x.size)
+>>> yerr = np.ones(x.size)
+>>> xbin, ybin, ybinerr, step_size = rebin_data(
+...     x, y, 4, yerr=yerr, method='sum', dx=0.01)
+>>> assert np.allclose(ybin, 400)
+>>> assert np.allclose(ybinerr, 20)
+>>> xbin, ybin, ybinerr, step_size = rebin_data(
+...     x, y, 4, yerr=yerr, method='mean')
+>>> assert np.allclose(ybin, 1)
+>>> assert np.allclose(ybinerr, 0.05)
+
+
+
+ +
+
+stingray.utils.rebin_data_log(x, y, f, y_err=None, dx=None)[source]
+

Logarithmic re-bin of some data. Particularly useful for the power +spectrum.

+

The new dependent variable depends on the previous dependent variable +modified by a factor f:

+
+\[d\nu_j = d\nu_{j-1} (1+f)\]
+
+
Parameters:
+
+
x: iterable

The dependent variable with some resolution dx_old = x[1]-x[0]

+
+
y: iterable

The independent variable to be binned

+
+
f: float

The factor of increase of each bin wrt the previous one.

+
+
+
+
Returns:
+
+
xbin: numpy.ndarray

The midpoints of the new bins in x

+
+
ybin: numpy.ndarray

The binned quantity y

+
+
ybin_err: numpy.ndarray

The uncertainties of the binned values of y

+
+
step_size: float

The size of the binning step

+
+
+
+
Other Parameters:
+
+
yerr: iterable, optional

The uncertainties of y to be propagated during binning.

+
+
method: {``sum`` | ``average`` | ``mean``}, optional, default ``sum``

The method to be used in binning. Either sum the samples y in +each new bin of x or take the arithmetic mean.

+
+
dx: float, optional

The binning step of the initial x

+
+
+
+
+
+ +
+
+stingray.utils.simon(message, **kwargs)[source]
+

The Statistical Interpretation MONitor.

+

A warning system designed to always remind the user that Simon +is watching him/her.

+
+
Parameters:
+
+
messagestring

The message that is thrown

+
+
kwargsdict

The rest of the arguments that are passed to warnings.warn

+
+
+
+
+
+ +
+
+stingray.utils.standard_error(xs, mean)[source]
+

Return the standard error of the mean (SEM) of an array of arrays.

+
+
Parameters:
+
+
xs2-d float array

List of data point arrays.

+
+
mean1-d float array

Average of the data points.

+
+
+
+
Returns:
+
+
standard_error1-d float array

Standard error of the mean (SEM).

+
+
+
+
+
+ +
+
+
+

Modeling

+

This subpackage defines classes and functions related to parametric modelling of various types of +data sets. Currently, most functionality is focused on modelling Fourier products (especially +power spectra and averaged power spectra), but rudimentary functionality exists for modelling +e.g. light curves.

+
+

Log-Likelihood Classes

+

These classes define basic log-likelihoods for modelling time series and power spectra. +stingray.modeling.LogLikelihood is an abstract base class, i.e. a template for creating +user-defined log-likelihoods and should not be instantiated itself. Based on this base class +are several definitions for a stingray.modeling.GaussianLogLikelihood, appropriate for +data with normally distributed uncertainties, a stingray.modeling.PoissonLogLikelihood +appropriate for photon counting data, and a stingray.modeling.PSDLogLikelihood +appropriate for (averaged) power spectra.

+
+
+class stingray.modeling.LogLikelihood(x, y, model, **kwargs)[source]
+

Abstract Base Class defining the structure of a LogLikelihood object. +This class cannot be called itself, since each statistical distribution +has its own definition for the likelihood, which should occur in subclasses.

+
+
Parameters:
+
+
xiterable

x-coordinate of the data. Could be multi-dimensional.

+
+
yiterable

y-coordinate of the data. Could be multi-dimensional.

+
+
modelan astropy.modeling.FittableModel instance

Your model

+
+
kwargs

keyword arguments specific to the individual sub-classes. For +details, see the respective docstrings for each subclass

+
+
+
+
+
+
+abstract evaluate(parameters)[source]
+

This is where you define your log-likelihood. Do this, but do it in a subclass!

+
+ +
+ +
+
+class stingray.modeling.GaussianLogLikelihood(x, y, yerr, model)[source]
+

Likelihood for data with Gaussian uncertainties. +Astronomers also call this likelihood Chi-Squared, but be aware +that this has nothing to do with the likelihood based on the +Chi-square distribution, which is also defined as in of +PSDLogLikelihood in this module!

+

Use this class here whenever your data has Gaussian uncertainties.

+
+
Parameters:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan Astropy Model instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the Gaussian log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PoissonLogLikelihood(x, y, model)[source]
+

Likelihood for data with uncertainties following a Poisson distribution. +This is useful e.g. for (binned) photon count data.

+
+
Parameters:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PSDLogLikelihood(freq, power, model, m=1)[source]
+

A likelihood based on the Chi-square distribution, appropriate for modelling +(averaged) power spectra. Note that this is not the same as the statistic +astronomers commonly call Chi-Square, which is a fit statistic derived from +the Gaussian log-likelihood, defined elsewhere in this module.

+
+
Parameters:
+
+
freqiterable

Array with frequencies

+
+
poweriterable

Array with (averaged/singular) powers corresponding to the +frequencies in freq

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
mint

1/2 of the degrees of freedom

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.LaplaceLogLikelihood(x, y, yerr, model)[source]
+

A Laplace likelihood for the cospectrum.

+
+
Parameters:
+
+
xiterable

Array with independent variable

+
+
yiterable

Array with dependent variable

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
yerriterable

Array with the uncertainties on y, in standard deviation

+
+
+
+
Attributes:
+
+
xiterable

x-coordinate of the data

+
+
yiterable

y-coordinte of the data

+
+
yerriterable

the uncertainty on the data, as standard deviation

+
+
modelan astropy.modeling.FittableModel instance

The model to use in the likelihood.

+
+
nparint

The number of free parameters in the model

+
+
+
+
+
+
+evaluate(pars, neg=False)[source]
+

Evaluate the log-likelihood for a given set of parameters.

+
+
Parameters:
+
+
parsnumpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-likelihood. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-likelihood, i.e. +-loglike, rather than loglike. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
loglikefloat

The log(likelihood) value for the data and model.

+
+
+
+
+
+ +
+ +
+
+
+

Posterior Classes

+

These classes define basic posteriors for parametric modelling of time series and power spectra, based on +the log-likelihood classes defined in Log-Likelihood Classes. stingray.modeling.Posterior is an +abstract base class laying out a basic template for defining posteriors. As with the log-likelihood classes +above, several posterior classes are defined for a variety of data types.

+

Note that priors are not pre-defined in these classes, since they are problem dependent and should be +set by the user. The convenience function stingray.modeling.set_logprior() can be useful to help set +priors for these posterior classes.

+
+
+class stingray.modeling.Posterior(x, y, model, **kwargs)[source]
+

Define a Posterior object.

+

The Posterior describes the Bayesian probability distribution of +a set of parameters \(\theta\) given some observed data \(D\) and +some prior assumptions \(I\).

+

It is defined as

+
+\[p(\theta | D, I) = p(D | \theta, I) p(\theta | I)/p(D| I)\]
+

where \(p(D | \theta, I)\) describes the likelihood, i.e. the +sampling distribution of the data and the (parametric) model, and +\(p(\theta | I)\) describes the prior distribution, i.e. our information +about the parameters \(\theta\) before we gathered the data. +The marginal likelihood \(p(D| I)\) describes the probability of +observing the data given the model assumptions, integrated over the +space of all parameters.

+
+
Parameters:
+
+
xiterable

The abscissa or independent variable of the data. This could +in principle be a multi-dimensional array.

+
+
yiterable

The ordinate or dependent variable of the data.

+
+
modelastropy.modeling.models instance

The parametric model supposed to represent the data. For details +see the astropy.modeling documentation

+
+
kwargs

keyword arguments related to the subclasses of Posterior. For +details, see the documentation of the individual subclasses

+
+
+
+
+

References

+
    +
  • Sivia, D. S., and J. Skilling. “Data Analysis: A Bayesian Tutorial. 2006.”

  • +
  • Gelman, Andrew, et al. Bayesian data analysis. Vol. 2. Boca Raton, FL, USA: Chapman & Hall/CRC, 2014.

  • +
  • von Toussaint, Udo. “Bayesian inference in physics.” Reviews of Modern Physics 83.3 (2011): 943.

  • +
  • Hogg, David W. “Probability Calculus for inference”. arxiv: 1205.4446

  • +
+
+
+logposterior(t0, neg=False)[source]
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.GaussianPosterior(x, y, yerr, model, priors=None)[source]
+

A general class for two-dimensional data following a Gaussian +sampling distribution.

+
+
Parameters:
+
+
xnumpy.ndarray

independent variable

+
+
ynumpy.ndarray

dependent variable

+
+
yerrnumpy.ndarray

measurement uncertainties for y

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PoissonPosterior(x, y, model, priors=None)[source]
+

Posterior for Poisson light curve data. Primary intended use is for +modelling X-ray light curves, but alternative uses are conceivable.

+
+
Parameters:
+
+
xnumpy.ndarray

The independent variable (e.g. time stamps of a light curve)

+
+
ynumpy.ndarray

The dependent variable (e.g. counts per bin of a light curve)

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
+
+
Attributes:
+
+
xnumpy.ndarray

The independent variable (list of frequencies) stored in ps.freq

+
+
ynumpy.ndarray

The dependent variable (list of powers) stored in ps.power

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.PSDPosterior(freq, power, model, priors=None, m=1)[source]
+

Posterior distribution for power spectra. +Uses an exponential distribution for the errors in the likelihood, +or a \(\chi^2\) distribution with \(2M\) degrees of freedom, where +\(M\) is the number of frequency bins or power spectra averaged in each bin.

+
+
Parameters:
+
+
ps{stingray.Powerspectrum | stingray.AveragedPowerspectrum} instance

the stingray.Powerspectrum object containing the data

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
mint, default 1

The number of averaged periodograms or frequency bins in ps. +Useful for binned/averaged periodograms, since the value of +m will change the likelihood function!

+
+
+
+
Attributes:
+
+
ps{stingray.Powerspectrum | stingray.AveragedPowerspectrum} instance

the stingray.Powerspectrum object containing the data

+
+
xnumpy.ndarray

The independent variable (list of frequencies) stored in ps.freq

+
+
ynumpy.ndarray

The dependent variable (list of powers) stored in ps.power

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.LaplacePosterior(x, y, yerr, model, priors=None)[source]
+

A general class for two-dimensional data following a Gaussian +sampling distribution.

+
+
Parameters:
+
+
xnumpy.ndarray

independent variable

+
+
ynumpy.ndarray

dependent variable

+
+
yerrnumpy.ndarray

measurement uncertainties for y, in standard deviation

+
+
modelinstance of any subclass of astropy.modeling.FittableModel

The model for the power spectrum.

+
+
priorsdict of form {"parameter name": function}, optional

A dictionary with the definitions for the prior probabilities. +For each parameter in model, there must be a prior defined with +a key of the exact same name as stored in model.param_names. +The item for each key is a function definition defining the prior +(e.g. a lambda function or a scipy.stats.distribution.pdf. +If priors = None, then no prior is set. This means priors need +to be added by hand using the set_logprior() function defined in +this module. Note that it is impossible to call a Posterior object +itself or the self.logposterior method without defining a prior.

+
+
+
+
+
+
+logposterior(t0, neg=False)
+

Definition of the log-posterior. +Requires methods loglikelihood and logprior to both +be defined.

+

Note that loglikelihood is set in the subclass of Posterior +appropriate for your problem at hand, as is logprior.

+
+
Parameters:
+
+
t0numpy.ndarray

An array of parameters at which to evaluate the model +and subsequently the log-posterior. Note that the +length of this array must match the free parameters in +model, i.e. npar

+
+
negbool, optional, default False

If True, return the negative log-posterior, i.e. +-lpost, rather than lpost. This is useful e.g. +for optimization routines, which generally minimize +functions.

+
+
+
+
Returns:
+
+
lpostfloat

The value of the log-posterior for the given parameters t0

+
+
+
+
+
+ +
+ +
+
+
+

Parameter Estimation Classes

+

These classes implement functionality related to parameter estimation. They define basic fit and +sample methods using scipy.optimize and emcee, respectively, for optimization and Markov Chain Monte +Carlo sampling. stingray.modeling.PSDParEst implements some more advanced functionality for modelling +power spectra, including both frequentist and Bayesian searches for (quasi-)periodic signals.

+
+
+class stingray.modeling.ParameterEstimation(fitmethod='BFGS', max_post=True)[source]
+

Parameter estimation of two-dimensional data, either via +optimization or MCMC. +Note: optimization with bounds is not supported. If something like +this is required, define (uniform) priors in the ParametricModel +instances to be used below.

+
+
Parameters:
+
+
fitmethodstring, optional, default L-BFGS-B

Any of the strings allowed in scipy.optimize.minimize in +the method keyword. Sets the fit method to be used.

+
+
max_postbool, optional, default True

If True, then compute the Maximum-A-Posteriori estimate. If False, +compute a Maximum Likelihood estimate.

+
+
+
+
+
+
+calibrate_lrt(lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None)[source]
+

Calibrate the outcome of a Likelihood Ratio Test via MCMC.

+

In order to compare models via likelihood ratio test, one generally +aims to compute a p-value for the null hypothesis (generally the +simpler model). There are two special cases where the theoretical +distribution used to compute that p-value analytically given the +observed likelihood ratio (a chi-square distribution) is not +applicable:

+
    +
  • the models are not nested (i.e. Model 1 is not a special, simpler +case of Model 2),

  • +
  • the parameter values fixed in Model 2 to retrieve Model 1 are at the +edges of parameter space (e.g. if one must set, say, an amplitude to +zero in order to remove a component in the more complex model, and +negative amplitudes are excluded a priori)

  • +
+

In these cases, the observed likelihood ratio must be calibrated via +simulations of the simpler model (Model 1), using MCMC to take into +account the uncertainty in the parameters. This function does +exactly that: it computes the likelihood ratio for the observed data, +and produces simulations to calibrate the likelihood ratio and +compute a p-value for observing the data under the assumption that +Model 1 istrue.

+

If max_post=True, the code will use MCMC to sample the posterior +of the parameters and simulate fake data from there.

+

If max_post=False, the code will use the covariance matrix derived +from the fit to simulate data sets for comparison.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative +log-likelihood or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
pvaluefloat [0,1]

p-value ‘n stuff

+
+
+
+
+
+ +
+
+compute_lrt(lpost1, t1, lpost2, t2, neg=True, max_post=False)[source]
+

This function computes the Likelihood Ratio Test between two +nested models.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative log-likelihood +or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
lrtfloat

The likelihood ratio for model 2 and model 1

+
+
res1OptimizationResults object

Contains the result of fitting lpost1

+
+
res2OptimizationResults object

Contains the results of fitting lpost2

+
+
+
+
+
+ +
+
+fit(lpost, t0, neg=True, scipy_optimize_options=None)[source]
+

Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) +fit to the data.

+

MAP fits include priors, ML fits do not.

+
+
Parameters:
+
+
lpostPosterior (or subclass) instance

and instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0{list | numpy.ndarray}

List/array with set of initial parameters

+
+
negbool, optional, default True

Boolean to be passed to lpost, setting whether to use the +negative posterior or the negative log-likelihood. Useful for +optimization routines, which are generally defined as minimization routines.

+
+
scipy_optimize_optionsdict, optional, default None

A dictionary with options for scipy.optimize.minimize, +directly passed on as keyword arguments.

+
+
+
+
Returns:
+
+
resOptimizationResults object

An object containing useful summaries of the fitting procedure. +For details, see documentation of class:OptimizationResults.

+
+
+
+
+
+ +
+
+sample(lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test', pool=False)[source]
+

Sample the Posterior distribution defined in lpost using MCMC. +Here we use the emcee package, but other implementations could +in principle be used.

+
+
Parameters:
+
+
lpostinstance of a Posterior subclass

and instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0iterable

list or array containing the starting parameters. Its length +must match lpost.model.npar.

+
+
nwalkersint, optional, default 500

The number of walkers (chains) to use during the MCMC procedure. +The more walkers are used, the slower the estimation will be, but +the better the final distribution is likely to be.

+
+
niterint, optional, default 100

The number of iterations to run the MCMC chains for. The larger this +number, the longer the estimation will take, but the higher the +chance that the walkers have actually converged on the true +posterior distribution.

+
+
burninint, optional, default 100

The number of iterations to run the walkers before convergence is +assumed to have occurred. This part of the chain will be discarded +before sampling from what is then assumed to be the posterior +distribution desired.

+
+
threadsDEPRECATED int, optional, default 1

The number of threads for parallelization. +Default is 1, i.e. no parallelization +With the change to the new emcee version 3, threads is +deprecated. Use the pool keyword argument instead. +This will no longer have any effect.

+
+
print_resultsbool, optional, default True

Boolean flag setting whether the results of the MCMC run should +be printed to standard output. Default: True

+
+
plotbool, optional, default False

Boolean flag setting whether summary plots of the MCMC chains +should be produced. Default: False

+
+
namestrstr, optional, default test

Optional string for output file names for the plotting.

+
+
poolbool, default False

If True, use pooling to parallelize the operation.

+
+
+
+
Returns:
+
+
resclass:SamplingResults object

An object of class SamplingResults summarizing the +results of the MCMC run.

+
+
+
+
+
+ +
+
+simulate_lrts(s_all, lpost1, t1, lpost2, t2, max_post=True, seed=None)[source]
+

Simulate likelihood ratios. +For details, see definitions in the subclasses that implement this +task.

+
+ +
+ +
+
+class stingray.modeling.PSDParEst(ps, fitmethod='BFGS', max_post=True)[source]
+

Parameter estimation for parametric modelling of power spectra.

+

This class contains functionality that allows parameter estimation +and related tasks that involve fitting a parametric model to an +(averaged) power spectrum.

+
+
Parameters:
+
+
psclass:stingray.Powerspectrum or class:stingray.AveragedPowerspectrum object

The power spectrum to be modelled

+
+
fitmethodstr, optional, default BFGS

A string allowed by scipy.optimize.minimize as a valid +fitting method

+
+
max_postbool, optional, default True

If True, do a Maximum-A-Posteriori (MAP) fit, i.e. fit with +priors, otherwise do a Maximum Likelihood fit instead

+
+
+
+
+
+
+calibrate_highest_outlier(lpost, t0, sample=None, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None)[source]
+

Calibrate the highest outlier in a data set using MCMC-simulated +power spectra.

+

In short, the procedure does a MAP fit to the data, computes the +statistic

+
+\[\max{(T_R = 2(\mathrm{data}/\mathrm{model}))}\]
+

and then does an MCMC run using the data and the model, or generates parameter samples +from the likelihood distribution using the derived covariance in a Maximum Likelihood +fit. +From the (posterior) samples, it generates fake power spectra. Each fake spectrum is fit +in the same way as the data, and the highest data/model outlier extracted as for the data. +The observed value of \(T_R\) can then be directly compared to the simulated +distribution of \(T_R\) values in order to derive a p-value of the null +hypothesis that the observed \(T_R\) is compatible with being generated by +noise.

+
+
Parameters:
+
+
lpoststingray.modeling.PSDPosterior object

An instance of class stingray.modeling.PSDPosterior that defines the +function to be minimized (either in loglikelihood or logposterior)

+
+
t0{list | numpy.ndarray}

List/array with set of initial parameters

+
+
sampleSamplingResults instance, optional, default None

If a sampler has already been run, the SamplingResults instance can be +fed into this method here, otherwise this method will run a sampler +automatically

+
+
max_post: bool, optional, default ``False``

If True, do MAP fits on the power spectrum to find the highest data/model outlier +Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will +be generated from an MCMC run, otherwise the method will employ the approximated +covariance matrix for the parameters derived from the likelihood surface to generate +samples from that likelihood function.

+
+
nsimint, optional, default 1000

Number of fake power spectra to simulate from the posterior sample. Note that this +number sets the resolution of the resulting p-value. For nsim=1000, the highest +resolution that can be achieved is \(10^{-3}\).

+
+
niterint, optional, default 200

If sample is None, this variable will be used to set the number of steps in the +MCMC procedure after burn-in.

+
+
nwalkersint, optional, default 500

If sample is None, this variable will be used to set the number of MCMC chains +run in parallel in the sampler.

+
+
burninint, optional, default 200

If sample is None, this variable will be used to set the number of burn-in steps +to be discarded in the initial phase of the MCMC run

+
+
namestrstr, optional, default test

A string to be used for storing MCMC output and plots to disk

+
+
seedint, optional, default None

An optional number to seed the random number generator with, for reproducibility of +the results obtained with this method.

+
+
+
+
Returns:
+
+
pvalfloat

The p-value that the highest data/model outlier is produced by random noise, calibrated +using simulated power spectra from an MCMC run.

+
+
+
+
+

References

+

For more details on the procedure employed here, see

+
+
+
+
+ +
+
+calibrate_lrt(lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False, nsim=1000, niter=200, nwalkers=500, burnin=200, namestr='test', seed=None)
+

Calibrate the outcome of a Likelihood Ratio Test via MCMC.

+

In order to compare models via likelihood ratio test, one generally +aims to compute a p-value for the null hypothesis (generally the +simpler model). There are two special cases where the theoretical +distribution used to compute that p-value analytically given the +observed likelihood ratio (a chi-square distribution) is not +applicable:

+
    +
  • the models are not nested (i.e. Model 1 is not a special, simpler +case of Model 2),

  • +
  • the parameter values fixed in Model 2 to retrieve Model 1 are at the +edges of parameter space (e.g. if one must set, say, an amplitude to +zero in order to remove a component in the more complex model, and +negative amplitudes are excluded a priori)

  • +
+

In these cases, the observed likelihood ratio must be calibrated via +simulations of the simpler model (Model 1), using MCMC to take into +account the uncertainty in the parameters. This function does +exactly that: it computes the likelihood ratio for the observed data, +and produces simulations to calibrate the likelihood ratio and +compute a p-value for observing the data under the assumption that +Model 1 istrue.

+

If max_post=True, the code will use MCMC to sample the posterior +of the parameters and simulate fake data from there.

+

If max_post=False, the code will use the covariance matrix derived +from the fit to simulate data sets for comparison.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative +log-likelihood or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
pvaluefloat [0,1]

p-value ‘n stuff

+
+
+
+
+
+ +
+
+compute_lrt(lpost1, t1, lpost2, t2, neg=True, max_post=False)
+

This function computes the Likelihood Ratio Test between two +nested models.

+
+
Parameters:
+
+
lpost1object of a subclass of Posterior

The Posterior object for model 1

+
+
t1iterable

The starting parameters for model 1

+
+
lpost2object of a subclass of Posterior

The Posterior object for model 2

+
+
t2iterable

The starting parameters for model 2

+
+
negbool, optional, default True

Boolean flag to decide whether to use the negative log-likelihood +or log-posterior

+
+
max_post: bool, optional, default ``False``

If True, set the internal state to do the optimization with the +log-likelihood rather than the log-posterior.

+
+
+
+
Returns:
+
+
lrtfloat

The likelihood ratio for model 2 and model 1

+
+
res1OptimizationResults object

Contains the result of fitting lpost1

+
+
res2OptimizationResults object

Contains the results of fitting lpost2

+
+
+
+
+
+ +
+
+fit(lpost, t0, neg=True, scipy_optimize_options=None)[source]
+

Do either a Maximum-A-Posteriori (MAP) or Maximum Likelihood (ML) +fit to the power spectrum.

+

MAP fits include priors, ML fits do not.

+
+
Parameters:
+
+
lpoststingray.modeling.PSDPosterior object

An instance of class stingray.modeling.PSDPosterior that defines the +function to be minimized (either in loglikelihood or logposterior)

+
+
t0{list | numpy.ndarray}

List/array with set of initial parameters

+
+
negbool, optional, default True

Boolean to be passed to lpost, setting whether to use the +negative posterior or the negative log-likelihood.

+
+
scipy_optimize_optionsdict, optional, default None

A dictionary with options for scipy.optimize.minimize, +directly passed on as keyword arguments.

+
+
+
+
Returns:
+
+
resOptimizationResults object

An object containing useful summaries of the fitting procedure. +For details, see documentation of OptimizationResults.

+
+
+
+
+
+ +
+
+plotfits(res1, res2=None, save_plot=False, namestr='test', log=False)[source]
+

Plotting method that allows to plot either one or two best-fit models +with the data.

+

Plots a power spectrum with the best-fit model, as well as the data/model +residuals for each model.

+
+
Parameters:
+
+
res1OptimizationResults object

Output of a successful fitting procedure

+
+
res2OptimizationResults object, optional, default None

Optional output of a second successful fitting procedure, e.g. with a +competing model

+
+
save_plotbool, optional, default False

If True, the resulting figure will be saved to a file

+
+
namestrstr, optional, default test

If save_plot is True, this string defines the path and file name +for the output plot

+
+
logbool, optional, default False

If True, plot the axes logarithmically.

+
+
+
+
+
+ +
+
+sample(lpost, t0, cov=None, nwalkers=500, niter=100, burnin=100, threads=1, print_results=True, plot=False, namestr='test')[source]
+

Sample the posterior distribution defined in lpost using MCMC. +Here we use the emcee package, but other implementations could +in principle be used.

+
+
Parameters:
+
+
lpostinstance of a Posterior subclass

and instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0iterable

list or array containing the starting parameters. Its length +must match lpost.model.npar.

+
+
nwalkersint, optional, default 500

The number of walkers (chains) to use during the MCMC procedure. +The more walkers are used, the slower the estimation will be, but +the better the final distribution is likely to be.

+
+
niterint, optional, default 100

The number of iterations to run the MCMC chains for. The larger this +number, the longer the estimation will take, but the higher the +chance that the walkers have actually converged on the true +posterior distribution.

+
+
burninint, optional, default 100

The number of iterations to run the walkers before convergence is +assumed to have occurred. This part of the chain will be discarded +before sampling from what is then assumed to be the posterior +distribution desired.

+
+
threadsint, optional, default 1

The number of threads for parallelization. +Default is 1, i.e. no parallelization

+
+
print_resultsbool, optional, default True

Boolean flag setting whether the results of the MCMC run should +be printed to standard output

+
+
plotbool, optional, default False

Boolean flag setting whether summary plots of the MCMC chains +should be produced

+
+
namestrstr, optional, default test

Optional string for output file names for the plotting.

+
+
+
+
Returns:
+
+
resSamplingResults object

An object containing useful summaries of the +sampling procedure. For details see documentation of SamplingResults.

+
+
+
+
+
+ +
+
+simulate_highest_outlier(s_all, lpost, t0, max_post=True, seed=None)[source]
+

Simulate \(n\) power spectra from a model and then find the highest +data/model outlier in each.

+

The data/model outlier is defined as

+
+\[\max{(T_R = 2(\mathrm{data}/\mathrm{model}))} .\]
+
+
Parameters:
+
+
s_allnumpy.ndarray

A list of parameter values derived either from an approximation of the +likelihood surface, or from an MCMC run. Has dimensions (n, ndim), where +n is the number of simulated power spectra to generate, and ndim the +number of model parameters.

+
+
lpostinstance of a Posterior subclass

an instance of class Posterior or one of its subclasses +that defines the function to be minimized (either in loglikelihood +or logposterior)

+
+
t0iterable

list or array containing the starting parameters. Its length +must match lpost.model.npar.

+
+
max_post: bool, optional, default ``False``

If True, do MAP fits on the power spectrum to find the highest data/model outlier +Otherwise, do a Maximum Likelihood fit. If True, the simulated power spectra will +be generated from an MCMC run, otherwise the method will employ the approximated +covariance matrix for the parameters derived from the likelihood surface to generate +samples from that likelihood function.

+
+
seedint, optional, default None

An optional number to seed the random number generator with, for reproducibility of +the results obtained with this method.

+
+
+
+
Returns:
+
+
max_y_allnumpy.ndarray

An array of maximum outliers for each simulated power spectrum

+
+
+
+
+
+ +
+
+simulate_lrts(s_all, lpost1, t1, lpost2, t2, seed=None)[source]
+

Simulate likelihood ratios for two given models based on MCMC samples +for the simpler model (i.e. the null hypothesis).

+
+
Parameters:
+
+
s_allnumpy.ndarray of shape (nsamples, lpost1.npar)

An array with MCMC samples derived from the null hypothesis model in +lpost1. Its second dimension must match the number of free +parameters in lpost1.model.

+
+
lpost1LogLikelihood or Posterior subclass object

Object containing the null hypothesis model

+
+
t1iterable of length lpost1.npar

A starting guess for fitting the model in lpost1

+
+
lpost2LogLikelihood or Posterior subclass object

Object containing the alternative hypothesis model

+
+
t2iterable of length lpost2.npar

A starting guess for fitting the model in lpost2

+
+
max_postbool, optional, default True

If True, then lpost1 and lpost2 should be Posterior subclass +objects; if False, then lpost1 and lpost2 should be +LogLikelihood subclass objects

+
+
seedint, optional default None

A seed to initialize the numpy.random.RandomState object to be +passed on to _generate_data. Useful for producing exactly +reproducible results

+
+
+
+
Returns:
+
+
lrt_simnumpy.ndarray

An array with the simulated likelihood ratios for the simulated +data

+
+
+
+
+
+ +
+ +
+
+
+

Auxiliary Classes

+

These are helper classes instantiated by stingray.modeling.ParameterEstimation and its subclasses to +organize the results of model fitting and sampling in a more meaningful, easily accessible way.

+
+
+class stingray.modeling.OptimizationResults(lpost, res, neg=True, log=None)[source]
+

Helper class that will contain the results of the regression. +Less fiddly than a dictionary.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
res: instance of ``scipy.OptimizeResult``

The object containing the results from a optimization run

+
+
negbool, optional, default True

A flag that sets whether the log-likelihood or negative log-likelihood +is being used

+
+
loga logging.getLogger() object, default None

You can pass a pre-defined object for logging, else a new +logger will be instantiated

+
+
+
+
Attributes:
+
+
resultfloat

The result of the optimization, i.e. the function value at the +minimum that the optimizer found

+
+
p_optiterable

The list of parameters at the minimum found by the optimizer

+
+
modelastropy.models.Model instance

The parametric model fit to the data

+
+
covnumpy.ndarray

The covariance matrix for the parameters, has shape (len(p_opt), len(p_opt))

+
+
errnumpy.ndarray

The standard deviation of the parameters, derived from the diagonal of cov. +Has the same shape as p_opt

+
+
mfitnumpy.ndarray

The values of the model for all x

+
+
deviancefloat

The deviance, calculated as -2*log(likelihood)

+
+
aicfloat

The Akaike Information Criterion, derived from the log(likelihood) and often used +in model comparison between non-nested models; +For more details, see [7]

+
+
bicfloat

The Bayesian Information Criterion, derived from the log(likelihood) and often used +in model comparison between non-nested models; +For more details, see [8]

+
+
meritfloat

sum of squared differences between data and model, normalized by the +model values

+
+
dofint

The number of degrees of freedom in the problem, defined as the number of +data points - the number of parameters

+
+
sexpint

2*(number of parameters)*(number of data points)

+
+
ssdfloat

sqrt(2*(sexp)), expected sum of data-model residuals

+
+
sobsfloat

sum of data-model residuals

+
+
+
+
+

References

+ +
+
+_compute_covariance(lpost, res)[source]
+

Compute the covariance of the parameters using inverse of the Hessian, i.e. +the second-order derivative of the log-likelihood. Also calculates an estimate +of the standard deviation in the parameters, using the square root of the diagonal +of the covariance matrix.

+

The Hessian is either estimated directly by the chosen method of fitting, or +approximated using the statsmodel approx_hess function.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
res: instance of ``scipy``’s ``OptimizeResult`` class

The object containing the results from a optimization run

+
+
+
+
+
+ +
+
+_compute_criteria(lpost)[source]
+

Compute various information criteria useful for model comparison in +non-nested models.

+

Currently implemented are the Akaike Information Criterion [9] and the +Bayesian Information Criterion [10].

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+

References

+ +
+ +
+
+_compute_model(lpost)[source]
+

Compute the values of the best-fit model for all x.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+
+ +
+
+_compute_statistics(lpost)[source]
+

Compute some useful fit statistics, like the degrees of freedom and the +figure of merit.

+
+
Parameters:
+
+
lpost: instance of :class:`Posterior` or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+
+ +
+
+print_summary(lpost)[source]
+

Print a useful summary of the fitting procedure to screen or +a log file.

+
+
Parameters:
+
+
lpostinstance of Posterior or one of its subclasses

The object containing the function that is being optimized +in the regression

+
+
+
+
+
+ +
+ +
+
+class stingray.modeling.SamplingResults(sampler, ci_min=5, ci_max=95, log=None)[source]
+

Helper class that will contain the results of the sampling +in a handy format.

+

Less fiddly than a dictionary.

+
+
Parameters:
+
+
sampler: ``emcee.EnsembleSampler`` object

The object containing the sampler that’s done all the work.

+
+
ci_min: float out of [0,100]

The lower bound percentile for printing credible intervals +on the parameters

+
+
ci_max: float out of [0,100]

The upper bound percentile for printing credible intervals +on the parameters

+
+
loga logging.getLogger() object, default None

You can pass a pre-defined object for logging, else a new +logger will be instantiated

+
+
+
+
Attributes:
+
+
samplesnumpy.ndarray

An array of samples from the MCMC run, including all chains +flattened into one long (nwalkers*niter, ndim) array

+
+
nwalkersint

The number of chains used in the MCMC procedure

+
+
niterint

The number of MCMC iterations in each chain

+
+
ndimint

The dimensionality of the problem, i.e. the number of +parameters in the model

+
+
acceptancefloat

The mean acceptance ratio, calculated over all chains

+
+
Lfloat

The product of acceptance ratio and number of samples

+
+
acorfloat

The autocorrelation length for the chains; should be shorter +than the chains themselves for independent sampling

+
+
rhatfloat

weighted average of between-sequence variance and within-sequence +variance; Gelman-Rubin convergence statistic [11]

+
+
meannumpy.ndarray

An array of size ndim, with the posterior means of the parameters +derived from the MCMC chains

+
+
stdnumpy.ndarray

An array of size ndim with the posterior standard deviations of +the parameters derived from the MCMC chains

+
+
cinumpy.ndarray

An array of shape (ndim, 2) containing the lower and upper bounds +of the credible interval (the Bayesian equivalent of the confidence +interval) for each parameter using the bounds set by ci_min and ci_max

+
+
+
+
+

References

+ +
+
+_check_convergence(sampler)[source]
+

Compute common statistics for convergence of the MCMC +chains. While you can never be completely sure that your chains +converged, these present reasonable heuristics to give an +indication whether convergence is very far off or reasonably close.

+

Currently implemented are the autocorrelation time [12] and the +Gelman-Rubin convergence criterion [13].

+
+
Parameters:
+
+
sampleran emcee.EnsembleSampler object
+
+
+
+

References

+ +
+ +
+
+_compute_rhat(sampler)[source]
+

Compute Gelman-Rubin convergence criterion [14].

+
+
Parameters:
+
+
sampleran emcee.EnsembleSampler object
+
+
+
+

References

+ +
+ +
+
+_infer(ci_min=5, ci_max=95)[source]
+

Infer the Posterior means, standard deviations and credible intervals +(i.e. the Bayesian equivalent to confidence intervals) from the Posterior samples +for each parameter.

+
+
Parameters:
+
+
ci_minfloat

Lower bound to the credible interval, given as percentage between +0 and 100

+
+
ci_maxfloat

Upper bound to the credible interval, given as percentage between +0 and 100

+
+
+
+
+
+ +
+
+plot_results(nsamples=1000, fig=None, save_plot=False, filename='test.pdf')[source]
+

Plot some results in a triangle plot. +If installed, will use [corner] +for the plotting, if not, +uses its own code to make a triangle plot.

+

By default, this method returns a matplotlib.Figure object, but +if save_plot=True the plot can be saved to file automatically,

+
+
Parameters:
+
+
nsamplesint, default 1000

The maximum number of samples used for plotting.

+
+
figmatplotlib.Figure instance, default None

If created externally, you can pass a Figure instance to this method. +If none is passed, the method will create one internally.

+
+
save_plotbool, default False

If True save the plot to file with a file name specified by the +keyword filename. If False just return the Figure object

+
+
filenamestr

Name of the output file with the figure

+
+
+
+
+

References

+ +
+ +
+
+print_results()[source]
+

Print results of the MCMC run on screen or to a log-file.

+
+ +
+ +
+
+
+

Convenience Functions

+

These functions are designed to help the user perform common tasks related to modelling and parameter +estimation. In particular, the function stingray.modeling.set_logprior() is designed to +help users set priors in their stingray.modeling.Posterior subclass objects.

+
+
+stingray.modeling.set_logprior(lpost, priors)[source]
+

This function constructs the logprior method required to successfully +use a Posterior object.

+

All instances of class Posterior and its subclasses require to implement a +logprior methods. However, priors are strongly problem-dependent and +therefore usually user-defined.

+

This function allows for setting the logprior method on any instance +of class Posterior efficiently by allowing the user to pass a +dictionary of priors and an instance of class Posterior.

+
+
Parameters:
+
+
lpostPosterior object

An instance of class Posterior or any of its subclasses

+
+
priorsdict

A dictionary containing the prior definitions. Keys are parameter +names as defined by the astropy.models.FittableModel instance supplied +to the model parameter in Posterior. Items are functions +that take a parameter as input and return the log-prior probability +of that parameter.

+
+
+
+
Returns:
+
+
logpriorfunction

The function definition for the prior

+
+
+
+
+

Examples

+

Make a light curve and power spectrum

+
>>> photon_arrivals = np.sort(np.random.uniform(0,1000, size=10000))
+>>> lc = Lightcurve.make_lightcurve(photon_arrivals, dt=1.0)
+>>> ps = Powerspectrum(lc, norm="frac")
+
+
+

Define the model

+
>>> pl = models.PowerLaw1D()
+>>> pl.x_0.fixed = True
+
+
+

Instantiate the posterior:

+
>>> lpost = PSDPosterior(ps.freq, ps.power, pl, m=ps.m)
+
+
+

Define the priors:

+
>>> p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+>>> p_amplitude = lambda amplitude: ((-10 <= np.log(amplitude)) &
+...                                 ((np.log(amplitude) <= 10.0)))
+>>> priors = {"alpha":p_alpha, "amplitude":p_amplitude}
+
+
+

Set the logprior method in the lpost object:

+
>>> lpost.logprior = set_logprior(lpost, priors)
+
+
+
+ +
+
+stingray.modeling.scripts.fit_crossspectrum(cs, model, starting_pars=None, max_post=False, priors=None, fitmethod='L-BFGS-B')[source]
+

Fit a number of Lorentzians to a cross spectrum, possibly including white +noise. Each Lorentzian has three parameters (amplitude, centroid position, +full-width at half maximum), plus one extra parameter if the white noise +level should be fit as well. Priors for each parameter can be included in +case max_post = True, in which case the function will attempt a +Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one +entry for each parameter. +The parameter names are (amplitude_i, x_0_i, fwhm_i) for each i out of +a total of N Lorentzians. The white noise level has a parameter +amplitude_(N+1). For example, a model with two Lorentzians and a +white noise level would have parameters: +[amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2].

+
+
Parameters:
+
+
csCrossspectrum

A Crossspectrum object with the data to be fit

+
+
model: astropy.modeling.models class instance

The parametric model supposed to represent the data. For details +see the astropy.modeling documentation

+
+
starting_parsiterable, optional, default None

The list of starting guesses for the optimizer. If it is not provided, +then default parameters are taken from model. See explanation above +for ordering of parameters in this list.

+
+
max_postbool, optional, default False

If True, perform a Maximum-A-Posteriori fit of the data rather than a +Maximum Likelihood fit. Note that this requires priors to be specified, +otherwise this will cause an exception!

+
+
priors{dict | None}, optional, default None

Dictionary with priors for the MAP fit. This should be of the form +{“parameter name”: probability distribution, …}

+
+
fitmethodstring, optional, default “L-BFGS-B”

Specifies an optimization algorithm to use. Supply any valid option for +scipy.optimize.minimize.

+
+
+
+
Returns:
+
+
parestPSDParEst object

A PSDParEst object for further analysis

+
+
resOptimizationResults object

The OptimizationResults object storing useful results and quantities +relating to the fit

+
+
+
+
+
+ +
+
+stingray.modeling.scripts.fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None, fitmethod='L-BFGS-B')[source]
+

Fit a number of Lorentzians to a power spectrum, possibly including white +noise. Each Lorentzian has three parameters (amplitude, centroid position, +full-width at half maximum), plus one extra parameter if the white noise +level should be fit as well. Priors for each parameter can be included in +case max_post = True, in which case the function will attempt a +Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one +entry for each parameter. +The parameter names are (amplitude_i, x_0_i, fwhm_i) for each i out of +a total of N Lorentzians. The white noise level has a parameter +amplitude_(N+1). For example, a model with two Lorentzians and a +white noise level would have parameters: +[amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2].

+
+
Parameters:
+
+
psPowerspectrum

A Powerspectrum object with the data to be fit

+
+
nlorint

The number of Lorentzians to fit

+
+
starting_parsiterable

The list of starting guesses for the optimizer. If it is not provided, +then default parameters are taken from model. See explanation above +for ordering of parameters in this list.

+
+
fit_whitenoisebool, optional, default True

If True, the code will attempt to fit a white noise level along with +the Lorentzians. Be sure to include a starting parameter for the +optimizer in starting_pars!

+
+
max_postbool, optional, default False

If True, perform a Maximum-A-Posteriori fit of the data rather than a +Maximum Likelihood fit. Note that this requires priors to be specified, +otherwise this will cause an exception!

+
+
priors{dict | None}, optional, default None

Dictionary with priors for the MAP fit. This should be of the form +{“parameter name”: probability distribution, …}

+
+
fitmethodstring, optional, default “L-BFGS-B”

Specifies an optimization algorithm to use. Supply any valid option for +scipy.optimize.minimize.

+
+
+
+
Returns:
+
+
parestPSDParEst object

A PSDParEst object for further analysis

+
+
resOptimizationResults object

The OptimizationResults object storing useful results and quantities +relating to the fit

+
+
+
+
+

Examples

+

We start by making an example power spectrum with three Lorentzians +>>> np.random.seed(400) +>>> nlor = 3

+
>>> x_0_0 = 0.5
+>>> x_0_1 = 2.0
+>>> x_0_2 = 7.5
+
+
+
>>> amplitude_0 = 150.0
+>>> amplitude_1 = 50.0
+>>> amplitude_2 = 15.0
+
+
+
>>> fwhm_0 = 0.1
+>>> fwhm_1 = 1.0
+>>> fwhm_2 = 0.5
+
+
+

We will also include a white noise level: +>>> whitenoise = 2.0

+
>>> model = (models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) +
+...          models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) +
+...          models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) +
+...          models.Const1D(whitenoise))
+
+
+
>>> freq = np.linspace(0.01, 10.0, 1000)
+>>> p = model(freq)
+>>> noise = np.random.exponential(size=len(freq))
+
+
+
>>> power = p*noise
+>>> ps = Powerspectrum()
+>>> ps.freq = freq
+>>> ps.power = power
+>>> ps.df = ps.freq[1] - ps.freq[0]
+>>> ps.m = 1
+
+
+

Now we have to guess starting parameters. For each Lorentzian, we have +amplitude, centroid position and fwhm, and this pattern repeats for each +Lorentzian in the fit. The white noise level is the last parameter. +>>> t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]

+

We’re ready for doing the fit: +>>> parest, res = fit_lorentzians(ps, nlor, t0)

+

res contains a whole array of useful information about the fit, for +example the parameters at the optimum: +>>> p_opt = res.p_opt

+
+ +
+
+stingray.modeling.scripts.fit_powerspectrum(ps, model, starting_pars=None, max_post=False, priors=None, fitmethod='L-BFGS-B')[source]
+

Fit a number of Lorentzians to a power spectrum, possibly including white +noise. Each Lorentzian has three parameters (amplitude, centroid position, +full-width at half maximum), plus one extra parameter if the white noise +level should be fit as well. Priors for each parameter can be included in +case max_post = True, in which case the function will attempt a +Maximum-A-Posteriori fit. Priors must be specified as a dictionary with one +entry for each parameter. +The parameter names are (amplitude_i, x_0_i, fwhm_i) for each i out of +a total of N Lorentzians. The white noise level has a parameter +amplitude_(N+1). For example, a model with two Lorentzians and a +white noise level would have parameters: +[amplitude_0, x_0_0, fwhm_0, amplitude_1, x_0_1, fwhm_1, amplitude_2].

+
+
Parameters:
+
+
psPowerspectrum

A Powerspectrum object with the data to be fit

+
+
model: astropy.modeling.models class instance

The parametric model supposed to represent the data. For details +see the astropy.modeling documentation

+
+
starting_parsiterable, optional, default None

The list of starting guesses for the optimizer. If it is not provided, +then default parameters are taken from model. See explanation above +for ordering of parameters in this list.

+
+
fit_whitenoisebool, optional, default True

If True, the code will attempt to fit a white noise level along with +the Lorentzians. Be sure to include a starting parameter for the +optimizer in starting_pars!

+
+
max_postbool, optional, default False

If True, perform a Maximum-A-Posteriori fit of the data rather than a +Maximum Likelihood fit. Note that this requires priors to be specified, +otherwise this will cause an exception!

+
+
priors{dict | None}, optional, default None

Dictionary with priors for the MAP fit. This should be of the form +{“parameter name”: probability distribution, …}

+
+
fitmethodstring, optional, default “L-BFGS-B”

Specifies an optimization algorithm to use. Supply any valid option for +scipy.optimize.minimize.

+
+
+
+
Returns:
+
+
parestPSDParEst object

A PSDParEst object for further analysis

+
+
resOptimizationResults object

The OptimizationResults object storing useful results and quantities +relating to the fit

+
+
+
+
+

Examples

+

We start by making an example power spectrum with three Lorentzians +>>> m = 1 +>>> nfreq = 100000 +>>> freq = np.linspace(1, 1000, nfreq)

+
>>> np.random.seed(100)  # set the seed for the random number generator
+>>> noise = np.random.exponential(size=nfreq)
+
+
+
>>> model = models.PowerLaw1D() + models.Const1D()
+>>> model.x_0_0.fixed = True
+
+
+
>>> alpha_0 = 2.0
+>>> amplitude_0 = 100.0
+>>> amplitude_1 = 2.0
+
+
+
>>> model.alpha_0 = alpha_0
+>>> model.amplitude_0 = amplitude_0
+>>> model.amplitude_1 = amplitude_1
+
+
+
>>> p = model(freq)
+>>> power = noise * p
+
+
+
>>> ps = Powerspectrum()
+>>> ps.freq = freq
+>>> ps.power = power
+>>> ps.m = m
+>>> ps.df = freq[1] - freq[0]
+>>> ps.norm = "leahy"
+
+
+

Now we have to guess starting parameters. For each Lorentzian, we have +amplitude, centroid position and fwhm, and this pattern repeats for each +Lorentzian in the fit. The white noise level is the last parameter. +>>> t0 = [80, 1.5, 2.5]

+

Let’s also make a model to test: +>>> model_to_test = models.PowerLaw1D() + models.Const1D() +>>> model_to_test.amplitude_1.fixed = True

+

We’re ready for doing the fit: +>>> parest, res = fit_powerspectrum(ps, model_to_test, t0)

+

res contains a whole array of useful information about the fit, for +example the parameters at the optimum: +>>> p_opt = res.p_opt

+
+ +
+
+
+
+

Pulsar

+

This submodule broadly defines functionality related to (X-ray) pulsar data analysis, especially +periodicity searches.

+
+
+class stingray.pulse.SincSquareModel(amplitude=1.0, mean=0.0, width=1.0, **kwargs)[source]
+
+ +
+
+stingray.pulse.ef_profile_stat(profile, err=None)[source]
+

Calculate the epoch folding statistics ‘a la Leahy et al. (1983).

+
+
Parameters:
+
+
profilearray

The pulse profile

+
+
+
+
Returns:
+
+
statfloat

The epoch folding statistics

+
+
+
+
Other Parameters:
+
+
errfloat or array

The uncertainties on the pulse profile

+
+
+
+
+
+ +
+ +

Performs epoch folding at trial frequencies in photon data.

+

If no exposure correction is needed and numba is installed, it uses a fast +algorithm to perform the folding. Otherwise, it runs a much slower +algorithm, which however yields a more precise result. +The search can be done in segments and the results averaged. Use +segment_size to control this

+
+
Parameters:
+
+
timesarray-like

the event arrival times

+
+
frequenciesarray-like

the trial values for the frequencies

+
+
+
+
Returns:
+
+
(fgrid, stats) or (fgrid, fdgrid, stats), as follows:
+
fgridarray-like

frequency grid of the epoch folding periodogram

+
+
fdgridarray-like

frequency derivative grid. Only returned if fdots is an array.

+
+
statsarray-like

the epoch folding statistics corresponding to each frequency bin.

+
+
+
+
Other Parameters:
+
+
nbinint

the number of bins of the folded profiles

+
+
segment_sizefloat

the length of the segments to be averaged in the periodogram

+
+
fdotsarray-like

trial values of the first frequency derivative (optional)

+
+
expocorrbool

correct for the exposure (Use it if the period is comparable to the +length of the good time intervals). If True, GTIs have to be specified +via the gti keyword

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good time intervals

+
+
weightsarray-like

weight for each time. This might be, for example, the number of counts +if the times array contains the time bins of a light curve

+
+
+
+
+
+ +
+
+stingray.pulse.fftfit(prof, template=None, quick=False, sigma=None, use_bootstrap=False, **fftfit_kwargs)[source]
+

Align a template to a pulse profile.

+
+
Parameters:
+
+
profarray

The pulse profile

+
+
templatearray, default None

The template of the pulse used to perform the TOA calculation. If None, +a simple sinusoid is used

+
+
+
+
Returns:
+
+
mean_amp, std_ampfloats

Mean and standard deviation of the amplitude

+
+
mean_phase, std_phasefloats

Mean and standard deviation of the phase

+
+
+
+
Other Parameters:
+
+
sigmaarray

error on profile bins (currently has no effect)

+
+
use_bootstrapbool

Calculate errors using a bootstrap method, with fftfit_error

+
+
**fftfit_kwargsadditional arguments for fftfit_error
+
+
+
+
+ +
+
+stingray.pulse.fit_gaussian(x, y, amplitude=1.5, mean=0.0, stddev=2.0, tied={}, fixed={}, bounds={})[source]
+

Fit a gaussian function to x,y values.

+
+
Parameters:
+
+
xarray-like
+
yarray-like
+
+
+
Returns:
+
+
gfunction

The best-fit function, accepting x as input +and returning the best-fit model as output

+
+
+
+
Other Parameters:
+
+
amplitudefloat

The initial value for the amplitude

+
+
meanfloat

The initial value for the mean of the gaussian function

+
+
stddevfloat

The initial value for the standard deviation of the gaussian function

+
+
tieddict
+
fixeddict
+
boundsdict

Parameters to be passed to the [astropy models]_

+
+
+
+
+
+ +
+
+stingray.pulse.fit_sinc(x, y, amp=1.5, mean=0.0, width=1.0, tied={}, fixed={}, bounds={}, obs_length=None)[source]
+

Fit a sinc function to x,y values.

+
+
Parameters:
+
+
xarray-like
+
yarray-like
+
+
+
Returns:
+
+
sincfitfunction

The best-fit function, accepting x as input +and returning the best-fit model as output

+
+
+
+
Other Parameters:
+
+
ampfloat

The initial value for the amplitude

+
+
meanfloat

The initial value for the mean of the sinc

+
+
obs_lengthfloat

The length of the observation. Default None. If it’s defined, it +fixes width to 1/(pi*obs_length), as expected from epoch folding +periodograms

+
+
widthfloat

The initial value for the width of the sinc. Only valid if +obs_length is 0

+
+
tieddict
+
fixeddict
+
boundsdict

Parameters to be passed to the [astropy models]_

+
+
+
+
+

References

+
+ +
+
+stingray.pulse.fold_events(times, *frequency_derivatives, **opts)[source]
+

Epoch folding with exposure correction.

+

By default, the keyword times accepts a list of +unbinned photon arrival times. If the input data is +a (binned) light curve, then times will contain the +time stamps of the observation, and weights should +be set to the corresponding fluxes or counts.

+
+
Parameters:
+
+
timesarray of floats

Photon arrival times, or, if weights is set, +time stamps of a light curve.

+
+
f, fdot, fddot…float

The frequency and any number of derivatives.

+
+
+
+
Returns:
+
+
phase_binsarray of floats

The phases corresponding to the pulse profile

+
+
profilearray of floats

The pulse profile

+
+
profile_errarray of floats

The uncertainties on the pulse profile

+
+
+
+
Other Parameters:
+
+
nbinint, optional, default 16

The number of bins in the pulse profile

+
+
weightsfloat or array of floats, optional

The weights of the data. It can either be specified as a single value +for all points, or an array with the same length as time

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …], optional

Good time intervals

+
+
ref_timefloat, optional, default 0

Reference time for the timing solution

+
+
expocorrbool, default False

Correct each bin for exposure (use when the period of the pulsar is +comparable to that of GTIs)

+
+
modestr, [“ef”, “pdm”], default “ef”

Whether to calculate the epoch folding or phase dispersion +minimization folded profile. For “ef”, it calculates the (weighted) +sum of the data points in each phase bin, for “pdm”, the variance +in each phase bin

+
+
+
+
+
+ +
+
+stingray.pulse.get_TOA(prof, period, tstart, template=None, additional_phase=0, quick=False, debug=False, use_bootstrap=False, **fftfit_kwargs)[source]
+

Calculate the Time-Of-Arrival of a pulse.

+
+
Parameters:
+
+
profarray

The pulse profile

+
+
templatearray, default None

The template of the pulse used to perform the TOA calculation, if any. +Otherwise use the default of fftfit

+
+
tstartfloat

The time at the start of the pulse profile

+
+
+
+
Returns:
+
+
toa, toastdfloats

Mean and standard deviation of the TOA

+
+
+
+
Other Parameters:
+
+
nstepint, optional, default 100

Number of steps for the bootstrap method

+
+
+
+
+
+ +
+
+stingray.pulse.get_orbital_correction_from_ephemeris_file(mjdstart, mjdstop, parfile, ntimes=1000, ephem='DE405', return_pint_model=False)[source]
+

Get a correction for orbital motion from pulsar parameter file.

+
+
Parameters:
+
+
mjdstart, mjdstopfloat

Start and end of the time interval where we want the orbital solution

+
+
parfilestr

Any parameter file understood by PINT (Tempo or Tempo2 format)

+
+
+
+
Returns:
+
+
correction_secfunction

Function that accepts in input an array of times in seconds and a +floating-point MJDref value, and returns the deorbited times

+
+
correction_mjdfunction

Function that accepts times in MJDs and returns the deorbited times.

+
+
+
+
Other Parameters:
+
+
ntimesint

Number of time intervals to use for interpolation. Default 1000

+
+
+
+
+
+ +
+
+stingray.pulse.htest(data, nmax=20, datatype='binned', err=None)[source]
+

htest-test statistic, a` la De Jager+89, A&A, 221, 180D, eq. 2.

+

If datatype is “binned” or “gauss”, uses the formulation from +Bachetti+2021, ApJ, arxiv:2012.11397

+
+
Parameters:
+
+
dataarray of floats

Phase values or binned flux values

+
+
nmaxint, default 20

Maximum of harmonics for Z^2_n

+
+
+
+
Returns:
+
+
Mint

The best number of harmonics that describe the signal.

+
+
htestfloat

The htest statistics of the events.

+
+
+
+
Other Parameters:
+
+
datatypestr

The datatype of data: “events” if phase values between 0 and 1, +“binned” if folded pulse profile from photons, “gauss” if +folded pulse profile with normally-distributed fluxes

+
+
errfloat

The uncertainty on the pulse profile fluxes (required for +datatype=”gauss”, ignored otherwise)

+
+
+
+
+
+ +
+
+stingray.pulse.p_to_f(*period_derivatives)[source]
+

Convert periods into frequencies, and vice versa.

+

For now, limited to third derivative. Raises when a +fourth derivative is passed.

+
+
Parameters:
+
+
p, pdot, pddot, …floats

period derivatives, starting from zeroth and in +increasing order

+
+
+
+
+

Examples

+
>>> assert p_to_f() == []
+>>> assert np.allclose(p_to_f(1), [1])
+>>> assert np.allclose(p_to_f(1, 2), [1, -2])
+>>> assert np.allclose(p_to_f(1, 2, 3), [1, -2, 5])
+>>> assert np.allclose(p_to_f(1, 2, 3, 4), [1, -2, 5, -16])
+
+
+
+ +
+
+stingray.pulse.pdm_profile_stat(profile, sample_var, nsample)[source]
+

Calculate the phase dispersion minimization +statistic following Stellingwerf (1978)

+
+
Parameters:
+
+
profilearray

The PDM pulse profile (variance as a function +of phase)

+
+
sample_varfloat

The total population variance of the sample

+
+
nsampleint

The number of time bins in the initial time +series.

+
+
+
+
Returns:
+
+
statfloat

The epoch folding statistics

+
+
+
+
+
+ +
+ +

Performs folding at trial frequencies in time series data (i.e.~a light curve +of flux or photon counts) and computes the Phase Dispersion Minimization statistic.

+

If no exposure correction is needed and numba is installed, it uses a fast +algorithm to perform the folding. Otherwise, it runs a much slower +algorithm, which however yields a more precise result. +The search can be done in segments and the results averaged. Use +segment_size to control this

+
+
Parameters:
+
+
timesarray-like

the time stamps of the time series

+
+
fluxarray-like

the flux or photon count values of the time series

+
+
frequenciesarray-like

the trial values for the frequencies

+
+
+
+
Returns:
+
+
(fgrid, stats) or (fgrid, fdgrid, stats), as follows:
+
fgridarray-like

frequency grid of the epoch folding periodogram

+
+
fdgridarray-like

frequency derivative grid. Only returned if fdots is an array.

+
+
statsarray-like

the epoch folding statistics corresponding to each frequency bin.

+
+
+
+
Other Parameters:
+
+
nbinint

the number of bins of the folded profiles

+
+
segment_sizefloat

the length of the segments to be averaged in the periodogram

+
+
fdotsarray-like

trial values of the first frequency derivative (optional)

+
+
expocorrbool

correct for the exposure (Use it if the period is comparable to the +length of the good time intervals). If True, GTIs have to be specified +via the gti keyword

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good time intervals

+
+
+
+
+
+ +
+
+stingray.pulse.phase_exposure(start_time, stop_time, period, nbin=16, gti=None)[source]
+

Calculate the exposure on each phase of a pulse profile.

+
+
Parameters:
+
+
start_time, stop_timefloat

Starting and stopping time (or phase if period==1)

+
+
periodfloat

The pulse period (if 1, equivalent to phases)

+
+
+
+
Returns:
+
+
expoarray of floats

The normalized exposure of each bin in the pulse profile (1 is the +highest exposure, 0 the lowest)

+
+
+
+
Other Parameters:
+
+
nbinint, optional, default 16

The number of bins in the profile

+
+
gti[[gti00, gti01], [gti10, gti11], …], optional, default None

Good Time Intervals

+
+
+
+
+
+ +
+
+stingray.pulse.phaseogram(times, f, nph=128, nt=32, ph0=0, mjdref=None, fdot=0, fddot=0, pepoch=None, plot=False, phaseogram_ax=None, weights=None, **plot_kwargs)[source]
+

Calculate and plot the phaseogram of a pulsar observation.

+

The phaseogram is a 2-D histogram where the x axis is the pulse phase and +the y axis is the time. It shows how the pulse phase changes with time, and +it is very useful to see if the pulse solution is correct and/or if there +are additional frequency derivatives appearing in the data (due to spin up +or down, or even orbital motion)

+
+
Parameters:
+
+
timesarray

Event arrival times

+
+
ffloat

Pulse frequency

+
+
+
+
Returns:
+
+
phaseogr2-D matrix

The phaseogram

+
+
phasesarray-like

The x axis of the phaseogram (the x bins of the histogram), +corresponding to the pulse phase in each column

+
+
timesarray-like

The y axis of the phaseogram (the y bins of the histogram), +corresponding to the time at each row

+
+
additional_infodict

Additional information, like the pulse profile and the axes to modify +the plot (the latter, only if return_plot is True)

+
+
+
+
Other Parameters:
+
+
nphint

Number of phase bins

+
+
ntint

Number of time bins

+
+
ph0float

The starting phase of the pulse

+
+
mjdreffloat

MJD reference time. If given, the y axis of the plot will be in MJDs, +otherwise it will be in seconds.

+
+
fdotfloat

First frequency derivative

+
+
fddotfloat

Second frequency derivative

+
+
pepochfloat

If the input pulse solution is referred to a given time, give it here. +It has no effect (just a phase shift of the pulse) if fdot is zero. +if mjdref is specified, pepoch MUST be in MJD

+
+
weightsarray

Weight for each time

+
+
plotbool

Return the axes in the additional_info, and don’t close the plot, so +that the user can add information to it.

+
+
+
+
+
+ +
+
+stingray.pulse.plot_phaseogram(phaseogram, phase_bins, time_bins, unit_str='s', ax=None, **plot_kwargs)[source]
+

Plot a phaseogram.

+
+
Parameters:
+
+
phaseogramNxM array

The phaseogram to be plotted

+
+
phase_binsarray of M + 1 elements

The bins on the x-axis

+
+
time_binsarray of N + 1 elements

The bins on the y-axis

+
+
+
+
Returns:
+
+
axmatplotlib.pyplot.axis instance

Axis where the phaseogram was plotted.

+
+
+
+
Other Parameters:
+
+
unit_strstr

String indicating the time unit (e.g. ‘s’, ‘MJD’, etc)

+
+
axmatplotlib.pyplot.axis instance

Axis to plot to. If None, create a new one.

+
+
plot_kwargsdict

Additional arguments to be passed to pcolormesh

+
+
+
+
+
+ +
+
+stingray.pulse.plot_profile(phase, profile, err=None, ax=None)[source]
+

Plot a pulse profile showing some stats.

+

If err is None, the profile is assumed in counts and the Poisson confidence +level is plotted. Otherwise, err is shown as error bars

+
+
Parameters:
+
+
phasearray-like

The bins on the x-axis

+
+
profilearray-like

The pulsed profile

+
+
+
+
Returns:
+
+
axmatplotlib.pyplot.axis instance

Axis where the profile was plotted.

+
+
+
+
Other Parameters:
+
+
axmatplotlib.pyplot.axis instance

Axis to plot to. If None, create a new one.

+
+
+
+
+
+ +
+
+stingray.pulse.pulse_phase(times, *frequency_derivatives, **opts)[source]
+

Calculate pulse phase from the frequency and its derivatives.

+
+
Parameters:
+
+
timesarray of floats

The times at which the phase is calculated

+
+
*frequency_derivatives: floats

List of derivatives in increasing order, starting from zero.

+
+
+
+
Returns:
+
+
phasesarray of floats

The absolute pulse phase

+
+
+
+
Other Parameters:
+
+
ph0float

The starting phase

+
+
to_1bool, default True

Only return the fractional part of the phase, normalized from 0 to 1

+
+
+
+
+
+ +
+
+stingray.pulse.search_best_peaks(x, stat, threshold)[source]
+

Search peaks above threshold in an epoch folding periodogram.

+

If more values of stat are above threshold and are contiguous, only the +largest one is returned (see Examples).

+
+
Parameters:
+
+
xarray-like

The x axis of the periodogram (frequencies, periods, …)

+
+
statarray-like

The y axis. It must have the same shape as x

+
+
thresholdfloat

The threshold value over which we look for peaks in the stat array

+
+
+
+
Returns:
+
+
best_xarray-like

the array containing the x position of the peaks above threshold. If no +peaks are above threshold, an empty list is returned. The array is +sorted by inverse value of stat

+
+
best_statarray-like

for each best_x, give the corresponding stat value. Empty if no peaks +above threshold.

+
+
+
+
+

Examples

+
>>> # Test multiple peaks
+>>> x = np.arange(10)
+>>> stat = [0, 0, 0.5, 0, 0, 1, 1, 2, 1, 0]
+>>> best_x, best_stat = search_best_peaks(x, stat, 0.5)
+>>> len(best_x)
+2
+>>> assert np.isclose(best_x[0], 7.0)
+>>> assert np.isclose(best_x[1], 2.0)
+>>> stat = [0, 0, 2.5, 0, 0, 1, 1, 2, 1, 0]
+>>> best_x, best_stat = search_best_peaks(x, stat, 0.5)
+>>> assert np.isclose(best_x[0], 2.0)
+>>> # Test no peak above threshold
+>>> x = np.arange(10)
+>>> stat = [0, 0, 0.4, 0, 0, 0, 0, 0, 0, 0]
+>>> best_x, best_stat = search_best_peaks(x, stat, 0.5)
+>>> best_x
+[]
+>>> best_stat
+[]
+
+
+
+ +
+
+stingray.pulse.sinc_square_deriv(x, amplitude=1.0, mean=0.0, width=1.0)[source]
+

Calculate partial derivatives of sinc-squared.

+
+
Parameters:
+
+
x: array-like
+
+
+
Returns:
+
+
d_amplitudearray-like

partial derivative of sinc-squared function +with respect to the amplitude

+
+
d_meanarray-like

partial derivative of sinc-squared function +with respect to the mean

+
+
d_widtharray-like

partial derivative of sinc-squared function +with respect to the width

+
+
+
+
Other Parameters:
+
+
amplitudefloat

the value for x=mean

+
+
meanfloat

mean of the sinc function

+
+
widthfloat

width of the sinc function

+
+
+
+
+

Examples

+
>>> assert np.allclose(sinc_square_deriv(0, amplitude=2.), [1., 0., 0.])
+
+
+
+ +
+
+stingray.pulse.sinc_square_model(x, amplitude=1.0, mean=0.0, width=1.0)[source]
+

Calculate a sinc-squared function.

+

(sin(x)/x)**2

+
+
Parameters:
+
+
x: array-like
+
+
+
Returns:
+
+
sqvaluesarray-like

Return square of sinc function

+
+
+
+
Other Parameters:
+
+
amplitudefloat

the value for x=mean

+
+
meanfloat

mean of the sinc function

+
+
widthfloat

width of the sinc function

+
+
+
+
+

Examples

+
>>> assert np.isclose(sinc_square_model(0, amplitude=2.), 2.0)
+
+
+
+ +
+
+stingray.pulse.test(**kwargs)
+

Run the tests for the package.

+

This method builds arguments for and then calls pytest.main.

+
+
Parameters:
+
+
packagestr, optional

The name of a specific package to test, e.g. ‘io.fits’ or +‘utils’. Accepts comma separated string to specify multiple +packages. If nothing is specified all default tests are run.

+
+
argsstr, optional

Additional arguments to be passed to pytest.main in the args +keyword argument.

+
+
docs_pathstr, optional

The path to the documentation .rst files.

+
+
parallelint or ‘auto’, optional

When provided, run the tests in parallel on the specified +number of CPUs. If parallel is 'auto', it will use the all +the cores on the machine. Requires the pytest-xdist plugin.

+
+
pastebin(‘failed’, ‘all’, None), optional

Convenience option for turning on pytest pastebin output. Set to +‘failed’ to upload info for failed tests, or ‘all’ to upload info +for all tests.

+
+
pdbbool, optional

Turn on PDB post-mortem analysis for failing tests. Same as +specifying --pdb in args.

+
+
pep8bool, optional

Turn on PEP8 checking via the pytest-pep8 plugin and disable normal +tests. Same as specifying --pep8 -k pep8 in args.

+
+
pluginslist, optional

Plugins to be passed to pytest.main in the plugins keyword +argument.

+
+
remote_data{‘none’, ‘astropy’, ‘any’}, optional

Controls whether to run tests marked with @pytest.mark.remote_data. This can be +set to run no tests with remote data (none), only ones that use +data from http://data.astropy.org (astropy), or all tests that +use remote data (any). The default is none.

+
+
repeatint, optional

If set, specifies how many times each test should be run. This is +useful for diagnosing sporadic failures.

+
+
skip_docsbool, optional

When True, skips running the doctests in the .rst files.

+
+
test_pathstr, optional

Specify location to test by path. May be a single file or +directory. Must be specified absolutely or relative to the +calling directory.

+
+
verbosebool, optional

Convenience option to turn on verbose output from pytest. Passing +True is the same as specifying -v in args.

+
+
+
+
+
+ +
+
+stingray.pulse.z_n(data, n, datatype='events', err=None, norm=None)[source]
+

Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2.

+

If datatype is “binned” or “gauss”, uses the formulation from +Bachetti+2021, ApJ, arxiv:2012.11397

+
+
Parameters:
+
+
dataarray of floats

Phase values or binned flux values

+
+
nint, default 2

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The Z^2_n statistics of the events.

+
+
+
+
Other Parameters:
+
+
datatypestr

The data type: “events” if phase values between 0 and 1, +“binned” if folded pulse profile from photons, “gauss” if +folded pulse profile with normally-distributed fluxes

+
+
errfloat

The uncertainty on the pulse profile fluxes (required for +datatype=”gauss”, ignored otherwise)

+
+
normfloat

For backwards compatibility; if norm is not None, it is +substituted to data, and data is ignored. This raises +a DeprecationWarning

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_binned_events(profile, n)[source]
+

Z^2_n statistic for pulse profiles from binned events

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile (containing the number of +photons falling in each pulse bin)

+
+
nint

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The value of the statistic

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_binned_events_all(profile, nmax=20)[source]
+

Z^2_n statistic for multiple harmonics and binned events

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile (containing the number of +photons falling in each pulse bin)

+
+
nint

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
kslist of ints

Harmonic numbers, from 1 to nmax (included)

+
+
z2_nfloat

The value of the statistic for all ks

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_events(phase, n)[source]
+

Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2.

+
+
Parameters:
+
+
phasearray of floats

The phases of the events

+
+
nint, default 2

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The Z^2_n statistic

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_events_all(phase, nmax=20)[source]
+

Z^2_n statistics, a` la Buccheri+83, A&A, 128, 245, eq. 2.

+
+
Parameters:
+
+
phasearray of floats

The phases of the events

+
+
nint, default 2

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
kslist of ints

Harmonic numbers, from 1 to nmax (included)

+
+
z2_nfloat

The Z^2_n statistic for all ks

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_gauss(profile, err, n)[source]
+

Z^2_n statistic for normally-distributed profiles

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile

+
+
errfloat

The (assumed constant) uncertainty on the flux in each bin.

+
+
nint

Number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
z2_nfloat

The value of the statistic

+
+
+
+
+
+ +
+
+stingray.pulse.z_n_gauss_all(profile, err, nmax=20)[source]
+

Z^2_n statistic for n harmonics and normally-distributed profiles

+

See Bachetti+2021, arXiv:2012.11397

+
+
Parameters:
+
+
profilearray of floats

The folded pulse profile

+
+
errfloat

The (assumed constant) uncertainty on the flux in each bin.

+
+
nmaxint

Maximum number of harmonics, including the fundamental

+
+
+
+
Returns:
+
+
kslist of ints

Harmonic numbers, from 1 to nmax (included)

+
+
z2_nlist of floats

The value of the statistic for all ks

+
+
+
+
+
+ +
+ +

Calculates the Z^2_n statistics at trial frequencies in photon data.

+

The “real” Z^2_n statistics is very slow. Therefore, in this function data +are folded first, and then the statistics is calculated using the value of +the profile as an additional normalization term. +The two methods are mostly equivalent. However, the number of bins has to +be chosen wisely: if the number of bins is too small, the search for high +harmonics is ineffective. +If no exposure correction is needed and numba is installed, it uses a fast +algorithm to perform the folding. Otherwise, it runs a much slower +algorithm, which however yields a more precise result. +The search can be done in segments and the results averaged. Use +segment_size to control this

+
+
Parameters:
+
+
timesarray-like

the event arrival times

+
+
frequenciesarray-like

the trial values for the frequencies

+
+
+
+
Returns:
+
+
(fgrid, stats) or (fgrid, fdgrid, stats), as follows:
+
fgridarray-like

frequency grid of the epoch folding periodogram

+
+
fdgridarray-like

frequency derivative grid. Only returned if fdots is an array.

+
+
statsarray-like

the Z^2_n statistics corresponding to each frequency bin.

+
+
+
+
Other Parameters:
+
+
nbinint

the number of bins of the folded profiles

+
+
segment_sizefloat

the length of the segments to be averaged in the periodogram

+
+
fdotsarray-like

trial values of the first frequency derivative (optional)

+
+
expocorrbool

correct for the exposure (Use it if the period is comparable to the +length of the good time intervals.)

+
+
gti[[gti0_0, gti0_1], [gti1_0, gti1_1], …]

Good time intervals

+
+
weightsarray-like

weight for each time. This might be, for example, the number of counts +if the times array contains the time bins of a light curve

+
+
+
+
+
+ +
+
+

Simulator

+

This submodule defines extensive functionality related to simulating spectral-timing data sets, +including transfer and window functions, simulating light curves from power spectra for a range +of stochastic processes.

+
+
+class stingray.simulator.simulator.Simulator(dt, N, mean, rms, err=0.0, red_noise=1, random_state=None, tstart=0.0, poisson=False)[source]
+

Methods to simulate and visualize light curves.

+

TODO: Improve documentation

+
+
Parameters:
+
+
dtint, default 1

time resolution of simulated light curve

+
+
Nint, default 1024

bins count of simulated light curve

+
+
meanfloat, default 0

mean value of the simulated light curve

+
+
rmsfloat, default 1

fractional rms of the simulated light curve, +actual rms is calculated by mean*rms

+
+
errfloat, default 0

the errorbars on the final light curve

+
+
red_noiseint, default 1

multiple of real length of light curve, by +which to simulate, to avoid red noise leakage

+
+
random_stateint, default None

seed value for random processes

+
+
poissonbool, default False

return Poisson-distributed light curves.

+
+
+
+
+
+
+count_channels()[source]
+

Return total number of energy channels.

+
+ +
+
+delete_channel(channel)[source]
+

Delete an energy channel.

+
+ +
+
+delete_channels(channels)[source]
+

Delete multiple energy channels.

+
+ +
+
+get_all_channels()[source]
+

Get lightcurves belonging to all channels.

+
+ +
+
+get_channel(channel)[source]
+

Get lightcurve belonging to the energy channel.

+
+ +
+
+get_channels(channels)[source]
+

Get multiple light curves belonging to the energy channels.

+
+ +
+
+powerspectrum(lc, seg_size=None)[source]
+

Make a powerspectrum of the simulated light curve.

+
+
Parameters:
+
+
lclightcurve.Lightcurve object OR

iterable of lightcurve.Lightcurve objects +The light curve data to be Fourier-transformed.

+
+
+
+
Returns:
+
+
powernumpy.ndarray

The array of normalized squared absolute values of Fourier +amplitudes

+
+
+
+
+
+ +
+
+static read(filename, fmt='pickle')[source]
+

Reads transfer function from a ‘pickle’ file.

+
+
Parameters:
+
+
fmtstr

the format of the file to be retrieved - accepts ‘pickle’.

+
+
+
+
Returns:
+
+
dataclass instance

TransferFunction object

+
+
+
+
+
+ +
+
+relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)[source]
+

Construct a realistic impulse response considering the relativistic +effects.

+
+
Parameters:
+
+
t1int

primary peak time

+
+
t2int

secondary peak time

+
+
t3int

end time

+
+
p1float

value of primary peak

+
+
p2float

value of secondary peak

+
+
risefloat

slope of rising exponential from primary peak to secondary peak

+
+
decayfloat

slope of decaying exponential from secondary peak to end time

+
+
+
+
Returns:
+
+
hnumpy.ndarray

Constructed impulse response

+
+
+
+
+
+ +
+
+simple_ir(start=0, width=1000, intensity=1)[source]
+

Construct a simple impulse response using start time, +width and scaling intensity. +To create a delta impulse response, set width to 1.

+
+
Parameters:
+
+
startint

start time of impulse response

+
+
widthint

width of impulse response

+
+
intensityfloat

scaling parameter to set the intensity of delayed emission +corresponding to direct emission.

+
+
+
+
Returns:
+
+
hnumpy.ndarray

Constructed impulse response

+
+
+
+
+
+ +
+
+simulate(*args)[source]
+

Simulate light curve generation using power spectrum or +impulse response.

+
+
Parameters:
+
+
args

See examples below.

+
+
+
+
Returns:
+
+
lightCurveLightCurve object
+
+
+
+

Examples

+
    +
  • +
    x = simulate(beta):

    For generating a light curve using power law spectrum.

    +
    +
    +
    Parameters:
      +
    • beta : float +Defines the shape of spectrum

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(s):
    +
    For generating a light curve from user-provided spectrum.

    Note: In this case, the red_noise parameter is provided. +You can generate a longer light curve by providing a higher +frequency resolution on the input power spectrum.

    +
    +
    +
    Parameters:
      +
    • s : array-like +power spectrum

    • +
    +
    +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(model):

    For generating a light curve from pre-defined model

    +
    +
    +
    Parameters:
      +
    • model : astropy.modeling.Model +the pre-defined model

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(‘model’, params):

    For generating a light curve from pre-defined model

    +
    +
    +
    Parameters:
      +
    • model : string +the pre-defined model

    • +
    • params : list iterable or dict +the parameters for the pre-defined model

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(s, h):

    For generating a light curve using impulse response.

    +
    +
    +
    Parameters:
      +
    • s : array-like +Underlying variability signal

    • +
    • h : array-like +Impulse response

    • +
    +
    +
    +
    +
    +
    +
  • +
  • +
    x = simulate(s, h, ‘same’):

    For generating a light curve of same length as input signal, +using impulse response.

    +
    +
    +
    Parameters:
      +
    • s : array-like +Underlying variability signal

    • +
    • h : array-like +Impulse response

    • +
    • mode : str +mode can be ‘same’, ‘filtered, or ‘full’. +‘same’ indicates that the length of output light +curve is same as that of input signal. +‘filtered’ means that length of output light curve +is len(s) - lag_delay +‘full’ indicates that the length of output light +curve is len(s) + len(h) -1

    • +
    +
    +
    +
    +
    +
    +
  • +
+
+ +
+
+simulate_channel(channel, *args)[source]
+

Simulate a lightcurve and add it to corresponding energy +channel.

+
+
Parameters:
+
+
channelstr

range of energy channel (e.g., 3.5-4.5)

+
+
*args

see description of simulate() for details

+
+
+
+
Returns:
+
+
lightCurveLightCurve object
+
+
+
+
+ +
+
+write(filename, fmt='pickle')[source]
+

Writes a transfer function to ‘pickle’ file.

+
+
Parameters:
+
+
fmtstr

the format of the file to be saved - accepts ‘pickle’

+
+
+
+
+
+ +
+ +
+
+

Exceptions

+

Some basic Stingray-related errors and exceptions.

+
+
+class stingray.exceptions.StingrayError[source]
+
+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/citing.html b/citing.html new file mode 100644 index 000000000..68da5a69f --- /dev/null +++ b/citing.html @@ -0,0 +1,259 @@ + + + + + + + + Citing Stingray — stingray v + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Citing Stingray

+

Citations are still the main currency of the academic world, and the best way to ensure that Stingray continues to be supported and we can continue to work on it. +If you use Stingray in data analysis leading to a publication, we ask that you cite both a DOI, which points to the software itself, and our papers describing the Stingray project.

+
+

DOI

+

If possible, we ask that you cite a DOI corresponding to the specific version of Stingray that you used to carry out your analysis.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Stingray Release

DOI

Citation

v2.1

10.5281/zenodo.11383212

[Link to BibTeX]

v2.0.0rc1

10.5281/zenodo.10604413

[Link to BibTeX]

v2.0.0

10.5281/zenodo.10813181

[Link to BibTeX]

v1.1.2

10.5281/zenodo.7970570

[Link to BibTeX]

v1.1

10.5281/zenodo.7135161

[Link to BibTeX]

v1.0-beta

10.5281/zenodo.6290078

[Link to BibTeX]

v1.0

10.5281/zenodo.6394742

[Link to BibTeX]

v0.3

10.5281/zenodo.4881255

[Link to BibTeX]

v0.2

10.5281/zenodo.3898435

[Link to BibTeX]

v0.1.3

10.5281/zenodo.3242835

[Link to BibTeX]

v0.1.2

10.5281/zenodo.3242829

[Link to BibTeX]

v0.1.1

10.5281/zenodo.3242825

[Link to BibTeX]

v0.1

10.5281/zenodo.3239519

[Link to BibTeX]

+

If this isn’t possible — for example, because you worked with an unreleased version of the code — you can cite Stingray’s concept DOI, 10.5281/zenodo.1490116 (BibTeX), which will always resolve to the latest release.

+
+
+

Papers

+

Please cite both of the following papers:

+ + +
+
+

Other Useful References

+Stingray is listed in the Astrophysics Source Code Library. +Copy the corresponding BibTeX to clipboard.
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/contributing.html b/contributing.html new file mode 100644 index 000000000..54a82e95c --- /dev/null +++ b/contributing.html @@ -0,0 +1,555 @@ + + + + + + + + Get Help, Report Bugs or Contribute — stingray v + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Get Help, Report Bugs or Contribute

+
+

Reporting Bugs and Issues, Getting Help, Providing Feedback

+

We would love to hear from you! +We are writing Stingray to be useful to you, so if you encounter problems, have questions, would like to request features or just want to chat with us, please don’t hesitate to get in touch!

+

The best and easiest way to get in touch with us regarding bugs and issues is the GitHub Issues page. +If you’re not sure whether what you’ve encountered is a bug, if you have any questions or need advice getting some of the code to run, or would like to request a feature or suggest additions/changes, you can also contact us via the Slack group or our mailing list.

+

Please use this link to join Slack or send one of us an email to join the mailing list.

+
+
+

Getting Involved with Development

+

We encourage you to get involved with Stingray in any way you can! +First, read through the README. +Then, fork the stingray and notebooks repositories (if you need a primer on GitHub and git version control, look here) and work your way through the Jupyter notebook tutorials for the main modules. +Once you’ve familiarized yourself with the basics of Stingray, go to the Stingray issues page and try to tackle one! +Finally, you can read these slides from a talk on Stingray in 2021 at the 9th Microquasar Workshop.

+

For organizing and coordinating the software development, we have a Slack group and a mailing list – please use this link for Slack or send one of us an email to join.

+
+
+

Contributing to Stingray

+
+

All great things have small beginnings.

+
+

Hello there! We love and appreciate every small contribution you can +make to improve Stingray! We are proudly open source and believe +our(yes! yours as well) work will help enhance the quality of research +around the world. We want to make contributing to stingray as easy and +transparent as possible, whether it’s:

+
    +
  • Reporting a bug

  • +
  • Discussing the current state of the code

  • +
  • Submitting a fix

  • +
  • Proposing new features

  • +
+

A successful project is not just built by amazing programmers but by the +combined, unrelenting efforts of coders, testers, reviewers, and +documentation writers. There are a few guidelines that we need all +contributors to follow so that we can have a chance of keeping on top of +things.

+
+

Contribution Guidelines

+

Contributions from everyone, experienced and inexperienced, are welcome! +If you don’t know where to start, look at the Open +Issues and/or +get involved in our Slack +channel. This code is +written in Python 3.8+, but in general we will follow the Astropy/ Numpy +minimum Python versions. Tests run at each commit during Pull Requests, +so it is easy to single out points in the code that break this +compatibility.

+
    +
  • Branches:

    +
      +
    • Don’t use your main branch (forked) for anything. Consider +deleting your main branch.

    • +
    • Make a new branch, called a feature branch, for each separable set +of changes: “one task, one branch”.

    • +
    • Start that new feature branch from the most current development +version of stingray.

    • +
    • Name of branch should be the purpose of change eg. +bugfix-for-issue20 or refactor-lightcurve-code.

    • +
    • Never merge changes from stingray/main into your feature branch. +If changes in the development version require changes to our code +you can rebase, but only if asked.

    • +
    +
  • +
  • Commits:

    +
      +
    • Make frequent commits.

    • +
    • One commit per logical change in the code-base.

    • +
    • Add commit message.

    • +
    +
  • +
  • Naming Conventions:

    +
      +
    • Change name of the remote origin(yourusername/stingray) to your +github-username.

    • +
    • Name the remote that is the primary stingray repository( +StingraySoftware/stingray) as stingray.

    • +
    +
  • +
+
+

Contribution Workflow

+

These, conceptually, are the steps you will follow in contributing to +Stingray. These steps keep work well organized, with readable history. +This in turn makes it easier for project maintainers (that might be you) +to see what you’ve done, and why you did it:

+
    +
  1. Regularly fetch latest stingray development version stingray/main +from GitHub.

  2. +
  3. Make a new feature branch. Recommended: Use virtual environments +to work on branch.

  4. +
  5. Editing Workflow:

    +
      +
    1. One commit per logical change.

    2. +
    3. Run tests to make sure that changes don’t break existing code.

    4. +
    5. Code should have appropriate docstring.

    6. +
    7. Format code appropriately, use black as described below.

    8. +
    9. Update appropriate documentation if necessary and test it on +sphinx.

    10. +
    11. Write tests that cover all code changes.

    12. +
    13. If modifications require more than one commit, break changes into +smaller commits. Commits involving just the docs might use [docs only] in +their commit message to avoid running all the tests. Very trivial commits +(e.g. a space in a docstring) might skip all tests with [skip ci] in +their commit message.

    14. +
    15. Write a changelog entry in towncrier format (see below)

    16. +
    17. Push the code on your remote(forked) repository.

    18. +
    +
  6. +
  7. All code changes should be submitted via PRs (i.e. fork, branch, work +on stuff, just submit pull request). Code Reviews are super-useful: +another contributor can review the code, which means both the +contributor and reviewer will be up to date with how everything fits +together, and can get better by reading each other’s code! :)

  8. +
  9. Take feedback and make changes/revise the PR as asked.

  10. +
+
+
+
+

Coding Guidelines

+
+

Compatibility and Dependencies

+
    +
  • Compatibility: All code must be compatible with Python 3.8 +or later, and with the latest two major releases of Astropy.

  • +
  • Dependency Management:

    +
      +
    • The core package and affiliated packages should be importable with +no dependencies other than the Python Standard +Library, +astropy>=4.0, +numpy>=1.17.0, +scipy>=1.1, +matplotlib>=3.0

    • +
    • Additional dependencies are allowed for sub-modules or in function +calls, but they must be noted in the package documentation and +should only affect the relevant component. In functions and +methods, the optional dependency should use a normal import +statement, which will raise an ImportError if the dependency +is not available.

    • +
    +
  • +
+
+
+

Coding Style and Conventions

+
    +
  • Style Guide:

    +
      +
    • Follow the PEP8 style +guide. Follow the +existing coding style within the sub-package and avoid changes +that are purely stylistic.

    • +
    • Indentation should be ONLY with four spaces no mixing of +tabs-and-spaces.

    • +
    • Maximum line length should be 100 characters unless doing so +makes the code unreadable, ugly.

    • +
    • Functions and methods should be lower-case only, and separated by +a _ in case of multiple words eg. my_new_method.

    • +
    • Use verbose variable names (readability > economy). Only loop +iteration variables are allowed to be a single letter.

    • +
    • Classes start with an upper-case letter and use CamelCase eg. +MyNewClass.

    • +
    • Inline comments should start with two spaces and a single #.

    • +
    +
  • +
  • Formatting Style: The new Python 3 formatting style should be +used, i.e., f-strings f"{variable_name}" or +"{0}".format(variable_name} should be used instead of +"%s" % (variable_name). Additionally, the project enforces +code formatting and style checks through the pre-commit tool, +ensuring consistency and adherence to style guidelines across contributions.

  • +
  • To set up pre-commit locally for the Stingray project, follow these steps:

    +
      +
    1. Install the pre-commit package:

      +
      $ pip install pre-commit
      +
      +
      +
    2. +
    3. Run pre-commit on all files in the Stingray repository:

      +
      $ pre-commit run --all-files
      +
      +
      +

      This will run the pre-commit tools on all files in the Stingray git repository. The tools may automatically modify some files, while in other cases, they will report issues that require manual correction. If pre-commit makes changes to any files, those changes will appear as new modifications, which need to be staged before committing.

      +
    4. +
    +
  • +
  • Linter/Style Guide Checker: Our testing infrastructure currently +enforces a subset of the PEP8 style guide. You can check locally +whether your changes have followed these by running +flake8 with the following +command:

    +

    flake8 astropy --count --select=E101,W191,W291,W292,W293,W391,E111,E112,E113,E30,E502,E722,E901,E902,E999,F822,F823

    +
  • +
  • Code Formatters: We follow Astropy, enforcing this style guide +using the black code formatter, see The Black Code +Style +for details. Please run

    +

    black stingray

    +

    before each commit

    +
  • +
  • Imports:

    +
      +
    • Absolute imports are to be used in general. The exception to this +is relative imports of the form from . import modulename, this +convention makes it clearer what code is from the current +sub-module as opposed to from another. It is best to use when +referring to files within the same sub-module.

    • +
    • The import numpy as np, import scipy as sp, +import matplotlib as mpl, and +import matplotlib.pyplot as plt naming conventions should be +used wherever relevant. from packagename import * should never +be used, except as a tool to flatten the namespace of a module.

    • +
    +
  • +
  • Variable access in Classes:

    +
      +
    • Classes should either use direct variable access, or Python’s +property mechanism for setting object instance variables. +get_value/set_value style methods should be used only when +getting and setting the values requires a +computationally-expensive operation.

    • +
    • Attribute names should be descriptive if possible, use names of +desserts otherwise (e.g. for dummy test classes)

    • +
    +
  • +
  • super() function: Classes should use the built-in super() +function when making calls to methods in their super-class(es) unless +there are specific reasons not to. super() should be used +consistently in all sub-classes since it does not work otherwise.

  • +
  • Multiple Inheritance: Multiple inheritance should be avoided in +general without good reason.

  • +
  • init.py: The __init__.py files for modules should not contain +any significant implementation code. __init__.py can contain +docstrings and code for organizing the module layout, however if a +module is small enough that it fits in one file, it should simply be +a single file, rather than a directory with an __init__.py file.

  • +
+
+
+

Standard output, warnings, and errors

+
    +
  • Print Statement: Used only for outputs in methods and scenarios +explicitly requested by the user

  • +
  • Errors and Exceptions: Always use the raise with built-in or +custom exception classes. The nondescript Exception class should +be avoided as much as possible, in favor of more specific exceptions +(IOError, ValueError etc.).

  • +
  • Warnings: Always use the +warnings.warn(message, warning_class)for warnings. These get +redirected to log.warning() by default, but one can still use the +standard warning-catching mechanism and custom warning classes.

  • +
  • Debugging and Informational messages: Always use +log.info(message) and log.debug(message). The logging system +uses the built-in Python logging module.

  • +
+
+
+

Data and Configuration

+
    +
  • Storing Data:

    +
      +
    • Packages can include data in a directory named data inside a +subpackage source directory as long as it is less than about 100 +kB.

    • +
    • If the data exceeds this size, it should be hosted outside the +source code repository, either at a third-party location on the +internet.

    • +
    +
  • +
+
+
+

Documentation and Testing

+
    +
  • Docstrings:

    +
      +
    • Docstrings must be provided for all public classes, methods, and +functions.

    • +
    • Docstrings should follow the numpydoc +style +and reStructured Text format.

    • +
    • Write usage examples in the docstrings of all classes and +functions whenever possible. These examples should be short and +simple to reproduce. Users should be able to copy them verbatim +and run them.

    • +
    +
  • +
  • Unit tests: Provided for as many public methods and functions as +possible, and should adhere to the standards set in the Testing +Guidelines.

  • +
  • Building Documentation:

    +
      +
    • Use sphinx to build the documentation.

    • +
    • All extra documentation should go into a /docs sub-directory under +the main stingray directory.

    • +
    +
  • +
+
+
+

Updating and Maintaining the Changelog

+

Stingray uses `towncrier <https://pypi.org/project/towncrier/>`__ +which is used to generate the CHANGELOG.rst file at the root of the +package.

+

As described in docs/changes/README.rst, the changelog fragment +files should be added to each pull request. The changelog will be read +by users, so this description should be aimed at stingray users instead +of describing internal changes which are only relevant to the +developers. The idea is that the changelog lists all new features, API +changes, bugfixes, and so on that have been added to stingray between +versions so that a user can easily follow the changes without having to +go through the entire git log.

+

The towncrier tool will automatically reflow your text. You can install +towncrier and then run towncrier --draft if you want to get a +preview of how your change will look in the final release notes.

+
+
+
+

Testing Guidelines

+

The testing framework used by stingray is the pytest framework with tox. +To run the tests, you will need to make sure you have the pytest package +(version 3.1 or later) as well as the tox tool installed.

+
    +
  • Execute tests using the tox -e <test environment> command.

  • +
  • All tests should be py.test compliant: http://pytest.org/latest/.

  • +
  • Keep all tests in a /tests subdirectory under the main stingray +directory.

  • +
  • Write one test script per module in the package.

  • +
  • Extra examples can go into an /examples folder in the main stingray +directory, scripts that gather various data analysis tasks into +longer procedures into a /scripts folder in the same location.

  • +
+
+
+

Community Guidelines

+
+

Our Pledge

+

In the interest of fostering an open and welcoming environment, we as +contributors and maintainers pledge to making participation in our +project and our community a harassment-free experience for everyone, +regardless of age, body size, disability, ethnicity, gender identity and +expression, level of experience, nationality, personal appearance, race, +religion, or sexual identity and orientation.

+
+
+

Our Standards

+

Examples of behavior that contributes to creating a positive environment +include:

+
    +
  • Using welcoming and inclusive language

  • +
  • Being respectful of differing viewpoints and experiences

  • +
  • Gracefully accepting constructive criticism

  • +
  • Focusing on what is best for the community

  • +
  • Showing empathy towards other community members

  • +
+

Examples of unacceptable behavior by participants include:

+
    +
  • The use of sexualized language or imagery and unwelcome sexual +attention or advances

  • +
  • Trolling, insulting/derogatory comments, and personal or political +attacks

  • +
  • Public or private harassment

  • +
  • Publishing others’ private information, such as a physical or +electronic address, without explicit permission

  • +
  • Other conduct which could reasonably be considered inappropriate in a +professional setting

  • +
+
+
+

Our Responsibilities

+

Project maintainers are responsible for clarifying the standards of +acceptable behavior and are expected to take appropriate and fair +corrective action in response to any instances of unacceptable behavior.

+

Project maintainers have the right and responsibility to remove, edit, +or reject comments, commits, code, wiki edits, issues, and other +contributions that are not aligned to this Code of Conduct, or to ban +temporarily or permanently any contributor for other behaviors that they +deem inappropriate, threatening, offensive, or harmful.

+
+
+

Scope

+

This Code of Conduct applies both within project spaces and in public +spaces when an individual is representing the project or its community. +Examples of representing a project or community include using an +official project e-mail address, posting via an official social media +account, or acting as an appointed representative at an online or +offline event. Representation of a project may be further defined and +clarified by project maintainers.

+
+
+

Enforcement

+

Instances of abusive, harassing, or otherwise unacceptable behavior may +be reported by contacting the project team at any of our personal email +addresses or through private Slack communication. The project team will +review and investigate all complaints, and will respond in a way that it +deems appropriate to the circumstances. The project team is obligated to +maintain confidentiality with regard to the reporter of an incident. +Further details of specific enforcement policies may be posted +separately.

+

Project maintainers who do not follow or enforce the Code of Conduct in +good faith may face temporary or permanent repercussions as determined +by other members of the project’s leadership.

+
+
+

Attribution

+

This Code of Conduct is adapted from the Contributor +Covenant, version 1.4, available at +http://contributor-covenant.org/version/1/4

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/core.html b/core.html new file mode 100644 index 000000000..521a49e43 --- /dev/null +++ b/core.html @@ -0,0 +1,396 @@ + + + + + + + + Core Stingray Functionality — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Core Stingray Functionality

+

Here we show how many of the core Stingray classes and methods +work in practice. We start with basic data constructs for +event data and light curve data, and then show how to produce +various Fourier products from these data sets.

+
+

Working with Event Data

+ +
+
+

Working with Lightcurves

+ +
+
+

Fourier Analysis

+
+

Powerspectra

+ +
+
+

Dynamical Power Spectra

+ +
+
+

Cross Spectra

+ +
+
+

Cross- and Autocorrelations

+ +
+
+

Bispectra

+ +
+
+

Bayesian Excess Variance

+ +
+
+

Multi-taper Periodogram

+ +
+
+

Lomb Scargle Crossspectrum

+ +
+
+

Lomb Scargle Powerspectrum

+ +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/dataexplo.html b/dataexplo.html new file mode 100644 index 000000000..b007d8f42 --- /dev/null +++ b/dataexplo.html @@ -0,0 +1,142 @@ + + + + + + + + More Data Exploration — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

More Data Exploration

+

These notebook tutorials show some ways to explore data with +Stingray.

+
+

A quick look at a NuSTAR observation

+

Stingray transparently loads datasets from many HEASOFT-supported missions. +In this Tutorial, we will show an example quicklook of a NuSTAR observation.

+ +
+
+

Studying very slow variability with the Lomb-Scargle periodogram

+

In this Tutorial, we will show an example of how to use the Lomb-Scargle +periodogram and cross spectrum to study very slow variability in a light curve.

+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/deadtime.html b/deadtime.html new file mode 100644 index 000000000..d0d5da661 --- /dev/null +++ b/deadtime.html @@ -0,0 +1,130 @@ + + + + + + + + Dealing with dead time — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Dealing with dead time

+

Stingray implements a few features to deal with instrumental dead time. +This is particularly useful in missions with long dead time, such as NuSTAR or IXPE. +In this tutorial, we will show the effects of dead time on X-ray observations, and explain how Stingray can help model it and, under some conditions, even correct for it.

+ +
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 000000000..443508c2c --- /dev/null +++ b/genindex.html @@ -0,0 +1,1461 @@ + + + + + + + Index — stingray v + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+ + +

Index

+ +
+ _ + | A + | B + | C + | D + | E + | F + | G + | H + | I + | J + | L + | M + | N + | O + | P + | R + | S + | T + | V + | W + | Z + +
+

_

+ + + +
+ +

A

+ + + +
+ +

B

+ + + +
+ +

C

+ + + +
+ +

D

+ + + +
+ +

E

+ + + +
+ +

F

+ + + +
+ +

G

+ + + +
+ +

H

+ + + +
+ +

I

+ + + +
+ +

J

+ + + +
+ +

L

+ + + +
+ +

M

+ + + +
+ +

N

+ + + +
+ +

O

+ + + +
+ +

P

+ + + +
+ +

R

+ + + +
+ +

S

+ + + +
+ +

T

+ + + +
+ +

V

+ + +
+ +

W

+ + +
+ +

Z

+ + + +
+ + + +
+
+
+
+
+
+

  + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/history.html b/history.html new file mode 100644 index 000000000..be611a3cf --- /dev/null +++ b/history.html @@ -0,0 +1,511 @@ + + + + + + + + History — stingray v + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

History

+

For a brief overview of the history and state-of-the-art in spectral timing, and for more information about the design and capabilities of Stingray, please refer to Huppenkothen et al. (2019).

+

Stingray originated during the 2016 workshop The X-ray Spectral-Timing Revolution: a group of X-ray astronomers and developers decided to agree on a common platform to develop a new software package. +At that time, there were a number of official software packages for X-ray spectral fitting (XSPEC, ISIS, Sherpa, …), but +such a widely used and standard software package did not exist for X-ray timing, that was mostly the domain of custom, proprietary software. +Our goals were to merge existing efforts towards a timing package in Python, following the best guidelines for modern open-source programming, thereby providing the basis for developing spectral-timing analysis tools. +We needed to provide an easily accessible scripting interface, a GUI, and an API for experienced coders. +Stingray’s ultimate goal is to provide the community with a package that eases the learning curve for advanced spectral-timing techniques, with a correct statistical framework.

+

Further spectral-timing functionality, in particularly command line scripts based on the API defined within Stingray, is available in the package HENDRICS. +A graphical user interface is under development as part of the project DAVE.

+
+

Previous projects merged to Stingray

+
    +
  • Daniela Huppenkothen’s original Stingray

  • +
  • Matteo Bachetti’s MaLTPyNT

  • +
  • Abigail Stevens’ RXTE power spectra code and phase-resolved spectroscopy code

  • +
  • Simone Migliari’s and Paul Balm’s X-ray data exploration GUI commissioned by ESA

  • +
+
+
+

Changelog

+
+

v2.2 (2024-10-22)

+
+

New Features

+
    +
  • Add a compute_rms function to LombScarglePowerspectrum (#828)

  • +
  • Introduced FITSReader class for lazy-loading of event lists (#834)

  • +
  • implementation of the shift-and-add technique for QPOs and other varying power spectral features (#849)

  • +
+
+
+

Bug Fixes

+
    +
  • The fold_events function now checks if the keyword arguments (kwargs) are in the list of optional parameters. +If any unidentified keys are present, it raises a ValueError. +This fix ensures that the function only accepts valid optional parameters and provides a clear error message for unsupported keys. (#837)

  • +
+
+
+

Internal Changes

+
    +
  • Eliminated runtime dependency on setuptools (#852)

  • +
  • Moved configuration to pyproject.toml as recommended by PEP 621 (#842)

  • +
  • Added pre-commit hooks in pre-commit-config.yaml (#847)

  • +
  • Improved main page of the documentation (#748)

  • +
+
+
+
+

v2.1 (2024-05-29)

+
+

New Features

+
    +
  • Add function to calibrate event lists based on RMF file (#804)

  • +
  • Speed up computation of pds for large arrays (#808)

  • +
  • Add support for XTE science event data (#816)

  • +
  • A friendlier API for the non-paralyzable dead time model model (#800)

  • +
+
+
+

Bug Fixes

+
    +
  • Fix issue when setting a property from a FITS file read (#814)

  • +
  • Fix case when analyze_segments has an invalid segment (#822)

  • +
  • Substitute np.asarray with np.asanyarray everywhere, to avoid copying memory maps into memory if possible (#824)

  • +
+
+
+

Internal Changes

+
    +
  • Dead time model fixes: more stable computations, better plotting of check_A and check_B (#800)

  • +
  • Bumped jinja version to 3.1.4 (#825)

  • +
+
+
+
+

v2.0 (2024-03-13)

+
+

New Features

+
    +
  • Power colors à la Heil et al. 2015 (#780)

  • +
  • Calculate colors and intensities on a segment-by-segment basis in event lists (#781)

  • +
  • A function to randomize data in small bad time intervals (#782)

  • +
  • The Lomb Scargle Fourier Transform (fast and slow versions) and the corresponding LombScargleCrossspectrum and LombScarglePowerspectrum (#737)

  • +
  • A JAX implementation of the Gaussian Process tool by Hubener et al +for QPO detection and parameter analysis. (#739)

  • +
  • Extend join operation for events to arbitrary array attributes, not just pi and energy (#742)

  • +
  • Allow the creation of empty light curves. (#745)

  • +
  • Make StingrayTimeseries into a generalized light curve, with a less strict naming but implementing much of the underlying computing useful for Lightcurve as well. (#754)

  • +
  • Our fast implementation of histograms is now safer (failing safely to the equivalent numpy histogram functions), more consistent (ranges moved to range, for consistency with numpy), and accept complex weights as well! (#764)

  • +
+
+
+

Bug Fixes

+
    +
  • When rms is low, the calculation in compute_rms often gave NaN. We now check for this situation and give 0 with an uncertainty as a result. (#736)

  • +
  • Eliminates deprecated call to enable_deprecations_as_warnings, and contextually, changes the code to be much more robust in catching harmful warnings. (#738)

  • +
  • Changes Crossspectrum.plot() function to plot the actual real and imaginary parts instead of their absolute values. (#747)

  • +
  • Make commits marked as [docs only] skip all CI but the docs build (#749)

  • +
  • Update tstart and tseg when using Lightcurve.truncate() (#753)

  • +
  • Changed list comprehension to generator expression to reduce memory usage. (#756)

  • +
  • Fix a bug with segment sizes not exact multiples of dt when dealing with light curves (#760)

  • +
  • Fix a bug when light curve segments contain complex values (#760)

  • +
  • Crossspectrum had “real” as default value. This meant that, for example, lags could not be calculated. Now the default value is “all”, as it should be. (#762)

  • +
  • Fix plotting of spectra, avoiding the plot of imaginary parts of real numbers (#763)

  • +
  • Various bugfixes in gti.py, and a new function to interpret the mix of multiple GTIs. (#774)

  • +
  • Fixed subcs duplication by adding a check in the for loop that copies the attributes from table’s meta items. (#776)

  • +
  • Various bug fixes in DynamicalPowerspectrum, on event loading and time rebinning (#779)

  • +
  • Fix issue with the Poisson noise calculation in lag spectra, that produced NaN errors under some conditions (#789)

  • +
  • Fix rms computation and error bars (#792)

  • +
  • Fix issue with Powerspectrum of a single light curve (#663)

  • +
  • Fix nphots estimate in accelsearch, that lead to an underestimation of the power of candidates (#807)

  • +
+
+
+

Breaking Changes

+
    +
  • Eliminate deprecated format_ keyword from read and write methods. (#729)

  • +
  • Remove legacy interface and obsolete large data machinery. (#755)

  • +
  • Eliminate deprecated white_noise_level keyword from compute_rms. (#792)

  • +
+
+
+

Internal Changes

+
    +
  • Speedup creation of events in EventList.from_lc (#757)

  • +
  • Separate slow tests from quick ones (#758)

  • +
  • Use Readthedocs for documentation building (#769)

  • +
  • More informative GTI messages (#787)

  • +
  • Eliminated the usage of astropy logging (#799)

  • +
+
+
+
+

v1.1.2 (2023-05-25)

+
+

New Features

+
    +
  • Phase Dispersion Minimization as a method to search for periodic signals +in data is now implemented in the stingray.pulse submodule. To use it, +you can use the phase_dispersion_search function in +stingray.pulse.search. The accompanying statistical tests are located +in the stingray.stats module, under phase_dispersion_probability, +phase_dispersion_logprobability and phase_dispersion_detection_level. (#716)

  • +
  • Add is_sorted function, to test if an array is sorted. (#723)

  • +
  • Check if invalid data are inside GTIs, and warn or raise exception accordingly (#730)

  • +
+
+
+

Bug Fixes

+
    +
  • The method apply_gtis of the class Lightcurve is applied to all the attributes of the class Lightcurve. +This works for both inplace=True and inplace=False (#712)

  • +
  • Avoid allocation of an unneeded square matrix to improve memory management in _als (fix Issue 724) (#725)

  • +
  • Fix Issue #726 – Loading events without fmt keyword crashes (#727)

  • +
+
+
+

Documentation

+
    +
  • Reordered information about contributions with new black and towncrier procedures (#721)

  • +
+
+
+

Internal Changes

+
    +
  • Using towncrier to generate the changelogs. (#697)

  • +
  • Added stingray’s logo in the documentation’s favicon and top bar. (#707)

  • +
  • Improved contributing workflow by appending black codestyle configuration to pyproject.toml and ignoring PEP-8 non-compliant E203, W503 in flake8. (#715)

  • +
  • Added a scrollbar to sidebarwrapper (#718)

  • +
  • Simplify numba mocking code, and possibly improve code coverage estimate (#731)

  • +
+
+
+
+

v1.1.1 (2022-10-10)

+
+

Bug fixes

+
    +
  • Fixed white_noise_offset in compute_rms to 2.0, as it should be

  • +
  • Fixed a bug that produced a crash when calculating the rms in spectra corrected through the FAD technique

  • +
  • Fixed a bug that eliminated the imaginary part from cross spectra corrected with the FAD

  • +
  • Fixed a bug that considered contiguous GTIs as non-continuous (due to very small differences between stop and start of the next GTI) by allowing a small tolerance

  • +
+

Full list of changes

+
+
+
+

v1.1 (2022-10-02)

+
+

Bug fixes

+
    +
  • IMPORTANT: Fixed sign of time lags, which were calculated using the interest band as the reference.

  • +
  • Fixed an issue when the fractional exposure in FITS light curves is slightly >1 (as sometimes happens in NICER data)

  • +
+
+
+

New

+
    +
  • Implemented the bexvar variability estimation method for light curves.

  • +
+
+
+

Improvements

+
    +
  • A less confusing default value of segment_size in Z searches

  • +
+

Full list of changes

+
+
+
+

v1.0 (2022-03-29)

+

TL,DR: these things will break your code with v1.0:

+
    +
  • Python version < 3.8

  • +
  • The gtis keyword in pulse/pulsar.py (it is now gti, without the ‘s’)

  • +
+
+

New

+
    +
  • Dropped support to Python < 3.8

  • +
  • Multi-taper periodogram, including a Lomb-Scargle implementation for non-uniformly sampled data

  • +
  • Create count-rate spectrum when calculating spectral-timing products

  • +
  • Make modlation upper limit in (Averaged)Powerspectrum work with any normalization (internally converts to Leahy for the calculation)

  • +
  • Implement Gardner-Done normalization (1 for perfect correlation, -1 for perfect anticorrelation) for Auto/Crosscorrelation

  • +
  • New infrastructure for converting EventList and LightCurve objects into Astropy TimeSeries

  • +
  • New infrastructure for converting most Stingray classes into Astropy Table objects, Xarray and Pandas data frames.

  • +
  • Save and load of most Stingray classes to/from many different file formats (pickle, ECSV, HDF5, FITS, and all formats compatible with Astropy Table)

  • +
  • Accept input EventList in DynamicalPowerSpectrum

  • +
  • New stingray.fourier module containing the basic timing products, usable on numpy arrays, and centralizes fft import

  • +
  • New methods in Crossspectrum and Powerspectrum to load data from specific inputs: from_events, from_lightcurve, from_time_array, from_lc_list (from_time_array was also tested using memory-mapped event lists as inputs: useful in very large datasets)

  • +
  • New and improved spectral timing methods: ComplexCovarianceSpectrum, CovarianceSpectrum, LagSpectrum, RmsSpectrum

  • +
  • Some deprecated features are now removed

  • +
  • PSDLogLikelihood now also works with a log-rebinned PDS

  • +
+
+
+

Improvements

+
    +
  • Performance on large data sets is VASTLY improved

  • +
  • Lots of performance improvements in the AveragedCrossspectrum and AveragedPowerspectrum classes

  • +
  • Standardized use of new fast psd/cs algorithm, with legacy still available as an alternative option to specify

  • +
  • Reading calibrated photon energy from event files by default

  • +
  • In pulse/pulsar.py, methods use the keyword gti instead of gtis (for consistency with the rest of Stingray)

  • +
  • Moved CovarianceSpectrum` to ``VarEnergySpectrum and reuse part of the machinery

  • +
  • Improved error bars on cross-spectral and spectral timing methods

  • +
  • Measure absolute rms in RmsEnergySpectrum

  • +
  • Friendlier pyfftw warnings

  • +
  • Streamline PDS/CrossSp production, adding from_events, from_lc, from_lc_iterable, and from_time_array (to input a numpy array) methods

  • +
  • PDS/CrossSp initially store the unnormalized power, and convert it on the fly when requested, to any normalization

  • +
+
+
+

Bug fixes

+
    +
  • Fixed error bars and err_dist for sliced (iterated) light curves and power spectra

  • +
  • Fixed a bug in how the start time when applying GTIs (now using the minimum value of the GTI array, instead of half a time bin below the minimum value)

  • +
  • Fixed a bug in which all simulator errors were incorrectly non-zero

  • +
  • Fixed coherence uncertainty

  • +
  • Documented a Windows-specific issue when large count rate light curves are defined as integer arrays (Windows users should use float or specify int-64)

  • +
  • If the variance of the lightcurve is zero, the code will fail to implement Leahy normalization

  • +
  • The value of the PLEPHEM header keyword is forced to be a string, in the rare cases that it’s a number

  • +
  • and more!

  • +
+

Full list of changes

+

v1.0beta was released on 2022-02-25.

+
+
+
+

v0.3 (2021-05-31)

+
    +
  • Lots of performance improvements

  • +
  • Faster simulations

  • +
  • Averaged Power spectra and Cross spectra now handle Gaussian light curves correctly

  • +
  • Fixes in rebin functions

  • +
  • New statistical functions for signal detection in power spectra and pulsar search periodograms

  • +
  • Much improved FTOOL-compatible mission support

  • +
  • New implementation of the FFTFIT method to calculate pulsar times of arrival

  • +
  • H-test for pulsar searches

  • +
  • Z^2_n search adapted to binned and normally distribute pulse profiles

  • +
  • Large data processing (e.g. from NICER) allowed

  • +
  • Rebinning function now accepts unevenly sampled data

  • +
  • New saving and loading from/to Astropy Tables and Timeseries

  • +
  • Improved I/O to ascii, hdf5 and other formats

  • +
  • Rehaul of documentation

  • +
+

Full list of changes

+
+
+

v0.2 (2020-06-17)

+
    +
  • Added Citation info

  • +
  • Fixed various normalization bugs in Powerspectrum

  • +
  • Speedup of lightcurve creation and handling

  • +
  • Made code compatible with Python 3.6, and dropped support to Python 2.7

  • +
  • Test speedups

  • +
  • Dead time models and Fourier Amplitude Difference correction

  • +
  • Roundtrip of LightCurve to lightkurve objects

  • +
  • Fourier-domain accelerated search for pulsars

  • +
  • Adapt package to APE-17

  • +
  • Periodograms now also accept event lists (instead of just light curves)

  • +
  • Allow transparent MJDREF change in event lists and light curves

  • +
+

Full list of changes

+
+
+

v0.1.3 (2019-06-11)

+
    +
  • Bug fixes

  • +
+
+
+

v0.1.2

+
    +
  • Bug fixes

  • +
+
+
+

v0.1.1

+
    +
  • Bug fixes

  • +
+
+
+

v0.1 (2019-05-29)

+
    +
  • Initial release.

  • +
+
+
+
+

Presentations

+

Members of the Stingray team have given a number of presentations which introduce Stingray. +These include:

+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/index.html b/index.html new file mode 100644 index 000000000..f77b75bf9 --- /dev/null +++ b/index.html @@ -0,0 +1,539 @@ + + + + + + + + Stingray: Next-Generation Spectral Timing — stingray v + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray: Next-Generation Spectral Timing

+Stingray logo, outline of a stingray on top of a graph of the power spectrum of an X-ray binary + +

Stingray is a Python library designed to perform times series analysis and related tasks on astronomical light curves. +It supports a range of commonly-used Fourier analysis techniques, as well as extensions for analyzing pulsar data, simulating data sets, and statistical modelling. +Stingray is designed to be easy to extend, and easy to incorporate into data analysis workflows and pipelines.

+
+

Important

+

If you use Stingray for work presented in a publication or talk, please help the project by providing a proper citation.

+
+
+

Features

+
+

Current Capabilities

+
+

1. Data handling and simulation

+
    +
  • loading event lists from fits files (and generally good handling of OGIP-compliant missions, like RXTE/PCA, NuSTAR/FPM, XMM-Newton/EPIC, NICER/XTI)

  • +
  • constructing light curves and time series from event data

  • +
  • various operations on time series (e.g. addition, subtraction, joining, and truncation)

  • +
  • simulating a light curve with a given power spectrum

  • +
  • simulating a light curve from another light curve and a 1-d (time) or 2-d (time-energy) impulse response

  • +
  • simulating an event list from a given light curve _and_ with a given energy spectrum

  • +
  • Good Time Interval operations

  • +
  • Filling gaps in light curves with statistically sound fake data

  • +
+
+
+

1. Fourier methods

+
    +
  • power spectra and cross spectra in Leahy, rms normalization, absolute rms and no normalization

  • +
  • averaged power spectra and cross spectra

  • +
  • dynamical power spectra and cross spectra

  • +
  • maximum likelihood fitting of periodograms/parametric models

  • +
  • (averaged) cross spectra

  • +
  • coherence, time lags

  • +
  • Variability-Energy spectra, like covariance spectra and lags needs testing

  • +
  • covariance spectra; needs testing

  • +
  • bispectra; needs testing

  • +
  • (Bayesian) quasi-periodic oscillation searches

  • +
  • Lomb-Scargle periodograms and cross spectra

  • +
  • Power Colors

  • +
+
+
+

3. Other time series methods

+
    +
  • pulsar searches with Epoch Folding, \(Z^2_n\) test

  • +
  • Gaussian Processes for QPO studies

  • +
  • cross correlation functions

  • +
+
+
+
+

Future Plans

+

We welcome feature requests: if you need a particular tool that’s currently not available or have a new method you think might be usefully implemented in Stingray, please get in touch!

+

Other future additions we are currently implementing are:

+
    +
  • bicoherence

  • +
  • phase-resolved spectroscopy of quasi-periodic oscillations

  • +
  • Fourier-frequency-resolved spectroscopy

  • +
  • full HEASARC-compatible mission support

  • +
  • pulsar searches with \(H\)-test

  • +
  • binary pulsar searches

  • +
+
+
+

Platform-specific issues

+

Windows uses an internal 32-bit representation for int. This might create numerical errors when using large integer numbers (e.g. when calculating the sum of a light curve, if the lc.counts array is an integer). +On Windows, we automatically convert the counts array to float. The small numerical errors should be a relatively small issue compare to the above.

+
+
+
+

Installation instructions

+

There are currently three ways to install Stingray:

+
    +
  • via conda

  • +
  • via pip

  • +
  • from source

  • +
+

Below, you can find instructions for each of these methods.

+
+

Dependencies

+

A minimal installation of Stingray requires the following dependencies:

+
    +
  • astropy>=4.0

  • +
  • numpy>=1.17.0

  • +
  • scipy>=1.1.0

  • +
  • matplotlib>=3.0,!=3.4.0

  • +
+

In typical uses, requiring input/output, caching of results, and faster processing, we recommend the following dependencies:

+
    +
  • numba (highly recommended)

  • +
  • tqdm (for progress bars, always useful)

  • +
  • pyfftw (for the fastest FFT in the West)

  • +
  • h5py (for input/output)

  • +
  • pyyaml (for input/output)

  • +
  • emcee (for MCMC analysis, e.g. for PSD fitting)

  • +
  • corner (for the plotting of MCMC results)

  • +
  • statsmodels (for some statistical analysis)

  • +
+

For pulsar searches and timing, we recommend installing

+
    +
  • pint-pulsar

  • +
+

Some of the dependencies are available in conda, the others via pip. +To install all required and recommended dependencies in a recent installation, you should be good running the following command:

+
+

$ pip install astropy scipy matplotlib numpy h5py tqdm numba pint-pulsar emcee corner statsmodels pyfftw tbb

+
+

For the Gaussian Process modeling in stingray.modeling.gpmodeling, you’ll need the following extra packages

+
    +
  • jax

  • +
  • jaxns

  • +
  • tensorflow

  • +
  • tensorflow-probability

  • +
  • tinygp

  • +
  • etils

  • +
  • typing_extensions

  • +
+

For the Bexvar calculations in stingray.bexvar and stingray.lightcurve, you’ll need UltraNest.

+

Most of these are installed via pip, but if you have an Nvidia GPU available, you’ll want to take special care +following the installation instructions for jax and tensorflow(-probability) in order to enable GPU support and +take advantage of those speed-ups.

+

For development work, you will need the following extra libraries:

+
    +
  • pytest

  • +
  • pytest-astropy

  • +
  • tox

  • +
  • jinja2==3.1.3

  • +
  • docutils

  • +
  • sphinx-astropy

  • +
  • nbsphinx>=0.8.3,!=0.8.8

  • +
  • pandoc

  • +
  • ipython

  • +
  • jupyter

  • +
  • notebook

  • +
  • towncrier<22.12.0

  • +
  • black

  • +
+

Which can be installed with the following command:

+
+

$ pip install pytest pytest-astropy jinja2<=3.0.0 docutils sphinx-astropy nbsphinx pandoc ipython jupyter notebook towncrier<22.12.0 tox black

+
+
+
+

Installation

+
+

Installing via conda

+

If you manage your Python installation and packages +via Anaconda or miniconda, you can install stingray +via the conda-forge build:

+
$ conda install -c conda-forge stingray
+
+
+

That should be all you need to do! Just remember to run the tests before +you use it!

+
+
+

Installing via pip

+

pip-installing Stingray is easy! Just do:

+
$ pip install stingray
+
+
+

And you should be done! Just remember to run the tests before you use it!

+
+
+

Installing from source (bleeding edge version)

+

For those of you wanting to install the bleeding-edge development version from +source (it will have bugs; you’ve been warned!), first clone +our repository on GitHub:

+
$ git clone --recursive https://github.com/StingraySoftware/stingray.git
+
+
+

Now cd into the newly created stingray directory. +Finally, install stingray itself:

+
$ pip install -e "."
+
+
+
+
+

Installing development environment (for new contributors)

+

For those of you wanting to contribute to the project, install the bleeding-edge development version from +source. First fork +our repository on GitHub and clone the forked repository using:

+
$ git clone --recursive https://github.com/<your github username>/stingray.git
+
+
+

Now, navigate to this folder and run +the following command to add an upstream remote that’s linked to Stingray’s main repository. +(This will be necessary when submitting PRs later.):

+
$ cd stingray
+$ git remote add upstream https://github.com/StingraySoftware/stingray.git
+
+
+

Now, install the necessary dependencies:

+
$ pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm
+
+
+

Finally, install stingray itself:

+
$ pip install -e "."
+
+
+
+
+
+

Test Suite

+

Please be sure to run the test suite before you use the package, and please report anything +you think might be bugs on our GitHub Issues page.

+

Stingray uses py.test and tox for testing. To run the tests, try:

+
$ tox -e test
+
+
+

You may need to install tox first:

+
$ pip install tox
+
+
+

To run a specific test file (e.g., test_io.py), try:

+
$ cd stingray
+$ py.test tests/test_io.py
+
+
+

If you have installed Stingray via pip or conda, the source directory might +not be easily accessible. Once installed, you can also run the tests using:

+
$ python -c 'import stingray; stingray.test()'
+
+
+

or from within a python interpreter:

+
>>> import stingray
+>>> stingray.test()
+
+
+
+
+

Building the Documentation

+

The documentation including tutorials is hosted here. +The documentation uses sphinx to build and requires the extensions sphinx-astropy and nbsphinx.

+

One quick way to build the documentation is using our tox environment:

+
$ tox -e build_docs
+
+
+

You can build the API reference yourself by going into the docs folder within the stingray root +directory and running the Makefile:

+
$ cd stingray/docs
+$ make html
+
+
+

If that doesn’t work on your system, you can invoke sphinx-build itself from the stingray source directory:

+
$ cd stingray
+$ sphinx-build docs docs/_build
+
+
+

The documentation should be located in stingray/docs/_build. Try opening ./docs/_build/index.rst from +the stingray source directory.

+
+
+
+

Using Stingray

+

The documentation below is built on top of Jupyter notebooks that can be run locally. +The easiest way to retrieve the notebooks is by cloning the notebooks repository and browsing the directories, which are conveniently divided by topic.

+
+

A Spectral timing exploration

+

In this Tutorial, we will show an example spectral timing exploration of a +black hole binary using NICER data. The tutorial includes a hardness-intensity +diagram, the modeling of the power density spectrum, power colors, lag-frequency, +lag-energy, and rms/covariance spectra.

+ +
+
+

Stingray fundamentals

+ +
+
+

Advanced

+ +
+
+
+

Additional information

+ +
+
+

Indices and tables

+ +
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/largedata.html b/largedata.html new file mode 100644 index 000000000..25ae90db7 --- /dev/null +++ b/largedata.html @@ -0,0 +1,122 @@ + + + + + + + + Working with large data sets — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + + +
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/modeling.html b/modeling.html new file mode 100644 index 000000000..b2a995ef0 --- /dev/null +++ b/modeling.html @@ -0,0 +1,134 @@ + + + + + + + + The Stingray Modelling Interface — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

The Stingray Modelling Interface

+

Stingray provides a custom-built fitting interface, built on top +of scipy and emcee as well as a set of general functions +and classes that allow the user to perform standard model fitting tasks +on Fourier products, but also enable users to implement their own models +and classes based on this framework.

+

Below, we show on some examples how this interface can be used.

+ +
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Bexvar/Bexvar tutorial.html b/notebooks/Bexvar/Bexvar tutorial.html new file mode 100644 index 000000000..840acbf50 --- /dev/null +++ b/notebooks/Bexvar/Bexvar tutorial.html @@ -0,0 +1,294 @@ + + + + + + + + Baysian Excess Variance (Bexvar) — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Baysian Excess Variance (Bexvar)

+

The Bayesian Excess Variance (bexvar) is a statistical measurement of variability in Poisson-distributed light curves. Bexvar is a Bayesian formulation of excess variance. A brief summary of theoretical understanding of bexvar is given at the end of this tutorial.

+
+
The bexvar() method implemented in Stingray, provides posterior samples of bexvar given a light curve data as input parameters.
+
This tutorial is intended to give a demonstration of How to use bexvar() method implemented in Stingray. The method takes following input parameters. (Given here for completeness)
+
+
+
  time : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
     A list or array of time stamps for a light curve.
+
  time_del : iterable, :class:numpy.array or :class:List of floats
+
    A list or array of time intervals for each bin of light curve.
+
  src_counts : iterable, :class:numpy.array or :class:List of floats
+
    A list or array of counts observed from source region in each bin.
+
  bg_counts : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
    A list or array of counts observed from background region in each bin. If None
+
    we assume it as a numpy array of zeros, of length equal to length of src_counts.
+
  bg_ratio : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
    A list or array of source region area to background region area ratio in each bin.
+
    If None we assume it as a numpy array of ones, of length equal to the length of
+
    src_counts.
+
  frac_exp : iterable, :class:numpy.array or :class:List of floats, optional, default None
+
    A list or array of fractional exposers in each bin. If None we assume it as
+
    a numpy array of ones, of length equal to length of src_counts.
+
+

Let us start by importing the bexvar module

+
+
[13]:
+
+
+
from stingray import bexvar
+
+
+
+

Now consider an example dataset.

+
+
[14]:
+
+
+
import numpy as np
+
+time = np.arange(0,8)*100
+counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])
+time_del = np.ones(np.size(time))*100
+bg_counts = np.array([722, 696, 701, 721, 722, 703, 722, 695])
+bg_ratio = np.array([0.01474, 0.01158, 0.01214, 0.01308, 0.010877, 0.01177, 0.01058, 0.01138])
+frac_exp = np.array([0.37416, 0.21713, 0.37937,  0.50140, 0.11617, 0.39221, 0.64275, 0.31160])
+
+
+
+

Call bexvar function to get posterior distribution of bexvar.

+

The bexvar() method uses UltraNest python package to obtain the posteriors of bexvar. Ultranest gives a brief summary of log evidence (log(z)) and its uncertainties, and the parameter constraints.

+
+
[16]:
+
+
+

bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del, frac_exp=frac_exp, + bg_counts=bg_counts, bg_ratio=bg_ratio) +
+
+
+
+
+
+
+
+preparing time bin posteriors...
+running bexvar...
+[ultranest] Sampling 400 live points from prior ...
+[ultranest] Explored until L=-2e+01   [-20.4040..-20.4040]*| it/evals=3622/5046 eff=77.9595% N=400
+[ultranest] Likelihood function evaluations: 5051
+[ultranest]   logZ = -24.86 +- 0.0784
+[ultranest] Effective samples strategy satisfied (ESS = 1590.2, need >400)
+[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.06 nat, need <0.50 nat)
+[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.08, need <0.5)
+[ultranest]   logZ error budget: single: 0.09 bs:0.08 tail:0.01 total:0.08 required:<0.50
+[ultranest] done iterating.
+
+logZ = -24.856 +- 0.156
+  single instance: logZ = -24.856 +- 0.093
+  bootstrapped   : logZ = -24.856 +- 0.156
+  tail           : logZ = +- 0.010
+insert order U test : converged: True correlation: inf iterations
+
+    logmean             : 0.350 │ ▁ ▁ ▁▁▁▁▁▁▁▁▂▃▄▅▆▇▇▇▆▅▄▃▂▁▁▁▁▁▁▁ ▁ ▁▁ │0.575     0.461 +- 0.020
+    logsigma            : 0.010 │▇▅▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁        ▁     ▁ │0.227     0.028 +- 0.018
+
+running bexvar... done
+
+
+

We can then plot the samples to visualize the posterior distribution of bexvar.

+
+
[5]:
+
+
+
import matplotlib.pyplot as plt
+%matplotlib inline
+plt.hist(bexvar_distribution, bins=20)
+plt.ylabel("# of samples")
+plt.xlabel(r"$\sigma_{bexvar}$")
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bexvar_Bexvar_tutorial_12_0.png +
+
+

If the light curve is intrinsically variable, then the posterior distribution of bexvar should exclude low values. Users can compute the lower 10% quantile of the posterior, and use it as a variability indicator (see Buchner et al. (2021)).

+

The method uses fractional exposers (frac_exp) in each bin to compute the count rates (i.e.\(~\scriptstyle{R_i = C_i/(\Delta{t_i}\times f_i)}\)). In its current form it only considers time bins with frac_exp < 1. The bg_ratio parameter is used to scale the bg_counts to estimate counts in source region. The bg_count, bg_ratio and frac_exp are optional parameters, if they are not provided, the method defines default values for them as described in documentation.

+

Let us see an example to get bexvar distribution without these optional parameters.

+
+
[3]:
+
+
+
import numpy as np
+
+time = np.arange(0,8)*100
+counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])
+time_del = np.ones(np.size(time))*100
+
+bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del)
+
+
+
+
+
+
+
+
+preparing time bin posteriors...
+running bexvar...
+[ultranest] Sampling 400 live points from prior ...
+[ultranest] Explored until L=-4e+01   [-36.8486..-36.8486]*| it/evals=3615/5101 eff=76.8985% N=400
+[ultranest] Likelihood function evaluations: 5125
+[ultranest]   logZ = -41.34 +- 0.09729
+[ultranest] Effective samples strategy satisfied (ESS = 1692.4, need >400)
+[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)
+[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.10, need <0.5)
+[ultranest]   logZ error budget: single: 0.09 bs:0.10 tail:0.01 total:0.10 required:<0.50
+[ultranest] done iterating.
+
+logZ = -41.331 +- 0.174
+  single instance: logZ = -41.331 +- 0.092
+  bootstrapped   : logZ = -41.335 +- 0.174
+  tail           : logZ = +- 0.010
+insert order U test : converged: True correlation: inf iterations
+
+    logmean             : -0.517│ ▁  ▁  ▁▁▁▁▁▁▁▁▁▁▂▂▃▄▆▇▇▆▅▄▃▂▁▁▁▁▁▁▁▁▁ │0.383     0.020 +- 0.081
+    logsigma            : 0.029 │ ▁▂▆▇▇▅▃▂▂▁▁▁▁▁▁▁▁ ▁▁▁▁▁   ▁         ▁ │1.236     0.213 +- 0.074
+
+running bexvar... done
+
+
+
+

Bexvar: Theoretical background

+

This section provides a theoretical understanding of Bayesian excess variance (bexvar). This is an optional read.

+

Given a lightcurve data \({\scriptstyle 𝐷 = (𝑆_1,𝐵_1,~…~,𝑆_𝑁,𝐵_𝑁)}\) where (\(\scriptstyle{S_i}\)) denotes counts obtained from source region and (\(\scriptstyle{B_i}\)) denotes counts obtained from background extraction region in \(\scriptstyle{i^{th}}\) time bin. If it is assumed that the counts \(\scriptstyle{𝑆_𝑖}\) and \(\scriptstyle{𝐵_𝑖}\) can be expressed as Poisson processes.

+
+\[\scriptstyle {𝑆_𝑖 ~ \sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((( 𝑅_𝑆(𝑡_𝑖) ~+~ 𝑅_𝐵(𝑡_𝑖) \times 𝑟)~×~𝑓_𝑖~\times~Δ𝑡)}\]
+
+\[\scriptstyle {𝐵_𝑖 ~ \sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅_𝐵(𝑡_𝑖) × 𝑓_𝑖 × Δ𝑡)}\]
+
+
Here, \(\scriptstyle{𝑅_𝑆(𝑡_𝑖)}\) is source count rate and \(\scriptstyle{𝑅_B(𝑡_𝑖)}\) is background count rate in \(\scriptstyle{i^{th}}\) time bin.
+
It is further assumed that \(\scriptstyle{𝑅_𝑆(𝑡_𝑖)}\) is distributed according to a log normal distribution, with some unknown parameters (i.e., \(\scriptstyle{log(\bar{𝑅_{S}})}\), and \(\scriptstyle{\sigma_{bexvar}}\)).
+
+
+
+\[\scriptstyle{log(𝑅_𝑆(𝑡_𝑖))~\sim~𝑁𝑜𝑟𝑚𝑎𝑙(log(\bar{𝑅_𝑆}),~ \sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}\]
+
+

This \(\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}\) provides intrinsic variability on log-count rate and it is defined as Bayesian excess variance (bexvar). The posterior distribution of \(\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}\) can be used to identify intrinsically variable object.

+

The bexvar() method in Stingray returns posterior samples of \(\scriptstyle{\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}}\) given a light curve data. The samples are generated following the same prescription given in Buchner et al. (2021). The method uses flat, uninformative priors on \(\scriptstyle{log(\bar{𝑅_𝑆})}\) and \(\scriptstyle{log(\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}\) and obtains the posterior samples using nested sampling Monte Carlo algorithm MLFriends (Buchner +2016, 2019) implemented in the UltraNest Python package (Buchner 2021).

+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Bexvar/Bexvar tutorial.ipynb b/notebooks/Bexvar/Bexvar tutorial.ipynb new file mode 100644 index 000000000..b97a34a38 --- /dev/null +++ b/notebooks/Bexvar/Bexvar tutorial.ipynb @@ -0,0 +1,302 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Baysian Excess Variance (Bexvar)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The Bayesian Excess Variance (bexvar) is a statistical measurement of variability in Poisson-distributed light curves. Bexvar is a Bayesian formulation of excess variance. A brief summary of theoretical understanding of bexvar is given at the end of this tutorial. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method implemented in Stingray, provides posterior samples of bexvar given a light curve data as input parameters. \n", + "This tutorial is intended to give a demonstration of How to use `bexvar()` method implemented in Stingray.\n", + "The method takes following input parameters. (Given here for completeness)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "  ```time``` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "     A list or array of time stamps for a light curve. \n", + "  `time_del` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of time intervals for each bin of light curve. \n", + "  `src_counts` : iterable, `:class:numpy.array` or `:class:List` of floats \n", + "    A list or array of counts observed from source region in each bin. \n", + "  `bg_counts` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of counts observed from background region in each bin. If ``None`` \n", + "    we assume it as a numpy array of zeros, of length equal to length of ``src_counts``. \n", + "  `bg_ratio` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of source region area to background region area ratio in each bin. \n", + "    If ``None`` we assume it as a numpy array of ones, of length equal to the length of \n", + "    ``src_counts``. \n", + "  `frac_exp` : iterable, `:class:numpy.array` or `:class:List` of floats, optional, default ``None`` \n", + "    A list or array of fractional exposers in each bin. If ``None`` we assume it as \n", + "    a numpy array of ones, of length equal to length of ``src_counts``. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us start by importing the bexvar module" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import bexvar" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now consider an example dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "bg_counts = np.array([722, 696, 701, 721, 722, 703, 722, 695])\n", + "bg_ratio = np.array([0.01474, 0.01158, 0.01214, 0.01308, 0.010877, 0.01177, 0.01058, 0.01138])\n", + "frac_exp = np.array([0.37416, 0.21713, 0.37937, 0.50140, 0.11617, 0.39221, 0.64275, 0.31160])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Call bexvar function to get posterior distribution of bexvar." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `bexvar()` method uses [UltraNest](https://johannesbuchner.github.io/UltraNest/) python package to obtain the posteriors of bexvar. Ultranest gives a brief summary of log evidence (log(z)) and its uncertainties, and the parameter constraints. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-2e+01 [-20.4040..-20.4040]*| it/evals=3622/5046 eff=77.9595% N=400 \n", + "[ultranest] Likelihood function evaluations: 5051\n", + "[ultranest] logZ = -24.86 +- 0.0784\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1590.2, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.47+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.08, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.08 tail:0.01 total:0.08 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -24.856 +- 0.156\n", + " single instance: logZ = -24.856 +- 0.093\n", + " bootstrapped : logZ = -24.856 +- 0.156\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : 0.350 │ ▁ ▁ ▁▁▁▁▁▁▁▁▂▃▄▅▆▇▇▇▆▅▄▃▂▁▁▁▁▁▁▁ ▁ ▁▁ │0.575 0.461 +- 0.020\n", + " logsigma : 0.010 │▇▅▄▃▂▂▂▁▁▁▁▁▁▁▁▁▁▁ ▁▁▁▁ ▁ ▁ │0.227 0.028 +- 0.018\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "\n", + " bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del, frac_exp=frac_exp,\n", + " bg_counts=bg_counts, bg_ratio=bg_ratio)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can then plot the samples to visualize the posterior distribution of bexvar." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEICAYAAACuxNj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAAY3ElEQVR4nO3debRlZXnn8e/PQnACBbkaoMACG0w7FlpBE2MWOCLYgENr0VFwaHHATmxcrTh0HBJ6kcGJNo1dKiJGQZSwRIU2SAftdItQYFkMghSDocoSCmxxDA349B/nvXIo7r371K17huJ+P2vtdfZ59rv3eWqfA8/d+9373akqJEmaywPGnYAkafJZLCRJnSwWkqROFgtJUieLhSSpk8VCktRpu3EnMCy77rprLVu2bNxpSNI249JLL721qqZmWna/LRbLli1j9erV405DkrYZSX442zJPQ0mSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHW6396UtzWWHf+1ea9744mHLmAmkjQZPLKQJHUaWrFIckqSW5Jc0Rf7QpI1bboxyZoWX5bk133LPt63ztOSXJ5kXZKTkmRYOUuSZjbM01CnAh8DTpsOVNUrpueTfBC4va/9dVW1fIbtnAy8HvgOcC5wMHDewqcrSZrN0I4squpbwE9mWtaODl4OnD7XNpLsBuxUVRdVVdErPEcscKqSpA7j6rN4FnBzVV3bF9s7yXeTfDPJs1psD2B9X5v1LTajJMckWZ1k9aZNmxY+a0lapMZVLI7k3kcVG4G9qmp/4Djg80l22tKNVtWqqlpRVSumpmYckl2SNA8jv3Q2yXbAS4CnTceq6g7gjjZ/aZLrgP2ADcDSvtWXtpgkaYTGcWTxXODqqvrt6aUkU0mWtPl9gH2B66tqI/CzJM9o/RxHAV8eQ86StKgN89LZ04FvA49Lsj7J69qildy3Y/uPgLXtUtovAW+squnO8TcDnwTWAdfhlVCSNHJDOw1VVUfOEn/1DLGzgLNmab8aeOKCJidJ2iLewS1J6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnSwWkqROFgtJUieLhSSpk8VCktTJYiFJ6mSxkCR1slhIkjpZLCRJnYZWLJKckuSWJFf0xd6XZEOSNW06pG/ZO5OsS3JNkhf0xQ9usXVJjh9WvpKk2Q3zyOJU4OAZ4h+uquVtOhcgyeOBlcAT2jr/LcmSJEuAvwVeCDweOLK1lSSN0HbD2nBVfSvJsgGbHw6cUVV3ADckWQcc0Jatq6rrAZKc0dpetdD5SpJmN44+i7ckWdtOU+3cYnsAN/W1Wd9is8VnlOSYJKuTrN60adNC5y1Ji9aoi8XJwGOB5cBG4IMLufGqWlVVK6pqxdTU1EJuWpIWtaGdhppJVd08PZ/kE8BX29sNwJ59TZe2GHPEJUkjMtIjiyS79b19MTB9pdQ5wMokOyTZG9gXuBi4BNg3yd5JtqfXCX7OKHOWJA3xyCLJ6cCBwK5J1gPvBQ5Mshwo4EbgDQBVdWWSM+l1XN8FHFtVd7ftvAX4OrAEOKWqrhxWzpKkmQ3zaqgjZwh/ao72JwAnzBA/Fzh3AVOTJG0h7+CWJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE5DKxZJTklyS5Ir+mJ/neTqJGuTnJ3kES2+LMmvk6xp08f71nlaksuTrEtyUpIMK2dJ0syGeWRxKnDwZrHzgSdW1ZOBHwDv7Ft2XVUtb9Mb++InA68H9m3T5tuUJA3Z0IpFVX0L+MlmsX+oqrva24uApXNtI8luwE5VdVFVFXAacMQQ0pUkzWGcfRavBc7re793ku8m+WaSZ7XYHsD6vjbrW2xGSY5JsjrJ6k2bNi18xpK0SI2lWCR5N3AX8LkW2gjsVVX7A8cBn0+y05Zut6pWVdWKqloxNTW1cAlL0iK33ag/MMmrgRcBz2mnlqiqO4A72vylSa4D9gM2cO9TVUtbTJI0QiM9skhyMPB24LCq+lVffCrJkja/D72O7OuraiPwsyTPaFdBHQV8eZQ5S5K2sFgk2TnJkwdsezrwbeBxSdYneR3wMWBH4PzNLpH9I2BtkjXAl4A3VtV05/ibgU8C64DruHc/hyRpBDpPQyW5EDistb0UuCXJ/66q4+Zar6qOnCH8qVnangWcNcuy1cATu/KUJA3PIEcWD6+qnwEvAU6rqqcDzx1uWpKkSTJIsdiu3e/wcuCrQ85HkjSBBikWHwC+Tu8O60taB/S1w01LkjRJOvssquqLwBf73l8PvHSYSUmSJkvnkUWS/ZJcMD0gYJInJ3nP8FOTJE2KQU5DfYLegH93AlTVWmDlMJOSJE2WQYrFQ6rq4s1id83YUpJ0vzRIsbg1yWOBAkjyMnpjOUmSFolBxoY6FlgF/G6SDcANwCuHmpUkaaIMcjXU9cBzkzwUeEBV/Xz4aUmSJsmsxSLJjMN5TD/VtKo+NKScJEkTZq4jix1HloUkaaLNWiyq6v2jTESSNLkGuSlvnyRfSbIpyS1JvtyG/JAkLRKDXDr7eeBMYDdgd3pDf5w+zKQkSZNl0JvyPltVd7Xp74AHDTsxSdLkGOQ+i/OSHA+cQe/GvFcA5ybZBaDviXaSpPupQYrFy9vrGzaLr6RXPOy/kKT7uUFuytt7FIlIkibXIFdDLUlyWJI/SXLc9DTIxpOc0q6guqIvtkuS85Nc2153bvEkOSnJuiRrkzy1b52jW/trkxw9n3+oJGn+Bung/grwauCR9G7Um54GcSpw8Gax44ELqmpf4IL2HuCFwL5tOgY4GXrFBXgv8HTgAOC90wVGkjQag/RZLK2qJ89n41X1rSTLNgsfDhzY5j8DXAi8o8VPq6oCLkryiPbs7wOB86c70pOcT68AefmuJI3IIEcW5yV5/gJ+5qOranqI8x8Dj27zewA39bVb32KzxSVJIzLIkcVFwNlJHkDvaXkBqqp22toPr6pKUlu7nWlJjqF3Cou99tproTYrSYveIEcWHwJ+n97NeTtV1Y5bWShubqeXaK+3tPgGYM++dktbbLb4fVTVqqpaUVUrpqamtiJFSVK/QYrFTcAVrS9hIZwDTF/RdDTw5b74Ue2qqGcAt7fTVV8Hnp9k59ax/fwWkySNyCCnoa4HLkxyHnDHdHCQ51kkOZ1eB/WuSdbTu6rpRODMJK8Dfsg9N/2dCxwCrAN+Bbymfc5Pkvw5cElr9wHvGpek0RqkWNzQpu3bNLCqOnKWRc+ZoW3Re4TrTNs5BThlSz5bkrRwBrmD2+dabIFlx39t3uveeOKhC5iJJC2czmKRZAp4O/AE+kabrapnDzEvSdIEGaSD+3PA1cDewPuBG7mn/0CStAgMUiweWVWfAu6sqm9W1WsBjyokaREZpIP7zva6McmhwI+AXYaXkiRp0gxSLP4iycOBtwH/FdgJ+I9DzUqSNFEGuRrqq232duCg4aYjSZpEgzzP4q+S7JTkgUkuSLIpyStHkZwkaTIM0sH9/Kr6GfAieldC/SvgPw0zKUnSZBmkWEyfqjoU+GJV3T7EfCRJE2iQDu6vJrka+DXwpnaT3r8MNy1J0iTpPLKoquOBPwBWVNWd9Ab5O3zYiUmSJscgRxb0j/JaVb8Efjm0jCRJE2eQPgtJ0iI3a7FI8sz2usPo0pEkTaK5jixOaq/fHkUikqTJNVefxZ1JVgF7JDlp84VV9SfDS0uSNEnmKhYvAp4LvAC4dDTpSJIm0azFoqpuBc5I8v2q+t4Ic5IkTZhBroa6LcnZSW5p01lJlg49M0nSxBikWHwaOAfYvU1fabF5SfK4JGv6pp8leWuS9yXZ0Bc/pG+ddyZZl+SaJC+Y72dLkuZnkJvyHlVV/cXh1CRvne8HVtU1wHKAJEuADcDZwGuAD1fV3/S3T/J4YCW9Z4DvDnwjyX5Vdfd8c5AkbZlBjixuTfLKJEva9ErgtgX6/OcA11XVD+doczhwRlXdUVU3AOuAAxbo8yVJAxikWLwWeDnwY2Aj8DJ6RwELYSVwet/7tyRZm+SUJDu32B7ATX1t1reYJGlEBhlI8IdVdVhVTVXVo6rqiKr656394CTbA4cBX2yhk4HH0jtFtRH44Dy2eUyS1UlWb9q0aWtTlCQ14xwb6oXAZVV1M0BV3VxVd1fVb4BPcM+ppg3Ann3rLW2x+6iqVVW1oqpWTE1NDTF1SVpcxlksjqTvFFSS3fqWvRi4os2fA6xMskOSvYF9gYtHlqUkabAhyhdakocCzwPe0Bf+qyTLgaL3+NY3AFTVlUnOBK4C7gKO9UooSRqtzmKR5D1V9RdtfoequmNrP7Q9E+ORm8VeNUf7E4ATtvZzJUnzM9cQ5e9I8vv0rn6a5gi0krQIzXVkcTXwb4F9kvyv9v6RSR7XbqyTJC0Sc3Vw/xR4F72b4A4EPtrixyf5P8NNS5I0SeY6sngB8Gf07n34ELAW+GVVLdQNeZKkbcSsRxZV9a6qeg69K5M+CywBppL8U5KvjCg/SdIEGOTS2a9X1WpgdZI3VdUfJtl12IlJkibHIMN9vL3v7atb7NZhJSRJmjxbdAe3T8yTpMVpnMN9SJK2ERYLSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkTmN5rKpmtuz4r8173RtPPHQBM5Gke/PIQpLUyWIhSeo0tmKR5MYklydZk2R1i+2S5Pwk17bXnVs8SU5Ksi7J2iRPHVfekrQYjfvI4qCqWl5VK9r744ELqmpf4IL2HuCFwL5tOgY4eeSZStIiNu5isbnDgc+0+c8AR/TFT6uei4BHJNltDPlJ0qI0zmJRwD8kuTTJMS326Kra2OZ/DDy6ze8B3NS37voWu5ckxyRZnWT1pk2bhpW3JC0647x09g+rakOSRwHnJ7m6f2FVVZLakg1W1SpgFcCKFSu2aF1J0uzGdmRRVRva6y3A2cABwM3Tp5fa6y2t+QZgz77Vl7aYJGkExlIskjw0yY7T88DzgSuAc4CjW7OjgS+3+XOAo9pVUc8Abu87XSVJGrJxnYZ6NHB2kukcPl9V/yPJJcCZSV4H/BB4eWt/LnAIsA74FfCa0acsSYvXWIpFVV0PPGWG+G3Ac2aIF3DsCFKTJM1g0i6dlSRNIIuFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTOIco1wJadvzXtmr9G088dIEykXR/5JGFJKmTxUKS1MliIUnqZLGQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ4uFJKnTyItFkj2T/GOSq5JcmeRPW/x9STYkWdOmQ/rWeWeSdUmuSfKCUecsSYvdOIb7uAt4W1VdlmRH4NIk57dlH66qv+lvnOTxwErgCcDuwDeS7FdVd480a0laxEZ+ZFFVG6vqsjb/c+D7wB5zrHI4cEZV3VFVNwDrgAOGn6kkadpY+yySLAP2B77TQm9JsjbJKUl2brE9gJv6VlvPLMUlyTFJVidZvWnTpmGlLUmLztiKRZKHAWcBb62qnwEnA48FlgMbgQ9u6TaralVVraiqFVNTUwuZriQtamMpFkkeSK9QfK6q/h6gqm6uqrur6jfAJ7jnVNMGYM++1Ze2mCRpRMZxNVSATwHfr6oP9cV362v2YuCKNn8OsDLJDkn2BvYFLh5VvpKk8VwN9UzgVcDlSda02LuAI5MsBwq4EXgDQFVdmeRM4Cp6V1Id65VQkjRaIy8WVfVPQGZYdO4c65wAnDC0pCRJc/IObklSJ4uFJKnTOPosNIGWHf+1ea9744mHLmAmkiaRRxaSpE4WC0lSJ4uFJKmTxUKS1MliIUnq5NVQ2mpeSSXd/3lkIUnqZLGQJHWyWEiSOlksJEmd7ODWWNk5Lm0bPLKQJHWyWEiSOlksJEmdLBaSpE4WC0lSJ6+G0jZra66kAq+mkrbENnNkkeTgJNckWZfk+HHnI0mLyTZxZJFkCfC3wPOA9cAlSc6pqqvGm5m2Zd7jIQ1umygWwAHAuqq6HiDJGcDhgMVCY7G1p8DmyyKlcdlWisUewE1979cDT9+8UZJjgGPa218kuWYEuW2pXYFbx53ELCY1t0nNC0acW/5yi5pP6n6b1LzA3B4z24JtpVgMpKpWAavGncdckqyuqhXjzmMmk5rbpOYF5jYfk5oXmNtctpUO7g3Ann3vl7aYJGkEtpVicQmwb5K9k2wPrATOGXNOkrRobBOnoarqriRvAb4OLAFOqaorx5zWfE3yabJJzW1S8wJzm49JzQvMbVapqnF+viRpG7CtnIaSJI2RxUKS1MlisRW6hiBJskOSL7Tl30myrMWfl+TSJJe312f3rXNh2+aaNj1qxLktS/Lrvs//eN86T2s5r0tyUpKMOLc/7strTZLfJFnelo1qv/1RksuS3JXkZZstOzrJtW06ui++1fttvnklWZ7k20muTLI2ySv6lp2a5Ia+fbZ8S/Pamtzasrv7Pv+cvvje7btf134L248qryQHbfY7+5ckR7Rlo9pnxyW5qn1nFyR5TN+yof3O5lRVTvOY6HW0XwfsA2wPfA94/GZt3gx8vM2vBL7Q5vcHdm/zTwQ29K1zIbBijLktA66YZbsXA88AApwHvHCUuW3W5knAdWPYb8uAJwOnAS/ri+8CXN9ed27zOy/EftvKvPYD9m3zuwMbgUe096f2tx31PmvLfjHLds8EVrb5jwNvGmVem32vPwEeMuJ9dlDfZ76Je/77HNrvrGvyyGL+fjsESVX9P2B6CJJ+hwOfafNfAp6TJFX13ar6UYtfCTw4yQ6TkNtsG0yyG7BTVV1UvV/macARY8ztyLbuQurMrapurKq1wG82W/cFwPlV9ZOq+r/A+cDBC7Tf5p1XVf2gqq5t8z8CbgGmtvDzh5LbbNp3/Wx63z30fgtHjCmvlwHnVdWvtvDztza3f+z7zIvo3VsGw/2dzcliMX8zDUGyx2xtquou4HbgkZu1eSlwWVXd0Rf7dDvE/c/zPJTc2tz2TvLdJN9M8qy+9us7tjmK3Ka9Ajh9s9go9tuWrrsQ+21r8vqtJAfQ+0v2ur7wCe1Ux4fn+QfL1ub2oCSrk1w0faqH3nf90/bdz2ebC5HXtJXc93c26n32OnpHCnOtu1D/fc7KYjFGSZ4A/CXwhr7wH1fVk4BntelVI05rI7BXVe0PHAd8PslOI85hTkmeDvyqqq7oC497v0209pfnZ4HXVNX0X9LvBH4X+D16pzXeMYbUHlO9ISz+HfCRJI8dQw4zavvsSfTu75o20n2W5JXACuCvh/k5g7BYzN8gQ5D8tk2S7YCHA7e190uBs4Gjquq3f+lV1Yb2+nPg8/QOWUeWW1XdUVW3tRwupfdX6H6t/dK+9ec75MpW7bfmPn/tjXC/bem6C7Hftmq4m1bsvwa8u6oumo5X1cbquQP4NKPfZ/3f2/X0+p32p/ddP6J991u8zYXIq3k5cHZV3dmX78j2WZLnAu8GDus78zDM39ncFrIDZDFN9O5+vx7Ym3s6qZ6wWZtjuXdH7Zlt/hGt/Utm2Oaubf6B9M7ZvnHEuU0BS9r8Pu0Ht0vN3IF2yChza+8f0HLaZxz7ra/tqdy3g/sGep2OO7f5BdlvW5nX9sAFwFtnaLtbew3wEeDEEe+znYEd2vyuwLW0jl7gi9y7g/vNo8qrL34RcNA49hm9onkd7eKEUfzOOvNeyI0ttgk4BPhB+1Lf3WIfoPeXAMCD2o9+Xfsi92nx9wC/BNb0TY8CHgpcCqyl1/H9Udr/uEeY20vbZ68BLgP+Td82VwBXtG1+jDYCwKhya8sOBC7abHuj3G+/R+988C/p/QV8Zd+6r205r6N3umfB9tt88wJeCdy52W9teVv2P4HLW25/BzxslPsM+IP2+d9rr6/r2+Y+7btf134LO4z4u1xG74+SB2y2zVHts28AN/d9Z+eM4nc21+RwH5KkTvZZSJI6WSwkSZ0sFpKkThYLSVIni4UkqZPFQpLUyWIhzVOSpyT5VhtK+jdJKskHxp2XNAzeZyHNQ5IH0btZ6qiqujjJn9O7mfDt5X9Uuh/yyEKan+fSGy344vZ+Lb1hFyrJJ4f1oQv+QBtpQBYLaX6eSG/Yh2lPBS5L8mDgXyd5X5IzkjwwyX9J8pEkJwEkmUry6SRLk5yS5D8kOagtOyXJw9r6H03yZ0l+J72n3b0D+J2R/0slegNaSdpyt9F7QA9J9gNeQm+so/2BL1bVR5L8d+DtwIOBn9IbOI6q2pTkn4EP0ntWwXLgKUnuBi6hN8rudm2dZ9IbI+n0qjppRP826T4sFtL8nA4cluQK4FbgyKq6rT1gaG1r8xB6BeLY6nu4VZKH0Rso766q+kXbxpH0Brb798Aq4E/pjQC8J71i8uWR/KukWdjBLS2gJJ+gPY+B3uMyd6T3YJ+b6I1Y+g16xeD99J6XcElVXZjkcuC9VfX3Sd4G7ETviXHX0CsWr697HlokjZzFQpLUyQ5uSVIni4UkqZPFQpLUyWIhSepksZAkdbJYSJI6WSwkSZ0sFpKkThYLSVKn/w/Mcv0r9yyyzQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "%matplotlib inline\n", + "plt.hist(bexvar_distribution, bins=20)\n", + "plt.ylabel(\"# of samples\")\n", + "plt.xlabel(r\"$\\sigma_{bexvar}$\")\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If the light curve is intrinsically variable, then the posterior distribution of bexvar should exclude low values. Users can compute \n", + "the lower 10% quantile of the posterior, and use it as a variability indicator (see [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529))." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method uses fractional exposers (`frac_exp`) in each bin to compute the count rates (i.e.$~\\scriptstyle{R_i = C_i/(\\Delta{t_i}\\times f_i)}$). In its current form it only considers time bins with `frac_exp` < 1. The `bg_ratio` parameter is used to scale the `bg_counts` to estimate counts in source region. The `bg_count`, `bg_ratio` and `frac_exp` are optional parameters, if they are not provided, the method defines default values for them as described in documentation. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us see an example to get bexvar distribution without these optional parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "preparing time bin posteriors...\n", + "running bexvar...\n", + "[ultranest] Sampling 400 live points from prior ...\n", + "[ultranest] Explored until L=-4e+01 [-36.8486..-36.8486]*| it/evals=3615/5101 eff=76.8985% N=400 \n", + "[ultranest] Likelihood function evaluations: 5125\n", + "[ultranest] logZ = -41.34 +- 0.09729\n", + "[ultranest] Effective samples strategy satisfied (ESS = 1692.4, need >400)\n", + "[ultranest] Posterior uncertainty strategy is satisfied (KL: 0.46+-0.06 nat, need <0.50 nat)\n", + "[ultranest] Evidency uncertainty strategy is satisfied (dlogz=0.10, need <0.5)\n", + "[ultranest] logZ error budget: single: 0.09 bs:0.10 tail:0.01 total:0.10 required:<0.50\n", + "[ultranest] done iterating.\n", + "\n", + "logZ = -41.331 +- 0.174\n", + " single instance: logZ = -41.331 +- 0.092\n", + " bootstrapped : logZ = -41.335 +- 0.174\n", + " tail : logZ = +- 0.010\n", + "insert order U test : converged: True correlation: inf iterations\n", + "\n", + " logmean : -0.517│ ▁ ▁ ▁▁▁▁▁▁▁▁▁▁▂▂▃▄▆▇▇▆▅▄▃▂▁▁▁▁▁▁▁▁▁ │0.383 0.020 +- 0.081\n", + " logsigma : 0.029 │ ▁▂▆▇▇▅▃▂▂▁▁▁▁▁▁▁▁ ▁▁▁▁▁ ▁ ▁ │1.236 0.213 +- 0.074\n", + "\n", + "running bexvar... done\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "\n", + "time = np.arange(0,8)*100\n", + "counts= np.array([106, 87, 115, 148, 43, 129, 204, 87])\n", + "time_del = np.ones(np.size(time))*100\n", + "\n", + "bexvar_distribution = bexvar.bexvar(time=time, src_counts=counts, time_del=time_del)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Bexvar: Theoretical background" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "This section provides a theoretical understanding of Bayesian excess variance (bexvar). This is an optional read.\n", + "\n", + "Given a lightcurve data ${\\scriptstyle 𝐷 = (𝑆_1,𝐵_1,~…~,𝑆_𝑁,𝐵_𝑁)}$\n", + " where ($\\scriptstyle{S_i}$) denotes counts obtained from source region and ($\\scriptstyle{B_i}$) denotes counts obtained from background extraction region in $\\scriptstyle{i^{th}}$ time bin.\n", + "If it is assumed that the counts $\\scriptstyle{𝑆_𝑖}$ and $\\scriptstyle{𝐵_𝑖}$ can be expressed as\n", + "Poisson processes. \n", + "$$ \\scriptstyle {𝑆_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛((( 𝑅_𝑆(𝑡_𝑖) ~+~ 𝑅_𝐵(𝑡_𝑖) \\times 𝑟)~×~𝑓_𝑖~\\times~Δ𝑡)}$$\n", + "$$ \\scriptstyle {𝐵_𝑖 ~ \\sim ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑅_𝐵(𝑡_𝑖) × 𝑓_𝑖 × Δ𝑡)}$$\n", + "\n", + "Here, $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is source count rate and $\\scriptstyle{𝑅_B(𝑡_𝑖)}$ is background count rate in $\\scriptstyle{i^{th}}$ time bin. \n", + "It is further assumed that $\\scriptstyle{𝑅_𝑆(𝑡_𝑖)}$ is distributed according to a log normal distribution, with some unknown parameters (i.e., $\\scriptstyle{log(\\bar{𝑅_{S}})}$, and $\\scriptstyle{\\sigma_{bexvar}}$).\n", + "$$\\scriptstyle{log(𝑅_𝑆(𝑡_𝑖))~\\sim~𝑁𝑜𝑟𝑚𝑎𝑙(log(\\bar{𝑅_𝑆}),~ \\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})} $$\n", + "\n", + "This $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ provides intrinsic variability on log-count rate and it is defined as Bayesian excess variance (bexvar). The posterior distribution of $\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}$ can be used to identify intrinsically variable object.\n", + "\n", + "The bexvar() method in Stingray returns posterior samples of $\\scriptstyle{\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟}}$ given a light curve data.\n", + "The samples are generated following the same prescription given in [Buchner et al. (2021)](https://arxiv.org/abs/2106.14529). The method uses flat, uninformative priors on $\\scriptstyle{log(\\bar{𝑅_𝑆})}$ and $\\scriptstyle{log(\\sigma_{𝑏𝑒𝑥𝑣𝑎𝑟})}$ and obtains the posterior samples using nested sampling Monte Carlo algorithm MLFriends (Buchner [2016](https://link.springer.com/article/10.1007/s11222-014-9512-y),\n", + "[2019](https://arxiv.org/abs/1707.04476)) implemented in the [UltraNest](https://johannesbuchner.github.io/UltraNest/) Python package (Buchner [2021](https://arxiv.org/abs/2101.09604)).\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + }, + "vscode": { + "interpreter": { + "hash": "f6246b25e200e4c5124e3e61789ac81350562f0761bbcf92ad9e48654207659c" + } + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/Bispectrum/bispectrum_tutorial.html b/notebooks/Bispectrum/bispectrum_tutorial.html new file mode 100644 index 000000000..86c30b795 --- /dev/null +++ b/notebooks/Bispectrum/bispectrum_tutorial.html @@ -0,0 +1,949 @@ + + + + + + + + Bispectrum Tutorial — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Bispectrum Tutorial

+

This tutorial is intended to demonstrate bispectrum Analysis on Lightcurve data.

+

The Bispectrum is an example of a Higher Order Spectrum (HOS) and contains more information that simple Powerspectrum or non-ploy spectra. For detailed information on Bispectra visit : https://arxiv.org/pdf/1308.3150

+

In Stingray, Bispectrum can be created from a Lightcurve(For more information on Lightcurve, visit Lightcurve Notebook).

+

First we import relevant classes.

+
+
[2]:
+
+
+
from stingray import lightcurve
+import numpy as np
+from stingray.bispectrum import Bispectrum
+
+import matplotlib.pyplot as plt
+%matplotlib inline
+
+
+
+

Lightcurve Object can be created from an array of time stamps and an array of counts. Creating a simple lightcurve to demonstrate Bispectrum.

+
+
[3]:
+
+
+
times = np.arange(1,11)
+counts = np.array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])
+lc = lightcurve.Lightcurve(times,counts)
+
+lc.counts
+
+
+
+
+
[3]:
+
+
+
+
+array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])
+
+
+
+
[4]:
+
+
+
lc.plot(labels=['times','counts'])
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_6_0.png +
+
+

A Bispectrum Object takes 4 parameter.

+
    +
  1. lc : The light curve (lc).

  2. +
  3. maxlag : Maximum lag on both positive and negative sides of 3rd order cumulant (Similar to lags in correlation).

  4. +
  5. window : Specifies the type of window to apply as as string

  6. +
  7. scale : ‘biased’ or ‘unbiased’ for normalization

  8. +
+

Arguments 2 and 3 are optional. If maxlag is not specified, it is set to no. of observations in lightcurve divided by 2. i.e lc.n/2 .

+
+
[5]:
+
+
+
bs = Bispectrum(lc)
+
+
+
+

Different attribute values can be observed by calling relevant properties. Most common are: 1. self.freq - Frequencies against which Bispectrum is calculated. 2. self.lags - Time lags in lightcurve against which 3rd order cumulant is calculated. 3. self.cum3 - 3rd Order cumulant function 4. self.bispec_mag - Magnitude of Bispectrum 5. self.bispecphase - Phase of Bispectrum

+
+
[6]:
+
+
+
bs.freq
+
+
+
+
+
[6]:
+
+
+
+
+array([-0.5, -0.4, -0.3, -0.2, -0.1,  0. ,  0.1,  0.2,  0.3,  0.4,  0.5])
+
+
+
+
[7]:
+
+
+
bs.lags
+
+
+
+
+
[7]:
+
+
+
+
+array([-5., -4., -3., -2., -1.,  0.,  1.,  2.,  3.,  4.,  5.])
+
+
+
+
[8]:
+
+
+
bs.cum3
+
+
+
+
+
[8]:
+
+
+
+
+array([[-0.3885, -0.0915,  0.1685, -0.5085,  0.8135, -0.0675, -0.2708,
+         0.0229,  0.1426, -0.0567,  0.    ],
+       [-0.0915,  0.2328, -0.5162, -2.0652,  0.3058,  0.1968,  0.8135,
+         0.5492,  0.0209, -0.2484,  0.0063],
+       [ 0.1685, -0.5162, -0.3999,  0.9821, -0.4989,  0.5011,  0.3058,
+        -0.5085, -0.2348,  0.2379,  0.0426],
+       [-0.5085, -2.0652,  0.9821, -0.3096,  0.5704,  2.1084, -0.4989,
+        -2.0652,  0.1685,  0.8632,  0.0999],
+       [ 0.8135,  0.3058, -0.4989,  0.5704, -1.3613, -0.3823,  0.5704,
+         0.9821, -0.5162, -0.0915,  0.0872],
+       [-0.0675,  0.1968,  0.5011,  2.1084, -0.3823,  0.864 , -1.3613,
+        -0.3096, -0.3999,  0.2328, -0.3885],
+       [-0.2708,  0.8135,  0.3058, -0.4989,  0.5704, -1.3613, -0.3823,
+         0.5704,  0.9821, -0.5162, -0.0915],
+       [ 0.0229,  0.5492, -0.5085, -2.0652,  0.9821, -0.3096,  0.5704,
+         2.1084, -0.4989, -2.0652,  0.1685],
+       [ 0.1426,  0.0209, -0.2348,  0.1685, -0.5162, -0.3999,  0.9821,
+        -0.4989,  0.5011,  0.3058, -0.5085],
+       [-0.0567, -0.2484,  0.2379,  0.8632, -0.0915,  0.2328, -0.5162,
+        -2.0652,  0.3058,  0.1968,  0.8135],
+       [ 0.    ,  0.0063,  0.0426,  0.0999,  0.0872, -0.3885, -0.0915,
+         0.1685, -0.5085,  0.8135, -0.0675]])
+
+
+
+
[9]:
+
+
+
bs.bispec_mag
+
+
+
+
+
[9]:
+
+
+
+
+array([[  6.1870122 ,   9.78649295,   6.29941723,   8.10990858,
+          3.90975859,   1.49707597,  10.53408125,   8.44275685,
+          7.73419771,   7.91909148,   3.40576093],
+       [  9.78649295,  12.99063169,  11.9523207 ,  12.31681   ,
+          7.34404789,   1.93438197,   5.05536311,  15.92827099,
+          6.61153784,   3.09535492,   7.91909148],
+       [  6.29941723,  11.9523207 ,   4.84009298,   8.98535468,
+          5.6746004 ,   1.71227576,   9.35566037,  12.00797853,
+          1.60576409,   6.61153784,   7.73419771],
+       [  8.10990858,  12.31681   ,   8.98535468,  18.69373893,
+          9.83780286,   2.72630968,   7.87985137,   5.32007463,
+         12.00797853,  15.92827099,   8.44275685],
+       [  3.90975859,   7.34404789,   5.6746004 ,   9.83780286,
+          5.93123174,   1.60598497,   0.51743271,   7.87985137,
+          9.35566037,   5.05536311,  10.53408125],
+       [  1.49707597,   1.93438197,   1.71227576,   2.72630968,
+          1.60598497,   1.262     ,   1.60598497,   2.72630968,
+          1.71227576,   1.93438197,   1.49707597],
+       [ 10.53408125,   5.05536311,   9.35566037,   7.87985137,
+          0.51743271,   1.60598497,   5.93123174,   9.83780286,
+          5.6746004 ,   7.34404789,   3.90975859],
+       [  8.44275685,  15.92827099,  12.00797853,   5.32007463,
+          7.87985137,   2.72630968,   9.83780286,  18.69373893,
+          8.98535468,  12.31681   ,   8.10990858],
+       [  7.73419771,   6.61153784,   1.60576409,  12.00797853,
+          9.35566037,   1.71227576,   5.6746004 ,   8.98535468,
+          4.84009298,  11.9523207 ,   6.29941723],
+       [  7.91909148,   3.09535492,   6.61153784,  15.92827099,
+          5.05536311,   1.93438197,   7.34404789,  12.31681   ,
+         11.9523207 ,  12.99063169,   9.78649295],
+       [  3.40576093,   7.91909148,   7.73419771,   8.44275685,
+         10.53408125,   1.49707597,   3.90975859,   8.10990858,
+          6.29941723,   9.78649295,   6.1870122 ]])
+
+
+
+
[10]:
+
+
+
bs.bispec_phase
+
+
+
+
+
[10]:
+
+
+
+
+array([[ -7.65814471e-01,  -8.39758950e-01,   7.49083269e-01,
+         -9.35797260e-01,  -1.22623935e+00,  -3.13514588e+00,
+          4.35308043e-01,   6.65460441e-01,   6.17269495e-01,
+          4.39881603e-01,  -3.14159265e+00],
+       [ -8.39758950e-01,   1.84719564e+00,   1.70902436e+00,
+         -6.50042861e-01,  -5.76818268e-01,  -9.16177187e-02,
+          1.76512372e+00,   2.97853199e+00,   1.45401552e+00,
+          0.00000000e+00,  -4.39881603e-01],
+       [  7.49083269e-01,   1.70902436e+00,   1.64851065e+00,
+         -5.51373516e-01,  -1.32816666e+00,   2.45429375e-01,
+          2.86246989e+00,   3.08272440e+00,  -1.10623774e-15,
+         -1.45401552e+00,  -6.17269495e-01],
+       [ -9.35797260e-01,  -6.50042861e-01,  -5.51373516e-01,
+         -2.97776986e+00,  -2.96295975e+00,  -4.83162811e-01,
+          1.34000660e+00,   0.00000000e+00,  -3.08272440e+00,
+         -2.97853199e+00,  -6.65460441e-01],
+       [ -1.22623935e+00,  -5.76818268e-01,  -1.32816666e+00,
+         -2.96295975e+00,  -1.30996608e+00,  -1.24358981e-01,
+         -3.14159265e+00,  -1.34000660e+00,  -2.86246989e+00,
+         -1.76512372e+00,  -4.35308043e-01],
+       [ -3.13514588e+00,  -9.16177187e-02,   2.45429375e-01,
+         -4.83162811e-01,  -1.24358981e-01,   3.14159265e+00,
+          1.24358981e-01,   4.83162811e-01,  -2.45429375e-01,
+          9.16177187e-02,   3.13514588e+00],
+       [  4.35308043e-01,   1.76512372e+00,   2.86246989e+00,
+          1.34000660e+00,   3.14159265e+00,   1.24358981e-01,
+          1.30996608e+00,   2.96295975e+00,   1.32816666e+00,
+          5.76818268e-01,   1.22623935e+00],
+       [  6.65460441e-01,   2.97853199e+00,   3.08272440e+00,
+          0.00000000e+00,  -1.34000660e+00,   4.83162811e-01,
+          2.96295975e+00,   2.97776986e+00,   5.51373516e-01,
+          6.50042861e-01,   9.35797260e-01],
+       [  6.17269495e-01,   1.45401552e+00,   1.10623774e-15,
+         -3.08272440e+00,  -2.86246989e+00,  -2.45429375e-01,
+          1.32816666e+00,   5.51373516e-01,  -1.64851065e+00,
+         -1.70902436e+00,  -7.49083269e-01],
+       [  4.39881603e-01,   0.00000000e+00,  -1.45401552e+00,
+         -2.97853199e+00,  -1.76512372e+00,   9.16177187e-02,
+          5.76818268e-01,   6.50042861e-01,  -1.70902436e+00,
+         -1.84719564e+00,   8.39758950e-01],
+       [  3.14159265e+00,  -4.39881603e-01,  -6.17269495e-01,
+         -6.65460441e-01,  -4.35308043e-01,   3.13514588e+00,
+          1.22623935e+00,   9.35797260e-01,  -7.49083269e-01,
+          8.39758950e-01,   7.65814471e-01]])
+
+
+
+
+

Plots

+

Bispectrum in stingray also provides functionality for contour plots of:

+
    +
  1. 3rd Order Cumulant function

  2. +
  3. Magnitude Bispectrum

  4. +
  5. Phase Bispectrum

  6. +
+
+
[11]:
+
+
+
p = bs.plot_cum3()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_17_0.png +
+
+
+
[12]:
+
+
+
p = bs.plot_mag()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_18_0.png +
+
+
+
[13]:
+
+
+
p = bs.plot_phase()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_19_0.png +
+
+
+
+

Another Example

+

Another example is demostrated here for a periodic lighturve with poisson noise.

+
+
[14]:
+
+
+
dt = 0.0001  # seconds
+freq = 1 #Hz
+exposure = 50.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal = 300 * np.sin(2.*np.pi*freq*times/0.5) + 1000  # counts/s
+noisy = np.random.poisson(signal*dt)  # counts
+
+lc = lightcurve.Lightcurve(times,noisy)
+
+
+
+
+
[15]:
+
+
+
lc.n
+
+
+
+
+
[15]:
+
+
+
+
+500000
+
+
+
+
[16]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_23_0.png +
+
+

In this example, ‘unbiased’ scaled Bispectrum is calculated.

+
+
[17]:
+
+
+
bs = Bispectrum(lc, maxlag=25, scale='unbiased')
+
+
+
+
+
[18]:
+
+
+
bs.freq[:5]
+
+
+
+
+
[18]:
+
+
+
+
+array([-5000.00000001, -4800.00000001, -4600.00000001, -4400.00000001,
+       -4200.00000001])
+
+
+
+
[19]:
+
+
+
bs.lags[-5:]
+
+
+
+
+
[19]:
+
+
+
+
+array([ 0.0021,  0.0022,  0.0023,  0.0024,  0.0025])
+
+
+
+
[20]:
+
+
+
bs.n
+
+
+
+
+
[20]:
+
+
+
+
+500000
+
+
+
+
[21]:
+
+
+
bs.cum3[0]
+
+
+
+
+
[21]:
+
+
+
+
+array([  4.16469688e-04,  -1.15175317e-06,  -1.07527932e-05,
+         3.12465067e-05,  -1.49891250e-05,  -1.13491830e-05,
+        -3.01378025e-05,   8.84909091e-06,  -9.76499980e-06,
+        -4.03093430e-05,  -1.39169834e-05,  -1.06733571e-05,
+        -3.56900080e-05,  -4.36904080e-05,  -1.64739272e-05,
+        -6.07642325e-06,  -9.40724231e-05,   3.20972054e-05,
+         1.10825598e-06,   1.57445478e-05,   1.50738698e-04,
+        -1.53088049e-05,  -1.06758132e-05,  -8.50761732e-05,
+        -2.70732731e-05,   5.15575763e-04,  -2.26276548e-06,
+        -5.46966498e-05,  -3.49049233e-05,   6.93111630e-05,
+        -1.96629892e-05,  -4.00897434e-05,  -5.37940654e-07,
+        -1.25908665e-04,  -4.04722751e-05,  -1.95122973e-05,
+         7.48985545e-06,  -1.59418559e-05,  -3.40950546e-07,
+        -5.28946188e-05,  -6.77547458e-05,  -2.58282563e-06,
+        -2.16597857e-05,   2.08264564e-05,   1.62145798e-05,
+         6.20770115e-05,   5.74011370e-05,   3.04301082e-05,
+         5.42455829e-05,   6.16520488e-05,   5.25699675e-05])
+
+
+
+
[22]:
+
+
+
bs.bispec_mag[1]
+
+
+
+
+
[22]:
+
+
+
+
+array([ 0.10270301,  0.09674684,  0.1026435 ,  0.10278492,  0.09607422,
+        0.09961388,  0.10090391,  0.10316149,  0.09881147,  0.10027435,
+        0.09052907,  0.10086312,  0.09964639,  0.09224589,  0.10189853,
+        0.09783874,  0.1029246 ,  0.10003251,  0.1003841 ,  0.09654483,
+        0.10021589,  0.10265071,  0.09913028,  0.10406698,  0.10248613,
+        0.12079938,  0.10038381,  0.09376602,  0.09916139,  0.10218425,
+        0.09798569,  0.10296954,  0.10377357,  0.10144925,  0.09848511,
+        0.09731673,  0.10031293,  0.09733791,  0.10085873,  0.09769191,
+        0.10021328,  0.1000008 ,  0.10362033,  0.10352851,  0.09763424,
+        0.10249754,  0.09752426,  0.09520164,  0.09959243,  0.12395456,
+        0.10188173])
+
+
+
+
[23]:
+
+
+
bs.bispec_phase[1]
+
+
+
+
+
[23]:
+
+
+
+
+array([ -1.44942123e-02,   1.67988284e-02,  -3.06544878e-03,
+         1.24304742e-02,  -4.69267453e-04,   1.80410887e-02,
+         1.18875941e-03,  -1.85154750e-03,   2.17338081e-02,
+         1.03821918e-02,  -7.09489717e-03,   1.05358508e-02,
+         4.01625879e-03,  -2.05403388e-02,   1.17686452e-03,
+         2.56746832e-02,   2.17353559e-02,  -7.69020683e-03,
+         1.54447950e-02,  -9.03814639e-04,   3.43660863e-03,
+        -5.37971533e-04,   9.42017522e-03,   1.42720920e-03,
+         1.17025084e-03,  -5.00982277e-03,  -1.53439701e-02,
+        -7.63874625e-04,  -4.10637611e-02,   2.41131565e-02,
+        -1.95500843e-02,  -2.98681684e-02,   1.23914953e-03,
+        -2.75100800e-02,  -3.88428578e-03,  -7.87537903e-03,
+        -1.53613857e-03,   1.47624077e-02,  -4.86162981e-03,
+        -2.76731089e-03,   9.30828311e-03,  -2.86531767e-02,
+        -1.16465064e-02,  -2.30165990e-02,  -7.71187242e-03,
+         2.00694116e-02,  -5.16511843e-02,  -1.98737477e-03,
+        -9.87738671e-03,  -2.09922507e-17,   1.39146079e-02])
+
+
+
+
[24]:
+
+
+
p = bs.plot_cum3()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_32_0.png +
+
+
+
[25]:
+
+
+
p = bs.plot_mag()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_33_0.png +
+
+
+
[26]:
+
+
+
p = bs.plot_phase()
+p.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_34_0.png +
+
+
+
+

Window Functions for Bispectrum

+

Bispectrum in Stingray now supports 2D windows to apply before calculating Bispectrum.

+

Windows currently available in Stingray include: 1. Uniform or Rectangular window 2. Parzen Window 3. Hamming Window 4. Hanning Window 5. Triangular Window 6. Blackmann’s Window 7. Welch Window 8. Flat-top Window

+

Windows are available in stingray.utils package and can be used by calling create_window function.

+

Now, we demonstrate Bispectrum with windows applied. By default, now window is applied.

+
+
[29]:
+
+
+
window = 'uniform'
+
+bs = Bispectrum(lc,maxlag=25,window = window, scale ='unbiased')
+
+
+
+
+
[30]:
+
+
+
bs.window_name
+
+
+
+
+
[30]:
+
+
+
+
+'uniform'
+
+
+
+

Plot Window

+
+
[32]:
+
+
+
cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)
+plt.colorbar(cont)
+plt.title('2D Uniform window')
+
+
+
+
+
[32]:
+
+
+
+
+<matplotlib.text.Text at 0x1ac8b7e8e80>
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_40_1.png +
+
+
+
[34]:
+
+
+
mag_plot = bs.plot_mag()
+mag_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_41_0.png +
+
+
+
[35]:
+
+
+
phase_plot = bs.plot_phase()
+phase_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_42_0.png +
+
+

Now, let us try some more window functions.

+
+
[36]:
+
+
+
bs = Bispectrum(lc, maxlag=25,window = 'hamming',scale='biased')
+
+
+
+
+
[37]:
+
+
+
bs.window_name
+
+
+
+
+
[37]:
+
+
+
+
+'hamming'
+
+
+
+
[38]:
+
+
+
cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)
+plt.colorbar(cont)
+plt.title('2D Hamming window')
+
+
+
+
+
[38]:
+
+
+
+
+<matplotlib.text.Text at 0x1ac8bbfe710>
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_46_1.png +
+
+
+
[39]:
+
+
+
mag_plot = bs.plot_mag()
+mag_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_47_0.png +
+
+
+
[40]:
+
+
+
phase_plot = bs.plot_phase()
+phase_plot.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_48_0.png +
+
+
+
+

Another Window demonstrated

+
+
[45]:
+
+
+
bs = Bispectrum(lc, maxlag = 25, window='triangular',scale='unbiased')
+
+
+
+
+
[46]:
+
+
+
bs.window_name
+
+
+
+
+
[46]:
+
+
+
+
+'triangular'
+
+
+
+
[47]:
+
+
+
cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)
+plt.colorbar(cont)
+plt.title('2D Flat Top window')
+
+
+
+
+
[47]:
+
+
+
+
+<matplotlib.text.Text at 0x1ac8bdc15f8>
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_52_1.png +
+
+
+
[48]:
+
+
+
bs.plot_mag().show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_53_0.png +
+
+
+
[52]:
+
+
+
bs.plot_phase().show()
+
+
+
+
+
+
+
+../../_images/notebooks_Bispectrum_bispectrum_tutorial_54_0.png +
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Bispectrum/bispectrum_tutorial.ipynb b/notebooks/Bispectrum/bispectrum_tutorial.ipynb new file mode 100644 index 000000000..e8eef7914 --- /dev/null +++ b/notebooks/Bispectrum/bispectrum_tutorial.ipynb @@ -0,0 +1,1177 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "## Bispectrum Tutorial" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This tutorial is intended to demonstrate bispectrum Analysis on Lightcurve data.
\n", + "\n", + "The Bispectrum is an example of a Higher Order Spectrum (HOS) and contains more information that simple Powerspectrum or non-ploy spectra.
For detailed information on Bispectra visit : https://arxiv.org/pdf/1308.3150" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": false + }, + "source": [ + "In Stingray, Bispectrum can be created from a Lightcurve(For more information on Lightcurve, visit Lightcurve Notebook).
\n", + "\n", + "First we import relevant classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import lightcurve\n", + "import numpy as np\n", + "from stingray.bispectrum import Bispectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lightcurve Object can be created from an array of time stamps and an array of counts. Creating a simple lightcurve to demonstrate Bispectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1,11)\n", + "counts = np.array([2, 1, 3, 4, 2, 5, 1, 0, 2, 3])\n", + "lc = lightcurve.Lightcurve(times,counts)\n", + "\n", + "lc.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEKCAYAAAARnO4WAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdYXOeZ9/HvQxd1qBKCAdSLJYoA2ZJiy3FcY6+7HRcV\nZK8db5KNs8mm7ZvdJLvZxOnJJnFiJ7aQ3HvsxGluyLbAlkC9gdogQIUBRO/M8/4xg4ywQAPMmTPD\n3J/rmktomJlzay5xc+ac37kfpbVGCCHE5BdkdgFCCCG8Qxq+EEIECGn4QggRIKThCyFEgJCGL4QQ\nAUIavhBCBAhp+EIIESCk4QshRICQhi+EEAEixOwChkpKStJZWVlmlyGEEH6joqKiQWud7M5jfarh\nZ2VlUV5ebnYZQgjhN5RS1e4+Vg7pCCFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRIAwNKWjlLIB\nbcAA0K+1LjBye0IIIUbmjVjmJ7XWDV7YjhBCiFHIIR0hvOC9g3aqTrWZXYYIcEY3fA28qZSqUErd\nf64HKKXuV0qVK6XK7Xa7weUI4X29/Q4eeKKCH/xlv9mliABndMP/hNY6F7gG+LxS6pLhD9BaP6q1\nLtBaFyQnu3V1sBB+pdzWREfvADtrW9Bam12OCGCGNnytdZ3rz3rgFWCpkdsTwheVVDk/uTZ19FLT\n1GVyNSKQGdbwlVJRSqmYwa+BK4E9Rm1PCF9VUlnP1NhwALbXnDa5GhHIjNzDnwq8r5TaCWwBXtda\n/83A7Qnhc443d1F1qp21y7OICA1iR02z2SWJAGZYLFNrfQTIMer1hfAHJZXOwzmXL5jKOwfq2SkN\nX5hIYplCGKiksp7pcRHMSYkm12phz/FWevsdZpclApQ0fCEM0tvvYPOhBlbOS0EpRa41nt5+BwdO\ntppdmghQ0vCFMEh5tTOOeek8Z9w4xxoHIId1hGmk4QthkE2VdkKDFStmJwGQZplCUnQ426XhC5NI\nwxfCICWVdgoyE4gOd2YjnId1LJLUEaaRhi+EAY43d1F5qu3M4ZxBeRkWjtg7aOnsM6kyEcik4Qth\ngE2uq2svnZdy1v056RYAdtXJXr7wPmn4QhigpLKe1LgI5k6NPuv+bGscSsGOY9LwhfdJwxfCw5xx\nzEYunZeMUuqs78VGhDIrOVqO4wtTSMMXwsMqqk/T3tPPyrkp5/z+4IlbmZwpvE0avhAeVlJVT0iQ\nYsXsxHN+P8dqobGjl9rTMjlTeJc0fCE8bFOlnYKseGIiQs/5/Tyr88StHNYR3iYNXwgPOtHSxYGT\nbR9L5ww1b1oM4SEyOVN4nzR8ITxoU+VgHHPk1dtCg4NYnBYnDV94nTR8ITyopNLOtNgI5k2NGfVx\nOVYLe+pa6BuQyZnCe6ThC+EhfQPO6ZjnimMOl2u10NPvoPJkm5eqE0IavhAeU1F9mrae/lEP5wzK\ndZ24lUFqwpuk4QvhISWVdlccM+m8j02Pn0JSdJhccSu8Shq+EB5SUllPfubIccyhlFLkpFvYWSsN\nX3iPNHwhPOBkS/d545jD5VotHLa309otkzOFd0jDF8IDNlXVA6PHMYfLzbCgNeyqaTGqLCHOIg1f\nCA/YVOWMY86fNnocc6js9MErbk8bVZYQZ5GGL8QE9Q84eO9gAyvnnj+OOVTclFBmJkexQ/bwhZdI\nwxdigrYda6at27045nAyOVN4kzR8ISaopNI1HXPO+eOYw+VZLTS091DXLJMzhfGk4QsxQSWVdpZk\nxhPrRhxzuFxrPCCTM4V3SMMXYgLqW7vZd6J1XIdzwDk5MywkiJ3S8IUXSMMXYgJKBhcrH2F1q/MJ\nCwli0fRY2cMXXiENX4gJ2FRpZ2psOAtS3Y9jDpdrjWe3TM4UXiANX4hxcsYx7WOOYw6XY42ju08m\nZwrjGd7wlVLBSqntSqk/G70tIbxpe00zrd39YxqncC55rhO3MldHGM0be/gPAvu9sB0hvKqksp5g\nN6djjsaaMIWEKJmcKYxnaMNXSqUD1wJ/MHI7QpihpNJOfkY8cVPGHsccSil15gIsIYxk9B7+L4Cv\nAXI2KsD8tuQwN/5mM919A2aXYoj6tm72Hm9l5TjjmMPlpFs4ZG+nTSZnCgMZ1vCVUtcB9VrrivM8\n7n6lVLlSqtxutxtVjvCil7fV8sO/HWBHTTN/3nXC7HIM4c5i5WMxODlzd63M1RHGMXIPfwVwvVLK\nBjwLXKaUenL4g7TWj2qtC7TWBcnJnvnhEeb58EgjX39pF8tmJjI7JZoNpbZJOSempMpOSkw4C1Nj\nPfJ6uemy5KEwnmENX2v9Ta11utY6C7gDeFtrvcqo7QnzHW3o4LNPVpCREMnvVuWzdnkWu+ta2HZs\nco3/7R9w8F7VxOOYQ8VFhjIzKUqO4wtDSQ5feMTpjl7Wrd9CkFKsL1pKXGQoN+elERMRQnFptdnl\nedQOD8Uxh8uRyZnCYF5p+FrrEq31dd7YlvC+nv4BPvtEBcdbuvn9mnwyEiMBiAoP4fYCK3/dfYJT\nrd0mV+k5JZV2goMUnxjHdMzR5Fot2Nt6ONEyed4r4VtkD19MiNaab7y0my22Jn5yWw75mQlnfX/N\nskwGtOapDybPXn5JVT1LMiwTjmMOl2sdXAFLDusIY0jDFxPyf28d4pXtdXzlirlcnzP9Y9/PTIzi\nsnkpPL3lGD39/h/RrG/rZk9dq8cP5wAsSI0lLDhIGr4wjDR8MW6v7qjj529WccuSdL5w2ewRH1e0\nIouG9l5enwQRzXerGgBYOdfzibKwkCAWTo+VK26FYaThi3HZamviqy/s4sIZCfzg5sWjplU+MTuJ\nWclRFE+CiGZJZT3JMeFcMN0zcczhcq0Wdte10C+TM4UBpOGLMbM1dHD/xnLS46fwyOp8wkJG/2+k\nlKJoeRa7alv8Omc+3sXKxyIvw0JX3wBVp9oNeX0R2KThizFp7uzlnuKtADxeVIglMsyt5928JJ2Y\n8BCKN9sMrM5YO2ubaenq89jVteciJ26FkaThC7f19jt44MkKak938eiaArKSotx+blR4CLcVWPmL\nH0c0SyrtBCm4eLZxDT8jIZL4yFBZ8lAYQhq+cIvWmm++vJsPjjTxo1uzKcxKOP+ThjkT0fzwmAEV\nGq+k0s6SjHjiIj0bxxxKKXXmAiwhPE0avnDLb945xEvbavnS5XO4MS9tXK+RlRTFJ+el8PSH/hfR\ntLf1sLuuxdDDOYNyrRaq6tto7+k3fFsisEjDF+f1p53H+ck/qrgpL40HPzVnQq+1dnkWDe09/GW3\nf0U03x1crNyA/P1wuVbn5MxdsgKW8DBp+GJUFdVNfOWFnSzNSuChW0aPX7rj4tlJzEyO8rv5OiVV\ndpKiPTcdczQ5rsmZO2tkVLLwLGn4YkTHGju5b2MF0+MieGR1PuEhwRN+zaAgxdplWeysaWa7n0zR\nHHDoM4uVBwUZE8ccKj4qjKzESHbU+Mf7I/yHNHxxTi2dfawr3oJDax4vKiQ+yr34pTtuyU8nOjyE\nDaU2j72mkXbUNNPcaWwcczhZ8lAYQRq++Jjefgf/8lQFx5o6eWRVPjOToz36+tHhIdyan87ru09Q\n3+b7Ec1NlfXOOKaHp2OOJtdq4VRrDydaury2TTH5ScMXZ9Fa860/7qb0cCMP3ZzNhTMTDdnO2uVZ\n9A1onvaDiGZJlZ28jHi3LzLzhBzr4HF82csXniMNX5zlt5sO83x5LV+8bDa35Kcbtp0ZSVFcOi+Z\npz48Rm+/786NaWjvYVdtC5caMCxtNAunOydn+vMoCuF7pOGLM17fdYIf/a2S63Om829XzDV8e0XL\ns7C39fDXPb4b0fRmHHOo8JBgFsjkTOFh0vAFANuOnebLz++gIDOeH92abdhwsKEumZPMjKQo1vvw\nfJ2SSjtJ0WGGTcccTZ5rcuaAw78njArfIQ1fUNPUyf0by5ka64xfRoROPH7pDmdEM5MdNc0+mUgZ\ncGjePWjnEi/FMYfLscbR2TvAwfo2r29bTE7S8ANcS1cf9xRvpbffweNFhSRGh3t1+7fkpxMVFuyT\nEc2dtYNxTO8ezhmUa40HkMM6wmOk4QewvgEHn39qG0cbOvjdqnxmp3g2fumOmIhQbiuw8uddx30u\nojk4HfMSL8Yxh8pKjMQSGeqTn36Ef5KGH6C01vzXq3t4/1AD3795Mctnm9PUwDlFs29A88yHNabV\ncC6bKuvJtVq8GsccSilFTrpcgCU8Rxp+gHr03SM8s6WGz106i9sLrKbWMjM5mpVzk3nqw2qfiWg2\ntvewq67FtMM5g3KsFqpOtdEhkzOFB0jDD0B/23OCh/52gGsXp/LvV84zuxzAGdGs96GI5rsH7WiN\nV8cpnEue1YJDw+46GaQmJk4afoDZWdPMl57bQa7Vwk9vzzElfXIuK+cmk5UY6TMnbwfjmIumx5la\nR44seSg8SBp+AKk93cm9G8pJig7n92sKvBa/dEdQkGLNsiy2HWs2fQ78gEPzbpWdS+aYE8ccKiEq\njMzESEnqCI+Qhh8gWrv7uLe4nJ7+AdYXFZLk5filO24tcEY0i03ey99V28zpzj5Wmnw4Z1BOuoWd\nshiK8ABp+AGgf8DBF57ezmF7O7+9O585U2PMLumcYiNCuSU/nT/vPEFDe49pdXwUx/SNhp9rtXCi\npdtvF38XvkMa/iSntebbr+3l3So737txEZ8wKVPurjXLsugdcPCMiVM0S6rs5FgtHl0DYCJyM5zH\n8bfLYR0xQdLwJ7nH3j/KUx8e47MrZ3LH0gyzyzmv2SnRXDwniSc/rKZvwPsRzcb2HnbVNnPpXHPj\nmEMtTI0lNFjJiVsxYdLwJ7G/7z3J//5lP9csmsbXr5pvdjluW7cii1OtPfxtz0mvb/u9gw0+Eccc\nKiI0mAWpsTIbX0yYYQ1fKRWhlNqilNqplNqrlPquUdsSH7e7toUvPbuD7HQLP7s91/S0yVhcOjeF\nzMRIU07ellTWkxgVxuI0c+OYw+VaLeyqbZbJmWJCjNzD7wEu01rnALnA1UqpiwzcnnA53tzFvRu2\nkhAVxu/X5DMlzHfil+4YjGhWVJ9md633LjhyODTvHmwwbTrmaHKtFjp6BzhU3252KcKPGdbwtdPg\n/85Q1012TwzW0dPPPcVb6eod4PGiQlJiIswuaVxuK0gn0ssRzV11LTR19PrU4ZxBH12AddrkSoSn\n7T3ewvPl3pkjZegxfKVUsFJqB1APvKG1/vAcj7lfKVWulCq32+1GlhMQNpTZOHCyjV/fvYR503wz\nfumO2IhQblmSzp92HvdaRLOksh6l4GIfiWMONSMxitiIEHbUyIiFyeRkSzf3FG/l529U0e6FeUmG\nNnyt9YDWOhdIB5YqpRad4zGPaq0LtNYFycm+94PmT/oHHDxZVs3yWYms9PIarEZYuzyT3gEHz27x\nTkSzpNJOTrqFBB+JYw4VFKTIscrkzMmko6efezdspb27n8eLCokODzF8m15J6Witm4F3gKu9sb1A\n9ca+Uxxv6aZoeZbZpXjE7JQYZ0Tzg2OGRzSbOnrZWdvsk4dzBuVZLVSebKWzVyZn+rsBh+bBZ7ez\n/0Qrv75rCQtSvbOEppEpnWSllMX19RTgCuCAUdsTsL7URnr8FD61YKrZpXjM2mVZnGzt5u97jY1o\nvndmOqbv5O+HyxmcnOnFE9nCGN97fR9v7q/nO9dfwCfne+//nJF7+KnAO0qpXcBWnMfw/2zg9gLa\nvuOtbDnaxJplmQT7WMJkIj45P4WMBOOnaJZU2kmICiPbx+KYQ+W6TtzKXB3/trHMxvrNNtatyGLN\nsiyvbtuwg0Za611AnlGvL862odRGRGiQ6YuZeFpwkGLNsky+9/p+9tS1sMiAhuw4Mx0zyefimEMl\nRodjTZgix/H92DsH6vnOa3u5fEEK37p2ode379YevlLqQaVUrHJ6TCm1TSl1pdHFCfec7ujljzvq\nuCkv3bTl+Ix0W4GVKaHGLXS+u66Fxo5enz6cMyjXGi+jkv3UvuOtfOHpbSxIjeWXd+SZ8knc3UM6\n92itW4ErgXhgNfCQYVWJMXl2aw09/Q7WLs80uxRDxE0J5eYlaby68ziNBkQ0SyrtKAWX+EGyKSc9\njuMt3dTL5Ey/cqq1m3s3bCUmIpTH1hYS5YVEzrm42/AHfxV9GnhCa713yH3CRP0DDp78oJplMxOZ\nP807Z/rNULQ8i95+B89u9fwFKiVV9WT7aBxzuLwMWQHL33T2OuOXLV19PFZUwLQ48y6GdLfhVyil\n/oGz4f9dKRUD+MZq0wHuzf2nqGvuYu0kiWKOZM7UGFbMTuTJD6rp92BE83RHLztqmrnUD/buAS6Y\nHkdIkEzO9BfO+OUO9h1v5Vd35nGByUtmutvw7wW+ARRqrTuBMGCdYVUJtxWX2kizTOHyBb5//Hmi\nipbP4ERLN//Yd8pjr+kri5W7a3BypjR8//CDv+znjX2n+M/rFvpEXNrdhv+G1nqb6wIqtNaNwM+N\nK0u4Y/+JVj440sTqZZmEBE/+SdeXzU8hPX4KxZttHnvNTZV24iNDyU63eOw1jZZjjWNXbYtMzvRx\nT35QzR/eP8raZZmsWzHD7HKA8zR814jjBCBJKRWvlEpw3bKANG8UKEa2scwZxbyjcHJFMUcSHKRY\nuyyLLbYm9h6f+MVHDodmU5WdS+Ym+9W1C7nWeNp7+jlil8mZvmpTlZ1vv7aXT85L5j+v8378ciTn\n2y38LFABzHf9OXh7Ffi1saWJ0TR39vLK9jpuzE2blFHMkdzuwYjmnuODcUz/OJwzaPACrO1yWMcn\nVZ5s4/NPbWPu1Bh+ddcSn/r0PWolWutfaq1nAP+utZ6ptZ7huuVoraXhm+i5rTV09zkm/cna4eIi\nQ7lpSRqv7jhOU0fvhF7rTBzTB6djjmZmUhQxESFyHN8H1bc5p19GhgXzeFGBVwaijYVbv3q01r9S\nSi1XSt2llFozeDO6OHFuAw7NxrJqLpyR4LWhS75k7bIsevodPLt1YlM0SyrryU6LIzE63EOVeUdQ\nkCIn3SJLHvqYrt4B7ttQTlNHL4+tLSQ1borZJX2Mu1faPgH8BPgEUOi6FRhYlxjFYBRz3Yoss0sx\nxbxpMSyflciTZeOPaDZ3OuOYK/3g6tpzybVaOHCyja7eAbNLETjPB335+R3sqmvhl3fksjjdN2cy\nuft5owBYqLWWWIAPKN5sY3pcBJf7QMzLLGuXZ/HZJyp4Y98prlmcOubnv3uwAYcfxTGHy7VaGHBo\n9hxvoTArwexyAt4P/36Av+45ybeuXcCVF0wzu5wRuXs2YQ/gu/+KAFJ5so2yI42sXpblUyeDvO3y\nBVNJs0wZ9xKIJZX1xEeGkuNHccyhzix5KHN1TPfMlmM8sukIqy7K4N5P+Eb8ciTudowkYJ9S6u9K\nqdcGb0YWJs6tuNRGeEjgRDFHMjhF88OjTew/0Tqm5w5Ox7x4jn/FMYdKjgknzTKFHTIq2VTvH2zg\nW3/cw8q5yXznny5AKd/+/+TuIZ3vGFmEcE9LZx+vbK/lxtw04v1g7ovRPlNo5edvVrGh1MZDt2S7\n/by9x1tpaPe/OOZwuRkW2cM30cFTbfzLUxXMSYnm13fl+cUnbndTOpvOdTO6OHG258qPBWQUcySW\nyDBuykvjle11nB5DRLOksh7wj+mYo8mzWqhr7sLe5p1F3sVH7G09rCveSkRoMI8VFRITEWp2SW5x\nN6XTppRqdd26lVIDSqmxfY4WEzIYxVw6I4GF0wMvijmStcudEc3nyt2follSZSc7PY4kP4tjDjd4\nAZbk8b2ru2+A+zaW09Dew2NrC0iz+F78ciTu7uHHaK1jtdaxwBTgFuBhQysTZ3n7QD21p7smzQLl\nnjJ/WiwXzUzgCTcjms2dvWw/dtpvpmOO5oLpcQQHKcnje5HDofnK8zvZWdvMLz6T51czmGAca9pq\npz8CVxlQjxhBcelRUuMiuHJh4EYxR1K0fAZ1zV28ub/+vI99zxXH9Nf8/VBTwoKZPy1G9vC96Cf/\nqOT13Sf45jXzuXqR/wUX3Tppq5S6echfg3Dm8mXJHS85eKqNzYca+epV8/zixJC3Xb4gxRXRPHre\nH8KSSjuWyNAzh0P8Xa7Vwms7juNwaJ9ej3cyeL68hodLDnPn0gzuu3im2eWMi7vd45+G3K4C2oAb\njCpKnK241EZYSBB3Ls0wuxSfFBIcxOplmXxwpIkDJ0c+tTQ4HdOf45jD5VottPX0c6RBJmcaqfRQ\nA//x8m4unpPEf9/g+/HLkbh7DH/dkNt9Wuv/1Vqf//OzmLCWrj5e3lbHDTnT/WIJPrN8psBKeEjQ\nqFM0951opaG9Z1Icvx/00YnbiY+LFud2qL6dB56sYGZyFL+5ewmhfvwp292UTrpS6hWlVL3r9pJS\nKt3o4gS8UF5DV9+ARDHPIz7qo4hmc+e5I5qTJY451KzkaGLCQ9hRc9rsUialxvYe1hVvISwkiMfW\nFhLrJ/HLkbj7q2o98Bow3XX7k+s+YaDBKGZhVjyL0nxzGJMvWbs8i+4+B8+NsNB5SaWdxWlxJMf4\ndxxzqKAgRbY1Tk7cGqC7b4D7n6igvrWH368pwJoQaXZJE+Zuw0/WWq/XWve7bsXA5NlN8lHvHKjn\nWFMnRct9ez6Hr1iQGsuFMxLYWFb9seX/Wjr72HbstN9fXXsuuVYLB0600d0nkzM9xeHQfPXFXVRU\nn+bnn8klLyPe7JI8wt2G36iUWqWUCnbdVgGNRhYmYEOZjWmxEVx5gUQx3VW0PMsV0Tx7ofP3Dtn9\nejrmaHLSLfQ7tEeWfRROP3+zij/tPM7Xr57Pp8cxjdVXudvw7wFuB04CJ4BbgSKDahLAofo23jvY\nwOplmX59ksjbrlg4lelxER87eVtSaSduSii51smxpzZUboZryUOZq+MRL1bU8qu3D/GZAisPrPTP\n+OVI3O0k/w2s1Vona61TcP4C+K5xZYkNpdWEyVTMMQsJDmLVskxKDzdSebINGBrHTJo0ccyhUmIi\nnJMz5Tj+hJUdbuSbL+9ixexEvnfTIr+NX47E3YafrbU+EwPQWjcBecaUJFq7+3hpWy3X50z3u+X3\nfMEdhRnOiGaZDXDGMe1tPVw6Ca6uHUmu1SINf4IO253xy8zEKB6+O39SfrJ2918UpJQ681lYKZWA\n+6OVxRi9UF5LZ++AzM0Zp4SoMG7Inc4r2+po6exjU5UdgJWTKI45XI41jtrTXTS0y+TM8Wjq6OWe\n4q2EBCnWFxUSN8W/45cjcbfh/xQoU0r9j1Lqf4BS4EejPUEpZVVKvaOU2qeU2quUenCixQYCh0Oz\nscxGQaZEMSdi7fIsuvoGeL68hpLKehalxU6qOOZwg+cmZJDa2PX0D/DZJ8o50dLNo5MkfjkSd6+0\n3QjcDJxy3W7WWj9xnqf1A1/RWi8ELgI+r5RaOJFiA0FJVT3VjZ1yodUEXTA9jqVZCTy++SjbjjVz\n6dzJezgHYFFaLMFBSg7rjJHWmq+9uIutttP87PYc8jMn30n9odw+SKW13qe1/rXrts+Nx5/QWm9z\nfd0G7AfSxl/qyDp6+pks66uv32xjamy4X07i8zVFK7I40dLNgENPyjjmUJFhIcydKpMzx+oXbx7k\n1R3H+epV87gue7rZ5RjOK2cllFJZOE/yfujp127u7OWG32zm128f8vRLe92h+nbeO9jAqgsliukJ\nVy6cSmpcBLERIZNmOuZocq0WdtY043BMjp0fo71zoJ5fvnWQW/PT+dyls8wuxysM7ypKqWjgJeBL\nWuuPjTJUSt2vlCpXSpXb7fYxv37clFAWp8Xx0zeqeHVHnQcqNs/GMhthwUHceaFMxfSEkOAgfnpb\nDj+8JTsgxkrnWS20dvdztLHD7FL8wsMlh7AmTOH7Ny2edPHLkRj6U6CUCsXZ7J/SWr98rsdorR/V\nWhdorQuSk8f+sVspxUO3LGZpVoLrUuimCVZtjtbuPl6qqOW6nFS/X3rPlyyfncQ1k+hKydEMXoAl\nC5uf3566FrbaTrN2WRZhIZN/Z2CQYf9S5fyV+RiwX2v9M6O2AxAeEswjq/OZHhfBfRsrqPbDPZwX\ny2vp6B1gnczNEeM0KzmaqLBgOY7vhg2lNqaEBnNbQWBd2Gjkr7YVwGrgMqXUDtft00ZtLD4qjMeL\nCnFozbrirbR09hm1KY8bjGIuybCwOF2imGJ8goMU2ekWdtZKwx9NU0cvr+48zs1L0iZt3n4khjV8\nrfX7Wmultc7WWue6bn8xansAM5OjeWRVPjVNnTzwZAW9/edf1NoXbKqyY2vspGiF7N2LicnNsLD/\nRKtMzhzFM1uO0dvvCMjo86Q7eHXhzEQeujmbsiON/L9XdvtFXLO41EZKTDjXSBRTTFCu1ULfgGbv\n8ZGXegxk/QMOnvygmhWzE5k7Ncbscrxu0jV8gFvy0/niZbN5oaKWh0sOm13OqA7b29lUZWfVRRLF\nFBP30ZKHcljnXP6x7xQnWrpZuyzL7FJMMWnn4fzbFXOxNXby479XkpkY6bMXVTxRVu2MYsoC5cID\npsZGkBoXISMWRlBcaiM9fgqfWhCYa0xM2l1KpRQ/ujWbgsx4vvz8TrYd8701P9u6+3ihvIbrslMn\n9ZwX4V0yOfPc9h1vZcvRJtYsy5yUY7LdMWkbPkBEqDOuOS02gvs2lFPT1Gl2SWd5qcIZxQzEk0fC\nOLlWC8eaOmmUyZln2VBqIyI0iNsDLIo51KRu+ACJ0eE8XlRI34DDGdfs8o24psOh2VBWTV6GhZwA\nuOxfeM/g/yeJZ37kdEcvf9xRx0156Vgiw8wuxzSTvuEDzE6J5ner87E1dPC5pyroGzA/rvnuQTtH\nGzpk5r3wuMVpcQQp2FEja9wOenZrDT39DtYuzzS7FFMFRMMHWD4riR/cvJjNhxr5zz/uMT2uuaHU\nRnJMONcsCozL/oX3RIXL5Myh+gccPFFmY9nMROZPizW7HFMFTMMHuK3Ayuc/OYtnt9bwyLtHTKvj\naEMH71TaufvCjICa4yG8Jy/DOTnT7B0bX/Dm/lMcb+mWc2UEWMMH+MoV87guO5WH/nqAv+4+YUoN\nG8tshAaQdUIEAAARPUlEQVQr7pKpmMIgOekWWrr6ONrgf3OlPG39ZhtplilcvmByL4LjjoBr+EFB\nip/clkNehoUvPbfD6x9723v6eaG8lmsXp5ISE+HVbYvAMTg5M9BP3O4/0cqHR5tYvSwzIEZkn09A\nvgMRocH8fk0BKbHh/POGcmpPey+u+fK2Wtp7+mVujjDUnJQY5+TMAB+VPBjFvKMwcKOYQwVkwwdI\nig5nfVEhPf0D3FO8ldZu4+OaDoemuNRGjtUSECswCfMEBykWp8cF9InbwSjmjblpAR3FHCpgGz7A\n7JQYfrcqnyP2Dj7/1DbD45rvH2rgiL2DdXLySHhBjtXCvhOt9PQH5uTM58pr6O4LzKmYIwnohg+w\nYnYS/3vTIt472MC3X9traKqhuNRGUnQ4nw6QFZiEufJckzP3BeDkzAGH5omyai6ckcCC1MCOYg4V\n8A0f4DOFGTywchZPf3iMP7x31JBt2Bo6eKeyXqKYwmtyrfFAYE7OfHP/Keqau1i3IsvsUnzKpJ2W\nOVZfu2oex5o6+P5f95ORGMlVF3h2Nv3GsmqCleJuiWIKL5kWF8G02IiAbPjFm21Mj4vg8gCdijkS\n2dV0CQpS/Oz2XLLTLTz47HZ2eTDO1tHTzwvlNVybnUpKrEQxhffkWOMCblRy5ck2yo40snpZlkQx\nh5F3Y4iI0GD+sKaAxKhw7t1QTl1zl0de9+VttbT19MvJI+F1udZ4bI2dnO7oNbsUrykutREeIlHM\nc5GGP0xyTDjr1xXS3TvAvcVbaZtgXFNrVxQzPY48iWIKLzuzAlaAXIDV0tnHK9truTE3jfgoiWIO\nJw3/HOZOjeHhVUs4WN/OF57eTv8E4prvH2rgsL2DtcuzUCowF10Q5slOd03ODJALsJ4rPyZRzFFI\nwx/BxXOS+Z8bFrGpys53/7Rv3HHNDaU2kqLDuDZbopjC+6LCQ5iTEhMQIxYGHJqNZdUsnZHAwukS\nxTwXafijuOvCDO6/ZCZPfFDN45ttY37+scZO3jpQz11LMwgPCfZ8gUK4IdcaGJMz39p/itrTXbLG\nxCik4Z/HN66ez1UXTOV7r+/jjX2nxvTcjWU2ZxTzosBedEGYKzfDwunOPqobfWuJT0/bUGYjNS6C\nKxdKFHMk0vDPIyhI8YvP5LE4LY4vPrOdPXXurSLU0dPPc+U1XLM4lakSxRQmOnPidhLHM6tOtbH5\nUCOrLpKpmKORd8YNU8Kccc34yFDu3bCVEy3nj2u+sr2Otu5++XgpTDcnJZopocGTuuFvKLURFhLE\nnUvlwsbRSMN3U0psBI+vK6SjZ4B7istp7+kf8bFaazaU2licFseSDIliCnOFBAdN6smZLZ19vLyt\njhtyppMgUcxRScMfg/nTYvn1XXlUnWrji8+MHNcsPdzIwfp2iiSKKXxEntXCvuOTc3LmCxU1dPUN\nSBTTDdLwx+jSeSl85/oLePtAPd97ff85H7N+s43EqDCuy5EopvANuVYLvQMO9p9oM7sUjxpwaDaU\n2SjMimdRWpzZ5fg8afjjsPqiTO79xAyKS20Ubz57umZNUydvHTjFXRdKFFP4jhzXidvJNlfnnQP1\n1DR1UbRcVpBzhzT8cfqPTy/g8gVT+e8/7+PtAx/FNc9EMS+UKKbwHalxEaTEhE+64/jFpTamxUZw\n5QUSxXSHYQ1fKfW4UqpeKbXHqG2YKThI8X935rJweixfeHo7e4+30Nnbz3Nba7h60TSmxUkUU/gO\npRS5VsukavgHT7Xx/qEGVi/LJFSimG4x8l0qBq428PVNFxkWwmNrC4mbEsq9xeX8btMRWiWKKXxU\nboaFow0dNHdOjsmZG8qcUUyZiuk+wxq+1vpdoMmo1/cVU2MjeGxtIW3dffzfWwdZlBZLfma82WUJ\n8TG56a7j+LXuXTzoy1q6nFHM63OmkxgdbnY5fsP0z0FKqfuVUuVKqXK73W52OeOycHosv75rCWEh\nQTywcpZEMYVPyrZaiAgN4ldvHfT7eOYL5TV09g7Ip+kxMr3ha60f1VoXaK0LkpOTzS5n3D45P4Vd\n376S67Knm12KEOcUHR7CT27Lobz6NF97cZffDlMbnIpZkClRzLEyveFPJhGhEsMUvu267Ol89ap5\nvLrjOL9486DZ5YxLSWU9x5o65UKrcZBFzIUIMJ+7dBZHGzr45VsHyUqK5Ka8dLNLGpPiUhtTY8O5\netE0s0vxO0bGMp8ByoB5SqlapdS9Rm1LCOE+pRTfv2kxy2Ym8vUXd7PlqP9kKw7Vt/PewQZWXShR\nzPEwMqVzp9Y6VWsdqrVO11o/ZtS2hBBjExYSxO9W5ZOeMIX7nyjnaEOH2SW5ZWOZjbDgIO68UKZi\njof8ihQiQMVFhrK+qJAgpbineCunO3w7n9/a3ceLFbVcl5NKkkQxx0UavhABLDMxikdX51N3uovP\nPlnh03HNF8tr6ewdYJ3MzRk3afhCBLiCrAR+fFs2W4428c2XdvtkXNPh0Gwss7Ekw8LidIlijpc0\nfCEEN+Sm8eUr5vLy9jp+9fYhs8v5mE1VdmyNnRStkL37iZBYphACgH+9bDa2xg5+9kYVmYmR3JCb\nZnZJZ6wvtZESE841EsWcENnDF0IAzrjmD25ezNIZCXz1hV2U23wjrnnY3s67VXZWXSRRzImSd08I\ncUZ4SDCPrMonLX4K9z9RQXWj+XHNjaWuKKYsUD5h0vCFEGeJjwrj8aJCHFqzrngrLZ19ptXSNhjF\nzE4lOUaimBMlDV8I8TEzkqJ4dHUBtU1dfPbJcnr7HabU8WJFLR29skC5p0jDF0Kc09IZCfzw1sV8\ncKSJ/3jF+3FNh2sqZl6G5cyavGJipOELIUZ0U146D35qDi9W1PJwyWGvbnvTQTtHGzpk5r0HSSxT\nCDGqL10+h+rGDn7890oyEiL5pxzvrPmwodRGckw41yxK9cr2AoHs4QshRqWU4oe3ZlOYFc9XXthJ\nRfVpw7d5xN5OSaWduy/MICxE2pSnyDsphDiv8JBgHlldQGpcBPdvLOdYY6eh29tYVk1osOIumYrp\nUdLwhRBuSYgKY31RIf0OzbriLbR0GRPXbO/p58WKWq5dnEpKTIQh2whU0vCFEG6bmRzNI6vzOdbU\nyeeeqqBvwPNxzZcqamnv6Ze5OQaQhi+EGJOLZiby0M3ZbD7UyLde2ePRuKbDodlQaiPHaiFXopge\nJw1fCDFmt+Sn86+Xzea58hp+t+mIx173vUMNHGnoYJ1EMQ0hsUwhxLh8+Yq52Bo7+eHfDpCZGMmn\nF088Plm8+ShJ0eEeeS3xcbKHL4QYF6UUP741m/zMeP7tuR1sPzaxuObRhg7ekSimoeRdFUKMW0Ro\nMI+uzmdqbAT3bSynpmn8cc2NZTZCghR3SxTTMNLwhRATkhgdzuNFhfT0O7ineCut3WOPa7b39PNi\neS3XZqeSEitRTKNIwxdCTNjslGgeWZXP0YYOPv/UtjHHNV/eVktbT79MxTSYNHwhhEcsn53E929a\nzHsHG/ivV/e6HdccjGJmp8eRJ1FMQ0nDF0J4zO2FVv7l0lk8s+UYv3/Pvbjm+4caOGx3TsVUShlc\nYWCTWKYQwqO+euU8jjV28oO/HiAjIYqrz7Pw+IZSG0nRYVybLVFMo8kevhDCo4KCFD+9PYecdAtf\nem47O2uaR3xsdWMHb1fWc9fSDMJDgr1YZWCShi+E8LiI0GB+v6aApOhw/nljOXXNXed83MayaoKV\n4u6LMr1cYWCShi+EMERyTDjriwrp7h3g3uKttA2La3b09PP81hquWZzKVIlieoU0fCGEYeZMjeHh\nVUs4WN/OF57eTv+QuObL2+to6+mnaLns3XuLoQ1fKXW1UqpSKXVIKfUNI7clhPBNF89J5ns3LmJT\nlZ3v/mkfWmu0dkYxF6fFsSQj3uwSA4ZhKR2lVDDwG+AKoBbYqpR6TWu9z6htCiF8051LM7A1dPDI\nu0fISopi3tQYDtW385PbciSK6UVGxjKXAoe01kcAlFLPAjcA0vCFCEBfv3o+1Y2dfO/1fcxIiiIx\nKozrJIrpVUYe0kkDaob8vdZ1nxAiAAUFKX7+mVyy0+I4Yu/gzqUZRIRKFNObTD9pq5S6XylVrpQq\nt9vtZpcjhDDQlLBgfr+2gAdWzuLeT8gSht5mZMOvA6xD/p7uuu8sWutHtdYFWuuC5ORkA8sRQviC\nlJgIvnHNfOKjwswuJeAY2fC3AnOUUjOUUmHAHcBrBm5PCCHEKAw7aau17ldKfQH4OxAMPK613mvU\n9oQQQozO0OFpWuu/AH8xchtCCCHcY/pJWyGEEN4hDV8IIQKENHwhhAgQ0vCFECJASMMXQogAodxd\naNgblFJ2oNrsOiYoCWgwuwgfIe/F2eT9OJu8Hx+ZyHuRqbV266pVn2r4k4FSqlxrXWB2Hb5A3ouz\nyftxNnk/PuKt90IO6QghRICQhi+EEAFCGr7nPWp2AT5E3ouzyftxNnk/PuKV90KO4QshRICQPXwh\nhAgQ0vA9QCllVUq9o5Tap5Taq5R60OyazKaUClZKbVdK/dnsWsymlLIopV5USh1QSu1XSi0zuyYz\nKaX+zfVzskcp9YxSKsLsmrxJKfW4UqpeKbVnyH0JSqk3lFIHXX8asrK7NHzP6Ae+orVeCFwEfF4p\ntdDkmsz2ILDf7CJ8xC+Bv2mt5wM5BPD7opRKA74IFGitF+EcnX6HuVV5XTFw9bD7vgG8pbWeA7zl\n+rvHScP3AK31Ca31NtfXbTh/oAN2/V6lVDpwLfAHs2sxm1IqDrgEeAxAa92rtW42tyrThQBTlFIh\nQCRw3OR6vEpr/S7QNOzuG4ANrq83ADcasW1p+B6mlMoC8oAPza3EVL8AvgY4zC7EB8wA7MB61yGu\nPyiloswuyixa6zrgJ8Ax4ATQorX+h7lV+YSpWusTrq9PAlON2Ig0fA9SSkUDLwFf0lq3ml2PGZRS\n1wH1WusKs2vxESHAEuC3Wus8oAODPq77A9ex6Rtw/iKcDkQppVaZW5Vv0c7opCHxSWn4HqKUCsXZ\n7J/SWr9sdj0mWgFcr5SyAc8ClymlnjS3JFPVArVa68FPfC/i/AUQqC4Hjmqt7VrrPuBlYLnJNfmC\nU0qpVADXn/VGbEQavgcopRTOY7T7tdY/M7seM2mtv6m1TtdaZ+E8Gfe21jpg9+C01ieBGqXUPNdd\nnwL2mViS2Y4BFymlIl0/N58igE9iD/EasNb19VrgVSM2Ig3fM1YAq3Huze5w3T5tdlHCZ/wr8JRS\naheQC3zf5HpM4/qk8yKwDdiNswcF1BW3SqlngDJgnlKqVil1L/AQcIVS6iDOT0EPGbJtudJWCCEC\ng+zhCyFEgJCGL4QQAUIavhBCBAhp+EIIESCk4QshRICQhi8Cimty5edcX09XSr1odk1CeIvEMkVA\ncc06+rNrUqMQASXE7AKE8LKHgFlKqR3AQWCB1nqRUqoI54TCKGAOzgFfYTgvqOsBPq21blJKzQJ+\nAyQDncB9WusDSqnbgG8DAzgHgl3i5X+XEOclh3REoPkGcFhrnQt8ddj3FgE3A4XA/wKdroFnZcAa\n12MeBf5Va50P/DvwsOv+/wKu0lrnANcb+08QYnxkD1+Ij7zjWs+gTSnVAvzJdf9uINs1DXU58IJz\nDAwA4a4/NwPFSqnncQ4EE8LnSMMX4iM9Q752DPm7A+fPShDQ7Pp0cBat9QNKqQtxLvxSoZTK11o3\nGl2wEGMhh3REoGkDYsbzRNcaB0ddx+tRTjmur2dprT/UWv8XzgVPrJ4qWAhPkT18EVC01o1Kqc2u\nBaTHM5b3buC3SqlvAaE4Z/7vBH6slJoDKJxrku70VM1CeIrEMoUQIkDIIR0hhAgQ0vCFECJASMMX\nQogAIQ1fCCEChDR8IYQIENLwhRAiQEjDF0KIACENXwghAsT/B7NiWFcKMAmnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['times','counts'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Bispectrum` Object takes 4 parameter.
\n", + "\n", + "1. `lc` : The light curve (lc).\n", + "2. `maxlag` : Maximum lag on both positive and negative sides of 3rd order cumulant (Similar to lags in correlation).\n", + "3. `window` : Specifies the type of window to apply as as string\n", + "4. `scale` : 'biased' or 'unbiased' for normalization\n", + "\n", + "Arguments 2 and 3 are optional. If `maxlag` is not specified, it is set to no. of observations in lightcurve divided by 2. i.e `lc.n/2` ." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Different attribute values can be observed by calling relevant properties. Most common are:
\n", + "1. self.freq - Frequencies against which Bispectrum is calculated.\n", + "2. self.lags - Time lags in lightcurve against which 3rd order cumulant is calculated.\n", + "3. self.cum3 - 3rd Order cumulant function\n", + "4. self.bispec_mag - Magnitude of Bispectrum\n", + "5. self.bispecphase - Phase of Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.5, -0.4, -0.3, -0.2, -0.1, 0. , 0.1, 0.2, 0.3, 0.4, 0.5])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4., 5.])" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.3885, -0.0915, 0.1685, -0.5085, 0.8135, -0.0675, -0.2708,\n", + " 0.0229, 0.1426, -0.0567, 0. ],\n", + " [-0.0915, 0.2328, -0.5162, -2.0652, 0.3058, 0.1968, 0.8135,\n", + " 0.5492, 0.0209, -0.2484, 0.0063],\n", + " [ 0.1685, -0.5162, -0.3999, 0.9821, -0.4989, 0.5011, 0.3058,\n", + " -0.5085, -0.2348, 0.2379, 0.0426],\n", + " [-0.5085, -2.0652, 0.9821, -0.3096, 0.5704, 2.1084, -0.4989,\n", + " -2.0652, 0.1685, 0.8632, 0.0999],\n", + " [ 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823, 0.5704,\n", + " 0.9821, -0.5162, -0.0915, 0.0872],\n", + " [-0.0675, 0.1968, 0.5011, 2.1084, -0.3823, 0.864 , -1.3613,\n", + " -0.3096, -0.3999, 0.2328, -0.3885],\n", + " [-0.2708, 0.8135, 0.3058, -0.4989, 0.5704, -1.3613, -0.3823,\n", + " 0.5704, 0.9821, -0.5162, -0.0915],\n", + " [ 0.0229, 0.5492, -0.5085, -2.0652, 0.9821, -0.3096, 0.5704,\n", + " 2.1084, -0.4989, -2.0652, 0.1685],\n", + " [ 0.1426, 0.0209, -0.2348, 0.1685, -0.5162, -0.3999, 0.9821,\n", + " -0.4989, 0.5011, 0.3058, -0.5085],\n", + " [-0.0567, -0.2484, 0.2379, 0.8632, -0.0915, 0.2328, -0.5162,\n", + " -2.0652, 0.3058, 0.1968, 0.8135],\n", + " [ 0. , 0.0063, 0.0426, 0.0999, 0.0872, -0.3885, -0.0915,\n", + " 0.1685, -0.5085, 0.8135, -0.0675]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 6.1870122 , 9.78649295, 6.29941723, 8.10990858,\n", + " 3.90975859, 1.49707597, 10.53408125, 8.44275685,\n", + " 7.73419771, 7.91909148, 3.40576093],\n", + " [ 9.78649295, 12.99063169, 11.9523207 , 12.31681 ,\n", + " 7.34404789, 1.93438197, 5.05536311, 15.92827099,\n", + " 6.61153784, 3.09535492, 7.91909148],\n", + " [ 6.29941723, 11.9523207 , 4.84009298, 8.98535468,\n", + " 5.6746004 , 1.71227576, 9.35566037, 12.00797853,\n", + " 1.60576409, 6.61153784, 7.73419771],\n", + " [ 8.10990858, 12.31681 , 8.98535468, 18.69373893,\n", + " 9.83780286, 2.72630968, 7.87985137, 5.32007463,\n", + " 12.00797853, 15.92827099, 8.44275685],\n", + " [ 3.90975859, 7.34404789, 5.6746004 , 9.83780286,\n", + " 5.93123174, 1.60598497, 0.51743271, 7.87985137,\n", + " 9.35566037, 5.05536311, 10.53408125],\n", + " [ 1.49707597, 1.93438197, 1.71227576, 2.72630968,\n", + " 1.60598497, 1.262 , 1.60598497, 2.72630968,\n", + " 1.71227576, 1.93438197, 1.49707597],\n", + " [ 10.53408125, 5.05536311, 9.35566037, 7.87985137,\n", + " 0.51743271, 1.60598497, 5.93123174, 9.83780286,\n", + " 5.6746004 , 7.34404789, 3.90975859],\n", + " [ 8.44275685, 15.92827099, 12.00797853, 5.32007463,\n", + " 7.87985137, 2.72630968, 9.83780286, 18.69373893,\n", + " 8.98535468, 12.31681 , 8.10990858],\n", + " [ 7.73419771, 6.61153784, 1.60576409, 12.00797853,\n", + " 9.35566037, 1.71227576, 5.6746004 , 8.98535468,\n", + " 4.84009298, 11.9523207 , 6.29941723],\n", + " [ 7.91909148, 3.09535492, 6.61153784, 15.92827099,\n", + " 5.05536311, 1.93438197, 7.34404789, 12.31681 ,\n", + " 11.9523207 , 12.99063169, 9.78649295],\n", + " [ 3.40576093, 7.91909148, 7.73419771, 8.44275685,\n", + " 10.53408125, 1.49707597, 3.90975859, 8.10990858,\n", + " 6.29941723, 9.78649295, 6.1870122 ]])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ -7.65814471e-01, -8.39758950e-01, 7.49083269e-01,\n", + " -9.35797260e-01, -1.22623935e+00, -3.13514588e+00,\n", + " 4.35308043e-01, 6.65460441e-01, 6.17269495e-01,\n", + " 4.39881603e-01, -3.14159265e+00],\n", + " [ -8.39758950e-01, 1.84719564e+00, 1.70902436e+00,\n", + " -6.50042861e-01, -5.76818268e-01, -9.16177187e-02,\n", + " 1.76512372e+00, 2.97853199e+00, 1.45401552e+00,\n", + " 0.00000000e+00, -4.39881603e-01],\n", + " [ 7.49083269e-01, 1.70902436e+00, 1.64851065e+00,\n", + " -5.51373516e-01, -1.32816666e+00, 2.45429375e-01,\n", + " 2.86246989e+00, 3.08272440e+00, -1.10623774e-15,\n", + " -1.45401552e+00, -6.17269495e-01],\n", + " [ -9.35797260e-01, -6.50042861e-01, -5.51373516e-01,\n", + " -2.97776986e+00, -2.96295975e+00, -4.83162811e-01,\n", + " 1.34000660e+00, 0.00000000e+00, -3.08272440e+00,\n", + " -2.97853199e+00, -6.65460441e-01],\n", + " [ -1.22623935e+00, -5.76818268e-01, -1.32816666e+00,\n", + " -2.96295975e+00, -1.30996608e+00, -1.24358981e-01,\n", + " -3.14159265e+00, -1.34000660e+00, -2.86246989e+00,\n", + " -1.76512372e+00, -4.35308043e-01],\n", + " [ -3.13514588e+00, -9.16177187e-02, 2.45429375e-01,\n", + " -4.83162811e-01, -1.24358981e-01, 3.14159265e+00,\n", + " 1.24358981e-01, 4.83162811e-01, -2.45429375e-01,\n", + " 9.16177187e-02, 3.13514588e+00],\n", + " [ 4.35308043e-01, 1.76512372e+00, 2.86246989e+00,\n", + " 1.34000660e+00, 3.14159265e+00, 1.24358981e-01,\n", + " 1.30996608e+00, 2.96295975e+00, 1.32816666e+00,\n", + " 5.76818268e-01, 1.22623935e+00],\n", + " [ 6.65460441e-01, 2.97853199e+00, 3.08272440e+00,\n", + " 0.00000000e+00, -1.34000660e+00, 4.83162811e-01,\n", + " 2.96295975e+00, 2.97776986e+00, 5.51373516e-01,\n", + " 6.50042861e-01, 9.35797260e-01],\n", + " [ 6.17269495e-01, 1.45401552e+00, 1.10623774e-15,\n", + " -3.08272440e+00, -2.86246989e+00, -2.45429375e-01,\n", + " 1.32816666e+00, 5.51373516e-01, -1.64851065e+00,\n", + " -1.70902436e+00, -7.49083269e-01],\n", + " [ 4.39881603e-01, 0.00000000e+00, -1.45401552e+00,\n", + " -2.97853199e+00, -1.76512372e+00, 9.16177187e-02,\n", + " 5.76818268e-01, 6.50042861e-01, -1.70902436e+00,\n", + " -1.84719564e+00, 8.39758950e-01],\n", + " [ 3.14159265e+00, -4.39881603e-01, -6.17269495e-01,\n", + " -6.65460441e-01, -4.35308043e-01, 3.13514588e+00,\n", + " 1.22623935e+00, 9.35797260e-01, -7.49083269e-01,\n", + " 8.39758950e-01, 7.65814471e-01]])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plots" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Bispectrum in stingray also provides functionality for contour plots of:
\n", + "\n", + "1. 3rd Order Cumulant function\n", + "2. Magnitude Bispectrum\n", + "3. Phase Bispectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEWCAYAAACOv5f1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX+4LN1V1/lZVd1Vfe8959z76msCJoTwSxzQccRXMiOO\ngvwQQyDD6GDk1xDEyCgqIiPgOA8MwmNAGIgDI7wiIkJEQMGIUX7NMIEZYZIgiAR0IAaT8EJ4Q+57\nz7n3nqru6j1/7NpVu3btqtrVXXV+3Nvf5znP6a6qrqqurvqutb9r7bVEKcUBBxxwwAGPF6LLPoED\nDjjggAMuHgfyP+CAAw54DHEg/wMOOOCAxxAH8j/ggAMOeAxxIP8DDjjggMcQB/I/4IADDngMcSD/\nA7wQESUiHzjzMV5cHmcx53EuA4/ydzvg0cCB/B9BiMh3iMivicg9EfkPIvI5MxzjZSLy/4rIfRF5\nt4h8p4i8cOrj7HBev0NEvkdEnhWR50Tk34rIF4hIfNnntitE5NtE5Csu+zwOeLRwIP9HE68G3l8p\ndQJ8EvAVIvL7fBvu4pmKyJ8AXgt8PfAk8KFABvyEiDwx1XEGzqG1PxH5AOCngLcDv1spdRv474Df\nBxxPefwDDrjuOJD/Iwil1L9TSj0wb8u/DwAQkY8UkXeIyBeJyK8Bf79c/j+KyDMi8qsi8tld+xYR\nAb4W+Aql1GuVUg+VUr8GfA5wBvzlcrvPEpH/W0S+TkTeDXyZiMQi8jWlV/5W4BOcfd8Wkb9Xnsc7\nReQrjMfu25/n9P4X4P9RSn2BUuqZ8lr8e6XUpyml7prv7hzzbSLyMeXrLytHDd8hIqci8nPlSOJL\nRORdIvJ2Efk432etz39Hx3V7pYj8Qrnft4rIn7XWmd/kr5THeUZEXlmuexXwacBfFZEzEfnnXb/N\nAQeMwYH8H1GIyP8uIg+AXwSeAV5vrX4v4LcA7wu8SkQ+HvhC4GOBDwI+hm58MPAi4HvshUqpLfBP\nyn0YvAR4K/B84CuBPwO8DPi9wFPAn3D2/W3ABvjAcpuPQxuVrv25+Bjge3vOPQSfCPxD4Ang3wA/\niH5OXgB8OfDNO+73XejvfgK8Evg6Efkwa/17AbfL4/xp4BtF5Aml1NPAdwJfrZQ6Ukp94o7HP+CA\nBg7k/4hCKfXn0FLHfw38U7QsY7AFvlQplSmlHgKfAvz9csRwH79XbfBk+f8Zz7pnrPUAv6qU+t+U\nUhvrOF+vlHq7Uuo3gb9pNhSR5wMvBT5fKXVfKfUu4OuAV/Tsz8Vv7TivMfhxpdQPKqU2aAP324BX\nK6XWwHcBLxaRO2N3qpT6F0qpX1Ya/xfwQ+jfxmANfLlSaq2Uej16FPXBe36XAw7oxIH8H2EopQql\n1E8ALwT+B2vVbyilzq33vx2tkxv8Ss9uny3/v7dn3Xtb63H2OXSc9wWWwDMicldE7qK97Of17M/F\nuzvOawx+3Xr9EHhWKVVY7wGOxu5URP6YiPykiPxm+d1eStNQvrs0OAYPdjnOAQeE4kD+jwcWlJp/\nCbeU6zPA+1jvX9Szr38PvAMdSK0gIhHwx4Ef3fE4b0ePTp5USt0p/06UUh/asz8XP1KeQxfuAzet\nc47Rnv2uaOwPLd20ICIpWhL7GuD5Sqk7aBlOAo9zKL17wOQ4kP8jBhF5noi8QkSOygDrHwX+FE1S\ndvHdwGeJyIeIyE3gS7s2VLoG+BcCf11EPlVEViLyXsC3oPXsrxs4zl8UkReWWUFfbO33GbQU8rUi\nciIikYh8gIj84cCvTnnef0BE/lZ5TojIB5YB3DvAfwBWIvIJIrIE/jqQjti/i58BXiEiSxHxxTAM\nkvI4vwFsROSPoeMZofh14P33OM8DDmjhQP6PHhRa4nkH8B60t/n5SqnXdX5AqX+JTtv8P4BfKv93\nH0Cpfwx8Bjqz593AW4AbwEcopd7d89G/iw6g/izw0+hYhI3PRBPlW8pz/15GyDhKqV8G/ivgxcDP\ni8hzaI/7TcCpUuo54M+hDdU70Z77O/x7C8L/jB5RvQedafTajvM6Bf4i2vi9B/hUoPP38ODvAR9S\nymHfv8f5HnBABTk0cznggAMOePxw8PwPOOCAAx5DHMj/gAMOOOAxxIH8DzjggAMeQxzI/4ADDjjg\nMcS1Kjf75JO31Ytf7E2lvt6YNeju7js0tXxCiDlm81yU9b6ZeKBa2zQ/ubU+5xyigaZv49tEOq9H\ne7l4DuL/vGeZ9zf2LFP1d0PM+Ys5gcbnqmtT7dtZXu1o2ziF+nNS7lZV30UfIkIw300Qkeq13onS\n56lU+d56bf9tPcvM9xBpv446lrfeR8521nWyrtGb3/z/PauU2mceB79bfqs6Yz243ds4/UGl1Mfv\nc6yLxrUi/xe/+Pn81Bu/YfbjxBd5WYp82v1tOvZnli8S/XdRiOtjFWy8mxTb+uEq1Lr8v2kt61te\nHU6WnmWLwW18cD83Zh9x5F/vvbd898Amr3+n8hqa62eul3utOt9v9ft8q8k3K6T8H5HGW9JYkURC\nHC2IZUkszv9oqc+7yPV5bfLGOatN1ly3XkNe/yn7vUGy1H+ALOvX9nKWzjU012ORVNdEFml9j9n3\ndpwg0R/pm6kehDPWfFn84YPbfVbxo08ObnTFcK3I/6JQsLkYAzAF8XeRfdd62whcEcTRsiK0WJYU\nal0Rb6E2FdH2L28ShY+4Q0nfwJCob18+w9NYXzTXV+fq8SLj2HNe8are1/Zh45i7k327pcG+xL8T\n+ojfwCV+qA2iuYfjBLXJ9LgoTpr39tRO1SOIA/l34MIMwFgMkb1vG/tBcB+SORHg9Veblp5ysV0H\nkv3CIueaKHb18vvQZwTC99FtLFxD0XX8ELK3vfohpPF2EuKXRdpbf0Lw16cQm+BtA+AjfgPXAJT7\nnkvMlAjSVcDe7890AjPiCrLbY4JQzySE7Pu2LY+jNrqop9dLukJwjYAhOJfsbcPg3c8EpO+iUP0G\nbNpjNaWuEAlnLNJY0+Yc16oXybIm/mQZTvwG9n1eevmKUgIqruZ9fRVxIP8eXLj3P4bohz7jarLW\n64s2AENevw9GCgoZBVSfuWgSC8CQPNTcth3PGCPhjEEa6yBwHOlruq/cM8b734v4bTgyT8sAHNCL\nA/l7UGzXtQc6hwGwb85dCL/vcz7Sdx6Gapg8pwGI99/fGCnoojCGzP2f7wh6256+V8aZvgVxEsnF\n6fxo0lfr8nsmHslnF2za9zZMJwNFIiRpwKjqIPtcb9hZJxeCscTft71L8C7x+7wkmH0EsIvX78IX\nENavF5cmxQxv239e7r4uivAN0lhpkp+Q+Ie8f/J1eGbPGHQEgg/ox4H88ZP+bN7/Lh7UPqRvf/6S\nDMAUCBkFXDRCj+kzGobswZV0hKyIyLdCEs0z/6MK9M4waho0AAZTEb/BriPoxxiPNfkPefqzyj9j\nUzR9CPX2Nx5DcAEGYAqv30WfEZjTAPjmHwxt21q+bX7WF7TNt5r8s0I4SYpZDIDx+oELkXtaGErp\n3AcT38MSQZpewsTIC8BjSf6DpO/JG5/mwDukaQbsJ8jbN1rrcjm/AZhA7x88RMfcgDkMQB/xD+b7\ndxA+dJO+/tM6cxorjpcFU8EEesEEeacn/iDvf5cAbygOo4AgPFbkH6Lpt7XYGbz/rolXgyfX3m7Q\n219b3ye/QANwAfClhc5nAJq59Z3bbdvHtgkfhkk/K4TzAiCuyHpKA1AHepcX6/FXJzAj8RtMZABE\nCAv4XkM8FuS/E+lb3r9tAHY/iYGyCyM/O8rbzy/eAMwh+XTBTgud2gA08+3D5ByDPtIHOF3HXtJ/\nT/WTCqu4DvpOYQCagd75Hv9e739u4j8gCI88+YdIPH3rXPlnb+/fp793noB//U7efu75no/ICADm\nMQC9cs9Iwtevo3IbTfb38qhB+g8LOC/gbl4XJ1vFALUB0MHa3eIAdqDX3NcX7vVfBNbhWVmPMx5Z\n8t/F2x/a387yz9iHKZT0Ydjbd/8ny6YhmNoAXIDeD+0CaQWbSQ3AUCkFF32kr983JZ57edwiff0n\n3C1/5vONcCc1+9UGII13DwTbgV4og70zEn9w5s9U8I1090Qkh4DvtcG+pO/WcZlc/jEImKRlYy9v\n35V9TLZFlwTE5cwEDkHL6JbXI46TyQ1AdYgO4ncJH4ZJ30g8z+XSIv3zDdzNIcv1COE82WLPjT0v\nYm4n+vVYA2C8frACvdFydo+/ZQDmCMaGjnQvGSLyrcDLgHcppX6XZ/1t4DuAF6G5+WuUUn+/XPfx\nwGvQXsC3KKVeve/5PDLkPxXp2+99BqBaH+r9h87mndHbV84wuKInexRgGwDor5g4gKn1/i7Cd5dN\nZQC8ZaWdMgsuQknf1vVt0jdG4PRsSZ5pLz9PCzhaYwzAeUz5Wq8fYwDsOj7VHwvggiUepyjb3hga\n6e4JiQJn+Ibh24BvAL69Y/2fB96ilPpEEfltwL8Xke8ECuAbgY8F3gG8UURep5R6yz4nc+3JP3RW\n7hjiHzre3tk/9s3f421N4e0r9+FI9BT7uQ3AFBgkfU+Br30NQJfcA+Gevt62lnZcXf9u3ib9LI/I\n85ize0uykvxTQzqlAVgtoC7OEZdzAbaDgWC7jk/D6zfXcGadv+H9e6py7oSZSX8OKKXeICIv7tsE\nOBbdNegI+E1gA7wE+CWl1FsBROS7gJcDjyf5XwTpd3n/wfLPjjV8Jvf2Pbr/VTYAo0jfXjaZARjW\n+ftIf0jXv5tJi/TzLOb0nvb6zfujY+t7Hq1ZFVDLQOMygdxAr/5ilxDgNcS/qwHouu+t1+5I94Lw\npIi8yXr/tFLq6ZH7+AbgdcCvAsfAn1RKbUXkBcDbre3egTYIe+HSyV9EYuBNwDuVUi8b2n5u0q/r\nxiyrbftS4kZ7/wNe/yzevi/Vcw4DYNfvHxkfCZJ2+uZH2KSyowHoK8PgzsY18JG+IX5fMNfW9Q3J\n51lElsWcnSbkWcwmE5ZZwRn19ayNQR0HCM0EstM7wQr0bs4ujPgr77/Im78VhBmBvrTlrvt+AohA\nElLPH55VSj215+H+KPAzwB8BPgD4YRH58T332YlLJ3/gLwG/AJwMbagCcwf2JX7zuqXzd3j/XgMw\n0uuf3dv3ZfvMYABsvT/EAIz28ruu5SbfywCEyD19aZuurl9r+k2J57mHbdI33v6DewuWWcHNrGCZ\nFzwgqQxAkhrPvjYAq3g4E8it49MK9EKrCJosUv81ngJxUhsACBsFhN73PsNwvfBK4NVKN2X+JRH5\nj8DvBN4JvI+13QvLZXvhUslfRF4IfALwlcAX7Lu/KUi/67OTZP90eP2zevs+739mAxCCvUnf3T5O\nJjAA3XKPj/j7Jmn5grlZHpXefZP08yxG7m25meUs84IkK1hmmuyNAUhyW9bJOS+23EnsKvlxGdRt\nBoLbdXwsrx+r/641agupiLmLgTCfqUyTOwpwf+MpnJ09oWv7XNgM3/8EfDTw4yLyfOCDgbcCd4EP\nEpH3Q5P+K4BP3fdgl+35fz3wV9H6lhci8irgVQAvetHzLui0xqNT/pkys2GqG9tO9xyzziGJLjQa\nsnsM5E6a/q4ocu0XxwlxtCh/p2XzHD19AQq11ttvN2WKZNP71x5/m/gflhzdFdD1Ef8mE5bQIP5l\nviHJYtZJwYMsBmLyJCbPCvI0Jk22tYEpVFkOoj6fJCqcSV1OoNdcd3Ptzf/AeRpVZ7gdjYDaZM1R\nwD5xgGvi5YvIPwI+Eh0feAfwpcASQCn1TcDfAL5NRH4Ore19kVLq2fKznwf8IHqY961KqZ/f93wu\njfxFxOS7vllEPrJruzJo8jTAU0/9DmUX9HLh6+5Ur+su/dv3Ofuz9rYGnfLP0PDWrCfgYVgutRfk\nkrIh6rJOulrX773/DUw53a4m2va2i6T+DnHSfNiddQ3JxxkhAY3rBDSvVfXBvDmScEcXG4ekbMNh\ntvGNRKz5AABEVEbANxowr+NYr7sRmZGAQssuESdJURK/4l4eY7cQuZPo1Mxq0laiM26OTiDJtuRZ\nwek9c54xa2IekLBOCm6Rs05j7h8nrNOYRao4Os45PslJ0i1JUrCK4U4Kq1hr/6tYe/wnyZY01n/H\nSzvDx/L6LcnHe51GTNTb1Qi0RgEGIwyAmHvbbhJzhaGU+lMD638V+LiOda8HXj/l+Vym5/8RwCeJ\nyEuBFXAiIt+hlPr0oQ/aBb28662GH+113QG/ZqOQcDnHJjevAQB/kGvIAPjQQ/ANA+CD2dZa39tc\no4v446ST+Ivt2tLPneC59XuZa1W9dw2B24t1yAj0Eb8NYwTKz5rRAHWxy5r4XaMQwY0IkmiDMQBN\nQyCkRQS5HSBU3EnLQK99EOD4JNejgCTmjIR1qd3fJ2GZF6zTGHUScXSck6QFSbrl6Djn9o1tSfiK\nOwk8kWh5R//p1M86yLusPX87vZMeeWfkKMDsax8pCHP/98F2ghxvvy6IUWKf7mD2fgUWyYXOU74w\nXBr5K6W+BPgSgNLz/8IQ4rfRZwT2HQW42/rWuTCjgEEDYL+2yC5IE3UfAMezrx6Crm0sohe7wJaP\n+Ksv7iF+a539/b3XxdNnN3g04GvIvekwjmNjD9ZowJWE+kYDRHC83JDGhRULMLrwlttJxKpRpE2n\nZt4BzuMt58mWU+dUjsjJUy0Dre/BOo1ZpzE30w1JWnB8suboOCdNtqXXr4n/RqyJX3v9WutPY9WW\ne8y968o8Q9fnAgyAQcsQuCPhPhgHyGMYDvDjsjX/STCHEbDX2/sZgm0AoCSzIQMA42UgH4ZkIAOb\n+B0JqEH8i6Sb+Mt1oInbXHs3a8ZNkx09GnAlIXNsaKd67ooRo4EKESQYGciQrpTyjxkVCE8kJt1T\ncdfuLHu0Jku0fs+95unkJzoOcPNkowk/LUjSgjTZcieB1ULLPDdiuJ1o4teEr0oDIA25B6gLuNEj\n+XRdmws0AAaDspDrDM0EEVgst8MbXkNcCfJXSv0Y8GP77meOeID92VB44wC2J9tnAMptBmWgoVGA\nTwYq17WI38BD/PVFGE/87mvbEEw+GpgKg6MBbQQKtSDnoWUAwuMAd7NyWU8cIEkhSQrStODoZM3x\n0VpLPQu9nycSbQC0vq9KqWdrEb+V2ml7/bbk4+vv3HVNLiAO4MNUstABbVwJ8g+HELPorR0zVTxg\n31rnowPB5rW1zc4ykAVXBvISv2mu4SF3WaRt4jen4wR49f86XbKdQTNuNBAcIJ4DAaOBJIJCNsTR\nelQc4E6q6glfXXGALOb4JOfoZN0I8N5JugO8zfo9HV6/e83cEuN9BqC8FqGYahRgsJcsdEAL14z8\nNQwJ7GoEQkYB7ra7YFQg2H29jwzUMQqo4CN+Ax/x2+vKc7MDvK3v7QR8oXkdh0YDowPEc89SdUYD\nuU8FmCEOYDJ7bt/YNjJ7nkiopB47wOvKPQ2vH+o6Pn3oMwDmWlyiATAIkoWmOI5AfAj4Xj3MaQTs\n9ftidCAYvMHgygD4ECADAd3Eb7J3fMTvZPbY3wv8ck/rGnRkUfkMwU6S0EWg/L2S+AZFKQUVakG+\nfajXTxgHSLJtI8BrMntMgNcEedvEX1/fVovGUMwgA801a3iULHRAA9ea/A2GpCDYPR4wFYICwdA7\nCqi8nV3mBLjwEX+JIeLv0/lDA7563bAsFDIaiC/C+zdec3kt4jipFJ4kYvI4AFAFeO+kqjPACzSI\n3/b6vSjypt4/9J2vYBygC52jgQO8eCTIH/YfBUAzHjCV129jMBAM40cBvkJZBj3ZPl7iN5k9bu58\nuc6cd/V9BojffR1qCMaOBvSErRlhlz0uctgksDpqGACDqeIAbmbPE4kmfjfAa3R+G5UB8LVodL+X\n+d9F8hMaAJh3FGAw6f5FsVg+mubkepG/Gv4RppKC5sJgIBjGjQLcA/QFg2Hc7F3z3yF+tzSC/h8e\n8DUYyv5xP+Magsb+5/D+LdK3JQUBOD+DRUK8SIjjG9PHAQp/Zo+p32+I3+f1j/6O5v+uBgBGG4HZ\ncdXO5wriepE/BN9sU4wE5oIbCAbCRgFTlYYImb1rjmnO2SH+EImsT+LR68PTQO3tW6OB0rmeVP5x\nid94z4uEtq89XRzgbl7W6l+0SzeYAG8f8fd6/UPXpk/rnzgQPBvcSYh7QiJYJIc8/6uFiY3ARRsA\n2GEUMEYG6kPI7N2ezJ4hucdbF99ZFhL4dT9n91jwbTsZXOLPzloesirJTqyahJPEARKqQm1u6QY3\nwLsLgvT+LqKfOBA8KTrmoRzQjetL/gYTGYHLHAV0GgAIHgUEl8sNnb1rnwPjid+UQ44j/y0WEvjV\n6wINwRTef5e3v8n16Mkzj0Jlp0iRTh4HMAFet3SDjUGvf+i7Dq2/oDjAXuiZfHhAP64/+RtcYyPQ\nKQPBfimhXcFg3+xde521bEyA11cH322B6DMGfaOC0DkBeyOE+M3f0c3GRysZaOI4gB3g1XKRX+7p\nRFeg1/7OQ9fkqsYBBkh/qudXBOJDwPeaYEIjcBEGIKg7mFsaAgZHAd45AeaBDczl3+VB8vW77Vs/\nZAzGZAHt7P13yTwu6RucPSjnS6xhmcPqaDAO0DAEgXGAvgCvDdfr98IJWjdgauP4akbNEAfYK+Mn\ngPTnTNneByLyrYApZf+7POtfjq7pvwU2wOcrpX6iXPc24BQogM0ELSOvG/mr8Nl7ExiBOUcBXS0j\nXQNgn2PwKKBvTkAX8Rt0EP9Ynd+0PrTh06mHjEHXqKCzDhMjRgIjvH1lyT7tb3E2GAdIYFRdoKwQ\nT+mG5nXoyu7pndTlLreLoq3X3UUDLzsOMIL0+yYbjoWImjLg+23oJu3f3rH+R4HXKaWUiPznwHej\n2zgafJRp7jIFrhn5lxi64WxMZASmMgBdXoktY/hms45KCR2YGewl/oDMnlC5x0f8vuX7GgNvBtF2\nHeb970L85n2yhPUS4aZ311PEAYCqdIN9vXxyT6fX3yX59Mk9uxiAoXX7GIAdSL9Q60kNwFRQSr1B\nRF7cs/7MenuLmeerXU/yN7hAI7CPAfBnv/hz3oNGAWMmhtkGgAHi91ybXYnf6Nmux2ojZHTQZww6\nh/dD8o9N/NlpMOm7AV/FAyQvy2VMHAdIYxp9ePvknsYyn9c/NgA+lwGAcCOwJ+lfgvTzpIi8yXr/\ndNmFcBRE5JOBvwk8D93f3EABPyIiBfDNu+zbxfUmf4OZjMC+BiCE9O3lXQbAHBt2HwVUlDpA/GN0\n/iHid18bjDEIY4zBIPbw9snXqPOiJflUJD9xHCAroobOX31fH+F3ef32ebp6/1CwdygOsIsBgOFR\nwESkPxR7CoWu5x/kgD87hQ6vlPo+4PtE5A+h9f+PKVf9QaXUO0XkecAPi8gvKqXesM+xHg3yN5jY\nCHQZAOgnx1DSb9WtaXSMctZNkRJqEEj8IeUbdoFrEPYZHRTbTZ0sY8P1/icgfnW+QZ1vkFWBnJgT\nXKOObk4SByhkAzzExAFs4nflHp/m3/L63YldVj1/oCZ4TwprY5upDYAPE5J+l+x4nVBKRO8vIk8q\npZ5VSr2zXP4uEfk+4MOBA/m30OXV+G7IriFxefOFFI2rdjWS9H3vdX0hvxFoGByL8LzNYnywH8oA\n4h+T0gk2KQ8/fE2PfrcJS1cGZw/0Ny4rpsqtm81RgG0EStktXh0RO7OCzegvURtuLOrfvVGb39H3\nK8LPzvW5uOUo+tI9Q4oAdsk/feTet86XYtxB+j4nxGsAekaee0MgmrcUUX0okQ8EfrkM+H4YkALv\nFpFbQKSUOi1ffxzw5fse79Ek/y74HoCAINUYA7Av3Cwgg1icEUhH4DOOmw9rHB/Vb6ybuCb7hzvl\n7/dh19mn1wGyWiCrjjJyZpRgd0wz8QDXCJT/4zIeUMRNI1CoAMK3Zx2HEr6LLnI32IXkndF0YyKh\n/TnvLHJdFsN1Pvo8fEP2WVH/LidJHSi/KhCRfwR8JDo+8A7gS0Gnpymlvgn448BnisgaPQT8k6Uh\neD5aCgLN2a9VSv2rfc/n8SJ/H8YYBAvTZgANlKO2RgD1ZzoMw/ahkwniq6kzLdm3ztfN0JlIf50F\nnt9aKMcuTitAWQU+Lm5WkJFVkiXcuukYAZ0VZIwA8Q0KNuTFg/ZsXZfU3fLMoYTvw5Qk767vGW0W\n2zU4DsiQd+8jextpfDVr8Sil/tTA+q8Cvsqz/K3A75n6fA7k74P9AI3w/vtaRHYhRD8f2sYOFuv3\n3SMGe/1cQbIkulHtv1DryhhcuhFY1MHvSpjqI0tLDhFAnRf18qF+CeAxAlZ57bKstlodNYyAyQy6\nEZ9oUi+2sDlr6PeNmMXQdwiBPcHPB09crJPozf7s/y1p0T/aHOvdd2Gf2kctRIKkjyZNPprfakpc\nlWqFA+jLImovm5bsbSTxDU+tHpOxZBmoizQE5vfblyShW/Lpg88IGANQBlRVScCSHldGYFbCt9GT\n6gsDRG9/vnOy4KYK2PpGm76ssTFkf8BuOJC/C/ehsm5o1/vfRfoZmuQ1J+Ym3Lp/7KIcBVmZLNZD\nbra9iPNqZEYNwfX0ndV7+5LGCAAc3WwagTI4rJwSHKP0+13gzvp20UX07nu7CKBD+FCT/FCgNit8\nqVvhSOOtd07EzhDZzeBfAxzI30bfbMgZvP85JqT4iNQ8XHMHYnVmypIkLic8eaRX33e9tBEBNMls\nHfA7hEo+QwjIEJqN8G0sknZA1lnf+d7j3YNfVqzIf0cpJxSms9ncTZkeBRzI38AKojXg3PxTeP82\ndiX+IZK0c52NR6XLBex0uEHE0YIkukES3ag9baukgQ5a+0cB7n5gGiNgz43wH6xjBnAXpiB9F70Z\nQjMTmPH6fXq9732Hd18t68nQMaSv78V5PGkT6J3M63/EcbhK0E389jq4cO1/DAH6JrbUnlXE6Tom\n3wpQzGIAkuiGlnuiZSVVmJIGJpfdRZ/hm3s0YJe8aKBP+slnlOZ8GUJHN3V20FwwXr9b7tvAud/9\nbTyHs3TmJn0bSSTDpa5HQCKIDgHfRxA2sduBtRICzQfA5Gb3ZP6EZvw0mpzvSG59hK9fR+Rb7fXf\nyyPqmWHYS+EiAAAgAElEQVTTGgAT5I1lSVxsdT0bC77CZjaGrtfkhqDL4zeTnvowh/dvo2EE1rUR\nmHoUYHv9vd59+bqD8N33bqaOIX1zHwKNYnVTIo1VPRfiIPsM4vEl/wHi927bkQ4XKv305eqHoG/a\nehfp64fP1Iq3SylMYwDsIG8S3dC18AtrJGWlL/pmtNbEEXYtXENgyh4Ew6elu3WRDBLHGMxN/AZW\nEbmqPtDUBsD2+vck/Mb7DtI396GBDsxOV4bBBHqBeVp7PoJ4PK+SR+ZpEL8xBjjevxX8nWrW7xjt\n3oU7jd1H+lkR8VwuPCydrTS2h977G4BGkLeUe1R2Wq5MWhkyfaOAscZwtLbrI37fKMCQfL5Glsta\n+plT9jH7t+oIRXfq1pyTykAerb9P0tGvu0nfTdH0kf69POa80O0psyLqbE25L+xZ0ZPgkO1zVTBB\ntkof8Q81wDAe4p65/32TtkKKUvlIH+B0HTdIPyvbAb4nBzM/6UYsQH0zp/Fm5yygVpB3c1aXSC7h\nq2wZQ8cooD8YPAZ2ZdRRCJF+poZbPC6r/0fnBeIWj9vXANgZPovEW0dHv25no/Xn5Ut5D/qdD0P+\n9j2YxmoSGegg+YzHNSP/PTAk87jVEEsorPxnR/6xvf99yj3vQvh6WVR+vtb1bdI3D9zdXDgv7c0q\nNnSsH74kUqUHNt4ANIK82Vkt+ZhKma16NvUsVph2FLALWkFfd2RQjgC6yj3sDYf0t89lqPOCbaZ/\nrKi02JF1DtWvVM4QHg03uBsn3hm3+nX/TPAh0s8KqRwP/afP/k6iv0lWLKoaPPvIQK7k09XhbCdE\nEl7W45rh0fxWLkKJvyOvWm2ynYK/QwgJXnZVKHQlnnt53CL98wLuZlK91rBpJK5iAGMNQCvIuynr\nzGxyuP/A+xnvKMAxAKEpoaPhyjvuex/xu2TvW7YLekhfnReobMM2gyjNiLIN8fmG6HxDZFJC12s9\nL2DXOIAV6C1oT74yCCF9k0nWN+I8L7Tz4d6DWk0xIwDZWQayc/sr2acvxfcA4DqS/9jJL4H6fmOf\nPl3Y2UdfLRRfxk8XiXV5/aGk7xta2w/c3RyyPCIvA74crVktagOQxvWMylAD0Bnkzc7g4f02QQ6M\nAvZJCa3Oacog31zSj0X6mvA3XtI/v69/q8V6S0IzCcH8WjsHgp1Ar/b622ma+nU/6efb2ulwR5x3\n8ybpnxf6PtTYcr4R7qT63j8vYm4nddeyMTKQndtv9zo4YBjXj/zHIFTfH6qXUuRN+cfe1vL+Q6Sf\nPm+2rw55F+n3eVnnBZyeLcmzmDyrSX4Vr6lHAM1g1pOr4YqIsSy11u8GeTd5oyFKo3yBg5BRgIvJ\nRgGuA9E32WsK6ae8Jtu7Wa3nO6SfnwmbPKZYC5s8YrMWVrcKoCBBjwzi86IZB8jX4wLBTnpn7fV3\neP49pB8iM9qkn+cxZ/eWJOkWyDlPttVVPY/NFY4rMh9jAExuP1DJkMElPYYggqSHgO/1gUfmgRHE\nb7oXORp/Jf9Yy3YN/tqSzxDpAzt5WWenCXkWkWUxeVbfwElSoBnWDL/tAHD/LGAT5I1l2Q7yrte6\nbEEp+/gI3oYC2GS9o4BdU0JD0av77yv9DJB+cW/DZt0m/SIXNutI/88jNnnB6lZTIvTGAYYMQKfX\n3w7iQjfph8qMhvTzLOb0nnZCkrQgzyKOTtZwtOa8EHRSk+JhITyR6HsxK8JkIDfQW3n9Y/sWXwBE\n5OOB16A9rm9RSr3aWf8E8K3ABwDnwGcrpf5dyGd3waWRv4i8D/DtwPPR9/DTSqnX7L3jXfR989oe\n6tvt63z1fXqCv6HoT+NsBnP3eeDMewPjfRkDoIPAZv0SWHcagN4g79mDugUidFeytOvXLJLRo4DR\nZbNDi7tNVU8nX6PunTczdwJIP7sfs8mFLNsCitTxOFfW/aV8cYC+CWG9Xv+6RfpQlwXpStt0Zca7\nWfsezLOI03tJ9T7JC/Ks9uozyxFZVXNQ3FiU/znxBXr1pxfo+3t/SDSij0PffkRi4BuBjwXeAbxR\nRF6nlHqLtdlfA35GKfXJIvI7y+0/OvCzo3GZnv8G+CtKqZ8WkWPgzSLyw0FfqOshnYr4Tc11s8zS\n91vBX8cw9Ek/vhTPrrTN0AfO1fXNA5dlcen5x2wyYVk+cGfYoxRtAOo0ZhN8i/HNARgM8prJSWdl\nwNeSe0JGAReSEhpK8LbuHyr9nD1op2uWpL99LmObMUj6+fmWPNuSZYo0FY5ux9xaL/SIYC2k64Ik\nu090u5Ygg+IAfV6/0/e2i/RDY0t99+AaIT/R92CWxRyfrIGc82LLnaSUgQp4ItEykB4BbHtloEYn\nu8hx2K4OPhz4pbIxCyLyXcDLAZvvPgR4NYBS6hdF5MVlF6/3D/jsaFwa+SulngGeKV+fisgvAC9g\n1y+0j77vEr/5n3huJF/DdLPKTv20gr5ua8auLJ8+Xd9NmTMSz3MP2w9cXj505oG7mRUsc/3wPCDh\njIQkNQ9TzirWnqb5Fr5ZwCFBXmVknzKtwyVzVV7rrlHAhaeE2lq//Xqs9NNB+sVzWRXE3ZRkb0g/\nux+xWUde0j+9p69fnporGNOMzRStQLD0xQEGvH63ymZo2uY+9+DdLOXmiTXaSAs40rEo7WhrU+ZK\nkvYo4IpJPk+KyJus908rpZ623r8AeLv1/h3AS5x9/Czw3wI/LiIfDrwv8MLAz47GldD8ReTFwO8F\nfmpgQ//yoYwedzsbfcRv3jvyjzf3Hzq9/6F6P1Pq+uYhlHvb6oFLsqLy/KE0AGl7BGAMgG8WsHcm\nr/H6jcdfZbPUD3XrF3ODvx4vepdg8IXALffgmZy1vZu1snc2FeHHDU2/Jn5N+Ib882xLdq7gdgz3\nzO/WbwAiQFbl+fCgGQcY8PrdAoC7JhTY9+CDe4sG6bv34DqLeVCOQvMs5vhEP0dZUnD7hpaBzgvF\nnUR/d3dWcK/kYzqfTYEoeIbvs0qpp/Y82quB14jIzwA/B/wbYLZmxJdO/iJyBPwT4POVUvc8618F\nvArgRS96fr0idKq+D74bwyUh2/N35R+T/WOOae0vLptRx9GyIioj91TpiJEOrOmbVwHbygDUXvcW\nE9Z7WM6MdGkxA8uDt049i1l3ZCisE71uyYY0LUjSgjTZslqY2ZdU56EfMu1d2Q9YA4sEsPL6k2V5\nZoEwk5VMK8EdZ07brSwbr+2yzj7vvixBoTZZU8ozv/Xaug/ccg8GdQI7soqbNiqrDeEiMb8pwJZN\nbnm1qVBbt3oPSRqRpBFpGrFYFiyWinipWCwVki6I0kXZVH7ROE+VlCOAZA2LHBVnSJzAIieJbzRO\n/5iHnJa3uM62qc/RVOKs+U/fg1VHS6dRuoktLVLF2jJWSUn85r5cpzGLMtUzSYsyDoW+F8uPNe/H\nbfVsmNf6vuyIb1w92eedwPtY719YLqtQ8t8rAUR3a/+PwFuBG0Of3QWXSv4iskQT/3cqpf6pb5ty\n6PQ0wFNPffC0hUCGYAyC6/EtktEGAEzJgaYBAEP4W9KYclhrHhr9ID6R1N5XwwDc2HKebMmSoqHl\nH5GTp9oLWzvmdJ3G3DzZcHSck6RbkqTgTqJn/q5iuJ3oGb/6AdtaJXKXjQyfhpF1vHlZLRre/1jI\nIq2rTRpv1WkFaP8fhMVnsWtcxhoA2qWe5UR73eq8qH5uQ98xEGUbFllR5u/XJ7OiYJFoYj99zj5R\n/f/4JOb4JCZZCYtEESeKRbJlkWyJUm1oZBUjqf7f+B3KZjH2CKp6vzoijpfE5f0YRwuOlxvSuLBi\nUPocT5KCtIhYlbKP2dOdtBwBxFues45xfJLrEUASc0ZSGYD7JCxLR+XBcaLvw1Tfh8YJOT5as4ph\ntdCzgJ9ItAHQHv+2zEQrenv06uA+/T2Jx0BkqoJ+bwQ+SETeD03crwA+tXkouQM8UErlwOcAb1BK\n3RORwc/ugsvM9hHg7wG/oJT6X4M/OLYBx1j4gnk+/d9nAKz1oQYgqTI4dFqdyXNOY5NLXW6I8ERi\nAr6Ku/ZjnWzhWBM+DtnnJzEPsrgacquTiCTRD9zRcc7tG7XX/0RSe1XmIev1+l0DsLYIcrWoCcn6\nkz0qU/qIvxE/MQQvi7ZRsFi5ZQDMOZf/Bz2MpKy3v9QSi/35iBSVxqhVAXftw25YUbBZC/FSwf2m\ngT++HZNlAs8VQESS6tFAshJuHQvprYLVrYL0VkFypIhup8S3U6LbadPrt1Geo/6fwyKvJLs4PioN\n+oZYNta9qAAjrZhqsGFOyKlzeOOEPLhX3zvrNG44IGlacHSyroj/TqqJfxXXxJ/GqqX3XzcopTYi\n8nnAD6J9gm9VSv28iHxuuf6bgP8M+AciooCfB/5032f3PafL9Pw/AvgM4OdKjQvgrymlXj96T7sO\n87pmcebNoX5L/+8yAM65jBkBGAmoNgDaAzxJICvKfGtLJriT6MkxJsWORB/g6ASSbEueFZzeMyQX\nVx7YzXTD8UnO0cm6GmIbL0s/ZKrhXbWmzA8Z3mSJTlEe2Mb8OZJPn9fvg52lkrCpFQvzzWVpyW5l\nLCYqtWGfl4+/f2/zoPX9IdxEJXWWk+2PRndS5DxGpQXFc9oALEqZD2CxFjbLCO6DPvEIbkNyrnX/\nULlHTlad5N+SfzitzjFJj6pNC7Ug56FlAPQ9eJIU4U7I0ZosKdpOyImWgx6UktDNkw1JUlTEnyRF\nRfxmBGrfj7bOX92XZSlvu45PodbEXN3ZvSW3vd5Z9k3W638N/I7Qz+6Ly8z2+QkmKdM5AYa8fVf/\ntwPAgQYAmilpfQZAoykBQD0EJ28O5kOH4EBL7rmTNr0sI/nUD9j4KfN7lcAdIffYwco0VuRb5TUA\nLewrAzmofrWjmzoukKxxDWBMyjaLkfMC7m1wtf14beQ+vSxZxaRpVHr728rzj08W/XKPC1f+uUFD\n/zfyD0ASQSEb4mgNrBvnOOSE3M3KIzhOyGljJFoWE0wKjk/q+/D2jW15D+oA742YivTr2NO2X+6x\n4jyuDLsXppN9rhwuPeA7DiUxGuln6sBOX9DXfm8HgAMNgCb4dcsAQEmsJRkl6JzrvjjA7URrsGOH\n4EClr7pyT/NBazbBbk2e8V3zRE/kUs6yluQz5PUHoNke0JZP9LWopLSLkoHYLQ7AmWPgbxUslsIi\n0ZlAXTq/kXuiO6k2OEMYkH+S+CZ50SzGd2MBSaTjALb0A34n5E6q6px/a5h7fAJ5Vuicf5IG8Vey\nY6w/b4i/jjuZUWgd7AUOPXonwuEquuiawGPLP4nj+VteYasExIABsFGotS6fMEUcoGMIbuurq9gn\n99ReP9CUfMx37oMh9l1q4AR6/VCXHtB9ic31AJOymkSi4wFzyUCbvDmRKiAOsCVrZAIl6EDwZu37\nDlFD5+/N7hmCm/5JM28sTrUBKLZrcjuVtowDaOlHgp2QO7RHoeWJ6O9dEn8lO5ajT0P8zbhTfUK2\n19/5DG31M3QFA75XDgfy90Ct13Vgckj+2TgjkDjprAHUNwKo0xT1zRsSB9AemeV9DcQBAEtfVWWW\njw7y1hk+dnncPaokOl5/a12g198n9+g8dJswofakyzTCuWQgFwFxgAhQqwI5jynKdNgqDnCr0Jr+\nWjgnJk6aOn98stAe/50yyNul83dhIP3T3JsJVDOo8/K6NOMAtALBthNyN+/PRkvSbZVefCehMfqs\n78VtlW2mj+f3+g/tGvfDtbp6CjVcp6WUhFoFu4bgeKqdBsB+H2oAoJKGQgwAEBQHMB5ZXxzAHoKD\nzqPWgTXtaZk0OiP3uF5/45y6JtEtrRHR2k9IDcnHh4Agryv36NnQfq/5QmSgMXEAmrJKDKi0YJvF\n8FxmBYK1zr/Jo/C0zlC48g9nTvpncyJdEt3QhkA2wEN8geCWE5LoUWgrDmCy0aCV0tmX2WOIP8Tr\nN6jSPQ/oxbUi/wZc3X9I/3fLOhjd3ib9PgNgb2PLP64BgKrSZ4gBgLYHo4NX08QBzBD8vBwFuDn9\n5mGzh9cu6dclcgPjKyGyT4/XHyr3mBmoTTSD5JPLQMax8H2nvvkARzeRZI2sdJVP+2y5rcsz2HGA\neFmwSLattM5gnd+H1uxfav3//ExXVU2PvDOpk/gGcbQmidxgde2E2IFgqOMA9ii0lnpq4rdjTnZm\nT3VsM5P3MrT+g+zz+ECFpH/2wQoAhxiAZgropuXVhMQBuobgrTgAxtvy5/TbXj+YafOe7+xL93QJ\nfyjQa8Px+rGqV/bJPea1hiNWzyUDlaiIvej2/gEkWTZiAADRHXT5h4E4wF46fxe65J9qg7OqrHa+\n9Xw+Yq8JYRCW0glNuWc09uix/bjg2pF/wzO7AOzk/TsGQJ+4RZg9EpAxAGPiAJ1DcJqpeGaYXafS\nNasl+nKnW+gbXfkyfrrg8/o9QV7z/X1yj/nT8Gn/5v3EMpAdBwj4qsJNHQhO6oqnQ3GAJNXEv5fO\n34WBALBBYlVU9QWC7QlhwbPSGU7phLbc00pA6ND7r3qu/1XCtSJ/pZxHbarZvr4UT2g/aF2TvwYM\nQFUILtAAGEwZBzAt83wlHPryp+uT6Ujx9KGLoOxAr4Ht9VvfO0TuyYqo0Rc2jVU5EvCNAiaUgSyM\njgOUMYChOIA6L6bR+X2oJiw6+r+pqspxfU4jA8FD2WjG4x/K7AnF7C0bRfaalX6Vca3IvxO75vs7\nen+X5NMb/LWX7WIAKInF4qYW6RMWB9Cod9SOAzTlHjfIa3v91f+xer8NV/Kxv3eP16+/77DckxW6\n6F0N25++QBlohjjAFojL0g2TyD0uXPnHgspO67LaA4HgvglhvlEo6HvQEL+vVn+X1x+KKt3zgF5c\nyyvUKf2EGoG+5txuALh86HrlHx9CDUCJ7lIQ4XGA46W/JovxwKCd0z85TMaPL+A74PWPlXuM13/e\nKmxaZtfH2+BsoDiqpZ8gGcij9U8RBzCHiVcxslpMK/e4sGf/JksdAC5RLTeB4EUCcfPeNOiaEOYb\nhd6I2ymdQJDOP8bLH9tVrxPRIeB7ZaC9YuvH2Ff6GcpK6fP07deu9w87SUB2I/g54gB2CQef1z8Z\nfIFeA9vrt1I7zXcNlXvsjlJtmBLJECQDOXGA6lS7ZKAxcQB3QhhWHKCrMFxWTC/3+GDSPwF4QNVc\nZ3XUigPE1P2V3RnB7oSwaiFgj0KhndLpI/5BGfKAvXHNyH+mqn6Bmv9o+ceGzwCY5dCMAcAscQCo\n6/R3wS/5TAB7UhfUXj/N1E79HcPkHrurlP/emFcG6osD7DshrKqKumtaZyiq4K97HO3xqyJH0uPG\nmjhOqhnBhVqQbx/qFQGVQY3T4UvpNGjk9Hvkm8Pkrmlwba9iS/pxJll5RwO2JOTJ6R8s7cAI+ceX\n/++rA+QrQhUnM8UBjN7f9vp7MSbYi57Q1YifDHj94MzgHSH3mHoy/bU4p5OBqte+OID1W+81IcwY\ng4uSGzoNgIbilKq9JroSqB0HSCJjsIcrg3YR/1Ba5+yB3S4c8vyvFlrSz67oquZpv/aVduhb31cC\nAroLwUErZjF1HACocvpd2IHeToQYgPIatAK9A16/+Q7j5J66paBGXym2aWSgBrZ6AlzBZng+wAC8\n281NOq4DxANYL+sey86oo7pfy/7KvglhQ5VB9TbNb9ol9+wTtO0qAX6ZEJGPB16DTuz6FqXUqzu2\n+/3AvwZeoZT63nLZ24BToAA2E7SMvH7k3yjdarCP7r+D5h8s/9jweX6+GIATI5gyDmCjz+s3ko8X\nfdfZN7PXntTl0/q3Dy2vf6Tcs+nS/MNkIJ0aKoyVgew4wM7zAYYKw+1aHK8PPbPZbVQkf1aeR7LW\njQTtdcDQhDBfILgu2zBDssEcmMjzF5EY+EbgY9EN2N8oIq9TSr3Fs91XAT/k2c1HKaWe3ftkSlwr\n8lfOI+TN+hnK+PFk+rRSPAPy/EfLP+CtAtqbBTR5HMA/vO6a1LWz3m+uQZ/X7w3yDss9ts5vN7I3\n5QNWMcEyUHsEACEykBdTxwHWa78BGGMQOsheWdbStNuUVaEbwJfefnvS1/2yHHSy04QwE3fKiqhT\n7uny+u17M0Tvn0wZmBYfDvySUuqtACLyXcDLgbc42/0FdGvb3z/3CV0r8rfh/YH3qe/f91Dtor92\nNYAxcA1AUccrKkOwKdeX5BkDcdl82zxo2gutG5cbQ6CLcUEcrUtDYA7s74LkDfIarX+TV4ZJbbLm\ncoPl0p9C2+X1s9vQfBV3ZffsD0NKukx0uAw0SxzAEP+ydjaAtkEIkS4t+Ii/67PKnIcLX+8Ka8Ji\n7BpJ74SwpmEeS/xXkNyfFJE3We+fLvuPG7wAeLv1/h3AS+wdiMgLgE8GPoo2+SvgR0SkAL7Z2fdO\nuLbk3/rxXenHLsNrYDfktiDLsiSBz+PveF15/QHbNtDzwANNQ2C+R5FCRu01lnnXMXG57Ialnd9w\nsmZ04LhOVwwh/LMwwvfBvQYDXj/Uk4ZiWZLLw0ovNsFZU7/H1I0BPWMU6poxpkrkKq5nMpuZpOa9\nIRwT8Lbfu8i3un59PWO4KQM1pB8bQ3GAERPCbIhN+nZAfYw8lK+rLmt6BnH9+Pf2W+4qwW3Fbmz4\niNn83qH6/r6k3ztKGwORtuPmx7MT6PBfD3yRUmqrW5w38AeVUu8UkecBPywiv6iUesM+B7u25A90\n69LWCKDxoNnE5ZZotpf1GAFZDpB9F+kPef9dmNgYzEL4Bsb7N9fA9fpL8vCVa7Z7BRdqAaVeXNeO\nsdoIEpfef92/wJQNMB0k68lETcLXr/0phi6ajWK2rVaRrTkAVhygYQB2mRA2MNrsNAYu7O2s1+Ia\nDR/xH90cJn773D0FC6ssqTIZId+qIC9fvx9H+t544NXBO4H3sd6/sFxm4yngu0rifxJ4qYhslFLf\nr5R6J4BS6l0i8n1oGenxIX8Jafnbl/Jp36jrJsELztDaYApv30UI6XdhD2MATE/4Lsw1Wq8rcmiQ\nRRnk7YIZBYDOGjnmIWmsJ6WdruPGKACkqhtjvHxD/nWp6nGE70MtAznF4cYEgm2SdwPB7jqfp7mP\nMegwAK3Xhvhv3azf+4g/Peq+f4sc4vrCNEi7kn/CNf2x8s7kBkBk92e1iTcCHyQi74cm/VcAn2pv\noJR6v/qw8m3ADyilvl9EbgGRUuq0fP1xwJfve0LXivxhxAQPYwTch8ysM7Bu/mo7x/Pf2dt3sav3\n34cRxkAfbwbC98GQRpy0UjuHEMuyyh0HrDryzVEAxJUMBE2CN7LOVFklxgDUcwWGA8FTzggOQo9n\n3+qt7BndNkjfR/zpcdvb96Cao+JcepONVm03k55/FUcASqmNiHwe8IPoVM9vVUr9vIh8brn+m3o+\n/nzg+8oRwQJ4rVLqX+17TlfrCgVil5vDK//YD5h5aJbNksSTefsu3Nz/IYQaiD5jUGI2wrfhFm8L\n8PptGBkoFj2D1B4FANW8haxF/tMRvouuQHBfXaDQyqC9mUAzGAN3dODtuWBGbumxX+bpgl2ttnCu\nhZOoMVcQ1xuPuWQopV4PvN5Z5iV9pdRnWa/fCvyeqc/nWpL/IOx0ytLDqrx++wEzxOfR/yfz9l34\nvP8QjCVpXyaR2c9chO87fkeQNxS+UYAvGAwXkzvuCwQH9wdwDYCTCdQyABvPSNVe595HPQFjoBUc\nFnedTfyro359PxBdhH7FM3dqTCf7XDk8WuTfN9nLzf7x6f9QyT/mNUOv98G+ks/Qvvvezwnb6+8J\n8oaiKxicxhvu5bEVmJ0Xfc3iu/oDwI6poH2VQfe5b4Y0/xu3hgO7IejoVmfjSpP+Y4BrRv52lkDg\njeMEgFv6P7TlH5fc9/X250bIpDb7IZ+7OcXIIG8o3GCwPQo4Xc/fstuuC5TGWycQ3J8KahuAnVNB\nd8HQ3Bc7Mysko2cMqhnq7cyuAy4fg+QvIkulmmNYEXlyymnGYxB849g3ve8B6JN/hvL994Vv1m8X\ndvHY7ZFM2TXKNKuRWzd1Ct9cBsAN8u4o93TBloHclNA5DUC7WXx7RnBfKmgDQ6mgpQHwoTc2EArf\n8zA18Vtwa1NdL0T7X+8rik7yF5GPAv4hsBKRnwZepZR6W7n6h4APm//0ZkCI/DMX6XdhCknGV6LC\nIn3TO1blZfemo5twa4ZywYum3APTF9kyMpCbEgq6euTUMlBYs/gJU0G70GMU9FE74JNDXQPgEv/q\nqP9cQuHIPxcViJ1sktcjjD7P/6uBP1qmI/0J9Kyyz1BK/STt0h5XH0PyT0f652zYNfDr7sOFj/TN\nMoBk2ZyaP6UMZHv9MLnX78INBptsoDniAO1m8b7CcBOmgtqw5630oPcbL9LmbHd7f6Z3b2Aq5z6o\nixBevWwcL0R6De51Rh/5J0qpnwdQSn2viPwC8E9F5IuYravKBLC9nAG9M2j271XCUPvJDtJX5wXq\nfIPKCt0WMF+j8jVMLQMtmqmd+wR5Q2EHg4HJ4wBdzeK7G8RMmAral+2zA6QrIWJimaeFlvdf1p+a\nyQAcvP4w9JH/WkTeSyn1awDlCOCjgR8APuBCzm5qjJ39OzdCvP+hcwkg/e1zWVXQS51viG6nFUUp\nmEYGWlge/4RB3j64ncbMnIAp4wB2VdF2s3hfg5jtNKmgITLQLuhyiGb2+Puyf6Y0AgfiD0cf+X8x\nembZr5kFSql3iMgfBj5v7hPzwRQ7Cs70gX7vf0j+uSgj4CLkuCNIf5tt9LJME7+BnBd6FHB0s5YM\ndjUATl7/XHKPtyYRkKRHFNT3xRRxAKPxN71+LCPgaxDj7w2wcypoKMYYi66A7wXB7k0x1yhgsv2J\nPH4BX6XUj3Qsfw74ytnOaG54bvyW/GO2sb3yuQzB2P3uSPr5mQDCItPr4vOC6I4eAVQGcG0Fg8fI\nQCZP3QR6Z/D6K9K3CN8uUwEQL3RvWZgmDuB6/V2N4rX275I+NAPB41NBx2C0sbC337UR0lg4zYmA\nSRiKQ18AACAASURBVEcBdgHDA4ZxzfL8Z4Bv9q+v9IJdsOwysAfpb/KYYq2Jb7NUrCxiUecbovMN\nUUn6VTB4rAGw0jsnTe10Sb8k/Cp4Wf52pr1gvDqqmovX+9BxgDEGwNX67Y5h7Z4C7UbxTYMwPhU0\nFIZE97nm8UUaAqs5kduhbu5YwE6Q6DDD91rDl9Zmv/elf/qCbRc1GrAxAelv8ojNWihyIb21pVgL\n6bogye43ZKCoPN7odFA7vdNqzbjPZJ5e0rcbypf/FVS/Y7w6qpreQD0reEwg2N86srtH8CqGdktI\n2DkVtOu6uF3cJgioF6wrIxLbGUBzocwuillMNgpwvf6D9j+MUeQvIhFwpJS6N9P5TIO+Mg89n+ms\nse4agosYDUxI+tn9mE1eev7riPSWcVsLkrLim/58mQ0E4emgzqSuAtOSsa5zPwZBpL/J9TV3m5gs\nrBaDi4Qk1bnqZj6AHQjuiwPYE7psj79ufKX7B3TJQH2poBr+TCCoDUBXVcq5SK0oSu/bGII4asZW\n9kVH3G2KUcCB6HdDyAzf1wKfCxTomtQnIvIapdTf2vfgod3sZ8FAIBhoB4EvYjQwA+ln2Zb8fEue\nbTm6HaMvN3q7vGCVZcQnNZNFEJ4O6vX6Ny1C60NfY5lO0s895J/o96rIdc46kCwSinhZnUcuDwfj\nAF1ev1/qqUcBNyo5qHsE4MsEGuwPPDHcY7V+Hzd0sa8hcEZpjcKLE44C5vH6H+/Cbh+ilLonIp8G\n/Et0FtCbgb3IP7SbvYtRmT42hmqcQFv+6TICMP1oYGbSP72nmSvLFPl5zHG+YHWrZrMVG50NlG2I\nQ9NBO7x+aD+s3gbxPUHcIdJXrudvjBTA0uoxOzIOUGv90mwWv+kO+PqnvXSngjZfB6aC7oEh4jQj\nDSPVVe8LS7pzs5BCjYBL/Oa153ncZRRwnYK8Q86u6HTG1wAvBR4An6WU+umQz+6CEPJfisgS+G+A\nb1BKrUVkikleod3s50NHzZ/Kp3ONAEw/GrgA0s8yRZ5p0klS+6eL2azLeMBaSG/VMhCgZaC+dFCP\n1w/dD2TVOzgkiDtE+vZfWZGyIvxykt4ucQC7jIOd4XNeQJaXDJjoa7mKjRRUG4BVPJwK6isK15cK\nuiumMCCuIQiWhVzS7zIWA6MAYwDcc+o+3/Le216tVM9AZ/ePAR9U/r0E+DvAS3Z1lIcQQv7fDLwN\n+FngDSLyvsAUmv8LGOhmDyAirwJeBfCiFz2vWh77Tr3vJhxa5tmHPa37QkYDnkbcKmu7m9ustYgi\n98gXWdNGZ+eKpPxKebYly4RF0v6cOi9QabPBdwPrtS7968nw0ZLPphHwHSMBzdZkxvR1QFcHzbeQ\nRFQGwJ4Qpr11/dpk9qxiOLdI38A0jbeXdfUPbjYvb7aZBIijhYfoxhH4rqRXWPLTUNxhclmoB8YA\nAFc3IygMIc7uy4FvV0op4CdF5I6IvDfw4oDPjsYg+Sul/jbwt61Fv1IWfbsQKKWeBp4GeOqpD1YN\n0p+Y7BtwvH23vkdr6LPLjEyn+YZwE5WsqyJspXCASmO2ZJWfGANRtoGzZhZJvFZmLbDlmJg8E7hX\nABFJCmkqpKlwdDvm1rH29hdLRbxULJYKSRfEt1M9B+B2iqziVnNvU/Pd9frz8q9Qa4rtpiIUr6bs\nqWfTEFA6ZDqvyGI3HTfn6PYUSI8a6ZB2eWg7EAx23f66UfxdhDvWIW3SH2oab3cXs0lfNzKXxjUy\nhGuIDi4voNkpB5n323W3DBvSUCnweekzAJ3voxC/dlI8KSJvst4/XXKXQYiz69vmBYGfHY2QgO8X\neBY/JyJvVkr9zB7HfifD3eybUKpN1mPIfoxXUtSeYmvYN5cxoCS3o5t6FHD2oJFBrlYF3K0dr4QN\ni6zg/H5Mxai3ChZLQRsBvez4BJJS+knSiCSNSNOIxVITf3qrYHWrID5ZIKtY/6X6P0c62Fv1dy3r\nvkt6XDXyrjN81hXx59vmpKYWugxASRKtImTuNbIXuMbJnKNVs8ZXZ8gUhgPIecjxsjYAJ+a08pgn\nEjAGAJqkf6MkfkP6vh7Cpu+wTfpVaqWH9H0e90UYgGLb9P57t3UMQMGmWZpiDBbN58w3Z2EXAzAN\nVOgcimeVUk9NdNALQYh5fKr8++fl+5cB/xb4XBH5HqXUV+947MFu9l7MRfZj0NGH1cY+xqAit9II\nCA+qddGdFDmPKUptPmLDioLN2jYTsKJgYZjNpB6mMUkacXw71mSfKBbJlkWyJUpBVrH2+kvPv+VR\n37rZDvLGEcV2Xcs9JfFnhbQmNbVgG4A4gUUt93SFUVvXqBw5NYxT2YKwKk3cM+N4rAGAmvSNx29I\nvvb4a9K3jYFL+jbh6//N9y5CCC2OFqOln3xrRiG+Y/q9f++2rgHwef8GC8f7D9DVbQNQLesxAFcM\nIc5u1zbLgM+ORgj5vxD4MKXUGYCIfCnwL4A/hM762Yn8u7rZD3zq4ok+FB4Jw0awMShb68nZg/oz\nRzeRZA2c14cDVFpQPKcNwAIFtwripYL7RoDecutYe/mnz5W7XwmLRBEnitWtQgd5j7TcE6ULZKX/\nSJZNj99IKelRXfrXknuM12+Iv1nuwG8ACrUhLkkljpb9MpDnOolTqtor9wSUlbYNgF0TyHjsAGlh\nCmH06/k26ZtlhvS7SL71viPdUV+zeQyA7zjdRmiE/GPQNXHS3ffQb+VkAUG3AZgCCjVVZdoQZ/d1\nwOeVmv5LgOeUUs+IyG8EfHY0Qsj/eYA9Bl8Dz1dKPRSR7rF5AHzd7Ps/YD0Nl032QxhrDFwc3dRZ\nNpbXLycgqzXbu/Vlj0nZZjE8l2kDUDLGYi2c29LP7Zgs2+6m8x/dbOv8pYZek/5Diu2mIv46mwUa\nKY2RIRbHgwyJA4A+9jJvB8/dWIQtSQU8vMYA5NuHJPGN0gDU99u9HG6XFsIn7UCYnj9E+I0qpdGC\nfEcDsCuM9ONd5zEIg/JPX4p1gNzjQ6gBuErocnZF5HPL9d+E5sKXAr+ETvV8Zd9n9z2nkCv0ncBP\nicg/K99/IvBaEbnFRaZlgl/zvy7oMQYNcnPSRIWbsGwageiOzshpJF3c1lU6ubfBMOnqVsFmGcF9\nvdUiERbL7X46v6Oht+UenTdvPP+h8sYN9BgAFikqzrp//+WyJUmNLTAXYgB80o5+79fzQ738rmyZ\nJL5BwZK8eNBYPmQAxnr/PumnT+rpzQaqTsIj/xjsOXHKZwCqdZNq/tPB5+yWpG9eK+DPh352X4Rk\n+/wNEflXwB8oF32uUspEtT9typMZhLq6PWRGwyK4IX1bb7N/JpCp7bOvzt8n94BdHsE/qQlGBIIN\ncWzy/uu0g9zjQ1d3MBt9en5fALef8J30Voss4zipJqnZI4HZSj1M5f2HYKTX3/hoz0SwqTR/pdSV\nNCRTIOgXUkq9UUR+BVgBiMiLlFL/adYz6zqXniwQG5O0XiucINVcsOsKQWdT930zgRZLHeA1On90\nO+3W+Y9uNnX+DrnHeP1AJfe4LQ/bk5qgKw4AdZ2ZOF62SMRrAMpGJLvIPT4Y4kgiMynsISdJbQCG\n9HyvAQgl/Gqdc05lI5QEgg3AFNp/fZww7z9I/tlR7vHhylcFvcIISfX8JOBrgd8OvAt4EfCLwIfO\ne2o+bIMJOcRIXHpvzkVb3hgeAeyTCURD54/SRa3zn6xGpUzak7mM12/knnbAt1nf3u1za1YbMqm8\nttD5ALCX3ONDnwFw9fzxXj69M2DNvevGiWwDUKiyaxnTjQD6pJ+uZW7wtxcz1cg5GIDdEOL5/w3g\nvwR+RCn1e8sJXp8+72l1QHmyffbwzHtzyec0DG6am+XpD2W47JMJtMmjSuePy8BupfO72T09KZO2\n3GMHeZvEj2MAoK+6pZkQ1kJgINjOQMonaiTj7w9sr9vRy3cIv3Ef2kbAKlBXHddqhWjiE9BtAHb1\n/n3Sz5DOPyr3fwKvv7E7jwGYBuqRNSQhV2itlHq3iEQiEiml/k8R+frZz8wHo/nbw0d31uBVh038\nHedcFZdz15sZwTtmAi2WRaXzyyqudf5S4vHp/K6G7so9zSCvK/lAd3lj2DcO0GhIvmiWmZgSxvs3\ncoshfZ+Xvxfhe7JiFKeDBqBQG/LtjDGAQO+/sb7PAExM/AZ9QeAD2ggh/7sicgS8AfhOEXkXZf7I\nhcP2/F0NcWIjoDbZtN6/Z1KLufl9Lfi624bY24zLBDI9fLXXb+n8ybKt83do6GFyj10B01/eeGwc\ngC26qJgnDmCuq5lwNgdq+cfR9W0vf1/Ct1+v11XWl+K0jAvVRsBthm7KVfhGPUPev5mQB/0TvqBJ\n9ENG4TLQVQxuVyge74Dvy9Gawl9GZ/fcBr58zpPqhZvf3WUE4OqMBkoyBRpeT0VUEbV3ZKMsI9GX\nCgrhmUCyiqsA76DOb6V12t25+uQeoCqF/LDw1beHsXEAcOYFdMhAc/QNdmEMgFfWsUtSm2XQajfZ\n2MYlewNPgT8AlZ0iRQroJjWuAdDnyCjZS5fh6Jjda0k/Q6TuMwpe799sP8MIzcA3E/iANkJSPW0v\n/x/MeC7DUKou4dtXIdMQ7RSjgX0yfnq8fXNzmqbdrXrpFoIDwQOZQMA4nd+Re3LTqMWRe6AuhWyI\nv1373tfo3JxhfxxgsDDcjmmdY9Ep6+xL+Pkw8RvUVN1vAFoNdWbK/An19Eelf06Anft+PEbo/DVE\n5JTuLhVKKXUy21l1wZC/gW0Elsu2ZjqlERiLAW+/VfN+S+0l7WMAoM4EsgLB0R0tYUkah+v8A3IP\nNBudNztfdZ0hdMUB3AlhEBYH2Cetcwidss4Q4fvknC7vfgT5g2UANjoQ7zMABqEGoEv66cv5bx+r\n2/tvbHcBhnoqKKxn9BFD56+qlDruWndpKCtF9j4gIUYA5jMEgd6+t+WcpYhUBsCXCdRTF2goEByk\n83fIPfo7+HP6m52vTLNzVdXDNxhudF6/DikMVzAf6XfKOkOEP8a7t14rdzS7XiN5WV7DQWUAzs9G\nGYB90BXkHRP8PeDq4GoVwBiC7fmXaY+t1wY+IwDzjgZGePu97ee6dG3CZwN3BYLlZFUTvqPzd8k9\nIUFeI/dA3faw/2y72hxaFyCkMJx4ZKEd0evlhxL+PmTvbme6k509qGssWWgYgEVCnB4NGoAp5Z8h\nXGbwdzqJaftYB3yvFMwD4w1RDRkB3yzDHiMQnPHjSd+0vX2X6Ds9f6gmzDQMgOPpD6aCVts5gWCL\n8N26Pf1yT39OvyHvyuvfNLN9VrHqkYGageBmXCC8MNw+JDPk5bfaS5p14JdydiV732sskj970G0A\nADgjXiQQL3caAYRIP2O9/1GVP/fERcYUHgVcr6tlBXwrI7D0EL7PCNjoMwIwbjSwh7dvCLWzb+vA\nCABGBoLLJuwtnX9A7hnK6beDvOeW/NN1tu0+t9AlA7XiANu1JqWOaxZqBIK9fNvD7/Lu+4h7F53f\n184TywAkS7jlWWe+G/0G4CK9/8axJzYAB7LfD9fr6rkBX2ryGzQCvgyhrhrjboaPL+NnAm/fPICu\nATCVFIHpMoGgDvC6Or+b1jlC7gGH+DfNpuchZztFHMD2PPsMwM5evmkcb+AjfvYne2VdNF8Z8HrZ\ng0EDEMc3JisJPYX3r/dj5KfdjMAg4U9c9VcpLsVQXgSuH/lDW+sfMxIYYwS6MIW3j8mxLk+rK6gJ\n3ZlAZXek0KJw+kA9Ov8IuQdoB3lL4s9y64tYTc93jQOMLgznxAL29vJdot9XynENhkX46rxJNL0G\nIOmQhyzEHSMAIj+pjZnwNQau/h9qBC6a7C8LIvJbgH+Mbtb+NuBTlFLv6dg2Bt4EvFMp9bJy2ZcB\nfwb4jXKzv1aWge7E9SJ/sW7EpH3TiD35ybO+sWzpWe8WWjN6v11WYA/SNzAeVMKmesC6ioS1asUU\neZOcynMZHAFYhrJL57flHnMeSWS3NzQsojuFaZIQnkjgPTncSRV3M4EbW86Lus3hKq4bnlfvPf1v\n9T67O2OZY9qVNLuKqrU9fIvYXcL3Zen4rp39HnQ6rZmFu163t7W263yNnnthDICs9Dm7RsDsr9Gk\n3kFDuqtGpPV+6tHc2kv85poDDdK3Uz0btY56Yi6+dX1E30vyl0jwCtVw0mbEFwM/qpR6tYh8cfn+\nizq2/UvALwBuuv3XKaW+JvSA14/8zU1verf6CD/pMAJmW19TiZLMqwfIXueVdh6OCuT6EEcLbkTW\nw2HVjGnVi/HNIm3szDIAvlRQQzqW3GN/b1vuqXbpMQCmtn0a196/6XFrDECd7VOTvm0IfP1v69f+\nzlj6fZP0O6+VuQabs0Y+fm/gtgvLZSuQXqERXKcmfUuOIV9X7/tGCeKMDOSERkZWRfpHN2vjbRtw\ne/Rm+ioX96wRnJ/0NclfDOk/Ll78jng58JHl638A/Bge8heRFwKfAHwl8AX7HPBakn8w4dvbDRG+\nee8Qo0320KHdO7Mpx8AlsmqZTfruxKLOnQ0YAKivSUd2T/v8FrV2KxtMaeN7ecxJUlS6v+lx+7CA\nu7keERjSN0RvSH/Iy7fX+conu6Oi6joVWz/h++ScMfCNEn1wPPrGMixJxjUSHQai4eXbIzY3TmPH\narZriuK8no3d4eW3Tn1mT7+rU9kjhCdF5E3W+6eVUk+P+PzzlVLPlK9/DXh+x3ZfD/xVwDcP6y+I\nyGeiJaG/0iUbGVw78pdbVqrblIRvtrFnjDrefZ+Uswt016iyXkyoxDO40wED0JHdA/0GTBcOKwvR\nRWtgXenyJ0nd43ZVpX0qr7Qz5OWbdT4v371OjRFRiH6/L0KNgG+7td8gNJCvm5q9Q/j7evldMMR/\nIP02lHKr1HbiWaXUU30biMiPAO/lWfU/NY+plIi0tCYReRnwLqXUm0XkI53Vfwddfl+V/78W+Oy+\n87le5B+1ZR/AT/g26QUQPhj9/mHLu5+K7F0Yr3q0xDO44x4DYJeSXrTjFkPnm0Q6g+TGApJoAxSV\nt54Vint5zBOJVJq/6+Xr1939b6vrMOTlZ+e76ff7IiQhYNfP3fAsm8HLdxFC+n3rgki/a9b9YwSl\n1Md0rRORXxeR91ZKPSMi741unOXiI4BPEpGXorsqnojIdyilPl0p9evWvv4u8AND53PNyD9qe/g+\n7x6GCb9cZggfnIDYHlJOCIzXv7PEM3gAjwEo99mV0x923ou6fLATCLbjAGkRtbx8/Tqs/20n6Vte\n/oURvoEtCY7BjrPIG7+TaZ+5p5ffOrWo2ZNAvx5H+no/jq7fV/LC3IvXwABsFZW0OTNeB/z3wKvL\n///M3UAp9SXAlwCUnv8XKqU+vXz/3pZs9MnAvxs64PUif5F6GGwwRPhmG2+WTlvWmZv0DQzxV3Xi\nd5F4huAzAJ4SDqN368QBTJNzEwe4l8dWYNjv5YM/gFvvP5D05yZ8G/aoyYNR/R+69uMZpdn36r5e\nvvdUnG5k7nJ3XRDpQ2+rygaugRG4ALwa+G4R+dPArwCfAiAivx34FqXUSwc+/9Ui8l+gH/e3AX92\n6IDXj/x9mSp0EL7538jUMXnsTaK3H6h8q7ixmG4mogtN/Av94MxNYk4aaHWdjORjTUgbCy0BPSSJ\nb7TiAFnp+Xd5+dAOdnfKX12kb+fg32oXP5sUtubuIsSz9xGcu8ypdz+1l++DnWhgL6tfB5I+dHv7\nTl0kr4L+mBsApdS7gY/2LP9VoEX8SqkfQ2cEmfefMfaY14/806P6bR/hl8ttwoe2tFMtq8oXCKfr\nBcfLDXfS6S+P6Qsby5K42F6M91oaAPPancm7D0wg2MQBYI2JA3R5+dAj7UAY6Z89gHyNWte59lWA\ndA7YQXJned9nWnA+b4+8+uTHOWaZuqWa5yb96n35MQF9PVxJ6ApBQdWz4lHD9SJ/oiDCh7aXD35p\nxyb9rIg5XceV95rG68lHAEYzT6IbkJ1dnGzhSGBT1sC34wCUgeA0LjrTNM1nvNIOdJP+/QdVjSJl\nvP58rclkva5LVE9tAFy5zF7uvSDt5TXJN6/70FyRuUsLuFVR9yJ9+3VX5lW1w0QXTvSd1BUzAI8q\nrhf5R1H3A9jj5duvu0g/3wr38rhRswbgydV0BqAK8lpyj8pO/R7lnAhI7Ry9S2tCWCGbUgZqSzvV\nsj5pB4JIv/orUZU3mNoALJyZ0NWX7iJ525tvXuOudGHfKHSq0gpdMCNQ/bqf9GGcrh/U3IbrNQp4\n1HC9yF+izuCtz8vX/4dJPysi7uV13Ro90z6uDjuVAaiye1jA+W+islNNeGXhuNmNwAxevw0TCDY9\nZCfR83tIf3s3Q2WF7k5WnoOinC17dHOaOIAnSA5tkoduotevN63l3fdlOXEu3nI8k4qlR2PGGHsy\nfqYm/b4R7hUeBeg8/wvJ9rlwXC/yp9b8fV6+/t8O4kI36WdF7fE3+88KxgDoTJX9DEAjyJudlTNS\n85YXVHlAU8NTv2cumDhA98S1aUhfnW+qmjgqK4jOC93J7OhmTST7GgDb6/d0ZbMRQvaN91aBP999\nqXsbFJwkxeSjAFd+q5b7SB/6ydwdsfm28/XcXiSHUcAl4nqRv0hQS0Q3SNb1cBnib9ajr1sQ2gZA\nYzcD4Avyqk2mb+6H9xsSxSwGwJkcdBEw8lY9f4HJSX+bbRoVMUEX+bR/PWB3A+B4/b4ifgY+sreX\ndxE+wOl60bgnzWtdPkOX0T5eFo2JcPvAzu3vnaAF4bq+b1vzu0J3720PfNVJK1ywEdgCgTN8rx2u\nFfkrtkG18kNIPysinsulRfrnG7ibw/lmOgNg5JAqyFvk+v/D+zW5JWtY6lz8OWWgfVI7hzA4U3li\n0lfZhvxMWCybM+FtA6D74K53iwO4Xr+nmJ9+PeDxOyW8Q0ef50Vc9TowqbPHy2ISKcieq9EbzIXd\nJZ6+pjddWCT6PinfirvumkwOuw64XuSvVG/phVDSzwrhPXmb9M8LeO5hRJ7HcLSm6UPGVsnbcANg\ngrxJfLMR5GWTtwKWre/LBKOAmb3+3oqaMCvpb/KYYi1slorFuiDJ7hNlG+LzDdH5hqgk/Z0CwT6v\nv6PURyjhg77/TEaZfT+eF1j3pLkfFXcSbQSyIqoK6e0rBbke/4WRfh/5d/TcVpQp3b4JYgcjsBeu\nFfmDqoKJfaQPUj5gbdL3P2T67/RsSZ7F5FkZ4Dlas1rYBsC+XGEGoBHk3ZzVxF/mqjfy1G1sJhgF\n+GrBTOT1e7V8tzTF3KSfR2zWmgBXtwqgICFrnGcjEAzhBsDr9beL++nXTcIH18uPgkeedzO7E5q+\nX+8kioeFkBWLvaWgZqB32R/MtV/3EX8g6Xv7b/e1XL0CowClDrLPlYBCDZL+OM+q7jx1dpqQZxFZ\nFpNnTZmnOQIINwCtIK+RfDZ5Rfzka1S+hvUSyZ0Svo3vPnIUMAPxtwgfvF4+cCGkX+TCZu1mYnQY\ngPI6B2UCdXr93a04we/ld2WTGdK/m7fvxTzX92CSFpwfrTnfCKuFHglMJQVV96X5Dc3vZzCht6+c\ndYqOjnsGh1HAheBSyF9E/hbwiUAO/DLwSqXU3aHPKfpJ383Vtx+0u3kY6ZsHr4mmAUjjqLHOZwB6\ng7xW3nrVkJuBQJe7vs8ITEj8obIOdJRSnpH0758q8vMtyaqOy2zyiE1esMoy1HlBfF7oTKDbaXgg\nuNPr33TKOlB7iF2jziGp0Yw6zb14fJKTZzHZcc7tG1vON7K3FGRLPtVvaX4v+/9EEo9L/Oa115u/\ngqOALYdUz6nxw8CXKKU2IvJV6Ep1XS3LKii1baRs7utdnd1btkh/kwnLrOBu1qzhsoptA9A0Dkm0\n8UyV7w/yKqtEQYV8jUqWnlGAJxgMfgPgIX6Dqh6/DP/so2Sd8nUry2Nm0s+zLVmm4B7k5zHH+aKU\nf8rfzIlxBGUC9Xr97f7Ldi2j4QAu3M3E6+Wf3lu27sM8j0mSgjyLyE/WJEnBeWFaZNZSkE4J1VJQ\nEqlOI+CXfP7/9s49VpasOu+/1dVd3ffec849gxnjAcaA5PxhhB1sj0YoVmRiCCZjEoITozxw7OCY\nRHJiHGHZE5AFkhWLOCRYMVbiMZaCBIpDbI/AOHZ4iMQiEohhDAM2ToQSTMwbmzvn3rn3VHVX7/yx\na1fv2rXr2dWvc+qTrs7t6np31bfW/tbaa8XNiH9d0i8h9XVGATDUCVoHOyF/pdR7rY8fBv52o+1Q\n3JyDS/p9vWyTKOH6zZgwSnjiOOTW1HmIrq8MwCzIG4Anzxa5FLraIK+pTZOenMzmOamn8SiggQxk\nT3QLZJLl4LvwEz643bGgQcPzLZB+Rv75q8h9cg2ApIFgLbV5MoGqvH7H8QA6yYx2bMl2Pm6fjZlE\nCWE051qccDsKiU9C4jggigKOT+bEsZaCTkPzXCvuCrUR0Omhyywe4EpBudx+I/k4xjz7ba3PlcTf\nlPR95J56+pVEXoU9nhx2CNgHzf+V6K71tTCz7Zrm6pvgmU36cTTi5llYIP2rUcK1mzGTKGESrwjj\nFuUGwCUaYwAy7yoN8mYv0TxPiOo8yTXqdh/iWgPgBoNL5B63kJ1rAJp6+VBD+lBJ/OrsXBO+Q/zL\nxyOWESxSwreJP3oiYBELUbQkPlc54r95lhCdK6YzIY70vyhyU3PzBmB0OkWdJ0iYntfE/J3Uev32\nDNy2qcPNnsE4ewYB7YREIbdPwnS77lKQr25/TjvvKvNY/68lfvPXbXIfa8cnS36ILUfI/H8+X40C\nDLGnz79aRKtYgHGGeqqZNQR8O6CqZZlS6l3pOq9Dz5F/R8V+XgW8CuCp9z4pLQ88Qk+/WM2EdGnS\ndJICIFxmy+NoRDi1JwYFzAmYRAnxdEUa8TRgPtVBN/1vSRgmaU9aVWhAPg2Wuh4LiyzFJGFBMA7J\n4o+mJ+sT6F7EsznqfIHMxsgsyAd77abdnh6uGVId1H08gyBc3SZ7uafGjr4LNc1kAq25ynhave2m\nNwAAIABJREFU7BC2iFeNziF7cQW0h51CZnlSNhO0ZDpmxIIxCvO7msOPJ+b3tn5zQ45TzwUC41AR\nhIpxuGQcLhlN9bFlFiDTwHuvfQgw5SkWBLIgHC2IEnLPYJSsrsm+PHvu2SwgewZNPMl+BhfR6jU0\nz6D7PNrr2/+fWW+wfXxTRnsrSAlcJprAbUIv/LW3cZCrzurC17zJbOcWezxAiMiT0E7wM9H1+F/u\n68ErIq8Gfgz9ev2qUuoX22xvY2PkX9WyDEBEfgR4CfACpVShX6W1n4eAhwC+/TufoSD/8p2Eq/aB\nNgWehorzYDUCMC/f0QmE0ZI4Srh5Zh6WgNsnIZMoYR4mXCNmHgaokxFhGDNNDcD1K0tmY/2S3RXC\nSWhS7Wz9VxEs72jvejknCK7okhSLSD+4oa4+qdKXYXSankIX4jdoaAAakT6Ue02mWQ4rzbUOwlVU\nuPL+hdvZd6PTKXIeoKYJyeM4BgDGc2ExGWljaRmAYwLiSAgjRRzpqz4+CTi6HnDtWJheS5hdS5he\nSxhPlDYu03FqZMfFe+zcy0zj9pCJ0dfNM2i87LPYnGP6K4Rakrlh/yrhEo5jTepn1k5PtFG4HQVc\nPVvd+3mon8vxVBGGCccnceaEXL+yzByR01A/j9NA6/3a21deA6Clv/S1t0soWL8teDrAmb/GyJcQ\nfK0BgGIrVvNblHxXIH6rtlerBjodsFR5Q75BPAh8QCn1RhF5MP2ci4OKyHPQxH8/Olnm90TkPUqp\nzzTZ3sWusn1ejO5A/z1Kqdt169twXz7jDZr852kygtimQcXpNB1+O17i8UlMFAWptKNHAABPoIfa\nV6cLwmnC0cmc46N59rKZF20aqDTXOr/fZLkgljsEMiZhQjDWfVhVEuvAbThZGQDIP+htiT87aLkB\nCEb6PEzwt5i5U0P6Lqz+AE2MQM5YHF1Fwjky09p/tkumLKMAOU8YRQu4Zf++EMwV44mRdPK/PehR\nwHQ6YjzRhB9MlP57Mia4PmV0OtUZPyczfQ6m/LN9f801LSIkCGEcEwQTgpQwg9FYj+yyqyk6IVEi\nEK9c8HWcEEP8R8dxRvxHqdwzC+B0qon/SrAifuOMuH2RXSTL+SpJYewYAXuE52JdA2DQN/GXlXg/\nHLwUeH76/7ehG7W45P2twEcMZ4rI/wB+APiFhtvnsCvN/y3AFHifiAB8WCn1T+o2EiR9mPMGIBwl\nrHTeJdfDETMr6GbU81PgPFhyHi65mdtzTBwGxFMddAOsl26eyT3mZdONyZechH6XIF4qgpFuuRfI\nRHv/xgAsYp29E040+ZhUz66kb8OuEJpMYbGKA5hRwFqkb6PNKCCc6IJr5O386FRLP2oasCTKqVQh\nC8ZRkk3iMiQ/I2EcaqKPIoHHE8LpiOPrQertLzPPv6vcY3v/QXCUk34Y6XOLl6YvcdEQnYRJL06I\neQaN7Hh0HDMNV8Q/CzTxXw9XZO9zRgqXpxZ6ZGpkSduzh7wBWETZ58Jz2MUApM9D9lxsgvh3gyeL\nyCPW54dS1aIpnmL14P0S8BTPOp8C/qWIfANwB93h65EW2+ewq2yfb+mynZgR9cimnNWDPg0klX/M\niyjcFZo8f8cvPpoThUkxoJsOwY+OV3LPNFxyOiV72fTQetWX1odkuSCRhTYAo0n6koWpBJR6//EE\ndaRTDdcm/tzBK2QgX7B2HbQYBQhXYTJfyUC3bmNTu5olyHlAkgZJMhnoWqI9+blwnvP8R3Bdb+/T\n+UfXp9rrTz1/jq7mvX6on+2b5L3/RM2zEYBtAKYB6fPQjxNiJnmF00Q7IOY5DMlJjytHZJnFngCr\nFAmFNGRI5R8scm1jAKpy6usMgEHfxL8hLNH80QBfU0rdV7VCVRzU/qCUUiJSeJ2UUp9OU+PfixZD\nPw4Uzq5sexf7kO3TCsFoTLJcEI4ke/l8GmwhDpBqsOeBTv/Uy1YabBgtuWnpsMbbOj6ap96+9rS0\nl2X3pfV7Wcb7T9SYOLnNleBEe//JFDU7yrymjKD7In6DEgPQG+nbaBkLyNY7uqpJIpwD56vdAWqa\nZDIQZwsM4c+uJSwmI4K5IdoR41DldP7wSGnCb6rze7CSfvK/gc6UmlsSEORHotoJceMAxgkpxAHK\nnBBYjTynyeo5HGspyRC/cUTMTF99/FXrTBeFuR4+Um9jAFwZyIbPAMBmiL9Jh7UdoyoOKiJfFpF7\nlFJfFJF7gK+U7OPXgF9Lt/l54E/Trxptb+PAyF8Pq+sMgBsHsDVY0EPmLA3PGjkcn0AcJVlO9dFx\nrHX+MVZQbYkd5K3CncWcYDJJe9zeITTefxDClWv5YbD70PfxALsGoG/Sd9FqFJBfR05Is5+S7Bcx\nv2QAjCItA50/YXn+15I0DkBO5zcB3kqdH6q9/hLpJ4cR2XPoSpFNkhGqnJBwmmQjzyzelBK/jj2t\nEg6mQfUotPQSbd0fil69CXq3NQCOl+8+E4fg8Ruo7QV83w38MPDG9O+7fCuJyDcqpb4iIt+M1vuf\n12Z7GwdF/kLe82piAGClwc7SKfYa+SH4486xzDB7FugXbhVUsz2s+nS6OEkDv2pMEqTB32Sqtflr\nV4Hb/Xn7PrgGYNMvTZNRgJEF0jx7FaaT3tLtRkxR0wA1S+AGljFYMEPHAYKJgidSbXyy8vxNgLe1\nzu+BL/CbZPKP1s1dA6DRLBmh2gkZcZSLN61Gn3bCgZvZU+X128jOH1aEDnnP3/x/HQPgyEC5Z8D9\n2zWrZ089/ZZ4I/BOEflR4E+AlwOIyFOBtyqlHkjX+81U858DP26VxfFuX4WDIn9wShOk+fT28FvD\nr8HCiLtCu96PRYtXtAZrhuBhmHAargJrK0+rXf50vHRSP43mbySFa+mKmyB+AzsQDNvxmtJjNZaB\nUgmoKh10GQXweFRIBwUK+fyVOj/kvX77vrt6doX3bxsAKAaCV2n6pjbMKg5Q54SE0yRL6TTEX5fS\naev8Bj6930bCQicBbMkA6Itbk/jL5B7f5wOBUurPgBd4ln8BHdg1n/9ym+2rcFDkLylR255X/SjA\nr8EClbnYdTn9bYxAIfVzdoQYQjbYxkNrjwI2bQDGqxEAtJSBStJBRwDXKaSDjsNlpvNrr7+bzl9A\nEoNDPDmv3161JA5wPDEEnU9GqHVC4lEhl78spdNF0xLPuaAvbMcAZCfZA/FvAUu2JvtsHQdF/mDJ\nPq0MQPtc7LKc/i7wpn6aiV/bRPoyb9wAeEYxrWSgnOdfnw4K5CZyVer8LeFKP+bguWcvHY26z6Eb\nB2g7IaxNSqfP669C7ryN9w+tDAB0mAwG/RH/BfH6d4UDI3/j+Xc3AE1zsaty+rtMnfelfsr0WBd8\n89Un7xOeDJ+NGQCrvlDu+K1koKut0kFluprI1Ujnb9PO0Qn8Jsz9Xr8jR1bFAZo4IeeL6pTOdWDX\nddJB30knAwAUJ4M1DALvu8d/GXBQ5C8i9eWIPfprlwlhbXL6m6Ay9RM2ZwDsuvoOejcATmG5wLNf\ngZVkUIE26aBAFuCt1Pk7ouD9Ayw9pE99HKBVMkJJSqcr99hevy351Or9jny1lgGo+k09qZ5rE/+W\nvHyd7TMUdtsLlHr9nlGALxBsUDchzJfTr7fr7nUZ7z+X+skREoSbGQG4DVVA/722WqU3A+CpKMqI\nUgNgjp2dp/syhxPk1u1G6aAmwNtI52/bxN1BwFiT5GhiP045IvU9h3UTwuw4wNfjVWaPL6VzHbnH\nRaLmq9pP644Amk4GW7dWj2+fg+TTGgdF/lIn+7SUgaomhLXN6W8C2/vPUj8xgdHjVXOUPoxASSct\nTYi3dYmJK3rVtQ2Ah/gzUikxANBgUtjR1WbpoKCDvF10/iakYRd7Q1+PMQDJcl4g/dyma0wIq0rp\n9KFtQ3d35NJZAkrvUaNAsEFT4t+x3LNUcL6oX+8QcVDkD+ReuD4MQFkutpvTD/2UybUnfmVVPy1k\nhLiOAahooZinhyd0obnZUXcDUEL8WYPzlcJRLgM1OExVOmhZSewC1vD6czN+k3h1LSNyBsCgLg5Q\nNyFsFpSndBqs6/XnzzU1YF0MgLVOrQEw29l/2xD/4OH3hgMjf9EP5CptuhRdA8EmDtAlp78pchO/\nmBRIcS0DYBO/6RZmyT7+BjG3YBz21iTe7nUL2LO0mslAJShLBzWfe9P5fXKF4/0DEISF57GQ/dNx\nQphpylKW0ukSv+v11+n92WWlwd8yAwA0mweQ3o/G9YD69PgHg9AJh0X+adl/W3ctGwUUUDEhzASC\n7ThAn3KPC3viV5zcTtM/JwTBEaAbo7c2ABXefq7dHlUdwm61NwAlxJ95/jbWkYEq0kEb5fOvqfVn\n8NS/ceMAXQLBvglh66QXuyiOTIqtPH0GAFpMBIN6A2DWT9dtRfw7IPkhz3+fkM5UbWIAmspAtmtq\n4gDuS9f3KMBM/ApHqexjiHF6BGNN5JK+OLVxgCbEbwd8j65WG4AkRqbH1QYg9frLiD/n+dvoTQay\n0kFh7Xz+Jsj1i7XJjHwcoCwQvFpWDAS7E8KiZFRaPLAvuSd/jvZoZYMGwOAAiP+i48DIP33oN2AA\nijLQZmEHfzOUeMaVo4CmxJ/2DJZZoOWgSgMAipv6BZ0eF7+05Z7lHS/xJ8tVO8sCNiEDVdXt6cvr\nNzN+3d+hJg5QNSHMHwjWz2BdgNegbaA3d0nKvDctDUB2P+oNgL46VvetaVZPE2zYKGyxsNvWcVjk\nr5aFyUr2Cwfkht3rGYAVNqX9m9TPHNoYgJbEb5rFC2RNZNTR1eom8dHNVYN4KOr8JcTv9jP2oi8Z\nCLrp/B2IwzQ4z6Qxm/gsp6RrIFhD3xjfc9e3158/txYGAMolHccAQH4yWCnxD17/VnFY5N8QXs3f\nB08cwE7Dq0PbF9HnocXJHYLROO0Ulf5NX7ywbSZQA+L3boM1AqiSTbwBXj/xAzkDYLxLAxNkzAyA\n7VFC61nBlZjP/d6/q0E3+S4l+JwE5EHWPxnWmBCmURfcBX+A1/ce+CZJ5oh+wwagFF1SOquMwjAj\nuBYXkvwNushAhmq0EVif3JvgzmJOOFoUjIB5+YLpTMcCkhgx3n4So4JIxwfGsU7ZhHxevEmLtLNi\nnHTIQgexK9cygs88fof04+SsVN+3texwJOk1TdLfY5xWxsw3ki+0lnQyarJZwbB64c06TTV+d4az\nbQzs47mE4vsuJbPMky05ZG5U2sSfGPkSEpqRfVOir4O9TWHU0sQAQGlTmOLBamJKXb7rmfSXCqK4\navh6uDgs8pf0R7CyBYAsJc00KLexXiA4j3W01TrESwXLOTDPkWYgY4LlZEWc01nWdzULCGdGIMxk\nIPHJQOAnfLuXgCH96VHRy68g/dw9Tw3A2sRf2LFDIqZ2TBfY25UZAsgTjTsasIyAuNs4weAm6cmA\nZzS6nlffBI1HyjQwAFBM7bQng1VhTwh/FxCRHwTegG7Sfr9S6hHPOjPg99H9z8fAbyilXp9+9wbg\nx4Cvpqu/Vin1X6uOeVjk3xHdZaDNw0gkhWVL/2ggqBsNmMwgKx5gG4KM8K9dLRJ+Sy+/Cn0Tf5Y5\nYuAQ7FooMwTg9/w9RqDVKAAaGwHo06uvfg+qvH4bxsnqNBfAxZ4TvlJC7HQC3BA+he7M9SsV60TA\n9yqlbonIBPiQiPyuUurD6fdvVkq9qekBD4/8W3j9LtqOAnaNVqOBhoag4OVPj/1avkX68fJO63Pf\nqMffJ/G7aGIIfEagbBTgoLUURHOib+PBVx2j6X46ZwLtOeHvAkqpT4MuXlmxjsJMBIJJ+q9zSOzw\nyH9N5KoYHoABMFjHEKjoppaFZpR6+fHyTmNZpyl6If7CTnuUfupQJw25Gjc0GgVAs4BwYZs1yH1T\naB0H8OFiEP6TRcSWah5SSj3U90FEJAA+BnwL8MtKqY9YX/8zEfkHwCPAa5RSX6/a14GRf/o6dfD6\nXTR6kdI0vH1DmSEIR1dWspCZMTyOEdfr6tnLd5EZpZ6JPyf92KSySQNg4DMEZV7tpgLCG0IXr99G\nqziAwYEQvloKcdRI9vmaUuq+qhVE5P3AN3m+ep1SqrbhOoBSKgGeKyKnwMMi8hyl1KeAfw/8HPqx\n+zng3wCvrNrXgZF/v2giAxnvbB+NAOTjA1l2UNloAFoHb7tg4x5/WfbItmAMQQsj0FtAeINYZ2TR\nOA5QevD9IfxNQSn1wh73dUNEPgi8GPiUUurL5jsR+VXgPXX7ODzy78Hrz+3O88AfggzkooksZGD6\nCfRJ+Ab6mD0Tv4XSwO82vH+3DWELI7BOQHgTv9OmUBsHsHEAhK8UxNF+pHqKyN3APCX+K8BfBf5V\n+t09Sqkvpqu+DB1ArsThkf+G4E6/d7EJA+DL9OltvyWGoG8v34UrIfRJ/FsN/LqwCuM1MgKu1t0l\nIIx/lrAP68dn+osnVMpAA7wQkZcBvwTcDfyOiHxcKfV9IvJU4K1KqQeAe4C3pbr/CHinUsp4+L8g\nIs9FP2KfBf5x3TEPi/zTSHhfXr+LKhkowwbiAFHDNnFdpva7aaObRCHDp0/iLxzMoydvyvu3i+LB\nivSrjMAaowAgXyjOQtkzv46B2EQg2ZWBggOjmm1DKfUw8LBn+ReAB9L/PwZ8R8n2P9T2mMMv4qBJ\nNtCu4gBNjYR/W4AFxxP/pKG+kMk+GyT+gvQDmzMALvHb/+9qBFI0loJYOTxNjYF3fzvIFvL2Bjgg\nLJdC1Czge3A4rF/CQt9ev4uyglyHFAcAiBJtqeKlpC0rE07COVfG/ROB9vjH2/P4YbPSj0v8WRtM\n5/suRqBFQBj8hgCKxgA2/260hSsDweEZgYuIg/sFki3MvvWViM6dQ48GYB1vvnyfLuFLdpwoEeKl\ncDzpdxSwCvRaZNQ38RcOauWS2/Vk+vD+fcRv/4Ui6Ztl7mefETBoIQUBZFVDU/jeh3VGB5uCbQBg\nMAL7gOHOp3BfmOyzp0S0ja4GoM9gryH71b5XpH8WB0SJZDXJr4cqaxNoRgEmKLwOjNcP6Qu9YeL3\nSj821jEAVYTvW6/paKDKCKSoCwjn0MAQwP4YA/u47kgA9tMQ6GyfQfbZA2jC7OvhLRC+czuqOjP5\nAsH63LYjA7mED3BzHmReviH/8wS+Hq8aUtxJhLvCIPtejwISpkF3Kcj2+IPRZEX8m4Iv59/1/rui\nhPiVY0hkUkH4vmVVRsCRghqPAgxSSaiJIYD9MAZ2QDhbNowGtopLd5d9GmnhYavoFJZbbctxAB/h\nu9LOWRxwnsCdRBO+/iecL+zPirtCIUrGmaE4niRESTcpKJfTzxgWafmRDadhlnr/XeWfhsTvLssM\nQRtJKKw/t1zzk6aT2hxD0EQmzbzwDRsBk22US6qoMAKwe0OwxcJuW8fBkX/XB7TOyy+8XOlnO+Vu\nW3EAGz7CB036RtKxvfw7CdyIi4QfxSPiOOD8aM75QjhPFLMAzpPVKED3L1atAsK59E7j9cPm8++r\nvP8uqCN+V/qxvHyzTqvRQAcjAJsbDcAq1tU33BTTKiNgziNbPowGNoYLfUdbE35JMM7Xm7WPOIAv\n2FtG9lD08qNkxOOxlHr5j9/RhB9HQTZLMY4CouOY82TJ6VSPAu4kq1HASbhsHRDOgr2MgQ1LPnXo\nEvxtS/z2si0aAehnNADV8YG+DEDdxLNcE6CGo4HBCPSHnd5JEXkN8CbgbqXU1+rWVw2ql65N+CUG\nwO7NCjSOA/gMgBvsrSJ8vb4m+rN4VPDyDenfiKTg5cdRwM2ziSb/dOh6dBwTRyPikznnR3NOQ8mk\nIDMK0COAZmmhdnpndv+akFJPsz0z6aeq3k+VAWhD/E1kHTpKQi3hHQ0ENSMf655XGYJ1DICP8O32\nnbnj5EqO7KckpJZDwLd3iMi9wIuAz627r7UJv+myDnGAroFgn5cfJZIFb31a/s1bk8zLj6IgI/3b\nZ2MmepYXfx5d4eg4zr6PjmOuX1lmUpAZBZiG9lWjgEJ6Zxro9enwhf6tfRgIl/DbBn+7Er/9uSrI\ny5qjgYaoDBCX3QPHEKxrANqQvvt9UyNgzitbPowG1sIu79qbgZ8GGpUyddGa8KHey/cVnvKQyCbj\nAGVpmq60cyMqevlxNOLmWZh9XkTCJEq4GsVcu6nP/4ko5EY05erJItsmPplzfDTXxqQkIOxLC83V\n8TGBXnMP09GSQWVapoWckWgoa1SmfZbJP12IvyHhtzYC9rp9jwZ8GDvxEvwB4iaB4Kak767nzqRf\nLR8X1t+lJKSUsIg21751l9gJ+YvIS4HPK6U+UdW5Jl33VcCrAL75m+/uftA64m8J11sqiwPU9Qm2\ndf+uQdxbZ5Ocp2+I/+pZzCROCKMk8/yvoa/7NiGcwM0zy7s+mnO+gBu6ZTp3hTBNRpxZt+okTAhZ\nEAZXVj0E3PTOxPm7hYJeBfmnr5m/a5BxYUYw2giI2yFsk3CMMFDdWMUD3yigK+m7y4sj54XHifKM\nsPdAEjp0bOwOVTUuAF6LlnxqkXbDeQjgu+77C5lz45sxmPvBfWUAoLwVn28bGyXtI220CQTnG8Wb\nAIKttyvO4oDMhwtTXT7Q+r5eprc7OoEwWnLzLHc23D4JmUQJ8zDJSP+J45DbJyHjqSIME45PYo5O\n5oRhwiyA2RhOQ038swCmwZKTcJnOBVgSjiQlfqeUQ+r1N/Xwy6AWUVEiqoJFbMaMrjN9rvE+Qg+B\ne5Z5ib7htoXlZl82cTvPJVijp8CzngvHOPgkIB/Ms55fNi4YAN969nfFZc2a1YM/bXtAc2yM/Msa\nF4jItwHPAozX/3TgURG5Xyn1pZp95j7XThn31RH3dRTyGQCzreelqaoq2qYyqDsCmAZLVm2djCEQ\ncPKMT6cqGwXcsCLPxycQRwlRFHCLEAiYo7d9An0d82nAeKo4Oo45PokJp0vCMOH6FZ39Mwt0Cugs\n0F7+SbhkGuh/RvdfNWuZ5GfzmnvtaXC+lXK+6TG2YgQ2QfRl69n77Yv4K7z/pjGAdQzAoRC/LFU2\nar5o2PrYSCn1SeAbzWcR+SxwX5NsHygOAcuGf7WjgDoDYMPzklWhaYewJgYANAlPkxGzNOCroQsB\nnALnwZLHC2cRE4cB8VQHfLOtTkaE0yT9t+QoDfhqwlechmi5J1DpP+P1K+3lW81acnKPz+t3ettu\nrZ77BoyAu59eib5qHR/x26RtrtUeLVU4Lk2xSQPQlPhLz+0Cevwi8oPAG4BvBe5XSj1Sst4/B/4R\n+nH8JPAPlVLnIvIk4D8Dz0TX83/5Bevhq1GWEdCrATDL3GM37CXQpjR0yMJrAMJRAhivXy+7K7Tj\nAFYlmCtLzsMlUZikXr+FE1ZxgOki9frnhNOEaaiJ/3Sqif9KoIlfe/0J4UifVziSFekbz9/N63fr\n+dhZN5tAk2wg+jEC9n6AbkTf1OM32BbxlxjmTRgAH8qI32sktkz8orbm+X8K+AHgV0rPReRpwE8A\nz1ZK3RGRdwJ/B/iPwIPAB5RSbxSRB9PPP1N1wJ2Tv1LqmV239Y0C1jYAkCesll6/i6YlIcLsJTMU\ntZJzpoHJ8wdtMWriAMcx8TQoxAHCqc7zn6ae//HRnNNQ6/yzQBP/9VATvyZ8lRoAKco9dV6/ex9h\nc96/fYyKtMYyL74Tmmj0TVAX/O1T3+8J6xiAwr5aEP9FhlLq0wB1CTBozr4iInPgKvCFdPlLgeen\n/38b8N/Zd/JvB1XIBuhkAGBlBHyB35KXp2sHMVf3r6oJVCUDnYQQJaoyDnAjIgsEQz4OEEcB02nC\nUZraWRbgnQYqF+BdtYFcyT1ZkNfn9ZfVsd8GfL+nQZ/B4SYkv25Wz6aJv4EsVxYA7tMAFPZ9mAHe\nJ4uILdU8lCar9Aal1OdF5E3ouVF3gPcqpd6bfv0Uq4fvl4Cn1O3vwMhfo4kBACtP2ZcH3KQpyJpe\nv402cwHWiQOcTtN0UE8cYJrq/Caz53Sqib8swJvX+R25x0rnLM3wmc+LfW0beP+NMn7q5I2Wo4FO\nRqArubch6KYyT9v9+rBlA7CPAV4XomASN5J9vqaUuq9yXxUZkEqp2vlOInIX2sN/FnAD+C8i8gql\n1Nvt9ZRSSkRqH+mDJH/wGwDoOQ5g1qG715/bVU0qKFAbCK6KA2gjUB0HcAO8s6A8wJvX+S25B/La\nvuv1u5OcPGWLt9rMu8oQrGsENjmi2UJgtymapoBCdXrnap39J/6+UZYB2QIvBP6vUuqrACLyW8Bf\nAt4OfFlE7lFKfVFE7gG+UrezgyJ/t7ZPkwkhnecDbAhNM4GA1nGAu0IzE1ilE7VSpHEAoF2AN6fz\nW3JPE68fVkbArlvfJ3xBUKie3FVmCPoKDvd9jT6Zx17e9/EqDPM6ZSBs7/8yEn9P+BzwPBG5ipZ9\nXgAYqendwA8Db0z/1o4kDor8wUPuJfVB1jIA9nL68fpzu21gANaNA5yGOhDsxgFOQ038ZQHeUp3f\nqd9T6fX7etl2kH/Kb2DNdk2Ngc8Q9JwhtBa2Edj1GeWWv00b+ce7/R4Hd2WpCLeQ7SMiLwN+Cbgb\n+B0R+bhS6vtE5KnAW5VSDyilPiIivwE8CiyAPyCdAIsm/XeKyI8CfwK8vO6YB0f+UDLdu0MgGKie\nEGbvv+c6530aADcOQJzPa8niAMkqs6cswOvq/OZcV03ZazJ8bPjKFfct/zQhwCbGwDUEm8gQ6ohd\nZPRsSv8vbFdB/JfJ61dKPQw87Fn+BeAB6/Prgdd71vsz9EigMQ6S/KG7AQCajQIqyjj0hSYeTxMD\n4MYBroc6EOzGAUxmT1WAt6jze/ryZidX4vX7Whi6+n/nm9aD3FFnDOyMIU+G0DpoU/5iV/p+Hfoy\nAIdA/KIYZvjuA1zPyxvk7SsQbB9nw+3tmpaEgPo4gK4HZEYD+TjAebLy+o3UUwjwjixv3xgA+0Vs\n6vUbGOJ39X9Y3/tvko3VpDJok/IHi4bnWXO8VnWLDDZN/GUGuaX+D20koP0n/ouOgyJoJVbmAAAH\nT0lEQVR/aBjk7SMQzGa9fgNfWeh1ZKDSwnCsJnKZzB5/gLdE7qnz+h2o+Vwf2RB/S/2/dYG30htc\nQ5h1hfyaoKo0SB2qjMU2ZZ4ydDDOdQZgIP79wMGRPzQM8nYMBEN+PkDvWr+vgXzPBsAtDGfHAXwB\nXn0OY3xyTwZD9GVevyX5KLdufl/yj88DXjdm0NQ4lI0Oyr7zrdfl+E323weqfo+W+n8Z6mTOfSR+\nUYpJvHkncBc4SPI3qNP4m6xTVxe8D3gJ3731nvaQLroGgk0cAPwB3nCkDUMurdP1+jsgq13v61K1\nrvyzLU+4q3FpMGO8dH0b2/T4OxjkNvLPgP3CgZH/slbi6SsOYJZ1RSPCd74r6w5WNSEM/HGAaUDq\n2dtxAHK1+V25x3u+trxjvP6KQK9yJnnlmpd0kH8KqCi2t00EjP3nWjVSgP0g+SpsWP8vwz56/TCU\ndN47dNL4O8QB2qIx4ZfMKWhiANaLA0gxs8cj9xSCvF3hk3zq0j/L4COeDc4SriWtUXFRrUGA9kZh\nn7AhA7CvxH/RcZDkDx01/oZxgDZYi/A9ssemDEB+NFBP/Gt5/Y7Mo2Al/9Tp/y29/y5e/7qNyQG/\nPOcYhMIcktyOS9JLXezCKHTQ/6tQZQAG4t8dDor8nUZenTT+puuUoZWc06SJvGdZYF6u3uMAZAHe\nrcAi+Fr5x2MICxk/DQK9XaS6qolIrSpSure2bHQAzQwC7M4o9Kj/Q0kG0AEQ/5Dnv0dIlossFx3W\n0PgbrGOjFw+/apln5mvTOEBzA8B2vP6qSV5l8o+r/+dudDUJNSX88mbi5QRfN0O1Em1GB9DcIEB1\n9tGm0UH+gSEIvG8Qty/uPkNEvoquW7ENPBlo1FrygHARrwku5nVdxGuC7V7XM5RSd6+zAxH5PfQ5\n1+FrSqkXr3OsbeOgyH+bEJFH6upzHxou4jXBxbyui3hNcHGv6xDhUSUHDBgwYMBFx0D+AwYMGHAJ\nMZB/OR6qX+XgcBGvCS7mdV3Ea4KLe10Hh0HzHzBgwIBLiMHzHzBgwIBLiIH8BwwYMOASYiD/GojI\na0REiUiTXN+9h4j8axH5YxF5TEQeFpHTXZ9TV4jIi0Xkf4nIZ0TkwV2fTx8QkXtF5IMi8kci8oci\n8updn1NfEJFARP5ARN6z63MZMJB/JUTkXuBFwOd2fS494n3Ac5RS3w78b+Bf7Ph8OkFEAuCXgb8G\nPBv4uyLy7N2eVS9YAK9RSj0beB7w4xfkugBeDXx61ycxQGMg/2q8Gfhpdte7u3copd6rVFbP4MPA\n03d5PmvgfuAzSqn/o5SKgV8HXrrjc1obSqkvKqUeTf9/E02WT9vtWa0PEXk68P3AW3d9LgM0BvIv\ngYi8FPi8UuoTuz6XDeKVwO/u+iQ64mnA/7M+/ykXgCRtiMgzge8APrLbM+kFv4h2pLZYWXBAFQ6u\nsFufEJH3A9/k+ep1wGvRks/Boeq6lFLvStd5HVpieMc2z21AM4jIEfCbwE8qpc52fT7rQEReAnxF\nKfUxEXn+rs9ngMalJn+l1At9y0Xk24BnAZ8QEdDSyKMicr9S6ktbPMVOKLsuAxH5EeAlwAvU4U70\n+Dxwr/X56emyg4eITNDE/w6l1G/t+nx6wHcDf0NEHgBmwImIvF0p9Yodn9elxjDJqwFE5LPAfUqp\ng6+yKCIvBv4t8D1Kqa/u+ny6QkTG6ID1C9Ck/1Hg7yml/nCnJ7YmRHsbbwP+XCn1k7s+n76Rev4/\npZR6ya7P5bJj0PwvH94CHAPvE5GPi8h/2PUJdUEatP6nwH9DB0XfeejEn+K7gR8Cvjf9fT6eeswD\nBvSKwfMfMGDAgEuIwfMfMGDAgEuIgfwHDBgw4BJiIP8BAwYMuIQYyH/AgAEDLiEG8h8wYMCAS4iB\n/AfsDUTk1gb3/Q1ptcxbIvKWTR1nwIBDwaWe4TvgUuEc+FngOem/AQMuNQbPf8DeQUSOROQDIvKo\niHwyLbJnvvvZtIb/h0TkP4nIT6XLfyKtgf+YiPy6u0+l1BNKqQ+hjcCAAZceg+c/YB9xDrxMKXWW\nNtH5sIi8G7gP+FvAXwQmwKPAx9JtHgSepZSKDrlBzYAB28Lg+Q/YRwjw8yLyGPB+dKnmp6BLH7xL\nKXWe1rr/bWubx4B3iMgr0NVKBwwYUIGB/AfsI/4+cDfwXUqp5wJfRleDrML3ozt7fSfw0bTw24AB\nA0owkP+AfcR1dP33uYj8FeAZ6fL/Cfx1EZml9e5fAiAiI+BepdQHgZ9Jtz/awXkPGHAwGLyjAfuI\ndwC/LSKfBB4B/hhAKfXRVPt/DD0a+CTwOBAAbxeR62jJ6N8ppW64O01Lc58AoYj8TeBFSqk/2sL1\nDBiwdxiqeg44KIjIkVLqlohcBX4feJXpeTtgwIDmGDz/AYeGh0Tk2egYwNsG4h8woBsGz3/AgAED\nLiGGgO+AAQMGXEIM5D9gwIABlxAD+Q8YMGDAJcRA/gMGDBhwCTGQ/4ABAwZcQvx/iwq0yCPFTuwA\nAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu8LdtV1/kdVet19nnkAglIci8kYPjYSIM2IdCidhBR\nvMSklW4ID5vwEAPGpgU6EO02dGv6E9RugwaMVwghRoMIESKGJoCG2AqSgNJI+DSPGMhNDBDJzXns\ns9ejavQfs2bVrFlzVs1aj3P22Xv9Pp/92WtV1arHWlW/McZvjDmmqCpHHHHEEUdcPmT3+wSOOOKI\nI464PzgagCOOOOKIS4qjATjiiCOOuKQ4GoAjjjjiiEuKowE44ogjjrikOBqAI4444ohLiqMBuMQQ\nkVeLyP96v8/jMkNEvkRE3rLH/b1QRP6ffe3viIuNowG4wBCRd4vIXRG5LSIfFJF/LiKP2PWq+iJV\n/av36dzuO1FV56Ai8re85c+vlr/20Oegqv9QVf+Yc2wVkd996OMecQQcDcBlwJ9U1WvARwO/Cfyd\n+3w+yRCR/B4c5teALxCRibPsy4BfvgfHPuKI+4qjAbgkUNUz4PuBT7TLROS1IvLXqtdPFpEfFpEn\nROR3RORfiUhWrXu3iLxURN5ZRRLfLSILZz/PFZF/X33234jIJzvrHhGRN4rIb4vIfxaRV4nIfwG8\nGvivq+jkCed8/q6IvFlE7gCfJSJvFZGvcvbXihwqj/lrReRXROSWiPxVEfn46jxuisj3icis56t5\nP/ALwB+v9vfhwB8A3uRuJCL/RETeLyIfEpG3icjvddZ9hIj8s+p4bxeRvxY4xxdV5/iEiHy7iIh/\nPSLytuojP199L18YipTcKKE69puqY/8M8PHetr9HRH6s+k3/PxH5gp7v4ohLhqMBuCQQkRPgC4Gf\njmzyDcDjwFOAjwL+EuD2CfkSDEl+PPAJwP9S7ff3A68B/hzwEcDfA94kIvPKg/9h4NeBpwNPA75X\nVX8JeBHwU6p6TVUfco7zxcDLgetAqkT0x4FPBT4DeAnwGPClwCPAJwFfNPD51wH/Q/X6BcAPAUtv\nmx8Bngl8JPBzwD901n07cAf4XZjo4csCx3gu8GnAJwNfUJ1zC6r6h6uXn1J9L/944Lztsc8wEd5X\nVH8AiMhV4MeAf1Sd9wuA7xCRTwzs54hLiKMBuPj4wcrD/hDwOcDfiGy3xpDIx6rqWlX/lbYbRb1K\nVd+jqr+DIWhLql8N/D1V/beqWqjq92DI8zOAZwNPBf5nVb2jqmeqOkTqP6Sq/1pVyypqScFfV9Wb\nqvqLwH8A3qKq71LVD2GI+/cPfP6fAs8RkSdhDMHr/A1U9TWqektVl8C3AJ8iIk+qjNznAy9T1VNV\nfSfwPYFjvEJVn1DV3wD+JfD7Eq8tCufYf6X6fv+Dd+znAu9W1e9W1Y2q/jvgB4D/ftdjH3ExcDQA\nFx//beVhL4AXAz8pIr8rsN3fAH4VeIuIvEtEvtlb/x7n9a9jiB3gY4FvqKSNJypj80i1/hHg11V1\nM+J83zO8SQe/6by+G3h/re/DqnoX+OeYqOYjVPVfu+tFJBeRV4jIr4nITeDd1aonYyKmiXfeoWt4\nv/P6dOicEhE69q87rz8W+HTvt/kSTKRyxBFHA3BZUHnnbwQK4A8G1t9S1W9Q1Y8Dngd8vYh8trPJ\nI87rjwHeV71+D/ByVX3I+TtR1TdU6z7GS7DWh4ydqvf+DnDivD8Ueb0OI4O9PrDui4HnA38UeBJG\nzgIQ4LeBDfCws737Xe2K1vV7xtse2/9tLN4D/KT321xT1a/Z4/kd8QDjaAAuCcTg+cCHAb8UWP9c\nEfndVXLyQxhDUTqb/HkRebhKkv5lwOrTfx94kYh8enWMqyLyeSJyHfgZ4D8Br6iWL0TkM6vP/Sbw\n8ECCFuDfA39aRE6qxOdXbvcNDOInMRJZqErqOkbW+s8YMv4/7ApVLYA3At9SnePvocknbIPfBD7O\nef/zwO8Vkd9XJd6/pefYn0g7//DDwCeIyJ8RkWn192lVEv6II44G4BLgn4nIbeAmRrv/skor9/FM\n4MeB28BPAd+hqv/SWf+PgLcA78KUTv41AFV9B/BngVcBH8TISC+s1hXAnwR+N/AbmCTzF1b7+xfA\nLwLvF5EP9Jz/3wJWGGL8HtrJ171BDX6iynH4eB1GWnkv8E66ifQXYyKD9wP/AHgD3SRyKr4F+J5K\nsvkCVf1l4H/H/Da/Qjcx/mKMnPR+4LXAdzvXdAv4Y5jk7/uqbb4VmG95bkdcMMhxQpgjhiAi7wa+\nSlV//H6fy4MAEflW4Hepaqga6Igjzg2OEcARR+yIqtb+kysJ7NkYmeqf3u/zOuKIIYSSc0ccccQ4\nXMfIPk/FSFX/J2YswRFHnGscJaAjjjjiiEuKowR0xBFHHHFJcSEloMWTbui1j3oKkikZINJYOhHI\nxBRwm24sZl0mznoUqbfRehu7LBPFvNoXxkRh/ccV6VsfXyf1f/GWuPt0loX2pWV3WWy9G3lmOUiG\nooCiWlI6rwsVVKFQoVQoEYoSCjXfnH1dAmUhlKVQFIKqUBYCqmRlczytrkfdS6iWSabu2/r3d7/W\nbGAb976D5t6x953dtu++s/t17zto7j3zm9ilzrW1IvrmdelcbGsL503ZWt7d3j0v97rsukyaLd17\npv2q+p6d82/dS+49Io1/au+N5hq1Xq7uVvUFaX3N6lxn6VybAr/8/777A6r6FHbAfykfobdZJ237\nbm79qKp+7i7H2ycupAG49lFP4fO/66+yyGGRwyyDRXWli1xZ5DD1Yp8r1bbz3Nwp87xkkinz3P6Z\nG3OeKdOseX+vMcniDTJzmUbXZT2NNfNqnFYuU3KZ1PtxP2OXicsYxSrpnJvtqwHBG+9z8xN0MqfQ\nNevyjFV5l0I3rMsz7qyVdSncXOfcXGXcWecsC+GDK7i1hrNCuLmCswJunuac3pmyWmbcujljs8m4\nfXNGviy4cqd5QDfVj7+emesr5ub/bF7U29jXk0nZej+v/s/mZXD9bF7U9x00956978Dce1ecbez9\nZe83d5m938yykkmWk8u0/m1ymVB4A61Lba6jUOe6y2b5smgegHXZEPDSfe1ssyyk9WzMq3NynwV7\nbmDuHf++sq+bc3fuKfdeKjaQVw9sPqsNdqHr+toKXdfX7b4utaiveVMW9TWsS6mvbVlkLAvz+g99\n9Je7I6e3wm3WfEv+7KRtX1j8xJN3Pd4+cSENgGTaIf9FdfOGyB/gbvVsnBVSPZgZbZ/Ifqj03rdx\nvwzDtvAf0mm2aBmSmvA325a1uwebNP+tMcgnkM9q8i90U5P/pixYlzk3K9LflMKyEM4KWJfmtzrb\nGPI/K2C1NMSyXO7WRXqI/Ps+d6/I3/3d+pBJXpNmnk9rcpxkjUGY5w3ZTzOtDcI8K2rSnNvzPTTx\nB15LPku61u7FgxnPWL+pUHJe1W8ReQ2mh9NvqeonVct+H6Z77gIz8vtrVfVnIp/PgXcA71XV5w4d\n70IagIwu+bsPYAx3W8+34BqBxgPyDQP1Q2q2O8yNtYth6fP+oU3+EyYmXh7r3Y+F5+GVZUGhG1bl\nXUot2JQFt9c5y4r076wzlkVmPP11RfobWFVfiyX/1bL5/lc7GoIYQt7/vSZ/S4Z5sMtGHLsYBPv+\nYMTvR4aTmeMozBBVcjHnbPdZ6Lo+lvu61MIcr7ouc84Z61IqI1bu7VmVDOaLREn4zuAWr8UMqnQb\nEv514H9T1R8RkUer98+JfP7rMCP9b6SczoU0ACLdB7CP+H00hsAYgWXhE3DXCMTgGodDYrR3BDWR\ntMh/ddqQ8z2AilSe/7oO8QtdmzC9FG6ujPe/LDI+tBLuFtbjF1Zl4/0DbDbNj+y+djEk/2wr/bi4\nl+S/ze/uYoxBuCfE7zserhHARAPbRQJgogE/EjhfUNW3icjT/cU0hP4kmj5cLYjIw8DnYUb8f33K\n8S6kAchle/K3aBsBiElC87xs6aZzj/Bd78nFvTIMMe8/Sv6blfmbnwQ/t1dU0k+h61r3L3Rd6/5W\nq7XSz92i0f3PKk6w0o/r7R/K87fo0/3vBfn78s8QIfp5AutFh9BnEGAPxO/KPBHi180Smcy7xiCf\nQLFCqqjR7r/29oFCN63XbqRg8mcmL3Cvnr8Aniwi73DeP6aqjw185n8CflRE/iaGeP5AZLtXYubD\nuJ56MhfSAGSyG/lb3C3M35Uc+iUhA98YQNcgWNwLw7AN+evyFlCZvUMagXzGhk2S7n9zlXd0f+v9\n+9hV/4dh79/F/ST/IWkvFakGwb4/JPG7r2sjkM+azzhGwD1WMqq8wD6NgAhMJslVgR9Q1WeNPMTX\nAH9RVX+gmtHtuzCdaZ1zEJs3+FkReU7qji+kARDiyd5tMCwJmYfY1RTt+lSDYBEzDPM9ObWD5L86\nBUzMKZPZweSgbXV/Czfxu1rmbDZZS//3sZlmTNbhkN+Xf8Lb9Ov+Q+Qfqi4z78eRf9sD303+iSFm\nEPZG/BHS9z3+VvmpawTqE9o+L9Akhx8IfBlG2wf4J8B3Brb5TOB5VY5gAdwQkder6pf27fhiGgDZ\nH/lbDEtCBvbBtsbANxRjDUIKQkQQ8g6TyN/1tJa3YX5t/0bAkX7G6v5u4ncsNt5NUQSsal/lT5/u\nD/ee/CUyij/FMPievU/6rmxk121F/AnefrQSCEyRwGbZHnWyQ17ATw7vAyLCbJFIOB/a6hDvA/4b\n4K3AH8F0hW1BVV8KvLQ6n+cA3zhE/nBBDcCh0CcJ+fANgVnW3bYvf9DarkrCbcqidyxADEnkf3Yb\nVg0J1MPd9mwEXO9/rO7vJn597T8VNgHsIkTqIemnT/e3OBT5u4TbSag6sPKIiwmTup7ewif9PqOw\nD+JPJv3NqlMB1MkL2PUj8wItnMNKUBF5A6bC58ki8jjwMky79W+rJlY6w0zDiog8FfhOVX102+Md\nDcAWcKOBZZFXD3VDEkYOkvq1xRhjANtHB773P4r8T9vT8O7bCOhkXg/2WpV3k3X/Plj5Z7mFQQhW\n8bQGhLWlH7s+Jv3cU/L3idPCHUjlIGQYfGLsMwqjiH+st+/LO74RwMqS/cnh0DVBPDm8D2QZzOf7\n6Qygql8UWfWpgW3fB3TIX1XfiokWBnEhDcC9MOzhMQOQYgggLhG1tvHqr0Pwb/ZdyV/vnCLTKUxy\nmJmHUDdL83DtagAC0k+q7h/y/mMwBqH/Ae+TfyAu/dwv8u+QbrHpkuYQAoah1tcdxIzCGOLfmvRj\nqEh+27zAEWFcTAMg5kG8e+A8j7t/dwSxnyR2DYF9bzEUFeyCZM3fIX9Wa3S17nT6aSKB7SuDQtKP\n1f2t9DNG97fJ310RagFhXre9/nNH/vsarOcZhpBR6AwQHCL+bUnfSpCzaRMFeBVArbyANQI7DBq7\nzLiQ34BIU3YHhzEE68obXXQcjHCSuE36/VGBWddmvHUpg5VA7d49ieR/eqdF/lYCCrW728kIRLz/\ndZmzLDJurrKW7h+SftxBXy76qn98uPr/LODlg/H+Xemnrzoohn2Sf53s9chfe9pzRAUJW1Y5BLdV\nh7+8T+ZJIf4Y6ceWTcKe/j6Tw7tABGbzc5hQSMCFNAAZ9sFrbo99GoF12Xin8U6ecVnIImYIzLph\niSiGIPkXqyTy15tn9dnX3+BsCpNV44EVI+Ugp+bf6P5LlsUZt9d9ur/5aKjmP5T8DdX/x2QgV/7x\nvf+Q9GPXpXr/Q+Tvj6gdJH/X63bJvycC6MseBY1DzDBY79q+ttuyZ9IPGYHZtLt8i7xAX3L4suNC\nGgARS5x1E2hgP0bAJX8zGrVtBNZlU4I6JAtZJBmCrHvyrnfjdocMkv/yNIn8y1srZJohizXMpuh6\njTiJ4W2Swv3ST6TPjzPa18L3/n35Z9sRwC7Rw27Szz0l/1gSeAAaJXtD6DLx5oy328eIP4X0Uwh/\nE3hArRGwkhB0KoBaRiCQF9h60FgiRGRvSeB7jYtpAIBJpkyygk1pPfHdjIAdQ9TRpTdwtpGqDLAv\nGoA+WQj6DYFZnwUjAr9t8y7kr8sNumzO1l6Ve3uPMgID0k+f7g9h79/FGPnHhSV2973v/Z8L8ne1\ndp/8+5KmruceQqRSCCIG4hCkHyL8Vg7AW+8aAYu+5HBCXuCy42IaAFGPRG00sJ0RaEs+YVmCOhqA\nVFloU0qLMCyCJaSlDA5dNySyG/mXT7R15agRyGdJlUFD3n+f7u8mfvuMgCv/9CWFQ/X/vsY/m5et\nZeea/MdWAfnoMxIxAxGq84+Rfgrhh7bzl03ysBR0TvICIjCZHiOAc4MMuDEraLd73c4I+JLPqhUJ\ntLddrQxRgFQJYq33EZKFmvMyGBsRQFv6mWVXdib/8vYamefoWYHOS/SsQGZr8xBO10156Op0MCkc\nqvm/s1ZubzJurnLurLOo7m8RI/5tq3+KeR4d9GXJ32Kb5C/skfwdzT1I/iHiHIs+I+BKLu579/Uu\nXr4DXXeXydTJAVgjcIC8wGXGfTUAIvK5wLcBOWZE2ysi230a8FPAC1T1+4f3S93zOzwRRJoRCJG/\nS/yrZc6KAFHU9+JQkhiGZCGwjefay9ybd5/kr2cb1BPf7Tc2qjIoUfqJ6f4p3v8uvf9n8yJa4bOL\n9BMifztye+/kP2QALGEOwZVdQuhL4O6R8P3tFM8IWOySF/AGjV123DcDUM1c8+3A5wCPA28XkTep\n6jsD230r8JbkfeMOnOo3AhA2BH3kH2xBEPIWE2UhdzRxTBYy59Q2BJZM9kn+yzvmAHO6UtAYIzBG\n+nHlNWhHWfWyEd7/WGPgev/nhvzdhGuM/GOSyrZIMRgHJPzWPiuPv6Xt7yMv0NpuP0bAjAQ+loGO\nxbOBX1XVdwGIyPcCzwfe6W33F4AfAD4tdcdZpwoobATMRBftaKAlRfSQf5SE5kVrfECKLGTQXza6\nLLJWJdChyH911xmL4BiBTmXQpvLCQuWhCd7/zVXOB1dt3T8k/fRp/5De/nk9y2v5x/X+H2jyH4oA\nQoQ5BLv9JPK97kL4kW2D+3SMQH3Puev3mBe4zLifBuBpwHuc948Dn+5uICJPA/4U8FkMGAAR+Wqq\nJkkPP/LhnfVtgwDulHCWrP2RvSHZx8VqmTGbl7UxmM0LVstGY7aGwFYLVWfKLrLQssiqyTkCZW2h\nplqt93Ey2Kz6k1i67skHeO0iUrx/i9D3epGwbd/+oTr/JAxJO30YMgS7nE/oOLFz2OfxDwQzEOyY\nBD4EXgl8k6qWIgMEZWbVeQzgU/6rp7cYdp6pM7l1tzrIRgFXWvdaJWwEvNLQCFK/SyS0RwnXmrZX\nNupGC26nUV8WgpJlbiqBNmVBLkXTqVELNJsiVdWGFHNTymeTd6s1Mp2iE7O9LNbIWYYuQRYTZF0y\nmW0o1pBPzfeTT0uzbpohi7z+z2za/gvMGSCqjsc7oZQp8/yskrCUZWE85iu5VOW1apLjkyYKWORd\n42ANrIv5vNjLJDAxhMZ6GDTdYH25bl2XHhe1z+EbgXbr5WlHk66P6BuBbcjcRyqp+sdaVUY/JMN4\n5C7TaTcKCCZwA/vrO8/Q9YeWua0t7LgG9zu+h9Oenmfcz2/hvcAjzvuHq2UungV8b0X+TwYeFZGN\nqv5g6kHcSa3neeP1Nw9tkxOwhNNIM10jgENCfpMwaMoGY3ANwZiy0UnWnnBmkq3JNG/qmjVnkttE\n2Mz8TSrpwEoB6+r/bIosCqQa3CBnGbKYkK+K5ngzRea5MQLzCbKYVISfO83iAg9edfxcppRSkMuG\nQjZMsryWRua5sClLFnnuRF1aS0GzrPmeQoZgMil78wAhQwGQLwtWJJCfWxaaIO02fZ4qg+CU627K\noh142nPx+tCoSNwIuHCjOpc8x3rKfYYktG4yA+4czghAbzQg0wHit86OW9GUB17H1u8CMQ7Tg4j7\naQDeDjxTRJ6BIf4XAF/sbqCqz7CvReS1wA+PIX8XfhTQTOkIseogQ+RhIwDUck8q+btYlePKRue5\nVESTMT9gFGClpyTvP4aqyiI1CjDXWX3nkSggROqzeVlXAsVI32K6KoLjAA4FGwW4A/fcXvs+WnKe\n15gtWgRsydhHSpQQ28YvCXXfn2Akv9uno4wAeDkBe+yUaCBojPL+9SHv372Wo/df4759E6q6EZEX\nAz+KKQN9jar+ooi8qFr/6kMc10YBQ0YAmtG/izxuBGKSTypS8wPzImNSeZbLXJgWGZNsXZ92oZMm\nCoB2FAAwWzdRAESjAFZFmvdv4RKEa3AgOQoAWlIQxKOAIaI/JLr5itCkQE0U4EtBLsmHp1yspCBX\n9sln/UYghj4jEKv795e7ROkO+rtGQ94xwt5VEnLusdr7d69pG+/fvaZqLMB5g4i8BrDz+36Ss/wv\nAH8eKIB/rqoviXw+B94BvFdVnzt0vPtqClX1zcCbvWVB4lfVF47Yc9JWKUYA2t6pbwR2IX+LlPwA\nK8HYyaKqCNJaXsg0NxNe1FGAIf46CrAykI0CqsqKWBQw6P1bhIikrrc261KiAJCWFAQmAT+royDz\nf+bJb1YGcvMAQ/JQKkKjvBeB0twYlqX0SkFNW+J24r6TD9i0jcEopBI9dMm+gutBK8Dcfv52+/OH\nkITGeP+ud1+dv0zmUelHRYJGeBuIQD7ZbvKmAF4LvAp4XbN/+SxMheSnqOpSRD6y5/NfB/wScCPl\nYJciFrJ5ACsDubkAiyEj4CYqXSOwC/H7GMoPLAqppSAbBUAjBdkowJDIZPsooEKv9j8kM1QyUEoU\nAFmvFAT3JgpwDce2o4Ch3bPJl4J80mk6UyYkhf32z7bssa/nzxDZQ5TwffK00Ykub8HimikBPlRe\nwEeKZJUi/Tjk3yfJ3S+o6ttE5One4q8BXqFqunSp6m+FPisiDwOfB7wc+PqU410KAxCCLwVZTFoj\niMNGANKSg9silB94aGYiAisF2SgAsjohbKMAwEhBbhQAVQuHcBQAk7YxWHi3RgrpRzAUBUC/FARx\n8nfzAD7GGApb0juEFBmoHrvhRAHLyli78zm73r+NCCwp9VYGWbjkHzMCIb3b328P6buSCfkEliDz\n640x2jIvEDQCEM0hBLe1SJV+PPLfawQwS44Aniwi73DeP1ZVMPbhE4A/JCIvx8wJ/I2q+vbAdq8E\nXgJcTz2ZS2cA3GRwvcyRgpr+O3EjYCWKQ8PND5xVA5H8KABoJYQLNT9pnRC2UQCYByUSBeh6ZSSf\nM0OmHflnS9gOjH1RANArBUETabkE7Ms920QGdvt5j8ff/A7pMpCNAuy9Zkemu1KQO1OVhZsnSK4M\ncrEt4UPYm3a0cslnRgIqnLzElnmBYHLYbhsbkezLP6ne//lK+n5AVZ818jMT4MOBz8CMh/o+Efk4\nVa1vBRGxeYOfFZHnjNnxpYVfFurmAzZlm5jaaJLCoakK94mmLYIhHz8KgLJOCNsoAGgSwjYKACMF\nuVEAwKboRAGQIP/0yQ7QasML/VEA0CsF+d/zzKnCsthmPMBmk3XmAnBRn0Nkt42xCkcBqVJQLpNo\nUrh5k1gZBP2E76+PkD5QE7/1mDPJySfzuhW45DMjBx0iL0BC8rdz/rN2zX9E97fe/wM0IczjwBsr\nwv8ZESkxZfG/7WzzmcDzRORRYAHcEJHXq+qX9u34QhuAkNaf9rkmH+CPFm5w74wAGD3cjQKo6tlv\nzBguC81npp97PvGigHVN6m4UAPQnfy36ukh66/qiADMYr18KgnAUAGEZaCgacEdsj13fHS/ShetM\n9ElBjeQzkBT2BoTJZB4fPdJH+JBM+igtqaTQtalmmszryES4fpi8gI++0s+enEZM+rEj1PcCUSbT\nvSWBQ/hBTDeEfykinwDMgA+4G6jqS4GXAlQRwDcOkT9ccAPgojUgrDUmoBsF2NcGaaOFD2kELOE8\nsWx8vw+bdRPCNgoAryx0ZBQApA/8SoCooiLRKMCMpu2XgmJRAHSbww1VAvWRu9vWw8dZogzUIn8v\nCvClIH96wtSkcMggtDCC9MEjfnzi31STqE+hPKOUgmm2QGYnh80L2G1DryddDz8o/fSQ/3mMAETk\nDcBzMLmCx4GXAa8BXiMi/wFYAV+mqioiT8V0UX502+NdGgOQij4jMDRa+BBGwPYhMonguBRUl4Vy\nBtnCKwudNPXktla/igIEzOCwKgqwSYeo9z/kffmzSTnvY1EAEJWC7HfgV1/FegjtUiEUSwTXCeiA\nTQnJQPV4jUAUEJOC/HyALwvFksItxKQdCJZ5hrx9+96So31dakEhG2bZFbOPEmMEbF5gyfi8QM+g\nsWDy137Ovy4/8duj+7vkv68qIMlgMtvPw6+qXxRZ1fHmVfV9QIf8VfWtwFtTjndpDUAsCuhsN3K0\n8L6MgNsN0xLaWV4w28QTwrGyUBsFAE1Z6MzpLFm1ipCFN1ozNPBrDJxZpfqigIYQu1IQUBm8+KAd\nV8cfygPky6I1Kbz7uVAiuDUWw1sOcRkoFAWkSkGuEbCwHnhvH/sE0oewt2/fB4nfMUSr8m7VhRYo\njeGahJLDXkBSwzUEqZU//v3ne/84Nf8Duv8RbVxaA+AjJgXZ9wbx0cIQTlhug9i8A2fVwLN4QtjA\nLwuNtogIRAGcFWHvf2gA2AiYlshNFABFVAqCJh/Q15LjEAhJRSkykJ3TAXCqy4aloL58QKuZXJ8R\nGCB9s99xxL8pq8GH+Zn5vbJFZQhMRLAR0pLDI/IC9XL3dcT778pfw9LP3stAD5sDOBgulQFw8wBD\nGGMEDPq91FSE5h2w0sRqmUejgJurLJgQrgeH2QfUHRwWiwL24f27iWBPBjL/myiAjKgU5OYDDtU6\nOkT0wWVlVwZat4x9W95xS4tTpKBQPiCYFFaPbHqSoL63D13id7X+EPGvy5xlKaxL4drUyIz2d1uV\nlcE6QHIYiHv/oWtO1P3tMiOZXm5cKgPgwx8T4EtBvhGA4YFiu0hBMfJv2hzknSjggyuAvJoDuZsQ\n7h0cFosCLHyPa8cowMpA0I4CgKgU5OYD+noyWfRJQKGGcKFS0NCykBQUk4egiQLGSEFuPmB0UjjR\n27fLYsQF9l5EAAAgAElEQVRvSdEl/uY8S1ibvM3VqelDVecF9p0cHvL+q2sOSj8O+sh/mwrBi4ZL\nbQDGYsxAsbFGoI/8rcRho4AnsA+OREcIu1GA8VyvdAeHuVEANO2iod8QjIGTB7DwowAgKgWFSkPt\n9xuKCFwdfxtpKJQIDpN/Wwbyk8HzvBwtBbn5gG2SwmOI3xqYMPFLi/jN/M0m0pznyo1pwZ21Ms/P\nmOeL9LzAmEFjIUzaXn6K9OPDJf9UNSAFe+wFdE9x6Q3A2Chg3wPFXOIHguS/2WSdssaUhPBgWagf\nBbjtomPyz7b6fyUDhaIAICoFNa+7UlBNypHKn13HAsS2OdtU+Z4K3ek92+WffVKQv60vBflJ4dio\nYftZC1fmsftKJX57/1vit/e6nZjoJrnT5nrHvIBFaC6AlL5TI6UfF35HgMuIS2cAxuQBLPryAbsM\nFIt5/UCL/N0OmKtlEZSCtikLjUYB0C//RKCbZdcri8CNAoCoFATd0lBfCjor3NHB24f1fiVQSh4g\nFB34I8pjUhA0UUCfFOQmhUOVQdsSvzlmP/G7y5rzV25UfsBB8wIuQt7/lrr/vr1/ET1OCHOREOsW\n2pcUdteljBEYknxc4m8kINPuYCghvCyEm9VI4WvTeFloJwrAKcHra8k7BH8sQA9sojMmBfWNEgZh\ntaoIuJ6PuWx9Z/uET/YxGchuY4k+JAVBOyHcJwXFksJm3boj85j/Xc+3j/jt/Rsi/rPCTlcqLHKT\nb7q5ypjnwo1ZcZi8wJbFB6nk7xq8y4wLbwCaMLz5sf0ooA7FPSnI/1zjAcUHinXRNQKp5L9a5uTL\ngsVqxXpm3g9FAazy+pxiCeFoFAD9XthY2EogmwfwZCA/CoCuFLQsmu85JAW53UJn86Ijlc3mBYXX\nRRm63r3/3k8Ed8h/QAYKaf4pCWFfCvLzAaGksH0fKuW0792KHmAU8dtKp7riaWXnqy64Wb3ea17A\nwu07lej9++gjf7/AY1uYgWDHHMC5hjs1n3nf3eYadLyCa5OyEy4unVGqzQNTth6iRfUATbNqIFNF\n1K3pDvOCs8pznUysZ2+8/MmkrDXss+WM2bzg5Oqa6zdWnFzdcO3GikVuCHCRa3UcuDEruDotuTEr\nuDYpKw+U/iigvprb7YfQHwPgtx72Wgp0Jt+ObBcqTTTv9zc0P2QM/PV97/0qIF/m8btlW/K3281z\nre+5iZPXaIxZM3dwk/coa+/fEr0dOGeXua+n2QKAdXlWn0fIMPjwtW+fCC35u+ireOqDie6qEb4i\njYvkj0y3GJoXoAcPQquH84YLagCk1Xd9TL2vbyjMsvZ711BYA7HMG69ikqmpmCgynoTrTSnr0kYA\nwmwzbAhOrq5rOcMl/4dmphHcQzPlxhSeNFOuTgtuzEpuTAun0ZrBsjhrX0S2YDI7qb4tOlLQQUnf\ncZZClRrm98q8ZWnemomQ2p8t5nmwBNQnfX8ksDvfM1Ab3Oa9tkjxikf+Ey+h7RoFl/wbQ5G3iB9s\npdS09doYhSlSySjTycIk+0vvN7bXr+taWmt/ryX+99wXzVono3UdrdeuAZvUBqs+X3f8QrHqTnCz\nA/mDN1iusxKMtHiYQYMPKi6oAWjDNQb722fzelMWTKvEq40OjDEom/K5nqhgtoEbU1jNCs5OioA8\nVDCbl0wmZRL5m6RcF4UGpCDXCHQu8jCkHzs39z+EqzTGDAYzxqD92/ttIHxP337PLkLev6v9TzND\n/i45GifANwDDXr9L/HaZ7/WLKizv1NNFSrExxjxbRI0AUJNgyAiEp0YF1xA0Bq65PntN00xrA2YJ\n3zVeomokwGLTnuYSzHt3mTcn8D5hv/ew8dsSIt0JlB4QPJhnfR/gl9y53kYuBZPM6Iw2OrDGwI8K\nbtDUVo+LCgpunBTcmMJDc+X6FD5s1kg+VoeNkT/QVAU5MA29AtNHHpD0fa/frVCxcGW3sVrtbF7W\nA8KsjOZ6/0Pyj10W8v7d53yRp5G/6/W7xA9bev3FBpa3jQddrJC5mQDKGoHeJme1EajfEI8E7Da2\n+spcT0P+Wl/TPC/JZdHq9eSeN97oZXvu9bwRR9wXHA1AAD7ZW4QeUGg862lmSMwaAxsVMG0n3VyJ\nKBQVQJMvsFEBECV/V+8fgh0gtirv1sumkwVCNwrYF+n3EVJQo3byMKnkv8hNn9xUhOSfUCfQRR6I\nACrpx036+uQf8/pd4oc0rz+TnAkTM6fD8rQppVyeAnWZgdlvPkEnC3dumi4ycx+4pbZtwnfRSEK1\nx5833r+9pkmWO+Q/bRst3/svxvxSDipjERp5Y+ef7kUnAtpT6WYGEkoqPgC41AZg8Iap0Pb2J8yy\nK/UNbhJPTZ22NQY2KoCuRGQNwdVpO3HsVl74EtFi0pZ85nk5mvwtloWp1IglhYNthUeQ/jZtdm0U\nENL/m/NOjwTmziAwWwk0JP/YZcGIIOtKP+B6/23yH+P1u2Rv/k+6BLo6hU1F/NVrTu/U52HmdVgi\n8+sIxqgPGQGDeF7AOit2WUj6seTvSj5uVddO8HMCOzYhfBAgIq8B7PSOn+St+wbgbwJPUdUPRD6f\nA+8A3quqzx063qUxAKlkb+EnlNybe5ot6gdTs2k92javjIE1BFPmVRVEOyqoE8cJUcH1qdbld2P0\n/iH0JYXNxQxU7gwkckOIdV8M6f/mHPdfpx2Sf0JtoGdVia2f+IWw9OOT/xiv3y+HjUo+y1vm9VlV\nrXVa/YarNVxbweJa7R0LMMvnbMQkh91qnBZ68gJtjNP9+7z/lvxj9X/blNBiT3mAzjUfIBksIkjf\n9HDj8FrgVcDrvGM8Avwx4DcGPv91wC8BN1IOdiENgDg15mMRIn6g9vrrJFz1YEo+MV9iPquNgWm+\ndqVVkmYlonne1CX7UQF0y0ltVGCJZh/kb9GXFIZxlTv+ftPPIawBd0sVxz9gbimo6/2HNf8y6v1D\n4/270o+r+/vkP6a00/wPEGdI8tlUg6ZOz+oZtPz++QpIsYL5tVHJ4WWR9SZJx+r+na6lKdhhHIqo\nBtpjhO+v5jrPF1T1bSLy9MCqvwW8BPih2GdF5GHg84CXA1+fcrwLaQDGIlY+Zm/oWXYl6JE1G1by\nST4xUopMzOQnlTEYlog2zSCVSDnpLpJPDLGksDnXhvRjhL/PCTZiCeAxCPX+CVUC2eV9+3G9/1CB\nx5VA0tcl/528/j7J5/QMVmv0zmkdAejJotHEV2s4WaHzkyYvMDshz6+3xgt0EE0ON+9Dur9/PR2E\nvP99wq0eShx9fp/xZBF5h/P+MVV9rO8DIvJ8jKTz8yK9z8YrMUbieurJXGoD0Ef8EPH6XY+s/sDM\n0c5PYTKrjYFmU6YYvd2ViKAZselLRKFyUmCv5G/hzx0Q0o334dGnfCbWojc0BmBMOag1DDH5Z8j7\nh7b3b6UfoF3x45D/mAFdHa8/JPncPoVN0RD/ao3eNIReJ+/Xa+SqE8GByQtsVsj8pJMXMCOLHQoY\nyAu40lay9BNCrBw0FcWqSQQnkH5MBrpPZaAfUNVnpe9aToC/hJF/+razeYOfrSaFT8KlMwB9g0Xc\nhzLm9df6ZVWBAcBkYwZSQdsYTDbVTdoYg0xzplAnj+MS0aZVTjrPdGfJJwY3H+Dr3YceTRnT/y3G\nl4D2jwBO+bzv/YfIf6giJqW0065vEebytCL+VVjyOT2D26foWUF5y9xzGSCrNVw7aVfIbPrzAlE4\nBLmuW1WU6SWfLoYqf8YagUB78eAlOM/5Az4i+OOBZwDW+38Y+DkRebaqvt/Z7jOB54nIo8ACuCEi\nr1fVzlzCLi6NAegdJUg7yRsccGO9fjcJZ2fSsn10JrPGGOQz0/hq0jYGE9u7ZCBf4I8tODQ6SeFz\ngG17tYRGA1vvfjYvam8/Vvo5hJj045J/Smlna5BUquSzWlM+saS8vUKrMEiXG7Jrs9qfVSqDcLKo\nz3nbvIDrJfeVfLqIef+18+QjZQTwxnnGYihWdTlozKGoeSCjajK4B2SYaVQPAFX9BeAj7XsReTfw\nLL8KSFVfCry02uY5wDcOkT9ccAMwRPoQ9vrrmuuQ1289sk1hblz7H0wbhZntbWKkoKgxqJPH806+\noCURZfduCjtrfPq+p0Mg1Kd91wogdzDYEKxBSPf+hytiYITXP0LyKW+t0OWmMgJV2+hrDQFnYLZ1\n8wJgjEtCXqDQTYsk3bxAX8lnuN1DROYJDf7qMwLW0YrBHiMSGbRbaDfH3qeUui+IyBuA52ByBY8D\nL1PV74ps+1TgO1X10W2Pd0ENgCSTf9Drtx5YzOu34fhqXffPl+nUMQanTWQQMAZSOAOsnOSxmy8I\nSURWqz+UIbBJ4dCo5zFh9Bhj4e43tU/7OvG5nQeSwikYkn5SRsJC2Ou3r6OSz+md5h67UzkajuRT\nfmiJnm0ob69Z3zT3gf219KxA1yXZ9aLOCwiYfVTRQLMsnBfowMkL9On+Lfhefij5u63+76On9bg/\nq9qDAFX9ooH1T3devw/okL+qvhV4a8rxLqgB6Eey128NgeP1653Ttudfla3pJNEYTDbo6rRpbesk\nj6VqbxvOFxiJyLTZPZwh2JQFG5qe9H2IGdltNNe+AWAu7o685GaimDwo/4S8/xBSdH9XFoEer986\nGf59liD5WCOwWQmru/ZkCyZnG7InNZPx2AYOWpG/a1a12MDspM4LpDaTa8h/0ro2c60J3r9vGGJG\nwPX4e7z/2AREthw0RPzhpPeOEEHmDyaVPphnvSV8z8wd0NXSYG1Y7g64Wa2bJJxTgQFnRv+bTTvG\noK7PtsZgtgbuOD3OI8agJ1+Qy4RVefdgEUEzHsHpJuo9KPbBj5WHpkRfLlI9tDGVP9ugT/pJ0f19\nWSTq9e8g+ejZhuWdnNXdjM2qGuOwFmZXSuY0XrYuN2RnG7KHDEHWnn+VLHaXpTaT8w1cs8whaL+/\nTyca6HEO/DEAfYPBYp5/ZHkzq9qDEw3cC1waA7A3r9+rwACQswxZGPnENQbKmbmBrTE4PTPrYsbA\nrSQK5Au08tSsd7NvQ+BOmGFmqsqr6QrbraVjBsEiZBhiRiF1FPGuk3d0S0C73r+LbXR/vwNmJ9E7\nQvIpn1ii65LyQ8vKCBSsbxYUa0P+Z3dyipVQbITZiTOREUt0WYTzAqt2mSiYNuBjmsnFpJ/OoC/H\nu++Vf7ZpAR2rBIosD0UDY52UXux3JPA9xYU3APv2+vVsUz+YFrLIkUqYtsZAFk5f/W2NgZc8tp5a\nHRHIlFV5t5Uj2LaaZ1lk3N5kTgRQTY3pGAOgYxDcOWyb77wbso/tDxSal3ZXuPKPi1DiF+K6P7gt\nHvKO7t/r9Vsnw7nPagcjQfJZ3snZrIXVacbd25b4m++n2AizVYH7C8TzAms4uTqqmVxI+mkO3uP9\nb9sAzoedZS5heSxSzWWylUx5EXFfDYCIfC7wbUCOyWa/wlv/JcA3Ye7PW8DXqOrPp+zb1frc5m2d\nroq+Blt5+v5DaR9GG47rukSXBTLPkbMMWCKLSWMMboFMI8Zg0kzAHjQGrbJSL3m8WSGTWWMIqoZ0\ntSGo3o8xBLfXeasvUTOdoSEyt7NlX3Rg8wauQUhpyXE/5mp1vX+LULuH0OQnfdJPzOsPtnPYQvJZ\n3slY3c1ZLZU7t+2550BGsRLmVy1zGyNgyN8QY29eAJKayfVGNxYx7981DkNRQEj7j5F/QPax0462\nz/0wMpBkHOcDGIuqa923A58DPA68XUTepKrvdDb7j8B/o6ofFJE/ATwGfPrgvqv/Ha9/s4TC8/rt\nA+mSvQ3FA16/rcDQsw2blTCZbeofX9alIwexmzGY5B1joJOZSd7tyRD4pHtzldWjbu3/SaYtg2D+\nb2cM7G/i4l5rsn7tv9/wbVfpp5UM3YPks7o7oVgLZ3dyVqcZxTrj1s2CzVq5VVUBLZfK1WXG9Rtt\nWaNYK/OrbflFonmBlGZyTclnvT8/8Vu/3tLjHykJBRPBAYNwcBnoAcX9NFvPBn5VVd8FICLfCzwf\nqA2Aqv4bZ/ufxoyCS8IhvX6rxRYboVgr3FHyadkYg9vrOjLYyRhsCnMurjGo6rlbEcH8pKkckpx1\n9cBaQ7Auzzr5AZf8b67yTgM6oEX2m1J2NgZwf5Nwrrfvev+p0k/KSNixko91MMrbq5YRiEk+y2XB\nndslt24WrM5KNhvl5Frz/V7H3JebtbC4aq7PJofVIf960FgsLxAYNNYr/VgE6/4H1qcgFBGEEr6B\nPIB1hizsuR9loPtrAJ4GvMd5/zj93v1XAj+SsmMha9f1u2H4Xsg/Y3W3qcDIp4p5pEpYFUxmjVek\n61WdINKzohoxOAE26JkxGK1GXtVNXvd2cSuJXEw2jQe3NO9ldmJu7sy0pl7VvbwWrUSxJf+b67yl\ntd9c5fV8BFequQgWOR2y38YYAEGDcGiEWj27jeDc5O+Q9GNeh5ugtWa+qkogW/eac2+177NNrff3\nkX+xzmryXy1LVmcld26X9fWs5o3ccf1GTrFSNtOMfKos7+TMWZI9aW6OMy8pn1gaI3DtBF2vkc3U\nyFJgIoHNEsmbsmSbHO5N/HoYbPy24xzAHUTyAAd3OjI52EjgQ+OBEK5E5LMwBuAP9mzz1cBXAzzy\nMU9pbtTC0dNxJkAHOAEwk2rIdNqeDQsqbX9C9hCUTyyr3WyAkhkm4QaQT2wEYPYgi4mJACo2qXMD\nVa2wiQCq17ZqqJ6E3byvid/KQT78aoeE/iguQvPturi5NmS4jTGAdt4A6K0q8qUoPwHsTpTjTp95\ntoFV/T5yndXcyi42m6z2/s+KRv6xczCYcxJsB+n266yeD9rtsV9q0XjF+aSS6ObmXtusmhwPmPEi\nGxsZFl4BwYQJG4q1MpmZJmzFRCnWMJ9nbNbKagmzRcZmY77j2SJjNs+Yz4X5PCOfluQz+3nIp6W5\nB6dZTVSymNT3lkyn9X1HNRZFJvP6mVERyiqCtEbANJKr5K581n7ONlXOisoIhNZborZOz8qJhu0y\n97635+bCVstZVOfuRgV2UKULO6bmiPtrAN4LPOK8f7ha1oKIfDLwncCfUNX/HNtZ1VL1MYBPfdYz\nFTwPJZ+Yv2KG5DOjy+YTc9Oc3Take3oG0zU6M1p8NpuaEH2aIfMJ5YeW5iG6vWZS5wC0IvO8Jn2X\n3GU+6RgCoCH9SfNepp4hCKFKDDfX1X7fjCIODYKZ1j1QbIMvOyE4WNKWerCVHXG7LhtjAHAlt3PE\ntsl+U1oPPy06sEghfnseMfJfVUS/2WSslllN/H5juLkzMAxgcVJFStVczO4o43lRRXXY8RFldZ1F\nraG437OtzJJ8BnPMvQZoPjORAMBq3XTvnOQIZlfqlBHqPK9lGxNdVr/fVDAJX5gtm+XXb+RcvZYx\nn2dcuabMTkoWVwtmV0ryacn0Rk52bUr20Nz0DHpobu6zk4WRf04WZmzAZAbzE1MWOr8GsxNUpJIU\nw150nQi2c0p72r91MxSC61uw5O88E/V/e987ExU1pdLOrHX5rDWPhTuI0i4rdLPVrHVRiPS3qjjH\nuJ8G4O3AM0XkGRjifwHwxe4GIvIxwBuBP6Oqvzxm53U43lkxqTycWZMMzicwOa1vQGMIpuidU2Q2\nRapksEwzytsrZDExeqr13CrSr72r+STJyzefnca9fGjfWPa1HThWz9nr3PihS66Sd/amt3PB2ijA\nEviyJnjz3yVD//XY6MAcp328eV62cg7beP2pxG9h+wNZGchGDrPM7N9+gVdyO/bAEL/7elpkgDEC\nbu+kvPp+ayNQeaKSz5qfZWIIUMA4G9XrOh8EdZO3OUYOstiszTnM5pM6AQxw9ZpJAOfTskX+86sF\nsph0yf/aiTE+LvkvrpnnIkL+MY/ZRgQtQ+Cies5ahiCwPgjX63e8+9Zc1Z5RUJGW1+82WbTXEHOQ\nLiPumwFQ1Y2IvBj4UYxb8xpV/UUReVG1/tXAXwE+AviOqhXqJq2XdnW79XkbriFY3m68tEkVrt82\n5K93Ts3DMpsit0+RxcTkBhZ5ren70s6gl2/X+aTf50W4XlB9DV3vPwWTLA9GAc0k4TLYcsGNDmA4\nOuiTiw5N/KG5AOx2dauIKgoAYZGrc/1G/mmMmJ2wxkhBpUP6fvmrqMLsxNxnWC/YeeSqCEABZtMm\nMetUKU2XBVCQT7TJO62U6ziJ3xs5sysF+Uxb5J89aU52fYYs8jb5nyzMfeiS/+zEEGuE/O21meuM\nyye5TGEyj+YHBGAy7+YHQoagz+u367fw+vfeRuUYAWwHVX0z8GZv2aud118FfNU2+06eji6fwMlD\nyPK0uTFXpnkbp3eQSd4kiSc5cnpGXpG/npkbrCb9mUfuvpcPXV0zhL6bacD7HwptLVGlRAGpTdcg\nLBcNRQcWY4kfSCJ/V/t3X7uJ4dUyB6caCLr5hLFSkEXLK55X5FdNZmIO2EQDdnrHjCYCANDphikw\nOWtId1PJRdYIzK4UzK8a0s8n2iL/7ElzZJq1yf+qiQBa5D+/DlV12YYNZVl0yN8lft8Q2JxA69pd\nQ5BPWmWiUUPgwtP0W5JPotdvz9v1+mMTD11GPBBJ4LGQdiPcNMxP6vwAk7mRhmx+YLU2huD0rM4P\nyGxtwvYxCdwQsQ95Dq7Hn+j99/VC9w2EjQKa5K0xDGeFMM3GGQGLMdGBT/ywu9c/1AHUbRPtRgZu\nFADaSgiPkYJ8BPMC0Pr9ZNMUIchsbeKwSnKEeF4AqMl/dsVUoLnkbyOAFvmfLMx9FyN/jZO/7/1b\nQ2BG166DhqAlCwUMQetq3PWus5Po9dtz7PP6U7vOXgZcSAMAbDcQJZYoXmy8RPG0aQcN8QSuT+4x\nsu+b5KJzftt7//VuqmQw1YQfy1LqCABMFGBVrG0MgI++6AD2J/ds0/q5/owXBbjnbRCXgsBMqxlC\nq2LGzQvglUlWyeE690RaXgCoyX96wxQitMj/xqKb8D25WhN+Kvm791Zfe3BrCLrLp938gP1mq+Rw\n2xCkef1A7zmHvH5bcbY3iMRzeOccF9cA7AI/P7BZthPFt09N3fTUK1cLJWwtUkg+2RBsp/3HEIoC\n7Otto4AY/OgADkv8dl1ownigMzm8HwW4iElB87z5DWIEaNY5eQGc5LC9t2BUXsDCkn92bWqSvi75\nV96+T/4yv27uo0TyD13T+Hki0iuGYl4/0JJ8tvH671W7kW0gIq8B7Py+n1Qt+xvAnwRWwK8BX66q\nT0Q+nwPvwEwi/9yh4x0NQB9sfsCO6qwTxbNmcA+0yT5E4qnEHjuH+rVX9xyo/AnptTGYAU1FXZLZ\nlHNKpyT0UHhiFSd+oJf8Y8QfWh5KBNv913D7AgX2myoF+UYgl2krWQwgTnJ427yANQJumafMJy3y\nb0k+LvnPTdWPTuadxGmfFx1q/pdqCJIrhlzih1akW+i6jna39frdyrO9YL9J4NcCrwJe5yz7MeCl\nVeHMt2KmfvymyOe/Dvgl4EbKwS6mAdA9T/XmJ4ptfmASaU7lfm7f8MJhNwxOgc0DuFUr08zSj/H8\nJ05EECoJ3Qd28fpjBL/X84tEAWArgOzyrIqg+qUgF7lMUZGt8gIAWulzlnJ2qfEPVc1AmEzd/7sY\nAvd76KsYGuP1Q2MUhrx+O97kPEJV3yYiT/eWvcV5+9PAfxf6rIg8DHwe8HLg61OOdzENwKHgJopD\n09wdGEPefx9iLXDvRxRwVsATS7kvxD+4vRslxKSgvGmWN8/VqaRqDHIKGbZ08fm1aF6gb9AYsHWN\n/1DJZH/VzPaGYLBiqF4R9/pTzjXm9duy471BpCn8GMaTReQdzvvHqkGsqfgK4B9H1r0SeAlwPXVn\nRwMwFl6iuIM99T0PGpcdvf/O7gJRgC0DNfX65vXYktA+uOT/xGo74k8h/XzZ/k6KeR6VgcYiRQrq\nnE+kfn6XQWMyn5iZv7ao8R9L/m7VjGnnYS/S+T5HyupDFUNjBnWN8fo3jlG4D/hA2limLkTkL2Pc\nkn8YWGfzBj8rIs9J3efRAGyLfGKSeZbwbemaKwmldD6MGIzQXKfNscPe/7bJYDcKqMcHOAPDdikJ\ndWH1/pvrxus/vWMIIET+sTr+EHzCD60v5vF9xHIBsShgSAoaIsOhvEB00JhtU0I1CXxqjX/VSnwX\n8m/aeJj3riEwYzsK+1V0rnEMmm6d4yOUFK/fNQoPCkTkhZjk8GerBjWzzwSeJyKPYlJYN0Tk9ar6\npX37PRqAbeCEpnlF1LXn4hK6V/PcwSYyr2kMAe9/G4TGA0A7CnAHhu1aEurq/Zb8b9+cRb3+FOIf\nIvw+hPbpzhGQgrMiLgVZIxCSR2Lw8wKt5LAdj0I3LyCLdXKN/67k7/7vYntD4M41YHEIr98n/r3N\nMX3gkcDVxFkvwcyNchraRlVfikkOU0UA3zhE/nA0AOloPUBLitI8KGvOWhODYA1CPQIy0gCr2AxX\nB4UiCM/737WplZWBbHsIoBMF7FISasn/5sq8vnnakP2tm1NH/ukn/W0Jf7oyn1vPmhHEKTJQixwC\nUUBfryCDKhKwLxmZF3CTwz15gWCNv504aI/k78sltrEf0IoK2qFP0V2UiJRWDtt6/fa3PXSF2zYQ\nkTcAz8HkCh4HXoYh9jnwY1VLnJ9W1ReJyFMxMyk+uu3xjgZgCO7D4w2Pt55LLuZG9SfLjpa79cGN\nGDrtb9O8/21b3Ta9gJooYJdksJ/steR/emdSe/2NBNQm/VTCtwSfgpgMtAxGBOH9dr3GrhTUNgKQ\nmheIDhrryQuYk5321vinkL9FjPxducSM4G48/rAh8K7fXxSAvXb3/Mz/zV69fr/b7c4Q9jYQTFW/\nKLD4uyLbvg/okL+qvhV4a8rxjgYghurBWZdnFGWb9F1vaQ1OBNA2BqUUHWMAND3UXdgoIVY6Wmx6\nvf9dB4MBnShgl5JQt77fJntP70xryce8bur9Y4Q/huD7MF0VdRRg4TeE8xGKAha5drZxpSCDxgg0\nOpQ48GEAACAASURBVLkxAqm6eGozOXMB4Rr/MeTvetUx8m+a+IVIHnAmEQ5FBSF5qA+H8vrdliOX\nHUcD4CIg84SI331QzBSBZt7d9jyxE+BuPV9szBhAxCBAN5+w6+U5paBuHsCtBnKbxG1TEhrS+13y\nv1Vr/znFTVis9lM1NQbu6GAfbjI4tN5tGQ1dKajJnbiRAMSSw0Mjh2G4mVynxv9A5O+XTrrGIC0q\nGCcPHcrrt8R/9gAlgQ+Fi2kAtCQ0N2gUPTLPulx2HpBlOWlpou5k4b4xKGQzaAxsUyuLVv7AvSyn\n/8mh4LeKtlFASkmor/e7yV5X7799c0a+LJiuCib7HmEWge2gGZKBXPnJTwb7UcDCu6XcttFtKQhq\no1CTYDcv4CNkEAabyXk1/tAdOLUv8rf/2/M8hA2BQez39eShwPdxKK/fEv/ZdkppF8d20A8gRnv7\neXDmKjNpeHPzu8YAVvUcstYYQJMrsMYAaA2RjxoEB3ud0Yj+KCClJDRV718tc/JlwZU7a6aroupr\nA+uANu9LNrsiJgP5/YAgHiX4I4TdMVnme/K9ym4kUEshCTJISjM5t8YfDkP+vsMTMgQ+xkUFXUPQ\nl4zexeu3xL+6N77HucbFNAB9cwEMJHV94r+9mXRIP5QUM5p51xhYmcg1BmWCMTDr2gYh5v3vOypw\no4CUktCQ3u+Sv6v3L26tmKxLpquCk5uN/DN1cgDWGISWuRhjICbrso4CIE7wq6XZxjcK7sxh/jIL\nM++BIfw2MdoPhZPDW+cFlraBXFPjD+MmRUkl/xQPPyUqcA2BC3++aLN9dhCvf7XvHMAxAjiH2DhJ\n1S20fSvzDE1QPs1sn/ucRd42Bsbb05YxAJhmbWOwZukkkafNFI6OVHQIxMYDuHDLQH1so/dP1iUn\nt1ZMlwVX7nT1/2KSMVu2Y/PVfLJXA9EnA807BsFMGLNwNj8LJIR9KciXPhoS3G9ewCzcbkasseRv\nCDNeDZQSFbgX2xcVHNLrb5ZHTvES4WIagCzvlsAlePsxmadvxqpFrq2JT67kwiLPWxOl28jAnR4x\nlEAuWzkDyGVTGwUXLjn4JZ8+cbjrfbL3t21Pk5e1vgv7cLsPWR/5L536/tUyJ2d/T9t0WXQIP2gg\nnAqi9Syv8w3rmZGhVs60ipNJGRkgVrRmDYNq/uCAFOQaATsDGpTVPaTV+ww7K5pBVnu9ZBWBO6XE\nfruEVkfNqn/O2EZpvnftE6xPrvG6+XA1UPv6+hCOJJYBz97+3wSigaEkr+/12/V7ayAoslvH3/uI\ni2kAJGva3B6I+C3OqvWLXDmrtmkMQTMVYmMItF7WlogKNtXo0S4BdLNVfUagrzw0NheqJQWL25us\nRf7LIuNDK6m/B7+Nc1+Zp034dq5hkpFvytZ7H6t59xYNefsuggYiUk7qGoFB+FVB0TYRFnFD4N4D\nxvvNK4egawjc8SY2OnCjQ3uPQ39f/BDxx7T+GPH7r21psJ36s0HYINi8mT1GIy82TlPzucMS/747\nyD6IuJAGQNHOhNZ7J36HcxcTd51vCMAlgk1ZOg9A1xAYgjhrGYJmyr1tvXmq47VJHqA9cKe97bIQ\n7qwbQ9D6LgKav9vWoQ/red7y2GF/5D+EkCE4rBGw5NjMiRy7B5alOJFhWTsETW+cJiJ02yekjZgd\nR/wu0ccKtdpRz34Ngntu5nWc+O2yI/GPx8U0AFqyKu8enPhXpSsHWMQNgUsElgRs5UjYGzyrCcB9\nqC3iJA/uAxcl+QHyN3/m9QdXzffhVvv4Cd+VJ/3EsJ7ntdbvk/8hiN+FrQZyS1D3YwRg2BC0o0L/\nHoC2IXAdAnsfuDIhDGn85rpSNf7QKNlttfJdDEKM+O1+90H8/sxyW0OyowR0nqAYA7Av4vdJ34X7\nvm0MmpvW5gma+XAbQ2CTZ26eoOsNnrWO6ZN8iOD75jzta4PrEsSddV5/L+534pd6bjZZh/wthlo6\nHIr8QzJQa33ACMAOhqD1u6dM0tBEhaF7wJKi7TDqGgIrD9lKsnAfny7x+wnUIY/aIj5gKnEyigpj\nDIL5f86J/wLgghoAIwEdivhDHtEib7ZxDYGVh6whWOR+nqAtDYRIYAzBx8h9qPWtv958P+a8bZLX\nH+TV19QtJcxezSetip9De/4+DpsXaIx/P3bLE9SH9e51oJf4fX3fJ/5Y1OufexfpRqHfIIwnfvs/\nhfhtue9eIBxm9r97gAfzrAegWnJnrcnEf6t6jnzi7yN99/0i7wmTPXnIJQU/YWwrRNyEsVs1EiL3\nPmIfIn3we9g0uLnK6+/HLff0R/iulllwovY+rGfdHMBB9P6BKKDe7iB5AYu2NGR+f7yIcPs8gVm/\nf+Lvi3rD1+lfr0W3d5JP9BauQbDvdyV+/77cK/FfAFxIA1CotKpYfOJ39WxIJ36f5G1r4fHGYLvK\nIRgm9ZSp7vokIAvXOIbKPS3521p/6D6AVv4JEaybCPbJ/5Befwx7zwtYeJKgwf7yBECQ+H0NfRfi\nH4p4w9dbfXYjnfYZ7vX7BsEaxr7WDX4t/xDx+6Qf6v66G7Jx83qcI1xQA2A82FgJ49Cw8BjpD81J\nm2wMOqQwnDAOIYXIzXbDRsFFWxLrL/eMkX8qzgP5W+xsBCBqCFYrdxRxWlSQkiewSCH+sd5+n/Mz\nCgNGwZfK+hyzfRL/eawGEpHXYGb++i1V/aRq2Ydj5gF+OvBu4AtU9YORz+fAO4D3qupzh44XNQAi\ncgMzEcHDwI+o6j9y1n2Hqn5t4jXdc5Qq/M7ZJKjvQ5j4U0l/1E3jkEHIGFhSsA9EX8I4BfsY2eh6\niLEWD26tP2w/gYtfDnoI8k+VgertD5EX8FHde20i7EYFIWegO7BsuJRziPi3cn52nVs5IVLYB/GH\nvP3zSPwOXgu8Cnids+ybgZ9Q1VeIyDdX778p8vmvA34JuJFysL4I4LuBXwF+APgKEfl84ItVdQl8\nRsrO7xc2pXQ8/thN795YFimk795wtm+MHw20PpdICq48ZENjSwT7nMFoqAmnW+sfK/f0scuDdT89\n/xB2zgtYBFtKO7KHZwxcadCNCsznunkC6PbCGaqRr69nhPPTe2+Pud6eZb5RGEP823j7+ysDlf45\nvEdAVd8mIk/3Fj8fM0sYwPdgJnvpGAAReRj4PODlwNenHK/PAHy8qn5+9foHqxnp/4WIPC9lx/cT\nG21XrkA8cWTRNyVh7EZZLTNm83L0jbSiaUJmHwT7348K3MqhPuzD+3cR6uzpl3vC9qRvE8H3gvi3\nPc7ejIBFojEIjSnoRoVNniBE/EPe/ljS35ksEwyD+76P+FO9/QtU/vlRqvqfqtfvBz4qst0rMXMH\nX0/dcZ8BmItIpqolgKq+XETeC7wNuJZ6gPuBUhv5AuINoMbc7LHqgdDy0UahxxicZaEk2uGxqiOn\ncLknxL8/V/7Z14xe9wt7yQvYzy2b+YhdJ8Ai5gT4UQG05aGYvp9C+qmOj73Pt3F4/GtvIfAd+J/r\nI/5tSX+vMpDImCTwk0XkHc77x1T1sdQPq6qKSEcvFBGbN/jZalL4JPRRyz8D/gjw487BXysi7wf+\nTuoB7geKEmyn4dDAEP91KuEPVQ/YTpJjS81aD0fAGGzTt3y2g7Pjkn+s3HMfD1CoJcShsEu0scug\nMRsl9m5DekTojyexGCNzpj4Hoft432WUUcPgnFtI5lkmGq7YNvcRH1DVZ438zG+KyEer6n8SkY8G\nfiuwzWcCzxORR4EFcENEXq+qX9q346gBUNWXRJb/38Az08/93qPQtvcK42/0PrKPdY2MfWY+LzrH\niBFDyEvsq52OYVtJyJJPX7ln6JwfBOxqBELYRRJyJ6MZcgJi8qDZLu7tjyH9Q5dLxu55ew7+HAw+\n8Y8h/dg9eZB79fCtIN4EfBnwiur/D/kbqOpLMUU7VBHANw6RP1zUMtBSat0atrvJR5cz7nhjhUJs\n26J4Ni9InTk35k2lwiWMULmnXRdDSvXP/cSueYdd8wLLZd6Zc6Czvx4nwJcHYRzp3+8yyb7rdw1E\nyNsfjtrHFSacx3tVRN6ASfg+WUQeB16GIf7vE5GvBH4d+IJq26cC36mqj257vAtpAMpSavKy2KYc\nbB9Jo1ifeXt8n7DdB2Qoydw3laGPsYYhVO4Z2v+D4v276JuGMunze8wLhH5vCEcHIWNg4ZP+NiWS\n9ypp2if79J1Tipcfux/PI9mHoKpfFFn12YFt3wd0yF9V34qpFBrEhTQARSHcuhmvUYf0m3tbgrM3\n+NBxQnPS2mOGZCXXe4oloGPH8REyIBahcs8h8h/7kIVm7LpXOQF7rPuRF/B/c5cQhwyCbwzs593/\nKYR/v3Xz2FzMoe1i57ML2e+9OOGi9gISkT/dt15V37jtwUXkc4FvA3JMKPMKb71U6x8FToEXqurP\nDe3XRgAu9nEzD+1j1iLn9OO5hO9iaKxB6DN9BqN73Gb/vuHwyz23wTYPWd9MX4fAeckLxPIBsYjQ\njywPlSg9pBGI3fexY28z4PBBr0I7NFLM1lcCfwD4F9X7zwL+DfDbmELlrQxANWT524HPAR4H3i4i\nb1LVdzqb/QlMwvmZwKcDf7f634uyEG7fvPe9OXbPA8TJPbbOf5Bj0YS/Px+WLOZV1OGT//2Sfu6F\nQThEXsDFIQzCUOHCvvTysVFdsaQz3/IQYoYgNcIcQ/J+xLYXyMXuBTQFPtEORKjKkF6rql++47Gf\nDfyqqr6r2u/3Yka8uQbg+cDrVFWBnxaRh2w5VN+OpVQWt5q0aWxy8POOYhlZPu+OxPXlAHeZRaza\nwkVYRhj+/u6Vxnoog3CIvEAf0kpI846hdz3/0G9+CLK/V160f7/780innsdBSP6CIsUAPOIR7m8C\nH7OHYz8NeI/z/nG63n1om6cBHQMgIl8NfDXA/MZTWjfB0A2xmabJHPsyJId4oEKE0pdsc+EahJDR\nCHlmfnTie335suh8X9NVEf2ut/1O9j2W4BB5gVT4v2Fvy4UI7G/pGoJQJBlaFvoN4fw4UKnnsZ7l\nR+knESkG4CdE5EeBN1TvvxBncNh5QTWa7jGA6x/9zM5IuVSSh/iN5j8g2zygdj+7eMyxEDtE9qFl\nMcKfe6+Xbjni2LLYEbLHZF3u9NBawt53NODvP+mzq67hS0GKbOL+VpNJ2WvcY79bqNY+Kr147W0e\npIqvsTLUrlAZ13H3vGDQAKjqi0XkTwF/uFr0mKr+0z0c+73AI877h6tlY7fpQEUGCX/oIQ3dQO6D\nYl9vnfjdpacM25G9v828voays70hhqYm2xoEuw/3WieTtPYAKde8i+d2qJHFh+5YGoL/W4bIfz4v\nmM3LYD7AwjXqoVLo0P0bG5AVur92MQq7fHaX8S67jpW5SEitXfo54Jaq/riInIjIdVW9teOx3w48\nU0SegSH1FwBf7G3zJuDFVX7g04EPDen/PlK8sSGyD70P6eipRGj3t+8HoI/soU0GltztZ0LX6xKC\nNQiWbFyD4G8/BiGjcB6NgMUu0cG+YMn/5KoZ/uv+7n33n1/p5RsOv2JsGZCLzOfaxj/l2KHP70rE\nqZ8PPav7NAKKtqbnfJCQUgb6ZzHa+ocDH4/R4F9NYGDCGKjqRkReDPwopgz0Nar6iyLyomr9q4E3\nY0pAfxVTBpqUeFYJE39fWDjkUffp5KHP3ItweRvCdz/nRzGdlr3OtViCd41cn/c5xiCsyKM5g21w\nr3sMdY49IAP560LSYuz9ydV17fmnRIF9v0GIGNu5g9BAw6y+r/yIIuU3D0lOu6CvoCH1ebjMSIkA\n/jymYuffAqjqr4jIR+7j4Kr6ZgzJu8te7bzW6vijMaQBpjw8KVp5DL6HfAiMJXz3Mz7p2/+2idyq\ndFoPnJjRp/YBD0UH9pjbNgvzI4F95AXu5aAyi323uPadEEv+J1fXSUQ6Vrbp26d1AKArEVr03ffu\n5/uQOkis73z9Z7TPAdodSqkPpqyUYgCWqrqSKskhIhP6JjU9D/ASMrEfetsE6WxeJoW+KfpsipGI\nVfOk3ORmeTdf4RK/JX237fQC01VylvUbA7vfFIOQcr2uIThvyeFDoM/798n/+o1Vfe/N5sXoBoEW\ni5Ph7yPUTNCNbmO/udluvCMQk5Xc44YQcsbGOj+XGSkG4CdF5C8BV0Tkc4CvxbSKPreQTPdC+tBN\nlIa8h77Qd0xeIAS3Emcs4fuvY96+21nSnZDDkL4MGgN7nH3JXg9aXmBfiN2zlvAt+V+7sWKRN8Z7\nm3bhQ4iRY4oTMBbLiIPjIhZ1+1JOzHiEIt5dWqZfFKQYgG/GjAb+BeDPYSSb7zzkSe0TKclSf7uU\nZGlMpz2k9t93s29D+mZ5M/XkNLOTkZvX67KZiKSepcqbtq/VlMz5bnYlhljF0IMgCU0D+YyxsL+h\nJf/rN9Ytz3+Rw41q8Oli1xMec16buBPQB1cycuHmFAaPHfh8X7TQJ3O6Ts+uUL2gSeCqXcPrVPVL\ngL9/b05pd4ikVe0Mkb77OZf4e0PHSG5hGxL0H5qUmx3ipA9hb98Sv39ddh7iadaekcqNClyEjMEu\n2Hde4DzANQyu/BP6Ld1yT/v6xklRe6/7IrBx2F9EGDIKff2pYFgeGsptudOsjhgadGHRawBUtRCR\njxWRmaqmtqQ/N0gp/9qG+EMJUwu/TW9zoP2QVirpu+fnevt2G3vzu8Q/z5V5Xlanm7EspHU9flRw\nr4zBvvIC96pENKUSKIYQ+Z9c3VQSUEP+D8213xGJneOOpOf/9n5E2EJiQtkiZBCGnuHQM+C+tt6+\nPXd774ccnu2hFNr3RZxfpEhA7wL+tYi8CbhjF6rq/3Wws9oRIpqk6zfr00okQzcV0CHAkC471jDE\nEr8pNzx45+fJPBAm/kmm9STjk6xgngvLImOew6KaeNxGBQ2sF2okoiFjkCoZ+Nh3XmDf2MWwxH5n\nt9xzNi94aObKF3Eyv7IjsfUR41nhOQKRPFEHA05AX4VQX1lsyjMQIn7X2TlvEJG/CHwV5uH6BeDL\nVfUssN2nAT8FvEBVv3+bY6UYgF+r/jJGzDZ/vzFUNTOmUiDmTbTRrjwKEeEoRB6Y0A1vzw3C3j50\niX9erXeJ37xvjMA8VyaZsikFMIZgWc0768pD7VwBxPIFY64zhH0YgUNEAf7+UkpB+wYfurX+ttyz\nln0m8NBMW/mabT3ZeaKE5BLlvMhqZ8CXB1N/d5tAtkjpWeWvT414Y8Tv3vO7Yp8DwUTkacD/iGnA\neVdEvg8zSPa13nY58K3AW3Y5XtQAiMg/UNU/Azyhqt+2y0HuNdwq0G1LJfuIP/TAtQmwPpP2Nuxo\nFOi/4e15uNulEL+7bJ6Z18va+7cRgTEE8zwsD7XRnIOdqHxbqcDHvpPDu2JXY+Lfd26tv5v0vTFt\n9Guf0FKQ4u1OsuF92cjQNQQQNgQp93vIGFjESN997ee3zLph4j/PEQCGl6+IyBo4Ad4X2OYvAD8A\nfNquB4rhU6s5J79CRF6Hx2aq+ju7HPiQyDI9CPHb9S6punKI9YYtUoxCkpfsXkfkhm+O2ZyL6yG6\nN3yM+KcOAUwzZZ4py9r7N4bAl4egMQR+VGDQloii1zwyT7DP8QLbwif/2dJc2Go+CVYC2ffW+w8V\nKsTKPd3kpSW1G7P+6x0i9D7jEVtnI8CQIbiS+4YAxkSDvjGA4YgXtiN+/36/h3iyiLzDef9Y1cgS\nAFV9r4j8TeA3gLvAW1S15eVXUcKfwszNcjAD8GrgJ4CPA36WNnNptfxcI6Vsclvid0NQl+S7GrmP\n9k3X8pIrWC01hFRv3y5PJf5mG/PhTVkwz2FaZLUhMBJQ1iEBmydYFvGOiEFSgC4x3ANJaFcZKPRZ\nS/7+uaQkgmdOlU+s3NOS241p87vGCH4bYjfruh7x3DuGjQxdidAaAjcqbJyAtgPg3tu2ggiacSch\npES9Y4l/npfM8/0U0CqMSQJ/QFWfFVspIh+GmQflGcATwD8RkS9V1dc7m70S+CZVLWXHLqRRA6Cq\nfxv42yLyd1X1a3Y6yj2GKQM9jMfvJk4t+shv2CBAd2B1P5E2r83/McRfV/kEiD+XKZmYneRSVLpm\nYwjWpTDPiiAJ+HkCPyqIX2+gkuQe5wXGIIX8Z8vNYA7AvQ9Tyj3tfWh/26vTwrsHh7z9sNzhEzzQ\n8Yzdz9YOQUAiDBUNRMeTQDQq8I1BX9Q7hvivTYvqPp+RSU4u53Ie3z8K/EdV/W0AEXkjZkZG1wA8\nC/jeivyfDDwqIhtV/cGxB0tpB/1Akb9FyojAWI2wXT9UKunCesfN630ahDZSiN96h33Eb7z9hvjd\nByKXCZnmtSGYZCYqqK/RMQShPIGVh4ahHMIIQL8h2CYKSPX8++DX/qeWe04z+LBZ8/v6kVwMKQQf\n24eNBu094t4HscjQdwbchDE0huCskJrMY1HBPoj/2qSs7/VcFvV9nst0jwZgr72AfgP4DBE5wUhA\nnw24khGq+gz7WkReC/zwNuQP6e2gHyiINDd4ylDwVOI3/9vk6hL9JCuqmz/dIKTA94gORfzuQ2FD\nWmsISi3I8ymTbF0bgjF5gn4oQa34HOUFUsg/35jvuphkvZVAfh17SrnnFec3vjotcT3b4PluQfJg\n7gEXNiK0r0stIKNlCNalAGXQENiigXjlEITkIYuxxH9jVnTu9RDxu9HueYKq/lsR+X5MC/4N8O+A\nx7wuyXvDhTQAcHjid8smY+S+T4Pg1nzHavjdc3PJoY/47QPvPxS5FhQ6odBN7f3VRsExBPvLEzha\n8RbRQN2gbM9GINXrt+TvfzaWA5jNi1Hlnk+a+R6u8W59xKIB+9vX5+sQvU+E7UiwbRAKXQcdgphE\n6DoDoYRxKE/gIoX4b8zKjr4/RPy5TBE9n60gVPVlwMu8xUHiV9UX7nKsC2kA3FYQY4nfLhsmfqc2\nukXuhzMIfYO33GUh4s/FJLz6iD/k/RlDsCYXYwysITDb75YnCOMwklDICAzJQNuSf74p8adTXM/M\nvMnWyx9f7tklO5/s+0ge2kTvyx/+tjEjYJ0C/z4IRoZbJozPCuklfpv/CCV2k4l/s4TiwRy9u09c\nTAOQaRLxQ7hcEoaJvxt6jzcI8c90CfLgHr99MArT8WOSz1ARs03l8dnPWQIAWoagL09gz9U1BAah\n76YxAq4mbI1ASl/51LxAzAjs4vn7x3OnJ7Xk77Z2Hir3bMizTXiNfJPu0fvbDhkCf1+NU9DcB26+\nKBgZbpEwhnbF01BFz2ji36zqe/0y40IagIx4ZU9sgBSEK2fscvO/S7KW3FwYKcTsx9745rXUr31s\nej6zPfkzSP52WU3+y9PqYCCOEUiBMQI5UAA2GlCMofO/J0ucTY7ATY4bEmiMgEWo6+o8sAxMwjX3\nZ+wKSDKhmch8/T6k6U+XRcvTd8cBrOc5p9dnbKYZ61lOfgOuzFdR2cd6/g/Nzs9UG+2IYdp6nWnO\nFCirCNHKg4WuKbINpRpjALApNyyr6HCZm9/aRAZl9UwIN2ikQ5vz2jvxHwzKprw/AxF3xYU0ACKH\n8/q7NfP2hzcHbEivbQjcbaBtDKxXBHFDEDu/fZO/Ls1UzwIw2SCzk3pfYB74tiSw7lZTZGCNQIOy\ncz3NcnO+bg8bd2yFmxj0B9bFJh/ZpT/9kJGwUYRrEFwDsZ7nrGc5m2nG2fVZrfeHqn1swjfU3M0a\nxHlu7wutHI6SaWZIx40CLEottkpw9hl6q5drVXfe3E++MZi0jYFu6sgAGmNgIwNoJ46tMQA6ye42\n6c+GSb9YAQHizy8k7W2FC/lNZOzH6/flnhDBNhxXVJ9j66jANQQGvsZ7IPJfncLyNrpZmtdUIkxR\nubf5BMlnSZFAbSBqIwDNl1S23jcPvfH2z1oRQH0WnXYCbhWNP9mOlYZc8rfkPVn3yzWpSIki7l6d\n1pq/JX93kJdb5x/r7Lkuzb1q7pFGFpznVJU32f/f3rvH2rJdZ52/UVXrcfbZd99LMDiO7WCDAlIE\nCQHfbiQjsMEB58aKMQrBNDEJHWSFNG5HBMU2UbdaQkjOP5HdLbqdixOcKAYTmZBYJiHOg6gVMBF2\nsEjjKyAKLyc3cRzFPvecfdaravQfc86qWbNmvdZa+3HWqU86OmvVqr2qau+qb4zxjccks5dvDPGw\nSG0IGt6/NQBh4tSPEGPGwJzbrmYMFqk5X98YMDPPiJ8zuJ3efhOFSvSZfxRwkgZA5Gq9fl87d6Vx\naTrzKgGGRQVxjxj7WT0qODb5lw+yI//1C0YbXd0vz0HzjYkEFufm92qNQK7bYR5m4jqKQwmoem8e\ndve+ygeEXN0VBcAwGcjX4q8SLuF7frHp1Pv9Dt82PLRyiPP8h0YBx4SfGyqRzqvPLGLGAKqKMqiM\ngcsZVMag6i3A2rFY49Zob78NUxQAnKgBSCTeLHUsr7+3izCICpr6t0PFckOigqOSf74xhO/If31p\nEmP3L6vTy+ZVhX46L/MCsdLA1t9H7XfRlReIS0FtUQCEQ8SOKwP1oa2803n9dxZ18o/p/X3k7+A6\naBdp/d7Y2rLbGHwZyHje+z3qvvdfv9CmQQijA98YzFia+0Rz4E4ZEThjMEtgkealMbit3v6p4SQN\ngPMjr8rr98m1E4EhcCVysF9UMIb8HQaT/+UD2Gzh0hs7PjcRjYJ5wKE0Au54MYzJC/jvY1KQwzKj\n0STWtQ4zHLY859DFXMLO3pS8VuMf0/vHJHtdJOSigCzJrRSUmCqrPAEMYR4iA7VVEdXul+gP2r9z\npKLG3Sf+MdxxEk07jQHAPLlzHG+/DUeKAhQnyT16OE0DIM1Vf47p9Y9uI29EBNVG3xAYxKMCc67e\nTJaB5xh9eNaXkG/q5H+5gs0WfWAiAAHYeeeb7apoINvB/AxRPVJeIGmVggy0MTDPR1gSGpOBoF4C\nuu+avV1z/NtGOwzR+/uwyqtkMNjyYq+nZB/03cOl9+/KJh0yj9i7DENgFHyDkJGhSWUMwoqizB2x\nHwAAIABJREFUydu/HpykAUhon39vXg/3+oFGGAoV4Y6aAVJTKZryUHdU0DbSYTz5G71/UyN/fXBZ\niwAUYDurqHi+KbfHksOH5QUKFqmUr50U5OAnhGOjIro8fV8G2of0Y4Tvvtd/7RP/vnp/G/xksEn8\n5mViGDhaFAAt3n+IXU/9fDaPG4Z8V/O6nbSYWRrSpEoigzESR/P2rxCqlMb4UcNpGgBpn4gJh3n9\nYfOUOd44Q1DVy8MYeeho5L+xer9P/pcruH+JWv3FRQCl17+xCe7dBl2cjc4LuK5R8wsrt5ZvmpMt\n2xPCfWhbYGQI2gg//F7/fRf5j9X729BVEuq2h9i3HBQC7X9o05Tz8LsMxG4TjyDSDMESUjq3x5sa\nta4aJ2kARNqbpszrw7x+v4Qy1E5HTwXskIdCHI38V/dNsneX18i/+PwatWybALK0OYDNFrlr+gG6\n8gL7No1ti7QWEeyKdimoLQrwsY6QfqwpzG3vQte6zDHiP0Tv70JXSSjUo4CxiP3NerX/GIZ21rr9\n/BxBTWKqjMKjgIJ46fejgEfjNzwSCe1zcmA/rx+IJKKqMHafsLvWVGXvn0oeqUcF5hr2IH/r7TfI\n/3KFbrc18i/ub8oIQNc7kvO5Oa35rIoEOvICfU1jUST+5Eoj/2S2SiiUgvaFLwP1Eb7/M23buojf\nST6H6P1t6CsJddhXBqpFtoH3r1ehv7d95xokW9gI8+z4x51Q4iQNgEj76lfAIK8ferpmA8/Ir4xx\nmvhQxAyBQSUP7U3+YY2/I/8HJgLwyd+PAGRVnYgsc4TxeYEQbrJoiEW6YogURHW0UWOjh5J/28Lk\nXcTvPm9bwevYCEtCod4Y1hYFjCkFDe9x3a2vdm5OJMrQzaUpNMg3pg/lEYkGHjWc5G9VqNfMw3G9\n/kZVhNtmyc99z1j4hiDMExxE/n6Nv6/5b7Y18i/ub1FbcC/emnuyLSpBJpYXoL1prAsuL+DPDxoi\nBcUXot8PbaQffjbU6z+G3t+GWEko0BkFDM0DdHn/ndhnomYsR+Bv22xhPivzTezWyOIJkzs4piEI\nylT3haoctN7HTeI0DYDEG6agklEO8voHPBhiqxs0WLOzs2nKos0QDCJ/N+2wpcbfkb/eW6GrXY38\nt/dy8q091iYvqzFkaYimlhcAZOYRfEvTWF9eoIwKEljnWjaJdUlB/qC4Epasw9EQDr4M1EX64ee3\ngfhDhCWhMCwK8OHfQz5avf+hRN9XIRR+7pyIssjA/u4vV3C2NPsvz9F8Y3JOV2EIbhlE5Cng/cAf\nxDxq/7Oqfjyy39PAx4E3q+qH9znWSf4WE/oln7Cpa7DXb9+XD4ZLhDoEVQ6hIXCJYn/G/tBoYRD5\n99X4W/IvXthQfGFtjYAh/83DlHxrh33tBDBGQLwyHFklpUql2daTg6xhyG2PAIzOC+wjBW0CPmkb\nE+0WjOnCIcQP9dn1rmrnSOOHSsRKQiEeBYxFp/ffR+w+2vb1Isba611evtfttowAZLM1RmCzhbO7\nJueUb4wROEJ+IHTO9v4eDlvxL4L3Av9cVb9eROZA40JFJAW+G/jYIQc6SQMgUlX4wHG9/poe6ryk\ngYagq2IoZghqpZPQSv4ZmUmoDajx98m/eGGDrvOS/NcPUtYPEtK5ks0ckeRk88r7E+vi+slhtn6V\n0Li8gI+hUpBPqrUlBPcY/RAahTbid/u2ef1h46H738lVxzQIYUmoeV2VELshcUOTwe4eG+X99xmE\nzbb9vfPyN1tD+O5zzxBwuULPltW95WShs7uVk2Gfu70MwZHkn2NDRJ4E/gTwzQCq2lYP+zbgnwBP\nH3K8kzQAcKDXD9WNH/P6faPgIWoIPAypGGozBJ3kP6LG3yf/4gtrdhupkf/mYUq6K8gzT0/eKgvb\njOOSw7otSJ7I98oLxJrGxkhB1Uy3ZhTgE3qsHDS2n8M+ck9smcLy+N4ymG71q2NEB22NYcZINofE\nDckD9Hr/XYQfkn1sW8zL97e7z1Y5utohy8xEAOdnVRmy2/f8rMoPpPO9E8XHWsZRtS7H9eBFIuIv\n8v6sqj7rvX8l8JvAPxCRrwQ+CbxdVR+4HUTkpcCbgNcyGYAmTBJ4+IA0t89gr99/IMLGFoIVTp2X\n4p/fgIohfy3eUeS/ut/Q+/0af5/81w9S8p3UyP+FezmLRcJ8UbnW2dwwVbrZMLuw3uIBeYGYAfTz\nIkOlIOdd+1GAT1OLgOTbZKBjEb/fc+LWwt15A9sWtlZ8aeWCQ6IDVxIK+0cBje2htx/z/mNk37bd\nEnarl7/ZVmXHqx26LVC36tr9Dcn5HFnlyMUS3eWQpZUhcPmBbL5XolhFqgf1evE5VX1Vx+cZ8EeA\nt9kF4t8LvBP437x93gO8Q1ULOVDGuhEDICJfBPxj4BXAfwG+QVV/O9jn5cAPAi/G/KmeVdX3Dvn+\nRLTT6zfvg6oZn/z7vP7dpv1BgLIiqGYIIp+PrRhqkP8eNf4++W8eJuw2SY38H9wv2G2V9Vp4wi6r\nuDs0LwC9w+RSqYhmiBRUEWCVEF7l3RNCh8o9fQneNvKvlx3bTu5cyv99g3CM6MAvCa2OZYbEmd9X\nfzK4EfmGdf9t93sb4dvPhnj5QEn6oSGQWYKucpInF8hqR/LUwkiOlvzL/MB8W0sUl/mBLkNg77/R\nTZvXg88An1HVX7DvP4wxAD5eBXzIkv+LgGdEZKeqPzr2YDcVAbwT+BlVfbeIvNO+f0ewzw74DlX9\nRRF5AvikiPyUqn66/+ult2LGbev0+qFuFJzX793MJZxGGYGC8VCyRfTztoqhEA3y36PG3yf/1YOU\n3EpAjvxfuJezWUgZASzWCXfODTmMyQuMGSZnEsPVvHgnBZkuYaEaGKfl6ztpMxJwBO2igPkiPhW0\ni/jd94zx+mNjusGN8aiG+rlRzs4YAOUMpLHRQVgSWo2EUG8uTbVgTPW7bXnk+7z/NocnJu14hqDL\ny28aguo9QPLkArXkb4zC2hiCzbbKD8xmtUSxOueqJ1F8LPkHoOB4C8Ko6q+LyH8XkT+gqv8B+NPA\np4N9Xulei8gHgI/uQ/5wcwbgjcBr7OsfAH6OwACo6vPA8/b1CyLyHPBSgl9GDCLSO8oh6vVDXfKJ\nef1huVoXAnmoUcvSUzHk4ML4WbI8uMbfJ//NZcLD+8J6XZH/5f2cy/twdu68fwVSIOnNC8CApjHn\npUEZBcUS3QA78jKRv859r9pbKJ56WagfBbiS0PkiZ7dLao1bx5B72tapdZhZUijnOnlLIJr/JSoX\n9UUHUBmAIVGAC8/CVb728v77vHz32QAvHyhJf7cxv5t8a2TJNNNScjT5pjmyTKvck8sPZNt6ovj8\nzMhCfqI4yA84+eeYRuDIeBvwQVsB9CvAXxWRbwVQ1fcd80A3ZQBebAke4NcxMk8rROQVwFcBv9C1\nn/cTNb0fmnN8gG7yd2h7CEKPKEsj2+bVd9vxuDVZKG1+7hbWCJOliaRVtLJz57mryH+XmwfSnpvz\n+HWV2/93pea/2yTkGyHfJiX5b9YFm1XBemW9/axgs7Ba8qxgvkiBwshBD1IWd3N2GyH7wtp6ajkF\nm1pOAICZ9zqrZLVyNLCXE/D1arOouJGC/FlB/thoNyLakWT4Osuq9YJ9rx+4MvL3JZesnHxajfUw\ng/7yg6OD0CD4jWFgoo9RJaGh1h++H1K5szfxm3sx30lZhpxvhTnAvZzZBRRsjNT4lIsB5wiXZdSt\nXBojcP/SyELW8a/noM6uRP5RPW4ZqKp+CiPz+IgSv6p+8yHHujIDICI/DXxx5KPv8t+oqopI650q\nIueYcqdvV9V7Hfu9FXgrwMte/jvHnaxP1MdAixTk0CYFOcSkoEJzNJkZ4sx2SL4wVUfZvNTaZTYz\nHtF8ZpO0O2SZIqsEWWakG6OrZ3ND5OmuYLFIrJefMF8qu535U8yXJhG8WAiLRUI6K0gzUx66uJub\n13M11RqzxBxnkZkO4vms/i9L7f9Gl5VsUdNoc92WD6SbBw+GPP3Q2n/I/Nd+Z7D/OmwKc1JQmBy+\nSjiDMMYYwPDoAOBinteM0sUsr0UjfhTg4JZoBCuFBmOaNWx09Jwbwco9kfu8fufuaFKM1fhtyJKV\n3XzhCnGQzgpzjy1Se49l5h6z95t/j8nMu8/Ce63MCZjGxG2xqt1njzOuzACo6uvaPhOR3xCRl6jq\n8yLyEuCzLfvNMOT/QVX9kZ7jPQs8C/CH/+jvVffH9T1+RzK1KCDNmt5OOY7Ww3zWnfhtg18hFKs9\nbvnchaeuaQwgz7fMkiWZba4SQN3NbdfydfKLzGeIv7wjMF+kFF+oD+BKM2G+yHjhXkWKC5sDuHue\nsFiYHMD8rCjJf34nJ5sryZOLMjRPzudloo6zpfHG7GvTxDM3Ibmr1LDX4Ifj7m/mX/O2kNpi4Tv7\nepUbD3hbwCo3S0ZurCyyWac13X+zTmsS0FXDv798mWGIMYD+3EHdGFQRycU8j0pRYI63sx3ChczK\nfMA8uUMhOUmakmZ3jSHI58bRcA2F2bxykjZbU43D0nj/My8isAQsziFZWv3/ibnx/hcFaq2WrnJ0\ntkPdYj3rnMyTgkrnYpHW7jFZZob8z8+qqiDnZFj5x3n6ki1K+UezhXE0ipxN8fC4OQA97niS68RN\nSUAfAb4JeLf9/8fCHcSkuL8PeE5Vv2fc1zcDimg5XIzox6LH22+FbwxCfdIibBQzG1fgjECaIevL\n+tXOZ8h8Vq7s5XwqWWQl+TvtPp0p6wfmAXQVP4uFfQBnwhMXKfM7OelcWd7Nmd8pSGcFs4uU5HyG\nLLOaEeD8zJC/S8yFD+TiifK1u07n/bslAd3/zvuPkf86F4/8zfVt7Gv/Qdysk85egKtAeI81ezoM\n8fjGAKyXzn5S0cW8aM1DhIgZArf0ojMEWXpmHSNjCHT9gnmfzWFJXRaNGQOXlN3DGMwx8pDz+pOn\nFqXX7zsYpddvX5dORpgAjnj9pUM1RQA3ZgDeDfywiHwL8F+BbwAQkS8B3q+qzwCvBt4C/JKIfMr+\n3N9W1R8fe7BY9YOKNBaxBiPPNEbfxiSiWETgG4MsTvA1+afH+3ev3U2b2geWYkUhM2bZEqOgulLL\nDLJqSUd3dcl8ht7z1voFlkvTAezjqZnw8L5hpDvnSprlLO4WpeSzuGvL8uzDWHpkF8u65++8seV5\n9UC6RJx9IMMIx11noXlJ/luP8M0/89qRvCH8+oLxzvtvmwl0THTp/20YYhDG5g3ceZzPhruhNUNg\nG8UqQzCrGQJx97/LkTljkG2M1u4bg529vgHGQG1HX8wYOE//Krz+ifgr3IgBUNXfwpQ3hdt/DXjG\nvv55IiX0YxCTgcz2luaYWERwrPxA2iIFBd5/kxgrz7iBgsoIZHNTGeR9LFkKMxMNuD5RMGWbxefX\ndtibHXU8L1g9SMu95mcFy7s56UyPLvnENH9H/rluK/IvpCT/nX3tSz9AKf2E3j+YTuBjGoNYvX8M\nsa7btqRj7N4cYwyGeP1dGGMISmkI6gUTexoDuaBKHAfG4Jhe/6Z46P1+j0/+BfWE/KOEk+wEVtVo\n+7sj18YD6kj4GETfFgXQ7f3HpB+f/FurFgqqhxTP82/JC6RL0xvgMAOy+a6UghwOlXxiD6S5pm09\nr2Gv0W3bFabqp1/3p7FQvO/9h01gh6KL8H20jVwYahQajom9jDZjcAj5+wgNwSxZkMquNASzbAnZ\nwgz3yze1PAHQNAZzr2cmZgwy+/uIGAOeMM9GGVn6Xr8j/1BatIbAef3bfDXJPQNwkgYghLsJok0w\nXXmAWIIYzM07pA/AfUd4PP+zQPqpe8bbmmfchly3VV4AKt3WQywvAGbuf/HCppYXMKfWI/k4j+zu\nWfVQ9kg+/rWZ/8fp/lAn/y7vP8Rmne6dBB464nnsGhBtxsI3DLXvjBiDY8MZgqr3xBgC9z6RlDRb\nGPIvjcGuShrv1rXtrcbgLlVJaWAMSvj3mKvwGen1Xwfxqx5/6ut14UQNgNYIM0b87oZuzQNAf4LY\neftZ8CQGnn+j+iecHRRp/AplkVgpXw02OZwuTCWHnwMgm8Plg0ZeQJZmMqjDgnVZhTG7SJGF8fZ9\nIzBG8uny+v3rHKr7d4XZofe/rr23TW1WChpTBnpnIMn6+v+Qlbe6iGnIAi5pWs2QcgnkY8I3BLNk\naftqTESwZdU0Bk4iWpw38wWLs/HGACav/xpwogagHa0ykENfZdDQctCY/DPA+/c9Yp/8/UW/W6OB\nYkUheS05TLaoRQMCrXkBmSXIffv7OYLk01bf7z+gfbo/EJV+xnj/IdbrtBwT0YXZABWpkmCqmVND\nMHQ/h3A0OPj38OpKjABYQ1A8qM3W8o1BIVZqTRNTRqrani+IGQP3LDlj4BoH/f4R38Hw1wpO5+zY\nUezh9d/SOUDXjsfGAHTKQDAsD9BF/rFy0Ngwqoj3XyfKetLX94zdak9ATzRg8wJnT8Hmsh4NzGdw\nv9omQGqTwj4GSz7uoWyRfEK5x70G6tENlfRjrjte8nko+Tts1of1BYRzf2CY574vugxGITN2XC2h\nNcpHxRVYVONWnDFIs0U8XwDNSiJXVuqMgZco9mXFmtdvo8tct1by6SiUCHAVxK9MfQC3CoVKQzJp\ne4BUpJbMasWQaqCoEZg3O389ovTR5xkbuIvqloQaeQFs09imag4TQOczuFzV8wJ+BYZfehdWX0Qk\nH1d2586hzet324aWfHahS/7x9wmnge52Se8qYTH0JYT3WQ96LGL38zpfRfY8Du5vK+M2SzZl2asz\nBi4qcOfWni+IJI9jxsA1n7V6/flgr3/y9ttxkgagD/X8QM/DOrZCKNT/y++Jj6jtk378ihg38dHA\nRgMJ5UTNBsK8QKxp7HJV5QWoFoOv1faPlHyGeP1Qj276Sj739f77VghrWyOgLfHbRv7VOhP7k/9w\n+ShsNtuRy44sSa9ECrq/Tbm3TWt9B1UF0oosSdna84pJREAzX8BZM3kMlTE4gtd/XcRvOoGnReFv\nDcwanRVBhhjyoA1OBMfQtyhFVCPvr4hxKz5VaL/GEm15gVjTWJYil9aLHCL5eA8lWu9dMNdUH+/g\ntvldr8NGPbRfXsz7j+3j/j9E9skiw9XqCw/V/+Zjdf4QbcbEH2fexPHyAes84f4u4d4m5cHWTTBV\nFql46x74zXCrQRIRaWLnD8WTxyU8WdF5/a6hq434J29/HE7SAOwNn7QPHREBlfzTs0DF0E5YAzP/\npS4JDcsLzLKleejCvAC2acyLBhqST8s4h329fmif8xObrDjG++9q/tpX9omhbdrmWOLvixrCMc5A\nNc4cf41rU7NPcnhlUEj+9zYpqzw2FbUZFUC/RNTIF3jJ4xLWwQjHOMTI/yaJX5VaN/qjhJM0AJHK\nzgZCGWhQHiCGsAS0DxHiHNoJW8GRWxG8r89+Dx+UocPkam32fm1/h+Qz1usHauQfK/kMpZ8QfWMf\nfPknXeewqLYvaiuHpSzPugkkbLZqSwB3kf9QeShMJjdI31+eFMzfM1lWP1BwUFLYST73NgkPtilf\n2Aj37OPyMIc7qbBMUxapsiuKMioARktE0ZJSiz6vfx/SP+YQuKuCiKTAJ4BfVdU3tOzzNPBx4M2q\n+uF9j3WSBgCoV83sKQN1wm8G80fQ+vpl6P23kv+wTti6/AP7SkJ9w+TK/zskH5eEg6bXHzZ8hV4/\nNMm/Tff30eX9+8nf+vbjV+aExiDU/4/RENZH+rWcVJoZTzr4u++TFG4j/89v3NoLygtb7FoJwp00\nrUUFvkTkDAHQIxE18wVdo1CGEv+jQPYteDvwHHAR+9AaiO8GPnbogU7WAFwZHEHuMxo6wDDdn44c\nAOW2hR0N0G30hg+T65J8tsWqPH/z/ziv37+mmO7vIxz17NDl/Yfb0nVe/oyTf4b2AkB31U+b/t+F\ntnLRwaTvV9BA+TdMswWF5HslhdskH0f+9zZYCUhqi+Zsi3hU8GALWZLUFs7xowL3u2uTiELi7yL9\nmyb6gub9uS9E5GXA1wJ/F/ibLbu9DTMm/+lDj3eSBqCAhkaepk2vLCoDeQh1cmD8vKAO79+cQ+Ux\n14gy4hlDtxGovx+RF6A5TM4f5+BPVRxS2glxrd9do399bpuv+7fN+uny/pvbxnn+Tt/ug28M/AYw\nh5j339UfsC/p1+TKfANrc3fMMk8KAoYkhWPk/9sbeGELn1+bCODepbmGlV09bVPAKrFRQW0FtXpU\n4EtEzhDc3yXRxPGWdSkRtRH/TZP9NeA9wHcCT8Q+FJGXAm8CXstkAIYjduMcLAPFEMo/AfaRfuqe\nsV3zNS168wJmnz5JqDlMDmhIPn1efziWoMvrN6+rvEZsyqdDl/fvY6j841cCjW0G88nfTwCH+n9f\nQ9jBpB/sp1iDbWvsw6RwVz4glHzWuUTJ//LBjM06iS6l6YxBW1TgfncmMRyPChqJ40eI6HXcgjAv\nEpFPeO+ftYtZISJvAD6rqp8Ukde0/Px7gHeoaiGRlQPH4iQNgKohzkUy/K+yF/wEsNP/Q0Rm4O+7\n+EkFf4hDVzSwR9OYq1QKGm6GNHQBg73+Kq9BQ/qJJX5j3n9s6meb/DPb5OR7TE/riwqG6P41wgfw\n15vYk/TDSLRc+5ZIUph4PqBL77+3gc9v4P69OZcPstLAunWV3YylzSIvo4J726ZEVK2rHE8c++Wk\noUR0CIaszXBD+Jyqhuv9Orwa+DoReQbTFnchIj+kqt/o7fMq4EOW/F8EPCMiO1X90X1O5iQNgEOj\nVLJFFz8YQQdwLfkLkcTvuCFojvybRsBdm/nALRJySHI4tV3LodffV9oJ8Qofsz3m9TfLPbsSv+X7\nFu+/9jPB+9nGfIGrBPJLQYeWhfo9AK4CKEYyYY3+YdJOC+l7i7ADcA5kc3S3Lmvr/XyA+7s7I+BL\nPutcesn/hXtzLh/Myt/X5YNZGQUsFnktKgglojAqgGbiOCwndRJRiFjZbdso7KuajRRDwXFGQajq\nu4B3AdgI4G8F5I+qvtK9FpEPAB/dl/zhxA1AH44mAZUDrSzhuwcxAr+aYUyYG2rUMc3adWqW7wuJ\nPkj186kWxyk0HzS8zW3r8/p94oe61++2xaSfWNlnzPv3cR3VP21oNoAFHv+BEk8r8bsqtM3WDFdL\ns2g+YFNQJoUfbLVX71/lTfLP7xlD+nCeki9MJOCigLFRQVvi2C8nhWbyPUb226Ipg4wxFI8CRORb\nAVT1fcf+7pM0ACLVMnn+cn31OuSI5+9mmPvjbP1tbrWj8AEscd+OSgBdv4DkpnxSgCydsxOYJ3fI\nNTMzTJIlqeTACki4mOXcK5OKuXkYNnbR7MSMJnak73tP1fvqus3P+EsVxq8//F00F9HZ2eqhaopq\nobn5mXIufVES+yLR0giEa9iabWZff5u7Pt8ILLN6c80yrRuBLCtqRmC+yEeRvt8L4EjMff8Sc6xZ\nQpl89+vc11aqcPmVRKscgDOQqcyqZUddj0nb+hL7wpuk6ebn6PqFznzAIl2ZVcVStYSr3ClJtxKS\nNpbQHdHfXxiHxpH/fJG3RgEuN+A7KJsC2EG8tEJY55UhcKuu+feHeV83+vWGSLutrIYzcMbA/9lH\nwRio6s8BP2dfR4lfVb/50OOcpAFIoJf8awOrWtYF6IRP/r4ndm63ZbvqcUqNUcjSOZrMoIB5Ysh1\nUzxkkS7Jki0PtsrFLGedCvcs8V/Mc9ikUeKv9NPjE7+Dq8hw+7qxxI7o/FLDmffwxYg+S5RdITWD\n4a7LzwEsU61VAIXkPwRtBqGtFHSzTsES18oS1dKv+LF9GE5iM79rW2Em1TgPGDAV1A0W3Lf5EGCX\nm/n5YMYouygAWqUgFwW4+8MYtRxIYSNsC2N4N4Wp9nFGsvydLeDOwhxjDPk7dBkBf/+d50A4hNHt\nbYIWcq0R5zFxkgbAx2DyH+L9d2GXG0/s/iXMt2Z9VEDzjfHI1kC2Q+ZnzJKl8RqLlY0ItlDA3ZmV\nVbYpF3OTG7i3ScrXY4g/FRP+dxF/bMRACCMRVWV59ddVZBCLAmrbrCFwRsDf5mMI2Yfkvljk0RlA\nQ+CSyM4olMfewcr7yqUlfhdxrUuvOSFLnERmR457UcDREMo/fiQ621ZRAFRSUEcU4HBvk7IrCpZp\nysPcGt9EjI4fRAHQJH5/Wxf5l5fREwm46jWISJqN90mvN19VGU2I4SQNgEhzoQ5gMPm3wj10bctB\nOiOw2QIPzAO5PDcLsqRzxJb2ite5mWpuHopSSlhxPsuZWeK8mFMSZ4z4Z6UE1E78TqPuI34/CvK3\nOyMQvo5JQZDYhcuHSUE+YjIQQRnoEKmnb5/YULhyf0ti4PoQ1L4GXwryO7NDKSjXrPwdN2SgCCRb\nVHmAEDHHw91/9n/dbqsoADoTwrnsWKRLIC4FdUUBQKvXD/SSv8MQIwAFseF7IUIjMCTvdWyoXm/O\n6Zg4TQOAT4iV99/Yz6/O8NDw/tvgFq7wcdS8gPGm75HWyuXaiN+vR+8i/jbSB8rfh6TzhhFwPxvm\nA2A/Kch8XunOXTKQ2daMDuaLYq8F4LuWh/SjAEdSbnWwUAqCwhrruhSUOuMY4pA8gNd97uQft7Ri\nGQVAPSEciQKAhhTUFQU4rK0xGCr5dF7KQCMAj44U9CjiJA1AIjpI+imnxoXST4gw+QvNkLzNEBwr\nL2A9myqy4XjEH5Ye2l4AUW2QWCwfYF6Pk4LCfX3EiD62LUwEt23bztOyFDREVDrySM9V07vIJJSC\n/HyALwXlmpFoWk8Gj4HveIRjR9y96BUjlFEAVAnhSBQwT2BTPOxMCG8LeGph79SznHtUBvMY5B/C\nj7QqDDcCNx0FqErrQMLbjpM0ACDjdX8fXd5/m/zTFg0cKS8w825y37gBjWuEjhHC/jWWrwOP1L33\nSln972vLBwyVgsw1aNDJXC3AHnYDG9IKto2s+tkXq8BLDaUgqPIBvhQUjQJ8GWjICnOc3v3VAAAa\ncklEQVQxuOTvLq8bBhcFQLMs1IsCgNaE8K4oeHKe4CKyUAqCcXp/H1wUsPRYKN7weFgkMOUB2nGi\nBqBCL/k7+IlfH877H4IuI3BgXgC7HmsoabURf9TbD6/Nv/4WMnJSUH1uUjwfAP1SkHldJYTNw21I\np+n1Gy807AloI/9jGQVXEVSiQwqCKh/gS0FhFLAXYlGA5/2r/YW5Ed663SJu3eqWKACcw9AsC3XX\n0yYFOa3/WJ4/NKWgZlVYuxHwMSQhPKGJkzQAIhLV/Wvk7xCTfmLev5/8tQ+jbrdmucRwv04jAPvm\nBcYQ/yBvPxb5RBDLB/hGwD9+rltbfpo3pCCIJ4RjaKsGatveVgmUL9JyHEQbwp/r6gwOpaBYaWiW\nbBtRQE0G2jcPEHj/6llGmW8HRQGpzKJloa4HpSshDMMTvWMQywc4QxsbguiMQFcUcJ0ykEkCTxLQ\nLYJEpZ8auqQfhw7v3yXhWo0A1A2BLx3tkRfwO3YHEf+epK+7tRllEWzvSgqb9/HSUCcFufexhLAf\nBTjEZCCIk/++iWBoXxO4cawWKShWGrorOqKAsBoofB8ahjDv5Hn/an9JsqR0PDqjAEDmZy1loUlv\nQhiOT/7lpbUkhZ0sGI44iRmBKQoYj5M0AMIe0o+PmPcfe21RNuSMiQbuX1ZGgP68ANAwZq3zZqCd\n9COE37geZwSC7wqNANSTwtAsDQWvG7MjIdyGNhnIIZb0deiThHa7+DRQv+TRxyomBaXU5hs5Kag3\nChgDG32G3r+uzS9F7cn0RgFwUFnoVWNIo5hffttnBK4rCigK2bsP5aZxogZA+sk/rPnv8/7bkr8e\nRktCYXLYtfG765iflWSaat7v7Q8g/WiVU6wUFs8f96actlUGmfNq5gP6pKA2zDo8fqjIuY3gh/QC\nhATvogjfKPjHr6KQqku4TQrqjAIc2hLBsW0R79/lAHRRNKMAqI+IcFFAvhtVFmpg7oZ7ezYtj0Ff\neagj+li3cBf8RPAUKVQ4SQPg0CB/h11AiC2fAZ0ef4zc98sL9CeHRy0R2Oflx7T+iCZdMwIOwZC7\nmCwUloZCe29AhboMFK4M5lA1acU/h+6ooA2uxt1HaCT8qhV3/DYpqC0KAKrfYVceIFZ6HHj/Lgeg\nyzQSBcyqSqGeKABoTQizqUtB1xEJQLP6qkK8W3iSgvbDiRoAiVde+Lp/LPHrEBqBIPlbe32oEaih\nPTlc04p7SL+X8NuIJ+J5xoyALwVVw8+qWyksDY1FAW09AG2IdQXHcMxKoHA8RGl8IlJQ2CXcFQXs\nM3eqdDos/ByArnJ0YayTLHuiAGg0hwGNslBIolLQkvgiPcfEpqhHW0O7hWNJ4euQgaZO4FuGqgqo\nXfePvu5qvrEIH8Ry34gRgCAvcEjTWBYfJQwB4Q/07gfXoOebXiMAzaQwNKWgtt6ACoZ4VrmUyT+D\nZldwCDeXZogW2/Dsg/d+biAWBcSkIKh3CfdGAWPQkvwF0HWOznboMkVmc3SVl1GAEgyKSzOzLWgO\nAxploRBPCBuIlWmuxhD4ndiuR6AZ8XUnhacoYBhO0gC4CKBX+nFo8/57kr81tJD7wXkBlxyG8lo6\nCX8M2Q8xAmlwi3g/05YUhjAi6JaCQgyd/hmS9jHglj00r7ujAF8KgnqXcG8UYPX49hOp5k7Fkr/m\n/9z8v0ijUQCuGsiLAoDe5rDzmRlIGBsZbWyP2r/R8Q1BY+W3YDLr0EYxHy4KuKqGsKkT+JZBkDr5\nt0k/Q7z/WPK3yxhcYV6gcc4hgexD9AOb3GrRSHn8TdQIQDMf0CYFjYGTgRyOsQqT7+37eYAxUUCs\nS3hQFOCMa6z5sDxYPPlr/rc5AC8KgKw7CqA5LhrqzWEkdCSEfXix4YGykJ9T6WrEG9IoNjQKuI3L\nRorIy4EfBF6M+QU/q6rvbdn3aeDjwJtV9cP7HO8kDUANfdLPEO/foiH/OOOQBTfSFeUFuvMUB5L8\ngH0aUpAXHbSPk67OOZSCoOoVqNDsCXBH75OBrgNuJbZ6QrjZJdwXBWRtj57/d+zx/ncb20tBFQXI\nIkNXPVFAvulsDgMac4LcuhRgavMflhGRloZv3/xAg/zpNgLQ3yh2nVLQkXMAO+A7VPUXReQJ4JMi\n8lOq+ml/JxFJge8GPnbIwW7EAIjIFwH/GHgF8F+Ab1DV327ZNwU+Afyqqr5h8EHCkk+LqPTT5/3H\npKBwQZhDjAAMywuE5xo75xiGjrIY8HNt+QCVamvX2gIOfm/AbYDv5XfJQE6eCqUgqHcJ90UBmngy\nUDqHMHHvD3xr8f7zrbvnCmYHRAF9ZaEXc7i3cVVbbX+v/fIDvuTjr/fcWJ8BRjeK1SqDbmBM9D5Q\n1eeB5+3rF0TkOeClwKeDXd8G/BPg6UOOd1MRwDuBn1HVd4vIO+37d7Ts+3bgOeBi8Lerd+dFkqbR\nROlY77/x8y1GAGrkvnfT2Lwl+TwEA3oYogjPxxrMoZVBEDEGgRR0bMTGO2/YzzvrkoGgWwo6KAoY\noP3vNkK+M3+FdEYtF9CIAqBz0Rjztr0s1E8IL1LXjCW1XE21lsPw/EAb+YdLffYZAehrFKuigFsw\nGO5FIvIJ7/2zqvpsbEcReQXwVcAvBNtfCrwJeC2PqAF4I/Aa+/oHMGtfNgyAiLwM+Frg7wJ/c9QR\nItLPKO+/a1vXgjBwfEmoNkeo5xyGYN+IwGsIK0sKPXQlhR380tBK+hkuA/keJlCXCWDUSIgYqff1\nA3RFAb4UNDwKyDwnZVev/+/x/vOt+f3kme1A7ooC/EVjMhN51EZEdJSFAqUUVP/7QHdEEM8PtEk+\njvjDv2FstbauRjHfCLhzh6uLAkYuCfk5VX1V304ico7x8L9dVe8FH78HeIeqFiKHRdA3ZQBebEMd\ngF/HJDxieA/wncATLZ+XEJG3Am8F+NIv/d3HOMfbi5sgfx/5ptEQNgT+AjKPK5zMkki631iIY2C3\nqRnzLizSgm2R2tdhyS6EhnpIfsCPHPy+jb4GvmVaRVwh/KRw2C3szvNRKQsVkRmG/D+oqj8S2eVV\nwIcs+b8IeEZEdqr6o2OPdWUGQER+GvjiyEff5b9RVRWRxpMgIm8APquqnxSR1/Qdz4ZRzwK86o9+\nmZYTF73St3LpPb8T07Xju/2cF+4SZ+58sPJNbMBb6PFD05MnIvu07Nf4znAf934sme/y9uPFju+S\niNnc/HNJ33RuZgWl3nabB8h1S6FO6tiV/wPl9l1hJKBtIawLYZ0nxlPOhZ33fpWbB3tbOLlAShJx\n8oGTDna7hM06YV17b16n65zZJmc77/fSYhKSHyXEhqK5HMAyVZ6Ywe+Yw8U85+6s4GKec54V3J0J\ns2RpZ1SZf6Xuvzhr7Xl1fnTIewuqaDadFcwuUpLzGbLMkEVG8sQcuViWf0O5ewZn9v3yHOZnprw4\nm8P8jB07tsWqXJCoy1CbJUndKI+6LBRHMz9Q/8LmsWLrDswT24zmxnCkeI14scog8CMBP0dgXh/J\nGVHtnTg7FGJY/fuA51T1e+KH01d6+38A+Og+5A9XaABU9XVtn4nIb4jIS1T1eRF5CfDZyG6vBr5O\nRJ7BNCBeiMgPqeo39h5ckibJu4+gbgQcYl6RMwKWOGtGIDAQbcQ6mPRDI+Lv00ba+xqCIYiRv5ML\nRpK/I5OrJv/Rl9gx9hnqM4Fi+/re6DI12ved1BCkW8N5YROpqSy7vf89jEC6MdKRT/7Jk4s6+Z8t\nR5N/DKZnIw22xUZ5uLOOoS4L+Qv9LM/yWlTg/o+Rf0j8PupGAOqkH76/lbX7rwbeAvySiHzKbvvb\nwJcCqOr7jnmwm5KAPgJ8E/Bu+/+PhTuo6ruAdwHYCOBvDSJ/HzGST+flraFg5YxIs1NMi7dGoPzZ\nCI5O+ENC9aGrSznDNQTXRP4+9iH/2s8H3v8Y+ATvKoDC7b7378g/JKVlatdtTg3xzxKzPKnrTG94\n/z58I7DbmMT/Loetmesjyy2ySpBliqwSZhfmhI5N/u7v6DArx3c0B/j5RiBLciu7JDYqMPu2yUJA\nMyIIft9jyN/hob1/TIVQvTrIIHx/GERpXXJ0LFT152m3oLH9v/mQ492UAXg38MMi8i3AfwW+AUBE\nvgR4v6o+c8iXK1qWJYqboeNI3hqBUhLyfzCIFoB4YnZjErjRRC6MJ/zwvTsH/1zKpqG2uch23z5D\nMNRYBORfjoceSf6OSNrI3/f+94Ev/YRw8s+hiBkBqC9lOEuM9NPl/c+TO8ySJRIjf4dsjuQLdHFW\nbvIjgxj3HZv8u+CPXIhtN4jnB+roloW6jOxQtDWLVef2aOQErhI3YgBU9beAPx3Z/mtAg/xV9ecw\nlUJDj1AuoKIiTSPgcEheYOOR/xDCj+3X5um7157mXiLWEexj39WmQlwz+e8r/fiIbYNu78yXeXz9\nP1wnwCf+UPp5YlZJP3dnORfzgotZzvksZ5EumSUL5smdYYnfNCsHAPp7thkBXeUHk7/v7bdhkSi+\nLR1uCOKyUFvZqJOF+vT+oeg3Ao83TrITWFUbtejik+gx8gIxjPHyoZv0oS67NI61iM/2dz/XZiCG\nwif/1ItIbgn5O8S8/0O6MkP5p8v793X/J+e6v/QTossIWGdEljmyLZoJ34Hkb/5GzSR9DH4lUPOz\npiEYIgs1Uc8P7Ov1x9BmBPoWIxoKUSULl7B7RHCSBgDqs2hcNCCqx80LxLAP6UPD26953W7fQLqR\nLqI/1ECElT7uHG8J+YeJ39D7H2MEwgRvn/dfVf3Udf+7s2Jc4rcLLu/iJsHOTX+A3D1rJIX3If9N\n8bBG/j7aIoKuEd59hmCsLHQs8nfojgQeX5yoAdDojV0uqjIkL+A+96MFZwR8SShmFPYkfWghfrdv\nTN7p0P67/Js+KjqE/N1SkEPIvw8++Tv4RL9uRATV6zb9v6/6J7ZPWIO+TDWu+7d4/xnZ+KhsQGWQ\nOdkO8s8Wg8h/aH+GX0sf+/sNMwSVLNTVTXws8nfwjcA6TwevJtYHKY6XBL5unKQBUPvI+AuTVAuX\nDMwL1Lb1JIe7CD983yfxRIl/RA4gPG5Lwrc3+PX1fvv+Ksi/z/v3EXaLrluMgm8Ehj6Yi0Vek3+g\nXobo4KSJUPd35O/X/M+TO2Xid5D0Ez2xbiPALu8m/8X5Uch/Fpne2mUMQkPQJgtVVxMer/eU9kJ9\npbnbMYfqJnGiBqA9jHU4al4ARpM+9Hj73naNtXtni7qkcAzdv/b9N0/+Xbp/9fq4I31dA1KIsBQx\n1P0v5vlxpJ/oSdnKoNzee355aFuT10DyPxaqJRqHG4JhstDx0bbc6L4QVWZHagS7bpykAXASUCqZ\nt1JV9bo1L+BXANm8QGkEQsloiBE4AvHnugWtvLRyvr77Wn/2TmgU3HftYxi8yOO2kH8o/YQYIv84\nzBd5Q+sPP/fr0B1C3d8v+Tyf5fsnfrvQkRQGqq7tPcg/9P67HKfFgAmubVFBzBC0dRM7WejYRB3i\nqr//UcBJGoCwCqgLByWHY4agj/T97QOJ338oneHquyYfEl6bO1aXYbgl5O8QGxQWMwz7NIDF5J8Q\nzvsPdf+LeVHT/Q3pe97/oeTv0GIEzEVcr+cfDlRrMwgxY9AfEdRloYmkrxYnaQAgrAKqcgFteQGI\nJIfLL+vJC4T7d3n7MJr4ux7cIQbBv0YfUcNgB7052emqyb8PMemnz/t3GJuY65s/06X7O+nH1fzP\nkqUd93xEWc4aAXbrqjII9ib/IU5SlqTsiry7FHSAQQglonANX++s7P91Weg2G4JJArp1MPPX+/o8\nepPDfcPkal/W4+3DXsTvvy5H9Qak738W+7zr+kPINZP/WOnHoeuzUP7JtgW7PbOKQ3X/Rbo8vvQT\nQ5ohiyfqzsiRyH9IQ9gQdBmEMCoIDYEvC121EXhES/ePipM0AIWam8YZgTrRZ503+t7JYXpkHtib\n+N25F5qXOYB9Sb8PJkralse7LeQ/xPvvkn+ybdE5DbTN+4fhuv88uXM9o56DyqDrSviGC6lsO3IB\ntdP1fq7NGDhvrR4RNCeNHsMI+PffMZAUMF8fP7F+HThJA6D4CahmJDA6OewQ5gV2635vH/YmfujO\nAfgGIURflNCHPvJ3v9+rIP8QIfl3ef9jEdP/Q+lnjO7vRj5fifdfO3FjBMg3o8n/WGsydK2s1WYc\n2qKDyhjUE8exaOAQI+DnnCacqgHQauk3Q0LGSxsT4g7NC5idr5b4HeG6h2Rnr8fsP8wgjMVNkv8x\nCb4L9QmglfcP43V/X/o5WuK3D25gX4T8bxptxiE0DM0VutpGNVdGYN8qobDgYMKJGoCCMBHVNAJD\nk8OdeQEfV0j8kNgHx38ovLu/hScPMQjXQf4x9Ek/zc/r253+7xLAbTNa/BJQ/3Uo/dxJ6yOe23T/\nwcPejglbqhsj/7He/3UZjb6owRmERZLbZ9i/ufeXhPqaDA+CKunu0UwonKQBgGpx6EWiHnnau2Wk\nY9mXF6h2vBrid8bMX9N0W1Trta5zjUYHY+Ebwusg/775/leF2Ox/5/076eepuZa6/8U8r+n+/qgH\nX/cvxz24cR1h1HgovHswTNQfQv5DcawlFdtGgMSNQ7hetL+t3wh0RZ23FSLyeuC9QIoZj//ulv2e\nBj4OvFlVP7zPsU7SAKiK1Q6bRmCRFr3J4cF5gXwXrfs/OvF7D8w690rqRhqEMYni6yZ/H2O9/32x\niKw8NUT3vzuTdt1/fRk/2D7GINIJXnrqXnPgEPK/TRhuSNx9bwi/viBNvyS09Yg+JjkeC6IcrQxU\nRFLg7wFfDXwG+Dci8hFV/XRkv+8GPnbI8U7TANj/fSNQoT053IfWvMAVEr+74f3qCH+Q1VUZhD7y\n98/rGOQ/puonRCj/DIGLAvzRD/OkubSjP+LZH/UQlnyKqnEIeqesdjxybYSvde89vJeGkH+X939M\n+Wff6DOOHN8I+GWjbhuYe9HlbpwRCJO9Q1aUuyX4H4BfVtVfARCRDwFvBD4d7Pc2zMLxTx9yMNHr\n1CyvCSLym5iVxq4aLwI+dw3HuW6c4nWd4jXBdF2H4veo6u865AtE5J9jzncIlsDKe/+sqj7rfdfX\nA69X1b9m378F+B9V9W94+7wU+IfAa4HvxywKP0lADof+QYdCRD6hqq+6jmNdJ07xuk7xmmC6rtsA\nVX39NR/yPcA7VLWQ2KDIEThJAzBhwoQJjyh+FXi59/5ldpuPVwEfsuT/IuAZEdmp6o+OPdhkACZM\nmDDh9uDfAF8mIq/EEP+bgf/J30FVX+lei8gHMBLQaPKHyQAcimf7d3kkcYrXdYrXBNN1nRRUdSci\nfwP4SUwZ6Per6r8XkW+1n7/vmMc7ySTwhAkTJkzox9X22k+YMGHChFuLyQBMmDBhwmOKyQCMgIh8\nkYj8lIj8J/v/7+jYNxWRfysiH73Oc9wHQ65LRF4uIv9CRD4tIv9eRN5+E+faBxF5vYj8BxH5ZRF5\nZ+RzEZH/037+70Tkj9zEeY7FgOv6y/Z6fklE/pWIfOVNnOcY9F2Tt9/TIrKzNfITjojJAIzDO4Gf\nUdUvA37Gvm/D24HnruWsDseQ69oB36GqXw78MeB/EZEvv8Zz7IXXRv81wJcDfylyjl8DfJn991bg\n/7nWk9wDA6/rPwN/UlX/EPB3uOVJ1IHXdLSRBxPimAzAOLwR+AH7+geAPxfbSUReBnwt8P5rOq9D\n0Xtdqvq8qv6iff0Cxri99NrOcBjKNnpV3QCujd7HG4EfVIN/DTwlIi+57hMdid7rUtV/paq/bd/+\na0z9+G3GkL8VVCMPPnudJ/e4YDIA4/BiVX3evv514MUt+70H+E7qQ4huM4ZeFwAi8grgq4BfuNrT\nGo2XAv/de/8ZmkZqyD63DWPP+VuAn7jSMzocvddkRx68iUcgSntUMfUBBBCRnwa+OPLRd/lvVFVF\npFFDKyJvAD6rqp8UkddczVmOx6HX5X3POcYj+3ZVvXfcs5xwKETktRgD8Mdv+lyOgKONPJgQx2QA\nAqjq69o+E5HfEJGXqOrzVjaIhaWvBr5ORJ7BDH66EJEfUtVvvKJTHoQjXBciMsOQ/wdV9Ueu6FQP\nwZA2+iH73DYMOmcR+QqM7Pg1qvpb13Ru++JaRx5MiGOSgMbhI8A32dffBPxYuIOqvktVX6aqr8C0\ncf/sTZP/APRel5in8PuA51T1e67x3MagbKMXkTnm9/+RYJ+PAH/FVgP9MeALnvx1W9F7XSLypcCP\nAG9R1f94A+c4Fr3XpKqvVNVX2Gfpw8C3TeR/XEwGYBzeDXy1iPwn4HX2PSLyJSLy4zd6ZodhyHW9\nGngL8KdE5FP23zM3c7pxqOoOcG30zwE/7NroXSs98OPArwC/DPx94Ntu5GRHYOB1/e/A7wT+b/u3\n+cQNne4gDLymCVeMaRTEhAkTJjymmCKACRMmTHhMMRmACRMmTHhMMRmACRMmTHhMMRmACRMmTHhM\nMRmACRMmTHhMMRmACY8cROR/FZHnROSDV/Ddf8FOOy1E5JFYlHzChH0xdQJPeBTxbcDrVPUz/kYR\nyWx9+SH4/4A/D3zvgd8zYcKtx2QAJjxSEJH3Ab8X+AkR+X7gSeD32W3/TUS+EdPI9hpgAfw9Vf1e\n28n8fwFfjRlCtsGst/ph//tV9Tl7nOu5oAkTbhCTAZjwSEFVv1VEXg+8VlU/JyL/B2ae/B9X1Yci\n8lbMeIenRWQB/EsR+RhmeukfsPu+GPg08P03cxUTJtwOTAZgwingI6r60L7+M8BXeKtHPYlZ/OVP\nAP9IVXPg10TkZ2/gPCdMuFWYDMCEU8AD77UAb1PVn/R3uG1ziyZMuA2YqoAmnBp+EvjrdnQ1IvL7\nReQu8P8Cf1HMWs0vAV57kyc5YcJtwBQBTDg1vB94BfCLNvH7m5glLv8p8Kcw2v9/Az4e+2EReRMm\nWfy7gH8mIp9S1T97Dec9YcK1Y5oGOuGxhIh8APhoWAU0YcLjhEkCmjBhwoTHFFMEMGHChAmPKaYI\nYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU0wGYMKECRMeU/z/pw86qjP4jcAAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu0Ldtd1/n5VdWqWvucvc85994gYHJDItAorXbThofi\nEJCBIE/RHk3k0QbFGDEIGuVl+2iBMVBsJAoarjwigkQ6pulIRwkPUd6dBOlOJ2kbjGASwiO595yz\n9zl7Va1Va/Yfs2bVrFlz1mM99t5n3/UdY49dr1Wrqtas+Z2/3/f3+01RSnHAAQcccMABLqLLvoAD\nDjjggAOuJg4EccABBxxwgBcHgjjggAMOOMCLA0EccMABBxzgxYEgDjjggAMO8OJAEAcccMABB3hx\nIIgDJkNEXiUif/2yr+MqQkQ+UUTefdnXccABu8CBIA7oQER+RUTOReRMRJ4Rkf9DRJ40+5VSL1NK\nfd0lXdtLROSnLuO7nWsoq+dzX0R+UUQ+8zKv6YAD9oEDQRwQwmcppY6BDwZ+A/iHl3w9oyEi8QV8\nzc9Wz+cO8J3AD4jIYxfwvQcccGE4EMQBvVBKLYDXAh9ptonIq0Xk66vl54jID4nIXRF5WkR+UkSi\nat+viMjXiMjbK0vku0Vkbp3nM6vR910R+RkR+b3WvidF5HUi8lsi8n4R+VYR+V3Aq4DfX43e71rX\n849F5A0i8gD4JBH5CRH5Eut8LctDRJSIfKmI/JKInIrI14nIh1bXcV9EfkBE0hHPZw18F3AEfKh1\n/leIyG+KyHtF5Iut7Z8hIv+h+o53icjfsvbNReR7q/u9KyJvEpEPrPbdFpHvrM73HhH5+gsiwgOe\nxTgQxAG9EJEbwOcBPxc45BXAu4EPAD4Q+FrArt/yBcCnojvP/wr4n6rzfhS6Y/1zwBPAtwOvF5Gs\n6vh+CPhV4AXAc4HXKKXeAbyMavSulLpjfc/nA98AnABjXVCfCvw+4OOArwSeAr4QeBL43cCfHDqB\niCTAlwBnwC9Vmz8IuF1d958Bvs2yLh4A/yPa8vgM4M+LyB+r9v2p6nNPVs/kZcB5te/VwAr4MOCj\ngD9Sfe8BB+wNB4I4IIQfrEbo94BPAb4pcNwS7Yb6EKXUUin1k6pd4OtblVLvUko9je7ATaf7UuDb\nlVI/r5QqlVL/FMjRnfXHAL8d+KtKqQdKqYVSaqjT/9+VUj+tlFpXVs8Y/F2l1H2l1NuA/wd4o1Lq\nnUqpe8C/RnfEIXxc9Xx+vbqnz60+Z57J366exxvQ5PERAEqpn1BKvbW6zv8b+H7gE6zPPQF8WPVM\n3qKUul9ZEZ8OfEX1PH4T+PvAi0fe5wEHbIQDQRwQwh+rRuhz4OXAvxORD/Ic903ALwNvFJF3ishX\nO/vfZS3/KrrjB/gQ4BWVK+Vu1dk+We1/EvhVpdRqwvW+a/iQDn7DWj73rB/3fPbnlFJ3lFLPUUp9\nnFLqR61973eu/aE5l4h8rIj828p1dg9tJTynOu6fAT8MvEZEfk1E/q6IzNDPaga813pW3w78tum3\nfMAB43EgiAN6UY1kXweUwB/07D9VSr1CKfU7gM8G/rKIfLJ1yJPW8vOBX6uW3wV8Q9XJmr8bSqnv\nr/Y9v3LfdL4ydKnO+gPghrXuI7fLwD8HXg88qZS6jdZUBKCyOP5npdRHAn8A+Ey0O+pdaOvqOdaz\nuqWU+q8v5xYOeLbgQBAH9EI0Pgd4DHiHZ/9nisiHiYig3VElsLYO+Qsi8jwReRz4a8C/qLb/E+Bl\n1YhaRORmJeCeAP8n8F7gG6vtcxH5+OpzvwE8b4SA/IvAHxeRGyLyYWgt4CrgBHhaKbUQkY9BaycA\niMgnicjvqTSY+2iX01op9V7gjcD/IiK3RCSqBPVP8H7DAQfsCAeCOCCEfyUiZ+iO6huAP1X56l18\nOPCjaD/7zwL/SCn1b639/xzdub0T+E/A1wMopd4M/FngW4Fn0G6ql1T7SuCz0ILsf0GL4J9Xne/H\ngbcBvy4i7+u5/r8PFGhC+afA942/9b3iS4G/LSKnwN8AfsDa90HoiLH7aDL+d2i3E2hLIgXejn5e\nr0VrPwccsDfIYcKgA/YFEfkV4Esc//wBBxzwiOBgQRxwwAEHHODFgSAOOOCAAw7w4uBiOuCAAw44\nwIuDBXHAAQcccIAXvjjzRx4nkqoPmh0RCUSxECcgAhIpohhEFBKBJJHeEYu1HEEU6f8i6A9E+i/S\n/xUKpdYoFKGwfBUM1/djH5bc1GvwQXSIfv8xMuKYwHmECJFI71drWK/1f7WGdQlKQWm262W1Msuq\nWob1WqrDBbWGclUdUirKUqHW1U8oUv2vvj8S/TNXP7EIIFUbqY+x1gWIBImkah/1Q9DtSKrtBlHP\nsxl6bn37fd9hvls3dus4Z93eD3U7VkpZbUZV7VxZxzS/o4hUy1JvF2mv6w9WEc9KVX/r+vyYNq/W\nzX5z7KYY0RZtvOVtv/Y+pdQHbP6F8HvkCXXGctSxv8LpDyulPm2b77tIXEuC+MD4iFc9+fFk84jb\nd2Lmx4okXZPdXHN0siKZKeJbCfHjc2QeEz1+RHQrg3QGxzeQk2M4vgFpBvNjiFNkfgKzOcQpK1aU\nakVePqBU/oZRTkoCJngeG3m5HjxmG+SlfrmyOPyCZvE4ozOW2YhjEmKZkcU3iSUhIYHFfVgVqPwU\nFmdQ5HD2EHV6BsUSzh6yvp+jHixZ38spn16g8hXFmXB+mlAWwuJBzOJMOD9fc3qv5N7dsv7Oo6OI\nNBOyuf5vts0yiGe6nSQzRZwqZtmaJNXPPJkpogwkS4huJMg8QeYxkiXITX2vkul1QLelPvTt79kn\nWRY+Pp1VfxkkVZpIkur2m1jbqnasROp2V6oVq3VOqVatbaVa1u0uL6VuG1kcEcuMuMplNMtJlFXr\n+rcV09mXBSwXsCoAUKtcbwO9bVXo3xr073xBiD7yr//qtuc4Y8nfij9m1LEvKX/sOcNHXR1cS4KI\nY7YjB/OSGXJI2i9lLLPJBNCHfZGD6fDHHRtZy/p/Fvu+M3wdNnn03ZMhD/MM8/IBWXwTBJL5LVjc\nRzhp7J9jPS5Vp2dwfIOougrzbeXTC1JWwIrz04Q5JRBje1CLXF0+MWy6jwAxDH0+8eQSzuadTb62\n7G7LS6naiPn910BOFi+t33NJqVaaNCLq5VhmkGRInNZEIUmqBwKrvLnWahtwoSRxQBjXkiAkku3I\n4fg4SA6XAXsEt915wqP/Yt09d7GOSSPXmvATRBarXhIbIo8OSZSFJgWoOzoBKJYodNevsqbatVqs\nSFkAK1aF+a6YWaaXi1zfR5rJxRLDFpbEICmMOVfsIYnKerBhrAcbtvVg0LQhP1EYUjD/V+QkUeYn\nCggTBacHkrgCuJYEEccwy6jJYZata3LQL7smB8nihhyyrCGHyiyvkaTekZcxr8dYAJtiCjn0EYCB\njwj6PpeXbUvCTxrQb1mEySOLm2fXIok4haNbFUmcwo0TfdDZQ+TkGAUID4ken9ffHj821yRxtmZe\nHb54EHPrTsSy6n9CxADU20LEACA3Z8PEcJGk0Dl39/OhQY6v3RorwIaxHoq11L+9SxR5qcjivB4I\ntKyHNdOJ4sYJpJXb6YoThUSQzUcO3h7s91p2jWtJEBJBdrOsyWF+s6zJIbqT1eQgJ0cNORzfaMjB\njFh7rAczOurbP8YNNc69JNX/aUFnPjLwnefhSjr72u4l93t9nb3/2rJ4HSQ348+2n8FqnetT7Zgk\n4qpPvjRi2AcphM7pcy0FBjlGe+hub1sPpi3ZbSqNVKu9aCLZEVHEObp6i7mAq00S1xXXmCC2IAfX\nenDP70RZaNN69w04L9ejyCFEBM15up/1kYJeNt8X1x24a0U8XMXcSIZdT3YH4qIhjnWrMynW1fw4\nOyaJ1VL2Qwz71BUmnq8FH0mA170EjSAd1h66gwfT7rYlCoDYJQqMe7FoLuaKkkQkQpqNHLwdLIjL\nh4iqySHKqMlBsqQhh3TWkEM665DDZWsP9ujNvHxDRGAf68ImBPe4hhT6zj9kRbT3Z/Hae71+F8W6\n5cMu1apRoV2SiK3RbrGsOxJJl/UVqLnWJlIWJJXivsz1XqMz7I0YLoMUQsf0aGg+MrD3udZDu700\ny/bv3B0QrHuJoixXrcgnaBOFnN/XJDE/PugSl4RrSRBRTE0O8WPzmhyix+cNOdShrDM9KvWRgx0W\n6EESZbCeHtJqMGR12B32WHeRgUsI7rH2uc3yoopeerCCmwksSqHqa1shjhrTCANCpGEiY2ySWDan\ndEnCdBoAnGorEB3hJCfV2Z5eEJnJSJ9ZMKccFJ+BWoCeTAy7JIUpVsLYzwXcS0AntNWGbT1Au00Z\nC9K2HELuJ5coSrUkllWj4TlEEctMk8TRLWS5QC1Oqy+tdIkzy/V0zSAiTwLfg56+VwFPKaVe6Rxz\nG/he9PwqCfD3lFLfXe37S+ipaBXwVuCLJ8yw2MH1JIhIbUwOY+GGuu7SzeS6luwXr8/VNEQKer2f\nGBZl6/CaLDQ2tzBuJF13k3FVNOGT65ZoXZ9mBySRZlWi1ybEsE9S2JQQvOca+M6Ae8nAzXuAxnpw\n25ZLFuOsCkMUiixe9hJFLIm2Jqha3arQLkbQ7uArJF5LpEOmd4QV8Aql1C9Uc6O8RUR+RCn1duuY\nvwC8XSn1WSLyAcB/FJHvQ88L/xeBj1RKnYvID6CnpX31phdzLQkC0eQg86QhhyxpyMEkFHnIoWM9\njMBYQdpGiEx8riV32cBHCL5jfaQAfmJYWKQx70mYs8lCRym56+0Ow73WplNZW53I/khi/XC1PTFc\nRVJwYQVZhGDcSz5x2sC1HvQ2P8H3kUV7oDCeKLL4JmC5nExuTJw/ErrEpqgmh3pvtXwqIu8Anoue\nB6Q+DDipJuk6Bp5GEwvoPv1IRJboGRV/jS1wLQlCkgiZJ0S3s4YcWnkONxpyaH1ueAS2T9ghrbbu\nEDLz258Nk4K7HiKGRYfjzGdU/bl57B5jHxdCt2Np7qMhieY6R5LEctGQRGqJm3muK2IAqtIgZF5p\nC1YuQ00MG5LCpRLC0Dnd7OkAbHG6z3rIy6jjZvQRxjiyGCaKvHxALEmVZT9DTG7Mo69LPEdE3myt\nP6WUesp3oIi8APgo4OedXd+Knrb219AzFH6eUmoNvEdE/h56kq1z4I1KqTduc7HXkiAQGU8OW3T6\nJmPUjMRcN9MmlkVIdxjjPnI/767bxGDWbWKwCWMeW1rESpjXLWWILGCKddH0/Pp/43YaQRJY0S6c\nadeDtU1/6znR40eoB/pco4gh0PleOCHs6jye0hp98FkP9j4XTbRb2Gpsk4WJgoor61Efr8+jk+7S\nyHzfA5IoI42OrqwuEQl1dv4IvE8p9aKhg0TkGPiXwFcope47uz8VPaXuHwY+FPgREflJdPmAzwFe\nCNwF/lcR+UKl1PeOvTgX15MgYqk6gqTRGgw52HVqfK4laI+6AuJeN9R1PBn4BUG/7uD6fzclBegS\nA8Bi1SaGvMpCzoEs9eU72N/VdUFpcdt/fJgs2iShLYhujgSwMUlI1riVWrWLDDyd8UblLTbBtueZ\n+Hm37pJPpPZZD+5vZ+C2v+4gAPyuJnt7ZIVTr4FzYlmRRkf1IbEkrd/8KusS20BEZmhy+D6l1Os8\nh3wx8I1KV1L8ZRH5z8DvBD4E+M9Kqd+qzvM64A+gBe2NcG0JIrrVhLB2iu9BmBw2QBJlQStiDMbo\nDkMuJHfbJsRQFF2TwBCF32Jou6Bc9JGFgeloNAm6ZLGuo15a2IQkimWXGKyOtZcMdkEE+9QdoBn4\nbBBwYWAGKVMHIQaNJTFEGF2yMORQrGPyUnErLcniJcW6qVhgfnMjXgONLnGJSXUS6RpfOzmX1hW+\nE3iHUuqbA4f9F+CTgZ8UkQ8EPgI957sAHyciN9Aupk8G3hw4xyhcS4KQKBpNDh1MEKd3iT7XUig8\n1bdtLDGY7TYxFHlMUeULpNmaIo9JM+uEg0QBY8liHtvXbbuW/CQBTjixRRJ2tIubXCXpTG8znUZq\n6ij1VEWdin13/hug1h8c95LPenDhsx6gG+EG7bYQIo3udrs922K3ScBcc7+IK7dTzo0EivU5pQqJ\n149OUt0IfDzwRcBbReQXq21fiw5pRSn1KuDrgFeLyFvRzf6rlFLvA94nIq8FfgEtWv8HwKtvjMW1\nJAjtFJx1K7NChxy2sR7cqqRj3EzuaHi8a6l/BLcJMQAURdwihvPzpPoPR0f6A4YoiiImTcse9xMY\nspjHytuhgEsWbbHajm7y5UiA9Qytkq6mwxDQ/mnze5+d6XbgdhjblOO+ZjDidJ/1EPotQ9vBHQSE\n0c3aFytTvykGmEbU4nWtSxjx2ugSRrx+RPMllFI/xUDUh1Lq14A/Etj3N4G/uavruaYEEXUrs46B\naz0E9AfvRzdwM+3CteTLW3Ajk8YSQ5F3XUyGKIo8Is2cyp6McT+1ycKI32ATRZckwFhS3fDX2uVQ\noSFoHe3iIwng0en0L/E6Q9YDNL9bH25aP02YVKTTXtoRUuY3j6s2UHKVdQmZJlI/UrieBCHiJ4cd\nWg82bMthrFg9FNJqu5ZcgRDGEYO93SUGgCKPWsSgCaMqU5GVXRcTDVG4VgVBiwL6XFAhkvC7nfyR\nTSYDV4dJBkiiCMf8P/Jw9Icp7qWx1oObRBmKYBtDIiEY4tBkYYjBvAOPli5xXXCpBCEinwa8Eh2e\n9R1KqW8MHPfRwM8CL1ZKvXbwxHHUFN+rt+2eHNxIpiF03UvDIa3bEgM0OoNLDHo5bhEDRTV6LyJI\npT7GJgzb/VRff8D9pMNk9fI8aVxetlVhRp22JmG7mMbmSGhybpOEHlHStIVVwShcZ0IJoM96cNHn\nWtoGTea+cL/QgvVjGdi6xK10WV3vs0aXuDRcGkGISAx8G/ApwLuBN4nI652UcnPc3wHGJ3xEUTuj\ndExUx4bitO1O8rmZfBaF61ry6Q72C+rzAY/JZZhKDOm50+mT1ETRtSa2cT+BLwLKrvvUjWiKnAqw\n40iilYFbFu3f2UcWZttQ2Yo+XFFy2dZ6WIzQE8aicTl2B1mmzTxRuW2eyWOyWHgs0xbF/aIRr/V1\nXm5SXbTbUhtXCpdpQXwM8MtKqXcCiMhr0Ekeb3eO+zJ0TPBHjz6zRL3kMMp6mKA/wHg3k8+1pNdD\ny+2XcmrIqtEZXGIwyzYxpHnJzFQ/zWLSvKTIYoqqmRTEHWuiIY7x7ifbqrADVM16O/FqeiKdnyQA\n63dXq7zbNqYQSB+mkMs+yCTgXuq9jAnWwzZws/UXgcoAdzLF+3O4mQjzWLiVwjO5TrhrdIlHL6nu\nUcNlEsRzgXdZ6+8GPtY+QESeC3wu8EkMEISIvBR4KcDzn/d4s6O0XuiqQ6hnrcIiC/vFT1I9wbqN\n2dx7LlGqZS2YzGp7tjmbMLI4qklCj4ijznIIYwRoX8iq0RlcYgBNDjYxzIqu78AQBedQHCUt95PB\npu4ncy8uSehnsnkiXYck7N/OzIlsY1X0E4j5fB+BjHVf2Uiz3ZCErT/0YBvroVuKpR/b6BFgsver\ndlFEQV3CiNd28MKjVOzvKuOqi9Tfgo7xXUtPFUqAqp7JUwAv+m9f4BcHSucFjtMWWUBFGO6L7iMM\n+zNxWodgAnapGf21hjyqZR3Xv67EON2jFetmuVuzBmyh13Y33UyaF9F0voYk9Gi+OYcZ8Q9hlrff\nbNuaSM9XFEcJFIqC5lxtjSKhqR1GO0S2iDoWxdxphbZonQUKBrqTDbkw8w74b3De+3t6YU1mM4gr\n6mK6DrAHDGlUtlyO9UCsHiTM2iS/cgYFOyIIifRUttcRl0kQ7wGetNafV22z8SLgNRU5PAf4dBFZ\nKaV+cCdXsAvCqCwLqcx5OzfCzBfhg3aP2BO/R63lh6uGMEwIoO0D1r7bZlQ3j9vEMZYMhuBaFC5J\nGH3C/k5DEkafqPdZJOHmUdhWxM1Aq7Q7h/aUqA1MB2FPQrMTuG0lZD1cBjnsIbnTbW+bwPyO20U2\n6f8+HcsNg46lnUhpJiYSY+2bgAWDRyXs+RJxmQTxJuDDReSFaGJ4MfD59gFKqReaZRF5NfBDOyMH\nHzYlDLOvaogda2JtRrQNecQyI4uXlS9dZ4/mZVRF7HQJA2AeD1sRAGladspmdAgjlTpiyYdZvmJZ\nlcCeFSXLNK7dUH0kYX+fSxL29bmWhGtFGNiCdXea0wZ2LoQXUyyARwnbiOkXBLd9boJQKHTb7di2\nCFr5MbEOWmk5M3f07EQgnk2LaHxUcGkEoZRaicjLgR9Gh7l+l1LqbSLysmr/qy7r2mqMIQxoWxRx\n6tUl+i0JMKMgDeOCiurSA3kZVUQi9cvmWhGg3Uwm58Hg6GhVi9RT0EcSBi5J2ETkkoQRsKFNEn1a\nRMjFBDjuhfBoUIlMDknuRZ/1YLstrtgIddOZD3eBXZDEEOzAhVhmOqKwehUSkjrwRADlBiQc4MWl\nahBKqTcAb3C2eYlBKfWSCSceLxhOaSQBwvAZ4kaXGBKvzbJPl3AJw7ibmg61+T7fNhOW2hnBb+h+\nsknC6BLQTxIGIZKApuMIWREGbkG/kJvJoNeqmKJDjLE8fK4lu0DgATsliVDwghkwlKpqTEaPiBpX\nE9DVIw7w4qqL1PvH1MiTpBvZonBcT5Yu0Sdeu/DpEq54rSM5tBWh/bJdKwL8biaYTg62FQFhkgCd\nN+GShP19PpLQF9VvRWgME4LB3nQIH+z2Y6wHmxgeYZKwy6LsCtvqEib81mdZ2hn3k/WIbSDUc55f\nNxwIYioChGIam2tN9InXY3QJV4vISyPkSuclq8Vdj5sJ+slhmXXdRwZjSKLWJQZIQmPV5EtMtCJc\n+BLn9qpD+H5/23q4ZiSxL2xiTfiSLm2r0mTcQzv8uZ2jNKvdwtezetJucSCITeDmTJh12+Vk6RJ9\n4rUPri5hxOumNHLUEqxDVoSBznLeTIcIYZAk0Il1vqQ6EwabZuvGyrGsCAjNIxFOnBvCFB3C1ZmC\ncK0HlxzsEuOXTBJ9809fFkIkcTMZN1DQulx7ilRfcUc79BWaOUQOGMaBIMZgaNTooJnJzEJAvB6j\nSzRTNOoXQBNFW7C2MY9pRQjtJNzVsSJggCSsXIk+koCuFgHiLcGwKUzC3GYftn77lWfZFab7LAhn\nToqtcQERTN1Jn3Z//jGWRFOjScOu/mqsiFBxx0E9YkuIKJJDFNOzBEOahM+dkFr6Q6LdGB1dosKm\nukReSh0Cq3WItmBt09IU07040idIA+4lG9uQhIFLEmlWBK2IXaA3YW6X8CVdhdxMj6jLaZ50S2Xs\nAlN1CZscbCvCEINd3DGL29FbCVmTYX+wJAZxPStMTcGqaP+FUOQNObjuBLPPPk9ZoFa5dlesiiZi\npixqV0css7rzSqKsXra3a11Ch7iaF+FGoupJ3kNll0NIs7L+c8tlbAqTTDerSnYYsqmL/5kKsW65\nD3SElW3hPFjpTmjhlHowJc/tekGmfpDevm6VkTClrTvYRafQYz2oPK//zDZ7v3d5z9g2vNVuY1M1\noimYOjiw60XZFZDtsvluu7ALFqqB6gxjIQJxqkb9DZ9LnhSRfysibxeRt4nIl3uO+Z0i8rMikovI\nX3H23RGR14rI/ysi7xCR37/NvT37LIipUUvFwItukM6aY0O6hIWxuoQtXmtLQlsRD1fNLFw3E7sy\nqvVNnciK7XUInxUBjSWhjxmfUAfs3Yow6OgQQ6GuIfcSdC1JT5tQea6nNg1pEQdLogPfb2+L0+Hq\nwBo+i6K3FMfVwwp4hVLqF0TkBHiLiPyIU+X6aeAvAn/M8/lXAv9GKfXfi0gK3NjmYq4/QWxSQA36\niWGD0V/ddY9IqrN1CRtZvKxF6iaBLm69PBeBKSRh4MuVqPdZeRpZum5pEaGQV7sezxhspUPYCAnT\n0LYaqo6/Jgl7+wWK12NmNhyDuVvqxYQlX1Lunc/N9HAlrdkI3XlEfKGvVw1KqfcC762WT0XkHejC\npm+3jvlN4DdF5DPsz4rIbeAPAS+pjiuArcL2rt4T2gXUeu/EYDoD7wgRwrqE5yvHFvvTwrUmhkaw\n1i9BM42j34rYhVA9Bi5J9CXU2Ugz/azsEhxj3BnhaUmb59nRIaaGu/ZZDzAoUntJwl5+RC0J2K81\nMQbtqUrNtrYVYeYRCZXi2Ba6WN/oPIjniMibrfWnqkKj3fOKvAD4KODnR577hcBvAd8tIv8N8Bbg\ny5VSD8ZenIvrSRBT4ROe7eXQKJFw/kMIfUl1Q8X+YllVeRKqI1iH6jQZNCP21SBZZOcr8qP+phGy\nIqCfJKCbUAddKwJMxzOt/IZBPXKemDDXG+I6ZD30hLmOIonq2F1BibgzvO4FF0USbiSTjT4roiEJ\nTymOi8f7lFIvGjpIRI7R8+B8hVLq/shzJ8B/B3yZUurnReSVwFcDf33Ti312E0QowcndRpcYWsum\nA6iW2xZFV5foS6qDvmJ/+ufK4hxtRcTcSEx+RBP2amo0GbivQdMpb2dVbEISvoS65rrGWRG+Geey\nkbcyOh/CWBgr539AmLbX6/8OCXSszm0inIZCXC84QuciLYkhHQIawrBJwhv6egUhIjM0OXyfUup1\nEz76buDdSiljcbwWTRAb4+o+pX1iJDF4X/ye5ZALqcaIpLoxxf5cwdoX9mpbEVnAzaRLcPsD2cZY\nEUMYQxImBFaHv46zInxkYHcANwKXvbUO0SdMTwhz3bt4PXE2xF3hot1Nxr3U/B9OnPTqEVtCRO2s\n1IbouQ2+E3iHUuqbp3xWKfXrIvIuEfkIpdR/BD6Z7gydk/DsIohtiGFUFNNSk0RIl/Bgki6xtju5\nvCNYt+s0NWc2ZGEsh/Pz4OV0JgsaQp8VASNIouoImwqww1ZEE94YcSPp+tOMe6mXDKboEL56SxU6\nbcWt5jpEEvb2XYjXl1yh9LLFa6B2M/msCEMguxLv94CPB74IeKuI/GK17WuB54MuZioiHwS8GbgF\nrEXkK4CPrFxRXwZ8XxXB9E7gi7e5mGcHQQyFqk4kBuV0om4H36tLjEmqC+gSRI2w1lgRTfkNu06T\nuZLFSupG6wnBAAAgAElEQVTMahNKqovmmbBSgQBhjLUippKEQZHpqU+nWhG2e8GuxeNaFqYT0MlR\ngYS5vlDXFjEMWA99FkSg49+1eD1qrvULwmWL1wZDrqarBqXUTzHgiFBK/Tp6gjXfvl9ET7S2E1xv\ngpgYkRTa7yMGVXV0ksWofOXVH7y6RABjdAm7kzOCdUMO3TpNi1K/qCZsNE3bczWM0SB24WqCNkmA\nQxSOFaHrNJVBK6I9JWmz3bz8LlGs1nlLqB7UIUL5D33CtNmPbidiCHNAkN6ZeH0Fs4IvgiRCbiZb\nrA59Lli+YCJEOJTaeKSglFdMbP1nO2JQD7odvo/2B3WJ0PFeXaLRI7qCdbdOkwl7NRZFTtvNZEii\nOEq8pTbGEkOf9TAKjhUBDVn4rIh2TZ4uKZhoFZ/FMFqHcK2HMcI0TVsx/yVLBrWG3pDpa5BU14dN\nCWSMUG0QcjXZmdgH+HE9CWIqQu4BB8rpRFvE8WCJ3JwhWQz5CsmaEaAyL7cZLdYvvzkm166nSsRW\nZVFPaCKrZuarZH6LOGo6iWJ9zo3EuJvKOjHo4Uq4X8Q8kQnvz+FOppgnesS0SNecArfvFNy7m3J8\nq6DIY87I6tIYvg7fHv1PxXJEiFFd/sNeT9vPe+4pLZLF3alIszgKkkBnu+VeUqu8az2MdS0VS1S+\n6rSRFoxlEdIl7O22kD0q2umsbjemzchsThKnxNGsziLOyyYkvpl/xDfxjnH1uVWDd4u+Tt7sswcE\nZpsJdW7+N2VoDMw2817YAvaYUOnRELiIqUcuA89agmiNAA28pGBGhM2Lrx5UnYEn4cBYFposzCiy\nepnTWd0JtF5+e7RoNIpEz6Fbv/RJBov7yGxOmhxZVV9XFGu4lS65X+gXIKtcTHp0HbEo4f254om5\n8P4FcLwkT5v8g3t3des2ZbrHFO6biiJAEsWRDnc1BHF0tKrKk2vrYR435Z/r5ZiqNlXz4qdRU58K\npJ4gJpakVecK0O4lhwha+Q9uXa4RriVDDj7L0gvXwugjjDHhsRZcq9UOeMjim1Y9osTKrSnrgpBZ\nLDyTg0sSvhyEfU0jum9S0JWSDxjCs4Mg+vz/PdaDK0ZDlxx8JGEfKzdnqLxEssqqgIYoquXaB53O\nBq0KHacEcZKRxTdr0bpUCbfSc/Ky5H4R81hW8kwOt1LIShPd1Mwb8X7WcFJwRsrtOznn5wlnpBTp\njKLYrFnUxflGwiYHoCYHYz20yaERqA052NaDIYch66GlPbjitBvVNMa11Ilq2nSqtAHdArqWqL3/\nuH26PpLw1fxyrYnHspK8VHVhxKwqluhiarFIH9xXyD7nvkjhitZhunJ4dhCEwRii6HEt2eSgRjpP\njWA52QUFDVmAJov5MWpxiqwK5OiWnvhE9KgwLx+QRlTx3Xn9Muel4pk85nYKxoe/iPXyg3gNFK3R\nfZHHnN3fTPAsPKNZvSNgzluWg/5ryCGzxGnjWjKjSpscjPVgo896AKZZDxB2LVkDCWM99A0YzLFi\nufBMu9D7St0+YJAwWgMMgLOHTXu5caLPx3Yk4Xc57R4hD+QmpNAlBP0EXELYaR2mSFq/6XXC9byr\nAXizojvHtF1LxnVgyGH9sE0Q0Y1kFGl0rQrLxTDkggLtdgLk/D4kaUuXWK3zWpfQknRbl4CYedzo\nEiBwpHUJgDRb17qEi22yru35IFzYriWgJgebEFzXkoHrWppsPdhEULpupTzsWnJE6Zoc8tXogUMI\nmxBGNxDitLY+Q7oEdjK6hcsiCRfbkYKG3RZcQjhYEOPwrCSIDhzrwac72NvXD1cdV4IbMOd7ldSi\nROZxx6oAGhdUn1Vxdta4G8oC4UTrEvNbpFFbl6ASr40uATFQtnQJ0OK10SWMeG1yEezS4LaADNsR\nhg1bdzDf4bqWXN2hT5j2WQ+tzqAsusK0DVeYhsa11KM72G5He/CwbZc6ijDOHjYDi5Nj/3lok4gr\nXod0iftFjCEHX1LirmDP57APUtirBXGNcXhKIxByLdm1viLChNHXSXRdUI6wDW2r4vgGcAo3TlCc\nNrrEbF7rEtrddNTSJYBafLyVAkXEExktXQK0eF1kcVVIrxlR2wlsQD3i38U8165rySYHW6D0uZZs\nYboPnbyHPusBOm4kd7uPHIxlaQ8efJH2bntQixVixYOagUS9bpGBjzBacUanZ82AYge6xK20Ea91\nKPV+4HMz7ZIUXEKYUsBxCBIJUai+yyOO63lX0NUU3Gzp4P6ua8nXAaxzWC31C5PMFG5hSJswfGTh\ndgoGfS4oVSybxDsI6xKVeG10CTivX3Sgzrg24jUo7iI8ATyI19yDOsTUZF+HCvwZEnEJZCy09VC2\nXEvQ1h18QqjPtbSR9eALa+1zLdnbe9oG6NBHn2i9LWn4CCO6ZX0W9qhLXAz6SGEXhHCwIMbh8JQs\nTCWHVV3orv1WuYRhk0VpuwYermrtQuZJ0AVVC9sn1Qjx5Lh5+aGtS1QkYesS0IjXoO/tsaytS9ji\nNUdVclrZJKrl1b26xGHQn5kd9stPCWm1rYcpmBzWamC7lny6w9DAIZA34Fqb4LQLg6p91N9rkYZr\nZayx3JTHN6bpEvNbE0hiPHaRa7ApKQwRwkGDGIdnJ0EErAcbY8hhmUfMsrVFFAbOi7Rsp+J7rYsB\nstBuhXMk06Jk7W8+O4PjY0yilMnCNrqEga1LNOK11iVMUp2tSyxW7cnk5xZpgO7Qc+e+07TsEMcQ\npoa0hoTpQesBxoe11m4knxbRzneYMnBorsNfmsFHHJ0zWKQRskKFh43FGdAkwLImqvyaMbrENGzn\nkjK/3z4IYVTJ97EQ8f4O1wHX865cuO4l7z6/MA0EyQGo/w/DetXtDiJf1VmY9SjSRxbVvujxedMB\nQDuHwqNLmKQ6o0uYpDpbl4Aqqc7SJRb1NKbSqqlz06rtND9abz3N6VBI67YYbT14XEuAQxhd3WHa\nwMGGhzx8xFG1S7v/81mhMtdtJHpcDwrqco2nZ45+1cZUl9NFwUcKOyWEKTMKPovx7CAIH7z1c8L5\nDm4HUBZ9o6Nh0tDWffX2eQijtDNtoe4EgMbnfPawecF9ukS1z9YlgGqyFK1LmKQ6V5cwRKDnItaj\neTMncYgwYDpptFxLju6wjfXQwVBYqw3XtdQjSkO3bcCUgUMbrXbRun6HPCzisNWB9dPntcXp1SVM\nMubxcXdfhX2TxBT3TogU+iKURCldj83ARwahCr6bIKLl7rtOuN4EMVRjqUUS/bqDgSEH42cei7KI\nidP2KMaMNGEcYcSPzbWvuSYPXUW2diWcPWwiV4wusSpqXcIk1bm6hBGvH8uwkupgHmu3k0sWep+f\nMLzwdHjGPWW7lmAaOfShzntwOodgWKvrWpogSo8fODTwtQcDu124l9ohjyUkhiyc43t1CRMybekS\nwkn9WR9JXLSwO4kQbLiE4CODTeesf5bhehOEhaHqmzBelG77mX3wD7lWS+m4EOyOwow6tXtC70/S\nNZikWRZIlhA/Pmf99HnlTnB0CbBGiG1dYkqxP13xUtUlFjQhOC4mizDsMeioMs9VR+cLaR2Lra0H\nmxx6MChKW+QwdeAQQllpOb5BBeAQyBrur2q9Kn68O6PcGF2idk/2FPu7KIQIYdA6GEkGvXOPXyJE\n5LuAzwR+Uyn1u3uO+2jgZ4EXK6Vea22P0ZMJvUcp9ZnbXs/1J4iAxeBaD2NFaXuEWHo6g3imesnD\nNwp0icPuHFodwtm6Gi0uaqGypUsc32ji4KGlS9RJdSOL/Zk6PFlsiv7RIQsbbbKAKQLlNq4lH3qt\nh5DvOWA9uGU0QhFLhhz6Bw5tBN1J9jGeQYX+PpdA1iQoIlaUTy9ql6R9NR1dYmRSXWd2wx1g7Pla\nhLBLMtilBiE7LbXxauBbge8Jf53EwN8B3ujZ/eXAO9CzzW2N60kQjsnZZz10sqUHyMGsl0th6R2E\nDHeM5TImdl76lsVgtll5FtrSiDg6WcH9ZiTX0iWgEa+hSapLM21hTCj2l0alJWC3yUJPzkKQLKon\nGXwmdoTUtiGtY62HQWF6hO4A4YAFu11Mga8tuPC1jXrfUigLqduGIQm7QEY7wKHBxkl1HkyOChpz\n/BAhrAbch75zBD57VaCU+vci8oKBw74M+JfAR9sbReR5wGcA3wD85V1cz/UkCB88ZRIMOhVaR5LD\n+Xn7hT06igKk0cUy16/fzEnoLJeNn8V0HHUHsVwDCbNszRzdURldou4MbF0C2i+/pUsMFfsDTQB5\nGdVkkZe63IIpi7AZWUDLHeUJaXXRJ0y7CFkP+uFuL0r3WZXhQUM/lrl02oEPvrahodvh+aluG8ly\nTWqRRH3U04s6W18quWFSUt3kO9sCuyKDEBFcHkE8R0TebK0/pZR6auyHReS5wOcCn4RDEMC3AF8J\nlpi0Ja4vQYQE6hGuJYMhcijy5iVNM+kQxhicW/NBHx213ROGRAzmx+39uiNY1OZtE+Z4XifVeXUJ\nhov9lWpZdfxlTQJN6YM2WRi9YhxZgE0YvpBWn2sphJ1YD74r7GkboYGDb9AwFqYduG0gBLttzLIY\nbpqHXX2+ckeaQYTnG+tyLlOS6naGkR30XonArbm1KWKpy5+MwPuUUtvMGf0twFcppdYiza8mIka3\neIuIfOIW52/hUglCRD4NeCU6Y+s7lFLf6Oz/AuCr0O33FPjzSqn/a/QX+JKd8FXgHOdbDpED0Fnf\nBEVgop40Mw0h0p1BdV3zE+BMjxaN3xkqXQKa6JU6+3p8sT8dCtvMfQ19ZNEVt22ysKGjoZr1MYX4\n9PfswHqY4FoCRovSpm342sVUuG2g+e37EAExq5mqrEwDrUvwjB5ERDcSojvtTxrrYWqxvyHsRAQe\nSwTBcOWBaxgITriieBHwmoocngN8uoisgI8FPltEPh2YA7dE5HuVUl+4zZddGkFUQsu3AZ8CvBt4\nk4i8Xin1duuw/wx8glLqGRH5o8BT6AcxDSNcB33JcECHHPLFxWUQ5ZW1XeSK23diTGcAEKcRsKpD\nHQGiO407oaVL2MX+XF3CKvZnZ9HGMqNUOoKliXjqkkWxNoQQjoTyIeRaGhPWOtl6cLGhKN2nR+26\nXeQD4frZ3C7FbWp4E9QlgGBSHQzrEjX2mWi2KxIYIoAdEYSINFV29wyl1Aut73018ENKqR8EfhD4\nmmr7JwJ/ZVtygMu1ID4G+GWl1DsBROQ1wOcANUEopX7GOv7ngOft8gLGRCzZkSk2OWw7UtzEFXF0\npL8zzYRbdyIWD2LmlLXv2egSQB3BsoYmqc6nSwQmIYrjptyCHeLokkVersniphCgSxahSCgf+iYB\nAnZvPRgEBw/Doc7uwGEXluQUFHlJmok1eGhP9NCnSwwm1bm6xK799mPPty8SuIIWhIh8P/CJaK3i\n3cDfBGYASqlXXfT1XCZBPBd4l7X+bvqtgz8D/OvJ3zIQleLD2IilTf3N9aXl0z+vXQ5GDJeaJCAi\nSRuXgitemw6gVezPJglAKmEwibWvOY5mVdnwZU0QxrIATRZppF1SrmUBmixOZlCsu24ofazUbiWg\nJyFOenMeWuRg5TzUYa2BUt6dOR7oBiwYhEKdfVbltu1iOvSvfH5uyMGdDUg/7yQvWxFONuw2Ah6X\nUroHi2ETDWCbDv8KEoILpdSfnHDsSwLbfwL4iV1czyMhUovIJ6EJ4g/2HPNS4KUAz//g280Oe6rG\nkdBJSNVIcY+WdJpFG5FECKsiIpk1k9bE86Txp5t5A9IZKs8RZ5a66gTNyeK0Dl1MSEgkQYn0EIbe\nnkZwI1lRqiWgyMs1eSmczPRkRQ1hNF1UmBTSkaRwr+1O6iujUT0DADz6VD3XgkMQOhdhXZ2+cSfo\n6CPdGQ+5gy4bq6WQoIgDEVMqXzWk4E4fa+ZIH4Ndib+7xD7JYbd5EFcKl3lX7wGetNafV21rQUR+\nL/AdwB9VSr0/dLIqVOwpgBf97ud6YiVnQZGt8eJqf63dt+jYc3dU1p6CcZsRY5rpc2xDFKul1AlT\nq6WQZnrZ1AqSLKnzPcSUCDcvTDozGVuoVa6f0WzuddVIZVkMEQYYodtPGNCE0F4YKXggWRbM1jDl\nTHxtw05Os9uGdi/tpl1sgiJXHB0NH6fythXh7dwKayrTepB1BTv+A/aKyySINwEfLiIvRBPDi4HP\ntw8QkecDrwO+SCn1/13UhTUJSXbZZrsj0J2t8f3aoYmbdgqGKCBMFmNDINd5VTralIWuazfF1JMP\n5RUZuFZEkvkzVD2ksSlhNC4pRSyVO+siSMETpqlnwmiv62fVvBotklj628Yyl9r9B+u6XVw0SZyf\nr5ll49qJgetulY71YA0mrio2cD15qzsf0MKlEYRSaiUiLwd+GB3m+l1KqbeJyMuq/a8C/gbwBPCP\nqrCu1agYYpG6MYc6ABfuSNH139r9kOkI8sW6JgkD04nvwqqA8ZZFWXSTrdYPV5rW6pnIHCsiy2rC\nqP32cd59RknqJ43lQhNHBQGIUy9hALXobZZLtbwQS6G+hwmfc+PaTfvQ0WJdktDhx66FqY+5aJIw\n+tTGaQt2rhAewjigjUiuNnlugUt1nCml3gC8wdn2Kmv5S4Av2fd1mA7UJgmcQUfY1QSmM9g1UUCb\nLIZgwnKNDmFg+9NrKwL8VkRZ1IQqScU4UzpkizQM0RjRO5GENGkTxl5JwUWgxxw7iOChrqzrHUDM\njEPG1zYuniSAKuKqS2ZuOY7BUtX2CPxR6wgP1sNWuJ7KSgiWVWHDF9Fki5IhV5NxJWRzvzUB7MT9\n5EOfK8GIkbabyaCxIiqR2lgR0ESqVB36qGSnVd4QSb2tLh6k/xvrY6ZrASXVdyQmf2GfpDAGlT41\nRBLRjcRrZZZFHBhAgE0Yl0ESY+AK8kCPWL189EjCwYEcxuP6E4T98gdGE0F/szNS9JVyNqRgkwT4\nM6t3ZVVMgXEz2fBaEelMi5CVFTEFqixqUmnBIhhJMhz1vzqmaFdZvQhScC0Jt10EBhKt3BKrfehk\nRegOIOxtlydebwVbrIaqnVySJnFVw1Tl4GJ6NGE3Zgc2KZj5hQ3MSBHHsmisCl8nQL0esiYMLoMo\nbLhWRMvPvGm8u6/zt7/TJR17EHeRhdN8WoSrV1ltxrQT9WDpdUUmqFZYtN0+lrn5rS9flxiDQbEa\n2hbEVbEmQsThm2v+YD1MwvUliBA5BPIiWoSxaKZz9PmbfZ3A+fl6kjUB2xPFGDHShDTG1dzWNiSz\nRoLmZd9FKOOWkUV7QeyxjExcf4sQ2qGvZl9ItCZfDUS92Udfvi5hYCLdWuGurhZhvyN2QMO+SSLN\nLiakdlcWycGCeMQgXVdQ/eJ7RofQtiJkngRdTXaSVDyzje/m5bdJAui1JmCaTpHNo04Bt14xsuoD\n1WKFzF09YlWL1HuNVhl6Ea0S03uFTRKuJeEbOARcTQYR+hn2DyLMGS5fl2hqi629kxD1QeW5rtFk\nkwR0CeOq4GA97ATXkyBc+KwJz7banVCNtKMbCaVjdttJUqsiIp4pyqUOMW27FMB1OcFw1dc+q2Jc\nZc/xUHmp79n30tuYOtIaYfLbL6ucHOt9x8f7sSjcc9rk0GdFWM8j9OR15dw+kjDrmiSMpXmRuoTR\nzkJzYNvouJnMgt0mfBbEo5ArYeOq6hlXDNefIFwi8IwUTSVGY0XUeQOL1WAHECIJn8sJhq0Jg13r\nFF6x+ubMb0VM8OkO7ffO5mf/t+dJNp3NvojCxZAV4az7Mo5DkU3OVD30i9f6+H2QxKqIBqc1tdtG\nMOTVtI/MIlSfm+mirYmRHX1oVsmdQKR5LtcM15sgnM5OsqzdUEyEk8k0NnV47NLZng6gyTfwdQhd\nl5O9PsWagPHZ0z7Y4a6hWjEtKwI2LobWMd/daqnW//ZUrznRrUzPR3B8o3FjHN+oJ63ZKYybyUcO\njsVQ35PV+bXckvmq1x0JurBfN7gBLkKXKJfSO52p0SH62ga0XY/mmUgrPPoCdIkpOFgHO8P1Jggb\nPkvCsSLs+altK8KFiVoxL/9qKSTp/qyJTdA3cmwlztlWhF2CIwCvH9d9IT3kYJOCXTFV5jHqwVLP\nl1wsUelME0VNErOdEIUkWTivwxZFrXbRcjV1rIl4dHh0A78uYdrFReoSq6UEdQh3wOSzwGtNwuz3\n6RLW8ZOxQ6F6r9bDNcf1JYjAS+9b18Xs/FbE0Aixjc1IAsZZE2OxzKOKxJyrq0tvdJPnWlaEa2nZ\n6CMDa72Zla2sXXehqV3jx+eapLKkIYrjG2A6IUMUWwrZNUmExOq+Tq5jXayCkU3ddmL2gk+X8InX\nsJ17cZl35zs3CA0e6uKOfZnVFll6SaJv+SLgtMdeYXpXZHEotXF94HMz2aPC2qz2CNZuVc9Zpt1N\ncaocVwJMcTnB7qwJPZNY+zw+V8KQFQH4X6AeghhDCuYYMwFPMlOo/AzJkpooosePkIowaqKwNYqp\nROFL4oOuWB2yInJn+4TKwD6SMBbnZegSvYMHN+vejuwzCw5ZdlxOV4EkQnhErIcRUzH/VeALqtUE\n+F3ABwA3ge8BPhCd0vOUUuqV21zL9SeIPtG11RG0rQg37NV1NRmXko8kLsvl5HMb+Lb5Q16dQn4G\nAxbDWFKoavR5p3OdZWvmN1eo/Iz4sXnteqqJ4uSoPWfyriOeBqyIjqupR7RWi1V3MFETAoTFa7NP\nb2u0qukkcX6+9mpXYwcPQG3RdRDo+FthsLB5KOzYOSfM9/esX4j1ADvNgxgzFbNS6puAb6qO/yzg\nLymlnhaRDHiFUuoXROQEeIuI/IgzjfMkXE+CkICwO8KFELIi+l1NBl2XU3t7f2Id7Nbl5HMluCPF\nXn+zgcdK0Mvt2fnGkIKZqc9cH8D8Zskyr+ZPzhdEGTVRRLczJC+1z78iioYkRgjZzj6vm8nAZ0UM\ntBm3E5V5ZXHithXo0yXMIGJf4vWUwYO+j7abybYwB0nC2X4lQmF9QRNXE4NTMTv4k8D3Ayil3gu8\nt1o+FZF3oGfuPBCEF1PcBoStCJnHYVeTZS2MsSb25XIaE87ojgrNSL3ZXxGj53P2MZuSgiEEex7n\no6OIcpmQ3SwpixlxqmqiiG8ltbVjiKIV8VSHxY4kCl+Gt9nusyJGuJrsgQWA1OJ7e0ABblY+TE2q\ng/3mS/S5mcz9DZHmVdElHuGkuOcycipmEbkBfBrwcs++FwAfBfz8NhdzvQliCnqsCFuwtl1NTSkO\nMAL1rl1OsJk14fqa1zl1VjW03UwdK4LppKCtgnGkUOTr+h5P75Wc3I45ymNmGTVRzE9KkmVJarSI\nxYroTrZdxFNFAqMjmuptAXeJpUc0kzK1X6l2V99Ynqat9IvXZnsT7bTJJES+wYO7zedSmupmqvNa\nLiMUdmx49j6sh2kupueIyJut9aeq2TA3wWcBP62Uerp9OXIM/EvgK5RS9zc8N/BsIYgx0SkVplgR\nKtfzA6xzNyfCYNjlZNZDJAENUWwK15VgjxRDVoRNCua+d0UKRa7qbXpebkWaSU0U82NNqtnNNati\nTZJqolg/XG0U8dQpR24QyomAfivCuy/8KrW7+r4Ip+aoTYv9mWfZh6HBA4TbBdDOvodpLqcpukRf\nqGtPRz86rPVyXE3vG5j07D2MmIq5woup3EsGIjJDk8P3KaVet82FwnUmiIEZxEJupmZ/vxURIomp\nLqe27xlCLqcp8ImRBsFRIVXF0puzCeSAlxzKal9DDop8sa4toYYwmo4yzeJ6Tmc9z0VUkVqVlJiX\nRKxaFtz66QVyc6aPMBnZ1XJ1Un3t1ix5rfkm9A20/5sOqVg2baIO3XWiuwb0iNaz9YjX1V1U/8eJ\n1/b+fbmbfEEMXuzChXSREU6Phg4xOBUzgIjcBj4B+EJrmwDfCbxDKfXNu7iY60kQplifcTUUebcR\n2tEp7scxHWk4Hty88NxI9Mg2059JM1WRRemQBQ5ZlFUnOy4c1iDNhKOjqI5xj2eqdhUkM0Wcqnp0\nmKRNUbYoa0a50Y0EmSf1CFGypHYv2fdsLChDjrZP3dyne53mvrQV0fjTDQFowouqe9GfPDqK6iKE\nt+5E9T2Ze5nfLGvh2r5unXxnXDsr5ATU6VkThppW0U6c6d+5jxTcTt9HCn2dSg9JSJagKgvUPEPT\nXow1YdqJ/fvrMU7zHI+OjAbRfqZpJvXzM9FLs2xc2zCWg2RJ3S5AW8ymXdT6in1v9vsUWK6thxHH\nTopectEKohifFOebKGwjiGx3/RZGTsUM8LnAG5VSD6yPfzzwRcBbReQXq21fW83cuRGuKUHEkB2H\nK3fah1b/XaIYcuq0XE5m40SyAHsflVVBZVVElYuhESa3IQbjUvIRg68DMFaTsaTUgyVqHrd0GHm4\nIspXJHlZ35shQWMtxbPIuRepOzW7c7t9p9EgzP0cnaz08q2kQ2o21k+fVzWz0CXMj2+gTs90tNPZ\nWbsjWhVtK8HzX+UewhgDD0n4MvTNMzREEdXivv79TPsoC8EQRTwzllnUeo7ZvHFBmvZhymuYdrAp\nMZjrr+9nCimMOd7XqU6cO3w0HOuhXe7lamFoKuZq/dXAq51tP8Vw1zUJ15MgogiZn6AWp+Fj3Gxq\nHJIwL/vUrzYLI8nCZ1X4yMLAEIMhgDEvPzTEYF52LzE4VpZ97y5RqEVZzTGx6hAFNK4nmyhs4rOJ\n4ugoYn7c3Nf8RJ8nPVb1PUR3+kdoKl+xfnqhdQkeapcTNLoEVVvYNSm4sNwsPqKwNS2bKIxVluRl\n7b5ziQKaNmFrEn3EoM+zDg4adkEMk0gBusTQV213U4TcSfXvXXYmCjugi+tJEBLV8x+35jke+lj1\nP+R2srWI1r7A9jFkMeSCatwM7J8YAr7gIFHkq1ZHZ4jCvTebKICWVWG7QrKb616X0hAMScjNGdEt\n4OxhV5eAagQZsCJ2hQBRQDcR0xCtLoXSJQpoW2WGKEIDhzHEABu2jSnWwhRS2BQh91LPsSpftVyn\nW5VZj8sAACAASURBVEOii5v46oJxLQlCsUYlGVJFqchyoYkizvvnW3ashhBR9KEtaA+7oRLUKL3C\nwBCD7V4achfA9Jff+1wsF4qyiML42G2iMEToup9s8otnUatTG+tS6kNdyoO2LiEnx/snBYOAcCtZ\n4o2SM+suUZi2YesTLlGAf+Dgto9dEcNW1sJFdaI9YrQZRNgBGAeEcS0JYq3WFOtzYkmIDVEs7nfd\nSAMQ8Bau28TJFyILuzMd0it2QgxjR4SBe7efgSEKAJ9OYYiwT6cANnIp9cGI19HjR8A5ki2b3/0i\nolf6onI8RAHtgUUErbbhIwpg1MDBF5iwM2LY1IXkwt0/5F7y/IZjrAejO9ilYHYCkYMF8ShBsSYv\nHxBLQhJlpNERMr/VtiaM22mEvzNELG3XizUytENkHXcCeMhihF5hEHrxzXkH/cihF3/AvVTfv5MD\n0KdT1IJ21dm5RGEE901dSkOoxWtLl9g7fJ2mL5TTcj11QqqtiCeXKOyIp76Bw1DE2mRi2LW1sEnW\n+1R0dKaqbVbkUD6z2P47rjmuJUHYFkSpKvPdtiZ8RDGAVkfpyZuwjwmew068M1FCjuAbIguYFqo6\n+cUf6Dztmea8Yr4nE90QBdDRKRIrgmQbl9IQOrrEvkkinbVG23ViHXiJwkew9bonNNaOeDJE0ReZ\ntDNi2JYUpo6wDUlMTZYLuA/X93Mrt0dbt+txr/6zGteSIMq18ExecCtdEktDEFl8k1hmmiQq1NZB\n34T2FsYQBeB0mH7roj52BFkYbEMMvW4CN/SwZ7KWulNzM4ut+x6jU9j3tI1LaQhdXeJoP1/kPssq\n10Zfw3SiGIp4MlbmViGr6aw/d2EoPLWvrMkU2CXZ+3RCD4aqttqitFqUdcJnEwSwLSRcUv4RR5Ag\nROQW8DXoVO9/rZT659a+f6SU+tILuL6NsFbC6TIGSrI4h0QTBEASZWFrou+knrBY8I+mffA1RZ8r\nKkgWMH5EOHY06BsJui/2QIVTL2FaVoVky5ooalHWJoo9WA0+dHSJfZBEiIRp//597ayPKKArZOvj\ntiOGUQMHGCaGMaQwpiONN3QxeUKYXd2hrATqdd5EBx4QRp8F8d3AL6HrevxpEfkTwOcrpXLg4y7i\n4jbFSsEzue508lIBOVm8pFQrUrXqtSboK+TmQafyqb1iE4ZnlA1+68JHFvX3+YhhqpugbyQ4duTn\nIQOKZdCqkGzpTby7CBifs8wTJ6kuaXeA2yAwIgc80Uweq8KB265CEU/1fkuAnkwMm1oLQ23lMkbV\nPnKwdAdDDosHcWtOkgP86COID1VK/Ylq+QdF5K8BPy4in30B17UVSiXcL3TncyPRXXYWr0dZEywX\nfrdTCK5l4axPJYz6PA5ZwLiIpK1JwfdS2y63EYXtOmRR7ZN02XE/rZ8+737fDrG+m9cuhSZCit3r\nEr5nb//WZn2iVeHm37hEAf6otZ1ZlDA8eNghEdSVdoeE6lB9LAuGHNb38pbusFqKlYC4i4uOwgUh\nH3H0EUQmIpFSag2glPoGEXkP8O+B4wu5ug2xWsO9QoC4siCgWEvLmgAo+6yJqoFuO21Pp/MPFQm0\nO1doOlKnJlSHGKZaC/ZLbpZb922OG2FJ+absDJBFy6qw3E/AbpOWLBhyKO9rf3Ni126aN+Lv1iQR\nsh76zhmyKgKH+xI1W5nauyCGkLUwNIAYwMadp48k+sKUXevBEaWN7rAq2hNXHRBGH0H8K+APAz9q\nNiilXi0ivw78w31f2DYoFbw/BxDmsZCXwq20bFkTt9JzYlm1rIk0OgLbmsDjdvKOoJ1IC5cU+qyM\nMYRhb/O99LsiBefY1utjP4MhQd9DFh2rAqBYEgEqi+vkpV3ADmM07gTQlzmnhGcWxI/NtWjdKva3\noS7hWg++GkO+gpEeBMOKrf22Baav3bEqNyWGCaSwzxGzJBlqhFDttR48uoMhh+KsKU1vl6Xf/oKf\nhXkQSqmvDGz/N8CH7+2KdoCVgru5dhTNY7iZ+K2JW2nbmoAqHNa2JmbztttpLIZIw8IgYTij0skv\n/FhSmM17b2mQMHyuKJcsrPtVoCf84SHR4/OdkISPHIw7wZSgSJZrUhZIlhA/Pt9Ol/BZD3ZnYVtY\nBiPIouN+ci0zrOi3PmLYgavxkXCfVJapIYf10+cd3aFVmt4qS39AGNc0zNWyIBJYlHqqz3msG0QW\ni9eaAFrJdSQZohpa6CvBMSq5x40IgmFNwiKMSdZCr/vI6ghsUnBHiq4GU5Flcz6bEKy5nqFNGAGy\nsIlC0sqa2EKX8JHD4jSuR4vJck1ZCPMT4GxNyory6UVLl9BJdUwiCa/1YN+7DfMcDEJkYbcHc3+e\n/bJLqxJGWZZ7x6roj2RyS2m06jG1RWmf7rB4ENeTWR3Qj2tJEOsy4vRsRl6U3D5aVxaEtiYgIoul\nZU2YcNgyXpJGR6Osick++tC2wLzZLf+069feEyko6Y6oZAJpBAmjLLrXmFZlt6vRsMrzalS8mS5h\nhzAaV4Ihh/xBXBUGjOFmyeI0Jk4jYEXSEnubkONRuoT5LVzrISTq+gjDxoBl4XXTVdexsVUJ40gh\nZF0u95iN3DPo6uQ+BHQHoz/ZuoMhh3t3d1SLSWTQ+n5UcS0JoiyFs/sz0iwGChbpGmNNgOJm0rYm\nQIfD+qwJn4Bt0OlOfaThi4RyG74r9kI/adjzLnte9E1JoVR+F1gsTqflWFate/QRRnU9HcJIUk0U\n6M5PAZw9JLrVTEM0hiSGyOH+XX2283O4RcxqpphTcn6a6OqxaDfEJrqE13pw24qt19gYIgwDj3vS\n1AlrHbNPUgglsk3pGMeSSZKC/R6FsqmN9VCRg12EzxWlbUvSzHS4yWyNzzYMEoSI/PG+/dvMeyoi\nnwa8Ej1z0ncopb7R2S/V/k8HHgIvUUr9wtB5y1K4dzcjzfQIochKYMl8BYuVcCdrWxOgw2Fta8KE\nw5ZqVZFEEiSK1jV7rYYRxDGGNMx2+/8OScFYTmPRIg6bNGw3k7mG5UI/G6jvS8U5cKZnfTurKq7C\nJPHajVQ6P01aboT7d5spT7N5xP27a27diVg8iEmWTQdhxGtbl2iK/Xl0iR7rQWxCtJ+HQYgwxsDR\nIuptrf9bEMNAmxGlwpFMQ8LyWDJZLhqhekS461AynC1Kl0upp8E1U+BeNWzTLw59dirGWBB/BvgD\nwI9X658E/AzwW2i36EYEISIx8G3ApwDvBt4kIq9XSr3dOuyPogXxDwc+FvjH1f9+rODsfloTxNGR\n7mDytPRaE3mZcCtdt6wJEw471poYvN8AcYCnI3E7kJWzvidSWAWK06zISdxZ7WnChF3UxFFdX6tT\nsUhDlgtNCEkz9afAaF1iLDmc3is5P19zdKRas6/Nj6PqkvQ2LV43ugRgFfujQxJD1oMr7m5FGKH8\nk3p5P9aC22461qQ5b4g4JpbNGIQJmXZEaV8ynK07GHKwBww7m9Nbop3lgmzTL4787CSMIYgZ8JFK\nqfdWN/DBwKuVUl+86ZdW+Bjgl5VS76zO+xrgcwD7Zj4H+B6llAJ+TkTuiMgHm2sJIS7XpPeWFEcJ\nZ6QUecz5ecLtO0XLmgBhUfqtCRhIrtuEKByR16BDHj0j0H2SQq8FEXqXPJGCvcThkEY9qRM09+To\nEqBH8zZJrO/mnUil/EGk3QlnepR4eq+kyBX37q7IF4oiX3P7TlJvh3hQl/Am1fncOUPaAzskDJ+1\n6R6/Q1JoXdpYN6T57k2sjdncL1R7xGl78ipXlDYDBlt3MOSgLYgr6WLauF8EXjDis5MwhiCedDrk\n3wCev+kXWngu8C5r/d10rQPfMc8FOgQhIi8FXgpwdPwBpFWMeGGNsooqtT5PS0jXvH8BT8y1gK2r\nb5sM7BKIRyXXeeH66MfAQx6uS2afpBB68QexJXEkpgw7xuUEcFqFv2oT1RWv1/c2Dz85P19X2lSD\nVRG15lawoRZlKyHNoI4UcqwHSbKWW03f5B4Iww0pNphCDDtyO2pXbLf9xDLzBj7ABOIYWfp76uQ/\nO7MepuM5IvJma/0ppdRT1vo2/eKYz07CGIL4MRH5YeD7q/XPw0qeuyqoHvJTALc/8MNUkcUURwlp\nVlp/a9KsJEvXzGN4Yg7zWFsQ8xiyWJHFTceeRlq4NtAd3MxaD4+mNnoxfD7a5WK0f9i9pjGWwpjO\noK8D8H0mlsTrrkqirHu8QBKncHQLOb9vJYg54rWlSwBNGfGHK+asqvkQdHPWriPNUKf3Sm7fSSoX\nU0SaCSe343oe5+xm2ZoH257RLrqTNS4mo0Mc36Ce59qQw/xYk8P8RP9G5rdxXYYDCEXlDw41ttQV\nYLjd2JF9HQTyzUKWpD7PgMVxdKtdRNO2LnvahC5YuCDKV8CqFqi5WRLPIiDm/Fzfd5FH8MB/7VMR\net89eJ9S6kW7+db9Y5AglFIvF5HPBf5QtekppdT/toPvfg/wpLX+vGrb1GM6UCIURwmkUpPD7TuF\nXk7LKnmuIYebSUMOWbzmRtImBhvaD5v0Nv6pxNEr/LVOsD9SMNvyUt93FoezTM19u/dpXnqXBMzx\nLmnUhCHoelhVpzBWl2jh/oqjkxWQVDPVxfWczUWutYdsrgni1p0oOA+2EallHhM9ftSUr6gIQU6O\nG8vhxokWpTP9n9kclWSt59Jxq0GYOMa6IOsH6OhCO7YwfdalWW4NlMrp5NEH88zqastY1mUVHh1q\nE6ZumVqsSFnUE1Sdn/rbxXBvcuHYpl+cjfjsJIwNc/0F4FQp9aMickNETpRSp9t8MfAm4MNF5IXo\nm3gx8PnOMa8HXl750j4WuDekPwCUsbTI4ehoVZNDlq41OSTU5HA7bchhn5jsv/UQxy5cSC5ZGFLI\nS8GMY3XYrxm75nsjDNuqMEUTvbrE2UMd5XR6hpyA0SUA76gRtB/6FnEV1ii11RDPFPObZWsebHtG\nu+h21tQ2OjlqE8PxjSbMODvWI/ajWxCnemCyPq+ff+verM7TFvE7rsgxBSJD2AMpuOvub2rfl0/E\nLkv/QCoU+GCj1vncgYNPq0pnyNlDr4XZ1y52AYXa3EXbxcb9ooj81ojPTsKYMNc/i/btPw58KNrP\n9Srgk7f5YqXUSkReDvwwOiTru5RSbxORl1X7XwW8AR3K9cvocK5xwnjkksO6JocnMkMOqrIi2h8d\naz0keNwlHoSsDPe8/s92iWMf1oImBsjLqAr11e61vMR6Fs0zMXqMucYQAYwiDHNai3+S+a1qDvET\nFKd6pA69SXXQHjUCVjnnZtS4L5fSihXlekVePuh0rrEkrQ7RZ30GQ4brA0YQx5akYB8baiugP2MG\nDJsSB4TJw24LNUnEKTKbw/n9tjUBwYx8oJ53xG0XyUzVNbquErbpF0Of3eZ6xlgQfwGtrP98dRG/\nJCK/bZsvNVBKvQF9s/a2V1nLqvr+SRBRlVsp7+gOhhyeyNq6g0sKadR+QfNy3RpFm9HvEKbkFrgv\ni484tiUFaBNDXlbm9rohCY12zz2GLPQ9TCMM01mu1nnTMUhAvB6pS/DMQuc1eLAvl5ImhhXF+rzu\nEM291etlmzCA8aRBj35VYV+koNuJframDbQtTHCtTJcU+lyyHXgGDUFrAoIZ+WLyaDx61VWeLGib\nftH32W0w5hfLlVKFmEQZkYSJdesuGlFFEIYcTo6XHd3BJ0qb8NY+uEL1LjGWTKa6kMC1FvzE8HDV\ndDAPVzE3EteKcMnDXZ5OGC5JTNEl1OlZp9hfdEcf4orXpljfvlxKmhhWlGrJ/ULp8Gjredj5NHbn\naY+iXbfLGNKwsWtS8LWTYh3XgycjA21KGqF7rI9bt59Jy5oA7YaMU0jOvIMHnzVhXJGJq2FtBTVp\nIPgoYQxB/DsR+VrgSEQ+BfhSdCnwKwuJaOkONTlYuoNNDrb1MEaHMK6mUGLZvrGptaD/Ny+8WTbE\nkJdRfZx+NiFisEdf9rNTlitCuyE6gi1hIuyQBG1dQi1OtXsH4Jhe8dqnS+zTpVSqFQ9XOXmpp7s1\npVuaTjOvn4dNiub38hFG51EPYFNSgGGr0rQRM2iA5l1xScN+h4ZIw1xH76BLT8RdI5YZYizMvqAG\njytS5jHru3k9gDigH2MI4qvR2dRvBf4c2nz5jn1e1LaIItXSHQw53Em7uoNpzD7rYd+i9Vi4Heou\nrAXwE4P5r5djL1H4rQqYQhbQdjG19q1dgVd3CGOS6vp0iX26lPJyzf0irok3L/XztrWcEFmY33EM\nYfSJu2NIwd7W1058bUT/b357Y2W6223CcPfpdZc0upZnB2OsCajqe2W6dIvHFekOIA7oRy9BVKnb\n36OU+gLgn1zMJW0PETg+KTq6gyEH17XkwtUfbIwJcx2DqSbpEClAv7Vgr4eIYVHCg+rUuqChOW9c\ndfhD7qZxZKG3dUfT9npQvB6pS5hB55rKlfRwRXQj2ZtLKS9jTpcxD1e6c83idd2BZvG67jRDZGF+\nyyHC6DzyCpsFJvQPHhpSaNqI/i3j+v0ZQxj6/LHzXrVvwiUNlzBstxNR83xa1gRVu+gJkXYHELuA\nUurSvAn7Rm8Pp5QqReRDRCRVSu24qMr+IJGqyaFPd3Cth20thl35IUNRTX2jQL28PTG4CamLUpxI\nL7+7SXeCdgRUs922SpqOxeRb2C6opEMarnjd0SXcYn+VLuFLoDJzN+/HpRTxTB5XLhpxqgRLS88J\nkwUMhRSHsI2r0V53icEcb9qFaQ+GLPRxw4Sh0UcY7f162f8saquq2uUK2MHkutOzTmDDAf0YMwR+\nJ/DTIvJ6rLxDpdQ37+2qtoRIkwBnKre6usM2MEL1toQwFDvd51pyX3i9PJ0YQJPDotQvv4FeVzU5\njCWK9rb2dh9ZmOiwcKhvQJeAZpa/EUl16sGyPW/zDl1Kmhj0s71XCA9WjQVmyMJoEq7475JF+/kN\nWxcGu3I1muNtYrAHD/OY6v7abWJbwtDwtaF1axDRunfL7RRLUutVU5LrdgH1LBep/1P1FwEn+72c\n3SCSrih9O3V9nttZD4PCmuf4cccNk4JedsNStyeGxcp2MYHpgk3HoOFmgreJQnd+/VaF2deQRUMS\no3WJvqQ6jy5hRoz7cindLyIWpZ7JcFE2RSDNczREYbvqppFFv59+lxYlNMRgWw5m+zxWHbIwx7h5\nRRrN795HGGEXZtfaNPdsu51genLdAf0IEoSI/DOl1BcBd5VSr7zAa9oaifiT4XxRSy769IexmJJV\nGRp5jCUG89Lb28a++C4xuO6leiRclUY3nUJDHjbGaxJ+F1TTCWytSzjF/jh72HQGe3IpaWLQc6Hb\nz822wsxEVW0/fn+k2FiyCLmQYLy+4A4coCI7p4kuVube2mRhPttnXbTvtX1PoefQPAM/UUDjdnKt\niaHkugP60WdB/D4R+e3AnxaR78HpEZRST+/1yraASH++g8GYvAcfGqF6egPrM0WHSEEvhxLbwi8+\n+EeEtsWwKCEvIopCv9V5FQEGXaJotkGIKPQI2Q6NDFsVhiQal9M0XWJssb99upTuFs3zvHcesUjX\nzK3nZnekfQEAffknIbJo/97j3Ujmfx8xuNqUayG4ZGEjZF2E3FHt+/IR5ji306A1AXVy3W6w01Ib\nVwp9BPEq4MeA3wG8hXZPoKrtVxKR6Ib8REaHGHzWw9htbjb1WIwlBfMd+n+XFGDaiw/TiaHImx6g\nKOIWUUDTIZjOYBdEoeficEmiPyx2alJdPQvbvlxKK71snqV5di5R2NpOW6dQjLMiuts2bR9jXI2h\ngUPb7dhuGzZZ+I7TcNsL1XW5EXP2M2mWjbDvczuZNtKxJsCbXHdAGEGCUEr9A+AfiMg/Vkr9+Qu8\npq0hNKI0+F1Lm1oPBv3VXPsFqxAp6OXdEoNZHkMMRR5xfp5wdLSiyCPSzLou0J2dEa0domhgOvmm\n84cxRNG8/C5JhLKxJxX7MwSxJ5fSooTTs1n9HNNsrZez0iEKuyP16RTK00k2z9HnwgtZk277cCOS\nphCDO3BI05IcBslCo0sW47ULnwXh1yfaQn6bKNLoKJxcd0AQY8p9P1LkABBLV3cYg031h7ERDFNc\nSDCsL9ifHSIGaDqEvKpDUxRxixjAEEVcTddqiMKsd4lCz8rnj3jyEYVGW9A2JNFoE203ik+XcE41\nXOwvLZo5o/fgUiqKmLP7M87PE+v5mYx+hyhivDqF67tv31g4WmybtgFdDSo0cGjuZ13f46Zk0Q/b\numjuvxG1/W4nCAj51SE+a2IXeLZHMT1yEOnqDiHrYZvchzGNYqq14CMF6L789ud9uQxjiQGoO7XW\nKNEhCrPNdHyYzsByMblEYV50myj0cqjTW+9Ol/AlT5kZ33bsUjo7TSnyiHt3s9ZzS7OyXnaJAvC4\nn1SbPCz3U59VcRHEYNqGfT+2pbQfsvATRXhZ//fpEyFr4oB+XEuC2FV886bYxoXkbh9DDNAfmTSW\nGIo8hqJ6adPmeuxOwawXVZ0rH1GEIp58RGFcT43bqen8dqlLsCpqq2HXLqV7d9P6ORanEem5ng+9\n7jgt0jBEYTpUn04BXfdTG+1OcRtrEizdpG4HXYvS7DMDBHM/5+fshCx8Irfe7rOofBFO48Ji7XLk\nsTvh0gEdXEuCAC7AevBVphwmhimk4G6fSgwQfvl9xJCeN9dfkFAUUctqcIkCGn80gYinIaIwRGCT\nxD50CTNa3JdL6ex+CoXi+G7OLC9J8xIz7S2ptMjCnqdkqk7RxrTABLu9uIMGu22Y37plVVYDB7tN\nuP+3IQsNc38+yyJkTZj18WGxefmgtiZ2AaWenVFMjyxEppPA5vrDbqyFIVKwl/sik8YQg16PLYtB\nkZ6vSPOSWVXMrO7gPEQB1J2BEbLdiKcxobENUTQv/BhdYnJSnTXt595cSveWpHnJjdOCWb5iWSTM\n8rh+jkDHqmi7ajbXKXZFDJ22AdXAQbcNQN/LOUHi261l4ScKf9TX9LDYR003EJHHgX8BvAD4FeB/\nUEo94xzzEdUxBr8D+BtKqW8RkW8CPgso0MnPX6yUutv3ndeSIEIYaz2MJZWQ6KzXp7mSfBgihzFW\nw5A7yX75Z3nJrGhny7WIgrZ/XcMf8dQXGtugiXhqtIkwSdhJdWOK/dkkAbpjsMkBNHncSpfcL8z1\nxsCaWylQRDyRwftzBQhPAO9nDScFZ6TcvpNzfp5wdj+luD2DewApszRmaUjBsiLs59aa7dCaDhca\ni8s8sybRzj/yHpvH4NMYhtqGaQNm4NBCRRRFEe2ULLQFpduHRrvdGG2mQdc16VqgvoCHXUHRLUa5\nJ3w1/P/tnXuwLVld3z+//eg+5947d14gjozJYNRUqPJBghYVTARBhXEC0VKiFQxGE4Ikiq9SRqqi\nqZRVg6YMRkx0ApRYUBpUEMpHYMRQljGjDkh8TYxvAgyPuc6d+zpnP3/5Y/XqXr16rX7s1zlnT3+r\nTp29e/fu3b336vVdv9/39+C9qnqfiLw6e/49pXNR/WPg8yEvtvoR4B3Zyw8A92ad514L3Ou/38de\nE8RJlusuEoEkm9jMYE0GmpOEu/3cSHMrwm4vH0O9m8ImX4nzvJoNbW7IeiKapsOcJADGk/DNM82G\ny5SQfyDwnmzCK9/w9SQBBN1NsQ5/dSVPXHdTXeXdoYy5NYUb80n+3V+dDUmHxu10MDSlMy5N4GAk\nXBouSZPj3Jo4PJwbayIdcu3qiORoXiKFC+nMi2panRRCUXnu7+6PgfOjgiQAkmSRk8QqCBHF9HBk\nLNFakhjVk8R0kJOEPe/jOZ5GUX1sYceK/ziErmVyThFeDDwne/xm4H3UT/DPA/5MVf8KQFXf47z2\nIPDVTR+41wThos566OJe6posV0x+xeC1nzddSiNJuMewOO/cNO62694cbW/Qpm0hREkimwy6kkSB\nOElAcXP7JOG+Vi3dQMWK8FFUOI2vHM+NUs6NCqK4Ohvmv4kliksTM3lfngjXM6K4em1Mki6NWJ2a\nlfiqpGB/21iYdjxs24wPdwwc5MScvTdZ5i4mqC4e2o4NMEQx8xYW9QsIF9XfIEYSYF1qvpuS4Diw\n4wYoLSxiY+aM4Smq+kj2+GPAUxr2/1rgpyOvfSNlV1QQe0sQp6XZD/jRO1Vrwp0A7eC+MZcKSRhI\nxUrwJwJYf6UIhiRm6ajidgJyl1MVhfhanEyIJAC0dLNDOLoJqLiazHviVoQf2dQF50Yp6XBGOpzn\nUU3nRspjkyHp0AjXtnTG5YlwMJzx+FER1vr45SRICiWrYA1SqI7tQWkBYY5Tb112IQMLOw5miXmf\nSxLTdFhYTitYE6XrK7knm62I0OQfw6rVEOqgKhXrvgZPEpGHnOf3q+r99omI/CrwqYH3vab8mari\niq0eRCQBXoRxI/mvvQbD0m9tOtm9JQgXm7Ie1kETSfjb7co1VE7BIjQRQHWlaLHSpBCxJKAgiepx\nI+9xbvyDTGy9Pjffv3+zN7kM6qyIGLo0dRnKmHMjcqK4MjUuJ0MSRYTTwVC5PBXOj5Zcny9zoliH\nFNqUh6lWQTU6CVStCH/b2m6m6aJEEiG41kRXl5M5ycI9Ce2siNiYaXI57RiPquozYy+q6vNjr4nI\nx0XkDlV9RETuAD5R8zkvBD6gqh/3jvENwD3A81S1cfLbS4IYOPNl15IaqwyktgKVr0uYx4PWuoS7\nUgy5lCCsQ4Bxc9gQRhfTw1EuRtahTpeIuxSaXU7HpbfG9QiotyJchPo+l19v71pwieLKdJn/VpYo\nrkwHnB9pHgpriQLCpLAKITSNYX9swPYXD12siVVcTuakqgsK0EYrIuZmcnFGdYh3AS8D7sv+v7Nm\n36/Dcy+JyAuA7wa+WFVvtPnAvSSIGE7KeqieR9Wa8HUJKFxObgisXSmG3EwQJo02QnUbWJKYJcPS\nyrGNeB1aHZrz9jWJsB7hRqeE/MptxOp1YIVsExZriMIK2TYs9vyoELLrSCGWowNxMqhfuAxqNLI6\n/gAAIABJREFUrQgI61YWscVDG/jWxKZcTklSPlHf1eReU8yK8NHFFdUFS22OSNwQ7gPeJiLfBPwV\n8BKArOr2G1T17uz5eeBLgX/lvf/1QAo8ICIAD6rqK+o+cK8JYt2CfNtEF5dTcR1LJovyJBxbKVrU\nrgwTKTKnW6KNy6n6uWFL4mAYi26q6hFQ50IorIiY1WDdS+smNLWNeIqRQlPByNjkVr+YWWJanJat\nCLChxdWeDvlxN7B46Opyqp5DgCRauJrM87gWcYrdTCtBVS9hIpP87R8F7naeXwduD+z3mV0/c68J\nwsVpHBxdQ2Hd98RWivl+SZHAFsIqeoRFW5Ioo8ndVJCEG+fe5DaIWREhN9Mmo1ZiEU+PTYakzjn5\nnQstQuOxjUUbet906faQKKwICFsMQL5CX3UM+FhHwK7Cj7gou5qg3oqA8njxsWmhWinnN+0T9pYg\nmqyH0M3YlkQ2PcC6hMI2oc6VYLEOObhwicINeeykSwRIwl8VuuU47GPzWr0WsQu4EU9WyHZLmbuI\nEcAqi5fyStlUOI1ZEYBTIA+I6BCbwKZcTiYarjqIrcUZsyKgai3EdIgezdhbgnBxGq0HH+1CYW3G\naFmsNqh3JVhsihwsuiTVuTd/+aTKJGEjm8q9JcrEYCu/mufl1WNTTsSm4QrZk8WCK5nVVp+tv7kJ\ny2gzRSlsQxQuScRdkF1gw54b93OsiVVdTuBZN56rCcJWBPjkWSYL3+LsUY+9JAh3bbSqKX8SaKNL\nuPuGxOoYTCmM1cXIOmzE5WSTx0a+9VMWIG0pDiAvp1C2IuI5EfbxtuAShT33ODbpkljmVsSN+bA0\njtZFXoZlasuxZIEKLYliPZdT/ULCDXuFqhXhjhW7bRuLRZMHcdI1pLeDvSSIs4w6XaKwHpqPczCk\ndENt0moIIUQS+UTQgSSaRGug4mqCuBXhPt8FhjKqzcXYznlMcguzzoooPa8kLzoVer2xErIC2hJF\nkzXRRBJJGu/Z4Ie9QtiKgN7NtCr2miB24VraVpGukC5RvOZWrwxPAjHxetvoni9R3v96/puFSSLk\navLJIiRW28fbgCGFcU4Mo0FaScorVZb1sO55GYtliS1zba0IYCXXUpIuzG911LxvWYeKTycxa8LC\nT6zLt/sRVgHBGsJWBIQXE3BymtVZw14TRAibFAq3Dd/lZDWIG/PtWgPronuxvyxXIllU3EtuZBMU\nonXIfWCrdu7ixg+Rgt0GkAwOSxO/azn45LGq+8sefyjjTCgvWxGTxdCbMJXj+SZdW2U0WRW+NdE+\nsa78vRwcmnvVtTarxfvCxGBf26QGtKRcrn+fsLcEsakJfxuJNV0/3/cnF315wxErpwHdi/3N874J\nIV+zIY5qKKMli3C2bH3pja6oIwVRNU2JZo+bnccH5ubKWpuWLJphmBBGVC2PEELWyEJnlFuSDjJd\nomxF+NFM69brCqENUTQJ2P74cF1NvjhtUVjNYQLwNasezdhbgghhkz7IXZqoxWA30SrV19r5mjeR\nTd0FXYv9uT0l3PP2y3EYVEMZiyivsli9TjRTJ1KYT9F5NsEfXzX9rwGxrU6B0TABqJBG/nnD+kY2\n8+UkSHpDmZesCEsUvhVRKQef50NsfmzUEUWjNZGUf686V1PMioC4G7JHO+wlQdQUOTzz6CpWl96b\nRTK5mG4pHt6iW+Z1eBIIleMwaH/zd/Hzr0QKi6npez3PVrqjBJ1cM32wJ8AwyQmDUYJkhMEwYcQI\nlWZLcKHzYMmQxaII6zULhqJhjm9FHDgLinJ11yVHLTSHVVCnU7jWhEsSXVxNUAjWBcJi9Taww1Ib\nO8eJEETL1nmfDvwUpua5Ysri/siqn1lnPZzVlYUvVq8kTCfSSoxcF03idawsx8FhfWSTSxLl/0Wb\nyTY+fpcU7CTciRSmmeUwnZm/ZGz+ABJzPB0lccIAY2VECMNYQeHCg3a7tSImC82KGhZj5GBYza4+\nGJpTsTClLuIup/RozuRwvSkjZFWELEyoWpluL3QoE9zBCqe1oy5wZxonZUE0ts7DzBTfqaofEJGb\ngPeLyAOq+ke7PtkYNjXA2ruqltRZD37SXFvCmB6OShEl20Jdsb9Y/PtxTTmOdbFxUpjO0Ekx5Uqa\nZiRxwyGLcZQwcreURxjmvMLRT0MZwaCwIgDS4YSyFWFW0q4VYcXqtKUOYX+71Kn8uw5ZxIjCHRtT\n7/htkiy7LCI2ZV107AdxpnBSBNHYOi/rnPRI9viqiDwMPBU4NQTRhG1qFLHMahc5YbSYBKZpXDTc\nJIL5Eoc+QYCdCCbJIlqOYxUrojUpZK6i1qRgn9vXkjF67UbJkmgiDEYJupi2IgxXw3Cvb6FzTL8K\nzd2RtgSHtSKOF+WaRklS5B50ybS3ZLFJonDDYeM5NMUYSiv5HD02iZMiiE6t80TkLuAZwG+1/YAm\nQXqdMgirTvzrln2w8e7uJGhDXmNitbUiyuWTzUZ/Ipilm49oqYN1LcQmgiSdBkuE++U4DApySAZh\noksGh3FimE9gdlxPDC4B+MSQvaaTOTpZIKn5jiXN3pOM0WnxWNI0f5wThuuSGmVE4BCGOPqGq2EM\nZWyuaVkQxcXElCUPJc/dnsKliRkfB3Pz3U6z3IOjI6fURTbxG31gs1NFU86EC1+rcjGZDlpZETse\n2nuDrRHEBlvnXQB+Hvg2Vb1Ss9/LgZcD3HHnbcDqJBAjgDYT/CbDKkPwSeLWdMFkUfRN9kni9gNT\nn+n6cMnjpSMVJDGdDPMchV0jJ6VETCe27M/1N9vObG4DHjBupnSo2Z/Ji3B/83Q4KInNLkrk4KFE\nDj4CrqT8fRk5mMfFf0mHMJkbskjG5v0+Wbi6hX0MBVnMp4YshgnMJxWySEaHJStiunRJgowcMjF1\nOshJwo4PmBlrDRMx9PhlQ2B2XCSTBeNkd7PsLB2a/t6Ho9LYsPC79sWaM9nxsU0soXcxdcUmWueJ\nyBhDDm9V1bc3fN79wP0An/OMuzQd1vsYu5KAP8lsswhcjGQWOmeho1yMtCvEwqJYmHozC7fMgmNZ\nHC45TpZMkgXXSKhENCVjptNyh7ltaxP5JAAlcnD7OccmAKBCDsnA/PctKt+tVMJiWrIeSnCth6kX\nCVVyMxly0OvxaKmKZREji+xxlCygTBbZlQ5HKenwfC7GL3TExeQoLyB4a7rgsQlcTMjHyPW5chnh\nduASS7hpmuejHB2NuEZiQk7Lq4uNIeTWjJGDOzYgvHAIkcNZDUI5DTgpF1Nj6zwxLY/eCDysqj/c\n5eAidmDEXUFtiSC077pWwsrdzbxxfjEx1UOL1UtBFjcnZM1rCndCjqSYCJJ0yeOXk/ylKWVrwhcK\n80O0aFPaBv4k4JNDmixrJwALnxw2Yj1ELIiQawlArxuicCHpKEgatWSRjGEyiZNFkppzs2QByHyK\nHF40eRYC6fA8k8V1koGJboJJPk4mC9O3wo4R0CzXRHJL88JF55InQ0MU0+p3ualx4KKJHOzYsIi1\ndXXhW5dnESLyNcD3A38H+EJVfahm3yHwEPARVb3He+07gf8APFlVH637zJMiiDat854NfD3w+yLy\nwex936uqv9x0cEHyCSKE2ATfhgjqJvdtu5fy+d9B4XJaZBOk8NjE7gzW53x9XkwCQMlve/MtU6aT\ngVkxXkla9BCmnMjUsStdCQ3kYG/2utVhU++Pla0HKFsPbVxLbcvrlt5vyELSUcliqJBFThKFxWEE\n7muGJI6uwChhdHCR4cAcY76cMF0ecW4ERsxY5PqcdUvengqXJnBLqlnOyTKPHrMLiAsXp7lm5WpX\nfkLbWmPBRQM5uNYDUHoMcdfSNgr2qdb3X9kg/gD4KuAnWuz7KuBh4KK7MUsf+DLgQ20+8EQIok3r\nPFX9DVasiSxZhEdbIjDbmsnA3efEGp7XkkSzLmEngeN55lIooSpet4poSVevFutOAvnzoG85Tg51\n1kOI9FtbD9MqGQBR15JO5mhTQ44alPUKhyyswO1HQ1mysISymCLcBMdXkIOLuSgPWQ5IVorc6hIw\nxLolYZBbm7cfCJeOgQthXaJcTM/73dPI9gjqtK825OBqUhC2LNt08zsLUNWHwcxvdRCRO4GvAH4A\n+A7v5f8IfDcBr00I+5lJjQQnBwufDEIryzrNQVTNsmETWMTLGfsYDROGg3GWNTtnvpyUdAmzQmyv\nS9yOEa+PkyVX808pT3C1k0Fgv65EUZkEaiaAruRg0Wg91CEWzhokB/MdLG+Y73BwbtSZMPT6DDk/\nrorbUCGLXNy+cA64Cklq4nfmJixWxge5LmHcTYclXQLILU5fl7DNp6wucY2Em28pCNP2FYn97m3H\nQ8xaLQvS9eQQci351sMpIoUniYjrGro/0083iddhSOAmd6OIvBjjcvrfTSRjsZcEAXELoisZgEcI\nsQm9aaLZECQLawQq1kS1q1mZLGp1iWy1aHWJUG2ew8PmhkNdO9b5K0QgOgF0RWvrIZYEF9AZQrDk\noMdzljfmuQ4RmpJiqpgeL5BshtPMgoiShSduC5htF7KDHVxAj6+WdYlMvLa6BBxxMVkEdYk818TR\nJaAQr03fhmn22FyRjTrzx0fdeLD9H0JoG80Wci0Vj8vWg+te2mRk00I7ldd/VFWfGXuxLvpTVRtX\n/SJyD/AJVX2/iDzH2X4O+F6Me6k19pIgrAWxNhlAmRBcEoj5rHeAOpIAQxL25jc3hUsW0EaXiK8M\nyxPDuugqSu/UenBQaz145LCcwCClIliD91PdmDM4V38LhsmiLG7r1WvGooBCnxglhS6RkYSrS5jv\nxlqd5re+NbUVcoccDAtdAqSIgJsOigJ/02FlnCTptDI22iwsfMRE6Rg5uK6lk67AvA7qoj9b4tnA\ni0TkbuAAuCgibwFeCzwNsNbDncAHROQLVfVjsYPtJ0GI5AXWfAQJwUULQsgrdu4C7vnMs2SpUYIc\nXGwkiUKXMK4Eu0o0aKdLuJNBaXvNyjA0Sfg4OhpFfcurkIOPEFEEXY4trIcm1xJQIgeAUNXuEGnE\nCEOP58iBfWysixhZSGrcTHr1GnLTBbh2zdMlyMdMMjjMP87VJQrxuqpLQDE+bEOn44VZ0U+yYo9J\nssjHSHhsdHO11QUsABVysChIws2H2a57SdmZSN0IVb0XuBcgsyC+S1Vfmr38KXY/EflL4JmnNYpp\nywhrELXWAdRaCDkplCbs3VsRuWPo+AoyPqjVJUwVvnLmtV0l2oQp/8hWl4DyoHcnAwt3UuiOdlEp\nbSOWYmGtvvVQlNNYzyXo6g56XJDDfBb37Y4InPtkjnuKCytQQ5AwQmQxuO0AybKxlUzEtrrEuZtQ\nrpZ0CZtUZ3UJm1QX0iVsUp3NlzgYmUY950fGrXJwuMzHSYwwoDtpdBGlzTlXv9vQWDlFWkRniMhX\nAj8KPBn4JRH5oKp+uRf9uVHsJUFIpkHUWgdQnSRiVkKIFE7QxeQX1Yi5nGwMfDipbpkLk9ad4B/Z\nTgIW7mRgESIOaE8esQmgLhM25lqy2In14OkOYMhhXls+PTw5VYjDIY0QYVjhWw6KH0POjxlcBK7d\nQKezQpcAEwprdQnML+zqEkC+oPB1CcAJcDA1sA6Gpry2TxYQJ4yuaCNKW/iupRAJ7EM/alV9B/CO\nwPY8+tPb/j5MnbvQse5q85l7SRDgrBRdrEMI7uNY+OMO0ZYkLOqS6gBuT414bXWJvPLnyLZ2NPBJ\nA8LE0RaxCaCyX8C15MMnAt/NGLUeVnAtARXdAWC2gjZjvIbe9cxgNM4mtcwtNUgNYYBJwLOEsQQk\n3z5HbsJxN92o6hLzaa5L2KS6trqEGSPkXf58sgBvjDjX1YYwci2jBTnUVfS11sMuLIalrtb7+yxg\nPwlCl/GJwO7i6whdSMEt2rZL2Jj3rORCHveeoY143ZRUZ1G0+Swmgfw1jzRiiBGHK3RCu1IJoUzY\nOmHaRaP10BKhkFbXtTSfDlhM6yaK+OQ4mwwYp+XrqxBHgDSsq2l42wHLvz5icNshcISkM2OXJONC\nl7hwAbhW0iXcpDogT6qL6RLW4gSiZOGisqDoUH21DTm0sR56rI49JQgNZsd2shKgIAWXCE6KHCLI\n/ctWvI7oEtOl6QrUJamu5DpwCMM8X400gNIk0UaULr3Vcy256Gw9dHQtQTWk1SUHaz2EdIjRWBvI\nAxbTIcOk7Aqxx7Tk4Q7PUbI0pDGZA8e5XiHpKKxLgFlgZLpEnlTXstjfYxNTFXWyMOXl02ERNp1r\nEjVkUYFHFu7CIS2NkdVDnXush/38ylXL/YEtNkQKoXILu0Dd7dbocqJbsb9J3lym3CS+pEk0kEYb\nnK8hB4s611JTWGtt3kMITVFLgXwHSw6LqdToEO1WtpZcckshw8LRcyyJWPI4vGkOV4ofxmoTJV0C\nKrpEKamOdsX+JosB50aLPNAhHWo+XtyxYlAkOLYaF97CwVoPPpqsB9+9ZPUH+3zTYbCqHRZHZwx7\nShDLsPtgE6QQ2mcV+DVsWsAngabX19El0qHm282qsUoY8bNwUT8x2AkgVoCvybVk0eRmam09uGgR\n0jqfSYUcFp4FMRxrg3hdRcVScF+rWCgjxumSA8x5DW89KKVISjo3EvN0VugSNqnO0SXaFPsrJlvJ\nLc8mq8KgG1l0dS312A72kyDQaj3/ECHA6qSwrotplff7ZRaScaFLnDNaRFeSCOkS/o1v9tsUYYCv\ndRwMq7HsoSzYUM5DXVhra+uhrjsc9SGtduKPkQMQ3NYFi1lYjR2Oq9/taLYk4TiPfJLJPKxLgBk7\nVpegudifzdK3RGDHC5CPGfPYlnYpyKIMv9lTFV1F6Zj1sAss6JRJfaawnwSRuZi2RQqhDNldoNov\nzsXVkngd0yWAxmJ/pvsYJXeC2W8ThGHPnnz/cm8Hv+lP1bXUOazVsR7qCvKtEtKaWw8ZOcx26H2c\nTcx3Ps5KYCymwsFNwLUlCXMWfx3RJWxSXamrXXOxv+nSLeeyJB0aspgsTBc/s7gIu6BcYbtAMQ5s\nJJRFne7QxXqoC2/dZkvgfcGeEsSyWo1zQ6SgToOTuuYwPuT8Zqq/1pNEGSFrwt70zcX+IBksmC7L\nlkQbwihbCPWE0UZ3sPCF6VZhrS783JVYvaUWIa2+7gAwm8DR0Xor1+mku8vk5luGwJB5ZlEMkwEw\nz8Rrg8EtsPzrY6NLQCFeQ6dif0A+XhY6y8ZA2aooxkx3F5SFby3UJcT51kOPzWFPCUKLm99iA6Tg\nEkJXK2JVq0MCvXvXJYk2xf7K1kHR57kNYdibOEQYPnxyCLcOLbuWOoW11lkPFgHXUlNIqzl0VXfo\nMsFPjlcnE/9zklS4eMuA4+tDDlhwdLWsS4ARr4O6BLQu9jdfTvIFhkmuK5IxgdLYKVyWXYTtclAE\nhF1L9d0iq9/rNl1OO+wHsXPsMUHMtkYKqzSFWRXuZ0kW8y7nx0UNHl+XuHCuegy66xJmsrdRH2HC\nmC6rlkSMMMo9e8X5rPrqm75ryUWrsFYLX4/yhelVQ1od19LR0bLVpN+GRLpaIklqvtPDwwEwZDRz\nIoJYwGMRXSJLqmtb7M+Sw4g0t0CHMmahZnvIBeUL21CUe/GtCou6Oksu+ryH7WI/CQKaySFAEl3I\nYZ3GMBKK3dsUIuJ3V5Iw7oOBQxKFVVDclGaSNFbFMnt9kE/yxr1Q3tdFQTpVi8HFytZDCIESKX7Y\ncqi3tG8Buq4lC3/ib2tNtCGD6aR+nyQdMp0oh4dWFB9kobIDRsmSEcqAoqFRcX2GJMyH2HvDfh/X\nSiRhx4whhBkMyInCh7Uo3IKR5YFW1rrMeygtJEJupVBCnLuo8ENb3W3l4/T6QxvsL0HE4Pb2PaFk\nt6KWztn7+svi9DKzJsyNZ4misCbUsSaW+HpFSHewaBKmY1jorH6/UVIhCUnTvLeCeV70ZSi2jRgw\nh2w3m4vgHsqs4ge5FZGkspKmEEKSDhpJAgzZjNMismqY2BDbJUmqLG/MGQCazb6SDkuLKIHivhgl\nxgobpbmbToYJmnVsBCNejwZpNM2jCICAcsl587hYRAzyMWGXMm2Jwd12EsSwVFauOXXacfZmqLbw\niEDStHWCm6RDU0r5/LiTEN0Vbknn04CFzjLfcv01h0gCXIGybE3UkYTdXhy7Xpi2aNXydZiES2mM\nEvPfXSC4eSluvSOLLHrJrMrN+S6mwyxHYQAIR0fVj2pDEoeHg7XF7RgWU2GcBSstJzDMHhe6SpZU\nZ+8X26UOIDHfnQ4nFesTvN8gMw6sywmKx4XLyXx3xaKiShg+uhJDeSz1FsO6OD2z0yYRaaeXk4Rv\nReQkMtp5COtpIQmbPdsWvsvJJwmzzzLocnJJwqKNMG3+x78rMyFl5bFFylFMowT8/AdLCp4l6RKD\nHQ+2KF6dFWH8/9lq2NEiNkUSba2I2QSGY/f5IE+208mcJTC0vSayBZBta5pbEcm4cDWNpsbVNEqK\nZMNhgqjm7qahjIKuSos6l1MxRpalIAfzvtWJoSeF9XHyM9M2IFK++U/QndQGJ00SIR9yWxTuonqS\ngMLl5FoYdW0hzfs3cJOPD2B2jIxsGKdnVWQCrUItWbS1IqyrCdi4uylEEoaYyljMJDeUgJKbCcoa\nmmk+NM/dS0pmUZgPrC1xb3UJlyRspBNQbKfQtQwRFK6lsEZhENIX4HQRg6qs0RfldGM/KVacy8oH\nuvnvJwedFujxfC3he1V0tRxCcN0AdSIhxG/4LtZDk3upyUXGKKE0e7pIxllE2CjXIiwG50ZGi3Aa\n/AwTZTTWfIVuJ2sbVZQeFGPRboshNNGvg1B5j+UksyJuFL+7CefNQojcvJDpzFgRGTHkGehzp2zJ\nYppbEjaAYDRI86gyd7t9nA4Huf7kuhTdxcK5kZYsBruf/XPHWnGswV5bDSLyQyLyf0Tk90TkHSJy\nS2S/N4nIJ0TkDwKvfUt2jD8UkR9s+sw9tiCyu7jJcjgFbiYXu7QmGifSDlhVvO4S1uqjzt1U7BTR\nIaAYIxYBjaqS4BixIsCWvjDWw9HRMrca0oP2wvUmXU1Q5GyMA225/QWJpsPcvRQUrIkXyagTr9vo\nEiEt4qxEJOlSou13N4wHgHtVdS4ir8W0Fv2ewH4/Cbwe+Cl3o4g8F3gx8HmqOhGRTwm8t4T9JAik\nukIMCdY1ricrVJ8EdkESKhIuk+TAhri2xTridUyYbqM9xFDRIRogaVr+SgILhTotApYsZsNsMl6d\nJLaBopFREfLKufJ3WgjW2YVZwToZl91LwwSdT/KeEm6EE4TF6xB8XaIsXm+PGFoFOJxCqOp7nKcP\nAl8d2e/XReSuwEvfDNynqpNsv080feaeEgRlgggI0iXUEUVNJJM10wfnNv81nrQusSqaSMLdHhKm\nXaxzI1fCXccHAIXWAI1tY0NZ7JAVRp/Mo1bEYiY5SRgsO5HEpq2IGGzIq4+KYN0ytwaIitdtdImy\nFmGwCWI4ZYTwJBF5yHl+v6rev8JxvhH4bx3f89nAPxCRHwCOge9S1d+pe8PZm4HaQAbGtWARIIdg\n2OuKYvbSaS6/Sfj5Enq8iE5anTCM+N83hC4RTna7+966CWClm70p3NVF61BokxcxQplPy1YEDHKS\nmE2K6KZNk8S2oJN5HvYaFayzHAkT3ZRWc0vcREwoe5ACsPkS5UTM1Yhh14RgKvu0Jq1HVfWZsRdF\n5FeBTw289BpVfWe2z2uAOfDWjqc6Am4DngV8AfA2EfkM1biZvacEIUXEClT1CJcIguRR1SGatIlt\nkQScfWvCdS35JFHsGxamzeP21+6Guq4C380Uk5WtFQFFv4ZSUx/HknBJwr57E+6mJG2elGz0UnHW\n4LqZwtkHhRVRulcivdgrusT4wIjXK+gSPoO0IYVTZiGsBVV9ft3rIvINwD3A8+om9gg+DLw9e99v\ni8gSeBLwydgb9lPyF6NByCgjhlFiSCKLUMl3SwPKXen1bsKTGxmyaeQlEtYV0DNXy64Qimm3kSj2\ncRdhuis0khOzCdiIplFeRbWIaBoly7xfgxWI3QinNtFNq0Y1HR0tmU1W60Ohk3nRHMntkQFlonBD\nXxdOlJONcJod5xFORZTTKI9yso/d0ik2wgmIRiQVUVHF3xMFIvIC4LuBF6nqjRUO8QvAc7NjfTaQ\nAI/WveHsLUvbQAbFRDiPiNXZ43zFuKE8iW3qEmcVdbqEu4/FqtaDj2DZjVFS1iEC8F/vYkXYNdd8\nJnl+hG9JWPHazZWIWRJdXU3TiTaG01osJ1SsCDmwZUY8wbrl/ZHrEi2S6lxdwkUhXp8N62C5FI6O\ndnK/vx5IgQfELHweVNVXiMinAW9Q1bsBROSngedg9I4PA9+nqm8E3gS8KQt/nQIva7JC9ncWy/zs\nMp+WJ4OQeynw2rrhrtt0Oe0CXSOYmhAjiW5hrWtOFlnC3CbhaxEWo7GWSCLbu0ISri6xi+imUjRT\noCNdqXqwrdPkhr2Cdw9FdInAZzfpEq543aMKVf3MyPaPAnc7z78ust8UeGmXz9zLX0NRE+II5RXj\nfFqOfXcFa+e5Txx+JJPbWawOWxOvr886u7+AeHLYjhATr0NhrU3oPJHU5UN0hBsoELMiFlMpkcR8\nOsjzJLqSxKYE68VUHDG9gC2/MaBcQNK3ImITfwgV8bqFLlE53w0kce4CumRXeRA7x14SBCgLnZlG\nJxkE01IxiIgVsQmcdUtiG3DF67rGL5taTbbOh3D1J+JuJj/s2bcixmnmWqohCYPdkIQVqn2LYT4T\nI1Z7Upzf78QVrMu1mtwFla3bVFTLrUuqg/pif6tYE2eFUM4S9nLmUlUz0AbjfDACZT3CjciorcWz\nfsJcTxJVlF1OzdbDqu6lWPnvUpSbRSRKJwbrr/etiPl0kJOEhU8Sbq7EptxNk+NlSfyuw3w6cCwe\nA5sX4UfMuXWaoIUl4ZZUjyTVdS321ybrvyeUzWMvZy3Nbn07OcgwKRdrg6CrKYet28SPrz6tAAAV\nuUlEQVQGooYybFq81km3nIg8ousUISZMm+friNM1oa558EIHd5MzHlyE+kWMMMlzliRmk0FR9bWG\nJAyWtSSxihWxmEkeTWUxm1gCyz41E6tLVWwrVsSoFA6uZFGAMT3PQxddwhev3ZDYYtv6Vv6mLNSl\n7qzUxs6xlwQBaiqUZvfdUMaIn0kb8MfHrIhNorcmythpHZ22OoS7QIDG8SAHo2Lx62RYh0jCoEoS\nsYS6TZCEC1+HmM+k5HoKWRF6fVbUaXIQcyEB7ZLqIrqEG3wfinTaFmH0qOJEZioRuQ2TJn4X8JfA\nS1T1sci+Q+Ah4COqek+b4yvGxWSVt6GMy9nD80m1FMcO0ZOEQcy1tI1IlkYdouV4CFlt7mp7kJoV\neYwkrC7RRBLZ0daKbppNykX6fDLw3Uw6CVsRJqIvewwV/SGoS0TQRZfIBWwHPWHsFic1S70aeK+q\n3icir86eh6oSArwKeBi42OUD8gGyJE/IkbrQ1wy14qTnbvJvqC44rSSx0NlGQlw3aRmsG95a24bU\nLhzqXE5uafhYzS7HihgwL5GERYgkDOpzJXyS2ERUU9DN5MzFbvZ+papA4HhBF1JEvG6jS4RwWglD\nexfTxvFiTCIHwJuB9xEgCBG5E/gK4AeA72h7cCtSW9jHOUn4yVItyj5DtpLyfLPrkgSsrkvkNXO2\njG26gVaZ/DdiYdgx4HeZsyjpUIEy4F6YsT8uXEuiyIeokkSXhDrrfoLuJBESpfPXQm6mc079r4Pi\nWnNLwmoSENclGlBX7K/kcorgtBLGPuGkSm08RVUfyR5/DHhKZL/XYVLLG+8EEXm5iDwkIg9devRq\n3l8ZzKAp9VoeH8RLcZANcq8sx2lEa2JqWZwvFNVx0rX2N45hUl9uxBkH1deKZkIhyMEobyoExYrc\nTr6jZMk4NX9WB3BfG46V4ViDpTnANB9qmyW9KuqCMrbRn71C0B1yVUILBZ8wYvv1aIetfXN1VQnd\nJ6qqIlJxsIrIPcAnVPX9IvKcps/LSubeD/A5z7hLr0yVi8mMaeZiWuicdHgeBIaj1FgSx1cQbkKH\nE+CaOdAFTAkOMgvjwrksUch0pB8AaldUa7qIuhbgk4Oh6XR2fhxPlLPElqT1ndMyVMjTQxd30ypk\nEvpcd5sJg5w7z0eV9wxlzGJR3mdOMfGMBikLnZMMDgsdIlT+Gwo3SMjt6KyYg26WzIoYnBvBuRHL\nG3OGqZl0k1QxnV2L79NYC4VF4bqchmMyi2LArPS+AemBLc9RjAGXPA4PB4xT8uilUbIs1Ysap8vc\nmhiNizwISTOCy8alHW9QNE4qjTuXSNs8HjnuvNC4nB2vXSss1D536+GsS4Xpbvt77ApbI4i6qoQi\n8nERuUNVHxGRO4BQ44pnAy8SkbuBA+CiiLxFVVunil+ZKulwks/jk8V1hjIiHZ437qaDiyaK4uhK\nFtlkB+7VjBgy0/nqNeQmkzCU36a3VN0Ku4SkI4cMxoXVE8MoWzlnESOuhbUpbINMfDLwycNsixOI\nJQ+7ikwGh2ZxsJjGSQKM7zymTTnlWGLQ48JNU0ztBVGMxou825t9tXA92deKEh2WKA4PyVxPw9zd\n5BMDGHIIEQMUhOETA5hFS4gYXJSu2y9+6bb4dcuEh7CYljUgSxpOZFMd2ozf0D52fPR5EM04Kdvr\nXcDLgPuy/+/0d1DVezEt9cgsiO/qQg4WJhlrQjqckQzstuuMBmkxWRxeRGbH6PFVs8O5myCZwjVj\nVchNF4wf+toNBhdNa0adLIIm9zbbla5kPQyTU5kDsaoQ7hJLF+vDdTN0Igmohr3mr1uiqBco8zPO\nrIoBWVIdmpNBkWBX1EsqXiOLeLIVWstFjELEYN6vQWIA4/4KEYO5nlGFGOw15uRQIoBxuTJyyYJo\nHns6nxRjdA0rImQ9+HDJYVM6hCgkR/tJNidFEPdhmlV8E/BXwEsA/KqEm4IhiSVwxFCMq8Eu64Yy\nyktyCMB8ipIRxYULZpK4dqPkZhDilXbrOtC1RRPJdLYeWsDeMJsu0rdpdDu/YsKwFUItYbQmCai4\nlvwoN/t72UlVJ/OiKurxwmn4NN+4+8li28RQQlvXkksOMVena0VsGL6F4JPDlT11C20SJ0IQqnoJ\neF5ge6kqobP9fZhIp5VhSSIdFroEkFUoy3SJbN+2ukTRmtFvLtSuPEeMSKIi6KrWQ8S91KQ/bAK2\nnMZJY7JQLiZHJANjQUJHkoBqcccM9gp1sgi6ZELwG6x1dT9ZqwKoEAOQ6ww+MQC5zuASA5TdSf44\nK1kO9r8f1OFt74yYNrECYuRgH1+Zal4sskccTyh5f7KQbKIwg2W6PCrEa3zxmkKXsMh0Cb16rXRc\nq1W0RR4q2HIycYlkG9aDj9MyqbdF040+XQrJQLkyXdaThI/YZOWGd2YIkYSpulvkEoSsCt/9ZK2K\nJveTQZwY7PYQMUBYgIYaYnARa7rV0bXkouJmAqhxjfoEUOdecslhujzKyeHqbDO5C4OlkqxZr+20\n4glFEBZWvLa6hBWvc13CF68PLhTiNUaTyDttxUqEBz43d0VErICY1RGMIHFxhrSHtlhldWdbmYaO\nY7/aEEm4bkZwrIiFUyrCQ54fESAJ6GZNWLhWRVv3U7Fty8TgWgjZ/5wcPD2iQg5NVkFMrF4RMfHZ\nJ4fH9jS5bZN4QhIEtNQlMvE61yWseO3oEqRpMJEqhNi6vIk48vevYj2coHsphnVN+xARhI59Yy6V\nbea9Cy4m5ncHyuHP2X4lV1Me+lqe+EpJdF6BR/e37EoWbdxP1qoAKsQA7UJWzX5D53G9tRDcFnu8\nAkpWRAe41kPMtTRdHjFZLJkshlydDbkxlzNnKYvIDwH/CNMN7s+Af66qlwP7fTvwLzBD+Pez/Y5F\n5POBH8dEhc6BV6rqb9d95hOWIGAzugTTWeFicsnCdzu5rU7dbUTq+7SNhvKthxWwDYF6E/7dOiKI\nfY4lBfc141o022/N559FnicDlN2M2R7BHIkQSUA0R2IdshgejEwv8oD7ySBODFAfslpLDE2kQMC1\n1BTS6qOFpWAzqleFTw5XpgU5XJkOeXy6GYIQVca7cTE9ANyrqnMReS0myrNUgUJEngp8K/B0VT0S\nkbcBXwv8JPCDwL9T1V/J0gd+kKKiRRBPaIKADegSNa6l2hiJGsKAmtVck/UQEafbosuqalMiXxsi\nqPvMECmYx4YY8nSVbMW9NklAfY5Eqed5Ta5ERK8IIeZ+ys+hBTHUupFakILdFnQtQZgc2i5afDcT\nRMetayXErIc25HD9jEWmqup7nKcPAl8d2XUEHIrIDDgHfNQegqKm3c3O9iie8ARh0TmpzuoS7oTh\nNxvK/vu+6go5BETP0vYYXOuhAb57qS22EemxLiFAmRT8/VxiuD4nJ4jbUzZDEtAuRyLwe65at8vC\nWhWurdcUstrJWqhzE23JteQi5mbq4gp1w1ktOUyXkpPDZGHI4fLGLAgYT1tbEE8SkYec5/dnVSC6\n4hsxFbFLUNWPiMh/AD6EKf/wHodYvg14d/b6APj7TR/SE4SDlZLqrChs3Q/TSZQooAVZ2G0Qvnlj\n1kNHcbq+vMbJkULdZ9eRgnkeJobjhXA8B1DM/Gl7YdvjLUiHk/xuyBcGTSQB4RyJ2G/qu2ki1xkK\nkzYlt52Mcet+YgViaEsKge2dsqW7ujw75kSErAeXHG7MJzk5PDYZ5uRwaWLI4fhkLIhHVfWZsRfr\nShSp6juzfV6D0RDeGnj/rZhiqE8DLgM/KyIvVdW3AN8MfLuq/ryIvAR4IxCteAE9QVTQOaluPjGD\nejQti5mR9pWNZAHhbT6a4s1bupe2JVRvghCgSgr+e6xLrI4Yim3CLalyaQIw4GICj+U/0wIwJJEM\nDpksrrcnCcgJoHafwP4Wq5CFW2U1RAydSaHBEthUSGtrLKa1oa75bhVhuh05XOrWYXYnqCtRBCAi\n3wDcAzxPNdjg5PnAX6jqJ7P9346xFN6CqVrxqmy/nwXe0HQ+PUEE4OoStcX+FlMnyolmoqj4p4vB\n34osQtaDF9oaQpvaS+sK1JtwG1mESMF/X4gYwBCBTwyTzK10iSVbJwm8iZTAb9sCoW8gloDZmhg6\nkIJ/DaX960JaN4C8V0Sg5EbdGLZj/MZ8wmQhOTlMFoOcHI4X5ORgx8W6kKUy3mKJnfxzRF6AqW79\nxaoaK+fwIeBZInIO42J6HqbhGhjN4YsxScdfAvxJ02f2BFGDRl3CTsjjg7WIAoob0g+bdPfJUWM9\n5OJ0BDa8NYSuYX+7JgXzvBsxTKfDopnLTdPtk4SLDRFGE1kE6yRZtHQnRQkh9t424dWrwHMzxSKZ\nrHvJdS255GDzHCaLAVemg5wcLk8kJ4drV7dT4mOLeD2QAg+I+U4eVNVXuCWKVPW3ROTngA9g3FC/\nS1blGviXwI+IyAg4Bl7e9IE9QTSgTpcYyshMHE4J6ShRjJIihyKGkFUBhRBaZz34cHIfQlhFf+hC\nCE3HgjgphN67DjFMJwOOjsxQn6YLYAYIJkVAgYGjR5iyHJYkbOhzkCRqEumCOkS2PTQZ1xKOEwDh\nZu23thRiWkLd59W91jWkdUvwycGEarcnh8cvny2CUNXPjGwvlShS1e8Dvi+w328Af6/LZ/YE0QJR\nXcKZw2JEwSg1+RPuZGKJwrckIlZFCTHroUacjpFBU7njroRg0UVobnqfTwxQEEFbYphOim033zLN\n8uFn3A5czuyB21MT4QJwa7rIHhvrcbo0vUCqJHGTSaD0E+li5FAD/1tpSxilbaHHrEEGdftughya\nciFmx0G3aVmcLsjhylS5OrMuJUMOZpwYcrg+L8hhOhlsrE2oLJW0r+b6xEYoqc60MhzlDWlKFoWt\n7zM7znrvrkAU9rlFyHrwYcVpD7Hw1lCC3CrEsCopxN67CjEAGRmUicFOBNeumO9rKyQBwRyJEmqs\nisqk7pOAn7Hvvt6GENoSQdN+bY6zbsG9hbHAxTuO30Y4Rg5GlDbkcGlSkMPjRwU5PH45zcdDjzh6\ngugAP6kOihXMUEYwoCAKq1GsQxRQXRmGwltD4nTEvbTJJimbdCEV2zdMDFMlOcqSpm4eb4UkmDdM\nNNOArrQCQqQRRNtchq44CdeSF8nkL3LcyqyWHOzYaSSHvtx3I3qCWAFusb+iq9kGicJFKMw1YD3E\nxOmmpjoWbQXqbZCC+/nbIIZksshLIUwPR1zDfE+Hh5YsZxzMwcrP50cCmOOfG9lJZJL3lADTxjQZ\nHSL2XTYvxkWkhlMJ044RTiH3kv96F3Te/+QLQFqrIVR8b7IQHp/aiKWCHIzr0ZCDHR8XLm8mzlWU\nXZXa2Dl6glgRhS6xBlFkCXY5UbhJdyG0sR5ahgaGttVP4JvTFcqvS+m/m8sQC1e1OkNbYhhPF6Uw\nxCkFSeS4MOPSMRQxSpYkFliyuJgssL3JLYIkMa8Rry3akEcMdSSxwazm6rFbnOuG+jkA5jvyxnMX\ncrh0XJDDtSvjnBymVwdcuDzZ20l9k5BwrsXZhoh8EtOpbtt4EvDoDj5n19jH69rHa4L+utbF31TV\nJ69zABH575jzbYNHVfUF63zeLrGXBLEriMhDdWnzZxX7eF37eE3QX1eP7aLvudejR48ePYLoCaJH\njx49egTRE8R6WKVM71nAPl7XPl4T9NfVY4voNYgePXr06BFEb0H06NGjR48geoLo0aNHjx5B9ATR\nASJym4g8ICJ/kv2/tWbfoYj8roj84i7PcRW0uS4R+XQR+R8i8kci8oci8qrQsU4aIvICEfljEflT\nEXl14HURkf+Uvf57IvJ3T+I8u6LFdf3T7Hp+X0R+U0Q+7yTOswuarsnZ7wtEZC4isR7MPbaEniC6\n4dXAe1X1s4D3Zs9jeBXw8E7Oan20ua458J2q+nTgWcC/FpGn7/AcGyEiQ+DHgBcCTwe+LnCOLwQ+\nK/t7OfBfdnqSK6Dldf0FppHM5wD/nlMu8ra8Jrvfa4H3+K/12D56guiGFwNvzh6/GfjHoZ1E5E7g\nK2jR0u+UoPG6VPURVf1A9vgqhvyeurMzbIcvBP5UVf9cVafAz2CuzcWLgZ9SgweBW0Tkjl2faEc0\nXpeq/qaqPpY9fRC4c8fn2BVtfiuAbwF+HvjELk+uh0FPEN3wFFV9JHv8MeApkf1eh2kNuF4fz92h\n7XUBICJ3Ac8Afmu7p9UZTwX+n/P8w1RJrM0+pw1dz/mbgF/Z6hmtj8ZrEpGnAl/JGbDy9hV9sT4P\nIvKrwKcGXnqN+0RVVUQqMcIicg/wCVV9v4g8Zztn2R3rXpdznAuYFd23qeqVzZ5lj3UhIs/FEMQX\nnfS5bACvA75HVZcS6YzYY7voCcKDqj4/9pqIfFxE7lDVRzK3RMjsfTbwIhG5GzgALorIW1T1pVs6\n5VbYwHUhImMMObxVVd++pVNdBx8BPt15fme2res+pw2tzllEPhfj1nyhql7a0bmtijbX9EzgZzJy\neBJwt4jMVfUXdnOKPXoXUze8C3hZ9vhlwDv9HVT1XlW9U1XvAr4W+LWTJocWaLwuMXfpG4GHVfWH\nd3huXfA7wGeJyNNEJMF8/+/y9nkX8M+yaKZnAY877rXTisbrEpG/Abwd+HpV/b8ncI5d0XhNqvo0\nVb0ru5d+DnhlTw67RU8Q3XAf8KUi8ifA87PniMinicgvn+iZrYc21/Vs4OuBLxGRD2Z/d4cPdzJQ\n1Tnwb4B3Y0T0t6nqH4rIK0TkFdluvwz8OfCnwH8FXnkiJ9sBLa/r3wK3A/85+20eOqHTbYWW19Tj\nhNGX2ujRo0ePHkH0FkSPHj169AiiJ4gePXr06BFETxA9evTo0SOIniB69OjRo0cQPUH06NGjR48g\neoLoceYgIt8qIg+LyFu3cOyvyarVLkXkmZs+fo8eZwl9JnWPs4hXAs9X1Q+7G0VklMXXr4M/AL4K\n+Ik1j9Ojx5lHTxA9zhRE5MeBzwB+RUTeBNwM/K1s24dE5KWYRL/nACnwY6r6E1km+I8CX4opEjcF\n3qSqP+ceX1Ufzj5nNxfUo8cpRk8QPc4UVPUVIvIC4Lmq+qiIfD+mn8AXqeqRiLwcUz7jC0QkBf6n\niLwHU332b2f7PgX4I+BNJ3MVPXqcDfQE0WMf8C5VPcoefxnwuU73sZsxzYH+IfDTqroAPioiv3YC\n59mjx5lCTxA99gHXnccCfIuqvtvd4bTVjerR4yygj2LqsW94N/DNWWlyROSzReQ88OvAPxHTK/wO\n4LkneZI9epwF9BZEj33DG4C7gA9kwvQnMS1U3wF8CUZ7+BDwv0JvFpGvxIjZTwZ+SUQ+qKpfvoPz\n7tHj1KGv5trjCQkR+UngF/0oph49ehToXUw9evTo0SOI3oLo0aNHjx5B9BZEjx49evQIoieIHj16\n9OgRRE8QPXr06NEjiJ4gevTo0aNHED1B9OjRo0ePIP4/kadCXr3KWBEAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example\n", + "\n", + "Another example is demostrated here for a periodic lighturve with poisson noise." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "freq = 1 #Hz\n", + "exposure = 50. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*freq*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc = lightcurve.Lightcurve(times,noisy)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGZhJREFUeJzt3X+MHOWd5/H357xeJdpEYu88t0H+cZPT+f4IEUe4EWHJ\nSsch5QQELasTFxFpQ8StZJEjOqLN3u4kJ5FNpN2NbqUoR8jiOAkCFkKWbAjxMiYJy5LDOTBmbIyN\nfyTxETu2MXhig39gY2P8vT+6PO5p93RVd1d1V1V/XtJouquernqe+vGpp6uruxQRmJlZvfyzYVfA\nzMzy53A3M6shh7uZWQ053M3MasjhbmZWQw53M7MacribmdWQw93MrIYc7mZmNfQbw5rxokWLYnx8\nfFizNzOrpA0bNvw6IsbSyg0t3MfHx5menh7W7M3MKknS7izlfFrGzKyGHO5mZjXkcDczqyGHu5lZ\nDTnczcxqKHO4S1og6XlJj7YZJ0l3SNopabOkS/OtppmZdaObnvttwPZ5xl0DLE/+VgB39VkvMzPr\nQ6Zwl7QE+AjwzXmKXA/cFw3rgAskXZhTHUfKwWMn+eGL+4ddDTOruKw9968AfwqcmWf8YmBP0/O9\nybA5JK2QNC1pemZmpquKjor/es9z3HL/Rg4ff2vYVTGzCksNd0nXAQciYkO/M4uIVRExERETY2Op\n354dSXteOwHA6TPzHUfNzNJl6bl/CPh9SbuA7wBXSbq/pcw+YGnT8yXJMDMzG4LUcI+Iz0bEkogY\nB24E/iki/rCl2GrgpuSqmcuBwxHhE8dmZkPS8w+HSboFICJWAmuAa4GdwHHg5lxqZ2ZmPekq3CPi\nJ8BPkscrm4YHcGueFTMzs975G6pmZjXkcDczqyGHe8k0znCZmfXH4V5SkoZdBTOrMIe7mVkNOdzN\nzGrI4W5mVkMOdzOzGnK4m5nVkMPdzKyGHO4l46vczSwPDveS8lXuZtYPh7uZWQ053M3MasjhbmZW\nQ1nuofoOSeslvSBpq6QvtClzpaTDkjYlf7cXU10zM8siy806TgJXRcQxSQuBn0p6LCLWtZRbGxHX\n5V9FMzPrVmq4J3dZOpY8XZj8+Yq9gvgXf80sD5nOuUtaIGkTcAB4PCKebVPsCkmbJT0m6aJcazmC\n/Iu/ZtaPTOEeEW9HxCXAEuAySe9vKbIRWBYRFwNfBR5pNx1JKyRNS5qemZnpp95mZtZBV1fLRMTr\nwJPA1S3Dj0TEseTxGmChpEVtXr8qIiYiYmJsbKyPapuZWSdZrpYZk3RB8vidwIeBHS1l3qPk1kGS\nLkumezD/6pqZWRZZrpa5ELhX0gIaof1QRDwq6RaAiFgJ3AB8UtJp4ARwY/hmoGZmQ5PlapnNwAfa\nDF/Z9PhO4M58q2ZmZr3yN1TNzGrI4V4yPptlZnlwuJeU/KO/ZtYHh7uZWQ053M3MasjhbmZWQw53\nM7MacribmdWQw93MrIYc7iXjq9zNLA8O97LyZe5m1geHu5lZDTnczcxqyOFuZlZDDnczsxpyuJuZ\n1VCW2+y9Q9J6SS9I2irpC23KSNIdknZK2izp0mKqa2ZmWWS5zd5J4KqIOCZpIfBTSY9FxLqmMtcA\ny5O/DwJ3Jf+tW77Q3cxykNpzj4ZjydOFyV9rBF0P3JeUXQdcIOnCfKs6WuTr3M2sD5nOuUtaIGkT\ncAB4PCKebSmyGNjT9HxvMqwwf/LdFxifnOJvfrKT8ckpjp86PW/ZiGB8coq/WrN9zvAjb77F+OTU\neX87DxxjfHKKx7e9CsB/+Osnufwvn5jz2ubyvTj72r99Zhfjk1N84u71HDt5mqMnG+24+M9/PFvm\nhrueZnxyii/+w7Y5r//oymdmy+z69Rtzpj9z9CTjk1M8uP5X89bhG0+9xPjkFF97cmfb+v3x322a\nffy572+Zffypb2/km2sbrz365lsArNmyn/HJKXYffOO8aTX7t//zMcYnp/jAF38MwGtvnDpvOY5P\nTnHT3esB+PwPXpwz7uTptzMt9/HJKf7Hd1+YfdxYr0cZn5zid//qiUb7HtrE+OQUJ0+/PVuvQ2+c\n4qLbfzj7mh2vHAHg4LHG8nzg2d0AfHTlM7z3s+3rMD45xR/d8xwvv36ibV0feHb37PB9SZlHnt93\n3nR2H3xjttx/Wfn0nHG/Onic8ckppjbvnx12xxO/YHxyijffevu8af2vH+5obDNff2a2Phf/+Y+4\n+itPzdbhB5vOr8N8zi6P+9ft5sCRNxmfnOKh5/akv7CN1v3vF68ebTv+o19/hqPJPvuNp17ix1tf\nYXxyiv83c6ztNP/7g8/zvqZ12Y8bV53b167532tnh+85dHx2+K8OHp9dps31/uBf/mNf8+5VpnCP\niLcj4hJgCXCZpPf3MjNJKyRNS5qemZnpZRKz/n7DXgD+9pnGzvb68bfmLXsmeZ/xjbUvzRl+4Mib\nbcu/sOd1AB7b0thxdh88zivzlO3X3003doj/8/MZDh472bbM9O7XALj7//5yzvD1uw7NPt768pE5\n486G7Nnl1M6XfrgDgL/+0c/ajn+4KXC+/ey5g8Sjm/dz/7rGcv/1sVMArN70MgDbWurR6tTbZwB4\nLVlf+14/0bbcUz9vbB/3Juv3rOMnzw+u+Xy3pe2b9hwGYP/hxrp8eOO+2Wmerde+107wxqlz89iQ\nLPtfHToOwEPTjWmu33WITndEfGLHAX7eElJn3ff0uTadLfP9NuH+4r5zy/K5Xa/NGbf15UZb/uGF\nl2eH3fP0LgDeOHl+R+ebaxvbzvpfnttmjrx5mh2vHOVnyQGs3QFmPntfa6y3h6b38FLSsfj7jfNv\na914Ptn/Wq3/5aHZ7e2BZ3czleyfW/Yeblt+9Qsvc/xU9u2lk3UvnVtu2/efWy/bWh6fXabNXj3S\nfr8uWldXy0TE68CTwNUto/YBS5ueL0mGtb5+VURMRMTE2NhYt3U1M7OMslwtMybpguTxO4EPAzta\niq0GbkqumrkcOBwR+zEzs6HIcrXMhcC9khbQOBg8FBGPSroFICJWAmuAa4GdwHHg5oLqO1C+cMXO\n0+lcjFmJpIZ7RGwGPtBm+MqmxwHcmm/VupNll8u6Ww7ySpWisyI6zCCPZnaafhGGFa3KcaPwlVA2\nCJX/hmqW/WT+MvXdy4oOkDzDrq7mW0bu/NdHmfeCyod7kQbeK+1jdtFDn3bU8nm+5lY5azOv9wzr\nupvl0LZsXguyy+n0su0Xoyz1aBjxcG+/MkYt9Oyc1qBoPeDmsfvmsX21m0avnRH12f8c5O7S3Ebv\npp2NeLiPtn536lFS2JLqkMe9HgQGccps2FuOTwumc7h3UK43WeXUuoy8zHrTbVb5vL2lqU24Z3lL\nmnWHGGSPtvCrZQqabl5LqNv2D/pzkLLzu6/hKvM7iMqHe38Lt7wrpn/DaVudlyh0dzCqyrIozweS\nlqfKh7v1oSrpU7As7waK7qAV/YYk7+qX6XDgN3PtjXS4p+2wg95o+pldL3UdtWwv5TvoPuuUR6+7\nn1M7za/M6x1A1umU7ZRI2Q4yIx3u862Mkm0zPRrMlla2Dbpfae0pyymMTtvooD+XGGTIlmPpV0Nt\nwr2qIVPRag+t2z/o5XV2fsP44LLbOZatJ1uk0Wlp72oT7r1IPS0zmGoUpBqbf1l6wkXoN2u7XTLD\nuJKovmsvmzLvZSMd7qNuhDp6PaviImrXg897XVdxuYwah/sI6+tUQ426bF39pkre7a7ochx2tZvn\nX9VTskVzuJdIX1fsl6QrVfX9bL7lWPyvbHZXvohA63eaedWp03RKspm3VbZt3+HewSDOYTbPo4hL\nIQtrwrA+UC3bHlQHfaxLMbyORZmDvgyy3GZvqaQnJW2TtFXSbW3KXCnpsKRNyd/txVS3Xf2KmGb1\nN5ssTShk2XVZvmxhnWd95jvtlcf2VYNNtCcl21xKvR6y3GbvNPCZiNgo6d3ABkmPR8S2lnJrI+K6\n/KtoVh6DPBgNLDfKlpgZlDhTSyO15x4R+yNiY/L4KLAdWFx0xcqggtu85ayIbWAYlyxm+fC8zL1Q\n615X59wljdO4n+qzbUZfIWmzpMckXTTP61dImpY0PTMz03VlB2VUtvF82ulDYB7yyPthrImgfKfW\nrCFzuEt6F/A94NMRcaRl9EZgWURcDHwVeKTdNCJiVURMRMTE2NhYr3XOzSiEeKf9rp9zv1VcdmXp\nmc5Z7iX43CO3+eY0466vHMpntn0ryeY1K1O4S1pII9gfiIiHW8dHxJGIOJY8XgMslLQo15qmKKT3\nUJatpgdl29DyMuxvtFZ4k0jV74/PDeJSyHlnPiTNB6KybRtZrpYR8C1ge0R8eZ4y70nKIemyZLoH\n86zo/PXr57XzXc3Q+zT70c+52LJtWFlVpd69bBOZXlOGa8v73N7L8o7I5spytcyHgI8DWyRtSoZ9\nDlgGEBErgRuAT0o6DZwAbgzfMsesrXZZ2H1AOlGts9Rwj4ifkrIlRcSdwJ15VWpQ6nz8ydKyPOKh\ndRFWfYkOov55/ep5N2Pq0rues71VfWMrmL+h2sGwz+8WLsdTWnUJj/O0HL0G2SHo9otodV0FbY1q\nu7tQm3DPM4jrcIPsQW/wA8u8PuYz33rNUnffiHquMr3rHWZNyrxdVD7cy7xwR1H3Pz9QnpDI23zL\nIusy6nbR9LskK7cmvOt3VPlwL1KNcwfwvpFJBc83DaLG7a40y2t3qepuV7a8cLi3MbRLIft57ZC2\nrJJtz4Upa8ZnXe1Zqt9rE0u6aEaew9164h26d/kcEL0GrLPahHvZ3hJlVfgVOR0WTD8/PzDwG1Un\n7ajoara6KvExtvLhXuTb5UEfMPq7E1PrpYmD2epKvG2fJ49F0tU24W9+2hBVPtyL4H1qcMrQE+/4\n7ilJcwftXGW6yqlMdSkTh7v1pXW3KvNuVq8MyL8xPU1xiEc9XwbdmcO9g9p/Q7UPrbtVXXq2VesF\nzvlVwk43lu6wgvpadc33AM5p2VVsFcwqW1443NuoS1BB2u+5D6watZHHDlz0AWQQ67X5YDHK21GZ\nm16bcC/XMTO75v08z+vci7yuuf38c5xYh+kPq1dX1lMAVe3lWvEqH+5F7nLecbrX/c8PFFKNtgbd\nwyz2gFDOg42VR+XDvR8drgAfYC2KMbDf8arDATCnd09lMYh1MrzPJs6fbx3WWRGy3IlpqaQnJW2T\ntFXSbW3KSNIdknYmN8m+tJjqWrc6Hab6uodq9Y9/Pck70zqfw+9uIQ9lnQxpQ9DwZl0ZWe7EdBr4\nTERslPRuYIOkxyNiW1OZa4Dlyd8HgbuS/zZk7tX05+zyKzpIis6pQeRgfj8cVp2ttrmDVLZ3sak9\n94jYHxEbk8dHge3A4pZi1wP3RcM64AJJF+Ze2871zH+auU9xcPOoW6cmZv+XbA8y6re11YO6CUVJ\n48BTwPsj4kjT8EeBLyW35EPSE8CfRcT0fNOamJiI6el5R3c0PjnV0+sGYfEF72Tf6yeGXQ0zK7GH\n/9sVXLrst3t6raQNETGRVi7zB6qS3gV8D/h0c7B3WakVkqYlTc/MzPQyidJzsJtZmv/8N08XPo9M\n4S5pIY1gfyAiHm5TZB+wtOn5kmTYHBGxKiImImJibGysl/qamVkGWa6WEfAtYHtEfHmeYquBm5Kr\nZi4HDkfE/hzraWZmXchytcyHgI8DWyRtSoZ9DlgGEBErgTXAtcBO4Dhwc/5VNTOzrFLDPfmQtOPH\n4dH4VPbWvCplZmb9GelvqJqZ1ZXD3cyshhzuZmY15HA3M6shh7uZWQ053M3MasjhbmZWQw53M7Ma\ncribmdWQw93MrIYc7mZmNeRwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOzGspym727JR2Q9OI846+U\ndFjSpuTv9vyraWZm3chym717gDuB+zqUWRsR1+VSIzMz61tqzz0ingIODaAuZmaWk7zOuV8habOk\nxyRdlNM0zcysR1lOy6TZCCyLiGOSrgUeAZa3KyhpBbACYNmyZTnM2szM2um75x4RRyLiWPJ4DbBQ\n0qJ5yq6KiImImBgbG+t31mZmNo++w13SeyQpeXxZMs2D/U7XzMx6l3paRtKDwJXAIkl7gc8DCwEi\nYiVwA/BJSaeBE8CNERGF1djMzFKlhntEfCxl/J00LpU0M7OS8DdUzcxqyOFuZlZDDnczsxqqXLj7\ns1ozs3SVC3czM0vncDczqyGHu5lZDVUu3H3K3cwsXeXC3czM0jnczcxqyOFuZlZDlQt3n3I3M0tX\nuXA3M7N0DnczsxpyuJuZ1VDlwt2/LWNmli413CXdLemApBfnGS9Jd0jaKWmzpEvzr6aZmXUjS8/9\nHuDqDuOvAZYnfyuAu/qvlpmZ9SM13CPiKeBQhyLXA/dFwzrgAkkX5lVBMzPrXh7n3BcDe5qe702G\nnUfSCknTkqZnZmZ6mtnUlv09vc7MbJQM9APViFgVERMRMTE2NtbTNNa91OlNhJmZQT7hvg9Y2vR8\nSTKsIL5axswsTR7hvhq4Kblq5nLgcEQUdu7kzJmipmxmVh+/kVZA0oPAlcAiSXuBzwMLASJiJbAG\nuBbYCRwHbi6qsgDhnruZWarUcI+Ij6WMD+DW3GqU4oyz3cwsVQW/oTrsGpiZlV/1wt2nZczMUlUu\n3J3tZmbpKhfuznYzs3SVC/czPuluZpaqcuHubDczS1e5cHfP3cwsXeXC3dFuZpaucuHudDczS1e5\ncPdpGTOzdJULd2e7mVm66oW7z8uYmaWqXrg7283MUlUv3IddATOzCqheuLvrbmaWqoLhPuwamJmV\nX6Zwl3S1pJ9J2ilpss34KyUdlrQp+bs9/6o2+FJIM7N0WW6ztwD4GvBhYC/wnKTVEbGtpejaiLiu\ngDrO4Wg3M0uXped+GbAzIl6KiFPAd4Dri63W/NxxNzNLlyXcFwN7mp7vTYa1ukLSZkmPSbqo3YQk\nrZA0LWl6Zmamh+q6525mlkVeH6huBJZFxMXAV4FH2hWKiFURMRERE2NjYz3NyFfLmJmlyxLu+4Cl\nTc+XJMNmRcSRiDiWPF4DLJS0KLdazplXEVM1M6uXLOH+HLBc0nsl/SZwI7C6uYCk90hS8viyZLoH\n864s+OcHzMyySL1aJiJOS/oU8CNgAXB3RGyVdEsyfiVwA/BJSaeBE8CNUdD5E/fczczSpYY7zJ5q\nWdMybGXT4zuBO/OtWnu+zt3MLJ2/oWpmVkPVC/dhV8DMrAIqF+5OdzOzdJULd18tY2aWrnLhfsbZ\nbmaWqnLh7m+ompmlq1y4u+duZpaucuHubDczS1e5cPeF7mZm6SoX7o52M7N01Qt3p7uZWarKhbt/\nW8bMLF3lwt3ZbmaWrnrhPuwKmJlVQPXC3V13M7NUmcJd0tWSfiZpp6TJNuMl6Y5k/GZJl+Zf1QZn\nu5lZutRwl7QA+BpwDfA+4GOS3tdS7BpgefK3Argr53rO8g+HmZmly9JzvwzYGREvRcQp4DvA9S1l\nrgfui4Z1wAWSLsy5roB77mZmWWQJ98XAnqbne5Nh3ZbJxc6ZY0VM1sysVgb6gaqkFZKmJU3PzMz0\nNI0H/uiDOdfKzGywvv7xf1/4PLLcIHsfsLTp+ZJkWLdliIhVwCqAiYmJnk6wXPFvFrHrSx/p5aVm\nZiMjS8/9OWC5pPdK+k3gRmB1S5nVwE3JVTOXA4cjYn/OdTUzs4xSe+4RcVrSp4AfAQuAuyNiq6Rb\nkvErgTXAtcBO4Dhwc3FVNjOzNFlOyxARa2gEePOwlU2PA7g136qZmVmvKvcNVTMzS+dwNzOrIYe7\nmVkNOdzNzGrI4W5mVkMa1k/oSpoBdvf48kXAr3OsThW4zaPBbR4N/bT5X0XEWFqhoYV7PyRNR8TE\nsOsxSG7zaHCbR8Mg2uzTMmZmNeRwNzOroaqG+6phV2AI3ObR4DaPhsLbXMlz7mZm1llVe+5mZtZB\n5cI97WbddSDpbkkHJL3YNOyfS3pc0i+S/789zDrmTdJSSU9K2iZpq6TbkuG1bLekd0haL+mFpL1f\nSIbXsr3NJC2Q9LykR5PntW6zpF2StkjaJGk6GVZ4mysV7hlv1l0H9wBXtwybBJ6IiOXAE8nzOjkN\nfCYi3gdcDtyarNu6tvskcFVE/DvgEuDq5F4IdW1vs9uA7U3PR6HN/zEiLmm6/LHwNlcq3Ml2s+7K\ni4ingEMtg68H7k0e3wv8wUArVbCI2B8RG5PHR2ns/IupabuTm8mfvSHwwuQvqGl7z5K0BPgI8M2m\nwbVu8zwKb3PVwn1gN+Iuod9purvVK8DvDLMyRZI0DnwAeJYatzs5PbEJOAA8HhG1bm/iK8CfAmea\nhtW9zQH8o6QNklYkwwpvc6abdVi5RERIquVlTpLeBXwP+HREHJE0O65u7Y6It4FLJF0AfF/S+1vG\n16q9kq4DDkTEBklXtitTtzYnfi8i9kn6l8DjknY0jyyqzVXruWe6EXdNvSrpQoDk/4Eh1yd3khbS\nCPYHIuLhZHDt2x0RrwNP0vicpc7t/RDw+5J20TilepWk+6l3m4mIfcn/A8D3aZxeLrzNVQv3LDfr\nrqvVwCeSx58AfjDEuuROjS76t4DtEfHlplG1bLeksaTHjqR3Ah8GdlDT9gJExGcjYklEjNPYd/8p\nIv6QGrdZ0m9JevfZx8B/Al5kAG2u3JeYJF1L47zd2Zt1/8WQq5Q7SQ8CV9L45bhXgc8DjwAPActo\n/JrmRyOi9UPXypL0e8BaYAvnzsd+jsZ599q1W9LFND5IW0Cjk/VQRHxR0r+ghu1tlZyW+ZOIuK7O\nbZb0r2n01qFxGvzbEfEXg2hz5cLdzMzSVe20jJmZZeBwNzOrIYe7mVkNOdzNzGrI4W5mVkMOdzOz\nGnK4m5nVkMPdzKyG/j9Mccz20QZE3QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, 'unbiased' scaled Bispectrum is calculated." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25, scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-5000.00000001, -4800.00000001, -4600.00000001, -4400.00000001,\n", + " -4200.00000001])" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.freq[:5]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.0021, 0.0022, 0.0023, 0.0024, 0.0025])" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.lags[-5:]" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4.16469688e-04, -1.15175317e-06, -1.07527932e-05,\n", + " 3.12465067e-05, -1.49891250e-05, -1.13491830e-05,\n", + " -3.01378025e-05, 8.84909091e-06, -9.76499980e-06,\n", + " -4.03093430e-05, -1.39169834e-05, -1.06733571e-05,\n", + " -3.56900080e-05, -4.36904080e-05, -1.64739272e-05,\n", + " -6.07642325e-06, -9.40724231e-05, 3.20972054e-05,\n", + " 1.10825598e-06, 1.57445478e-05, 1.50738698e-04,\n", + " -1.53088049e-05, -1.06758132e-05, -8.50761732e-05,\n", + " -2.70732731e-05, 5.15575763e-04, -2.26276548e-06,\n", + " -5.46966498e-05, -3.49049233e-05, 6.93111630e-05,\n", + " -1.96629892e-05, -4.00897434e-05, -5.37940654e-07,\n", + " -1.25908665e-04, -4.04722751e-05, -1.95122973e-05,\n", + " 7.48985545e-06, -1.59418559e-05, -3.40950546e-07,\n", + " -5.28946188e-05, -6.77547458e-05, -2.58282563e-06,\n", + " -2.16597857e-05, 2.08264564e-05, 1.62145798e-05,\n", + " 6.20770115e-05, 5.74011370e-05, 3.04301082e-05,\n", + " 5.42455829e-05, 6.16520488e-05, 5.25699675e-05])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.cum3[0]" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.10270301, 0.09674684, 0.1026435 , 0.10278492, 0.09607422,\n", + " 0.09961388, 0.10090391, 0.10316149, 0.09881147, 0.10027435,\n", + " 0.09052907, 0.10086312, 0.09964639, 0.09224589, 0.10189853,\n", + " 0.09783874, 0.1029246 , 0.10003251, 0.1003841 , 0.09654483,\n", + " 0.10021589, 0.10265071, 0.09913028, 0.10406698, 0.10248613,\n", + " 0.12079938, 0.10038381, 0.09376602, 0.09916139, 0.10218425,\n", + " 0.09798569, 0.10296954, 0.10377357, 0.10144925, 0.09848511,\n", + " 0.09731673, 0.10031293, 0.09733791, 0.10085873, 0.09769191,\n", + " 0.10021328, 0.1000008 , 0.10362033, 0.10352851, 0.09763424,\n", + " 0.10249754, 0.09752426, 0.09520164, 0.09959243, 0.12395456,\n", + " 0.10188173])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_mag[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ -1.44942123e-02, 1.67988284e-02, -3.06544878e-03,\n", + " 1.24304742e-02, -4.69267453e-04, 1.80410887e-02,\n", + " 1.18875941e-03, -1.85154750e-03, 2.17338081e-02,\n", + " 1.03821918e-02, -7.09489717e-03, 1.05358508e-02,\n", + " 4.01625879e-03, -2.05403388e-02, 1.17686452e-03,\n", + " 2.56746832e-02, 2.17353559e-02, -7.69020683e-03,\n", + " 1.54447950e-02, -9.03814639e-04, 3.43660863e-03,\n", + " -5.37971533e-04, 9.42017522e-03, 1.42720920e-03,\n", + " 1.17025084e-03, -5.00982277e-03, -1.53439701e-02,\n", + " -7.63874625e-04, -4.10637611e-02, 2.41131565e-02,\n", + " -1.95500843e-02, -2.98681684e-02, 1.23914953e-03,\n", + " -2.75100800e-02, -3.88428578e-03, -7.87537903e-03,\n", + " -1.53613857e-03, 1.47624077e-02, -4.86162981e-03,\n", + " -2.76731089e-03, 9.30828311e-03, -2.86531767e-02,\n", + " -1.16465064e-02, -2.30165990e-02, -7.71187242e-03,\n", + " 2.00694116e-02, -5.16511843e-02, -1.98737477e-03,\n", + " -9.87738671e-03, -2.09922507e-17, 1.39146079e-02])" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.bispec_phase[1]" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEWCAYAAABfdFHAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXv4ZlVd//16zzAMR0EYQI4OKHoFdWlIYPXTDoICmVQe\nLsgksSKe8DE7KURmP5Pfg1lZpImUphZGJKHTTwzBSn/2PKMcRJSTAmKAowgICDMMM3w/zx9737jZ\nsw9r7b3W3vu+v+t1Xff1/d73Xue99vqs9fl81l4yMxKJRCKRiMWKsQuQSCQSicUmCZpEIpFIRCUJ\nmkQikUhEJQmaRCKRSEQlCZpEIpFIRCUJmkQikUhEJQmaxOBIMknPjJzH2jyf7WLmMwaLXLfEYpIE\nTcILSf8g6VuSHpL0VUm/GiGPl0r6gqRHJN0n6UJJB4TOp0O5niXpnyXdK+lBSddL+m1JK8cuW1ck\nfVDS28cuR2KxSYIm4cu5wCFm9hTgZcDbJT2vKmCXGbekVwAfAf4CWAMcDmwGPifpqaHyaSnDNulJ\negbweeBO4IfMbDfglcDzgF1D5p9ILBpJ0CS8MLOvmNnG2df88wwAST8p6S5Jb5b0LeDv8t9/T9IG\nSd+U9Lq6tCUJ+DPg7Wb2ETPbZGbfAn4VeBj4rTzcayX9l6R3SboP+CNJKyX9ab7auB34mVLau0l6\nf16OuyW9fbYSqUqvonj/E/h/zey3zWxD3ha3mNmrzeyBWd1Led4h6Zj8/z/KV0P/IOl7kr6cr5DO\nknSPpDslvbgqbiH+P9S026mSbsrTvV3Srxeuze7J7+T5bJB0an7tNODVwJskPSzpX+vuTSLRhyRo\nEt5I+mtJG4GbgQ3AZYXLTwP2AJ4OnCbpOOB3gWOBQ4FjqOfZwEHAPxd/NLMl4JI8jRlHA7cD+wDn\nAL8GvBT4YeBI4BWltD8IbAWemYd5MZkAq0uvzDHARxvK7sLPAn8PPBX4InA52TO4P/A24H0d072H\nrO5PAU4F3iXpiML1pwG75fn8CvAeSU81swuAC4E/MbNdzOxnO+afSDSSBE3CGzP7DTJ10QuAfyFT\nbc1YAt5qZpvNbBPwKuDv8pXQI1SvFmasyf9uqLi2oXAd4Jtm9ldmtrWQz1+Y2Z1mdj/w/8wCStoH\nOAF4o5k9Ymb3AO8CTmpIr8yeNeXy4f+Y2eVmtpVMmO4FnGtmW4CLgLWSdvdN1Mw+YWa3WcZngE+R\n3ZsZW4C3mdkWM7uMbHX47J51SSScSYIm0Qkze9zMPgccAPxfhUvfMbNHC9/3I7NrzPhGQ7L35n/3\nrbi2b+E6pTTb8nk6sArYIOkBSQ+QrR72bkivzH015fLh24X/NwH3mtnjhe8Au/gmKul4Sesl3Z/X\n7QSeLJTvy4XbjI1d8kkkupIETaIv25HbaHLKrwPfABxY+H5QQ1q3AHeRGdmfQNIK4OXApzvmcyfZ\nqmuNme2ef55iZoc3pFfmyrwMdTwC7FQo80qyFUtXnpQemfprGyStJlMr/imwj5ntTqbKlGM+6fXt\niegkQZNwRtLekk6StEtufH8JcDJPFgBlLgZeK+kwSTsBb60LaNmZFb8L/IGkX5S0g6SnAX9LZn94\nV0s+b5B0QO6ddmYh3Q1k6qQ/k/QUSSskPUPSTzhWnbzcPybpnXmZkPTM3Li/O/BVYAdJPyNpFfAH\nwGqP9MtcB5wkaZWkKpvTjO3zfL4DbJV0PJn9yZVvA4f0KGci0UoSNAkfjExNdhfwXbJZ9BvNbF1t\nBLNPkrkq/ztwa/63PgOzfwJeQ+Zhdh9wI7Aj8ONmdl9D1L8hM65/CbiWzHZU5BSyQfnGvOwfxUMV\nZma3AT8KrAVukPQg2UriauB7ZvYg8BtkQvFushXJXdWpOfEWspXid8k83j5SU67vAW8gE7TfBX4R\nqL0fFbwfOCxXKX6sR3kTiVqUDj5LJBKJREzSiiaRSCQSUUmCJpFIJBJRSYImkUgkElFJgiaRSCQS\nUUmvGQdW77Cr7bzzk7c8aAnMUQz7hO2CluqvNeVbjmcrmtNqImb9qqgqe9P1JmKUvSr/tny6tn1T\n+n3TnAJjPTtNNJXpu/d//V4z67NHih/SnvYwW5zC3sH3Ljez4/rkNzZJ0AA777wXxxz3v5702+pN\n2UbqzTuO20SzclTRt2xNaYfOy5di2arydi17zHJXlaEuv7rylsP73JO+jJl3Uzkg3PPnWyeX/P75\nIyc3vd3CiYfZwh+tPMop7Gsf//Sa9lDTJqnOKhjrgfMhxAC6ecftnNMZuk1mZasrn0u5YwvHugGy\n3FauQqbuN5dyuMZratc+7dUn7qx9Zm1XbK++/c63XRJxSC07Mm0z9ypCPxCus/DVm7Z2zrucVqyH\neujBYvOO21UOhm0DZFM569KcKrO69Cl3U7w+/c6FJGDik1p4JJoGp1nH91HNxKCYV3HW2VYel8Gm\ni4BtKt+Y+A6wrquxMYRN37rEKncfVVpTmcbqQytWwI47OSqUvhe3LEMwjSd1Ysw6ZqjZ+9DxY1Al\ndMr/d2Wo1U5MXAZYn3qN2Qd8hEXVc9I0Uepbrimnl6gn2WhqGEvIzAOxH9AqO8c80KYOc6FL3WO0\n19A2wCHSSYxHunsTZSoeQXXEmrUWia2bj0FVu7jUYaj769OmTeHKq9pYNqep2fJC3SetEDsk1Vmi\nCzEHi9huun3sJEnYbMuYarI2u1mINvWdaMSwYxXxseGMLWSWI/P3BCe2oY+hM8TD4zqI1Nl5hmRq\ngstln9SUB7jZvXdp1y79pI06V/I6u1FiHJKNZqL4zv76bGr0DVtXBp/rY7lyw7ScNVz2CbXtKSrT\nto8nZJv6OIZMWWA2EcMGtmIFrF4tp88ikARNQEIPikMbxUMIG5+NgG16/aF39Q8Zv462eru2S507\nemzq8ovp8lwmVL+ZV6eUKZIEjQehl/0h863LewwPpvJs3CfskB5GUxE2xQ2PIalaycRazUyFEPVL\nAiY8SdA0UHwlRvk1GWOUZej8qj6u+A5qfV9h0lUYhxA2oexcUwrfh3kdpId8tlcIdtxxhdOnDUnH\nSbpF0q2Szqy4Lknn5devl3RE4dpvSvqKpBskvbEi7u9IMklr8u9rJW2SdF3+Od+pvi6Bliu+qqDY\ndHkQuthOmlYWsR7ELumW28O1fWK4jncRxn0Z28DtoxKN4YVX7qNjt8cYSFoJvAc4HjgMOFnSYaVg\nxwOH5p/TgPfmcX8Q+DXgKOA5wEslPbOQ9oHAi4H/LqV3m5k9N/+c7lLOJGgcKHbomO6TroTWg/c1\nNvehi6BoK8O8zqjLhFLVTmUAjtXHlvmGzqOAW83sdjN7DLgIOLEU5kTgw5axHthd0r7ADwCfN7ON\nZrYV+AzwC4V47wLeBFjfQiZB48GUOnPVbL5MqF3ZsfAVmD6rhrYwU7qXVfgY85sG2tj17OJNOMaE\nxoXyan5om2EDayRdXficVri2P3Bn4ftd+W84hPkK8AJJe0raCTgBOBBA0onA3Wb2pYryHJyrzT4j\n6QUuFRi9BReV2BsZZ8R0XS2mWeUyO2WvsFkasXasdy1PMW/feL5qUN8y9UnHN57rHiGfjZgxCZ2/\n15sB4F4zOzJoAQAzu0nSO4BPAY8A1wGP50Ln98nUZmU2AAeZ2X2Sngd8TNLhZvZQU15pRbMAjDXz\nir33JgRTUaO17W0p/j6ki/DYGxt9VjdTuZcT427yVUjOAflvTmHM7P1m9jwzeyHwXeCrwDOAg4Ev\nSbojD3+tpKeZ2WYzuy+Pew1wG/CstkKOKmh6ektUxpX0Tkk35+EvlbT7UPUZg7Fnen0ZQkAOOXDP\n0q3zUiy/HcFnw2Ms+kxUQpR/zM27MJ3JSEeuAg6VdLCk7YGTgHWlMOuAU/Lx9PnAg2a2AUDS3vnf\ng8jsMx8xsy+b2d5mttbM1pKp2o4ws29J2it3QEDSIWQOBre3FXK0UargLXEsWUWukrTOzG4sBCt6\nSxxN5i1xdEvcK4CzzGxrviw8C3hzlzL23RAWWzXTVo7Y6q2QuKpSulJuixi7+1135Jf7xbwOdKHb\ncMzNyUM/KytW4OS63EY+zr0euBxYCXzAzG6QdHp+/XzgMjL7y63ARuDUQhKXSNoT2AKcYWYPtGT5\nQuBtkrYAS8DpZnZ/WznHHIWe8JYAkDTzligKmie8JYD1kmbeEmvr4prZpwrx1wOv6FI4F6+mvobP\nPg+Wi5Ap/u37ENUNBKEf0JgCZ1bW0Bsti99dJydDD6yhianGi9kubc/1vEzMipjZZWTCpPjb+YX/\nDTijJm6rMT9f1cz+vwS4xLeMY7ZqlSfE0Q5h9neMC/A64J+qMs89N04D2GmnNU+65uti29d4OpTT\nwDw9RHUDcV/BPaXB3VXYTOm+uRjvYzmk9GXePRHnmYVtWUlnA1uBC6uum9kFwAUAe+x5yBN+4qE3\nRLbRdeBreqDbbBKhN8919abyzdfH62pehLfPKmg5EMtNf5bOVNpaK2DV6kGzHJUxe3Ifb4lVTXEl\nvRZ4KfCifNk4V/TZue4qGFxVb76EmKGHGGyGXC3OiKWSmze6COCh7lNZ2Mx7W88LY3qd9fGWqI0r\n6Tiy3awvM7ONQ1WmC64DquvKJZRAiv3Q+7rwTm0w8F05ua7EXD2/fDaujsWUhe6ENmIuG0Zr6T7e\nEnVx86TfDawGrpAEsN71fTy+hO6oXTYX9jFwx/TE6kIMIRPL6F5cMYVI33ezY2hnj9CEUM9OrU4h\nkWDV6qWxizEYo97Jnt4S28TNf39mRXBnQhloXdQHxcHK1YOtTtiEYAh1k68wDWUHmaW1KIxhjyrn\nW5V3EjCJKtIdraCv0bA42+zrAj0GsQbmrvUM6aJdTK8vUxFcY25k9HkeQqTlm0+fNKe6WpxHUgvW\nMNXONeT+C9eB2aVMId1TQwmc5YaPEXxIW1lMz80QjgkxXLa1AlbtMHd+Sp1J7zoLTB8DvStDD5RN\nhlMXQ7av/aGNqawk5omqfunjkNGHGP01lkNEU5ukftedJGgGYKiHwYcQXjehBxCfhzk99O5Mua26\n9CHf+qQ+NT7LU4ewzBl6j0Ob6iHGptUpMWY5m9q2bQUaUoVUpV4dQsiU4/W5DyHvoWSsXJW8zhKB\nadvJ79qJ63TnMWwkIWd4VXUMkb6Li/Y8CKMYdBEy5TB1quAxVsNtDjq+b7FIDMfyfAJLaMlvt3yM\n9y512a1fDF832I4tYMrpxvBoa0trUbyHXO9ryElH0+rGN82Z4Ap5H6qegUWwiy4ayUZTwNUQ2NUw\n2GbAbPOecaXrzuchDJ4+eRTrUf7Eznvq1NVl6vXr6+JeTCeE88ki0PNcr9+SdIOkr0j6R0k7lOL+\njiSTtKbw21l5WrdIeolLGZOgKVEUBmMMTD6Dx5CrApc4ofZduITrI3RCqeyGzrOqruUJUJc0QhDr\nWalKd4y9aaHrN3szgMunOZ0nzuY6HjgMOFnSYaVgxXO9TiM71wtJ+wNvAI40sx8ke8vKSYW0DyQ7\nzvm/C78dloc5HDgO+OvZQWhNJEHTg1iuzD6Dx9gzWB+BXHSFdgnnSt+Vji9jtnnXevZdCcYI25ZO\nX3tbLLfqifHEuV5m9hgwO5uryBPnepnZemB2rhdk5pMdJW0H7AR8sxDvXWTvjbRSWhflRzp/nez1\nYEe1FTIJmokypKvvGA9PLLVHH6eK2ITMsyg42oz+Lra/ulW8j8qqLo4PTf2+q4BdANZIurrwOa1w\nre7MLtrCmNndwJ+SrVg2kL20+FMAkk4E7jazL7mk1VaBhbgLYzIzbk5wpuPEUOUeUt0R8360zbKH\ndkyoEzZ9N762pdfkQTjEysmHKT6fWmGs2sHZvfleMzsyeBmkp5KtUA4GHgD+WdIvAf8C/D6Z2iwI\naUUTgHlUpcCw5XZRMw5tE+uS1xRnyKGFTBdCqC9jtu0U71sg+pzrdQzwdTP7jpltIRMwPwY8g0z4\nfEnSHXn4ayU9zTG/bVjY1u9LTPWAT/5990LU4eoCO4TDQXnGOeRemJDutvOijpva7L5IbBflNqE8\n5bap4YmzucgG/JOAXyyFWQe8XtJFZEfeP2hmGyT9N/B8STsBm4AXAVeb2ZeBvWeRc2FzpJndK2kd\n8BFJfw7sR+Zg8IW2QiZBU4GPmie2z37dsn8IIdOUf2ja8vFRzXTxCOuzt8RlRdFVIIR+o8K8rOKq\nBECISYGLI8oQ/T3UeTQ9z/X6vKSPAteSHXv/RfLj7Rvyu0HSxcCNeZwzzOzxtnImQVOii8dTqI7Z\nZiAPrd93LUPMh6+Pe/LY6pCqyUbTPezi3FGX9qKtZNoY8l5P0abTRM9zvd4KvLUl/bWl7+cA5/iU\nMQmaiTCUsTykR88UmfoAEXMlGiPuovQLX+ZN2Eyd5dmLJsaYs7UxDMchmMoAGGMvVd9Brqxi8k0r\ndtv2XZH28XDzyTuqsFkBK1YvH1+saTytE2HowWuswTLkXpO6tHzURF3UlSGY8v0OIWx88hqDLve+\nSbD72LOmon5dLqRW7smUH+g+xtM+QqZ8LfRGxTHjD0ls9c0YbVE14Iea+FQ5ZfTd1xTT6Wc5MT9P\n3USJMRiEnG11SSuWS3Vbek0PdYh8Ywysrvd/agJuzNX0UKsLn+fSReAEfc5XCO20Klx6E2davX9k\nuq4AYs08+z6AoYRLl/T6pNV3019dXULumXHNsw9T8vQLnX/dht1YalEXl/7yhuG0mglHEjQlug7u\nLh2764MUW58cQsjUlXHIzZdj0iRs+tohEhl9Vo8uWwRcNg4nurF4T3wgQq0m+uik68rUlF/INF3T\ndn04pyBgYq1qYHnvc5kCQ20RCIFWiBVJdZaY4bLruwlftUrXwWYsLxrX8i63DXezMoR2H+/71oGp\nDLR19FFfh2AKfWcRmXavWxDqluQxDesuDLXnY4zBbQxbTTkPl7y6vC6njI8toc8elKGoa7Mh7lsi\nDumujUhR4PisnPraPULP2ELaJ0Iyxuy0zjY3K09TuKGZstCZQvtERUI7tB5MuTBMq3dNgL6qiaZ0\nm2bYbWXwud5ETE+mPmrGKQ96Zerq6bJno0349d0AO1VcJyJj13Ps/BeVaT/RAxLL3TZkOfoS+yEK\nVXZf1WKTSmUIV9oQNjiXyUXbSnZq9oXQjiFTn4Ak6lk+L9uZAGM+KFMagKrYvON2T/q4UrSFTL2O\nEHdTYtf6x+iXocsy1LPj2/+mgKTjJN0i6VZJZ1Zcl6Tz8uvXSzoi//3Zkq4rfB6S9Mb82h/nYa+T\n9ClJ++W/r5W0qRDn/HJ+VcxXi0bCJiRuYzgK9BmAx9xB7hqu62A7lqde0+74qvL4vnqlKZ+qMFOj\nXO6pOZMEIdCbASStBN4DHAvcBVwlaZ2Z3VgIdjzZAWWHkh189l7gaDO7BXhuIZ27gUvzOO80s7fk\n194A/CFwen7tNjN7rk85JzTELg981EGuzGbzTYboLkxxEOpD3YrJt41iv6mheD/7rgyaVghjbgB2\nEYB9y9hXUIQowwAcBdxqZreb2WPARcCJpTAnAh+2jPXA7pL2LYV5EZkA+QaAmT1UuLYzYH0KmQRN\nDTFnM74Djs/1UIPUxB8ub8r16Vs/3zYKnb9vXmVbzqJTVKmGYORnYo2kqwuf0wrX9gfuLHy/K/8N\nzzAnAf9Y/EHSOZLuBF5NtqKZcXCuNvuMpBe4VGDxe5wHIXfxt+GzNB/SPTa2vj5G+lMzgrsSo9xT\ncWpZVIK14UqhnZ1VZ/ea2ZFhMt4WSdsDLwPOKv5uZmcDZ0s6C3g92UmcG4CDzOw+Sc8DPibp8NIK\naBtGXdF0NWI1xZX0Skk3SFqS5HxzmlyPp/I6kb4rlTZiCtXZJ1b5x9isOoS3WVX4oQzm5dVxCJXY\njNhCr0112JUJTmjuBg4sfD8g/80nzPHAtWb27Zo8LgReDmBmm83svvz/a4DbgGe1FXI0QVMwYh0P\nHAacLOmwUrCiEes0MiNWW9yvAL8AfNa5LEvtYWIImzGM0E2focoAcYRm1x34XYRU6HK7uDeX1V+x\n1GGxJ1cuZQ3RxstkBXcVcKikg/OVyUnAulKYdcAp+cT9+cCDZrahcP1ktlWbHVr4eiJwc/77Xvn4\ni6RDyMbm29sKOeadeMKIBSBpZsQqeks8YcQC1kuaGbHW1sU1s5vy33oVrskzqK0Dl72gusxaq9Lq\nSuhBKMYsMVSaTZsn+2wodcmzLt/iNRfVlk85523G7ipkiv8PITBc8gnZNtlLNfvXy8y2Sno9cDmw\nEviAmd0g6fT8+vnAZcAJwK3ARuDUJ8oh7UzmsfbrpaTPlfRsYAn4Bt/3OHsh8DZJW/Jrp5vZ/W3l\nHFPQVBmojnYIs79j3E64bIBr6pS+4Wd5tF3vSoiH1McV17VMQ9rD6srQBddVapMq1mX14ho2JL79\nLLS3XlObucTvQpVr/LythMzsMjJhUvzt/ML/BpxRE/cRYM+K319eE/4S4BLfMs5XiwYk99w4DWDn\nHbdp5yfwETZ91A2xBpUQ6VYNnjHSHHJgjbUyC5X30LYAX8cUH7qqNF3T6ELbyjMRljEFTR8j1iqH\nuI2Y2QXABQB7PvUQg266eh9XZZfBJYTwqkoXwgmHkJQFzpCzyq5qzaYVnk/es/Sa0hpK+A7tATdk\nGmWq6jm456IE2y+f82jG9DrrY8RyiRsMX72yKy52hJBMeaYWQ8C6ENOLzzX/qv/rwsQk5KAe4pmJ\n5UUXO5/EtowmaMxsK5lv9uXATcDFMyPWzJBFpne8ncyI9TfAbzTFBZD085LuAn4U+ISky13K46o3\nLxPLjTl22lOkSthMubyhcKnnUKqeEB6IUxMyTQJmuW1kHYtRW7anEWubuPnvl/L99/U401VF4Rqn\nKlyTt1Lslc08PVS+5V0OwqnIPN1LF0ILmUkiwQ6rxy7FYKRX0HhQ3ATWtq+hKp5L2qEYcm9MKELM\n2ic7sMwJIVaRXVdnMfpsmyOCi+oy0Z/5Goki4+N62nY9lKHZl3KeXVy0fRla1961HLFoc2meF0KW\nP7Trc0zm/b7NA0nQlAg1AHdNo04wVKXn6m4c06PGJd1QbtHle9N3MOvrwFEl1LumOyZNKwyXcF2Z\n+oo76v1csQJ22D58uhNl2nc6AdQ/kGMObF3zdHEtHct2tdxoassmm2KIe9BFyHR1fe8y0apyEkh9\nrztJ0JQYe5blo+YKoUsPvfLqWo6m723lcI03zwPF0P2y2DdCrUjr7pWPQ83MrhJb2MxzX5kiSdAU\nGGunuE9aQ9hcXBl8k1tF/lXfh9yDM8T+n1j3te3+hXabrst7yE2ps/xGR0Kr0obNZcfYKxlXQg8M\nk3joPGnzTpqXe+nCFOviUyZXTzLXfhhCWIRalSXcSYIGMMdW8HH9DO095srQgqNqplrl/h0rv77h\n+hLLPXYo9/SYefh6cPoImxCbSpPQGI4kaBzxHVD6DrZDCoy+eyea6jqWOnKe2q/I0AOgb7lDT7ZC\n7syflc2njIsgbHoeILm7pI9KulnSTZJ+NP/9j/Ow10n6lKT9CnHOytO6RdJLXMo4/60cgLaDz/ra\nRIbQ47uUwddYHuohDG3LaWv7mO0b0y7V1/XbN01Xr7PY/TVEPxvKbhmsLVaEeTNA4RDIY8mOS7lK\n0jozK57rVTxA8miyAyRnx6r8JfBvZvaK/L2RO+W/v9PM3pLn8QbgD4HT8wMmTwIOB/YDrpT0LDN7\nvKmcSdDkdOmUoV5bE9Po2oeQD6rrAO3qXVfn6jrWnhCXPGPgOnnwtauEYgwnFd/8x3Zq6UmfAyQ3\nkh1k9loAM3sMeCz//6FC/J0BK6R1kZltBr4u6da8DP9fUyGToCkwlBdRmUl5w5SIPVC4pN00EHR9\nK8FUVyY+dHHX7dLXXNpqzMHaRdjOuYpsjaSrC98vyI85gX4HSG4FvgP8naTnANcAv5kfhoakc4BT\ngAeBnyqktb4irUaSjaaFtg46pdVInz0xTUxRAE6Z2O3V1yYUa4f/nA/m2xDVXiZlbwZw+cC9ZnZk\n4XNBW/KObAccAbzXzH4YeAR4wsZjZmeb2YHAhWRvy+9MEjQOtHW4KQibvvHanBf6uFU3DYwuxtsp\nDapjE8KtN+TgWed1WHc9NC4rrS4TqSHr0JM+B0jeBdxlZp/Pf/8omeApcyEwO9rZJb9tSIKmgK87\n5ljl6BLeV1XSZCup8u4p/+br/VNOo67cXe5Bk40nFn3bIjR1m1urKJezi6PBFOxTLgJmAbzTOh8g\naWbfAu6U9Ow83IvIbTuSDi3EPxG4uZDWSZJWSzqYzMHgC22FnGzrDY2PB9kQHi59jOdlugwUxeux\n9oo00SRgutgZFkBPP6nVmattLRYhhIxv3KB2qBUrgnidmdlWSbNDIFcCH5gdIJlfP5/s3K4TyA6Q\n3AicWkji/wYuzIXU7YVr5+YCaAn4BjBL7wZJF5MJpK3AGW0eZ5AEDeC+YXPGUIbPtnz6CsdQ5ZgX\nZsKmb13GaI8QKrOq35tUmnXXpyCwm8rep3xT0Wr40PMAyeuAIyt+f3lF8Nm1c4BzfMqYVGeetNkb\npkqVOizkxjufcnQhVBlCpRPCrX0ouk5WptyfoV3F6xLX1xYz9TaZKknQeODSyWJ59MRKz3cTZ4i8\nY23QGxqfFeXYM+E2YeOqChu7HlX0mUTVxa8iaJ+TYLvt3T4LQBI0DnQxak+ZqodyCgbrNmKVcbmo\nWvp4aE2pHnXE2gM39ediHph+7xmZrh0spPG5Sh8dYs/NPKoA54kpDs6uO+VnYYvfu+TVlkdoyv26\n73OYnoUwTO9JmBAxDLAhyjHFAcyFUMb4kIRoy3Kd+rhgD+kW7Gqf8R2sXVXMQ9R1skJGglU7xEt/\nYszniDUQXdxoQz88sYTMWIN9kxfT0GWKuXHRlao9K0NNJMoCp23TrK/jQFu6oYVryGclhkfbcia1\nmgMh97T4MDUhE0MHXvb6Ce18MOUBYyorOx/vw2K7hVKNdXm2YrbdlPvMvJJajvZjAiDMnhZX9cpQ\nqjLXh9fFQNzlwa9KN5SwKXq4hR6UQqw6piJkfOl6n/vW1zd+aLtS+GdwBWy3fFRnrV5nkrY52FrS\nmjjFGY8YqvI5AAAgAElEQVTYXldVKhKX32KVo26QL/8+lJCbN/rcp3kVMjBdF+fEtKkVNJJ+StJd\nwIb8hLW1hcufil2wqdFnv0nXa8UwQ26arNrM1kSdfr6Lq2yM1ccQ+bjie7+Hvvcx4o7R1qHUw33T\nS2Q09Zw/AV6Sv9vmFcAVkl5jZusBDVO8adBVhz1kOaa067xut3Wsh7VKNeOzuXaoXf6+9XfZ99Il\n/S6qrKqVrovzwBADdJ3TQVc1WF25h3TUWDSaWm17M7sBwMw+Kukm4F8kvZnvn7a2kBQ7VJfBYYhB\nqGu+Md2u29KP+ZD2EWi+92zMwaatfYecebsIm3L4umtd8/cpj2/adcImCFqBtuv/Us15oclGs0XS\n02ZfcqHzIuCPyF4NvdD0UVmM5Q495CATI6+QDgVTZEr7RkIJ1hj5uaQ1xBsMptqP5pEmQXMmsE/x\nBzO7C/gJ4NyYhZp3qmZabb/NU6eOqQLzJeqsMwJ9jeltE6Cp2PzK9QyZZ1NaPipTF+bB+UHScZJu\nkXSrpDMrrkvSefn16yUdUbh2h6QvS7queFy0pHdKujkPf6mk3fPf10ralIe/TtL55fyqqG1BM7uy\n5vcH8XxF9KLgok4bS3U0I6Ye2fUh7mtwjrmSHFq91FQO6PeKo2I6rml13VjpYteo+72Ybsg9XOU2\n8Em7i7o0aL8J9GYASSuB9wDHkp2YeZWkdWZ2YyHY8WRaqEOBo4H35n9n/JSZ3VtK+grgrPy8m3cA\nZwFvzq/dZmbP9SnntEX1RKhz+R1qv0tV+i6G2JCEnI2GMr4XPbN80ogtbFz3SxWvD6Gmbcp/9n+M\ndgmxB62JPm03qrAJw1HArWZ2O4Cki8hOxCwKmhOBD+fn0qyXtLukfc1sQ12iZlb0LF4PvKJPIZOg\nITv4bCjPI9f02jyi6oRO7H0vvp5Qvtddw5TD+XoYueRx3767sOeGh53K0lQGF0K71ba1TVu7hO5T\n5UG6b5pdHAtC1WME1hTVWsAFZnZB/v/+wJ2Fa3fx5NVKXZj9gQ1kjl1XSnoceF8h3SKvA/6p8P1g\nSdcBDwJ/YGb/p60CXq0maQWwi5k95BMv4c9UvaCmqq8OWa779t2Fn/jFh/iB3R7kQ+t3ZafLNg5e\nhpBpTmESFSvNmOlGRSt8VGf3mtk2p2AG4n+Y2d2S9ibbwnKzmX12dlHS2WRHNl+Y/7QBOMjM7pP0\nPOBjkg5vkwkubwb4iKSnSNoZ+Apwo6Tf61qrUtp9jFiVcSXtIekKSV/L/z41RFkTy4M7Dl/Da37t\nQd78nN145dPXcO7x32G30xbamz8x39wNHFj4fkD+m1MYM5v9vQe4lEwVB4Ck1wIvBV6dq90ws81m\ndl/+/zXAbcCz2grpcvDZYbm0+jngk8DBwGsc4jVSMGIdDxwGnCzpsFKwohHrNDIjVlvcM4FPm9mh\nwKfz74lEKw8csyvnnPJNXvuMNaz65Md57K8u4PDvfZdzjtrEwW9Y4uHdl8+7qRJzw1XAoZIOlrQ9\ncBKwrhRmHXBKPnF/PvCgmW2QtLOkXQHyhcSLyRYTSDoOeBPwMjN7Ykkvaa98/EXSIWRj8+1thXRZ\nc67K33f2c8C7zWyLpBBTvM5GLGBtQ9wTgZ/M438I+E++7y2RSFSy+jUr+fOjvsXhrGLL+/+OL77v\nEb71zS284MZPsdevHsEfHnEUH9zlET708X1Ye0PZQSeR8ESClf2Pac69wl4PXA6sBD6Qv83l9Pz6\n+cBlwAnArcBG4NQ8+j7ApZIgkwUfMbN/y6+9G1hNpk4DWG9mpwMvBN4maQuwBJxuZve3ldNF0LwP\nuAP4EvBZSU8HQtho+hixmuLuU/Cm+BalvUAzJJ1Gtkpip50W7h2hCU9223ULe+6wFR5+nKX7H+XR\njUt8996tbHxwe3bbsoUdttuVvXfYBNsvq7cvJeYAM7uMTJgUfzu/8L8BZ1TEux14Tk2az6z5/RLg\nEt8ytgoaMzsPOK/w0zck/ZRvRmNgZla3+sq9Ky4A2GPPQ5ISfplzz1+v4E2v2YM3PO9hfuSMk/nR\nPS7lR+6CHV5xJBsPew4fvPEe/vGiPVl7+3fGLmoiMXe0ChpJv13x84OSrjGz63rk3ceItaoh7rdn\nPuK5mu2eHmVMLCM2//3jnL1hb37v2Ps49rRfZ7vv3sl3dtzKn137KDf/zQ7st+mBsYuYWBiMx5nc\nnpxouDgDHAmczvdVVr8OHAf8jaQ39ci7sxGrJe464Jfz/38Z+HiPMiaWGbtf+T3O/vB+fPCr3+TK\njfA7n9mVr5+3gtWbtoxdtERibnGx0RwAHGFmDwNIeivwCTKj0DVkxwl408eIVRc3T/pc4GJJvwJ8\nA3hVl/JNkSE2ZrrkP7V9C6HfhLD2hnu5+O6duffgXVn7xXFUZa6v02mL79IuU72vZXzfFp6YDi53\naW9gc+H7FjKD+yZJm2viONHViFUXN//9PrK3TDujpeaHLUYHd91hXyVcql4qONZrPHzSa9rN7TMg\nulzr2x67PPAou3zxUe9y9K2HD33P3Gk6v6Xviz+r6Jpm35eIhixLKAxj69Jjo5ZhSFxa+0Lg85Jm\nKqifBT6S+13fWB9tPvE55AziHYDlMpgN/d6lLm8rcH2hYuhVyViHVDXl2+WwsVCHmZXL1ZZujHOV\nuj4zXd4x1lbXsfrHcsXF6+yPJf0b8GP5T6eb2ey9O6+OVrIJUjd4unbY0O/CGvIlf/P+5umQhB7U\ni+n65lUXr6lcTSuXuolB6ElAjHTr0qubmM2LynARcGphM7tK0jeAHQAkHWRm/x21ZHNE24MT8g27\nPtd88wit8ujCIgkbn7T65OUTzuVlrXUrgGKYUIQa7H1e1lolcIbuc2bG1qVeloe5wsW9+WXAnwH7\nkbkKHwTcDBwet2jzSegVxhQG3aEfxC6vb59nQrVvzPNY6vLpsnLrUh7fVWQT895f5hEX9+Y/Bp4P\nfNXMDgaOITufYNlRZYTvw+Ydt3vSp+r6ULjOhEOmGSKtsewwQzhPuFzrU55yvC7pzOKEaI++KsIY\n9yURBpendEv+SugVklaY2X9I+ovoJVtAQpzVMiZD2aNcmXp7+TKWzaBJiE9t4A6hHkwMj8udeEDS\nLsBngQsl3QM8ErdYw+OyJ6Et7tRm3THydUl3aFfpqdFkYHdhCoP7rA5DeziG7LcxnoFQ7WAYj9v4\n93koXO7CicCjwG+ReZntBrwtZqGmRqxTB33xdTqINbMbe8YYas/QlIVVHWOtMsZyqa/C1027HKcL\nU6j3PNNqozGzR8zscTPbamYfMrPzZgffLDea7Cmz60NRpV9vCuuaTohyhUwn5uooVN3LfaJotwht\n0yv+dS1X1adPGbrED5V/VbouLLKg6HOAZH59paQvSvrfhd/eKenmPPylknYvXDsrT+sWSS9xKWPt\nXZL0PbLzpLe5RLZp/ykuGSTCUPeguD5AXfd2DJ1mOf0yY6kD6xhqclHOp6+6tq8XV5V60NdTcGiV\naNf7HENIGcZW6/9mgMIhkMeSHZdylaR1ZlbcTF88QPJosgMki0ey/CZwE1Ac068Azspf9/UO4Czg\nzfkBkyeReR3vB1wp6Vlm9nhTOWtXNGa2q5k9peKzaxIy84nPLNt15rnIM8U26gb/2Pm0lSGUm2/I\nvUCh4vRNZwH76xMHSJrZY8DsEMgiTxwgaWbrgdkBkkg6APgZ4G+LEczsU2ZPGJHWk73zcpbWRfmR\nzl8new/lUbTg4t688FhqhSdRfHBdhU3yMotD7DqHVmXNA777jSbAGklXFz6nFa7VHQ6JY5i/IDuy\neakh/9cBn/TIbxuWVw+LTExVwJBG4KKKwXX14xq2K0NvaHRNL6bqsCqPJvraXrrm24dyvx4i30kI\nVlvyeanmvWZ2ZOgiSHopcI+ZXSPpJ2vCnA1sJXvnZWfSXD4QXYWMz2pgyNmnj4otNlMTMnWG/1j0\n2czZlTHbfEoTljlY8fU5QPLHgZdJuoNM5fbTkv5hFkjSa4GXAq/O36Tvmt82JEHTk7pBxte+EVsf\nPgQxyhXCLXUi6o9KXL2xquow1XoV27zrZCXGfQvhbTfBZ6/zAZJmdpaZHWBma/N4/25mvwSZJxuZ\nSu1lZraxlNZJklZLOpjMweALbYWcXKvNC00PwRBG9Cns2h7DmOtK7Lbp2/5NLvJNHoZT2s9SRZ1A\n7HqPQ6nSpiYgsg2b/U9t7XOAZAvvBlYDV0gCWG9mp+dpX0x2RMxW4Iw2jzNIgqYTsR7yUC6iy5V5\naou6e+26AXGKTOW5KDM1IROaPgdIFsL8J/Cfhe/PbAh7DnCOTxkX+w70oKs6rO9qxncncwhh46uy\nKV7rovMeYr9NVb5D5+maRt0qxbetxnxzhYuA7FOmroI5MQ2SoKmg7+bILmnXhXMVbk0Pch81n8/G\nPtd8Qnoa9VVhToGmSU1Xwew7YZkHYnr5ufbBUHkumdi0dfmYyJdPTR2Z2gzJxyOt6Vps1UPTDvWq\n+LGN/LF3mMeky0bQLpOMNnwnRUMQw8uv6LgwhoffciAJmgKxO9IU3T1d6apea0uzixBsy2+eZ/FT\ncYzw8RqbAiFXxFP3VJxH5veJnCi+uuSqjXIxytR2zUdF1yXvIQd/17buSkwnjFgbFmM6mriGrSpD\nSPtiXTlC2XdC3pclg41Jdbb8GHrDXZNKKZTR02dmFkJFFyL9mIRUuzStxELvuXAdxEOEGRKXlanv\nc9I1r0Rc0oomAE3G7b7ea33UHl3juTgIdMkr1my9C6FWWq5tNVQ7tU1SuqTtEsdVtdpHzeoabp73\nIS0qaUXTk6J3UHkA7ipkyuFnHxcX0iE942C+7SEw3IATeyXYtsLqk2YIYdyl3/fJr44Yq/xEO/M9\nSgSkjxtpVdyQA3DTjDDWDM11xh9TKC3Sg97FthWyD4V0Ka+iqb+MaQupS3fsvrUEbHp8+czzk6Ap\n0CRsmjppLCEzBb17Vd18hV0fNdDYA0IIpuJtGEvY+KjGQvQVV1Vek/BznaBNSd07zywfkepI1R6G\nLvsa+jBl90rfvSuxbSBTpuo+hnQSKOflQmivr5A2l9DGfZe27rNHLOHO/D7FEZnNhpo6Yd1sO8RG\nxNCE8mJzSTvGIBpzZdOlvG19w2W2PoRbex2hVEh9VWJdHSWK/4fob2M4CJiJzY9rsPzGJq1oKojt\nGRMyja4z5FAz61DOB1NexfngsmfJJ05s+tgmQ8QZa0UVK51ENUnQAFqqHuyaBr+Yxn9X9+emGXKR\nNnXXmOqpNntX3W+x8nehT3sV+1lT/+ri8TUvg2Vd3duetxgahFna84yk4yTdIulWSWdWXJek8/Lr\n10s6Iv99B0lfkPQlSTdI+p+FOK/Mf1uSdGTh97WSNkm6Lv+cX86viqQ6c6C8RI8pZIppxnqw6vKD\nYR+6RdzvEELNF0LF1Ce/Jpr6ZCjnlbIRf+yJRoxnbskI8lJNSSuB9wDHAncBV0laZ2Y3FoIdT3ZA\n2aHA0cB787+bgZ82s4clrQI+J+mTZrYe+ArwC8D7KrK9zcye61POJGgcqdIHx14JdFGjhRjkhnDF\nHcvbZ0ourr64DLyx2s1l0hPalja2gJkTjgJuNbPbASRdBJxIdjDZjBOBD+fn0qyXtLukfc1sA/Bw\nHmZV/jEAM7spTy9IIZPqzIPZ8n1sdZMvUxOIrg95yMFgSO/BeeobbSyK7awrE7mXayRdXficVri2\nP3Bn4ftd+W+4hJG0UtJ1wD3AFWb2eYfyHJyrzT4j6QUuFRilFSXtAfwTsBa4A3iVmX23ItxxwF+S\nHVH6t2Z2blN8SXsCHwV+BPigmb0+dNkn0vFqKc8qQwuBqde/TAj3Vh+mMCinvR/tjL1Hawmv82ju\nNbMj24P5kx/D/FxJuwOXSvpBM/tKQ5QNwEFmdp+k5wEfk3S4mT3UlM9YK5ozgU+b2aHAp/PvT6Kg\nezweOAw4WdJhLfEfBd4C/G6IQhYNsj6rmFheVL57JRZNyPjch5irzjpj/hSETGh8nUyG7iN92nzs\n/hyIu4EDC98PyH/zCmNmDwD/ARzXlJmZbTaz+/L/rwFuA57VVsixBM2JwIfy/z8E/FxFmCd0j2b2\nGDDTPdbGN7NHzOxzZAKnE128fYr4eNJ0SbfrxjzX9OvSCu1V55Nendqr7rcxBruhhMyiCbOqyVyX\nyV2f/Oecq4BDJR0saXvgJGBdKcw64JTc++z5wINmtkHSXvlKBkk7kjkU3NyUWR5nZf7/IWQOBre3\nFXKsVt4nN0QBfAvYpyJMlV7xaI/4XsR2k+yjzqgSXiEfEN/d/qFwUV+4qL6GVBX5Cvqu+0361Cd0\nW4ytZmojRHsNXT8zgmzYNLOtkl4PXE5mYviAmd0g6fT8+vnAZcAJwK3ARuDUPPq+wIdywbECuNjM\n/jeApJ8H/grYC/iEpOvM7CXAC4G3SdpC9sq2083s/rZyRns6JV0JPK3i0tnFL2ZmkqxrPl3j5wa1\n0wB23nHPbVwqu9DWYbs+EH3tLk3lqUo/FK6usE2DclubFVd6U5mdlvc3+bZtUz3aBNgQ7u9Taeci\nfZ/fqQvTJszsMjJhUvzt/ML/BpxREe964Idr0rwUuLTi90uAS3zLGK3HmNkxddckfXvmXidpXzKP\nhzJNekWX+G3luwC4AGDPpx7yhKDqO6DH8v0PLVzK6Q7lmtplD1L5nrSlPeYqbKhBuElgNxF7tRTS\nNb7rarCIr4q2a76JZsay0awDfjn//5eBj1eEadI9usTvTV9D45C65ibqnBOG3hfUhq/QaQrjc+9C\nDCxN9zi24PPtX7EG0q7plp0rQtq8uqQ1xF6rJYNHtrp9FoGxBM25wLGSvgYck39H0n6SLoNM9wjM\ndI83kekPb2iKn6dxB/DnwGsl3VXwVOtE6L0cQ9L3gZ13Q2yonepNxHCUiMVy3gDpK8DGnnQtGqO0\nZu4e96KK379JZrSafd9G99gUP7+2NlhBc2Lopfss8WMS2ynCNf+QM9piuiGZyj1L+OH7PE/VLjVP\npNYbibKuP0ZnHsPA6auyalM3hRQ4Q6hE6vL2DRtLMA7tsTjUpCOGfaVY/tD35XFbHLWYC0nQjEiV\nsJn9Po/EGLxDCssx1KA+7ttD9IUutpyqOK716nr/uhjx6+IN4eSSaCa968yB2MbcMl08d3zSD0lf\n463PbLXp+pDCOYSQqSpz7EHSh7LQ8zHU93UyCe2k0qd/zOukb2qkVpwAfTqzyz6SqlllqM2jQ1E3\nM57qQBBjFj1EXUM4R9T93mdSEeL+z/NemXlnmk/pxPDRa4+p/mrKO1R5YjysfewGs7hTG0D6qIym\nsIrxJfT+mro8+u5zK5ZnzEnKEsvLRpNUZzWUO2HTJsGySmHsWfbYg26X/UOx1W/zRMgNjK5MIe2u\ndpmuLFq/mTJJ0JQoDo7lgTLWprIYxCxbkxDpu5oao01jTQya0p1S34mlLvNJ2/Ue9LG3VJUlhI0w\n0U5qwQIhXG2XW6d0dZn1UQmFUGtM5T5MXYU2tpCZwn0aQ41mBo8GeKnmvJBWNB64dMap7M8Y6sGJ\n9ZCW6zalFUAomurUpqqNnX8bbSsLF8+0oQf35H02HknQeNLXABlikKhLx9cuEqMMTfiWq6uKckqD\nQlvZqwSqS31DqG+7tJNL//J1625Kp+7Th7INcUr9pQuSjpN0i6RbJVUdIilJ5+XXr5d0RP77gZL+\nQ9KNkm6Q9JuFOK/Mf1uSdGQpvbPytG6R9BKXMs53C88R5X0JIfXMsR6UGKqP2CqhKQ0aTS7lVZsz\nQ+VTlV8I+qQXuixjqLtC9t3HDR7Z0j+dwknEx5Kd2XWVpHVmdmMh2PFkB5QdSnam13vzv1uB3zGz\nayXtClwj6Yo87leAXwDeV8rvMLIXHB8O7AdcKelZ+ZHQtaQVTQd8Z3R1RkifTtu0ionBPKqqpiBk\nqjwQ6zZnDrGZNhRdN6l2rafrqm5optDHSjSdRDzjRODDlrEe2H12zIqZXQtgZt8je3nx/vn3m8zs\nlor8TgQuyo90/jrZYWpHtRUyCZoCMTqur+qka5gxmOBDNzq+KpkhhE1MW0xd+NDeYU1hp/p8DETV\nScT7+4aRtJbsELTPB8hvG9JIUcJl1TCkcHARVIs44Pt4+s2Yyj6mvsTYR1PVT1wM9kPTZy/VPN33\nJb+Xaq6RdHXh+wX5wY1BkLQL2amZbzSzh0KlW2R+7syIjGVTGHOm1qaPHsoDr4tefN4GHR8X8TZ8\nXMj75FOV3tht7lqGKZTVk3vN7Miaa00nEbeGkbSKTMhcaGb/4lAWl/y2IanOehJL1z4FdUBXFUho\nb6hYOv4pEaoPuUxcYgiZEITyyGy6VmyDeesjNTSdRDxjHXBK7n32fOBBM9sgScD7gZvM7M8d81sH\nnCRptaSDyRwMvtAWaa7E+pTpouqpYozO76Jy6moM9iWk0J7DmWsQmlaBMfpXCG+sUOWqut8u+5XG\n2LC5eWv/DZtmtlXS7CTilcAHzOwGSafn188nOzzyBDLD/Ubg1Dz6jwOvAb4s6br8t983s8sk/Tzw\nV8BewCckXWdmL8nTvhi4kcxr7Yw2jzNIgqYXTa9b6fLgjLFfpMrNNoQba9fd8PPA1AXYPHpj9RVW\nfe1aU7+nTVSdRJwLmNn/BpxREe9zQKW0M7NLgUtrrp0DnONTxvls2TnAtePPOrjrAzHUZsyxB45y\nebqWIRbFMg2VT5EYDgPzSNdNp8utncYmCZqOhHiVhYvOPESedbSpFEIIG5e8ymFDMOTsNJb6ZQyV\nT9t9j6lqijnhqrP7jSVwlkw8umn5DL/Lp6Ye+Op5++YTYwd+CEKqE+rqGmvAaiNGOUK1l69L9xCD\nZsi0+7aTr73QxfaYVjhxSYKmgqEeXtf0Q3kC+dZpKjrreRoM+g6iY9fRZxDv0y/7rIxc8h67HRNP\nZhojyQSJuVFyaqqyoQRKVf4+7egqcFz3pExlMJpKOcawNXWd1DUJqjo7aBNDeVXOsCXx6KaVQdKa\nB5Kg6YGrPrsLQ82KxxQyxWu+rzkZU9j0EVKhhcoQ+2/64nKv+qbddk9CqDWnMiGYR5Kg6Ymv11gd\noR70oYWMi/fVVPdu9Emn6xsLQlJl4J6aW3koj8EQwqqvui/RnSRoejLruFNSxbgQw2g99F6EeWrz\neSlnSEIKvZAbomNpIRL1JEETEB933rp4XRlDXVYe6Pu4fHdNp0/cWOqv8mAWa/Aq2yn61CeGUT6G\nu3IIgTOFzZlLS7Bp4/IZfpdPTRuwFd1mxy5uk0Mwpk1m1m4hN3j6eiT55j2Ei3WT119TmFB5dUlj\nLGEzxqbLunLP0yp5nkiCpsDUdui7MIXyxtoTEXpz4JgDSN2gNiNm2Vz3hTUJjaZno4+w6dt3hlrZ\nTOV5n1dS65Vwefin0OmmIGBcqRsQXI3Z8+4x5FJ2V5WQ7+DqKziGXNlMoW+2TWZilXFpSTz22PJx\nb07HBDSwecdtX5M/hYdjKEIOzlVCZayyDIlvPUNvRGxahfjE6av+6pLmkKze9OQjuBNhSYLGkbLA\ncSFWxx1yNRND2HS1bc3bINDHOcLXIaIpTpd2K9rLys4WVR+XtOqudS3fEP1hHvqcpOMk3SLpVkln\nVlyXpPPy69dLOqJw7QOS7pH0lVKcPSRdIelr+d+n5r+vlbRJ0nX55/xyflUkQQNoKWx65Ydg6NlS\nF6HYRMiy+6iR6soSmi5OIE1tHKr9u7RVXd59hI1Pebrm61O+eRj827D8pZounyYkrQTeAxwPHAac\nLOmwUrDjyQ4oOxQ4DXhv4doHgeMqkj4T+LSZHQp8Ov8+4zYze27+Od2lvknQBGQIYRLDgydU3iFp\nEza+bR2rXXxn913SDxWvz4RniNW866bLoZm4YDsKuNXMbjezx4CLgBNLYU4EPmwZ64HdJe0LYGaf\nBe6vSPdE4EP5/x8Cfq5PIZOgyQmxEayNPoNQ04Pr6r3UdebeJ42uTPzh3oYp6vjrPN1irkx8w4Yg\nhoAvpz9h9gfuLHy/K//NN0yZfcxsQ/7/t4B9CtcOztVmn5H0ApdCjtKCkvYA/glYC9wBvMrMvlsR\n7jjgL8mOKP1bMzu3Kb6kY4Fzge2Bx4DfM7N/dy1XrI1cQzwEVftQquhSx2LaQzx0MYR2zMGvnHbo\nturrxjuka3VsIRNq39bYLC2JR903bK6RdHXh+wVmdkGEYlViZibJ8q8bgIPM7D5JzwM+JulwM3uo\nKY2xVjRN+j+gVfdYF/9e4GfN7IeAXwb+3rdgIXTZRab4QAyhOumKi2pwKuqpNqawunG187iEG0KI\nhAwXgok8v/ea2ZGFT1HI3A0cWPh+QP4bnmHKfHumXsv/3gNgZpvN7L78/2uA24BntVVgLEHjov9r\n0j1WxjezL5rZN/PfbwB2lLTat3CuuuI2VUnsTtrHZbiLmid2fdracoqrzbY2nIKwccXVgyxGnSYy\noM8jVwGHSjpY0vbAScC6Uph1wCm599nzgQcLarE61pFN1sn/fhxA0l75IgBJh5A5GNzeVsix7m6T\n/m9GlV7xaI/4LweuNbPNVQWQdBqZBwY777jnNtebNhiGVu2U3UddyjIFQqmIxtoYO8TgNhX1mW9e\n4G7v83kuYjJkG/VmyeAxaw/XgpltlfR64HIyE8MHzOwGSafn188HLgNOAG4FNgKnzuJL+kfgJ8nU\nc3cBbzWz95OZIC6W9CvAN4BX5VFeCLxN0hZgCTjdzKqcCZ5EtCdN0pXA0younV38UtL/eVMVX9Lh\nwDuAFzfEuwC4AGDPpx7Smn9502aowXGsByOkcIihMw/tnh0r/ZB9ITR96x3LyaQtjbHbbd4ws8vI\nhEnxt/ML/xtwRk3ck2t+vw94UcXvlwCX+JYx2h01s2Pqrkn6tqR9zWxDUf9XokmvWBtf0gHApcAp\nZnZb74p4MKSQ6fMwxniQQxrAu3pFua4GYwjFIQZKnxl72xsB+ryxYEgX/iR0FoOxbDSV+r8STbrH\nOuGpoSIAAAl9SURBVP3h7sAngDPN7L9CFbbNa6cuTBNj7QEZ087SRl/X26LdrM6WMMR+mrHxsTF2\nYch6Ts1lPBQy2H7TVqfPIjCWoDkXOFbS14Bj8u9I2k/SZZDpHoGZ7vEm4GIzu6Epfh7+mcAfFl6R\nsHefgjY9UF0Hl5gPzlADwNC79+vyWcRBqImiO3sIe968tJ/rvY65eTbRnVHuRIP+75tkRqvZ9210\njy3x3w683bs8DeI2pP2hz65+H7VJU1iX+rjWuSqfrk4QPvlWxZ0HQrzSpS2ebz/pwxgOCn3jTeFt\nEsuR1JI5fQfnNkK+OiZ2WXzospmzasAtbzb1sQn4eD2FdlxwFR5VZRtyE2yRqQ2gTcIgppPJVJ04\nFpHUogViuWmGSi/UqsYlbozwbftkyp5svnkP6RruMylx3WsT0xNuioNnXZnGUP8O/baBFUs2l6vy\nrqR3nVUQ27W2mE9MXfKUBpcpbfLrWxYXwVFeobmmG3JSMvsbsx90SXuK9pOplWfRSK1bQ4iON2+v\nponFlITMjCFmsF3rHVJ1NEQ929SnfWxxicUg3e2I1Kmv+rjwFv+P4fkVegBwtZvEwGXl0XVGPqRn\n3SzPLvH6pOGDr4NCH2G6CLYVJdVZIiR91ARN+0Fm133Cj6myCOl26hK/78bGEGUImV4ItdpU3cF9\n1Ysh0kkMy/xMAeacWHtt+hjNYxuMm1YMXRwvQpQvlsNHH4r2lBCOA7FWcn1oq5ur230bTenE9GZL\nNJNam/BHOfdl6L0JU/WyKxJSyEyJcplCqOVc7qursAml+nXBVUh0TXtKyIxVmx8fuxiDkVRnNG/Y\ndMXHE2lqFAemIYVOKJVJFXVG6aHug4uasIt7r4/qsS2sSzsM6TI+Ne+4RDiSoAlI1SDWZWCLsY/F\nZ8NocUCu+vgyloCNObj42MGqytFWtrKqs49tqynuVCY/QwiCRRU2ko6TdIukWyVVHSIpSefl16+X\ndERbXEl7SLpC0tfyv08tXDsrD3+LpJe4lDEJmgD4GuVDEvLhCbHx0sdxYQh8BnRXung9tW0srYsT\n+v52WaEM4R7dRMi+4tumsZ7jbMPmFqdPEy0nEc84nuyAskPJzuB6r0PcylOM8+snAYcDxwF/PTsI\nrbG+bQESYelivI8Rvi9dVzZTViH2waX9p7JRMYQ6LHb4Ij5tFqp9y/10wn236STiGScCH7aM9cDu\n+fEq3qcY579flB/p/HWyw9SOaitkEjQBGHPw6LIDPXTedd+r6DrYTmGAbmKig1BUhqyvqyCPlV8o\n1/wIVJ1EvL9jmKa4dacYu+S3DZNrtXnFx1so9AY6n3xDb/L0cZUtq4+6GqN9GNrVN5QLrU8f8c3T\n15Osj/daX5fkIlV9Zl4dCLTk9bytkXR14fsF+QnBg9D3FGRIgiYovu7CbQ9YDPfjWLPQLuk21W+C\nM0dvugqxssoG3NVdVeH73HMfQdE3n6FXLXPEvWZ2ZM21ppOI28Ksaohbd4qxS37bkFRnI+Oi+536\nwxVi30fINwf4MhWVV1M/8FVTutoUQnmkhWjDqdyHOaPpJOIZ64BTcu+z5wMP5mox71OM899PkrRa\n0sFkDgZfaCukzHqtiBYCSd8BvjFQdmuAewfKa0gWsV6LWCdYzHoNWaenm9lefRKQ9G9kZXbhXjM7\nriGtE4C/AFYCHzCzcySdDmBm50sS8G4yL7GNwKlmdnVd3Pz3PYGLgYPIxsZXmdn9+bWzgdcBW4E3\nmtknW+ubBM2wSLq6YRk8tyxivRaxTrCY9VrEOi0SSXWWSCQSiagkQZNIJBKJqCRBMzyDuSUOzCLW\naxHrBItZr0Ws08KQbDSJRCKRiEpa0SQSiUQiKknQJBKJRCIqSdAEoum12qVwXq/llnSspGskfTn/\n+9MLUKc9Jf2HpIclvXugugz6KvWhiFSvV0q6QdKSpFFchiPV652Sbs7DXypp96Hqs+wxs/QJ8AH+\nBDgz//9M4B0VYVYCtwGHANsDXwIOa4oP/DCwX/7/DwJ3L0Cddgb+B3A68O4B6lFbxkKYE4BPAgKe\nD3y+a/0GvD+x6vUDwLOB/wSOHLJOkev1YmC7/P93DH2/lvMnrWjCUfda7SLer+U2sy+a2Tfz328A\ndpS0OkL5q4hVp0fM7HPAo7EK7lHGGSFfpT4UUeplZjeZ2S3DVWMbYtXrU2Y2e8/NerL3dCUGIAma\ncNS9VrtIl9dyF3k5cK2ZbQ5QXheGqNMQDP0q9aGIVa+xGaJeryNbESUGYNpva5wYkq4EnlZx6ezi\nF7N+r9Wuii/pcLLl/ou7plvFmHVaJBa9fotE/q6urcCFY5dluZAEjQdmdkzdNUl1r9Uu0vSK7dr4\nkg4ALgVOMbPbelekwFh1GpihX6U+FLHqNTbR6iXptcBLgReZWZoYDERSnYWj7rXaRbxfy517xnyC\nzOj8X5HKXkeUOo3A0K9SH4pY9RqbKPWSdBzwJuBlZrZxqMokSF5noT7AnsCnga8BVwJ75L/vB1xW\nCHcC8FUyz5izHeL/AfAIcF3hs/c81ym/dgdwP/AwmR79sMh12aaMZF5vp+f/C3hPfv3LFLytutRv\nwH4Xo14/n9+TzcC3gcsXpF63ktlvZs/R+UPXa7l+0itoEolEIhGVpDpLJBKJRFSSoEkkEolEVJKg\nSSQSiURUkqBJJBKJRFSSoEkkEolEVJKgSSw8kh6OmPbgb6JOJOaN9GaARKIfjwJvIXuz9g+OXJZE\nYpKkFU1i2SBpF0mflnStsvN9Tixce0t+hsnnJP2jpN/Nf3+DpBvzM0wuKqdpw7+JOpGYO9KKJrGc\neBT4eTN7SNIaYL2kdcCRZG/Gfg7Zu7KuBa7J45wJHGxmm9NBWYlEN9KKJrGcEPC/JF1P9sqY/cle\n7f/jwMfN7FEz+x7wr4U41wMXSvolsjf+JhIJT5KgSSwnXg3sBTzPzJ5L9h6vHVri/AzZO7WOAK6S\nlLQAiYQnSdAklhO7AfeY2RZJPwU8Pf/9v4CflbSDpF3IXiOPpBXAgWb2H8Cb8/i7jFDuRGKuSbOz\nxHLiQuBfJX0ZuBq4GcDMrsptNdeTrXK+DDxIdv78P0jajUztdp6ZPVBOVNIdwFOA7SX9HPBiM7tx\ngPokEnNBentzIkHmkWZmD0vaCfgscJqZXTt2uRKJRSCtaBKJjAskHUZms/lQEjKJRDjSiiaRSCQS\nUUnOAIlEIpGIShI0iUQikYhKEjSJRCKRiEoSNIlEIpGIShI0iUQikYjK/w/N1dMGrR7RJwAAAABJ\nRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_cum3()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2YJNdd3/v5dXVXdc/O9IxW2l3JXssysmxhy9gEIzuB\nSwwE4id24tybJ4ZLeHtCQhzia0hIwA43wL3AfRTghvAkThyHYOwAcUgCFwfsmJfgGBO/CSyELQlb\niJW9svZFuzvqmd3pqu7qc/84dbpPnTqnqnpm5JU9/X2efbanXs5L1anzPef3KkopVlhhhRVWWOGw\n0LneDVhhhRVWWOELCytiWWGFFVZY4VCxIpYVVlhhhRUOFStiWWGFFVZY4VCxIpYVVlhhhRUOFSti\nWWGFFVZY4VCxIpYVGiEibxGRf3K923GUISJ/Q0R+4xDL+3YR+cBhlbfCCjZWxLICInJGRPZEZFdE\nrojIr4vIs8x5pdTrlFI/cp3adt0nwKINSkR+yjn+muL4zz3VbVBK/YJS6uutupWIPPeprneFFfaD\nFbGsYPCXlVLrwC3AeeBfXOf2tIaIRJ+Dav4EeK2IdK1j3wZ88nNQ9worfF5hRSwrlKCUGgP/GXiB\nOSYiPyciP1r8vklEfk1EtkXksoj8roh0inNnRORNIvJAsfN5m4j0rXJeLSL3Fff+TxH5Euvcs0Tk\nl0XkoohcEpF/KSJfDLwF+LPFbmrbas+/FpF3i8hV4KtF5H0i8res8ko7nWKF/10i8ikR2RGRHxGR\n24t2jETkl0Qkrnk054A/Av5iUd5x4M8B77IvEpH/JCLnRORJEXm/iLzQOnejiPzXor6PisiPetr4\nuqKN2yLyZhERtz8i8v7ilj8snss3+HZ29q6mqPtdRd0fAW53rr1TRH6zeKd/LCKvrXkWK6xQixWx\nrFCCiKwB3wB8KHDJ9wJngRPAKeAfA3ZcoL+BnnxvB54H/J9FuV8K/Czwd4AbgX8DvEtEkmLH8WvA\no8BtwDOBdyqlHgReB3xQKbWulNqy6vkm4MeADaCtqOwvAl8GvBz4PuCtwDcDzwLuAv73hvvfAXxr\n8fsbgV8FUuea9wB3ACeBPwB+wTr3ZuAqcDN6t/NtnjpeDXw58CXAa4s2l6CU+qri54uL5/IfG9pt\n6h6jd6R/s/gHgIgcA34T+MWi3d8I/CsReYGnnBVWaMSKWFYw+P+KHcGTwNcBPxG4boKenJ6tlJoo\npX5XlQPO/Uul1GeUUpfRE7+ZrL8T+DdKqQ8rpXKl1NvRk/LLgbuBZwD/SCl1VSk1Vko1kcWvKqV+\nTyk1K3ZZbfDjSqmRUuoTwMeB31BKPaKUehJNCF/acP+vAK8QkU00wbzDvUAp9bNKqR2lVAr8MPBi\nEdksyPOvAT+klLqmlHoAeLunjnuUUttKqU8DvwO8pGXfgrDq/sHi+X7cqfvVwBml1NuUUlOl1MeA\n/wL89YPWvcLRxIpYVjD4q8WOoA+8HvgfInKz57qfAB4GfkNEHhGRNzrnP2P9fhRNGADPBr63EPFs\nFyT2rOL8s4BHlVLTJdr7meZLKjhv/d7z/L1ed7NSag/4dfQu7Eal1O/Z50UkEpF7RORPRGQEnClO\n3YTe4XWddvv6cM76fa2pTS3hq/tR6/ezgZc57+ZvoHdWK6ywNFbEskIJxW7il4Ec+ErP+R2l1Pcq\npb4I+CvAPxCRr7UueZb1+1bgs8XvzwA/ppTasv6tKaX+Q3HuVkcxPq8y1FTn76vAmvX3UzUpvgMt\nDvx5z7lvAl4D/AVgEy3WAxDgIjAFTlvX28/qoCj131kUmLrdd2PwGeB/OO9mXSn1dw+xfSscIayI\nZYUSROM1wA3Ag57zrxaR5xZK5SfRBDSzLvl7InK6UG7/AGDk//8WeJ2IvKyo45iIvEpENoCPAI8D\n9xTH+yLyFcV954HTDYp1gPuA/01E1gqF9Xfs7wk04n+gRYU+q7kNtHjvEnqS/3/MCaVUDvwy8MNF\nG+9koa/ZD84DX2T9/YfAC0XkJYXBxA/X1P0CyvqdXwOeJyLfIiK94t+XF8YTK6ywNFbEsoLBfxWR\nXWCE1o18W6GLcHEH8FvALvBB4F8ppX7HOv+LwG8Aj6BNdH8UQCl1L/C3gX8JXEGL0769OJcDfxl4\nLvBptHHANxTl/XfgE8A5EXmipv0/BWToCfftlJXmhwal8duFDsnFO9AipseAB6gaQLwevZM5B/x7\n4D9QVf63xQ8Dby9EV69VSn0S+L/R7+ZTVA0aXo8Wq50Dfg54m9WnHeDr0Ur7zxbX/FMg2WfbVjji\nkFWirxUOCyJyBvhbSqnfut5t+XyAiPxT4GallM86bIUVPm+x2rGssMLnCIWvyJcUosC70eK6X7ne\n7VphhcOGT1m6wgorPDXYQIu/noEW2f2/aF+YFVb4gsJKFLbCCiussMKhYiUKW2GFFVZY4VBxZEVh\nN920qW599glyNSHNO0xmwjiHvYmgZgKAUjCb/5ZKGSJ6t9fpqOJvfQ8s7jP3KssgVylBRNGJFFHx\nr9NRdIpbZspct7jeYGZtMNVMsDecdp12m2zY19vnpLM4oUptr17bFqZM0y8RhQilfiql+5fn+t8s\nF6TFcsc8+zbodNS8/VI8526k6Ecw6M5IOhB1YmSWA6A6HaazjL1ph71c2Jvotrn9sscJlJ9/mzaY\nZ2DKcoUH7vvpyKLf9jn3PjNe7LLdts+vLeqdzWR+n4gek26d+Uwq10fRDJFy+3zfit2e0nNxxobd\nJ6VEj5Ga5+qD+z7sfnWc/tvvxG6Pi0ufeuQJpdSJpRri4EVyo9pl0uraM+y8Vyn1yoPUdz1xZInl\n2bed5D2/+yYe2l4Exh1lHf74yQ73n+uxO+qRphFZps9naTmA7nivS38wJU70ZBTH+fycucdGlkaM\n9xaP29y7sZGxPpwQJzlbiWKvKCadSule93eW6tk3tc859dptakKSlK9N03DA4Lpr7XNxMrN+58RJ\nTtJVDIrL93LdzyyNyNKInVGP3Z0md5WirDj3PufgPXFOkuTEyUw/92NTvnhL8aLjU+7YHHM8OU2S\nacf/az3Fhb0LfOrJPvdfjrj/XK/y/g2ytDPvf6g9pu5F+3Ub7Hdpl2G/N9995hmU2+Efc2ac2GX4\n2p9l0XyM9gdT1jey0vMy5e2MevN7d3di7/VNMG0y19pjAxZjwu6DeT7u2LNR9x7MMw2N3WT+XGeV\nZwvwjr/4DY9WDi6JXSb8cHR3q2u/Pf/tmw5a3/XEkSWWySwrkQrA6fUJSaQfyf2gPTqoDtTxXpdp\nKoxbPD53crfJxSBLI+Ik95IKUJqEbLiTvzvZmt9tCKaOSJa5Nk2j+UeapZ3KRKP7tiAXWEySG8NF\nu0MTuSEVe4IITeimjPFel+FW2V0kTXLGuWKUdUhzIZtdI0mO6/umF9ib6uOmTlOWb9Ix/a60NTCZ\n2ZO9Syrzeop73efpe6Z1ffeVUSEXi1RkNGNM19tPm1RAP4vxXnf+D2C4lXqJ1CW4dP48Z1Z7m8my\nbuyFxsHGRua02xmTaVT9lmoIbIVmHFliyfLFQE+iGc/ZUAy6G5waXCaJ+vQjuC/JefzssdJ9hlSA\nCrm4g3FjI/N+VD5yMXBJpdRmzwq3DdxVcN110ExEpQnQ6XMc58GJzBAoLHYrpXuTnI0hZGnODnFl\nYrFJxZSZppF392ImSvOuRttJiVyyNGKcK9K8w3bWZaO3xzTSO5Z8NiGddUitMRKXJsq8VI4PbjvN\ns3B/+3bFPnIBSs/U1xYX9m7Evt9GapGvjGb00pzJCEaUn1eIOPuDaWk873y6hxom3HTy2rxOu72p\nQ3ht+mHKCY159/nZZZlvsC12dmLiVI/DwyYX6UDSbynWu3qoVX/OcWSJZVysRg2pbManiDsDIulx\n6/oFRlmHfgQf6+5y5sx6aaLqpYsBN6H4MItHaYvGQttqG2kaFeRTXbHtB/Yk65v07FW0b6Xsu9bA\nLreOHF1yMfeYZ5FOZS72mN9T7Armuxcy0nghovGRio9c7F3KNBXWRnq1OkkiRiT0B1MgI05njKdT\nxjmkuZCrKXkRAzNX0/luZWzpVux3mXQV6VSqIqmCxMvtXIivbPGULYIybfY9SwN3Uk5qyM4Vcc3b\nXUz0ZcKL9LNKc47tZFwl5loaVcjYxpzksnz+rDef2OPYKGM7HXAuPcb61gQdDKGMOhFmaHfugzvO\nTTvWtxaLkDbfICzehenzzgiSpMP6sJ1OZIUyjiyxXJ3ARy92ef7mjFODPQZdvcLKZntsZ/qxnBrM\n+LMnO9wQ7/LwuWSuA7AngG4wRmJ5ZXlYaLNbMZOs7yM1E19ptRgvZOg+nZGv3LZwJ7AFcs+xMkoT\np7N694lzDMz76SaKSaKPT5KI9cGkdduTqPpe7RWx2W25k7hBqJ1GnwAQpzOyNJ8TqH2N3ec61O1e\nkkQT3A6xdwdlrsmynG7SZZLodkySiG6ivKRi6yJALwBA7wgnccTVYTy/37TH3DN/JmYcOXqvuv7V\n6hKte40Yz4i/NIl6xnKgPr3wYFHniKcluYjIK4GfBiLgZ5RS9zjn70SH7fkzwA8opX7SOncG2EF/\nhFOl1EuL4z+MDrt0sbj0Hyul3i0iXwfcA8TolcI/Ukr997r2HVlimU473Pton+2bU57MjvHC4zts\nxVc4v9fj4t5ClnxykLMZC1vJmIeuZFy+mHtXgi7cwe9TkLaBUWz7PrA6LEsCcZy3mshC19ikBGG9\nglkt+8Rcphx7sgwpa+tESTbUUF+3PpiwXkw2STG597vQjzSJRNIl7gwAiKSLDgZc7p//d3lnECd5\nhbwr4kKjqD42Zedqd67Lm59fwujCbofvN1TFQZX2pDnDrZQRCdeIUcPOnFRcQwJDAvb7Mtc9wRqT\nUURyasb6xrhEQlnaqbzLtsr+Uj+z8oLIJWSbVJqgd82WMcQIvDusJcTOdeiIECctF5s1orAiv86b\n0cFQzwIfFZF3FTl+DC4DbwD+aqCYr1ZK+WLv/ZRNQgWeQKcu/6yI3AW8F52ML4gjSyxK6Q/w4XMJ\nV7KUcZ5walBWTp4YTHnOhiJXE4Zxn624y0PJHmcvJt6VpgtXkb7sALVJpYlQ7I/WXhm67WgqYxni\nmrcz8+903JWoTS72NfpY/c4lJJuvIxUDY7VkytL15vQjRRLNSDoz4miAFHaqUadH0slIohn9qEOW\nlj+TkCjLtMMllzgtW3NtJYqtBMZTGETaOnB3FOsxdYBJLLRDbhIHmWdiyMUlFddiyvQBYJuc9SEw\ngptOXmN3EM8txMw99v+mnT5RYbkv5fcdsnh0Sdi3EHEXPbYFmk0u60Ozi1x8bwd5H08h7gYeVko9\nAiAi70Sna5gTi1LqAnBBRF510MqKxG8GnwAGIpIUyey8OLLEAgtrkCztkE7H3HkDPH9TD/bbhymn\n1zdZ795IribEnfMM45StOOGhJOWTF7tzUYYpK2idtIRZ7PyefZKK+dsn6jJtsZX5vgnAp2z1mRG7\nE5mtJK5biZpn5epi3Lp9ZTSRir0bdMnO7avZrWwlOZH0IN3V53sDBt2dct88zyS0WHDJxYhjzIR8\n85r2oSGG7UxbySXHU+/u5SBwCaXN7rWOVNaH2dxcvF90eytRc3KJ01nlnqY669oXJMoaMgmNTbsO\n2+Rdo6ov8xndfI5xk4jca/39VqXUW4vfz6SctO0s8LIlylbAb4lIjs7q+lbr3P8hIt8K3At8r1Lq\ninPvXwP+oI5U4AgTy2wmi4kpi9jZidm9acz4dMqLjy8GmChFJL35KvbEYEoSdehHivuLXH9zu3yf\ndVKLFXXp+nQxWflk9/sRk9hoJe4qiU3aiyrcsn2TSppGJf8HewIOtcGGK693ScXXpjrfh2XQJHbz\nIcvKSnYzIfcjGOeL33v7bKJv0eHrb/MEX9W92OeWtZBaVsQVQt2CDer8phbEsPCbaSkWnhuSHC65\nSAeSpLWz5xNG9/EU4CuVUo+JyEngN0XkIaXU+4F/DfwImnh+BB3L7m+am0Tkheh0Cl/fVMGRJRal\npDI5XHqiz8cBSEnzAfAktxybks8mfObqlFGmRWXDeMbzNwEmc3KB+m1znbWLWdFW9Q6W+MAiwfl5\nR6G9H9hbft9Ow5Wl220O1ZtaxGivIA2pwEJJWrIWS8tmynVwLc6WgfYHiRjnM9JcCquwCXR1FuBc\n7bI31fUbq7DSTsljFRfSmRnLJHPfuULsYkhlO4XtVI/FXcdPpI1TYKlf1tiwzXzrx56to3Dffdnw\nIksjsiQnTcrOjFqMtz/xkSumanOdvRBpO2bK53LsBKS2Q6bvnqehOOwxytlATxfHWkEp9Vjx/wUR\n+RW0aO39Sql5qm4R+bfoBHDm79PoSNzfqpT6k6Y6jiyx+DDa1nmNPg6MpykwIJ3tMcoiYDG4TvQn\nnOiDzoOkyaVp294kDmv7gdnX++opXRPwS3FX/QbG9HleZqI91EGbkLhy7zr4ym5yZLQV3nWTqY9w\nq9eUzZMrYrs0YpxPSfMOe9OONjXuatLLp7rPxo9lvoOseYeGaNxoDMZQwK73HIsoC/bEDP7n6poW\n16EtyYbIpmmnYROM+dt1nIRFm6umzfWizqa6m8jFB7stCzRbJZp7DwsitFfe1+OjwB0i8hw0oXwj\nOi12izbIMaCjlNopfn89OkEcInKLUurx4tL/FT0VIiJbwK8Db1RK/V6belbEQtnp0XwoDwOglfrP\nWl+sRm9dT9lKNoiky6B7hSTqA/BQUnWm9ImGmgZym12Le60RJ7WBuytxdRZZWg57csM8wsp0Ti5Z\n2vGKr3yE1aSPcPsCZYKxy9V9rYY18TlT2n2NPSvaLO2wneqdQzrrkM8mqCJwlHGQBK1gd9tpjxfQ\nZs0uQua9powLhYTa7FLaEHXd5Gk/Xx9Rz9vVwlhCX+fqO6pjr0n/55/QD4ZlyCVk8LF0nfvQkT6V\nUEpNReT1aOusCPhZpdQnROR1xfm3iMjNaD3JEJiJyPcALwBuAn5FZxanC/yiUuq/FUX/uIi8BL2d\nOwP8neL469HZXX9QRH6wOPb1hYGAF0eaWMwq03Z6tEUcDwPjPGWcd7l1PWcY56x1uwwiHXtko7fH\nMM65eRDRj2bAVS5f7Ffqcb3D25oaG7jkYoti+oNpiWDq4H54toOhKTeNo8pk2O/CINdhULK5wUPZ\ncdGtx43b1GYlbSu9wUfMZVKxJ1Dj5OdO8iE9D2i9RtlBcuGvkOYyF1c1wVdvXf2hCApNurQQubhO\nlqUx4YmEsGibX+xZB5+Zd53ero4Q24anCbXRrdfUVfdMfWJaH4mGHEyfLlBKvRt4t3PsLdbvc2gR\nmYsR8OJAmd8SOP6jFCnG2+LIEouIKoWjmCRRyaPerN4vjLpspznbGdy2HpFEKXCeSLp85uqUs7ta\nfLYVw0tumvFgd4/HHx+U6jKD3XZEtOvZL2yCCoUZCSnHXdjnd0Y9NoZFPK3CUXAvX3xwdn2hckNm\nn03wrUjrJqf5CjzLWd8yxxarWNvU1xxzoUVeecnzHuqVrN1EBQnF9DNxdqghcdcyYyB0ryFanygu\nBJ8HfkinZrcfbM/7ZuOSNuI1H0IhX3zRI9x7QubJZd2cq9wv6wPtZ3sY6MhSyvvPaxxZYoHFgBmj\nRRuTJCp50puJKUsj7k9zzg2nbGcJo80poPhMQSoGz16fsRV3eCje49NXuhVlrFuvQdnJa/lVZH28\nKL9y3IbvAzVy8+R4yl4OO1e784jP83pbWJjtl2Dm1zqkGNJFhXRMWZp7RTZJkjsmp+0wHzN73eAu\nxbRzBx13KqTTMm2sQ929obaBXxTnE0n5yMUHX5TkOJmxMyr3YXcnnvsMmfa3ia3mnivtrOLyLrZO\nnAvtSMX0wedYutMiwvYK9TiyxGLyMtjkYmMhrliIELI0YjvN2M663FzelPDC4ylb8ZTtrEs/SthK\nJjyU5HPRmL1r8YbVryGXOoR2Dj5P8Toi8BNAR/tWwL5IRbfP35f9iBfcgJZt0Fa2bovB2sDe7YZE\nm75wOvuFj/ybwsP7zIRD5ALVd+W7tup53ymJO3e3eyXxaJOpcmhnVNENWbsvX5mhnYpBSAzsllH3\nTA8K6Szhef95jiNLLCKLlZC9CjWIPStF40x572jGc29OuXNLk9NzNzOesQaD7g1s9PaAlGHcZSuG\nh5I9HjlbZqEQuWhT3Kyov/wB16Fu4DeFj6mz1Texkua/G+A6Oy7qKIuifCLBg8IWzdhYxgfIkIv+\nv7pqdWOwtdGV2bqow0RoVQ5VUmnreFg3DtxwLsbceH04mU/Iu9s91kYZo0RHN06cazWqu09b52Tq\nc+F66vue587OwojDp/urg7nXl2fpsPygjhKOLLG4CH6EvolqR38E43yPO7d06PVcjcnVlGy2R5rr\nSenW9ZytOGIr2ePjZ7XYrLLqDMiRfU5dISuctmHx3f4etlLSRypgW6+Fd2K+sCg2ygpo//kmuH4e\nYLzvZ9oJVrT4z/zvQ93O0Hv9UzQpLfu+fe0MWd6555Ytf5rKfJG0bmVMtAN3uvc1+YykNWPI3Lux\noSNiLwu3zvGePx/NCu1x3YmlCKh2L/CYUurVInIc+I/AbWiTt9easAIi8ibgO9DLnjcopd5bHP8y\n4OeAAdpS4ruVchO2lqFUlTTWN7KlxBWPnB2wl+8xzruk+YATgz1GWX8ech10vLFhLPQjxb2P9iuO\ndga234UN14Q0hHn4EKf99qo6FETQDhLoTja25ZivPhttRHhuQEJXQVoxmXWMD9wglm1MWUM7RBuR\ndIvgkyYIZbOxg73brZqJ1xs3GBxmGKDS/R7nyLoxVEck9QYAi/dkIiQD7G73Gu9127qsb5Rdv93W\nkC+Q3R5fnS6ZHPZuRQTitvlYPs9x3YkF+G7gQbS9NcAbgd9WSt0jIm8s/v5+EXkB2hHohcAz0LFu\nnqeUytGhCP428GE0sbwSeE9dpXZ+cnsAmYFZmzPCmiy0BdgetgOlwYnBlGcd65KraRGGfcy9j/oz\n8flJJRyxdtnwMeXgkOXdme/j1OdnpWOuT4orfmkLX7Rb17ppfjwtmyD7nO5CE1Kpzz7SLf5MIkXU\n6dEtPoeo0yOJFoTsIy8Tkn4e98wzKZnrbHGjT3fgPgMbdf5CvvLs56TbXm7bfn1Kqgp+//s2xALM\n9S3u/cuiNtCrx3zaPO/9OJu2XRCsUI/rSixFmIBXAT8G/IPi8GuAVxS/3w68D/j+4vg7i+Bnfyoi\nDwN3F7kFhkqpDxVlvgMdKrqWWAzq8lS0jdP1+OMD0ukYgOdt6mvu2BxzY/8GNqLjKBGiG86iQ7GP\nuf9czqOPaB5t8hCH5SYDvzd1VenpS1TVFHXWjs9l9FG2BVCdqWq1TWViKFn+BMjFXBtyuvP5VYT8\nPgz6ESSdmd6l5LovkXRJOrM58dgIifvc+n16Dnt3aPpSeiaBKA1u0FC3bp/i2hYdtTLzrtHZNCEp\niL8/mLKblhdNJpqFbR3XZKlW1y7zt6vPc3fhBvazaRsCaUUqB8f13rH8c+D7gA3r2CkrrMA54FTx\n+5nAh6zrzhbHJsVv93gFIvKdwHcCJMdPVs4fRO9w+WKf+1iQi87x0YM8Q6K4WAWPuW0d+s+cECdX\n2B15FMQBE0jwT0Sl0Pwt226HDK9LhexDaNJzlfXLPMe24fp9q/dlRDiuP9Ey2I8e63OF0m6yhQWg\ni9BOt04UFArv4/r32M6a9vWtRGQtxIRNATftxWEbh86n8h3rIJQrq7CnFCLyauCCUur3ReQVvmuU\nUkpEanUly6AID/1WgPVnPU9Vw1SEk0e5HuE+v4jLF/t8YDTj3M0po2ydF9zwBLccO0aeTfjEFcXF\nPU0kNw/g5admPJSkXBh1GyfhOjPTkPLfPZdl0TzdqnuN17yzWOn6wqHESV5RcC5raWTD97zLbfEr\n8kMe1u51NkIk5sYKMyFdSn1xxHGmDnPOfd56ld4J7lLa6lHsyc6nxPZ5iLvm6yFxXoiYM6tf5Rhu\n5XLSdBFY1KCbqFLqgibP/FK9Lce2e62v/cExaevsnmbhWr5QcD13LF8B/BUR+UtAHxiKyM8D500w\nNBG5BTDxaEIRPR+jHLqgdaTP8V53EQIjy0s7AF9sJB982+sHHh1wJdtjOxtwx2bGKOuQ5ovzJwZT\nbt/MOTXo8cdrioeulBWsQZFYze7E6zTosXBzPyRXjOIjTbd/UB+Wxm27qzgN1d2GVNyJLnR/k89O\naWL2kAjgDenSRq/lIxj33uB4CiiQQ3GvmvSBuq79rZLLYzIgpguMC1fEa9ph2h4iFLc8N4p0k9Xm\nol2d4AIxdN8yYXT2AxHoxoe2Tn5a47oRi1LqTcCbAIodyz9USn2ziPwE8G3oHMvfBvxqccu7gF8U\nkX+GVt7fAXxEKZWLyEhEXo5W3n8r8C+WaYs9eEMD255IQ7sYWHwwZ86sc+nyhHOnU+7cXAym2zdT\nbtsYEEmXU4PL88yUZ3YUn75SfR3uxOHGhNoP6jyL3TAqdQmT3Ha6cOXbdZ7nbUjFbaN7v/1M9iO6\nsoNQ1iFEEO4k6MbtCl3nwvWhMF7uvok5RGyuwUNtfQ1Wc2YB5iI0/kwGSTs52Dw0/civEwo9RxPs\n03ZgbkMuoV3wMpEbVtg/rreOxYd7gF8Ske8AHgVeC1BE7/wldPrNKfD3CoswgO9iYW78Hloq7m3Y\nuxcb7t9u8Me6FdClJyI+OOqxffsuL7lRcXKQc2owYRCdmudXv3X9Ckk049Sgy1aidy9G9+LzebE/\nOtuZaxmzVncStmGb9/pWa254DYOQpZIr3/aV40Mb6xyXVKapzCegNn4I/QOOfpvkbdiRj92IDiHY\nE6i92l8flknOJRjX7Hl+nUd81kgwjm7MDtJqYMfT2017JV2Ku0sxzpE6dI5OAWwyTdqWke5z9NU3\nKawu695vSAdZNxZC4V5WOBieFsSilHof2voLpdQl4GsD1/0Y2oLMPX4vcNcydXZ7s3ka1mXQNGH5\nVt5nLybs5Sl/9mTE+b0eg+6IXE3Ym+5wfk9/YDozZUQ/gge7KZcuLxwqXVPhZbyLvcrNuN6j3zcp\nhc77Pe04Ia3OAAAgAElEQVRbiPJcoplbTZVNhEN98GFMe6KdW8cVOe+BUs57mHqtwnxttsO7QDmM\nvu3FXQf7nW5sZBVLpzq4pL7MJFkXasgsPMxkbk/4Brai3hvHa6pTL5s+mn5uDCfsOGmYzfM0sftc\nBCNIH0AZ76ZkeCohAr2nuI6nC54WxHI90IkUN940Xkr+vJ+otGZg71ztct+lKTo52B5J5yqjSfn+\n08cyhnFEP4p5KEo5e7HsrT+Pv9Ry225/ND4ltq9PbeESipkEq7qfxQo71G7XSdIllGVjp7UlpH4R\nuXnQ9ZsbV8oOtd9DLqDzx7d1sjMe4z4nVp9peMjyLhTvKxyzrewYW0dkY7rznYPZSRhFfZz4gl6a\n9vnLdH3H3L6N9xb1GbjhVppQ77MSHldPd897EXkl8NNoB7qfUUrd45y/E3gb8GeAH1BK/aRzPsJy\nTC+OvQR4C1rnPQW+Syn1keKc1zk9hCNLLFFHsT7MgkrUpo92HnK7xorFnlSyNOLCCO5Dk8tzNxf+\nHwDP2VCs925ibzoiiVL6UUI/Snn4XDmCso0mU1vfh1O25KoaCjQRTYhQQE+ASXc6nwTLzyPstBZy\nAAz509ShzWRT8ueJ1MI0fFIQS6/HoDsjiWb0u/oZxWmYpKFMLmbys3cejW1K/c9zXqeVCrgi9gq0\nx7zfpmcxJx/PriWOy0YtDJhP+DapuCbnofbYbfaRo0syZvdSybPTcifS9vn7cNjkIp3DUd4XpPBm\n4OvQ7hUfFZF3KaUesC67DLwB7dPng+uYDvDjwP+llHpPYVT148ArGpzTvTjCxIJOD9st0tA6/hx1\npruLa2ZkadmR0qd4tcsw5DLOY+46riey52wojifPpJvPiONTwHnSPKMfxfS7KZ+86DdJDpmxhpwc\nfROSHQjQ9Yb3xZJyyzVydMAKQ28+Hp+lWphg3HpCH7aPHNugksAsooiIUMQHm17Tv+O1xrb5kKVR\naZdilNelMrrlicWMO7ev1Weqc+K4BGOXZ67V103nidlM20IEZPrm21WWdhXxYpzbuo5y5OHwd1M3\nFutg6mprrNIUhHMZuO/raYK7gYeVUo8AiMg70Q7kc2IpsjteEJFXuTcHHNNBf7iGaDaBzxa/vc7p\nwAdDDTyyxAL6A2yDOtPjSv6UBtGHIZe9XJPLi45PydWYbLZH1B2Sz/aKQJb9Qu/SoR8p/nRnurCs\nCbSrTT/qJhcbdQEKK9dOpfED9D2zpt3RMu09bJidTD9ShZinXmTaVjxZ55Aa6m9TeebZ2+PZrqeJ\nXOr8XOr+bkIbSz9Xt9ZkRh/Sn/l0Jcs8zyafmeuAm0TkXuvvtxZ+eKAdwD9jnTsLvGyJsn2O6QDf\nA7xXRH4S6AB/zqrP55wexJElllkxDzZ5nrtbeB8W5qC+SbCaIClLIy6lEfdNM8Z5l1G2xu3DJzg5\nGLEzGfPp3UV642E848tPzNiKuzy0DdueXYArJw+F8/CJHnyOZK284K2djvkQfRNb6Pk1xfqyg00G\nzY6tti8bF8pLhMZBUrmWWDlgWzH5RYe+sCvLkKOtwDeE4S5+fOPVd8wmk7oUwPaYMGMopNC2RWal\nuto6eto6P2fn5fqZ+Mou3R/czfoja7dF9frDIxkRRdRrrS98Qin10kOrfN6GWsf0vwv8faXUfxGR\n1wL/DvgL+6nnyBILHA6p2LAdwcJlLs7tjmLuT3PG+ZQ0H3BxbJT7GsM4t4JYztiKYx56Eh6/1tx2\nU1dTdsAm/Uobqxldbl4KEWNPbD6E/GDK4fE7FXL0tX1ZAwTfRK/JZPFMTYRqYxlWl7dmGTQ9Fx+5\nzNvU6p1Hzv+d0kLDwN4h2NEVfO97sYBY7DQr4YQcT3+7Hh+hVP+u7lhCFo0+tEnJULdAWfzu1BLx\n0wQhZ/E28DqmK6W+Ge03+N3Fdf8J+Jn91ndkiaU+qP6CVHzRU234LHXsFZhvMkqdgfzxNGI7Tblz\nq8sdm1qOfKI/4ZZjx9js6VBpcXSeYe8qwzjmk09GPLgN5aRJ1V1HnYOjry0ulhF9GHJZ/C7vKHyT\nmjth+dpTzhpZ/yx9qK7AF78r5sRd4zhaNkNPuorMmnzb1m0Q2iW2Mw1eTpTjEko1tEvkHbOL8+X3\nFXpXtj7G56tUCerq0QUZGN2RLyiqDZ+1X8jAo25H6EOd3u9piI8Cd4jIc9AT/DcC39TmxpBjenH6\ns8CfR7t+fA3wqeK41zm9rp4jTCz1sm7743e9uOsIJmQG2hQjyvi6jPMuz9vM5yawMk0hiomky1aS\nk86mhey/LBpru5qu+3jqvNX9CZbckOxl/Y+7o/BH+20OWLkfUV0T9pPvHpqND+pgjylgHmLH9Qty\nc6nUyfx9hAL14sUmNFnj1UWmriOXZWGLmL3WhIHv0DVIabrPR8JN9ewLhxTSRSk1FZHXA+9Fmxv/\nbOFA/rri/FtE5Ga0OfEQmInI9wAvUEqNggXr1CM/LSJdYEwRsLfBOd2LI0ssEF7V+CYOexKoW2nW\n7VRMOfZvO4HVztUuDzJlnEfoXeoV/V8Ol8ZX2M60nH8Y59x1fAbEc3KJk6jWiqtuMjxIID7fxGc/\n14OSgLtbOaxV5V7ujwW2TJtCbXF1XPYkVxfWpnK8JRHUkYq7yvenZShPwK4IMqTwNwg5WNpwjQxs\nCzZz3u6Lry5fnLE6cjHn2yy67MRznw/e+Eqpd6NzT9nH3mL9Pkc5hqKvjPdROKYXf38A+LLAtV7n\n9BCOLLHMVFjn0LSqt1EncmoKtOebkNMk5093ACLSfMBdx6+wN+2Qzhavaiuezs1k+1HMfZcgKyyX\nbNJzveHdNoUCCi6bGdLXn1aZHRt2K3X17u7EQQshG1WCLROhne3TwFXem/t8Zfuepx0XzUzQ3gjS\nNcnamuA+u9Dz9vvcuBGu/TmA7Gfm1u2iKUqyqzMKGXq49ZVMhkf1C4tW/kLObsyI91zDhP045zZB\nhGWU95/XOLLE4sMyIg4zsUG9CKlaxyLel7m/rLDWuoo/3aHYuQw4vb6Y6E4NJqz3jhN31og7l4AM\niLmPqfNBzgiJqUybfW2a37+fnCUtxDG6bf6y/eKOxUrbnN/didnd7tFNtDOinWzMRtsVp49cSuc9\nSvNK3pxsOUOPEEJiVB9B6v/DkaR9Y2Du2NuC+EP6MeM/47VGy8pk5xK6uce2CvPBF3lgfUiJXHZ2\nYjbISu2z29VGzGqjbV6gFZpx5ImljYjFDadvJuFgIEfPpOybeEI7BNAf3OPXFHrn0uH0esawlzPo\nDhlEQ7p0ybtDTg0ukOYd+lGX+6KUc9f8pqelVXpaJRVfFFnQMZ0OgrYRdl0ELdCyiN3tHmujjEkS\nVRz1DA5LjNFGXGberU3OcVIvGppfF0jVsCxJ+RxkXYusRdmLMd8q4VZBEH4LL/+4chdLrr7IJRR3\nl2KTiglimaV6XBh9SJZGpHHVQda0q80zDHn/63PLR35YQePIEouayVI7FHsCsEN3+FBSYNYE9/OJ\ncsqDPOfMCLZTuDOLuWNzyqC7QyRdIumxO7lcCmL5spMd/vByxJmRn1xCOSpgkfnPbnfTpBNa9frC\nou/sxMRpzsawfK1PTNSkCzp+aswoSYrnaK2IneCZSWm17qzsk5xxrua7lVxNICr8xZacRw4Scr0u\nbYA5bkgqpN9rI4byWTlCOYVCHTG7id6AucNuRUfj6A7rTMbdttpY7HBsM/bOnFR2t3vz+jY2Mr2j\nodxXl3DrTPB9Ju+HCRG1ysfyhQ6l9qcINh+pTSq1VjuhtK8OqfitePSksk3Oxy7Bdtbl4l6X2zd3\nSDozLo7L+cVPr08Ki7GIh67Y/jK9WqsXQ5R27Kcm2GHPQ332HXezWPpIyFufk0NmuJV6xXt15DK/\nLu2wO4oZD1PSvMPetKMzSBbI1VTrtXLRYV8Kc+OmydFnxVUnJm0iFVPmsvA5yLZZvZsJe30jq4xH\nV4+Ypeb/xQRuRJTrW/vf5ZZJ0Ox09LndUY+dnbi0O9Tk0tO7l4Y+hvSh9oJrtJ1w08lr8+NPc3+W\npy2OLLG0gRs3y87vUPEHiMuTSR2alM7VgR+RJTkPTXO2U8V2lsz9XQzu2Byz3jvOM9Z25scMuZhJ\nuW5y8UXntdtb5x+xDGzrutrUsoE8LmDtpjaYTzS6bVVrqLrJZjvVoq501iGfTeaJvlr1o2UCtNI9\nnr60JZVld0V+cim3OXHEdaPtZL5rrVv4uL5FNqmsjTJ2iVnfWrQ7rGtbzuLNJRUbu9u9OanVfV8+\ncjHj+fL5PmujjCdY46aT1w591yKi03UcBRxZYpnNpHY12SYp0vy3a0XleiXXkJCNurAk+kPosZvM\nuJIt/F2SSHHH5pjjyWmSWYdBMuTFNy6cYh+60mktrw8la1r0Y0EqoTLbrrDdPOl1JstzyyBP8iuj\nRDeTjis6cmHanmU5e/meJpZcyNV0bg0WyiBZpwyuI8plCeUgsPu9zI58tJ0goxlrhc/IeOjPbeNO\nzIZU0vMdNnf2ODbK6GU519KY8bBbynnkkowpq06XERpzvnwtvTQnPd9hN6knGNvAwSbFzSd0+7dh\nTi4HiY58lHFkicXAlw1xP2WEdiyHYZXiHnv88QHpdMx2Jrz4eE6aC9nsGnH3RvLZHtemU9K8x23r\n0I9m8MVX+NSDN+yjZ9V2+BTV0D6hFbQzX62bxG2iLocsccipJoUxaB2B1rN0CClWbOW9b+XfZElk\n56xvI/oKwSWMUD6d+a7ac22ofTbJ97KcSVIvYoTybiPLcnaTHpM04uow5tpGzCSJWB9MWscVc6MC\nVBxJrX72B1OdK5Zy9k6Tu6WbqEaLzVI8tyynm3SZxBGTJJr3/4kLa8C1FbHsA0eWWDqdshLNJRh7\nVRNCSTka8Anx3ucZ7HZ4crt+3zXmgzgzErbTiCezYzx3c5db1y+znUY8cOXY/J6bB/DyUzOS7mXO\nnFmv7BRs2Cs8X2iVEHwr2zZphyvHnft9RJFlERtk8zY1ieXKimT/dUk0mxtEGKSzDmneYZwLO1e7\n7NbolOz22+PIlxPHFqUuC5+fTNO1BvUJr/S53bTHNTQpdPErmd10ALujeP4+RknCZBShhh2Ob40r\nz8BV8Jv/sywiTvPKTqjNzrjNpO+LbrA+nJTeQxznPMEak0S337730HaXHeg0RMn+QsGRJZYQfArg\nxnsOOPCqeVs6FYIJ5SnZToX3fVY4txdz23qVNG7f1KKIrTjhvniXBx4dcOmJQeW6Jqe30Ifuis/M\ntRWSWHJHWLfSNRZmbfU8ddfZ8cLc1MQA4ymtSMXAjXDsOviZ9rQLZROIjBzYZZes4Kw+7+7EZFn5\nHfnQTVQpgVeoT+vDbBH7y0qWF8c5u4OY9Y2xV5RqEIoz5tvpmx2Jayyz4fFdsgnMNfYwMKSyccyU\nl7M+pEi0do3dQcx4zzZSiGoNVVbw48gSi4hfF2IQks/vF6FJok7GbBNMk039Q1c6bKeKl9yoP/gk\nmnHX8T1ODk4CsBVfIIkGbCXXuH844dFHFna/tg7DhU+UYn/shlQ2PHoPc3/dBLgsmpT67nXzv52J\nCsqBETWZlDHO9T8zSYUmZlcc5vqR2A5+capjX+1YDrbBvlo6I+95J/xIWTxVFf3Z7fOhP5gyplsy\nh7fvMav8rUTNCXkcKbZLk7O//8A88Zh+BoHwNlZ7bT2KaZchlbKebeHzAiYU/6yyo7VJZRDpRcU4\n0sn+doCN4eJd2ouog3z3JYgg/aMx5R6NXtbAkEvIM70UfLJGVBOyw69DKOruMtgdxfMV2qPAlec9\nyZfeqLh13Uq5C6x1uwzjGc/fhK14wseOadFYGzSJm9zsgXUr8YM4StqWeb4wMvuFCY9jct6DVuiP\nc70jHG3rVAZ6ws1q+xCaVF00WcVB+76Fwstn2cL51XV8dUWvQMmM3jWYqLPgSrpqbhLc5Jy56FuY\nBA2h9Kz8RhMiGDjfo018ThrnzKnb7YMb2drdQZqUzHb7VmiPI08ssD/Ffd09rjw3NDGHFKs+MYlP\nx2H7p5jrP/5Hx0m/+ArjHJKozx2bZwH41JN9Rpku49RgxitPw4fjXT72yXpyCYlX3H48VagLrFi5\ntmkXk0a1ZtU2DNkk3bJYyBdJoN65c0G2tiOhHfSwCfu1XITyLsQVWdaVU043PCstGrbRuxbQxGv6\n5hMZ2WFczHVNdZs895MkKpEL6OdVDn9kUH7P7rO2Q8ukSc44WsQsWzh6+ndRBzHsOapYEUuBNitI\ng6YV67zMufhqxs7IsRbzWto0h9yf31+juP7UgzeQfdGIcQ6jrJq//cRgyqnBhCTq0+/u8sEHFuTS\nRh/SNDm7ZNDGSmlZcmq14vdMosvowxZJvtq/F3Nc97NDnIRDuDeRy7JRdl2HPnd170v94BKd3ba6\nXCfbFmGaBY5BUyQAtw0+1JGLXZZvl+x71jZ2RzEUeqJ0KvNdvw9Nu7VlIB1BkqduEfZ0wpElFl+i\nryarprqIp6FEVjaMbF3/9k/gJUsVT8hvXzRd36T36CNDsvQq2zenvOzkop7bhynP3riJuDNgo3ee\nJJrQj3b4n59c00RlKWJDfW0zObse9W3NZdvAFuO4ZrzuM2+bqjaSrve3L29L2wWI61TotsvWobll\nhnQnPrgh713YpOISiD3G3EWRO46rk3d4ld/0Xu0y3Wdh2mrIxVd2KPKyPlafnG/R/jIJ+aINrPxY\n9oejYfvWAklSXt3aMtZlYGTLRr5u/sVmkC7hoV+HNvc+/tgxPvbJdT58QV97YjDllmPHWOts0L06\nYjM+xR2bY25bh6/54mtsFMrZjY2MjeFk6QCUJq1rG5hVvdsn3z8D845MAqhy3Vo+bxOjrfuxV9+h\nGG82ko5/5b8sUs/q2d7JQjGBeXR5IVKxx5gpJzSB+hcvs8a/bVJx9URml7Lj7FT8jqB+onN/28/C\nHO8PptpSLdGWam65vn+2OM5+575dV1tSeToSi4i8UkT+WEQeFpE3es7fKSIfFJFURP6h53wkIh8T\nkV+zjh0Xkd8UkU8V/99QHO+JyNtF5I9E5EEReVNT+47sjsWN3tFm5Wx7HdethGAhWy7nge+UrrHr\n9a8KndAu+3C83N2J+dgn1xnnu7z8ZIdh7yrxxg6D9RvZnZznU0/2Ae3v8pVfNOa+YaZFBQHUBc30\n7ULqAhs2TUrmfl9AxNDzL1l9Wc/UF0QRFuKuXE3tlPeks6rPRakNmb+Pddc1RnOI/c/nIKKY0GTf\nJseOeU52JGJ7lxJ6Lu7O1Bd+vy2Mjsiu3+AgYe59hOIa7LRdJLXGIVmFiUgEvBn4OuAs8FEReZdS\n6gHrssvAG4C/Gijmu4EH0RkmDd4I/LZS6p6CrN4IfD/w14FEKfUiEVkDHhCR/6CUOhNq45EllrZw\nJ8taL2tre774MBdB9eqsq0Iy4pBJZluYyeHBP1lnO73Kub0BLz1xhVODC4VCfzEEbh7AK54x474k\n5ezFpFROXb+b2hOaUNtMDKF7Qx+9vRvx+eEYxHFeFXNFmlDzaeHDkpcTUul6/Y6bIZh3bwI7hhYm\nTVEXlhGHLTvZuk6JJsdJ1YCkPkK2IfXhVuo316+JdNyUvqJkQFHTvzpxdagu1yqtP5jO/X6eprgb\neFgp9QiAiLwTeA06dTAASqkLwAUReZV7s4icBl6Fzgj5D6xTrwFeUfx+Ozq75PcDCjhWpCweABlz\nryw/jiyxSEdVPmafh24Irt8CVGW7thVMnZOVkRm7IUNC+hRfOBUf3Anw8bPHuHwxZzsT7tws70pO\nDKbcsTkmzYXNeMAfr4156EonqNh0FdqubsagTkcw38EFdCRxXHUcrYP7HHwWXHa7Qshnk3k4fWMx\nZKdJqPMtMecN7HflkouvTW3Ipan+eTsajEXcOox14Q7x3BNe1+tPrez6Bhl9yGg7mZOLa6zh7l58\nhDjfOSTVSOJu/9qI+kL9tevKUh2Gv5fm7KaLJHJZlhN7jAf2hQ6Ia+ccxk0icq/191uVUm8tfj8T\n+Ix17izwsiVa8s+B7wM2nOOnlFKPF7/PAaeK3/8ZTTqPA2vA31dKXa6r4MgSi4uSb4THegbKg9F8\n3HZ4Dd8H5NbhOxbHi1VsG1KxFZrdRFW8k+sCXqZpxAcfWGf79l1ecqN2dDu9nvH8rT7r3ZvJ1ZS1\n7nlODISbBzH3JSmPnK166tv1LAix/PyaFM8maZOBnVlz4T/hX/m6z6h6jSXK8exWQIvB7O/cjm6s\nw7ks2mV8QWxyqYPrj2HEOaFslwa+xY6NOqU11KdfMOfdcWqej4lubCITl8uoxu6yCaWX5qwVE/Ak\niRiRBHcuprymdtfB9Ml1Em2+ryriNP1eG2Uc28m4WsQ6swnmOuAJpdRLD7tQEXk1cEEp9fsi8orQ\ndUopJSJGsXU32p77GcANwO+KyG+ZHZMPK2JpCVtBmqU5adxsCVOxwDEBAgMTfzAUu/Nx2jJnX16Y\nJpn/aDvhQeDCaMzdz5xwYtCZR/TN1aSI8hvz3M2Mk4OIT25c4wOP9Oe7LtfU16cfaopaa663raJ8\nH/B8ArH1Npby21gTpbGfPIJ/2+lsOzpWmEy1l1/U6TGM9+hHC8J2PdJ95s52G23dwIQiIGPSnDyt\nVF7mJ5iq4UJ9UEzXg95n6WSevz223J24Xba53+TxMQEggXkASlOu31fLb+7shntpckJeFj5rPNPv\nSRJxtYiVZgwGrhOpNOEx4FnW36eLY23wFcBfEZG/BPSBoYj8vFLqm4HzInKLUupxEbkFuFDc803A\nf1NKTdDitd8DXgqsiMWFmon3A2wjVzUkU5eBsk7W6/Pqb2OCayzVzERbtzMJtj3OGW6lbAwnZGnE\nR+bDccodm2fYTiNGk4WY7MRgyonBlH4EHzqf8fjZY95ydV/LIffNsbrrQ1iIQ/wy+VB4nBC5+55p\nv6tD3wy6M+LOGlzb1WUPBiSdq2zFsGVFynXNdu36fEEz54Q40DsV15y3znfCjjJgoyoWC4vUQkEx\nfZZOG2RaBGa9w1DbQn00O5jjW2PvvXbfzb023Bh5rue7753X6XIWf/t3faY/Or1xTjaI2N2O6SZq\nvhA4VIggyaFMuR8F7hCR56AJ5RvRk38jlFJvAt6kmyOvAP5hQSoA7wK+Dbin+P9Xi+OfBr4G+Pci\ncgx4OVqcFsSRJRYXbT5i/XvxUZq4R67+xEcq7kophDYTo20KvR9nQ9cbfUEufZJo0eZhL+fZGzcR\nSY+t+DG24mN8KNnlwT9ZX+y+HJ2Uz5/H24ak7K8zb4+zSs/SqjjNNzEuyNY/4Yb0F0mkWOt2iaSL\nunpJl3XsOWwlOUk0ox8t+tgmvEmln857cseEr63u/fsJjGqTS6m8xA01szi/QVZa4IR2RnVl++Bz\nivX5yNjPw0cwTbDraWOJFiIYqLdmvN5QSk1F5PXAe4EI+Fml1CdE5HXF+beIyM3AvWirr5mIfA/w\nAqVUndL9HuCXROQ7gEeB1xbH3wy8TUQ+gbadfJtS6v66Nq6IxULTADZRXW8oFvTjZMp2qj9U433s\nC4MBiw9nLrqpUdKC3xO60t6Q70JAVxOeMBbk8tITWgdw63rGif5tRJcfg2nGs089j7XuGZKoRz/S\noWDqJs0QfD4MbowmWBCMS+7uxJh0p3Nz2DJZucYF1efej0w8tS5duqhU71i6+Yy4M2AYz9hKOsXu\nzv9e3Xp8+ram5+IjmIOY0vrKsHcrSVdZFnEKm1zaTMTuAmkZM/KD+obsx+LNtzBx/14Q26SVOfa+\n0Dm8IJRKqXcD73aOvcX6fQ4tIqsr431oyy/z9yXgaz3X7aJNjlvjyBKLz/O+Du4H2e9qc1QTgM9V\nRPvubyMjrlsd1X/09bLopsnfJZe4M9CT7VVt/CHTlDgacGIw5qtuUcAuD59LvGW1aaMPJRm+CTbp\n0S24Dnu2r1AduYQQdXo6AGU2KR1LorJIx7cbc6Mk+Dzb94vQzgCaE3i5aPIg95H8fuGSzmH44/jK\nbgubKELRBEI76BX2h+tGLCLyLOAdaJM2hTan+2kROQ78R+A24AzwWqXUleKeNwHfgV5ivUEp9d7i\n+JcBP4e2sX438N1K1VPHEunNAQozTB36O+kqBvkiAJ8dK8kN4+GuRuvIJ/TRtBnoIVPlNh76izb1\n+EAaFel6p7zwhse48RkvBGBbbfPH23qiHcY5X3WLJtePnw2Ti6sH8vsvhMOCzK9xRZSe5+QzfV78\n7bHQs47lswnEMawV+qMoJs8mRWbJos4SgZTrqvPePqiT3X7FMG5bdkY9NuaucDmwCDFvm8X7Tcv9\noYXats1njv9UoU53tcLnDtdzxzIFvlcp9QcisgH8voj8JvDteLw/ReQFaCXVC9Fmb78lIs9TSuXA\nvwb+NvBhNLG8EnjPsg1qsvWfh4FIcnaKv0P+KW0cKm0sIzoJt68TJBRfzC4fdkY9fuePemw/b5dR\nlnP3SW3W/qc7ZSY+fUyLzPqR4v5zvdLEVKc4DbW3cq4mDtruKPYSVtOEYj+bJMkZ5zLPdz9lSlQ4\nSE6Zkqspad5lnEvl/lAfbDP0JgR1PkuIPE39LkKiqJ0RmMCYDE0WTn9oE5/pvFtulkXehFuhti8i\nT3S8u4j9IBS3rxK1wnLO9Juw677tjHqH8i36IB1Zxo/l8xrXjVgKR5zHi987IvIg2vEn5P35GuCd\nSqkU+FMReRi4W0TOAEOl1IcAROQd6DAGSxGLz48lpKhts8q2y/XBpxw8KKHUTcbl65styj72yXWu\nZLukeYfT64vJI4kUt20MiDsDTg5GJJG2GLvviZzdUVw2MqhxjGz17NKF347Pt8KUBWECb7K008Qy\nIVdTor6O8pyrKbmakOa9eR11KQNcv44m2L5PvvJCE5sv3pU7ifoWFrbPh4EJ2xOKRF1H+Pb42iH2\nWpH5SMOd7N1JvFJXnVFDg96k6X77G7BJxQ3Bs9r97A9PCx2LiNwGfCl6xxHy/nwm8CHrtrPFsUnx\n281Ni/IAACAASURBVD3eCLNq9E0MITPGkLNd6TqPl7zrvGg+4MMklWUmt3n7k6o1HOh+nTmzzn+b\nXuUlN8W86PiUJJrxjDVY7x6nm8+Iejdyx+ZZ0nxAP4KPddNWbQW/yfX8Oqsvxvlud1s7qw23dB0h\nB1LXqsedIO2+jqfaEdKQiyTaEVmTisyvCd0fbGvaqwRNNAg97/l5xzm3jWWdSy6+BYaPXCBARA0h\nakxf3T66Y9lV0sdJOM6YfY+7MHJ3USGyLVuYLcRvoVA6rnGHS5p2nSssh+tOLCKyDvwX4HuUUiOx\nlB+O9+dh1PWdwHcCDG460VpM1XaFbRAKhx+6pmkCCe1A2pBKk4OXrbwsHS+I7/Gzx9gdTTh3LeUl\nNyqGvT0G3RFxZ429fMSnd/XK99b1nFMD4Q/XUq/eJbSr8sbesvoSysNu2miX5et/naOk8WPxYW/a\nKelY2sJ1rKsTuyxjntuEiqVfVnUsdetoVa4TjduQhdsHO3xOWbdYbkeTgUsd3HA4rmgrpPvy35tX\nrtvYyCo7sENV5AuH5cfytMd17aWI9NCk8gtKqV8uDoe8P0Pepo9RNqsLeqEWsXbeCnDD7c+tEFbb\ncB3LOCP6/BAM6hzWyp7m7ayb7ARcdsbAUrmBCMkh2bP5wB4+l3AlS9nOBtw12eXU4Aqf3k1I80UZ\np9cn2kQ3VnzksV6p/KbwKzZcgjATdRtZ/DyIYIOuo2nCGHRrLPA8Ie7NOzL1+/wh6hz9bLQllarj\nXxFOP10klnOdaV0TcdsKr9RG3+KoxbgPxUJzJ3pX3Ox+AxUDjKy6k6iLYVenbyy3q1yG0RmtLMMO\nhutpFSbAvwMeVEr9M+tUyPvzXcAvisg/Qyvv7wA+opTKRWQkIi9Hi9K+FfgXh9HGg+RLgXJCKqj3\nU4GFGW06lQqZNJGLfb4pDW3FpNeze/BNIpcuJ7z/as52Bl9yvNyWu47vcTw5TTa7xjDeYSuGD16Y\nculyslDaNjzPkBjPiL9C7TL3mthcdviVw4ZvYnZD9bge+i6WHVe+dx8ilaSr2AE2hmASy4VIxe2H\nfY0N+3rfda5hSJORg12uTSq202Zoh9Pm2fkMKgzq9Efg1w0dGkQgDgej/ULC9dyxfAXwLcAfich9\nxbF/TMD7s/As/SV0aOgp8PcKizCA72Jhbvwe9mER1hah1WRIDux6FrsRkO2Pquy0Bna+dFNW087F\nBP5zY0K5sbZ8K8pFO8PGC1kace+jEeM85e4TevJ+8Y1TTvTvgEtnSJINvnjrFFvxY2zGAz4cpzzw\n6CC4U4JqdFwju2+7SzEwKWxVUs57ExJNGgdJ7STZg+m1oiD/xx+amG1yMUEmmzz0D0Iu7oKjMn6O\nTUkTbUxhvOnt9vrgWqmFrnOTv7mOp24+FoOQ46i7U9F9UGQW4fl0H6E+1AXL9F3vtsWHp4RkvsBx\nPa3CPkAptVIJXxu458fQOQTc4/cCdy3bhlpnxCVzMTxVJopPBVxS8ekh/KSy+Gg/flYrtl92Mi+C\nVgLdIp+JmrA37XBiMOWrblH0u3t88uJk7u9jh885qENeSXFuHbfD3C+LSHRJWv9StRR0EYqSUOfB\n7QshZODTsbik0tY7fJmx2EYE11RvyJnTLb9Jr9gWvlA37nMNjYP96LJWaIejoUlqQJuAe65fyjLO\njL7JM02jyrV2UqlF1snqas1NzLSouywnr7YjnAyqTah79/jD5xLGeUqar/NlJx7m5PpJstkeZ57c\nmetehnHO/3KzYitW3FesoivEZvQTznC0w+jP+xDQAdgRdrvU62TaTCZJVOyaurrfbSYhr9jLSocQ\neuY+pCUCWfx2y14gx3Z6tLOA7sdpsC6C8n6SirU1od7LyxkrkyT36qZa6zlrjGZsuEr9pwQrUdgX\nPqRTNZWs8yGA6ta+TfgO16TRLsedGMppjKsrVF876tAUj8yFj1RCoUsMzl5M+J08ZZwf44XHLxdm\nuouJ4TkbikiEYZyyFSc8tJby8LnEO9nZCnAbPisqH3mGTHzbIJIuKje6nDVgQS7QjoxCQSWXtSo0\naHKydRXYOrSQX1zahlya4oQtm0OlztnTZ7BiUnlX7vEYS4T8k9r4jYXa5yOXlRhsfziyxALViaBN\ndN7Qx9RW5FBvqVKexOvChTTJ6G1Fqis/d1f9Ib2QjbpYSpcuJ7xvmjHOE+46vnCmfP5Wn63uScgz\nBpspW/EFNuMBW8mY+8/15mWFCAbKIq2KiWvgXdSJwCpiK6NfsRCJle8mUkV73Da2n4R9Sus6NL1r\nnw7DNfFdtCWs43PbXD0WttIyu+VlogDXkcq83KlfOt4U8NT3XS6TAMzARy4+stsXOqsdyxc8Otb4\nbfqofLDt9u17mnxO7Hur1/gV3AeNctvG7PKg1jC7o5j3p8ZiLOeOzTFx5wZId2GaER8bstHrc2Iw\nJYmikre+qdu1sMrSaG5C7eY8r5ucDmOV6ZJNG7iTuP5dTmS1DFw9lCvqtAnG3b1UREBJ2ZmyTqTb\nxp/EF6miDodhbeV3kPST5TI60vBicbVb2S+OLLGIqMrAqYs55Toj2mgb+sEXHyp1VpdVM1L/ytiO\nGtAWrq+CKWc/8MeP6pOl40LvMuDLTpwnSk4TJX2ezM7z8EjXNYxzXnRcAV3uIyvpA1r1I2mXkM0H\nV4RZCulSHDMhXcznocdJmWh8O5iQCKpOX+FrX9UrPaAXcHYM+5m8K3ofqx9td+zu7tjb1hbGBq65\nvVuvL1yQK2ZcdlwEQ9dU9FdPL4jIK4GfRluX/IxS6h7n/J3A24A/A/yAUuoni+N94P1Agh7g/1kp\n9UPFuR9Bh86aof0Hv10p9dni3JcA/4Yivwvw5UqpYEa3I0ws1a1+2aSzLMrwEUpoImmCHRK+ya6+\nqcw2xOIS2jIigpDYKbQL2hn1CouxFFjjruOPkURq7qFvcKI/4UXHoR91+Vg35dLlpFRuXXtc/xxX\n3h4KwGmv8ONU596wIVE1YkAoZqBvgRDSUS2c9sqixDY6C9PXtouIxp12gNT8k3b7RUvTWE6sceR1\nxLXETUbX6CMX8/9Bd/F1CDl5HhiHpLwXkQidfOvr0CGsPioi71JKPWBddhl4Azpuoo0U+Bql1G7h\noP4BEXlPEWvxJ5RS/6So4w3ADwKvE5Eu8PPAtyil/lBEbsT9eBwcWWLpiCs7tUmmmVQW1+6PXFyk\nzqSzKKt+otggY2fHBBSsfrR1TppNCK6UGxwes7RT5GpJSfNjlSCWzzrWJY7WubG/U5j0xjwUpZy9\nmHjb5+aaD1mu2TlRfBOxu8I30Y3NrsU2lw6VDeUx4RoUbJCVdg4bx6YMItjrat8Sl2Dq0hzEcV71\nG/HERXN9lg6C0DjcL0IxwWzY3+Eg0pZhbo4dt30h+MZ5kyVnHZ6mQSjvBh5WSj0CICLvRO805sSi\nlLqAzk//KvvGIp3IbvFnr/ininN2dsljLBzqvh64Xyn1h8V1l5oaeGSJBZg7lFUH8kIOvbvTLKYJ\nBfjbz8fphhNvM1nEae6dcHzwieOWaWedSNCFMUe+M4u5Y9MKYtm7kbgzIJIet66fZ5RF6B19yoOB\nNAQuqfj6aOsQ5ivkwO6lYcEVhBubzdX/6PS2szmpmGyj/QjGkfISTLVtWH319NN+14H0wG13G027\noHojBUeUvI9IFS6pmP+N6X1Ib+kLBFu3i7V/tyGYp4GPy00icq/191uLkFSgg+x+xjp3FnhZ24KL\nHc/vA88F3qyU+rB17sfQ0UueBL66OPw8QInIe4ET6CjzP15Xx5EmFjN4fZYoxnehbZyuwyCXJnGE\nfzINWPnsI66TL6hfWVy4nNlslnY4ezFhO83Yzro8f3PGsJcSR3phlM32OL/XY5RFbMVw55aC23d5\n5OygsZ46IwnTt0o4D+f5mejG21mXrWSPteQkAHl+me00Is2FcV7uu2/y9Hl2bwx1QrJxpDSp5Asf\nDUMqIX8kt59ePx5nFd8kvvLpBVOLmEJRj3Vd4ejJzaK3OoOR3GtibPtzNZGK+bvOMdN3fBlyObRd\niwgSiOrgwRNKqZceTsVlFBFLXiIiW8CviMhdSqmPF+d+APiBIqni64EfQvPEVwJfDlwDfltEfl8p\n9duhOo4sseSzsGmjQTnZ0XLk4sqb6+T/7kfhKvRDbcgKWfMyK8U644F65WuzXNudYE1Zu6OY+9Oc\n7XTKk9mA507GnBrscH6vx9ndhV7DkEs/2uPTV7pcutivhHPPsog4zYOivWU9+nW2TCHL95h29c5j\nb7rDaBLxZNZhO5V5nhnXGdXnd2P/ztIO2XBSImqfCbnv/ZVD4Ojrd5zdsz1uyhkiq2j0YQksRNzx\n4T6DEHG3IQRzjyEXn4MwMI/YUBtMcolvoDYHjEcf9zREKCDvUlBKbYvI76ATI37cOf0L6KSJP4Te\nEb1fKfUEgIi8G20UsCIWF/lMgtYvtmmmi2VEDC65hMxHfWgzoH0JqJaRsy8XUsQfBqYpMrGNh89F\nRYTkmJsHVRHjicGUEwOt0O93p5xJrvL42WP+HCjusaIdbVIHmLaPc/1vlEVcm45Z7+0BcG06ZZT1\n5+e9z9mZiH3kkmXGPNbvj9TGFyl0bShf0DLwRZbwoY25uq6/ZuK3djdmh1W+vhBnOU7CbUhlXodn\nkVYXrdl3vxuw8lAhAvGhTLkfBe4QkeegCeUbgW9q1wQ5AUwKUhmgDQD+aXHuDqXUp4pLXwM8VPx+\nL/B9IrIGZMCfB36qrp4jSyyzXNgd9VqJqvyhOppFF2ag1wVgtK9z0UQuy66m6iY1XxDKZepyowuH\ncOlywkeu5jzvxJTb1rWYKIlmnF6f8Iw1rThPoph+FOsgkd1dHn98UFmtu0Ri6va2rSbasdmxbGdd\nNnpaRLeddYtjsJ3KUhZ1pj1G/wJlHdiyCBFKnQ7Bh2XC0SzrjLsM5t+E43Njxp1LKjs7cXgB6Im3\ndpDnHApYeegEc0AopaYi8nr0hB8BP1sE6X1dcf4tInIzcC+FebCIfA/wAuAW4O2FnqUD/JJS6teK\nou8RkeejzYkfBUx5V4qo8h9FK/TfrZT69bo2HlliyfMOl54YsL6RofOA11vVuFFs6+CSizkWgm+y\nagrncRC0Xf21he9jdLNxlvvT4w9GOY/fssdzNhTP39TXudZYt63DzQPFmbU9Pn52Vkkda2dtXEvL\n725SxNcy//vijtlIOu3MxJfFaDtpHQyzabfpS4Ngo63pedtr2oy9tjrIpnA8NrmUdiqpnbGyW8kz\n1OZ7tGH6tl5Y2+ncNWG9x9ONVAyUUu9Gi6rsY2+xfp+jnKfK4H50tl5fmX+tpr6fR5sct8KRJRYD\nbfW1MIdtK04Im+JWxV1tScVWkrZVLh4W9iNCc1d4oVhdIR1CmkZw2y7QIc2TwjoMLlpl9iN48fGc\nrXjMfU9kXL7YLymdd1M9KUySiF6a08tyJnG5Pl8aXbv8YTxj0J0x6GolxVZ8gYtRV++muqoxVYLB\nsmmhXYR2i/sJTdKEkC+NjYo4dJ+7gbZjq+66g8SBc5/f+nDCxjFN9mlxbGfk3JPU59TZFzod6Fd9\npb4QceSJBarkYsP+ANvsWlwiCZGKO3AXJsbNH7wvDa0Py3wQtiOeXWZInNdmEvWKFZyV65kz66Sn\nrzLOFeO8W3JITKIZdx3fI4kUJwZaPPZQssfZiyZ5mH5nu9u9eS4Wg16az8nG7Fpc9CPmori1bpe4\nMwBgrdtlGOdsxRE3xHCpsBC0YT8ne1UNB5sEXTTtUnzm40uV3yI4ZdKw26gvP7AAC4h/7Xa17Vft\n9+jUYUjlhlhHrt5OFQz1OLLJ5SlLT3xEsCKWArs7MVnmz7poYz/k4p6D6k7FPueLNVUXHNOd9JfZ\nfbgOhz4nQx+puLsAn7jHRyyuFVGWRVpBf2LMeDrlJTfqModxPs9KGUmXQfcySbSnIyQnKZ+82IWR\nVpB3k672Jy7g27VU69eikH4Ew15OHB2jW3wOg+4Gw96TbMYz+l39PJPEHwzURS/NmRCVkpXtB77x\ncRCz17qJvE1wSts3yJRXB3ect71Pmx7npR2/nW57Gdh1bwwnrA8zkq7ihhi2ElUsYgSokovvuzww\nVmHzjybsSa8tuXjLycq+IOAfnG4AS/t3EzGVjlkkV7Vw8++47DbUfUAlgrFIxZ5AfblPTABJqBKM\nO0FkWaRNi9MJ/W7KnZuKE4MpcWdA3BkgShF3BpwajEhzYRhH9CPFQ1adIxIm1orT1rHYbbT73u/q\n3cqgO9O7lVQ7JEe9HoPujCRS9KPy7sPd1dWJOe2IAcuER7HrMro/32LDhc8nZdmFxrysSgSIWYVc\nTF0hs2Nv5s6KQ2c1i2R9u8qLv3mkAGehVx3j+u9BpN+72a32I0U/0ubOmbWAcPuywnJYEUsB92No\nco6qk7vbH/hhDcx5GBVPuBmDOgWpb6Xty3RYniD8IoAx3VpSMW0xZVXMfX1WdlnEzggrzlhC0tkj\nji4RSY/dyeV5vLFhnPPlJxT9qMuD3b15GSMSrhV1mrZtJIWSto0SdprNw7r44FrV2c+qP5jCQJPo\n+mDinVzbkosbYaDOmz4UX2y/5OJzmtVllL8Dd/eyH/IMRRY4bNhje3ueEE3oR4rtVLiSwc7V7vxa\n37e2wnJYEQtlfYeNkMPgvkK1HJLJZp1PwcZGViIbO9CliyY/FQMzscXpjCzNi5AleWWyCnlwe8sL\nBFY05PKw7injfEA622ErnnJ+ryxCuHU9JYlm9KMYWJCLvUP0rWx9WORkmcA0I4rXSkm+7PubrPyG\nW2ltjpJlJ984yefiIfd+t0++vraZ8EMRAEILq5IFZbFLdBdRdUTeJv9PE+xvcBkza5dctlOp7LZC\n2TIPDJHahcsXEo40sYQsP+q80evMkl1xhf2ht5l4Q5OA++GY+GV2OzY2MkyI9p1R1blumYRMdnva\nmMC6f9tiudBEb08MIXIZ53rn8txNK1VtEcRy0L2BrWSPJNqjHyXcF+3xyFkdq8uuw/aQN17v9vM0\nBOLLIAk6UGXmEqBvl5BU9XPuAiRJNDG3ibMWJzPWh9lcFzCOFNuEScIXmHPZiAy7O/E89pn93n3j\n35xfH7JYdDQ4MrYhFBPyJoRQDLU58VsLnlBcuSyNuJASxH5SOa9QxpElFhFVm+fdRy4hebCrR2lD\nMG1QSXGbRYy2k7mOYzzszlfI9ge0MWROLiFPYp+Iw4jE5mKc+WoZlslJ4dP5uKTiM0Cw27oz0nEk\n9vKUcV4OYrkZn6Kbz4i7A56x9hhpnhUOlToUTLndBuH2z5N6TbPib/1Z6DTLthiy7BPTFHW5Ok46\n82dhl+fCTJx2H4zpc5YY89iec305+dW8To9ItByqaBFs1VjX7aY91reYt9U3/kPjoslC0X33y8Qa\ni5PqomQ/WLgENPuvHa4fmUC02rF8waPJ5PGg4qtQelo73IsvHlmduKM/mLKb9pgkEeuDScXKyY5F\nBeVdg91fXy6Qsmy9mUh8ylLfyr5VWR4T5p1RMfFNx2xnXb7keM616ZhBd8QgGpLN9ubhV4ZxzstO\nCv0uPH6tsboS5om+5mHzXZ3QjOyJMqlMU6n16Dd9CumT7Hfs9juNdb6YNMkZFDuqcV5ezftEmU3K\n/VBcOvPOuomCtGwu3fiNBHaCdaFU3ECnBrFDeL7oEMZrv25MhZ/Rop3z9qULhb1vcXmYUQeOEo40\nsYCfPEp6Cmuyz7K8NBDBv3qqy3du6z+Cbfr/2Xv7cEmuu77zc7qqq27fubdva0Z3RrJkWbZeLGz5\nBcuWbZ4QQhJ4vEuyZhNYA1nyAg9eAqxhHwgJeEn4IzxrWC/ECSxexRgeZxOcPISAd2PjYEhwAMu2\nsGRblrSyZEv2iJE0mlFP3zu3u6q7+uwfp07VqVPnVFXfe0ca+c73eeaZvt1V55yqOnV+5/f2/Xnq\n3EeR2xeUJkFBQuhi4W3LejbH2jUx026nqbxAW7Sd2dYiEewm/SLLOk2VAN6dzJllCZP0GDdt7XBq\noBiIT19cK84dRkvu3JZ87nzAl3dK81myUESS5uJXlEM26rGIeFONZ7nH2L73DjOla6xRUq2h0mTW\naWMsMEks9QJejqdurvHVEXKxDriEj960bAzK8ZvBLGp+9IjioNCcXIt1ZUzOLHt3tU1Tk9BULvY9\nKgVCtYKkLazTJGCHqPK+usbYxJd3RajsH0desEB9cvkctMXuTJMLesqx+tTnLvQuTedrbGymtYVc\n+ybMfnxY7YUxF5CqNtSVgLJpV29eqzbxqR90Vn2fjdGcNA34TNJjfP2UcRpzw0a1r2GUcfMwIJOL\nPEw45MFxyTvlou3w0uYvniZZ9kiyUntTO2UVQq2vU491TlAImOEoYWdCrUCXvlY7bNuVTKl5xoaj\nJO/f/bx8vgBXPzZ/mz1ntfDS4/FpBLWNUoNQKY8ptZcupiWTygWqzAm6rZ1JPRTe1y+0bOQ6CsQD\n44rz/uihyTlrL5imjX0Vk5HLRr+f/AZQwsXVtg2ficouUGWiTWsxX2QfCWRb9rnrHveTrJJBrz/v\nEqkkSODBRwPG119klsGtW+r364+lXHvsGFv9UwAEV50mDpTf5d5zimy03r9akF20+dmyLhTiOCNN\nS63FNU4SFfKs76svudHOBfLdr8lY0X/oMgE+/02TplLpZ1DrooYuSYhNVPom7Dliwhcs00QGqees\nLTCa3iFb0/NBJ+teweHgimAx4JuA5i7VeV5TpFfFYV43pxw0jl87yl0hwE3oqkXYC1jTjrPYwXt2\n2DZsp3ilrbTsd32SMo8DJsQMRwlnTh8DLjJOBa85ro4LRIiQEilKAXdqsOTNJ3vcF0x58NGNWh+a\nFl9pJlnhW8nkolLky4S+HzNCxGRZo5KZT0r+sjTNKqWKfYugnaVvzjVNYlmaYd1lmaFZ020S9KsS\nOdp9+SIenfO9oc6Jbww+FoO2Ma+iQet3p5J3dEXQ7Bve1VIIMQR+CsWQ+REp5b8xfvs/pZQ/9ByM\n7zmDb5ekJ2GXJD8fXOVjXRN5vzCFS6fjHQEDPtgBBXawQbEYEiJzW3ZIdSEoHLWOCCXzO83tBdQo\nWXSwgo6+ikPJmT0YJwEX0gGT+S4v3dwB4KFxwCRVz3IrWvKmkz1gtyJcXAubjgZT//vNm0UI8yBg\ndxyxPqnzzOm5lERBzVyzNlgU9ytE1u6Teb75uS3Z0mZW0PPMDCF2Ra+VfqfVNic2XIuyGUXZNtdd\nv/v45uwk5K5mWW/fjnDxQ4foXTGFAb8OfBH498D3CSH+JvA9UsoEeNNzMbjnCk02bx+FCrTvaJoo\nLezfuhZdMo+1d42dnadN5H8rCLouC5ArrNj8bAt0U9sxNaAwlirMNc4KynNQZWw/8bRgnEZM0qwI\nEdbYHiwY9jPiIGYt2OWBx8uyx7piYRwsCURYhh1T5rfMFjpwo75DLxiWiSpmPG160n4N18LnEiZN\nxcPse+fTWmwuOzN03M7oh2oItG/+dEmwdQWa7AdtC7tLALRl/tvkoLYZWLe5aQRKXO4QQrwFeA+q\nHsv7pJTvsn6/DbWGvw54p5Ty3fn3LwY+AJxCZYneJaV8j3He/wz8MGpn9R+llD9p/HYD8ADws7o9\nH5oEy00GP//vCCHeCfyhEOK/a7/sFw5ctmiX6u3a6cHc67w8COW2L1vcbsvFlwR+gee6Bp3Y5jqv\nkWE5qr/YXdHkF6poLQbfl9ZWfHkHD45VsS5tGgO4fmPOjZuKb2wUPwWssxZO+cyjSrgkC8EsKzcS\nQubJkr0+sCiYls3F1+bv0phNQ+YTi1XZEC42fLt4+xm37bxdz8jFCecSKmoceXRcx8XUN5+7zvMm\naiFzPCZWTbI175np+zM3jrYWp4WKmVBb9n+INe+Dg9Pm50W6fgVV/fE08GkhxIeklA8Yh50H3gF8\nu3X6AvhxKeVnhBCbwJ8JIX5fSvmAEOKbUZUjXyOlTIQQJ61zfxH4SJcxNs3aWAjRk1IuAaSUPyeE\neAL4OFA3WL/A0OuVE0wLFTPKZ2M0905kZwy+Y8d3ULV6v+e7xlJnMa4SG66avGm33QU+gad9WPql\n1w5tDa2t+KDzO86c6TNOprz2hOTkIOPUYM4gOEXUG5CGU7YHM64Z9HjdTVPuPx1zzbrkJRtLbthI\nafNsuxZmpUH1lP8jzgoiTFPrMiOyzGCPNoGi2zc/79dU49ScW8K+D4r9JDHapSNMEx24E3yLv42k\nU9MnGsbSWc7ANg3qfnRpZFey82WEO4FHpJRfAhBCfBAlEArBIqV8GnhaCPFt5olSyjPAmfzzjhDi\nQeC6/Ny/D7wrt0rpNsj7+Hbgy8DFLgNsEiz/D/CXgY8Zg/oNIcSTwL/o0vjlDCHUZByOkkJrmU9A\nDnsFiWBN5c6T0Lqqyl3zQnxom9CunZQrqazt/ErCWAsJ54Fqf9gMtMbO0NQO7V3+2mBRSexU5+Rm\nKCs/5cFHNxgnF3nt1RAHa9w2eoooGHDm4kUeuTBglsEokrz+JTNevrXkju09AtEnk4vC8Z8t50Vp\n4lnmjnzSYzfvx3CUMCEufEy1a2jwNfjuq4u5QN8HH5oSFeu5L47kRsvP0pZNXx1v85xtSuIs3y93\nkIiZWOxs2xIuGqZgL8dR9zeZ8+oyMIddLYS4x/j7LinlXfnn64CvGr+dBt64agdCiBtR1SQ/mX91\nK/CNQoifA2bAT0gpPy2E2AD+IUpD+okubXsFi2lbs77/PeCWroO/XCF6ZWVAPSFnhBUSQWcyX0Py\nY+U46yXoImAOTFXREHpp5uCY43L5DjRMwbhfgdJKb+7ZqfsyspMkMJLj6osiwJnTx9idzBmnCZO0\nxzBK+WIuVDRMoaKRLqfF/0m2xixTNe/9eRL17HC9UfHBnltt0VGrailes2ZazkObxscOUTZDept8\nZOZ1qGO7z1+fgKmMrcHno+fmKr4d+1paw+qLwJXD4g1bKY/lGSnl6w+p4/pIlLD498CPSSl15rHW\nNAAAIABJREFUwYkQOI7yob8B+HdCiJcBPwv8kpRyVwjhaq6GIxtu3BOgSRt1NcJGG26HnXuNrtxw\nfLZpL/X6Fx3NS1bCYpdomFUif3zMAdD8Erv8QT7h0taW/ZtJa+4TeDuTPp94oM/4pl1u3Kw+u1u3\nVBExU6gApEvFBTNOAiZpj1lWCuQa7UrDgmZen+0fgOYFzSVUupAiurSUprbN83zJlF3yrFyJlkV/\nLVpYedxqWnFXzaXr99Wx+P1/lxGeAF5s/H19/l0nCCH6KKHyr6WUv238dBr4bSmlBD4lhFgCV6O0\noe8QQvwCMAKWQoiZlPKXfX0cWcESBpITx5PCPq92wXntDsPmqmFzIplCw3y52qNa3EluFTbZGoGi\nG0mcsTtROyD9knWtsmcKl1V2xfWFpLtA1JqG6r8uvKuoJynW2uuQz/Hgoxs8vT3j1dfMGUVw+/GU\nl25KomBYO0/nseis+1nm353p+6Az7H3EpFXetnrggWIGtvirDIGyMayHMtvUJb6xudCkVZh+LlfU\nmtmfGU5tOr7NuZs4xmHPbX2MmcjoKypWOS+ps477UZ9Ltefg+Nunte0bh5d5/2ngFiHES1EC5buA\n7+k2BCGAXwMelFL+ovXz7wDfDPxnIcStQITSnL7ROP9ngd0moQJHWLCsh/D1J2Rea33JLCsXZFVV\nTn9W/6tj5swywWxBYVZZc2xs1lruqlmV0O6nfqzuv/7bLJPMrppVxqRDaAcdNlxmn+aY9fhcY9Lj\nmGXCeR2+9tV588p16IV75pCFejx2BUezXXMsRZuL6m/TDK5dV6avm4YJJ9bcO/9BMCQ6q8zWt159\nDXHvmTxEWRLFzwJqURwEeeVB6xnXx1lfzFz3aJwunM9uLSjL59bPWxrXOPfeC9fY7Pmm/Ej++WP3\nbc/DUVydL9Xju2yQNMmm2ti55sdhoW2+mn2r30th9YFDHcnBIKVcCCF+BPgoKtz4/VLKLwghfjD/\n/b1CiGuAe4AhSsP4MeAVwKuB7wU+L4S4L2/yp6WUHwbeD7xfCHE/kAJ/J9deVkarYBFC/I2Wi/zt\npt+fK7TFddtYD5fcsZ3kJIS9gowQVA6D+rcs8hns4zSPlI04WBZttEH30fV4DTNXo2lMuu22Mbj+\n1tce91Tp3umil+/kRdGvrx/ftTSN236pdZvDSN+fsg/XMzH/trE9WHDbKAPcz2yrfwq+8hmWd38e\ngMGbXsVtN7yOUfxF4mBQLEKjqBxb2/My76MPeuyTNChYAPT1rwWK/2wYZa192ffVPZ5ynulnCjBO\nw2IM5v3zzUs7T6i8Tnse+a+7rU3zOly/udB2nD1OPT5fP/Z7cLkhFwQftr57r/H5SZSJzMYfA86b\nJaVMgf+xpd+f7TK+LhrL9wPfAPxh/vc3A38KnEVtN553wdIxrruCqBdy03CTNJuSyQWZnFcESyD6\nKmmup+zwmj/KPtaFsnhUv8jm1ueaUL8FBL3qcb7ja78v5wYNSXX8ZR91nqwm6GsOREjUWy8SBzM5\nJ11OC4p537nVv8u+M1neP3Pse4tFTWjpxW8UZ0S9QfEMysz4ftFmJhdky3nucHcvDk33YCRGyPs/\nzuJPH+L8f70AwPHxPYTfsMu1t72R4MQZhtrkGUhG0cKoOFm9tiQTtblj3r/y+PIe6HHrBT7JekqY\nWNfvu7eudl3Q4yjGlp9/7XJKutwjk4v8XZhX2rf7Nftrgnmefn5dz9HPtOmaKsca998F1/sY9BQr\ntp6H/me45nw39wXRu1KPxUAfeEUe/4wQ4lrgN6SUf++Sjmw1tMZ12+hJySYbEB1nwUK9WMu9ymIq\npIQst3FHURmOKqsLugn7xRWGJmmer48t+lhYtvQwUvuKloloj8lefIVLk9XXlLdt8msJKSHZRSY7\nMDsHya46NIwYxBsQRope3rQV22Mv/rYWoTACIvV/ADKMC4GVLqek2bRYkKOeSmwMCav3Z5EiMzUm\nEcQQrkO8UTzDTM6rC4glhPQiCjBKQpZf+C/MP/4wT/zRgk/9kfr+Gy7ucurCZ+lfnHLyla8nGi3y\ntkphGxLW7r3Zd0io7l1tvMY9iCIWLEiXU0bxtFjkomBQv37zvi7S+r0FdS9q9zvHbFeNY5EW4wKI\n4g2itQ31TOOT9bkAtfliwp7Teg42zj8T9rWpUeVzRL1ztrDzvVOmgNAwBWTlfOu9NueH+YzJUpjt\nNl/DFdTQRbC8WAuVHE8BN1yi8ewXneK6hRBvB94OcMP1J8qKgWGcvxDlzsq14IugFC6BCCvnuHZy\nlQkcRAVJYm2CL6yXK4zU5zAqz3fB0aYam/UC+trIvxemgNHjWaTleem8HBNA4GnPuFdlmd8Slf1k\nGFUWCPXih8ZntbtmkVhCJSk/AyK/R0EYV9rS96HIpi8WmH6x+MksgXSOnC2YJz2SmTp2uhMgZwv1\nW5YQiLg4t1igpKyQXtpjZ5GU9yF/ljJL1D0w7mUQxgRiQSDmZMwr96F2b/NznPc2iKvzR5/jaYN0\nDlG/fN5BCmEKYeyfN/bf1vxTgtUhVJrmsDlOe/6j5mbtvTTaNN/JytAq70N5P33vtXle5Rmac+4K\nOqOLYPkDIcRHgd/M/34bRtLkCwl5gtFdAK+742a5E6Zkco8sqe44wTAJhVrl3oNF3fzkQlXl1mVv\n3XTsZh9BX78MMm+7+YXMFn6ad+e4HCaJbDmHrDQ5BCIkWhsQrZ8iENepXRtUdnXqf8fYQvOF7tdM\nUOX9kmRyl2yhzC/aHDaZB7kZ7AKj+DyB6BMFA4Iwf9H7/Uq7ehxNz7DsW/02TgKSpbKrv/hYyImv\nfzNR1OfGtYcZbCrzyKk39+j/xdvoveYbGAd7kJuJfHDtkotx9zdqmw997zK5RzqbVsyBAHHvAoNQ\n2faj3oAoGKh729fXZWkmtTHI+pj6fYL1U1VtHCraeibHZIl1njVnKnMtK++tOQbbjNxmSirmvTX/\nzXfON6YsrZqovX1Y5kk9VzO5S5pWzeHrYVhqzv0BQXRV4/hXgUsIfi2iVbBIKX9ECPHfA38x/+ou\nKeV/uLTDWhkrx3WnywWPTnYMx28ABpVIHGTEQWnfrTqtg/xv/+0rnX8z4zzXcbPK8ZXfelap1KW7\nDdu2bPZl/hY7NI3yuvrFOIbRLnGwU9j5zeNsf0j1WsprsMfuwmQekGQBk7SfF9wqHddxsGQYLRlG\n1QXdbLceTBCQZKExDiP0NQtJsrIf9V1KtrnDyTu/lejYgGu3HgIg/IbbEK/8RsaLgtGihj/fg9O7\npRA174H6Nyt8RSb0M9TjnqRhce/tgIiyrd1yPrXcV3uO2H4roBBa+nfzmdbnaVppx40w/72cQ+Y9\nKK6pw5ywr8M3prrzPTTGUYfvuZTXHeRt6GPV+x/3LhaBDlfQHV29Up8BdqSUHxNCrAshNqWUO5dy\nYCti5bju3XmPPztbmk/sMMqmMEtX6O9+UQn59Xxugz2eMvS0DCWFekixHe47y3QobchaIIsoKFe7\nbWgLoy7HB+O0HsK9FgasBT1GkXuKto2hfk/qIbWzTDEi3378EbZf+WbCofIhZde+nF2PUMnknPvP\nD/jc+YAn90R5nVZ4tO/6/c/KXhCDxrZcz6WpH/u8esh2/bymcHAXyvlThuy7w6W7j993v9z9u4XK\nbOEfU/VdqY6vafz7gXRokl+r6BJu/AMov8Rx4CaUP+O9wF+5tEPrDl9cd9M5F+dw91O56cGRkJgs\n6pN0lWzcVY51JUrqnAkbU8eLZR43zUpSxt1J38kDZtOJmFniPnr1Va5tlcTPnYthjZrF7NufeBh4\n+7GPU/9XqUuiOCN52SQv9LXOTcOv8pLrblbHLs47r+vP9+AL5zd4bFdw/+m4KHfsYmo4rKQ6O0mv\nU8XSlgRKXxsuRt/91H7f3EyL57d5bNEppwqqc9t8/1wlwrvAvAZ7TlUSORdlCWsNfczgEAXLUUIX\njeWHUVFXnwSQUn7RQaf8vMMV192ExaJXZK3v4qaiMCemDV+dChe61m1RC5RarGwmZXNclXPjDFN1\nNOvS2wWm9P+7lq5ZrS0eWhULq/eg27X0jazoul/H5InyLVyqv34lu9ocQ23BzYWhPU6b3t+kZ0mT\noEKbr3eTLn/KQ+OAz59X540iyV942Yz7nkk5c/pY0Wd1npRCJ4qXhRAy4Rqj63f7GF9Guo/iZBX6\nHNfxdnmAJqwNFuwQFXOnK31QXXi0k2yuWmtIEZj2gL6Trslk1GjaWF1BO7oIlkRKmWryMSFESLeU\n2hcMzN2gl8SxA2twG0dR06JsLxZdie98ZI2uNn3nmlUg2yoN+gpCrVJ/pmk37LuH/poxpdBM0/q5\nvvHonesoUrZ3lTOinOJTqpL3s+dCHr5Q7fclG0tGEdwX7/Kl0wPnom4uTptDKsKlrVa7DR/vXBdy\n0KZCXV3O39hMO2sttfK+TTV9PO9b29y3i5lVznVs+LqSybqeiWZcPhzI1ty0rxV0ESx/JIT4aWAg\nhPgW4IdQlPovaIi8HkubicHe9WvYO7cozhonte9FsGtMuNheu05sU1ux+wfHztXgaYJ6jQrXjs2+\nji47aRs+LaWNTt402bl2zrOpYqc223MV5dK/xaEsMtx13ogNW6isBXDHdsKL1mFvseDkYI3Pre/x\nuSf7nDu7Vhzn4vqK49LcZ16DXdGwGKODWbipZnwXNJGD6j6gvlGwF3PfhmaVmj4HKabVNK/t45qo\n+k2hMhnHda19nzWKjjq6CJZ/hMq+/zzwP6HMTe+7lIN6rmH6NSCrkU3axHu6cJCPBdZ8KV21xW1U\nC3C5hUs5Vr+Q8b2c9uJQHG/UJVfnt/s49HV02RWa43WZ5+wFqak8s0uomNUBNSbjuBAusTF+lzZ3\nVaRoWuJAEvTMnBeVo/TZcyGfOhvy8NmQO6+bsxYoEssbNwds9U+RLqfEwWlgwCiCe48teOyxjYKU\ncfOYKSwyojgorl8zCWuYNWi0kHEt3quYYG34WLtt5uny3tWLwvnmWJsJ6lIhNu6L6zfX5sg1F2fT\nEDFZsp5XAN1N+myMDnesUl5x3gMFVcoHpJR/C/iXz82QnhvIZdU5GMVZ4fQuvnfUZHeVOtW/V+pY\ntNmxrYXVpZkcpKjWQVCjhHeZEvaxwNkvslke1td/pQyBw3Snq39CWRZ4Qilc9H321W7x4cs7gocv\nBDw2EZw7u8YfJwGvf8mMJOuRZlPSQFGhjBMVen5qsOTNJ3sMgl1ngIWJNAkq44Zq1Uy7MFVbTRQX\n9it8zOdqF7Zrun+rzIe2kturYFX/p3kN9vttlsU2q00eZmXNo4JGwSKlzIQQLxFCRDlB2dcUtDNP\nvzzmArSzE1UWsi6lTittW5PRNP/UIpasF6Fp8euyMK7q3G2Dq2SAraG56s10MeG5TFouYWJDL7Yz\nQuYE1VrzE5gQkyYBG5tpYYIy29V09xrZcl5JXkuynsqnyaOHdiZ97nkcZpkiLr1l6wnGacjp3TJk\nfSta8k3XwmfPB5zZs64pv39aW9GlsHUZ46IsdlwX6m0+utYovZbSxDUNOS2d2HZBraZF1jWPm7RQ\n+3t7/nSdr76CYGka1AJQ7GPN+RfGkr1hRBhL54bnCrqjiynsS8CfCCE+hFHv2MHl/4KClA5zS/6C\nmULFBVOguFAIKavol/4N2qNr2tBW+VGjyUnrc8Q7v3NUGoSqb6mpmFkUL70LhX0vXFFIrrKyGrtJ\nNeKqn2RwNmN3GOXXYwm8SJnIbOr7KlFmfaw7kz6febQHTEmyqj8mDiS3H1fRZMNojc+fD3lwXNWK\nk1xALxJRxMpVtBaPUPH5E1aJ1uocwejRAHzt+SpV7scX1FZN02y3aWz27/a714RLK1SumMJMPJr/\n6wGbl3Y4zx2WS+GsROeL1jG1FtdvNpzCxSFU7FKw0GKvdjhOuwqZJrjyQ8xzmyoNNgkX039jCx37\nPtifKz6UQdmeXmzjOGOHiI0R7I77lUUaYH2SsktEGFed+rWdcSZySo/6cxwEVd9UkgR84oENZrfu\n8toTsmAIuG2UcTy+UdG59E4zjBJGUcxDY8GTe4KdSb+mrfQNgTePSjOMjHtqcXNE5vkCGGx/k+3/\nM5+N6TuzTb8mmiIOfTDn/UEd33a5ZBOrCEr7vbXbqrX9AtBU2sqECCFuA34deB3wTinlu43f3g/8\nNeBpKeXtxvevQeUobgCPAX9LSjnJg7behSr8lQL/QEqp2e6d8AoWIcS/klJ+LzCWUr6n+yW/sODc\njXnCILtWZ3T24wgA0JqPLyoIqhqHHUhQLBqeHa25213VDOZbGLRQ6ScZc4KKcGlDWQo6I4ncQlZD\nL5R6sS38MdZiu0laCJfZNGQ+oYJ+kkGiTGO+nWhJqx4a3y0bs64feHzALJvy2hM9tgeLCgdX0OsT\n91JODjK2IsFnzwek2zPOnV1TGxTq46zfq7qjHdxapn2vbM0H1PPUiYuufvQxNsxn0u0ZZ4ciXGzN\n2J7vq+QA2TC1YFsTfiGgY5mQ88A7gG93NPEbwC9Tr1/2PuAnpJR/JIT4PuAfAD8DPAP8dSnlnwsh\nbkclol/XNMYmjeUOIcSLgO8TQnwAi5xWSulOT36Bwk6ksxMTV81AN3fWZoipC3aYrwuu7xvLAHvy\nUA6KYmEkqJgNXGP3RhDlAkZfw2Qc147RQlc7tTcGc+diG8VLNklLQUXoXGhDkzcsCdiwaOejYFAQ\nbkbBgDjwk07qfqcZfOJpwSxTG7mbh6cJen0e25lydqrMcHEguXN7wSiSPHhswZkzA2VqHQTsjqOa\nljWPAzYG1tg8Gx37XsnclxAiG02H3mtq8cWY8C3cUaT9lFUNuEv/7WW9m8Oane9IbvbswhZhrwGH\nDXl4eSytZUKklE8DTwshvq02Dik/LoS40dHurcDH88+/jxIgPyOlvNc45guo1JNYSumlfW4SLO8F\n/gB4GfBnVAWLzL//moBzUUzdZoCKFhC5c1yK8GVrYdewa4tHcebcTVbG01ID3HU9vjyUetvNWpC+\nlso1OJIpfeN27ZL1v908adCXm6LvU1M/tqDSbc0tP4nZvrrmhSJ77C2VtlLUngmJe8tCWzH9Q678\nlHvPKeGSZAviYMYkLfvZHiwYRQuGUZ9RFHFfMOX02TIT3w47Nv13bc+7SYN2CQQ3pUm3iL8uC+3m\npr4nKbs7JRW9FjQbm+74H1cYdKVvYz62hbm7wvbjOCveVd1eeXzZbtMacJmhU5mQfeALKAH1O8B3\nUiX21fibwGeahAo0CBYp5T8H/rkQ4lellH//AIO9rOHa2ZswVe7G46wF2+RL8h1nC5WuqnhbBnyX\nPBTz2oCK36S6260nl5m5IXaCp32s/lv/tjFMCw6mabgozjMXWhtNyYPm/dwczqtmNkJnrouNQbgk\n6q0jE1XbPoquYhSfV+awsBoIsZHnqNi8Zw+OBbMs5NXHy/tx/bGU6ze2iHrrjOIJw/5F1oIBD8UJ\nD58ttVm9Odkdl0EIvh1+xZHf0QfSJPi7Hm+O1Xd8MYcnKmCioBAa9wuBaQsXU6i0zX9fMq6Po838\nvMG8jGyMAq/JWAukpvyY/UIiO5e4AK4WQtxj/H1XXvbjUuL7UGv+zwAfgmrdDiHEK4GfB761raEu\ntPlf80Kl+NtcMBO9SHaf+D6133SGR3FWtVtHzULA5MQyExjtJEX9AvjJ9uqaixZOtt9EO8p9pgX7\nZbMFrrlbLBLv8jHFoeQqsxDhsQU7qKx0FyWLvnYvXY7HzFHcy4E7sqzYzeZ06oEIy+Jbub+kQvne\nsKnQeOjZHrNM8JrjGduDBScHEYNgSJgtCcLjnFibcv1GyjBSzMUPxRm7k4id3N+iE/K6bjD2m/He\n1lb1++pmwc68jxyCIYqXRPl7MxnHhZ9L++O0cHEJFft5uuZgF6HSdE0+uLQd3wbuOcAzUsrXe35b\nuUxIF0gpHyIXGkKIW4HCjCaEuB74D8DfllI+2tbWIRVzfuEhCGTjLq6N6mVV6Im6n0gbfV4TKaZG\n/bdyZ2+2YQqn4SgpzEcbg3me+9G+kNp92uSSGpVchoVgltOX6791KG7TtYPlB/OEirvybFwOWue1\nGaV8VVho+Xp0ua9JErA7nDNbJLz2RI9hf0oUTIh660wXY87NlkDAMMp4w7ZkFIXcGyqLwo7lzPct\nZvb1dcnId7dV1fhS4xmaGqfTlOkwk5UbsKzI1wEYjhIjcGLu2HR1pCsyLAemWdIcXz3puB7lZs9/\njcS6/ib+sMsAK5cJ6QIhxEkp5dNCiB7wv6LcIQghRsB/BP6RlPJPurR1ZAWLDTVB6zueUSyZZore\nvXp8PZPbPL9LTL7dVxxKJ134KlnjOm5/06o+2cYjpp2cbQEELqoVO2Tb7ccp+56Giwq9fxfKj6aX\n20X/b8O20UdxVtQ7gbxWO6rEr3aw1gqo5QIwjntEceBcgMpnnDDLBiTLHU4NzvOV3QgzN2YYZdx+\nfAlEPBQkfElvPBy5T7rvVfIxuiSZdm7LMffsnfzOTslobB87HCWdOeXaxuMSMF3hmv/2vL2kAkUe\njvPeVyZECPGD+e/vFUJcA9wDDIGlEOLHgFfk4cO/CfwllLntNPBPpJS/Bny3EOKH825+GxWuDPAj\nwM3APxZC/OP8u2/NAwScOLKCRfSkY3dW7ng2jy24KlIFgkbAIFgwTqqUL91zRLpTiZhj0f+3ne8S\nWOaL7oLt3NRoc6TaY7RzWGzUI8UCdihNHqu8vIV2YJADdllsbaHiW9hEoKLTdIlaH/QCZIfEagJD\nNZ4es2zKLIu5/Xi1rRs2Ujb6x8nkgjiYshbEwJQvnR54Ew59C505Z92JrSV9jpnL04QmTjANV9Km\nmYxYtLWif6crmjSYw2j7MtRSKnCVCZFSvtf4/CTKROY697s9378HlRtjf/9PgX+6yviOrGDpCdMB\n3Cv+j+KsECqjWFVRVJXlBCAZGySVbThoeO+q/Fa+xMmmyJny3O5RZ0X7Rn8uU4w/UqwuNFexY1f6\nTeqEjjoMWo/TJVAq2mUmlOmrMIX5mRVcwkSHDK8bXGUAXzoN02zKLIt41XEVgXbDRspWdIr13iZS\nCF587DSQsBbErAVTHni8Tj1i5y9pmGSVriCRiu8sVuy91Vo7tm8sM9qr+8nMe1jmJNU1LfBHJpbP\n/hAEQMf3whdJqPFcmb2uVJA8InBpH1GyJIkzZnnpXrMQlHmejyhR/21TWqwyaW27fVMymG/HbmoT\n5njaalOsgtpi1pa0ZtnDD7K4uMKTzcx1PT4fd5W6X8tCM1GCZSP/vKvqwGe9oiyvvbjrBXtdE2Ca\nWfQ5V1nR72LGLAt5+daSU4M5mVS8ZJmck8kFk/y+3TaSzLIpp8/G7Ezcz9YXYlzRXIx7E8aylnNU\nXE/BpZVh8uWpNno1E6PNrFCP/qv6fVxj9MGXK1anXXL/bTNQaNgajQsurfoKDoYjK1iWsurwBfUC\nFU7UYYrauaqFZ5zAOBHsTqKq+WzFiBEfLYyazC1RZ1aI5Ko291Xs0k11YA4SKeMrsHRQ6AUUqCRD\n2jA3EONkwYW0x1PTPpv9KYtoCMA02WEyDyo10EvG3+pYC+LLKKgIl0VuNk2igPNn17hnsmR8TUKS\nHeOmrR1etL5DJufcf35QCJa1QAmXtSDhK3HGubNrRbKu7xn7mAvse2OzDhTRXZaAcQkUF1ybAnOc\nvnN9JSFMFmX9fRffWXm8J4nZIxRdMGmCrgiXg+HIChZNm+9yitrCRTvvdTLffphencckecivI3DA\nhGsh34/a7goTbh7fwarnNb3Iq5q/usBOOm2C8oGQ17zvkS6npEuVbb+3WJBkcfG7DybNugvlQq8C\nKR55MubZNGGcxpzdyEiyPklWLrTDKGN7IFkLQtbCBY/FFzlz+liNCcLfTx0ugWJ+bvKPdMGqvj/v\nsRVtdjWh0ql9i8uuSVve3EwviXCR1ANCvlZxdAWLrBMrmjCFS5oEKwmVNpg8YTZWMZftF7b20hyl\nc7hFmtruXxf6jSZUQos9XGm673EiGKeSSdpjnAQMQiVYlBlMNAoVs3yCqbVo2Fxq2q+RJj2SxYxx\nCjdulO1tDxbcsJHkeTURa0HEWiCJw10ee2wDF3ycYbaAXbWq46XizPIJIa9prUOUX3FsSyBIW56O\neUyaBAVNkMkgcAXdcWQFC7QLh52CbqQ9f8TXfjUzvUza03+7HKhmToHu1zZ9NRFXrjq2LgJGw5Wc\n2QWrCORVFrZVyw+4+k+yHsmyV2RFJ8ued2epx2YWh9L/V7jJYlkzyWmtIEkCdidzntxOuHFTcs1A\nkV6qRM1+LlyW3LjRYxRJrop2+cqzpcYM9Sqeejz9JCvYkZvgoi+xN1iHmYDp6hOqIb72eKAuVPwC\non1DYmstvnYLyiGdJH1ImvVSCqaLS1dN83LCkRYsPtK9aiJe+0RoIq+rRcsYE9ikcvFRUWjYwqWL\nUPHtPn2LhC+p0UabAHLltLiihrq+sK4cCB2RtLMTVUgsvT4shxlwFJc170fRgihQVSFG0bOcDUIv\ns7GGrXXqoAFNItlE4LgzgQcnfcbXX+TGoQTKnfHZaViYyEYRvPaEZBTPi0x9HzQ5qE1iaaMp+bVt\nvuwndLjNnNpUK6i60aqGjWsUfpQG4eL6vgux64ntg2nQRxVHWrBo2HbnVc+xv29bMLWJZmNYLkAm\n91SyEI0RMm00Jo0mASM6rGsGf1u4ZtO54A9FbeKfso81+9SC2LxOmyG5SZPRNDprgVq4h1HGehgy\nCIZ5bsl54pwdwCdcdH0eZ1a/I+zaFUIMKB/K9ozZYsEsi2r9bQ8WbK/N2R70GUUhD8UJT0/81zaz\nXunUoV366Ina5sSqKEOO6+HG5lig2Rrg0pxME+cqmxT3e7N0bsIulUnwKODIChYhqi9Sm0BpmvjO\nEF6fD6FBqAwCmGZlOVyfgGnSgsy/td3ZXPDsRdoXNt10P9p408zsa5dQscsC+45TbdVbZ4UiAAAg\nAElEQVS5zwb5oZrEsmjDMuWYVS7NdtX9TxnFkq1oybCfMQi3CAkJRcggHDKMppivh+t52j6MLsml\nLo323Nk10mTOLEt47YmS7ub6jZSbhwGD8GpODiZl8bB4wcNnq4tk0/NyhZt3WTTtOd8e7FEdj0na\n2XROF+Gi29TjsPNQXBpOl7G2XVMcSuLwUKjuWUplZj0KOLKCRaPrLs13nG9immR99uJj7rw19GKp\nhQtQULzsd+dUMSM4WIibXmhfmKZPqNjJdbpd04xRFWz+BaBNqOiFV/1fvvQ7hjnJLBBl9x/FS+JQ\nLeBxIBnFGYHoK9r8MCIQVdp82xyqx16/pvpzdcGM6NP5F+eeUXk9a8GU20aSk4OMGzZSBuEpBsGQ\nQPR50fpTJJkisRxFkgfHC86dj4t73QZXwqJ5LT60tW0Ky9k0LDcyDgHr3Ch5hIupifjysHx+yDbo\neaGZsM2xmhu9K9gfjqxgEb0qc23XFxPqPoQm4dK4kzRe6GlWn8gmb1gTmnw8redaL3+XMGkXvEIi\nruc22DkLleMdC0h5bIadFa/5xnTBLy1cbNu8TS2i7q0jMm+REvT7DMJlQZuv2XorGp0WpA52g1Vp\naiJjXj3yZAwkQMBT0z5RT4UnpstphcTy9dsZoyjiEySFcGnCKqSialz1nXVbHggYbABplZhStenY\nwJiCpKPmYqNrKQsTmr/MGVCwEMShdL6TV9ANR1awKEqXdk4kF2wBs8qL4CKtNCdycZxHqLQtDvtJ\nXjxIrooLTeSc2nHd5F+pLtK9QhClSUAaZySWqc+8jsjIK/E5nV3PPBB9WOypz9F6hTLfbs+ZU2Qk\nGfqQJGX4qi+qL016PPJkzCxLgJgkSzk1eJqnpn1MEstTgznDfgYMuC9IOH029jrBYX+Lr+8aoJvj\nWx/bFHBQb+NwhEuTWcy10bDrDen3L1lQq72zX1zJYzkCEEIaO6neoTsuof7y+QSRnsimb8UF80Ux\nx1vZiXc0Cbh2kW1ljLsSU7Ye40nG8+0g61Qw/j5Usa/92bFllhRElEDuwFfzxPQb+e6veV1uavn2\ne6P7OH02Zpolquzx8eoxL92UbEXXkck5g/Bp1oJj3BckPAKceybwCtTKeDrOddNXZtPjtKF9Djab\nymz/XxdN2tWmS3O1efJcx5e44sRfFUdYsFg7acditGpope0k9S3Excvq2SW1wa5yZ495FQFpR+zY\nY16VAHMVCnyXU91/jp+lufzc/fw0CZhl6txA9FWhL5RwCcSwVugL6sEeNc3FXAgtv4X5W9fcm3Pn\nY+4lASJu2VIkljcPA7aiU4QXJxBGnByc5I7tp4mDAWthwmcMipTDgpmdD90jJ81zfHA9Px8HHbSb\n49oYLJr8THDwDP8mSCkqTAtfyziygsXEQcMKVzE9mVrLpaAT17BDqFeJ6DHhMks1nWcKPTOJz+Wf\nsMfZBleUUnoJFtJV4WIeNmGHR2sTmDaHmYShJSeZutfnzsfcvUiZZSGvOr4gXU7J5IIwjCCMyOQu\n4zRke7DgG69ZMookn3qiv68F0j7HVYNlP3BpGy6m6S7h8m2+IqfpayXmAXOzV2rJV7AargiWHKZZ\nzIZv194kUOxzXEyxNuxCX0U/xm7Kt3P3jdFvXvKPvUnraPrN1gBXCeeGZsqPttBXH7mhD+r6Vdiz\nZhk2e1A1WaqvR5P21iRU7M+mgHGdZy/Eu5OITyUZ41QwSXvcNDzDtceOkWUXeGSSoYlS42DJ67dT\n1gK4+yl/MmWTNuUr6qXhMu+2mV6bIrpsoaLMwe650nUjZj57X6XIpnPs757PTYsPQoi3oGqnBMD7\npJTvsn6/DVWo63XAO6WU7zZ+ez/w14CnpZS3G9//78BfB1LgUeDvSSnH+W8/BXw/6uG8Q0r50abx\nHVnBImVTslSdgddEU46KiTZqfacpy1FF0mVm6mqiavNZmN91hev8jWFaGXtbPoFdArYJXfMpul5D\nkpv8ZpmoOFPLQl/7y1uwubp8cO3MzfBon1P//iRgnCRcSAfcPJ/Vjrl5GBAFA4b9C6wFAz4RlhFj\n9jNzR2j5n0dVw+huLrU3Nk2mr1Wd5F1zVroIl6Y5dlh8eUt5OM57IUQA/ArwLcBp4NNCiA9JKR8w\nDjsPvAP4dkcTvwH8MvAB6/vfB34qr1D588BPAf9QCPEKVPnjVwIvAj4mhLhVSumV9EdWsLjQ5nOx\n+Yu6mNAq2dZWpJRe4IAiR8OMDLN3khqrhEb7nJQHfVnMhcrMMRkEkmm4sIRj9VgNzcfURNXuo3Px\nXUebidHl3+rysvt3ukGFpwtKahfXNbhMgmbRMCiz520TWZIEfCnpMU5mjNOyeFgcSG4abrLJBsx2\nednwWgbhE6wFx7jbETHm2lSYEXo+s5XPn2VqLa6EXN95tkApQ3v9WktbrpBvXrcJl7boxMsMdwKP\nSCm/BCCE+CDwVqAQLHnZ4KeFEN9mnyyl/LgQ4kbH9//J+PNu4Dvyz28FPiilTIAvCyEeycfwCd8A\nrwiWFthhsT6iPv0SubSUAzERW+YvMxLM1VdbxnybKW0VHjDdZpuAtRcD147dF3TQFg3k0nx812IK\nrzjOiiJewIEr+y0SQd/4vDFqzjhva2tG6X8xYZJYjtOEO7cX3LI1I+qtw94uMtkh2jjBehgyjDK+\n6VrBJ/OIMRdMoWKaXH3Jny5ciojKVdFlo+Qap+sd1cLcPO8wsGK48dVCiHuMv++SUt6Vf74O+Krx\n22ngjQcfYQXfB/xbo7+7rf6uazr5eREs+7HlCSHuQKlwA1St5x+VUkohRIxS6e4AzgFvk1I+1jYG\nKasP2KcdgEHrbdXFaNqZtaHqpM1qCXtF3obDPKHHY/Ml6TEWY90HTU2TgPFpFbuTyCiMViYt2i+r\neW2rLLr2S17mtpSs0y5Nx9RefGOvIC9NrGveK+p84d0YVNiFcwJIaDeFFddlbVJMuvv2c3vcfzpm\nnMAkPcYd209wcnCS6Nh1nJ89xmfPqXbjQPLGkxlrYcL9p+NaG3a+0arRUTuTfoUZeRXGbT0PXHlc\n9hjsoJf9mIVXHdfzjGeklK9/PjoWQrwTRWnxr/fbxvOlsezHlverwA8An0QJlrcAH0EJoWellDcL\nIb4L+HngbW0DWMpmYaLRJCzcNC3NwsW1E6pmlrcLFVetelcYbFNehW9sJpW+nR9jjt/Mpt8kVZU1\nPVE9PhqPVVEkIkZ1bc1c2GzzkXmcjcMK/1wbLAoTlrd8sGUWtR33XRZlO+Hx9NmY30tSxukx7tg+\nT9xbcvpi1Wl//cacYaQixu57pldz6tvmOZdw8eWxuOj2mxZmf+CAHYxRmix9gTAHQcWHcki0+M8h\nngBebPx9ff7dgSGE+Lsox/5fkVLqHdLK/T0vgmVVW54Q4jFgKKW8G0AI8QGUU+oj+Tk/m5//W8Av\nCyGEcVMaYddasR2NbTsXV1y8areeE9JtPPV69zbP1yq8TrVF3kM5bv9tL8rmb7bJZGcnIkoyNof1\n8XTd+TUtFrXFyOG30nXo9eJeC989wOLRZmbp6kTWmIzjWrE3u9JjW8itid1JxMcmME7h1ccNn1Qg\neeVVgkF4nOmiJLG8L/Zn6tuwc3Ogrn3axJ9tAtIleGomP2tj1SXqzNlXC7FqrOdJ/gwPWueoCcvD\ny2P5NHCLEOKlqAX+u4DvOWijeaTZTwLfJKXcM376EPBvhBC/iNrw3wJ8qqmty8HH0sWWN88/29/r\nc74KkGtAF4ATwDNNncqlqDkt0yQgTbNKnRQNV5a+LVSqRIzm59Js4/UlWLtE2+5tEzja59pJk+ZO\nUi1iq73wXTOdTQezpmrZj0BtstM35TeYju9+kkECu0m/cr37yb9QVSR7hR/Gdz9MVl17vLbT3nwe\nusKkWY/ezj3ylRvw3d97Hl9jnCiG5GGUccvWjI3+9cTLHlF0ikw+QZKlbEUhn40T7j+tTFl2X/b9\ntjWrLqWQ28bqo1rRv1UCTRo0PbtiaKWPtLoBArfG3xQufTk68PN17keAj6LCjd8vpfyCEOIH89/f\nK4S4BrgHGAJLIcSPAa+QUk6EEL8J/CWUH+c08E+klL+GihSLgd8XQgDcLaX8wbztf4cKDlgAP9wU\nEQaXULAIIT4GXOP46Z1Syt/NjzmwLW/FMb0deDvA4OptoO4/0bU6NOzdaG0BL2Ld67vWpqTDJuEC\nmpokK9hXbZJD3Z8rFNl+GbQj2F68Kn0b12+2Y9YhN4+zd52VRbRj/L8rL8c1vpK80j+XZ4SVQlvm\ntfjMHmthtXKjTJ4FIIiuKkgoTX6uJuFij91+BnFcPkvtj/EJFde9aF6kS637EeDZNOHrTwRsD/oM\nwgkEQ9JstyCx3B4s+KvXLbhmILn7qZQzp485F2Vzw9RVI+siVHzwJWhWWI7jarJp05w2n0vbeKpW\ngbLNS53IvF9IKT+McgmY373X+PwkymTlOve7Pd/f3NDfzwE/13V8l0ywSCn/atPvK9rynqB6k0wb\nnz7ntBAiBLZQTnzXmO4C7gI4fstNhR0ijrOKFgKrZeM3CRfzdxNtIZxaC7EjuYoF3iFQXO3rdrsk\nubnG5fSPmItOQ7vtSYr1IIkmIkUXXHU4fIubeZ1FmHcuVAIRwiIFULT5gVRcYWG1L9d11sbkqaOe\nXzVRnDEZxzXzlwtdFmj79zJbPybJZpwa7NRILG/YSDk1mDOKjnF3vMuDj25U22zR8ppoeQ6SUOgr\nA26Pp6sWumnUg6lv/KzgBccG4TAhgdnlJ6MuCZ6vqLCVbHlSykwIMRFCvAnlvP/bwL8wzvk7qJjq\n7wD+sKt/xeUEd/kwzB26bdoyz3d93i9cXEalUOnWvktg+o6r9l2tgQKQ6IVbsbjXdu8HTVpsa6cr\n7BBZ18KtF5O1XHgEIiQkRCa7AISEiu3YatfZn7WIukxiLgxHSWPb1YCQBh+CpU1r6Gz9WQZv2O7l\n2pfCzcOAE9HNSCFYDx9jGIWM4l0+8UBVuOhx6P+bhH6XsOT62FdjkbDH1JRkG8dlkTFzDrcxLV8q\noXLU8Hz5WPZjy/shynDjj+T/AH4N+Fe5o/88ypG1Mg6DtuGwMnShbTHZ32Ld5Rq1QAEq1Rp10trG\nkEK4mG03oUs2d3UMqy1Odvi1uSC3agTBkqC3BlkKexfVl1lKFAyIg5Q1BxGl3Uc5bkPQWlnkcbhg\nxx57Q1KeKdzr1+yO4nIdd8/jATDjDdsqmfLlozVGYoT86r2KxPLaV/K6q58gDuasBTvc8/gaLmYF\nPSZfKL4txPdLGdQ0V9qSbM1xRnHG5rEFgwBGMcwWMAsk8fGEnYvhSsEWhxXOvJRXNJZLiv3Y8qSU\n9wC3O76fAd95qAO00IX6BbrvtA42Frep4HK0A7eha1LmKu3VzXEt1RHNKJ2o1FKyZbeESV/7ZhkE\n/XfRjakprxit1mVBtHM8/vThHrDHG7YX6roiRWBJECGFIJML4kDwhu0FMOOex9ca221iIVg1I94c\nZ5fratt0mGwWGmYibFcGcRMvxHfr+cblEBX2vMCMCtPQ5p04rtb/8MEWLm0ZyG3svM27PIfvJg2c\nn8Ht+2hyqptmtijWC0RGU9Kjvqa2F8+X8exzkLY5/5s4rZIkqCTRmffVjALcJC24wtJsilw7BbEy\nBckwJlssSLKQmZUp7UrQK8dlL6zVHbzLbOWqTWPnNzVFxXW5N0kS8J8/v8n41l0macadJx/n+LUv\nB+Ds9It8ZVeZh+JgmYcr14XLzqRqGjTbtvtv+t28Pt/vvn7s+26biHVbO5M+cdwjTYKCww7opKns\nt4LqFVRxdAWLhJ28mp8ZVrk2WJCmWaUaYGM0SUsVyibCSn947bK2qKhxVoWY3fZkrDKrTSp2E6aA\ncZFtul8qMwTUnV/TJFxcxcO6sgOYO1R7rLoSo2uH7Lq3dkLfDhHjZMokDdhbzEiXU6I1JVjS5ZS9\nxYIk8y+mPpLC6piDVqFgh7pWw37bNzd2kq+LhUD3c+/DG8yyXZKsxx3bjzNd9JjMS59DHEhu2ZoB\nazRpLi50IWs154sLNkuC2Y7JpGBuGHxalN5gNGk5+61WuV9cMYUdAWSZ2tGYeQVRMmd3GBHGIcNR\nUln4XE7acvEvFz9zd+7jITJ/g+pC6NNi2kwJk3GMmKhxqDwOd/yCrb1AuVCbgnWTtHKeLVT0NTQJ\nF/ueNWkuPuFkX/fOTkSaBOyO3ddo8zyZ/dh5GdNMJRWO05ATa3vE8aY6drlXy2Ox0cRr1kWLq+Ui\npXVt0HdscY5xvKZWacODj24wTi4yTo8VxcNAlTo+sXYVUW+d9fCp/GglXHYmfXZ3osbQXn0N9tj0\nvW7KN4GqFuN8hxy0PhptVgIz56wJdt6Y7utypM2/3HFkBQtQESrrO2lRL30eB0yInQmFXbLxTbTl\ntpgLoU/A+KB3u1qorO+kzPNciTlBkYWu+wEqL5kpKOzMdZ1zUY7bMhvqKDmPcKkL4noCp76GrtBC\nZTYNrWRIWTwr1/02s6qhJHncuRgyG82ZpEFuDjsBQDZ/imTZrIXWNI2k3ETY98W8B+r/MqTdfsZm\n8l+d8scxFsdzKftz39szp4/xscmcJ69PuG1Lcv1GynoYEvXWCUSoqPejGTduBIxumeW5Lt4h1DZQ\n5jVoxmY7aRXcz97UpF1s4vo7WxBp+EhgtRVCH+8TFhWC2UM2iV0JNz4CCIKl0kryBWePiHmUsTeM\nCGNZhIPadCqroCSaXE3VtmllVBseLrMoYzhKmBCra4hV4l1IudhG1kvo4jXT96Ipwa3CSeZYtPzm\nsDJMuwltO32b9BFUMqTZTxN0YS0zMXEtKCPDhBWlPsvKhcDWMG0BacLnxPY9w0rSppHbUt7rbr4m\ne77ZC7KdxHr/6ZgzewlfN4qYpBm3Hz9NIPr8+R6c3lVm1VEEb3nxkvvWd7n34Wo4so+926yQGcay\noK8xr62tHII+xmdO89UT8s5BB8+Zq7+2ROIr6IYjK1iEgM3NlCRSi8CEmL0kqNCdd02Ig/bELvvl\nszmJXH1VE+3coZ466U8LF1OgqPPKa/Hl6ei2dogqi6YPlUzolhfQ6QNpsG37TGqmttPWvm8caRJU\nqjZqp65d2941JheahEsTfGacNiaDLuPqupnRz+Dc+Zg/Pg/j6xMm6QZxsKzxWd20leS5LjuFaawc\nm7+fQsAYzA82mnKOmkOPq4ERrg1Y2zx2BTrYQuW58r98reHICpYgkI07do1VckC8znjrZfcxwTZl\n4/teHrMPM+nO/s0UKr7F2PSrrKqd+QRi+V2dGgfaX1xTuzKFS5twczqwDeESxRmDANbywwIRqlwW\nC9PMra24xu/yJ5hjt+FztNvHuJgSmuDSXGyt1YbWXt58slfck2GU8ZoTC7aiU9y4OWF7MGUUUdDA\ndNXEbaHiMhGa5kE1ZvccNxMfbXTVis3/XX1cKijn/cErSL4QcGQFixCyNjn3K1B8SWPuY9WENos5\n+eDKvtdjcpFa+hZbl6ayShlhu8/iuwO+hPbi3LW4kqmpedv2EBK6fo971WcciLxMsDaDWeY/fS9T\na9FvImc0718Xxl4bPvr/Nq3aJm1sumdnzgz4L4sZbzq1ZBTB7cenHI9vJLw4IT52khs3nybJZoyi\niLvjXT774FbjvGl6v/SYfZRGUbx0anMFFU8lAbWqvdTH4Q6uccEVmXZFa1kdR1aw2IW+XDAX42pY\nZzXEU8PnFLQXZJPdloG//6ZwVZ/20iZQNKqlg9tfnFWy/bvn5ngYbB0OWp/w3u9L37Sou2rez6ah\ndzet23L5tMzj2/ivDoo2f5wL2qylI6KSJODjyYw7r5vzld2Ijf6EjY0TpMsp42SHs9MBcbDkTSd7\nwAUefHSjCP32jmuf12kHL6gx5s89rguTVX2Zus0rpq/Dx5EVLEsJu5O+N4HLNhu5COxMNFFa2Lsv\nE7vjPhsj9xh9C3MT/5V9DRvDtDYe+0U0F75OyZSOsEwXumZb+8KDfTA1BrMdH3y+EF2xsCkCrDIm\nj0+oHFezlrQKbA3EpZmu4gNsG5P5HM+dXeOPk4BZBkm2xy1b5xknAY9Oyl2QFi5rwS4PPD7g3DPV\nHZLt29NwJVS68n5cbYGKDNSF5cw54JrDNryMAS01Ww4LUuINX/9aw9EVLJloFCo6Y3cQ5AvQMPUS\n2LmEUD05sVd7qftJxjzWORl+B6dtLvD5SPT1aEbXKM4Y5bkeY7KacGkyzfjyXcy6Ina0kW/H3LTw\nNy2+Ls3F5ydqy/Cuta39XfkhmVxAB/N3bYPRIjx8fqDDINus/N1istXmsKZgB7PNnUmfP324xyyb\nMkktbbFIpIQ4GLAWTrk/XnLmiWO19nxafBMtjGtc5n3WwuUgpkUffKbkyw05ke97UJTV75NSvsv6\n/Tbg14HXoUqVvHuFc38ceDewLaV8RgjRB96XtxUCH5BS/m9N4zu6gmVZX0VcQmUt//cskjQuKSTM\nfBBNeFe0Ey6cpqYoqvsytHAxc0j0sfbuq8Y4vBB1O7ZFwKcdsaNYVoSLGRHjCxu1d5p2sapWHq5D\neOFN4WKzLsfhomBd1kSEPv4xk6lAR+SpZyRJ9uFQbfLZuPJbzGPMxXYVs5XLP2DPj6Yxtn1vI0kC\nPvHABrNbd7ltJNmKlgyjJbeNMrYiVWcvDk4r4RJIHhqmfPHBq9RYLEd7K5VKy1yysWOZ3+xNU1Ow\nQNMYwB2efRhYcjh5LEKIAPgV4FtQRQ8/LYT4kJTyAeOw88A7UJV2O58rhHgx8K3AV4zTvhOIpZSv\nEkKsAw8IIX5TSvmYb4xHVrAAnbKJbdjZ54UD2iIddJ6bnxPGEhKViFn8TTV6prZweXMZVl+0tQnQ\nl9jmSkSzF2pTCKapP3LJzih3mQtXWVAqfRj8ZU38YRpmeDk4wo2DfLFa4BQ2BTPBCotg5XqNxeow\nmbBdaLoXrbVWrHnxyfu3ePJlE157Nbzq+JJM1gk6b9yAawZLRvF5xsnBIp+6CCEfzGfkQyU3zZEr\n05TkepngTuARKeWXAIQQH0SVaC8Ei5TyaeBpIcS3rXjuL6FKmvyucY4EjuX1rgZASoXjvI4jK1h6\nPclsGlYiZoajpLDfpnFGYmgHOxfDmk8mTQPOPRM0qvygFhGdNQ5KgJi0K20Fn0paCkUQmcZlFT1z\nUd3didjYTNkcwg7KwVmYwnINo3YNhlCxa8bbqOeXuG3nrqQ9F8xr8P0OFESNVZqZ+vV3QRyXNv+r\nolKjM2EyG5uap885r8fog7l4HYa5xkT1WZamIVO7hHoIdBMvl2qrOke++OBVpC+bME4Fk7TH7cef\nYLro8cCzZdLkWgBvOil56AI8NqkLF5f51U/o2f2Zmmgrv+3M9o+qm52u+TSXGFcLIe4x/r4rL1QI\nRjn2HKeBN3Zs13uuEOKtwBNSys/m5Uw0fgslfM4A68D/IqU839TJ0RUsgcqu18SNAOefWiNNgmJx\nVigXsCbnX5oGmAU3bNOIvXi6MpGbOJJsYkXzJTX5s9RCskcc99gYKt8KqMJPLvMXlJpKl0g1b1hr\ny8LadoyzTUvT2dmJiJKMzWE18KCiQXYgxgTYGM5ZC0vBki3nyOrL1Gi2cO10XcfElsZi/m8eZ+Og\n5kM7zBjK5D97E1R3qLv7fvxLQ3YnU2aLKRfSYzWhfH1elXJ7EDOKQh4ci0Iwu4SK+XkV/i+fac0X\nPOOCS7D6nsNhaS1LWQaMdMAzUsrXH0rHHZCbuH4aZQazcScqpvtFwFXAfxVCfExrPS4cXcEiqhNp\nkQi2npmyl0TMpuvoxTnKzVU2bbiLK8omRmzaPZmUMTbNiisM1+xLL5p6QdVcYVs7U/Y2I55hvWw/\nrvtUXBCTpeLfwjCJeV4ovevv4kMxX2CXgOlif1fjL80TOxM3UaH+3Kwlqfu8eWyRV5BcFnks2sST\nyQVJ1j6mJuFSS0pNlqRJVvENmNfUdN3l2BuCEay52JRTo9tyBSK0PYtzzwz45E7Es7de4OtPSEb5\n5bziqikv2byaqDdgFJ9nGE25ZhBz3zl4ck94Q641TAHjYxTwJb2ax6wKuz+naeyQtcxDgK+E+0HO\nvQl4KaC1leuBzwgh7gS+B/g9KeUcZV77E+D1wBXBYkMISRxnXH1yj2eeXmd9knJsokwte0TsDiIg\nbbVV64V9kQjWJynzOCh8J7uJEkamyQv8O0c7QcyVL2ELGpOA0hz/BKWJafORK4dCt7FIBH2gn2bF\n2PWCt0qior2o+xhru+z2bdi+CvN/H1ykmGY7LjOYjTgsE2ld/riKmSupsijYGeVp0iuO9+VedBW0\nLpjn1bP/63POZ8rs0s/9nz9O8nXP8qZTS27YyDix1iPqDQizJYNgyKnBhEka8MaTPf6/Cz0eYlaJ\nqmwTMF3QmM2/whxzCReNwxQqUu6v0JgDnwZuEUK8FCUUvgu1+O/7XCnlF4CT+iAhxGPA6/OosK8A\nfxlVqfcY8CbgnzV1cmQFi5SieMGGo4Tziao9sTeM2BjN2dhMG+PvNaJICac0DZjEccHm6kMUZ2xu\npp2c8V2y/k0CSoC9zQg57Cl/kaMf1wt0/FTGZBxzIR5UCDj91+DOZL4Ujs79OPabtBaf4z3o9Ys6\n94EIiYOMUQSDQF1XW5Z/mgYVobBDlNf0KWvfmNpKY9jvPoMZ2kKJXX5A05SoNZ02P4XZ191P9Zhl\niv4lEE8xCIfspuf54gX1Pg2jJa8+LlkL4MEwKQIu7HLCJlzvmovp2P69KTKvS/Si8zovQ+e9lHIh\nhPgR4KOokOH352XdfzD//b1CiGuAe4AhsBRC/BjwCinlxHVuS5e/Avy6EOILqKD8X5dSfq7phCMr\nWExEUcbxUzPOs8bxU7OKbbxpYbbbKATMuC5gtD9FL/Zdd6ZNwsUkoEwHARfiQU6iOa/04ztXjxuq\nXGn2cU3kj11oMmz4wnF9fZjjbGzXs4A03UMXAWXQ6zPsp6wFql765nCeVyWst6NNS3MAACAASURB\nVF1LWqwEVQTs7rgX/C67YttHY4fYNrVpwxYqXSKrinbtoA1rXPc90wMikmzB9toznJ1VzcbbgwXD\nKGMURTy2C49NTC2uNNX60MVEp4+rfWdohmakl2lOfiFCSvlh4MPWd+81Pj+JMmd1OtdxzI3G511W\nLP9+5AWL+bKZQsVlLnAtorbJI03KWh2mgDGFis6Gr75Y/rDcJpimqI0RhaZlJxLaL7GtjeldeatD\n2kMYuJ+XtItQ6aIpmG11CQVOkwCMvKNBuCQQYUGbr7nC4mDJWtBjY5h6Fz6XxmZf12QcV7TAKMrY\nHM7zY933zp6DaaKi4lzElV0y8FuLXCVlflIYS6/m4tN87numxywLefVxURHWt2zN2OgfJ5MLhv2L\nbEUxo6jHg2NZ5GE1MRq4hIo5N7y5OsY5vjDxLvP1MJMjpRT7NnO+0HDkBYuGK1/DlXxYYdi1EvZA\nhfhGccbupE8UZZVcGX18JaMf98TtsjiaJI6V2HzXuKxkSh+9eJP5r4kdeRUiTh/0AtBFqPjON9F0\nvk6OrMBgNx6ES+JAmXDiULIxnFshuNX7Z1O7mAt1P1FlGYajxFiY/dpP08YgSpbsTKrRguY5q8Il\nqLRwMVELRnCM/6Fne8wywWuOZwyjJTdsJGxFp1jvbbJgwbXHAC4yjPqMopCHxvBsCj4SyaaQ6YLt\nwREQYgsV/X9RDK5DpFcbW/cVNOOKYMlx2Cpx4YdIM2Mn2yteyGlGJRTTB5dgKNR6TyRNZdELF8b3\nBseXh8q90rdtx3bmGwReIaX7cbXrCnFty+fxjiu1Mq0dTvZVoH0tXdFELjkjZE7AxmDe4PdZLVnS\nxSqwX/gSX33PwjcH9G9pMme2gNee6CnzVzwl6g1Il1PSbEqyVN/fvLVkLYi475zgWSTQ1TTsfrZt\nSY9dLQCrsJqviqVsD4P+WsGRFSzLfEPm4rWKrQW8CeVEyWqZ91G8LMqh6rbtfFWX+cvODNefXTT3\nvvBkDSO1xmFSaBcuNvWIWjxKh7RtFnSd6/vbDJn2JR36FmNbezTbqFHmG0SHRd/WswpEv6bAdEGT\nz02PY0bJjGwz9tpoor9vgm026wLz2de5x+r+LZe/rZafMoEn44z7gFkWA1NetP4Ee4sF49QouxxI\nXnHVFBjw0AXBmT1JasSMNPn1bLiONSMWfSSnLv62K9rJ4eDIChaoZipDdbKVi6dbE3BBR7yYsHfn\n+uWrL7puoTLIT51mfu3FOZbWhagsF+wsquTxMWnYeT1t5/r6h6qAseEKYTZzftrgWgwPEnVla2ht\n2NhMGzWotrbaNjcu023b3GiCy1FvwsVObH6fJAG7k4gnC5aEGEgwl5q4t+TaY5qw8iJxEAMBySKr\ntOkak8+f1CRYu+RcNZWYuILVcaQFC7iJEtuytjW6UX7XM5wLZ69HuNhCRX/WWbum9uIclxH50tSP\nKVzs63HZ0W3KEFfOii1U2l5U3w7btQC4Xn7b1+SDS2sp2nVEhsWBLHwsPnQ1n7oWw8PkCvNdV5P2\n4qvQ2DXTvClLXmm1AU8WvpOYm7dS4kAyihacWLuKzeA4AMHGeQbhs8CAtaDHQ89CFJfC29Q4nCYw\nx3wt53XD9VtM3j7f0WGaruRSHOpzv5xxpAWLd6HxqMRNuScrmSDyREeV53Bw9bsSRmokD9o0MIfR\nT2kSK192VxRdl52fuQDYMHeZvii9FwrcZp12M6SN1LFRcEfp1QMJqu34+3WZh/YD3eeTZMwymGUR\nt2wtGEXuHJlhtOQN20vWgpAHw4Rz52PncfsdT9O77it1rM574c23ywFHVrD0hHvS+DLhNfw7QFcM\nfX1X10bfEcVZwZQ8zaqmMPBn7vqEi4bmYtLmPV8OQZMWVr0faUVLWUWg2CY9sx9XIICv/VV3k5UF\n9ZhjgVvk5hvDymfyhbWZOW20OYJdwqVrnZImQb7KJsfXX1cntk9IlYXiMsaJ4N5zME5DJmmPm4YX\nODmYEvT6nLl4kbOzUoi86viCURRyX5Bw+qxbuLj6UfO2e15Yk2Z+BQfHkRUsrpr3Gm2+AY02YVL7\nzVP3xGzbJVw07BovvsXG7Mv8bAsXe7yuwAWXRmG+nKsIFHAHJLgF/OH4RVw73DTpkSwEs8ztrV81\nKqyp36aNiu3jMgVVFzObzy/XlB/SRvToCrNtmvNtZkhzPn95B8ZJwIV0wM1bKZCRZOW93l6bc2JN\nRY2tBTEPxQkPnw1r4/ahqeqpC12ESlspjFUg5dEpfXyEBYv637bLmuiymPmc+113nvZv1XF015jA\nWgA8QqwqXNzj9Wk21b6qNmnXC2hrV10DEuxrabpe7Ux3MRybJrQa71oSoEovKQSiD4u9vOHqa+EK\nyiiuyaG1uDStpvH7zGJa0Lv8Q657X/rkmpMPfddRtu3WhlybDFfIu71BKY+FZJHxbArjNOLWrazw\nb92wkXBycJKoN2AQThhFzzKM1lQBsWczb/VW3xxu8ju5PtfuhzGfB0dDFhwqjqxggboTfD+7Yntx\n88FFU19va1l5ee3Pvv6d3xtOT7s/k6LcHnPTYqb7sxcYl8DQ3+v76xI8ZkCC73rs87qQ+Lkc0LWw\n7CRgli32VT2yC1yayn4cwa7Fsqu50RWe7mq3KbTXtRB3DVt3R1aqekL3LZTv5eVbS67fmLPZX6uQ\nWK6HOwyjjDdsy8LvsnMx9N5Dk+8sTbOa/3K/GvBhCpXlUlyOTMmXBEdWsJhMo/uN/DDNSV1UXDOL\n2C5FvEp/beY4m1SwqS8XPYhvx+kai/pMbu5wH2ea9qAuTKo1OwLr+pzdG8eXRc7MzH3fC+yKlEsy\noSjzQ7Ur1vT5SSYsH0s3Z7vdR9s9bKOUd/3m1mxL7U+37zN5+trWm4qmKDr7mnzalv/cHtDnc8k8\nF+494t6UoHeeQTBkNz3Ln+fKYxwsedXxBWtByL0s2KH+3rloX6qlGZYrv+NNc/oK2nGEBUvdvLEf\nZ3AngeKgzND/uxb8tnDnJsGSJr2aUNEFvFTVyrAxw92Vy+M8ruar6RIZV9VybMGuq1vGcfcF3Kb9\naKtDAvp5qAzxJOsxXfRywaKqIWZylyQThTbTNXdlP7tRX/E1aM4hcT+bcjPQRaC4YOdcuZ5Flcyy\n+R1oCg7YnfS5PwmYLRJm2YBXLqeMoh2emvZRJLoK22tz4mAJRNy9KOeYS6jY5mAdfan7NMfdhi7B\nAFfgxpEVLE30Cl0jddrQVHypn6jaJ6Zw6ZILE8Vmhn9Vqyh2cIZQaeqv3k/Zt20S85k6mv72QWsw\neux64dbsvV0XaPueanSpe26PNZOLQmMhg+lC/T5rMZU1kSV2QVO0oLOwVVT3ZTQl8+6Xddr8rpFz\nraV9fV/sJEdz7I88GTPLEmZZzC1bQS5EFG7YSNnoHyfNpkAKRNyty4evyHrcdV6ZTAOHiSsklEcA\nbclKXcKDwZ201XSe1iCA4v9Smyj9CYUGkCpWW9tZrmy/JQ2G7cDW6BuUMr7+CnI+o0/75Xfdm6br\nNe9LkwaWJgE7k763nG5XaCGqr8nHaGtjlkGy7FVKE2dyQbLskWTVnB0fDjJ2X5BFk0bZBRXtpkPS\nY1PEossE2wZz0Z9NQy9bsp5fp8/GTLOEWRZy61bGMMo4NZiz0T/ORniCtDflho3TTPJx3hsmnHtm\nrXVM+1nIXwiLvxDiLcB7UDVV3ielfJf1u8h//2+BPeDvSik/k//2o8APoNTCfyml/Gf59/8WeHne\nxAgYSylfm//2auD/Iq/vArxBSjnzje/IChaoL5BN1A/uyKhqprJZhtd1LJSkhCZsJlnzeHd7GTry\nR42tbmteGyyK2vX2ghdSFSj2dbaGYBrX2RpC3bD78wnDJthj1tfmKwnddTEMeu4Q49k+bOwuU2PX\n8sM2mjYuvt9cc9gVMWcfX+t7ReFmMg2vGmwCcO58zKcuZoxTwW1bAXEg2exPSXtT0uUe4yRgkgaM\nIvjmayVXRRd44PFB40bHZZ613wfXe2Ae01a8ryvkspuptg1CiABVfOtbgNPAp4UQH5JSPmAc9t8A\nt+T/3gj8KvBGIcTtKKFyJ0oF/D0hxP8rpXxESvk2o4//A7iQfw6B/xv4XinlZ4UQJ4B50xifV8Ei\nhPhx4N3AtpTymfy7nwK+H7V6vkNK+dH8+zuA30Atlx8GflRKKYUQMfAB4A7gHPA2KeVj+xlPk5Zi\nR8QUUTP5y6Tra5jwMazapijfQmjv+rXNO4pVZI2923fBjtU/7N2Yq3qieW9MIeRyGledrM1CwL43\nTYu1/Xy6CC9dj2VV+Agc2xh3wb9hMc93CQG72JY6z51T0pSLZNfmcV1XE5dbpR/P72ZJbrNdHx4+\nG3Jmb8GT05hbtzKuP3aGyTzg9O6gctwbT2aM4j0+92S/8M/ZYzfJSSubLvtajbHZ0ZSujd/zjDuB\nR6SUXwIQQnwQeCtgCpa3Ah+QUkrgbiHESAhxLfB1wCellHv5uX8E/A3gF/SJubbzP6DKEQN8K/A5\nKeVnAaSU59oG+LwJFiHEi1ED/orx3StQNZhfCbwI+JgQ4lYpZYaSuD8AfBIlWN4CfAQlhJ6VUt4s\nhPgu4OeBt9EBTvp2h0mnbfHz1ddwttcQ2mn2abYNVZ4xLWB0NBTgrFnhKq9sVy70+pk61qxoYve1\n6Wrs5L8mAe5qz+y36D/yO3Bdi6/dp48LLO7VHdSNARWOmuttWFWouP7uWpbA/t3OoTHZgM1+ChNs\nsiRNspqW6npePrNeE12M7SfaAT51EZ7cE7z2RLW9YZRx+3FFx789SLlmAPedW/Cl06XgMQUwVAWM\nOUbXXNHzSt+jw9AyDhnXAV81/j6N0krajrkOuB/4uVzrmKJMZfdY534j8JSU8ov537cCUgjxUWAb\n+KCU8hdowPN5x34J+Engd43v3ooadAJ8WQjxCHCnEOIxYCilvBtACPEB4NtRguWtwM/m5/8W8MtC\nCJFL6n3D3m2CW+i0cQ05z3MJlxU5mnZ2Iu+kj+KsqFJY2eUn9WRBLTib8gN8RY9s2nqz7/qYqrtp\nn2PaBR/Bpb6mNCkFjNmOj4fN7jvuqQqSutCXriBpwyVcXIu4SwjafTf5VPZTvMueU8V9NuZI1HAf\nq21VGRXiUJJoQWQVGmsSjvb1aHQjeFXtPvJkwLNpwptPKkLQ7cGCV14lOBHdDFnK4HjCqcHTbEUD\nrlkvtZe2DZVLoFxqynwpxSpmtauFEOaCf5eU8q6Dj0E+KIT4eeA/AReB+6hnYn838JvG3yHwF4A3\noPw1fyCE+DMp5R/4+nleBIsQ4q3AE7m9zvzpOuBu428tZef5Z/t7fc5XAaSUCyHEBeAE8Iyj37cD\nbwcYXL1dG1dXR73ezXd58Su7shbbtOsckz7F9qXsjh1+gUG1DTvZsmmXau5Au+y4zWixwyIvfC6w\nnyJgdkBDFzgTDzuUf/aduyqiqOpfWPW6zQjEOKzWS2k6xx6Dia6s4eY8P/PEMZKve5Y3nVpy/caS\noLdWbTNnon751hKY8zlU6Pr/3965x0hylAf8903PTs+cb/eWs8/GYDs+sHlDgDi2pUBiggHjoEAi\nXooSHokSESAPJRFx8D/8AwITgRNAMQ6g4AAJBIKwwMQESIIUAYYQ8/QBxrzOXOyzz+vd88327Mx+\n+aO6Zqprqnt69sa7t7v1k1Y704/qqunu+qq+V7nXrJ2JOmCT2Ujg9Ay4R1UvKtl3J3Cu8/2cfFut\nY1T1vcB7AUTkTTh9a25P+U2MacFyGPiCY664CXgqsPmCRUQ+Czw0sOtq4PUYNdimkkv86wEe8sgL\nCjOaqnUagKD+1rd7uFH4fhm2Ay+o1Sa86KGFskxnbkbowJhwWe2aRaWyLJko9EJtqtv5uELKLStk\nrA8tChaiLD16KFUIFF1qQ4bqUBk+Q68wx9140DdeYaveTxHKGO1fLxTxb+vqdnB+B1bIsjA2w508\nki4LWAxF0Je5iYe9AIvqIz+7dbGeAbVYiUo1lGrHv5+uuurI4dP4Eg+wOmgBqzx68W4SaXJ45X4O\nP2BGU65wOZQOOHa0KIBsffzvfuyWW4dTlK8AF4rIQYyweCnwW94xNwKvze0vlwD3q+oRABE5U1Xv\nFpHzMELkUue8y4FDquoO5G8GXiciezAG/1/BaJxKedAEi6peHtouIk8EDgJ2tnIO8DURuZhyKXtn\n/tnfjnPO4Vza7sMY8WszSWcM1R5froDxsWulbyRNOlSrKyxWuMxlA9SrgxvzEgqaK5RZU9C5nZWb\nKypEWVLFKqN6VUc9+q3H9f3Fuk4y7hc764K78fraMDgyJFwm1R/CthB/jZGqgNKNCBfLpAGDO+io\ninfplQnBKWxj9viCanlsTZ1iEGeZavbY0Ta3ZDYrQo+FVpej3WIOsQOdPrZbO8TqULjUcTyw9ZwU\nqLpRZF0L7v8bJdfMvBbT4SfA+1T12yLyqnz/dRg79JXA7Rj11SudIj7meHa9RlWXnH0vpagGQ1Xv\nE5G3YQSaAjep6qeq6rjpqjBV/SZwpv2e208uUtV7RORG4EN5Ix6GcZW7RVUHIrIsIpdijPcvA96R\nF3Ej8HLgi8ALgc/Xta9k3ojR10Wbz8UXcJKAcTsUa3vxX8xJhlX3uj6+lxdQiLA/keUBaa3qzK0h\nV+uq/e717f9Rx1MtNCddC8pf/Enb66ScgerOwaR06TPQtfx/Hzfye5p6Fa7pdKCh2Z05ZrQ/mLJn\nCgEzzYBhmlxxZamL/NgU344xidB7McnexzLcAnmescYwiWWaKOftzZifa3NWp0uatGkncFuzy5Ej\nnWB5IR4soTJrVPUmjPBwt13nfFbgNSXnPr2i3FeUbP8AxuW4FqeUu0MudT+CcZvrY6SpvbOvZuRu\n/On8D4yu8B9zQ/8xjMStjZ/+BOcZrKvndl+GXm/A/HyvQjCUpxmvswqjm5Sxlw5I0wYLixnLS6O1\nK6bRCZe1sU5Mjv1cZ9Q9yxd0GpfpugJmoGv01rvDz9mgXZitTOO2XJbU0bd3+N6GbnqcwvbeaFZo\nO/xxVdr0kfZ12Kh7emjkH1qpcSRYG4X3qOwZtsLlq1nC0kMzHrOonNkxAZXzc21aSYc92mehNWCx\nlfCU05VO0uWOw9WBvW4wpx+HNCt7oehsZizbgS0XLKp6vvf9jcAbA8d9FXhCYPsq8KLpr+t5MuUv\nqu+iOwm3DCCog4fyUZ8l5Ajg599yU6FYrO1mYTHjWNZm7+LasF69LCHzRsT+zMuU6193fLEtf7tb\nx4KefApvr41SNy7HdcH2swr4JDJHInPDBJSl164xKp9k4J/GmDwx6r/EnleF9WTsZeOxRX7ZVTOk\nUDzI8FzX5lUx+3VnvfP0WKEkPb5333pZg+/8uMN9vS6PXUzIBkLayFhMu9zVnePwcVNOO4Enn64s\npl2+d7QZfF5doeL+t8/ZrIX1bmDLBctWsb4+ruooEyplKU0mpTHxy3DPKzPyjl+7/KF2PV9arQF7\nF4vuxSvOfr8NVR1GlWorZPjdiAtxXapckF2XWktV7rA61F3kK02NV6DNb2YJ39v6asMyZhXY6rrH\n22el8Jw4s6MyXC/CQh1rZKuo2m+FS5nhPOSZd+RIh6y/ylJPyAYdFloD7u4Wzz2zM2BfS1hsKbct\n9Yfp93tZY6wt1h3YDWI+VdVhpzK7VrC4hALpLBsRKv6x9rPvuVSMV5g8Cve3+8Jr73xv7Bq9wNS7\njiG4bIEsf1udgDkf1/heWYcSV1XXBXtl2dYpXFY/k2HkdN36ucKlOwjbiIZ1yAZj6hS3roX2TFCH\nTcJvYy3XXc/ZwKqiFm00+YKJ3XGFC5TPusrum//bThL2ZQSX2J6gHjt2tM3x5XWWsozHLCaFoNcL\n9vU4OK8MdI0DnRaLrRaHlvr85D6n7oF7sJFlLSYhCnO93SGkdr1gceNRyl4MX389je1gTKB4L0nZ\nYkRl7qN12uPWcWWlFQwCq/TiKej4y1c3tNfxVQlVke9lXmKhNliqFmxyPfHceruBaLaTmDRrKQuM\nDNVldP+KyxRYTOT2gxNwV1fAFAR+HjC7d6HHYqospiYPWtpUeumA+QUjXIbP5yQPwYr9GxUqw7JL\nlti230PxRL2swR2HO3QHXZ5yugmmvGBfjwsWEvbOnQ5AIncBPfa1mjx0j5m93HssNYODvM7DRK1p\n8ZmOTMeu/tXKhAqMd2ChgEJLlUdVHV1zsG5pOCam9vle9HfdTi4cn1CMtrdllsVk+Nd3KRvxho63\naptp6mppploryrmdGI+iRJrDmUoiTdJkQDsxWaSrMjOX1i2fLZYNFsqepUnlQm4TDKhdx1ycHbdm\nd+G2brNPOyBj03RArzcqe3R/x9PyTKqfvVa70y90zkWHhfIVSn3cQYsfT+SWabYd57GLSjZo0Fvv\n5t5+a5zo98kGKQutdZ64f5120uRQkhUir49n5hloplpbfVoXWdfh2jA7nV0rWBqNehlfQu61mddB\n+BQ6XUfdUeVBVX798RmD/0KWvexuxzymD9+AkAtdO3TsJOrlsjLCfv4083KH1p2flB25LOPxcFv+\n9KeNdZLG3DAJZdKYI036tBMjeMaXNZ68eFYvS8ysJXMXQxs3tLtlFI3T1TO6kNdelcB2XYezdMB9\neYZrd7nfVroe7PjqeJz5AtLPzVXnuahzTB115r3HUm7t94Am2aDDhfvupttvcHQ1LRz3hP092kkL\nMMKl10topuM59yLTs2sFC0wwUFpVR1NJm/1aa637Zc9SuJRt9yO67bXHOuZ0wPHlEo+bQqS2H+0/\n7vLs44+86xg7Q3V262BVNu3ECIClTFmi6JIbCpD0R8h+W0YdbX5/80Wl/Fxhi60+aTJHu2k988LR\n6pMSea4sT7aFBLMXlzwn1sFkmlmEf/3jyy1Y6A09Bf1jfWE1zSzT3+cLGLtteFzprKV6pl4WzAjm\n3hxfbnErvXxLexjvAuaeH5zXfGaaASmQ5edGD7BZsKsFC5R3pDZepDN8zpRieovyzjioLvKES726\necbeCgcDey3X68d2zACriZLuzwoj1LKRt2vPCKbpmGBMrUuow927sMb8aX06CSymsNiyHYIAI+Fi\n4x5CuKPNKo+wdt7ZdJrrRg22lguWublh/qnFlua/w7hacmKKmoqZbUi96B7nts2NrQipbstS5lQF\n25YNMqqyUVcRupeh5I+hz/4KqTaYtGo2WJVZwZ7nCpdH7RuQJspCa8C5pzXZ1zrLuJg37gK6tJOU\nW5MMdyXTWSNKjGPZ6UiNCUin5H1yg7pOBQrpQvKX1A2kLB5r6m5dlUu93CrdkcOjaVe4nSyuZ49R\nSSntZPoFl2yHXOX5Ny1V7tVlQqzMDgIl9y8dZWyeVf2rntdi5z4+Ey6L/5mG6mSr1ZkiinWtcBzw\n6mmFi4nUX+dAe42kYWKWRPNZS2OdNFnnkjOh3ezyrcNFQX0K5ww7Zdm1ggWKi0+ZRJKjkbpRfY06\n55CO31JL5x5wTy4LivQ/h9Y0969t1UIryxgPH4z6y7qVdgcU/Pfduk5KjxJuc7XdwGWqALPcfTjr\n27obYbKUwVIm+PaAKhVjqEMOeZd1+w0TGJnuB2AwOEY2ELKBjOUKc38zN9sBhBdsK0uoGcJ1o7bU\nEdZ1OsFJ98C9Rpnaa1LcVkilV0YoCn8aJuWa6/WSob2olzX4RrbGUtbn/l6HC9ZWOTj/IxJp8tMH\n+hw+PrqPP79/QDtZ5dB9jWASy0g9dq1gkYYWRmRWyMwvmP1WuKRNrRQqLv4UetI6LlVUReqHEgge\nX2lxfGluGHlv27HEyEOnSqgsL6V5zEeThcWscJ2yevlUxb7UwdYlO5qYFTkXenQHSicpChVzrcHQ\n1bgsKWJVah2XbL1Bb9BFm/lSz4MuS70m2aDB6kCGv9tQxbLSqnRDDblbl+XkqsJfMsFSGrwacM2d\nhmkjzP3ZQd3zT0aohAYLZZ6XbpqlLEvoZWvc18tY6rVY7hnV2HJvFL+z0DIzmoXWHIutJofSLoeP\nFgcPJ4OoMtfbHU4Bu1awNAJalZGxtcHeBbs1/OD7Bka78JbdZ8srnFOiSqiynfh6bjetudvRZXc1\n2LfS5UTWYrW7BzhRaIffObr1W15KkeV19mQD1tKEXscKj7CHUEitU5Wxtg7WCG715yvLpoy9C2us\nlJxT6tTguZG77q8uqwMhG5h6DrTv5ArrD2crq/2RowCMhIosr7OWJmPL1oaESig/nB/hHnJ5D5U7\nlpLEv6fBWe1InVbFNPFZdd3LXfx4pGmEiq/SHJvpezYpF2ujMu/3HCsHTKT+Y/bp0HnjQKfPBQsJ\nneYZnNlZZqGVsdhKOZRmfO/oru0mN8yu/sXcF952GEad0YPlOq6160NjXy8zC281Ux1LZDcpgtzH\nFQKTRp1WqOxZ6XHasjFUnqDFPewZzjxsG0NYoTKXDThtxUTu35922Ls4HuTnL8BkYx7GDdP1BYyf\nBNSNkrcjzaoAydB6ML5QsbPOMgFjUuTrME+YTULp4wqVuWzAXC6IdaFRmuXXV2+FMvhW/X5VTMrR\n5newZQLGD3IdrlHvZIawhvhQ2paqHGyWkxEqZYRyedk22xgmayw/ns3RTEcC5vhyj6Vzujz59AZn\ndgac1Vmj03wInWSBROZ42J67WO71WchTwdxw0rWdXdr87cAuFyz5A74M0Cu8dHWm9a4HSSsdDB/c\nMoFSt05j1/Fe2mJH1KOVJiwvtTkx3yqMom0sRQhbRrvTZ5Uma/lysyfmWzRTrR49O2t81A0wtYyp\n9Zx2udHxvspjtMBUo1TY+dcYdjy5q7gvUNpOyvVEmrQaJrV1q9FhodWnnTRpN121W29Yz7Vlhr+1\nnw3XvV8j+1hjTKiEg1EHw87aYh0xbDt8e1Ido37VjKXVGhSCKavsQpUR9zMw8Ju2mvaljueXKyTd\nYE9/4GKfn1XMQGUtTcY6816WsEKLOw6TR+onLLTm2NM8BkC3v8zPTuTXiXwWvQAACZ9JREFUSpQn\n7t8d6qtZsqsFi2XvwtpwLe9J+Oovl6Ftokaal0mj1PHUJeEybTLEVmvA8U4L7Y7qZ1eTrEqR4naW\nJ2gVRt9VwZ9lKgkfK7xtJxCM2SiM8MeFFnij85JcZeB36mG1kHudNFkfBkg289ehlXRIG/eTJuu0\nkwbW3dj/vZqMCxW3Hi6hmYqtz3D2l5nUKr5Q6STG+cLHtb2EZhXTDnCmEQrT5DmrmnEWjivxZLRY\n4bJCi1Y2GLbZX35geHx+P9dIgpH0WZbka7V0WR20yAZ9DrTvYXktIRuMyjzQrs54vRWIyBXA32AW\n+nqPqr7Z2y/5/isxC329QlW/lu/7E+D3MZ4xf6+q1+bb9wMfBs4HfgS8WFXvc8o8D7OkyRtU9a+r\n6hcFS04rNS+1a78IzVrqZvKt6x3ldyJWZRMakU7KSOy+aH7uKres8TQpo87S1WWHruELhypCwtId\nZfpxPsPjAkLLN2DXcQUdufCOe4yZ76b8TnPdzFay44CJY1lMByy0jGCx+bScs2upctzUI1WBlKP6\nFO1a7jWM2Ws0mg9RlSamDtN4dUHYOaV6dj2ibFY2LDsNB0mWpYdx6zN2TkmeOHu+zZAMTR61TwrB\nlBfuW2Vf66xgudMyqzgWEUmAdwHPwqxH/xURuVFVv+Mc9lzMQokXYpYm/jvgEhF5AkaoXIx58f9N\nRD6pqrcDVwGfU9U3i8hV+fe/dMp8G6N1sCqJgsXBHV27lOX+Gp7n6KKrKNtv7QAwEi52e9nxIfY6\n0dRW9XLcquoq1FamXRtR25UvSGbbMsJXR5QLl9AI170ndWxPdlZYNtMZzVg0V4XNQf9Evs/o2c2M\nxXTqvgNB3RH7NK7cVkUzX1NwmboWBW5doe87YFQNWqpSGJXZXvw6VhEKRu6NzINj9rfgSq8Be9A0\n2GWPVwfwpP3GY8wKlT06O8+wGXExcLuq3gGQr2v/fMxswvJ84IZ8JckviciiiJwNPBb4sqqeyM/9\nL8y699fk51yWn/9+4D/JBYuIvAD4IfBAnQruWsFy7/fvuOeG57zkx5t0uTOAezbpWpvFTmwTxHZt\nJzazTT93sgUcW/rhzR/4+O+cUfPwtoh81fl+vapen39+OPBTZ99hzKzEJXTMw4FvAW/M17zvYlRl\n9jpnqeqR/PP/AWcBiMhejIB5FvAXdSq/awWLqh7YrGuJyFdV9aLNut5msBPbBLFd24nt1iZVveIU\nqMNtIvIW4DOY2cetBGIqVFVFxKoc3gC8XVWPS52UJexiwRKJRCLblDuBc53v5+Tbah2jqu8F3gsg\nIm+C4coBd4nI2ap6JFeb3Z1vvwR4oYhcAywC6yKyqqrvLKvgqZHsKhKJRCJ1+QpwoYgcFJEW8FLg\nRu+YG4GXieFS4H6r5hKRM/P/52HsKx9yznl5/vnlwCcAVPXpqnq+qp4PXAu8qUqoQJyxbBbXTz5k\n27ET2wSxXduJndimiahqX0ReC9yMcTd+n6p+W0Rele+/DrgJYz+5HeNu/EqniI/lNpY14DWqupRv\nfzPwERH5PeDHwIs3WkdRrbfgVSQSiUQidYiqsEgkEonMlChYIpFIJDJTomCZESLy5yKiInKGs+2v\nROR2EfmuiDzH2f4LIvLNfN/f5ukXEJFURD6cb/+yiJy/+S0Z1vGtInJIRL4hIh8XkUVn37ZtVxki\nckXentvzqONTGhE5V0T+Q0S+IyLfztN0ICL7ReTfReT7+f+HOOdMdd+2ChFJROR/ReST+fdt36Zd\nh6rGv5P8w7j13YwxeJ2Rb3sc8HXMgtoHgR8ASb7vFuBSTK6eTwPPzbe/Grgu//xS4MNb2KZnA838\n81uAt+yEdpW0Ncnb8QiglbfvcVtdrwl1Pht4av55Hvhefm+uAa7Kt191MvdtC9v2ZxhPpU/m37d9\nm3bbX5yxzIa3A6/DXXLSpEf4Z1XNVPWHGO+Mi3P/8AVV/ZKaN+AG4AXOOe/PP38UeOZWjbRU9TOq\nahMsfQnjBw/bvF0lDFNkqGoPsCkyTllU9YjmSQVVdQW4DRNZ7f7W76d4D6a9b5uOiJwD/BrwHmfz\ntm7TbiQKlpNERJ4P3KmqX/d2laVUeDijgCR3e+GcvFO/Hzj9Qaj2tPwuo+RzO6ldlrI2bQty1eJT\ngC9TkpaDjd23reBazCDNTTC23du064hxLDUQkc8CDw3suhp4PUZttO2oapeqfiI/5mqgD3xwM+sW\nqUeex+ljwJ+q6rI7EVQtpOU45RGR5wF3q+r/iMhloWO2W5t2K1Gw1EBVLw9tF5EnYnS7X89f6HOA\nr4nIxZSnVLiTkVrJ3Y5zzmERaQL7gHtn15IiZe2yiMgrgOcBz8xVCm4dLadcuzZAnRQZpxwiMocR\nKh9U1X/NN5el5djIfdtsfgn4dRG5EmgDCyLyAbZ3m3YnW23k2Ul/mMVxrPH+8RQNi3dQbli8Mt/+\nGopG7o9sYVuuwKThPuBt39btKmlrM2/HQUbG+8dvdb0m1FkwtoNrve1vpWjovmaj922L23cZI+P9\njmjTbvrb8grspD9XsOTfr8Z4qnwXxysFuAiTvvoHwDsZZUBoA/+CMULeAjxiC9tyO0Z/fWv+d91O\naFdFe6/EeFb9AKMK3PI6Tajv0zDOIt9w7tGVGNvV54DvA58F9m/0vm1x+1zBsiPatJv+YkqXSCQS\nicyU6BUWiUQikZkSBUskEolEZkoULJFIJBKZKVGwRCKRSGSmRMESiUQikZkSBUtkRyIifywit4nI\nzDMGiMiL8ozC6yJy0azLj0S2OzHyPrJTeTVwuaq6OaMQkaaOkmtulG9h1gp/90mWE4nsSKJgiew4\nROQ6TAr8T4vI+zApZB6Zb/uJiPw2Zn3vyzBR2+9S1XfnGZffATwLExzaw6wn/lG3fFW9Lb/O5jQo\nEtlmRMES2XGo6qtE5ArgGap6j4i8AbN2x9NUtSsifwDcr6q/KCIp8N8i8hlMhuBH58eehUlp876t\naUUksn2JgiWyW7hRVbv552cDTxKRF+bf9wEXAr8M/JOqDoCficjnt6Cekci2JwqWyG7hAeezAH+k\nqje7B+RZdSORyEkSvcIiu5GbgT/M084jIo8SkdOALwAvyddcPxt4xlZWMhLZrsQZS2Q38h7gfMza\nOQIcxSxd+3HgVzG2lZ8AXwydLCK/gTHyHwA+JSK3qupzNqHekci2IGY3jkRKEJF/wKRu/+ikYyOR\nyIioCotEIpHITIkzlkgkEonMlDhjiUQikchMiYIlEolEIjMlCpZIJBKJzJQoWCKRSCQyU6JgiUQi\nkchM+X8sWHGKYmCUNgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_mag()\n", + "p.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwZVle1/n57fd53nNfdTMrM6srq6kumqZhEKbpUWOE\nMERAtJ2ZCGUcQzBUpgeIcUJmFBxnwkGI6BBn1BCGx6ijjoNIGD56HBwcFAxGaaRBsIHuppqqrs7K\nyse9eR/nnnvO2c81f6y19l57n3Ozsrqqqwry/CIy8t579tmPtfde3/X7/b6/70+UUmxsYxvb2MY2\n9maa91afwMY2trGNbezxsw34bGxjG9vYxt5024DPxja2sY1t7E23DfhsbGMb29jG3nTbgM/GNrax\njW3sTbcN+GxsYxvb2MbedNuAz8Y+ZyYiPyAi/8NbfR5vRxORrxCRl9/q89jYxt4q24DPxj5rE5FP\ni8hCRGYiciIi/7eI3LCfK6U+qJT6C2/RuX2jiPx/b8WxO+dQmvGZisgvisjXvZXntLGNvV1sAz4b\ne732e5VSQ+AqcA/4a2/x+TyyiYj/JhzmZ8z4TIC/AfyoiGy/Ccfd2Mbe1rYBn429IaaUWgL/APgC\n+zcR+Vsi8l3m5z0R+acicioixyLy0yLimc8+LSLfISK/ajyo/11EEmc/X2e8hlMR+Tci8kXOZzdE\n5B+KyKGIPBCR7xWRdwM/APxHxus4dc7n+0Xkx0TkAvhKEfkpEfnjzv5aHpOIKBH5ZhF5XkTOReQv\niMg7zXlMReRHRSR6hPGpgL8J9IB3Ovv/NhG5LyJ3ROSPOn//PSLy78wxbonIn3c+S0Tk75rrPRWR\nnxORA/PZloj8DbO/2yLyXW8SyG5sY6/JNuCzsTfERKQP/EHgI5ds8m3Ay8A+cAD8WcDVdvovgN+N\nnpjfBfw5s98vQU/a/yWwC/wg8GERic2k+k+Bl4CngWvAjyilPg58EON1KKUmznH+EPDdwAh41LDc\n7wa+FHg/8KeBHwL+MHAD+ELgP3+1HYhIAPxxYAY8b/58Bdgy5/3HgO9zvKIL4I+gPabfA/xXIvL7\nzWffYL53w4zJB4GF+exvAQXwecCXAF9ljruxjb2tbAM+G3u99o+NZ3EG/C7gey7ZLkeH5t6hlMqV\nUj+t2sKC36uUuqWUOkaDg53Qvwn4QaXUzyqlSqXU3wZSNBC8D3gS+O+UUhdKqaVS6tUA5Z8opf61\nUqoy3tqj2F9USk2VUr8C/DLwz5VSLyilzoB/hp7kL7P3m/G5a67pPzHfs2PynWY8fgwNTM8BKKV+\nSin1MXOe/x74e8DvcL63C3yeGZOfV0pNjffztcB/Y8bjPvCXga9/xOvc2MbeNNuAz8Zer/1+41kk\nwLcC/0pErqzZ7nuATwH/XEReEJFv73x+y/n5JTSoALwD+DYTXjo1E/kN8/kN4CWlVPEazvfWq2+y\nYvecnxdrfh8+5LsfUUpNlFJ7Sqn3K6V+wvnsQefc53ZfIvLlIvKTJpx4hvZu9sx2/wfw48CPiMgr\nIvIXRSREj1UI3HHG6geBJ177JW9sY59b24DPxt4QMyvwfwiUwG9f8/m5UurblFLPAL8P+FMi8jud\nTW44Pz8FvGJ+vgV8t5nA7b++Uurvmc+eMiGtlUNedqqd3y+AvvP7OuB8K+yHgQ8DN5RSW+gclgAY\nT+l/Ukp9AfBbga9Dh+huob3CPWesxkqp97w1l7CxjV1uG/DZ2Btiou0DwDbw8TWff52IfJ6ICDpE\nVwKVs8m3iMh1EdkB/nvg75u//2/AB40nICIyMMn4EfBvgTvAh8zfExH5beZ794Drj0AG+EXgPxWR\nvoh8Hjr38nawEXCslFqKyPvQuSoAROQrReS9Juc1RYfhKqXUHeCfA/+ziIxFxDPkiN+x9ggb29hb\naBvw2djrtf9LRGboSfC7gW8wuZGuPQv8BDqv8TPA/6qU+knn8x9GT5wvAL8OfBeAUuqjwJ8Avhc4\nQYfuvtF8VgK/F51c/wya0PAHzf7+JfArwF0ROXrI+f9lIEOD1d8G/s9Hv/TPqX0z8J0icg78j8CP\nOp9dQTMLp2ig/1foUBxoDygCfhU9Xv8AnWvb2MbeViabZnIbe6tNRD4N/PFOPmRjG9vYb2LbeD4b\n29jGNraxN9024LOxjW1sYxt7020TdtvYxja2sY296bbxfDa2sY1tbGNvuq2rj3gsbG9vSz391B5U\nFagKqhKUAs8Dz9f/EPM/ehulAKW3dc0PUQKlKkgLKDvOZOApQk/hiY8nPoKn9wcgHgpFpUoUFcoe\nw1ilhMDz8CRAqgqqAspCn4uIOSea/30fwoSSikoVXBQ+WQmhp88j8hSeKH1ta0phKiUAZJWQlUJa\nQSAwCBRxAIFEUGSt88fz9P5Emh11x8oLwPMpVUGlSkqlz8AT8MRD8PDER6FQqqKipKwUpYKiEkTa\nKyXfUwSe4EuIVCXkKaSZPocwgCAEL0B5HkpVeOLrc7HjV1V6Wz/Q/7wARaXvTZFClqLmGWqRUxWC\neAoJBfE9JPQg8M2/AIIIvIBSFSgqPHzneKUeK2meK0VFZc5JqgrKHPIM8qK5j1Vzb1SpUGlJmUGZ\nC3mmyDKFeNDreQSRwk/A64cQhRAlqCAgK3MWpce80LvzRN9LEf08eCh8ARH9v70X9TPaeu6p3wWF\nvreVqupnqFIVldLPvlJCZR6BSpcmEXkVvtB+lu11ZzlqUVCmyhxO6kPbR0kPncKLQKJA34Mw0M+e\nmPfU/m+fRS0dWJ+v3lczriIegjTPRVVCWer7UJSotEQVFVUh/NLx9Egptb/ywrwGe6/sqhn5I237\nac5/XCn11a/neG93e2zB5+mnr/DRn/krsJyhlmd6Qi0yPZHEQyTs6Q2DTplIkaHyBZTZ2v2Wuzd4\n/uwW9xYhaalfooN+wdV+Rc8f0w+2CMpKH8uaOYYKYkqVU6qCUumHtKgy/Z10iTq9DdMTmC1QaYpc\nXfMuDHcod28wL7SCy9HyjHuLkINeziDUk7UvAb6EZNWCtGwrzKSl5/wsfGYWMY4qPn8Ssu3t6Otf\nnEE60+ftR3qsgqgZKzOWankGs+P6vGS4TxEnzIszFuUUX0Iir0fsD4grD3V+CID0tiAeUlDU274w\nbT+qvaDiHcOYSXQVjl6Auy9TfewF/f2nD/TYbF1BJtdI1ZK48vS9nh3CcgazuZ6o+wNIhkiyhRru\nIrMH+l6c3kZ9/Hnyj92hvDfH24oJrg7wnhjCsI+MhjDswc6BPoZXkZYXlCon9gdEXo+grPQ1lRmS\nbEEyrO9xVi30NgT6vp7dRb30CmSdySkKYTanuj8jf/GM80+XnN6NuP9KRRQL199Vsv2sEL17F++5\np+CJPeTaeznJ7/KJ05yXZyF3FrAsIfFhO4IneiUH/YLYqxhHJbGfNPeh0XN1HmrzrPoRBUX9fBZV\nVj+n9aaqIC2XTDOftPJYFPp5Oujp7WK/YhRuMwr3kOU56uhF1K3bqE/fI/v4A6qzlCJrFjFlrr/v\nhxXxjT7hzS1kb6Tv77APyXD9+2qeTSWy8k4B9Xtgf5bluX6uL47h/hHqzv16zLPDjMkP/sRLqwPz\n2mxGzp/33/dI235j+S/2Xn2r39j22IKPokIFMZIYHyBfQJA1k6k1C0jWgkhv3wWfz3wa9eAE/x33\nePez72ccfYrnz/SLHHtNLaUvIRTnbfCxgAb4QOBO5sEILo71BDW/0MBzPtOT1PEUdsbtc5tcq4EH\nYC/ZYhwt8KVP7A/08QFfAoJKX1cXgKzFvuLZrZTtuF8DT+u8XetejwWe46kGyt0cBQTs04+39Ol6\nET1/rF/809twdB+iEBXdhWSIHw8Z97YYxzfpbT/g9sWU06z9yIpSqCJDPTglf/EMSXzCcQKjASQz\nSGdEyQiy83qM1527yhfI8rzZ7+QavFtr1YQ353qiG/aR0cB4F6EGreE+he9RVunKRIwfaSC1z5Df\nPEf2PigRZHINVWbI1bwBnyhs/e9fneI9cZ/w5ozhJ46ZXIF4UJI8OyJ871XkHU/WQDgtHvDSLOVw\noY+3HcGi1P/v9woOejk7CQb8xw3oXByj8gfIaL91rvbnVwOe2B/oU/Z6xL5e2KSlVy/CwC5uTgDo\nx1sEV57Tz20cE48Tqvsz4s7tUWmJtxU3oDOZ1GO/1jrAk1Wr990uwDQw5RAn+MkICXsotHflRYdE\nSYA3ma0/zsZelz224FOpSq8+gx4yiJB0tnZiVfkC8kWzuoc2GN19GfX8S6T/7j7ZYUZ842Wirzzl\n2nvfR38345ceFMS+wpeIwIsQpVpgQ5nplfj8op541LDvgE+kJ/HZHHV+oVfsszlqWUIUIhZ8DPCk\nXqW1A4zF/oB+sKVXdy65pMzwA/1dXwKyakHhhBNjv6pXxGMZrY5N1yO0VmTau5ieoB6cwrEGQv1C\nhxqAgmvamyNAnbyMOruLunNYb0sU6ok+jlHDHvQHjPduEo+vcrR8mc/MnOkpnWlv8PiM8t4FoMNP\nfhTq48VDJIgeDppBpO9DZxsLQJyeavBx74lZpBRxQrlGWq5UBb4X6mOb8VJuWNKxGoDs+djxtQuh\nZIjaOkSe2MO/f0TyxJDo/gxJAuTpA+TGNf394S7T/IjbF1PuzZv7k/iwFakaeMZRRD/Yqj0vLo5R\ns5f0c5jlqItjGOy0QOhhwFN7egRQZqhwbDy7ixYI1bfMAFCpcvrBhPjgOX2fhj28nVMk7sIPEAUa\ndMx5qSCmUHl9zJZ1PJ6iygi8Zjzqc+2QrUqVw2BMEESo4DYShRAdEiabjhSfC3tswUehwyRgvIB4\nCDQAVIfW7O9l1g4xFRnqxRepPnGb9Bfvc+/XexzdSbhyr+Qg+XWiOGb7XV/Mb9kLOc+XRF6vWe3m\nCz1pmvBPDSpZXq+qZTTUL9ywr/+eFTXwVKcpAGJ+Z9ivJx+qRT2xU2aQZWiF/eXq5Bpk9OORDkGU\nIZksiH3aE5Mdgy5grjMLPMsZzBb62qZL1LLQGQQzqSg/Ihjto85NuOnOIdw9orw31+cV+3iTOcp6\nGFEIRUZ85Tn2kusE3h1emAbGi8xgtqC8N+fiJND5j+Ml/sEc9eAU6Q+gt9W+n93QlgEgZRcZ7hhN\nrsHkmv6ls/hQQQydUI5rpcoJrAfh64WHElnZrv58uN8K/SoR5uWUojqnPznQYzbY0SB0eqrHZf9G\nHVo8T29xuMi5twiJfQVUxGbePOgX7Cc5o3C7BgspUn0PLo7h9FQ/h1mOjBawk2lvbLgP8XAlbGWv\nt/aa0pkOW5n3JO5tESV7l4LQNPNJy7neb7BFb/u6Hvuds5VxAfRng506FJul9wENJPXz3hl7HQK8\nIKsW7XAogX7/gMCEdwG932rBKNoj3ruJslGOaM39+ixMPIiT9QuQFbt4Qw75trbHFnwEj8CLGrfb\n62kACvQE1QqtrcttmFCBJAGS6ElvNA5Ihku8vg4/qNPbjK5/EYEXtcMsYU/vO4ggyvUK350QOyEX\nPQE7wJSUzt9DvVo9ehEB4iACihWgaYWcXPBYnBGHPeLBLgWF9pCKFNLlan6rG3az4Q3XM1zjEUkS\nmHM1j1s6g7CnxyEZIqM5ajbHW5Zme1+Drr3eOK73XaqUnj/moHdGP9iCdApRgMQ+8cD5vsmVcP8I\n5Z5XYgSoI+feJsP2/XWv7RJvRZbnCOAHzirdLO7dfIISQZwQlvU+68mySNvj6RxXe6MZWbUgqCL8\nYKy9kd4WaqAnaRnt63N0FvEHvdyAT+PB9oOdFuhZYJSwp8dn2EeyQu8mChqAnR0iRUY82EF5PUqV\n1+EqdyKv8yUWyMtMfy8ZEoV7JvR1RODlXORtj6OoMjJZEA13kcFO6zM7/vYbPmEd3itV3rxbHS8m\nIMD39PXabSzgsjzWYWFAiowgGVL4zXzgS0DhQ7B7E+VH2gPa2BtujzH4tCeVUhUgejKxn0iyVU/a\nrcnVj/RnO2Pk6QOiZcHu8j7JMGB4Ffx37ukXuMjg5GX8rd36OFm1IB7saHArMj0JWmCBZrId9vTf\ntozIcnCsw0gPTuuXQXadbsxZjnrl12C8/dCQWOt/68GVGeQLnWui4/W533EBMsubUFQ3PxBE+vzT\nFMnyZlvnPNTyDEm29Mp6uA97h8jR/XoMWv+jPZDC96DSk8k4agCdYR/v+jbRi2dIEhDe3Kq/qx6c\nIFEAe0+sAlAXcOyYmM8sAIBeYdfnUqTawzM5nSAe4j5O/lqRbce6Ib7u/SozxI/qY9a5sc4EK2FP\nL5TMtv1gi/3eWX0O1jPxJVgJDdrnPRjsIEGkrwf0/eo8Q2p5pkPPvS2CICLwE5TX0+eTGhKHCQ2T\nFfrZjy5Q/VlN5oiTIYR7zItTCBfEfkng+ZeO1WWgD5gogv7euvBZPT5KEUtCYcZCA49DOsG8g/mC\nYLSPH4xbAF1QaG/zMk//NZonQhQ/YnXLxvP5zWue+ERer55cWkyYIDar1ZmeU9yVs++sjJMhspvj\nPZMTpSXeKzM98bkTbTojlmt1zBzQ7CsLQGYzAf3igp64+wM94Q50XibobaFOTRzavuRDJ0RUh+YW\n9ffr8+yQAdb+DHoFbP9ugab+v5m8VJo25www3NE5HddriDJkNNAeXZY3cXy7v24I0IKQPUaHHKCG\nu2TltP69H2w1HwYRsrtNePPEnE+//d07h/pcr1xv/uhH2otwfq+3F0s3X3CeH1GqnN34RuO9npvJ\n1lnhB8kQP+itYX/l7ZCQyfG1FjVdMzkoCyqlCvREf9kkaLbt+TaHpz2voKxQZ4eQzvDjYR2ea87N\nLLiSkX4W/Wj1GM4CxA092zxai1hiiTDWY50tYNiAUDy5hh/u6fCWrJIArFf1KNYNs73qtpbNZnOE\nM3P8YQ79TD+/vS2iZNS6h4XvEdiw68beUHtswYeq1K65P65jwml5QeBFRJ6hX9owHNSTk52YxMTl\n6WfIbo7/zlznKp55op0wLTLUgxcJhvsE8bB++VcAyGU59QfI3k3SKOA01b3PRuEe/b2bmhUWRJqg\nAA37zeRX3JBVTQc2oTnc41jL2itiCyztbfK1P9tqIYIITLikG1KsQ4NR0PJkXO8Hsw+bvNerdu0t\n2tX+3AEeoE2gMJ6Wd327tQ1Zjpo2k61EIewc6Al0cq0OM3bNMqTO8yOOl5BWHpF3xCS6qr2eCz3Z\n6pxchjJhWkmaMJw7gSmR2kuoJ2x3QoeVfKILQK2wkvneWtAC+p5hRy7PUA4oyGiIeuKYaLBTg1Br\nwZWMtAdkqOFAQ4SZLWpvhv5AL1LiYZO3PJ6iHpygjs5Ry0KHoseJzpWkaQNCQDDcZ5TssSinpOUF\nvoQtMsBlVoNvJ//YjUg0N7EdKlbLs/p61INTvYCDxjs390LAEA7iptzB39Tify7s8QUf0A9osMqs\nsR6KL2Edr18JA7jx8ihEdrfx7EQL7YkWzISSEQW9GuyU10OSYQNASxOm2LtJ6lXMi1OOzdzpyxl+\nuEe86wDQ9KTZv32BliXihvEeZmu8mdVtHq0ojk5+THuKFzqfddm+zfZFnOjJPr1FUem6E1+Cmhru\nS1CHoJp7E7T2Ye+BSlPjBeZrgFb/LmFPs6Gq5vq7IBR5PXr+mHF0QloqYn+wEvZqjV++QJKmoanN\ni3St9ugswDhAU4N553PpTqyPYpcRK9xfq6zOU5WqwPcDvcq/ONahKUPmUA9OmsWMDaFaj+i4vShY\nsSyvqcv2Oyvj2LHX4gGtXJs7Ti55yITZLn2e3fByENXnuI5o8dmaeBDHj0g4eAzs8QUfz0cFcR12\n8yUErwlZdKnJ9ucWCNkVoGE7CzQr/P5gbYGqAFHghFLsfmziO9bJb5+C2B+wk+jz03TpoD3J7xzA\njk6aMj2pV3DdsBOwCopB+yXVYb9crwofZjbfNBrqGqPhjvZeDBMpSNs1Q3UoZjRYOb4tOnXzKr4U\nOpHtRTVD0LLEoAMSSmnqbTLUIaMg0mOR5XrSHPbrnJNc3dd5H0uQKFKiYL33YI8xCvfoB1uUqmiK\nL33j5e2Y+2Cv3yStedhEFUR1Hcla2n6Z1aEtoKH4F1lNiqg/M2smSymGogHTfh9/8E6CA02jxniY\narjLopwyz16uCQNU1M99fQ75ogYv61UDOoRqiAkMe+2J3Iy1JHlNla/NhoQtGFySz3Hfue6En1UL\nIr+HH4wQpZCyDTZ2HHzrZVorsprZBsBkoj1gsyiS0aCpGzLPsc31vVGg87kwEflq4K+iSwP/ulLq\nQ53PxXz+tej27N+olPoF89mngXN0UUahlPqyzne/DfhLwL5S6sj87TvQjRZL4L9WSv34672GxxZ8\nFGql+Gwt8LiTAbQmwtZk0jcvQxS260FgZdUqSrVj1oEhMCzPWuEUX8JOHN8UqHbNAhHoFd5lNS12\nWzPx12PhUKgF2gDULXoEZHeyUnNhX9YgiPWYpAZ0DIVcnV/o79nr7QAP6HoRW5NRA0/RyS+t8wBM\nGI2w15Al+rMGiLJcA0/ceCbq/LDJ+TzEqwjKigBPv+L2+p0ktKUip2rJPNdqDv1g0vLMWpPhZUXK\nsLL6BifPssb7SdWSsmqUMNaefy+C3p6mHC9foKjKpuYmXBB5ELDm+o3Xo+un5kjsI8sSyXIN6p3N\nJY5RO1vrPYss1xO9u/sqq71Ye/w6tOaEuUpVcJrdAaifidgf4PuB+Vwvduw4+FK0VBpqIHXN5EPF\n5kZtwaqhXWfl6rzwRpgnkPRefwjPdLD9PuB3oRso/pyIfFgp9avOZl+DbuD4LPDlwPeb/619pQWW\nzr5vAF+Fbs5o//YFwNcD7wGeBH5CRN5lmjl+1vbYgs86XTMLPCvWWWWtnUyS4frV7LqJrQNo9X7M\nCrr1ZxMP9yV4aLjCssGCstJhORtmcJltUANG4Xv1tbrx9Fr17RIPSHYnsPeEritKRqTVgtQk5UtV\n0ItvILZeKiuaOp/hXHs/UahXlx0CgTXLzgoINA156axa3TDVurE1ObRWUt/mCeL2uIIBoHUUcSsh\nZAuArecRD2vpHwveKhnV+aFppse6VAWjcO9y1psFEheAujR29zrtfXEAKFVLzRyjCUVaa6SZ9Nww\nzXyjDGH/aTsgh3DheP3mszLTOcQHJ5T35hSv6IJWfydBlgVeljdekJPflDhu5y+hqV+z14StwclJ\nyyX9QN+X2qsvMvxgVD9Pp9mdWlppEi3YSRa1NFH3eut8Ybin66us12Pzo5aE4/482GnJOa1TQ3gb\n2vuATymlXgAQkR8BPoDuXmvtA8DfUVrM7iMiMhGRq6bV+sPsLwN/GvgnnX39iFIqBV4UkU+Zc/iZ\n13MRjy34KKVaseW1K9XXQLF0admflV1Gj8bxetaAjwWd8/yIeTajHwwZ7d5otOCc/ctwvw4PWQme\nGty8ED9OCNhvA5AzkdjQlQz3UcmoZoJZdYS09OgHU/oGQFWaopYFKi2b/SRDZLRviiez9jlYlpYt\nAnQLW3HIDR3Jo26YxPdCXTNySZIaqO9tK88CbUKA1YDLioYVZbxDWwS6KKc1MeGekbPROmZH9IMt\n7bkuV73V2mN2Ke1d+nXrd/O5H9XAMy/asi+BpxmcabnkcBlymoYcLgLuLBpdt9hXjKOSSVwS+xW+\nJC1Pk+UDo3RQQJZTzXN9/4DyeIm/kzR5RZvPsQAUBdqbcCWgrBkPVB29SBA8RxwOKFWhFQ6MtE89\nNrMHMBhznh9xZ+7x8ky/o9PII60K9pPlpXmh+l1ZM+b1c+OWTHSAZ16c1YtQOy5vQ7sG3HJ+f5m2\nV3PZNteAO+jH/idEpAR+UCn1QwAi8gHgtlLql6QdGr0GfGTNvl6XPbbg4yG1woFrbpIbxzvomii1\nkty8jIEEXB6GewQNLTwoVdCE6tzVvFkp6pfFN4nuAuKEYHKtBiALPKBDSaNQM46s2Yk7iIewOGvC\nbA5LTr30CpxfwNUZ5AvGk2vMK/2S+6JVFDRI6uu1RbhAQ781WmjzrKlHwUjf9cKxDrMVpmjRHe81\nY2snDAti1muqw6ZlezJ3ZXZqinvX83G2q4tTO56P9XbS4oLz/ITDZci9ecD9hc9WpJjEpbm2EJk9\n0IWaw/2VeiJxPZtuMW/XTE5LPxv5irfTD4aajacUo7BgFJ6x6E856OXsG8WDSVQ4QqLDRnapSKGs\noDjXwGs9hSjE64dUsV97Pt5WjIyTdgGwZVQ61ycYEotlldmiYUDd/SS94Q794T7M56j8wcq9Di6m\n7A5v4MsdYk8vGuy5+xLXhabu4tEKhFI6Gn3DfV3L4wKOW9tlPOKAALwehZfVRamXRkI+SxNPiJNH\nDrvtichHnd9/yILEG2C/XSl1W0SeAP5fEfkE8FHgz6JDbm+KPbbgQ6l1pWzoAuDufEHszxmEUq8E\nXXUC1zuqQ1aPykJ6BMZSV4FXqyQXbSqqu0q2agxK1XUvTfV3oemzNrfTCefJ8px+PGpRbkuVa76w\ne07LJqwrAMdnqCxHruaoMqM/uYYfhMyL05qlVqNJpCm3khiG1HgbkiHz4ozDRc5+r3mxAy9qigBf\nzYOMh8yrc4rOJB3ZwkdXNaA7kZtJ59L6LftzjGav2bE2itQ2zJhVC6ZZxr1FzOEi4O5CWJawFWkh\nWV9iIq+HOn1eqyzszJC9m22PLRnpc1Gq8b66Hp/NLYU9c47FSn5nFG4zlhHq7idQRYafDBkP9xkl\nzzAKp+z3zkyuZNKWl0mnqHzRDkC7Yc4oxD9oiAM18Liq3hZ0bMI+iJoFTxTUYTgZdcKes2OUYXd2\n3wurmCGzB2wPruAPHtTyOGvzsukMijlqdqiBxobSzD2WvZs8irlFufX+H1Zf9bm1oy4RwLHbwA3n\n9+vmb4+0jVLK/n9fRP4ROoR2AtwErNdzHfgFEXnfIx7vNdvjCz55RpwVzM1CZF7M+OjhsBZgnEQL\nxtGsDmXE/mCtq+/SsS+1RwCowrCVXOFGK09fA6EFPweAVL5A0hlBPKyBx5pVU2i9PLbC20yo8eQa\nhd8U27aYSFleh80k9k0Nh0k6Z7n+v8h08WC816hp25Wmo80mo4EOb/gei3TKZ2YRsZ8yjqy6cg8u\nppfrx9lmKLUoAAAgAElEQVTVqgGe8/yoJmOABl3tNT3iROGoHFhbYWEFcU3Fz6oF8+wOWbXgIldM\nc5/TNOJwEXCS6ZYFFqdjX9EPJnDyMurWbbh7BOd6Uq8BKB6uLXCOYi3zVAvdWhKFAS3X4wk8n0l0\nlTgrUHc/1rRkGPZh9x7sHNAf7tNLbuixWcxQyyM96TveTcsjcwRuLWvNW5bt+rHdSdPOwMlVWuKJ\n1UVjdtwUT9uC6Nm8XWezs6X356oquJJNF8eMkxEqjB1vVntpNUi72nSzuabcP/V0W/XazfldAiai\nVLOAcUHnUZ+pN89+DnhWRG6iQeDrgT/U2ebDwLeafNCXA2dKqTsiMgA8pdS5+fmrgO9USn0MeMJ+\n2TDivkwpdSQiHwZ+WET+FzTh4Fng377ei3iMwadA3f0ko3d8MQ/SW/ybu0P+5WcCnhiVXBuEPD0M\nDAgVjKNZneTsTvDwcABSXernms+73g40fVHS0iP2F/q4pZOPyHLt+QSNF2RriFwrKOqbrM4P9Ytq\nJxhTIBlMruEnOsZes7psjN7E++3/gAahpc7j2BqlYHKNfrxlwNnQrS3lNss1xXW0z7w4487c4/7C\nJ/Yj3r2dE3imX9GyIyrZNQd47sw99pOTWijT9uu51LpkkIfotrkJbNujpw06PtPM5yyTGnguCrsv\nxSAUYklQZ3drwVQfYDRE8SKyd5MiLlpet73/voQ6V5SMazC1XlpXw203Nrm9u59EvfQK1Qv3KU+W\nBFeHehKeLVA7x1qBwslhtSZ/Q4muhWy79WFR2ITZbEsJt4+OE4a04DwK9+gbXTS421D4jRCuJTEA\nBE+e4R8cwZW9BoTqkdQmAPlhc+kWFKzau9l3dX+GSkv82Vw/l0/psFsaBaTFg0ZQ9SGLQVkHOm8Q\n+IhA9AbU+SilChH5VuDH0W/s31RK/YqIfNB8/gPAj6Fp1p9CU63/qPn6AfCPjHcTAD+slPp/XuV4\nvyIiP4omNBTAt7xepps9+GNr6vmX8LOcg2ffz2+98imWZeP5gG5YllYeaakIvGYycmuCoCmKW1sL\ntOZ3aCjbdZLceDVuz51RaBS30yXq/kvNyxdEbaWBfFFX2EdG4sWukEtV4Ae9Vq+ali1nWrZnuM9o\nuKcnvNE+Kp0huwt8275hnXUmqpo664QYJY61mnUQoY5eZBQPeffkgP3kZbbjA/oqRp3c1pOje31d\nM55K3xvhRyG+HNEPdloV/SxnKzTylpnzsvdjnUqz/X/dZ4MwB0piryL2FbHvsRV5nGXColQsS90v\nx5dQH8N6f64ZDT5//wbbjmxLrZxhlRBy536Z87YsMZegQVAZEscQb2LEMk1ojGGv8fDcolO3GNoe\n/3zW5HCiQIdMMQCwo0NYsjtpvmcWPGp22IjTJjuoKNZ5rtOP1YucWrXdmJgckv25OW5nrCwpxJIR\n7DNiF0bnbS+tnV8M9L1ORjUoliqn9B1B1HWs065ZAsrbzJRSP4YGGPdvP+D8rIBvWfO9F4AvfoT9\nP935/buB7/4sT3etveXgYzjrH0WzLL5ORHaAvw88DXwa+ANKqROz7dpCJxH5UuBvAT30DfmTSj3E\n3YCaOabuHMLsJ7n2Bf8hX/PUaU2Xda3bAbRrj1SQ2j28AzzNfoLG7bfU59OXVknhQQR9WnkklS8Q\nQ/t2lZZXes0Y5YGWLWe1wCKm9kX2bmqttZ0x3DlsJo+u+vawr0Ma8ZCyOjdqyaNasZphR2kgnRHd\nn3Ft72YDOpfkZaxJstWaJGJJiKPrphL/k/r7bj8kaAOQk2x+GPDYmiL8qFZFtqKcNhwaeRrYd5J8\nxRNKS2ESFfhiQkyDHdjZ0l7PzlZbi+/wlq6Fgtb1Kzv2HevSgC0AqSCGK59v6N89/NmiLv5tvrxm\njNeZDafWXlCglQlgFbCKrOlSS1sXUNk2IWaf3WJULwoJk0BT8J8YIlef0OfslivYY7iMQ2grWNjz\nMv/Lkzu6zcjOlmZl9rYo6sVd2PqHDdF2wKeg0DTtTqj6jTDPg/hRhUUfA3vLwQf4k8DHqXUC+Hbg\nXyilPiQi325+/zOvUuj0/cCfAH4WDT5fDfyzRzq6qeJWP/uT7H7Rb2EyecpQiAvHK2kk8l+LtQpS\nO9ad/JqmWI7y7tF9DY7QdHB0w0edSVotzpDeltancibalbDfOumdItO9daApvkyGyPX3wvC2bppn\nV5pWpmY0rAttCxqvsPAKgmQIy7O1q2wA9fLH9A/r2kZ3a3k6ZIla/sWZmNR5M0HYFXsLgDrAY2tC\n6u+YJn+u2XHU0vw9Sq8Jx5Uqp+dnDMIp47CsQci2MihVrlXCdyf6XGyBrblmdX6hQd0dA/v/sxfI\nk+9qCk2T0UpN1AoFePu6DoEZdeqWda+r28LDHtsFb/d8u/fQKEhYq+WTXFmjdffVBYq9UHvru9sa\neLrerqMrV9O2rcezLFFLDUa2rXltwz5ydd/pQ7RsLcDqejkLyK4Mo+kVNAr3agJIi/23sTfU3lLw\nEZHrwO9Bu3N/yvz5A8BXmJ//NvBTwJ/hkkInkxgbK6U+Yvb5d4Dfz6OCD9RKvOrf/wL+1X0mOwd1\nBf55vlIEfLmtcePXAVC3l7ylF2tP53bdQ768daZbQ8c+wZNH+De22qtEeyxnlaYWZzWVVOLhpfVB\nrWtv/XxXJ/fNhF/4HuXOVeLhPhy9qM/NTjZRoLdLdPI8qxb4UhBUkfZ+ki2d3IZaSVg9OKkb4lkB\nykYI1SpxZ+06DD9q94w5PW2KYDuTkiR+U6cENcXZ9TTbC4ugvRKGdmGuzblgXpYg0ooHxBCMiP0B\nPf+CcbRgHGamdsaRMBpvN0y2zvWrtNR1NGYytXm16P4M7/NPkZs3kcm1lTye25jQNZWMIBnpsJcb\nKlqn82bFZjvjhx079370B+2QlwsI5lrKk2ULFHSfKx+vb1ihsY83iRugsFpxFngcz6mbm7KFyuvG\nK0xL/IO8HRoc7jT3vGruc80atVGFfKFlevyoBp5FOdU5RD9xzuU3ROHpbzh7qz2fv4Kuph05fztw\nqnDvohNkcHmhU25+7v59xUTkm4BvAnhqf7XiHdAv1HIGyRYBMEmutuphrL2WOgAXgFaAxwEGKwVi\nQwv6RdMvczXP8Y2XJgBPRNSK2+usyIBZU9tSZKt9ZNYpXWd5LZKZehWn6W2KqmQUbjO6/kUweBk5\nvGVaN/S1RxHEFPk5RVVSUNbhw8Dq1c2OG50wu3JNbeO3vO7GWgt1mvmprscoO+dvt1uzylZGAoas\n0K28bT1NrTbdrp96qHJEp5h15W9l1tKHG1un1IuMQoMZa9vwz4C2vf7uRGrvdV2UaxYj8cFzqIcU\nO1pChKXm93tb9IbPrILQI5hmNDpjaskFdiKmHfqy19IFUGuGdI+HI3rrUrXXePDAito6sBaoq3mu\n2Xg46huG8r1Om02/r22hWysyq5+Lsi45ULNDvdC5c/+1DOGl9kYRDn6z2FsGPiLydcB9pdTPi8hX\nrNtGKaVE5OG5m9dgpkjrhwC+7AuuqroZmxvXNn106nqQ5Tm9ZLxS2LcWeC6T0qGpB3KT2fWK1kOr\nC8RDXUG/q2PvgZPoD29u1as7dT7TsfgJqyEp15xYf52Qv2wV3P25yIjjIaNwr64rOc+PdDvnsFcX\nThaDMefZnbraPvD8ulJ8lOyt9CyyXolvu41aFpUtVhxvNzI23SJMwLZPoKuUbUOBiabrqTTVY7Sc\n6W6UQdTRDMuhMpOR6PDayiT4ENUJa6IUVoG7HkKvpz01O+bGs5ar+5ohuLtAzmf4LnC6nsfTB8iN\na8213/6YzgOtkQgC6tYgtj/VvDjTlfpRQL9/lTjZQh29uFZxYF0oq9mm+d32W1L5Qrcmr1stnOCP\ndfFpdZZqMOh3iCjHSyos0SCvgViioF5o2PGWZEvnAe09jkL9HcDfTlBpSXnciNd6/bBV9OqGa0u1\nJC0vSMtlXYCtW8UnWFks+85GXq+eDTXt/1jXIt05pLz19iMc/Gawt9Lz+W3A7xORrwUSYCwifxe4\nZzWIROQqYJcdlxU63TY/d//+cPN9eGJP/+xWt69hSsnynCAe4nthKw/k2lpKtZu0tAKRSjksuebl\nLlVBphb0J9daki/1DdpxmqeBFuq0QOEA0DolgLXAYybEFXPZUUFGLxhzXjWhx3lxRn+wRTDYIVVL\nzrO7pOVyZTfWW2wBkNXBsw3x3J5DVuBxjb5dSy7frMJlNGgntWmAp7as0JNkEEHYIxjsgLhU6rwl\nySMu2HQXEg8pNLT30wJQQKBDhC15HpoJcidEbLjJCWfVa2JXg6zIdL+c+QXsHOiF0ZpFjhWrDbwR\nqVwYD6/QsktRwPaV51B3P9mMy0Os9h7NebnesoQ9mFyDCWYB0jNe8Ax/PEcM3dma671bD8lK87TO\nwwBPMRgTAIrbuo7MHpeGLefvJLUX5G3Fq2w5J+SWVQsOlyGxV7HfWxB4kW5lYvNpTkjcApCVplJ3\nDqlePiH7eFuBYWNvjL1l4KOU+g7gOwCM5/PfKqX+sIh8D/ANwIfM/1bgbm2hk1KqFJGpiLwfTTj4\nI8Bfe9UT8EP9IkPj+ncZQQ7NUgrdVyUwml6vautaJTsA1N1HWl6wKKf40VViC0DrFIKtmdqJei+d\nCbsl19JVul4HQA9ptdAPtloyNraYdFFOa/HKdbYop7oFdDJuOmVigNVSejs1I2vDXF0z1ypoEF6R\nArI/x3EdRrXhNz8ZAU0M35Uv8oN45d7UNPo1+TXXXJo2y/Na0NKSNARgxwH7rSvtTqrG1NGLzTXP\nL1AvvYI6Oter+51TuHq8+t1Ormo02OM0u1uf/88fCl+6f8qeBaBovdfThEL1tKDSVIOLzY+4Cxvb\nyiIeQv+4BiEvClFH51Rn7RAjaCCS2AeWjRdsFoCSbJH2+5ymt9gd3DAABJIVjYhplGNryDyAfqgX\nHJZabdmfQVSHIS9yxb15YKjxGb5cGCWDtpKHtcjroWYv6Nzmp++RfeKYs/uPqGLyaibgh9Wrb/eY\n2Fud81lnHwJ+VET+GPAS8AfgVQudvpmGav3PeBSyQRDVvTvqkFoUaJFDQ4F1a0earps6j6LWNKED\nLl8hdyYICSKioFd3dJwXM6aZjy9HEO5pALLJ7qxo4uzQnmRni4YhFg/bCgHdifsyMHPbQKwbKgJK\nCSnQ+7PSMrH/6i+SBapeMtbj5o6HK8ti+gFBh/bcFQSF5lyjXHtA0KojsVaHduzqvch0Hx+/1xI1\nrfXw6i+29/PQFtaONeSRDtC7495qFni8so/RwTvxT+9pRt+DU6qXTyhPlvjLAu7P8I7PkKtT1M7d\nNp3aHR7TVXaaZfzycY9/fc8DCt73xIzt6+9FvfALr3ot7QWKybcZIooWptXeQH9yQDDa1wXM/WM9\n3lGIn+hWDNbqvFBaNvU4oMdqsEMxGHOa3tIK1mMHgMw7YNmMMtZ5wurUkl4aFQ13n77pijvNNQ0+\n9jUtfhwZL0xkbbGpFClqOUOdz6jOUvJpyezBGwQ+G2vZ2wJ8lFI/hWa1oZR6APzOS7ZbW+iklPoo\n8IWv6aBV0VJDriVt/IGWOCFAiqxZrVsG2CWV8VKkK39b601BLZopvS368aheNQfegn6wpQGwmJn8\nhqlAB2e1WjSNsBzPoT5P0BMFxgNyVBAAPZm45+jUwdjzcuti7CrSVY4ehELxCIs4mxsrVQ6+pycq\naLxAV6izvGhCV5bhZhQd6nCovS6bo1nOmuZglm69TvDSAVcrrNplkXXp1wD+6T3UxfGKLpv+cM2z\nYO+302JdnV/ocxnqFtZzSUmLi1oNvD1eIePJNV3k6wqzGqvuzzQI2fqYp55eGXML4uMo4ssPlsR+\nxPue8In9AXNSevs3wFEsFyOV1CIZDPtrikr1omueH7EopxwvYRyd0A+G9Ld2iUf7qMEhMrwLoyH+\n8ASJTygN683bihuZHquWsHUFtq9zmt7iztzjcBGQlsK7t28x6V8lvvIcKnhR68Q5VH/PsvXsfkzY\n1p5rUGQtYdLYV+wlW7UG4qXdUtfURAXRG5N21nXHb1gK+ze8vS3A5y2xqkSKFN8PWhTceXFGKhf0\ng4mW5TegcqmnA81q11XPtdYBoJouXGR6ghnua/21YIJfmuZxl2mU2Q6pGDDqijLaVsxOeETCni4c\ndbTg3P5E9bZu/ZALOkUbdKDRYstksZLvKaqSwPPr7axQY/25ASB3MluY9gqtfJodA8uw6oR9ZLQP\nvS09nqmpzrfyMF1PzubyXNVl08n0Yf1b/Ae3UM9/UntVV0+Rp9/TCm92gcf1emxuRAURMsm0x2OB\nx7DSHhayrPfp0JVdyz95hHfrTL/ADgDJcL/R2EOPpQWeepvJNbiqw3ItD8fmYCxoW5vNV57joio5\nzWLSygNSxuErjKOI0daeBqHhbWRnjDfs4zlSPq0FUxDB9nUepLc4XOScpvqYFoC+cMeoYFx5DpXc\nRobHTV2XiQTUjQ3tfXHeAVeY9FHaI6xjPW7A4nNnjy/4lAXq/BB/+zo2B2DVDQZhTpkXtZabLwHd\n9si1qrUDPFbmpgU+fvPSunUqtkeMAsgXxKN9/GBrNWyzjoFlWUHdcJT9Xic2X1CAn2iV624IyWlD\nDDYJrztkWm+ne939YEtTqSv9XQtAWoeucYcir7f2hS98r24Ylpmw4+pGHR27ZNhcl6GBW4ZgXQOU\nzJox6gJrJ5dlC3Ij43XZa7dAaYGn/KXPULwyI3r3OV5WwM13aeAzcjethnxrFgyuqnjqVRRm7F+1\nRXMQ1VprOk9iTv3OBemtORenIcnggnH8An4UwBXNuSnihCzTNVC+BHoR5fVqOjbAvDqnv3dzvYjr\nrBMKtKA0v9DsSnPuaekxzfQ/gFNfn+NTw1fYjvtM9p5p2njYWi+b2zNRBBXEnGZ3NPBk7alomvn8\n/OGAZ7eOuNLv6f0lW6hEFxeLBTQXeByz1yYXx4yDmCJYn+NZsTX3cANAnxt7jMGnhHSmJ3sxeYxc\nv0BpWRH7mQYhM8GsWzm1gMcQE2qmmhOiExMeIp01BZJZDra18NiIczpJ5MvyHG6736Ac6lg7rCU4\nqGRU55Ra7SGcrpW2DTGqmRAt6FzkinuLkF5QsZ/kxH5SN0gTpfAdVem0XOqYOhB4OMAdrujYAU5d\nyuok3KpAt5OMqb2yk/h5flRTnK0StM3V1ePVJQkUTofSomkMZwFIy+f08B/cgs98muoTt5n/0jEX\npyGT9D4x4EUBPN2jGIzJqgU9P1w//tbMc5Aa2m+jrhCarHnnNrvtM5xcRnHngvLeBWf3I2YPepw+\nUMRxyNPhIcNEl73K0++pK/Qjr6fzF2eHUGb4QN9Rn1ZDZ6xdG+7r+hYLQqagVDA50OFunUu5v2iz\nCxcl3JoFfN5WzlPD57XXcvBcc18MWSetFpQqJc2OOUnnpJV977okHOGXj3ukVUrWf4FRb49+clMX\nYtvFxLpSA6fY2y4IAzcq4TdFx63FQ8dc0H8jTLwNkLn2+IIP1BNcFPeY0+byx35F5A1NO+TVsMcK\n8NjJ0lmh29BVFPQQW7XvTChi20oHTiW/079FlU1Bo9uFNKvOSUsdGown1/TK38qqFFldg2Np3S54\nNl1C56jhbitE05L293r4UUHsa3Aahdv0gy39/c6L6obV0lKI/ZLIs/tz2x23W0bYv7WOKUED2Dbn\nleWtiSMGStMIzU6yLI8bZmLSpqXXiwDfUL1tozqTN3LVxIN0qb3RYQ9vEhOOfZK8RGJHjSGImBdn\n9TVEXq+pE7LPQCcfFEnPAfyiNdZufx4bdpVkCxUday20yRw/LanOUpJByfLcJ449ekNFOPb1eaGp\nz/3BOzVtv9L1LLZjal2wazy2y8KNNTMR4Phe3RBOATI7RpItRv099pOXuTFsT86xrzjo5WzHfUbh\nVX1t6MaG5kpB2TxgQM8fU6pbpGVez0TTDGIfw05T9cKn52/T90ZNd15XEcH+b73k8fYqHX0N8Oh7\n0YR6RalascMKlXpbMcnJw6npG/vs7PEGH9DMmGSELwHjUD/IsV/pBl3BrlZ8djsfug+9Czxd8UFH\nhfg0O6UfTYh3b+rV+7jpp2M9mXolFsQ1fboVWjP5ERumshOY8noN3dqu7gwA2XBeFBq16oupPl8j\nRc+V64z2nrlUQkiHbYZNq+O121iyhE/sNSE3O7lZJQhbQe62jOgey676S5XrTqzBNU0sKLOV+pa+\nik1/mjtNuwCrTdZvmpTZ0Fs5GNeMRqLd+jhFdQ5WWCHYQp2ZzsM7B8h7dAFadJriXd9G3v0scuU5\nTqpj5vmsvo7Cy7QHlrhCHeYeOmFO+7IFfoJt2qdEwG8mwZq4YlhxBBHEMf7ODP/GFuGtM3qvzNg9\nXBJEiuT9N5B3PKm/c3SfYHKN0hRNp2oJ/T6+jJt7YjrPFlXW9rK6ZidyI28jWa5bQiSHxMlNRuE2\nTw3PiP2q7nnVDyaPpIEYlJWmlAN7B8/hy11O0jZbsRdUjMPSANk1gosp6uzFVe/SpaWbiIJkOVyJ\nWs9LYdhvqOUKm1GPvX5eI79HYIRdJY6JEx9JVlmJG3v99niDj83TKEXsDxiE+gGcRNeJKw9175Na\n3BN0bHmw00p6t4DHsoUcZd5SFZyk95hmPjvJgp4/1gWaVq7EhM/KzgvhB7Ghgc6aHJJpPlZUWc2S\nijwtdtm6iQ4AwUyHlpKtGnTUnUM4PtPnen6BFBnjg+eYFg9WWgnYfMGlVOMOCSP2FWkppKUHlPii\nxUYDL2o1yFtXqFurDbuX4nsETtuB2i4TFrXsrd1tGF5Af1C3wg4GO5Q0gDcvTlvHC7yo8Xqs7Rwg\nXxLiH0/hySeRg+c4yfVEOc31d8dhE54t/bzV4A5o8lFrTMJefX+tblzLDACpZIgYoU1/5xT/xhnh\n/RneJEaefUfrK1aOJ1UNEcT1bl3rdkStwaj2IgqYzSnuzPC3E7ydGTI9QcVDRts6x2R75HDyMpz9\nir4fe0/onkX+alwxuJiijl5sGt8tZ2xfeY64P4D5Yd2uYhxFjMID/R4+uLVe/dyeq9WBOz7TKhFZ\njrjv62CnpoY/zOziqB9MtKRRECFRQLSuGPuzMBFFEG/qfKw9vuBTOdNMmRn5/JBJdEW/IKe3my6U\nADunyOgI5Uq/u8BjxQeNB1Sgq8ufP0uYZj77WcFB74xxpOnUfhRSVudrJwBfNNlB4mFNj9Yg1TQ1\nS0uffmCAwp6LLRptAZApXDyeou7cp7o/I3/xTIsy3pxriZciY3zlOabqvGao2XonNXtBT8jWi1hT\nD6SBowCyWtUZLHkhoCzboGNZXr5vCzMDc92rj2NB0YRESiO8enyvyZvZ1flSh6Uk9jW7yqUL9weG\nEaf3f5rd4eMnIU8N5+yZEJ0O6XyyGU9rw52aDnyU3jKts8M60b6IPHp5xTicMwj14mAUmsLJIm3Y\neNCePIusBsb6mF2qu/m7TK41gLCjFxH+O1brmgC9WAoior1n6rzakQlHjqNmjNeFkosqo24mWGS6\n1uU0rWtqvOMzGJmi0t4W42CEuv+iPuZLr5B/8gi1LAmuDvCe+TX8dz5tGuclWvXh3idRr7yCeuk2\n2ce1NxGZe9h/8l1cGzzJ0fLlVtRBnd1tlN279Hnr7czmqKNzijszffxlgb97BDe1wOi8OtcF3A9R\np3ebN+px15EK5UeNksjbyETkq4G/ir5jf10p9aHO52I+/1p0M7lvVEr9gvN5q5WN+dvadjYi8jS6\n84B5QfiIUuqDr/caHl/wWWO2JkXli6YRltXbsnpUWU6tutxZiSlLIDA5gbRcMs0GnGVC7HukZcQk\nLhmHhwxCcY6rH+6+yWPUYpdOEtsP2pX5sa/q2H7A5TRwoC3qmZa1iKUVK7UTWxBa/bmgObZLE6eR\n/VlXkBr7VfPyYkGm01nVoReXKm8REwLzOGqgbfJDgRdpkkN39btGl6wl4WK3icz3ooDT7A4vTAN+\n7UwfaxBONVi4hAHDJrQeZ0FBVk6JvJ4RD80Afc8mpmhRe3ywkxhZoXCPlhhqPQBrfnafJd/xPuyx\nq4VuoBcnuoB0ck2rNuQLDWyu522+K0qRlhfcvpjy/Jn21vd7BQe9OYNQGIWrHXmtqXzRjK3tZLu0\nHW1TXf9miRvTEy1Dc39GeW9e34docgajI1QQEezdRJ3fNuUFaVtMdbrUHVfzBb6MTZh3S7NCL47h\neKo9dYwsk9P0zuaj9DNQdJ6DFDEtQvxotyUE7IYbXXJNWvqGOj7Xz1+wRX9yrc0efR0mAsEboHBg\ngOP7gN+FFlL+ORH5sFLqV53NvgatAvMsuo3295v/rXVb2cAl7WzMZ7+ulPoPXvfJO/b4gk8UapmS\nyTXm1Tnz/MxQhu8wMSEFcbaV0aCmddYTk83JlBn0TYhssEPqVWS5Tvg+u7Xk3qJZOZ2mvgkt6JfZ\n1sS4LDLKTCfQ7eSCJhz0Bzv4YYgvp3XOZF6cUXg9xgfPwfC4XcdjbedAi0HunuIPD2sRSP+de8iz\n70CuPMc8VJznRzWjzw/GmiQRD1sFoe4K3ea0XI001+y1XfY3t7lXXHl6gkKz/gI/oXDEW7NqoRUo\nDp5DxbcbcUsbPuwUSdb3y3oXgx3OMy1+/sy4YJp5PDXMiLy+YZ5FjWxP4nge6YwgiPCDcZ2b6QcL\ntuMLzdTqMLSOlw0A9eMtgsABCli9Nw/rpJnONIvP67UIDr6ExP0BcaXJLcoy/ZbNs1JQsCinnGYB\ndxfClV7jkVqihr6H7dybKNWEHg3NW5IAfydpyxhZb262aBY1y4IiEzwDBJzPdLhwOdPXnQyRmzqf\nYq/ae+4pXae0fR1UTuwPtJdk+uioByeo6dLcl7wm7Cj3fkch3hNDrYiQlroA1/YjOrtLBOxu31jL\naNM1ZUC4QC+vNDhMs4xSHVH4Gf3B1sr33mJ7H/Ap05UUEfkRdMsZF3w+APwd01TzIyIycTQz17Wy\nseSnViYAACAASURBVN/5CvOz287mc2KPL/iYArd5OeU8PzJdKUP2kxkWgCTsNSKPNn5sqZ1+BDG6\nHwg0Ia5kxHl6qz7Mfi/kNFOtSeo0CxhHjQcQeT0NPMvzVRKDEeC0Xkc82MEP95gXZ3VSP6sWHGUv\nMxlcISiHLY+lnvQGO6bQcYLcP0LSVDfdcoBHV6zrScWXkCgZtT2dbk1QVayEDYEV2Z1uiMdSXK3X\no4HnEM7uamKFyVMFyRC/0xY8VUvY2m1YfoszJDXadbbplytSasBnbrqsWntqmJkwlHNuvhMCc205\nQ5jVuZkgiOmHI0ZhwYP0Fo7IMqdZQFpV7CcnBqhMsbKbN+tILT3UDAAFXkRZNgyteXFKKqFufb48\n1yDk0I/nxZl+pjOPZdmmMbuK7O71lyrX5+gApO3L06IdO96y2/4DoMw93S7iLMXfMyHR5LAdRnz2\nOb04yAoNPHvPtJiDNZDOFnXOCYyCtQFDcVXRQQPQ9W39vuxstYtkz+7qZ6Vbfwe6vs68TzAl9sva\ne7/IFRe5DpW/BbYnIh91fv8ho8oPumXMLeezl2l7NZdtcw24w/pWNnB5OxuAmyLyi8AZ8OeUUj/9\nGq9nxR5b8FGez3l+xHl+wjTzOc3C+gW1ADQa7OmeNFAz0sCyY8yK0SZVjVDheXaHrj0zLlotl21S\nXtO5e/SDLWR5rpPoDui4Peoly+tW18FoX4cmClqU2QfpLXr+WCtJGyq4uCGdsKe9tWSo+5+YinsL\nPLbQL/AW+vICiI1sT+vazQKyS5d2Q27WLms7bmt0WsBzbPomDS9QY32t0tsiiIctsgDAtHhAEEZE\n8QEB1wx93AljOQzCUhWcZ21G306ymmtqCWe6ahCXMKz8ZMgTe88QeXe4O7eFynoMDpch41CHbyKv\np49j2nLjJ00ey61NuszSGVHcazEFX74oib0F+70Fk/gKQTys73Xhe2TZotY1e5AKV43nE/sVsT9o\ny0GZiVj3IHLOJwprhYWuzE9dg2XybWpZUmRCkUkT0jXPsEyyVUA3RbEu8IB+NtTiXu31uDkn2yzQ\n64dwtqZBHTR5Pljpctu0B28AS5UZwXCfUaLzdAumQNl6lm3x+eu21yavc6SU+rI35sDOKTxCKxtY\naWdzB3hKKfVARL4U+Mci8h6l1Gqjs9dgjy34lCrnPD8hLT3SyiMtpRYg1A/ejFIVjCL9UJaGouqa\nXfWvq1lxV5elCohiGISLuuVyWgrjKGnCDFaC37J3LPCYIksVhTrxaTwD+8Kc50daNn6Rc28RctCb\nspPoPEY/HunJrUMSECOoOs2PWBRTLnLFaRbWsiaQs5Ms8MsQPzCPiFoN0XTN9Xhs/xQ7FqvbGpbU\n/IE+x9m8mSRMHx5z2FYhqFX/vjP3GIclg1C0BxUOiOJxfR8smeOyFhh1gapbOOzQ6Fu1WxZ8ulI0\nwwtd9zLYg/4RL81SU/nvHkmz4Sgb0HULfiNXdeIhnpANTy7KKS9MAz51FpP4cH2Y88z4VnO/Y8iM\nl7co2uPeC6rmvuRrjuXmm6xFWpOtuRxz7a0GfgVqWVDma6pmQSt6DLO2ermzOHBNilTXt5mwWnmy\nbLVosLkdSfx2gzrbF2o0qBXf6/fHUvBNFMH+k1hfl33GXABKSz3vTnOfe/O33TR5WXuZR9nmP2NN\nKxul1B/mknY2pnt0an7+eRH5deBdaMLCZ21vu1F9s0wpPVHGfsW+rwvZ3NWO/nmJL6cr390Or2jm\nVTiuGWgWiB7W2bRbuBl5Y4oqo/AKgt6WfukMU01s90tbkLo70cVzoCfH09vIcJ/xYJd5dc5+7wwN\nGjrZ3fPHsDxvREyNJIyldpdVju3cmJbWGzP/Ko+iyim9fC3gWPp1URdNmgnEo9Z2e5ROr4tySm+4\n28jr2xWpDZtZPTZfS+TbeiRfwrpldVFBUc10MW8nj2HDe7aosalJilaYT0pEswu7nohtmrYzbref\nyHJ9nka+3xcdsl0UXl2jYmtguscqVU5Z5i1wduu7VswBA19CDnoZ08yrizp9acKhtrA48no8NdTX\nsixDrg/1PTpeQs+/II53H36sVsuFQns+NQnBqIUP+8iz78Ab9oknMd7kzLDddnRd1FWt2KEenMKD\n09rzUKZQl2QIuzfah/c9gmQLNdQFtsHVYUP6cXTuqrkO9dXAaPOypihZ4lg76N1GiU7eSjk9lBRa\nad4Kj4IWTl0U3lqP/i22nwOeFZGbaED5euAPdbb5MPCtJh/05cCZCamtbWXjfGelnY2I7APHpn3N\nM2gSwwuv9yIeW/DpWuwnjELd4uAi16se6wH1g0bCYxTuabqvk5cI/BGF12ZoXWZ6xZ20JqO666cN\nkRUZaqBDPrK3Zl82LGfCcP3JNfwwBI7oB1v0vVEDPHYyNfUObvuAOlxWeWYM2iEBez0ugNSKAkWm\nQ5J+z4yVlo7pAo8VtGxo1u3rWZRT6IX0hp+PTIx3aVbFha0Lqs5XalXGUdQSNV3HrLPj7TKcalWE\njuRP3bfH/XKRNfIytvdQPRCh1s2LEzChz34w5KA3N6GtZAV815Ey3L8FDyEf6LHVhcuDMOepYVaP\ng9XQswl169WVquCp4ZK0FHqBXmyllcfR8oygHzUEF8dsK/f6d6cfD1A3glPnF3qsJhPddfXGNaL3\nXLQ8IgCyguoF3Q9SkuNW11EZDQmG+3oMjZ1md9kd3tAh16t6X8Ga9tzK6fLb8mb2btZqHxIFGoDW\ntRKxQBqFWicuiFDnhwSjfTN2OeNoRlp5KznMz9ZE1BvSz0cpVYjItwI/jqZa/03TcuaD5vMfAH4M\nTbP+FJpq/UcfYddr29kA/zHwnSKSoxkZH1RKve7K28cefLp6ZZrufLeO86alRz+w2w50IeLZXf3g\nmkr6BoQSlFF7fhgIrfMIFuWUyO8ZSrW2urbFVIMDGphsgd75BXJVa5TFk2v40ZVaPqcGHhu+CnQz\nNYmHWnHgEmHLLgC5Fnk9nZsyNFt73Zj+OLrWp5n8XBAqVaDB7pJF5KKcQmjAqUjXhjK74+dL0GpL\n4Cpq6+3CFgDWE7QhdtjmgLYFQalyDag21GbyDpiOmuKunIc7yGi/lXPzJaxradzQmh7vtsKDPR4V\n9Zj43novUUxLaPc4O7a1tKMMoXea4QdxXSsGmlxhdQvh/2fv3WMkybLzvt/NG498RGZlvaaqp7tn\nppecbVHcFSWvoJchQ34IkAgDNGxAlgTYpiBYIExCNuA/JFm2BdgQQMCwAMEWRBCSYBOQ9QBo2Pxj\nBcE2INgCTImkSGpJ7a5mOb3T7+6qrqrMysrMiIzI6z/OvTduRGZ19+y0uCv3HGAw1VX5iIyMuN89\n53zn+6SUlObPKGOZSfIA5MgGbsDUZj3r+cp/baprS1lZf9MRtT+Awz14VG+KzSePKL4h61RIFnDk\nAZ310F/8vb4399HEwM4D9nclI1JAp1g1DOqADctvNRzA3pE4oXYzIRfMzmo/rMsgow3K2V46yJW0\ngXR8k8qC9yguWCTfc5kPxpivIgAT/u6ngp8N8OOveI1/gLWysf/eamdjjPlZ4Gc/0wFvibcYfBS7\n6ZFnmZnpQ0w+I8oOGQ+O0eqU83zOs0VMqiX7cYOI5smJpPbDhTTHAxBS3Yw0oAk7UU9gq5yJA6hy\nXVwLVqOju5gXVlrk+SmcTVhf5HTesYviDStMOr4JZQt43E0WJTIwFyWgO433Eur39h1euS7QOm4C\nj23uO6OvaLDXyHBC4HFacA4IHAi1tc2cQV2buiwaX2vvPOkIGlrFUu6qYm/t4Hp2boaqBkF7HG02\nYZSgysIuVqnMTDmHS5v1MJvLuQZbfot9STDvrDekWhy5QHTq4job6chnd5/3VVlQGFrF/n2aqhCR\nP6/ehgJs6S1qZEqptkrUFoROljF5JfTtYXxgyQZBxhOaFyJlLp1q22OJ6/Kb/bs6uMM8NszLCQff\n/zsw3/plKEpW9ybMLAcnSkqgRMdrosSguhHdW49Rex/D/m1Olw/51iQDVujxE3bHN4X5aIenQ4O6\nRiaU9SUD27/D5eopqR7QtwOi8NQ7yXoVjGA2rAOyoXCmjAD5jF5XSuKDeEVv9YYyn8+FRRvx1oJP\nrGJ60ykwrdePFiNnECtfyamMmM8RJUE9OaqnrUNhSWwJReFT+OuiDUhuIW6rAYz27wgA2Sl9xz5y\nTdOXzos48dK4B9rShX0ZKiLqLEj1il4kM0iOBt4WBt08+Je8JzQXRHuMEVFjIXbZkFskwWwhLnQ9\n6NTCqFOSbN/33DxxZA1QNYZ4XxZO9Vh1IYl6cryOoOEsDbpVbdVsfXnKtEv1Ei+gRlQFSluCgdtE\nr93na9G9qQHGs+HKKelgjxy8m6w7d04SqTKRL9sZpTwN3r1n0oF+BLsBd6AfjUnXHcgDrri9jlWa\nSkmqG/k+S5virNJUzsf+HfuZAlLOeCxEA+oF15WcHPCo1L6WlqHs+7OUJwvo6phxsoD+U3b378gm\nx44baKB6Nkelurb9HgZGcu2IkpoxOsyaMkzdkPkWNYg5IfX7sPsajMTP41PHWws+W5lFWpqgYann\nqOdsBpZcFE/qm8EJg4YDia3XjrTQa4v1q/1bnOK00YpFNfVDha6MlJtlba1dlDLAZ4201Pim9+3R\n0VCyGzf3EVDFwxvUlWQiO+6nEyeP09zl1UOkEZEFMBOY0RFZleD1yjbet1ByQ7mfSJSl3UIppaba\n92cYby7ooRp3mHkpQPf79j0L2xxWfojXKWv7Y9qiSgFNAHJ/V84ILolRjnBgh5Jzs4TgGglZjzXD\nsaxBxb1mG4CoGXDuZwjESJcz6S/Or2DviHT/DlVHSnW1HMySVHfJ1ZXPOPOy6Y/kstKwDKpmL2C9\nWdJUvR25droZKutBdoEOWGIqTetNVxLXfkWIRFFfp5inVoVlPCa+e0DvIq83S0HJTXUj1PvvUo2P\nWOQPyKuYsb1cZRZuRj8Krvt9IQl0lhWduWQv6mBYn+OrM/p9K4J7dVbT72f1NaWGmYCqU0sPJZgG\ne7WzbjX196zLuj+PNxtvL/jM51KbPr7VyBpMlFJVQl+XfkG9KyzWC6blC0YHd64XOWxJvSstJZiX\nAZAv/S0mqLjnlQzm5YUvUVVmRWkVdw3I5Hi2h8oON2yok6iH6lJL40Nt2WDDLYKVKUn1gHJdMEqc\n0nPdQ9Gq3kFHutvUILNab22bBFeqc748ZrWQBnLc29Cdc/lJZM9ZQ2DTqwwsN0uJRSn1+cGXye2i\n7ejy47QirwyprhdXo1RNJtiSJW4zAlTZoZRu9qw4a7ZPfk22I4OfM6KOpsfI69a1KdQOgML+2Ian\njNOwc0Kws7lI0AC9gy+wYOqzPYmlPYaySR2HjRKguXgEk6esnV7a7Zuinu2fYDMfq+DB6ASm51vd\nYWXQOsg48lmzPwmo998l8QoFwWBo1heb8OO7otKxroCYnm1N5ZXiZBmT6lOS7m3ZDIBsvIoV2vV8\nAptvs1qI6oOz13DEnDyvKwTYaoH7t9VqdJYlrvwa9uZeR6n7tUKpzXmptzje2jOxviwo/+HX0T9w\nIZL0O8eo3o5fXBwrLOroxmK8YEoUJ+J7ss3u+jUAyOmVaRXLLm32wqs0myipnU3t5LV7jlYx6Mj2\ndora38faULtyXaVXIg0/2JNFBJqLBHhKrnzWukFergtPsQ6zHm/f4LIfILR5cPpYUjqzC2BVm+wB\nkjFp+Xw+3O7UCaNCc6ELBVzd/JOd3VCAGTwi3dkHJuSVYlIoL2EUkhZ8FhK13j+IrQBkJYXyztqz\n2hpftwXdeTnzPaek4+SGen5RDIuAAkAvyXZmJyLW+eTEN9r1bC6MO52QjI8a/lMOhPJKehQObGpN\nvBxz8THm7Jm85uMzVvfk+ckPnML7p6LabW0rnPcRqdCPCbKbDfCpChkSDh16Qzvz8Rj1gQzKbwiD\ndjMpX65mG3TmvFIsyg7ToiDpnDLMDuR72ysgz+mE14oLd/4c8AQzSaZYCdXbhTuObE+qFwHwzMvm\neMXLxgU+j+883lrwMZXxU9jC3rE6ZgGr6Lpwu6JE90B36z7EdVEVEKUNllm5LqTHUBU1vdWZptnd\nso6GG7IqAKRiiS0f5Ppynp9duSaUMV7MM1KR3KjREBOnHsgcUDorZmea5hvNy0v6KHrd2ySd01q1\n4OzRpgx+u+zl/m4zGTmpdp4ksYKgbrELhxvDeZOqIFVddtM+o0Sa6uO0asw7qTKH+Yvm4Chca7/s\njOzqXfAlVM3+TDg7JBlnl1RL2bIuva2uvcHCBS2kO9fXQotttqxk118VvnyWV5vf/SCW167nVQjA\n2xIoJrlnjq0vcrFKsCU+dXCHKrRCSLuBGVwdlSlFztY59M6v6o1Bq0Sn9sc1SLgNhbXTjoisCvgp\nqZ4xTmNvq+DmpNy16Gbh1P5KBkbDsJ/RuGOy81nmsibdGKzKQdZrSjAFmzh3b7dnwj6PNx9vLfio\nWBHdyEQHajyWsopSYK5nI11nmlVSot2kehChk6W7gZwRnKPfRs5tMkpksQVfzqitpsvGDRCyqCIi\ntB5RdVakZrBB43bHsE1UsXGsL+7B2TO/G0zdbtAO0oafNUozoAm2annJqFSY2Scv914JwwNJ0Hso\nyubuOPwviWV2w7Kt1P7Y9xx242M+3HnIUW9hDcgOrGnZxxinHBGKUVqFAvaOGmU4N33vlKzdtRAC\niu9BIaCdxALM/aiZGRXrBbo7sgzD0EGzRBNvXmO6g969JRnI+AzePUGfPqdzeSWf9d0vkvf7nM4/\nYlpsuogedHeaoGOPN0oz1PFd6eMkEToQDFUfHMmcjgV5c3lCNL7plcVfFY2Nk9vIOfFP+7NkHAtL\nlrGgkZzL9zg7QacZu8NDhr0DhnGd0YWzWVG1lj5fdwczKlD7C9l8uMFSqEH24qIGQiv/A7YMnTRn\nuRwDNNIZlWMNtt77jZXdOm/emvtf5nh7wSeJUO/uya7M+vO01ZnD/ocDHreoUS4x3WFjSFH+H9yw\nJnydJovN/d6VsvwC2xX5kRIxYjvP53Y3HcGaupcSij8iDfzIWlBvCzf9vhG2Tm9+49uYx2dSlz8+\ngBuHXg4lsk1Yn7VR1vMw7vUvHmHuSb3f19eTay4vpxDQnhN5WUSJeOt0M1Q2q+2Sg8xuP71NP5rK\nkO3VmfQ33EIETXkcgDwX2nC2VwNQYGOwbRPSsCK3oYAoSoj0EKOEMOLCzW9hLaRfFpUpmZcT2W33\n++jB9xEd3UXlM0x3yGn+gJPphHwtC6Rzjh0lFbvpkbi7Xk09+cSFEFFSYaV1d2D8SPxukggO3mke\nRD6DqzM7vxW9HIACoVS32K8vclS3knkgqBWow/JYOPRpJXFM9hSd7TFyqhYgSuPufUKn4DSDvZGn\nYDeiBTzri5zqfEmnH9PBAtDejpQwuZL3insQSSUilGPy5IxXbNw+j+8s3l7wiTu1ZI2jSQfRvulC\n4DEXj2QXNr6JDhblUPa+HW4YUeRsOgzile+vRCFV22c9l1yuzrk/k5LHD+wu6IVN7LZtt/tcUf06\nbSBqA5C5eAQnDzAffULxq8/IH8yJEkP0/oT4zikcH6BuHGLyGSo7JAoWtVJ3iOwpMvd/DfPr3yL/\n5eeobiRmYuN0U10YC0yfFnRCgkBAaVctl1NlDP2Vwszu1YZzZxMvyb9xroqVNJ6t5YKKew2acuMw\nbOmxwbprh+1p9YcyAxReF27eKAxHkwZ8ljsPhD3DgdmzixMr/Fq/Rpqs2eta5935HHP6zz0oR9kh\nxlLR3etrFaGzfdH2GzzaLBXbPokBL2DrAKitdNH4zDajXF/k3i9KLeXYG0AEDS8fQORxutqa/53A\nvs2+nWFjSG5x35tl4zWyb2vo6Mts9niq86Ucl81+PABhKdq2z6oANWiXVTc3ep8l1OeEg0a8vWci\nruVSVMssKpyxyasOoySpBUAvH3kBUDM7QZUFOttnUU1ZVNOGWVq4eLjXcuPs5bryjX1ferOPNUox\nLyecLGMezCK6GsZpxfuZlHzM5GHzhmj3VazrqOpmGyDkAejqDCZPMZ88pnowIX8wZ/IsJUrX7CA7\n9xh7k+6vvEKCq/9XpkQvJvIaH31C8fUzLr9dESUl6bMr9NGA6EZeg5B7/9f4alSoPLzl+8E5qsLG\nAmpmJ8ISs8Czfj6jOhfwcfMqLjoA2UwoxdZyIsxO3dR9gxzQdicNz7+zschnpOOblKn48Fyuzr32\nnJ9VCjYB0uSeMC0KpquYRekIBMoz+EILDsBaTVe11fTspB5+dooMgM72N9hbUSdB7+yTqpuyAfHe\nPPO6rzYuZHDZAtC1EZQzTV55a4W2JoADnPW8af7Xma8kK1lWctw2m1HDQAQUNl1fnTZcMEjtB2MD\n4HHyQCavvDWEV2lIU28PYZYTVJR4FXd5wVcLvn4e33m8veDTsbeHa1L6nV7PlluE6ebUbV2ETC+/\nK5u9oD/YgxjvYAr1gGgIOi62CU76OH/IwfAdkuElI1sDP+4f0jcp5vTjWv3aRVjGsGUk7zrazVBb\nAIhsH5YT1P4UPZuTHM7IVit0vLbAIf0wtT8WM7rxTcqgEZ3ORZaEnWPUhyuSYsVw+dwbj+mj/tbM\n59ooVuJYacs0CoR0QABYbbKCncsIQ2WH9UwIIs0S7jZVVwfnqS/il4e3fRalKTey18qUdZaKvQba\nWYMjTrhzfPGIaHzTKyU7Be32TjoCdDSy18KFteJuvn9edXi2qC0/5PU2YdwPP7dio5zsCCx6IE6d\nV2deD82rFtgBUaegri2dvxGOap3NIOvT2Ul9TyOc65FBXQtKWzIf5TOf/sYcEWDP67wp7ArNHp6L\nJIa9HTrJHNWNxFrdfud6t0vnncyW+qy9ghWHBfxmksFe8zN+Hv9C4u0FnzBcJgMNYcFwB1yuC4xW\ndv5BDNsaO/KrMz+fA6cN0ct2iI9PVqsbbEnrzeUJo7hHOnhXVAiuppjZY5m5mL1kst7ZRzsA8rvF\nes7BKUSP92+jdYLKeqRJTPRgIh4pTpH44B3UwZ0G6ACib7ec1Dfm4W3U790lPb63ffGwJZHG58sD\nP5nZvKHdpY9WNTPJRai2PLPN5v0rzCFNAEozEZdMM3E7HQ6EJQbN43KltlbpLiKi/W3k1dITRHTU\nqx1e82bZx/WWvFKyVR4fZtZfaZ03syT73ShkkFHHBxtaca78c9yf8nR+0nDF3XCKTSLI8yaz7Jpw\nStxG2/mnkGHnPoO1QvBGhrYf5krSRinU8LB+vM265FhqoPDWBRbY3GOh5bGzbaMym0sW6z+jpaZv\n6Suq4aDu7+3toPZ20MWqHpJ1lgvhNdBiPJrZicykhdfFmwKgjqo3P5/HWww+7ca8nZBuCwvSkDMJ\n+jPb4uqMtJuhk2MuV6eN+j3Ufjdu0fCaXNiFOFQOQJhEyUTUrc3sbGPOBdi8YUM2TzeThaG348Gn\nWC84XT7ko0mXD3e+zcHOLdKeZCh670Ru6ncOJNMZjLhcnZKqQaCIEMkE+9kU3jmod4lphvotX/aA\nbNqzPElcZwZhz8cCT/lk5k3DQGRUQsl7v7hbVpWZLmX4EuDdni/F5GaJ1pGwxoaHmO6jeqEPrMBN\nlG42ki2YJGmd/VZmxcky5kbf+hupQOnBgY+bonflJwIACn7eOC+twVtHWnClHrN44eeget2MOwff\nx24qxnVOidyHA7I0rRfWa6JYLzhbwmFvUV/TNPXc/HGfTeUzlQK40fAQHfVqkLTnVDQGV5vXZQCE\nW6kwQY/SfwdBP9OVT324Mpz72bHpnOzUcLD5Ho7q7bKc686NvccYF14FHriWxPN5fLZ4e8HHmC3y\n7/bfcY9etm/r5MW1/ZkNp0s7+BllhwzTA5z5l0zbN71d2s3bjcXahVVXDpupZrr0NfONklJgue3D\nAsKikt3zr50N+MZEMS0GfGnvsZT0bn0ZskeymIxvMi1fcDq7z/1Zwjg944s7e9JvevZNzEefYE4v\nUZcz1Pfhy19TnVOZQqyjO4F1dCj146yu87wBPNWzOaup62tY22Qnm28fG7KXzLIiWpZ03AJ0fBcT\npeTW88c5hyYHX/D2Ca6fMy+fM10UNSXb3QbeoVTmq9wi7YZWD3sLonWCjkaS/URJ3aR3xwi1UrL7\nbh34bVn0PPxZIPIDkvMrWXgdfXlvB/V9M3YP7tAfjbnY4ph7XYkzvNbcMOyzRcwoWYqYqsuKW2Us\nr47hftEvvMV5OthraCKq3g5mL7gX3GdtEwbaQ6rtyK2k0HImwHdWi4lCk6rstObqPtGmU6lnkLZl\nsOx352e/bEXBXM5QRRn0OLMGe/HzeHPx9oLP6hrGlV0kwhq5WF6XzSl/+7dGPyJkrYF460Q79PQm\nM8r3AMq8HtRbzmqWT3gTJ0VdTrPRZs000vlwEXIT9sZQrgvfxL4qhfOTV0qYXSqV92z1h9ykebku\n6C9WmMePWT88p3xyRdLV8H6BGh5yvj7jG+crpkWHo/4zbvTX9PRIGuyDvYbUD8WF9CeKldf6Wqfa\nqh7jRSe9HEsrOv2YKvRzsed7YZUWoNZZy6urDfHWfrRD0rF2ArMXG68PInkkSgGnpHrObtpHq1go\n82pBGiUyc1IWQFNLrS43lnaAmfo7vWbXvUGqwPZwZvNrS1I+c14VPvsylzPRLQvCESfyasnJUl5n\nnFaivr4WU0S6meieOfpyUC7zpS37GYTUcVKb/bnj3aaEEEpXBbbmlckpSxEiDb+fXnfk+3aNc8mr\nZ2R8vyrrb7imhtRzf4juupyd2PfZLGfnZrnhJfUdR0dtkF7e5nhrwcfkJebJiXdb9JFmnuosN6zi\nopBp8r3uKeW6IE0G6LS7dUq9fZFH1ZqRGlLqToO+rVVkvWXs7sv1cvaQuZNwkbL/Vk763c25wPay\nW3vwriogn5EmAw57Cz4c50DKe8OC436PUbSPefQ1zINH8tyqYDS+SdRPSPUzUt1lpIaY069hvxkW\n0AAAIABJREFUnjynfHJF9eyK9Y0B+mwKBzN0GtOLcnHY7LQk6IN5ENdbkJ7NGPbHRB+CduUVV5vf\nH8tncIv22RSTxHQSyfxUqum8k8njBnuY7pB5/mBjILQ9nAsIO2xyiupuKacE512rmHFyg1RPG9Tr\nvLoiiQ/q7Mcu1CbYcfuF2wEQbCoqWFaiC5/9dq0IbN+a2BWlzLVYNe356pSrlWGUWN2xci7X0ZPn\ncl24a9puovLqiodXop3m4rC7IunI8VyuTum7/t+7r6ngfPocMz1Hvfel5u+3KWq47z/oO14XvgwY\nJT6LaZMY5GcLRFm/0VsMM06nPWiUoqhq2az6RfASVN6AzqofKGtyN1+dem+v76VQSv0h4C8jFeq/\nZoz5ydbflf37DyOTvT9qjPknSqnbwM8AR8h+8KeNMX/ZPufvAHftS4yBC2PMb7d/+3PAnwQq4E8b\nY/7+Z/0Mby/4LMVhsZPEsoABjHZRw0NKyo0Bw4si4qKAo96EUbJFvZk6m3ERVWuv8KsHe0TDQxEu\ndYvi8lKAZ3ZW71qh2Qh1fYruDqY7kQUp6213Z4Ttu2S76CfdIUmnx43+FMi5NdDsxsdSSrNDpnS1\nlB3KQhxSu7ek3Pb0G5gnJ56WnV9FdO5N6HxhBssJUc+xuuo+ipcmKS8bk/C+ROXICeCBiPG4WSZx\n5ZHuCer0uUyoJ7E0tp06xfCQeTW1VGXNjb4bFIwa8iip6mKefZP1vXvw9BRjbaA3hDWDUMbQ74hT\nbbgDXlRT+ukQVRaioBCUe0IRS6CmL0dBNtsCnq3RzeAg8cw+k+1bteWmKKlZTuBsyvr5DJNX6OML\n1J7oqVWm5Ol8Qci2HMUVw3i38VbzckK6s0/SuVWXSx11vE0tP32O+egT+dmWPF1MyxdNgzqo1cyv\nGdZ0Ek5bw9o6QIupGPy9EU5pIbh/nEp829VWXlTKrApROyCfiZNuts98dSpiwqs3RBJQ6o0oHCil\nNPBXgD8IPAR+QSn1c8aYfxY87A8jdtcfIjbaf9X+vwT+cwtEQ+CXlFL/hzHmnxlj/v3gPf57EAFB\npdRvRay6fxB4F/g/lVJfNMY0+f+fMt5a8KkKKL5xRtqNasHDNPNCmbW6QfNiEcrrilQ3jc/ydYdR\nPOemY6dZ4DG/8W0A1P4FZnwGFoTAzovMzmRX/+JcegXFSna7x3LzKCt1EqWZ7NBavkEbse33y5mw\nv8rcM/luDUr209sCKvfuUX39Cat7wnZLlhUqz+HGjPTgDmb1Ak6fw9NTysczri5iZi8i0sGC9Ex6\nFEnnts14ajIFNJWaNxrzeW4nzZFs5+COH4ysLckv6Q92vDulSp5BmtbSKoM9St3hMj/l/iyxlgoF\ne93aSkGrCP3iAeb+t1l/8z7Ln3/M5HnCYLyi/0On6B94jPq+D7ywphOMNYuJJxXoNGM0PKTUHavC\nXFB2rNJDN4PkqrEQNth8BH2T0ebQJAT9w3Y4HbTxTXIvt7Ty154qc8zsDPNCSqHrSY6+PfEl1Pnq\nKR9Nuhz2SnrRmrSz5qC7Y/XUJOtxkVdXXK5OvSGeTizBIs0wz6xNwuPHmE8ekf+yWGOntsTlsrLL\nxVMaBnXhdWkVvV9HtsdllAI+ejvgbAMeqAktUUJJyaXNFEV0VajmWsWN6Qfdra1I6Gbk60Wj5/c9\nFr8L+JYx5mMApdTfBn4ECMHnR4CfsY6mP6+UGiulbhhjngBPAIwxl0qprwM3w+farOmPAP9G8Fp/\n2xiTA/eUUt+yx/D/fpYP8daCz7pSMm+wtCWgdw5Qw0NyL6tS1gZlLXfNiyKiF615No/kMZViWcFO\nYoDH3By8S1SWlihga/ZFKTdgPqt7H1diL+xYRuISaW8gO8FfUvoJ+aQ7FKHQvJ7zaRAV2uWtEIjs\n39J1Bx0fUJlSFi47n7Ker1hNK+IRXkWZYlUvikXpB/bKPKJadahWHTlm+z4iBrlld7tN0839P4n9\nnM18fcnl8uPN5yN9msj1Alzm0x8EQptx472FzSWLUFStgwV6xtV5xOyFXPrJ4xn6aAL7FxjbA3DA\n01DcBujteLHXeTkhWidELvvpz8T3hxbwuM/qsqFt5IMtG4ZG5qdlEdVKRDgrU9LTV75c6tiP7np2\ng5MlJef5nKeLPnkVcytbcZitiDp1FpLqgQWdc06WMRe5ZpzOGMViyJd0euIMOr4pMkx57pUMAHnv\n5QyihMvVKfdnKUe9OZV5yjA+ENX2ayIsizayH3duHLiEPaxtsz6t//veT5oxL18IgBQxvdWaUTxn\nECt6Og7Ks0If11oUICqzYr46E7+kdbyho/ebFAdKqV8M/v3Txpiftj/fBB4Ef3uIZDVhbHvMTSzw\nACilPgB+B/CPWs/9/cAzY8xHwWv9/JbX+kzxXQOf62qPSqk94O8AHwDfBv6IMebcPmdr3VEp9RXg\nf0K0/L8K/KcW8a+NuGfo/p53UR8coe7cQR3dlRmGdb4xlBfGOK047DqTt5L7l/UikleK+7OEVD/k\nqPcB+vB2PfcwHjeH1yzwECUiYQNWZ6zvDeJMdwjeljpqDig6am27gR2CUlA6CZvBUbUmsts+dXwX\nooQ46xPdeCZT4O/fFIn9gzvknbUvJXaAFDjgOdmLFYPfOqBz9z3UrS9TrBdyU6/W5OsOJwvpkRFD\nMhgRDfZs6fCkLhvabMedl35niG7tZiuzEmXq2QthQQWfHZCF7+k3ODi6ix4/tSUmifoYDui//xX5\nnEnMbv8J2b0JnZ2U5IeOpPT27heltKUUdIfghGLdOUwzcrPkMpf72ZVwSkrRQRvsidx/sZLP145Q\nRdm+j399x6wKSSYB6NDqI2oVMapSzKNfqvtJeztE706oupGUI23ZaRAr3s9EXeNkEZFXig93nkEq\nC/6imvJk3sH1g456K0aJkBFc5liuC8p0x1t5dGZzYgc+xwewcyw9zapknJRMV5rpquKw+1Ds5xMp\na+fli0ZW2yhRB/JFc3UJuwf09++gDmqNPmBTmimYIZK/i+CsIxksqqnt2Sp6EVYnscso2oeqEKsM\nf62VVl/vgnk54/4s5WQR8XTxZqjWqrNJFHpJnBpjfucbeeNtx6JUBvws8J8ZY9p0vj8G/K1/Ue/t\n4ruZ+WytPQI/CvxfxpifVEr9WeDPAn/mFXXHvwr8xwiCfxX4Q8Dfe9mbd0Ypna/cRb37RcrBiMo4\nVYLCTrRX5JX2UicgN6ZI9R/Z3fYpaWfJ/VkCdnckAJQC3+Zo/AFb90zt6fgoEWXh+ZU0Ox3w2PDU\n7FcJHKaZoENViLROuGvfBlIOwA7uyHvevifHcnCHucqZl885mclidLB3i0QndJKIbleTXOR0vvAO\n6os/RKk7lK3de77u8GQOV/EJo0QWlrQ/IB3chbFoo6nhYZNum8/w3RJ/vKn4HTng2RZlgXn2TXaP\n7qIHL3h0Vd9LZ0u4Wp0wSiYM3/2QdHwTtf/r6O87EfCzG49tIbbpKQuVMy8eNv4W7prRkZf7v5Zq\nbFlXnvG1lkxG2ya80kndE2ooYDcjIsK8uId52jweNRygj6zKwI1DATl7nEf9epM0LTS/dtbjvUzK\nbeG8UNoRrThHRAijMqXowrnP7973jlw77v5JtbFW5lhmXc5h92HgOVQv5C4z9UrSVjcvSWWOaL6+\nhF6M7n9IMngBk6fbVQ2gLt+C3EPDQ+blhKuV4WQRkWopOUYdzTA+8LJCqd1guXBivs8WNfBcfO/x\nDR4Bt4N/37K/e63HKKViBHj+pjHmfw2fpJSKgH8X+MqnfL9PHd818HlJ7fFHgD9gH/Y/A/8A+DNc\nU3dUSn0bGBljfh5AKfUzwL/DK8CHXg/14e/xlshNPa/Ni/u9rGCUJFJKWHfAgE6OgadAwf1ZwrTQ\ntgxnOFnGRJ0H7I9vizqBK49VdqbA7vwboOCAJ9tvvHdD4HDLhHzoPQNI+UDF4AYpw15CMNugxjcb\nr6GO7zJXOZerRzyZd7h/mfB0EXHcMzIPNDqk3/sdkPWF5fbeB9KjCQz4RnHRaNBOV5pnC8M4mTJK\nzulHGWk8oNe91QRTp0Jtj8WHm6V5VVgAGh3cIRomPJ2f+IXuo0nKUb/ksPuQYbrL6Ad/P9x85AHh\nunBKENNCvvsw2g1yY5vW7e/FAUm+XoBZUq2dbqAzFAy04ywQVWa1IYKnVQznDzFWj888lsxZHQxR\n+7tCeDg+qMuR9hi0ihjF4jNUA0Cn0QdyIcCznQThrdRdadIpFBzcsaoH8u9Ur6HVoP9o0t0oXdsz\nzHE/0M2zgq1RmjVUJh5dPWZ30Gd3+GXMw6/VquhhhBmz7QMWhZAFJoXiHfuxkk6PtCgxJw88Oy49\nuivrAHC5OufZIuXhLOa8gIsCO5bwBuLNKRz8AvChUuoOAgJ/FPjjrcf8HPATth/0u4GJMeaJ7ef8\ndeDrxpi/tOW1/y3gG8aYh63X+l+UUn8J2fh/CPzjz/ohvid6Pq3a45EFJpCV/cj+fF3dcWV/bv/+\npWHihPn6ckO9GLDllJrI8V4mA4n9aCw03csTsJpX4/TYz4Lcn8kN73oPZ0uAB4z7N0jXmTzPMdv8\nTAL1IFx2KM3lYFH2IpQOeNr9gShpWP+6OrpjeWkViQFc2+XRCaNaGZG5yjnPn/HRpMuDWY/zAh5d\nKZ5fat4ZVuRVny/tnXJzMGJ068twMAvIAfVCMIgVUDFdaS5yzckisv2wiFFSMU5zRvFcMhHXE8it\ne6cbQHVzM9uGJsOFvR1lgTm9R//oLrupKER/NOnyzYlmWmguetLPOOyeszs6Iul00ddYTVyuTjld\nTrg/S3gw63M7K/0GpB/tNNSPofbNIW3Os4SlpuY1FvnGtwOyJGyAhzR+60TK2TPMJzJn5ZxIo3dt\nfy7rCwgNQ+CJSfWAQbzgw52cvFI8W8ScLCKeLGBSxP5z7aZ9Ur1FHaB1PEYp1GBP+nRxT9ibtk8q\n7ELNYXfl+0cni4h7du/Q1fIfwG4ivdO97oJhbFmi5Qu5TqsClDDwPpoYfuGkz40e/L7j+xy9/0Po\nFw/kPtp2TUQJanho74clF3mXRYUVCK7oR2PM5IUM8BYrmYm6OoN+3/esHs5i3BhZV8PVpxBh/80I\nY0yplPoJ4O8jSejfMMb8ulLqx+zffwqpAP0w8C2Eav0n7NP/VeA/AL6mlPoV+7v/whjzVfvzH6VV\ncrOv/XcRUkIJ/PhnZbrB9wD4tGuPKhTANMYopd6YmYZS6k8Bfwrg9nsH1wKPX7Q7C0ZJTqq7Ajyq\nK6rWtmxmZidE5Q7j7IYFoHMAr2Tg9NvSdUd29e6GcRpcLgIXRrUFXNygqI9AhkfFojWWphk6irwK\nc1MOXmrbSbaP6mYePNX4JnOVy3kwMIx3+dLegg93xNZ4utI8m0cc9Uvez1J24zs1CEbCCot0Ata2\nGaAyETopGcQrP++TV4pRsmaclIySynsjJZ2eAKuf64g3P/t1sW1g0zLDnP5Yqru8lwkr8ahfMoor\nrzQxLyeUnbrJLd+XbI8dA+ygu0OqzxmnMTf6a4bx4YYYbOM8L+33m+1bwsqVXwTddQH4Jv6GZ4wj\nOEQJsKw/39IOIPdlfqsznotaONaSwIpyeofONPPfT19LH62nZWNy3McPnPajjFTveNvtl/nWuPk1\n73ezewsDDcVsrWJ6OqZQC270V/Z8G1Id2WtA/j1OK9LOmuN+j34kvchiLYO7aPlvXgib7gujkmnR\n4b2sINVdLoqnDPdukDhadPsamIlEVn//Dnl0xVFvwbTQvDcs/PlXcQ+cDpzd+FUmF4JBJQQJB5Sp\nNtzd+czr7BsPCxZfbf3up4KfDfDjW573D2G70pH9+49e8/u/CPzF7/Bwt8Z3FXyuqT0+c5RApdQN\n4Ln9/XV1x0f25/bvN8KyRX4a4F/5yveb62YLZBcnN1LVWXng4eqs6aUTJV4RezS+ubGQuQXFXNxr\nlo7cIGhLiYDZmcyMbNvdX+MMaqyHjCoLom4mRIJyCeW0Sd/duyFluQ6wI2W9vLpslHdGagh6CEnd\nc/jizkLM2azJGNQMO2VpqZFOQOFp3NI3izjslYySpbcEkCZ2r6nwDHL84VR7GNvKbk7Gv12es5Tk\ny9XT+jMlCV/aW9gNQV2Kas97uLJSO4bxLsMYT/rYGCx2tOzZiT9OBejByEv0hOGAp6dHAWi9aGSk\nbS+bhnHg7ZsYLD1g20Bu1JofqgpSOqRRs5TrNxFroNyUj2lsdoCot0MZ2GmLTNF25Y6ok4hNfGfF\nIF4wtsoV9TWQevBtvKelO+eBlb1WMV859J8YkM3BwfiWuO+GYT2c1P4KujsMBwdUvadcFLLx0Moq\nlwz2hNST9X2JLl9d+bKkq1ykes17WcFh7w2pEij1+irvb0F8N9lu19Uefw74j4CftP//34Pfb9Qd\njTGVUmqqlPo9SNnuPwT+h1e/f4ek02uUQ9yuLlyUIpK6NOQWCNf0zPA0U3PxiP7QMsoWM8zqhcyI\nbCuVvVQafot0/MvCLjimKiDsK4XW0YhYathYdfMcLka5wnz7H9Xvm8RooBclosu2JUxV+KHYKM3Q\nnVgyn8AkTauIflSXgK51h0yzBiOvsfg53xYX7nwlQfZjgWdavthQknADldcOMtpol8Y2QBKafSpX\nynTAcyaLuIlEJLRK6izJZcMeeKysklktBNSdA2exEo0yl8VsmelSt2/W1O29UZ05OsByA5b22msw\nH8tC3uvFRVMN45oypjvfZjQjChTOt83q1OXIntdCTM2AnnZU/EBSajEDBAgc2BTrBVpHXBbP/Ws6\nsG6D3Xx9ST879MoEovBwIuaBtu8VRQn9eIf3smf1R3LzWeOb4uEzvtlQM5HjXHPUL7k10AzjG6Sf\nxvzw83jt+G5mPltrjwjo/F2l1J8EPkGGnV5Vd/xPqKnWf49XkQ0AhfIltjbBoGEeBqJEsJjUN6+z\nB5jNRXOtDzCr2U4OoGxvB2haDUCt8mylZuoFdYtEy8vsqKFZggrNvZwKNMDeI9i7AcDH0yd8NOny\n+47F4GxUpZh//gtUv/rxtVRQNep6KZNwwTIgmQtC+9ZRas9p8xyGmaDLypz8iV80B3t+lx9SyM1i\nUgOQ/3xlnf1Ya4T5+tJnGm7RCsHDadZtszx3vaukI3JD0ocSVWmfkbnsysm2ONBxwGHVl1USYaLE\nq6PPyxlaxVbnT4DHXJ4I6AQCouZUtM7oTmp/m+vA4Z0D+9hsUy0hFMy0wrShuZ6TR1LdiM5OKs6z\nzufGqX246xIEEGcLAdX9O35w05XuHKhGRJIJQm3r3umBtn2ryYndxNUGcIzHJPb7y40InYr2Xk/s\n6pczzPKJdYh9xw/5zssJSXpMVO7IZ31+inl8RvlkRrSsRKeum/nyW5iBVqYU4kQ321AzSbXhB3Zl\nSLZvUszze5jTGgw/jzcX302228tqj//mNc/ZWnc0xvwi8KXNZ3y28ENwUUtC3+lthVI2bgF9HdfD\ndmbjbvJtGc+rgCcMt0A5JpIV7wwf++jqMfdnKd+eKd67EndULMH5dWYQvA322VR23S32nVOQdqDu\ngDxk3bmduCsZ+tfepnMGtehq2xeoWAFXsgBXhahYW9Dx2erioVdidhbjkX1P3Qk14Fy/LKbhVhpm\nXEFvzil0e+XpayjA7ajMqr7pogS4qgVEXYTCnk6ZuV2KtRm3o1TTBmt3vFYR3WnPOSXoULLGf+/u\neg6vH+cPFFyHl6tTThYrpNc9ox9dzxgMY6sJ38WFgPejj0kO3pHy61KOf1sHKiKiH+1AaTMla4pI\nEnmRWlFEkOMNRXLDXp1RCqUTtFIywNxJ0GrCKFkyjI+sceM9ePyY9Tfvv9bne/UJ+LzsFsZ3nXDw\n3YxwB+wEGCGYO+gkwALdidGDkcw5OBVq2FwQXBO0FFteRgWq/dgwogSSQmrP7cXrdS7SEPjC/4IZ\nH7U3AkDt3+HSzqqMkjUfZLUAqOkOxcPn8npKc2js5rXZ8hx1A/ENWi18tqLc4u4ByM4ouZ14SP0O\nFiMTKDcAjbLPtQZ6xUpq/WVBenBHehv5DDO757MSihKzNxKBVpcluMFOaICR/35dFnud7UZhJZG2\ngY4r0+iEsry0Pa9lQKkeCc27twN2sVV7I9QNa2PtSm42q9mQ3SkLeH4KSSRZmaM/uxKdK7sG4Kj2\nxSBQ3Tgk/uCKuC3i6kp8adbsMbnvIM2oxkdcFA8t8Nivr+oQdazXUSRzS3JfCemjWst9NU5uoLrU\npWFoOL8Cohn3+LFkdS0R1nBj4jItXzY++ILPvvXxlXyew9tyvPkD8mrpyQYCMvXAttIJERHaqpgX\n64UAz8UjePyY6lc/Jv+VzzOffxHx1oKPwfiyi6snT4ui4bsjbo9NZhNA1Ev8q0hYB06zFrXr7lDo\nqA6IZifXZ0QhgPVpPu5VYNSmmHZ3Nh7iylvz9aUH21605rBX+sZqZVYyvb5/sf292gv/2USUpYuV\n9B722OxNaMmC2jNKPqMJMyaQHborp71uFKXNQlcwPa8zknYprFjBi3NZ3MdjTLtU5c4f1H2YsFcX\nHJcHXlfaXG4yobzdhvUQuihc36eeh0qcgkKKDARnhz5j2ShHOiq6i9PnomCdxOLSuldgsj2xeHDH\n7oDn6Snri1zsxN9/V15/KA6vHLxT2w4EM0kbn8cYcrPkIn9gxweaUa4rFki/q0k6WXl9NHgiAGSN\n54Cm7fjlFdWv3qc6WxLf2aFz9z1474P6TQIChjJmcx5p95acN2v1kPf7XOQPvJV9zWKNfXYbXq8K\nWQwjPRQiw/1vU/3qx1z94xOe/UbTouI7js8zn0a8teADxt8ki2rK1crwbBF78cVU10DkLmAXNStm\nmzNpzaRK0p4XLDSLSS2psy3CXe7LhiqvoRc3FiwXdjdolGJub8S8kmPtRWt//K4GzsE7m++jE0ie\n1s30F+esn8+ozpfoZUmHYLHVLZkYHSgZu9+FjW+rK0dRilHey0pXriQU9sLCsABEsfK7fXecZlmh\n9+YyD+N2xqNdKfu54wwdWPOwt7Sqj8+CjjO0c94sW5WKdeL7SCcLN2S5Yq8rWULjoToC3QXLJqs3\nRWK9naS9urcxO/Pq4irVdIqVZKD7K4xTb1rOfI+nejanOlsSAfpGWauIf/CDVtmjFnClrKsBLtyx\n5NXypRpn5bqiUAv//GK98PfUySIiX+dUgweM02Mi3LZNMgrz0Sfkv/yc848MsxcR4288Z3RvQvJD\nz1E/+P2bFiPXhMn2IdtnXk05Xz689nEqzMJbm0KznGA++ibrbzzi6h+f8PgbA77+tZfY1n8e33G8\nteCjrLZZsV5Qriumq5hpISKhMkKx9gt1qGztdKLc7EovWnsRRqj1oYr1gjkT6UEkA9L0JvR2GpTc\nRsbigKMsRAMtbBi3ozVB74HHyrfIcayozNKXE8OGat6223EmeaFvfQg+cQ/DvdpSOa+8yKgXcixW\nm+Uh19MJez0uAuKAB552GeaaMND0ywGfATmShZkuMXnlRTBVV9NZVihv5RDXlGbqDHEjWoSQ0Em1\nWsrrMl9tBaJapkmul3zdoVyvKFRzMWuXf9sxjA+81bUHwPlKrmAPkCvfBwp/t55bwdG8ku9pb4S6\n9WWm5pJHE9Gpk1mctd9EnS1r2R0nL9WLrC2FLdUe9mLfJ2t+Fgdmck85iZpRojnsLrlcnTJMDwSA\nsj7mk8dUz+YsHpdMnva4nFZAwmD3ivXzGR2+ZQGoJcXUOn9ursr9nOqmoGnS6UlvZ8uS17guLRmi\nfHJFfqW5nFZcTr735nz+/xBvLfiwLul3hiRJTxSKO1NGsUyBb1VmtnHUq2VEUt0l6WR1g9sKFYYy\n9c66udID2cFGN31px83J+HDU2BB4rtNmC8KsFrbmLzVsmdEpfWYHm6oNi7Jjd7Iz//fE6sk12GBm\nSTrYk6aulQTq7EjtxQ04quFAegaBi2ujhBOlwobr7dTN8G6G0zJTSSSgscUYz8XWbCcMC0IqTT24\n6K5kByavRPPsYCjmgVbkdautAYEI69ie24AK3cnmdMbzRrmt4TOTxNKz2L3FZf6AqKO5la2k1Nld\nNQQ7m9YRlc+oXaR6zTDepW9SKGdSVjuWTNPN+aj9XSF+ZDbtscOo6gaYJCYGKbu9k0nP5/gupe6Q\nmgF73WkjW6+p8E/5aCL3gAdOd19EcGugOdCSJeeddaPMBm6OquRGf8Vh94qTpQzpOs24eTlhlO5D\ntocaTtFHfXrvzhiclei4w/i4QB+J2sL6+YxO9hinORjKIYXnD6SfE7F5nzTm7sJwPcqQrAHSF7tz\nSTZ5zsEZ3JoksF1s/dPF52W3Rry94FMWmItHRL0dht0D28C8sJnQeutTXC/IU0GtEKKZPMHMzqBY\nkewdMdy70QCg83zOKCkpO0VtK73Nu2Ub8IRlqFcBUNDw970q618SRtpZs0DsIqYFOACqdP24hple\nNCa1Q6BqtoDRXMptjn7tPF16O01RTEOtuBClKFsG9L0f5wRaWtKFy3xC1p9llV1LOAjPQZ57kFLD\nDIYZnb1ZraB941AWPKssvVEGdRPzASipuIe59dtQ4xdw8ag+lstZ0zzO0eitudp54ZXrOeqtGpnF\ndTFdaUaxgJrb3Iyi/cZxqu4OfLBT2wxke9teSgCoL72dzqWUGtXBHT8oqlVET49qNelqLVToqmD/\n4AtUo4/5eNpcHnrRmhv9NQfJ+5hPfgmAZOcYdm/5klu42XHzPrcGJVrVm4fKrEQNPDvE7J3B5Yz4\nTs7+5DlX5xHZDYhu1FI/5vGZUKcdANkMqJ0phuoTG35S1wBPI2zZ2BzMUB9ckSxL9qcnlEXvzYDP\n59GItxd8qgomTzH5DJUdknYzdHxgwafwGYuLxmT68hKzeIZxO2I3Q3GR0/nCCckP4gGoMiueLWKg\nYBBLD6AfjUkiO2znoj2b8TqUbahLW9B4TihS6Qy8oo4mr5o34QYABSSMcDeedG/IrnM1aqFxAAAg\nAElEQVRvBM5x1TGlnFWAk7ZZh69RC2gmnZ74EWGfH/cEhKwSt88C2+VEu1FwzLV2hPMojZIc1AOb\no13JaLqZiE6uL+m3Acid94C+PNU5jy4+Fk27m1+W4xjNmizGgByg4h5zlTfKUVKS1RvSPP5t1xUn\ny5hn84gLrXkvk+9xnBxL83t2Vmv/uc91cMdTkhvH347xGGUzvXIwavzJlaHMxSN/LTvfqXeOfwvl\n+iPuz1LL1is57K54p/sh5uE/xfz6t+Q4bkzh6ox0fJNyMNpQLQB8eS5klBbrBVGUymZgf06nWBGd\nL8m6c+I7TeKMWZaYTx5J/zJKrCBuugE8PrupCigv/TnxGW1ArPDlYHvveD2+zpp0fBNuzOgUK/p5\nxcHqYvO8fh6fOd5e8CkrO6uCl8iJhofoaETVWRGt5aIs10U9rLi8hMUL6dtMzzcG99aTnDiviIYZ\naXeHPO3x6GrFyUJO87gqGSUzKlNK9qTtIF1bu83Ftgb8a5Xf6ka/lNteDWRhCc4Z5OXr2Nb856R6\nSn94KDMz+3OZGXHltjSTRZ3SgzcE5buqNg1zzpi+5OZo4VAPy9oFwr2eTvqk3buY7iPv/ApN0Gn8\n34GPoywP9lDWwrxYL5ivzmToMIZeti9eQa3zb7J9XuQP+LVT+KdnPX7b3oIPd77F7uiIvjnc6Nu5\n4xUx0XqxatDNt0RlVkwL0dB7vtB0tQjZ9qPMm+BxNoVsJQuv7Q+WaRcGI3mM1erz4Bn2BC2bLZTG\nccellpdyLTs33SfPZaA0iVDZIbu9I6bFKQ9nQsTZTY9EWfvBI1bflMw+toQHkMVEW0X2hpp6KYQH\nopReMvIsOBOlUkocz+DyivjODnq3Pk6TV6znK/+zzs5ReyPZYOyL9bmvQFQFFC3AqZqbOC9F1WL3\nVWZFUTlh3pKkext2jlE3VujZnMH81fNbrxUd9ery8VsUby/4KFUPzjk9LJ1sZDz9aEcAYv6i+fzR\nruzEihWdYoW2TW191JfsYLBHYedqHKss1caLamoV24lwkZFv3CjbACYcNgwzgyDMxSNMV+y269JE\nrTotrD0pt/WitW8mL2j2GlyknTWH2Yrd9Iietjd9dogZz8T4rrWwa/tq9fuWjYXX9wQ6gd0D1Jmb\nM/ukpFhfemFOrWKID0j374iNOHgAaoRzjb0u26mmzMuJFZDsoJVkDh6A3Lkf7OGsoD/ceUhe9byw\n5bycQLRD3xrC1ddKnemketAsW7JFNQNXJipJdcEoEcuDVK+ZrjSpnjHsHaBdWc1mPmXa5XJ1ynzx\nVPpB0Q7R8FAyMkdXHyd1NtoVa3haWYIypu6/RYncC27ezF1rGO9Om3bWlOtCFu7hoAYJ1/Oz82Uv\nA1rKQjQI0wztJIasEZ+6UWCATjZvbCY6ywqzLOmMU+lvWSq9efQ1+gd3gC3c7y3v6z9n+O9gHECs\nLeL63LjnZn2iG683RPt5fLp4e8FHd2y/ou4BzNeXzYeomOhqyyLnWGmjXdRoF6bn6OML9GwuTd1b\nX+Z89dQvPk7RWex7RzXr5upss3QSvkeU+AyhATq9nU2K6OxEyiaZLRtFhXxGahVjp1R9XTxbxJ5Q\nAQKWB91bjZkK0x1KyWcxEQJBd9iYRN+WaeXVklR3RbBV15mAucbOoB2uXJPEPenBdDNI5k1l8Nmc\n9UWO6lawlzfcRE2UUlTTBuvPvW65LijUgtS5kVIrOGsVcdT7gPTwKQSN7Ly6sorczeOMiIhURGkb\n+K7E5M5L47FWfFOriEG84oh6BgvEiC2v7nO8e0g/kLSZL542XkerGJYvvOyTubQbgyiRTLg1rNlQ\n0HaZSTeDsaXMFyWMdqWEWsqGa5RU/nyZ7gEcvEPnlswdqRuHcHxLfKhaILd1QBYgnzWa/Gp4KAO3\nTkIpAB9/TC6LdVEWmPu/Jg604WYtKOsa+7jwOUDd03OZkJ0b8uy9fLZp+PgmItzwfh5vMfh0Og1b\n42n5gkU1ZRgf+IekRSk7yvYQZ5vyuXckIGQN2qbm0tNsU91hnJTsdamBp1rDsgU8LxtCDTMdu4sn\n7XpgNKuFLwOqohSr6iiR2RF4LeCZFh2eL3QDfI77h6TzOWb1QhYXy14z1ma6DRvuJq7MypMcynXF\ntNDsdUU1OpTcAbYCkJy70FG2Q9KRDC7qZsK8y/ryWS0AmenSz97o2Rz2x/7cOdl/R6sPWWUuMzRO\ndWBLjJNjKddZYUtHpw8/hyOfYNXFddTzr8+araKmUSfxJclULxknZcNZdLrSTCdn3OifBsfdnDFT\nxgTffz3n5ABIynBBD8wprS9amx4LQEL+OPTftRAf3DCylEHTgzvwvtiHsHckPZhraNDXRjsbcWSC\n1oybL5+Fv59fYX79W5hlRWe2gDtf9N9dbpakFoBYLTaHnwnK00E4pYNIRVCebVe3+DzeaLzF4KPl\nJsv2vXHYs0XMhzsT+tEO/c4Qc/FNkTEByHqY5GxT7t6GK3HMVU5RTho77E3gmV2f8YTRaryb7tD3\nLAB2B8fSML868/0nU6xQWQ+TZujukHI9eSXwhHbB92cJ72UFNwcj+iuFefzP7SzPrGHvvaimvnzo\nw8qVhGW2aaG5KCJSvUInpZXab5ULAwAySvmMQjIe6T+5hS/SQ+kTLGe1L9JsznqSy0zPskIfBaWb\nKCGvLmlbG/hDtkBXqIVdtOxN4dQp7OLX7+7Q777TMO7rRzv28a0sdrVA9XZI08xnQdvmd8D1hIQM\nMkoqpkXT2npRdviV04hRsm5sDMACWlXIsc4WIk66rAR4ZvMNiZoQILdmJO7xtnwWKmKEahgmGsGe\neDw64Gnbfm/NasvNeS/ffwHpm9nB1zr6wpa8eObVv9dfE8kbsyxJlyUaMHe+aK2zz6j0gH46RDnL\nkRB82iVt1yMLzke7//eG3EffaCil/hDwl5EhxL9mjPnJ1t+V/fsPI2ZyP2qM+Sf2b38D+LeB58aY\nLwXP+W8Rx+g1MgH8o8aYx9bs8+vAN+1Df94Y82Of9TO8veBj1n5XvKimfhL7qLcg6RRc0wbxEQ52\n+kZzdUm1Xtk5h4ikA6ku/YBbI64rSQQ3YqOnk2a+/OQW0pLylV+gL/3Fm4NyaWftpV/C2OtKr8vM\nntWLeMDAu1ydcrk6t3NOtXp0O65Whosi9nMicizyuAbTLyAcqCgREND22OMFqa7Iq4qk0xM5/K4Q\nHMgKuJTSlkpbApn2HFIWpMmARTXdUKoo1xVa10BZqqhuXjvgccaBy4nMKg2Exu68erZ97nYvbhvw\n9PSoVQKMgAWjpCKvjHcdnRaapwvFcU8uyNCQ73XjOuADtgu7lgWRzuhHonB92J3579pltpEbSN4i\nyfPSvo9/UFOKKTdLclt9aH9PUUezP74tPUW3GQzC5DmqKmRjsKwljNJu1tSSc/dWJf2lhh7eaygo\nfOZ4Q3M+SikN/BXgDyLOzb+glPo5Y8w/Cx72hxHbmQ8RG+2/av8P4gDwPwI/03rp/84Y81/Z9/jT\nwH8NOJD5DWPMb//MBx/E2ws+ZYmZnZDu3yHp9BgnC+/nUZmV3FCpbVxDQ3ixDTyO4bXtJm8Dj4lS\nVFQ0at6NaP3eXNraej4jSrPGa21Ma4cq2+Cbqa5E459nF65U1zd5qjv0FkLz3cho2ofYSbYvfg2S\nQ9sbx6BVIs912V/oPwS1MnZZkA720PEB83LCAlmQLlfnXK7OpdG+f5vIkgnYP6ezd0HyjtVG+/B9\nOBTfQbOYkKY3LUgs/MIm33WHqCPlwIikIYC64YHjxFOrwtpGlMzLC/LqSs5xf0BimV6lZXOV1kK7\nbVznPG0iRGS0UAvbRwKtSqLOilSL6+d0pRklmnFaNZxY/ffjjPj2ZkKBL1bSmB+PvS17sb6UZnon\nrq87p5O2ZdBW7oKZbAIsAG1sMAKKcvidh9T+cL5ro4cSMhzTpuL0S8OqVzslCdWNGgwyr93mzo3r\nEULz3moDUPC51NiqkXRPZP7M2Ux878TvAr5ljPkYQCn1t5GMJQSfHwF+xjqa/rxSauxMOo0x/7fN\nZhphjAkb3AO2C4u/sXiLwaeCs2eQHdJPxoySmS0POb2zFVFvB9O3cyBOjDKgabapxWF4fbfO5i44\nSpvlkHDnuJER2MFHs5Cdd5RmfhKdqvBCkk4yvw1AIVCEdGf5vziNptrQi+Qx4jY5kF7CtsxsSzgX\n0IhoqzBlfU4iOR9X01ooM1yELNPKlGJSF3UzL3d/nteGYCEIDY9/Cyp7AaMTGIrYpgMeH1dn9Ptj\niqLeBTtyRaorEpvlhgKom4Z8M8+0ctmPK6eJMO0Fcy7s+ahVCwBS3W0ZFEbeclt1IQn6QwJmUQBC\nqxbo1EOinrQRJX5ehqL0bEtHfy/XkslXJvIK3tukhDbo/pUw/IjGG+AQfs9NpYaCktqevDJ2vqvN\nNAtKcKqqyTGvDDfIG1hChLEBYm29w9bnM7CxETRKQXcoM2mhYd1vbhwopX4x+PdPWydmgJvAg+Bv\nD6mzGl7ymJvAE14SSqm/iBhyToB/PfjTHeu7NgH+S2PM//O6H+S6eGvBxxSV9ElGj0iP7tKPMnpR\n3nyQpY8CDf01Ywfcts20hKATOnaGNfEyoOWKhE3NvBrGBx6AGgZ2bh4mKvxiRXnZLF9ck9K3J7/d\nwuCOPeqsgIo0W1v5l3hjRsJFOD+0cU7tZ3RZYCjLIo1rMRzbcISFhnmZ2l9tzF7l0RXzsp5Duj9L\nOOpNOewtGPYPSAd3Mel2SqxZTkgHe/T0iMv1OXml/OyVHFuQpZU1oIfCp2T131Q+Q3eHnjDgYl7O\nOFm681KTA0ZxgVZXdfbgVKqtkrbqCkCVwcIp303P2rhv/059WDKMGVuw3DkWJmKUUrVM1HQnlkyk\n1YgPs1CfEdhIdbdxzYbRBh6f/a/xIFSs5TU2xGWDn3Uk51OvmzJQ4WdVcU+uiyS2PkS64TXkMn3/\nmZSSz3GdLUX7Z6uN2KDIW3LNG4lPV3Y7Ncb8zjfzxq8fxpg/D/x5pdSfA34C+AsIYL1njHmhlPoK\n8L8ppX6wlSl96nhrwQdjZGF5/BgTJYwPvkA1eEDSyRrEAM9ws5mPk8kP9aQAIpKNclU4aOca8dtE\nJN1N65rqDfUDV492C58tSwFNqwYr76LStLHTC7W73PH6Y+zUoJnqpRdS1SqC8jXmJ4LYZqssr2vo\nRYG0TOiT44RFtw2LLsXIzeQzSDPGu7eAJ5zncz6apHxzovkg0+Trghv9JwzjA5LxUaOp3iid5TOi\nOCHVXfJ1xbLCl1l9RhZmPaHwaZ7Xi/EIv1tOdM+rop8t4dmiy8kiamgDpnpNmq09saGnR1BO/Xfr\nZZFaHkg1Ffvli1VlVpLN2PkksE38tCYNOMady360imslcneOXhGvymq3HRfUA8Y6ssPF5UuU3d17\ntVTiUz2wA7cntcX7bleEbV2cPcPohOHuLTkHZe6HTj1oheVd9/9rsiJ3PV9X2fguxyMgTO9v2d99\n2se8LP4m8FXgLxhjcqxvjDHml5RSvwF8EfjFlzz/lfH2go9SkPVl4fvom6iy4ODoruX4vxzQZR6g\nznS0a1TnM0y3ufMikLmp1ttVi50gYgheJkpleNMdbosGbC6C68hlZ+DVmlVvh5LSz5q0m8DhZ3Cs\nMoBpUaCVVR4e36wtpAd7fhZqHrD5irU8P9UD/1pOTj9faz+38mTeQQ8mJMmxaHqBzy5UW8khC/xT\nljOxSqgKdvfvkOpLUv2MVHc56q047MX0o71meTPNxCfHUYq19OdYX9KPdrg1mLAoVxz1Vhx0d+hH\nO3JuQkFZCz5Ocdu4mRPwABQNDy3jTH6dVwrRG5VHHvZK3ssKdtO+P/eXq1OG2UHda7C77fZwcxjb\nfu82L6keQKe27pAv1zbwA3JK6GWjyvxTl5JKykYHwPUbayv6erZp05ZBNlaRiq5d7Othz6iRpad6\nQLruiKuopVurYUZnPBFx172dOps4eSCMy0CGSA62afXhAdeBvv0ewqiPIdpKKvmOQqk3RWz4BeBD\npdQdBFD+KPDHW4/5OeAnbD/odwMTY8yrSm4fGmM+sv/8EeAb9veHwJkxplJKfQEhMXxmtbu3FnxU\n1NzFmXv35PftC9dFWetAQV0KcLI75uKRPGawB3b35SIUGXUR9gC0ir3tM2m9wzRRKs3PVrPWnN6r\nS3EuApqs6srwZ1FNWVRTf5yvipr5NgcsAB2IjInpDpmuTv3ruah31/XcS14tma42d+wPryrgKePB\nsTDWnIp3OMvRnsn45LE4cd5YYMqC/sEddPcWUecJPT1qNMI3qL1p5hedsGzUj3b4wuiUng6AJwx3\nDEVZG8clcbMcNQLiHslgZBl/c1JtcC2IEHic4oGLy9Up/cGOAEhrsPm6CDPLyqy4WhlSvfSMu1QP\nSLSch1AdApolOmWMkFhmQS/TRXthtItzbmoX1vogbEYPENDrnZlcOGDrgNJ0enUZbMsi3M7QvY7i\nxaPmnI/TFyxWoi0YxtkzzHJm9d+C9wiHWsOSYwt42qW7hkzQ90gYY0ql1E8Afx+hWv8NY8yvK6V+\nzP79p5Cs5YeBbyE39J9wz1dK/S3gDyB9pYdIdvPXgZ9USt1F8uRPqJlu/xrw3yilVvZvP2aMeXUK\n+4p4a8GHLSUEc+8e7J97C+MNZ9DWHEtEhDl/KKKMz0+lPLNvbzoLQItq2pJZaS50/gZzts/drJ4W\nx9at06ym/M5O6vcazr2iNCD/T2VS3w1FXq1sjyYp7TE3b3o3yOm8V4RwEZNXC6reU4bJAVpFXBZP\nrp2VkddZ+SZ73ffYDAdA/WinNttzN/hyJsDqvo+PPqH6jVPW8xXRdInKxX0yPbjDfnq77qm1F4hw\nBsuKSBatRX4YHzQAuQFcttdjLmfiC7QsUd3KT837khVCikj1gEG88OW2W9mK97JcCBG2h2fiUWMT\n4gZWtw2fAo1eYij2CuK3c1HIORbq9cyDkHPgDQkPWgfkl+WlzMs4eaIslNMJzllAqpmXFw2QDwkT\n3pYAiHSC7sQU67p86I67XBeimbht528Zb+58eJXt84eYydNa7TzIiNX+uCkyO1vUtuZZH25cyQBs\nuJncBkZbhmP9teCuyW26i9/lMMZ8FQGY8Hc/FfxsgB+/5rl/7Jrf/3vX/P5ngZ/9jg/2mnh7wafT\naRpx2TCzuVdrNv3ZdhACK+j4SG7k56dy4c/mUp7pD7z0TGjPHRpcRdid3awWKmW2gOxKHEGtosBF\n8YRUD+hHqTW6Oqsn2cNSkAUeNZTp9Ly8qpv+6w6pXtKPMpz6L2D1rCLyqsNFrpkUiq7W/ghTXQCy\nYL50VgT8BH5eaW84Fg5LhvHwquJG/7RR09edGD0YoVfHojb+5IT1w3NW9yaiarysSLoa0lQW/YM7\nkEabdXwXLbXiNuhv01qDoPFelNYmu/S9BdVd1eZ5IIv2ckZi1Zx7UcVhr+Sot6IfZQI8VrRU9Xbo\npzu+ZHmey4I6iJXPXNzxhIt2W2X8ZBlzkWtPmJgmHS/fNEq2S8K4z+/LbfMrKSfigHQhIwWJLUWl\nQOSAZ9Iq3QUsS9iqFOCur1BVourY0pvuSg+mrTxgKexJB6J8KeXSiTjomhdWTcHpyCVxrUPXcq4V\n76alSPMUK8xBsVWBwVUXtso7uTmvtubiZw3V+c2ZJ/qXJN5e8NEdkdsnUEfGyvHvjerF3PVaAhVc\nZUxT1Tjrib9L1pfXtKn85eqUaVF4e+5RXJDqWucMTU0FTWJIVr5+bZTicnXKeT5nEC/QyQ3S8LHQ\nZM7Y4zFIg3UUpYyim+zvCABc17juR2P60ZhRcspRTxaUva6bTzr0MvXnq6cvzXxS3WUY9/zCmlf/\nH3vvGiNJlp2HfTfujUdmRj4qq6qrX/PoIWZnV1yakLlYGoJh2JZpy4RhQjJMCxQIWSIs2xThn+bK\n+qMfJrC/BFCCLGpF0CIJ0BIBm9YKokSAFGgDliiRK0jYJZfLWc6ru6equl75zozn9Y9zz40bkZHV\nNTs9w53tPsBM1yszIyMj7rnnnO8hbBICthPR8coDUJhzsrCCq6O9+1Rh9lfwRiG8YYgSgBwb76BA\n1RxIrwt3lnKdqrSrM2cXRgZwWEiv49cThvSZm8+D20rrXDmEWiNFE8W0QIcxCk1tsrN1hvcWISWN\nIsc4ovPa9w9M5QKrj+e6hSpP4k6XPHU+s0cJiqqdqAYkcR09+TmeCiJZrM31xyrSC6jRPfSjAwc2\nTdWtbEoRNRQ/XKADzxOVR/bhUqlKIoklq1j8FKaqytOtz8Ged6YSRDEQG+g7yDjPOruyd9PBLeJA\nRf3tzVMj59RabQxHd80PX8Qzj+c3+QQh8OBTAGj3ZomjTpIBdrCsnJ0fedwElaTJiEy7VuUc62JG\n+lzGnnudk84bqRhTS64TDejmYeRNRNVLYpQXSBanQEcuEYb79Pv9EfR8SbvA5nA+T6tjVgGxwsN4\naw7VjL5/gK4ycipGcVhPz0g2BsDewQOs/F4NbGBPpddBV40QighaCEhBCggsjdMWVlE79ywoYeCv\nIMU5BvsPiOuT5vBZ1fj+HsQrd62WGC9Wwt3R5mnt82uKiN4oAZlk4bbXBFfD/bhSfzabEx31sUqP\ncbmp9PGSIqqj8HoDrPILzLMrnG18vDfnCri05FuGoSNPLJTeHd67xx54HTKZAxyEHoCcqqmwt4/E\nWKiznxIv6hU6suVcpLmt+BB3adYSxuiO7tVEd9fFDDJoehPV6QOuNt8s85EUJQbBFQpNflahUUjQ\nqmEx4Mw36XM29xa3Bpt8OwA4ILVs64cVUuva8vCy84obtyOa17RUIaBCanl/m818vlPi+U0+KkQx\nOqpxFNJyAlkqoKxudh58ctSqHg4ZAMPbQExIm8Qrscpo3jJJpEGS0QI7SZXRyqJdqBQ+wpDk8vVm\nChENkUsPq+zSPh4ABsGaRBNdSwN3AbEtxAoQoJPEthTFKyekRm1Y+M2QQhHoYXkJvfh90k5zWx6v\nLNG9+ykEvduYpCd2we6qYdU+3BwDMsBgdA+h7NnKj6Lc2YZb55SkJolEKK+gvADdgweUAJKEBst3\nDoHDl6xbqn2PXIm29O6bTpfXhYXOS7MBgJOAmknH2bGvihlW+QKTlEzXrlJgXQgkRYh1nuHlmJB5\nszTFe4sIs1TahLwF9TYQcZd42lTGHqh9ss44+63db2awhzA+JAM5zySFpyyg7rWCwECx0wzokj5a\nd3QPK1F1CBhUwFWRmxyrimeDWSqxzj3rnDvwV1SRNWZugLm3Gi0uER9SBQSHa+dIWgFA4WvA94EO\niQLnZYo0fWRblUnhYRCsTWVZLXltmnuVSkOVTKV8Rsvks0O7fUfEc5t8cp3iInmIZUYSJpNEYpZK\nHHYyU52sLKucyZ8ACE7t7LA4hN8BjGnXKju3iC9uwwAekoJ4H7zoHEYbSDEB1Ahhb0woHCOHkpZr\nzDJpF+XDaIPAq6qf2k26WEHPjZfLYgU926CcJigu6V8ACD79BN5r70O8ctcmoVBE1VB1M6WE4ziz\nFqcr5O9Tog0XK2Cxhnz5VRzsP8BVdkI72NKrBsOXMyBQ0MkC4egeZHgbUpzb+QYHVz1uVcSLcihD\nAKdAeER+LbxbN8TJJhGwZs3QmPPYz9rs/m+iOaaFsCRMwZBwAwSxScd8ToneYJVNMUupur1KgYtE\nYD/UuEqBzZQ+/1FY4HQVGsM+GDg2RShLsLcTzxiYeOomIDfp6HffR/mINgUiUhXLnzcj4wkBZwZ7\nBGuP94F8Xhf0DEPoJKmSjjv7DHyaJ/ZjUwVRNe0moHl2jmWm7czKJS/zrCcpPExShVla/7yTIgNw\nbqWn7Geyw8ZAxIcNcvfcGr+5CSYpBCapcq4r3/xHVuaFPt4Cmrjhcnq47XnTzcuL+ODx3CYfrUss\nM23EG6ldcrwGpqmPWx2Wrdc46mQYR1RNuHYLHFz+s9pxUa4N3DTHYbSxz+MutNyCI/MwcwMZh09u\n90nhI/Qy+3h73EIQlJoXZTcJ8QB2k1sHyKdGk9G/63xtCO2Fk0fQmwX2br8BPT0jEugHjI4qEXpV\nJbTOPSOoKTAKcnRVjLxMkUif5Ptdh1MnLPPdRSc5BmE2rlFucSHMrW2ZMK7r+TmLIGBaYMEGR93c\ncqX2AvrMBkGBUVgg9EocdXNjGCfstcCOpdcFAzKsx8xibUAPBUQooTd0/CKSlRFcI671TLqpbYC5\nPjrRwCYebgnDX5NEUcnH7KMjfQRehp6/xmXLqOlsnWEQbGwbbishOOcaMEnAURVhjyqyHw8wS+n+\nvUjo3PYUwd73AuBWp8r2TPQVeQLkc6hGFcWvVUlRfXgh0CrEB7ee+A6OnclHCDEA8FdAzNh/orX+\nJed3/5vW+sc/huP7yEIKH3thFz2fCJFHXYlbq/rp4J1UKDMEHl34YRgDhrhorQ4afvIAcUkCrwPl\nzTDwC2tpwLt+qq5Ky21gUUuXbDeOMiRljoFfoKsI0ivypA79VAEQg9pwYQgdd+GNM3hOBSRCSTOT\nO4fA8DZ0vE/zJjkgxQS/QzpuvLs3bqAyvoI3DAlq/OpRZYQ1mUDnX93mGY1RVQxRH6vsHKt8scX5\nCb3SGJRtK233/T3n/JtKT6Vb6skKahtizQlUBTVIPD8XUO1o2yDODK6wtgM7wk1uoewZ/bxzhN4G\ng8C3CWcQFBZhWMkxVbv0vZDmdYXOqKXqgFty6VljtsDrADkZxrntMUJ2OTOTwAfGQ4Ihs4trb0wc\npzAiWPtmTjJEgwWEK3HkyhsxoMKFYBt0mtAaoexhL8wQykrtui04Cd3rwapAuOFat0PBCJluf9b8\nXHQujHV2Sfp6A3+FdUAbuUgK9BQlWk48L8W5Q0YeVtQGrjLzFKo3rgZ8XkVHqBHIX8Qzj+vO6v8O\n4E0QvvsvCiH+KwA/YqQW/r2P4+A+yvCExCi4g7Rco+9n2CuWOIwWZidVnRbeqYi6NcMAACAASURB\nVKYloXUCv1NDwHHiaZOXUV6AvneAwFvaJMcIMNIUi+q7d7Nz590uV0+sYhx4HZIMafMoMSg4qxbQ\nj4FxQsZqAA3rD18C9u5j7pBFO2oAoeoEWgwCoNuDMHMOkWYEbuBIc+h336dF7uBW9XPmGUWxtao4\n2/g1UAHAaLq4NlcDqgXGnXMkelNp2ZmoEf/aNLr471xOlpGr4Vjl05pCeM3hc1ficX7eTG40T5ga\nodYIgUebBW5taj+0yDtuGbmxyicIojsQWm/pqFnDOFZd2BQoVxm8rrl2WOPMUARc+/CmP5KbhOAO\n6fPUyjZdO5cojLagqs4bn99m8DUr8gT96ABSPMTZutqkMalZeWvCK6jR1mfN7999TgBGAdw3FRDr\nCCrb0rzTqYi+gyBA3z+gz4ITz5J4SjzXU1EMSHcepJ7uNvwiPlRcl3y+yyEd/d9CiL8K4J8JIf7L\nj+G4PvrIE4jFBcGXw74xe1ujqya1JMTVzyBIULjVj/EP2dUTdsU8A69jSIAV74H+RhmIrGp5bO7w\ncZRVmr62PRbFQAT7e+G6MTqJh1FXMFybMIwr4y13p3sQQMSLiuQHWP5NcbWBunMJcXdCiY0lfjoV\nYOJyA3MOPbzcp2M6jDJ05J5d+Jl/QmS+GYTfQRj1kUvPmrbxObThWh3wcbnzDOeUcJKQIrdVT1qu\nDRBi6hyH2laScJ5TZ+u6EnSDcAxQtWsr3qIEVgvoxbu2GgtNQugEA4cIWolxskGfG2STPadjc/lo\nm4Lk2rjyaUk8kEHrxqjQORAoBFGfbLZdpYkbtFGp8lOWm9QM+/7X9P61mZkdHL0BKU5wslojKT3L\nVQIIbi6LSnW9aVJoXxsAHNfRQg0xjs6RlNS2vUol9gIi+h51MuyFXYvEtIKuZrZJ5y2tqahLZapf\nTjqLy9r1/6HC81rVxJ/XuC75hEIIT2tdAoDW+qeEEI8B/L8gjd9PdmhNF5c0ysIqqO3oXokJ+ssc\nHa4+kmKJwO8QWm6Hf09bNaO8vk1CvOBseaTwDhRAqAKEah85clqgXRUENxx4uHth17xyDGl1ZhLP\ne4sQjxY+gARSnAP+ARlvmfNhgzXR1KUFIujzOfLjpQUy+JGkKutWYJ1OV9k50nJths0SmwKYJNLO\nOKxwa55Cr08p6Tk8JQCQUYxuNAR6dA52VSVt7HOdra2JmPBJzj8wXA8m/VIblNSmu2pUtVaeRih0\nqwOTgBQUpFfpmwl3d71aGg6NsouwiA8RRjG0GqDw6kKzq3xagwXX5jXOTK8WnHjYw8cRwXW5Am6y\nY6sD5QWV0kSeAJ3htihr8/3LeqXKIYUi8vXklGaB3NZbrElJIb5Ev3eAonOCN6d0YEyCzssMhZdV\nFUfeUJh3w0lGgSSDu8NogXXuYS+Qlug7CIIq8bgbljyt1BHSDFCOaK8M6onHRXy+iGca1yWffwTg\nPwbw6/wDrfXfE0KcAPibH/WBfeQhPAuXdXkhbkLZC7sYBDmkCGs3Wlqu7eLQHFi7Ngq1C14FUACU\n7ENLsZW4rPw7h3mcNItY68i4mXicobzgeYx57cQQHBmZ5YYUCtjMyN+Id878/ABgVIFFmgODFeSY\nFga5Z4ifTLgE7EwAAF6O6aZNCmF1zvr+gVGHOKv03Pg43VhcGvTdY8jeGNixY+SEu0sCRWdrYDOF\nyFN0e2NI34cUE4RyYRKhWZx2hWuvzK/ZdhwwMO08ocSTLEhJ4GJigQAizYG4sosQnSHJzRhZGrZQ\nmKQndH7N9dSPDoyxIRGZvdEKklUXBhGZxwV+pZLtzOLcpOZG3z+wyYjbkaHsQYYRVBiTx45TEQm/\nY++V5oCej1Ulm20dNoc8rbM1FMboqiFejsmf6aiToecL9P0jsm2/eAgYdNtTw1gxhLKHtFxjFOSY\nBZ59Tq5CsbgAq36LKKZrjys+sxlgFKW9dx1hWUYWvohnGzuTj9b6f97x838KUjX9ZIcKoON9k3A2\nKMqGH4mJrhpuSaq3VTy1xOPOI1z5dvO6AoDiobLznMrRcAOMjtt779A3t7aRdhyus2pzUCtMYk0M\n/DspfYvKCr0SgRcTzHfyGPpiQguro4eVhxFSX6MLo3CdJJBpRiCGWzGBGNjl1TkXygvQVTFejheY\npdK2P2zi4SqmidZzg+dXT86hxwMII3Jqw5FoaU1CRUq71zQjqaRsjbB/CGmUBLpquD1Mduwr6ARs\ny/ZYt8+mRAxACy/v+hfrujCpK4dk+DO8cRBm46CMPA215WiRv0ge4mB0H9ooP+jFCh4PN1ySMUCv\nbSSW+DqdZ+dbJNWw9ADZxwpze30zqZXljgKju8fHTElns0V8lUJBLWeUeFbLbcSdC1woUgSyY6+N\nUEYYBbchJ6fQb/8Byf7sj4B7r0H0HV22piePc955tjQIFhgEBPToyL1K9Je9k8LYdgE4tBBbGzva\nsJjP73KK/HiJZxMveD5uPLcwjlIXmGfnO2c2oexVkEwR2hkE7xSlrNsT1BKPs6hu7ciddphqSH/k\nyO0Hos/fhv7Dd1B8/dgs9E8qJFPX6bXLakaTI0dRbu9IizK3vAtG2xHgwVQpS2qr4XJKFc5d2GR2\nuv4mzjY+XuvHGLDCdZrBi42AY9yt31COzTQt8DFCmVcVxuayakftijQj3tLl1Ap7erdi4M4MuHt3\nt1ikmwgSsmLQF9TbF4wQA6D6h9cmHve92Odtmq+hpQLiAT4TdOc0LysnCfFxBhF0mgGGOItgCXR7\nRKJ0Ktiw27NSRoXO8PUrH9+7f4I9triYL83j/Up1oeUcFDrHPDvHWzOF1wYVfLjvH0CfvwXIAJ29\n+5iXleApyzkFXgeJMcCrni+rbcSkNICCxQVdr8dnlGz5uBgxFzTbc7593j3/NvTpN6C/8Qcovn6M\n/P0F/AdDePMl8OCB3XBY/lWDLOuaGypPGnfaqO4BNLsygIxDy81j+aot+kSR0n9pBn1B2oLF6bNK\nPi/Cjec2+RQ6x7qY2eE/AKsvZhfKxYVFuqhoCBXF0H41LHaN2pqJpzZz2YHIskgbwzVIyzUURC3x\npF+/AADIoyXUnQW8+ytqs4wHtJsz7RCtQqTFbKtKa0MhsVU4EwT15hh6vkT5ZAEP5PwpRvdwmryN\nf34S43gNAIsqAdk+ftVuc2dFPJBWXgCUqGZbmzmdT56DAPWFE7BJp3yyQHG1QXFKw155tYFvFm7c\nWWxXQQAdCw/NOfGYysOtOjgBQW4/RS2aXCpOQOY9t7b6zJxDJ4lNPJXp2QZiACICw0CamZtjqkdd\npAjifQReB/PsCl+77OAbU4lQZvj06BJ7o3vAnQUlsV2umHmKQnpY5RM8Whb45pRACa8PKfFQNXBp\nr59+fGCBKO8tIozCAgN/hZ4vai3mZkihKsuDyxlwco5yksAbhVWSZQkovk7y1IqPdnVYSzyrf3uJ\n5cTHcPoEISp6ljh4UImj7jgOdkHt+Rm6akhST/PHBjBAunV6PYUw99rF5iGOVx4OI7Jjr5Fd85RU\nss/nKCcJllcvFA4+inhuk48nPLrYnPEH78hab7aGeOLOcCTm7eLU9A9ptmqSBZQKINUAevaIetP7\nE8ijKTyjMCDHEe3+3RlLWAlsijyxfi5uAuKvA6+DvVBhEOSYpQlCWWI/fNW88QAiDOGNQnp+GWAl\nEvT9Axx2pgilxGGU0Y7ZBzA+AgJHUl85YIec4eKEMOPzW+jMzjdqlVsjBHOVuFIx2m48XxL9XiUs\n2ryRWZCySK0QpXZY+9z+EX6n/bOU1QJZ+6zapPh3hZkliDCEbgiT1iDRYVgTzWxGVw0Ryh4+O34E\noIPXhwJ7/m2qGoe3IfpGRmnHc1DS8HEYLXCro4zFw30DcJnXUY2oZkBHnTUGQVFTYHe9mgCuMgIC\njfB7DiY0j3LOtRUCbZ6zZEGE6vlj+jz2R5BHU/iDKXrI4A3pWhT9HknpSPcmbVQ/RUqzNq+D3EtR\n6Mr8bUuctCWswy4HK5fEHYiDPrzRAmHvZp5LL+KDxVOTjxDiz1z3e631//XsDudbDyHEnwLw06D9\n7M9qrb943d97Qtl5jmuGVkPwNIf5JlyXwxrAwH2cCipnSRc9xL/P07pVQ55CbBZV//neaxCBj9Dc\nNOLOrUptm4/LFVcEoIoSUg2QinWNK1Mdt2/ItcbGgN/r3n0gIXVgjAf0veEBfe++wipf4G63GvNZ\nhYUWlB0A4xIZwnVLTcs1UkESLfA70NF0ex4G0KIVd4D9EbyLCYJbZmZy+8CSZGuzgJYQ0RCaNdpm\nxuNlNKKkbqwu7N82Pzt+nAoIOOASaRsJqxU263fotVVA7yOekDCp2yJzk4UjlsnPmduZisJR51WE\nhyc4kLcsN0X4Hei4Y8+XTcQsqhr1kRvvoL6/h8+Or7AXHlXISsPFsl+bGAV3ALSbXTZt2K03EIz+\n2j1DTm5UcvY9ouHGmyyq++H2fYi4iyjuIjyfQ9wdQ3zXqxC336gnHjfca8ZsdtjIDoAViSX1a0M8\nNteNFD6127rnVm7H3sdmA4O7nwIGe/DjLtSdU+DvtB/GH1U8bb0TQgjz+x8Emcn9t1rrf33dY4UQ\nYwD/AMCrAN4B8MNa6yvzu78C4MdAzPD/SWv9ax/2Pdyk8vkxAH8CwD8z3/9HAP45gDNQB+OPPPkI\nISSAvwXgBwA8AvDbQogva61/b+djyhJdr4/cy+0sx21RaSEs+79tt3sdF8GGc/Nt2fg23BxbpdsP\nX4LgKoHVfHnB27XzB2mCSaF2+s+3yZkIFvKMD7Fy3EpD2TOLkhO9MaG12hZfVhiwSg11cc9VOUcn\n3qeFgY26QtTnK4arJOJuxbEYjWhQ7CzUuwbQgEkMvPOFEaXsjbcAGTWEE4cjqe+2UK/laLhIQxXY\nBGsXZKCeKPgxT/tMARzo0TbEnq+LJuLRiJ26sRce1cRxWaKJv3aDidfN+Q4nnV1QaNEZAnc7FSHz\nukTttqU54jHEHx9DLKiyK0ZHtV9vtbbdKKpWHsPd+RhEfFhtlJwIvA76/oE9L22OpSI+BD4db7ul\nfqshvGcir3PD9e4/BwHDXgfZaP9tAN//lMd+AcBvaK2/KIT4gvn+J4UQfwxk1f3dAO4C+HUhxKe0\n1tsSJR8gbpJ8fAB/jP2/hRB3APw9rfVfuP5hH2t8HsA3tdZvAYDxLf8hADuTD4oMevIYqjOECikJ\nbakUyPqO0v7YUcO9VjfLkQkhscqKxwOgTuxzINnoje1TiNG92vfV8dcXXmt8ZSoiFcaQkqqgQmf1\n3V2ygG29mGPUKoQ4eIBcepBOm6VN20oLYRfm2s85IdW4IGoL1LEuZoSmivefzt8xm2XRP9y+ca9B\nQNnz1/CLaYudCUgGABZ12+Vm8KLmIA2FDICQkpB2j9Gdi7UlHPN7BRAh0kC27eLpXodcuThJh2HQ\nPGe77jO0pOAWkAwTr5kS4Lqkbn1ejZak2H9QJ6o2Wphb/CH38TKAuP89u6udbyVUYIVJm/dwR7bQ\nIhphq6Bvr7jJevdDAH7BOJr+lhBiZNbuV6957A+B7LUB4OcB/CaAnzQ///tG3eZtIcQ3zTH8iw/z\nJm6SfF7ixGPiFMDLH+ZFP4K4B+Ch8/0jULavhRDiLwH4SwDw8j1nQTcILbf1xjeZXk/pAmxLAM1g\n9WOXN1Q6hl4qrCUh5OlOJ07RPySlgHwKVc5rC4h9rl07QfOeYBbcjhwYK4h5667T5Qgxc9zGDqfH\np5psOa/fFqGIqt1zy45fmPN9na/SzsTvwM5tS7Xp19J0MG1LQAC1pVzlh+a5dhL4Vvs26j/dD8ZR\n4rbvK0+qa6OtNSmDqmXrvNc247zWtjBAIIG2limHQ6BVOgSWM+hsvf05GL4SS02l5RoyjKrX5vfS\nTDz8foz7Ll/r0HOj21a/3j9o1N7zjorSfa9NoJBLX2jKHX1McSCE+B3n+y9prb9kvr7Jetf2N/ee\n8tgjZ60/AcDl5z0Av9V4zD18yLjJp/obQohfA/B/mO//GzjE009SmA/vSwDwuc+9odPhvtmVJ0CR\nbO3umDCnVUBtoutKZibjATQz2OUN7y4oUVwjBAJkrrUuZkiKS6CkFlkzmP8BAPBA9tOCqggtBJJy\nDaAEynW1yDe96F3ypCtfYtpTO6NIoU++QdDsg1u1mQG/J6t3Z+Rxmoi77jqDnnyVZjCN+U1NxRhA\nUW578nCLNPA6VRLmpA7YZODClZvcFGb41157l7VyU/WBj8OQLQtjtOZKKtUM6loSDFcUKOvtKwbB\nBNyabHKh+Fh5kVRBbcZWO3fGl6ZJotUXb0P/7tdoDvU9n68/cfM6L1Lo87evBdzwBk1E5GjLi3Wh\nM0B6kKpf+3v3/CZ6g6SYg9f3Nskevt63NnBALfFvZcYWGabr7mFXXshysPKUgDLPKJptzmviXGv9\nuWf2wh8wtNZaCHFNW+fDx1OTj9b6J4QQfxrAf2B+9CWt9a98lAf1LcRjAC853983P9sZbUZjNvEs\nL4kfcP6EHEPDEDoid0Q4QqJ2d8aVQLIgIiAARDG5ITrP3VpFODHTcxTpZe1nvHC0yb63waq3Wiym\nRVIDPADb8O88JQhwfEnHvyMB6fO3oR8+Bi6nxDd58MAmIOF3kEvPJh0+T27y6cxmRCY8Jt6Sy+Xg\n92VNwhpyMPwzAMizSunbQt6dxNWWtNzHA0BatszucE0V5Px+3ZirtIWbgNyfpeUa8+wceVlY2aY2\nkzPp+VZxgMEG1RPVOUi7jtfadZhbnRNP9pX34HV9iH4P4tXvtn+fS6+2KOiTbwBPziszvdhcF41F\nnCWNuOXrVgttn19SLLfOO8sucQXVfB+cTJuftZt0tq5/d1PoJBFrHujKKrntRJ7PPq1q+qOJm6x3\nu/7Gv+axp0KIO1rrY9Oie/IBXu8Dx03r2X8NYK61/nUhRFcI0ddafzvhD38bwOtCiAegk/JnAfzI\ndQ/Y5GVN2ZgTj548tqRLJs1pg8DSMgD27qPQOVb5BNI3LTq+cDcLaj8AlU5UWzT63bn0cJE8xNev\nfHxmL7M78q4a2UWHZd/5JmY0m3tTLzcaB9HQ7h5DEUGvH+/W6DISIlisLSGSGfOcgNxqQJ9+A/rt\nt1H+/mPkx0v4DzYEp335VVqMemOs8gu72LDRF3Mogstj6De/gexf/CGK0xXkURf+YgW8voC4/z0A\n6oZe/DxJsTHv2bNaYOtc4aizwiCoNMrYfbIt6bSpVLhkx5smoERvkORLmlsZlYTronksq3xq9fUA\nZW3VQ7mxsF8pcrv4soBnJ96HWFw4b4iSDmuSAbCt47b3rbw+JZ43v4HsK+9h+m9WUIHGcPgWvLhL\nG4DeGJP0EQ4CslzXF7TR0O+cEkx8PITYJ6t4NCp2e94WZ9amoKqA8tpmhH14Bv4KB6Z9qLyA5HkW\nZxDREGFvjERv7DnkZJUjrX3WbS25rQ5Dkdp70k2ahc4hPbp/rWr4Fvm5RbHhWwwNvZPU/gHjJuvd\nlwH8hJnpfD+AqUkqZ9c89ssA/jyAL5p//6Hz818SQvx1EODgdQD/6sO+iZtArf870JxkDOC7QL2+\nnwHwJz/siz+r0FrnQoifAPBrIPjgz2mtf/e6xyxzga+cCbw+PMNBNCRRUYZ/rpbWGZTY6QXEYg2M\nyc+kWlzzOos6zUjHysB0hQrMguBccI0ksBIJThZn+NplB1+58DBLJT47XuF29xDhalVJg6gAKoxR\nIEfTxXGWSscxcoq9MCOE2qbFfoGPgSud+bIiYs42lHQWK+joDAJA0SM0kJycGsmRFYor8gnKjxfw\nD64gjPRNoje2Iqh8ayT6foquCInYeHKO4nSFxTHQ28wg9yLI/T3o6G2IozeQ5/Ot5JUUHmYZ2THP\nUvJumaYCs9TDUTfHYXRlq6BmuEmnakdVCzS3BVmiv3ZdcQIyCubrYoZVPrWLZ+hlGEfkyLmTH2Zf\nmz63eXaFN6cRHi7ob291PAyC0iQhTnbu55Wi51NC7vaGdoHmjY7VKLMIwwrg4V4nXa9PhMuTc+Tv\nzjA56UIFGt23pwjfmAEHwCy/wKNlgcC7wKAIjbDmlDyhNhJesKqUHUaoJyCXPJ2tIcwclZXJeR51\nvPJwuurgyVpiGGh8djzF7e4hkZ3Xp1YlQqgAoSIJKreNCABFUc21XBRedbK3ZzjcnRB5CmG6EpVg\n71n1HtrM9W5quPcxxa71TgjxP5jf/wyAXwXBrL8Jglr/hesea576iwB+WQjxYwDeBfDD5jG/K4T4\nZRAoIQfwlz8s0g24WeXzl0HIhn9pDuRNIcSt6x/y8YfW+ldBJ/xGIQUwCErL9pfCB0JlEUpszuYx\nJ+PWAak2C2HhmVYuxuhA6fmCuBzdXgUqcNoDCqpWwufSQ4AOXo5fxiA4wWEnx2uDHPvhy6R1xbI3\ngU/HpALrJ88LMwAMgsI4gXo4iIaWxW6j2TZwyJPWhG6+oK8NCRJhTEKQiZlXJEaReX8Pco+EFtUd\n+h7xmNqMhribFJtalTLPrhBGPQTxGLh9AP/BCjGmkEcDePf3Kt265SW6vaGTeFIUXoZQ5gjlxpiP\nKcxSYBjQoj3wC+uLxBVjbffvAqdKrnjUVoXA37sJyFbCBXGyXGHSw6hupJaXaTuqzD5/BuUF2AuP\n8NnxFEcdWhRdl1oOviYBWNUNKxezJrVlfXxGVect2GuD+S5A5fZZ6AyzNEUo5+gMb0O8MkPwmRUO\nlhNIv0TwmfvArQMk3S6UznAYkUKAXpxWunRuuByl5izMtAKZxMsVCyceALjTLXGnm+JyQ9ftQXTf\nnn/VGVLbOqr4a6oooWTfmdVtt8rd1qm1HQHAOoruGXYVz4H6vBMq+MTo9betdybp8NcatHbf6LHm\n5xfYUVRorX8KwE99iEPeipskn0RrnQpuvwih0A4++kSF72mMghzKk/WBOAsP9g+hh2cQty7Novug\n1rvvyAHJxSzOqEVn2lbElelURFKndeMOn5sxCm7ju/emGKh96NNv1PXBAOL7dIZbw1sO5Un0/QEG\nat+S//j9NKMmwhnFQHdBx8wEweHt6phZoZnj1gG81xbwFiua2bDWmgwA5K27//cWIUJ5jtH+S5AA\nZEosdiYTWrmaxRlUFEPJCNojhWdeQElCZQ0gR0eRRt0oyK1EUCh7tn9P9gYtu1XH6hmomPptUWvB\nrpatwqTNaCLNdkVXDfFKn1pw7ibCDddAkE3p9PwxMD2hdvDJObWDAeBu1ep1Nzv83KfrEMAZbg8O\n0f3U90IBGIRvkerCH/8McP/fAUybr6uM0GyRVrYDbRHFddIoUAPSsFzUrjjs+Oj7Df6Y8ZXaaukl\nC4SKjRsrNXkXSl6DTNdOZFBLNjZ4htZ0480byQh4JtwcCr1N53iO4ybJ5/8RQvwvADpCiB8A8OMg\nu4VPdCiPhDWl2HFhcRIy1U4z24o8se0Pbl1Vbas1CUbyoNOE1aeyF7Nrx+BjUITQp181ycw85/mc\n+u37E+geaVMBqC1YNWuAhhmY8Dt1IzQzQNUqrGCw0bBSHGhWSS03s3jlLml5mWrQfQzL2yeFRlJ6\nmCQSSSFwtk4hxTlGB69BvJFC7D+h2UHz9QyZUqgASgU2EUnhQxY+xtEMy6yyqWbHULKaNjbQAFTD\nitkCRLzdVQr/jcgTUt5eXpKiNguBoi5M2kbidZNe22tYd0+t0Q36SPQGq3xSW6h5N89gilBElAid\nxJO9PYXX9SEBcpw9AOB3IHpOZV0WONv41rQtlKdA5wjdT30vydoFCuKV70PiVCZdNarml81gyZxu\nD9bryQ3FQ/oQheNb5QaZNho/pxI1J+AcOTmK2jdQAXmgCF6uDBqPLChMpbPL2dYE3wMA6rp/aWZ9\nkGwSalM1+fYDHHxHxE2SzxdAKgdfBfDfg8q1n/0oD+rjCCkqYU1eDJikCcBCdauZgGMSx4uTMZvC\nYoXyyQI6KajLEy+q6idZAKGrk+X0q/OyusGK1PjXTGqKzvnxghaZ8QQieAgY1eN5dmWTDkvHI79s\nvk06XtfrxxARU0P0tP4tZtdX4++4i5CL+oli4G5cI++xcRlL+ACpmdFIxw12ASnOMTh6A7phH8HB\nMy76kCq7gTCMIZUyn8XSEB/r799yslhpAPUk1ExAbtiNgdb0nhl0cnHVLkzaGUJGA0BWwAhuFXI1\n5cK7rUL6egGdXVAbUwUIZICwfwgdhEboNq1db+TyapTAL2fA5RTF6QrF6QplKEnxPJ5ABH5FCRA8\nY/JwulI4WQsAypgingOdA3Q/9b2ACuxQv7ovFJCv6FpIEmvZLUOjgRZQ61h0hlv8F0aguW02DlYT\nEJs59PQhXeumypFhDNUZ0n0iAfZ5sgrhBgSguxWPTnSGFQeryYVqazNna+cznUC/b+6VxQq4mJB0\nk+sCi3pifBHPPq5NPkaK4Re01n8OwN/9eA7p4wnlSYyCO47LobMQ7uhXd6TZFU8eVy6Hx0+sArN9\n+GBF3jiBD72eVoKaaHBJZGC1pGzvmfvpgQ9gQ3BYvvHTDPr9P0Bw+BKORq9aq2aaJ9ajttODUUrg\nxOPYU3PrqQbrZXh201a7TQ6mEdzuSQoCBExTer9JIZAUHroqox1u/xBgjg9zkJpVVmGOwVRkUgbo\ndobohreN/YQyrpPHdjHTAOm/OS0h1+7aXUjclpsdWidOsm1+Hq5IptNSrVU4DeBCjbTMihnZunbu\n9JwG3l2/A0R9IEuBfFZ9jolj+xzQ9SBCacRKVXV8RpUhz6ntOggCfHa8xiAIMQrofV9uAIASEKCB\nBmQ/8DoWyCDCGTCIIDc5vQ5baISxdaytn8N2iHztHDDYZTKhtt4th3StCNhhRXktMIacYJFOyIYi\n8Cl5h/HTJY92hIgk9Kag85Zm0O++D8QTYP8KGOzRc7NSiPeM0G76maHdviPi2uSjtS6EEK8IIQKt\n9TU07U9eSKHIUCvflnYBaMfcVUPLtq4ZU12eUtnuSP9rY+5VAvBmGxrem6+CUwAAIABJREFUX84q\n6LVhgW/NfMIYUGklxQLyntHmXw90o1h9qTQDHr8FWaT271uDXUJ51xjGFn0HMPmSEHssm28TUWCM\nxHrj1uqkOkl1dn9arrHKp7jcAO8tAgMQACLJ/kElvQYUnXenkrJab5uGcsLlaTWLCnwCYagAMowr\nq2ZG7ZnWmLiTQY/rwq3N896WeOi4zNA8PqyQXWlOSuJmUQIMoovbQbKdkV8bgnOEMS2uLQoRND9s\noU+slnb+Ivb34KUZVFJQAjro0649JsIuO9bal5MRXh8CZ87Y43ID5OWpAWrUl4C0XENGAwLXGCko\nBt2wsCv27lsLBp5Nue+7yaGja0uZ6p6qGeuzFChgVIEmhNmQ2YpmsSJ7isS0VENz/QYrIF4Q/y6u\nE5W3wlRKukhJZHROCUw0IdQLMupDPIHo96C5HffMZj4vwo2btN3eAvD/CSG+DMCC4LXWf/0jO6qP\nI8rc7jhr4VgGs1S7hWROHlO/+PiMEo/j1aI31Y5ab3II5gcZv5oaiqc5yDQ7VmH+DiNYlI4A2nkG\nJ49oFxrF27335qIMA1gwM4E25BB9vQaKai6hvABB2KFF+RoNNTfxzNIUp+vAuqUClHio5SMJDr1L\n2yuKATf5LC4rTx6nAmE7giZMXPMOPc0ogR+ktYXJJf26LTGbeFqEJTXvvtvOs3MeOAE10XJtum6t\nCWh6QrtvJ9Fa24Xm4H88hGQzuf092y7KpYdVVm+9spV0V61xsjpDUlAlOkslQpmi52e15JGXKVKx\nRhgSqVrDJAgDRBGje5hl5zjfTHG6DtFRJUIvM5uLiqtkz7k5J1L4wObCAmlwSe+dnt9UlH6HRGb5\nnOcG9LCoKnvtou/mS3J2zVNSy2irgky1r8IYWE9ps9Dv0fO4z5VmdiMp94x9ycWENn1Nt9hvMTR0\nq9Dv8xo3ST5/aP7zALRDrT6JkSUV4qUhjmgXfcOtweKiUjzgiscknnKV2arHJqKkgN4UVQICgDi1\nApEsdtkMHfUraKiTgABUO3tebDcFxCAi4l+/Vw1NudpxiaMA0O9VMwGv3n5yuTShVwLIMAg2NcSV\ndf50W3EsY1O4ice3c55NAawL0gYNvbJqbeUb2gE3bCFy6ZG7KwM5zHCdnUBtRLTA6U2BcprYz6Cc\nJhChhP8gh5dmEGkOfSu1tsmcIFxYtYXpMviiEWJ0zx7r1ufVAJTUqqu2Abjzex31aTEsUuDkEfS7\n7yP7xjn0poAcRzTLYX8lB94swpAUN24bePqtA0qSUR9pMbPvrauGxO1ZXkJvztGNhrjXu4vzzaMa\nL4x4UvWkYVURemO6Bo3GmRjdwyy/wPlmijenoeXqkP8PbTAI+l46hFma04k8sUaC+uLK3j8y8KsW\ndRhDFA7hc7Gia9hNEot6i1kvVhBpDsRLaJ7ZAPX5ZrmGlIPt6sckoPLJAvnxEsXpEslSIuzN4A2n\nUHdjyKMpoTpfxDOPnclHCPGLWusfBTDRWv/0x3hMH18wuqsN5cXh3gyAXfjdxKM3ueNWCZQrghLv\nfD3+GqjpkEkoGv7DJJ2Y2h7auVHs629yiIh/lu/UALPBu+fNAmEUAz65VyYF8WcYmRYaReGk5Mql\nwGF0ZZWNbRIycyGhAgSSLZc3GAW5nS9wjCOS6g9LD/riIb03d0jMMNpyXelorZb2vQKoqhqg9jP+\n3n6dFLXPwsqrXNf/57ZYG8wWqBa0FlHW1mhLPEbp2xWcDTtDqqbTvPa5lqvMOMoWEIGz8DoVsOj3\n6PvVkqwbIppN2M8o2UAv3q7IlnmKIItxd+91hPIhkrJAUgiEXllz8A28DoEcko09D2J0z1Z9XTXE\nIFjjqEvnm+3YO4ow7EkhEEpY6aCtYNQgf0ZuYrlOgNX5O/78AUAE5Bor4k79s3YSD/PFWqufxcps\nFnPkqUCeCkhfwDf3t7cpLNLxRTzbuK7y+T4hxF0Af1EI8QtA3cFWa90OrfqkhFSVTpX9mZm5sES9\nCdE/JH8WVG0weZC1uzAHPpXqzQF1FFcVj7kxmqKUVmfKzGfIlOzSzh30fEEumFgR/Jp3xbGDZmOj\nMObusF212SEDqCUgKSZQ3trCl6ukU0VSeAilox1nkGV8rpQKsBfeRldtsBduQ43D0oO+fEyVnxvM\nZgcgIvIhwuqi3s6KZC3x8M8Qd4Fzc+7GEQqapNMQPjSOoYGi894/tHphRZlZ5r+VVvIM/L1RAbvH\naV/bhe22xBaXq9FerCRmlpDhkCq9WymQJPDtpkJRVeu2e9par9yiuzyFzlOEo3sIw33oyWOah23p\n910CyQIHBw8Q9OdIe2t01YFF4umpaUM3+TtOKCgcBPfR9ze43zuvtPZauEp5WSAvaWbYCQZ0f5lr\n1huGtGFgd1rTEdAqrFUoIs1ps+K0yWoLkeuYGlUK2Wk5ty0ulwPGrUQA5Bd15xDq9QzyYoLwcoqe\nsQFH3DUE6s4zk9fBs5PX+Y6I65LPzwD4DQCvAfgK6p+5Nj//5IanaDFuk8hv2yVHMRmuqcd1x0ag\nSjINR8rm4xm6mZbbsnhb5EzmGXWG0IpmTQKg4SsH37h84/FMKU+tkye6ZijeGMrq+RnCzhBBdAfz\n7BzADKEsMEvRmoDoGI3+nUM8tSi99RShX5FrXfn8raTDweRS074SkYNycs5vZUVtksp4aHrxEwjT\nlpPjCOWKbmzbrhqN7CwkLWY26XC1d9ghbT82ILuuOrLHy+hEng06KEBr/8CyPA0FAC0EipISz/lm\nikGwxqh3m25C855F87pygobtJtLczIPMYja7ovPMrdddkZNK9WB0Dwj3jYju7xNacLGiTc54sIUY\nbEaY5ggxQh5GdUUKM/9zk9EqX6CriKCrE6MCEk2rTUTcJSHb3hjrYoZONKi1nKn63/GeePNlgAcr\nkSBvXG+B16mJ+gp203UQluLgFpCnkNydcCHdL3g+H0nsTD5a678B4G8IIf621vp//BiP6eMJT1KV\n4LpoPi1MC0K78jRmwddR3+qaNSU/AEIRJdm5vTldUUpb9Rj01NZwml8zuKQ5kvmVCMMKdOAa3/Fs\nB9hqx7ncCT1YQMSHGPT2obwAq3yKcZRhmRVWGofDIpaSxU4Soj0vvIjxzCnNzGwqpoWCXTjd44LZ\n3TS16Hhmxl/fuUVyPL0xgSjCEF7wBHpmKp9Qml2rmYEZsVOCl3OL0cckkQAyHHamgAICjxCON70W\ndkF8a1YKjQREoIwJrpIV3pyGpnV1gv34JQK63DEir0my9by1xGOf0CQgwFQGFRT52gXTJKCavp/h\nlelNDu9WDHFnBt0kEScLmscxvw2AHA8g4zHE6B5y1SFodeFjjZlNQLNUoqsmCII7dM/FnUrANgyt\nWkKOHKt8SsRao3ag8xSIMwgGmDRaYCxnJeJDJIHCPD2ucfJC2WtX/O6NIVrAIE0rDkAjb9ksfiuh\nXygc1OImlgrfeYkHQKkLJHqDmjEbx3ULEPfAAUASSW+eneNscobTtY9RWGDgFxgEQS0B8eIHVEgj\nYIq+f0BcI1cy39wM3LMOwg6UurfVhnPbbbwLbzp2FtKzkvw6W1PSYI4FKGEIFaATkV7dKp9iEBiV\nbJOE6hDptKpMOOzXjlDpYoVyklj+k5wk8EZTk4TWwHiwtUDubGe5UN+DWzRgj/epPWP0u4AnFpaO\nuFstSEbsdJlpzDJKOrNUWv6Rm4CkHFQtM2duY8mru8L1lEEjARkgg476SPKlTTzvLiS1M70NpDjG\naO8+vWZ3QRIzJoE/NZp/k+YkbsuzIk5EzerTVTM3ABqmDCgQvFoEis5vfEjq6A5Jk9FqSBKI/Qw6\nT6HiQ8iYPLIC3YEUOWZpikmqMI7WSMs1zbm6l/QZpRldwyEhCQu9sfy6wJCLEcbAAMDGaA9ycuZr\nLiajRx3vY548xPHKw8BfYS/skupH6cEKtTaSTCE92/pOiiVW+cLSA17ERx8f3CLwOyQ8IStlg4b+\nGprJyAlXsoV3SH0zOwllhcSZpSmAtCYSyTEICvT9vWowvDbcDgvHJrJdWjhkUNVA63B7hltXzuzE\nbQHZiMwcyX08y6SowLZNWHRTCt8mIVISGFbgi2a4aCxU7RK3eWf76Fz9tLQ3hd+xszUWPbVV3v4I\nGB/Re8vWwNUj4vw8OSdvIB5kbwpKRiZphOE9IwQ7Q1KUCKWHUJYYBp4dljc/XxeAoM/fpipxfFTj\nDfE5dc91XdzSGPixAnU8xmD/AVQ3QCiJY3PUyTAICqxyo/wwulepTMQmyTM0uRG6xntxPwtVF//c\nJRGjguoairsQmwJe10cJ0+Z0n8N9DP+8Bgev2s5V+42S4iAI0PMz9H1C5+VhBDW6V1kXjI/sZi4U\nUUX8NvYRloAdj+l8BD61JnmWOdijx2uNUXAbwAkCLyZx3RYEY2V0WOcihbKHUPbQ91MDI39Wc54X\nsSue2+QDXdLF2QhhFpOmAVj1uPan66oRQtnDPDvHMnOcGgtvKwHthUcVDNZl9jNax7TMeDGzaB1u\nybkyNy5T3iQgtmCwKseOXbWIhgbynVonUUaacdSNzRS6alQRQ83zINgxK1MBDXJNO8eL3babgYTz\n3/O/DRgzATOG0L01xGCPFpCmuR3rnF1Oa6g4ABUkPaIWYRj0UOgM44iESWGUscnGoKy9X8vN2ZCT\nrX74GFisiDd0r2473awyXR8ZvZ5Wx7hYQezPoPMU3dE9yOg+lHdcm4vMsyuokHhVMupbN12qms6A\n99+vv3/mPrnJhw3fbjKjiGLgIIDAE9vy9AASfD3o0ybB2dzYJDDYqytFO/MWrUKssvMtQdGOHNQU\nJmS8DxySN5ntIpgI03xbJorboSqokpBp3bqPV1AYBbfpWmVx3Qbgg2wn/Nb2V+B10PX6CHs9hPKR\n8Vx6dvFC4aAez2/yKfLKEwXYecM2b6Q21WZLUiw9BOFLkOLEVD4V9JRjLzxCNxMVDJbD3iQsNVIn\nRBY6h5IRLQLXHLPlz5g23NYQPYqtfAm1rVi/avumYMUDK9rZBs5wn9dUBnoztZUL+r2qRdjtbSPK\ndgE04FRCzWqLCZkO54letyKZMvycqx+oEZCjloBCqdvhwJsFOba++z70+5copwlkmlEldvjSFhoS\nQD1ZMCfs+AzloysUVxuoO3OIJAFeIlTafu8lzLNzrBxZp3l2bucVrDQhwwgqimmxdxOQhSwnVfXD\n878WVGHtvPdoRkM+RQFEcOqoOWQGBNDZvr54k9DtVfBj5taEMdbFbOt+YZKru9in5RrB3v2tVree\nn9XmnrVromnfwLdHg/irkk075SCvt95c3yOrObcgzbmgN8bR6FUA7zzzBPQiqnh+k48uKxHLLRXb\nSiCR215N6X0pVKUina9owc1TyDDG/t5LkOIYV8kKp2sfSenhMMoo8egQelLxL7bC/Lyt7aeFMLL5\nDa6Q+zW34eDAE9sSkIO+cxcGu/A5oInWFqSbAI0OlrXTVkGllN0mTHrTMMdo7Q2AaxMP/2sXRpZp\nSRYIoj5d7U4Coqonsgz8QmdQyxklnuMz6PcvkX79wnJSZPA+JdSDBxa6zX4+tuKZPLatwOLhFNnb\nU+LuTBLYd5+nUHiAUXwHXbW2qtZ5WWCZrSxJ01W37h48sAnIzjy4bRaG9QrEXIttmwWel82yc2o1\nsYoBYCHNFkF5zecCU8AytD/RGyTFEkmxsbI9rtK6MvNITk4s6cRAG5atqkkpuaizFvSoTUic9JvS\nTM2KWnEFRfe3TTpXb5HRobEwEfsTSID0Ez1yGP4khRBiDOAfAHgVwDsAflhrfdXyd38KwE+D5Fx/\nVmv9RfPz/xrAXwPwGQCf11r/jvn55wF8iR8O4K9prX/F/O43AdwBa3cB/6nWmm24W+P5TT5CtCce\nE03pGXZPrGx8q1NXE0F0Nkokrkk768OoUVlcRwgFgCKFlMppV2QotKqJlNaep22ovCs4wUXYsl5u\nJllrgtcMi6ob2iTBC0sQ9SHyhGZM7jHWZFOcmRXPooDq83CeUwoF5VZArtQOw97diLtWfZlfV+QJ\npKSFvNC5o+Cg7Odp0YncoolIvNMSIs3r6sUZRG9sraEDr0NIOV4s4yUQd+ENN/CGIen9jUJ6PlOl\n6Mljq9YNNbIIsaSoEn3FoUkB1aeFfjwAjhuyUIGiqjKMq9ZqtgawqF0fnHjWxQzrYkbACP8AKhqS\nYrSRMqr4bJWNhP383H9h2nEqRGKquFkqMQg26Pt7lZ4bc8L6hwhUp6YWD69TXdNuwnM2KzVIuxu7\nkk5L2ORVs9HOalc2J3U9X0IkC6jiEB05wFFne+b2rYVu5UN9BPEFAL+htf6iEOIL5vufdP/AiEb/\nLQA/AOARgN8WQnxZa/17AL4G4M8A+DuN5/0agM8ZN9Q7AP6tEOIfaW0XkD/Hieom8fwmH+lv9Zvp\n5/ULXHkBiqJu44vSVAhuC44X1aJetZCas6hpnT0tSbhzH+UFlixX6BxSdajKYC6NCw/mm9NNqM0b\nlttCeUrw3v6hdUd1EQLcipPCr5Ewrf6cYexzAmcYMS3uihZjN9nw+3atu5mn5M4pTCJi8EQoo5pD\npo7HhK5qnDOu8kQY0gLtEIiZ9S5VH1Lkpg2U1XXH4CgdqABifwSdZlB3EuhxBHnUrcRdTYXTHR1h\nlU/t56P8AJ2D1yghD/Yg9p8gOKCZD8ZDQuvxAmueQ8SHCHtjSMVipOstYdKuGlYQd1eTzB3+O4jH\nVmSbar/mpPDpOlotrZSRx8K2fQeuf8PNTVJ6UF713NhcEEpOBaQtGAFSqqqdC5CsEpM/+bN23Exb\nK+Y2EdraG6seY9ukTO42YAOr4M3nCKjke2ZXQHyIbm+Iw84NVC2+veKHAPyH5uufB/CbaCQfkDv1\nN7XWbwGAEOLvm8f9ntb66+ZntQdorV1towgf0lT0uU0+WsC2dOo/F7Wqx23JcPDXWog6N2Wxqs0C\nktLDpgBCk3jyMgXEU3rITvXElshuFNrIhGBBbYQ83V6IG+RHm5z4hl1cGrRbas3RIFXr3IcrLkvC\n5KTjvE6O3EJV+biVUNuVzmINfXEFfT4385k5cNCvJyFDlHTBE3XFgyH0IK1xf8B/B7Rq5vHnw9WP\n8gIDBfbrVY+TfNDtQexn5NiaZsDtg1riwPISqn9Y2xzkZYqL/CHZPvTIs4jBF1vilGkGpFf02WVr\na1DHKuocNbXtJsT9JtFIGO71bo3zElKZLk5XKC43kEkBb1MAB1lVAQXtr7sLHq+8gNqlxukXBrko\nAKjeGPDqbbQcOaHgGlw3a0HigoMYRchJ8Zp2rltFu+oSfK0r6chVLlaVpNFibZ11mY/3YaPUjU3o\n9XEghHCriC9prb+086/rcaS1PjZfnwA4avmbewAeOt8/AvD9T3tiIcT3A/g5AK8A+FGn6gGAnxdC\nZAD+TwD/q7Hy3hnPbfLJywzz7BxdNdw91zChvAAo21SgnRvI1VhzeELrAohM9VMLd/faeoDUm+ZW\nX/WaRg6GjbSAKinYAw5qNzCA6oadXVmuRNOdE7LTan3MbTnlVj/mdQgSTm2cs42Pw2iBUPagvY6F\nPGOxqgmy5sdLCw5QmxzeaEVmbQxMAC1AGmjv9zP3g99ro3WqF9tq5c3qp1JydqqeJr8r7kLcuUVz\ngH5v+znnZ+js3ce8PAcAC9E96pxhL1yiO9wnVj/7P3G4auNAtQlggzrUkwSSxc005Vw0ZPPvGUnp\n/rkXkHfQ7Mq6o2azAv40gTzq0uLASMUmqo7DqfSTguzNAeKFYXlZ2ScYsrCbgJpmdDlywCgmgE3u\nzGmwFbB7HQMAlrX2rZuIWJ3ASisZGDh/zcaCkIFFSJbThBoA4wRiQ2TqTrz/9HP/7ONca/25Xb8U\nQvw6gNstv/qr7jdaay2E+FAVSuP5/iWA7xZCfAaUbP6J1noDark9FkL0QcnnRwH8wnXP9dwmn00h\n8Hg5wziaoSMHlhdQKR9ndWQb3VO13VPgdXaewK4a4X7vHJNhjlBqjKMdf9iMxi6OB85uWP8dFVI7\nrM233tk5WnMuE6w8oGH0rWwbrTpIV/pdykYvHpXqN/fvl5kmYVKvRFctDbeGDzivCUq6QqxWATzN\nrG+L297a6aXCRmI8M3LnQ+GDCj1VVNWXNpJAQRgjZCO7kv/nnENewPMUiDuVpUAznPP+eDnDm9MO\npqkwatEJDqNH6KoY/f2XqK3kJiHefKQZ0K2ea+cmqKn84IZLJL0BOKvr9SEDnzT3Tr66DVVHJdYq\nBuYYm9I+QC0JhbKHnj9DJysNYs9RXrgmXO+fpu22q1IAoH0DxdeKG44sjpt4ANNGd77e6VfF1+tN\nkv4fQWit/5NdvxNCnAoh7mitj81spm3w/xjAS873983Pbvr6XxdCLAB8FsDvaK0fm5/PhRC/BGrr\nvUg+14UUPklwGFIgVAARxrVBvwvLdMMab+Up9CC1Gmu59ABdou8f4LPjc1s5rIsZIIHB7Td2628p\nkurJdQY4c4m2iqR6Ew76zeX9mBaiMpWBdmYGeraBcKXiVWCTqhuh7LX73TCPCFRF9HyBo06GcVRJ\nmtgbN+6QyCkAeXsC+dK0Ahw4u2p9bO6RMARi0JxCbbcVAVByAaz/klApDe8LIvcCNODW87PtRTtZ\nQE9PyICtOffjqoF30W2LpwUkDJGb2VgoyVoAkAilthbiyiNmv1SDimPV8CeiE3MNEpA3E1Fs0Ggx\nKTIHvhXlBEx1V6SUmI0jLVu0i2hY40qFIqLEY2Yc4u4Y8ngBEZKwpvW0uc5OgN1TDTimIwc4jK4Q\nyjG953ifSKT8t/HYwrITo2bgOp4C21QGq6K+vKwnHrZaaCQfER8iDyODHpwDGfF9XCANJ7Ou1wfy\nS7o3Dm4B8yVkMDUV76H1L1oVzwZwoIHtDshHE18G8OcBfNH8+w9b/ua3AbwuhHgASjp/FsCPXPek\n5m8fGsDBKwA+DeAdIYQCMNJanwshfAD/BYBff9pBPtfJJ5S60izbzCz0WuQpDfxrVZDvVD90o7Dx\nVhDvW98TMbpXQ4/1/QMLpQUoARVehrBDN0CbAyacRMe97lBGVgnbjRoj3z5RJfdCrcURQreiWqys\n4R3SDGxmVzQ0rKypXFvicRZ0nqEMggUCzyTuHRJFYn9EC8ainkx1kqB8QgnZYz23wN+ufly7ApNs\ndUF/I1hY0329ztBWPPa13n6byKlxF3gjhTh4UP2SNcXajt+tfqLYMPqrz6RKQBRJ6WGZFQg8UyWz\nWR4rA/BzumAL12bdfR9M8uz2LBfHavu5n617vjgJNaMwyg1szQ36XNSdS5Rd3xJNrzVRM7wtbony\n/KyrqtdbFzN0GUgggy3F6SbM341Q9uicFSWwaUk8fO26qMkwxsrXSLLz2nPVbM5RXdesogAY24yX\nUuKlxV3r2LoqZljlT0fTfZvFFwH8shDixwC8C+CHAcC4FPys1voHTQL5CQC/BoJa/5zW+nfN3/1p\nAH8TwCGAfyyE+Dda6/8MwL8P4AtmrlMC+HGTcHoAfs0kHglKPH/3aQf5nCefkuTWi7KSQeFZgyFh\nNqsggAlquU1MaQmEvTGECpBLDxKeHeZis0CoYqz8nlGPporpKlnVjoP+jYxUD30sCgp6/ti2l9hP\n3hU+rN1YziLEiedktcZhJ0cY3q92yJsCxdUG3shxiBQCq3xaoYBASaXN4bMtqIJkzowCZWnzuGbL\nKh5D3B1Cv/8HVRI6OUd+TFWXzyrWDJd2xV9d5FwjCeoitZ9bDSnFfze7gn73fRR/SPMNedSFn2bA\nZ1KI22/Q0yLfhrO7YeDULP9fOLvijiqRFBVpdZ17CL0SaUnVj5J9el5OIM7xNedaW5sKd54Td6vk\n3GjT6vXUqltwJHpDfBuAqqHzt0m5AajcUmGqn8GqsurYFWwzsNUi9rdaxCuRoLv/AFoIJOUaST7f\nmXT4ug9lr7J5YOJpI/GwCKp0zmE63Me7s2OzCWigVg3LihOanj6itrNz3q2AbxgDe/exNomHNRk/\nKaG1vgDwJ1t+/j6AH3S+/1UAv9ryd78C4Fdafv6LAH6x5edLAN/3QY/zuU4+1n8+c9BqjOphpriq\nBv+BB5tw8jK1ZEyAFi0Z9aG4fQdHQVoF6B48gAzuYJIe43jl4c0J7XxJX4ySzyAo8XL8yOq+oSDw\ngt2FL84goiFVMaEZwObbirtahZin54bkGgDIMApyyDyFni9RThPT0y/IKnh8ZAQdN0gKDzLIK8HT\nxCGJ1k5e9b0LirDnpOW4uM2VeCWSYonBa/8u9KOvErnPOJECIEWBSBLfgmdSwDZs2z0WTkaFIwRq\nqiARkWkbKw6kX7/A8kohnM0h9yLI/XPo3hjYu4+0mEGFfap+VABgacQ6/VriYR0zjlCWQCZrWnEd\nRf5IeUnXS+7lUFyJ3cAjpqaMnadV9dOG6APoPDlJh1Wi18XMaqZZ9BnbWLs6bf2Yvm87FlZS4MTT\nsBUn2RpaTpot6lWj0qH7hypEew/a89irNBc3CwsyAM8EraEizQ31fEl2CAev4Xz1Jr52GSOUGoed\n3GjnBbUqSk9Oa15HDJzhGaIY3SNXWDPLpPvixgi1a6PUu+1Knsd4bpNPoQWWmUZHLhGG+4YcmG4t\nMO7NXHFCOii8bBsl5yQeGw7yLBACo+AO8vIRJh2JP5gq0Oiedst7Af372mBGVQfvlJ3Kw3IbJo+3\nEG28ixObOfbUGN3eCIPgHH3/DuTFQ5JnSTOyHYBRgE4z4L13IAEcjO8DgKPccGnnNqJf9wMCYFnt\nbBMReB0kxRJ5maIbDisl7iK1SafQCaBpkbHmZXEHIpLW/dUbhnBNxujcOsmGVblblLFFfGjPi3WI\n7Q3oQn8lhZdmCJIC4u0p5FEf3mu3gLt3a739VTlHtzem2U83rSceM7PghT0t15ilKWYZLaDs6OnG\n2cYHQOisbjisOC0Nki4JXlY8H46a1xB/3m4Ccq4D4XfAauurfIJE+U5MAAAgAElEQVRVvsDZxocU\n55DBbSKUBqdVS82KgypD2mWgADvDOhBn/l0LdwwgwjIAuznjr+nfvPZ9MxjuzolICwHBUlDm+QVQ\nzbqigkz3GIV48vu4e/vT+BO334TyJDpyQAoO5lrW61MSonWOt3b8mwVtNkwiCvuHkP6Bua7rc9AX\n8WziuU0+mwJ4cxoilFd0kcaH0A67vlUZ2oTIE6g8BbBDR4r/zjLNqwi8DvbCI7wcn2GWSpysq9c4\nXgODwMPlBtWcoDPchg6fPKIdHwt1MuKr4U8S+h2EvfuEsjp5ZBcSbxRCJoVdgHSSQLz3DgIGJmQX\nNZQYAKCRfGZ6jnXaPojllh8A9EdEMUjLdY2SFqY5Df05bh9ATYxS80HfuEi2zDNY0j81HJRbB7Xz\nnQQKSTFHkdVbO93OEJ1XPwcxvA115y3Iz0yIRPngU0iH+1vzrlU5R2fvft04zoBJ0nKOVT41SUcC\n7Z62tTjb+JilMxx21uj6Q3SP3rCtqEInyLO509b17YCcRTAD1YGQQaXYbTT8AKd1xNeBEChKev+z\nVGKSSBxGG7LL6BkQQJOoyuc5SCuiZTO4AnSrTMAmRhbtlCIHPBiVdL814bCmnivjxOAWwCQp6UGZ\ndradx4KqNcEV2sgBHJgExDp7enFBVQ5vCJ/GkUozEHR7AV2kUNEQqjfemhl9q6G1MFD0FwE8z8kn\nE3h3ITEIQoTyHDK8bXv9lmhqFssaF4R1qNrC3JSu9H6bdE/gdXAQDfH6cIak6ODKrO9/OBOIpEQo\nfQwC4ssoVzl5s6BePTPRRyEwntAQn5MQHwdgbrwpcPKo7vsSd4lEyMGM9sdvQY9GdTIj/zta2N32\nSiR4vJhtwcfbFpq50RBzo6tD6PNv1J5f7I/g3TLD+P297arGTTyXUwsNFpx8VIC8N8D5+h0khbdl\nhjfwzzAIpugOhuj2vx+Yn0F0hlj5ugbwcGNdzNCJ9wm5JwTWxQxJtrTVRDPphF5V9bTakZceHi0L\nHEanSNSyATMurAK68iRkWS3KyguQlnTdiDAGlEOydbktJhlxyygpNpikIWapxNnGh/Jm1UZr1BDV\nbfoYuX5Crruq+3m0VKVEVagUM1zIfls0E0/zGuJ2tgCMn1UAEVxV0O9mFXby+1QprZaV9w+jCxkd\n2BLWqI7BHP0VnaOMPIhexLOP5zb5JInEV84FOtLHKFgj8Ka0SOrNlmiEZYLz8NP0oFv79k1yJA8w\nG8/XVUPc7mZIygT/6kmIxyuBd97rAVhiL1AYhT7xZYIBLQzLS+iHj6HfObVil94whLqTEAt/vqQk\n5Gqd2X/zLXdMMdgmHun5EpjvaDEsziCiGIlX4mR5hjenHRym1Ffv+aLarTtkXF6kQ2+Ne70BoaG8\nPvTF2+0VI8OuOfG4YIHV0srysPGZAiBWS2AcAwev4WLzFr52SVUAJyCOQVBgEJQYBecYR0B/cICb\nqIOwO21eplgXM1xugNN1hIcLhWFA6LZRSImw7g20OxFR4qLPY53zLaiMArrGKHC15/IasEQKI13E\nbTeHz8XnPSmWSMu1qbY8TFOBSSIx8AsE3gRBdKeCmLsJCKgrZixWVavrA0QToNP8nVvhNVUmKsuD\n6rHrYmYMFYPK74nvvU1FH7DXuYOEKyeJ5ZR5wxBwrLtFGFaQbaNuoJn0vFgR6Xm8A/n4Ij50PLfJ\nx/dLfNdA41ansNwURnm5fWoplDEHu+EF6DLuGbSQLLYSEMcrcYjDaIGvXXbQUwt8eqjx+pDQNat8\nga5aE0s+WRjL4UrskoUva6ZezTC7V8ul4Z83eCatNs1uhNRyOl+/h6SQjmadQM9HAyEXGJSQYbwr\nWKJfjXzqHgdA3Ao+h65Kw45zLyIzu4oPMcvOcbzy8GRdr0YiyaAObQEAl5sSl5tzDIICyiNTQffz\nB+ozCh6W0w49RSg1hgEBRVzn2sCjz3ieXQHwnsrpcFswHVWio6h64uPi1weqRVsKRfOQpiunc80q\nL4AsfQz8FOvAM865GrNMIpTGuK63bx/rvo6ScU3hmi22MR5StbFr09UIt+VZ/zpr/F0GhcCiR6vj\nycGupoXOkXspfUbxPrXh1lMrLOpGM1mKqHC+lhbJV4O68xzJfaLArys5PIMo8bHxfD4R8dwmn25Y\n4vOHOT6zlxESKM2h148gOkOoMIYWour1spcNz0F27ATFwYMt0zM9eUzJSAXWqG7rWFSMz98CjrpJ\nrXUzSyX6/hKQPYRGUl8ACGAcOwcRVQv7o8orZ7OoVT/W8dK0G+xA+f9n791iJMnS+77fiXtmRmZl\nVWV19X22Z3d2SHFXlLkEqRfbMmQJBGGDerBJWoIt2YQEwxKkB8MSab3owQSWsCFDAAUBtCyIMiRT\nhAyYfKBAi7L5JkoUDK72piV3p2emu6cvdemqrKzMjMiIPH74zjlxIjKre3Z39ubuD2h0VVZmZFzP\nd/t//7/tp7wAxeZnb/NY8975A2ypyaKJ9jIDX/WQf7VeGdqiS9JwZiJ4edgvVqLYqbfp+HT3xZ5D\ngH4pLAjliqBcidM1ctlECfVa6vqZ53ss6qkXrVvn1WYo1vG05pnAXXu72LcHji8ZxAsjRKed03HD\nkIgDlp6XlmwmWLeynzRYy755TOd+DwS6cylR6/y2qIDCxGULviVBj1ECUFLUygEhfPCDb9YpDONJ\ne1GYzVndPyda1vCx2A0LEyUoA6HWrW00xJ3WcXQdjkW6VYiTdWAVdem48iyIxdqibkAt/VSeUcdq\nbQUZTW9H7ZkAp1xJb6usGoVXaAc85cppTumLmfye95tnarD3Ygn11/YN2yvrfAaRbhzPOhAnsZwJ\nImaw19KneWnWEyWoyT3msaY1lmdLdKZc4DumbXMObw5zh56yEZJ7AMMB6eHbRvwrkjKbBRz4qLyu\njss2Rzkei6O0x+eXFbyeVxN9znhy0QZOWMfjI5TcJszC3e31yHGvKMI1qSn7+FG70OPErQVfad0w\naY8b3RllyTrtsRvfYh3LKKmdTHUUhFup7K2Wj/QbYhdk2AZ6ZIXHAut8TH9CD0iCywbC62vSgKiV\nJjeAx1gHBI3TGcSKJOi7c2XNggy6SDG/5Obvp3/NbF/KAhQsjcwgXnHYW7Wc3zYHZOHEabho+ozl\nCn18Qf1UAAjxxww/ZSTyDPP1Fjg9bMCq5bXtUgLOEa1nrtd1FSKu1ivnhPrRDmESi3yHpz7r2wY1\nTrd8VpXCzWwlRvJek9lZkbwrAqLX9s3bK+t8slA3juf4voh0XcwEAZVfokdSKrMQY6fZs7GhHDW5\nx1RfcDw/Z5KVjCJT0licG636S5e1KEOoaBfnZopbGKdVtsMkv83cIKr8Abcwioj2TQZkAACOet4O\nkIIQOtqIr+t8JtdQh28zrU6oV7ONxa8yQ4DlesHlShs0F6Sd/vkoqc3i3dD/N0ilhrgzDQcbnF3z\n6ozaOCY/yr1c2YW55xyCcLUZ1gGAvESVlZyD/fEGKtH2YA6yFWmY0Y8aNJxPKin73FD7Kx8m3xlg\n9Z1RpCJ00HNDkFxOm3muuTStdVWSTu4xTm4QqmOOFitGce2cTrfE15V00KHaWLw3ZB/cQbWb/eKA\nmmuSBCKed7mq3bUEcUB+2c86yEF8TC97U/bj4pLV/XOWJ5qMOfHpubBTGHDHRfGgdd3b2lPteZ4P\nMysjWkalm3vbqjJLg6Z0GWuQEAYxSYcA1C9FumvcmRPTq0UzxOxrH3Weq4/CtH5ddvPtlXU+cZCS\nnJ+gjx6gHx81ZaqLmWQWdsB020yAFZy6c0syHlVwvDjnD85T4Jw6XbEbX5cb2quR69kRzI6I8gNR\ndlycQ/FBS6xLm8i7j6Kf3nYcWH6EbXm+Wg+IPw/kpJQ7kd+tN1FDiVgvVs8dugrMg26C02bBCFlU\n0rs47K29TKdBYfmL6FW2jRXcL8lU61ogwWVMb7XmIJtR68pR2YeBN+cSJRtkn6oqSMMBB9nMLfK9\ncHcDQZUEPfo0yCWXsUwftqAHKu61r/u2vsJq0abtqcqGrcHMjYSDEaGKPPBAWz9ow6FYctEw8d7X\na95Tl0I1s1psyk0bZ6miRDI2JY5fCHAhTCpThvNF6lYtYEaxNswcywvX85HDUaIUa5GJ41suWEjD\nRrl0+7WXrNPeZ12zTsnfhxEytPtS4bVAslHWQn5r+3KLetq6v1pBTTxwCqZ2cBeQyoTb6Q7K8nX2\n8y2x74jzUUr9j8B/jDBAfg34L7XWZ+ZvPwf8DLIU/mWt9W+a1z8D/H3kafwN4K8YuvAUYU/9DHAC\n/JTW+t2X7kRxif63n2+QMdb8ZqrPbuyZc1bDATp7RH//HrvpJXfzBbuplFPm6wvhtdqSLTkqn+6k\nuilnNPs4E5LiaoVeHqOXs4aJAdD5qZs039C7N2JqLs6aXHNZXF+nVPEu/ahDz+M+L//tpglv0C77\nQDvC7do2luIuKapF+0l5SQZ207BiL1uZaDbvTLpfNOesez5NuaU/2KOKS9JQSjK2lwOycDs1Vit3\nvTjfinXboLmx/QRoR83zy6bPBnIdrpk+1vgWOt9nvjpuHbvVRirqS6eo6i/aYbQd9KGWF44glM49\nwHiM9qWmDb+d74B8Rg4wPbpiKVyFvbxVZpXep8wQqbc/STKbs5MdE93IUT/wCdTdTwFCyrmbXnpo\ntSYoadgBDA2V5xiae8BS6bSHT6v1h0PWDePd9j1i5exXC/rDA8IoZl4Jd90gtmCRgcuAnB6Qz9Jg\nr/22gPMjsDVfl57P/+/tO5X5/DPg5wy53S8APwf8NaXUH0LYVX8AuAn8llLqk1rrGvg7wJ8H/iXi\nfH4M+KeIo3qutf6EUuqngV8Afuqle7AsHMXIRmnKU4bUUdpGwczmTgwtSI5k2C3bYTiYUPeaocmi\nviSMYpmp8OeCqhL9uS9JM/SNW3DzZvO3bppfGQJIM3Phw0KBhn13XDbT2bb3EyZCjhg1C6Jvo2jf\n6al0HZCLshdbRLs8oEBkGbw984W6hFm43iifJEHP/etOvttSiiAMC+coNpgjfEXQ1QJVzBhmE9eU\nVlpLnaNuZzB6dgSnT9EnZ9Izu377Sh43l2H4TqerxHrnVguubKWqL1bHDqbtH7/sH05Guu3AFxto\nQDU7aa6BnV2x9wEYDSRxhPYesHIXDRegZAahioiKJfrJ51j/wXuOUoe8R9gfEEYJ2kdlpjnqM3+E\neO8+an/sHI9c6BnDdNKwfNQlVEtgSZrmhFFkrr9FCjZ9vK5Uu7s86xJCO6e0nU8tCkJXLmc+Q69O\nGrocW5W4PCWd3CNMJ4aFornnonotIxOeoKIbzt36ja/tW2XfEeejtf6/vF9/B/hPzM8/AfyK1roA\n7iulvgr8iFLqXWCktf4dAKXUPwD+FOJ8fgL4G+bz/wT4RaWUepmKnl5W1A/OhcE321JbNnQqF6tj\n0fqJe+jLU/TJGav75+hlRZJFkJ9B/5FTPPQlCebVGUl+A6zzmT5Hf/GrLH/nMatpTf8H54Q/WKDu\nCauyn/Xo2ZGwErz3QWteYT1fuXmE6GZOOJtvDpr6C4hF63RLCcuZzE0AsGz9Tc+O4PiZ40IDzEDr\njpsl0oYiPzIU9oAj0PRLaU8XGWmoeXPUOLo0HDTIMBv5e8SXVMI23EUxXRmBekqlaZiJ0/KP1Z5P\n43R4ckz9dC7X/uQM9cZNcdSetRyP7eWcnMmc0bMZ9fOlyA6Au35EiXM8L5LAsA7IyrP75hiXMY7n\n7JGjE/JJNdfnBSoNZcZrbwe1v3IADMt+oJB+VRKZaP/Jl1l/7V3qLz9m/jmhmkkOEqKbuZyLUSYO\n1T8faY76vk8LAKdjUbGEatq+VgCLc6LeDlE6pAqq1rnoAkpalzGQ85HqAaE6c8GLLQ+nYcY4uS4O\n9Ph+kwHa+R5vSJSqJJrcY5hP3KCzJerl/InwCRYFarZwDN1Xcua9tm+JfTf0fP4r4B+bn28hzsja\nQ/Payvzcfd1+5gGAyaTOgX2gzavesfWypvzyCcFOSjBOCSyVPBjuqB2qMGBRCM9aH0zkOTfEnJUQ\nYM7mZgDyiGR8uIFUOisfs2uExPTjI8ovn3L2fkBVRERfPiHbSV0ErrOhlFjsQvn4iPrBecvhrM8L\nqlJyMV1I5hZiEGBlJXQzUUMw2WJ4tqJqyyso4qtSnM7JGfqDU1b3zykeSJaVHCQE43OiG6feImVU\nUKNbVGHgolwBKsScFSFHi8jN2NwehEJYug5w4m3bGsDwYvG07j5HiVMqbb1u/rd0/PrxEfqDU6rH\nM+d8Ynu9ockUfVi96eXoi1lLidWSsybXzmH4zCEIp8bxXIXYsnbV7EtYx01paHneGq61A7a6qKlP\nJWCIgCCZN9c/X8Fot3UOVFWin3wF/Qfvsfr8Yy6/dMnTrwngY/C0Iv/gjGxfER72G4f6hpwPFfeo\nBiPzXVFDNGshzv618hr2TrE0zcFkuP4gaStAMPeqDUjCIKYO7TlZUNTaMb47BvqzszYrgdGoAkFC\nushztWA0vmXEBT3HY7JHbWmarPnVh4+o3GbtNeCgbd8y5/MimVet9a+Z9/x1oAL+4bdqPzr79BeA\nvwBwJ8+EmNDS96ehDG0Oc+mXRAlRsWQYT2Qqf/aVptRhiTnTsKHtiHuu39EeUKwhgt3JPZg+J/n+\nc8bnj1lNVyTfv4/62KH0Y7IduTutHovZbrCTuu/TRU2dRQRL2X4wTgkP+xL5Dj1YeFW2CCuBlw/K\nGskBykq2NVkRLStpNJvvim7kDTOCWQxtb6nWEuHKmiizLYe9tYNkD+MJfZ36g/9iXWJQ878PwtiY\nwvfJGWy/y0Kur5pGH+26bdubPtzNUDf3JJvzhOV0plCDvUaMjWZ4MQDhxQPCvawh6Dw7Q1efZ3T9\nbeZx4uQptlkS9OhHmwqc/hCujlIp4VWGSidN0UksjsYusmkoGWneb67/bNE4H3vOTAlW3ZgTHV+Q\nPZ2zcynnaTBeEY9Ckc2+kcv5MEJq7N4WUUN7KYzMtQUlWPn2jRJDmrtRBatB1XI8HWRZ12zPyGZM\nFiwgpewdIUcdzwT12CmZ2/tVPTkWx3JDqKOoyybzfRFjQ7d0/dq+ZfYtcz4vknkFUEr9OUTx7o97\nJbKrpF0fmZ+7r/ufeWgU9XYQ4MG2ffol4JcAfuj6jrYlt3A3k4f4+gT2Rq3yV1+nQgeznDlixWCc\nopc1wTiVhz7LYbBHUZ24UgFYJE8AzJgz4/CtHybcOyTb+wJZuUK9cRN185PNDvroqXwPtT9vCDTN\nAxPe2WkeHt/pYAhCy1WzOIeJa/j3wpFbLDYWaQsT9gTe1P4uQd4nHXuT4NZMGTDIz4TOHttM33yo\nbw1GAj1/GUWJ72DsrI0fXdv98kk0zTCwXSBrLcirFgu4//nRLmq0i9p/RvyxS5lyN4zWXQYKrRRk\nQ/m3ext2HqL2JGoO8+eEh/NmGNHabI5+/wv0b36SsC/lnu45cZLtS29Gxi3AKVSFCxh0NkQdvg25\niKmppRFRu7iUjNv2bOw+m9KTso10s5Aelw8Z7kxI4x5BEpONMvY+91S++sbYKZb6Tqc2SrogGUmb\nRWElfGtaC8+cRVf6DsVzPBtm+3hssqULErNdtPD7YPPqnKiX0M/edtmVzWJUForUgnVAp+fuPa5s\n2jXLZGDJVcOkfY+Z6/C9ZEqpPaSa9DHgXeAntdYbk8VKqR8D/hZSPPm7WuvPmte3AsKUUn8G+O+8\nTfxh4Ie01r93FSDsRfv5nUK7/RjwV4F/X2vtU+j+OvCPlFJ/EwEcvAX8K611rZSaKqX+KAI4+C8Q\npT37mT8L/Aukd/R/v+ygAVSoGsdjH7798Ubt3/ZH3IKfxIS7mfBF5X0jEX1AReW4v7qEk0Ut9CZP\nF+8y3Nll9KP/QaM50/0u3ybXpJTiW4fy3prjtEpTiXwNu/HJ8gGXK831PvTDoTxQqzYkuNVE9xY0\nlabwxq1G3trY6r6Un9Jx6vox1bo0x97YG8MJ/cUKPXvULv9tM29ex1HHRGW7lOYRv5brBbXRiQGv\ndBWNSfFAELZv429ncg01MT22DiNF187KxzyZL3hjNKHf20Fnj2QYcbZo0a84GhpTAkpuvcl4fJ2z\n8kmLPaAXjhoQwRWmJvcaB6QU9WBE5GVi6vJ0I1gANpGbUcK0OuELp3DYeyzX4+6nIIlJTMZme4Vq\nfItqMJIsxXOYERH65D7KMDxbkIrN8MPQ9G+itJlTMtfHN5f12OuxJRjZ5njszJcv01CtS6aUjK6/\nLWjSonCsHrqoUWnYOKDZXPqm2yiBrqIJ8gKhuSp4cvG17e/7Om2thU3/22A/C/xzrfVnlVI/a37/\na/4blFIh8LeBP4G0MX5XKfXrWusvcQUgTGv9DzFVKqXUp4H/U2v9e2aTVwHCrrTvVM/nF5HRrn+m\nZMH5Ha31f621/qJS6leBLyHluL9okG4A/w2NZ/2nNAf2vwL/mwEnnCJouZdbFDjHo25cEzLL3DAb\n+BF3R4IZcJkPeV8W+ixnXp1zuoSzMtqq6QKicjktpywMsWU/GMpAqGfue+0CbKlC/Fp0msvDOzuF\nUyNrYMkRbf8iEoqXd6YR0zIgDZ9CCv10CIvzpszWUYdUWSjbsNxX1yaovZE8wLbZ/nTOaloT3D8n\neUtih1qveH+WkIaau3nJrcFNmaO6//viGK08sYWGe86o0bKxoARvQetwmJXrBfPVWSvD7FoYT0S5\ncumhoDznYxFpvCBGWdRTnsyP+MJpj3dnPf7w3jmf2oP9698H6UPonzoZagvMWN2XaD6lUWkaj69z\nUjxw5Vt8EMEVZuXYdZSyqKc8L57KwGy8Qy+7jRoeCGLL7oMPRljWqPml009652zG//M44xPDiGJ9\nyht5yu4bn2mE9sa3qNKMs/IJD59fsKgC3tpRjBMJwvTZIylX9YXhOTJS2LWumFdnLai1vXb2Orrr\noTow9+V5u9cXJs7xvDONuJsXjvqoH41FBC/osWDqHFC5XjANYHT708Dn5f605884IHmjR7K7jV7H\nciJapKAB5+go5aR4wMPLms+fvEBO/LvTfgL4Y+bnXwZ+m47zAX4E+KrW+h0ApdSvmM996QWAMN/+\nM+BXzGdvcDUg7Er7TqHdPvGCv/088PNbXv/XwKe2vL4E/tOveyeU2nQ841tuobKDhNvmfMj7qGQl\nQAFDuFmWC4q1ofI3Uso+y/HCI5p8f6YYJWfczZ/ST3LXSN2AE0Mzr2MHSk2pCcwimj0SJ3Ixa2mz\nFMGaSCeMkykQEQUh8+qcMI5JfTXNZNX0rbJVQ7pozoll1LYql2q6NA92TdBvHuJaV6SGxFP4znov\nL7WFiZRmHEKudPDjULUdkXU6ta4o6iXTMqRYb0auN/oL5tW5lLbwzqdfy7dOrytVba+VgUjvpn3u\nDgsg4W5e0o8OpFzW2xF25SiB42cbn99m1bpEh4oXtps7M2YXq2OOl+c8XaSMkxV72TFFfSkL8vjW\nxj5YmQnKlQs+ns4jnsxhEMG1ecSN/kJkCux5SHPm1YnILxQZ0zLkbi4Dmsn5CTx6x8DSF3BTaKLC\nfN8J6cGiJf/gTncHTu3+toUs1ooSSjARGXRbM5dDVaCQzF2HIm1RrhfyHRonga7NCIL0b6M2inWL\n42n9ze6XeXbOlu9wudI8nac8vhq4+HXZGlh8+MxnopT6197vv2TaBh/GDrXWj83PT4DDLe9xQC1j\nD4Ef3fI+HxDm208hzspu6ypA2JX23YB2+46YipQrm1mFyioMiMK8mTTHNL4zUz/vD5qSC7jBTVvX\nHsU1Z0Vzw/vIFjfB7Sa6NUUd0I8ME7EpFVnxMmB7A70uHY2KzoamRJPIvNHpVHpW+/dALwlVzK3B\niIPeAktWebE6JsnuCLebzQp8ehhDptjs+AyeSSlEpSl87JAECMYzwo9PBKUXpYTriMPegjTUJMGO\ncI11nbaNLns76GzoJtGt+YuX3ytp08xEpGHGKFkyLTflCi5XmiSQPlea5Q3bg59BLc5hcd7m77N/\n86h60nDAJ3cGvDksGal9kVu377OByXiMQjp7bu/3duT14YHLiNNQAAjDwUTYLbIjd427YnBzVfB8\n8VWmZQgoR2IaqmaY0+3DNhBJWUFVkqQ9Rsmcj480N3pwNy8ZxhPCs6eiaouohI4m90izAVHwmMtV\nySS7TTqfC/vHex+wfjYjGJ+jcnF2KpMhYDuPU9FIYrtr2QkMHHN4NpRSqjnmKs2Ym1JbP8o57M0Z\nJYkbFO5S4iigH6X00jvyN3Pe1PW3oVwR7jUZZcNcHUlZdJt56qwq7kGaU1QnXK4kKHlrp6CovyPE\nosda6x++6o8vAnT5v5hB/G9ohOkqQJhS6keBudb6C9/Idq29ss6HIJDeRn9gMoghczMPkIYNnEqB\nRJirhUCYo6ShdckPpGRkImVLse87IMAsImKNExI5gq0N2a69AHWjo1TYhS3lTn5AoZvmi62X+99j\n5x7CNBP0khFM4/K03aCvS7dIufORpnBzj3iUCWAiP3ANf0vimYaDTadpB3czWfC3NeO3DR/6GjXt\n90ofrfAqnIsqIA3WQlBaxyTxRK7RogMtNz0TnTwRFJg3gNuCPatYYOHFCtiSlULjgMpKwodyhbpx\n4Mpei3LK00Us+1ovqHtPRMnUMEJ3CVzLarG1b5iGa8dFJzvaOb9er0cXhYig9fcZJ1Nu9GI+sbPi\ner9Hf6XQj95h/ZX3AVCFLO7p5B776R2G8UJYDo7vo9/7gPrBOav7Mg+X5B+4oWpLHeSTttqZHLnH\nm/0RMlUBpNThiiSU7AlwjseaRbY5OqlqtnH9VNyTrNYvRUeJgHdG23tpKnm+HXBgr6F5fgq9dJmv\nNStx8t1kLwJ0KaWeKqVuaK0fm5LYtvT8KnCX3cafYxMQZu2ngf+9s62rAGFX2ivtfGzWQ5azqKcs\n6qksPtFYBvO8tyuv/KbtDT/Y21hA02DNOMU5IOtkoN1sTFxszRIAACAASURBVOuAYh00KLGwQdRs\nZD8vMa0U7N6WGaFsCOtFC9qaxtddacMOgtqGcIveJY0ZZaafAGbW6JksbB6yTg1zGOZwcAeipOXY\nhNYmkml3Pyq3pY0sd9xytq7/MtumhhmqmEG8AhrCTKteWq1X1Db7SXPpcYFkcWaOyYErbsxFK8kg\n3mpdCbT+7BEcPWBtqZSSuBnk9VnE7b1wbdLcL6NdGOwxXz3hdImbdZL9EyXTKm6Yn20Z8ayMKOqY\nw17nngp1R3a6EaOTqf4tAUxdGl65mmu9mrt5wTi5i374b9B/8B7F78l6lCwrgnIFVUm4c11AFdbx\nfO2Y8ssnnD9LGIznhHvHhOY6RlmOlcy2mU9zDJvFRdE9mjOIFy4Lgk2Kpl442mAZ79Ib6cvT5t7K\n9xr26SwX5F23YlAJA4jqD5r5IGsdNpNideyyHv/8fxSmv32AAwvC+qz5/9e2vOd3gbeUUvcQR/HT\nwJ+GFwLCUEoFwE8C/659zTi5qwBhV9qr63zCwNGm6yilWl1wudKESWVYl1f0otHmABo4aKlWinpd\ntRZHuVFlxsU+iM3N65d02hoz36zVegVpRu07Hq9kkQKJoZ+ZV2feTI5Pt1/wRr5yQ7FueG9ZC2rI\n7wdlBjQQJqL+Cq0F0k6+W9OPj1A3gPyAMIlbRJs+ASjQGtK059YvydmFq6gvIV7gO6DmfFRmLiQi\n6u003HBl1YArRrgSlV6cOzYA/fwhnD9pSXarLGxgu3nZ9MPsIhclMuBblZL16Kuj5WkZUtTnFLXi\nrIw4Wgw4LxWPF3BZKW71I673RItonDSOpcUKcAViTC8rd5eFKmYY7/LWzjmT7LYMrs4v0cua1bQm\nSjT186WwJMzmclweo8N6vqK4DKmKgOIyJJuvCI2joiqJ4iYwmpYlxTpgWtqy8lUcZjXECzfn1OUJ\ntKqmdi7NlRY9+hygnektTfAw2BMi3vWFe9RCJVDqdP+eZPZRspkFmQzKBoJXkaB+D9lngV9VSv0M\n8B7iLFBK3UQg1T9ukGx/CfhNJM3+e1rrL5rPbwWEmb/9e8ADC1Tw7CpA2JX2Cjuf0JXbAPrRDrtp\nm3UZIAnbkbkbII01lZlmL+qlm+nxo75xUjFOBAHXbFf+Pk5rRklNtaYBAni9Ft/ptWdZKtBL6nV7\ncbYPb2t4sdPYVcsL4d2KhfPqoGe0g9ZSsupFUrIq9JI07qGt3HBiMx+DWMu3w5OrdS20MXrlbixf\nvls/PoLTKcnNmxxO7jWLd1lCZQKsKCFNcyq1nZTSz+iSoMe8OgemWEruUdxWAa111UgyVCUkZj4H\nmhkPf6I9SiWLHB5A/gj2x20KFl/rqStm5qMR9ZJ+NOZ6H4p14bR8fBbxNJR97kVrns4jIGRRa+d4\nQO4dcUAamLrSVS8bQTaU/t7kVGTOp2aU4+AO5c4+hSlpTbIdwyoB6uYnCWYL+pae5/au0Okc3HFD\npeHBHRQQlysGQPrelPBwQPz2REqtRgsq1IacFJxwHX2r0NpewMdJZYQH+4yTG/D8IdQlyeRNJ4+w\neUN1mCauGg6tSgmWVqL6WwSNJpD9Xwc9qV6YsnlLuXc5Q4cJUZS452deXVFm/R4wrfUJ8Me3vP4B\n8OPe77+BwKK773sRIOy3gT+65fWtgLAX2avrfIKo1ViXKHHSmjMQBE6zeHd1Spr69nbdEZA+yCip\nN6jjR0mTfwuJ4jG1kRDoOpRuX8gvVXT1UlriaNusEE63YTwxte1zLNVNGqybz2WG6SGXElxLuM59\neSnx0cvMj1LLFdy/Lwi9/qbYnEVgRcMDwqjnSCntsYnuzgl6tSDq7TDMrF6POCBZ3K3zMddKRURZ\nLvNNY08PaJjLMXnHY0XZdJTC5M0WAlJHacNdV504RU3VoZexszAgwcDtwTG1XhOqJlMQJ1oxSpai\nY+OheUdJe+GWzHRNUcMoEbkJe49EQQK9mLD/BuHhxwlVLPew1yMbKW9IMstRn/xBefCTyMw8iSzI\nxfIdqnXNZOc2aW8Hkpg47ztKJfUDn5DGvgFpuJJtxwGN4nZtyfKy9aMdGdp+8m/R9+8DoJYzYYVQ\nRTvLrYom65lvAQt0UWtVKdlqXZKOb1GFvQ1G8chDtG2Y4RBMB3tgHNCL4PzfiK35tpXdvifs1XU+\nYbQhaR0RMTRZgR85+QSHtlRS1HGrFmxne2wprVGslAfVotrsNqGtrlnUS6/U1HxXsQ5cVtJYU9JY\nVJH5vFHLDCX6DVXUyAh0rSpRVUk/HRLGMaE6Iw1nDhjhelBh0kzwv4B4seldBI4i336P497ybTZH\nPzluoOF24DFNZUHMZ+i6ROUHTtJcaS0zMhaZV5Xoy1PU+BbDfGIa8cd0A4FqXcosSpgJyq4uYa9s\n9IC8prVlx8abaNdRyoW+oKzPKMplS/9mL5syjCckYU9QkpENGtrBwjCebGV/aByI9K6arGHTbGl0\nWkIalqbfBdXKv4eCBuZubBTto88eNRRE4BwQUeJmfI4WMqdV1AGf2vuASbYjMzSRuQfyPur2p1s9\nyFaA03JAbQuVPFfR5RR9/PvoP3iP+mvHrOcrYsON2L/5SarBTuMw/KzHG/B+qc1O0VVJNL5FmI0c\neKDWFZEHJCKJml6Z5TxcLVCXp84BhXVsZotee4xvhb26zkeZMoTPNVWVjp3a55c6XUKxFqLMaRly\nXioWNewmdq6lpqhDxmntSitpmDmVxa65zCZoSw9Y5dBFJb0i/7t6IWThZvOzC2ZIw5S7uTggmXWx\nX7pJOaNAGvIm0ouCJlLUSsliPTKDmlcx/tYlSdijUJek4dI5Pb08b6QfjAPySTH1skJlEeFe5pjF\ndd5vSD49ckoVJU7pleXMDVaS99DRkcBvB3uESaPh4nbP1PErFREZtJ2DgG+LgL3zZOdsZFFWFLXt\nNclZvZ2vOOwdMUokk0wiWfS3Q0R6m5msWbDLNaThktHWz4lZp7RAApHpyr7e3CtPFordBD5zcC6l\ntnAg5ajzJ25w1V7HajDiYnXM89kz3p8lPJj1+OqFYllBUfd5azyT/t+tT8P4tA2yMGZ1ksIgxkqM\nb7vfk6BnHI8AGdYPn1N+WRiwgn4sIIYkJuIedb/fnr3yQSv+oKj/mv+/MT07QkUJvUiOU9hSM15o\ndSkQ8GJGYgIQuWYfzaDPWktP77WJvbrOB5qGvMeoLEqQObVDFS02Ib21LPbLGuwgtaB5GsVGKxwW\nbVmKbIPdN7sgTepLFvXUOaKzInwJE26w9e920X3pBS5mzgGFtRnmrAQd1stGruzU5VgD3OId1Wt2\ngz362VhkyZ9+pT18aUlS8z6UK4Kd1DkfNcqaDMjW4n1Yts/5ZksmZjskcTOnc3lKGiUk2Y0NaLnL\nAq0KqM12uqSmZrq91qutxKASVGjzs+ZuXtCPchn6XAfoU9ODnby5caq6dDPdnsRV5jLp5IomeAS9\nSO6/g17AYW/FrcHN1jHpLcdry7O7KQziBYe9Fdd6kvm8tbPk1kA46ES6fH/rMK77DuOErMR495iE\nrcKg0YY5Kjsl2JF6bbBjrrdBnda6kP7Mti/yHc+LsiB77yDP+DCeSDn17JHA7KvypZ8HWpWI1/bR\n26vrfPS6lW4DTQYUlS6KrfXKIaoaE4cwSiTTOeyt3IxLZdaIal1Trdty0NbSdSBQZHCOL0KcX9rb\nYZi9ySKesltfcpA15bDuQKVIXAuENzU9n160biHJnFaP11Tf4JQzDiiMIurVylCnnDOvzknCHsNs\nsjHs19qmPS4zH9Kijuk+5HkftbdDYMEL2yzfc6zczqJEQAC9HSM/PttQcLXDo6IlI591JbsuTVLX\nqdmf05xyLaSfoYoZJUkL+uxntv3o0FEk6bNHbhiXMBEyUmM2i3ZfbbKDDV66jqXButUb9M32+EaJ\nRYmFhCpkGN9sv3GwB6vFhqaTqgr64dAJ+vXCS/YyKVGNkxsbEPir2CDaOzVDmepBi6vPfi7NBZJe\nFMSWe+3mnsjRe6jTOuj0ZxLv/NhSKWz2H92Jy1t/U1Uh4wM+RNtuy9+el9lZxo1yvWjN6b22j85e\naefjhte8OQKb/agwMdP0A0Md0y6LiPNZM04q44SkzFaqtgpjUS9b5Tc3Q7JFIZOyQuc9GO3Szw/o\n5TfoRwuG8WVLpE22KwOVtidU1CYiN6CBq9Qit9IFgQMi9KNxC3RRrhc8W74jC5LHZNwyq5kzO21K\nbcZUmjrKfYcwunlT2JpNk7fl/MPkxSSk1gl15a6NAB6ANsAIlR8081lXZW9238x3aqVaIJNQRexl\nll0hdtfSSlHr2X2nvaQ/EJ6+IIkciwPgzqfLdk2A0s3QrPnIOH/g2VqtV0SB3T+574bxRAhL5yco\nj3+t0EvSDnO0zyodxT2iKCFN9xnGE15kVzogKz1hHfzyHJXtyLm3PITWshx140Dg3SBM2oM9GOy5\ne9z2Z1zWlniftxlcVzret45T0ovzDQ5FS0Ta2qZnFqxyudK8P/swqJqX21rD8kPMlL8q9uo6n/V6\nY3gNaGU/YZQSqsqLApektWKcStZx2Fs5UIFFmNk5BQvVnJYhUTBlGAijsZ0haTFJGyEsvaycYij7\nz2ByjTQ/IB3sN0zOekVRX5KGFnW3Mjxn4oQ+1EDcVQt7VZKmOUXQc98lxKQJb+18wG7aF3qWKDWo\ns1kzP3M6RZ8YqK+NKBGH45zO3gh1/W3msebJ7B3plfQnJMF+03v7MBYmsmBZRobzJwLjtiCGE1F2\n1flpk0X519c/D2GbTHIbG3MvbGaRrKCaXjxFW2Gyx88cEwBAloWuQV8Ea44WlgFiueFMushJm+1I\nJpNtcKb56D9X7jt7BLN3m4HY/THheEw42BNH7c0j6YsjcRKGR7BVkttC9eNnMNBxQDZ48OmZTDlU\n92fiBCyNEaYECHJN3jBAlL1DcdRKUVSXbtFvQaP9LNUvx6ZX9yGB9r7BZtDlZz00ZVfChHp9wbya\n8XSR8t7sdebzrbBX1/nob26QTPi21oQqIw0HQpVfFRSB1akPHct1Gq5Igkt5j30AfTMRWP18KX0Q\n+7r3sHSHLpuhvJC9DGBNLxSwxJUw6w9pQjE0oKgvOeyd04tCw7c19pQoy6Z/coX53FpMrgkVT5px\nUTzg/ZktZx07Hq/Qo+XfCAy8hdAdu4VPW/swaCi7ENvF1mY8WxzPxkdV/EIm7JaVK1nod/ZdQCAO\nJWoIM+kiIDvf1THp4SXuHkiCHpQX7vuusoqqCRg2/li2zrH2F3jzd2XOjzVXTnvJKQCuzk5Gu01G\nagZ8+9EO0TqR52R50XDyefNTXa2dRuLBY9kwsuEvNIvCHG+W3Gz2O4x3eXM0fa0++i2yV9f5+E1E\nP/rJD5wQVmmIL+fVjKIOmK78KXvt6GGSoCfUNotz0vEtCgNUACnPCbfXjFAdMxrsy4JZPpCSlFk0\nRASrbibUvSbs89UTR8NiI+S9TjVmGE+EtytuL1o6G26QdAKtiNovpWilnIxoGg64NRhw10b8dSmL\nnV/CCpOGeTt58e2kVwuiImE/vcP37z5w5aKN/fDQhw6ZZ6NnH3FlInWd76H2V+5cWmiwYyEAWVA7\njlJnQ4r1AljDekFq0VDhJpecnLuVnAdHx5IYaHifYGfpmuiul1WXpOuA3bTvzqfjLDMlquaMKbef\ndp/9jMNmPP7grTtfYSIchbOF6Dl1KGPKekoSQGTPl3W+3UzAztQksSACvcVedTIgMLyCmUfACzKv\n5JfFMmF9j2oT7PlaUu5/gdZH+QFh5jkeaPaXjiNbSmYVGWZ0e27AgDsCCK0Oku3J+TZbiPhi3m8H\nUFHSCkJ64YgfenE18kPbt5Fe53vCXl3nU9fuBrbWcjwG9TUty5bTAVuTX5MEkmlI7V96HhpId/bN\nDSyL4dEiMkCAKVGQ0B/fEkmDFhlkzfq8QFuvksSobIciWPPetDB9ncxAfgPeYukcUC8c0ZtO0Y/e\nEZLL62+3ItX23FLlGANsltSltrGWBD3pI6wWbgFomS83vHMdIq+huy0SN04lomlqK62bbMLPdnzm\nAARMYB1QaI9N62ax7g9Q++Y7PcezNfJOhV8u7GY6xiGkab7hgPxylzM7Le/LjluRQXscyxnDgaxe\nrmQ3O2pnHNZ8vjLbM7GIQnOuwyC+el/ynpz3/sA13W3jPFQxYRDLNm020YUx2wU5TcHMX2vbh4PW\n/JMtyyZhj2iwJ9mRzSptRpkKUedF+Yxxcp2IpOVMnM6Svd5V2VIRbtk2jkPPAVnH6GdAta6oqYQE\ndbVoAQ6s+imnU7iWSB8z7kGYUFSNEHIUJC0l1df20dkr7HzWgsqaeGUG87AUHtz56SJuDXjamryF\n2Eb1WhaT06citRAlpMMD5ioCVm5W5+k8Ig1K4BhixAEtZ2BIDuvTJatpTThfyZikkeY+XnyVPzjL\nWdZtiDdk/GgmsgmjOkXf/zesv/K+QJfnl6i7n0JnQ8r1govV887QagRo0ROKbL+qcgua6yOcPmVt\nNO/VMHdRPtBq/Dob7DVZyxUs0Hq1kPmiKIF1pzTiRcPO8fjzScYBKWg5VxX30IO91uJ9FSGrzoZc\nrI65WD131xAQwbKFRMdu/sk4IFvuAtPzsBszzsdqIgXjzca0Xi2I6rwBZXQkyx39kD+Mmx/B/tgN\n9roeRyROwC22xmm7Bb0/kOa8yXpERn3pYPe1NrNO3eyn23+0s1b5qhku9tgfbN/RZdRBT5ge7DXM\ncieEd7E6NhyCT8QBWee3DTlpz1G3/9QJInzgiJ0JU6kQnW5jA5lXZ4x3bzcCjFZ4cbqU4METbLRl\nvH60I8/29Agu3916L3299prhoG2vrvNZr9EXl6jkOewduhvPOh7p18QcLeQUjZKacdrcOU5XxbI3\nlyuJGueXUJWEYUyxLjgvFc9LyMLQlN9KQnVOkl4n3LkuhJ1Pjp3sr17W8kAYaYSjZczjBZwUZpi0\nkht4nMDpEt4Y7qCfH6FPnlM9nhEuK8IbC3mIzUL7/ix17NrTMnQPwLQMuJsv2MsWjk04XQfSq5id\nOmJNSlPSSuK2rLd9aK0yqUU2LWdSkqpKodEx4mZy4hrI91Wln5bj6fzdyo+rjM0MyWuSQ6dME4lI\n2EXxwEzz97ibLzjoVYLyqst25hWVpGFGGEWU64Vh626TtdrtkohzdmU/2+uyTX1okGDeveIczjay\nTJqeig6TNlza9GFax2/Pp90nzyzs3rFh+9nP/FIGds2C7L7/YmZYILzp/7oE0xvzyV8BcUDeNV7U\nU6dl1Nz3x4yzG8KzZ4/X9um23A8266Iut2fe9tyagEZFCWmYiUChrlpBZKiOGY1vSTlx9qx9zsuV\n3O9hQpgNJZg7f4CeGYRcB8H52j4ae3WdD2zceFGUOP2bUTKjWAetOYuzImScYmDNhkUgM5oxVSla\nJ3uH0lRfPOGsaBozooYop/uwt5IH0URjqqxIljUqOye+tyPw0ywnXcMbecof3qtajmNRwyd3xAm8\nd3HMm3s3SD5dEud91HCA+tgPUPT7nC1l6NGSm25rnFreMJA+kI5ikWmuS+mjmPNk5RTAROuzORQF\n6o4pWXR53kzJST823HBJLNwrdorc2hbAQquHYLdl32cXIl/m3DopI5PAQQcFleXieFbHFPWSUQKH\nfYHIh0qGInU02pRJqKVEGEYj43SaXoReLRoUleWos1lM3msWVSvl3ZlN2bgSvlP3SUw9eQ29WjRO\nyJwXJ0ntO0TzugKhignZFGazljT9SZDgR10F3KhEyDAJelRBSa0b8ERUryVbXs5gsEd/eEAYTwx1\nkwjE1brirHzMOL8h1+9FpVzf7Hm+imUDHHRc9XaIooTIBA4CBrqUgdnjd5ohZUuYazP5cgVHD+T+\nWs42z9Nr+8jt1XU+WhtE0qU8bJenEPccr1OtK0ax3IC+OJz9Oa0V8JyWOuXiHDW+xVn50NDmt5eY\nxwtY1lZmYQ48Znf/njiuoiAZZagb15wsMMBusMf37z6iWtcOUn1WhK3Bx3emj7m1P2E0uUcVBpwU\nD6BsBLjSUNOL1p68g3Kv2wl6gYjLouML1DmFVN+eHLM+KwjGc2lwX5Po3BJsWnirP/sCxgFZRmx/\nuNO3bQ/9NkRd1+mUldTxkxg12m2VA6swYL46bc1fCRtFExzUekVkekobzAfLi3aGtW0/+wM5q10K\nGJtR5P0Wt9rWhbRbbrrCrBPayA67WaLPVba8aB9T3JO+o7+fLzB/nyw7AtCAbc6MnPtsAXulI/gM\n4wlw7KH6Kk6KB4zH1xvkJLTh0T6C8fJUyuP2nG6ZyWkds3VCZn4pSnOSuCcs2tbyPdT+VCoV++P2\nBk6fbqImPwyK8kOYXivK4jVs29qr63zW2st8FoLwmQlPWJLvG1YCYXyWZn/jSM6KkDS0LNVzav2E\nYTIhyW4zXR0zLUvOynirpsnzEhZ1SBomwJxQnTA6NM5mKLM93YfrWvYm5boZNr3Rl+E3f58eXU65\nSJ63pIytpeHazSdBo6wqg4y6xbZsTSsl1DpxD13+ftOjePyM1f1z43xS4iSW8kyUNOwDZu6HJ8dU\nj2foZS0S00mMuiONaZXlG+gpwCHSWtmPv7huG8y1zWOb+QyfwS2zuA/2mFcnGxT5g7j93VZ6YUOE\nbHG+0Xtq7ZNvtudizfZSypWUK/donE60SR+kLdS8OxB51fxT1XE+XQcSSXlLddkdrjCHtsy62/Hu\nj7rJfgABpJgBX23njC5mqBsrR/A5zm5wYeRHrJ2VTxzsHARIEapI0GkWmVYL+s6Kv6ly1Tjxzj51\nsz83v2TKtBtlu72RbM9auWqJDJL3xTF9RI7ntW3aq+t8oP2wlitgJg9rlIheClDrYw5ZtRimbf+k\nobpfUuvHRl9mRlGHJssQev8sbDcaz0p4MDPN/fC5IOAm99C2d9J5kBQz0iwniScNyigQCLh1JO/P\nEt6bhVzvae4OSw6yVUOzE8aMkqVhRA5Iw3XLMXYHGa1ppSDfF60XHqBPztDTJfXTOatpTQKsn80I\n8jNU3m8W6rMz9Mlz1mcF9VOpl6/PC0LDYGxJKrfRykR+NuRHwP5Ca0XuzMJuG+XrswKV1XBxiTp/\nApN7Tha5JXR3xXFrpQTK3R2e9MtmV5n/921NfGictGFfsDB46U9cUBbC0DDsTwT2bYdoryoBddFq\n9n+/j9J9X2dg85sxtbyQczQVcTZ9fCGD0h5oQSMo0tFgn0IvRahRV6IjVUt5244s2IwqHRo13eVM\ngh7Tc9HWiSdeJrnNASdxc82iZHu/KN9z4APrdOz+AwTXpM+phrmUQb+HTCm1B/xj4GPAu8BPaq2f\nb3nfjwF/C6GC/7ta6892/v7fAv8TcKC1Pjav/RzwMwjf2F/WWv+mef23gRs0Ndw/qbXeJt/t7NV1\nPoGSG9gKikHjgM4eofID+oM9iCEJDCKtBeNctQgHLZdbV0r4Wq9u9WqWtbBTwyZDdYt/qzuTYhq9\nFv5raX+Kdc37FwnvzhRffK643leclyl38pC7eckkkwfHLzlts1BFzWBepxymoRUBqjTEct2pLGrY\nDOKeZEpjQfEF43mbQDLve/2RmSivdulllECpFThHrLf1B8pVMydlqFJUFpn9S2UxmX2R5NabXNt9\n00XdvsPrOlwLLFDQLPpGdlndONhcrK8AOOjluT2Uds8s7zdidMhc0zaEluxo2ZynFzm/bQ5om23b\nd8edFhlov7kxPaJX977BngdnXoGGMBsKeKA/Qw0XMFmhZvNGeHC0K+fDVBRsSXtenZGGSyBo8RBa\n2iLmJ236KbtPGIg0SIAxnDeVAgtW6DrXLaVdd50MKtPeRyoLHeFtcx6ij67spvl2ld1+FvjnWuvP\nKqV+1vz+1/w3KKVC4G8DfwJ4CPyuUurXtdZfMn+/A/xJ4H3vM38Ikdv+AeAm8FtKqU9qre1C+GeM\nqNyHslfX+SSxKDj65h7emUPR9Me3WiSL/oJ1Ujzo8LgFvD9r3+xpKKqUdj6nqBXLWpzSOKnoR7ls\n/3IqTeJuRBomTKsT6rIpxfSjsTR91yWj+Jw0XJOFkmENIk0WCsvxIFaO480vx/maNC3bBn8FM1xq\nkFxZiMoi4lFNMBYpBJWmro8hg4emLDIckBgGanXjGty82WyzKqXMpbbMZugKAhyXnPLLXtYZZTOY\nPpcF3jT6lSWg9IddH70jxKn5gcm4hq1FdOvCX5VN9vP4SBwZoO7cat4TGYkCj3nBqs2G+b78bTkD\nCwiwWa3/HdUpKssdqi5aS98tXQdN5rVtHujrsS6IwnvN6RuNG0dpS1vKQL3V+BbVYOTIVsGXvq7c\nIKcePELtPWnmjPzvW85koTdKo6EZLO5Hqw0ZdbW8aOagQLKOiy1lw9kcfXouQ6JeKZMo2T4r1Dl+\nrZSUfs8aeL0GgsQru1ny253rH/58f3fYTwB/zPz8y8Bv03E+wI8AX7Vy2EqpXzGf+5L5+/8M/FXg\n1zrb/RWtdQHcV0p91WznX3wjO/nqOp+g04/xB+zsImYgoZEfgYODzU4O3+a4fOgc0DbHY4EBFihg\nGahHydoQkg5E/8agp3RoiDMBwoTnqycbu26RS2k4YBBPGSVresb5ZKHAwtNg7dgX7GcE5CC2rBtd\nGgfDrTrAgisa2eFeJuWVvhGCy3tCnRMGlPWUMIhJD9+WMqKVP9g7bG3DOtquA/Izk0W9MmXDCMKs\nzYRQGDh3coo6nUqwYOv1/vdcXMLFfekDjccOQcaW724dd1WiHx+xfvic+vlSelZWzRUcVVCtK+r1\nhZl7qUxJ1JSQ+gOSfF8ACx2z2ZFFr0VZThQO2yU/v8xobVsGdFXGY+d9PC0e3/Ha2RzhWzMKr0Uh\ni65xPEW/z/Hi3VZprDLKt1EgpdNaxYTjQ6LhgbCa+2b7fyYgsEwGw2zSZJpOU6vjeKDJwPxjPD13\n5dww/wD19ifdn9T+PcN4sD1bkYBjSVFdSrl7/15DTrsHPgAAIABJREFUfAtSLkxThzhU41stxeNv\nxrRWlOV2scAtNlFK+VnEL2mtf+lDfvZQa/3Y/PwEONzynlvAA+/3h8CPAiilfgJ4pLX+nGr3ZW8B\nv9P5jBeR8ctKqRXwfwD/g9Yv5qJ6dZ1PJFPxVqLXwoddnXc2hxypu1+eNqSJtsENUJVMbn2a4/Ih\n07LkaBF5bMSN1AIIPNtnoRZuOGEkppjJv/mlyRgOnON5bybsBm/tKEIV0Y/GDn2V5PskQY9xsmAn\nidjPGsE5gRHHTs1U+NpmZl9EoM43pXUbZdRpvDtwRhKj0pBgnDaltNEuZDnz6twtKHWwIhkfElkQ\nwpa6u14IHNh3Aj6jNEBF6RgZAJfJJWmPKLolMzBRgjo7c4uIq+FPl6zPJSsKdlLUZIja33XM4So/\nIMpywqjnza0YaPPxM3hyLOAKs404PxJnmu+h833mpolu2Y+fLmKKOmacFqTBglHyXK5xaFinjRPS\ni3PpN/g9CQ9C7Up+/nnfdv++KCPaEulDk+1Zp5GmeTN3g8l8+gOR1o41Ty4/4AunA0ZJzWFPZsIc\nL13dsH3ba9O7/n2CLDNlM/34SGbF7IzYXulmmNI0FxTeFUPF1tRwINe0XKGPL6gez6ifztHLimwn\nRQ0/EKb08S2pEpj7xUdw2mOv1qWb/QGYZCUj3wHZAGa0ixrfckPJ3wE71lr/8FV/VEr9FrAtJfvr\n/i9aa62U+pCEhKCU6gP/PVJy+3rsz2itHymlhojz+c+Bf/CiD7zSzkeNb6GjI4GIfhMmWcXSOZ5R\nsnaM11bWOQpgEIPM1KyFi83IK+ijB80Cc/xMoNfX35boOViQJmtC1WOc3GgRJqqqYDfYY3cn4dbg\nhLd2puxlQl3jSjczKSsk40P6Uc44WTBNApZ16Pb3SvmFjQM1mUcWEfRj1CiTKDmVxm+aDLhYCfw8\n0VIWTJMBYXrYcMNZKO0WZyTOdaeVBVlqGGstuYNIxO5akasFIXi2nq9c70n4vDYbyDbjUsuLTeLX\njqn8gMrIq9ve33QVOyDKogogsvNgS8M7tjI9khcTXl51bj602YHRSEp91gm1e12RIMvqtQjs2Sws\nM1Lghi0iTPpOHNE3X7JDqJsMw/qqpoguGY4PiYqdzSyoa93jvMqZ2uxny7CnBQiQ5hRJxKI8oloL\nK3iie1vlReR+Kpt7v+5kWv2BA4RYNozvNtNa/4dX/U0p9VQpdUNr/VgpdQPY1vh/BNzxfr9tXvs4\ncA+wWc9t4P9VSv3ICz6D1tr+f6GU+kdIOe6189lmta7Q+b5h7DXcVcNBc6N34ZwessYuXmp8i7mp\nhfejnLvDokWJD5tN7VBF4kRmJ+izzztJaNe3SFNpclefZ3T9baKh8IL1dQp24epGvXXJSA0Z5UPj\ncB5LjX3Z1Mqj3g79ZMxetuCsFLSbzb62Wtg59us5alLC/nM4OSMsV9KEP7jjehnpOmAY7/LocoqA\nXhaAOERx0AOSwYhQ7TuqFumTyAJiyScju08qQ4dek7t1HpsZEQcJx8wSpak4mSQmzEKCZe2yHmzW\nc/i2RMnrU0wViXFyAz018yC33kQlMWkSo6dLET37+MdQk3uyj4ijrNYldbDi9qDiIBPi10ZGPW8x\nWIOZoTL7666lvc+Ws3b0HyUNdNufc/H/91FetmyWRELw6S2q/n1oVT03UGD+IC+QzmHSv81nDh4S\nBaFjwXClMiCMY4NgW7l7vtaVsB1kuWQtFhSS91p0QTpKDVHsrCn/eYzjvqn+QJ7PkzPiUUa4O0MX\nNcGb0kuUUrVoWRHQQs/5PHj2NddvKiv08VdalQ2SWGaktP7wgdmHsPX62wY4+HXgzwKfNf//2pb3\n/C7wllLqHuJAfhr401rrLwLX7JuUUu8CP6y1PlZK/Trwj5RSfxMBHLwF/CulVASMzXti4D8Cfutl\nO/nKOp/VupZp6+xGc+MvZy9EyRAmMsVvGpw634e66ZPc6FumgPaCvqG/8uTfoo+fNU7Hg8k6GhtA\nv/8Fegd3mh6Qbx1orz57JKUiz5G1LMtJD9+mF4447J17A6fNwuRP028ct/1/L5EhzqpsGu7efgyz\nCaPkeUv98feOE0bJisPekdE/6ok8A+1FQV88dPthzXJ3Rf4xh8mmtMFgT85Zdg79mdAcpanU8MuV\nOJ69kUBsJ29yXDxoLUppOJCAwN/mwR1Uf4A6O4Prt9uN7GJGkvacEqjt9QxjGrE5y15dnTgwBjQQ\n9m4WtBVW3QWgtO7PNiKsdS/5/TqPeaI1EAoNd9sW06sFyfmCw/HH5Ktt9jo/cfdJOjyAaAxVRyo8\nNPs4Hht4dNQQnkaNhEUS9FCpZFzKD6q680/DA3T2SMqep1Mnya7euGkqGCl1PXVZXRfI4HbL9Q0N\nlP34fhu6jym95QZ0otg6O/ddbp8FflUp9TPAe8BPAiilbiKQ6h/XWldKqb8E/CZSnvl7xvFcaVrr\nLyqlfhUBJVTAX9Ra10qpAfCbxvGEiOP5X162k6+s81lUAe/NCurBA8bpdaLoVitT2GqdRWBeT10Z\nSFQut38sDQetEptFUG01gzbSF5eGI+yBTKJ7FPXW9MURmO2t33lG9fgSlYVSEkvDBnqchTAcoNOc\n/viQUbJgnNZGj6h9C3Sn67vOyOm8dKHgnrT17uiQaSl18i+c9vjXx4qPjzRHvajVOxjGk2ZYcXnh\nJu71VUORPgPAtiDBZ1eOEnHiSSTRrHE89f4dTpbv8HvHCW/tzJ3cgVyfz7vttLbZdbJ2d8zjE6kI\nHfRshVVkm8+eynEszQCs10MAWajDMGqkBizCbtsxd352mYP9HHQ44qpmm/j79Ag9O236MNDAoi0T\n+JbjDM+eAoZrrQNC0eAQbD57OtDITli6oazhALQly3ItwVlrvstDEJbrBfPysdDkTN5EZTvo7Ahl\nnKea3IMooQuhbyHorJP3uPC0JRm1g8oe154G1HhmSo8f3ZDpeq1YLL71S67W+gT441te/wD4ce/3\n3wB+4yXb+ljn958Hfr7z2iXwma93P19Z53NZwedPUhbVird2DOOuXXS6zXbYfCjDBNYFUZC0HNC2\nwcleOILZiUyuzxZwei4EotDMVljzkT1pKj9Pn0O/lAfZNKZ9BU/9wSmr++eUR7If8Sh0zifcy1DL\nkODiElXMiBDoeBp0kG1X2FaqF4ue8uUB7LmKpEdzvd/jcycVXzhTvPNBxlm55OMjGCcRR4uI2/mK\nu/lTdtNDUXhdPH2x8/fOv0+6CbRE5sJsKBG0Xfjs5wZ71ONDzsonfPl5zOdOQyDlj0wWXMvelJKm\nPQ5PFkBnQ+b1lCTINolFvfvE6QzVZVst1CxuJLEALKzMwOrYAUhSlX048EDH8brF/aphUwQRqKKk\nYdSezRtGZ6RM6c6nKZVtNZ9FwEfgGWaLMBoK+s2AELRSjYx2X0pp1mkK8adV5DVzX958F2EiA6mr\nM8r1gtMlwrUYXdLvj0kHb6NTw4LgkHyVQ222HI/NkP1eoy1JWy2tbSSv5jiTbNgqm762j85eWedT\na6G6kSbxUmYWAnOzegvJtkhQnz2CqqQ/uUcRrMFkPF2kljVLpuhmKQDee7T1vc5sxGXISruqm9B2\nDAkQjGXxDnel7OeG5TC9pMjO/CQOhedoZ6IxSb4v7+2WtLp0L0sZxN02uKiyHTcI+4P7Iiuxn2p8\nH/u8hFEZMC1D+tHlN6aXEiUeQ8CSer1qehFmKFLZ7ADTF6JinFznU3tPSMMVb44qrmVvNpGxv8jb\nQdDlBb1s5GQJCAMIM5f1tAYvMQvo8KDt/KrSRf2FkTiwi+OGLo93fM68a+/MJxWNEifrALQHI43G\nlHPseV9KkNa8mR7Xj9m2DxaRltLqS1kNLFtyC1Xs5BYEkSiBgL1e5XrBfHUqz1unF6NmJwLBz3ZI\nB3sum9rLpkY7S2DuFRXR8ED2wclL4Oh6NhwPmGPLGycUJeacXErm52U/bm4NyRjt9762j9ZeWeez\nzTYWXUu1Ys0uus+O5UZdzkgn98wQ3qIV+Vkr1wuqdU2tH9Dv7dDP3kZnOSqJ0O99sB1Ga2cNkkg0\n7s3swlYaltufNkSJD4lvnm2hDKJp9trDUjFpmLn5pHk1a8kGWLPN1n5n9/Tvfw79+FkzOOrbYI/a\nm0361B4Udc17s3aGt4337qVmy269Hao0o6zb2duGzLWNtsHptACMk+t83/iYcXK33XexujWdbE8t\nLwg7irD2etRrea1aN5DwNDTzPd5iZ/e5Nou0i/i3HaP/3dnO1mzEcehZs/eMVTL1zcK67favTRrV\nWVNu8zWDts0EhWbgt5UBGYey8K6DrQTYf1GQkAxG1LpiXj52/TFoeqGhiprhUm8gNRoeiK7OBmS6\nElBKR1bdbmvD8fhmnVBVNuVZkwW5Em3eaxHTpuoKUM7XaVq/Jhb17ZV1Pnr99emyW3E1218BCAxv\nV3hwh97ubRb1tFV6syWDYh2TBitGyVOKKGe4f4co25FSzHsfNNxVls7e0npMrqH277VktC2z9aIK\nuJs/pG+3lx/ApGEWbomU2W16dfVuxF2tay5XTR/KQmyjIKSXv4maibqj/v3PUf72l6ifzonvnRN+\n/6wZ8jMlJd9CFfGZg4q7+YL3ZwnPFiELM+BarIP2gKfvLLvWcTwXq+PWAr51wQmvLiPtxtcb9KD/\nfrsgQWv+RFUlYb7fUoSdV2fuZ59uyTpy54S0duq47XNjh3s9WiMb7NgS22BPIv3agzwvZ40+kG9W\nybTLql2uJDPqew5vPJbj9LSYmoV807HaQCQMYsI0IzS9q0X94vJttS4p6suNY/fPgRNktKzYyRzG\nzYB3mI02Pm8HSV+Egmxe3A4eUmneLh17/bnmi74J2Ptre6G9ss5HBdoNZKZhJouxFa/qmHM8733A\n+uFzVvfP0UVNXNSENP2H3u5tLtbSaLeknzJ4KMiyYh2QBgvK7AHj/g3Su5+C/gD9tXebBjCmRDa5\nhjp8m+erJzyZLwxfXOaUUUHE4A77BQfZuwzjXYbXvw81lghSec1ULKGlZzL/EFKta4o6YLoKeTr3\n0V/aSTH0wmNGKPQHv8/6K+9z+aVLZqcxO9NT+kCYxKh791DDA2rdlCl8BzeMKw56xxwtFjxdNCJ9\nYCJrf+e6C6jtcXiO53kxZxCLCJ7jBLNMAj4Qwfzvvm2bSJ1t5Fv6m2pTJ8cSzoa2dFSduazW0hWd\nlSm9aM0oLhnEMgck7OjbrRUA+PvTkaEu6kunrAkvQMVB0zO0sGHwmDviJrvZ4nTqtXWiZWsYVc4b\nrTLhtvmZromK6KzDot440V4YN1xuVrzQyE9YTSF/INXPcrqsFC32ixeY3Ua5XghIyPYIfQHE9Iq+\n12v7SO2VdT5pCG/kNXfzgn50aAbuZu7BdGajYcv3lF14BJahyyqUmTMBiXwtwajV9UlD7Tmhmmr9\nkN30kL7R7tHJI9TpOeztSFlkco9pdUK5XpjtSI/keSms2ADPy1C+pxdy2Juyl03phSP6+3eIxrek\n8W37NYM91PDANXtBHtjLWibzp2XAs0XjAhrHvGYUn9PP7xKOdlGTIdn+M6qyIh6FhIf9RhNlOaNn\n+kZdC1XMOLlOP1qwlx1z2Fuxl0Gt18yrc0bDgxei3CydzVn5xJQLm7KdpRtyWi7DAxdIOCDCtoh4\nC5LMLeq+1LO1qkRVBWFo4buLlsaSCP4FLJKAcV2RhiW1PnYNa58JwLEE6JUgvTIjQ20QjVaG2s8a\n+tEOEdF2oIE1P9M1TkjZHlCUtJF8VYnOmsW463SsY7WWhssWEeiLrMub93QRm21IQJMGa9JQEG9u\nJiidCsOIdZRZ3obdGyJW3162H7IzbWCIRabW2mSjgZCebkC9rxq5+Abt20gs+j1h31Hn83VSdn8G\n+PtAD4EH/hVDHZEik7SfAU6An9Jav/uy785CuJuX9KPcwaAtVFh1bjpLwKj25WGOLO367V0ZtMz3\nIMs3SgN24v15Cb1QsZOIBIMVpIuCY4gnzgFZ7jB1/W3mqqCsZXvjpKKoY3lwQ8XSu399gbpiXTGK\nzxklEnH3dm+7aN6itoxoKVGQuP3tRWumZeCkH3zHY53m08W7TK69QfJpyIDk4XM5/u9/yy3cenbk\nEE7btHpCFbtotxeeu5LNop5SqgXjw49fuZhMV8dcLJpeksDEM8eNx/LUlaI0bMxGOQfkSmvtTKNl\nXYSjv8hXJVGYtxRvrVSFJY+dlgCRGeKtCVW1Ueb0S0YVFYSBEJJqLdmOoe6xpda9bGqOeyALJThS\nTGceBRLQZqbu8pNdnrpsjjRznG22vAt0HM/aOR5bUrTntWt+TycNM0aJbM9WAYo6RHDpoug7TCcS\nLFUlam/k9rdFxGoRiGY4+UM5Hfu5zvVTZm4sCjNXJi70slVOdM7TAERe20dv3zHn8w1Qdv8d4M8D\n/xJxPj8G/FPEUT3XWn9CKfXTwC8AP/Wy70+CNQe9mGE8kUXL8rf1y2bxsuy3lv9qVKLKFYGNKPd3\nZX4j2zGDj8smYlzHzvE4LZ9SkYUho6RmUQWcLtdA44D04AjV22GuCocYA3EE49RyxEUb+kBWoK6o\nRfZ7nNaM4iNGyTn92DzAW2rzsjgsYRVuyDvY77XlwqLWHC8figP6dxLCN562a+PG9OwIZR5wm0Fq\npVpZR0TEKNonChLHm1XrFSfFA0eN0uxjbI673UuyRJe23Oa0d6yZDEJ5jsXP+FSnqW5NWa44aOZo\nuqi+uiQNM2oja5GGzeImZK1yvs5KebxGyZJ+1GTTFpXX7VnYDMRmO5crzXQVC10PFXvZVN4fjbc7\nIK/U5izLZb5o0ZR1KWbw7BiSCB09Iprcw/oZgUBvgkG6jqfJ3KJW0NVFfAqcPAdmG1LuTxexIbv1\nHJDluNuCMu06oJfathIrtH5P8n1PbqPa6OXZc/JR2Gsl07Z9JzOfD03ZbSgeRlrr3wFQSv0D4E8h\nzucngL9hPv9PgF9USqmXMarGQVPG0LMjcTxGrRMLDx3sNRGzXUzHwv4LyOCiSc+1UtRrKwwmgACr\n43NSKPZTb3fc9H9EGq6wDqi3e5tivaAwglvWrBJpGgYGIh3yuNO/Xdbw7kyxm0ip7/9r79xjJFnP\ns/57u6qrunv6NrMznp2ze9Y+x5cTxU6Ui7ETEZCDczEmwglyQoQgQkEKEAgggsDE/1jKP44DOJBE\nOCZYBAjEwSFKZDAOSUBIUZzEGN8d+5z43PacPXtmdq493V3VVf3xx3epr6q7d/fsOZ717tQjjaa7\nuru6Ll3fW9/7Pu/z2CC01bruBEyX5ejDRmCstPU2+bMeH3ZQ3ZteZX19m053qzzwZWkh0toZ6UHP\nDNy2sOsK+GaG0uluEXR2OEy1AO+Xj0N2J61in01A1PtR3m47CLp0m+1hMXCSSa2upkd7KA0myl+e\n6cBgBz5LyV1RdI4abbKGru8M84zjtDi+dpA9TLXYbNiYEDUwVGBNMtA9LQ333TboHKcpx7PA/IYa\nngWGnmkBLgAxm+gbpywt5HWcnI1ukB1LQic0Bm15alxHnzdNuE1U3CVav0ySnxrSRPl42VmmH3gs\nSzAIY5fCWjVIW3bldjt1yu/WTFHDBKC1TcK8u/x4V5aJJ5bqw93oeIHnZoK5EkZEpo6Xqxknsz0n\nOmrPoTaNrPFS464EnzuQ7J6Zx9Xl9jNPAxjJiCPgArAgRSsiPwL8CMDlBy/oQWCJSdlS+E19G6Yv\nxdOp8i88m27bamdASCtQtINKHSWam7SMvrCT/NTNdm51x2UDUBVWzdo+nmQNdqdN+s3UmHdpDbpl\nNN9hnLuLbdksyMdBoll7nZe9nFhapu9pf8FFU80meiA3daeSaKZ5PZA+w2jHzIC8uliuU5SAcY8t\nBgBrga1TWXM30Kgb+o7VGo2p7j50NzSzcEkOf2UB2zOHU5VlPmzRvU2fjdYxyTwrBUyr89cJu86D\naRnsbMc6fAL0mzn9Zs62+Ug/ioAm0CzuzsOhdv0E3XDsyyoNLjqV55P0gKy5Tn94CXWjIvaZzjSb\nTykj6qqbU28XkiWEQUTQaJLO0XFrUYvU7cPrNnD7CDr1vR53HEnF6b15v5OV323uL29rFgTldVoi\nyd7jEEZEpq4Yxdq19wsHdsb9wlixNW4fX7HgcwvJ75/ghUt2v2gYP4z3A3zjN79Sgfmxd7dQNmVj\n9adaum4RYArV1TuodKaLH4C2hNaspN3JzBVXAbbaGf1ISuwx0IOL1jm7ObMmm+fsTpuuoG2hvYCK\nddr12c+swjgbuQY/SwUHzEA5v62LzabFxtkhY6AzuEA8vATD/cVB3iMROKfT2URrebULBetec5PX\nrp9ypXuw8D0Ap14cPp0pgkinSEJ7l57OCsZg1ERZ1pQNQlYo1lKYwfkJ2RpCrmbFXTOU0m/LJH1s\n4LIBaKdzXBKW1Vpvm8vrE5YM4bnTBhKy1izLxHTCAe2gz4mpAVnYmYYK+zpItrra2RO0KnN74Ojd\nx2nA7nTETueY4caONtYzVGsZXiKLW1hx115z05zbWwSgJTMRrXOnh5RVDddQBCE9k9osCZUu0N+r\nJIBlzqS3m4az273gk2Rm7KN9AmB78yGCjTGf3V+5ljuDUgTJ6mvzvOErFnxWSX6LyNfxwiW7nzGP\nq8vxPnPVqKsO0MSDm0IoN9CxtlFQUHtbTkVAvykttLeq0iIm5ZZkpxwkY65PyheHvQP2U1k6fx6t\n7m6nsOnenTZLFGhAm8c5xpByd46xtJwelu0y1+vKKDuuataSTi8UF+0wyhby8kkutCubWR1MXRDq\nDBca8qyXj98574JQqwfegNprbrrBb7F/47nSHfNxmtIJZ0Csz8lo4gzGrLSQjMZFEIqPncaYUx4w\ntTwxEi1OONPCUrDt40oDZj4vZks2AG21J0QNrf4czxuow+sFkWV4yQ2S/nmqHlvbKNmXHmr3cTj+\nHL2Nbdh8mBtJ4f+V5Kc6ndrq6vRb1/SpmEBrU0mWjad9pK5xsdNmePnrl/fIZIkLmKusBBZYg1bt\nADRzz7jsWlS/xwZlyRI9S0oXzfaWMhFvwjyzAWgl1bo667FtCBROuDy3x/wwoXH5SS68/o1802aL\nT+xN6tnPVwhnnnZTSn2GFyjZbZRTj0XkW9CEgx8CftaswsqH/z7wduB3b1XvMd9bfm4kUXz14duC\nucgn+XFpxlOYyUVAUOqP8LGKLWQDz1MnkVnf3K13GGUundNrbhImU9TzT6KOD6CzRtTqEne3UMYt\n0sq52L4U0LOH6kVl122bWO3rk6xBHBWB06cJ+9ibXqXXXKcfGrp1nha1HihLtxh2YCytotHPzj7D\nSCcVvcH+wvqDBHKNg0QHmOuTJuvxKZ1mz6TcDsie1Z+XVugEVrk+1l4+/VbZHjlqLujlLW1I9ZUB\n/MBj5Xb8tzYiHXRMKlIdPQf7x6iTEdLroh4YlcRFl60jkJD15kXUjcdRT30a9eQz5NfHBA8OkNfu\ns3nxEY6DxJxXPbMJwr5mZCYjPaNsDVBhTDY74XSmOEw0JT8O5iR5k8N0xpXuo6zH26VUoJW3sU6j\nlhCydCZ9E0ZgEMbEwdpCGtkGHQ6uwtHHdbrQBvVKgFmQE7oNyrMLPKv8kKYjF3ic79NoTP70EbPH\njxhdg+koZLC9Sy+d0fvmb+Bbt1/OF4ywao2XFl9VfT6rJLvNyz9KQbX+iPkD+LfAfzDkhH00W+62\nUJp5GD2wBfaTSbmtXolmuYGeJWimWU4/iogaZWmQqvRH4tE47Z2ilebP5uW0hzWos0GoFHiMRL66\ncYiMJoVbZJYSr22QYO+oMzJ078b1SdPNnkAHnrWmOMO7zHS321rLWlNoB4OSn0tGxjjTlOn9KTw1\nanOlewxr0A8v6O2yAcXWgLwAH2eJNjPzu9uh0CbzmiJlekInGhJIk73pEcepUUfwZqOqktLIp7kT\nbpVpRmNoLA3Q7phwqrWDwrSgHS9jWS0NPMutmuN5A3XyjK5z7R+jbhzowQ6Q4wMn9JkFjdKsx67L\nHbf966hrzzN7vGwZTatL7+LXcCN5miTXRnVRw2ioGWuC0vZ4dHlNcda4Omry6uE+l9cCLapL6BiD\nKoiQLKWztgFNbRhnyQYLs/UqG3A6QloQhTqoWa+fXnOTdtDXAc4eG2vZXTnX1pyweuzLJ9frx3oh\n8BmB+0fu+I6uweFzEYc3FBDT+uIe0c6zRGHEw4M70B5cAlHQTOu0m8VdDz63I9ltln8ceN2S5VPg\n+1/o9wqNIhB4SsXiCXeCKWYaB8qSXD9aVNH2CQyjHV63sUcgsRugS13XeQrZFDW57pop4+ElkqhM\nt7Wf6TXX6YTapKxKMwadkw+kSa+1qWtWWarTQ5blZAQfbYe83zNSpNa046ZO381L9ad2YLeDMsNp\nPEJNtVldEHfp97boxAPagRaA7DU36agY9cxnlgdtM5hYkc7QNFcqu+32Pf6Mw/2fEwdrrMczXj0Y\nM4yu6LSWSYNKXCZh2NlPYxAj/ZaZ9XR1cKvKy9ziLtuRE1SZnOAPxq7fCHQadyOFJNGssl5X12LM\nrCQ1Ukzus/YmJfFqjxsDbZo2zfU+XBg6EU//N+FqX9Yp1mij9YeXCBsRYWOPdjjnqZOIJBdH0z9M\nArZaU93ka2er/nE43afT6hI0N0v7mZHpVF/l/FpbDQFkLfLEUz0yhz23UVj8Xv3AEy5aZiy9IawQ\nR0qv+4QFnzbvzWwlClFAM2rS6BzR5QhIaXVDBtsJzUcecLqF7tjcIxCRDeCDwCuAJ4AfUEot5FBF\n5C3Av0Szl35RKfVus/xd6LaWXfPWnzD2C/ZzV9AThHcppf6ZWba0D/Nm23nXg8/dhE/JdN3xzTbS\nohSAcjUjCGMI44I2DCRR+fDZO0jyFPI5ZBV/+ukIxqcFK2unECaFxSKt309he2AstGSJtqzurW0S\nhpGW7DcziyxokM5PHIvKBh7b6KfXr9z/OGhjDec6AAAdd0lEQVSVZHFcYE5GqNEN/d/QmZ3pVhyj\nNp4j6G7Q727Ra2kNOLX3pdUH3dHSdcE8bzSdCKc62XXnoIosaICysz69nWE+14HcBh/Pv8h6GjWG\nsfGs6eqaj6/e7OT4F+EPaLcKOqVj5ZNSBhf1AJtqXTUZXiJb6ztxUXdIjOJBIE3U5Ko7TnJhSOPy\nmGYrRB7Y0A3IvS2S/MSk0RSd0GxLNi3SSgCMUDcepzO8RBDtEMgecWNq1CwK1Y3S/nosP4fpiDiM\nUK126SZJhbGm0rsTlDrKt60khmsbrhm3hLhb1Kd81+CKZcSq9Peyc+PD7+OysOoFyur9TUfamK63\nRrAxIHjwiObTR+T7U5oP7SCvfVXRPF1lCN4hGnNFdDaEg3cAv6OUereIvMM8/yf+G0QkAH4e+E40\ne/iPROQ3lVKfN295rw0sS/AvKDJPFqv6MFfi/AYfNV/ae6JyPYNYFoAc4tbCQBQmU9TkRtma2Pe5\nsUFn/4j58/q7FoRJOTbra+payOk+6vAJCCO2jc6bZSHZBsYkH5Or5+hFm8SxLmhP8mOS2WlJe+x4\n1nS5/6NUHO27HWJmPe2CdZSnqJOrOj1i+p/UifWmmTE/TLSF8SBGNnvQ3YULuulUTVezpOygZmsd\n2Tw1XfUzgkaTaP3yyoJxXhEsHUY72iPJ9LdA4Y3kAs/LujrwXBjqhlhPz8yqXAc3YUmt1hEr6ndu\n5jwdLXeBHVzUhAsjD1Tth7GprJAQsqQYR8NINzDvGGfbnS0dvIIGk+SYw1QrKLhts31WTkRUL1aH\nzxB3twjii0SNI/rRAU+NYnYnoWNeWpSo5QZqNtE1sSwlNCKn9tiE3o2YGu06S3i6M5dejFo9Ejkt\nZnl+y4I/26nQ4W/FXqvK91SxLAABRQ9Xa6DTjK0uMkzhwpBg45BgNEZe/oBWLbl38TbgTebxLwH/\nm0rwAd4APKaU+jKAiPyK+dznuQlE5HuBx7EUQb1sh9V9mCtxroOPZWKV6JetrutPkSBy0vmAGzBz\nNXPNgq64bAdqHzaNZHL/au+E7NrIDd7LhEklS1DHu3p9h4fFLClLWb/4CHG8xkFyneO0AdgBJCVX\n12gHfU+nywpeBk4bLskbHKVadQGgH9kZUKto2LR6cF6wVMdT1DQjP5iipjnzowQ1zWgMYsIHEl3Q\nH42RC5OSdUMJHi0dMrJ5asQdQ2dDkcjpQo3MokrYkCxZENhsdPRrNig66+zBxVLQGRvNPOv/UtVe\n84POspSofWxnO9UbGF8bUJpt6G2RBY2FwdKvn9n1LGDzZVpks78OrS7j7EgrH6QN2mHR+6Rmk4rC\nwWkRgEa7hGgSAbCSzo4hX5RM12yjpkmP2gCUzifk0tSzohNjhWCK+ALQMbWjeElfmdFy0wfy9mY7\nFqvOzTK430pFZBaAGGetAOj/G54/0r2NbaXUNfP4OWB7yXtcf6TBVeCN3vMfE5EfAj4O/LhS6kBE\nuugg9p3AP6qsa1Uf5kqc3+BD5U6v+qPz0kOWtlz9wXfCoaZ3Vu8Yq5YAUajrDemMYJo5F9PGINZ+\nKqYvA5/c4G+LzYl7WCwi52TzA9cNn8yLbbB3uMcptIKAdbOqfjRnqzUjkLho2HTffeq+W/ogrRnS\nCpkfGVrqINbpLX+gt4FnlSWCOaYBujmzLC2TLR3sVwUjwPW3EGk6dbBtPmtnO8OhNpHziCQBWlLJ\nl9qpohxkQqc+kJGWVCKc8gX6BsLOet1g6mncBRR6bqWZk6k3uhshKMRsLfrreuYUNEjTiUuZWWWK\nXGWEzTaqqulmj7upUzrqtVNMaHA6y4ka+oYlDo2atkmdrTp/aT5hnJmequambnRNRrrPyPrhGPO8\njKzsWAqFfUGW6pmhF3iWBXvJktJsqBA+XQzW1d9V9fyWZlQ2la6UZglWg46fMn8JIErRvP2026aI\nfNx7/n7Tp6jXdfM+Sgejf3lL9m8F/xr4SXRC8yeBfw78MFpJ5r1KqVGVLXwnONfBB7yeE1OktLUA\nFcauD6PqWWINw8CkH1rdok/Ih5vim6l9b41G95BoaC7ci5vIg5ecDz3e4KXy1AQszxLBWXcHLvgA\nroejmkYB2GrpC/E4DWiHDeJAOdrtMMqcZpd/PBRAJy0KtfY1IEgL+wNXR6kGxyWPpbvlKMaAm23c\nzII8VzOYQxCUBxCXmmt1nVupRE03+No0mwwvrRQ5DU+PTYBYfQlYt9JQQggw8jM6VWgRB2tOkFLM\n3Xz17t0Onv46lchi4LEpy7UN97u0UN0LnKTXSPIpcdDQ/WOmZpOrmf799df1OvwaimfNcDLbM03Q\nxfnR7QGmOTUcEplzVJKoATAMvfFsr3Q9HKbXNIV6+5Vam21ypNXTg4ZWrZiNXO+SKKVnSH6KrtV1\nTqfLYD/jZJqWoHQTk89WG/Wx2JC6YJBnYdOBfpPr2WJPKfX6VS+u6qMEEJHrIrKjlLpmUmLPL3nb\nqp5KlFKOWy4i/wb4sHn6RuDtIvIeYAjMRWQK/Bqr+zBX4twHHwt3sXuBx3q2VGEL8hYqjHWfhb8u\nKF1QamLzy0O4YC68l20iVtF6GVpd6JoLq5K/HkZZqa/I3sn6AajfzIkDne/qR1OSXLnG1Hao/wcS\nlTXfLDvI2gj7ckM+M8kW65fdFVYL12FUCjyAk7X3U10hkUtrWtj60EoVY9Olr8LIecBYtp+1bQ4I\ny+m6vcdRe1rbzAWpKqW3Iu8StXolarRlnNn0nZPaqViCO6p+ZWYtUNSJbMrNpm3DqBR4WNvQyt/e\nb9FS5EEH8KyREXa3dC3FCzo2zTjJj7k2bnCYLB5HPwDZ1CdA0GhCFLoesXF65HrQfGRz7YTbDvqE\n/T5Jvr9cYic3PkmmLYB0hnTbqLjrArc14nNIRvozgQ4EQRgvlZ8qO6Q2oeHNlCu07IWGVF8DzoqX\nrrqZujdgex/fbf7/xpL3/BHwahF5CB0ofhD4K6BrOF7a7vuAzwIopf6M/bBhxI2UUj9nnq/qw1yJ\n8xt85pWrw0uT+D4q+9OiBwbKs54S4m6hFVDpCwH0XZulwtqBfVhJi1YMxQA32EuzXaRwpEkcpAzj\n3NkzAKYORElup6hnhISNCXFQDBxrTanUUjxpE8sKGlIMnJaaPLxEoqYF/TorD9TVpsFlMw+r6uyn\nonKVGfZ3OQhl87Q8mFRhA5AdXMydd2rOYyA61SbTE9RzX0Q9+Szq2X1NUNgYwIXndW2lu+WstKsp\nFwHiaM39LnYnMw7TmGE0Iw5SZzmQzVM64aAIln4tp0pNrgYe1+ekxT4tczFRmg5dHfR98ddcafqz\n7VXy/YDG2chJNK2CDUB2P6CcsloWdHxk85yT+YHZrtbCuQoJdf+TMY1TzxpKevcQ6axBewBh7M5X\nIGEhGmuDt2GiBkG4QAbJ1cwJgsIxbfru91XsRFoKQG6Zf679c2V/wy+RuZzMIZ6sJkm8hHg38Ksi\n8jeAJ4EfABCRB9CU6rcaHcy/C3wUnRX+gFLqc+bz7xGRb0AnPp4A/uZtfOeqPsyVOL/Bx8IfKPNU\n54EN9MVWXLC+qu+yXLKsSPE4mEZWsd4qt5NLtnTP0S4CnlnbEXEwJW7MnXyKRdHk2nZOmrnKCPIm\neWNGHGSumXXVd1Z7I6Rr/HG8FE4nHNAO+zro+oHHd8dUU1BLGGLJyPVUVWshoFNtfl7/dgzMnIeP\nR2qwg5ObgRg7DGU8mdzMzhdCXQEdIGdOskYb/EUljb2t1oEjpLSDPtYVtaTuUMWqtE6rS9KYl6SS\nltkdWChTw0jnk5If0O5U2zJYWw6g1Fys/xcKFjbI2Ibk6uvLYBUzknmDfjMFUtPg2lo8b1XxXhNc\n/LrqgsurPS9ZSphBGPcIpMlheo1snhtTv6L+GcjEzOBW/Mb9dd/sNS8dfq9AKXUDePOS5c8Cb/We\n/3c0Lbr6vr92G9/xrsrzpX2YN8P5DT5BuCinMh0hYUq71XcXTNiYEEi0RE4+WbirX9oMt4QBVWzD\nkoGuehdmUzFR0T/RWdsgaDaJGqfEgR5gbBCygacTDnTnuznFQaPpZhe66FykkGwtoxMOCINu6W5/\noVKZjIiBOL6sUyLHV3V9ygs+Akvz8y7wnO47tQNLaV8WgEAHoWqacyW8gSQM9DEI5wVhQTd+biOj\niZYjjZplYoLf9xODePulWj1OjPVD1Giz05kwyeaGRSjOxVSnOouAp6ZH+m4fFgKQDC8VA5tH1XYz\nt/kElOkDUm1gAl5ASPIGYWNGrmxQ9BpevVRqv5m6dCtQmd0UzaCW3OETbOLApreK2uCyGWgQ+TMQ\n3PYlubacyNWM3nCb0NR3pNfVCgem5plEIYfJ02b2cgQhhWwQHonDwvwOtQleEVTtTdha0zBTG8Yp\n1kOp5mNUIUq/df/9y/yA7hCiFM2q39I5xvkNPhWok10dKMzgGcddCIcEedM1AeoO9qJxVNqDBUUE\nC0dbtus0NO7blgOxjCCXitFXtO1ej3tbRM1NU3M4JA50I6m1THDba+wMJIwIw4gwaKFMT884O/LS\nFzPG2ZHWJgsKcdBl8zg12oW9x4uLslIXslI1fn7ewebws3Shp6pKOlilh6dEFrfLH7zNQBWGkR7A\nvN4hsY6ZVsLHIybYdTuYmUSuZoxnZYeOqNHmSnfEo0etkkbe8SwolKnzFEZaSgYAL/io7gVduDcf\nDTodLDc6V0mpZmJTvbbmY2cYyRziYKZlk+bp0pmsVcrWskniUlp2vTbguJuqWUocX3DST3r2uPw8\nVP2h7OtR49Bp8IGeFWWBVlPvdTaJW484vyXZfIixJBxMrxZMTU+9od3qL/8NGi+p4fYrndjqJGvw\npaOQ1wz07D+QCbFa04QRFptTnX+TtTFfQS5Q06OFZTVePM5t8CkNMlPPydQOnkYXLQgN44lQD5xG\nQgRMQ2prgISpSzWJbTg0d7yMxnqd1mDtZp31QVRWzx6NdXMnhlk2GhdByHx3bORP/L6VdtA327Ff\nXDgeCcAGok44KAUgS8UlHBKF7fJFn6VOg80Wi5ciaiI76B6P3pbJz2eOVuyM3+yxzhYDEFRFIgu2\nmDtvPtnBBh7z3NfqFm/f7edkeMmJWloZolXyOX5vl4Xt8QqkyZXuEY8e6ZuP5yf6rnurNXHHjNEY\ndeNA31l3j9z5n+THzsXVr6VopYkiSNnAkM4paf4dJpbxqGc/0MZaZfiwxA772JEJTBAqftdXtVqE\nuUmKWwNY2yBrZAukmyoV3VHGZ/p3G69dJJAb7Jnf3vEsgFlAv1n0o/W3NdHG+g3pRujAuLbirLfB\nBKDpiTum6vAZx5YLu1tEkZ4VHqcNPncgQGhSoVM64QzlBeVqy0Q6N/XQ6myHSk2uxkuOcxt85io3\nEiGJHqBtwbdLIa6YjHQXd55CNlpsSm11i3x+mOo7KJPjZzoqmv68qbYbGCsBaEEO3nbum0FeJYkX\nDE7N9+iAFrYGhK0uUbOYnZW21a7P0pLNWsJAi5NaZp+1WghyPbjEQasIOqP9UrOs8oQ68ftLQG9z\nMtJFZDOLcjWXBVsKUxNB64GVnCjtdntY6Fq3r/v7SjkAAZUGw26J4eaLhUI54NiB184q/Fll1NSS\nM1e6Ex49anFtou3Mr3QDNltNrXhhGi9VkiBPPYG68gpkbYNktm9ssgMmWdEE3I9yrnR3C5uMeQPS\nE+K462y7tbdiYVq45tfUvcAZNjRxo0ghR0XQsYocyaj4rXrHVE1HMJsQtgcErX6JcViWpbrhjrdd\nJmFEJx7Qj7Qr6/VxSJI32GpnDPOMfnRQIgzoFGBOnAuEGOdXrQSfzVMmHNOJe4X6uS9R9cTnWP+a\nN5K3n+fRowbTXLv6JrkQNgJnO+Efn1KPkC2hCQRh7OqXS1PfLxIyf0F9Pvc9zm3wyeY5h+k1rQxt\nhDmdzpTx9AFKwcb130BJCsSRAqwIKRQCpHZAtuttD1Ctnk65zBOzLXqdYSOiE/eQLNXb051BkiBx\nXCg9W4zGwBi65SC0simuSiWmmEVEjTZR1CYOjp1qg74bfkYHETvbMdJAKsmZj2dF8PHg99ioVo+x\nKXzn4cClULS+1qiQVTH09lzNCFhS21nSeLs09bakUdjut5WFATNAR6FJbxUMv3agU3Rjb2C0s5JA\nMkc0CaQJ0xPXvb/RmrCVZhylTV7WztlomZRh5TyoJIFHvwjTEeubD9FZG7LpRF8nJHmDOJjTa64X\n7Dzrh5QZlekQttpHwMyxMNtBv6Q4vUx2phR4To9Rz35p8ThXj+XpvkuN6jVPUZMjfQ14PUkOtjk2\n7jLObpieJN3MDPMFKxCbZrUBoddMXZCrNvO6bfJvXNKZZs793ke58PXfxJseiOhHE1490Olnf3gr\ny2E1HaFFvzYzBBwTgFpGYHhypH8/nZsfqhp3hnMbfNK5cJB4umibD7lmttIAVik4SmtQKkw6RWTP\n3TJo9ZwStn+RWguCNDlkd1JOW1mywGYrpdfdNLUk07tSSXG5tFfULJpQo1OX2iuhwt4qKQZX0Gn0\n9IAzvVakxswFzv4R88PESeyoaaaNt7zZj+xswaWHHRX7JHmaR4+0FMx2Z5+dzh7toE9nuE3IJSdd\nlKuEbHaCld4PCYu02goWWq5MIbmaEjEByPUYBRHj+YmbyfgpF2tc546NSe20W30mHOvv8NhfegAP\nPXr5iCjW9bPt9thZapQUzeO4UB6w5+/pZ2B8SrSxrV1FTY3FKgHE8wYYbx2rBGDTk+UAhKN138yY\n0MIFnic+x/wzX9ZU84ub+oZhGbLUkSXc8+mosIqImsgjUVlOqD1gPD8pGdFtt2ckubDRgnZgAutI\nz5hC0HYQYQwS62ZWpx9n9fd0IF+qnWczA5/+BL1HXsO3br9cW4x7WBaMdbowLKUUdeo60ynnwGN8\nhktu5mq8aJzf4JMLjx7FXOmmwB55ONAXdnXWsCzf6zdRLknduB97A4K1vpZnMY1++1PdU/H0aLE4\nPIgUrx4cs9WeMIwvEoamd+XoudLdnhX4BEqSKtKbQHSoJXtsl7u3zas0tFydyhq6GZdHdaLTMWrv\nhPlRwnxciIparTcbfOTCOlx6mHy4zcnsOQ6SMY8exXxqP+TGVHhlP+Dl3Zztzoit1gFx0PL6eAoG\nF+wxjHZcCtKREyio1Fb2KGg0y0Vi+9/O8MLI9cgk+dQVtK3W3Tds7rkAFDXaqIlu7JYwIgqsG6ce\nnAp7gCZMb7jGxzDu0gmH5CozfkvKsfpupmmiru3CjUMnyBrFXeLeFqQmzekIJ1ayZuZSiQXdHqoE\nAh9+nSpqtEuBZ/qxZ5FWSPOhMcGDR8jOy1br8o1MT05FoxCgCcgjr3EBKItbnCRPlz4eB3PWmoG2\n22j0UAdXtdGeRRiV/gcmQxCaJtlAmpCdeCnbbLHmmM5QX/wS0fEB8QOv0YoQs72lTcq+gG4Q9kuK\nDZbpFzXahLZ37yVju1Gn3Tyc2+AzyeHJUUCSt0jmKTudPbLA0I2tLUJWvtuyd9PurtrUbZbVDAAn\nnpmrmRd0Qh47EZ46CIji8g9xGAlHaZtXDWY83H+aYbRDbIvjJgCpk1NdxDb6cGLkc4iaKH821J05\n+4BVgcfRnj1yhO/w6CtY5/taXFQlObPjHBCCaa5TgRsDuPIK8uE2N5KnuTZu8JkbHT57IPzx42vs\nXu9w9VVHXN5MTRAKTSrG+goVA0McjAhEB4WlaTXjBaSbEcPiB1wdIJwczD7HacrxTPe67E5CnpsI\nhylA5AJQSOh8lmi2Cdc29ExnXlB5XeOjL2iajLS8joSuSB42onINKmrq42nOmz2OWnn7CLq7yIUh\narjv5P7drNMX6zQW4BJGRHF7IZVkz6lOZ5Xv9sNkinr2S6hHnyT55PNc/5M2YaQYHO8T709pHk+R\nBzb07BXKg7s3+82vj8meHZHumv6r9ecJel146DVIb2up82nY8ALPoWe0Z1PKVXTbqI4+FmF3a7UE\nUlV9I53pBuIbh8jOFr3BRWR4ifH8xAWgkpAruoaoCR2T0vUKQKOtZZOyZMmX13ixkNtwnL4vISK7\n6O7fs8AmsHfLd91buB/3Cer9updwlvv0cqXU1otZgYj8D/Q23w72lFJveTHf99WOcxt8zhIi8vGb\niQTei7gf9wnq/bqXcD/u03nCaq2OGjVq1KhR4yuEOvjUqFGjRo0zRx18zgbvv9sb8BXA/bhPUO/X\nvYT7cZ/ODeqaT40aNWrUOHPUM58aNWrUqHHmqINPjRo1atQ4c9TB5yWCiPy4iCgR2fSW/VMReUxE\nvigi3+0t/2YR+Yx57V+JaJE1EYlF5INm+R+IyCvOfk/cNv60iPyxiHxaRH5dRIbea/fsfq2CiLzF\n7M9jIvKOu709t4KIPCgi/0tEPi8inxORv2+Wb4jI/xSRR83/de8zL+i83S2ISCAi/09EPmye3/P7\nVGMJlFL134v8Ax5E29E+CWyaZV8LfAqIgYeAPwEC89ofAt+CVkv5CPDnzfIfBd5nHv8g8MG7uE/f\nBYTm8U8BP3U/7NeKfQ3MfjwMRGb/vvZub9cttnkH+CbzuAd8yZyb9wDvMMvf8WLO213ct38I/Cfg\nw+b5Pb9P9d/iXz3zeWnwXuAfUzb+fBvwK0qpRCn1OPAY8AYR2QH6SqmPKX2V/Hvge73P/JJ5/CHg\nzXfrjk0p9VtKOY2WjwGXzeN7er9W4A3AY0qpLyulUuBX0Nv8VQul1DWl1CfM4xPgC8Alysf6lyif\ngxd63s4cInIZ+AvAL3qL7+l9qrEcdfB5kRCRtwHPKKU+VXnpEuArLF41yy6Zx9Xlpc+Ygf8IuMDd\nxw+j7x7h/tovi1X7dE/ApDG/EfgDYFspdc289BywbR7fyXm7G/gZ9I2c5+V6z+9TjSU4t8KiLwQi\n8tvAxSUvvRP4CXSK6p7DzfZLKfUb5j3vBDLgl89y22rcHkSkC/wa8A+UUsf+hFIppUTknumlEJHv\nAZ5XSv1fEXnTsvfca/tUYzXq4HMbUEp9x7LlIvJ16Fzzp8xFfxn4hIi8AXgGXQuyuGyWPUORwvKX\n433mqoiEwAC48dLtSRmr9stCRP468D3Am036wt9Gi6+6/boDrNqnr2qISBMdeH5ZKfVfzeLrIrKj\nlLpm0k/Pm+V3ct7OGn8a+Isi8lagBfRF5D9yb+9TjVW420Wn++kPeIKCcPBaysXQL7O6GPpWs/zv\nUC7M/+pd3Je3AJ8HtirL7+n9WrGvodmPhygIB6+929t1i20WdC3jZyrLf5pycf49d3re7vL+vYmC\ncHBf7FP9VznHd3sD7qc/P/iY5+9EM3C+iMe2AV4PfNa89nMUShMt4L+gC6d/CDx8F/flMXQ+/ZPm\n7333w37dZH/fimaM/Qk67XjXt+kW2/ttaILLp71z9FZ0Le13gEeB3wY27vS83eX984PPfbFP9V/5\nr5bXqVGjRo0aZ46a7VajRo0aNc4cdfCpUaNGjRpnjjr41KhRo0aNM0cdfGrUqFGjxpmjDj41atSo\nUePMUQefGvclROTvicgXROQlV2YQke83StJzEXn9S73+GjXOA2qFgxr3K34U+A6llK/xhYiEqhBM\nvVN8FvhLwC+8yPXUqHFuUQefGvcdROR9aHuEj4jIB9ByPq80y54Skb8KvBvdyBgDP6+U+gWjtP2z\nwHeiG2xT4ANKqQ/561dKfcF8z9nsUI0a9yHq4FPjvoNS6m+JyFuAb1dK7YnIu9DeL9+mlJqIyI8A\nR0qpPyUiMfB7IvJbaGXoR8x7t9HyQh+4O3tRo8b9jTr41Dgv+E2l1MQ8/i7g60Xk7eb5AHg18GeB\n/6yUyoFnReR378J21qhxLlAHnxrnBafeYwF+TCn1Uf8NRk25Ro0aZ4Ca7VbjPOKjwN82lgSIyGtE\nZA34P8BfFpHASPd/+93cyBo17mfUM58a5xG/CLwC7b0kwC7aZvnXgT+HrvU8Bfz+sg+LyPehiQlb\nwH8TkU8qpb77DLa7Ro37BrWqdY0aKyAi/w4t6/+hW723Ro0aLwx12q1GjRo1apw56plPjRo1atQ4\nc9Qznxo1atSoceaog0+NGjVq1Dhz1MGnRo0aNWqcOergU6NGjRo1zhx18KlRo0aNGmeO/w9iNRS7\nvTCLTgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "p = bs.plot_phase()\n", + "p.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window Functions for Bispectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Bispectrum` in `Stingray` now supports 2D windows to apply before calculating `Bispectrum`. \n", + "\n", + "Windows currently available in `Stingray` include:\n", + "1. Uniform or Rectangular window\n", + "2. Parzen Window\n", + "3. Hamming Window\n", + "4. Hanning Window\n", + "5. Triangular Window\n", + "6. Blackmann's Window\n", + "7. Welch Window\n", + "8. Flat-top Window\n", + "\n", + "Windows are available in `stingray.utils` package and can be used by calling `create_window` function.\n", + "\n", + "Now, we demonstrate Bispectrum with windows applied. By default, now window is applied." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "window = 'uniform'\n", + "\n", + "bs = Bispectrum(lc,maxlag=25,window = window, scale ='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'uniform'" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Window" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VfW59vHvTZhkhoQZJ9RSoFZLKdLWsQhOVSoOB2rF\nqXI4Tq0etVqPTD22Tkf7WrW8qK2F9uDLUai04FFqFastKkUUU6UiqEAgzFOAhCTP+8dee7sJO9kr\nyU729Hyua13Za/it9VsMz15Zw71kZjjnnMsvLdLdAeecc83Pi79zzuUhL/7OOZeHvPg751we8uLv\nnHN5yIu/c87lIS/+LqNIKpZ0evBZkn4tabukt9LctVpJ+rGkJxvY9nRJ61LdJ+eS8eKfpyS1kfSU\npE8l7Za0XNI5cfNPl1QtaU8wrJM0R9LX6lhnwkIm6VVJ3w/TLzMbbGavBqMnAyOBfmY2rH572HzM\n7KdmFmr/nMsUXvzzV0tgLXAa0Bn4D2COpKPilikxsw5AR2A48CHwF0kjmqmPRwKfmFlZfRtKatkE\n/XEuZ3jxz1NmVmZmU8zsEzOrNrM/AmuAryZY1sxsnZlNAp4E7mvodiVNCX6DmBn8xlEsaWjc/E8k\nnSnpmmBbXw9+85gazL9W0ipJ2yTNl9Qnrq1Jul7SR8BHcdOuk/RRsL2fSDpG0l8l7Qr60rqWvn4q\n6avB58uCdQ0Oxq+R9Pu4ffpt8PmoYLkrJH0maYuku+LWeZikp4NTWf8AvlZjmwOD35R2BH82FwTT\njw6mtQjGn5C0Ka7dLEk/bOjfi8s/XvwdAJJ6Al8AipMsOhcYIql9IzZ3AfAM0AWYDzxacwEzewqY\nCPzNzDqY2WRJ3wJ+BlwK9AY+DdYT7zvAScCguGlnEflSGw7cDswAvgccDnwJGFdLPxcDpwefTwNW\nA6fGjS+uYx9PBgYAI4BJkgYG0ycDxwTDWcAV0QaSWgF/AF4CegA3Ar+TNMDM1gC7gK8Ei58K7Ilb\nb7L+OHcQL/4uWnR+B/zGzD5MsngJICKFu6FeN7OFZlYFzAJOCNnuMuBXZrbMzMqBO4n8ZnBU3DI/\nM7NtZrYvbtr9ZrbLzIqB94GXzGy1me0EXuDzglrTYiJFFeAUIl880fFkxXaqme0zs3eBd+P28VLg\nnqCPa4FH4toMBzoA95pZhZn9Gfgjn385LQZOk9QrGH82GD8a6BRsx7lQvPjnueA0wiygArghRJO+\ngAE7EsyrBFolmN4KOBA3vjHu816gbchz9H2IHO0DYGZ7gK1Bn6LWJmhXGvd5X4LxDrVsbzFwiqTe\nQAEwB/hm8GXTGVheR19r7mN0G31q9PHTuM99gLVmVl1jfnT/or+JnAq8BrxK5EvoNOAvNdo5Vycv\n/nlMkoCngJ7ARWZ2IEkTgAuBZbVchP0MKJIUK6bBNo7k4CLXUCXBuqLrbg8UAuvjlklZTK2ZrSJS\nuG8EXjOzXUSK+gQiv700pNhuIHK6KeqIuM8lwOHR8/px86P7t5jIbyCnB59fB76Jn/JxDeDFP7/9\nEhgInF/jNMlBgvvt+0qaDHwf+HGi5czsM+BN4D5JHSS1AW4jctS/JAX9nQ1cJenEYN0/Bd40s09S\nsO7aLCbyG1G0uL5aY7y+5gB3SuoqqR+RL5aoN4l82dwuqZUizzucT3Bdw8w+IvKbyveAxcGXUSlw\nUSP64/KUF/88JelI4F+BE4GNcffzXxa3WB9Je4A9wNvA8cDpZvZSHav+FyIXK1cROWIdAZxnZvsb\n22cz+xNwN/AckSPoY4CxjV1vEouJ3Or6Wi3j9TWVyG9Ba4hc2J0VnWFmFUSK/TnAFuBxYHyN6zCL\nga3B9YLouIBlDeyPy1Pyl7k451z+8SN/55zLQ178nXMuD3nxd865POTF3znnMoCksyWtDOJL7kgw\nv6ukeZLek/SWpC/FzfuBpPeDSJBQMR85dcG3o1pbEW3T3Q2XZoe1a8FhRS1Qt66UWRWlZQVoS+78\nO3epsW3Hmi1m1r0x6zhehbaHMI/HwCfsftHMzk40T1IB8E8iKbbriNxdN87M/hG3zAPAHjObKumL\nwGNmNiL4EngGGEbkYc3/BSYGz6nUKqeSD4toy5SCjE3+dc2lHDrvLeCs8S1p+2/nUNqlDfe/2561\njxfQtizcf1SX+3477/JGP3i4hwOha86VVS8X1TF7GLDKzFYDSHoGGA38I26ZQcC9AGb2YRAi2JPI\nszpvmtneoO1iYAxwf1398dM+Lift3F7FnJ+Vs3PqfHqu/IwpX23J8Nsq+fSLhenumnOJ9OXg2I91\nHBxbApHspjEAkoYRedq9H5G8qlMkFUpqB5zLwU+RJ5RTR/7O1fT8U9WctvEdjrhxBz8ccQH9O5by\nwPyeHLO4NHlj55KQoGUrhVu4iiJJS+OmzDCzGfXY3L3A/5G0HFgBvANUmdkHku4j8tBgGZHMqapk\nK/Pi73Le4gX7GbLlMwZunMmFY8bQa+x67u3ZlU5zdqe7ay6/bDGzobXMW8/BR+v9ODiziiDO4yqI\nZWatIRIzHo1AfyqY91MivznUyU/7uLyw7M0yFk/eyv6Hn2a47efhczfR8ZYWVLXy/wKu4dQC2rRR\nqCGJt4Hjgpf2tCYSWzL/oG1JXeJePPR9Pg8bRFKP4OcRRE4N/XeyDfq/fJc31n1awf+bXMaeac9x\n9IZN/HSYGHwHbDq8U7q75vKcmVUSCQx8EfgAmGNmxZImSpoYLDYQeF/SSiL5Tz+IW8VzwZvh/gBc\nb2aJItcP4qd9XN6ZO8MYue0Nek3czG2njKLvddt59Pk+DFxSku6uuSwjKfw5/yTMbCGwsMa06XGf\n/0bkbXuJ2p5S3+35kb/LS4uerWDllE8omDuHK48p4sHvrWXrhZ3T3S3nmo0Xf5e33np9D2/cvZmK\nx5/gtNZVPHx+KS0mJnyXu3M5x4u/y2trVpUzf9Iu9t4zmy9s38aDp5bR50ct2N6zMe+nd/lCgjZt\nWoQaMk3m9ci5Zla2p5pnf2FsnvRnit5dydShHbngpr2sPr5RT/47l9G8+DsXeGF2JaunFNN6wfNM\nGNCLO6/exNpRdT2R7/JdC0HrNgo1ZBov/s7FeX3RPt66u5QD/3cG3+7amkcuXU/lVYelu1vOpZwX\nf+dqWFm8jwWTdrDvgZkcv2cnD4/YRvfbWrCnS5t0d81lGAlatVKoIdN48XcugWgw3NbJL8aC4c64\npcKD4VzO8OLvXB0WzKri0ynv0OG1v3Dj4N7cfO1WPj6tZ7q75TKEWojWbVqEGjJN5vXIuQyzeMF+\niid/RtWvn+TCnu35r7Hr2X95u3R3y7lG8eLvXAjL3ixj8T07YsFw943Y6sFwLhbpHGbINCn5lxvi\n3ZOS9Egw/z1JQ5K1lfSApA+D5edJ6pKKvjrXUB4M53JJo4t/8O7Jx4ikzA0CxkkaVGOxc4DjgmEC\n8MsQbRcBXzKzLxN5t+Wdje2rc6kwd4axYfIbdPrrm9z25S6Mu243Hwzvk+5uuTSIPOGbkkjnZpeK\nI//YuyfNrILIi4RH11hmNDDTIpYAXST1rqutmb0UxJwCLCHycgPnMoIHw7lsl4riH+bdk7UtE6Yt\nwNXAC4k2LmmCpKWSlu7GX87tmo8Hw7lslvFXqyTdBVQCv0s038xmmNlQMxvakVbN2zmX9xIFw/W/\ny4Ph8kUqL/iGuHbaWdIfJL0rqVjSVXHzbg6mvS9ptqS2ybaXiuKf9N2TdSxTZ1tJVwLfBi4zM0tB\nX51LuZrBcHee6MFwrn5CXju9HviHmZ0AnA78l6TWkvoCNwFDzexLQAGR10DWKRXFP+m7J4Px8cFd\nP8OBnWa2oa62ks4GbgcuMLO9Keinc00qUTDchnO7pbtbrikJClpVhxqSCHPt1ICOwcvbOwDbiJwV\ngchbGQ+T1BJoByR9LV2ji3/Id08uJPKW+VXAE8B1dbUN2jwKdAQWSVouKfY6M+cyVc1guIfGbPBg\nOBdVFL0+GQwT4uaFuf75KJH3+JYAK4AfmFm1ma0HHgQ+AzYQObh+KVlnUvIO3xDvnjQiv7KEahtM\nPzYVfXOuua0s3sfGSRWcVTKT468dwcMjqrm/qD1rnmhFhx3l6e6eSyEJClqGPiO9xcyGNmJzZwHL\ngW8BxxA5MP4LkdM8o4GjgR3A/0j6npn9tq6VZfwFX+eykQfDuXoKc+30KmBucMv8KmAN8EXgTGCN\nmW02swPAXOAbyTboxd+5JuTBcLlNgoLWFmpIIsy108+AEZHtqicwgMjp9M+A4ZLaBdcDRhA5jV6n\nlJz2cc7VbvGC/QzZ8hkDP3uSC8deQq+x63noiE60neX3MbgIM6uUFL3+WQD8KnrtNJg/HfgJ8LSk\nFYCAH5nZFmCLpGeBZUQuAL8DzEi2TS/+zjWDZW+Wse7TCs7Y8DTDrzmHn48q557uHdnxCyg4kPRO\nEJepZLRslZq70ENcOy0BRtXSdjIwuT7b89M+zjWTTRsPxILh+qzeEAuGK+nvmYWu+Xnxd66ZzZ1h\nrJ/6diwY7tqJOz0YLktJ0KKlhRoyjRd/59Lg5d+Xx4Lhxvbr5MFwrtl58XcuTaLBcOWP/CoWDNf6\nBr8M55qHF3/n0mjNqnKenbwnFgx3/zcqPBgui0SC3apDDZnGi79zaVZ5wGLBcF2XrYgFw60c2ivd\nXXM5zIu/cxnihdmVrJq8MhYMd8/4Eg+Gy3R+wdc5lwp/e2VvLBjuzHZ4MJxrMl78ncswK4v3sWDS\nDvbdP5vj9+zk4RHb6POjFuzp0ibdXXM1SEbL1uGGTOPF37kMtHN7Ff/z4IFYMNykIW09GM6llBd/\n5zJYNBjusEUvxYLh1o4qSne3XECCggILNWQaL/7OZbjFC/azbFIJVb9+kgt7tueBizaw//J26e6W\ny3Je/J3LAsXL97Jo0nb2P/w0Qw+U8fNRm+l4Swv2t2+V7q7lN0GLNuGGTOPF37ksEQ2G2zl1fiwY\nbvhtlR4M5xrEi79zWeb5p6pjwXA/PL6HB8O5BvHi71wWigbD2e9mxoLhdl3aMd3dyj8thNq0DDUk\nI+lsSSslrZJ0R4L5t0laHgzvS6qS1E3SgLjpyyXtkvTDpF1v4C4759Lsrdf3sHjy1s+D4c7d5MFw\nWUpSAfAYcA4wCBgnaVD8Mmb2gJmdaGYnAncCi81sm5mtjJv+VWAvMC/ZNr34O5fF1n1aEQuGO3rD\nplgw3KbDO6W7a/lBoFYtQg1JDANWmdlqM6sAngFG17H8OGB2gukjgI/N7NNkG/Ti71yWiwbDbZj8\nRiwYbtx1uz0YLvMUSVoaN0yIm9cXWBs3vi6YdghJ7YCzgecSzB5L4i+FQ/jviM7liEXPVvD1rSs5\n9sbtXHnuJfQdX8J9PYrovXBburuWsyShtqHL6BYzG5qCzZ4PvGFmB/3FSmoNXEDklFBSfuTvXA6J\nBsNVPP5ELBiuxcTW6e6WS249cHjceL9gWiK1Hd2fAywzs9IwG/Ti71yOWVm8j/mTdsWC4R48tcyD\n4ZqKlKpz/m8Dx0k6OjiCHwvMP3Rz6gycBjyfYB21XQdIyIu/czmobE91LBiu6N2VsWC41cd3T3fX\nXAJmVgncALwIfADMMbNiSRMlTYxb9ELgJTMri28vqT0wEpgbdpt+zt+5HLZgVhUnbyzm6Bt3cOM5\nl9K/43oefKE7h7+0Jd1dyw0tQG0LUrIqM1sILKwxbXqN8aeBpxO0LQPqFfnqR/7O5bjXF+2LBcN9\nu2trD4ZzgBd/5/JCNBhu3wMzY8Fw3W/zYLhGk1CrglBDpvHi71ye2LTxAHN+Vh4Lhpvy1ZYeDJfH\nvPg7l2eiwXAdXvtLLBju49N6prtbrpn5BV/n8tDLvy9nyIbPGLhxJmMvvpQjx67n3p5d6TRnd7q7\nll0k1CbzTumE4Uf+zuWpZW+WxYLhhtv+WDBcVfJ70l0OSMnfcogoUkl6JJj/nqQhydpKukRSsaRq\nSal4JNo5V8O6Tyt45se72TPtuVgw3OA78GC4sFoArQvCDRmm0cU/TBRpMO+4YJgA/DJE2/eBMcBr\nje2jc65uc2d8Hgz371/2YLh8kIpz/rEoUgBJ0SjSf8QtMxqYaWYGLJHURVJv4Kja2prZB8G0FHTR\nOZeMB8PVn/L8nH+YKNLalgkdY+qca3oeDJc/sv7KjqQJ0Xzs3RxId3ecy3q1BcNt79k+3V3LPErd\naxybWyqKf5go0tqWqU+MaUJmNsPMhprZ0I7404rOpUKiYLgLbtrrwXA5JBXFP0wU6XxgfHDXz3Bg\np5ltCNnWOZcmC2ZVsXpKMYcteokJA3px59WbWDuqKN3dyhwCWrYMN2SYRhf/kFGkC4HVwCrgCeC6\nutoCSLpQ0jrg68ACSS82tq/OufqLBsNVPv2UB8PlkJR8HSWLIg3u8rk+bNtg+jxCvIHeOdf0ipfv\nZfOkA5y+ZiZD/+0cfj6qgv/q1ZG1jxfQtiyPr7VJ0Do7Tzdn/QVf51zz8GC4ppXsYdlgmdMlLQ8e\ngF0cN72LpGclfSjpA0lfT7Y9L/7OuXrxYLjUC/OwrKQuwOPABWY2GLgkbvb/Af7XzL4InEDkNHqd\nvPg75+rt5d+XUzz5M+x3MxnbrxP/NXY9uy7tmO5uNT8JWhaEG+oWe1jWzCqA6AOv8b4LzDWzzwDM\nbFOkC+oMnAo8FUyvMLMdyTboxd851yAeDFdvRdFnkoJhQty8MA+8fgHoKulVSX+XND6YfjSwGfi1\npHckPRm807dO/rfknGuwvA+Gi17wDTPAlugzScEwo55bawl8FTgPOAu4W9IXgulDgF+a2VeAMiDh\nNYN4Xvydc40WHwx325e7eDBc/YV54HUd8KKZlZnZFiKhlycE09eZ2ZvBcs8S+TKokxd/51xKLHq2\nglWTV1Iwdw5XHlPEPeNL2Hph53R3q2lJqKAg1JBEmAdenwdOltRSUjvgJOADM9sIrJU0IFhuBAcH\nayaUeY+dOeey1t9e2cvGtVUM3/AEZ37vAo44v5Sf9uxE9fSKdHcto5lZpaToA68FwK+iD8sG86eb\n2QeS/hd4D6gGnjSz94NV3Aj8LvjiWA1clWybXvydcym1ZlU5myYd4NyS2XzhX8/gwVMLeLSwDX9/\n8jC6lpalu3uplcKHvJI9LBuMPwA8kKDtcqBeL73y0z7OuZSLBsNtnvRnit5dye1f9mC4TOPF3znX\nZF6YXZnbwXAiVff5Nzsv/s65JhUNhjvwf2fEguEqrzos3d3Ke178nXNNrnj5XhZM2sG+B2Yy9EAZ\nD4/YRvfbWrC/fXaGosXU7z7/jOLF3znXLHZur4oFw/Vc+VksGO7TLxamu2t5yYu/c65ZPf9UNZ9O\neScWDHfztVs9GC4N/FZP51yzW7xgP0O2fMbAjTO5cMwYeo1dz709u9Jpzu50d61+PM/fOefqJxoM\nt//hp2PBcB1vaeHBcM3E/5Sdc2mz7tMK/t/kslgw3E+HKbuC4SQoaBluyDBe/J1zaRcNhuv01zdj\nwXAfDO+T7m7lNC/+zrmMsOjZClZO+SQWDPfg99ZmfjCcBC1bhxsyjBd/51zGeOv1Pbxx92YqHn+C\n01pX8fD5pbSYmHmFMxd48XfOZZQ1q8qZP2kXe++ZzRe2b+PBU8vof1cLtvdM+nKqNBC0aBluyDBe\n/J1zGadsTzXP/sJiwXB3ntjRg+FSzIu/cy5jRYPhWi94PhYMt+Hcbunu1uf8nL9zzjWN1xft4627\nS2PBcA+Nyc1gOElnS1opaZWkQ97BK+l0STslLQ+GSXHzPpG0Ipi+NMz2Mu9ElHPO1bCyeB8bJ1Vw\nVslMjr92BA+PqOb+ovaseaIVHXaUp7t7jSapAHgMGEnknbxvS5pvZjVfx/gXM/t2Las5I3i3byh+\n5O+cywrRYLitk1+MBcOdcUtFmoPhUnbBdxiwysxWm1kF8Awwuil77sXfOZdVFsyqigXD3Ti4dzYF\nwxVJWho3TIib1xdYGze+LphW0zckvSfpBUmD46Yb8CdJf6+x3lr5aR/nXNaJBcN99iQXjr2EXmPX\n89ARnWg7a2/zdkQtUMs2YZfeYmb1es9uDcuAI8xsj6Rzgd8DxwXzTjaz9ZJ6AIskfWhmr9W1Mj/y\nd85lpWVvlrFo0vZYMNzPR23O5mC49cDhceP9gmkxZrbLzPYEnxcCrSQVBePrg5+bgHlETiPVKSv/\nlJxzDmDTxgOxYLg+qzfEguFK+ndpng6k7lbPt4HjJB0tqTUwFph/8KbUS5KCz8OI1O+tktpL6hhM\nbw+MAt5PtkE/7eOcy3pzZxgjNr1Nnxt2cNspozim43YenNuHgUtK0t21UMysUtINwItAAfArMyuW\nNDGYPx24GPg3SZXAPmCsmZmknsC84HuhJfDfZva/ybbpxd85lxNe/n05w7Z8wheun8PY8y+i1/fW\ncn/vbhTO29l0G5VSFt0QnMpZWGPa9LjPjwKPJmi3Gjihvtvz0z7OuZwRDYYrf+RXsWC41jf4MW4i\nXvydczllzapynp28JxYMd/83KpowGC7P4x1CPJYsSY8E89+TNCRZW0ndJC2S9FHws2uyfnQpSsXe\nOOeyXeUBiwXDdV22IhYMt3Jor3R3LWM0uvjHPZZ8DjAIGCdpUI3FziFyP+pxwATglyHa3gG8bGbH\nAS8H43Uq6NOFf5nanh69svOFys651HphdiWrJq+MBcPdM74ktcFwyu9I5zCPJY8GZlrEEqCLpN5J\n2o4GfhN8/g3wnWQdKVML2t58JSOndWXwie0av2fOuaz3t1f2xoLhzmxHzgbD1Vcqin+Yx5JrW6au\ntj3NbEPweSOQ8PltSROij0uvWbuPeaVlFFz1fYZM68Np57Vt2B4553LKyuJ9LJi0g333z+b4PTt5\neMS2dHcp7bLigq+ZGZHsikTzZpjZUDMb2r66PQ8/Ucgvijewb+QojpzyFc67vKCZe+ucy0Q7t1fx\nPw8eiAXDpYpJoYZMk4rin/Sx5DqWqattaXBqiODnpjCdOfLDrbzyUGumLdtP6YAjKJx6Fpfc2orO\nXf1LwDn3eTBcvktF8U/6WHIwPj6462c4sDM4pVNX2/nAFcHnK4Dnw3aow45ySu6r5uaXu7GiQ2cO\nu30c597dkQGD/Tyfcy4SDJcaRjVVoYZM0+jib2aVQPSx5A+AOdHHkqOPJhN5am01sAp4AriurrZB\nm3uBkZI+As4Mxuul5a/3ccvc3vxpL7S+7lqG/aQnXz/DLwQ751xK7j8K8ViyAdeHbRtM3wqMaGzf\nei/cxl2b+rD+olLGnjeaY4teo0NhMYuerWjsqp1zec4wqqoPpLsbDZIVF3wba8DSjcx+vCM/W76b\n7UOOp/fUb3LxjaJlq8y7COOcc80hL4o/QI+1u1h9TzW3/7U1a3r3oN1d47h4agf6HZl5j10757JH\n3p7zzzYVj1Zy88IeLK4ooM1NV3Pa1EKGndwh3d1yzrlmlXfFH6DTnN3c+tvDeWbdLnTZeAZMOYoR\n3wn9KjbnnAPALHLOP8yQafKy+AMMXFLCE9M7c+/yzez6xkn0nfw1Rl+Tt38czrk0SxaQGbfc1yRV\nSrq4xvQCSe9I+mOY7eV1teuzegfLHyrgx28ZJf1703nyBR4M55wLzTCqrDLUUJeQAZnR5e4DXkqw\nmh8QuWU+lLwu/gBtyw6w+6FqfvhSd5a2au/BcM65dAgTkAlwI/AcNRIPJPUDzgOeDLvBvC/+UW1n\n7eUH/93v82C4e4/0YDjnXCoVRUMog2FC3LykAZmS+gIXEkTi1/Bz4HagOmxnMi9kOo2OWVzKw6WF\nrP3uBq457QyOLOzCed3eYsGszLtNyzmXCaw+t3FuMbOhjdjYz4EfmVm14oLiJH0b2GRmf5d0etiV\nefGvIRIM14ZPrt3P7SccQc+pXbm038u8OL2Sndv9S8A51yTCBGQOBZ4JCn8RcK6kSuAk4AJJ5wJt\ngU6Sfmtm36trg37aJ4EOO8rZ/EBcMNxt4zlvWhcPhnPOHSQa75CCWz2TBmSa2dFmdpSZHQU8C1xn\nZr83szvNrF8wfSzw52SFH7z41ykaDLdoVzmt/nWCB8M555pEyIDMlPLTPklEg+HWXLiR8UEwXJde\nK3hhdt23bjnn8kG9zvnXvaYkAZk1pl9Zy/RXgVfDbM+P/EMYsHQj8x9pFwuG6z7tWx4M55zLal78\nQ+paWhYLhvtn126xYLijj/VYCOfylRlUVVeGGjKNF/96qni0kpv/0DMWDPfNn3T3YDjnXNbx4t8A\nhfN2xoLhqsZc6sFwzuUto8qqQw2Zxi/4NtDAJSU8sakLH1+2g+u/cRJ9C7swpscbzJ1h6e6ac84l\n5Uf+jdBn9Q6K7yUWDNdh0kUeDOdcHqk2UV7VItSQaTKvR1mm4EB1LBhuidrGguGGnNQ+3V1zzrla\nefFPkbaz9vLvz/SNBcMNnnqEB8M55zKWn/NPofhguCtPPcWD4ZzLcQYcqM7O5338yD/FIsFwrZny\n90pKBxxB4dSzuPTONnTuWpDurjnnXIwX/ybgwXDO5QczKK9WqCHTePFvQtFguD9ur4gFw5080r8A\nnHPp5+f8m1jvhdv42doelIyNBMP17/kGHYuWezCcczmgGjLyNs4wsrPXWab/is2xYLgtJwyIBcO1\n7+B//M659PDq00yiwXC3vtY+Fgx3wbROHgznXDYzUVkdbsg0XvybWfX0ilgwXOvrrvVgOOccAJLO\nlrRS0ipJdySYP1rSe5KWBy+APzmY3lbSW5LelVQsaWqY7XnxT4NoMNzTH2+JBcONvLh1urvlnKun\nyDl/hRrqIqkAeAw4BxgEjJM0qMZiLwMnmNmJwNXAk8H0cuBbZnYCcCJwtqThyfruxT9NBi4pYfbj\nHXngvR3s+sZJ9J76TcZMyLxfDZ1zzWIYsMrMVptZBfAMMDp+ATPbY2bR5Mj2RJ4xwyL2BNNbBUPS\nhEkv/mnUY+2uWDDcmt49YsFw/Y703wKcy0FFwema6DAhbl5fYG3c+Lpg2kEkXSjpQ2ABkaP/6PQC\nScuBTcAiM3szWWe8+KdZNBju5oU9YsFwp00t9GA457KAWSTeIcwAbDGzoXHDjPpvz+aZ2ReB7wA/\niZteFZzPnuNUAAAPyklEQVQO6gcMk/SlZOvy4p8hOs3Z/Xkw3GVXeTCcc/llPXB43Hi/YFpCZvYa\n0F9SUY3pO4BXgLOTbbBRxV9SN0mLJH0U/Oxay3IJr2LX1l5SoaRXJO2R9Ghj+phNjllcysNPFPLQ\nig3sOfUUjpzyFUZf49/PzmUqIzUXfIG3geMkHS2pNTAWmB+/gKRjJSn4PARoA2yV1F1Sl2D6YcBI\n4MNkG2xsZbkDeNnMjiNyJTrR7Ul1XcWurf1+4G7g1kb2L+sc+eFWljzQMhYM13nyBR4M51yOM7NK\n4AbgReADYI6ZFUuaKGlisNhFwPvBuf3HgH8JLgD3Bl6R9B6RL5FFZvbHZNtsbLzDaOD04PNvgFeB\nH9VYJnYVG0BS9Cr2P2prb2ZlwOuSjm1k/7JS27IDbH4Abr6qG7cM38XXbhvPeX3m8u5T+yhevjfd\n3XPOBcyUskhnM1sILKwxbXrc5/uA+xK0ew/4Sn2319gj/55mtiH4vBHomWCZuq5ih2mft1r+eh+3\nPfd5MNyQaX08GM45lxJJj/wl/QnolWDWXfEjZmaSGvz28oa2D26XmgDQ/rDChm4+Yx3+0hZ+tiES\nDHfZyFH0L3zLg+GcyxDRh7yyUdLib2Zn1jZPUqmk3ma2QVJvIveY1lTXVeww7ZP1bwYwA6Cwa/8G\nf/lksv4rNjN/U3s+vnIft54wgO7TunFJ31dYOL2Ksj3V6e6ecy4LNfa0z3zgiuDzFcDzCZap6yp2\nmPaOSDBcyX2fB8MddrsHwzmXbmawvyrckGkaW/zvBUZK+gg4MxhHUh9JC6H2q9h1tQ/W8QnwEHCl\npHUJci7yUjQY7k978WA451yDNepuHzPbCoxIML0EODdu/JCr2HW1D+Yd1Zi+5bLCeTu5c0M/1o/e\nwHfHXMqA7i/Refo/WfRsRbq75lxeqQYqsvTMq7/JK0sNXFLC7PWdWH/lDiYOH0Lv3t0Z0+1V5s7I\nycsezrkU88dHs1g0GO7upS09GM45Vy9e/LOcB8M5lz75fMHXZYhoMNwzJXvRZeMZPPUIRnzH7wRy\nziXm5/xzyDGLS3m8tJD1Yzdx7amn0LewC6ML3+T5p7L0ipRzGc6AA1n638uP/HNMfDBcyRf6eTCc\ncy4hL/45KBIMV82tfy5iaav2HHbbeM6b1oXBJ7ZLd9ecyynVBvurFGrINF78c5gHwznnauPn/HOc\nB8M513SM7H3Iy4/880D/FZuZ/0g7pi3bz5YTBtB92re45NZWtO/gf/3OZYra3ngYN/8ySe9JWiHp\nr5JOCKYfHrz58B+SiiX9IMz2/H9/nogPhlvRudCD4ZxLgWqD/ZXhhrokeeNh1BrgNDM7nsjL26Mv\ngK8E/t3MBgHDgevDZKF58c8z1dMruGVu71gw3Mn39+brZ/iFYOfSLPbGQzOrAKJvPIwxs7+a2fZg\ndAmReHzMbIOZLQs+7yYSoNmXJPycfx7qvXAbd23qw/qLShl73miOLXqNDoXFHgznXD3V8z7/IklL\n48ZnBO8jgcRvPDypjnVdA7xQc6Kko4i80vHNZJ3x4p+nBizdyOzSTqy/cjcThxxP76ldPBjOuaa1\nxcyGNnYlks4gUvxPrjG9A/Ac8EMz25VsPX7aJ49Fg+Fu/2vrWDDc2J929GA455pfXW88jJH0ZeBJ\nYHQQiR+d3opI4f+dmc0Ns0Ev/nmu4EA1FY9WxoLh2tx0tQfDORdSCoPd6nrjIQCSjgDmApeb2T/j\npgt4CvjAzB4K23cv/g6IC4Zbt8uD4ZxrZrW98VDSREkTg8UmAYXA45KWx10/+CZwOfCtYPpySefW\n3EZNfs7fxRyzuJQn1nZh/fggGK5nIaML/+rBcM7VotqgvCI1x9CJ3nhoZtPjPn8f+H6Cdq8D9c6P\n8CN/d5A+q3d8HgzXv3csGK5Hr1bp7ppzLoW8+LtDRIPhfvhS91gw3MhpXT0YzrmaTFRWtgg1ZJrM\n65HLGG1n7Y0FwxVc9X0PhnMuh/g5f1enaDDc6ks2cE0QDNe51zssmJWB76VzrplVG1SUZ+e7MvzI\n3yXVf8VmXnmodSwYrnDqWR4M51yW8/+9LpQOO8o/D4br0DkWDDdgsJ8GcnnMRGVluCHTePF39VIz\nGG7YT3p6MJxzWcjP+bt682A457KfF3/XINFguDXjd3NTEAx3ce9X+f10qDzg4XAuP1RX+wVfl4d6\nrN3F6nuqY8Fw7e4ax8VTO3gwnHNZwIu/a7RoMNziioJYMNywkzuku1vONTkzceBAi1BDpsm8Hrms\n1GnObm797eGxYLgBU47yYDjnMpif83cpM3BJCU9sigTDXfONk+hb2MWD4VxOM3/Iy7mIaDDcj9+y\nWDDcv0xt78FwzmUYL/4u5dqWHWD3Q58Hw7W9+UoPhnM5yTzYzblDRYPh5pWWxYLhTjuvbbq75VxG\nknS2pJWSVkm6I8H8L0r6m6RySbfWmPcrSZskvR92e178XZM6/KUtPPxEIb8o3sC+kaM4cspXOO/y\n7DxH6lxN0XP+YYa6SCoAHgPOAQYB4yQNqrHYNuAm4MEEq3gaOLs+fW9U8ZfUTdIiSR8FP7vWslzC\nb7Ta2ksaKenvklYEP7/VmH669Dryw62xYLjSAUfEguE6d/UvAecCw4BVZrbazCqAZ4DR8QuY2SYz\nexs4ULOxmb1G5MshtMYe+d8BvGxmxwEvB+MHSfKNVlv7LcD5ZnY8cAUwq5H9dGkWDYa7+eVusWC4\n86Z18WA4l9WsWvU58i+StDRumBC3qr7A2rjxdcG0JtPY4j8a+E3w+TfAdxIsU9c3WsL2ZvaOmZUE\n04uBwyT5TeM5oOWv98WC4Vr96wQPhnP5ZIuZDY0bZqSzM40t/j3NbEPweSPQM8EydX2jhWl/EbDM\nzMoTdUDShOg3aXn5rnrvgGt+vRdu466ZfZixciMV543m2KkDOGecP3Li8tp64PC48X7BtCaT9H+c\npD8BvRLMuit+xMxMUoMTvRK1lzQYuA8YVUe7GcAMgMKu/T1RLEsMWLqR+Wvbs/77kWC47tO6c3HR\nIg+Gc9nFjBaVKXmI8W3gOElHEyn6Y4HvpmLFtUl65G9mZ5rZlxIMzwOlknoDBD83JVhFXd9otbaX\n1A+YB4w3s48bsnMus3UtLfs8GK6waywY7uhj/Qyfyy9mVgncALwIfADMMbNiSRMlTQSQ1EvSOuAW\n4D8krZPUKZg3G/gbMCCYfk2ybTb2d+35RC7I3hv8fD7BMnV9oyVsL6kLsAC4w8zeaGQfXYareLSS\nGy7sxe0jtnH6TVfzzaOfo/tjO3jr9T3p7ppzdZJBq/LUvM/azBYCC2tMmx73eSORg+dEbcfVd3uN\nPed/LzBS0kfAmcE4kvpIWhh0KuE3Wl3tg+WPBSZJWh4MPRrZV5fBCuftjAXDVY251IPhnGtijTry\nN7OtwIgE00uAc+PGD/lGS9L+P4H/bEzfXPaJBsN9fNkOrg+C4cb0eIO5M/wagMtMMqPgQHYGF/oT\nvi6j9Fm9g+J7iQXDdZh0kQfDOdcEvPi7jFNwoDoWDLdEbWPBcENOap/urjl3EBm0qqgKNWQaL/4u\nY7WdtZd/f6ZvLBhu8NQjPBjOuRTxJ2tcRjtmcSkPlxay9rsbuPLUUziysAvndXuLBbMy70jK5R+Z\n0dLP+TvXNKLBcFP+XhkLhrv0zjYeDOdcI3jxd1mhw45yNj8QFwx323gPhnNp5+f8nWsm0WC4P26v\niAXDnTzSvwCcqy8/5++yTu+F2/jZ2h6UjN3I+PNG07/nG3QsWs4LsyvT3TXnsoYXf5eV+q/YzPxN\nkWC4G04YQPdp3bi4aBEv/FqU7cnOC3Au+6jaaFWenQcdftrHZa1oMNytr7Xnn1270e6ucZz/4/Ye\nDOdcCF78Xdarnl7BzX/oyeKKAtrcdDXf/El3hp3cId3dcnlABi0PVIcaMo0Xf5cTosFwT3/qwXDO\nheHn/F3OGLikhNnrO7H+Sg+Gc81DZhl5G2cYfuTvckqPtbs8GM5lJUlnS1opaZWkOxLMl6RHgvnv\nSRoStm0iXvxdzvFgONdsLPLvLcxQF0kFwGPAOcAgYJykQTUWOwc4LhgmAL+sR9tDePF3OSs+GE5X\nXeXBcC6TDQNWmdlqM6sAngFG11hmNDDTIpYAXYLX34Zpe4icOue/bceaLb+dd/mnzbS5ImBLM22r\nOeXWfs2DMT/MsX36XC7uV3Pu05GNXcG2HWte/O28y4tCLt5W0tK48RlmNiP43BdYGzdvHXBSjfaJ\nlukbsu0hcqr4m1n35tqWpKVmNrS5ttdccnG/cnGfIDf3K9v2yczOTncfGiqnir9zzmWp9cDhceP9\ngmlhlmkVou0h/Jy/c86l39vAcZKOltQaGAvMr7HMfGB8cNfPcGCnmW0I2fYQfuTfcDOSL5KVcnG/\ncnGfIDf3Kxf3KSkzq5R0A/AiUAD8ysyKJU0M5k8HFgLnAquAvcBVdbVNtk2Z+QMwzjmXb/y0j3PO\n5SEv/s45l4e8+NcgqZukRZI+Cn52rWW5hI9T19Ze0khJf5e0Ivj5rRzYp0JJr0jaI+nRZtqXlD8C\nH/bPpyk10X5dIqlYUrWktNw+2UT79YCkD4Pl50nq0lz7k1PMzIe4AbgfuCP4fAdwX4JlCoCPgf5A\na+BdYFBd7YGvAH2Cz18C1ufAPrUHTgYmAo82w37U2se4Zc4FXgAEDAfebOj+NePfT1Pt10BgAPAq\nMLQ596mJ92sU0DL4fF9z/33lyuBH/ocaDfwm+Pwb4DsJlqnrceqE7c3sHTMrCaYXA4dJaq7M4aba\npzIzex3Y31Qdr0cfoxryCHyYP5+m1CT7ZWYfmNnK5tuNQzTVfr1kZtHXZy0hcl+7qycv/ofqaZF7\nZwE2Aj0TLFPbY9Zh218ELDOz8hT0N4zm2KfmUFcfky2TyfvXVPuVbs2xX1cT+c3B1VNe3ucv6U9A\nrwSz7oofMTOT1OB7YRO1lzSYyK+qoxq63kTSuU+5JNf3L5dIuguoBH6X7r5ko7ws/mZ2Zm3zJJVK\n6m1mG4JfPzclWKyuR7FrbS+pHzAPGG9mHzd6R+Kka5+aWVM9Ap/u/Wv2R/ubSZPtl6QrgW8DI8zM\nv6wbwE/7HGo+cEXw+Qrg+QTL1PU4dcL2wR0JC4hcWHyjifpemybZpzRoqkfg071/zf5ofzNpkv2S\ndDZwO3CBme1trp3JOem+4pxpA1AIvAx8BPwJ6BZM7wMsjFvuXOCfRO5IuCtE+/8AyoDlcUOPbN6n\nYN4nwDZgD5HzsoOaeF8O6SORu40mBp9F5MUWHwMriLvLpSH714z/7ppivy4M/k7KgVLgxRzZr1VE\nrgdE/x9Nb+79yoXB4x2ccy4P+Wkf55zLQ178nXMuD3nxd865POTF3znn8pAXf+ecy0Ne/J1zLg95\n8XfOuTz0/wHRcxpuECIMWwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Uniform window')" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULMld3/n5ZVZlVvft7umZuYNGSLJ4iSMLGWMbJHbt\ns4vtRegs2PJjLVjex9hYa2sxa9Y8d22dBXYHG5vlYBkhswhpMZa1GC0ySMvLPAxrQAIDFuKskeWR\nJTFXM3fmtrr7dldmZVbsHxGR+cuoiKzqe3u4g7q+59xzq6syIyMzI+Ibv7cYY9hiiy222GKLy0J2\nrzuwxRZbbLHFRxe2xLLFFltsscWlYkssW2yxxRZbXCq2xLLFFltsscWlYkssW2yxxRZbXCq2xLLF\nFltsscWlYkssW6yFiLxORP7ne92PqwwR+SIR+YlLbO/LReQXLqu9LbbQ2BLLFojIoyJyLiKnInJL\nRH5MRJ7nfzfGvMoY8833qG/3fAF0fTAi8h3B969w33//090HY8w/Nca8TF3biMgnPd3X3WKLO8GW\nWLbw+DPGmD3g2cCHge+6x/3ZGCKS/x5c5j8ArxSRifruy4B//3tw7S22+H2FLbFsMYAxZg78EPAi\n/52IfL+IfIv7fF1EflREjkTkKRH51yKSud8eFZFvEJH3OMnnDSIyU+18noj8ujv3/xWRT1W/PU9E\nflhEnhCRJ0XkH4nIHwReB/xnTpo6Uv35bhF5u4jcBv6kiPysiPwV1d5A0nE7/L8uIr8jIici8s0i\n8omuH8ci8hYRKUYezQ3g3wGf49p7APjPgbfpg0Tk/xKRGyLyERH5eRH5FPXbgyLyL9313iki3xLp\n46tcH49E5LUiIuH9iMjPu1N+wz2Xz49Jdlqqcdd+m7v2rwCfGBz7QhH5SfdO/z8ReeXIs9hii1Fs\niWWLAURkF/h84JcSh3wN8EHgIeBZwDcCOi/QF2EX308EPhn4n1y7fwT4PuCvAQ8C3wO8TURKJ3H8\nKPB+4OOA5wBvNsb8NvAq4N8YY/aMMYfqOl8IfCuwD2yqKvsc4I8Bnwl8LfB64IuB5wEvBv7bNee/\nCfhS9/kLgB8BquCYdwAvAD4G+DXgn6rfXgvcBh7GSjtfFrnG5wGfAXwq8ErX5wGMMf+F+/iH3XP5\n52v67a89x0qkf9n9A0BErgE/Cfyg6/cXAP9YRF4UaWeLLdZiSyxbePzfTiL4CPDZwN9PHLfALk7P\nN8YsjDH/2gwTzv0jY8wHjDFPYRd+v1h/JfA9xphfNsa0xpg3YhflzwReAnws8LeNMbeNMXNjzDqy\n+BFjzC8aY5ZOytoEf88Yc2yM+S3g3cBPGGPeZ4z5CJYQ/sia898KfJaI3IclmDeFBxhjvs8Yc2KM\nqYDXAH9YRO5z5PkXgb9rjDkzxrwHeGPkGo8YY46MMf8J+Bng0za8tyTUtf+Oe77vDq79ecCjxpg3\nGGMaY8y/Bf4F8Jfu9tpbXE1siWULjz/nJIIZ8Grg50Tk4chxfx94L/ATIvI+Efn64PcPqM/vxxIG\nwPOBr3EqniNHYs9zvz8PeL8xprlAfz+w/pAVfFh9Po/8vTd2sjHmHPgxrBT2oDHmF/XvIpKLyCMi\n8h9E5Bh41P10HSvhTYJ+x+7hhvp8tq5PGyJ27ferz88HXhq8my/CSlZbbHFhbIlliwGcNPHDQAv8\nicjvJ8aYrzHGfALwZ4G/JSJ/Wh3yPPX5DwC/6z5/APhWY8yh+rdrjPln7rc/EBjGu0umuhr8fRvY\nVX8/XYvim7DqwB+I/PaFwCuA/wq4D6vWAxDgCaABnquO18/qbjG4/2BT4K8dvhuPDwA/F7ybPWPM\nf3eJ/dviCmFLLFsMIBavAO4Hfjvy++eJyCc5o/JHsAS0VIf8DRF5rjNufxPg9f//BHiViLzUXeOa\niHyuiOwDvwI8Bjzivp+JyB93530YeO4awzrArwN/QUR2ncH6K+7sCazFz2FVhTGvuX2seu9J7CL/\nv/ofjDEt8MPAa1wfX0hvr7kTfBj4BPX3bwCfIiKf5hwmXjNy7RcxtO/8KPDJIvIlIjJ1/z7DOU9s\nscWFsSWWLTz+pYicAsdY28iXOVtEiBcAPwWcAv8G+MfGmJ9Rv/8g8BPA+7Auut8CYIx5F/BXgX8E\n3MKq077c/dYCfwb4JOA/YZ0DPt+196+A3wJuiMjNkf5/B1BjF9w3MjSaXxqMxU87G1KIN2FVTB8C\n3sOqA8SrsZLMDeD/BP4Zq8b/TfEa4I1OdfVKY8y/B/4X7Lv5HVYdGl6NVavdAL4feIO6pxPgZVij\n/e+6Y74NKO+wb1tccci20NcWlwUReRT4K8aYn7rXffn9ABH5NuBhY0zMO2yLLX7fYiuxbLHF7xFc\nrMinOlXgS7Dqurfe635tscVlI2Ys3WKLLZ4e7GPVXx+LVdn9A2wszBZbfFRhqwrbYostttjiUrFV\nhW2xxRZbbHGpuLKqsAev75vnPf9BlsbQLgUDtEZYGlgshcUSFktoW6FpMtpWMEZgaRADYgzLTCAT\n8myJZCCSlv6Mkf7zku74zP0v0p8vttkV1vc+vUvj27Tt+v+XS/f30h/XXzPPzeB6qT6O/QawXA7/\n9sdnrrP6HsK/9T2J2P43BpZLYbkU2tb+G4N+jiKGPDfdZ98H/Rz8M8hze2yW2edQ5HBtYtiZGKZZ\nCc0c5s5Ba7aDmUyo2wVnTcbJgq5f4XNI9S1E+K6zzGDcvRvT37sx/Xjy70xk2E7/uX+m/jNAu7Rj\npV3SPVdYfUe+z+G40de2z2s41vR5HtkGW1Q9zmXkNYfjWo8JPd5SY82f65+nPj/z56j+6rGTZfae\npxlMM8gFcjH8zr979KYx5qH1d5nGH5IHzSmLjY59lJMfN8a8/G6udy9xZYnlec9/kLf93DdyXOfU\nSzvwqjbjuM44XeQc1XDjXHjsDG4dFTz2oWvUVU59kjGtWnZPas72CxZlDoWwd1BTlG3Xfqk+A1TV\nagLesmwpypaiWDKZLofnTww7wSnn7ueqsf2tq5xmkVHX/Sypq5yqyqnd9fz/hbuWviYwOFfD/961\n647z7cfupbuOO3cyXXbf6fuZ5TCbwLyBWzWc3J5wdntCXeWcHI+Hq9Tq2v6e/PX9Z/0M/L+9g5r9\ng5q9/QWT6ZI/cH/DSz+m5VMfPOdZO8+hOLkF7/8dAOQTXszZzpQP3X6C33xyl196XHj82E6VZpGt\nPA+P2HPRfdPPxff17HTK6cmUqso5PS6oq5yibNk7qCnLlr39xeBZaujn6p8pwFFlx4p+rvocYPD+\n/fM6dc++KFv23XjevdZQlO3KWKsT97punIf3v3LsxFA10l0P6J5PrE19L/4ZNYts5Rz/XP25sf76\nNnevNXzMQcNhCQ/vGA4L+G8+8Yt1poI7wikLXpO/ZKNjv7z96et3e717iStLLEtjBqQCUOZLylyw\nMX85NrhbgJq6znjyiR07odzGdvekZlHlLMqcU4puQYD0IrMpqkaoGjvR9Hd+QoeE4qEnbB1MrBDh\nd1WVd5PLt60JZqw9PXH9ec0iGyyI5y0ducwbmKu1pSiWK23E+ju4RmKBCEmF2gxIa29/wa0aPlJn\nHNc595dnlOU+Zs8Frs/2WCw/QtVmg2vVVR5d4FOLLKwuqqnzYs9zcO06S7QBlScY9zhCUvHPpnT3\noN9vSMLTk4bTffuc9t1Y1mS6jkh9O+E47MjKjQt/Xyn435pF1n0O37G+L31OuPkp1Yaqa189S3+s\nbvNx4PxaAwjzdmuHviiuLLE0SxmQCkCRGQ6KluM6Z7FcMsszHt6x5FI9YNmkrnLqOocTe860VhOo\n7glmbNLAqkSTgpZOIE0o4Bbn4De/IHZ9TCwM4cLWTdKgPb0IXQztgCQ3wabPKAa9UE6rljPsYunJ\nZXdvwVFtOFnkzNtT9mbPh/37ATCTkrZuqJfCvLXSgO17v3BNpnaB7Hb+jpRTi52GX1ghLjGmnu3K\ngl3r61uC8ced3V6d2n7joNvx7/P0uGB60lhJHDill15SO/ywb16ij93D3kHNyXFxIXKBoaQWXvv0\nuBiM71hbWuoL2/Pn6Ha91FhXtetjzbwZV89uCsmgnG3Y1u1LueQ9w5UlllAfXmSGMl8CGWVuqFrD\nfcUSaksu8wagoq5ynmSHxfFwkNsJWVDT79i89JJCaifroSenJ5RwBxqqA1ZUWBF1QEgMqYUs3HWu\nSAKR/hZlS61UKXrhLCfjOSY3JePU4ua/15LKtGqZ1i3TqqWm35menU45Oqg5rjPOmzn19JxyxxJL\ntTynNau6cK+m0f3UJBH2M3w3IWLn6vP8vYT3GBKuJxgvIXpSGSN/rSrVpLJzau/bk8u6MazHw/Sk\nYbeyxy/K/tqL0l5jHbn4jYd/zoNnUiw74q4T49C34/vsr6NVshp6o3NyXHB6XGBumk5i86j2NrOL\nbNHjyhJLY+CJ8wllbqUUsDaWeilUztg3zQzXZy2ni5wXHhoOS8NheZvf3V/w5MGs290AULtBWvQL\nj99Rwfii6XXOekJpCQWGuvCUdBEituMfW7RiC5HuvyelMaklJa01i4yT2xO41pPLeasksjVqPd2/\nMYLxC6V/H4sy7/4V+8vOdjGZLpnlhjI3FNlwEcujuTDXI7mbD9RYk+mS/WsNVSNM3Dn7B/Xg3Yb2\nulAN5L9feYf1qvpOj4OQ7Cq3GTAnq/3273L/oI6+a3+uv84pRU8ohUTbAWX3C8ilaiRKKneCMmG7\nhCGh7DsbksdT1U5nL+02KgkNwRZpXFliWSyF04VVeVWtcOAnWtsTC0CZG8q84XSRMcszDgvDYVnz\n6N5iYHhdpx5KSgXBbvaiE0svOF4Vto54YoRTq0VCG/l1u2FbWqetvwv12R6eXLTKJlTtbaJ3H1MV\neUnFwztXhAbx/WsNh4V9v3k2och2MPUTAOR7D5LLFKiZqUvFnCa0BOmfYUgw+p48qdxfwDw3nDsp\nTo+DGBF0fbigCjJmV9CLrb+H0/2CRdXCHtYpZX/CXmkdHnavNSvOHiFhATzw0Hly7EXHXMJutMm9\n+D6E43Fs/EFPKt7Wd97a7w4fqKJ9uVtbqUYmQlFuSFJbVdjvTyyWcOMcDouMWW6JZpoNbQAHxdKp\nx3DqsSV7U+GwyDksDDd2a26sIZgxKUBj6AVm9fn1mh1TTOe+0q5b6MYWqzGkVGxatx3aFlJGUrDk\nEnpWXRR6Jx6qv2yf1HtUHnueVCbTZedJtT9tKbJriDGY1u6oxRhymVBkq/khPalor6OYuhHiaitP\nKoelYd4Kswag4eT2hL39xeiz07jIghcSih5r9bWG2qmvTuuC3ePakspBzYMPnbN7rWHfSZlewoqp\n8ELpKLyPcMOTMvBfZFMVSseaVEJpJSSU2crjM+BUXjEvtC0uhitLLHULj54ID+9ad8JZnnFfsezI\n5aBYsj9tOShaqlacDUaoWmuD8QTz8K4lmFuHNbeOiijBxCYRDHXxfqGbb7jmpyZmjMjWLfZhG2M7\nPn2+3sWmrh29zgaEEvWAiqh5dN8H0oqTUrQapiiW7O4t7A61hPvcxiGTHNoaGmdPaGv7nYJ2gdXv\nOHp/Abn4z7t7i45UDguYt4Z5Dtbz0KrGOJ0Cq0Zm7yywKULVmyYU7Zp8fq2hWWS2n/s5Z86u4iUV\nT4TQS1gpgtH2jO47f+/EJVRgxXvQP8PR+wsILObu7jFGKn7O2d8M5WHNrtsshhLp3UIyKMvLcQR4\npuPKEstikfH48YTztt9BwpBcPMrcYEPOMqq2/+6+Ysm8zdy5EjXyaXLR2FRq8BNubDHW3j7roCdd\n6EUW9kkvFH4R0QvAysIy0odUHMyY99SmSNm5tGpkLRpFLAHm7aqkomNONLS6Tv/mCS2FnRwqZ36K\nuTQ/3dB2lKLsPanCWKoxpEglxEXUX2PS7d2MmXWYTFc9LLfYHFeWWJat8IFH93nwoXNOrjXcutZg\nVSiWXKpWnIQiyqifDewv4HZ/bgd4WBrqajlYXFKoqzAYsF94dLzKGMJjQiOv/j7ERXfAHjFXWb0g\npcgltEWkkHJzHj3Wt+cMxrEFpzvmdAp7C+aNce8zY2lamBT2H0BesGzazt34vCVKKuG9x/rmd/5g\n3+utLjbKqsJ8kGjVSLdL1giJPYXNpMWWsPCmVz0VxbJzIPBG9qJsOW/7Xb13tojaxor142ns99hv\nsfiZMY9Av7nS76RZZNTOruXjqLwLOfQaAh187O/PY1NJfIseV5ZY2qUdrI99cI+9g5qzg5qqqfCS\nyTQzgwC5GKlATyyHhWHeSKePhjU7eGXoLcrWeQfFjx/bPW2sflI76NSOONxlhx41IamERvtYHI1e\nEFLSWwybqOJCh4KV/kSMvQCcTrk1qa0kshRa0wyIxYj9rmozjtyiHyOVWNuhN1dRDJ/hkFz6zAOe\nuMJ7HCPyEP4Zj+/kh+QSc9cNVVqbqGcvuruPEWZILmPZHmKxNaFNS5NMs8jY3VsApiMXjzCjhT7/\nMm0tImxuvP99jitLLNKaLpjrqWpHLRhnWHKxA+rAbWJjpGLJp9/ReZUYWL11WdqYjpWFwKlsNllo\nPTn5yPSuiWBBWLdYp6QWjypCEtDrp2tlx67rjJPjIu7OrAIGddubODXEEFPP6c+xhVFjJebDL0KN\ncFTbzUNrFhgRyO3Lbs2Cuj2nagvmrU27olOe2IYCtVbRe4xpO1WMxHtyWY2QD89fl3qnazPo3zjB\nWHKJxYqMXiOQVta9Q92HmM3HY4xQ/L1phOl7tKSeckHv4MgFrPSSJJV6K7HcDa4usRjD7vFQp/5Y\ntec+WXKZ5bmzr4zDSix+F+TI5bAeunWGxmXiEyfMewS9SJ/amYftxX4LEZKRX4DX2SM8qYQOCIO2\nFbmMGbljfdYIo8RT9xG2t073Xlc2QHJ+f8VxndEuK1qzIM/tdGhNQ700nC4yjiorrfhFO9lf/15V\nMd9QWtE4cUGMOkdarYiFNYGJHuuCVmPuzxbxzUiMXM6DW7hTo/aYcT+Wgy0cOzF7WcxD0J+vN25d\ne3XWOSXESEWrwS7bM0wEJtOt8f6jGksXFKdTskxPGp58YoeibPmPkzmz3ACTzuU4NOovVEqYztaS\nwyy3XkdHRcMNt+t88uZsZQHwk+r0uBgsJLE8W50Rv+rjTXQbHmNSQYqEBlKActWMISZljZFLeH19\n7+HkD/u54iY9sqNOkVAVWXTA5gubh1Joa9WY1tXYup/PJuO2o+ENyqDvHmN2knCBjqnwYipGf43Q\nvqXbWYcVz7pIfjgdtOgX3TDP1tg4i7lcew81336ImDQe3lvokaihPfHCueal/5jaC4hKY+uyD9wL\niMjLge/Eqla+1xjzSPD7C4E3AH8U+CZjzLcHv+fAu4APGWM+z333l4DXAH8QeIkx5l3q+G/AVjxt\nga8yxvz4WP+uLLFIDmcHRZepGLA5paqSk+OColjyaF4Dhlmedca+Vf/3HjaJpXVdtgZCuzAdlVZ6\nOXqqTGbvjZFLDN0kcl48o4Zq9bdeRGILnXYhHqjI9G5ujY5/pa+Re4gt8qn2YilrotdRi09IrOkd\n+zjyzGZlmOVmRfKI9reQlWNidpdBUs81ed30ApoKfg3PjyGM7RhDjCT8GAjHyybjIBZXEovZCtv3\n52qSiLnBx1zew/P8fXT3WGddxgN9Xf8+wjl6Nznrng44Ungt8NnAB4F3isjbjDHvUYc9BXwV8OcS\nzfxN4LeBA/Xdu4G/AHxPcL0XAV8AfAq2+ulPicgnG2OSD+bKEksmhmJ/SY313ffk4jPhnp5MeXy6\nZJY31uOrsDssLZl4lPmSvenSBVHanW6ZSxepf1TALG+6XaVWe2h4ctnEcN1dO3FsKAmEnjLRNOwb\nuIGGUebrkJJcfBtjBvFN+qV382U53KXqzyuSXbCo5zK1sSz+s8Mst0Qca7vvRO/eHOLEpfUJs0Yn\n76dcdZGOefCF0kq46K4joJjtzLe7KWLXW0emQBdLA6tqthA6wDfmXNClhHHjYIxcdF9jBB9T72mv\nvruFiFxWHMtLgPcaY97n2n0z8AqgIxZjzOPA4yLyuZF+PBf4XOBbgb+lzvlt388ArwDebIypgP8o\nIu91ffg3qQ5eXWLJDXsHNacU1MWEM6zEAv0AO7s94YabhPNGmE2cFJL3dhVNKl5i8R5kmmDASi+P\nTeadasxfq/u/Nl1W2f2Dem2Q3Fg0fWjT0Tv6MdfQ1I425n4ZkktK5bOWsA7qteSyDnpBCfupP8cW\nmjxbnQa5TCnzpjunI0P/f50N3JsHx0R0/bUijJSt7CL3HyMVv+B6ddVFPLXGXHpTrukxh5LwOWtP\nRE1oHj4wMSS4FMKxpPt2IXJJ1DCqq3yQxHI3yCX2DMFzgA+ovz8IvPQC5//vwNcC+xe43i8F13vO\n2AlXllg89vyixqTLKwV0BlWwA7ZyAW47uXBYOvfiFrxrsjfyexfl0iU49ARz2OaAJahqbxFNKlkz\n1A2HKpixlPkhisgCqL+/aBzListzbaBkZTG/U8R2vxdpN7T5+AVl3WK9iXOG7uO+y9Crv1tRz4xJ\nN8Fxd0KmVUAq67CpQ8OYu/Im48VvZHSGb72RibWrE5F2bYxdYyS/mP8tJBdYdUnW14llTH46yCTL\nLuRufF1E3qX+fr0x5vV32wcR+TzgcWPMr4rIZ91teyncc2IJjUgi8gDwz4GPAx4FXmmMueWOjRqQ\nROSPAd8P7ABvB/6mMWbjFaMnl1WjXzfY3KCt9hact32Qm5VafOLK1UFjU8JkztCf2TQeLdQusZ+f\nAOGkjrpNbuDiubKoKTVNqUglBa0mG1OZXAZ0ht0QWi2xYryNJERMXiNi/PWYXYBUdHueXNYtPtro\nH0orKYkidi8xVU3KfrB5kOLQ5pC6tsbGmxGnTtYoyhZOp9TTZVeYDIaBobHrj7kR677D0E6ojfpa\nevFtacLRhOKP16R4j3DTGPPpid8+BDxP/f1c990m+OPAnxWR/xqYAQci8gPGmC8eOefC17vnxMKq\nEenrgZ82xjwiIl/v/v66NQak7wb+KvDLWGJ5OfCOi3TCk4uGl1q8AbgsdSW/GhCrGmuzzmNM74DL\nfOmSHJouDmbeWsP+uUqbnhq8Me+WWDqUGFK76G7ylasG09OTKUU5jL3wRtaqbKPFo7r2x+rKrMli\nm1JfhQ4Nvt+bxBjohSRGABdZMGKLpI9S3wT7ym4WcyeH8aJrsWPW9jkgi05FpW0L1aprbSgthi7z\nKXWnP29atSzK8Xo9Phret7OOVFJ/x7BSgC2iGgvvd3DtQBKv67g98h7jncALROTjsQv8FwBfuMmJ\nxphvAL4BwEks/+MaUgF4G/CDIvIPsWvvC4BfGTvhnhJLwoj0CuCz3Oc3Aj8LfB0JA5KIPAocGGN+\nybX5JqwnxFpiCT2U9pynVUxvHN/5WnIB40oa98SyP22dzcVQ5m1XrbJqndTSyCCpHwxVI3rgjy06\n61QhMY+a2EKrM7qmvId8saXT0SsO0S1wF0yR3vVrA8kghVSKm8uAlkYgHsSnj4VVUgnVi+FYuyzo\nHfpKZgS3qI+pgXq7yJBgvHorvPdp1bIg7wqr+XNCz6yiWA6yDej+hkhJ8zGDvia/lN0l1n6sH54I\nLwMil5OE0hjTiMirgR/Huht/nzHmt0TkVe7314nIw1hN0AGwFJGvBl5kjDlO90/+PPBdwEPAj4nI\nrxtjPse1/Rasc0AD/I0xjzC49xJLzIj0LGPMY+7zDeBZ7nPKgLRwn8PvVyAiXwl8JcDO9YeSndIT\ne8zbBWAnr50xX+cY66WWIhPqpaHoJJolD+9YY/68xeWLMszLmvMWbh0V3eSvqtUgMd2PdbaIlLok\nhE5X4r3SNt2ljbUbW8TuVrUQi4u4KDY531aQ3HwRiJUlhs3iSUKEi/CdEmS4WIbtRqUVp8bSRbwu\nglihLxjag8I55bFuwU+R7d3aQwaEx/C+L5PgLxPGmLdjtTP6u9epzzewKquxNn4Wu3H3f78VeGvi\n2G/FCgAb4Z4RyyZGJGOMEZGLK8ITcMav1wPc9/EvMHczWbXa7Ly1eace3sn4SD0kmKq10soT55Mu\noNKTiyUWTzCWZHbymsePJ6O7K92PGMZ2z9qH36shwjxeum1fiMrbmbq2Iw4BY/2808kfW9zu5L2F\nZGIrSLpCX7K6a45hE3VN+J0mm04aUUZmr26NeVT581J2t7ExEEq6YbsQz0HnSzh770Sgc7eNRcfr\nLAxF2Zd/9u+tK1F9gfEa3ltMivLfjY2FmOdXCC3F+zb1tVJeZXcCyWBarj/uowH3UmKJGpGAD4vI\ns40xj4nIs4HH3fEpA9KHGDLzRQxZK9ADbN3EHdpkauaNuAJOPcEcu8Gto/QB9qYte1P7feXsLmC4\nkYOVNuHoqeEoHOz0arOyK4whFlR2dnvSLWx6UQvVOjpCuVmsr0w5kPTUpNa2jpjUEssl5o/3O911\nZDJGYFG1VHCcGEO4g6la6ZIVbrK7TuH0uOjclP39+PYGpKLeqV+UfWGylKPDpmR3EYTkEnpQ6e9S\n78zfp+//7rWmS18z1s9Yu+s2J5tsvsY2W+F3FyHwLeK4Z8SSMiKJyN8Hvgx4xP3/I+6UqAHJGNOK\nyLGIfCbWeP+lWD3hpSBKMD42hCG5VHsL5i0cVTYh5VGdcVjYglIe08x0lSm9a3LV9mWRZ3nuvJV6\nclmZZLWJ6rFXdOMjqgytW1/5TU/k0+lgZxtO8tDTTOuk/S5RXyO289Sf9cLvF1ePTSZ8bHcbXtsv\n0lZiWa+a0zr2cGFdJ62dHhedesmPpVqd040flUPO3/ve/qKr46JdclNEvAk2VUVOqxZT9TXg/f3o\ne4ttLLT3m48B8TaaomyTHmBJQqkNYLpzdHqVmN1lzO7lsbaQXdl7ao61s0Ua99rGEsMjwFtE5CuA\n9wOvBFhjQPrr9O7G7+CCHmGwmd69H+hD+OC+Bx8658xVKbxVY+uat1aC8cGUZW7Yn7oFLrNqMq+W\n9tUp7WsxzPI+4vdELUDTqu2COVPkEmbH7e4h4rqaWqBi0ofWPYcLtV8AQyJaZwsKr6lLCafqkKd2\nzGE/w0LjDMD3AAAgAElEQVRiYdZmsLnBgGShr02uO9DTV0pd6t4XFdR1npYyC4HaDAh1Ml126U92\ncoM1Jw6vcSfwnl51lXcOGb69zkbSXch09+ExrVqmNN396M2AllKKsuWwNKoyqum8wSAt/XT3psb6\nosxZuI1cyvYTI4JwU5OaFyHCUIDLgAjk00vT7D+j8YwgFm1EMsY8CfzpxHFRA5JLlvbii1xTxCSr\nF8YMd+t2iXWV8+QTO90O206gBu81BvCsHXfs0pY6rgP1mN09Zzw4a/DkAkEqmNJOLh/MOebp1e2q\ng1Tz/n/fpj82VGOESElEfhHxUdTQSy1he7pPIWGFC5T/WzsSeNuT7nOsn2Mk5tub5XROFV1p4knh\nat73kff6flPXjY2LcKe/Vy66/oXn1VUOpbp3937uL2wRuXnjyFBVKdX2G02cm9ZsD6XDmMt9f7D0\nJEmfpWJRTLo2YqUCdMoWL3X538feUV3Z8b1AEV6QOic2HvX/oX0kJJVNHFTGMlRvkcYzgljuBWwU\n7PjOJcz6G6p2YuK8n9B7+wuXGr1hNhHmra394eNdQlLpFjh6cinzDB90WbpUMN49c0zlA+PeU54I\nvBE/jCSPfQ6/C9Udfmdq4RbA0+mg5K1GLPV6TNoKXUg3QdJLTr1PXXI3k7yXVpoa2tpJMc1K0tHR\nnGEJ7B3UScnJv08/rrxdZXdvYZ/pxAdyCveDreOyt1hpS8ebTKZLzm5PuveaSgRp76N3I9dtxlBj\npYZOgiiHhvpwPtln1BJWrfTwcyrMlDDY2HlyCZJ8pkgl9p3ONTZGKiHhX3r8isDk3gVc/p7iyhKL\niEkmlxvscrx6p8qj4nGoE9Z/7+0vqBrnTuzUATZKPxvo9ovMdH/3moiMqjU8f29psyufO4+x6VDS\n0H0IJ5s2wnvsdqlpeo+vcJcbS1UfU4f551FOTFeeuUev9ogR8BhphYtgiFiq9E2hFwtvY+m8whZO\nGmhqUPaXcIFJBXSG9xIjyLDfOh7EPxevAvMlGGadJCjsKJWSb3P/WjNI7DgvG47cdWNxItAXuQp3\n//Wa56rJRZ9XBvcZIlZue1N7z5gd0V97DClSWWdnGbvmFuO4ssSSZSY+SCd9dTlwk7Uw3Jo0UYIJ\nvXpOj4tOBVKUbVcG10st90GX/qXMlx2p9LnGxEkvSw6KvnLlLM+4kdssyTeCRWPMa6qLR3C2n3Ji\nOvXKrAFoOLk9YW9/0R3f9V1hRXXlFhFPUnpn3V07sQseUymGEd869cdgRzlCLpt4r62UP2hqqHti\nySb2gFSZhDDBoSZ3vZDtOulC23S0tHQ+Wc3A4NWK9pkykARnLhAXtynyhNI/f1ydmd4mMyh5rJ6p\nTgDpE0qmFu6B3cKRi1ZNhSqw7thOahlioN4cSRwZOnTo/zdR16auuyLxTK6G7eP3CleWWFLwhY00\nwprf3jhdlC0PPnQ+IBitA+5cSm9P2MmbLpDSJ620XmFW9QVLwoSIPltymRtbdCrPOSr6Gi+Puxov\nME4u3khbVznlpJfS9H1dtGb53UBP6sv2uLmIisoTei5TTHvaEws2u3GRWWnBv9OxtsfUeJv02ccU\nbbqL773ETJL8NsWYnU7/NpCSWSWhVDmGsC3oF/KTRJqgdeSSan/d80v1MTbv/TO+LNIRMUy2xvuP\nbqyWHOhRNULljKW6fOnAwyQYwA8+dL5SIEgvmr+7yLpAyqM65+Gd3Bnpe3Kp2rjtpcj69DB7U3EE\nQ+c1thG5uJxHlUslA31m2TtJWaHb28kN82a4u/fPLZVu3auAwmzBHmE23NDl9iJp4dfZo0KYtgKm\nlLkLopyYXiV4h0Q4cBdu+vvRpOLbnlQ5R51tQjpJ5KiycTWhQfwWhp0WZrkt7XBU2WO9a69WiYab\ni/CZamjVUexdhZuoTUjRS7iHLkRrJ2+6vobJI0Pje2iI19CeaL4/GnocRsdk2RKrZrnFneHKEksm\nq4vV6qKR1qXHdj0PXp+vGKUHye7qjJNrDR9z0Dg35AnXZy1lLl09F439acu+02KcLOg8ycrccF+R\nuTov1nju411i5BLmPPK2FU2WMbfKpyOzq45tqBrpDPypypoXwUUW/dnExhQVmVhDfdusSCz+ndxf\n5JwEnmkhtPF7o4JpCVLRC/T5pHHqSmHe0JFKuADav70azB7TjTcnSeuEivp4jVj9n4GkMPKuNAno\ndjpJzu36vRrWF87rvSYXG5FLDJ5U9gc201VD/DpyCft82RCBvNhKLB/VyOh1zHqi+gE3maZLr8Z0\n9h4xI3/oV98o6WXe5jxrZ0nVGg6K3mDsSaXIrY/yYbbgvFl0Npgy921mXQGxDz8+WyEXHZjn78tL\nZHphSyGW0E8/q1EvokDCWy1NO/Qeuxty2ZRUtI0hibaJ1r2PXW/M825df8NnX0UIwEsjMF5tUUvZ\nJ7cng0wJetOwzn02VjLBG/rXvSv9DvT9aylllttSE30l1r5w3q1J3anGQnLRCEnck8rAgSE36nn1\n9zsoWFf3BcJWitNtDfZ3hStLLCH8RPcIB9pFkjKmUorriOC6zqgeqNxONONhF+NyUPjMyIY8m5LL\nhNY4763M7u6q1leu9ISYAQIfM+fWUcHpyTRZPe+yMrVqnLe4IDhfGkDde4S0vPF6J7dqobvFpqRy\nN+6jdpEdz3S7yWKkx1msDspqRt20u24MHalEnrtWE2l1WOo4WH1XE+WNFnUjT5CLX/DD/2MI39Om\n9q0QnhBDzUSqvxdp+04gcndj8PcTtsSiMLZzj+1uxgZJGPMS/vbkE45JsBW05q3h4Z3w2EX3htpl\nw8kCqrY/xhr7fR8cuWA90jS5QJ8pWRuXY1UsUxMpVfL2zBVvgqbbWWv9fsy+cd6qXbCC729V2XgO\nTqddzEa4IMdUd+vcTvViPW8Mi6XNPN2ahjyfQOH0jrkl83ppVnK8hQgTTupkk36saDVMaowl64O4\n/npsLJlpdZyKo+muF1EBa9LsbQ4m+q68q/46cvH9v4XhfuAI4bAwHLmwoaPajpdb9bBPYfxSzHVa\n26RCAta2UX9srGT2mIei7v8WF8OVJZYlvb66U0tEBlgYaKgX4JQXT2rxCNv35FJXDfODBuvh41Qs\n+dKpvewCV7XS5RYDOpfkqs2ZZoZn7XjvMksuE+cxFtpcNMGksgmEi5DfMYZFlDyaRcato8KWXHbP\nUgf+eaTdUVdxclz05OKPDYhwTCU5UMP5nbp6L/OyoWozqlZozQIp9zF7uwBIXrq0+RdHWBjOj5MQ\nmth1n72H4f7BanqZlLSU2uCEAb7+b63C1KQS9lOTSywOZddVQdULftrLr1VqvaFDgiaVmHSi7Tyh\ndBdeQ6u2Y4SpoVPbxNqMqcieKRCRlwPfia3H8r3GmEeC318IvAH4o8A3GWO+3X0/A34eKLHr/w8Z\nY/6u++012IKJT7hmvtGl50dEPhX4Hlx9F+AzjDHzVP+uLrGYVQNqKslhbPHz8QqxBS6UAsLFQ+dd\nevKJHerKLyKWXD5uL1euxy0wJBUN7aLsyWWWw428N+rD6iQMU7XrPsX08SG5xKCllNgC488rJ03U\nCB3i5LjoF2f1TOsqpz7JKPb7pIQxMoT4u7M2Lquys2Wj5zC5D6ZugZzt0ZrTvuqn0hqtUwP5fzrg\nMZX00O+Y9fkeA7tcooSxlorGELt2uOjq9+bzfflzB55jgTHex0CF0kQoIfuqkTa2qY/HmSfGwYqN\nR6nuxuYltNF70yQbJkzVKmqfiXrsvd0xBCaXYLx35dxfC3w2tv7UO0XkbcaY96jDngK+Clv0UKMC\n/pQx5lREpsAviMg7fKFE4Ds8CanrTYAfAL7EGPMbIvIgOnFdBFeWWDy0V044UMdE5LrKuwHosU4X\n7EnFRy37iOKqylWK/Mbt5vpX06d7iSNGLp1a4IFqQC568fOZY31/AOqirwWzKcbIJIZYzEDy2JBQ\nqpzpScNuVXNGwSkqIHUkS4Duqy8HMG+tl11rGpgUMNuzB+UFy6Z1Ek180daG5cEz9ddR5LJuobpo\ntuLQGWTMEy3llh0jlPD6mlz8/2EAsQ6CHXi2JQzvAEf0Dhwxh4Shg0dvj6kUEcSyZjeLLGqc77QM\ngQQHvdRyclxYUjlR6tuI1PgMwUuA9xpj3gcgIm/GVtjtiMUY8zjwuIh8rj7RGGOgKwI7df/WTcaX\nAb9pjPkN18aT6zp4ZYnFmH6HDXag6TrmoSQS7pJCEikjf8fQRS0DPtOtP0+Ti3dHhp44QndkvehZ\n19ihyqzLKOv04bFJrknloggJJSXZxQmnHUiL64hp8C78sFX5o1JuqSmV2C69xAJgxgKbRlCW7aha\nMexD2I+VY2ozKJbl/w+fjz9ej7s7dQ8PyVGnpvfk4vvhNwWaEHQlyk3JBdqB40bcrjS0mdRVX2zO\nZxT30NKtbm+dC70nqm7TUjV2fpbDuX4ZEDHkmxvvr4vIu9Tfr3eFCsFWyP2A+u2DwEs374fkwK8C\nnwS81hjzy+rn/15EvhRb1vhrjDG3gE8GjIj8OLZs8ZuNMX9v7BpXlliWS4nqlMegd6GbHB/aZrpB\nH1TZ0zh6qhy4I8OE+4qli9aXlej8wfVcpL5V4eTMWxtgd678+3U24xA+ueAmGNvpDo5L/LbOEB+D\nf16nxwU1ky69/qbXXFU7LTsbS4d81Y12NsH7RCSxCcHA6kKXen4p+9FFMxWsCyKNqWl1WiJ/be2I\noI3ZfnPW7firPvvEenIZ71dt/VqoXFs+saaWuHUesYtcJ6bCvsjvvwe4aYz59KejYVdu5NNE5BB4\nq4i82BjzbuC7gW/GMvo3A/8A+MtYnvgTwGcAZ8BPi8ivGmN+OnWNK0ssxsR3qClVxSDC+IID7qI1\n2k9Ppp07MsBhYd2RF0sb7+Klk659lXOsajMO3K7ssM0Bw7wRfOEw6A3MYULBZP+Vu2YoYWyqvkkd\ndyexK3suY3IqtmQTNItsJVVPjFQuCh1jkVKPxfqqbW+henUsy8BYFuuLwF9/97jm7KBYIRcNnRZl\nUIX0JGP3uOLsoOj6rjdhsUV/E/dbTyoxlSN1XwRMb9RSc9Q/xzBOTaupN91c3UOkquleCMaYIxH5\nGeDlwLuNMR/2v4nIPwF+1P35QeDnjTE33W9vxzoFbIllHdapEWIJB2F1EbhIG+HxOrtwXeU8/tgu\ncMZhad2RD4uMZ+0snQvssosMLzLDQdFSZEKZux1iK65yZdZJLppcOpVFhFwGKr2ILSRFKqF6MKUW\n8vaGTXeXsWNTG4BNF9m6zpi3YiWWZUNrOgXlQC1m1Y+bqeh0EskxktP9HJNuUhmDU+radUh6MSo1\n0LRuB+TibQ2hK3V47unNKbvHNTu3rfR3RrGiVkv1fYxc9EYmlFa6mjBlL73EnokmtZjNLRxb06rt\n6sxcJkQgv5y8Y+8EXiAiH48llC8AvnCzPshDwMKRyg7WAeDb3G/PNsY85g7988C73ecfB75WRHax\nsvt/CXzH2HWuLLG0rWw0MVNqipguedOJHlOBaeiF5/HHdjnbX3De1q4ipa1GaWGJo8iCyeJiL7z9\nYJbDw7uG2URsbia3YD15c+bUSqt2n6rKu7T//t6091zsuXh1UEoKCVWJm+Ciu3G9SKzEbiQ2BDH4\noNSqzQZeYR5j9zC2SUm5co/hTl1eL5JLzS/Uk8WSRZGvLK5hvRZtmyzKlmI/Z1HlTOu2K8qlK4Em\nr0tPeDrLg/9eb2IGKujSOpqEWDe3PLTUVZYttXsPizJnsT/p2rkMafCyYYxpROTV2AU/B77PVdh9\nlfv9dSLyMNZOcgAsReSrgRcBzwbe6OwsGfAWY4yXTP6eiHwaVhX2KPDXXHu3XEn4d7rf3m6M+bGx\nPl5ZYjHLoUukxkXVO3XVe/7EaprAxXXMup0uJsQFC/pyx76uS9XKoCrlE+cTThd5p+rxpWEPi2H6\nDN/+k0/sdOTiJ+WpM4Z297pG/eULVNV1tuIEET6zUP+eQuhFlXIH3xShNDVvGA2ArJfi0u7AraMi\nWqs9hdECcoHkGzPmw7DkQWyRjZFSqDbz53SVTSNSS6EWVU8Mi9K274uUdSqmSKnrfXfMk+zwkXKH\nYn/JAwfn0WDc8P7C+RI6KoxJdClV3aYIA0L3DmpOKbrPl44MsvJy4mJcfMnbg+9epz7fwKrIQvwm\n8EcSbX7JyPV+AOtyvBGuLLHAatzA3exO9GT3f6cWznJksQyxGs9QdYvdvDXM8qwL9PNeYTfnq23q\nVBqz3HBY0hUOAzpy0dCSR+g5FOqzfSLAyXS5uvgk7nHdM4q50Y55oMXaT3237rm3ZkHVZhzV8Pjx\nJBrwucl4GSPRFdWqK/+77h70bzHVjj7vRHlP6YDNlN1mUeSDMsA6psUjpbp68KFzTkob3Onfna5W\nOlZ4TGeI0GQSkq//PCZNxLznNEJyjbU9OP6CG5gtrjCxLI0kd313QjCdl0pCx6vb1ru4mCtpDP73\no6dK6msN59ca5o1Nkz5vDYdt3kkmIcK8TMPCUU03mWyw5nBSai+y7jenz/bn7R/UXSJArzoLFyPd\n5hgBxxIMpp7FnU54f55/VvVyuJi3ZkG7bDiuS45qGZT59RjT23fHBJl6U/aNmG0qtrjFPM5SzyAM\nJj2l6OIyPLn44zS0GstLoWM2kDAbw4MPnUdLIJeTfmzEpJeB9K/GmXc5DsdbbHxp9dydjo2nRVK5\ngriyxOIRm9DawOyR0o2PGag1YuoE/X+4e40RjV5Qm0VG5SpCzl2w36aJ/nxJXh9IOW8B54F2EsQH\nDHaObjc9rVoWCUOpTtYYGnn9c9P/xxCTVPRvvr1NFpCx3/3zsck9gXa4qCyWwlG1+kzGpJAwM0FH\nLiP3M3DqiBTQ0hKHdmn25/vfPPzvp8dFZzupyQfk4hfmgQqKCdSmt5uU7WiNk02hAyF1Ekvd16FR\nvjdqeQP92UEB5VCiiD1r/Vlv3Pw9xmree0IKnURCu9JdQwSZXY0l92rcZQR5bpITZlNPrzA9vV5s\n9ISPqStSRZW0Z5HuWxUhnC6KfG9hbSiltaPM296uEpNW9lz2ZLDOAN2uUCUW1LvxjlzoyWUMKYcH\n/zw8xshTP4tYW96OEyOXkARiKMu2q8mSZxNb976xi24uVl0zzeLVGaNSaUK66lRTI+SiPcT0op5M\nBRMslmE/BseR2yQeSrXlCQOUZHlQWyIq6e0qxVDq0OlSLgJPKvpcn2csRE1unQZC199iaAvTSSpT\nzg3hnEqVJQ4JaNDGyCZnizSuLLGIxGvee4xN6vDvuuqTOoa7nE0rHYY7wzCbcCzXl18o6jrr1GO4\n7LExUrmvWLI37d2Ue9iYDh9IGUpQ3tNLT7xp1XbpXzxSOZ9if/trhCqmpD3mgsGssfbCDcPMxQPl\nMkWMwThiEWPJBmxwZFm2XQ6MTTC22I1hTAJLbUT89cJ2AGr/fz0krN1rTVcUy+f6AsDFB3m7ymS6\nHKRWsRuQeB9jJQAs2mTa+sl0yd7+YjAOOk1AxA2+I8YiPldS0HMLQhf6NpqAs1Tj9LJS3UsmyDM/\nRuZScGWJJc8N+24iQdxICPFdsx5oWr+cErX9wB9466gd7O7egsPSdFJGrMJjWFypUx+UfZSznVw1\nnlw8vOprb7p08S5DYqnaPtbFl4qdVPmK14zfAcfiXmIFpDSphs/GG3SBuB1nBHonOrbbDCULLTXt\nXmvcczGugmQNC7fAtrWrIGnJR6tfwvFSRtofI8dNvMW0ZBEeHy6SYwjVhnpRjuX60uf56+jiWRaW\nXGL3mbYVBuSgFvaqkW4chOdrN/jYPXu1q4cer6F0EuY48/d0C+PKPqzeT1jueIvNcWWJBSKuk2qx\nCAdTrNyq3y3FjksNRm249LuhcuLcgN3b6I3ww4njpSKdJ6mzNQz0wz25eFKxKWFMF0wJqCj+JYeF\nV4nZlObzshmUFairvFOXjNatGVEn6EmqbTHrUqEMFr2gDntoINfSY0xlpImgtzXRqcE8cplQ5pdQ\nhYy46kzvsv1vqXxn/vhwkUxfzz6nMH+dJww/3vq22qitInadsOpqKhNDStofSkC2rbECalr9qu0+\nsb75Zxp7Vvqamih38j65pbd3hfN/04SpW/S40sSSSkfuoQdXqmRxOCFiJU69NBHmxeoWlEaYdzYP\ne55e1H1fB4uvsnXEI45rl8rFABn3FcsuhxjYBbVeCse1dVf28S2HhcF7K89bYd5YkumC1vxiVYHP\nK5V6rmOLzMo5I9KKbsfv+seqMKba0AuHvb/08a1purT5Y33StVP8zltLpysbACW16LQoYT+7v4P7\ndb1bWexCVVMy1b7P7KxSAuk+anLztVg6SbrtrxUb0/odhjVl9D35Qm+6rXXonBEU9MYhVv21KONJ\nM/X1dVE6n+8szGq8rrzDxtga768OwkkxpueG9eoMDz+4Y4SiJ1+/g150uuhwsui0/v63QX6vyrqJ\n1vTSjM415gMqP1JrgrFpX04X/b0eFraiX1c3vDVQ+EWl7iQDu0C6gxS5XFbeqhRWFunEe0q5bofn\nz1sbq9Klzff1WPKiK8w5b2Xw3EOPuRh5xsZUrHDXuvv07YYOAL62iT5GQ2cb1vCkManyTt3qSxmf\nnkw7aRiUZLe34FZQPCuZZgUGGx6dcXg1gWV/3Cb556YnDXXtPNsczm5vunytetmdqDb8PXgvulP6\nmixhsbktNsOVJ5YQG5FLNV4DY3BsYkcXPTZRwnbl/Ihn1rRqobKG2uHi13DrWsP9BRyWfcR+CoeR\nbCy9Wm7e9ac+UW3UhtObU4r9YY2aFMlcVLWwzvMrhZAEwt+6XGFmsZKA0gZI2uj86GJXm85TyefU\n0mNHvyv/rHzgYOqeNrm/mOQzdn6MjL3UAv2irlWsvthV15ayEYZj0d+jdhHWEvRggR4+4bX3Gf42\nrVpMBU9VO1H1ImxenloTY++W3bB7UnNWFZzu2yScw83fXSIDScUAfJRhSywwmCThApGC1sWmyhPH\nCCXW5kDVE9llps5LZSVeKMnlwYfOu5gXH7F/VBsOCzr1F/R2mBj2pmDT8EP1QDXY3WmYm4bT/WJg\n7A6xVi1WG1s0deT4Sr0ruLOA1qpypOGkNyNipRb3uV02LJYT5q169iGhR9SR+rdp1XTv6LSwN7V/\nUA+cPULVqb6vdRJZynNxrDS29yL0zhmDlPcnGdOq6aTR0FMrRSjTqmVa9/1YVDZ6v5NqGUover5o\nwop3OrKJOmm61Cu+f5vAP5dQQtk9rpjWNk9aFzcDnNb9ZmmLi2FLLIy4xI4MqHCSpDzFNMJdlr5O\nTG0R9mmwGy4mLPbd69OTTxW/ApuqpXKqsfqaTUBpsyW71C6FN2JH7jE3XJ813edZPrEuupPbnYuo\nXmi0B0/s2YWODuXEwN5qBPWYV1RqAQqfq19EY/E40MexdO7GTYU5vw2ANBVFvsPetOWwzHvvwZKN\nMNZHb3z2CJ9JWJX0Qu1rb7lARaffSejBN0jCSN6NoU0XbJ9bzMed6JQw66DTAIWZKPRmLJZwcuX+\nyz6oed3c9cfU5Ctp8nVamy3uDFeeWPwE0rszj1QddVgNutLQwVt+EsdsLGM77qQaqWxHpZjUd/r7\n80nDrEkHUUJPKtdnzkMor11Qpa1kupPPefxaM9DPp6SIdWrD3YBcwuNjzzgWL6Sz48ZckXWf9vYX\nHBbWQ26a7cL8FGrXj6Ymz61XmHc31qk+1uWoGpC/W7TGgg49/PMbk8Cq1DMOveUiY9fHp3j39nOV\nZsXPA1+HRRN7bBx3Y2q/twn6jc6AxFRfdXv+N3+uJxj/7vRvY3V/YmQyVqbZ/7+3v+hc+OuDnNPj\nki4oU2U33pRcN4IIUl6NJfdq3GUCOs5Cx7R0v0cmLmxWnMhjd2/RJeDTO+nUdTbq98jxfuKHHjTd\nzl15Bc1b61oc4qBYcn224LCcMMsPAMizU8ClAclzZnnGYdlwVMHR3oK6yjtj6ib2D5/mwzsshOSS\ncuMOEctL5R0gwjxWGrt7Cw4L2J+2FNkupr0Fp2cAmOqE6d4e+9PbHBZTdlUFzjGC9NmdYyrQmLSy\nci8RaVZDjx0ticU2OWE/Q1I5LGHW4LzDFp1H2wqhqEU7HMdj+e3CMe6DMMO4kJS2wF/Lf7dOUr1o\nIGNRtuxiMwCc3Z4MtAF7ZR0lrGcSROTlwHdi3Ty/1xjzSPD7C4E3YAtyfZMx5tvd9zPg57Hy9wT4\nIWPM33W/PQD8c+DjsGnzX+lS5n828AhQYGMZ/rYx5l+N9e9KEwusBvGFv3msi08JMfCfD2JCYt4s\nYwtWbMKk+uG9dnS0/EBvX2dwOqWc1G5hsVLLfe78h3Yars8a9qa7TLOSHU8sMiWXU8r8jDKfMM0m\n3JznHBVwVMJRZSP/T25P2HWSzKb1QDS5pIyy/t5CNZInFB3IN8/73XhsUSrKlsPScF+xZH9qY1ao\nzzC3LbFIfUaRPcRB0Vry8RkJtDSrSExjV70Db7+AvmiXP1cTa+i11PUzMSY8wej+xAJyu77GSCX3\nbsTWpdh7iYVEreM//DPVBLNpn32/OgkmGSPjn0svTU2qvBtTsTZhGAip34l+99GxUlr1sCeYFRXi\nZaZzyS7H3djVUnkttkjXB4F3isjbjDHvUYc9BXwV8OeC0yvgTxljTkVkCvyCiLzDGPNLwNcDP22M\neUREvt79/XXATeDPGGN+V0RejK0D85yxPl55YklhjFTCyOEQsaCssG296KYGbypVR+p6Fn2wlzYC\nh4vrye0JO3nTLSxVm7E3bSgy0yVltGQydZ8bcplQZOIi901XodIvUkeVrVI5mNgbkkvqHvUC7kli\n05QpepEJ253ldM4KOk9YDD6ITvcn7J9HOB50sGas3fPIKx1T5YxlGoD13mYevUu5/Xzexp0J/LGp\nmJ9NF94xaSKcJ6E0q997tA/Buwnfe6diVKSi1/cwSHST53eP8RLgvcaY9wGIyJuBVwAdsRhjHgce\nF8MPvTsAACAASURBVJHP1ScaYwx0GYqmeN22xSuAz3Kf3wj8LPB1xph/q5r4LWBHREpjTJXq4D0j\nFhF5HvAm4FnYG3u9MeY7U+KYO+cbgK/AbvG+yhjz4+77PwZ8P7CDLX7zN90DTMIYWXHphfjirWNS\nbIDkant6QvoYg0q1pXex4a485ToapqhI9THcoYVxLwOPt3KYAuZob8G8sRUm560fDg3XZ+ddm7lM\nmbcnnDcn3Jxn3JxPOm+qQZ2XCey0UMUqLtb23n0MRqUWwLGdqH7Wg2dcqzgh116oCku1XZQt87Yv\n8tWaBfmkgKKPY/EBkvO2D6LT716TtkYqJsN7Re3tLzi5PenGhn8P+p5SzyJMsRM+Cz9GQk+rocpq\ngc+wAHBU2UXcx7PE3pOOrwrH8J3Edfnn6O+hauIErZ/tZrnXhvNCn28/t+j4GbCE2WWXUM/sovf3\nNOC6iLxL/f16Y8zr3efnAB9Qv30QeOmmDTuJ51eBTwJea4z5ZffTs1Rp4hvYtTnEXwR+bYxU4N5K\nLA3wNcaYXxORfeBXReQngS8nIo6JyIuwtZ0/BfhY4KdE5JONMS3w3cBfBX4ZSywvB96xrgN64K2r\nrdF1OrK4hW35drTKK5zkYeqIsZ29D4rrF9v4jmqsPjisxhdUVc7pyZSz/QW3DmuevQvzduIqUjZc\nn511bZ8uzrg5n/DEeXzI+Kh9u2AZjujva3WCry7MF0lXHpv8zSLjTB8Tif73ah7r4dVQtRn10tCa\nhjwvkC5ActIV+vLuxn7BDZ91rF+hR1MILRnofg6SmCacQ1JJTX3//O8xZ5Eelly8etZHnus++Gd7\ndnvS9SUkzKK08SmdKnnDBdjf+6DtiDSSmmubIk5GQ3I5b4fkDqw8gzu5dgySyUXiWG4aYz79Ui4c\nwK2ZnyYih8BbReTFxph3B8cYERmwsIh8CvBtwMvWXeOeEYtjxsfc5xMR+W0sE0fFMff9mx1T/kcR\neS/wEhF5FDhwOkJE5E1YveIosSzdOI5Fw/vJ4heilViDYOLq80OkdraxY1II03qErs3+GH+dGKnY\nH82g/yHBnDxQMb+/Yd7mLJZC1Wad5HJzXnAcmWB9XRcLqxazaTRCyU4/r1TRqqK0mYQ39ciJlYKO\nLahhgN5563arXYDkpJNYJC9pzaIrTRwr9BUiRp7hO6+rfBAwGJJqSiLVf2uPtxh0pcuwHx0pONdz\noLMrxI7XHl0r7r/V0DsttgCvuIpHgn7Dc8fuLUXSKaLV5/m+aknM/xbLjqHJ5RmIDwHPU38/1313\nIRhjjkTkZ7Ab8XcDHxaRZxtjHhORZwOP+2NF5LnAW4EvNcb8h3VtPyNsLCLycdg6zL9MWhx7DvBL\n6rQPuu8W7nP4/SiMkeTOMsxz5BFTcYztTFOIGj03JBeI7+TCfoVYCaaswJzAaenUrIVwclzQLG4z\nf7Bm3mZ8nCp5HCOVPqBySZnDzOUc61Utq/VdtGpOFw4D2K2qLg5CLwabEEyMpDy8O7n39CnKtsuD\n5bMQSF7afWwxhUnB0pxzXOcc1VZNEsuJFrvWMKBvGECp7R86o3PYhh9/2jXZ2xogTi6h9F0nxnZ4\n7Rhh6OcGvUJ++M76FCu1I8rwPaXylQ0CLdUGYpOFfF2lVX2dTc4ZczK59BRFwmW5G78TeIGIfDyW\nUL4A+MKNuiDyELBwpLKDdQD4Nvfz24Avw3qAfRnwI+6cQ+DHgK83xvziJte558QiInvAvwC+2hhz\nLNLbC2Li2F1e6yuBrwSYPfhQ931sQq3sNpVKJyzMlDpHIxVXEPr2x5DM/Dqi8giN9+xHPGUCaeb0\n5pQny5n/ArswToLaLRY6St9/3ptau8Qsz7mRG2YTm4a/KFvOTqcr9c7rOrNR2ypye1q3feQ2vRto\n7PklF09V0tbeyaqaLYRpnXhVL6CpySa5Cwod1u1Z+44jQZQp1+HY/eg+6jGhDdIxN+oxDzJ9jZgb\nbVg5cdSd3T3LTQIpYxLLunngj1snIcbKFXTXCSRB/XlMtZXa8D3TCn0ZYxoReTXWOysHvs8Y81si\n8ir3++tE5GHgXcABsBSRrwZeBDwbeKOzs2TAW4wxP+qafgR4i4h8BfB+4JXu+1dj7TF/R0T+jvvu\nZc5BIIp7SizO3e1fAP/UGPPD7uuUOJYS/z7kPoffr8AZv14PcPgJn5QkrBU7QCTlRKkm6Cb2mVjs\nSiwGIwavBx/0cU3SPn+NsYqNPo1H+F1ZthztLaynV2GY5dlKEOU0G96Pj32p2oybc0OZZ8zO+6zJ\ntyZ1tyB2CQ8pqIPaLqn7CD/r++rUeqHqb6SdzoMoX3aebz5A0rQVuexR5ktmuQuoC+KcYmqrWL30\ncIyESG0GxlyT62roGRdzhfdSWtj2WBoiTTDhwh1KGrpMcKzsdgwr1S2rPDoPTpxtMkUuYza4jpwS\n0mt43lgBOd+v/WuXUz7hMmGMeTvWnqy/e536fIPhuujxm1jtUKzNJ4E/Hfn+W4BvuUj/7qVXmAD/\nB/Dbxph/qH6KimPu+x8UkX+INd6/APgVY0wrIsci8plYVdqXAt910f5EpZSETneT71aOSRRs0rEC\nKbueD2LT5DJGKnqy++C+ZpF1QWp6Mp3Sk4uvCllVOWenU25NambnfV0X7QG2WEonqfjYl52J7V+Z\n19ycT11p39zaXSaqiJhbFMuy5Ul2WLh7GOSbKocLd4xQQnKJIrKr9u/CF/oCoG0wrtCXtA25TNmf\n2jiWyXQZJTL9vL3dZHDpyEIKjEoHunSw/k27Jofut+E4Kif1yuK8TkIO69ro/qci7y9CKrHnEhLK\n/YW/16bbTabI5SLXjG0C1nl77V6zkrYvwHcpEOk9Dz/KcS8llj8OfAnw70Tk191330hCHHOi3luw\nvtoN8DecdwPAX6d3N34HG3iEZdmGC5PDuoG8SdRvuGPWhDKbEI2Cn7fifO57ctG1WcL2NaGEkpBX\npfggPl8M6kl2esmlNtamcGLda3dyW+7Yx6r0k8zGvVyfNRwULXvTXWb5Hq1Z8OCs6gIpdY6xWQ6H\nLpjSxrzYRfapageAndt2YV8U8R1maqcafXeJPE+xTUBXQbLWFSR9322AZBjU2u22IyQeu44OnNQL\ndLSPgbTi40h0ka3umURiM2x6N5VtWC2sYUR9DKmgwzDyPtbndQgL5nlC0eN/3goc2MBFGJLLmMSl\n247ZjVbU3RGVmJZSdtx4jc3LLcZxL73CfgHvTL+KFXHMnfOtwLdGvn8X8OKLXD9V8z7UQ8PqDvVO\nEbajCw6FmG9QZGoMsXxRKewd1J1aSicPbBYZR5Vw3hruL6Sb/Na1GOeWvNrP1vTpWXSFSrtA9gR1\ngz4Fymk9pZnaiR4mBRxDuPvX9pQ7QmJHGVvIwnESuoSPPX//25hhuWqEndwMir953O2YDMfQZnEi\nTw/m7TBg0SPmMTgG/fz1+Zcxdy8FIjB5RnqZXTruufH+XmJssQhVHet2aJtOzM49uNs12niCnRZm\n+XCR1tHOPkjP2ydi8LuzTiVzOo3GB3THqx3b3kHNU9XOwE7g06tDy43G746lIwgGi/hZRyhHVcPJ\nwg6tMl+yNxVXGlk6zzG/C6yrhrqy9ouzyu5MNbGM2TVSXkzJ+1XHV40wb41zN7ZxLGGApMdODicj\niTB922GlR73QxbyPijKe1dp7I+3tL6iroYSwOs6GcRkAt2p7f2HpY+jfeSzoUru1byKBh+72o0Sa\nkGi8dx6VHf+zCcwbO96bRZaUOFKIhQJodWrM8SY8P+zXYbnNcnxRXFli8c5nsUR3o14xd6gCWAmm\nU9HNmmBCePXVOlLxffNGWz+JvF1l7F680XbvoF6dfIXeAaIi3H3Z474/+1MfdBg4OuSm+78jmDwD\nDPPW5oCqqpynTmbEsIntC3ppc2wh0h5083bpKkjaOBYdINn3fdnd47rFdl08xaCvzqYRemSFbrLh\nJidOpENyWVfud+CmHMs+ETPsB3FJY04jMYRt6nvqFnH6Esh1lSdjUda5HMf6Fg0fGLGh1m5DBcap\nFre4CK4wsZi1C8VYLRBdWW60kl9k4oaFmsJSsxp+Rxm66sLdORzEMLaD0/05g65wmCeXxVJ4cJZF\nXZPDIEpPMA+TM29NV/Y45qU28Pga/GAo9vtr+VTv66B3/vMW6qUNkJS8xCTUYLN81WAethd+DhEz\niutxE4s90Z5Tsfa1ylKnX9l0Zx/2O7ZgR8dE0Ff9fex4X1xsTBrS5KKlrZAk/DV0jEnY75B8LxKL\nsvrsWm5xSTaWrfH+auBOdK9JT6xEFUkYTtyBUbFcdQEd87Gvq2HAVqUWnxTB6Mm+Urcicf8rxvHI\nIlTXGTzgt7C25DHANMucXcUMSMZ/1uaTMrf5yXxlSoDHPrg3uE742dfMABtTUewvB/VD9LMKz4/d\nb9VmLE0Lkx3CyPvYcxlbtNftpFMeWak2YwZoDV06t5dMA7d2FRuSumY0DioVFxORIvTzXesEM7IJ\nqxrpnE0m016iw7l6h+8vRSgxD8J10Ju9GLlscTFcWWIR0YnvhgbYEJvEjMQQc+HU2W438UqLBcHp\nya0z56Z2kCvusTHb0hpvN51S3NsBgAG5+HiXxXIJWCklJsEUzk35oGhdokfb1qPYssdelRd7JjU5\ni2LSSSwhqXTXSOyc9X1Zd2PVv2A3WbXSReZD79Wl/w7bT8WBhAWuPDZxsvDPIoz+155put2wPR1M\nGZaISJJacJyWIvz32h53NwbyMBv4Tj5M4+/Vu+uwiXQS8ygMAykvNdpeYyuxfPQjk2Agt30NiJVg\nxCqexkVjXapzILmjTsG7DIfX7BYoNenWLRRdf9xxF3WP9oZUD7+Lts9q0aVyeXjHSiVV59U2JJci\ns1Ubi0w4WViJ4VlLATLmDfDsM/b2FzZ3mVpMVqSOcr36K0U2RWHdSWe57U8mwTObFLSmXzR9Isp1\nWYghTSjadVdDq0BjgbZdLq2I9KKPm0yXkSDb9QTjr5FK7e9tDeucJMrI2F4nwen+etdeD+8yrd2c\n19kYYxuMFML5ummqmC02w9UlFlIBiYZaRTWHMSN+YsfURetKosaQIqkwIr90O7hY/ZdY9ctQFZaq\nDBhDLAuAdzLQ7eqF/9akpjfoZ65Wi2vPdc2Tys7E1nnZ55yqbQck5NvyffQJNWMksa4krSb0MFuw\nLvaUgs9uPHDzDdSbMYTPOVxAPXwNFA9/P/q+unZc/311UO144X8L2w5zjHmE6WC8inVFtbQmq++m\nJYFX7kU9Ex2D0xcfAxDuZ1i0zbcTShmx2JYxpwmPcHO1SXaEu4JI7yDyUY4rSywidK6NMFxkfObT\nMXfHde6V6xBzDPBtpir4WQyLeunzoZ94WoIJd7bhYhdDeN2qtCnUQyOz3+naSO8+mNKTi/cIC0kl\nlwlFvsNBcUa9FJdjzNaF6aL03WKxbqeaQizbgX9G/n0PVGF+0rsklBraXVjf+yapelKxSj7gMazx\nktoAdJkTIuPOH6eDKfs0MOOF0lJOIKHEmromsELcYVup+9ekcuj2Kd6dfZ7TBdKCgb0FKG2C9pob\nvX6w6dtEWo9pCLbYHFeWWIzpSUXHi/jdqV5Ikvr+QD1w0aJAqd1vP4lbdtzCrHfNfvfm1TOx+IhQ\nXaJr3vu2Y/ALUej6vGIMr4315KLPlNssss5bzBYO6/t1ULQc1zmwYMeNurq1GYSrNmPhUtT7d+Ej\nnr30cvRUGY352ASxd+Kv1RvvC/sPbBzLouFkkXNU2yJYqcJZoU0lbvgdzwMXFuZKeX956dnD79yL\n0taj93YJ6N+fHise62KuNGHGXJPDfuqxnyLgVQyfS1il0r4f6e4lLMYVzTxRxEtc+P8vkv4ldv9b\nbI4rSyyLJdw4k5Wdu66kB3Fjn/5cV/nAO2dMFx1OhNiE07swO0kW0XNhtVqhRszmonX4ycVlz14v\nJdH4e55WDdPKZiJ+6mRGsb8cFA47qmx99aM647DIeNZOxt50Sb0UimxJmZ+7hJUTnpxPuHG+eq3Z\nBJ49waWVYYVcUpKkvn//eaUey6Rh3sLJIqdenmPKj4HSeqQ1NI70So5qGdRjSS36MQ8l/5y9HSX2\nzDeVxkIbl75O7WwQVSNd9U5/7CaBu0kPvMRx2ovMu/5CPOHmeHt9XNTcSaxei+BVkLpypX9Wd9Jf\nXWNpXQDo6XEx8Ni8NGRb4/1HPZZLa6Q/Y7Vw1iZptfWAPvVeTIHxMOVrv06N5r2u9g/qgegfIkUq\nqT7rtsfatDmvVvXy+p69y69Pe68JxtcT8QTz8K4lmId3Mk4XlmB8jZebcysVQLyu+iw3PLwLPveV\nJpeYFOX7ZevM+IdgbRK6Zsgg8n65oF6eUxbXbFvLc04WcLrIOaro7DzR5xXZSITFokKsW3j1Yg39\nrjlWHC1sbxLYB/011tlBxmJBwmNijgTQq+jGnlVo71spLe3GQqyyZezeY23H+pqqsRS2Ed5bOKef\nKRCRlwPfiY3e/V5jzCPB7y8E3gD8UeCbjDHf7r5/HpGS8MG5XwN8O/CQMeamy0L/va6tCfAmY8z/\nNta/K0ssbSucnkw7MX4MsV1pKlYiJI11RnXdfggdhBnDnXqyjE1Q//ve/oLdvWEsR7db9MWeVDbi\nad3CCSyOc04Pio5s9w5qzq7Puf+w5qiCh3czlTeMKKnYEscESS8NmlwGEkRt2D2uuiSWHj732Nl+\n0ans/OIyqWzk/eki42QB16ZnlDMrsSyWH+nUYEdVX+gr9Z7GPPJS6q11m4uQXNZlXNDnpSSLdbvv\n1FgN/06Nn4sauX2/dGlpT4wxQkmR8Fg//f9hzE/oNh7brOg+Xgouyd3Y1VJ5LbZI1weBd4rI24wx\n71GHPQV8Fbaarka0JLw/1xHPy4D/pM75S0BpjPlDIrILvEdE/pkx5tFUH68ssSxbGaQUhzV1HiJq\nrdSA22SChSqbp4NAdLtjlQKT/TqdDsildFJZ6tzJwu6Gp1XLAqsPf+pkxulxwelD55w8UHGrbnj2\nbk8eoZQSpuf3sSazPOOwMByWDY9da7h1tOCxD12jPsnYPa7Zub1g96Sy1y5trIuu83IGnNbTbpHZ\nvdYkE31mklNkPhuzGcSKjD2zjX9zhchiCTNj9jF//YFNIzgGhtJo+K7DmJN19VjWYWVBj9XBCTJM\nh33V0PNJq7zqKlfZGEzXbmpTFiPZUC0KdOM69fszHC8B3muMeR+AiLwZW7q9IxZXhOtxEflcfeJI\nSXh/7ncAX0tfrgTsg78mIhNsBvkaOB7r4JUlFo91C3ssDmUMm+7adF6uMTWFD7Bcp/KK4SJ+/R7e\nHpGqaukXubODIlqgK5WZWLsm+1T8IXzdF7CEcl+xdLnFhjnGZjns5Nao/wH2OaWwlSeLiQ2eTPXF\nLUj+Xc9cu/tTKLJdzMmTtn8HD3F9dsT1WcvDuzm/e30eJeNNdrPR38v+/HUoSpuOXyeUrKu4e/Am\n19ceZ4PvR7I+dN0u+3gXfe91lQ/uKbZQx9yqU33S+e3qKrcEVQ9JJVZUbQxeDarrrACDQEwALtju\n04jrIvIu9ffrXaFCsETwAfXbB4GXXvQCQUl4ROQVwIeMMb+hK/kCP4QlrsewFSD+B2PMU2NtX1li\nWZrN63WEky5FQn7ijUkEfmEOCSVlTNTBkLCZ9BLGQehrj/ULSJKKd33VC8si3HEnaqBoPXeHg2YY\nEKfqvXgpZW+65KBwElebUbXSFQ+zJNQAJ3yAfT6CrenipSaNRZFHCW+W28qXeTahyHagtoVHJ0zY\nmezz0M4ZD89z7j+0i82TN2fR6PfBI1ij3gr/XrFTVMM6L34h9J5fsXr3qRxf4e5dlzwOF/+6ygfx\nMpumFtLjIbzHtZu2YPyH5w7admPLb8i8SjNlb4rFBO1eawZ1VmAYiKnvb9CXyypNfDFV2E1jzKdf\nzoVjXVkpCb+LrYf1ssjhL8EaXT8WuB/41yLyU15iiuHKEssmSKXV1xPLfxf+HhLMOkIpynRsiR/0\ne/sLinI8vcUmfv3+uNi9jf3tz+t048R3pym7AqwjF/tvb9pS5jbuZX/qnpWTWKrW5iLbmwqzPMeq\njC25nFUFB0/NO9vK2P0VZdsRWJHtIvMTzMkt++POU0x3ZlyfHXN9NuHj93Og7ipJrjPmp1QrsYU2\n5m3mj/Pv+7AcZobQJLCJRDtQqRWpOKb+GN8+JOJXFPnEJKgxlXKsnTDm54jh89H995JHGDjqbTKx\na+viXb6oWKeKzQGkq9LK6XRl7jwD1WOpMu0bIVES/hOBjwe8tPJc4NdE5CXAFwL/jzFmgVWv/SLw\n6cCWWDbBpgNoZQEOIn43sdFsSirQ1zr37afUICFZaFLR3kIxySWljvP9qisnuQWqkDFdd3gd/51f\nLB4Hzq9Zm0sYsFjmpsspZoMsfYbkPlPy9VnLCw+H5PJkeW1FRbcoc2IlioE+pUvTV5A0bUWRHVBk\n0lWR3Mmta+zA3pGwK8SeTUz9s6JOUu2VZTtI0xKre+/flx9zYwSjpRXfHvTxLj5KX/dNHz9GMDGs\nVe9Gxn9fWnmYoj/Wpj/Xj+ux/HeeuPqKrb1ziC8yNnfPVqfY6TYCa4KJN4ZIH4R7d3gn8P+z9+7B\ntiVnfdivV6/H3ufsc+bcmbmjGfTwSEhCJSiSgJBcriRgG1FUwBEJThC4/MIFkUElKxWMkRUeqZgq\nsCkwNsRTihCUsEFxHraVshSFR8VUHLAliIESZSIhydJIurpz594zZ+97zl6v3fmj++v1rW91r7XO\nuffOjObcr+rW3WfvtXp19+r+vv5ev+9VSqmXwwqUN8My/xldCJeEN8b8PoBH2HWfAvA6FxX2aQB/\nCsAvKqX2AfxxAH937DmXXrDIzc0Zz5ykqkGdCWGmCAkZzmzTbOf+7l8nSwpXZYdVRdqQbHvKTCb7\nFYpq42OS/QolYvb6HBF4IaJTvx1Tha2DTbd1WnYoW4VCWwwx+3fiq1VyGH4SLovUCpcvFHs9TVEy\neTrV2t/Fu6062z4V+rIgmaxGSE8TDTMcqaWEtMPY3MfMiUQS0if2TmLJpPRuzwREEPXhvJUk5yVD\nxonP1VhFVXoGQfBLgRcKrZZ0XFLemsJRYXwS5nHZRf8FQWgDQu65JGNMo5R6K4APwYYbv8eVbn+L\n+/0JpdSjAD4C4BDATin1dgCvBfCVCJSEN8Z8YOSRPwvg55VSH4V1jv68Meb3xvp4qQULX4QlYzhS\nuIRoUuCMbPAwNLe4TzAQCsEkhrw5yb29WRJFB4057/vCo6OQ0MuLYUJljHkGx1aZgdmM97OqEqz3\nG2zbBhbIMkGWGIcsbIWILIHMhcsD+Q6PrxIADfJi7fMfYkmN9E6oHkuMqp1BvVM4LhXWt9MepM0U\nhUyfoX7EhMqY9kwMcCBURH0Xfn1Vap9nwtvmjDlkjgu1PYdkLk/INMW/I8h8SorkcErcnFwG1iMX\nKiEgT/mca00XjXjWdknRkp7Lcs1T5ATBB8R3T7DP12DNWZLGSsLzth5nnzewIcez6dIKFsOc9wNh\nMnLqmbPBuNYSOsXHTnWd9jIk2vgkVFCZUeFCz4lt7Nj15+kT0Bcq3LzjGULAXCT7K7UXwBYBA4DD\nHBhoFo5IuJSt8cJloQ2O9yrcqiw6NMH98zDc2Ml0MB8ONn/bDnHjYmYwEig0L7KC55RQCpnrJMWE\nCjd9cogZ/k5CiYI0PwRuuTqs/DVeKHJtN1IAb0roxph9jGTeVE8LFUEGNDbe/pjFgTDIJJK5pLsK\n6aJUBxv0AqdLK1hC1MNICgiX857aQo5Navu8RBuHhMreSYVTkYgYukf2h4gzIR5sEH1+NYQUCTGK\nPCBIfV5LQGsh6iMCdMKlcICWQOd/Id8LaRuH+Q4nlQW9XOgEx7nBUQUc5w1u7Tde2+iNtUo8Vlg3\nyNpH7VChr21rmRCHXhkzgxFxYS79AKH5Dvm9OIXwsui+sagqYsw091K4eIGyTpCVLfbKEpuqEzCc\nQkKGKHQoia2XWEAJN8txgZE5nJoqT3taCxEdTOjfihUGi4Fi9mCbJor03YfUPz9dWsGik13wdMgj\nW/jmBeb5XOg6ICxAQrb1OYB3tJlo05wiR34QHsNYVBZdGzuxc/PNVLXDkH9qwCxdYS55kqcx8b5y\njeCsrbBtDYDUR4l15Y13XrgQHVI4drsDLettCyzbPlp1iHwFydUegK6C5LrWvhaLnKMK7iQd8Ylw\nn4Y0N8lxh4hO5bxkr2eIAWY3icAbMUfy52dli6yyED1VnvpD0XmDVXqaHXsGCbSp4mZcO1wdVthU\n2SD4Qq43GQxBz6IoOC5M+PyFzN/U/l0XKPc1lhc+qWRcHY8h2EphQxRSzc9DY+Y3yazzokVVzIea\nCAoYZ66Tws0/Q0C/E8KvbJds91xT2QiThBQo0v/EzUvlZxN87OQKHnvJBusHSxxfafD4gcaLljuU\nrfECJpCbiYOsdQ5/AEidYLKM+SxtHLR/N37Amruq3RlQXAX2rWDB/oOo6897M1iUApnlIX8Kj9aK\nOu3F/YBdS2lpAyiIMW7WYdMNZ9ZBwErGmA8OK6wOalRVggMHdVKVNteH/vH3Nhr9lQ+rpMqxDZh/\nHjevcl+if8aBS5yMmPD8dQETKzCufYTAW+9rKXdOl1ewqHkhhNJGLZ39QGfP5fdMtUn3zXl+iOYK\nlWi7Ae1Ilu7Niy5DuXQO09BJW86R7Ke01/Pn8fb2TkqbQV+2+Hy1j/VJjqa+jVtVhZcfJHh8Zcse\nk4ChWi+AFSqUTNlRCnvaV/1EuE3WO+G3uwYNGuj9B2GvatCaumcmC8332GEgNi9zDhw9oZR30U8k\nVGJMT7YdE1xkIuLhvnYNu+sZQoHUWufktQAIQv9MrXtakzJPK2ZZiIVwc+J5MLwP/B7e3kXM1Pdp\nSJdWsCRJv/JiCLuIq/Qh1fu8FFu0oU0irw1V67uIHZhHzcRMZZTtXaQdxArF+HPNZMpRy81qSaui\nBwAAIABJREFUvd9ERFpVamTrBsvbNbKyRVrsrIA50V57KR87xbY1zkEPAK0TLjscZK2FZdFO48Ap\ne5oVLseuIuEtKhhF89EqVDuDaneGPYZufNbUKNvFqMYyGFdkTXANbsxPFbzXAaXeKfXeR975Y5ra\n5kXhsMIGnW+FC6DY8weRggLlARg3B8s1DIQDAMb8cqFxTglY+ZvUoO8dJYC+bwq7lNQTKA4sEAAo\n8Q2IM+Up9Fiu9fD7+X1TzBoIOxvn5JBIn8gUjeUUdI12WkNVJeAAgSEKmlUqg711ZZ3H6xJ1Zf0y\nJGBIezl98W0cP1Th8YMuauzqcty3QACWNilOYdkCgE0GtJn3THN19u/WVKxc8vlpzNzViyZjyZQh\nip2i6V3L9UZ1Robac/dMEhaUEJmKw8LdoilQVdLy5cHubmoM0tdDxANN6Dr6zPt93xx2cYoKFqXU\nIYB3wMZCf9AY80vst//BGPM9z0L/7hntdv2T/phAAcZDJWlhSkiLEMl25goV/pyY2W1MuITMeLET\nH51EeUXCYG6BDLkdwQqbCoCoc40lao9MzLG9stIy1806w/GqxnEBAAZHrUa9U3hokaBsWxzmVlO5\nsU3x1FmK2kWNdYjJBgvvgzFesOSJglYZ0Nj7dZZ5gbNtVc9hHmNWNM7g36HQ5Mj8zCW5bvjaqErd\nh52JCPtghjsLYyeTVDBpcCTQJOS3A/prn8/VWDkKujZkRpX30rU9s6MQ5GNE2nWs/3dMSgH6cpzl\nx0b58wA+Bosp851KqW8F8B3GmBI2pf+LmoxRvQS6gUABEIPnDp36Y/6XGEmhMpfmMKGYRsU1rjl2\nehmRdJ6Y/phGFu6w3fAxZGRqryw1jm8W+Hy6BWALdW3bBGWbYJXZJMqyTfD0tt9OD4o/7WrCe6ww\nvUSeLGGqpwAAeu/q4PlSqMzxr1yEpD9vzlqSz4wJQDKDzSEuXKZAJMdoqu93UyuQ5uuYQJfvjpts\n83w3CGy5T+enMcHypcaYb3Wf/6lS6p0Afl0p9Z8+C/2652R2fYFCsfKcuXGnIV+IMX9IyF47F9fr\nIhQzx035UaY2TF9w9kN1o/kugdNgzFYe0lrqQvtCXfQOJJgkva/17RRL3Tjtw0JzkPYSokLvcJQn\nOK4IRbnTZPLEQKsUyhiY1gYZaJUiT1gCbTXMAufjG2WwE9oKb2vKJMYpdLgJReWF+jcpEFwYtS9u\nNhNKPtZuLEl4TGCNzbP020mrQ3TOWXi4bJOESizv5T6dj8YES6GUSowxOwAwxvyoUuqzAH4DwOpZ\n6d09pJ1RTKi0Pob/FLkNt3Q5IlPlTIH+RpALlm+oOVoM0Zht+LwkfStT7cwRPFWpMQVBEmJ+8qRI\nARRVpXG2n3lhUufdPVzYl6XG6e0U1wEcuGJdRwW89sK1E0qo5ETFu7atQqF3KPTOglC2lQWiBKxZ\nzNG2CZyEBYXmtDdHAXPMlLYjoxB5u6HnzIWaOS9VpfaCaqzPPB8kthbm+iUlFP8YkVZ33rFTPwdo\nyUUf3TkGKnshUgpKF9PXvQBoTLD877CIlr9KXxhjfkEpdQ3A37/XHbvXlKY7n2xYOZt+VraoD2wy\n3+qwGsV5GqOgPXvER+O/51E1EjbjAtASU47Luadv/h3lPfDsZn7dLGYgToYPXT3DurDlgwmZuKc5\nHux676F3Si9akO9k28q6LokXMhZw0H5eaAub/tCi9UW+UHWCRRkDnXRbYw5USWhe/edieC2d4qV2\nEaK5kDxcM6hGmHNVahTMfzZG5znsSPiawbWBNT0lbOQaCwkiOpz4+Szi+5Xmn5u/KAqSXyOFy306\nH0UFizHm+yPf/x8AXnXPevQskdbGMjQOB5GnvUJCkgFOMZe5/g8gzhwmM6jRLfQQ45hKwqP7OHRN\nr+0yXmuG+kbCJbThebEz+TxpbuBjJc2QzC854rUwuBZoTXQ1itTgCoBto7BIOwEDdPDonI5ym/uS\n6yW0Sr3j/jzUM6Ow8ctr+Log/DBexiAmXPi8Ad2aCVb2DFSADAoVhwxM8ClBNAKhVU0dGKiPPDR5\nzgGD15SZo83MCophKQREfP57moqAwiFE8bJR/QPC3Sr0hfuZ9y94ShKDvX2HQcRMCVw13lvV/ToV\nF3TqhXJQiAYlYifszj3MKcFIpvDI+EmN+hW6TmIx8edT/w9CGkug8NTYyZGfCoGufCyRDP2U5kZP\nm8zV0bDvc9mi86Owok5ERznw0KJBoXfQKoVWGUxbArU7cbeVM4fNqDci5jSmrUpzi6zxsWGBJPL0\nfLcLT0lIld58BoQK/T96sBIFxAoByz+HxnyGszT+oo2uvTEtRb4L2vP0+/MR5Vgp9Y0AfhoWNv/d\nxpgfE7+/BjYA66sAvNMY8xPst/cA+GYA140xX8G+//cAPAHr6vgUgD9njDlhv78MwB8A+BHeXogu\nrWDJNfDIYYOz/a4q3+nttJccSNXmAIPjsukBAU7hHfnnRJgCX8w8X2Qh9tbCvaFtA2yLxhdmKhuF\ntNST9dCJUYU0BhoD34h0mqMyrlfcAWvbAii6OdhjfZQbk+aInkHjp3n142Xt8bFwYcNPwBJzS46n\nY2LG1/awmorCUW5wlFuIfSp5fFSkWOgDqKaEqU6BjdNathtkiwJXl2scFTrqZ4tV66QDCx8Djfuo\n6LQpG51WYW9V4/hmgaefWvrrCXZFCqIl08L4ewHQWxs0XwSeyTWlnmBzyaJ8nrl2FRJA/BC2Oqix\nt6pxVDgTJOMo2wZAPnSk969pfL2b0LoBhia2mFYvtSWODSYPi3Ieh42Z3pp/PpFSSsPWSHkjbL37\nDyul3m+M+QN22U0AbwPwLYEmfgHAzwB4r/j+3QC+zxjzL5RS3wngrwP4Qfb7TwL44Jw+XlrBcpgZ\nfP2LG2xqjW1rcFztsG1rHOX9uuuZAzusdwShbrBtd+MYUoIWgUUsHcwZA1XsJe05ooQ93g+g68fw\n//5JUdaUJyLfAxU9WmjLgI/yru487wNFXhHcCXeQ9+dqN/BrhJzqsTkd9jU+1oEwZvNNYyi0cVhi\nO5elv8RhdhVpuYW59RmYT/077D72eQCArmqsXvFqfPmVF+Eg+xyOcuC4OkOMxp7P+5ElQyiap7ca\nz1QJrl05w/FLtrhVoVc+l9Yjn7csiUeade+H5r90vqf4un6mstceV2d+Dcj+h9YXrSnqI29X9ifr\nVQPtE60ruxa6tTFnj4UEA7XB+8zHT30NkS19PfztZ6e7Mk13D4Ty9QA+TjXnlVLvA/AmWG0CAGCM\nuQ5bRvib5M3GmN9QSj0eaPfVsMFZAPArsIXEftA941sAfBLA7TkdnBQsSqn/fOx3VjP5OaUp1VDS\nMk3wNY8kqNpTrGu7oNa19hAhPnHOOXHbXYNqZ3yNjlCBKIm4y0kuVtpgFNaqk7QXjQTYsFei1lj8\nKt4PoA/7zvvUg4MH1XY3LhKKVad046H788TWms8T5fwPBRKlsTOt7wPNB80N9VurzFdebE3l+9rN\nz3DOaO4pB0X29UBgLvL2ZN+753TjpHeoVYYs2YdWGbTKkCdL4JnPwZxch/nEp9H+4TWUv3/DPn/b\nQN8+Rf7qV+KVj70Whf44TirN+jAchxS0fB6H8+TWlGlQtWdY18C61j6pM0sMDvNdTxAS8aACuV6I\n+DuitSLngu6tdmdod03vPVD/+Xj4GOldhdZU6B3zvofmgPrc7pxp2r3j0BqPCQRJc9YFkXyefU5/\nvp5n9GIAn2F/PwngDXeh3Y/CCqh/ClvY66UAoJRaAfgbsBrS981paI7G8lcA/AkAv+7+/pMA/h8A\nT8Fmzz3ngmWmatijxAAPJg/B5AWuFGdoTY16t0WidI/5KGNglF1wrak7Bm/q6IKbWoi0qeg6ZRyz\ndHkUFJ3U+7x4ANA5jFK+H0TESGJ/c0ZCPgV5LbVHv6umBJoKplwDaFyYpAbSA3vqyvN+f32ftf09\nza2Id33mRONt0OBK0aDanXrBRX3IkgXyZIl0ZIkaZZGJ6X3sjD2i8nfox2OM7W9dAc2pTYY8/gLM\nH30a9b/5HG7/4Smuf9JihT1ydgv7z5TIqhrq7DZe9rKvRLOX9OaJ5o7mj/qvVYpEaeTJHrRKbf9D\n7xUA0tyvv2p3ipeuNmh3jRPouZ+DwToBxtdKemD/z3I//378jZ0D05b2naYPAlmOFy2L3rqSa7Qb\nbxNcX93n8PvqvQO+XtKlnwtaL/Ru5do8D/E+8r3K1wQfU/e59nvf74Pt5tzPD5I6F1bYw0qpj7C/\n32WMedfd6UiUvhPA31NK/SCA9wOgxfUjAH7KGLNRap7PbI5gyQC81hjzeQBQSj0G4BeMMX/5vL2+\nhzSpGg7o7BTm478N7O8hX6yAfA97xYFlpu0GaBugrWD8Bsjtutc5g2VweBjtzIXfCsbi2jZNZR3H\nrOa6/0zFp+hflkGnOXQRSCWScBG8XyxPA/S8LLOIW25sSHO7ieoaZnMKVDWMc2gbACpj/eD9dH2l\nawfX0f9Z5tsCAL1YQescRb5vBSeZCcoNzPoWUD4Jc3a7Py98blZ7yJf7QLGCojZofPQeq1P7mc03\n6hrYnMJ88klUv3cdJx+r8YVPLPDR37U+li8v9/Ci6gyH208jP90Cm1PoKw+4KXZ9TC3Thk4dg152\n/d9urOC6fRPm9mnX31wcOPIMWO4jL1Yo8n0c7L+se1fbDUx1DLTXPWMz1Hc5D+4d9Oaf2s/ZnIvr\n/Dtd7QF5Bp1l0ItVf50w0nydhBgkrb/Qfig3/XVO/+Qaoc9undNzh8+awaB7+6Hs+sVzltLc72n7\nHnN7mKrsvJvbzPf27NINY8zrIr99Fk6bcPQS990dkTHm3wL4BgBQSr0aAJnR3gDgzyql/jaAIwA7\npdTWGPMzsbbmCJaXklBx9AUAL7tQz+8dzVINlVLfDeC7AeBlLzpwC7sG0mq4UOXJCugYR9vYRSsZ\n93lIMnnOJPj/8jMxDf48zfoVopBQAfpMiqgWgoIxRVPXXbHsPBsKlYoxLNlunvWfl2W2Lzq3p+fG\nMatWzHloPujvqgayCkgrmDa1bbgxmrbszwcXKo5M2cCUFhutLJmJrTRo6gSmbGHKxo4lNFfUjhiv\nfbYYA80Xn4+qBpbsxtatQ9//Ktjv3vjd58H8Z1lfoAmh0ruW9ysdeSZg9wD9PtgzYv2F9gQXKqwf\nnuQ80fOkcJnabzrv+sP3amhf0zV8HGxfmpF3/xzRhwG8Sin1cliB8mYA33GnjSqlHjHGXFdKJQD+\nW9gIMRhj/iN2zY8A2IwJFWCeYPk1pdSHAPyy+/vbwJImv5jIqZLvAoDX/QevMOrVXwUUq55JRed7\n0OpwYH4ImcOkvfg8FDSDiZOiaTuEQDpN0WlRmpeI+iaAbqNz9b9nUhFj42YwlOve5vRZw9QP3l9i\n5G6D9q4l4p/dGGje690Zquom8mSJbLlAvv+YNSNd2QyZANFiBegcDRrXDmmXgFYrb/aw4+9OxMoY\noNwgyTMURYoHi+tIswpFYWPdXvSKEoevypB/5SNQX/Zy4JGX9E60/B30zaPuFJytoNUVa0qluQxR\nmsOkBardmTMHPgM0QJJq5PkVaHW1b0oLETFJLkj5O+Bzzq8jIaZTqOLAj6lBE16bwkQ1ZZ7ieyJk\nBhusbTYn/n/2TE7SFBeiUP8GZlFgsA5bUyE/uoo8eVlnBqtm+atnUWzfnqsNYxql1FthnesawHuM\nMR9VSr3F/f6EUupRAB8BcAirYbwd1vJ0opT6ZQBfB2tuexLADxtjfg7Atyulvtc95n+DDVe+EE1y\nRGPMW5VS/xmA/9h99S5jzD+56APvEZ1bNWwT4GayRlvdjDqZuaNUOu+JyJkYinaZQ71nKWcDLuxz\nE9WHf9iZM7S7Ndo2vrG4AzTUV+64DDlJucM531v2+kB+hKo9BlwXdJJC55nzLfSvtWSjqVrT+LSQ\n1tRAC+80XtcaZZvgpNIodImHF7dxmLdYphkW6aq3Sqnd1jRo2w3aehhUIYMoQoETyzTD1Vd+NZBn\nyPcWODr6AtJ8DZ3tsHztA0hf8yKoL30Z8NCLoQ4fc8W/GicEn0FbD4MpYnPN1xGRVhnatsZZWQ8C\nQqyT+dj3k/sD+HvWSQqdZECOyPy3aM26e2ZB1xTQ6ggAUO+2aM0aVX2GqjTuHfTXiU5StPVwXYXm\nms833xPeEZ5kvh822KPzUVk682uF1rl06hPNLW1AgQYhh3zbdu/wpNKodgoHWTf3ebFEtjya9Zxn\nk4wxHwDwAfHdE+zzNVg+GLr32yPf/zRsANTYc39kTv/mHrV/B8DaGPOrSqk9pdSBMWzFPvd0btXw\ntDH4vadblK0GXG0PisjhVGjjwiFTX6qW/vVQcydyJmOhk/w+G665A1D5sFTapMS07GaKJ2yVbcFC\nN4HjaryvodDdhbb5HllSsVryCmWrXHj2Xq9N2+8qKFzpu054KQDa9TH3/TuuFLaNDbN9dJn6JMbD\nfI08Mb2oMeqLfSd5cByxeaexH+XA1zzyGbz0FV8DtdxHmmc4KK4BAPSXPQr1ipdBXXkpzOohPFNf\nZ8W/VE8Q1rvUv5+x8NhhqLUBYPvPw7L5O+hClFsxbwmA3Ldn1+xw/nmIum2n9O+k0DuUbeLeaYKy\n3cNxBQfUOQzN5f0cC/cOhVrzfha6RaGbwbqWfabx2v6nvWv5XM0N+w/Nqd3bCTb1ordfKHx6lbUo\ndOnLMdwpGZhZ2tYLgeaEG38XrF/iQQBfCuvPeALAn763XZtPMdVw7J51pfBrn7WnlsXELGwb9JK4\nTjedWSWWSU0UyjyOgTICiU/eomSzRYBZ8xwV+fu2tQz6VgWsb6c4vZ32IS1YMp9MOKT+8EQyniB5\n1to2KfFMZpIvtWAyYl63TdcW0LVHfVyf5D7p7spRhcf2Mhzlqc+joFwbGt/UHPPxSdrbb3Bc7eMN\nj3wSr3rRy5EXK6T7/5/98cVfAnXlpWiKBU6qz+Fzt0usa42TaoFNrT0Dpr7w8fD+8EQ9niAbSiil\n63kC7VJrvw7kGuTvSyb8cWZLfeK/8/dyXA7fwxAlQPWSLiX6RGhtyURgGgsQXtd8TW8b/v1wLHz8\nRDI7PoRoYdez7j2frydqt5vT1CW0Xtp0vwvTnBn7Xtioq38FAMaYjymlHrmnvboAhVTDMSobhU/f\nSqOwDnQNgEEWc8Wy1GNZyiGai9ba39Thvnf9VYPfTjfZoK+8/VCfOKNaHVbYrDOsDmqULjP7dJMF\ni0hxqAzKkI5Bj8is6qpK+lht7t/TTy2xuXqG9YMlDvYbLHVfqIdgdWSGeKh+CqcHr57hU1dO8KWH\nKb5k/xaKwxfBPPgF++PeEcziAGfN09jUp7ixLfD0NvXa1RRJBszhRWKYYrzMAq2BtcDeCrUpURV8\nH4QwDTF9oHuv9B48VpuAqqE+VmJex/DSuMC5BQjh6tqcOHgBGBwQOALAHOL9ueX21sF+BzlDqBu0\ntjmW2PWR0sz3KU5zBEtpjKkoflkpZYuIvwCIQ6FwZs0Xe4yhAh3SLgcajMF/9BB52edQbRdqq6kT\nh4EVag++74P7J6r7SegL37fKeCRe2a4seSvHRDS2CWMMInQvwZs0dYK1065CTDVEU0Kld23r8iV0\n7iPulC7QmBr1rsRJpfH0NsU1kXhvTSsGW92dthekvew3WN8ebq1Yn3qfR9ZQiPh6iQkrAJ5R0j1j\neFuyXxxYdOqdh5CJQ+txULmS0VjFyimhMjY23nd6P7SupGDluIF3DyvMXCgn54uR5giWf6GU+psA\nlkqpNwL4HlhI/S9qMoZl3rrFyAVKTEsJIsayxUwV98aYXu+ZZbjg0VygS77oybxFzDdGQaYWKI5E\ntdHtdQ5kMjL+ucQZxBQc/dNPLXtllCVTlkKSf54jVKKU5iwrPsOx4PMEY9KZ55xZxQmZRQMAFoMO\nzGwaOpTwec/KFpsDa3vkwiWNCFZOU3+TmZHak9fEAEnH5k+CZcbWsX8vVXewGEMMjh2Mpt5laF2E\nruHmPr6/Nyc5snWDqur2OpXPuE/nozmC5Qdgs+9/H8B/BWtueve97NSzRbSA02w3YExcNR4IlAAT\n5mB3dOqcWtySYtoL0aSpLYK8HEOyPQ/TjZ3cuMZGxIWlRGI+L6PfnOSgvOeBEMxVkIlMCZXQPBqO\n45TmqHYbFymU4NpZh4tFQsVGGQEPACKow2oxgMJWGwA1UmY28geUdYKsbHz9mayy/9dli41TG0nL\nIKEyZ65C8wDA188Zo6mT/nk11DGaGs+olnmHhxu6noT0xu3xbN1gb12hLjXqwhaf2yBHdZcEizH3\nnfcAPFTKe40xfw7A//jsdOnZoZ07MEnhwk+Gc4VKiHh5YPmdJK69zGlzrKQrRziOXUPP5P/fTQrV\nepHPkWPlwmnQJz/nZvg9Ey5zxkLjPzisvBObwlm9YNE5dk2Lk0rbKLjG1nkhBN/BeJmQAYAvnCVY\naIPjygqkW6lFbS6YYMlKy8QAIK0duGTZIi12qAvL0Igkui+f39GDghDAvBxCTBiP0dw5jtGd3Du1\nN2TfQgcO2QYX8oBBXWgvVOpCI1Ru+z7No1HBYoxplVJ/TCmVG2PmG36/SCio+ld9U5JkxFHKVc/p\nCfQXcoiRzqFipK0p4THVLj+tDUroCpoytcT8S7F5o+eHmNVsBjax8Xk7kqFKU0xragvtAUoCbFDt\nlAivVQ6JGSgC3Xto4bSPxGBTaydcgEWqAFTBMrdcqBBRJdPeWEStG+nLGJB4l/y53MQJtLNLQIS0\nZ87AQ2bdu+H4DgkVGVQg+yT7G/vbftfN1elh3tvLd2sMlu5rLJw+AeBfKqXeDwaZbIz5yXvWq2eZ\n5EknZMP2TGqkhjlfjGMUYpyhE9aYbbeaEC78Wb2/eflj99tGBCVEn1klQQHpo2jmCmFHvG4MtXWR\nU+3YnEs/APcFUMhptTOodmfYyy0IZemysMnE5Wu7NORHARYMXp3QiB9eWKZRaO1yRRIsdILjymDb\nKKz3G/+eQ1lgWeXqquxno0KeC5c5QoWocH6FvGh9+HHZhH0uU88ePHLErzF17xhNBWoAw8NXSHuJ\nfhZ7WQqU+/6Vi9EcwfJH7l8C4ODedufZI2NU74RFC25WCCM7KYfCLTnF2psrXEKbRN4XCjeVFCqe\nlbJ2Nic5Kgz72g9t7vpAZiguUAc1zdmcTpWVPRfDiWgqY4KNC5W8aMPFopwprDW1S4YssG0pSrDL\nezh2zOhFSytUri4bPLxosMosJMxBduay5zWyxGCh7al421qT2PokR8mSXLOyRVZZf0udp97fMjoF\nRb/k8cD/JOYqZ+Mu0s6kZ9/t/JP5lNmx519j2uFYOe3QuKitOQ55opB2z/vN/7fz1JkK5cFwrCLo\nfZqmqGBRSv2iMebPAzh2qf4vSJojSKRKLM0rd4v4CUmetHlfQ4JljEJCJfRs2S6ZSGLlZfkm5JUc\ngc53VUaECz91h95Bb66FILn7Joowla3yZrCyUVhqY9EBnNZStglWWROFNal2Coe5zXx/dJm4AIAK\nabbDF4o93PzsEnsnffNhXWicHuQXsu/nRRs8HNzpPEmT4oW0ynwYri6fwWmszPYcASMjCYcPPL+l\n4U7JwDDomhc2jWksX62U+hIA36mUei9EJp4x5uY97dmzTNJmO3b6XTlfwlxz1pwoFumjCGkfIVWf\n+4Ni98bi8Ck02WtBlUEF7QMXDg4rr9Wc3k5FMMPFU5l8iVwX7jlGIQ2O/o+ZZOaShfiw+FF5soQ5\ndRUkj672C0G5No9BWfOKZW93WyhPbLLLugZubLtxrTKCEVFY6ASLtEFerHFwWOHzT65wckM7raVF\nnWvUB2lv3LH8oVBuyVj0V1Vq5PkOZUMRa/0yxlOaBD1zivhhIkZTGsHUgWOsjwD8oUX68kKHw/NY\nGu7TPBoTLE8A+DUArwDw2xDI4O77FyTxRR0SFHxxrkWI51R7dJ8UQnTqB8I1vasqCUZbyb/zoh3N\nE+BChnwmPFIJJbBB7hkUT6oLmeGkZjXmrAfQq7vO758SCCG7d1G00fkf62dVal+XvtAGubYFxczt\nm0CaI09eBp2kHnuLIgWbOgFWNW7B4ArA8ltoG9k217XQKHVXlpdMY0e5waeKLfb2G3zhcA83n1oi\nWzeoi/66CB1yYsmKdOCh9xDSrKsqQVpqnKWNb5PGFwoKIRPnnHDnGMXMWOfREub4b2J/h7Tjuc++\nmwLG4GJFy74YKSpYjDF/D7aa2D8wxvzVZ7FPzzrJhEYedROC2vDQFI7pEnOTG5nukT4Syjeg6wgf\na28VjxghgRCKpBo9aUq/B2MQXFhk6y6noi70QGj2zHCBiCMJ4xJiRHRdXrTetk8n5bxoB3kYvD3u\nH+G5MQeH1XgCKwtJJqJ2OlDCAig3wO1TAKdQV0tolaHQjX+Ov3+TOTSEBvasRXNht5IEguyQfnn5\n4garTOEo1/hU0ddeUHYmGj8E1nceySeZp1xvMUHf1EkU+0sGhdBchw4qU4cB/k7yovWCT45viuYK\nlTEfI4+qo74RTQmPi5j+LjvNgc1/wQqVkJNREhcmsVPXwWE1gHuRm15m9wJWM3jw6lncmcyIIFXG\nTAihU/p5spjJFMOJCxR/z0RoMjCcy7xosbffeKFio5IMKjevEpGAjzEkVOR8BQUK+1xheGpeaOAg\na6FVZqsGbk6BPAO2G2SLAqSBhMyNFhJkKFwsIq4RkPH0eecFTHdNioU2+GS6RZ7v8PnP7kdNM55R\nu+TKqtLIDzqBLudt9BDiEAHGsvmpHQ5YyhnzmK/LRxpWBnsnJU4Pc9wsl1gdVj14GUmhkOoxn+Yc\noeKvZQeSmLCSfszgYeV5QEqpb4SFuNcA3m2M+THx+2tg66l8FYB3GmN+gv32HgDfDOC6MeYrAm3/\nNwB+AsBVY8wN9907YBPlWwBvM8Z8aKx/lxa2U2vTY1Sc+HcxgdK7njkA6R/5S+ikRKEm66BFAAAg\nAElEQVShltkPNwox3JijXG5sjNjSe6YMkfnOn1eVFg+JBOMzJ3v2ZFnUPWYO9M1+5FDvMRkXxspP\nwby/1A+OxBsjybQGDCZnyMwBph8SelyLXB3UvWRHXwRMlA4mbSN3JjfqF81LUycoVzVuVcCVHDgq\nDB5fadS7HawQ6fpBtVZ4u0CChxctLG+w0PcA8PSNRa8fg/HlylfFDpmZxrRZqXWHqBDvVfroaH2P\nnfRXh5WPNKTcEC9UmMAi8ut7hoAApiMNYxTTpLmmdu/8K7u7ksfiEtd/FsAbYavlflgp9X5jDC/F\nfhPA2wB8S6CJXwDwMwDeG2j7pbDliT/NvnstbCmSLwfwJQB+VSn1amPikQiXVrAoZSbDc/OixVFh\nPLKupKZOeoIDDldIMlP/f+AExn0rAILC5bxRMaFrQiYxfg1t+DHNgASQJO8HYKdg+ewpAT33ZCiv\nGZjBQppUIOSWzGBTBdoWuj930nexWWdW8Ow3uLXfADB4fEXj38FG6YfXmX2+wgM5XWeFS5rtcHyz\nGI2MosxwvqakeWfOfE5pyuSvCx1MiCHHGDH56TYn1meXF31zMu/7VD9Cz+gFs0zgj9FYYiQ1O2lS\nfJ7R6wF83BjzCQBQSr0PwJsAeMFijLkO4LpS6pvkzcaY31BKPR5p+6cAfD+Af8a+exOA9xljSgCf\nVEp93PXhN2MdvMSCpa/ic9pbdSfaRQocAdg2xtdsAOLMXgoVn3wmtBa6lhgdneTPxBqWGoB8HtFU\nNr6kganKaRxTQkAKF6+FRZjLXKHS/WF6gmAKoHOuQOJC/GC/wVFhHek8+itEC90dMkLP3YA0mhbH\nRYvysVMAOzy+SljRuAS8iqXNcdn5ip0dWeFyTVuT4ekmG2gvNJZgzlEZD9/mNMbUxwJDen0QibYx\nAUO+FT7/cj3E1gYd3Pj4QhQLDvC/h7SUgCbPTXCxZMs7IWMYfNA0PayU+gj7+12utDpga2J9hv32\nJIA33Gn/lFJvAvBZY8zvqn4J5RcD+C3xvBePtXVpBUuSmN6pi4jqf9gCP6ZDsdUAAQsel+N5HaHT\nPiEDTy1U8j2ENKSQMIip9qHrOYUKIe25zzwhksxWx+hrN1JzCUXbyOfHiqF5YtqGZDwxTcXfOjKn\n3ES5t6p9QTLSVnx9dmEKI9+INMd1fg773abIAGS+X8Aa29bgNQ9oAO3A39JpSlZTsZUMjddcFtrg\nuAA+n3bay1zmFvIR0BiAvknSEjuZ53EB4/svzGihw1kInYEnppLZd5zm+UAAZroTWsucSDa5h6Sm\n8hz6V24YY173bD1MKbUH4G/CmsHumC6tYDFuXdPCoSp/oUQ4oKu5QRpFqDph50NJvG2aayz8eTHi\nGovUVrzfIoIYTCdW2Y8Q8b7xvt8JSXiWwe+BLP4eU8r7uSPSdMifEWKc5PsJEb/+LG1cgqO9tjUN\nUl3AkGBJcwBVzy9C95JQ2Tupugx5Bs9yE7aOTPXYKYAGj6+0Exy6J0zIPMafIcv0PrYHUAABAF+E\nSgrUEAMM/T2o1xLx58XaCr3TKaESu75I4yd33q8YonZoH9Gal9fy36fo+eioD9BnAbyU/f0S992d\n0JcCeDkA0lZeAuB3lFKvv8jzLq1g2e26aoREPlcBdS8RDuiXcKU6LSHiDIwvdFkpka7pLeT9ZhAG\nytuUzwDCjDZnqvxoFJkQPCRsqpJfT/VYuiS6MfwmmWlPc8DbLvnpn+XSyDFuTixk+RzGSWOMMYaq\n1Pj8kys8dPUMTZ1gqSs8utS4sU2wTNcoFg8AS4sVZhYHqKvPeaywoWZk54QAJDk9cOPMCxfAChcg\nxQP5DmVrkyQLbbxAOam0qzuvBzXlgbBwCY0tOCcM3ZjWBGkNIZMuFbyaIr5uZH2dGJXudwpqCRVC\n4yTLZsdyd/yeKvo4cLIv0gzNx/JskYFBtbsrNRI/DOBVSqmXwzL4NwP4jjvqmzG/D8BXBlZKfQrA\n64wxNxxO5C8ppX4S1nn/KgD/eqy9SytY2lb5Ij+cDg4r64R2iXBLtw6Py34J0/NkIAMdo7R/dLkV\n3oSU7wZV7ULmH95e6DP/O2ebaU5BsZCWQ0KGJ9GdxywjtSiuyfFsft5f2bfznCI54wjdR8XD0myH\na3s1XrxN8aK9MzT5Fei9I3vf7gxVe4aTqgiWIqYsef43p72TCjdBvpFTbJsGj+4leHQJ1LtOwADA\npk7wjGNunWDpaxIkXIjZ+ui89ZApyr4AQI3+QUCiGcsqijGhHSKuLc8hXghvqtjXmECJ9WPsuh4i\ndECbj5r/nmfOe2NMo5R6K4APwYYUvscY81Gl1Fvc708opR4F8BEAhwB2Sqm3A3itMeZEKfXLAL4O\n1o/zJIAfNsb83MjzPqqU+sewwQENgO8diwgDLrFg2bUqmHtCCx+ATYRjWoQs/kX3TJHfGKECYaKd\nqRKsUuPpfhgiLvO288iJjVMPlJNtvJig42aYsXbJhNO7J1KUTJKft4CJa2ruY7+TgL92eGJr2Zen\nWOgTHBQWY7XanWJdW4wvYvIhgdqDuq+Gpp2ecGkbbFvjMMPgQpKBZ6qEmVs7bWUhotUe27PQ+0RU\nupn3RQo8AD4vqcpTv3ZCEYL0WyhJdYwuEpobw7zjaySYPzVBY4IhZBKLaSux/t0pGaO8+fXO2zIf\ngC26yL97gn2+BmuyCt377TPaf1z8/aMAfnRu/y6vYDEqWHEvlB0cKgs7xlSj2oRARaZ/PGEsVHdD\nbjLfZixJUQiZ85iNaDwh7SbEqPm1PDpICj9urojV7YjOZQBNOtaf3n0jv21OchyXFql4XWs8Ylrr\nW9E50HYweMTgyYSzOclRVbYgFFadOawuLN5XXWic7Wc+HPjmU0t7KLl6huMHSxyXBo/uGRzlnZZC\n/0uhwitWblsbpXglr3BtZfOMnnZthzQXIl+ZsugqJsrCYbGS08Aw2pHoPAJlLFJxrGaRXO+xvtC1\n/H9JMeEir+HXjqEl36dxurSCJVFmFLCPq+qDGHt2H1+gIUwwuYBJmEiIGIqUKRvVlbIVQoa3UZUa\nroLtLKLn8r5SH+V1vb8jaASDzR6A/ojNrYTQOU+/ed/HwD3HTDcUAntU2Ki/g6xFliyAM1sEWS8z\nFNpgle2w0Ik3BR64PKV1kWOTF0BlhgW6ig5EMmdw9J3vwmY2btsOhp+ICxTACpSHF61z/isstMZx\nbnBUGFxzOGPcnLg56fo0MIk5P0tIoPNorbtt9om9ax6NNVZaIrTWYtfyw17ocCfNpKG1TlFufB1L\nQXyfpunyChaXeU/kfQCR0zoQCJ+NnJ7HBAwlIub5Dnur2uev+JK3ucG2aHxSZlrqXmRMKE9hyv5N\nv8+FgxmtnSIEyAAjrAyXWQ4JVE4hBNopW/zqoO6Z1ErBLGKaGmmJRwWwylocZLDoxtWxvWb/MSxT\nK1wW2obmViJRNC8cttkBi2BCCgVgVYSLrUrhsgjsPilUri4bHGQtyjbBut5hlSU4yi2I5VHR4Piw\nwXUnYDi00Ok69wKmLvqHkn4FSbvO+AEhZiKSjv0xE2gIW08SIVxzTTdEMYFIfeDPBPp4arK/8lrf\nHjvg3Sufys4MI/9eqHRpBYvWBgdO85ij6sqTTM8kw5PFxMakzTcmUAiCncKbt63CogG22uAsbbyA\nkW1PCYrYZoziNE2YCmge5O/EpJYaHjUXwMCHRfcRsrAkEgwEuzKV8xCbF96WJGJ4e/sNjnJb+dGj\nG5dWY0mRIk+WOMhuY6EzLLWNKObgo2MHkLH1xIXLUWFwFNA6H10CDy1s8bCHFzvoJEW7a3CYtzjI\ndE/AXDtDJ2BOUqwOamzWmdWqTnJvohtjmDS/hVtre4FruKlpSisPaePyWX6u2DsMUWyfye8GwpBl\n/fN+htYj9ZNy2O7TndOlFSxKxRnsFHkTlcAUA4bZwkCfmRGjJKHiM/zdgl5ouAqFskrBiE2YaQ+x\nuP/Qtfz3ucXCvDYRSKKkMZTOdFQULSq2mTl8TYzJnW+jD+eFPwsYolMD6LLvcwKhXABtBTRO0yg3\nSFKNQu/8uyGmxA8YU8wwFoDho68eLHG23+BKTocLq6msshaHuf2X6z1olaJVDYAzn6lPSZaFTnBU\nJbimgYVucO20D19DeF05g5XJi3Ywr5Q/FU9cjPtYQqYmaeIlGr7PfgXLmIl1iqJarcMso37yd0Nr\nhPrZsxw4CmmVFyUDDHKjXqh0aQUL0RzICCCSEMkSFmWdE36yG7bbYqm5jX24mbcNfL31GPU0DA7M\nOJGMGcq6j0V8EXV5KM7UxZIdfU34SF9jpipqV84XvRNKVpVEcxKDfuc0B8E6UdoKlbpvSyezBc9l\nkXM8l/GF5rcsNU4PK5QPWu0FUFhog3qnULYJylZhmdo+taZGtbO+Fs6cssRm7G9bwhoDrqEGNpkX\n7IBlsNyvdjaSoAjEsfF4/wcRjZxx9zSI7jBC744EDH+H1FYvOGYGBtgUcRMrd9DTIYbCr6lvXLhs\nL0f5lLtOl1awKGWiJ/ygU3gkkUqavkJtlIxx2kRDdyJvgYVWvZORFCohBhqKoImdlKcivEJmpFjY\ncZ+GDIOezwtH0Xd0cpSoyTzqrSj62dOSAcrEPgoBn0NcW+tgXcaZFr0HidfGGV+I+DuQ0Yd87BTZ\ndXpQ49jX40lcxUkNoMFB1qDaGZxUWqAkd0L3yD/COAFf++fLfuX5bhLoNDgmeQAIOMpH73eIzPZg\n0j33NJIsyc1vc4JKxkgKFbknTl3uGmD8Qek+XZwurWCZojHtZWwjTflreIIYYM1GRWqcgBlqKTHY\njdAzx9BwgX44JS+0xUkKKMk8eYJj94xOwJSNGpxs+eebTy09KGGon3wMPENctie1lCkhyoVKXrS9\nU6lWWWcGc7QzLaqdrXm/vp0ONKIp+Bq6RjqRQ9rh+iS3IdpVgk+RY1/za1qUrR41oxR650OYO7SE\nXRDXjapIEsVKV0uaJXxmXCO1+yniibZSI5oqeyH7NRZAYq+hdzlmvrsY2TyW+877+4R5GyVUpGrq\nesr1WB3UqLKdFzDAPGEy1Tf5G7cnc5u3xzILMPiiGNq8JSOQAmYqnwCwuSBT80QhvpLGtDbeb94O\n72vPkSxh86uhKWzrtJVQRBQQhgqhvpFQoZLDAIKoxHQPtfn5dOt8O3oU1t9qW3yOdv38mMMG10V/\niUKmXbpuzhqW4b2yDSL+PuZGW/E2Y0gPfD3OKvJVjEclAnZOxmCN7tN8urSCRan5Cz1GMkM3FoUU\nzSJ2SXcUJ09ROWPEk9mmwobPQzJcOvR97zmMIfVQnMmmf1BHtZI5/Q19L5nghQo9BRinVhlMu+kE\nS1N55/1Yn2J95+Yvq/G562IAmS7Bkf7P8x2WuoJlaN0W5UKmK3lsq1L6Z7eJM6ElTiuzwiV4io9o\nYTHhzP8ns2UIGNO3X/ZDz7lWyXNDpM+P1zniZreQgIoGUAS+H1sv45rT3Qk/3gF3LfP++U6XVrAk\nCt4cBCCYiDhG8gQ7Fn4aqu/ANymPgFrqeGExH5F0ToY65rgOtRXauFMmi7zoiqJBQOyHQjyB7mQf\nCnPumZoihaZCFAtCoPtHC0pVNZBnMG0JrVbIE+PrsRRibUj7f8jH5ft6MIKJJa7dnOR4uqBS1Y1L\nmkxd/RZe8jgZCL48MTjIuNZFDv3Gl3qYEo5z/Rn0TmQlyZD2Jg8tq4Mae6u+dijzaqhfB5Fk5Fi/\n5vx+noNOXyO/T3Pp0goWrbraJ1XJQohnaAExoTKH4fONRuG3FOp4VPAolHiZ4rENxU+ToVDbMZL5\nOEQS+j/0zCLtwqZl/g1vjzN2yhwfM2uFHOSTlQInhAsAbIumb+9uyZtcA20DrTIfbuwjiEZO5rG/\nz3NfVrZACWyKzg93za3RozzBA/kO9U75AmJcUzlwiZ46SUGOewBYaCtcvP9OaMXUNwlVxH0acxIc\neenmGHGhYqPg+kR+r1D+1kWJwsKnsOnkGhwLzLhP03RpBUuiWFjhfuORhadqYocAKOegtXLioY/k\n86DCYgsNVkjM9E5vvT7dwWYL1UWRCaAhZsI1BxoDr345jPnv5ygA/Zr3Z639/nST9RgcJ8msZNLd\nlCkt5GSXvhutUqCtYFy4sXLf8cz7PN8NYHDGTvvSph/qD2+Dw7CcrnOsC/JDdRAw2zZx0V8uHLu1\nWstB1uKosEmdidJ4aFGi0KcodIosSQFoLLSNFjsubbE60iypFAL1pVon2CD3mHmyUiQRrR/aN6RZ\nxGD3pVAJJYYSLVIMEoRD8x2jkG+OCxhqK+TLqcohBP+dhjsTGXN5TGGXWiSfN/mpt/iEcCGGN1W7\nm99Dn2XUCSXLXZTudCNIn4k8tYY2+Fh/Q0Jloa3GWKTGn3xDxE1loUxuHkYq+87fl//sGEswP6iq\nncYShmSZ1Poq05ubXlImO4SEKCtbLG/XWN6ukZWtZ9KnmwzXTpX9d6Zw7cwiIm9q7ZlUoQ20ypAo\nbSPcBHEwy0f3LAjmldwm5/LgDaqKOfAFIixU6PuQj01S7Ht7mOr/40RrhNqYo3nP3YNBoTKyZp5P\npJT6RqXUHyqlPq6U+oHA769RSv2mUqpUSn3fnHuVUv++Uuq3lFL/Rin1EVfki377StfeR5VSv6+U\nGtbMZvScaCxKqb8D4M8AqAD8EYC/bIw5dr+9A8BfgT3qvs0Y8yH3/VcD+AUAS1i46L9mjDFKqQLA\newF8NYCnAXybMeZTU31od7Z4F9VZCdWVD5FkakRTeS6h0/j6JHcM1cbPHxWql8NCRcXOS7wvsfBn\nyimIRQdJCiE8HxxyBtz42jXkIwr5TngyJfcljT1fhpsG0QVEjoms4yFPonurGtvWJhy2poHWOXxp\nYp2jNc3gdBk9MUdQpqVfjX/H2yJNpckS//fpOscGrIRDucPZfoNtozzSMZCyPp5imdbQKsOmPsWN\nbYoTFzRgTXq2bTKJLbTBcaVw7DSJstRAnlsFqTLY3OgElJxzjptGRe/Gorc44kJV2uTMhbM8biPm\nXr4+aH9KugjD5wfCKZ/q3fatGNhSDHdKSikN4GcBvBG2/vyHlVLvN8b8AbvsJoC3AfiWc9z7twH8\nd8aYDyql/hP399cppVIA/xDAnzfG/K5S6iFwe2uAnitT2K8AeIcrWPPjAN4B4G8opV4LWw3ty2Er\nlf2qUurVrqjMPwDwXQD+Faxg+UYAH4QVQreMMa9USr0ZwI8D+LapDjTGChVZRVLSRU7/Y+VRJT19\ngwR/jbO2My9IQXfefkjmWrHTHhcIodDQkK08VDZgLcKGeWVIoBNanQO09cmUXEuj60LMqdc+E86D\nMrvsPilQqB3e9ukmw7YtUbYJWlMDOoXKSLB024LQBILvNFa2AMN3HhIoY+ti76TCKaxJjPrf1AnK\nVY1bFXAlBwCDo1b7TP2HFzWABus6xVNn3RiyxAw0yoXz3Ty6B3y63LFqn92FmxsZqrJfSiI077Fx\nhHyPTZ3g1nEOHIW1Qt/ujEqqYzljcyIGPcJDxDx5p1Gj95BeD+DjxphPAIBS6n0A3gRbiAsAYIy5\nDuC6UuqbznGvgS0MBgAPAPic+/wNAH7PGPO7ru2npzr4nAgWY8z/yf78LQB/1n1+E4D3GWNKAJ9U\nSn0cwOtdmcxDY8xvAYBS6r2wkviD7p4fcff/LwB+RimljDGjwee7ncLxTWvoDZ2sgfOFLE45Z8c2\nwdM3FqiqBHv7TTRPQ2JdDZ4VObFvTnJvoqFT2tNPLaM+ipgDNqYFAF0wQ0y76idUdsKFmAcvNBWK\nKgpRzM8x97uqSnBcAdVOoTU1FK95DwuhQs597uwOmYk8sQJrodPwXKGSVS3q3IJH8rBlQiXI8x3K\nVY1ta01b2zbxEDCFNjgJHJR4BBk5/Rc6wbY1uOXW3fokH9R2qdYJbpbdetnQUCeYLhcqofV66zgP\nQgvR3IT2wdh8ynZCflD+O++TjPiT9BzVY3lYKfUR9ve7jDHvcp9fDOAz7LcnAbxhZrtj974dwIeU\nUj8B6yb5E+77VwMwSqkPAbgKy6P/9thDng/O++8E8D+5zy+GFTRET7rvavdZfk/3fAbwJTufAfAQ\ngBtjD20aNWDeRDGbPWAXs4y4kr9zii3K0H3S5ttrj5ypM6JVpFChaKOqCuM7ceLfS20hJFSIeOXN\nUFgoCRegHzwQ0lbGTow9xh7TGJj/eKyNbatwUmnsTAukS28KU7qwWgyG+Gc9gSHyUqJm0gnGRMmT\nhETMv/NmqTzvR6dVCar9Bmdtg8f2yLmf4gHHMClyjEj+TfVmtm0KB4/YE/A0t7R2zLrf12qdgGq8\n8PH2nN4jAS1VNTQ9x+rc8znszWXo/bPCdjIMXAq6kG8odrC6G7Q7X+b9DWPM6+5JR+L0VwH818aY\n/1Up9V8C+DkAXw8rJ/5DAF8D4BTArymlftsY82uxhu6ZYFFK/SqARwM/vdMY88/cNe+EraH8j+5V\nP0SfvhvAdwPA8uGro9eGHMX0vYeTCGg3MvIkWttlZPFKm7w0J/SKaQWEDI/9r0qNKk99u9IBKk/R\nMpqJIO6poBS/jrc5CuHvTtkcaFD6YIqiDRZQ4yjFAwYdqCwZY+6S8qLFQhsc5m0HQukSJCmPhcKN\nKSqMtzlmsptDsh1i6PVB2vs9R7hGSFXaMFwbldXAxrJZ7YWc9aSlSKFymO/w8KJ2UWUGC51hoQ2W\neos831nYfUJgdmtHMvGsbFFDW+RkNvcHgWgyickXxVfjpl+xRkPvd4piAiVEtM5W7ADHv3+e0WcB\nvJT9/RL33Z3e+xcB/DX3+X8G8G73+UkAv2GMuQEASqkPAPgqAM++YDHGfP3Y70qpvwTgmwH8aWa2\nig36s+jXb+aTQfc86ZxMD8A68UN9eheAdwHAg698pZEn8lAdCZ70J80boVyPuSQX+cAsIBjZ3Axj\nLvQoeS12agsVyZJzcCBqp1w0h4dDb8hTYayAGmcGNPehTG8p3Oi7YD/cfXsONj9PzDDz3uexdL4J\n/n5k0qd8R2Po0iEBAYRhgaaYWlUlHk/tuLToyEd5l7MSSqK8urR1Xpap1c6K0qE+aI2FTrDQXenj\ngZ+OaYpUepkfVniJbbmeQ2Ul5iTdSgodYMZMYv5zBMIl9tuctXReMogjgJ+TPgzgVUqpl8PyvzcD\n+I67cO/nAHwtgP8LwJ8C8DH3/YcAfL9Sag824OprAfzU2EOeq6iwbwTw/QC+1hhzyn56P4BfUkr9\nJKzz/lUA/rUxplVKnSil/jis8/4vAPj77J6/COA3YX01vz7lX7F96EIYQ5oFCZVe0p8TMERzwixj\nFLqXY4XRd5RgODc6jG9aHvkiBSYA7KGzZ/P+U90Ynm+w1A2OXRsUBQTET4MxpsH9LXJM/GQu+8oT\n5WRuypiJIzY/VmOxp3qtMqBtujyWtrK5LbC/L7X2gQnUvjxU5EUf6400ilgABi8aBnTVMGPX0dzR\nYYDmhebwGFYD2/qor+HYSaissj0s9AoAoNWml/Oy0NqXPj4urR9yIGAwFOoHh1WvgFvMBDlWt8hf\nF9FcQmu4KrX3TUoKrYOxfTRX232uyZn83wrL8DWA9xhjPqqUeov7/Qml1KMAPgLrjN8ppd4O4LXG\nmJPQva7p7wLw0+6AvoWz7hhjbjme/GFY+fgBY8w/H+vjc+Vj+RnYiu2/opQCgN8yxrzFTc4/ho1Q\naAB8r4sIA4DvQRdu/EH3D7B2wF90jv6bsBJ4FvFse858qcIjVXfs0zDpD5AFkmZEpAhhwqOkqAbJ\nWWvxw4AhXPyUoOECRlZjJMh4nolNJZBp7FR86iincVHdmH6UodzsPdOaTEZjJrGQhka/y74Ctp/r\n26nHIOMo0bGiUiGieTwqbB2Tg6xLkORYYVplyBPVi6gamEVFH2OZ43y8oUMEEa/cKItj8VLVIYgb\nALhVAfSeCEa/0NafQtUol+khFvoAebLsjyU5Q54Yp6WlOMoNrp0Bx8UW10/SHkICD7Lgmoqcf4kc\nwdeHFJi964RGE3rHfr+4Mt6h58l5pAPb2B6a0nKeL2SM+QBsdCz/7gn2+Rr6Vp7Re933/zds2kbo\nnn8IG3I8i56rqLBXjvz2owB+NPD9RwB8ReD7LYD/4m70y58yS+0Z+t0gHnbbe9bIqWiswNccmjIz\njBXlKtLGnnrvweqQ/hb+/d0gYi4hAcOF81lqIV2qXUAQpZ25L5R3IE0vF6nfMRfBeg51c9niFqj6\nqBUui9bWdql2CtXOIDeNC0zoC5ZqZ6/huTs2YdEy41AphNAaPu+4Ygek52NS4p3Sztw1U9jznp4P\nUWHPCRmjsFlbO7PM0C7cRlpPQIf0Hd/d97FKjnITNnXik83KGao3Nx+FsI/GItCIOXCI/lABMd/H\n/cahiVhGQcmkp5vMm8K4+ZAzCMmE5mIwkWDnjJIgy3kipQxNDiVOkn2Vm178c5yWSgmS1e4My3wP\nat/pDDpHtTvDurZZ7rcqVwhKEM2nDUbAwBQ2lnQbWlek2VBww5T2JUOf6WS/zna45UBNjwrg0Z7U\n6yzPramxbTc4a2rc2Ha5L5RQSRr7UWFQlUP/GEUeco10jKbC5EPj45/lGg5dN2yj+zwWQBDymd2N\n6pWXlS6tYNnthlAO2brxMfvrk9yq+AH/wRhxYRKKv++Zz5hPIWgeEpuHNgb3cfD2ObPt9Yk5twmu\nvCrD2fS9gIaiY+xSqAyiogI+Fn7NnFwACiCIzTfhWq1P8l5VRiocNjeCp3QC7Lgqsa71II9F5fuo\ndqdY1xrHlc25oENIb8yOmfIaHtTP0BzExiSvPXqw7L2HudorBVYURYvT26kd46rGcQlse4mUZzgq\n7Do4Lhvc2ObB3Beg01oOHJ5eSCBKQR8imSsyx/kOCEifYhjKPCdoJiTgpw5l90K43NdYLgHtWtVt\niHWCvZMSy9s1zsoMdaGxKTJsTnLPtEJhlED/5COFSTD23lFetD2GXwmmKuG6Q8t+FNMAACAASURB\nVEKg177LV8nQDHMOaMOLUEqgA9WkecgP+s8knwohFMhn8/ZC8DBSYE0JmOFcdYyMnr85yZGtGxvy\nWmhsqn6exxzarDMcVxVOKo16VwKLh4CV01gWK9S7p3FSaRxXyoffyrmTSAXcNyDXQkzw0VxxcFPA\nChdKJo3NUwhtgDNh+nf68BZAhW2b4HGfR2HDjW9s8ygwood/SYFlaw8aJNylP436IMswU182rE9T\nNIaiUDHBMha0ERPucYij/jMOWJXT+3R+urSCBQATKpUH/wNc5nOpLdNCB1si0U6ldhI1l1GSIv++\n6hhuaLNwR/ZY/23blslmVfcMytyuC40aGijCpzQuVLKyRQU7ZsBBvzgTkDRBcQbmP4tcnjkbc+y0\nOoiIouey+fQJhS6ngn4PkkhoPC5vY1MnqNozmLwAlvsAAJMWqM7OsKkXOC77TD9m1pSmwbnZ4qSB\nSWENhIVL7PTdJcNa32BVaZdFbw9IVbXB2SNbWA0088JkTKjQv+Oqi468lVZIs52vU+9LL7t3sleW\nvXbqQsOs7f/c4c8pKHAjB7OYVhTz20kBPPc5FNZ+cFjdNX/PXQw3ft7TpRUsiTZYHVbYIMdpXqAu\nNPbWFercCpT6wKr9Dx6e9eLzgXg4K8/IB/p2dDplS4oxqlCCpnzuyuVTVHlq+39iNZK60L08g1VR\nB094JBR84mNux7w6rDxwoO/DJoueVHl/Q9/H7ilH2gNYngETvKQ5kvDzuRTo+8N8myRkAlnyC22T\nB3WSQhkD4+reK2O/yxIbbn1wWOHpp/rObqIYoyNmSWsixjzHmF6oqJucY5rDB6+e9QRM7znrhPWf\nhMu8rb/QwKPLDrjyqACO8wa39hvs7TcoCgsRVMEdYGbSWNKvXJec+FqQlSgH1+a70fUXvY9ZEmTf\n7tM8urSCRWvTy/beIMczjBlzgXKRfJWQDXmDHFJ7mTIPdKfV/iakzeJrq0Pj9FAwW7ZBZMgmMMwN\nIdMfbVieIOmd1EwY8E0+Njc872PMcR8jaXaTVQWlmYnXm4/BrhRFi0XaQc73oPLbyiVI2tyQsXc0\nZz3EhMp5KBZtxdum97wJYX45Rp3ntuwxwdPzfBfSSnrt6x1W2Q5lq/BArvBMlVi/S6qw1HZt5E64\nbE5yL1ykhk7X0fsLmbBi61K2cd76R3OuGzs03afz06UVLEp1ddm5KkwLn4oSjUfmhFVyItowlHDo\nN33gZBcTAF1Aj+klTvaINBfBbLlg9AxV5Ib0GBZpKkU7eD7Z16UTlhjbWOAB/V2VegjvwU7z59nU\nD109C6Il0Cmf6rGHnMo0P7L2B+ru9GsLfTW2gmS+66EYhCiUYAvMy8a/G0RzsDqo7diLvIcVV+U2\nD2WzznA922GhGx9OzoXMUd4Jl1XW4jC3hcQAYF1rl9ejcZQbHOfAQje4xg4WJNC5gAll6Z9rXTqS\n75poLKeLrpPrDsDAXMtNdXOrrp6HrPP+chT6urSCJUlMb3ES4yBmTJXu+AmO20dt8mKf2Y8lwnHa\nYHiilJQX7SBJTgqXUIGsmIAKJfJZMqiynTcp0H10D11bpMZrLYO+uj5MhcdyQdyD9oiYA2WdepnQ\nKiFEvGbh/EIHh1UQgoaT1VjENmgqQMNjhdHzC8GEQhQy74RMhGP3n0crjp36iTYnXY0V0nBPb6f4\nNDi6hMIipfVt8OjSjp0wxQopgAEUWsEC4LoyyenW92VzknufXp2nQGX6DDuwLmmdUfXIW2Jd8vGG\nir3RfE5FVxLR+gsJl969981gF6JLK1g46MsggsctprOWZVMLoQL0i1mNnZrKRvVKwHKK+Svs9124\nL7Xjr2GbiW+M2KnO3msGiXyy0BaNvyq7RMmxMZBpjDCrxmhqrrhmwT9PZUjfKbWmoXQdS2kOmDMA\n/fceq6lCJsJCvBOZDBqDKuFE3/t59eugCzkf5BxNtMn7yn0X9n3Kg4eyvpQ8QdnuHBqvOwCwBEpC\n6V1oC90PKF9jhfxKXosuAuPKhmt8oeEL3cm17scgAGD5u6B5lgnJoWvkvIz9fbeEizF2fJeBLrFg\nUdEEtqpK7Kl3VWPL4FWAaWgV/ndetANmS5stK20CYl3oqGmsqRNgVfv7+G9WOwjbsQfjIebXECwL\n/Jg8syr7hbtWB7VFziUfS6l74ca8DC8XxpLGBG4oaofajKJCR+BM+L2964Xpjvd52ypXQbIGdA74\nQl852rrBSaWxbS2yc7CUQaD9UJ/GtLwxknVuQnkxoTyLECo3oRGTH42bCE9vp9jbb3zektdSdYJC\na1QOfeCk0tjUCZ4JzD8XLhQ1Ru9WzgGPIpQJj2QF4Amp8p37/cn/RuC9BLDXYmtHmjljn+/TPLrE\ngmU6HLEqNY4x3BBzACFD9tzQczj8OD2D8lso3Feq9mRyigqXUIazf3Z3QvRaiMxPYTH8lBTHw31J\nMBKkOo3LJ1+K3B5g/mn6oppIyARCFGP+26YLtzVKeSgXo5Qr9GWFj4+2ivR77Bm8D/4z9wdNCBhe\n5wYYAnBKKlIDStQk8xPlNfE+UzsyF6fab2Bh+owvZ7zKrACudyooVCjf5aggOBnrUwyhFcgxAPBJ\npoANEpmzvyQyN42L+0kADLTIQTuRgw3/+277Wi4DXWLBoqKMYCz8VQIrjjGGELOj0753aoIJlyrp\nRTFxoEVCjqVFTsCE56XO/NBpIZTJTsWbSHuh0N5BXXMKZ61MlzsSoFjWNP3NT7Q8+IBfM0Z3YqIo\nS6uN1DuFdmfxs7QTLK2p0e4a1LvUCp8I4xmzzc8xVYWES+jwMXbw8UECRTyZkhcQo3e2YdqpZLzH\nResixAysH8WavkI5GD6J0nXxqLARY8elQZH2tRc+Fllmuhd4EnivXGuRpuueJimqpc4VDHPN1HdC\nO9zPY3nB086tXblpYxhYoUUti3CN1XzoMc5cdbkmRIFqfLJ/5FS/U+Kal9RCUNrggpVzfB+IbH1K\n5qxgI31CcCqh7HyuiUXDbx3To+eNmdiAoRko5MvgfedUFC2OClEES3daCYFT+pr3MzWvwZgEBU/N\nM0x7sedz4RACTqV5rN37ou9CPop+fynRsRMuMfKOd++PtACYx5UNST5zcDDHN4terhf3T/mnsv0X\n2lejQkVQJZ7DhYwM05Y5aPL+5xu50iM/DQt9/25jzI+J318D4OdhC3K90xjzE1P3KqX+e9hS7zsA\n1wH8JWPM55RSbwTwYwByABWAv26M+fWx/l1awRKigS14Bk4Qnbym6mbz7O28aFFBVAosxqOBfNub\nzNukvX+EmfQoUzgGT8/NDARVwsNSubDjCWIUPcMjrXIhKEIBBb2TaBEP4+Q2cbqvEN9dhIhhyACH\nowdLHOUWJl4nqc1lCZCEzJ/1jtC/h4gzLtJWQgcWfn9IE+LEhf/aZcP3UAqoHXSneP7OZOLnzaeW\n7BlWuGxbE8xxkX8/kO+QJcZjki00FR3rcl4oY1++k9g88XGH5ocLjKq0gQIXpZiAuVu0M3eOWg4A\nSikN4GcBvBG2uuOHlVLvN8b8AbvsJoC3AfiWc9z7d4wxP+iuexuAHwLwFtgy73/GCZmvgK3l8mKM\n0KUVLIngVxR/T6VJgaFdfAzIbupUE2I6PTPGCBPibVSlxuqgDmKH0Rg4rtkYPD03bREkTE+LQnda\nlMIldLLkn6c2ZywBDpXxzEEyn9gcx4Q/MRtpgstzm/i50MBh3kKrQIZ30pkki6KD3aE2el2e0Gak\nBup9VgE/QWwMY0KGTKbk4+LYZvz59O64uYmSSbtGjV9HValRPVhie9jgqOhq84SKiD28sDkvhbaR\nZCeVQaEVFjrxggmwxeKObxajY+ZzFfoMhIM7+BxdVMuI+WGeZ/R6AB83xnwCAJRS74PVNLxgMcZc\nB3BdKfVNc+81xpyw6/bhnLHGmP+Xff9RAEulVGGM6eP3MLq0goVTxRis1FpCiVVj7YQ+h8wXXCWn\njc6fNeYMDsH9E5DmprJM4aGrZ6P95PcS1lha7wZaS6/fTLhIoTtFXFvhwiqk6Y05xDmD6dnmJ/rA\n5zgvWlzJ4UsTxyhLjE8ilBpPjObY9CXzmxTCM4QLp1B7ElHBa5TuoEHCJCsbH0xC2kxTJzg7qrBt\nlHPQWyItZpW1uLpscJC1KLQtRVBojdLVgql3ygUCkIApe4798wgYIAAHw+aF3k3IHBui0Doeizx8\nFulhpdRH2N/vcqXVAastfIb99iSAN8xsd/RepdSPwlbofQbAnwzc/60AfmdMqACXXLDwkz6h5Z4i\nt9ArLDJqSrhI56GlDrqlqjRC9cGBLkKIqAcfkw/r0stnUt/3SgukCQCnyPE0lnjo6lnwxB/bdE2W\n+CzpuXRRB/ocgc2ZxVjkzlRfpFApUuPgXOz1gwTJwP0xvC/qHzBu3uFUzhQosv2YcKHfQp+p/1Ko\nkKOfhPsGAIcb4sKlLF2Qx37jtRfK1i/0DoU2vvqk1fQMytYA2OEwB06qBA/ktsbLNW3n/vPOsU9+\nl9B8nCeYI7TOuTl2KpgiGDAw412eh4w5VyG0G8aY193VDswgY8w7AbxTKfUOAG8F8MP0m1LqywH8\nOIBvmGrnUguWKYoxKmm3lydKEjD85C+FyhRycSiaLGT/XR1WqAqN07U1Z5we5sgPdt6pTtFkPNOY\nj8FCzHTLoC7CCLR8Ts5zmosxwrEiWHQfNxHypDsgzCzuxGShjAHXXXSSujK9xjPfKRpjkGP+lqk2\nY+aZmEmO05hfa4zJ8TB4biq7DuBsv8Fje8qhHlutZF1rJ6ipeJrySZSH+Q4nVYIsafHHtMJRZYuI\nHec2LPn4ZtEzWcZyhmg88vu5AmDM/8dzXuYEfzzH9FkAL2V/v8R9dzfv/Uew5Yt/GACUUi8B8E8A\n/AVjzB9NPeS+YHHkhYDTLIIOaQFBwmmwySnpsTI9beXgsPLYYXMYYZrtPHQLLXiJCkzPPkUnVHgd\n8kFf+eY5rLxw4ZhOd4OkIBwLpbVjMb3x8M8x85g3BRbxiLMYlW1YsElH/pxiUjEijXh1eL76HiGz\n4dw1QyTNj2PjyIt2ADPEhUtV9tGGrTNeOc3FaZZao2xNT6gQHeY7ZyIzHm/sOCftZYsvXF9Exxb7\nfgpjTq6T884f0d3LvI+nOJyTPgzgVUqpl8MKhTcD+I47vVcp9SpjzMfcdW8C8G/d90cA/jmAHzDG\n/Ms5D7kvWGYQMYSY6UYKoZ7vg0XjkFAhxOCCge3NEVacuMbET68S8r5Lpmw8ztjgWV64DMEaR+fl\nAhuujAiIrtG+01w+Zyyn46ICxhNHOAacxjKM2DtP9Bdpr5Q3MqYN+ucKYTDGEKNmwWLo0+r1MaSt\njJhApQZxXLToZ+krnFQ6givmsNa0FeaFtmazVaaw0Nq1sR1U6vRjc+blEELF1Hu+iHCRJrK9VRya\n/7kgY0yjlHorbHSWBvAeY8xHlVJvcb8/oZR6FMBHABwC2Cml3g7gtcaYk9C9rukfU0p9GWy48b+D\njQgDrEnslQB+SCn1Q+67b3ABAkG61IKll3Hs6knwzR+rL9L7O8D8JHFmnxetB90j0D9LgVyLXsJb\nwJQhmDRnJhKdOASa2RufEy7SBHURGgOX5KdMLoDpHdD1oXkNmUHGmMTYGKYwm6zW0nThxkzLGzMT\n0nO9mdEVkrPQPd12i7URAxCNvf9QO1O5VWMUDNwQkXoAnPO9dvPTZemXrfGCA7BChQdI5IkzbWou\nxKy2utQVrju/ixdkrgAdgB5CRWjMIQpp9sC02ZS/g2lw1WefjDEfgDVV8e+eYJ+vwZq5Zt3rvv/W\nyPV/C8DfOk//Lq1gUcp4LYIzOBICValHTUn8/5jzPUYUyy7xx0J0xVkfbiHOXIAhoyL4eB43HwP2\n88znsAMRlOaTuZFxss3Yxqa/fZGxcihUgu2KdxYylfnxjjjcAXI875AobbWV7QYAoJrSweZXWGgr\nkE8xtL8PfDzCNu8LySHHWDLp3aLz1inhRPNeVZ1JmL4H0AvD532+BjrN20TKB9izQ9oLEUHxd0Sm\n0E7i+7WBrk8hvxL3dfLxyGCVMZL3hlCU75SMOf8++mKlSyxY+syPABgLwShStyDlguBMlxYfaQTy\nWmrTq/mrGq6CbNQJWaTGhsT68E6FrTY97DJO0vziT3whrcudgrn2ImHzgXEhGQrzlTUyetpGhNlJ\naHs/lyQwAkmqngkyxsG1Nk6hpDoAPozYF/qqq64eS1MhSTUOMgttstTAOhLFFhNoRCRcvNZ6DvMe\nwOuUdAcLKcAk7E+MeVHCrDQJeeEs5nBKyG/WmYtatNFi2xZ4dJngRUsyfYUFC0WSAVbDOfRzERYu\noTnmfYxVepRlFohC893LdYqUm7hP8+kSC5ZhPZZQjkCIIYYECi/IhVXdQ1/lRMIlVqODFjMJlSPP\nc40rEmR8ISSqtBeLrtqsMx9iyomDWIaES6i2h4RLkVAzksa0OKllyGx+eV3vXl5/RTCO82ZNE5yL\nVhlMeQvYnAIATLlGnl9BoW+5mixDzWROPgkRBVNQ/7nfhIrNjZXhDc0Bj6LiRemWGjgurZNYvjOO\nxhDz6ZFmws2qfIyhUGlq62yfHPpWc7EAn4k3fwFWqBxkgE5of0j/xVC40DOmNNnQnuJ4bNyUORVV\nxoVKKCH0ImSMej7kxzwrdIkFy7hz2p/4xYlZ5gHEimdx4SI38WadDUwWvpiUECpHjN9sW4seS4WQ\npGksxCzoWRzEcin6SiayUAlmGidHnfUwMBylIOJ7khTzG4WKcvXaC2iIedF6jfI8p9Neu4myeSxt\nA1SOybUNtEqRJ8onSZKfY44pI4Z1JddOkTYehoXGL/0m9K6WGl7L5W1TMMhSA0fOD7LQBrfc4eNU\nwMvPSSSNRZLxyDSJl3d8s3BzUwFQeHxlw5ALbaPE8sTgMG/tfDsIHa1Sx4GmhUtM8PK+RgWx+55b\nH3qCJlB24D7dGV1awUJ0N22oUxQC2+PPv+iC5vfxTS+JhMtFKC866Hz+LF6a+GA/XFKWKFQRkzNr\n0jhCZgnqw51SVYbBGu82ze0rzSswDM+evJcxxA4I0mDbqIEg4jRWYiDWR7qPE2kR9M66iK7K9cd2\n6upy3rOsiUzh4UXrosUMFtqG5q8Oao+wfac0Vq74bvtVLitdesFCJM0+U4WrqtLeUzaWYZ61HZT9\n+nY6CwuqF9XlTk/2BGtNChQxtm3tv+NSYdvaZ0gG3qsWGfC3HPz/7X17kCVXed/vu31v98zszGh2\nWYldJIJkLFzmkUqMIlEVk/gBtlCciFA4KC4nAaegCBCTxCkHzD/6B4eHY+QYyrIssC0/AEeEsooY\nJBSnnJTLEiiEp2SHBWSBIiFW2tHO7Mztvrfvlz/O+bq/Pn36MQ/t7Ow9v6qpubdv9+lz+nF+53sr\n6WIdpY0lU6s4tx0XlVQgSek9J3E5ixGwGLG3fxpH43oJWumrXu33NaDqyaHpemtC3Dg3xNF4ismM\nkM0YOU8bfI0MxtNqtdAu7HViKhJLWs8rfa/cwNKucw1H9SJZvhxytTHUvNKq9jpXstLkYs43ts9t\nhMmMsDyaKcllgnhgWG9jAmxMymloNc6VS/IAC9EAawnj8cR4jLkp+CtJYJVE1kWcfe6RWxhvr5jN\nLsi8Y88IArEotD1s+kV09dSaZOTl1/74LrQx0kcuZ9ZjpMuTglAAYD2tE4r7kMok4kuBoqtDStW+\npjTz+qUUVYysfkW/X6ghrArC1E7XrXClrzI5FaQSGbXeYg6kdtWuDfDuxNZZ9rijaJt7vca5iamQ\nQl+IhkA8Kj7nPEU2M3muDgJFX202a6DMDLyv52lwBACqdgagvE+yX1PJiSyN8N0nFpAeS22p4QFO\nLJprvRobghGvsI2J41wxMKlgTKp+ky15LS6ll8eTaqS+W99F+u9TYRfncNSROpas5vyxz+QyLwjE\nouAaswVZGtXE5raSxC6p+AydbeQSx7MiTgDolgA0dNbaLK3nBJPVsK/Ko0DbewRuZUIAhWNAMjSk\nIh5s66n0tUoIQiprsaRTN+SynVdtUn6vnLIvO8i3VEMR4JcSxjkjzQfIeQKKkn2ZPnyLE3eSS6fU\nGRtRk7g8Rl+5T8+E15LcV228ToZV6dIHTS5PPLZksiPnU1ujJcKzZ2QrUg6KwEkANtdYGUhpvlNN\nepFI/TPrsbcq65PfWyw88Iq24zqpuHZGg2dWBcZMz1hK/gsNc00svpdbtrkxHy657KTuuvvbTsgl\nS+sG9TbUVB9pBF1AC6iWu/W54xarUscWoX/T2xaj0n0XqH6Wl7Z0cqhfc20PaHL11BUzXQnGLR/Q\ndZ2EbMe5WT3nbI3HVmKhKLGlieupSfS4uyLw+8K9Z4LU85z0wcLQSGSyGNhxfjfHdrMwLANK5RmI\nPRKL7rc8X2LU384zHI2N9LIWD3B8IUcSkSUNn3tyKbXIf3MvpPxxhjPrcSWHnNQVeipd9MYMaaml\nLEpWPltNkvFeFjLzirkllp1kGnXtED530ya4k4P+78YSNL2oQ2eVKJNu5klc7VaFLAp4eaKWfWOQ\nbcPRDOmUsBiVROvzbjMwktVaQlb1Uartyom+LPq0EHGh5htPzb5ZGhXXtXAUsAXN9Auv+1ArmewZ\nlzYuuxA144xzYLhYqsI8+/VxL256Jlzjt1GbluPptHckKrmp3m4JYNsuAAyhUHFNJaaqVkfIkaB8\nXnTLKxOkU8IZMBZVIK/2MmtzNnAdVbJsYFRjOXBiiTHOIxvvoomjfB/TfIDMqiEN8Qys67cpILYY\nETZGs8JFvrhOqCaD1Sl+ioXR8sR6VZbjcq9DwN4wx8RCtQlIw33IXFLpiupuKtRV/LdShG/lW0k1\nk9WN6kXKc+dYmUR8iR1dcmlTZQD1SatpX5k0siOmBK02MgPmeumX+SiAdQi5GGeEYgJ0jLEyEWzJ\n9VPVFuX8XZOB67lUG4NIJEPlzjqMkXNWq/Pex9W4r6pD7p2vYFtTXEWN3CSmyNoBFuytGitS14sg\nNxbH1+/aOSy5A6iQSlOAZ9P9kEDH7FiK7XyKk0tAWfLYEIdO/ZJ5bFsmeSWs2hVFyeOCXGxaokr/\nHYLTRv6+WSX2K/aEg/H+4sdsVkbINwWMCXykApQvVFf1x9pqukGK8E0eQF1HrIMxtdQi/dOrW8mz\nJJ/b8i3pvkrAmbuy9hnJZdLwSXSVCX15gnGh7qCKtCJVDwvyVStNfU1dia8PfOSiJ5Ocp4ZYRnbi\nHMaYcVkoTafFaZpkmkiuyUFD+uCSih6XjtHwEUGaGm8/E5+RF9dWrqkma90f99roz/r6Svu7SUPi\nthsnpgpnmkaYHh8jnU6seq0kl2r+sBJi0E8iwmRWlVpgyUV7K/qkS99z1ef5mRci2G/MMbGUwYN9\n4E4AAj1x+FQD+kXVpKIT6yFudmXVdd91QrwFqxeurHydSaQsOuYOptlwXJm4W4LOXKTOuSvS2arO\nGjwpjPxnMuP6u3VuWJlYi/MntgCV06Zcw81khHil7GMxuXSsoIVcjGeYmsxEaoliYFpdNTdNrql7\nfxWa7DCuDaxiI0CVNN28dLK/JAzV7Ws3cq0m3FQegfo66TG4CxKB2OOE4CpjcaQWn7rX3Kspskwl\nG02lwqlZFY3zAZ63bNrRNhcAhRSjpZm12Ny7tQRWSptW+lNZoNg+mB1K1WzmPDNA9wJxr5jtX9r8\nCx5zSyzaQ6PP6ldP2totFqg+kE1652LSs1mUdf0X/bv7v+bS6bg/CqloW0MhdazMgJXyYY6THDHK\nYEOpPlkZZzwsyDJO8sZcaV3Xyvc/TvJabIbPJiTXJUujSvLDoq2YCkLW10rQpEoC/Flwc56AiSrq\nsJzNdRG1EuBXxbnttz1LTbFMWlLpO/FIDJGgMKgrFZjuq7sY6purrDK2DpVQRdXW0eaT31s0+5wU\nRaeQywxprtPvq37mpc3lecvAWjbAegYsDAlH4ynOZGWsVdG+B+713mvc0UGAiK4H8GswUai3M/N7\nnN/J/n4DgC0Ar2fmL9jf3g7gjTBeEL/FzLfY7R8H8AO2iTUA68z8t4hoBOB2AD8Ewxl3MPN/bOvf\ngRILEf0CgF8BcCkzn7bb3gngX8L4/v08M99tt78UwO8AWIRJ+fx2ZmYiSgDcAeClAJ4E8Dpmfrj7\n3NYo7VPZeODznnJTd7TtL/u5htgmQnFRWc2PZthAqUop9Nct59Rt63Fuok4uTeiaWBJnYnHPqwP/\nJI7GVYGZA8wEoj17dKLJLI2ApD65+tBEKMPRrDEHFJM5v7axuBN127natvkkWnfS79ueL5eX9txz\nF06FCkjXGNkceQtmyf5SMM5372sSsqePspDyZSZO08jGpExhpA7jMbYQlTVcRgPjbpzmVIspkgj9\ntZixnhkJZj02sS6AIS/pgw+HmFQiAB8C8EqYmvWfJ6K7mPlBtdurAFxt/64D8BsAriOiF8OQyrUA\nMgCfIaJPMfMpZn6dOsd/gql7DwA/DSBh5pcQ0RKAB4noo23z7IERCxE9F6Z28iNq2wthKpq9CMBz\nANxLRC9g5hzmwrwRwP0wxHI9gE/DkNAZZv5+IroJpibz67ALbDgqA8AvgTTlgnKhJ0ONpsnD95C7\nE6JW37m6efdFkYmhqa8yeWwmcaXuxU7RRrA+1Yr0SZNi2alqtU2fmmsnKoquujJNGXiNC3JpX9qJ\nJNEHrnSpj9eLlspvKh+au13gsy+47WuVamZX+DqS3iWVwivRo8LTaLrWuoBck43nEQDjfIoTS2Kg\nN+cSY71Wj40GjEsXzWJIyh4vRBHGuXFnl1iXOJ7hydMLpi5Oy/07X9LLPlaQvBbAKWb+JgAQ0cdg\nKj5qYrkRRrJgAPcR0RoRnQTwgwDuZ+Yte+yfAXgNgPfJgVba+ScAfky6DuAIEQ1hFvYZgLNtHTxI\nieUDAH4RwB+rbTcC+BgzpwC+RUSnAFxLRA8DWGXm+wCAiO4A8GoYYrkRYJeaZAAAHBJJREFUwM32\n+DsBfJCIyF7QRgwGVdJompw12pILNqGLXPqQiQtdw6SqQioLMkmQmM5uXKze7aSyoSK5NxF7V3Zu\nXik9jjaCbVPriN6+TaoTUtH5zSTVjs+Wknr6pfvWBrcUcdGm9VrTasC+k2mtrQ5JZTdoG1uTbUkX\nmwPKaHottWjJRlRLosb0Zbcu2t7FpKzbeQLAdj4tgjIlQ8NCZNLxJ9EMy6MZVuMcx60LnCl3HBUE\nc0lMWNgeQGJdBF3k0oS9FLx7BnE5gG+r79+BkUq69rkcwFcBvJuIngVgG0ZV9oBz7MsBfFeVKb4T\nZp59DMASgH/LzE+1dfBAiIWIbgTwKDN/iagi3l4O4D71XS7GxH52t8sx3waKkp1PA3gWgNOe874J\nwJsAYOnS48X2wnBq69Nr1cFeVjHaTuLTP/uko6Y2tF5fPheuldaYDZQ2El/7vra3zg2Ng0Ditxv5\nUt77VDc7LS7VJnX0vd66LztN4LhT7LXtpoDUncKVWtquu3Z2kAWHD0MdD6IWJG3tNqnvNNqqOjb1\ndToZYKMSIEs2azPjxOIAy6OZMugT0twY9tO8lF5MRvAykNI9x4EZ0Gfc6jjj4DgR6Qn/Nma+ba9d\nYOaHiOi9AO4BcA7AF1FPOfBPAXxUfb/W7vMcAEcB/C8iulckJh+eMWIhonsBnPD89C4AvwSjBjuv\nsDfmNgA4/oLns2tw9ZWe1Z91ugrZXyf0k8j8piSBaQOhAPWXUAyshbTh0XMvi9++NWY3qbLcAk9N\nAWE1e48n15L0YS8rOd+xmsx9fXczHrSpxNzgPN9qeieLhTbbUpdtrus8u5nkCnLZBZk3EYZO9tk2\n8Wv1a9O+Gr5ro++HlAqQ/un4pTKGxpaLsKldksguJqIZNiZRJTtCEjEmsxnW4kGRMiidmjG7rvIV\nu2UPojzPOM3M1zT89iiA56rvV9htvfZh5g8D+DAAENEvQy3arbrrNTA2a8HPAPgMM08APEFEfw7g\nGgDnn1iY+RW+7UT0EgBXARBp5QoAXyCia9F8MR5FtX6zvpByzHfsRbkExojfCZ1QUbyNit8SfxxF\nE7kAfs+pOJ5VSKGPKkWTyopVBenCXnqlvqyCwsTTrEKYDX3TRl59jPRJdPGuxKTdXncjrbSpTHyq\nLU3cfUjFhzZC78I498dW9IF7fVz7SJLkNRtT3wmuVVJpIUKpiuoLfHVdmwEnc7TH06zPNdXlENxr\n4kqaupJr+YyazA5ie5ECbdmsnnLH2MxM22uxSQFzYsmUUPa9P3o8gNECLCvbXtfC4YDweQBXE9FV\nMPPfTTCTv8ZdAN5m7S/XAXiamR8DACK6jJmfIKK/AUMiL1PHvQLAXzKz1hA9AmNv+T0iOmL3v6Wt\ng+ddFcbMXwFwmXy39pNrmPk0Ed0F4A+J6FdhxK6rAXyOmXMiOktEL4Mx3v9zAL9um7gLwL8A8BcA\nXgvgT7vsK+a8ZfS66zbaJFG0kQvgX0k22V+aHlixK5SqAPnFX/MeUOTSQ8xuqyAo55exADqfWl4c\n34SKZOG8uHqy2AkRNcV8+LzOasdqlY3jxNAHaQOpuJO/71567U6ecUuBL9/90AuD/YZPam2zFfo8\nzdzjgXa1WE0K90jzhd0wcZ0YJpZYGAtWYln11IWT9C9pXkbpn1iy5SeSKdbT6gKtdu0zrpHLfoEY\nu3aQ0bAq/7cBuBvG3fgjzPw1Inqz/f1WGAenGwCcgnE3foNq4hPWxjIB8FZmXle/3YSqGgwwHmi/\nTURfg9Ev/jYzf7mtjxdUHIu9OH8E490whRm03Im3oHQ3/rT9A4xI93vW0P8UzIXpBZ38TyZnLam4\ndhGXXDRc6UXar+yjVvs+6EnXXxa1Ti6V2Br0W0G2kUNfI2yffdpSrviKLPlQkSid7dIPVy3jU3Fs\nno2RJVVPs52WnG2c/B1y6SPJuaVydb8rz90uVF5dkJiXnewv/Sv+20WMOHz0sef5SGWovNI2zxrv\nRNEcCMHIfmeGUywMRSVGOJtJ5mObAj+qXqckMiqx9Uzyk5l7Pk6mRd0kOUeWRsg2Blg6m2GSRNiE\nmQvcOKoLBcz8JzDkobfdqj4zgLc2HPvylnZf79m2CeNy3BsHTizMfKXz/d0A3u3Z7wEAL/ZsH2OH\ngzbHUaVoEFB6UvkmBt/EpicUn2rMxU5yDukEkE3w6bndF9zXn7aVaV+JwjvJOqoq3b+dqBN80oj+\n30U2FUnFmQD1ynicm3EW2Y0tcp4gn00B1BcP7rl0f91nYbeQFXMX3PvkevBpFa/uT9P9byL6om58\nUo0nknMA/W1FvuqVcTwrXNA3Uc/1JXaY6fExYEsfmyzJwCXxDGkuxEKVmBdRk63FMIGUVuIxCVAJ\ni1GpDpSYF6CUKjIMayW49wJi3heJ5TDgwInloDCbUa2Otquq8b6kCl3k4ntRtX2gS3+rc1TpbMG+\njLXSR32eYruHKGQ8XZX2+mR+dW0jrqrIN0ZfmdumCVnbKKRN6b97D32k4uvrdDJQKV3sfpFHt9IA\nd0L1uWHvZZFRpGFZzVqfEx+5+Pqp+9WGpj7rInJuu0B/YmlbtGjvRLft4s9mST6xZOr5jPNBofKa\nzAzJTDy2lzV7ayXg1dSHAYApts4Nsbya4anUkMsoyzHKcmxBkUvAjjC3xJI7+nM3GAyovjy63rvP\n3bJLcnFT7Xetas2+4hFTJxXXgO0jPn1uTZZivwH6kUvlGrRUauyaXGJnwvW15V6XJhvFcDSr5Iaq\n9aGFVATjnJDmhHw2Rc6TxtScO7IJ9ZBa+johZGk1J1hTe33612Q7kySmbilt7+IqLm1zTc9b2zPQ\nxxnBZ3PSnyVVS3YsxZkjUxyNTYG5tRg2OWW13SSaFcb+yYwgmZQWLPGMc8b2ZePi+k6SCKPM9HNp\nIzPkku2PezLNULR9sWNuiYXVu6hJpbLCU4XAdISySyxAM7m48CXrc1eSPnVBH/he3NSZKEpSQYVc\n9D4a/QiwKnFotVVjNLZjlPdJLFoP7xuf/l6ZjHxODDZGyXd+wOQGi6L66yCFydpW+/oaNBnz+8Ln\nsaRVfzshlyaHAh+8ixX1zPjUrtI/32fvOZyFkKBQtSlyEZuLObBUZ8r1SNMIW6tZUeNlnJeVSeUP\nMFH6pQ2mfC6W7TM1zodGcj25hTSN8NTGAiaqnzphbEB/zC2xSKZR0e22kQqAwu1X0PSS+4z6sr/P\n7bXJpiPHiLFepBW9X5uU4uuDW8t+2+m+Tw2ipRvfWJsmnS67ij6PTCTSjo66l/P7irKJaqTeONXJ\nxbEzxPHMGoHNfhENgXxqP48QDYZYjWdYiPpJdD6VmO/58NWY1/u32Y00uejr27YwkH1k8eSD9vhq\nIpAmeMfYcC3cRY6Ge42bMlZIuxJJL9LL9pEpxlMqpBeg3TlD7vvxhRyFLe3KDQDAU/Fi8fwEUtkd\n5pZYBsSNE7qQiq6LvZ0bchEbjFvXXuBzSdbbi3O0EApQ15XXdOd9Iq7Vvr5yv95jHXKRFPdt7s5A\n1ajetVr3qbfE9VOnoVk5Uqb3OIM6ubilAioTkUgnjqQSJ8YzTJJQJhEjjhZNWpe8NNJGNEISZViI\nzH2XhJkaTSUSXPuLayPSfWlDkwTnu8Zd5OJu95V29rXXhEZJ1CFA3wJMYml8WFqe1BNjxv5FhZDV\nVpGayHiNjfOytIS37yo1/2psVGRXLlv15MmtSnxRFu/fFEnMGE6eGffxCw1zSyyA37XWJZX6w8nA\nchnJC9QNt00uye55m1yTNYn4HAB2oyZzIfVc5BySEFJPQnGSd7o7y35iW2iCS6K6ep9WgejA0KNx\nmS8KoAq5FIbcFgnRbChT6wupLK9MsHJkWiQ3jGgIYgZPDbEQMyIaIh6kWIvNsyBlcH22sqZJuZLt\neQcp57v20c9t7dxO/3xefuLhpaXgrn64wbRNxNNX0vF5sBVaguXSSy9rGKdscyXm9bRUh43z0lNM\nIKRS1neZYXlknpETiwPg0iketosbb+btgF6YW2Ih9T5VDdp+UpEH1fzGSNaysqa7ikmQCdZHKj4p\npcl+0Ob66a5i9YOvJ2rf+HRszGIEpFbDJ+oFWDVUHJsMuAu1J6RdcpG22qAnFJckl5ZNrRYxypb6\nckMuj0/LcfpULgI98bqkMhzNsBgZT6F4wBhQZKSVaWZqsuQZBhQhiWYmFiKJijK4TWPM0qhUv9m8\nXIU6x5VUfLYsj8ebbltLKT6ycMfadJ6m/reh6Vnskkzdib8J7rN5BlzYNJsIVJ9DsGVr/cjzcmKx\nuq8mldXYtHs2i6yLMhc5xhYixvpShseXJwXB7Af2K0DyMGBuiWW/0VazomZ07pEVuTg+q9pVutA3\n8FD3r1iZbQywidirOtkJ+tp+mtCmqkuGbALblLTSZlzW9gghlbokpjBtjlmIk2oaHO10UO5UVdt0\nOT+0natGjj3ji9zz+aRhN01OH/TZ170XjYSgqqK6WIyqWZfdMbW1OUyjIpByPeMiBYxILfGAa4GU\nguWRsbcUEf5DYD3J8MQ+aAjmDXNNLFJOVx7cpSNTrBwxUbmLVkKRCUj830V95Or7fQnu9P9WV0vP\nb256FN2OL3+T7NemypCkfiKZpVMTJLpxNsbm2RhLZ1NsIcZGYlxcN84NiyAyN47GPXcb+uT1KtpS\nFSYBY4wd58B6SkUpYzm/lgybJjEfqbiOGTPOjaSyYOvjRjFm0xxpPkCaD7Ce2mtl08aLesT1WtK1\nZNyJsPJ9B5M5gNZMwy58rttd0fu+57ZtXzlPYxob+383mZzHuXnWXHVek1NEQe5K0ts6N8SGfZfX\nM+DEYoS12BCHSbNfSi4bkwhn1f1YHuVIIrKuyyIx9yuEF1BibolFcoUBVYKZTga2uh4X5AJUPai0\nnt+N7XBXsDtZsYr3k+9F0kTlcwjQxNPm4isEA6BCKqONqQkMS/NKjfR1tWrezSpX0DTJ6HGmaVSp\nMGmy+phr7ZKKwEcuri3C50penH9GyHlqqkbaAEkmQjbbxsYkwnpm7v3W5qhS/tmXm81HKnuJxtf9\n9tlD+uRR8xJAU9BmWnVt9qGLLHySu2/c9awWJmbLqGfrxvqma+e+F5sQR5Ac60mOMysTPLaW4aoV\nxonFqIjUTyKpElqeS9LDpDlZKccQzFrcO9V9K4gZo2w+SGpuiWXgzI0yWRQvjiUXDd8DX/ymXuou\nD5udqJl8L6r28a+0nTHilXL1BqDimSb7y29CKlLPZTiZYWkjw9NJ2b4b5KnPuRsVj5C4mzVa2tSe\nYcamYV5EH6lopwFNLq4tS5OKK60ANoULT4o4lmy2jXw2RZrHWLeEJqQibq6jjWmRTdqciGqk4qLt\nurm/xfGssDctRsD2cFqTGPWx7qLGVUfp69JGSPrYtjEIfHYfv9t8N8z7VSfrrj5UftsY2HxjceFp\nuLkxwsaxFOtHpzixVKaCGQ2qRv3VOLeqMrLSqiEYtyRyQDfmmFi4iPKV5HejNC/SOmTZAGvH0ora\nSCAPtq/mfO2h7yiyJNBBiyK1yDkE7mp5lOYY2YlXjIKTNMLmStw6ybmZZEdpKa1IW1k8LOwvegXb\nVPURaA6w9Dkz+AJFC9LzZCL2uVtLGnp9jkpcSIukApTSKGACJIdRYj9PkM0Ym5MBxjlhOhlUkiSO\n0imWNjJM0giTJMJkZdjrevtqy/sg/a4nIi0dJ7SatM+iJk7ySsbgNgmgy57RRC61cTjbm1ImVSS8\nBvJsa7cYd8ZYOlu1kaVJhPTRBWxcHmPr3DbOXDbGySXjASbqMcC6nRf2lwGAGZIIBcHsB2gWcoVd\n9Igjxtqx1Hg/JTk2EkMwxy7dBlCmCVk7ltZeJK0Skv2avHmQoDbp+HTe6ZRqgYBNL79kYp6Ij33G\n5eo5ps6U33oiWF7NsIkYW/b7JDYTpbTRVyqRYMZi3A6a1Cu+VXKWdkeuu9JTV2qUQjVkrzNQTtgR\njRAPFsHbpsTP4vL3Y3F4Bssjkx13OJoVeawAIEPkJZWuKpEuwfh+A/wE7SOXYv/EnzfN3cdHKvq5\n7QqQ7JLGffE62u7iphXqQl9nAen/5tkYW6sxRmmOpQ1DMJJC5enTykXssjGMipUBRMr2QjCkUsJ4\nBnZ2I8DB3BLLcGBSaZ8Zlisc30rIuDDa7y2TWZJUiSVN/Tp1d9Lp8gzzeTlt2Oy3xUudVH/3ndeX\n0l23JeTimyjlOJ/0IU4PcZIXwZRabVPpe4PnnKBJZeg6LOj9fZKQq/6rtJnYCppx6SUU0RA0TcHj\nTQAATVPEg0WsxltYi4dFgCRQpo7ZWo0bjfVt44o90ttuUFuoJHktg0HT/kCdBHzSRRNqEqbqhw/i\nfOBTSbapl+Ucfa5XnOTFO5HFQ2zBpmPJSim8qt41WZKFXIDcJq701MwZXXhSBhFdD+DXYDp/OzO/\nx/md7O83wNRjeT0zf8H+9nYAb4S5AL/FzLfY7e8H8A9hLs43ALxB12qxhcEeBHAzM/9KW//mllhG\nA+DKFcbCtqmLPRzNCmO2wPdAN8WnFF5HcVW895GQm9qiy7Dr/iYqvKZj2lQTbqJNaUvIxV3ZutUP\ntTQhvwuprCXAuLBNmpW1K6n43KFrhOIQmntcWyLMtnY1xonpqElSuABsbwJnnjY9X30SCytHsTLa\nwEJUBkjK5A2gUrvHJwn4yt/2QWJtIHKPFiITJCrXVeKoZELuWpjoc3tLNDv3F/CTkEsaNclc9vUc\n2xQnZj5z4XG4U7gSYkV6QYxJEmHpbFYmfswYWRrhydML0nNUycVE4os7ssS7LA4vrDgWIopgim+9\nEqas8OeJ6C5mflDt9iqYQolXw1SQ/A0A1xHRi2FI5VqYC/AZIvoUM58C8FkA77SFxN4L4J0A/oNq\n81dR1sFqxdwSS0RlQJR5uOq5wNK03X1YJhTtyioPtk6sp1/KiieXx5ffZ1w2qOrWVzpqRLgvuy+7\ncTolYHNUIRfZ34Vr05BtS8uTglTEPXOcExamwNhOGlp1I9em0rZHhab7kAwZkoW3L6no84nBWpcy\nEC+/JGJENAJn6+BzRiFI2RbiwXOwMjI6+LVkWHjHFdezp4pQE4tPHei20yTpAmWQrj7WfdaazuPa\nnlx0VbrsY5CvTPAthOKPIfLng9PnqzwTDZ8Foi7eWo0rdpfCe2xjZANlxfNQjPYmA7ImlXiwWGv/\ngHEtgFPM/E0AsOWHb4SRJgQ3ArjDFvy6j4jWiOgkgB8EcD8zb9lj/wymPPH7mPkedfx9MBV5Yfd7\nNYBvATjXp4NzSyxf/8rDp1/7/J/96/N0uuMATp+nc50vHPoxfci/+dCPqwEX47jO55iet9cGnlr/\n1t2//8l/drzn7gtE9ID6fhsz32Y/Xw7g2+q378BIJRq+fS4H8FUA77alibdhVGUPoI6fA/BxACCi\nZRjJ5ZUA/n2fzs8tsTDzpefrXET0ADNfc77Odz5wMY4JCOM6TDhsY2Lm6y+APjxk1Vz3wEgfX4Tj\nDUJE74JR4fyB3XQzgA8w86Yx3XRjboklICAg4JDiUQDPVd+vsNt67cPMHwbwYQAgol+GkWZgv78e\nwE8B+HGrRgOMNPRaInofgDUAMyIaM/MHmzoYiCUgICDgcOHzAK4moqtgyOImAD/j7HMXgLdZ+8t1\nAJ5m5scAgIguY+YnrJfXawC8zG6/HsAvAvj7YoMBAGZ+uXwmopsBbLaRChCI5Xzhtu5dDh0uxjEB\nYVyHCRfjmDphvbbeBuBuGHe2jzDz14jozfb3WwH8CYz95BSMu/EbVBOfsDaWCYC3KpfiD8IEL3zW\nqrzuY+Y376aPVEo7AQEBAQEBe8fOswkGBAQEBAS0IBBLQEBAQMC+IhDLPoGIfoGImIiOq23vJKJT\nRPRXRPSTavtLiegr9rf/bNMvgIgSIvq43X4/EV15/kdS9PH9RPSXRPRlIvokEa2p3w7tuJpARNfb\n8ZwionccdH+6QETPJaL/QUQPEtHXbJoOENExIvosEX3d/j+qjtnRfTsoEFFERP+HiD5lvx/6Mc0d\nmDn87fEPxq3vbgB/DeC43fZCAF+CMYZdBZN7J7K/fQ7GE4NgUiS8ym5/C4Bb7eebAHz8AMf0EwCG\n9vN7Abz3YhhXw1gjO47vAxDb8b3woPvV0eeTAH7Ifl4B8H/tvXkfgHfY7e/Yy307wLH9OwB/COBT\n9vuhH9O8/QWJZX/wARg3Pe0JcSOAjzFzyszfgvHOuNamVVhl5vvYvAF3AHi1OuZ37ec7Afz4Qa20\nmPkeZpY8N/fB+MEDh3xcDShSZDBzBkBSZFywYObH2CYVZOYNAA/BRFbra/27qN6Dnd638w4iugLA\nPwBwu9p8qMc0jwjEskcQ0Y0AHmXmLzk/NaVUuBwqIEltrxxjJ/WnATzrGej2TvFzKJPPXUzjEjSN\n6VDAqhb/NoD7ATybbbwCgMcBPNt+3s19OwjcArNI08nJDvuY5g4hjqUHiOheACc8P70LwC/BqI0O\nHdrGxcx/bPdx0zsEXECweZw+AeDfMPNZLQgyM5OuwX2Bg4h+CsATzPy/iehHfPsctjHNKwKx9AAz\nv8K3nYheAqPb/ZJ9oa8A8AUiuhbNKRUeRalW0tuhjvkOEQ0BXALgyf0bSRVN4xI0pHe44Me1C/RJ\nkXHBgYhGMKTyB8z8X+3m7xLRSWZ+zKqEnrDbd3Pfzjf+LoB/REQ3AFgAsEpEv4/DPab5xEEbeS6m\nPwAPozTevwhVw+I30WxYvMFufyuqRu4/OsCxXA+ThvtSZ/uhHlfDWId2HFehNN6/6KD71dFngrEd\n3OJsfz+qhu737fa+HfD4fgSl8f6iGNM8/R14By6mP00s9vu7YDxV/grKKwXANTDpq78Bk0ZBMiAs\nAPgvMEbIzwH4vgMcyykY/fUX7d+tF8O4WsZ7A4xn1TdgVIEH3qeO/v4wjLPIl9U9ugHGdvXfAXwd\nwL0Aju32vh3w+DSxXBRjmqe/kNIlICAgIGBfEbzCAgICAgL2FYFYAgICAgL2FYFYAgICAgL2FYFY\nAgICAgL2FYFYAgICAgL2FYFYAi5KENHPE9FDRLTvGQOI6KdtRuEZEV2z3+0HBBx2hMj7gIsVbwHw\nCmbWOaNAREMuk2vuFl+FqRX+m3tsJyDgokQgloCLDkR0K0wK/E8T0UdgUsg83257hIh+FsB7YILw\nEgAfYubftBmXfx3AK2GCQzOYeuJ36vaZ+SF7nvMzoICAQ4ZALAEXHZj5zUR0PYAfZebTRHQzTO2O\nH2bmbSJ6E4CnmfnvEFEC4M+J6B6YDME/YPd9NkxKm48czCgCAg4vArEEzAvuYuZt+/knAPxNInqt\n/X4JgKsB/D0AH2XmHMD/I6I/PYB+BgQcegRiCZgXnFOfCcC/Zua79Q42q25AQMAeEbzCAuYRdwP4\nVzbtPIjoBUR0BMD/BPA6W3P9JIAfPchOBgQcVgSJJWAecTuAK2Fq5xCA78GUrv0kgB+Dsa08AuAv\nfAcT0T+GMfJfCuC/EdEXmfknz0O/AwIOBUJ244CABhDR78Ckbr+za9+AgIASQRUWEBAQELCvCBJL\nQEBAQMC+IkgsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7ikAsAQEBAQH7iv8PZgt3\nsC/XeNkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQZFl+1/f53XdmVmVmVVd3Tbe6p2c0M7sgLUIKKSTZ\nOMwrsIRYkMA2yJgAyQJ5jRTGgWxABtsYUISAsDEhCT0MGMk8hILgIYMUEmCEwWglrYTA2l1J7OzO\nTPd2T/WjKquyKvO+Mo//OI977s3M7h5N78xA5zeio7LzcR/n3nu+5/f6/kQpxRZbbLHFFlu8kwje\n7QPYYostttji2cOWfLbYYosttnjHsSWfLbbYYost3nFsyWeLLbbYYot3HFvy2WKLLbbY4h3Hlny2\n2GKLLbZ4x7Elny0+YxCR7xKR/+HdPo73IkTk14jI7Xf7OLbY4t3Clny2+CVDRF4TkbmInIvIiYj8\nAxG5YT9XSn1IKfUn36Vj+xoR+efvxr47x7Aw43MmIj8rIh98N49piy3eK9iSzxZvF79ZKbUDXAWO\ngG97l4/niSEi4Tuwmx834zMG/hLwAyKy9w7sd4st3tPYks8WTwVKqRz4W8Dn2PdE5K+IyJ8yrw9E\n5O+LyEREjkXkn4lIYD57TUS+WUQ+Ziyo/0NEMm87HzRWw0RE/oWIfJ732Q0R+dsicl9EHorIt4vI\nLwe+C/j3jNUx8Y7nO0Xkh0TkAvi1IvJjIvJ7ve21LCYRUSLy+0Xk34jIVET+pIi8ZI7jTER+QESS\nJxifJfCXgR7wkrf9bxKReyJyV0S+1nv/N4nIvzT7uCUif9z7LBORv2rOdyIiPyUih+azkYj8JbO9\nT4vIn3qHSHaLLd4StuSzxVOBiPSB3wF8eMNXvgm4DVwGDoH/HvC1nf5z4MvQE/P7gD9mtvsF6En7\nvwQuAd8N/KCIpGZS/fvA68ALwGcB36+U+jjwIYzVoZQae/v5ncC3ALvAk7rlvgz4QuBLgT8EfA/w\nu4AbwAeA/+xxGxCRCPi9wDnwb8zbzwEjc9xfB3yHZxVdAL8bbTH9JuC/EpGvMp/9HvO7G2ZMPgTM\nzWd/BaiBl4EvAP4js98ttnhPYUs+W7xd/F1jWZwCvwH4sxu+V6FdczeVUpVS6p+ptrDgtyulbiml\njtHkYCf0rwe+Wyn1E0qphVLqe4ECTQRfDFwD/jul1IVSKldKPY5Q/p5S6v9VSi2NtfYk+DNKqTOl\n1EeBnwN+VCn1SaXUKfDD6El+E77UjM+b5px+q/mdHZM/Ycbjh9DE9H4ApdSPKaX+P3Oc/xr4G8Cv\n9n53CXjZjMlPK6XOjPXzFcB/Y8bjHvDngK9+wvPcYot3DFvy2eLt4quMZZEB3wj8UxF5bs33/izw\nCeBHReSTIvJHOp/f8l6/jiYVgJvANxn30sRM5DfM5zeA15VS9Vs43luP/8oKjrzX8zX/33nEbz+s\nlBorpQ6UUl+qlPpH3mcPO8c+s9sSkS8RkX9i3ImnaOvmwHzv/wR+BPh+EbkjIn9GRGL0WMXAXW+s\nvhu48tZPeYstPrPYks8WTwVmBf63gQXwH6z5fKqU+ial1GcDvwX4gyLy672v3PBePw/cMa9vAd9i\nJnD7r6+U+hvms+eNS2tll5sOtfP/C6Dv/X8dcb4b+OvADwI3lFIjdAxLAIyl9D8rpT4H+PeBD6Jd\ndLfQVuGBN1ZDpdTnvjunsMUWm7Elny2eCkTjK4E94ONrPv+giLwsIoJ20S2ApfeVbxCR6yKyD/xR\n4G+a9/934EPGEhARGZhg/C7wk8Bd4FvN+5mI/CrzuyPg+hMkA/ws8NtEpC8iL6NjL+8F7ALHSqlc\nRL4YHasCQER+rYj8ChPzOkO74ZZKqbvAjwL/i4gMRSQwyRG/eu0ettjiXcSWfLZ4u/i/ROQcPQl+\nC/B7TGyki1eAf4SOa/w48BeUUv/E+/yvoyfOTwKvAn8KQCn1EeD3Ad8OnKBdd19jPlsAvxkdXH8D\nndDwO8z2/m/go8CbIvLgEcf/54ASTVbfC/y1Jz/1zyh+P/AnRGQK/I/AD3ifPYfOLDxDE/0/Rbvi\nQFtACfAx9Hj9LXSsbYst3lOQbTO5Ld5tiMhrwO/txEO22GKLf4extXy22GKLLbZ4x7Elny222GKL\nLd5xbN1uW2yxxRZbvOPYWj5bbLHFFlu841hXH/FM4OBgpF64aWrvlMn4tVagWrZfSwCBkccKQpQI\nOtGqgTLlIwqFUgqFYqmE5WMMy0D81+u/HElMsFxCXUJZoeYlqlZIJEgUQBhAGOq/cQJRykJV5LXi\nvBbKBUQBJAEkoSIU1dqvj6WChTnufNH8th8p+pEiDlJYVM2YBSEEEUu1QJnMaSEgkFB/Z7nQf8MY\nJcJS1SzUgmqh1z1ijiUQhdA+KOWV5NRLQSlhaV4Hoo8nChKkLqEsULMCCcSMQ2TGImGJ0sdjr6fy\nMrwl0P/cANSwqKEqoapRRY2q118XiQTpp5CmEGcsVMVSLQklJJAIqlxvZ6n0hY4iiBI3XoGEen91\nCXUNZQVLhVoq3I2zBFUv9WFVQl3BYqGoSkUQQNYLiDNFmAVIL4IshaTHggWzWjGrhXklLJdCGC6J\nguZe8O83ez/EgSIKhFBifT2Wtb6G9hmQwF3rpVq6a7RUwmKpr0/Y2W4oEEiAIIiEzXbtOJcVKl+g\nygWLWl9n+wiqJSyXEJjdh7EiiECiAEnMdY5CiGIIIwgi8wz6Wfyd62autyDNPWrv08UCFs1fVS5R\nS8W/vHv6QCl1eeNGnwC/Qi6pc6on+u5rTH9EKfXlb2d/73U8s+TzwgvP8ZGf/At6ggD3V9VzPRl4\n7wHQG7qX0ttDJT392ndbVjkq6VGrknwxZaFq6mVJvSyJgqbcxH8dmvrIqFOOUqvSvd5d9lHHr8P5\nKer+MYuP3WZ5nBPsZ4QHfRgOkNEQhgO4fANGWhzgtDri4ycFnziNuTaouZQtGCc1O3EKwHlVMK/b\nxu+kjJjVDQlMiohxWvO5eyWHvZfg9A7Mz5qxiTOIM2T3sBmTco6an8DZPSgKyAs4uAK9ITK8ynRx\nzEU1IQoSoiAhlIgs3CVGE1StSupl4cZgoWry+pyTQtzx9SPFKyPhUnoD3vx51Kc+xeJjuj1OeNCH\nJEYOD+DaNWT/pr42tZE/s9c3SpCo584BgNkElZ/CyRHq1l3UmxMWD2bNte/HAAT9GBn3kVduIs9/\nHtNgxsITKxhEe8SzC33dTs9gNIThFWR41Z1jJAmiFOrsLty/hbp1F3JzbKWepNSsYjmrqG9PKe6W\nnN1LOL0XcvKwJusHXH/fgr1fFpB+/iHy0g248TL18IBPX7zBT98f8No5vHEuzCrhck9xKVO8f7Tk\npWFBL9ITdBaKuycH0Zhe4Ak2VDlqfqLHqT+monL3dl6fky/axDyvA4pl+54aJ3pcduKUNOw31/rs\nLpzdQ92+i3rtiPr2lOqNqb5EVUCVB1RFQF0EROmS4UFJeJARXd9t7vvL+3BwRd9/gz13z9TLwu3f\nf5b85ywLd/Xza695lcP5KeQF6v4xnF2weDBjeZyT/eG/+zpvE+dU/PHwi5/ou1+z+McHj//Wv914\nZskHQIkgcaZvOvNXop5ey9Wle89NTPZ38xPETGaqLs0KN9cT7c6IqDdk1xCUnUijQE/4dsIB9G8U\nZmLUD10zGe64Y1QPX3OTvaSpfvBglXh2RpoYzXGO4kNeGd1inMzZSxVZtEMokXsAo2BGFupJfRPG\nac2vvASX0peQixPU/Ew/oGcXkESQFZDmqCrXBF2XqNkETs9Q0wuY6PNieoFc3kfVJbu7h2TZbjMW\nswkqv6N/F2dEvSFxbw/iHTdRhxIRBTN6UcGkNIQd9PTk3b2uswoB1NED/df/0F9QxBkqLll79jsj\n5HIBeUlkCIfE/M0SPeaX95HD968QD8BFfcKgv0dUX4H+GMlGqEFzbew1UCKakDDyBbmZNEuzvaIg\nzAvCgz7R9Rnp7SnDu3MunUbEacXwc3vEHzhEXrnpFh4P56/yc8c9ZmYTV3pwESme31G8Mqp5aVhw\nKdvz7oO0uRZV3nbGxxlS6XtSiVAv9PHVy5IuslDIQsVJsWwR0KSMSIMlUFAvSxaqJg36ZKNr+n5H\n39dx/y7Bvn7Wkpkh31x7GCQLCQ8OkOfGkKXI7kBbeXuHyO4hVRyCWj2mLnwicguAOGvukx2AU32v\nZilhEhPY67/FU8UzSz7OTWYJyGIdAfkwZKMwq39/ki0rRwbq8j4MrxD39oiJIL9wVpXyrS1rGZjJ\nRiWRXiXHmbYUol7zfYvhgND89YmH3nDleC+lN0jDh2Th7grxZcmhsbwmjoCs1eNbSZfSG5p4pkeO\neNTpmZ4EyhqwRGRWjWY81GTmrIbwYAZ5geQFajYhGl7ZSFRyeIAaDvTEko2I44wouWQmywlaQcZY\njZb4N11nQ0Aka251S5wA9dxNhESJ3uZoiJR1c65pqrczGmpC2T1kImcbhXwu6hNGo2vaEjRW4dpj\n9Aioa3WLfX16RnjlgvDalOjOKb3jHMlCog9cQ15+Adm/SdUfcFrc4lPTmJMi4MLjQ594DnuH9BZR\nYw3WD/VrbwElu4fQN2Lg5m+tSmpVOqK1Vo+1nKwVGwUzzqtmkQCagIqltrTGyZQsPKeOS3YGl/TE\nbwggHJ6tHyRLOGbsrdWqBntUT0A665Avpvq5SHp6nK1lvAOkOZKlzaJgi6eOZ5d81NKtfJSInpTt\nxN0lINCuJvOZJYzuJKvyBZKdEj1/AUWB7J6hDq40FlSHbJR9nZfOzQJ4pHKKMvGEFrK0+ZtELubg\nVpGdDMbdcN/s/6RxPQHMT9gdXiWShCiYcH9e8dKwMO6RXece4eJEuyWsS+L0TB9zXqKyQh9HUTQT\nteeuWDzQ+1P5wt1sYlf1Huks7pyyNBNqOJkhz42RswtH4gJkyS6gLba8PicLd6G40NvKGzeLQ1lB\nEqOOHkCWtMZO0tT74gT6Yz3RWAKyY355H0lMLCVN9bEYq3ZS+fqi63FaHZGGfSJzr22CJaBNRKqG\nJ4ixOqNDj/xffBHZv8k8rLkoj7h9seDORUrfDPYgAlC8PKp4cbdiEO/RC3ZQk9dbbibstQNkdIEa\nnsLeoZ7kjasQ1VhsNSU7cdoQjiTOgsrCXdJwyk484/68cq7SWa3jbvM6oBcteY6JviT9XeL4piag\n2aQ5aXsN4qxxkfbHzhrWA7OeeKIgbbneuliomlAi7ZUIE/38sKfdxR7k8r6+7k8BQQC9/hPmeE2f\nyi7f03hmyQeMX9jcC84qeBQBPQHEN9Gz1D04KyhrJE3bi2YzWTpSgVXiSSJNYHYlCDqmAHrl6pOL\nO1Hv+DuTm6pLetmIXv86g+i8ccGUcyiMtWZdbd0JPmvOy03mWQp5SdCPtfvLzIKShc3Y2HMzlpPK\nCudKBJBxX29nOGidv51wQonIoh29cKgf6PF4FB5FPB65W5endcWqSE9KbqU9vEplA8aqZBDp1juP\nmuR8+HEeF2M0FpGbTOOm75vdbhSkxPFV6O2heiewc4YMB5Cm2kIx34mChDS44KWR/p2N5/WiJdcH\nIWmoLRgl0lh3dizKulnU2AUNaOv07C7S2yMGYuMK3Yku6TGz5+K5juOoRxz32U32GSU6RnRRaeu6\nWAbMa/0vX9RgCChKLum4jR+Hg8bd52I5560xte7sdXCubtrfsQQqpXlWFs0zI7299rVnAkO2+Azg\nGSYfpW9omxQTeDdll4D8+I8HSVPUWJvlIbCcVU0cZtfEYLKR+627oWPz0BcFkusHXWXGCvLdCzaQ\nbwnFTLKSptpq8nF6Bpxp19dbWalZd0t+Si8bAbWOv5jPrMunBd/yMsdj3VFSFM5V4bfPbMWnLCn3\nx7CT64n07MK5XOTyfhOgNxORSnrUCz25ueuklL4266we8GI0HdLxLRnPvWkD6gBRsofWSNXQk19j\nncYzY3HFmZuQ299tw5FOOXfuLom0u2edS65LaEp0LqBEPVRcQtqORcbEDKI9LvdKLx6zMO6wnkts\nAe1u6vX2IOo1i4s0Rawlbl1b7mDKxiIwt6KY367EPPMCZccWiOKMnd6Q3d41BjszHuYnpEE7KWGh\nan1M8Q7Cnjsvl3yyWL2+dpH0VuA8AsaSV1Wuk1G66I+Ryntm38Lic4snxzNLPjbmY1ej1gpybjiP\ngNh0AyaRnjwsAfWbmA+jIfSGLgMnSvYQNfZWifahz1sk1IopmCC1qLFnIZ06q6kF68abXqwcZuu7\n62IfaBeOsm1qukHvzu98i80Rj804qufaR56mkJ0RWQvouXETn/JdiXEGe1lDQuBiPZZ0QE+YPrJw\ntx3vyTdMEFmySjr2+LzYgZ/JBbi4Rr0sGUTj1grbZbGBu07inU/MmgC1RzoubhiXOtYERCY5Re+z\nPdn6riH9xrxNDgBVThxnDKLm/a5VYM+tViUq2dWB9iprk9AObWt7Q0xNQduFbF2xPnyLc3fAzo2X\nyYbP8zC/xUnRpEJbsoyClMizBF1yQ8dlGQWpHmPPveyTv0U3E5Uq1+7j2QTuH+vnxRKQJTxzHaKk\n14zPI2KKbwUSCNnW7ebwTJNPN0OJJW03nHXHoN1Ta+EREHnhsqBsWu20fuj8y5EkRHFKHI+bhz4/\nNZaQWTmaSdFm8FxUR4QSsTu8qo8hzSExD/zUi3d040atc8W489ruJwdLNpsmcNC/9SwIN6HbxABz\nvJHtAp3ecxlEMkSPixef0oPsrVyjpGWBNKve9U9hJAlUZjVebuglZ4/Zc/O5/ds4gonf5IspxVLH\nkkAH023acBrc5/rOSMfAqgXq+HXU7bt6LHbPUH6CSNWJGRmo+YkjHWclpLk+1/mJI6AuyVrUqnSk\n5tzBa9ALdjxCvmjF+PwMzHwxdZN9i4Ty02ZjfkzIjLOzuL17zqaDq1nlstO6CPYzwukF0Ysv8tz+\nTWcF+cgX0yam5KXZ18sSQlxcKSbWBGJhkhVWSNN73SKd0zPUm5PmPG4UcPkG0ttrCJqiNT5bPH08\ns+QTELRcEYBzw0VB2krD1B+ah3jDKmglfvMIVFQuw8bFFywJmVqYioqL+oRJMdXZRJLQ27/ZrDjt\nhLvJ5bQOedmK07R+/yji8T/3icvUFcnwKvPlORflA9Kwz46pM6IomtWxb3X4AWT7f+Pbr4x7y3e1\nPMqvvw7Sj13sTNJ0lXSgvX8PUZBQL0uyUIAl1DpmEklCXC3aSSNZqq9DUazG5nysu2fyohn7vraI\n/aSKdVDQWhA9Et26pqhxVYK1LMomUcCSEDRWUJU3iTXd++xx90v32GeV3oYZC52Y0NQX2feiIF2p\nkXO1ROFq/OaxqPImS7Nzry9nFWFu3LbGtV4vjt1iUV/+4i3ff1s8GZ5Z8hEJ175fLGdu1dV6MDGr\n1/4YmKw8jKoodOZbVujsKPRksTO61tqe23/ZSQywk4OZEOtl0aqlqFVJRUWcjVA7Ng130Px+javM\njwutdT2t+a06WtP6xiZCeNsVLyBNlbcCPK1YzL1j7XazsR77na6F0wkkW9iVvPLcUnY86A90lhQg\nSUToWXauDqRLOm4DpT7Geo5UOb3+2GVI2f0MbMjIWDyAcRMeInbMPBepdd35Malmf9719hcPRQFM\nXJxshVQscZmxUiKQ9PS/TXCft2NW9bKgqO+54tBxaohuiXbreWOzUkawcV8xksSE/cYC6iLox0g/\n1rG84RU3yVvoRIl+Y7XFu1zUbavovOrUCA32Wp/bmFzX5anqOTy45x1vpIuPszPCvNSvjcvYxvvs\norTr7nu7CALo9baKZhbPLvkoxU50ifP6oXvPmfiB939VtmsBqryxcPxAvK3zAdT0wrkBJOoRW/+8\nl+XUgl/kxqr/Ol8osqimXhZ6W3Yi606oNjZla0S6+/K/v26lXuVIEqFuvbn6mTuYYpW8aLKttDss\n14WjU51yrWM+Z5qUd0b6B/0x8+X5invFj1lk4S7q9A7Upa738RICwMRG4pR436Tp+vGcdYTjnadf\nWGxjL3FvjzhuV/cDOp3b25bsHja1V72hc909LG7pc4jHOiZF476VqtcE5/PCLQzkDJNN1RDQihKD\nzWK0FqU9/zWLmnWf22yzfKGYlBHzOmZWCy8Np4xTXf9l3XqqnjfWXVm7UgLZVGiZNAW4loT8hQrQ\nFOUemDR1c3/b2iBHPLMJqp4Ts0cYRNTo45/XAZMyYpzU7HFOHZRNrNZbkFhicgoNVa4VFO4ft7ND\nk0gTYVnrVPrdQ3N917utnzSbcYu3hmeWfFgukHLOTnKJfDE1K8Pmn3UH2AcgkoTMBmkxac2YFOei\ngLJi8WCmV3mgJ8Dz09UCxi68QLUlLFvM56Ne6ip/JeJUDNa5rcBYVb5ckEHrGDZMzLbYT90/Xo0j\neW47ZZMkOoiCFHX+QBPzZMryONfujTcnegICiBLtpqsn7txsjCUazEiDPlGQ6sJWI9GjdvQEHPvp\nznQIyIshdcd7JZZhXYJeMoaaHjVxKOt2sgsMW01vEiFsirMl0dP5q3z0JGFeZ7w0POXqQE+ENYWW\ncfEPpqydtanAG8dJO8vQj6+McldUCXDuxRIt0XWRL6YUC1trE/MwDykWAbMaV4D60nDKpSzS7qwq\nbxYvppBYTWbamjEWja3230hGw8H67MLR0E3yjjS7xDM9cou7ndE1Fqo2xar62AGK5ZJxoseloJE9\ncl6CCEc+anqkYzxvTpB+jMoLTToWl/ddsoGtY+riaVs/WzR4pslHzU+QONPulkXHv9xJ71wE+mmN\ngrSxPkZmcsoLHWydVWAeSjc5m5RY5fndwZscOxpp/gosChKysHlQ3QrVFMTZhyZfTJ07JQoSXdSY\nJUa7qrEkuhZVy41lVnc2riRZqrXGNiQxOHg+fCfdY1fspQ1E1yxnlVNtkeFVivqepy2nHU7FMjDW\nj9FFq+dNfIVTPTazCbGZ8FuHQUU8bLpF++cqSmlCtfpdbpsdxFmbdFqFl0PgCLWTu0lUJT1OqyPu\nXlzw6lnGvzoOuajgpOjxclnw4u45g7iTlVYYq8ePofk1NmuKkd3v6jmwx3n9kIf5CfM6YC9VbsVv\n049rVXJRn5DX57w5D7l9nnJSNO6eC0M+tg7IxrPU/KRxtxUFnF24RAKLJXg1XH5NW9JWgVhjhap6\njlQZcZyBIcy4WqDO7zakVxQwP0OGV0mDPjBlVoshTZsRFAGFictp2Oc2CkqXlk6Vo07PHHmGSay9\nEraUwbgA/YVY15qC9anzW7x9PLvko/xUz8LUGqgVoU2AeV3Riwp24rJZrVk5FEzFvtUAS2IY766V\nAlmLjivMF24EyCK9irOTi8300SnNey3fv3VjPA5r61Bs3cTFiSs+lMv7KD+w3Ml4c/U6dhtWKDOy\nWWZaF2uJFfuMoDfU51ifr4z19UHIKDlsamh8pKkmb6/o0GVGLVeDwqJUm2z7YyTOmnqVtEP6dmFg\nsu6c1t9w0Kp9senv+WJKYYjnYyc97ueQhdpx1o9MkkKQsBNdQi70PiUbofbM2PnZgjbt28LVgnnW\nj9HtmxtrZt19qhMiTojjjFFyqGMj0YxxMl35fi9acinbY3e5jzo/aVyC56crcR6t3BGuWjvGypHU\nFAT718qH5+ZU8zOdjp6NzLZPWYEZ+yzZ5VJWMq9P6UdKu92MRqEmpgbGmasXXCaeKvs34UbhwpHr\n6sd8j4HFZ8rSCQTSdCvWY/EMk0/bxq6XpdOi0iKIbeiqbE1CTpfKCCOqONOxEn9VZUmnt7eyrRWY\nCbxLPBYrxGNW8DZG4GdIWevDKfZ6D76YB23dw2ULIFuTQZauVwewqcuWEMzvWwSQpsjhAZF12wwH\nzuefL6YrYqaXe/EK8UjUQ+2MXEqyRD2XFn1RTRjE4/a5dERDuzJDegyMUoBVat6E3eYzVc9dXGdu\nSKdeltyfV7x6lnLf7HYQwSBSjNOa53oLBoZ4VH6q3XVoAiIboSzZbFiYKEuCxoqUbEQVhxT1mXEx\niSG41LmunAVh9teLMzJDQpasfQULdXqEqu63XXxnTWab6lg94LndnhsjN642ROPXxXXhXJdmH1aI\ntuv67Y816Xoegizc5XJvxl5aOtLxCWYFnloBcYY8/3kuztjEdjbjcbI8Wzw9PLvkY2BX0edVwcNc\nP0iXvPuzS0Q6+BkwXpywSGsG/b1Gl2o0aeo9enutVVVLydqH5zrzRRub/a8hntnETRaWgKK4SQ/3\niceu9O1UL52VXlseZb5yfDIaNtltfr0MrBQ6RpI0pB5nOrA77hP2K73q7A31BFrOXAAZ4OpgwCg+\ndBZCd3z0xhPojzXx1FqqJQpmTf2HJKj5ndWJfN1kY0noMbDjVKuBtnSKB9TL0snEPMxjbl+0LYrL\nGVzrVwxi3ZpATX9BWxPWXWfH1VhQsBpq0G7CcetaqKRHXj9sZUBmobgWBVx4LSzStJnco0SrGVS1\nlr+Zfxoe3GNpasS6xcrOJViuz1wDkBcO9fW8fKP9wbpWJCZjTtLUy8Q0CwxfRNePfXY0Cm0SiiUd\ndX5HW1Cbij9NnZw7Xq+IdOX4HoP3apq1iHw58OfReaZ/USn1rZ3PxXz+FcAM+Bql1M94n4fAR4BP\nK6U+aN77s8BvBkrgVeBrlVIT89k3A18HLID/Win1I2/3HJ5d8rHN2dBZMpMy4s5FRD/SBHMpW7h+\nJ74UyLwOeJiHPIxCrvUvuNzTGVq9/ZtgpXQ815CtV3Erzs5kWJmalmI58yq9k7YFU85R8wdrNNZO\nnYsijsfOj643nDcBZGgSHypTNBdnbdLZpP+WRC51fMWPvwG6CNIIXx4e6AltpAm5XhacVwWzOmWc\nwPWdEbvhPurha1rhGlbqcawFWVFRLHUA/c4sBiquDupmjGz6dJSspix3JVs83TRou1pcllg9bfUS\n0oST6OLTReAsHotBBNcGFZd7sc7UO7sLD+7pyffsAnWtWX3Pw5rCFBB3LVE34Rmdt0gSl2AANr4h\nJiZozj0/dXEqksIpdjtXl+kF5Yu4gm1V0Pdqoza7nIJ+jE88LSHUKtdFqtZq6aRqK1uy392+9RZk\nqbZQOhaotv38AAAgAElEQVRUHGdEYdImHXsuGyC7Z3pRZsd6eU69OG6Ecp/A+vlM4C0pHDxqO5o4\nvgP4DcBt4KdE5AeVUh/zvvYbgVfMvy8BvtP8tfgDwMdpK9f9Q+CblVK1iPxp4JuBPywinwN8NfC5\nwDXgH4nI+1S3o+ZbxLNLPmbFL+WcNOwzTqZcG+iH/VK2IA2Wzr8MMCm033yOVuTtR8r59ZvJYr0P\neS3WuB1slp1PPJw2D1wrAA36gTX6U1JlEIerLrWOqKkmmrnW6OqqNvjJD/Z11naldfHIWJZRY5Ak\ncoWUvQpu7rzMTnyLUXLdSNX8q3YSwMjbhtmHSnpE6B5F4c5D9lLtdtuJLukxOrunJ1+TleayAb1x\nXteobp22nxs6SVZVMDxc9i3k0LYLqEnDkUlbbsZXFQV86lNw+RQu36A3vLraR8eNf9S6NxR61V8v\nC9OyICELz3ViiSQQG9vJ19zz081t6n2aopjqOJwlHz+OU6662OzwSD/WrrZ1Ks/+AqbbIsPPAt2Q\nIefaFpg4nLME81N3//p9pNTRA5eFF3725bWp/3ocM9e4MF8oduJZq5ndkyCSZL1F/u7ii4FPKKU+\nCSAi3w98JeCTz1cC36eUUsCHRWQsIleVUndF5Drwm4BvAf6g/YFS6ke9338Y+E+8bX2/UqoAPiUi\nnzDH8ONv5yTedfLpmn8isg/8TeAF4DXgtyulTsx315p+IvKFwF8BesAPAX/ADPpmLJVeQfVOyEbX\nXGATaAU1bRprKBHFQjczs5Lw43RXu8UkcdpdVLmzLCJJVlWzOya//U6tylazt16wo2tc7t9aJR2L\nvDDNr7xtWXiV8K02CtCqBdoIO/nZWMC6IHKXPM2EHvfHq03c/Ey/ixMO4gPU0SdRdkLxC2KzR1tW\nO9GlRurmzZ9v9xgCXQB6cAVleNF3ObprYmbVdZaPa7IWJi6mkkVaeicNlqZFQOOO7UfNmV7uxU2t\nU5WvXDd1/9hYQWdEts7Ijqff9dVTgZA4IwaiZLex2iLcvalEmtojez90xy9N9Rq3KBAgmFXrCcEW\nFHeKR6UfN6nyoK1wqwnnkQ5r2moszb5c590ubMbf6ZleeGyIG9nuovUbp9S3z1nOapJZRfTyAYx3\n29t7EqyLO3mwxON0/N47+Czglvf/27Stmk3f+SzgLvC/AX8I2CynAf8Feh622/rwmm29Lbzr5MOq\n+fdHgH+slPpWEfkj5v+PM/2+E/h9wE+gyefLgR9+5F6V0g/6/Azp7ZHFOrBps9mycFffePUdAHaH\nV3WxaXDCTqwnWfc9G18xk/zKZAdt4vEeLvsdN+FZ4jl+XbdyXuNeaPnpvWJJP57TEkdt9fDxrCh/\nhbwOj3FPtIZThLzW2lxRaNyL9bxlvbjv5qdw9xdbhOFqipJYH1NXfNQ//3JONDc1QEary052LiBe\n1nA5h+GVRuyUZrx92ZS1igR2CIiJg5goSFvdVP120TYuqC1h3QeJ/MTTWPMC2FnqrCCnTt7V5rt/\n7DKzlJeNJzRuqK6qs0p6moDWZY/5Y7c7QGEEKdak0atZhfhFooaEGO+2M9p8vTSTlm2vg5ppa2dx\nnLN4kFNXAVCSmgQG5+azyBsldGe9dvXk7h2zeDBrtROvy5j96oxeviB+XwVXvBoeg7YgadI8a5sS\nFvzfGYva6vi9XbxFhYMDEfmI9//vUUp9z9s9BhH5IHBPKfXTIvJrNnznjwI18Nfe7v4ehXeVfDaY\nf18J/Brz+nuBHwP+MBtMPxF5DRgqpT5stvl9wFfxOPIBvdoyQfk4vsogGreDmp4rR9UlcTZi3L/i\nKvOjIG3aQHtxE7/7YUsd2/vrJkTzeRSksITeItKNvu6+gTIFckDLJ+9SvNcqVDewBKSr65u+PI7Q\nbCC4qzTtw3fB+SgKnZlk4lw2WcKliCe7jfVTl6tdUL3J1mZU2RUymVFDsCnQcWbiXidru5/aZn4L\n40qKZhXhNa899vDKyuFvbGtu4Wujge5R0983GWO6/Xi+qFu1JtZK0vJCGyY3Twlj2RHktAH+cD/T\nDQmtQvrlfVcrZhW04zhbbR8+2GtrBfrwrq27Lt6x2Oug67FmuqeSRZY06gDQFOeeHLWup38dLOnM\nThPyaUiUKHp5Te/BhPA4J7q+2xRk2/3bY7Nacp5waX17SvXGlLMHCdMHPY5u1xTFkqrosZ/P2Zkd\nkbyvQl44ZB386wR04pq9VhzQuruxxHNvc3zpM4gHSqkv2vDZpwE/2+O6ee9JvvMfA79FRL4CyICh\niPxVpdTvAhCRrwE+CPx6z3v0JPt7y3i3LZ915t+hUsouNd4E7N20yfSrzOvu+ysQka8Hvh7g+cs7\n676i4QXqASeIqKIEYeyI4qmgyl2tThSksFh4K+bSTUi2FNO+b0nIvue0wdYQSFco0p2TdU/4K/O3\nQkB2+8bqsYrQRKYYN94gK7OGeB4JS+7d2FdeNIWs+QI1q13zOspKZ+kVRjRynYjopnoO/1ztfWB+\n79QEIl3QuBF1uVpQao7LnneXeNTMtFLvL4wFUmo3lBUurUyKslHPFlPo2qrbikOtmr6JhEBf9+lF\nE/w3cZkWTEv4lk5eF/59s8aKqvKAuli/0vcLsh8HS9J1pbdXzqEo9LxYzqEqAlfIHL4Vod0NsMkr\nVqWj+sV3hXwehZ8CXhGRF9Ek8NXA7+x85weBbzTxoC8BTs28+s3mH8by+W894vly9Hz8q5VSs862\n/rqI/K9or9MrwE++3ZN418jnScw/pZQSkScVi34sjNn6PQBf9Mrl1nZdMFqVjYJBnJmsIW0VrKvZ\ncdYFTYxjXQGbnQyci8z7zgriTD/s411C+1B39bLshJamTSdTWC/l04nxWAXuVjW611itC7u97mpe\nenuu7cOkmDIpI57r6QQY24NGwKVJg7fqNpOE2N1lKaE9JitAacfYKhP4mX5eFX1XIjbox9pqsO67\ndZ1kaaRTWm3UO9fI3STWfahUS87GT3128N1thiCdy8pM+DKE0Hcv+QTlFymvw/ys6QVk3Yjeyr2m\n0IMSRkT9a64NRAt54Vxkm1KqN8K6fc3xiU2ZPj0jRBelqn5NXC2piiV12VyhoB81QqPjflsZwXZn\n7bSaD02xctCfEsVTojQh6cWUc7h0o2L8/JL4fXuE10baXbkzckKhNi0fYI9zN+Nlgz1XiOy3sYiC\nFPKLRpvwzinVG0+nuY4Ej9aDfVKYbLRvBH4EfaX/slLqoyLyIfP5d6HDD18BfAKdav21T7DpbwdS\n4B/qTG0+rJT6kNn2D6ATGmrgG95uphu8u5bPr2KN+QcceVkZVwErSbvJ9Pu0ed19/8lg6goUVtzS\nTJpGP83CFgl2NaBc4yk8y2RN1lsrBuN9r5v6G8c7erI0PXNUl3Qs7Ao6KxpfOWj1Y99qs+2SwbXf\nXkle8Dt6+gTrZYlptMl3vphyUT7g/ryiWOpbKV8ooqBsKtB9Yo4zGNnMJm8l7RNg10XmB7M7kDRF\n5YVTUnCB8b7XinwNufvj3Wog6LdRt/vojAWsFtRuJKCydrGosJPG7NxpPt5KLcpM15TpfklXm8QV\nP5MPqBclF1Iz3j3Urk/QY9khnq6ETtiPjYXdkf9Zd6wHnhoEOplhOauIZsYNmijzkyXST5r07sOD\n9rU39Tmu99FsoolodwDZsZushl6nteFBSXR9rInnxnONQnUcclGfGG04O+51i4C0rFbbUookQeV3\n9BjdO6a+rV197zUopX4ITTD+e9/lvVbANzxmGz+GDmvY/7/8iO9+Czo88tTwrpGPUmqt+WcKnX4P\n8K3m798zP1lr+imlFiJyJiJfik44+N3At72lgzExC7+jonMZxaWLOzwyAO8Fx5vixGYSeNQE14VV\nTWA4aDKg1rhuKKvVYG33ePwUXgvTAM89+BsKY1fSkj3Y+pc35yEQOPmWNAjYiTfoYdljsq4kaBOf\nqRtxEjiwkXgcrPLC2LOArNXjT5j+gkBt7mALPNE1ioldJmMoUaOIblHlqKLR/FOTGfKcsXpGQ7h2\nrSmE9I5NlNqcXdUVG7WKAVEPMZZlV+X57sUFkzLiA/sRO/XQ3QtWbfwtY5NieJxBX9+HYV6a866J\n0yV1ERClS6J4SdCPdcbblf2WtJBtSTFfnpONrulrkI2cu1UAspS4HyNZyLivXbzR9THRyweayIx4\nqRrskdcPyetzJmXkREnBCpNOGafrO6RKOUfNJqj7x9RvnFLcLZk+eArmyhYreLdjPuvwrcAPiMjX\nAa8Dvx3gMabf76dJtf5hniTZoAO/f06+mEK4awQ8nwxrLRt/+10XD+tb/zpRRFMn02pSZwjIThpi\nV6fQWBJFeyW3EZZ4dkattgC2MNYmENgxacZGH43O9god6cxqfS7jRH83DftGpt9D1/3lkY5uRnfb\nNaPTmYbzJz+fLEGsnL+1eqy7tOOGdO6pNQQErJCQOru7VhGhm7btlFM9srfxKAtHPPs3W11Fi/IB\n55UWyxyMxuyGN3WR6poaL5chl6XaqjT3aTTYI5KEYjljUky5O0v4xGmPezn0oinvH10iq0udIfhL\nIZ6VAViVBlJ7IDcKolKfd3x6wdysHYJ+RLCfIeO+divuHeptuOaJWhy3iGZarbu/S8xYyyHFGZId\noYAo0datmlVEz4808VhXrVHB8NGLlt7iSF+sSTFlJ05ZBLWz0l13XBOnWxznzE4jTo+fToBXBOL0\naQWL/+3He4J8fPNPKfUQ+PUbvrfW9FNKfQT4wFvesXXLxLq5Vb5QZJSmm2VBlOy23C7WRQar9SF+\nG4NWnY+BKNVIz/jfw5vE8FbdNuZkFQZ2B84HLn7TtHUqwuZ43d9NLhx/cnbWX5t4WkrfHi73YqNK\n3SYUnX68aIozbazEr2mxGWxGYmZupIWg6aEU98dwNl9b2OreOz1brSeCtaKnPmzCSKt1hRFM7iYh\nqFd/Uruorp0hh+9fP460f6cGezoes3tGeG2kYxzjvo5HHFxB9m86hQPfWtqJU02+0aVGLsemksNK\n2+qgH5u41kQnw6ix68KrG8VpReh+1MTiZPcQNTxaX2+Dl1U53n2kQjVRAqNrKBprq14WZIMXmrTw\nJAaOiOIpQT/ScZnPvqzH4erz+liSHtP6oWv9UCxD0uCipdadJbv6XtnJ3fV2sdDhYMW9moW7rg/X\nIJ7yXE8XmTYZb82izzaOs5mrqp67OFzQj4nTOb3ekyVGbPHW8J4gn3cbSoSFqo14aCcwaUQ7a1Wu\nzHJ+4ajzU8OqjA2spPE6xFoA001efq2JTTywyFLdvTTtuJN82P/7VoZtMtclIuvuiFf7mTyKeMbp\nrntox0nlBFlBW0T5oiaL9GQUB3ErkO8SL0wnU99NlIZrJsR152eJK9bp25JHmpjtdzyrZ53L1LdY\n3MRp2krvRJcAvQhQt/8V6qOfoH7jlOjlB/CBXBOQ2VbXtWivYb6YkpnGbwIwvtAT7t6hJp7leUtO\nyT//lmLD/eNWNX83M076EalNV44ziHrO+rHX6aXhlEm5IIt2NOkGsT6O57zala5o7LrMNo947KLh\nYaFrGP3zuAgmjIaHxC/2tJssSwj27zfSPNevalVpa+1URy33LegFzEmxbD2HPZsEVOWtWGirQ66N\nE/XHTsEgMgXJvmCvL2Pli61SdmSm0HGqp5EksMUqnm3yyXQmlI33TMqIXrQkX9REgW7eli+mG7We\nWjU+vtBhnDXZSNUj7txOsWn3PWDVkjGvbQKEhStw3dQwzq9b8Qlqjf/e1xCzxGJFQHfilEG01xTr\n9SYUywWz2rrgtItjJ9ZJB2vjXF4iw7qArxUodRpxvhVndd7i0Ai6Hrm4kKt7smKV3fHo7KdmvUvP\nEc/PfJT8X3yaiyPYOc5Jywo+t9BKyZaANiggtwhofqazCEfXtCr2cuZ6L1kMonGjauERj9VhW84q\nVztT5QFVERCnNUH/mDiJtap6nCH9dinAON1lJy7dYgFM8oxNdlhn1ayLE5rxl2xE1R/wcP4qn5pa\niyB2btdL2QI4YpCN6V19H6Qp0WioSW2NtaMTAqJWy4detHQE1Fvo+EwUpMS9PZ1Mk5zpote8aMRu\nDWzPIOddAKJ6zm7Ug/6VlnK8s3o2qI9IFhLFS3q7bzuxa4s1eHbJJ9A3u52c6mXJrE6AgDQIwE5M\noc4Ysisk8G5Wr71BSzXAw+PyxN2qtSP14dJ810y8VtrfqV2DfuAsVrLUMMWmWVuJYc3E3LhQylaw\ndpzUhnjGrm9Mrz+mDkue60202nfRrFzrZePS2qR1Z33zrcSMLtH7Y2JW3NP6IRe51nbb9TuY2viQ\n7xrqwO/z47vfrJtxJ7qEOn4d9YnXKH72iDc/GnMxCbhUVOxxRGpX3M9/Hlb4cxNqVRKNrrlrdu5N\nuLoRnJZUGkR7Wgvu7O4K8dS3p62CzboIqEuhMmMdZxdI9oDItqrePSRKeutjUf6YHlxpXtvWHzbp\nwRb0ztuJHo548lt89CTh35y2p4+LGq5kEfO64sXde5BdoXf4flT/yMV25stzCmPtnBTiZaI1cEQU\nQVEGwFSrSySXjLtviPiWLrQ1/ExHVD/LUwHsjIh6Q3aN1WX7QG1SHwEdp4qeUpxGgibzb4tnmXwM\nVD0nkj2yaIdL2Zw0WNKLlm3/O3Sq4OdtNxusj00YrO3XYutxfHKxfztuuS7p2FiBFSHNwl2d7l3O\nH5lt51xeVulg73BtkoTd9vUBpEHldOxsh1Gd79FsF3AK4OC73uomqL+ma+oTdYi0/YLM+dt9WpeJ\nKwg2Ei8kEeT3XPqulaeR/ZtrzlPHt4rFzJ2z3wwv3M/IdmfGylgS7pu6FKO+XHe6qa7bPgGapEwM\nIgt3GURaxdy2ywCTaGKzHJMIssTUtsSofk00q+mPamanEZZZokSRjAKdtjwaatLqH609V3s8VvrI\nbwPetCWvQNHO9DQqBgwHqN6QSPaIgoRL2YJJ0Uwfabg0DeoWpingDbNI8frzzCb0jGVmpYqK5aKV\njebr5IFOENiJ05ZyuSveBZ2EYZW8oVl4dD0JneQTl8W5pJGDsgRm+liFB30Wxzn90baT6WcCzy75\ndHrahKL7y2ShEAWpc4NgFG1bBZZdNeiuS8kSholr2Ifb1xATxi2LwE/7tIRgg6t+QkAX67Tjuj17\n/M/V9Aj1qU/BZIrcKIxqQ9MRtavifLkXOxKWzlhIlel+OkECLJyyszunZekm4C7h+G4P/1z8zDPp\njxFbZ90JKEdBqosnp0dtmRfQsbFuawGTymvHJV9MOS3vtfZvY04yvAqfA3GacsDPM759Tvy+PaIv\neAlufjb1/jVOTWbeL6XrZRSkLijuxkqVRIO95prb76LdPwBxvqAHLv4j/Yj08z9LN3WzmE2c9WPd\nivWyJF9qN5/r+TTYM/tvst5ckznbvuPBPSfmyXDgjmk0PASOgMIt1vRzkzCILmmJqLMHjbKFmdQV\nZ5CfEmcj4rhv4qlHQJuAQC9m0mDJ5V7srG01NS5Wv+Gdl/XH/WOdgLBDm4T6tBZwuXF9QpPgEklC\n1B8Q98f6mUhTyO6S9mPC/Ufr5W3xS8OzSz4dRJKwE6fmAeq4QTbBX2H5r70b3bparJVi97UWvgK2\nR0Dd+hQLvXpsgqW+gGarvbb9/Ph1uHMH9doRiwczorLSCtJXe2stIDu5WhJeR8B25b6u6V4Wlm51\n6ZNOXp8bift0fZIBDRnb4+o2wItnF6t6cWemSVleomwNjMkIVP2xq4UBVojH9sZx+xhehff3tJr0\n0QPkxnPIi7+CeRZxmt/izXnIODlxyuZPiqYp4B0ikzHmJz20CCjTWXvRuFNh76leyOFB+7PTM9Tw\npLWYaLLIKnrRCTtxSrGcMYjaRcNSzpsJvhNzCvZnWoECiKMeo/4hUXCy2ndqcqQlgM7NhO3kbpqF\ngUp1gWzUG3JpdIMoOCINLkyPJk08vpu3F+xovUOr6deVLMIjIesp3PPuZy+dOzd9kfwkiZqSguYZ\ntR2KdblDSrSp0PstQkQ9NRfevwt4dsknMJOZWZ1FZiJ0Uv3TO43LYR2SqFlVd1sixxlVHHJa3DIP\nfkAaXLRWiDbY3Fr9d3rLSNx2yW0KbotSjegmjcabdXeJUnpSuXOH5S+8QfGz9yhPl1oNONEFjXL1\nfdDXFeqDaNzEk6pct2e26DadiwfmXKpWPYWFLzZaL0sX75iUMeOk4nJvtpGA/HNf6bjq93fxVK0t\nXLsAQ0RycgS7h5D0OK2O+NQ0phctXQpyGvZXe7z0x8j7vwBuniK7h0yDGQ/nR9ydJdy5iBmn7YaC\nj4JdzChrUVhR12tnxPs3qeKQellwsTzxuuMetdUg/OC6lebpqlWUtS7KHF51Y65bQAj9KKBYLl07\neMARkG9FqvvHurr/jVMnEho8mBvR1xTS14m5ybh/xRDpQ5i9qoVw/SLYLoymnFNlT+5BXTLev0m4\nc0wvOuHuLGGc1I7Ue8GOXgTaAltP0685Z1PfZa81QDppWtnbWJOXYbhOlcLWWQG6xsh2KPbVvLd4\nanh2yQdacRq/pQFVI4dvH6Zuu+GW5IgVezRutvnynNP8Dm/OQx7mMZMiavnE9Qq0udEtGdmVd0tp\n2W4/6bUFTf2alK4Qpm2ilvRavYZUURiRxhoItLSKUUkAXLMyNw5e7dIm2GPYSxWTUtGPmg6wVmpH\nb1v/zUJhXuvVrR8nysLdR7uw1nVd9YRKrZIA8MgGaeem8t0ml+SLmkvZno7tlZ1sQHTNTm1ImYU+\nfv+4Ae7PK+r0HoN4vPYcWmm8VnbHKlOY84rjMbmaNq7KOCXePTSBcq/Jn7fAabU1sF1MvbGqg5L7\n84qHecpJEdCPmthMP1JkoY5ZOQvICs96xKFmNXUVkGBUx1870p/fKHTsy6qk+yocm7qhGuvEEVRR\nICNdo7Q7vKpFtjhZJZ77t1YWGfZau/YMXQIqCq24YDrg1kpn/IWhvr+tVX80P3LtMezC6Wr/hHFa\nk4Z9en5CyxZPFc8u+aQ95PD9TgOqLh4AeqXeWnn6pNOttjfSIH620Hx53hIz7EeKuWk8pltwQz8K\n0EH7xhJKg76zNGB10re9XGwWk53k3EQVX3V6X6yL+ZggdIhWDoyPc+L37SMv3YAbL1P1B5zmt1zn\n1lqVen9WBNWgFQ6OM/LF1HXXHCeV63FTLAOoIQtXV5h7qSIKQlITgHdk+4geKyrpQdJD1LghojhD\nDnJ4cA/GF417ap1Y5eH7mcgZeaUn3JeGmvxHyWHTk8mikwIfE6NEXBM7W7horzFgXk/WElCtSohD\nTSY2gcKIccr+TWc574b7LddfZX7jp/Dba5svpkSxjlGQjVB9Q0LmWs/DmofzEyZlwskaZekugTq3\nsc0ky0ukHxMe9EiYI0YQFNBtPoyyuiMcn+TXkY+9HvZ62mfp9MzVKGX9Xd1t1BLPsWktcutNV+tk\n0859rPQHAk10swkKiPdvgre4sZmqUHPYO+RofgQ1zAmY1WLKC7wU7+GqusUvBRJsFQ58PLPkswwC\nHqgHULZNcFtcmYZ9di69gGRerMOuuO1k4Fk7dkIoljqV1gptdmFrYcbm+bR+ZrfK8+G5uOw0Z5uJ\n+RIiLkg/WFXd9uETUJgXuvDxxsvUwwMe5rf41DTman/KON1tZUa1tuFlEamkB+Y4oiDhcg/nZgSv\nWDBtZzDZ9OIW6TwqBdy3RER0PCMxemZVjuoNdS2NjTN0FgUq6fGguEW9aMZTE8+VVjPAtVaeLY61\nhwLE8T470SUG8UNunzfB6HUEZNN5QZNJlOh4guqfttS+LbqZgZVpkdAI0J636oTSsK9dRIaEALeQ\nsKnyFzUMbLGmsXrSYOnuPXets5GO1xhNwdAjFJv04K7DZIYWS16FcNFqPCeb1LlzIxpqrn1cZU2M\nxxLPq7eofvHYFdYuTdsJ3aAOEvP/8KBv9Ao7JFTlqLO7xL09qPSzbF2fANmNlznc0QRULJeuXi0N\nglXLcIunimeWfMqlDsRqNCvYXrSEhdZ5W6iaNOuThdfaE5Qt8DSrRR3I1IVrk2K6Evewq0z7vjXz\ne+gJYCe6pIsL55sFNF27BHTDMJst5bLIlgU1RWvlDEb2x////k193LMJDK+0iOcTp7pY8KWht+rb\nIFGzKftuL1Xki9oVpxbLwDVds5PlTnTJyBGdtN1o1tVpxVztMdPO4KtVyUVtgt1hooUoh1dhd+KO\nrclqOiOf32kdYxQkjJLDdnFhp3lcCxsyHXeihJdH13mY33JW0JvzkOeYuDbs0CagWpVgsqpWMJto\nC7eV/kzr/mrqY2J60YJxcqKtBUNCAKflESeF8DAPKRaBIx+bjdh1eTpY6yfNdcfTvHBirdbqsdbH\n4oFZKNgWCR45hQf9VqsMhoPV+JTXqRTbc6nK6cVjTTyvfxJ16y7VLx4zf/WCKtfPTlUYUjfW3JAS\nMCKjz3uF13a75rzU3MgVmXbctkljUNZkL/0yDnd0Bt+81tZPL2pUFrpZmVs8HTyzo3pRBbx6lrqV\noHsYzfMxr4Higr30nItgoh/ueJco2WsJg+ZGl8zWiljY7K80WdKLglb1v95+wHM9IZTIaEqV61fe\nXZiJUvrjFRl9mzbacmX5LhsD2T0EIzt/Wh454vn4RLio9S3x0tC400yd01p05YZMEsVOAFC0fOk7\ncdwinlad1LoCP1tzESVN1bohlIt6wv155RI47PWJjLvHEs5JIdyZxczrjOs7Fc/1FqtW1yb4iRW2\nVbSPvIDRUGd+ZVfIFzoR4WGuV87agqRFQK3Nm4WCOwZbsAwtAqqXhbN0TgqhWIY8zENXYzNOQy5l\nDQmBtj6tasDMs3oAZ/V0O3taN6uzfrICGQ1ReUnQj116t01AmE/1RuOsJIpzgn5EeNBrSCgvm75E\ntq+SiUupdSrltlnjDJ30cHrG4sGM6o2pK65tLk1z7LPTiCguUflCt664Nlq7bZeOb+SK6tvaYo/7\nd26NlIkAACAASURBVJHhgF70Pi5le0zKKb7MT76ogcnqNn8JEFHE2dMSKZUvB/482pHxF5VS39r5\nXMznX4E2Ub9GKfUzIpIB/w/a+x4Bf0sp9T+Z3/ynwB8HfjnwxUYzExF5Afg48Atm8x9WSn3o7Z7D\nM0s+gTQuiHFSr1gnFieFuMwg0IFxXWipV+O9eAcl4tSEswh24q4SdE0aBIaElFlZNTehEmlX46+z\nNqyLz2I2ce2U/Wp2K0/Tkv6Bls6ctSAuTLHqOBGuDTTxXDa7vjtLyMJJS9nBR0zckqixbQUsdGFg\n2bJ6FqomX0zpxTtadsg2qbPn7jWyc+dqjrmKQ/L6IReVngj2UrAWqx3nRWBkgUxHVZvgMa/1Nc4i\nHcheSzzGtbZi/XhFli1Y4dL+mHqx2ulSp5prbbI06K/VgXPp5L6YrEFXay8KEvbS0kyGDTTxtNt5\nazen/72AvVSPxVqLBy8dv3v+WaLbVfR1t9PANIrrme0H/QjpJ876CQ/6WkT18KAZs0eRjoUtAO2P\ntfZcXhDmJfFxTr+6cJJC9nws+qNaH4PZN1nSbg0PLpFCbVJIzwtUPWdncI3nehPe9IZgUkZOWuq9\nAhEJge8AfgO6c/NPicgPKqU+5n3tN6LbzryC7mT6neZvAfw6pdS5iMTAPxeRH1ZKfRj4OeC3Ad+9\nZrevKqU+/2mexzNLPkmgWg9uFKQm4+y8FUj2YSd2lRs3Tn6KZCNHQlGQUi8LN9nYFOIsqsnC8xYJ\njZO65YqJox7Kd8X4bqdNCgnmtR8HcqtpSzxd68KmbXcmQz1JB25ymtXCm/OQKJgwSg5b37WJERJn\nLYmalfEKEnaCxiICKJYzPdat+NSqT73ylJIBLsoH65u2Gaz7LAuF53oL8kWTurtWp88ne3/yPTlC\n3bqryefKvo6ReZDdQ53Cu9AWhyY7VrL91rltXH0WXjdcqwPYccmFErn5difQSRzWstbJG2lrjPWx\nFPgE1CWefKGMhdqRNNpkgSdxo9CdhSyO9XfC/QwxSgwrpGOg7j+mDbXtNtsfM6nvMdi/RpyNWsKk\n9e2pi/lYfTuAZBQQXd/RxDMc6PjSsCO+28FK51YvPX0Qj0mLUxe3BFrCue8RfDHwCaXUJwFMq+yv\nRLebsfhK4PtMU7kPi8jYNunE+ilNCBOzzFFKfdxs7x05iffcqL5TCAPFc72Fe3CteySMI6DJZPJj\nM1GQ6j4z1g2TptpF0RsiVY84zoiNJQRtqfkw1nIiWVhyUqxZffbH7d5Bfo3PrG32Wz05J17qxYGc\nkkE9b00kKmonD/j9i3rREmo9QVmBSICHecg4KYiCk3bQ1ah4S9XTsYuAVjDfR3dSBLioT1qFmX4B\nqj62zbUYdpt2uzZBpDmv1d9cyvZa6sUb3W1xBnOcOrKNDSwezPSDYlfUAHu6aVlRHa3flnc8foEx\neOKpHvx+UH7rDvt9oKXRtpeWm+vFAtiJAQqKpSbEx2FFWHODpSDjPpGtoULHd1wLBtPCGi8Jwykk\ngOm11Lkfkkjf+709potjXpvOuT4otTDp858HaUqYpYQHuu5I5QvCWeUlGvQaa2tdd1jYXB+E6Y1V\nFDrlfTYh6+9yudcInj5NiEAUP7Hb7UBEPuL9/3uUUt9jXn8WcMv77DbaqvGx7jufBdw1ltNPAy8D\n36GU+oknOJ4XReRngVPgjyml/tmTnsgmPLPkEweBy0ryfe9NoFcT0LwOmsw0v8UuGL+/fumrWFtV\ngtj8jcImgykKEi0V71HNSmZZZxKKBnuuX5AysvL+RKHmJ46A3Ge+tIndpomjtPrYeNCB6Mb1OKuF\nu7METNtip/wwf9AUtFYZkaknsuSxSc3BxqWAlYK/fKFcjMhiXrcr3v2kBbtdm+btk5CdlP1j8C0N\nfaHbQq6ugVzU09lQptCy/MVjlJnoIqMebVs1z60w6iMsMlfrFODUADappHfbPtSqbL7rz1meNblR\nNcNYSNpl5GmwdZQoHBFal9uTxB2NFQQ0cR2jWK0V3V9v3JWmWBVoLCTbM8imxGcj5mHN7ekpr572\nnDBpHY/Zvf4rtSV4+YjoSlP8qvq6ONg1p7MWV3+88nw80uVmURRO51EXDE+AVcXtdxAPlFJf9JnY\nsGnC+fkiMgb+joh8QCn1c4/4yV3geaXUQxH5QuDvisjnKqUe4Ud9PJ5Z8gkJ2Q3NKukRgedZbQjI\nzhdGdHKdgvUK/Op8cBO0nSztBOImmDWTYXdbdH3ya7pJuuNcM5H4bQzsJB0FpYvPzOuANNETlCXd\nnTh1looTwOzq29ndepaOJXYfLWvQxIm6x2Bh95+F4uI1dnuiFPPHCHuu049bm1btu936Y8hP9Yo8\n0ZPlElO4aidLk6xRL0zHzWgHOGecWLfq0h23b504cuYR902Vt9K67XvRYM8ltzzuHKGxuGzyR/d4\n7FhqSZzXtN/FHxejj6d8pQKviSGYwmvTQVR6HdepCe5blYRwf435laXOgjydv8qrZxk/fyruzF/c\n1THHnqmPkp0R7A6IhgPUmxOWs0qT4HhXE8/eoU6YsK1CrMyPtXpMTVJguqD6HWZ9N50/xl3yfo/g\n08AN7//XzXtv6TtKqYmI/BPgy9HxnrVQShWYm0gp9dMi8irwPuAjm37zJHjPjeo7hvwCdfz6RgVg\nH36LgLi3h0rvrXR1dFXnm1KTDUKJqPGIZ40wKDT1NDFxQ45xhrDXtFrwxEudlZRoy0sA1aMhQCOs\nuSk2A5BRkoWq9b7VurNwWVHmGGxKs+2JZC0Ou8LvpnpbazAO4rXuyYG1EL2VfKsWZ9Gsznv9MdNO\nsN92o/XPawXOLTl3xO2ncoupapcs1cdbVjrmc/2qLuDMIlgWzjqxBGQJFNqk48MmXawjZj9BpBWr\nq3Ko50TDg5Z70/UECtok1BWHtZqFLR22ixNU/pp2G3utB4AmO+1yqqVlrFo4rPT/sdaOhavPMbpw\nKl+gZjWqv2gKQY3VI7sDJBsxrR+uNC3sRY2rm4VHEqYIlrwk7FeN5bUzwvWnsmNoXc6nZ00xbKKb\n74mxwGTc1yRqEh6qTvt4WLUW3wP4KeAVEXkRTShfDfzOznd+EPhGEw/6EuBUKXVXRC4DlSGeHjpp\n4U8/amfmN8dKqYWIfDY6ieGTb/cknlnyUdM56id/El45Mrpmj9bm0q6hKXG8v1bLzfVCeVT6roG1\nfFouk+7vNq3MDQE5t1GceQWIptg00UKhMvMSpuLVbqXdY/Jf+xMVtFeDyhCcTzzdCc9qw6n5g9Wd\neXwkUa8hJCLcLWknjnoOTNdaWgJEWeImizfnNs25dMH0FXQkenwFaT8mJsOrLhuPvGi1v26dp0dA\nThh2jUvMHyOrd+e7AqWcN72h7PmbNhGqKJDLBXHUo84aK8oSrSX92rWA9/sjeW03rGr15LUmbrlO\ng80P1hsSWhHO9duBGKjpkSae+8eoiZbAWTyY68LQB3PtIut7HUgPrqAGeyyqIyZlRLHYcNG65QKm\nCBbQxDMa6rirURmRyrPMzy5WREhJYsKDvo73ZInens1cXJ6vdPDdlCH4lhEIQf/tT7lKqVpEvhH4\nEXSq9V9WSn1URD5kPv8u4IfQadafQKdaf635+VXge03cJwB+QCn19wFE5LcC3wZcBv6BiPysUurL\ngP8Q+BMiUqEdwB9SSj0mi+TxeGbJp5oq8h97jXQyQ144Rl58ETl8/1ptLr8/TUVFnI3a/Xg8AoBV\nbbZ1k/6Ky21Thb39bI2CtiOdRbvOx61u+2PXZE4lvcf2z/EnqkZUVGf2xWssLBs7spO/nQQjSZx6\nc6twdp0b0L7wJzI78fqFiN2VN6D2IBu8oOtgForb57GTkrnaL3TQPVhjXXYyunwC6rrg5PnP0zE1\nI065dtw8ArLaYU4rsBOz8ZMq8sVU1z1ZYViPENTUtA04u9CTZK4TXHqH72ceQrGYubbvvWjprD13\nTOtIZ2pI5/5xO+254z4W0BO6HQ+b5u/dd5UqPTmoNvFwdqE7rx7nLjstmtVOj40sgcv7Lm6W1+cu\nvpeFijRcGgUGo01IR9w3TTXp2OPsj93xKZHmWtq+P36SQdJYX2LP3WTbKZGV9ubdeqj3CpRSP4Qm\nGP+97/JeK+Ab1vzuXwNfsGGbfwf4/9l71xhJsuw87LsRN175znp21fRrZnZmdrlr0gRpioAAW7Ag\nmCIMr23BhEzAFmXCAiEStgEDJmUbsGGAwP4SQMgy6YVESwQsWQRoSmuYNGHJEGjDXoqksLL3wdmZ\nnp3prqnqqq6qfGfGM69/nHtu3IiM7O7Z6eWstvoAg67JqsyMjIy43z3nfOf7frPh8d8A8Bsf85A3\n4saCj1oD6WQNebmEvJVQbbg7BmoSNZUBVPOgXtRrAGDCtkZ4jkxo6zFa/R17cTRAtzWLsRaThiY2\nB2c3/Bxb7r/+0kwusNWyc116ksI3NGbzGrO3SxDh2KZ0DBj2YB10KiKUQVAFoiyGUEr3o0q5obJP\n56PvHeoS01W52+djsey2m4KlfHLPfaZxXJ1I0EQAwBoGqOdZAukQPT5yOtVzZPUozIIda8O8LAZc\nqdWqPcNUXOVMu66V17R8kVqNzPfRZElQ+S44WgNTrmUiTr6emw1H4LRozm16RsCpy2EAyuMGkMWO\nYXmpZUbqB7rBHzlHyL0Ur2p1isB18XovwVG7XX53NeYmgBIcAaPhZpQwZufGi4iVDABUBUgBomZ3\n26bkxtd82Ssr//9lvPi4seDjegrBkQ95t08lAHanbCghAbQDMo1dqzTCizEDTlzMTF2+iell76pc\nV5pS2YaMjRcaw7lqxkJuk/ZrV9h0DHhbekjmWNclSEnhA5NTqOnFc/WtbFmf8vx0gast5RxLVqXO\nOhI2mADV5/mSynsMPPoxesPAHGfodnEYAaveEyRrB7eigiy21y2oR1+hXb4NZPp9RJoDx1xK0gOv\n1vmubCieEbalObDdPp3Lcyy4mqyXyFWKbu+InqNLuqx2Lfhc7h1AHL6FWXGNk9kTnC79iutnJNdo\ne8NNoVZbNigisBXc07HPpx2cTYR9c44r7DseaHaCMpO03UV1WcscG1gBQZNWtDCpiBOovSm63UOE\nrTsI5QjjZIbD6JAM6SanVeUPG3w22GtjuvYAyuwenRkAXC8zIw9kokH8tNzIPIVF+HHCERAvoOz2\nvRI39kw4EpC3u8DBDjF2oh6VpoqqcRc7Kj6teW0rH9vZhT2/Up9HAawdlW3lC1Qa8YtstHU40s6q\nzMKXVputG8+xwNKUY67/iEzmzi+pEXznCBhWB0uFtTjXV9bI6UA91q/xlCny8udSel8BzVmN/d5N\nwNPp0+Koz0PodnG7QzJHff8YcnoJ9ehrUA8e0WR+ffHRxyF67YrxGAu2PrNEaYO/nfHpcqxtXMfX\nha1EwerhAF0f4/wC7d5etUTIkcXIPBdX8Xv42sjHKg+QFA5asswu2Grag1cFHe598NCy9IHeQUlJ\n1q9fCRt4apkzgKqyOtuP1LJaMWjBliKts93UeAmkj4DZAtifQA4PMegeot0mq3YVX20e39Po0lyu\ntLIde5h0vczgbgBQsJHtVbLXZ82FvYyPFTcWfETown1tn9JuPeSW6R6GPXyZpE6l7EY3YLMApVA0\nbW4zkpKCBtbqEbqC3kdnTLaNNmcWk/QCj1cuAmeBo3bbsM4qN4TVK9oqjInSEbWSrU1OoZ48gnp0\nhuI9miJ3Wh686QI4uKahQRuEWB3BynqiQkKd/jOod99H8d4TAKjOcthh1d7JBjoz0vx8e5dOrLL6\nLweXyhoytI7cRdfdgTp/G+pb30Lx9RMkX3mC1UzCC9fw+07FGkACwJNrovDqxTYvrhszX446rdnQ\nldl6GtbMl+6TCaUq1Hn+nuvvs8hH5uf64OzjuYuTeYikIL02O4aBKq2m9QwWgOrirVW+OUTYJ3O9\nOkjx72rn1v4MDKSkSWjNBj0FgDjrsTXiAEDeXsI9nkEcLqD2x5C9A5qz4uN+1nxOrT/GhoKqrmIA\nvubKa7Ji8aD1A6UflRszK3t8GS8+bi74eC6V27bJvTfE1iFF62f7bxbZWItBygpds4k9w+U3FpI8\nWyzwYBriZOGgLYFPpQle7T7CbnhnuzAnsLVkZprqTL1ejKCmZV08P5khOSORSACQbMwGbGRBvDv0\nlguo6wdQJ2fmNQAYCZbKUCGqC8J6mQG6HPJcIARUd6lbDL5sq/DsmyNcfxhiNXMRdQvIyRpekCPq\nxkYPTA5mut93SA3nomoTYA+u0ofTb29bR/N3wYtlB0aBgs85A74pkdYICGwtbouxcu8qKVp40rD+\nLXOBo1aOtjek7HN+Vu2NVDIGUjG3DQ9ztSQ7BlgeSflq6zW0kWkvx+U1WHdU5edYAFRcLlFcx1DL\nHOmE7wG6ZtiiuxIMPEYhobpcGdCJU6jxkkzm7NkdbFpBmKj3t/R54ypGY/b4MUM4ojkDv6FxY8EH\nrksX82RK9eosJuOuVrfckW6r+T9lJ8TlmqQgT/hIJkZiq7TRrs5d2L0X6dL/3++2MAwucLvjInDW\nugF7t+zN2DtCmxrLu9xnhGoPSZuuOwUGLbg7S/jLHKLlQ97uQtwaUFY4PIToHpJ3j45KjwigDGk8\ng7tDC7et9YXQb7QiN/V44PlACNBluQTAFMAFlKY/wwvLnfnufQCEEQGAPVwgnaSQ3tooLwO0KMm7\nfZqMHx6ac1ZXS2gKZpFtAE/Dd2GsMLLIiLt68AwI8WZDOr5mrK0RWX5PHGQ9Lo380Sp3cNzKMAjI\nkK/CLKwpZcCLDRWZzBMvyhkhAHC78LwQ6vxtuhc603L+raYEYQObmp2X/+/LrUPX4hZdA5z9FIjh\n65vC3QnpcR4U5eFQjjgpmXn117cGR4W1yam8t37MbIJ6bT0o3C6Zblzujif0XfWOTGYtsvBl5vMd\nipsLPo61rMUJEF+Q6yEOEYStrYuPKTXAyiRsOZwiqZRTiKpZBR27h1Op8VtKCNL1IcMAbY8GEqNC\nUl9Fs3h4kRb9nl6QYd2c442ylE2VzZBhkpyjv3MMqYcpZejD3RvTTXznyEyuo3+82TyfnJI3CkcQ\nQLxxz1ga0DHJskR2eQH14BGEniwHsLFD3QAh/XmYbGCz3vg7E2lObqbWoGOuUmDnGN7OPTjHbyO8\n/y2E41m1wcwT+loWBrv3zWcsLRCah3EbgedpwRmFJb/ECtosCAuUMkHSKQeQbdp7hgyLfGRZKzjY\njzzjgFspf9VLZl1SEZjlV0hSKgOvcgf7USmvo67ehzo5A8YziMM9qCwuvZ9qi69ajQjoauwzATQL\nevoSKgwg4gRy0IKrsxQA5MHDoq3DwzKj5ddOcz3k6jUz9Mx7lGoUdnaxIeVTB516lreaUpWA3Uuf\ng4DzMr69uLng0xSXBEBR6y3kbrn7JT+a2t/maTmEyA81aKbZys6VuQsuYTRYR9ddM9X0jHozTyxt\nq7jQu/dFqebb1LCv3TgZMmMe92r3EXZ7d2iGJwgg+tf0fK3TlXkuFtl5VdZmMYJ69C7Uk+uqkGMQ\nQHzqPv1co+h6ehetHjxCPRiE+PMUui7vAhtZkF3XV8sM8u6C2HD3SpdWY66HBPLwNXiHb21X+I56\nQP+49n0F5IkkO8aagcOAQVY0A8+2RcrOFux+kPZlso0BORs2zrbTR1CTKWS/h8HOPaj26wjluXHb\nDd0usBgZxhmd//KtRdhH1mpjkZ0bo8NkLUvwYbHcs4covn6C9XUMOV4Syw6oSudkMWUHNmXdBpt+\nr9lqHoBgSao0B8Ip5IAOUhzu0TXUGtAmAih7PiB1AqVLtHZU1BL4sUGLVA/sx58XdFiKJ06Afgzo\ngVUAz5Rxeu5wnlIGvIFxo8FHzXQ5yGqUCgDKC9HZva8zmBo4MLUUukmpL1A2/mpqVrMQpj13sS2V\nb1wkdbbDpIDkLEUWO4i6OYrrGPJ2F+6eBUL14IzHc3EVP8LXRj7emUjtWvqQqK2Hb0G1zmnn2T/G\nLL/CIh7j8crFwJ/hlXZAi+7ZN6EePEL+cEKZUpJA3Na7xN4BRO8ISgisihkW6QnmWYKOF2DvzX+J\nbv6vvYvicrkpaw+YBcYFDENNDGBq+uyiyZbKKi7gARC+JD2v/nGFYZisaXedyxTS9xE4u5sCo7Xg\n7ykuZhUAqgzPZounZzxN7CyeY9K/V9rziWdTOAuiYdBzqNHXqR/3/jkxtfZawJ1rYH8Hg517yFoE\nCIIFQZfjcnHvxEb6ZuXmWKTn2mCOPretXO7Bg7r+AOrRY2TfHCGdrBEsM/gAZZd3Eqh9/cdsVc5N\nfmDTO8cqY9mKCLbQrZHsASracDwI7XUPqXc3XVRIBByi5ZlrZYPcYmc5QVDNwLUkFaAFZPleW47J\n4VT3kESaQ7XOIXbuUZUgvcDLePFxc8Eny5uHHoGNZjZruwEoL+A8rUxV50ViFrunv2/NsrmJNLAl\nHN1LYVKAYzG3nhrS17X+0cavPsoEt5qdlxP39dAlupll+AZYWaMXEj36zhFw+aDx9fmz1IkK/BiW\nGe0clw0T64BxlK3L4ZMyObnSspOpPZ1fD1ul25ZC2qpGbb9OHXhYHqdredzYWmjxhIRMtWSNyld0\nfQV68eSFlj+nXkRta26zGeLFs9eGONKZa3qJk0WBq9jbUGeeZyv0/QzSC6mE25KQy7g89zpTMMf1\nrLAW+Ir8Dpfu7AZ+p8w+uReFWtXgmUrUdqRlxrNR9vXCKoOPSTeZttfeEkoITBJy+n0ZLz5uLPio\nJDdlHRNhQMN80dDIfgAuTuae1gw7x26YotM/hlAKGTLEmpr7tAY1oMsbbL+t7ZI3dLxYKbtTswI+\nugvR70H0r+ENLuHshPD1btg09c3nSkj2HyhvvGho5ldC2cFnh3O0pMKr3Qx9/4D6SdcfAJcXph/S\n7R1pMsQYAZealuOtCwKLMtbZYsNAoe/rnaz2eTG6Wvxc2xuGG8K8a9XlGjVbwPU9qPHS9I5Mo3qP\nMq64uMaTVYZkXb2sj1opOl6AtqQSFyanVNqxd+bW5zAmeR81bGqwzkJY1FJBl562RZ6WemQ8i9M7\ngOi1IbUag9i5B9UeYpydV4aEAdD7jme0CMelPQBHHXgiucbZ0sc4PcVb+68gjHoIwsD0fHB8TGUw\nHnpdagp5oGd64oayGy/yWobJfDQtxwQ/AjCsiOgqPzLGgYDOxOLJVoq1vSGxB1lNpNnGPSDCPlah\nhHSo5CVZQJZ14Pgz8ufpkeBppsculvkLGjR1RCMp4qbGzQWfuED+7iXk58qav7CHTbXSLt+0V7GL\nZR5glU9w1K6antk/P1OKg+dy7B2y3h0z+Iha6cLIxLcGEL023MH19qyNw9Ta+1B+hCIr6+ih7ODV\n7rwKPKentFCGgbaTThF1DyH9Q1oQJh8YgLRLZsKqocfFbEPUsi0HkNPLanbQa0O0lpVMx5QM93c2\nSiTIU4jwnD5TOIWrsy9xawDBGmHrORbZGMm6WlMntYNh2asZv08aZLNFtWTEumU50aONSZ5KK/pw\nT/1eLeBRs4UBA7XM6JwCpRvqtp4DAOxbSvj6Z9E7wqy4RpJQ3yxfp5psIOm504WhG8uDHYjV1PSz\nmvxoWB1hlTv4ytUInxkGGHz/j0LFE8NupMV3TkO0XkgZGkd946a/L9UuNzp2sN26CVeDZ900b2EN\nrcZJY5Zdz4o51DKjEmWvDWjZHEgfs2CNJB+b8nduLCa6BECw5qYnU6N2EhezDbXtl/Hi4saCT545\nSL9J7C73tf1yar53hFUxa+zdrHIHD6YBkvWq0dedB0frANRo2GWDjr1IDVpaSXinspMUehbD+Jpc\nXpRzDhzMBuISj0dKvU2LwQbwaAl8p+VR6Sa26OeAWeCMdpfNVvPIWiFJSgXrtjcg0czFiLKM2hS8\n2bX6Xtl01j0joKry4MEj8O1Mqb+jmVOi3zN+MIuESBTLXGA3pGO7FRXo+wdltjO9MNIrZU+pVcry\n6zKNkn7FJM/+Ho36eK2PYTJXlvEZz0yfSi0ziGVGJIogAHooSQH8fO45gPsoB/SzjJC12pikJxtq\nyyY/zmKoyRT5yQzrZQZ5cQ3cPjKZ9jIXSAoHgUuzNU1zZt8YJXijnyLodwEsK5sVstHYKTcDPNMT\np3QQbEnQO8Isv3rqkG7FqsAtiSxATdm7YW6oUo5lR1ndOyIFbZrzcfcWwB2iS+e9PTwYneIqdnHc\nmhBDUNvb2xYk4PmmPsrNjxFv/UTM5L7n48aCj1oTAPk8TKl30KU9Qbr1ojuZe7iSrhEdDZw1Irkm\niXtWLkBDFmSRFcxCrP81u7aWLhsAxMayRB25dCF6RzSdPjun3fJ0UVUpBsqMSX8e27YaIEkcxGNa\nuJLESOCvAbhxSje/rtEzM6sxfAlImllhJYeOV8qSNPYKuPwUBoZia9h1+WZzN3BaCPvHRvxRhJMy\nS2woj/D3QdT2QDfltf6YZk+Zz9rSZSqwmjPKHoUfbRzLc4Vl18ymZWbQNkkgYPV/GLjMgp6UdgE6\n27laPNTXokAkFZn7uS3aPDz8fw31nokYADbKVvRwCUBN8c5EAVhUrunQFWh71txYPWPzZUlu0Nkn\n3weNp8YapB34I3S8ZVkO3aIcAjQAj13C1CralQgCYPc+Ppy/iy+ft3GVCNxtS3yqn+GoNcIg0KQS\nPeMkssj4X/F98zQQ/aRDCPFjAH4JxM/5G0qpL9R+L/TvfxxkqfBTSql/KoS4A+DXAByCEr4vKqV+\nST/n3wHwXwP4DIAfUUr9gfV6fwXATwMoAPxHSqnf+bif4RMDn20nQQixA+DvAbgP4H0AP6GUGunn\nNJ4Abe36twBEIJnx/1hLim8NL1ij9dke5OeOIT51H+LwLWSeizi/QlIs8WRFFzNZSz9fU75+wzVl\nQQDKhaHXptq0pp+6cUq7cCsLYJonU4DNTtwLqQcQjSgjsE2/2NIYtJsMPdpdbuiGtQakQdaiBa6l\nkQAAIABJREFUgVLBpSjr/TNkBCQoVRJc6MzlYAfYI6LBIjvHKndwuvSwGxa4FV0g93R/LCL/IdWi\nXa3g8lKnb2ZQFOhirIMknVc2P5uUGZRerFU8geeF6PsHeL1Hx8A7+3mWIHBngNeFxwZxQQCEZ6Rs\nwHNStdKbbbxH+npjo8UmnQAeq5rrTJSeF1M/BKDvAoCYLiDuU0Zk3ke7baI1MGrM0AQSMQUdR6dv\n6M0duYsiyNHx0ooDKa7eh/rgn5U9uEEX7k5I9tK+B3T0xmOdYpWHWJh1lDdUJQjZmyw6d6WbLWew\nanKq/6AH7Fslxn7PbBySfGrAZVVbt9kenZUbrN9AOtQnjLwOXbdhH9i5R0PQd87hNJnZAcZmQoWB\n6Qeulxmd594B4oKo5W0JLHKFYUCAys680gmotAZAhj5Ct+zlTpJHOFkUOJkHeHvyYjKfF6VwoL14\n/jrICO4EwO8LIb6klPq69Wd/FmT69gbITO6X9b85gP9UA1EXwB8KIf53/dyvAvi3Afz3tff7PpBh\n3WcBHAP4h0KIN7Ud97cdn2Tm03gSAPwUgH+klPqCEOIXAPwCgJ9/xgn4ZQD/IYDfA4HPjwH47ae9\nudPz4f3JTwP3XgN272NVzOjm0UN8HIGzRktWL75lLjayHrYobiIeVGZ/6iKMWtxQ9NqlzL9mjq20\nUdvT+g0iGgLR0IAQ70Lt2Co6yo3WnXt0s0/PKLvQdfskvzAA2m4N4eEeDXX6knom7OypyRnJmszc\nTuYOrmIXu+EMtyJauIOwhbB9n4CvqwU4Nb3Wjg13T1h0YitLMNnhcgwlfUS9I+yGKa7iKntpkY2N\ny2fY24MXDelzj3QPydI8M3bkOttc5KSyPE4lBv6sAgDSC+B5DSAElCW1YTmzZTfiuZcStodkAbAa\n0XMDYgnaQ7NCqYqmHyanwJOvQz062xTFvNtHcbmkMqZHCu12mW4TgJqDNlxrDIIuOnKX3tOO3gHE\nfjkHpNpDxPmV9uVxDNBw2IBjA91VTPdX6M4BqYU8DTEBQHtI12YWU3m4KfsOA4hYlv3AOKUqRjRE\nrpbmWA5C+lwDP0fgds3YQ872ICrFPL+i85SN8a2Zh3cnAR4uBBYN5M5POH4EwLtKqfcAQLuVfh6A\nDT6fB/BrehP+ZSHEQAhxpJQ6A3AGAEqpmRDiGwBeAfB1pdQ39OvV3+/zAP4nbaf9LSHEu/oY/p+P\n8yE+MfB5ykn4PIA/pf/sbwP4xwB+HltOgBDifQA9pdSXAUAI8WsA/k08A3zQiiDe+kEzgMceK02l\nNrtGvsqdrcADlKU2BiEeBtyINN+UC9k7MJkAO4RyVKi1DTchg1Bj1Gmu+jEBVKR48t4eJuk58tW1\nmaJnmvJ+lKLfOoTnaQDqj2kOorbjtc9TCUIrvXiPafEOWwjdTeWEuuU2R2WiPk5Kcgb7/+hZjU57\nFwirYq5xoXR5hcooriPR2b1fAnStjKSEIOBdLzFOZjhb+jhdeBgELo5bGYZBityh7zQXPkJfN63r\nMiwWYYRYkTMUGszp+0yReylCrwvPOyqzoNp3ApQ6aur661AnZyi+foLsmyOiRt/ulllorw3X9wxb\niwdubYdQG4CaSnAtqTDwcwyCbumnw8xAewRBqxHYPdK4UIbwwddCqU/XDHhEic8xxLziLwWUNiRx\nMUd//xVEcU50f4DOtT1bxAy3NCfVCi9EkU/1Z6I/2w0Lo/4tFrRJCdtDAzoAcBWP8GAa4J2JxFUi\ncLECxvNPZJncE0L8gfX/X1RKfVH//AoAe2L7BJTV2NH0N69Ar7kAIIS4DzKW+71nHMsrAL7c8Fof\nK74rej61k3CogQkAHoPKcsD2E5Dpn+uPPz38FrFgUgKeUSIwTn0DNCwEGknS2uIY+DClHVsypx42\nCJn+RzyhHg3v3KegEkGnb+YdeNCu7ptSUdmth1cazJm/s6fq7Zmimgo2ewZNsnO8P1vhZO4hKQgs\nuX1w3Bb6NJ+jLQeIdu4BYR+qPUReY7hxsPryycLBOxOJ/TDAIMgrQBS4LePkaVQImoIB0+6NQPdP\nYlkSMdSgkjnxZiJZO7RR0CCUFEvDfELD9DoDz4NpgNOFxEUMHOSkCrAbFjhq0aJeOOQcG7pdY10O\nlJ5Ai3yEOD7F41XTVLuLQTHCICBTNs6CKkxI/pyrETC9MMrh2TdHGD8kX4Pe5RN4d7twLpdwj/tE\nPdclROm4CF2BQZCDb3UbcPhaZ+YbZwa74dBkPIoHSwOt8RbRELOtYGErwQNlprPKHYwSxwI8irYk\nQOAMi/tzbC8O0H3zZJXhdOnhdNHCcXuMzw5T7B6+RuzJenihEXRlV1KA7uPAXVeyHil8qJzUv9n6\nolC5FvON8PbEQVxQxrPMXqCT6UejWl8qpX74xb15NYQQHZA76X+ilJo+6++/E/GJg0/9JNgpn1JK\nCSFeGNdRCPGXAPwlALh798A8Xt+x8U05DBTaXjWbKFSOgd5w2fL620pjbTnUFN8PqNTDDDfoIbon\nCcR0AfQmUJ0pEPUgQSUgD6CbKl5gw0q4/tm0arIBHht09OtBRlQeinp040VDzIprMxQ68BXdwDoY\ngPcjD225TySF5RgqJ/VkASBqDXTJZAlghkhKvfisEbgOuMQTuGvshgUGfm4a5h2526yRtkWxujFY\np02XzFhlggkjZtiUNtgA1hWXyqZwhcRuOETojtGSCsPANcdObKmaaVsWA9mo1PzrHZmsg8tefF3Z\nm5pB0DU9HLEYlUKdrD5thxdC9Htw9xZYX8doTeh6cPdCOJY4J1uEkIApcBi9Duk8wjxbmJ4kacg1\nn+PAaZG0z9X75n25l2VKgVp6hjM6nu3qeAGABIHjIJIOVjl9di5bMwi0pDKzV9KJzDm3I0dq/rYl\nCSDZ+TXs7dHCtU1lIk8h0hXa3hBHbYBJFPSdapkoy7kUIFXxceqZDC10FUIXuNtRANb4teZ3+qTi\nQwAWHx+39WPP9TdCCA+05v6PSqn/+QW930eOTxR8tpyEc65NCiGOADD9adsJ+FD/XH98I3Ta+kUA\n+OEffE115K753SrPzNkInLVecAcVi2NVq4VuMxyrNPa5Xn15UXXT5L6PFs+0QQjQcwdcVrC1qBoW\nZgEYOfitMvB6MTOmcP1jjLNzxFm58+94AQaBJXSpFbe9rICaj6Dyqwq1WHViIF8h6h2ZkmDozhEX\nuck4Is0KHPg5hoFCKLulwoBNItCfofFzSr+qnlwfQLQEUxf52CgcNA1W2sOm9e+PAYO/v7Y3wBv9\nJQZ+okGnXxq2LcdQ+WXptGnN+ag8pewQ0BuVGQY+NhZ/Pg/KpoEnCcR+AqWzYTqwlD7jvddoBom/\nd63MjV6bSCqsSBCWQ8pCKez5t7Eb6MHKmrupLTgLQNuof4CNYOCxVD3ifHMkgcpaKeIi1yC0xlVc\nZYbuRx76/t3N97C/B5fOU+jOEck1bkUFAndgfu9Fw7IEx8GzUh3KFj0M0faG2I9S/VrdyiZRyGjj\nngaoP8Rx3M5x3Pqua/r8PoA3hBCvgta6Pw/gJ2t/8yUAP6f7QX8CwESvqQLA3wTwDaXUX33O9/sS\ngL8jhPiroH77GwD+ycf9EJ8k223bSfgSgL8A4Av6339gPb5xApRShRBiKoT4UVDZ7t8H8NeeeQBF\nBrEYUZ8AwDAY4/EKpt5dyVg4agu/V79xOfgG54V1G/DUflbjGaDdRE3YCsy2RpUVZjK+yevevE65\nIGWtNq5WVYkblp0xu/nlGCqfAasPoWpzLACXvEiEUQHwIrrRXSERSmJn5evUzENtZjuXVWVkW7W6\ns3muzQ68PlwbBPS3Xoi4uG4EHl70+BhYlZozS1OyrKsarAEpfQSdtAo6trimPdujg5mBDEBMVABq\noK511TA6N6KxaplpdtyCWGV1e4x7r0H4Ep6W2xGHextsPfMczoD5OtTzQEZ5AdAEl9rz62EP/TLw\n6D5PfajYVucuQcjOoHdL0dQ8LZl/sDZ3DiARkNCqJ3HbWSKoEVGUHxEl2h58ZWFQ6MdkBM8boO9X\nCTjmM9Xuk0iudVnSwSAg0CETx4bnfzshxKbB4rcRSqlcCPFzAH4HRD79VaXU14QQP6N//ysg4tWP\nA3gXRLX+i/rpfxLAvwfg/xNCfEU/9p8rpX5LCPFvgdbOfQD/qxDiK0qpf02/9q+DCA05gJ/9uEw3\n4JPNfBpPAgh0fl0I8dMAPgDwEwDwjBPwl1FSrX8bzyIbAEBOzUsBoNPepXKaPyuBZ7mgndV80vz8\nIIBq0LIyJSRenHgIrg48cWoGS3lGgae57bqwoWYOWoA9lV+X4AEa+wX1WIUS54uHeDAN8HovQegK\nhLKDvndIrKbVlMCmvkjV5ezTDEqLMAIEgF73ENLfNQrNpA5Nv69kO1xeSppB2JR5ol6ZqT1FyFPI\niLKebIyz5WZmGDhrDANVgt/CKpFpnx1PL6p2sN2BAWMGHUuE0pwb/V2aY4IFQFz5s3t3WQw1OyW1\nBcvQb73MIJcZDUrqLIgn7k0c3S2levh3tmDm9KwEdvtYtUjn+jpGcbkyrq6mbMcqEyxrVAMkvsaZ\nkGHPs9lkASk2QYgp2zTs+wB4ck3fq63Bpvue5rtg23GrZWa7/XqtQbnhsoVV9TWk4gkEANkebrJG\nvdKCw87eIrnG671E+2fdoWvlsU0i++4IpdRvgQDGfuxXrJ8VgJ9teN7/hZpNlvW73wTwm1t+94sA\nfvFjHPJGfJJst60nAcCf3vKcxhOgh6E+95EOoKY9tRHmpquBT5NfSVN4IS2umoFT8aSxD6Pl0T22\nRUakMXh31wRADTs6fnzmLHG1OjdsHtZ3C5yWcTY1EQZb3SlLyZgFqQ1MpgZ4BWCsiA1hghUenj56\nVU74szVEPza6W1iOqSyltdJIwyw1dXvPewt9/wBv9Kl/ZS+IpqeyWAE43fQnYrXl+nm0fr8BPONZ\n5Vx826Gp9hzmO7d3yE3ZCOsA2psfDstV1RyrlU2Ty6w0PzvG8ybYtOQwz6kSDGy1748VaW6ACDiF\nsgg4XjSE53VMZmpHvk5IBTwallT1MClZpFamtjV0X2wgD7ByWgjlEgN/ht1wSHbsV+9DnT2EevT4\n433Gl9EYnzjh4BML1yUdNz2jwLTaVU60YmZ1qZropE2htXfKGTPNuO/CN8SyVHgWdvZTK18Z/5pt\nMeiWnvPW7m7j5moqnbCqdTw2Dfh9PfcQyg6VQeIPaBHgEkwQAPs0f6QenVVejqVM3L0WxHhGfzuf\nGOCzjdLiYmbKWUoIYhfxzA5Tpfl8sNoDqxekOdCz1KHPL6uL/TKD0BkYkgTh/h1EvdtankX3NVZP\n6PvoHaAe9aa+6SHUdcyATeCxjqO+cTAyOpp1tciJYs67b55nETv3SKlieA6xvwPvFp1no3GnfZE2\nenijc7MgijsJcHSXBoBZfZqBR5fy+LvCwQ7cA9KWk2NryHZbpqOVoJUf6Tm4C2sOTtD1A31clr04\nZxPsCDtKBKSzJJ+i3hGBv1UVMOc/SYB3Lg1xQvV7Zg7Ls2bC7BKpYtUPnnUbpgTG+u9XxQx5fmV6\nfJXsx9qkRR7dB4GjlSMu3wZOT7F++yHSb17jhYTjVEvqNzxuMPh4ZkZhkdGiTOKhAsm6OqEPwCol\nLenGSi8rdXyOCu1WD0DSC6RVPS/9bxMg2cFOnhuR5lQaYzkYO+qA2RqQdbI1cBi4mnrqtGhhPXtI\ni3uSUPPamqEQ+zuleyposVVxQSKWLQ9qQppr/HnNYKUXbgyNKiFoYeBSifU5zWKkXStVWErN2Au+\n0UvTWaPAAuqdD0iPrn9R6uZNpsYCQtw/hHjzM5sDpfz+8YR6c0CZifA52KLDZ4NOU/bD6ugni0LT\nywNCprU2u3MCwHMhee6IM1ldfuINjkjDEhiXY6h3PkD21XMiHKQZgfTxMcnDcNYzXQAX18i+eY3i\nckXmexp4ANAC/+qrG/M7NgHBzDxZRnSAKIdINXswRNnTagIe2vBkkO0l9bqiIdQwBabvledvMkX+\n1VPkJ3O4exG8N3fI4bQ7Bfo9ul40qMgG2SMDQtpOfaWP2+5JVa7Feolak12iLIe6fmDmqZKvPMHF\nt75NmaWX8dS4ueDjuIYdNUoErmIXJwsH+2EpA3LUGqEIyrkDnhvh7GHgL8y8D0AlCDNN73Yh20MI\nZTV/Oaw5G3pxy9On1oAXaDfvEKFrljYA1UsweqI+1goEdhOeB+4ipwM1e5vM6k4ncMZEmzUGcSy/\nA9BuO80qPQPR8kjaZLagPsRqWrp1Qk/w1xlFrJ9l65qNZ9WMpuVRac0SjmTQAUjYlMVNHX0u1KPH\nwKPHUOMl8pMZissVFudAljgYfvoawXgG8bk3SUGiNag25LnpD5QkD7Z1sMRCkWbGSbUeTWKrk9UD\nPJi0rCFVUnxwhURe6J6J8AEXCG99mi4H3ugUdDyh1zU3qjo5Q/7uJVYP6LxE2lAPbOrnhUY8NX84\nQfZwhtVMoo055N1rGkYFCIh3729+BvP+czPvRASOhh27hJmBy9dpRTjBBp6rmJo2kaRSZd8niSGl\nJaHU+SWyr55j+rUVZpcewm6CweWHkLcnkHe1B5RfglCTbQOfN6Z+2yKs5NpK17VhvFn3o8ksdY+X\nwX36tRUev9vGtx48Q0H+ZXxbcXPBRzh0g69TIwuzyIF2DgSug5Ys9E1HNznt9uhGGid02lhBeeDn\nRuWA+wz5OjHS7bzD5ZA+zw4NS521+lCoTeHdDwwBAEBZngJK3xL+WDrTYdBhgzW6EYUBIBrsi8r3\niFNaULWqNZKEdMjYAjuLyeHx0Rk5ii5zuDw6zkZecVKZE+LPVAcgJQRlhmaGhM4xZxKO9uvZNpBn\nL/IsEMoAxA11XnRnl/QayVkCeTqBPLwGegekWedHEObzJ9Wyp6bAm6N+ioVFBXQ4oh7m+RVGicCT\nGFjm/D1l2HdS5CjfKwEtjIt8vDGwGxcKuyHQDfvEjBvPUFzHWE4kvIBcR4vLJdkIWPNjLGiaZw6y\nxMF6Sd+vEwTA659G3OlisnpgaN82C8+WFTqZRxgldM20ZDmr83ovqczp2MELf7KmSsIoIco1GQsS\nQEStAWV6xgpihdVUItPvlU5yiFZMm5velMqDSQJ4sdEYFNZ1nqyXiPO5pbQhwC1lntszvUf+3ur3\nGbBxPKOrHKPLFyQwKsSmqskNjpsLPnmCqJCAf4BylMjTw2iFkc7h4B3ewM+xyrNSoFDvpFgrqsnv\nnS0NDFNHl1ykKCexzXS7Hcw6A4gRBJQyIkBpPGeV3Vi1gMOmw9qaWw8mAVZ5gs8Mpxjc/gE6Ph5S\n3DsgzTY3R5JfEFOtewjVm5CEyw69n7sTUrO61y6p4MxQq/WejJEeg5DdEPYlEPpVczBuuA/0UGCc\nwK1lQXVfF1arFqEL/80BnJM5oBXBgyOfFAC07tciH1F9vzWg/k4Y0HvZnkrcC+n0jZ4ddH+unvlU\nXFdvHyHv7aHIRzhqt3G7nWtlhFQPYlLYQGPv0jn4GuvIXajFKQ2ffg4IAOy2qAznvblDmYHuEdH7\n61Osj8m/XEHeHkDcPwTuvUYySvEjjBKBYUDH4LqSeh3zS7R7e8jXKcYpgSorFLAqweu9BK+07+rj\nrtp1sPtrh9Ix8/huWBjGYeh2y3EEzuJbEjJYw0sFwm4B6a2Ncy99CFm1IUcJQIYiLwFgjtClc2kD\nqz3TRyeHfHzM4DXff702xK0B5O0lepMpDmcRkkSRxPHLeKFxc8EnS6Fm54i6hxUAsvXaAFFh8/DP\nu6GsDRvqeRgAYdRD3Kn2OZJiuckK0tv1egO00VceoJJWYP0HbM6A2MOatbp4XXcNAE4XHk4Xa/zQ\n/gMcHr9OtODWgKTx80vkqV6YhITX0tYH0wXk3UUpca8N3VgQlf14tgXX5AHdIPdSUkZO85KFVp9t\n0grQfD5sILKjuKy6qMrbHfT2CqyXGfw3dyDu3AJ6B1i5OeK0FLP0wj5UJ6Yh3zroaK09RD2I6QUd\ng/YTqhyr9Txx+wcq1hCv9xIMA7XVHZWB52zpV1QQAKAtB1Vhz94BxA+G8Abfove9fbR5HbQGEG8O\ngO5DeL4HOV7S9/Tqq8DufRIBLRQiSccUuC101y2o87eByRTyDhC0Wxj4I1xJFwApQwduCTzymo6p\nqxWtmVrvCtkIQLeiAqHsmE1anWrvtDx4wQp54sAL1nBaUrPyvJIRWGcgSh9iiYrxH6uPAyjVI9IV\nYF13gJ4TYoIMk4S4H9inazyKC+zEK6Sr4CX4fAfi5oJPmlGTHagAUF0gFECVspuuoJYjYPWkOg+j\nWVtifwfhnU8ZAErWJHIZumlF1qQyaW1rsdWBhym9mn1monewXV6kBj5ccgNQkbNf5rSb/cMnbRy3\nR3ijL5DH17XSBUnnhG6XFun9HWAyJUYXT9ZbwKOEKEuJW6Lye9519tpliYsXf+3zQwOFI6jWBKJf\nzk8x+w0ofXMAog+b9wpdyJ0Q4v4hzcf0jpDkF3i8cnErmpfAmq+MugSrXYudexjnFxjP38Vh5xBR\nNIRqndMxaNdX8/fWnMq45kl01G4/02a9FDDNcdxaGzmYyOlAoWYGGPUgvu8Htn//5o21/fqTa8r4\nDt+iRrw2SaPSq2+AR737PhCnEGGAbvT9KLQW3+lCYhhUgUd98xv0HvvnkMNDeDv3Klk/z86w4kEo\niUnGbqX2cChnjVE3N/+6e91y9sjecNmxmkJFgMhoTgsuefRU7tXx+1DLceX7YdacEsKQFCgTGlAm\npC0j5DJD+3KF3eS7TuHgeyJuLvgUa6gn1xBhYCT5c68cOGMGW+VCnmuhRVuxQA/vGTM4ffNG0fdj\n5eaGwj3wc0Qy0btBDWiwVKo567Gb8LYpWZIQM87ajVd00WxpES2yWQ87+2HRUP733YmH0wX1u1hT\ni2MYUJ3ea+2Qx8r+Du3+g6ACPKv1vBTa5GHKp4UXlg6Sdq9If8as1SZxztUp2sEAnfZ9iO6KmF/B\nmEgGGoDWFvvM1eDj7rVKp9LbR8bwLM7nuIp9BM66BNZoSNp6ABD1kPf2cBW/p6X12/gXdq9wu+1i\nd/c+IE83CR56BiYuZtgcJNoecaEM8HBvaDcsMHQVlaeWYxoYtQdJtc8SAFLhsLXxbIkigLKiewSk\n9rwMa8sN5AH1kvSg63qZkU378BztnWMEDmWYtzsZbnf6NHx99hDqfc2+s1xvI61yjnU5aGrfT9IJ\nNnucOmjeSMLLGrIebVi38bzE6n2CWHCmIsHDzNpsEQCwHxvCgtKDp/XwdBlWdKfAoEXZs8XK/Fjh\niGbm6g2Nmws+QKX5t8250Nww7EJqWfyKLs3EUOM/JVfMQZeMvPwIi+QRzpY+lrlAJB3TN+r7h3SD\naEHKSnAT3tdDhLoJzrs/23Ih9Lu0ALNiAA+f6jKC9AIk67IUxUZhwNqoTi/0f6ziuxs6OAgdtCQw\nCHJ8dpiS5bbWuBNhH6rfK8uAFvBww9xWjW7y5+EQqAk8agBiq4ZYK2bHhTJzIqHfpWMAgH0iXKgn\n13B0DwignXRlYr9Xim3mBWV2DK70+jNIf9doqeW9PeTrhGag5ArDYK3VkfWsiHZVBWDIHcy0sq+h\nilimg0YyATMnj9sZAtc1jfnHKyCUIwxaB8Qc1Dv2eX6FJD3BPEtImNRt0ezM9Ax48oiugb2DijqE\n7Q3UdXfQkbtoy1kpcyN9OleDFhwsIbQ+HPdz+PObsJvmtZKYFL7+rIlp8LNxG2CRTaIelbyCAKrX\nhrtHmWvQyuDaigtceq0H6+Bx1qmz/XydwHM863PrDMsm5rC6wXqTRCJdn85HvwfMFnD3lvCaCCUv\n42PHzQUf3oVo18hVMcM4mWkGj9XnET5QMzMzTVJfAr6k0hPH3gHE4Vu4TB7hySrDMqcbgUyzBAK3\npXerDbLwgF4IaCDSuIda7qLssGnCpmYzG05nUtLXWmuugB4u0d+4g1VOQMTNZGrSCiN3PwhyvN5L\n0PcPK+Kq4CHRFSlwM/Cw3EpcKIQoJfYTuaxkkeZj8qClF0IsrWTBTKVr63DHR+iSf05l5wzQ3/VL\nmQy+mE22021XxDa55h+6okImAbRcS232J3BauN8FAmeB253+hjClnWEw0NbJJfxZ42JWYbgB0I6f\nVfq7/btvjBK80T9BuzNAsp4iXp1WZrX4tZHFVIJ6ck2ZCADsgUpSdXVsEAgZ4OHYv0N9rMECOD5G\n1mqjyEfmuMz58kI6nwMih5iSWE2Lz+5v8eApn2d4LnkYyciYEwJEkLAHYsX+Tpnp10RETck1CIDj\nsJLtG4DLV7qHV1WD2BZ8zMauPQiAllcp476MFxc3F3yEoN1Q1IPyIxqkS6XpzRSKBjA3sp44KWm3\n3Xb1NY/umj7Bk1VmBC755g1ll2Q7Lt8uyyPbbojegZ6H0Tu31oB2v0IgL2o7NjZZm2hKqlEt3jSX\nC5w1IIHdkJwk90MHiEtGk91Y3g2HxAgsqqUc0aOFg8kJts4XgMoCyUZu0vFROGUJJi+s8pxlSw3o\nWry1xoayU9JkeSPAUQMgAJvW2A1RshmFZgQmVHKhE2r9XQtH7QbLjAYlCT7G+sIL0HyJzTycZwmS\ndXn72UQDYwMB4J2JwsB/wp8MNn3YFZLESVeXVAo2wqRpFYDs42SNOt60RFZWcXTXmARy1slRsYj3\nQsNCRK/deB4Au5e5gqdVxzkyZDQH54UEQGEA9eQaLmerrPCgCQ0eLADSM2lqmUH6HoHXUZntV4Jl\nd/S10ATGTw3f+ygePE8PXnNeBoCbDD6uSywrGZms52ROF+ataE4Lnt5VbvZi9E3JGmRhAOzfAbRN\nwTiZIVlLUksoHAA00Nn3DqEmp6Zn1ChrYgMRLwxeaKyV2fKXg4+NaMApFKZkyZ2nEEpZix9lP3Uq\nLwC0td9KXMA0lo2+1eXb5TFYCsQMPGwkxlmP/frshAoAAz9DJBMDROzNYnpqlmwRUC24CSz4AAAg\nAElEQVSJ1L1eNqIOQCxUyb/T2RSfN8psG4ZEmQ1V69nYZaPKe9rP0WGXGYVSRs+Oy098rsrzkhtK\nNc/MRHJWEUj9+ijSRnxFpfwlha817x5BPXqM7JvXJEx6O4MLGACCjEo3WN0DUZowwdR6RD3qX2mK\nfbFmoBSVORm+TgVvvBoAfsNTSqsTeFavaqGzqrY3hKdlrATLLbG5Yu+I/KbiMXZbdyBjzUo7v0R+\nMoNa5lRiZZmgsA94bcpivRAi02xKTtz53mrYkGz7fl/Gdy5uLvg4wtq9Vns90qGFgvoyDSZuoV8C\nkLa+zlptxPkV8nVK7pE+Sckb8U53kwDwrBAyArpl3b6e9QilSp2sjxCc/VTUP+EAIM+VYaCqU+C1\nJrY9wApAl8RIwRgoLQ2uYteYc9kDuQPpV+0basQEoZTR4mIKb2PYs1EagDZAh8+jVcprCvs9pPCN\nojUfT/nhv31vw1xR+TBwW0bt+1lxFbt4fw7c17fqbggz1FwPEbrAtytyaikHSC0eGsoOhphjlJAG\noDlH3BMBqorXzxEeuAzdMq+XITN9NJWv6N/2EGMtjxMXijLTsA81On/ayzeHrWbgUVYovBChv+np\nVAk9f7ZV4PdlfKy4ueADmN1Z6A8xCJa43Vnhdts1ZmNsWW1AoHsINZxAsF2CVgBYrecAG5HpXb10\nUnQ8Yoq1PQKeeX5FWnFcwqvL4TQxeuzHQTu0vLAEEpnlxMy4mnAhNcI3BxiBKgEBIMfJ3bDQxx8A\nRUOjtWGGCKDsxHX5ckoASESyXCBbUhlPnb53CLEYodGdVZ8Xdmblw8tVinl+Ben6CPvHld01oDNA\ntniun0/AAHeh8rLklXOvC5v24/bx8Gs9YzfM1tlNDrf1Ra4th8jXSYUQAqCSFQHUb3lL/8tZkv1+\nqr1r+jUSgMszPfs7VEbjslUWVhI6AWjl8DJLVPkKIgsNa4xEYX0ziFqoHLPi2ugdAqho0NnnGtzP\n43Jq7dxFTlWtOlepkaMie4xSl42ywoDm6QADCGvQfJCwfK6ozFvTcONB7TAhq4Uspswqi+FZMj18\nLKo9JPWEqAfRv4Dov0hh0RfDdhNC/BiAXwKpBf4NpdQXar8X+vc/DvLz+Sml1D/Vv/tVAP86gAul\n1Oes5+wA+HsA7oMmm35CKTUSQtwH8A0AugyCLyulfubjfoabDT7QN5waIHBauN2uNbbrjo/QSr/a\nmE21iajAYfcFeCEOXGtqHwRA3Z171UXtI4bpK/BrVMzpUvp/q3xXBx2Ash9yGq0CENGP9eL9HP5A\n9eNi75VVnqElHaxyTevVFtR9/1B7ulxUF3Rb3JL/tQCIddAMCAkf0guMVFETtdwOLleSXbLEydzD\n671axmgLndZ19/IVRBZtDnTqiIsZFvkYT1aZAQjOTnjzwcG+Np6MIFtDU4ICoM3wqhuI253MmPLZ\nOoL8ubzeEdRRSgKjAy0MqzdGhv7tdeFhWK0o6nmm8iSlRpVc+lHl++QoVI5Jdo6+BqCn5YE2CFUi\ni03/xtPHyJ8FACZpNbuRjk+9LesxZycs6dhMxfZCFPm0fH+rJC0CbRHiJwRCQKlBqJmEFekdIQDO\nxrZ8559UCCFcAH8dwJ8BcALg94UQX1JK2cZDfxZkuPkGyMn0l/W/AHmf/bfAhjv4LwD4R0qpLwgh\nfkH//8/r3z1QSv2LL/Jz3Hjw4RuOU3AzJ5DV7KjtsoLud6AmLQKUAMQ1ZP5/u0w1K67Lss56vtGg\nFtsyoHrY4KC12YTlA7ONPs5RB6CWLKr1/abM5BmflT/jMBjDLmcOA4W+fwg5vaQexZPrDQkbswPH\nJgDZrw2QDhpQgrvd6N8gBwDIiwRJsTQisqOEBGIjmSKU1KtR+el2kdcgoEVIL1b2poGB52RR4Cqm\n88+20QBwC2MDQOwTg7OHUGEAuX8H/f4xJhktuLb2Xl1tox5MlJAu9WpUFpNWnUV/Z82zQuXUX6kD\nUC3YgI0VyeNiBrjYuI4m2bnphTWdbzsyZKbcpqZngLYMB0gz0Dt8ywBQE/AETqsk/ejgzAc9zWjU\n9hXUU0vgFQX9/WRKZByWTSo/gbEkUQCdtwaxUs6CvsviRwC8q5R6DwC0VfbnQUabHJ8H8GvaVO7L\nQoiBEOJIKXWmlPpdnc3U4/MA/pT++W8D+McoweeFx80Fn7Uy6TjbAHT8XeNa2Rh6kHChfU2k45t5\nFrZF3ghuODuBKR8VKsciG5sSXbJeGiXsSjQ0cj14tNgoVWUtNQSTAVjTjZvVvCg2ZUTA9ga/ylcb\nu9j6gl8CUtnUZ98gDx5J409JuUGF9oKgFwO2VM5XJtvg+rwtIEmeMgRyzKQzfi0NH6s8FyQiexED\nw8DFUYs+r1CKjs3uc9leQ35imuG2snJczDBJSTHhZO7hZEFSNEApxBk4a4TSsq9Yjmk3nuZAZwoR\nDRG4LQOoR63UEDOeFZzRSUEAhCw2GbmtSj3waaNkAOgp6ggqX0EsLd00XemzrRLiQiF050ahu05D\nN+U03bOT2kEWeVqOK8QJkWO6Y0APFHPmyCMPxl9ndl5RHmc7DZqFSwzBxmjHxaNyJs8SjLU3NiYM\nAIUbIrjcd3whIcTzm1ECe0KIP7D+/4tKqS/qn18B8Mj63QnKrAZP+ZtXAJxhexwqpfj3jwHY/uGv\nasfpCYD/Uin1fz7fx9geNxd8lKIFgP83T4lR1rSYW8KDHugGrkjusM1yw64YKPsNTEmeZ3QxsxGX\ndHyyd05XgPfshrZI9ZQ/g6QeiBMAUWD7JCNi3zQ28PDCtsqrzellLjTdfEzGX5ZNccXJUi9sG7YA\nOpJiafoqV7GL3RBk6eC0EGkpfdNzeBrbDxqE4glE2EekF0MCxxK86zvwpzWRA4eEY+8X1N8KXbEh\nsW8Dj7GgZnM7gPoG0BRmU2Z0kBROhbIOUMlsP/LoXKkUWasLD6QUDi807DImI7D0//NEvk7hupK+\nZwckMWMxItlGY5U7GOjTSp91BJw9pAdqxAFz3mHJ1li8FNct7bEZHAuVG+Yib0ZsoghnrbI9pNm1\nTkwzRQFJKNGGgxx1h8Hc6M2Fblfb2X8IXF6Ulhc6hFZgJ0Ahqazuzj1gQWVM0T2E2rccavl6A0oQ\nsPuuXoOVuvDLodU/3rhUSv3wJ/HGANlwCyF4MToDcFcpdSWE+CEAf18I8Vml1PQpL/HMuLngUxTl\nhasdMxV0T0dHZfreCi8rIDlLYp0q1mPTitD2zTzPr+gGNTv2UldLOr5pwKt4QjfC08Q5uV5ey86M\nAVyvDfQOoPwIeX4FoAQeFrfkRWMYpBgla5MZEUONX/EC8IFIH4stXc+7X6DsPSQg8VQG17Olb9hu\nVzExtKQzhmwdQu7fAYKLCuCYm39VU3zQ1t5K9yK81gDQGaJxBRU+AbdWi/A0SNZDOj4imSBZrzEI\ncmKNMaW+KKpltjipuJayuR2BZinrEu7ex8IZI5JVckZLkmrBrahAYGW0cTFDHvqIDt+C8iPM8qtK\n4yRwW5V5oKbI1yker1wEzprAShvUsVAtEyvY1gCgXpHJ8GZWBpHmdM3o0mJ5skpAZlt0icAoF9jS\nOUBZluPNyOYxE0AaAAKov9Q9NN+VdAKTSXV0pqSuP4A6Odu0tPCrgECZ5Hub9/DOvfL0NvVXWQnC\nUqqo6C7yRu+7Kz4EcMf6/9v6sY/6N/U459KcEOIIWm1ZKZVAK8Qqpf5QCPEAwJsA/mD7Sz07bi74\nrBWVf+IUagCIKQCcQ3U2WWiNU+J10NELFaszMwBlyIy5FZeKAJjswwDP9QdGrFIBBoAqQp0MPKNz\nsxu3HUexrwfpoiEya/dvZzu2dwskgIT6Ouy7wtRoCgIgABXQsed5ImkvCmy2VwIPacdxfyWBdEYY\n8JAqUCEdKCEgLJIHVtPSx6jXpkUkX8GLhiSHAxjQqZQg9d8oP9rIgkJX6OyHwNicC5Y54oFd/X0W\npzTkS/YNGR0DZ0H7gNhROvsq+2NtDTyvdjP0/QPTO7GZXTMnBfJl7dgIpPJ1UlncbSBi4DmZe7p8\nmm0AEJcYOethMdnQ7VLP5fQU6rHevMTUF6HBXOtguBQFi/hBXyWAEoi4jAzAGCk+LSoZUL4iLTgr\n2nJI5dnJKdSTR1CPzqAejzWxwCvZnPa4gw6VJBAfvAd1fFyRFxI796qDyVbYGQ+X2LgfK1gf7vKi\n8bkfOYTzouaHfh/AG0KIV0GA8ucB/GTtb74E4Od0P+hPAJhYJbVt8SUAfwHAF/S//wAAhBD7AK6V\nUoUQ4jUQieG9ra/ynHFjwUetFTXogTIDiiUqjUgvLXdRdffR+sDedEHSINB6Y1EPwjtCXMyMA6od\n0qFZF7OzYruANAeCCwNAvGB58Kp17zihBcNPKqUT0aUyLTfpCyfHIKiahdmxH6U4WRSmD0LlIs3U\nc9Zgpe/yMwjTNwGAccNG1waeixg4COmxSEqE7hwzIdFp71p9gVINOWoNgKkmeswnpuxlF0Psur0R\n1WT6e+1vpAVAnJlFkqSGGnsqtrPqeGnUstUyI6FSWBuWJAGWY7hBeRu1JQ3qclbForSh38VcZ6Jc\nlgxdYXb6UvimZyhdvzrjpC8dFqk9XXh4fw4chHxNEQBJSSaGZeZUnjXDGFtNybL6hHpAjv5c5pyy\nbw5f7yh7IUCNzGGV4xiA2D6kSVKJw6ZV12evpPBpEFuTUtTjMfKTmWG2GQ8nG4isUEkCcXkB9GOo\n3oEBF0MaqDM4vdBsUuxSoQ08bGvy3RJKqVwI8XMAfge07fhVpdTXhBA/o3//KwB+C0SzfhdEtf6L\n/HwhxN8FEQv2hBAnAP4rpdTfBIHOrwshfhrABwB+Qj/lXwbw3wghMtA3/jNKqY/NP7+x4COkU2qA\nNbGurFKQfbHyIFxFliQhF0x3r0U3hFZOoHmFcWNjnwUtPW+HXiucEPBo2qiQEZW68llZd5Y+6Wpp\nMVMA1bkBLzSNeqxGCAFEVkmhHtL1dX19hoE/wq6+mdn0LHD7xoSrLWe17GeT+suLO1Do8l3ZfKfy\nm2uUpLex8KQTUNZilzpqn9H+Xuj7SKs7SktGRVgKAwC038scwNrIKPFEfEWIMvQhWqWbqpFY0Yue\n0TTzQhRqimRNYHuVCOyHDpK1Q+dKpQYAC5VbANLGcTvDUUvrCT5Fc4xjEHQxCIDPDAmIQleg7Q0q\nDE069EOtIr00mWnfv1sp1bJemcMLedO5ZgBajSCw2cusB5dcbfsQlqmi35fOvtv6crlKjcI4ac21\n4LBa+V6rBB3bR8kOnl1iOSotxirXeUVPcNuoA/evTL+zH5e9vu+iUEr9Fghg7Md+xfpZAfjZLc/9\nd7c8fgXgTzc8/hsAfuPjHG9T3FjwQSuC+MHv3wSaWgoO5Ii8QWXHxAubikDpfadfSrfv71ATOZSY\nxI/weOVW6LMco2QNgBYDM7TXmZrsJfNcLLRUzyDolovyakpipkCpX8ZRb5oDUHNNeNm/U+klMRhJ\nQWSHsN3FINCSJ/JWaZR3+Ud07N1DhO1Do94cyrLEYlsoKCEgh+d4f7bCydwj7Tgd44SUD5J1hlvR\nfCPzIPBK4HkdEgLlxjT3JTp9Q/4wNtgeOVIqWzrFiJNCC6xGlV16CUAUrGotuoca1M9NX4JdS81u\nmzcrWuh15eYYr2ZY5eVn+aOJwDIPsMozvNp9ZECZymWRyQqXudDW0uV3Ureh2AbS9zqfopJjEkPF\np6aHQl9WD93eEX0vju6DWUxMsb8Dd4+uvQ0RVj6HHDUAstlgdtnN7gOOEqFBTxNr3Dna3qAkhDyL\nPeYFkLc+TfdWv0fW50Cpi2aXm2uKFra9BdtxjBKBo7aWA3LQzEq1IlkvkayXaPf26J5rfdf1fL4n\n4uaCj99CfviauRHoJpoC+bRyIwFA7qVEw+YHaiCEbgQV9YAhlelWocQiH+PxysVV7BrjrmXulj45\nkgAoLkYoghz9/rFhyq3WcyzSSz1wKAHMaCfLsv/9eLNBzMfFC9BEqxyzl8nBNXD7gnpRrcHGIufB\no/5TuoKaXtIQKL8GAOxfAHsH8LqH8Fo7tPizKsByTAugNu0aHL6F+90LBM4CD6ZBpY+UFI628M4w\n8DNNguBFKUXgtEpVYi8sJfuDoGIGlhcz5EiorNUakDK2/jpEVBVUNRp3GwBEUaic1Cf8XQK9IWAD\nkPBTs9uuaKH1j7FIHlX6KhwPFwKL3DOyQlexj3EijY1FW2qGnJUhAahsfJqyg75HQ7p49LsEOE27\n8t4EKk/hdQ/R92nDYA9MIyxVqTeAp4kK3CCzVD82uxeYrB0kaTXbv4WxMZR7VuTrhKzm64u/PYhc\n6xna5y3JLwzFnM97sl7hvuZ9SJdGK8znshQ77F7bIh/BdSQ6u/efeczPFUK81Iyz4saCT7qO8e7k\nBAAM24uDMpVyd3TUIoBoe0N4WdF4AfFiyb42T1YZrmIPpwupFxsHw2BtJv41fUjPYVL9PXBbyItr\nLLIxRokwjXt0UNKfI57RaJhFshw+i9MJ1tcxsof02v6bE8jxDDi8Bo6PCYSA6qKUp6SdpV9DjZem\nNyBvjyFuXVdAyACO7bo66AJZjMHhW3A7EpEc4avXUY3IQOZ1x22BZF1g4CfoaDVipgl7AC02nT4t\nEq2ByU5ji+pNEjABPFbGbgptlWwDUD2jMADUpk1GBYBC7Rujsy/2VJrnV4ZSztlt6CrEBQHRVSKw\nuJI4CKWhYC+stx0+x8hHvk5Nf5AGdH8P6p0PkL9bWnJwL4R/Rq9tDN4Q9eD1jgDUpJK0KvUG8DQN\nOCdJSS8HTP/EznqAEkyrpoXCEB+oxJiSNfhzRL5OkLvEKDSPbYBegry4rrBJCXQijBLqY9L3ESBw\nFqRQ7gTPyH3KYEWHl/Hi48aCT1Y4Zle+3FLSbVXOjj2k55ldoK0LlWuVZwDGDZRfg//lx+sT7Jxt\nMStunJaq2Fexi4Gfo61SwOuUcygNu1RlNd3XlsikigvjikonoDbPlKfEopsuzGust4lUzidQXlhl\n+nEwJTaLIXUPKZKb5nW881/lCoHjmD6BCVuV2NOK2tz0dkqTPCZQZMiob2PHUwZw61RhoFrv53kU\nQBNRuI+gbb3ZOK7jURZXevGQQCtQvX74533r/W53iIrd9gamtwaUwqasLiCFrz2giNiCdNMyfK3N\n9NQyg+iBMiINPhsRBKUqdRPwfIRwhTRGeUzkqK4qpJwx8HP9fWdANDbD2c+KXKWYWDpvG7+37per\nOMQocSoA33S8xoYiT6ls+zHEYl/Gtx9bwUcI0QPwV0D88N9WSv0d63f/nVLqL/8xHN93LHxX4XYn\nw8ncQ+BiY2ceuOVQ5sCnRaaJRsp9Dg7Ww6KFlABrmYsK4PDrEv25nLuhJrGPIebgu3iVE1h1vKCk\nymoGzobLYxBA3D4CggCuFl/MW3QM3ps7EHeOTNaj/EjTlK0FWpfoRBAAh/Qa7h5ZhIv7h1XTvBpQ\nVcILgdaAyh+pxOlC4sJ6m7YEbrfXRiyTS2/S8TfN2myJI4AGfb0QbbnpVcTfg1lMamQRoNqnqAdb\nPVfenwkI1vsLLyyb5g6wHxHlPJISkSxLq3zthK5oFHfdjzy05e5Wt1f7cTU/JdB/hoJ53XqaiSuC\nwZwrTFrfbCvo2I+1BtRP0SXPuCYr5Qqp56VI1Zwde4mMUmi2ZGnnQSoGI3JifUYZjlmbrpBIis0B\nXJ5lKu1LqtGWwP2OwvcNV7jd6ZO80fSM2KpZrNVNyII7x+a5ZYWFFxLC2RiivsnxtLP6PwB4B8Ry\n+A+EEH8OwE/qgaMf/eM4uO9kSMfH/W6EgT/TA5HV39sZit2X2Pp6NftgANgNhwjdsVl46swwAI2U\nVHsYMpJCD2i2S6qs7uUopiDbAOSFRHrQmlcel2Ms4BkLcsW8Fb5WLs7LMVHGoc3Y+N9+D0iSKvAA\nzcBjsZBYZ+sqdivAAwD7Iak02zIyG/RcezdqEwgAA0C2KrIdlca9NUNk/y2XszgMFV0b1pmoTcKb\nQxJ+ZfaFSANJJZsNZaecW7FsKBj42FbiWSHSFWU92shQLbMNd80KBRkonTu1BJApTS5R9bixY0vm\nw1lnHXhsRQnOgJg8wd8nM/H6foYPFw8NAFEWRGWw5+kD8abOBqCmbMjOevbD0pH3MDos3Vt5TCJO\n9PcalRsKa0i27x0CV+9DsRrEy3ih8TTweV0p9ef0z39fCPFfAPg/hBD/xh/DcX3HQxQ5BvIAgdNC\n6F4gkmszuGeLQpKacMkM21gYragDUK7IToG9W5qk9jdMrNZA4eRkHe2s0ZJEVmjLYZn1PB5ru2Eq\nixkA4ia9FwJeXNKBAQKew7cwzi/wjVGC00UL/8rxCfa8PcouJlMzzKfCoKSw+pKAzI5tGQ+Hlnh5\nsspwuojwcC5wt0Pn7CCEphhvAk/THNJWnxhWPGiQRAGamWPAZp+CAYjfe+M5TQuytpWwdc944e14\nMJYcYjGCunqPei9eiJDLh62DzSxty2cE9CwT65TVwu73VGjgnb6xDs9VCqx1o52zyecJne0wuzBv\nENIFSvkcttUwslOLEfUFsxjSC/HKzl1cxY8wSgSStYOTuQdggf2o7APVv38bnLkMaQNQ3Yoc4CHf\nHMetTGeXDcCjr2ERUgmZerauoYZHhYR69BWod99H8d4TvIwXH08Dn0AI4Sil1gCglPpFIcSHAH4X\nzfumf75iXQDLMcL2EIlcYuDPsAqbFYVtZtSzoiJsubYe4983WCxXnu/SjduWQ4RyhGEwL9Wgp1Ru\nW+vBx/UygxunVIILA1MeMeGFwLE2+zp8C5fpCd6ZKPzf5x4ezgUGAfAjB0t0ZQSV5tQ3AErdLaY3\nc3+HZWdYcLMeGrRE2KfeiUUt51Lb670Ew0AhlN0NwNmwX7aVxbX0UD1YeLTuLFpZ1Ld4EAGoHIPZ\nWNgkDD6PABEyUJ3652l4Mx3vBNSfGb9fkjeSkrCggrHRqttmz1Bhl+n3fVaYOaQwKK2tmZxRLI2F\neeh3qZ/FMkZbXntbtrMtbHFdWuQ/hJrrkmVMg9DEvjtAXJzj608iPImBSHoAMsj20rAtK4BvfY9s\nMCiFb/kgZYZJCjQBz6C0ggdKBQu+huOkZIl67RJ4zt+GOjkzQ64vJIT46Dbe38PxNPD5XwD8qwD+\nIT+glPpbQojHAP7ad/rAvuOhaY92KYYXSxt47NKMmXFxu42LmdDlGt6N86Q6R2VxBUjctGHXzn/b\n9w5N6s8DgjSjcU1lFp7RYP8WS9PKyNfox2bFtWbg0ULPDf9FNka39RrgSxriA8oFbHhoFBOU9GnX\nGFtSIzVjLJ5/Ue0hkF9hNxziz9we47jtW4vBfinGyourMa1bVQHHArxtsx0suSMyPcluH5A9HKy/\nF7hdotfLEni4t1LxcGpalO2p/yUqCt+eF9Ig8HJMA7LziVGiqOjC9QBgXCoKNACQ4mtL/ytA2nY8\nCC24xAaU14FNBeesx4+QZOdm8JPvdgYgZDHQtBhaU/+x1iVsytrtCN1u6dO0UY4NTP8t9IfYDVN8\n33CC0yV5Kg2CLgbygDKNyZTcgQ/f2ngPW9VdOiTvg4iYpeQdxdYgCsOAFK4jpwM1P4OQEWVxmrot\n+pYhpJ6rA7TJ3fgDY8WwlXTzMj52bAUfpdR/tuXx/w2k7fPPdzgu7eq09XU97JIQR6FyU6+vN4nr\nzXsBAJYmlrGLrjXAN4y27FiOSfPNjiCg/g3rcelhx9Iquhb6sSQ9qVDK2xbXVAlBsytPrmkB298x\nlOLMc5Gvk5Li3e/RZ7OZdrY6de/AyMjQ+wzwQ/s52vKwHFyN36fFtOE4zS5Ua7qpyZQ0vCpKFNws\nj8s5Dz7n/Jm2mMF5rYHJVowoqf29PKeHkopQLV/xj6tpKckSa+r7MjO6cM8CoLqrJgDEwRpdHOq/\nv4CKk9LjjUtt/V453R/1DBWcFRUGfo4h5nA9WVN0QON7M+hwPE23LXI6pUcRE2G2OHayRfpRO0ck\nZ9gNh+iuW1AP/gnU196lcvLxY+CNCcTRm43gbIMQHcAYLNOzzKvSRliOqWLghWa8QHQPAb2pqmvL\nqekZSVjNFhvacS/jxcaNpVrDkRvN6qr6c7UJbt+InPJv7JhjXWbQPvQAGnfiFXfUrFxAOWzDLfXo\nDPA9iMM9AhqgJBRogKhMefNrVCjgiRaaJMQhyZuyr5WrFDLqlaQCC3gmKdFcZXgHXtgn0Aitna1t\niaAHL6HBxygfLEZQ03ImCGluekYGUPi1amrSxeVS66otAZ5hYYIFu1JaWnyQfmlTbp1zeCFUBONT\nY7KvJjtu21BuW6ymm2w6DZr/P3vvHiNZdt6H/c69577qXf2Ynm7O7Mxyl7sU5ViGqUiGkSAOZCWK\nkICxEUuCBEeSBSuOJSj/RVSEAP4jBGgEECDHghRGMSQaViQhiSACkcGYMhQgsWhRUZiIy+c+ZneG\nPdMz/aiu6qq6zzr54zvfOefeutU9y51dcjn7AYPpR1X1rVv3nu983/d7tB8/6cJZDTWrjO0moFrS\nqWaYF0RWfm7QpwRUpEa8ls+Zy0FCMiAjOf1cQhsGmgRbQHq6XeVsnlzFgeZMjGMT4CapJNSjrwCH\nh1h95Q1qBe90gGtbdZBKQ3Ei8jrYSzpI0hLqtc9h9eevYvmvDrGcSXT3zhBNFvBenAPPfXBd5V1/\nXgJA3B2jVLm2oigASKp6vA61P2dHtKlivUUmIGtOnnSsWoOiosqN23H5E656npyw6LdFPL3JBzAi\njG64iYd9YvjmbFMZjv2+TTzOQtRmWtVs56iSF0vdNgKsmOGjU1SvPjL95vCFBcT5lG7o4cC2xFoS\nDuAkHb2YpBUlm0QKdCVprnWkRfEJmUBp0ILo76HodHGeH2nR0QDSO8Kws4dAL4AmeMFzYLjsTaTm\nx8BySr3/RlJR3M5wRSLZGEyLtKpFgeo0hVqUUGkFEfsEsuBKqO1DbZrBNT8DJ8Fte4QAACAASURB\nVAGZxzVFYx83WCvNmYGZisdJPCqtNECkAxHmUNBVa5YBgYb7FnYDUq4yQ1R+ZUrcFWBGCWjvRSh8\npe5RozlIDBAgaZmJUb++cwFcK/lWL9Y8g9zr+jIrB3h10ExSSarMDw+h7t5H/tVTqEWJ1WkKuSis\n+G0DsCIUWXsEiznU/a9CvXIX2ecf4uFrCeYTD8NphR08RATACyXUTUe1otEWFUGMnlY4Z/dcrnoM\nPF2rxYvlFEjGKAIfJ+mreLD0cbufGNShWh5aYVkd6r2229sWT3Xy4UG31SjLa+6kvDsOvAAFCkMs\nBKwUjH2xsCY/svmPho41t+MZzzdUkRpJGY9VfNmrPo5oodE2yQA2zoyaMYr66AU5ric5Djp0Q+13\nuzTkVcrAciFDqO4YqdM6owqJ2m9BZ0TDf0xMtcOIKNcyIHBJoj0AIOFUNQJZT/CLO4mH0XmsqVYd\nL+ClFaDPgb/TaReDdc3ogPrn4CaglgrRfN9W5Wz6efP3TgvSVCVpbq2egdqcxvBwGsGmgwAh5qid\nlOFwEeBG10dPblN769zx8OJ5isPDgTamu56QqO3tysMoskN44/YJrG2sHjekFwFeQH87lEAYwN+K\nUSGtX696dtgEi0gR0sajNwQGXcgbPfSPLgAESAYl5I0exPWRMUa86rOI/T4qRa3FyOsQ/675ID3L\nmhdHxk59FM6MfxAA+ixDPWNkseD34m2JK5OPEOJvXvZ7pdT/+uQO5xsPIcQPAPhl0Lr160qpj1/1\nnJrel48a5Jel8NXyDEImxsQsrWY1m+a1hVbaSqK5yBkbgE0HxDeXJouKKEIwIhkVsbdDcOn+3kaV\nagYyKCHWtMwAcqGM/I4RBe37WxZN5Agz8vFJLzT2y9JLLFKPeTeaxMjHHQQxSmRWm6vTJen8fAmV\nnJH23WIC9Lvamtppt7nvI5TA7hb8a3P4emBvEg6LqbbMLFqVipvCk3ohM6g4XtQ0WEGVy/oG4bLN\nhAyp1VjmAK9R0QTifErHGE/hs7aeO5vhSkC/DxcB5VbaXTlC1KOW0nZ0k4AnZ0f1tiUaMHh+HRGi\nG4zwbH9iyK5M6jQtR9TtG5jkfFUF5CIDxdYtqtziCDIOIadzao3ubtEccQNUnWedYu9FiP4egt0/\nx9bOqxjcmyF44RrEczeBm89DDPYtbJ6fg/o9xNp9kdcBpO5GKEXXcm8IMZzTtSYtty6RK+Nka15H\nJqTcsRNDDFNqcz86hRw9KbTbk2u7XbXeCSGE/v0PgiwVfkIp9WeXPVcIsQXgdwDcBnAHwA8ppc70\n734BwE+BdJp+Tin16bf6Hh6n8vkpAH8VwL/U3/+7AP4VgEega+CbnnyEED6AXwHw/SCv8s8JIT6l\nlPripc9zBCclIoNkCxBYh9IipTYJUE9AbdGWeFoWSGPLwMEVT3Nnt7tFCzEA7D9jpF02vRcjeMoy\nNE4CakK82/glfNwMZ2X5GADrw+YG6ZLfWxza88NJCD5IJBIBEA+hBsv6XKYZGtkuhnXflZpyMWBn\nbJvCPfeNxONaPF+ZgJrhHAMAwBUyjYdQAaHdRCihuJXISLQmas9V4277UyJEP9yiimcxWYe6p3bm\n1fbcbjDCDW+ByO/bGZzeVAEwG6vLktCaCSHqUHbB5oBRRJVmb7h27k20dQc6I4jv/LfhDQcIHbSb\nEqJ9o+aiGp3XIrWQBtAhGQCDc9rQORur2GfydkPRwr1vg9Qq1n8LxWOud/8BCBj2AZCZ3K8C+N4r\nnvtRAH+olPq4EOKj+vufF0J8CGRY950ADgB8RgjxglKqIRj45uJxkk8A4EPsgqftVX9DKfWTlz/t\nHY3vAfCyUupVANDufR8BsDn5EH3JJKBS5TbxLCY1l1LjLopLElDzhmjjnTg3ilnkeBF2L3AXSaYV\nlHkHuBG63WKSxe9N+qFB4/HfZOJj006CjlH7pwiJEvma7I3x0GmJZlKblxOzgEV+BzIOEfsH61ye\ntmA3ysb5ZJfWIIitmdymuMQugyVyTALi96D/N++kbFS0+vw2P2Py7tG2A8kZsJxCxOeXQsVr/+uo\nQdGLFCp93cLO89LAtxGH7arWsBUUKwOsbaq0ArkKcgOQuSwJua/bSrTujOh9N23QN0VLEhI3vgu4\ngdakU6t+NrS3+T5eC06GtUQVAlULV81NlPx1mz7eNzceZ737CIBPal+fzwohRnrtvn3Jcz8CMpkD\ngN8E8EcAfl7//Le1us1rQoiX9TH88Vt5E4+TfG427FePADzzVv7o2xDvA3DX+f4eKNvXQgjx0wB+\nGgCeubnb/LWRVlHl0gys1WyuocW0SAqM1p/D7a5yWZPzd1tjzdYBgHWmOS9S3NJyiH4KFkRgwmvn\nXKy97yZ/hRMVi6M6CxBAizovQsaEzbQhj40uFjojSsoNroj0IvJSMSrDAUYh6XlxJWX0soJ4HW7e\nSBKlWqAq7ZzDTWbx8MDu5N3k26xC114zr6kTmGrQmRuZCvWK1wIsSswXEnHQRxBQNaCas4pmNdZm\n0b4pMbcRe91w2lluuLJB5to+nxJSkPnTun3aJM+uHdOqgsWVo56AwwRl4Fu/nKs2F/p5LDvEygVN\nxQu+BtcS0BXnYu0Yl2eEkAv65u/U2pDcOWjZ8HwTYkcI8afO959QSn1Cf/04613bY953xXP3nLX+\nAYA957U+2/JabykeJ/n8oRDi0wD+J/39D8Mhnr6bQn94nwCAv/zh59XSsW8GQEZTQWzvrTQjO2VY\nvbONr72kna4qc0PM5OBFvKk5JgIHQqqfUktYoJu+KV7Kr+nqUMED4k5/LRnVOCwcTXhwMwlp1QBO\nQkIpWriWZxYCnmUQ/Smw/4xZuNyFtYaKkkTa7QWRUWtQ04e0W3aJsfq8mPfYMCuzPyfHzF5A9gvu\nYm9eo6Uq4WG+C4yQggzs3ETeVgW5r9tMYk0+zLw8oyF2d7vdNXMteZUoK+tKXLI4bdCFFGM6//EQ\nqkNtYDHo2o0Kw+2dz9O1Dl8LvflQszkwm9MczXm/zeuMbd4VsFFhgjcQZtbY0NVba5Hpx16UJ8iq\nRR09qm3FAdgNgp6x1u6hlmPe+J5dFOryDAHGQEBkY95UuYhVcx+ANpKXcvHeZLyJRHaslPruJ/aH\n32QopZQQ4m2V+74y+SilflYI8TdAPt4AZeDfezsP6huIrwO46Xx/Q/9sY6xQYV5OavyFWv9X36Bq\nsqCbZ3fLtHcYom0W+iK1mlGRVcqtuT62JSAnlBA4ye7SYNmN5hzHGUhz8OJ3nh8ZXbHa85tVT1s0\nk5CWs6nNV86OiLX/8JQgqKMOtQ93rq0lXDpWEkhFiVriwStfhjo6Jk+Z3S1yWb1EdsQdgLNhGVdT\n42hi9Lji7tica24dcv/GNWdrRXaxxRJ/Rm3tHSdpuMjHtmAfmMjvQAbd2jFU2rBwU2RYQHpWQsYX\nkjYWGryBvl4o2yqnlurHLMr8GevPEGFA4I8gpmu22QabnxEU+tGpdW9ttK9cSkHrIt0C/iB7eaqM\n3XATT+3Y9czSvYfa3p+x6XartrZrvkgRIIYMLajIKGrweeqMqFJKxldXWe98PM56t+kxwSXPPRJC\n7Cul7usWHcuZvOn19XHicaHWfwZgppT6jBCiI4ToK6WeEATkicTnAHxACPEs6KT8CIAfvewJeaVq\nfvMAXbyBF9CFeD4FJjPiZwAQ0zn0RkjvWC3UWi3PrI12aJVyeXjfnC+4wTvAexfn+OJZgg+NX8Xt\n/q5NIM6uudnTdmHfj5YFJrnEfucI23Fe84e5Mlw4sjYO47+pAn3zau4Ra12tFgX8rQUkLPqoyTsC\naLAb+4oSz+kh8PqrKP+fV1Dem8HfiiGfOYW4OYfS9uO84LuJgl0yAWjfFt+4h2arCpE3xzi6QCYX\nG1n4mxIFt8radtlmMeWk/JiJp3ZqtSUzJ1CbPGVNQ7DlmearZelhHGknUJ3Mgs7ILpY6DHm5iI11\nuDubVOXS8F6qY53YYkKqIRnUPzut5qzuPkB1eE6Qf71hYAUM87poqW7ccKrQtJphXk5wb14B8HE9\nsTNrVsEG6puFZosUsFWqm3ialY/bPq/9XB+vuEzKSVMJ2trK3wLxOOvdpwD8rJ7pfC+Ac51UHl3y\n3E8B+HEAH9f//77z898SQvwSCHDwAQB/8lbfxONArf8uaE6yBeA5UK/v1wB831v9408qlFKlEOJn\nAXwaBB/8J0qply57zrL08IXTRHvKkJ0zgPouRzOcV4sCIsvoYhWi1gYycvfTuSWzsVIuANkdG58Q\nt3fNcbR8BS+dhfj8SYL/70GAO9eBv7p3hu8YL0jvSiO6RGM2wosf2wXfu4hwb852zmdADIJSb+q5\nNwmYzXlCFNlzcXFObRpN/lwtClTH9Dt/sgBGc3rPyWBtJgbQjjYoKqjFBOroGOW9GapjIo+KTgA/\nPCZkWHBkKigpwpq/Ci/YJ6mPrPLwKCV32GXpYTuukK1WGIWzNT0+16K7Gfy7ZgKqARF0i6eZeJpI\nMAA1NYxmsiGHzwAnqV8zPGPZ/+24MomIVZrZFZSTLL2/C2vVoBPQ2ufbqH5qiZK15pg8meb0s9Iu\n9MFiTp/Vo1OULx+jvHcBfyeBtyjgQy/eaUZgGKAmuApgLQHx9X5RnhiX3pOU5kKRt8JuEtDmxN2Y\naQQqJxW3RWq8lHS0Wo5z+7xI7bXtAHm4cjTzS+0CvPYaZd6uf/cNhILa3Bp8M6+zYb0TQvw9/ftf\nA/AHIJj1yyCo9U9e9lz90h8H8LtCiJ8C8DqAH9LPeUkI8bsgUEIJ4GfeKtINeLzK52dAyIZ/rQ/k\na0KIa2/1Dz/pUEr9AeiEP1aswAZyFYmIyj4SrwdUKUGaQYRByfyMG/sQey+iUDm6ckxcARYhZBY1\na0FN5wCOoMYwEiCbYi95DrE8wna8xLUY+De2M2KyZx7UCcmWIJStpleTjHa1o7DEaKvEjZ7E9aTC\nMNyjgX6mxUib0G5g3QU1akBO3f97tNioNIO/o100dwB/K4YYdayYpWbXuwv0WSYwxgWWYQfx4BrE\n3inCFxYoOzN4WzH8gyHEzesEr9WVEy9WJgl4IcZRDrrugZMU2I09RD5xNRK50o6gm88zu21eFu6A\nm+dcbtuzJkwKOxjn5zb/HgDEyAGskGCFyPM0v4Q3CTCGem7SZE8cwB5zLHukuOz1KOGcvEpghjZz\nss7IfA48U4m8Dunz7VwDZnP4Owsivu7tmHPPM9CmxXR+vkLUKeBtOUnFJbc2BvTAutoGA1AAUhEZ\nR7lOonutoBnXK0liXQm+xmlzEHru74RMoDoj6/rbOEbTknMVKjItALtBm+5bJdrWO510+GsFWrsf\n67n65yfYUFQopT4G4GNv4ZDX4nGST6aUygVDhoWQuIQn+W6KyLeD8K6s93ZFfw94cQjsvk4X7PUP\nGogvACtauJhQsklzmg+5ApJOAtpEDAXItOrF4Qyj8IhMr9KSZEtcbbc4AvaTjdYAAHC7n5BiwfwM\nvFDX4ioXRXcxcULJENixO1sJGA0vsbdDLHS2l9ZD5IsiwySXete/AvAQ6F1D/NwH4QFEnh31yXl1\ngzCqqzgNYC0BuU6oTSvq5g7ToNJaEtAmdes1vb6GMKk5zqYHjd6xM1SZHD5JQQOokFZkKc3XnvSS\nGoem+bqGm3NxBjV9ha6Lo2PaFP3Fv1T/XIcHmDmDfG5XynICyBESbm1C6+ppg8GlX2Jekr01As2Y\nTXOotEKRepDHKXydfFiJwlibt6DC3HYYw+3d2I5vWlTcJZ5GNYh/izivy2kznwu/Htuhb9qTuK02\nh7hbP4CwvZX4XrzleJzk838IIf4rAIkQ4vsB/H2Q3cK7OjxYm+Ou3Ka2EA8YOYKYqp3ABxqLWVBU\ntDBlGdT5FGqysH44rN8FgBOQgTJvSEKx38etnpWlV/fuQ905QnlvBhH7kHFI1UUQA76zI9Z+Q2ZX\nPH8MnkUbAsshYTZDFNq6YJiaBORr1QFW1WYVZW6rZCs7m0mkQOStIL0J0Bshfu6DELsO2m0D3wWo\nJ6C6xThVfMazxX3vQUzLmrso6kqkacfsQnoNEIRbWS4sPVgXJq2dI2cBNX9vBWMBXanSVDaxBEbR\nupeQeQ3+bNK55WU5YI/iq6co3pjB34kRAbUExJ+Bbff5iLwVYj9HtlpABmMEbFcQxLXEc1HQ4tsP\nrSBodbzEckrLRJA6nZYgJusMHaXKa1tSboWxMOp1vZ+RXoid8Ab55ejB/mXeRmvnpA25qVvcrUmC\nE1CTkLwp8bCXFf/9TWrx30AotVoDCz3N8TjJ56MglYM/B/Cfgcq1X387D+qdCE8AB50C2/HYts8W\nkxpUWoUJzosj+JWsLTYBAqjZoUV/TbXB26LQM+sFxAjk4ZJKkkTpDS2E013kGzBQ6MSDh6co781Q\nvEGtNX+nAzE8hApixNu3MS8n2qa7bwy8FOxweeOQlJn7LUmnQIFSt15qighhQvMuvUAIgMiNgy7d\n3FpFOasWmtcjsSgFlqWHs8xDVpHHClCQXllvhKSpVMznoAn1Zfl8uY20msEPJKS3QCLJB6Yrx7QR\nuNAulYCt4LRYq2mZOVJKhlPickkaRFyzQLnH1xQm5XB342hwpXQltMml023xrSU9PYtQd++jfOMc\n5b0LzI+A2XEC+XWFvc5dBHEE8cJ3ANu3cXLxMiY53dbGshoeAG2pICQQ9BFs3aLPPPCRlVNcFJm2\nXigwDAvIIAbyAqtFieUsgoxW1tsmlNSmu8RkLlstjJ0DaaiV1rfn3v8L9fIdI5uEftdqFiaNMsW9\nP5qqIAB9zs0/3kwWnIDcc7sp8aR64+gY8hV4T1z07YhLk4+WYvikUurHAPwP78whvTPRC1Z4fniD\nhqup9sxxe9ZhgovypAYHjf0+LXRHXzStj+pwXXrDCEhy8E6K1ZOXZ4ZDUFu0NClRRBFUSGKaXkfa\n1wwlcP8NoEixs/eiTpbHpDbgVjIyrNs2OP+vkSb1fKBcXTjukLR4WMHVPgK+gc0DMmu9gALZamEQ\ndwwKWJQwg/VFKTByukObbKSb36vpfaMwEOtj7nduYDsSdZtqV3JGqzyzarjrreSCGNb+bkMxGUHc\nqoz9WFFom29+He+KxwObE8/RsUGniY4EV34yWkHE2hJAhuTfo1udbozCEolcIa1gLRU6NLua58em\nRcp8rHKVQSakQed1JJJ+hSBawd8iUVfsUKWbFUcA1qWXuOUX+8KI0sa+sFbwPB/NC1tpZBnx5NCY\nUTah0k30Wm9I3kpo4WTBuc4Clk7KDQjBKJADde+eNIf62usQe3Oo3Qkl6vfiicelyUcpVQkhbgkh\nQqWeAEzjWygCL4I8PVwfXml1ahHERikXcBPPV6BevgP1YHK5y2G8Yb7iJqA2dnt/D+qAxDUlbCIT\nN51K4fghHbd7U/INyTpfWhJEOcoFQF0exrhVboAO88/SagY0E1CQGnhuubpAWl4gW/lmkO4mHoDs\nGxK5gvSsaCsfx6bzpGZHVDXyAqFljjiZK16c3Z1rHK2hrhSodbhpXsbEyFYHU1cSp9EebJKG+bjX\nYjFBoJO8GwZ6z8lmQ+JRk4VBp/lbMbqLCwRxBhmsIJ/Zh9jdgkjGqNS0lni4rRz7AtwxuygyTdBd\nGEBItrLLwCgiq+pysAP5HR9EPJ1jt3MEeWMM/0M3IF74DpRbBzjP7hq0XzOxuvMdhlLHskcV+pL8\nnNhWQ4S57RCwL5Prp9TcWHClor8XuxkwTKn127jWm9FULsFEV24bfHvU0TH97W90A7L+ik8E7fbt\nEo/TdnsVwP8lhPgUAINFVEr90tt2VO9ElFdfUKyUW/MeuXsf5RcOjb/MWpXjhIiidtQMJyB+XOOG\nEf09A9X2OYm5Evx5CfXaa/T6zQgzgCkYThVU+xtc7VSzWrXTDLOIeNTDl77mvjhVFVc9PGNYlp5G\nEVLMS4ITAzSfiryOYc2b1lgThcRW1JpbdKmjZHPhmM6h0gyC24IsH1OkJvm0cnR48XejmVDawBgb\nSMP8PBewEAz2r27htCQerno45I0eRCeFp831WLuszI/NYzjxEKCBQA880wFgqh032EwR0J/39Q9C\n/OUUERv4PfdBlIOdms/TfqfOlWuL60lFgJ7FhM5JllGLelHA7zSqn8CZ7TRbY6xppxPXalHAT3P6\nrAGbgPgPB3FdHYST+9T6SgGbPXsEQITqybcSpfHbJx4n+byi/3kA+lc89t0TeUYtrDY/GMAsVrXE\n87XXUXzhCNOXligyD51hCRms4O/EBDvW/jsIGwmpubt3hthMZAPqSUjEQ6j9Zwjl5u769IK0WhRE\n/GuasRmoqKvb5SwMDgy3zRyvGfw7X0hS/Q61iZseFperC+2SqvkojXYbB8HZtcnX5I4hSCpdpXES\nqkn46LYmG7JxuBWnx5Uht58AYzhnFqEeIfaEGkF6kSF9GiO9NmFWoLXa4a9bdfs4uH3nckh6QygA\ngTYza86AaoTIRuKpTlPj62Te41ZMc8DdLSAZ6NZpDiCoJZ6upPecVrMa+u2VKf3t7ZjOK/Nt3ChV\njuDGd5lK2k08r5xHWJTUTj3oFBqJCLRxrCK/Q1VPem7I2zwjba1+dKIxbbFGwlmdpuYaUIsCMi/o\nut/NgPFeO+eIP9/zaQ0gdGnoewzvGcq9LbEx+Qgh/qlS6m8DmCilfvkdPKZ3JlZqXRG4KS/iCIay\nO6V7wRapBxmsyGmzoxfHpmFYszppa8s4qsm1vx8PoXY1Ee74Ie3+9DFYcEOj1+1WWq48jDM8Zf7H\nZeEuVMRVAaHstH+RWp5BFDHisF+zMSZggQ3m4GzHNymJT+/QL5h7od+/gobNljm1RfR7dROPXXDs\n59YgvtcWaJXpBa2HtUgrBek1DAGb0ZTXcX4u9LlsEofNZ9GsoorUtEKlCJGqGaHhGrBtY5nA7yGt\nc/l4g8MVt3p0CjF8iEAmGMbX8Gz/oUE/uoKZQbCF2O9jXp5hks3M52ST1LZ5fFNfENc/SMcNFuOc\nI/JXiHzbTm1chSbxbKqINjqEOtVOM/i6t69REvXdOXco0qspBW8irkxQbyIU1Js27ft2jssqnw8L\nIQ4A/B0hxCfRuLqUUqftT3uXRBgAt96//vMWRrNIxlSFAJrudqTZ+RL+Vo92oLoFIna3jOBjzRKg\nGY+pFyVkAvRJ1VrE5+TyGQbUMnArHn48L+gNwUgOF7q8KQG5iYdmCCv0PKuOrM4PCZW3nALJAP3B\nPnnFeGfYTewOmOVSgsUcqjlfa3jamKpPhsQhYdCF09b0ObHoBae5MDd/Ztqe2pJiubowkGJqOWVm\nAJ90RtRObEsaLuIKDt+pRcBThglJt0Dzo/g9BmQax1bjpupUeZ3UORxQtavN6JhT5SYcwC7eAnOo\nL3wV+ECGePcm4uFzlHAWE6hSn3O9uQlkglHnGrpyjFFEsPSuvG5tRGZfpsfr81U7rzohDYM9dIc5\ndpMjp3rUfCRHTYIrZn5M7PcRxEPSAcxLSJ75sDMtI946I5rz8Tl0jsE/GJqKRcQ+sEUoUAy69Pyd\na2RuFyYOJ6+gF+l0EQS3qJ2t7xcfjWiaGra1td+LJxaXJZ9fA/CHAN4P4P9GPfko/fN3b/ibZzVu\nSBECgaqpHkSgm98kHHan5ITjmJYVDtmOo1Q54g4BGB47CfEciK2ms2zDzEfam6jJQHfeE/u8NBNQ\nM/EQCsousEIpUqR+dEp/a5hClTmCeIhhd8/K0uRLqMUZ8OhlWkDG68KjV/In4rBmRQ3ALsKDLqpX\nH2F1as9fbZcah3R8vSHEYB+z6hRZxYi80AAjgBlG+nQlg32LruNosR8w2mAtx29ak0EMsSBoNsrc\ncFlKRXybtCSZnHKVIQh65ISLqW31RREZCcYR/Ifr+7zqmBQKuPJVX3udJG/Yq4mPHTBVpgpiID2H\nlCFGGtKsWGH8fGraXGJ3C2pnSlp7+nNy24oBAmxHN40VQjOaHkB0Tc0QdLYowQ/O6b4ZoHbvGJde\nYD0B6fazGAH+CFATjf67PjKuqcxZQgsEXHoRisBHwM6rzQe4mzWXhvCtp+v2bRMbk49S6h8B+EdC\niF9VSv3n7+AxvSOhfOIqqNnR1Y8VghabeAh16/104WZZbbdmGP7VrOY/4+4AAavKPI4m6AYj9Dtb\n7fOGlhDx0OymhYvwcsOdYXE4X3NbJWZDPB81rbpm4jlJfSRSohfQDaym9+sM+7wEBhlULwXKJV1Q\nUy1C6sxs5DND4NoWLRTjvfUbnKuDQnvghBZiblpqer4l9nbIZjuO4GkiLgBTjZrzoJUXZtWpITsu\nSwsFt7EhAXHiMS2g83oC0gKevACziCc74orOiFB2un3HLU9O8NLL4Qtprq818i/bOUcRnW9nQK7S\nylR5JgHdfWCH7zqM3TZvVHRCU9FDO186n0I9mKA6XkClFeSNCcTtOYnljvfWLBsYFRgDJqnSzIn+\nVuXVZ4n0XhdU/SRjqHFOiZI/J/03isBHWp2irxMEdFKsmfvpjZXQQBwxHNQSz3n+0Hg9AY4AKW/+\nPEAOD2rnqOnTBFjvrKZlxnvx5OJxLBW+7RIPQDfGzFugt32b+CIOA1qVy1aDM0Df5LfeD6F7+EIP\nkOflGdLlIc4yu6fKVnaBW5aBIV5mFemSPTc4x26ywDDcQ4AWCX83WBJFJsDWLeM9Yga0zWNtgiec\n3/EuVnqRGZqUsK2SpojnsvQgvVCTWR+agW1dSkjHxfkaEx8AqtMU8sYC/sEMYm9u5fkbopSG3xHr\nltl0bttNTvJiZQQRRQg691F81VYHohPQxqAzQtHpYp7exYOlbxQXrLCne/lTApJeRAvk7IjOm0Za\nGb0vB/nGXB7ZaKUBTgJiWHaYoHQ075alh9jPEfkdM0dDer7++QcxcBCT8KpDaOZozv54U9AM5cLQ\n8xIILdxYTRZa7NWSOINOYD4X4+XTov7Mm45AO6EWKGjhhq18lqWHXqARkZfIvwAAIABJREFUdGGf\nNlE71+hcDq7ZlqjmHCEGem6COKeNnLGUz0vbttVq6Jx4XjoLteySNi7ULq5ulCqvJaCC6Qba6qKp\nPm6r5LcWCupKfcGnKR7XUuHbLnwhSfVZKeozc7/f9bBp2laHSU1dmlFLWJGfTBR2ADzEazPb0mte\nuEzke25ADH3WYjPJhNt2zWiB/UKGNMRuyMA0xROp77/OgWDZfazsbjVGjthXSGSOUehpm4YcXXm9\nJuFvUXYOsCKIayKk3tYCvsNP8Xc0SZHZ4/x+itS2nPg9NVuMLOPP/CWGYh8dUws0bnTwdQUQIID0\nQoxCStDLkgbkk0waNWnmwtDCkyHg20JLJ2E6h7q2ReAF97PgDUm+RBL0jNeSGfTPzxybgxRJh5Bn\nRMokiwSAEpUMt2lRbpCDDQJwmELkJVSaUytStxtrAIQwoPO7IUQUWch+HNHrxRmEFg3lpCZi3yI2\neYjfxrlJHUSlrhrKKlsziGMJJJME+BoNYpqn6kpcehEif0YafeeHVrGiGc57wOAaVJggBoAQeG5w\nhF4QIfL79JqObJELc1/zANKtaEOYrTJkK89sGN+LJx9PbfLxRH2xEjKx3h36xqhZLuvgWQkAYGV3\nutKLaKGLIwB3awnIje24MgrMfX+LFqj0vC7l0tCXA3B5W84dbDfD1SYDakmId+3w9M3o3GNuEtqO\nx1T1lEs6Rl2RAM5QnxOHI0Lqg2Y0q0VB6tW6XbaxultMLEFWhsDgmpFGqSGYypwSz90HNcisabk1\n3ju3YGI/x1m2QiLpjTYVpelfBKRzywfRNhI+oEEAG4bQRYoAQBD0bNJxDMqU5kcFg33AX08QaTVD\nwm06h8RaqhwyPKDXGhDhUeSF4Zg1E4/od9uPD1inFUQTU9n4sCAGf6dDLVWuLi7OLQ/Hgf3XQt8v\nTRFR6YVrBocqTGyibcwia4mnxYvHxHBgkxe/Pb+P7Ti3SSdfAoXdADR5Vm06a/xcYAL2VFqW7y4d\nZSHEFoDfAXAbwB0AP6SUWhN9FEL8AIBfBn38v66U+rj++d8C8A8AfAeA71FK/anznF8Aya1VAH5O\nKfVp/fM/ArAP6wP97yml2IyuNZ7a5INVuQZFNn13ZxfnessD5DIJAF1ptb0MFyg9RxAPsd25ibYE\ndNAp9C5wG0kloeb3rQOqAy9ViRU4ZZn7JOhZcqpTpdmD0F83h+UXup0Y2arI8IpAQ3MDQACsWZce\nGvc83bZokjAZaceh0Vx0/KipYPtpfnniqe2op8B+bN+PrkRrul6sqdfCTGfej9L+SyhS9Lrb5j2N\ncYG0ssKksd+ACIsQqjyuma5xleEPptT6iSxsuvk+aq6YLmx4QEmBuT4y3K4N7EuV08IY+ICen/C8\nwReS5iBFSlXlZNaeeBomb5t4S0bMNR7WWmv+jk7io45NspxkNiUd6I2bEEjLmTZoZEuM0Iq+Nq3g\ng7jm9AswmKUB+GgLRsXJEKqhWmE8rJaHVkrHIXVvIvry5pFg6T1AshTRDE9qmVTqHWu7fRTAHyql\nPi6E+Kj+/ufdB2jptF8B8P0A7gH4nBDiU0qpLwL4AoC/CeC/bzznQyDzue8Emcp9RgjxguPt82Nu\noroqnt7kU5WWZe/6kegbghcGt4XgDuPL6CGG4TWbeE5fJ8TQcIAAtwznghPQfievC2Euz2qJxyCN\nAKA3BZIxVJhgnt2l45U6AQFGYcANs/ADtg3H7qoAKR/E2VoSEgUtAu78h8P3pU1MRYtatttyc6Tn\nBdYTEIZ6sW5KAjUZ7HEEMZwYm4Wi00W5ypBUYyu8qmcfTDrk8DqNajPLaH6naOddrjK9qOTa3sAu\nkgwNF0rRopXSMH51mppZiL8zh4ojgurqc1zTIOP352wmzPviuREsWo45UrwDZ8CCkTUqL6wlQhIi\n6e8Rkm02h8+JlwEYDmLMHFMz0WsRWQbGxOHYutACVklikzQUb46caoQ3bKxgfX8R4tl+YRNPJUn0\nFVi7z4A6wXdN264ZTGHgBNoZWYuF5sasrU2or3lOQIzMNHJPBamIiyIh6D2ggSjvOoWDjwD4a/rr\n3wTwR2gkH5BH28tKqVcBQDuefgTAF5VSX9I/a3vd31ZKZQBeE0K8rF/nj7+Rg3x6k48Q64mHf6VU\nDQ0GoDaMz1Ye0qpEV+WIRR+O6hBFEKPVTwd6Z710+tmRhpBGEQ2FzfNpljAM98wcwRAxndxTg1EH\nMdkfLM80GCGipAOst1waIqem/VY1fHC0i6QZiINabWrktNw6I8NhMUZeAKl482CZw2WvN8NtaelZ\nlRRjqsbSuX2PzAGCHlkx7J0jDKznjE7K7PfCbP+m+6ip/Nxj1XMP0ZH1mRInWzgimDyQ59+77zeO\n1mHxLDwaWPVrrOh8swVDLHuOF1AfKr2jRTmddtGmRAHUKuOaiKwjq5R0RvS5hlN6rencvKaB8+cl\nbTJCCeQlnX+3HRbESKtTnGUCi1LgLBPYTTSgpao2kqg3ShO1Vcd87TqahZi2OPQ23nfzdblKK6us\nbqXBWoIX51DjPdqQBaSG0ayO36HYEUK4VcQnlFKfeMzn7iml7uuvHwBo4TngfQDuOt/fA9ltXxbv\nA/DZxnPe53z/m0KIAsD/AuC/0YZ2G+PpTT4yWiPS1RSmgxiJ1zMs9my1MDvmtCJWuAle0OOMdmNB\njLI6RVopDVWmksLsrLni0bs47FAyEC7fgV+6qCBDp18uBLXk2sAF+lhEsE9zoyKF6qyrbpuWUEQS\nOS5qi9+rG2k1A4I+As11QjSBOJ+uwcwvyhP05DYlSJdr4i5UbDc+ndNuvUns0yg1ALRondyBlKEl\nGyYDYJeOl1FoPkuw8Gvs7ZBJGvNGnB0czxW4ymjaHJgkF0fAqA95gyRuamRGbjGyxURRRxa6u28x\ntPI6bqvO1SDj1qexfIBNhqxUgHNt4TGbGxts0Qno6ziD0HuZje6mm4IrhLw01aTA3NgdrPHJGALP\nX2+Y3xllA74OGuRtM88SIcBAnsK5bmLbPmy1gZ8+tOcVqG8e4yH9Lec1AEB1x2QD4Xz2hmCbntMc\ncTY3BGEZHqwpdr+VUFCmkn2MOFZKffemXwohPgPgesuvfrH2N5VSQoh3Ymj1Y0qprwsh+qDk87cB\nfPKyJzy1yWd1lQW5vgl4ZwrAOFMCF9SqEfWZByKS9lBCoFIlJrlEVnkm+UgR0sLP7bAmsS2ILbFP\nB/OQeIEH9MD2KoImv15nRC1BN9xWBCaWNAnbCnJhw2bm5SYgvQvlNs55cYRJNkMVlYTg0wN2E6mF\n9jL3x98pIK6P6glo2DJL0UoKJgbk4s58K359s0PXvI/LSKzuALx19x1FlGhGHfigOYjY3aLj02g8\nk9TcuUOYQKhRLfm2Lp64JAHBJh+hFClKPLqrHXOzGt9H6PeuAELjMWjjMZKQC65gsU8mr/o7HRLf\n5AQE1MVtmczsXO+JXDlyO/we5hbwwu/X+Vx45uUmIXN+zKZhTMmXYzklzysAgjcx3E6G1vFrCOku\nVxdr5FP2cFLpOXD/DdvOBSC0Lfya/NG3SCil/vqm3wkhjoQQ+0qp+0KIfQBtg/+vA7jpfH9D/+yy\n2PgcpRT/PxNC/BaoHfde8mmLSpWYVae0U7+sOlxMqAoKepZIJ9c9TCBD034qVO6IbVLfmBBVEVR6\nopWa9Q3NQ/ggrlU8anZEC8kj4q+o3YnhRCghTEV22bHz7jLYulUnTmobAiKIAgjSGmufNcCA+twB\ngElAhjgZ+JgXR7g/n+NwEeGgM4ffO0E/2KL2oENkxHSO8o1zVKcp1KIk7o9GwhmkVhC3ukwKx3AM\ngP0fqM9b+Dw2Es+aI+amc9ZMFKM+RBwSmdFpMfKcwxxCAzkldWUswzElI3ZHbRyzy3ESQWyG3ozS\nUgxeYM03XeHxrMvX1Q8A2sywGoMz27ssCRkE42RmSKYAbLWnExAAm9wB28ZtidgXzvxMv+cWzTUD\nc/aizbbneiM0csm/h4ekNr0oSEuRVUZCaVBwXGWp7hjn2nfI1fGTXmTV1TWAhYm2/qKg1mIyQDw8\nwNyb4F0WnwLw4wA+rv///ZbHfA7AB4QQz4ISyI8A+NHHeN3fEkL8Eghw8AEAfyKEkABGSqljIUQA\n4D8E8JmrDvKpTT5pJXDvgkieBpHD0Vyg9KLGZmRtpThDtd1Fj3aCWBPbXAtHeyzxepZPk1mRSZFl\ntpVzRdXTBExEfodIe+eHtAjqxQZ7WjHb2TVyGCM5PXeI/I6BoaoQgOMFlJYXmOQBJplERyrsVguC\nzLqhW0UAKRGsFiX8JjQ6L03ro/5cR3JfV0HGDdb9rDa0ItusmNXsyGrvcTTPK3NhACPVw8AKFw0J\n1FUigLqgpi8kySlhZFs8XKGgnoD4Pa25bj5GqCyzRMwN4c6+gqIi0vCjU/IMSitjBQ84CYgrK042\nrpagvu5Jx08Yz6ZaV+Ay8jTqiaYZDPgp5JgWq7OjhiWD03oMJZ2rDoAgJnvw7C4eLQtkKw+jcIZR\n1CebFBdEo7sAq4Z6+pWouzcZK/WOcYY+DuB3hRA/BeB1AD8EAFqr89eVUj+olCqFED8L4NOgyfY/\nUUq9pB/3NwD8dwB2AfxvQojPK6X+faXUS0KI3wXwRdBQ+2e051sXwKd14vFBiedK89GnNvmsVF2B\nwMRjaq1VqrQ3WGMRlILkPa4nEyzLAvsdQlbNyzOM+nvArjZIGw5ICLE7xqw8oRvNz9Hr0tyktii5\nMidFSgCAvKWdw/wkvWN0rQMAOBVFYRcr3h0HMZari9oiEHkdDIO2eaV9r91ghGf7lDCf7RfoymsW\nNQaQ7fLN6xB7JcT1KfwdMuLzdzrANStLrDYZdzUVwlsQURZ1tiSXWIcrs2Z3cP+rpAbd70LdfH7N\nbM8ct6k2dPJjZeqWcwxYUIqrbcYLsWnxuNYJWQaM621XJQTJ8iwcUc0egCg1gqMqy0hcVovK1sij\nax+Qhqp368TloKigTl83lu2b1JvNDAiNJKkTEKMJaXjPZN4G4ddNPA006VUR+R105cgkSrJYoGvE\noBuZk8RSPVu3MKtOcbI8M4t95K0cCHhUr8qGA4i8hH9ABF4x0vO9eIhlNav5IL0bQil1AuD7Wn5+\nCOAHne//AMAftDzu9wD83obX/hiAjzV+Ngfw4Td7nE9t8uGo4e6vSDzNXa4vpFYldpBWRUo+QCJE\nLHvY78zMRV+ucixliXj3JolNaj2reXGEtLzAg6WPUXiGKirRDcZGBBHAuuqBozawaVfpaoiVKrcf\nNhMnB11AkxKFTEixweE0SREiSUuo8tC0+zYFJ6BuoAmFbYkxlOS6ubsF0YJ2U3f0fKsxB6oRWQGt\niIB2bpP+/do5YTjv6etQd+9DPZgAow4t6PsvbHxf7CejYguVBmi3zrMwPs+TXCLyVhhHG8zVmCvF\nM79QrrWjjDCrJpyq5ZmFsXcA9FLiLzGZtI306qAa2xKPyJc0Bzw8JHmdRVGDrbvVj5HuCZ02oZvo\n9EZAatO6prEcWcPn5mtO3OypxARgjlrFBAsKUI++Qslaw71FJ6BK2lXZGO8B27cx0W1glzVNFRmp\nS/BGwERnRHv8LLMt1jGBVbLy4XsKB29TPLXJx5bA1Zuyti31PKftxuEQSpk+di+IagluXk4gB3sI\nENT0rO4vQhzOAxx0PSzLOXaTnNqBg/211pKR4uGKxZXO0YsuJ8hJLjWnRYdOPKvTFP7OHLi5rxe2\nEc7zezVBxiQtoe5/lSqA4UOaOWmAAQfzg0qVU4uO51BtXA03oexcg3rtNfO9unOEXOuzuXMgALbl\ntfZh5HVUHb8W9A69Y4nAJvG8fAfVq49Q3pvB31qYG0BwAnKBEnlJiWeyICFLpyrj68BqgAUOsrGo\nJaDaTpvnN+dTzWmyhFUmahruSRBTFVekdobB8kOdUX0D0qLvJ+IhVHdsUIhAPfGwWOlVnjXGcZTD\nnfXoW4ClaZgvtYYidNqVaUmt2rNMGIHdZhiJIm5TFumaiK7oUPXHdgrYvo0T3WZbfz1hqlBzffJx\nlTmdr90t2hTsbkHEQ2PQ13R8/UZjY7flKY2nOPm8+edw+4R10Phnpp3CUaQGtuw+luM8P0LkdzAv\nJjjLBA4XEQ7nEg9TYFEGOOgKZKsK15OHKIMccdCvQ0JdqDS3a1iXbgEEnREir4MUF/XjZFHQhTWk\nE2kGyBCz6hT35iTIuJfsUeI5fd2CI5hg6NgDNMNddGrng5NOFNVAEyKIgddfNUoC1TEtCB6z93kX\n2oaAc2YmTesA/vuiiA0SzbhoGuIogR78nQ7EdA41PidkoBDA0iHUMpnTgXIzuournZPUxySTeJQC\nXcmLSz0B1RQidFIzx1xalQNDMK1mtOtvctAwsq/HEjVNDbRG4pkXE9pMeD2qpLR6A2Alddq8kfj3\nXGWQuGq4Pltyqn1WAKmFw6dLq5mjMO6BRgcTY4AnvciRxnE2Wjq5Gn6R9rQyqtZ7L+I4u4uvnSsA\nEolc6SpU1SR+RL40pNe1ijmKgF1bNZarzLjDvhdPPp7a5FMq4CT1SWJFlnYxdIMXNYeNnXg9A9MV\n+RLq3JHxABErXdSY+XsNWY2sWujEQ4P6hynwxgXxzTuSBvdpVaLL1z0PoTUCziLAUDtGJt8lMkHc\nfQ7dQO96H3wZ6uU71G5yQs3mENOH6Ccv4kZ3gcjvU+KZHdV307zY6B1s04qbY16eETdleEBVUnJm\nWozMBUJ1iv6qA7WYUCtuOIC/M4F37wKiI+FpS3ISjmzRKmM+xo19w6sCYHbhrsx/Wp4AgJWnyUtI\nveB6WzHE7T3a6WrrBSP7v5xqYiWRWTHqG9LqUoMs7i9CnKQ+zjIPD/WlshsDk0xiWXq40StwPaEN\nQDcYE0yd26h8TvUsb+mXmOfH9CIMt0a0NrOqwbsZ1p2MrayPfv9u4jnLBGK5qKs7a9VwEYfwAfgH\nufHI2RhNe3gnuNqXXqgT8wzw+wgcvbrl6gLnOaF+R2EJThJWbNUJnqNq9XCqfM/rBnNxqLlXe8Bi\ngp3ODcjxQ92V6NfUC9TFGVCe0HObIBWgLoUUSigAydYtICSlkvfiycdTm3zyCjjLSLV5HF3QgqnJ\nnOZm3zBLEfkSanlGCxSw1l4ysGWtYszRNNjKVrT7e5QS+m5RCNAGVNtX+wJShBp+O6cdrvagR+pY\nEbgdKb24qXIJnC/RlwnU8ZehvvRlK7UDR/Azzeg1g9exff2D9N7So3qbwzGnYyWDk+UrRpW5Gdlq\nQURVAfjdCFL0UaoFUC70++oTd8XsYiXE9RHkDc0xYej17la9xVOk1kso13YOL9QrsHLrQMvjP0Ra\n2sqvUiW6e++HTAbwBl0EtwlwgP1nzJwgLS70Kdym1taQpGyQZob8qrpjzDPS7Xv5PDBJBwC6zt2U\nVR7uXdBiPQpnxjyuO9ih5DY4M/JB8/IMk+UMy5I4Yb2ApI3KVbbGM1mzuRbC8mN4ruUkHraS4Gs8\nScZQvSnxYwA7OwIgbtJmBNq8zrWsdhUkam65jWB1hkqVmJdnhIIL+iidxEPXgDAW3pHfMWoDNfpA\nEFulDKAOvODjd00KFxOMOtfM1yo9AYqvQ100iNZ83A5HjDloyAtKaEAtAb0XTz6e2uRTlB7emAt0\nZKB3X7Yi4IThEv3oSanRF6uRG93QjpfKaYGxarTrccKzgqwib5mHS2A6iYBBikXJxxGa4b1Kz6ld\nMptDPdBosbyAYr7QEHpeUa+w1HJKiafBD7EHktNur0iBkzt2Z+iYkClWstazhpPsLl46C3HQmWO/\naxcvXnjcmBeTmrkXoJFWZ3UTP7G7BfnMvC6S6YbjE8QzK7korDkdAGzfxtcvXjYSSIBvFvTIm2Mc\nXaDbHaE/+B5g9z5EMjZw3Isi075FC2pRJWNqMfantFixMV15gkfLAi+fJ7XEA1DV40ZWeXjlPMIo\n8rEdV+YYYtlD1CMy7zy9i7NMIFtJfdwrM7RvDt/NuWqKdMImIejqkisebgk+WFZU/YR79DkOWHDW\ncb1NBvBkQmjAl16uSxZxXKLqbVrNzjXAScjdCHD0NEjh0miSlYMYCFIDvRdNJYRT3ZZmZ1btV1Rz\nHcbcVvJ5aTho1fHCkJ8BloiKkfQ3oz3fTKh3Dmr9roinNvnkmYevPpKI/QKRH2AULgHQQsmIoxJZ\nXYKDPWT0bhjAOioLAEA3tkpIeiUIYiOjz7wFIqAKLEqn6ln6mOvcQAkx0XI8Z3RDTedm8eUevQ+Q\n2KX75lyCpq6SkBe1naw9ERpyfT5dn6G470szviflQ3ztXOGzD0N8cCgxyTM82y/WqiBG771y3kHk\nr/DduxYJp1y2uhvXtuhvcavN2aFy4infOEd57wIrnaGD26cQGl77YPkKvnCa6PNcv8lHUYlJrjAK\nidsVdTuo1NRUHLz4JzIj182QDOvUcKC5IyNCJqYTvDKN8aWJwLwEnunRxuRaDET+yngFuXE4l5hk\n0vx+O14i8mjnPsnrJoOjqETkrbCrXU43RTMBufYfdpYYmFniKPIxCme16odOIM2HuAIrVxfYfv57\nIXpDAoSwhXdTxXxDEmKgDSegcpUbqLKrkeaKubpVTy10NWfANK6Onkb/mZmQK+bqJJO6MGwCj32l\n+BrTgJLqeGHIzyqtLBAljvANjIffi8eIpzb5hNEKL+yWeHG4wl/YWhry2ZURR9SK4a911PSvNNTV\n5Y8ECCDlttFO2/VyJDLDdlxhHAXYjjy8kczx4R2F54aadLfK1+HNYbAmonnl8fIxoiYfRjwJFuF0\nocwtIfp7mHkLfOk0MwZ5XKGllUKsryReMLmyo8d4+jEtYqvu8cWNdg4fjzNkFp2AfHsWJXnaRBFE\nPMSkJAXxr5xT0nFbYF0JRD6980R6uCgy0wKlBXGFBCtEnkdtIK9j/HXIXTSF6O8hrWboBiN89+4E\nQGyShesLBACvzZRxgX2k8/i8JDACJ8XtGGYD0rYbZn7WGpSfQ+vxGcJrw/K5iapiV85eMEEc3bRy\nRcMDajmmp7oC8xD5J+hv3dID/wzqwcSADehzcEz1Gl5ShjCqzy9XlHw8DAIwj2lguqUIzTUvlFon\nDJtZUGKJuEC9BRhHgGO6xz5PIvbNNW+uu/QSpOumKu+9eCLx1CafbrTCX7lW4DvHOYbhnlUWCGKy\nPG7Cr7VsC2loZes8C0d117DvgRrkWIBsEVgxW3oL9IIco3CJGz2JG90AN3q2OrkoMnTlDMlgn3Zf\nmpjo6ypGjDpWloY9Ttyqhb1X2JJaH4OvqzYxHNAO0LGl3lT9TMQUXzql53WkwjNdhYNuafr2hj8B\n2oVvx2PEPrUyE7nCKKLKj4m2td1kQ4trTeIm0K6m/S78OITXCVBtLSCfJwFR1R2j1NYTnHT4/46E\nU3FU5njddk8saSHsBXWfpgIFgQSWZwQv1zOrbjDCv7VvCbwuSote7wh3ZkvcuwiwG1MC5uPgYxhH\nBCjhhZkSEf0egOVn6bnPmoxSQwQ39vtGcYLJnsvSwzhipg70DKqA9I4w1DbS55pjBkAnhQo9uU3V\nKaMDNe9HDOrzHle4lYVam7qAJMCbIcvpGLKVhwdLGGdZIDMwaACmGgJs21sG9SQgQ+ItGdkiroSC\nlGZCwwGBSNIMwW09ywHsvcLSQJlWbohDSO2NxOg+cX1Ej20I/b6VWGHd2fhpjqc2+fSkwndtA8Pw\nJs0gHn3FKk0nAwQuqdLdgfEgmoPJfM3Fe1PoHSsnoVLliPwZRlGJ6wm1qjgmucQoWlDrLxlDjXNj\nUS3CvJ54XIFSXphCibVLPZSUOJkNrpFhrANXavM6+HVS7ZfO6rOtg26Jg05hoKzcOgFgSqtuMMIH\nhgtIr274VQQ+6cPp41VCoNALZ+xrGRpXCgcwqDahE6kczUg1ob+HZTUzkFg36QDtiYelglw9traq\nt1xlkCHxbWYaNQdAH6PWYMtTqHIGlCfmmEd7L+K5wSki7xyvTCMAnkk8+53cHoMs0QuoLRV5HhLp\nIfJWRpiTQCkL2/rlYMg96rpwjO7i547CEotS1FqQJ6mPyCP9vUqVa7OYbjDSgBqamahFYc30zAmI\nDPiiqVTQlBmi80XgApcvs86dqRB5xJFKpKtGENb+d1uRsd+H7I7rSYht5Rn5uOPwzbQBHcO+1fKM\nkumj05qbqxh1DMTfFfR9L55sPLXJJ5YC29FN4PyQ9K3u3TciiqLfhdqZmp2dG8a2l3k1jk9KWs3Q\nE8manEsziJtBjO8giBEEW1BCoCvH6AYzsyicZQKTbEZVRbhNM4ida7TgsMgjJx5DOM0vT4Bsg+DA\nkUstqcMLBy8e3IZpawsddIo1mKzrhlquMmM53gQhpNUMMtw2yY7nFKzwMIr66AZjQj4FVmqfd7hc\nBWH/GaAzMvYVi1KsJR1WWW4mngABAq+9ZWkTcWb4NrHftyaA07s0g0LdWM3MAYsU/a1buN3fRSKP\n8Mo0MsmP27u88ShXesbkX5hKqHauygs6v07CMxI9YPNAMkATnZHhosWyh6SaYTuuaq+5LD0cLgIk\n8qx1BmOqHj1DWWlOmIh9alHtSlP1zMqTtc+2LaQXIkaOyFuZ9hu3HPlrDv7M+OvIK/TX9bkRQ7pJ\nU85JQm0qJY7UkjXvK4kOIBOoIIYIJc1OtaEhdreMjfuFs/F4L55cPLXJx1cCuPt52vXcvW+G8QIw\nOl4qPace8ybIdTJGEfhIq1Nk1QIXRYYs0EKeDbXsWitJ+9OrzsguHAEBEwKfEtEw2MMwJNMvhp8y\n4q01mjdd85ijqOa9s6xmyMrN/IW0UshWBNMFoNFalrQnva71mmkJ6UWmsnB3qwzD5RuazxsrPIwi\nHwcdR+HBa4FzB9oDSb9v6YfoBREOOkVj4Vpp6HKEyO/bikUrTDdVIThckzfzs/mZMRszKt21E+bs\n9s+nUIMlpLeDXhChI9WathiAmlCtNY6r21CvacOx2jn/fe3uqYLbtHzZAAAgAElEQVTcKF2suXD2\nYFB/gNU5YxSi4cOwfYPRUMvXSagxEYWLwEeWO1JMbmXSAuiSXohdz6pCABKL0jefFSegZelhWdLP\n6Pf0GPdzBYDrCZ1vhqTzvMi1tzAgjIo2Cm2JMtH3IIbEAQPr5AXWeO5xEuzjxErhPbSbE9+U5COE\n+G8B/EcAcgCvAPhJpdRE/+4XAPwUgArAzymlPq1//mEAvwEgAYnh/RfaKCkC+UZ8GMAJgB9WSt25\n8iDSBdSfvVRDgK0WBfx14n4tXKi1AhBs3QL8PjlPaogsL65rxmqAkYRX51OCCe9cI1QcYC0B9EMT\nSCTBNajpfajpKxY+6iDthFsBNcNdVJ3EkzpOlhy+kEaChW/avQQoB9ZvpcnDaNN6a/b+14RNdZgq\nyWdI+YWpUGp24xeOFYRLCASAiFpySX8PMtwDcIRE2hmC9BKzM15TiDifQnHrse2c8UBfh0n8qVUa\nrw2k3a93SIZoE0Oe5zhuu4oXbQOz1rMPPnZ1fmhNCN3k5+7Wo4jM5MolksG+SXKxfwGgMq/LmwaR\nL4FMtw0xs/YNALWc4ggyDuE/mFAr6gO3IPZfwDKWwCprdYN1Nx1rc1NPf9YS6AU5rieciOqLstuS\nc2ckNvFUBjlZ4wW5sjnanoKr27ZrVeRLqMnrwNmR4Q0Z76KLc8Oj63bGa899L956fLMqn38B4Be0\nrPc/BPALAH5eCPEhkK/Ed4L8Ij4jhHhBKVUB+FUAfxfAvwYlnx8A8M9BiepMKfW8EOJHAPxDAD98\n1QGoRYbquIXRzdBjwEI6Abv4cYtO82uUDBEM9hF5HZRevfedVjMkQa+efO6/AXX3Pgl7pjklj11d\nBWmdNhO8GDicBT5GAEbw0iShQbduUAeszaRYjdmNyOsgqSTUyR0AgJTh+oVRzmyrh9/P4BqgB9cc\nLBhZF9us84Hc4F29H0jclqVJgsLd5bvmd9rfB9DD711qPQX9PQzDPUT+bD1Ruknn0WnNSVWkGdTO\nNWuv0NYm5ecyA35DGJh4MiDQSnmy5lzpCtICWEtAsewZ8Ebs96niajl2U6l3AihuF/OufUhJOUjG\n6AZja4/BiWx6H5i+YpOoc24BUMsJoPba87chdsm1Vuy9iKVf1o6XP0OjxQYg8AIUKCys0vmsOXjG\nNkR9tggA40i3nHNZsyOJvBV2kwBduU0VcZECWLa32i4x8QO04Kk2kXOvqZoxX0Tdj+CqOe578Q3F\nNyX5KKX+d+fbzwL4T/TXHwHw20qpDMBrQoiXAXyPEOIOgIFS6rMAIIT4JID/GJR8PgLgH+jn/88A\n/rEQQlzlH76al8g+/wj+Tqx1xKi8NxpWzWAPGM03cdt0CkA8PFh3ADXDYh13X4Z65S6yzx8Rn2BR\nQOYFkeV2HUvgIq0nnLyuOuwuPOS34qguh5klnAJ2FsSggiqrHWNXjhEs5lCnVFm5i+va4gQ07KpP\ngVs52UJoxBObz9FsITScl2y1xO0+tUTahCclaMeceD2gueA2j0Mfg/Fwgd4EYEyzMU445bHdzTsL\nd/nGOVRaQcTnRGzVUj1q0GCyM4yXE6A5B87xMIqQE09vCDHYR9G4FgBqZfb0Br9pPsdhqp2igrrQ\n1Q5zyzRhkjkpfN2KTkAISM3FcXX4gv6eOSdUQT80NgobI8tIuohj/xmIrVvkBup+ZjrJBwhIJVov\n+HaWSQaMzefw5wNAX6eyNpfpyjFieVZLQqOw1IlnRBulScOdF1hXOecNY1N0NdLcHX29164v15gv\ny8BOv08iVkqs8c/ejhBCbAH4HQC3AdwB8ENKqbOWx/0AgF8G9TZ/XSn1cf3z1s6UEGIbtMb+mwB+\nQyn1s85rtXamLjvOb4WZz98BnSgAeB8oGXHc0z8r9NfNn/Nz7gKArqTOAWwDOL7sjxaZh9Ovx0hm\nJYI4Rzj04O+so1qUEFpyRnu8Hx2bxSvoBLSD7k2N5W7bcD0IOsDsCGo2NwKaZeEBWvhTAnSx8wXv\nOH8y69ocT0MA0hh+AVCYEkqHbyadeEQytsNWvcs0bTYNuDCLsyakAqglvLbw84IGtTIEhgfIVgu9\nWJDC8725h5OMU3lkKiCehzVbIdJ3bI254uOqhxcF10J6pLXp4ojmaDKhzQDrnHHS0OeTnSorLSzq\n75CGnB8GlicyuLault1wVW2GC3UX8dAazTVQX23RJFaa2cvymN6TVrVoJp7qOIXqlKSFp68JrxNA\ndIqa7YGSIZ0T17HzzhHKe1RF86ardkxhQIAO7RxbDnYsCpIfozcP1nk1NQg81/cnCKzdOImFntX5\nOek5JQ0NwBEgVZCu5IptgkQSQpBngOriviOu62xi3C7Fhs+MoOLrdh61awy6/ZZK6+P07oqPAvhD\npdTHhRAf1d//vPsAIYQP4FcAfD9oPf2cEOJTSqkvYkNnCkAK4L8G8Bf0Pzc2daY2xtuWfIQQnwFw\nveVXv6iU+n39mF8Eydr+s7frOBrH9NMAfhoADuIEMlohiFeQwQqiE9IuctQxOl6A1XEjhYN5zfGx\nFkGMsjpdW3BK5IAPQ9rz0wzhokCQVsS2PhhC7BFfBUCrmVqrzIn+uSXNhfW5g8M54jlPM/GI+Rkl\nHrPIs/lbYBZ51oC7KkqVG0dTgAAKzFlJ5Ao3uj62o/fTAjSnBajVI4gVmfW5ME6iDcKfgFNtsNEe\nC8AWiYVnY0JW4VkGMeoQnDatgB2rns0ClcYiWyZGABTJQKtGn+v5ijSGbjU1hiwDsiOoiGzXXX+b\nRK4MfJgBBAykaL5/bl0ZVCUcEEw8NXwUNlLztnTlzteBe66c6lfEQ6heSppuow485zPl1+LXEHs7\nRilaCQEJGLUPoJ4wC5VDhpQ0au/Ege9LXG73XgtHtDarFmtty1o0teVaREKV27KNo/VExHSEKKIW\ntq5mDR9I30fvsvgIgL+mv/5NAH+ERvIB8D0AXlZKvQoAQojf1s/74qbOlDaN+z+FEM+7LySE2Mfm\nztTGeNuSj1Lqr1/2eyHET4C8vr/PKc++DuCm87Ab+mdf1183f+4+5572Eh+CgAdtx/QJAJ8AgL+0\nM1SdYakrni4lgvfvQtzcB3btIajlmRH0xGSG1aIwch2mRad3d4zcciGsHBkW6B48h2TrFoKbXzW+\nIcw9qAW3czRLuxauwOOoU0s6pufvKCwYJWknTOI5fX0dxMARBhA6CXlo0YTTj0FMSs/lKsNZtv6+\nn+0X2I41l6qpAA6szYyWqwvE3TE5ucoQiB62AwJ4jqUXuULDtqUXrXM/llMLz45PEXQCWzFe2zL6\ncDWrCGGHzGKwD5Xcp+sgol21SOVaQmT4NYIYwd6LZg4YeQViXxjbgNjvA3Pqgmx6bwhiiGAfGOwD\n/QlZPuhq0L82h8/zv02hF06RjEmtu9NHENwyVZHPagWuE6pGzomtW1BhUms3uTOdmhFb4NOmJvCB\nwJ3rFWjtV7FYKFc+rPKtKQuux5UbV2rAtUQt8QBr17ipEHWVKFwOXG9oiOXunOutxEpZVZDHiB0h\nxJ86339Cr1+PE3tKKe0bgQcA2liypmOk4x6A7215nNuZ2hTvw+bO1Mb4ZqHdfgDAfwng31FKuVP/\nTwH4LSHEL4EABx8A8CfaJ3wqhPgroLLuPwV5jPNzfhzAH4My9L+8qtcIAJ6nEO0TW17e6EPc3qM+\nd7PvD+h5z5yMt05TrBYlysJDBNCFKwm5RF7xskYUjH1hqqHz/CHmMiTtrLZDLFK6KYcDukHTDIJN\nvJoyOq6FcjOcOU8z8Zghtk48lw3Q+e8aWZ62BKQTXbaa1lBKiVzhdj/BSO1CnR6SfUJzdjNMa06b\nF5o3UirtYRTsGxkVA4t2GPWlylE14OKsy2eSUB7Ta6TnlqQ6ncMfaDM3TjwOEpBfB7BDcKNG3Wzp\n6VDOLFBo1FmydQulnyORZ4YPVQMRNEO3oESwX/tx0enSe+kvga2UHufOsRoSMUK3cEU8RBH4OJmf\noRcsqG21dYt4La4yB5MvdZXcvDLZW6ctZDiugSaYKHxlOBsuTjyz6hTzYnJ5tQMYbs7aMbnXl3td\nXyah07Qgb/DgJuVD3DnfDFx4G+NYKfXdm355WWfJ/UYjgr+hsdXb3Zn6Zs18/jGACMC/ENR2+KxS\n6u8ppV4SQvwugC+C3vTPaKQbAPx92IHWP4ct6f5HAP9UgxNOQWi5q0N68LdiyOd3TNtLsJ5Vk5Nz\nPgVSQsetFgXKwkORelZ2RCaYl2c4XARYlh624wrZaqUZ2w3IT5Xhoni5thOmw4mofeG2nIaD9c2j\nm3DClo/P2fEuVxeYFzTYZWhqUFQ1r57aTCUv2pMcsDkBaTmidHmIkzQ2LP69ZA/xxQzq7ufWZyUs\n7wNAdcjErUBhKsdeEKFSJVUJuorhhJNpq4QHS38tydN5JAM/k4SCCEEwokpqeUaJOZpAMDLQcWdl\nCLqrSzbJSXD02f5ddIMResMDSh4yBB7dJXTUo1OoBxMzRwk6980sLB7sIPYnhtwq3JlWMxzdMq7A\nlqsLzMuJeW9R3EHcvQ2xpaAG9yGa8zq+LrQCwXl2F/cXIRJJ5oQIr1ECcuzZlVHCPkR6obAdj+vO\np7Oj9WPVQTw4mhvNyzNMshl6muv2OEmINx8X5QlO0jN9rCvt94PGZ3uJ1loj8axd127wNc5AHb6P\nGPWo+Xsn6at46SzE50++9TTeLussCSGOhBD7Sqn7uiXWRujb1GXi1/gJrHemNsVlnamN8c1Cuz1/\nye8+BuBjLT//U6wPuaCUSgH8rTd7DEIKSjw3rxs0z6w6hYxDxP6BnfUEsWmvmBkBcgTxSs8LIqju\nGJOLl7EsE2SVh8M5CU52JDs1EndhUQpMMmlK74NujoPOHONIoRuM0Pe3bFuiV+e0CHeHxtpUzu9N\nODveeX5s5HpuaKuAoPGRi6hFtddpydQeGwbwsLAJKG5vhZB2WgTAtoY4YRp7Bg4ZWvtoPSPhFku2\nWpgkkq0WVvUhD3A4D2rSOZyIYm1bUSI3SagUIWItk4OFRi8Fjz9E5gQHOPYay6ndYTcFKFvEXmtA\nFLfNugHGW6Awi7ldkGeI/QtkcoGRdCr03S2IQde4ztLMom7/cNAltexYEgLTXAVBbOYr7C4a+9r5\ntJJUIR8/tNqBzQhilDpBPloWOFywmsOZVujuWLKuU61wJau6Y5wXRybhL0qBRFpSLM/JXKKy2Ry2\nVT+XxWUivJx4BvuYVac4mZ/hlWmESSaRVu86PTbuBn1c///7LY/5HIAPCCGeBSWKHwHwo8ClnanW\n0EluU2dqY3wroN2+OeEJOy/RC6CRgVc5giCGgG6z7N6E6A0hdh8iuH4Kb+sRvcSLz0A88xcxKWhn\nuB1XOJwTlJIgxuTWCKCWeEjh2B6K8e1xCHJi6xZUcmarnOYi1XDvtC8WkuGZuaGpQihXFUqVQ4V9\nGqA6r2durSIlGf1muPDqTmAJ7DxrUgqx7OFGb4nIW0F61PsXMiEip/N4ActFElu3sPRLlLo1yDyX\nZnBbR3qhllkptZSOwigsa9VPUwusFm5Vqwm9jGwTQWzsAHxfmtcY6cM3pNfz163CgG7tiCgCro+s\nDP/eDm1oBvuYlw91lUaqDZHfoeopaRAXHajxrDzBPL2LB0sf9y4SDViAOaZhsAf14Mv1hTfSQ/KI\niLMqTFAV05q69ThSiLwOQesfUbtflXmNpFuucgzDazbxHB6Sed9sDvFsw9I7HlLFaqpF+kxOUlLG\n6MgM+50Zev8/e+8aI0mWnYd9N+LGK99Z1VU1Veye7uHMblPmUrJBmpL/yaBFEAsbS0A2RUiwbICw\nYNgL+YdhizIh2oBJYA0bNgRbMEDLhCjDAkXIMETAFAhQAn/YMK0lRa/JXe1rlj3TvdVT3fXIR2Vm\nvDKvf5x77iMysrpnt3d2h9UHGExXVT4iIiPvd8853/m+yGZ+ko3vdORGlw9GpcKCTmLO2VV5aLtu\nXvB9xjFb0DnsCq4WaEWDYr3E0yXdP6Okxg8MX80yuQF99z+C+ByAXxNC/AyA9wD8FAAIIU5AlOpP\naybbZwH8Johq/ctKqS/q57dWpvRrPAJReGIhxE8C+HHNkNtVmdoZtxd8nBAyI2FL7TbJch1RlEJU\neoeWAbg3gBg+g2Q1gbd/APNgiXpdtspmMACxVwsDz6Im4zHWHUvCDg3/rc6N6CFAJRHcpPYMeGrQ\nAKh2Xl84MiY2zOBrNvYXLt3grlBBRinUV/+5/VsbEaHlGoZCeqUS87pJsk2HzQbA8ITEOp1D5AWm\nOS/lBlsguNmO/f12rFW97RPTmP1QMt7yXfJOQw9mbikMOCVQ4SpMaFvu1eYak2JuAKTYUEawTmrP\nXI96V6RYUG9KnUHEXpYMrJGGglS3Lx5B/dEfWbYdX19NsxfpUBMw7KZhP12bTY6afxnqMfWjRV5A\nVTmivfsYxkc0a+UCz+OnqN+fIryzpPe7//32PDsj5C0MT45lLfDujOSFjjuUCbn+PQC2lDYOMspO\nttQTguRmxhxnQc0eaJQSiSKWOjNsOdYk8Xqkz1cVlrXNkkbJR4MYryqUUhcAfqzl96cAPu38/Bsg\nWnTzcTdVph7s+H1rZeqmuLXgIwJhy1dRqkUkFYBrc1VkGENomwKzW5MZDSPWJfJeH2tn10fWARZs\nAJghy+ct1QHWHUvDPu2mVzOoqPR2htxgF0pBuGrPHM5juS/SpizshnJ2n0yHnZZP8GSxxtvDPvp/\n8s9AfeX3ffq1G7p8YbIyra/GAOCZoLk2D5ztbK4xXb2LbmTLOE36sWuO1gxWSeZ/A36mcyMzitl2\nLqg65Rszze7I+XhzR88vjcKA6ERQxh1TA1AsgcEhVJxhofstV0WAq4IEWldpgFVNjqaA42hrbBUE\nJkXmbVSofAsSC81rqPe+AfXojNhab4yMhQAAw9JiaZ9VHZGdQ7BBV8914fQU629Q9s4qG6wSEUWp\nBzzVVy9RvT9HeJkj6UTUHzl+02Q9vEmg745wNNkoVjWVoS/yEHd7K9zthqYcCljfIve+aXNwlSL2\n5XPaoq06wESKbACRakHYSaMcrLOeChUW1cSMCzT15F7Hq41bCz4mWDi0MUTHA5lNsULEGWpFKX1R\nX7Uu8u7NyhlPt3Glk5AJCSEZaNVOWUCXhFi0lNV7uYHufjntl9iaiblGaWxyZlwjdWmJY1Fd4eli\ngXdnCZ4sJFb1Ap/a66L/qX8FeP//I+mWG4gIbpiSF5dIqiu7iGtqNPUyyGlTBksrHrqcQNVPadBQ\ni6yy/plRA9DaYPWmRIp2zbi24F2zWl3tlmJBg/bMJToGq8JnUBmySayb1i0KB6zr5pZZSatMYlLa\nn1c1gRODjdtjWFRAVyq8PSRJGlXPoQoiv4hOhHC2IDXmKUngcEmVxTSPO/RGd3tDGtCsL2jglvt2\nLCd1PaUFms9dv8f6fIW6ChAsa6KnHy7IpmDvPvK1VUngjBS1NcpzB40XdYBMhkiCCgcZ0NWePC8i\nJRgre1ZQYOdSZ0PjBVcNtJwUi+iygjWS92imp6UMx/fZKK4x+vDM7hfGRn1kZbePRdxe8IkjiLvH\nRhomDfsYJbYEwCWqpu9L03qAbAfCna6USbhB0hgi70hixGVyo8tjVApTwJZFA1NPrVimtR5u0oFd\nOwQONk5jw7NmdOUYd3sSmbxCJhN8YiiI6bS4ol20IR/4Fsqi36VBxL37pHBcz5x+S+KpQrD9g7qe\nQvaGuNM/wv5orCnHcyimg1c5FGbU+K3aQYh7MgxCL4ok6BhRUTNV3wzOcLQagPEOwsj+vZ9DHawg\nNM1a6rIbZxompAXg/fQegMemP9UW9PuN/ncA5AQ2vEilIQHXu9MEo/gM3zd4E/KttyDdYUiHpaXi\njHpGmuWYhgJ/YpwQmQWgYdx7x5CzhR0o1fYBYnBMBnq4T6aF36/JLk/mCHkOTn9n3KyHP3ciexAA\nJTGTQQiE9tM13upXhlijLt+jisLefa/fxeHNFPFGQKvBA/BVPDhc4HGGXL2IUj3TFNusXoNaFh2h\njmgwuW1m7XW82rjd4KOH6Ti6coxFbSWQGID4365gJpVKrOXALql0nvLnIDaPTyVd1BPI+AgRyAF1\ntbk27C5mILG3SSaJilyAgJIXYAYoN1gy391dtmVNadjHURYjDZ9hGN+jLIH7S64LqjuMqGdjVmGN\norb2ArzYq9W5kXNBXjogdgn0iT1lluMWVQdjEbADhKQgEC7Wu8k4SdCxWRXvmDmaDDUGoAwWdHTM\ngyW1X5MEUvSB0T7SezSvY463pR8nRYxhfIgfHD8z3kjtEaAj11jWG5DVwPYjljXwe8+7WNVP8M7R\n90O6JSVDE5+hLs49UE5lz2fGRSnE8Sdt2fH4TYj+EbEjNY19mB4iO/4kkCQI0wThiRYuvXsMcfQQ\nVRRuadO5AJSGCvlaIcMGoxgYxQEOsoiMG5cLqMsvQH39ET3x3tTcSzyw7RkJcvbZNifGmShrIgJG\nDNgFsq1Nl3NPA6DXjXKo1RX6A56xeg1A3+m4veCjWWHer0SMrhybvgnQDjqTMjJZDvd2eMEg22IK\nzm7cYNZS8/f5eg5EfdQaeJhie7qIsKzpddloaxS7cwt2UWO/HcACD89rtF4CJ3uSQYJhfLjFKBL9\nrjWu452+pqQySLphpvdnz8z8C1OzWa1BwUq57ByWTahUdxMIgaqWrT2uLeBpi13yLGYBAib1Mzxd\nLJwBWtIFy+QFDdHKwy37BQBGu85c12Di3UMcxSZw7gWi5idhgI4MWkHoS1cZgCd4MDrQz58hX50a\ncOMyK2CBR82emowaAP3/HvWUmVq8yMnM7yKP8fbgDPvpGP2jhwQG2uHXbNZalNEBv9fGAqoyiLGf\nSpPtqKfvQ737GNVXqWQnP5hAPLgE7k4o+8K4HXQagGOUzbX6tMl6HMJO8/PYCheAdGlYzZ6iNzzR\npAiij7+q2Ch8HGnb37G4veAT2FMXTiOTGU8MQK5KM4OOS5kG7P8PU+rxjJLaOFfeFG6mwlnWWtUe\n8Dy6phv2WR7gMA3Qkbt94HmuaJwob6jRRIOcAGwDkGg2dd1dot6hur0oDi4FmqFELUe0Pl8aMVRS\nh/A1xUQaksxNJ6KeSZpAzGDVufl4YXsyQnu1uJkQZ0FcYrR9JIda7f7/pqhyqDjDtDrDo/kKf3CR\nef2YRUX//pE7G/zQ/nsEQp3D1sFRKWIgALpyRMoNstaupXRPUd/PghDNuCgs6w2S0LIkO8439d1Z\ngmJDpcqLPMSqTs3jxkmET+2tCDw2HW2f8Mz4/IiMsmsusS00uJ4uY5wuJJ7llMW/PZjiuFtjdPQQ\n6E8aVutFKykAIHM3l81mjBAv39N2Ih+g+uolVu8SiCfLCvxK4qCAOoDv3+TotAEtSussxsuqHk7W\n0waQHCJJtkVieQZpcYW0S8oNB9nylQLQ67Bxe8EHDuhwyaVe0c5LT2y7njTcQHUp0xyHKWUmDDgv\nYsc0nSpdoU90DpEEHfSiCUbxCqMkwunCNdcClrX0MiwbVObw5iK0irBgejXvEFtUpQEabow6I4gq\n9YZPRf8IqjvGaj1HrUtdTROxCBFJ3V9P9fBlvCWKGmoVZRbHFC7ouGU99iVyyjAeKUCfhxSxASFP\n4r8JBPw6N1FynX/z/EkSbMzC35XAolbY1099Z1jhbjekuRt2AC0KiDf/ZOvu+yYWIoMQnRS2QAjw\ns2XOnjpSoSPXIO9FGHWJLK9BIsTbYdQidNZ63O1inFxjP13jIg/xg2M968Muss49w2DaBKA20VET\nVU73z3ICzBeQd5eItT6ivNu3Yr7jI5q10c/xgvXX+Bzc3yeJFf/UzFQlhLexApzSKBsC5sX2feCc\nL0BrQLHZVv5+Hd9+3F7w2dT+ztjxAJHxmKbqYUtKbrbRkf6g6Em3xtsDKyjacD0A4Gc5TeJAtpZQ\nH3wZ6noKJAmyvftIu/eQhBcYJxN0pMLXp/4iflUEWwDEc0P0+k7THySQuss2moMb+jmIZi4HdxDp\nEtRqc22GQQFs727LFVAtrOkaAKQJqWJjh3LyLvM7NxogogBDE3dLKQxCnlcMYBczN5qT8Q3CgMkK\ngxgHGXBSVubzZ+LAKK5xtzek7OKDL5PdBguLJgnE0UOzCAK+yR71Etqz10xuWBTDAyHv704waDFt\nfxi/iWhpLQOMDpqmE+/67FPZw4M+cLdbYj9528+AnWslotQAkLlkLiMNjvpAI8TRQ+2o20XKm5LD\nPUNiMM+pVzuP0/QfeYhUl4E5VL2CqNJtAGqeS1NwlEFIZ0+1KlGsySKE+7rfbmwUsRdfB8UtBp/1\ndhMamvGk/IZzG5mgKynbudurtK3v2DDjUk0WaAaDDuCYhmkjN2PwNegCBzPg+E30+0dI0z5SeYVM\nrvDuNDF9gGc5APgAxJPhDGqG6sznhsaSF2ceVXtRT8zcRYHl1vyFOQ/XubLKrUcL6+A5IToRQl5o\n2OzsnQe0EDUXGDbsc4N3qFyCk3ErzbaZxbZGUz288TtenCvHeqJGaejKAIwmX1e+ATk7h5o9Jm21\ns3PUXyf6rtTHJo4eAoCZubmuCnMvFZvAy3b8YVkNKNhQaS5u9g3tz65GIJcat8IpSQHt5Si+Z0by\n0DDMOKgiYMMAEP/sMtLqkogQ1Y7eS/+IvmONUq73WVYtG4a2c+LzagaXzxwAAhwPobJuNSR0VQ7y\neq61/WJ8bXp7l8nvZNzeq7pZ2y9qs/abjSEj+nIwhboZJ90aJ50Kx92ulV5ZnCOSGbLOISpNXHDZ\nWF62E/RsA/bxB6i/fm7cKaNPkrsmDs4gD+5hNDjGg/4zJAHP4wS4yNlDNTBkBPM+XGevt9WIDQB5\npYUCxWbpLI68PaP/s/Ych+klNSmwRYOFBBCYarabONgDjt8E9h/gvHiMOi+9LBAB+R6p2VN/GLSs\nPWqtyX4aJdNmcKbXVIFQ9cqX8nevR5Q6588SO5aqziU9NUbt/18AACAASURBVDulHoYjKlq9rw3a\nOhFC9oLZf9C4tjAEEQYg3jTw+7E+HYUPNPrMPCYjuZ5eQc3etU9zF2cZWy01IQBFALR1TrVDe2+E\nGQNwFnZjItekQQMm2zLv7YJLNgbeHJvjdHs0UtBgt1hiu/zmfkb6dbc+97rc6g8qITyKtun1lBXd\nX31HisfJeialxNenEd6/fk0S+E7E7QUfpVopvhxMJeWFgheOJKTFoI3J9qGiZZeuljXQibasvJu9\nGW5+d9cMQHQ8d7shunL/ZvXfRjDwtGVqHJwB9eS+ZwbnOX7uCi6TvPPAzJKw4CVNxBeemKgUMbLB\nMS2Gu167Lmlg1PkZgD0WXYbxrBicaAMcj5oLXVZy2zBBsq0t1qRrN6PKIcoVwkCiFyXoRfxa7RP9\n/LnxvVerEt0IrVJDJnNmWvuuGSbAl2wqV4gARNGeBveFZQPuGtx8mWiWMnc8xr3OlIHt9v0x5Tfu\n1TXBLEohqvTGDYj3ei7rsal0DZjsUAqB/eQeZHAGKiO+GlXr10Omftxe8Fm3NGa4cRlZV9JVHW2V\n3Wjmxu5W602BKOqZUgPbKLsN5p3T+GVNU+ZOo0h0Imq+94YQkia0J8Ucp8sExTpAV1LZbz9RpvR3\ntxtiGFvPqAoVJE91A+bLysZrAJDXFyjW1kKASz7uLtzdXd8IOu6ClSZArssZZe33dZYT9Dt7OO7W\nrdIqadinjUFnRIvPUGdUzWHOJuA0j+cFANSk2QO2h2RKNQ4AcTbpRW8IcY/O1/0ihSdD8obSC2fa\n6XsAY3pk/HLm2GllMhI/Ue9G5lYrsQLYOfXvnb+bXTavnbvY3/DaLNNkshSWUmoBiTbH1gjR7vNr\nfq4OWca8vxAAS0WxBJZz7Iadty6QRT0Cl4SILcpx690Vw+gID4dzsqJ4Ha88bjH4bMhNdOCn3Fzz\nXasaV4XYKrnxrA1lPfZvSgjSgYOV5mELgExuzNwDoHe4+eLmnWIs6UvUGWFRPjGMO+757KcKB6nN\neIbxEQFERAKhfBzo0PnVm8JIrrizS27IIEYvsOVBznTU4tw6kLrltTaygMsmczPLKLUlkSUw7B6Z\nAV5zTeCTCEQ2pvdtKncD/qLZpN+mzvS7jLcAqOp0MS0eoytHvryLW1ICthrr/sXSm4mevQsizlrv\nvWGn9usVoipFFPWcTMMx19vFtuLrqhdxC0jO9WbCDAOxm304Q6jNrETNz4Arp7fWFI9t2rG3HF+F\nCvW6oBIssyNXV62gw1baXujPT+jHeSw5PlY+L75OVd7a4zEgpJSnluCqYigh2sknzahyT04rDftI\ns5cwx3sdHzpuL/hsNqRplW9Te5lmy2KPxTow5TaW8QdsNuPqwNWqNL0e8p6RKDYbpKFuYus5CB5W\nVEVhdbY42J46HWK1ucbzVYWL3Ge7HabASbciyRJ5SMSF+RmQDRDpGQ7AJxIALABJ0cbAY5tnUa7I\n9lrTh7emygGaxUkLO2HuLpC8gLQsrqpeQSyArM0fxo2I9OC8BRbYngHRx2UGDwEAU4DdGZwFa5VK\nTPPH+KN5hOPOGfbT0g7iNvoLhlqMHUOKHAk5oppeg6twrV9XrWjw1tiWuzbYTZ08ls3R96Vq6XUA\nLygzOSBAkjkUan5melX8XgDaHXE5GhsMzuz5XpdBYixImo9jx9k07HusOOMI6wwQe1lVcz6LZ3nq\n0lN6d8PNovj4eKOVhn0C8JcsKTKBxRznxyiEEHsg6+sHAB4B+Cml1FXL434CwN8EWSr8baXU5/Tv\n/0sAnwHl/c8A/LtKqVMhxD6AfwDgXwbwd5RSn3Ve67cBHMPQHfHjSqkbU8bbCz5K+RRLxzfHLbld\nFbz1peFRGgTcoCllwzYM9aYwjpyTMsZFHiKTQqsPlEZK/8aFI42NvTFnPYBlOXUkHctxp4QMSBVb\n1af2iyozoNM12nBkKBea8iFnczyX5AqPGuBZXVETedd0OWuLAaCFfmgX+bq0X/Jm2USzoVS9glji\nZpo1QNRc3lW3DR/q41Luz4kejDXXg2r5q7DG2eoMT5cxvj6NcJGH+NQeWRwMo4bNfUuZ56YGOwOQ\n91gdiif1HeBRE0tEabNKVwBEWVuAd8BBNYHYjQatmoEiijQTbjnx2F5MBlFO9iOa4OlcQ84oPGWL\nDYwFiTksnRlZANA2JYjomNsWdHcOyz03c2xTILEisC5xxgOehsgu/VeQkWKUtjsAFwV9pjIDVlc2\n07+ebmeG32JsFLCsPhLyws8C+MdKqc8JIX5W//zX3AcIIUIAfwvAnwPwBMDnhRC/rr15/mul1N/Q\nj/urAH4ewL8PGhz7GyDrhDb7hL+krRVeKm4v+AhhywtlDTy/BAYFkA6RdvqapUa73UVjwtz2eujG\nZgO0ek03PNsvs6rvog4wKSROuhWOO3qxG57QYWjzWQlApCHkm0OIe8fGeuC6KrCs7cLD4HeiF6zr\nqoAMzjDk/k6Uap2uKy0LE7XOKTCQkXOlluTZMbVurhE08LDSde4wixKn3OMCxEzPnAy6ngwKvWHW\nvsi74ZbX3JJLG1lEi2W6ygi8EFdRiGl+CoAGMZe1wEmnwijpIxSSxF0bpS1e0NysR9Urk8F4jrJA\nu1yPCw7DAVGMkwRIHUp6M/toDto6x+S99g3B9Gg2yTPXuTOi+9wFa+f6cRYuhoMbCRVJ0Nke7OXz\njawMkltaNQDUGW0NCzOwmdIZb86KggAbDhgDREbJBsCKCBWm9BlRibNCZZQvjFljfmWvd9OtNy8A\nTG1ZjkGnrMm76eMVnwHwZ/W/fwXAb6MBPgB+FMDXlVLfAAAhxK/q531JKeWecBd6IVRKLQD8n0KI\nnX4/HyZuL/iE4XapYbaA6p0h6jzUrpk2O0lC6vWQU6cut3EpSzPFWGl5Uko8uaas6aIgOZZ8DTzP\nyf75pFvgrf672B/cQ6QBQyQJxBsz7c1yD1Wni0V5tkV24H6Ty7SbFFQm7KYj1GqJi8UVni5jXOSJ\n0Z7jsmEzaCg1MXYLW/I6TpjsoqwsI4+zx+nMLvpVvl1eKgoqJbmSOU4JaWdUuZ8lMgAldlfMx8XH\npIqChhC556OdXd2S49sDEmjlYJfXXcoPXuns+aVZkMTB3naZzQ23P8b/P0gguNfYNNrj/zd7G81s\n53pqn/8C8KaMhAgton9kNgxsKAcAyEvU70+h8jUtCmmiddM0MDbo0jJIgA084DEMRK0UIqKUZt8c\nW4x6U6BGgbQ7NteaWW+mh+Qef25BUunrKcqaNjMa6BRm9rrlU0DGiLKxB0JmA8H3dlu5UQOQBzp5\n6WWpH2HcEUK4WcQvKaV+6SWfe6SU4g/3AwBHLY/5PgCPnZ+fAPjT/IMQ4hdBdthTAP/qS77vrwgh\nKgD/G4BfUOqmWvVtBp/AX2DMYhJLoH+EMJGetAoHKwhwuE17N+O5KgK8vxB4tgIm1xJxssazCLjI\nCISWtcDbg/dJCiW6DxWlEFdnwPgIGJ4g126kLO3BoGPLZAmuq8J77+vqTANf5vnDAMBhuq2I4IaR\n42neL0lid8g5ZTLr86UxUwuhS0TaRZOzHTWdmccCQFhWULmzcPCi6bDxtjKNJvCYg9UDk272M1uQ\nbtyyQnhoy18iGxu2oBtsNeGG8W9ywqv9M/CcnWN9OrWqDWVtzdzccDO/uPBBigVaW+eMGtEcvtVu\nquZ1uSzXYANuDRXzOfWPoKocYrgw9/36dIr6yTU2mtESdSKvFO0Bj+5tbgEPl6oiKpOKKoPojDxJ\nHg4vI2pYg2S8LFU5bWD4XLlECADP9WaGgSdNQOskXVtVlxDpkDKwuA+UK+9eEklCr9Mswc0WXnbP\n9/qrCKUEyuKl1RLOlVI/suuPQojfAvBGy59+zn9PpYQQL+RZNEMp9XMAfk4I8dcBfBbAf/6Cp/wl\npdQ3hRB9EPj82wD+7k1PuL3go8Ps5vUNrtIEmJ+h33mIg2yJ0bIGILGfrnHcKdGLEjvxH/iWBgw8\nLND4bAV88DxFvqIbLs3W+ADAYFTgoiAK92rwHMfdLkZ794F0CNW1w6m8U2eSA0uomKFMwABQ871d\nAcyupMxrUQc4SP0siPs9Jm7MekqoJWU9TA1Xy8oaquXS7hgdkOLHGqACyAU+yin7ifzJe0NrbvYG\n3GwgG9ghVJ31mEWCd8vj1DiKNsGmqdoA2LJQE4A8ssB0hvXpFJvLHGpZgZcSARAAcdlxOvN6UV4f\nZXBorBCY9m4yg/Xl1vuncZ+IF+yomhe2FJQm272hthJd43eifwR1oEujkznUskI53aDKJYLzFYK9\nJcLBjDK0QdwKil6prYW2zcxGViN3AYgHOZsRCglEPWBemtKgKQXyg1wQgs5emAgTS7i9IbA6Q/O+\njiX9vk2wVGc7m2W1JYb7vRJKqX9t19+EEGdCiGOl1FMhxDGINNCMbwK45/x8V/+uGf8ryGr7RvBR\nSn1T/38uhPh7oLLea/BpjbCxA3F5/6enUADuHD3En9p/gutqgVHSRxKMvQFOYvrEZnqd/+tIYqPl\na2A5KpBm9F5xskYnUuhK4M2uwn66xkEWoSutjLwoU3IrDWLDkMvkhlSPsTGzMdxMXdUBTpe0A58U\n0oBNV1oBTNdFlYRJuZS3Rr5WkAFNuwPYHhZkB09dbnthDLrg0dcQMI6bgbFQSKwYJDfGASoPAcZf\nSQlBMyS4YVanM6LjSxMSp1xW9D5cx3/6PrCc4M7RQ6iGlNDLhFHo5lma4QCirBGelDbrcW2sXfbe\nkK6dmIHOVVPnRf/IKES7u3/An3Ux80BKEeuwSXBolo3KWltfFNszOm0sL91XEQcFZaSdCPEwgIxq\nhHf6CO906Lx6Q4hsbNiTvOKbLJlf181QG6w8Pu5mH6htM2As5Z3ymHDlmTiYMNHWlzJZdWMgdUl+\nTfSY3EpBlbW5jorfM40RzhYIOpHJ3j9G8esA/h0An9P//4ctj/k8gE8IId4Cgc5PA/iLACCE+IRS\n6mv6cZ8B8OWb3kwIIQGMlFLnQogIwL8O4LdedJC3F3yEMLsfw/SJI9vDOH9mAGgYV/6QoZml6GOt\naqRhiZXDQKbMIsCbXU1YqGp0IyANCXgONE36E0Nh5nPU/EwDUIlo7z41dIMSSVAZlYVJSaXAMajH\nxFRu930PUtvj4ZkkAFvCpMWaVLppWJbYS6aM4obpqWyzkwSrUqex56iJnt4xzxYIB84Ovd+l0lNn\nZGdQnKBSTW4GQFWc0fxG6SyczgIs0iHUmAkPCWUhfCwc0xnU9PPA8ZuItMNlFNww3MivXa7IBuD8\nGdR8QUOjAHCwB3GwR7bVbKrnOGfyc1Fpy+eezgY6I0/DTCi1pUQhkXh0ZFRXNttxg7OdllDzBUQ6\nBcYtA5nNc8zGUOMSAjAZ3OYyJ6Xpe8fAyQnE3n3MgyVS+LMuHvU8SiEiUqVAOkQziCq/uw8E2Dmv\nqFp7/ktmILQtZgsffGK5dX/xpqPeFJCdLqQYQ7CCRme6ZVJndN76XfqsyxrBw/a3/7Cx2Qjkq49k\nyf0cgF8TQvwMgPcA/BQACCFOQJTqTyulaiHEZwH8Jujj/2Wl1Bf5+UKIhyAe43sgphv0azwC1S1i\nIcRPAvhx/Zjf1MATgoDnf3rRQd5e8AlCulF5EQGs2GBR0IKmASjqHwFYbPUfoujYgEQmC0wa61hH\nZzicjXQkjNePOxhqdtfTGR1TOkTaHaPYLJHJAkXpm49dFdYDxh2CdYkITKMeJX3UGzo+V5j0eQ4A\nUveSSshAf0FDXQZj0VXOepzwbBLiiHbIw4FVJs7GUNmVBSHAUMfbQAeAuQas2+Y6zK7CmkQz3fIR\nD4SmQ6iDGEie0Wfm1vDLGursnDK255fAvWMDFjxX0pyylyIme+/5GWXAZ+em4WwACCAL8aOHxu58\nXT8zJdgk7CDt9BHxxL8Gn2a0zhC5wMX3hGvml+j/4sKbuTLl47ykv/fsQKab9bkR8RyVBvAQQHhn\nARzu0cKrgefJ9RQH2dJT0DCA6J6Xe758XExL39EH8q4B947c12haXvPr8mfijkukdI+5mwGeM1qr\nGsVmabQVZaeLqDOCkrGlzbuD0W1EkI9JKKUuAPxYy+9PAXza+fk3QCW15uP+/A2v/WDHn374wx7n\n7QWfMKIvi2bPqLzYHvYDCIBcZhHgTJ9nxnTKbf4DlHkUayrBuV4/40RpVWQtRrq6oi+yZlCJsiby\nQZRqaZttzTXOhJoUau4Nee+hM5kkvEQSTPHuLDEsPEAhCUNkUprsx5v4d0UYWyLoRMCobxaqVVhT\nzyKMkQ5PaOeZUSNapCSP4/Y5okr3jfTEvXp+STvd6D3jmnnNEkBhiTTqm+e45UEhM6iBtormXotW\nmeYmengnRfzJCcQbTz0Qgi7t8ZS9WFxRxvP8EurxU1RfvcRGG565mVu9d4KL/BuOpXpg7M5H8RV6\n0RJJ2KFrEY9bh1Q9oz/WJ3NAx7AFudw56BLQ8w7f7Su5s0OpBn29EWhmGRy80RAAAVCuSREHexBH\nDw3wfOkqw0lZ4RPDMwNAvBETlS3pGaUB53zMwq4BeKsP5ArUAu3zP43NIcrK9GHCvKQSZyypRKj7\npqQwYg0h26IbjZAO7iDKxqby0CxXiv6RtxF6Ha8ubi/4iMDs+oCz9rmHXdHSwO1FibG3bkrysAjp\nFvCwzAkzbKBZd0UBVDmyvfuQHRI4bFowF5sAJ53KZDq9KEESdo3YJJYTqOW5GUjs7T/AcbcGQMrY\nz/LAyPOM4hoySJAEnZsn+d3L14moz3KwBwwOobpjFNUZni4WGCcKhaTFNx2eeJTa2jEx60ZjCyZt\n71GukJrSpj4vtD/eA6Dnlzf3p3Z8zq7/0c4YHALDE0yLx/hgFRrVc1cJY5UGGMUVxskE3YgcTLfK\nma8ieFFubhDy0jtHHrrkYA8p5Fe+rcgdun4M/OtqprNruqd5WDMLelsyNa6cTRoTXdoTfwV2yuO8\n6BytfC5ay78AKPPWhodutgPYEYhm8PBrxLpvlV8i5Xm5yXVbH/7Dx2YDQz56HbcYfNaqQtXpIopS\nYlw1tciA3W6XXK7ojnFdX2CtasggxjgpAdTIZKBBwhp9uQv8LuAxkRdQX38E3CsgD+5hf3gP+XqO\nbmNq25XEyYKeFoucW92wxiI73H8AdM9A0j6J8SJKZd/I6rBqszsPglwP+uUFxEDvNsuKsh4tfgql\n6DjkHB+sJIAVkmCBcWKJNi54Mmh2ozEifi+eKenb8k5UrTGKDvUCuRuoAD2Lsqdp67GEjKknpZYV\n5JtDMi472AMO7qEe3NkequUsFKDdP4AojqAmS4gHR8DxmxCDYyhQaW0UXyEJAv15k+toRyrDiuzK\nkVMubAGfJrkDoEVwcKgzMir7GjUJltwxIquTrc94s6wQjkAlOf3aMkhQr52B0OUCan7zgiqUQleO\ncbdbYlWTjNMwPrTCr25ojTYupe2cFWuR6THGgPrXiq9BNrAMuh4gWGBWz+CEh5pFeLBHJdC9+6ii\nEHUDeOj8fR8tDmNHMXnP9n6MPuAQMh63siJfx6uJW3tlq80G0/KMFgi9oLzQIoAZNLqRycDDkcoe\nxrhGvq6dRYk8W9zFSE3eM8BzU6jHT6kUUpfI0iHQ2TNDc9yfSMM+MD2Fev4l0usyMzm2RIE4oi+3\njDEcnqDOHgMocJBFSMK+zSpKv6fFxl9YzaiJzcN3WrhTMLWYzz/soxdNMCkJJIpNgA9WwJPr7YV3\nP10DINZTEnaQ7d23Q6euxtfqCpjbst3LhOgfEQClCcLRJTCZk3MqlwdTiUfTJ3jQP/DLjKvGJPvB\nHjWgRwvrtqmjJ/exTmr0olJnpbUpu5nPei3ps9aZctM0rRleTzEbAHdgrzv3e7jH0pJBGEowZ31G\ncaDr3yt6XonPcZfEkRQxhvERPjE8Q1ceWoJElbdbVbAWXnlDCc15D9Njc97TqxnIjMYP6pUFI35/\n/p5qmw7Te2vYT5geT8Pmmx1vm7017veqwWrLVPJ1vNq4teCzqgN8barwVv8Z6qhEb3jiCx5yOCU2\nbmRWqJA3gAfQHiuyBxmUSENakACJcaJogeXsxAGem3oqAKgPUtZQA/K4j9IhNUqFAKanwIxcUNWj\nM9RP5jtfJ4L9Yu8P7wF4jCTsWOVqxxPGXehFNgbYipmViHmH6Oq5aTXgrhxhFJ8ZFt670wRfntI7\ns4xPV5INOEncLHCQlYAE+fg4ul5qfgacP6NFwWEyvQwQMRFBJAktsL0hxN59TMQMj6ZT/M5ZhmJz\ngbcHJCwqlNru7QFUzmEyRSOSoGPkW/gzl0HiE0mevk9ZyKBL2Z3TDK9VSX2PXRsebe+B5UT3b2hW\nyAiLRinN9sztJoZnYswiWq8gxZgYfhePTG8NzzT4TGdWpWHHNe3KkUf9bg0GWLal2KFd6Jra1Ws7\nVyV2fZ5RCgEHBBq6b6pLQ8SultuWWzCXPKscqK7s8a1mRkbHVeNQAMRqRqaS4YcsE94Qm43A6qNh\nu30s4tZeiWVN9GNSGiC9tW40hoxP7K6oTdYFdk7EzMY0w4zRFEaOJw37dPOvZh9aqFBNZ5pOPLGi\nilFKsx96IamfzLE+3/GF70gqHR3VlMUMjqkZ3hzm5C+0M/hp6M6dkd0pRjnMNLmjMiyU8rKfP7hI\n8LvnAo/e7yLN1kizGqNeTV5EqUJHMtuugAyY6g3b/D1/5qkvu6WZl5FnNGW4egUMTzCpzvBovsLv\nnCX4vecBgARJMMU7Q4fI4LKn9IIvZNbOVtMSMwDMZ87XFdWVEfFUZt5nQtcWI0v/ZXYhL6paeNW+\nCZXhtpQQzL+nelq/ZeMxnRFY87wSb3omc6s8EUeanm1nY8z140xml63ErniB7hyi1CjBsyipyUga\nunpbZIlQX/dIW4U0gIfBx6izN+zVPYV0HlJ2GZ3sbsrPCW/tEvkdj1t7ZTcKeJYD44RKYyO3veMu\nBO5OPCqBfIrU8Ulpzk+0pf5UlpmTe2Q2ANKpb03AsUPI0eze9a6f2TyRM6UulxVE2t7MFJ0I4sGR\nLTttrlGslyigWWRMC+YddpTaMkY1s19kFnzUkvxiuABOTrZsi7tyhDeyZ1gNKyzqCMCCBl9bZp2O\nOyVGSZ9IGGwLwaGHOpXRhRvYBXIXrRfYKgmJbAwFMgd7e3CBJJiiKzP8yMEKD/oHtDOOIktj5qFM\nFwReJICqY1FRz6jf2TODl4L9aHSJaLW5RrFZbm9euOznAkDDDNALbY7G9hyApsHreTXKtM6opMy9\nrEEXmM4QuDNaznm7184lEQDwsxQGzAZYAAC6YypZOSrgDOB0X11ireqtfooBCp1B8WvKICGgduai\nTL8uoPkoV0R0C3j4+gE+eYEzR0AbIDYGV6MUtfrYDZh+bOJWg48bXBs28wZNP5HGv9Xzxx5dl29u\nGST0hYUt3V0VAjIgGnOkB/uAM2qY8uu1lN9EktBiwTpgura9qM6Q19cYpofI9GyNSBKI0bl9sksb\nTxOIt94ydOhis/TYP8V6SV/atINaLbGuZ2YXma8VjrKOPf/VDOr5JdbfeI7wzsLIyrgAJKMEqezh\nuDPXzD9p5pzc4VcGnmF0ZGdr3IhSohfnjZJbZ4T5+hJ9toLm0DtaBbRnCqBezYN+DOA5HvQPiBDg\nvh9gylscrBC9C3zcXfdVIQBMsFY1uoM7iGRGz9d9wrku19YbR1WC7zdWAm8qBDgDrBxCKWL4RamZ\nhQk6LaSG2QJIJh6ZRgwHRqJGDAd0j90ArEYZwiEtSBED7vyQalGOCAEZdQF0yWrEmYUCYDIqCdtL\n8oaIo9QHGeFnZQDsnJYDQlvA4wKQHmNAlVu1A0xpk5MWFoz5O71ebon7vo5XE7cWfJQSyNf0hc7k\nZht43KzHmYD2lJpHl5SROCAkGzMBk1IikxuT/ch431K8nUanSBLa4bv9Bs529KzBvL7Aoprgj+YR\nlnWMtwdnVpgUsAOdwNaQnDh6iPn6EuuNtfbO1wpY84JRAJibmRUAWNW0mI2SpfYMWgHnz7D+xnPU\nT0gPTOrrI+7qch0AGY+RBB30otJYP1j3V2hvI4VuNCYjN7cJzsOUbFDXG5IpnMMwnFZnJBSa6gyD\nd/VNXbEdAJSGfbwzbFFzaICOCRbprLazDyvZQ8DDQ8DZ2iqNp+EJVus5iurMc5D1Bj/r0sq9LCfE\neNPHXqHyZW2g5Yf43NLEl6FxNh6qKCCeX/qOvYOuvadZ5BXwMi4362ENNiPr5AiwuufQlvG3/Ztj\np7U8Z1SaRce25lsKI5wlgQZmlRBUxmwDnmbwfFNUktROTPp7qiisi3DLOX07odRHpnDwsYhbeyU2\nG38naTxP3JuWd6KOSrNaVrZefmdJ2ctsAaXnXXi3VmBpZkAAWpBksKQZC+1nYpIvB4AA0M2vpWrc\nbOfpYoHTZYyvTSUuCmGESe/2hugfPYTKSEW9TSl5rksdbkYDwBuQvMhDY8HgxnFnjq4cQ9Yl1HPq\nLxVPS8RaLkECZgFTg0OjT5eEHYyTCYDKM+Bj6mtP7lPGo3tXRll8OKC6O5fZNPCw/fXzVYV3Zxne\nHkxxt+cAUGOhYbWEtmhT8BbZ2M96gW3yCWB2/PWmMNc0XysUG5r7WSFAsdlgVVeok2dYBNtOsp4Z\nYZVbkzeA7jndS1NxZvoabv9FCi32mU/JyO4GGRrTcwKMAoSRIHJ3+Y2oN4WXJXM/pUaJdVA7jyu9\n/7vnyfbvmSQpJzcOghKh7qk0Kw4GWDUAedff6d+432L3Od7jm+HQvJvfQwEQmMvYZJu8GXsdrzZu\nLfhEcoM3uwp3e2QoZprE0AOLkeMfD9iasKNwawUPpamX2x0j2SFMColVzfM+trEuu6RzpdgegIFO\n02ndbKdYL/WCm+Ar0wDvXwtMrumjK9YZgCmOu2RQ54tn0gJR7wAeXhgYdJ7n1oKBxUi7kgBqUV9h\nlA6B4QDhXop4WSO8kyG806Hd86DrNeUjRIChMU+21VEKewAAIABJREFUdMzqTYnr+sL2Rg5yu5C4\npUbHIG9anuHJYo2LPEKxJtAs1rqc2fyAeYFyJF2apStjXmYOujFzcpPbbONcWFTWDhgHgISWQqqc\nVxVm2BigHmHWGRGIDCyL0J0j47IoYEtf5AoKm62wDE1LCBY25V5GUzrGLfPpn5kQ4N4vAJDCZ5Px\njFvb9Sg2dG9R2Yr6kVxy5WoADYAWiIIPP4S7047C7Ue5PSf9N+shBOp11iu//5MkZECoytaM7XW8\nmviugo8Q4j8G8N8AOFBKnevf/XUAPwOaKPyrSqnf1L//YQB/B0AG0iP6j7RXRQKS7v5hABcA/oJS\n6tGL3jsOgZNujVFMjU/RnHFJhxYYcAaRS9PXMG19R9cMGfUkrnVp7INViCfXER5dA0CAByajoHKM\nkV4ZnlihQ6cxu9pcmzLNdVXgdEmyOPlaYFlR+v5sVSMNgSRMkEmf7fStDMe56tfNHk1eX2OejNB7\n+wcgiwLyTSrliIM94PhNswh6KtVRCoR9A3zNKNZLFOslkm4HveG/CLGnJ+IdKjKD6KI818BDVz8J\nN5pJ6JQ5m7t3bnhHJJ6JboumXNNDyNllC5lZ2X5nYeZwF+diExqlA9forxkMPPz51KrEfH2JdO+E\nNAS1sOq8vkBRPN7qkXifa5QCKz5mrVHIM0FwFK9dxe3GfFDbeTHZhO3gm+fETX0AXvktdJhhmSyA\nmizfgY3pm9jh6wD5ujaK6qaM2AyH1ONlsQ0igUt8aKODq3q1lQUbtqEmpDR7Qy+rfv6yoTb4MH4+\nf+zjuwY+Qoh7IEXU953f/Qsgae8fBHAC4LeEEJ9USq0B/I8A/j0A/w8IfH4CwD8CAdWVUuodIcRP\nA/ivAPyFF71/HNCgYy9KiAZdLLak+4XMqPSh+zOcopsvyahvdvwiGxsWGQPPV6YBvnxFX7p8rbCs\nI2PfnMkr9KLEiB2mnT6kGKNSJRa6Mctf/GIjMSmsR1BZhMhXIZaVwEUOPJEBMpng7cHc+PPUzg4V\nwFbWA1DvZQVaWNxymyuCyqrYgCYm9EZIP/kngIMzk51shbPrjKIUXTk2LMCbQEjGeiErn3jHDQAf\nrEJPy67p5npjVNo3qLSCpU25GQ+EmgDkZEBbDDDAZD2TQhrhVmCDzPl2cdkxlT0kQccwuPg48vUc\nObG/sVi966hB0HGRega8BR7QWboGHlHWvseNLt+yjUNbtKl7M/C4GUyGjbm32PXWDUMa8IKzb4km\nAK1qGE3Bpuhpc9DYPVbv8wE80KlVCShs9/Ia9HXTy2Il9yiFqDKy6IhyC8aba33/vQaM70R8NzOf\n/w7Afwrfa+IzAH5VKVUA+CMhxNcB/CjLeCulfgcAhBB/F8BPgsDnMwD+C/38fwDgfxBCiBdauAZK\nS95ktPjUNGTJDogmGv0Z7999Kg8ZHajyHM9XFZ5cJ3iyoPLYs6dMp2XKJpW6SO9tjSRY6Kn4pdGg\nYkfUVU1fmIs8xPMcXtYDEAgtoppEQqf0u/10jSSoME7803/Z8gGbzXF5ZBTTapqvFVKUWNQTyL0T\nRC3S+bsiQgQp95Gv56ZU4zbe+fWfLpUpW1nQo4WkqZfXkQppKAxL0aUbA9gmi8BuHFSc+btap4+y\ntcDxNH9LX4TPg7OepXaO7UgC9FUdIIk3ngmgSwOWYYzr+sK8HmfMTPTg86ZrUWOcOBuKDWypKkq1\nrfjCZjt6KJnvzXrTLq4JbNtKMPDQRoWu+6oOkIaK+nXa9XbnwKmrGoECxUYP8zgAxK+Zr2uksrYD\ntw1fILdEBjhGg85n0UYJ3zW8y8Ot3MvK13NIuW/HCKCrHo33/TiFEGIPwN8H8ADAIwA/pZS6annc\nTwD4myB0/dtKqc81/u5VpoQQfw5k1xADKAH8J0qpf6If21qZuuk4vyvgI4T4DIBvKqW+IPw6/PcB\n+B3n5yf6d5X+d/P3/JzHAKA9KqYA9gE4vGPzvn8FwF8BgJN7e5bmW65s2u2m8ZppFDUBiBvDLGYY\nZ1hUZxo0Yr0j392kbO7YaSdYIZM202kKVlJJTAED4BHIoG7Uq3GYAfuJMr2ZVa2QxBvka4VeYBlF\nzaynGexBdNNxckzLMyRJx2qFuY6WzWBVhChFGlsfF57JYLB9uoxN74mOZeMx5PjYGITcYxNKUXbC\nCgXuEC9/VnkBDHOzuchaekAfNljRYhTPjYkgQNeSgZvMAkeW/gsYogMPcS7qibkGp4vIA/+TTmVK\ndc25IKONxmKobCcxHPgzRfXMKDvvZJg1QgYxUpQANkANzU602dNNArQMTuuAvK44w+5IhY60+nyj\nuNZSRI7COzMLb6B+mw1Cy+xVrUqPuu36IanVDKJ/RD020OdnFT6ujAK3AoztA20YXpGN9gbYvFwb\n8duNnwXwj5VSnxNC/Kz++a+5DxBChAD+FoA/B1pPPy+E+HWl1Jf037cqU6A19d9QSp0KIT4F8gLi\ndXhXZWpnfMfA5wUe4/8Z6MQ+0lBK/RKAXwKAf+mHv18x8AAOycD0eSiYFeXNYbwgOlLhT+1X6MoI\nXUk78jd7Cne7G2PH7bGdTAjwl33VAIKOLoV1pUIaKlzkCvupwmHqWzY0rba5Jp/jGmkoPJbb6TLy\ndqJsA8H/cYZGYqk+EK1VbTxSkqADGSWIou3SDomdlmQmVuWIOiPIMN4CoV5U4rizMv0FLvFwT2dS\nzPF0GXtlQN6FG+WIpkirC0JswDYooHo5HY8eFN4Kd7DYZV8BnoAmqxvsp2Ok4cRkO2xr0Y1G6Id6\nFilo6UPo3TWdP4wqeiY3ho7OYp5N11MAJlsQ6dAytorClIHbwJWzzZcBIRnE6AVALyLlBvd9W3sr\nbHHRck2b908SbHDc7W4BT5OpJhrfxTYatfuZGEM+VijXdiUASOKoyoF8arQSjUvstdUuxKDY8tT6\nmMVnAPxZ/e9fAfDbaIAPyOb660qpbwCAEOJX9fO+pP++VZlSSv2+8/wvAsh0z30PuytTO+M7Bj67\nPMaFED8E4C0AnPXcBfDPhBA/it2+4t/U/27+Hs5znmg71yGIeHBjhCLySQY67W6dDXmRXIiO5jDa\nO8MKHUmlkZNu5SxKtvHdnCOQQYlmqcKPAA96wGGqPHM63kVyacezYRYCdVSa6XsAW8DDwQAEsNsp\n/6UGsPHYThzFZmlAyBvaXE6AmVa1jlICd73os6UyYMs+Xf0lN0OMsBTcbneMXkRsN/e4ZZBAXZ8D\n11MyjuNoWirkJQ0RFgWJtaZTqN6MGHVsbteg6boeM16vz5nlkoKAtBuN8AYmyNd1Q7HhK7SwaW25\nJmHBDSqVEtBzVo7pKbD6JtJsgHpwxysX5us5EPb9zDzKzcyZb8vt2wq4GmhutP2ujbxiREHbAChK\nzbC1DGJjiMhU61ZPKwYeV+IJoNdq3As3bgoAm8mwTxbfFzxHNyigkgkwP9vWdisrMtPrnd3oqfU9\nHkdKqaf63x8AOGp5jKkY6XgC4E8DN1am3PjzAP6ZUqoQQnwfdlemdsZHXnZTSv0BgEP+WfdzfkTX\nFH8dwN8TQvy3IMLBJwD8U6XUWggxE0L8GVBa95cB/Pf6Jdiv/P8G8G8C+CcvqjXSgWyXlHY1Oluf\n7gg3AtssKg4XdLh0wiWYZq26ViWgd5rUrJUAghaLbmDkZDvUyO5vgQ4bdQkAaadPw4Jr6idNCmle\nC9jeme4CIBYHbYumFbfKp3ZwMi2oLxGlemAzMwtHpK95BKkXlrlZjJRejOTgEPvDe0jCC1zkV1jV\nAWSQ0YR7XVLWM7FSKJulDz4kJ1MRCLFFAZfiVhqE+HN0B431z4CdG3I1z+pN4QFQNwL64R7U7CnU\n88dQj58SRX/Up4Xu4B6xG7GtCCCDGAcZSJh0uYD64P+FevLUqHLLkxNERw+x2lw7emaascWUYZ25\nKyGcARb7+jcBkPtvVw2az8+9T+uNIwraMvzZHLbmTM77Diyu/IFuLpvqUBkN9npzPo3PpintBGgl\ndD207DnRlhXNQjnD3GzEh5Lm98zgdJJARSnS/QdYBA0b828xhALi1UsPrd4RQvyu8/Mv6coNvdbN\nlSUTmhH8ciZd9LodvKAyJYT4QRCx69uqXn1Pzfkopb4ohPg1UOpXA/gPNdMNAP4D2IbWP4JN6f5n\nAP+LJidcgthy31q0AM9Ob5JGdOUYB1m5laK7DKc07NOu7PqUeg/9I5MBGJFFAAiAURIjDa9pWl4D\ng7vjZ4+gJoPKK004O0QpxnpxKQyBoSsDQ6cG2OYAYN8c7ju5HjUsnMlsLW7cck8pFBJSqxZ4wpqN\n6+x9G5pDne6AL5fOohQiGyON+thPqTnflWN6j6szqLNzM/zLHj5ucB7pHodZuIb6mFZXW+y2rc/e\nGTT1RDc3/Hn3gYVe/GYLYLbA+nyJsKy0dtwzrUZxrD8XKh0mQQe1Kq3iw/PH9Pxnl/R8ACKWUNkA\n6fAEUy2xxN/gNOz7GVwjmsBjhl0bmax7HwH6/leKSCP6PmUZGwY+vi5uNiKi1NhV1JsSvSjSWYRW\nmW4CD19X5/M2f7tpQ9jMSvXvjAuvBhXRieznP5nDuCU0gEfla7rehwVElUMo5ZUcP8I4V0r9yK4/\n7qosAYAQ4kwIcayUeiqEOAbwrOVhu6pMb2NHZUop9YEQ4i6A/x3AX1ZKveu81q7K1M74roNP0xNc\nKfWLAH6x5XG/C+BTLb/PAfxbH/6NN+2g0rjRlRBWKJG1tBKiXYu9+0bkE6Ada7elPuyBDteXwaWF\nsVfXbvoDHUuXJk1/c/siAP09FFK3i0iAUbIatf6WzesLTIo53p0lOF1ILGo715NJm0XZYxaQQegv\nGFUOFDmAGqqeI8rGSOMj4xyZytrZ0ToLQMv19bJM93OQGc1XuWZigMPaokyjG42MbYF6fgk1WWJ9\nmRvBTNHQOQvvdEhwM42tMRsrKLilN8DbaSt3fkmTUNxeCi/SvDCbUm5nBMQzYNAlou6gS4QA3Y+p\nsN3EZuDB88e0CMcSiCPSbOPj1sOPeX2NfK0gg9KWxXigMjo2r+nK/zSVLdpmdwwxos32W4MQa6nx\n71DlXumM56qizgi1iM1ck+ey6zrGut85R3HBWK835nw88k/L5yLSIVQvh8gLqLyAfFM/OCbbd1fC\nSo0ATOYI73Qc5ZKO1Xf7eAZXgz6n//8PWx7zeQCfEEK8BQKKnwbwF5VSX8TuytQIwP8B4GeVUv8X\nP0aD3K7K1M74roPP91zs2GkxCKE7htijW580t3QDV8QQ5YpKR83nuqDjNMUFABzfXOrrSloU8/Wc\nKKkb8o1x93pmR6vHEer1NkX0Ir/ygIeDmVlseAfAkBX64R7U2VeA6nFrI19pVlWWjaFiaopH1Zp2\ntMttl01PQ8xlm8WZ1zvw/Ft0rDbXgFOm6sl98qc5f2YsAtbnOVSnRrDnX8/w+w9oGNjVjWPAceZE\ntsIB7zZhTw6jvixi0NSnPsc7h1qwUoPdnUNaGOMMeX3hCWVmQY/O56lLLgItloA97s4Ii/qZFjAV\nukSrj8PNJJyylws8rg175vQTGRyaw9Zb4ZQdt4BnactTSsYQFTEcAdhyLAMPZzs8f+RS2VltwRk2\nNtc3zqj0WVlWKj8mr2mWrNsZI4ruG0NB9fzS10wE6F5gSaujBGo6QxhH1PMZdGkw15HYeRURbBSS\nly+7fTvxOQC/JoT4GQDvAfgpABBCnIAo1Z/WzODPghhrIYBf1sBzU3wWwDsAfl4I8fP6dz+ulHqG\n3ZWpnXGrwadNPqXNobHZGG6Vd2dxzLZw9eHy0utNcGMTUei9j2ne6y90pF1M8/XcK6G06WrZ47R6\nYk3g4UFSLt+NE7UFOur0C9h85X1slpVRTPYyikEX4mAGpQcZSSZmsu1gmRcAa4np8hn3LUzmsCW/\nY/sLTbtrk10tJ1Dzhcl6VnOJqNogvMwNAIUnQ2uW5qhisyMsNtf03i1VcT4GGSSQ2M0Oa6MdC5mR\navKBNt/T82DojMzALZ9XFvSgLt+zxnOx/VqKvjah63eBbKCNDK9xqpl/44TUMohuXhowcLNpq7Yt\njI4fAIz0KbHfFPdgdgmyAvBZaAwgDHiNLJfLYWnc951D3f5O1NjsOU7BgP/d8wgUzt95bievr3FV\nCBxkJTnJsjtuktjeoxvudR4OiJCSk8Cokcvaftb3fCilLgD8WMvvTwF82vn5N0C06Jte64Hz718A\n8As7Htdambopbi/47OAkuDIc7q6Lp9EX1QRXhUAmNzjKjiCDhL60zx8b47PmLqutqQkAsnMJ9LtQ\nUQq5/8B4nBhv+eun1uOlXiHKxoiivVbLYHdo0y2tTEqJZS1wuvA/6q7u9dCw6wapdBhaT/8p1Nfe\nQ/WHZ1i9u0CVB4jSDWS0QdCREB2JcC9FeIca+KKsyVfItaEoGiZdgBUI1QO53PCWQWyUHgBbeuTS\nUhoKdKOR6TUJptFOZ17WUxUxqiJAfL5CsJdS+eTeG8Dxmx7oLOpnZu4llb2dw4SuIgOXHz0gfEEv\nUMgManBIn6GWX6pQ6V36NcJIGnKCcRjVVgeuRI5IEpopy0gp4qoQRjPwuFOiy/sBBgOjbRZirWpP\n9BSAIwMk8Ua2RiikJm6szKA1ZLyb/em8lxlBqPLtTDdyhEHdx+oKgAmtWu4Cjwc6LTI3Neh3LuhM\nyohmxTYV3sgch2KZQXUc0Gszc4wlWaazjUlz3OJ1vPK4veDTFk0XSR35em5Ah3ePqBsDbbxIuME7\nq4J8QlBSBrHmZngc0SJT5RCLKyQpNXsN/VQPvTWnuXk71gQcXlwmZWQWGIAYazwA6Q5CuhRtj06b\nJORrkoaQEZVmmsBj+iosMRRZIzJXpt6IWTr6d1IIAzqApfJaVpX1xik2rIY80RblTuluOADmC4R3\nlggvc0TzGlG6QXinS8Dz9j0Cnr37usdC170rx1abTL+eu8BwD8uNtaqxqK9MXwTA7sygOV3PJb4q\nJx5gRM/vyX0iJ7jhiIN6gqCdEVScoSjOzedn5qF41olBv6U/3gQegJQzRjEpDCghtrXs2s6xIW0j\nlrC+OEP44rhOz+aFxasdwANsZ8WArynH4apgsK8SAPS6+xYA+bNpMOtMpNpYT8a0EV0AaYsm4Ov4\n9uM1+HA0S0WgG9sHHgoekONFSHXHVpUY2PbSSXWvJ00gJnNIZmON+taKIJ8i69y3NXQGHoD+72io\nucdUbKjR07a4mOMNt2nlLlvOlUxBtKbp+HuFuTmifA2RhrSgs1NmGlM5i60fGg17FmUVQ70g6ol7\ngMpUXTn2ylocrkbYOCkN248fU28KRFEPoiKLbFIA7yIZdRDunUN0Iurx3DuGOP4kVJf08tyQIoa8\nPtcLLGePdieeGcfN+ZZQRbFhbxt7nO7OPI39vklbGTeq1uTrtHBU1MdHRP3mshsvgtxk7x9h7kjx\ncMZKIJ4A+WLrfdzgAVj336s6wLuzBCedBdA9Q7czhhT0OTIIbZec/ZkX2elCijF9tk7mpWJWhS4g\neRi20jp0u6Ixm2TeozlPVOVGgb7X3cda1RjjGsVm7YwFWBNHKWL6XCJtodB0qG05Dg4GoFcRYqMQ\nF+sXP/CWxO0FH7eR6M5zSGvWVa+LLeABaEiuKXViDOI4mhlUkkBMZ/SlzguIuLSeKjrU7Kl/PIDd\nSQLmy1msl9pQzupuvShcZhPL1vCivmVnzIshAJmXtgmbJtZdlW2hd9B7BcZANiYghaUWczB1t1Wm\nxdEGa5suZ8kjnmFS996BGA4gmcl0cgJx9FD3Ry5MuY7fV33wZeD0FMpd5N1z0CVOGe+bLMgtcRab\npVkk+fecrRVyiW40RoR2bTFzfRoZj0iHUHcObebUaL6rOMO6IofZTCoUG9o8JLoUqGpnwNaAgH9/\nAfTZuxkCAxCwwEHWPnjqRrPH6GWwgYRMY7Kerpf22qiS9NPMNd7OOhik2/qpHgmCy3e6HC0AdDt0\nD47ibRWI64psTOhYExrIrTTVvy63s1RzjDZe1lrjdXy4uL3g0wz3BtSL/KImoUcAZjr7IKN5hWYp\nQHXHtrTQVN2VmaGWijShevcQtiTF4YKg28DV/1dCIK/neL6qcLrIHAVlG+7cDmBBh2Vp+Gc36wGc\nnbyzAGN8BHHP8TPS5RQukdxIReUde3S8/TfWe9vxPLZiMJdl4zedJRIqPzLzCSMgG5tjw1A7h+p+\nAJfromoN9f7vQ33tPdRf11kSU7AZuAZdvcBZDTgmJ7gg1PRHIk2+EElAi/gwPvIBiAdV3eFVwDK7\nAMpudYbbpBC7AqQA3Y9cchNK0WLaaPhLEeseotXD27VReXeWoNhURuh2V1i2HCs9rwGszPfDfa5n\nHqhNFFGvNNgv9PyX7a+YHuvGqly0ugtXuSEQKABRdN+ohqzqhWf+RoKodh6KRUcFHONAGW9XPlyp\nn9fxHYlbDT5bA4U6uK9Csw+UczPocKmt2YQUShna6BYtl+VPZGwJBC8b3Bx9TkoYveEJDrIlTspq\nq68D2F4AqVtvWhcDQH+5b9jlmvr/sR6ScDK51hkd/r8uubhEjbbh152h/9YEIHe41b32Ll0b+w/o\nPRuyMoCW2a8WWr+Lej9qWUEtKwLBXGeYeeGXTVvCBZ2mIR8BfwHgjBhX2DG8al6sNJbfbhZpyS4V\nam11/u0YmzE4JPEGo3jbndMFj10A1VzU3WAtwklptemYVcwmimnY380g0xs+lwUIoH3Itzk75mR5\nmdygKP1jIwIOAVCtSiDsQ7qU7SqnDaIjp7T1+q8ghFIfRuHgj33cXvAJtPsodH1b735EZnsEXTnG\n3R5dIpfptGsIj2OrlKTp0oZ+C7SWVwBs3/ilc7M+/jowe4Y7Rw+R7C219H3ukQ2aopzNklqbJ73b\nTOcBVfeL2Vw0Vb0Czs7aTz5KIfbuG/IAAF+Kpa3M0Xi++afjhuoCz5bqRCMD45JeGvYtVbvUbpX3\n3qFy4oAWK2/+h0GnQcl2vYiamQ6rQBTrAMsaSHRC4PViHIChP2bblGYNOPl6jnp92foZcbDHzgcr\nACBWV39wbEpJxuKjOsOkmLeCyXbmm5lSsqtaAVj2pDsXNLqhOrcFTJx9ABh2j6x1QVF4tg+L+gp5\nfY06KK1GoRasNfciZymcPfePoLpj5PUF8voaT5fxzsyt3pRGEsm7H3UYuSx+D8Ma/NgOm35Px60F\nHwUF1bL7oRvNTp+bqWyAFrAPG42F1gCQppby70zpYe4v6sopvYkkIb2q6efRu/cO+tkdqCwzxAim\nam8t1Ng2DWuWkQDbyzDP19cHs8Z5s/RLM/QirnTpi8OUUliK5UUAxNctSg0ANfXqbrrGgJ2Gp0/O\nIQBkY+CtHwKG79lj2TFn4vZ7mPYN2MXftb3g4F6aoS+zsnKHFDLMceghSgAGdHjR35WRuq6prrHe\naH0FpJQVC6Ww2lwbb6liQ19xzmwAFvbse/eKGQCtV8iyMao4tPNIQZN9dnNfqBdZI0QOzj5CIdFz\n7o2m7QONMRRkMhfQDFMtYsgogYy10giTclrcg6mfRRbm7jl715GlrHYAENA69vU6XnHcXvBRaz2w\n6SyyoGa2Wej0l3HXjXjjDAQa9X2nts8Oqea5TWkQfo288GYSVO70X770BRrcHA4gOyP0+0d2UXfE\nOVmYE9kAQmZUzopSREG0NS/ker64Za6ISxJ1CTx9H+rxB1askYdOY/1/R75EDk9QozCllFqV2y6T\nbrRdRwYgB3S2+ib6+nrReAzTfvl9xNHDnYfhAo9rrMagA6AVeLzDadKfMaHsh034Gr0ky14MMIrn\nRqHcnI5T5rvIQzO3taoDrNIAwBXWCW0+3Nfi40tiv2fpSiap63MakOY+ynAAOThEf3BsWX/OeTVL\nn+1D2EutTeiSYjam+e8BZT0x1PpJKVFsNrpkXHizYDwD535f2T34qhC4yEMz/7SfYicAmfuxKY7q\nlJJNmbStH/QtBikcvBpvoD8OcWvBZ4PN1k4fgFnotvxFOJwyWVPWnRd/r3bspO27Si1s/wuQHhba\negO5/gKUlck6VF6QR008g+LdNbBNWNC/U/q1RUWZlowz9LTDaLFZmoFOwCnzbHT/ZX5GDLHHT1F9\n9RKbZYVQqwiITmQVEAACxc7IZF2sPcdEgV1Eg53h9Ilagad5rVsyI9egzAUX97M3c0YN4OH5LoAW\ns2JDumjLmrIP14IcYF08XXLjgcpYk0ZAtGlmU7rAY2wuegBQGB8du9AXhiLNShUdGWBZbzApJQCy\nUWfgaQYDjxEvdSWfHAUAUdbAdAZ1Z4aofwTZ3bd/M5syYteJwfH2hiKAZ6cwKaUBAbdvxde7KXrq\nBjvo8uvm67n3mbnA15EKk8Jmn7a06MtG8fOaAATgdRb0EcbtBR+1QV5fQwbkuFirEmnYN4sj7Xyc\nL0SzN6Nja44jSr0b2G3EezpU6znWNX3hXdpqV44RZWPPNXVLnLMZZU2GWYMbHnfD4p6GfaQh+cd4\nPi2cRV2+C/XkKdSjM9RP5lifr7BZ1iTimdryj+hEEEd3SMOsf6TVBCZ4sljjjWyCYr2kXXfUh4zb\nB/da/WEcDTBT+89bhgSbemHOuXNfIV/PsVidAoD32UsRQ4axbxQX0mPGaPq5rCGDGKO40DRlC0Ad\nqUzGouoVecVMZ76ZHeC5qaZhH8O4wEE2AbAx9GlXay2LDqlkFS0xigtk2ifKHRQ2z5NLUyZMAjqu\ncaI84MG7X/YApzXOn+k+0spkAi5gAYB6e5tGX28K0yNjsIS0PSMZxOQgqm1FAOqvDuPCU7pobgw8\n64Y1zctE0R56ch9dSRuo4858q+fp9h+942wBIOMOy6GzoNfx6uPWgk+1Dlp3VWnYN/4yXgbSonzw\nUtEZaR2zJda6ru2ypNzI5Ap3u1qXihvI0I1Z/rKnthQnhgPv+bTDltsUboe9xf0l1fBbEUpBzZ5C\nNnx0UBRQzy+x/tITbC5zrM9XKKcbVLlEuKyNwUVQAAAKAUlEQVQQOuCDwz2asdm7j1VYY5qf4otX\nMU4XCZ4Y/6EpxgmpFTTD2Bo3BgpVvbJioxrERWdEemhuMEi7I1gyRj24Q83s/NobzH0jo88+DB2N\nL8erRyLRgq72WN0+SRLOAVxpC3DAnUiVgso1ar6grDUvoUaAmAHAmXFTBYBIl0Oz+K4959UVUF/Q\n56ABtd8/Qhr3IYMrZJJKYQw6bhktjY9IiWGzNI3+VPYIeC4eAe99A/Xvv0ubhze2RVxdzTOcPyPP\nI76+swXZV5xO9eWVwFt+/4pVKtz+1N2eBZ4k6FgvH9A9GYEy7AwDSjUqq54OwJA2+PqY0L3TTGbI\nOodGiLdNEqepXMHZfSsAuWW4VxRig49KWPRjEbcWfGoFPF3G2nqaShwuE4ZnAXhI8lsJYvA8M43U\nYhPgIo8xKSQe6c101/kEDlIAKPBG9gyIYQGoLoFkAkxnVn+qEYq9b3iH3QZC0mn4u8GiqM8vbZbF\n/aW8xPp06gHPcipRFwGy8xzhXkqL2KgDcfcY4ugh5utLXKyu8IeXGb5wGeLRTODBQGA/CXC3G+rp\nfFp43Jp8JjfUOHcAyJvvcI57tblG1j+yBI0qt+DrnG89uINvLt7XYO/LDiXBBgeZ7QHwexoAAmWF\nnsAoDz3mC0SdPSAF0pDYjKeLQD9Oz95oZW81IT8ZTOZQaWGp3UNdSmx+Jo6lM3+uYjiAOphADg4x\nHJ6Y7KAn90nrbnFOWQkAZANk2RgyGiMUEmtVkyvqxSOor/5zrL/0BIvPX0BGG0RvziHv9i0INe8Z\ngEpw2ulzfTpF/WSO4mmpJZe0T85bP2REU4v1EtdVYfpTbllSBrEWUv2C+Z2X6+6yQQd85icHk1yS\nBJifQTpEHg7OXDzlCh1tAMQ/GwB6Pe/zHYlbCz7lRuB0QYvRSacC19g5ZBhrJpzNEF560jlKPcbR\n6ZIA53kOXBQCj2YCs0mCNKsRJ1Q+6EQKFxmwrBOshhXe6jvCiOXKyNUYTSr9RTSgw0oEbBedJlaK\nXx8T/593p+yHg6fvkyfOB7SIui6g1mDLAk8+D1EVAVZz0noWnQjiE/chjh5iUj/D08UCX7rq4vfO\nBb74jS7Onnbx7HiBw+MlLgoCIVbV5oFYS4+98gHIHSx0Bi4X1QSIDy0AVblvWucAzx9eZrgqAs9K\ngt4zQiYLjBJriMbXiEtCnAWZ5vzq1KhHI5+iv3cfAHDcucKyFvY8uOc2W9D1XFY00AqQxAxvEhrR\n/DyNKd5sQYxHnRz1udS1uLKMuuns/2/v3kLsqu44jn9/nUmTOjUxmpDEROqFKigWtBoEpWi1mqai\nVSz64IP4IF6olQoSzYuPXh6UaiEWCbXU1ktUFEuMlxYK4gUviZfEyxhtnBibTKVxkMEY/fuw1mT2\nmZ6TmcxM987e5/eBTfZZ+5wz65+9Z/5n77XPf6XjYvZOYu4uZsyaQ2/fIenT/s5P4F+b+XrjAF+u\n38FnA+m4PnBomL7BYWYc/RU9h85Jx0vx2IKUQD/9L7sHhvhqyxDDQ70MDabjauEB25l1QKpRqKOW\nsjt2tSSekeP+0L7vsPB7oq93bqrkkfvabqqOtD6BQf6ROniFIqx7PnwUbp2PkbNl8phqT5r+Y+Rm\nhrEJaM8U4G3GgWz6aCIzTjeRpB2kuS7KMA8YHPdZ9dLEmMBx1UmZMf0gIuZP5Q0kPUXq80QMRsSy\nqfy8/V3XJp8ySXplb1Pi1lETYwLHVSdNjKmbjF+R0szMbJo5+ZiZWemcfMrxh6o78H/QxJjAcdVJ\nE2PqGh7zMTOz0vnMx8zMSufkY2ZmpXPymSaSrpcUkuYV2m6U1C/pXUnnFNp/LOnNvO13UipwJWmm\npAdz+0uSDi8/kj19vF3SO5LekPSYpIMK22obVyeSluV4+iWtqLo/45F0mKR/SNoo6W1Jv8ntB0t6\nRtL7+d+5hdfs036riqQeSa9LejI/rn1M1kZEeJniAhwGrCN9aXVebjsW2ADMBI4APgB68raXgVNI\nhXPXAj/P7VcDq/L6JcCDFcZ0NtCb128Fbm1CXB1i7clxHAl8N8d3bNX9GqfPi4AT8/qBwHt539wG\nrMjtK6ay3yqM7bfAX4An8+Pax+Tlfxef+UyPO4AbaC1TdT7wQER8GREfAv3AUkmLgNkR8WKk35I/\nAb8svOa+vL4GOLOqT2wR8XTEnpnmXgRyYZd6x9XBUqA/IjZHxC7gAVKf91sRsS0iXsvrQ8AmYDGt\n/9f30boP9nW/lU7SEuAXwL2F5lrHZO05+UyRpPOBrRGxYcymxcDHhccDuW1xXh/b3vKa/Id/J3AI\n1buc9OkRmhXXiE4x1UK+jHkC8BKwICK25U2fAgvy+mT2WxXuJH2QK84CV/eYrI2uLSy6LyQ9Cyxs\ns2klcBPpElXt7C2uiHg8P2clsBu4v8y+2cRI+j7wCHBdRHxePKGMiJBUm+9SSDoX2B4Rr0o6vd1z\n6haTdebkMwERcVa7dknHk641b8i/9EuA1yQtBbaSxoJGLMltWxm9hFVsp/CaAUm9wBzgP9MXSatO\ncY2QdBlwLnBmvnxR7OOI/S6uSegU035N0gxS4rk/Ih7Nzf+WtCgituXLT9tz+2T2W9lOBc6TtByY\nBcyW9GfqHZN1UvWgU5MW4CNGbzg4jtbB0M10HgxdntuvoXVg/qEKY1kGbATmj2mvdVwdYu3NcRzB\n6A0Hx1Xdr3H6LNJYxp1j2m+ndXD+tsnut4rjO53RGw4aEZOXMfu46g40aSkmn/x4JekOnHcp3G0D\nnAS8lbfdzWiliVnAw6SB05eBIyuMpZ90PX19XlY1Ia69xLucdMfYB6TLjpX3aZz+nka6weWNwj5a\nThpLew54H3gWOHiy+63i+IrJpxExeWldXF7HzMxK57vdzMysdE4+ZmZWOicfMzMrnZOPmZmVzsnH\nzMxK5+RjjSTpWkmbJE17ZQZJv8qVpL+RdNJ0v79ZN3CFA2uqq4GzIqJY4wtJvTFaMHWy3gIuBO6Z\n4vuYdS0nH2scSatI0yOslbSaVM7nqNy2RdKlwC2kLzLOBH4fEffkStt3AT8jfcF2F7A6ItYU3z8i\nNuWfU05AZg3k5GONExFXSloGnBERg5JuJs39clpEDEu6AtgZESdLmgk8L+lpUmXoY/JzF5DKC62u\nJgqzZnPysW7xREQM5/WzgR9Juig/ngP8EPgJ8NeI+Br4RNLfK+inWVdw8rFu8UVhXcCvI2Jd8Qm5\nmrKZlcB3u1k3WgdclackQNLRkvqAfwIXS+rJpfvPqLKTZk3mMx/rRvcCh5PmXhKwgzTN8mPAT0lj\nPVuAF9q9WNIFpBsT5gN/k7Q+Is4pod9mjeGq1mYdSPojqaz/mvGea2b7xpfdzMysdD7zMTOz0vnM\nx8zMSufkY2ZmpXPyMTOz0jn5mJlZ6Zx8zMysdN8CmkvbM1neOKkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, let us try some more window functions." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag=25,window = 'hamming',scale='biased')" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'hamming'" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXu4fVdZ3/t5123/8iMJYIIRgxaoadXa2lIkrW0Fi9hA\nxdRqLeKV6kPpI7b29CLW46Xa9oSjT4+0ojRFBKotUioaa1TQ53DRiicBKQqKplwk4WawkIRk770u\n7/ljzDHnmGOOMeeYa8619m18n+f3/Naa97X23t/v+37fd4whqkpGRkZGxsXC5KQfICMjIyNj/8jk\nn5GRkXEBkck/IyMj4wIik39GRkbGBUQm/4yMjIwLiEz+GRkZGRcQmfwzziVE5DNF5AERmZ7gM/yi\niHzjlud+n4j85NjPlJFhkcn/AkBEDkTkx0Xk/SJyv4i8XUSe7ux/iohsCrJ8QETuFpFXi8gXtFzz\nsSKiIjLztr9cRP7VLj9PClT1D1X1SlVdn+AzPF1VX3FS98/IaEMm/4uBGfAB4MnAw4H/E3i1iDzW\nOeaDqnolcBXwl4DfA94sIk/d76NmZGTsA5n8LwBU9ZOq+n2q+j5V3ajqfwfeC/zFwLGqqner6vcA\nLwVeOOTeIvJfReTDIvIJEXmTiPwZZ9/LReRHC3vkARH5dRH5NBH5YRH53yLyeyLyF5zj3yci/0xE\n3iEinyyymeuK8+8XkV8RkUcWx9YyExF5g4j8QHGP+0XkdSJyrXPtbygyo4+JyHcX9/qSwOd5nIh8\nXEQmxfv/KCIfdfb/JxH5duee31K8/iYR+TUR+aHis73Xy74eJyJvLJ7t9cC13n2/XETeWdz7DSLy\nOcX254jIzzvH/YGI/Ffn/QdE5M9v8aPLOOfI5H8BISLXAX8KeGfHoT8DPEFEHjbgdr8I3AB8KvA2\n4Ke8/V+NyUSuBY6A3yiOuxZ4DfBvveO/Enha8fzPLK7/L4BHYX6f/2HLszwbeE7xLAvgnwKIyOcC\nPwp8LfBoTHZ0fegCqvpe4D7AitIXAQ9YMsZkV2+M3P9G4N3FZ/u/gR8XESn2/WfgrcW+HwDKWoGI\n/CngvwDfXnzO24GfF5FFca+/JiITEfn04nP95eK8xwNXAu9o+U4yLigy+V8wiMgcQ8CvUNXf6zj8\ng4AAj2g55t4iGv24iHwcQ7AlVPVlqnq/qh4B3wd8vog83Dnktar6VlU9BF4LHKrqKwuv/qepSNbi\n36vqR1T1HuDNwG+q6m855/vHu/gJVf19VX0IeDVgI+KvAn5eVX9NVY+B7wHaJr16I/BkEfm04v1r\nivePA64G/mfkvPer6n8sPtsrMEJznYh8JvAFwHer6pGqvgn4eee8vwv8gqq+XlWXwA8BVwBfqKrv\nAe4vPssXAb8MfFBEPhsjRG9W1U3LZ8m4oJh1H5JxXlBYFf8JOAaen3DK9RgS/HjLMdeq6sq5x8ud\n11PgXwN/BxOxWhK6FvhE8fojzrUeCry/0rtf3+NdfNh5/aBz7KdjaiIAqOqDIvKxluu8Efhy4G7g\nTcAbgK8HDmkn2/L+xT0onuFa4H+r6iedY98PfIbzfO93zt2IyAeospM3Ak8BPqt4/XEM8f9l4llI\nxgVHjvwvCAp74ceB64CvLCLILnwF8DaPlPrg2cDNwJdgrJTH2sfZ8nq7woeAx9g3InIFcE3L8W8E\n/hqGcN8I/BrwV2i3fLru/0jPXvtM5/UHgT/hPJ9ghOEe53meUjzTG4t/Tx7wPBkXAJn8Lw5+DPgc\n4JmF7RGEGFwvIt8LfAvGT98WV2F8/I8Bl4F/M+Bau8RrgGeKyBcWPvr30SJQqvoHmCzj64A3qup9\nmAzkK9mCbFX1/cCdwL8UkYWI/FVMPcPi1cDfFJGnFrbdP8F8r/+j2P9G4IuBK1T1bowddhNGwH6r\n7/NkXAxk8r8AEJE/Afx9jC/8Yan6+b/WOezTReQB4AHgDuDPAk9R1dcNuPUrMXbFPcC7gLcMuNbO\noKrvBL4NeBUmCn8A+CiGYGN4I/AxVf2A814wxept8GxMQfiPge/FfHf2+d6NEZp/D9yLEYZnFvUJ\nVPX3i2d+c/H+PuA9wK+f5DiHjNMNyYu5ZGTUISJXYnzzG4runoyMc4cc+WdkACLyTBG5XPjuPwT8\nNvC+k32qjIzdIZN/RobBzZjC6gcx4xKepTktzjjHyLZPRkZGxgVEjvwzMjIyTgFE5CYRebeI3CUi\nLwjsf6SIvLaY3uT/E5HPc/b9IxH5nWIKkG9Put95ivwvHVylD7v8qPEuuKdudJXT1vYeh+zr9+X8\n/FpmnFL88cffe6+qDiKMPyvX6AOkDJmB93H/L6vqTaF9xYDI38dMXXI3puPua1T1Xc4xPwg8oKr/\nshjB/WJVfWohAq8CnoQZwPlLwPNU9a625zlXI3wfdvlRPOOLv3+Ua63n+0mKlosTm25+MObHu+8i\nnC7zzAQZu8FPvvbr3999VDseYMn3TZ+UdOw3rX/12pbdTwLuKqbrQERehalDvcs55nOBWwBU9feK\nyQuvw4zf+U1VfbA4943A38bMHxVFtn1OEGeZ+ME8/64/w3o+2ZsQZ2ScIK7HmWIEE/37kwv+Twyp\nIyJPwoz6fgzwO5jJ/a4RkcvAM6imBoniXEX+Y2HXZHPWSd+H+3l2lQ3Yn0nOBDJOE0RgNk+0bddc\nKyJ3OltuVdVbe9zuFuBFIvJ2TCvybwFrVf1dEXkh8Drgk8Dbgc4/xEz+e8Z5I34f9vPtUgSyAGSc\nUdyrqk+M7LuHerT+GKq5m4By5PZzoJzf6b2Ykdyo6o9j5u5CRP4NJnNoRSZ/D7uM+s878bvYZTbg\n/oyyEGScJGQCBweJkf9h6947gBuKacHvAZ6FNz26iDwCeLCY1uNbgDcVgoCIfKqqfrSYHvxvY1bj\na0Umfwe7Iv59kf5qy+ef7ZhA9yEEWQQyzjJUdSUiz8esxzAFXqaq7xSR5xX7X4Ip7L5CRBSzENM3\nO5f4byJyDbAEvlVV26ZhBzL5lzhLxL8tyW97vTHFYVdCkEUg4yQgIumefwdU9XbMKm3utpc4r38D\ns4Jd6Ny/1vd+mfzZDfGPTfpjE/6Qe48lBruoD2QRyMhIw4Un/9NK/CdJ9l0IPdsQQdhFNpDrAhkZ\n7bjQ5D828Q8l/dNM+F0YSxB2KQRZBDLGhggcHJzNv9sLS/6nifh3RfrLg/4/3vnRqvugRAy1i8YW\ngpwNZGRUuHDkf95IfxuCH3K9IeLgft5thSBnAxmnCROBRWqr5ynDhSH/0+LtDyH8sYl+7GfoIwzb\nCkHOBjIyxsHJs8kecBqIfxvSPw1k3weh500RhG3toV1lA5CFICMNIjAfqdVz3zhb7NIDp6Vvvy/p\nDyX8XQ8o60u0/ufpKwYpQrCrInEWgIzzjPNF/nK6pmfoQ/x9Sf+kpopou28K8fYVA/sdnkQ2kOsC\nGV2QibDI3T7nG33INpX0zwrhpyL0fF0k7H4HbUJwktlAFoGM84hM/h3YRbSfSvr7Lihvgy4i7iMI\nqVnBtkIwhghkAchw0WtK51OGUZgiYe1JEZF/V+x/h4g8oetcEflBEfm94vjXFjPa7RV9o/0u4l0e\nzDqJ3y6QknJve0/3374ReobO78H5jG2f035fbd9Zn8/e57uNIS8uk3FeMDjyL9aefDHO2pMicpu7\n9iTwdOCG4t+NwI8BN3ac+3rgO4vZ7l4IfCfwHUOfNxVj2zwppD/Gfba57rZoi6T7jPhNsWhS7KE+\n9YGh2UDOAjLAjvA9m5H/GLZPytqTNwOvVLNa/FtE5BEi8mjgsbFzVfV1zvlvAb5qhGdNQiph7oP0\nk+sHJ1APiN0zRqgpLZ19hGAMW2iICGQByDjLGIP8Q2tP3phwzPWJ5wL8PeCnQzcXkecCzwW4fLlt\nfeQ0jEX8Q0g/1cLog11YFTHiSxWFLjHwr+OfP2Y2sG2BOBeDM84qTn3BV0S+C1gBPxXaX6yBeSvA\nNZ/yeB1yr30Q/7akn/Js+/aiu+7nE2JX8bePGPQVgl1nAzkLuJgYs+ArIjcBL8Is5vJSVb3F2/9w\n4CeBz8Rw9w+p6k8U+/4xZnUvxazv+xxVbV07bAzy71x7suWYedu5IvJNwJcBTy0so53hJIl/W9JP\nJfvlwe4toflRkyhDz9clCDEx2IUQjJ0N5CwgY1sk1k6/FWOJP1NEHgW8W0R+CngU8A+Bz1XVh0Tk\n1ZhlIF/eds8xyL9z7UngNuD5had/I/AJVf2QiPxR7NxCBf858GRVfXCE5wxirMLumKQ/hPCHEP1m\nFr72ZJVQQI3c1xcF//nbxKCvEIQIuq0+sKsCcc4CLhAEpvNRftYptVMFrioWb78S+GOMKwKGy68Q\nkSVwGfhg1w0Hk3/i2pO3A88A7gIepFiBPnZucekfAQ6A15vPyltU9XlDn9fFSRF/X9JvI/wuso8R\neh/0vYYrFl2i0CYGfYUgJRvYlyWUBSAjgGtF5E7n/a2FbQ1p9c8fwQTSHwSuAv6uqm6Ae0Tkh4A/\nBB4CXuc1zAQxiuefsPakYlKWpHOL7Z81xrONgW2Iv0+035f0Y4SaStKLg3EXUQc4PqqeKSWD8D9D\nlxjE7KG+QjC2JdQmAtkGOv8Qgeks2ZG+V1WfOOB2fwN4O/DXgT+JCYzfjAmcbwYeB3wc+K8i8nWq\n+pNtFzv1Bd9dYQyPvw/x94n2Q6S/DeH3JfmU412STz3XnhN6VisIKWLQlRV0CcE22cAYdYGcBWQk\nIKV2+hzgliKYvktE3gt8NvAngPeq6h8BiMjPAF+IKQ5HceHIf9dWTyrxDyH9GOF3kfcYEX+fa1jS\nD50TE4Q2MegSgpA1tC8RaLs+ZAE4rxCB6WKUXpSU2ukfAk8F3iwi1wF/GngPIMBfEpHLGNvnqcCd\ndOBCkf9pIP6xST9Gxl0kPZvthohWq+oZY89wfDSNCkKKGMSEIDUb6LKEdiUCWQAyYkisnf4A8HIR\n+W0M4X+Hqt4L3CsirwHehikA/xZF+3sbLgz5nxXi90k/lfBjRJtC8mPVAI6Ppp33W60mUeL3t/ti\nMJYQdGUDbXWBocXhXAc4ZxBlNh+nCz2hdvpB4Esj534v8L197nchyH+sqQ/GJP4u0ocm8fvkGCLR\nGPmmEvx8i7a15XKSdI+YOIQEwReDWFbQRwhSsoG+ltC2mUDOAjJOGheC/PsgWpjdI/H3Jf0QocaI\nuC+5t/n1fa65XMYjfv/5fTEICQFU35OfEfjF4pgIQDMb6CsCQ+ygLABnHyIwSe/2OVU41+S/8yUX\nBxL/2KQfItcYMQ+xevqee3w0DT5HSBBSrCP/eN8a6soGUiyhfYlAtoEyTgrnlvzHJP5Q1L9L4h9K\n+j7RtpH1bC9Ry/ZC44tBrGZgj40JQWo2sG8RyFlAxknhXJL/mNMbnyTxt5H+NoQfI/pdDPqqI/bz\nGHbfPkKwdPa52cBJi4CfBWQBOFswE7udzZ/ZuSP/k1j6cFviT432U0m/KRZNsh/SFTQ+Qj+r7QTB\nFYK2YrGfDcQsoW1EYOhgsWwDZewT54r8VfpPrTrU7hmb+Mcm/T4dQQeL3RDOwWLD0XGqwPqCUCfx\nvgVrVwjaRADqltA2IjB0nEDOAs4gcsH3/CHV7mnbvwvij5G+H+XHrmURIvpL47llTQTulyYK7kMN\nqx2cJRHIApCxa1xo8h/b7nExNvGnkH5bjcAn+xDR73ItmPkEQjx26YoNh85jtwnC4sBvM91uXEHt\nGEdc2uoC+xaBLABnAyLKbJzpHfaOC03+MQy1e7Yl/j7Rfoz0+xB+iOwvJf5GLJxzjxO56RJwGF5t\n0bt4/TPEs4P+WUGsNpBSF9iVCKQIgL1/RsZYuLDkPzTqd5FSZB5K/KFoP4X0XcL3P3KI6BcdX8ul\naTPK8UXlcB2vvSwWTbHwRaGRJSTVIra3h8YSAX/aiDGKwrkOcLohAtPA38RZwIUl/xi2ifpdtLV0\nQjrxp0b7fUnfJ3yf7EPkHrpOG+YTc40YT12aNgWiIQoRMfBtojDsh48fGLKEukTArQmEWkT3lQVk\nAcgYA5n8B6Kv3WPRNjlbG/GHov0u0ncJv4vsYwS/TTHYPccn7JBAuKLgi0HIMnKFIGwPDS8WuyJg\nawKxcQJjWEFdWUC2gU4ZBCYHJ/0Q2+FCkn8fy6dP1B9CyO4JEXgf4g9F+5ZoY1G+S/ou4TesoADJ\nd1lBKbDXaFg+07owzCdaRfl+hlB8HlcIahaRZw/NZhtniunubMAiNtFclwik1AOGWkHZBsoYCxeS\n/GNoW4s3eHxC1G/R1m+/DfGHov22SD9G+D7ZNzODxmMPgr2eS/i+MLiCEBODWmbQkhE0MY4IbFsP\nGMsKyjZQxlBcOPIfUugdEvVb+CQ+hPi3JX2X0BctQgBwEKkBWNsmBctNswBs9fHIiexd0l9MusXA\nrGdRCUGwmyhSLK63jbYLgRWBWk2gEJGQCAyxgvpmAVkAThgTQXoGjTGIyE3AizARyktV9RZv/z8D\nvrZ4OwM+B3hU8e+nnUMfD3yPqv5w2/0uHPn3QVsXzzZRf8i2iR27LfH7pB+K8mOE7xN9jOBjghCD\ne/yRV+g1ZC7OsdUxXWKQIgTWFrLZQHttIK0u0CYCQ7uC+o4NyHWA8wERmQIvBp4G3A3cISK3qeq7\n7DGq+oPADxbHPxP4x6r6x8AfA3/euc49wGu77pnJv0Bfy6cLNupvmzTNj/p3RfxtpH9QywzqpJ4q\nBn3gXsOSvr2PJf2qGCy1DCEkBm1CUP52J2YD24pA33rAkCwAwgJiz89ZwJ4hIOO0jT8JuEtV3wMg\nIq8CbgbeFTn+a4D/Etj+VOB/qer7u254och/15ZPKOq36LJ7+hC/X9QdQvouGfcRAhezBFFYBa2f\nOOnb/e4+KwZ+ZhATAlsjiGUDY4mARWo9ILUgPCQLyAJwKnGtiLgLq9+qqnat3euBDzj77gZuDF2k\nWKj9JuD5gd3PIiwKDVwo8u+DbSwfi5SoP4Q+xN832o+RfozwfbL3Cf5g2o9cfF08Wlffm732qoX0\n3e31bfWswBcCsM/dzAZ8S6iJpgjYBWjsOIGUeoA/PmCbgnCfLCALwP4gIkjqsHi4V1WfOMJtnwn8\nemH5uM+yAL4c+M6Ui2TyHwljRP0uYlYPtBN/X9KPEf6str1OIgcj2D8HE/OZjzy/H4wwuILgZghV\nBqCN+oGbFVjEsoGQJdRHBGLoawWNlQVkATjzuAf4DOf9Y4ptIcSi+6cDb1PVj6TcMJM/4/v9fdA2\niCvk8fcl/j6kHyJ8n+jjReB0knGj/mANYLIuRcEXhJVD/CEhmE+Ug6l0ZgO+JZQuAsOsoF1lAbE6\nQvnkWQR2A5GxPP87gBtE5HEY0n8W8Ozm7eThwJOBrwtcI1YHCCKTfwJifn+K5ZPS2mkR6gYKDd4a\ng/hDUX6I8OctGQDAVOyDpf8BXPZ+69Za3Nch+ob/XwiCie7rmYEVAvd4v0bgFoubReJ0EahaRNOz\nAKisoNQsYEhHUM4Czh5UdSUizwd+GRNlvExV3ykizyv2v6Q49CuA16nqJ93zReRhmE6hv596z0z+\nPTHmEpGhOXtCg7hcn7+L+EM2T0wEYqQfI/yK6GE6Cf/qTKJLNlbYeMRZmiobQ2ZWHNa6aQjCciM1\ny+hgCrOJeS6bFcwnUssIqhpBMxuwn7evCKTUAyx8Kyg2NqCrI6jP6OAsAHvCBGSkkZCqejtwu7ft\nJd77lwMvD5z7SeCaPvfL5B9AX4Jv8/tdpET90O7zm+3dxN8W7XeRvt1uyL6ITh2yDxH8dDKPfu7G\nsdSPXW9MPDyZmOtacZhSFwQrBtY2csXAzQrs5/aLw6GOoT4iEO4O6t8ZFBsbEBscNpYNlAUgw0Um\n/xHRZfmEEIr6Xfh2T1/iD0X7aaRfEb5L9j7Jt0X6U4n/eq21IixL+mCI34rDerOsCYI9aiqr4hqV\nGPhC4NcI/GzAfN5+IuC2iDYHi4WtoFhXUKgW0GdcwDY2UK4D7AAiyHw8N2CfyOR/Qoit4mXhR/1u\nr37I/4d24nej/b6k7xJ+TQg8ch8j+p8Wv5JrXXnEXxcEKwbrzaqRFcwnysFEGzUCtz6wdF7bArH9\nPrfPBKosIHW94VgtYOwsINtAGT4y+W+JULE3BV2E4Hv9IbvHvG4Wd7cl/i7SL987ZJ+aAbQJgiV8\naI/+fUFw909YRoVgvp7UsgGoRMB+B64llCICzOpzCMXqAbPZitWq3nY6JAvoUwzOApCRgkz+e0K4\nlz9s+fijeP2ov5YVOF090E38oWi/jfRDhL+tDeTDJXxwvf6Y7VNth7oYmHvb7GHtCME6mA3MJpOG\nJQTtIuC2iDKjkQWkWkEuti0GZwE4JRBBEmt+pw2Z/Aeiq9gb8vFjlk9jzV0v6m/6/9V7v32zi/jd\naL8t0g9ZPjEbSFSpRtQW2HQs2usUkqdOu6iKJNg+8zIz8LMCNyOYyiqaDbgFYlcEzLbYrKPKNlaQ\ni9ji8qnF4G3rAHk8QIbFKOSfMBWpFPufATwIfJOqvq3tXBH5O8D3YaYtfZKqunNinAj6dAH1ndrB\nou/8+m6kDyER2NT69tuI37d3atsChF8je5/kV8cdn9TCO262MNcubzYrRcEKQt32KZ6PdVAIrFiE\nsgGgVQT8wnB40ZmmFRTvCgrXAsaygXId4AQwAUZs/94nBpN/ylSkmGHHNxT/bgR+DLix49zfAf42\n8B+GPuM+0Ub67h99W5dPc3WtejTtR/3QFAHb1eN6/Jb4XZsnZPHUtnnZQEn4Ltm7RB+K9LuEoCB8\nAI6d8yczSnGYLUpBsM/vi0FICNqzgbgI2O/MFQE7TqDLCopPHJc+QjjFBsp1gIwhGCPyT5mK9Gbg\nlaqqwFtE5BEi8mjgsbFzVfV3i20jPOLuEVq4pQ/aLB9oev1QEX7I7nEHZ7nEbxEi/obt40T+hvSp\nyN0SekwEAF0ddXxqe17zOJkd4BJ/KQqOIMhsUWYGISFwrSE/G2BCqwjYmoD9/pYbcWyhej3AtYIa\ncwb17AjyVw9rs4FyHeDkIRfc80+ZijR0zPWJ555bdFlDobVzQ1E/VHZPbX6eiTaI31o9vs0Tsngm\nTMOkHyD8GtFvE/1bFFmAumRfXDsoCEUWIMV508msJgR126eeDbj7UkTAwi8Ku9uXm+2yADs6GNJt\noG3qAFkAMizOfMFXRJ4LPBfg8sOuPeGnCSPV/w+Rum/5WPg2T31fvcBr4RJ/uS1A/LVoPxTptxG+\nT/JdBV8fLbaPLwilGNSE4LgmBJPJJfMYrBvZQNkptCEqArCpdQf5ReGYFRTLAuodQemjg1MFAJp1\ngKECALkQHIWMt4zjvjHGU6dMRRo7Zp5wbiuKxRBuBfiUa/5k61zDs+Vm0IIuY6BLCEKPF7J8LELW\nT31/3ee38K0eiBC/b++sjivSb7OA3O0u1gliMLXPGqglOIKg5f3dzKA41hWCwhqaTC4Fs4E2EbDd\nQbDBnbwuZgXV98fbQr0PjG8D+WMCLI6Z1uoA5RU6CsHbCgDkFcLOK8Yg/5SpSG8Dnl94+jcCn1DV\nD4nIHyWcu3PMj1ZJ0zrPj9ejTuwG7VM/+IhZPuW1nCLv3PP9gZrd43v8dnvN5nEtHjfaj5G+S/Yu\nyR9Xg7nS4By/mNevZ4XBi/bLzMDNCtxjioKxzQZ8svdFgIn5XLY7aL6elOMEQlaQQXsW0N4RFC8G\nN2ygjjrAmALgnpsFIAABZhc08k+civR2TJvnXZhWz+e0nQsgIl8B/HvMyvS/ICJvV9W/MfR5U7AL\nku8DfzoHH26037Wuro36feK3aBC/7+13kb59HSN7n/hXiS2ws2nz/MWcUhgWnhi4mYEVAtca8rKB\nFBGw3UFsVoWQhusBNvqPZQHRwWGJYwJcpNQBYoVgvxU0C8DFxiiS1TUVadHl862p5xbbX0vCCvQZ\n9Q6f1FW2SiFwrJ4SXcTvi8B6VZG0S9Y+0ffJAPxjF/PqerOp2W/FYDE3zzAtsgBHCFxryM8G+ohA\nrB4QX8egngU0OoK2tIHs676F4FgnUBaAgRCpstMzhrOZrwzArnz/yWozuN3TR6zY2wW/pz9k9/iE\nX/P4He++JP62aP94WZG1S/jFNl1vKQLuH9VD5hoynTbvZd/b4xeeEBQRv26cbGBGqwgY2wdQoiIQ\nsoJSsoA+NlBMAMqv8gQFAHIheEx0DZYtjnkK8MOYeum9qvrkYvsjgJcCn4f5Jft7qvobbfc7V+Rf\n+tV7xPxonTyffwx+j3/t+jusTzfsHtezt4XdEPG3kb5P+NvaPqFjZ1MUh+gfWldiYDMDNytwMwIn\n4q+JgCMQvghMqLIAlEoQinqAawV1ZQF19LGB2usAFm4heJtW0G0EAMhZwEhIGSxbEPyPAjep6h+K\nyKc6l3gR8Euq+lXFQu6Xu+55rsh/CFKLvhbT5WbrmT37wp3BMxVdUX+jwGtREHyN+F2bx7d4HNKv\nRfgtmYDZ3qMF1BbU3Ai/uK7a2sDayQzsfvf4QDaglvTNxZNEYNsswI4L6LKBDtd+MDBltZKS6FvH\nAwzsBOorAJA7gRCp6lPDkDJY9tnAz6jqHwKo6keLYx8OfBHwTcX2YxrzpjRx7sg/pVjb1/rpc7y7\nbuvYcKdudv8Pd/n0UAuX5PsSvxvph/z+UgQcKylAMK0oji/7qe21ZrNG1K8s40LgZwMhEbBEPAPx\nWkTNd8XoWYArAOFBYfFC8NidQDEBiCHXAXrhWhFx5yi7tWhVh7QBr38KmIvIG4CrgBep6iuBxwF/\nBPyEiHw+8FbgH/nr/Po4d+Q/Fsbs+NmlIOwFfYjfJf0I4euRXwNI+G4W0/K8cjj90coIwmpVCYF9\nBkcISmvIFQGWVTbgioC1g2ytYLZAJjMmMmU+uZScBRj0E4DGLKEJdYDa15jYCbSNAISif4sLLQD9\nCr73quoTB9xtBvxF4KnAFcBviMhbiu1PAL5NVX9TRF4EvAD47q6LnTvsslVzF9c+Op60+v5jIWj5\ndEX9rscPceIPRPqW8Gtk7xB9QwTa4BC/2mvUBMHJDqwYFFG/zqb1GoGtDQCpIhCzgo7XD0WyAHrZ\nQP4soX3swV+BAAAgAElEQVQEoG8nUBaAU4mUwbJ3Ax8rIvpPisibgM8H3gzcraq/WRz3Ggz5t+Jc\nkj90k3TIyunr+7chFu3vOwsI9fZvBVvcLYi/VtB1/fUQ6ReE4pK9LpvfgTaXxCohxeg2e57Mp01B\nKMRADqYmK3AzglA24IrAgrAd5IrA4nKZBVjCX0yvCGYBxnIdbgOZZzNTQlSdPqdfAOCCdAKJmN+l\n4UgZLPtzwI+IyAzzG3sj8P+o6odF5AMi8qdV9d2YzOBddODckv9FhztXfxSpUX8K8a8s4a+ipO8S\nvkv0mkAS9hgpiMWeL5em6HJdEwOOp44QFBlBKBtwRaCsCRQ3dLx/XdXXFwhlAWwOa7WAxXQx2Abq\n2wl0mgQAcidQH6QMllXV3xWRXwLegYkoXqqqv1Nc4tuAnyo6fd5DMZC2Deea/IdaNO75oUzBdvzY\nds9Qr/9qNWmdwqFr/y4Q7PLpCz/ip0n8PulbwvbJXg/r5NIGPTT/SzHntS43yHwSFINmRuBkA9Ah\nAglW0OJylQVArRaw3Bx22kB1MegWgK5OIMgCsHeMOMira7Bs8f4HgR8MnPt2oFc94VyTfxe2HfC1\nragsl5NaoW5XFpA7b39jX8uC6kBa1O96/FBaPTHi90nfJftQ1B/rBnJnT9RlMaf/fFITBFcMZDkt\nMwI5mKIwTAQWl6ssYAYcP1jLAirCB8qsIG4DXTnfMJ8IDyzt9u06gbIAZGyDc0/+fYl6DN9/LFI/\nXAvumrhtk7qlIGoDuZZPHxR2T0n8js3jRvs+6buE7xL9pmvtF+fYyYE9vxIFXR6XYlAJQZERFEJg\ns4GgCAC6APE7pJ2FxtpqAfMEG+jBlf151ltD/UJwhZRFYnYnAC6yAAQgjNXnv3ece/IfiiHWkSsC\nviCsVlJbytHFYeE1+wO7TAAtnZO59UIb4bdF/T7xF7DE70b7PulbwnfJfr32o952rB80/0+nWorC\n5KASA18IgEY2wHHADtomC4CyFjCZzhs2kNsNdHmWVge4mmYnUPuI4KYAuNhWAFJmA20TABfnVgDO\nKC4E+bcReB/rJ8X3T0EsM7A10K7HWW4kOn9/DJ12jwu/vTMFRTRdK+pGiD9G+qvjpgBsVtW2SUAs\nVwizhdm+frASg5AQuNmA7R4SCGcCIRGAeBZw6SooxCBkA7XVAe5bxn5v+haCm6OBga0zAIvU6aBD\n8M89d51AeWK384UU6ycmKNsUfaF/r//ROp4BrHXTMHhsIbL+YIER4CnWjxP1h+BaPRAmfkv6LuG7\nRA+wWnoq6Awgnrm1k5WUwmDFICgERT0AHBGwdhCVwdagXNcK8rMAMB1Bh/dHbSDz4SjrAHBYGxV8\n9dxMEU3QlhsmALC9BdRnPYBU+8ciZwEnjwtD/kOi/66unxBi0X2o6Av9FnUpr1UsKDIb0wYKIVbo\nhdLr9+0eMB6/Ljc1m8cnfZfwfbL3xaD2SKtiGgObDRTCMJtvSjHwhWDCqlMEkqwgiwVw/GDcBiq6\ngezIYFsHMO+XsDmqTwsxXzObTPikL3p7EAAfKQLgI9X+scgCcLK4MOQP/fz7PoXfNutnW9+/D1Yb\nwXec1ptVM9LvvFAgE+gzC2cBa/e0EX+I9OvbEmsAS2E2r77D49XUCMIyIARrrWUDrgiAVxPwReDy\nFeaYBciDh/VawBXFzQsbyO8G8usA5ajg4n2zE4i9C8ASkqaD3rYDKCYcZ14Asu1z9rFN22cf68dH\nV0eQLfoWrnRnp8/ResLBZOS20di8+16Hjxv1uz6/RYz4fdL3CX8dqAGEsD4WpotKAMoVgD0hWOHU\nCI6aImALwxZ1K+ihWhbQeLLFCg4uw6o4J1AHYDIvRwW700IspgvOkwDEcG4F4IziwpH/tt07Q60f\n1/f3rR+7Hyj/eP3L12c+CPv9R5v69g1rpsyj78s57ncAG/W7xV3X348Rv0v46xbbx8d6JUyLLMoV\ng6pDchIVgUkxlLcsDC9nQStocrXz+R46bNpAPBiuAxTvfQFwO4HCraD7FQAguB6ARaoA9LV/4AwL\ngEj1Mz9jOJtPPRAxAfBJfR/WT2xbF6zf74vA0rOA/EJvsPBr4YuBu3Ri+bB9F2Ovd/RsVhIk/hjp\nrxvk13KfJUwLUbViUApBYQ8FRWCtTIssoDavgwMBNvcdNcYG1GwgaK8DeAJQnxCOshV0VwIA1OYC\nAqLrAQwdA9DX/oEzLABnFBeS/LdFSDSGWD8w3PcPtX0erSdcdn6yJuKP/KiLJQ7HQMjysbB2j0v8\nfrRvSd8l/NWy33ezWgqzuSXHuhAApQhYS8iKAIuiVdS3gpwsYHLlot4RVJC+Xr5U7wa60llEyRWA\nQhDCI4IZLADHZUBg710XgNB00O56AMCoLaAXQgBETNB0BpHJvwOx6H8M6wdoRPxHx5Pqj9bz/SG8\nopcdEVqL+L12z7WuSsvHiMF4q5A1unwcy2e9lkb/foz4Y6R/dLSdOPpCUBMBbKBsMoHNamPqAwtq\nVpCbBWw4jttAbh3ggQebhWAcunZaQccUgEVRu7b6e2lKLwEABreA+rhQFtAZw4Ul/1Trp8+1hlo/\n0N3yeVzubvr+ftHX7/hxLR8VceyIBawKc37ETMBFW9um7+1b4vdJv28WUEdVTA1lAismzIhnAZOr\n6tFdzQYqtpV1gCsuVQdeQdn501cADqb1IvBqE/oOzbbDNVya1u0fnz/N71wlANW2bgGwGKsA3CUa\nZ0cApPibOXs4m089ElKLv27036fwa62fWPQPlvTXW1k/Id//aFPPAjasyxGm9n1Z9HWIXmYHqPX7\nZ4tqhK9dEL0FMp+2zsVvsVpOaiJQ8/mXk2C07xP+8VEKITR/JkdHysGBO5NmXQRmVN1BoSxgA6UN\nNLnKXKHKxw5rMbjCKALQ6AKaW/Ku43AtTjdY3P+3TQXmd605CtjuD40B2EUB+PwIwNnE+SL/kcY6\nbTvbJ/Rb2D2l6ydk/UB9krelExGWKxy2+P61om9Kx0+xClb5us/i6wG4LZ2+3QNN4vcJf9mSAczn\n4h3fvLYvAlB1CFkryM0CfBvICIFfBzisjwdgNwJwFOjyevgCPnHckJ9oAdiP+u221A6gMQvAXTj1\n00Fkz//0oA/5wnatnymF39Ac/10DviC96yc2yZtr/ax1A471E/X9bQbgWj7TGbX5FEbG+lhqdo9v\n9fjE30b4LprHhYXAFQG3SwioCYAdJDZbK/NIHaBeCH5oawGYOl1A6/WqFICpTGpTQYTmAro0HacF\nFPp3AFl0RfIhpJ5zEbIAEbkJeBEmvXupqt7i7X8KZjWv9xabfkZVv7/Y9z7gfkxKt0pZK/jckT/0\nF4AQUts+hxZ+/X0+lhu4FNxj97tRf0GgAevHkn7U9y8/kJMJLOal5SPTYglEMG2OiQN7+iCV+I8T\nC8CLA/HOtd956Oc1wc8CNpb4bRaAqQNMr44UgotZ33oLwGQWHAfgjgR2p4KoTQmBKfgfTGtyUqB/\nCyj07wDatf1zESAiU+DFwNMwa/XeISK3qaq/HOObVfXLIpf5YlW9N/We55L8oZ8AbFP8bYv+21b4\n8qN/IDjXDwCLDZemzdG+Lty6st/1c7Q2RDGFckDRlFnY958tihkuV/UMwO31d17Lwaw2lbNZQWv8\nyKyN+I9a/P+Dg0nt2LoQxERgQj1TIGwD3WcKwZPyiAL3H9NLADar1nEAU5mVawKY2o2ZDM4IfiUA\ny437HcVbQMvvJtIBZL6n3RaAt7V/4LRG/6MVfJ8E3KWq7wEQkVcBN5OwFu+2OLfkD+MIQO2YHUf/\n2xR+3YU/rAV0tDYkZt+vA9ZPJQaTerTviIHBsl70dV7b1bHKhdTLydLSu4V8vz/m86eSfvwYW8w0\nIlDVBvz72/bQsA3k1gHgeDsBcOeCseMAZosymXDnAnIng7OzgV45X8NyihWA5mjvqgMIqhZQdznI\n8vZOBxCMVwBuQ+i4C2L/XCsidzrvb1XVW4vX1wMfcPbdjVmg3ccXisg7MIu8/1NVfWexXYFfEZE1\n8B+c60ZxrskfhltAbfbPrqJ/SCv8+j3//iyfy2Kd2MuzetdP0PoprAdWR2Hrp6XoKwfT2jz+Mp+g\nXatyJWBZCkGY+FNbP2dzcc7zfxfSsoBRBeCBB5sDwQ7vr80FZAXA/tzQYiW2CbBZOYQfHwNQtQV3\ndwDBOAVgi120f1qcKgGQSTWFRzfuTfHiW/A24DNV9QEReQbws8ANxb6/qqr3iMinAq8Xkd9T1Te1\nXWy8kT7nAEN8x9RU1rV13D88u2+1krr103atjYnijtZS8/5XGymif4O1Vs9m55ff2FWmoJa2lr/I\nbipbRKq1eWxm9bjBeN7O+x5LYaaSeBfxHx1pcEDYaqlOQXnD0dGG4yPl+EgdgdnUis6rpbJeTkw3\n0rEZlGZHKG9WZuDaei1sjmDzwHE1i+lhsaCNnfDuaFVf/cy+fuBB0067Oqa2bnLxv6gyYcqEKdPJ\nnKmYgrB5P+NgajK7g0IEDqZq3hf/gwkOLk3NiN9LUzXvZ/a9sX9msw2Lg3rGOZ9vakLgvrYBjB3H\nYgMrGwS5gZIbGPkZ87bddBZDa3qnEPcAn+G8f0yxrYSq3qeqDxSvbwfmInJt8f6e4v+PAq/F2Eit\nOPeRP+wv+rfH7Sv692f6rDz/ZuF3vVkVNs+cta7KLKDs+rG2g9v1E7J+rGVxvKzWzi1E0/f9JwfA\nkZlOufX7nUuvAVwx4g+9Boqunuo8mwn4dYH6uroWaRmAHGxwi8A6XwfHAeh67S0MQ0H4VAXgoh7g\nt4DGOoC2KQBbZy7V/7fv29YAsOizBnDjmLNW/B2v1fMO4AYReRyG9J8FPLt+K/k04COqqiLyJMwP\n/WMi8jBgoqr3F6+/FPj+rhteCPKHdAEYsmZvKlK8/5S2T3+mTzDEX9UBTNtnV+FXRRCX8K31Y8XA\nsX7kGNP141o/i2mr7z9baEGLm4I4XWx6Td4WQtf0D3a/KwK+AFQF4Q2Lg4knMAkCcF+9C2hz/zET\nFqUAyEFFeuVcQOXC3w9W00FPZjUbzm0BHVIA9sfg2T8Ff3tsABgMt398DO3+OVX2z0Co6kpEng/8\nMkaFX6aq7xSR5xX7XwJ8FfAPRGQFPAQ8qxCC64DXipShw39W1V/quueFIf+hOIno3+/8AcaP/gsf\n2Y3+ZXaAWuK3o32diL/s+pkZojKLnhQ1hMO6COyiJbT2eR3idwm7mtOneezBgZtpVJ7/UAGYHNXH\nAdg6iPmOnPxnNjWzgbozpk6Pox1Affz/1WbaKACnjgCG+AAwu21f7Z9nBjLe9A6FlXO7t+0lzusf\nAX4kcN57gM/ve78LRf5nLfpP6fyJzfM/avQ/nRVTFTuFXxu1rla1rh+7MLoeFncvrB8WcJwwP3+X\nBRSb8M0/J3QNKwi+CFQFYfd3o78A2KUi7R51f9cWlRDYdtlgB1AR8bsdQDKZlctBFo/GxhkQ5s4B\n5I8AXm4ksBDQsP5/aG//LI8fMPr3Ikb/+8aFIn8Y5v+f1ugfqs6frkFfSdH/8Soe/a/MAia6IBj9\nl9HupYIAna6fasDUBJwpHszo2oK8OiycvvUBF5boLewoX98GAmoZQP25mgJgh0ys1+ItDlMdJ8fr\nahTwzBk5bYvonv9viLnKBmQyMy3lxc8qxf9f1hb3qT53F1eGJoCDcPuni5Ma/XuyOLvTO4xSMheR\nm0Tk3SJyl4i8ILBfROTfFfvfISJP6DpXRD5FRF4vIn9Q/P/IMZ41FbFfurYUNXSO3WajEzdCinX+\nLJeTsvMnFaHOn6O11Dp/jtaTsvNnvVk2On/UprCTWfULPVuY99OZIf/ZtIpSnddyMIWFWflKLk0L\n28d0/UwOTFTsYjZXpgutTbHsYnEwYR6wboYiJhxuN5AtAi+XWusCil+z2QEE1DuAnCUvWa3KsRK6\ndrqAjpe1jh9dHdW6gWznz4QpU5kZIcAMDJuK+b4PJsrBdMNsUu/+cdd86Or+cbE4WJ/67p9z2Pmz\nFwz+1pxhyU8HPhf4GhH5XO+wp2P6UW8Angv8WMK5LwB+VVVvAH61eD8KUtPElKgj1r3Q5WO63RKu\nCPjRlG39XK0mHB1POFybyO1wZQlfzPu1O91zJQLW/jna2PcT1ptVSfxrXZUtnxvWRgAKwpfZQeVn\nzhY1AZCpKwKzsvNHDqZl26dcmpUiYC6h5QIq5n+trb0Lxorx/fpFUai1UXkIIY8/hnrrZ9g6cruA\nrAD0aQHVo1V9IfulKwArIwBF+6eu11UrqG3/hML/P2q0fwK92z/BEPy27Z/m57AuxWFxsC5FoGvR\noiHEnmq/npgAuAFT179ThjG+sXJYsqoeA3ZYsoubgVeqwVuAR4jIozvOvRl4RfH6FcDfGuFZSwzx\nCX1idwVg2+jfEryFjf59hATAhRv9W+K30b+1f9a6Yb1ZldH/Wlfhvv/ZwgiAjf6hIvzF3AhAIPoH\nkqJ/i+lMmc43AdIPR//2ONu9sy1iAmDHE7jjAKp93QIAsDmiFACg6v+H9v5/KwBe3z8bs01UHcL3\n/i/tH8ro3xK/FQFXALpgBcBG/xZuduBmAbHo38Uue/8z+mGMbzs0LPn6xGPazr1OVT9UvP4wcF3o\n5iLyXBG5U0TuPDq6b7tP0IJdDvyy0b9v//iZgBv9h+BH/24R2IqAXQhk6dhALuFbIfCjf/OghQ3k\nRf9A9boj+rf7uqL/2Vxao/9dwa81uAPKrP2TilHtH4jaP0DQ/rHRvxWCMewfOLnBX6c++j+jOH25\nSABFL2swbCzmsLgV4JpHPr5XJXBI989pL/66c/6A7f+vipVrNX3iZQuhUp/zx073sDEtirqimgJi\nUWQ6KzNgqSz+YvrZ7fAiKaceNn3/bufPCmozRhvvv97zbwTAPPNyqYUATDg62pSF34MDKYl7SDE4\nBjsGwCK1+4dC0NRp/5T5oiqIL6ZV+6dt+bxial4v5tViOvY756AQg4Wxf2RaK/7asQBrVmXR92gj\n5VQfUP1OhLp//MnfwI3wdzv4KwWnufirstvAZFcYQyo7hyW3HNN27kcKa4ji/4+O8KyjYhf2D5xc\n8df9f9virxzMgsVfG/279o8f/bv2j2/puPaP9f5D9k8f7z+GkIAMjf6BMvoHqugfSsunEf1DtPgL\n9Cr+QrMG4CIU/TeO8ewfu63xXZ2g/ZOj/3SMEfl3DksGbgOeX0xTeiPwCVX9kIj8Ucu5twHfCNxS\n/P9zIzxrA/vo/e+z3COYPyg3qrKwC76U6FjtC0x7p58FHJVR3oSpVC2Dk8m0Nu3DRKZVr7lt/Syy\nAXP/as4ftd1ukYFftvXTDvzqGvVbj0smHB9tSgE4PlIODsbPAKoFXuz7+ghgi51E/3YUtY3+7TaA\nxawa/OX1/q9ZllF/tPd/TY3wh/b+Q/fUzzGcv95/LZsnzhoGk3/isOTbgWcAdwEPAs9pO7e49C3A\nq0Xkm4H3A1899FljOAu9/0BwW9fI3+3sn3VJImPbP7Bq2D9mxaywsFZkPCkj78WB1ATAPXaXFhCY\nzp9FS9eRi9WxlHP/TIv58mwBWOZTE/1TTILneP/l1A9+7/9iZiL/QgzcqR/WLEsbaLNZl8Xf5WZa\n2UDF74Lb++83DLQhde1fGD71Qwyn2f45axjF808YlqzAt6aeW2z/GPDUMZ5vLIy95KMvABAf+bss\nvfDtRv5C+rw/9n+TBVwyA4zsXDOAWjJyR/6CEYCiECzFvD+KP+PnDFluzEAoRwDMADAXhrDcydh8\n/98KgBWyUAZgt4fgW0RDuofcJSndgV8WNvqXYpBur+jfIfzS+y/EYIIX/evaqQUcOyO+m9E/+NOC\np039YOGSfdvUD+U9A1M/uDiLC78oWnXJnTGciYLvPrCr4m/bcT5S7B934rcSCfaPmfqhn/1jswHX\n/qnm/Keyf668bKYoBlgXf+yXrzBz2ZsHLOa4L56kmPfHFYDNKsX+gZgA+BYQ0BCBNmxD/O6o36k/\nI+vSm/en+HnooRUBO7J3XS29dmxmT21E/1fMqpk/7cRvVgym88HRPzQneIuhT/Rv0UbEed3fk0Mm\n/5Fwmrt/wBTxll5Hx2zSbv+4Uz9MpvOiM8Xx/xfugiRx/988bPWssqz8fysA7tQPsQzAtYBcn90X\nACAoAjH4xD9G0djH5ggmhecPzgR4B9Oy8CuzWXvnTyD6D3r/PaN/oPfEbxZjRP+7nPhtHwJwYT3/\n84Shxd+xVv2C5vS5XfbP0fEkKAD2D99wTfXHPp9o0ftviHRe2D+mj7ywfbbx/wF58LDu/1MUgO3+\n+ZqKXYwAzNbdBWBfAEJFYKCWBUCT3P0pnmNoG1HszxNksT4WZvO42BjP3xGBozVify9W1eypul4j\nzKuuHxv9s0BXR72i//LznNLofxtk7384MvlviX11/4R6qqFp/4QG5UBoEq9qsJdzx2JKACsAR3Zz\n2P8vIv6a/39wGVPLpyoAX64WLZ9cDZv7DGlNWLC5/xhXAOZFmJneAYTzvjsLcNFG+qlR/9DsQJeb\nuPUDlf9vB9OtV6bV1vr/UOv7t8o6nczNpG9Q1APqff/gTPjnNQNsE/3bTPQ0T/u8y+hfNXv+5wan\nbdUvf2CNb/9s0/7Z5f+bAnAV8dv/l5tD5qECsL2fLQDbuzgFYKh3AG0vABCrAzS3URMBF7HI3cJG\n/f7I4pROn9VSmtM9X9HMBvRwXRbDa9YP1Au/tuXTKfxWbZ/HZeG3ivZnoBRWkM0YKATezPkPdQvo\ncN1PzGz032fWz7HRJ/o/C/6/iNwEvAjzB/1SVb0lctwXAL+BWczlNc72KXAncI+qflnX/TL5B3Ba\n7B/f/wfzB7Zt+6dFyP+HKcztH1JCAXhxGY4frBeAwWxzBQDQhw7L13DYKQDTqXL00KQhANOFsj4W\nUrOA+nYD2xoaI37X6nGJPzTHUJ8i8XotZdHXhS6r8RBAsvVjjj2uWT9go31z/HQyZ7MxP1Nb+AXK\nQV9hz798MtqWfNzW+x87+j9pAVDUTI0+EM4kl0/DTHNzh4jcpqrvChz3QuB1gcv8I+B3gatT7pnJ\nP4JdDv6y57gisQ//vz73f2A4f6QAbNaQvVTy6nxyqT4A7NJV6OH93gAwqhZQ+gnAhBUHbAxhHiub\nlTCZVZOmGYQEAPxagAu3LtCFtrmEtrV8/KKvRc33h7rd08P66VP4Bdfzb1pALmJLPkIVfKR6/yHs\nczWvU5wBlJNcAhQDYm8G3uUd923AfwO+wN0oIo8B/ibwr4H/I+WGmfxbsKvBX23H+Rjq/y83cIk6\nqoE99T94twDMcsqV84EdQE4L6DYC4A8E67KBjo7UGQ9ATQSquYGK76ClAygW8YcsH18I/Cmqk+H6\n/uDZPWHrBw7q26hH+7UsoKXwa7bZn0Z34ded88cf9dsW/adg19H/CeNaEbnTeX9rMTcZhCe5vNE9\nWUSuB74C+GI88gd+GPjnwFWpD5PJvwMpAjDU/tnG/3fn/5nPNw0BMAduuDQ1Uz+3+f/ldco6QLMD\nCIzfbwTgsDysFAB79R4CIAerWhFYl2s7XIsUAfBtoOZUD+7PzRFETwhC8DOHRct8Qn6P/2xezVzq\nQwIBwLbQ1ZHJviDZ+hmj8Ht03Px7mM83TiYaRsqo3y6MkSWMG/33mt7hXlV94oCb/TDwHaq6EWcy\nORH5MuCjqvpWEXlK6sUy+SdgiAA0jttx//+2BWBodgBZhFpAxxAAqHcBAUyuAp1P0OXGNng2BIA5\nDRtoOlsXo2yd53ZG+8aEoA1+pO8Tvxv1x1Ykm8yUWZENTA7a72fmQ3L+JG3R17620X/I94fOrh+L\ng4nitN6fisJvqvcfQ18hOYUTwKVMkPlE4FUF8V8LPENEVpgM4ctF5BmYRP9qEflJVf26thtm8k/E\nthZQl63TtwB8TNP/9wvAY3UAtbWARscAkCgA6+oPdXK1nf6gGgUMMLlqgc4nyMGGyZEpBK/XZrUs\nNwuYzZVVuSZwrCOo/rn6oG320Ol8UxJ/m+UTW8imF+xoXwj6/uBbPTM2Wswk63T9QNj6gWbh17eA\nLk3ZSdtnH+yzRtCFEad36JwgU1UfZ1+LyMuB/66qPwv8LPCdxfanAP+0i/ghk38vdAnANvZP23Hu\nPbsKwEM7gAyaLZP3LadcPV8TEoDj9UMsplcUAjBPEwB3HiBnHEBJQYs1crxmUwpBex2AuZ1Kofi+\nalaQ/UzDESN+H9by2RZ6tKraPXE6fkLo6ftDvevHvA9bPxaXpnXrJ8a5foQ/ZuF3V9H/aULiBJmj\nIpN/T+xCANrsH/+esQJwWwdQWR9ImgK6SQJ9BKBmAc0WpgtocdmMC/DbQK0AzKbw4GF5ngKTKxfo\n3Cx9aG2grixgMdPSCvJFYDqntlBMCF0jf2s2T0H8btTvjuy1axX0RWdNwHb8dCDm+4Pp8jnyWn27\nRKANs5lGC78uuqZ8cHF2iHy8KZ27Jsj0tn9TZPsbgDek3C+T/xYYOhDMoo8AmOO7C8CLg3VNAChs\nolQB+MSx8PAAt6QLgNcF5LaBQhGtFiOBZ9NqKggwI4Nny1ohuI5wFsBCy5bQuAhAlxB0tXC6kb5v\n9Vji9wu9s4UmWz61fv9ExIq+Prp8/3J7YtdPW8+/i7aov0/h9Rx2/pw4MvlviTYBSI3+284b0gEU\nEwDoHgMA8eivSwCmMivf+wLA6rgaCexOBQHIag3TaaMQrEer0gZqywI2R5RW0GK2boiArQm4QlAV\niPvBLeyGiL98fqfQC6bYKwfFesbFusZgprt2F74filjR17yfsV5XdZWY72/R1vWzj57/bYl8nwKg\nCutNtyV1GpHJfwDGEADf/99mBHCfKaCtPVT+8UYE4OpA3A3tAhDsArJ2j50Kwr4/uAzTY9PB4heC\nAzZQVxYwQSsriLoI2KOhXhyuZwVp8Iu6PvH7dk9b1C/NYbXNY6bDRMEt+pr3zd/XIZaPxbbWz3kp\n/NbmVUAAACAASURBVJ5FZPIfiG0soG0KwH1aQFPGANi0vZhkMnkUMIQFYMO6Ng7Avi+ngiiio/IO\ndmoIaBaCAzZQVxagxQIxrgi4dpAtDMPwX3rX23dJv3aMY/e4UX8vLCKF3oHwi77Vdg1M+9GNrqi+\n7zw/Qwu/sM/oX8u1sM8aMvmPAOtb+iLQ1vvftwDsbu9qAQ2NAWhdBAYaAnDf0owEbssAjG1AbSCY\nGf0bmArCzgZaLEaiUIwe9grBs2nQBmrLAsy6uE0RsHYQC2V1LGU24ArBoiDvTQ8LyI3sLenXtgWI\nv3zWS9b6mdYsHzmYVsct5tWUDj6m/f9k/Y4fCBd97XZI6/e3AYQbbEB9wNfQyd66SDxH/9sjk/+I\nCGUBfeb+GVMAoN4C2pYBdFlAi3W4CGzbKJcbqU0F4c8FNGHK1G8FtZ1AbiF4Wu/zr9lAHVmAgVkm\n0YrA9ICyJjC9osoGakJQfvmVILTBj/B90gdj9dgBXZbQfa8/foOWP8kdZQIhuI6U5dbFhCTfv4vg\n/eke+lg/py3636gUa2KfPWTyHxl9bKBQAThFAPx77UMAPnEsXJq6/fMW4bmAlptDNsUEY9W00PNw\nIdipC3AFtbns27IADqZNK+hwXWUCxbwW0wNTPLbZgCsEUCy0jqkTQHsW4LdvukVdN9qHJvGXz+9F\n/UmIEL/MOoYNtyDW8ePD/NppZzbQ5vuHRMFv+XTRJ6LP0f92yOS/A/gC0Mf+8ZE6BiB1ENgQATCY\nsNwoV9Yi4EoA5hPl8mzlED6s16tmJ5Az4rRhA7ntoAVCWQDuIvEUSyI6mYArAva1LwTgiIGFJwoW\ns8gIXp/0oe7xW+J37Z7aZ7OWz2xWWT6LuSn2tllAPeD3+lscTKv5/Ycg1dLZhfWzq3PPOzL57whD\nBKCtA6hTAKA2CGw3AmDm0JlP1BGCanTwgyvlYHpcdZY4nUC1QrBbB3BtINsOaruB/CwgYgXZpSJd\nEZBL09IGkksEhcA8YiUG5c8wsACLD5/wy9dOtF+JQEX8Qa8/FZOZGeg1aZ6nEo7Od7nalOvrW6RM\n9BbC2NbPrqGE1sY4G8jkv0OcRQEAek0GZzBx5oavplVwO4H8QrCtA0RtIDcL8FtCbUeQjYpDIrCY\nGjvoyKyW5VtCrhAApRhYaAK5+KQdivTLfa7VA027py3qX8zNv+msfXRvQAx2jYPILJ8uQuIQa/l0\nMZb1k6P/MDL57xhDRgMPFQCgdw1gNtskDQQzqEc8n1xOWG2Eo4k2O4GcOsB6vWqOCHYIv5EF+C2h\nNgs4XlZtoaGicFET4HjdzAYKIQBqYlB+Mmdf7RNHfpY1T9+J9KttdeK3rxt2zzaYtIvCWNMPpGIX\nSzieVgJXJdg1dRaQyX8PcAWgr//fVwCq8+JF4Npxo2YALqpOoFAdwI4ItllBrRsoJQsIWUEQrAlw\nMI1mA0BQDMpP56+EE4Ef5VfbHZsH4sRvEYr6LazVU/wvs4POeX7GWGIwhkvT7oVfuoq+2yJk/eTo\nvx8y+e8J7liAXQpATWhaxgG0DQTrMxeQQZsANOsADRvI7wbysoDeIuDZQUAzGwCkIIOQGFhoF7t5\nx0OA8KG0eWoev0v8rt3jw1o+PbBhneTzb9umOJ+EZ/j0O35C6BKBXRH1Lq67Yfvv8KSRyX/PKK2Z\nHQsA0DkQzPdhDbozgOONsJjAcqPMJ2Yw2GJtWkHNNi3/N/DrAE0bqC0LKKeGsALkWkFXzJoiYO0g\nRwRYzMtsQA5mpRCU6+ce1xdS1yPbMdQvUg0Rvt1eI32oWz0u8ce8fj/qh9o2FUkm/eVGzqxdkTEO\nMvmfAPYhALX7JAiAPxncbKbB9QCWx0Xf95Z1AGsDhbuB2C4LgGIkb1MEuKLIBuxC6MV2mc1KIYCq\nwFuSvv259IkUPbKvXgdIH5rE72UBnRF/wtTOPta62Vukmtrxk1r0HSNyHz36VynWvj57yOR/QnAF\nAEieBXQsAbBonw0UUqeDqKPbBgp1A8WygGQRWB03MgFWxWIoviUERgigVQxqi6pTiUP5SSPTMNc6\ngVpIH4gTf3n+Fl7/ZslaV2UmYP4fx/+/NCvWhfbQZue0dfxsi76+f3neKfX/ReQm4EWYP7qXquot\n3v6bgR/A/BGtgG9X1V8TkUvAmzAr+8yA16jq93bdL5P/CSKlELwrAWhbEN4iuCQkdNYB2mygUBbg\nF4ObWQDVuABr+yxaRGC2qNcE3GwA6kLgZgSWcK0YQFU0LpDUk+9P0dBG+va9u88e79s9PiKWz667\ne0LEf1FhPP/hkb+ITIEXA08D7gbuEJHbVPVdzmG/Ctymqioifw54NfDZwBHw11X1ARGZA78mIr+o\nqm9pu2cm/xNGSiF4nwLgLwlpkNYJdLiu6gAVtisGJ2UBMRGwSxq6hWGICgE4awpbMYC6ILg4Dnjq\noeP81s0Q6dvj7GvX6vGJ3436A8R/nrDr6Dx1vq094knAXar6HgAReRVwM1CSv6o+4Bz/MIqIS1UV\nsPvmxb/OEYqZ/E8JuuoAQwQASFoPoLxXz8Fgtg5wqacNtNpMo7WA3iIwIyACVCLgW0Iha6ioEQBV\nZgBNsk/px/fEoEH47nX8aB+6iT+Ayt4JWz7W77fF3qN1UY9Zy5kZpZoiCqd4rp9rReRO5/2tqnpr\n8fp64APOvruBG/0LiMhXAP8X8KnA33S2T4G3Ap8FvFhVf7PrYTL5nyLsSgDc7W0C0N2HvV0doLsb\nKFQLaFpB3SJwHM4EWDQtIWiSuxPxl4umO4JgUWYJAURbNS086ydI+tBN/Duwe6wIpNgYIW4de2BX\nCk56qgfVXtM73KuqTxx2P30t8FoR+SKM//8lxfY18OdF5BHF/s9T1d9pu1Ym/1OGlE4gH7sQgFgh\nuE8dINUGOlpLa0eQS/ZuPWCziYgAi1phGHCEgLoQ2IxgvapnBVC3gKAsEJfC0IWI7VN7HSJ9+754\n3SjwOsTvIxT1b4PDtRHtsbHNQK9THMmPiXuAz3DeP6bYFoSqvklEHi8i16rqvc72j4vI/wvcBOyO\n/EXkU4CfBh4LvA/4alX934HjglXs2Pkicg3wGuALgJer6vOHPOdZQ5sAxGYBHSIAQHA6iPhYAOiq\nAxwSt4EOvSzgoLbUYTMLWK/jVlBQBFQru6cg+jIbWB1V+6AiW9cagkoMoMoMXPIO+f7l9xAQB3eb\n274ZIv3ifdnLH4n4Ac/aWQZH9LZZPl0wAh7f1xf7yg72JRjKOAVf4A7gBhF5HIb0nwU82z1ARD4L\n+F9FwfcJmO6ej4nIo4BlQfxXYIrGL+y64dDI/wXAr6rqLSLyguL9d3gP3FbFjp1/CHw38HnFvwsH\nv9/ZFYExBQDCg8EsQoXgrjrA4bpYDCSSBVQDYut/NDbiD2cBxgpas0oTAabQYgnBgScEi7oQWBJ2\nBQGMKECY4GMIkT3UvXtPBGrRvmcBxYjfIuT1x+BaPW32RcrKXhnbQ1VXIvJ84Jcxf1QvU9V3isjz\niv0vAb4S+AYRWQIPAX+3EIJHA68ouHYCvFpV/3vXPYeS/83AU4rXrwDegEf+tFexg+er6icx7Uqf\nNfD5zjxiWcC2AgD07gRqR6AOAElZQKgW4CJcEK7qAZbsXRFYs6zbROJMHAdVNkBRIIZ6RmCPKbaX\n2+z2WH/9ylmFLHaMX6gNEX5gu0/81srxib/N7vGj/hiO1hKN6EM2kD+jZ9fUDucNquMVy1X1duB2\nb9tLnNcvJBDRq+o7gL/Q935Dyf86Vf1Q8frDwHWBY9qq2CnnX3iMKQDueakC0D0iGFptIEiuBViS\nDxWEjzbSHCHsicCEaaMwvGYZzgZY1DMCKLMCKOoEUIkB7jEeFh1/Sr4gOEKQQvpAMvFbuHaPj64u\nn+NN2Nbp0+O/zXz+GftDJ/mLyK8AnxbY9V3umyL96F79IoJtzxeR5wLPBXjYFddse/tTj10KAMRb\nQYHoiODy2i020BHVQt+1OXmiWUD9c7hW0Gxiq72w3EyjImALw1YE7CpWfjYABIUAqNUJrBgA9QzB\nh19HCKCx7GLIBgqQPtQna2sj/pDd0+b1t3X5hGxzf1u8LnT+MdYgr5NAJ/mr6pfE9onIR0Tk0ar6\nocJ3+mjgsLYqdsr5Xc93K3ArwDWPfPzW4nMW0CYAQFIbKJBUB7AY2wby5wYKZQF+QdjC7wqCpgi4\nNYHpZM5G10FLyGYDDSGASgygTuRWECwaGUDHerot0X9IBFzSB2p2Tirxu3aPi1jUH+ryOVxLYFv7\nR/WxS4E46XbPs4qhts9twDcCtxT//1zgmLYqdsr5GQ76FoLtH0WfQrC9z9g2kJ8FhGoBZbEYux3H\n6jHHtItAsztozbJhCQFhISisIaDeNWQ+ZfHsdpzAgD+fSOHXJ3wgGu272ypRaBK/hTuoq9oWjvpT\nLB/X73cDg5Po9w9hHx0/qtt1PZ0GDCX/W4BXi8g3A+8HvhpARD4d09L5jFgVu+384hrvA64GFiLy\nt4Av9ea5uNA4qUIw9G0HhZRagJ0m+tK0EgHfCuoSgXpNoBKB6WRWs302ug4KARTkD0ExAEcQXKRO\nmJaw5q4f2YcifX97F/GH7J4Y4bsR/nLT7PLpy6WnRQgymhhE/qr6MeCpge0fBJ7hvG9UsdvOL/Y9\ndsizXQTsuw4ABNtBfWyTBZgHAGsFXZrG6wExEbA1AVcEgIYlBESFwGYBm01dDKASBH+7Kw594Hfk\n+O2a7rYQ6dfftxO/hW/3pET9bZaPK/wXrdMHjOe/i8Fw+0Ae4XvGMYYAQFodoI8NVF6/VgyGrnEB\nvhW03BCoB5jXbSJwtDbrBx9MNGgJxYQATKEYqIkBUBOEapXk4lNN0gUgtNhKyOaBNNI3x1VdPa7H\n70b8LvH7dk9X1J9q+ZTnt3T62OOHTOecMRyZ/M8BhgoAbF8HAFqzgCYCLaHQagW5ImCJPyYC7mt3\nnEAzG4gLQRn9O1mBhRUEqBO+FYa+CAmBT/jucSHSh2a0b7e1Eb+FS/z+iF5fELoQEgIbEGQL6HQh\nk/85QawQ3CYA0F4IBpJtoJQsoEKVBdhjoW4FuV1BrghAvSgcEgH/9WozjWYD0BQCWyMArwYAZXbg\niwJQ1g9S4U/FkGYDNUnffl6o2zxdxO8P6Kq/Dkf9fSyfVLKfH20nnKcBF7ngm3HKEMoCYq2gkF4H\ncPfFbCBozwLCtQDoLAhDsB4QEgFDbqZF1H8dygZiQgC0ikEw+tftWcDPAOpRf8W+baTvbne7erqI\n3x3QlRL1D7F8UuFO23wBJnU7EWTyP4fYRx2gdp9BWQD4VpCdS6itHmBFwLWDjjcUGYKUZA+Ur202\nEKoNuEIAtIoBYBaYp273THrZXwahWTf95RbrhN9N+vYz2+NCIuASv8WytH6qvv7Dlbu9Iv5Q1N8W\n6adkAX72mooTndKZ/h1QpwWZ/M8pthEA2M4Ggv5ZQBORLAA6isLgF4ZDIuASvysKQE0IoF0M7H4r\nCEC5EP2aJglNnfbOlDV0/UnYQoQPaaQfe+8Tv+vz+8RvEbJ72qJ+u88X/VzsPT3I5H+O0VYHgHQb\nyD93jCzAzhKabAVBLxEoxwlM6paQKwRA8L1fIwBKMQCCgmDObRKaKxJtqNoxq+/CH4HrEz40Sd+e\nFxOBLuK3sMQfs3vK+ydE/W04y34/wEbP7oynmfwvAHbRDQS7zAIA1qxWM2azwIwdERHwC8NQ1QV8\nIbDwMwL//aogej8zgIqMfVGofW+TwPM7iE2s1pyOoUn4Znud5EPbQsTve/yWwI43TeIfGvXb98kF\n4JZlGne5ru9FQyb/C4KxbSD/3D5ZQD9EWkOhuXYA1LqD/LpArEsoRvyWPO02oCEI5nyKfc3I3yfx\nFMRm4az216P8rm2haN8cZ993E3+oyLtt1B+yfGJ+/5Bi774Wc8mDvDJOPfpODAdpNpA9ty0LgGq1\nsC4rqLxX1wAxC0cE6hPHgWsJWfjZgHtcyBpy6wT+dqDct3Ii/1lHxB9DaHUtfwRuW5TvbnMj9lgf\nf8jjjxH/ajWJEn9X1B/CGJbPeZrQLbbiobP/azHrpQhwP/APVPV/ishnAK/ETImvmIXhX9R1v0z+\nFwyuAED6CmHQLwuw17b3M9dJWyzGF4EK3SJgYUXAt4Ri2YArBH6NAJqk7y496WYIFqFpfuvLVcaP\nc9Hw/SNC4G4PdfK0RfuQRvxDkFroPWu2zkb7rXEQQ8eKhxbvBZ5cLHX7dMxsxjdi8t5/oqpvE5Gr\ngLeKyOu75kLL5H8BUYvKd5QF2P2pWUA/pIuAeaDify8baLOFQjUCN9JvI/wQyUPc348hPL9+XAz6\nkL57XCrxjxn1u0ht8TxrwtATbSseAqCq/8M5/i2Y6fEpFsT6UPH6fhH5XcwiWpn8M8LYdqF4aGYB\nEO8IsvvaCsJDRMAWhn0LyY4Y9i2hqksIYkJQbatI0s8MIEz4LkF3FXxjiBaCWyZhayN9sy0c7bvH\njUX8LkI/1xTL57T7/dC7z/9aEbnTeX9rsR4JtK94GMI3A7/obxSRx2KWdPzNrofJ5H/B0SUAEM8C\nIG1cgL8vVhCGZj0gHf2ygRQhAIJiAH69oNlFZOGSdSwjiB3vIzSNQIjw7XO7z9Y4tqWjZ1virz1X\noMPH/oxd4nej/r6R/Rn0++9V1ScOvYiIfDGG/P+qt/1K4L8B366q93VdJ5N/RmsdAOJZAIxcEA60\nho4tArWppC0KDnGFoGobBbdYHBMDc475fxGxx4f2g4e6SroI3z8v1L/fFe2bbWHid9Fm9/Qd1OVH\n7n2E4YxOB9G24mEJEflzwEuBpxdT4tvtcwzx/5Sq/kzKDTP5ZwDtdQAYlgXY81OsIHOdfiLQHCgG\nvgi4E8hVJ5p7uCRedgtB+ddRF4JmZgD+tNPm/1AmsC1CUb/Pcb649CV96E/8Q+yeIVH/acGIE7u1\nrXgIgIh8JvAzwNer6u872wX4ceB3VfXfpt4wk39GDW02EIxfELb720TArQf0zQSOj3BIv35eOYcQ\n4YzAFYK6PdQuCOX5AWHYBrFANpRJhAjfv0abxQNNm8fd1kX8bXZPKlKi/jNo+bQituKhiDyv2P8S\n4HuAa4AfNXzPqrCR/grw9cBvi8jbi0v+i2IRrSgy+Wc00CUAMLwgDPF6AHR3BoVEINQiWo0VgM66\nQAFXCKJZAd2CUB5XZgL9i79dVlFjlS2PE7tIH9qjfXf7UOLfR9S/b8tno+FpL7ZBaMXDgvTt628B\nviVw3q9RDWhJRib/jCDaFoq3GMMKsuf7AuGPD4B0EeiGSzYJ5/o1Ahce2fqC4OK46OCJ1QSax3cf\nE+oxjxE+hEkf2m0eCBd3Y+dbpBC/j4sY9Z8UMvlntCI1C4DtrCB7fpcVZK5VFwEI1wS6p5B20U8I\nfHvIL/pCM0PwcVj8HxMJSB84FOLRVMKH7aJ9/zru9tBgrra2zrMc9QOgMngA3Ekhk39GJ1IEAMa3\nguz+qAgMmjguhIqI3Enl/GKxWyuAcL0gJAo+lmkTfrYiVGwMz74Zj9JDpA/bE38b2uyeHPXvF5n8\nM5LQ1Q5qsY0V5F4vRQQg3h0Us4T6ZQPlXZzX/cUl2Fa6A3SRvUUsyvf3DSX9Meyevjip9s6Nnt21\niTP5ZySjqx3UxS5FoPEsPUQgFfVCMdBYcev0/MHHRC28mHoa6fv7Uojf7+ppI/4uuydH/btHJv+M\n3ki1geDkRQDqltDwbMDidIlBTNxSFlbfhvT990OIf6jds03UP1qtQSX4HZ8FZPLP2AqpNpDFSYiA\nuWba/EHDhMAfT+Biv6IQI6I+hG+uE9/fZvPA+MTfhhMl/jOOTP4ZW6OPDWSxKxGwx6TUBaCfEMSn\nmO5GXBR2h9izhqZk6EP6ofdtXT19iT+GseyeTPp1ZPLPGIy+WQD0aw+FuAi419gmG4D+M4qGxCA8\nxUSodhBGH4FIfdbQ88TOH0L6MA7x79Lu2RXxbza54JtxwVEblDWCCISygNi1+1hC5tpVNgDUbCGo\n/zH7xeKQPRTLDGKCUPs8803jnn3Qdf22a6fMx9OX9OHiEP9ZRyb/jNHgCgCMKwLQbgeFrhETAejO\nBqCZEYS6hmK1gi6ryEb6KeSdii4B6dMV1EX60D/ah/NH/Koy6s9wn8jknzEq/CgbxhEBSKsJuNew\n1/HrAu5z2mf1hQDotIZiLaRdxeMhNYRUtN0/du/UqZi3ifYhnfjHQo7425HJP2Mn8LMA2I8I+Nfv\nKhDbZ7VIEQKIiwHEydXu3/d0AG1CE9u3LenDcOIfI+rfF/FrHuSVkdFESAAgTtQh9BUB9/pdaxOH\njmsTAnOvdDGAeiG3iyS27QrqN8V1/NjY1Mtjk37sWHOvs0P8Zx2Z/DN2ipAN5GJX4wRi127rEvKP\n9YXA3CtdDKCdbH2yHzOCTL1WH8KHdNKH/jbPWSR+zRO7ZWS0I5YFWIwpAtDPEnKv55NHyBqC/mJg\nYUUB9m8XdC2q0jb7ZmxenjGifXPvs0f8Y0NEbgJehBkZ+FJVvcXb/9nATwBPAL5LVX/I2fcy4MuA\nj6rq56XcL5N/xt7QJQDQXwRgu2zAv0fseilZAcTFwDxDfBqEGFyRSEHf1bKgneyhfSK2PtF+2/Fd\nA7hOO/GP5fmLyBR4MfA04G7gDhG5TVXf5Rz2x8A/BP5W4BIvB34EeGXqPQflKyLyKSLyehH5g+L/\nR0aOu0lE3i0id4nIC7rOF5GnichbReS3i///+pDnzDg9mC43raRiMT9el/+6MFtu4qRztCr/xe4R\nu15o6oHYOfZzhT7f/Ggd/NeGyWrT618XUu8f+wxdnz/2M2j7GZ514h8ZTwLuUtX3qOox8CrgZvcA\nVf2oqt5BfUkLu+9NGHFIxtDI/wXAr6rqLQWpvwD4DveADkWLnX8v8ExV/aCIfB5mXcvrBz5rxilC\nShZgMYYlBP2zAfea/nVj9pBFiDwb3U8dArAPpApxDG0Eva3N03Xd1HvsA7qRPpH/tSJyp/P+VlW9\ntXh9PfABZ9/dwI0jPGIUQ8n/ZuApxetXAG/AI38cRQMQEato74qdr6q/5Zz/TuAKETlQ1aOBz5tx\nitBVDPYxtiUE4wiBf17s/DaiTf0OtkUKyVt0EWoXMe+D9Lvuc0pxb7Hg+qnAUPK/TlU/VLz+MHBd\n4Jg2RUs5/yuBt8WIX0SeCzwX4GFXXNPv6TNOBfpkATBeqyikC4F/rxBJbSMIFn3IeWykkugQ0ocL\nT/xduAf4DOf9Y4ptO0Mn+YvIrwCfFtj1Xe4bVVUR0W0fJHS+iPwZ4IXAl7acdytwK8A1j3z81vfP\nOFn0FQCLsbIBiNtC/r1i9/PJK5h1tJBWyuC3odjFlMlDST/1Pqn32ytUtyq2B3AHcIOIPA5D+s8C\nnj3GhWPoJH9V/ZLYPhH5iIg8WlU/JCKPBj4aOKxN0aLni8hjgNcC36Cq/yvhs2SccfS1gVyMNXoY\n2rMB/35t90wRg9g1TxJj+e2pUzGfFX9/l1DVlYg8H1PfnAIvU9V3isjziv0vEZFPA+4ErgY2IvLt\nwOeq6n0i8l8wFvq1InI38L2q+uNt9xxq+9wGfCNwS/H/zwWOaVO04Pki8gjgF4AXqOqvD3zGjDOG\nbbMA2M4SgvGEoO2+MZLrEoVdou9iKKkEfK6jfQei4xXuVfV24HZv20uc1x/GBM+hc7+m7/2Gkv8t\nwKtF5JuB9wNfDSAin44ZpPCMmKK1nQ88H/gs4HtE5HuKbV+qqqHMIuMcYkgWYLFNNgBpQgDpYtD1\nDH0JuEssxlzMvA/p9ll05TwQ/1nHIPJX1Y8BTw1s/yDwDOd9Q9E6zv9XwL8a8mwZ5wNDsgCLPtkA\npAkBpGUFoWfo8ywhjEnuIfQl212R/jbPsm+I6okW64cgj/DNOPUYIwuw6JMNQHd9oLxuYlYQehYf\n+yj8dj1D0rlnlPTPKlmPjUz+GWcGuxABGDcbKK+/hRiEnu20oe96uqdlgfVdEb7o6f55tSGTf8aZ\nw5giANtnAxbbiAH0E4STwraLp29rTY1NpDnKj+P0//ZlZEQQmnJ5CPpmAxZ9s4LyfhFiPSlR2Jbo\nXZwW0of9EL+o7rwGsytk8s84F9hVNgD7EYLavTtIeKg4jEHyPoYQYI72TwaZ/DPOFcbOBqC/LWSx\njT2U9Dw7IO9tMTTqPevEnz3/jIxTiNOSDVjsSgz2jTFsjrNq85wnZPLPOPfYZTYA4/brn0ZBOKlB\nY6nIpL8dMvlnXCiMnQ3A9rZQCKdFEHZRxDyPxC8bPVU2XB9k8s+4kNilCMC4A7XaiHioMOyrU+U8\nEv9ZRyb/jAuNXYgA7E4IfJz2NsOzWgxNhejp/xnEkMk/I4Pd1AUs9iUEpwm7Jv0c9Q9HJv+MDA+7\nygbgYgjBRSJ+UT2z2c3pay3IyDgl2DXJzI/XZ5Y4Yjhvn2efEJGbROTdInKXiLwgsF9E5N8V+98h\nIk9IPTeEHPlnZLRgl1mAxZjdQieJfRD/aYr6AdBxnklEpsCLgadh1jm/Q0RuU9V3OYc9Hbih+Hcj\n8GPAjYnnNpAj/4yMBPz/7d3PaxxlHMfx94doVbzUtlptK6IgYvVSKNKDJ3+UEsQoInhpq55y8CyF\n+A/UXnsoOQiVCt6CASvRih4UKtZflOCPJlbRWislVGiL1dKvh3kCQ2Z2M9n2eSb7zPcFw87uPM/O\n89lNnszMPk925L9ryc4Ehu3oeRjbvAo9BsyZ2c9m9i/wLjC2pMwY8LYVjgNrw9ffNqlbkdWR/8KF\n0+ePTO3+NdHuNgDnE+0rpRxz5ZgJ8syVMtN91/sECxdOzxyZ2r2hYfFbJZ0o3Z80s8mwvhn4rbTt\nd4qj+7K6Mpsb1q3IqvM3sztT7UvSCTPbnmp/qeSYK8dMkGeuYctkZrvabsOgsur8nXNuSJ0B7i3d\n3xIea1Lm5gZ1K/yav3POte9L4EFJ90taA7wETC8pMw3sCaN+dgB/m9nZhnUr/Mh/cJPLFxlKc3qQ\nlQAAAsNJREFUOebKMRPkmSvHTMsys6uSXgNmgBHgLTOblTQeth8CjgKjwBxwGXilX93l9ikzixLG\nOefc6uWXfZxzroO883fOuQ7yzn8JSeskfSTpVLi9o0e52unUvepLelrSV5JOhtsnMsi0XtInki5K\nOpgoyw2fAt/09YkpUq4XJc1KuiapleGTkXIdkPRDKD8laW2qPFkxM19KC/AmsC+s7wP215QZAeaB\nB4A1wHfA1n71gW3AprD+KHAmg0y3A48D48DBBDl6trFUZhT4ABCwA/hi0HwJ359YuR4GHgI+Bban\nzBQ5107gprC+P/X7lcviR/5VY8DhsH4YeK6mTL/p1LX1zewbM/sjPD4L3CbplgjtrxMr0yUz+wz4\nJ1bDV9DGRYNMgW/y+sQUJZeZfW9mP6aLUREr14dmtvj1WccpxrW7FfLOv2qjFWNnAf4ENtaU6TXN\numn9F4CvzezKDWhvEykypdCvjcuVWc35YuVqW4pcr1KcObgV6uQ4f0nHgLtrNk2U75iZSRp4LGxd\nfUmPUJyq7hz0eeu0mSknuefLiaQJ4CrwTtttGUad7PzN7Kle2ySdk3SPmZ0Np59/1RTrNxW7Z31J\nW4ApYI+ZzV93kJK2MiUWawp82/mST+1PJFouSS8DzwBPmpn/sR6AX/apmgb2hvW9wHs1ZfpNp66t\nH0YkvE/xweLnkdreS5RMLYg1Bb7tfMmn9icSJZekXcDrwLNmdjlVmOy0/YnzaluA9cDHwCngGLAu\nPL4JOFoqNwr8RDEiYaJB/TeAS8C3peWuYc4Utv0CLAAXKa7Lbo2cpdJGitFG42FdFF9sMQ+cpDTK\nZZB8CX/uYuR6PrwnV4BzwEwmueYoPg9Y/D06lDpXDov/ewfnnOsgv+zjnHMd5J2/c851kHf+zjnX\nQd75O+dcB3nn75xzHeSdv3POdZB3/s4510H/A/yoxBpC7OwyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Hamming window')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuULVld5/n5xeOcvJl5bwFVxbsUVFg00D4RmLYfPgZk\nNShMOyLgA5e2DiqDdKsI0iprWmahMtqOqMhI8WgVtBUVBUTBB7YjSmlry2NaEUEKKYqioO69mTfP\nicdv/tixI3bss3dEnJOZdQvyfNfKledExIm9I2LH/u7fW1SVLbbYYosttjgpJFe7A1tsscUWW3xq\nYUssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLFFltsscWJYkssW2yxxRZbnCi2xLLF\nKETkpSLy/Ve7H2cZIvK1IvI7J3i+bxSR/3pS59tiCxdbYtkCEXm/iFwRkcsi8nEReYOI3GD3q+oz\nVPU/XqW+XfUJsOmDisiPe9uf2Gx/5Wn3QVV/QVUf67StIvJZp93uFltsgi2xbGHxFaq6D9wH+Ajw\nk1e5P5MhIumd0MzfAU8WkczZ9nTgb+6EtrfY4pMKW2LZogdVPQJ+BXio3SYirxSRH2o+XycivyUi\nnxCR20Xkj0Qkafa9X0SeJyLvbiSfV4jIjnOeJ4jIXza//X9F5LOdfTeIyOtE5KMi8jEReYmI/BPg\npcD/1EhTn3D68zMi8kYROQC+RET+QET+rXO+nqTTrPC/XUT+VkQuich/FJHPbPpxUUR+WURmA7fm\nFuCvgS9vzncP4J8Br3cPEpH/IiK3iMgdIvI2EXmYs+9aEfnNpr13iMgPBfr4jKaPnxCRnxIR8a9H\nRN7W/OSvmvvyNSHJzpVqmrZf37T9Z8Bnesc+RER+t3mm/0NEnjxwL7bYYhBbYtmiBxHZBb4GeHvk\nkO8CbgauB+4FfB/g5gX6Wszk+5nAg4H/0Jz384Abgf8NuBb4WeD1IjJvJI7fAj4APAC4H/BaVX0P\n8AzgT1R1X1Xv5rTzNOCFwHlgqqrsy4EvAB4NPAd4GfB1wA3Aw4Gnjvz+1cA3NJ+fAvwGsPCOeRPw\nIOCewF8Av+Ds+yngALg3Rtp5eqCNJwBfCHw28OSmzz2o6r9sPn5Oc19+aaTftu0jjET6Tc0fACKy\nB/wu8ItNv58C/LSIPDRwni22GMWWWLaw+PVGIrgDeAzwo5HjCszk9OmqWqjqH2k/4dxLVPWDqno7\nZuK3k/W3Aj+rqn+qqpWqvgozKT8aeCRwX+B7VPVAVY9UdYwsfkNV/1hV60bKmoIfUdWLqvou4J3A\n76jq+1T1DgwhfN7I738N+GIRuQZDMK/2D1DVG1X1kqougBcAnyMi1zTk+VXAD6rqoaq+G3hVoI0X\nqeonVPUfgN8HPnfitUXhtP0Dzf19p9f2E4D3q+orVLVU1f8G/Crw1cdte4uziS2xbGHxpEYi2AGe\nCfyhiNw7cNyPAu8FfkdE3iciz/X2f9D5/AEMYQB8OvBdjYrnEw2J3dDsvwH4gKqWa/T3g+OHrOAj\nzucrge/7Qz9W1SvAGzBS2LWq+sfufhFJReRFIvJ3InIReH+z6zqMhJd5/Q5dwy3O58OxPk1EqO0P\nOJ8/HXiU92y+FiNZbbHF2tgSyxY9NNLE64AK+OeB/ZdU9btU9TOArwT+vYh8mXPIDc7nTwP+sfn8\nQeCFqno3529XVV/T7Ps0zzDeNhnrqvf9ANh1vp/WpPhqjDrw5wP7ngY8EfifgWswaj0AAT4KlMD9\nnePde3Vc9K7fWxTYtv1nY/FB4A+9Z7Ovqt92gv3b4gxhSyxb9CAGTwTuDrwnsP8JIvJZjVH5DgwB\n1c4h3yEi92+M288HrP7//wGeISKPatrYE5HHi8h54M+ADwMvarbviMgXNb/7CHD/EcM6wF8C/0ZE\ndhuD9TdvdgdG8YcYVWHIa+48Rr33Mcwk/3/aHapaAa8DXtD08SF09ppN8BHgM5zvfwU8TEQ+t3GY\neMFA2w+lb9/5LeDBIvL1IpI3f1/YOE9sscXa2BLLFha/KSKXgYsY28jTG1uEjwcBbwEuA38C/LSq\n/r6z/xeB3wHeh3HR/SEAVb0J+BbgJcDHMeq0b2z2VcBXAJ8F/APGOeBrmvP9HvAu4BYRuW2g/z8O\nLDET7qvoG81PDGrw1saG5OPVGBXTh4B3s+oA8UyMJHML8J+B17Bq/J+KFwCvalRXT1bVvwH+D8yz\n+VtWHRqeiVGr3QK8EniFc02XgMdijPb/2Bzzw8B8w75tccYh20JfW5wUROT9wL9V1bdc7b58MkBE\nfhi4t6qGvMO22OKTFluJZYst7iQ0sSKf3agCH4lR1/3a1e7XFlucNELG0i222OJ0cB6j/rovRmX3\nf2FiYbbY4lMKW1XYFltsscUWJ4qtKmyLLbbY4pMMIvK4JvXOewOxZFbt+icishCR7/b23Sgit4rI\nO73tnysibxeTdummRl3r7v+0JoVQ73zB/p1VieXa687rDZ9+LapQqwmKUIVShVqhrIVKoVSoFKoa\n6lqoyoS6FupKQBVRkOYeSuRWqtj/0n0XQRJFBJJEEVESl+abkyXNb2s1P6xrUBXsY7OftTb98fsh\nA8/X9ifW3x68YyXR4G5xGg9t67XTNKTqXUezcejeutflXocK1In07m+e1+R5zTyBearMEiVPISEj\nkcR0oCqgauIz0wySDJIUpabSkqpWylpY1EJRw6KCskyom3FR14JWkNTj97u9v8332L2M3c+he2pu\nXXdfg9+dewxMGsPdNYS2SfgY5/pEuj67n8f63xvr3hj3+zw2JiQ171qSKElq/qcJpGL+suZ/Is17\nKUoqJgjpnX/5gdtU9frhuzOMfyrX6mWKSce+n0tvVtXHhfY1mRT+BuP2fjPwDuCpTTYHe8w9MYGv\nTwI+rqovdvb9S4xX56tV9eHO9t8BflxV3yQi/xp4jqp+sbP/VzBT5Z+65wvhzNpYbvj0a/ntP3o+\nldZcXKYUKiyqhIMi4XLzd7GAjx4JF5dwqYCDw4zDg4yDyzmHBznLRUp5YAZwvqhICxPOkS+rXlvF\nzCTfrXLDHMU8pc4SZvOK2bwiy2r29s2Am83Nb7Os/+KVpWlnuUgpisS0XZr/y4U5f1LW5Iuubduf\nIdg++SjmqwmD66x/rO2r/z3L6uB+MJN820ZzHUDvWpKyuY8D9xQg866vzBOKWUqVJxTzlGxPmc0r\nrr/XITfc+4gHnFc+43zNp51fcp/dhHmyx15+d9LFEXr5o3D4CXOi3bsh+9ej8z0W9QFH1WVuP7rM\nR67kfOBSzocO4e8uCh/96A7LRdqOh/JA2Lkcnjj8Zx+7P/52ey+Hjg/Bva/ud3esAO14GbrPLuxY\nDsEdS3b82HFu+59lNbN51RsHK20UXZ/d/o+NDXc8lPZ+N+NhsZezf2HZvmuzecXuXsnebsn5HC7M\n4PodZZbANTNlP6/Zz2v28opclIfe41vcTAUb4TIFL0gfOX4g8I3VW68b2P1I4L2q+j4AEXktJjC3\nJRZVvRW4VUQe7/9YVd8mIg8InFeBC83na+iCmxGRJwF/jwnEHcWZJRZVOCxhUXWk4mOWwPlcWdoV\n3m4o44gZ8KHpZOwldVEUCXles1ykzOZVSyQuwfik4mITUnGP8wnGnsslGPtSg5kw7CRlJw7b97Hr\n9GFJJdT+OvCJZpHlbb+OKihqKJpnWdVlpwjOZkZCsUhO7rXwJ9t1SAXMvbHk4t/vGGKkYjFEKllR\nt5OyjyFScc9T5Qn5oqKYGyJYsjou7Hg/LkLvmE8qxTw+LhfLhJ205uISdlI4n8MdS8EOjkUl7J1A\nP08Y96Ofnudm4FEncN5nA28WkRdjbsA/AxCRfeB7MRLSqBoMzjCx1GoGzeWye1nKuhOf56lyVAk7\nKVzIFWhUIFnN7l5HMHYFdvnibKKQOw53grYEEzvOXcVZTCUV/zch6SVEMNBNTj7B2M9ZVk8iGheh\na7EoZunKJFLmyQqZZM7kZie1okhYLBNMkgCaRURNTUVVF6SkSDZHs3hw/zxd/56uSyoxuOQCYQL3\nySNEKv4xEJZUhsjFwl5baKzZseSTi4vZvIqSS57X7QIky+qVRdQUuKRi7nsnNVnY+3FUmT5cLARQ\nzKUJiypl/wRJRQSyPP4+91BxnYjc5Gx5maq+7MQ6E8a3Af9OVX+1KZvwckx6ohdgVGSXJaI+93Gm\niSVGKhY7KSxryJNGepkB1NxxhZZc3JfATvQuwcQkgjH4k8eQCgxWV5+bYKivvgRhicYnmI4Q+5Nh\nCCHJawghcun1cVm1q2p7LQXuBCLGNlILlTb9poKkCTBvJBXJ5kaKCWCemkUGGGlyGYmbHyKVdYkF\nOqLwpZehY0Ok4ksr0Fcl2Xvok4srrQyNZft7n1xi2ERysWqw0ELD9rVPKp0aLoTFMoFZbfI2IMwS\nAGVZw1X0b7pNVR8R2fch+nnf7t9sOy6eDnxn8/m/AD/XfH4U8L+KyI8AdwNqETlS1ZfETnSGiUV6\nZLKozGerKrHfZ+24UooaZomQJzWXiposq41uvVVbddIL0COYoZcrBndimGJX8UklZuuJYV3yG+pz\nTD0WmhBD+vN1Ya/V/vev1Uy2/ftT1QXtQjpAJFaiqeqiVZUuKuGoGRtlKRRF0j6T+WJVZnWfe8h2\nsu5qPEbY/nmGSMWFfeb5smonZp9QhsaFL7n49sQpOCm1mNu+ixiRm/fWOb4hFyuxFI0jxlFATb4J\nJIH5fKLEMlwI4h3Ag0TkgRhCeQomAepx8Y/AvwL+APhSTGogVPVf2ANE5AXA5SFSgTNMLKXCx45W\nB2FRS0sqYKQWMARjpBdlJ4WdTLiU1sxnCw4OM7JMOTzI+tILYduLxdCqM3TsFFJZx67jYh0jvg/f\nqG/7C51KzMeQUdbvl0uYQ1JLvigp5uEhPSQ9qQhTXndDKmYcLJbdsxhS4UH//vgr5ymqHvf+Gftb\n+Hj/Pg+Nr2Ketvfaf/YhZ5Mh5Iuq95xCRvzB3w+QyroSrW0/5CATIpgQuVh73PmZed476V3Lc1ZV\nSxF5JvBmTOdvVNV3icgzmv0vbbJb34Qxxtci8mzgoap6UUReA3wxcJ2I3IypEfRyTC6/n2iyjB9h\naihthLNLLLVw21HSEse8GTwuqVjsuOPOIZhZYjzGds6X3NEM3MMDc0tblQXx1eIQQjrz45KKqypy\nESKVTSSsEMYmwSmSyjrk4sP1ShqFlVoaY35VL6i0pKZiUQlFLSxrOCrNdfnSSuqoknz4KjBXohsi\nl3XIYp1jfLhjwCeU0MLBIinrlqRWCMrzDJv6HHwHjynk7UpWPqmEsGrH9O7ZrOboSmPQn02UMkYg\nItNtLCNQ1TcCb/S2vdT5fAv9Eg3uccFKqU1xvS8YafcFU/p3dolF4WJBo0eFWUMoO974mvdWK90x\ns8SsZHZSa/SrWyOglV6gM2i7xsvQCxKbWPyVvf39aUkqPqH4k4rf95i0Yq87pgazE0VCvZHqawpO\nihyruqTQpJVYihoOD7LW5bwlRl/1GJjgXHfbokja+xQil6kEMeW40Jiz98e9/3a1Dy4prz4f22ad\nJT1ycc9r97sYs7uNYcXWN+DKv06bllw6r8xG9Zl17/UW03FmiWVZw4cOhJ2scyu22w1p+KTSl2os\nAeVJ5zXGkhWXZLv6cj2mXPdL9wUIkUso/uDOIJXYKtVunyqBxbySQlKKbyPyV9EhqcX1DLNqsDJP\n2t/aSXw+G+mv526sItRaGeM+xpOsaIIjj6qO6F1pBfpeacfBmDfXSvdHVHGx52lJwT/eEkpsYeCO\n5xC5HBe+6jdIjCMqu6lu2b4HZllmrZv/cpFyOClyYwsXZ5ZYqtoEPRaN19eyloYgXMgKuYBLOGYg\nXiw6cslLYLdsV0mHBxm7e8XK5DBFLRCLP4Cw95ed1KbEIcSC2WJ99PtiJxM/tsU/3lX5uNewScyN\nD5dcoFP12et03UwhrCuv6oI6qUi9WBbXcH9YGtWpNdwvlknrTOFKK67rc1r0J2x/Jexuh+nuwT7W\nVbH6CD/zsArJJZPQ97Fz99voEIptCsGXrFwX+dAYDknMITfnsEPJpC6tBRGYz6+al9mdijNLLHWV\ncHCYscjMatbMCYZcXHXYolollzxZVY+55NK0gPULK0tpVR9jOnUI69VjdohYRPpQHMIQqQwF7sXI\nxSJEMiGPpKmu0bHYmhB8jyZ7XTE9+6JKmKUVlXYSpmSN23E2M6Ti2Fdcw71dSVvpcSoxuhOdey9D\n6k6LqcQRizcKTe5Di5ohFVJZJqNkchLqx6kqwKnOBX6QqSWX47a/RRxnlliqSvjE7XN290rKsmKR\n1RgyMEFS503Q9orNxSWVPNHW2G+PC5GLGdjaIxiLKW6ibXsDKrBQoOBYkNsQqQxNPpuupIeklJib\n8BhcQ76b0sWqc+yE4j9HF1VdkCZO7EqSUeuSmopltaTQrGe4d+NvQvEUQ3C95cbSrQwhpnIaihuZ\n8nyH7BG2zy652M/+ImMMVmKITfC+Gix2vWPqW1dS9MnFPcZt199+UkSTCMymuht/kuNME8vB5Zyi\nSNjbLxqdaoFPLjvpqtTi2lrcgDmLC7nxGAPYSV3jX4pVzaxDMJuqO1xyiemjfVLZJHhvCkJSSmhC\njnlVrYMpq+ZFJezWJXVi7CgqgjSqMBWhqrr4lUVlcsdZw31ZCstF357gE/sQQouHIa+nKXaLUDqV\nqQuGITIJSVh2+2ms7E9TWgilx3H3hZxLgGB80hbDOLPEohVNcGOjn291rn1yARskaUikcIIq3ZgX\nd0W8k3bxLheLvt3FlV4sXPWY603lG0djGJrUhiSX45LKJoTnG+HHYNVhQ7+xRDQkORw5u0Iu5S6s\nwd7+t4G0Q90OpZfJF5WJ/Hc8Av2Jesj2NITB+zFBYun1fSBLQmyiH+q/m5VhKMYptn3MaL8uXOlq\nqoOMJZPjZLLwYTJtbyWWT2mIQnkgLBdG/dF/sfrkkjexKzPHGwxWJ6hYvMulxHifXWqkF5dgrFuy\nj5A+/qS8bkITz1QPmnXUNaP9mBiPEnq5Q2QzFiVuIuZHDPh2m4YSjnaYzSuKRlKNXYc14IfyqllM\nJZRNM1VPXSyEJlz3nVgnTcwQucRIzHdicDF1zLtt+c4jft9DbU/Nqr3FOM4wsWi7orx8ccb+hSVF\nkTgTfUcuNneQxZFHMBYhtZiNd7lU0AVUpn3feKtagU56sWilF05m9WaxaUJE2IxU/EhvNwWI//KO\nqcPsBDpF+vEnKqPOEgoVKjWeX3k6X/t6oCPoUB/sNfiT7MpxJ+AdB+NBjcfJT2YRsjmEJuNQjrDQ\nRO+fK5aN4Tjw7SmhtscIZR015xAkEWZbr7BPfbiJCm1+r929YoVc3NxBedJJJi65WLtL3xbjx7wY\n4lnWtDEvscC4kKHUIjahjhnA3eA3WFWBxfJXhSaUKcbU0L6p5BKDvyqfQi7r6u2rutOpu1Kpbdqv\nlWMRUodN8Xw7LmJS2pCKc2quspCHosXQhOxnN/aJLmTjsNuPY2dxpcNYW6H+Q98R46TI5KzizBKL\nW8DOlVzAkEtZCocHOVC0wXXLzEgvRW0M+24wZQyWaC44ko91bc7LTnpxE1r6UdkWNvfYcdVhrrrA\ntelM1T/HMFQc7CSlLRdTJ+bFMoG9acemSU5am1djnipZou2ioCOXVTWcOymVedLL9DuEddUt68Yj\nhVbtQ886hKHgVp9UQuTin8dXs21qc4p5wcXsO/44HCsYdpJYK23+JzmuOrE0ZTZvAj6kqk8QkXsA\nvwQ8AHg/8GRV/Xhz7POAb8a4Vj1LVd/cbP8C4JXAOUz+nO/UCTWX3RcAzKCz5AKdQb8sK9gt22BK\nZn2XZAjHu7hw1WQ25mWWGOnFEoyb0NJVj1lsspKzLrgxxFQFU3TpLsbcPteNzo6pw9aJbXExFnmf\nkELZpJRNd7ptdLaWNiFpc7/qLGmTjPrk4ZLLSSKUPXhKxgQ/sDG2b2iMjRUIs7DOIv6zGiO42DiL\nEXObmXmAXGIYct0fc9PfYhxXnVgw+f/fQ1cS87nAW1X1RSLy3Ob794rIQzHpoR8G3Bd4i4g8WFUr\n4GcwmTn/FEMsjwPeNKVxd0BZsd2SS6cuaFLpZzXXnDPV5phJL6YlJLW4+4taVsglT7pU/C3BNAkt\n3Rcuz2sOLuetrYUNJJaxyTgcfRxfpbqYkqww1qeh1XxMtXdSnjqpJEY6SfLe9oTUbKtMgS/zZ57l\nTvPG2MDLoUJsU2KJ3GNheFIbI5WpmPqsfYwRihtP5C8MQoZ1t22XVIYmffecLnGN1X3xryF2/hCO\n6/5uYSLvtxLLqUNE7g88Hngh8O+bzU/EpHQGeBWmNsD3Nttfq6oL4O9F5L3AI0Xk/cAFVX17c85X\nA09iIrFAnFzs6qqrZmdiXbrVb+dl5Me7WFJxpRifXGwCTJ9gbEJLVz1mM+kCFOW4egVWJ6nYixda\nSU4lFYsxY7EbRLeud9vU2JaWiMbSvCdKLn3pUlSh7nuCGZVYl9tj5qjBrDRrpZbY81hXrRIjmCmp\n7NcldogTSuj5hFRG7rtjyxYMEWooOHEqqfjf3YJioT7792gdUjkpMjmruNoSy38CngOcd7bdS1U/\n3Hy+BbhX8/l+wNud425uthXNZ3/7CkTkW2lqDMwv3DO6EvbLqfqxLlY11pwV0KCtZSgVjDXsX8hp\nU4Wcz433WJtzrIncPzzIyfOa3T2jeFkuZisSSFbU7fXEgiJhmqrEYmyigXghKx+bRmifBGy/bDZq\nizTJSEgblVcHUe1tz0XbZze7E7QkY0GtMEwiU13HLWILh1h2BJdQ8kWfjPNFGZyUfS/EUB/GJCIX\nvg1rStXTEKaWkdhiPVw1YhGRJwC3quqfi8gXh45RVRWRUVvJVDQ1o18GcP4+D1o5r+81BX0DN3Tp\ntbM2BQy4kovvbhyCnaQ6qaarWtm5NneR+zbn2OFB1qZdX5D3XkbXeBwy7q6rMlmHVEI1T8Zqsk/F\n0Is/JY7FT+kyT7X9A0gla9ReJZRLc1Bdto8xTTJstoT2HI3EetLR51OzJNi2Twsxj8PMW+X7pAJd\nhmlYLbgVgn//pqqnQg4S6xDCcQrbbYqTNN6LyOOAn8Ck8/g5VX2Rt/8hwCuAzweer6ovdvbdCNj5\n9+He7/534Dswg/4NqvocEXkM8CJghvFn/R5V/b2h/l1NieWLgK8UkX8N7AAXROTngY+IyH1U9cMi\nch/g1ub4WJ3nD9EvaDOp/rOKjA5EqxfuudnmNVC1HmM+uVhPMZdg+kkrzeRmt3XqMcgTaUhG2sDK\ni0u45lxHLi6GKlQeRw+/KakcZ7ILuRz7pLKOq3G/Boq9v2ZflijztG4lEmu419KovYRVz7DWxtKo\nMoeuNWYTCGGorvxqWpbh1CxDWMfl1sUUKaXt/zyjmKU9h5G1Cq0F2nS/w8mqqKYk7LwronF4+ing\nMRgNzTtE5PWq+m7nsNuBZ2HMAj5eCbwEeLV33i/BmBw+R1UXInLPZtdtwFeo6j+KyMMxlSuDWiGL\nq0Ysqvo84HkAjcTy3ar6dSLyo8DTMQz5dOA3mp+8HvhFEfkxjPH+QcCfqWolIhdF5NEY4/03AD85\n2r70B9YU419ZJhxctoZe1z23Ixfrimy/++qw/bxuXVjLur9/PzdSS54kQIKVXC4uzSq5LKsVe8sQ\nuWzy4oyRiq+OcUklFKntwl3hu1UHQ+QQc6n1Efq9my7f9s/GH+UNqawY7uuys7GUS5J0DzCkM0+N\nJBMMgPUM+FODPccIxV5HLDvz1DgUt5/rSldDUsqQs4GVHIt52vZ/ireZixCp2O/2fvlSyxQMvROn\nKQUCIJAOlGFeA48E3quq7wMQkddiCKElFlW9FbhVRB7v/1hV3yYiDwic99uAFzV2bHsOVPW/Oce8\nCzgnInN7XAhX28YSwouAXxaRbwY+ADwZoKnp/MuYm1cC39F4hAF8O5278ZuYYrgX6Q2qhaP7jwVz\n+cZ8gN0986LtpMZbbJl1aWCahgA7oWlLKkD730XW8zRLWrvATibspGVv8rZqMWsAtdewycprit0j\nRCp+ZcRQnIJFLPeZJYcxCSWGXrCl00fbh9m8ar255qkx3Lv2FfE90xuCSZOcVHOorrTPxQ2Q9fsw\nZYILEYovXXb3dtm7Dhdjk+AQsccm+lg8R76selJKyO7hSit9FdhytL9jWSVs21bNdrJEMi5tn2Zi\nzAFcJyI3Od9f1qjywUgLH3T23Qw86gTafDDwL0TkhZia99+tqu/wjvkq4C+GSAXuIsSiqn+A8f5C\nVT8GfFnkuBdiPMj87TcBD1/9RRyS6OpgajN7rBY06qrMrb6wu3sld1xpVFYlTWZj5WIrSsiKOszH\nPI29WLY9E/eSJzXz2VEv1sXWeekCzU7mJRnyPLL3xJ283f+xdnypBQjWS4+178ON5PfbAaO6bPuY\n9NWSK/YVa2Mpl60B3xyXME/rNkgSjHoty+rWIYGFmexC8Rzt9YzYvvzKjf69ba95ZNXrpwWC1XEb\ncqZwCX61zLI7VZS97a76yyWV/QtxYnT7Y93ofck7Cyw23O+uyi1mS4wRSffdaS/Sz5OSZEQgm002\nGd+mqo84kYanIwPuATwa+ELMAv8zbEygiDwM+GHgsVNOdCaRJNp6WY2pE6ZELbvkYuNcrM1lJ+1s\nKYtKViQVSyq5KIVKgGQSZglcLFzpZcEdV5KVaP2QimRKcNwUb62Y6ms2r6KTnS/BhNqLEchQOV2L\nUN32kM3H9dqbpxq2r7juxo0B3/cYM+q07rudoIu5MSCPuQm7fQ5NelPu69SJzn3uQymCbJ981aRN\nUeMTjUsyIVLJ9rQnbYXGnJ8Pz96PMXIZkvjGnBzcz2NS4JDkfRdAzN58XNwMvK4hkj8TkRq4Dvho\nExrya8A3qOrfjZ3ozBKLSHgCmrqiHyMXE49iJJVZ0rkXrxry6zamYp4qVPTIxarPLhcJO6m0gZVW\neinOGYIpS5NAc2+/6EkxIfhEM+WaQ6TiSgX+PXTT0rhtut994vDVeEMk6P4GuonR2lfcyXk+q9uy\nxOZ+1mGZdkNkAAAgAElEQVT7SiOxaLlAyiXpfIe0zkiTjFyqnj2sC5BMWjtLSB02ZdLzc7W5hLK6\nqvZXvBHnikBKILddVyUWii9yyz6HJAeLMKn01aN+Ua8xD7EpkmqIVKbcW39/DKdhbxGBJJJnbk28\nA3iQiDwQQyhPAZ52Auf9deBLgN8XkQdjvMBuE5G7AW8AnquqfzzlRGeYWDS4Ggzl6YpJNDFyOapq\nE4eSmRoey3oiqdCRCwBpDSTs50YNc7lImKfCHUtpbS9HVUMwdT8df6hape1zTF0Vk1pi9hR7v3zv\nK3eyc9sfK8nsexBN0XuHJJ++GqxfoC1LlFSSsH2laiSWRnLpSTVU7SJhx3lrQuqwobiT0GLGV3mF\n72kY/v6yDHusuYlNXUxRibnJNX2JwXcpjpGKva4x2NgxX3IJ2VVCpDJE1r3znYwR/apAVUsReSbG\nOysFbmxs0M9o9r9URO6NSZV1AahF5NnAQ1X1ooi8BhOEfp2I3Az8oKq+HLgRuFFE3olxK356E/Lx\nTOCzgB8QkR9ouvFYa9wP4cwSS5JsHofgrr6jE2UTQGkkCyu1CEUtlHWnDitUVqLALXJR8qyiUCFL\nklaVlicJRS0mDX/hZEwmXq2y82Y7HoYklamY8puTXDH66qsVuPYVC8eAb1K7ONJK0kXfuyt/l0iO\nG3sylO49ehmR9DJDUov7OaSKchGa2ENxKiH1V6j9IVibi6uiW+nPSBXUGKlcNYiS5ScTlqeqb8Sk\nr3K3vdT5fAv9MAz3uKdGti+Brwts/yHgh9bp35klFpveeMzY7MNP2DeFXJa1cUNe1sKiSllUwr67\nYkrrqL19nipztLW/WIK5XFiXZGnrvbQR+5FqlQeX80GpYZOa5TFs6kkzZRIIZVq2KpzFgEecdTUG\nz3DvoyEZK80YldmCuRe5P5tXPfWOb4Ceouv3r8ues8vyIKNSiz3OPQ8QlFZduGM/pBZzEZvYh1zO\nY+q8UB8seuNzbvoWI7sxQhlre4vTw9klFuhNujHpJWQE91d6Y+Ri0+QfVXBUKWAkjqK2BJOAoxaz\nsPYA8xkWVeIQjAmyzJOkIRlWqlXeccWeqZNexsjFR8iAPjRhhFbNMSPyOhgiqlC8zdD502T6sLfq\nMNehYifVNvrel1pgWEoJ37N4VUVrv7EIkcwQqUwh+JDNBQgSjItYcOzYs43ZiUKqW6BX2tnvt/95\nKqm45G2/W5yWmuwEbSx3eZxZYkmad3EKuUC42NVQTIA9N2Akl6VVxxhvsQu5YF2JQ+QyT5XdDNKk\nS+OfSsk8bVbmVcI8TZinaUNACXcszbnbei9JzaWiS2bpksvK/XDTw3iTidWduyqOKaQSmiRiGAuu\ntFinXoft91g4TOsRtmzWxufoqcYsuWSJjcDvXI6Xi04laqUWt/114UstvkrM3mN33NrfWYRIxd7T\nmBuySy72t2PxUK5NJXRue0y3X1e2GduPYl38153UpxCK7zxgERufPulssT7OLLG48F9SHyFS8dO9\nhAjGrWfvptwfVI015DJvDPd2UqsbUkglodI6EvdiVGO23ovJBAA0UfuQ9iZC/5ospqYgj2FdNdi6\nLp1Ti0C5iBZj820rG57PGvE3hSu1hMgFCBKMPd5iiMzXuc9j9seTUjGFbD1Dn4+DmEQUgj1uSzCb\n4cwSS61xFYINNrTbY6nF3Uh9X5KxE4WdHHb3SsrSrPpN7i83cWV/sOdZxaJK2M06QqmcGAtLLmAM\n/Fmijs2mI5dZAuebtHGLgYnPSitDifzWCqz0VsxjarfYfv+eun2FcLLEpKxbDyjrFVbUJUfOPFjV\nJa1gkc2QbI4mGcwcSS7rJMV6IODUv4ZQ3RF/hR7DmME+tpJ2J8uQlBL77rcd+hzLRuEfaxcrlmBd\n+1O3Xxopry8Z2fcwdG/G1LbHIZyx3/rXcFyYJJRng6jOLLGgElzp9SPYzffR/FnOZ1cV4hPM3n7R\nSEcVR7slIXKZp8rl0thE5mm1UiPEwkaDQ0Kh5n/e2F12UuMlVtRdOV0/11gMllxcqSU04cXOMZVM\nQr8Z2j5GKFNQ1MKiSoCaSkuquiBN5oZEshmkzesQIZWy7hYiRwNc444Xf9ExBle96kqWfoDpkNPJ\nOvfePUdsAWW/D6nGptpyXHKJYapkcVyJJlaeeWvwPz7OLLHUdXxl7UopIbWLO7HZSbhFMyF3q7BZ\nO0HYQbu3b6lolVzmqZE+CpXGjmISJg4hF21iXlzY3yjLzKjEDkbvyjhcnby5vjS4/6RWku79H6so\nOAT7yMpaqLSmpqKmQkWQJIMk6wil+a4i3aOZ0N/lIiVhdUJeF3Zx4q/s+6qwk1lJ+6Qytb9jLswx\nuOQCcRdp/3z+ue2Cb13i9uH/9iRUblFsjfef+lBHYplCKLFVcmi73VblTdBcma4QzHKxSi6zhNbD\nK2uqHM5TWrWXTzAhwpmnSlGbv1llpBWTI8useqe4rkI4+tmf6Cx8Mom9nENuti6GaqtDJAniBIJZ\nVLbuTcJOWlBJQZ1UpI6EMvUcMaxj9xlopL3/ZSk91drU1fRonMiImtGF7ctJSC0dNr9PrhYhRIQx\nL7LYuSySsiahbu/5VnrZHGeYWOITYmiVbDFWgCgKj2Cge/l3UkMuXZLD/svbReV3fensLMMrV5On\nTLmItOowNzEjsBJ/4afHgLgHXOje+at2GFcJ+ROEf++HSMXut+Ti6vjL0rp5C0eVCTBdVEJN1anD\nSDs7CyCZUY/VVFR1QVUXjQrN4KghF1etuMlKd6pKL6ZqDSFE/DHpcqqHnasWjZFLSP0Xc8cPuWi7\n8NXS9vMYAUJX/dXvyxD867fnOK405ENE10lC+UmNM0wsMkgoQHBiWwfub6xR3JY8ns2r1u3XVqOc\nJdLaRSxhlLWwl1fkoiyq1KvvkrCopFWbte16thYwaUisOixklHTJZcxQG5IwQmTiHzMFQzXPp9SP\nzxdVGyRp3VcXy4Rlk7/tcpFwjx2hqkvqpFGHpTuItbOA+Z9kVPWCSsvWzrKopLWtLJbdPXIN91Mx\ntGCxFRGhr2oNTZo+xghlXbuVX0/enXTtOXrXsahM+TtvUo6RS3vNAQeETrpP2zEWWuy5ffVd5kNE\nGHpOLlG152i+f7IUALsr4QwTSzyCewqhTJnkQnAN4tZz6fAgZz5btFmRP7YwrsiWXBaVsJcbF+Oi\n7FLA+IQCRoXmq2tcRy+rDgt5F62jQtjE5dcilJHYxaak4vbN9fIry4SjsuaoMgb8gyLlMKvJE0cd\nZu0s0NpXau3aX1QmoBVoydpdRYfsK0PXZhEaX26J6RjB2OuE8YWAj1h9eeiKZ1npr6fWpZNeQoTi\nfnYn5SkOB+52X0pxvRZ9yTVUaMx3Phkj/BC5uufYxE4Wggik6VZi+ZSG1jJqmPdf+kkr5gmSTQGt\n1GLVNQeHWZsCxqbct5JLnmgTpd/kGGtUYj6phDBLjAeTtbO43mExTFFZxaS6KcW6fEI5KXVjvuxy\nSrmqluUipahNBgSrCjNEsSBPdow6rHE7Blo1GNCow0oKbc5bw1FpJr+QGsyfnGLXOTa2bGVEiBMM\n9KWYoZV16LkNlQC2BBNr318cBKuAetKNvU+hlPkQJpT5omj7GuqnHXPu/fL7EEJsDNrzhbwjt5iO\nM0ssqE4mFBgnlXUmQ6uucaWWFgFymSXCNTNtAymt22uoAmVZdytr6FbX53OnrG7Thp8F2Y8ZWMc7\nK3Qf3AnptOBOgGCeoy8V+naWojbqw0qr1jsM63YMjeRSt/aVSmsWVdZThQ25VU+tfOlew9B1xQgG\nVu0fQ/Cf3ZTyv5tek48hm4o/5nwp5dxB0SeTRb/QmN0XKvwVQ0xqdq/bJZcTgZhhdhZwZonFTcs1\nZfJzU4eHMOSV5A74lX3OyreXAgZ6ZY6XtXAhN6SRt6lFDNx0/EUtXC6M7eWil71vJ1V2znVlju+I\npNm3KWD89B4npRIYg71X7mTiqzzcZ+GTi1XFWKlwuUh7dhYjsZjjq7qAFON27JzfEErZi2OxhG2b\nDk2Sm0zAY2MLwtUn18FUUrFtudJKrDqj3eYXCJvSP5+Q/bixfFGxc1CQOZKVSyih/k4p/AWrheL8\n/rsYChreIo4zSywW66hh7Mu2jr7fnfBiL2i3+hXakHAneeUsMZ5dRxVcyIWd1Br5nX7bNPy1qdey\nDHQxT8ykeKGVXkya/VAdF9OfZHCledoIlci18J+FJRdXHQbm3rp2FhfG7bghl4TWxrJqX0koa6s+\na9ofUCWuXEdg8hq6tpPEVNVX21eHwNx6Ky78Qmuh1PaxSR1W3aZ9Utm5XLTkly+rOKE0ZZFduP2N\nqQaH+n/aEvZZwZkmlk0H0dgKc6jWuQ93wjYTusnpBSYNC9RGYsk6gskT2EmbxJltU9IU/iJIKm0b\nDrnMEkNAR3mXrNISDAxnyL0zJkUISy8u3GdhyaWdvDFSi9t/a8C3ROHaUvyrtPYVa5Mxv+/UYWNB\nin59lnUmr5BRel2sSypu234Rrxj8NPuuam5qzEvMnmJJJVhkzCmP7PfXbXssdsqvnmnJ0X1GJ0Y2\niSDzk5lyReRxwE9gJoufU9UXefsfArwC+Hzg+ar6YmffjcATgFtV9eGBc38X8GLgelW9rdn2POCb\nMRPUs1T1zUP9O7PE0qsc2GCdyXLsxR8qT2vhr9w6l8uOXO64YgzuRc0KwbT9bn52sQgnW4wmYLQO\nApk9zi0UZpJo7u51+jQ/3sVHSDd/UhgimCmqJNeAD/1Ax0qbFXFjY3HjVyqtKTSjqKWXxmUsGHRd\ng29sPMVUYEPnH3LZds8bel7rkMpJIOT1FZNUWo+1ZnJ2VWBDpBKSuMc81O7K0ouIpMBPAY/B1Kl/\nh4i8XlXf7Rx2O/As4EmBU7wSeAnw6sC5bwAeC/yDs+2hmPLHDwPuC7xFRB6sqtEJ88wSSwhT1RNT\nJs+pk4CF6xFjkw2WpTTJKxMOMN40pn475E3ef1smt5NcVgnTJxb73ZzHpNm30gtL2kJhpl82TXvd\n2SuyPOiyuu59CWHsZR6TYMZgm58fw+3TjWGBiES3hit1CENleMfgS0fuuHZViK4txW3TJ5WpxfDs\nNbtuui4xratOLeZZj1yGSMUiVvxrnYJ+p0YoAnIy9ppHAu9V1fcBiMhrgScCLbE0ZYNvFZHH+z9W\n1beJyAMi5/5x4DnAbzjbngi8VlUXwN+LyHubPvxJrINbYvGw7oo7NlGGJoCheIOxDLg2cd/hQb9S\nnyUa6Oq97KQ6WINkFtxnpJfzM0wVSmqgaAnPNeyDkV4Wp2DQn7pS9AlmTGoJ1WWZSi7W0L+s42rG\nKfdhneuyiC1QYgGKU+Ea5/22QqRiP08lhxi5+HClFRetRDXPMGmPCJJKe/yEuvdtzZyBa7gLSSnX\nichNzveXqerLms/3Az7o7LsZeNRxGxSRJwIfUtW/EunZEO8HvN1r735D59oSy5oYqr3tYhMVQshT\nJlQX4vAga8hFW6IB8wIVdc35mTQGekM2R1UnpcySuLrMSi/WLXmnqUK5u1eu1KxpY0Qcgpnilhm6\nV/7vQnru6PkCq3EfK4WfEg26aodgSWUsRxiMSyntcSNGcxgnFP/7GMHEFkx+O7HJGcIuw6H4mFgw\n5dg7MSTFxUjFdy4YKlPsVi8dIpfTsh+KCLIzecq9TVUfcSodCUBEdoHvw6jBjo0tsUyETyhDL/sm\n8KWWmDum3edWc8zzuiUaY7Kusd5k1l0ZOlKxK/VFJUGScQ37bhVKa9g/PMha6aV9See0KrIx+JNh\nLKZgHenFjfVwVTnuPd3JwqSaSvg1GKvDEpqcxvo7lpl56jjzJ8fQPR1yFpjqweXCL2Hsw7YTC6Yc\nS0fjq6L7UkvcrdieL0YqrhpsKrncxfEh4Abn+/2bbcfBZwIPBKy0cn/gL0TkkZu0d2aJRWW6u2js\nZfdfjk0GayxjsLs/9hu3Vke/CJQhlzwBZibupV8/JFxXZJaYv2VtAiqPKihyE/dylBtp6A6HTFyC\naYlwPl2XPiU2ZqpNZigwzk+6aUo5mxQ5tkJnQgrlkfmc7rXb5mm8wuTU572uhAKrkl1oIh5rP+QG\nHGpj6sIolFsv5CjgX9tY9LrdZ+1BFpn3PRQPNtVJYop9yPWeOxWInJSN5R3Ag0TkgZgJ/inA045z\nQlX9a+Ce9ruIvB94hKreJiKvB35RRH4MY7x/EPBnQ+c7s8QC01bEYys7X82yjpHQYig9d+g8NpFl\n6HdlKU19+4JrmoDAS4Wxu7iwrsn+NnefSzKXCrhYCHnSJxi3/PK6q0E/8NJOhOvAfT4tyTjSiv2b\nz+qWOF2kSU6a5PhIk7zN7G5ISCO2qVWsY5gfIxQIL2CmInRPp0jbY/m8fNtIKM1KLLjQbdN3V3ad\nDVxHg6Eg4zGMpY25U0jlBKGqpYg8E3gzxn30RlV9l4g8o9n/UhG5N3ATcAGoReTZwENV9aKIvAb4\nYowd52bgB1X15QPtvUtEfhnjHFAC3zHkEQZnnFggTi5jUopv1HQxJoXAatbVoeNctJNEswr0E0fa\nWJiyTDiqamOIz6BfUKwPVz1m4c9vs8RIPkXeEYxVkbnqMYtYSVk/4+1JRvX7KjDXycFcp7a2pFy0\nrWeTkBr386Zap3VFT5OctF5498E4TISw7uQ05jk4RZIIqcT8e3kcG2BoLA8lhYRhV/yQp1mMXIAe\nwbgIeYJNhU8qLoaSWx4bCUjc938tqOobgTd6217qfL4Fo7IK/fapE87/AO/7C4EXTu3fmScW6JPL\nkHHe19n7hOKu2CGeHylUpCiWdiKWz6ztG/2sxKH0MEUN52fgk4trc/HTxPjIE2EnTTiqaAlmJxMu\npTXz2aKVXtyysv61u/fGRWhy2RQ+qVjbk32fjRrM/KVJ1qrCTAc7tVdC2u7LxZYh6A51r8OfoELe\nab4X1hCpDE2UU6SVIaKecm5/vE4hlCnqPr8d+zn2/H3VmMWQetS3U7oLC7fkuAs/yaW9rlMhlzOC\nLbE0iEkuQ/aUk8RxV+zuC7O7V7TpYbKshlkNy1VyGVPtuGSTJ8I81abCpU0ZY4z8F53Yl8OD3CnL\nnLZ2n4PLec/t885GnhB0wU4la9ReJVoa6UTqkjQ1qrA0yZinZXsfjEqxb5+rswQWqyv3KTiJzLmh\nxYtvzD+ug0koiBEmZvOOuC/7/R+Kgo8t+MYi7EMISSuWwHyJ5UQDfkWQ/JPWYWAtnFli0YDtfqr6\nKzaIQ5mBQ66Z68DVkYf6N6RO63J+VSax5ZKeQd/GZITmNksqe3kzYSZJm1U5T0yiy1kCFwsz0e5k\ntNLLYpn0UsNYoimKLqOz2b4q2QxVBtwU7vOyrsZBw32jCqNckqR7pJL1DPjzhlSs5JJldVSFOYR1\ngh1j1xHaF+pLjFDGioC5iI3boQSWoej92PvjSvZjkmto+9B76UstIbiBpO51uPu3WA9nllhg2Fh8\nnIks5D1zHMT6MlZB0H+hFlnNNedqI2E0ksssMW7HbobkPNG2sJgtKmZqwCTs53Ub9T9PBRuQeamg\nlV5saphONUhrh/H7OBUnURfDV29bw31rX7GqsLpEVM1+zaG6QtZU5bTXbklzHU/Ak1z9bpKmxD1m\n6Dwu/HIJg7EmA9c3NPn7bsyhJJEhrCOFhaRkf9Hmk8uWUDbHmSYWmO41MyatWIyRil+kaQybqjBs\n+7b8sU0PY3OPgZlol3V/wt3P63ZFn4tyYWb6u6gSclEKFbIkadViVnoBm2G5iX8pV3OP2X64dhi3\nr2MYIhf3Obn2FSu12bg062qcStLZUSypOBILdUkiZn8qCfO0u2dtXJBXbncdHEdaGUtTEtq+ibQT\nqxIaUvfZCTkkrYTenZjU6vd9SmzN2PW5nmAWvtoNOnJZNx3TZIggZ6Ro2JknFtjMzTWEIVKZcv6w\nHWc41UusH21kfPObvlG/YCetG+8uI7Xs5/26LrnEjfnziPRyx7IvvViCKWqbqRkgZbkInjaIocJW\nx0HapMg39pW6ta8AaLlA6FyO0yQjl6p3P9bR6R/XCDzkMGK3hcbGOn2cElE/ZqCfSipDfYBpKY5i\n54x5Iw7BDdANqSm3Ne/Xx1UjliaL5quBe2GsyS9T1Z8QkXsAvwQ8AHg/8GRV/Xjzm2DqZhH5AkzG\nznMYF7zvVA2kL+53YK3+upP10KD3SWWKqm2KC3OsTz5su7H69Xv7RRvnkic1lxKjEttJ7cvTxIKo\nNJxmti8qU3XRRZcWpW6KYCVt6pOV5JaY9DD2/rkSi49YwSUIl+adct1H4ZIeGyOYeHLNKqJTCHLq\nxHzcSPIxUnFh87K5UgqsZj3wr2EqfKllCsm0fRshlbGAUhcnTigJcErZv+9quJoSSwl8l6r+hYic\nB/5cRH4X+Ebgrar6IhF5LvBc4HtHUjf/DPAtwJ9iiOVxwJvGOrBu/MRQOouhF9OHTypDqoIpffLb\n9T/7k+3evkkueamdMGwApUsuqTHcN13ySWWe1iyqhKwxhruGfUja4Eqb3DJv4j/KsgKMt5jf97Gy\nx7HSvL1jnOu1xnXTzgCzWNuK425MuYR0J5ruBaZJkEPSyhi5xEjFd6F1j9+EXDb5jSWXIe+p43pO\nrqPSGwoy9s8xhuOQ4hYGV41YVPXDwIebz5dE5D2YjJlPxESFArwK+APge4mkbm5SD1xQ1bcDiMir\nMTUIRonFRUwdFgpkjOm2xwjFtmPhxlzAam4j6Dy7iqIf0R5amUWJjPhKnt3SeHS1hVYC5BKBtTtY\ngrGqMWt/caUX66K7cDypQjYKl1BirrsuwQT3A8zjHkHWIaFHGnUZ/jyC4+abmkouEF5shGwV6/Rr\nkzFsESsHPGWl7z732CJq02tyMcXrDYbDCU6KXGRrY7lz0dQG+DyMxHGvhnQAbsGoyiCeurloPvvb\nh9ts1Di+1BJ6ycei5Ke+jDFS8QnFkok/oF1ycV9G65cP8SSIbg1420aWKVlWcyk1SSu74Mk+uVhj\nvkXrKYaRZLp9hmAOCtf+krSFyZaZcM25GpOOX3oVKhNq0qLukclxUmwssi5NS1maksJH1WqW4iRG\nuCP7piBU6ySEELkMSSlTMEV6iY3jGPxSBbEMw34/Yghdk9tv314yRjBDi75NXLHH+r9FHFedWERk\nH/hV4NlNHpt2n6qqiAzbStZr61uBbwWY3f2ek33nYZVc7DaLdaQUIEgqbmr8qTaWdfIdFcDlizP2\nLyxbb7FuzxC5dN/naU2h0nqIuXDJp2xsLub3CedzAOWoFOazmt29siVII7mYc1kVSy/3VKTm+RBs\nPrXTnhjcibCYpSsR21PcV4cyGJ9U39aFb9B2Fyz+NQ29NzEVlU8qoWh8e9w6xvgphDIUNHoctfQo\n5ORKE9/VcVWvUkRyDKn8gqq+rtn8ERG5j6p+WETuA9zabI+lbv4Q/Zw40ZTOTaGclwHsf9qDRwnL\n96ffNMDRPZc7cEOkMnUyWdfzpVcH3nNFpt0zTC5ZoiyqpCUXH6GYF5dcjiq4YKr/ssgMuRRF0qTa\nmK1MvD5J5ovSVBWckOQxX1QssqTnGXeasM85ZnNYh1TWDfQbGgtD5OLvi+UZm5IheR241zFF7TsV\n6wZ4+vBJ5cQI5QzianqFCfBy4D2q+mPOrtcDTwde1Pz/DWf7SupmVa1E5KKIPBqjSvsG4CfH2zf/\nfakFju8NEvMu8e0prlpqKqG4Ls3rSCuhc4B5ibsMxXFyKWptY1wsuVhYQmndcStWyKWolQu59FRi\nZVmxt1+0fSrKdGVlHCKXIdjfnGRwm1GJhd18bf6zNrvABoQCw6Ri4ZZJ8LcNYR0bxVgSy3XisGKe\nlG6fgKCk7qt9Q7EoUwI7h+BqIWKkcqISrwDZVmI5bXwR8PXAX4vIXzbbvg9DKL8sIt8MfAB4Moym\nbv52OnfjNzHRcD8U8etjigfZ2GQxRipt4sgGbsXG/vb1Jk23Rka+qFaM+bt7xSi5FLX5bMmlPbcT\n7+LaWlbJBRZV2lOJ7e2WbT6x3b2CTyx2ehPxlLxb/jE2G25aNBLmfPQUa2Mn6z9LO3YK4nmtYL0M\nCkOYkqYkhJAUENo2VJXyuDFEfr9DknqIXKZgKBgZ4n0fIxWX+LaYhqvpFfZf8bP5dfiyyG+CqZtV\n9Sbg4eu0b003/orkuDppi+NKPTFSgb60MqlvDanYSc8lF/fFHSKXWWVtJrRSSOcVJqPBlHmiXLtj\nXI0NGk+xu/ejJT/BDvODghCstDJEOPmipJilJ5s80EEocad7D6fUV7E4zhjZNOJ/KrnAqip4EwxJ\nKyFScUtg+xka/POG+haydbrjHobrKp2q+ksEZqu1fz4VcaZDSk0tkW5wx/4spk4EUwywbkR850Is\n7Z9/rD1uaELZZDK15+z3wdhDjko4qoRLhYlJuWNp0rdcLhIOioRFlXC5TClUWFTCokq4uEy5XCYB\nw77JtbWf11zI4Xxu7C3nc7j73Rfs7pXs7Rfc7R5H6D0SjvZzilnKlb2cK3vmsy1ROxQbUswzyjyh\nypONMt8Owc1MAGEVTtePNFoHxf6FYBcN/t9xMGQoH9rm4qSDBWOkMrU/FjFSSYu6/RtCrJ27ujeY\niDxORP6HiLy3iffz9z9ERP5ERBYi8t3evhtF5FYReae3/atF5F0iUovII5ztuYi8SkT+WkTe0wSq\nD+JsKPwCEOlWaqFVih+UdRoG4ClR6MAkUvGT6G3iquvrtXfSuglyNJLL+dyQi1VvHRRJI6kkRu1V\nrQZSQie1GLheZk4Kek9yOSTniDy4As0X5eQ0KaMTJtUkp2JfInMXJPa52PT5J1FWGPqR55ukbHHH\n9VBGaf98sX5NDSgOeVD6/XHb81XArtTi/tYf/0OkEsO65ZjvihCRFPgp4DGY8Ip3iMjrVfXdzmG3\nA8/CxPT5eCXwEkzmExfvBP4N8LPe9q8G5qr6T0VkF3i3iLxGVd8f6+OZJRaLsZdzXUKJSSvuZ1dH\n7hjniaQAACAASURBVJKLuwKeogIYwvHKuJrJ8o4rAHWvjotLLiZti7aqsQV9l2NY9RQzmE4uRWTa\njxnxrRospoIaKmY2Fb46zE2fP5RjKqYSWjfeZKU/a8S8uBN0rP2p6uGhzBIxcrEekDFSCWGMhMdI\nZcyR407zAhOB7EQWqI8E3quq7zOnlddiAshbYlHVW4FbReTx/o9V9W1N7KC//T3N+VZ2AXsikmHs\n2Evg4lAHzyyxjIXH+PXb/cF9UskQIS65uO2dVnEs/4W15GallqOKlSJhllx2UsG6EndFwbp4lyGY\nY2uOqoTzuSGXojaOBC7KecLli7PW7uLW+whJZa4ks5Y6I7l6r0Js4hyrAhnyujqNyfG0JPYpCNlZ\n/PfQYkztNVRe/C6I60TkJuf7y5pwCTAB4B909t0MPOoU+/IrGOL6MLAL/DtVvX3oB2eWWMbguzeG\nBrNvDIR+8FUsEthVn8DmBaNCqb+HMMUFt4ttqdpklQvgqKo5n8MyE44qOJ+bQmFHVcJOagz6Ra0r\nBIOT9qWspZfmZVFJm7q/qJXzM0tURa8/s3nFgjxYo9wiRDIhw7FNplnVJVVSUtUFadYE19j/SQbZ\njJqKSktqKvO7Jh/asu4T/VTSjwULTjFEx8aYj3U9xjaVlsaM5K7UMpbHawgxyd0dC6mXrWFqTRWf\nmEOahKE+rI31jPe3qeojxg+7U/BIjJ/nfYG7A38kIm+xElMIW2KZAPtyxSa2GMHYl2oIIZI5bbj9\nDKnoDi7nFEXSZkK2fVxkNfNZ3ZCBMEtMqd48GScYl1Qs5qlRpc0qk6RyltAmq3TJxfZzuUhZZIZg\nqkUyGLvjB0geVSZ9f1EbJwNLGAAkGZLN0UZqkWwOSUZVLwy51CWFmtxny7rLlOw6XsA0z6mxIL4o\ncUYk5NCkHYp38ffF+jIlNiSW9dhui5FLey2OyrcsZVQdNmRfHEpaelwchxBPGbFg8dPC04DfVtUC\no177Y+ARwJZYQhhyZ4TOQwfiKyR3ReSvMEMTzRDZ+CQzhJB6wk+94e+z/bL9GII9t8mEnJFl2rzg\nFYvMFPAyRa9MWWJDJoZgrplpQzCy4knlI0+UnVR6mZAN+uRSFEkb/xMimBDcOJbFMuGoqllUtJmY\nq7qgTitUBMlmncSSzVARaq2o6oJKaxZVRlFLS1CdF11HXgn12ipSX0IZen7rntuXXoZIZWwBNIVU\nLHxy8WHfuXUn7VBQMPRJJWZbnBrM6ZPyiZKLCJKeiErxHcCDROSBGEJ5CmbyPy38A/ClwH8WkT3g\n0cB/GvrBmSaWGIa8T/wXairJhM4F4azDV3OV5KsDgCbFvd3flea1aWmuOVdzVHYEs6yFRZW2gZGw\n6qprjeg2BmbWSDNFrTBbJRe38qQlmMsXZ4QjXjpYV20X1jV6lhriqJPKFP6ydpYkaySVolGDJS0Z\n2cddljJpMo4ReEjltc7qe8hA7iK0UAmpd2MY6mesr/7kPhaoOkVqiWHoXh0n+0LoPbirQFVLEXkm\n8GZMYNiNTQD5M5r9LxWRewM3AReAWkSeDTy0ycf4GkwG+etE5GbgB1X15SLyv2CyllwPvEFE/lJV\nvxzjgfYKEXkXZuX3ClX970N9PLPEoiqDRkE/CNFXUfgZXmEaybjwJ4ehFBhTMGa8dOHrv9023VWb\nH0dhbR5AEzFfUpaGYOYzQzBHFRxV2kov1p5iycR+L2ppVFNWYrFlf5Wdc7CTCZfSmvlswcFh1rqh\nupKmSy5WNeZPbG2sTt04I2DIZdezs0jWzH7ZrJFUyvZY+we053DP76+iIS61WmxCKC5i5RximJoO\nBeJR7GOkYuFLLb6N0e2DTYljycWStutmH5JWNlF/xQz3oXu3aYaDKE4wQFJV34ipPeVue6nz+Rb6\nORTd454a2f5rwK8Ftl/GuBxPxpklFoh7XcVIJTQBhCYy99gYXOKZsvIc6vs6cNUTY3ag2GTlEo91\nkzbSi7LYKyjqmmUtrfQyS4yR/nLRBUqCsXfcsexIpe1jcysu5MosES4ugd2y9dRz4xyWi9RIfYv+\nM7Eo6NRVR2XZOAo0BnytqDF/JPOe8b7WZWtfseo5Q5idncgNLHVhn/1QepfQBO1nRo7BV+sMkcq6\nKq8QgnbFwKRu+2/fidj1+/aW7nvY/XkdUom9jzGMkfFpeWN+quPMEotqWOccM9QPEUVIepmCKTpz\nP7Atdp5N2/W92HyEXK1d2OwEbvr7siw52i1b6cUa+HdSkxrGuCmbidonlV4/k65I2E4Gl1Jj28my\nmsODnL39oosfKVeLf9nvZtXbr8myqEzmgJ20oJICzQRpVGEqAkprXyk0az3CwNhrVty0J66i/f1+\nehr7PUQw7iTtL0SGCGNdMolJWaGFVaj/PrnAarE53+PKryjqBwWHJMKpGMowfqfiDKV0OcPE0teR\nu4QCcf/4oYljXdF8Ux2w31dYTw0Gq55sQyqbshQSVqW3Kk8oypTyIGsLl5nVpZnwrfRiDfwXckMw\nQ2SyE5gDd1LlUkErvew46rHlwijCbAJL+wzcia0kWfEMs15qrkuxdTu29pUQ/L73JNtlFSWKGGI2\niqnSyxDW9VgLYUhaj12bTy5DfYu59PoqsPmiex6uhAfDKX5iWIdU7mo2lk8GnGFimRY/4E/Yx0mZ\nEoIrPYytpEIDfKq0ElNLhFylY+d1V+R28tg5KChmqTn3gZngyzJp6qwY6cU38LtuyhYhQoEuyv18\n3kkvyxpY9mu67F9Yclhmweu0UpXxYuu2rxuF75KK62psV9J+gbKpcLMI2Hoz7oTc3l+GS/+uE2Q5\nrV/jHmBTEJJaQoZx1/bi21XseXxSsZ/9OjghL8ipksqpEYlwUpH3d3mcXWKpZTTNNsRdeEMrsamT\nSm/S8CaKWEyCj5D785hKbkjn7yJGKhb2pQ6tWOcHBZeZ9bYZm0jF3m5JUTeT+8xE8dvuGJVZ/1yz\nJEQ4yqVCmkwAqzVdjjCqBveensuO2N0rW3VcnmhbbjkhJZXM1FwpjwBI0j3SJCfVnLRetGlpQpmN\nXWnF3Ls+SbiYWglzE1KJ9WtTTDHW28ncHwexSb53TCDWJuY846sZY+3FECKVoZo2VzPTwKcKziyx\noDp5tT8UH+JiijQTe9mmiubuywbrORS4x69Ua5xg7/HbgE5t464a5wcFh2XWTg4mFsbYKGyQpbno\nPrm4sKRijf3zVJocZeCSy9Fu2d6X3b2CQ7rMAfae7u0XZFnNhZk57zw1pJJKYggkaX5Tm3OJrkoy\noXgcG7viSivufdikpLKFTVsTI5WhPGOxBdPUGJh1bXabOBy0vw0EB29qMA9JKzFSce/fWPnjLcms\njzNLLG1uRI8wYit6f/tgBtVIHit/sh+TVlz4br9uH0JtresdM4SQtOK2E0NByiE5ZZmwu1c0k79x\nT6YhhBC5WFLZz+ueuuqaGavkkncqsRBm84rdvZJrztXspNpKLLkoaWIklYTUkEm5bH9nt6dJxjwt\ne/1wJ6F8UfWklbH8ZUPwJZxue3yc+KvrodokY4sH//iptsVgnzcYe74zzRRpJdp+gFRCVSHdbN6n\n7gG2Nd5/6kNUoykpYNywPibF+NLLUP6idQyJQ1HHvsF3THLZ1HkgpPZxYfuRFiYy/vLerJUobKoY\noCWXZSZcyM2k70oqIfRVY9p8r7k0MxGcq5l+ld29gvMzuHYO1+5U3GOn5MKsImFGKpmRWBaHaLkw\nsSx1SZrmpHX/9XDbthOf+xwyr/6HvffuZDhGMm6SzSpPjhXFH0JIehlTfY4tkvz9U3N1xRCTEEKk\nMoW0Y++XjYcaIpettLIZzjCxDNskphLMGKbUQA/FIYR8+cdIxf6fSi7RPs87o7Tts22zVfMsK2No\ndsglX5SmgqO38p4fFCyIrNQacpklfvqXfl4xG0hpgxNde8f99pSPLYSddMEdVxp13KybhK4/B/fb\nVa7bqdnPa/azmlk6I092yJMdUk1aNZiWC6RcQrrTa99t20dW1EGSDd37TTyZ1o1xGkoQOXZM7zwT\npO7YNlj/3XFd/n1pZaqkEjuvm2TSfvdzvYUSzx7XVtWDCKRnY8o9G1c5gikEMwVjUkzoRfMj70Pw\n7Spun4/zwo3BzZpcOYTikksIoUk2Keu2FDL0ExG2ajGkzTm2rE3MyzWNH0BoYnfJ5dq5NuRUs+ON\n6mvnyvU7Jn/Z3WYluxnkyQ6z9JyRVqrSqMHqrt/JQPkv67XkqsFCGCL047gTuwuRkOu5Dzdgcwyx\n6xlaIG1SAyV0DaeBsTgsiGcyH0sMukUcW2JxMCWZXQz2RZpq6PfhSy2+3tw11o+t4DaRWmIqF196\nce1HrbovtFr3t12Go/2cyxdn7F9YOun5G3hqMYvOptJH2IPM1Irxj7l+R7n7vFOB5ck5cpkbG4om\nUB6h5aKzsdT9vttULm5mYwjbuIIeUHkyugCI2VeOiymBvWMYU23ZbetK+bGA3JOUVqa26e87FVIR\n6bI7fIrjzBJLyPPHxTrR9P6LFCKXKS+bP+j9Veim+ZHgZIz5vkrMvvCuSsxV9fjkUi0SE8tgo+UL\n63LaPIvGHRlMSv6i7ojClU5cUvE/X3CIxdpp9vOaPUcFZj3BWmnFEkldRgt+uZH3NpdVRhmd9Oy9\ntgQfIpfjSi0hhGKwxsbMVPdddwyHbDTHURufhtQylCopljdtnSzOW8RxZokFpum7N03X4mPIWB56\nAWIDPOZx5iM0aZ2kp1isTb99l1y6QLmU5cKs3DoX084dGWqjDsvCHmMxuHnI3G3GrlK1cStWWjHq\nLmfiGKkiaSP3p8Dea3sfTlNlGVKDDU2IY30JBRyeJKZI5zF7T8hmFXp/3XowoQziLqYk3DwZyFWt\nVHpn4mxc5QjGXjSbnsLCH9xTB2DIgOonhJzi2TP2sscM+dAnF7c/Y66oU6tUDsFPDnn5oiGXzqha\nNEbWspct+cIMOg+wMFzXZJ9csqbomC+t+C7GIbhFvja5Xksu/naYnrrFHROxBQgMJ4tch9jWkaLW\nHRP+Imoo7cxUNZibQsZFO743GLdbSeV4OLPEohKeKIakAd9ovclqztdDhxJC2u2bwl0hh6SydSQX\nOwkMp38fDwQM3tfm2g9vN7nGfIJxsyUbL7GOMCzJWCnFj3nJHHJxpRVrlDf/m2MC5GJziB0XU1WX\nvjddj4QH6vl0v4+rwE5DWoqNz6HUQe51xNS+m2Yv7gWmTgwWdjHmjHAi2NpYzib8wRybMHsutyOD\nNkZCQ9LCFFIZiiOwffRVU6G+D6nohtxc1022GDvOXVUeln2CcbMlg01fr606zCeVvdx7fk0UbE9a\nselbYMVI38JRV7jVI4u6ycjcBKtmbEY8oVgXFyvOFyOR80O57Y5DKuvGo0wpFwCrUkusOuu6GEqK\n6cO9v24W5k8WiMjjgJ/AFPr6OVV9kbf/IcArgM8Hnq+qLx77rYh8DvBSYB94P/C1qnqx2ffZwM/S\nFA4DvlBVj2L9O7PEogJX9vLeqs63X9gVpG+IXeeFi+13Jwl/Al8MTOihFWu1mJ4VAIYT9bno6cFJ\nWTSqOrfevA3mG4p58FUrfvCo/W8TWh6WOXVmEkuala0dv4ZcbAQ9dAZ6V0KxhGL3u9JKmuTkyQ5S\nFUZSWZrASJaHHdEsD0nmeyZ4UhLmaW2i9Zu6Mrt7JfsXlhQHCVf2cuf61ssFVuZJb4yNJVKEMNkv\nHBWq7yLur/6nSqqhcTsWrBnaH88sER5btv+273ZsrevkMDlCf+Be31UhIimmquNjgJuBd4jI61X1\n3c5htwPPAp60xm9/DvhuVf1DEfkm4HuA7xeRDPh54OtV9a9E5FoYLt4aJRYRuQA8D1OF7E2q+ovO\nvp9W1W+fdBfuoqgTocqTSQP4pAZfPC3HsJ4/BqtOWGTGFcqfXMa801Yzv/ZzKrloU+KTtiPKdTN1\nSRqGExD6GHPXBYKV/KwtxVWBhUilzQkmmSEVVUMk5RJdHnQxLItDAHRngVRFQ0Jzclmyn9dcyBPO\nz+BjTXqQw3lfrWHHUEzS9V2Kp5DJ6phZfUbLRdqW/l0u0nZhYifqI/JJueDGMDVQc2hsh56jG8/i\n9x9WF04uNqrP4txr/x3IGvXo6dRqOTHj/SOB96rq+wBE5LXAE4GWWFT1VuBWEXn8Gr99MPC25rjf\nxZQ+/n7gscB/V9W/as79sbEODl3lK4C/BX4V+CYR+Srgaaq6AB49duK7OiSFxV7eWyW5iE3AMG3Q\nhdKBu4kRgWDuIoteAKHth1ezwv+9648fWk74E4tLKKGsryFYgnHJzJ7XTgChFfaUCGaXYEIpzvMm\nVgXCKV9CpAK0OcHyZMeowRoyaUlleWjcjg8byeicIZ18vkOa5FyYXeETy6xNObO3W7K3X3B4kLPI\nzBjictePIanAV8GsSySh5+Mmb4x5W+le0k6aMYy5/A6N+9VUOuGx7Y9rP6VKqP92rPlwx946CWWh\nn3/NlFVYrrR/lXGdiNzkfH+Zqr6s+Xw/4IPOvpuBR00879Bv34UhmV/HlCK+odn+YEBF5M3A9cBr\nVfVHhhoZIpbPVNWvaj7/uog8H/g9EfnKiRdwl4YIrarFTsShidfCnYCnZGENDVD/ZXNfsj7hjNcJ\nKUtpKyja1BQ211FXcKtTMYTVXH1CGSI4n9TaaOZ5t22R5YOrPj+Rpkt+VmoEe98HJjGnK53U0t1L\nV1IB2tT4aZIbFdjy0JBKI7Vw5QqUFVw+NEkCl4ewPCSd7ZLLnFQS9vKK/TzlfJ6wk0qT3LJJ10/K\n0X5OtTD1aUJYRyIZm6RDk7O7397jdeq1+6Tknqffv1W47fh9DL8HbkJP6R1vr8WO59A52n55UtrY\n4sWXTlwyseW1TxWSmFx003Cbqj7iNLsTwDcB/7eIfD/wesCKmxnwz4EvBA6Bt4rIn6vqW2MnGiKW\nuYgkqloDqOoLReRDGFFp/wQu4qoin1Vcf6/DXrCeX9WuPTbwkrh116fCvlD+6tPmtfLdaX2tkC/1\nH1WmTK5be90G7/nXZNGTAJzrcl/2sSzLtp3Q9lASSPd4S4T9cyUsF1n7+3PZEXv7nWfY7l7BdXs1\n9zynXDuHa2bGYJ8nyl5eM09N8GMroUhCmsw6m4rM2cnOk1Y1HH4CPfw4XLkIy8JIKcsCvXJkyAWQ\nWY5mH0WyGbvn7kalJffcuYNFVVLUuTHiX39ElimHB0WvjO6VRXjiaCWwzPw/FyCQ2ELD3schqSW0\nyAlJIEPk4T7TdaQXf1y7fYyNbQubpmex7Prvp1iJjTWL0HjyjzfjatkjPju+7GJxPqvbfsbywt1F\n8CE6aQKMueJDx/2tqv5/GLUXIvJgwKrRbgbepqq3NfveiHEK2IhYfhP4UuAtdoOqvlJEbgF+cuJF\n3GWxkyufcV+j+rDePsHj1pzsY7C/s3msZo5ap93nteWuzN3qhbavpt81y7rmqCydbWa/JR0Lf0Jy\nXyS/f377XR9MO0cT7NTuuezxfv+AHjEC7O4Vbd/yBO55zkTg23xfJpK+Ihf17CgdmbhSyjzZM5KK\nJZU7PgafuNSRyeEVdFGil8wCLQFkWaCAlEvOn7+eVDIecP4O5umCPJmRJwkfO7fg0nIRJHgXIUJw\nk2Su3LfImLPVN80xfan2qAqdr1wppbz6TPvPswiMs6H+hca127+Qycz9fTeWq+a7YINW/b7F+ueO\nIx/ugscnjzwhWtH0VHBy7sbvAB4kIg/EkMJTgKcd97cick9VvVVEEuA/YDzEwNhaniMiuxgp5l8B\nPz7USJRYVPU5ke2/DTxo4kXcZbGTwj+5mxn89uVzX6ShYDwfY6sbey63IqIfzBeLGrewAXpuapFF\nJVwuEuMC61xD0X42UezLenVCCZFaLG3KPNWNAgRd2HvU76edTGqWdclRufqi76SrhGKlE0MmWZBM\n7LZUE1gcGEI5uggfvx396O1w8TL1xQUsK+rLS/Soor60RHYyMiBZFoZc7rNEgL3968x5dz9OLgvm\n6YyPHaVcLLprsddh0b+fjoNBZAKzzy0PPAd/7LhjxYyJuPp0UcmKTcp9nu6z8cdyaOHk92/mLYxC\nY3sM/vi2393+xBZXULWE5BOpXQj5Y8rts3s/1y1XfTWgqqWIPBMz4afAjar6LhF5RrP/pSJyb+Am\nGvdgEXk28FBVvRj6bXPqp4rIdzSfX4exs6OqHxeRH8OQkgJvVNU3DPXxzLobz9Oah91jSekN5Knw\nJ/h4O91L5rvGztO6F2tht1lYGwGYeArTVhcFXqiwqBLKJqX85UYl0L2c5rd+2d/Yix96ubJA5cRN\nYftp+7io/n/23j3Yku2u7/v8+rH3mfOYe6/ulZCQBMhBmAhIUUiRKFdsbF6RIS5hjJFCindJlkER\nOLhAWBWilE0FAQaDobh1zSsCY0GwKauwZBlB4qQIAl0wLylgBAj0RLqvmTnnzN67Hyt/rF7dv157\nrX7sc2bmzj3nWzU1+/Te3f3r7tXru35vaSdFV7243zWyq/V178I229rPrDPeOeJTsUNYk0nbuGtt\nQ4jN6eNw+gQ8+jjm0SeoP/IE9WM3WzIxRU11vaSqBChYrkqydUVKkzlTlVCu2bv6cST5A6TJNZbp\nMfcuM06KpHct7vp6kWrqHup77U+iPkLPxbVU3hXrqs9qevyH5NHjfOhaQmMb2BrfYZnU+YyTIdmS\nz5epT0bDix89pnx5taznsYiKQs6vpIsx5q3AW71tD6rPH8GauSbt22z/AWx+S2ifn8aGHE/CBSYW\n+KQjqGrrbHUTdwz+Cxl7GfyXXr9YfR9ABiTtZAj9Uu1uwtSoTNkmAVZ1YbPD67JJ4ks4bkwBoZfS\nf7GHJgAtZyvPGV+IqlnJO1lD5Khl06R7dVGRSkKeLFufiSMQK1v32eanrLr8lLqEG49Y01dDKtWH\njqkeW2HWJcWpsDlNKIucTdPL5XBTsF9ct8cuS6gqq73UJYvDp5MuHyAhZT+71rsedy2h++rurQ99\nH3wMjZ1YWf96IOjBh/9MnDxaFn/cW3nGx4yWsW39rOC+c/K697C/rZNPyxK6Z/6Y96HHVN982r2H\nIVm1XJeYjgtLLKnk7Kf3QEpbumPopdxL+wP/qPlsB7/pEVNoQvYJRK+0/e/d3xr6BayprNx1QZWU\n1FTspQVHC0c09npCkwKEtaKYnPY328MkNFmE0L6YzX12srprCsnbf+khTw5ISFmkV7a1ErDKuTuP\ny0/RSY/OOX96E3NjQ31j02oollQSNjcTbl7rrrMuSw7Wj5EXFenaHkPKCrM5JT18OkdHT2eRXrHP\nwJQU9aq9HjdZ6XsYg55E3RiKPRP9PKbe/+CzcIg8EycPECxr449vf1KOydlbODXb9fjQ758b21qm\nmIxaTn/MxwjZv59aJo0kPc+EycuSLi1E5EuHvjfG/JvzE2d3jJU42Po9CQfpPW3NMH9Q+6jT/sqq\nfeGSMCGFBm3oBWwnx7qEtVchQb04aZJBtiAlhcRGHplMmsmsoE6rrZfxIN++Fv/lGZNTTwZjrQaC\naHY30snqJhFfXjdxaH8J2KZcPTKpSquVBO5TND/ldEV9fU19Y0N9vGF9M6Euhc3NlM3NhPVJyrXH\n3XPMqEuhLBKO1tdYrCrSdUVSNppLubGmsf37YHFPe21FvV3hIrZAcHDE5I+jITMfnP1ZaHn8ZwJs\nTeohhAhkdIw7NGM9BTXZpq2pyGT993JIRv07vQD0Sc2XM2Qp2LqvsbI/lxjEFI3l64G/AvxK8/ff\nAP5f4GPYteIdJ5aJJQ76KDdw/IhtgJst7NBqBnVvKnCDXk3mEFbhNfxBGySQumwLIJpy3W3z5XRy\nNPJJtoRsgWAJJ80WkCxbonHQL2Ns5RyUs5Wr6uTxCjW28gYQitWX5h47gnTyAj1ydLJsmbeG7pmG\n+16Riq+t1GvY3EypS+H0Wsr6VHj80YKT4yYaaV1z3/0Z5UaoS+GwOmF5Y0N2Y0N6ehNurpD7b2KO\nrsNiH5KMdO+ouzYHdw8dsgV68oT+4kBjSytz40Zd/9hz6N//7pm0tJIt7PhxsnnPBIZNQSFtpB0/\nVd3vyqmfWWiyVvdEsmX3Xrp3Ur+HabdQcXBy6jHkyzq4kPMWJw5T7+8knKOP5cmOKVeZY6MJPgwg\nIs8CftIY87W3VLJ5GC1xsIW6xDzxQUUc6lb46mqStS+mNBO8exlTPYCTrBugeiKE8IulOxa6z9XA\nCim1E5dx51KyS7ZsJ2/8l3HIHBOQs5Ux1FFxpMw8ROKTHDE2//uThyPH9nxuEvVlGpIhW4STHpW2\nYoqa9U1r+tqcJlx/HE6PSx57tGyJZd1UENhfp0BKWUjrdzHaNHa6sgmV+3uY40csybh7HpJxdHGQ\nbV+/u3a33U3WE56DRvtM9Nh259PPpPl+a0IPwZGHw9Dz0p9HxrhRMvVk9t7D4FhPlpHFWbW9KIkt\n4rxrucR8TIncfq4jlQZ/AXzCLZJnV4TKFDzb/5GIvEpEHhaRhz/2aFODY8rkWZf9lUts0I0Mxt4x\nQuf1X7hN0f0Lyeafxz/m2EsR+P3WCm0mqYyimWS2zuMmH3/SDMnkyzVDPjNQ4r8sDGURNzGZdYlZ\nVZh1ZUnLPRf3v5M9Ni7U514rZCd76Pr1fud1/0Ny+TLNnVhjv4+N19DYhv47EDhmVIOItJUObZ9N\nKkNEeIkgpmgsv9zUiPlXzd8vRyVN3k1oau08BPCiz/wkw+ED7Xc9883Aqg76anjIVJAu9+yunhlM\nYis4Jgx2T7NyK952myefQ8hGXtW2wCLptpxbMp6TWSAmr/ZxuXuZLvd6ZgsJkZvb5psW3Cp/v/Gz\n3Fcijz9GkqXIMkX2UpKP3SRbbDh+NMdqc32N7mn3Z+wfply9D/bvqUgyQ7YwJIcLkqMFydUl7O/B\n4T5kKVy5Yq+nMYtFrx+2NLfY9UPnnxBfe4yR7URsjXVP+wW2fI9Rk29orNel1UbVGNrSuq4EubqI\nQQAAIABJREFUDhYa41pG7/OQf7Q106V74fdwiPxvlSkMon2gnmoYJRZjzGtE5G8Df63Z9JAx5hdu\nrVizMb/EQbpArn5cf5u2fQderNpses77mGMzqcLRJok02wMvo8RWfP4EGpgAOhntS1CbSKCBOyRV\nK6Mvp5axZ5Omsc3v6sxsJtGt+1n172dCCpXnEBad6t2PnvPDVBOW5FfuQcwDTUTYKWaxj+zvIVf2\nkIMnSA6vI3snpOkpsCBbJCyXGYulVeAPDhMO7q1ZXKlZXLHEku8bkqMFcrSA/SvIlT1LLmnWmcCS\nDNk7oofAczMiNoqsuf6tqMSq72xOJG2vuyWbXZ6FR3ohUquNHX/6ufRk81FtB4DkiR3fegwFF1VD\n8g0t5ExlZa62x7ceQ1om6L+H7h0MiqHfS7h04O+AqZ6k3wJuGGPeISL7InJkjLlxKwWbidklDowY\nNuK9LM2AtZ/ZIhE/dySGrXBRRzRuYIeIR5oBncdj/0FNpE5WoyKLCIQl0w/LbI9j6kE5k2o7JBpQ\nnt/xUFoNPYmOyajlCd4HN/8Gch+043+RXiFZLlnsfSImySDNkEVOssjJFimSJ9y3PObah+05sube\nLw+qHqksr9Tb2soih+V+u9qXxUGntbQ3qL+y1mRSmHVvPAFbIetpkg0/k7mLX9MtWvS985+Jvp8h\n2aCfs7UVflwd9+R15Oi0ZL1g8Vfw/sID2Fp8tN/3NJVAWLQiqnbB4sZTNTx+z3SfozCz8ozuZkwJ\nN34l8CrgacB/gfVdPAh83q0VbTpiJQ6G9qlNxWl1Lfhd6OXqJ8IlrKv4resSyKrmbzfo18FEst6q\nzyOfoOye6j+UUGaTyWQrAW9dZVE5l+nNqHxzkSZ5737qe2nlcMlu3eSk5VmmN5XM40mquVQsU3uf\n0/IaaZKxn97D/n3PQfaOrPayyHumsXuXJxx/sCBxxRSv1GR5zWK/Jk0N6dWsr62kqSWXxGorki17\nWsuWJmDs5011s8132VSb3nhyz6SsRSXzVUDVJPT1n8nQ+BjCdrjz9pgJPRc93v1kVuiPeffcFmlT\nu81sL6jaCd5sk5yW0x/foQoUWk4Hm7zpxpHBlXbR4ymVJLhAPK+xf5ExRWP5RmzU1a8DGGP+SESe\ncUul2gGxMgUxlHXNY6vj4Hd+VjhkbTmSfimSMGKlUvS20Atp/16r38a1onAWctLLYo/VX9IIlR5x\npUP6MnSy6GzycXSrZHs/s6h8PrQ8QyU99Da/bMdBXnH/8mMUZs3RlQdIkwyTLZBG68iWGZKnHHKd\nJLMTXLawpi9ZNoSSJ6Qff0jytAPk6ACe8TQ4esBqKYpQKqmtOdKoPB2l7Rb1msrUXN+kHJeLthyM\nuxY3tvzaVeESJOfTStcRxtiY8Z+RLl0TGu/u3juit9/7lScs+omO2wTXVbYYHzt+lYnQuzcF/fF/\nPvfaYC5MJv8UYlkbYzbSrMKaNpVP/kptI1hXwp8fb4dShl50oC306Io8riL1hGyxQQlWLPaL9cFw\nnS6/KOWQrP7fftFHdw1hmcMyjr2IY/JBdwy/FtWYfKEioPr7fpXb7ln4hQbvWWQ8tsz4hMNjqrrg\nKH+Axb3PxiSZtXCkXcD4QW4XGrKXkRzlSJ4iRwur2dx3hNx/L9x/H+zfi+zfB3tXVeLnmqKyodsh\n0+lp2RQNbQjl8XXKtY1sjSlbMFR6RUKHipieB2IFKfXf8fsNbrz7ci7TrEf0Wm5dg66sO3PnELH5\nhSn9gpNue2g8j0EfK1ZU8xLTMYVY/qOI/CPgioh8AfAN2JL6dzXWtfCfr4Uv33/RV6WuGDytHD10\nA7NXDXarLL00v42X0F8k2y+RlhX6ZNdOCsrsPFbePyTjIunLFiJTv3x77Jjd/ZOd5NOkMlQmXZdG\nzxO4uhCevmdJ7TkHG2r+gqP8AfbufbZdHaWWYNIsQ5YpZl11ZHKw1+apyD1HcN/TYO8qsn8fZnnQ\n+Ey2NZNQDbd1lXBSJBwXCY+sEh5dw/VC2rG1quDkNGt7h7jrsPe4u5/+s4H42NCIVVrWz7RH8t6Y\n9++9g5bRL+9vt0mPcDoZ1Lm8BU+4Und8bEN//PjVo909C7V6iI272L0+Ky59LB1eh82+/z3g72HN\nTT96K4W6HVhV8AdPhAeM318j1DyrLJPB/t2x5mCh34b6dIRIyWFqT4pYo6QYQs2+/GuMTeY+Qv1G\nNCHHGkz530G/e2WsmZOWRXcE3D8oefSoZFWlrKslhdlQ7X2Eo/x+63fJlrbvyiLvkroaM5lc6YiF\nK5ZQ2L+XKk0o6hNW1XHQB+Ds/8flold5+rhI+OgKHl0LH7vZEcnpSdYbV/o6INyQze8Wqe9lqANp\nqAmXD3/s6OZs/nNwiMnmE7yPUK8eB5/Q/LE9Nq7HOrD619Wet7k+3U1SN1i7xHQMEktTKuVNxpj/\nAfgXt0ek24OiSHj/R7qQQ93pULf7deTiBmFS1m1/7UI59UJ93vWAjLWb1d+FOggOvSSxF78/aYcn\nYLcyDiEkm39cjaGWxhpj8unt+rNrOevue1rUxKyxN/OU68sFdZZweNW2nt183E1gjc0HXgAb0sQG\nbhwcPmBL42ObewHB/BRZHLSksipvUJg1Rb3aIhNIKYxwUqQtoRS1cG0jPLqGj94UHjlJuH5twclx\n3hCL/X95UpAWNVWeUGCvA7bHU+h+T3k2IbKCbcLod/ZMJx3fb3Ed607q7xc67hChjS0sNGKLotA1\n6bbG+n6fJ6kYc+ljAcAYU4nIJ4rIwhgzMQX37kBVCSfH4ZBen1CSsibBEko6pWXkuqJY2hWfG6RD\nLYL1KtV9VxQJeV6zieRnTXnZhtrL+v3ntVyhiX9oYgmZBf1WxSEZQ0TiXvDlukl0a+53vlET5MAz\nKF1PeeD4+oLFsuL0pGB135qitrb6kyJlU61ZJiWV1LYcyGLfEgqEkx4X+5g0p6pXbTXjbVKxcI5n\n7ViOmavc/WjJc7M9kRXtb92E2/cNxnq919l2u21f0w5P7NuE4p8j98a4W6j4WpfWAjROT+JTz9AC\nZKxlsob/29gY24K6ts168aTUWMaK7orIp2IbdX0W8HpjzPeO7SsiPwv85eZn9wJPGGM+U+33Cdgy\nWW/QxwthiinsT4BfFZG3ACduozHm+ybs+6RFXQunJ9vE4msnQxPcENzKs+225aEo9aRqJwr98kPc\nZKF/42T2r2EMscnINy+UAxOAPVc3yfmk5JPOkEbiiBv69zqbed8B9tTKf03OyXHOyWnG9Ssl1zZw\n39JG++2lK1uFwEV27TcarEp6bPNTskVbwdj3oYTCnjU6p7P0zJix5zR6rWpM6YWO269Y2ONWjmSX\nKRvSnpY6pMnq/7WG7p9Tj3GfZICG1PNBbT2E0Jjx71Vo/LpFXOx7f3EYu8/FIlWa43RT8hgMJtiG\nYC4mFt19DHgt8CVT9zXGvFz97p8Cfj7G9wFvmyLjFGL54+ZfAhyN/PauQV0Jx9e7SVEPxOW6mL1S\nDmFognDH1+TjyMatkvREMEQe/kuUTAiP9CcLLdMc6MnLvYAxLa2VryESLUda1O390mSSr8tZ9z3P\nE06PupIly5OC8qqd7Fal7QFf1MJxmXC0sESRZ/ciiwPM8rQRcDvp0aQ5RX1CZcrGWT9MKkOh1CHN\nMqHeuv+h8eNvCxGv21bmSX+SbAgmhClEH5PJ/aY3lpdpVMMKIWZydWNbyxPFwPf++5yp8eaI2CEr\naso8Id9U3XU9uTBadNcY81HgoyLyxXP3FRsC/OXA56ptXwL8KUq5GEKUWETkp4wxX4lVh4LtKu9m\nSG3Yf2K4DpA/0Q1hLunolx/6qyTWFUWZ9lZ/Pnn4arx++ae8CLHJYu51OPmDRLmMrMhHNJO8KRTp\nXv6517Z/Y02x7Ib28fUlp/euuVGsuVHAcZFwb5WwqTYsm0Zpqa7zFUh6tKYv66h3zvoxTUVjkcBR\nbtjUwmrfXt9mXfTMPqfZkuVJX0Nu71lAe9P3SeMKDakss+Ak6caWgyZ6e9zt5+Pgn8sdX//OjeUY\ngs/wpBsvPomEjhUjhdBvfNn9+5evy954GTvObcIDIvKw+vuhptYhhIvuvmTicafs+1eBvzDG/BGA\niBwC34bVcv7hlJMMaSwvFJGPB75ORN6EV9jAGPPYlBM8WRFqlFTlSW8Qu0EbG7yxARebnPXvQ8fU\nq38fdZZsObFDst8JUvFNLxAnFf+7MS1paOIYQ1bUFIu0dcK6CKU86VrTthioX2VEbIa401bqskly\nDPgnVBSYzr0AG+l3/9LmOe2ljlxS8rxug0VOl3nr14PtZz3lGZUzVtgxkyh0Y6pYpO04ccfWcmhy\nge33wn+GoXHqj5dimbbX7r+XoWOG4H7jyz5lHwf/2s6GWSVdHjHGvOicTjwX/z1d0WGANwDfb4w5\nlolFNIeI5UHgl4G/BPwmfWIxzfanDNxAn6P2+gNeD+DQBKBfUH+7Typ+JJA2D+iXbgzueFN/PxVT\nSUWvjCE8kbljuHtWLLN2NRn7rcNZV5OpRPrHqwrXTktx/05Lq6GUHnE4hEgFujwORy4claz2S+X0\nlvazixRbqwUFdGR51useIpQp8Mf40AScb6pBIvDHi5NtjFymwr9f50cUdwzzi+5O3LdJgP9S4IXq\nNy8BvkxEvhvr1K9FZGWM+aHYSaLEYoz5QeAHReRHjDF/f6LQdyWGVtr+xKiRlHU7+N3KDuyLFCMX\nDX+Ax0hFyzK2wgwdbwqmaita5tBkMUQq/jZnzItNGO4eDk5KO0yyy9SQi+mVFQkiW2BEGi3F/rM1\nvlJOipTjxozlE8hxIN9jL+1nht+/NCwSmyy6l1qCWW8SssxsEwxpFxk2YVwBw6adxtke33d7QvdX\n/04W6MbOmFxTx8sQuUB8vOjxP6ThTNFgfNI8D5xjSZfZRXdn7Pv5wB8YYz7Qym3MX3WfReQNwPEQ\nqcC0svkXglRiE+JQqOGGtCUX2B7MoUnAf7mctlIs08Hz+hFX5wF/kgi9QFNWd7fbuallmrOC12VH\n5qCmajPrbSZ92iY8OoQ0lxD6JUYMRW0zu69vYC+tWS7WnJxmZJlpQ3IXy4rj64uWXPYaP4zT6vSz\nu9Wr8dC9nkp2TnOJaecaQ4uokPbij8EhDSdEMj78MfZkQqzoroi8uvn+QRF5JvAwcBWrYXwzthPw\n9ZGCva+gbwbbCRejAXMARmTU/KQ/xyb1MS1iF5xX3HxoZTpkThiblIb8QjBMzruS4tCkNRaK7K7H\nT9KbUuOMJOs57Yt6xabacFxmbWmWj636ZLKquhplMFy2ZJF0pXqsPFZ7yUugce67qKqT45zDq5uW\nXNwzPD1atsEO/rOLOaTPI8ppV1OcTyqxhdTYWNnVJBaTCYZNqnfIxzJ8pEDRXWPMg+rzR7Bmrkn7\nqu++ZuS8b5gi34UlFphGKH7M/XlpDS4UVGsrIUKZOimHXrYqT0aja3zMcZZPmaB2IcmYf8UhRjTa\nZKN9P0mTpe9qWEGgsKDqoui6XRoRalM1WfZrrm86E9jHVtISi05+vJqbUc3IFfjsazmmyXGxuS7r\nrGb/wN4HFzm2WFZsSIP3PXbPtNlH+zqGzGFT/HEhv8WQxqvH1dB4h90WIjoqcRfimUIwl5iOC0ss\nLjo0Vr5BZ8E7lGXS02BuhXnKP6f7e+g8sRcptn0sagfipNELK44gRtS3QmsZQhsUoEqZwDap1FTW\nfe+1v7Vaiu2hclrCcZny6CrlQ6cJHzwVbmy2NZEbG+H+PdAlZ/zii67ar41Os07+RQLXC0tMNk6m\n5tpNW9Ln4LBvl1+Tt2HJGj65OK3F9yk4rSUfCQs/K/yV/pRFFHSLt5A1YIw0zqrN3EqCMSbckOyp\niAtLLIj0BrivoeiaSkWRBAnmLBNlSFvZZXUfCx0OkcUQocSIwo8qG/vdVMw1H8bIJRhlp0xAxTLl\nSmN+WHiaRC8aTEWBtW2UTdUzgT2xTnlk1WgrN+Hxx7tETGe22j8oWVUlT78irfaiz+33V+mgtZ+O\nXKDg9CSfTC7QJxhtEmuj7nTOFOPO/BhiWksowGPuWA+9X6Hcnika9phmHSKjs4S5X+IiEwvTzDSh\niq5TsaszfCqGMqLHVlxDpBKaZIbClsciwWJw0XQu+W9M5pBD1Z8AHGmXeUKVJ+1EFioj4pzyDpI1\nRLHYb7WVmorrm5THVhmPrlIeXcOjK0sq157oyKgrPVI0n9esSuHqApz2MjVwIE/6mgsUbba+Lu54\nzKJHLrtqdnC+5KK/A4LBKWdFm+Q4kVyGMBRNdr4wgy3Nn0q40MQSgl9uI1REUdcvCtVSGkNMW3GT\n35TKrRpz1fbYizhlYvFzaIZIJVZBeUhbGfOvOPgE7aLD3OrcfvbK4NRNS4TKmp9cfaKqLkiTZTB3\npapLCmPzUlaVrfe1qmwRRb/WnK6RdXKawX7JXtZvc3BVpYO5XBfXRK53HzxyWVU1WVa3tbdOjnP7\n9zJndZJSrbd9C6HoLYez5Gv5CDnzQ/lNML1isE4SheFafWNZ+DH/YwhPwvItdyUuLLHISGSQqwLr\nV+WNkcqUIpVTtRW9ug6RTIzI/NXqnFDhOavVWGWAEHxflM4o19rKXPhJlNpJ7LQVGNZKq7qkTiyB\nGBGk8bEYEaqqUDXBMtZNg7JNbfuoFEXSqzXnru2UvGdWvZHWgDQkYbGohL2035k0BE0ueWnDkZ32\nosORT8l7LRwG79uUjPVAAu5YDokml1ARzKnail91e0rRyPa3M7SXsei4W+F3qttW5099XFhi8RFa\nXTtyiZHKEGKT/JC2Egpt1ufXCBXVi8kQS2rchVRCGJs0hkjFIVppdiDRL/adu0YrV7VVsr2obR/1\nynV/lII6qWz5fLbzVspaWo3lxoY2cTGkra6znNOTnDy32sVysYYNgDRO/P6CJkQqOpnSkYtLptTa\nixs7i2XF6TLn+Poi6HeZUpZk6hiYmh8SIpVQcEys+vVWmf6JWvlQxWIfPrnMSY6+xDAuNLFMUcmH\nSGVIW5mSHOlk8KOWfILp9c9QWdhnsQeflVT8l24sD2GIVKBb8fpkMdd+7rQVd127BETo7OheocnG\nlHZ6Yjs/7h03iYretRyz6AeB7JewgaMF3ChcW7FhaH+MrXHWJVNualjlNTdcxntmyPO6NY2dri3p\nVet+FBhMf95DPrWpIb2hc8WeR6g8/nmWIQqZy0Kk0ifBy9DjXXFhiWViLTUg3hNiDDpKJhYd43fc\nc9CRaEPndRPyFMdtzO7tMHeFNnfSjk0UQ6VbYivtobprMfkWA5eXkEK5AiBd7pHWtobYMi3JEhce\nbPu3u+OGJti0qK1JrPGFOHPVOrOaxlEOm7ofMeYQcu67aDIn+6Y2thd8DnuZtOVgtPYSalQ399nq\nkiowb5IPja9dCF6b5OYsMKZoLTFSGerSeVYYpldouNtxYYllKmKd9Ka+aL7DdCjkUhOJIxo/1Bms\n1sK62qo+Gwr3dJhbLHIIMbmd7H6oaMgJ6yNWlsSfUCrvfvqRcf0IpG6SWC7U75KmVpgkpElOmuS2\n2nWTY5CQ2u0mZ5neZJnafV11ZNcH/VRpVz2z3rpqTWIOtgZYxTqruedK3UaM7aUdwbjM/fa+JnDP\nost3AdqcF5ex35aDOSrJsrr1vRRFEjWvji1YNut0K4dkTuFTjdi4mhqgEiuXNLjPSGUA/x0I5bKN\nNSO7xDAuLLGIDJsjdslRGateHPOr5HntlR3ZJhhfHvei+5PrEKn4+89ByFQX+12IXKZMSj6hTCnD\nPzbh6QliLzW9iTtNrFaSkFpSKW33bTGm3Z5KQi5d3sle1pkvfbn0s0/Kuufcz/OaspSWYA5cT5as\nc+zrR+dI5TCvGzOYNL8RDvMuosxd06oS8qTmxmLdq5a8WactyYTuTajpWEs89BdTu1TVhvNZ/Q85\n2ofyUIYixkKLvFBi9HnBGEb79jxVcGGJBcIORBjvlT0H80nFrW6lNzmHfBi+qWDMwRmzs49pK3PN\nA6EosKkIFSkcklFXmB7SCB2hLFPT/gNbNj9NclivMKVt/CZ1SZrmpHVGmmQs07LRDuwx3LPbWtUH\nJi/tJyuKpCWYzTplfVBwzxUbNeYc+87s5TQVP5nS1TkrakswyzSxWkth99XmsfUmaU1i7pytrIH8\nrFhliTn18M4arqvPCfSKvDrEItYcQj2V/N/GSMUf476J+hLTcGGJRftYYpFXcLbaYOeRvRvKQHY1\no9zL7pc2D2HOZO3OEft7LBxaw01KvoYVk3VK5dsQYqtpTdpu/smaRl/O5NVqLK7cRrkhSQ8Al51f\nskxNz9cRgiZ23a3RtZp2UYaOYBrJgdrKtpCWwNaVtCQSssu776xGI+ylCdeLzjzmHPxFXXOtGd/u\nPviLFk1+c3Oozgs+oTnoVsq+30dDP/tYaPRQ+PPtMH3VcBlufBGgXy79Us0p1zJWUmXXsi1Oa3Hy\nxCoAxExiGnMm6zH5/BdwzmQ0NQETphOK37sDOlu5Nmu4wpC6e6QjFTHGmsEaUxh1iRjT87Nkjeaw\nl8JyUbeapvN3tfejqLf9XE2raU0w+wcFZSmNH8ZqLrZ0fheCvExtmHOoGrPTYmyJGGm0sKQ1jzkH\n//XCmsiKut7SYrKsVH3p488mFgUZQig/JBTKH5rItcbk76e1mJBsoSCDkPYU86lc4nxxoYkF4uQy\nhDE781j0VUjlDv+uIxdfJdcmihC5xMq0hF7OKXWbhuUMmxRjBD0ne38sjNmHdtpDd99cZWPd5Mtp\nLFSlNYMpjYW6JJHOz7JM663IMHd9xTLthZwXi7RHMG3FZforcICDw6JPLkVfU8mTPrEsU9NqXPY3\nSbs9TwzHRdIWtlxVTZhybn0wrueLy4Oxzytt65BZstnO24Lz70AawlytwTeZgefz8mSO5dQMoa9d\nnhFN19GLgIuhlwWgnfchM88Uv0KoS92crOOzDFgnl3/sSmWdt3JF8gnGVmz+92Mvfuz70PUXy7T9\n537j9+cImeOma3wdeWdZ3ZqwnM/CEkbTlrghEqe1mHIN5cZqLJINdpoMyZNvqvbflZOCKycFeycF\ne8cFy5OC8kQ4vr7g9CTn5DinLIWyTLh2M2FV2lwXXTXZOe41qeRimqCCmoO8IksMB3nN/XsV9y0r\n7t+ruGdheMYe3L+Eo9zwjCuG+/fg6Vfgnis1B02YsqugPOXeTo3OcpP6VN+MHo/6ubl/oe/1Z3/8\nAL3xFQomuB0O+1sFEXmpiPyhiLxXRF4X+P5TReTXRGQtIv9wyr4i8gYR+aCI/Hbz74ua7V8gIr8p\nIr/X/P+5Y/JdeI1lDLs4oUP+jNCgPc/V0K7hoOcJrbH40WF3exZzHoki3KxTEppExaIO1jpzFYad\nBuPMRcf0S8LsH5Rt0uNeasvoL1MJVELehtNg9FrR+V9sqLJwvQBXOdmtPdattpm1Y9F34p83Yhq7\nH2J/XueOmWDd+NTlm2Lv6XnA+ljOrrGISAr8MPAFwAeAd4nIW4wx71E/ewx4LfAlM/f9fmPM93qn\nfAT4W8aYD4nIp2O7Tz57SMZLYvEQMgNoDNmZp4THOsQGcV+Wzv5dFElUJt8kpjH0UvnYypfxZHQv\n4Lac4Rdv6PrGJg0/Gi72e034Nn8kaWXqmdHm8PfMnhn5uhqvYxUgnOVJwWmZtYmMm3WT8b9fYotP\nuiKUCYe9BUgCafiClmnNMoUssaVo8kQ4LhLuWUCPXBbWNObye7LMsLFBcdNNwiPFH31MjbjSrSpC\nZmo9FobKwMTg+26myvskwouB9xpj/gRARN4MvAxoicUY81HgoyLyxXP39WGM+U/qz3cDV0RkaYxZ\nx/a5JJYJmDJgz5p46HIc9N+wPfBjL7wmlyEMZWGHyM6f4N3551RiDvlJpvpOhsrDaPRML8tuXxve\nmwDdPueV/ezLFiuo6Rz5scrNBSmn9CslTyGXpUcuLt9mXUlDPO7Z1I05LcEnF/d9WVaUpey0Oh/r\nA6ThV5oYmrzPW3PR2Io+886hC9DeITwgIg+rvx8yxjzUfH428H713QeAl0w87ti+/6OIfBXwMPAt\nxpjHvf3/DvBbQ6QCl8QCDGcga8TqJmlMiXzyV/56kDtCGZLrrBgjF5imveyCsVXgVCJxCD0TLas/\nURYznKfJQMVgbSJNG0d9jDh0lFjoN2lRsyIPkstetk0uvmnMEUrPHFYBSns5KRwx9cllk3WtkF3N\nMf8a58CRTCxwRedu+dDh0NBpLjHsoq3osR8M4w9c83mFIhsza/w9Yox50bmceDp+BPjH2AH3j4F/\nCnyd+1JEPg14I/CFYwe6JBaFkKodK2sxpyrq2Kqss22HSSVmBjvLak5fV4hkYtrLXPPArj1mHGIT\nRohQ0qLT2FyEk8Ysc9gA/HbEDtaPstna7ldD0OTSks4xVOtkm1zY1lyAliR8rcVhmRqobKa3+00X\nkWTJJdStEroimzoDv4Be5OHUasOhfkM+tKbu4CcHTwmHPiti79idyu0ZwAeB56q/n9NsO9O+xpi/\ncBtF5F8Av6j+fg7wC8BXGWP+eOwkd4RYROR7gL+FLSj+x8DXGmOeaL77duDrsWuu1xpj3t5sfyHw\nk8AV4K3ANxljjIgsgTcBLwQeBV5ujHnfmAzG9E1NY9n3DkMayVwHtW/r9e2+/mpt1wE+1tvcvZhT\nGnXtQi4wP/luq2z6QGBCL5co4mdZnWOrcb9YZJUnlHnS1mubAkcu2nSUFjWrk5RymVAUCacnWa+n\nS54Yrm0suXQhyI2/pWo+N1hXslU+JEuMMqclyiS4TS4AJ8cdyWlycXLPaTA3tOrXC6r2fI1f0X3W\ni77Ywi8Wwu5jSGN33+nAk/PytZxjEcp3Ac8XkedhSeEVwFecdV8ReZYx5sPN7/428PvN9nuBfwe8\nzhjzq1NOcqc0ll8Cvt0YU4rIG4FvB75NRF6AvdBPAz4eeIeIfIoxpsKqaa8Efh1LLC/dnPY1AAAg\nAElEQVQF3oYloceNMZ8sIq/AqmovHxPAmDCp+AN3qJzFFCLRgzLkCHfnyvM6SihD2srYak6/bGOO\n/alVcKe+bHOTKWMReDFSCXVMrPJky89ij3uOzKJQZ4lNgGxyV4YQjBjz/BP5umq1LdfTBQpbByyx\nmsteah3ynd9Ik0tzLI9UlmnNukq2yKXraDlOLiEC8BErYQTTneEhUvGrBMQIZVeE3vEp79edQDNv\nvgYbnZUCP26MebeIvLr5/kEReSbWT3IVqEXkm4EXGGOuh/ZtDv3dIvKZ2MHwPuDvNdtfA3wy8B0i\n8h3Nti9sAgSCuCPEYoz5D+rPdwJf1nx+GfDmxjH0pyLyXuDFIvI+4Kox5p0AIvImbBjd25p93tDs\n//PAD4mIGGNGYzRjTYZi2CW5cAqm+Hh20VZ09z2NqrX3b/c598klRiIxX4xD3OwxTC5TJoxYtQP3\nXbFMz2WlWQ/049DHdgmSc7UVjUwltjrZiyJpc1xuFHXb5tiFIR8XCUVtOt9JxCyWi2lNYj655Eln\nXhsjl816sVMvoKk+Cn9hpUnlLISix7Pb343zEKHs0mZgCoyRWT6+4WOZt2IX2Hrbg+rzR7Bmrkn7\nNtu/MvL7fwL8kznyPRl8LF8H/Gzz+dlYonH4QLOtaD77290+74eWya8B92Njr6MwJuzPCE3yUwjl\nrHH/QyGQQ+G8Q2HRfja4g87OHzOTzZF7KqZ05Yz5UNrvPULR2kK1TlhnSbvyD2GINEIIVaXVARfn\n0Ss9K+q2n4t+rllmgiYx297YkkrM5+Lyb+LkkrTHsNgmFzfRuxI2Bd2zCBV5nFvCKEQoQJRURitf\nDERl6kz9WHRhsUy3TGKXmIdbRiwi8g7gmYGvXm+M+bfNb16PtVH8y1slhyfTq4BXASyf9oxRQon5\nHmLmLff3kAYSiqxyk99UQhmSOdbVcmpI6JzAAy3HnJdvij9rKOFTX8uY+elWontuC7W+D2PM/zL0\n3elJxmJZsapq8pLWJGZhtRbAK/3STPxGWlLxv3OEZLUW+7eFYVUKy4UNQ3YlXxw2pKwOcxtwMCB3\nnxzrniam4RMK9EllqpYSI5TQOxnSVvxja3I5D5xXguTdgFtGLMaYzx/6XkS+BvjvgM9TZqtYxMIH\n6at1OgrC7fMBEcmAe7BO/JBMDwEPARx+wqcYmB+yOEQqU6DPF8oN8SfdqVFVfjMtN/nO6Xe+C6k4\nhPJdxpIpx17Ys1YTmCJ/TWWDinXZFvW5Mp3ZyhWhdM2+9Hl0y2iHUPn2IYLxe9BAl4vT3qv9smcS\n29SwqPoOfRuOnDSf66C2lYshzyqOS/cM+pn7beTbfslmncbJxR1Pab4hDd8991Covf8bt30XUvEJ\nxf88xX8aMhFfYh7uVFTYS4FvBT7HGHOqvnoL8DMi8n1Y5/3zgd8wxlQicl1EPhvrvP8q4J+rfb4a\n+DWsr+ZXpvhXTC1bKvZUjE1Y/gppKDdEb9/Fj6LP4/eTd6v5KeTiY1f1v5+TEydM3xkbwxC5TNFW\ndjZjZIvBr0NmHk0uLjR3Lvzulw621D2sN0lrElskUNSuA6UzjaH8LjCUSGkRJpdVZU1iRQ37B7ZQ\nZohcoN8zJRRZqOHCd6f0QJpCKuFe9f3z6WPOdcafp7/FmHio+lMNd8rH8kPYuJ1fEtsY5Z3GmFc3\nkQ0/hy0vUALf2ESEAXwDXbjx25p/AD8G/FTj6H8MG1U2CXNDFccmqalRT/7xxhzhY8dKyrpHKpnn\ni3ARS36bZBhf6e2CoWTKMfNjCLM6FwbMfLHrabURRyIjZOKw17w1oZIkbrINmcY02cSqUIfgZ6Cv\nqho2tD1cwLTay6pKuGfhm8Y6cgkmU3rkUtTC1dwed1N3/pYQuQCwnFY9YcxMrHFWUgk986mRlJc4\nO+5UVNgnD3z3ncB3BrY/DHx6YPsK+Ls7CAGEB+1ZHdoaU1+40N9j+7lV3RCpuP/b0u2BDo27rMjG\nZI3lwIQ+325o01BVF6SkSLZsvRaSLdvv7P8l51EIPJZgOwX2flVAE5DQ1Pi6voFNtq29rKu00Vri\nmksrl7ofrv/LXmoTKK/mnb8lRC42HHrONWwjKeu2kOcYYsnIc0Oax6DNYeeVgFlzfkm6T3Y8GaLC\n7gjEhAtK6hfejxCBfqltXzuJaStDA1M7B0PJkmMmpBCp+BFTxSLdMoUNkcoQaYRMFg5DyZRnIZIQ\n+U912us8llVlnafrKqGqS+qkOW6SWW3F+Vaaz7XZtNFj66pLKBxLthx63nP9RtvVICpOT3LKsmor\nEy8XdeP7Ea4uwGoaYB370jjoDWUtHOQVVLCumoWGsffjpEi2QmEXidWKrraKnCUXJ5OuhtyXcfr9\nmILYAm8uqczNhbn0teyOC0ssEA9fHVtNjsXlj/kPtEakI898k0FsxT/kGxrKhtbJa+6cY9cxhxhC\nhBTa70wkMyPbW4cbu0ftJs/K1FR1QZ1WGBHEkQtAkmFEwFitpTLdfe71SSlcP/lwBFMMU8nFHwMn\nx3lbAsgVLXU+i3VWs1zUFDVsarGaRkVj0nKO/RpIe43CTorUZunXfkKlYVXZpmZFbWuKQdcoDLoA\nhl6GfsCkNWbKmouQ2fYsmsrQs7gkl91wYYlFnCnMc3RruDyP2MCa4pQeerGGCMYnl9hxtbYSmnRj\nocWx3JwhjURjbpXksePFMKUd7hhcxnhRW42lrO0qfZFWllySitTTWGqa76hYV7YEvZ58z2rKm9NW\nQUdS9c2J3bXZbqNOi6lZlVp7sT4TX3sBgqTi4Nok54k1iS0SW2ofaKovq+tRIcShMaoxlKA7hl19\ngbFFmf9uhlorn1efo0vn/QWAmDCpuM+tT2KgA2QMMVKJZcH7BOOTiz7u1CQxfQ2uPa5OXothTsG/\noUKW55FYNveF1uY+V9bFEf+qsu15wTTmMGG/LqmS0vpZkmXrWwGnqWzbvIq6035uJ3SEndOOdE6I\nLf+SsX9Q2tyTZuJ32gv4YclOkxvOq1j0Hqsttb+pgQ09cnF1zRx2Id5Qhnzs+56MapwNLfb8Yw9V\ndjiPhNeLjAtLLBplnrSEonuUa4xVaIXhlylU10pDa0ehrN+hY8e0En0tPqnM0U5g3E4+JSxzjg0+\naPNW98w9s1gYtQ7Z1eddVXYytQ5rQ03VZeErUximarSWsiUindxWlhI0g51ldaudxaHEPL/Srq/J\nLJYV155YcHBYsFmnrA8K7rlitZdVBXup1V4WSV9L0YmVYO/PuuraI2+RC8LRAtjoDpTbvVxCuT36\nOiFOFn4v+6EK3NoEO5QnNbQw89/PW0EuhjuzKLkTuCSWBppcYHppiliIsZ+wqOFMV64irg+fXELH\nHLoGN9mGtBQ/JHNsZTmUnXzWLplTCGXIBLYVkOD5kDTWmwQOPJOM8p0Yka4cowi1UdfZ1HhyWo+b\ncM+TVGA7EmksJ8RtC5nMOse61V6K2jr3+wRjj+HyXxxC5poouVBz7SZbvVxa+TxymVpvz13r1MVK\nbCyH3p+pY+xSc9kdl8SiEDIZaVLR2squsfA6ektrSS4kuK3BFCgOGYLrj+HKmOtrcMeJRc+MxfSP\nmQx8G/mUBmJD1zNkNpzjP4phU3fhnuvKylnVBZUUNppYZ9zXhXLcJ71jrDfxMh+xCMOp8MllM9Bs\nrJXJ02wdwRRF0movi2WYYPKkuyeLgLh+i4AOllzyhLb0C1iT2BaWWsZp5Dv3/fIXMbEF2Zhp2sd5\nkkttnDn2qY9LYlEIldQIYarvwJ+QQyHBfrn1tvTHuqIgvmIL9rf3zF4wHJIZSxib+iKOBTfEMKQF\nhV72Oa1vfYQmJ2fSWldJO3HWNA58+gUqbZixDTV2E3BZJm1EWCiXyMk4ZeIaG28+WccWGM6Jr7sj\nOo3q4LBoTXfOnFvUtkbYXmYd81qMTpOx/3dZ+v6kqNobN/4Wv/uj0+j9d2aoVNGUhMoQ5iRZzgkG\nOUvgyEXFJbEEEJso/R4qbhvEQ4x1MUgduZWvS4pltlV5ONba1bc5Ozl1V7/Qfg6hSLMQfC1l6KVy\nq7lQMlms/euc1WMoHyeEocl51wCCypRbFZBXVT+HJUQqWu4pJDgUhRRK0But7Iud3DUZXXtiyf5B\n0QtT1iYyF0HWJVh22Es7Il5V/QQ/+1vD3hXYy4S9tGyJxD13R2itfJFWw5pgdrUGTOnjcydJwnCZ\nIPmUh5Hpq1/fOeivtsZCjEOkEsOYTD7BaHJpjzFQt2nIaR8KD43ljYzJ6RPMVEKZkqcyRCRTtCe3\nAo9lovvwQ40hHojQ62/vLRpiiJlbNMFM9d+0++Am9UXPlKtbYYN1vt9zpe5l8HeVk/vQk+JeaonG\niW0jz4Q8sdrQqtFg1ptk6z3RDcP8vvZT6+VNDfh4qmobTb3FH8A26/pRY8x3ed9/KvATwGdhK8p/\n79i+IvKPsf2tauCjwNcYYz7UfBfs7BvDhSWWEMbMEm5iDkWehJIWQzkm+bpUpq+w1hJzQGvoCXvO\nxBOKNPMJxS9LP7eApcZUs9cYoWgz3xiiYalJZ+aZSip+mfOinhdKO1V7GbLln8WMw7qiKNOWYPoL\nI2H/oOTaTZqSLUAGNwphLx2t49qXUeW6bGo4wmp3R7klGoDVfhkgmr5fRJvOxgJXdrkvU8fZrUBt\nzqdFtoikwA8DX4DtTfUuEXmLMeY96mePAa/FNkScuu/3GGP+5+Z3rwW+A3j1SGffIC6JhXlO1rGk\nRdgusxImlXG44AH//P5vNLlMWbH7L2ysKrKDDjJw0MEGU3wtuxIKbJNK6Dz+JOPft3biPAOmProQ\nGU8hmPNcXfvHKqAXCOCy+MFl0BfYApT94pYOISe+01oc8qQLXS5quNok5DuH9aaGVUM0q6qLqLSm\nOSHPa06O89FirjEz7ZyqDNFjT9Qy7zBeDLzXGPMnACLyZqym0RJL0zb4oyLyxVP3NcZcV787oBsA\nwc6+2IryQVwSywjGypTMIRXYDmuGrpZXKCLNx3lWZo0VsIxFYPmhzDCsXQ2ZJoY6QJ5FQ9IIBSzY\nmlqGXAypJKRJTprkJKRQrhoh94LHyxO2fBAxxDS9Of6XqRibUPNN1S4AfO0F+qHJzgmvTWN7qekI\np4EjGp9wdGSZM50dNeVlippWo8lLWx7m2k3360570SVi9HiPNbFziC3a5oyn0HM5r6iwmXksD4jI\nw+rvh5p+UqC65jb4APCSiccd3FdEvhPbluQa8DfUPqHOvlFcWGIx0pk4/BDRUPHJKcmDsR7zvk+l\nnZyX2SipjCVI+s72oVyIkFlqKqn05A5USJ6CqSvy2KTsa0dTzH/O7LOX0pp3bNl4Q5pkllBCskrW\n/taHC0HXDb5C1zZkRrwVBBND7BxuTGnTGNCrO5YnlmCu5n1yseHK3bEWCW25fg1nSlwkrjyM6RGM\ny4OxsOQSKg8TwxQLQEjjnoo7mMfyiDHmRbf7pMaY1wOvb3wqrwH+l12Oc2GJJQZ/8hoqW+I7pGMR\nYCH4pLI6zBWhbCdkhjQVnyi07PYc4aKIeuWnZbyVpDKEsckhZJ6Yk4zoiiXmiSUKXYQRICFta8e5\nv7v/S7LEtKXk9zI7Eed53Xsm/gQUylWaem23AzqQIzR5uwKXLnIMutIwPhypHAYSJF2TSVeT7NpG\negRjQ5j75NLrmOnBf8fmYOxZ+M/hSZwcGeu0e577/kvgrVhimX2+C00sOkxXI+Y3GJukYTwCrFja\nW+5IZXWQR7UUnZA5ZnN259dhx778MT/HWAHLUCb/XMz1q4xpLbFz+LK5e+l20eVLElJSyUiT3Nop\n6u5ZpUkOlXXy23+mdf4vF3XvWYW0Ft/kOWTqu53aC2yXjFksq7aviq495kKF9w+s/8WRixb/am7J\n+jCvOcxrsub+ll4UXd6UkckT4bhIWg3GJVpCVzVZl4fxzWAwceE2cC+nBKSEoizPinMsQvku4Pki\n8jzsBP8K4CvOuq+IPN8Y80fN714G/EHzOdjZd+gkF5pYoE8uYyvj2AAL2XxdJrwjErcNdsvwD1W3\nnYKhyJmQvL6c7u+pzcFCeTbQv8/6XDHMMVvETGzunrn7upfSdk90/pUWdQmlLd0rxpCQkid7FPXa\n9odPTGtOcyVQ/GdSeSV6Qv40mGeaGVo16/sJ8UTSUBUGjVBelg5NLkuhLEtW+yWrUnjGFUsuC0XW\neWJaUgF6n5dpTZbYH58UCcvUcFwkKuKuIZemsKVL6nTyzB3zYwQdKgXkcCsI5bxhjClF5DXA27H2\nwx9vuu++uvn+QRF5JvAwcBWoReSbgRcYY66H9m0O/V0i8pexq4g/A9zxhjr7BnFhicXIdoJhKKR1\nbHANfe8Xt4S+03t9kDeEYic0fyJ08MkF7GSgI8JgezXvy+a3xh0qXulkndtt0vfpuP1i53ZlaCC8\nkpxinvDb/YLSVPKaLKvZy9REKNa/AvQc96ZcAyB1SZrmpHVGnixZpuvWL5MntoyJ7oVi/5dW3ika\nmb7O2MQ2hthvp+Q0haCrJvvIMmPvY1qzqmyXyU09VPLFYpnWlpizqu1UWTZdKm1ukDtARy77B7ZT\npXt2i6UNmW5NvDtqdiEijxEw7NZZdQi1aWrWnQOMMW/Fmqr0tgfV549gTVaT9m22/52B8wU7+8Zw\nYYmFxnnvk8uY/yDkDI8RlEMoXFZrKSFCCRb08yLUQuQyJPuQBjEkq77usfBnDT/XBqYRjC+Tw9ik\n674Plq+JmMJa/0pddqawckOSHtiIMZOzn623/CyLZdVOfO45MNHvE7rOs66U9X3ddWJ04zlUn0wn\nNW5qG93kk0pZy5amkovpElKx0XiFEbIkUeYyj1zaTpXWJGa1lkVbzHJoUTQVUwnlvFodXzRcXGJh\nOwckRCpDL6fb3+3jZ8BDeND6WopeXcegv3PmCqfJOBnHqsj6yZRDq//t4pXhF2ysW6SWxSdAh7GJ\nYhcnqiZrl8PSmcJM379SNWawxhRGXbbmsISUNMk4zCpO8oRFYv0DB/slpyeZmvhSimUaNcs5+Jqr\nvr6p4y7k6xuaFHWQwVB0oc7a98nF1htLWFU1ednlqIAts1/U0qto4AjFT0Rdprb+Wi6OgFz0XYIl\nFUsuq6pm/6BsNXXty4JuzMzNXYlpwL6ZMGaaPhOMTK4scLfjwhKLJKYdrMBW34gpTYX0pB6bNPXx\n/IivGKnEyogPEY+WZUgGX3vQGCuxP4SxGmTQn6yGSOYs0Tj2PluCsBqFncD2UtOb+Pz8FWcGAyzB\nKHNYQsoyLVmmRoUtS1sq3j3HMXNYyBwKcQ0jNg7GGrXp/2OTYixJ1sEnFzvBW3PYUd6ZwxaJJYsQ\nnC8rtN0RzEGur7Ejl1Uprb9FX9tmnbLO8jO3KRjSyP17d6m1zMfFJRbxSIL+AJ6yQtcImQ90vaxd\nB6ebGKeWGx9zdPpaVuh7mN9LfMrveiHTy07W9YhMtw2NKcyUa8Qzhy1TGw+7bEhlzLcQ0sCmEMrY\nfRz6PkYmul9LqFRKbIJ2ZfsXy6rRzLoWz84ctqltKLH1PfVNYesqCZKL+9vXZtaVbaFsYdjLBOgI\n31VL9gkGptUJ8xcssZYSPqEMLejmoDZnb2l9t+ACE4uJ9lcZenljK0D/hdUry5Bfwu+JMgZX9mJX\ngpoyoHclFYcpJgNdwDNGNHPgm4V2kt35V5QpzDeHQRfpNEehmhKdNYVMQvdG7ze2utbkMhWhBZE2\nhy0SrbVYc5j1myTk2fj9T8USz7qyhNTlwTgZnc9l3YREZ71y/DoPRy9OgKBZGsLmxpiv0xHKpcYy\nHxeYWMIDZmxyvJ2DzEUeQWeKCJGLX7zPbYtBay0x88uc6/QJWkOv9nRGtY50831GU+GbImPQ2kXm\nOe/bxMhyY30t7rMyh1F1q2zr/J/XrCnmZ3OYqu2FoCfDoZW1X65e3+upVQy0OWwvrdnUtmBlRwD2\nHId5bSPAKoCI1tJE5VXVhmVqKIwvu08uXUn+GMHoxUmoJbJDTEvR97BP2vMKckZhpBcE8VTGBSaW\n7VaqU17wuWrx0ESpK826nIHOnGG2Jh+fXGJ+lykEM7RiDq2E/eP7303xFfnE4SYHvX2sAKFvc3fb\nuuupJmlOvVIuTlPZNNPRsrTmsOZr6+TPeqabPHFtFPqRSzH/kG92mbKo8e9DzMS1y8o6NC7G8l20\nXE5rIbMmsesFaHIBOMgrloES/LqUjtZaSOtG4wlrLqu85kZRRwmmV3Xc8+fFghp8Ytbvn//7S0zH\nhSUWB78fxN2EuSv888RcUgltd8Q4l1xuG8pNtCDlHMQCIs4TZz1uSGsJHdMualw+RjMpJ1Zr2fa3\nuOivsNbiIxedZBkzi3XFK/cPwjXo/b5DY2bHS+I4f1x4YoFuQvQJJrQ9RkJdE6Nka1to8te+Fa25\ndKjACwjw1ejQcf3zuy6HCeFVvF/aIySbjyFS8V9S34ygr8Enxl2I0ndEO2ezk6kspS2jsa6kzZ3w\nu0NaAZoY2iRDsiU0rYpDcH1ZhuSNlZeJYRcynaJB63HoQqNDcg/lv/i/d10oaWqJHTVl9lcVrKqk\nDUEua+Egr1hXOhx505LMaQnrqju21QqTpp6b+5e0/pwbqnilKwETu2Zfa59jfnTjNMvMuS3e6vrS\neX8hEXtJh7SaUDmMoeZfvX0jlXW7InxVa/oagz9gNakM2c+dLdonmClBBUOkErNL6+1+f/T+77a1\nllC7Ati+v8534zSh9SZpJiF7bhvmqshlgEAcqrpkXYVfl6FJGqaFEQ8dL7QACZvSmjpdgfESGr9D\nfikf26TXLXzWWQ3UvRbHm1pYVynrSlpSccU/Ncn4jdRyMZB22sphXjclYxL20oS91HCjMbvlJW2Z\n/xhC43goFNsnIdfK+RLzcEksZ4BPKrE+LbGJPZSI5vbtXoZtR33vGIG2rj6pTClX7xNMjFyGouK6\n30x7Ee3vOl+RbxKLIUQqOrmPZTi0dlV1E1lVF5Da9gkCYXJJMqp6TWW6yctvUewjRihTzC2x6x4j\n+aHvNut0lql3zLfShyUXK3fRJqJusm3tJW+ivlx2fmFqlSTZYZmabsg3+S6uzpjFtmlMk0vXvCzc\niXKq2UsTzHk53I2Ru9bsPheXxLIjfNNXTEuJdbtr0VQgdgQzNfzYl2WIVMayk0M9aIbIBeIx/rus\n7uaQSUgL9O/xOssbWerGHJawqbfvf1UX2tesLmIxagY7pyq1QFwTc5iqQY4d97z8Vm6M6YCT05Oc\nsqxYZzX3XNnWXq7m1jTmNBBHMC5LH1CmMmN9NU35F4CD3jjrk0tRW60p5HPRgSy7XuulD2Y+Liyx\nhFYPY478KWYv6GspU8vFO+1lbJL1w3f9yUOTyt5JMdizolTVeKeSizPHuG1ucnF/69XdEMm437Xh\noepahvxUQ4SSb2zuQlLWrdbSaxpVW41jXUlrBqupbOhrkkHafx2MCLWpqKmojF1ta9NNr37Wuqtm\nEGq05psZNaaQaswf567Pv/daU4ktPELwI6h82UPmSV0F2fleDpTvxWouhqu5NY8d5jVF7fJWEmjI\nxZnI3D0ujLCuIhUwEtoKy0cLcD1dssxwcFhwcpyP5u5MJdrz0jLMZYLkUx/6IbsBONS5LmbvHzLL\nhMrpD030mlz8cw7J6Mxw5YmwXBfB1shb5/JaDYcanI1pLuMvyfa5Y6Y87Vj2f+uCD2L9ZPQ1up4s\nvvN2VSpzSbMKbk1cTjtx/zuicVdRF6yrrsz7qpK2Sq0LNXZywja5AFsE42PI3xELsHB/hya+2H0d\nIhUf/jP3TUruuh3ZaYJx+15rNJhNLRS14Si35jHXbTJELhAnlWVqKGqrqdiFgv2cJ3DPFVu88vQk\n5+CwCC4E/evTCAfRXGIXXGBi2V5tauzqOI6RSjZTc4Hu5XUaQgiaVPxWw/mm6jUa071hdO8Z93ms\nTlenlfRfwDmrMH8SDK2mYR6Z6HtbLGzY7LqZjLWcfR9LSZ1UVHVBmiyRbIlpyMRFhNXY7wFFKrS9\n3LW8m3Xai7zTXTzd9QzB98P5Dea0FqHv/5Bfxv3Wv69j8DWtkCkopHXp/CadF6J7uawqOMo75z70\nycUhpqmATVJdV9JqLWCsX6ek8fMUTeOy7aoBIfmnmCLPA+ayCOXFwNREPH+whcwxGrH2qaGukk5z\n0AiRy5CcmlSunBS98/SPvU0yTmvR5GK/39ZaNLRMU5uQxbRAbZ7RZDKFSHz45jB7HsHtYk1hSaut\nBCPDskXPce9+U9TSkoo2s+nr8sl5aqHEoQALRzK+1qLha2gxsg7JNVafberCIWQys4siqz2sDwqK\num58Ls5MaiPHQm2NfVhtRdrPq6qr2WaP5xaLllx8InEO/ZC1Ycp1PZkgIi8FfgAbmvejxpjv8r7/\nVOAngM8CXm+M+d6xfUXkacDPAp8EvA/4cmPM4yKSAz/aHCsD3mSM+d+G5LuwxDJm74xpJWMTRcj8\n5UNrDiHk6yoaMQZ9c0iIVPx2yKHzh7pEwniJ+jGSGUJIC9STnh/BNkYmQxWEQ+f0D9GLDEuyHrn0\n/Ct1SWGUKazcDt6AbW117F4OdfP0CSqktTj4xD7kTxkbv1N6uAy16AYoypTN2t5LRzJdEcsNrs0x\nbVZ+d07nwNeld4At/1bbGye1fpbrhSUXm6wJLsHSRR4CnBzn+JgTcn1WnJePRURS4IeBLwA+ALxL\nRN5ijHmP+tljwGuBL5mx7+uAXzbGfJeIvK75+9uAvwssjTGfISL7wHtE5F8ZY94Xk/GOEouIfAvw\nvcDTjTGPNNu+Hfh67Gh4rTHm7c32FwI/CVzBdj/7JmOMEZEl8CbghcCjwMuHLtjB1DJo7w6ZNaZA\nN/tyzavcpOiXU/cn93b7SEkNveLSPpUQek2lGkIrFmmwL8gQ/BXxFPPAFHNiKNBhqnbiw11LyM/i\nJ0muq4S91JJLnVSWwp1fxfOvVKZmXWUUtTXlOJGGTKJOjhC5+NpJ7NnF9vfvfyVlD0wAABmgSURB\nVMx/MIVUpvaAcRg6Xu+6vGhHF6FnTVQFjlycY3/VmL6sz6Q5vkcux54Z1ZGQ01Q2tV/LrW8WG/Kh\nxq7pSYoXA+81xvwJgIi8GdujviUWY8xHgY+KyBfP2PdlwF9vfve/A/8XllgMcCAiGXb+3QDXhwS8\nY8QiIs8FvhD4c7XtBcArgE8DPh54h4h8StNf+UeAVwK/jiWWlwJvw5LQ48aYTxaRVwBvBF4+KoAx\n0dXKrRxcPrnMneAd/Ekj5FPpnXdAS3GY04Fw7sorZk7UWspcQplDimCd7tA5iG20V+fAl2zZfu77\nV7puh04sHdXm+1c0NDmEzF0hUtH+L+gHA4yResjME82jmkkqPRknRj3qgJS+xmDJxd4ap70kbTM2\n2CaWLRl63+tWBn1yKUubb6MjKt390QVZfUzJ/5qDocVsAA+IyMPq74eMMQ81n58NvF999wHgJROP\nO7TvxxljPtx8/gjwcc3nn8eSzoeBfeAfGGMeGzrJndRYvh/4VuDfqm0vA95sjFkDfyoi7wVeLCLv\nA64aY94JICJvwqp4b2v2eUOz/88DPyQiYowZHJVipvVwcNil+VRIa3Hbdz1HyHQU8t2055qgpZyl\nsVZMPh9jYcIwTzs5qzzrStivS0hoHfidsNv+FZdBDp3242sK7ln49zc2puZ2P9SYYsYdTM49R1IZ\ne34FcHx9weHVTWsSK8uEazdtJNf1DThy2dSwqFxNsM6f4pOMztzX311FmjbU4QTK0xP7PvjpAu66\nzptMzoBHjDEvulMnb6xB7sa+GGtB+njgPuD/EZF3OK0nhDtCLCLyMuCDxpjfEelltT4beKf6+wPN\ntqL57G93+7wfwBhTisg14H7gkcB5XwW8CmB59RmTTBLavBLqSx56cf2e7n4/dx3mG2r+FKqCOyWy\np1hm5Ouy58PRWsqYHyXWq2IMoUluLFoOdjd57YL1JoGDujFldWOupgo68N12W8qlI5RV1c+/2RW7\nkEoox8RhKMBkCKHnPGVxoBc0WUDj1EiLmtVhvhWlZ/0fKmO/tqSwlxryxJq2FgmNk16iBOOXhdlL\n6UKRFx25dL2AXB2w5rx02r8zZZ+F9G8DPgg8V/39nGbbWff9CxF5ljHmwyLyLOCjzfavAP69MabA\nmtd+FXgRcPuJRUTeATwz8NXrgX+ENYPdVjSq5EMAR896voERJ3tgIvYjaEIRNbqnvO7n7s41l1Qc\npmSoaw3FnSvWuTCEs1bhHXLsDgU2+Fqd2zaGGCG5AAiWKqej7kKFCyNUptp24GM/62rvhZHRUi4w\nT/PbpV+7g+/v8jHUVRHGG40NjbO5ZmKtwfW0g7wGuox9V8wyT2CTWYIpakswnYkr/Az0s3FEs0jg\nKIc2FBnwo8V6pjFSCvoNws6dXAbM7zPxLuD5IvI8LCm8Ajv5n3XftwBfDXxX87+zJv058LnAT4nI\nAfDZwD8bOsktIxZjzOeHtovIZwDPA5y28hzgt0TkxcTZ9IPNZ387ap8PNM6le7BO/EGImUcqc1rm\n6hLkjlz0MTVipOIQq3kUklVDk1foGmIr36HeLHNX6aEclKF7PoVIQvsMaTs6UmrVvNTWrNWdq+fA\nV9uc496v++KSI6dCjwGNKeQylLjqY0r0V2yc+c95aLzpa5mqaepIR5fU6SdU7h9Y7SVEMEete0ba\nsOM8MVHCd2TkyEWX3HdVkf3KELeFXM4BjWXmNcDbsSHDP26MebeIvLr5/kEReSbwMHAVqEXkm4EX\nGGOuh/ZtDv1dwM+JyNcDfwZ8ebP9h4GfEJF3Y2/kTxhjfndIxttuCjPG/B7wDPd34z95kTHmERF5\nC/AzIvJ9WHve84HfMMZUInJdRD4b67z/KuCfN4dwLPtrwJcBvzLmXwEQY0ZXyFWebBGKPyHHzVJ9\nctHQZjXfUa6bEDn4lX61w1FPWr0IsAChTC2KOLWXio8hPwrMf0mnOOdDPiwtQ4E2I5a9Gl/rKmGR\nqg2NKSxYUn9HuGcQc+D72uwQfHJxiJkdfUwhFff3GLn4OVpz4I7pN7kD2npjPsGAUS2hpZfT4sM3\njzlyWbiS+xt6pjF93cfXFy25wNk0Sx8xv+4uMMa8FRvEpLc9qD5/hP5ifHDfZvujwOcFth9jQ44n\n40mVx9Kw7s9hQ99K4BubiDCAb6ALN35b8w/gx7Aq2nuxsduvOIsMWlOZEh011Bo31vJ1CqmESkv4\n5g99fPcChOQPnSN03BB0j3p/n1C4bSxT3sk4hJDjG+ImplhYt65/pmXXSZIuL+IIW9qlqgvSQN6Q\nLeWyW3DDeQZF+JhrUgmRSqxytdaQ3f/nle/heuaEcO2JBQeHRVtvzBW0tHm9NqnyettzuHPsx6Bb\nUh/lNorsRiEcLSAvrfaCamJ8cpxzeHXTkgucf2TYRcEdJxZjzCd5f38n8J2B3z0MfHpg+4qZbOrg\nr/BhmFCGamUNhS1OgfapxHrIh/IVQia62DXEJpQhxJIfx7KXd3khNakMmSBDZkYHHRgxBj0ppUkO\ngcZRy7Rumk91ciwX9aR76Ad8zLknmmT1cXTocQxD3w+NgbEmdWNRU0MLB13RwT+HD13Q0jn37e5d\nxJdz7Gu/S6jHy97WKQxFTae9ME4u5wUx5sIQ1R0nljsFo6LRfLPRVAe2v2rfhVzqLNkye+njR8+r\nIlmc5jKmCQ0d8zww2iJAYcpq3ncy6+t1GDqX/u6sPTVCORVDNdy0DDEfi0bI5BIjl10wN6RY47yz\n03WnT33/tu9nvxz/qqo5ymlLwujIMYu4aczluSySLpHSkdXtJJeLggtLLDBOKFOK7+1KLqG2tUPd\nAWG7dIc+lyOXqT6bIYyVaPFXs1MnnqkTo76Gnl/HM6EkZR11ssbMaqH5PZXmNSg39rjpAWmSk5qc\ntF63/UL2UhsKG5vA5uaxTEHoeFO0Fo0p41pjTpLlXMSSPUNFLbXvxdY/C/d76UeO9T+7EOXO0d8n\nmM6xbxMp3QLkVpDLWMDQUwkXlljqRFqTUezF8ydgv2mQLrq3S16DmziHSCWULewfw1/JTyGVoXDV\nmF8l9nsIaytTtRIfsTyeLVNkE8UzZg7rTZDNZleLKmnIKonY/R202WzbvNJHjNQcdjWPzTWJwXxN\nZc6iYSgib8wc6Ue3aZ+OX9H79CRrnr39+9pNWvPY0UInRHZwGfx5YiJ+mO1M/VWTSOmixUJFRi8x\nDReWWEwimKclZNgidWP+DZ3cdatKX98qM1VwUh54Wcb8KvpzzBwXwthEOESIu5K32zfLupVt3nQu\nXKa11UySHDEGajuxiDEkpCSkpEnGMh0u6gnbK/oxcgkhVkvOYZfQ96mYkg8TChkfC/eOYSxC0ff3\nhJqJrbMaXRbGaS8wTv6hfBeruZRt2f/Tk4w8r4PFK3dBKBL1qYoLSyxJatg/2FZyB/0aKkwyllsy\nJ5cglAS59dsduteFyt37q0GNWJ8KH3Mn9l1W1DGtcSyXR8MlhTqN9Eq2YbGs2MusCeQwt02lFumi\nJRDqsjWFUZcxaxewXdKlnYCbENxSmed2IRcfoQTdoXDjGHSUV+xe+guGKSYwn1xiQTFafhjOmWqP\nNUAw+wdlryzMJuvK8fuOfSAYnuwIKE+60vs3mlyXLLNFM2+lX/KpiotLLIlpmxGNQbd/9cklBr3K\nGzMJuRXSWTFmHtHkEvpO/z8F/oQWO/cUc0yMUPyouDmaiybwLKubciF2tbpMrVaSStZGhJlyDdjp\nKE1y0jprTGTbGovLjdEVpnXHzqmRaUOO/TFCcRjKrfJzXobIxN9/KHTcxxTNJeY7m1sp2xEMbJeF\ncWHJm1aU+ApB57v4fV1cOPJysZ6dEBvDpY/lAiDNau65dxONFtouP2EJZmhii5kOQgmRIfgkN6XM\n99yIHd8sNmRTP0sk0Rwy8f8OkYr7PGaG1NqKm8Dy3Cbc7TWEkjWmMGcGS0ihXLWmMMoNSXrQHnOp\nOhuuvLpUWltx0OSyi9YSKyE0FK3oB5Bo+Yb62IeuBeKkMqdyQqgk0lgIv4+QU18vjg4OC68UP7iC\nln62fgy+2cz1ddnUOt/lEnNwYYklSawpLFTltCxl0Lmt4RNNyB7tTywhp/15Y6j7Y8xX4ncVHOvD\nvgt5uHPOWbHmed0jWf+e+xqhM4G5e7xYVo1vpfOvpNKYsUh7/hV7cfaz1WS25VlvbDkSVy5fayu6\nCKjfnTOGsaKgQ76nqdqbe5ZjlSMGe6zMwNQ6eKHxH+p+qeGPn25B1pGLbfjVJxcHTTJOa7ERf120\n2FFubMHSfHsxcYlxXFhiyRJrm11VNetN4pm20laTGTO9uME/1rAK4trKVDOYv1oPrTB1r/WhulL6\nGCGz3VDr2iFCmXItY6Sio4IWy6qdxB1C97yVdaHNLRuyrGb/oGwd98vUkIshTbLRSLAp2CUMd4p5\ndKwgqY+pJsI5PYhuJakMLahCZmZf7g0d6eiqxfsHJeuspqhrjha2kdhRbibluwAtwQBcza0/bVOP\nVoiaBKnNaHfXpwouLLHkCdy/B9c3rjCdDWHs7KnD5OJ6Z4dIZchcEHPaT/H1QHgVF2qJq+tKxRAj\nwl0S8aZqIFr2od/5Iadu29Dk6SY0p61kWd2UCKlbx70LP+37VxrHvXPeT8DcMie+1hIjF98PMSX/\n6Kxm0jmkMlY7ayqpTB0jMbhrO76+aI+l/S5lWbHaL7cSKmP5LhDu+3KYh53+lxjGhSWWTOxKZi+F\n64V11hU1sNAvVLrlg7GJWn1SaX89s4/D0KptLBos5s9xnzW56N9pjDVqmpIzMZR0p6/PrUDnBCno\nCDZNKkOTeudb2bQT2XLRd9xPgQzUMR3y8+heOD7GTGIhUomNEbfY8ZNmHaYWpgxhrqYyFBYdI5Wp\nCykIE02rmdMlzupy+K5i8vqg6CVUhvJdwEYKhogFpo+ZMYi59X2Hniy4sMSSCjxjD64XTXE6Xfl0\nhFx8+J0cbxeG/DmaXDSG2gCH5PdX1UNlYsbMGzA/B8j//Vg2uNZW8rxuk92c4x7Ydtz7bYWV5mI1\nmpvjcu5QZj2ktYQ0lSkh8EM+wamkMpVQpviLxkhlFz8RhBdSBTREsmCztuX3/YrJB02/F629QD9K\nUCdTZon2w1wMMjhPXFhiScRwmNd0vTa6yqdsYB3ZL2QCc6TiJuhQ+fq5SW06Ei0GnZSoG4o5xPqt\n+5OfCxXV+/c+T6g9NlSNGfql0ofIJWYq0yZAfzV+5sJ+5caGGnsO/EQ6WbJ20pF2gqyzpC334e7p\nrhWcQ+Njahi6vqeObHTVbf/YMaKJlfafCz9XZUxTmeofimnn7Xnpay9+x0j2S7twbEKS91LrQ1mm\n/RbHPqkcnlOAjRhzYcKNb00K+V2ANLHEcpjXXM2to+4oN40d3vpb/BdbD/5Qz/mzIEYg+kV08rhJ\nDbqX+Kwl2h0ZTmlh7BAKD9b/Qr91v58SDadzRWKJe6P5FUrb9FvYbv9405FMA+uL6e7DXmpYLup2\n1d0+h0UazF0J9omJjBc/v2MKQiSvt4Wi94pl2v4LYZexVOXJVljxkKaVZabXaGuXPK58U5Fv7DuY\nFvZ9TMqa8kQ4vr7g9CTn5Nj+Oz3JODnNbHvp0pq/V4FTalI5zCoOs/pJqbGIyEtF5A9F5L0i8rrA\n9yIiP9h8/7si8lnqu28Skd8XkXc3DcDc9s8UkXeKyG+LyMNN80X33X8lIr/W7PN7IrI3JN+F1VhS\ngYNm0l6mhuMiwcW/d1Ej4dW1ToqL+SdgfPUayoIPQRfic1gsuwrHfjmV2IoOpuchTG1ENlY4U8Nf\nmfraS2zVGgqJPsuqel0lHPhVOmovWqfckC73oKIp61I3xQybIoYNeW7W/Ql6Fxv6UEFS6C8uYgsQ\nvxqEbxqL9Q2K+eDmaC9+3o1friVmArNym60gmTwfrxqtoce009JDvhdLZrYMDNhQ4k3d11bAaim5\nWA11P4M0WUyWZRDmfPq7iEiK7er4BcAHgHeJyFuMMe9RP/ub2EaJzwdeAvwI8BIR+XTglcCLsfrb\nvxeRXzTGvBf4buB/Nca8TUS+qPn7rzedeX8a+EpjzO+IyP0wXJvzwmosgl2RHOR2wjjMa+5ZGK7m\ndlW6l1n7q11dd4POmcDuhE8Fts0jvuYC26vHOZhiAouRSp7X0X8Oc1amvqZyHqQShCOVqrT/FMm0\nlY8jaE1izb0q86T95zCFbEIh3KF7Fbqn7XkiiaVjGgzEQ+HHxlEsmXMo+CDLjJfLsq25nFWDydcV\ny5Oi1V4265TTk4zTk9zmIdXbWov1tfikcj5h6eeMFwPvNcb8iTFmA7wZeJn3m5cBbzIW7wTuFZFn\nAf8l8OvGmFNjTAn8R+BLm30MtpUx2BbvH2o+fyHwu8aY3wHbaVI1YAziwmosv//bf/bIC572yj+7\nTad7AHjkNp3rduGpeE1weV13E27nNX3iWQ/w2BN/+vaf/oWvfGDiz/dE5GH190PGmIeaz88G3q++\n+wBWK9EI/ebZwO8D39loHTeBLwLceb4ZeLuIfC9W6fgrzfZPAYyIvB14OvBmY8x3Dwl/YYnFGPP0\n23UuEXnYGPOi23W+24Gn4jXB5XXdTbjbrskY89IngQz/n4i8EfgPwAnw23T1Jf4+8A+MMf9aRL4c\n2/b987E88d8A/zVwCvyyiPymMeaXY+e5sKawS1ziEpe4S/FB4Lnq7+c02yb9xhjzY8aYFxpj/hrw\nOPCfm998NfBvms//B9bkBlbb+b+NMY8YY06BtwJtMEAIl8RyiUtc4hJ3F94FPF9EniciC+AVwFu8\n37wF+KomOuyzgWvGmA8DiMgzmv8/Aetf+Zlmnw8Bn9N8/lzgj5rPbwc+Q0T2G0f+5wA6UGALF9YU\ndpvx0PhP7jo8Fa8JLq/rbsJT8ZpGYYwpReQ12Ak/BX7cGPNuEXl18/2DWK3ii4D3Ys1XX6sO8a9V\nZNc3GmOeaLa/EviBhjxWwKua4z0uIt+HJTQDvNUY8++GZBQzULriEpe4xCUucYm5uDSFXeISl7jE\nJc4Vl8RyiUtc4hKXOFdcEss5QUS+RUSMiDygtn17U1LhD0Xkv1XbX9iURXhvU3ZBmu1LEfnZZvuv\ni8gn3f4raWX8HhH5g6YcxC+IyL3qu7v2umIYK5HxZIOIPFdE/k8ReU9TZuObmu1PE5FfEpE/av6/\nT+0z67ndKYhIKiL/SUR+sfn7rr+mCwdjzOW/M/7DhvW9Hfgz4IFm2wuA3wGWwPOAPwbS5rvfAD4b\nWwDgbcDfbLZ/A/Bg8/kVwM/ewWv6QiBrPr8ReONT4boi15o21/GXgEVzfS+403KNyPws4LOaz0fY\nkNEXYMtwvK7Z/rqzPLc7eG3/EzZS6Rebv+/6a7po/y41lvPB9wPfSr/Zw8uwGaprY8yfYqMz/v/2\n7iVEjioK4/j/g0gCSgJKGINZ+EBdBAUhujFIYqKGMfgAxY0LcSE+UFw7G5eim4AKCYRgxCDIiCiI\nJEQXghgXhijCICQiwRiNuogiAVGPi3OHrh6mM52esmuq+vtBQfWdqp57pug5XfdWnbqtlFVYGxFH\nIz8BbwIPVPY5UNZnge1NfdOKiMORJR8AjpLXwUPL4xpgmBIZK0pEnImIY2X9D2COvLO6+rc+QP8x\nuNjjNnaSNgL3Avsqza2OaRI5sSyTpPuB01Hq6FQMKqlwVVlf2N63T/mnfg644n/o9sV6nPzWB92K\na96gmFqhDC3eAnwBTEW5XwH4CZgq66MctybsJr+kVYuMtT2mieP7WIYg6Qhw5SI/mgFeIIeNWudC\ncUXE+2WbGeBv4OA4+2bDkXQZ8C7wfET8Xj0RjIiQ1Jr7CSTtAs5GxJeSti62TdtimlROLEOIiB2L\ntUu6iRzb/ap8oDcCx5TPMRhUUuE0vWGlajuVfX4oNymtA36rL5J+g+KaJ+kxYBewvQwpVPs4b8XF\nNYJhSmSsOJIuIZPKwYiYL8Xxs6QNEXGmDAmdLe2jHLdxux24T1myfQ2wVtJbtDumydT0JE+XFuB7\nepP3m+ifWPyOwROL06X9Gfonud9pMJadZNmG9QvaWx3XgFhXlTiuoTd5v6npfi3RZ5FzB7sXtL9C\n/0T3y6Met4bj20pv8r4TMU3S0ngHurRUE0t5PUNeqfItlatSgM1k+eqTwGv0KiCsIYu/nSgfjGsb\njOUEOX59vCx7uhDXBeKdJq+sOkkOBTbepyX6u4W8WOTryjGaJueuPibrPB0BLh/1uDUcXzWxdCKm\nSVpc0sXMzGrlq8LMzKxWTixmZlYrJxYzM6uVE4uZmdXKicXMzGrlxGKdJOk5SXOSaq8YIOnhUlH4\nX0mb635/s7bznffWVU8DOyKiWjMKSauiV1xzVN+Qzwrfu8z3MeskJxbrHEl7yBL4H0naT5aQua60\nnZL0KPASeRPeauD1iNhbKi6/CtxF3hz6F/k88dnq+0fEXPk94wnIrGWcWKxzIuJJSTuBbRHxq6QX\nyWd3bImI85KeAM5FxK2SVgOfSTpMVgi+sWw7RZa02d9MFGbt5cRik+KDiDhf1u8Gbpb0UHm9Drge\nuAN4OyL+AX6U9EkD/TRrPScWmxR/VtYFPBsRh6oblKq6ZrZMvirMJtEh4KlSdh5JN0i6FPgUeKQ8\nc30DsK3JTpq1lc9YbBLtA64mn50j4Bfy0bXvAXeScyungM8X21nSg+Qk/3rgQ0nHI+KeMfTbrBVc\n3dhsAElvkKXbZ5fa1sx6PBRmZma18hmLmZnVymcsZmZWKycWMzOrlROLmZnVyonFzMxq5cRiZma1\n+g+lRR1J5URuGAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mag_plot = bs.plot_mag()\n", + "mag_plot.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuQLdtd3/f59erdvWf2npnzPrrSvUIYRCoYUmWbEiRO\nyjgubAyyRVIJBuIyUGCiABUnxjGPPKzYUFGBY+yyMILwtsNDRbmC4ohAQYxNHMsgiGMb8QcCS7r3\ncnWe98zM3jO7e3f3yh/r0Wut7j0z596je66Z/Tt1avazH6t7r+/6/X7f3/cnWmu2trWtbW1rW3st\nLXvaB7C1rW1ta1u7fLYFn61tbWtb29prblvw2drWtra1rb3mtgWfrW1ta1vb2mtuW/DZ2ta2trWt\nvea2BZ+tbW1rW9vaa25b8NnaJ81E5L0i8t8/7eN4PZqIfL6IvPC0j2NrW3tatgWfrb1iE5GPisip\niCxE5GUR+T9E5Dn3vtb6nVrrv/aUju2rROT/fhr7To6hteNzJCL/XETe/jSPaWtbe73YFny29mrt\nT2mt58AzwB3gbz/l47mwiYh6DXbzT+34XAF+EHifiFx9Dfa7ta29rm0LPlt7Iqa1XgE/DXyme01E\nfkREvt0+viEi/0BEHonIQxH5ZRHJ7HsfFZFvFZEPWw/qh0VkGmzn7dZreCQi/4+I/DvBe8+JyN8X\nkXsi8kBE3iMi/zbwXuDftV7Ho+B4vldEPiAiS+CPisgvicjXBtuLPCYR0SLy9SLyWyJyLCJ/TUQ+\nzR7HkYi8T0SKC4xPB/wQsAN8WrD9bxKRuyLykoh8dfD6F4vI/2v38byIvCt4byoif8+e7yMR+VUR\nuW3fOxCRH7Tbe1FEvv01Atmtbe2xbAs+W3siJiK7wJ8BPrjhI98EvADcBG4D3waE2k7/GfAnMBPz\nZwD/nd3uH8BM2v85cB34PuD9IlLaSfUfAB8D3gK8CfhJrfVvAu/Eeh1a6yvBfr4C+A5gD7hoWO5P\nAH8I+DzgLwPfD/xZ4Dngs4AvP28DIpIDXwssgN+yL78BOLDH/TXA9wRe0RL4cxiP6YuB/0JEvsS+\n95X2e8/ZMXkncGrf+xGgAT4d+APAH7f73drWXle2BZ+tvVr736xncQh8AfBdGz63xoTmPkVrvdZa\n/7KOhQXfo7V+Xmv9EAMObkL/OuD7tNb/TGvdaq1/FKgwQPA24I3Af6O1XmqtV1rr8wDlZ7TW/0Rr\n3Vlv7SL2nVrrI631bwD/Cvh5rfXvaK0PgZ/FTPKb7PPs+HzCntN/ZL/nxuSv2vH4AAaY/i0ArfUv\naa3/pT3OfwH8BPBHgu9dBz7djsmvaa2PrPfzRcB/ZcfjLvDdwJdd8Dy3trXXzLbgs7VXa19iPYsp\n8I3APxKRN4x87ruAjwA/LyK/IyLfkrz/fPD4YxhQAfgU4JtseOmRncifs+8/B3xMa908xvE+f/5H\nBnYneHw68nx+xnc/qLW+orW+obX+PK31LwTvPUiO/cRtS0Q+V0T+oQ0nHmK8mxv2c38X+DngJ0Xk\nd0XkO0VkghmrCfBSMFbfB9x6/FPe2tY+ubYFn609EbMr8L8PtMC/P/L+sdb6m7TWvw/408BfFJE/\nFnzkueDxm4HftY+fB77DTuDu/67W+ifse2+2Ia3BLjcdavJ8CewGz8eA82nYjwPvB57TWh9gclgC\nYD2l/1Fr/ZnAvwe8HROiex7jFd4Ixmpfa/37n84pbG1rm20LPlt7IibG3gFcBX5z5P23i8ini4hg\nQnQt0AUf+QYReVZErgH/LfBT9vX/BXin9QRERGY2Gb8H/ArwEvBu+/pURP6w/d4d4NkLkAH+OfAf\ni8iuiHw6JvfyerA94KHWeiUib8PkqgAQkT8qIp9tc15HmDBcp7V+Cfh54H8WkX0RySw54o+M7mFr\nW3uKtgWfrb1a+99FZIGZBL8D+EqbG0ntrcAvYPIa/xT4O1rrfxi8/+OYifN3gN8Gvh1Aa/0h4M8D\n7wFexoTuvsq+1wJ/CpNc/ziG0PBn7Pb+L+A3gE+IyP0zjv+7gRoDVj8K/K8XP/VPqn098FdF5Bj4\nH4D3Be+9AcMsPMIA/T/ChOLAeEAF8GHMeP00Jte2ta29rky2zeS29rRNRD4KfG2SD9na1rb2e9i2\nns/Wtra1rW3tNbct+Gxta1vb2tZec9uG3ba2ta1tbWuvuW09n61tbWtb29prbmP1EZfCbtw40G95\nS1LSoTvQGl8KorV5LTTJQMQ9MY8lQ9OhdUdHR6c71p3QuP/abFFr6DS02nxtkoESmAioTJOLNq9l\nE0QD7Rq6FpoW2hbaDl236MYepwiiBJQgKgOVgVIwySEvIMvpdEOrG1/c0mnxp5KJRgDBviaC+weC\nYUVL/344Pnb/IJCp6PzRGvMP2k5IRtDs2+yOTLQbyQtZeKwZGUYezh5j9xi1pu7ahufjLpAe+S8S\n/1dZ/9jdB5nqtz02Xu51t4+uM//bDr02j3WHed5B1wm6FTYFJyTT5BONlAopcygmMJmAmqAzoe3W\nrDuo2ozOj7nZWCaQiybPNJkoMlEImT3mztx32h5fp80XMtX/l4xOt4Cm0y3rDhot1K2YobD7yuw1\nLjKNkgmZKHOd2jWsG2gadN2gq5ZuDV0jdHbYzCFo2s4Mb54LKocs12SZRnJBJgqZZOaen+Tm2FRu\nf6f973JwF4mMn294nQL7tX/14n2t9c2L32BD+2y5rhesL/TZj3L8c1rrL3w1+3u926UFn7e85Q18\n6Ff+TvxiW5u/TQ1NjW4r83jMclM+Iqo0j/MCnZfU3Sl1d8Jpc8xJ03BvNeHeaU7VmkmzaoVVazZx\na6djv2jN/0nL3mTKfHKdsm7Qhy9BtYB6jb5zHxYnUK9p7y7p7p3SVQ1ZmSN7BdmVkmy/hPkucvUA\nnnkTMrsOs2tUesVi/YA2KKRvtfkBKJmgkvpMlZnXimwXJTk5uRmXcExWC/OaKvy5S7kH5ZwGA3at\nXtv/DW03/MGpbNI/Do7Bfb7dIFqgJB8/xuVD9PJBfw2dueuXj5T7NDXUybG55/XajP3a/KWYIJOJ\nmeDnu+ZvXpgxmM77+yDYp79/mrofQ7td6jV6eQKLE/TxKd1hRXdYQd3RHla0Rw2rpaJaKpq1kE/i\nCTEvOtREM//UnMmnXyV7yy3kuWeQa5+Cnl/ncH2HOydLXlhOeH6RM1VQKrONUml/392cNuzk++yo\nfYpsB2nM9fXX2d6DFBOYXTPXeTr397q7l06bI+6vau6tzLXcL1rKTPvH88k19tQ1c52qY7PdR4/Q\nd+6jHxzRfOQR9fNLlo9ymjqjWQttLWYMqo6yzJhdbZhdaZjOWvJbJerGLur2LvLMdXPfX79l7vu8\n8PdieIzm/pmgZBKfqzuek2V/rolln/FtHxu9IR/DFqx5l3rbhT77Ve0v3jj/U/9m26UFHwAtgoSr\nHFUMJ69NtloYwGlqaAuoDBCV0zlFfp0i22UnP2E3P+bm9JSqzag6B0AZperYn7Ts5jmF2qXIdiiy\nHfLlkZlEq4UHnHCCzA5K9KolKzKkzGPgme2aidFNgm1Nke9QqJ1kMt/xgBCCANjJ3YJSTm6OIwTi\n9EdqJ2FtxyMv98jzAhDI5+Y9uahfY4DRAPjpALQc6KQTiF6+BMuH8OhR/+EQRJy5SWVkchmYPTep\n1zAJzrWYwO5sCLzQj3teQFMbH02VaI5HdyH1BF1MkHKNTFtk1aJpUAclALtlQ150NHUfHc+Ljnyi\nyUpzL+TP7pG98Spy+wYcvIFmts/CAs9vH5XcPc14VMOVAkA8AAEeHPzxuN9CXiCA9rriCyjn/nxR\nPZArMWO5k+9ze/eUUh1TKu2vkbtm8/w6rI6HC7piguztkN2syKuGvbKiq6BZm3umqTPataAmmt1r\nLdlBibqxb0Bnb8ec97UDOHiDuQ7JIjC0UeBxCxZ3T7v/81229sm1Sw0+MAJAgYkqTbgq/LG4VSz0\nfytAFWgWUB0j5d4AhIDIC1DZ1AOOkomZRI/uoZcPzT4s8OjlSTSBOsDRK4VM8yHw7M4G51Fku3b/\nwUSc7UTPW934id0dE00VezsOEBcn6PXaeAIQTcy6eGhecxOxKuLnqeWF8Rrs4xzIyz2KbMeDkLNx\n4HnggUe/fDjwXAB01fRhqQSAvDcTDdgkfhz+t6tqf9wjE3J4bgaE9tC5HcN0P2sLcmWDTE3YzgFQ\nVykKKvLKuMpZaa6/TBXZXmEm4t93E3nuGbj5HBy8kcPqBe6van77qOSoNsBztBamSjN9zMYKokp0\nXgPz+DoF18MtapRM2FET1DT3z90iRskEWR33XiD4vzIxAKxuzcyiqjTfL4Cu6hdMzstXt3eR6/v9\n/e68nekcVGE87wsAj14+6D14Bzzhfb04ie+XJ2CSQTm94EJs+cR2+7q1Sw8+MAJASfjEWxg+ceaB\nwd4txcR4QwEIleqaX/2HIS/RGqoFurpnv7M4E3icSWlmkQHwFJN4EmxqRBUU2Y59Yce/ZY5jxz5u\n/GtFtmM8ntWxCUeE3s7ixIeKqNdo9+NcEk/mztJJPDUHWG7ydp4EkJdzyNzxrYeT2RjwPDxE2wlL\nVy161aBtjFOmBqzd+Dkw0g4AOAOIwhCb83QS0Bl4d3lprq8qIK+RlfUkQgAqJgPvx5mmISOHA5BV\nawCnzKHIyA5KsoOyX/k74Fnf4cWTNS8seuCpO1g1cGRvoytF7P04zyU+9uD+D7w53VY247ZA8oJc\nFQPPuch2zHm3tUl0Nitg1d9L4eLNja8FYHV7ly5ASAdkQBxWdous2TUDPA509MqHe0NzoBPd1ynw\nBCFWTZKDfIIAtLXetuBjzQNQGHpz4QcYAlEICuFqu5iYv7uz/ia223Ere1RhvIowtu4sL6Aw25N6\nMqqOKZgVcAQ8zlrz49Z24pCmRkKvwz4OL3yubHxFphYMA9B59KgHHfcjrUyCWMoGKYNzLiZoNxbF\nBNaBx1aPhLxe4Y9atDZjtlrE4RJrumo3f7ccX/574Em9oxQYHfCoOJyYTnjOlEwQlxdKAahYD72f\nUqGnLXqlfHiVvd7jlVIhezv9tb/9LLL/DMfNAx5Vx9w7LalaAzBTZfKLU4NZXClgv+goVRcB0MBS\nT79aGO+eQJVVDe8pZ6NbTkEHzH27OEHYNb+VYoLaC+4f+zfKte1dNWM5Ajqhl2zGPo+Bx93bKfBY\nk0nwe0s93q09cbu04KPpRldIgJksYDPZIM0nJJOfMeMJ6aY2IQHweSFIktGp7c6gqM0Pb3Ficg6A\nLuL9DoCnXpv9FhP7Yy88CAHmb9V/PA2jDPI6Dw/7pLgFnKE34UAoj5O1yXh4L8kCkkwm/WeCySsl\nLjgLvR6fO2iTBL49Rr+t6fjt7YDbT2wwTiQIxk1U6UM7qZfj7iNHtHDH615TkpO77bXBBbD7dAsc\nz6Es17BfRl7cAHTs6l8OnuGkO+a0OeZorajaPj90ULitat6wMwSeUhkOXEo6AUy4tTo2nuXChrDG\nFlzhuYSP0/xaGnZ1z6/Y0OR8N/4dpaFOVfjwms5LGr2m1Svq7iQJZ0/s+I8Az/JBf3+nv9kwxxdc\nm40h1VdgmQhFecHqlm3Y7feuaa1HGVVKJsYLCm+4cMJwYDHGigJYr80q3//46p4ZBiYvZHMB/fZH\nACgv4h9sve5/GBaMRpOi7kflvBEHRm6bEB9Lun8XXnv5EBYndEcV3SNz/rpqTBwHIrZdD0IKqnGW\nmveQ7LFoMMB67WBwzlrEL59TppI0Vb96tStXHy45y+OZ5jElOVxRhxONS6xDzGAr52d6Oq1u/ERo\nciH9+0W2a+jzeYE0No+ShJ7c6j8EcLFrFnGfmdjjnO9CaVb/jcqom1NOmoaqHa7QDwrjAYVMt3Mt\nBB63AAnud318OjrWzqscgHs6xs5UcD+W9GMSepojbNK2PRolpITmgaftYPUw9uZtfseNfWQh6Lnc\nniOUbO2J2qUFH9AbQyUQhEvATBhpniel4rrXi0m/ivVJywQEKjYn4FNzBIIiAL2RPNBGynBom9he\n4cSyPIGHhx509HFNV/XeDtCvyMsWqRqyvcLnJZy3oVcxCPUeUr+y1PNdA6i7+B+5zsueop1Qwh1D\nabB6dV5PsE+f35nm/nUPPPPdfiIPJ5rpPGauJfmcsftljFbeEq/C6+4k9n7cWia5B4TdfmGRXic3\neQfHqad7nDYPqFvLpmzHk9ml0vZ/Fzzv7NgmU0AKPMEiRK8aQwk/rtGrtidyhOdgc1NpCYD3Kly+\nxoYiU0tJHFrE0qUr6vUjT8M/q1zAM0fbLqZSp/lUbDg4XMSF3o67H8qzegVe3CSDsrw48/P3ul1a\n8NFo6u50PORgzQNQXhg69aYwHIxP9mdZGA4b7DgO+fjPNzXktZmswxqVx913aCnwuBDbqkFXzUbg\nibfRmZWr+8xq3Ptxq+V0wgL8hOMmcWeOaJCTYzofcPZ1CI4hBCApVezxOA/CejuufiUMq/lw2hnF\nqy7XMDYptq35XqEMc0+pfZ/7o0rOI10YjIWtXJ2Nq2Fpj6hbV8eizvRuXLjNAU+ZmceGCm28BBYP\nTGjq+GUPPN39Be2dJd1xbYDH0qAN/VsxnTVkcfTWFLQWmclblQpx4eKJ88r7SMAY2PgxbRfGo7Tn\nGIJr1Sp7Xg2lMoSUQu1E9UqjjLYxc6CYejs2xHfWInVrr9wuLfi4Svk09BbH7E/NTT3dM0l7R70G\nv+J2dSA+HwPxqhriFWxKQU5fT6jHgFm5hUDlwhM+tJY8Tm1Tkj/NWXkvojWAU3cR8EAMHCEDy3k9\nGxP6YcgLDGvp2gHsXfUFsWGBqjM/MTZBfUhe4Oi/JmRlP1vG9NrBGLh8yViYzY31GV5OaCnomLBX\nRmlDXI6hF56HtzDXdxEP1QGknai1CG3XeKAOJ2Xn0YS5n9QM8HTeayiyHWR1jD56KWIOtneXNC8c\n09ytWC0V7Tq3h5/5Opx2LZSz1hfBZtjfU2nuHT1tfchVr+3vZdFfJz2NmWUu2qBkcuY1CL04JRN2\n8j2KbJdSpiYneE5+R1zzWuf5Bt5YWi+0BZ9Pjl1a8AGJ6hSA0cdKzI1X5DuI/aHovIB8YVZwIQg5\nS1kyY3HuhIEW5RcSgBIsAKXbaOo4wX8WK2fTeynNNPV6qiBkFVgEPGUe5VSkzAceUpRrcXTZc4AH\nTFhoUIflcmaq8A2wxdGm3TmNnH9ESQ+p027s7bheBHhOG5N3qFqhajOO1hOO6oxSaW5OG/aLdgBA\novXZwDN2jRK2Hcp5h+vA6zHTt/Fu3FQeS8pEXo/1gpynkLedUdS4ew/98qFRHPj4Ec0Lx5w8VCwf\nlbS10Kx7QGtqCz72LxaAugrc2sncSyPejzv3vDZhsQSAVF4OFoVpSLEvZM2j8/D5nWqECTm2CNsQ\nZnOeJZx/P1zURLg44eAS2KUFHxGJGEnARlmXVplJsVA75LNrPQA19QCELgw6aVI7oe+aG94cS17O\nbbV8barlQw8gBSDYDDQbvB69Xvex8MTr6Wx+IqOP7w+BRw09m7F9O8/j2oGv0dDTvd6LSCbrqNg1\ntXBsd832xXl/rs42XRCcBTwXtLo7oW5N8etRrSzDTMxjq0RQtcKzGFmZzRs6Z0LbcJzO6zHjNbxX\nNxEKHPDsT1o/cbu8iD58CR7cRd+5b8Jszx9TP7/k8G7B8lHOy/cMkNUjIdf5gaJZF8yuNMYDKjqy\nqqGrFFkxHFe9Xpt7w5FhdhkAkKjCs9XSc3Tn54DHSQNFYbaQVBCQgYTd+DcwEnYNvZ2tx/PJtUsL\nPun0mMbsIVxtBfUDmQWgamHAIC+s1E5tQGgMcGAcdCDKM9TdKeiRlVa2Y4ouWYznnjaBznn1CSlj\nL/B6Ntko8DhK8xjFNjgWuXoAV654ppaeDllEptB1ty9WDMNtrio+VJ4YC2OOUYIT2u5YsajLN6Tm\nPORQs+9onVvAUYGSgPuGGY+bnXBzukbJnskttlYtwk2OwdikYzXweBKvJ2R6mQnZSYe6cFS8yTIz\nem7hpL2rSwM8d15AP/8S7QuPaF44ZvVizeHdkuXLOb/7fE1ddRtX7MVKU5YZ1TKQAKpaOIwXDOLo\n4mVuC3vXPd1+vmvGppxDO1Jk3K3ZzWNdv4jN5nJViSSVZ6CmLNGQvJHkd8ZkeZ6UZbIlHIR2acFH\ntLYSLnGFPxCIgLofVMMAgMo55DXSFP1EqAJQ2FDXEOVzbFzZTCbDkBP0CXc/CacilWN2EdCx3w3Z\net7rCSwr8d7PJuDJ9sthqNGar6OZ7xrgcR5P3mepnTSL83w2gc7AUsr62Hlu+t4FvR13b8TAY0Dn\n3mnOYS08quHuqblnrpSxdpphXu3a6vqHZqGyibHoLMkRjnlnKjOEBucp7uZQqvj+9cfhPB01i5hg\n+sHH4KUX0Xfu03zkAc0Lxyxf0iwfFTz8RMaDuwZ4gFEAKkuhmArTWUs563rPx15aJ5aaHdeGERl4\nzjJdGDC6vo/UBxYQzGJCNzXS1OS50QpUk7h2xyuDLF9EB+obEeCMjWfo/YbsxiDMtkkdYWtP3i4t\n+KA7cnJamaCkp8emwGPEQDPGAEjlpW0+sGe9oJHwkLWxnE5KKx5LUm9U372onTVBhyCUUJUdiQDi\nkBuBoGkUanP05bG4ukvoBnIoo4dq5U+AcxltokrjRThr69iTC/+mx3MBCxckJsfTA8+905x7p7n3\ndh5V/WRfZE412iiWF2qnZ5K563cW+LjQ4RngqOw9O1Akt8+LxElR2aQHnVAB/KUX0c+/5PM7y5c0\nR3cn3PtdOD5qqKuOqrIMumTFXpbC/EBxcE1Tzjrywv6fDMN+3WEVLWoiqaDDCnXL1Ht5KnZTG1Ap\n50hTUzpKdrMyUlQutPbwsGdpBt67K8YNLcr3OeCxi6BN3k5UpPo6MxH5QuBvAQr4Aa31u5P3xb7/\nRcAJ8FVa61+37/0Q8Hbgrtb6s0a2/U3AXwduaq3vB6+/Gfgw8C6t9V9/tefw+hvV18q6FqoFhc05\nqKxB6QaXZwEDPAaETEijVGvaLqeVnLoDJY0hIqgCWGzuSTNCJHAhnrROxIGPBx6bpI4UEcL8Emye\nVMP9hknukbDEuNeT+7S1E7McyLyk9OXweMLwUSCJkioE9Bp34+rP/nOJIkNkqSeYAtAFJvWU5u0V\nttvTAfB84tQIdo6xyl1+pchMIlycIkMAPOEK3Y9GxF60hIqm7jP4gRnF6LEi6Tz6jPvrGW1OD+8T\n943H8/Ej1r/9Msd3cg7vltx5oaGqtAce5/lARmEPYwx41BjoRLRs835edEAL1OQTTX7L1AypqoHr\nlrjji1ItCFVOISSQe7Iisq7+yNUdAWQHFerW2hcwR+xTG/JlOjcFutbb6QlGDsB3+4VfkwjCvkKT\n7DEUDs7ajogCvgf4AuAF4FdF5P1a6w8HH/uTwFvt/88Fvtf+BfgR4D3Aj41s+zngjwMfH9n13wB+\n9lWfgLVLDT56+QABinInyfVkHngMm0mxX7TWKzLej8oaisyUuBTZDmLDcGdaQihIgce9HuU8Qj2q\nQFUaGDLcxkBoU5uIkHCQej2BOQAaBZ7Q2wn/J/mKMWmaVq/jlg3V8dnhNawqQhi2dIAcyuyE55ae\nrxsflytKiR7B/OnUCjYBz91Tq5sW5FamudNPc31yrpOT99fPAmQqGOt2G4EQmPMK67wwTDD/sdTD\n8WCTR8+lqdDHv2sU0wMqtfN4DPAUG4GnWpmcUl2ZyXN+oJjtiQ+zqYkmbPVQL8S3Qghp2f5yBkA1\nW9eUFjhU1ZLd6MHHA9G8jlU37i9MAbRV3Ehr0ZwKhwIDQO6+dHVSll152h6NkjYi4Fmdvyh6CvY2\n4CNa698BEJGfBN6B8UqcvQP4Ma21Bj4oIldE5Bmt9Uta638sIm/ZsO3vBv4y8DPhiyLyJcC/5gkK\n/1xe8Fk3JvyQF+R5QZHt0ioXWmtwyduqNcV7Ye+TVjco+joED0DnaECFCe1Qit7VNETAE/YbCdg7\n0cTlalzOolmPeDwhw81JpRglgLgIVFsvMCt64Ikq1l3NTAg6Y+0G/MDVfoLNIZY9CdXCA9pzdA7Q\nK01URGrbYdX62FjIWK3VBnOMtrB+x4VhnWCn41hMc5gq7YU7n5s3PDurmU+usaP2YWEZWMcvD1TB\nx3Jk0bWyHqvOrZp0UyO5zYWoKXokFxHR0h1LMBRhtYuX7sioV7RHDU1deOq0MxNmy6irjnJqQKco\nM/b2x4EHbA+eNRHwVMuM1VKRF9bzmXQ9PRsoZxmFBRG9auJFkX0si1308gT94Mjnkdp7sYjoqIUe\neQA8ldWEq9tEiDTrldOdeK1ePoAHd8/f15O3GyLyoeD592utv98+fhPwfPDeC/ReDWd85k3AS5t2\nKCLvAF7UWv9/EkQnRGQOfDPG0/pLj3keG+2pg491IT+EOem3i8g14KeAtwAfBb5Ua/2y/ey3Al+D\n8dv/S631z9nX/xDGldwBPgD8BYv4m61tTczYFo+Ws2u0mVuN9gDkOjK62ogxOQ8gyteM9Qc6r6Ha\nxkZX4aSVyMlImaMdEIQbcxNb+Dep56EeanRJ0vDFPfc1PKmw5VmAo2LQicx5Oq76vEk8F6dmkoK5\nAx73HddbyI6NPjaTSRgO3GRhbc8wBBoSUMICTlMrc9vO+c7zmSqjobZftDw7W3Ol3OvDbeE1dP2G\n7PWjahBH+HNFmGFLiqYPvUXekVMs33h2xIDtck12rPTxKd2jivbQFI82a6EKvB0XGipKqG0+ywHP\n3oGinDWWZDCkkqfAc/hQqO2ippgKpaXhOTCqlsqQFA4a00yvavrzcvnIeu29nfb+Cd1hxclDs53d\na+1QMaPIDAPTEQx2Z55dWXennFpliI2yPGFezFLQn4SJmDG4oN3XWn/OE9nxBUxEdoFvw4TcUnsX\n8N1a64WcM489jj118AH+AvCbwL59/i3AL2qt3y0i32Kff7OIfCbwZcDvB94I/IKIfIbWusXEM/88\n8M8w4POFnBOb1HWDvnPfFCeqAskLdqb7/n0la0plajlC4LmIndWgbszCMEnUpyZUlg7p0FZdWqYt\nGeB00kjqpdLyAAAgAElEQVQnLxjW82wAnjGLQCcs0gw1xhLhxz582Ycz8jD019S9N5e0lfZguTiB\nYm1qQFIQS/W5Au/NCaBmVdt7aM5CzbQRC0Og7rkz14EWeiXoK4UJuznQ2S9MDc2NadEXboZSNSPX\n0NhpBEDe3FgkwB15fmMe3FjoMgAeFmbydl5Pu84jTyQ1B0QOeKa2mHQsx+OAx7X/Xh5rFoctx0et\n30ZdaoqpUFVQlpnPCXWHFdleEd2T7rFemdbxrr348lFuFBdqoV0LsysNaj9g0pWGgenuV9l/xujg\ntUecNkeJDJLN8aidXsap6j0e/fxLdPefTM7nCdqLwHPB82fta4/7mdA+DfhUwHk9zwK/LiJvw3hV\n/4mIfCdwBehEZKW1fs+rOYmnCj4i8izwxcB3AH/RvvwO4PPt4x8Ffgnj8r0D+EmtdQX8axH5CPA2\nEfkosK+1/qDd5o8BX8J5ibGmo7u/ICvu+6JRyQt/E9ZiQjj7xbBHyEXsPACKAMd9zjW6GmmQlrYz\n0JVZKQJGsNMyhfweAyAKQWc4+Q3N1e0MQmxhE69AgsR7DbYivD9Hm4PIrGfm4udOpj8FRnfcXuxx\n6RUMRpvsBarbumrojms/NnrVkDnhy1T9+5zanrPUkp2VSnNzpwed/aI1BIN8n1KmfWvvxGsNE+S9\np9kDkOtr48YlzflEYLSZXBlb4CV2RzZsdVj5ib9ZZ9SrLmC39d5PWZqQmwOekFKdT/Sg3XUIPA/u\nNhwftRwftpRToaq0315ZCnWpmc4MgHQVdMe1bRMfEAhsTsd5O9XSFL4uj82d3qwLmjpjtl5TXrei\nplPVL5Jm12B2jYUVYHXAY/K3DXuTPNa3Wx33RbdB7dOTMCMs+kQUDn4VeKuIfCoGUL4M+IrkM+8H\nvtHmgz4XONRabwy5aa3/JXDLH6uZVz/Hst3+g+D1dwGLVws88PQ9n7+JSW6F1Ya3g0H6BHDbPn4T\n8MHgcy6GubaP09cHJiJfB3wdwHP7U7pHFdn+CVxd+5W4yvf6fEw2QdmbNaJAB4VuUZ8ZxkNuoYWa\nVRHwuFX9hgZpoYVFoHrVbNRTG615OMMi0BnTQnOgE1aCW7aQ+2Gb83I/6H51mZ/XI2mTbchZhUrL\n5v2un9DrUFdswy2en8E4zCYmp9flKLEMyEkb0e+rNotAx90TO2rf0MVH6nnS4l1zvOf8BE+WRIrm\n4VhsqK2KPKKz6sHOMcdqK8uMvNCoQntKdTG3ORz0gFAAUK/i30G10p4tF1oo2eMsZV1CX2sW7qte\naWZ7yb5tp1eZmboymV2n0itOm+MAdMTq8HW0uqGQnViM9PhlL6ra3Ttl9eJj3rOfZNNaNyLyjcDP\nYXgVP6S1/g0Read9/72YCNAXAR/BUK2/2n1fRH4Cs8C/ISIvAH9Fa/2Dr+1ZPEXwERHHM/81Efn8\nsc9orbWIXDx+dY7ZhN33A/zBW/taW+0yr8vW1IjWG6U93KS6yc4CHveeDmR9vFng8Q3SYNRLSSeq\ngbrAY1gKWH0dT1CzE6weB1XgIyvJqs16SRlbcO/UAXLJe4+jLfBdPO259pIrxPkkiMJzAw06N1EF\ndUle6DRQsvb/VXE2ZTswB0JKDCjt2iFyiwcHOl4GCPp+Q2mraCv/I2HOx437WO+b8HoGVfsQFwZ7\nnbxwX6G5MXTH4PT3popi3gAOmHJg4nM+Jj9jQKecNeQTTTlrmc5a1H7ua3W6qkGtWoqqoV6IISBM\nNJDbbUjk7bhtz/aEfNKxf6ti91pLfmuGem6PzDbRM55+3801B3ataoLb/mzPhNxmV43Xo27uoG7P\nkOv7XsKJck7dPhxc21DfLioCdq0kXnpAe2dJ/fyS5csXl196rUxr/QEMwISvvTd4rIFv2PDdL7/A\n9t+y4fV3Pc5xnmVP0/P5w8CfFpEvAqbAvoj8PeCOowSKyDOAo5psimG+aB+nr59pWhs3X1etSfSe\nsSJPSQZjXo/vW79xI1bhQGtPPvDfCanGjo57Qa/FF3pexDbprrn3UvHNoDBU56VJ1K4feUHLo9pM\n9lWXB2ywzkrcx8ekRYwyeF5AU/Sr+eC4vKW5jLR+px5vHJe5CnovdBocQ6q3d8HulEpylBof39F7\nYPVws3fnQKVeG6HNsEZqkxfjwnbhuQf5uqxeG4UAd83cWIVjWM5hvvbAl1V9TUxBRQhATW2Yafmk\nQxU96DhvJzsofb8ewLf5pu6QsqKoGu8dlTNFWU6YH9j2B2VmwKvoPGGhvK7In72Kur2L7O0YMF2e\nIIsTdNBSHMz13WXp2XXAAHiyG3Ozjb2rSLkXCdamyg+hqrdXwratJNo7J7T3Tlk+yjm8+3gLu00m\n0hMttvYUwUdr/a3AtwJYz+cvaa3/rIh8F/CVwLvtX8c3fz/w4yLyNzCEg7cCv6K1bkXkSEQ+D0M4\n+HPA3z5v/10nJjTj6J31Gt1WSFuj8hIlja8ij8JwZwHP2KTjJoGgS+Mg1Bb+T+pV0kk29H4GIZuL\neD9hPiEsBk3zOoH+2kkAOq7mpWoL6+2kUDaxemYNdKCU6+ppKGKibCdPT2lLbBOAn+X1YADHUcO9\n12PPzU/uSbFvWlTqLL3GmyxedFTjxcBjNkZTd8cXfi+hZmub+9CrFn1cQ5GhVw2qXsNy10y6KYC5\neqtgP27BktUdumzJKyMK2qyF0oqyTmdtVL+j9nPUQdmHtSwZJcxFKlv4JmVFPmm8F1QtMxOym7SR\n96QOdslu7qBuzYy3bb04p1AutQFMfXyKTHO6RxU5IGUPmKPAc+3A1JWVc1q9ou2GwGMIRDlFtjsa\nbmvvn7B8SXN4t+TB3VcWttza2fa0cz5j9m7gfSLyNcDHgC8FsDHN92EKqRrgGyzTDeDr6anWP8sF\nqnB15xLT7bkx8VTQcCPwjDWIi3rQMHzPTVgQT7xnHNNod87HDLv5z6d5nUB6pFEZp82DRNOs4KhW\no8DTNzNTgAlTOdWGVq/7Tp7tyFhYqrafvKtFP0ZpjdI5LL3oHMOxCZv0bbCN13jMXB3NORp0EQMx\nPJ6xolxVQx3XBHX3F76LKHVHa8NPIRU+Kybo5QlSHPREhVSY1IOPTcpT4IKvUwvc7dqEzqazlqzE\nf3ZQZGzvOynXEIXKGhv2rNk9rKwHZLziHnRmfadTBxhO+6+cw+4Cce3clycmXGkLqztMkqO0bItR\n4HG9j9w1zSaU6nQQ7vbSRycPogLu7pEhZVRLU//k2Hqv1kRMndPWjL0uwEdr/UsYVhta6wfAH9vw\nue/AMOPS1z8EDDSKzrJMYUIIVwJGlypj5eCRVTHYBDp5LPYJxnOCjaKiYVtm0boXG8VWubtwlF0Z\na0A2KEz7CSDNF8AAuPR6QxFqGmZz0iOuEK9dcNoc83LV+X41Dnge2Xk2LA1atQKEuSTjPfopOdtB\nucZ8q8VQdgiQlav4n/eTuXOS7HlIeY7q9kHZT46TGIDGGrJB3EQwAh53jdPaJeifB1RyyYuecegm\n/NTLDLcVFuK6Ylvo2XGumn+snfmqjag6HuRsbitU7g7rhDTmKumqoZsqKDLUQYc6rHz9mEzLgRho\nOK4uL+i8UZnjw3ou5JntFWS2A6qUCehYJmXY28m3B3fjY/NkLE7QmLJv6AEIsMdknjmgopgY9ipQ\nzK+bazsy03mvx4W8g9+NlLkNH+ptD55Pkr0uwOdpWDYBdWO3XzHNrhm9JxorNNh3qTQTUSDjTh55\nO95zscWAkoJPADoQTHR5GenC6an9fABKGy0FnCCfkIKQ73PjbJJ8xwIP03kwBqGKcw88h0lNiJsL\nHQj55mq1a3N8ahiD3Zo6O/WhjmJ+ffS0ZBoCUHi+a+TqgRlfQMo12k06CSEjBOXIuwgWAf0CY+hh\nRsCzWthFxZ7/rrOocNhfS3v9yz1zP5RJ/6VA3TwSRnVmadG+ot8WVoYUez9WY7m+tFWA61dji6m1\nKsz9MJnAeo3aO0HdMhRwl8cJPSqzHxV52GHI0BNF6jXMzEInK07I9kuzTQtCgPFQHOi4RY9rsREQ\nWvxiLLRg4SFTha6y6BgjJuDixANuWr8XmpIcmlWUZw3HV9l8197+OJt0a6/OLi34SJ6Rv3nf95iR\ncs8IDQbA46yX3bDtDVbHA9CJ/qo6WtWnoBN6VEomXhdOVhaAVgvzowyVC1LPJQ3feFZTsHIOQWfM\nKxoJtem8pLYV4CdNw73VEHhGmLCRzplrruaszDpKtfKhj1pOKdSOP/9wLHzH2BSA7Hk5APJJ+3o9\n7JyaJvKduWLYxOsJ9+/+e0FXq+ulOUaaXqNuzBpXWKsyVL6HaI1M58PQqwOp5cMYgMIQoy0GdRX9\nY9Yz5tQAZEPgaWjMQmdmatm09cikXpsyg8UJ2bU1WSj7k1oKPK4RW9KV1bSVn4yAUKKQYcNj4X1n\nWoucxm3r3flga6DqNTJtfY3bYEyc92OV350H5AAo/A2a6MWINiAGgPPCiJ/uHTyZaVIE1JZw4O3S\ngg+TzPyAgh/BKPAkXo8Lw0TAE8b6nRZXMtGk9SRm2xOjjO104abzHoDG8gfpRDrWrM71FMrtcaWg\nEwJSCDzlXiAvbzt1rvMLAY+z/j3z2d770bC2ShEOiLrTKKEf1gUNACjJpcnVA+MdFH0eyHt3Y8Dj\nwlDBOG3qUul1vZygq9edK0y3zRUDAAqvbW/2/FQOahp8tgG9MuNimxJG+7FFtK4YtDusqBe9hxWK\ncmYhYzzwYFPgMcdmPXg3sZd7/X7nCwMas4BVl5rbftD904NPU0OJOX4XNg5BaG6ByYFOQGjxx2jb\nGrhxLNQO+XTee0Hz2pAP6jUZDIRwQ1kevTwxj4uJ8VzBh8NdvZnKJtBUfY5xJJ+YW8LFdERGaGuv\n3i4t+MgkR27fMJRMm1yvm9NBK+0LKRqEK8CE4uo6lIZ5JAduhXUOTHsGW4g5ndsGdcdEjLANbbgh\nbjWg8zBHEeQQwmMMacdBQy3X16RuT32XTqfs7SzO8QyHYgyAjCQNlErsXx0DkdIoOzk6iwBoTC18\nvmsnuLUBIRh6eaF36LwBVXhw9UN70Wsc/N1UoBrbabT99L5SKjct0pu6l82xltZhpX1yPBnA/XdF\nlTZ8hSp8CDld7CiVo+bXjVe2WqCdd7a7GBb1QqxG4aSPwOQoQ5Zn4LVBXI+U1lqF9+94Td0EqPpW\nFIFSRHvXyO10VTNobgigbq1jpQj3WwjHVwXAGdRCZftGYSErc9R+S7l+gsAjerTf0WW1Sws+FBO4\n/Sxy8AxV1rGo74zTblOl28DrMQQFM/G7RnJh+wDTHTHOH7l6A9+LPjNJ+SLbBSFqUBcB0AawSckN\nPXlhA+07fD0ANBOKWvtwW9XFk990Q9g7BSD33IThhKkSSmXOt2pNHVDVCvsFhK2fd5M78Vx2XHjO\n1uvxSfWwf0uyyq70ygtLutCfHw4bAnQ1SeYa0At5OrKCDRH1i4pmsGjpt5n3mfKRfY2ez2wX6jXq\nduupy9DnYnwjtoMS9ewVs4i6dRPZf8a3C6i7Y6884YDWEyksc3OeX088zGJ43yxOhtJH9vXIi65j\n7cDInEc6mfTtQDwgLJBy7ruFtnptRFlDjcNAaqq9u6R54ZjmrpEHyidVzMorjTp7DpHHo8G06G6C\npo7hudrFjAZUMUHdmpHdXaJuVpQXUdDe2mPb5QWfvECufQrH7UNO6156YzdPi0nzMycKZ2MCm0bI\n8NjL8kNfkFmqjv3Jit28oVA71N2JDe31RAQBNrbm3kQZTiePtJ9PAkApw6/uTqlaFbQQ32wOkDYB\nkHvcg5D2LSqOatgvoMyGK0sjZ5T3INCUwwS0s2AC9P7ZBYDnpDHtM1IA8ubyMnbf4aLCN5lLFhUQ\nt7AulTbnopvN+wmvTXjt3Cr8pqEuQz/BesHX6/sGeK7f8izFk+7YH1fdWQ92Xdjj6Siz2nubgAGg\nvLb6hrUB+sCTca03nGnnTYRdXc7RDJRSQdX0OcxiAvmiBwQMMaDId2h1fi7wrF6sWb5cWPAxoTFT\nk1STTyryW2YRkIMBPHfMTYHO6548El7rojYABD6ca0Bojbp9URG9rT2OXVrw0SrnUXO3X+m3yqoX\nNx6AnNcDdqXanHET2ji4C7O5Sc7RlPv23G5ycpO7mQTNitRpozWbG9SdVZlvm49FbCEny58CkPtr\nvZ66NR07q1a8irM7VjdRjVufCzrbC3IghPX8LBgpoVQ94PhTCbq6Ds4pPI9kwvZ/AwFUJ6XvQoqu\nZslRwZ0M0KjZfbscW8iGdEoPbqxcE0KAMjOenhm/8BoHeS4bWgKG57E2k2Z2YLxcDziWyefZYref\n9cXATrU5BB2XszPH0bcGKZXm5vRl2rJhXl4zE0Fb9N5PGEJLFSaspYK3Tgg0BEtz7BYwLWU66q3E\n3JA52EMwE9J5wHN4t2D5ck5VdV4CyCgymLDWbF0ztftVBIuSovb7G3jTeeGDDGKZe+58s2tPpshU\nMiJ1hstulxZ8Wr3mtDkyzKx1mttoIg/oTAsUksMw22lzxL1VzlFtul/CcFVsXnMClacUQA2+Q2oo\nyJn2A0rFToGomZ1AnEdw740oCIQ5C++hDZQLeuuPfURQMvhtrYL3605H/W9SLVTTFjo+Hx96C8/J\nPRkDHjcxbgCeuFi2p4IXmBzTxqLSEZac8XjWEei4e8iFGP14+UUNXvVhozdtz0Mmtsp/D1RYW7NB\nhcIBz/1VHYHOYR3WZAlTZQs+lbt+hs13ML1tck8Erb5t75/2zsngMEPFaRiKgcpUkdmbQVeZ6dWz\nakx9EUR6ipRzc6+60OZqMQCe7t4pzd2K5csF1VJxfNiaTqsHYBZyrt09vkVDt1cY8A7qf3wIsLRI\nk/4eUgV0RkontvZE7NKCT9NpCw7KTyAmH5FRZZpSrWm7nFZyv7pVKidX834lFYBOq1c+HNMDj2m9\nXLUy8ArGhKjjVbGdoOxEGAqTmvcT4Bmrwk8naIjyPL7Blg0PGi9NcVRnQQtxOcfzGc8H1Z3p8Oms\nyIaN11yHWCd14ixijUkfhqQECdUkSmLWoV2tRq2SrQBq7w2YcQu704ZU+kijL6HQiyp6BYSsQWmr\neJ3YpkVGqXqar7lXemIF7jzy2gBLU5uq/lDBOgSdoCvn6fpOtNgxZJGMRzXcXQmrBq6U/bUIr5cb\ne9E6bjr38iH6wZHROLtvCQRBrVGXBAFCtel8osmqBl26+isDRK42J6uaXky2mMC8BwRN3/U1bAHR\n3F3adg0Zy2PtVQcK2+I7L0YWS3VHd1ih9mLJqgiENoWyx4qAX6WJMNoH6bLapQWfdSe8sBjeVFUr\nVMpMukoan0R2ORlfpW8FQlMm22lz5JliDtjOoieDicWn9S6bLBQmdc8vbEG4TVTpGW6nzZEvJnVg\neZbn0x/3Zg/IeW/OUuBxfXDCc98IQIF5ILLhSBnRiDP1Wsf+3MK8R3z8XUT3Hmj0pcA9ovtXqnXk\n5aTAY55nlFlrc4qmX1DrGXC5rcG5HodKS+LVuWNCWmaiIxWcNkccr1fcWxlv595pzqMajtbwqBIf\nDp3mvd/owKfvzDuJGvU5WZ/2zgnNC8dUD1p7WAY82nXuH6eWFx0VGDFS6xU5IHKECb1qex0MR8t2\nIARe3LO7v6C9s6S9d0q9EKqlGuk9BHso2ycnQxVt3x/I9rzSx6d9KBMMacJTxxmCjqstcgSTaZIj\n2toTsUsNPsNJM6NU5ofmVqptl7u3+hqEzLjmLvTS6iZSejZhPPHAExZgpuZoyGPkhmgVHoafLABd\nCHhGpH7cBOYT8Lam596pqetJLfR+zvOCQnMA5LyeyONRXdAhdrxVhQP1MO/m6lVQWfLZ3gM5bR4F\nRbLFmd5br+WWjwKPZza6sQtabjjvp1SGHRh60G7c/Bgmua2+Vbc9t7w01wUM8KRmiSxVd0rdPvTe\n3L1Vzr3TMgqxHa2FR5W5744XblzXvGFXKDId3Y9e1Xl51OubPTyk+fgR7f0Tqgcty5cnNGuhrYVm\nndHUpu024HMuAPmk8yKiTZ31RIB1R16ZkFtHTQa0d07IqtaQESz4uFCcfvnQt/rubMfVaplHXo/z\nfOpKqCuhqmTU+3F5KQk8SF2vDRAt7XUNASgs0M0LqqzjdH1n9N55miYiXwj8LYzS0A9ord+dvC/2\n/S/C9PP5Kq31r9v3fghwLW0+K/jONeCngLcAHwW+VGv9sohMgB8A/iAGM35Ma/0/vdpzuLTgU3fw\nsYVwpXA5iOHk5LwfwIWTITNeEBCBjpl4lA9bhV5P6PmkIY/wb2hhyM3srB4A0ONaKGFiwj4mAW8m\nsNyHasJjDMem/xsmTR0IjHtKZ3k8pdJRI7ZNVnendsIOi38n0fOQ7pyKoB7VGaUKgU+zP2nZzXMv\nLun7ucBQuQKbp2hMmNXXy4gjScSht7C9RPiaCee2BkCZ2OMOzsl61BDn+Dytu1lEIcR7qzIKsR2t\n4RMn4kGnrhR1lVFVyl6Ltb8e7joUak5ObkJurp3A3SX6uKa5W/lJPwQd53kALGiD/j/KAlHwYwno\n9BzFANQ9wmgr2k6ump6+7Vp961U73nHVNqsrSk1RaYqVNkA4ER9+7Q4rS71ujPeDkWUyX7Sg7KSm\nrhQDmZ9F84DT2oSjn4SJ6CdCOBARBXwP8AWY5pm/KiLv11p/OPjYn8Qo/78V08n0e+1fMCLM7wF+\nLNn0twC/qLV+t4h8i33+zcB/CpRa688WkV3gwyLyE1rrj76a87i04CPggWe/MKtw99flAmAk/NNB\nSxy7j0Mtna1hcZNQNtA/iybCTEfJ9vNk/B/bAi2xqBmcTcC/XHU+TzBkp+Ena3duIRCZ83aTC4AM\nPDw/2Rem66cBHnPOpmX55nMNvZm0hsZ7DkF9Te95DiWBSuW8WXMMV8uMnXyPHbVvgGf50EvpnNka\n44xjTHNkoRcUfsaF3sbqf/x2E9FTt9AxwJoHod1sEGZz3k5RtuZ/1bE3X3OlhP0J3N7R3NxpzBio\nfcMsWz70BIO0zTZg1ZjDxL55vZja8R1hnbmJtl2b0GM+MYw4322WhsjNs8oUupgYdtxegVQN+aSx\n6tgte3XuQ2511VGWwt6+itp8h3mV5u7SMOh82/LK6sEZyR9Hr/ahTuthngZ50Hur1900+TbgI1rr\n3wGwrbLfgVH8d/YOjIeigQ+KyBXXJ01r/Y9F5C0j230HpsMpwI9ixJ6/GbP2molIjukcUANHr/Yk\nXnej+lrZJIvDQPtFG4EOOPDofL1GamPA436cpprfAFE5koAOQ0/uh5zmerRI709sELQceEDKyu7k\ntVmpu4k0qFFxxYe9aGicmwpBMqTnhsdtLLMgpH3IKTT3udDb2c3zAeU4PPfRce7G8z/m8ynwqAHw\nuON2ALgReFwbh9BC5QpVQ17T2pCf27chZ/TnvinMV3VJ6O0MAAplmHqvbu1rsNKw7so+rkbCpvO9\nmisF7E80Vwq4udNwc7pmPrlF3naG2uwS/LZtg64amjpeSeSTjnwCeZHZHAuEjefMZ4ar+6bO+tsQ\no8vWAVlRDNvAW2KFOwttO6XOXMuHWrh+y9wrVaU98MyuNn7fedFF0kPtYWVYdscYNYRVT4RQeycw\nixluoeisqcs7P/95ETMtFS4csbghIh8Knn+/7cQM8Cbg+eC9F+i9Gs74zJuAl87Y522ttXv/E8Bt\n+/inMcD0ErAL/Nda62F72Me0Sws+SvowkCn4bP1qPp5IegqnLxq8QNFpP/kYcAlXwH5SD5heqQfg\n95PU9aSU6425nxH5f1ej4mtBrHbb2I/roOg9lv6Y7ThYkC6z1ta1hGL3Q4B1IS4lRdQXaczScNpF\n7DzgMR5cx37RcnPasJNfGweek+XmneQLK1I59/t0gAB9vuci7EDz/eZMAArlepx352qwwn2tjAgC\nq2Zc7qgoWg52Oq6UmjfsOOBp2JtMo1yPz7McVnQjbLZoKCwIOQ8HNtevrJaKthbz2bXQrIUs8H6A\nuP2FK/TEdGntNdxOPQABXL81oao6ZntCOWsGze9C01VDc7fpJXiOaxOOOzYtGZifIPNdE67LC6+F\nlyq0v8Z2X2v9OU9jx2DacIuIG8i3AS2miedV4JdF5Bec5/VK7dKCT56Z0IMDHSfvoaSxDKYehHow\ncpPreDV7/5k4NOFIDOHnnNdzESA7z84EIAtCA+AJtNsgbo0QAk+vwzYMvZmJFqpMW4Zg0Eo76z2m\nMK9TZLsefNKcjfm79u+5xLzKJgPv5yyPp2rj8N9+0flJdyffN8DTdrBKgGeR1LOExZBFPRqOC4ty\n09fH84g9qWUTAIWg456f5fWEVteKwi0Yio6pgisl3Joa4Hl2tubGtGA+ub7Z67EbbS1YpBaG1VTg\n6eQT7UN1rfvrSAr28qmJJq+sKnXa5twVB2PqgPR8l3jajwFoOsO3+A6BJyvx4BlRwKsGjhqykp4G\nfueEfG/HqHubk6Ptjm3302zj4uwp24vAc8HzZ+1rj/uZ1O640JyIPAPcta9/BfB/aq3XwF0R+SfA\n5wBb8HklVirhzUFBmfM86vbUvr8GOl9AaCrWXS2QRLmQeLsu4doDUMR6SialtLLfvNaLbKaeziYL\nAWjsO2kLARMCMgBstNZ6plYYhgzBxgBlP0s6PbYQjEP6rsqMErhXBPdU5hWw6m++vCB321U9rTVs\nRZEqggORwkBo+4VbJPTn8oYdYSe/ZuRkVscGdFYLAzwPD88f4KTeI/RMzLi5sZLgsY7Au2f3xdTy\nUaZfksva5PWACblNc5i2UBWtBx0DPJo3z4bAU8oUvXypr6lxVmTGOzjq22D7IUgAx73ntNUAOGqA\njnatDBBZooJjxLUjYAaBHl8gdeN6+DiVB+cpObHPiFEXeF5d1YNOU2dUS2Xen7X+mF3TvDFTMmEn\n3+fG9AgYyf+9UpNEifyV268CbxWRT8UAypdhACK09wPfaPNBnwscBiG1TfZ+4Csx3aS/EvgZ+/rH\ngYbgJVcAACAASURBVP8Q+LsiMgM+D/ibr/YkLi34KMlNsnXENk1qzjay09hcnzJmbhXs3Hz3/X5b\nzQCYxvaZ2iYQiujBWefDZi7k3mvOhaSAWbSNsfyLO8YiY+Dh5ORmgm8e9PL1sLm9eCqUqkpyIJ/O\nQe35njlhon+/iIUfw0l/f9KyN5myk++zm+3B6riXb0mlY0ILvR7besK3Fg/04YxMjzuOPux4FuiE\nY9YTTR7/p+hCbs6ulAAWeHKT4/mUubbAU3OlNHmuUqaeZOD127ASPqsWZRvAqXunTI9qP5E7r8KE\nr4qBqoEzk+OxXo+nZWeUs+SDRWaS/2HjPy8ke9KTD0rTw8cBYzFvaGqNmrTD/FIAOu1afNivWtrF\nzawlR58LAiEAlWp1/sV4DU1r3YjINwI/h6Fa/5DW+jdE5J32/fcCH8DQrD+CoVp/tfu+iPwEhlhw\nQ0ReAP6K1voHMaDzPhH5GuBjwJfar3wP8MMi8hsYrtYPa63/xas9j0sLPtJ1lF0Gqhj3FLQLv/Wv\npcwlYHRC8V5TNx4rTgsPfT1RFHpZD0JTY/u9aEFqSFVWkrNfnPqwmTefm5lGXos7HsAXR246pqjv\n0eoo6YkTNx7baMHE72HeTv65JU6khAXTI8ioZYd5pkLFE65ePohX+5t61zhznTaDRnutbjYKsKaM\nyRB4UoB5HOBxpIYw5FZ3sYQRGACaKs2tKdza6Ty5IAUevXwAjx4lraNV0MXU6Mip47ovFk3aF3T3\nTmmDRne6akw9kA3XNevMUrNNNGBa9zRot/1svxx2m63oX7Mad1IaTyWrO3TZMp01oyHBMOTnKOLL\nY+0JEk2dMbu6NgA0ok7hrofTFtzJ90c901dkmWz0th7XtNYfwABM+Np7g8ca+IYN3/3yDa8/AP7Y\nyOsLDN36idqlBR+aGn33twbNt4psB9fMqm6hr1kY2lhlfjjJmwmoz/2ksWOXrHfeT1QewfmeT3oc\nY5YqIijJaTHA5sJmcUO3vnFeqHOmA8n7UMU5agjnWk+fPIhzKa7AzxURri/uHYqrw5ifoKtF1Pwu\nL+feezXBupUH0ELtUWS2hqftTIhp+dAcz8NDU8UPHmj8fkILgcdrxPUCrKHXA/3iJPV2ovsjmcjG\nGH+Aj9qmFPM05Jba/iQgFtg813xyjSLbHQIwJOCTGw/DPZ/mcKUks0n/SNzUvV9ktEHLgdTr6WuC\nepDOSgNk2ZVyvOOsC70VE6Se9K0ybPtsmSqyqiFHRwAUejvVUtHUwvGhKUgtS2F+oDggAybMrq4p\nSm016uy96RZJQQGzU5rf2pO3yws+bWdX4q7T4R6wgOmenTAsgKiYrRbnP8bNvDe+qhoz5/14C/Cu\nZX3mhAUjsjAQ9//BVNB7xQFlQovpynsAOoGKt2nvUJBjaNKtDgDH7X/1YJjAD/u8wGi/l6gFdnhe\nZd57PusDU6U+X0Nrmq9JU5NP58zz65zKkT8fDzo25KerY6+S7PvTJO3E9XrdA1AxiYAnbLQXUp4H\n7L8IcIbe2ZidRzhJ8z0QK4g7/TynIuFqeG5ObR1PHgBPtYjbdo94fSG4eLsx78fFgQWQzU/859v7\nJ7RHzUaSwsCKLKZY12tD4k3aWl9koZJ6O6uloqo6FoeNl+CpKs0caNYZJR1NnVEwguBNjcr3kuuy\noR3G1l6VXV7w0drc4K4zZWtaX4esMafdNeb9hCv/YQGkZSYFSsepDUJe0fdjj6ft1hFQhIwx09Y7\naMUMPnQRNp2TKUYhOtvpJV2C0J3bn+lrH0xQ4TbbUGAzAKim7id4Czqu62TUbCzo9+Jk+CEAH5fA\nSPrXgAlsaydGac30g6kQVbI7u+YZixHoNLUBQws8gM8lmH0lno9r87yhHYMLx5g2Cf2ixHhbM3+N\nvGbaGbYppJo2p0tDbjBUoZiqOMy2N5la9YZdMy6rYzume0ZBenfWK2gvTnzLa682XcTHHgEzRG2n\ndWWu5WqpvNcDpgbIFKEaBQRlyQEpuPn9niyN1xPeQ4u+8LU7NHI7rrV4mtdxIbbF4dqDTmqmWNZQ\nw6XMLdXa5pzsAi6StYLxouNXYiL+ft7aFnyMe6/qyFN4nOTv2ATSr1TjCSM0U1PUM+JM6C0mG6TH\n4oDH51Sa437irxYxUKiibz+dF8gKmM7Jbb4k3Has5jxOKU5f81XhTW3COJY1FoFOADiuXiPs+9JV\nPQC1R41vDhayp8LulOp20+/b7T8v0OUc2orcaqNFoNPUhs12Rm7Hh32cavQZwBNeP0eZLrIdP9HH\nvXrGyR8xxTylkMfvjbHc0vnr9o5h9IV0cuf9KZkgFnj8tXMiprZo1oPQWBfSDea8R70y19J4PXmi\nbt0x27P0+9IoHORFh0yLGIBsO/SwO2oIPOb+ab1KtRMZTUGnXnVe8+0sc0w9dVAa8AlzjG2FuGJj\n17X4SYHP1iK7vOBzjo3J5l+keDDtDxQWqI0RFsLvbSpiDRlkfTLfhlAcXThkbrlkrUvi+g6OWOHE\neU99Bu+9bGSgpeZAx4Ge673iwmwXABwny9+srVpxXUSsKienkk8aoO9O6UbTy/EX6x6EVnbSaOvR\nXFNkKfBcO+jzSY5csAF4oAcXpw3nw3x+xRxPWmFDuhzTpdV4zblvc+0sLCp195KrXwrNeTuueNaF\n2Vz41OjVHfvxCU3KPd/63UjL1MPQbThuIR07XFisWjpLNAi9Hmf5pKMsjfTNWAGoM722Xq2tOQo9\nq+5RZbXmlh54li/nnsbt8jqh0nVZCkWZKG6UGaowFHK1b+V70hBjU5tmc+73kI7JqzDJLGlja8Bl\nBh/n+dRro+nktJ1egfVdSvuiVAc88YQxFJx0dhYVN5rc0hoV+2P1eQybpI0k490p55WdBGvTliBR\ncfb5ABvK8jbSF8iH2dxkEa1SHwd0suBxH64pZ21Ux7FrRSK7qUKVtiPm1YPhxUi6cI7lDGQyCYgM\ntjmb9XZS/Tsn5GmuSXx9wrCWWRAkwqTueOwYSlP2Wnt5L1JaWMX0ujtJansc8Lj7RnsVDhBTJF10\no2G2MA+o26q/pqF683RuO90GvZHCRUhJHH4aycPowHvdlOuZzlpUoVGTEYqza6cQPPdeVdV44GkT\nj6cPsTVe5+34qPWCo/VUKEpNWZpjckCUT7Q5noNZTHgIzY1Btdi8eNnaq7bLCz4i/QTtrLFhCDVO\nbxnP3VjA6XoACoHnsJaBanZIx+31zgoK5VQW4lxMlMPYBDrhD2SMuTVmToLHN0tLZoYNHlDYdMyv\niIsJcGoT0MrndmSqjLowOe15jY3cbicxOLv4fL//BpkzIA0AxnvJa2BppFrCsUnyGBGxwDZni3s0\nbabiDoFnMRQmjfIGNgza2j4xrnNnOR/S5jMoSOuXusH95zyeItvxobaoE6vtTRM1P3QhWRsGjHoj\nNUa/LvKI3MKjqEfbabu8XD4xEjerQJMg9HLKWcvutZbsoETd2EXd3kX2dmISw3w3yRGa+6WrGhOW\nrZUvGjXA047mdspp7PUUZcb1Wzmzq42hWd8qyW7ukN2YmwWMW4DY+6BfhG07mH4ybQs+wQSr2wrB\nTQbmh29i8EPRzBBszF/xf89qItcrO/fSM0bdeRJI/EwiNYBR0EkS+i5pL+XaFOal1NWgOdZg8nkM\n2yhHU0zMZAImf1DmsF/64+runfbJVvuamujeMZjEdFygr153k1jIea3X6GIdn2d4vntOWnxELLTf\nQe/xlPORolxTe6WC/NvGEGiad7PH2NvSdii1IORAwXqhrk2DNwtAV0tXb5ZBcqr7RRvld3LyuA0H\n9GActGOvu1NfLKxk4tt6OyASW1OpYXOrcmsyVagbu+hVS7luvaJ0KLnjcnjq5h7q9szU9riW4OEC\nMNm+aYVgCAbOO66Wmadwh8BTlBlFaUobijKLPJ43PldwcGvNwa2a4rkZ6rk9Azy3bxjQ2btqwq12\n8SWqBFWi88L87vLY63/FJhLfw5fcLi/4qMxMBunk29SQxx5AJDSaMNjSkNtRnQ1AZ9BWoGhxLQUi\n+RmXe2HVJ82d+x+CzuIkYo4BPtQl05asMOylaKUfhFu0SMTWOxeAXGO1M3TQxhhkADKHjCP0qjVN\nxJLByYuOJqmXSQUrs5KIJaSr1vRlcYlqN2mNqSXk1zafl20cFnaqHCOQeAUHu0iIC2kXDGqaYPjX\nj01tV9RzEzq0RBDXojsyy0fZzYmo+M5D2skPEgKKBT9biBsMqG31blh0Ifj052QYliovTVvvpvYC\nn2ZginHPZ2rJIDd3KDklt9ppzlNVByUUmfF4bs160HEMszPM5ZO6CtvF1JALXI4nNQM4mc/3lKVw\n+9mcg1sVsytNDzxvvGo8nmsH/eIDhnkxgFkZh1G39sTs8oLPBTXTnKXstTGP56yoUtjPJmRH+fi8\ny+WMxZsD0OmOKrpH5/wYbNw8Cre4v7atgmnQ1od7PAC1I6u8kPUT1O8MbBM9F0MUaAGpGrKqgeDr\n+UT39NyACuu8no1V4c77CfMG4QTivL3p3J9HZLZ3i7ONahJjxbdjwBOMi8+LuHFa206d811DkgDj\nBU2JmIiDnnwZtvFcX2vSyxltCPu1VeTNha3ew2Z0YEJ7ofetpKHId+z9sOgBKLzlRrwfMEDj2IlO\nCSG7UsaejgMdt/BLE/rFBJauA+mQwr08NvkdRy5wHg64vI7xfPb2FTffCLOrNXu3G/Jn98jfvI9c\n3zfAc+vmmcDjX2tqk597EiZPTuHg94Jd3pEQ6VeHmxqFdeuAcRTTXccK/tJ22XEHzzbSGdtR+zHo\nrBZDlhYMErCPbWk/ehHabtikzYf6Ui+otXF/t/pL82SBRSGwwAtyr2dBTYiRbOkFWE2yum9Epmxi\n2Hk9WZn39GtXIBVWxxeTYXjRTr7ey8t7Dye1sHfOK7ZXoODgzU7AyoKhUcqYRGKqYe2QB52TBz3r\n0S0cAm8v7FhrJIHEN6MDs6jan6zY1Y1dELnW5ztIOQcW5tqrAohbTgwn0gK1V5jrdVCaMOx8t8/n\nzHf9dXGTfkRyaOsemIPt50VHtTTHW5YZC1scOgQe2NtXzA8U197QMbvSMHtGyJ+9Sv7mfbh2YIDn\nyhVk/xmYneEVO3vMsPTWLm6XGHyymPkTTFheRqU75d6qsLLqYw28Nm9+rHX0QOAyBZ1Eb8xPYpZJ\nBr3+lmMYpUVrrmjOrzJVEXUxPUv41OeBwryB/fFJU/qEuZ8gxsDGjWn4o7UAlLnjDzTDHANuVsV1\nPtlBSVZOfYw8OyiRaaIFFv4PaNIup2V67gzrpVI7Twy27dYoldvPmiLTwaQ0BjzniZaOLHpED1mP\nfVFw3i8S0vsHYtHWkmih4dto2IVU2qOmajv2iyMwTguttkQXy9LTeR23O7DnJ64TaHJ+/v7bnQ0k\nrLQIjV6Tk5uaGkdycMSX2QnsnZBVLeq4pqiWwJpylqEeafIiZ36sqFd6tJNqOWt9fie7uYN69orJ\n7zhvJ6DSn2eP21tqaxe3Sw8+HnRsSMr0vTnhtDni3so0W7t3mg8Apx4p2XG5RFdxvhF4nL6WC62F\nBILURqiepg3w8LmUCtnb6X/4eWFCTgHwhJ5OaGF90Wh/oLxA2OtzAEVc0GpOfD5kzIFJ3LoEezEh\nL3O6o8prhjkAKsySOyowTc8tYkeFhaHTXnW61aug0Zu7Nruj5z1mfSfL2EMMRVbdxMzjpANSEkhq\nnnVo3nP1QO64B+FZR3BIczGz2PM5bY5Hex5B3/rbKXIrCSbkbMeEAp3SdDNsdwCJ+kEKONM5jcps\n6K+G9qHPPRVqh/n0OtJUyMoRHAqzjeUuWb2m26vIqoaybCmqxntB+cTmlDyxofW1YcVc92G2Z64b\n4Ll622v0Vd0pbXs0Cj5ndc191ZYNF4uX2S4x+Egf7w3CM653+1GtuHeac+805xOnPdisWsE1Vwwx\nYBpQqQ3wdB54TPFfADxHLw1laCyJwB9eQi0eHH6wc6/HVQThDesNSLnn8zyPY5sa1Em511fHQx/W\nSxhj4XclLwwAqcKE4CYTsnng5Q0Ye0mTMfc3DbO53IFdzbp2B9BL1IR2EQAKhWGhL/hUTILwVx63\nOHdjdpFwW0ICGQPrMO8mtijVFYsOuq6OkACoFjC7bjal10G79L7L66PaLZIEopZtLVfLU+9x5ZJ4\nP9bzlbD1tLsWjjVmPYuqO+W0ffT/s/f+wbZkV3nYt3r36T7317lv3ps3o0EjJEKEE6BSsZGRK3Ec\nbCwKVJVMYqpkQgrzQ2VCYIqknIolrApJla2qyS8S2SHIY4WAsDGQAoehLKIKoogrdoQFSogjcBkZ\nI2vEzLzf7/46p/t0984fa6+91969+9zz5t03M9J7q+rVve/ce87p7ttnf3ut9a3vQ9uw/UQ6lnB1\nzsO7++VllPN9UFc5yaQWtHcG265RXGr4vqgHDI1BXfPgsVE07rIaUO1zb9Ac7oIOKgaeJx8Hnv4y\n0OIp2P0raIYl2u4mz1RlbFOmTONSpusbIYjomwF8CPzH+4i19rnk5+R+/m6wpcJ3WWs/vem5RPSz\nAP6Qe4lLAO5Ya/9VInoX2G6hAhsc/afW2l+933N4eMEH5BvOUp6R2vjtZnBZj8HLS+DaMvR39Ne5\n6/EIDswNcKkKzpkBeFjOHic3g5S9Ah4ZzrznM9CgI4vzXgAeAQZLpGhL05GqK3gA0rt0mf2QYUkH\nOpwxHo9ew9AM1fzADVXWfBjVjPXEgKi3tWkxH4EOkAUeUSPYZEVRFdtlQNG1yZXeXm0kxnRRpKQI\nrSaRMB83ssW61hMMJOMZm9Dx17nvZbIjrVYut8VOUGdIsx+Aj0Ea93uXg2Nucx3H6xWO1ryJO2rH\n53vUGlydn6Kfr3lzVh8wwWF14me0isWZ1wEsqgKoB9DcYM9lyxpwfK/pigOeK0+ADp9CU5VYrl/x\ngBMIQyZyoY1YrW8891IfRGTAHjvvAvAigE8R0QvW2t9Wv/YtAN7u/r0TwI8BeOem51pr/6x6j/8W\ngLgs3gDwb1lr/4CIvhbsI/Tm+z2P1w18iOgtAD4K4Enw0vi8tfZDRHQZwM8CeBuA3wfwHmvtbfec\nHwLwXjBx6gettR93j38dgJ8AU4I+BuA/cn4Wmw4gKkUJ8PAHZuZ3iOyZEj9VymoAA8/cWCxmAXiE\nXKCBx7tnOi+ZHGXarrpRSQ0YZ0HScB8BzyxZnAFm67g5kk1Clvr7nMy/pmNHLDoPPEtF4V0qJe6l\nt6go9y5zFnR6MwwvTlGT26AyPcoo0qn46FjjUkqQLdKGfePnamUBf0+o3bH2eDFU5m3L05jSjtM9\nELmOQFbGJdcXlHsHcCoP51CWgeCwy35HPPwMxJbpERvT/WPxWFcOrA/C/EvtjlVlOlw1OFKgU+P6\nssQddVq66lQb4957CTM4SaB6H3T4VLBRAGAclX44avgzIsoZQMyoc9eYHjv0wNPVcyy7W1h2Rw50\nzMYZvQea5RSU/Xy/ivh6AJ+11v4eADi30mcAaPB5BsBH3Tr4SSK65Kyx33bec13W9B6weymstf+3\net3PANghotpae18c9Ncz8+kA/CfW2k8T0QGA3ySi/x3AdwH4hLX2OSJ6P4D3A3gfEX012C72awB8\nGYBfIaKvstb2YFT/8wB+HQw+3wzglze+OxUj4GmHpWMCsaTJnXZs1gWEbGdurJey18Bzdd5hUfWo\nzB6qYpf9ZJQcjaZNA2FGR77fdIOOSlIp8ERXWERTWw8esogC06KWOUXm7DyQYs+lbLG+V4A2rNGb\nNVODXRZkT2+6LMoNgVYJEInAZK6Bn6pSOBl8AR4Bz96us3p82ro8vRYp8GjwMumUZ+rKmomI6SWk\nCE3/nopUMDaZ85J7pwACwWQiguUDAxDvXYRq3XvFDelN6nmmSOEc4BJceSWcs8t2lt1NLLtjvLy0\nOGorXF+Wvrx3tCb/WdGM0MAgJVSFo/+bBUgASLJr8Aak2A9qHlGJ1pWZfa/z4LEAPC4b9kzVjNJ8\njsW6jY7j6xhvBvB59f8XwdnNeb/z5i2f+28AeMVa+7uZ9/5WAJ++X+ABXkfwcX7iL7nvj4nod8AX\n5hmwxSsA/CSAXwPwPvf4z7iT/mdE9FkAX09Evw9gYa39JAAQ0UcB/Ds4B3wsZDcczz7IP+8Uqdot\ncYmNsx1htaVDpEKnrmnOml8KeOzNo0gDbVPc01yAFhOV8+wblk0BUDpCRS7EJI2lY/IvPwIg10vy\nZZqkyS/hf266kAUtnmLJIJkiB9xxn2aJF5HfjkRGj88Us2h6P+3foIhtMFLQkR5PXJ4ZvPFeeLEx\n4JCzJZDvo2zHVN4ET8q9I+l+OVetaJHOed04Yb2zRsgaHcwTa7abkJJrcj2A1mvCyaK6qHr3lUEn\nHnzejbOenOCs0sCTjOfF0wrXlzNcWxYedO40wN1lgcOdwbusOl6JX+yP1ga7Zefnz4Tm7WeMqlmQ\nSZJ/+jons0O0dwVdPff3tNidbzMcrnthF80NIKLYw2hzPE5Ev6H+/7y19vmLPaLJ+PcA/O30QSL6\nGgD/JYBvuog3eUP0fIjobQD+MDhzedIBEwC8DC7LAQxMn1RPEyRfu+/Tx88NZgIdeeCRPk9uYHQq\n20nVC0TSfscsvI+KPb0ZqNQnZ+cCj1crqI2vawPIa5OlWU+uBKNUjVPLBgHf3nY461jKRUpvqdac\n9HMEgKZmhtIPNgDnf7PMZkEwdehpSD8hY/rGpn9J1K33YPEmgG4wUxMOtDSOnIt89ddiiF1a0xCq\nM3seqQHTRHBzcq7FKQ/I4KdXFFAgtAl47PEyEtoMltclCn99doGzU9j6GKXzOFpUTMLADFGPoy74\nvq2KnUg2yJcVlTBpRIyQUqsqs714WuPFk5nvkd5pgaYt0LYGJ0cznNQD7h60HoQAi1Uf7hHdZ9Jz\nRgTHlkxUpj0Ypde4rNgKw7HZQjXDZO9N0V9c9cDRGrjTUFRKl83l6xA3rLXvmPjZFwC8Rf3/affY\nNr8z2/RcIioB/BkAX6dfjIieBvB3APw5a+0/3f40puN1Bx8i2gfw8wD+Y2vtESnlAWutJaIL+8sT\n0fcC+F4A+PIvf8LZJsyAhHJZG4u54RtyXo5BBxgDT20s6iLYJhsqQV3Di0nfZnfzm4KbrEkJTgOR\n/l2oRXlKZkZF+JCHnSGXJAwW6FGbUJaKxCr7FtoqgMoKtZmji4zvShiSBXxA0xdexw7AyJUVUIOG\nx7djNWpl0SD9LVvNnFqAW+Bd9kRlhbreVxbka2ecNy4lpiU3+Z7vBe1z1GG3BAxVXkOt7AdgdWvs\nYSTXHgAkA8kAT4fOk1s0+SHb3s5YQmgraWAiMz45A9oXYbsWu1feClM/jf3ZWXS+ch3S6zIpTKpm\ndETxe9kd43Yz4MVT7u3881Pg5TP+3ByfxH/nqubdHGcVFk/Mg/ld2mfyhoYCOBp45FhKR3xISpmS\njcmmKi2v8de413NYWcBbQcSby6s7HZ7ee8PN+nwKwNuJ6CvAwPFtAL49+Z0XADzrejrvBHDXWvsS\nEV0/57l/GsA/ttb6DT0RXQLwdwG831r79y/qJF5X8CGiGRh4/pa19hfcw68Q0VPuQj0F4Jp7fArJ\nv+C+Tx8fhUtbnweAd/yRr7SVW5z6Yo3arByY8NT93BAuVYCmiQnRQFSqPegY60sX0ufhermSy0n7\nF1tGmiGxrplbePTj8n9vkOfq5bJjVTvu3q5xsr7lQedozQuFWD0IKFfF7mgh8DpXXpX5AGW9DzhR\n1N71lASERJNsSsvOnt7knb4mYijq+XCX34/mPajuWNPNgZAmPli3SFZep02AR8vSjPtYvU2UBFS/\nuSJ+ri9DCWlkkyV3GsI4TMgtWcZcushuiKwvjMgNue/RfgG2b1FffivqeotpfmCjMClnO0s/O8TA\nM8PnT0pcW3HWsOo549Gxv1ijqnqX9XBG4QewZ71zgY2tzyNJp6lrkkgp6cgpVQQ7inEcVhZz5RJ7\nWFk8vb/G03stdsrFFhdui7ggeR1rbUdEz4JZZwbAj1trP0NE3+d+/mFw7/vdAD4Lplp/96bnqpf/\nNoxLbs8C+BcB/DAR/bB77JustddwH/F6st0IwP8E4HestT+ifvQCgO8E88q/E8Avqsd/moh+BEw4\neDuAf2it7YnoiIj+GLhs9+cA/LVzD6DvQKtjVPUO2mKJ2nD2E5qy7JlyqQpNUm2NkAJPbYZ81iPl\nE33uDjy26fnYFbs4RsKaKiMaAZC8l8jiAP6rLLAn61u43QwedHSwr1Dpd6E4uRkDjrYLcHMZBKCs\n92HMIuiIUYm2DwQA8SVKRTm1Wre9fTeintuVAh93DTQIWThJH2e/bIFIh6sEEpr4uEdqyvGcTdbS\n4uRmAJ7UsTUNeUzeu973mebW81YTgEbzktlebcsDuWljwqkP0IwJG7h2nW2z6wzBQVPmdVltQphU\nylgygH19mQeeNlFPCMADLGbsvCquq8II9RsdbX+emrmdp7GmepBpbAIe/TtP7vDXp/dbvGmHsD97\nkufz3mBhrf0YGGD0Yx9W31sAP7Dtc9XPvivz2F8B8Ffu43Cz8XpmPv86gO8A8I+I6P9xj/0lMOj8\nHBG9F8DnwJQ/OGT/OTAlsAPwA47pBgDfj0C1/mWcx3QDgKGHPb2JsnwKO2aBflhjMWtxvedLEtgu\nsR+PZEcp8ITd267vCeisZ0qpYJTZJM2mbfTcoo/UbD0uvanFQ4Dn+io9zxCyC/UAqneemh7tVA4s\nAOpa0HwfVbnjswlDMz9FHtk6ixCmLl05J1TJduyqZzl9d/5FO3C5SYFQAYQMyPW6/F8tN7yZhsuW\nxFq8HaA2EK78pH2Ujm974LE3j7baxVJ9wBmnom17YgOF65S1bJ4EIFd62/D+nqDRrtlG3I9sJOH6\nhlbKhKaKhEkBRMBzpznG9RWz2a4tiwh4Vj0i4KkcqaGuGHiemFsPPNIjlUpBTfP4WvfJZwcY5QWs\nyAAAIABJREFUyzptKfhZFxYyRiebSym9pff/ourx9F6LS/UBD782K9i7OdLXq4iCtqLFPyzxerLd\n/k9k+scuvnHiOR8E8MHM478B4Gvv6QCGwOQx9dw/vM0OKfzu4J8DwGc92XC9im0ASEIDj036PZwN\nnfPnU0Ombc87VgGe60t+rs7gpGe1Vch5lC0DyRygjhdznU2I5FAEPN5ds00sk8V+u98KdG3TAS/d\nBA7OgNMzZwzGzLkRpMrQrVwXgBdZ5y4q1uKAU2eQ49TAk8zYpH+TKGQxL6so48kpL8gxBRWBNryG\n7vfUZTDpU+8rxBQ0HegAQTFCH4tQkc+LxHpDO7oer1e4vppxf+ekwNGaRxGi23Cf39vPwTmijgCP\ngM6bdgg75WXsmEXoox29xOXMVFQXCastvW6JaK7OfPjzDLdhDE8T5pvfTDpjx4PZHPuzN6MeCthb\nX4A9vQW8fOP86/Yo7jled8LB6xbD4HdXZn4AU8xQmxWwNv6G1aFpqjqk3BbNRkjdXMoal5w0u5OW\n0dRRGRqVMpMWDQUQdH2qYiQ/Y1dh4DQntEmm9kKpYfhv5hl9fJ4FarNBXUGYRjqiLO4U2AUDEADC\nwSibABADjyzouhfmnCs3liLbATZDFbfNCeh4yaCwn19gvWNl6ab03bkFssZJKNlNqAp4RQoHklna\nrGK5UX3ADfDupmcUArGCdktLVGaHF2EZwnXNfTQnXpRVQK9YALY2sHMBofgYRIA2jiUDF5AHIJX1\nTFmJC/C8eDLDK0vJdMImTYg5qy4eRwB4A8JzcD2u7nSunHU5DF+f3uRy5ss3Yo1DzXSUDFcrKygL\n8FzIRpCZlnEfqi561PPB29dXhvt6O2YBOrnJQHjtOuztuxj+4Hb+DR7FfcXDDT5np7B7jaPpTl+K\n1CoBgM8UpEcifRIdZGpYXTvfR7yYtGtQtfbOn7Y2vscxChmOQGbHnU7SC+jNmRK7dLRTGaAVKnm6\ndjKQZkoZsiinnvYyDKqGLS2OQThw518l2UTCXErKkSKjslXWk5YnVx2o6RmE5DG1gyhOzmLL5LIK\nfSuxt+54FfPlLz3gmSmdMgCpv4NWE3csLGEUip0BADS9swcwgdreW7bDrmqe8vczUPU+UN3ie8Zd\nc0Js5Jeeb66UW1yqUeBuDEB6LszEIrQpo01KbQI8OWHdubGYG0SsUOmVXt3pIuDZLQ6C3NTNa7C3\n78K+dHPy/qd5iaJdA2tniyDHv0VIqS18L+XVyvciPRDe+Cew6nj6V87Q38hf73sOelR20/Hwgo+1\nvKgcnAB7LQzNfAouiwOw2TZBgmck1E2lmTmRkRurDXiPm3YdNa4JzOoCxosrgDEAaUSUhUR70Ze1\nmzw/UjNMRbasKCXE+MS4pGFzfQilQhDiBOzQeRyVswAEBlOTYQDeo1eRgK9cI//c69MS+cOdBubJ\nJet+neyyi2WilGDLAKJZMz8vgNqPafB6wj7NetwcWaojVg+EureoTYfeHqEvkhkoDULlLd75n5w5\nosU6ynLkmKJr4hBi8MZsHQwwBiAZgFUyOZIty/ybBh4dOruJZKcScs4IeERg99p12FduYLhxgv7z\nx+g9uzGxCqlL2Kvq+CdkhfJOtDM3PjCL5r0MzZTK/D+BlZ7eKzfQXztF9+IxumsNTu88vMvkg4yH\n96oO0+NDGoTkM+D7IiZWq+aGaWimjyKlg8pUfqlKcSdnsG43S3WwGQAQGu6bmtt60FQpTGuF7pwf\n0XyilHhupACkQw20AoiAeGRHnPS/soC7ITzotAMvsMrjKH0tA2CYG5j6jEs4adZmVMlNjjlDEsmC\npIC+An/sXfbX//qqzIJ+03OJtx4IWAN10Tpn0WVQGhA5IjnG6rab/D/z/Z2gdtBH1wRAuC714H9O\n7ZqJKcp2w29WFPDIhkWkcgRc5NIunLK0Bh35nPD3gZjDw9eXRwK79vZdBp5XTtFdO8XQAEU9Vjgf\nAK/pRmkGKioeZR2L2ppSUa53orkmz2I8Db0me/sucOvuCHhOb1/QMvko84ni4QWfc0LmeGQyWgPP\n1fnaa2DJDAjApaUOHWAKmPIAZC0otQk2gSEGnDCDR8gIAM+xIOz8CtXzkaC6jNwi/Y5blXuEodTb\nNZqhjPSrZJqbQSjVtBJ69Iz9XPYuu8XuOBjJ7e8G4MmUbrRHkthUM3H9gF8H4NdyRmRCES8uubLX\nSqjoPcxBtbmx766PXfXojzrvfDqiIFcFZyoJUMsgpTSuvamZiQFISqXkgMseL72umL/+ly5x1nn4\nFBq78gSPo7bMqj6Eey0M4Wpn0ZEckbkV5GaE7n1y5lk7ct4MNryAF1XFStAHFYpLyf2iRE7t/CDQ\n5J2Dr47UoTcceww2uccWs94N6e4GBuXx7cBwXHXZOp7+mxfq+CPxXNWno66J2JYSoswh4AO4MrD4\nain1keGo8WxLdtd9FA8qHoFPEizCOKi6fPgQyWxCVez4ifdoIrxvYfwwocx6FICZh99zzVECuJxV\nuTJcO4N1C3pUfmt4sUoN1rxxnO5jCKPLVBBDtVQ0MZjiSe3e4k5LuFTJ7rzA1fmKT8eVgGoPQBKn\nsZyPsm/was3KTRRgBhwZNy1v2oiJJa9dVK60tXAgJDv6DBFBZzZSVurWLoOo47mooi7ZGXVRh2sl\ndgxCyZbj7yq3cB+7qX4l6eJkf0TWJSsaWh+wvUN3Z0TwAMJUvbczMABQBPBxfy8eWo5LcbVWBQdG\nfaDi0PWhfDmwDlJN8xLF4/uj+0Wy5EijLxnQTLPjMIwdjyDwV/d4EUYSZLarpjns6Ute51AWe7vq\nMTQdhgbsZgt2s5UwhzVvuGoz3jzoUAruOgPqraLO64Hp05sRi1Hki4bjlu+n1qBrx5uFR3Ex8fCC\nT3H+wBnH4LOgVLeNrOXekZqBSZWfZTeZypiUe5cBKUO1cfbDBASnYpDYZRfug4hqlgUemSsRnbIA\nPCHraQfgjntrNhNjEOIsaIamJzy9x7tvlAAKjAFIymsmAR1lzKdpr4Y6r9cFnARXVNMCl5GAG4cM\nzEqmEVtPmKjcNDTwC0V5xL0BmhsUdem8XpIsRTxolBOrJQKc1hopPTFPQKhbBq2z01C2k+xh74rX\nPDtxEv6a4JH66OiqIP9pBZxKNP3Az1FZkPwdqvlB0DvL9IEkc/bhgHx0vygPnhxFORd6xk2ESYGg\nms2/o6SUXLYhbD6sHMvRDRTb4yX3qVTJNA1zWEdZ28gyxIXtmzFr0UUJeLWRSDVBDzefnHHGc9z6\n++nCg2gsjvsQx8MLPpngxqTQMgcIPTNMYl8OA3Eq2wEQT/4bfp7UzkWoUwtbMrX2Cmc/u3sMOEn2\nAwTQ0dlO1NyWur3q9chAoA6d9ehp9JWzIebsB07scebPGzhGbzrAJABk2lG2o435UitqQwJCJbO5\nyjaU87DPAKQXlXYN7KnvnQGdVnMG4qynd2WSbk0ohJDhVACKRT0CHuukePxxiqSZE/z0QCSlU1m8\n6v1IXiin8Czq6E1feOFKbcEujrjzkkugEqvejkqhPFN97MtwO/NF6AMBKnucNphLS7P+uGWjkABP\nbawjQ0i5OXwvWY38no5IJ06JlZK1QfHDa/bxTNdUyY3mxgOP+PVEnlVGjQGUVQCgnC9SKtXjWIxC\nJJFyW5RFP4oHGg8v+CTNP9ml1Wbt517kw38wmwdhSdGeAngRMlUsZWMqQOjNbj4CALNtlFp0bzuU\nZs6LYNeGQUDswlZrX8svHKt05Fuiey16gFKF7vcACDYRSgZFT6Q3VQ9gwNxY1EuZkWjhDdo0AJVN\n6O0owcmxxQKDRGV2vJgmih0uw83hX2sydM/FARDVa7U14CibBt3Mekvl4rBGcVDBPLnHC9flQ/73\n2JNBct9bboeFV2wYDHWhR+BKhihbLsuZNpy/Ax5p1Le9s+ZYc6lNpPoFYAR0UjdRiVVHLgsN9tZS\nhnusDhsKNue7EogICL43o911yoTcuxLmerwaeBe9dj+UWFQiOZUvpU1Fyijji6wkctznrnBZ2eDP\nFLxpqMso4yke3483XJ5leRJR5gEExmIakSzU+HfEFbhoB9i6R9l0bn8xXBwQPSIcRPEIfLzVgPvA\n+J16yYrDeg6ga7xsju0bZwcQyjYAwlyNn+0wWRpzNFckH0iZ13HDqHa9DlptKegAvuTjp7wB7juZ\naaUF6fWcHFdoXT+pqgf188FlP6FBXps1+qFES2ehBNecRNmOnK82YQvPH9DbIyfdL9e3Q1XuMAB1\n1ajkJufi1YsdFV16HAUALGoUhzWGuw2KgwrlMS8qxUGF4rCGeWIvOFtePgQO3wRaMBmgdX8j/1YK\nJIVAErI2d71TN1ffX1v7Rv1Z16EZBHhMlPGkwJP/+3BmKlKxUoZzR8n2CO5Pa8oFb17kWrVjK/K0\nN+eBR56jTAajKIAKwGM1W20AiEBn01ycBh7Z1AFDmHvb3wVOmbRSVDMUixrDUQNy5JLisPZkmkid\nIR0gjqR3BFxiWSkfGnQyQ6xAkC0yhzVobrB7t0F78igDelDxCHxUxB424cNT05wblauTWH9rdQLs\nBbVgr4Glhgp5tiOoCIxmgsqKPzBlFZhvgCvDqdJTyiwDJjOecD4zSC3Jl906znqOj8IxNI0jV9QF\nDvbXvgoSN8nDQm1MCTM/cAtumIIP8yxlJFsfVL+XCtz5g1+VO56IEAGQpmybFsCJYscFJQOq1jCO\nUCADisVhzfM8e26e5+AxnmHZv4IzRSXOyyiJFl3Gx8jaeEGLJF061WOL+zy6zJbLeFJi3qp31gQ1\nl+E4x9MfVQYgQ7PQA+paYD/Z0Sf6fhHwqJDsJ41AVY4FYs+LsVXDDEATjknAZMb3t7iUFo+vQ/9T\nCB36vtdxkgx++p+r0mOVXI+MVh7NXEZdr1m0dtXDokOBEjgEKjQoZ9vPoD2K7ePhBh8g+jCGnZqa\nA+jbKNvxoodAUFGWspNbgHkRIr8Q1UWPpifvhpktWZgq/rAoEIpopbL4KUXiKLylNIduBkvJrW0N\n2iaU3CrVPG7awmU/1tsOixKC2EvLOWjLaXaLDGZ8KfiEBjovZnrnLH2gCAqEku5ng5ioIACEmRv4\nrAIpwRy476WxfukS93f2rjgG2k1fCj1aB4AE9JBtWGyF3S7HaoliAHJZTzucbcx6zi21Rcy3EEwK\n8VxAjABIjr3eB3VtPAwMRPeHJ1ekEWU/cRlaypF6Q6Z/7l8i6RfFr5NZYtJMHxjPjmkdNyF/yO9I\nz0iXGDWw6GxPf5WYEmytA0XfgmnqRV36wdf7jkdltygegY/TJCv3rgAmNU5TcjAbIggwLr1opLdm\nGMirXkvwTloJQxonKImM7L1QTjd4lwBhkZYFfFNNvm3yVr513aOuxiVCsZIWb562X8IU3NPx9uNr\nFpzMMbvmhvzjgUasMimZKdKy/652r3ss+nFZQPzCpTNEIRXsXYGdH6AZllh2d9D2S28lwSw0UTbm\nDtKiGoBZjAze/gH5BUgyHp31aDdcsWKfAh4dORmnHABJxmbIuaGaMsxjyX2gVb2nsmMliyQMMdHk\nS/tg9xKSKWZDtPUmNPii3ml03K7PKsDjDPx0thwB0b0u8tWMhVnFqsTNS1l0MIdbKKS/xkFE3wzg\nQ+B22Uestc8lPyf383eD/Xy+y1r76U3PJaK/DOAZcBvumnvOH7if/SsA/jqAhfv5H7XWru7nHB5e\n8JGQWvDqhOnP4vmiPpgSZGrYeXgsnZGQCOrWS+cMGj4iIqXfDkAvZZOuOb/xnoscKJo6zB0lIRIo\n+wctjo9m3l2ydl/3F2sWgJyF5wvwNIPxUjBCnujt2jfXhVIszC5gekevQ0zVvJMoELILReTw7C45\n57SkIuEyUQEeTQTg7IyB56g10byKDA9rYzPR+5r0k1ElOCF3aO08PU+Vs2XX10giB0Crjn1wVj1Q\nSyl0INeL4aHdHbNAOd8H5TYwuVidxNcsAaIAQuWktbh+LGfeFoUpGCCbE8DUTBXPRe5xJULrJZmk\n7KbKcpECNjANQjojygwQe/HYee8Hni8kLshSgYgMgB8F8C4ALwL4FBG9YK39bfVr3wL2PHs72Mn0\nxwC885zn/tfW2v/MvccPAvhhAN/nrLX/JoDvsNb+FhFdAbCZl79FPLzgo+d8vCDm+UGmBmRX6ZQE\npj6cPIQafyjTIb52QNi55pg42j00eTwXYd5BSh6tnzifG5a/r6sBB4s12qZAVQ8ehA7210qRePza\nzUARCDV9AJ6j1uBuS7ijZeBcEiVSPgJk+loYzPxOWb5G5S0NQDhwWVA1nY2W1UijLABPXBKUELmk\nHPDY05uh/9RXSUbRpmLJ0XU4WucJBlqORq6PjhwAScn0EGEQlQtvMQBNZRykjfQy9xigsialy7ep\nvBYed2rd2iqi0D93mRABRjZb8jfMDIqO7ncRoVWWFkFZ3LnbKrVru15HHk/bgJCXuRKh331EQPQG\ni68H8Flr7e8BgLPKfgbsdSbxDICPOlO5TxLRJecM/bap51prj9Tz9xASy28C8P9aa38LAKy1Ny/i\nJB5e8JFQH0SL48kSxaiMIUyvxJ3SFLPoQ2ioHO0K296VS4oOhtzCSzNU5Y6fLQHgF17qqvhDqReP\nXJ2/bycbw3MHQlXd878qlNouVUGZGAh9kLEkzOB6G8UIeALgBCivCp1JEaAOrR/WrrG9dtcqA0Dq\nWvjrYdR5JyXJzhTMZkuAJ/SjSHm5pBboO2Opf1m8yorZWjLfo7ygpM+TK7c1beGvcQo895IByftw\nec+iNoGNuOwYgOImP9z3PLekASha4JP7yZatUyY/OTcLSoFHZtr6YQ0U4f/8M0dhNyVKs+9LypbC\nvULWgsRUTo4tMWS0x8uR+jVFRIOkD5QCTyrNI7G/G0g+7TrqJ74O8TgR/Yb6//PW2ufd928G8Hn1\nsxfB2Y2O3O+8+bznEtEHwW7QdwH8SffwVwGwRPRxAFcB/Iy19r96NSel4xH4pDG1o9YyLGqK3//Y\nM6PGu6QcAPW2Awagx9qDkNagAuBN2fzAKTYsGvoxtyhWZgeLaomjtXET6QYAs6hwyMfuVYjdnSCl\nuUUVJtVZZDUAkOjdZRfcCSO+Vc/FYglNwNDXJAtAQMwyA5K5qrCAiV31OOPR5IKgtuwdNYtMxiMy\nML4JHt7elo3vk7CMEZfb7rSh3CbnnQu53qIapAU7t4lGZZIMpAxAQg7QpI6q4KygNFWwiUgt0ZMQ\nLT9tjyHlUUAN5iIGHv3VJ7nF+G/b64xqiD9HnsEnCui63ObtN8YXa2Qpn1MTSIFHf5VSrlKZh4iw\nXkTcG+HghrX2HRfzxtuHtfYDAD5ARD8E4FkA/zkYJ/44gD8K7h99goh+01r7ift5r0fgoxlk8n8X\nqe5XpFdmMdoF6t6F/kDp39P0XpF5l4lJ/oAGKR75wJbRvMKGvpBSWyjrfVTFLnbKDlfnx6iN9DgM\n5qbI7qrF9Ouw0lbhMsmuiQhhIRfx1bmRXk/IcjQQrXrgqA3WxQxEHXbLQGDQ7DINQADiPpa6Hhp0\nooVxkD6cvt7WMe9sRAHXWn1e+FIsFXRvoV2PsixPNhjI9b/4vO8042HequqBhNBxHvVanEBlUzDS\nUitiKRt/iXIKztqmulE9n3RnXynyS5Rh1v5vIzEGHn3fO6Dpw+wcZ1Cdp9qnmzK+B5QvlvZ9ArhE\nVq/Hyh9OcipL0Rb9QWAMOrq3K2Ve9z5525A3RHwBwFvU/592j23zO7MtngsAfwvAx8Dg8yKAv2et\nvQEARPQxAH8EwCPwuZCQUor7PvpqKlarRudBB8hTTDmDCR+o3vKQngiVNgP5wcu6t1hULuOR8kRG\nx9AUM56w79qxv04mbN+A+tYp/K5xMFujNktvflebAnNTZnfah5VV1tpDRNUOoba04IXwsAKAuOeT\nqrWtegBtgdrJDwkA1WaNCkCLMb3Zv5LOgrYMzkZlQDKUEHW5Tfd5yn7gjGd14pWOfRM7pbwDgKnQ\n9rcc8aJ2ZIsAPMcnM88srOo+qEkoAJoiIuiMVEqhaTlUwmupKfkmAR6vQZgCj56TSRfX/V14b6ay\n8QO1cv01DRuIPw9HSjGDj7NT/18Dw9ID4rkzQ7rkJuHApHAMNA86qQJCov7hP9vuXEbvUSsJHtPG\nthoXRY8m2jiXdw/xKQBvJ6KvAAPHtwH49uR3XgDwrOvpvBPAXWvtS0R0feq5RPR2a+3vuuc/A+Af\nu+8/DuAvEtEu+GP6bwL47+73JB5e8JEbQUnqR7MzKsvpM4zCXMlNdpu6/JCWfYJml6P2QsQY3etF\npTiplbud66ZGe1o6cSKnVbGD3r32Y3Xn5IM4C9LlM4ngW2QjDa84BCE5ZROq8twEfbhcyOPRAuUM\n1fQAqnKPiHoXUwB0riBmYb2Rm5aKCX2eXb6+q1thcdbOpe2a7c9VeAFX23kdN1YnAO4uCz9LBcAr\nSUSRobRH7p/Kilo7g2rmJN83g7tO5SjbyVqXC/A48BFwjc4NcJqBzAK1c6G8xwtnnN2vx4Z5Q5xe\n171kbYExmYJQUJ9uxyU3f+1mQUA1BZ5Ll/xnWovddhn7dUMzL5sEJLR+zQZ8g4W1tiOiZ8GgYAD8\nuLX2M0T0fe7nHwZnLe8G8Flwqey7Nz3XvfRzRPSHwB/szwGQ17tNRD8CBj0L4GPW2r97v+fx8IKP\nhPJySUtrIhWjI2UTpXIj/H+eYentejR4qZvd8v9F1cc0ZlWK49eZcfYjx9snIJSKmyr2XlnvexYU\ni40uEbIBLeNP/jHJCtL5JDknrX13BGBRAUctf0VGgj4Fo7tt0C2rTTC0Y1HXdMAzvt4agHSjOg1T\ncLmHrzNGGVxtBt/nqYodYHXMC3Q/0WMQqaNd+HtG5ro4myUcrWPgEdBpfPYzjGasUiJCDnTkX6oq\nzX8jy+fgvKVi0FFKzgnwyJxMLiyCRxB2EbKBUixD4sxeA8+0Uy7/HQB487zFLGS9k1lQruQls1xi\nbZHxJ8J831cs2uF4JLQLiITWrpOjmkX6fYHW/8YEIWvtx8AAox/7sPreAviBbZ/rHv/WDe/3N8F0\n6wuLhxd8iOKUPNEpC19z9eoANIEmHBqqAMLwZRuzrLyLqCFvZwDoPkicBXEvaM3Zj6j4ps1izQbC\nGcuslBVs14K6FuV8HzA7nlFWmzWDXdFHCgZSDkwXNS0zI9HbDlWxxm7Z4axbYzErcLQ2qE2B68tx\nSW+UDTkAkoW0MSJDxDpyfWr8lfsTJmUgIXakGwIGtRCiUTaSOpKQ3XTL0isRa8pZi8NU6N2ipktu\nWqiVwabwc1T8WGAYRrbT5SbAGYMOmxkufGnNq3GsjmD7Jp6JEvuAW3fHWUTuukrPZIsQHT8BnqMJ\n/xvZcHHw7xwBWKAHsPQA1Ns1bLETbBFEBSElD8xmzErTSt17VyKF8ba/5VVHsvJB7n6RkQjdXw3G\nh/vnDplvHzQmzjzE8RCDTzFKyzU913+o+iJ4lwzwAKQjXZRFUl9siEXZODd8qbMOWYDHAKQasClD\nyUnDy9Q3zWZ+RwiRXOkblHtXPOsJABbV0i0I4aUbV4oyNPMeLJV+78y5slL1ErtlKOk1feEzoFQx\nP5r9MUp6x8kQjf5M2i8pF0qZOY3KMJkhZdUBehB4gsygHWa1qGtZRU6xmu2n/e6qenwuAjyHO4PP\ncrYBHG9r4HpUO+VjPFQqgHN6FJhh+lppIU0lSZONqTkYXZbWIqq28/qFUlbOzVBJMGMy/L032bf3\ndo1S5rWm/vaqpyOZTmcKnu1qriudQULTV7g6X4feWHKvaEUGS+Q9uSLn3Udx4fHwgk9R+tS8sSu0\nwxmW3bEjBxReHFN2dVfnAQykRBCVHxTrJ0z9M/AI/TaNVQ8/q8GUWe0jFACIF/wEgHS2o3xJLBDm\nFaQ00bNzaL14KrDqbBcAzsVuWcBQFdtHnKh5srIKN0xZoTRzGMOlCwEhseF+8aTCahkWooj55unF\nLBlzdSen+u2a55lelj4e0SYja2GJRkORppjpudbw+oVWXFavJ1G1QUdOrqVYTpe1V8WWHf9UVHWP\ntjGo6p6HeB3AXKrHoMP09tiKWoNOZQ6wYxYsdHt6Ky6naWaef3M175Lpm0wf9HTmI2W22CU3lJN1\n+VaHZNUxAMnjfTRwDOwE0KsTxYbE9lxApx2WWLZHuLFqHRjWo1L31XmHRdXH/VqErD6nQ0emziuu\nv5q4OMLBl0Q8xOBjoin4ZXeE66sS4uSpb1yJxYypwbnFTD6UvBMUCZfCTbrHTXQd4fV5cDA2smMA\nEjpvSSUvOJmJbz2JTe0adn8XEOFFKRuZGvXeZcC44U5NzXWA6l1apQciQqoZOjrVByjLCmW97+vm\nZpjh6vzIXbsZVkvywppA7OI5XxHmjvhQG+uHT+VYvBryVNkjeZxcv86fkwBRjkG4wRJAn6MH8GrG\nm5X5vp8l4o3KLCqn5kIDz6WaQXcxG4NOlPEo7xyhgocZpM+F4VetdSabET1seQ9MrVFpK+mHWiI1\nYiCbNJr8vEhsynJ0hIFjHlcgVxL3z9a92Tpkn8v2CMfrFa6vZnjxZJ6VeJK/09WBnEli/J46dPYD\nYCvlk0dx7/HQgo+F9a6TfONWflofCBYEHKX/cLH+V3id2LvGTEq4SEyVV3Lh+y7Fjt/tYnUC3LkT\nZzvKYpp0HS09Zy29o2aRZLGX9yLlc+8zj9wgogxa9tyI5rp52FXyokNROWrqPGXYM7IpFwDcEJHy\nBHihKE211YrhZf912S23MxUvHOn12BX6Ye2JGVd3COz+ajFX2aQmD2wLNnI9+Niq2E8qHX5V90DU\nmL9HevCk+VwS2rcoGBUWClwGJp0A0blI5EAoYuulPTjDJU5PtHF9Wenn9LbDneYY11czXF/u4Nqy\nwD8/Hd9vUt70s26+vFyqDPiC6NSPYuuYBB8iWgD4IfAQ0i9ba39a/ex/tNZ+/2twfK+I27NYAAAg\nAElEQVRpyM5t06S5yJmksw6yC5Rg62FAtt3xnEZc0w+PxTteKX/tmAVwcpMXnuPbwXfe2f+OQjdp\nE5Vn3i2exTpcEObPjqe5RrbDOqTUBSgW1PalBM3qemJucVhZXN3pcHXeYX+mbMo3ZV4qbNmONdeA\nRBImnUvJqy6TqWMFCXlP0SDT9hvOeHBRrRWQzGISgdpgpLNTsSMoASAPNtlZnQR47O27QX0hjQQ4\nfL8qF1O9npqzPE3Gad1mTfopOuQ8dVlA09oBRJ8PeTwmf5TjUigQjT/ontOyO3Js0lBlyAHPE3OL\nJ3f4PosULRyZRlPTAdVnFOv0czZAWwcVj8puKjZlPv8zgN8F8PMAvoeIvhXAt1trGwB/7LU4uAcd\nchOn5l/bPhfAZJYjH8RFxXRieSxX0wfCB1Tozbrh7xee49vArbuwt+9G2U42ZPd6+ZCBpz4IDVnH\nANJkAqbpzljVO816NNtLg5HYSXeVk1/ZLpGel6yc/eSOxdP7a1ydr33GU/YDsLoVVAb8kOFpOAYJ\n9UFmN88mAiGRhNGhgWfyeNPp92TBCDM1wqZbu4b2gEVVbiyfmWIeLXRppDNjZC0D8elNT5W2t+8y\nc21T6PmXy4cbFblz5z+iKwsZR5kkjgRanR1FmvXIRk2728rvhYW/HIFAWv4Kxn3rYFfeGlxflkHI\nVWniCfBcqpSU0iwQamKn1SQ08DRvTLr1F3tsWi2+UvG+/1ci+gCAXyWif/s1OK4HHpTUZXSzdFNI\njVuztORxeR0J7+mTyKKkygH6w6pnNnwGkCw8w40T2FXwHhlFNeOsR1FQ7fwAbX/kWUpHrcFjdRct\npJRza03LOTrKMB2+TQjozA3L+HDGs8al+gD75WWUzSqwtpqgMpCeW/h+zcSAvmKPGGe7oP+KAkBp\npjqKUilI9M14sR4B0Iwtwd1GvzZrXDWdB5vdsswucrFflLxY0KeLRGX1nE7D5VYBHsl4dZmV6vh+\n0PcA5qFxn2aJQKwZKFYh4lMlPS5xf01N+NJMzhCfT+jdCaWZN3u1WfvPUFr6mix/KeM+0ey7vqo8\nrf9oHYRcdWYt99mi4uOUjV0KPLmsx9+LF0W1Jspe+4c1NoFPTUSFtXYAAGvtB4noCwD+HrKuZ1+8\nIcARNcMzpRMgP6zINGGeol9oV1Av5TJEmQ1/1bTPwn8Ipe8SZQCnt/yMBto17KobCSt6EyylcYXd\nPZ59qPcjsU2hoArDJ3zop72MNoYCICkTLWYtjtoCc1N4ZherZvO5X93p8PReGwOP2BfoYcjUo2WL\nyAHQmAmn6jM5KwsJnQWpQUtDTouu2Il05XZKNbyo3XDXLdCdhRkcf2x1IHBk9Mai8qf2mnH1pdwm\nhGTwUlmIa/DJZT2UgGGHDv3Q+cVe5qeYIemULYpeAW0VzYQBGUpzEUpmVcF/V3kOz9rM8jNd7u8n\nxyHkAl36qwrX2+mZSbiYAU/uSC9x7NW0EXhWJ/EmKN0APYoLiU3g80sA/hSAX5EHrLU/QUQvA/hr\nD/rAHnRYtQRI7TnV1dL1+kXVq0Yl36xCPBDK8ihz8mWIMIeS2xXy16S+r/sdura/vwuSXa8HHCey\nWJfA5UO2kb7yBGc8+1d41+rKbezkaTztdcTCcw1eP2B33oR3xs7bFDM8VncQv6m5KUfX8uq8w065\niIFHMbj8BL4oDACBubdtMz0yAqz8dfbHObXY5V6nrJwCQgOqD1DX+7AOeIQG74Vgvf26yuSS4/HX\nLt0JJ30mAnhWq6xCKe1gB5QQTHzWo0ttAjx7lyN5GZGLitiOZa1+vg4Zjxq0lmu2W0JZwlcjAJkK\n3X/r1aYn9Bqb0F+bKAsK0SNICxV4YsfisCLcbdl07007zqNJldp0KXv6ACeA540nLPolEZPgY639\nixOP/29gd7wvueCbWn8/ljLJ1YiDdP34NXMgE39Vjc6uAc5ujm9+vfOqZigWNawo+brHRovO4VPe\nyVOaxEwl18KPymHVrpkl1rcMQLLYpqF3yMIAUzRcfU0W1RJXXVYpDK8wKHkZ++UV0MnNUXbnZW00\ni2t/d1omPxM26f/k5oE2DrCmgCGLopIuIj33BKBEEQOO9Kymopcy4YEHcN/nUArLhAMGIDe/Zds1\nioU6N6Xe7O8BRzBBve/n2NLQ92IsmbOOgCdH0GDAKT14iGo2OudHlorzIpBAgB1fAi1Rxn1Gudau\n3zQ65mIGDFokt/czQ7UpcFhx9eHqThf0+1Qpe+oa+JKz/tul9+B9x6M5Hx0PLdVah6a9pv8XjTMN\nPCmg5CIHMunPQn050eDq29DvSG58ms1g93dBlZKYF20rzWqr51h2N9H2S08l3yqi+QY1Y5Frvmey\nHjnXHrxgXZ2vfU9AJGGqYpd3u8Lgc9IvwuDT5+xnl3AWAMid91ahjzsBoNHvAHnX2NzvdTfH6shA\nTJJI/34phblac0lJeQMBGBvp+eOvIgCKnDiF0abuAW0jHnnmqCFpLQmlZZQ08OgwVEaZzsiqQZiJ\ncm80sTWJ0Kb9Rqc7icuL8nsr5IdM3XGyDmJsL8EGe7EuoRgEbsrIvPiqHIMe2pUZqkdx4fHQgw+D\nQufT+JSpJGW20BjNM5Xics6ELpnfZcc7vaiuv+nGzwwP+p2uUGP3rnhW27I7dmW28fF6H5gpQUe3\n+/Z2x0Ydqwu/qEzuUPn7x2r4RUArJ3gm0a27YVgWAXD4+9Db8oB7D/0fH5K5KAAa/Tz3nE2vJYut\n/t2TMHfjZ3AkJDvR2mnSb6rhm+qA2qCI1Evtsh+nvADdC1P6Zt5GPMl6taSNicpoLiNXslE8xxN+\nR4z/dL/Ez4OtbkWEGH2eXqi3lGuvstGpvlbfAl3FStp8QUcApD+zEnXBQ8qaWahBEhh7BwEIowVa\n9Vu7pq4vMvN5FDoeYvDhD6K+IXPAw/TYGHTGytYTWQ2Q19pS30c7bdndArGZlYuo5KRIBV5UUUos\n/YkCHjOSPAnN171A557qfSTA4t1Uu1Y19k9A9b77oCstNxFrQABkT+dOr4d+D1dOtE0X9zRSg7D9\n3dgWQ64hEiPAzPmM7BlydhVTFhb6NWUHL7+rJW3S7zXwyD+VJQiVOM1GSH5nvs/vVa150wGM1ZzL\nKs54bKcYamGuTINOGqaYBdmZoURVYJzt6L7k8e2tFuitmF7p37Ksxq7BxQy7pfPXUqGrE7ky27hc\nnhktSIzrsL63gd2N8UheJ4pzwYeI/symn1trf+HiDufVBxF9M4APATAAPmKtfW7T71s7KAFRkfcf\nA4+mZQJ5oPHHYC1Py6e74fR7OYYUeLqWd3kyuFnNYv/41KM+p+TrNOpuN0My9JqKUx6E8lcOKHOR\nGT6NAKisYMp6DECAXxSiIVZ9XqcYfcgpyfSi0pLb5XvJFbmG+nrqSOy25XuaAlf5e+ivOjYtIl4V\n22Wwe/HjqGYxYDhCAFPh19H9JteOygrU1bBpGcq9ji9z1fujUlmg/Mel423mskR6xt8rku1I1nrn\nzrmvAWQ2A37T0IJEOdrdF6LZFntqpa7BpSf6RP1Td14CPJvOMTtQnXzeCLuweOOV3c5b74iI3M/f\nDfbz+S5r7ac3PZeILgP4WQBvA/D7AN5jrb3tfvZDAN4LoAfwg9baj9/vOWyT+bwXwL8G4Ffd//8k\ngH8A4Dp47XndwYeIDIAfBfAusOXrp4joBWvtb089x8L6XSEgZagx8AhlFojBxgONDg06uczmvEgX\nT23rC4QsRBZdN4+RKnJPAc/VeefPy6sibwM8amEYDaAipjYTMAYgYJz1JEGzGeei6S4zdahMJu9H\n1yaJ1PMn589EOntR5+JtCTLN8+z/5Tjktao2zmBTd829K9GmQfosfN8lbyUZgcw0VYoVVipbEDWI\nqSPNCs6Tk8mVkalrgtOrLrOdp7KQXj8px2nw10CkQWdQ1ui6XFjMoK++log6b4jYn5vc+zrryZwH\nYUxUeFVBxeR9ek8vs9169y1gYtjbwU6mPwbgnec89/0APmGtfY6I3u/+/z4i+mqw4+nXAPgyAL9C\nRF9lrd1yJD8f24DPDMBXW2tfcif+FICfsNZ+9/288QXH1wP4rLX29wDAWcc+A2AafOzgPqBqkc4A\nj9SLR2CzbTntvLJNLvSHVC1+0e5R61ypheus60YOkotZ0E2L+i7puaSK0SrGdfn4vM4DoGghyAAY\ngKQZn890ZPJevJfUi46voxyYnGZS85fylgcgHTJwmnlJXT6aHEjtWr+gRkAhwJnZNJx1cnxMEKhM\nUKAwxQxUCw1eRSKBI0w1fY7yNZawmQaf7PyLHnbWZJjzSlIbgGe0EXB0bwGdVBJpdJzFeFZnCniy\nVQp9H6s5KgCje/ENFtusd88A+KgzlfskEV1ya/fbNjz3GQDf4J7/kwB+DcD73OM/49Rt/hkRfdYd\nw/91PyexDfi8RYDHxSsAvvx+3vQBxJsBfF79/0Uw2kdBRN8L4HsB4M1vuTyay/FyH0puP08YUJFr\nnOrHJVJmVAaARjXxsgrqAcmHtrcd+sR/iIdHFZW6sFjMMv2drmGW0dS5JN+PCBGAUsq+wBq21qRL\nm+gKdNphiba7OXr6eUSQTQoHnnqdKcNtigiI9A/0xqHGOFN1RnT9sFbeM+yLw5sFtqYwBQ+zeit1\n/fobziUFoBR4tmFqAgkFWcpsmvqfW6z9C2U2TQnw6A2BdhvNgs0EoGxdEvcv7u5tfV6KKPIGAZ7H\nieg31P+ft9Y+777fZr3L/c6bz3nuk2qtfxnAk+q1Ppl5rfuKbcDnE0T0cQB/2/3/z0INnn4xhfvj\nPQ8AX/uH32ZTbSov95FrjudCA48eJkyzoglKcgQ2E7/jIwEeIP8B1QoMaRZX05zPRyR0tg09syKL\njXxI+wRI3QKjBxX5WN31lDIRDmCFMSb9LVnUVBN9VJ7qbrJEUL8cNc21yywwXoQlpkAoZZhF579F\nyY265DG9l1CgI1TmYMYWrNYXVaxwProXZROgNwc4BuHAZ5wA92hkmFOuy6sGHs1mU6oTAMaup/K3\ny2R5ve0Apwi+UepowzHlHs+ySzdVKfRGURTCFbttROW/QADaZP2exA1r7Tsu7I3vMay1loguzMoo\nF+eCj7X2WSL6dwH8CffQ89bav/MgD+pVxBcAvEX9/2n32NZxbtYzFV0bi2AC49qx/L9O9LUypQj/\n8+S9p4BHz2+I1A8APFYXY3pzczLWq9oEeBpM07KEfJ8BHlloZJHVUSmLZAKAvToMsyoixabylIhU\nenXxXoGOJziUGxe4YI8+BqhcH2iKwJA+NtVj6t2g5xTobIoRUSNTsswBUHpOm6Rv0ohUNnIW3HIf\npAxMTaRIiDAplXubmblciXBrdikwyuazYw0JrdoCTBaR+/GNx1DbZr2b+p3Zhue+QkRPWWtfciW6\na/fwfvcc21KtPw3g2Fr7K0S0S0QH1to3kr/spwC8nYi+AnxRvg3At296gl7bwxBpJuuZ6tnobEfq\n4LmGpW82t4HFpv+pjIZ38+M6NoA88GTmFsIw586YoZQ6X1azQO1OF9N0t5gCj3x1vVgBUwEe3YeS\nY+VzKLl5rsJnQe5a64VrmS0tlr48pYcNAQRFfwVC4Rqm9ufj67exD5Qw5rJZ1ZD+jfjrFOik2XfT\nx6Z6WZCY0qJzs1ibPI3OY7iRtWGTcnor6u+MgEdHNQMuXfIK6nrTILNGfH5B2bo2K+yWbuOQ+XtN\nZWoR4GzJLs32LFN7cX2P7yGmw19AMMnpQmaGtlnvXgDwrOvpvBPAXQcq1zc89wUA3wngOff1F9Xj\nP01EPwImHLwdwD+835PYhmr958F9kssAvhJc6/swgG+83ze/qLDWdkT0LICPg+mDP26t/cym5/SW\nZeHHniJbZD1StkosjO3p2bT8S7vm5nOp3BgTAUfeDcZU2/Maw+L82A8lDHV+EHA0j5H2a3ILiHzI\n0g9zqmydq/P7ctvKn4sQIDiWbmHn6xwt7GXFJSsBZ7dwaYUGXqSNl/JvesIRDFipix1fhRyS203r\nXbc/XTdYOZUlpX0gDTqpHE38Nd7ha9AU0Mn74Qz+K7O2yrHIrG74V7Mg8VtWkVkglJ3ElH9RNmRh\nXrlMfgp40kVagEeVSEVP8KzrcLTmv0WkiD0Qmn7AolrCOJZfOtYw0t/rW0wJ4J6rTiHAIxtFnfFo\nNQphKLrrGomyvgFiar0jou9zP/8wgI+BadafBVOtv3vTc91LPwfg54jovQA+B+A97jmfIaKfA5MS\nOgA/cL9MN2C7zOcHwMyGX3cH8rtE9MT9vvFFh7X2Y+ALvlUYspGCgV60Dc3GNGoJXWZzi0BkZa0l\nVKSBDkRZAh+AU1rGLFokgEAX9WKL4D9UaeYuSyrd76vMqAjPDTpbKjvbxCzbNB8jj8kAZaK3BhMa\n6U1SWjpqDY7WM7eohsyut2WcWUh5y723ZE+8IehQmyVqo9XCw9CsDAHnJFQ0+Iiqt3ZwnYpRdpDR\nhQNCNsffB+DRoMPZjfHU91QShr+PNQQPZvNgm60liFLL7GrGs1DpLJL6GwoQtsOZLzFus7FJw2+q\n3FdbqXtAAU9nCr9pCHqC4/fRM2ciTpqdO+tcgWUTi3RKiUJHWjqW3pUGIZFyqtZhNusNGrn1zoGO\nfG/Ba/dWz3WP38REUmGt/SCAD97HIY9iG/BprLUtuV0fEZVAloH6RRVEGAGP7LqmBCejGri2MT45\nQ3/tFHbVg+YGxWEdTeR7GrLIqGSiKnY8qHixRUUMkGyJysqXrUq3SPKOfMeXTDaCDpBVT5AGMb9w\nspgJbRjg45fXTJQVRM4l3eUvKnj/oHZYRotfxDDzjqWx/Is2veNrhWiYMFKS1mHU7e0lVta+xCOv\nL8cSPTW9DyYAyL/mPUTOVFD0yEbAc/TSyDZdHGy9+sOT4I1N10KrZGtglExUlxXZ9nza2E7Crtej\njJ5mMy9iK7JOTTFg2d3x98DRmq3pAURECj1zFtmEdw3QHsdAk7JHcyW2qUgZpqlsVQI6wYreEQ/S\nDeN9h82Weh/W2AZ8/g8i+ksAdojoXQC+H2y38EUdBVkPPFqdd6rcFkmJKNAZbpxguNOgv3EWwOdu\ng+KwdiDkFvm9Xb7Z62kAkkE+dGNigLeL7sbT/B7Y5Dg1M02XEmSXLP+X1xFmkpQD1SKWnWOR960P\n2KTOlViW3RGur8b9jKOWFxye3yh9libnDMCDkFbHlp9VqkKl+wCT1gWZuaiyrGDKxaj5vVUIEG8A\nIGA7EBJSiCzGaQawUy6wWxzA3v0D2LsvAy/fiCzTxcuJpYdKlHUZmv4mUPPlOnrgcdleDznG5UiC\nZgRCU5I54pArm4+9y2jsCifrm17E9qgtfHmUzzMI9y5mGRamLg+nmyZd/k3LflPHB7Bwq/xfW3XI\n903nAccq/21bm1hZ5FE8kNgGfN4PVjn4RwD+A3C69pEHeVCvRRQgDzznycykw3X29Ay4dRf9tVMM\ndxsMxy26aw26NaGcdTCrHmgH2FWP4lKN4vFZ9sMyAjrxE0nVrQEPHDaadM/sCnONVGCsKaaEHz3w\n6MzHvS5NleEATwhYdkfZRScsPCxqWRfWZz8ywa9pwBK5LGTkAro6Gl+nREnAKkUIqg9Ac6AqOQPS\nFgM6Exu9z8TcFmWYbZtCzAb5egTr9FTGabc44GxHgOeVGxiOGgx3Gt6htwOGpvMbHZobGCm/7e65\nvs++v7ZBoTq/mLKx247LvNcjMoj3U5LsR8psyiFX7oEbq9a7i8rfXjwPa2O8c61kd9l+VkrnT75m\nSQ+pLFM7i7P7VOj15Mw7wUag4w7WznsGnwsGIGsvjHDwJREbwcdJMXzUWvvvA/gbr80hvTZBVERl\nm2x0iZXuBPAAQFEDSO4rmpvI5hhAUCdIhS3FuldTaUdzNWsApwE4UkKAql/7Y5Bd8SbgURPy0fEn\nC1HK8moj4JlFiw4Q+hre1Kvq/bDreJGPyZOl/qqui93UNHbnTU8+PvbazWSbaRlqMiZKPMIqY+JC\nbJSmSSBTZoNpv6OmOTPMnLeRvR3uMwGdjbFNKUodh6EOBu6YrVN/lgwECPfKOcBzsr6F282A66sS\nL57MkJjs4rCa6Gelcj0TjMpIWToFhf3d85UWqvzmb2O88VQNvuRiI/hYa3sieisRVdba7e7sL5Ig\nkAeeiFGjp5+1v8cG4JEoZxZF7UDnoALNS1BdsrOomLylmmQSeniwa8dlMyDeyYnY4TZliDQco8wf\nS73PNsXDeIeckiH098EraOZr+zq8ptxOF3Tl3D8uLx7HgJsunrq+nwwCanaSLp8A3NKh1l1zF7Zv\nmFGXmYHR5zXaiHRt3HfTmZAv71XZbE2DUG877/4pETETJQM4egm4dh329l0u6V5fng86QPz371p3\nTKXP5vQ5jpStheGZjhbI8C9imSMhmLTDEsvuyLHZZiMG39wER9Gr887Nnrn+joCc0LkT4IkynExv\nRjIWA/BxuYiGXtOMaDZjHyT92Hy8BFJtAvA+igcW25Tdfg/A3yeiF8DawwAAa+2PPLCjeg1CMp9o\n0ZgCHiljuXQ9BzxUlyjAdfiiLrn3s6h5AZSp7/l+yDh05LKeTBYDICqD6P+nvZ0s5Vs+UMkQoJ64\nP48J5g/Z0aivr2bZIclF1UcMrqrYCTveXH0/zfLSjKZdwx4v/cIz3HWsJ6VeOjQdirqEXXUwT7uG\nsQBQQvbwfZAinu0Rlp08R9N3UyqvPuscAAExCMWP870XZQCnt4A7d2Bv34W9eYT+lVP0dxv0Rx1v\natx9BcB/3Sa0t9L4+MrAkJReo/9hxfeu0LrVfSMEk+P1KrLtkJBsR+6Bx+oCO+VB+PvrUvbE31sA\nR/dlfGlMAbIHoJwqgc72k8+SXXUR+ARb+nhZ3MoKYqt4VHbTsQ34/FP3rwBw8GAP5/WJqPyV67m4\nEshw44QXhOvL8WuoRYEOKhSHNbtO7gWNMm057QcZtYuivKfKeiZBRu36+aswddhe27qd6qjXo2T8\nJdtJJ++3DVl0hFwghmV+0ckxuPTC0yUgqxcf1RCWfsdw3Ppme3uSP85y1qB018S0Tirl8iETPdyu\nnokPrgGvACiKKeFYFVpMFQgAFCjNAXRy9GbfaJfrEQHPGfrrSzQ3ezSnJczMoqx6lLMxEE1FYLTx\nOfZDyOx62zmm2S5koDprm16rPuCclSc6UzjPqCMcrctRj++JHWeZXg1K1PYyK6n3QwDaNJvNgI4m\nWADIlh9pXjKBcX+XyRcp8NxDSNbjPzcXqV34KKKYBB8i+ilr7XcAuGOt/dBreEyvUSSL19TU+EQI\n28j/X5hudYniUg062Akuo3uXI0UDYSBN9hk2NFz1V5spx9imD8fVrgMTSgDQ+f/w9Pkyox6Qm7qn\naC4FCE3zRaXnb4rIwlj6GbLoIDOzMrXwDHebsOi4BWe422BogNVpWHTLRAutWxPMqg/PFcpsJlIt\nuFHvJ6OjFr9Zqxw3OaRPpgEoDf9Y32KqzJr+bfs1Taq82ONl0MYrb8F2LahrQfN91GbuB5FhYvq1\nt9UQAJyi5mfeWEDVW5EYwqLqHZOv9xlvsHIQ1RAHcFuWiVPgSX+GA0caWLjsJFdyKyvul4pvVCZG\npoUPIOwjqnUUmzKfryOiLwPwPUT0USSrtbX21gM9sgceCdPMBIZXFNUMeNPjoGqGopqNCASy0DPz\nqPSlNnryce7xKLO3Zliid8KSMmxZGkUcEDqvZuqIk2I7/ppz/PTHnCMYRAC4ikoATU8R8KQZkPxf\nLypp8AJTjV0vT29ND0omC24KOgDQ3218ttO53lK/JpiZRdcWIwDyWWhdhka527mL4KlWUMaAfPYj\n98M5XkdpBiR07M3qFDMAzdhUr5qBDnZgnmTGZNWcAuhDP1FlPIX/+/fAzSPXnwGw74gZzTGoPkA5\n30dp5nJxPHGEy30vjZmVuahm/HumRjnfx45ZuPNgBQNh8+kNiPYQyr6eCm8VMerJqPva4UshXh11\n6UcaoiqDHimQz7XIQAGw1QwF7saApUBLbxqlSvAoLj42gc+HAXwCwL8A4DcRf76se/yLNpj2GEoi\nvvRWVoCebRFguHzIdNZqFl00PUzqb/5k4rsdlui7k2jewhQywc8ulYjbCeeH+vCOClC676P1qRTT\nTrA3KAyL5tZ02U2Ah7OaWFFaz0r5+ZvTo5EUf1pWAzAuryg6MQD0Rx26dQw88nUjACngpfqAZV/6\nI/QDZ3mivDAFOrZv8hmx7q/hBMB+AKAt5oEAeKHQ0eOzGS+Oixr2aocSANWNP6dC9yOU45xteuAl\ntplgUcwzYH8XtjkBmv1o9smb5WmlDr0RmGjYo2T2JwGo9y4DRv7uS+yWzktKqYYA7ufaqltvgtJz\nBwOD/77JK7hQXQYgOlRVBq2ord9PYhceoD3QpZ8TEUd1wGPnB4/6NA8oJsHHWvtXAfxVIvoxa+1/\n+Boe02sUdrIsQqbmnSMQg9D+brB2RjI7I7vrBHTabhnNWcjiLoKKPCyp3lMyIcluZjNesNPsR0e6\nSMgHSnaBsgBvaJxy3X5cbgMQEQfYGygM5o4GPk+PYt07LcMvWU8TCANpliOgI8A0NBgBTxcx64KS\nqAYgmodNgahk66ynGUo0g8ECPQx1PvsBVA9Ql8OA6VKRE/SEZsMBEQD549pGKd0dd3FYw656+L1/\nYm/qM1/dOL91lxld1SwoM+8HZp5/d1ONy5+njkHpLM2pTUCoagGceKCt9y7DGL4PWLlijdok4rjK\nR8gft6nDDFYaa/d77RpUm2gOxz/fVRmoNqCDneD95Gjgo40jEIOQbCTl+ujqQEaR+6LAx8JuTeh5\nGGIbS4UvQeAJCrOij2ZoFmcQeo5G/u++klgsqYVNhjQ16ASpGcL4Uncw5D6o5QJUtpPZz0YAytSn\ncySDcc/p/A9BNKejgEdr4EWSPilRI5GE0Wy1qSxHgw4wBp40dNYj3xd1Geiy+2fA/NwAACAASURB\nVLvZrIczH4umsD77kX/olX6fFpycilJUKJqQ/QBRBjSKqVKeKrVSvUZxqYadG3990pBeoyzStukZ\nQysn6yQAgrPkXjmNQUcYnfq101IU4OanAgCVe5e9dFELwKg+WpTxpDGlmoFdWDnWphtRoT3oSMVh\nf5dHGTQNXFTn9RO1XJQ/DwT2aRmsyL3/0KtRw3gUW8e2lgpfciHNv3Y48xIjpqy5YVy2oBVg58g3\nmx0DSHZIok6tMx1R8k1nH4BAQxYV7agEU1bgT8ZJoLkilNb8B2qiKeqBJ619S/QtTFnzbh9c/qsA\n75zZmAxtOgM8Xn+uS2jiQJwtSEhfR4DHUdU18OgoagagcsYN7a4tYGZ2BEA62ymrgX+/Krg3srcb\nZT1C9NDq0drHqSp2XQP+FoOoAKjWNruoZrTLcMnUXjpJ5GCoZeBANUOx4KSM5mUAGN2EVyFANAAo\nFmBgAaalYhKmoUz9h3Dlvtrwfbg+5NdyczUWAJUVzPzAs+oiAsewjgDIKyiIQsdEMADxPU/12ue2\nEeikpW7llSX3YZTpmzpIRWnavVQE3OfY25u4jEeMCy8k7CPCgY6HF3zsELthaqHFsgb26/HQHRAt\n5j4tV5bIve1wuxnc0F3hfEuGSM24LjY3oz0Aleq9ZXo/t5Dox1Lg0eUNt/vjZricN9NwBYDG1uI2\n0uHyJTad7chrA2FGSR+XJxSE7Ebosrm5DYlCpNkQA5AeWuH/B+Axi9I3oH0p1FTOQTS8R20Gb6ch\njDxRGNDkCMkKRK0821/TkdnR+wZ/mgF5U70DtalwC6cDDrRrFMAYGIT5VRXRtbNNhwJOnwyu74MJ\nqw/FNLTHy2iORr8ewCU+03TAlXWQntlvYZ3YrZTfgPFCLTI/hkpW9ihZo3CUD5YVn3+75rLYbAZ7\neoYiQ52ONlkKeGzfTJaX/ePa1jvx1GI9vM4Dz6My2YOLhxd8EE/qMwFg7T9Ahmb8gSp5tCme8Hcy\n9c7SuR/Wfkam6QscrU0irFhElgBMUy5CmScXaVO2SqR09PeZnk8EPJkFcTRQ6QBIMiL+HT62jcCT\nap/lJH/gVAhkcXO6dxI54NFR1AGA/MGqKKsB1b7lBVLYTwIW9UFYWFREumrun5eWSYBHN+KtzE7p\n0Krf0UUeyxNFAKR+7gHIhOtHADBz2YsH6+RatePpUbvqMaBBcejsATCeSUI18304e7xkGruT8QEw\n2hx4hl3To3h8HSjsZcUMuL3L6M9Rx5bPjWQ/BHBGUmYULgRkqlnsk5Uw07CbeB8I+zAFoJxtiKtY\nwHlq8TEKFT22xvhiCiK6DOBnAbwNwO8DeI+19nbm974ZwIfAc7ofsdY+t+n5RPT1AJ6XpwP4L8TV\nmogqAP8DgG8Af1A/YK39+U3H+dCCDyDzK1yOkVq1KWLzszRSo7CzrmOQGfh3pZ8gQ3erHjiswqxM\nmH1QTdhNVF7Z1cmiVKpFXoOOBqJNtr++JFGNz68ADMJrevDZFnj6DEC6/2ezngR0hiZkO0A8aV6g\nQwnL4q3V4Ps7moJsDmuWNZKSmwPwEfAYBrKs6oIiScjCzLNThhfLk7M4C9LsMIkN138EQOr3GYCO\nEWW9AkLtGoDLTtQ1zAVDc8UCmXU4d/2u/jXbtQcePcSb9tzme0yBN+59CynpnZ3Cmpuc/dTzSb8k\nPUMl2Y8+Fn9sZcX3et9y9VmyICDPwstk9iMA0hs5leXocYN0c/kgMp4LdDI9L94P4BPW2ueI6P3u\n/+/Tv+B0O38UwLsAvAjgU0T0grX2tzc8//8D8A5nSPcUgN8iol+y1nYAPgDgmrX2q4ioAJuPboyH\nFnx6P9Mi0vbuJuzHO38gNg7TVsDNYML3DnAks+GIGWO6xyCEh9LMR3XwdOdmy6S8ZZIFP13wprIe\ntbvMimK6c5wsC2oihvb9SXetSSmQ6i7LXNJRTJPx/M+r2rqFMQBPcVgzyeCg4h26lB0d0cIb0zkW\nFis5r8fAo2yjPfNrUyQzVN6SAvDXP6d8HZXhTBXM9OAAqHTEjV2EjHfNIERND1r1wPGGDUvCiksn\n/XXmpgc47aqfpLWvTg126879nhrqVH9nz3Iby/zxa6mFtzRVOHdw7wgmljOC67/6a5D68wDKA0o9\nnmY5qrSmJaRSYz35vh3OvCLEF2k8A85AAOAnAfwaEvABG4R+1lr7ewDg7LafAbuVZp9vrdUfijni\n/cz3APiXAMBaOwC4cd5BPrzgYwnXV2VoPPcyqR36M/Hvx8AjEUvl6+cNqA2ink+w7A7lNrnRq/lB\nbF+gP1B9y6KYKYMnOsCY4gsgZuhpMFMZi5jTaRDS5wsEEO7Q8aIx3+fjAQII1k777NTNHstit85Q\nw11QXW4suW36mc54irpkkoEY+e0pna+uhann6lwYZFEkApeaYKCAJ9X5GjW6d/ciem5n3KJtV/x1\nWENTj+UYAJUFaQBKB45H1yweMB2FI1sUl2oeeJbhy1x4EkiPoenQ3OzRtcYDjgBQtybM93oMjdPP\ny73WBnWQIOmj7gP3MTJlDZQ1X4caoOaEQajM9FvTY2/XTNLYxWYZHGVXH9/XY8tu+X7ZHynvo4sJ\ni81zdEk8TkS/of7/vLX2+cnfjuNJa+1L7vuXATyZ+Z03A/i8+v+LAN553vOJ6J0AfhzAWwF8h8uC\nLrkf/2Ui+gawHNuz1tpXNh3kQws+3UB+0JB7Ms5REkCaDQH5m0aMwfT3tbGJHE3QuNJZjw6mc65R\nmeDYKYsXAFTlTmDh5UAo13MoEwBKwjbHESAR3EJwTngASt8HALlhS5zeiplbjjZM8x64GzfOzwOg\nXESlubkJ7LZ5yXMfyU4/Z69taBYDjzYJBMaT9rlhYg08e5fRocOyPwIQyrP8fusk8wrZZRaA+jHn\nXoZPgSVTq5sxBAhQjoBHbAd0KBKIzF01pyW6tkAnQ7xtuOdXMKj3+ki6yJNfJHs5R9WBr8vaZxzS\nd5S/CQCY+QGocwrkGoSak/AibpMQ4nQEQD4LLQMTVUc0i6Qt67sWZb2PqtjlYxvu3an2guKGtfYd\nUz8kol8B8KbMjz6g/2OttUT0qp2n0+dba38dwNcQ0b8M4CeJ6JfBOPI0gH9grf0LRPQXAPw3AL5j\n02s/tODTW+DassDcBOBhAGGNKtGs2iYk+9EAFP3chIxqimTQ2zWW/Tp5LDRBDc0YhADOZKZAKNdY\nRaLI7HaU7I3j3FFdA1iARcqCuejQRUAVlVP2rqhjct5Da1XyqctRyejVAJA8j2d61E5fl8JUjGwz\nugngyWRpEfDI8G4CPKLyPEXL5cHcdaD1KyXtCICEfq0HjpNjobkrvenHvbBtOQYeAR8lZSTgbFcs\n2NqeEFanxgNOtw7g1rWEOXp0bYGq6Tb+rXIWHLnIzZp5xqkpURoeN/D9oK4KahNqk+CN4wAuz2nK\ntfOoavujTImtHIGO9DKpa72CwxJHwHBBVOsLDGvtn576GRG9QkRPWWtfcr2Za5lf+wKAt6j/P+0e\nA4Bzn2+t/R0iOgHwtWAFnDMAv+B+/L+ADUg3xkMLPmsL3GnZc2RuCABhbtjemAFoQD0QFrP4Qz4G\nlt5lOq7EVvDvh1KciC/mIyUwxD9ztemCsyLJjkr1Zwsfznac5aRli5QYIH0JjCV6RKE5XSACIHbq\nMVXKKBdsNCYPtGuV/bhmdV2iTxfPDQA0RUTwWY+Y9qUlJp2V5Vxqz9Nt06E1vwR4nKGathHPzXVx\ndh3T+vlrDECA633k+mgTIdP+fF3cHEwKPPV+6J2kIJSJFHgkckO+ErZvQH3r+z25e8e/jrrn41i6\neasd9DTjUnTX8Mxd2cY0/qmQ7HFioNorcvQDvJ9UouZtAVDfOvp4eW42t20Mdiza+4DiBQDfCeA5\n9/UXM7/zKQBvJ6KvAIPOtwH49k3Pd7/7eVdqeyu4x/P7Ljv6JXCf6FcBfCO4d7QxHlrwsZZZpe3A\nVr8MQvBAkkYw4ErNuYJJ2G453RsKjy29mrLObJqecLTmNw5gxf9/rO7GKtjpcOd5C5U2ZvO7Xzfc\nKOWyvuEsyNlpSxlFZh6il1NDm/4xt5jslAumOHctS7sggJsB0MvXLUtwU8AjWc+o3La/y8oCigAw\nKm+Bh4RHDLCZuzaOwettyGUxP3iMe15OQmnZ3cSyO3azXWwjLpm0RD0QgOBoaooOVRHuFT/w62bM\naA5QV8UMsIqtsm01Q1GdxSrMQH7w0oEkyoozPB0iwTPn7LGcNW6gFzBV7zOgcsZgZCqLeo8V00d9\nMBW6rKhDM8j0fR+e5+7tAeiTBT8rvtrOgt2IZD5aHscZJBrMXAltHVQ5dLk1OkjptwWi1hcj1RoM\nGj9HRO8F8DkA7wEAJxT9EWvtux2APAvg4+CP449baz+z6fkA/jiA9xPRGlwW+n5rrRAL3gfgp4jo\nvwdwHcB3n3eQDy34rAfgTkPgTSN/6FY9IuARgoCET9dVz0ZTkwGgH2R3GwOLBH/PswXMliM0fcXg\n48Uuw/vWZuBFfii9jMnIfC7NaNLQszepgKS4QHa8W7SAIhPk+0W9XWPZHWWzHzNwLb+u92MKLbYH\nICBPNkiBJ8p6tEDkSME7KW8B+QHPNITmDPB1UirHZ8Mxlu2RcnJlG3EAURmX/+8UwdEDWKICS9EA\n8WItZSfp8UVZLeABaORZg4zOYCL7ZAFebNVr8TXl7LGogXqvB5xdhQBRtyaYqsd8j5W1Rx5CW1gj\naJUA+TxwBuA2W2YAfyYwcnv1MSHCGomBmirosimWYVXsoLdlbB9xeitPk594r4sIa0NF5EGGtfYm\nOPtIH/8DAO9W//8YgI/dw/N/CsBPTbzn5wD8iXs5zocWfPqBcKcFmKbBH/NVD8z7mIINjEFnUyre\nK7MuMe8yxPNAOtiIrfDDqEdtwcdTxT2o2pBzApUFfmc8ZwPk1ZeBeNhT63gBwFpN7FctRPDK4hjk\nfAND+S2A6bI7GhnPNb1x12bp6bZ1vQ9K+lIagAZXNpP5Eh0pCGWBZ0PWoxW8ZYDQA5DKfrjXNQFA\nUsEThp9TOT7pbuJkfQvXVyWuL2sctQavLAlH7rIuZv8/e+8fI1l2nYd999337quqrqrumdme3eWu\nSCoUFUiWAyUiKP3jRIDimCYSUBYkilYC24liIbYEG/llUfY/DGIBK0eRo1iGbEIWLAVyKMKAIiam\noFiyhfwj2iQEJRapIKYkcrnL2fnRM93V1V31ft78ce6599z7XnX3LGe5K/UcYNDVNV1Vr17Vu989\n53zn+xQOjAqgYzpfjmMA4rkyyajiQWc61hy5A3DoOh5ABcZnX0bEMZliHGd562jh5Wwmd95Msrzm\nmeNMa3eWDlH2IzyJdE5SO3JYk+WmAPqeVI7sAzig7pXP9mnuro2+66M2J+n71iayL0kjsvY4fQQ8\nPBk+n8+gHEg7G4rHMVh8GlePaws+fadwdDRBtaixP+1xUCqYLGQb/NNkU6/MCwR65i5lAp6XARBM\nvHq6qMYUEFZ1htc2wKpROK6AgxJYFsCBUdg3xJpbGe1UsAunqRYu9oEFNTC8PWLYBiBIr7jbfrBR\n9htE9iOBJwimIqpjU2npFMjp/ecTkQH5bAOAKaDLwFjqMQQgIKY6S+Dh33dlPUqXO2v+0fvioduk\nBCctCACQdXTWY9PcxXF1ilfOStzf5DipFe5tKYs+dqfswACr0joQghcx9eeos1iaEXHXfkNKC3yc\n2RS569couFkvzujOz+JykwBcWXbiuZbpZEnP4Ugmno3owETvl8hXZwD6UYJkXlhHvLhaz0LqooVB\nbCUGsIfOt0z4MVkTsvxdwe9dZHm7gCe1Kcf6HPbRSXiepgjEBVPQpqOtgXKCrm++Wn2aaxfXF3xE\n+kv9HosDA6JFmx6HkwaLYuKN0QYMmZHgVD+YxcWLiwSeVa2jhWvbASebDBPdQ1Y2DqctDictjF7S\nwlStg/ZYktVI0Inst3c1mC+bzne3eQGXwHN/m+/YERY4nDgAAsgtc+9mAKADhP4FKAMipeLci40C\nGEzwR6DDu2+Z9Yjmutq75ZWJ2UIh0J3b8DnKeai29tnegKaujWezHVenuL+lEhtnO8fV8Dxsu1B0\nnGjlSC3wZBZPSEnIKCzw6pU2smnSB3IKCPLY5YCrAyKea5GqzB6A3GupG6RSkDlx1/x2i0yUQXtR\nEc1KkIKEyzYHVgRCTUICD5XZ9GDDxfuMfQ/Ovc8US72B7p03lCyhtjVlf3LwVLjzpsGK66lN+UCp\n/BKx2CdVKuuBp0Am4tqCDwCYskNpekxyyjb2zdC3ZqqXAXAcRTdWoIa/zVTlLgGezrbCKZR2fSc1\n7ZS3ToJn2wGlU2g2GQEiH4vJghX1QOqf5zWaJgYj9/MiWqzacdH5hUyodafAwztYGaW2WNUAUDiW\n4Kl7PzOUezehcgObyqqIBnrvUNduO+iFIwqIspukE0uFY99g37sJtf+8F3xl6nOYK8kjfxmv38dA\nlMfZXtCEo0V8066wanKf8Wy7GHjSdggAyGRu66j9VdeL7FpkRJoo+4eTtC8U94H8/Iv8rNIpflZm\nTliUHoA4s3Pfgdyd377MvdI4J33eMl722GRomWluxes2g+9L1YUMkQk+9N7D03H2s+lWmOe3CFxY\niTopOfvyoouI1bhdB+WKhydUchaeUkCQGfKMT1O8YT2fpxHHtQWfLLMwpqNsp7B4dmp9lnGjzDDN\nF37B977zaa+lQijPtKE8Y/Ip6pHhNC41cH+HS20yJjl8BnY45WNxWc/5UXwhAXFWIy4q6ZsDxJRc\nDlW6x0ptRrHrt0qh7jY+e5ALyb1NvIMLTEHpiNqisw8xzVtAOxUHuJ23DgwubqDr0rmb7sO/h6B9\nH6b7fSlOUood8FRZj7o98se9qjVWjUGpeyyLbWR2xrRezoag+T0Ru5AUjjnrO410+7YdfX7pOeDP\nMA0GIdpoEAgBAXykdxIAHE6oLwTQZqTuqXGuuAzHM8iux+P1ykS2IwVvpdp0lAExoBUFtGO/qeMq\nsrwYMAsZ9JNSJ31fzv3r0rnX7rxlfpOVVld5TAGgOTnyWKLj3agVpvkyVkG4iB7PZJx0huvRSShB\nV23kkqqMqABcgUDxesNa9bR/JOLago9ScL0ei+emLstw/6b5fgCe7TpmlcnGfm4IgLShOYTcQG0B\ntWf87pqbp1WnPaONgSeVOptoAsJ9YwflNsUsnfOzaAcHILqYUqM2DnsK0aR3GUapoWS1QpRyOHvg\nrEcuJPc2md+98nHzgnJgVNTjoJ08mbhN8yUtfE4J2fKOXdCIlQBStcB4eUT+vLkPLG4I6vMx6m4T\nUZ9Z4shLHWU9Sr3FLG+950xKIkkl9cmfqfDl0lWDwecHBOCZaDtoj0gACudOOdCSoE2xLFowaERE\nBEeA4M9MZjudbVy2x987JtCE5wLgPwfpD6VMgcwUyJbn6FcV+uMKWUC+qMc2VnajY2gj4Lm/yf1m\nywmaD8+ZyH6qTqHStEhrFZQJ5GejdaJMkMxu+TLb+VnYqCXAI3UGeRNmsbsa8DSefFxb8JmaHl+/\nb/H2eY8X5zUOJy3mxc1Q3lrdp+ZsCjjpzugiBWmE2ZdS91iazi0GObadxTL5nk80/PE8N1WY5u54\nqi3syR3g9BHs3QfAwxPv7yKzmxRwohhpFPvJfcAvIkqXQDl3wHOOutv4kiG/j4nOPODIUhPf5gVU\nNpcPJ07rzDahD8RlOJkFySyuaXbW5r3SwOIG1P7zaMsJ1u1DHFenDiRDqeekJvIGHb9TsBgpkUlh\nyZhG3qLUFoeTxvUmckx0jtuT8d7fmOko30dzZQFg6t5i1YRS66QLpdkqs7upxyJ2zaH45+lpdo0p\n+7xUT9OB4HkzLIU6xeuLsh4yxCvRuTJn2KhkO4FH9sTo3KiR7KdB7c/lUGWeS6cmn3oQstVp2Cg+\nThaT9D9tV3kprDJ7WoZ7I+L6go8Gvulmgxf3ahyUC8zzm7TIn92HZSto+QUe+yI/xi6JdOM6f7vU\n+eD/S93jxb0Gz0xMrLicAE937yx2sxQeLDsFJxH3TfTtPfKyv7EPHBwMNMoYeDhro2PscTjlFeTi\nrw7X95cGvg9UdTVulFxKmgUx1XJBi0a5Dv0szoKK5LxLsJzPKAMo56j7UweU3NQOPamJlrM3Nurp\nRf0fYSHhWXKOdc+U+VI3WBYdlqbHqh5vHsvSnIwdTtgBeKLjZJdVI47RZWetU712Gx8pDFv3gNHk\nUUXMQ6mwHkdnm/ApjthhSCmf0azHlTuxd9NnyZ1tUPW5yLji98kANBG9Lj4vpfO+WtXwG54y67E0\nq/EZu3TcQW4WL1Fx2BnicWy6yKXQrzQeU1j0j3xcW/CZ5D2+fr/HvLiNWbaAXd2BPXltOIjJMQY0\n/P87hDY5JPNtWXQRw0kOky6LDgflIrhqro/8XILMeNh7BRg6gdqyC5TkHaFv70E9+wwtHgcHYXjS\nMcS4UZ/O8nAcTnlmI15cgtVEeAxN/I/3gdjC3IOQLMW1OxYQCT4OMJkUEUpjWXQMYTGn7GWW55jm\ni50sxoHNhFOjoIHiKUzWYJa3OG+HAqAA3NBp5odOOUPcBT4cEfhkFrM891brfjrfAY/tqkiRguex\neIFne3QqtbGuYFxWBBI686iunQ7MQknwuLlP35u9W9FmhYA32IukIQGIg8/LxH9/tBfoZWbgsiDg\n5/koADEdmzeLSdbjWZ/p+3K25APyBIcDMfKyOh3/m6fxFcW1BR+TaRxO3gm1PoJdfRa4dz92rhw8\nIAyheT8UTtWFH0saOiu8R1BQvO5xOGmF2KhbYPQylP3O7nh/GXv3AbCmOnx39wzd/U1k+AXAKxFj\n3cHM2xiERK9Hv3hA2Y7rlfDwZERNdj0DAL5sk8bhtBVOrUGWiAEpVXVI+0DL4hSzPEenBQjNb0FN\n5gS423WsRyZnWgA/+CmzHkljl0GzJL3PeKb5whvkDcQlgchmghfKaJedkc7edOTqIbmlDR5VDZam\nJwByzfZQorS+9DbMevpB1jMKPC7zsQCRD3JnZ52XvsJaA9A2yPrw8aEPfZModllfOHZhxCxkbTsn\n3Omz5B1ZjwTfMQACWGtRReQV2a+jjFO+lyAW6kkGV9B/U6Umg8CUGVI3RH6pmzA0W04itfmn8eTi\n2oJPhgw4+gLso7s+q7hqWCQAdEnfBwiLF+u/lbqLBlh5d0vAcxT8ZR7SXEL/YI3u7hn609obfqXB\n7p59Rc6fAAAps//MfAg8bgEB4P1O+GJj07VU143jUdW55nCwkpBlnphWq/xMBy9OZDMRQMgLpy6f\nB0o3n4F1DDjSoyjJeqquGKiKU68tntua6iUN6ybUedYQk9kES7MMI16Q0nN0o9wA4FQnR9kpTFwp\njs6J9cBzYILZoATJYF8+Ajwd9yId2cWpk6uJUyYXWQFLPgEYUM39+x9TEUBQpGDBUt9nc7NUgejQ\nJtkmfQ+qTo32BznS+5gNR48Jgr9V10eluBtlADfaPCRZj1TzGGG5pcaGTDSwbA/u+kdkr/BkwKe3\nT+d8ZLwp4KOU+h8A/EegzdnvAfhPrbXH7v9+BCTH3QH4K9baX3X3fwuAfwi66j8J4K86NdUSwM8D\n+BYARwC+11r7hUsPoq2AL/0B7N0H3irZbtsgST8WYgfuv6SyCe5mLljShRq8w11YOnMS2VRvHwaK\n6MMT2EcnEfC09yrvNJmbePvIv7PJGqs+62f3YuC58WzQwBIT4bTDvvpXYpqvcLR9hBUQLfrVCKuL\n7lcRMFwauSHNOfm7VB5wWY88xzw/Q7dpQT+ctLFldlsB24ejNhMABtlE5F8EDDX0tEHuzluYDQKW\nZuXfNwNu2dHAKSuq7xsbTfnLsqDJZsR0HAMeVjhgxQIHQmy5kZdzGlBVBWpFtPzUUkC1VZgbk72e\ngujv1tCireagrOfGPnDrdpCxUcrPEWmVo9QNyk7qIfZYGgB1Nig7XlaG3AVW9LlyVkgbNqQW6Anw\n8PUNJGxQCL9hYTeOoqHzqw1QrjGdLHcf6NN43fFmZT7/FMCPOGXVHwPwIwB+WCn1jSBp7z8G4G0A\nfk0p9fXW2g7ATwP4iwD+BQh83gfgV0BA9cha+3VKqQ8B+DEA33vpEdQN7JfuoF9V5GlyUgF1D7Uw\nsNuWHDF39U12CRJeIcYGHU02DdPY4iKyZ5Tx9MfU4+lPCHiqM74qRwDIyaCoiUa2MAQ8b7sRgIf7\nOyNSJKqtwhdCqmaPhNIlFns3oacFSn3XKR6M7+ouXkjsOODltJO3eR0sBiTwTKhMKJle8ZR8WMi5\nnFmqSRCWvGSQcMxmQmYIPkviSUw+tpzIIgBZYZR667Xd2H6DgDrovvmsJykLRsDDLC4GCikOWzdg\nhXLb1pS1AcjLedKgD3RyZS2VdlNlZxEMQgAo45HAk5ejLLtS907Fm78LBEChLBsP5Y7N/XCMfW9Y\n7Jeywmmc9aQZz/o8olanJJ1eAJAttR8yTbMfdYXKxlXi6ZxPHG8K+Fhr/0/x66cAfLe7/QEAH7PW\nVgD+QCn1eQDvVUp9AcDSWvspAFBK/TyA7wSBzwcAfMQ9/h8D+CmllLJ2hwYOR92gu3fmQYenulXV\nInPT9WrS7c6C0rjAQwQYBx2f7bh+gwcel/HYoxX64wrdg3P0JxXqNWU87DbJysMMQN5a2gFP/vYl\n1K0lkQskscDN8XAw8EVDtO732DESIfMDgMUNzG69A7p8EVrdxWsbdoXtPUOOKbZyIZGKz9H52eWb\nIlURxPF3Pc+zhBIKs9mWpvPZDpczsX0YZkD4fUWCkvEiE5ntAcN5LwCWS4Fu4JhLX0ZP0ekGM0sK\n5gBEeTK43crjpb7f9OrAA8QbIQYh9/motoZyQ8/+cxbGadJOfWefZD7zqtFexkaz7NLQlpqzn5hl\nt5txJyH+Ior6EuF7wz0wrYpB1jMGPP1xNQAdJur0CJuQbF8MnHLfZ7sGP3sDdgAAIABJREFU9BXX\ngLdIKKVuAvhFAO8E8AUAH7TWPhr5u/cB+EmQytXPWGtfuujxSqn/GMB/K57i3wLw7wD4/0AGcu8C\nVaz+d2vthy87zrdCz+c/A71RgHzFPyX+7xV3X+Nup/fzY74EAC6TOgFwC8ADXBC26yPg6U8q9JVT\nW3ZfSL8juoA5BiBiu1mlvHiWtAgeAx5Pm5UT2ednfnHpT2jSXApudo1C26jgt9LQLjM3vS+3XQg8\nQnBykHFt12GB4wt5bJFG6HnZ3KC8+Q7Mi5s4tJQBlZoWVtYzA9KGOrG5eMFlRtdo7AKeEYAHMA48\nrpwZlWbS9+UzCHEc7AU0NmQ88ERCKH3lBtplL9TLWlE5KusceSOoG0h7dd7Na5X7Hb1/bUmFvoxG\nnDtpGacHF6l4pxntLrUAATpeMVpI+FzkcRP6PWP/N7YnVBcyAum7E9yAfdYjy4ZSbsoBT39SRQPX\nEnQi2amyp7+bdLHqR90A+e7s/y0cHwbw69bal5RSH3a//7D8A6WUBvB3AfxJ0Hr6aaXUJ6y1n9v1\neGvtLwD4Bff4Pw7gf7PW/rZSagbgx621/1wpZQD8ulLqT1trf+Wig3zDwOcij3FrLTvj/Q3QtvAX\n3qjjSI7pBwD8AAC8/dYesv0S/UmFDDlsSVpWnDWkQ3UAxn+ODGdKXS0/oe3q4iybz43kyDo5r+MF\nfkJMNb1fojsB8qpFW1jk/M/00IXFZK8jufv9EvqZGfSzM6jnbxHwcHNYlErYYgBAWEy362hhto27\niE/p+JXT3Bz0vPg5RDUhqBRnKLX2lFmvIuHKS1oZv9OX4W0PJvOdMjI8VyJnkaSTrCw3RQtsbgCc\nDz9Lvi0Voq8aqYtsWw/EZ5mxlcauAVBWtPZK1P4YL2Zi+kiPXwIQqFzo7akBctNw81USdLwnED9f\nV3taN8BjBHHzfhdDcvDeR0pwMpgFyGK/y6JzG4pZIOYkStWyf8ubSwAR8MgYuOGm6g3lPJRWv8Lo\nk/f8BsYHQK6iAPBzAH4DCfgAeC+Az1trfx8AlFIfc4/73BUf/2cBfAwArLXnAP65u10rpX4LZMt9\nYbxh4HORxzgAKKX+AoD/EMB3iBLZqxj3FX8V8ZuRfuP8mFeUUjlIGexoxzF9FMBHAeA973rGZvul\n5/tLxeTsoKT5hoVjuSQLVWRiJYYzz/tTvyCyjPyqoYuWZF1qlHqLUlvSO4PQ68KadtBObgam8OKZ\nFi304RR6v4c+qTBZ1b7sppc51KQM/R0mFjz3jJ/DYBp1J7zo/e56ux5kBJzx8O4RoL26KpuwI74k\neCBVzmsMy0vT0YzHW1I4NWf6JVZqZjo4zfbs7jfR8yc71zTLkTIx0ppALDqRqZsM+Ty8uIu1KpQT\nZWkwLkOtGo0lOmhFNOhN36DTTTwDxZ8TEOjn8v1EbzpWuvYW3QlxQgGwEwi1aBOAlL/XaTAd3QMQ\nKQ+wL1Gg3mcR0eKqi67s8UgyxrLoiK2YTVGqSTSKwN9Ze7q5MNuJ3ntSzfAbzfmMrh9pHviEej5f\nxXjWWnvH3X4NwLMjf+MrRi5eAfCtj/H47wWBVBRKqQMQmewnLzvIN4vt9j4Afw3Av+dQk+MTAP6R\nUuonQISDdwP4l9baTim1Ukp9G4hw8OcA/B3xmD8P4DdBvaN/dmm/hw7Cm2jZMohuSrXkC0GHd4fO\nR6SyW2xacrYko7gimjnhktPS9G6g9NQvUgxAqq2phzCfAWfnkSIBPQmgTQY1qZHDGXstDM3v3N4L\nF87tQw88rNEmwy+I21MqKXC9nMUX10Hbiy9iu+2Irg0E91Oui18QPB0e6MN7nuGXRko86GwDzTRw\nziaddlnQDyviha2IWV0A4mPUhhbv9PN1C24EOnLR6ZyXzkVusaJMp7p6MEvjy1EjWQHrr5WaZlc2\n7WlMP5dyRDwDtSukJYTrQfL5GABQboJKNitHJ8A7GiIDCsZxLgMV7+8y4Nn1f6wwz+Bzo8w8TR7r\neBSBN0ssBSTJBJJkMFY+94KppR4I1UaOuE8grL180FjEM0qpz4jfP+o2zwAurizFr2mtUuoxKKZx\njD1eKfWtAM6ttb+T3J8D+F8B/M+cUV0Ub1bP56dAX/N/qmhX9ilr7X9hrf2sUurjoNSvBfCDjukG\nAH8ZgWr9K+4fAPwDkHf45wE8BLHlLo9MBVAxRRCxlOACMc+T7pI569m7hSrrsW6O8GBb4/7WRJpi\nfnpb07zCqqbdHKkEnKIrGsyLWwRAkzlQnXrtLMsqw5ydgQ3UhKvnfkm9Hd6tcZnNyeRsWkoCfYPW\n3fb1crF75DKbb9Ke1kFeH8HbNZPnQwQ9v00UHFydPpt6b6Q047mof8DA6Utt3SbKdi7bUe/yXkqV\nEga+OED4yWXRq0jt7wCnMAcVhx+i9L2gYCnd2RVqtfGLbqQEwVnQ2DElWY8ss44BEBElTOSUeuGC\ny0DrAJYzIADONmSocLCLZi/PC++z/AZNZMvMWFRMMOBRBAaeVTUgDzHo8DA2z75FIGQyqnQspkG5\ngTchnPXssJN/g+OBtfY9u/7zosqSUuquUup5a+0dpdTzAO6N/NmuKhMAXPb4D4FAJo2PAvjX1tr/\nadexyXiz2G5fd8H//SiAHx25/zMAvmnk/i2A73nsg1Aq7ODl3YVYVNN+QFKeSYHnlTMyGWMhRalc\nPclZ6ZjmPGggUuHFvS2AI5pByZfkqNnWwPwcaBoo7rlIGZD9MPTnL5hkaHTTrbwiNQC/+LNumf/g\ntQFwFt5/mUdy8wDi7Gvs3CDMjiwLatLwQsODtCYLZTbPunIX9ZiaNN/mn3GZLVgbPP7cUNKfSYEn\nNSWTjqc8d/Q6/F4u3v0HVljVu0w5s6g6oHSEBVYF91mQP/5A+w4lsdL3+DhbjN4S063loir9jMRz\n+dsXgBE/v1S7kOW2VHaJWX7+LQiJKQAjJdo9ob14BDy6G5WHeVwiDfoujw9Ie2+o0s31zQXwsOqH\n8LT6QxZcDXrJ/fzlkb/5NIB3K6W+FgQ6HwLwfZc9XimVAfgggD8hn0wp9TdBLY///KoH+VZgu705\nkeeULchId/Mp84kbsI41dt6fYl3fxRfXCq+sJ/jiWnmPnm0HVHWGutYwpsP+tKfsJycl44lWWBqF\nVaNR6g2MnZLj5t4SuSuvKFYPTo+Hf3JdOnHu3FT3hdV1jmVB/QSmxmqVw+ZlsI52kiQKgD07990I\nO9GA6/lwL4wvVA96TL21W1IAHvHLGYCOpPjmxi+CVqlBAzs25Qsip2MxBkRWKcoWpA1GJ26nMbbQ\n8ufeCguCPCnlSeUFtnfoVti0p5GNdNoL4Ui16OhnWIy9KrjrBZV7N/3f+0cy/ZvtMNqjiHEZvSVV\n0LmRmWFCSvDnIw0uLwq6e91vsGryyPNIiqtG1WPBehzcJ1iQRu/5748HnrOHO4GH+6MZcq/s0Vca\nSnhaec1DJzmln52FcrUro6u9W5FVxZOKHo9VdvtK4iUAH1dKfT+AL4LAAkqpt4Eo1e93zOAfAvCr\nIJLvz1prP3vR4138uwC+JMtqSqkXQeW+/xfAb7lq1k9Za3/mooO8xuCjiYJ8UUo9QvNFyf2deziu\nTvHKmcEr6wIvnwFfOFU4XReoK426ylBVGnWlsVjWqJcNFvMGk45KcCaz2Hd6Z+RWugn183KKvHwH\n1fdnzultzDZ5MkerM7fQ3BMlKQ0gNOFZnr7rcyeS6Upwkk114N4nqLnONHMOP3Qr6+IJE8jrkAnl\nBj+vMiZjk/QVlM+E8oGlwS6JH454wR4hH+QmvNdUCPYqPQ73GIVFTD6Qg6/uuVLgoR5gDDrSSlr+\nJOsc5Zhe9D72jfVZ8sy26DSZ8w2CNd0c6EgXUy55pjEAoF2RgDIzJ1NBUWkcx+9pDHi4tAbw4GjQ\nOZSgo1URvKwSR9JdGY+0D8mMAQRvIrJgL3VcshZ9UmaF7qL0v5XDWnsE4DtG7v8ygPeL3z8JGti/\n0uPd//0GgG9L7nsFIzPZl8X1BR9dQC2f3/3/6e7XKz4/xKY9xWsbi1fWU7y8znBvq/DF4wx3Xt3D\n+tSgrjRaZ69cVB3WpwbzVY36cIv5osbW9JjkCic1UGqNlaHsR/e0aNc90KkCZv9tgXGUzFgQ1fgY\ndbVJSlHjiyjNkoTsp7NOVNPVti0AzF3Zho3d1iELUospAQ/76LCdQXKeBkOS50eDshDflppkUr9t\njL4LxEwqek8XL5peuVknmQ/fHul9RJH+vwAg3x8Rw8X82aTAI/XsZC8wDOBSeVbqmklX1GUNUaZt\nvGwPgIF8kyxZxqU+2sHzuiyBKAKgkezHdlVMwnAkhojZ2Qf/nlS1gN+T1K/jLKfUvafdDzLltgK2\nR6E3KZmYp+MZya6ZvAhwBKEoVf6QpcpQ9n0yZbf+8QgHf+Tj+oJPlhOjJQmmpaax6VZYNw/xqOpx\nf5vj/ibHF9cKL68VXr03wdH9Cc5ezTE7rVGggRF9k7PK4LgqUdcat57JMF82mOgGywKOhKBdaWwT\nzQJ1toF2JbbOVqjb48gaOVgUT6PdplQS4Ci1BuCeV2Y/TMvlHX1ugPMznwH5syEzHjn/4JraRhEt\nPWjUnYbB1bEmfFuDhkuGUjYs6MnKx6wdRsZqLZYAVggeQwA8yYHlejgLk06XkQX6V9JElgwo6STa\nSyfRMHvEqt4stCr7gdsOONlkbtNC2XJZdjBlD1N2vmRb9xbbji7XQ+cOGzf0XZbrmWbh0l4WwxUv\nUoRG+N5HWdBYyc31QIJ/T+sznqqLgccDqJ/VSee8CmFlLqwtGHRYy04OBrN229gEqwjf02FFbiBm\nsXJJmzN4V0pnE0UP4iPajE/jycS1BR+LfryRKK49/gLW/bnPdu5viFTAZbY7X57h6MEUeKXHwchu\nrC41mlJjtmwxX9QwZY/FvMFBGXaDALOe3G6rj/smAAazQ0zjPqlpQeMd9LKwYuccJFzke+Lsh0o8\nYc5IYTF0FpXaXu5CjQYPxSI+UExgJt2uafy6cWXF+YUApFUDrZ2njmpQ6s1AnkcSHCJlAykbxDpm\ng6FTDH8X7yv6nui4pFf3pxFJgs9xaK4HvbnIzbQldeuqDsBzujKoaw0gXvS3psdxRaXaySa+ZNO+\nUZoNxgrZqRL3kIjgB3z9m6+jkqIUzQ3PoX05jV1uQxnUDkDH6MUQcHiT0J7GckIs8cRZD2J1AmmL\nEN1OAQeIQSclEI0EA8+TynyeRhzXF3yspQb/DlkXvriYMcbZzpfWOV4+C2W2hw+m2Ht1C1N1KKoO\njeiT1KVGYzTsMoMxNcqyw3xRO3CwUS2cmtFy+SVNsFJvQp+gCbNDdzcKqyYu2QDxbhPYXZoK789l\nK+UcyGtHuS1hJ3NyFp27BTulnyb6cABiLbJqDRwf0+yQ/JtdbMIdAMS9Iz+r4mZntJL04fA1HgUe\nXsykxAwwzn4DPPBwRlP3ib6dP4fDRSnYplsvL8MbgIkeupvWdegP+vtc9sNR1Rm2useq4Xx092Ur\nP+9AU967ki3ARfNAY7qFqZo4WZT34nc7Cjr+8+lqoN0C2MZSQqmOndRsu4JXz5Xm9HYEg+EbATgW\n4z5G1zWuL/igH935pfReGhrN8cra4N4mi4Dn3qszHL66RuFWmaJuPfgw8JwvDWZli8WyxnzZoDQ9\nDsqoJzoavKNdNaFBzZnOvS3w2rmKGHUhGrx9bncqSbOMi+zJk130lBQFHOXWgxA31AXocKmJw+9a\ntyLj4caw9EkyBSWWfPE3RdylbA3pkYm7cm0AxSSEwg1dxrp58vMbBZ7KASiDjlzAuB/EPY0R4Nm0\nwclSfmcuW9BpfkeWB+mkbzvx2TnQqSsdfY5VpWHKeKWi3rpyFtT5KF256oINN2vcjR3nZYvrAIB0\nPDM0RgJhsAFwMehUQiwVCD+lbp704bkC8HjQEQocg43OGOhEg8T1ILNlev/TePJxbcGntx027alj\nAeUR8HC2wxP09zc5Xl5neHmt8KWHBe68soezV3McPghy9EVNX9Ci6nC2NDhfmPFymwlZjyxPAEkJ\npVdRo3pVZ3htA9zbUJnt6Ggy2DEDgDEd7uket6eB/RWX9oRIqVg8KANyFsU6g84XUNbS4CsQNdQ7\nuwXsSJmNfYhYZ+to5eV5qPbOlFi3iMxn5J3CIp8zEGBgCECBhk0glAaDULS4cb9J9i6kGjRAlOlU\nzVopPydVdxs8qnr/mchLhuSSuGEeSqTsXEt/Y73eXNX12HaZAw/nZFp2qKsMRmQ6puywWDa+51Mm\nthkrd+gs3BqcP1nKKPYw2inamsTYZkwCUFxqC3+zNI1T8uhRaoyW14JK98PxDQHHY4IOAKL/c0lt\nbzbIeAa3LwgqBbreKJpL6f2PE6Rw8NRSgePagk+mNOYFEQ7kxSmpo6tG4/4mx70NMdrurjMc3Z/g\n+EEZAU/j+jpRtrNssWcqv5DcurXFgQEOSotlQe6VaROWF4+YmhsDz9019QiO7k+SjAe49Uzcc0r7\nPQAtUlq16LrWa3LprPD9lKCCEICIoo0m5QOFug7ZDpfZnPMqe6gAcT1+ELwrTUs9YmFSAKANcuTI\nVT5skHNJTS5uUn16tke/pwuS0HLzs1IdbT6ChE9qy937zysdogWAOts41fAGs7xNFvUcjsiOie6x\n7WhTAoQsdjFvovJpGFBOmHA6fMZSEeBGmWGa3/QmhRyXZTtSeWIwk5Ubn4WabEbW5+x42+e4UYb3\nKQeaYxJBkvG45901tKuKAjbyLKKfktEmsx1PIODPVv7kkEDGFhR/uBwT/sjEtQafy8omPJdxXAPH\nFTyNeizOFgbnS4O8tDhYEOgwa2m+qC8FHr97Vq2zDI77BjLqKi21UcZjyh6l6d1iFS9MgOsr9cR6\nA4BSuwuRlbcjh9VG3BdfwAOvGS6ziWxHijlSgzi5wpk9lzZ905mbdNLeRTQ4OuZDlO6YTZLhjAwN\nE5V+5bXjxgzySt37rEKCji/1AcjLBWVpGaub51gauTEgADKOocd9gG3XA+hdZhRKsww4sR+SsKfY\n4WEUGcclLM60bLlzCBiOau3o8NKgzmdC7jn8TNHIYPHAwE9Sui8AoFGrC4jMOGWu7QIdYAg8HC1p\n2ynMBw8hj6KnZbc3Iq4t+ChktGAkYbIZNqAaP4PPqlE42WR+0S8kjdqV1+wyG4AOl02enfceeFJf\nG8lG4uHKpVk5AkIMMNuOGtRVpXG+yjFbuovddFgsa5iyGyUzpLFqtJdviaN3qtuSbdfCZFKsMw/A\nc3Y0sPvuj6nMlsqa8DCgLJHAiAVjh42B7SoS9UyD7xrz2Rkr1azPCfU5EuCp7Nb3d1LtODnAejhp\n/eI+6GEwm24yR7l3C9aVvGp17gB9A/LaAkqdYd+VVTm2XchSh4OZserBGOhEM1bWUp3HLfAKoXzJ\nKhcc0tAw8vqR4J7XNN+ENVRuYPIpOsugM7I5EUA22t9JgwFIGuONhQSXugmzZ4km44WRmvHxXqet\nAUeiIRp4G5VQv9LoLTA2E3td49qCD/qWduzJbpiEEnNUfYOqy3zWw4s+R11qnC8MMdnKDvPFxtfp\nAfha/YGhsgmXTFitl0sk0hyL+05d1mBZbL3oJJD53XHtVBOKqkNdaQI4BjtD4MOvxQZcadCiyrfj\nHbEv4RROYdntZqfaOa92/RB47j4IrrDAKKXHbrtQekvprlJJQpfjQ6ljv+8CnGThsk0DhRnRvqVP\nzQ7gub8tonNTdQqHkxZLQ34yU03go+Qsk3RHna9ht2uovVsoJ3NovfQyLTfKjcs4i9GS6FhI2jL9\ndLI7bDOQgk47BA+vxIAAQoBjKLaJi60kAIhzTVJMNBOmAK84LjPj1C01mq1Kg8usYxmQJ6UkIJSU\nTXfSpne95hioSZ8ja90mUDL5Xrco9NO4IK4v+HQNlROAnTx/ynoo46Dsgr6QD6spTsopZssWxtQu\n6+ijpvEbEdtuWHIzhjOtYWM6fi+Zf0+pUgDfD8SMpbKzuFEy/TSPDbzu3fdltu7uuVfAznZMmIcD\nTjIeIJIO2qWG4EPSpVNWVNPEDCcXkTK5AB47WRC5xJXaHlU9Vk14PC86oY+yj6le0nk4/TKsBJ2R\nbMs6SZ98Mod22VKdbWD0BrN8g87WA8DZ5UskMx7OSo1exmoS9VDCKJy3CqiCpJFifTbOSrhkCYwv\n0KYYeP5wv23XYPZojJXYxjTlXKiiwK6l/8KMJ32dXSU37vts10R0cb2tPFtgqpfo8ubSXtlV46uo\n7faHIq4v+DQtcPIa7P5zAYDaGjpfuJp2fAGWpgcW4cu8PjWYL+qoxCaDAeIYPQ4QnBonXmbFAu56\n6fpG1M0bPzXOhAOaileoalqYjOlwXpaYla3PeiBe4+W18hPxKcDwYjfmGjkYUDRdvOCeHQEnrwGv\nPfBltu7uGXph9d1tO+j9pL+TOEVGYMBCnzosaqMlmktAh056A1s31EtKYz4LOm5iml0CD7mKxgDO\n2YWfH0oELr3rq3t9IGbqMa9NTehiyx0DrNNkijfn74AcUh2Zquc+i7RiL9WEzgtLGMmshSNl8vH/\nV4jLlRJAd7HE8jqmpbsY9JQEcYQnk0aP6TJ18EtYbpTRvs7nTl/HWY9DWGowtzF/Qn4+TyOO6ws+\ndQO89oAWrBvPUj1bfMlId4otEMJiPXcAlIKOMWE1Z+Dhn1vdY9sp32Dm4MFS1lzj4bbONqj63Mmy\nOMmSZPOVlzZ6TXkboDmgIBEadMNYCUGyp/j/D0xQRCgz60tMA+C5+wDtyyvY0xrdSejx9BWQlaQk\nnCWMJO8UeVmMzX7I/3NDhynoyMzDpmrgUhJIlNok8KSR0oW9l8zJnVBubMb7S9Y0UFyCy50SttBH\ny3ODPDco9c1o0d6lJcZSOBFzrKlhqztDkgUQACPfnVFEIC5s0/3j+Rzyc85nlCE44zmaAxMgcwkA\njYYssabHxsdxCQDtfKyMHeXYscfZ6pQcheVzvQ4LjadxeVxb8LF1B3v3AXnmALA3AJXfuvAxpelR\n1Rnmixp1qaMFPy15SQDamh7bNmQmpfQ7yazTLBvOWbBWFgFGfCwMeheV3HgQFUAkXMkZFBMhmFW1\n7YAlqMRzo8wC8JzcAR7dhb37APbOEdqXV+juUw+DQadt3BLTAAYVsE8ukWnWc6XGcAo8u7Id+XvV\nwlYdDRuuz2FlI1rqd00C8PAsV/QZO0l/2cAv1QRYH8Gu7hCd/O4DbzM+Fgqg168b6jMBNECLQM+X\n+nASlAB3UUqZH85wtivYrqLsJVUBkCDoz+95fK7TvpiYpWELakDooS2mAYjW7rkucFAdqGOP6efJ\nLKKtPWsxeiQv/i4LU0DYaCQxmv28HtASxxSdW84In0A8ppPpH/m4tuADa9GvKmRz9wWbrQHhWc/N\n+onOcFCGzIOymCHYjAVbKwDAZL/BtlM4rq0zkwulN6k60PVNJERJgBEuL5ltLZYX78i2HfDaeZgf\nkVYPALBO5o/4fS+LDtP8Bko1gT0j4MHDE+DhCbq75+jub4agA6CtM+TuvNhtB7BF8UUzPleNS4CH\ngwBILBZcbnN2563OUHdr1N3GMdnC51i60uOAzXb2MAAPzzGtRnbsLlTpjq3gMtZIj4MXudwQmOQm\nyo7S3bbXphspk6VlPzQFVF0MacoyO+RzKKwJ7GBl3JDDL0Aaf3XjB4GvPBujTfwz/T9m40kQSgz7\nBu9P3h4xhHxssPDlRvdZcWbNQ67rcXmlt2oopW4C+EUA7wTwBQAftNY+Gvm79wH4SZBBx89Ya19y\n938PgI8A+AYA73VGnvyYHwHw/SDa5l+x1v6qu//PAvjroHLLlwH8J9baBxcd5/UFH6Xi3bi7ODj7\noMZ7j2ensVQNAwELQ6YxutCvuCzWg+VRSs00bnriG2UL9FRyoSHTsKhPWBdM9J1Og6o+6koTOXze\n+KzGZ16JtxDfP1/EB28yYuIdTltiUGUz2v2dvBYx2roH5+hWbQQ6HLkAZOVod9IxcpTlJn2KXk/w\nzlhmIanluXazQ9oAaH0Jy885RedhOgSes6MIeHZlPABisz0WYx0RK90VbF8QlaNGduN+YQSGi23d\nwJqCQKgoor/xoANc+l58mZSzR5lB5mYn0eCyDGgwILyrz8fHLRf/EQq9nc/i7GdXVj0GxmOvlWSE\nlyloXzV6G6oOb3B8GMCvW2tfUkp92P3+w/IPlFIawN8F8CcBvALg00qpT1hrPwfgdwB8F4C/nzzm\nG0GOp38MwNsA/JpS6utByf5PAvhGa+0DpdTfAvBDIADbGdcXfDLXiyjEQpibqN7O+lgHhk7TtgOW\nhXU/AUBFAJQCz+nKYH1qAhnhmS1oiJAeC2ELcN4StZnKceHimWiSU5nkwKQDYHrUZYeyDF/iunIz\nSJE4ZchwUt0wDp4LOiitG3ylgVejly7r+aKf4enunaG/T6WZtlGozjR0YSPAAYC8sIPezmjJjYEn\n3wE+bPrGpbcrlFKk1bj/XMeeG9TAT+8dDI0y8DjJoJBpdbDbdpDR7QSex7RviBh/TApgdXDhaeP/\nPgEQef4tEOjKCVhxqXLcgjp8ZpF5oCtdsuHa4xrUXYkZ14UyqwRZfp8SDFTZhjKnfI7LpHVGBlf9\n67nPendG+JaPDwD4dnf75wD8BhLwAfBeAJ9nR1Kl1Mfc4z5nrf1dd9/Y837MWlsB+AOl1Ofd83wG\ntKDtKaWOQNX7z192kNcWfJTOQiN6tidq8LSYalWgzGgQ9Pa0R9Up7AMJW4y4TAxAda2xXhU+yzh+\nUGK2qnG+NACcmoIDIMwomymdnw8ALNH5rIfZbgBlJTL7qkyH+RJYr+KLR2Y4fDw8CzQWPBe0LHj+\nqCdml14Sm+vR3TA8elKhO6nQV0B1prE908gLi65RKPeGz5+Jktto1iNlbSCcQGX9nwHoCg1oVeZh\nEY4YWjG4Se0uFleVU/4mm7pZpofxLBPvhGWJTwDQhRnP64mREpue2t/8AAAgAElEQVQ0UvMzVRhK\nF1HpsaXy346eDwNPeC8j35EUePZuRcATVBIeD4Ci4A1GOtwqsw9xrAyUfLzZQQlgMwSgXdRref8F\n/S9bdeiPKyovn74phINnlFKfEb9/1Fr70Ss+9llr7R13+zUAz478zQsAviR+fwXAt17yvC8A+FTy\nmBestb+plPpLAP4VgDMA/xrAD152kNcWfKDUeFnGbv2fcOYDjLhodgoAU5pZAYEGUdenhhQIVjUO\nHmxQ1B1OMIUxbjF6ZouJ7h37LbhyruTzex8YYtvVfRCj3LpsY74cL6ulTqoNFJpSE0POqS4slg32\np73Peg6nLQ4nDYyeB3bb+hz2aEUXfN3DVi22ZxptnaGr+TJ3x+sAKCvjktvOrCe1r5ZABMQAlJuL\ns54Rza9o0WUQ6OIJ9rGfZIQXZzxpz4F3w1xSvLTUNgZCY1YOfP8uSwHRn/HkgDKPgEMl0hbR3nUE\neEazHrFhwHwGLG4E11rhYgowE6/1TDwZKQClzL4gvzPCaIx6et0AdHgT0B8TAHGfzYKceH1mk5Z3\n+TX4u5ECuzs3EnieVOZjrRqtQOyIB9ba9+z6T6XUrwF4buS//kb8mtYqpd7QKVmlVAHgLwH4twH8\nPoC/A+BHAPzNix53fcEn12She3BAF9beTbRwFtNuzmKW52AdtDCkaV2jGqi63NOVTwBf+mIFAgCR\nvw9AhAFe9CPFAyeTErx7tBcaLbXGRBNZAVA4gCM+mB6V6Yh5V/Woq45Kba5JzBkQS/7w65uyw2Le\n4LmZxdv3CHiWxlGLsxlQ16H04Q88gypz5KajkpuxyF3ZTRdOi2xOJbdsYZDtl8j2y2C/zQvzbC8q\n3wAYLUtFANTVl5fd0gUHCM3+tva21+wRFOjLYX6GX4skferwHPz88xkUzpHtA3biwPaZ+fD9XVZO\nlPePAZB87RHgGermhVKbBMUoknOnSk0Z0ggZRJU6vCd3fai9WwMX0zHAiZ4nyXwkHTsykJPnJj3v\nl4Tf4PDvY4oH5VCzzb+G/F6ZYPGRHZQEbAB6vCmZz4Vhrf33d/2fUuquUup5a+0dpdTzAO6N/Nmr\nAL5G/P6iu++i2PWYb3bH9Hvu9T8O6jNdGNcXfEwBPPsi1N4ttOUEnd36HZ3s+8xyakxzaazSoSTG\nBmHp9WvKDuduMahrUrqeLZ2nz6LGQUmlrmen1mUcLW6UmTP9IiVk6v8EECIbbFZDBo4rN3+UgNAc\nw4tWyvLzuvTczOL2xGU809b1emimBe3RoPGryhx6v4SpzgA0Uc+HQUfvl1ALg+ygDNnAjX3g5n5w\nQBUinv48R9nmJLwol2G0KJmYIvQw0hLKrtp+vvZqA8hr6LwcmNH5RbQVOmRiAVRFQYyvvRnR83mg\ndG9G70+CaipgKpvpLtPbOd/C/ySTjXfkDnhsRZkonQPaFNmqvdoclYho0Za3F9Poc1PlAjYvBxbT\nO5/3gnLbmMhpVHIDRoGHQVJNclfulDbZ+XjmyQaIu+aJTB2+N00AIeVKxtmypOznZDez8XHC9mqn\nMPETjk8A+PMAXnI/f3nkbz4N4N1Kqa8FAciHAHzfFZ73HymlfgJEOHg3gH8JKut9o1Lq0Fp7H0Ri\n+N3LDvL6gk9uoG6+A5Xdous3voYtp8tDLyBIxledQpVZB0IKJzX9TWn6yPwrLy0aaDQVWSzcXpxj\nvmzw7LzH7YkdAM80JyVkZFO3K99EIMQx0WSvcFBSuW+Suxke3QPTXvyd++nk+GWYjDQ2b0+DDD9l\nPaQNxhcql5vogu8AkyG/vQfgDHnh6v3LHGqiB9mOurFPi8Ct21GvoOo3qLuHqLuNn9qX5xpZACDV\nliL7MWHuoxaSK+lgJTCU2GmdfMoEUK3x2U947SIsmKmiM7PDiuT5WUU56Ye0OhtmA3lJz5+H5/bU\n4oEMTj3IeHgB9MAjg7zQ6VgdAKVlorRtHPXHkvthivDZufdlJwtsutXALnwsRoGHsxmX4UYAlJbc\nrjDQObDLlpJNBwdBQknYfyvM6Tsgz3dniF5dkyyTHdm8KFNALy53gX2LxUsAPq6U+n4AXwTwQQBQ\nSr0NRKl+v7W2VUr9EIBfBTGfftZa+1n3d38GVDo7BPBPlFK/ba39U9baz7qs5nOgktAPWms7AF9W\nSv13AP4vpVTjXvMvXHaQ1xZ8bJbhtHsYAY6UmScV4rAjZml8rQIrbVVroSI9zuJhQ7nFssHhfhMz\ny4y0OZ4FPxhn7y1BCGhdBpQByHFcAyazqHseXmVjsdj3ZZe6tbd0iFS1i1isUwTvNC1aAhhX3snK\nHGphoJ+dxSW2m/vA3k2/eNX9BnV75O0KVrV2Ctp2UPrSOifvGJetWCYeiJ2qHzy8LPvh9+GlYWqf\n/fj3Jso/kRCmOAeRbpwAHS5J+cygW7v3IoHVfZfcayo53wIM2W2y15OQC+i4evQOPLIyHwWgxwlp\nO+2zh8UNAtRy7o31UtkftjTfGam6Asso4YJznsTFVHAdvnMSMBOrd99fcpsP61Tr0brv1K6SrlR6\n+EMU1tojAN8xcv+XAbxf/P5JAJ8c+btfAvBLO577RwH86Mj9fw/A33uc47y24NP1jbdHTp0ZZfDv\nJiPfEgKrHMAGhxO+MAoAFttbW+dMGZMAbh1u8cLtLd4+t3huGkpdLM8/ddRmViNmufq6h7eMXhoa\n7CGnSlK6jje4tOMc8/HhkBkUkymkvfNVQpU5/XXZD0tsDDq8cO3dJDWB5i7qbuOsCjRWdenAhzKv\nUvdOWYCyobrfANkUeTkH2ofhxfOwUwVChmPHynCvJy7bdZtitIRY2S3q9gib9tR/l6Q3EhD6IxKI\nyCV0HQPQE4wxMoEMCToeeEwR+qATVvwmR1eZLQLwklBvZFCWJqnVYm4MiMttezcHVHCuamjVwuRT\nKO02NJUDIP5OcekNiJmZUgD3Kwxr4YfOn8Y1Bp+mB17buKn+zFGdE300Xijk751tUAMwAJZmg6pX\nOJyyBKHFsWmw7RovY1PXGof7zeXAw/pcIDUVnZcEeLYg18hs6l+PoxReM0CwzJbS+6XTkyMduUDf\nZv02ICgs1OocyGYo958PgphFMbAzZkbQKMuLS1AOeNbNER5s6wh0+BiWhggc5a4yuNw5cx+FB9oF\nTVali4MkHYims1yYLmyY5wbAHJg76ZaiCQtRPlTFlnYMVafd5+CyaecYO4bvOfJxlWdRRlJwnT5H\nDrBbDbvtkLlM57IshwFIjZxkW7X+3KXK39zn6brVaGWAY8x6O7zBcRkED9AOgMmltnYZiWPVcXYL\nIBub2eHjZtIQf+/KOaxSrnc7ks1wZi/JDbM9ei6APmsgHsPYRVh4Gl9RXFvwqboM9zf5wCtlaZoB\n4KTBWRAALIut+J88cqfcdj22bY/bU4t3zK1nlY0BjzTc8irIwrYYcBlQwew75eVgvDldFrKdUM5S\n7rFEmmDCRJoVkaCp62tlBcqb74DlRWCdTNO7hnsKOqwYbee3vHbag22NV84KrGqNk1p5fTnK0ILG\nXZl1g1JVcIzj0ysASDaLBx+QoFhz+S7dESeGagCGTDS3KPnXme353XVqx0DAk7nNAXGkIgWFJMHU\nzgp8VJVZ9rZMAbUgyR4qqWnYSQe7dWXQERpwynbblQF5QJIL+mzP06pHF29wxpMTKCXvaddj5GPp\np8tGsilUOQfymsAmj0twnjbNkapXOBq4ZON1fWpdjuFnnYb8rAG/0VDL52HnF2s+XjX6XkWeYNc9\nri34bHvgS+sc+yYuUZW6p7kFFFEjOl4Yc+/eOLPUj+EoddjZbztSQ5DkgtSQDNKQjGvggLd5yMs5\noNwApJ4C2KDq4nJVqXtnw11E0vvyuOt+A+NsnZm5JwGIsx8G1VblyJeUAWFP7BTbmphedTMAHV7c\nN90K6+YhXttYvLIu8fI6c75IQZooWH3H9hLpuR6Uo/w80HqcxpzO1/As0WQezagQAInZnrHgHS9b\ncF8CPCyVxEhDVugChAQAdVbYkztdNx+CNq4wg3UCocowG6uBdVRpf54umUXxGZBo1tuqC9ptO6SI\nPBEnUTNgAJJxERlBgkFQ7+YSpevxTeaiJzN3fb5ioLYtP2NJZtmZ7bjgmaKdPabZHrwOXzmH2n8e\nbTnBurm78zmfxuuPaws+m0bh/3mo8NwMWBYKz065HKUxy+mCYHAA4M23ctcw9T72uoUEBACivCVK\nXA7ggr99HjOsuBwABNl6IKIGa8W6cz3KXnkFZtlfkKATAybtUrVtsTTNQM0ZoMWj7jYw2jF5syny\n5fNRqSLyjRnJKGoBPL93UuKLa4WX12qg5jvpWFkh3vtHC9pFPZi0FMKkBCAGHQYrtpDueefdxtnP\nrtcq595ELQWeTbuK5rLCILIWG5okC3J30aLuFt2x15bsPcwCuYJByTSjIHRZjMkC+f6GyHr4XEU+\nQzvkdK4OOu7cuzIe9ffOKbNXrgwHkL2JuwYA7N5QuHIql9kkDTy9DrQqIB1Wd1pNcIl2/3lUWY91\nfRcPtm+9OZ8/CnFtwad3qgSsNOB7IZn1X9Zo+louEI6FZSYLf3FJQkC6FrAvT6k1Sr2B7t0FnE2R\n86IG+EFI38x2bJ10l039E42l6Vzjnhh4BkCHBjor3M40vvDrbhPKb73CqilogXR/RnJCW8zcrrbO\nNt5aINeuNNIaOs4SEaOIL372x7m/KVB1auCoLeeMUtafVrTI1D3tdM1k4fsBO6VqmBKdC7mZBHSA\nMF1vsqknh3kNt1TexX3G/vmFAR1lTudefZxLbWzUxyVNKotST24JIAWgTuUB4Mt5GKplRl6JiHno\ns03Xk7CG2HCRcd0lBIM0uGfn+1nC78gv5n2D87ZFIGy3vkTdWbJZ556WL8eNGOPJchuHti2MnqLu\nz520EYZEjAmicujYhoLVFoZl29C3VW01pFr7P47nstTeLbQ6w6Y99mXjJxFEOHhaduO4vuDTk9TF\ntpOS+rRbZYFJ34tJw31/FYDphJaWLmtQ6q1QKQhfspOaRES5ya/VJjyXniLfuwmVG9jqNCoRtWix\nEfTk+9scq9r4pj0DUKktlkWHUm/d+9gM6Mtcbqv6PGr6U3koFO7D89UERPkGRpOZGrOFPG1ZAE8o\nz7SeFCGzHT935IRMl0WYM/KAL+Z+aBfb+PPLkTITmbKrMI97NheIeZqM2ITRbnhXCCUCmQ3IBTao\nX2T+syd1CnggImYkAZBcoFMAYuCJ6NdlHQERg5EFHhuAdmrRlfEAMG8k6n6DqqPNiievdLJkSxsf\n9JtBVsSfFYMyAFR9WHKof0nED862TeY+V+4DbV0ZWoIOMFChB3bQ2/0mcr3b7ZUjly63p+T31Bjc\n31zbZfINjWt7Vns/bcylLOv/eRZUuwq+9iNhcwOVGxg9RacbzGyLqguMM/bjAcg+O5S6iDrdZQ06\n3ZBhWTmn0p6XMDn1FNdHVY9VY7CqM9+4P67JeZSVFvgnZzJlxj0sAqRVQ5baqzoTi2QMEkQEyJzk\nT+ZsJTosi1N0ReN9bnh3KllFPAdCg7gmGYyln2xcd2CCrBD7JmkVD34CtLBsutXgPl64qXxZQGu3\nyDyGerR3BL1CKGGtLPsVvCiHrEe5jQb83BdnPwA8AGnVRv0fCUA8iKogyoptHQgp+dr3JXy2tD4H\nqtDT2Ukw2AU8rN02IeDhLDtsWJgpGUCn6l3fMLPi/hSQ9YBlSf8XdBKXRYcbZVzu9UQE0QcCMJrJ\nchmVQ266/Gd8leFVUUJmCaFVrXF/k+O1zcUPvWo8prbbH/m4tuBj+8C559mYZeEcLLMZVFtFDLSd\nWlO6RL53EyabodMEKrwgyVkc6WDKjemlEd/qjIb2Orv1u87TZotVo3F/U0Sgs2oUSOvTqRxoFYFP\nxOBzryUN6qqOnoePja21jyuQ9E8NTHSOAwOUOndkiRo3yoeY5gtSvQY8q4iBR5IZ+LyaLAYdf65d\nhsV25btCDjdyn4bfD2dl1J+bDUgWQJi49/21VEuMy3a8KxblvUj01JEVpPYfHUfmzy2z+fjzpnOg\nogFkAqCW3GtHAEi73lkUekLAVJFMkD9uRwW3tev/uHovg0wKQqrUQyka1+fhUhNveCjjUVSeFZ8p\nZ/T8mXGJuezj3p3c4KTgM4zOXwtGh/MRz0NReNDZQSyIs50APFHWIx1yRwgztevn3d+WuLfJcG9z\nBRuIp/HYcW3BR+cWN5/Z4rlZkLohmRtHf94+DMrCO58kXBS8KIWLTVpg8x41ePjwhb0sqMfS6VAv\nD9lOgfubHPc2mQed4wo42dCKdVz33oV02ykcGAK8dNYHQOSMelzTcR1Xgfpc1RnWpwYni9oJnwKr\nxmJZ8AwTQDtbKkOabJZkPK1/vUOXzRCVnRZlySrk46NSIZWljGeBhaa0p36LnXLV5z6rol0zAVBn\nG68Q4afn5cIjQkl9tXRHzD0eke3IkhsHf35yceVzycG26ZL5XPXKzzV1diQDQlCL5r9hcDWTBWXH\n2zUxwsR8CuujS0UAplJ7e/ExkVenQtHqbDTjWdXaDwRzcKYtg0uN/twwEaNOh6FDMNOxGlEHiUDk\ngthJoR4jychIerjpBkNWBp7GGxNvKvgopf5rAD8O4JAtVy+waf0WAP8QZIzzSQB/1cmFlwB+HsC3\nADgC8L3W2i9c9tp50eMdB30Q15w0MNrt6pn+LGVmdk0558arYVNfxnjAuLcFXjvnL3AAoKrLsTR9\n1LdZFqeY5bknFHC2c3ejcG8bQGd9anDqfHwWywbVoqZ5opKo3UDYbdOiRysbL4xMeebnG7PXBmoA\nPQ5K5ckYvNhy2YuZRRJ4KOOg28uiQ5lZ3NcWS6MQypq9/38ZQaI/NKa5f8KlGyCUbCSbbKzE4hcc\nMbzLYGK/AvdU2e+Ru/sUeDgoexSgm2R6nW3RdbGsUypjM2DH5YZ0yVrjh265B8R07Jgth1g6R4qg\nsgpFeywILXGJ9qoRl9YuznYYkEMftHBsTcFO8ycpaMOxLlyQnxrRY9sFWCmrlJ87kV3SqvDf14nG\nQDj49QZVW56W3TjeNPBRSn0NgP8AwMvivlGbVide99MA/iKAfwECn/cB+BUQUD2y1n6dUupDAH4M\nwPde9vpGW9yekFHc4aT1JmpRjVhM9dODkklr4X5ad0QISIHn/gk9ZjtvgBn5/ywLYNtlmOjMg1Bg\nSVG2s6pJQPTlNT0Hm9StT00wi3OgUS8bbOcNtoaERqkcR4cZ7L9Due64Bk7XBdlvr4rIBwggVe6t\n6WkeR9PfL03oFZmMaNsSeDjiElqPF/dI3SAdgAXSxUqh6rbidy2M9RR2leYYeDhbjUDn/Cw4kKaq\nB/Iz3OW5Awx2xIDo94yUlLhpzrp6UYnRZYS7orMt6jZuMGhVeHacNySUxwZQD+jmPoHMnvj/dCAz\nAR3q7zwU6gwZVk0R9QVDZIPsB8AowMj7JCinOoPxbJ0REkROwTq1XHDacBKA0hjNesfo1V7zzwwf\nDwwA6Gk8+XgzM5+/DeCvIZb7HrVpVUp9AcDSWvspAFBK/TyA7wSBzwcQvML/MYCfUkopay/O1/MM\n4+W21jHcugvAxy1aLEGyae7itNnilfUUL68z3NsqvHZOC/zRfVJopoV960pj1pdjGIRWdSApnNQK\nL5/RcxwdTXB0f4L1qYFa9SiqDnvumM4WBnWtvYZctahRmt5nPQxEQCixyeyJQed8laOoOpiqwUO5\nwM0bAJT9EFU80MUNxuc7eEHobBMa7Zo1wLJEPSIuqwFwgBMyijAQG/ez+L4BM1GAjrREjjTMIs8X\n5/nTXQJCSEqrvRossmO0cklkYbYYL7DpDI1kSUo22SwPGZfOinFVBICyGo7USI37Gg50mNCyaVdU\nWmuKqC8IjAHLUBljrATHIQktcgHn88LvM3yOs/Fym8xcBQCNxi7gSZ9LRuvm6lo6V/z5lLpx5eGn\n5bc3It4U8FFKfQDAq9ba/zvxCX8BIzatIEraKyP382O+BABOJvwEwC0AD0Ze9wcA/AAAHL7tFl6c\nN3jH3GJe3KRyW0oySCOVc8mNb9De3xYu46GS1kRzd4RCWlnLnTHAO8NABGDwOjqa4M6re2juKygQ\n8BR1B8NGdabD+crAmA6njhRWlx1OETx8uNm97QgM16sCpyuD9alBWykUVYdZVWPvtEZRdTgGsC4N\nSud4ChOyFVkiAUKZaDyuIEPv17EgTZMCD5e0JlphaehBkhwy1cvgvProbmxF4OyQASATjO3gCcsf\nyOVzHKEcGJsLkjgqIHVmIpNAp0RB/S3r+1JATIOXM0MUWViY3cCzB+7cEN0/BUomyKWA4wYnx0CH\nqfd8rk/qeKFNhWrHRGvJWDEtz7nzUmc4MMPnYpmpVPEjIgo8yUizHr+pPPPsQf5elOUcXb7Ec9OH\nqLoWVfek5nyUdxh+Gm8g+Fxi8/rXQSW3r2o4D/SPAsA3fPM7LQOPyaZ+CC2oDJhot5zuJL3PSXPX\nDVWWVGIQycDhPn3BjemwP+3x3Mx6E7ldQVkLWTSYssN8UeNhNUVbkRV2UXVoTIem1LDLDAeLCotl\n7R1KOTyl04EHl9kql+20lcJsVcdgVmp6DViYskdpgs22p107C4gxUc6LFI5TSRUAVLrrWj8TI4Nf\nj5rdIfNh/yGZrdqzO8Cju7B3H0Sgw1bIADG/9G1XkxoTquTYMcgIO8z0QhbW43Dagwz/xKyUsKzQ\naoJdQcDCMk0SdEhSiVUx+PzlTviTTrobSEWYDdo1iCkFUFdNmPeSIC9jWDYcaggG0JEZEQMzPWEp\n+nRyLo0+w31vJ6IeE3RSm+5LY8Si2w/YgkYqGIBMOcU0X+DFvYd/6IgHSqmbAH4RwDsBfAHAB621\nj0b+7n0AfhLEgvoZa+1L7v7vAVWTvgHAe621n0ke93aQp89HrLU/nvzfJwD8G9bab7rsON8w8Nll\n86qU+uMAvhYAZz0vAvgtpdR7sdum9VV3O70f4jGvKKVyAPsg4sGFUWbwwJMjj4fQOGaigJ6qI+/d\nxLo98oNou5rOh/sNJhq4PbXCwK3z5Qo5gAcQ+HBmZAzZX5uyg3ELTF1p1O7ini/qCHiM6aI5gui2\n6++sTw3OVzlmK8p20mhKjRuLc5iyIwWCIrb6DvJAQ8VvjrEFwWbTyKcoPC53Jbo+zI6IUg4N7WYe\neA4nDWZ5Hijf6yPg5DXYuw9g7xzFpmvC9wYgCnL2TBHM4UaAJ7rNkjyi38NB/bmYdnw4bf0xs/SR\nyaZBiiklEojQKscsB2gItXCDl9OIQu7PpVJe7imihnPqI2ew+lMnexRYbLKvw2y0sb5M2HAEHUF+\n76Fs1iHYygcg4t956JrOS+/t4rUq/GdI119QIIiYhpfElQBoJOuxZ+funIFKs+K7YAHkuYHJZpjm\nLV7cGxk0fx2heoviMaSQvoL4MIBft9a+pJT6sPv9h6NjUUoD+Lsg19FXAHxaKfUJa+3nAPwOgO8C\n8Pd3PP9PgFoeUSilvguM4leIr3rZzVr7rwDc5t9dP+c91toHDjUHNq3W2k4ptVJKfRuIcPDnQE57\nQLCM/U0A3w3gn13W7wGATOkAPImqtA82MAMC8DjZdmIInbqSRYaTOpaS4Z7LRIdsZ2k6b1nNCyz3\nOFY17xaVt+Zmd1QjrB74tikZmALwlIayFbZyAAIA1VWGutIeeA4ebNAkMvt1qZGXFmXZYTEfGt+V\n2vqdeFSX72oAF9NZVW5QOh2uzoZ+h85aaCfOygOLHGF4tvfnjYHHZDOo7Sns6g7wGgFP+/IK/Wnt\nRTZt1aJnJ253H1GOETfmxfDi4yx8fIwyeHFl0OFz1dnGu9SOyc8ATJ4Ixn6R/I8YruTsh0POvhAD\n8VTcbnxZj7Md/s7uYugBw7IhZzuckTEgdpZ7Us0IEAUQ4tIjGRfu+U0MX39ykNbm1IOL5qwuiAiA\nUq08KY/l+n/eIgRJCVaqt+sS5d5NdFmDRbF70/AWjQ8A+HZ3++cA/AYS8AHwXgCft9b+PgAopT7m\nHvc5a+3vuvsGT6yU+k4AfwDgLLl/DuC/ArU1Pn6Vg3xLzflcYNMKAH8ZgWr9KwjI+w8A/C+OnPAQ\nxJa7NJTSQ+AZS/n5iy8UjdnZkcoXtGOSmmWyp8MXMS+ei2IC7SwSTNag1LQwLAsSp6TFjD8WBSAY\n1KUhQWdXMCOO+zyc8cxOKzS1RmNyD0Inz0xx+5lzN/8E3J4AL84bYfV90/dY0MZgPaqZJcEHCwBr\nqHIekRIA+OZukKPJBsQC6bhqspkrt30ROD6GfXSC/qTywMOltr4C2oYuoIwzoZNq3BaZy1SpEKlQ\ndU4zF+n/xFlBCjxcLpMEAwYjJhDw//P/+UUZiP1ncrYAJxtxX8rsW5+dpYDDs1GyxCatLdLg7+xY\nmU26znLw++L3JDcMEoTiz28EeGTVoQ09GPruYABANlkY+fedWZC0BJE/IQCIs5+OgFDlZiDv9FWM\nZ5RSstz1Udc2uEo8a629426/BuDZkb/xvXIXrwD41oue1AHMD4Oypf8m+e//HsD/COD8isf45oOP\ntfadye8/inGb1s8AGNQRrbVbAN/zuK+roGLttouotk5skO0CNi2BD81DEA34xXmD0tkKj/UnjJ4N\nJvF5XsZkZJVNCzDL2mQ4MDmWBXDPNACawfT8ZSHnd5gtx6W2piTgASjjOXlmitsvnOP5F87wb97q\n8PY9Ap53LasLvYeuVKPPDZVTmK20w2SMS28xo2rYeDfZlMptZw/Dbnbb+Ywn23d21duOQMfdpxaG\n/k/28NgsLBd9lB2hs8L3qMrORnpnfMyx7QDZNqTMNv67C7XIRs6hjNgaoh0M5cr5KAYdznZ4YBmg\nzBwYkmDi0lq4vVvZejw7YBAaBZ505iY3g+/TLpHY3QoHTheOhUmdXJGvYJgCkPbrkv2YRltDtZWz\nMvnKQ9nHKrs9sNa+Z+dzXdxT9+FmIR+jMXZhfATA37bWrlLxgBIAABhpSURBVGVWpJT6ZgDvstb+\nl0qpd171yd508HnTou/GRUNlCC+YVmdedkPuKmUcTlu/S+cdsNHz0FD1Mwg0z5LnBlovxcBcACGi\nNFssjcaBCSUSLu3xoGgKRFxyk8Dz8MEUatVjJno8nPHUpcbZCxN8zQuneP5t53jnwuLte8C79mvH\nBHwWs2zhQOdO8B26ihgnEMogufg5Ejygyos5wGoAQXiUFy8vfVQ3sE3jnFWHtG810VATjazMoRYG\n+tkZ1PO3xoctk2NOs540pP14Or8kY8zHJrxfvi2GZFHFoqh6/LhYjSCVHCLWZBbNSMneDqtbsKeS\njGjwk4Enu3jdSkF1rDkf9BKDlTj3eDiULmHl92OXJYZtRskf8ni8QR3WUFgIxfN17JEEJLR795m4\noVObV1BbIN+7eeE5eDNiV08dAJRSd5VSz1tr7yilngdwb+TPdvXXL4pvBfDdSqm/BeAAQK+U2oIE\nAd7jWig5gNtKqd+w1n77RU92fcHH7i5V8QUgVX6l9Ejo1cTT9mlNe6qXUNtToD2H7R7RxSUX7ckc\neblAXi7Qoh2A0LKosTIaSxOosIHYQL0kltxJQWgMeIzYdTWlxtnCAC9meMcLK7xwm6SG3r20noK+\nb55F2WfUV9mug9xQOv8EJAyyEYfRtgb0MOPRKkcnxF2ZNUXupqKUpfdgshly5MRuq9Yh67lgN5m5\nbEff3qNBzERMM5XRuSykW2cKOikJg2MMdGSZjZiWR770JOnR4YEx8MjBUBbw5JDZjvzOpLJKQKw2\nzu9FDn/K9zf2fsZ+HzsnXC6NmKVpiA1KCjwt2gh0xkgg/HqsC5dLZWzXRwIb8tXJAO5Y8Hf2AnHh\nxwllgaL+qhAOuA/+kvv5yyN/82kA71ZKfS0IdD4E4PsuelJr7Z/g20qpjwBYW2t/yt310+7+dwL4\nPy4DHuC6g8+YvhPgs53UpybVvJKsJtqZL8K8wvYU9vgLsPzFHRMordawezVUWyOfzKHzpWeE0U/q\nCS2LDiszHL6kmQyqWDMAcdYzlvHUgmBwvjDYe6HF8y+ucLjf4O1zsvp+136F56aKgKduYU/uxKCz\nPidjs3Tm6cztIoF4J8l/p8Mgn9Jm586VQ5beuA/izf3amgZJJQjWvc9+2EZaPzNDdlCSirMEHhbT\n5DLbY8rs0PR7Eykv7KKZyzLVuOKykHJy3xXb1k7NuY5ASNKlWfuPY6gWkfm5HZk1bxNW5rZTWBYs\nyySHP+Ny4q4YsgCHQBxkc/LYTXQsdgDPGOiMfYfYxyoyqJsIBXAANNszonYhf7qwXTUc6n3rx0sA\nPq6U+n4AXwTwQQBQSr0NRKl+v5uJ/CEAvwqiWv+stfaz7u/+DIjQdQjgnyilftta+6ee9EFeX/CR\nIemq0tPEEQtSxWYGHDk4KBvhWB+FaXupD7cjbBcWZb5gTUYKa3RkG5QdZQWS3stKBnVPt7ddYMMt\nXJ/0IaY4KalmnZeuvl92uLGo8PwLZ3jHQY+37zmZoWmL56YK8+ImZTyp0oMrc401bQEHg8WOXSRC\n/T7MzQzlecZiVDxSKhaUJJ+typzKbC7boT7PDjHNKwJP2sgfip0SAI31Qsaspr10jJBx8iUnzT2x\nhPINELvSZd+Pqh73t/kFygIxhToCHne6ub/DPZ8wANoPqNW7zkv8muFYQn9o+P45lC7juSQZDnAH\nhI8EdCQBRH6PYvLGLgDCcAPFt+X5b2s8qYbJVyustUcAvmPk/i8DeL/4/ZMgqbL0734JwC9d8hof\n2XH/FzDSmx+L6ws+KhvK50eT4BuvXsDunzJG2TtdT/piZ0ex+deuGFn45AImAWhpNm7gUhp6BdCZ\n5GRNzUOlxnSejn26Mn4AlenZt25tfX/ncNo6cdU29HjOHoah27FS25jskBe3HNHAc/bMkTXBjgVd\nBkuvDBrxuaFsxr1WDpBdAEDZzjNzAp3CDRE6w7Qo4xmLpN8DYPQ42RYDQOQEuzQbr8fGjrLp58pz\nZREbsFyQUjUTXET2zexKkvnPnUvsbsFPOXOWAs8uhttEh+HYy4CHX+OiYDBm5e7a3efVuVsnZ5Ne\nA/L89xeDTipPxMdVavqsWO2cZoqWQwASakTpMaQA9CRC9TYqfV/3uL7g48LvukbKbLzYSOBh5g/T\naX2Zra0IdGRDfp2wDi+TcXFMsDEA0rZFqVvnm8IipNI7JwCRpF7Pl4hmgfanvR96fcfcetCRVGqv\n6t2F2Ygo60kBNf29SHaU5TzKevyichXgSctZ6UIwn0HhGcAUyB34RJkOZ0g8o/UYJTbp35MCj9RA\nkz0RsskQfj0gnyaOi9xTVbmgLFhYqDO78rT5/9s71xhJrquO/09XdVfPzms9u8tm8Vp5CZASBQkI\nFhIRSkhIjIkIQSD4wIcoHxBJlIBAQgZ/4SNJPhDxkBwUWQQRSMAQgRIFhwASEspDIcQhxCReJ2Cv\ns4/xrHd6Z6a7q7vr8OHce+veW1Uzs69ud/f5Sa3prp7pubequk7d8/ifAbYHnUozwLokB19Tze/V\nFNNNyyw3We2wcyXXfV71/zQZwKKyGpwUIkbrWqSbrrh+yrQYkHElddy9f4TRsfJE2YSRJWNMuGe+\np6b5oN81OM6si13wyl1neY0PUWW1M4kMjwR0Q8MjUimpay2dIpWL9f5O6GaLVwtH+JZdoNUo9gII\nXHBCH8AYPZQdMkvXm/xGoMBrik67myOczMqCVzE+hWslsd7uunTqoImeN5eK4TlkRcedUeknj2pn\nglVPYyZZGDdo7NliLyBrJ2QFZF1+1uicWK1qnMX4GVZea2Y7tvhc8HvcNCk6Dycto8QQ1sG4mMfA\npKv7MUZDs+Fpu3bOYeIJhcccza42H+tyK+t6ioohOyzeExsem/AghcK2wJSDWi6LNUAJpa5Hki+/\nVOdWk/fC37X7wo7HHpssYWTOCA2QJf3yShe3LIepUbPnwJ3WlPMgxrQUDuaC5TU+gLiCXNvqfhDf\nCe6kTJFdreHxa4WmwIk0he2Zk5leOWeidNo6jS5bOCh/V0rVWMPjVhj+l6/BwFjtNNcZs458JEYg\n6dSueqw7EwgvIEcFuCtYA9RpA1ub9UrOx7mT9WtI3J332DM8LbPiCWVpaj7I/Gw7A9QhUSxwtS2W\nKLXY/hwnLfTHOy6jbXvQNqriRSTFdPiU5KalrOG3iht2tSPqFaV6hE2cKWv+61c2vpoBEGYm+vgr\nM79xXkIp8uIgKLYFqisbP2EBQLmSDOqmQlFa+39l7PIP5Xoftq3vdNdd6YNr0x3Hd+6iIVKW2fi0\n0uO52YJstmp1dlBwmZiLXoZqzKfpomjucseeNApQk87q3QWeSK0iQPnlB1DbdM3NI1IitmoL1vBU\nVhf2IhmtevhG3+mnUTdBaxMVA+RqJ2ysxzQsy8c7UdZg3elX3jXLfihXSNxaAXXXgMkQwFq43wHA\nFhTaolE/a6oOz+3jLoKMILvR1cmMyv49TYYnUG1u+3JEkmJs3W2HZXpxmmFS9APXklXOlov5pLbG\nzCebELpe3KfTKle8ZXyncLJJZ7pj50ZuXGUaZFySwNJpyT7LkupNRHkeAllib5ZGRkrJGpawgaDd\n7o/BSg0BcPJE/lhsRqh8Z8XYxDEr6RfUdn9jG/Ml1A5adAOR2rmXFKHceZbW+DDYBXLD1U6UWNBk\nePav1bfntfiGCCgDycbojJOW+SIMMRnvuaC2+3OvVUHctM2tvlJ5b70hlBRnkvmvbYbeocQJBvlI\nZGx2hya1WS4wdQbIBvhp9RQOihulKkSeOCHWupiJSNZYAxRmkPmKzi44D1Q6lTaueCI9ND+obT/f\nNga0NyGxSsBRgfay7UDhibCmZbLEERX8olxw4M4Fq6bg99sWCRsvzlS50TCrEc8Ixe0MfMXtjolb\nWh06uy9iKudTaxS4Jq3Gm2RllsbRj8XIca0e2xhrCK3hLsezEowjJ3HhbXTM9zdSnKjDKk8AqDVA\nPncyzZqY0c6Pzu5cFpbX+PAE/XEvCCT7X5jDEguCjpmHEWUu+S6+fl7/v52UTG2jtlJ00n1xkzC1\nNMbPFIoL88qWxdFp4Gu2eaueydX9QEONPL+PM0BWot4YgGGrwF5+LZDxt1IvsX6bRbKuvDkUI0wo\nxYSl1TJZn70da12qbhTHcfMxRsd3+9Vns9n4Shncj1tm1zVI8/ve2Cy9WimZmMR3S8atG8wdfUuW\nW6L8UL4fXujtnikCI2RFQmVFVhijs17VWYNR37D70duHqXeeyIqxzCaz+1TGO4If2qgUZBcEjICN\n9rg2qaQirDoeyni8ccTabrKvJSYa7rv6rL34e0DMlXNFubssrfEpUASrHXuHGzf+qqvMPnQp7qsj\neG41qUy/5tw5UqfRwnAiF07/yykZR4UTrrQrL18bLrigjQ+qvVzscMzzNOmCPVXlJm2sWnIjYWOi\n2DyYYNIbS3Qjk9fcnZSrn04bWN0Cr51Cf3QFl/uMXt6p6IsB5LmCqveYG5hI1pghcJfUqRLE8j0N\nK528OKgYHHsM7Lkgr8NW0s64mBVFsM3caVs3VqCHV9dd047Lat65+Y3kTt/T/+u0wtVtdUWbu/G7\ncbsVW6kS4Stw+KuK2huqtCMN64BadWm7V5LuumRkFkAngTPqWVIEiu3+zZW4xiQxQb5rY1e2sJJs\nlOe3dWsP9iqxMTumbHULSWKTOlIk1K/sH6ChVszbl9YAHrYKul2m2FJhLlha48NceBd869K4ScMT\nu3WiOIMzOl7wuDdKsN3v1jbwsr54AK6Rmrj9fF2sFOl+r9qb3sSX2BZR2nHEcRFDk0Ckoy4VuJuA\nhy2J9QzHsvLpyGsp9GyDzp4G7jkL2jiH66MruHKwj4t7GXp5C9dzWTH0RuS0xfKibCneTSRe4ZI9\nWuziCfmkLxe3Aq5wEIhUjGtWOXauLtHBuFljEU4fJxbamgBmF/kGSX6WwXQnQ2Pig7EQa2NLZ7Of\neZwDwxtOaikefxNNq9oyfpm7fVlqDZYrZ7+BW2Ul7xtI+9ye+kFRticBZIhbhYQ1cqVQrL8KW0nX\nsZaeEmWQ4QtgK+e0d1CWLHiFxWxf2/3WXUMnPYW81Xf7wk9kCNzYgQs7rMWq9AfS1dBdY2mNT4xV\n3z2W4YljDAY/TVbcEGGqbC/PsN1PXavsmI02I0vKi2/WkniTdd90WitIhwPRWrPyMkDYHKu9C7wk\nB69uSRuDihpymcnlN3YL4hIWL+ZDWYrWpt1eAJtAK0sDJQG67xxw9jxo66W4MbmG68MbuLif4Zm9\nFnqjUlPMGtyT8snw6867k/KOfZjYWpaqAUpo7AxyE3F1vB/PqTU6NXEC3y102GrRZomtpJtBJqTf\np0Y+pMb1NsmBcccZoQoN7roEcs6laQeiFJ6Jazcpszc7rRFOpGOnN1hRz44Nov/cjjU+34coL8qr\nOZC0zP4ZG29CaHh2c8Jmp9oiw8ZT19pbONFaB+9+F7x/Tc7tvQPwC7vA3gGKnlnV2+xKX91idRe8\ntelUK7LuGtjIVNnjbldGddTdhN10h1TlllDj43HLrjaEsjy2XmhvdA3bgxQX91bQy1u43Je7/ssH\nwM5O1xV+AlIYOuiQiR0Yd4kN65hWAulwIFprV7fLhlg2C204Bg8nomM2GoHOjsDruRRWAkAW1VIU\nI1FPaN1E0gGkGyitd9BycjZpreHZGbyAp3sZntpN8a1dMTp+kzsAwNqoYoAGk+rqxyYfAGKAktbY\n1T75Ei6xkbAtK3wXm1+vU5ceXKkxOkYGmE8lBd/TbDs05jPO5aLur1aPUVfFtqbJy6RMs3Wkq9Kl\n116E/VYezvDUrcp8gxO3m4bX8dO2KBjsIVk7BZu5JgklSWB4rufiVvV14wLDwxn42v9VWqFPrhyA\nb+QYX90vpZOyNJBSSr5nFdg/AN1zAD55Ehiu1Roh/0bLZlDafVG7X++CAdI6n5ClNj5xMLLJ8ATU\nZSt56gjiZuvh+UGO7UGGi3ttXO4DV/vyJdzZ6WJnu4u9GyJ5s7aeIzPSN8PTA3TTAic7Zb2L9c2n\nk0IKWXeuujtCa3B4MJYMNADF9SESK7Bp5W6sAYKX0VX00QFcbOE4F1hfvoYHibSl/t57xNUWGZ6L\n+x08u5fimT3Cc1e7yE1m3NA0xctMg7zheo7NlQInMzFAg0l19eNnv8kkjeoDNfWWKVc7fgq97w6y\nbrOmLp1+F9K6fdO0GgpjcXlZeGypMyJBVuGu23aswl5jfJyMUKcNPrEHTIaBYrods6x2yhV8k/s2\n1vMLVKDtz05bmq6ZlgP5pG8KPUPD0xsRugnj7ApcTDUwPLuXxPA8ewm80wuMTr5H2H+hg7RTIGmP\nkXZypG1GsiHGhwcTOd/zESgfAWv74PUcMEoRWdpxRig+R+pe++fTkQ3qlNuCjtFxeiEhom2I4us0\nOA3g+Sn9r2mxiHMCdF7zxDTn9FJmPnM7H0BE/wgZ83F4npkfuJ3/92JnaY3PNCGiLx/WlXAeWcQ5\nATqveWIR57RMNJdJK4qiKMpdQo2PoiiKMnXU+EyHP531AO4CizgnQOc1TyzinJYGjfkoiqIoU0dX\nPoqiKMrUUeOjKIqiTB01PncIIvotImIiOu1t+x0iukBE3ySit3jbf4SI/su894dEUs1GRBkRfcJs\n/yIRvWz6M3Fj/CAR/Q8RfY2IPklEJ7335nZeTRDRA2Y+F4jooVmP5yiI6D4i+lci+gYR/TcR/brZ\nvkVE/0RET5mf93h/c1PHbVYQUUJE/0lEnzKv535OSg3MrI/bfAC4D8DjkKLV02bbqwA8Aeno83IA\nTwNIzHtfAvBjEF2ZzwD4abP93QAeMc9/GcAnZjinNwNIzfP3A3j/IsyrYa6JmccrAHTM/F4163Ed\nMeZzAH7YPF8H8C1zbD4A4CGz/aHbOW4znNtvAvhLAJ8yr+d+TvqoPnTlc2f4AwC/DQRdeN8G4OPM\nPGTm7wC4AOB+IjoHYIOZv8DyLflzAD/n/c1HzfPHALxxVndszPxZZqdB8gUA583zuZ5XA/cDuMDM\n32bmHMDHIWN+0cLMl5j5K+b5DQBPArgX4b7+KMJjcLPHbeoQ0XkAPwPgI97muZ6TUo8an9uEiN4G\n4DlmfiJ6614Az3qvL5pt95rn8fbgb8yFfxfAKcyed0LuHoHFmpelaU5zgXFj/hCALwI4y8yXzFuX\nAZw1z2/luM2CD0Fu5HyJ8Xmfk1LDUguLHhci+hyAl9S89TCA34W4qOaOw+bFzH9vfudhSHvIj01z\nbMrxIKI1AH8L4DeYuecvKJmZiWhuaimI6K0ArjLzfxDR6+t+Z97mpDSjxucYMPOb6rYT0WsgvuYn\nzJf+PICvENH9AJ6DxIIs582251C6sPzt8P7mIhGlADYB7Ny5mYQ0zctCRO8A8FYAbzTuC3+Mlhfd\nvG6Bpjm9qCGiNsTwfIyZ/85svkJE55j5knE/XTXbb+W4TZsfB/CzRPQggC6ADSL6C8z3nJQmZh10\nWqQHgP9FmXDwaoTB0G+jORj6oNn+HoSB+b+e4VweAPANAGei7XM9r4a5pmYeL0eZcPDqWY/riDET\nJJbxoWj7BxEG5z9wq8dtxvN7PcqEg4WYkz6iYzzrASzSwzc+5vXDkAycb8LLtgHwWgBfN+/9MUql\niS6Av4EETr8E4BUznMsFiD/9q+bxyCLM65D5PgjJGHsa4nac+ZiOGO/rIAkuX/OO0YOQWNo/A3gK\nwOcAbN3qcZvx/HzjsxBz0kf4UHkdRVEUZepotpuiKIoyddT4KIqiKFNHjY+iKIoyddT4KIqiKFNH\njY+iKIoyddT4KAsJEb2PiJ4kojuuzEBEv2iUpAsieu2d/nxFWQZU4UBZVN4N4E3M7Gt8gYhSLgVT\nb5WvA/h5AB++zc9RlKVFjY+ycBDRI5D2CJ8hokchcj6vNNueIaJfAfD7kELGDMCfMPOHjdL2HwH4\nKUiBbQ7gUWZ+zP98Zn7S/J/pTEhRFhA1PsrCwcy/RkQPAHgDMz9PRL8H6f3yOmbuE9GvAthl5h8l\nogzAvxPRZyHK0D9gfvcsRF7o0dnMQlEWGzU+yrLwD8zcN8/fDOAHiegXzOtNAN8H4CcA/BUzTwB8\nl4j+ZQbjVJSlQI2Psizse88JwHuZ+XH/F4yasqIoU0Cz3ZRl5HEA7zItCUBE309EqwD+DcAvEVFi\npPvfMMtBKsoioysfZRn5CICXQXovEYBtSJvlTwL4SUis5xkAn6/7YyJ6OyQx4QyATxPRV5n5LVMY\nt6IsDKpqrSgNENGfQWT9HzvqdxVFuTnU7aYoiqJMHV35KIqiKFNHVz6KoijK1FHjoyiKokwdNT6K\noijK1FHjoyiKokwdNT6KoijK1Pl/Hws37LeDaxgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phase_plot = bs.plot_phase()\n", + "phase_plot.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Another Window demonstrated" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "bs = Bispectrum(lc, maxlag = 25, window='triangular',scale='unbiased')" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'triangular'" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bs.window_name" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAEICAYAAAC3Y/QeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXmUJNdd5/v55VJV6uqqrla1WnK31m7JqIXxNkIy8ww2\nCHkkgREeNttgbI8ZjeYhBuY8FjEGGw7MjDzmvYd4NtboGGN77MEYsLAeCK/gBR7ySJZl2Vqsvd1q\nrS2pVd0lV1Yuv/dHRGRFRsZyY8uMzLyfc/JUZiyZEVlV39+9v+2KqmKxWCyW2aI27guwWCwWy+ix\n4m+xWCwziBV/i8VimUGs+FssFssMYsXfYrFYZhAr/haLxTKDWPG3jAQReYuI/OO4r6MsROQBEfm+\njOd+TER+q+hrsljisOI/o4jIvIj8iYgcFJFjInK7iFzq2/9qEemJyHH38YiIfFxEvjfmPc8UEfWd\nc1xEvp7h2n5HRD4Ss9///j0R+Y7v9c+m/bwiUNX9qvrP4/hsiyULVvxnlwZwCHgVsAP4LeDjInKm\n75hHVXU7sAS8ArgH+LKIXJTw3iuqut19vKToC/e993bg28Brfds+WvTnWSzTiBX/GUVV11X1d1T1\nYVXtqerfAA8B/yLkWFXVR1T1HcD7gXfl/XwRuVZEDonImoh8VUS+391+CfCfgJ/JMXM4QUTeKyKP\nuTOWd4tI03t/EblfRH5XRJ4RkYdE5Kci3udSEbnF9/rLIvJl3+tb3OtFRB4XkVe6z68RkY+KyJ+5\ns6o7ROSlvvMuEJGvu/s+AswFPvcXXTfS0yLyCRE52d3+LhF5t+8eWyLye+7rZRHZEJHtab8vy2xi\nxd8CgCswLwTuTDj0E8DLRWQx50feArwUOBH4n8BfiMiCqn4K+C/An+eYOfwu8GLge3CM2auBX/ft\nPxNHcE8B/i3wIRE5K+R9/gl4sSusC8DZwNkisiAiS+77/1PENbwO+ACwAnwe+ENwRBv4JPDf3Xv/\nO+DHvJNE5DLgt93z9wJHgP/h7v6iey8A3wc8AvyA+/qVwNdV9Xjkt2Kx+LDib8EdFX8U+JCq3pNw\n+KOA4IhaFEdE5Kj7+NWwA1T1I6r6tKp2VPX/BOaB78py/SH8LPBOVT2iqk8Avw+8ybe/A/yuqm6q\n6ueAzwE/GXKNa8AdOML6ChyDdYv7/JXAHap6LOIa/l5VP6uqXRzx9kb+3w9sqOofq2rbdVPdEbj2\n61X1DlXdwDFaPywipwD/iGOMlnBE/33AC13D9Coc42CxGNEY9wVYxouI1HDEaRO4yuCUvYACR2OO\n2aWqnYTP/VXgbcAe9/2WgV0m15zwvoIzoj/o23wQ57o9nnKF1b9/T8RbeqPt4+5zxRHaE4gX28d9\nz58HPHfMHpwRux//te4B/t57oapHRWQN2KuqXxWRb+AYkB8Afs39eaF7Tb8Xcz0WywB25D/DuEL5\nJ8DJwE+oatvgtNcBt6nqeo7P/X6cEe1PAztVdQV4DmdGAY7AZkKdNrWPA2f4Np8OHPa93uWOlv37\nH414S0/8f8B9/kUcoc060n4MODWw7XTf80fxXbuIrOAYRu/6vwhcDBwAbndf/wjOzGJqU2ktxWPF\nf7Z5H46IvFZVvxN1kDjsFZF3Ar+AE5DNwxKO6+UpoCEi78AROI8ngDPdWUkW/gx4p4isishu4O2A\nP3W0Cfy2iMyJyA/hiOlfRbzXl4GXAC8CvuY+DgAvI5vYfglYEJErRaQhIm/AiU/4r/3fisiLXAN1\nDY4LyZtJfBFnxnSb61L6AnAlcKeqPpfheiwzihX/GUVEzgD+Hc6I8fGIPPk9InIcx+VxC06A89Wq\n+pmcH/9p4FPAvTgujw2ctFOPv3B/Pi0it2V4/3cAd+EEr2/HCcr+N9/+h3GMz+M4Qdm3quqDYW+k\nqkfd9/qaqnZVtQd8Fbjb3ZcK18i+DvjfgWdxRu3/r2//3wD/FbgRZxZwCoPxii8DizhGBPf+er7X\nFosRYhdzscwSbmrme1T17HFfi8UyTuzI32KxWGYQK/4Wi8Uyg1i3j8ViscwgduRvsVgsFcBtPfIt\nt/3I1SH7d4rIDW67kP8lIi/y7ftlEfmmiNwpIr9i9HnTNPLfvnNJT9xzUuwxIrG7IynTSma9pnFR\n1p9ML+N5wevpKrS60N6s09kUmu0e9XbWd7dMK88cfeiIqsYLRgLfI6t6HJPyGHiYY59W1UvC9olI\nHSf77WKcIsBbgDeo6l2+Y94NHFfV3xWRc4H3qupFrhH4GHABTrHmp4ArVfX+uOuZqgrfE/ecxK/+\n+WCR40I9/fvMFaD0WT53Wtno5n+PzRTa7X3ew8eEQ48vcPjbS5xwqMWeB1NnZlqmmI/c8KaDyUfF\nc5w2v1O/wOjYt3Q/H1fBfgFwv5dyLCIfAy7HSTP2OA+n7gNVvUecFuon49SdfEVVn3fP/SLwrxlM\nbx5iqsQ/SJIA5xH5UYj7fL0as7JWN9/UxOS7SjIQUb+rMKPgfd6ZS0qztkGjoTw2v8jBuVVOPrTG\nwrrZSM1iGSF7Gax1eQSnbYefr+OI+pdF5AKcSvBTgW8C/1lEVoHvAJcBtyZ94NSKf5jgZBH7okS+\nKkKehazXnsZoxH3PcYYhzigs1GH/srI812LbYpuDjWUeba6w+9Aa24+2jK/NYolCBBpNw7/zLrtE\nxC/K16vq9Sk+7hrgWhG5HfgGTrV5V1XvFpF3AZ8B1nEK/xLn21Mp/n4hSSP4eYR+1OLerJXzee1e\ncQEIk+/ExEBkMQz+3/vebcpCvcv83FEOb1/k8PxOdh86xs4nMrcnsliycERVz4/Ydxg4zff6VAb7\nUXldZt8K/b5cDwEPuvv+BKdPFyLyXxhuHjjE1Im/qYBnEfoiBb4s8c5LEdeVxoAkfadJxiHq9xg0\nCqvz0FxRFurrzM13Oby4RHuuzu5Da8bXarEEkRrMzxv+vW/E7r0FOMddV+Iw8HrgjQOf5TT5e15V\nN3F6bH3JNQiIyG5VfVJETsdxDb0i6XKmTvz9hI36TUU/j9BXVdhHRZr7TzIUcb+HOMMQ/D1vdGG5\nCS8+MRAHWFzl1AeetdlAlrGiqh0RuQqn71Ud+ICq3ikiV7r7r8MJ7H5IRBSnb9XbfG/xV67Pvw38\noknfqakW/yBRwp9F6IsW+EmOCfhJGxxO+h7jjEPUdxZ2Dd7vfqMLB1acOMDcfJfDje0cbK6y58Gj\nNhBsSY2ImPv8E1DVm4CbAtuu8z3/Z5zV9sLO/f60nzdV4h+XL+8X/jRCm1fkp0XUTUlzvyaGIu77\njzIMYdfgfdZC3TEAe7cpC6e0Wdx2lIfnlzg4v2rjAJaZYqrE30+WzJ6sQl+GwE+i6yhtsDhvQDjq\nOwq7Du+zWl3pDwT6cYCzj3Foe5uHGis2DmCZGaZW/P2YjPpNxDavyE+ioKch7f2ZGIssPv+w6/A+\na76uA7MA8McBnuWx5UUeba5w8qE1GwewJCIC8/OT2SVnJsQ/iTCxqEIcwGMSXEdZCsHy+Pshnc/f\n+6x2T0JnAUNxgEUbB7BMN1Mp/qYuH7/4jDIOkPbzJoG095PX3w/ZfP7NmkbOAsLiAHvvf9YWhFki\nqQnMmaZ6VoypFH8/WQO9HlWKAwA0Kug66mQoDDP9fsrw+cfNAvZuc9534exjPNDscaixyurh4zYO\nYJk6pl78ozAZ9ScJfxECX0UxT0vWezAxGmX6/KNmAbsXYLmpNGvrbFvscHB+mU6zZhvDWYYQgWZB\nqZ6jZmbFP4mggGQV+rLEfb5enWBkq5st4GXy3cQZiDSGIWq0HzcLeNmqFwd4lsOL221jOMtUMXXi\n7/f3Z+3V4wmCqeAXIfBVEvO0ZL12E6OR9N1GGYfg7y5ptB+1ff+SslBv02isORXB220cwLKF1IQ5\nm+1TbfxiEOXyMQ0AZxH7MsV9vgKuo1Ymv7/ZdxJnJKJ+F0GjYDLaj9q+dxs0d3fZccJWHOCUh56z\nBWGWiWZmxL8o4oQ/r8BXQcSzkvXaTYxG0vcaZhyCv6dOitF+2PawOMB3Fps2DjDjpGrpXDEKEX8R\nuQS4Fqch0ftV9ZrAfnH3XwY8D7xFVW+LO9ddsuy1OMuSPQC81aRZUVkExSSL0Jcp7lUoIMvSDtr0\nO4kzElG/C79R8H5/HcPRfth2EF62qiw0nDjAwfllDs7ZxnCWySS3+LtrT74X39qTInKjf+1J4FLg\nHPdxIfA+4MKEcz8L/Kbb7e5dwG8CvxF3Lf7xX5ErbTUG3EHJ/+R5Rb4KQp6FrNdtVOkb895RhiH4\nu2p1azRqmnsWcGCHstxs02gc5bHFRQ42V+0CMTOKU+E7uyN/k7UnLwc+rM5q8TeLyIqIvAA4M+pc\nVf2M7/ybgZ/MeoF5/P1xwp9V5MurBK7G6DNt9o/p9xFZ1GVoGObrvb4BgHyzgL3bxBcHsAvEWCaP\nIsTfZO3JsGP2Gp4L8G+APw/7cBG5ArgCYHXPaprrzkWS8OfvBloNIc9CWdk/WSp+/b+nVk/611bE\nLGD3grBQd+IAdoEYy6RR+YCviLwd6AAfDdvvroF5PcBZL9pXmr/EL2hhwp9G7MsS9rpUK+Wsq+nu\n0+R7iTMQSe2f52vanwkUNQs4qe4sErPQ2OgHgu0CMbNDkQFfg9jpDuAjwOk42v0Hqvqn7r7/iLO6\nl+Ks7/tWVY1dO6wI8U9cezLmmGbcuSLyFuBHgYtcl9FIMU3pjBKdvCJfNTFPS5brTzIYWTJ/YGvU\n7hnusFkAbBmBtLOAAzvoxwEONpbtAjGWVBjGTn8RxyX+WhE5CfiWiHwUOAn4D8B5qvodEfk4zjKQ\nH4z7zCLEP3HtSeBG4CrXp38h8JyqPiYiT0Wd61rBXwdeparPp7mgqH4+efP7w2jGxATiKEPY67Vq\nTuS6vY7xsabfS5SRiMv8GRi1h8wCgL4rKMssYN8SNGtbC8XbBWJmAIF6s5AZnknsVIElN3tyO/AM\njlcEHC0/QUTawDbg0aQPzK0WhmtP3oST5nk/TqrnW+POdd/6PcA88FnnXrlZVa/Me7158bt8TIQ/\nj8hXVczTkuU+kgxG0vcaNA5+gTeZBWSNBZy2qCzUYalp4wCWIXaJyK2+19e7bmswi3++B2cg/Siw\nBPyMqvaAwyLyB8C3ge8AnwkkzIRSiLoYrD2pOFMWo3Pd7WcXcW1FkNV9kyRQRYp7jQJzW0ukR9fo\nONPvJspIBL/7rvYGBD5pFpAnFnDSgvbjAN5C8XaBmOlEBOoNY2/BEVU9P8fH/SvgduCHgP04A+Mv\n4wycLwfOAo4CfyEiP6eqH4l7s+kYWpZAmhYOYcbBE588Aj8pgp6GLPcUZzDivl+/YfB+H54RKHsW\nMF9XXnqiMldrsW2x7cQB7AIxlmhMYqdvBa5xB9P3i8hDwLnAGcBDqvoUgIh8AviXOMHhSGZe/MtY\n0MVU+IsU93qtWdh7jZJuL1kITb6nMAMR/P67vQ51qZU2CwgzDOet9Fhq6kAcwDaGmx5EoD5XSC6K\nSez028BFwJdF5GTgu4AHAQFeISLbcNw+FwG3ksDUiX/aYG8aknL7/a6GoPBkEfpJFfQ0pLnHOEMR\n9/16hqFea/QNABQ/C4gyDF4cYKHuxAEesgvEWAIYxk5/D/igiHwDR/B/Q1WPAEdE5C+B23ACwF/D\nTX+PY+rEv4rECVMRAj8t7qGkeIDJdxVmILzvp0e3b5TLmAXEuYFOWlDmToSlucGF4m1juAlHlEaz\nmCx0g9jpo8BrIs59J/DONJ9nxT+BpGBv0v4wYTYV/FGIel2K/xPoqnlqp5809xtlKKK+226vPWQE\nsswCgimhsCX2ScHgHXMMxwFsYzjLmLDiH0LexVnifP1Bccor8GWId16KuKYkA5L0vQWNg/e9e0bA\ndBbQH827s4AiCsP8cYCH55dsY7gJRgRq5tk+laJ6yjEmigr2RuEXfVPBL0PYxxlHMAnueqS59zBD\nEfYdO4LfTDULCLqBIHoWkCYYvBUHOMah7Qs8tGgXiLGMlpkW/1T9eFIEez3CBChK+LMI/aQFhPNc\nb5zhSPruPOOwNeJv9t+vyFlA2mDwSQsMxAEOzi/bgjDLyJg58c+a6VMmYeJVpLBXPSBsUvhl+n2E\nGQnv++1qZ8AAeMd725zPMZ8FFBEM9scB+gvF28ZwE4PT2G0yf08zIf5Z2ytnCfamLeryhCmN2Fdd\nzNNSZOFXXMC3Lo2+AfDeI84NBMTOAooKBntxgIV6m8VtW3EAWxBmKZOpEn/xdVat0gg/SpCihL8o\ncZ80t5CfpPhA2sKv/nfh2uukWUCYGwiInQVkDQZ777VvCZaaThzggaZtDDcR2IDv9JCU6VPUKlxh\nwm8iaKMS9KIMkGkvnyBFFH8F78E/0k87C8ibEmrqBvLiAP2F4hdtHMBSDlb8CyBvsDf2vVOKfdVc\nQqMwIqbFX8GAr2ksoIxgcJwbaMccvGwVlue2Foq3jeGqiYjSKKa9w8ix4k+yiyjvguwmmBSDFS3s\nMvr1cUJRv78ugrwFYP5RfVDki5gFpA0GJ7mBmjXlvBVhoe5bKN42hrMUiBX/MZCUmpilJqAqQp6F\nrNceZTTicvzdFwPb4mYBYSmhYcHgstxA3gIx3kLxtjFctRCBeoXii2mYWfEvY4H1sEyftG6bOOHP\nLfApVtSqBAmZUybfh2cgokb1cbOAqriBTlt01gn2Foq3jeEsRTCz4p9EWYus+4kzDMbCP0pB72xm\nO68xl+28tPcWYiz835uKDI3qw4xCFd1AuxaUl63W3IXij3Bwedk2hqsCArX5cV9ENmZK/MeZ/pnV\nXx8q+mlEMatgF0nR1xBlTOK+l1oDUe0bAGeb8yNsFpAnJTRLTYCJG2h7s8dLT5TBheLnVjn50JqN\nA1hSM1PinxdTV1FaoU91vF/gihTVqriETIrkTO/bbyTc+xP3/cucBWSpCUjjBvIvFP/w/BIHt9s4\ngCU9VvxzkmeB9qH3iosPpBH9qgh5FrJee5jRCH5PjTnn/QOzgOhRfbZgsElNQF430L4lZaFeY6l5\njAe3t3moYRvDjYWaIPPFyKiIXAJci7OYy/tV9ZrA/l8DftZ92QAOACe5jz/3HboPeIeq/mHc51nx\n95G3lbMJuTt1Rgn/pLmCshAXO0i6/1rDue+AAQCoyeiDwUW4gfZs67HcrLkLxTv1AN9ZbNo4wAQi\nInXgvcDFwCPALSJyo6re5R2jqu8G3u0e/1rgP6rqM8AzwEt973MYuCHpM6de/IuqyM1C1mrc1PEB\nT/hKFHXtlONSkEaKaFna+wu6fTwDAFt/+RGzgKq7gYJxAGeBmKc5uGgXiBkpAtIsZPZ/AXC/qj4I\nICIfAy4H7oo4/g3An4Vsvwh4QFUPJn3g1It/VTExDEapnYbCX5Z456WI64o0IENuH/dnxCzAJBic\ntjK4LDdQcGZgF4iZCHaJiH9h9etV1Vtrdy9wyLfvEeDCsDdxF2q/BLgqZPfrCTcKQ1jxTyCsureI\nbp6FEBD+XEJa9ThBzPdrct/SmB8S/IHXmAWD/UYh6AaCsEri0biB/HEArzHcIbtATOmICLJg/L9/\nRFXPL+BjXwv8k+vy8V/LHPBjwG+avIkV/zFj5OIJE2ZT4a9KHUDWXH+PLPfhMxjaaQ0bAADvbXME\ng4twA2UpCouKA8zVaizNuY3h7AIxk8Jh4DTf61PdbWFEje4vBW5T1SdMPnDmxX8Uuf+F9eRJ6/OO\nEsxxBHzL/EzDvH9vtcd+U4ioWUDKYHCamoA8RWGmcYBdCz12zEl/gZiD88t2gZiyECnK538LcI6I\nnIUj+q8H3jj8cbIDeBXwcyHvERUHCGXmxb8qpAoOm4yC8waBq+YGinOrmdyjT9hDZwEFB4PLcANl\niQMMNIazC8RUFlXtiMhVwKdxUj0/oKp3isiV7v7r3ENfB3xGVQd8eSKyiJMp9O9MP9OKf8GMtKVy\nlMsnTPirJuZpyen2CQq9951tzQJ858QEg01rAnAnlEW6gbLEAb5rh7LUhHtsY7hyqIEsFPM/r6o3\nATcFtl0XeP1B4IMh564Dq2k+z4r/CDHJ8c9lPLKK/qTm/fsJc/0E773v33d/Js0CCq4JSFMUVmQ6\nqBcH8BrDHV5c4fkHv2PjADOOFf9ppkiff3fMM4d6wp9q0j3FCHtyMNj9mdMNlKYozDQdNGgABs4J\nxAG2GsN1+gvE2IKwnIggzWotoGSKFf8cFNnaIUhp/fk9kRy3mKclz/XWQ/z5AWFPGwwuKhtoKzbQ\nKD0OYBvDWfxY8R8DY1lY3UT0NydcAOYivlfvnuvDQm40C8jhBkrqDZSmRXSRcYBmDebnjnJ4+6Jt\nDDejWPGvOkUEaoPCn0fkx2kgosTdI+7a5prO/Wc1AJDJDRRXFBaXDgrDK4VljQOE1QPsW+q5jeG2\nFoixBWEZEEHmrdtnagir4E3bI6jw0f0ogrJVH/kXcX3BuHAF3UBFxwHiAsG2MdzsUojTWkQuEZFv\nicj9InJ1yH4RkT9y998hIi9POldEfkpE7hSRnogUURI9HZSRsrnZHhTWTneyH1H36P/pzYI8oxrM\nlHJf99NoE44TVUSVGvW+sHtGIPi6Lo2+Kyjs2K1tDfd45990vr4VC/AEfb6m/ViAt69R034swF/E\n2PRt87Y7cYAeLzq1xYHveRo5t8bBc1fpFlO4NP3UgLm62aNi5B75m7QixSk7Psd9XAi8D7gw4dxv\nAv8a+O95rzEtrW5tJMs45krrzNrPJzh69l5HiWbS+eMkyg0Udy9zTecexuAGKiMd1DQOkLQ+gG0M\nN3sU4fYxaUV6OfBhVVXgZhFZEZEXAGdGnauqd7vbCrjEGSBiRBob6A0Kf5WE3YQ01zvXDDcKI3QD\neW0gsqSD5o0D2MZw5SAz7vM3aUUadsxew3Nz0e5Jan/9TGAo/No1nBFUFKm7/5jeaL/ThUZ963UR\nswCDFtFJ2UDjiAPYxnCzzcQHfEXkCuAKgF17UlU3WxIIFf6qzg4iXED+e5C4mHlRBgD6/1VJLaLz\npoPG1QOYrA9gG8MVgBS3jOOoKeKqTVqRRh3TNDg3FncxhOsB9n3PvtKG+GXOIMaS959AXzTziL1p\nHCGJhsG0Ouk655pot+vMBMJmAf3jgp/t/kx0A7k/Dd1AadJB4+IAUX2BTNYHiKsIto3hpp8ixN+k\nFemNwFWuT/9C4DlVfUxEnjI4t1RaXWEUbZ0nCe120weCy6TAa1BX3GWTsbmB0qSDZm0PnTUQHIwN\n7FuCpWZ3oDHc7kPHbBzAQ4DGjI78DVuR3gRcBtwPPA+8Ne5cABF5HfD/4KxM/7cicruq/qu812sJ\nwRX6odF+mOhW1e0Tht8VFBB57XZH4wbKURWcJw5QZCD4pAWYOxFfY7glGweYAgoxWUmtSN0sn180\nPdfdfgMGK9BbRkiS8HfG0C8obtSVUPE7EjdQxnRQkzhAXF+gIgPBzZqya0FtY7gwRJIrzyvKTFVy\neFNci0sad8pAEVgn/DEOoq4l7Nr8Mxq3sE273XA31wiKwiC6yKteaw4UhcUd62wzKwjz8BeEbW3T\n/vH+gjAPryDsxae02f/Co/2CsI3FyRS/qpFULOse82oRud0tgP2ib/uKiPyliNwjIneLyPclfd5k\nOqsiKKsR5tSR1nUTFH5AW5PVFXTA7If4+iPdQFMWB8jaGdS/bd8SNGtd2xiuQEyKZUVkBfhj4BJV\n/baI7Pa9xbXAp1T1J92F3LclfeZUif+kM9JVwEwJCH+Y6GurAkHhAMHCG211nJS8qBlKlBto6LjA\n6wbZDQBb6aBFxgHiCsLyBIL9205bhIU6tjGciFk2WjImxbJvBD6hqt8GUNUn3WN3AD8AvMXdvgkk\nNgOz4j9L5ErbHBTN1IK/WYKBiOmXEnd9Ak6sIETks2UDuSenjgOYpYOmjQNkCQRnyQQ6aQGWm9jG\ncObsEpFbfa+vd1PVwazg9YVAU0S+ACwB16rqh4GzgKeAPxWRlwBfBX45uM5vkKkV/ywpnJ2eDPhA\nk+hqr9AFXXp0qzP6T5teWYa4F/mZc3W01UXm684sYGBfdd1AafsCZQ0EZ80EAnjpidovCDu8uJ2D\nczNUEJYu4HtEVfM0qWwA/wK4CDgB+GcRudnd/nLgl1T1KyJyLXA18NtJbzaTmBZttXx+0oml7FW7\nXBGuovvHwxN7hS0DUJQbaEQGAJL7AhVZEWyaCdTuSb8gbHGbbQyXEZNi2UeAp90R/bqIfAl4CfBl\n4BFV/Yp73F/iiH8sMyv+ZdPttStZuVsEAyIfEH5tV8sAeOureqN+Nrv4TXnfAMS4gSLTQfuzgMCH\n+t07BdQD+CuA8waC4yqC8xgAwC0IY7Yaw4ls9Y/Kh0mx7CeB94hIA+ev7kLg/1bVx0XkkIh8l6p+\nC2dmcBcJzIT4z2xztywLwKSJC/iEP43o60ZxBkIW4v/xwq5LoO8GGtjmERD5gTiAh2lV8IjqAUwD\nwUVkAkX1BAoWhNnGcOaYFMuq6t0i8ingDpwese9X1W+6b/FLwEfdTJ8HcQtp45gJ8beMjyKFPs/7\ny0IdbXeRpuv7984nwQ0UjAN4swA/Y44DpAkEjyITaMccvGwVludmoDFcgUVeScWy7ut3A+8OOfd2\nIFU8YerEf6PrpKCVyagWe6kaaXL7PVHWCv6z9w2AiRvITwXjAGkDwWVmAvm3AZy3ov3GcAcby7Yx\nXMWYOvFPIiwLKHxbNoHPkrEzbfEBv/DrRlWKwRpIszY0U/AMQKgbqOg4QAUCwVkzgbIYgHZP2Lek\ngwVh09YYTigqz3/kzJz4W4olmOFjIvxlzwYkZP1Z51q2/tw9N1D/NaRKB80WB3CPi4sDlBgINskE\nSpsKamIATlvUQEHYio0DVICpFv+qt2uuUl5/kSt2xYn7KNxA0Z/RQRYaQ/srFQfof0b/kgdfZwwE\nm2YCpU0FDasFCNt20oIOFIQ9trw4HY3hJrix21SLf9HEZQ11e52+P9USjie64+gLJPOe6G+paZwb\naBriAFkygcpKBfWMglcQtm2x7cQB5lY5+dCajQOMgZlRqzDhDtuWtso3C9Pm4zchKPy9Edf+1IZE\n39wNNLDH2idSAAAgAElEQVStqDhARTOBklJB8xoAwC0IU+bn3IIw2xhuLMyM+FtykLNds1/4PdHv\njrq9dkupzXvGZ8unktoN5D8wTxygv79/KZXIBEpKBY2qBUhrAPYtab8g7ND29uQ2hrNun2pRdLpn\nXIuHNP19utrpj8JGQmMuW6FXCfhdPVHC39ksxiA05oZ/V92uQMvrod9JdAMZpYMOfGgBcYCQQPCo\nM4GSUkGjagGyGICTFtQtCLON4cbBVIp/EqbpnkVRpcBuVSlK+GPfaw7qdaXXinYDmaaD5o4DGAaC\nTSuCg62hs2YCJaWCJhkAGK4GjmoH0e4JO+Z0uCBskhrDiTi/wwlkMq86BXlEPS7Xf1YLvdJikt3T\n2RR6nXLdQLWGOkbB87sH3EAjjwN4VCAQnDYVNG0xWFw7CG/b/iX6BWGPLS7axnAjYKrEv2pSPEmB\nXanXC033NMUv/J12eauKNty/Dse1rkNuoJHEASoYCA4zAM53Ep0KWkYx2Hxd2btNaO7usuMEpzHc\n4fmd1S8IE3G++wlkqsQ/CdOMn7TvEaRybp56o/y2zhlIEv4iZwMdajSaPXod6XtMgm6gLHGAVPUA\nFQsE56kFKMsA7F4QFupKs+YUhB1eXLIFYSUxteKfJ+g7inRPSzRB0e+08xuBBo4BcJ73BtxAeeIA\nmesBAvuMA8EVqQWIKwbLawCWEV62qm5BmPLYvFMQdvKhtQrGAcT57ieQ8ubZU4aX3xyHlyZXKFX4\nw2qM7hr8wt9pSyHC772Xf5bR6zivO5tCt+s8vDRUbXW20lM3nOdOu4qtNQu05TwG2lq33DWOvRmA\nJ/Kdbv9537UW3Oc9YGsG4GVq9Xyvex03ENyKPsb3ut8SwhV2b2QffF2XRj8TLfrYhnvslmx4RsCb\nDXtZcfP1LQPR6G/bMpVNg20HdigvOrXF/hceRc6tcfDcVTYWJ8ONOglUQFnKx7yZW7bgcJ7lHD0X\nkRcf8F6rSP8fF9hK26w1tv7Rp4yg8AN0C8wCAr83ZdANlDsOYNIXyKWoQHBoJtCIagGyVgOnmQG0\nusL+JWWh3t0qCJuvWEHYBPv8p27kv1nwrNCbvhaNF1jLTJY/uAkpRum0he6m++gU8wDHkHhGpdcR\nOu1afxbQ2dyaBYBTgezVJnhN6rxZADgN7LxMoP4MYLO7taKZV9fQ6QyO8sEJBHe7ziwgZF//Z7fj\nPBJG9wOzAHdmQGdz4LWoIqrUqFOjTr3WpF5r9l/D4CwAzGYA3qAnagbg35d1BrB3G7x0VTn37GOc\ncWCNQ+eu8uRpy0wbInKJiHxLRO4XkaFlGEXk1SLynIjc7j7e4dv3sIh8w91+a/DcMGZi5O+nyFW9\nsqR7Fl3oJY35rX/+GaGbKSto+PfkDJSVTrtWfhxg4IMzBoIrkAmUthq4qBnAchNefKIOFIR1mrWK\nxgHSIyJ14L3AxThr9d4iIjeqanA5xi+r6o9GvM0PquoR08+cupG/H9NFpNoh/vxOjI8/7PgovBG+\nVzxTGlWIDYwAT/g7bU318M7rdrZmFV4cwJsFFBEHAIbiAM4F++IAnW50HCBsBuBc+OBoHuJnAL7t\neeIA8cdt/c2NYgawUIeXrSov3NPinAPPIufWeGT/zjHHAdyAr8kjnguA+1X1QVXdBD4GXF7mlU+1\n+I+T0sU+D3Hunwq7hrrtWl/MW610D88AdNu1WDdQ/7kbawgzAP61CkoJBAeMQ2gg2O/ecS7aeZ8p\nNwDgBIJffEqbM/atsf1Ah0f3rXB8ZZ4JYJeI3Op7XOHbtxc45Hv9iLstyL8UkTtE5O9E5Lt92xX4\nnIh8NfC+kczGcJFigr5xPX48xt7auUL9fIrEE36AVivQibUd/jtpNLdmaIPn1Ai6gRpNdYO/W+mg\n/nqAqL5AmQLBaSqC/VQgFTRrP6AsawLEuYX2boPm7i7zc8c43Fzk0OKYGsNJzfmuzTiiqqnW2Q1w\nG3C6qh4XkcuAvwbOcfe9UlUPi8hu4LMico+qfinuzaZy5F900NcEL/PBUjx+H78n4n6XThRB14//\n3KAbyEsrDaaDAsUHgjud2ECw9zy4b9ypoHHHOdsGU0HDZgD+VFBgoJ7GMwKmM4DdC24g+Kx1zjrn\nKM+cu32SA8GHgdN8r091t/VR1TVVPe4+vwloisgu9/Vh9+eTwA04bqRYplL8/YT5/cN89nF+/LIy\nfkrFZPYxoWuPhrHZ6iU+/O6iMAMA4fUAwFAcwHPlBOMAznPHAATjAIVkAnmPOAPgvtZOyzECFTIA\nQKEGYLkJB1aU807f4Ix9a7QOzHHw3FW6IUt5loKX6mnyiOcW4BwROUtE5oDXAzcOfpScIiLiPr8A\nR7+fFpFFEVlyty8CrwG+mfSBU+X20XiPTGpMKn3zZPwEc/sjc/3z5PZndQM16kNuB5lvjGUVriQ2\nW873346ZBTj0gBqNpvjcQDXfvi0G6gEi+gKlaQyXKxOoiJ5A/hsbY0O4LC2hk1xAC3U4a7syd6pv\nhbAJawynqh0RuQr4NFAHPqCqd4rIle7+64CfBP69iHSA7wCvV1UVkZOBG1y70AD+p6p+Kukzp0r8\nkyiysCtNymhQ1DNTwUIvx5cdHdyWZq3UdXs3W72+6G+2on8fc/PiHucYgGGcOEC9of1ZgD8OkLUg\nLKkzaGhLiNJTQRlbQ7gyDcDebYMFYSNpDCfFtXdwXTk3BbZd53v+HuA9Iec9CLwk7edNrfhv9mAu\n48wvb9DXo/QGb2lG9XHN3TwhmTCCwt9qxRkZ/x9Dj7n5rQDy/Ly4z4cDwTDcF8ikMZxpILi/D8x7\nApk0hTMxADDUOG4UDeHKNACr89BcURbO9lYIW7GN4SKYOvEPa+gWti1tsVca986oM35msdDLlK2A\ncI/5+ZpvduD9LoMjhBr1Zq+fDlqfUzptMS4IM+4M6u4dag0dlgmUqSkc5sVggWyhrAYAMGoIV7YB\nADh3ZVQFYTPe3sGgLFlE5I/c/XeIyMuTzhWRE0XksyJyn/tzZ9J1xA78DEhTvDXwud2tRa/HionB\nSZvHH3K8zMfPZmRUwbYE/KmhTrC3R6vVY7OlvhlDb+g4fz1AsCDMed/ogjCTQDAQHQgOywRyg7yR\nTeH82/LWAvjaQUD6IHD4saMNAi/UnVn/gZWqFYRVi9z/pb6y5EuB84A3iMh5gcMuxclHPQe4Anif\nwblXA59X1XOAz7uvY2m1atxzVPoZPmEpn94IIWmbR1GVviMl40hE6tOT/ePP7IEtYXeebxmAdltD\nDQAQWhDmrwiG5IIwKD4TyHve32fSFTRDMZi/HxCYGQDTjqCjMADgBIJfeFKnXxB28MBqsQVhns8/\nf4XvyCliiGZSlnw58GF1uBlYEZEXJJx7OfAh9/mHgB9PupB2q8bDDy1xz1HhWE4XdpxBMGnvHIU3\nPe66LRmD7R+Cr1VKMjAVruTNSzCn35/nv/W813cB+Q1A8LgiKoLBrCWEVx2cOxUUog2Arz1EmlqA\nsIZwkK8ldFoD4JHWAOzdprxkd5czzzrGC/atT21juLQUIf4mZclRx8Sde7KqPuY+fxw4OezDReQK\nr1xan3uW5+6f4957VrjrSJ2nNraEs4h8/ywERT0z3sghzag+62gjzDAk9PSXZvVmDXEFYB5xGUJ+\nPAPgvK//+da/kH/h+J4vBJOU7RSXLeVcZMq/HZPjC8gWC4p8FsIMQJCwVhBb55ttW246cYD9ZzgF\nYcf2nZD1kqeGajhnE1BVBUL/OlT1elU9X1XPP6G5xJ4Hj7L5oPDAvSvc+1SDh44PGwD/qN4T+zh3\nUKd/jK/S1N3WDuzz/P7+hV2iRvWpR/9+A+BNJV1j0C8xDxoJ3zHU3X2euM81twq93G1910/IPhoN\nJzUR1+8/5zy8GIA068iC97yGLDS2ns8759bmnQBpva405pRaw3k0mj3fc6U+5z4aSr3pjgKbwvy8\n9J/PzddoNoVmU5ibF+bnawPHNZrSb/EQPLfqGNdTxAm9wdKd40oUyLr+RR4W6nDmkrJvj1MQVhQq\nYvSoGkX8BhLLkmOOiTv3Cdc1hPvzSZOLWVhvc+oDz1K/v8N9d+/krm8vcPdR6fv/TQyAf/Sf1wB4\nRqAUA+C9NjUAjbloA9CoZzMAkGgAZKHRDwJ7BgDoGwDnEh0DsPXc2e43APVmry/inrjPuYLvNwDz\n87UhsQ8agzA282YMpCDYDtqIYK+fIhlRP6g0WXBx2XVhM4WwbcEsv4U67F10AsGzThHin1iW7L7+\neTfr5xXAc65LJ+7cG4E3u8/fDHzS9ILq7R57HjzK0oPf4aH7VrjnoUXuOSqsuYOkURoAYHQGoDEX\nbwC812EGAOINgG+fZwCcR7QBkIX6lugXYACAvgEABgyANwuYm/f21YYMxVQTZxjSCHvQ75+TsBYQ\nScTV0WQpyAzi1AMU1Q5A6dE1elSN3CFow7Lkm4DLgPuB54G3xp3rvvU1wMdF5G3AQeCn017b7kNr\nbDvW4nBnJ+12jef2rnPeri6rvmC/v6DLy/33tvlrAbxtXssHf96/V/i1db6zz7+8o5f7H9XKIXPL\nh2DVb2MOwZ3OxxzTZ47BgiFfvx/ZdFsNB/dttp0YQKfTnwVoq+sYAP/fRrvbnwVou+e6gbaSyvsL\npbS036rAqZX12inUIv5Ah6t0O211ZwH+0WJ40da40I1O3xUWyqbzHZaGV/2b4Zw8uf+m+HP/0+DP\n84/bNlcbT9PHqlJI/pFBWbICv2h6rrv9aeCivNe2/WiLM+5+mkdbK2y26nQ6x3nhSR23FNw5ZloN\nAOCs8xplADqbziwgzAB0HNGPNAAeIQaAzW5/FuA3AA4NRwSbNed5q+PMAlpOy4TGnOJcstBo9uhQ\nc5+76Zeb4s4CenTbtZARfZgBiGZu3okZOM8rGALzWj/48X5XU4JX3BWHv/CrCILuoKwomj+ZY0xU\nL/m0BBbW25xxz9M8sb7Mwc4ym6111na3OLAy3QaAzqZb/et+EQ3iDYBHiAEAp998cB8wYADAjcz7\nDEB/+0Z3S/QjDAAAc/75Qc/XWiHIYJVuq6WuMaix2er1RT2Opi9uMBWYGAavunfM+BeBjyLOMITN\nFMK2LdTNV/WbJWZC/GErDvBke5n71nbS6Ryl3dvg3BVl2f1fiWv8VoQBAPcPfiwGwHUDxRmAbmdY\nODpbo36p1xMNgLY6TrsC6BsAbXX7qaBRBgCc9gi9lhMHYM5Jnaw11DEA7Zr73Em1rLtxgm5H3Gyg\n4TYNDvHiMlXCn5YsbqAC8K//Ow1U0Z9vwsz95e8+tMYpDz3HwbuXeeDgIrc/LRx+fmt/XMA3KQjs\njVCigsAwnApaahDY93ogEOxl/gTPMU0FnWsO72s0jFNBvUBw2kwgLx200fSlgza2soGCgWCgHwz2\nHn5GIfxltsDuV/uGkaI2YFTpnmUGfU23ZW32OI3MzMjfz84n1mm2OjzZWmb9eJPWvjU2dvbYvzQ4\nsg8b7cfNAJxtzkg/agYA9N1AY50B9Le7X4o3I/DPAMJcCN4MoOsf9ftjAg0n4OzNAHyBYG8GEBUI\n1nbPMQARgWCTOEDYeMZf7JVG8EeRIaTtbnUK5Ap2B4W1fE4iLuhbtN+/CFQn1+c/s3Zw+9EWZ9zz\n9EBB2N3PyVAaaLsnqdJAnW2jmQF0e+18M4DgcXG1AFBIKqjM1/ti158BeLMA77k7e/AKwpzLdArA\ngMSCMH89gHO8pHr4Zw5egdnEYlDoNUROl4zX5iENaRdE8jDtzFtUgLdMkhpk+o77XhHpiMhPBrbX\nReRrIvI3Jp83kyN/j3q7xxn3PM2jmyvc19rJ86cfY2PPBvuXnThA1iCws62cGQDQN9nesf3X4opq\nX9jdGw1k/ITPAEJSQYMzANNUUI+EQLA3A8gcCE4dBzCj0ZSxir634PsA48jwybjYS9GYZAP5yZoy\nmgVF+wO0PPiaXF6M0+bmFhG5UVXvCjnuXcBnQt7ml4G7AaPGRTM78vez58GjnHjP8YGCsCc3nH1Z\nC8GcbdEzgKh2EHEzgJG1g/Be1xtuJlDIDMB9LfX6VhwgsM9LURyKA7jPpVmPrQj2t4SA5IKwqDhA\n2sfEjfYncCEej6xtHvIUe1XU72/SIBPgl4C/ItDxQEROBX4EeL/pB870yN+PFwfwCsI2zjpGe1nZ\nu62cGYB/n+kMAHKs/+sf3bu/9dS1AB7BbJ+kTCD3swYygfrbhn3eaeIA/oKw6DiApSrpnR4mGT/e\nIi+mmBZ7jZFdInKr7/X1qnq9+zysyeWF/pNFZC/wOuAHge8NvPcfAr8OLJlejBV/H15B2BPHl7m3\ntcL66cfZOKnD/iVNNADAwLYyDAAw3loA01TQkH15AsHehZkUhHm3UAaeW8kzMJb0ZKn8rTaa5n6O\nqOr5OT7sD4HfUNWe+BrFiciPAk+q6ldF5NWmb2bFP4DXGO6Jza2CsM09Lc7arkC0AQjbVqQBAEZb\nCwBDsYJMmUC+fZ4B8EhqCeGQPw7Q3cw/8qvP6XSI/thy+8vL+JmSYi+TBpnnAx9zhX8XcJmIdHBm\nCD8mIpcBC8CyiHxEVX8u7gOt+IcQVhB27BS3IKxgAwCEVgMHDQBQ3VTQQN+fAQOQ0BMI0lcEQ3xB\nGMT1BcqGX/i9rCNLsaQN7OahKL9/ge0d+k0ucUT/9cAbBz5L9SzvuYh8EPgbVf1r4K+B33S3vxr4\n1SThByv+sew+tEZzs+vOAOpsdNc5d0XZvZDeAAAD1cCeARg8PtoAAImZQOUZgMFYAVBYJlCaimD3\nxMz1AEWQVvj9Rq50Ot3h7zny2NHEAIpy84zSMIwDwwaZhWLFP4GdT6xzwvFNHm2t9AvC9u3ssX+J\nVAYAGGoHkcYAAGMuBkvRFdS0JxDZA8EO0XEAZ+9WHKAsvJoDoJ+JZKHf3dPs2OQeP2GYBnjLDfqm\n8vnHv1NCg8zA9rdEbP8C8AWTz7Pib4DXGO6R9k4e6KzQ2bfGZq/DgR2jMwBA5mpgwKwWwPfaqC10\nWCaQR8pAsEdhcYCAG6gsJl74C44BFJ3rnzbjx2KOFX9DvIKwJ9eXBwrCDqzAjrn8BgAotCMoMFQM\nlqstNJhlAmUMBJcRB4AtmxZHr5MsLnHunokVfh/aaW3VfmQgi3tnHA3eig76qjLyeyiK6XWilcTu\nQ2sDBWF3PCMcWo9fEzhsW9pVwUZWDBbyOrIpXNL6wLDV9sEtCIval1QQBuZLRAbbQiThtYqIe4TR\nmNPRC3+ZSzmC8QpeRSzeHofJgu5Jx5u2fphV7Mg/A/3GcOvLWwVhPdi3lG8GANEtocGsHQSUWQuQ\nIxA8pjgAEO6WKpma4SA6dVM304BuXjx3UESLhzxMV66/ZopXVAEr/hnZfrTFCetOHKBfENZ1CsL8\nlb/eaD9qW9EGAKhOINgjriLYo+A4AATcQCPEE/7+LMa3jrFlPFSs0rcS2L/GHAw0hlvfyWZrzS0I\nc+IAaVtCe26eqIZw3r7KFIMlBYJNKoILjgO4HzKcDjpigsKf7twJaEFZEnEpnabpnqMU+p7KxKag\nWvEvgD0PHuXZ9UXua/kLwuCkhWLXBPDvK7oWANJlAkEJgWDTegDSuYGSyLPgSlwefxbhn2bK6PqZ\nRegrXuk7Mqz4F4QXBzjY2cn68SYbZx3j3BU4bbE4AwDx1cCQrhbAPQEg/ywgzFCYVARD+jhAQl8g\n7wI8N5C2432yRRdiWdG3TAJW/Ask2BiutW+NYzt7nLfSK8QAQHG1AM6xIwwEQ2xBWJFxgDA30Ljx\n/P1b/v/Zce2YBHjjCr3y5PqX3dtfodT3LxMr/gXjbwz3QGeF5/eus9lrcWCHI95hBsDbnrcdBJjV\nAgDjiwOYFIQVGAfYcgONHyc9dXZE31JtqvFfMWX4G8MdbC3T6fgLwpxjyigGA6qZCjrmOEBVSBT+\nuZj9o17Fq+KYdvcsG1UmtgLZin+J9BvDrTuN4dpnrHPm0mAcYJS1AJA+EwhyBoKDx40gDuAxHAdw\nt48h2jeSEf+oagAMSdPfZxTYdM9BrPiXjL8xXLtd47m967R3ddm3VLwBgPhUUEjXFhoKCASPMA4A\n4W4gbQ+KfVVcL/2F7Gc4tTOOcYzk09IDm+ppiWagMdz6Cp3OWr8gDOJdQDBcDOZsKycV1D0o8thK\nxQH6x06mGwh8wh/n8plixtHfx+JgxX9EBBvDbbbWWNvd6scBoqqBoZhUUEjOBIIxBoLj4gBErA+Q\n0g1USZJEv2HwL2rjAUMkuXgKm/ypDMUeJoXJnK9MMF5juPvu3tlvDPfUhgxMb70/2rBtnYFtzq/P\nH3AKawrnEdcUzt8YLrgv7PVAU7iohm+NOaQx7zSGizsO4hvDua+lXneaw/WbwQUbxTWQee9R32oO\nF/UYF1W4hgnFc3sObpuOBm4icomIfEtE7heRq0P2Xy4id4jI7SJyq4i80t2+ICL/S0S+LiJ3isjv\nmnyeHfmPgbDGcE5BWHgqaNgMANKlgkJ8JhCk6wkEvkBwGXEAj6g4QBo3UCsiwFtB8e13MB3lCmCW\nzDg+//wjfxGpA+8FLgYeAW4RkRtV9S7fYZ8HblRVFZEXAx8HzgVawA+p6nERaQL/KCJ/p6o3x32m\n/QsbE8HGcP6CMJNaAEiXCgr5M4GA4iqCs/QF8pHWDTRJ9IU/weXTb5FtmQYuAO5X1QcBRORjwOVA\nX/xV9bjv+EXc/AZVVcDb13QfidMhK/5jxN8YLlgQNl/XkWUCgVkgeOxxgLj20B4J2UBZyNr7J9fo\n3S/8QSNoffypqFDW0C4RudX3+npVvd59vhc45Nv3CHBh8A1E5HXAfwV2Az/i214HvgqcDbxXVb+S\ndDFW/CtAvzHcmtMYbmPPBvuX4aSF9MVgkC4TCEoKBEO+egA/ed1AUXTMRH0kLpioUb4V+kqjmqq9\nwxFVPT/f5+kNwA0i8gPA7wE/7G7vAi8VkRV3/4tU9Ztx72XFvyL4G8NttuocO3V9IA5gmgoK6TKB\nIL4lBJhXBEOBcYA0bqCoqmD/LCAMk0yacRF2r0UWcQVWbcuzhGPRmLZunjIOA6f5Xp/qbgtFVb8k\nIvtEZJeqHvFtPyoi/wBcAsSKf65vWEROFJHPish97s+dEceFRrGjzheRVRH5BxE5LiLvyXONk4TX\nGO7I3Qvce88KX3+yzoPHxJfBI4VnAsUtDxm2RKS3z9veoxt6bKYlImOOM10mMjIbaNIeQQKZTan9\n/cHvNem4CSVp6caiM4OUrf/LpEcCtwDniMhZIjIHvB640X+AiJwt4vxjicjLgXngaRE5yR3xIyIn\n4ASN70n6wLzm9Wrg86p6Dk4kOiw9yYtiXwqcB7xBRM5LOH8D+G3gV3Ne38SxsN5m3zeeQu/p8cC9\nK9zxeJPbn6lxvO1b6zfBAATXB271JHJ9YCDUAMStEextz7VGcNp00MacYwDqjdh0UGBwreBGPf1j\nlKS5pjTC73039YyzmyQjYSkUVe0AVwGfBu4GPq6qd4rIlSJypXvYTwDfFJHbcTT1Z9xg7wuAfxCR\nO3CMyGdV9W+SPjPvb/hy4NXu8w8BXwB+I3BMXBQ79HxVXcdJVzo75/VNLF5juPtaO3n+dK8xXI1d\nC25QN2UmEKQLBEP82gBgHgeAsL5AJVQF+xjIBgoS5QbyqFiPnIEMpiThLzpGMOEzgbJRlcKCyap6\nE3BTYNt1vufvAt4Vct4dwMvSfl5e8T9ZVR9znz8OnBxyTFwU2+T8mSWsMdy5KzVOWiguEwjSB4Ih\nZRxg3NlA3UCe/wQGURNFv2oGy1J5EsVfRD4HnBKy6+3+F27hQWaHWtbzReQK4AqAxRNWs358ZQk2\nhts46xj7l2HfUjE9gWA4EAzRBWFQcj0AGbOBEprDFcGQEclBYTn6ozJk1g0USlFFXuMg8Teqqj8c\ntU9EnhCRF6jqYyLyAuDJkMPiotgm5ydd3/XA9QCrO/dNR513AH9juLvWT2R9n9MYzisIy9MTCIYr\ngiG6IAziO4NCinoAGBb2ktxAsSS5gVzGVlSVJPBe0HsE9OM4FSCsp7/FnLzm/EbgzcA17s9PhhzT\nj2LjiP7rgTemON9CeGO4zV6Ls7ZraBzAtCUEDFcEQ7aCMEiOA8AI0kEj1gigE9XmYfLcQMBwb6OK\nUaVe/mWhOrmLwecV/2uAj4vI24CDwE8DiMge4P2qepmqdkTEi2LXgQ+o6p1x57vv8TCwDMyJyI8D\nrwn0uZhJvDjAfS2nIOzYKRucu1Jjz7biAsHO+xQfB3DOz1YVDBmLwmBrZF+GXzzKoMRR5HVUVPgt\n1SeX+Kvq08BFIdsfBS7zvR6KYsed7+47M8+1TTNeQdij68usn91k46xjbHRr7FsaNACQrSIYiosD\nAOnXB4BhYS+4RXQkhi6gPqMKtKa5h2CaZwkZO0kLss8KPWAzfN35ymOjOBNKaGO4tgzEAbJWBA+e\nEx8HgHxuoNB00LKrguMEfhJH0mHXHCb8wXqLijKD1b1jwYr/BBPXGG57s2cUCIZ8cQAIrwcAMzeQ\nf1ZQWjZQN+B7LkPg08wYyjYwpiP+Alo79H+PlonDiv8UENYYruiCMOd9zOMAEL8+AGR0A2WdBaQl\naDCSGNWMwfResozuS5oRlOUiqkKmzywHfC0VIbwxXHXjACN1A0XR2Yzel7UtwrgpQsBHmNNv1+8d\nHxP6F24Jw2sM92hrhfXjTVr71mj3YN9SfEUwVCMO4J7YP78wN1CUwBQ90o0zJnGMwgcf1TgvjhTX\nNasBYAXaNuBrqQJeY7hH1504QKfjFITtXxpNHACypYP295VVFJaWLCPSUQdS095XGuHP8zmWicD+\nVqeUgcZw68dYKzgOsHVOuW4gyFEUBvF/4XEj9WkQvDBjlOO+TKp74wLA0xgc7ilsTGt7B8vkEtUY\nLlgQBunjAIPnlOcGMi4KA4ZXCvMZgbCRfFEj9azunjiKnkVMgzGzFIr9i5hywhrDHWvXcscBoGpu\noKtzMiIAABJUSURBVJhZAKQXvzRunyrkzWcU936aZwqX0Kz698NQbJGXpcIU0RgOyJQOCuHLRMII\n3EAQu4B73zCEMWUj5dhc/oyxgFgXT8q+Pp7b0E9FFl0fGSJyCXAtThuc96vqNYH9P4uzXooAx4B/\nr6pfF5HTgA/jtMRXnIXhr036vOn6C7dEkrYxHMTHASB7OiiU6AaC4WAwhLpm8hQ3xRqOkil0vd0o\n4S9xNlPmzGHUBqOnsFFAtqpvxcOLcdY8uUVEbgz0M3sIeJWqPisil+J0M74Q5y/+/1DV20RkCfiq\niHw2qReaFf8Zw98Y7vn1YxwzjAPAeNxA7satfVlqAiCdmBn48Ku04HkkJvecNNqvmBtoils/xK14\nCICq/n++42/GaY+PuyDWY+7zYyJyN84iWlb8LYN4BWFPri/34wAb3RqnLUbHAWD0biDIWRMAW7OA\nMEaV/19VRuDamvb4QMo8/10icqvv9fXueiQQv+JhGG8D/i64UUTOxFnS8StJF2PFf0YJbQy3sxcZ\nB4DRuoH621IGgyFkFgDho/lR5f+PiqLEPMQVlDfNM/z44e9yikf2AEdU9fy8byIiP4gj/q8MbN8O\n/BXwK6q6lvQ+VvxnGH9juLvXV3l+39pAYzgYjxvI2ZYxGBw2CwDz0XySy2fSA8Gm30PEfWYdyU9j\njn/BxK142EdEXgy8H7jUbYnvbW/iCP9HVfUTJh844X/JliLoN4ZrbTWG278cv1A85HcDwYiCwWGU\n5fIpI+c/SFluqYjvKmzUP0oxbyUEcce5hm6Bjd3iVjwEQEROBz4BvElV7/VtF+BPgLtV9f8y/UAr\n/hZgsDHc+vEmx846xrkrcNoiRumgkN4NBMNFYWDeItrduLUvLiU0SJoR/KTl/Acpuao3yCws31g0\nUSseisiV7v7rgHcAq8AfO3pPx3Uj/W/Am4BviMjt7lv+J3cRrUis+Fv6eI3hnji+3I8DtHd12bfE\nkNgH4wAwWjcQpJsFJBFqIDwm3dVjgMl35BlV/6g/rRso7PiwHP8ksrZzLnqW0FNobRYTpwhb8dAV\nfe/5LwC/EHLePxJf0hLK9P9VW1LhFYR5C8R0OmustTsc2KHM14tzA8HogsF+aoQvu5hlhBtrMMZM\nlvuJwv8dpnH35Mn0KTJff9aKxUyx4m8JxWsMd+faLp4/x1sgBnbMFeMGAkYSDPa2eZgKUpSR8FOk\nwI6LNAI9a03bjFCh05nMDCUr/pZIdh9aY9uxVn+BmPYZ65y5tBUHgOLcQP79UTUBkC4Y7D8+Cr9h\n8JM3P93EeBRFWbn0RQl62PtkWcQlTRroOIPAk4IVf0ss/gVi2u0az+1d78cBYDj3v0w3EKQLBgf3\nh5FG4KIMRRhVL27KK+xR95cn2Js3x38c7p2ewmZrdIa+SKz4WxLx4gBPrC/zwPrgAjEQ7gbybx+1\nGwgGZwFgJsZJo/UyXRtxhmUcLhVT4+W/tjKyfJLSPC3ZseJvMaLe7g0sELPZWmNtd2sgDgDFFIVB\nscHgoXspyNVTpGtnVAJf1IwkSfTDPqeoTB8/Y3fvqNDpTKaBsuJvSUWwMZyzQAyctODsz+IGgvJn\nAX5MhTbJzVN1105W0hiiMkb7Se6brGmelkGs+FtS018gZn1rgZj9y85C8WGj/aKDwZB+FhBF0DD4\nyTIaTxMXGBVFzyrSCH5RwV5L8Vjxt2TCv0DMva0V1k8/3l8gJir1s6hgMJBqFuAR5qYxFbI4IzHw\nflOQ8phnNJ+1JiAp2FtEwze/i6iglgz0ejbga5lB/I3h7lsfXCBmh9vlIG9NAMRXBkPyLMAjyU0T\n58PPI4imhqNoymqzYOLuCgp/FhdZ1mCvX+RtgVc0VvwtuQk2hjt2yoYbBwgX+zg3EJQzC/BTRMA3\nTbB3knrd5I1jpIsXFLf47bhEXlVot22Rl2WGCTaGC4sDQLIbCPKlhEJ4YZgfE4EaVbC3yIyhUQWg\n07q2Bl1B8YYwjYiPPdNnwrHibymMYGO4YBwAkmsCvO1FpIQCA0YgSKybp6TiryBVyhgqIl5hXB/g\nG/Wn8edXLdNHbZGXxeLgbwx3sLPMZmvdFwdINwvImxIKDBiBIEUUfjmfMflB3jRkMVj+EX9ad8+U\nr+41Nqz4W0qhXxC2Fh4HgPSVwZBtFgDx7oYww+AxzsKvUVLkDCTuuzYV/iIqe/0upLJcRGobu1ks\nw/gbw3lxAGeBmHiff1RlMGSbBfjxjIEfk7zzOAPhp0punLLIkqdvIvpZg7ZpRb6oNM+iEZFLgGtx\nFnN5v6peE9h/LvCnwMuBt6vqH/j2fQD4UeBJVX2RyedZ8beUir8xnH+h+P1LGuvzL3IW4CdOhMIM\nQ/+8DIJnajCqQJGFV2ncOln9/VUJ9hbl8xeROvBe4GLgEeAWEblRVe/yHfYM8B+AHw95iw8C7wE+\nbPqZuf46ReRE4M+BM4GHgZ9W1WdDjgu1aFHni8jFwDXAHLAJ/Jqq/n2ea7WMj4HGcJ0Vnt+7zuae\nFgd2kJj5U9QswE/QIHiYiFacgRh6vymtZM3fj2f4O4wa9c+Qv/8C4H5VfRBARD4GXA70xV9VnwSe\nFJEfCZ6sql8SkTPTfGDeb/Zq4POqeg7weff1AD6LdilwHvAGETkv4fwjwGtV9XuANwP/I+d1WsaM\n1xhu/u5NDj64zF3fXuBrTwtPbQwW5Hgi0OpKX/CjpvWDI0HnT7nVk/5MwP9+flrdWuwjjq72Uj8m\ngaLvx/T7DfsdTVInT+0Jm6260QPYJSK3+h5X+N5qL3DI9/oRd1tp5J2XXg682n3+IeALwG8Ejomz\naKHnq+rXfOffCZwgIvOq2sp5vZYx4zWGO7i+zGarzrFTncZwuxfiZwGmhWHO9uFZQBjeZwQxGW1G\nzR7CmBQDkIaq9N6PGhiMItibgSPuguuVIK/4n6yqj7nPHwdODjkmzKJdmOL8nwBuixJ+13peAbB4\nwmq6q7eMhX5juNYK68ebtPatsW9nj/1L5m6g4PakWEAYcQIUZRg8sohfGoMxaspwr2QR+KhRf1H+\n/qoGe4HDwGm+16e620ojUfxF5HPAKSG73u5/oaoqIplXtA47X0S+G3gX8JqY864HrgdY3bmvuitq\nWwbwN4Z7oLNCZ98am70OB3Y4+9MEg73tcbOAKLIYBj9JRsLPtPmv847e434vE/NdqVLrFGLUbwHO\nEZGzcET/9cAbi3jjKBLFX1V/OGqfiDwhIi9Q1cdE5AXAkyGHxVm0yPNF5FTgBuDnVfUBg3uxTBhe\nY7gn150FYp4//RgbezbYv6wskzzaN50FQPSoO4th8JNFANMYjFFSRn+cLP57v/BXraK3LFS1IyJX\nAZ/GSYz5gKreKSJXuvuvE5FTgFuBZaAnIr8CnKeqayLyZzgu9F0i8gjwTlX9k7jPzOv2uREnIHuN\n+/OTIcfEWbTQ80VkBfhb4GpV/aec12ipOF4c4KHWCputY24cQNm9kDzaN5kFQPxIMothGDg/pZhP\nU6fJvMHZuN9LmPCb+PVH6e8XhWarGF+Sqt4E3BTYdp3v+eM4g+ewc9+Q9vPyiv81wMdF5G3AQeCn\nAURkD05K52VRFi3ufOAq4GzgHSLyDnfba9xUJ8sU4jWGe3J9mXa7RmvvOuft6rJ3m9loP24W4NHI\nEOA18dNnEcC0BmOUlJFtk9aNU8aIv8L+/rGQS/xV9WngopDtjwKX+V4PWbSE838f+P0812aZPLYf\nbXHCuhsHcBeKX1vtcGCH2Wg/artHnKBkMQx+0gZzJymd0YS8PnoTsS+yT/9mQbF3UaXerm4gP47J\nKUG0zAQDC8S0drK5b42NTsuJAzTjR/sQbQQ8/MbATxbD4Cet+FU588ejjKBrlhF98Hc4VBdQnVTO\nicKKv6WS+BeI8RaKP3NJ2b0QLfQQbRw8ooQiyiiAmWCZGIjB65iQbJaU5HXXJAl50oh/1Pn9otDc\nnEx/khV/S2Xx4gCHOztpt2s854sDwLDQQ7QryCO6sCteKOKMA6QXvbTGYpyU4X9PK8x53Tx+f39R\nLp9Jx4q/pdL4F4g52Fqm0znO2mqHs7YrC3WGfPtRgV+PrIVdeY1DkGlPYcw76jYV+3Gv1yuqNKzP\n32Iph4X1Nqc+8CxPbC47C8XvW2Nj91YcAJJnAR5xIp2v4jed8KQ1FlWhaFdKpirgkGuwcYD0WPG3\nTAReY7gn28tDcYDlJomzAI84UchqGCB94dYsiVOeEbnJ95T0/mWmeFqfv8UyIrwFYoJxgNV5xwBA\neEDYI6trJ2mknkbgqlrhm5ai3SxZDGLaa7D+/i2s+FsmjrA4wJluHAAGjUAVff7TVOGbhnHEASzR\nWPG3TCT+OIC3ULwXB+gfUx8WgiyuHZORehrBmVR/fxxFCm5RcYBRVPRKT2m2JnPRHiv+lollIA7g\nLhTf7m304wAb3a1ZgEeWPP8q+vuLNCDjGimXGQsIE37r8hnEir9l4ukvENNZ7i8Uv39ZWZ0fFoGg\nMfAYhb+/SF9/1V0bRbm2stynyYi/qFmBKDbV02IZJ/3GcK1l7m2tsH76YBzAI+qfPsooQHH+/jyC\nOK4g8ajiE1O6QEulseJvmRr8jeH8cYC9i9oX97mIrgpZjIKHiXDlddNMepC4iJlKFpEPc/UUaSxE\n1aZ6WixVwL9AjJMJdIz2KU4cYKEeLgZRBgGShcLEOEA28atyYLhMt1MecU7y61d5liAilwDX4rS+\nf7+qXhPYL+7+y4Dngbeo6m0m54Zhxd8ylfgXil8/3uS5vevs29ljqalDgh0lGHFGwaMo4xBG1f36\neShChNMGcEsRfqWQls4iUgfeC1yMs875LSJyo6re5TvsUuAc93Eh8D7gQsNzh7Dib5la/HGAzVad\njhsHWJ0fTAeNIk5cTAwDpBOcPIaiKpQhsFmzdKo8yg/hAuB+VX0QQEQ+BlwO+AX8cuDDqqrAzSKy\n4i5/e6bBuUNMlfg/c/ShIx+54U0HR/Rxu4AjI/qsUTKN9zWN9wTTeV+jvKcz8r7BM0cf+vRHbnjT\nLsPDF0TkVt/r61X1evf5XuCQb98jOKN7P2HH7DU8d4ipEn9VPWlUnyUit6rq+aP6vFExjfc1jfcE\n03lfk3ZPqnrJuK8hK1Ml/haLxTKhHAZO870+1d1mckzT4NwhpnM5IYvFYpksbgHOEZGzRGQOeD1w\nY+CYG4GfF4dXAM+p6mOG5w5hR/7ZuT75kIlkGu9rGu8JpvO+pvGeElHVjohcBXwaJ13zA6p6p4hc\n6e6/DrgJJ83zfpxUz7fGnZv0meIEji0Wi8UyS1i3j8ViscwgVvwtFotlBrHiH0BEThSRz4rIfe7P\nnRHHXSIi3xKR+0Xk6qTzReRiEfmqiHzD/flDU3BPqyLyDyJyXETeM6J7Cb1G334RkT9y998hIi/P\nen+jpKT7+ikRuVNEeiIylvTJku7r3SJyj3v8DSKyMqr7mSpU1T58D+C/AVe7z68G3hVyTB14ANgH\nzAFfB86LOx94GbDHff4i4PAU3NMi8ErgSuA9I7iPyGv0HXMZ8HeAAK8AvpL1/kb4+ynrvg4A3wV8\nATh/lPdU8n29Bmi4z9816t/XtDzsyH+Yy4EPuc8/BPx4yDH9UmxV3QS8curI81X1a6r6qLv9TuAE\nEZkv4frDKOue1lX1H4GNsi48xTV69EvgVfVmwCuBT31/I6SU+1LVu1X1W6O7jSHKuq/PqKq3fNbN\nOHntlpRY8R/mZHVyZwEeB04OOSaqzNr0/J8AblPVVgHXa8Io7mkUxF1j0jFVvr+y7mvcjOK+/g3O\nzMGSkpnM8xeRzwGnhOx6u/+FqqqIZM6FDTtfRL4bZ6r6mqzvG8Y472mamPb7myZE5O1AB/jouK9l\nEplJ8VfVH47aJyJPiMgLVPUxd/r5ZMhhcaXYkeeLyKnADcDPq+oDuW/Ex7juacSUVQI/7vsbeWn/\niCjtvkTkLcCPAhepqjXWGbBun2FuBN7sPn8z8MmQY+LKqUPPdzMS/hYnsPhPJV17FKXc0xgoqwR+\n3Pc38tL+EVHKfYmzcMmvAz+mqs+P6mamjnFHnKv2AFaBzwP3AZ8DTnS37wFu8h13GXAvTkbC2w3O\n/y1gHbjd99g9yffk7nsYeAY4juOXPa/kexm6Rpxsoyvd54KzsMUDwDfwZblkub8R/t2VcV+vc38n\nLeAJ4NNTcl/348QDvP+j60Z9X9PwsO0dLBaLZQaxbh+LxWKZQaz4WywWywxixd9isVhmECv+FovF\nMoNY8bdYLJYZxIq/xWKxzCBW/C0Wi2UG+f8B+dVD8sNSwXQAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cont = plt.contourf(bs.lags, bs.lags, bs.window, 100, cmap=plt.cm.Spectral_r)\n", + "plt.colorbar(cont)\n", + "plt.title('2D Flat Top window')" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEWCAYAAABFSLFOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXuwbVtd3/n5zddaZ784nAsXkHsVFSwDtNFo0E66uo0G\npCIGoxUkGtGK0SZKKx00onYI3WIXRqNt+UKiiHRUNK22RLB8P6LtA0QsBEpFcpH3fZ3jft295mv0\nH2OOuX5zzDEfa599PQf2+lbt2mvNx5hjzjXm+I7fW4wxbLHFFltsscVFIbrVHdhiiy222OIjC1ti\n2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYttthiiy0uFFti2WKLLbbY4kKxJZYtJiEi\nrxCRf3ur+3GZISJfIiK/fIHtfbmI/M5FtbfFFhpbYtkCEblHRB4SkWMRuS4irxeRu91+Y8zzjTHf\neov6dssnwKYPRkS+29v+7Gb7qx/uPhhjftwY8wx1bSMiT3y4r7vFFufBlli2cPg8Y8we8DjgQ8D3\n3uL+zIaIxH8Dl/lL4DkikqhtXwb8+d/AtbfY4sMKW2LZogNjzBnw/wBPdttE5NUi8rLm86NE5BdE\n5IaIPCgi/1VEombfPSLyTSLy9kby+VERWap2niUib2nO/f9E5JPUvrtF5GdF5D4ReUBEvk9E/hbw\nCuC/b6SpG6o/PygibxCRE+AfiMhvisi/VO11JJ1mhf/VIvIXInIkIt8qIh/f9ONQRH5aRLKRR/NB\n4K3A5zTtXQP+HvA6fZCI/GcR+aCI/LWI/LaIPEXtu0NE/ktzvTeKyMsCfXx+08cbIvL9IiL+/YjI\nbzen/EnzXL4oJNlpqaa59uuaa/8h8PHesZ8oIr/S/KZ/JiLPGXkWW2wxii2xbNGBiOwAXwT8/sAh\nLwLeCzwaeAzwzYDOC/Ql2Mn344FPAP63pt1PAV4F/M/AHcAPAa8TkUUjcfwC8G7gCcDjgdcaY94B\nPB/4PWPMnjHmqrrOFwPfBuwDc1VlnwN8KvAZwL8BXgn8c+Bu4KnAP5s4/zXA85rPzwV+Hlh5x/wi\n8CTgTuDNwI+rfd8PnACPxUo7Xxa4xrOAvwt8EvCcps8dGGP+x+bj326ey09N9Ntd+wwrkf6L5g8A\nEdkFfgX4iabfzwV+QESeHGhniy0msSWWLRz+30Yi+Gvg6cB3DBxXYCenjzHGFMaY/2q6Cee+zxjz\nHmPMg9iJ303WXwX8kDHmD4wxlTHmx7CT8mcATwM+CvgGY8yJMebMGDNFFj9vjPldY0zdSFlz8O+N\nMYfGmLcBfwr8sjHmXcaYv8YSwqdMnP9zwGeKyCOwBPMa/wBjzKuMMUfGmBXwUuBvi8gjGvL8QuDf\nGWNOjTFvB34scI2XG2NuGGP+CvgN4JNn3tsg1LVf0jzfP/Wu/SzgHmPMjxpjSmPMHwM/A/zTm732\nFpcTW2LZwuHzG4lgCbwA+C0ReWzguO8A3gn8soi8S0Re7O1/j/r8bixhAHwM8KJGxXOjIbG7m/13\nA+82xpQb9Pc904f08CH1+aHA972xk40xDwGvx0phdxhjflfvF5FYRF4uIn8pIofAPc2uR2ElvMTr\nd+gePqg+n071aSZC1363+vwxwKd7v82XYCWrLbbYGFti2aKDRpr4WaAC/ofA/iNjzIuMMR8H/GPg\nX4vIZ6tD7lafPxp4f/P5PcC3GWOuqr8dY8xPNvs+2jOMt5cc6qr3/QTYUd8frknxNVh14H8K7Pti\n4NnAPwQegVXrAQhwH1ACd6nj9bO6WXTu31sUuGv7v43De4Df8n6bPWPMv7rA/m1xibAlli06EItn\nA48E3hHY/ywReWJjVP5rLAHV6pCvEZG7GuP2twBO//8fgeeLyKc319gVkc8VkX3gD4EPAC9vti9F\n5O83530IuGvCsA7wFuALRGSnMVh/xfmewCR+C6sqDHnN7WPVew9gJ/n/0+0wxlTAzwIvbfr4iazt\nNefBh4CPU9//BHiKiHxy4zDx0pFrP5mufecXgE8QkS8VkbT5+7uN88QWW2yMLbFs4fBfROQYOMTa\nRr6ssUX4eBLwq8Ax8HvADxhjfkPt/wngl4F3YV10XwZgjHkT8JXA9wHXseq0L2/2VcDnAU8E/grr\nHPBFTXu/DrwN+KCI3D/S/+8GcuyE+2N0jeYXBmPxa40NycdrsCqm9wFvp+8A8QKsJPNB4P8GfpK+\n8X8uXgr8WKO6eo4x5s+B/wP72/wFfYeGF2DVah8EXg38qLqnI+AZWKP9+5tjvh1YnLNvW1xyyLbQ\n1xYXBRG5B/iXxphfvdV9+XCAiHw78FhjTMg7bIstPmyxlVi22OJvCE2syCc1qsCnYdV1P3er+7XF\nFheNkLF0iy22eHiwj1V/fRRWZfcfsLEwW2zxEYWtKmyLLbbYYosLxVYVtsUWW2yxxYXi0qrC7njU\nvrnro69RGaE2UBuhUv/LGgoDVSXtX10LpoKoNogBI7YtY9M5td8HEa0PEDGIrP9H0fq73b/+7GCM\nYIz9b79j+2T6+6g9SbS5trueDy24hvaHjgsdr9t39+S2+8e7/laVqHvp9t97BIjqgBFZP/NIOtcw\nRtbPIBKSpG7+DKnAIoZFXJPFEYmkUOZQNA5a6QKSlNIUrCrDQ2XUjoe6tv0sy4i6FnU9utd2UH3w\nf/Pe7zZybBT1n59+rnqbbreupdNPH/6Yace1ep5+2/59+uPUhz+u9bgY6pMb10Cw/1Pn6+fpumcE\nJKYzPgHi2CBi2n4lEcQCidj/IoZ3vvWe+40xjx690Qn8d3KHOaaYdew9HP2SMeaZN3O9W4lLSyx3\nffQ1fvrX/y0nZcRxYZPjFjUc5jHHhXBYwL1nwgNncP1GxvUHF5yepJwep6RHJXFRd9qr0ohiMZFk\nN1u/DUlaky0qksT+XywqktS2mWV15xiAfBVTFhF5boXMsohYrWK7vYzIV3G73Z6wftnTVWX71lzf\nXWe0q811Ndw19HV0W+5+3OdF00bovlwbeR5xcpySr2JOT9J1/wP34KPzvDPptOvOTVcVxX7CwdUV\nj3ncKY+8mvP4Xbhrx/AJV3M+/iDiEdljSI+uY+69BwB57BMpdvd5cPVe7jmK+fMbGe89FY5yuO8h\n4fQ45fQk4egwoyyjzrPp9F9B/97u+ejfTvfZ3YseHw4L9XnsuZ6eJJ3xMQR97XRVERf1eiyrZ6ox\ndI9D9+3uNzTWhxAa36ExN3SuHju2AxL8DRx29wqyrGZnr2A/M+xncOfScJDCXmr4go/70ndzkzim\n4KXx02Yd++XVrz3qZq93K3FpiaWspUMqAGkEi9hQ1kJew0FqKCphtVe0E3q+iikWcY9Y9PdBgslN\nh1yGkOcRWVZ3XmA3CQ8RyhTSVUWBnSymJoYkrUfb9fvVO795cVermMWioiyizmSgv4/2xT2r3EyT\ndm4o6ZKqmyg5Kin37GS7s1dwlBvyJayqiKI+ozYVZDuwvNLcQGa36a5EBhAWiSGfQcwaeoEwC/pe\nZsA9z6lFx9C5mlTSfN3Pgnijfrh2YP0OlLmMjvk5i5wkqYOLmrF+dM7fNWSLMkgoDifHKeWiIs8j\n8t2SfLcEhLPKkI9IfFuEcWmJpYYOqTgs4ppVJWSRsIzhjmUzSK9ZNUm+ijksFlRpFCSXKo16L9d5\n4CYJ/f28pOLQkgt0Jm0fbjLxX/qQNNTZnwuw7lO2qFpycffgVtebrHo7E9PAtf19/kR5epyxs1tw\nepxyluXcyOG4iFhVQlGfscgOYNFkRMl2qMxJQy4xy+aW0hicJkOTxZBEoFfrsCbcuRh7Ru7ZOujn\nvOkYcc/qyklBmlckRc1DuylAf7yEoIh8eVJQZHH7LtgOQbHfn2pCi47QfeareP2sByTa8MlhyU9L\nff4zXHWeV0lR2UXmRUAEknQmSW2wDrkdcXmJZcQg4qQWh/0MwLTkAnDIgkKt9IDOas8RTI9cZkot\n7eEDq9DT43TWas9XIbV9GlEzacmmJ1moVWkIRdYdUnpCcKtqRy4+ec6C/+y8ycX1zZHKlRPLBGe5\nIV/FdkVaQ14Lq0o4LmIOsoeok0cQLfZtI1FCXXbvcRnDYQHZQJfdBAh99eDgrXj7SvoqHD2RZotq\nUq2lVWxD7XRPMi2pLE8KslUJezZ7TpmuzynwxrFamGgST4qapKgp04g0ryiyRs2spLApiXYWcsPy\nuG+v8NV42aJiZ9ce56tmHRyZOHWsVbvl9p3bKzirtp6zm+LSEktVC8fNy7aIG2JwC6zKvjRupbqM\nDVlkV6yL5Iwsq9sX+PQk5axIIDeckQYncvCkl+YlywL6cg09GfikElKXhNooFvGFSFBJ2qjmMulN\nMmPt+ytmrbIBRu0AgxLTAHxSAdqJzU2EjtSyyLCI508YZxMrSG0DCEFLK9miYnevCB4/JC32jhsg\nGH+7G6d+ey0B5UKVRpRpRJVG5M2UUKYRRRZ3bHNBBMYDrJ+7P9G7Sd6R4LnIZWBx00pIAXvKkL3P\nbTs5Ttvn4kuD7M0zuE9BIlgsZi4q5xaCuE1xaYmlNPDAWcQyXhPJIjasKulIK8vY/mWRJZiDFA7S\nnJ29omfEzVexXbEHBn5QevGQZXVwFT+o2vCkn6GJrXddT7Xk9vt99F/09nvavZaeWMYmB61qWDQv\nryNnH6F2xuwyIVIBO0Ge7Vrpbv8gJ0lrDlL7my7imjQyxJIQEWNKK5H6r74jlaKCvLbXtwbytEso\nze8xNkk6UsmyujO5DWEj28wGbTgvuVNSCqzqKmkk7yKLKbKYs720tU9o+IuFkogiSyhyQ7Wyz6Id\nR81Y29krNlYFzoUjFF9S0c4CECYV987t7hUsFhVHh+tcp6vV+Rdilx2XlljyGu49c8QhZBEdQnHY\nbQZjEgnLWDirLMHsZ3BflnO0V7CzW7ZeOG6yKYgnpZd8Fd/8yxZSrQ3pnj2vNCeBuHP0ZODbBzrN\neyvgruRkeueE9PxDNoDQytpvY4hgfFIB2lX3wW7eTjhps1iwzho1saRQl1Dl9qR6uCzMqhTyPOLo\nMOt7c8GoqlOTyo5aBW+sBjonQsbrsowoi5QqjVq7ykO7aUsqO7tF7zdIkjooMTmCaa+X1rjxcN5x\nPmYjqrSqboRUOqpJT1Ipi6izbf8g79ldLgoiQracqf796wu77C3BpSWWsob3nQj7mfX+WsY0nmB2\nfxIZDrKqVY8tYutF5AjmILXSy71ncNQQzI0HF+2qp1ysVVZB6SULP3q3gnKT5qyBrdxUg6TiEYr/\nuSWYZlL0XUQ7z62MesSh7Qtz4LvoDkFfJ0QwDu75djyalCrGrrorsqxmkZhWAl3ENYvYEEls41ja\nDuZEsT1/VTV9re2iwpFJWUaUJwJ0f9/WG8rZlBqVj08qi6T5nfYKOE4hsGIeem4OoWfh/za+Cg66\nxut8FVvpmxSOyh6pOClPnzc0Jn1Du09kc8eIv2AYsyv5bvQhF+22f55btvvsrqf3O5smbCWX8+DS\nRt6XZcQDRwkPnMEDZ8K9Z8KN3Bpop/TpSWRaFdlBaqWX/cyws1uuVS5JsyrNJKwCawhg7KXRRsVg\nvMNAm4P9HjAqt9sVAQ2pYG5GwirLtfro9DhtVUrub1Mkad0+3467t6/fVxgyvo8hr+2YcGqwo8PM\nxjOtqrBUqn4Hn5xb0lb9uEiJZWjy9knFXzwkaU2xn/QklSStgxPy0PiY66wQIrnZ99X85pP2H33t\nGWrHWdfeYhYur8RSCvd96AqnewVHuyX7jd86GK5mVi1mV6uNB0sVtbYYB2t3sRNOEdO0AacnSevB\nk6S1VREEVGNtwFdSty+YllTGBnTPk+schvmQpNFZzSX15GpzSM01dOyaGPsBbH4AnF79jrULXbWI\n++6eSacNRRLuN61NBcmuPSDObBxLfda4Itvji8qqwU5PErsYaLyppvqhr+8MxABHODfotJVQdcCl\nhq96GnoOPjm3YzBZS07aWK6xs1vYAFUiskXZsU2E0AaEDvTLv3YIfvtDzirB4NMBQsnVedr7zBng\nXXxYSJ3qe2C69sYWf5tABNLkcsTEXFpiqWtpV88nxxWnewWrayvYW3uBJZHghDqfVJLIsESaicqw\n7wb6bmlX4AFX0hC5gH05jw6zjVUGGiF1TO86zQsVNOZqlYC3yl4ECGhOH3tGXi8ivtNfpc7TL/7Y\nClzvc/fciRxv2tNYlUJRGUsWDblUpoAosaQCECVUVdEQT8RZZSXZ0+O0nfDSVdVxpx2CL+E5cnHP\nWmcecJNozw15glT82I6SrhpuiFz8Z7mzW3Qm5LZJNeGG+jW0uNDX1pgirZCn4KYSbYhgdptAZz/4\nGML32PHC3GIjXFpioYTTB5PWprD27nmoOcBGWk/BSS1gSGMhq+gYZt0A9yUXF6y4UWTzTAzFpQT7\nP2If0RPAUHyEfzyMEYrpeG8BnYBS3dcpzyoH91wdMY2RSp5H7GAlkLPKRd4LlSmpqYgSWzCxpqKo\nV5yUESdFxGEhrdHejZNlYaVT31lASyxDaiE9eWlSOVWkE1oABJ9ru1NFvTfjKkQuGiHbwZB9Qp+j\n+zEUEe9nbxhK9eNP8H6fhty4/UwO7r8/ZnKPpNrxHIil8rUF2rX/IhAJZHPdjT/McWmJJaptgJWb\nCA5PtBpiTS7LuDEMqiSALv7BeZEt23fBHr+MDYeJNXq6CcK51DpyAToTn/a42RShvGWbQMc6jBk/\ndV/H8ja1JORF6oektZA6yT0fNzn6bfvXsV+8eIqBvGj5KiZPyjZAMq+tKqwyJVFkX4eiXlGZgqKO\nWzWYNtq7+3HuuWXgeY951Wm3a+durVOrFIvpBccQqbjnOUQurk9TBukp24fv0deTZtT4CI3t0LiZ\ntCkO/KYhkmnhbJlF2ra9f5B3DvEdZXxSGQsI3iKMS0ssLvBeT2ynDyYkSUaS1iySM0BatRiVtARS\n1kISmVZXD+t4lxu5VYulMWRRufZGct5iXkI98HJnld3o5HbSVy+lr1bTRBIXdeee2n0TEf/ak2dW\n7MREzEbHpbWZJEOBdCFiGYr5GXQoCKx8df9C551VYffyWdCxQ9rlVanFrMfYtDu5dfeNghPY0LMN\npTVxzyuUbDSUUmYxQi6OCHTgop/5YbQ/G2SW8D2wplLR+PcUshH2bDHNM3LHhu5bS2K+pHIzgcUa\nIpDOTenyYY5LSyw+3AR3epKSLSquZzXZtZx7YyGL1u7IQEs0fg6hLIKrTfqXs8q6Lh9m1h35gUZ6\nuf7A0h7rreq1fcPHkLrKH/DpqurlMGtXsDNejjmksu7ztHogmLKkgSaZELnMhZa2eilRmknOEbOb\nKFeljPY/kphYUtLIc91N60GiKLK454VWnginpJPS39x77J8cdi0PeW+FYlhC5DJkcA+RSq9frj8z\nyWUoIDh0T52vQ1JrgyC5uC6u+mSvCWXS83KLWbi0xGJEgokkXUT1YlHxQFoDJcvYxrvYXFFrV2ON\ng9Sqy9wq2NlelrFTj5Xc10gv1x9cBNUImlxCOnG3D+hl8oUueWwyWY+tqp2h159UdLbkKYQmVl+K\nmervHCmqJRfoTnI3YXtdxjaVj1Vndl8XJ604UgmhPBHKop/XracupJt+x91Pr72hRKADUkoIQ2qu\nMUlhrkNJSNoMBSyG3H/nSivt98ZbbiiIdsjg72d60E4IPVIZKB1wHkgkZIvLEeFxOe4yAKcK89VI\nNMkKjw4zDm9kPHCUcN9Dwn0PwVEOh4VwWNiYFwdHKovYsJvWJJFhrwmgvHNpa3/csTR81J7hkVdz\nHnltxf5B3okVAKxHT7Fh1uJM1n8K7r7SvEkQ6MVXwDqtB9AG8YWw8klwJFFiCP413D3rOJRN7UKT\nUM8k1L+iMeAXG6jDXI64JG08z5rUJ52UIiHkpiGYdbxOyAY12sZgp6Sd/JyNbNMYkyGPv16tmTG3\nW52MMjDWbhZDar2xRdEYIZRl1P61cVUnQnqksi6oSP7bDSLyTBH5MxF5p4i8OLD/E0Xk90RkJSJf\nr7bfLSK/ISJvF5G3icjXBc59kYgYEXlU8/3pIvJHIvLW5v9nTfXv0kossF4hasnFRcWXpdX7Ht7I\n2NktyZsBtp8ZG7OSCTdyG/NyVsFe885pt2Rn8F8iXM3Wkf0r5TXm21503YiN4E1O7r70NjvRNobn\nZrXnrhVyc+1dwpuA5kotFxUH8HAgjcYnQBsMa+uwnDbbskXF6WL96oyRQSeNz4RdqlfLREXvu+9j\nmPP7DXqqKTVQyJts6jecW89lzClgTFrx+6XPGYOOVwm5sa/tW5ZQNlEdb4qN0uaPtiMx8P3A04H3\nAm8UkdcZY96uDnsQ+Frg873TS+BFxpg3i8g+8Eci8ivuXBG5G3gG8FfqnPuBzzPGvF9Engr8EvD4\nsT7ecmJpHtKbgPcZY54lIteAnwKeANwDPMcYc7059puAr8BWK/haY8wvNds/FXg1cAV4A/B1xoSK\n6PYRmoTTo9KmuFBwonWe1m0g5H5mCwEN5RkD60G2iA1nVcRBal2YzyrTBmzlecQj7zhrA+R8hFaT\ng+qQifvyM76GJoy5qzNdb+M8q7qhOBQH7Y7tu66OujX3LhRWZbh8Ye39SNLmCIslIZKYLOrmDEvS\neh3TM5DV14df5dK14/4PJdT03a57xw2k6RnCkO2k54FF2GkgNFY2sUe467p4LRfnNZRgNeQQEHpW\noXHhb4f1sx4j55ux9f0N42nAO40x7wIQkdcCzwZaYjHG3AvcKyKfq080xnwA+EDz+UhE3oElCXfu\ndwP/Bvh5dc4fqybeBlwRkYUxZsUAboel5NcB71DfXwz8mjHmScCvNd8RkScDzwWeAjwT+IGGlAB+\nEPhK4EnN30a1okOrk/SobLIXpxwdZpw0mYxPTxKu38ja1C/OMyyUBsaSSs0irlvVWBapFDBNAkv3\n98g7ztg/yMM2iVBm45n3FUp9Mesac6AnuLau/IYv6IDE41Qq/oTgYhPafp8zJYxDJPPvuSXnTfXu\nM8tCa8l57So7fG+b9GMsoLElCDWuNhkLuh6Lr37tqP+aMeZcrmeRivuvnoc/BnyMqQQ78Goq3UZ4\nlIi8Sf19ldr3eOA96vt7mZAgQhCRJwCfAvxB8/3Z2AX+n4yc9oXAm8dIBW6xxCIidwGfC3wb8K+b\nzc8GPrP5/GPAbwLf2Gx/bXND/01E3gk8TUTuAQ6MMb/ftPkarPj3i5v0xTecwlpySdK6zXPV8Zy6\nmuPSwNy5XLshA20CS1frZVVFlLW0XmNFJZAZ8qRkVYqdrJQqQqeV19jUY8WRSyhGpXUEUBOOjla+\nGd3yHPWJ69fYxKmrXoZqlWxKKNaVXOXymlCFrY/zvi8qIA5PghAkyzES0JObrkQ6q4LjCNz40b+1\nllz0pB4KsJxqV7tJJ0U/u7TfXm88D6VsCRSi0xka/LHg2150zM6YR93fJKmIbFCPBe43xnzaw9cX\n2QN+BnihMeZQRHaAb8aqwYbOeQrw7WPHONxqVdj/hRW79tW2xzTiGsAHgcc0nx8P/L46zrF00Xz2\nt/fQsP5XAWSPuLO3f4hcikXceva4iXfhkcuyCZrciwgWkFrENSdF1HFJdhlzLdHAWVZylIvNdqsQ\nWp3NSeHSQtlWhjAU4TxGLg+HHnoUIyqRKfhSxjLuBr0CbT2WsTZ8z7DuAesM0eeFSxPTKe17jvZC\nKi+fXELuta2NYSD7tm5bu52nedV6ybkiYX6RLwgvZtZtuQuEq5tuYq/aBL7jyCbJLW8R3gfcrb7f\n1WybBRFJsaTy48aYn202fzzwscCfiIhr880i8jRjzAcbIeDngOcZY/5y6hq3jFhE5FnAvcaYPxKR\nzwwdY4wxInJh7iXGmFcCrwTYffwnBNsNkovT9+drT6PrDy5ZrRojfEMuZ5UliywSlnHEblq3+ahO\niqhVl/nxLmcVkEJeW4K6D5tKXb9sY6lXRouIqZfa10cHI5yb+wutLDX8l9FJOJuq0qZI4mZLO0M/\n7iGLaCtIdgp9NcdExNbmQpdoplKqBD/r40OaZ6+0r0NoUg49qzl51ebC9aGtvqkWVPp6636XwcJq\nPqnsbFKBMZCloUOyeOW11UJDZxcAhtVr0C4CRovgBdq5GUgE6eJCmnoj8CQR+VgsoTwX+OJZfbCs\n8SPAO4wx3+W2G2PeCtypjrsH+DRjzP0ichV4PfBiY8zvzrnOrZRY/j7wj0XkHwFL4EBE/hPwIRF5\nnDHmAyLyOODe5vghln5f89nfPo5Iueh6E8EguTSDOThBXM0pmqDJLHLeYhHLOOrZX3QczEG6ts/k\ntWlVLvfRfRn9iX3wZdMIGK47L1soIEwlMfTPC6nhfMN9iFx8dUwPnp7brwioj2v/DxU3G8sucDOp\n071T81U8SCAanXG0Cjsp+Cn//UlZqxWHyAUuNv3+8qQgLmrO9lK7oGr72/WeChVWc/131Sd99ZRD\nT1rxsg/oazhJrnWjHyGXUULR8MaKfX6mc85FSEQXDWNMKSIvwHpnxcCrjDFvE5HnN/tfISKPxTpF\nHQC1iLwQeDLwScCXAm8Vkbc0TX6zMeYNI5d8AfBE4CUi8pJm2zMaB4EgbhmxGGO+CfgmgEZi+Xpj\nzD8Xke8Avgx4efPfeSe8DvgJEfku4KOwRvo/NMZUInIoIp+BNUI9D/jejToTmLyGyAXCbpRg3YjP\nKuue6gjG1mxZH7OMbVVKbXtpCvexqoSDdK1Wu4+ijUzW6rBQIke33a8CGfKgcp+H1F8h8hzyuJqj\nYtOfz2O3ae0weiEwVpMm4DHlVJeu0JcrTdxWkJyJuXFGfqnkoSzIQxO0IxVXI97Zx0IpgXTfYDh/\n26ZI8wqO6brj52t7ip8jrU8qFTu7RadAWCglDND5PfW1koD9Y4pcYDrNzNwcdDfjFBJCFFCTnwcN\nEbzB2/YK9fmDdBfcDr/DjOy6xpgnqM8vA162Sf9utY0lhJcDPy0iXwG8G3gOQMPIP411iyuBrzHG\nuNHw1azdjX+RDQ33HagB6LuTtpUKvczESdJE0+cR+a7ND+YIZr9Rebk667tpzZ4a1Gmk8je1l0uw\n2ZJhkZz41rSrAAAgAElEQVRx/cbaDfn0JB1Ue4VKC7e35U0socnRl3r8bLXt5K5UCH5Udaj986hr\n/FKznT4NSJo+Wrde517dfE9DXdCliRuMxbiURdSu3oegPaV8uMnRTdqd4mT7SSupuEh1f4LbRO04\nmGPNcz+u0qhHcE5aSAIE6AjTV3/5pBLMIBAgF18lqD3MQvV2Ohiyv3lSbigzQciLUUf1X5Qq7DLh\ntiAWY8xvYr2/MMY8AHz2wHHfhvUg87e/CXjqJteMIjOp+/Unx9agqVZALgWMRllEsFeQt95HKjAx\nEhYx+O8FrLftpjV34gyjAle9TMmLdLBGhBPnp+Bqb7T9dXEZI26xra6/IVQ3+elUHZtClxNwCNUv\n99EhGAf1uwxlwHWqxnXNe1WauGqIoi5bKWYRG7LIkEX9GJQ5zgu9IFXo9bvwvMncc7XZGWyfsqwO\negsGn81U0GCgXHFJZFV1nmTlJvkyjUgaAgx5frX3l8lokO9gOhlvDPTa9gisvV57IwOL8M54MMGE\nnFPS3M1UTdUQgSS7HDnIbgtiuRUQMZMDppNRWLtFBtREHXLZK0hWMVBxFhnSqqsOC8GpxjQ0ufiZ\nkrXefZMV1ZgbccidF/qrY991eSz/k8ZYDqh2YmkJpZzsb6j/oQSM/n9d894lnKQuaeveNzXvnarM\nhXs5rzD7P117gQ3AlyCThvDdvYWei5uUXa1596xbO5VHMNCfrIdUTqFElMH+NtCS1BDcZH+2l3ZI\n0ZdgNfR2netrjFzcdYJ9nREjNJaMM9Sv1TnVtltYXFpiiWPTq8swhtUq7sVm+DpdRy4L5ZaaJ2Wb\nl2oZhyP0F3FNGtmVcV4LYL3JAD4qsun67w3UeXHpxoeion34ROAmp6GYE1/vPNaWm/CmMJpgMAW3\nqgwVhnLQk5FudywBoyM9SypKny9pI7GctpH31CXEXbfxZQxHTTsnzTVG1XKeGm9sQtPGbU0qO41a\ndZEYFk28k0/w+t7c99OTpP1t3Zj0r+9P7q7PbmL3szYMYYhUpjAquWRJ36FGqQo7GCGVkLordP+b\n9O9mIAJRspVYPqJh8/aMrHC81ffYRKxTYbgyw/sHeZui/SxyMSvW1rKqota2okkF1pPe2g4TcW1h\nV9iHKaRna+nl9Dht+wX96n6d/s+ULoYM7EPlZTWpjE0oLl25NkCHMEQq7tkP5YmaNZklXaLo2FDq\nEvJGNVrmxNkOYNVlzoPP5QtzaV06bsCew4CTPEITmT/u/HvTpLKvVSeJwWYzUps8MnX3GLJrDU2q\nfq0fIDi5azj7iiOVJJ3OuOC7LY/mDQtILz0VWIBUhmwn/r3fbp5eH2m4xMQy4c3U1MZ2n3UxIoex\nyWzlJp7jFPaKtmDYYTFuZ8lraTPu7jWG/uMiYhFb1+VlbLjR1Hl5IMk5Okmsp5Kqa5F75HezOuKL\n0jHr9uYQTHv8RHT+JtCG+ywyjSqs/xpEEhOJVYe51PkUE7anYl1S2C+qNYSh+3IFyqx34cybg6bW\nzHjbGqMr87Tbhp7odfDmeXLFOdtRktacHIdr1gRtb801HXxSmavq2uLhxSUmFiYLDYX2aaOpThvh\noLMFAzbZ5HHK+1Y1Z/tlm1esrJM2gFKnfvGRRoZHLiqKumYRR+ymEQdpxL1n1uvsvqjkgaP+z+iT\nS+je/KqA2g05ZOR0uAjd8xwvtYuaCPx2QlH3thONxNImo0yBuq2t4yb4odXulCeegz/ha0mzVbFB\na6ejkUKcKizkVqslFLfQ0L+t8wAb6tPU9nwVt0Sj08x0pJBADaHeM/Gk2yTg1jtod5kglKF7CI2j\ni8q/thHEkKRbVdhHPFpVQYBAxl7+9vyJlXy+invlXfOrOUepVYvduYzYS4VFbChqOm7IYEllt7lG\nUQtpZFqCSaKY5Qqsx9k4ufj3cTPYlFT85zam497ECWHIpjToWjswWbRR9146F5fhOI2q1i6zjKWT\n1mXMjddhjBx1OV7/PkCPwXlxFW2yxzzi5DjtLRjmSJ5Dx3QWKelmgYNa7ZqkNju4I+k8sSQ+lipH\nO8uEyNtX896sdHs7BkV+uOHSEotThfnkEiIUGJ/0xlbffpGsPI9YXVu1WZHvXMKBqtHgyGU3qdlL\nK64ktj8PlRWrKmoJZi+tWcQJWRQ1K+qS+x7q5hkbSmTpqkL60srUC6Xvc0qacBKRf752S/a9m0LY\n1CHAX5V39OwRKjjSDMapmHJF1KySs8i0NVlsXJFpC36FpMEpzysHf1yF1JZ6wTNnsvTH8JjbsZ6A\ntY0nJNXo/ectteCklEVi7YxOJXmU05ah8DNYjxGhlqh9e9+QJkK3Pzbm9GLwIiERJDeR/eHDCZeW\nWGA8/cNqYBUZamMMIfXS/R+6Qn41J69LzirhzqXhoIq4YzmsFrMeStb1NVfkYuHckmnzjLn7cQQQ\nIpeh9Ok3G7m9aTLLTTC0uv9wQWih0nEE2bAoWoh89G/rFgx+BgbtWagRIhX33/V9jqQetHEkpmcv\nWsZ2gZV5k/nUgmMKY2ruscVi1lz34SKXy4JLTSzupfON80MvvY9Q4aTQee5F06n3oZkIVOp9XR4n\njQyrKmIRNx5fldhklqrdRVw3KjQhr6XJZ2U65KL7MJSyfJ0DrJuE0o//0HDParWKKT0VhK+K8fX7\nWjU49uz8CaqXNNPD2CRQFlFr3zqr7PMsaqEyJTUVUbLAZPaZSbKg5nxE2Aadevc9d5wM9d2H//z8\nhVDI/jfUZmjcu/OGFlhD+b/G3pejJgYI5el2WFjb0elx2iOChRp/obicqYXFebQP+v28aAgXl9Ll\ndselJRZjpEcq/uCdGrhjxlBfEhpNa6LIZRk36om4pqilJZSilibGpQsXPX6tzZpq2zlUHmMQkM7K\naB29r5L/zanF4cMVbXJVAV2pZX0t97Lq1aD7PpTHzHct7hDKQJbjKcnIxRSVzfOsTUVlSqIogYZY\niBJLOKYir2WwOqiPUPLNIZVZ6DzfEL8uVz1M7GPXd/C91Jztb4iM/HOH2oRhW9cYjqjIG+nFkcoQ\ngvE2M6435/mE3gmtmny4COYy4BITy7hnFNx8ArrOJAidLLF+6eNO0TCse7FGiFQcXHS4IxerbhDY\nLTlqjKKleolaUvGyCrfp0lUtjk1UWJpQ/NXv5Ao64HrsS1lOsnJ9dnm1htBzXCgF0nVMkZVYCmpT\nQZJB1LSVZHabQqhCqN9Xv/SA6/NQnIU7z7+3YtFNcrqp2/hQxL1GiFR8O1tIIvedLzQh6fP1WGsJ\ndqHT/lSsoCUVLa2E0vS767mAz9C13PY58H+H9v5PpFcq4MKwTenykQ8nsThSOT1Je0QQyrnlF9jy\nPVZCNTr8LMlxUVOtog652IFcslaLJUA5mghRw5HL2hGgyTPWkEubZ+zE5hlLj8pgxtq4qCma7MZz\nSSVEyv5+X8c/5FjgEEomqOt/6Oy66xxV4f6uVnEbN3FW2apyeW0DVWuTU5kCohQWNijSSiyF3T5R\nvTtEDK6Mi4u70HV8gvfZqCE1yTvJcSqB59hvNEZEoZW660tnTI8EGeptLZkNlZVQOFWSNIS9Mtvr\nqwleByeH+jqEKfd5vdBaHhdtMk1HMLdjahcReSbwPdi0+T9sjHm5t/8TgR8F/g7wLcaY72y23w28\nBltA0QCvNMZ8T7PvnwIvBf4W8LQmByMi8nRscuAMyIFvMMb8+lj/LjGx0Ka8mLPK8cnBbdM+9n1i\n6kPX3nCR+rYf7qfwyWU8zkXDHWPrwMB+ZidSZxh1UotOoHgzZVmnbB4OelWpV8H+qnYwM20DP5dV\nkcWdbSH1WRtXlEckq5g8KVs7iy3CJo3Esqs6nIGxMS2FkhSLkfnFT6aZrqpZJXUd/NLEQJs7bejZ\n6ucaDDCcoc7xScXP3O2eqbYXOXWm29/9/Qw607AvUYz2ZUJD4K6lpW1dtnrM2K7VksHSzE17OsHm\nUHmM80LEXEhKFxGJge8Hno6tmPtGEXmdMebt6rAHga/FlmnXKIEXGWPeLCL7wB+JyK805/4p8AXA\nD3nn3A98njHm/SLyVGwdmGCVXodLSyxVJcOkMpFc8Kauq2pbwNqt0uUXK4uI1V7R2AIMZ1XCXmpY\nxFGT/mXdls8Jdl/dGvPPKsN+UzMlVwkN7YovhZWqbaFKy86Br5IYfF7exOjbHQbjMwba00QSymXl\nT7TuOs6usyqFo3ydWmdVRY3EkkC8Lk9Qm6pRh3nedKV0auRoOHIJVibU9+UtQvx08X7ixyFHhzle\nS3PsO5pUlicNoXoVU4dsPZpUnBRcpVFnwj8vfHWd0ypoadth6nqO4DS5tPfQEOLNLLL+hvE04J3G\nmHcBiMhrgWdjS4oA0BThuldEPlef2JR9/0Dz+UhE3oElibcbY97RtId3zh+rr28DrojIwhgzWMv7\n0hKLMRKeGNwL7CUX9At/uRfILzYUmhD9c/0J0UktLY5TVUHS2gQOUmvIX8QmKL2spZqIRWxalVhe\nQxHbWAEttfj98tOhj638gob0Iah9oZd+LqFouEnbn7yH1EYhqSVvHCN8zzDAkoy6/ZB9ZWgV3pLL\nzHu5lQiRSlLUbfVIRxD6dwstDNxk787vqCiH6qRs0kdl//DLIbucZW3NltVaNaqhpafQwsa9B7p2\nzpyyCA8jHiUib1LfX9mUVgdLBO9R+94LfPqmFxCRJwCfgi2QOBdfCLx5jFTgUhNLeHtvdRggi/Os\nbNwg7ahHFHoTlUoDc1jAQWq4mgnXFrCq4g7B7KW1ssXUrYoni4SD1HBWCVll66fkubWd7OwVnB6n\n7UrPr0YZQo9UBiZOX23Y3qunDtLbNsXQS9+mQ/FSjbjcbW1i0Mp0PMOGsKo2nxD9ujW9e1SLkJCK\ndRYC6qY5HoqhdhypXFGEojEmDWhS8c93pY21Q8OY55rfX3+sLY/tYsvZ2BypODLrVOrUZaBV7ST/\nWbm2HVlpyT1dVR1HlpvFVOJbD/cbYz7twi7e64vsAT8DvNAYczjznKcA3w48Y+rYS0ws/VVUUOWg\nJgW3wvfVWR2pZQKhKo9jL/6HHsw42isortDGYaxru1j1mJ386o6hv2zjWppo8yuwjA2LO8+4rmq6\nnJ6kFFlCkRuq1drLqiykE4ntk0p61K+eWOwnPTVQcOLchExmVosMeWO1TTT9XyxsPZt8FXOUlY2d\nxZ5TmfW0WVNRmYJVtW7PqhbpSmp+V73JsR1PI0WoCvolsCfhVUUcUomFxpXfdycB+FUuXVEv3Vfo\nT4zOXqfbKLK4k/nYHTeUmbrXx57dpyulAO3k30pHXlr9qYSVeltJZPt6vL5vZ8C/TfE+4G71/a5m\n2yyISIollR83xvzszHPuAn4OeJ4x5i+njr+0xBJCyKNrDHqVPySJBBEoHdxeNkQyjWrM2lzsajuv\nrUSyjCOSaG2DWVURJ0XEYbFW4bg6L/uZTaWRXct5QNlcnK3JX50NrRxDJXmLRdzWVNHSzLlfTm8i\nc7aLUYT2Z9LasZzUMnfVaOOHbBDfUQ5H+dqTcMp2MTcB5RyMjktPGggFY865plvxw7paoy41TFuk\nLHRfMWdZRpVGLE8KznbTwdLSg9f3VGuaUIBg1cqHdu0Ka4xMHIZcvnWyyyqNeGg3XZPK0ILgvIgg\nWlyIM8AbgSeJyMdiCeW5wBfPOVGsAeVHgHcYY75r5jlXgdcDLzbG/O6ccy4vsdTmpnTgWmrxCWZ0\nMh0hFd9jRXvfcJySpzX5rvUas+nUTZP7ytpgToqIs8pOhL3LttKMNNJLyeFu2UovLgZFr8j1hNRx\np/Wg65y3x5/XzjCwwtSGcYdZZN64pLqMuS5YNa9pJbrK9B9YZcomQDVqvcjyVUyeR734GugHIfpx\nO61XnPfb+6nhexOolsS8e9f3HfLA0hN0sIzvQDEtV60x9Lv6XmY6E3Gxn3iEUgafSXtrQxKV59Cg\n7TYOLXn59+RhbsZp13+Oyh6p3Gw820XDGFOKyAuw3lkx8CpjzNtE5PnN/leIyGOBNwEHQC0iLwSe\nDHwS8KXAW0XkLU2T32yMeYOI/BPge4FHA68XkbcYYz4HeAHwROAlIvKS5pxnNA4CQVxeYjknfEO8\nRs9TZaB8amhwD7lD+rABj2WTUFEal2LTVqgMGZqXnabsZHLHEtJYOtLLyXHaqZPiJmHbwTWpaCKd\nqnO+EcF4UspQjQ6/rSlVUkHc8b7TcRNWjdg9X0fdW+lPWmll7iTjT6hDv/mFYEgN6AXAApMqW6fG\nqtKo97uOBbe2+1Lwy0r7hehC0l5I7ZV40oquee9UtmviMEE7jUaIIDsp+ovxgNubhki3INBNwBjz\nBuAN3rZXqM8fxKrIfPwONp4h1ObPYdVd/vaXAS/bpH+XmliGJqTRlZCyIWiSGSSVGfW4oZuttXM5\n7wVx2QJc+nFLKDbzriMQJ50sA2PYbbP/myDK/TI4abS2lSLq3Kd70Z0KYihp5Sw7w4YYcumdIvsi\nSzpGfIex+KCisasc5WtpxanBtJPATQfQqZLA4DlQ6OemPrsYF4feb+Ct+rVhW6/IQzXm3cQ9t9Rw\nKOPxWN17d7weXyEpxY2zWNl7tO1jbAES2hYK9oRpl+xtIsrNcXmJJZKg9DEpXnvb3Ivp2tqUUBz0\nCzyW2kSnxnAEo9OR72c09pe1FOPDGf+vZtCSC6ZRs4Wj4ov9hPSoDHqN6ey5s+5VFaQKIeS903Ef\nDrj0DpFMaydI61ZiyTJbvMtl2o0l7VSRDFWUfLjgO4x07AXeWOuMpRT8zBCdyTL3xqk2SCt1rKsx\n75w33LXd8/IljhCmVFyhTMW9gnh+myq+qvIM9JtWrZxbyuBhhwgSeiE/AnFpiUXEdFaKvRXvXGJQ\n5Vud8dueMyya+66hY6s7/3yfZHQditVeAZgOuWi4Koh7TRW7dXJFQ1FJpy6GrpXSeo815HIeDBlP\ng154M6K2ByUhJcmEpBhnvHfvd9qUJwZ6xb7mptMZc/UN5U4bQmdxMjD+Zk+OASkoZFBvpQZl69F2\nFV08ayyVvQ501X2eyuOljee+rUmTS+kZ6GfVgFGLtcn6Qa5vnlpxK62cD5eWWKCvVvEnorl1ScbE\n7lYlNFDj3S9UpDG2QvTzc2XOdnBtxVllePQVe6yTWjSpuBiYwzxuPMuspAPAbsmqFJKAW60jFwKR\nz2MTp1ZZaHWEI6xeoOWEG63fLiiCUnFH+jfNFlVnMk3bZ2KPjYg7639LNiOTkYrJGXPGgJm2lKbf\nWvIKqXpCqqnBVb83WWtS2dkteuc6KdDZVTrXnUEuQ7nGQo4Oc/rrZ4PQqteQE4G+pruOI5SxcdTa\nNwcyZ1+UpCMCckE2ltsdl5ZYXNaCoM7eWwVvpOYJiN1DE0Go+p2PTgVKP1ngSdJOFjo9jVVplTz6\nirSeY656oiMVl26/VHVcWpteajhMGoJpJpTrD9qodE0uYy6ZY15TIf22e6n9TAahgMeQJNhRrymv\nJ91HpwZzCNa9h7Z6pIPWXoQ8wkLouc+yweo35C7rPbvZK/AGeqXfq0s/kE9Mj8s8j4LkMpVrLNT3\nUP/9/upUQ9BVg4WSw/r3MLRYAzpjwKlxNy2wtsU4Li2xOOhVeS89S4MxVYeGk0r0Kk3bCLSEMTY5\nuT7pwkShtBZ+CovDG64oy5lriUdfEW7kprGnQBIJNmNvzaqS1ousY8zHOq8UleEsK1u33B65eJgT\nVa0nRqdm89Nq+K60/uRwXm8qneUYmF1nxT2jfnBhdxLVnkahHGhaAtPjoqPWG/DY8guHjdUb2XSS\n7NTOKdb34l9Dj8tQFoaOxD8guQzlGxvtn46xyY1VP08U4HP9hMD4USWcO4lodXZj5RxxYd57lwiX\nnljGMJR7akz1FfKQCa1exxCqh772zupHIduTLMG45JCaXPYzK5UcpOu8Yy7mJVfv3JpcGsN2iqoD\nkwNdcunFuTC8KtcryqnV9hipTKGX782bqPM8YofxTMWh6pGh381Pcb9+9l33WeBcbqybZgeeA3/B\no7drVdbpSdqO27HaLaHI+KE8YyFi7N3bSDaCNK/gGM5IGaqZoqWPIQL2F2yujMTSe68uOrsx0dZ4\nf7kQCjwbUcXMlWBgYPUaypml2nbn6W2h3FyhaOQiS3rkku+WHKRwVrncYWFvMe0p5TzH8nodWJlF\na3LxVVjt/Y7YRaaeWcfOdRPuyT65BCWeK3bCHyugNgc+udhG14TS7veNwp7L7Ry37FE71obVDoez\nKgyrssYIxU8J4zDUVvAeAimV/OSoLbnspb1aSO6+psjF1wAsj/OOi3NS1G1Uf8gde4tpXFpi8ZNQ\n6hVSSCWmB7zvCuu7CmuppSOlBNJx6LoXobLIQ+nV3Yus1QSAtX3sd8mlLGwq/kVivb/S2EovzqgP\naxvMkN3BQuBaTpLWHN6w0foh47s2aPtk4htTe4ZTBe291IsoV8eE4E9S/oTmoumHMJaY0kfcFEjT\nrtihCddNhq7PIenWR4ioQ1LHJiW1g8jDhcZ0e0OEoiUV6CcyDa385yzM/Jx8Do5cdEyLrnMTIhd3\nH36+u2VRc+WkIM3tvWerEvas3niTMhKzICAX3eZtiktLLB144vdUAjs/mHHIUD+p6/ZWp6MTQtPH\nYhFTrfovXOvr3yaRtGlMrj+wZP8gtyqg3ZLVomI/s7YUZ7R35OKTyiI27DX3vYgjsihqCKiJrE5r\n9g/yTjoY+wzWdowpD51MbXMxFe576Lnq1b3fjl5Zdx6dsutkmW13P7MecllkbNxKXUJ+CkBUG9Jo\nQRadtOTr3JTdhFUWqU1cqDAnmaR/XzqeI7Rin/Jm0ven77cdS87tOOCQ0hlvyj15Tp4sTZpOqtDx\nJqG4mZDjgH6X2t8tbVz3m4WKTzC9WKpAxgZ9nSmi1QSSN1Oii/Jvn8cWG+HSEkvHK6xRQehqkA5z\nCcXHYDoS6EhCQ95OsJ5sWjQxMy6grXvB/kTgXqijw4z9g7ytUpknZWtjcJKKj0VsuGNZspusiWUR\nRyzjhGVsAJtr7OgkYWe35PQk6QVV+l5AoUlS21uclDWUhSCUGiUkNfpw+xw5LBLTesjtpRVptLSk\nUubNhXLiKCWNDLtpzX4WtzE+Gr7NrE3iqTNi66y7jUdTKBhWT/Sb2JWG7lmnKfHTCe3sFiwaotfl\nfk+PUy8Wq9++dgl2RcGgOzm3mY0hSCpDvyEME0xwcg+kSRoiLlhrE1rX/zTmrEg4a4z2ZRq1arBO\nduOLSkYpgiwux5R7Oe5yAGP67aEYAn/bVPvuvI7nTaA87dz4mHYCSv09Zh3sFkgi6ZMLuyV3NO/N\nWbW2rQAcZBV7ac3VrOIgazy1cvdilySR/bxfCEeprRfjnqFLOeMjNFn6K/ShyaE9PpDfKRRcGoq1\n2N0r2Nkt2W/sTQeplcauJBGxpFCewtlD9uD8lHRnh4OsYhHXZFFkC6cFyCWoqmsm304htSaafcjx\nYyifmL7GFEISm5+hwWUfCP0eO3tFMHjXRy8+xkM3ut+01x1zN14FrqttUGGY3piZu9hzfXKS9lmW\nceZsTL3SFrd3wbbbEZeaWDR89coQoYQ8moYCxvx2Njlm1Mg5sS+YRFL18/QkIVtUFJUhj6WRQCwO\nsopHLip2k7qZWG0t+KuLM6AijUxTAjnmoIDDtEswq1Laa+tkj+d5BmPxP/oYPw7Iv65WgWWRDQY9\nSG2esFhS0miBye+D0zNIYkx+Qrr3SNJo2RCszRidVaztQXtFp18+6bln0JWCTZAIfbvcpgF5obgU\n3zHATaT7B/lgzFSovbnBjOsTuoTi2hsjFX+bWxi0/R+wRU3F9gy9lwt1vJbY8lU8mj3jphEJsrwc\nU+7lsCTdBOashKbcZ/22po4JHZctqll/+ngdNJg3/vqrZsI7PU47NVvAqobSCLLIBlFGEhNL0vyl\nzerdtMfupaZd/beTdWLaa2fZ+ATWXvecL+8Q0QNtSprOdRLTUfvpdC4tynB7ztaySEz7XF37oyv8\nC4jgHhoTm6LTzxnqttn9zaT98xdmfr8XG/ahPbZ5BvpvCotFX5LVdj43RnybzIdDGhcReaaI/JmI\nvFNEXhzY/4ki8nsishKRr/f2vUpE7hWRP/W2f7KI/L6IvEVE3iQiT2u2P11E/khE3tr8/6yp/t0y\n+hSRu4HXAI/BypqvNMZ8j4hcA34KeAJwD/AcY8z15pxvAr4Cm2vja40xv9Rs/1Tg1cAVbCrprzNm\nqPhwGFPxJVMGwEkDoed2HFQNDbwsm0xIPfdmJ96rOIp8FberudVeQVHB2dKwXme4YyvgmFhSjosV\nx0XMg6uEY/Ws1hP1OrjyEINLhzKWaHIoXqe1D5TrYL0hR4jO8Z50pn+TnSZVzVlk2Ffnz/X+cl5k\nq3KdPv/oMGv3++lbtHu4c+ENjRHtDRja76fA8VGWUec5hfriPuvznUrU/Q66H/q/n/5/yPV9Cjow\neGo8h8bFEPzYmLGEmW7bYrH2QhxL5X/RkAvyChORGPh+4OnYevdvFJHXGWPerg57EPha4PMDTbwa\n+D7s/Kvx74H/3RjziyLyj5rvnwncD3yeMeb9IvJUbB2Yx4/18VbKZSXwImPMm0VkH/gjEfkV4MuB\nXzPGvLxh4hcD3ygiT8ZWSnsK8FHAr4rIJxhjKuAHga8E/gBLLM8EfnGqAyGX3rHcT/qc9iZmunlu\nEu/hsAmhDAWuOaRNChYdWHb9wQWnJwn51Zyz/bIpfhVxbdFEHNfCblWziFcNocQdUlk0KrRlW94h\nTC7QVU/5k5k/GZfF2oA0J0AwlIPN35bnEckqhszFr6zLEgNIssAkcfu5NGVTnji1JYwre06+6qbP\nD7pBB6pstvEhRcrOXjHoWj6Wn27Ocwi16aCDHh1Cv4NG7/68ezuPx9QckpmbRWAsI4F/P9kI6XyY\n4WnAO40x7wIQkdcCzwZaYmmKcN0rIp/rn2yM+W0ReUKgXYMtDAbwCOD9zfF/rI55G3BFRBbGmBUD\nuERQUAoAACAASURBVGXEYoz5APCB5vORiLwDy4LPxrIkwI8Bvwl8Y7P9tc3N/DcReSfwNBG5Bzgw\nxvw+gIi8BsvSo8Ti5JmhGJPQoB8ikWCG3v4Vu18nPE1unlS6sQUtXIQ+aW9Sz6/mTeljgJiimXzT\nKOL6Km6KYoUxJrn4Efo6jYZe/S6PrVeWTh3fpn8PpJD3V+Qa+nc9JbWqwqwmr7vqv8oUnXr3AEQJ\ntamoTUVRpz1p5eQ45fQk5fRYeVDktnyvdjn2XWQduZwepx01pW5jnQhyrWbTNgf/fkPSXDAgVwX7\ndo4ZSD/Tg7q/XrzKOZI2zpEQxo7xJdtQssuxNvzYltsQjxKRN6nvrzTGvLL5/HjgPWrfe4FPv4Br\nvhD4JRH5Tqz64u8FjvlC4M1jpAK3ifG+Yc9PwUocj2lIB+CDWFUZ2If5++q09zbbiuazv30SfvAh\nrIO52hd/zktLuGTvGPzrzCmoFMIUqegkfp1Kgqyll7KMODq0iQZX11atK3JZJ6yqmkVcD5KKTWpp\nWFXSkVyyyFaoPMqNNXQfp61LcjspD0RvO9fVzgS26sYXBSfBTgYFtarOkrWkUQpFZY/rVI+MEsi6\nrnarypYmzptEndZO1bS1ijvPWvd3EjqPlp/1gbXHXygNjlttd+J6QmmERjJGt90IjOWxcTxUf94v\nvDWGniS5inv2mNBEPyZNudiioTb8gMkhEpp7D+fGZild7jfGfNrD15kg/hXwvxpjfkZEngP8CPAP\n3U4ReQrw7cAzphq65cQiInvAzwAvNMYciqxXPsYYIyIX5usnIl8FfBVA9sg7hw8MrBxhQBURSHc+\nio7v/To9uW9o9lPCDyUdHEsEWKVRsDCXXyu9LCJ29gquP7C0G6/ZxchZZfjo3YhVtf5NFnH451jE\nhoOsYlVFLOOIwwJ0ETHtReVwepxCs+7REdy62qG+F03+PsYm+CI306vSuu9K7DJBE7iey9vm9zGE\n4NgISLXrwMQmX1tgXPiu1FqyCUptLl+aFzeljw3Gcs1AqHDY2OIoFAnvx7csFlUbcOswpgKcq1Xw\nSShEQPoZzomPuoV4H3C3+n5Xs+1m8WXA1zWf/zPww26HiNyFLVv8PGPMX041dEuJRURSLKn8uDHm\nZ5vNHxKRxxljPiAijwPubbYPPcz30a3tPPiQG1HylQD7H/MJJhTp7GfWdfAHdy/Z4QTWRLGeNOak\nzQfa7VPJAH3MiaB2OD22uv+T45QsqzlMctJYuPfMcJBKL4jSJ5hFXLOX2r9FHJFErtaLYdm4NN9H\n4T0LOM0T4qLup6Zx95BNT3TnkhoIlCXO++QH1ksui/oBrWNBe+dC3h0bDqFxGuzniGuwayd0nA7E\n9VOvaJWdDlbUBcnGVvluEg8Ru6sJo98BoJPN4SKg8/350osP38NvzPNwcwgkF2LfeSPwJBH5WOxc\n91zgiy+g3fcD/xPW/PBZwF8AiMhV4PXAi40xvzunoVvpFSZYUesdxpjvUrteh2XOlzf/f15t/wkR\n+S6s8f5JwB8aYyoRORSRz8Cq0p4HfO9F9vVmxGb/JfZXZ5pQxtpL0m4a8xCpdFLSzKiA6U9Wp8dp\nU3wrsf2KSpZxU7a4bqL0G3WXJhZLKDb2RRvEbaR+1MTJ2HYOk5yjk66HWrUKk0oIY5LhGKkMedzF\n0os0hbokkphIYtJI5VNbVK03VZLWPftPKJjON7yPEsTIJK3JJRQAqt1o9X4/e0NI7dRRqw0E7erA\n3DY+x+vvILF5k/jQO+DbnabIZUySCHnnOdXzlGfa3AXfrYIxphSRF2C9s2LgVcaYt4nI85v9rxCR\nxwJvwhrjaxF5IfDkRiv0k1g79qNE5L3AvzPG/AjWAep7RCTBZrD9quaSLwCeCLxERF7SbHtG4yAQ\nxK2UWP4+8KXAW0XkLc22b8YSyk+LyFcA7waeA9A8uJ/Gej6UwNc0HmEAX83a3fgXmeER5tDmqBpI\n1T3kWTLZ7khqCaD3Qk21WxYR5WJdiz4kqfgRw/7Kt20rUH8DsIbuJq3KesIo26zIWmpJImlzie2l\nFdcWZUs2aR6TRobjVgCI0HYX+/PZa+/sFhwWC+KiJilqlidFT6U0pGICgvYk8CQdT4rwi/jNqXG/\njOEI2kDL05N0VkoRBz9ocSiRZkiS1cfp8/zca6EJMCQthFyY/ch/P0iyZ8tJQZPo1PgNBV2G3oFF\nYto0QWDJxT2vOSSm4auHtV1ziFxCpHJhdpdIena888IY8wasB6ze9gr1+YN0NTn6uH82sP13gE8N\nbH8Z8LJN+ncrvcJ+h7ZkYQ+fPXDOtwHfFtj+JuCpm1xfxLCzu3b7bCOJH6Y0DnP89+e2Y5Mgnk9N\n0JtkBtQsbaxGbiWNohL2M2t3uZpBWUtHallVEYs4EFHdqJuSSFrVmE3BrwpulRGnuX3hSpXI0EFn\nDg6pKmOVDFFjjJDmwAWFLmNLRovEcAptUF0IfuxHCHNW2hpBD7LbAHNc5n2ESEVjVTau7oGsDXOv\nNxVro+vc3Ib2k48I3HLj/a2CyICoP5DGQfveu+PHEJpgpuJcQi+Nm0ycR5VTgU3ZhzaZhLR+3WUm\nXjXXSFYxR1Tkia3jst8Yl88quDOQuKGohZMyar3I7Nxe44IvnWptqSQXiyWnpHAc7mNIzTWU4Xno\n/to+Nj/dqorC7sYeXKLOLFq35XsWhQI7xzAUm+J+N21DG3MgccF+SVr3KiPq63Sk1EDg41Q/Q84B\nur9D582Fa0efF3JY0aQw2taAJA+3MLJeLk5iud1xaYklitaG0qGXBoajvuesdkLkEgpQKxf9pID+\nis256c6C8gJy/ZwKroP+C9fNNVY1Dlxr6QUMB8oN2dlXfNdkTS6L2HAn2u5SNhOhTYB4RhpUSWoS\nCZFMJxutf1+BxUKwFkvgpU9VKYFlvE6V4wzAc55rsE8j2QR6wbQbGLEHbTQD1wu55foI2XQ6k3eg\nIJ5+Lr4n1pjtwkkbbSLVUJ8nFmFBSWUDUjnvb7rFGpeWWKAbGzBlzINwUOQcchna3ls5BlZ/68SR\naa8PtgPd8ru6SJnWJ89ByCajV8FJWrfSi4VzjbUuyQeZI5E11p5XEWlU4zghiWTdxrW8Pf4Gy04t\njsEStXRT0o97wI2rNWtT2TiWAVhpxRLhIjFkWc0J07nfhqRb34U1ZGh2k/WY5OlikPSEHXJN1zYS\n6KaB8ftwLvWQGn9jVR2nsIlqzR07Kzh5A1KZo8o8NwRILseUeznuMgCR8YE2R9T2Y12mKgL6nkFT\nA70Ta+ClVh9Sh3UbMMEX3WHoZfddLPM8IsvqdqLL05rVouKsUnEqCBC3sR+aYOyq3wZZphGkUY0V\nLuz9nVVCftUWI/PdqP24CietJEUdLCYFfYJu1TneCrmoN6sUmcbQeEyzCBm0GR83PqGMxkiFFgse\nNqnHrqXWuX0eJQMvZqrt34gU02l7wNNKn7PSZDhgB9T96V6gn6mh14e5DgBbbIxLTCzrgagHXVCv\n63tR6RWaklymVBbtylFdb0qa8COsXX866q2xIE2vvLLvgRbyXgvV69Cqubbmyl6BtbcIZ5Uhr8XW\nLQFgTS5FLUH12EFWUdYJdy4tMa2awMwTnSpFu7c2cBUFqzSi2E96zhZjxu5FoiZsvTvJ1qowJb0U\ntU1xk9dCUa2Ny87e1T6Tkcl50zo+PuYG385NGz8FX43Vi58qIsgG6sHfRByPG5vtAkzdz85e0U2h\nM/O65yUU14eLi2G5XLi0xALdVVOer8Vw/4X0VRWdCPANX6SQvUOvJP1j5wzsToT1CLTh2b+Ow1AR\nKB+nJ4mVMHZL8t2SolpHjK+zJNeEKjNYicZwXMTspjUHVcRZZSiuANdWZFndj8BW1TNbEp0IzvNj\nPxzSOFw1c31iRm0qKlMAcVPC2dplXGoY35nDxxCh6H7Mmvj1+Br5fYdsI/o6c21tDjpSfjKn1k1W\nWdTuxi7Nzo5XWG2SXFRbg92c8z4pddiFJqzcGu8/8uFUYa3EkYWlltYdOZAyReMiXBf1gB6SHAbP\nnSmyay8fh01qZOjMxK3HURHB1RyQZhLWKfi7arFFXLfljvfSiqKGvVTafFxnVTf9i05N36J9N/vB\niKEMCVP3ZglEOpJKZQpqU7XZja3Usn4GME0qUwsDty84YQfsAiXDLrQOIWktZHwfNOZ7rrg6hf5g\nSqNzwKlXXZ8dqWQRcE5y2SRb+FBeMj2ut+7I58elJRaHoRdxKrmjw5ygKx9DUsuoA0Eg8nrIZXXo\nfD3huXb8Y8ZQFlErRegVrFNZrPYKz+7SJRcnqWhPK7vdpkw5SK1abRnbCP0ktcFpJ8fpZBJChyC5\n6OC8If6NEqsOc58pWFVCUdOmzXfZjX01mEaIVELedn7/On0eyb3lyCVdVetqh0k/c4M/rv2qjHMw\nlf5kjh1jasHTIxVoySVfrY9p2yuV0T6QAy2UrsbfPmSc96XQi5daBIkvh8fZpSUWY/qD3tkR/EJD\nQ2gD8zxyOS+GVGLQ7avu31xX1JBBW78wuvgR9CcJN7mXZdRmJi4Lu21nt7BSTKMac9H6dy6tO/Je\nKhxkFZZo1mlf8tpO3KvKSiuHhd2exnBHDFlUWnfwzKaZGUrxMRVfoaXO3Hu0q0qsAT/Zhbh5HZKM\nojpiVUVtdmNfDTYUPT8UZ+LD/w1Dtju9WPGv5zz/SNc2tyFPqVCOuTFo7yzfXT1oMFc2vKH2HHpE\nqdzZacglr7uBklpKbs8JZG2e+/6NxZht0s4Ww7i0xFLX0uZ90nADOBQz4pLvafjksglCK7yhAR0q\nYNSRqGYgNNlCd8U8JjW16hAnvTUrysOTjGTXpoPZ2S04PSm4em3FUQ6PvmJLFh8XCXupYRFHHDde\nY0UND54l3HtmScWPLdnP6EgvMJ4/qiwi0iOrOklZP9tTbA60JK3btPk3cjguojZIso6EaGFrS9aR\nUJUlJ2XESRFxVsFR3nX/HYrjcGhJ+CQdDEbsRoibjqv44GTpqcLGSMRdw79uaL/flvbO6pGK7wq+\nmnYwCL0bOrDTeRtqEnXbO1LyifSySjtbpybE0DsxV62lz71QddgFpnS53XGpicUvXwsjumQF55Xk\noMllDtwEMlStckzt4/rotm3qDukmxyHPtCE/fr1KT1cly5O1HSQuaqpVxOki6Rx3uluSX805SoXD\nzBKMzZQckUSG40I4LMKk4qClF7ATnUvv70+K6VG3X66+yzFwmtpiXzu7JWdZSV4Lq8pmCSjqlY2+\nz3YAKOoVRX1GUccNqayllaAazJ/sUeTDcNqcoUqTsB5LnQl5JEUJ9CVdPU7OOzkOxYn4amG/qJkP\nf+Hl+qTLCbcEo6QUvyCcf11dQA2Gn1eoDMbgvaqklVucD5eaWEJSySCpTHhdbZKuPS7qtbvsgHdT\niPD8/aN+/LrfPnKzzszrQRf/0vYYra5xCSMddIGus1XK4UmmpJeEo6s5+7ulIhib0uVGTqtm0miz\nCUf6ngT2y7Y/J8dpR2JbPphz5aToEIvG9cUO+a4t1JUtKvYzQ1kLRS1UpqCoz0ij1KrB6kMeKmuO\ni5TDwqpm2hieVbjIV2fF7v0WclR3JKipsdJOlkp6mVNjfqw0sb+YGFZJBeDF1Pj34GemDtXTgXGp\n3hGMVntptasrCOfDvUed5+X11b/2VHyO/3noXdkcF5Y2/7bH5SaWCdfF1j1X5dLapBBSCGOTylhi\nQxhWWww36L0QI9Hs0FdnhNQn6arqFOTq7GuqQD60m1KtIg6LBacnKUeHGY+844yj3bIlGD/DMPQJ\nZRmvc3QtY8NBCg/EsLjzjOuZsmm4+8orslW/YJebeE5PUvYP1lH+jtA6QZJlThTbQE+XMn/Q4O89\nF43Q7zynNICr9NmZLGFWnEZYZWU6ErJ/jh9bNTWunDrYl9p9DJGLxph67vQkbRcyy+OiX7VSZV1o\nr+kFknbGs5fx240DX2sxx/PudoCIPBP4HmyU8Q8bY17u7f9E4EeBvwN8izHmO9W+VwHPAu41xjxV\nbX8pNnX+fc2mbzbGvEFEno7NOp8BOfANxphfH+vfpSWWKYRUVC7F/ljFyKkSxbqeu86kHEqn0l53\nIqJ/ThoLHesyqA9XL5+7ro9iEbcSS2jieGjXqwPfGJevP7CkLJpJfbfkgH76euiSykFq/yeRlXAO\nC0sw6ZmQXVvbXW6wpFpF3Wuzntwf2k0pFjE7i7Lzuy5jGi+1JWm0hIeOAEh390mjJdcWJdcWMY++\nIhztFdZFdlH1JN250qr/vKaIpljEJLumTQwK8zwAQ+04jJVT8IN3W5LxSM1fXA2RzNhYb/vjxfos\nfAnZvxc/jc8UvNIGO7vFdJ2Vh8sMckE2FhGJge8Hno4txf5GEXmdMebt6rAHga8FPj/QxKuB7wNe\nE9j33ZqEGtwPfJ4x5v0i8lRsHZjR8u+Xl1jq4VVJSGXQemwpcgmtIt1LN0Yw+kXbNDJ7LPXHutP9\nOiEOoVrrY3VFtCosSW1xqyqNKNOoV6Peh3aJhXVMiot78cnFJxVr7LcpYlZVRBIJx4V1R76R2ruB\nh4Amx1jR/EYqjX67cs5knVMrMS1hZZEhkphYEkx+Yvu99yiW8R576QMcZBUHqfDoK5Dv2oSZ2aKi\nPEk2Un/66Ky0PYLRKlJXvtrBj78YJRqtQvPGWyijg8Ygybh2oZPTzXdsCUkLEHb7HXN/d+PNoUMo\nMyu3+i7gO7vrBYb77AJyP0zwNOCdxph3AYjIa4FnY2tVAdAU4bpXRD7XP9kY89si8oS5FzPG/LH6\n+jbgiogsjDGroXMuL7FAkByG9NCdXEuOXAhINioFiU8ufmXHuYF0vW67yWQDUtEqj1Z68e55TFLp\ntL/qrr5HVR5evjL98q72Ch59xXTI5WpmVU97qeEgq1T8C21+sbKWRj1lgJKysOP7/mIHHsxbQgFL\nelW6TmWjV6lW3WXIoitEtcHkp02fT0mTJVeSiL205s4lHBawv1va6pqB5zNYZEyhs4KnOxlr9WKV\n2t9nZ69oV9jQ9fjSiSW1w8kcFakbb34s1FBVSRiJcUrX1+xIMiPjC8Kk4qv18lXcjjcgYJM0wXvW\n13PX2T/IWyklSWv2m8DLVSkkK2t72z/Igw49twiPEpE3qe+vbEqrg5UW3qP2vRf49Au67v8iIs/D\nVp98kTHmurf/C4E3j5EKXGJiaVOFDUgeU5hMJRKyx4xIElPt9oK0RvTAU4GOjlzGjLm9c5RLslOH\nhQpr+at457GjyeX6g0ts5VO4jzW5OBvLMl6XPnZBlTb+JWokGBt8eecSbG0XpRZLl5RFxJmyJxX7\nCQe7K3b3Cnb2CrLISkeLuGYR10QSQ5nbP2hKEy+IJSWNqkaygSySnvpEE0ri3btvB5ib82sIYyla\negsHjYGKojoifyhJZSig0k+e2VmseO/TeSQVfR13L6NlESbygXWurd49HYjpftepTOc3hc1Sutxv\njPm0h6cjg/hB4FuxjP2twH8A/oXbKSJPAb4deMZUQ5eWWIC+580IxlYxoSy1HZVZu7NfJ8VBe8UM\noRu3MkAsnoQwFJ0f8kLrqL0m6sgMFdVy5OITjO+Vc3SYtZPafRTsZ6YtApZFNGn1o7aWiwtWbPsf\nGZYIH71LU9ulJFsct5OlzpxwsLvikXeccfXaqlWDObRVMOvS/gVQ1jbljA9fhaVVgpvaArTarlg0\nRdZmpOXXv8tgVL03Jvw22v7fRH0Z/3p+4lN/vE+RStu35v1pXfoHnuVYcC/o8hNuyrP1hVrX+KaQ\n3m0irUzhfcDd6vtdzbabgjHmQ+6ziPxH4BfU97uAnwOeZ4z5y6m2LjWxhDAWdawxtKrpHe+7ig7U\nSfEj4X10or11IsyhjMZs7ocfincIEZKTxqYcFRzWpYPXw81NiNcfXHQi9rtp+K36q6ijXnZkRwhl\nLdy5bIz6MSySU45Okk48RJLWLalkUajmfdpc23Uup86Sxg05bnOFHeVi2yyjcRtaqE5MQMJMV9Wk\nncapiNzEOZV1oZO/TaNxMdfu5O2uATXa3Dx1QXjBo6G2fFLR96j7N/WM5sZyrVZx+/zafG+ByP5O\n2xsUWZuFkbo/G+CNwJNE5GOxhPJc4ItvtlEReZwx5gPN138C/Gmz/SrweuDFxpjfndPWpSUWMcOq\nJJ9cfEyJyoP2jEDKDqCjdnAIxbH47pduAhtcEauV6txJQueHmloxj63E3WTgVvVVGnX6o3NQWcJ0\nbsA+ucRrqULBFhBbv/QHqfDEfSv1nC1LjvKGCJr7caSi1W0doavM+f/Ze/dY27azPuw35nPtvdbe\nd59zrq8N9xoC2C41lmjABVSpTUhqC4m40DoRjzYEHIU4cOvyBxC7LpdKNZIpKBIJNFe3YBARgUQt\nUEeYJhCqINGQ2ICU1CgtNhB8L5h773ncvfdaZ635Gv1jjG/Mb3xzjDnn2mefcx/7fNLRWXut+Rhz\nzDHGb3yv34dqmANjKF36csaUy6IQ7psQqHCf3FQoa0wTnCOxonGxfA7vOJYrsl3lAzaB2PiZ5B6j\n5xUWoLms3fmuGYYax/JhxIYqNk/X53nPbzcDUF5pWozWulFKPQkTnZUC+IjW+pNKqffa359WSr0B\nxk9yDKBTSn0XgLdqrU+VUj8L4M/D+HGeBfD9WuufAPA/K6X+I5jJ94cA/qa95ZMA3gTgKaXUU/a7\nd9oAgaBcWWAhiZnDYrusfe2vns2bAwybuDGiv8HgtpoK5YtwGQMXAF6Wf8g8FuISk+DiLSIzkvao\nnQ3zvXCthT+jH5HTg4sxjxnhfhf6v0z7UsgLKDxxqFF1wJ0cOC2As6JB1cGBiqTMT1R80TD5LYzd\nmO14KeQ6FBEXSnyVvo+QtuJ8VgUvQdDLmLYiNwH8fqEs9d5Mq11b6H3lVYutDdGWJuIx3+CoGZeN\n9bE5RAv9Xou5yM+SY2zsPsB4Ps2+zBajopKe6PQeRWv9MQAfE989zT5/FsZEFjr3myLf/9XI9x8C\n8KF92ndlgUUrNc1vxCg5SPalx4hRYoT8LZMDnBVX4otF6DkGoZ/CBCefIeTQlxUP55gF+IJZF6m/\ng3dFucK7wNu3FsYMUu9QnVTYLswCa2hgzDEx7YW6YNcafi8jRuupWx9QisT3szghx2pWWCp9OHZj\nyr4noZBrklDCXkwmTWA2/4dEcldxX8iYX2yszIM5ud8cyM1KWnduXI1FDcaKzvFnBfzFvmI0LsAw\nMMWNMwplHvNXhTY3XFPP/LnLrx+by/tE2D2UsFxhYAl8GeNiqtSocz9mwrqMgTlYgAtlJulZMwqM\nIcJMalOMvVWGafIw6Kn8mbEFTIIK3YNfs2K78cqGf56dVDg7avD4Uhs/CugdJE5r4bLKO6zyDmZY\n9+BSWa2HA0phw5hdQa/isLd/Jxk6vcWuHVa+5DIWZk0knb6PRc/yqwCWQqYxBIxcw7wsBztnkwiF\nj1PI81TCrCyZ7UWHcbGLfcFMUFL4GGjW/Xybax6UtDpNpbBBPprzE+vL+wIqCj2D9mtcrsZThiQZ\njwIb5KCw0GHptwjaaPdgHI7Zr8cWkPrIvrpLpp+QoDJmPgP8fpIL5hgXmhTOTExcY2enBTY3tqge\n26LqYGj48zC4rPK+gBgWDco0AQ1vUyPG/pT6/zvJCqA8tJ1wiLY+c6DCI8JKa8rZlH6CZGzxI9MT\nBxTyGUxRnlyEINUdG4kc5ImXPHycC723sSz9mMjQY7nBkQErIXJV3nZ+/oCPbUaaQLM2AQtz2u3O\neaip3LNcWWBRSiNbap/+HPGFkvibgCHzrFw0owMzsIuLTY6p8OC+wXFzG03KGB17TDioUHx/w0wu\ndD9JSMgDCsZAZcAGsFZYnBsSScAns6T77V5/F9sW+LxlDy6ldcCv8hbLrLM1X4C8or5rkCUpzuth\nH2eM4LLTLZBmUESbjxatblBbBuSYzN1Jcx+G973g0wpdL6TVkQz6cSTgIvQ+nJYhcq5634qeBSpc\na4nm0gQkZJqS89Fr0+AC8zZVtGGJXi9Q9uD+SAKkr5rs/nuSKwssIeELZYj0LsakOjusV5oIRnby\nU4lpJPtMZC4h/xEwkXUfELkLB/aLbDKgUjtm4mLX4O6qcI7x+jzFn+6Wxtn6+ruoWzKNGTNVnuwf\nEkvaSm7pXO6HjLH/AnDPN0bWOGa2HCMsHdNqYlrI5TH49veheUH1UjytYEa486gEIi25hOZyrJ8d\nqM7QrB/KPIkCi1LqGMAHYCILfllr/Q/Zb/+L1vo7HkD77qvw3VFsVwkwmzNGdk5zs/cnspK9Q/cI\nEpgCl7nRb2MOeh6tI30FnEYF8PspVv+Fh5NyZmK6LjnHKcR3s85wumxwVFunfpu48sG1pcAHgHWT\n4LxOcGtrhvciNQ54mRhZJBqpyg24dA10M8pSAcD3DXAtNiYxokl6tqg5bGRMxXx63ngRCy7XQujY\nQb7Vbli4brPOL8ZhB9+PM8Y2wY+P+mj2kJDZMSacd0y28dLDjJWCysrLveYrVMY0lp8E8HsA/ncA\n71FKvRvAN1uOmK96EI27n6K1ujio8AkfiPJ6kDLgMJsLLoCXHU3nxyaTl7QWmfS8r6RMmd9C4hiU\nK+1MYmfrDC8kw1wX187WgMpa9AOBCpnAeqoYmyDZVEBrcmkS7k+z9WJ2jXKlq6sJcLkI2/FF+42/\nf3/n378jfm1Jeso3EkTVcy9VUUMyB1T4sZOay8g8C4HKpHYYoLzhAQkPZX8ZA5Yv0lq/237+RaXU\nBwH8mlLqv3gA7br/0umBuizzEmihlIASoqIHMBtc9uHoAuLmqSifk20Tfz5aXLyaFQGACWkW/DMt\nWhdh9r0IuORVi3aXuBwSKtRlaFwUtq1G1Sk0XYZda64tQYWkB5V+0U1UajWWHdBaW3zXIFUZHPsh\nMFi8pS8uBAxyYeMy5bg3NxuOJxmhJTXMmI9CmnmI+sZdpw6DY400GhU5513OGd/BJMuY1iLnWutG\nsgAAIABJREFUIKNNCm0QZb4XlxDLeKi9l559fwVkDFhKpVSite4AQGv9A0qp5wD8OoDVA2nd/ZRE\noT7KBo49D0zsoMtEDQkSGSk1N6lSJh1y2YflOJQ1TJO0QTKgNe8Pms/oLNtzuKpR7VJsZSq1MPFl\nzuQydJzyRXEDk4hHOS+0q2zypH8XRxkOS8PyS8EEpzZJPrf8YtsWOG6TYH4Kd9QTqFwrW5yUwCJd\nIdcp9OY2wNmN8wXy5Nyeq3BkKfOPjivT7qM8GvJN37W74YI00HonF0/tgYnk2PLAgRZA+2qaOnH5\nI4erehDtx+niD1c1Nue5yboPyQzT3Ni4HhPOrMyfw0WtFTxUXQ/GKDn9yVfCyVBDWqEPKI1Xo4Vk\nuaoHNDr3LEpdFqXLK17GnvKfAPgLAH6VvtBa/5RS6rMA/t79btj9lqJo8ejrN6hOjInn7q50wFCU\nLQ6yKriwcqEBd7isJx3t/DreQs7YcmOgFAtnPlw2juuIt4ez01a7FHqZeOA45qCXEWFcOyNTUFMn\ng9oVoYUk1HcyrJP6brPMcZsKaAkW6EeWG8NMvGw8ehbJiAz0VSGl6QuAq+1yrWzxOYc1ltmjOEwf\nAc5fBDZ3gDum0BdONsjLazgpgRsLU4+lbhVw0rMoZ1mHTZ7jkAFnaHH0nj3rcAA/85xn0fOEPW6u\non7kUXqe1gwExwFdExjSxvN3kOUd1ue5eSZWxGwMHGK095L9eU6YObVffseZBnhbZHIln3+OqBWJ\ndy3uz+Rzm/dJjCfvYfjx/hIFFq3190a+/z8BvPm+tegBSZZ1eN3r73pkhcQwHBpsocTHQ1vToaoS\nt8MZhNYGgMObJJnd2bOxO9h1H5j70KJZ2UtSLQlqE10/tJuVO125MPE28mc/KvTgntUudc8un21M\nYlFtshZGaLE6XNUOUKiPTNngYRb90J9i/l/lHa6XDW4sGhxmj+AwewTYnkKfvwCcnkK/ZIFlcxv5\n6lHkyQKrvMJji8w9P+xzZ3nnlTme9fyBBWxznjvGXQ4IsXHI+8D1YWfeC/UnMFyw+XX4Nc4qM4aK\nonNmRiljmyvexiM2JuaUc+btB+LPMHZv+ZwxcI0BiRxTJNsWQNF47bt3UZdG6fJKl6uhlwUkT4HH\nTxpH10ELpiQsJCbc+qAJLuwAcIjxHAMJHi7cNZCsV7AdthzolKhH7ahbja3lwpIgA5iJt1z1xIp8\ntzpITmPnEKBwbi1+T7C+kO3k7ZPCj8tTQ+y4LRocLRvX/66trP8I3GS/jd0jBCqvP6it+esRHGYn\nSKpdbwLbbIGNqUaJ85eAkw0W+QrL7EVTdCwHAIU8BYqk8fov9K6lyPFE7Tw7qHB6UuH2naJ/N4GF\njz87Aao/HrQhyjzoxzTQj9HQdUw7NE4z0//7hq3zNh7nQx62/tnjEV6VDY4A7NiCGRPmt9lNcc8J\nhDeBof6U7eXtlHPtoewnVxZYDlLgPzwxhIXblmz2ZkDTLthMYHM8HUcLPE1mAG5Cc+GLH+eo4n9z\nehH+dxaZiA3jrQJke3QU/Diw8cUNq8ax9nIT0lHR98ExL2HPJro0OXGRk5GH+kqw5O3dto3j9fL7\nx+8Pfi2+WEowocz8a2WL62WDVV5ika5QpkvkdWs0lfMXgedvQd+8je5PjcaSnNwBHvlTHL7uzbix\neAmfu6wB5Diu4RFc1gdN8D2TyE0Cb2+WaDSdwmkN3KmAG4sKZxWChJl8PJrr0mc9eN9b8T75O+Pa\nHTcdHtXD8TNHxsZKqD9I+PimMU1tHbZ/bqRl3xdYmbnIxzb153E+nNuh9nK2hkvTWB76WF77cpB1\n+LOPbrFuTK2PujOhqlQGF/BDUk0Wdn9cKCO76VTQUUzXAuBd2/xNi772/ubHALD37gtO8fbQ77tW\noWETkYMfX3x5u+RzkB+CMtrloj5/osPllYzJeZ0M2k5tlH1m2scSDwMAXCTafW/IKTXyZIFF+ogB\nFJ0C6zumvv2tP4G+eQd4/ibaPzlH/QcvmetuG6Sbu8CbN3j0sTcjPznD561ewmmVYt2Y90DtDkno\nXYfec90pl3NzWhmGAA4sy7xjZZn78RLTAPjYABCoYeNfo7K5PzSOTqvUGz/0LkhCv/HxIsc0fyck\noXdG7a1YLhK1fSz4MNb/fEyHxlRf7npersyYxvVyiVLqawD8CEys/Y9rrT8sfv9imJSRLwPwQa31\nD7PfPgLgLwF4Xmv9Nvb9DwF4F4AKwKcBfJvW+o5S6h0APgygsL99j9b618baNwksSqn/aux3rfXP\nT13jQchUR0spkgxvXC3R6gadblF3hnSwTPtsbJc8Bziywk633sANDW5JkEgLOc/yNsWlzHcmtNX/\njh9HTLvUBmoz/57axNvDF/Y86RfqKWDJk4VtV+n6wFDIG6H7cqG2y99bHa7KyJ/nbtM54ORtpXfh\n9wu9m8y7NrWvf3eZa3ueLHxA2dwBtneh/+QF4MXbaJ49Q/X/3cGdz5rktZPzF1HsGmRVDWzv4pEn\n3opHDl6PRxc71N0W2/Ycdbf1+oT6kb/rfvz075j3lykkZq55WqUOaJZZ5/rgIEvsdXL3XLK/uYT6\nvtOte5+hd1V3Ozu2t6MUNuY5+/HFxxOfMyT+OO7bLdkOqB+p7TS++Xe8r8PtUuLv4bwkyh/+bmLX\nlePoUkRdjo9FKZUC+DEA74Cpd/9xpdRHtda/yw67BeB9AL4+cImfAvCjAH5afP8rAD5g6738IEyC\n/N8G8CKAd2mt/1gp9TaYOjCPj7Vxjsby1wH8JwAIob4awP8N4AWY7fDLDiwzO9qTRGs8oo+ArECX\nKG8w88WekuWIP0oO+JjIwRiaZC4Rr2tsgp5fxdCIvU9WAMkCyI4N+y6oHf3iMbdNsYkNAHlSmnZ1\njfE9NBVARa1oUiQLdnIIOLKhys8nlP3NcXLlW6/9HBBSlfXtIWkqM/KyItgX3jlNBdw9g757G9ht\ngO1d4M4Z9N0t9LMvov6Dl7D9o7u489kFXnyOHMALnNSnWJzVKDZb43+5fg1ZeYi8PMLh4hqwOHTt\nl31I48drg9z0Ws6oLleoux0eKWrU3RatNjk05tnz/n3wvqbrxfqe9TEAIC+G59D4Ko6A/AaQZKj1\nbnIBN/3cj7MpIAHgv7+m6vvENVmMK/teAXh9LCXUVjkH/Dmd++/GXr8/NzJ+dpvg/V9G+QoAn9Ja\n/z4AKKV+DsDXAXDrnS3C9bxS6mvlyVrrX1dK/ZnA9/+M/fmbAP6y/f532PefBHCglCptsnxQ5gBL\nDlN57E/sQ3wOgJ/SWn/bjHMflEx29EB2W+g/+jfA4gCqPESWFlDF0vzG6D20zcZWaYE8K/sJG9p5\n8MmCOjjxOW2Ibi2Y0Hl0PFUy5BUNi9z8SzKgPISyC1POKSLG7LddA+DuoA0DaSvo1oJKVWNQVZFq\nlhT58Df6u8iHx/O22b5TaYa8PEJeHJpFpbjuAZqu7gDVxqzJso/c9Q+hLIFkQveg90f9W22Ac+Og\n13e3wJ1TdLe3qP/gDu5+psadz5Z49tMdPvPvTf809QJdU+Kk2ULXLyA/q5G8/gg4PAAOFsDJkRk3\nWYEszYC0MFQd/P67s74fuYjxo4pDlMXS/F2YBR7VBqgboDqFbnbQdI1QH/B3EOp/+a5C77PIgeLQ\nPUtMHB2JN84CmxnbPjmHsNvY91sPxzb/n/WRSjNkrE1BSpSxTQwtcU0FmpO62Xnzmq5L40dXa/M7\nbUQClUUvJnv5WB5VSn2C/f2M1voZ+/lxAJ9hvz0L4CsvoYFc3gPgHwW+fzeA3x4DFWAesLyR1UEG\ngD8F8Hnz2/dAZFZHK6W+HcC3A8Dnfc4j5suuMYtPWgwmhFuY0swsuABUBjM4PBARIha/4EIeApXQ\nItG0QCa8oEyzoY2wysrIDnaiHWNtqmpzf5IsNd+NLVT8O34czXXqOzv5dbODSjIzEjvRH7Qg0S43\ndH17vG52oE1y7Dl12wIN67tta+rACwLGatehqVL/e/vcum2hqA/QL2CD+8t+pPa6nTtMH7QV0JXm\nWk3l9YMDR+oD6hd+TflZ/h16V43Y6bN+BBAFF+pXNWPV8OYQ4GvjJDS25ZgqMJxjaT9eSBzIUJ8k\nHEQCwjccvE1p4b0/95t7Vy9LaNiLWuu3vxw3tiwrDYCfEd9/CYAfBPDOqWvMAZZ/rpT6pwB+1v79\nDWBJk68msYj/DAC8/c9+oVZPvNUMRmFS4VxRfNB2aNEw/0bI9irNTNK27o6TZjD5md/b3p+bCLzP\nCKv0wND3EGsTmWA8E0C1GbaB7s1lDGRJnLnDbz+ZX+pui7a9iTTJkWcL5IvXIcEbhm3gIt5dw57b\nMzdWG/tv7T6nz99CmSdQi1vIih2yokBRGlPMY08AJ2/Y4eCNOYq3XId6wwnU0Qo4XACrQ6MlHV6D\nKw4WGj8OACIai+2DLlFodGN9Nlug2yLJU6TFIfLVNf99kMj+kL+FdvAxjY/ab5+FjyMpoXElhfsm\ngMA45//LdvD2Bsa5bFsjTGRjZjzeLu/9sGs33BTW6fAceGXIcwDeyP5+wn53z6KU+lYYx/5f1Fpr\n9v0TAH4BwLdorT89dZ1JYNFaP6mU+i8B/Gf2q2e01r9woVbfP9m7o7skwXnWAGjQtmdom+Hg4Qtw\n2zRRB36oXO4YHbu0SzvHZpYDWcImwaHnYCQHKwC07RlonoUmPLUTgAtKmCPct5EuciTqwDma+2vf\n9Z8lSyafGdC2/8y5vD+58z5PNI6L1rWjSA6QpGEna6vveteh55fBD4lKUSwOkB++zvgsOg2cvIjk\ncIFy8QdIjl5Ckp0jseB38oYKB29ZIf+CR4BHr0HdOAGOj40JsjwCFsfoirJ3endbtG3veDb3Ze/U\ntVc41hu4IABerZJHs7nxwZWqlPU94I0ZCKod028Nkjx3v/PxZ/w6d9E2Zw7ggfC75OPJ/D+s5BkL\nfklVhjTJkaQGNPn1h4EhGp3ems9tP1ZC/SjHhQyiIJFtovdD857Pbd7v+cECqToc9MXFRI8C9x7y\ncQBvVkp9Acw6940AvvleL2oDoL4XwJ/TWm/Y9ycAfgnA+7XWvzHnWnMNfr8N4Exr/atKqUOl1JHW\n+mzfht9H2bujq67Bc+vbEyGxO3ssD8vMsWvL4GIdKpc7xqpuju+QJ2Y3yUNRZQTXVNQXtZO+37W5\nbWsSnWyDp20VjosWedKiTGsss7UXbi3vYdq6GbR9+Izwor6G/WnYiCnfYGlLDK/yCstsizLtWPjp\nsB3mt9yGpg61yDxpscpfwjK7bZ9vgcPlIzj8wi8Fihz54R9B5QmK1SkAIPv8Y2R/5gR47IYBlUdu\nQB0YDaUrSmzbc2yr29i1a9dvsn2cwJK31z8G0fe0cqHGLYpkN7gGSSyUNzSuZSg7D2E/r1MbSn/o\nHcNl15bueXnocYg2pw8/7mx4824QBu5f24+0jI03/10DQD5aPpo/Rx9m7Pdpf23zLsxxNZbZDnly\nHpzXL6fYqK0nYaKzUgAf0Vp/Uin1Xvv700qpNwD4BIBjAJ1S6rtgfOWnSqmfBfDnYfw4zwL4fq31\nT8BEipUAfkUpBQC/qbV+L4AnAbwJwFNKqadsM95pAwSCMifc+G/A+CWuA/giGH/G0wD+4n7dcf8k\n1tFj59xtEvybmwfu77F4fUpKpIS+U1GRsE+sSveKeecJWTL5LcTECwzDKkPtPa39ttZskySz1mux\ngcrTxCa76UESmUxg2yfRk9oo+5KSTeu2v+ZRkeI4T3CcZ1jlJv+AL2b8GiQysU8uwsd5huMcJou+\naHGtvIUvOj7EI1/4dmBxgKzIoUqrZXz+Nagb14DHrgOrR6FWrxsAys1thls7YzrjuUTmf+WemSe0\nhtrJGRVITMJhEkziiyXrzaVQCbEk0HipOoWziieopoNjZUKtOY6FtafmPJlkLPOo+IaDJJR/IhOC\n+f+y32JsEEWSuO9ke+RYojEok1kvQzTGw+/3upbWHwPwMfHd0+zzZ2EsN6Fzvyny/Zsi338IwIf2\nad8cjeU7YaKu/pW9ye8ppR7b5yYPQkIdPSZ3W+BTZ2ZgFgnV9fCF0zrUdgIS9Qjn5vIpPfxr8Mx9\nKSF+sH5SKzs5ZcJjXKi9Z5U59qxSQQJLkhB9B3E+vZCoAaULLf7yecJUIQCgHNDKvpRUOsTZxnmn\njnPgxsJcRwKQbAMXSe9hKGpMlvhxDpwUGU6rFNfLU+QHCxyePA688S7Sc6v9nxybyK+DY6jDa6jz\nFJv6RWzbc9zZAXeqAjdtETEOIvR8YZYGI3xhDnFkGdqRAEtC4Py+n6clxhBgxon/LrgMCDMDHGTA\nkAdPPoO/cVJAoM4L76chfZF/jOw73sYhxY7yNj18jIbG45D25cHXWXq1yxxg2WmtK6saQSmVYRiV\n/6qTVgMvWFcBDRzirwKGE5/IEgE4wkogzFosJxtJbCEH4JEMAgQ6anLhGO7Uh4v1HP4neh5Opnm0\nbFC0wBmGfcGvGXqGfiIPd56yfUDfp2uYPt2sM5wtG5xaYkO++PLzAAwYdSUhYZZ3wPUdqDAYZbff\n2mW4Vm6BwxvA4sAACgB1tARWj0AdXEO3WDpQeeGuwq1dhvN6qJmE3gVJaFE8W2fB8UTvQPKF8T6g\nfthH+HWkFnq2zgZ9SkJtpHYCPsEjvS9AkELatleZdmMI8OcaidSaQxuHMYJK2e7NOnNjYoN4WYgy\n08G5EiKqvBzRs/KEXgsyB1j+hVLqv4dJinkHgO+AodR/VUvbKtw8M2yuNOhpoAEYDDZi3o3VFB+r\nmcFF1naQbMNTNPpjIinUQ/VagOnyw0Sx3tQJDi2JZag/Ys/BgZWzQ8co3jl1PABs1obCfX3e4lRQ\npHN6dGC8BIA8plo2qKwmdJoD53WKbXuOo/xRqMMTqEdumxOPjaaC1aPYNLewaV7CzW2GP72bDeh8\nYqDCtRUJqpvzHLdvlY6i3vWNrXmyWZvaKZzqXi6esc1CrHZIqBQCXWdqvMj+pDZL5u+ibB3QZHnn\nFvgB43eELVnee4xSP/Sssh303CHh7N58DG7Oc6/wF2ewfijzZQ6wvB8m+/7fAvibMOamH7+fjXoQ\n0rYKp4xRFoCbwCEgoYmf71oo9OVbXfEgKK+AEIBBqVNgOHmmiiRNFf6KTS4JgFGtRRSaypamDPDh\nskZTtt6kXp/ne4GrbDuvryH7YxarLmurVwkTwKAIFX8uVyHTLhLLBke14fu623TYtuc4PLwGfWjT\ntQ5PDKi0L2Hd3MafbHLc3qVRUJHC7fW1MPmd3ilwdlrg9E7pisxldYMDVsG0LlKcrgpXb16CZ2hj\nMNWPWd7hcFkP3osE61jtn/5GzG+2zrzxLt8pB5p9JVRTxt1XPL/8nfqNPo/Vyal2KZq1ctUnj6q7\npuhcnmBTmve07wYvJlrrSXaM14qMAoulSvlprfV/DeB/fTBNejDSNH2xKhqEayAKJovaLAK83Ky7\nlgUXKlFLC15T58O6J6yMal2mbnIC/S5KTowxmWMSGSw2opQrly1yNHW/k6aF6Oy08PqFFkW+uNPz\nGrNhPgqssj8APSj3y4WXmwXglfulKoG8PDA/v80TbGy4LfXxdtFgXSc4r1NjDituACuTNKsOr6FW\nLbaN8amc1z6ohADFd/KSCVPjFArHAF5ojInm7NQARn7WYLGukdlSumndodiZPr27KpBXLba7HJuj\nfKBheMLeJQA3TqVsVzlO69IDGGAI8mEQ8d8N9W+bJ8Cur8hIZiQaN7HNlJQpDTr67METtD22nzdj\nc5BAneTAvpPGVqH0SpM/lNkyCixa61Yp9flKqUJr/ZrTCUMDOgQq0fPZQuaVNObHRHZ7UyKdkKHf\n58pgx2XnXF1kwFkTrF/Py8Xu5OSeUVPdHS/MJ7xNTZ0gWtucN7ca9oMEFSleedoy9SpoOs2KR/sk\nmWFYsJ+5LdyE4cZBBehDpAGgTE34NGDrnVha+mrZoKltaeMyw2K9/+5135opQA+4ZOIJaZPObMiv\nz8on07im+eCV+bXHcK1Rjt+L1I3fG1SozZXux5QFPNdG9gypBXUud5e5m8tAD5qXIw99LFx+H8Bv\nKKU+CjjTJbTWf+e+teoBiNYY7KwAYe8ekbHdcn8xjdHa5uK4UAXK4OEiKi0mc+qO10cZagugEmCo\nX6iP9nUYT4FjbJHk7QiBSkhC/c/BxYFK0aHM/KqTrW7QoXW8UcgKtHptEwZNjoosR8DPX+Ydbiwa\nLLMeWMo0QZYYKnxTK0ThzPoeCLBp7Mx9RpI5/TaQwrSD7h0bO9UuHV6fgX9dpuObLTYuQ/PrIrJ3\naWC+WRHzjoNKSAYbxEsDlaslc4Dl0/ZfAuDo/jbnwUvQYSh2NlzqInULgQSVe1KZZ4ILB74GgVLI\nPEptxLHNpUGCGv2OtC78YeH1EQMht5hbbeXCGtaE1sLNXlxi2goXDjhTtn5Ostg1JhO76vrzZd4M\n5cSs8g7LzIALAORVijzRNjk2BWA0lrPCBBCsz1tvwXLPsQOqMjM2/iI1mlakPDZf/Pk4zavW6xe+\nSHJtZRBJJ97PwHwktJcxcJmSWKXQ0DHeJm+fRV6MKQkoEsz5XOagcln+lasmUWBRSv0DrfVfBXBH\na/0jD7BND0yiOyE7gPliyxeovYBkD/MX4IfuSqejNNHVSNEg8c5z15kBKlnWhRd8C1r8Or39PVJ6\n17Z3zLHMj6XvL2LaGdUSJ2SfhcJoLCl2rYqGEpPEikaZGiAGXBapxiLtWabv5Ats1zkW57Vz2gPG\nHLNd5ciW88dOaAe+T/+EwAsIAMwMCWktoWvz70IAM7AcTADMwBcV2LCQFksbRG72Au5xczghGg+d\n9wDw5UqpzwXwHqXUT0NkEGqtb93Xlt1n0Xo4OGO7tBpisM0xb/FjI+q4PI6HOc6WiKbTNMnkdRwI\nBExhpLV4QBExmXGR4BICFd4u+bu8Nt997wMo3rN4AQZMg0lNtUkiJtQ7E3iuuke9azWdimTPK0CO\nDcBWhUxdRn6ZmjLEJqNbI08bFOU5lqsat28usFnmDmDaPEF9lA0AMKZZD99bOto/dJ1YuG1MYhsA\nLzov5NdAGJRiuSUDkfNnBqjwv2mDNJjDwDSgsA3WQ9lPxoDlaQD/HMAXAvgt+MCi7fevGeEDM7Tz\n8QeucQRvzvO9wcUzW7BJSdE67pTAZJOLizufgUvsXC7DKCDtOTLbPBlMqqZOkO/CEUdztQACFZnN\nPSVBk6Pt01C0kpR816LapdjtUhzahMuC8ValKgeqTU+j3lRIGJ0J5aLQZwA2M1zb//1nOBcLqeHl\nMtPnOFd405Hx8TyXbVEUJt/j9q0FNoXx8Uz1J4HK4ny4+x3Tprl2EMojmuVDs/0+ag6LBHcEL3cB\nH1zoOHm9AYCysVwX2XxLwp4WhzG5TEqXV7pEgUVr/XcB/F2l1N/XWv+tB9imBy4hahagN9Xw3/hu\n+3BVuzh4oAeNKXVa5sCgUCjKZnD/UizA9HuDRHIceoEC3Gkay4GQZrXc5lHw9nFT271OMA4q0tex\nWeeDmihSnO2bhWaTbyi0wHEbutzBU+Y5L3/sCowBQNc4VuJdmziKFklLQ74TQKHpMuzaLkpYyDnf\nFlB44tCwExznFV5Y1cjyDrezRXCBH0RHjYBKcOyJRZ1fT4JKyMdXlO2o2XKQUyR+c2G7R/5yMye4\nZEpims/k5iqmiQTG+b34k66qzKHNf82DSmwQcrPN+EDtwcW/gP8dTTJPM7BtoPvEHMwyumZMdee5\nBCRjCYmxnBGnDUWkX+hFkqUwh4U0FW6DNwepIVhakQsmnSvBJRQ+mtUmmVX6ohZpzzydqhxobMVM\nwNThKDJHtR4iyyTTWJ7y50881msOMsQmTL8toPDYgkxjQGm1l9u3yqCviucP8ecMOp0nhF/b+2zH\nxFgACfU5D0EOCX8fXs6RHTNyPkl/IoEZgF7jF/NptjkNcU2GP7d3L/EclyNXJ9z4yhoQldIDUMmy\nzvt3uKxxdFzN21kVJvN+7zBFO8lCO3ku3Iwxy1RCn5tkPFGtUNheL7Bd5ri7zHF+UuLs+gLbVW5M\ngEttnMj2+QCziHEtQO5iJahwiT4jmQoFMNxrglrD2kr3JvZaYLyGjHHem88hssLn7mS4uQVubhX+\naK3wR2vgvFZY14mj0u8Zj33fjsl70TjOgccWGjcWwLWTCteu7wyVS8Q/VpfjPpSgsIVy4JxnGycO\n2GOS5Z0Z3yNjnNpZF6kLTCBQOVzVg7lGIn1wXlt4fgouEIY89jxcCt8C8UoUpdTXKKX+X6XUp5RS\n7w/8/sVKqX+plNoppb57zrlKqS+15/xbpdQ/UUod2+/foZT6Lfv9byml/sJU+2YXYH6tiVLDQcyl\nKFuPDDDEj8UlyztjzmGTzdsVsZBeEgonnZLgfWckFo7lkchABcpn8SlpfHtw6Bn4vWIitZWYzNoZ\nSocqc2CP5YPQwlmULfLUmMMGZiuquS4qZHL/CoHKnVslmjox/pGiw+GqNuHEHfDEocbCc0kOF0Bz\nb/qetB4FnFSu/4ntgNoPwJkMZaj1WN9NATNpSHM5vADhu4iMQ35ft1Gx2vnYeJA+OK4lmS+H0WEX\nSSjmWlHIzEd+pItEH4bksihdLCPKjwF4B0wZ9o8rpT6qtf5ddtgtAO8D8PV7nPvjAL5ba/0vlFLv\nAfA9AL4PwIsA3qW1/mOl1NtgypM8PtbGKwwsOggqpDkYZ7rxexwCjpwuBDBugEZAJSR8sGZZ5+4J\njBPt8evLBfYi4rUz78FEmgCzrDO+kMhCEgsciC0iU0ANjGgrAVPFGKjUZYqDrPKSI40pTHtVDr17\niwWAGHgJVG7fXDgfVlEaNuY7eYez6ztsW+DzlhrHeV+4iwsVwsoTAy598iVRvNt3kHcePxsAozla\ncJ9rouGh6dJnuG/SK4lnZh3xwzktXuQ6jWnnOwESA5OY+yGcy8Ul9nychWEMXF6h8hWM+gy3AAAg\nAElEQVQAPqW1/n0AUEr9HICvA+CAxRbhel4p9bV7nPsWAL9uj/sVGAD5Pq3177DzPwlDSFxqrSPG\n6ysNLGG7LNdSjpYNisTa01c1sl1PnR9aFOdoH5I4UWoFIQmF7A6cqTM0GCmxZMoxEkyZTxNqa4jp\nOXQtuh5FnO2TgR6i5aDgA0m1w6VITETYoHgTr7OeZABqj3CS6tsQqJzeKQc75/593EXdAo8vNR5b\nYOB3WeWmqmLdKVYJ0QQJPLawmsuRH8zh+VwYuJCk1pdEG5ZB2Db3UQU2VFJrkQEDc5zkY9oLD6Uf\nM+c2dYKybL355bS1UG5KwK84BZZzTduXkQzqy14+lkeVUp9gfz+jtX7Gfn4cwGfYb88C+MqZ1x07\n95MwIPOLAP4K/HLvJO8G8NtjoAJcYWAhShcuFIZJWcm7RgFZ2KYrI2vk77GJI7PWOSeXlBiN+Vzi\nSZpslyljoCJJCOl4+rzbpbOYbmX2uPs+QlJJyW5jgDJoK6NocZOdmcBMHfrERoWZPJbNeY71ee6R\nSMp7PVcfmff2+rsAGgBDzcX4W/r2SwADTFEyQAPXd4MsebfABqZ2KBCjLlKPUWHM7AUEotAw7tDn\nxwUlEOBB15ujIUjmB0BEYApwCbXtQhn0DFxeBnlRa/32B3zP98BEAn8fgI8C8PghlVJfAuAHAbxz\n6kJXGFjUvIQwCim2dStC1PGhyRFioR1EmFTaEUJKDShUewQQIFZp0IR1i+6u353GQioHEVkzZCqB\njl937No8CGGzzqO5QCHtZdSPMAUkjfGH3Mw7LNIGJ4XGeZ3ivN5hkW5RFsdAYeu9F4eoqtuWJ4zZ\n8ateW1vUjdOQuKbUnjW4ky/sGQZctguT73KcK6e90KOcVoZPrOqAO4Lm1YGLrYlDLNObdY6mToK7\n6VC/5VXrcpMQIcueZDgOsBcPjp/IX4mNiZD2H2IZD7EsO4DhofGh55vBBhAEuQtYAh6APAdfm3jC\nfndP52qt/x0saCil3gLAmdGUUk8A+AUA36K1/vTUTa4wsAwHOh/MRdmaCX1uZuJmnQ0KAvUnTrDz\nCkDxwnnh7yB5zRL6jbcP8LOuSYKL7m5oenPnM+E7PR7WzClfoiawQBiobG/IseqAmQEu52Hj/XQZ\nQgmSm3WG02WD57cK18sU18sUx8VddNkjSIolAKDWO3S6RdUpV7eeCsA1je37qsViXXu+MmrvWbnA\nHSwMJxctYB2wbY320jDAOq+VqzlvjvP78qgwIckvwPf5kL9L5vFkEfBN686UaaiTgbkolNs07EA/\nCdedOxNU3GXYOJNjfaw9U+aofNcOx7sQ7o8JMhnE5JKIKDV87fQe5OMA3qyU+gIYUPhGAN98r+cq\npR7TWj+vlEoA/A8wSfJQSp0A+CUA79da/8acm1xhYBlOkpA0bMHfrPNZ7MexbPAg/Xtgos8FlRgL\nMDclcbObZ5dnkyXUDyHWZ/mMs/Mmar88sh+ksB9l/phmMhW9U1lT3O07BY7zyoQGNwl27doU+7Ia\nS91t7b/C4wjjpI8H69rUT7HmqKo0UymrOyzOa2yR4/Yto7lUJxWOlg22C5NQeVIARaJc4mUMVFwf\npMDrDjROM1+lkYmledUGxxgBdrtLBgSjvG/GFnEvp0kCzB6Z9vx+JLGcHbr2gPR0RGIAJE1mXF4l\nDnsnWutGKfUkjHM9BfARrfUnlVLvtb8/rZR6A4BPADgG0CmlvgvAW7XWp6Fz7aW/SSn1nfbzzwP4\nSfv5SQBvAvCUUuop+907bYBAUK4ssKDTwQkh1enYjl0OYFmvQi76xFhLEgq/JKelc86LIllzQEV+\nVxepm5QxXifv+SMgQ8KTEmWBMg6Q/k5W2NcpLJv1PycHHJOxxUW+gzE5rc2/c5tz0ukWyIzGgkhI\nKD1nXZp3mZbj06fapQ5cmjrBblWjPjDay3GuPdCqIiWOj3MTxbZtgaNCoUgqnK1qHC4bRwVT7VJs\n1ylw7mssfFy4PJIZEj0uBBYzzEQhZouxTQu/Nh/rc8BlMuyaE6zOzNu5LOm08vKZ7kW01h+DqebL\nv3uaff4sjJlr1rn2+x8BMCAc1lp/CMCH9mnflQUWlaKfKJHJISlROKVKjJgyFK0T4rrKlhpF2Qxq\nm5NvR0bGuDYF7s3rjoRkwB81sZsMRQANnL05AFY8y9X5sGHJo0L3F5E39BxRcsCxdrN3OFgYGWVO\nlps+LhITcrzKOxxkCfJkAaJ0SYscebJAnrRY5RqLVKHMNIrCJM1WuxR3l+FnvLvMsb3ul7w+Oy2M\nGbVKgOs7bFtTn2VMFqmJXjPZ+ea709rQwJwWwFlhAIZCkjdljk1RYLvKHd0LD2Zo82Q0j4SiwiZ9\nDlxioCLC7kN0SNLHEWRVzg2vF9ULmgOMNJZinHFj19ibAPahROXqAosSVQytTO1ePL6u4AHDxZJE\nZh6TlnK4bHyaEhsoEIuaiSVbApEaMgJQonQWM0VOwJD/JHpt0QbOPsv7K5T7EBKnIYXeh1j4qA5J\nUbY4KoDjvM9lyZMSqE4BAPnidUhUimVWo0w1isT4Rnar2jnwT1d9BJn3jgUzccjEWS0bVMvG3D+w\nzi1So6k8tugrU9YdkCUpjnOF01rjTm4A5qjY4uZZg826xnppItY2RQFUGu1OVNHM4xUkgf69yqRM\navu+Y0WydU+FnscSMRvETXghCeX5eBuWgF+wKFscLutZUYsXFa2BOmLufK3JFQYWjcNl7Zu4Zspc\ngjvp0zATrXEDmGspR8s+n2XXKGSsTSGwiwGbm4ByNxkAFf536F4xPqepJLdotBxrwyAXh+dmiL6S\nQvfdWXPhgFuK7s3ul2Wd01YoSTJLNJZZhzw5RNJpR5ufdI+iSA5QphuUaYdFmlg+L+2AKVtqbIti\n0LZofoZdrG/fXKCpK2caOyq0jf4yskhNLstxDlxfNK6IWNUprPIO53WCZZ7gOE+wbTWe3wKLtMHp\nssHtorMbldr5A7frvk9JQx5rZ0xT5hrNXMZhyRHHx0vs/mNZ/nOFb7wG4dcBrYWDijPbFQ81l3uR\nKwwscYDYh3U1xojsJXOxnXcMVAo+VzMNgO0WqyScXBiJz5damLtswNY9J+t4DFBC93emD7vbzM8a\nrzyAzHqWiZ6G9aAe7KxD96KFUJpUOGDSLp1A4Tg3ZqbjorVZ8AtDPClo8029lt4UVSTmujzaK/Tc\nsm+5NE0yMI0BPbgc58bcRZqKAT5TN2bdJDa5sie1XKQJFqnGUW38LzdzQ8NPoclNaSIYuZa8XPlg\nPbVwy0x46tcxuQio8KJyoevNEU4BM4ehgNrJ5+RYG+9FNOIBGq81ubLAkojMa1rk5gzgkHmDy4At\nNXAuH7iUiElZ/hTaOkdm2cFDIBPZ6Y9eKrLABMEtxMQcKZw0V1sMHTdVT4S0FVrYSpvwSuzGjm6l\nawy40OdAl1Qz15pQGDsJRdt5zmtmGtu2pm1EYkmgQiYUcv4aq45p0GOg6DoFwPiSKByetA+5I49J\njE5okFeyRx9QaDG9gwsnLM4QbzwHGAqkiZXAbLfzefvGrAUPZVquLLCQOJ9JJPkvFAo5JrFJF/ze\n2zm2QKaxa9Rg8hbFBTiMIo5VuZPk4DJmxuE+FZlBv1fbQuASis5j/S61tdiCNybcaZ+nZvEu0w6J\nSg1tPnxqHfPdUGRlxKmkUBeaznKI5DncNGZEo0gUyjRBmXZYN4lN1vT7TYLLIjXgskhNaHJmtRcA\nAy0l9mzSDHZR5oa5Y0KyS8S0lrmbPkBQwDDhoMLvFWozaS6XGYqs8dDH8poXpXx78pxokEntZELm\ngMtFnKSezAj/lJFeUxn13uXtBOcLkFz4JxejPTOZpzKzQyL5rMgMRgSUZHp0JJTNxmgqAekLew3b\nM7b7JlBxJYcpIZaxYNNz7HYmMKB8bIs8NeCwSBOUaYJQhC0xM9ed3VknRB2jLXga7WWucFCZTFic\nkkAyJU+2HUuOpGNDv+0DLk4CvjtqgxS3FuSdMVPioa/lonJlgYWEFsWpxXAyU3dGXe7geYAHLhcG\nlZHKdzUovLlX/XnOjLvEBXenNCFjjt/LFE4tM2WLl8XTykxbynzt2I2ddA1koS8A4Ob5mIlSmk36\nfKO+KFdetYNk1ZBZ8HbRAScVFhZcsiTFcdF64GL8QsY8RizJZWroYYiXjDMlc9MYALdo8vbHKITc\nOaH3GqA7keWyo+fKS4lxyMGF9+8UuPCotpDvju41xs/nrsUA5qHsJ1cWWKjQ19RCPqmlXIBHyFO5\ny/bCYOItZIGcHD/MONzOOTt+wDeHjU3uYJDBVD25kT6ke8lFT7Y7RHoZKs1ctxjwZaUqPg2ktjC2\n0ISyxaV431kKEuof7n97IWksE7Mxie3anm4fGJpU8gS4sWhdWHKRKGcaI76xgQZQJUFQGQOCgR+C\ngUso1F2SoZKPiaL9QuMltkGZo63wUGnuyJ+SkDZFcll+Fn2JCZKvdLmywBKSUElYKXO5kfaljaAI\nsdCxocWML7ZBgIm1cawNgQAGnv0vOcRieQlj5ZW5uN1ooN/cs9l7yfcyFtEnF0ZyzO4aBeTalhke\n75tEpaPVJYnnLCQSVMbYBIjjCjAgQxxjRgw7MpBglZv/gQ51FzeP9ZG0KQhUSPs5zZqB1uX5jGb4\nqrjI6Mcpinl6Z2OBBEUx1BJC81KyUsTuF/Mdyk2Hy71iNXbut/b9WpYrCyxKDe2nsx3zEVAZ29mE\ntCOeU8BzO7w2sV0lPy9UOyO4m0R4xxWbNCFQkRLSBPh9iDmArieP5ZnYYyzRFzXNyWtkWYel3bFv\niwZH9reBI5VMYRFfS6hdoYVUaipTzAh0Tlp3HscYYHJUgCE7MtANzGNL28+9ia8HF0AhT4GzSuOM\nhbJneTfpM5rM24ptmkJ16jPKten7+F40gqnNYHBO2U3RnMCcywQY47y/lEu94uXKAsuFhfGEcVPT\nWGLhWK6I3N3HIlrGJJZLE7uONC+FRIKBnMDc5CBzAGIicxnI5DG2OITMbmOAR22SJIfUD0T8OCd0\nOFW5TZAM3Ks2xcncsYEVg7MIyN18kHKkaoFzYFMUg9whzo5sJLEVKHtQWeUtylTjtDINNuHUCWAj\nxgwtv9VeagAwZti1vSJpYWNVGaN9P1Lkq6kTl0dzdFw5polRX4mdK6E5M6B/mQEu8rzQHCDfWFPn\nk+17KOPyEFjuVWbQjkizlZwotCCXNtyYJKStzGpSwEz2cguBCm9PqG1jQRJTEz20wND5O+YE5hFe\nra7R6qEVXvpdQtQrMSLQukiH/GyABy5ci8mrFpl18mfWwX+K0jxT3qFaNrhx1GDbkgmvBxeqRpkn\n2qtSuWb9sMo1zmuFE0vBf1r32kuV99qckwi4zImcDHFxhfjJ5s6Xi/w+9zxPU2b1XqZqu1xUOo2H\nPpb7KUqpHwLwLgAVgE8D+Dat9R372wcA/HWY1PP3aa3/qf3+ywH8FIADGGbO/05rrZVSJYCfBvDl\nAG4C+Aat9R9OtUHrofMytOvhux2Z0Ttl/iIJEuyhz8IGgMNlgzObc0BcYdKxSufsc7/Qbm/MDCBD\nkKUte86E5ot56DeuTckExyA3mv1uLLQ3+MzErJyb36sqcX6WbUuTPLzAtdo3h9XyMLE7536UEKhI\nCYEK/U2VKTd57kdLLRuQaYtMYyFZN4ktYtb3JQ+z5tpLtWzQ1AmOjiur2fWRDTFNIcghNqLJE/MB\n0Pu7shlm57lz4KImUwk0nlmT5Vu9EjUXpdTXwDARpwB+XGv9YfH7F8PQ3n8ZgA9qrX94zrlKqf8W\nwHfCTIxf0lp/r1LqHQA+DKCAWbO/R2v9a2Pte7k0ll8B8AFbV+AHAXwAwN9WSr0VpvDMlwD4XAC/\nqpR6i9a6BfD3AfwNAP8KBli+BsAvw4DQba31m5RS3whTOvMbphpA9VjOTotZi3UoymQsJp5k0m/T\n9BrJ4bKJRupImR1owJhhef7E4DghoRyXkC+Eg8JYP1xW5nVTJ8H2eiIWfdnebdGY3JQOozXIW10j\nlII/1u9jtO771E5P6w7bdYpNKRM1G9St6k1jraH9rzvY8GM9ABXHLgBgAeUBDKBcYuZuVwfBffRv\nG1ZNEgKVUCLi2DuMbfgmQ/4DEhtnY2N1n1pD+4iJCrv3BEmlVArgxwC8A6Zm/ceVUh/VWv8uO+wW\ngPcB+Pq55yqlvhqm5v2Xaq13SqnH7GkvAniX1vqPlVJvg6nl8vhYG18WYNFa/zP2528C+Mv289cB\n+Dmt9Q7AHyilPgXgK5RSfwjgWGv9mwCglPppmA77ZXvO/2jP/98A/KhSSmmtR8N+2lZ5oBLajQH+\nAj6VoX5R4TTzPHEstoCNmSSkej+IUEIaqIfSd5U0AUj7tMw8lzJ3dxeKRupNEvvJ1ILtar0zPwuX\nTrdAkgHFMNt+H9NFlO4/IrEKmRlV09z5+SeAfYYTKvjVO+Y5AIbazMEFMAADGHCqD4AX0DM3U+lj\nJ4FclVERoCLHhKRPGTwfhlQ94faMjBVRLXXOnA1FtV1m5v0lylcA+JTW+vcBQCn1czDroAMWW4Tr\neaXU1+5x7t8C8GG7/tI1oLX+HXb+JwEcKKVKOi4krwQfy3sA/CP7+XEYoCF51n5X28/yezrnM4Cr\nrPYSgBswKBuVrlPB8MoxZ7Hk1hoDIbpWTOS5xEZL96Hz+e5e7v5i95OgQgl6vOgXIkOCzHxkY4+b\nmOhB1AAkQjTpwJAKRpo4uHbFr8/vGSqkFpKYOaoHF5NTENxBJuPTgr+DUTARod+ytAFVdmyEluP9\nXWn/HZBJaVW7ui7bVtsyyhmyhPws4UW398NomJIyCdwCfX3Xmx3Zgj7V51JLGwMVkvV57rFUcxkA\nSqTePbUnpCVKZnGaR7I9TjMfCT64LNEAmvmULo8qpT7B/n5Ga/2M/ezWPCvPAvjKmdcdO/ctAP5T\npdQPANgC+G6t9cfF+e8G8NtjoALcR2BRSv0qgDcEfvqg1vr/sMd8ECZY/2fuVztEm74dwLcDQHn9\nscHv0kTDJwbPBuYyFj0lbbixSRa6hjznXgoQhQqNRYucCWr7YBVLxtpMx3IZ81VJcJH35v4rfu2p\niR9c4O01DleGKflw2ZjPicm+N3kf7JpVbbQWFm5M1ClB2nzKtIyGdWsv89u1zxavAoB2Z37ni7aj\nfxE7f4q+q6oEOM8tYwNLggRsYmTfghDAlKlhTjafEyzSDItU2wCFu8hyUzyMirbVR5nr+xi4hNo7\npb1KzrcpkcA9Vemyfx96dLPIz4uNv5dBXtRav/0B3zMDcB3AVwH4jwH8Y6XUF5L1Ryn1JTCuhnfO\nudB9Ea31fz72u1LqWwH8JQB/kZmtngPwRnbYE/a75+CX2aTv+TnPKqUyAI/AOPFDbXoGwDMAcPT5\nbxndnsRyL0IAE5tAPNdk6j736iAcmKommF3dLtWujdxkwMEs1K5QjkzwOJGtT8eFzH3ezjFyXQqc\nkAXU+LOR0DPSIre01RapFguxG7tESAITm8uSqswSUTKQTyRtPj1T4/qLnntSctOPZKarhRZo3kN/\nXaoyyqXapTYnpQeXE0u/v4By2guXMu1wrWwHOS9Z0o+VMtvibNng9E7hnqfapV41R4+e5gKgIp+D\nC++/WOb8+ILvA8mcTZmkf+H3eAU672Pr5L2e+yyAn7fr8b9WSnUAHgXwglLqCQC/AOBbtNafnrrJ\nyxUV9jUAvhfAn9Nab9hPHwXwD5VSfwfGef9mAP9aa90qpU6VUl8F47z/FgB/j53z1wD8Sxhfza9N\n+VfmCuVokITqUpBwtd75YiYc7HMLZ5FcJPpFmpVimgjPuufVLWlySZoNaaLjzzP2zFPPEDL70efN\nOvfAxT2f0LLctez5R8eV0zSI3ZgkVTlSlUE3O6Ax5+rG1/KpjPEZtSXvHCVJqObIwMQXERld1X/f\nDK4bzB63C+EYuAC91rLKTa7L9bLBQUbviAAGAFILugpneV/KmbSXpjG1XfiG5bJBJSR80ZcbnzGJ\n5ZOFjrtIYM6+0mmTQ3UJ8nEAb1ZKfQEMKHwjgG++hHN/EcBXA/i/lFJvgYkCe1EpdQLglwC8X2v9\nG3Nu8nL5WH4UQAngV5RSAPCbWuv3aq0/qZT6xzCOpAbAd9qIMAD4DvThxr9s/wHATwD4B9bRfwum\no+5JQgsrzybnpItSOLljzHzGZQxU6P40qfjivhfIsB1wKJ+AX0s+O1HNEP16rP3S9wP4NDDyN/o9\ndD0OKLJfvMUtYrbj7aLnkNoK0eZjJF8hUSnypL//IgUqaw5rAos+LxI1BjLBhFbR9lDej3dOlbj7\njWkuK/t4q7zD9bLBKm+xyktTihnASXmOMm1QON9MgiJJ8HxC5r8tbhfm/fOxR5oWH1ehZ4tJbPxG\nA1bEO566zxQH2Rw+tFegpgLA+ZKfhInOSgF8xK6d77W/P62UegOATwA4BtAppb4LwFu11qehc+2l\nPwLgI0qp/wcmrPiv2ZSOJwG8CcBTSqmn7LHvJOd+SF6uqLA3jfz2AwB+IPD9JwC8LfD9FsBfudc2\nSQf0HBn1F/BrR8KF921XTIKUKJfoiLzMyJh9KPpDMrYghKhmQhFIc3eNoVDkEMNxLHz6vjM9V/3u\nWoJL1ZlqlIByGgtVL2x1jRyll6tTuUJi5v9FaqLnyPwnOdyAYdjwRUtPuOvd49i4bJkKod9XTAXJ\nS7qW1h+DSbvg3z3NPn8Wvvtg9Fz7fQXgvwl8/yEAH9qnfa+EqLCXRbRmyV2An+9hKR3m5mdI4dFd\nsYnEExXlhAyB1VhxK3qG/CzMcTWVSTwn+ZHyCih6jbPWhp5j7iIRuie/Viz8msgbiR041B4gsNgt\nGxwDuFMB53WCutui7nYoiyX0oeHoUsUSjW7Q6hrndY7TGjirgNOaJVpaTYSPD77IhpJux0rvhp57\nbNPCk0bd9fMOm6LD2arGUcEjxhJcL3tAXLYdTspzdLrFaZVi3WS4vUsdFQyXo4ISM4HNOsPRceWS\neun+9I/mzGVILMmX9/e+85JfV455GUb/SmGseLXKFQYWFQzLJaekBJgxFTyUFTykixDCQiDpvLk7\nvkFsv30Gytgm4dngY+ASy3jnIkGFns0jvhzh+5orEhhkf1N/jtHPc3t8MB9o2eCo6MONW10DWdHn\nsWQF6m6Lu02H8zrBaa2wbYGzdYbNOjNZ4eK6fMELLV5jYMePGzAgBBa5GM3PbpdiDaPJEMCcFQYQ\nty3QdBnqBZFvtqi7zGbpJwNQWaRw4czHObCz7dmsMz+gQizIwXFkIwiDbMZT82kibyp2jdD1YqkA\ngzB6NjcvU2u5RB/LK16uLLCg026Hv1jXyOoOi7Wp9Hd3mQ8Ahkj0pmzDwwU/wpQ7stsmCTl3ZXw/\nB8UDCywEKFndeTkRMXAZZOjb5+XCkzjp2XgOy9QCERO5WMh+GGh/tiIjPWuTJ+55ZRRcU9EuPXXh\nuk1taF3OKo11bahPrpVboLgBFIfm8OIQdXvTAc+2Bc4q5RbOndAYB880shseo9PhOSQkAx/TCMUJ\nfbdZ5zhc1tisM2yWDc5WtaWk0TBTvh+TN7fZaDY4hS4fFT4rMonkvpNaM881CUXuTWnJ5sEEkwKb\nM1PaSyxzP2Q25oXxxor1PZRpubLAojTcgkygUuwaVMhwYIGGFuUaKTbnPbhwiZZtZdxJKeOC4uKB\nV4RuxdsdRkDlYF07bcu77kgdEAACAPvz+fNykffmEzC0s5OBAcF7B76PaXHmnLDviGswMtdiixwb\nUd1rW1SW5VgZX0OSAWkGpAWQZGibxu7mFc6qsAksxqUVesbY5sHv0wZ16fd9KcxssaJc/L1sjnJ3\nn7NTE6pcnVQAGquFZLixsCY3ASo8ge+kQE96SQSWmQGOougDOihTPz9rBmM9s++isaSbHGCkNiY3\nE+aPftF3EY6Cjj+k3YYAJapNYZh4S5uwKfDbRzQeaiyvedEK2K5ytLsEi3WN7TJ3izHtgrerHCiU\nA5R98lUa2BwFyrg+D1N4uIHMwoJj6re3yDIyzLvLHE2eeBoLPcMw2a7PjXBAxa7l57rMl1jfxEJq\nQyzPXKTvxp1bKLR54mkqvJ48yVRmflDSIvi1pM0PMSiH+otHFPLfozvniHBQ4W0Y9CcSj74m1K7t\nUV88LCbcwWwi6AxpJ7EiF0mDs8ofI5t1PngHnFUgNBaBeFThZp334b+MtSAWWh5LSubfBUtJiCJl\nobH0UPaXKwssSJSXREgL0V0CmKPM5itU0ZBgntci6V7cpLOJcNtVPgAXolnhElukQuHLHtMykxig\njPmJ3LUCuS4h801I5ka68T4amCQC9m3nm7DH10f9sJV5LOb5/US+e5FQLRZgCAhjDt9JkGamnnzX\noi4y966lE38qTDbUroEZE42N+DL35c8Yet7jHB4rMlWk3Ba+2WuDPDge5YZqKjx8xzQy09pkcG5M\nQv4Uuv5gbmIE2JlGdFk+Fq376LvXulxZYHE178XOn2spVEIViC8OIXCRUpSGTDAELp4IFZ/nM8Ry\nYyS4xAAllGw3SHrEkE9pkPw4M/R4zmR0SWkXCGfm4BJabGKgS8fPEVp489SCa90XxQIweF/7iueb\nmCB2lNpKTPYBl0VqNBDSUCTQFImp5UK8Yus6QZEAp7W2/yvgqAcXot3n/Z5aQk0al9myZ0OQG7Y5\n70VueDiQkHYb65+QqU1qRfswUD+UuFxhYGF/WM2FFmQOKryE6qAWd+6HxI7t2GkAEw3Gwbr2HOuS\nfDF2rSlwiWVCy8nLqz2GdsH7ZlCHjg+xFkwyEgS0Fu8+e2Rhh8CFnj+miUxJWbb+Is3AJaS1xEyB\nMcc0HwO0UQkl9U0lXQ7C6I8yr93U1qNl45gF8lRZkNEsiVRjlXespK65ruk/63858jUX8htxzZEs\nACFQCY1JKZIVIvrcM0tg0DX7L5VvcsPLyhP2qpcrCyxTUlkThAQTLjLsM5SzEPxpmvgAACAASURB\nVBKpsXDeJXktqVXILHl3fMSURZNoYFKphnb70D1iC6OUkOkhxFobOnZfGbPPx6Qo21Gg7NBiSvcg\n5z2J2wwIcOFtjPWZs/dLH4KVpu5Nq3JnPgUqfYN7c2BtC1fx4nIE0jRejgoNFD2FDQmBCjn6qbwz\n0CdhcnCRlPd6meCwHAa+0LHUFj7XYsX3pKM+FB03JWPjmG/wYpubi0qHh87717yMsYlx+3ZMpuqm\nBEvkivwLipghOntgGBIc2q3KSeVMcSO1yvm1AH/n75z4a7u0Bsw7rkZHIIJMhjCHwrInizVxyvw9\nTEyToBK5Dp/gMsO+s2G1VWdCjeu2b7fLNZHRSiwHwnsujO98PZJF8dwUHTa3eucwgq4XiuKja56d\nFsa8VzLaoABbMtCXFjivlQcqJtfFOvgPAApjbup49ceQ7Hapt/GJgcoYiMjIr7naRkhzdBGPmJ5T\nDyUsVxZYgEB0CP+NaQxAuGYEP25M6Fiy31Ip2rpIR8ElFuHC2xVqw1RGssvnEKGzlHPDwSIUzspD\nSkMRNHMXQgkq1Eeha05FycWO38d/ozLDn6VhwKbuqBjWSPKfbHOgDMGYiczzM4UA/TwPRzNhP1NN\nKJScM0sQ91kIXI5zZUOzwzvuIjH1YF5nwaXqTDIpPXeIN01uiuh3+m3M+T62OaE2x8L3gxJIYOYb\nhjHWin1E60CJ69eoXGlgmSMhjeFCKjftcCsRLy/AJXR+jPJljPJjbNGVE5jnIFDbBgltAVAB+t1d\nNPFySkS+DzcJyiS4+yG148/qn6C1dC5AiqozCyqZwVx/7Rqvvdzp6wGjfe985xsiAR0LYrhIcEOW\ndy5BVJpeCVyiwBQAlykTDgeXbWtCkqvOcKvRxiUEMqHNx5z5JcEkOIZ2E8XX3PlGpOPeS5h8KHvJ\nlQUWrad3M3yAj1WGDLHVuvNqWngazwzGExhjOSfyWiGCxYsKgcrmPHcmOp7NTjKgSGcSyqYO7R6n\nqkICwyTSy8x+zvLOZd4Tff5RQTVZ4jbRXZsMFtQsM4SMY7kOcoHiO99ZWsYcAtGIJkTCk0ljibKS\n48sb1wFwCQU8+KHKVGzMhCQbM6IJSz6rlClOJuQifjdJkzSViEzimSxjv99HeehjuYoibOQ8SXGq\n3PA4VcRwp08L9yDJz0bOxLLLJfcUd5C6yTZjMfZMVZYihZcvHggDgrpMXVhmKJnSM+tcEsNyqM9l\nbo0E3VDOgqTPzxKNItFIVIpUDadCmXZ96K2lynemozqcs0ESDFtlZhXPIR+gF5kUpgkNfrLvlbch\nVJSL7i0B5uy0w7UbW1TLBtWyQd0qHBWAHJcSaI7z3u9SdSapktgNTNZ+5Uxksr281MIkW0Mgki5U\n/A3AQKt8rSQ/2ppWPwJDff/jWusPi9+/GMBPAvgymKq9Pzx1rlLqfwLwdTAY+DyAb9Va/7FS6h0A\nPgygAFAB+B6t9a+Nte/KAotSvCRtv/hvV7m3s5wkruMSqM1NWorcSY1pKWOmH5c0xuk81sozzVCO\nRyyx0T+vdbQ2lHPgCQcqUV4XCNv5pVknqK3QZ7FISK0ltssfBC5MaJQF01aOcxPNdFy0yBMdBBXv\n/KQHJccGwExNIYkuYMJmH1ssZ0ulB/4E7i8DwqASIpKU2fpNXRlf3KrGttV43QHLsRKa3mMLYJl3\nKNPOcaw1NviB8l7yVAFocBap7cMBJuhH2UPbuFBi7H3mBzMJkvd+HaVUCuDHALwDpurjx5VSH9Va\n/y477BaA9wH4+j3O/SGt9ffZ494H4CkA7wXwIoB3WZB5G0wtl8fH2nhlgcWJ9B2cw4ELEAlrlKDC\nIoRiQMJlKjN+yiwgHeqkcRysa9xdGnMDTyCUQQDSEZ8xbco55Sd4xkIcT7J9A+AQBIRzfQex43go\n6BgY83rxR4XGUWF213nS17SXQmWJC3Hr0vZltRsx1U2BhHQIX4Zmx64ZKp8Qym8ikRpTUymc1uVQ\ne+ka3FhQrRajhSxS05fLvMONhbnvKjfgcl4nyBLlzGLGVKYcJQyZxvhYCPpcJkBl8JxMUrthCmkz\nAO47mNwn+QoAn9Ja/z4AKKV+DkbTcMBii3A9r5T62rnnaq1P2XFLWBVVa/077PtPAjhQSpVaa7/U\nKpMrDywhdmAOLsFFmSRAYEcLc8YAhri7AASykOdV3wtR5QM+qHA/CQBnWhuYXCYmaZMnHmdSzI4/\nuphLk9gFJrBHdBloMy8jOxmKaxfURervtstUI1U5khAVSdInClLmPeWXBMPJSeaYAeeCScAfBURM\nbdZZHXJYh1gYAPTaFwvgaPPEOfjpmGvXt057ed2BtqYxq80lGmXaCX+VSaosU+OrIoBZpBp3cuBm\niqhpzHXRTpCe7mHG4uYxDi7edcSYvN9hxVqHC8VF5FGl1CfY389orZ+xnx8H8Bn227MAvnLmdUfP\nVUr9AEzp95dgyhRLeTeA3x4DFeAhsKAuUy9CixZ+wE/EC/Jb2YEpKVXIpDRFwkd100OswGPCF2wi\n0gTgNJbtMvcynQfn2wU5RGJ5d5mbftjDPCdlEOl0wV2hDAwYiPAz7LMw9KWJh5KqDIlKUSQNskTj\nqFA4rTUqaw7bWZONpAYBwtrVXotibLHL/Y3BPtcLJcwOxAZweJq2Bapql3pJlY7h2CZSNp2pbVN3\nfX/u2r4fqAR0mWpkiUKRGIA5qhVeSBrcPPOXIblJ4KHowISTPQLqQY1FsiSP8PS9DPKi1vrtD/qm\nWusPAvigUuoDAJ4E8P30m1LqSwD8IIB3Tl3nygMLMBx0tKBxbQJAGFyAIMCE7iG1FD5g55Q45sLB\nhU80CSpjYcchyhPO6ny/Q333kjEtIBDS65065xm6Broxm7AExpmfJ1uUqXHwF4nqtRbmxAcwABgJ\nLiEG6+DzCQlyoEmgjvWJ2xQMubmk8AgyoDeH0rxoapOxb4q9Wf/dUWO4wqCt1qJwXifIE0C6N/IE\nyJNegynTBKtc4bgmcGrwwt3eNHZ0XOH2rYV3jVBodzSUOMBY7LUnlHcU2cBMzaGXSZ4D8Eb29xP2\nu8s892dgyhd/PwAopZ4A8AsAvkVr/empmzwEFiFSWyEZKysrd5WcLl9GTx0ua4+7KyZzdt8hcKnL\ndN4Ola5hwaUuU7Q76feZAKY5jMcRX0rouwENvohekuAyWGACIb30/EVhosGkJCpFosQ77RqkKkeZ\ndjYyLDF+hazXWrg5LMg9ZYVMle4ZQ+AS0FJidDUuGlBozVL2GQPeebYOkQyiIMc6JdeeVUbrqFKj\nzS1SZbUUv73cj0WPnifAKjcAY7jHzHt5AXXvdwmwN4z6Su5VBEcd0IPK0XF1KbfQWl0WPczHAbxZ\nKfUFMKDwjQC++V7PVUq9WWv9e/a4rwPw7+z3JwB+CcD7tda/MecmVxZYlGI1LGSuBtNWvAzpEWJI\nKZ65SdR0WYoCWjEZI+Ubuxdv+yxNiAAxQpsfk7FgA5lZHmx3zaKVMB7JI7m1vObv/EVwLF8kZ/Pa\n8wk0FdD6C0iZauQJETQCRdv7WtYYPr/M9ucRd1zGTHyy7y+iMd7r+Vx6M3HmtJYs75DtUpxmja3P\nYsofE0ElAQmBiswVyhPTplXeokxTLNIMi1QjT4GbWYXbdwq3mJ/eKaNtG/OXSK1lljDTWFG2joj2\nlUbporVulFJPwkRnpQA+orX+pFLqvfb3p5VSbwDwCQDHADql1HcBeKvW+jR0rr30h5VS/wHM7uDf\nw0SEAcYk9iYATymlnrLfvdMGCATlCgOLdmGo1S51TKwcBEIiCxKFfnchwXaXzUOXaWGaGqwEKq6K\nYyC5DBhSgsh7kYQYBLKs89vLaPPlwjQnQ3qqPwbPyHbf4UJjekCCmeWdrxm6H3uTxj4mvFTlJgKs\na4DWRlM1FfJsgUSlKNPO+RLqFDiz51F0mBQeEUfPtFjXvYmRtXFKQvQ9PAouxB+3r4YC+MzbwQJq\nbE4QOWtTJzhbZyiSBpRESSYx40+ZGN8WbEwEWYfHnOaigJMe4JsmMXVeRkx+9AwDERYEfnyoD4xo\nz6qQ5d3sDd6UaH0xFoXwtfTHYExV/Lun2efPwpi5Zp1rv3935PgPAfjQPu27wsASWAhzDPwqQHhR\nJcf7HJnLECwnx+Gq7s03qxoZs3G7c8TCHbtXjC1AamKzTWgzQMWZoSLX8qLtBDtz6LwQXbq7Rj6f\nAkYm9iUqBZoNUG1swzZI8iOkKkee8EgyhTLT2LBzR82BhXLgFwotD3GqybaHNE46lx/LNdS5jAxy\nTFAgi1dF0baZv98d00JvnmWolj24wHFEJ8iTiIafaKfF5Imh5QeA4zbBttWoWw4uW9fW0KI8O7jE\n7cuGABXrRwKVV5rG8mqQKwssSaJxdFx5tVRkjXUgPOmDkz0SFRRj+SUJXasoOgcqx3ZCnEID6E0t\nxLs0tohMFTySn6WWItsmqdunotnmBiTwMslSS+HtGjs31oboeTLrvmuAym4WumYQGUZFsTCyn4ht\nGvpgCj+0XGodnBvOey9WIy0lmCK+EMqSDpP9wbSWWH4Vbyd/tybh0WToc3Axjnr/PgQqx0XsPQ01\nl92uHrxnmb90Lw720Li/H6CitRotw/FakisLLORjmSNyoR0w1e6pKo+BiwQV8gkcA9gmGmeYzsqX\n30mNRBbgou9jbaIQWykELmPVAEN9Q5NrChxDpWtl22YXEBuRBKmJCLPAopudFxlGsrD+hKlxMxgf\nwrRICxeBRYxantv3eRAE1wT5Ikhm04yRPsYARm6Y6G8OgkDYtFbt0sE1b98psHO+Q6vdpYmNCDPn\nL7POBkRoFzBRph3qTtn/gVWu4Gk/Flw268wz54Y2ghf1R5HwsUug8oqJinyVyZUFFpK54LJvOLAU\nuXCEdvzA/iDlziPH8Qi1ydSuLtQm6h+5Ww75iXhQwthzBMFGAEPI+Xyv7+CiUqZGYzmdb/10EtMO\ngf3YB6ZkbByPFYsba8+YeS14jfPcRHYBNis/ccAxRvZJsnLPkLpkynyrUFyvcDPvsBlJptxXYlr5\n/TR7XaaP5ZUuVx5YAAx2j1Lk4BsbHLzOSYxQb87gqvIOWDYgi4GkIJ88n93Xq+kxQvIXkjE6Fa6t\nLFf1bFCkc6td6rQXrnWQjJkeucxhyK2qBLtGGbbd1iT1VZYyf6x6ZN0p7FrFCBUZt9ZIzZA5O90o\nTX7kOUKazRzn8hxQ8a7H3isv0RADF686KQOXbauxbTPcWHS2vLFCniQoEo1Vbo4/r1Os2fPmCXBc\ntNi1CT43UVikwJ3c5rqUrRvLNF8pcXPOs5GEoiUloHCT1UOtZX95CCxWpB17H6EFQtY5maKC4XxR\nsUxu7qR2fEp72GmJEqNBEtQyQlLYRSTWF7T488WH26PHwIiub4ISWu/Yuf4sklBZ6GCeUdY5bYrY\ndreteQdUPVJlpXPrqqxEhxatHnJuTUloEdrH/l+JZ+JM1vI++47Vi+ZQ0HubMqk5Oc/x3K7D9qix\n9WwSHOcJlrkBmDLtHKhTPRwSYyqjUGWT61IkiReOfLbO+kRN0TchUI5GeE7Mhcv2h3SduqdSF68m\neQgsTMYGmlwsxyaZxzw8wi0WK5BFwlX/0CAPRsnIcGeiT7f0HHMBJrZL45oFLW6HyyaeJU7tsr9T\nlFuRAMi0qfthQ6lj9u6x55XO79izNbV9J0XjNI+6U2h13Rf5KsIh3cTSy+WyFojYdS4pkW70ejLo\nQfrMuP+mqoYaPTdbhq5vqFoabFuFxxYax5b12GTed4OQ5NwGVBjQ4QDTYVWllrfN0MAUVntp+MaL\nzTs+lrgvJvRco/12RZztly0PgWVPCeWDAOEdcwxUeCIgBxeeze3uNTOZkgsn71uci/MJYIjyfYLH\nax+GgDLT2DWqB5+ID4EYg4sE2NlrhCbwGPjJBY5rdPS/PL+pEwMo1qxlMsVbo7Uk/lRodYNOt25n\nDVxuWdmYpiZFRoBd2v0vEOQQO58W7hi4UE2XU8sqfZwb8+Jx4SdRUm4L/U/ajDlG2xLJffGxKu9w\nuDRapdzIhULPQ7kp9P8YgDwEl/3lygJLyJE25UyN1eQe9aMEGJCBcN0RKUXZYn2e7+VgpNK5pKmM\n0febh/JpRojReXCYAFRvYbLgR3U2pJZVFLxfW6OpWCFAcBqFuCcvZcvPoTZwEPVyFCw9h2zrrlFA\nTgtXbwpDVvQaiwAZrq1MsdOGAiD4whszM475vkJBGLFjvZ268PdNtTt0r6lrhTZYXGsoyxabdYaz\nZYMbR0Z72baklaQoU3pndqG3GkvdqQGR5bpObCExE0xRMK326LjC2WnhzWFeX4ZrNEXZomGReQ9K\ntL58TfSVKlcWWLi9kyb5lLmLT6qxARKjp+egMqD5mDCLzXFg81LD+a7FYl0P7iOFqMRdO4pscoHj\nxcZosh4dV0Efy26XuknM7tq3uU5cKKlnQrT32KzzYDKhLB8wbKyfaU1JfYeAc8QDwK415jAkeQ8o\nWYFOt2h1jbqzCy4zh8kdbCjib67wBS+mae1zXboG9emYiUheM7bIxjZUseu4xZsv5HaRP1vVqA/g\nCl5dLwG4cW/pYwSokGSWDBQwYfhHhQm/52HYnhk48FxT/fFQLkeuLLDM3T2EnKnAjMiuAFki4IPK\nYNFnfpCQhMBlsHiIAl50z7pIBwSDdZEO+LlqWYQKvoM0litz+9YiaqoJ7RLpf1oAN+vcgSIANHXY\n39FrgMYEMkkfX2nnE1quaudnAXpqd6O15EZrAYAkQ6trdLrFrs1RdT0Q8Z39YLc+ErQw5uPgWhfx\nX2XLeHju1Lgdi0wc00jMAX6gB/dPzDGfSXMkAEe+utuZKMBq2eBoabQXwICLeY0JgC4IKlxMoTFD\nsUPEoACcv2XwTOy56HseJfmgRGv1QO/3csoVBpZ5L3l8p4ywjyIAKlTrIpM1LwIypr2EwMXteG2p\nYV5XI6/aILmjZLAlaXeJu78XkTZS4jj2N0loV1hViVsACVSo0BQQrp8hzYgEjGOMt3U59L2YSCWr\nybSJ0ViyYyBlGku3xa5VqDmo2G6UABLTUN3vkXfpA0oz8L2NgcuUydbThNa+Py0YEMHbzph+50rM\n9EtyWpc4tMBOJY9N8qOy4d8Zri8aINJX5GcxYeLGHJanCscAsGyiJkoPsBnZLPkY+Qbm/2/v3INk\nuer7/vl1T8/uvbt3Wa5eyBIxwggnEk4lQZGpsuPCgIQs25HfyKkY23GZIkAcVxzbsqmi/IepEnYl\nJrYpywqmDH4hgq1CBVaEMUlcRSGBEMhYYMIVL0sIhJ67d1c7z5//OOf0nD5zuqdnd+7du7vnW7W1\nMz3T3ed095zvOb/H95ekWxaHI0wss2d+M80EQand8nuR2iFTNSG8ypK+6F8dYgO7G0DqSMUvMua/\n9tsQIh+My1WA639sJTJPfo4/+3WrFxdh5K9UpgpN0XxN/M+bVi51A0Zv5A1GWQfyyYolUH8vHfeh\n36bV4OtNQqZMNC5qL4LQAR0LRy9PEUbHeea1ojc018cjjONeUIjfprqiZLFQ8LAfbn+HyoRmc8g2\nxfS9sORizJkdVlxCbkTE0uUTdTO4cNkkYe6MoMhNftJGp8/x1QFPPVFVRHY6dE1VN8GSzRksVXyU\nfCz7ui4TkV8QERWR871tvyIip0TkcyLySm/7i0Xk0/az3xYRsduXROQ2u/0eEXle2/M7u+/26aIc\noP0/93kTqXSKqp5Q+doV//J+pCNLIsMiK6s2hqTSJKk+HGZsbxVsbnQng/JWESWVch97rkE3Z2el\nYFRk7KwW5s9uXxTCa1Fph3XOuwFvc6NbIZXYj97pVrm/nVXbfttu//O27WuLkQ7ojTJ6o2zijxlO\n/DWuTxXEpNu73mDVV8/UN/9Pz+mL+e9nIrKKil6HyPNaV9Ml/I345wif99h2v2jYk091eXwHHt0R\nHt2Bx3cyHt/JeGKnwxM7HTb6ORv9nCd2OpweVK/vWgHrXbhwWTlvWTlvGS44pqyf7PHsk71SpbhT\njI0gaM1zUnn23D1qWzp6nyAi19kx8pSI3BT5/J+KyEdFpCci/7XNviJyUkT+SkQ+b/8/226/RkQ+\nYcffT4jIy2a1b99WLCLyXEyJy694267AFJ65Evgm4EMi8kJVHQG/B/wscA9G8vk64E7gZ4AnVfUF\nInIjpnTmq+ZtT9ycUV+r3f9xxn7gbVcuUz++wFwRPbbnNG8ilUo5ZJg6dlkq4HR89VKHWbOuumgb\nP0qn9Nt4PiHfxOWLIVb65Mvrz0JZW2NYHZC9poUJenWoc9zXnTO63T0LNf63NpMLaFaLnk6orUbK\nhWURHCrPa+R7sUJ3Iak4+DVQ6lac5Wq4GFd0xlziqlOgXs6lcr/cZ25l0xtJmWc0WcGYRMoQfu2l\ncCITXaktmFxU5zMv1kFEcuBtwDWYmvUfF5E7VPUz3teeAH4O+IE59r0J+GtVvdkSzk3ALwOPAd+v\nql8VkRdharlc0tTG/TSF/RbwS8D7vG03AO9W1R7wRRE5BVwtIl8C1lT1bgAReRfmgt1p9/k1u/97\ngd8VEVHVxqeiLPTlEUr4sJXmA4iavWLKwL6cuTu2e2Drfmy1xYpqEDp7ff+Nb/LySwyb9k6EBV1b\n+72cHQpGvWzPFfoqUvwNWfjlKjB2zQNSmcpFqVtk1/i8YoKQIcIMe5d17+Rc+tauv2gzxqwCVLux\n+cf8Yb55E+LCkjAhl7qVSuUcNaTi0LbAVvl8nC74KgM2u5PCasu5KSDWzZT1LmVdHD+DvzfKGIxh\no2/0xRzBhHVdyvN5RfFakcu5iauBU6r6BQAReTdmHCyJxRbhelREvneOfW8AXmq/907g/wK/rKqf\n9PZ/ADgmIkt2nI5iX4hFRG4AHlbV+61Fy+ES4G7v/UN228C+Dre7ff4ByspqTwPnYVg2PO9rgNcA\nLJ28cPKBN0CH2MuD5qTI3TlCgqkcu4a4QhIIiTAWFPCMNXmFx6qFV5TKvY/NWNvI8LdGbKbbwixX\nm3sQWR3OgzEjso6xzftHCbPunUmvLclUHOXes3C2EA6es0od1G3bDcLn3Uf0WTpd0PcUGhyRFLnx\nwaxb0nElo324fJhlzCRgrZgml0p5hsKs2IvN6qTijJLLeC4T2/kicq/3/lZVvdW+Lsc8i4eAb295\n3KZ9L1LVR+zrrwEXRfb/YeC+JlKBM0gsIvIh4DmRj94I/CrGDHZWYW/MrQAnvvmFjXc4ZkIK4Zse\n6pLGypl7hGBixw5Jpe5HHpZULrdPmVOm65uEcAQYHi9WmtmtyGKJgHPB2fTtzHFUZNNFpiKIqRlU\nEGxz190VZuv3cvqddhpgftZ9bzi/GSNccYTPQq1D2aKttlusjtA8qH3GvJLLU/k2Xmj0LMRWn75p\nLRaO7gim31ErxGrUjruZWZ2AiRRzq5XyuDbXZb2LJRhKM5sLbfef422Ks0su7fGYql61XydXVRWR\nyo9JRK7EuBpmjt1njFhU9RWx7SLybcBlgFutXArcJyJXAw8Dz/W+fqnd9jDVMptuO94+D4lIB3gW\n8Phe2l4xB80wT80aYKfkTfyZdWSV4vZpqllfHs+3GQf+iV2jprRvWPNkL+q9QOV6+OTS6njzzPht\n/kK/Vy+qGUOZkb9LhPcznGyEfY+1e54IpbDcQHmM8LC9PEpCsQmSv0/YNtfmVoOw14+Yf8edo4lg\nlnNlY2AmSsu52MCKILLPwvlnylULyjcY0LHS+34NnOOrg3OZXOpQN07udd+vi8jFqvqIiFwMlDXt\nReRS4Hbg1ar64KyTnHVTmKp+GijtUNZ/cpWqPiYidwB/KiL/HeO8vxz4mKqORGRDRF6Ccd6/Gvgd\ne4g7gJ8EPgr8CPDhWf6VNqi18Q+mRRz9LN5YRu9UeGbgJ2gilbZZ2DEzUl2holCUrzxWxL7uS6qE\n5NIKDSTaZoD1kyn940XNiRG4/IXW4cFZp+Jz2RnFNcJKH0ODT6fuGaj4oCKhsHsZ1KomU3Ot2k40\nXNRZmBTsry7ccf18o2h7I9cldj3C53h7q4gSzIZ1xnczbF2cjE6kxkspETOSUv7lhF25b3SGZf8c\nwTgZGOcTmtmvPUB0tl+tJT4OXC4il2FI4Ubg3y1gXzeW3mz/vw9ARNaBDwA3qepH2pzknMpjUdUH\nROQ9GEfSEHi9jQgDeB3wh8AxjNP+Trv9D4A/so7+JzAXam64Bygsy+rgR7HEyMX/Tqlh5M3MfBOS\nP1DOIpVZtTZCE1Y1mirOrzG/ySyTi5vlxSTcfcxSJvBNfeG1aB3pZcml6fuhz6zfM1UPnWihX5PF\nyLcMyQKNsDBirN/PSumZvaDpGsYCKGKr4lbkHiHsNitNv31T5/FXK/2ayK9d5IL4hBjmPJWSQCvD\n0t/SzYw/BSgJZqI7NsnOX+/CU31DLkWOzXcZTt2DbQoGTJQo3H04F1cu1pf8Bkx0Vg68w46dr7Wf\n3yIizwHuxRSfHYvIzwNXqOpGbF976JuB94jIzwBfBn7Mbn8D8ALgTSLyJrvtWhsgEMW+E4uqPi94\n/2bgzZHv3Qu8KLJ9B/jR+c87HS5ZJZXqkr0pIbA2dyOwfbeWg5kXnvN9VqhqucvSdGEt90Nu8u20\nJpW9OqiD0OjKNbaO19g56sQ+dwZGA80V/Koj3cqxghlxtztm6BNiP27W3Ctc250Cgi8J02Sy8jEV\n5BCsvptKQocrlgrss5YPxuUquWyvG4DnvCbhOfyJ25SM0nqfwWjizO9mlKuTcv8g4GK9a1Yu3Qz6\n+YRgdrrDUv3BiLdWZYR8clkERDUaILQbqOpfYtIu/G23eK+/RtV90Liv3f448PLI9l8Hfn2e9u07\nsewXVIMoIm+VEiuL26Q+GzON1Q0AdaQy01nfoP80D+p8N25FVecEbjUIlYQSDNoRKZHKPhaheavO\nlAeeQ3lrevCKKUjvFi70Nd6I6dwURwRNaHPvQnKJnr6lz6gu1LiuKmSbOdXQCwAAE/VJREFUFZkL\ntphqrz+7935ffmmIEKHfLqY35pKC+/2M3skeOyNjElsrtFydOIHKfuTyL9vwZUcwFLAxEPrrfaNf\nZicLdf1KmA9HllgYT5OKixzyf3gOvvigeVG1rzeRS2U/t6897yy0rgXhVi3BMf121JWbbTtAlTPH\nutozsVVKQ0RdG8yOdqqSS5go2vFm1q6kQL+XMzhmCn65Yl+zsGTFDh3ZleUJImHO7lnYa+RcOaj5\nsiM15RVq4bVvVlvakgqY9sQG3djsvk4ipq49ddL3vrmsv94v67yc6DopfSorF5jkvvjv1wpDPi7f\npXfSRM4OhxnbS2ZIPBOEIrqYyc5BwJElljKQriscXx1MzeSgOsN29R4giE6aQS4+Zq1WQrQNN50c\nqJ6o5gkI8H/ws1YqvoiiQ2wgaduP0Bw5K+LOYKJAEJLKpMHNpq9KXZYA4WBVHj8W6efpccX6XKc/\nV5dQOKU+7Qsp0kxgfvvarKJ8v0YjbH9930o+GFfa6n9WBlA0leIOQtnDgA23r2tnr5ezvTpg0yol\nrxXTBOMnVIKJIFu1hxyOhbUCQE1wxsmenXSslNd4kSvfo4YjSywqtCIV33nuyOX46sBoXDE9YNb5\nXUJ7t/uOTyp14cUh/CidWIb7LLmZWQgHl5jJpDIAxET+akKpwzaVJi0XhOCtHn0i3DpdI6OP6/s0\ncQyDsPFOZ7LicJndRabkUpCJ7d+wT768QiY53Wxo8yKMmaW7NCprrVcv2HTJ6RjJhxONSl5LmN9k\nUTtzDsiiiVyg+TkIzauxCcYs7CnE3SLq0wxKa/vX1axejFJyb3VQiQADSimYWEiyc/ivFcLOsnnd\nt8mUTz6xbBQpBsaPN+otxicqqjPrIx0WHFliIYuTSmVQ7k6/PrHWry1P7GOWgz422EYl8e1xnH8l\n3CeMVouRSlNOjH/sWKLdUoQEorNLPzqtwafSmOldUPq4uksjVlYHk3uwOpgil1gGfBh2XfRNfky5\nAuqOWeqYWW3HlsMtsiUKWYLxkwBk5OTSoch2WMpN3sRyDpuY52DLHrtO1Rf/c6r3KQZfoSHUsppS\nb264tjM13FokUfrP0KzVi0+Ei3BwR0PjvUlLbOXjCrh1bOLrYGQc9Mu5WnNX/Fwugmw4Fi5cBlBY\nt5JHdiLjQp8H3aM7TO4WR/aKZZnWkopPKP6S3G0vI5UilQ1rJUcimJUI6RAjlXCQ8Fcv7tgxNJlE\n/BDTulXLLHJpOkcbs1ZIKqUD/3QxRS5t/AGDrlE/Pr40LO+xqbuurHVHrBYjcilgPESHxtYu4yG5\nFKV0yHKeUeTGz7JduWDxstNQXbXEBvwwjyM0q0VDXCu6bzX+uwjC6+5/PxYM0soEG/iWwvbOQzQx\nn2bYTv+4PrlMkeXKkCKfrFa6GaX5y2Ep11ISpjcSljGZ+o5cvuEmIEuT0g6LQPKxHAH4agVNpOL/\nHw4yut0x/X7GyuqgksHrEMtSNgeeVi0Oo8BiZq2YCco/V5PMSiy6rTyO7Ydrv5PfHw6KciXnt2s4\nyKZMYjFyiSGWg1EHV+K42x1zfHXAUsdev9VBhVzqBtOoScYzg52wA48xg5lBJpMchn0YWV2pYZ8s\nN/XYi2zaAQyT+xwWcqttQ821iK06mxS1YzlSYZti56n7rk/OsQlRv5fH2zgDbVYzdZO68nfgklr7\n1evhk4v7zpI1U3aXRmz2Jxn3y7lZlfi5Lkv5GHeL1rojNvp5KQMDSpHDZrfPpjV5z6PYkGBwhIll\nd/4HmAzK5fu63AJfT8lz9IfnbTJRQfsIqnn74yKkHKksnx4wKjK2MeQyK9Q3du7dhkGHqKy+MujZ\nbf51nzKDBQ5wP2z5xFqf4yvDkiS6WaSY1Gg4qSJp4X8nlG+PkYp7D9U8lLZoIue96IE1YSpiMQg+\nmOueRqLkwoAMHxVTa5AMHDr4fThycZ+738q2nXws50o/F3ZGylpRJZcY/Iiy5dzss9GdEEzCfDiy\nxJJ5D1mvZ7Ky3UPuHnD/x+VmabHwX9+cELO7x7J3w0Gi7eBTF/IbBg24kFj33dC8NVwalcW2HKmU\nemO2Trx/ffxz+ecP0YbcmkxYmxtdTqz12d7qmD6tDujZc29vdcrVir9SMieOmJAskR9f6ZeDmiGV\nyADT6UZLE/dGWVnzfrMvZc7DcEtYblMDJ0DoGG9jxpqHUJoiD5t0wCrh4kFp4qmVdF2EnVtpzVCa\nDs2/JYH1s7jSRI3kj3Pqb58wz8TxlUFZQGx7Zciz1/tsFsLGwBQD62amdktvJKWPxdVzcVgrJivU\nZetfO9FdkBr1AhMkz3UcaWIJTTv+a59cHByphA71mOorUNEdimG3K6Y4iRnH46zMe5+QQlI5tmVn\nZqdhhwKoZubvVcqkDuHgurnRNdfGmb8w177OBDYV9htE3flO+xjGOjKk4pUmHo0GZa0Ppxfmrvn2\nVjEV2gz1AqCxSMG6UPTQT+Zyq2JoMsHOMlf5pBwmqYZ1iHYl/rnHMgYx1IVkF5um9PLGYInjqwP6\ndqK4vdXhSUswOyNhrXDZ+lUy8dHJlNXMrHAMwWgliz+hHY40sTjdqHIZbaNATqxNajg4gomRCkwP\n8nV1XRaF4TDzyvma9vvx9hXpec/ZGw485azbI5V8MC7JZdTLGHQ7bG8VtVFNuyXG2LFqB0Jrhmjy\nq1QbNS3Js7JqlG272SSLPhYtJLYeS7XQlylNvDOaqB8MBxnLg3rp/brVSqtQdKr+t5VIbfq63KIm\nKZ0wsGKKVALF4rIfNcebWoV7ZF4e0y/JHPSrzvwbWgS6S6OpfB+/jX576MF2v1N5BjY3jKLx5nqf\n804My1otJlN/8hx0Mg2c+hkrxfSKZi/IxtDttSvZcNBxhIkFjns/2s2NbsVe2+vlrKwOKg96+MN2\n4a6tSGUOLamYs9wnsGJzWLHrd2oSuabkQIJBws26Oza5rdsb0qdTvh/YxLTYoB9LzKsz2dTVqonV\nVqmTL5llhvPDrcM8Gf8/1IegxuAqSDoz2PaWIfVjW4aQB92cYZHNNIH5mBmKHgy+MfNQKAgarpan\ndzCDcvT6tiSPthUXfeIMEzRnJemW+wTHc7k+DrHVi5+kOSoyBgjbS8bcayYEPfrrfXaWpZSCAVc8\nrOrULzJznNXC1HxJmA9HllgKgQuOmToNPvwBaOt0wcrqIEooMXNU3aAyODH/ZfbJJXq8zWGpa1RK\nloQDXEhmwQzStXd5a8COrTo56OaTCpQtMrYdjq8MKhL7bTE1yHpZ1mWz62a3EVOO2x4Nse1OlI19\nZJKbcOPepnk/Pr+Sx9LNlBNd2O6axM3t0wXPrBSV6w019z/Qo5sXYS5Vvz/x+/lyPC5pNyzWVhn8\na3Jgwhya6UZM/Fex4Igm+KtHn1RCS0Ar1IQ4NykW5IMxo17GU5ikR6c1NjgG5y2rt2IR6rqzOo/6\nRQNENYUbH3Z0MvNgAWx0jHM3luHtzB9QdZyHpAIYJ+OMZKrhIKs4bpvMSTPJJfix1xJKCO/zUL7C\nkUqbQaMc1CypzCU/42EetWffR9Rmv74XlNEf29oqxYRcMslNHsuwDz2bpTLsU+TLrHWfZrUweSzL\nuR28tzqlWCHUVBqt8y2E21sSTV2Ir7+i7XTGFUUIhzZJqxUFgDrUkMss1JFKxd80D7lEED6rodUg\nH4zZ2coZLhk/Xbc7ZqPTr5Q8Hlqzp1upOCzlY1bOUDTeXiAi1wH/AyN9/3ZVvTn4XOzn1wPbwE+p\n6n32s/8M/CwmJvt/qupb7fbbgG+1h1gHnlLVfyEi12Ak9btAH/hFVf1wU/uOLrEIZcatecDMbLbb\nHZclTGHWKmVayLIOlSAAbzCY2c4Gcilnmo7MWlQdjM1W3eBTIZWa8NDKsWpmoWE4dgwuBwcm5pK2\nzt62pOIrCVSu/7gqm59JDv1N2HnGfmGbYuUERbbMUm4SKh/NTYKkk5vZ2DKOfp9UQokWh3AgrsjL\nN+m7effKPQf+qsV/Ltz1dM7r8hpEklbrEiZnTQzallT2zxNOOnxSmWrHAgjGL3Pto+iNpkiX9T5+\nyeMVa/Zy5rDVYsRKZzwdlr5b6GLELUUkB94GXIOpWf9xEblDVT/jfe17MIUSL8fUtP894NtF5EUY\nUrkaQxL/W0Ter6qnVPVV3jn+G/C0ffsY8P2q+lW7/13AJU1tPLLEIqKseqVLzf+hrdVBZfVSF/kV\nDip7UbJtynYOZ6y1hGRF9fxjuv0dphIsAzmWtvVc3LHqZqHlOfrVkO2YYnTbpLtZ5QJi53eChcdX\nzL3dyZQT3ue5FOTSQftbsL0DgPa3KFbPJ5OcIhtVRA27XXufvRo4TZOK0O/m1/cIo6/aIiQXqEZ5\n+SviJp22cFubBEs3Cag1mxFfpbh21/nAfNJs7nzzBCRGLk7WBxtG3+mMy5VnNxtayR61YcjmOI5U\n1rqjiY7cuYOrgVOq+gUAEXk3cAOmQKLDDcC7bDXdu0Vk3ZYb/mfAPaq6bff9f8APAb/hdrSrnR8D\nXgagqp/0jvsAcExEllS1V9fAI0sspz79pcd+6Pk/8eWzdLrzMax/mHAY+wSpXwcJZ7NP37zXAzzx\n1Bfv+uPbf+L8ll9fFpF7vfe3quqt9vUlwD94nz2EWZX4iH3nEuDvgDeLyHnAMxhT2b3Bvv8G+Lqq\nfj7Srh8G7msiFTjCxKKqF5ytc4nIvap61dk639nAYewTpH4dJBy0PqnqdedAGz4rIm8BPghsAZ8C\nwuXpjwN/Fu4rIlcCbwGunXWeM5PxlpCQkJBwpvAw8Fzv/aV2W6vvqOofqOqLVfW7gCeB/+++JCId\njGnsNv9gInIpcDvwalV9cFYDE7EkJCQkHCx8HLhcRC4TkS5wI3BH8J07gFeLwUuAp1X1EQARudD+\n/ycYEvlTb79XAH+vqg+5DSKyDnwAuElVP9KmgUfWFHaWcevsrxw4HMY+QerXQcJh7NNMqOpQRN6A\nic7KgXeo6gMi8lr7+S3AX2L8J6cw4cY/7R3iz62PZQC8XlWf8j67kWkz2BuAFwBvEpE32W3Xquqj\ndW0UEzSQkJCQkJCwGCRTWEJCQkLCQpGIJSEhISFhoUjEsiCIyC+IiIrI+d62XxGRUyLyORF5pbf9\nxSLyafvZb9uEJERkSURus9vvEZHnnf2elG38TRH5exH5WxG53Trw3GcHtl91EJHrbH9OichN+92e\nWRCR54rI/xGRz4jIA1amAxE5KSJ/JSKft/+f7e0z133bL4hILiKfFJH32/cHvk9HDqqa/vb4hwnr\nuwv4MnC+3XYFcD+wBFwGPAjk9rOPAS/BpPvfCXyP3f464Bb7+kbgtn3s07VAx75+C/CWw9Cvmr7m\nth/Px+gh3Q9csd/tmtHmi4F/ZV+fwISMXoHJoL7Jbr9pL/dtH/v2XzCRSu+37w98n47aX1qxLAa/\nBfwSFfEwbgDerao9Vf0iJjrjaiursKaqd6v5BbwL+AFvn3fa1+8FXr5fMy1V/aCquuIRd2Pi4OGA\n96sGpUSGqvYBJ5FxzkJVH1ErKqiqm8BnMZnV/rV+J9V7MO99O+uw+RLfC7zd23yg+3QUkYhljxCR\nG4CHVfX+4KM6SYVL7Otwe2UfO6g/DZx3Bpo9L/4DZtYHh6tfDnV9OhCwpsV/CdwDXKQ2XwH4GnCR\nfb2b+7YfeCtmkuaLnB30Ph05pDyWFhCRDwHPiXz0RuBXaSFxcC6iqV+q+j77nTdipJ//5Gy2LaEd\nRGQV+HPg51V1w18IqqqKyIHJJxCR7wMeVdVPiMhLY985aH06qkjE0gKq+orYdhH5Noxt9377g74U\nuE9ErqZeUuFhJmYlfzvePg9ZaYVnAY8vridV1PXLQUR+Cvg+4OXWpOC30eGc69cu0EYi45yDiBQY\nUvkTVf0Lu/nrInKxqj5iTUIuiW039+1s4zuAfysi1wPLwJqI/DEHu09HE/vt5DlMf8CXmDjvr6Tq\nWPwC9Y7F6+3211N1cr9nH/tyHUaG+4Jg+4HuV01fO7YflzFx3l+53+2a0WbB+A7eGmz/TaqO7t/Y\n7X3b5/69lInz/lD06Sj97XsDDtOfTyz2/RsxkSqfw4tKAa7CyFc/CPwuEwWEZeB/YZyQHwOev499\nOYWxX3/K/t1yGPrV0N/rMZFVD2JMgfvephnt/U5MsMjfevfoeozv6q+BzwMfAk7u9r7tc/98YjkU\nfTpKf0nSJSEhISFhoUhRYQkJCQkJC0UiloSEhISEhSIRS0JCQkLCQpGIJSEhISFhoUjEkpCQkJCw\nUCRiSTiUEJGfE5HPisjCFQNE5EetovBYRK5a9PETEg46UuZ9wmHF64BXqFe7G0BEOjoR19wt/g5T\nK/z393ichIRDiUQsCYcOInILRgL/ThF5B0ZC5lvstq+IyL8HbsYk4S0Bb1PV37eKy78DXINJDu1j\n6om/1z++qn7WnufsdCgh4YAhEUvCoYOqvlZErgO+W1UfE5Ffw9Tu+E5VfUZEXgM8rar/WkSWgI+I\nyAcxCsHfar97EUbS5h3704uEhIOLRCwJRwV3qOoz9vW1wD8XkR+x758FXA58F/BnqjoCvioiH96H\ndiYkHHgkYkk4KtjyXgvwn1T1Lv8LVlU3ISFhj0hRYQlHEXcB/9HKziMiLxSRFeBvgFfZmusXA9+9\nn41MSDioSCuWhKOItwPPw9TOEeAbmNK1twMvw/hWvgJ8NLaziPwgxsl/AfABEfmUqr7yLLQ7IeFA\nIKkbJyTUQET+ECPd/t5Z301ISJggmcISEhISEhaKtGJJSEhISFgo0oolISEhIWGhSMSSkJCQkLBQ\nJGJJSEhISFgoErEkJCQkJCwUiVgSEhISEhaKfwTznfSwP1j3gQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_mag().show()" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ8AAAEWCAYAAAC5XZqEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmwbVle1/n57bX23me8w5tuvcx6VVlVUIqiHTRQ0I0d\nSBgMYmGhHa207YDh0Ah0a0iLYA9BKxVRDdHShKhQrTTQiEjYqNVSBLYoTm1JFYgKFLRFmVlZmVlv\nvMO5Z9jj6j/WsNc+59w3VL7Kl/DO98WLe+85++xh7X3Wd/2m70+MMeywww477LDDa4nkSZ/ADjvs\nsMMOTx925LPDDjvssMNrjh357LDDDjvs8JpjRz477LDDDju85tiRzw477LDDDq85duSzww477LDD\na44d+ezwKYOIfLeI/I9P+jxejxCR3yoiH3/S57HDDk8KO/LZ4ZOGiDwvIksROReRYxH5MRG54d83\nxnyNMeYvPKFz+2oR+edP4thr59C48TkTkZ8TkXc+yXPaYYfXC3bks8OrxVcYYybAdeAm8Jee8Pk8\nNEREvQaH+ZdufA6Avw78iIgcvgbH3WGH1zV25LPDY4ExZgX8beA3+NdE5PtE5Fvd71dE5O+LyImI\n3BORfyYiiXvveRH5ZhH5RWdB/R8iMoj2805nNZyIyP8rIr85eu+GiPyoiNwWkbsi8l0i8hnAdwP/\nibM6TqLz+asi8n4RmQNfJCI/JSJ/NNpfz2ISESMiXysi/15EZiLyF0Tkbe48zkTkR0Qke4jxaYHv\nBYbA26L9f4OI3BKRV0TkD0ev/w4R+dfuGC+KyLdE7w1E5Afd9Z6IyAdF5Mi9ty8if93t7yUR+dbX\niGR32OGRsCOfHR4LRGQE/F7gAxds8g3Ax4GrwBHw54BY2+m/Ar4UOzG/Hfgf3H4/Cztp/9fAZeB7\ngPeJSO4m1b8PvAA8BzwL/LAx5sPA1+CsDmPMQXSc3we8G5gCD+uW+1Lgs4HPB74ReC/w+4EbwGcC\n/+WDdiAiGvijwDnw793LbwD23Xn/EeAvR1bRHPiDWIvpdwB/QkS+0r33h9znbrgx+Rpg6d77PqAG\nPg34LOBL3HF32OF1hR357PBq8XedZXEKfDHw7RdsV2Fdc282xlTGmH9m+sKC32WMedEYcw9LDn5C\n/+PA9xhj/pUxpjHGfD9QYIngHcAzwJ8xxsyNMStjzIMI5e8ZY/6FMaZ11trD4NuMMWfGmF8Afh74\nB8aYjxpjToEfx07yF+Hz3fh8wl3T73Kf82Py5914vB9LTL8OwBjzU8aYf+fO898CfxP4wuhzl4FP\nc2PyM8aYM2f9fDnwp9x43AK+A/iqh7zOHXZ4zbAjnx1eLb7SWRYD4OuBfyIib9iy3bcDHwH+gYh8\nVES+ae39F6PfX8CSCsCbgW9w7qUTN5HfcO/fAF4wxtSPcL4vPniTDdyMfl9u+Xtyn89+wBhzYIy5\nYoz5fGPMP4zeu7t27gu/LxH5PBH5x86deIq1bq647f5P4CeAHxaRl0Xk20QkxY5VCrwSjdX3ANce\n/ZJ32OFTix357PBY4FbgPwo0wG/Z8v7MGPMNxpi3Ar8T+NMi8tuiTW5Ev78JeNn9/iLwbjeB+/8j\nY8zfdO+9ybm0Ng550amu/T0HRtHf24jzSeCHgPcBN4wx+9gYlgA4S+l/Nsb8BuA/Bd6JddG9iLUK\nr0RjtWeM+Y1P5hJ22OFi7Mhnh8cCsXgXcAh8eMv77xSRTxMRwbroGqCNNvk6EXmjiFwC/nvgb7nX\n/3fga5wlICIydsH4KfDTwCvAe9zrAxH5Ave5m8AbHyIZ4OeA3y0iIxH5NGzs5fWAKXDPGLMSkXdg\nY1UAiMgXichvcjGvM6wbrjXGvAL8A+B/FZE9EUlccsQXbj3CDjs8QezIZ4dXi/9bRM6xk+C7gT/k\nYiPr+HTgH2LjGv8S+CvGmH8cvf9D2Inzo8CvAN8KYIz5EPDHgO8CjrGuu6927zXAV2CD6x/DJjT8\nXre/fwT8AvAJEblzn/P/DqDEktX3A3/j4S/9U4qvBf68iMyA/wn4kei9N2AzC8+wRP9PsK44sBZQ\nBvwidrz+NjbWtsMOryvIrpncDk8aIvI88EfX4iE77LDDr2HsLJ8ddthhhx1ec+zIZ4cddthhh9cc\nO7fbDjvssMMOrzl2ls8OO+ywww6vObbVRzwVuHJl3zz33BvAuGzfYAEa+7tp6ZWEeHksSSBRGLrt\nrfVo3L+W1hiaVmiN0Bi7l9aI33u3S0CJQcSuAhIxqMSQiCAkCAIIiQGaEsoK6hqzrO05ikCaIEpA\nKUgSyFLQOUagbCoWdULZghJIE0Mi7pgPGB9/7o0RlBhyZdBJgpIU2hraxo6FG4/WNLS02OzphMSd\nu82sBmNaWgzGtNSt3b+480gE93v/rEw0WsYIrRtL4z6bKVCSIm0LtRsfsOOilRuTFBJl72d8j7dC\noK2gaaCq7ViXTZcQnrh9J/Y8RbvxTlNQGa09O0SUPafW3q9wr5LE/hdlx82Poz9W3ULTQmMwrX0O\nTQOmFdrW/mxqaBtD09pd5gNBZy3JUCGDFPIM0gGNtBRNy6JOWLhTUIl9Duyz0D17SgzK3QMlikQU\nYgc6utcCibbPvoi7n/Z+t8ZQt0LdSnheJHrOErHHTlDR2NTQ1FBWmLLGrGraEppGwNhDNo09h9bd\nrjQVEg1KGxJtEK2QXNl7nWrQ2p2jjp4f//1cu9Pink//XW9raFv7v2m731t7L372+Xt3jDFXH/C1\nuS9+k1w251QPte3zzH7CGPNlr+Z4r3c8teTz3HNv4EM//VfsH01pf9Yl1CWmKezvYB9KgKyrQxSV\nw2BLUbvKMCIsmzOqdkXZLlnWFWdlX9exbIUsMeSqZZqCSjRKUtIkR0nq/tvXxBjMvRfg9stwvsAc\nn1L/0k3MqiHZz0kOcuRwApMRcrgPl68hhzcwOue8vssLszNemqfsZS3TtGEva8jc5DmroGgebPzu\nZQ2H+SFTdQlz9gosTuz46Mz+z0ZIPsUMpjSmsuddF2E8ARhMMDqnbJeU7YJVcx6uM00G4Xc7Pksa\nU9GahsYJADSmYllXFI1QNAm5ark2nLKXXoO7z8PtlzEvvuLuVQpZioxHcLgPo4MtV+WguzIgUTlm\neWzP+fZtzM07tK+cYlb2HGSgkYFCcg2jgR3zN15HDm9Qj/dYNmf2MZCUUTKF+T3M7CYs55agBpMw\nVugMVuf2eHdvYY5P4dY9TFHTnhSYosasGtrTArOqKc+hXCTMTzTFXHF+Zshz4eitBXufnpJ9zrPI\nW94IV5+hufQsd1Yf40O3B/zyacJ/mNn7fZjBQW54bgLPjKve85CpIWmSM9GXkdUsjIkpZvZ+6wwZ\nHsL4EjW1e8YLGmMn06atmVVwZ5UyTZveEPvnPFNDBmrSjc3yGF55CfPSTeqP3KF+4YzViVCXQl0l\nNKWwmiuaSlCpYXxYM9qvGTybo47G9tk/OkSOrtjnfnhox9h9DxtT0Zg6nGMMJSlZMrTPqb8Pq3OY\nLywhup8sVpjZEv1VP/DCA78oD8A5Fd+i3vFQ235185NXHrzVr248teQDYMStfFRmCchNRIJbG/uJ\nM+kPk2kKmG8hqLqEbMRofBnyqxRmxUAt2M/6X0aARFT4AniSoSmhKoEa6kW38elt+4Wo7Jco2R9g\n8tpOhtNhN9FmaSBJMYaJvsyNScNedhYmGCW6O7Y6p2yW3FldTEBXBi3jdI14Tk86KyNLYTzC6BPI\nRiidQbnAeOKpKrvteASjA/J8Sj6YMMkv967ZFMeB0Ebjyxi9R2MqytbqZVbtCpWmDLUloSwR0mSA\n1AWmXMD5AhZOqq1u7KRxvoD5Ajlc2PMESwIeOrP3LqyUI1y9alftYPebpXaF7cd6MoL9A+TwBkWm\nKR3xgCXKRTtjNL5kn6VsZidvTzrR8WV4iLkMkqUYQMoKdVjZayirQD7qtGCwqpmcFoGIdGYY/7oR\n6WceWeK5/hzsP8Nx8QK/dJJxc5mwaizxDFWfeN4yrVCJJkvGpMmALBmi0RARDzhCzkb2vAcTO6m3\nm2pGKtEc5JCrkqLpW7C5MoAlA7/oyP3YXLfXrrUl9eTm3N6LosGsKqCiLVqSPEEdjVFHl0iuTmA0\nsPfh6ArsXUPGl+33GDaIx5OPkpQL4b/jfuGSpXaxBw/0EuzwyeGpJR/v0tkgIAdRuSOg6EN1aSer\neEVfVfYhnVuykDTFXLoN00Py4SH5YIJJc3sMj6aMrKzz/mTtEU9SZbRyy1KS/dw6t/bz7ks4GcFw\nbCe4CHvptQ2iA0tOWTJkmZyhknNOijpYQX6lOtRT0mTAyOQ94jHHp3ayd19Ujk+RNLXnAHY8POl4\nQhgNkPEdjJu0yUYYP5bLud3WXac5vAWjA/T4MjqfUlOjJKUxVSAhgCwZwvwMlnPMfEF7WthrG3Q3\nTTwJ+UklTTsicsQZLDj/MZ3Z8zrcR8oKMxl1n3PjTDZC9q+zkIKmjRYK/hbHBBRbyW6C7C12hofd\nJOfHwS02kgP7u6obzGyJWTXo0xWDk4LkIEf/+iPkbW+Cy8/S7F3luHiBj5wKL801qwac0cZBDm8Y\nWuJ5dlwyTg/JklG3+p+fWSvHkXEgSp0huN9VFiZza5X2LQolKRO3QGjamrI1gYjK1pBRQwKrZgaK\njoAuOxc0oI7G9hko+gQnuYaDafesj0cwmCDTI8gtKfpxx7BBPA8Fndnvs382JiO3eLgPaT0CJLFu\n0ofC/LEc8nWNp5Z8gOAi6hGQhycCPxGVi450YsLxE2xZ2S9MrsNq2xyew+jAuqTWXXl+X34fkWWz\nMUHCFgJig3jIRj0CEwCVMVWX7GRXrKDuVuhaZ0wGl53L65zzasFQp2TJmIGa2olpNcPMHfEcn1ri\nOXGr48giMFnaXcvaqh0gOchhurJjc76w5+yvO/4cdONXLgIJKT2kMdYVWbrJXqPthOn3444Vu8nM\nqoHTIrjLzGjQEVHpx7iCNHIjhgHK4OgKMnfkNRx393MwZdGc3Xdy8wRkLc60vwCJnzEcASW692wI\ndJZjWVkirCoS/8yNBsiN68i1t1KP9zguX+Yjp8LL85SVG8qBhusanpsY3rpniWc/22Oo9oKlY+Z3\n7fPtFwHjkR37yKUaj4uSlEYqBmoS/o7dpvHEH7vm/MKnMfWFBMT5ont240k/Jn1/Po50YsKJxz6c\na3SP/Dko0fZ+eDe7R5puElD5CAS2w0PjKSYfOxHED+k6AQn0H0yPT/Zh9ESWaDvydWkf8Gh/EruF\nvGVRVnayBExZWfePVvYL6d8/PYFxaa0J6NwIftKIrap4m2LGSOWMxtcZ6xVKtJ2U5vcwzbGdhGbH\ncM8Rz+IBXQiyNJCIDFQggq2YjOB8gTDCsAifl7Fb2fqJxt0TP7lkibOwCms19ojrQefm0CP4NO2I\nJ7hfovHzsZrxZYzOg3vOT7oPWl2X7RIltSVz72pcnW9s563W8MxtWayIJyN/PZefxUwu99x+lwc1\nk9SusKvWxsjesldwYyJAGsbRiEvx8O7HdIvl7a1y97dWOVpn5GTd8+wteHfOSmddXDS91IuDdjG8\n2i4ikj4BsV/2j59oa335/amMmtrux6wuzB2JXWwxMYZ45MpZejHihYdHmtrFyQ6PHU8t+Rhjeisl\n6B5YWSegeOL2q6KYgLQK2wbCyKIJTWfBbxy+KzUuaeG8m4Rja8dnUenMTQp+RdhN1D2iKisoT2Gy\n9kWJt9kGnWF0BsWM3FloplzYydFbeLG1cx/IeNS7RgFk4Igo1yFm0oNz1Ym3hLLUuuVGB2Gyb0y1\nEWfIkiGmeLmf5XbReQ2UjY3FMRvvQouIJwSstyAmHQCpC3ISl0TRvb5tlW1/d181RzymmHWT6vr5\nute642VhEmZAZzW7OJKhC6BfGcx6SSQ+ueVo1L3mY2lZAjqfdDFOAF1uTsLlwv5nba6PXc9lnxRN\n/PzqjNHwEDO5xll1y51DTWuaTQJyxBvGxX+HAuk8bAsmizhxx479XWctO09GnIySaLvoiJKLgG6x\n9iqRiJDlD1ndsnO7/VqGoWwXvQmiMXX3sMYuuCaDMnoA1yc7v9p3Lqiwqo6DzG6V2COhdQKKV7Rp\n2nfZaRfoxxFQVfUncu+2m/fjDxuW1DoiwjPpyWa2Txy32fbZeEI/ugJV1ZvMkn3nv/eEehH8+9PD\nkFUVB45jKNE20cC5QE1sDfjrHmj38wHEM5h0MQ6XyQV9F44STZyvKHWBOX0l3N88n4TPbUN4pnxm\nlZ/82hqTlP04ne4vfDzseDpLI9OdlRZtn4jiINeBqFVIlNmMM1gCApLhJgHFiDLAgC4uFxOOtzqd\n61ly3Xs2yFKbdXj1GfZdnIy2e6Z6BOTjri5jzZ/rqyKd1axzry1OrHvxnuvnd6mC/SiD2n9noe8t\n2OGx46klH4OhNRe7amICkjrHJCVW/HgN3u2lVUdAnjxclpDR+Ya/v8uooyMg6FaLUWzBugNza6Hc\ntStHccfdOgl4lJU9hp/0nYXWI4J5f/uLYjbxZB6uIU5pvuRSmt3EF09m4ici1txdMbw/f3wZ3GTe\ntPVGvCC4rlb37LHiRAU/8fnj3o94huN+TCOfUJgVZbsIz4WPXShJ2UuvBgIxp6+E9GNTLqCYod0+\ntqVGbSWe5TzEmQxst4JiIvIuLm8VNYXdPlokeesnUSqKbViXUxyHaU0TXWMKsmYBeatgOe9im+eL\n8Fz4dHA/5mbVYFY1pvBWruqlpctAk+zfQ84XmGcXjKZH1OND5vVxOHdPQJkeBrJpWpfG7Z6B4G69\nD3qk48e8Kew1zY43Lfn5wsZ0Ll/rFiG5s343jdJXBUkgz3e5cx5PLfkIQiLdRHpRLYAoZ7VsCf30\nsO4y2+Y/juFccT0Cci4P7/6pVcKyvmvrRmK/uPsS9eAmhq0oq4utjm2f8ckTEcyqDgH8HgF54pke\nWuKoy57bzXir6SLLJw4iu1qgOMUaopoMY6JC0Qhr+w0Tnycen63mY2SeeBJtJ3Dt6kLaqkc8MaxV\nvHb+9RYX1YPg4zeeNMfdWwZHMtuwlgwhdbb12PEzfb/UYn99Zbuwk7ojIHwcxBOPm6jj+qNwvi6r\nYT2u50mo99pAWavYWSAaHc61732oWDZnocbLu1xVoqnaolcLd180Zd/a8eUBFzzv1CUyPcQMpr1n\nb4dPHZ5e8pHtvteqXdFIt9pWkpINpnYijSeA84V9rbr4YaZcgMoR76dfh87sZKPclyT49V1BpvsS\nAtTU6MEEmgKGaxltUXouF50TkQsunqyjyc9Wm592yQ2riy3DEMMBa63FtVBucvVWmSlqZDTo78DV\n/cTursbUNFHgHOjqT9ZJZzBBdIZJtLWs0hTtr8tltPWuN06r9ueYaWtBrEAGtgjSI57a4hR1o3Mb\niwrj0JHm0mW/rU+OWyfK4GJ1P32qt+rubZzsEtKdPXRGrRIas6JsFhtWfGsaKjpXVTyRl04yYJKO\n+gSwclbZ6jwQj7l53Ct6hT7ZWKLvTyPrVo8MFHI4sQuVyMKLxym2WLJkRNkuegsAW9tl/26loZFq\nY1y3Lg7KxUZdmmT73f073IerV63VPpg8enr2Dp80nl7yIQkPuUfV2i+7f+grihAozgZTRxQu8Jza\n+hZ87GV9RVVVoC2pSP0QVpAjIe+m81X+cXaQ0kPriisXMIw+H/8ep+hCP47kcVESQlWFJAPKamu2\nWrB64sSK6DoCyZYd8ZhVY10bfvvJyBYG7l0PQeSyXVC1RUjfBTuZ6KaF+jwEnbs37d/iEybStJ+w\nsX7Nw5hlHdoaamdxrEAPJii9112rD1I3LSb6phi3GInv1aq6xWl5RtEI14bToJros+E0dOn2W2Io\n1urdkukWrrdvZdUqCRbCg7CsZ8zcYYomofQZcNOlc8lVwNC6BF2Mx1s8zc05zc3NOqYwRgO98Xvf\n3ZZ393wy6l1DlgzDGIXYDJDnE0oW4dzK1nBWKvayBlgGRZBWmh55WuKPUqiLGcyOMb4OLc52PNy3\nvzgFDMmn1ur+FFo9Ijx8wsFTgKeWfGib8PB7AtqWVeXRmIpMDdGDyDd+6FxLPsi/za1Ul73VbA/r\nbhOXSuolaKq2oGyWZGrokiM02sUpepaGL1ZU+fY03XUkF9z2tra1JGDdeM7FshFL8b+vZ/Wto6xC\nbACieM/+VWTvOot2FtJvy2YZVuSegHIZ2BqjKLMrJiEjgqjMVbe7mNi2cX3YwLEnbp8+7IsugVhC\nCAhSQmVzxrw+5uai5fmZfZ5m1YIbk2VUB7M23j6hI0u7mief5uxrfdbO3UAoVjU6Z1nfpWqLzX3H\nh3HyTndWOkg8FY2E9Otp2vDMuCbFEq0pFz3iqT92SnNzQXHHno9O297+kzzpip39a/v5drfneNS3\nkJsS5WOhcUKAuwfDfC/EhM5KRdkKZ6UiVy25slaQJ6F4DBqTokV3skD3nNswPg+PSWR9553V463X\nHT61eHrJB4PUBUrZB3jVnPdcEn2JkBmNsm6LodpD+/gLdATEYtP6cZNmz32yJbXWT6hddlfVW9E2\npiL10U/l3BYXpKL20kofNVunLjH7pSUgV9QYB7uCrtmWrL4NRAkQpqi7ZIz9A6sM0M7C5OLH/axU\nDLUdw1EytZp2PkbS1k4FYNrLhDIioHNknHXxknrNdeWLb/2+ouu19VZ0CgN+ElwvKh6WISYTa9Qd\nF8e8NM/46NmAXzqx5/TrDxKKpuIt0xPG6QFK9qCebZwbZWUn5LKy7jdfb7O+nY8t1SVmMOW8vsuq\nOQ8yQ/EknIhyKcxLToqaWaW5vdRU7brkTUuuWtIktwoWd36lpzEXE4+X8ilrRaLt90OnLW3RogZd\nPDBoDfpnJHZ/Zqkdx8WJrUVzCRPBGowI1xQztM4YqC7+YtPHrWhtrpqNaw4u8mSIOX3Z3r9qLSEn\nSyGtOoUETzwh5tcluDyUJM8jIpFdwkGMp5d82v7kDoQJ0P7ePSRFY9jLFmFizJKRTQt1MQdwE1da\n9bOpsr6Pe2OS9n9HxFO2SyqXhqpEM9RTElFdRfr8Xrciz0bOXecmY9OpNoRU8UdY9ZtiZgPN0HOp\nBd/9thTa2IUXq0JMRjBfkBzkmJUT4jzcR6ZH1CphVXVFlirRDBOYpCljfUhe1pj5mo6jTw5wuHBy\nWCceh14B55qMkU86CH/Xzr0aT4wuE69WCWVzxqqxihAfPcv5lTPN87PNScVqp42sSoQP5I8ObOA9\ndkPGEj+hODjakbd28wllu7TB+DWLVolmoKYhs83qta04yJdcGawoGnEaawSdv8PsbXD3ecztX+6y\n2iKLpzktaeu+KG4MfW0YyKZHOnE9l1vIUFVdDG5irT7jEz/WUdtaqHx8ibE+5Gh0zF5dOvWNUdCi\n26aJaObPd0Q2PQwLqZ7QrC8ajgpX1xUR4mzBHT41eHrJxzgZfmUD4Y2x6tOzavPLVjSWjKZpzTQ9\noVIFjZowHOz1ExHW1Yv9pHa/jChHHD7GU7X9eoZEFFkyssRTnPcL5OhW7JJ3UiePavmYYtYFZ+OM\nIK0cebgMt3XiuSiDLtHWwvGyMHVjfewuqFu2S8pmGdWhWP//XnoNOb/brzz3ahAeLg172ZwxVHvE\n2KhY34Ke1Qj9+6OinzldzQnW1VW0S1b1Kct6xp1Vwp3VJvEc5Ib9rOXKoCJLptZ1WLzSP97+1Y60\nXZ1ReK8bkf55O4279bonS3BDBsoei6ZEqwEmGdrXzZSBsm5hbxmERczHP9gpVzjtuPakCMRTV9vj\nEzpt0deG6DfvdzGdOI1/HYuVFXoFu513OaanQaC1fwCXSl6cM8qnoGGgqp4WnTm7bdUXoHvOIwX1\ngMvXQkLK1u9lrJjgx3QtTX1HQJ8aPMXkY4OSyvnwrSR8uqHIC1aVt2gS979hL+sCsFk+RPtajdjS\n8V8AdR/igYcinlwGfeLxGlweKgcd+dBjrBNQPMGtu5jW90sX34nrZXo1M2v76x3n6tVOF+tw306g\nKqGqV5StYejmtrE+tG6205f7ahLr5+1UlctmGdSRs8RNFsX5fcnWsObydCve8L5scYd4dQVTUzpX\n10lRc2eVclYmfHyuNiyegwwuDxqmKQzU1Aqylot+Qair4+qlTm9zx8bXnk9s7UuUiWUtgYh45vdC\n/Y8AWmdWCsdr+y3PMctbmNkx5uYdGwtxhONTqJubi16SSV1215dog05b0jdN0W/eQ44O7Rtrxc69\n3xerIPgK/ToxXGsKOV/YdP04KSTESi0BGRGnM/g8xukMbs3uLKsug82Pry9cjggnHOZC4onkeB5X\nt2cRdLpzu3k8veTTtphihowvOR+54axMqFohTezD5t0UfUJSLltoyUFe0SgXB9q7bifAtfgNbD7Y\nMXzswPvpfRJET+a+OO+LP55H8SWd2evApgsHde64N5GDqLyzmLxLyRPP/IKMpiztikTXieeirDmf\nNqyxkwpEqaz2y1400rnZ2sTGHGbHXZGt349rDuYLKst2GUhAiSWgTmB00X1u80K691zcppdSuza/\n+NTkuC/TnZXm9jLnvFJ8YgmfWPQnkoG25DNNG4Z6aq/LV9RD3xU7vrx5irHbMv7pVucxNiwevzhx\nqgn2IqL6tLNbPWHY5ua8VyAKvo1BTVu01FVCW/evb5145ChqOeOfx9QlU7g+OO1J0SOfdaijMcnC\nCc4e7juXNdb6KWY2xsc5zO8G0olrj7aitCobnoDk8Aa1iq24WIB0S3uIuFDVGPu9fp1BRL4M+E6s\nGPhfM8a8Z+19ce9/OVab66uNMT8rIjeAHwCOsE/9e40x3+k+818A3wJ8BvAOY8yHov39ZuB7gD1s\n8O1zjXlE2Yk1PL3k07Q2GyafMh4fUrZLrg7r0KgsCwTUZfjEmlm5Mj2VXi06VEbHq2gv2XMRYrPe\n/wzE07SY0xc2SCeoX5dVmNiMj1VErRnWRVF7mXDbLKhtskHx7zHxBNWE7OLsOYDpoc1gyqdQl+RA\nnl9noGbW2jl7BXN2q0s/zlJbe7QtE7ApyUlQ6VXSxLrddLHCzH4liJ8CVuZnrSYmqANExLMuobOO\nbfUeuTI5zOQRAAAgAElEQVScu5cPcp+d1/1/ZlxxNEoY68PQ7iG0nyhPILOuWTNYXJjZFgiKTnZH\nqwyVeDeQtZRjqzhgmwvvIdyvMfGAJZqaxOnfirV6rg1RR+PQQ2q9xCAoIThrp7k5tz9P7fGTPOmn\nZueK9nRlE1kWK4xf6DDHS2+Y1CpJhFYeJzPa2+fUL9h7rd+837emYugsxBjjRn+P5EYrzjHHLz78\n9vdBkjyeVGsRUcBfBr4Y+DjwQRF5nzHmF6PNfjvw6e7/5wF/1f2sgW9wRDQFfkZE/h/32Z8HfjeW\nZOLjaeAHgT9gjPk3InIZHrIl633wxMnHDeSHgJeMMe8UkUvA3wKeA54Hfo8x5tht+83AHwEa4L81\nxvyEe/2zge/DrpneD/xJs613boy2tWmlg2P0YMJYH/LM6DZlW/cyiDziNOyyNQy17Tzq/dD4OAud\nMOlFhYbejDciwXVkdbYiv3zTWhmX09u9fkG9YlJ8okMa/N+9dOsYcer17Pjiam/orJ20wmQubhOT\njk9XjYP0kavRBuyjjrCZ7k+GxTmjusLMPhwKAMP1zb0czxp5RNBNy5QJ5t5LG6thn1UlR1c6Kyou\nKK2zvm4f24lHiU0WCASkcXEc/1jZfjkD1S1Q0sTYXjn62ka7h416q2zN0ozvxWQE08OgJi11HmrB\ntMpQas/VDuk+8VwUW4wJzi8iBnrDcvAWj0+p1mkLKSQ6IZvYthhhoi+r/mKorCwxnBa0pyvak4L6\n1pLFqaaY56jMMBg3JLpGp7Y5nM+Sa08KVK7t/rbJL5WVLXg9Pqd+4Yzm5pzzWwl1lXBweov07Zds\ny44Y0eLIJ2n4mqCHSaUWZ/GY4xfh9u37bvsE8A7gI8aYjwKIyA8D7wJi8nkX8ANuHvyAiByIyHVj\nzCvAKwDGmJmIfBh4FvhFY8yH3f7Wj/clwL81xvwb97m7j+Minjj5AH8S+DDWnAP4JuAnjTHvEZFv\ncn//WRH5DcBXAb8ReAb4hyLydmNMg2X1Pwb8Kyz5fBnw4/c9atPY4rPxCDO/y3D/GSq9InOWio+3\nhM2jFOgsEiANRW3rAX6VIcZsJZ3475iAGmP3Z1fzN23q68073cS0RbuN1ImJOgukU81eW+22dScS\n6Zq9Xaiz5uGUDsKE4MU4oZed5YnHuza0slJBnoR6qEvbsti3aVjXptMK0lM48pN0P8stZOXFje3c\narg9tV4A/SaXKn64b7Ob/PmyOTnHxNNZslV4z99nO3GdEy/4fAaZ/W+t5f1szzW5uxcSOExc8Luu\npbcNc9dDxjVMM0kZXGiicktCOrPFtxG2Ljy2KmsoSyKn3UtmVQdXW03Sq+nJJrZ+J9nvq1Sst5q2\nyQrW2lmdCKt5xvxYszoX0hyKcUI+bi0JVc6zMLC9ltrTgiRL7T6rLlPO98pqbs6pP3bG8hMN8+OU\nk5uaojA0pXBY3CF7+0FoRBee6UTbTLbmfGtc5yJ4tQdz/CK89DLm9r37bv8pwhUR+VD093uNMe91\nvz8LxObYx7FWTYxt2zyLIx4AEXkO+CzsvHk/vB0wIvITwFXgh40x3/Zwl3Exnij5iMgbgd8BvBv4\n0+7ldwG/1f3+/cBPAX/Wvf7DxpgC+A8i8hHgHSLyPLBnjPmA2+cPAF/JA8jHNMautI5PrVTLasYg\ns26O0NPGE4rOQE17yQEQya7URc/d1bvGbQkHkXJvTEBKUhtUjYjH3Dze/LzfN876ydIurrANkdsu\nFok0ceYaF4h+xplt24jHycvEro0sGZHpYV+VeZ0wIqFK+74TJM21db8cn1qfvTteiHnFFfjnC8zx\nuZ3w3Erbrqgb1FFB4muVLu2Ddn2UVBmSM2LcTw6n/3efgGy9jAnWcpoMOqvHdVjddq33ky5K9m33\nVRsDWdhsMNdh1NSWiKTekr6vs+09qHytUgTJbeq8WTWYoqEtWsqFnQ40BH2hJE9C/Y7/HNAtGBar\nQDjexbY41cxPNOf3FLOzhvm5JbLDy5rJnuqRUHNaWiHSXGNmS0SrQGZm1fSsqLM7GWe3Bty73fCJ\nl1eURUtZ5NTVgMPqjOGqQb/ZrWGd9WxEel1XY+27dVhXpmug6InnpZvUHzu98DOPAnm0Op87xpjP\neSwH3nouMgH+L+BPGWPOHrC5Bn4L8LnY+NFPisjPGGN+8tWcw5O2fP434Bshcm7DkTMNAT6BDYyB\nZe0PRNt5Jq/c7+uvb0BE/jjwxwHedGnUWRKONOIMl56WWF2GDJlOjuTxw8uCxMKTfpK60K8N3UTg\nu3GuY73nTbjuaALcRjrxzy2JAOvEs3INxfyXPVNDawXN721c10XN30xRd6RVl5CNumSCyHLz+wh6\nY07Msi1aEp+tVTfWwrt45B4adqHhn4+CLLHFj+vuWSWpXVzEitvRta4H+bfCKQaEc4/69wDWxerv\ngf/qxC5QttQzPSTqKkFn9nxj4rG1XmvPYN2sCY1a66muEuoycfszlEVLlieURUtVKFRqySeG3Y8j\nVE/ScdZdldC4zDu/T/97XSraWrrt3UJJVE7tYntNa1t4KxN9x9fQS15xi6Tm5pz6hQfNza85XgJu\nRH+/0b32UNuISIolnr9hjPnRhzjex4F/aoy54z7/fuA/Bn51ko+IvBO4ZYz5GRH5rdu2McYYEXlM\neY7gzNb3Anz2mw439rtumstaKq4PUm88uCrrTw5rdSOhTXe8fQRv/WwgSx9MOlphMl+0aPXkNrDe\n70ZH+/QxgFj1eVvG2XqxrAvcL5szVpUtuDwrFVcGLY3UJE4vLGzfOGvJJS2E0XCCo74Rn6RpUMkO\nwfM14olTa720S2xJJAe5fd23GY87lbpsxO5e+tbP2+MA8X1TkjLRl1k2ZxcmkSjRUK+6++P/jwbW\n3TXySgoR+a7VyHRZX86N5C2XnvXiEhfoCmgDBhOEqNZldY7hpo3dlbbRmznuXHaSK5LcqhhAG1QM\nvGjohUWkkxEyGqCmK5KDpZXW+dgZXTaZZlTYa9OpMN1TDCY29jMYNwzfoEj2Rzbj7erE3q/DfYxr\nta6mQ2sN5Rr7lBSozBDLvl57RrN/rWD4BmWTDw4nXU3Z+BLL5h5ls2RWwTStKbEZpdvutxIXQ1uc\n9Kzq81uPR49NEkgfT5uGDwKfLiJvwRLKVwG/b22b9wFf7+JBnwecGmNecVlwfx34sDHmLz7k8X4C\n+EYRGQEl8IXAd7zai3iSls8XAL9TRL4c259xT0R+ELjpA2Mich245ba/iMlfcr+vv35/tGwNuq93\novQEtK2pWQ96jYAi4vE/71cvsPGeJ4V8MzC8FbH1s+09f5zUdZmMjhOIx8UYemTjakz8NfhxaExB\nVZ0G0cpZpSmahL2sQSVWDihkAcZjNB65VNhR7xziZnK97Lk4VnVBZp4M1Jq+2KC/zzg2FUmpQLfg\n8Bbt1njAWiLJUO2FSvh1K9i6Yc86K89ZB5I1fdJ3E23v+mPSj7G+eIif2yM62aEtdSxGhGacoIoZ\njMsQd9rm9ku0QWMTDdR+5vryqE11C9+iwsvVjEcwWqCmK5fNdo+2bmhKoak0oMhzYTAxjA/rQDz6\nTXs2TuPHwrfmiC3caL/DwRz9sZk9vzSjqYRLzxZM35Sg37RHcn3fJppcvobsX6cwK6q2YFZ18jye\ngOwF9y2gnrvUWT2rlwpObw02xupJwhhTi8jXY0lBAd9rjPkFEfka9/53Y2PfXw58BOsq+8Pu418A\n/AHg34nIz7nX/pwx5v0i8ruAv4SN6/yYiPycMeZLjTHHIvIXsaRngPcbY37s1V7HEyMfY8w3A98M\n4Cyf/84Y8/tF5NuBPwS8x/38e+4j7wN+yA3CM9gUwp82xjQiciYin48NnP1B7AA+6AQ2XrpwMoEL\nBUehE7jsPtQnnt5290vCa8pNf70P+sN2EvKxBK8RxsUKxPE+PQLx7B8E8cz1WpiynYVki1ia35KO\ncsW39izPSkWW1LRJ012zy9gyiSPnbV1bBxNkeLipUhATT7mla6kbnyTuhuytngckVMRk462g+DWJ\nMhjtRo6EgNypCHRk3D07PZeXc51KXnXkMxnZyXb/oG9ZunR0M7vZHTN2VcbXv1hZSwo6AtJd7ZBf\nKMyrY8p2yZXLz0H7kV6WXfw8yUCji5KaxKZE56rvblsnHm8lu3shLgsy0crZJffwFpBKFWCJZ7Rf\nM3g2t+oIVydwMO3GwrVOZ3WOGRzD+BxxJJRoT4SK5IUzcI0dJ9da9JsOUDcOLPFcvdpJONWnzupR\nUZlER0BeEw6sWzW0lLjXZdbNbqfcfrnvInw9wBjzfizBxK99d/S7Ab5uy+f+OVtbHoIx5u8Af+eC\n934Qm2792PCkYz7b8B7gR0TkjwAvAL8HwDH7j2DTCWvg61ymG8DX0qVa/zgPynRz6MUXdEYsovko\ncZ3HVgEdn4uzSEy0WhYuIKBHRK+1tq8sj9R9fWJF6ZST4z4wRWMVkb0ahCcdL1yZK6s8nCkv0rjm\nemtr+5K30BzpML5EYVZkk8uukv2u3faC3kQb15TrjoDWkyS2utzsfrcRENDLYDTFrCNlj6ZEVLYR\n7xFjgktxW1+l3grfV907yaCyXaKyEfn4M6wywuKkS66IMr9CmwpHCnJ86hYLGZJfx4gE8VGvyKAO\nXubS4Q2bsHB8ujXmlOQJmhYZZH1320VN+dIoCcV5CGUyIoFNAspMn3i8leJbGowvYwZTFs0Z2XjP\n9q6KScjdT+0SHqYDq8SQvv2SJZ6rl4J2oLXUu+uz6fFtSA4Ba/lWUoTSBqmL0FLCzBe0JwXlOazm\nivn5q//OgU04UOljnit+FeN1QT7GmJ/CZrX5HPLfdsF278Zmxq2//iHgMx/poCKRK8FOSlVts1ri\nmoBtiAtDe2nWa263RyYlp1htkrKf3uxX+qNBJ1cDFxd+PiyytN9J1E+CjZf7KYK/3PeB8bC1LUlP\noh+gaFq7bbMkTazlpHRuWx+AFewsZnixzCDW2c6ssriqOs28+d1ucvPxEG8BRNaQh48bBatnrX/M\nOrYRUC+WU5c26+n0BHP5mp3YHrC/AsjHlzF1iRwuMGVF4s/Jp37vXbOTre/b1HbWXm8FfnrSyeA4\nwmlPVyFhQQaadDq0bi9vaTUl6DxMqrk6Y5o2KBlQqwQ9PYLDE9TRvY0Gcf7vkGSwLqm03g12ZNk+\nToU3I6u2kWSpbdWQn5LogmwC+s3WzRbUEby1s2ddZKvqlhXWTVYM1NQuRHRfvNeUFeqoI4PkIA/q\n2dBpwmmdsa+v2oJtde7udX+668ol0k51PFow6LRFZ+1OifpThNcF+TwRKOke2mzUddLcGojc/DsQ\nS1N2feLjNNgt/vd1bHXDeQthMIGJy3ba0gdta/rz/ZCWXeM7sJO27yy5JisPXcaad631Dp10dS2e\nfDyKRihboWwNWVuE7pMAajBFjLF9aeqyJxLqG/mBncR1bK3E1+YMKTl0K/g4FuSsRBm7xmWPgM7S\ndQdorPvLPP+C7Vrr+hzFBNSPgXVEViQp+aU3d2nwvmfP9DCszAuz2tq1dVuqfXNzHggnViJI8gR1\ndE4yGlj31GABTrZHSUojFZN0RJYsu8XUYAKXr8G1U6SMMgHjWrJoMvdYJx6ZHlGP+8KuAHp8yVpg\n4xFJlpLt5yQHp0iuOwvl6MqGtbNqzkNPpyZx38V4IdLWMKlsDVTdkHgC9moL4GJjrtjafQdHOmeY\n7YUus3GrEut20/0s0whJnqBTw2hyn6SfR4GAzl5/LrwnhaeXfBIJ1fqST3sNzYZxvNs0vcDkelFp\nTxEa7MOfjSwJxRnkF5DQNgIK1s+27puxG2lLQ7mt8BaZz4Sry57Kb+yOAkJrh2VdhUQCX8WfJYYr\ngxaVaJZ15XTuBGg5LRNyJSEGNNSVa4Lnx865YJQGNaAxK1bNbHsih7cCs1G/Qt+vgqdHdpLLTrp4\niG9JvU7MDwk/MYkxVl3ihecxL96yFfiLlSWgN3cEtI14PAqwBKQzmC42rLyqXZEmXSA7S4a2uHh+\nN3TfNDePQ0V/rLdWlwl1pdFpy94Lp2T7uV1I7Ntn0roDdSiS7ikzq8y6+46uXFzkuu11P6bDMXJ4\ngyLTzKt+5X9jKgZqwmT/mS5ZJU3Rvq+PTwYYHnYp+lFvIuvG7TqW+n0O8z10feisSVtAnOxXmIHq\nrFwPLy2VlPYmuMSZ0WCC0XtBS9GOi7d6Crt49OnxdJl++bhhsvf0TpOfSjy1oypK7Ap5MHESHOeu\n1bAA/U6JibOGesWnsbXjxTmrqjfhGWZdFlJTPhwBrWfNxfCuqvX4w4PqObzUjdcS859dywDz/YCq\ntqBpa85KxVmpKBphzwlm7mUNmRpZ95S26atFk3B35TtlJsH11rQ28cBP6hU2BdmvwmNrx2NrnKgm\nnHMclxKdWXJyEjvB7faI7kd/foEE5/fgtq1sr375Hu2pVX3WTnbIJBrZv34h8fjfCyDbf8bGE1xL\nhrI5D+7MRtUM1KSTU4q7b96651pYz1mdCHWpQ61LXVkC0lnL6NYSdXOOOlggyzlMuyJaXxaw0Wp7\nMLFtHVzhahhrD5/aHid3uExEObxBkbScVbd48XzTrTxNT7g8KNgbX7Vq7zpDLjnB2Mja8Sn6nVvX\nC/Za922uWqZ0Bd2TyWXwnU7HI6tgkW1T/PDfhU5OyrAAF7fLBxNydSl4OoLVAxvfI8kVOmvIxw9u\nVb7Do+OpJR+SxLkRRhid01abVcxK0jA5KEmRurCSJt7i8fCEEf9N5Au/IPstxjoBhU6pDoFwnKsq\nThFWetpZY9sITpfIyu2vxk5wVWXTmiM0pnZtre0Xfi9rQpxnmjYc5JosGQfyUJKSq8p1xLSTxqrp\nXG+zClSy3JCtWUdsVfrf4yw5tvRF2nDN+cwrL076EIiz9/x5aHSXEu77GRWNjQ+6oLvPBCzru719\necQaYl6zr4mELXGJV/7Zsm+s1Yi5NHsZaKuHZo+C/7BOG1RmbEr0QHdxmAvQncsQrTJk/3p0A7rO\nsLKaRc/deVDFCPVSq3PU2EoIXRl4RQv7WZVoBuqAib5s+zItjy2J+QVZW9vkDZ2RKZ8pWAEXB/Sz\nZNg15PNtvr1qduHavi9WXdfUbe0Z1hB3LTXJ0DZkdFaSX7z4uFd2a0k+fjxuNxGD3iUcBDzd5DMe\nhSpoYKPT40BNGKo9RzqzzsXm3UB+1Zhou5r0XpSoS6Kt/t/UhlpX1w3V8zoPfvgeATniib84F9ak\nrBNQvLIrFyFWIoDJRlaDzcnNhGpwNw7PjGy7iUk6Cpp3/ritNGHiiVG14lKujT1XOkHWGEPdP/94\n33Ywsu2WYFOicQkJvmVBJL4qsBnzce5FP34+xhBjkLrCzHyCXH0bVBUaUEfnNkh+4zpy7a3U4z3m\nLji+rVBxw9JYg5KUTI96yQ01NTqf2my0oysItoDDFDWDvLMQrZKDwaxqkv2c7DdfQ549gjc/Z91Z\na/Au1Ka1lvxKzoMgbnd820dcF6u+mkTcvmDUxb00N9ibXOu1rw5egfk9zPIjmLUUeTupL2A8wpQL\n9PCQ6fiS+6wtUi4aCfHEaQpDPWWsD61VGGsdum6rEHXZHSyR6RAT0s/7NVNejSPOdmxMxXl9t9cS\nxSQaGY5hPLKWbq45/NjrTuHg1wSeXvLRKvSYiZElwlBPuz4pqzXSiQOTcRfKyH3hXUOFWTGv7vYm\nOd+9c73/fC/jymWHeYsl1N2EAPcD0o+3EFBoGnf7tv0Cu86SMhzjO3turXNKNPt62Jto7Pm7mphE\nkyVtIG6PohFmleq1pAAJWXM2/bViqLtr30qmF8gF9RrrnXerYYjUvj0BrVlMZbvg7mrJNK61VcOe\nkCz5BLn2VnvW904tIRzesMRTH3Na+lV/3evIGiMRtbFIiFN7oe33Fcon3YLjklU00G+qaPf77kmv\neiHTIfKWN8LVZ/oqB9EEW7UFJ0XNrFLuPi2ZpktWyTl76bWepJQpbndk7jqcmuNz2pMCGRQkRAui\npmDqe1jVC0zhLJPTk06FwrvsAvmkToljgRmfQzFjtH8dFRYhC2wdTkQ8Pg5291avF1Fz0y00clcE\nO1DISdFp0GVppw3on4EtXUsBp1iR2uQGryN4PUOyFDUabCpmf5IQwSk07ABPM/kkSRRot5PWBvHM\n71nXQWw5rBc5RgQUr64W7Yx5fRzqLLqAvf1pJwE76bXiYg5SBYXroK7gyHG9B80DZeFjAqpLO6k4\n4mlfsXUeKkvta9kIGV+yH2u7WFdMjv5v6NxkWTKiagtytSRXhoHybreENGkCAWWJCe67uCDV7sMf\nb/NR3CjejRvk+dW5J5447VorDIuOgHwcQGWU7Yx5dcKdVUrRNFwZ+HYIedcaw2N8CbkGZnqMTI9C\nkP3uasmdlT0vGwerOgvQ3bt1qaZePcnsZTtRO308PZhgtLXAdT5B6hIzrcNEn4xcMkukt+dliDxB\nbtx+50I9rxa8NM+DAjdYC3+aNjC6FQhI6sKekyee2/dob58H0VCvIOEJCLDbewsp6uUDm/VovqzB\nOCKSsrIutLYmnx6h8qsoOWZZzxinB1GvppshAcMTT/2xM4o7NW0tJLommxSuLklhippk1ZD4tiCX\nr1mrd81rEGe++UXCVitoPLIuxx0eO55i8lH3b128ji3KwFROSy3rRDaNzjmv77oJLuGlue18CbjY\niJfgNxRN0yOhDbeTx5Y4zsZ2zcVJB9v6+5iiy+zxbsSqXV1IPPeDbykwSRugs3Z8QWrRbG4fw3fk\nvG/r4ph4/GIgvh+RyKVkzda4T411t80qOHPCl3tZ49ogjLbXZY0vBWLGrFCiN87/rFTBVeQFLD1i\n1YReSm9dgqbXY0iJ02obTGxwfWizu0L/JN/Swi14NjTdIpTtgmU9485Kc3dlew+B7T8EthgYStT4\n2FoYtSOLuAUErv5nVdMC7WmBOl1ZN+TcNchzGmh22/u7G+O0bhN6RB07V94R4/yQRNQm8bz4SnC1\nNTcXLD/RsJrbZ2UwbmiLhsS5ds2qgX0sCZ4vYHxuyacpgzKFbflrFzdn1a2em3ReH5Mmg84K0tmG\nd+SThQi9VhVPO55e8tE5i2FKVd8O+mQWLpFAQT6+1FcI9m63qDp/vUDTp47eWSXcWWmqVui+k1Zf\nytbFtORK2MsMKrGN6bxmmJ2koq6jddk1EktSGzh2CIkHOt8+eXpSGh3AVTsBJEBydWJrLq5eRQ5v\nMGvucVqe2RX8Q+ooxm66zJGq7fPXIV5xe9iJ2iYwDNReiD/0WhfHUK5eKgeJW4RnI5gurBbYeBRa\ngYc6H19AO75MkWnOypc5cQT17LgKxOM7x4YxvwC5GpClQzs56WNuLvpdbovGkllG54rz96dsF5BA\n7l1rXjvPLVg8xBibDr13HfKpvcZy0WU6Rp+pL7B+l80Z8+qElxeKl+cpn1h2nVZ9A7zUxVYeBBlo\niNpgNzcXNDcXqKM5yf4gFKf2PuPiMOuvhQWBE1U1LFzTQptBqPX1jnh8yvmLr9C+cIfm5pzqYzPX\nnE6zmndJAFaTrkW5mGtoC15VliT1SXAt9xZidcn+pTdzWt/u3Svb/8d2is32n0FWa5JPOzwWPLXk\nU5uCO6tbnJUKiKv3G8r2jCatadSE4eTyhoqBf4DjicDXD3Q+9rTnXgIcCfVrZsDHAUY2YFsXfTff\nGkRlQZW3c8FZP3aWDLdbDB6jA3h2hExGdlV49Spy9W0spGBenvDSPCNXLc+M6q0E5Ffw/mfVdi3c\nc9WylzXcXvYfqXXy8enak3TUzySMCfd+hbk6D8kRvtskw0PM6ADxtVZ+QeASPsp2yVnxcrTAwFlq\no0A8vZTbi8ZP226iIzUly4ZkyTG3lrNee/WzUgUCWnfBrZoZKMgGU5thFWWZbUU+sduFnlJZkOGp\nqtOeHFCsyBETz81lwkkpvGFoAvHY699S3AxbLcZ1IoGOhLYh2c+te859bqsye91YazXWLgT0+LIl\nntPbgXjqF05ZvVSwOM0o5gnFXHF+1nWU1WkLI5ugEeDdsK6FudFr7nO3UDFtzf6VtwUCAreoapzC\nR7JgmG8W0+7w6vHUkk9RCy/Nt09yRWMomiUHeRUm2kwNQ0qzOGsiCG82Zy5Fuea8WrjCzC7GEcMT\n0CT1BCRdvGE164rkmsjygV7BaqwpFscWynbZJ6D17qpgJ5nLz1qLYXrEQgrOytthsvLE+MyoRimX\n1bYle2ubyneWGPaytqf5FuPKoHLB5D0rnxIm/agZ39pkC5sp6nFDP5WlqHyAHl+yROTSoIt2yao5\npSyXwdqJcXkwJE3yXqFhPN6wxV3ZFKGbqAb2x1dJRorj4tgtYuDOyn6l9rKGYXTrYwLyvY7U2nVt\ntVxVFgi0iWqEvOSRj7fZ8bf76xMPrGo4KeHAPe5e4yxXBt+tFdoudulaNazDrGrKcygXlgAA8nGD\nzoy1PtZcSjEB9UgtaqonWllXouvGa6BHPNX/dy90L13NFatzoSgMi/OGojDkeYrONDqrrMUTqZv7\nwmMpq651/Fpyis/g27/yNmbNvVDjBtBQh6SNxwLBta3YAZ5i8lk2wkfPUvYzG4cBvxq0rjFIOClq\npukJKtFUySq01lbKDlvpJDu8+OayrsIk5CeEqu1qM9ZhBTiHvXjAulvAwzRFT4p2GwH5Wo6QTbW+\nP+gqz8eXKZKWeXUrTFbPn8NAdbKQVwYLJumDg6120jMUjbVsvMoBEEjoyqBydULWbbWRYBCvSuO6\nqcgK8tZlaxrK1jVzi+NTaQoUrEqbYehdn+fVgMuDhiuDilwZhjqNiEd3k/4FxN8rxgSbDo11YQ7H\ne7RZQ9HMuLNKOa8Suq9VxVD343ONqcHVUm24G5v+NQcrp10FxYmzUjGrUs7KhKqVXgzR4+5KcVom\nrBo4KYTjEgZaWDWGgwwmaevkkaInamOR0tkRnnTaWljNVbA+wApvDsa25mgwbki0IVnVmFxhXDsG\nexaZFx4AACAASURBVPOq4J6LY0PiG/6VVXcO91xr9NMVzWnJap5RV0JTdcQzO7P7mJ01DCYJq7ki\nG5a2keB+boltRGf9QFcf5LqkmlWN0soWDmcjJvvPcFy+3C8JaCvizrWvF4jIlwHfiTX4/pox5j1r\n74t7/8uxaYRfbYz5Wffe9wK+n9pnrn3uv8GqYTfAjxljvlFEvhgr+Jxhq3f/jDHmH73aa3hqyScR\nAvHsZf7LuJ4ubIkoVxVoO6mX7SLEZrIEGpMGF5RKU7Jk2VN/zpWiaLoAvMde1my6PugKU01T9OsU\nPGnA1jhQVyi5OZmGz7tMPJ+yvapPOSlqisZOjj4uUDRJcJ9lyZJMDcN+vKsndvP4Op5cWWWDLDFk\nrqVCrmxa9TTdTJLw56x9Vt+aMGtILW/9CnQVSAfo1RD5RInGVCG12CON7utQp8HVlyXDTrHiIpze\nthOYaznRg86CyxO6BIs0MeH4WdK539ax0TvK/R63a48tzCwRctVStkKuvIq4CceOr3c/84sem3h+\nkBneMIRJ2ri23waVRHVb9ZmNLfmEg6jZnQw0GTXteuYIoFMTrJ9s2KD2M+t2i1pv24l+87M9d5wX\n+M1Gtkh0vkAVNfqkYLCM748idrBN9xSDse0RpPYz20jQi6J6sVHnYltvz+1fsy66BWIMaZIDiws9\nF68GIiY06nt1+xEF/GXgi7FdRj8oIu8zxvxitNlvx7ad+XRsM7m/6n6C7QDwXcAPrO33i4B3Af+R\nMaYQkWvurTvAVxhjXhaRz8T2EXr21V7HU0s+WgyXB00IftsvpESNpywsgXRfnFAFbwwa7SZ+O/FZ\nHTNNZmqG2lpCfkKOU40BN0FLsAB8Rb+HxERzkW6bX4FHVlCYTO8jueMLD8t22Ut9PogO45WqZ1XD\nQdIPbFvLxRGey5DLqDey2vx1Xhm0awRW0ZjIGvDxkXzg3q9poh5CQI90tl5TRETx/dvLGoomCS4/\nb3ltJZ7Y4qpLSzz3uoJcLkd6eq7ot3SdMmNZmBhlaxgm90+N9+Sio8aFHkrSkIpPYuWMfFLHgybG\ngfL31Fo8nbvNLraU5MHq6qSiqn7auoMMNGoAw33ITktKV/WfaEM2IZBNsj/YiPE0N+eu4d+Wpmxa\ndX2XshHi9PD8aykwHpyRfWzGItXo1KBSRe5aK0wuNbZB3YFBHdmuqDIdhg65AWvE07VfrzurqzhH\npSlDnVI0sTv7dadq/Q7gI8aYjwK4bqXvwrab8XgX8AOur88HROTAN+k0xvxTEXluy37/BPAeY0wB\nYIy55X7+62ibXwCGIpL77T5ZPL3kk5ieG8a7YDJVh5bQQBDO9GKjStJucncyON76sGm13SrdPsj9\nXjjeurIdP2N3jJOL2TjRbJNInDstThUPBHRRG4dYibm1NSDLuiJeRa7Hhc/KxPXnqZikfQmc0H7a\n1SY11G4V3k2+IRah+haDV8z21735XqSZ1m4v4lSSolS6oVIwqzYni2nabKSzXzRWYRL2xHP7nrUG\ncIWL+7ZwUfJp6JRZtmbrBOWfnW2FqNuIKMS21k6r197DEVCu6t4zuvYJ99Omvh9k1sq37jYTMhOt\n+Oiwe56r7cSzDrWfMXRNWH3TuWR/YJvDadVr0e3rhDgltGvoJTD4tiHTQ2T/OrPmXk+YVNKUdDok\n2c9RHzsju1ORjxsGjvw64hlb4jmcbCZNrLna/E9wVtl8gThvQpbvsZJzclX1GiQ+AVwRkQ9Ff7/X\nGPNe9/uzwIvRex+ns2q4zzbPAq/c55hvB/4zEXk3sMI2+Pzg2jb/OfCzr5Z44CkmnzSxQWclOqzk\nwabETlKAhRPVTIJMTKKsBDv1alOEECIXWOcCqtoVjdSoxPr/PRFtxQUBdlGZDaZDr9YlVPLH223J\nyov37yv8rdUjzoVjXJKF3SxevXuZHO9+8/EajQbpVuYq0dBWveC3JeSOtGJ4colFPb2qeOzyKFtb\nmb+XNUGOJ0ssibTGHjcm987d5eN4bsJVoyAr0ykMRIgtHifuaY5PaW+f29gA2HRul77trZ5tahOx\nO9Vbzhk2gWPdZdmNx2ZSxLryRUACGbVTf2ZtvCT0WnJ7JlddbMha+TbeE1xuq7vW5eaVCRy2NZyT\n3KkrDHQgktCRNPSVsq0gzKqhubmguFOHZASzqgNZAZ2yvEt++cT8hGvDhvH4sBMmzVKU09lLXjiz\nrbRd4L5HPNNhv/+Vb2MeEU97WoTWFOEafcHrnm0ulyY5Q11xVrbMKuXieK8ej1jnc8cY8zmP5cAP\nDw1cAj4f+FxsU8+3OusJEfmNwP8CfMnjOthTiTTJ2UuvbryuJKVyHU39ytX71x+k2XU/BDfVfbBO\nOrHgpeSTvjvtfi0UvLApUfDcyfOUzTJch3XB1O4aVchU864Zm71mJ/2Bi3Ntg03EGNIkXfzFn/dA\nTXqW0vp4eCvHKodbl+UkXXc9Zf3MNCyZeVmUhrpHPDE6y1b3iWd1vrFtGNNIYDK4kLxats5s3ZBZ\nhXEc6pQrg04f0I9dID6nFQiWZC5qVLguw2NhP7dszrY+fxfFJuyxCe/5FHcb8xpbFY82wZy+jDm7\nBb5bqr/WurGqAUWNrCIJm6ClpoJ7KzTJg17hb3NzTnNaUi40jCBZ1YG8wNUDjUewd406HzAvX3bp\n/la6aJwf2lYKV0trdU5OSV1bb3XTdjL1xNNryR3L+5QV7UnRa5y3FVtSzI9GCSyarZmbTxgvATei\nv9/oXnvUbdbxceBHHdn8tIi0wBXgtoi8Edti+w8aY37l1Zy8x1NLPlRL9PwMxpd6k76S2k1UnYsM\nnO8eO3noeJKCnsUST6hxEsDWnjUPQDwZGRHQOTLOEG8FrdWKhK6hkTspXFnUr8fDZztlCYGEgN6E\n6S3DGI2prctwzYDzSsWebIJMUVMCbd9arM/QOrNjqabhGrcR9FbFA2Co9mjNce+1uPeQX+HHcR6p\nC1tH4uRtekkd4UJGcP1ZWw/lpGDkcN++5loKlO2id089AXm1Az+GsfXnUbXFRhKCl7jpIRqv4WBv\nI739rFQPjEfYmFsZSCdNBlYsN2paF7LBqoh8spRkNCA5mWFc59CNzqa+mDfup3Mv1l+bUy4VdZXA\nArJJt+qXgYKDqW19nU+D+GmuLlDT8G3lD6YoTyT7eZ94Yhkcb/UU1tqJEbv9giI4BJHhmOSPRgn3\nU91+JCS2Qd1jwAeBTxeRt2AJ5auA37e2zfuAr3fxoM8DTo0x93O5Afxd4IuAfywib8dmt90RkQPg\nx4BvMsb8i8dxAfA0k89iifnoz4cKf9v3fdM9BN2qMsQi1HTDRdaYyvXD6RPP44YRAdcRtHdsIrUD\nrwu3/jk3fwd3S/Q9GCadzpp3awVLwZiQ9uuxrc7Hj51Xa9BNi5m/0k9Z9ogTKRwJ+PqZbenmBjay\n//RgYq8l0UAdkif84rpzt20hnlVE4F7xOj5uomH/qhVeXc7t7/vXA/Fss0LsBF9viMfG98ajaotQ\nR+W3pZ71CCdO+RYgy0YhXla25gJLr5vgrwzqHumEvkGnL2O81p/PBFtvz+5/XrvkxEDTLjFgnXA8\nbt7B3LZ9iNqTgvKckJrNGNqitrU/ue6sntEB5BOa5t6GO3rD0s5SqFLkcIJyVsz/z967x1qWpfdB\nv7XX2o/zvqfuraqpKtd0z/SYxCY8ApZtCSGhoCDHQkxQIEosktiJEqzYvBREHkiJpcTCisBgJcaj\nwR4HI2KIMIIBjWNhEAogGWwsEzwexunp6ZqeruqqW7fuvee9H2sv/vjWtx777HO7urt6euJbn1S6\nt869556999ln/db3fb/v90tmuTeU62YvnPXY8uEe6MCCIBsPdtiLHARA3zxhjGmEED8MYp1JAJ8z\nxnxRCPGD9uefAfAFEM36dRDV+gf4+UKInwfwz4H6Sl8H8FeMMT8D4HMAPieE+E0QpfpPGGOMfa1P\nAfjLQoi/bP/Mv8CEhPcb1xZ82mWJ5le+DPmJp8D9C1IGnt0BZBIsaKF8CjlzalNHmVJ34f8wgSeM\nBt764GC20AGgWOxS7X+fIGaClSuY8iFNntvFntUcDoGss6HYLb3lQR3U4DlC3x2mxPKCFja+q3g3\nztbfxpI9BqOpHQJs9oZbeZ6HF13sVgQ8y3M3+Y6s9kDYpVID9NjwCGJ6h6yv7c44JEVEv26zRSC2\niEiC59F74QeYnbBnuYyBOuhDGQB5/goqQWDBJn99dH1PsBjGZnWLUwKdywsS6uwSC8JrbUOkKZXU\n2C/IOuiKfOL9egBnv9CertBelvSvEdFMUDNLkFqHUBxNSBg1n8AI8Xwl7SyFqFKY8RDJTU3HG/Wa\n4kFWdxw28xGldirY7vxyRedoleO1Kb8hn98PGsaYL4AAJnzsM8H3BjSv0/fcP3rg8QrAv9bz+F8D\n8Nc+yPH2xbUFH6OtUKITILwA8gnk+Phdnxu7VsYAEP7sg/SIDr1u9/WA/fLNoTJVN6sLTeGkSKlE\nVq5gylNSLA7CZHACmDTv5Ic8+asDnYs3aZFjtWnAT7WHYqBr/21ohWy6yuEA7XgxBNVvamAAmHIJ\npTKMsjl0XmNZa9ffOC7Ij2mYTGAWj+h4rGIzvwb9PURmZ2EWFs5FlcHcTXxNQwp6Hl2PQ8GeSW2i\n7bDpAECQdXWAxz2mK+pxtSTftKoTlNoPSE8z7bIdAp1Oj4tVJPoYbV1qdWozHHb7ZV25wFdKFGOy\nG7889QOcLERatmiqwK/ICrmGCtkAYLbnECpDkU2g0wb3RhvMsimm6S0ypFs+3j/mqqbyn5KWibih\ne2m9odLc6TPoty5IAfuJz9aToHzGfauwl8fBBn/h5+OFhBC9UkXXNa7tlRBKuJQdY/sBK8bR4hLP\nRfjFPNTU4riKUMD1bM/koh2rbhto0SDpzr0EGcqhBc85YCLoibjeyr4QIrPxQnoc77qlSG2m8iAu\njXF0aMJ95zk0Oczp6zCcVXTBpgNC4RAjWSA8R6T1XmnFlEvkmGCe3wXGD6HbGqM0cNNcfqm/vOTo\n07PoPMXouOP9soNu6yjj4QjJD06c9DmDCQjsHDuQU6jRcS+tHgAwuoGlfobz3TneWOQ426mgt0XA\nc3eoMVDTOHsNyBUin5BKs2WQRe/JyL9XXWFWB8bueFY0h8aZ5Moy5Wx/xZQ08JnVDZqajlGlNA8E\nAM3XFsSSs/0001TIJ7eRje+ikAvaMJzZDQxvRDokguj+4e83O7TLLYHOgwUBYM3Or2G/Sfm5I+5h\n2XPL8sHee/vCwOdlRHF9wSdN7FzAjHZ32dB5+7RGu5LW8yj/coQAxFkPK2bvDwS2ViGhhjTKDqju\nKwDUbWmnrn1EYpyAW2D6rBMARPNAXTq4MMYznlgmf7LviBkpLCBm4uWbDcz5G1Tz75qIcfACEcis\nHAqR99+WTqcrCzIV0ByUAjDP70KbhlhcZ2/CnD50xnlRhMc1GgKh47Ld1YcKA13QCYOJFaGkEfcP\nrxQNDaI1Glu9ILmdYNAWAJCRJcOufoSH6xJvLge4rHig1R6yNDgpGozSeZztNCtn9873gJA5MLnt\n1bIDqxDB1yXIdnqD+3DlkrJJCwZhfwUAsjHQ2ve9GOlo1988uERaSGC1gVhtYG6syVxudAyz/IrX\nYrP/TG1lchq9dw+5gdFd47IdAh2bbTUCDRJkeUAVt6y5yPG2qaDyMRB+vnRFVPQXECIREdvvusc1\nBh/LtrFZj5C5HcDsqeMH6tPvJRh4wsZwl0GXgbKfbrRGWz+WBNOMShFhGUAEYpymXMalmrCRD6tF\npjOIJrfnmvlshz1TrD0xlISYX5LECYNQADohcWEgp8DlQ5izt50QJABHyQ2Dqa5uuO8KAArpvO6x\n7EAJM5h3UgBUU9E5vf0Q5u3HaL52aZ04VTTgKApJf9MZ0HkKdTfT6Zu14XmdLBl6x9u1XaTKJYTM\nyZfH9t367p2wLNsaTarXNlxPrW2wrIGnuxQP1wV2Gs6iYwYGnhqzbOpIHqiW8X0BwCRV5P8j8gkw\nOt536bXX4iDwBNfdyfGsNzRL07VWKBSKI1JkyAY08MphSo3mwQJyp5E0GrD6bs7Q7lC2Y4EnvJe4\nr+M16PYX+LbxpvTCas6JySAiKhhdQuiKKgS7/Wv4Ml5sXFvwgUx8oxLo7Or3b7ZIhPFdgoGDF424\nMRxryHUn31k0k/XJTrcKT3cKn5wuMMumGKk5gQbbSO9WsbtqlgJYO/aO14MDeZqwJE9Tec8UCzzt\n6cpbNPMBdQBINCWUzKBsaQSnD8lu+fE5mgeXEWh0fV3Y+yVcOPpCFNrOlwQgVNXAxTIerJ0EoGiF\nV83yMZXZLOuqebBAtQKyMS1QPJEvdgoyV7b3AyAbwhQTVM1ZBDqhwjHrxwHwpmdQ5HjL7wcAVBsq\nb7EKhbVi6PNjCods+fWq1lgBUYlSZ1jVict2wlGVNDG4N6psf2sCVdoMr7shaSqy/uDjsVYTAGin\nryufOXfknESfD459DbYwdyXWXv02AiBRBO+Vfe91cA94FTobIfBY/bXw3uHv28sS+rJCUyeU4VT9\nn9NQTVrktBEJxVPRVLRZCzd0DLBXSFW9jPcf1xd8hHBOjIC98ZsK2Wjqyi25rCMPmG70gRSDR1+p\njYcPT4r2SsfQNClQyBq3jMbd4RIyUZim96ic9Oztg818AJ4K243OUKopJgRAgw3EnJwlk1ntnx+a\nseWT+Pm6okbz6UO6lKMhMBlA3qb6VTiQiCx1E+bR6/cJwQXR6wFT1cCTZzDDDURlezWTOQErg+P8\nvlvEJCjDkju9PyCZKz8gadlsh/pOVWuizYejkofAE2YOHE1FIMSuoxaEclnAWE+m0B4CAJB42vtJ\n0UbKDUwlZ0bfvVFtDfnGyEUBU9IYh8gnEJgQYPAsk30fTTHBVi9QN16lPVMDCFUBzF4rxhCD/dJr\neF6RIsJ4CLHZ+U1Ht6keEgw6g6YsQoph4TeDHfJDJI0TAFB7WaItuafUoupkPAw4bPeQzAZuKNWx\n5Pg+VxnQNjDrM4jRMb1f0r5/HfLN+46XhIMoru+VCOvxdvdmjgGlMj9PkTQuS6lag+yKcm2oQEya\nafT3J4G1NFNgB2oSAc5+U3PgFiTXT2Dmz+npPk02bMLXVh2ZAUh1xDCt382qOcN4fOysggVge1+B\n1tZgDoxu7Kk+h8DDry9u3vBFFUW1dMeYevwUeHweZTtXZj65dGDV+2Hd7GC4VJOmNCviXjuDuPka\nML8P3HwL6b2AbICYVYfxkCj2N15x/Zk+nyTAq2a/F+BxX1UG02HSiWJMmZCcOhBKbP8PAA0kCuna\nUbfspmbbVE49+/YwwUjNqfy5OvOLZJBtgdf9fIzS7LCrnzgCzCil6+aM9JgsMiYyhmO4hcHZ9noT\nXVeEw5+dCDcS3Z9HygQ8JBre25sd9ON1AD6+v8PA4/6WMlD2K4dKW8hZFouO9gEPR9vAlMtos4Ar\n7MpfxvuPl+DDUdXA2ROap5jfh04KVMkW4azPoWDgYaMvXhw4ctkGA39+2n6PNBCEsouXAmCWr8Oc\nPSHQseWx9nLnFIRdf8XuGp0IZprSopIpV/4xKseifoLLiuRaRvkcSt2HSRTRzVVGmcDoGEbl2OoF\nBmrqpu/N+syV2qKy5Xhoy1fBPA5TdGdHAF6H2FFPyOz03sIRvTWlvnKHaMoG5rJEUtV0jrdBACRz\n7/8jAxAK+xocTeVVlIN7gWjkCG2dSJft3YAnaNzvBRM50pTKX0nlSnJCZVD52IGQHxRWcW9PZWiy\nOQq5cPcZWZAPfBnWstpMoiCUHxkwxQSr5mzPiG6gLBBoW2ZiBW9e/AcVTAjsAfBwxcBfOBr+FB0W\nI//MvbddSvd8Rv1FZta1DV3HLAXWG7rXL4hB5yjcNRMJZGRip9KWragAkJqAvD0hUVLOduYzPyRb\njONz4PcRiAEn7/ze+43kQEZ/TeP6gg/H3uDjOUw2xGB2F3W7Qy6XPUw1H0481Apj9pXpDs5eILbM\ndjX37oJmRS7N+SqikSZ54sUdg6+unJgFfZ8O8JCL6wLaNBipOfLZHfrA2TmO0uxQNWfYWT/7Cca0\n8FhygTlfAeEuMkujRYQa2jfQoIGa3gGaCklVo310CfN47RaQvmAzsvCD6gUhm4jdJLNnBLR2hxox\nzFSOKmmh045dd+BE2y21USZqG9mBlQGLkvrh2x7g6ZZBu7M04yH9nu3HmWxoiSCVy4SU4L9/Tr0j\n7ukNRpDZEJPRMUxx7HTtlG59v4lLsbxbVxlpptVPItZlZe0yts2SpJMaAWwu/KwObN4+5j6iBYXd\nioZJQ/AJhztZ1JPlapxVQjz8GcV8RiDApUmAzhkg6vTlzpXXqK8jXV+nqROotEWbiQiEkjwhCwjO\nduZjDzq8KeJyJGeL3MPi/hXfw/kYm3Z/dOFlfPC4vuDT2p03fzCCDwVrPHGwfpYOyiKhdQKXMRh4\numBFvj2+xBYKW0aA0yd22fMBFoVCgiaWCMGBXRVbKdjd70GNuUANIWS0hT+nRa4HXTnT4YypmJCN\ndXMKgEqH+fw+8FqNpPkq8OCy9xB48RBFRr2ZXKGPOQcE5RveXbsJ9Zp6GnaXz5ItYdbJmdyelpo9\nz9Augma6eliOKrOSX51yW99QbVUTQIc08fBcdAmsy4jOLmROGVJYEgrOEeCh4dYDoO3BiLndyIyP\nsbabjac7FfWM6lZgkmoM1A5QMy+myscYDl+qDKiY+p1Gw8FhiDT1pdtAsmZPBDcsUfIckV3o2Qr9\nUHBprakEVNpGFt4MOiKXcW9nPgNu3vS9Lx4gBgCZ032tAKSe7Sdk7j4z6/ri4PG8jPcf1xt8uhIv\n7NcyuoGqXVqqM1kWLyppJ8gXqNQWUqRRCeMqq2zqF1AZRUEBu56SDe9a+3Sz5jPa3Wcp1GQJkV+Q\nCVaunFtkVHoLP/x2cLJst86LfpwOcVJsMU6HlPWIgspI23P6fQB5PnZ24QM5pUUhKFuJXCEyAivG\nEPkETV5gaxlj7hqIAkaf0/EcTSBvj5BbqRMg1tlKZoXP3oIBQFHVVNIJWE/JLHeKymIwhykmbpcf\n6oQx+DtRzdWZm3+JBiitd5IsJg50WhHP+BghIhuLyG8pHGDteOMYbGigtfKZTzeMLqkc5/oNx5TN\n8WM2I9X2fXR6cG3jezDWHgBT/3dLLZwcTx2YGr65zFC1G7w6aTC/8+0Q2ZDkkJhwEFLsHQvOqgh0\njt3dBzdvxoOpfeATnrPKAzAV5Kvjrq0nicjCEkh2DQDjXFUZcNxxWPmc5Cj3hJKbNyE+9m0uK26C\nGTUxor6Ovx+oHItibC3MyytJR+8phDg4w3Yd49peCdO01Le4feIfnB25WY+dXllgoQ9sbe0VFpXE\nSdEAKFG1PtNgNeWuFTeZdqV+Aj6kSQegEy4cUfMVoF0aT6Wn5G0STXiHwYDA80v5BEbl2NWxBuBx\nMdgHniUBBDP/VDF2PQ5PPbWAzYObDHLZEMbutMNIkyIiLIjR0LHiAOyxzxxRIQTRzsyHA6JhQaW+\n4REwuuFKimGwOjf3a8TqLDpXV/4CqAQmc4imRKao98PZT3yNaWbK9FFwu8DT6DgbCjOfcFFmBhng\nCAPutSw1uuqUf4Qxvtez2hAVvWwg5jE9mDMedqcNH//qIseiavC7j76Ckxsfh7I9MNN5HfBmqaPH\nB8TAI+b3nUJEV+W9G1kyAILHnaNq+Nq2lOzEQe2G5VDRNrJ+4I3Jx74NS/2MLm0kRUVKJbKYELFA\n5g7oG5lg11xiVW+wrK/tMvmhxvW9qnVL9e31hkoilnLLsx6U1choxqKQwKoGVnWC1JmVhcZhlB2F\nRmZA3Dw25dKLba42vn6+2blsxrCE/3zm2WoKZO1yO4XIUg9WfXI1ASBgdANbvdiTBEqTYh94nl36\ngbu2AXRpJV8CXbDwNfifpSovm3gS3AGutiVOLu0cTTwzLkv9DtWy7FwwS69tgNEKIjhnU9tSlnXA\n3LRLXFYLl6FyyEQhTfJAbuexE9bcU2m2ZAABQIwy97653o/7o3Y3H66T4SR+ZzYFAAR2MBm9d5Gi\nQjhLYp9rVAYxue2uWZm0LtuJQvus2Zxfur6YWG8gLJBp09j72G+UuGLJVdqzncL/cybwbfMHGKdD\np6gR6tTlo2MCW75mXHrje+DOPYjJbTR5QWVovep1pQXgstJx6oVP3fmEYf2U+F8YIlcHB5WTWUED\n5LdPIL7ln8Bp9TVclA2O8n4XXikaopuPMghdEdGmOUPVbrGo5ItzMk1eUq3DuNZXwvm3z1PXryiD\nVJudTC/2NrgJCgn3L5etc4ok51MdeboQrdo6oFYbBzzh7jhspAt+vK5d1oMGQGabpDcziHnlWEdO\negSghZTLYKzaYGoU0jN2wg+g6zmFu/O69uWHQwN2StLiH2SL6/qCfI+U155zpaEgxGhoqbxpBPxi\ndBwzi3gxairKTgo/VCuqmhwwB3PapdYrN5gJeF0+7rW5XXUgUuka607lgJiB7rXl/v5am5pKp0Dc\nC+HoEe00O71fbuGBRi5lhoSFYDCUd+CAV8nOkgFUuYNZvgU8eptYkPBDvPx3hDHQhjyG+nzUdtoD\n0KqW+PtnAxwXDSZpGRjPDZz1g8gntCnJAur6fAYc34KY3EaZKazr0wOOtAKlTu3/qYpwc1Dh7vAU\nAzXBSPXPFbH9AoC9HifzyLvKGcksh7h/B+LOt+FZ/QhffJbgbDfEcdFgmlU4KTbWYNCWVUXQQ5MJ\ntF0Dtk2NZZ29MCfTFxlCiO8B8BOgauRPG2N+rPNzYX/+vSBLhe83xvy6/dnnAPyLAJ4YY35P8Jwb\nAP5rAK8CeBPAHzbGnAshUgA/DeCfAmHGzxlj/oMPeg4fGfgIIe4D+DkQUdaAPMp/4tAFsM/5iwD+\nFMic/t80xvySffyfBvC3QLnBFwD8W2z9evD1cwlx/xaV3Y7vQUxp97xrVjjbbfF0l+Jsp6IPR1O+\nqwAAIABJREFUKEcf6HQdLCcpAIhgmDQFmsWeQi8vxEJJiM3OZwEsb2MbpAbwU9gKtPAVY8oI6hoY\nBT2j41tuSFA0JWmGRRYKtAg0pgamN6FGxzBDa3/ATVlLtW6stIwXJwkWbFvyavICu+bcKjpkllq+\nwEDRAGWWDZHnxKYz2RAYXdAxpx70u0Os4PMF4jJlWNLKalK2LsYo5BgnxTbS4iu1QJZ4VeNhMEgq\nuGzUYT+FCgBU8ydCCVGwN8iSISBIGSC8JrDXxAmVMpBYBYUIZPMJvWaoxzcANbzr2vUcAEDpFoU1\n23OeRM/ehrk8hXkr8AbLUiRHOcxO0T2gssB2Yx98uvc038vuz9k+mTME3FHZSgzmMLPKU6Yt8PA9\nsKo3LlNgVl2phVvA4xEEgywxuD3cItGSstOR7XMNjyBukv2DvNVj/xBcYxHoBgIAbt0AZjfJe6ne\notR+Voks4YXbHLE6+06v3Kasard4vGnxdJfj7bXq2Xx+tCGEkAB+EsDvB7mP/qoQ4vPGmN8Kfu0P\nAPhW+++7APyU/QrQWvk3QetvGH8BwP9sjPkxIcRfsP//8wD+VQC5MeYfE0IMAfyWEOLnjTFvfpDz\n+CgznwbAnzPG/LoQYgLg/xZC/E8Avh89F0AI8e0gx75/FMBdAL8shPhHjDEadGH/NID/EwQ+3wPg\nF6989SyFePUV+uCMptjqZ6jb0gHPw7WvDYcfVP7+EPBQ2c0OLAbAE+28mZVkiQXCilsa7nd0gMdF\n2Nx2BzQGChDF2TaFo+n03Qr56EbnytsFz+7sG5kQCE3vBKKaJXRDpZM0KTAopm4gFSrzBmvTO6ja\nJap26xYaILF2yC1OinMM1ApZMkCRTZAVr0KMltEgXxShVTjTzxl4+qT1LWljUEyh0xpVex55+ixr\nYAJaYLSpMZ7dJTAfdggHfF5WzZoZc7yYnhRLZHLgrgeSwT4AjYMFkt9bft8YdPKxVctukI2PIXbL\ngHGVAQUiDTYA3g12c+Z1606fRYQMAKRVlttyZDYk+n975R6M/r69l6dZi1y2dA9bLyAuzYYhJrc9\niA/mRDLRC2ybZSALJKI+U1/mVWqBqhXYNjWkKAnk1QBQOdnGT+8A8xVw026MuqoetnxpOvNV4vYJ\nxOwOqnYVnT9/TmXiVUW6BomreoO31xnOdhkerOi4L8oXY6MtEvGi5ny+E8Drxpg3AMC6lX4aQAg+\nnwZlKAbArwghjoQQd4wxj4wxf08I8WrP3/00yGQOAP5zAP8rCHwMgJEQgov/FYBFz/PfU3xk4GMt\nXR/Z75dCiC8BuIfDF+DTAP4rY0wJ4KtCiNcBfKcQ4k0AU2PMrwCAEOLnAPxBvBv45DnEzddQJi12\nzXmkxRYCDwdnOgAOZjtcZgMQyedIofyiWvu+gEE8ce+mrkPgYeotevS1wmCp/D5ZlLJD4eYBVjuH\nw7HUz2iup1Ob5wyGZf/d9Lstt9XtDtumRtXS7eTLLdL1YCbpEpN0iYGaWBC6uzdY+1wzTxzcvLc6\nXCKnGapxWiJL4nkrBiAWCx2N5lCBV49B6Me0Q9VusNMrq6+ncLpVqNrGlWtgf38gpzEATRBro/Hs\nyuiGM6LT+pnvhcgaWT6AsgoT7v0Nhx8bq7u2Pach6LceoX10icbS1UNKMYaFV5eQnkVW91hthxm9\nv59bS79OnRdSxIIMhUltT8qMj7G182AsoruoEgc6FxVwUflqQRh1kBkNVI2qjQdXtalpaPToBoY3\nXoF59oA2Itu1vwcAP9zMMbsJo3K09WVgDd/ulWL5H1+ni7LB22vKdt7ZEujsNLB9sbZcLyLuAXgr\n+P/X4bOaq37nHuyaeyBuB1bb74CqUgDw34DW30cAhgD+HWPMs57nv6f4puj5WBT+vaDM5dAFuAfg\nV4Kn8cWs7ffdx68OlWMjSuyaldvdPt0pnO38JaGbFRG5gAkG/aAjIvFJ9nlhenXofQKAACiUoRn5\ncguailhP9vtoMe5GB6gOSr0gBjBh+xpVu8W6OcfjTWt7JjH4nhQ1jnICsIGc0tCobcxqS2YIgz/w\ndStwWSU42ymMU41p1uKkIBDK5CBy2XSCjl3Q4ePvuJsa7vswMOkKUirXLJ/A9x3onDRyWQMK0HVD\nPbB237UyFHal0qvEZbCYnhS1A9Gq3UJKyghFY+dybF+Oy5YbvcCufhTNHHFoUxMAJUPkoxsQ5cqD\nTbjRqDYR8NS//QzbdzQSZZCX1C+UZQMxH0dUfeoPCYzTfTUJBhwmyPB9PFApRmpOwMPDtDuavTEI\nsjI7jMwZIvVHFBZVglUtHejstMBFacFHAYU0OMro/2mHGUrX3luUk5xQbTPPU0yPbmJo7pC8U7Wh\nPThHCPi2d8v3JX9us8TYXk+8MdSmxuNNi7fXOV5fSLyzETj/MEpt4rBdSE+cCCF+Lfj/Z40xn/0Q\njqo3rH02v0HfCWp13AUwB/C/CSF+mTOv9xsfOfgIIcYAfgHAv22MWYhgQr1zAV7Ea/0ZAH8GAD7+\n8VvRzypLpQ5r3+GHk/7vzbvCDIcjBB0n2pgMgFCXjfWwuE692tCumRfTbOMZZ+lF/4xE1zoBVjIf\nfme6R1kN/Vz4z8gE6+Ycl9XCnjtdh+5iVMgjL9df7iKPmOHohvsgZ8kSWWJQtcLV/WeZv2aTVNO1\n69g7Y9dRDAjP0V6bPW+XqiZzuSsiSwRK7W0s/LxP3vv7vOhlCTfet5ikGstaWtAhXT7XBylXMKuH\nxAIL1Y+ntwCZ+Z5RD/B0B49Rrki6qG9zwcPH4yFEsUIyy5Fd2vcgl74pzwSOYgyzPUdWLnH7+DVk\n8iEqbZ1n7f0akk7YqgNA8D4H2XJ3VsfaqW/1AjtNm7ennU3bUUaknIuKaB2FNCgkcJTRPXF3VGOS\nahzlClkyiSzHORsh8GzccUuRAkkGMbMAFB5fJ7JkAC1rHOU1Sk1/46RokSWjvd9lYgFniIUC7lig\n5GP+yf135cOOp8aY7zjws7cB3A/+/y32sff6O914zKU5IcQdADw38X0A/q4xpgbwRAjxfwD4DgD/\n8IKPZVH8AoD/0hjz39qHD12AQxfzbft99/G9sDuHzwLAd/zeT5phMqHyiaqRJW0nszFuwfEfWKag\nHr5sESMJygPP5UU8+8HB318sYVgSpytPAuzLlABeqqUrXslxaLhPZdikBuvqIS7KBoGQPe4ONWSi\nkCUjP5S5W8KsT/cWWVNQySkf3QCkPfdkhW1Tu0WbG8yTVOOkaDFQ03jxDskEvHgf0kjrzNCYrCbi\nQhBU0vKP0fvZuveRZXIyqyqtTb8DLTMU745INmkPdNYP9ma1Qm8gyBzZ+JhMAhNF+nCdjYoD4HJH\nwHN56suJ4SBq6DB6ew5p2V0kITPy4pyh1h5AQHb6Om6cvIYmbToGaYGSQHiflLHxnmO4cdnNAk8I\nrCHwTLMWiypBmmjkUqCQiVvECwkcFw1Oiga3hwmyZII0KaJNG4c2qdsoZLL0lGzmEV0xuIqmgjDG\nAdBJQQoFA+U3Z77M6k0j0ySxYOOP95PTGvdG32SMA+BXAXyrEOIToLXuj4AAIozPA/hh2w/6LgCX\nQUXpUHwewJ8A8GP2639vH/8agN8H4L8QQowAfDeA/+SDnsRHyXYTAH4GwJeMMT8e/OjQBfg8gL8t\nhPhxUPr3rQD+L2OMFkIshBDfDSrb/XEAf+NdD0DXMItHGM/uojUa02zhaLq8UPJwYrgj2/szByyu\nndjjhhg7e8ZYPWGW2ygtN85rSPpdbXfIjxeruia2VLighJtozniKMZZY4XwXN+ZzaTBOh65U6Acy\nX/f6Yt1m/3gDMyORzHx0DCmn9vyJIZbL2r0GSf97wzOzfhSDDtPFuwDLQ6ZXDW+696JxUkfu6Ql1\nZGTitfVyUQBNSaRBWaARyikahO+nFClSACM19+/p+oFvfofvKV8TEJPOWEXkQT4lQBReMBSAzYxj\n4DGPn3opnnD+KAgxGiK5M4MCUY6dblk4d9UJ8/QrNFfVVDCBURsAX+4NsxvWNeP7KCjrMvDs9NKZ\nHYZBhAVfemUQShODmwMCnlk2dWrtALy4bhAyScHq7lJs6X4Mfk/YgdAoeFMEKilLRZ/dEHQ4+jYc\nuS0J7jRwb9Tgk9MS83yOsfr43u++r2Ablw8YxphGCPHDAH4JRLX+nDHmi0KIH7Q//wyIePW9AF4H\nUa1/wB+G+HlQX/1ECPF1AH/FGPMzoDX37wgh/hSABwD+sH3KTwL4WSHEF0E71Z81xvz9D3oeH2Xm\n888A+GMA/l8hxG/Yx/4SDlwAe3H/DojR0QD4Ict0A4A/C0+1/kW8G9kAAOoG2FxA5NQA1ynNN+Sy\ntaWAUf8HJByEkxmM/TnfzC7b4R29zXjcImUzna5A5p4LZKc2nBzlwGTnG8pVGgMQYP/PCsqVX1B4\nxz26gaV+hnc2F3hjUeDeqHalxH2pnddh7OBptMCGr8dGbE0F01RQo2PIYhooOhAI8S7fZ1FnMXWa\nLS3qGlgHJIzQ26XqAR4l/c9lBt0uI+DhCEVdw4yLF1SlMgIh+EHcSHG8XMGs33Q+Sub8MrJ05vfT\nRZZCjIcwiYLKX0GaFEgCSRcuee0Bz5Nn9HcmRLkHD0B3NhxiPnMT/nvAMxjFBoMM3Cwaar1x2kvK\ncJycEatLWNKLYauBsJ+Yj/eAp+ohM9A9ldi5NzJSvDeqcJQrjNQtt7GhNbETTLCxX9m4EN3PX5ek\nwVlzYK0uZOYy3FDuCcDe/7k0O041/vHjEsfFANP0Faj1Aub8N/DNFsaYL4AAJnzsM8H3BsAPHXju\nHz3w+BmAf77n8RWIbv1C46Nku/3vAPbvXIq9C2Cf86MAfrTn8V8D8Hv2n3FFdJxJ+3ZC0WsIQYuR\nzPYmsVlCxJUNutPvoAXVdBZMUQS+NcHEdhd49qaiVxsiKryHXZQZH2NRP8GT7RJvLHJ8fS1RtwJ3\nRzXuDjXSJPfAU16h4suLPcvrMFCwL5DKkKkBtPHHzLv8vh1uBGps7MfnVafxzwJtNwDUl9h8FWK1\ngak2GM7vIytol8pZKknDrGDWSwDlvmFcUO5TDNZNBWAXzxmFwHOx7AedA9G9t9xGJSgdiTQlBYTg\n93pBmOPQe98hZzjvJ6uVJ3IV3XOikA64ojIvEPtAsR9QADzhQK87LNvzez9hlo+JyRYKkobzV91S\nmwUgAPEcXBCHhHSdn5ak0t4s07g9JILDPJ9jIm/APHsAc/ownqf6ICEEIvfUax4fOeHgIwsh3A2u\nTWlVqVPbp9A4KZZUxkkOuxjKNl4AtKn35z9mcAuCsJLzzjOl4szhwA46PNzJIL5xueHeV6YKP7yW\nEr3RC1xWCyxrhboVKCQwTplaOyHx0BB4EuWlbh4/jRdAq8gQScZs167XIVRF9szWxgCwGSHTzUMp\ne3suZr3x/a/u0GAHdPYMy95+TGWw+2vI2c2Inu1mQGY3r+4TwILMOtxB2+haCYQA2Bf2PRD5BA0a\nJ+gqhUJrtGvwbwSQ3bhH9PXJY7o/+t7DpgKwjgHogt4nJ8UUXMso27lYor0sqS80LOww6oS8kIAo\n23GvGbrXMug0pwHodK3h7WFbokrVknki9/tCf6tDmzxz/hbMG1+jTQ1n95z1jYY0XzY82gehMFMK\njPMaNKjapbM76fZpw8FrbegeLeQE0xTIqwbm9EvA2w/RvvE26i9/YFbxy+iJ6w0+2RBG5ajrSyun\n4z8sVavtXIf/sIQlnXCOhyMR0hqRBQDEiwc/t6kgxuu4jAREopkRISHYtUZR1aSUjE6TuQd4yqTF\nuj53ckEANVNp/oY02FS5c/Mc/oQIgATvoG2Y5RbtRYnkCBCbnd+xpymZ0mnakap8bGv3oJmeQ1I9\nfD7LbfQQZ4DdEmUY1HjXEFZWRswvvdxQo12ZKXnlBOKTHycmWk8YtpAG9gkPPRp87UXZI/cShFWg\nqNotznZbx5DM5ADaNE4vTpsaMk0xuPkpUg/QsbUCVEalua33MTDrDdpLArQEdpMzHtK9wNcy8H9q\nL0rIXQP5uz7mjy9LIe7f8U6eHYUH7u1UdvaLqeehjTcQaxtyBtTNfuqWhkl12wCdS2V0CTx6E+at\nR2j+v8fQjzfO/C0ETFKIqIjkEs6ydTYUpiAKfNVuUFsqvW6bqO/jNAdBmbHiz7CuYNZnMNazSn/5\nHdS//QwXb1/fZfLDjOt7VZPE+fZo06DUfpajblu3WyMbbIqq9Ys3DeRtnVhhGF0AQg5fwtElnDlX\n0GwX4Y41rNf3pekBOJmsdnYLof8KW2BzqeSibOzx06IwTnWU9ZiLN73SM8vNAPR1dkQAVBEAkbNk\ng/YCkLmiRTlNKftQGVkRg2qqwqoG7AWrJIT9iE5G0wc4hzIOs2uAixLi0SUZkF2UaC9LVCugbQSG\nr1wifXyO5JP3gFdepfeA34/NBR3Ls36fIQdmAfCYsnFCsBzOV4nVslWOXXVm1R6MJbJsIRPlqMTa\nNKhRom53SAcFpBh2Xr1FPr1DTMPTh3RPXCyhH6/deUs7CedgwLrd6sdr6MdrVCsgLzWSoxzitpVd\n+uTHvQJ1oEJtQPM1bCRIg7YSp1tKK7oDqww+WSS027p7jT9HpO/WYBD0Wky5BN5+APPVr6P+7WdY\nf3mD9blCPtpi+LUl1K2BG6I1Q1stYJJLSIoAfLZj6d8MOkxxl1YiKSoB62Cmil1azy9h3n6M+jcf\nY/uVNU7fLPDowQuaMn1BhIPfKXF9wQewJTdS3a06cvMAZULhLg/wLJ5c8tcaAwVnVMZApE0DCJBc\nuzGuJCAA3zPiGz8cqtyuHRCZrpwIcNhKAXBZDwPPpl26OYxSy73zy6VBIiRJ/7RekNIJbKrMWjJk\nwJz0vMyGShAslmnKBmJICzSTD1ypSFZ7O9OropvV7P38EPCwGnjZQD9ew5Qa+rJCtZXYrSV0JZAN\ntkiO1hDzS4gb58CxXeQD2Z6uTIuLoNy1B5Dcpyuol+J7KENs9QJnuy3OdkNbhqKMepI2mKSARnw+\nW1ApLZzFAQAtxxiOjmHskDJlgt5M0JQNRBZbN5hd42yn20ba/2vaENy/AzG/j3JI10CbEghUs8PZ\nndNtjqc76RQROMnjOZ2usgdcwZmu06KSqNvWDmULV3I0uiSihVXj1o/X2K0Vdmv6ucoMksvSWiQo\nJFbJPSzxGl3acpt13rXKFPtsR8R+Tk0JoIrny6w9uGHr7ssSm0uF3Upgufjmkzj4nRDXF3y0hlmf\nIc9fsaKU585wK5z1CYPLCpNUu4FDTuFZ6bg0fk6CgC0o1XF6LxP6/WIM0WQwWMK5YqZpVI5zX8fB\njjgQJXWU3E75xHup1E5DC/Dg+XRHKsa/6+gC7UBjass+AFzZJWyMm6YCxmTVzAZ2yVFOvSiuz1s3\n09CZkg28RJD9CAAmAzAgEKasqkZy1DGrAyJG31XlN4AyMnquhLo1QHJZIlEN2kZA3RpAfXxG/ZHJ\nnAQs+VjsYiUCkNmjtD+7hMlSJMPCZUB7x2l7FbhzD3p6E4vd11DqBGM7XAsgkOePFzRWfqZMu7EL\nemNnrgYwRQpx8zUYUKkt5dcOPZBsmCyFzFK3cMvLEvI2UbTF/TsQtz6JZjSFbuMyJ9OZtamRJVuX\nzXRbbHdHNT414yPZV3weJLDDof6Jk1QjkwNkyZAYj1XQPwuAVGUtpHUndd48hfQ6dtwPY3KBrABV\nkSYcLIstOCQGOzc8G0o6qQzQVplcZUBGeovJLIfIJYpRhWKsMJnKq0VpnjdeZj5RXF/waTSVW/IJ\nBqMp6rTESVFiWcuIvQOEJYXWzqscOZM1lCugWbhGfT46RpnFl3Wnl+5D4Ep0yQBK9giFdudG+jId\nroGHoBOGynobu6HE/U4Du22Cy2qIe6MSv/voKxgVRwCA1lySaJGNkZpTU7zyRAlpJ+qdTfFoCExv\nRaCjTe1qQVKkPQBkAXVcx7THYOFnBhaTNLgnxn0njvay9H2QWe6+FrYXr16Zkdrx7ROS/09aojsX\nATkklMUL+2Yyh5mcQyzPXf/HARUfI1tZDEbAzU/hvHzg9OWmWRtl0GS74Tc2nHVTpk0SPu5SBKQN\no3Jy5MyGSK5YxNh0MDmaILm5pPmx+RjitY8Dx/ecU28YTINHU2E8Pkbdlsgl9aoK6bXgPjEtcX8s\nMM/u2mP3mnkc2jRAAkzSBrlskCXGfm5IqNSUj7xIbHB/FyMNzfbYaduv3hBG21D202QRrZrDUdqZ\n7NJ3rZxdOWg8wfpLydsjFJclRusG89VLwPgw4vqCj9ZU3y3GTpJ/mvUz2zzoTEn2nSf+eVZl65lI\nptogn993AMTUVCYohMZkkS5Yx6xtbyCViQcI5PlDAUqODhDptonKbXVLYom8m6XvSdPuE9NlJK0D\nwJVKxsUxZTVcfmN67nwGzI6cNUIjE2izwz6neR+AoO33FiDc8hz2sCZzmq7vDHYKJZHAZzvc3wGA\nvPAW3QCJbyZ3ZmSfMb0FU0ywq58gEdKKpd4gAAqoxV1rheHoNWDwjEDIlmgiVhr3IIoxnlUPsW1q\nd0Y89+LBX7iybWg5cGl10ej6U2YVSt8ARPnH8av0mtyr6htazlLneeTccY/vRWKwaVLY99gO0C4f\nEyFGZRhlc1Tp1t0HRxkBz6uTDNP0JuTiFAAwzCcwxbFr8keRABkaK1E1oiY/69dt13vzY4kykJmh\nkpu1x3Z22JzlM+jyZ4WzH6ysuCxlQA5wdgunGH7Q1psHslVGm4hzsqdIZjmGqxLl+gX5+QgRZajX\nPa4v+LSGdrC7FbBbQQ6HVrE4/iBnifDSKm0Cc/kQZmEVfzrOmsxWM9kQWfEqtpbe/HSn7C6wJk0v\nK+lOxmR8PLaM1Bmm3GtqB4s9gCsZZOFulBc5l/VoEn3keGcLvLnKcZQBtwctxinLDbW4O7yAFCn5\n4TQVcCMgOTDwTO9Q3V2v9o4jti72ACQwoZJj29DfAfyCzqym0Q2asRotyXNodEGOpmkKNBrCDkya\nHZXXAMuAy2UkPyNun7hy28bK/3NvxQl78kFa0NnqBda7Cyxr4LhYYTScIx/dgFk8Aoa2ZBhIzpTt\nFjtN1svxPURN+Fx6Pxv/fgisakkqypXAUWYwThWVqZJ+VQ0A0NYCI3Ki7UYwlIrpLSd2qjWp4WtT\n+80UC4jWNUx2hqx4FZkcYJKWKGSKu6Ma98eCsuD1wn0GTLGBaCrkxRiZOsZWLyBFisTUkEZBiwYy\nqb3ALks0rTYR8NBmoUEx0sgGGslsYMtf6qByg5OV0qW1rqiomqArYPcsJhKwHUjie5l7oTIgrQjo\n8iWSoxzZZYnR0dW9yJfx/uL6go/wrKSrmuIksVN4Qy12IuVdZRZQpNOa6u/5BGW7xaI6xdOdiur8\nWQI37U8yM2d+5sXWnYk2C++0CfRmGdzU9w6dLFpaQSor1pgoAHEZkYFn18BJxpcNqXJ/bGiw0wk+\nNkisDhcx4rJkgAYNld/axpMbJrcjVh37o0SLpt04EsOLZi6kyqn53eTU/wE8ANnzY/FKANZ64I71\nE7qg6+H/NJJZiWRVQqUtktkgshoQ8xlw82bkerqsiSwCrNwxsu8RubLGluB8/I1QbtGHyjy1tzlD\nazS2zRJZIlC1xjG/AGJKhhECz05TZgGQvMuqlnhjkeOT0xIDtXOyP9rUjj4MUDl0MD72ZcOzJ1b2\nKJ7ZCRdb0ZQYIkejbJ9y50ViTUDv5teYZtreBzWkGFypa8jvOzP5GIRS5DRHZgxl6+XSqnT4Xp8p\nG1Lo3jX97194ToDXSpwDSBR9VhrLrOxuyDqfbyeuyzNCfP04+7Glt2RWIpmVyFZXWJm8jPcd1xh8\nhKcm52NU+pktlfhgWZaBnALh7pB1sWYWuAJpdzanW1QP8XSXOODJrIR9Jof9wONedER/zw5v8rS/\n27kP5v3lttDnJCeGHQNALls3jf48wd5FJ0WD42IQWRybYgLRVFSiUtke8Hh6a9i32CKTtHBpwQtT\ng0wNIApY0gUcvZsYdnlv38otkmlF/ZssRaIk0kJCFARULtu5ecNrlw2PXK+DSBgJSg17nARAUvpS\nqTt2OcBRQjbkrvciBLGsgkVNihSt0T6bQuMAiBxV9yf/uQTKwVYDAAHQly8KlHqNk2JfcUJ2Jvmd\nSeF6QxuWcPC0J6j53lGuZqAaHTuiTJYITDNtfXACxQM+9+5xYD/TBQJ5KmntJuwGRoyHwPgSarJE\nMlsR+BzlXrOOjRU7gMLKDc6sD3Dkg6tP/F3Ylww+WQpRSJf9vJBIXhIOwri+4JMktkk8hBECrdHO\n+AwI9cCsdTFrtVk6JgAaFh14iXYGnnOrFr2sU6zqxJawWueVonRLkvB98vkcg5H/cAIx8HDfJLQf\n4AYu1jDZEqKgAU8pUuSydn2HdwvyXAGOCxJXLWQMdNrU1CPpUFzZe4X6Gp62zhYN02xjvVRs3yuh\neahMDSCklUmR9nzysZMs6n/vlKdzz2e2BPgUKZcnw93yYISu8R1Rcf1AcZY0qEUJKdjxNH7dEHhc\n2NmYPmFZbWqnZE3hZ1/4NcOpf3oNz6YMS3NfviiwHNWOhOB6caARAeeQu137eSlWnZjtKwGw+R6q\njVeq5gzAZtNhaQ6AM5iL+k+hgG0EwspdPwYr1V1meAA7GwLFxjElk2HhMrcoy88nrh8FgLIeK3Fk\nYAkWMxroFk0n80kUgMozQQ+Es6qvGg8+kwHERekILC/jxcb1BR8haHGXVKuv2q1juk1SasJmydD5\nzbjMIuzJjDYOfMT8Ppq8wKI+dYN5fibIYJLCs30uH/QDT18jtLCHGwAPCWCmXljRgiJWG1pw7cyQ\nzIuoTJJLg1W97ygZxlFmcFJonBQ1RukRmYrpyg0halPT63cnydsmMG6LexoALI24wST11gJasNim\nIjkeu2s1QvQSFqJh1fBajWh2xYTMs9lRRAQIje+qNsxCEuRSA4hpx+zJxOUjfiw8lu4IkmA8AAAg\nAElEQVRxUh+viQBIt03kK1TaTIeHNWdZbMcOAIvKYBVkqr91nuL2QOK40G62BjBw2x6b9bBwqFCS\nSlQ2sxdy4mdawvsYgLH+P2Iwd6oMEWMsUcilL6PRtdhduZBHYry6AlDtv3/52G5gJhaEbKaz3rhM\nVYyO3QYnn9yGOX+LwPH8Eu0pZUkSiDXxbEktUrx+nmynqTzzDVZrT1Hm076ozOcl1TqK6w0+9qYk\noBlgkq7d/M5IzW2DdL+BTk8KPtzz+86Ou9JbTFI4imkuJe6NKgzU9PmPjXf2QMzQ6VnwukOSoo/5\n1AkaFvQdpUICu4DVNM082+1QhMDDZmk8yMrsLSY3cNCOvsZRDme256iwHDKLSoZ70Z3NCGyrxbfc\nsSc49mrMHf8ZnnsKg7If+/IB6DDNeU8QtU8g9TmDZ8Sm2f5Qcxh83S4q4J2N726VmstgzZ4yM9AR\npU3TOEu8InzTnq6lM91raWaHHT+1qb0AK4L+SZ+KRd/rBGaRWiaQagKRj0n8NRsCw8pZj7M+mzY1\n8vwGlQUPsfv6gs+ZvYsUgKohgNHEMt0LlXngzlKIXL3MfD6kuL7gkwhXghDFGIWc4PZw6z1n3AyP\n3QkN5sBgTlRbLoXNbkLM7mAjStSahkt5V8+DdtNMY5YR8LRGY9MuMZzdic3T+qK7W2PgQSD3f8hW\nu/N3vcQJObXudGKzH+OyoJ0mt8lZ5qfRw9cOg1Uh9o3bWjuzIpEGu3wqKXkKtyNcuPmLKi4hKprb\nCNUitGmg0UDmBS1++SSWLArOmRloYbbGZTwqDUosKmkHOYM5E1teY5tl0ZRAs/QAt5eZ5vb4anc9\nSE3C06gPlTpPCsoUn+5ikC21iCRsQiLCOG0jZ11tGrqfbrwC0zaUCTOtOiCmGJVDNKVvrAMA1l5K\nKZAaEk0GJcekzmFLpHxPt0ZjqxeWnn7s7o0GDYDGKQuEQp5S9S/cwhgo3aKR9v7JC8p+QQC1Dcp+\nWTKkz2Lb7LHk4vejBwCZIBT6XQUg1GW9CZkD8/ukIWf7hXLYL7v0UYYQ4nsA/ARILe+njTE/1vm5\nsD//XpB3xfcbY379qucKIX4EwJ8GcGr/zF+y1g38Nz8OsrT5EWPMf/hBz+H6gk8YuxXy0Q1iD7Fp\nlQUeTt+dDfVg7oYjxfQONlY5lyNqtsoUWafEVbc7lDJFVlj2UZ9PUE+EO0b+fVdaCGeCOtbSrFsX\n7vZDmRT/GAFRmpDXPS84bCXhF/EmWsy7wcSKbnbB2mbj1BIuQsfMAyDcBSD+qhNE10/oKv47wZAr\nL4hh1rOsJVY1l9vgiCAu07GgE7msdlhjUFmUETHT7e01LYDh+YeAAZCd8yidozUauVy45/DzuhnR\nxwbkAEpgaVxviNhvO5QiRT6/D9NUEPPKg05BrMuqOaNrHg7UujcsHtw05dKJwiIZoBshANEx7PZ+\nh98n/spgziGa0om4KpvhAHBf2fLbHWIygCkfXr1Zc8aLQZbXNpQpMUEoS4lN6kwXK+oZdWnXVqLK\nJIpK8y+qVPaCym5CCAkyePv9AL4O4FeFEJ83xvxW8Gt/AGS4+a0gJ9OfAvBdz/Hc//gKYPlxPI9X\n2nPGS/DhKWlNpbE94OEbWfodnMgnMMUES0uvDSMs29D/6WvVbtzvEjNsExmLQSb7zKAD4bIeINYl\nq6y1tP29ULeuGww+IQiR0nXryAkHZ0yCrKfPvA2gBb1uKcuijKe1ZmJzb6J2oBYfedr0ABAAtzMm\nTxbeZU/c8em2CaySfdazrBUWFQ10kqUEMboKOXbUYwc6PEwKABmRS0y1oZIeJpZwQK+zbZZ4uJF4\nuN6/ZqUWuDeiY7k9TDBSxxjIqTu+LKHnsrgtqwl4oz8/c8URZqZVuwGSIfL5fbofeDhWL8jq2tLf\nGYDQdQDlcPc6scbICbSBFrGCQWs01s15dJ/zexFGeP0H0t7bFnhYU436PoV7f3d66YZf6Twt4Scc\n5g5VP7r+Qww+TeWYqY4gVPlyGoGQZS8C8RAq/18dU0+qj1360cZ3AnjdGPMGAFir7E+DshKOTwP4\nOWsq9ytCiCMhxB0Arz7Hc/dCCPEHAXwVwPqq33svcb3Bp66pyZ0oYLeCKBDvrrisFUy+m2KCrV6g\nrmnILpTN6VoshMEfTFq0G5oHsfRj39iOfUe6H+YIlHiu511q+QCVf0K9OmpwCxR7QqNt39P3sh4+\nh0NBIppxapUlBlJkdH7Nhq5r1ew3rgNWFn8VKnPlG+7dsENq9/pxVsbBiyZnPeECz2VI0hwbOIfT\nCHhYUYGlXWwyYECK3VrU2OkVnu4SPFyneCfetFtwl6jaBpNUQ4rcZVdKZkiTAlWyxSTl6ylxUugr\ne2550K/TpnEDy2WWQuYFUd517fpxyxo4yinT4JKZY1tWwfsY2lADEAWcZhpvnnxGw2QR/x50I3wf\nKqsq7TZ1gao7k1fWzTlW9QYDtY1n4S4fkZrDahNZe3A41QD7N93fZ6FYJlcg3ti4UBmAgL3X+Zk4\nsEl6z2FJTs8ZJ0KIXwv+/1ljzGft9/cAvBX87Oug7CaMvt+59xzP/TeEEH8cwK8B+HPGmHMhxBjA\nnwdlS//u857Au8X1BR/d+nQcfjFxwY1tHjyzjWvAs3mi/oBl9hiV7tFvWf8qXAxoAaH5F/qbwz1t\nqvADHgVPtXMvIqPF0cBK77j+RAspUkxS2umGki4AcLZDVOKh8hyZgOm2Qd3u3DmGGl48z0PnZuxz\nhRPHZIFWJhwUOrGlrg0KuXXln4PR/bDvVpFBHUfIRvOlnQG2etE7I8SlPz7Xm4PG+hkRIKBZRDYX\nobJ4tHANQKDZVJBZ6owIS53gohKWzOHLm8cFXStiU25spjuBtqrjF2Xj9N7GaeuONQy6ntSnYgHS\nSUoaatLEH+PwXqP3x/cKKbt7Blye+id0F0RWDWi496bcdU56LKm5J9cKb5S3p/VmIysmvvSXKOd5\npA3NUvHXCHguT0nYlYFHSe+hpCRtDqyth9MLzIbAhM5tT7YpcN8N9fuiMYaglGvW+wPH34B4aoz5\njm/wa/4UgL8Kenv+KoD/CMCfBPAjoHLcSnTL/x8gri/4GBP0SaxMR7mM6r8in3hbgKDpTkyooPG/\nW9IN2jZWEiZmtrG/CM/BUCbiP5zOY8Tuhhsczirc7jzMeJjuDbjZJcgMMDtIoTDNNnaXT78+SfVB\nAKJeCFHOZbKNFhPX7wl8UsIeBQtkhpP7dP70e4tKYqDOIdNbTk0gCnY6Dd8m/uAHBnWhQ2oE/lax\neKCmvVpjWSJcdndciFhpOZzlsn0CnpuJds5Z6nsGjbWegD/PMApJVGqeHQOApzuFUi9xlBOAP93F\npITwd/vYcAxCzBycpA204LmadE/kk8PRpMsVzPIxzOOnsW12Xy9C5q78liUxiCRC7mXAXRX3MOq2\ndMeVFRPa6DUVaQEGdg40WzeMgMc8fhptFIEOq49jvSH1C5aeyoauVwegdzA2dGzl/mYY7p745oq3\nAdwP/v8t9rHn+Z300HONMY/5QSHEfwbgf7T//S4A/4oQ4q8DOALQCiF2xpi/+UFO4lqDj9sxhQ8D\ne7Xf0BoA8EwdNEuvUsDGaKMVFO6jsQC01QuX7ZRaRtYGBGDKLX5MCVXWGAvghq1dGHQVN8H5+AA3\nlIpi7OmvNrLEU4k5JmnrFmIGIFo8EywqYwGohhSlPQ4POn2DpF2tMq8fR6/nQK2sIcU5dM/gppQK\nCr5hHH3wA4M6pTJIFcySsEsqMxN7ykVSpNDWqgBoAxfX3JYCd74UFFhQOydUPkg3P8OEj6EjZ4Tg\nU0jSyDsu9oFgWUssa4Ms2S97hvpvsSxSTBoh113SIpzYDDrpyZr5OXSfDWDWbwKnp3RuANiqwJUV\nuR+iKkc+EIVnrRHlOu1k6M3e6/b1C7mno01NJWc1QRWw2gCrs9cmMfBYy/DIWJFnewLLDYR27iGR\nwg6q9obKXEXDWYjYZdGsz6jcd3nR/9z3GsF4xweMXwXwrUKIT4CA448A+L7O73wewA/bns53Abg0\nxjwSQpweeq4Q4o4xhs0j/mUAvwkAxph/1p+C+BEAqw8KPMA1Bx/KelJ74/r+T1SCCz1pQmYaN027\nastV7ZSyy6R1/YCuWV2WGEzS1mU92JzR3wt2+A2YMACrLdcZdg13q1xC4F2dJo8TbWr3Lnd3pUdJ\nDZbBOdsBF9ZGfJzCSvxLZAk1McJMh76+O/CEEZb0QuFN7nFFvisMQGEJLA37ERMSJ9X+d0JyiAAg\nRr5cxDtuVh0oNWV/3go9KLmxa6nNitm1FAAZmgUlnvD4S23VwhsCnqMMtrfWukyTNx6LSjrli5AJ\nx6ZsnBWHWWWWaORSuOdeVomjZOey2mNVSpGSXp0Vsy3khARENxfOMA2w9hONhrH3k8DQO9Puld8O\nEVB8H2jb0OtpNHumeO53LfNwb/NhZ6vM8iF9rp5dOldWAOTtE/ondbM1/kyw1w+TCKw4bf+x10CH\nualEIID6XuaKvkFhjGmEED8M4JdAdOnPGWO+KIT4QfvzzwD4Aohm/TqIav0DVz3X/um/LoT4J0Ef\nszcB/Osf5nlcX/BJEu+Jw30SlsW32Q4t/jtI7Ftlg1lDzIRhnSmW7FE5dvUTXJQNnu726bcAlVgG\ntoeS27/HWRcN2FFzHQlgksHVjc/QjqFtgO05kCgM8wlQzFAmrStDucVYKBwXDY7yGifFDsdF6hbL\no1whS0ZO1y3s+XD5DYDt/Wj7OwaLSuLNZQZUSVR2u6iAXCYAlF2EN95lMlFBGW0LqaYQfeKQXXLC\nIRHJYFCSykXB4mF9ZqrWuDJVNDjJni5rWH0vqzfHhmZAoByQB7JCBXYaOK+AQgnstHG27FlinOIF\nA8dFBRxliR0aba2KNV2PPmFS/jsnRYN7I2K/jdMh0mSEgbzjKeIATJq7siPPMeWigFk/cE140eXa\nh4t5lnoyDnw/VASzZt2Iy8r0GAMfp41d1mJr9J7PVdVukecTmGLjzAtFsfXq1gBCYzkRDIQ6PyUr\np+Tkn/SzPfYpbxq6BAptasrAOXsaVC8OfF5c5gM7f/OFzmOfCb43AH7oeZ9rH/9jz/G6P/Jej/VQ\nXF/wKXLgE5/aq/mWTA5oTt0iO1LzuMdjd91idAyMjikLKsa0EA6PgNldLOoneLKluY9VvV+7X1QJ\ncqkALIAMkGoONb0DIwQtHHrlmsZQ9No5fyBSq7rQbRTzMF3AhjTpBaAy5JPbkKOpY4nxhy0REtIQ\nCE3SLWQSmOXpFibwbUF+wwJyg76GPgDMsh1yucSXL4o9AHqwSlDIBLcHpH5wb1TRLrm1jXO3OAVg\n0PnH75fLRq0sDyka+1JkuEjubRyszwwAR6BQuRVMBZy5nQGQzGqYQnrH1mCA04yPsaseWqto/3qP\nNsCuEdhpOs9xSlkKg05fUI/Nfxy7wqShx9Ism2Ka3vK0ZX0KVBuiIwPA8Ah5PkGe+xkas/BagiJN\nAc4ghkW8kIcReubsVkCnT9el3IfySgCwrHnui4gdh6QFma3HUWYp8pPXYLIhxF5JMADIUJWeN46h\npXb1NQeIx8XAERoOqmfYYFuIwewujVV0ZqFexouJ6ws+6QA4ftXqum3QNqeRKnNY8rg9PAcU9gGI\nY3QDwoKPKSZY1E+sj0+Gs51ycxsc3GvxVgtU906TYo8VR86WNPtg1DSWvg+DvYU4gtkfOokLyJt3\nMbzxSmT1DVgpFVD/IwQds7mg/gAAY83r1GBOsyIyqKGHQ575TSRDCeACbyxyADJacBmELqvEzr9U\nmKRwAESZSAolCzrXbOjo7pwVslyOIxt0pV06/+9dbIKFUJua9MM6Q5iCWW4sdhlYhYvpHWz0Aqt6\ng2Wd2Z6ZB6DzytpWaIOjbL8U2Xc/8LH2C5MC43SIaXqT/HTe+Y3YcDB878cXMBYgle11RGaF1jLA\nfR9mEPxYGNWGRDt15VQdgICE0jbuXu0ONNP5GZRaY5p5PysGAc48GID4/EsA2ewu3QODxzFZoCs9\nZasUW71wgLOoJJa1xKIqsKqldWA9jxTarwptaqyaMwzyKZS681zPeRnvLa4t+DSmxtPygdsZUVkk\nQakz9+Hh3WzV1rg7PMUopYygdzFTObRMsG3OcFnR1DrPfTD4sGQ+gZovpxAILTBQHvwWlXS0Zarp\nryj7KcZUUgMiSjD3nLDaOJtpY43WAEB9agex2jin1Sb3lOWIKh6AjjmnmrspGydxb26cU2kjNLML\nZjagMkxuvgY5SpHLJ3hjkeOiim+zi0rgoiIHVR7APCnoenBJ0NkWWLq7y1CtknTXLjkEoG5p6N08\naCj72UCGQ5iDCrjBdt+1d4+1pmyl2WHdnDtaebfHBZBP0leXAvOM1MI5Cmn2fp8sC3xpKBQmHagU\n0/QW8qqBeecfoH3zAfDkmetFdUNMBsDRJcTcg9CeDFOPVXn0OAfT+asNIHOIEV3ncO6Ldf1osU+i\nLBAAVjWVnCOKOOCy3S4A+etXIxvZ9wRwmwp+fxtTU2m6OcW2WeLpLsHTncLZbuRKvTsNXJQCO50D\niAHo3e4LOobFu2ZKzx/iSkHW6xbX9kq0RuOtlcGiyl0dvm93SpIzyjaFL9AajZGaB/2Cxsmc8PdM\n6Q1tDHinm8tYxZhVignwvCVBSFCIKLe8yLOZ1hX1aLMLFpzw95rKTZWHHyzH7tkGZbtggfPCpcGQ\nc9+Qa1MBqZ/CLyQtBBdlvCjtNAF81VKPYyxTO7ujYsqrit0qefI+olkDbnFiOSA+v0Mlwm5Ure03\njY69BM3YnvN8FlmFs2PrNNP2vRIA5J5iBH/tKkrksrW2FbXtr02jQU03u5NQRpy3Cb0/lzRs2V6W\n+32bvjikIRiW2a6iWx+I8Jry/V61ZA/eNyB7Ymed2EdpmmnK7DqlOL4GnAVV7RY6sZ81vdqbH1rV\nGzzdKZxuczzdSby5IpPEvqD5NWtNIVgufp+I040XBz4vI4yD4COEmAL4iyAe+C8aY/528LP/1Bjz\nZ78Bx/ehhRTSijsmKDXpmnXLY7xoeMkZH12dM/93iWV0d0g3dJoorGqJcaod4JBwp4nq+LRQEyWa\nmGXa/g6pGKdJ7pvGp6e9oCPSFJjPCCSGBeS8pjkVAOLebTJfs55DbuI8jBB4rNMk5rX/PxuUMQAd\nmtZWGbQht9BVneCd7f6C8LGhwSvjFndHNU6KxjbP81hwtCM2anQJrEuIfILcilAeUpjuAhC/Zxxh\n7b/b9I5o7KFmWEBk4H8DRe81a9oVUvVuMLrBckNZMtmTqYmOBXaoeb1wU/4sL2N2uh+AlPTZTDF2\nNGNTWspyqFfWBZxwAJO/su+PNQ50NhpMq04UjnImGDBzzw/LZolwZTmORSVxUrTQbbNnjNeV7PHk\ngJjezaoV3HPryz4LBbw6NvjktManZgYjddOZQ6KpoEY33PRw3yZlrI4hVi9oyFQkL4xw8Dshrsp8\nfhbAPwDwCwD+pBDiDwH4PmNMCeC7vxEH92FGIhRm2RSlXgJIbakgNvcqJCxo0AfJ+dCYpjdlD420\nAODuUFumU7sHOF6bS+x9+DI0yBIglxqlFk6ME2uaTDfnlwQqw8I3Y4MQqW3GjgAzHtL/b5+Q59Bo\nikV9ilW9we3BPXvcKf3tbUe26cbMT4ePO6/DWVc4MR5Ea7TrAbwb8AwUyfdnyTACnkhbLwAEUy6J\nDdfV3Or0ekIAerfgRW5PV6+vCa/yaFFEQjv7XFZRNsv2HF3pGd69p0nRAzr7C7FoSlK0qAMNv+Ci\nhgAUUZHTlAgqliggVEb9wmrz7osgswuZ5GEb+TSn058pDFRK9guJsjJCXvpolNY4L8+DPifwdJe4\ncmt4vvzVKWN3mGp8/Virr9TCVy6CQwvvs/tj4YWDWb+vqWiswQJQdxM5TCYwZ2/ChGoQL+OFxVXg\n85ox5g/Z7/87IcS/D+B/EUL8S9+A4/rQQ7QtRmpupU+27gYGvKhjmhhMs9btajliwcr+kg7X608K\nnuXYpxUfDIuBbMtQyDGRAJaPSWbk8bnd9W6BSQeEOjtZloUPgefNZYXTbYGBeoJ5dhcAaHHjgdsQ\naG7M9ogMzjuoS3PlhVpm0DUZ6l1U1Hyf27Xu1YnB7QEtCOyQycZ9pP1VHi4VAX4AtakiajrJIVXu\n9d3595Tg+hbPPR09NhbrTsfbvymFQpoUSEwNaRS0aHCU1JikNEDJEjFit4wzKZXRTrvTv+iGN2Ir\nqdzGhnGrDUzZ7PV7HABlqaX7+6yntEoXkpUFZO6zIGC/HxTYmYd+SCHw9Dm4AjTcy15NrNqBugLU\nGLJIkSWnbu6N+5mTtIF0JVdPhXYlVevv5LX7GlR6G2n1Ab5kztnOvVGDk6KxYq4WeFjJYkODo0wj\nV/kY2t4fWTKk/tr5l6j3+fhp73v0Mj5YXAU+uRAiMca0AGCM+VEhxNsA/h6AbzqZ1/cchnTP0iTH\nJN1immlHiQ5LJty7ifxtcPUktysT2A/LWPoPVJ8AYzdSBAoFEhianFwcL2lAkIkECQqIvCZ9q6yO\nG8fB7BJUFgHPVxc53tlSOfHb5+eYprcCG254R1SAACVNI9sGt/tGj1CjpTnTdS0BpBhI2oV+bACb\n7dQuK0iTwi0KqJZxxtMhMnRfZ88YLBQlDcEC4YS+tfEO3g82taNhUzsr03XC5MHFQPGZZoh8SU+b\nGlKlfnd98SapYId+QIFIrZA5gQEfa4+umPv6HAKynPWINKX3PxvCFBNUDZWNsmRIMyxsgx76IYWv\nF2Q7DRqnjh2CdndeZg9wNiuY8rHvnakMw+kdq995iq8uUwcek7SFFMoxLSlaAP49EIAbmub3jyNN\njKtUhMBzb1Q5irWzSgmHl8P3VlVOFSOvGtroWeBpH70gPx8h9tRHrnNcBT7/A4DfB+CX+QFjzN8S\nQrwD4G982Af2oUdnx5klpPYMAF0ywCSNS27Jgensbm8hMbUDkr5ywlXhdn3lCub0S07aX8xnSKzc\nSDLLiTLLNODx0BuEcZ3eUlHXzSnOdlucbnPX2yIGEs01yWy4n8XYv4O2sQOHa3qt1YaApy/zGR45\nCf9XJlMACxxlhQOdo5zmiLJkSE3fcgVsz/YBp2tZzrt5gF7HLeiIQYg/3J3FWhSAkpkTJuX3kKfq\nQ5kep53XzQiqjVd8tkKnyr6Xhq2jmxLm8iGBzvK84yUTzKa01sxMHUcvYYTwdGaVk18R7OBwtgG7\nazqgKRRN/k8GNHw5HlK2GtDBd3rllB7SpACSAWnk2ZfZ80MK6Ozc39m/Pz3o8DUkq4w3ex3QAQDl\niubFMuATk1Ortq0wUsdU4nr2gK4bW2h3QhjTYZsuAdRWCsoAUDjKfMZD99rYeQ8ZIQAWNrWgw70s\nzkBdX3V57rT9zCEGw8v4QHFwFTTG/HsHHv+7IIOif7hDJKjarasf57LFNGvd91liXLks7MloW2bp\ngk8WiF0CrE49iPpD/PMr/XqcZMyCSmHL87jslaXArRtIhhuvydVRaYiGMVWOrV5YKqo/ZnYXJd+b\nBiqf0CwPEA/t2b6KuWTJp7UnI3QXVDtZXrXeevyVyRS5vHCg43a3dmccZTeAn1cKFKXRaJp0H3UA\nsutO2cAPWu5dVyIqsDCpNvuK5HvA0804bL+EgGAYqTDwVmZPconPgd8rLouxmK3KyBtIeQpzdNjG\nurc2c5hZRbNHVY3kyA6M8uQ/l17HQ+D/Z+9dYyzLrvOwb599Xvddt6uqS92t1gxJUYop/1AsRQry\nw1EgC1GEBLSFmFKUhyQTViSLcJD8iCgrP/ISME4QAXQsSKEVwZIRRyLsJCISGYxJQ0mQiDZpQ4FN\nKrI5Qw5nunu6q6vrcV/nvfNj7bVf99yqmpme4ZA9C2h0ve695557zv72Wutb3zeZQ8xu6R7NEg/X\nHabpGuNkCLDxoUs2YS8pR+PMzXbCwUzfxiKhBfviAdTFI3rfehZqK3SGMYinQAoM4gK5nOhM40Xg\nwT1yYh0dQ91aQ0yO/Iy3rSBk6hFlZLQxRIdMKlxU0XapbUneUUobEKp8QiDU0xNUF9a+YVeJ843H\n01M4+EaIZ5ZqDWHJBQQuzRYpYBBvZzP0tZ/9pNGAGuWN3SHGACBTszPm+v2l5RMuOVVr4OSRmbMB\nAOxNDNtMzGe04PeBjpaGNzvX5gR1V2qzMmvR7JKkWlUTyHADXwMPexcBIKvmCw1ASQVjxhVMmDcy\nYrUdE3dGh7YUtdJzRO6MEoOrOxi7LsyskioaRHuZ398Ktb3c0pb7M44eYVJPlJT/vi/jCV+Dy1WR\n87f8HJoKbUBnXdCcVBZb/TQG7rH+7FwhW/iSLwwA8/Ftmj8ar4DVEIIN1XS24wHP5AiNjFA05zgp\nNnhcpEbSaBDv6jdaIyIXdAAaAJbSPs4Dni6COn2RrteHjy0RZn5u6Onm/MjMNPkH8ZTum9UF1Okr\nUK8+gHrlEbqzEvJoRCB2dArs37EZvA6hlAEgOpYSabTRVQoiMeRyaoBHaakp4YiIAkCDBhL2fbH2\nHVb682taff310OjejTcdzyz4KCgPUGgKWzllNiolGBqu8rWgWCnZAI92PwXg9x7cCGvsYTQV7boe\nPoY6PYc6XaJ9SAw0ebQBlmsCHi6taB0rF3SgLRlcF8tNUwOIzXuc6QyPxTXpBXxfk0YPzK7qM/qb\nGCQ3IjO6mePKp+Ey4LUXSCPqF5nMoikBXgSKJXB6boGGgwFIWxh05yW688KAjyobREVLcjesOIAd\nsieXAPwuYdKtz+UywgMDUKMzvEBpwJRrFhsjTCqyGNFeAzEZUFmq1qrMSQKlF0bXGbVVtef1I8Uj\nzKa3yCpbZz8A/MxXqzerfGKGnVllY1lHWi2jxl626X1rLuiFfk0yqk3J2CuzLR4a4FEPT9GdlbRR\nqPR81HhNckSBRI1Qagt46j96oj/3ErHONgQANTukMlyQNWz5akUbPZQ78VltiwPQtKwAACAASURB\nVFM6z3EKzG6jVTVWzSmqbuMTEZjY4X6W75bc3rJ4ZsGHw6hKxwBg5T/SaIAkyrXB2/Y8j7v72zVr\n8rqDd9HjIVDXEOuC6vt5bLTFkCa2rBGADjuOch+HpU/KlifLWxzk7Gza4eZgQrbWcNhNcUpDlE5J\nki2pW1XTtHm5oPPFUifBohBKp8TcSOe/TxNanJLEApD+Gcu+RLoC2KGAyCWiWb7d4wrLfhy7wJ8l\nejjkjiyJn6MPgMLXaaoejT39/rIYQlsqiFz3abQ4qemXObp1Sgi0nc12pEiwlxGlOIl0f4zPFQ+J\nBsCD0Q1rmx0nmCQtxkmEadoZogdf2/xZAbyZsqMCzNZ0iTbM8OPrXpXH9Jny8ej3a0qBfK26njpu\n6GxbjIbAZEAZD6iXKSYD+vlg1As87jG5PdRWNMjlRJcRNXlBXx9CZlDQNid6U5ZGhd5AOp+pU9qN\n9rKnV3Z7isKi3whxJfgIIX74st8rpf6np3c4bzyEED8I4GMgmfBfU0q9cPkjfMCg3VzjAQ/viGKZ\nQ0UDZ1G3u0ATuy4qdxHjJqfMtrMft78wsjpicviYbuz5jMoY+dhmKI4gKmAHXzmSiBbaiVNS4Uwn\nl1NMZGDopnffAC18raiN06q1HlhgK9jKQNfj+TyZYxIJ0vG+nTMBLAA5JTdexJUup0U3gcihfxvA\n8dxaLwn3906GBked2ZXlMbpufAr77g5XYwywO3reOBRLbTiXQKUJokCJ2e/7JLbEqcuk4WcoRYJ5\nNqaGfPmASrLhgHEPHRwgkDkaboyFNzfgDa0d/rA0AEsdV1Rqc1mdLrlANKXtr80OrRDrcO0LsO4C\nHgCQKcTB+4DBHJjPIPceQL5HZ/d6Lg07pHXCSD0iiW8Wp3iuKRgSHsToZ5/O9qyO3+k54slg+2++\nxnHVeifIcvRjIFuFNYCfUEr9o8seK4S4AeC3ATwPslT4kFLqVP/u5wF8GFRU/4tKqU+92fdwnczn\nwwD+JQB/T3//rwD4fwAcg663rzn4CCEkgF8GeYy/CuBzQohPKqW+eNVjvUlyOYAUMXI5oRtMp+1M\nic2yMRptpnWtcBeFkNrphtvgdmM+ozkdAJjMfdDRQMHZTt97avWNaAEkNtlcfM2k1yVLbBEluoaa\n/OCG+xIyn8DtH9i+RY00G5BatcygUsc1FPB6P8Lt5zAJYjTcYvGZWZWraMg9GeIuYVILQJpaHZ4m\n1yemJ5ST3QkNlN5MFIOOS+rIxmZT48rHcGN/HO8DyxO7QemTVIqdxdn5mKRIcHtIZnOegkRB5y6O\nU8QyR2NUBAhwQrtsHgI2VOrCkkoAGADCvPYJB7EjArorRjcgRjfoMS7b7QrA4ffH13+qiSRb5yW1\nmxULptteQ8xCNHF4SPdfYDj5hkNEW4PQb+hprrfe/WsgYtj7QWZyvwLge6947EcBfEYp9YIQ4qP6\n+58TQnwAZDr3HQBuA/i0EOLblOqxzH0dcZ0VKAHwAXa4E0LcAvDXlVI/+WZe+CnH9wD4klLqJQDQ\n7n0fBHAl+LjBNxgZt1mXUsW9jaZCnI8h9bzBzmHRvp1eAEAC2KYX9wWDjiOs6WY6u3mtFJGQPuCU\nS6jymHatvIgGWQSXzEKGE4ArF3rRlEilzX6KdkllO0m764GcmjkTxa9bOOUkDi5lcabnvH+2CYiz\nMb0f9GRjfDwBWDdoTBnRfb8hAIGz07Di4jAJ6cGBqkI+JpuDdAEMCFwNwcAlaLi9MiFQtTbr2dok\nFAs6lq4xfjy94S2u/qaKMp4BMQ2LJxa49TUQa2CWUYJWxVsg5ClAMDEmjNmhUSD3CAIMPFdkquLG\ncwAIbBpVw5x8dX19NTOvBVitP3Yx1Vm9+7f0fwJ3psg71klqbOrfQXGd9e6DAH5T+/p8Vgixp9fu\n5y957AcBfJ9+/G8A+D0AP6d//lta3ebLQogv6WP4/TfzJq4DPncda1UAeAjgW97Mi74FcQfAK873\nr4LQ3gshxE8B+CkAuPsth71P5C2yLiik/afKTqKjfxjSHRzc1UdwI2CPMV1agUskBaBwOfh57ycJ\ngMexpnbmY1DahVrEKTKn1ChF7C9a6zNaBAejneclbJgf5Bt9PBtIOfWHU/MxkMOCkAs4xtSvQatK\nIy7ZqoY2C+kQaX7bVxLg88j/OxliX/+Oz5OQuuwYV4aVZbKgAKhD62UjKisH2+DK14WbNTnPw0DN\n8zQ7B5F3CIS6PS4ZT7YUHLxFtllYRqX5g0yz0fyyFGDLTVQF0JsWNzvQZcdegLnGYKzxr9J256w5\n6Ort2c1QT7ayI1z6vIlyaaj2nDF5ZAN3IPiKDPdtiAMhxOed7z+ulPq4/vo6613f39y54rFHzlr/\nGoAj57k+2/NcbyquAz6fEUJ8CsD/qL//ETiDp19PoT+8jwPAd37Xe1XR+qUDc9O3zpT9ak204qv6\nC2yr3fpzGybCdDtOIfqEIpzM5ioag9tX4eiCTJim9xMjpLg9LV+Z3aoCaB6m8UHI2Ibz3NGTcyol\nzWtgP7WlN6dn5AYbpVFmObD01zBC4OUJe+3oaoBD204MYmtmlmZ6cFJHWKoxsix6kds+l45Kdk8W\nZI5P99jCXgn/v2l1CSgExTD7Ug2qbomuPvd8pNKIsqBUDozUS6plcRQfAwuDpolfjm0qiKaElP5t\nzZmLmfB3y52xVgyPNfsv9hdboSsAyt2IuddPkOWY8+T+z+FtAnyBUmbXcYm4L/gzcjde11Es5yxN\nAEDzBHE+Nn1cw4hj4Ak2m4olnJ5SXFdrEMBjpdR3P7UXfp2hlFJCiKfEpOqPK8FHKfURIcSfAfAn\n9Y8+rpT6n9/Kg3oDcQ/AXef7b9Y/2xm8aAGX7KR21NfdpjDN91T2Au4aosNyc7utfOAJQMgtoW3a\nC4yFP9nNfRb3ou3buXeqxaZZYBBbkzdm8gl3cn9nic8BocbPhsxOmYHn9JxmINg6fP8mtG6KPr5m\na4GnDGxoNerOz+ziycHlKDaN0+Wool16oMNeR2nUYZqSD1Id0cCiPbH+u3N7Km5m0KkWrQiHKHsM\n6oIMyiVV9IFZ1a3JxjodQma5l7mxWSCbFtogC2qa1ndtyzmj2qdyoMsyZODhaCrEctwjlBn7myru\nYySJIxsUvOfz+zQ4enrul0Tdr3UGpbCjrxMATtvVJsurWp/yTbqHvgRVeI+6AOSGYem5JKBgs2VK\nzQVs6Xt1Qtd9sbSU+dR57ncmO+06692uv0kueexDIcQtpdQDXaJ79Dpe73XHdanW/wjAQin1aSHE\nUAgxUUrtLrS//fE5AO8XQrwHdFJ+FMCPXfaAuo3wcN2Rqi57zCun5KaHINVqDVElwKzSu6AbdBM5\nrBpvql37yJsmfKi8DGz1bKpug4vqGPfXEreHZ5imh0YS5KrgUsVZ2eBxkeDO6AKzlB5rZmyKpe0Z\n8HCndzJqX7IGMMrHCnpHeH5mhl674yVU0UAejaC4sT6LgQyGLgzA7GYzqawlxOmL1qiOBy6ZTABs\nlaPqrjALtWuwR9bSShuUNZgkC680w8ELmQs64aLcBx5bABQAT6h1Fgb/ru5KQ2F238eitgt4aNdR\ntizz1CCT2mRQasFLp6TXu9hrFQH2PNr6nc56FMs1aQFS8kuiz4Akgh4Ax/dpcPRsoct7eqDV1RAE\n9DUTZDsOWcBliTLoPC4iAL6qNTPq+s9nvQVA4bn2H1D5Gy5zDjQIcYvHBR6XWMDKGQ1s5vsmI5wt\nfBNxnfXukwA+ons63wvgXIPK8SWP/SSAHwfwgv7/d5yf/00hxC+BCAfvB/AP3uybuA7V+s+D+iQ3\nALwPVOv7VQDf/2Zf/GmFUqoRQnwEwKdA9MFfV0p94bLHlJ3AvVWCRd0ZzbFISMsC65ptAzYn6GaY\nEgupWhs5Ffem9AAoJAqAbppVc4r7qxL3VhleXUkcj1q8d3qMm4OCBD95tiOfeK/PC6YLPBdVhEzG\nGMQ0PDeMJtTn6bMm4PfGxxsCktuf2qyM3AgP3pGZWUzU2tEamPSrHQOg2SmR0HsplmYI06VXe7v4\nbGz6AFXHduK+U+Z5FWGWdkacsmxb21dylMP7AIdBMTQyC8MAUFv1As+WjxM/v6MM4FqyL2r6jJa1\ntRbfS2G8nqYpf6bC+OKUrUAaNahFCSkSNCImxmC5e1hZNCmETL0MgY5PS+uEJoRNZXs3ShlTQd5s\ntA9X9FnPMsp4hzkNybKSOjMDeZF2gbq1GdymWWBRA4ta4njDSw+52LLI7GWfBf1/dd/HlBfd92ci\nYJ1yad1Va8dQl9qrnT3Nr2XsWu+EED+tf/+rAH4XRLP+Eohq/ZOXPVY/9QsAPiGE+DCAlwF8SD/m\nC0KIT4BICQ2An32zTDfgepnPz4KYDX9fH8g/E0LcfLMv/LRDKfW7oBN+rdCD246/zoAorUoB2Rii\nqUhLC9DaWSTUCJD4oJQx1Ys3p9vSIlUNjGtgVFGtvC0hRvsQDgABdCON4jmem6xxkJ9hmiZ4z6TG\nND2kuY7z+yT3AUDM70Lm283kNBrg5gDYyzY4K0vs5wNMk0PEZQE0T+iP3CZxnBLQ9DHLwtkZ12do\nXNPjmpYm2KGFTcd6wj4datBYoO4Kb6EBWgziAiq/Sedx7giTjodmHsQQLISARIw0GqJTLSbJApls\njXzKopbG7mKStJimZM2QS5vxhcFqD4AdoHQ/B3do2FNm0AtUrzCp2n37tIpssFM0oG1I5xx/h3FC\nyMdGhRMNQL71RuZTnIsF1OoeXROn53Tu9v2+L4N32CvbtBcYZhN7XTP48ICqdmiVodZZSRuNCIDK\npTGhM5+dVtlwVS5C0OGBTi4x8sCzq2zunvddYaj+LFWlg6WsTLhqI7uiqTzxWiOHBACJBud33niP\nib71ToMOf61Aa/e1Hqt/foIdSYVS6hcB/OKbOOStuA74lEqpSvBQnhAxru6Fv+NDChjl6nEyRC4n\n/hwLlzdYvkYDD4eRFlmc2nLUeUkeO3NaqA0IDSpabLMJRDb2ZhNYSj6NhkjlKUbxIQktrl4Gzo+B\nJ1SeUrpGneYTVB3QCn8OI40G+KYhzYRwk9ujcpsDT6mk4L2ZgP4bhAKAGczwJOJzyMlAa3jNaMZj\ntI91t0DRLrGs17q0RJkKKSpcIBISkxvPQXUNPZe7cO1oUidRjlY2kFGNNGo8ELJuoCMSqNTWyGF/\njM4zlXS4wc3ZkQs8LA5rNN8KJ2t0hEmlnHo9nzDcQU1EMOaAVae84wfgqab3HU+MGFg9IXsCDTrq\n4WOo0yWpAHw7fADqcRs1ChWyxni8b1WdAYjB3D6mXRIVXisBALDyRrmEkcEOyQ6B/YILOm3XYFED\nofnGNw33LKjuAJWt6JFC8kqPfWxSnt0Jf87ZvKsnqEVsFbQPFmeET63voy4t1T5rcR3w+T+EEH8J\nwEAI8QMA/gLIbuHrOiJBZY5JAuRyjKyLgOKJKZEBoAwo62GklUsqTSxOKeN59ATNV8+NrlVUtIgO\ndUO+qqlgCVuG63tOKWLM09vEBNMNeXV6Djx6Qr0RfnycbrGZzExI25GGmltm6xPJdG+mYOakLwzl\nmBcsgMoToyGwfxNitI8y6lA0S5wUGyzqGBeVNHpiAHQ5kKT9h/O7UOHArDkR7rwRqzGMUXcFLeSq\nwSCmBdUzbWtKqBWxRM3zgoYoAUDGzja2c2wv+oBH75w9goYjTCriVHvL+Hp/u4KVAga6zJdGDXnY\n9Dh+egoCF8fWmkETPboH52gfrkwpLAM8AGK3UZdBR/2xGgDR1EejOZ2XmKWUFiYzlCIx58wtsQIg\n+Ru26J7PSHVas/9CujSDzqKWRlOOrgOFg/wmhrUAmjWoInR1eJ5DzjWtsLYZers9W2RMAeGAjwYe\n5ZTb0LT0fsuGYLKqgXfceM83VlwHfD4KUjn4xwD+fVC69mtv5UG9HRELsrkeJXtU4rp4YHe4erpa\nCYFNe+ErAjDwnB9vAU93XkKVVgU3mjmGawEASS3p7s4IqVIrPp+fmUavERaNpQGBeH7XGKBtDY4C\nuxltfdlFsHPlcMsfIteAUy4MO01UNcmQDOZoshxFc4plvcbjIvX6MnQqyG/lrKwgxRKQIGOxHSGU\nQoyYym+Chh5djT0AdmC17Wx5crOyApLBrIbIYczC6BzZgUT+1ws8wSS/ESYFPIM6Pib6vm9I07nV\nNAjtKvWphe8HxJlO8/IFuvMSm9darE4TZKMW0ewhkmEOMRhBzO+iaBfYNAun1yS1onULoAZioK0b\njNI5gA5Fc+6RIdKoAOKZuUa68xLVEshyuq4FqzQM98iortt4enQ+qUKaHhfpCnaYZ3cosz9+8fLr\nsi9cKjT3KN2SsenlxYbZ5v2OS209wMMK6gAgMk00YtXxvg3oGwilnhrh4BsiLgUfLcXwm0qpfxvA\nX3t7DuntiSxWmGe3SRKerQI49AXeykg3mUGDkax6cHwf6pUHZhd6pfJt6twg+vm9Ibhdw4NcX89j\n+xwP7kE1FbL5Xajy1A798fNct0QQqlHrnSuHa46XxgMCoFhL2kz0ORruAaMb2LRPtF9QjJOCdrqu\nCn2oSO/V9due985acfprqXe9ccA6UpuXodjvaLm2MjY3ZlSvZ48f2Cb8pcEMqV2q4+7xxekWDT4s\npxLgDMx8EdBPy/aAh4cde4CHr7MoVpApvbZwvDFUPkFVUp8vjQTSCMhka3ot9D+VLzkYLDgiIcEK\n50gTRLMM6XgFkUkS/ORsd3YLi+bEsAhd6viipmWFPLJgvh4le9asjRd/17J917lmoHHVpvXPxHxG\nfSvncwljK/vh59GkF1U2nm2CKhuI5RpIzmkzc/kRvhtvMC4FH6VUK4R4TgiRKqWuHlf+OgopUmTr\ndf9Coxe/GKlxThTFgsphD+5B3XuI9pUzk5WEIXJJi4JrfOZIdKi2JPfIEHj45hkNKdOoaip1pA6z\nCCCqcnhT8v+u8KYbAZFAjPa3bJIBS2PtVIsaBSIh7ZyJHOtBUpr9EaN9lKpA3ZVY1NAUaB942N6Y\nS5xMub6qKezNFun35y0CbpPYLZtokzkxp8yMAQjXYcte1aSO+m8X15Ssr2HOmQ0THvyfJx4lHtWa\n/t8BPCKTSMcNuqZFOmgRzdjfqH8RZxBa6EuEsiEg67bLXQNtAQ4AYnYLeH4NWdWG6SbuHAHPPQ8x\nv4sFlljVZx6bry8y2eFw0GE/H9Bzr54YszZiliEwBwzYlyHgOKAB0D0ijg6oRHadjZdj3eFmOxzm\nPK8LGiN4+Pjq57x2vJv5uHGdsttLAP5vIcQnAZjVVin1S2/ZUb0NIdrmWjvcWI6BprTA8+VXUf/T\nJ73ZDsnmS2tzzPVxlkBxFy9dzuk9hjgFRrSrMwuuN9hXQ736wPsezt8J3lH2aVJp4OGSCdfp+6b1\nzVNGzrR9PIAYpRBtBRVnKOpHqNqNpjv3T2+PkxZppJDKAXn9cOnSfb8cDADcXD89p8XGfe9a4p6b\n4QDMz0QWQ2q/G1HVJEzKczHZ2JS/PBVnZ/rf65fxsV1DJqbPFdOU8QBtYDf1MkxPL40VMrTfUVhq\nE5nNcKJZhhwlRJ4S41BfX30LGxMZJtgYAAJg5qQ4CKS0G6/O6MT8LnB3hQjaN0gDz1qUWFVnuL/e\nIQPkRBopbe42phJpuSCzttNzABo8QnNAvp41QLmZiiob45Gkihbxc/pzZ9V3LrHpe830/0qYoXG1\nWntGhTujqqGwhtDH+m483bgO+Lyo/0Wggss3RnSN1bfqkwjhLKStoE5fAV7+CtS9h6j/6ROs/miN\nphKIU0W7zyyi0hg0AHGZjGnILgjo5+21VAhjPrMcocCkTBWtKbmIzPkY08QuvONggDNwKO1zrDQv\n55Ri2oia+2baPhpAantuKikpLGqJuhNbJTYAZobFDJquXiZwAegcs+Q9YBdfZ8aEFxoylaP/u5KG\nE6PM33GLPIYqG8iS5rSEPo/Uz6sAGZn3yu6c4WDqVoSkCMB+Xq4Uj8vaaiofzGISJM2yMaSMrWae\nYbNphYwAeOqvLlBtJKK4QZx0kLPUlMCiPcffyClJhsw5+x4XBoAeFwky2eEgp898EE98hQgW5bz5\nXspG8rEBHh6IPt6QQSH9s8Oi7AbMLL40GlHWszyxFtW8odBKGWTNnhirDcVDnzqjdc0Fu/PSuwZk\n0SIynzV2EmcAWBC7AnhU2UDouSseyH03nm7svOuEEH9DKfXvAjhTSn3sbTymty8YYLQ1wM6/aSqo\nmmvDDZpKoKkjxGlL/6NDhMYBILmd9byecHpD0JLu7g6QSwVhycADoTDSIWU8rnKAZiUBFmxsf0Dq\nn9PA4zT1LZgHMjEeKgBwZ7RGJmPs55ZCzIsQzR49p50r/9/LlZnd91k2O4Gnqel1YvjqABH471vL\nWgpejxhZCjKqkVynHsdA4/aQALM52SWTv5VFOdE7z+L8bbg4do2A4/hszOnU6RJ4+BhIEsTx+zBK\n5gZ43NdpVY1cTjCIF7r8VyOTSo8ZjI3zJxonI+XXmltlFSkS7QmltoDHtaB3TegYAHnDxf0aWuCd\nbCfxs3tzLhwzNz4nDDzmHGmQ8o7bZVMG9yC74wJX3DdPMRRUb8/vWY3Lzvp3CSFuA/hzQojfREDU\nV0o9eUuP7K2OKLaeI1eEmBwBz9NgXQJgiidQZQuRpbYezhPgexNbAmB3yR5DLE/2BnAABwSG7s0y\nn20blIUKBRxx0Gty9dJAu3OW7Oc5lDagY3P9vuqolp9G9oaJhCTlhGKhvWDI+yiXG4yTpZFB8WwB\nygLq1S9YAA3DlfYJ7bX5M+CMcpYhKhpE55w52syHFyT6e+c8TOZmiHLVnGLTLHBRSQBEPwZAzLl8\nDKx6MlL3eAISw9aiJoQhNghMAFlZccqY3UqJgJBGQ8QitmWhODXZbqRfSuQxpH6v0WxI1xjglR7x\nyiNzXofzu0TlhM94jOMUcZwiTW5qILog2jurYJx9xQw0s29S+N5EAWRxioP8OaTRI5xXF1ufE4GO\nX36suxJVt0GWTaByMotTyzXEEL7BHv9bro0bLABTxhY5lbTdMqQ8GiE6HAN7EyKaTG96XkDm2Ef7\npoQtQKP9pkdqTpIuI/aZ/r0bTz0uA59fBfAZAO8F8A/hX1FK//zrN6Kr69Um4hRicgR1hxaFNKPS\njshiKnvwxcrT+gw6zqQ5AGMHANBsznB0A8JpvKu2tHpSIQCNYAzKlAs+YbjH4tpLO89F4ECWBOiA\n1kn7yjbS1FyYPs4ksY9LoyGViTanZoGKswniOEOaUCZk6N/rBbB+Fer8zD9GFzjNVHnSmyX07UpF\nLhHtZWgfrrdKJ13ZIdaLFC8eTAfftBealRfhcRGj6gQO8hpSlJBiA8gB4mxC/kAupXfLORRa88tn\nV7GkTK8ytp4f8wVOa1JW5p05l4H1ZiNKE4hcojvr70169s4PtUr43XrbVhzwqOexzDDJx8BmCbV5\n0ZY6NYFDjIa0kE/mXp/Sqp5XmOUzJHneKzXkbmbaTm9wVA24Cguso+babTPo4RiCySMc2pZcHsWI\n9jJzTuTRiDZ8Rwc06zS73ctOEzLVoJRR/y/cwPFrMTnIlXu6rIz3OoJsUd4dMuXYCT5Kqb8C4K8I\nIX5FKfUzb+MxvS2hBEi1YPXkauKBDjE5gnqOLlxjEOZKjGgGGU+Yd83xVmmLmUEH+QJtUmOcW0UC\noyAdApAryc9y+oE+l6GecqkvSbwFx3sfShkSQSdaKqN0JH8SAs+yjjBNBdJIUM+mi3xV6iSBis+A\ndAipX8fMKum+Dara9iZcUUo+h+7ivgtU+dgzWnx4N9w+XJkhyKaOECc6+2EQnsyhxvvYNCco2qUZ\nfFzqsh1pqDkU83xKC6SrgdfrHKpZi01qdtmu2rkHQHHqWSnw30UaiGJoOrBbbh0NIe7eAtIEcmLF\nXC8L9fDU0JdF4iymgSK14mtjs6LhVd1L7I4pC4xmGbBaQ8zX1rodMKVpEuZcYJhNgHwGlWSmhwgA\nrbDWFwABUN0VaKIBZZflgsCNRWXj1G7Y4tTLUEjYtvXeg0gTSN6UMPDMDiGmRP/mQV3zmYrEZqT5\neMunyZsJczy0rJbfu4SDtyKuY6nwDQc8AC0Ui/YJBiM9qLjarnV7oUFADOZQd2LDqAkBp6i+aqa7\nOYso28Sbtag7gcdFhzujM+znJUbpnDoPlwGQG7PUloP04ijSYLFx6tymGe00yRmA6Fw0SKMGZVCO\ndtlrqSTtO3V+30qTmF2r/qOu8abx1elSz0G1ukG+BLQsD9KEFkgXgMISog7OfqK9DGIyAKsryzSB\nyGMz8e/9/TA3U/jr9sIY27EA63nF5Tq+BSwDLRvdANoSWK8N0UMgoDLr60FhQYtZPtntkKqFSdkE\nkLMeluCJpRbUdG27m4o2GkcHQJIgGuZGwikEIUMPziU18psWisuvK9hz7Z3ntR221M/LDX1VNJCA\no9BRa9KMn5mqam1kh4bZBKVIvFkxrogaENLvVWQTqElj5GtCXbh4dstmL7tKtUM6ZwZ4bjyHRfsE\np+UpMfcc91YvGICCTZ0LNq1aoq5OULUbcx+/G08/3nmSrW9TCERUQgKg4oxuANNYDkpVZgerhx/1\nTlDFGdbtBdrWtr9c4CFpEbFFQR4nHe6MKuznA4ziOWUTpTUdM2BhrJwDYVAO1mkbwe9LcNkAIFkY\nNrlzQShOjex+EtHPJ9iAJuEpI5gkLapO4PawRS7HNASp6ao7YzAyIqSiaREVLVTW+MARRjCnJEa2\nzm52uGlCWnJ63kmdnmvWX0NluFmGuNzozyfeInpIkWCSNChben91JzBOOkxTK0xqBkOZrbZZUfZW\nsVLF0AJkoxWPHQBK8wlaFfv6cCxMGlfGRZOD2WUNGsoI2hKA3oWnQ/rMNS6JlIYdozShLMgpuTHR\nxZwnBh79vZdthpsUBqe8Ac6D51sXllwx9un89uvh1gxVOM+UyoHp/0EpanoG+wAAIABJREFUyqTK\nBZD6sk7Uj0yAQnvsJHQtqGr7tc170gOvaCuM4310qkUkpJ3P488h9NSSqbEAqboN4Bwzbw6oUiG1\nOO7TiO7dOR8nnmnw8Si22RjcfOYyCQBdKtG00GADVAXMICkSDOIJqu5iK4vgmKZk4WCAR+SkKcfD\nhfkYGNi7WciMQCj0JXEBkndwbhnBDc3mY5M4Qz4AtEaZLb9NksYIYHIM4qmlyoZace5CxDt3HpLl\nU8Zlt3BWKTw5VW2l+lO96+8BOlUTXZbnPQBaMF3KuxtGviaKMdVGYWUr9OBraywfWO4GhVYZWFpq\nu2DByVCtgo+pJACKs7FxjfXYbm1qf8/zNDpa1QAyJrO4prKLOfcCoxio7tP5WxeU4QSVIG7Gu4ST\nnaDj9IQEz0RxU1839k1oAAKrR4TPxe9f+ziF7sBSJEiizPenklTeUm3p91PaikqebhncVfoIS4nB\ncK1oSrIh0V+jWdjz2COTY4AnOF54SfHXH1gIIW4A+G0AzwP4CoAPKaW2rIOFED8I4GMg/sWvKaVe\nuOzxQojnAfwhgD/ST/FZpdRPB8/5SQDvVUr98auO89kFH+EjiRLCsYHeNsFyKZKtstkCB2utAcAg\n3qBsG5P5cExTynjGydACDzfv3Ul+V11aN6qNttplQqF9syhuNqdLeaZxjAmETL3SRIWNEcDkBZIV\nvy+jDpvXjmK7k4V+rV2ZkpvxAJYuGy6azIDi0GWiMMyQb769U7UCoo2WfbGy/rQzz6zETbkwWQ/3\nWiIAIpZ0bDdm/pPz7Fa5sIunK3sEeMKkNHA68BY+BiAZ+6N0QimSNarWBiiw0BleFmsWoLSlxrCv\n5vZ8GHTcgefAKkMV7TbJQ8/kKH4+bYQnqgTYd8gFqsamqT1K/hbwcMRk0x6GqQBwMIi678UhBYhR\n4PzrAj9gn6vUGZwGoH7giY2WIBNH+Hp5GqHUNrP0LYqPAviMUuoFIcRH9fc/5/6Blk77ZQA/AOBV\nAJ8TQnxSKfXFKx7/olLqO/teVAjxwzA7+KvjmQUfDm/eoscEi2XpAd8cbJJsMIgnniqyUAqIBqij\nApm8QCY71B15zxwOGhzkDWbp1Mr/83ChllMxi3CcArrx2cgIrSqsgyUPI7rhKifwxc3As2USB6Bq\nHOtk63rZChogdd0kTfNW39ToK7uF4Nfor0f6hnfnlDgCwHFnLtR4SBmGLqtQGerYNMe53OaxvQAN\nPHr3zgtWU0Fm5BfjZncA+efIyIp6ptEAKAs6v09IWaE7txlWnMXWuTVJ0Cdp4ylhu+df21gQRdsK\nnbokBRrY3Ww9Z5oNEE+OKHNdra2ChnnfPcATgg5/PmwRwrYJo8pmP7z5KXsWyHJJr8MbBF0GFMUS\nmByZe4Up7IOYzidtyjRYuZYloarFZSoSrv4bs+KYieYqhbjP4d4H+vVUuTAbTFaa4NK7GfhtSsg4\nMz8H+qWI3uHxQQDfp7/+DQC/hwB8QB5tX1JKvQQA2vH0gyDDuOs83gshxBjAfwQyHv3EdQ7ymQef\nLS/4oGns/tzXseogo42VJOkJblTWmkGWRgKRkHYxB+xO1Js38AfjTHkwC5g6/LewpAI7Ue8cSAhA\nUWx6QQLwFJ+rnhutVbWR4PeO1S3hpHbKXgH25tdkBFHVQOKrNFwWpsnPpUhulNeJXnjLrR26cCnW\nDumCqeVSJkgiogfzZ8e9CO4PqNUJESr4ObMYIg+ygXBwOPy6wfad5WYbTF4BEMsUMko8EHKDtd9U\nW/YO55p5JvfY+F9oEsgZtf6e9APt583SNX3BBoK7gll8RLARGMScbcY+6Jg3ps9Z61zHfV48HM51\nBoCym8BewR5s7Jxr+zMqYacoVeHZcntKE5pAwRuWGqU3MPs2xoEQ4vPO9x9XSn38mo89Ukqx/tZr\nAI56/uYOgFec718F2W1f9fj3CCH+AFT4/U+UUv+X/vl/AeC/wXU9MvAMg49SnXez90mscP1Xqhit\n8A3NWAuLswSizG4/R9lGRtuMZU+MQyY0aEyOiGbL7J/Rvrnx4rbzm6UagCD7LRPodwEQhcE7c4cu\nzLbLrjIzv69Nq+0LnEE9U0d32EqNjMhBtS31ze+Ln5pejS5lccnIC7ePsFprSrttcIjREGqvxmUt\nYHF4Azg89DITO/Ef6z5E7mes/JlUzvzJMLeurVrKxgwf8gLOJA6318bnvEdexwtzDaRbGxijdK0U\neTRdPPKzYzeqmno9GuB7WYNMued/MrXHVtkeGpczw8+lOwOiPafnBd2D6SmdZVJ5oqloNKAFg59K\nCCDOLCU9gxXcDc9fGOszK0S6ayPgvG8xvUWg0y3Mr7gXaIBnc0qD3/kacfY+tI5SxNMIBeXJVl0R\nj5VS373rl0KITwP4pp5f/YL3mkopIcQbFuYOHv8AwLcopU6EEN8F4H8RQnwHaObzfUqp/1D3ha4V\nzyz4tKpB0S7MImRLH/7NzTeQcafUIBQuFq1qaAfbNb07WJKbGSGNBlAXx7TzdRYjMSCfnGsNtPXc\n8H2/E7Fm9IR1dM3kYptg04vQzfDKMVvjXlfV6SFMBiB3QdVU86I5xyibg8RXnPIgA88ZzauwDYXI\nY8ijka9Rpym0HKrWzDlH1VuMhrtl7tMEODqwmVicWhaVDvqaDNtQBeQAt6yYJhCTAfV7JgNfq49B\nl8+5U7KFzA1weIupG8HPXADaclPdnFoLAqdEea1wAEfI/uyFS6Kko6c9bQr9mXgEjuDxHqXfSuwQ\ngcNl/W3r4AHb9xr9TWT6XkIp2kyFQrTrMyOsa+y8XdX31C1JTqDG+1i3vhrDFvDw7NpyDdyoodIH\nSGe3eysB74RQSv2pXb8TQjwUQtxSSj0QQtwC8Kjnz+4BuOt8/836ZwDQ+3ilVAltNauU+odCiBcB\nfBuAfwHAdwshvgLClJtCiN9TSn3fZe/hmQWfugPOqwuMkwa57HMWtSk52QxYczCpHSzd3gjAQ4aW\nTcXBGliRkDRTVK01RRf+bnh0Y9vfpnAYeEyI4H+OEV1v6PkFEad083KZgr3roQGor/9jFK6DMqQc\nIJ7eIrVm3ZPatE/MHM1+3mCaHSJuKsrmqjMqtS2pV9OdF+jOS7TnlREFNQDE5aLAJgEA1HBtadhp\n4tOeOfjxw70t1l9o3LfVlOZsMCxtDXNaADnrGdmeSQg63CcEnOsnSpDmEy/bdV/bLegImdJiyE1z\n7h9pMorSxIDe0IOYiu3bAxaip3OmjxmAmaPhYd1qCcRJZz4bUbZGyobICLXHqAttJjJJDq1ccoMH\nvkuv4d/XfKfzt/HPYZYjbia236lNHAGQCsJqbVU92FpBlxib0RSr+hFa5d/nDDzq4gFlUWzguC4M\ns09kE6TpEEV07R76paHU9tjFWxSfBPDjAF7Q//9Oz998DsD7hRDvAYHOjwL4scseL4Q4BPBEW+28\nF8D7AbyklPo8gF/Rf/M8gP/1KuABnmHwKdsIL11kOMhLHA1r5HLs7Tzpf1uqua4sBu+oJglQti3G\nSeTMkSTWlIbLVoAZsNu0F7RYcSmo7L/olRD9dXTAW1yqboO2vSAvntE+AZAenMRyrSV4rMq2W35z\nG65SWZ02gOjnUlsyFM25I1mTAthAilNMxzf13Aq/39YIfqqiQVNHSDMt8KhndVDVRhFhi0zACsOp\nVi8eD7f7Gvx/3y4/BJ5NwDztaXqLhBTCt8ptumnPqgV95BT3GuLGtgdC7ufPr+9+xiFb642EW2Zz\nwbilfpNanxGx4mxB/Z6yAxBZsVwNQKpst2aJPEadfp9pNECmNeN29UEBK0MUWnhwlh3ea7kc0xzU\n5pRAonYIKgAQS7ouqhpIayAnLbcyjbGqj3FSEJgxSSiXE5PxgB1we8kwRFb5OowXAHxCCPFhAC8D\n+BAAaK3OX1NK/ZBSqhFCfATAp0BU619XSn3hsscD+JMA/nMhRA1KdX/6zWh8PrPg0yoYOZlNUyON\n2ktvmF0R2iADpNvWygYH+QZV12jZ+gSr5hQyuYlsMIdy7A2qboOifoRNs0AqB6giZ7EK3DIB+Lvo\nne/P3titShDz8EJTURZyek71eyYE6J0xS8BwuBTy8Pm5Sc7zM1VHOnBeRpgmxm0yGuakdDDLEGtt\nPHnkmOyVDdBTUhLuoCmHISDUvjBpU+lMrqfE5AJPsfQXZPP10j4/v6b7NQObo2rBoLNpan3OxNZM\nGH0ewbR9U9njdDYNJM2pNeY4tKySAlG+JRMrwrkePk6XCBLQkQFAnT8wEkikmrBbbdn1EjLnZqT/\n1xmj1MxPHtal96zVG5xzbLLEbrM1ExSGFLFhhqonL9txBD2XpMpme6ZpMoeY30UZdbioqdo0SUja\nKpVDu4kqFnQdMLnEyboFS/7kY08e6+sllFInAL6/5+f3AfyQ8/3vAvjd1/H4vw3gb1/x2l8BcOWM\nD/AMg0+niIXGjDTW2uLy2hsBIiAQ7QRwkPtWBKvmFHJ0iBgxLV5ac4ylXw7yDSbJBrUsLQg5czie\n8diuOr6jNeaFLiuxQZvxqc/t48xALXRpou2ApiD5mJAZqGqdFdZII4FJ0lpShVKU5DkLokgTYD6D\n3NOab0E0L19otYJ8m4hwmTICv06YTTjngkOVC2NRjTTRbqfO3+R62JiBrq599pieYypVgaIle4JN\nU+Oiknhc0GdxZ1RpOjeIsOIY2F12w3G2msYDEsIESBUbsBldmgCjtfGY6R0k5cWTNzhxRhsWfp0V\n+epwmYmzz9cTxoWUFRyUJRm4mw8zPwd4EjZFu+w3v3MyRnckAeszX2cvTUzWYzQWZ3vW7K62ma2M\nYgwimjlKowG5Eq9ObEmbn497iamm0csUrdYDfBrRqXeletx4ZsGnVcB5FWGcdJoaans5VwEPZwbh\nPAy7WXIW1IkW42S4xR5bNaeIhETdlVjWazwuYhxvMjwuJE4KidujGpPEghBiWAAqdQNa9ynImx47\ngcjzD+kaZ36lRJQuSDhSP750gMfcpIuH+nUXVLrTC4jPFCRWYCZrr+TiiWUCtHiPQIA3n0Hde2gW\nE9ZnE3nsaMHp9xPOrQD9mQkHlxGDspYqF7SIae05jEmJAfs39XM5TWvdCxFJYi0eNMGCHVw3zUIL\nlcY43sR4dSWRS8qo74xqHOQdEVBEg60rynHb5KzHdzmNiQCCJWVBzCCMUysuy+8/DBd4tHHgUE6o\n9Fgs6Rw8fOx7JjmSHEacNQhVNMDMucaq2vSvRFshlQMjLsrRqhqx3M54lvUaF5U0JWk3QuBRi4e7\nNd64Dzjbgzh8HwFPszXMb2aOjJsqs+Xc4OthTOeuQYO6K98FjLconlnwUQooWuAy/3k3vNKT/nMu\nSfFwGmBZSzy0CWxnIBst+0F9kgwnRYzXNsBra4G9LMJ5leEgb3FnVGOars1rZyK3Q6mrtd3hxilQ\naSBqU4imQjy6YXTE0mgAtbgPnDyCOn5i3EGjWUYZwIwyhqpbkkSQnEIsT2yWAAADTZAY7UNqQ7ow\nmOXkRZiJxCkwjIGZ1it75YEBw2oJxCXr50moQnskcdbD5AP9VEbd2xPM9F+Ly5VkLLcmC+eVVkpe\n6nOoZ4mY/KH0+wVAYA3Y3XA+3rJmcD8/AHh+Qq6uVVfjICd2ZG/ZjYN7R7qEBzCgDwiA4kqrZ2ui\nQjoEcs3C6iu/snGgBp6ipc81Q2TVG/Q5uKzcdu3gHpbMe0g4jZG62HgCr6kpe0+Sxrieuj5QKBbb\nTE3vfWrgOTw0Gc/jgkptaSRMFs4qC3FZUMZzfnypJQmrJ7izS08jFPDUnusbIZ5Z8GkUcFYBe6nE\nou5w0NVoRd+QX+x9Td8PnHmdwr854hQiG3s9ICkSVC0t1u6garhwvXougVmLXCrMUoFFLXGQd3Yw\nlW2Itdgly+czacAYnTUV0JaQAIbZBOrsK8Dxfagvv2pk8wHdY1mtITYrqPMHGO8/DwAQyxPzXtyG\nPg/pUXPdOqG6swtVdYE2adDKMQbjfcvmctl6ANXwtW2AeuUBolmGdLyCyFMy58s08ISacIB9730l\nJ5bmH93QZIALtEpbVzQV1L5eC0/PaeGaWwOyRkb0ucICHMa6kT2j521khKJe4nER4SuLFA83EV7b\nCHDVKo9pU/NwE4GtRydJg72MvJxyOSG1Cn1OXEvzTbPQ9hbQHjgJIADJszAMQk0FxZgeqiw0lQGe\npVPSlYMYMp6TX1FyRiWmlNSyo7MFolmO6OEKcdH06uOJXPb+3ISzyehUS+KcwpaxW1V75WUOMisk\nLcFBuAcMiRLa1VfAodrfIOVyABiqDPNsjk61/vBwsYA6vwfFoLPLJgO2nKjSIbLsOeRyjIN8O5N6\nN958PLPg07YCZ6VAMSAwWNTAXlRfOVRmjNLKY19pwDwx1eplPoHUYMayLm7jkifBzyrgrBI41U/j\nbkQz2SGVVC7wNMc0ddktEzgHqF9AO11Wa+DBPagvv9o/H8LMt8Ha6GJxeGUzzfBq0GDTXuDRxu3Z\nhLu5NZb1GoP4FKPBnNwyvXPkTKZrQoJcF+b45NGI5moYeMKFYl1QyShNIFJHZ20yB/afx7q9QN0c\nk1yNBv26K5EPxhiMv5VmqvZPTYbQyEgzA2mxHORToqfz8zYV0bdHN7Bpn+Ck2ODeKsPLy8hkOxx7\nKT2KASiJYu2N1CKTC0ySBQbxBMkgB6BQVPexrNdmQ5LJBnsZMQx9+ZcegzpgO7Mcafq7AzyLWmKS\nLBAJiQnbRXDPpqqBowPIqka0WgOPnni2Da7skUuHF6F6QhCUNTSoaSwEVbvB4yLCorbAwxbcfdpp\nraoJdLMJbabilHqTgxGwWVHpFgBmh95w7yS7QV/rexTVGkqb5ZnMOSy3BRqDlOEPgWyCwWiKIn46\nVOt3w49nGnxOK8p+ZmmEso1MfR7Y7vuYHRTXi/ua2wAtqpIavGmsBzaFvdh5kbmoJJa1RNECRQOU\njcBykeBgzE6nZGnATVKsHaVlNmhrWqvJxTMODB5cI1+uoe49pLq+pjm7FsxmAdqsoNKT7Sl8Le0v\nZEa79OYEr63P8EdnOfbzVg/P+rRvbh+UbYOz8hg3BwWmyU1LDw9pzeMhcPOGvRgDnTIFZ7JfS/Oo\noiU7ce5ZDUbA4bficfly4KckUbYRJkmJabrGOFkaEKIeyxJd05oSC3/uaTBQK0b7WHcLrOozPC4S\nvLqSW8ATJgZFCzwuqAR3UUVm3muSrDBNaejxopJY1Km5NqZpC6DBXrYxhn8cIQB5159Dr3fp74ua\n/ItIYWOJNBoiG+1bszwnBAAcHSN65QHUw1O6PvLYqlGwara5NrYHrcmOYFtslN7nNmmErx1XwoYZ\nmgAQO8oQpu+VDs0A8xaTj/USq7U1NHRdU8Po0RgUTQuMhlDDPcSjG71zgG8kaM7n3f4RxzMLPk0T\n4fQsxWtphb2UTN+qTkFGdDFGzkIUtx1QnFiKLu+ieuXqK1KlBiBGVrJGisTYVbPaddHarKepI1Sl\nxKYFckkK2JMEprznKi3z4ivyxpSIzK3LU/A8Ee9kFP0norWDidXa7vZdCjJSveu/wGl5ipcucvzR\neYS9TYSjQdcLQlUnzMK3qNe4O34Z8/Q2DfaVAdNNZz+K/XxccUyQj46qtK/OYmNkYEQu6X2PhhCH\n78OT6j6+dC5Qtqkx7eObfZxQmXOaVjjIH2EQn3olQx7+Myw1wCg6oKlMue3+WuKliwT/35nApgXm\n+jTtZQq5pM/OzV7PKqBoIzB5L5dAJklsFvAZl+5xZLIG4u1BZgNADggx6FTtGp1qHeAhAsu5Ab4K\nabSg8pu7aLs07xvPAbOXIeYv06aFFbRdDbmA/MHlWDiEFQYdqirEvYsuZzyZpCvYt5mgKoSKSYQV\nAJUcme/Am6RQRdy1BNeKGt05HZfrgmuOn0kXemMG6Jbuag2xPjPZz7vx9OOZBZ8sa/GB2xX+uZnC\nt+8VuD3KkMsbhlXmKfE2y94F0/ufw1u0LTMul2OS7Y+WAGpkUiKTCrM0wvPjCK9tGpzNVvjOfYX3\nTEs8P0mRy73tA+/bvXHsqGPzTERIXxa5BGJpF/tQFcCZQVl3CzwuHuGliwx1J1C0XmdE1+07495K\nmZ11DE2jGsB9TJObyNxyniMoKY4Ott9fkgBYa1Oxcysq6oiIisP3YYEl7q9KvHThDwVaIJCoO1ve\nmSSNXvQo+GsZJYYmz5JCMqaML4kyvG8aI41WyGWOQm8UxklrshoAuL9KcOaUUfkfAA1Qu3e/mbSZ\ncRo1qEW5NTPEWTiDhj+wuQ2oTKx5XCSm/DbO98175OwPoBm14Wgf6nBNwH7vIVSx9GatvHkifc2w\nnw+XOinzlOZaCBU/KCKkUYuyFUijHpFfnf3ImK/DzGbPGax6gjvMHKd0XCvQtZ1LiIKO3etZxXK3\nWsRbFB185ZNnPZ5Z8BmlCt990OCPzQvMszkm8oZWFCj0AuzMRTDwMNV1PPQzH8cnRQzmRrGAGWHu\njm4Uz5FGBSbJAgd5g4uKbtA7I1qsv32vwM3BBEnkLKIy9Zr/vBB45mEcLgUZMDcYU3MFV9W0FbWY\nz2jWhRv1zi640ZTqVtUGeAByYn1+HGGWUtYzSVpdu6fGMVNoM6mQRArTlBb9s7KBFKdIx7ctDTqc\n7Hc9i/h3s5SymzSBWq0huQ+0NwH2b0LlE9TV/V4mEWcjmeyMc+lB3ljFCSeYaeVGOG0fCYnnJlMc\n5GdY1LSQuswqAJgkBb6ySB2r7u1jcTMfN8ZJt7MPYvTSdCYsGhoMZk0+XqwHcQ3AKkzv6VNNABRB\nRktzrC41mh1A1dlXTG/R2Ffk0hMVpRmpwy1WHTuAci5OmxLlLbqupXzZCmRSYVF3SKMO03RtSnC1\nLCFFbE3+4N9LaTygCkOj7SFYTXz/JsRsDzg/g5ivIU5dxqIFT1VTWVqkJBukckkVhcmAej752Aya\nvhtPP55d8IkV/sRhi2lyB1nVQB3/oRbbHMH1PAHgL5DpkL4PG64sNKkn39FzwZobJwKiRGKgWowT\nWtzbrkLVKRzkNy89bpEk1GgHds++uBEOZ/INGIJONjbqBm23MAZ6zGhj4OG4M2owTVuT8fAiDADT\nlHeztMC6C+myXiOJTjDIdClDy5fwIp+NbhhpezMHw2A0n1GjWc/eiPkMYjBHqU3/+ko7LvAc5HTM\n42RozOM4wpJP39duzLPbOMjtXJgrd5RMnmCanuKlC6LRu1lPmCWFizKdR/tcraqROIKePGRMJdI1\nXXeAMagD9GxXDG0b7p+TRS2RlTWkWHrkGgYesTwhkspS6/EVrS5LxbRx4Wtutgcxu2XIDazy0HbN\n1vgCmfcBFwEY1x2XRsnzlkBImhJuJjdb4M7HzOXINB5A5IAoYAGIfgHsp8CsomvGvU94E1fXQKJL\ndLE0IMQ9R1LKoEHTd+PpxzMLPnkscJA9B5zfh7p4RCq5Zwur4zUeQs32tqmsgF9ai6wPvdox/8LB\nNw6X9txSift9XxjmGUuqAB6wKNfmmKNHeNPQi4d71KzVoFN1C9RdYTIdW6+XuKh8YgU1zVsPdGTk\n7EjRgJaC/mFFllVxtbx44UrlAKPhHFk3JiWHtgSQ+o3mowRitabh0HyMqlvq47WLNIMOgC3gyeXY\n82EywMH6b3JigViXtFhpwpBOKk2/Zatr5/1N5neRDu5gED/CK8sSX77IDAAyw4sBhqRfOBOIdrpm\nmuFdfn1nOj80qDPHkSxQtq3JMDgeFwkyucY4GZrMYiCndgDTmwPS/ZCssSXaOdGbGxlh1Zx6n5+b\n9ZjrIaJrgUqKOqvphJcZ5hJY6sufM0MGaTpfHTK5wURfZjKKzfWzBUD2lemaGfaUrwG6lpIEgntE\ny7WtJGhhUR40fRqh1LtlNzeeWfCRKgIefBG4d99jg0Wz2jbwTV+nB4A0/dbNdqqG5mNCYUUrUKp3\nyJrSzAZtscz1MOT2EKJQyk55Hx8Te8dRe3ZDAdsAxM8zn3mgo/IJym5jmsStU2ILtaw4w6H/eRe6\n21ysxW6CA918NdruDICdeyISRoJJUuJo+AijeI7h6AYEZ0EcnGnmY7MzlV2CQZyYjAuAt3BxmS2X\nU7PIYnXRc3T2NWL+XPRGQTQlsHZIJ8ahdPt8q3KBNL+NNBpgkiywnzfOMXUauJVzrPS4MItM5cCI\nvGYiJ18ftlxnBte4pgHgOCVr9GyCLBuDDY8O8gWABlUntp7fDF+2HdTFMTHgWMYGsNRjV9lgTIu5\nGu9jVVulfla54I1HJttgoY1wkDe6FBjhoqKyLWdI/qxrhLK1YATYjJGvxYO80bNQ/vDulsqH28cM\nbEVUxJ5UCURFFQXA3kOqLb1s6914uvE1OatCiP8awL8BoALwIoCfVEqd6d/9PIAPA2gB/EWl1Kf0\nz78LwF8HXWm/C+A/0EZHGYDfBPBdAE4A/IgWt7s8yjXUH/wTw54CYJrygoUTgW06taZwkoFXqoUe\nU0hpTyXvll0QMmDUVgQk2jiOJVtCKRj+X5ULmsh+cg51/MQw3VTRWOZO05osiAHIgBCTCQLgCTO0\nNBpiIKdbNFn3fXgeLQDW3WJLHLJqN94gbdXZ2r8bUpfUBhGQRg0mSYtF3WIviwl4oomlzbLdQXh+\n8jGweoLBeB+tqnF7eGZei4EylQMk0cQDHU9YlBWqnTCaZXFqPxf21WHgYW24HvARMkOjs1i3xBYy\nAl3CA33fmizSdVmN2w5qZaX/sXS03aoaSFmhnIzQRFNR+VJqN9FoabJKV0HAgI62+HDVnVkMVg4f\nk/jrMIe4ewu49Twwu41Ne4FISHSq9dXftd8VfQ6W/JBJQheyoG8xSSIv43P7QGEfzD1fBDwdRske\nfaauBUWf8VyYtLj9xM3Knktn8FSlNWXWOc2+jbJ57/G83lDY7vE9y/G1gvS/C+Dntaz3Xwbw8wB+\nTgjxAZCvxHcAuA3g00KIb1NKtSC/iD8P4O+DwOcHAfwdEFCdKqUyb8BAAAAgAElEQVS+VQjxowD+\nMoAfueoA1LpE+8qZyXg4urMScrJDBsWdHahqasDGKZBNIOOJmebmsPL6miDQlKQmfPLIqhMMRmaI\nzrPCrtaWNnpKQpzdeYnuvDDHSxI5OVGuGYQAf0EMgAdZfwOVdbTcC8LK+vskAJ59GUxvIp0e4qI+\ntqcoAJ7jDT3j4aAB1fU7LcPjZIaSvt6XxAocRhM9JKhnqoBeC2lgSbT2fIyBnKJTLW4PSSUgjUbe\nImtAZ3FKQM5lyhszGk51fGkMJLQlNfWBbeAxxI7aP9/52AOzNBKmlNbXHzPnwOlpkKKFznbYSG19\nRtJAPLeypoxVrQvqUbCnTbqGmhEDLBvtQ0rdW5PwS4erewQ6DDju1D8PcKYJAY6+VsXN96IZTVE5\nxmyhvmECmH4hA5GbSaeR3XgAbE/fOOATeQw5Xqy51MvAM473KRstnvhUa6B/o1L72Zw3juDO+vDf\nVDVtOKIYcXwLX08hhLgB4LcBPA/gKwA+pJTakmkQQvwggI+B8uRfU0q9oH/+ZwH8pwD+GIDv0X49\n/JhdycG/BeAvgW6f+wD+HaXU48uO82sCPkqp/9359rMA/k399QcB/JZ2zPuyEOJLAL5HO+RNlVKf\nBQAhxG8C+NMg8Pkg6EQBwN8C8FeFEEKpXYY3+hiKBs1Xt0sv7CtjVHs5usYCD3vOaKVmFcWU/UTJ\nVt+GywJCKQKe4/ukJlzVwGoIMVpbENIDnR7oaNtpBh1VNI7VsRXhFHmLiIf9R3bx6OvvuJ4zrFyt\nzl/2xRZ5QDUUdHS+FkfnkHcqzPefx2l1H4AdouUZE5KZocXjQJefWMOrb4bFAM/qxGix7dThGtvz\nRcOAE7NwpxE5lZqdvS5VuUAezTLg9Bxifm5BCIBbNVSh0ZwGHnN9GF+kxPQAw0zKJV64DXT3fbus\nroGc0rGvHtA5cI9dD9lyti7yGNGMmJeKVS+qGphXUE2FeLRP0kJcvt3cg+Ln27H4bqlmHB5CTI5Q\nDodonY3LLv+rVvnGi65sVchea1WNgbJDvgC0xYnyQGiatlqElEqnwtV9czPjcMjazWjca5nNCsPQ\nluRqtTabS89F9esjPgrgM0qpF4QQH9Xf/5z7B0IICeCXAfwAgFcBfE4I8Uml1BcB/BMAPwzgvwse\n05scgC6ZjwH4gFLqsRDivwLwEdh1uTfeCcXMPwdCaQC4AwIjjlf1z2r9dfhzfswrAKAzqXMA+wAu\nRd2uAhZf7RCnClGsjJJvNMuo/MZ/yIsE19mXazthP1wDI5KmYeOpMPsxqtKrJ55CAU9SqyoAuc2K\nduZ6SI5FQFXRGtmTruzI8Ku0O7wIWhLsMLG7el2f94kF1m0zjQYktrh46GUEWOpms36fuyJqWnOD\nTqeHOK3uG826ZR0Z3bNcKpwUsaY5Qzf8WTYmuARbx8HT3ZX3RaCqLGXslWIMgPE51Ys3u3Z25wXk\nkWNKBhAAhf4tgb02L2IKjrgpsAU6LriGwOMCDp0HW9oU2j7bZL8OULhDtu7nbrJfwB5XnELp0qHJ\nnrhsx71DPo+wUjoYri1DbHYIMbuFtSiBHVYjro6hUEpvwmJUDneCASf0vvJ6jTpjIhX3xlgZkEIF\nk0Umugx5sg06AeCout4G1/C9wvGLMp+3c833mAy+0ejePoWDDwL4Pv31bwD4PQTgA+B7AHxJKfUS\nAAghfks/7otKqT/UP+t73q3kAMDnQbfQSAhxAmAK4EtXHeRbBj5CiE8D+KaeX/2CUoptWX8BtM/8\nH96q4wiO6acA/BQAfPMo94AnyiK9i8wg5mMqYQxG9gJ3bIzdaWgA3kApM8Y4WlUDDTAd3yQ1giO6\nSQSbVmkfEpaxAVZ2SA7+YFyETGtONkgzWBFOLfrICtBuOck1rHMzHgM87GvCWY4Gnp0Lft95lZmm\naDfazZQYZuOkw/t01efOqMLNAblIslNr00NMUKznBZCydJ9aNX8/GBlwJTvvC1IajxLq1cQpndOk\novOsPz+2ahB5TBpy46HJPj1b6LDfl+p+SJVYcoczKY/qDBhVQDZBPLpBC20UI5P++wwznTBzaGSE\nOB9bgdM5PCULXr5EHnvDttz3c4eGWX3AaKSNnHNqxFiJ7s5SS0zDF5MjKiPKFKl+1RB8Nlq4VYrG\nZj6dDyZb9huXBF9HZFVB74dIGo6wb1O8PuBxpHOuFa5zraN2/nUUR0qpB/rr1wAc9fyN2bTreBXA\n917xvL3JgVLq94UQPwPgH4NWrn8G4GevOsi3DHyUUn/qst8LIX4CwL8O4PudEtk9AHedP/tm/bN7\n+uvw5+5jXhVCxABmIOJB3zF9HMDHAeBP3JyqfE9pzSqJaC8jQcujOU3azzQ909318oXtAk+a0IKV\njVE0xzivtkt5bUQZR5oNML37nRDTm7ah7bBzVFv6C26agKb5YwKhGWVmtuxGxmvRLLOLj7OQisHc\nyOK4YZvYtpcQ3qjXCqalxjRl32e6dZA3OBpGGMWHppyESrP98jGaYNq/6jaQWU5MQKaXs45exMO1\nE6MIHeqzmfcYD4hcAZhSmDAOn+fU14slLbQ3ZhbIeKFh4JEpZWPn+l5OtBpDHyhWNVCdQ+VjiDhF\nmg1QRwUyeaHPu/Ca/iGTys0GGhkBoylZY6yeQA33SO5ltd4enOyLwPiOzuktOp98LszJCoalOVvm\naCvELOfT+B18LjW7KgvhBsyN7bK0BSr2t+LBa3N4kYKM7DlDo6/nPh3DS0CnL4vfMi28ecOQLczG\n5ilZaSuErL5L40AI8Xnn+4/r9QvA5Zt77zWJlHVpC+LNhhAiAfAzAP55AC8B+G9Bffz/8rLHfa3Y\nbj8I4D8G8C8rpdbOrz4J4G8KIX4JVFN8P4B/oJRqhRAXQoh/EUQ4+PdAb5Af8+MAfh/UO/p7V/V7\nAABSGMMykcWQd/eAvQkBz2Dk/61zQbP5lomU5gFKVeC8usDjYvuUUqO5QSbJB2Y02sNAHtKN5Byq\nKJfUn9BT2ErLg3jnzpG2F7mknbtrpTwamhsHoxtYd74skBSJ7vHofoLOdtRqbdSiw9e71PNFL1h1\ndx4MFircGVWYZ3PbHF6e+M3htkQ8vWUyoKrboO4KsiGPErIecMFHqy+wsnZd3e+lhpvzrgEIxdK6\ngbId9WrtEw7YA0eb5QG8C18AAhjeeA7q4oERtATW/otxKQvapygdIs7GdhjSlNscvxr4mYDouWwb\nNGiHQ2KvjfahhifATJfFeLEF/M+Nsx5tfLeq7ltaNQOym9UxOLPCxdZBVAh7KqotIWSGdLyPTWtf\ne9WcXprd9PVEXeDpu38y2UGKzDAtPVZb0Iczmbs+Jy6hqM+t1bu/GHj2b5rrYS1KrHQ/822Ox0qp\n7971y8s290KIh0KIW0qpB0KIWwAe9fzZro3+ZbHrMd+pj+lF/fqfAPWZLo2vVc/nr4LUmf6urit+\nVin100qpL+gD/yKoHPezmukGAH8Blmr9d/Q/APjvAfwNXX98AmqIXRkiiSCPRgQ+R3O66A4P+/84\nKLkBzi4qodS8aM9xb5XipLCikSGVln+WyQUO8lMz8Gga/9kYKBeU/aQahMJ6NOCXWRz1ZwBen6dU\nhXF1HMXUTM9EbhvZTDXd5RJ5nWB9sboxC8dB3uD2KMM0uaVLe/f9xj2XSQYVIDPI8b4BHioPkg15\nK2qk2QBSW3i3qkHRHBvhTBv264M8oJDzAGKcWpmkOYxSgsl2dBbG/j9cLmJLhjapMZ7dJgUAfnLu\nw+gBRXWqaefjc4jRIyCbIE2HGGhJfpc+vTXgCjhDrtbana2602iAPJ0gy54jQsZwD1ifQXA/y3vT\nCZVxRzewbE6wrNdIo431E5reoh4kf35eP3BpaemApfvrr01oF12Rj032wxYOmaxNludGp9oes7k6\ncPSNMU2tvBDRsp2SG+u5NZWXsRvyhJPthCruwHZ/x3x/8wZtPCdziMEcaryPRXOC0+IU91Y9gPzO\nDt6Qv6D//52ev/kcgPcLId4DApAfBfBj13jereQAVNb7gBDiUCl1DCIx/OFVB/m1Yrt96yW/+0UA\nv9jz888D+OM9Py8A/NnXfRAygry7B3F4w/ZHtCnVFosmyERYqJBrwo2M8GixwP3VEK9trIZXmNG7\nApN7aYb9vMFBfoKjYYRcjilDYLl7zVpSmlJr1AxCPxXXYloDoRjto4w6rJpTnJkb79QAED1fSiUk\nd8Buh9Ciuzv0siANeOwWymA7TVsrX9NcPszphu2BMGuq1k1rsl5mwcrHRYKTgo7JVQ0AgEUNTNAD\nQADZUQO006/WNpsyAp3FpSoTW8GAz/05FnDl8pV+D23XGHYb2wUw+BinVaWMUnWrCgM6bL52kC+w\nl22QyzEG2RQxNBMv1SVWDUIASAePNx/1Ge6tUk1TJlFRKWO68TXwlKowLqr8/s3wKZM2+jIiJ4p2\nqX2OUkcBgxQJUjlAqxrvc+WouxJVuyGwilxFg3BWK9dEkid0X4bU+8D3qW/TtjM449FrQJPlWNWP\n8GizQNlKc6292ejU6yq7vZl4AcAnhBAfBvAygA8BgBDiNohS/UOanPURAJ8CUa1/XSn1Bf13fwZU\nWToE8L8JIf5AKfWvXpIc3BdC/GcA/k8hRK1f8yeuOsh3AtvtaxJCCqvhxP2RbAy0FQQm1rKYZV0m\nc4ijJcRK19urGuIDH0B78Bzur1/GvVWG1zbbCsZuuBde+Dt3eFPMbgHZBGpyak2zAL82D9iF06H3\nusBzf1ViUSeYJC3ajsgQTaRtAmRG1O4pyK+ma4DFKdSLXzUzJLyYeueNG9zQhltxSgwnEeMg36Bs\nIyPaaUokgNe0dX/WZLmh7zIDzo0+MCCpGlfJwJ2jsfIulL0Q1R3Sqmd78yBRDMgKiCsjTcODtZGq\njcL1ON631uKcuenPRBwdACMqXZInzoFZxIr6WGdpHabpBdJIoJYlqsiW7QwjEjDZFlt0l22m1RBs\ndidFArVyKiTpkP7xdTG9qRfQY60uLRyb6oRsLTanJA2lB1KljCEFkVIM8Jw/sM6546GlovO1oMt6\nVXOCqt2YYdGyDf2LShzk3RYI/f/svWuMZVmWHvTts/fZ59xn3HhkRWVmlava3TO2GTCSPW7zA+GR\nBmzTArVBeDyyZMAesBCMQDLSPBghWQJLbbCwgbEwLWPZxsB4DIw8lns02G1bCMHADBYDnu42dLer\nuiszKzMiMiLu87w3P9Zee+/zuBFZVVn9cOSSUvHIG/eee+45+9trrW99X/fzPUkbAJWlVMe21Ka8\nk28dDJKGLDardWh4EzZO6f4c88Bwn3DgNlG8kZvYc5hMsauf47pYIq/pJj1Ov7Xq1x81jDEXAH5w\n4PePAXwm+PkLoJnJ7uN+DsDP7XnufcnBnwHwZz7Icd5Z8EEU+f6IHvvGrFRQcgpnWSx9qcHoMTAu\nII6t+Oe9T+F89zVbblMWeHyjlI3igCGjMYOezlMdlDXSKUQ6pdfsRGh14L5aJeptvcSmvMTTbeNU\njRNJXkXaUK9kqo6pFIXAJEtq4JAEU83Xv0GzTNizg+SSH5MtQFkLq1rraEI7+/D9dI/fZozdxrSO\nxiia7eDfAbAL8bBqwD5dtNqUUN1LPTADNHUOUWkIqX15BwDLtkgRe+AJBzP5XACUqfJGYf6ak5+5\nyHaOAUiOopwReFt1AJ3B3MQbDdbAQlM2WTcVpLKq1pyNhOw8q2Em5vexq5+3AIH7JjoaUcltdUmf\ndUNjBSqdQqo5nasQeJ6eU0mLe2SpvWYi5cgsZZOjaEgUNJzgLxuBdUmCokVT4STdYqSYVGH1DDv9\nutNx1AIdZgO6rGcf9VnH5PtUtj8XJ5Wz2RJJxAKRu655A8oVA5Mhq9dYFn53OItfDvh8CzOf74q4\n0+ATXnSVjJBV135IUY3ItEsFttK8WNuF/jx/F4+3EssisqZhAlnVvsB29vtR56JbdKoYRD7oH6aY\n33elGQ5+mJ+RyFHXa6dC7YGnbVI2UqW1Z9515ICosV6aDAdv/OO0wLz7DszZ834jG/DAE2RlRN+m\npjotGgpOWLSi3g79rWepwTTB3yvakQtBMi2mciAUZgYAgUxXtucm4KlNDDWkz8UAVMFlP0p2Ppi6\nICNBBh7edbO8TlctOZ1CzO9jWy9tbyrGhS3TJrJxGQE5lqKVLaxLaa8juI1MVgGvjw0eTCLQUDmI\nGr/bANi01RmUdo6rISC4w4sSn/U8v7afIc0rsS6cUroNPFbSScxG9P4eavc6JLqZoah3Lc+erl5b\nVnvTvJO0xCyu2kO2nbmnLv2cyrc5ZT1cchvqUbLau/3efZ2MScH6uVewdgO1dgMqRocklFpe2FL1\nK8fRjzvuLvjIyGU9Jp2hqJe0KIvYlWt0NHJGVrzQF80WTeUX+WWhWnbYWU2Ak1d0G1QlXcS5HWJN\nlMFooOQWLtbMuCqaHcrq2u0SuwOZXTXhcPfMCwDrYYXkh6LZupu7bDLsqpXrpfyGxRPMT96CjBSE\nJjdLFyGrLiz92fcQCmG6naq1HDdNRWUedezOp45G9Li6oNkNoGUP0AUhLUeQUQkdVeCFuEvq2Kce\n4BrVPLhZlrSYVgWgbPaTwe/sObq77O6UPOBAhxlSucksecI4x1oKL5i5ttfFtd24XBUCV3n72gnj\nIpN4OCmo5FavPR2/KgCt3CBxbjKUdWazHoGTlIwLj9MRRnLuzwMfvx3UpXEB+F5n6WdlTGb9bsoS\nwgrqcnkqlGpKpGmJgQKwbr1koEfW8BFmcRMQbdrMuJ4IL+CVvAO1h17m6S6AoAca2KOgKqi83tHG\n4w0ojQtUe605XkZ8QKr1P/Rxd8FHKYjDN2Es04oHL+kCrFBbY6xwkQ5dGlelxNkuxnkm8f4OeH8r\nBhcOFTcOcFJJ5bdUGrw+8gtnUe9QyJ0rexT1svd6YYReMAQ20v7cv2lmcd3ysAHa9N44SgEFyGgH\noERsS2YimcHcu0f1fsADDt/YwRxEbpWxmWSgoxEtGLtLL8Jq2XtmewWkU4xHhwDKtmK1DVElEKro\ngRAxozLUosLCaYbt10hrabtla9+v4eASjV2cyJqAmvD+CTVMKoCppYsz+4vdV+2iH0bdWLfQeIyH\nE1qcLzoU4ryOei6n7vNVbUBNFfDuOrLv5zFO5r8OkufE7BDxtl6irM5Qmwrrctsq6b45FZjHxOSs\nZAQ5XgBHliURzDcZyypUOHUDrQZApK3VyOkJPXZ+H7nJWhmpz+SEY3tO7WX2xoS0/U7SCgd6jok6\nhMqZSBO1LMHpBBYAcldia5U7Q1o1MDyvxEZwbHeiNAysagZfv2Xc03BL1H1M1CFO0rMOm/JVfBxx\nd8FHxg54OFI5Q1avXKZRNjlKK4vLas3LQuI8U7jIFK4K4P2dwJPt8G51CHSYBccS8QDV/UN1aKYc\n76oS55lq1Z+BLvh4f5TQNZQe19hGrweeoYijFJGQWCRr3/Rng7zDg/bQK9/YeuwWIQ4dkT+MYGmb\ni2dexy4og4g4hpk+8wy9kEmlNEnd19qDUDJ1ki0sX1SbEk1Uu88v7B20gMdmYK2yWZcpZbMfV34L\nTpURAsvAOiBSElAJdHTYkokZCikUjtMRcguw6zK6cVfdJaF0472NRCI1vu/oMQ6PSF2K553amxR/\nLS4ShUP9oPU8Yn6fmHKwRJDJEc1OVRdoTI1Jcgil3iTNQoA+8+mYpHaO3urpA7KVwlzXPTdZFlM9\nTkdI5RHG0Qzm+bsw11aMlmesZNKyPmjNg2VrolUPjQXEnWHf8PoMn/OmKEuijm8uMDp4gDouIaM1\nnm6HS7mv4uXEnQUfE8lBdec4SlvOhWystiykNVaLWtnOVd4ur6mgvHaogUVCQBHSr8nojIFHWNfP\nnS8zOUoxzQ117ZiHIqv98/Jzn6TVrcDDIUVsSyHKlzvYMhzwIMHDmOwH1AlHz70m7yHz9JLKNuHK\n2mn2OikTHQPYuDKWB6ECouOxw2VJlvWvReUy1RbwhLYMYTAghkDE5Tf7IwMPUW79Z0DeOEs8mCSY\nqMO+Pp0Nnmk5HZdIZGGvH9nLgujUUK7Bn2M3ODt6tCGU/L6jxy0ZmryOnQAnN8gXicI8fs2RLXiY\nt0JFjEelYVTiLLD5ujtOK0zUIZKjt0gRYXRFn7sDHg8+3eDXTqSxjDWNOEo8W3D1ZfLQOrNzRotz\niMkYxgrguhJZuFEIs51QvQBw4r7u+vmgwON036j0KNYXmE6P7edGc0svqwxHhINXlgocdxd8bF+n\nK3RYNFQ+4pmHq7zCqlRu0WDQeX8rUJURityvFDqpHeikClhoWsQX2jtr9h0affYjrWU102z59a6K\nF7tgKbNSeDApMYtra6A2vf0PbQzu4meHXgrIyvWwcV63Zu8GWLdXlPFcrdBc5URxve4/tUg2iBZr\nYDZqOchSrJ02W5gJsceOkhpSzlvClKyO4EttHT+gbv9mSCLHPqZChU15iWe7Fb6+JPYZgFap7K1p\ng7dn77dAiM7HriUwK0UMkpPzALguI2R11AEag0XS/qxT2d68ZLUHIEC7bIqP6XQU4e2ZsUO+96A2\nS5j6EkImJFlkB0qrJKWNTnXhhkPPs9hm0jvUSUm+SnOi/bds1jvAw9nPKAJGylorBCVYBQVz/ZhK\nrhZ42M5Enu6Awykx0Y5Kf711rB56IqHhZ8iCJLbHc6MW25DZYlHSzJvSlvmYO4sOcoPd/3Sv4sPH\nnQUfISI3aS6McZpVIQtsV5VYlTR1fZ4RE+n9rcBl4TMdndCVeTKtsUgIcHhBCb92gSe0oR6pGBN1\nCB2NqP8UXSKRhX2sRLqL8JWrmwEolW0G3VzXTpIEuNmiO/z/ogEQjaAS0ieDTOiGtIzAoiPXA8DZ\nFyB7DiyfAU/PvdMmn+/uZDkLoQ5lP6NJm0bcVEDlhTUBkFimMVBQ1sJ75D/Prtw+0Crp0EF39MyC\neSkjBDblJXbVqrfr9ZlrgweT0urWHRLwLkn/bWTN1roR0sTzun+dEIAMK0OFrwt4O+Y4MoijGscp\n/R0LuM7j1yDWHYnDIBNgIkfZkFvncRpjFlNp+UDPSQlBpNR/Udrpu8ko7qlVA0Ac1Cq5/Oo2JqwH\nx5n0ZotokcBkA8KuHHFnaDSOh8ig7XLwkONwN4bkiAaCS+9FY3qlxA8bxvjRi1dxl8EHEe2Oq7Z0\nCKsRl4EFYtmIwcYwQGW218cGb89Mjz7NwcDDsiFcB6fp7zEtXk0EszzDOJlBJw+go0skcolEKsSR\nQlZLvLPyN8GuRos1Rz0l6iXN4trZJLOGWG0p1mF0AYl7XGWTecq5LUFs66VjTgN+gXH2BWz8dnnt\nmURAoEMXqHMfJG0Bx9DqOOpckpy12M0+O8eGM0R8VpTU3kphSO/NKRoU7d+xtpkt1eRW4oc/Oypj\n1j1r7gM9d4u82T0ik0AAqAqMjt92ANSdZaLnFCgbf0LjyLgG/ZDbZVeyKZxzArwMzVzfw9gkQAA8\nPWtpeMO3MLQcYRInXouvWnuw5iFmqS0xR6E2faZai6XGoOMAfwzce+DKZIIVtLslNwWnLOKisDYh\nPLfDCuOBCGhrg7FPo84+V8u1lP8/Uk4FvG5IYYIGZl+OwsGraMedBR9uMAJolWOE0pD2omc22XUw\nx8PBLLZPzIi59nBCDdeuJTCA1qI1s0QDHQmM1IyYP5sleepcX8FMxpDz13Awv484SjFSl9BRaQEw\nwvtbes7LKw0sCgdATGZw5Tw5go7GtIjALsyOzdff9bHMSdF4z5myyZGJFTHiguByinOSZJdPNsAL\nd6x2W+++zkYQD0+B+w8Ha/M9RlpYLgtJAUPBjLYQeDqLZ+v7DuhwDyQrn7XOETO52MJZyxEm6pQ2\nDBfvUDnp6bnzyOGrZHz0FrbNCo2o3fPRjJK04BGSQ7xSA9BmLtKQaBtswvmmRaKQSmsrvVmC7K+G\nwwjRmyfrMwMDW2oOdnVNp3YYl+dwAo26kKUWvmYeZMtKA8cP2/5JNmMRMrEuufCf0R5KteiwLl84\nwownlJMKBraNEG6EIZzTehUvN+7uWW0qr1Ac3CxGacjEC4zyACkHZz+vjw1eHxu8NaXyy0laYaRi\n1E3ZmrlZlbKX7ciIejEzeQSzfAJz8cj1SIjSuoWpCowP7kPGr0FOLlE0BfI6QVYD7ywF1qsYOqkx\nmtauJHOgG9twhs96thZg0ykBkL3reTHkwVQmVfjhzQaJpEyJNcW4x5OItG/WFqg60zm1Q3wsxZMo\nUg1/8z5w/BA4eGAp7u1LULHxGZfMdpv25xaQArzNdzEMOPtiD+gwzT0suQACs7i2C/zM21tvnvsN\ng/3sqm9c8yGSLh8IgK6brPXyOjLI6zao+QyLIhzYnAXrLoNPIo0TpnXOnteP3DwVHQhnK22A5w1I\nJKT3V8pWMPmZs0h3wec1UpR1Zmj13VAFlOgB2vzeOH44eGwipEVz9tMFoLBkysDTzXT2ZT+AEwnu\n2Yfba4FEbnOcZxGWRYT3+7yaDxUNXs35hHF3waeub12k8joKSm60GCwSIK2IxbbQvhzyQcPXw/cc\nwx6bAHdsAdFhkVD2dZzW1qpauEFZxaWMTrCasJ9bUoEUCy2ORSNwklYOdLx98RM/rBlmOi1XT9kC\nIPHwFOA5kckxtlY9uns+pJpTw1gWlFHFcZ8aXWyJhMDnKVTK7lK3w7gBdOpm54ZZ4yiBNAoyjjFS\n9No6GnngyW2GFcrsDEWxBTbPkY5ndqH3ag3dweGu2nPTsZb25ylxf+f6MusLOleAGzrthT1HAmsk\nSiNJjuj3+Romf0xyPTfdDwoAPry6c0sSyspBDUZdQFQJfb5K02cagk63R/cioTRwGy4G711HI8hY\nIZ4tMdeXSAbKlq/io8fdBZ/S7qo73j3OldOUTimgS48kJhtlGkO2CQACpQH2nmyQSNpNj25jbrJm\nmtQo6ufWYCuh0l9FNO7ZvMBkRCQHAp4KDycFdETHurO9rL0wcB8AACAASURBVElyCCQpyeXXa8fi\na9N02z48nKmdpA0m8WEgNGkXqWDuYvDYGYQCd032mAHg5im6PShnIQ04WnerbBaCShd0wh1st3kd\nBAOPSWdYVxdoSp+tdcuLkZCQhm4Rt9Az8BR+yl5MxjBFiejAHvs49Yrf+coJd9J79GnMkH8PAF/2\nYf2zIZAWytLan3hacniublqYqwKoBmaf+Byy3QTHEJhbiSkRgMhgW76jP/ixRJg5hZkUf33R12WA\nlhoKClN1jJGc40BfvpTDbIyX23oVdxl86hrm6TnEKfxCZRc4XpzzOh5Mkxe6n/XQrI6XuSka4ejZ\n07jGXHN5JXjCPcKbfCxGCJv+KydcyjGdlTjUwOsjg5O0xsNJYct+PmPaVX5glvs5eS3cXEg3wub1\ncTpqESFuBZ1udEskTKFuiCIsshV0OkCJrXx/QLCT6VBJpbNgOj+XUN8r/FxZ+VtpVEmKZfF473wO\ngFZPo6XaMCQuat9fdGAlgiZjf5xKA5vnUOnUHveSylPFts/eCspliqnRSgMyOE/umgnsDsLzARCh\nwmY/bjEOS8tMDgn9cMLhzc22Q3sPji9Y3HlUQexb3G9a/MNr/8OCUlhiBFoZbfi8BJL2Wtrn/MpR\nFY6QIkC90gO1x+frVXykuLPgY6oGuFpRHZsByC5QtVkP6HL5pv5Ct2vvHF6hOGrNBS1qVny+gbIZ\nlq5i647a7FDUO5ztEic4yTEZ1Xh9bHA6avBwUtqexBRNVLusB4CT51+VsVNEYDYVe+FwcLbjiBB5\nRn2NcMI8NO0C3C5fxIHeWze4XMJRFTBYeZC4aRhQjwP3UHhdti7o8DFtszYlOwAgtnBYlmd4vMkx\n11tM43FLT6wbjsFV5R54svVwuW08bLds8hWZBIb9McsIbPky8Vcdw7BeXGCXwefORVgqC8Ej5n5H\nkAFwT2Z7RX0qLpeGn2VwDZqi9FbhDEIBldkI4TY6gwAULPwOpPYZDDsTvY9Y1gtKeizGW5sSMNRL\ndDbsXdp2UTqVAwDtHtZt5cjvwBBCHAH4ywDeBvAOgB8yxvTSN+so/Z+C/Hz+rDHmc/b3vxfAHwXw\nmwB82nqp8d/8ZgD/JciMpQHw20Clnb8C4JMg0cW/Zoz5jnUy/fZHY/zNt97S4qjHdAPYezEEnxB4\nUgk3s9MNzizWpReMzGoa/qReinCDeMODC3A3UVZf4zyL3IAjUblpaeXSX2yb1eFMj5ajAHTIDIsH\nEUMQW+gIp6MG05iICsySS+XMKxWsLt05Yqtts9o51QIBEAh0BUeB9oLaURJosdZuaA4LmcBotBeB\nbqM4kMp3P8f2/0dwGl+5VtiUZ9b0LMGqlDhJdzhOR4HuXfuWYOBBZmnHe7I/kgziRboNtI46HAKP\n/XvDjy3tuWst+Ot+qZGDQZjfbxhlSbt3zlQAv5CyPhoff3De2P0zOgCgJAy2EBjb8xm8J6mt62m7\nHBgCUMgYI/Cp+lTsbuyrBISfq44B7YdCWxR8oEOsKO3XisAHGB4yBdwaYCIF7Cp/fkMR048YxgzL\ncH0M8RMAvmiM+ZwQ4ifszz8ePkAIIQH8aZDr6HsAflkI8fPGmC8B+HsA/kUQyIR/owD8JQB/wBjz\nq0KIYxC1MgHwJ4wxf1sIoQF8UQjxzxpjfgE3xN0Fn0jQYsklko31R8nX0HoMHV1hrhukUvaAJ9Rl\no2yChT2NW+yf7qJA9y1CVhtkNWcfFeTkElCHSA7uk6fKqb3Qjw4gZqfYihy7coVV2S790TH4AcXz\njPS+gB0Wie/lsNunp4nDSQEB7C9EJmXTmMttgV1xlVlGYNnW1CpKp1ogMgXZGR5tLSu8OG7QL+Mw\na+1FmrlhL6PLgApfO6/aw6zOAoJ6PFn5DFIoLBKFe6PKlRf3yQ+FwOOynjIA4g7Y9txlw2MHXBbG\ngp37sp5QymgwGABvWhRjel23KHP2GIrDBn9v8sp/rqmE0HUbRDmrSKeDdG0A7dmrgI7t/tuK9upo\ntL9UFwKQta9ozY0VnXMVnC+jx0QJlwkEsztB7FLH+uS/VRKhSjsAIs/wNcuSPred5+/M+CyAH7Df\n/wUAfwcd8AHwaQBfNcZ8HQCEED9j/+5Lxpgv2991n/d3Avi/jTG/CjjTOgDYAvjb9neFEOLvAnjj\ntoO8s+DjnEy7C0VVQCYptBwhkQUW2ht6Hej2sGg4fMbfr8uoBTyXVxpFEeGrZYmrvMZVofDWNELR\nFHhz+owkTE4+STuugy0wXqCazLEpHjuqZze6Ft2PNgp5LXBvRH0qBr+rggBnqG/FM5/h3IiMaN7D\n2V/zzc87wG2G5jpHc53DZBWEdXiUp7a0NQQKvKuGXQRDAAp25gDaQ4I2evRdfsxNAMT/b7NZMTlu\n6dDpaIQH45WzgAD6JTevfFG0s4bndpZpm1F5ajFrZ3tTa1AYRpjZjSYk7T+1FPIbXGlbfx9+vyFa\nu1MZH4qyhJMnCs9hOgWmVFIzRVvziD/X6CCFmKG9wLNsjdSD8jp8rsL3GgJQOGjbpdi3SBjuYOzj\n1+0s02WKG3jw50zRvrYDIato3QI67vtMx35wNYwu6Gyznpvvhw1jhFNGeYE4EUL8SvDz540xn3/B\nvz01xjyx378P4HTgMQ8BfDP4+T0Av/2W5/1eAEYI8Ysgi+2fMcb8R+EDhBALAP88qJx3Y9xZ8HFO\npmFstjDjlVU5UJjFOxri01ELeFg8ca7rFgCtSz+QysDz5NEERS4xnRcoTjJc5SWuCoHrIkJel/jE\n7Ax1XGJ29BYxqdIZlsVj7KoSRTMkQNmWY+E4zyTOM+lKa1c5yQBtdhIqbpzA6VCwuRmX7gQbd4V2\nxVWN5jpH/XTjwceKXpFUDvxOslMGM3kFUdW+jzAdOz0uA9ysxdWd4XHgU7bLedZ3BkC7lxQMjoYx\nUvSaXYozECymIbMtLJlZEBZpBaEkzHTsF8HuNdUqNwaLYCghFNK/B96/m70JSndYW8JCWO7co1PX\ni9EEmNo+h3Wsba7oMzV5jeY6IxWK4PHOmsBmPaEuohswtUAd7pf3AdDQ91Kotpnfxp9vFxb0+Xtj\nrznXn9IxMLEgVBX+uEMA5vMVnrOQdLHNKMO/5nPybdHEOTfGfP++/xRC/E0Arw/810+FPxhjjBDi\nw82D9EMB+CdBfZ4tqLz2fxpjvmiPSQH47wD8Z5xR3fZkdzOiaHjX2FRAvkaqZ5jFKxyndQt0eBhQ\nRwLnWeT6OAw8LDzKwLM+jxHnNZ7nIxS5xGxeoCozZFUNgMpwv35+CSSA1mNk5TNnBMZzRl1dL8+y\nkw6AQkOyq1xgu45RFBFWS40kqbGdlRhPyx4Icc8ICEpuaBx7yhmKrXZ0I2YV6usCVRlB5QVEItFc\n0+IQ6XiwhwAAIimpj6C5kV32F9tw4bltaHFf7b4TTNwYAhn3soH+nVtM88D/xxIMQuBprjNfdtTB\nQhYyy7ry/w44x44AEVKQuUnu1QJssIMnZ16bbXs6n3tuZafntu8cKU3unUUJwzv9vKL3lTeIDhKf\nQU69zTwfZwgc1LsMMkT2ReIHsCK5HXAO6eOhX5Z7vsiyFYONT2/xD34WiQKqmoC4jIOynM+4Udvz\nHm5ibOYzpJbNPc3mOoPJapjvQEE2Y8w/ve//hBBPhRD3jTFPhBD3ATwbeNgjAG8GP79hf3dTvAfg\nfzbGnNvX+QKA3wLgi/b/Pw/g/zPG/KkXeQ93F3y69d4gzOYCSTXD4fgBgMctyRkgcjdMIneWUk0D\nmizBs6tJcHQ2L7BeapRaQSc1dFJjOisdU+1AN04ZwdF5QTdo0mwxi+uWKRgHe/cAbativkcWicEi\nKbCrgdPXsp5z6q3R3TEHC51IFaIkgkKDKKESgkiUt0wYp262R2hywATgSh2u9xMOCyrdM3ADAIEZ\nTbtXGM5+pmPqn9hFQ6SVfy0AODuDqQokh29CT49bCtjupQbKbeHUPq7P2vM8IGqPSCUtfKzGfXTg\nLa2dRpmm3ktZ+kyHy1f2/XYt0snMTbnPwdGpmaG2L3gh1TGEPqDflQMAz+HKbwcwVQ2RkNCryC2R\nZDai9zWakIWGU4DYtbKeMFgep5fFsW6iFSbtAk/4XI5V+EEYZiq4wLt9M84qASKuMDU7LkCbd/hr\nyD6XmI0gkhIilZQR3ma09IJhDFoq+B9j/DyAfwXA5+zXvzrwmF8G8D1CiE+AQOeHAfz+W573FwH8\nmBBiDKAA8DsA/EkAEEL8hwAOAPxrL3qQdxd8pOyXSDiaioYDARyOHyCrV4M751m8cyrFoX3wSJJt\n9nRW4ujezmU8RycZTqY13p4ZK8dfOFXkcTQDshWSZIra2SBs3aBqV2ySlRc4mAmX1aInww8A76yG\nez9DIpZ8DrqsMpEqiLyiksx1juggQbSgf2I2grh3RItwl4kG+F5I6LeSTmFU4nrXosp99iMpIxBK\nD2u2KU1MNgQNfIAWj/BzvbymnW2+gjq4D6lYFHPYmtz1eXgWxmYa4vSEyjWahDDFmggHLIrJjqZG\nCOd42jJF40wnANku8ADwtuLZuq2ZFzTd9/W7UNW0cw8ByP3NuL+gzw6J1g/i2opUwWQV5OmEPst7\n9yBmp8i1QlG1FbJDOw0jBEQyBbCmz6t3XH0igo5okxWqXztWIRM7eG4rUbeXvriUNh27TYBIZi5j\nM0K4jBbJjD4XRbRzABAYk1gpl+/GKZ2XoW7Jd358DsDPCiF+BMC7AH4IAIQQD0CU6s8YYyohxI+C\nAEUC+HPGmF+zj/sXAPznoL7OXxdC/F/GmN9ljLkUQvwnIOAyAL5gjPnrQog3QOW+rwD4u5ao8NPG\nmD9700HeXfCJFF2YfGN0b8wAgPT0NQB9FejG1JjrpdNvoz0xRaIMqqTG8UmGooiwOMrx9tzg9ZHB\nG5MaDwM5/nE086Zn+Yo8VOzrzeLKyd6sy1BsMuqBCQNQ6JbKzqanI4l31yRM2v07VjhgNpK7KAb8\nU6KDlOi4AAHPQeqBx8rn8PlrnVfe8QeLQS842+hmQZMj0vxiIdgQhOyCIxA0o4Mwmy1weQ2x3tKg\n7HgBNb9vbRh8uM+2DoDn6TmZnlmdNnF64v/g9ASYv+ayAraxBkgpQScjyHTmS2gddlf3/bf6Jvz6\nYZnt1uHI2pWohLIbK8eiG3vRzvBcAwTipycQsC6tVQ0sZvS72Sny8RjL8hl0NGptwLqg7QAoX7d+\n7wC4ziFAfTYGoBboMFjvLn3JjcMODg8CUNjzYuAJsssKlbMBkSKGTFL/ufDgqR0nEDxyET53+PUj\nhjECxQsYQ3701zEXAH5w4PePAXwm+PkLAL4w8LifA/Bze577L4Ho1uHv3sMegYub4u6Cj4whZqe+\nobwn3ICgnToPB9lIdXqHWVxjWUQtQsCuhnM1PVwULfXrk7RywDOSc9LmWj31cj8ywciWiRbJGnld\nuwHVMAvqVgNCwDlJS2vZQOnBRbbDcRrj8SZ2fakw8lo4SX8AASiHJTdp50ASGFt2iu5NHfCIwzeB\nydHwvIbUdiEgmZ/G1E7UEggWIIBmVOxizQZmOp3ZBSgow4W7bAtAAPwcje3P0G5+RZP7h1cwxRZi\ndtoCOVd+yy68NcTlNZqzNZrrjG4UZye9gLj3SeRRg6JZI8vfx64qXYl0FhOTzhmqyRHkANi6eZfa\nS+OYzYVTHzCX1zQIvdpRia8rVxQQO7i/ZrIKMlGUrU3HLTJDeARePdr+4vSElKKLkuj+h2+imsyx\nLB7jm2sDHW1wOo6cOeHQQK4DIH4/YeYH0GBxYAgISaMNrcftK7d1AMj1EkNW3sGCDA9tRl1Yvb6y\n8b1DKVTLLkQoTUzTLWVALYNBHQOzQ3rOV/HS486CT2NqVEkKlUz3Wy2/QEgR4yTdoWgqCwqUkaRK\nIKsMspr6O0PAM45mbeApSqC4gqkKoM4xm9+HFDEeTNZYl1voyDjZHvZ/Cc3p5prcS3U0QhwtOnX5\nMySSQDaREqmkAVMSIyWFBCmUBYPVjaoDIlXODC4EHjM9Jg+bgT1QqCvHCzWrZY/kvH8hWgCTiur1\nDE4t2f2uUdzhAc1qBNFqFt8yr/FC/Ybj1yBOPolV/Ryb/ApFY6wauHLMR1IWp7krNrjrxqBrbMjs\n23esVd3ucQTRe69F2X4vXaWD7vs8PKBy1/FD+iyrC9RNhWWhMdc16qZCE9GmYSh6cjsvQxmgU2Jk\nAOKNkCuzsifQ5Ig2OfUSpVUT52FXGUjxUN9JeQkjpR1JgW0a2C5+O2AM+Co+etxZ8KlNhU11Sbvv\n6TFEOh309wHQXogD+Q5nkxwpnKSlK1/ldYSFNm648/URcGIVp0PgMcsnvrzCk9Q6BrAFykfeVkGR\nLfFIrbGrSgdCOiKKdOgN5AYjywKotm6Q83D6AFI8A7AEy66EVhA6ImUDUeW0M52dElUVlEkIu5gR\nE4klEmbU4wmNvHrnucRlfunsGqiEmFjQLCBFDil2pGY9oE4jqhwqa5dyhEwIoCPVvoKrgvox0zEw\nIZquHKeulCROT2gna/sYupuNcL8BoOcBFVLZ/A6nJxCjQ1cyk5GCRuUo96Fn0yyGO6dkvtYGkxax\nwIZj9yntXt8UJZXRgHaJCYCxDfMuUDmmmgWflgVFVXhdN6Df94xjypSMgY7GaFSNk3RjNzbznvhq\nGD1AVZqYevb7IQkckUwBVUBkwdwqs+sma4jNlo4xfI+lvxbF6QllPLNTmOkxKlNaSwRPz9bRCIis\nUGyg1Se6tiAM2Nq/FpMjXkY0zbeMcPBdEXcWfLJa4LpYoo4rFNGWdt/z+5QFDTw+ZPAYIZznB8dI\nxThJ6SLN6wZ5LZBKokKT8Gd5K/CYkmYvBOyCcH0G01RIZqfQ6TGVCqIVRmrndnI6mngdtuUj6lWF\n5YuyJJ2wOsf84IE9WnJIDYGHzcTQBIvF4ZvU65gGNyYfJ6yL5OzQU4Y7UTYZvrne4J3VqNej4pLh\nw8nWZWcjNfeq1oBnezWVJylwuIFU9EtwStMiakGIS0k4uAdxcB9bkWOZP8Zc36Oyp41e1nN4QHTk\n6ZgWuflrQDr1mw4RAxGgUbWM4GYxzRE5Jewqh7JlxzBcE9y+116WwgC02Q6rIQRNeaYfU1kq8Z9X\nWcJZUDQV9TfYe4nnYw4P2q9rg0tUp+MIOprcSFffF71ekwWeymriuEwpnUJUmqw06hyA9n3Z7uYj\nnJ2ymwmTzlyZrevQ2gMdY/p+VF3JJnustal6z/cqXk7cWfDZVQJfvkzxcJLjdFz6HsSULIRdFsQR\nDCx2da04FolCIgu3y5/rBssiGgae5bOWdlSoKmywpXkFluWvCmC8QDI5hlSHiJsUZZN50Ll6F+bi\nmafiDpRsxJv0u/nBA1vzvoKW45aLZWvht+9ZHL4JMw6k96uCbv6iBA4WbmalO/me1Wu8syrw5csU\nX7nq1+EWiUEiJRKpoKMVYPXuEiZtMNuLral1DDOauGaykIllLGm4NT28mpWm3tFoQsc9XjjgOc+e\n4evLBL9+/gynI+/KaoZ6f6cn9H4P7gUT/lnvYexMmkgDLceIo9SbztnsU9leRO/aGcq0mao9HVMv\nhiMwUiOVgrI98+Oes4Yp7UxVVQAoPF17vYW5XBOLbGGzWQagjoo4L9jhAn6TGvi+cJs3rhoEmm9d\nuR3HmLPaf2afzBAAMTlGJSNrAkgeVeHxsWJHC3R4kzEAPO6c2aAy8WropT9wGCNaPlx3Pe4w+AB/\n71JiXUqsyhKfmJH9QC8LsmUDk68gMHMe9kVDpmONqSGFp+7qqAqUDxrMNZzwp45G1GAt2uWS1pBb\nl1lTlAA29sZNoCZHgO0jhOKf3JzeG+stMNtCVDktIJE3MfPMowB8ePBRJUA6a2ucOZfJ9qJAz7HD\nprrEV68FvnSZ4CtXAv/vOxOac9INdFI7IsbTXYQ4UtCRwYOJnb+RAfOP1aM754VVEdz8BkDH0/Ww\n0V6qRszvY9ussCzO8Gij8bUlZ1vPcKgf0I0wBAJKAyl6E/7dIB8lOw/GvbO6M3hZeakXvl649GZ4\nkLQbo4nTaetll1ab0HQ2GyarqREf9n2YhMGSMVlN5BEdW2p27DcTQUgRoxYfoewUEh3s+ePNG4Nw\n0dgBZ5W0pXBsoiv2qF4bIVyZjYGHn9ORPey9EjLqHPB0Pm8TqGXw65XVNVYvp+r2KjpxZ8GnaQTe\n3wostMFxKrAqgWMZ1K35gg91xqoLYr4BSJIZdHrsLvzIKeiWQOOvVla5nsU77KIlZskRPUdVWIkZ\nUg529ftQKoXlWtIpMW4mR8hN5hk8oTCppQNz9DSr7MxGJSNkJfWOgBI62qGUOYpo26rZ1zWVOlxG\nqEbUk6lzYEtDj5hQRgFZUJahEgdkszjH6UjiqohwdX+LRBmMLAU8VehRzlM5dZRzgBZ701QkA1OU\n7RkhnpexTCkAbWUBpy3m3TMr0A57ru/hEzOiRH9iVmIeP/DAy4t7IL9/o91DEGzBsSwinKR0jaRy\nhmR+n44zyJrZMVVHY5roV7rvtNktIw6Zw02K1iwMkLcHfq0qg9Cx00dzxnf8HDwkO2kz4zhqUzpX\n1UbUqAUPmO4n50ihABkBMnVSRQw6RXXhQIKZju5v0ClFuv/sfwYhVZ16anZg1Xg2W0tFO7w2aj0I\n9E7B27IEmZ25Kl9lKx9H3FnwMaZdCkqkcRcrTbmv+rtR3jEBMNsrVwqrJF38fEPVUfvCXhYSs7iG\njNaQIsZ4ckxAwRmQtqWPONCn0jHtei3rppIRimaFrF7jIqMboiVMqscQB1fDb9YSCHKtnG5cqEmX\nyB2A3V5X1jhN4SY6AVe+EQVN0BtQqYTmN4g1N9dbHKc13q4jXOXGWkD4GaRuH4wp52GI0aHPaoI5\noUpG2NXPMU2PIbKVb6YHi2bPttlGCEBzfc/L6QC062eDshcEnTDYvZZkl1Y4TivUcgqpY9QmR12t\nW/0D2qWP3PG6DUgYkaIBVj4PNtz7Da4XHhIF4HfvVgOuJ37K54np46yiHfQ1uTTGjrPMZmMQ+iDR\nmJo2avZ+KhoDKLjMhAZOg6HVfbYLfNz2/8MNk47G7hgdhb8rVYTApgPw5VlYodfAT4uPd1l88Gth\nKMwrwkEr7iz41FYGh5vgOhK2BKXaCr1hs7Pr73G0gSm2UKNDqMkRKqFa9fy8jtxg6HkWW3bXGlLF\ntCN25Ia115oCBrOdrLrGrlrh8Vbi8Sa1rDEvTDo9eLBfoFNpbEWOTfnM0ZyLhueGIrez60r5MBiN\n1CV0NPKlqfWW5k+K0pZrAGNnN6RK7M5TYBbXmMYR3p7J1uBrIg1O0gonaYNUzjGSc2Ie7S79ZLoN\nN2OhtGsqb8oLrEtqLM/T19oAhAHgkRoImv0MQI4GzQud0mAm4AeJrnstQHTrvM5xku5aFN8wIiEt\n621PWEVuoxK6JhO4GRqhNPWobKZslHQZT8tWoqoJgFj8FB3vIbYcDwkdtn/nSllN5SSmahDRZZAq\nHoTz0mm8uy/gB5opSsg4RjSg8fYiAAS0QYhALMh2BqoXAFwp0Gj7fwq0B2AppHQKJFPU9XOsSrSG\nu1/Fy4s7DT5k7ERzMnxDsbZXK+vZ9GXWARAzrShhDmguR83vQ0djZNEaADHeru1EMwl4KujIyslL\nIOHJ/UhRFsS1/WDGYF1dIKvXuMorPNpoPNqQO+pVLnBVkDDpw8kVXhvVSLVftNtN7Ryb6tIBD9lo\nR25BCNW4AS/Lw9WbWZxhonZQSIg5dXlNg48AARELaiYzV3rTcoS53mJVSrwBP4/EVOREGozUHDoa\ne4JHZstTIbvN6r5VqLCrLrApr3CeRTjPEjycUHlrkhzShRwKkXYovd0+jesFBAuc6yHdJGjavY6a\nyp3TZUEmgnFkcLYj88BVaVqCtP71BZqIyllK9unLPCxZyQi76sKztZRtzte25xavfeaT3HA7s0pD\nAEBO8ijMDrkvUxNduTYlViWQ1xLevZdKtuF7ab2UBRvKBGUry6a/D8/DzvZM7dzNiy5JnT4Ql/YG\ngadTjuXvWZYJFXx/UNF5ZQt7vldeRjRGvMp8griz4KN1g7fnpLF2kpZI5cIzvtww437lg1YE4oVF\ns7W7PVqI3rc2MqmUVg3b4CQlckMtpxilcy8dwxpgk2PkUYOsfIZdtcJ5FuHRJsF7G4l3VgLvXUsU\nuURWFwCUBZEVFslu7yF2gWdZkGI2gw4rYtOxolUmo4X1DDr9dZCayjSiqr0fkt05s2KAFLGbhH84\n2VrQNS06so6oBxAJCa2OCWxtyctRty3o1CbDprrEutziPFM42ymUDffSVoijFCqZuX4cy7kgJ0AR\ngGOaAX2ZpPBzBCzbiqfyw9mbPUFATlkufU8kk7IRyGtaiHkQ2KmiW+WJrF7RRiSdOvAUyQwmnWFX\nL5GVa1dKiqPElXaVpGvOWIFQsLmdO8E2kwgEdFu9RP7cQrHTDpuzaHbYVSVWJS8TvAi3gZTt4/35\n8GBMslA0csDK7OvSq6kXjYE2lc1+5j4L/VYEkyGYOWkVH4RMUL3E+Z5XMRzfVvARQvy7AP4EgHuB\nTPdPAvgRkJn1v22M+UX7+98K4M+DEuQvAPh3rFdFAuAvAvitAC4A/D5jzDu3vbZSDV4fGRynPBA4\npl1XZctsXAPfRwyA3T1OvOT81vZkqDQW4911hH+wcqIvyGplyzMVZvEOs3iHTK5pyv/ggdu9raoL\nZCVlO+xIyrps711LPD9PA8pmAdIFTPBwUga70+EFYR/wZBVJAnUVsFPJfwtoeYajo7eAt5lwMHYU\n5t7gbQBAGABx1lbL6jWyeo1JfIjRvU/RsfK8RnXmVKjpXGhnrhdHxhngSRG3JGrCMKwawOZiydRr\nioULXXcq3wJQa7YoKEdRE75E0Rgn/sqzTF3ZI874+HtSMfe3XlavUAiJ0fwefaLNDlnxGEW9cwv7\nSFEzvVWeYiJCHLDehgZSuxlO6CFktfZYxqi2ygBFmIVAowAAIABJREFUs8NVXmFVkmJ7uHEA+tlO\n56w7wd2wlEslbg9gnH2PVIlUTIeeyD9jtwx3i1YeODu8KdTQZw433/MqPt74toGPEOJNkC3rN4Lf\n/SMgae/vA/AAwN8UQnyvMaYG8F8A+NcB/O8g8PndAH4BBFSXxphPCSF+GMAfB/D7bnv9RAKnI8p6\nRspqjGVtqjI1Jm1tfAiAprY3k8wci+zptsHZjoDnnZXA02dUUsmr3FppS5SNwDSWToaFQSiOEpRN\nHuzwE6xLifd3pEr9+ELj4jzFeqk76TsBED1vg7muCSyicHcq3E60bPxCyVYMlwVcGTJcPPn7vI5Q\n1DtcizMc3PskjH7SUnLeFwxAYQ9gKDbVJbJ67aRQun2C80y3FjJe0KXoWGB3CSIVWxoUpNhQFRCT\no73H22PNBd9zE56DS26c9bCiBQm8Rq1SG6tRhEO9DGIANeQ31SVqU2Fdbt3zcuioQi0oQ6hN7H1v\nGFCmY5f9AJ2y2njhs0k3QxPQnptVi9VW1DusSrTKs4nk8+5nmcIIswSN/Qu3HzSOQPvLTtwgwrqv\nD8T/H258wscN2rW7XiDFEGkFQC9j/yhhXpXdWvHtzHz+JIAfQ9tr4rMga9YcwD8QQnwVwKeFEO8A\nmBtjfgkAhBB/EcDvAYHPZwH8Ufv3/z2AnxZCCGNuzt/jCC7riaO0I2zp69/kKWMjACBH/9VjmHSG\nTfkMF9muVR5750mKd79Gw3tFvgawRVYBWR1hoSPbH1DWqC7HXG+xLCTOs6Rlx32Vow08qwhxXmGd\nkFHcY3qF1vNO46a1494LPDWpXOcVWfwmqrbadO0dfNFQ9iOjHbYqxej4bVSmBOykOkfXaKw2JVI5\n9QttBHQ9dQBYBl5jFzw6/0NeRhzcQ3IGeFXm548YcIrSWzBPS2BSEC0daJmj+QO2u+VwRzxQbmNf\nIDpGyiQ5i2RLi/Dc9XX3UkcPzmq/4bkuljjPlHv/fA74c1xEJWJ0VB5y+zUuiLnGM1FW4ZlJK6yu\nwOc+pNK731lg7QIPA6GOCCy6mRuA1qwbIiCRFYpGIJECZdMg6/RNsho9gPUnuA9AHF0A6gJPyJoD\n0CqfiuC+5hKs2AtALwdwvh0hhDgC8JcBvA3gHQA/ZIy5HHjc7wbZXUuQ1cLn7O//Y5AVdgHgawD+\noDHmSghxDFpjfxuAP2+M+dHguTSAnwbwA6CT91PGmP/hpuP8toCPEOKzAB4ZY35VtHfNDwH8UvDz\ne/Z3pf2++3v+m28CgPWouAZwDOB84HX/MIA/DACnbxzjE7MSk3hBNN8w6wkXHZ4L4LAABB1T1jM5\nxrZe4rpY4tEmwXnmmV08VAnAfeVFPZVc9+YdvrQ3vMBFpnBVAO/vBJ5syQobAGZzupHW0Ci0wjQp\noJMa4yndeAwoaR255+YIgYd36Jz17Dob0G7ZyC8+BruqhBRrlE3m5FZCefxueCqtp+xGpoS0njos\nNHqeKdew54iDzK1bRkxkAx0J6vdA0VDqxbNhd0rAyhZRkLtl3pcF2rPg3RRzXaNohPVXipDVBgtN\nrL57IxKSncZjpHLammuh80a3H/dWHm00LjLpPruQFchyPd0QMiHpHM5+WHmiQ9En8kCFLgsNQCvD\n5NCRgY5ITT2vIweg03i8V+EgjiwwNsAsrgDUFsDIONE/jl63J7Kbrdr33gt8Hlyq7kVg6+3GIywQ\niWQGoezrZGuveWfB1wDQBw8sK3KJafySgKgxQPEt6Wn9BIAvGmM+J4T4Cfvzj4cPEEJIAH8awD8D\nWk9/WQjx88aYLwH4GwB+0q6nfxzAT9q/zwD8+wD+UfsvjJ8C8MwY871CiAjADeUFio8NfG7xGP/3\nQCW3b2kYYz4PsnrFb/4tb5lJvMBUHfdT+c5u1+lTccmFhQcjRX2AuuNhAuA3LgxSVUAntOF448Cr\nWx+npILAEZbHAIlpXCOrJRbaIKsEAFIF0GWE6azEel6gyCWOTjJMRjXuj4kcsNA0PzPXjV2c24t3\naByX1cSY8+U2QMVNq+fDABVaLXCtP9T5ammdhe9EKKi6AaoVVDKFlHObNcRuMFcaBRnH0BFZU6xK\n2TluuvF5hiY8Z1qOvGrE8hnM03NvMwC0LJiFtVomLTP6bzKgCwAo7BG8gCIzC4s+GNfQkcE0pp4e\nW1ocpyNM1OnexTrMEnUknDYgf3ZzXeNAzwdBp2h2kFJBMWOSS2osJeSAZ9cCnnDOZm/mEYSODGYx\nqZ7raOJ+P6Tz5j7/iK6JRJaYxfRZLIuox3hcJMoDT2hbXmvn/QOpHcC07tOA7SaMcRuccFTC2aWs\n7KafBVmLbb/fE2bLB1SmTPUMhdrhJP2u6/98FpSBAMBfAPB30AEfAJ8G8FVjzNcBQAjxM/bvvmSM\n+Z+Cx/0SgH8JAIwxGwD/ixDiUwOv+YcA/Eb7uAYDm/9ufGzgs89jXAjxjwH4BADOet4Aud99Gvt9\nxR/Z77u/R/A37wkhFMjKtSPM1g8lFM2XDAyh7Q3u/8R+B2WEQGNqV54I4+2pQSrpwg0tFU5Sv5MK\nmUJ+BypwoKlUsUjInXQkDZDUzicoUQaHGnh9TKBzoBvX7wnr1JwxrEqJdekB5SoXPU+fbnB9vut2\nOrSYdgGIgYdZfMLOpqhkaq2UlZtKr02JOEqgZY5FUgIQLSCTQrnsgM9RIg3iKKGsZ3MBPD2n2aPA\n1wbw/i+RNcBzjqcMQFXR74fcADw8iNwIIhzwDM9JWiGRBfI6wknawG1s1hdU8rEMtrDc2BUoJeNA\nn2FM1CGSJoJZXTgGZPucV4AAmaNZ+SVT5y8EPF36cxjhtaMjYf2I1F5h0a7mW9FYJWkF5HVldQ7R\nVvyWI3p/IvXAw0PXlfX+6QAQvenh2R02qKP/y/1AeLb2pVfAq8aH0RXMLUoYPUaSvIVUTjHXvYrV\ntyJOhBC/Evz8ebt5fpE4NcY8sd+/D2DIj9VVjGy8B+C3DzzuD4FKeHtDCGEdJPEfCCF+AFSq+1Fj\nzNOb/u5bXnYzxvw/AF7jn20/5/uNMedCiJ8H8N9aq9YHAL4HwP9hjKmFEEshxD8BIhz8yyCbV8D7\nlf9vIIT+W7f1e+h1ZXvA8LbHMx2TlXYBy4qh+v++HSTbKXRLMLxTCxcHHVVIZO3YUwttG9hBmX8B\nIKsMFgmBTlji4fkZIGQj8WLdgEq79JyXA+vrIumfi6wmNO8G3+jdxZQXIQc81jfG0ag7IER/R1N+\nOqrcc9Br+MszNTOkkmSFinoHGcXQ0ZjkeK7PYC6vUX3jugM8Prtk87EI1qYAoD7QaGLLcMFuO4yO\nBfTQOQAAKWMsIjp2BxoX78Bcn7khTxzcgzq4j0qyc2yfykvAdYiZPIJZPoFZPiNju8Nn0PPXIOb3\nkVth06LZOqkblwXVhQMevja7JI68li6LbGfdAaEgEk549jbQ4c+Kv9f2VqhN5cpvIejEUUL6iXUD\nVAHwcL9OkfyNy0wB348bch5W9H/u82ENwiEL8k3wBkKr9zBbXpQQ0zMgmWE0maOMX3zu66YQBojz\n+vYHUpwbY75/73PdXFlyYRnBH6rWJ4T4KRD/77+55aEKlBD8r8aYPyKE+CMgFvMfuO2PvmPCGPNr\nQoifBfAl0Jv+tyzTDQD+TXiq9S/YfwDwXwH4ry054TmILXdrCIiWdfHgIBpHjwHlf8+lk5O0war0\n7Cb/tQlA54iyrSoHDGDUvA1CooKMSjwYV9CRwXlmkMgI6a4PbKn02Q7PD3WBJ5ys11GDODIu6+E+\nEot8JspgkQCpfY5UwpXxGDi5BMQLTVhCA+DKHi3g2fHdviaHSestA+UXi7BkwoDTZSyFttcs6JqI\nFGb3iKymL9eon7Z3tKG5mkkkmusMIpXkj8P9oLjwn6nsEAxuyICGy07K2SiYjbXMeH5NSskAEF/B\nKA1lAYSZbu59R1YPrqhgLr9Gr28dVVnKCDKBtqZ9jamJMGD11moRQ0rlgIfp4G3giVxvEfCsQc6W\nZzEssI+cRlo3woxt6PNiQOQeUNJsW2QLdw8wSPC55tIX4O85/kxuqk6EfSIWc20qX0YLQab3t7UX\n+OUS7TazJdsV1OTI97K+g2JfZQkAhBBPhRD3jTFPhBD3ATwbeNi+KhM/x78K4J8D8IMvsJm/AKWT\n/6P9+a+AWMg3xrcdfIwxb3d+/mMA/tjA434F/SYXjDEZgN/7wV+48X7zt9X3bUlGoD2LkEcNNhWl\n5FqO8KmDEruqIGXjiG9K3Qad9YW74cTkGDIhyi1JrdDFLyOF0zFwkhY4zyJMY3qu0EI7JBQQI0oE\nZTs+Qr/4nmca55nE+zsqtxW5dCSIRBncH5PY58KWR6YxgeaDSYKJOvUDuNu1G7xU1iYAcuZmfBzw\n8E6Wb/hQWyzUDzMlYNr9D4BZS4HzZFM5QU6AFmmzfOIUvZur3IFNdGCZTIkHCHk6QbRIIA6n5EN0\ndOCHY5Ue9iTqkBF4FoY+1xiNqXsgxMdMZbYtMN1CrLctWj5RtvsL4Tx+jcp0q061godC7TGFGfNN\n9gbhOe0CTwg+HJyZsM3GPhJJv7fXVhVg5XeOkSpbLL8e8ABtNe1gFqlLie5FhzoOldDAMgCMCmBK\nwG/KAeBxzyGBqvYDujw8vef9ftgQxnyQzOejBFeDPme//tWBx/wygO8RQnwCBDo/DOD3A44F92MA\nfocx5tZJe5td/TVQn+lvAfhBUAJxY3zbwefbFqHSLQJdMKAnw8G0TMDv+opmh6xqEw1SOcVExf0d\nYbaCWT+mRme2drs701RQ6k1AkkVDibx9oUdwIEQSJ1HgBtruw3Rr+GEZMK8FHm0UvnJFwFNZRhn3\nju6PqT/FZIVZXON0HGEev45ku4W5fkSls3BnWpQwdoaEF2/FSg2d90m09M7pv8EXiSMEmzCkiKms\nVWyB59fANkNznaNY03vq5onqrQNE96bkZnp44KwDxOT4VmZVSOVlth5HyPYLjw3G0DkZHZL0klUT\nEKNDIJn23nccpeTzdP2YBGvDmI5tiXDsVCSKZuU8Zlgpga85zjrC56esR7aAp2xEh03YuJLYTezF\nMFqq0Z1eDIvM6miMxtQOeFTdeK8moK3WzcKmHZWLFpuNde6k38C4z6em8zqScygGIKUBfQmx3rYV\nS3hTFJrz2QFdMRnTZslmXGHW/V0SnwPws0KIHwHwLoAfAgAhxAMQpfozlsn2owB+EVSP/3PGmF+z\nf//TICXBv2H78r9kjPk37HO8A2AOQAshfg+A32kZcj8OqkD9KQBnAP7gbQd5d8EH5nYNLws84VxH\nuOvkkIJYO6puWvbVAEgLjRfi0DgOtrEZKaiD+6ijuDUrQbvPxC0CI5W1mu4MRCHo8PcMTCG1+p2V\nBx7OekLgYTLEXNc4SV/D2CQwT7+G5p13+w6PHNMxxOQaODygXb4e+4ynW/IAaFGRiVuA94ELAFeS\n4t19uNCP5Bzm+jFlPZstmuuc/lUCRSXbnnJvHSB664RA5/DAD1xOjm4cju0OxQ6BpO939HtUsO6c\ncOrTlPlw1sPvL5UzAtLn7wJnNLHFyso0vxO3lJYrVMjqNc4zgtjTcdkrfXUzRq9u4YHnuohwktox\ngMjYebdksMzm3+8ty0XYjwkIAIPAw/cEZ58cDDx2DitUzRgKVt7u+vnoaNwW741jZy1hyrLvm8Xn\nHfAq3y/6vl8whAFk9fHPDxljLkDZR/f3jwF8Jvj5C6CB/e7jhths/H9v7/n9uwD+qQ9ynHcXfLpl\nTB5Gg9X26uhc8cVd1Dsrmd/gOB154Mkzb/k8MOjYmjuxzU0D66+iNJL5fdRRiRjtXSzX0atohLhJ\noaOsx/wKhwHDIVKe5+ky29jQLcx4eObiUL8BtVnCPPv7MF/7BqqvPCVzskAxWaTWiO4ggxlvqR8x\n3VJGEZxLFx1rYvJJ2fZcJ1t/YuXsVyWVhg703PYgRpRJFlvPUsoqmKxCtlFQcQOT1xCJ9MDz5n0/\ncBlYMgBwi21rwQ42Gtw7YdO9MLqgM5QtiMkxYGVs+HriaF03Z489VZwVqHlYlL2MUgJtUsCw/RRZ\n4DitEMPbB0gr7loiR9EYK5HTBp6s9ixGzno+qEtpK+vp9k0tAYAzMZauckQARwJgKwP6HPYBz5Dc\nTfj58D2xLCRO0is0qgYkyJlYaVIqUVckORQq03eDS5wt8Pmuy3y+K+Lugk83ulpeLVn5DLtq5Upf\nYVADPgbNX+0JK/jYgruq9h4rVQFsnkNP5vTSzgAr981U2ScdsKAliTdGrQHSq4IWFlJUCJhsts+z\nSDzwPJyUOEkb6Gjib7S4rZTsvqb8VfrFkU3vbvLA4b5KMgX3oroLXSSkn7h3TXJyhC2aXaAVB1qs\n7OtHizWigwTpVYFIGYgkRvwbjiDefA3i9AQ4fhi8Nl30I+nPNdDWeatRtRY2YoxVtiyqHBDdlA3R\nD7ZRHqgpUC/EO9G6BTvs64Q/2wxIjA5RyQib4tKqIPiNR/c4+Nhr47PkcGMCsMJAhLxuWs/xQTXN\npIipFCatIrS7Xm2PjAc3hWg5mjq6c9ALHAKem45Hitjp0DHwsD2IF+8tvXgvv3YcA2w5z+c6/BrH\nrhxoNhfeT+lVvNS4u+AjRF9CvyMrXzcVyibDdbHs9VQWibKU6eAUsh+Ma5YWxKbStEMnt1HvWOrS\n+6aCqXNajKT2oAO4r1LNAFhTr6ZyN1ooEupmeAqf5aTB4fH3qTQtJttc19ByTDJDvAin1JiXp2FT\n2NfF2cK51bh3j1PemI3fx3jRknnR0diV3YZ2ljzAydTfrqCmqBKY44cQowlEHEMnCtGCFhT1qROI\nh6fOvXVISkflvFnobxqSZOqMRX35L2T0UVYxFKxk4DYQnd6Eew2RAlng2npgB2DtuUVMChpchjLT\nYyyLx7jKK+Q1nQsvnxS51xAd7yKOrqwSQF/XZYRESiQ5KVd8mBKTs2KPYkAr1CbvDV5LoaCYQNBU\nLQJF+M+VufdoAPJz0dc4ACgPwB6AfJap5QjKZqFmj7+Si3DmCwRALyNEY6C/NYSD74q4u+ATREt0\n0O7auCexq1Yd10+io6Zy3t412wUR4AxnAIRYFy7uNDsBb1w3IOcfLlu1qWwpReIik70SWzagh8ZZ\nT+jTE1KoRyq29f6RPweRAu7dc15GTiGZj5uznfGi93ouIuV8UsTk2AEPANeM7oYUMYpmCx2NUGBn\n50SE+78whEyA2SnMJ8YQ0zHU+Akd55v3gYN7Tvi0G2ZpadD8XvlY7c8CHoBCx84QgIC2RA1AvbZZ\nvHOSTYNlOC5TZe3FWSQzmOPXfObAfka2XLeuLnCR7VzmwmoBQ+elNhVlbE0VlGSjQNSTgqWYloUB\nECOR21vUqim6FgpD1P7ucemoglQjep9V4TOe0NLB9gL3RY/WbZUN6FpqHzcD0FwHfUU58ooQQN9K\n22Wh+/ter+LlxSvw6UbQk2DjMo5ENlZmZNRuNnf6R750Fwym8iKny2H6MQIfGo6wD2VfozZUXrjI\nZCvbGQKeUOByob2fCishzGIvdkme9zFlXfY8oKmoUc8RNsIZoG45l8xaqgbKhvt22a1zGw08VrZ3\npgIzmPtvUyamyDKcs6yiWRE7TqQ0A3L9hPorl9d9fxv73lgFIUmmQGQ9moLyD/eiGAhCBiIRNi7R\n6Lo1ExWCjtMbC60NYG3DA8057hEV1kSvKzHUNagD0DLOC+0eOLoABFBWRPI3alDaCGiXm0MX3Lbi\nM8+b8XGVbuyABmKD7CcAfSah8H3XZdv1QCeoDGirGlFEOySycsSKRJqAkEMARIPcYyTJlLYzrP3m\nQMdvQNzvbsjAPmh8wCHTf+jjDoOPGO5RSI2iWaExtd3J0c3F4o48/9BaVPLAA6j7KkoDsghKe4WT\n57kxwqZ9VcA8fxfjg/uAOsTp+BJFU2Iad5WqfYaTyMZRaeea5VK83hurLN/YTI2UJxEMRTHAVrP9\niW4Z5YMGAw8LkLrSTgiQ4WsqDdybuZ/DqE0JiLQlHgnAD38C/Sx0z1zhTaZ8ZKeg7EK9RB1XRCqA\n8tcIPz9gy5J2c2FdW0VATMjKZz1yyU3BJcGu6jYTC0J3Wr4+OINi4VCOIbHREPj4990eaF4zGHsQ\nm+sSUuSQYgep5qQWYj8j7vMQ8OxQNjlJF4myBUIfpulPx9Y4ABopyzKUBFrCGIiALOHu0Y8BeF5F\nP+4u+ERysCSTmwxlQ30AHY3wYEIXINNQW6AT9mZuCl4cnWNiWxrE2UUDfvCOd198A0QK5voJxskM\nevIAen7ZYoTxrpjBJZRJGYrQj4VKeQQkWo0gYLMJ2GPpgsxuA6zPBp6UMgijx/b90nviUspNCwjv\nbruWDADcpH3oNDsYXLKyi4lSmhY7zkztjtcARLsNszjAZyJWh41Lr0zh5aZ21xspzEDdqYiEL2WG\niunK2nRwSZU/+06mk9Vr7Ko+aIfMxrMd377h57NDVq+dJ9QQaHXlmCj7nbiNVfieu6XFfRG+TheQ\n6FztcGzdwkeWgcafSW4yFNZUsG4qN7sUBlPupYhbMkeOXBGUGPl4ullh+2/6z9VSPQd86+wVCH0s\ncWfBx6BxGllhdGdPGHR0NAqG6V4QdICePYNQ2u+qu9PZsJ4i+ar3NE7ufXcJma9wcPSWm7ifa8/M\nAtCiBXc12Pgrs7g4ysZnEw6AKqvmHYLP9RXMN58A26xHQHB9odkh0YsTPxdFCg599Wt/fMM3OO9+\n3fkPz+tQdDJGJ50v/WLH1FtXHh0YKt5ZR082V2Mxzn3Aw0Gg3ziH1f0+UWhN8BshyDbbAsdQhJkH\nZzO+H7l1mQ8DDx9neGzHaY2TlFSqpRi1r+9sBVRbJOkUVTwnCZ+ohu7MtHWjNpVTPg9BOoy8jnCR\n7bBI6FodJdQT4/O8q1YByO0GASgMaQe/i3pJIxBBiXGf/QYfKxvy0fuJe5p9PRDCDSzODxDCGMTF\nKyDjuLPg05i6ZeTFQ4y8gLvBOCgCnMJrULV2rUC/3NZdGLumZN3hVZM5uZVROt8PQO7gK5jzr9EC\npwI75FADq+RSApV7fB9h7l63OzDbA6AUEFlwE56dwTx6ivqbV6ifbiBSheggcV8BwIxTiKNLWtzB\nWdXuA8+QAAPzTkMlktuizoEcLao1pIaY3+8ZkXHsqovezv824GlnPQZSWImZzdLLKYX2DQHwVKiw\nqwh4rvIKSXvd7sU+K4RZXCGRZQt4uCS7z19I1Q1JJu0e+WHo0QRyvMBscoxKRS0SQPiZ8LkL56Lo\n/WfQ0cr1Sz1oRrjKK8xir+LA2U6oPUflv2EACoVn/et7SrmfXfIOsvS9B2HWvAvfk5DaU+Nt3F7o\nfBUfJe4w+DROosTrsMVgXSsHPPm6xz4LiQAAyJisa9M7FAHoFPWyla2EO38HQFgBRUBX7sjbAKAy\nV7d8NJAVGAuALIMjFUn6SEk3Mpda9sajxzBnz1F99Rz10y3q6wLyQMNkFaJF4r4KbYUa7TEQY5AU\nuzkbGNIkG8qGPjDt96ZsVBbUb+PF3gpzAn2R0CFBTo5wV9013QNIc2+ua2/3kK+IWccMqzrYLATH\nwsBDLK26Z2dQNDsk0mcUvMiysCxHXouWyGwijdPpo77l3KsqLM9oWHd16W0HihLQW2C6gSm2UKND\nKKsG4TcAGUx+BiETqMlRS528NhVqUULLkXPm5WMmUKE+DHAFGSlHqabMxCCRdet9hxpzQ8O8LN8z\ni1fI69qRPtgPiZ5XuGuP57S6Gw7HXJXtTeILVzheIETzLdN2+66IOww+AWW0IVYOopsXPGerMPB7\nAP0MiPs4DDjNDmV5PahQAHBZhP7UAVBVgNxs94STsLGLxw3DnuEAbTeo9DIO/FWsFl1VUMZz9hz1\nN6/QXOWorwtUZYRw7XXDp/eOyIzr4D62zQqX+SW+vkxcUzuRu1Yvagj4h8KJRtphRpFhf/bTef9C\nJo79tqufu912+NqAd+JkJQVEgGx20FGFWdz0nD9pzqqdYcx1Y3soY9q4FFuiq+vSZcBGj92GRSmN\nmZpimhxjopauRNntLxohsFNLHGgaqnw42VlqN+zCqt3xsxJH6NsTuqGSavY3be9uj8QRS0EdFI6B\nabgHaRUKjI4hHmiIjv4ag3co60OOvZF1RzWYxGSoJFVfNUIK5SsOu7XL3ociSWZIknuYqENM4iVO\nx2uQH5Ru3ctDKuRDAORnpeAt1V8iAL0KH3cWfGrTbkoWjcHoZlNHH0OLe5h5BIOFRbPDpnjsauFc\nErnIJr2nmMZUbugBENDuuwxprVnNOLHe+sHPoeO1A7TdeQonW5M/8cKgmy1JAzHwWA21qozQVIKy\nnYPESu5IiDdfA956G+LwTaywxmV2iS9fpvjqUlqLhthRvf2AJNNzd3aXXjm/o6FgEMI0cUZtLlxj\nOGgiywTVZI5NddaahC8aiQfjanA2hVXG+byQM2cFbdevA0vJPU4rXGQ7B0JxRAArBRENTP7YL/CO\n0t0BoRyOdDJWGlAHtrS4dZRsAwCRwjiZAZN7qFBhojyJw4GUZQFW8RyFJCO5kSJSykjNiHm3WRLw\nPLVGk0MaZ8E1hbMz4NAuvnw9bLbU8wNIM+3+b6LPBF6AdVeVTtZnXUoksnL9sGk8dnNQLVHSzAJN\nVfiND2si7jlWY6WHpB5jNjnGNDneOys0pCW4F4B4QLgu9m7mXsVHizsMPqJV4gCsiOSLApCNkK0U\ngg6BzRKb8gqPt7Q4rcsRnu4ivL8TeLIFRgH1NVXAQksACfI6xwOLHS0A4giAx/AQKHuQ6BgoS4jJ\nloQ0B3oMXCfnBT4RqVdUtotl+Lwh8DR5g6Zq7yJFqiBODyHefgvi5JNY1c/x/vYKf/9qhF99LvHV\nC4nJqMahBhZJhFRGrbmjkPL7cEILBEvpkNhqVz6G+lWj6XEbgDq9NZHMkGvllAFoF66xLOhD1pEh\ni+TIExvoNfslwBjtciCDVBwtsajXuMoLnGcLY/KZAAAINUlEQVSxK7mJKneq22azBcoYogiEK3XZ\n2lGbcIGrCj/cy5uKyZgM6UZPIccLAiLAgxQv2AD9/+QYxpIGnNKzBR7z3hOYb5LFizicWoFYy34c\nAiM2ZFsT6NRPN2iu6ZzHShJ43vskICNLHihduW1dkuTTNKbMiAa0p6QwUS09+7PYeqAuSn/9VTXM\naufknbwygnTnUkxIaskcXOH/b+9eQ+Q66ziOf3+7m53NZnNPiCGptikqtCioNQgWaW1tYyxWRdEX\nvhBfiFa8oCDRvPGlbV9YvEAqJVix2mq0KJWaWhUEsS1ak1ib1ia9mUvNBbKby2Z3s/v3xfPM7JnN\nbJK99Exm5veBQ848M3P2+ecw859znnP+D739VCpTxtYgFTotzHUENJwSo/q5qEtA88T3+dTr2OQz\nEcUq0NUJtdIXW+3jV5w5MSueepuaeKpJZ3Q8Xe56/OwwB0/3cvB0DydG4bUzqcDnkcP9nBzqTZWl\nK+P0Vsbp7Z1g+bJRzo535/P5UxJQdTbQ6nhTITnEyeHaDJ7q66GrOhsjnJeAQqqVnq/efBlDh6E6\nY2aj7Y6cqxXvrE7HcG40pcSupRW61i5FG96IVl/N4LmjHBk+yZ7j/ew6Lp470Mcr+5eyYvUwi5eM\nMrB4rJaIUsLtqqu8AKksyso+zitfVL0kvHYxQIwx0CgB5ekSzmiEoZFDvHRyAUOjFU6NdZ93STSM\nsSZ/7zYs8zP1BseRU7Uv/J7KYgb6VubEdYpK95nJU26j+YbSsSk/DKqFLRt9yVcnNSt88aZJzc5B\npSdNCbGoHwZOEMUirsWitaNjsCKN12jhcvrz6capiefcK0MAdJ0YoWvZKVi8cHL7hcrrtW0Wks7E\n4Agjx3J9vjWDdC8/lI7iVqwjzeqrPG17F4OjKfmsX5SSfW/3wlSV/MTLdQmnmNyqU6FPDJ6tm5lW\nfT3nFbhVX+57f19t3qTIU1jUboSujnVWBqBrIeOxoHYUNBH1yaD6Y6eagKC+7p/NH13CjNNtSdJR\n0lwXZVgFHCvpb5WlHWMCx9VKyozpTRGxei4bkPR7Up8vxbGI2DSXv3e569jkUyZJf7/QfOytqB1j\nAsfVStoxpk4ywxEOMzOzuXPyMTOz0jn5lONHze7A66AdYwLH1UraMaaO4TEfMzMrnY98zMysdE4+\nZmZWOiefeSLp65JC0qpC2zcl7ZP0vKRbC+3vkvSv/Nz3pHQ3m6SKpIdy+5OSriw/klof75b0nKQ9\nkh6WtKzwXMvGNR1Jm3I8+yRtaXZ/LkbSFZL+LOlZSf+W9JXcvkLSHyS9kP9dXnjPjPZbs0jqlvRP\nSY/kxy0fkzUQEV7muABXADtJN62uym3XALtJs/dcBewHuvNzTwHvIVVtfxT4YG6/A9iW1z8FPNTE\nmG4BevL6ncCd7RDXNLF25zg2kArD7QauaXa/LtLntcA78/pi4D9539wFbMntW+ay35oY29eAnwGP\n5MctH5OX8xcf+cyP7wLfoL4E2+3AgxExEhEvAfuAjZLWAksi4olIn5KfAB8pvOf+vL4DuKlZv9gi\n4rGI2jwPTwDr83pLxzWNjcC+iHgxIkaBB0l9vmxFxOGIeDqvnwT2Auuo/7++n/p9MNP9VjpJ64EP\nAfcVmls6JmvMyWeOJN0OHIyI3VOeWgf8t/D4QG5bl9entte9J3/xDwIrX4duz9RnSb8eob3iqpou\nppaQT2O+A3gSWBMRh/NTrwFr8vps9lsz3EP6ITdRaGv1mKyBji0sOhOSHgfe0OCprcC3SKeoWs6F\n4oqI3+TXbCXNZv9AmX2zSyNpAPgV8NWIGCoeUEZESGqZeykk3QYciYh/SLqh0WtaLSabnpPPJYiI\nmxu1S3ob6Vzz7vyhXw88LWkjcJA0FlS1PrcdZPIUVrGdwnsOSOoBlgLH5y+SetPFVSXpM8BtwE35\n9EWxj1WXXVyzMF1MlzVJC0iJ54GI+HVu/p+ktRFxOJ9+OpLbZ7PfyvZe4MOSNgN9wBJJP6W1Y7Lp\nNHvQqZ0W4GUmLzi4lvrB0BeZfjB0c27/IvUD879oYiybgGeB1VPaWzquaWLtyXFcxeQFB9c2u18X\n6bNIYxn3TGm/m/rB+btmu9+aHN8NTF5w0BYxeZmyj5vdgXZaisknP95KugLneQpX2wDXAc/k537A\nZKWJPuCXpIHTp4ANTYxlH+l8+q68bGuHuC4Q72bSFWP7Sacdm96ni/T3etIFLnsK+2gzaSztj8AL\nwOPAitnutybHV0w+bRGTl/rF5XXMzKx0vtrNzMxK5+RjZmalc/IxM7PSOfmYmVnpnHzMzKx0Tj7W\nliR9WdJeSfNemUHSJ3Il6QlJ18339s06gSscWLu6A7g5Ioo1vpDUE5MFU2frGeBjwL1z3I5Zx3Ly\nsbYjaRtpeoRHJW0nlfO5Ore9KunTwHdINzJWgB9GxL250vb3gQ+QbrAdBbZHxI7i9iNib/475QRk\n1oacfKztRMTnJW0CboyIY5K+TZr75fqIGJb0OWAwIt4tqQL8VdJjpMrQb82vXUMqL7S9OVGYtTcn\nH+sUv42I4bx+C/B2SR/Pj5cCbwbeB/w8IsaBQ5L+1IR+mnUEJx/rFKcL6wK+FBE7iy/I1ZTNrAS+\n2s060U7gC3lKAiS9RdIi4C/AJyV159L9Nzazk2btzEc+1onuA64kzb0k4ChpmuWHgfeTxnpeBf7W\n6M2SPkq6MGE18DtJuyLi1hL6bdY2XNXabBqSfkwq67/jYq81s5nxaTczMyudj3zMzKx0PvIxM7PS\nOfmYmVnpnHzMzKx0Tj5mZlY6Jx8zMyvd/wEF11Qp3r+cqwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot_phase().show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/CrossCorrelation/cross_correlation_notebook.html b/notebooks/CrossCorrelation/cross_correlation_notebook.html new file mode 100644 index 000000000..816b9017a --- /dev/null +++ b/notebooks/CrossCorrelation/cross_correlation_notebook.html @@ -0,0 +1,872 @@ + + + + + + + + CrossCorrelation — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

CrossCorrelation

+

This Tutorial is intended to give a demostration of How to make a CrossCorrelation Object in Stingray Library.

+
+
[4]:
+
+
+
import numpy as np
+from stingray import Lightcurve
+from stingray.crosscorrelation import CrossCorrelation
+
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+
+

CrossCorrelation Example

+
+
+

1. Create two light curves

+

There are two ways to create a Lightcurve. 1) Using an array of time stamps and an array of counts. 2) From the Photon Arrival times.

+

In this example, Lightcurve is created using arrays of time stamps and counts.

+

Generate an array of relative timestamps that’s 10 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset of pi/2 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve.

+
+
[5]:
+
+
+
dt = 0.03125  # seconds
+exposure = 10.  # seconds
+freq = 1   # Hz
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000  # counts/s
+signal_2 = 300 * np.sin(2.*np.pi*freq*times + np.pi/2) + 1000  # counts/s
+noisy_1 = np.random.poisson(signal_1*dt)  # counts
+noisy_2 = np.random.poisson(signal_2*dt)  # counts
+
+
+
+

Now let’s turn noisy_1 and noisy_2 into Lightcurve objects. This way we have two Lightcurves to calculate CrossCorrelation.

+
+
[6]:
+
+
+
lc1 = Lightcurve(times, noisy_1)
+lc2 = Lightcurve(times, noisy_2)
+
+len(lc1)
+
+
+
+
+
[6]:
+
+
+
+
+320
+
+
+
+
[7]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc1.time, lc1.counts, lw=2, color='blue')
+ax.plot(lc1.time, lc2.counts, lw=2, color='red')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_7_0.png +
+
+
+
+

2. Create a CrossCorrelation Object from two Light curves created above

+

To create a CrossCorrelation Object from LightCurves, simply pass both Lightvurves created above into the CrossCorrelation.

+
+
[8]:
+
+
+
cr = CrossCorrelation(lc1, lc2)
+
+
+
+

Now, Cross Correlation values are stored in attribute corr, which is called below.

+
+
[9]:
+
+
+
cr.corr[:10]
+
+
+
+
+
[9]:
+
+
+
+
+array([  201.553125  ,  1412.10121094,  2828.54304688,  3948.95050781,
+        5370.02359375,  5750.04355469,  6222.50101563,  6664.92722656,
+        5969.0503125 ,  6770.80464844])
+
+
+
+
[10]:
+
+
+
# Time Resolution for Cross Correlation is same as that of each of the Lightcurves
+cr.dt
+
+
+
+
+
[10]:
+
+
+
+
+0.03125
+
+
+
+
+

3. Plot Cross Correlation for Different lags

+

To visulaize correlation for different values of time lags, simply call plot function on cs.

+
+
[11]:
+
+
+
cr.plot(labels = ['Time Lags (seconds)','Correlation'])
+
+
+
+
+
[11]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_14_1.png +
+
+

Given the Phase offset of pi/2 between two lightcurves created above, and freq=1 Hz, time_shift should be close to 0.25 sec. Small error is due to time resolution.

+
+
[12]:
+
+
+
cr.time_shift #seconds
+
+
+
+
+
[12]:
+
+
+
+
+0.26645768025078276
+
+
+
+

Modes of Correlation

+

You can also specify an optional argument on modes of cross-correlation. There are three modes : 1) same 2) valid 3) full

+

Visit following ink on more details on mode : https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.correlate.html

+

Default mode is ‘same’ and it gives output equal to the size of larger lightcurve and is most common in astronomy. You can see mode of your CrossCorrelation by calling mode attribute on the object.

+
+
[13]:
+
+
+
cr.mode
+
+
+
+
+
[13]:
+
+
+
+
+'same'
+
+
+

The number of data points in corr and largest lightcurve are same in this mode.

+
+
[14]:
+
+
+
cr.n
+
+
+
+
+
[14]:
+
+
+
+
+320
+
+
+

Creating CrossCorrelation with full mode now using same data as above.

+
+
[15]:
+
+
+
cr1 = CrossCorrelation(lc1, lc2, mode = 'full')
+
+
+
+
+
[16]:
+
+
+
cr1.plot()
+
+
+
+
+
[16]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_23_1.png +
+
+
+
[17]:
+
+
+
cr1.mode
+
+
+
+
+
[17]:
+
+
+
+
+'full'
+
+
+

Full mode does a full cross-correlation.

+
+
[18]:
+
+
+
cr1.n
+
+
+
+
+
[18]:
+
+
+
+
+639
+
+
+
+
+

Another Example

+

You can also create CrossCorrelation Object by using Cross Correlation data. This can be useful in some cases when you have correlation data and want to calculate time shift for max. correlation. You need to specify time resolution for correlation(default value of 1.0 seconds is used otherwise).

+
+
[19]:
+
+
+
cs = CrossCorrelation()
+cs.corr = np.array([ 660,  1790,  3026,  4019,  5164,  6647,  8105,  7023, 6012, 5162])
+time_shift, time_lags, n = cs.cal_timeshift(dt=0.5)
+
+
+
+
+
[20]:
+
+
+
time_shift
+
+
+
+
+
[20]:
+
+
+
+
+0.83333333333333348
+
+
+
+
[21]:
+
+
+
cs.plot( ['Time Lags (seconds)','Correlation'])
+
+
+
+
+
[21]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_31_1.png +
+
+
+
+

Yet another Example with longer Lightcurve

+

I will be using same lightcurves as in the example above but with much longer duration and shorter lags. Both Lightcurves are chosen to be more or less same with a certain phase shift to demonstrate Correlation in a better way.

+

Again Generating two signals this time without poission noise so that time lag can be demonstrated. For noisy lightcurves, accurate calculation requires interpolation.

+
+
[22]:
+
+
+
dt = 0.0001  # seconds
+exposure = 50.  # seconds
+freq = 1       # Hz
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 * dt # counts/s
+signal_2 = 200 * np.sin(2.*np.pi*freq*times + np.pi/2) + 900 * dt  # counts/s
+
+
+
+

Converting noisy signals into Lightcurves.

+
+
[23]:
+
+
+
lc1 = Lightcurve(times, signal_1)
+lc2 = Lightcurve(times, signal_2)
+
+len(lc1)
+
+
+
+
+
[23]:
+
+
+
+
+500000
+
+
+
+
[24]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc1.time, lc1.counts, lw=2, color='blue')
+ax.plot(lc1.time, lc2.counts, lw=2, color='red')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_36_0.png +
+
+

Now, creating CrossCorrelation Object by passing lc1 and lc2 into the constructor.

+
+
[25]:
+
+
+
cs = CrossCorrelation(lc1, lc2)
+print('Done')
+
+
+
+
+
+
+
+
+Done
+
+
+
+
[26]:
+
+
+
cs.corr[:50]
+
+
+
+
+
[26]:
+
+
+
+
+array([  2.86241768e-05,   4.71238867e+06,   9.42481318e+06,
+         1.41372717e+07,   1.88497623e+07,   2.35622831e+07,
+         2.82748324e+07,   3.29874082e+07,   3.77000087e+07,
+         4.24126319e+07,   4.71252762e+07,   5.18379395e+07,
+         5.65506201e+07,   6.12633160e+07,   6.59760255e+07,
+         7.06887466e+07,   7.54014775e+07,   8.01142163e+07,
+         8.48269612e+07,   8.95397103e+07,   9.42524618e+07,
+         9.89652137e+07,   1.03677964e+08,   1.08390712e+08,
+         1.13103454e+08,   1.17816189e+08,   1.22528916e+08,
+         1.27241631e+08,   1.31954335e+08,   1.36667023e+08,
+         1.41379696e+08,   1.46092350e+08,   1.50804985e+08,
+         1.55517598e+08,   1.60230186e+08,   1.64942750e+08,
+         1.69655286e+08,   1.74367792e+08,   1.79080268e+08,
+         1.83792710e+08,   1.88505118e+08,   1.93217489e+08,
+         1.97929821e+08,   2.02642113e+08,   2.07354363e+08,
+         2.12066568e+08,   2.16778727e+08,   2.21490839e+08,
+         2.26202900e+08,   2.30914910e+08])
+
+
+
+
[27]:
+
+
+
# Time Resolution for Cross Correlation is same as that of each of the Lightcurves
+cs.dt
+
+
+
+
+
[27]:
+
+
+
+
+9.9999999999766942e-05
+
+
+
+
[28]:
+
+
+
cs.plot( ['Time Lags (seconds)','Correlation'])
+
+
+
+
+
[28]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_41_1.png +
+
+
+
[29]:
+
+
+
cs.time_shift #seconds
+
+
+
+
+
[29]:
+
+
+
+
+0.2495504991004161
+
+
+

time_shift is very close to 0.25 sec, in this case.

+
+
+

AutoCorrelation

+

Stingray has also separate class for AutoCorrelation. AutoCorrealtion is similar to crosscorrelation but involves only One Lightcurve.i.e. Correlation of Lightcurve with itself.

+

AutoCorrelation is part of stingray.crosscorrelation module. Following line imports AutoCorrelation.

+
+
[30]:
+
+
+
from stingray.crosscorrelation import AutoCorrelation
+
+
+
+

To create AutoCorrelation object, simply pass lightcurve into AutoCorrelation Constructor. Using same Lighrcurve created above to demonstrate AutoCorrelation.

+
+
[31]:
+
+
+
lc = lc1
+
+
+
+
+
[32]:
+
+
+
ac = AutoCorrelation(lc)
+ac.n
+
+
+
+
+
[32]:
+
+
+
+
+500000
+
+
+
+
[33]:
+
+
+
ac.corr[:10]
+
+
+
+
+
[33]:
+
+
+
+
+array([  1.12500000e+10,   1.12499978e+10,   1.12499911e+10,
+         1.12499800e+10,   1.12499645e+10,   1.12499445e+10,
+         1.12499201e+10,   1.12498912e+10,   1.12498579e+10,
+         1.12498201e+10])
+
+
+
+
[34]:
+
+
+
ac.time_lags
+
+
+
+
+
[34]:
+
+
+
+
+array([-25.    , -24.9999, -24.9998, ...,  24.9998,  24.9999,  25.    ])
+
+
+

time_Shift for AutoCorrelation is always zero. Since signals are maximally correlated at zero lag.

+
+
[35]:
+
+
+
ac.time_shift
+
+
+
+
+
[35]:
+
+
+
+
+5.0000099997734535e-05
+
+
+
+
[36]:
+
+
+
ac.plot()
+
+
+
+
+
[36]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_55_1.png +
+
+
+
+
+

Another Example

+

Another example is demonstrated using a Lightcurve with Poisson Noise.

+
+
[37]:
+
+
+
from stingray.crosscorrelation import AutoCorrelation
+dt = 0.001  # seconds
+exposure = 20.  # seconds
+freq = 1   # Hz
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000  # counts/s
+noisy_1 = np.random.poisson(signal_1*dt)  # counts
+lc = Lightcurve(times, noisy_1)
+
+
+
+

AutoCorrelation also supports {full,same,valid} modes similar to CrossCorrelation

+
+
[38]:
+
+
+
ac = AutoCorrelation(lc, mode = 'full')
+
+
+
+
+
[39]:
+
+
+
ac.corr
+
+
+
+
+
[39]:
+
+
+
+
+array([-0.00487599, -0.00485198, -0.99992797, ..., -0.99992797,
+       -0.00485198, -0.00487599])
+
+
+
+
[40]:
+
+
+
ac.time_lags
+
+
+
+
+
[40]:
+
+
+
+
+array([-19.999, -19.998, -19.997, ...,  19.997,  19.998,  19.999])
+
+
+
+
[41]:
+
+
+
ac.time_shift
+
+
+
+
+
[41]:
+
+
+
+
+0.0
+
+
+
+
[42]:
+
+
+
ac.plot()
+
+
+
+
+
[42]:
+
+
+
+
+<module 'matplotlib.pyplot' from 'C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\matplotlib\\pyplot.py'>
+
+
+
+
+
+
+../../_images/notebooks_CrossCorrelation_cross_correlation_notebook_64_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb b/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb new file mode 100644 index 000000000..a10ba20d7 --- /dev/null +++ b/notebooks/CrossCorrelation/cross_correlation_notebook.ipynb @@ -0,0 +1,1122 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation\n", + "\n", + "This Tutorial is intended to give a demostration of How to make a CrossCorrelation Object in Stingray Library." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve\n", + "from stingray.crosscorrelation import CrossCorrelation\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# CrossCorrelation Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "# 1. Create two light curves\n", + "\n", + "There are two ways to create a Lightcurve.
\n", + "1) Using an array of time stamps and an array of counts.
\n", + "2) From the Photon Arrival times.\n", + "\n", + "In this example, Lightcurve is created using arrays of time stamps and counts.\n", + "\n", + "Generate an array of relative timestamps that's 10 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset of pi/2 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 10. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "signal_2 = 300 * np.sin(2.*np.pi*freq*times + np.pi/2) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn noisy_1 and noisy_2 into Lightcurve objects. This way we have two Lightcurves to calculate CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAGICAYAAAAnExYOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXm4LFV5Lv6unvZ89uEMiIBwGASEAKIiKjhg+MVMKsn1\n5iFyEwSMyVXJdUg0RjReImquGm+I8wAkGg03GEEc4uOAwGGUQUEEZD7AGfc5Z++zhx6qu9fvj1Vf\n11erV029u6qr+6z3efbTvXuqVVWrVr3rfb/vW0JKCQsLCwsLCwsLi+FGYdANsLCwsLCwsLCwWD0s\nqbOwsLCwsLCwGAFYUmdhYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsL\nixGAJXUWFhYWFhYWFiMAS+osLCwsLCwsLEYAltRZWFhYWFhYWIwALKmzsLCwsLCwsBgBWFJnYWFh\nYWFhYTECsKTOwsLCwsLCwmIEYEmdhYWFhYWFhcUIoDToBmSBDRs2yE2bNg26GRYWFhYWFhYWkbjr\nrrvmpJQbk35vvyB1mzZtwp133jnoZlhYWFhYWFhYREII8WQv37P2q4WFhYWFhYXFCMCSOgsLCwsL\nCwuLEYAldRYWFhYWFhYWIwBL6iwsLCwsLCwsRgCW1FlYWFhYWFhYjAAsqbOwsLCwsLCwGAFYUmdh\nYWFhYWFhMQKwpM7CwsLCwsLCYgRgSZ2FhYWFhYWFxQjAkjoLCwsLCwsLixGAJXUWFhYWFhYWFiMA\nS+osLCwsMoSUg26BhYXFqMKSOgsLC4uMcM01wLp1wE9/OuiWWFhYjCIsqbOwsLDICDfeCMzPA7fe\nOuiWWFhYjCIsqbOwsLDICCsr6rHVGmw7LCwsRhOW1FlYWFhkhOVl9dhsDrYdFhYWowlL6iwsLCwy\nglXqLCws0oQldRYWFhYZgUidVeosLCzSgCV1FhYWFhnBKnUWaeCJJ4Dt2wfdCos8oDToBlhYWFjs\nL7BKnUW/0WgAp5wCHHgg8NBDg26NxaBhSZ2FhYVFRrCkzqLfWFpSZXLq9UG3xCIPsParhYWFRUaw\n9qtFv0F9yXEG2w6LfMCSOgsLC4uMYJU6i36D+lKzaZegs7CkzsLCwiIzWKXOot/gEwQ7WbCwpM7C\nwsIiA0hplTqL/oP3JWvBWlhSZ2FhYZEBGg2g3VbPrVJn0S9YUmfBYUmdhYWFRQYglQ6wSp1F/8An\nCJbUWVhSZ2FhYZEBaN1XwJI6i/7BKnUWHJbUWVhYWGQArtRZ+9WiX7CkzoLDkjoLCwuLDGDtV4s0\nYEmdBYcldRYWFhYZwCp1FmnAxtRZcFhSZ2FhYZEBrFJnkQasUmfBYUmdhYWFRQawSp1FGrCkzoLD\nkjoLCwuLDGCVOos0wPtSozG4dljkA5bUWVhYWGQAq9RZpAEbU2fBYUmdhYWFRQawSp1FGrD2qwWH\nJXUWFhYWGcCSOos0YEmdBYcldRYWFhYZwNqvFmnAkjoLDkvqLCyGFVbuGSrYZcIs0oAldRYcltRZ\nWAwjnnkG2LABeN/7Bt0Si5iwSp1FGrCJEhYcltRZWAwj7r8fWFgAbr550C2xiAkbU2eRBqxSZ8Fh\nSZ2FxTCCRu96fbDtsIgNq9RZpAFL6iw4LKmzsBhG0Ohtq40ODaxSZ5EGLKmz4LCkzsJiGGGVuqGD\nJXUWacDG1FlwWFJnYTGMsKRu6GDtV4s0YJU6Cw5L6tKElMAttwCLi4NuicWowdqv+YTjADfdBDQa\nnct/3z71llXqLNLA0JG6e+9V2fsWqcCSujSxeTNw+unAe9876JZYjBqsUpdPXHEF8IpXAJ//PG6/\nXV3+73qXessqdRZpYKhI3fw8cOqpwNlnD7olI4tMSZ0Q4lVCCGn4m9c+d4AQ4stCiDkhxLIQ4kdC\niBOzbGtfsHWrety2bbDtsBg9WFKXT7BrnsQIuvytUmeRBoYqpm5uTrkLTz896JaMLEoD2u5fAvgZ\n+78zxAkhBIDrAGwCcBGAvQDeB+B6IcTzpZTD0xto5LbTcot+w5K6fIKudcfpnCJ6ySp1FmlgqJQ6\namCtNth2jDAGReoekFLeFvDe6wCcDuDVUsrrAUAIcSuAxwG8B4oQDgdo5LYjuEW/wWPqpASEGGx7\nLBToDttshpI6q9RZ9AtDSersZDQ15DGm7nUAthKhAwAp5QKUevf6gbWqF9DV1m4Pth0WowcaHKW0\nDCFPIAbHSF2zqf54Toud51n0C0NJ6mo1NXZZ9B2DInX/JoRoCSF2CyG+LoQ4jL13AoBfGr5zP4DD\nhBDT2TSxD7D2q0Va4KO3nfXmB3TNa/YrqXRTU95r9p5m0Q8MJamTcggaO5zI2n5dAPBJADcA2Afg\nFAB/C+BWIcQpUsqdANYBeMLw3T3u4wEAlvQ3hRA/DdroC1/4wlU1umdYUmeRAn7yE2DqZgen0Qu2\nrEl+YLBfm00/qatWlXjfagGlQQXAhEFK4B//EXjxi4GXv3zQrbGIwFAlSuiT0UplcG0ZUWQ6pEgp\n7wFwD3vpBiHEjQDugEqK+ECW7UkdNqbOIgW84x3AH9/HSJ1V6vIDZr8S1261FJEDgIkJReQajRyT\nugceAP7qr4DTTgNuCwp9tsgLhkqp4xPQWg2YmRlcW0YUAx9SpJR3CyF+DeDF7kt7odQ4HevY+6bf\neVXQNl70ohcNxuiwMXUWKWBpCSjD2q+5RID9Si+XSkCx6H10bCz7JkZiedn/aJFrDBWps2EjqSOP\niRL3Q8XV6TgewBYpZZf1mltY+9UiBTiOJXW5RUCiBL1cKnnqXG6HBeswDBWGltTZsiapYOCkTgjx\nIgDHArjdfenbAA4RQrySfWYNgNe67w0PLKmzSAHNJlABszFsTF1+EFDShF4uFv1KXS5hx62hwlDH\n1Fn0HZnar0KIrwF4FCqujhIl3gfgGQCXuR/7NoBbAXxNCPHX8IoPCwD/J8v2rhp2cLRIAc2mVepy\ni4Diw1aps0gLVqmz4Mg6pu5+AH8M4B0AJgFsB/CfAP5OSjkHAFLKthDi9wF8AsBnAYxDkbwzpZRP\nZdze1YEGRRtTZ9FHWPs1xwjIfuVKHZE6q9RZ9AOW1FlwZGq/Sik/KqU8SUo5K6UsSymfI6V8i5Ry\nm/a5PVLKC6SU66SUk1LK35RS/iLLtvYFdnAcDO64Q62kftddg25JKtCVOllv4NxzgYsvHmCjLBQM\nMXW6Ukf2a26HBavU5Q9vextw0UXGt4aW1NnJaCoYeEzdSMOSusHgtNOAW24B/tf/GnRLUoFO6hZ2\n1fH1rwP//M8DbJSFQoyYOqvUWSRCowF89rPApz9tdH2GNqbOKnWpwJK6NGEHx8FiYmLQLUgFuv3a\nXlEz3qUlu0rBwGEoaaJnv9pECYtE4IsGG5KirFJnwWFJXZqwMXXZY/t27/lxxw2uHSmh3VZ/PlJX\nrXfes5PfASPAfuV16myihEUicFJnuMCHltTZwSoVWFKXJuyMN3ts3uw9H8HjTrvkI3V1b/a+NDxV\nHEcTMRIlrFJnkQic1BnULd6Pcl/dyCp1qcOSujRhB8fswUld7ke45KAx0ZcoUfMGR0vqBgxb0sSi\n37BKnUUCWFKXJoaN1PHBY1jBSd0IzgSpS/lIXXW0SN3KyhDHBtriw4NDjPGrVhvCaJgIpW5oEyVG\ncHzOAyypSxPDtPbrzTcDa9YAl10W/dm8YnkZuOce7/8RHDSMpK4xOvbrnj3AwQcDb3rToFvSI+wy\nYYPBpZcCa9cC994b+JGVFWDTJuDss7NrVl9glTqLBLCkLk0M0+B4992qnZwUDRsWFvwE2tqvQ4fH\nHlOncWhLDBqyX21Jkwxw113q4rjvvsCPPPMMsGMH8POfZ9iufsCSOosEsKQuTQzT4EhsILd3mhjQ\nj/N+otRhhEgd7V+1Oth29IwExYdze6kN02SUQBO4kI5Dw8Ew7RaARIkSQ0XqRnB8zgMsqUsTw0jq\ncj8qhGB/JXX10SF1dAqHltQlWCYst8MCDxsZluDGGKSOhKFhiIbxIUKpG9qYOqvUpQJL6tLEMMXU\njQKp04/zCJI6o/06QiVN6JIZ2vHeYL+6/wIYEqWONyy3zFMDkbqQjkPDwTAMxz5Ypc4iASypSxPD\nZGOMov06gjF1RqWuYZW63MBgvwLe/WsolDresNw2UkMCpW5YdqkDG1NnkQCW1KUJa79mC2u/BpK6\n224DHn88xYb1CVypGxbnzweD/Qp4p8ik1G3fDlx/fXZNjISm1N13H/DLXw6uOYHYskVl7QOJYuqs\nUjdAWKUudVhSlyYsqcsW+4H9aiJ1IqKkye7dwBlnAG94Q9qtWz34pTKUp89QfBjwkzpdqXvLW4BX\nvxr41a+ya2Yo2EloOy288pXAmWcOsD1BOOcc4OUvB7Zt8w5wiPozqkqdLqzmejJklbrUYUldmhjG\nmLpRsF8nJ9XjCNqvppg6br8uLnZ/Z/dudWj4srh5Be9+Q2nBRih1puLDzzyjHnfuzKaJkWAnoVlv\nYe9eYG4uh8PY1q2KwezaNdpK3fKy9zxCqQNyPi+3pC51WFKXJqxSly1otJ6YUI9DKfWEw6zUhduv\ndEqHgePyS2UoSR2Lo3UanmRCx96k1JEQk5v5FDsJzXrL9HI+QNd3vW5j6hhyPYRb+zV1WFKXJoYx\nUSLXI0IE6Djvd6Qu3H4dJlLHb1BDOZFnOyAd77kpUYI+mjtSxxrSarRML+cD1EEajVjZr6Na0mRo\nSd1QXuD5hyV1aYJfbXkfSUbJfh1hUqfGRIkyvPMkHKvU5QZsBzipo/uXKVEid6RuRJW6obVfEyRK\nAENE6kZwfM4DLKlLE8NI6nI9IkSAjvEIx9Q1m0AJ/lF8lOzXUVXq6NibSprkjtQNg1InpddBOKnb\njxMlqF/legi3Sl3qsKQuTQxLEU8pw0ndF74AfPWr2bapF9AxHh9Xj47TIXq33AL87d+GD3hSAv/7\nfwM/+lHK7VwFmk0tSQJAISapa7cz6oaf+hTwzW/29NWoRIlWC7j4YuCmm3psWz/RbALvfz+webP/\nNRcm+1VX6qQ0k7orrgC+/OW0Gh6BYSB1dPAAq9S554UMiqEhdVapSwWlQTdgpDEsRTyrVW+k00fu\nWg1461vViPEnf5J925KAT1krFS/WZnwcp5+u3nr2s4GLLjJ//b77gA99CHjhC4E778ykxYnhON2k\nTjTjxdQB6nDQ4J8K5uaAd70LOPRQ4L/9t8Rfj7Jff/Yz4NJLVXmygdd2u/lm4CMfUTMGakzAmk1B\nxYe5WMHzqi64QD0//3yPBGYGbr/mldTxA8dj6mIkSgBquCsMi6QRM6ZuYkJlvw8NqbNKXSoYlm49\nnBgWpY4zAX1EWFlRI+Dycv6nuNS+QkGROqDLc3zggeCvUzmQfftSaFufYFTqYsbUARlYsHRT5WUY\nEiDKfl3lz/cXe/eqxx07vNcSKnX8fk1f5f1vIMMGV+ryGlPHVR4ao4BYy4QB+R/KfIip1HGDIrew\nSl3qsKQuTQxLTF0YqeMz37wHZdFdp1gExsbUc23gCFtGiz7Kx9C8Ifekjs5BjxuKUuroMspFV6SD\nPTfnvcZ2oAgzqeNKnYnULSwYfy47sI3m1n7l5I0XZ0yg1A0NYsbUDZ39apW6VGBJXZoYRqXOZL+a\nnucRMUidqTgvgXYvFypQAEz2a4HZr47TTXgyJXVsQfvVfB0IjqkDckbqdu9WLEFK33XOz1NQSRPe\n13JD6thJaDujQ+r4UJDn4bgLIUqdlEMcU5f3+8mQwpK6NDGMpC5Mqcu7XG6yX0dYqWuUVZZvsRm+\njwMhdY1GT+sV8cvENObnktS128qK1eSfUoBSF2W/clI3ECI1DEodv655h4+R/QqMjlJnGvJyTer4\nhVuv53xNs+GEJXVpYlgSJeKSurzPrExKnXb3DyN1vJZprm5gDD5SV5kGABSdHJG6Vfb5KKUul/Yr\noCxYrdOYSJ2eKJFL+3UYsl9Xab/meTj2od0OdUvonBSLQLmsnuea1OmNy8WFPFqwpC5NRMTUPfoo\ncMopwLe+lWGbTIhrv/ZBqXvb29TC8qlM0Pi0tQf7lX80r4Vvuf1aL7ukLo9KXY8bi4qpy6VSByhS\npzEFOk9vwhX40r0vxjrsjqXUzc93v5Yq3vpW4JxzvItSI3VX4jx8GReGEqG771Zj2Y03ptTG664D\nXvAC4JFH1P/8YuUXda0WOLisJlHi4x8HXvGKAcxr9YvA3YnFReBlLwMuu0y9XCoNKanLu/szhLCk\nLk1E2K/f/S7w858D//7vGbbJhIyUOscBPvtZVcKMEgf7ij7F1AH5tWCbTaACxWga5SkAQKHlZzj6\nPmaacBZQ0iMuorJfc03qApS6P8Y38BsrP8NLcFs+lbqvfAW46ipvw2yj7Wod5+FfcSEuR7MRzIS+\n/301ln372ym18ZvfBO65B/jJT9T/vHPos5iATr4ape4971G1EVPbvyDoA5G7E3ffDdx6K3D55erl\noSN1QqjHvLs/QwhL6tJEBKl78kn1uHt3Ru0JAh8UWy3/TLePSt0zz/g303dwUhdQ0iROTB2Qb1JH\nCpBTHAcKBRRk25dpOcpK3TDar0TCS2gmjqlLndS1297BpKwNXpal5l0UrZXg65+GidTu0TxWEwhW\n6oBAmb0fJU1KWVd21bO23J2gw0G7PnSkblq5DFap6z8sqUsTEfFFW7aox127MmpPEHQWEBTYtMoR\nm/YXSGngiWG/xompA4aD1LVEubOfYwguazKwmLpRV+o4mQixXzmpS6rUpW6/8gNJHYevX8tIXbsa\nfAOmyyy1sAXqS7ShoJg6/b2Al3sldcRFMgN1EOo07k7oNQ2HjtTNzKhHq9T1HZbUpYmImDoiObzM\n1UAQxgJSInWp3JRD7FdSR8K2OwykjsfUNQseqSPiAAy3Uhe3pInj5CBxjh/oXbuGU6kz2ZgBSp2s\nRmeWZkbqVqnUJTmu/PqhAr+ZgTrIAQeoxwClbugSJYgdW1LXd1hSlyYi7FdO6gZ6gwpT6vpov6au\n1JnsV7fNcWbYw2a/NkW5s5+jotTFtV97/Pn+IiJRQid1ZTj5Kz5sKg2yCqUudfvVtCG9wweQul6V\nuoGu8EEdZN069ejuhN73h0Kpa7e9A2/t19RgSV1akNI/cmijQa0GbN+unjca4bZg6giLrB8mpc5k\nv7ob4qQuiEDrSt3y8oCzYPfu7eo3ubdfkyp1tZovbihoPkFxp/xwpLYve/bEm2VFxNRF2a+6Ukfn\nKVP7NUKp4zfdXCh1dNJ7sF/rdWAG+1CCk4icZXo+9L6nkzpNqSMMBamjhpVKnuQZ856ye3cOlPkh\ngSV1aUEfNbSp4dNP+98eqAUb134dJqUuwH4FglU4XbQ4+WRVpmEgg8kzz6iB/NWv9r0cZL+Ood4Z\nJ8M4eu6Uupe+FDj++M5dyqTUXXUVsGED8OEP+y+jVPblppvUxj7xiejPJlTqcmm/JlDq+POgn8mz\n/VqoLuNxHIHv4vcSKXWZlZi59VbV9y691HstQKkLI3W5iDc1gc5hueyRuhj3lOuvV4flk59MsW0j\nBEvq0oJ+1WmjMyc4QM5IXZBcskqljrJ9gQyVOnfQ4Ief3zQ5+O7t2KHqCD70UErlV6Jw/fXqUSv8\nFWS/VtAIDFPJtVL3y1+qi8G9AEwxde9+t3r8wAcyUOoeeECx+Pvvj/5swuzXMpz8lTQxKV6rUOoG\nYr/qHSGA1K2tbsN67MHJ+EUiUpeZUkd97557vNeog8zOqkfHAdrtrvnSUMTUcVJH43OMDnPnneox\nziVpYUldekhI6gaaAZuBUiflgGLq3AGfD+JBpI7v3rZt3nNORjPDQQd5z1lf8pE6+JW6KVW2Lh9r\nv+obNqHd9j7vkjrTMmF79nivpU7qeCZGFGIWH16NUjdo+1XU48XUZm6/ho1FAUShXVe/MY2lnu3X\nVEm2yX+nDjI15VO3htp+TajUkeBhcyriwZK6tBBB6nSikCulLmjR5VVcVfPz/s1knf2aVKnjpE4n\n4JmA+8WsMT77VZhJnT5ODsx+jdoYb1iIUkePxWIG9is1IIpNNRrqr1BQDVtY6PL1TfarrtTxMmR5\ntF/jKnWpJ0qElTTRYWCWUgJw1HmYwgraTvwDmxnJNnUA6lOTkz51y0Tqcr/2a49KHd0bbU5FPFhS\nlxb0q07T+4koTKo12fNB6qjKd1BdiVVcVToxyrpOXRxSF6TUDYTU8QPEGuArPiwqvpIm1JcGSuqS\nKHW8MQalTr83r1uXI6WO2NjMDLB+vXq+Y4fvI0TqKImFsl/DlLpms7sWeKqIUuoadfNnA34mNaVO\nt18TKnWNhnfdAIBcjp/enhmpC1PqJid96tZQZr9apS4TWFKXFvTROMB+ff7z1WMuSN2aNeoxhexX\nnRilrtRp9uvQKXX87hFI6vwlTYjUDdR+TcK6DKQurPjwAQdkQOqoAVF3RrpmpqdVFDcQSOqSFB/m\n5TN4c1JDhFLnI3UhN+CBFh/WYWhEreav5Zik3EBuSF2EUjdUpM4qdanBkrq0EDOm7gUvUI/Ucffs\nAa6+OuMMJhrg1q5Vj0H26yquKt1uzjr7lQulPJuNI4zUPfww8IMf9LGtUQggdT77VYupMyp1W7fi\npMeuAaBSeDNX6u69F7jhBv9nfvQjlYGSUKk74IAM7FdqQNTdm66ZmRmP1FGNIhdlOCighSJUo+PE\n1OkTjtSUOjoHCZQ6X3wdVBzwN7+pPp56okSSmDoDqavXNaVusTdSl6pyGmW/hsTU5SpRYvNmdd3r\nMCl1CUhdan1r3z7gP/5jwPWr+gdL6tJCBKmjkiannKIeqeN+5CPAf//vwLXXptw+Dp3UpbBMGF/3\nFchn9iu/T/DElSefBI45Bvjt31YZsZmAj8yMEXdlv0aRune9C++44Q/wEtwGYABK3cknA696FfD4\n4+q17duB3/ot4Nxz/Y1xD/jAlbq49itX6sh+3bnT95ESmj51SC8+HIfUpaIM0Tl44xtXpdR98IPA\nG96gJjupK3Vh2a86DO/Van5SJ5YWuz4ThMyVunrd20+y+Tmpq9Xya7+urABnnQWcfXb3e5zU0WAV\nNMNmSF2pu+wy4I/+CPi3f0tpA9nCkrq0EBJTJ6U3mG/apB6p4+qPqYMCeYRAJ9I+BftVrw2XtVKX\n1H7ltel4Kn2MMag/iGO/wrNfy3DMpM7tSM+CsgYHFlP34x+rR6oiunNnpP1arfrPydRUhokSUR2U\nyn9MTwMTE+q5ZunppC6O/ZqJUrdjhzoH27dHKnUFJ1ipI2GS/0yrldK1vUr7tV73269iOYf2K/9x\n2ig9rlnjG9PCEiUGWqducVEdbNMNjJO6k09Wz2+/PfTnmk2vpFRqSh1VNh/4ep39gSV1aSEkpo4u\nulIJeNaz1HNShqjfZzbbokFyfNw81euT/apfkKkrdT3E1AXt3kBW+4hhv3JSV0HDXNLEPZfjqHW/\nlwaCpLSf/Uw98kD3CPvVcfziV7udoVIX136dnvZuttrMpQyni9Tlwn4lQrqyEq3UOcFKHbVd/5lU\nbr5x7Fci1wExdVypQx5JHR93afZIG5+d9Sl1JlKnzWMHg7BJEb1WqQBnnKGe33JLaCfnC2yktl9x\nr/khgSV1aSHEfuU8isJxaJIQVyjoG6gxY2MeqUvBfqXNpJp2HzOmLo5SF4TMrvs42a8aqTMqde7v\nUAbmwIoP04w8gtTpx/epp7znrVZO7Vfq1IaSJrr9mlSpS6W/UduXlxMpdYWG/wKhtus/k4oFG8d+\npQK9hvd0pa6QgNRxdT6TOnVAt1K3dq0vucBUfHhoSF25DBxyCHDEEWqCYYq/c8HFs9SUOkvqLGIh\nhNRR5xwb81Z/2bPHb11k1r+oMRkpdTMz6jGPderi7F5mZFu3YtxGh5E6Y50693cyU+p4u7nEed99\nah+oAVTnjWBQ6oBuUpebOnUxlDqT/ZoLpY7a7jj+cxRlvzb8FwiFe62sZEDqwpYJIxCpi6HUDZ39\nypW6PNuvdJ5are71FTmpAzy1bvPmwJ/LhNTRoDLwDJP+wJK6tBASU6c7nmvXqrfn5wdov46NeRJC\nCjF1OqlLvU4dG+H0JYGSKHVU5YWQGdnWN+Sqddx+bQQodSb7NTOljrMQviZnuw3cdluwUmdIlAD8\npE63X1NRJHpR6ojU8UrCMNuvXKmr1fz7mzmpA/xr4Bns12IMpW7fPvNKIH1FHKWOLtYYJU1ySerC\nlLrZ2ciSJrlS6vTnQDepe/nL1WNMUmft13iwpK6f+Pu/B772NfU8hlJHEy9uwcYVClYFKYH3vQ/4\n1rfMSl2fig/fcANw0UVqE/RVGnezVOq8Qy/xYbwfpz55tfHrpt078UT//wOxX4EOqfMpdTKG/Zq2\nUnf11WpRVpqV8wOkL7R+001e49ptv0xVrQIrK10khrLEgRzbrzGVOr34sKkmXab2K+Bfg82k1DWZ\nUuf4LxDaXX1t5FSVurCYugj7lSt1hZUhJHURxYeHjtSRUnfTTWr8+OEPgXe8w/e9TJW6oJN7333A\n//yfA17LMz4sqesXnn5a5fj/1V+p/0MSJbj9CqhSDYAaHDNR6h5+GPjYx4CLLzbH1PVpmbCPfQz4\n9KfVmvSZKHUBpI6u2SPxGN6Pj+DtT72n66tSmnfvrLP8/w/EfgU6qYac1HGlLrCkSdpK3d/+LfDh\nD3txf0FKHaDSiHkD9AyUubnImLrc2a8zM7Fj6nSlTj88zWb3a5kqdcvLXXJosRmt1GVK6vqk1MUl\ndY7j/7lM6tQBisy1WupcCaEmDxGJErmyX/Xn/H+6zxx3nNqvbdvU/n74w8A//ZNKnnDBSZ3jdC3M\n1B9ETeQ+/Wng859XIsgQwJK6foHS9ChdJ2aiBOBPHsiE1NEotbTkV+qi7NeEU0AKMF5a8r6aakyd\nyX5lSt0BBSWNrG/t7Do9Qe1505uAu+4CXvMa9f/A7Ff3APaaKJGaUqdXnQ1T6rhka3p/bi4ypm6Y\nlLoyHEyVumPq6DIzKXX6PqVO6rhSByhix84hJ3VFx0zq9J/ou6LSbnvXdpyYuj4qdZkopwRdqaMO\nsmZNV+0k7F17AAAgAElEQVRNU/Hh3Cl1UaSOyCqg7jPUL1mH0quMpBpyEXRyqeTJQMogJIcldf0C\n9T7H6Q6WAXxTDF2p4wJZJvYr/Xi1Gp79SjXsCAlHa7oGeL2xzJW6RqPz8tqKugtNYxnbHvPP5ukw\n0PK3hNlZteoHVUsYmP3qNtBX0kTGKGniNjg1pY4OCB3kMKWOF1U1vc+UOuLkQ2W/ajF1JTQxXUlm\nv/JyR/Ra3xGk1NF7QUods1/bbW++l7pSZ8qoDst+7aNSN1BSR7Ni2q+I4sO5I3VR9ivgL0ND540d\n9ExIXZT9Su0ZkhUnLKnrF3jvW1hIpNRxUpeJUkc/ztmWKftVHzhXQeoyVeoCYuqmC56SsvW+3b6v\n0q7RohoEcnRMImaqCJASffZrnJi6tJU6ndTxduusJYFSRxN4vvJWLu3XiJImU5Vg+5X2lboqJ3V0\nLlOtUwd0y2xLS759L7XMSh0fCvSf6Pu9T1+8mMdK0IAChNqvulJXrOaQ1AVkvHdIXUTx4VyQuiT2\nK5CY1KUSVxc1kbOkbj+FTuoSxNRlTupoROA3WW6/ciWPI+FoQfe9Wi1jpU6zKogITAnvprv7If9o\nQbs2NeXdo2dmPFUlVeXEhBj2axJSl5pSpyt0JqWOBu5azd8AndTt2tXZbSJ1+qZyrdRp10cZDqbL\nwSVNCMRFTKQu00QJQJ0TdpBLPvvVe875a+r2q2mCo2deAaH2a5dS1yOpy7ROnU7qhiGmLon9CvjX\ngKXzxg66npswUKUutUyN/sKSun6B975VKHWZ2q/NpjfAmxIliNTRaNFH+zX17Fc2wtHLnNQtPOIf\nLTjRphsqjaWAOTE4VdCGiBAZ7NeG9NZ+raDR+ajjsBJRWvZr3wfFMKWOSBsdyAT2q4nU8dAqYMDL\nhJlIHcHtLCU0MVUOVuoIJlJH5zL1mDr9IGrqqk+pa3rXPyd1+k+kqtQBqg/RBctJ3bArdVGkLqT4\ncG6UupTsV14GqO+IiqmzSt1+iij7NWZMXaZKHeB12DD7ldJzQ0aLm29Wi97fcIO3CR5Dr9uvqdep\nM9ivnNStbDErdePj3hK4nNRlbr/ShjT5LUypK5cNs/XV2q+XXAK88IXBA5o+Cwkjdbr96pIL6UpX\nj9y6q3OuuKtGyFSp66X4MMGdrZXQxGTJHFP3JbwZ38PvAJDZkLqnngKe9zzgK18xB3zTta8tblxq\nc1JnVup09P3Gq1901P5SyTtQgBc7ESOmrpRHUhdlv5IK8KlP4WM/fCHG4e1nbhIlQuzXW25Q/1eb\nBqWOz/wNpO7gg9XjQGpTWqVuP0WfYuriCgWrAv9xinLmxYd1+5UGy5BO/cMfqkopP/iB+p/HjA9E\nqYsgdY2tflLHQwtNSt3A7FeSrAwxdfW2n9QZB/bV2q9XXw3cfTfw4IPh7QyzX7lSZ7Bfd4kDAQB3\n/Xhv5+d+8zc9m5L6TC7tV+7XE9wLuwwnUKk7B/+O38F/YS3msXGjej9V+/XWW9U5vPpqM6lbv149\naiyGK3WlAKVOR6qJEoCnJo6P+wk17cO+fV2rGXQpdbV4pI42VSiYm9JXBCl1NP6edprqGM0mjlq4\nG8fBuyaHwX69+XrVsKe2G5Q6voCwO7EgI0kIdK6RVHhVmP3aaHgbHUWlTghREUK8RAjxh0KIc4UQ\nrxFCbFpNA4QQ/yWEkEKID2uvHyCE+LIQYk4IsSyE+JEQ4sSg3xk4OKmbn49VfDhMqctsRkgz8zCl\njqSEkEJB9JN0XfL7hilRIvXsV1bShJo8CXYnmjMrdbmzX7W1v7rsV0bqjAP7aosPm8iaqZ0mhYv6\nT5BS55K6bU01Yh8gFjo/c+GFqg8tLqrapLSJzOxX3evVQaxmaiq2Usdj6kg1KsPBUUd5m05NqaNz\nMTdnJnVUAV1T6spt1n6m1GmJvj6kbr8S2Rkb8xPqAw5QB65W62KdXUpdTFJHh4rMioEqdS95iZqE\nn3YaAP94lnf7dedOYH5OncelhoHU8X7n7jf1selpf1hu3xGmzvNJzpCQulLUB4QQRQB/AODNAF4J\noAKAF36QQohnAHwDwJeklI/E3bgQ4o8BnGx4XQC4DsAmABcB2AvgfQCuF0I8X0r5tP6dgUNX6rgt\nAOQr+9VE6sJi6iYn1fsUE6XvG/tJuinx+waVvhIC5qWs+gWT/cpi6vggWJyfg5ReCROu1NEkf6BK\nXQ/2a5dSx4hJz0odHVMTu5Cy+33T54Ji6txOsguK1B08vdA5vsWid33wbNHMlDpAHWxdhSMQaaBr\ng8P9v4QmJop++7VQAEpFiYp7DstwcOSR3uZSI3V03HftMg8uAUodR6kVT6lL3X4NUuoqFUVOn3pK\njcc0IUL32q+lqhbPGQAax9auVeXKMkuUmJ/vJnWA2kd3Zpx7Usf2Z/Nm7/gv1w32K8+2cfebRziw\nxTT6jzB1nl8Po2C/CiHeAOBBAF8DUAdwMYD/D4qIHQPgJQDeCOBqKOL3gBDiS0KIZ0VtWAhxAIBP\nAXiX4e3XATgdwJ9IKb8hpfwv97UCgO7lAPKAHmLqdFLXaAzAfuVKXZD9Oj4eeVXpBd85qeOb4IWW\n+46gRImmYmlT8OSFWWfOeL0GKXUDK2mSwH7tGthZY1NR6vhrYbPdCKWOSN2atqfU8WQCsmEzJ3VB\nJ1tKj9VMTATarzqpK6EJIdQjIYjU9d1+7VGp4yjHJHWZ2a9jY2ZSBxiVeJ9SV1+OtTwBJ3WmpvQV\neumWHTvUcz4QAZ3O4Zuk+ktzDg4BMXWc1O2rGZQ6XuzQQOpYjkj/EWa/DqFSF2W/XgbgMwAOklK+\nXkr5SSnlT6SU90kpH5FS3iGlvEpK+S4p5TEAzgCwHsBbYmz7HwD8Ukr5DcN7rwOwVUp5Pb0gpVyA\nUu9eH2fHMoWUiWLqcmW/8pi6IPt1YsKfeh7yk3TP5omNfBOpxn3wOnWFQmd/2jW1MT4IbsAcnnzS\n+ypXT+mGymvW5cl+pZuTSaljrrOvsT0rdWGkzmS1mD43M6Mk0WbTPzBqpG6y6VfqCJzUZWa/AsGk\nznFUY8pl9Rdgv5bh+JU6oX672PZ+NzOljq7b5eXu+oGAR4ZClbp4iRKZ2a98lgiEkjpdqRNSxmpo\npqRO/3Faei8GqSuV/MN3KstpxUGA/cpJ3WLVQOpClLqZmYyUOtPJ5ZOcUVDqABwppfy/Usrg6RuD\nlPJ2KeUfAvh42OeEEGcA+FMAbwv4yAkAfml4/X4AhwkhDAUPBgidxC0soL6cw+LDTz+trvagmDpd\njqJBb2IiUtsPi6kLC9vrK3idOqAz4Mu6mdTRmAnEV+oyt181UndE4yGsgbophyl1jQb6o9SF2a/8\nYIQNjNwm42xfs18nnZwpdfq+7N2rCBG3XoHQmLrxgt9+BYASi1MbQwObNnmbS91+DUIflDrqqpnZ\nrwalrj5jIHXPPAOn1vIpdQBiLfuUCqlrNoGtW7tf1/czIakTwj9pfuaZDMcrgmFStLQEPHXXzk57\n91UN9muPSt3evd2VkRKDxjjDTWn+yRFT6qSUPV2eYd8TQlQAfAHAJ6SUDwV8bB1UHJ0OovMHGH73\np0F/CZufHHrZ64UF/NM/9lZ8ODX79fbbgec8Ry3AbrJfTcuEmezXgBGbftIUU8c3kapSx+1X2iCA\ndlXd0CZkMKkzlTThSt3A7Fe+9tc11+DexnE4Co8BAKrtsfCYurSVOpP9avrc2JjXf7gS5I7Ge7AO\nbQhMtpchHVfNMih1mdSpC7JfWy3gxBOBU0+NJnUsps5H6gxK3cEbHd8SdKnbr0GgmLoQUhel1IVU\nFFkdYma/1mUF//I9l9RR3dB77wUOPRR/cvc7fUodgESkjnhVX0j2294GHHoo8JB2+6P+RtlktPBx\nTFIHeIfjnnvUJv7yL/vQ3iQw2K+/uvpXeLr9bLwdnwEALKxE2K/VKuA4kTF1zSZwwgmdvJHeETAh\n3bUL+Ou3jBip4xBCHCOEeDH7f0II8VEhxHVCiLcn2OZ7AEwAuDTBd/INA6nbvSM4pi6OUtf3GRYN\nIA8/nDz7lSt1Me3XKKUu9UQJ2iAAWVVtnmCD4EbswpYnvbIHnGhfeCFw9tnAa1/r/XQe7Ff5oDqH\n23AQrsCb8DCeGzumbkLUOj+byJqhD5u+1ItSx60/txPUMI4FqBvXVEu9PzClLqh46vKykj5+/WtP\nGiDmFVLSZEz4Y+oAv1L3nIMcnwo8MKVu3Tr1GCJ7lKXn65lIHWWIpm6/cqWOHfs9SxU8XdOUuocf\nBgAcvPRQfpS6Bx9UITuPaDmF9OMnukUeaL8TkDo6HPfdpx7d3c8OhutH3H0XivDGj/nlCKUOABYW\nOl0xSKnbswfYtk0dzlXZzQFj11NPAVOtEUuU0PBpAG9g/18K4N0ADgbwKSFEkJXagRDiMADvB/AB\nAGNCiLVCCNJD6P8ilErXpcZBKXiAQcWTUr4q6C/uDvYMGkBYXAopDh3EUOrq9VAleHWgkZbLgUB8\n+zUiqCEOqeNjcOqJEkDnzihX1H5wpa4CBzsf9W5gnGi/7GXAt76lZrqEPNivtB9fwp/hAlyBZrsQ\nXtJEs197sr7jxtRFkTrqP4Z4rgYqHVI36ahBlJM64ugDTZTgLIZUoCClzu13JTQxLrzrhZQirtQd\ncqDT2b922xsb+r72a9QNicoWRREd90IJU+pSt195TB079stOBXPQSJ3bmHKzuiqlrq+kjsZVvQPT\nfp55pv/1mIkSgHc4iCNl5iwQDPZrad4veuxZZpMgk1IHAPPzkUoddYOY4ZHBCLjptlrALEZYqYPK\neL0ZAIQQBaiYuPdKKV8I4MOIlxxxJIBxqGzavewPAP7KfX4iVOzcCYbvHw9gi5QyXpGhrEADyNFH\nAwDkwgLQSh5Tx/tM38kDJ3W889KGTPYrT9ONqdSZ7Fd6L3WlTid1pNS5bZ5o++9Ei497g41OtHUM\n3H6t19FeUY2sQg2ErRYS2a89ZcclJXVB9itt3BCIz0ndtDszHliiRBxSt3Oneoxhv5qUumLLe+3g\njY7KiC35N8Mt2b4gTKkbG/M2GBWg5F4oebRfV5xyJz5T7nKvbXe/y61aR6mrwh14B03q9HPSA6mj\nLqjbr8SRMs+ENdivOqlbbpS9/mNKlACAhYXImDo+lMQ4lcEImJDuD6RuFsBu9/kpUEra1e7/P4Ui\nbFH4OYAzDX+AInpnAngEwLcBHCKEeCV9UQixBsBr3ffyBY3UYX7eV7YAQCyljveZvpMH2qiu1BFM\n9msCpS6spAnfRKpKnW6/dqqVq/0Yd5U66Tai9rQ32OhEW8fA7ddGA213P4jUtduIbb+OyRoqZUk/\nFR9xEyXo+SqVOiJ1ubNfw0hdiP3qK6Phjgmi6Z2XAw9wb3zu/tLhTi37lcADRsfHvQ32QanL1H5l\ng+hKVXSUuvYuv1JXaXlK3R4yfGIwAeK4tG99OR90LvSxlPrbSSd5drgQ3Qshu2PCJFY6fE8ndeSO\nDFSpc5+X9/lJnYMydhOTCLFfTUpdKqQuoKRJF6kbQft1BwCXteC3ADwqpXQjOTEN6CymG1LKeSnl\nT/U/9+0n3f+XoIjbrQC+JoQ4RwjxGvc1AeD/JGhzNiBSR6XhFxY6A7ik6rYxYur4QJmZ/Urgy4Tp\npC5GokSY/co3kalSxxeLBjBOSt1hhwFQs3k9fDCI1OXCfl1W+9EsqkaalDpfSRPWiQqQmKyoxvdN\nqeslUcLABjipm4W6GxXYyJSLOnW83VQ/LEb2Kyd1HfuPNXzjWj+pA/y1s1NT6p7FSokmIXUxlLq+\n3/vClDrq8JUKVlbg2a8aqRtrVzvnYi9F9vSQKJGJUlepAKef7m24oN2m3X43heWOa67H1A1MqTPY\nr5WFblLXCUMPkqQDlDqT/Qr0SamLsl9brQGw5ORIQuq+DeCjQohPQMXS/Qd770TATcnrA6SUbQC/\nD+CHAD4L4FsAWgDOZEQyP6AeesghwNgYRLOJGagpnqy4vdGg1GVqv3KlztQxuVKn2a8PPTWB3Uvs\nqpIS+MY3gMe8Ux6H1Oli4MMPA1dd1bVMYzSWl4Err+yW7HmdOtog2w+yX4VL6tZjDs884/tIru1X\nSvholj37VZbN9mujga5ONFPuoaxJv2Lqgg4sgDrGGKlb8BEcICd16sKUulLJf+NlpK7MSF1Rdqe2\nb5jtJnWVin+f+wKdaR14oPeck+6ogce9wGkJJz4JClLqvvc94M47E7aXI45SV6lgeZmRut1++7XS\nriVW6qRMidTRudA7MP14qQS8/OX+DXMw+5Xezk1MnSG0Z2zRT+pmsdAJSzWtTgTAR+pmx2o45d5/\nwUbsHKz9CgyFWpeE1P0NgO8AINWMZ6++DoqA9QQppZBSXqy9tkdKeYGUcp2UclJK+ZtSyl/0uo1U\nQT10w4bORbjedarbJXfqZIip0+3XgSt1AfbrP352Aj+5hRGkO+8E3vhG4J3v7GqvKaaOb4IH8r/9\n7cA556iqA4nw1a8C558PfPrT/tf1OnWaUjdGSt1zngNAnSMqQBxlv2au1BnsV+nuh1PySF2r6JE6\nIYLtVwCYLvdQ1iRpnboopc4Av1K34IunA/wlTQZWp44vdqqTOgCSk1b3eRmOf+1UMjNYw5+9ISNS\np6tCnNRxpS4KmlJHuWGAOfv1/vuB3/s9VQmmZ+iDIU/uYqRuZQXYDVWapbBnzpd5wpU6+kxY+Rba\nDyn9RkUmSl25DLzqVer5wQd3f5+RuoMOUi+RYqfbr3lQ6saW/KRuHms9pS5oXGCk7oSH/hOv+cab\n8Df4WDpKXVz7FRiKuLrItV8JUsplAH8W8N7L+taiYcQf/RFwzDHA8ccrUrdzJ9a5JfVMpC5IqRso\nqTNlv7pXyh5nGvvA2AIFRLA4iF6Uuu3b1fNOfEVc0Iigl5IJSJSgA96xX9070SRWOrXqopS6zGPq\nTMWH3Zi6VsWzX5uFCkrwVpkIJXWlfCp1olLBQiMnSl2SRAm2tqgsVyB4uAIUiSvxRAnZXVl87ZSZ\n1PV9EhFXqYv5O3Q4Nm5UNc0Bs/36/e/30FYd+kGggWP9+i771UEFC1iD2dY+ddc3KHVPYJP6DjU8\nANz+4+sPrwo8VZMzFCn9St2ppwL/8R/Ascd2/wYjdZdcAvzWbwG/+7vqLd1+zUP268SSEj0+/8c3\nYO3W+3HtDa/HK3X7VQcjdWsa6sMHYTvuTVOpi7JfgdEidUKIxwD8gUktE0L8BoBvSynjJEuMHs49\nV/0B3Upd2b2ZGdZ+DUuUyNx+NWW/ulfKEqZRAyNIdDdljQxbJoxvgit1dCEmvjnTvug3qqBEiWoV\nJTiqzlax2JnWjqPWIXVxlbqB2q/u/rbK3kDotIsoo6DqQLVaqFQUAzLZr1OlHpQ6GvBMhaB6iakz\nQIzFJ3X851NZMqgX+xXqOifbo1kaRwndMXUltNTNm58AJyOlTr9WNm70nidR6rRECa7UmezX225L\n2E4T9IuOztGGDV1KHaAs2FnsU5M+mtBJT6l7hELDefVxAzipo/Ox6nHZcbx4E94PuMtA49cb3gAj\nGKk76ijg5JO9t3KV/eoWxZxYUffCrYe/FNuPeQVaNyBYqZuZUTcPRuqoxuY0lnzXPBdaU7dfqV0j\nZr9uAhA03R4HcPiqWzMK0Ehdq9QdU6cTCCI6A1fqdPs1iNQZ1jKLY7/qm+iZ1NEB1O/qAYkShXoV\nE3D3f3Ky8/oEqrGVuoHbr/V6Rwlqlcc7u9hoKPuSPhOm1E0Ve1Dq+pX9GqLUoVLBPrdcpcl+HVid\nurjZr2CTNwBLTS/7lZcv6fy+qexD1vbrmjXeAMRLmkTBoNQRKL6rVvN4SyqkjsBJ3diYj9SpJ3Od\n/S5AYhpqwElK6mZm+nj9c8bLzwm3XqPASJ0+ARp4TJ0+KZqfR0G2MY9ZlCbK3Uvz6v2O/GRWp268\noI7TNJYGl/1K7RoCpS4JqQOAoJD2FwGItT7syENX6orB9muuYupC7NclTKPO7dcYSl1QTB23MSje\nuW9KXYj9OgU3JkojdXFj6gZmv46PK1YjJcSyOqhOaaKzi/U6vHPTaISTutUodf0qPmzaRLGC5VKw\nUkekTsqcZL9Sgg4ndSWvrMlC3SV1oolC01BgNoZSl7r9OjPjtT/i/ABAG24Wf4hSNznpz76em0Mn\nEUlP4EyEoIOwYUOX/Qp4awlzpQ5AJ3ntUbhVChIodcNG6oinDDymzmVvc9iAchnRpI6ystmKErRu\nta7UpZ0oIWt1TKAGByUvYHTYlTohxDuFEFuEEFugCN119D/72wXgMwD+K4sG5x4uqaOYupaB1A2k\n+HA/7VfDWmac1PGsMX6vGB9XZZdoM0FJYLH3Jab9KmpVr/o6I3Xcfs2tUseKzxUW1SjWLE+YlbpG\nw1/SRGvsZFKljqcl96v4sAHtUgUr5eBECSG8U8q7bqPRQ+Z0FOLYrwRG6jqKPIC9VS+mrovUNZuD\nVeqoxNL0tJ/UFYt+QqGdr2W4inFIogR3catV4Oabvfdosz2BjpfODDduDLRf1RM/qaOlqnbgWWiU\np9SsMiRZIhVSx8csfSFTAF0szYD2uEfq9GtFL5k48Dp1jNRVKgZSp08mSBFj9uuY9EhdkFIXVTM7\nFAErStB4u4BZSC3pLs+Imj89BuDH7p8AcCf7n/6+CeCdCEii2O/gkrqym+nWLMWPqUtLqfvc54At\nv45vv8qGg7/4C6A2F1+p00Mp6ILUQ3eA7oEnFsm49VbgvPNUVkVC+1XUNVLnNoTsVymBF2+9Bp/H\nn2O8ZB61U4up+8Uv1CKzZ50FXHKJ97qR1KkbULsSYL+6St0F+Ape+b334rJPakpdoZvUXXst8OY3\nB8SnmWLmOPqk1LVLFVQrwUodAN/+EnTlri+IY7+6cMqTuPBCVbKjWfRI0O4Vl9RJB8JE6tKIqavV\n1KLFP/hB8PuAd9PkpI4GIqaaVKWf1C3BLYAbotTx0MlaDdi82Xuv1VoFAaeLTi/CGxJTp57MGTt2\nAxXMz6qyRp/9m2617uc/B/7H/1DL/NJmucNw663qfT1PKxY4KTD0gzhKXWvMI3U6WdbnTjTxec97\ngK98pYf2JoU+YQlQ6u68E/jDPwSe2BGs1NE9pCJTtl/pIpPSd58mUjePtZDjbjuvvlplJv/TP61i\ng+kidFogpbwWwLUAIFTvuURK+XgG7RpekEzrojPYx1Dq+H2Dblj6TKwXXHwx8JI9VRwGxCo+XFtq\n4gtfAD5ZMJC6gJg6/pPVqrcv69erhZFpE0D3uBWL1H3uc6qUyVlnRSt1mv1aqNeMSt10qYblZRV/\n8sYnLsVv4E489NQFAE7r2nxq9uvllwPf+Y56/uMfAxdcoBad5YO8y4KLy8qvbpYnOqJFvQ6UNFJ3\nCT6IQ+7diu/j//o2NVHotl/PPls9vva1wOtfr7UtitQlSZQIUepk2U/qTH2+WOx2LgH1fwxxIz7i\n2K8u7n98Epdfrso1voSTukUqadJE2zGsGhBDqUusDG3erPrS008Dr3lN9/s06LzgBcB3v6sKpXOl\njh7dmIilRgX8dsuVOin91zdBr1H+4IP+JjSb8dzFLvD4Ur4iyfr1wBFHqOebNnXa1CkuvGeP0S5z\nUMb8msNw4NwD+N4XtuC17z+JqhwBAL74ReDf/s0rtaQnSrz2tWpuOT/vXbqx0Qf71SlPogz/2q8E\n/TJrt1WX+PjH1QT7wgsTtjcpdKXbLfdFSt2mTWr4XVxU62ufdsoE3su/T1nZi4seqWtlZL9S+93x\ndmLHEwCAnTgQR7gVB3DffcBNN/mzU3KGJJEOfw5gp+kNIcSUEKKXy3X0wKeuAFoFv/0qZXCduqBa\nlKtFrebFJZjs1xYK6i7ClDqBNibaKg5tBZMeqeN3VoP9CnghR1NTPodqdUodDYbLy9FKnW6/6kqd\n+/oB4+o3n3wSmKyryOKD1hhsNqRov+o3HfKsDEqdcKWOViXYfh0b8wb7NfAvyTWpKXW0MAIQIKTx\njNd+LRNmQKtYQW0snlKnK6V9jxmKs0yYi20LqnMvLanSMoS5fRV1TQEoNLTzGyOmbmysR6WOPwa9\nf+WVwEMPASecEKrU1RGs1DmOale57K+Ny2Nmde4KrELl1sv7ACrRo1JRpaQefhj44hc7p6hDQFdW\nusaItihCooD5NSqv7zBs8QrhuiDe+NBD6lG3X6kE03e/28O+9MF+bYoymiiigu6xXB9bAY/87N6d\ngrLd1Tiz/boLG1EuqwzpX/1KzV0BYH657Pfm3Q4lHadzPkutjBIlAN/xXP+AkppvxUvRJqWOFArt\nPp8nJCF1X3L/TPiC+2ehneymRupoPC+XPe4RNDnrl9XXbMLL/jQodU5hDHxVcek4mEAVBUi0xifR\nRtFHHMJi6gBv0Jue9sfBrkqp4+t5JUyU8Cl1U1Od12cr6pjcdx+wpq2szTUV800xNfuVfpAUh5tu\nUo8GUkfg9mu93h1TRwSeAsMJ48Kv1HF7zGiN9WK/9lDSRJYrqI9HK3VABqQugVK3dX6y85ZTYErd\nfBFN1wQpVJf9X0qo1MW+CRuuSR+IQKxdq4gQ4JEkrtS56PQpF1ypW2HzI33SxsmP3pRVkzpuv/Jx\n9uijgYmJTrtW4DZqZaVrjGgV1eCzZ0bZr4fjya6wOj0rXyd1J57ofdZU6ScUfbBfmy3h30cGkyBO\n+9NuR9ZbXj1C7FcinJs2eULX0rLw3ySI1NXVsZmaAkTdXb8XDto175ilptS52PiQGiA34wy0x9w2\nUubPiJC6M+FasQZ8G8Bvrr45IwDtZDtky7hXv2mN0aDruF+qkONoSp32w82S5gOzZc6a42og9ZE6\nGowMJU0AT6njCzEDq1Tq6EPVavCC2AGJEoUApW7GLcZ782bZSV0XDXPxs9TsVzpwr361eiSmZbBf\nCaExdRWJMXgzWw6q90SHjZM64zngg53p7hUWU6ezlDD7tVSGMzaNFgqYxjLGit0H2RRTF9ju1SAB\nqc+whr4AACAASURBVHt6j5nU7dpb6pA6UVXfq1KiUUBMHR8DeExd7P5mCInooNlU+1Uo+M+Lbr/G\nUepqtc7iGpOTfvEsitT1fO3o5X0A402V2uUjPLpS52Yp75lWpO4wbAkkdQQ9po4v8kBqXmxEKXVx\n7FcHPZE6oMc4wCSIyH4lED9fWoL/JuHWECVSNz0N33Eqrqj7Uq3mP3x9U+qo/Y6DDY+qejybcQba\n5XFvn4CRIXUHIsB+BbALwLMC3tu/oJO6gj+mTrdegXSVOgpQ7ih17XbXnbCTuec2RDSdDiFoTswA\nQH6UumrVO4hRSh2RuoY5UWKyoI7JnTdVO4ktQfZVavYr7dfpp6sDc++9agoaoNRVMY5SWQQqdeNF\nBwW38pBO6sKUOmNfi7Jfw2Lq6MSPuSpwgFLXRBGFchGVMYF9UAP6rNjX9TlT9ivfl74hgf365C6P\n1DUEs1/3FuHAvZZcUtdRuvTwh34lSoSROtNMEgi1XwOVuno9UKnT7de+K3Wc1PEMLBdG+1W7ntsF\ndV7mJjxSp69oYyJ1nGRzMsGvoViIiqmLY782h4TUGbJfCTMzrG0GpY4u7Olp+M5hua52ZkFb6KFv\nSh2dh3vuQbmxggdxLOaw0VPqCCNC6nYCODHgvRMBJF3saTSh26/Cb78mUer6QeroGuuQOqArLbtF\nsxB3QPGRurEQpS4hqeuLUteL/dowJ0rQMdn6IBshApYpSN1+nZkBXvQixcBvuSWQ1NUwjnIZgUod\nqXGAidR5MXVLS8A993jvRSp1SbNf6cTzArcEjTwUi6pP8PVfdeRRqXtsOyd13v7t3MOUOtfX7tyE\nY2a/Jp5EhNmvppkkYE6UoK+EKHUmUlcsqjanotRF2a8ujPardj23XKVu57hH6nSiE6bU6aePoiVi\nox/2awipM8XUZUrqIrJfCT6lLorUsXNYqqVM6qiTuid2M85QH6mMJqn7DoAPCCFO4i8KIU4E8H4A\n1/WzYUML7WTTDP4H32thxw5zPbQo+/Xd71bLyppKZUXBcYACWiqo1sWdN/l/qFXUlLpWs0MIGiZS\nF7KiBOCRupkZP3ntu1IX034t6kqd+3qlrU6Gj0QEKHWp26/lMvDyl6vnmzeHKHUTKJWCSR2pcYCB\n1Lm2bL2uKv0H8ZcOkiRKhCl1gNFiAVTbSyV1M5qHWlViraGOuR5TRz/H+86f/znw/OevYvkwraRB\nFKl7fAcjdYwE7at6pI7QUY/SqlOXlVIXQOroJ1JR6mLar3Fi6tpuTN2O8qFoQ+BgbMXeHQ3g7/5O\nxbXOzUWSulUpdbr9et11ys+98Ub1Wgr2K6/hpieF9B0R2a8EInWLizCODcIxK3WVhp/UUbJs3+1X\n98TeBDUmd4QPwoiQug9CrRpxlxDiFiHE/xNC3AzgbgALAC5Oo4FDh0oFtTHvpuW4M/hatY277zav\nXBCl1F17LfDAA8AjjyRvji+ezkWh7lfqHC2mrtjylDqnMsRKXcd+rRnt13JTHYc4pC51+7VcBp73\nPPWclrmgdSDZAathPJzUsXPdlSgBT6nT1zJftVKnZ7+GKXXkvcCv1D3prjR4dP3+rk3pSh39PG/3\nNdeosn96KY3Y0Pcxwn5dkurG2m4DKy1v/1oodghq5+t0E465okRfSV3QcilnnaXq1tFkIiSmbhHu\nOavVOmLT+Diwbh3wspcBv//76jU++cksUcJFLFLnKnXVZhmP4GgU0cbkw79QNSKfeAL48Y8jY+o4\nqXv88YSLDOj26w9/CGzbBvzoR+q1mParz2JmyJ396jLKBczGU+pcUldoOgBkl1I33lpCu+2RukMO\nYb/TK0yzWzfL9QGoMXkklTop5RyAUwF8FKoQ8fPdx0sBnOq+bwFgadw74XWX1BXR8o0xSWLqqMP2\nokD4Ml9d6P87Bb/9Wmh7pK5eDlHqYpA6U6LEqpW6qEQJzX4tBSh1hUYNhYJG6gZlv5bL3uBGU2va\nqKbU8czprpi6MKXOfa9a7S6MbtyvftqvvCNopI6UOrI6Tlnq9rR0kmNS6migj1j9KRj6PkYodR3y\nAGDJ8Yh3EyVsUVUhVRtR7sTYpVanzjDR6iBouZTXvQ7YulWxMiA0+3XRjXeUyys+jlgoKFHjqqvg\n249BJErEsV9JqWs0vP72ol9e6X1g/fqu1QlmZrzrrd3uJnH6BCkUOqmjRlPnHTX71d3fKiaMSl0X\nqZuY6ByDChpdSh3VqjORup6LW5vs1xV/LGwnmRBQFnFPBRezQaIV+aSU81LKD0opXyqlPEZK+TIp\n5YeklN1BMPsxFse8AcdxB0cidUmUOupfqyF1JqVOL1rZSeYgpU62OipPtRii1LGS/kHZr6ZEiVVn\nv9KBaLXMxEK3Xx0zqRPVKg45JEdKnU7qqGOE2K86qaMldQCP1C27NwB6z0TqjOegX4kS2j4E2a90\nkz1pX7enpZc50ZU6ng1HQmdihElLy/7SJFIIb+k8AIt1v1LnJ3UVz45Na0WJXpQ6wF8jjF2sjtCU\nuoJbamJ5pcvN5T9hInXUjfuaKLFKpa5e9/rbWU9d7m2q2uy6FoiA0L7RdqhgcaL+xtvTaHg/RsXx\nRin7tdnsDDQUC0wIzH6dmOjcICpoqPmfRupqNY/UrV+v9llXUBPBZL+6x5WOc7PMbmQ5VumAhKTO\nIh72VZhSp5G6pIkS7bZ3P0lNqSuy0dm9m1Bc07LQSF297h+dm0202/7rIsp+7VudOmoPIcB+LTqa\n/UqsqNXCEYc6sZS61GLqeOFCOkC6UpfAfqVyJoBH6ijIfcwl9/ohBDJW6qamOkyA26934YWoYhyb\nVn4FPSVRJ3W6UscDp/um1JnsV5dYOOVJAB6b2cdIXbdSV/GUurSzX5ModTrYOZIVLVGi2K3UmX7O\nROqoK6Rpv/KbeofwLC11bVQypY7ipcbZRKi+3H38gkjdc5+rHhP1tyilbpSyX2s1dX+AQAOVaKWu\nUPCVcOoodXX/mMZJ3eys9ltJERRHO6qkTgjxbSHEKXF/TAgxLoR4lxDiL1bftOHFQsk76RRAXUDb\np9TFtV/5NdtLpp/jRJO6BquxRYPKAVArLBAhMCp1ANBsdt14guzXvit1gJ+d6IkS7saLjSqmwIpr\nAZ2B5KhDaomUutTs10olkf0aWHy43R1T1yF1Mth+7UudOj5Ahil1bNkwrtQ5qOB2WqKNrwaPaKUu\nFVJH56bd9g6YG5ldL0z6PrpQ8zp1C8VOfCDQm1LXc/ZrUqWOg83AxJj/Il0hUrfSrdRxhJG6Vduv\nnNRpJU14f+4QHkOl3XbZU+oewdHYgQN979eWokkdTbKPPlo99pXUjZL96o5jNTEBQPh2jYbh5WVA\njrGJnxDdpC7EfuWkTrfNY0H3bIOUOm6/DjOpA/AEgNuEELcLIf5SCPECIYRvKiGEOFgIcbYQ4isA\ntgG4ECp5Yr/FPCN1NWmOqdso5oDt2wGE26+8o6ZlvzYK3bIhKXWLMiSmzm2kfh9JValbXPQTDE7C\naCm2QhEPPIDOIswl3X5ljTnioGqimLpU7dcgpS5B9isndZTtSqSO3uNKHW2yL9mv3P6mu4tJqatU\nOu9zpQ7wLDG9VkQmpC7IfuUHy7WOV4Sf1M2vhCt1PlI3qOzXKKWOk7px/2eXXVKHlZVQjmgidaF9\nLA5i2K+c21Rp1VrDRIQrdYDw+puL2mJ3MWid1FFzaGGORP1tFfarlCoJqFbrPfs1U6XO3XBdqA7A\nCWex6A3FpILJiQmVn5ClUmdS59nixnScndKIKHVSyr8EcDyAOwB8CMDPANSEEHuEENuEEFUATwH4\nTwAnAHgHgJOklHek2uqcY0+BK3XmmLp/uPElwEknAc1moOLuOP6O2i/7tQh3dQtXRfTFz7iDCil1\nC+0Ipc5xuu6FNEFOJaZOn30b7Nevfr2I448HrviGmyjRrAUqdUc8O55Sl0lJkxgxdbr92qXUye5O\nQpmLZYNSR+FtUUrdvr0RMXW0agGAjvTG265LtgalDvAsMb1WREEbqejn6PRzUtdzTF2Q/cqtV/cO\nstRW/egAd+34fY2YMXVpZ7+G1amLUurY+4VxTakreaQujCNmYr8Wi2q5M94+xm0kCqgXzPtKSh2d\ngk5/c0H26zHHKNFICI9L6hMLsl8T9bcgpY4UoxD79brrVIL8pZcyUqfFeubKfvUpdd18lU4nEaY9\n1QkcdRTgFDxSNzUpjTF1dBtYu1YrZJwUJnW+XgekhFMcQxtFXxsB5J7URRr4UspHAVwkhHg3gJcC\nOA3AwQDGoQoOPwjgRillr0PpyGF3wbMGam3VQcl+rdWAEhwctPQosARg716IjRtRKpmFAt5Re7Vf\ndaWOsIgZjKPuHwA1+3WhGW2/NgOmBtPT/ptxX5S6vXv9rxvs1y1Pq40+/ITyKQutFg6kxVDWrVOP\n7p3md8+s4pdHLgCPub8xSKWO7hp00g0xdbr9qit15Vb3ue4oda3uRIk1a4CdO6Nj6uZ2trBGf19X\n6uj/YtE7yaaSJhqp40rdrXgpWiigeOed6obnknD9hjrllU0D4Cd127ap42KyokIRZL/ywmzunYhu\nqgceqLokLwHSRAk72AI7EoX0s1/7oNS1xyc6s/zipKbUlVSihBi0/XrJJeo8aB1C4zaoFSYx1u6+\nFkipo8v8CpyPk3Avzn3OjRh76tEOqdu4EfjYx9SmqR/pfOuoo9TjqpQ6veEhSt3DD6vHBx8ETu0x\npm5hQXWR1JI3+Ul21UdKKNKvx5kZNfY0CuOYBLC3Og5HAvV2BWUoUrd2uumzSKexhMXFPip1uprb\nbHaOqVOeBNwhoRN3Dgw/qSNIKRsAbnD/LEIwh2D7tV4H1oAtg7SwAGzciHLZXAJgtUqdKaaOsIgZ\nbMScrxq+rtTtdaLt1zBSx0MWslLqGi014K+sQN1RlpbwHKi6Q50L0r0jrZuo4hUnznukblAxdXyN\nV33WrtmvXMnpInXt7k5CpK7UUu9x+zVMqauttDv5nRPlBPZrlFLH7Nc6xnwfX8QabFl7Mo6Yvwe4\n4w7gVa8CkIzUSanW3T7iiO4mhyLIfjWQuqp7U+0cP1YCpImSrxjxOuwOjqlzn/dNqaOsJT6bCmNh\nDK2yR+r0mLpq2d3RavJEib7Zr6US8IEPGD+iV5ypFSYxiz1dn5OaUrcPs7gQl+N3jj8fz37qUTRW\nVKOnp4H3vMf/Xf0cHeaKsVu2qD7Hs4ADoQez6ksjhCh1tI979/YeUwcote7Zz47R1l7AT7K7YbLD\ng5S6WkG9vyLVI1fq1k36x+NpLGFhIWX71SXaTnkSpIc0uFJnWKIuT7DZrylgl/RI3XKzO6bOZ/e5\nvdM0c0rLfiXQzb6O7pi6UFKn2UdBgzW3X/la4qtS6vSL0BBTV28yUkfkzd2fDqmjhvEADf33GIpF\nNWjryVKrhsl+JQTYr7xOnU7qik53+8l+LRmUOlqVx3QOd2z1jrVsxiB1PSp1nNQBwEMHunFOzIIN\nInW0H/q9sae4uij7lSt1bkwdWT9cqWvB39j12OO3XxPE1CVW6kxfCmNhDA2mRvCYujZEp16lWFnu\nWalbNakLkZdWtJDZqhbzSJAlv1JHqDqq4Y1ltS2ek0Hg52hsTJ37Aw5QvxV7pQad1OnOQ4x9XFnp\nPfsVSNmC5X3PnZxWXbKmE046xnXXniXyR2XAKmhg7YT/RKVO6lh2YqPk9SGnODz2qyV1KWBn2zvp\ni/XukiY+UucqT3FIXb/tV1pAnQJZAUAW/fbrXF3dtUKVuoAbD18mjBKbgB6UulYrmEnx0dn9jNNS\n3bqj1FFTixVvBKDXq1U/IwhhzqlYsGGkLsB+5Tf9ep0RikYDBSdYqSs2k8XUbXvGO+ZtE6nTS57w\npc3CEiUM9iu/GT18kBvnxJIldFLXmeUblDqgx7i6BErdivQrdbr9WqlArdZAP8Xt1wTZr4mVOv05\nEFup4zcuHlPXEqVOMHuhuoJ6Td2skyp1q7ZfYxAeiq4IJHWaUkdYdtwEiqqn1OngfZD2/XA3yTl2\nf9MnjXpDYuwjMCSkzkVVuiv4BCh19D7ZtA1G6mbH/MdrBov9JXUh9isndb5kQkvq9j9sb3onfV/N\nH1NXr2trW4YodVnYrwB89itVXKc27qrGiKkLGKy5UhdWwiWS1IVN8Q1KXZf96mJlcoPHLOlOo5O6\nkDV/UrFgOanTR2SD/UpKXVCihKn9HVLndGe/EimJVOqcGMuE8TqBuspYKnnHPkKpe+yg09WTW27p\nbCOuUkenNXWlLsR+baGoPsZIXWbZr/pzIL5Sx25chQmmPIoSRKnYSaxqLavOk7lSF8OapMSVzjJa\nUIWiO88DlLqVuvptZyWY1OnnCPBbsLGgK3VhG9EQh9SZ7Fe91EeqpM5wklcilDp6n5S6egipy8R+\nNZC6esEqdfsVvv51FX/x61+r/3c6B3TeW6qq0TnP9iuvjN9ySd2Eq+4RqWujiBYK3evkRNivQRUt\nOCL3K4z1GRIlTPYrAFSn2MUYZL+GNEbPgL32WuCG1UaYclJXKJjZb4KYOlP7dVIXV6nbuc0b8Nqt\nGHXqwpQ6IfyL/waUNAGApTUHA0ceqTr/vfeqtkeQOgq1PP549dgXUhcjUcJkvzZRCiZ1Me1XTo5+\n/nPgX/81ou1h9mtMpa7BlLrihF+pK5W8fZbL6niEKXWO072kW2ylrloFPvMZb/2tBPYrKXXLklln\nk7Od54FKnUvqmtX49ivgkbovfUndByIRRepSUOr4ZQlkr9StuGRN56t0jB/f7lfq6m22okQlZftV\nV+q4/Vq0St1+i6uuAj7+ceB+dx3ylbp3B5qruTdUtLC8nIzU9UupC7Jft+JgAMB8cb23zbLfAtyx\n7I1uHUWPNypCqVu/Xt3P13ub6K9SZ0iUCLJfjaSuB6WO6ge+4Q3AOedEtD0K+g2L33iTFh+u10OV\nOrJm4yp1O7d7A16kUqcnStDdlZ94Xog4RKkrFuEtMu/G1cVNlHj+89UjTbASIY79+iyV1UpFa032\na0epe+1r1WcLByW2X7lS99a3Aued52U/GhFHqYsgdVR6AvCTunYAqQtT6miTXLSNrdRdcw3w9rer\n9FMgkf3aUep8pI6VPynzOnUe5pdcpa4WT6mjrky16n7wA+Dcc9VSuqGgDhukyCUldSElTXhZP8Cb\nY2iLtfQXhpsBuQt6Igkd41sfUdfSHFQCQo2TurJ7vNwSNtNYwo4d6vxRaU/az34rdfWiptRRSSOt\nnE7esGpSJ4RYH/2p0QYRd5oB1evAqbgDv4vv4vEVdRMgpW5hoXelrl8rShAmP/RenI/L8aMNHjNZ\nPPoFvs/sk4zUEXngA0kIqZuaUvfAa67xKw2JY+ri2K9sxtVoMlLnU+pY1hK9vmePfyCKEVPnOGpg\nbDb7MEDqpI7H1QUsExaq1BlI3TkXqFFPOOpAx1Xqdm1fRaLEn/0ZcPnl6pHAkyYCSpp0dvsMfxFi\nnswphJ+TAx6pO+ss9XjHHT3YfXHs13PPBS6/HJ8uvRNAcKLE9DSAv/gL4MorcfazbluV/UrjimGB\nhK7f6XoOxC5pwmNrSxMlpcwDaBX8pE5Uo5U6zl0SkzraYco+SGC/0lyC6ggCQIOROslWlACUIAwA\nT25TjWyGxNSZ7NcLLgAuu8y7B+ixnV3QM5TCNqKBkzqaqIWROp170LHRM4X7BinNMXXuRFQHHeOv\nPPPbOA9X4l+P/BAAYNGt+ThdZnU33cnhNJY68Yuzs2osoH3u5f4Yl9Q12wXgO99Rf/oMM2eITeqE\nEH8mhPhr9v+JQoinAewUQtwphDgo5OsjDcpwprGoVgPuxKn4Pn63MzBSTF0cUkedNG379ZhXHIQr\ncb5vVrvrOH+FdR6b0iEPvFEB9uvEhNf3X/c64BS22BztK13UkRdj2AfooLAlwnwCCyNJtWmDUrdj\nh//3QpQ6br/S4K27aYlAS2uxNXd9pC7Afg2rU2fqJC89K5rUmfZhbkcEqdMTJbhSNzsLnH++twG+\nH5r9qit1pRL8Sp2UvnG0WAwmdUcfDRx7rHr97qTr2sSxXycngfPPx662uskQqaNz0IaAREH17UIB\nOO887Bg/PPEyYURiWXH78OskTvZrAqWuPF7qZPG2RQnFYrflF6bUmUhdbPuVdpiCwXqwX5daTGUx\nKHVUNejYY9XEc9+KanirFmy/mhIlpqaAiy7yVLDIfYwidTGVug6p0+Qp/nWd1JGKmRqpCwgApYmo\nDjrG88tl/CvOw7NecIj6v6o+PDvBJqkua57GUie0gg5h4kkDR4j96iN1TajySq98ZQ8byRZJlLqL\nAB87+EcA81CrSMwCuKSP7RoqcKVOSv/gSwNjEqWOF+tMY5kwAIAQKFXcmTi7Frce6VVYr6OCFitl\nWJfM5iMEKHWmQZFAFzgNwH1R6liQvk9gYSSpPsNIHd2R3KXavPz6eNmvfEYeFSYTCNPNKob9mlSp\nI39CNBooFtU4Rv0qSKlrt4G5ncx+TarUmRBTqSsWoXytDRvU+Xn00S5SRz+l26+zs13ObXxE2a/M\nz6KP6vZr211Fkff/YjF5TB3n+STGhN60+qDUcVJXmSh2xq4gpS4uqUucYETHmwiLHhQW8hVSb5bY\nRLU+3q3UEcpl1V/o/DTryexX/jtAjH2kA9MvUqdlQRQK3k/om0id1AUw2iiljnDSSepxfoWROhqP\n166FLBQwjjq2bXHoJQDe2JGqUtfvovMpIgmpOxxq9QgIIWYBvBLAe6SU/wzg7wC8pv/NGw5wUqdz\ngrikjt/UeLZYP+3XtmCnu1QylujYNXEYqm7A6hj8G+QZfh30QOroAo9N6uIodYzU+e7F7M7jI3V0\nkInUubFScbNfuRXW8yBpInUx7Fdep64r+9VESql4V6PR+XlOgnhTCDt3+suYyKi1X/VlwkwIIHVG\npU4Iz4LdvNlH6gqFYKVudtb3tWTQ20/7t6wtMcc+qtuvrYKZ1CWNqaPvAd4YEFup67GkyUrbe788\nwZQ6jdQVainbrzqpS6DUTU2p3eyoigBq491KHW/vGWd456fVI6mLRVzbbe/67Jf9aggko7YFKXX6\nIhZ9A+28JsvRRFRHEKmjmLo14w1f321Pqi+UHbUDqSh1jNTVCqNP6goA6AicAUAC+Kn7/1OAGzm8\nH6IfpI6PNXTv6Jf9SkpdtTTjvVEuG0nd0hJwD5hXytAvUpeKUrda+/VAt/v2oNSlRup6yX4NUerQ\naGBiXPlOZD8FKXVbtqiQgQ76odTFtF87XyfJ7aabApU6E6nTnNv40NM1TfYr/AWoOyEE7jmQhaLv\ndUD1myQxdbwKDH2FN8eIPhQfptISgF+pCyJ1qduvulIXs/jw2JhG6sYYgdLYRankV+pkXR3HmRl0\nwUS8CbH2kZ+HIIIdU6nrhMWsrHSpTdQ2nTcSyUtdqdP2jSaiOvRjfOKJ6pGupZmxhi90QE6pi2oa\nql/Q/vVVqWP2a63YrcwPA5KQuocB/J77/BwAt0gpqXscDBjWZNlPQKRu1y5vMKNO3GYxdVIqDpHE\nfu1nnbrOotwAUCoZq9YvLQE/x/ONv2UidR+9xMHOnd2fjaPUkVXSbgeEY1xxBfCnfxrubxqUOm6/\nynHvRtVYE2K/cqXOxASuvBIf23E+BNpdpK7nmW+E/dou9lCnztRJxsbUF6TE1Lh3oAsF/wSCY8sW\nNREhGJW6sOLDJiRJlAB8yRLFIvAmXIHLcT7KhZavIk2t5q31Oj6ulgd79rPVJOvBB81NMSJoXSuN\n1PFyfMSXSamj4t2h9mtCpY6QWKl75BGVok1p+VFKHSd1k36ljsfUFevJlLrE9itdULpSF6JicTFV\nV+oaxYmO+yANSt1JJwHFivrtxflkxYf57/CmGkHj2MREIMH+8r+UceON5q9zMiZRQL081f0Ga5tO\n6oISJdpt4MILga98JaTtcUDXDw8KRTylbmbGKw/jI3UsdEDMmEndqpS6EPu1uh8odZ8A8A4hxByA\nNwL4Z/bemQDu7WfDhglcqaM+SLMQrtQBKgQiLqnrd6LEctFP6kxV65eWgM/gbQCAa/E632+ZSN3t\ntzTx/e+r58ydCiV1Rx+tHp/3vJBZlpQqteyrXzUXg6P8eF2pY/YrADTL3o2sMcuyX+kgb9umHjdu\n7BAf4+jwD/+As+evxHF4EI6TjVI3vxgdUxen+DCXwtaMewd6YiL4+G/f7id1iFOnjrMdE445Rp23\no47q1IJ4GM8NVupOOUUdm4cfxris4oO4BOfjSjwPvzJWpKFBXgjg1FPVc+IzsRBUWI3S7dwMPL6b\n1Of3YB3mS+uxcpBa5f244/z747NfY8TU+Y6D/6NmmEjdF78IfPObwK9+pf6PUupa3vtcqZOaUldq\n9KbUpWm/8rBBXambWxrv1EATBqWuVAIOPVL9thMz+7WnmDoidePj5irBAO78RQlf+pL56/o406iY\nLdhjjlHt37TJ//mgmLqHHlKJ6h/9aEjb44CfJ3au4sTUHXaYOr5TU954Nl3x26+FaXVOp+C3X1el\n1IXZr2LESZ2U8usAXgHgowDOlFL+J3t7B4DL+ty2oYHJfg0idQCwNmKZsCD7dbXLhC2LePbrr3AC\nTph9Gn+E/9d5XQgzqSuhiX371HNeFymM1J1xhlKC/v7vQy5IXpTLpBKRb6gnSjD7FQActhCzM2uw\nX+l7hx3m3aVM7Nk9EWU46dqv7E7ZLLiva8uEhWa/mkhdudz5jZkx70CPjwffjJaWNPs1KqYujlL3\nuc8BTz2lUg7f/nZc+pYn8S38YbBSVy4Dhx4KADio9gQOhSpGOy1WfIkSFN/IlQkSXhMVWqV95LOq\nVkutbAEAL3uZb7c5qWtgDOed9hDW3XcDnngCePOb/fsTmP0qJdBqGUmdfhgTZ7/qa1dFKHX1hvDi\naaeYUlc0k7o4Sh2/v/dkv/IyGSGkjn9EV+qWnLHOagWmmDoAOPK56kkZ8YoP92S/0kEJUeocWmOt\nxQAAIABJREFUlI3jSbvdPc44Y2ZS9/3vA48+6ilzhCD7VU827hn8+mcHKyr7FfBUutlZjdQxy5oI\nOZ2jVJQ6x+nIviMfUyeEeAWAX0gpPyml1AXijwNIK/wy95idVX14cREdgkMd1kjqCoOxX/cJs1Kn\nkzoAqG84BA1We2tmxkzqynA6gwEndaaYFI7nPEcp9IGkjke500HloCs6xH4FgAarveWsYSUV9Rvc\n4Yd7A62JGLkjXxGtzGLqWsJsv4YqdaZOwqQwTurClLqlJV2pS1h82IRSCThElS2AEJibPExvHgBN\noXJH++fuuR1lqO1NiqpRqeOB4XrtyFig/eE1hX75S7WBww/vEEy+m1ydbsysh5iewuGH+wut+uzX\nRkP9gBC+u1EqSp2+rEZU9mvNq+o/NhkcU1d2Msp+pXouUQow/OdEV+qWmp5SZ4qpA4CjjlVPSkgx\nUSKG/eqgbIw2MQ1JToBSNzGhQoR1IhWk1NH2eirey8FJXQ9KHeAndZMlv1KHAFKXVvZrddSVOgDX\nAzg+4L1j3ff3Swjh3USeeUY9Tkyovs1j6ghrpLYsVb2eif1Ka70CCI2pA/wLAQD+i42jhKaR1IUp\ndRyBFyRbzD2U1IUkSgBA3V36aBHT/rsQT0gAopU6Ruqysl/bBlK3WqVuuuIndWFKnY/UtWNkv0Yl\nSmjg92qjUgd0Rvvj5jySPyFqofYr0COpM9mvNLmg7AuY7Vegu0sRfEoddRYuYcUkdYmVOp3URSl1\ndW/9TR5TJ12ljoLzidQlzX5NrNQBwN693g/pSxIwcD4RqtRVzErdEceo10to+opbmz4LBNuvofsY\nw35tohQ2p/TBGQ9fH0snUkGkjrZnyLlIhhD7NUqpO/xw9dhF6nhyifubFbcqQ9rZr/sDqQu+ooAx\nAKvpDkMPuonQcoXUB3WlrgQHk3JFjdikjy8sGO/rjUZ/7df5NlPqAuxXImgDJ3WrUOp8pM6tvTWH\nDf6bpInUBSl1bL3b1JU6duPtKHWa/Zp07dcgUsfvLSalLtJ+DSs+HAOmpWK7vu6SumN3eiR/qlD1\n2a99I3WmFehpckFJG/BzV07qgjiTL6aObuyVSiSp0w9jIqWu0fDiRaMa6KJW80hdoVJCW3gxdTxR\nYqy5HPhzfY2pAzxvPcR6BfznRCd1C/Xxzn6ZYuoAZTcDSgWanjbzx7BEiVj7GNN+NSl1pjGmGWC/\nEpIqdUHbiY0Q+7UXpW6iOACljmW/DiupCx19hRCbABzJXnqREEK/XU8AuABAL0tojwx0pY76oFP1\nk7o1cAnKmjXKL9qzxyV1XkUYuqcsLvoTMVdrv8634iVKAN3xGGvWJLNfV0Xqtm9XmXuEKKWOp89q\n9ivZLl2kjt+RhFC2YJBSx0Y9InVZ1KlrUUydIfuVksu6SJ1JJWOsqVelTiSJqVulUmeyXw/a5y3m\nOgGz/cpJnb7KS6IGcfuVSN3/z96Xx0tWVed+p+aqO3Xfvj3Q3dyGViZlngnghIBDRBBMMEoMoj4f\nOMT4jAMxaBKjEhVf4hCNitPPKRoTeY4YZRYkoMwCMvRA03Pfueba74991jlr77PPWKfq3tvc9fvd\nX92qOlW1zzl7r/3t71trbQNTR1JfJiO7oB9Tp8ivnKmjE02bqWs25epSz+IO2yas7o4XZLMS1AmX\nqXNAXbvH2a9+TF2AcTxRLAJTDNRN1YssUcLM1NE/ObR8fVdQTF3oOQrhOo1SSb141IEQE9Rxpo7u\nNUOjOpDyi6njvzczEx4642sB8mvJwNTx+cII6jJ1oM7Uij4zdXxhkHjXoHmwsCX16yELCwv771+g\nMnbCft4C7JTJZ6jpTB0Fodc0pm4ZWFQ39UqNqaPVP/kzsm7l130+oG7BMXW33qoeFATqHn1UBpCc\nZ2fqavIrVcnfhZXK/qHKDHzAAW49DMDL1DEv2M+YOgcI2BNAGxk0kVeYumaT3Zd6Xd0klYwxdQP5\n6DF1o3Hk114xdaTLMCtbNeRy8lTbbXf/3dTl14kJ+Tc6qqSzcjBqWXK8zszElF952QcN1NH/iZm6\nVsuVXo88UsYFAqFsF2fqkM3KmnsdL6grYw65nP/6gb6Lnqciv4a0nXe9Ugl4mm1vyJk6v0QJej0q\nqIstv158MfBdO/FMZ+pGR52OGkd+bZXthk5OAiecAKxdK/cmtU0HnhzU0e6EgOruuoqr8wF1NZQw\nZLh9dK9qNTOoK2YaQM3uZPMQU8dB3X7D1AH4CmSBYQvALyGB24PaMXUAjwghnrF16gCz/FooeGPq\nnHImAaCOJgfyZ9ms7HtJQF271sRy7EMHFrY1WUkPA6hrt4GHHpL/H3aY+j1+TF1PQJ0uG5lAHXko\nKkR27bXyMZtFk33X0wedhhWDh+L7Mxfi5X5MHQEHcrT6hdZAXS9j6kSx5KyaHPm1UgH++I/xw/8e\nBqqWQvIALFaSp6/lcmpKoH2hK3lVfg1i6saY/GpFAXUJmbooiRLcyqg6cU+zs26pwdTlV7Jjj1XA\nsn6aBOr81M1XvhJ47P48sA0qU2cAdbRFGP9+slhMHYG6o48GTj1V1q1YuzbgC+Tk+j1chIPXNrDi\nqKOcQsoE6qbtSa6COd9zXShMHZ+QJ6pF/AAX4ITVW1E/5mRje+mfseEmLrrI/BtdlTT57/+Wj8PD\nskPwPafHxpyOGoepaxOoe+wx4Le/9dTv0XEw1Tym2o76rixAl6CO+zN2sfxi6gCJdbdulYlzgHTr\nTxOosxpAPeM2XmPqaAroVZ26/RLUCSE2AdgEAJZlvRDA3UKIbhOf90vzY+r0mLokoG7FCrltU5KV\nSGViG7LoYCvWKfshIp/3JErce6/EBc96llrjiLL8/ORXGhepgTp9dAYxdbpp8uuewQ24/EUP44c/\nBM7zi6kj4LAAmLpOsQxqZsuyX7cs4Lrr8L/XAKhCYeoAoIoKmvky8rWqezNHRlwKi6GmgVzC7Fdd\npgBUh8gTJWIydYGJEuTtmVGMKIE6mh9TY+r0GVtjC3VCkph1P6bu8ssBrMoBr4bK1BF600AdWVfZ\nrwTqxscjFyCr14GP4b049O/fizcMy1g6QII6HlNXwZyvkpt6TF1Epi4oUWJftYTv4nIc/cHL8QJt\n3yMd1J15Wgtn/qP5N/j9iC2/0hubNkk08vGPu+9RZ0U8UNchUPfkk/Kx0XCrcGttpO5Wqch7Mzfn\n9tdeM3V+2a+AuxYnGxkBNtnzTAENONuW94qp0/0ai6lbrKAuTp26G5cAnb+FM3VSwXZA3bJlkeVX\nkkKTMHUjE7JW1WaMu8HagDGmjseE6w6hXPZn6siSgDqaHFIDdZr86lsRwQTq/BIlNFBXq6m7SKQJ\n6lo5VqdOW3PRNdKZOoDta8tBHRln6nIqU0cSol0uzbHpaTVRIhJTF6H0BLdITN3goCfAs2xVnfYD\nLrHLT3lwUH7n7GzwhiTGBumIRWML9dMMA3UA3Fk/JPvVF9wiZvYrB3URTd8iVtgnKHKq/BqXqYsl\nvzab6rnEBHXZLJS2AsBcp+h8hd41dfk1qJFdya/6WOdfwEBdHPm1rYM6QHFM/JLRz1Ff5d+XGlMX\nIL/6MXW6cflVgjpWVboXMXX7IVMXp05dwbKsqyzL+r1lWXOWZbW1v0V02ukbjUuetS47m4W2fZmz\naMdi6iiutitQNymdexCoow5LCadnnKH6HAo3CwN1tBsV0COmjkfwRmTqOKhTws34rKQzdSHy6969\nvm/HMwOo48WSdVDH98vWJ6fa0Er1hWEWP8mosHJWZero+wD1HuhMXSaO/JomUwd4gElZVJX2m+RX\nXmYoMlvnk72n/75+mjRRBiaX0j3m2a900s2m83Yipk7fZ09n6iKaZ4tYW35F1gvqwpg6Os3Y8quO\nwMkJxpBf9+zR9n61kyS44q23N0oju5Jf9bHOb3QMpo67QNrgXgF1DJXxn+gLqAuQX0MwuWMc1OWF\nuvcrZ+p4CHSvdpSYFYsT1EXzvtL+CTKm7icA/gMylm7JbFupzanE1AGSrcuigww6sUAdDTy+8T0P\ncI1iI1M+oE4raSKEmujH5UWaf8JAHTEu1WpKoG54WAI6Wq0ND7txY/PI1OkgoWegzlI9YRBT1xhy\nJwbk8673pvpexNRl3WFbZrHj9bqdKW2/5sl+FeknSvDD+Uc8RN+GDcDvfuc85fIrYJZfATlXbtsm\nQZ1BxfVvUDYrLwqdX6+Yupjyq++kpSMJDuoMiSZ+pjN1TgMSMHWUjBlbftUHU4JEiR07gBbyaCKH\nPFrOvryUXGNqrzFrDD7HImbxYdOuGD5MXRN5J5KB/x5dllWrXBcoBm2ER6saQEFlUZm6fsivSZi6\nTLMBtOwxwgKAC2h4hAggJaauWpVflM2i1nEbvb+CuosAXCWE+HCvGrOYjY1LAGoQehtZ5NHCc/EA\nTsKd8kUO6iYmkGcKE699RYdSskSrFerfFBud9mfqyMEJISuIbN8uwemhhwL33OMeWizK94/xianb\niMcwiwHk82tQLKYI6oaGVOl1eNitGeMD6oRWp25uTtkW1jVTooTO1G3eLCdeDdRRqBr/jUgmBHDH\nHcCuXXJ3AhOoy5rlV74lrRHUDbMOyEsmaMwAZ+r8VrpCeOvU9SJRgh9OuLPRCGfqSlDlV2JO+Y4S\ngDsmd+6UmPCoo0Ka5ocyNWBkSpQAYoI6Pss1m8iVvS9Hzn41gTraIqwbpi7nyq9xY+r481jya0JQ\nx/HEzp32V6GCEUwpTJ2v/BoB1AXF1AWeo97RgUD5FZBAa3BQ3pP77nPB1qpVMi8CADoDBifrw9TR\n/z1j6u65xx2IBvk1CVOnTApMfs2jqbj/VLNfab6pVNDuuOzJYgJ1cYoPDwL4da8asthtlRaAOzDg\ndjZKlvgtjscl+IZ8cXQ0lKkjGxz0T8wMs+UzEtRtwgYPqGMPyvaWluWVX/1KmgxjCr/DsfgFXoxc\nzo2r8yPSdAtl6pQfY899fmC25i+/Kg49k3E9nClRotMBTjxRZg6yOBUTUzcbdYO8m24CTjtNll85\n/njprQHFAdIOGADQFO4M2W5LsJXJyPPQGQdlX1tKc+PfbV/oUsYrv+orXTr9YpbJryamLsXiw6yJ\n3o/boKpu97+SUJk6MhNTBwBXXQUcdxzwzW9GbJB+ge3twcj00yRJjMeUekzXJbWYOrpd/JwSM3U7\nd8rfGR72jqEA05k6ywZ1Vj4+U8efx5JfdVDHgUKA8Vu30a6sSlnhzk4YQfJrBLonMVNnKl0UIL8C\nbjf58IeBk05y+64yz4SAuiCmjvssDuoS7f96//0yQ/zSS90fti9IO5NDG7nITN3oqM8OOUx+LaCh\nhNmmWqeOgzotD2yxWBym7joAz4MsbbJkmq1fLyePu+6STv51r3Oz2NtwvfNeLId4ycuw4uKLgRtu\nkC9Wq8ZECbIDDrDT9OckqIvKggHA2KybKLEKO903qC6TXfmC2CeqeqCDug99CLjj3gKIaCRbhZ0Y\nwgwOwpPI5YCPflSuJEOqJyjfDaQH6urNjFJz1TemDgA+8QnpBKnUOkfO1apk1ABwao6DupERKVNH\nZuoefdT8nN38RoaBOia/8ng6wDvhWyt9mDoNMZlAnX4PaF6oFNuAfW6hMXVdbhPG2+H5+Gtfi//5\n5sP4+d1jeD8+gpJQmToyP1B3xx3yUav4ENwgHn+goUe93e96l/ytc88N+G6dqigUXI2y2cThhwPv\nfrdcVJFFjqnT3yAgFHVlZRsPXwKAA9Znge3A+Mb4MXX8eVfyK42RNWsCP8YXCF/+sgRDN279GB79\nyaN4Gmud97ph6hLH1JlAXQSmDnBrsN91l3xUQJ1pIgiJqaOFR6ry6733ykc6T3bTW7kS0IiuLh15\nJHDxJQXg63D3SaYTsL/kzFOaOPMq9zN6GFGc8CTl++t1d9w/Q0DdvwD4mmVZHQA/BuCpSyeEeDyt\nhi1G++AH1ec8po7sdpyKZ//fb2DFWrjeUwN1ph2sElHMQmBszpVfl4NVM9aYOlq50e/ooG7dOuBV\nF3tB3RDk0q6COeSyAq97XZwRFUF+5cYnKZ8Jqy1Urx24H/hb3qI+50wdX76yunlcfj3ggJigjgMF\n/px537rF5FfG1PF4OsB7LsV10Zi6ouWVX/UJiRx7qdBxQF0vYup0pk7HoY6tWYMfv/IL+O3dP5Dt\n0hIlyPQuoce56pffY6b2G8CEjl1POUX+BZp+Uvm8AuosC7j66uCPRGbqiG4J1IO9xhMNAWBwWJ5g\nebA7pi6W/KrT3rSwCpGR+a1bvx74wheAa699LT70E/eYSIkSEUFdLPk1DNSxjqozddRniVCKA+pM\nxGBP5FeS+skUUFcGGt7r5WeWBbzj3QzU0bVjTN1Lz2oAL1U/k8+7idNRfwtAMKjT1qyLxeLIr78G\ncAiADwK4A8Cjhr8lY8Zj6sh2Y8yN/WGFgvgA1B0m35Y0lvw6MYFKewbTGMQElgXKr3qojykewzRa\nCNRlIFCy4ufOxGLqOMjz0bpaBlBnjKkzGb/IfPkaAOroNyKZH6jj8mvGLL+GMXXlAzWmjjpRF0xd\nucDlV0OdOt3TUSMTlDTh7TB9PJt1sxiLBvm1WPSyJ3qcayioMzGNdJMD2h3J9IO1vV9NlpipSwjq\ndKaOJ0pks1IWayODApoYKJgbk7r8ShYC6kyJ17ofNYE6Z+j1W34NSJQAvKCOTFmoJGDqepIoQUk5\nZOymN+xg0Thx4IpD4oGeAfeI3oodV0eTA12gZ5j8+gbIbcGWLKLpMXWABHUOo8BKelOn1GJMAciQ\nokSgbrPL0gGWJ/sVcP22Dup0pk79xzUCdQBQ6swB8FnC+xh9pXJeUeRXH6qgJVSvPTsbo3xaRKaO\n5NdegLoau378foUxdYMHRUuUoBpPdBg/RGfqVFAXElMHuDcxQUkT1kTjx7NZdwurokF+NRG3sUGd\nqaMY4ghiluOTpg/qfN6dUCKCuthMXWCNFa/pTJ2e/QpYqFoVDIoZDOWqALwztX6aiRMlRkeh1A4K\nyeI1gTod03Yrv/LPdi2/UmfP55XOq8uvep8dGXFJpcxw8pi6VJk6HdSxeFFK/IrFnnFQZ4ipMw2E\nQkGeU+y4Or02Jf1epYI2i53eL0GdEOIrPWzHfmkmpm4iO+Y6BIP8yuOnAXev+UTy62Y3SQJAIFPH\ny2cBPqDOEEjjBXWjnmOCLLH86hPUY2LqfGPqdOMDm3u6bducf6n4MNAFqKNSLQZQ5+xRCaDRicbU\nVSpAaX00+bVgeZk6fZWryK+2ZRAivwIuqOsBU5fJMFDX8cqvqYA6EzIwMHUxQwe93wmooM5nUCfO\nfu1SfvUraQJICXYQMxjOzgLwJmGkFlO3apUK6iIydfye6Kefpvwaq/hwEFNXqShB1GFMXaUi3WK9\nDlhD6TB1qYM6dtOb2QRMHa9Ibyg+3FOmjmwRM3Vx5Ncli2mmmLq5CptpDPKrXk1hzRpVWnrgAeCf\n/slbSg1CAJ/5jBqMv8lNkgCCQZ3O1BkTtZiXaGbk/15QF8/oK//wB+BjH7PZ7zCmzrTktq3VUbt0\nYEydbrykSYD8SkYkTmRQR4VUCSiYmDrLLL8GMXVjY1B1mYBECc7U6fLrY4/JRBc63VI+hKnzA3Ws\nA19/PfCXfymTAB5+2PzxqExdkPw6H0xdv+XXXsfUeUqaUANYTctZIcMeBrPmTp+a/Lp6tfp6jJg6\nMp2oDGTqYsqvsbYJCwN1JS8778fUDQy4qqs1aAhB0Zi6I/Ag3oWPo5xrOj8HpCi/CmGOqbMvCGXz\nJ2bqDMWH/Zg6oAumTm+gD6i7/XbgiiuA738/5u/00SK7JcuyvhxyiBBCXNZle/YrMzF1ykxjkF91\npk6vi3vllcDjj8u0/QsvZD/2y18Cb30rcNZZwC9+IV+zGaansA5APFCXybjBpyZQV8tUkO80UgN1\n//Zv8nHHDuCTfkzd6Ki8ZpStarBmx8vU+W2Q7jE/po4xBiZQV63KBV8oE0geeu1aiXB4IVrbqoI5\neENMHR3Kf2vlSrjbjtB5+DF1wl9+/ehHZbmp006zv4Yxddkgpo6KKBpA3etf74LErVuBb33L/bg+\nERMu5afi/H7Wy9SFya/r17u7oXBi1NdMoO5FL/Icloip01PaOW3kMxN1zdQllF9NTB0NjVk7WWI4\nY67jk1qdOp4RkMmEptNHkV8XFFO3YoV0TGvWOI9zO6ZQFbLR1arsjvoOiZWKvBRPPgmsWJ2TN8sH\nlWUywN/jb3Ehvo+r9x4G4BXpM3WTk946KGwSa2TcGoGRjSaFarX3TB2NeX2sDA4aQd1vfgN89rPy\nf2X+XUAWZ635Inhj6kYBDAGYsP8CzbKscwG8B8BzACwHsAvAbQA+KIR4kB23HHIHi/MBlCGTNN4p\nhLgvRnvn3UwxdW/7kBb7BChMXRioo0XRTladBIA7c956q7upsz1yZyCXdnFi6ug3/UBd1apgCBOo\nwPUIhVZyUEd2//0ASgGJEtdf70yQL1j1IPI7t+J7a96Kke2PyHM0gDq6zImZOmYc3IyPy4mDfI8+\nb3uMUIUu6XFQ1y6gAwsZCNSFN6bOJFGOjcGNzZmcNMfU2c/zwp+po32LqUJBKeeeaxZttNvaNeTx\nKHNzbiPtg9pttdi9XrRZB0ef/7y8/4cfDo9xUFfoeJk6vfAwIK/LDTfIye3UU12i1Nc4MnjsMeCh\nh4DnP99zWKKYurVr5QROF6RQcH9vATB1nY5X4uegbp1cF2LKllyHhBkhp8bUcVC3bl3kOnVhoG7B\nxNStXg387GfuVic//jH+/GVzaG6XF79aNdeMq1SAr35VCjLj45C0HfdV2ofWWDsAAayrPeZ8HkiR\nqdOlV0BB8pT4lYipo0YuX67uJZgmU+cnv65fbwR1CXbf67vFiak7yPS6ZVnPA/CvAF4b4WtGAdwF\n4LOQgG4cwHsB3G5Z1lFCiE2WZVmQNfEOAvA2APsAvA/AryzLOlYIsTVqm+fbTEzdhhOCmTpdfqX4\nYAcg2h3NwzrQC7UacPfdchazRyvJVnFi6vj/JlA3J7wIptSOWoXX+xtka9cC2OED6vJ54PTTnacP\n4QjsxBGodoogoqbVlkvxoSHp3+bmzOyW0fwSJZjpoK5SkYfOzaUD6uoNC1WUMYA5NA0xdb7yK/1D\noM4n+9UE6ug7iZCkqhLFvArq7N1zXCNPRwsIjanbuxdKzUB9wtAn4oMOkn8m4/JroR2NqQMk60hj\nZnoaXmDKjaO1jRvdKrY+h8WSXy1Lbqr8ve/J5/m8sk2YyRJnv9JkGIOp49KrU+eLgTqaxCYg0fNw\nJzqoSxxTRxaSJMF34eLXzCS/plV8uGv5FQDOPtv9/7jj8GvWtlrNzCxXKsCzny3/AEhQx6uha4Ns\nxJoEBLCqttn5PJAiU+cH6kh+tRLE1OkHk4PrJVOn39Dx8UUL6rqOqRNC3ATgGsg6dmHHfksI8W4h\nxPeEEDcKIb4O4FWQbN9F9mHnATgdwCX28T+1X8sA+Otu29tPM8XUKfJrhEQJnakj8wV1gLuJqz1a\nieGII7/y3zSBulnhZQHSYOrWroV/TJ12MA3g2ZbrvRs2U0cfjRVTpxcfNhjtdZvLSWxmcpK+FgHU\nNRoueOGJEqFMHf+HB2Fq8muu479NmNB4+GJOlV8Vh9npuKtcfQVtN07feUOfMOIwXib5NSymjn+W\nlPzAivkR0Voi+RWQoI4sQkxd4jp1ZDGYOk88HWAEdZP28mmwHR/UxZJfKc0TCJ1BqRtalgraFrT8\najB+f6tVf1CnGHVsilnQQZ291/hYtUegTo+nA5RJjOpuxmLqslmzg+tlTJ2hjpgJ1CXYfa/vllai\nxOMAjkv4WRJlaDicB2CbEOJXdIAQYhKSvXtl4hbOgzljmJe45vub8ESJnHA+0zWou+UW53sBH1Bn\n/0hSUDfT8dJSaYC6chn+2a+aU6TDphvuxWm2pTOgST5WnTrO1IXIr+vXy++LDOqEiMbU1d37Ve+4\nr0dm6ug8fGLqOKjTmTrdikx+zaCj+lLTPqkaU0egjmLew5i6IONMXb5dA4SIDOr4+4FxdRHRWiL5\nFQDOPNP9nw/0tOVXshigzhNPxxuQy2HZMjkck4C6RPJrpeJmBCRIkgDMdep6taNE4DnqWU4+lgjU\n0TUiilsbZMO2TL5iZpPy+SD5VV/cBRpRV3wrPYbka0mYOkCdGHrJ1PnJrxs2PHOZOsuycgD+AkBk\nWdSyrKxlWQXLsg4B8HkA2wFQCPVzAdxv+NgDAMYty4qxSdb8GvVLWi0BUD0DebxOBwWrqbxERp1H\nBz+BoO7WW2VntZdgUeTX+Exdb0BdqwU1uMdYW0UaDeCJOmPqbPm1UpEOvNVynVbkkiYBTB2BOrov\nkUFdtSobUyp5A8A0UOfcL0P2a2ymTpNfs21/pk63ohJT10Gjzrw9B0DUGK2kCYG6gw+Wj35MXVRQ\n10YOTeSQRUfZLxVICdRFRGuJ5FcAOPpo9//du3tXfJgsgfzqB+osS/Z5AnUDrR7LrzFAnd/iwFSn\nTt9CyvkMnStnoOFzLMxlB4EQ+TWEruKAhMuvPHEoFqjrdDAkZKbF8mkzU9duy9+l/b6FiJHND7go\n5/jj3dfYJFZFAqZO/0A/mDq9gQce6AF19boMic1mo2+DOR8WGdRZlvVLw98tALYB+DMAH4/xu3cA\nqAN4BMDRAF4khKDQ/1GA72flGKUgGlMfLcu6we8vRrtSNRroy4TpdGyzvShtfZQKU7dnD/D733vk\nV2ejZMAZdOTLYsfUwQvq8imAumYTKi3FPTO7MEIwpq7JQF0r6xxKDowkt8TFh5ll0cY5+Bn+5dGX\nADt2+II6IYA//3NZfgaAe39GRsyZkNT+BmPq2gli6ug8fJg6q9lwrnkYU5fPqZNbo8aec2SjgzqN\nqfMhEWLJmATInTp+tVospo5wdCRQ54PW3vEO4P3v70J+5d97113dya9vfSt2X/4BnHMWnw73AAAg\nAElEQVQO8OiD9uf1VUsCps5PfgVUUFdpTsqM+/PPd7fyMrQ5sfyaAqgzMXWAet+cz1iW++SGG4Bz\nzpFlBpixCi++O1M45ygEcNllwEc+0rX8ytcCsUDdzAwydm7j0NxOoFr1+CvO0JIwEkuCJVB3wgnu\na5ypQwpMHaXFx2DqrrsOeOlLvSEgHjMxdaOjwOCgZ2trSiQjlWahWhymLgPA0v6mAfwHgLOEEP8W\n47suAXAqJBicAnC9ZVkHxfj8ojCnkC/VBjOtnG3HO76qhlIJOOII+bmhIdlRSa3VQZ0nk49eIMf0\nyCM9lV95kVznKxs9AHX8mrGD+YCrg8uvGeej5MDISYUORJoE5+YC5ddLcS2OfvpnwPXXO7+hb1m5\nZQvw9a+z/Tw5qNO3ONOYuvtwFKooYVvhIOf1IKbOKVF34ony8bnPlSmkmYzsUPyDjQaOOkomFBLQ\n8WXqsmoZk0bVoEeYQJ3G1B14oJwzqUwDWVymDmA7blSrfZVf9+4F/vmf5RydWH4F5E7zgESHSZm6\nPXuAz3wGI1/8BK6/HrjtRvsNfcaPwdQZ5dfnPEc+HnYYABXUlRuTsi7mf/0X8JWvOB8Jkl9pw/VA\n46Du6KNlg44Ljuzxu23ZrAomTAlTSnvpyVe/KrPs//3fPecCmOuee+TXp58Gvvxl4JprIoG6dlsl\nCDlTd+ihMmfn0EMNX0GIj6R9jsj0SWLrVl9QVy67+DAyqGu37XIFkIl5ZPm803f+UDoSQP+Zui98\nAfjpT+W6I9D0HSUAZxGhM3WLIZ4OiJf9+oK0flQI8ZD97x2WZf0EwJOQWbBvgWTpTGwcBaMZaa+g\n9p144onzsr2ZZwCa6qvZM9PKwSq2bZMB/pYlS8xls65cEFl+XbNGLimqVY/82kHWKZcRR351+nsP\nmDrdQbZaUGNQfJg6Pg/yrbXqNlOXy7lzHE0koZMwebXZ2UCmLg/7x+fmfJk6+vjevXbGJTnYEKau\nXgcuwdcxjCmcmnX7S1CdOoepu/hi4MUvdl/YudNdFTCHeMst8vvo3vsydVmVqWvWQkAd3TeNqVu1\nSl7a6Wk5YRDAisN4OYwyLSaq1b7Kr3xzgzixgB573/uAN71JInFC/HFj6uwLS1J6u8ZAHZ+Ru02U\neOc7Jd1s96fxceBBG9SVahMuQ3fzzbK6NMygzrLcUobtdsh146Du61+XN2w0eJeaoMVBuexeXno/\nFNRRcTgtszMI1HnwOckDtVokUKfjFM7ULVsG3HefDyC+6ipZn5TuNb//emffvBkDBx0CwL3M5KcS\ngbr775fXasMG4Jhj3NdzOeDVrwZ27cJ1r5B9p98xdeRuQ6VkH1AnhAqyW63FEU8HLIAdJYQQEwD+\nAICStB+AjKvT7TkANgshkmxkMi/mWZ2YQB3LgKVyPIAcYPqG5dx8QR3fu4rJr/RdDlungTpTaEFs\n+bUXTB2/COxg7gQ5U0fZr5ypIwuNqeNeLQDUOWVNAkAdrYA7HdvBRJRf63UJviewXPFdkWLq9CdU\n4JR/sNFQpBb+lm4FjakzgroIMXVjY+YJoyumLqb8GgvUGRrEa+zF3A1NNcuKJCeZmuEcZl/YTKcN\nCx20CNTpIK7bRAnLUvrThg0uU1esT7o3mGJ4IccYj1vTFw6hMU80kAYG5AUOAXRAMMg2rQmN8is/\ngACZD6gzjReP/EodvV6PBOr0Pb2rVReYkMvQCX4A7j2qVLx0uAHUBcmvsUEdVVk480z1PpGjHRvz\n+K3I1iVTR6ceCupM8uuGDZ6wyv0W1FmWdZRlWd+zLGuXZVkt+/G7lmUdlbQBlmWtBnA4gMfsl34I\nYJ1lWc9nxwwDeIX93qKxOEydn9xHFhvUzc4qdepoMDugTis+TBZVfjWBumyv5dcITB2Vj8nnvU4w\nMlM3MxMov1JZkyBQx5307t2IFVNHxs9Rnxf8Eqp9LcAh+jN1AaAuRvarH6hLk6kzFR/m1q38ymNz\nCO93HVcTUX4lF6EzdQCQRxOdWvfyq5Gp02x83K1TV6gyULd3r4zhtU3PBeOPoaCO4hhCiz66FgTq\n+CWIzNT5gDq6H5HkV+rojUYipo7Lr2ELFgDSIXClAfB29k2bPOEinKmLHVNHVRbOOEM9NxaLEjGc\n0GtdMnWRQZ0PU9dWXZ8C6kLKJs67RRYQLMs6CcCNAKqQ4Go7gDWQYOvllmU9TwhxV8h3/ADA3QDu\nhYylOxTAOyHLmXzCPuyHkDtIfMOyrHfDLT5sAbha/86FbJ7ViWn2ZUxdkOmOZHpa25qqS6bO1Oa4\noC6XAqhTsl8TMHVU6JnLr2SRYuosS3pUH8+mgLrZWQc4+jF1gJz7DuNaSghTR8bjBvUVL6+3Fslh\nRljl6hZbftVAHalzYaAuDlPHQV2ZbXcblakL3FUiQH7loI7ubSL5lVtEUDc05BIwnQ6QYY0poKHK\nr9y6Zeo04zF1hdl9Kn15881OHFUu55U8IydLcPk1ogUtDugSZDKur/Rl6ugJdVKtBlss+ZV3dMN2\ngLqZ5FeySKAOUGMchocjMXX0O7GZOiFUpo7bPjdCatEwdfz3tN0kgP2XqfsIZKmRg4QQlwoh3ieE\nuBTAwfbrH4nwHbdDbv31VQA/AvBXkEDxWCHEIwAghOgA+GMA10PuPPEDAG0ALxRCbInR3nk3zxg2\ngbqITJ0+KIRwJ3bRasuRaFluUbC5OQiWKEGOKA6oC5JfTYkSuXp8UKfHiXTL1BGoM8mvoaCOr3Z9\n0qZSYepMVVENnwti6niMVySLyNRt2ABY6CCDNvKWxtTVbQfYaqnxc3pMXUz5NQ5Tl7r82my6nTAA\nZZpAXc+YuqZb3giQ/VhhgnSmrt69/BqFqVu71gV1pZ2b1aAjYm1gZur0U/Vl7Bio4xnuQRaFqeN9\n3Jep0+XXyUmlwySSX/n/CWPqYoE6/nv2FzyBg+TzzZuRz8vzaLXktaW+PFhsYnBAeJpOxocJALn5\n7LZtck7T9/VjK6f5YOo6HTcsUk9g85jJCa1dawR1iyVRIg6oOxXAR4QQSk12+/nHAJwW9gVCiI8J\nIU4QQiwTQlSEEIcJIf6XEOJJ7bi9Qog3CCFG7ePOEkLcE6OtC8I8g58AFze2VViQmZwtDfrXXyB7\nsBgacgc2Y+rauZI7HhIwdc6ADJNfE4A63YF0G1PH5dfYMXWAe/1YmQZufjF1uvPgGH3XLqgeOpdT\nL3QE+VVf8cYushmRqTvqSIHbcSpux6nI6aCuZke6H3OMuzqPkP3aK6aOJuxSKZwJMIK6qSnpoS+5\nRD6PyNTRUO0JU3fttZJlueUWpxn8/HRQV0DDBXUpZL8Ggbp83gV12ard4ekihIA6DkofeEAS1leb\ndBcCdeUyrrhC5n3pewbrFpYoQW0nC2XqCBEAMo1dezuS/Mqp9ASgLrb8CviCuvtgR0dtUgsQU+jw\nIKbxvf/ZgLfeIccBP31AdrcDDgAuv5y9eOut8vGMM7yOlYH9iHWXvcaDh/U0/RCmjhdQjiy/8nNY\nt84TY95sukwdbde7UC0OqAvLIJ2XDNOFbKefLmsy3nHZ52W5ife8x3tQQvkVcAf9A7fJf1oVFq81\nOwvL9tTtvAHURYipu/BC4NhjgRe+0H6BeUATqMskAHUvepH0C5Q8FSi/xmDqEsmvQCioW7uqjcM2\nukydn6wXyNQBauMiyK/6iveyy4CTTgI++9mQ8yGLyNQ9+4BZnIw7cRL+RylUDACteltmVj/4ILBj\nh3yRJ0oQsi2VUK/LeS2Xk6eszzc8uyxOnTrO1K1YIcukvfGN4Z83grp775XVRG+4QT6PKb92zdTR\noOb35I47nP2beUydEjOkMXWi0b38Sk0Iw4Hv/pC2ywsN3M0ucxfE1LVawJ13ysn2ppu0LxdCqbFx\n222ecD2jRUmU4O9Fjqmj87LtmGPkXsKvNexyvpCZun2rbCZtpywFSyXt7rtP/s5heBgr6k/jkL23\nO69zu+8+Caxvv529uG2bfDz0UPe1b35Tlp/5wAeU8wBiqenSyF+NjbkBxBGZOj7GI8uv2SzwlrfI\nSW/jRk+oHbGapZJ398qFZnHWmncAeL9lWb/gbJ1lWQMA3gMprS4Zs3XrZI1R4M32n8ESyK/Ll8uw\nBeq8uVn5T72yDHkaPXZcQw1FZPMZdyUZg6k7/3z555hlQRQKsBoNM1NXS1bS5OabgR/8AHjVq6LX\nqVOqr/skSug+NNIkTNHCNHGSVmHbn1zYBn7bkhvjzc05yoCu1uoxdUZQR0gwgvyqM3XLlwO/+U2E\n8yGjD+ppdlDv+ZqcAb1Qe2pt7wbePFGCJpNKxWFXyCfrQdh8gaxX+TeZiamzLNlvopix+DCdy+7d\n6q7wBnTAMX7qoI5fZ2pDo+E0o1wOZuocUKeDuBhMXdTYpyv/Ngt8fMgFPgccIPv05KTsz6OjofIr\n3QNfKdyu7ktdNWxiDoqpSyS/clmZ9feBAeC228xtCIypo8VOBFBH7oYzdWFJQI75gLrXf2Ac+Mus\npOAaDZxxRgH33ivJ1Y0bgTHI/lTJyUZQqBwZdTcFeNJv8DT617xG/hkOo6ZFNg7q9NdCmLpYoI4v\n5D73Oc/L+niIfC/m0eIwde+HLDWyybKsr1mW9THLsr4KWWPuSABX9qB9+78lkF+f9Sz5ODkpO1+x\nLntxrciYOntWraGkAJw4oM5kln2AKaYuUw0LYPA3ZaUbk6kzJUokiqkDvI5Rl8zbbXcWCQB1aTB1\nQTF1sS0iU7c6a9AZbWvVfUAd32IJACoVRXoFvJc17lZbJlAXx4xMHZ1LvS4n3n7Lr4Q4TPRso6HI\nrwpTxxBmHk2IZnpMXaSAdk4djY1BHwRh8qsvqNOyNahNUUFdVKYuVH7lZtqw3mC+2a/8/wigji5t\nKkwdLRqXLVPuEUVO3Hyz/B0CdQU0UC5LZpQvYgJBXQBaazZl185kYq0vpJlAXS+YOpP8CtUV8G4R\n+V7Mo0UGdUKI30DG1f0SwLmQSQ4vAfArAKcKIe7sSQv3d4spv1qWu5fmxISci5ZBDt7ZHAN1diR9\nFWUzqNN2lCALder2ASamzkrA1JE59fIabblap4ql5JWzWWXg+TF1QfJrFEbI46TWrFGfUwVVIB5T\nx4tOAb6gjp9XUPZrbIsYU0cOHoCHqWvV295JjoM6sgigLu5WW6ZEiThmBHX8XHbvnj/5tUumDv0G\ndZyuiAjq+KLNF9Rp2RpRmbq4MXWh8is3fRHjY2nJr9RPZ2YkGcpZ7lDzYeowMuLWRty9G2ecIf+9\n7TY5f9CYtxoNnHKK+x5ZUlBHBOXgYETfy60Lpo6HwsSSX5k9I0AdAAgh7hVCXCSEWC2EyNuPfyKE\nuC/800tmtJh16pYvd5NoJyftCv2Qg3fa8jJ1VZQVhaxbpi4I1GWqyUGdo3zUNUrKpJ/An6nzS5SI\nKvNFAnWMqWO+UrFI8ivZAmLqRjshoE6f5HhMHdliY+oASU1EzH5NrU5dyQBQozB1Wkyd1eyf/ApA\nndlWrnQBg03vpMXUxZVfo2a/hhYf5hYR1KXF1FG8lh3+hqGhiAlegDvIePYuIO8XA97r18u4uqkp\nGd+4ErucRhDg4xKsEdTRbwSAusTSK2AGdbTFkhDQ01OXmDrXAruLZVkZy7JeYVnWkQHHHGVZ1ivS\nb9ozxIKYunYbuPFGoFpV+jifoKanXVA3gfjyqz4xhYKGMKZu82bgnviJys7v6uiFJipttonL1EWe\ngP1AHSFCDdStWCH/pbAsslD5lVdGThBTF9siMnUjrXigrpPpL1PngLqYTN3QkLyF09NsPuDnEsDU\ntdtqCZnU6tTRSi1EfuVM3cQuNWiogAZyCGbqNm/2Br/rlpr8unUrjmr91nk7KKZuakoNX0vK1KWe\nKMEtJlPXbUwdXVq6LrFAhB646gPqADjg7frrGTvfaDjSLEtmdqTYuExdKqBu5Urz65ofix1Tt2+f\npCOfgUzdawF8C0BQOcJpAN+yLOs1AccsmZ8FMXXf+x7wghcAV1/tDIzVq9Wgb87U7WuzzeLtEaXL\nr7Ow37cnAN5h8/kIbJbdECptoNjcHPCylwGnnOLNiw8xpx06qAth6gqFaDF1iUHd+vXykS66Buoq\nFfk7FJZFlrb82i+mbrhmyAig9jQ6nkluy/ZgUEeg1w/UxWXqHAAfk6nLZNw5b3oaEoFHlF/37VMB\ne2ryawhTR65haMi9R1e/R63vkUdTSrCAb0kTGpLT0/A1AlBdg7pXvALffvIUjEFl7UzyqxBaSaMu\nY+qSJEoonzFRjE89FaFicnryq55ZGSswnwYZ+d4AUEfg7emnGahrNnHqKQKWJRP86FySyq+mXIrI\nRvOYHtPsE1cXm6m74gpZnuIue7+E/QjUhbnUSwBcq9eR4yaEeNKyrC8BeD0kAFyyOBaUKLF1q3x8\n/HGccorcC/wlL5H7KANeULer6d2Cipg66pgfwlV43v85GQU7eIJ32EgO/eqr8X8v/R0e3XWI81Ib\nGQhYyDWbstyFENITxMj9pkHpZPJFZOrOPhs4b7AEfEc+D5JfI5nupF7/ejkbDg0BH/qQJ6YOkP5y\n82a5oqWPK4zb5CyAffIcCOXElF+7ZuqcoEW7/cyJ8e+sVAOYuoY3pq7WzHmRWaWixNPwRwIWcQoP\n8+OSyq92szA1JW/bMkyqKGf3bl+kqUvrqcmvIUzdBRcADz0ky9fQ3LP3EbUxBTSQh1d+bWYKyNud\n/qmnZJu3b/efYFNh6nbsAB54AHnRxKF4BLuxMlB+BeT/jptgTJ0Q6TJ1JvmV1DzH+EGDgxIRbt8u\nkU9IcTIK7yBlMJsQ1FGhaTonqhgTydaulY9PPSUfIzB1gBpHO1xuYmiogKkpuUgdGXH7v5I432um\n7oor5A26+GL19bSYOqo/SP7smSK/AjgewM8jfM8vAJzYfXOegRYkv9KkOjmJXA74x38Envc8VX7l\noG5nzQvqKKaO/MktOBP48D8aY+qCCo869vKX46vrrwRgoWmvCaoou3IsURqhpbxVC5VffZi6gQHg\nzW8L3yasK6buE59wtkDSmTrA4y8BqHjoQNgO5MADXefRZZ262GZZ3r10vD+P8ow/qMtP7PZUi25B\ni6mzaWFWbgxA90ydqU5dXFNIcV1WC2Dq/OIlU8t+9WHqRkeBj38cOOII9x5l96mNyaPpgjrWpxpZ\nF+Dp+2GaLBVQ98ADTt8ah7y+QUydp02MqeNdNI1ECZP86jmev1AquZt8RsyAVUikhKCuUFBDIzn4\nCjXa6oBqBtKiZXjY46SOOMJdXyrJUfW6Z5ec3S6R5zLWEWi4rkDdoYcCn/ykGlMHpMfU0Rv0uB8x\ndWGgbghy79Uw22cfu2RxLUh+ZaCOmx+oe3rODOo4Uwf4Bw1HZYFoLmqZQB1ZaISqaqHyqw9Tl89D\nCQhPVX7NZtlsan+BDuqEMII6Ds5oglN2gu43U8c/7LPKBYDCtD+oG9r9hOcr29DkV/u8+J6SwPwn\nSvC2VKsIBnUhTF3q2a8+TB03pz5hJxpT18i4Y6JvoI7oRPiDOj07UWkTY+r46fcqUSIQ1JXLKkiK\nYIoEmzCmrlBQ81sSg7rpaYnAhobkCdM9sgPkLEuqj4AG6hoNzy45vP97YgZ7xdT5WVpMHZ0cPUYE\ndftDnbrdADaEHAMA4/axSxbXguRXcnIRQd1TM/7yK/mTXE6VHGLLr4BnH9kqyqh2CeqSMnWFAhSK\n0U9+TQTq+JLZBOo6HaDRCGXqHFDHNw2MEFPX6bhxvF0zdYCvQ6TvtCyNCdL65PBeG9QtX+681vQB\ndVGZun7Kr8r6idgXOhee/ao1St9cpF/Zr9zoHo0hgKnL5x32vGbJk+103K9MHdTRFk40ANh+Xjqo\nC5JfHWNMHce53cTUBZU08YA6flCpFBvUKRmwXNqn84oI6nh/O+KISD8tjeJ/t251M3voXhmc1Jln\nyn2eV4DFaTJQNzen7DaptDMKYouQIBvfYjJ1tZqWjENGnYpO6Bkkv94CGSsXZn9hH7tkcS2i/MrN\nD9Rtr42g1s4r3k2XX3W/kgTU6UxdDSVUrXRAndWKF1Pnx9TlcmqCaaKYOr5k5qCOp9PPzoYydRtg\n2Ak6hKkj4E0TlgJik1rIKnd4GLD4SWjecNk+G9SdcILzWiuEqfMDdUmZujTkV4Wpo3OZD/mVM3Wk\na9EN13b+cLLfEcDU5fPumLRBHZ/7UgN1RFesWCEHli6Rwe3zOlM3N6feOj+mjp9+WCRH0uLDvWLq\nPPKrfoDBTNf/kENi+C1A9qc1a2Q/fugh+VoAqDvjDFnjNAfmzzRQp/f9RgNqhgt3spotBKYO8Fn/\n6fPTM0h+/RSAsyzLusayLM9wtywrb1nWpwC8CMA1vWjgfm+6/PqHPwB/+7eyZ/owdX7ZrxNYht17\nLAUw6PJrL0BdFWVUMz2WX4OYOga++srUAb616uh2rlwZwtRlMs53t1oSR/EK7HSeiTfG5hbC1C0b\n7hh3Txc2wlwx8bh84fjjnfdaQkuU8JFfebWFL34R+O//ls9TZep++lPg05/2/Q6j/ErnEiNRIjX5\nlQo3czothKlzaorR6x6mTh5YE2oGKRAN1EWKq9WBggHU+cmveveamACuuQb4xS+QmKkLWiAEZb+G\ngjoKl4gI6kq5Fq7EP8C68zfmRscEdScmiVKnNt97r3wMAHXHHw+sL3pRWyioazRkPy0UAieNnoA6\nuob33SfnSftH/Jg6AKg98TTwN38jE17I9mNQF7jWFEL82rKsdwH4BIDXWpb1c4BoB2wAcDaAFQDe\nJYRY2vs1ieny6zXXyF3aN25UmTraZQEuqNu3T/bp5XbY4yRGsHs3sL5ScbhvXX5NA9Tp8mvdKkEU\nygCfZ5MydW0N1FFGl5baroCcYo9KmkQEdUHy6/r1wPiugJg6g/RaLHqLmabC1Jk2kAewapV8fM66\nSWBLG7p1snlkWw0sm5HZ2J3DjnBWg1a7FUt+3bEDeNOb3MPjMnUz0Mo2cHvb2+Si6FWvcvsNM2X9\nRBuSU3rh7t3e+EnbeI06IL50HGilkqSi6nX5+2ExdfZYb2dyyHZaCqjrZF1QN2eD37igLlL/on68\ncaPdqOUSKTFm109+1UHC7bcDX/sa8NznAve/ywV1acXUUTegPg7ESJSIydRd1Pgm/gEfAP74A+YD\nAi4uv/4bNwKPPw5cemmkn1VtfBy44w7g17+Wz8k58ZWnPZcUCsCLj90td3VnDeGgTt+Rq9FAZLTW\nU6buwx+WwO7gg4FLLzUydZSNXHr/XwHXfRv4r/+Sn+l0vIvC/Uh+DXWpQohPWZZ1N4D3ALgAcDb9\nrAK4AcBHhRA3+3x8ycJMj6vh1cBpudpqyU5oj7ahIdnRZmaAPbuFExOxG2PSaWpMXZD8mkaixOHH\nlZEdrAA3sYMSMnWWztQdcYSkdQ4/XDnej6nrOvuVZ3P5ya8+oI7HwtCtW7cOGP9tAFNnkF6LRdfH\n6HN8L5i6Aw+UNa6fLXYDL/B+rJMrINtqoNiUXnrWGnSyosqNCSC7wj3Yh6nTS6iRxWXqtoLFDelG\nY8ckfUFbP9GxBEz27HHTAbVGUVceHFS/umv5FZA3e3ZWjv/BwVCmjmrS1fODqNQnFPm1Zbnya7WT\njKmL5AOOPFJSa5QRnsnIa8cGwDJMYhiTyOVGlPbroO63dp3ivXvhK792A+pOP10SuCxiwF9+VdLA\nmfwaMft1FXYGHxCRqbvpJrn/6llnRfpZ1ajNP/mJfDz5ZPlYqchzqlblBbVl0795SwJQ14kWLNdT\npo7Ktjz+uPIyZ+pWrZKLyMzjj8oXqBaYKXRjP2LqIin2QoibhBAvh8xwXWP/DQshXr4E6Lo0namj\n0V2rqZ2PpYxZFisN9dgMimhgBgOooWwEdWnLr0T40AQyvKqMgZU9iqkDgBe9yMO8+DF1qdapS4Gp\nO3BdRy1pQhYA6goFbzxwL2PqAFkqZ21+l+d1QII6ACi2ZHDTZMO9LpXGRKSYukzGHH4Tl6nbhrXo\nWBkppejnQc+1eDQyRX6lGWf5cumpOx33BmqNoq6sO/TUmDrA7TAhTB0BuHq24jznoI6YutlOD5k6\nQCKOAw5wnzMJdjov9zE8EFs8i0ldfqXQr5kZ9CRRwrKAc89VFeLI8uvoqFvcMOji2bavsCr4gIig\nbt26hIAOcEEdOQyqMgwYJdjRTgL5dSEwdfvsohw2i0ov1+suiU+bAc08+zi1UaYOtR8xdXH3fu0I\nIXbaf16dZsnim54oQaO7Wg2IKHbZ9Jkn5ES8NyMHrA7qeiG/6kwdSiUvFZMQ1GV0+dXHFJDDtsLg\nTJ2JaAu1uIkSPqCOJqVDh7ejgCYm8itVkBhTfu0lU+eY7sFtEzn5ozkhG7Ov6l6XgaYZ1OnyK2AG\ndVHvC/ncNnKYXbZO6io6WxcC6hT5lc84NJgoWcGHqesJqNPLmoQwdQ6oy8mLyZm6JlxQN9PuMajT\njQZBsYjHRyUtNo7NofIrne7MDCBqyZi6pEk3ofKrZcWKq8tmQ7bjiRlTl8i4GpDPAyed5D43SQp6\navdCB3VOlXp7rNr3hV7eu1e+NTjoii5Nwe7rHXeYO9Qzjalbsh6anijBmTru2TSPTOOztlWOutkS\nA3Vs9uxF9qseU4dyuWtQ58ivJqbOYArIsSynUTymLpNxL29qMXU6IAph6g4pSqezLTeufo7ukY/8\nqtS8Qu+ZOgD+oC6v/ui+mntdhlr7ItWpA9xNyrnFnYgBYGbUJ9YpCVM3OOgN9I8I6lKRXxMydbWM\nl6lrCFd+nRMltFrzAOrGx7FnUAKhDdjkUQioi7GqOADkRNycST+mzmSRSprQ2I8RV1fOhGRk9xvU\nnXSS6sNMjsqA2hY0qNMvkMbUEUYdYdW9OlV2X26+OTaoo9tWqXS5qO6TLYG6+TY/+TWEqaPxSRuw\n14fkC7t2wcjU+cmv3cTUdaycew4pMXWeRAkf84Acu1FcfgXcZkUGdfw8TKBOB+zgfesAACAASURB\nVAxzc04o1p49bqw4HXagHTD+pF7uMSSmTpdfFwJTR7Znzr0ug60JY/ariakzWRJQN7vCMNEK4b1Y\nmjnrp6pWkkEHdVqjqKTGQmLqaplgpq6KMqrVeQB1GzZg36C8P5yp00HduLbGAYDmdPoxdSaLnCjB\nGxoB1JUs82LCsX6AOp6MpVcu3h9AnX4Nt2wBOh1P/+KgTlTZfbnllsTy62Jg6YAlUDf/FiS/RmDq\nqG5VZ9Qsv1JMXS+YunbGIL/yglSAHB3nny+zlQIsk5F/vDxDkHlAjsbU0XnxyiGRjAd/meRXA1OX\nz7thWRT6SKBmTV1OBo81xvHUUzJw+z/+A6ExddT+H/4QOO004NFH3fcSW0JQp9+L3TMlzEBeoyw6\nkWLq/CxuogQAzK4wbN/EI7pD5NfWdNVOiyvJC52QqZvPmLpZa8B5zpk6p6QJSpibU7+G7+SgW5pM\n3b4hL6jT5VcjqJuJFlP3+9/LcXTjjfJ50kLWoTF1vKERkiXKVnKmjo/9roziAAF/UPeOd8is0YMP\nBr77XfkaFcbUQN3p93wWP8M5KNulDUygbnpahj1/+ctyWL3mNcB73xtpJ7H4pl+gZhPYscN5mVRZ\nBdRxcuTXvzavbiLIr0ugbsmiGTl1KkDqlygRAuqya/xBXa+KD7ctJr8ed5x0DGefLV8jT/zEEzKV\n/HOfC/3eXC46qOsZUwe4S8uITB0Aha3jhw3MSc1xa3sNvv994LbbZJ02HHywdMDHuUG8PKaO2v/X\nfy3LPpD1lKmjqPVVWsC31jF2TpdxGb4EALhq9eciy6/veIfEzHxCT8LUzY0Z2BN+X0Lk1/akRiGc\ndpp70OGHe86XurK+RVBq2a9AbKZuRrhMHWXENlBQt+6b6yNTd+qpcvw/73mYHZIR6quxw7lGFLZI\nLm2DYZ+i1qx5m7BmU8XsP/qRHEff+Y79uYRMnWcsmeTXdevkI5XACTCdqetAi7HrB1NHPnj9epn9\nxI36+d69wJNPyr+5OTkwKD1YA3XnbP0SzsH1OGvZXW47NVB37bXAr34FXHaZvEzf/rbctpUSFnrK\n1AHApk2el8fG2DTI59G5OeCxx7zfsQTqliw1y2Rcx16rxZZfCdSV1gcnSvSi+HAnw+TXCy+Uo/iy\ny+RrNBPSZOVTZoJbPt8FU2c3isfUAf0DdXyXD4DtDFST5z2NIWdrzM2bIbdv2LIF+Na3nK8yya+6\n9Yyp63SAW2+V/7/whcpbmaLamJ1TJXwXf4oBzOAbA2/xgDp79zQAajHba66R14eqLADJmLrqSgOo\n4+cUIr96dKE3v1nORo8/Dtxzj4fWXYhM3UzHZeqIRalnyor82ldQd955cvy//vVoliQ1M4BZx7/8\n0R+ph5uYuvasmakD1LJi9H+3u5NEkl8JjRqKcutWgsrU7YMWONgPUAcAP/iB7Mt6h33Na4Dt2+V7\n/G/HDuDQQ52GkFAxN+fGOI+PTLrt1Cg4vu0kMbHNpnRvQI9j6gBg82bPy+PjbBrUOxMvQky2H8mv\naaw1l6xbK5Vkx9NBXQz5dXijdD79lF87WSa/AnL0co8AqKCOFVA2WRxQ52HqQuTXRKDOJL/GBHVZ\nG9TNYBB326Bu0yb7UmhxiCb5VbeeMXUPPijLBBx4IPDsZytvZUpqx9i2T6KjOQzIr9JAHatModxu\ny5KXljvHJExdKKgLkV/FtEEX4uU5NOspU8eZeiAyUzfVln2ngIYL6qxSoPxar8s/064RqYAKe9y0\ny/JxEDPOXHnCCfJUeVFu3dpz9jUolVDXasPOzcl1EOB+h76PcKoxddRZTHFoPlaC2u/2YAVWgFWu\n7heosyz/39KKuDvGfANn6qgawdoBA6iz7zcfz/wyETDqOVO3eTPyZ6ovjY+7VU+suiaLm1jXAKaO\n3losoG6JqVsIxpMlyLlHlF9p26Dlh7hMnSh75ddeJEq0M0x+JSOPQNHldD7ttu9kSxZHfvVj6vzk\n11h7KAYxdYaYOkAFdbyUXWbOBXW8JpeJNTHJr7r1jKm72S43ecYZnh/Jlc2gDrDBNe9EAwOh8XTc\nOSZi6laxmDoKookA6qjfWjPRdxon6S+b9ZZkSTVRIiZTN9lymTpiiGpWOVB+BfzZujRBRavkgjre\n/lNOcY8ZHfVefjFnXwMtUQJQ4+p0pi4uqItcfBgwlwHxMZ2p24MV6gH9AnVJzADqZmaAbEf2t9Ul\nf1DHx4VOgllWeFxtonZyMzB1Gza47co07M5ErKuJqVuSX5csVePJEhGZOuqfXH4dGJAfb+R6W6eO\n5iGhM3UAlGUeoM4qIRJsmkxdKvJrFKbOBq8c1NVdwgHWjAvq2C5KxmS6KPJrz5i6W26Rj2ee6fkR\nLr8Ky8L2PVptPS37NSzzNQlTx0G5GBqWX1KturJYDKaOgHYUUEcAwlTOoCfyK8/gJcAKA1PXlB27\njCoKaKIDC7VOIZCpA/oD6jhTx43H7Y+MeCdJUXUpXp+1EwB/UBe35mEk+TUGU1cUKqjbi1H1gEUG\n6nbuBHKQF5f2FzeBOl6L/eGH1a8dGIi5oA4zP6ZOe5nLr5mmfV8oVng/l1+XQN1CMF6rLsKOEoBX\nfsXYmPPadLu38iv5OwfUmZg6XX4FIoE6CvoOa0xYTF0q8mvCmDoOzmg7KmfPUtvCQF3f5dcApo4/\nF6Uydu9xNVWdqatlKsYkCW5JmDruczMZeEtNRIipo/YQqCNGKcioG5tAXU8TJbT/daZuwmbqhiGj\n0etWCY2mFRhTB/QH1HUqGqirVoF2W9ncYNkytx9QH/ArPgyooE6XX+PG1MWSX0dG5OvT0/5Kg72w\nKxrkV8W0DlStuiWQFiKoe/ppt78Ndhiom1aZbp7E8vvfq1+bqvTK2wnIZDMA2LQpMKYu27TvC0nP\nS0zdkvXcuPxKo3tmRt25QPPGlG0ZBdT1Kvu1kw2QXxOAul5kvxIFnxqo080A6nhMGRhTx81UIcG0\nTZhuASGJ4cb30uG2ZYv8W7ZM7qyu/zh73imUnKw2AJ6YugteW3ESQtJk6izLnYyzWXhLTcRg6nJ2\nnON3fjSIJ58M/t0gUJc6U9fpQKFz2TnpTN0c5DgbseTNqFllNBpQQN3sbDRQx5Pu0yiuKkpltJFB\nGTXZ/zduBF72Mpx2mnsPR0bcGEUnhLPunyhB0RxAn+RXR6tnezKakiV++lMZ7HfttR6mLgjUzc5K\nifBVr5LPFzyoa/kzdRzUUYgJWeqgjt+jo4+WjxpTl8vJLcIcUNfSmLrt273fux8xdUuJEgvBuGOn\n0U1RnmSaN65UgMFyG6NVOxB3dNTxPZNNVX4dHgae/3yprL3uderXJompO+UU4AUvANpHvg64Z5d8\nwhsG9Fx+9UxCl1yCrQ9O4pbHpMaTuE4dAPzZnwF/+IPcNJIsBqhTmDofUGdi6rhsqZ/+xRe7knti\nI4Sr3wcqgnfkkfJC6R2BNaaZk8hoxQo5xzWbgMhkneINU+2KU4IlTVAHyFvQ6dj3khIbaJuKGKCO\nklcmO4O4807goIP8f7PnoI4zdW1t58VGw7lnnjp1dp3A5dkpoAXUIEHdd/E6jGIvbsTzcdacdxFg\nAnUcFKUhleXyFmYwiBFMyVl++3ZgdhbDw8CVV8qna9bIRPlCQSZRPPwwYDWiMXXdgrpYTB0gQd32\n7VKC1fagxj33yE55993IC9nox079Myyf3oKfPXAu3olPuceyDrR1qwzTowXQQgR1zaYrvw5EBHWP\nPKJ+bU+Zuo0b5ePEBLIZAdhe6IAD5Nik88i1NaaON5gsgKn7kz8BHngAeNnLUjqHHtsSqFsIxh07\njW69UqjBG28cnUD2qQ6mcssxnM87oG5fQ90mbGxM+qKbbvL+dBKmbnhY1iUCLrD/mHUpvyZm6l79\naly3+9XYdbn68UTy6znnyD9uSZm6vSqoy2TkHGACdXTJBgbU+5LJAN/8Zpcsnd5IbtQYKh6mX3vW\nMWqWnOxWr5brjk4H6FhZ0NWZQ8VRN9KUX+lYSlrwxDrFkF/zLCO5GrJRQM/lV76g49IrEIupq0LG\noX0fF+H7uMhpu97moASdtABFLgcX1NH+vLZ8+Xd/56bevuEN8u+Tn5TPM41oMXV+2a89KT4MBMfV\n0Y/PzaHYkQ175KTXoXHWS7Hl/Ad8v5/8l772XUigDnD7W6UZDdTpeKmnTN2KFfJ5s2k3TPYtWu85\n9d2JqfPL/AUCQd2LXyz/Fostya8LwUxMHY0OcgQGb/ysEelkpgrS6ZDv2VtTmTq9YD63JKAu0LiU\n3On0TH41yUW8VENXoM5kIaCOpKQwpu7YY+V7QaBOBxCDgykAOiA6qAtg6uY6sq+uXOke1rbcTjSH\niqNu9IKpcx6DQF0IU1douPckbKOAvjJ1AaDOj6kbFvJeznXKRiAURX5NbTcD2wjUAXBBHeBb640m\n/kwzHlNnh+r1dpswIDgDlqEzYuoaGSkf1+E6JJHLKYN4sYA6YurKjWigTreeMnV82wjWQXRQl+vY\nnUkvqs4tQH5dbLYE6haCkWOfm1NjagC3I05OKtlwAHDQgHQyMyXpdEie2z0ne3MHFhoo9BfUZTIq\nSOXemQJsfawrpg4qqOsqUcJk+hfQc42pm5hwmYSBYguo1SAyGVQhEQVlAJrARBCoS8X8QB01huLU\nApi66ZY8j7Ex97AW3Gszhwp27JD/p1nShB+bySA1UBe2pWdfY+oSMHUD7Sn7eVmJOwOig7peMXUA\ngKeect/wySCl/p1temPqCAeZmDpAxqallihhKmkCBDN15IhmZ1Foy4bVraIB1OWNH6NQSlOx7r5a\nCFNXskFdvY5IoI4uX0+ZOh9Qt0ZuaIJKBbDQQUHYFzcI1AUwdYvNlkDdQjBy7DwCnWxoSL7fbns2\nQVxfkk6mWlGZul2z9qbqVhmAFRiLlSSmLtT4QIsRU9ctU8fb31WdOpPpo5sqoQbIr8vycpYVA4Og\neI/TTpMT1bZtXmdIk3Klok44qe2dGMbUEagLyH6dbLigzmHqhArqiKnzk195Ed/ETB11amJPYtSp\ny9XSAXWpFx+OwNRRdjgxdTRh1VDy3FY+/Cic0rT/a9qAIimoc2Kf2DZh1GVNTB0g14mpJUp0Kb8S\nU1eHl6lzksps42Of58fNO1NXr7NxK5CDRDelejym7phjlEPSbycQialzMpKLRW/1cG5LoG7JUrUg\nUFcq+U7GawvSydQGVVC3fcref1PI712hJWFxS52pA9SBljCm7oFH8sbLcdddcvODMKau5/JrAKij\nUx7JyvO1hlzP9qxnyfhGIdT5jn1V/5k6HdQFZL9O1mSfUpg6DdQRcIjC1MUB20r2a4KYOoepa6qg\nrloFfvITL0kO9FF+NTF1c3PAj38MTE0hnwcyaCMDIWvSQUXMVZSd6843daG+SBh4Xpk6nwK+tGih\n2Kd7H3GZuuX2Tlt+oG5mpo/yaxBTNzeHvM3UNSwJShtwL2jL8gd1HHzPO6hrNJDJyLFC0isAlGqT\nGMEEjr7n655NXXVQV6nILZSBFBekZBGYOl9QF5S+uiS/LlmqRo7dJE8Wi65no0w/29bkpZNpLVdB\n3ZZpuSKZxAgqFWXXMI8tVFD3z/+ax0c/qr5fr8ss3nPPDY+po/OixVnQNYhk+ugmB2HfMyNTl7NB\n3eCgA6wPOkjuxAV44+o4gOD3JXVQx+kaIWIxdXMwMHVMfuVgw4+p4/csZJMRxbqVX53d7ODux7tn\nD/Ce98jMti99yfuZvsmvJqbuW98CXv5y4MMfxtCQOzaayDulS8iqKDsJ89TnOVgg5UlPqgcWjvya\ntxMNznp5yWGtTaCOy68c1HWdKOEnvzpxLcGgjpjGmoGp0++XDuqoy6ZRUiaRaTUsKxWmmgAo1Kfw\nIVyFS67/c3nBy2XH4eprqLExuXgF3PuXejsBX1B35JHycXDQ3eVDcHLEZEtM3ZKlamFMHXHZd9yh\nvHXywdLJHPVCFdQ9MrUGez70aVyBzwTG0wF9AHUJ5dcm8p4t+qanpUS5davr2MOYunPPBT74QeB9\n70twHtz00b1ihbw309PA1JSRqRvOuDLFF78IfOELcn6gJCx9jug5U8ezOch275YXc/lyRpn4M3UE\n2kxM3SwqANxg8CjbA+lxYEHWbaJEoWDvPws1eeVrX5Pv//zn/u3refFhE1P3+OPO43HHAR++So6N\nlpVXWCBA3pcgUEd1WnV2GFgooE6gaMuXe2YKzvqVnwuZztT1pPhw1EQJLr9STB28MXVtjanj3XV6\nWt25ZF4sBNRZQuAU2PPPS18KfOUrTsCjztSNjQFvehPwN38DvPnNKbdTZ+oYLf3znwOf+hTwR38k\nX1q5Elg/JvtUK7vE1C1ZPy2MqaNS7LSVk22VOekklz1briT5PPfEy67AT/HS+Qd1CZm6JvLKihxQ\nV+iUSGeKqbMsdzCWSsBVVwFHHRX3JDTTR3c+7zJbW7ZIuSInT5cw00jGrbx+/vnS0QHecDCyvsqv\nlHSjJ0kAakfgFxNwEj44U0f7jVLwPlkUUBfSJRRTmLqhIXmRZmfVoCTAV36lfSh1UEf36+abPblI\nSpmZvidK7LVrUO7ejUwGeNfbbVDnw9TR4SZQRwV+TQk6PQV1HLUHgDqKFayjAIGMA+riMHWpxdRZ\nlnoxIsqvxNRVhWTqBDJo2mMjSH4lP5D6llpxzADquPwKAEfifvnP1VfL4m22mUDd6tXA3/89sG5d\nj9oJeJi6s88G3vEO923LAk4/QXaWuU4pWAv2YepSWbj12ZZA3UKwMKaOUiZpKycycjK20xm1txrc\nuxdOBmIYqOt5okQXoI6vyAF1hU6DzsTU9WQgmrJf2VZVluViJpqQnG2SNFTmN0f0XH4tleQFazbd\nmVGXXgEVvWSzRlC3cqV7WLMj39dBnZ/8yi0JqMtm4a30H4GpozbpoI5sxw7gscfU4+e1pAkDdQCc\n2bOV8TJ1YaBufFz2qZ074RlXPQV13AJAHcU+EbtFQEcHdUL0MKaObnC5rNYQigrq7JjAqnDr7DUt\neVGbmYLxYwDzF2knFcQxDdQNDKhMHQAMwgbo3FfADOp6ZnwQDg8b5VduJx8j+9VUoyQHLAd2/IIv\nya9LlqoFMXWlkgwSGBmRy+wtW9z3yPPZoyifl06w03E3CZgXpo5HanchvwaBOjJTTF1P4lL0JXQu\n59Z1s4GRDuqGrOSgridMHW8k0VMmUMc7QjarnDuXXx2mTphBXU/lV2oEIC9kRFBXLgNDMO/HC3jX\nTfNafJhQGo3zpiu/6kxdDaVAUFcuA+vXy/956Thg/kHdwIAb+0T9i1yFDuqaTTWhJUlMXaj8qq9G\neD/TqVwmv2ZbdkydcOvsNTPSKQXF1C1EUKfLr2Qz+WVukphtfQV11E6q0B4C6o5/juxX++bsyYFL\nsMSCAEvy65KlbEFMXbEoexYFCnAJVmPq+L+0sXIcUJdajSQaaLOzPZNfyUxMXc+CjfkIz+U8+4+S\nvyCWdEAsIlBHABVQfzyT8ZVfw5i6nsqv1AggNqhzGNQB98LSTndahMPCYeqEcGbPdghTx4EQB2za\nGsSxXoC6aRikLp/s10IBGMqrTB2ZDup0H9AT+VXvuJWKfK1e965CCNHU68h2Wmgjg3o75wF1rUUI\n6nT5FQB2lsY9r+mgruvtDIOMBiH5MT7XGOyQDfJGTNZLcqcbDup4FscSU7dkqVoYUwe4cXX/8A/A\n294mvVkAqKONlRdcTN03vgH8y78YPxZHfiUzycc9i4PwA3X2LEkMSRqgrifyK5CMqWPnXUMJpZJs\no87UUe00sijya1dMHc9KDIqp27QJ+Ku/Ap56CqWicEDdQc912/ue98hHAnXXXw984AMu6JyX4sPU\n4dtteb8YqDMxdXS4iakrFj3dFY89Brzzne7z+WLqAGC0ojJ1ZDqo031AqokSXH7VzW/QaoimjiKa\nLcu57p2cvKiNRQjqTEzdjmI4qOuL/KqDurk54Gc/k5kSjE3NNd3klVtvhTs4dCl2CdQtWaoWxtQB\nwNlny8cHHwQ+/Wngu9+Vx2ezyuqDavT87nfycUHF1E1NyXSot7/duGVQXPmVshnJRkflpaRrkLrx\ni6XF1AFepq7SMYM6vwoJfqxQqrWedFAXlihhYOrGxuR1pzbODssLvgUHKj8VxNRdfLF8vOSS6E1f\ns0Y2x2ECojJ1X/wicM01wFe/ipFSHTm0UUcBJ59RQKEAnHKK3NuxWJQbkk9PA+9+t1w/3XCD/Ip5\nYeq47d4dytSRERCamVFZOI1Yxj//s5wDv/IV95g07IADAkCdLl/atqxsZupodwBKojWBurhMHfkH\nj59YtUp2bNKp9fcAOJW1ybR7VkMJrZbbBds5W34V+weo2573B3XkWigppye2dq183LhRPvK55u1v\nl6uUu+5yj6+7ZWbuuYc1cmBAXXUuya9LlqqRY/dLlACAE08EbrwRuOAC+fx//kc+rlihdMhTTlG/\nKowK72tJkyefdL2yIQ0vrvyqT7JDQ8BvfiPrtfbEQpi6qKBuQcqvMRIlqP3UX/aOH4s/fPVWvBWf\nVn4qiKm79loJmK68MnrTv/1teX+dyZiXmggCdXSh9+zBaMFNkjjiCOn///M/1RDJLVuAJ56Q/9Mc\nrt8Ty0opUzGIqdPPwZ49OwamjoM6ChWanTWDOrrldI5PP+0ek4adcALwd5/QOi2lhvtQs8vLZqbu\nmGNk/3/iCdnOIPk16gR8xRWy73kWFGvXAnfeKesD6kbFJXlMM2Bm6ppuF+zk7VpuixDUmeTXbTl/\nUPfJT8op6qyzetZKiRjvuEM6EGooIJ0nyfs8MLbmMnUTE1AZPu6gtM4Tt08tJFsCdQvBqHP5lTQh\ne97zXMbu7rvlo4baKFGWbEHJr9wjG/Zniiu/mtp71FGu/03ddFBHP7R1K9BuO/6CSMhSOxjU8RCj\ndlteHsuS3aEv8mu1KmeUfF6lLULkV2o/gZxG08Kew/4IE1ArjQYxdaWSLCQdRypfvVoCBsf8mDq/\nDU8nJ52C0DMYxMiIzEEiNohAz333eddXOqhLTeIPKj7MjTN12TwEMsqeuxwMjYzIflSruQsFE6ij\nR+qHaY1/ywKeczLrtIWC2798JNiRksuocKtU5NZ6gJTG02DqikXZ94yxtyec4HYIbvrFI9NAXQ0l\nBdSJwuIFdSambmt2g+c1OpfRUTlFcfWkJ3byye68x2PqaNAaQJ2zjR4HdXxuXZJflyxV447d7z0y\nci733CMfNdR2wgnmupl+1ldQx80A6nT5VV+V6w6979XXdVBXLMoJoN0Gtm3z1LYst8ygTi+xBqjF\nR7m0afh4d8ZBHaVBrl+v0k4hiRLkT6m/NJvmeMcoiRJdWVT5lXbQMIA6bjS09AxYwAvqUnP2QcWH\nue3a5cyewt5HlLN1nKkrFt0+QwWJTYkS9EjkWapbVPFOOzISXBYEwLKSy6hw08t06j5herpPNcXo\n4ukKg3bP6iii1XK7o2Vf1HoAqCNmf6GBOhNTtyXjz9TNyxZnNNfs2uV2hFtucWX+uivre0Ddkvy6\nZD2zoLRT/T1yLuTdNNRWLMqFDNm8gzqfQrBR5FcdKOgOve9ORAd1gLKC10FC0QfU6SXWAFV6BfoE\n6kzSKxDI1HH51WHqGubM5CiJEl1ZVFBHTN3EhLPLhwnU0dDqK6hLIr/aoI7H1XFQVyi4fYYyYgsF\ndXu6qSnvlmF9AXU+GbDDBbP8WiioZTrTYOoSWUKmDiXpv+sdf1BHAk3q+6TGsYhM3WbhD+rmZYsz\ncpgUQwDIPkY1vZaYuiWbFwua/fyYOjIDaqOVLQBnz1E/62uiBLcITF21qsZVLyimjv4PAnV1d0cJ\n3XTiQgd1PZNfKftrYsIf1AXE1HH5ddEwdUx+Hcm6+776MXX33ef9KT0jOTUAwRMl9DRCbhzU5bxM\nHQdDfqBucFBKZPW6G5LLraegLmj/VABDBbbxOrNiUcYJ53JSnNClyoUG6vSYukwEUEe20Jg6HdS1\nkMVTHW8W2oIDdYC7Mlti6pZsXiyIqdNB3fCwWmvHAOpoZTsyEj7QMhk3BmJeQd2PfoS3f/EoPAey\nFgtNWHyujhJT11MLYepWYSfuxIm4DF+U7WvYTJ1hCa7PcfPC1JkyXwF1dsxkFIcXh6mbN1AXEFMX\nxNTRZTAlaJIsTpcmNWefzcov1bdK0I2BOpGLztQR4KGxEiQx9wzULVvm3qvLL5eZpOvWAd/8pnPI\nUF52oPIy19/ReqJSkWElnQ7wy1/K9+jrkiRKJDI/UBeS/ZqpSN9eay9wUEdzkEl+td/bivWoNrJ4\n4xuBt7zF/eiCBnWMqfMkSrB596BnZbFqFXDRRXIoLoG6JevOgpg6E+DjhWJ9QN0hhwAveUm0nz/t\nNOC441IsPkw7SvCaCnqqoO4c//RPsXrn/c5TAnV8ngvLfu25mUDd6tXycfdunNz+NU7EXfgLfAUD\nA8Cgz44SQDhT11f5dYMW/MyD+jSmThRKOPVU+X8YU9dz+ZXSPPftU4Fcp6NOthzUdWR83RSGfUGd\nyfT7kqqzp4EXVLTPAOr8Yuo4qOOvAcBhh8nH667z/kSqoI7vTD8yIuWDTEb6hF27gG3blCzTww+W\nKOiAg1wnxNtz7LHy8d575SMtipLUqUtkq1bJ+7Rnj3qfDPIr34o4W7Zj6hY6qNOYuhNPBAbydiOP\nOQad5aP4Oc7B7t3Al74EfP7zbpmZeQV1fPciwHU6jz8uH1lJk8lJyBOrVGQxf+agNm3JYNcu4Pvf\nl6EJS6BuybozHU1xAGSaGfnsY6hZMjgIPPywLAERxW6+WWbyp5a1RN6J7yjBt2QBZK0IzuJpHtkE\n6hYkU0d0VLWKNcsk6jxt3Wbs2gUUG8lBXV+yX/3kV8C9uFqixC9uLeP44+X/nKmje8O7bs+ZOtqj\ns1r1dg6nUFjbDVqanMSylrzgezIrPe0zlSfjPwW455wqgKAxHrS9Bgd1BMKp8QAAIABJREFUeSpo\n6w4AP/mVvwYAp58uH3kpL/2YVCyTcRsxMiIpkH37ZFbA//t/8nUmxdLG6+OHuufB3SKViaPcHg7q\n+iK/ZjJqUCKZIVGCu70cMXWdvLK92YIDdXwwC4GTTgL+/Zt2I1evxvQj2/G/8Hml3VSoe0EwdWTk\ny2ghx0qaTE0B4tDDZOjJlVc6HaytwaBabQnULVm3ZpJYyUz0GZ+EfTIh4gA0bd7u3njAiw7q8nlz\nzaejjlK+gkAdZ+cWVEydvk9kreY0MPv0UyjnW+4k3QVTZ1lev9WVRQV1PkxdflhlhADp1Ok+0eQL\n9AHUZTLuSl2P+ieqhJcJqtWwvLYNADBbGvOMkVLJJV4Bt4hqueyC1b4zdfTDLPsVXTB1eskjUzNS\nMw7qAOnXVq2SMgKgxtfZfqIw5DaCt4fGC6lsfQd1gFmCNTB13O1lyu7er3wNu+BAHY1zpj068ms+\nj8JAHoA6YBYFqLMvejtfQrttDzFqqO2721AHc7W6BOqWrFvTvSnXhcKYup7uyZLQTKCOMjYOPBA4\n6CD5P3eO2uiJIr/OK1NH/zOmzmlspyPlpQigjpIB/UDd4GDKdZ+obwUlSgDuxdVAHe+PJqaOg6Ke\ny6+ANyOAjPodOXfbxiYeAwBUB8zjhpRoy3K3W+bzRk9AXRBTR/QhY+qoEUExdXoYJ93Oo4/2z7JM\nfTzpoI7MVN7EHty5wZJzbU2gjtgucie8wHLPJ+AIoK6Ooi+o475swYE6wCPB8v5m6hsUtragQZ3d\nr+g+KO7AYepkx6HyhEugbsm6N332404wQUzdvBsHdeQgyAtv2GB2jtqEtmiYOg7qeGOfeMKL1JiF\nJUrQ16fu6KlvPf64nHlWrHDZLm50cXUal9FvdAiPqSPHmM326f6EgTqqUWfb6N4/yLeHzOOGuuba\ntS5TZwJ1qbJCOlPHZ9ADD5QIc98+9yLno2e/8tcAeV8IrALqgqFvoG7ZMtmvJiZcRGDfL6tUdA7n\n7dHdXKXidluqOTsvTJ0hUYK7PaskT2JRg7pcDtmsNyz63nuVLYkXBqgjFWhqSq4A7H6VrcjxoYA6\ne97tIIPhYdd3LcmvS9a9Bcmv+xtTNz7urYJKxzJbNDF1BvkVAPCQzOLFwIBxP6mo8mvPQB2ZX3ZA\nBKaOzwGEZ8kx9oWlA7xVdslqNXlxNaZueI8MoG6OBIO68XH3/74zdXqSAYUuUJVaA1PXzgfLr3zC\n5RIskeb0uVTND9RlMq4/IDBOHahUcg43MXVk5bL79YRBeg7qTH4rhKnLMqaOr/kWBahrufIrf5tM\nCOC22xYYqKNFaqcjx5N90bMVl6mbnLRBG2PqNmxwh+ESU7dk3Zs+WqLKr6VSygFXKZmpiBRNTHy2\njAnqFmT2qx9TR8XOTCwYwuVX6hKpO/pSSZ0t/UBdl0xd37olXSC9Dsnb3ibjtyjwx7ZcU96jzmgy\nUMexbmoWBOoGB11ad5uMB7QKXqYuN+jP1Om4nOpYrl6txkCmDupI56XaiNz0AUBjp1g0gjo9H4yD\nOrKFEFPXzJaU3JzsgLwvDRQWL1NnAHV0b+Yd1BWLKt08MuL2t8lJp1/lh+R9uO02ifuuvBJKTN34\nuOrKFzOo6/UwWLIolsnIEUODKUx+XbcOePObpUbU8432Elg2K0cIebFiEXjNa4D775ePxGLRdgqA\n4wW/hDdgCsPo2HEOQfLrgo2pA9yaEVRDQrO1a+UjlQUg5Y3m82OOAc4/HzjvvBTardt73ytz9wsF\nteAUNxNTl8spM6eJqTvkEODSS4FDD+1Bu02mz4SVikTIt94qgd711xs/9srLzKDugguAH/0IeNOb\npEx5/vnAK17hvt+X7Fcd1BFzb7NaBOocpi6XQ3koB7Atwfhl0cfJ6acDb3wjcPzxwH/+p/9xXdub\n3ywfX/hC73srV0o/QFQ1daBy2Si/6kXUSyVgubrVcO9BHSFL7rc0+VUUigArmp559YX49Wdux/en\nLsTLFiuosy8svx/PeQ7w29+qJSLnBdRRJhk50JER+ffUUxLU2ZRp3k7A+dGPJGD7zneAj54sX+sg\ng/Fxt2znYpdf+wrqLMu6CMDrAJwAYAzAZgD/AeAfhRDT7LjlAP4JwPkAygB+DeCdQghDrff9xIpF\nd3SEya+WJQsFLWQbHHRBTqEAnHQS8POfy+c24+DEOwnhTGhvwb+ixbP6DEwd4d++OxHTlgJ+8itl\n9vLtPZitXClv+d698tR1pq5YBH7wgxTbzu2DH5R/QcZ1RpKPtb5oYurKZeDLX06tpeGmz4RDQ/Ji\n0gU1bQ9hWXjxn4x6X4ckY6ibAt570Hf5dXDQfW5LyR6mrlxWLkM+Hwzqcjng3/5N/n/DDf7HdW3n\nny//TKbHH1AHKpUcooWvZysVF68Dsp/pkmzPJ2CeZESmoTNRKAFVtz3Z447GXx/9M9yn7VtrAnU+\npH7/jDoAaccB8uv69RLUVavzzNQBZlAHKExdwWbqqM7hk08Cu2dKGIPL1FF0w2Jn6votv/4fAG0A\n7wPwUgCfA/C/AVxvWVYGACzLsgBcB+AlAN4G4EIAeQC/siwroJLUIjc+YYYxdYvB+Kzil93LM5Q6\nHbTzRQXQAeaYOpL4FkRMnZ/8SuZTQ8KyXDVny5bAnIr5MVOdOq1GCV/Yc1DXVzOBOm6cVSEbHU3s\nrXsC6uiikWbHZ/ehIV9Q5zB1pZJzGYhYDQJ13Lir6et40kGdganT3QYHcfMK6nicpo7OSt6SLDxW\ny/djpT4wjWEWQ36lfIRabYGAOjId1NkAtTgsbwZ3B/c9ojJ1NAwXO1PXb1D3CiHEhUKIbwghbhBC\nfArA2wGcAuAF9jHnATgdwCVCiG8JIX5qv5YB8Nd9bm//jHuwMKZuMVgcUGczFO2SV38wya8E6hZE\nTB332Lo+bFlyuw4fI1C3adMCBHWmOnUaYuNMHYtz76/pIC5KvY4ukot6Ir/qoC6EqcsU/Zk6Uyzm\nogB1bFVgkl/5RwDZz/hzbTe73hj55elpGYjf6XhiOS02AMjtcbBApoM6v27bV4shvxKoWzBMHZkP\nU1da5nVMv31IjalbSpRIYEKIXYaX77Qf19mP5wHYJoT4FfvcJCR798retnAe7ZnM1BGoK3tBnUl+\npVpoC4qpq9W8TN3RR5uDxG3jcdcLDtSZYuo0xLYgmTq/wCSahfD/27v7KLnq+o7j7+8+b7IkbBKg\n4SEJJMiTkqOkEEEgYH0AA6YY09I2Fage6KHaWquW2nLsg9pabRTFh1aPLQekp7VSsNaCFBSx2IKo\nBRRbsBFpVYIJNAmUp/z6x+/+du7evTNz7+7OfZrP65w9s5md2f1N7sydz3y/9/e7zEuoK7P9GkLd\nVKVufHwqFNQ21HWZ/Rq/C8ys1BVS5QolUOd8sEvpodr4zNnhWSp1pR9PB7lmv4blE/fubeXa0gJQ\nhkpdWqi7855WqFu5sjkTJaow+/X06DI6ep7jgHtTbncfsMLMqvD0n3/xPVi32a910OldJf6iix1P\n99yCzqGuUpW6bhMloPPy/UxfISGEutKPqwnSZr92qNTFDokqVvLdMF7ljpunZYAKab92CXWDY4lK\nXaz9WrtQF2a/plTqkqEuPgM2GeoKe/ON77tSQl1Y5BZmVuriu4f4qYqhoqGuTfvVzM/Vg9YagcPD\nJc7Zi79eFi1KrdQtmJz+ZBoehnv+s9V+Xb68Oe3XUrv4ZnYI8AfAzc65u6KrlwDbU24eVhedBGYs\nvW5mX2r3d0444YQ5jbMQyUrdyIh/5pV+oMUsdarUjY76r6ee8nu6KNTtS6nUpbVfQxhq9/7dM1nb\nr4sX+x3Khg0df11tKnVtlqZIm/1a2UrdPIe6nrRfu1XqooPB0yp1tQ11Ke3XUIlvdyIKmNl+LWw3\nGZ9ZmbIDGlgwu/ZrJUNd4vxr4ceTk63xhs8hpbVeofVJeMECP5CUSt3Cpa3t8lM/BatXw/av+v3Z\n08MTDA1N35WHh65Ql0NUcbseeBa4sKxxVEZyqte119Y30EHnUAf+hffII/6FF0LdwolpdwmZD3xB\nL+wUL77Yv3a3bu3V4NtIC3XDw76a9dxzrTflD3zAD/y88zr+uvgxdUFlQl28Urd2LVxxRets8Imb\nJGe/Fiq5IFu7AVS5Upcsb7YLdZEZlbouoa7TERyVCXWx9ut55/lzvG7Zkn4X8Js5XrkrNNSB32+F\nlkHM8ES+iRJhRm8lQ12bSt2yZa3HFK/UlSa8PsKHzpRK3cIlre2yciVceSVcddWhXPutT3DMq/36\nS/GKauU6JzmUkhrMbBx/jNwRwOnOuYdjP96Fr8YlLYn9fAbn3IZ2f2/dunWu3c8qI75jHx3tGggq\nL37kb9q7xf77zwh1LtZ+XbrUr3wS9vXPPOOPSx4a8juVt5UxZSYt1Jn5vcHeva2zGqxdCy98Yddf\nF6/UhTesyoS6eKXOzC/m2+Ym8Updqe3XkZH2CabKoS4ZRDOGurTZr02o1C1cmP76rkSlLr6wbQg9\nCxdOVVGTi0BDevs13HXx4nqGuuQRA5UIdeHJHF96JqrU7XdAa7usWOF30e9/P8CvTF0fr6iGz+eV\nmMCSU+HH1JnZMPAZYB1wdsrac/fhj6tLOhZ4yDmXctbrBoi/GxY+A6AHslTqYHqoWzg91EFrR1ha\nJSgu7Zg6aG27cMqjjIMMBxs//HD64VSlypBeKlepKzDU9WTx4WAeKnXxCkOn3Um8o17obid58uMM\nB2WWPlECpgeG0KOLtWHTKnWd2q/h11Uy1LVpv8YrdZUOdbFK3X7LWtul3Ul04hXV8LgqsV1yKjTU\nRWvRXQOcCWxyzn0t5WY3AIeY2emx+y0Czol+1kzxN6M+DXXx+yRDXWmVoLi0Sh209tphUdKMgxwf\n96dpevZZ+J4/JWl1Ql18nbouN6lUqIu/duL9uXAgJtS/Ujfe/Zi6gYFWsKtkpW7hQr9fCAtFZzgo\nMxnqlsTWjy7sIP20iRJjY1P/eeF0VJCt/VrpUNemUnfAATM3UyVD3a5dU49h8QGtJ3e7UBevqKa8\nJdVG0ZW6K4HXAu8H9prZ+thXWFj4BvwZJK42s583s1dE1xnw3oLHWxxV6nApoS7s6ytXqUsLdWFu\nf45BhqwRP8amEnJU6irbfg0TpOLT9WDmiURz6OlEiaBLqBsa7z77Ndw1eV1SaaHObHoLNsMLPNl+\njW+D3btn3r4n0kLd8PDUNgqL3MLM9mvtKnUZ2q9BJUPdI4/4y9FRFi1upf5uoW7PHr+twpE1dVN0\nqDsrunwHPrjFv14P4JzbB2wEvgh8BLgOfxaKM5xzPyh4vMVpcqUu7fHE2xhRqLMOlbpKh7pkkskx\nyOQOpjKhLkelbu/e1vGOhc/tyRLq9tvPV4bC4KpWqcvZfh2OQt1zg+0rdeGuyeuS4hM4C9/txJc1\nydB+jWfx5M1KCXXxddyibTSyuP3s19pV6hLt1/B44u3XoNKhbmwsvommFe3jwmMKRwRMTFTz1Ord\nFL348CrnnLX5emfsdjudcxc555Y45xY4517qnPtWkWMtnCp12H6t+4TWSq3ar0GOQa5d2/p+2bIK\nhboclbowA66UbdOp/friF/tts3q13zuvWeMD3vLls/5zhbRfx8b8GA88sHXS05jRiWEmJ+HJpdGC\nyitXcsQR/tv4h4QsoW5oCA4/3C9TUfhMv/Ai/9GP/OXISMcPEUuX+q/DDmvdrMPa3r2RVqkL/4nD\nwwwuP2jqplnar8/zEy+ntl+pwvMwnEc1UakL63cffbT//48/r0oNdatW+cs1a/xleFKEHVP07zVr\n/HN89er0XxMefjzU1VGN18xomCZX6rKGukWtqUaVb7+mTZQAv7fLsYd7+9t99njySX8CisqsixSf\n/drlJmHfWcq26VSpO/JI+OY3Wzv5W2/1b1hzSM6FtF+HhuBf/9W38wcGUtuvd98NI0Pnw4+PhuOP\n5/hh/1Djb1hZQh3A7bf74kzhVdYwtTAsQNzlCTQ0BF//+vSn5P77tw5lLUS7St3118OjjzL68NKp\nm2aZKPHWt8KmTZkmy/de2OmGE6QmThN2+eV+UYYXvchfPT7eKuqVGurOPx+OOqr1CTm5fuD69QDc\ndJPfV7Vb3zTsxsPTUaFO5qbJlbpO7ddYqBtYVNP2a3xQ4+O5avYjI/AzPzMPY5tv8XXqutyk1G2T\nnOYZD3XLlk0/mj5lXbG8Cmm/Dg1NP61ZMoQOD0fFiQE4tLWwerzqC9lD3cEH5xnsPAoDDKWRDKXe\nZOtschK2b5/fYXXUrlIXlREnYgEzy2nCxsdh3breDjmz5IzkxGnCRkdbRzSAf1zhTI+lhrqBgen/\nieF0bmG2Q3Rmn4MOap1iMk3Yf4VMW9dQV4XThAn0d6UuOiBmYPHM9mv4dFub9mtdT+uWlKNSF5Ty\n0AcHW6En3n4dHOxJb66Q9muyZJYS6rLIGupKEwaYsVKXZjJtRdNeajdRIpK220seU+fcjLxUDcm1\nA1MeX1x8c1XqccD0GUCnnprpLsn5bgp1MjdNq9TFV23M2H4drGulLr7t6jhdKk2OY+qC0h56PL2E\n59rSpR2rjLNVyDp1/RrqZvGpoNRj6lKSWdpuL9l+jZ+CqlIH4rcLdW2e7PHNVdlQt2gRPP/5me6S\nfPop1MncVPoVMguzaL8OplTqkqGu8pW6poS6HLNfg0qFujnMcO2klEpdcgZD00JdCBGzeAKVFuoe\neyw19KTt9pLt1y4FsPIkQ12XcmItKnUnn5z5xZp8+tXxbBKgY+qqI7wZDQ9X7OPbLOVpv0YfYYf2\nn1mp+/GP4cQTc5+soTfaTZRoYvt1FpW60h56PL3EF9PqAbVf51HOiRJpKjH7NWP7NX7Kw8TdqmEO\n7dfKPcfCdsrYeoWZTz9V6mRuwjti5V4dsxSvLmRsvw4smmDDBjjttOkzlO68Ex580H9fmVDX9Pbr\nSSf5d8wOO8Xkvj6+vm+h4unlhS/0nwhe8Yqe/Kn16/1/S3Ts9fzo1n6d5aJgp53mX2YnnzyHsfXS\nPLRf3/IWn0Uuv3wex9VJ2DHt3j11XtH49hgZaf2z3TF1lQ11k5O+oLBrl6/S1bn9unGjnwG0ZUvm\nuzSl/apKXVWEPUBTQt3wsH9MTz2VHuriJ8bet89/PzHBLbd0/rVqvxZk3To/DaxD+9XM/zeELs28\nBp084qFuxQq/6GgPjqcDOOWUrv8t+XWr1A0M+NuEVJDxHfTss32Fu0f/FXM3D+3Xgw/2m7uw5sbg\noK8w7t7tww/M2F4TE/5H7dapq2yoGxrywW7nzlawg3q2Xy+91H/l0JRQV9WXe/9pWqUOOvd/Uma/\nMjGBGVNfaQGukpW6JrZfIVMaiG/aSoQ66HmKmfdf361SB9NbsDn2EZUNdNDabmFdjFm+uAs/WiXs\nu0IYTSSa5NOxNu1XaC1rsmNHvWe/zkLyPUehTuamaZU6aL0q0ip1IyP+FfTss/5raGjGY48v1hlU\nJtS1W3y4KZW6jJ54ovX9sceWNIjKHzzWhdn010i3UNeEd1CY+a5Zlw9EGUNd7dqvMP24usRpwpIq\n3X6dJYU6mT9NrtSlhTqYvpZQxhPtqf1aTSeeWGJVqNvzrA7iz5t+DXV1ee2E/VZYpTal/Qqtp+PQ\nkH9thM+vtQl1fVapg+mPSaFO5ibsAer8xpTUrYKSDHVtbN7c+j50akqRZaJEXaoN8+zEE0v843Wv\n1MH0502/hrq6vHbCfitM8OjSfjWb3oJtSqhTpa6aFOqqIuy0mxTqwkyxdp/A48vBd1gUKH4arXCu\nwVKoUtfWhg0l/vHwPKvza0eVuvq8dpLt18T2StvtxSdL1CbUdWm/qlJXTZr9WhVr18LWrT1biqEU\nb3qTD27tjqB/y1tg2zZ/XpZLLpnx4099yp+D/cIL4XnPgw9/2P/K0vTbRIkMPvpRf5L1TZtKHMSW\nLX4Qv/ALJQ5ijhTq6hPqQmoLs18T2+PSS/1VZ5zRum5iwndr9+6tUahT+7WWFOqqYmgIrrqq7FHM\nr40b/Vc7r32t/2rjggv8F/gdZHwnWQpNlJghJYsX78gj4bOfLXsUc6P2a30+EIVxP/aYv0xsj5e9\nzH+l3WXPnoqHujD7Ve3X2p5RQu1XkazUfpVeyVqpGxio+DolOYyOtj8zS5WFhNZmnbpOd6l8qFP7\ndUpdK3UN2TuIFKCfThMmxcoa6pry7gl+BkG8HFK3UNdlcd60u+zZ0zouuJKbUu3XKQp1Ik0Xgtzg\n4PTlV/q4/SrzJGv7tSnvnkH8nbMuH4iS7/Y5Q10tKnUZFh9uevtVoU6k6eKhLk7tV5mrfqzUwfR3\nzrq8dpLv9k1sv+7YAc8957/v0/Zr/DDWOlGoE8kqhLnkTk7tV5krVerq89ppcqVu0SL//Nu71/87\n2ZWIaWKlLuzKFy6s76GrNR22SAnahTq1X2WuVKmrz2unyaHOrFWtg46DbGKlLuzK69p6BYU6keyy\nVOrq8sYk1aJQV5/XTpPbr9Ba1gQ6PrYmhrrwmBTqRPpBlkpdXVpIUi3heWOW3vfph1BXl9dOkyt1\nkLlS18T2qyp1Iv2k3USJwcHWXq0u1QaplvC8aVcZ6YdQV5fXzhxC3e7dzQl1Ta7U1XXhYVCoE8mu\nXaUOWnuDurwxSbUo1NXntTOL9msICbWr1Kn9WjsKdSJZdQp1oW5flxaSVEt43vRzqKvLa0ftV0Dt\n16pSqBPJqlOoW7PGv/EedFCxY5Jm6FapO+IIf7zdqlWFDakQdazUjY21P2VgG7UNdX1WqVuzZvpl\nHXV/NoqI1ynUfeEL8Pjjfp0nkby6VepWrYIHHoDlywsbUiHqWKkz8+N+/HH/b1XqqvtYcjrjDLj/\nfli9uuyRzJ5CnUhW7SZKgA9zCnQyW90qdeCrdU0TDjYzg9HRcseSR5NDXXxJkw6DHB31m825Cj+W\nWTjqqLJHMDdqv4pk1alSJzIXWUJdE4W0MzbW9swFlRSvMPZp+9WsVa2r7GPpQwp1Ilkp1EmvdGu/\nNlU81NVJPNTNslI3MtKDcc2HjO1XUKirIoU6kawU6qRX+r1SV5dJEsE8hLrKBqGlS1vfdxlk2GyV\nfSx9SKFOJKtOx9SJzIVCXbnjyCtn+3VkxN/s6afhiSf8dZUNQgsWtJbQ6fLYFOqqR6FOJKvjj/cH\nq591VtkjkaY56ig45hh41avKHkmxjjwSjjsONm4seyT55KzUhQmzALt2Zb5beUILtssgzzkHjj22\n3rNFm6bPPhaKzMHSpfDgg2WPQppowQL49rfLHkXxxsfh3nvLHkV+OUNduMtjj9Uo1D30UNdBbttW\n0HgkM1XqRERE8sjZfo3fpRahLixr0m+HAzSAQp2IiEges6zUAezcmetu5cjYfpXqUagTERHJo+mV\nOoW62lKoExERySOcCQMyB59wl927c92tHCHUqf1aOwp1IiIiecyh/ZrzbuU48EB/WbdFoUWzX0VE\nRHKZQ/s1OOaYeRzPfNu0CW6/HS6+uOyRSE4KdSIiInnMsVJ32GGwYsU8j2k+HXggXHVV2aOQWVD7\nVUREJI85hrqXvGSexyMSUagTERHJY47t11NPnefxiEQU6kRERPKIJ7SM54JWpU6KoFAnIiKSR0ho\nw8P+xK4ZhEWHwZ/uVqQXNFFCREQkj8WL/XIfixZlvsuaNf5yYgIGVE6RHlGoExERyWNsDD7/eRgf\nz3yXzZvhmWdgw4beDUtEoU5ERCSvM8/MdfOhIdi6tUdjEYmoCCwiIiLSAAp1IiIiIg2gUCciIiLS\nAAp1IiIiIg2gUCciIiLSAIWHOjM71Mw+ZGZ3mNkTZubMbFXK7SbN7BNm9qiZ7TWzm83sBUWPV0RE\nRKQOyqjUrQG2ALuAr6TdwMwM+BzwSuCNwGuAYeBWMzu0oHGKiIiI1EYZoe4259xBzrmzgb9tc5tz\ngVOArc65a51z/xRdNwC8raBxioiIiNRG4aHOObcvw83OBf7HOXdr7H6P46t3r+7V2ERERETqqqoT\nJY4D7k25/j5ghZlNFDweERERkUqr6mnClgDbU67fGV1OAnviPzCzL7X7ZSeccMJ8jUtERESkkqpa\nqRMRERGRHKpaqduFr8YlLYn9fBrn3IZ2v8zMdpjZ9+dnaKmOii6/28O/Iflpu1STtks1abtUj7ZJ\nNRWxXVbO5k5VDXX3AS9Puf5Y4CHn3J6Un7XlnDtgXkbVRmj9dgqWUjxtl2rSdqkmbZfq0Tappipv\nl6q2X28ADjGz08MVZrYIOCf6mYiIiIjElFKpM7PN0bdhBsNZZrYD2OGc+zI+uN0BXG1mb8W3Wy8D\nDHhv0eMVERERqbqy2q/JRYc/El1+GdjgnNtnZhuB90U/G8OHvDOccz8obpgiIiIi9VBKqHPOWYbb\n7AQuir5EREREpIOqHlMnIiIiIjmYc67sMYiIiIjIHKlSJyIiItIACnUiIiIiDaBQJyIiItIACnVz\nYGaHmdlnzOxxM/tfM/usma0oe1z9zMw2m9nfm9kPzOxJM/uumb3HzPYre2wynZn9k5k5M/ujssfS\n78zsbDO7zcz2RPuyu8zszLLH1a/M7BQzu8nMHjGz3WZ2t5lpJYgCmdmhZvYhM7vDzJ6I9lWrUm43\naWafMLNHzWyvmd1sZi8ofsSeQt0smdkC4BbgaOB1wFbgSOBWM1tY5tj63G8Bz+EXqz4L+Cjwq8AX\nzUzP94ows/OBtWWPQ8DMLgauB74O/CzwWvxaogvKHFe/MrPjgZuBYeANwHnAncAnzexXyxxbn1kD\nbMGf/OAraTcwMwM+B7wSeCPwGvx2u9XMDi1onNPHpNmvs2Nmvw78GXCUc+6B6LrDgf8E3uac+7My\nx9evzOwA59yOxHW/DPwV8FLn3C3ljEwCM5sEvgO8Gfg08C7n3O+WO6r+FFUevgNc5pz7QLmjEQAz\nezf+w+mS+HnOzewOAOfci8saWz8xswHn3L7o+9cDfwEc7pzbHrt3nR5WAAAHWElEQVTNq4G/B850\nzt0aXbcY+C/gaufcm4oetyoXs3cu8LUQ6ACcc/8FfBV4dWmj6nPJQBe5M7o8pMixSFt/AtzrnLu2\n7IEIFwH7gI+VPRCZMgI8DTyRuP5x9J5dmBDoujgX+J8Q6KL7PY6v3pWSA/QEmb3jgHtTrr8POLbg\nsUhnp0eX3yl1FIKZvQT4ZeDSssciALwEuB/4eTN70MyeNbMHzEzbpzx/iT/P+RVmdrCZ7W9mbwBe\nCmwrdWSS1CkHrDCziYLHU9q5X5tgCb7XnrQTmCx4LNKGmR0C/AFws3PurrLH08/MbAT4OPA+59x3\nyx6PAHBw9PWnwO8AD+KPqfuwmQ055z5Y5uD6kXPuXjPbAFxH68PPM8Alzrm/Lm1gkmYJsD3l+p3R\n5SSwJ+XnPaNQJ40VfUq6HngWuLDk4Qi8DRgH3lX2QGTKALAfcIFz7rPRdbdEx9pdBijUFczMjgT+\nDl/tuQR4Et/K+5iZ/Z9z7poyxyfVplA3e7tIr8i1q+BJgcxsHH9cwxHA6c65h0seUl+Llvp5B/B6\nYNTMRmM/HjWz/YHdzrnnShlg//oJftb+FxPX3wS80syWO+d+WPyw+tq78ZW5c5xzT0fX/bOZLQU+\naGbXZjzeS3qvUw4IPy+Ujqmbvfvw/fSkY4FvFzwWiTGzYeAzwDrgbOfcPSUPSXy4HgOuxu/owhf4\nmX67gNLWdupj95U9AJnhBcC/xwJd8G/AUuDA4ockbXTKAQ/FZy8XRaFu9m4A1pvZEeGKqGVxSvQz\nKUG0Ft01wJnAJufc10oeknjfBM5I+QIf9M4AHki/q/TQddHlKxLXvxJ4WFW6UvwIOD46BjXuJOD/\naB2vJeW7ATjEzMJkPMxsEXAOJeUAtV9n7y+AXwOuN7PfBRzwh8AP8AeDSzmuxB/o/S5gr5mtj/3s\nYbVhy+Gcewz4UvJ6v3Yn33fOzfiZFOIfgVuBj5vZMuB7+NfPy9FxqGX5MH7x58+Z2Ufwx9SdC5wP\nbEup4EmPmNnm6NsTosuzzGwHsMM592V8cLsDuNrM3orvOFyGn7383qLHC1p8eE6i44S2AS/Db8R/\nBn4jvjihFMvMtgMr2/z4951z7yxuNNKNmTm0+HCposrCe4DN+OOD7gf+2Dn36VIH1sfM7Czg7fjW\n3hh+VvKfAx/XcafFifZPab7snNsQ3WYJ8D5gE35b3QH8pnPuW4UMMkGhTkRERKQBdEydiIiISAMo\n1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiIiISAMo1ImIiIg0gEKdiNSSmbkMX9uj2/5l+L4qzOwK\nM/uHHLcfN7MfmtmWXo5LROpL69SJSC0lzhYC/pRX3wLeGbvuKefcN8xsNbDIOfeNosbXSTSe7wAn\nO+fuynG/NwOXAsc4557p1fhEpJ4U6kSkEaJK3O3OuV8qeyzdmNmHgPXOuZ/Oeb9J/LlBtzrn/qYn\ngxOR2lL7VUQaL9l+NbNVUXv2EjN7j5n9yMx2m9nVZrbAzNaY2Y1mtsfMHjCz16X8zrVmdoOZ7TKz\nJ83sq2Z2aoaxjAK/BHw6cf2EmX3IzB4ys6fM7BEzu9nMjg63cc7tAm4EXj+H/w4RaSiFOhHpZ5cB\nBwOvAy4Hfg74GL6V+3ngZ4F/Bz5lZseFO5nZi4B/AZYAbwBeA/wEuNnMTqCz9cD+wFcS128DtgC/\njz+f9MXAN6Pbxt0GnG5mY3keqIg031DZAxARKdGDzrlQhbsxqrRtxbc3rwYws7uAc/EnvL8vuu2f\nAg8BZzrnno5udyNwL/B7+JN7t7MecPiwGPdi4Brn3Cdj112Xcv9vACNACJYiIoAqdSLS376Q+Pf9\n0eWN4Yqo5fkIcBj4WajA6cDfAvvMbMjMhgADbgZO6/I3Dwb+N4TBmDuBC8zsd8xsnZkNtrn/jtjv\nERGZolAnIv1sV+LfT3e4PrQ7lwCD+IrcM4mvXwMmzazTvnUMeCrl+jcCHwcuwge8R8xsm5ktSNzu\nyehyvMPfEJE+pPariEg+jwH7gCuBq9Ju4Jzb1+H+P2HmcXI45/bgj/G7zMxW4tu9f4wPlG+P3XRJ\ndPlo7pGLSKMp1ImI5OCc22tmXwHWAnd3CXBp7gdGzOxQ59zDbf7G94H3m9kvAs9P/Pjw6PK7Of+u\niDScQp2ISH6/iZ+FeqOZfRL4IbAMP3lh0Dn32x3ue1t0eSIwFerM7A7gBuAeYA/+uL21wF8l7n8S\n8N/Oue/Nw+MQkQbRMXUiIjk55+4GfhrfSr0CuAn4IPACWqGt3X23A/8GnJP40W34JU2uwS+nshl4\ns3Pug4nbbQT+em6PQESaSGeUEBEpmJldgA+By51zT+S430n4ZUyOcc79R4+GJyI1pVAnIlKwaAmU\ne4BPOufel+N+1wG7nHMX9WxwIlJbar+KiBTMOfcscCGQp0o3jj/DxDt6NS4RqTdV6kREREQaQJU6\nERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpAIU6ERERkQZQqBMRERFpgP8Hd7IbZv/UczwAAAAA\nSUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Create a CrossCorrelation Object from two Light curves created above\n", + "\n", + "To create a CrossCorrelation Object from LightCurves, simply pass both Lightvurves created above into the CrossCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr = CrossCorrelation(lc1, lc2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, Cross Correlation values are stored in attribute corr, which is called below. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 201.553125 , 1412.10121094, 2828.54304688, 3948.95050781,\n", + " 5370.02359375, 5750.04355469, 6222.50101563, 6664.92722656,\n", + " 5969.0503125 , 6770.80464844])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.03125" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cr.dt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 3. Plot Cross Correlation for Different lags\n", + "\n", + "To visulaize correlation for different values of time lags, simply call plot function on cs." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEKCAYAAADJvIhZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmUZFd9JvjdiBf7khG5VmbWXipJaEESKiTZgNmMYTjY\nGA8wcvdpwE0DPdD2zHDsGdztbmOf4Uzb3dhtjKGbrQ222xhju8E2yMbC7FpcEtpKsqzaqzKzcot9\ne+udP967L15mRsTb7o3KrHrfOXmU9TJDNyIy3v3d3/f7ft+PUEoRIUKECBEijAOxq/0EIkSIECHC\n9YMo6ESIECFChLEhCjoRIkSIEGFsiIJOhAgRIkQYG6KgEyFChAgRxoYo6ESIECFChLEhCjoRIkSI\nEGFsiIJOhAgRIkQYG65q0CGEfI4QskYIecZx7cOEkCVCyBPW1xsdP/tlQshpQsjzhJDXO67fTQh5\n2vrZxwghxLqeIoT8iXX9EULI4XG+vggRIkSIsBXSVV7/9wF8HMAXtl3/bUrpf3ZeIITcAuB+ALcC\nWADwd4SQGymlOoBPAngPgEcAfA3AGwB8HcC7AVQppTcQQu4H8BsA/rdRT2h6epoePnw45MuKECFC\nhOsLjz322AaldMbt965q0KGUfsdH9vFmAF+klMoAzhFCTgO4hxByHkCRUvowABBCvgDgp2EGnTcD\n+LD1+C8D+DghhNAR3j+HDx/GyZMnA7yaCBEiRLh+QQi54OX3dmtN5+cJIU9Z9FvZurYI4JLjdy5b\n1xat77df3/IYSqkGoA5gavtihJD3EkJOEkJOrq+v830lESJEiBDBxm4MOp8EcBTAnQBWAHxU9IKU\n0k9RSk9QSk/MzLhmhxEiRIgQISB2XdChlK5SSnVKqQHg0wDusX60BOCA41f3W9eWrO+3X9/yGEKI\nBGACwKa4Zx8hQoQIEUZh1wUdQsi8459vAcCUbV8FcL+lSDsC4DiARymlKwAahJD7LNXaOwB8xfGY\nd1rfvxXAN0fVcyJEiBAhglhcVSEBIeSPAbwKwDQh5DKAXwXwKkLInQAogPMA3gcAlNJThJAvAXgW\ngAbgA5ZyDQDeD1MJl4EpIPi6df2zAP7AEh1UYKrfIkSIECHCVQKJDv5bceLECRqp1yJEiBDBHwgh\nj1FKT7j93q6j1yJEiBAhwrWLKOhEiHCN4LELFTyzVL/aTyNChJGIgk6ECNcI/p8/exr/6W+ev9pP\nI0KEkbjaNjgRIkTgAFU3cH6jjVwquqUj7G5EmU6ECNcALmx2oBkUza56tZ9KhAgjEQWdCBGuAZxZ\nbwEAGr0o6ETY3YiCToQI1wDsoNPVMO42iNNrrbGvGWHvIgo6ESJcAziz1gYAKLoBWTPGtu7Tl+v4\n8d/6Nj71nbNjWzPC3kYUdCJEuAbAMh1gvBRbrasAAD724AtjWzPC3kYUdCJE2OOglOLMWgvlbAKA\nSbGNCz3VzKraio61Zm9s60bYu4iCToQIexzrTRlNWcNdB83RU+PMdDpKP8CdWm6Mbd0IexdR0IkQ\nYY/jtEWt3XmgBABojFE23VF0+/v1pjy2dSPsXURBJ0KEPY4z66aI4K6DVtDpjY9ea8v9taKgE8EL\noqATIcIex5m1FrLJOG6cKwAYb6bTtTKdTCI+9qCz1uzhUqUz1jUjhEcUdCJE2MN48lINf/74Zdy2\nMIGJjCkkaI4z01F0JOMxzJfSYw86v/6Xz+ID/+Pxsa4ZITyioBMhwh7Gp75zFlI8ho++/Q6kpBgS\ncTJWIUFX0ZBNxTGTT4096Kw2eliuRYq5vYYo6ESIsIex2ZZxbCaHA5NZEEJQTCfGSq+1FR3ZRBwz\nhRTWW+MNOrWOimpHgWFEbgh7CVHQiRCBE15YbeJffPYRbI5x8611VJSySfvfE5kENsa4flfRkU1J\nmC2Mn16rdVXoBo385vYYoqATIQIH6AbFT/yX7+C7L2zgsQvVsa1b76ooWbUcALj7UBk/OLMJZUxW\nOG1FQzZpZjotWdvStyMSlFLUO2awqbSVsawZgQ+ioBMhAgd86/k1MM/L1TGe+KsdBaVsP+i8/tZ9\naPY0PHJucyzrdxTdDjrA+GTTXVWHopuBNQo6ewtR0IkQgQO+8ewqcsk4AGC51h3Lmj1VR081ttBr\nLz8+jUwijr97dnUsz6Gr6MgmJewvZwAAZzfaY1m31ulTalHQ2VuIgk6ECCFhGBQP/uMaXnXTLA5O\nZscWdOqWYMCZ6aQTcdx5oIQnLtXG8hwYvXbrQhEA8Mzl+ljWjYLO3kUUdCJckzi91hqbAeXp9RbW\nmzJeddMMFkpp/PBiDb/1t89D1cXWVaodc7MtZZJbrt+2WMRzV5rC1wdYphNHIZ3A0ZkcnloaT9Cp\nOxR6m1HQ2VOIgk6Eaw4XNzv4qY9/D2/5vR+MRcm12TI3vcVyBgulDC5WOvjYN0/jey9sCF2XnfbL\njkwHAG5bnICiGXhhtTXoYVzRljVkkxIA4PbFCTwztqDTDzTVKOjsKURBJ8I1h1//q1OIEYLNtox/\n/QePQdZ09weFAJPsFtMJLExk7OsPPHNF6Los6EwMCDoA8Myy+ADQVc1MBzCDzkq9N5YMk732RJxE\n9NoeQxR0Ilxz+OHFGt704nn857fdgZMXqvjs984JXY9RPROZBDRHo+LfPnsFmkCKi532nUICADgy\nlUM6EcPzV5rC1gYARTOg6tQOOi85ZI5WOHlevGS8Zr3nh6ZyWIuMRvcUoqAT4ZpCS9aw2VZwaCqH\nN714AbOFFC5siDWFZA4AxUwCP3vPAfzYjTP4t2+8GdWOiiWBooLqEHotFjOdCZwO0CLAzD6d9Fo2\nGccjZ8XLtWsdFcl4DC89XMb3Tm/g49+MJpfuFVzVoEMI+RwhZI0Q8ozj2iQh5BuEkBes/5YdP/tl\nQshpQsjzhJDXO67fTQh52vrZxwghxLqeIoT8iXX9EULI4XG+vgjjx4VNU7J7aCoLwAwEdcG2MI2e\nBkKAQkrCoakcvvAv78GtCybFJdIbjG28mUR8x88yyTh6qlhasW01grJMJxGP4e5DZTx8tiJ0XcDM\n8iayCfzaT92Glxws4YFTYqnMCPxwtTOd3wfwhm3XPgTgQUrpcQAPWv8GIeQWAPcDuNV6zCcIIexu\n+ySA9wA4bn2x/+e7AVQppTcA+G0AvyHslUTYFbi4aWY1ByfNoDORSQi3SWl0VeRTEmIxYl9bKJm1\nHZHy6XpXQTGTgHXG2oK0FEdXcNBhtFY2JdnX7js6hedXm7ZbgCisNmRM5ZJISjHcPF+MjD/3EK5q\n0KGUfgfA9mPRmwF83vr+8wB+2nH9i5RSmVJ6DsBpAPcQQuYBFCmlD1NKKYAvbHsM+399GcBryaA7\nNMI1gwvWfBWW6UyMI9PpqvZYAYb5iTQAYKUuLug0exqKaWngz9LJOHqquHoSpRS/9Y1/QiEt4WXH\npuzr7H1fFSwmWKp2sb9srrVYyqDSVmy6L8LuxtXOdAZhjlK6Yn1/BcCc9f0igEuO37tsXVu0vt9+\nfctjKKUagDqAKUS4ZnFhs4PJXBKFtBkEimlJfKbTU1FMbw066UQck7kkluviNt+2rCGXGhJ0pJjQ\nTOfcRhvf+ad1vP9VN2Aqn7KvT1qiBiYjFwFKKS5XO7YLwqKVVYqsn0Xgh90YdGxYmYtw33JCyHsJ\nIScJISfX19dFLxdBIC5W2ja1BliZjmCqp95VUczs3PznJ9JYEbgRtmUdudTOeg5g1nRkgUHn1HID\nAPCK49Nbrk/mzaDDGldFoN5V0VZ0O+iMg8qMwA+7MeisWpQZrP+uWdeXABxw/N5+69qS9f3261se\nQwiRAEwA2CGtoZR+ilJ6glJ6YmZmhuNLub7R7Kk4eV58UdmJC5sdm+IBzKDTlDWhM1caXW0HvQYA\n8xMZobWGlqwhPzTTEVvTeW6lASlGcHwuv+W6nekI7J25XDWDSz/omFRmFHT2BnZj0PkqgHda378T\nwFcc1++3FGlHYAoGHrWouAYh5D6rXvOObY9h/6+3AvimlT1FEIzTa0287re+g7f+14fGZj6paAaW\na10ccmQ6xUwClAJNgfLhQfQaACyW0lgWWNNpK8PptYzgms5zKw0cm8kjJW3NtMo5K9MZQ9BZLJl/\n57liGjESBZ29gqstmf5jAA8BuIkQcpkQ8m4A/xHA6wghLwD4cevfoJSeAvAlAM8CeADAByil7Cj3\nfgCfgSkuOAPg69b1zwKYIoScBvBBWEq4CGJBKcW//YtnIGs6jk7n8Gt/dUpokyTDUq0LgwIHp3L2\ntaKVgYicpmnSazuDzr6JDJo9TVi/zMiaTkJsTee5lSZusUw+nUjEYyimJWEuAWvNHj7/g/MA+plO\nIh7DXDGNpUjBticw+BM7JlBKf3bIj1475Pc/AuAjA66fBHDbgOs9AG8L8xwj+MfDZyt49FwFH3nL\nbYgTgg/9+dNYqnVxyBEMRGB7jw4Am/aqd9Ut3CwvqLqBjqIPpNdmHTNmhgWHMBhJryXE9ek0eiqu\nNHq4aV9h4M8nc0lhQecz3z2Hh6zmU6e79mIpg6Wa2CZgwBwncf+nHsZ7f+wo3nj7vPD1rkXsRnot\nwh7H2Q3TaPI1N8/ioBUAlqriqY+Lla09OgBs2ktUptPsadY6Ozd/e7CZANNRTTfQUw3kklch6Fjv\n5eQ2+x0GkUGnZgkUPvvOE1v6kxZKYutnDEu1Lp64VMP7/+hxfOnkJfz0730/Us35RBR0InDHlXoP\nMQLM5FM4YPVSXB5D0Lmw2UE6EbMzDKCf6YiSTdcdFjjbIXKaZtvqSRmqXkvEoepUCK1p298MWXsy\nlxQmJGgrJmX72hfNbbm+UMpgpd4VKhgBts7x+b+//BSeuFTDU2OaXXStIAo6EbhjudbDXDENKR7D\nvgmzyHu5Kp76uFjp4OBkdssJmDkwi2oQrbTNgDKZ23nqnxUZdKw60XB6zby1exr/oNO2PdeGBx1R\nQoJhdazFUhqqToWPsmAmqx/72bvwshvMlr+NyOXaF6KgE4E7Vupd7LM68hPxGPYV07g8BgpivSlj\nrpjeco3RXo2umGJ+pW1RTQOCTjmbRDxGhAadoeo1y49NBMXWkZnn2uC1yxa9JkIo2h5Sx2K9OqI/\nZyzTefHiBH7/5+4BAGyOYWbTtYQo6FwH+JX/+TT+8snlsa13pd7bMldmfzk7Fnqt0lZ2bP75lIRE\nnGCjLWZjGJXpxGIE0/mkkPkyLZdMJ2UFHRHWMB1G7Q0JOlO5JBTdsDMinmjJ+uBMpzyeBlEWdErZ\nBBLxGMrZxFgGBV5LiILONYzf/sY/4ZPfOoM/fPgiPv3ds2NZk1KK5XrX9h4DzA1hHEKCQUGHECI0\n6LFMZyqXGvjzmUJKUKbDajqjMx0RA+yYu3RmCL1WtgQGFQFWOGams3PdcbkS1Lqq6ShuCVSm8yls\nNCN6zQ+uqmQ6glj8zoP9GSNPXa5jtdHbQT/xRq2joqcaNr0GmP0UX3miC1U3kIiLOefImo6WrGFq\nQMZxYDKLSxUxNaVKW0Y6ERu6Ac/kU0LUay1561iB7UjbmQ7/mk7HRcQwZVnhVDqKrV7khdaQmk4x\nnUAhJQlXsNU7CorpBOKWo/hUPhllOj4RZTrXER58bs39l0KCdeCzkycAHJ3JwaDA+Y22sHWZRHdy\nQMZxoJwRFnQ228rQLAcQmemMptfsmo6ITMetpsMyHQGU5qjepH0TaaGu3oCZ6Tj7g6bzqasSdC5V\nOji73hr7ujwQBZ1rFKpDKru/nMF0PoknLokfI8w22LlifyM+Pms2ET6/Km58MnM1HlRbOTiZRbWj\nCpFNV9sKyrmdcmkGc1NSuEt5O8poIQFTr4mo6XRd1GssCDPqkRdU3YCiGUNf82xRTIB3or5tjAX7\n+44bv/TlJ/ELX/zh2NflgSjoXKNwNkO+5GAZR2fyOLsuLtNgGJRx3DCbR4wA/7Qq7mTG1mXUjhOs\nWVREtmPWkYZnOqVsArpB0VL4qudaVk1nlCMBIEa91lZ0JOOxoVQpc5rmnem4KfZEUZlO1Dpbg85M\nIYWWrAmf0uqEqht44lINL6y2hPcliUAUdK5R1Kyg8wuvuQH//k234NhMHmcF0lsMdtBxdKunE3Ec\nmsrhBYGZTj/YDa7pAIKCTkcZWEdisG14OI9XaMsaYqSf0WyHXdMRIZlWtKGNoQCQS8aRjMe4N4iy\nOlZhWNCxqExRnr5X6j1U2gpKjs/2tBVgx0GxUUqh6gaeW2mgpxqQNWNPuiFEQecaBZN2vuRQGTOF\nFI7N5FBpK0LdfwFzjko8RlDYZgtz41xeLL3GMp0RQUeEgq3SUuwaxiCIckRgBfVhg3BZMJIFOE13\nFH2oXBowFYMiGkTdFHszhRR6qmEHJ57QdAP3/X8P4mKlg9K2TAcwx2eLxie+dQY3/crX8ddPr9jX\nxnGQ5I0o6FyjYJ3T7FR2dMY022S+aKJQaasoZxOIxbZuhjfvK+L8RlvYQLVKW0Y8RgaOGCimJSSl\nGHfqpafqaCv6QErPXjsjxhHBHFU9vJaUEZzpDFPrMZQF+K+1bHpt8NqzBVMxKaKu4wxkmtEP5Eem\nzXlC4yjqP/DMFRgU+G/fPmtne3tRTBAFnWsULNMpW0qbYzPmzXFmTezJqNoefPJ/+fFpGBT4/pkN\nIetWrHW3BzvAPHlP5ZLcRyiz6ZieMh3uQUfdkU06IbSmI+vIuQSdKQFBx02xx7KONQFBhxm7AsCR\n6b5b+oFyBkkphtNr4jd/QszP0y+85gb89597KQppaSx1Wt6Igs41CrtzOmNuiPvLWWQScZxargtd\nd1CDJgDcdaCEQlrCt58XMw58rSHbm84gTOX5b4KjFHMMEwIzHW9BRwS9pg2VSzOIyHRchQQCve5Y\n0PnwT96Cf/myI/Z1KR7D0ekcXhhD0FmudfHG2/fhgz9xE04cnsTR6RzORfRahN2CWkexOqfNGzQe\nI7j7UBmPnBM7PrrSGRx0pHgML79hGt87LSbTObvRxtHp4fN6JnMp7oVtlumMoteEBR1ZtbviByEe\nI8gk4kJk4h1FH0pxMYjIdNysf0QarDat9/GG2QKkbaq9G2bzeGFNXL0SMDPWjZaCeYe91FwxLVwi\nLgJR0LlGUbP6CZx0071HJvH8atOeSSICZt/K4E34wGRWiMpH1nRcrHRwbGZ40DHpNb5rs011FL2W\nT0mIx8jYMx0AmC+lhdjCdBQdGZdMp5RNoNHTuI5WcAs6E5kEEnEi1AFi0Ht+w2wel6tdIT1RDFfq\nptOCs+l6Kp/CpiBPQZGIgs4YYRjUbuoTjVpH3aKyAYB7jkyCUuBRQdmOYVBUO8rQ4V6ZRByyZnDv\nLbi42YFuUBybzQ/9HRGDxRi9NkoyTQhBMS1dlaCzWMoICTptWXOt6bDA0OFYU3Kj1wghmM6LaRC1\nA96A9/zGuQIoFdv8zP6OC6W+vdS0RRnre6xXJwo6Y0BP1fHouQq+8NB5vPw3/n4sjWS1roqJbZv/\nnQdLKGUT+ONHLwpZs9FTYdDhNQ7Wwc5bUXXGUvAwscQgTOWT6Cg619NotaMgRjBwVLUTE5kE6hxH\nK1BKLSHB6HX3lzNC+ji6iu5a02GBoc1RvtyUNSSlGJLS8G2rnE0KyeQbveGZzp0HSgCAH14U5/jB\n/o6Lzkwnl4RBIZS5EIEo6IwBv/+D83j7f3sIX3lyGZW2glPLDeFrrjV6O07gKSmO9/7YUfz98+t4\nUsC0w80RDZpAP+h0ONMQZywFz5ERNR32XvCkIzZHKOacMIMOv0xH1gyoOh1KMzEsTGSw0VK4HnIo\npWgr2lALHAb2c9ZbwwON7miZOGAeLkRMLW2xoJPauf5CKYN9xTQevyhugijrMXMa6U5bNayrYcMT\nBlHQGQO+aRlt/tD6UIo8EQHmSfSFtRZuXSju+Nnb7j4AAHhcwHNwU3OxOgBv7vv8RhtzxdRQ2sV8\nTswPjN8NWmkNFk1sR5Fz0GFKqqIbvWbNmOGZ7XQUHQYdTDM5YdNrHOnkZk9FMeOimsuKmVra7KmQ\nYmSoA8Tdh8p4/IK4+/rxi1Ucn80jJfWDPfO422tD5KKgIxj1rorHtm3wPxR4IgKAU8t16AbFi/eX\ndvyM9e2ImKTJhpUNG5/AGhY7Kt+1qx11pP8Z0A+EPE/Blc5w0YQTE5kE1z4dpqRyo9cWBcyYYS7O\nznlJg8DoN66ZTk9zfc0ianeA5W6dHu4AcdfBEpZqXSFCGUbPv/z49JbrtgXPHhuXHQUdwfj+6Q3o\nBkXSklkmpZjwTOfJy2Yvzh37J3b8TIrHkEuKkdIyK5DZIf0youi1Rk91PfWzG5TnYLFKe7TvGgNv\neq05or7ghJ3pcLT/WartVFENApNU88x0Gl33v/NkLolGT9viss4DbsIN9n6ICDonz1chawZesS3o\nTOWjTCfCAHzr+TUU0xJed+scAOC+o1NYrve4Skm346nLNcxPpDE7JOMocj55M6w1ekjGY1vmjTjB\nrFN402uNbXbzgyCiX6Y6pBF2OwrphF0T4IF+0Bn9mlnGydMXjAWwRZegY2c6HP/WJr02+jWzzLPK\nubje7GnID6jnMLBakwgG4R/OV0AIcO+RqS3XSxlzmBxvpw3RiIKOQFBK8e1/Wscrjs/gviOTyCbj\nuPfIJIC+C7QInN9o44YR8uFiOiEk01lrypgtpoZSEKIynWZPc92M2CbISzlny8M9BJ1cMg7FmgXD\nA316bfSpPxE3lV486czlWhfxGBmazTLYmQ5H9Vqjp7lnOpZis8p5lk9LHm07JKoJGDAbn/eXMztq\nlrGYaay613p1oqAjEM+tNLHakPHKm2bwz+49hG/90qvs2S4ieGeG9aZsmx8OQjEjCTmRrTZ6Izcj\nUZLpeld1VTUlpRikGOEm4W32NBgUW2zuhyGb4iug8EqvAeZ7zjOzXKp1sa+Y3tGVv3Nd87nxdHxu\nePg7s4F6vDfiZk8bOlIBgC1wEMEgnNto2cai2zGTT+GioKm4ohAFHYF44JkVxAjwqptmrNNh2j4Z\niwo6lFKst8yMYxhEZjrDRASAU73GbyPSdNPK3k3VZK4f55ZlNWVv2QbgyPA4ZRzsbzdIvrtj7USc\nazF/qdZ1pdYA2M2jvN5vWdMha4ZrRssUXfwzndE1HVGZDqUU5zc6Qy2eXn3zDB46s4nVRo/ruiIR\nBR1BoJTiL59awY8cm9qSdZTt9F9M0Kl2VKg6HZlxFDNigo5rppPgT6+xk7TbCRgAckmJW2HbzjZc\nemUA/j0rbG032TJgZlldzvSasyt+GKR4DCkphjbv99vlNbNMpyKipjNibSYR531frbdktGRtaA/a\nW+8+AIMCf/b4Za7risSuDTqEkPOEkKcJIU8QQk5a1yYJId8ghLxg/bfs+P1fJoScJoQ8Twh5veP6\n3db/5zQh5GNkWMGBM55baeLcRhtvevHCluvMHFJEAxvQly2PclwupvnTa11FR7OnDRUvAH0hAc+g\nw16Hm5AAMDd/XmuPskXZDjbwjFfAa/RUFCxPNzfwfM2UUlyp97Bvwj3TAUxXgg6nQMtoK1d6Lctf\npWgY1JXak+Ix5FP87Y7OuTQ+H5nO4ehMDk9fFusezxO7NuhYeDWl9E5K6Qnr3x8C8CCl9DiAB61/\ngxByC4D7AdwK4A0APkEIYV1UnwTwHgDHra83jOOJM8vxuw5u7ZVhyi5RmQ7znRpd00mg2VO5eqC5\n9egAQEqKgRC+6jV2k7vRLoAZ9HitzdRobq4AAOzRzrwynXrXXcXFkEnwCzptRYdmULvXyw3ZZJx7\npuNGoybiMRRSEmpdfvfXRkuGZlDX3iSzH4vvYY7tI6PcNorphJBpqaKw24POdrwZwOet7z8P4Kcd\n179IKZUppecAnAZwDyFkHkCRUvowNQenf8HxGKFgev2Z/NaMIyXFUUhJ4jIdl14ZwPyQGhTcNgTA\nvUcHMA0Zsxw3QaBPZ7ipmgDOm+AI1+Gd6zLlHJ+16x13iXh/7ThHStF7gAcsOpNXptPzlukAZvbJ\n0/Nt2XJ4nnfJ8AoCjF0vVTuQYmRkwMun+L5e0djNQYcC+DtCyGOEkPda1+YopWxA+BUAc9b3iwAu\nOR572bq2aH2//bpwrDfN8cmDbO/LuSSevFwTYkXDpiaOFBIwpQ3H3hEvmQ5gigl41hgaPjKdbFLi\nqCDz5goA9IvqPDOdYb1Q25FNSdyCPDvFe9n4zbX5BXm2tpf3O5+SuJ78VyxHh3mXWtaEgFrp5WoX\n86XRasFciq9YRDR2c9B5OaX0TgD/C4APEEJ+zPlDK3Phwg8RQt5LCDlJCDm5vs5nsuV6U8ZUbrAZ\nZDmXxA8v1vAzn/gBl7WcWGv2kE9JI12A+41s/G4QlunMjQh2AN8aA9A/AY+9puOLXuNb06l5aIa1\n107woxTtbMODUhAwMx1eJ3A/a+dS0pbx0mHBMp0Fl0xHRNP1UtVdLZhL8g2yorFrgw6ldMn67xqA\nvwBwD4BVizKD9d8169eXABxwPHy/dW3J+n779e1rfYpSeoJSemJmZobL899oyZjOD96AnQ1zvO06\n1pujxzYD/ayA5w2y1uwhKcVcN0PefSN+azo8hQSEwNVtGRCT6fij18ZbzBextp/MspDmuwlfqXeR\nTgx32mDg7bEHmJnO/nJ25O/kUvxUmePArgw6hJAcIaTAvgfwEwCeAfBVAO+0fu2dAL5iff9VAPcT\nQlKEkCMwBQOPWlRcgxByn6Vae4fjMUKx3hq++Vc7/Q/mGueBU9WOux+YnenwpNcaMmYLw90IGDLJ\nONfm0EZXQ4zAdagYwF8ynU8NN4B0gqcbAqXUDDq+6DXe2Ya3tfMpiRu91upZQT7h/nfOpySutkPL\n9R7mJzKuf+timq/HnqIZWG32sL/s5nMnRfQaB8wB+B4h5EkAjwL4a0rpAwD+I4DXEUJeAPDj1r9B\nKT0F4EsAngXwAIAPUErZX+H9AD4DU1xwBsDXx/ECNprDM53PvPMEfuIWsxy1wnnIVrXtzveL6J5e\na47u0WHgTa8xJZe3zZ/nydt9tgsDTzeEnmra6fih11Sdcsmo+zUdb/RaNhXnJiRoyTpyScl1dhHA\nv7C+UusEOoDWAAAgAElEQVS6KtcAM9NpKzo3X8WVeheUuvvc5VN8bZZEw9unZ8yglJ4FcMeA65sA\nXjvkMR8B8JEB108CuI33cxwFSik2WsrQTOfOAyX84utvwt8+u2rzxbxQ76p40fzOOTpOsM2yybHo\nudqQcXyE3xtDJiGh0uYXaCseTTcBM8uSNQO6QT31uIxCS1Y91XMYeAU8dpL2GnScvVETmXBnTHZI\n8UJxAVZNh1Om05Y128/NDfm0ZKsLeWCl3sOPHpt2/b0J6zBX76q2A3QYsMFtXug1wHyPkpK3e+Fq\nYrdmOnsaja4GRTdsO/1BYBMAeWc6tY7i2kfBZL486bXVRs9VuQawXhl+6262ZU/jBQC+TZpsvopX\n5Didvv0GnSzHwXmNnop0YvS46O1r91QzyIdFS9Y8B3mmXjO1RuGg6QZWGz1PLgy8J3kOGlE9CCzo\n7BUxQRR0BGC95cUVIIF8SsIKx0xH0Qy0Fd2VXrNn6nCi15gbgZuAATDn2qw2ZG5UwGZLsf223MBz\ntEKr530TBKxMh0NNp2bZu5QyHgMta0zlEGi9jIsWtbbfoEMpH+eLtaYMg7r36AD9njzWPhAWzJ9x\nujD6b83eF559dyIRBR0BYA2abpvw/ETansTIA6wLe8KD8zFP/zW7EdZD0Ln3yCS6qo6nLvOZnlpp\nK5gckVE6YXugcdiM3IZ6bYdpCTP+TIdNa+WV6XgVEQD9LItHXcek1zwGnTS/k789KdVDpsMsoNY5\niYOqbQUpKWb/DYeBt7efaHj6KxJCUgD+VwCHnY+hlP66mKe1t+E1LZ4vZbhmOnVLFVfysDEU0/ws\nO5i7wig6keHeI1MgBPjBmU2cODwZal3doKh0FEx7pNf683zCv+6mi+vwdmQScS7BLii9xuPU72VC\nqxO8M52DudG1DYa8g26ac/ldNyzXvPXoAP1DFy9FKqtXuolk8o6azl6A10znKzCtZjQAbcdXhAFg\nH9R9LoqX2UKK26kI6EuxvXSrFzMSt0yH+cgNcl/YjnIuiVvmi/jBmY3Q69Y6CiiFZyEBzw3YL73G\nq5ciuJCAQ6D1MCzPiRzHTMcPvcYOAzxk034yHbMpO84v0+konu6p3B4LOl7vmv2U0rEYZV4LWK51\nMVNIISWNToun8klsthRQSj1Jft3A+H4vH9RiOoFVTtwzy3S81lZunCvgH85X+K3rUSnEa3KpblB0\nVd0z3cPW5hHs/Iw1ABwTPHlkOl0Vh6eGG09uR5ZjpuOHXstxHCC3XOshl4x7GmEBmNkO70zHDflr\nVEjwA0LI7UKfyTWE5XoXCx4GXc3kU1B0g5uKrObjFFzk6IhrZzo5702DPG4QNhveq3qtLyQItzbL\nGnIjrIa2g5clTFfVkZJiniXf2QRPes1nHesqqQXZ7/GwwlmpdzFfcm8MZTDZCz6HuWpHRdnLOPQ9\nlul4DTovB/CYNavmKWs+zVMin9hexnKti0UvEss8k1jyORnV/dBraX702mZbQdKaJ+IFzAU4rKSV\njST2mun0T8DhNmBWlM94cEFgKOUSqHbU0K+5o2ierHcYeAVaIIhMnE+BW9Z0qDr1Tq9ZE1V5bMIr\n9Z6nxlAG7pmOh3u5Xzu7hoQEME03I3gApRTLtR5eddOs6+/aA91aCo5xsHyrdhRIMeLp5mTmhDyo\nvWpbQTnnzRUAMDMdVaeQNQNpD7Ymw8AkpV5rOv33O9ymwG5uP5v/dC4FRTOsscfe6yLb0VH0kWau\n28HcJ2qdcAcMzep4Z5mTF7DnGXbzZ0HLi9URwFe9tt6UceNcwfPvzxbS+O4L4euVmm6g3vWW6aSk\nOBJxPo4X44CnTIdSegFACcBPWl8l61qEbah1VHRV3RO9xjvTqVmW9142//5MnfCno822t4InQ4HT\nprDRUkAIPA8VY4Ve5ogdFIwu8hN0nAeMMOgquq8MKyXFUUxLoT9jrMfIz2tmmWXYz5jt6O0xWLND\nFw/HjZZPSnGmkEKzp6EXsieLUeVe7ytezcfjgKegQwj5PwD8EYBZ6+sPCSE/L/KJ7VWs2Dbo7ik5\nr5M3Q7WteFY18fRfq7Rl+7V4gV34DMm5N7qmFc2oWSNOEEIwW0iFbt7r02veNyNGATJKMCjMTMdf\ndjhdSGE95GeMveasRysa5++G7U+yR4N7XDspxZCSYqFrpZRStBTNs4gA6NcXww5p7NdJvd1X+4pp\nnN3YG4JirzWddwO4l1L6Hyil/wHAfTBHQEfYhnUfjZKT2SQIAdY52WZstr135/edpsMHnWpH9ZXp\n8FLbtGR/GwJg0h9roTMdf3QP0N+MwlqkdBXdtVlwO2byKWw0w63bCUApJuKmZU7YTIep3/yoBUvZ\nhF3jDIqOooNSf+vah4uQQZ61P0x6vK/uPTKJxy5UuY9KEQGvQYcAcH5ydOtahG1gGn0vQUeKx1DO\nJrnRa5W24jnj6M/U4aEi8+5/Bjjpj7Bcv3cZLcNsMXym0wkgJJi2N6OQm7/qT0gAmJlO2M8Yo24y\nPmo6gBmYw6rX+pmO97UnMgnboSP0uj7oNV40KqtXep0Qe+/RKXQUHU8v1UOtOw54DTr/HcAjhJAP\nE0I+DOBhAJ8V9qz2MFjQGTbWYDum80lu9Jofx2VGw1U74W4O1ZJ8e6UBAH6FXr9qKsDKdJpyKBUZ\nG7ftp6DP/i5h/9Z+hQSAmemEptcC1HTM3w8/68XPlFaGUiYZerZNM8C60zk+dVpGe3u9r+45Yrp7\nPHx2M9S644Cnd5NS+luEkG/BlE4DwM9RSn8o7FntYWy0ZOSScc8n8Ok8H1cC3aCeBrgxsMFQlyqd\nUOuyG9trsAOc9Fq4TcFPlzrDXDGFjqKHUpGxTdTPBpyUYlwK+n6FBIB5sGHF7aBqwSD0GmDKecNm\nOizL8pPVFjMJXK6G+2y3A2RYdqYTsqbTsCelet9H9hXTOLu+++s6IzMdQkjR+u8kgPMA/tD6umBd\ni7AN603Ztjj3goVSxvZqCwO/ljClbBLFtIQLm+FuTCbF9SpgAJyZTvgTsN+gM1sM748VpE8HMDeG\njZCbURAhwUwh/Om7q/jP7tjvh81o/Vr/ACYtFVYkE4TWyybjSCdiNj0WFI2uCkKAvI/3e24ijdUG\n3/lcIuBGr/0P67+PATjp+GL/jrAN603Ztjj3ggPlLFYbcmiJpd2z4mPtw9M5nN8MdzIKsiGw5r2w\n6rVAmU7BVBWGERPYp36fWcN0PhWaXguW6YSf8xIu0wn32a52VCTjMV9rmzUdPkHHT4ZFCMFULnwN\nrdEzRTJeJqUyzBVSez/oUErfZP33CKX0qOPrCKX06Hie4t7Cekv2JCJgYDTXcshsp+9/5p3mOjSV\nC53p1Nk4BR9BJ50wbVx40Gt+hQTTHE79HVUzR1B7lGozTOaSoQrMmm5A0f01aAKOoBMiuwvSEAvw\nsf+pdRRMeOw/YyhlEugoeqi5TexQ5KdPB+h7KoZBo6f6pn/3TaRD96CNA177dB70ci2CuZl5FREA\nwIFJ0679UjVc0KnY5pfeg87hqSyWat1QMkuW6ZR8SKYJMV0TwmQ6lFK0fY4XAPhIxbsBKC7A3LzC\nUE1BGjQBZ50hPL3mN8sy3bVDNkp2VM8NwAwT1u+HERMEodcA8+AXth+r0fXn6A0Ac8U06l01NGsi\nGm41nbRVu5kmhJQJIZPW12EAi+N4gnsJsqaj1lF9ZToHJvkU9Dd9WsIAwMHJLHSDYilEwAtS0wHM\nGznMHPuuqsPw2UMB9Jtiw8i1O4rum1oDzGDRDbEhBK0l8RhZ3afX/NZ04qFrOtWO4nlSKgP7PPII\nOn4/Y1P5FJdMx8/sIgD2uPjdTrG5ZTrvg1m/udn6L/v6CoCPi31qew/sg+Yn05krpJGIE1wOm+m0\nvI81YGBZVpi12U3t9wYJm+kEkdEC5jA1KUZCFZmD1FUAIB1yvEHQugprJu2FoJq6ij93a4Zy1pQu\nG0ZwiXrdsnfyg37QCb75t2QNiThBSvJHo5qZjhJKlt/o+pvSCpjKTAC4wnEwpAi41XR+h1J6BMAv\nOmo5Ryild1BKo6CzDeyEsW/Ce9CJxQgWSxlcCinv3GzLmMgkkPBRZ2ABKgzVVO+qKPiwomHIh6Sa\n2GP90muEEBTSUqhMp634ryUB5pgBRTOgB9yAg3i+AbA3zTCZTtunuzXDZC4J3aChMg6vw8yc4JLp\nWOpIv4a4xUwCimZADhHk/Y5DBxyZDsfBkCLgtU/ndwkhtwG4BUDacf0Lop7YXgQ7Yewrupt9OjE/\nkcFqyNPJ5aq3GT5O8PBfq3f8n8gAM0MJ05hqUx8+6R7ActgOEWg7AaxoACCTtDZ/VfedoQHBPN8A\n82CTlGLoaeGyLL/UGrC1b8VPAzEDpRTVjv9Mh9UYw7hrB3G8APpZf6OnBu6LMuk1/zUdAFjb4/Qa\nAIAQ8qsAftf6ejWA3wTwUwKf154EM/t0G1O9HZO5JCohnQEubLZxaNLbDHkGHkX1INQHYG78YbKN\nIBYlDIW0FJpeC3Lqz4SsrQSl1wCTYpPVcPRa0EwHQOC+lZ5qjlTwI1QB+plOmKDTDCDJB2CrzoJ+\nvg2DoiX7FxIU0xKS8Vhofz/R8MqJvBXAawFcoZT+HIA7AEwIe1Z7FKuNHpJSzLfSZjKXtF1lg8Aw\nKC5Vuzg05S/oZJNxxGMklP9avav6FhEA1hC5kNQH4L+mY64dLuCZg9T8r8uyo6sRdNKJWGghQbig\nE4zyqdoj2H1mOpkEpBgJJY33O9aAIaxYpSlroNR/nZQQgkwyzmVgn0h4DTpdSqkBQLNcCtYAHBD3\ntPYmVuo97CumfXPA5VwSta4amOu/0uhB0Qwc9Bl0CCGhJ4jWggYdi+IKWmwNKmcFzKATVjIdREjA\nNu2gCrYgnm8MmUQ8FL0W9DVP5cI1ptZ8TMN1IhYzx1hcCUE1Ba3d9TOdYJ8x9ji/9BpgfsZ4jCYX\nCa9B5yQhpATg0zDVa48DeEjYs9qjuNLo+abWAGAymwClZhNcELAGz0OTOd+PLaTD2YUEpdcKaXN6\naC8g5RPEj8u5dqhMR9V9jTVgYJt2UC+ycJlOnIOQwP97Xc6Zn42g9Bq7J/zSa4BpCxPGeSKIzRLQ\nF7cE/Ywx5oFlTH6QScbtfq7dCq+TQ99PKa1RSv8rgNcBeKdFs+0JEELeQAh5nhBymhDyIVHrXPE5\nT52BFViDFtYvVkwrG7/0GmB+sIMOu6KUBhYShK0nNQOq14D+qO4gYE2p2QCbUVh6jZ36g5yAU4l4\naMl0kGCXkuIopKTAQacaMNMBzHaEMJlOM0DzMRA+02mEzHTCHC7GgZHvKCHkJaN+Ril9nP9T4gtC\nSBzA78EMlpcB/AMh5KuU0md5rkMpNTOdov+gwyiISjvYh/RipQMpRgIFvGKITKer6lB0w3fjHtCf\n59Psqbbqxg/asoZ4zH8PBWAGqraiQ9MN31JvWTOg6jTQZhSWXltt9FBMS4ForkwiFqpTvSVrgZSC\ngGULEzTT6frvP2PYN5HG989sBFoXsNRrAV4z+2wErZWyfr+JAIE2m5BCu3qLhts7+tERP6MAXsPx\nuYjCPQBOU0rPAgAh5IsA3gyAa9CpdlQomhGIXgtLQaw3TesdvxsoYAadsxutQOvaJqO5YEICAKgH\nvDGD9lCYa1uGo7Lmm7ZpdIOfQlmmE5RzNzNpf7J4hnQiHvjzpWgG1lsy5gJ8tgFLnRlQSBDU8QIw\nJcTNnhZI+KEbFB1FD6SOzCclEBI80zln3Y+Hp/zT5ZlkPDBNPy6MfEcppa8e1xMRiEUAlxz/vgzg\nXt6LZBJxfOKfvwQvmi/6fmxYWWklYA8EYNFrATf+apvN0vHeDNtfNxy91pKD9bpsWbsbIOgENIEE\n+jWdoJnOlUYv8MafluKBM52VeheUAgfKwQLeZC4VeLZNta0gk4gH6ndhHfqrDRlHpv39vcIIVWIx\ngnwyOG19Zr2N+Yl0sAbkZBzLtd1Nr3nt08kSQn6FEPIp69/HCSFvEvvUxgdCyHsJIScJISfX19cD\n/T8yyTjeePs8jkz7P50w6iBoTafS9j68bTvCKLlYb1GwTIdt/EGDjho46BQczXt+YfPtAU7eYWs6\nV+o97Cv6D/CA+fkMGuyYTdL+sv+aIWDWY4I6A9S6/s0+GRjVHcQWJsgANyfC9KGdXW/h2Ew+0GMz\nIdRrv/nAP+LDXz0V6LF+4GdctQLgR61/LwH4f4U8I/5YwlZ5937rmg1K6acopScopSdmZmbG+uQA\nk/rIJYPTH+EyHdMCPojTNOstCsK3224IAW/MIKOq7bVDiBjYRuK3hwJwGG8G2PxV3aS49gWm12KB\nlYIsS9kfMNPJJIJnWbWOEki5BsDOCoMYYIZpPgaYQtL/54tSijPrbRyd8X94BcKZyj52oYrnVhqB\nHusHXoPOMUrpbwJQAYBS2gHgn0y/OvgHAMcJIUcIIUkA9wP46lV+TjtQDtEgGi7TCS7vrARwtu6v\nGzbT0QPRD0C4Qm+Ymg4TPQQ5ia43ZVCKQEIVwDzY9AKegC9VuogHFKoA4bKsWgALHIapELR1M0Tz\nMRBclr/elNGStcCZTi4ZXEjQ6AUf4e4HXoOOQgjJwBQPgBByDMDudpWzQCnVAPwbAH8D4DkAX6KU\nis8hfWKmkMJq0/+JTNUNNHpaoGwDcNY3/G/+1Y6CGAm2AacTcSTjscAURKtnGo0GwUQmuKS1add0\n/L/mWIwEPvVfCWAm60Q6RHPo5WoH8xPpQEIVAEhLZpYVpBE4iNknAwsYQT5jYem1QkDa+tyG2f5w\nOABND5gBvqcGM5U1na2DvV4/8LrCrwJ4AMABQsgfAXgZgHeJelK8QSn9GoCvXe3nMQqLpQyeWar7\nfhyrA036GN7mBAsYQTj3StvcEPyM1N2ydia4G0Jb1pFLBTNT7NNrATIdu6YT7OY0O8b9r7sa0EyW\nIS3Foeo0kEz8crUbmFoDzJEOgCk39ysIqHXUQNJhAJDiMeSS8UCHCx702uk1/39nNmI7KHPhlOX7\nDZjNACajQeD66SOmJvUfAfwMzEDzxwBOUEq/JfSZXWdYLGewXOv5njtiU1wBT4NMrh1ExFDtBK8l\nAeF6hFqyhnwq2A2St+m1IJmOiriVsQSB6Qzgv7bCNqNyANEG0He4DtIgut6SMVsIRq0BwQUUlNJQ\nQgIgeMYRxtvPXDdYTadfMwz6dzafr9+DjWFQNGUtUK3SL1xXoJRSQsjXKKW3A/hr4c/oOsX+UgaK\nVSz20ywZpq5iPo41pvoPOpW2EjjYAUAhE0zVZBgUbUVDPmCmE4+Z47KD0C6NrnljBukPAlih1/+6\n9liDEMEOAHoBTsAdJXhWuWVtn/ReU9agGzQwvQYEr62EkUyb65rqNUqpr88KOwgFkeQDsCfa+g3w\nbcU0Gd1NNZ3HCSEvFfpMrnMsWvSF3yme4YOONe8kgCFjta0GPnkDpnNwEOv5jqqD0uDUB2CNNwh0\nElVD3ZhBJa1sww46nyUtBZdr9xQ98LpA8Eyn1g7eGMoQNugEFasU0wlohn9vwWaIPjCgT6/5/Ywx\nqnkcNR2vQedeAA8RQs4QQp4ihDxNCHlK5BO73sB6IPw20VVDBp1iWkIiTgLZlFQ6SqDGUIapXAqb\nAazn+9RH8M3IHG8QpE9HC3VjZgIab/YUHYQgkO0P4Kyr+F+7qwbzXbPXTvSH1/lBGAschkLAv3NL\n1pBOxHxN4t26LhMx+Fu70VORTcYDizYyAYMOe57jyHS83j2vF/osImDRmvq5VPOX6TDL+KCyUkII\nyln/NiWGQVFtK4EaQxmmC0lstBTfFET/FBp8IwzqxNDsqSiECHaZgP1YPc1AWooHpvXSVrDye/JW\ndQOaQQPTeoCT2vO3NjP7DJNNFzMJXKr4d0NoBRzgxuBsQJ71QZeHLeZnAw4KtJ2td0PQsQwz/4ZS\nerPwZ3MdI5eSUMomfNNrV+o9zBRSgU9kADCVT/neCCsdBZpBMZMPnulM51JQdMMqYHr/sLdCOEwz\nFNKJQE2DzZ4WyM2bIZeUAm2CXUW3M4YgCGrBw07MPOg1v1Jx5iE2EcBQliEojRp0rAFDUIVkoxvM\n2ZohG3B8Rj/T2QX0GqVUB/A8IeSg8GdznWO24J9uWq53sRCwaY9hKuffBZjNKfFzituO6UKwepI9\nSyeg6zFg0orBhAThajq5VMCajhqurpIOuPGz3w8yS2f72r5rOizTCaVeC+aBFsbxgq0L+O8RasrB\nRoUwBD1chLF38guv72oZwClCyKMA2uwipfSnhDyr6xSlbNKmFLxiudbFjXOFUOtO5pK46PP0vWY1\nss4WwtV0AGCjJfvyrLO7xUNmOoFOwCFpl1xKsjM1P+iqejiKK6CQwFbNJcNnWX7Va1U70wlXu1M0\nA7KmIyV5f//CjHIAgs/UaXQ1TAXsuQOCCwnCChj8wOsK/17os4gAwJzrzqaAegGlFCv1Hl5542yo\ndU3reZ+ZTtPKdEL0b7Cby292F7ZbHDBrOkEkrZ2Aw8wYckkJbdn/uj3VQCoMxZUMVszvhJRqOx8b\nJNMppKXARXVga8aRynt/DbWOEmi0wKB1/aDZUwOZBjNk7T4dvzWdXUSvAQCl9NswG0QL1tdz1rUI\nHFHOJn01ada7KjqKjoVSeHqtJWu+lE3rLOgEdD0GYNeD1n3Sa2HlrIB5AmYzU7xC0cyieph1cykJ\nBvVfVJc1HZkQNR2m9PObZbEglQlx6k8lgjWm1kJY4DAE3fzXm3Koz3YxoNWS6X8W/L3OpySkEzFc\n3Gy7/7IDzZ6p1vOTDQaF19EGbwfwKIC3AXg7gEcIIW8V+cSuR5SyCdS6qmePquWaSXEtlIJblAB9\nCx0/2c6aNcUyTJ2hnAuW6Wy2ZMSImRkGRSGA0zQrzobJdFhDq+/NP2SvDNvIWj43X1bT4ZHp+DUc\nrXWDm30yMKWhn81f0QxUO2qoLD6XjCNG/AU7SqmpXgvxuY7HCO49MoXvnvY3MbURsv/MD7wenf4d\ngJdSSt9JKX0HzGmcEeXGGaVsEopmeD4FL1vy6rBBh2UcTBzgBWtNOZSIAAAS8RjK2QQ2fAad1Ubw\nSakMrNfGz6bQVlhRPQS9lgpmU9LTwgWdbIBNEAjvhAA4hAQ+qb1qRw081oDBObDPK9jncSZEvZIQ\n0/XCj9VSTw0+Ct2JVxyfxtn1tq+ev7CqOT/wetfGKKVrjn9v+nhsBI9gpzqvFNtK3Qo6IdVrzA3B\nT4/QWlMOJSJgmMqnfKvXrjR6gcaCO1EIMFqha2c64eg1IFimE2bjZ5ugX7qno4YXEiTiMUgxEkgy\nHUa5BgRr0uzXK8N9vpkVjlew5xi2V+YVx82ZYA+d2fT8mMu1LhYCzmryC6+fpAcIIX9DCHkXIeRd\nMD3YdrVr814Eo4u8WsNshnQjYAjihrDW7HEJOtP5ZIBMpxeK+gD6NFfbB+XTljlkOlbAYv8vrzCF\nBOHOeYV0Ak2fwa6nhK/pAJYTg++go4aiUAHHeAMfr5vVK8NkOoB/uXaDU6/M4WnzfvbTh3ap0sHB\nEP1nfjDy1RFCbgAwRyn9JULIzwB4ufWjhwD8kegnd72BUQk1j5lOo2vKd8PQTIApSS2kJV+NqZVW\nOAschql8Cs8t+5tWuNro4cThcqh1bZWPj82ozSXTsYKd380/pGQaCOZD1uVQ0wGAlM85QrpB0eiF\np9dY0PHzd+63A4Q72Pi1WmKHzTAScQBISXFkk3HPh9dmT0WlreDg5HiCjttu9V8ANACAUvrnlNIP\nUko/COAvrJ9F4AhGr9U8Uj6NnsrNinx/Oes56BgGRUfVA7s8OzGTT/nKdGRNR7WjYi7khmBnHD4y\nHVbfCGO/wzbBtt+aTsjmUMAMOn6FBDwk04BJz/lR7NW7KigNbu/EkA2Q0a41ZBCCUP0yQF+W73ld\nDm0IDKVMwnPP36WKed/vlqAzRyl9evtF69phIc/oOkbZznQ8Bp1uOKWLE/vLGc/0WtdyeQ4jHWaY\nyiXR6HmXazOxw1zImg7bjPwU9HkKCfxkOpRS9DSDQ6aTQFP2V9NhmU4YCx7Av9Epy/bDSqaTVj3J\nz995vSVjMpsMZS0F+G9AXrPosDBSbYaJbBL1rjfG5GLFlFfvlqBTGvGz8VSdriP4FRI0OE76M4NO\n15Ncu82hT4ZhKu9vng/jqf3MHBqEILUVvkIC7+uqOoVu0NAbfxB6jdF6QY1GGfyOy2an9LCZDiEE\n2WTc1995rSGHrucA5md0tdGDpnvL8NaaMqQYCTWjisHP2BDmRjKumo7bp/gkIeQ92y8SQv4VgMfE\nPKXrF+lEHOlEzPNgs2bIRjIn9pez6Ci6p5Q87IArJ6YtCmOj6S3oXGmwsc3hgk46EQMhPjMdLkIC\n/zWdsLN0GPIp//RaV9FtG5swSPvMdHha7edSkq/3e73FJ+jcMJuHqlNc8GgxtWoFu6Dj350oZROe\nD68XKx2UsomxOEwD7jY4/yeAvyCE/HP0g8wJAEkAbxH5xK5XLExkcHbdWzdxo6eG9l1jYJt/taO4\nquE6HGgmBpbpbHgcrbBh8d7TIfl2QohlSeN9I+xwyHSkeAwpKeYv6HBwegb8S3gB828dltYDzOde\n9+G20TcaDb92LiX5cp5Yb/RwbGYq9Lo3zOYBAKfXWjg2k3f9/bVmL3TvG8NEJun58Hqx0h0btQa4\nZDqU0lVK6Y8C+DUA562vX6OU/gil9Ir4p3f94cThMk5eqMAw3GkuNjqZB/pqLvebk2emwxpTWTBx\nAxNZhFX4AOaG5ifT6Sg6EnGCZMBBagz5lORLSMAK8DyEBIpu+LI76ql8Mp1swp+7Nq/XDJjZpdf3\nm1KK9ZbMpZh/bMb0UDu91vL0++ucet+APr3mhS6/uNnGgd0SdBgopX9PKf1d6+ubop/U9YyXHp5E\nraPiBZcPqmGEt8xwwpbyerg5+dZ0LCscjzUdHiaQDLmU5EvVxOvUb9I9PmpJnGTLQXzIwrpbM5h0\nj/8Vt7sAACAASURBVI9GXE6vGTAPVF4OU4D5+VJ1yoVeK6QT2FdM44zHoGP2n/EJOqWsOS7b7fOt\nGxSXq7so04kwftx7xEzrHzk3upu4rWgwKL9Jf/3CuvuGxMNw0143JSGTiHvOdOoc/LgYssm4r/6N\njqJxe81+HAl6nBRkQYJOR9G4ZDqTOdPM1ksGD/Cx32HIpeKe3+/1Fh83AoYbZvM4ve4edJjfW1iB\nDEPJGnxXdTnMrdS70AyKQ1HQuX5xYDKDQkpyreuwjYN5iIVFzkc/Q4dDv4oTU3nvQ+RqHcW+ocIi\nl/RHc7U5FdVzybivmk5fthwy02FO074yHYMLxTWZS0I3qOeAx8QTYV0YAFbT8bYuk+TzyHQAYH4i\n7elAxTvYsYOZW13HVq5FQef6BSEExYy7vr/ByaeJwU//CE96DTBvEK9FTx7OwwxZn1M8OyEHezFM\n5pK+/OZ6nIJOPoAPWVfRbMVdGPRpVG8ZbU/RQQiQClk/A0x6zSuNut4KP5zQCfNedr+nVjn26ABO\nd5PRf2s2On3X1XQijBde+imYay4vO/JsEHqNwwYMmKIAr0Gn3lG5iAiA/kA1rwg7wI1h0WrE9TrC\nol9UD3e7skZLP6PJ27IeSq3HwCyTvPZjdVUdaSl8fxBgZpZeaVTemU4xnUBL1lx7dezx7xwEDEA/\n03nfH5wcaeR7YbMDKUYwH7LZ2g+ioLMLYQYdl0yny2aac6LXfIy5bcsaMok44hz6CQDzxvTq9lzr\nqqG71BlM9Zo/IQGPoLO/nEVb0T037/GQagOwh/0xd3IvaCsaFxp10mfA66kGFyoTALKWYMRLPWm9\nKSOTiHNRZgL9+9OtpmT7vXHKdA5NZXH74gTaio7vvbA+9PeWal3sm0hzEeZ4RRR0diG89FPwptf8\n9I+0FZ1bPQfwnukYBjVrOhyFBP4yHQ1ZDpvRYsnfKIk+nRm+T6eQluzhf17QkXUuNCobFOhW2Gbg\npZoD+o7iXlyu16yJoTwyLKB/f7rN81lryIjHCKY4mOgCpunnl//3HwEAXKkPpzRX6r2xjTRg2HVB\nhxDyYULIEiHkCevrjY6f/TIh5DQh5HlCyOsd1+8mhDxt/exjxPrEEEJShJA/sa4/Qgg5PP5X5B9e\n6DXWmV8OOdbAiZzH/pG2zEfFxeClhgUALUuxx4tey1pNg15oLt2gWK7xkbTut+YXefW6Y5Y5PE7f\ni6WMZ2NXRTOg6Aafmk7OX6bTVXUuIgLAQR17+GybNUN+95Q9RM7l873W7GE6n+TGHgBm4JnKJe29\nYhCu1HuYDznu3i92XdCx8NuU0jutr68BACHkFgD3A7gVwBsAfIIQwu6GTwJ4D4Dj1tcbrOvvBlCl\nlN4A4LcB/MYYX0NgeKHXfnixhiPTOW4bMMAkxN7oNV71HAAopiX0VPemxbrtx8VLvRaHZlAoHryx\nzm200FV13LowEXrdftDxtvl3FA0xwkc+vFDK2BNn3dC1nSfC/63TCdNu32tNR+aY6bAM0etnm4d7\nOgNr3najj1cbfBpSt4P5vw2CYVBcqYcfiOgXuzXoDMKbAXyRUipTSs8BOA3gHkLIPIAipfRhah5Z\nvwDgpx2P+bz1/ZcBvJbwypsFgtFrw07glFI8fqGKuw6O8mP1j7zH/pGWrHHjvIF+5uJGQTAvqbCD\nvRj8uDA8s2TO/LltsRh63YlMAvmU9/lFLSvI8/joLpTSWPZY02GZAS8qdTKX9CUk4BV02N/Zy2e7\nLWtcgiyD90xHxhyneo4T+ybSuFIfHHQqHQWKbkT0moWfJ4Q8RQj5HCGETetaBHDJ8TuXrWuL1vfb\nr295DKVUA1AHEN5USTAKaQmaQYfOH7lY6WCzreDuQ+EGmW2H18J6R9Ht0QA84PXGrHFyHmbw48Jw\narmOpBTz5KHlBkKIL5qLJ525UMqg1lE91bJ4CRgYpnLe+7G6Svj5QQwsK/fy2eZ9oCp6PFCtN3uY\nGXOms2LV9q6LTIcQ8neEkGcGfL0ZJlV2FMCdAFYAfHQMz+e9hJCThJCT6+vDlR7jApNBD6PYnrhU\nAwDcdYBv0PFa02kJqOkA7o1sPH3XAEem42EzOrXcwM37CqFnrDCUc94Ve22ZX5BnIgYvCjZm1cMr\n0yllk56n4vY4NaUC/g4XHc4iGZteG3GgUnUDGy2FW2+QE/uKaWy2lYHUNfsMXBeZDqX0xymltw34\n+oplMqpTSg0AnwZwj/WwJQAHHP+b/da1Jev77de3PIYQIgGYALDDX4ZS+ilK6QlK6YmZmRmeLzUQ\n+h/UwTfJmbUWYgQ4Npvjuq7XvpVah98cH8Cp8Bm9CbNOel69SV6DHWAWXHk20OVTEpoelXM8T9/M\nZmWUoomBx3huJ/I+3J55GY0C/f6kdQ/OALwPVLmkhBgZ/dlmjcK85NJO7Jsw/5+sD8iJlfp1lOmM\nglWjYXgLgGes778K4H5LkXYEpmDgUUrpCoAGIeQ+q17zDgBfcTzmndb3bwXwTeq1I+8qouDSOX5u\ns4P95SxSEr8TGWB26LsZUTaseeqHOA58mvC4+besqZd5Ts7atqLKgztAS9ZQ4LgZ5X3MeOEp3GDv\ntRdXAlbr4rV2xkeTptkcymd7WixnEI8RXNwcrRZUdQOKZiDPsaYTixFrgujw183GtU/n+QcddsgY\nRLGt1HtIxIl9H4wL/N5dfvhNQsidACjMUQrvAwBK6SlCyJcAPAtAA/ABSinbId8P4PdhTjP9uvUF\nAJ8F8AeEkNMAKjDVb7sefXpt8Af13EYLR6b5ZjmAubm4eVSxG5enQSBroHOzC2nJpjVKlhPtwqxZ\nvBS3ecvE/QwWa8ka9pf5vN9e62eAI9PhRDflknF0PPTKAHwznUQ8hsVSxnWYGm97J4ZiRhqd6Vif\nPxGbP8tiBsmm15syZvJ8hsb5wa4LOpTSfzHiZx8B8JEB108CuG3A9R6At3F9gmNAYQQPTCnFufU2\nThya5L6uF8v9CyzoTPELen7otVxS4naTTNqZzmjaxbAs4nluRl6VgoC5+fOS8fYlvF6UXHwznWzK\n+4iBrspPSACYHfoXNkeb6PKcE+VEMT26D61i+dG5DU8Mgn02nboz6Gy0ZEwLqCO5YdfRaxFGZzrr\nTRltRReU6cShWBTDMJy3blye9Fo6EUdKirkHHVnluiGkJNPuxE1RxU78PPs3cikJsmZA9dAj1Obk\nCgA4agxe6DXOmU424f75AsyDFU8hAWC6KF9wodfsceQc/84As3kaHuQZvcvLjcCJiUwCKSk2kF5j\nmc64EQWdXYjiiJrO2Q1z0xcSdFLu/QwXNtuYKaS4UxClbMJ985d1bvUcBi+9I23bEYCfeIIFT6+u\n3ryCrV1j8CCesDdhXv0y1mvouogJZCso8erTAYDDUznUu+pI9RzPOVFOTOaSdt1mECptBVKMcPNR\ndIIQYvbqDBASbLRkIXUkN0RBZxcil5SQlGIDFScPPHMFiTjBrQvhmxS3gwWyF1abQ3/nwmZHyMCn\nG+cKeHa5MfJ3mpzrKoC3oNPi5H3mRN5DgAcATTcgawZnibrkyW6/o2hISTFuZpC2qaw6em0WlMK6\najtx0MrMR2U7HUUMvbZYzmCp1h3a7F1pK5jMJbn5vW3HXDGN1W30mmFQbLYVbm7afhAFnV2IWIzg\nRfNFPLNc33K92VPxpycv4SdfvIApAScUFshOjdj8L1U6QgY+3bG/hOdXmyNPwa2eylVBBgDTHgbI\ntQVw/V6ySnNt1ivD03bIY6bDaVIqQ9bO7kZnOmyAG89Mh/UnjfIhs4UEHNVrbG1ZM3txBmGjpQip\n5zDsK6Z3vO5qR4FuUEznx6tcA6Kgs2tx+2IRp5YaW+zYHz5bQVvR8faXHhjxyOCYKaQwnU/i2ZXB\nQUc3KFabshCDwDsOlKAbFM+u1If+Du9ucYBlOqOFBCJoF0YTutFrLQH1JLfCNkNH5jPKgYHRdG4K\nSXtUNce12aY+KqvlaazqhJvBa6Ut20pKETDptR4opegqOn5wZsOeVCrCBcENUdDZpbh9cQJNWcM5\nh+KGfWhvmA1vxTIIhBDcsjAxNNNZa/agGxTzAjqY79hvGmk+cWl40OFZUGeYzKVQaSsjnaZFqJpY\nEGm5nPpZUOLrByZ5U68pfI1dWYHerUGUjSDg2YfmJejwGiGxHYvl0aMsKm1FiIiAYa6YhqIZqHVU\nfPJbp/HPPv0I/urJFQCIMp0Ifdy+aJp5vvaj38Y3nl0FACxVu0gnYkKbuW5dKOKF1aY9ItkJNodl\nQUCmM1tMo5xN4Ox6a+jvNHuqLSfnhalcEqpOR7oDiKTXXDMdAWt7zXR42u8ATg+00a+ZNQnzfM3M\n5XpUI7AoIYE9P2mI195mWzy9BpjUIqvlfe775wDwm5DqB1HQ2aW4cS6P19w8CwD44cUqAPOktFDK\nCCs4AsCdB0rQDIpTyzszDubVJCLTAUy7kmGuBJRSIfQaozU2RlikiGgaZBtwy6WgL2LtYsZbTafZ\n4ytRZ1SdW03nlOXofdO+Are1AXcqtS1riMcIUpycEBgK6QQmMomBBq+ypqPZ04QeJFl7wwtrLfsw\nybLNqE8ngg0pHsPn3vVSHJjM4JL1YV2qde1Tkygw5+qT56s7fsZcaUUZBE5kh08Q7akGDMr/FMoC\n6KhpmiK4fpaxuQkJzlsSeUbR8EAxnUBb0aG59AhVOgrXzZAJCdwynScv17BYynA/hbu5XHcUHblk\nXMihznQV31nT+drTJs11iwA1KsPN+wrIJuN47HwF600ZKSmGN9+5gJ972WHuwhwv2HWOBBG24kA5\na39Yl6pdIVJpJ6bzKRyeyuKxCzuDznK9i2wyLqSfADDn5AxT+DQ5+64xsCLvqMFmLVlFjPCV8Hql\n104tN1DKJrDA0ZSR/f2aPW3k5NlqW+U7mTbprabz5OUa7jgQfljedkzmklgbkdGKyKQZDk1l8fy2\nVgRKKT724GncMl/Eq2+aFbIuYB5g7zxQwskLVcQIwX1Hp/A7998lbD03RJnOLseBchaXKl10FR2b\nbYWbB9co3H1oEo9frO4orq/UepifSAuj90rZJGrdwUHHdpjmvCnsm0iDEODyiKDTlnXkU3yGqDEk\n4jEkpZhrpnNquYFbF4pc17Zth0bUdWRNR0vWMMlxdLOXURKVtoJLlS5evJ/vgELAFI1UR2Q6tY5q\ne9PxxpHpHC5udrY4UNS7Ks5ttPGWuxaF+5+dOFTGcysNXKx0hIxQ8IMo6OxyHJjMYKMl44xVYBdN\nrwGmmGCjpdhUxDeeXcWfnryES9UOFgSuP5FJ2COpt0NEvwpgbv5zhfTQIi8g7gRccPFfU3UDz19p\nchmR7YSXwWJsYB7PTCcpxSDFyMjs7vSa+Tm/mXM9BzDrd5sjlIqbbVlYYf3oTB6aQbfUddj9NV0Q\nryC7+/AkDGoGuqshHnAiotd2OdgMl8989ywACKfXAOCYJck+s9bCdD6F93zhJAAgESd498uPClt3\nImNawOsGRXzbyc+m1wRs/ovlzEh6jbfDNIOb0/TptRYU3eD+N/cyWIxJi3mrqtym0zIqmefsIobJ\nXBKyZliD2nb+PTdashC3DaDv9nF2ve8QX7XfY/FB4K6DJRACUHp1FGtORJnOLgej0/7nE8t4zc2z\nOD7H/wS4HcdmrBtkY6srr6pT3HmAP+3BwMZQD1JWsWu8JdOAOcJ5WA8FwH+wF0MuJY3s02F+Xbyz\n236mMzzosA2xzJFeA8zXPEpIwDJOERm9W6/OZksR4vQB9O+pc457SuRIg+0ophO4ydo7Zq9CQ6gT\nUdDZ5XjRfAH3HJnE0ZkcPvi6G8ey5sJEBulEDGfWdvbMjCPo1AZshkt2jxD/zWixlMFKvbvF/cEJ\nsfTa8I2fUYo8O/MBbzN1KpYxJu9O+UwyjvaITGep1sV0PsXVYZrBHto3IOh0FA0dRRfmDFDKJlHO\nJnBmvR90WPDjSWGOwonDpjL1amc6Eb22y5FNSvjS+35krGvGYgRHpvM4u9HeUvjcV0wLHW1bypg3\nn+kEvNVFe6lqKufKWf6F3oVSGqpOsdGSMVvc+fqaPQ3zAl53LhUfqtYD+tJi3l5gXmbqCMt0ktLI\n6aGXq12u8nAn+pnOTgUbaxoV6bp8fK6AZx39b5UxZjoA8MobZ/En/3CJ61iSIIgynQgDcXQmhzPr\nLfvGuGmugH/9SnH1HMDs0wEGj62+XO1gUVBjLNtYB2VYgOWEwHGsAYNbTYfVPnjPd/EyU6fSNn9W\n4hzkS9nhsnjAzHT2Cwo6zGpmkCtBf2S0uABw35FJPL1Ut9/3SltBNhkXktUNwutumcPJf/c6e4T1\n1UIUdCIMxIv2FXBhs2Or5v6v1x3Hu152ROiaE5nhQWepJu4EbNN6Q5RzzZ4mpJaUT0kj7XdEZTpe\nZupUOwqKaQkJTmMNGI5O53Buoz1QQWYYFEtVcUFncsR4cpGD1Bh+5Ng0DAo8erZiPw/emaQbJgQw\nBX4RBZ0IA/ESy5ngb0+Zvm/jGPZUygzf/EWegLfSeluh6qbaiU1z5Ym8S6Zj13QEnITdZupUBPmB\nHZ3JoyVrWB/QpLnRkqHoBvYLkuXnknEkpdjgoGNRbiLdnl9yqISUFMP3z2wAsIw+r4Lh5tVGFHQi\nDMSdB0qIxwj+5tQVAOMJOizTqW7b/FuyhlpHxWJJDBc9SsDAmlJFuDCYSi59qICho2jIJOJCGgfd\nZuqsNnpClFxHhygjAdi0m6hCNyEEk9nBVjgbY8h0UlIcdx0s2W4fogL7bkcUdCIMRDYp4daFIlas\niYPjMAaU4jFM51O2xxtgzvD5Tw/8IwC+/mNOTIyQajeZE4KgTAcwRwgMgtlPIobvd3OavljpCCk4\n9/tVdgYd5kYxkRG3EQ+bFLvRkpFLxrkrBbfjJQfLeHa5gZ6qm0FnzPTabkAUdCIMxStvnLG/zwm+\nGRkOT2Vx3jFD6OGzm/j8QxeQTsRwm6DG2EJKQjxGBtJ6bGMWUtNxMf3sKDrXOTpOjJqp01N1rNR7\nODyVG/jzMGBy/HMbO+X47P3nLV5wYmrIpNhLlS7mx+D2cdfBMjSD4hf/9EmsNnpRphMhghPve+Ux\n+3uR4xScODSV2zLH/snLNQDAQx96LY7OiBteN5FJDPR9Exl03Ew/27LGdXKnE8V0As0hmc7Fivn+\ni8h0YjGCw1M5nNvY6bhsW+8IPP0PG29wdr2FGwR9vpxgfW5/9dQKThwu4/57Dgpfc7ch6tOJMBT5\nlIS/++ArBxbYReHwVBZ/9ngPPVVHOhHH05frODSVFd5AV8okBmY6jF4rCqHXRk8PNTMdQUHHshwa\nBDZOQUSmA5gNvmw2kxOslicy05nMJVFtb/07K5qBC5UO3nj7vLB1GWYKKdwyX8REJoE//Ff37rB7\nuh4QBZ0IIyFqNPYwHLI4/4uVDm6cK+DppTruEOiCwDBslo/IoOM2yK2jiLHfAczX05I1aLoBaZss\nmtGbooLOvok0nrxU23G93lWRTsSE9q1M5ZJoyRpkTbfHYV+stKEbFMdmxbze7fjKv3kZpBgZG3uw\n2xDRaxF2FZjh4vmNNqptBZerXdy+yH+2ynZMDMl0RHq+eanpiJBLA3013qC1z292UMomhPV0zBfT\n2GwrO0aiV9uKLV8XBWau6RQTnF4zg+yxMdBrgOlsfr0GnP+/vTsPrqs87zj+/WmxFtuSdyzLxsZL\nbLwQAsZATIJZAg7QkKSspSlpkjId0gLTdCiQTkjbZAJDhzBpFso2DQWaklBCCmUxQwOEOIADNl4x\nBoL3FduS0eIr6ekf5z3SkSwvUJ1zbN3nM3PH55577rnvkW09913O84AHHXeYib9dr9jUwKrNUdGr\n6XXpZ9Yesp85nbin09fF4yCxem1/czop93Sg9xtxtza0MjrFu9bjVEpbG7rPrexqLqQ6tAZ01pKJ\nK8VubWzhkdfWA6Q2Z+i6yyXoSLpY0nJJHZJm93jtRklrJL0p6dzE/hMlLQ2v/UDhq4KkCkn/Gfa/\nLGlC4j1XSnorPK7M6vrcR1dbXc5pk0fw4MtrWbGpAchmiG9I9YBea/k0thSoKi/t8zvzIbGQYH9L\nplvTm9OJf/H3ll27saWQynBiLC4R3nNeZ1fT3tSDzrS6KNPyyvBv61+ff4dnV27h/Fl1qVUNdd3l\n1dNZBnwReCG5U9J04DJgBjAf+LGk+H/dT4C/AKaEx/yw/6vATjObDHwfuDWcaxhwM3AyMAe4WdLQ\nFK/J9ZGrz5jEtsZW7nz+baoHlKaSbLOnZC2fpIaWQmrlueNfco37ndPpve5LX5gwYt9U+7E9remk\n/YnFAW9zQ0u3/buaCqkPr9UPqaK2qpzlG6Og8/rancweP5QfXXFCqp/ruuQSdMxspZm92ctLFwI/\nM7NWM3sXWAPMkVQH1JjZ7yxK2nQ/8PnEe34atn8BnBV6QecCC8zsfTPbCSygK1C5w9ipE4czpraS\nbY2tTBo5KJPx7zh7dc9sCFHetXS+fVccoJJme4fRXEhvTqeuppKKspLOlWpJjS1tqQwnxuKgE994\nHNvZVGDowHR7OpKYXlfDik0NFNo7WLaxgY+nUBrb7d/hNqdTD6xLPF8f9tWH7Z77u73HzNqA3cDw\nA5zLHeYkcfrUUUBX8au0xRkXemYg3tm0tzM9T1+TtN9M082FuDx3OkGn636Z7Hs6gyrKGFxZxuZE\n0DEzdjfvTTUbQWzGmBpWbWpg+cYG9rZ1ZLI60nVJLehIelbSsl4eF6b1mR+VpKskLZK0aNu2bXk3\nx9GVDSGrJdtdae+7T26v3dHE0SmVMIZoYvvZlVt5b0f3X/5xzZm0MhJAlJKmZ9AxMxpbCgxKoZRD\nUl1tZbc5nQ/2tlNot1TqJfU0s76W1rYOfr4o+k6aZmFCt6/Ugo6ZnW1mM3t5PHaAt20AxiWejw37\nNoTtnvu7vUdSGVAL7DjAuXpr611mNtvMZo8cObK3Q1zGPjVlBPOmjuTMaUdl8nkjB0ffsLclgk5L\noZ2NKaWDid128cfZvqeVe3/zbrf9cS2dtHo6EM3rrH2/ibZEob7Wtg4K7ZZqTwdgdG1Vt57OljC/\nk0Vi2RNDBvWfL1rP6JrK1LKXu94dbsNrvwIuCyvSjiFaMPCKmW0CGiSdEuZr/gx4LPGeeGXaRcBz\nYd7naeAcSUPDAoJzwj53BBhYUca//fkcpqeUb62nuKeTLDAWp+OZMCK9ns7x44YwZkjVPkko92TQ\n0zl6WDWFdmNrosxA182w6QaduprKbnM6aabe6Wns0CpGDa5gb3sHn5w8vKjvmclDXkumvyBpPXAq\n8ISkpwHMbDnwMLACeAr4upnFd5BdDdxDtLjgbeDJsP9eYLikNcDfADeEc70P/BPwanj8Y9jn3D5q\nq8opK1G34bV3U04HE6up2jcbQpwVIM1v4fGqvOScUhzs0lxIANFigm17WjvLoa8LQSfNocyYJE6a\nMAyAuZNGpP55rrtcFqab2aPAo/t57bvAd3vZvwiY2cv+FuDi/ZzrPuC+/1djXVEoKRHDBw3oLFvc\nvLed19dFdU/i5cVpqanct6Da6i17KFG6d8nHaXg+2NuVGSBOAppGee6kutpKzGBrYyv1Q6pYu6OJ\nirKS1Grp9DR38ggWrNjC3MkedLLmd0M5FwwfWNG5eu17T67k/oXvAaS2ei1WW1XOhp3db5Rcs7WR\no4dVp5qHLL7xtCnZ00kxA0NS5706u5ujoPN+tGAjq6GuS08ax+lTR3a2w2XncJvTcS43IwZXdPZ0\n4oSUV8+bdKC39InehtdWb9nD5FGDU/3crowIXT2dhs6idSnP6XRmJYjmdeKgk5XSElGfQf0cty8P\nOs4FIwYO6FxI0NDSxvnH1XH9/Gmpf25cxTNa/xKl2v/D9g/42FHpLhePq2Q2JdLwZDW81tXTaWHx\nul2sfb+JcRkGHZcfDzrOBXFPx8zYvLsl1aSXSbVV5RTajZZCNKl+72/epa3DUl+51zmnk6jnEy8k\nSLunU1NZRvWAUlZtbuSSOxfSXGjvnNx3/ZvP6TgX1A+porWtgzVb99BcaM8s6MSryBpaCjS2Frj1\nqVWcN2s0n52ZblGx6oreejrZzOlIYmZ9Lb98fQNtHcaDXzvZJ/WLhPd0nAumjo7mUJ5fHWWlOCqj\nSeZkmYF46fAls8elXlWyujwOOt17OpXlJalk1e7p3BmjaeswBg4o9V5OEfGg41ww9ajuQSeL7NbQ\ntTquobnAhlDnZUwGk9xlpSVUlJV0K63Q0FxILcFpT+fOiLJNnDppOAPK/FdRsfDhNeeCoQMHMGpw\nBS++tR0gw+G1EHRaCmwM9W2yCngDK8poSszpLNu4m8kZFTMbO7Sam86bxmzv5RQV/3rhXEI8xAYw\nqiabGxXjlDO7mwts2tXM4MqyzHob1QNKeWPDbn7y67dpbCmwYmMDJx2TXRC46tOTOOFoL3NVTLyn\n41zCcWNrefGt7dTVVlJRlt6NmUldw2ttbNjVkun9IwMHlLFk3S6WrNvFmCGVdBjM8Z6HS5EHHecS\nrjlrCmdMHZVZOhZIDK81F9i0uzmT+ZxYdSKL9eNvbKK0RHziaE/179LjQce5hIqy0sznGMpLSxhS\nXc66nU1s3NWcaX2XgYks1gvf3sH44dWplch2DnxOx7nDwuzxw3hh9XZ2NhWy7ekM6Orp7GltyzQV\njStOHnScOwycMnEYm0Mhs7hqahaSQQdgvAcdlzIPOs4dBk6ZOByIFjLMrK/N7HML7dbtuec/c2nz\nwVvnDgPH1tVw9rFHcfmccQc/uA81tHTPbj0+5YJ1znnQce4wUFoi7rlyduaf2xBKKowYFGXY9jkd\nlzYfXnOuiMVF4o6tizJae9BxafOejnNF7I7LjufJpZs5eeIwPjVle2eNHefS4kHHuSJWV1vFV047\nBoAZY7JbwOCKlw+vOeecy4wHHeecc5nxoOOccy4zHnScc85lxoOOc865zHjQcc45lxkPOs45/L4M\nVQAABt9JREFU5zLjQcc551xmZGYHP6qISNoGvJd3Oz6CEcD2vBuRMb/m4uDXfGQYb2YHrcvhQaef\nkLTIzLLPGJkjv+bi4Nfcv/jwmnPOucx40HHOOZcZDzr9x115NyAHfs3Fwa+5H/E5Heecc5nxno5z\nzrnMeNDphyR9Q5JJGpF3W9Im6TZJqyS9IelRSUPyblMaJM2X9KakNZJuyLs9aZM0TtL/Slohabmk\na/NuU1YklUp6XdLjebclDR50+hlJ44BzgLV5tyUjC4CZZnYcsBq4Mef29DlJpcCPgM8C04HLJU3P\nt1WpawO+YWbTgVOArxfBNceuBVbm3Yi0eNDpf74PXA8UxWSdmT1jZm3h6e+AsXm2JyVzgDVm9o6Z\n7QV+BlyYc5tSZWabzOy1sN1I9Eu4Pt9WpU/SWOB84J6825IWDzr9iKQLgQ1mtiTvtuTkK8CTeTci\nBfXAusTz9RTBL+CYpAnAJ4CX821JJu4g+tLYkXdD0lKWdwPchyPpWWB0Ly99E7iJaGitXznQNZvZ\nY+GYbxINyTyYZdtcuiQNAh4BrjOzhrzbkyZJFwBbzez3kubl3Z60eNA5wpjZ2b3tlzQLOAZYIgmi\nYabXJM0xs80ZNrHP7e+aY5K+DFwAnGX98x6ADcC4xPOxYV+/JqmcKOA8aGb/lXd7MjAX+Jyk84BK\noEbSA2b2pzm3q0/5fTr9lKQ/ALPN7EhLGvihSJoP3A6cbmbb8m5PGiSVES2SOIso2LwK/ImZLc+1\nYSlS9M3pp8D7ZnZd3u3JWujp/K2ZXZB3W/qaz+m4I90PgcHAAkmLJd2Zd4P6Wlgo8VfA00QT6g/3\n54ATzAW+BJwZ/l4Xhx6AO8J5T8c551xmvKfjnHMuMx50nHPOZcaDjnPOucx40HHOOZcZDzrOOecy\n40HH9WuShieW3G6WtCHx/LcpfN68rLIDK/KcpJosPu9gDnbtkkZKeirLNrnDj2ckcP2ame0AjgeQ\n9G1gj5n9c66N6jvnAUuOlPQwZrZN0iZJc83spbzb4/LhPR1XtCTtCX/Ok/S8pMckvSPpFklXSHpF\n0lJJk8JxIyU9IunV8Jj7IT7rW+E9yyTdFe64R9JJoRbQ4lAbaFnYPyN8/uLw+pReTnsFEOeeGyjp\nCUlLwmdcGvafGK7t95KellQX9k+W9Gw4/jVJk0LP6bbw/qWJc8yT9GtJv1BUu+jBRPvnh32vAV9M\nXO/piR7l65IGh5d+GdrtipWZ+cMfRfEAvk2UWiR+vif8OQ/YBdQBFUSpZv4hvHYtcEfYfgg4LWwf\nDazs5TPmAY/3sn9YYvvfgT8K28uAU8P2LcCysP0vwBVhewBQ1cs53wMGh+0/Bu5OvFYLlAO/BUaG\nfZcC94Xtl4EvhO1KoDqcYwFQChxFVJOpLlzTbqKcbyXAQuC08L51wBRAwMPxtQP/DcwN24OAsrBd\nDyzN+9+CP/J7eE/HucirFtVwaQXeBp4J+5cCE8L22cAPJS0GfkWUkHHQIZ7/DEkvS1oKnAnMUFTl\ndLCZLQzHPJQ4fiFwk6S/A8abWXMv5xxmUa2ZuJ2fkXSrpE+Z2W5gKjCTkCII+HtgbOh11JvZowBm\n1mJmTUSB5D/MrN3MtgDPAyeF879iZuvNrANYHH4m04B3zewtMzPggUTbXgJul3QNMMS6ah5tBcYc\n4s/M9UMedJyLtCa2OxLPO+ia+ywBTjGz48Oj3sz2HOzEkiqBHwMXmdks4G6iXsJ+mdlDwOeAZuB/\nJJ3Zy2FtkkrC8auBE4iCz3ckfYuo97E80d5ZZvZRS18kfz7tHGQ+2MxuAb4GVAEvSZoWXqoM1+SK\nlAcd5w7dM8Bfx08kHX+I74sDzPbQM7oIwMx2AY2STg6vX5Y490TgHTP7AdG8zXG9nPdNYGI4fgzQ\nZGYPALcRBaA3gZGSTg3HlEuaEXpH6yV9PuyvkFQNvAhcKqlU0kjg08ArB7iuVcCEeM4LuDzR/klm\nttTMbiXKih0HnY8RDSm6IuVBx7lDdw0wO0zsrwD+cj/HnSVpffwAjiXq3SwjyhT9auLYrwJ3h+Gv\ngURzJwCXAMvC/pnA/b18zhNE8y0As4BXwvE3A9+xqLT1RcCtkpYQDYt9Mhz/JeAaSW8QzfuMBh4F\n3gCWAM8B19sBajGZWQtwFfBEWEiwNfHydWFBwhtAga6KrmeEdrsi5VmmncuRpEHxEJ2kG4A6M7v2\nEN9bB9xvZp9Js419SdILwIVmtjPvtrh8+H06zuXrfEk3Ev1ffA/48qG+0cw2SbpbUo0dAffqhCG7\n2z3gFDfv6TjnnMuMz+k455zLjAcd55xzmfGg45xzLjMedJxzzmXGg45zzrnMeNBxzjmXmf8D2liS\nG9l3gP8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr.plot(labels = ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given the Phase offset of pi/2 between two lightcurves created above, and freq=1 Hz, `time_shift` should be close to 0.25 sec. Small error is due to time resolution." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.26645768025078276" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Modes of Correlation\n", + "\n", + "You can also specify an optional argument on modes of cross-correlation.
\n", + "There are three modes : 1) same 2) valid 3) full \n", + "\n", + "Visit following ink on more details on mode : https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.signal.correlate.html\n", + "\n", + "Default mode is 'same' and it gives output equal to the size of larger lightcurve and is most common in astronomy. You can see mode of your CrossCorrelation by calling mode attribute on the object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'same'" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points in corr and largest lightcurve are same in this mode." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "320" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating CrossCorrelation with full mode now using same data as above." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cr1 = CrossCorrelation(lc1, lc2, mode = 'full') " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAD8CAYAAACPWyg8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmYZVddLvyus88+U9Wpoauq5+50utOZA+GmScI8CUQu\nCH4fSrgqPF4eUEH0+/S7XvHKo1fBR7z4oegVRfGDoDJFhSgkCgmQRDLQCYTMU3cnPdc8nHFP6/tj\n77X3PvusaVdXdw293ufJk6rdtWrvOlVnvev3/n6/90copTAwMDAwMMiDwmo/gIGBgYHB+oMhDwMD\nAwOD3DDkYWBgYGCQG4Y8DAwMDAxyw5CHgYGBgUFuGPIwMDAwMMgNQx4GBgYGBrlhyMPAwMDAIDdW\nhDwIIX9LCJkkhDySuva7hJDjhJAfRv+9KfVvHyKEPEMIeZIQ8sbU9WsIIQ9H//ZJQgiJrpcJIV+K\nrt9HCNmzEs9tYGBgYLA8FFfo+3wWwJ8DuClz/ROU0o+nLxBCLgdwI4ArAGwH8C1CyMWUUh/ApwC8\nF8B9AL4B4AYAtwJ4D4A5SulFhJAbAXwMwDtkDzQ+Pk737Nlzhj+WgYGBwfmFBx54YJpSOqH6uhUh\nD0rpnTmigbcC+CKltAvgMCHkGQDXEkKOABiilN4LAISQmwC8DSF5vBXA70brbwbw54QQQiXeKnv2\n7MHBgweX8dMYGBgYnL8ghDyn83VnO+fxQULIjyJZazS6tgPA0dTXHIuu7Yg+zl7vWUMp9QAsABjL\n3owQ8j5CyEFCyMGpqamV/UkMDAwMDGKcTfL4FIC9AK4GcBLAH5/FewEAKKWfppQeoJQemJhQRl0G\nBgYGBsvEWSMPSulpSqlPKQ0A/DWAa6N/Og5gV+pLd0bXjkcfZ6/3rCGEFAEMA5g5W89uYGBgYCDH\nWSMPQsi21Kc/CYBVYt0C4MaogupCAPsB3E8pPQlgkRByfVRl9S4AX0uteXf08dsB3CHLdxgYGBgY\nnF2sSMKcEPIFAK8GME4IOQbgdwC8mhByNQAK4AiAXwAASumjhJAvA3gMgAfgA1GlFQC8H2HlVhVh\novzW6PpnAHw+Sq7PIqzWMjAwMDBYJZCNeoA/cOAANdVWBgYGBvlACHmAUnpA9XWmw9zAwMDAIDcM\neRgYrDJueegE5lvOaj+GgUEuGPIwMFhFPDvVwK984Qf4bzf/aLUfxcAgFwx5GBisImabYcQx0+iu\n8pMYGOSDIQ8Dg1VEs+sBAAbKK2UzZ2BwbmDIw8BgFbHYicijZMjDYH3BkIeBwSpiLpKtamUr91pK\nKQ5NNVb6kQwMtGDIw8BgFcFyHhU7P3l8/eGTeO0ffxfffmJypR/LwEAJQx4GBquIuahE1/fzN+ue\nXgyT7Lc/cXpFn8nAQAeGPAwMVhEs8uh6vuIr+zFRLwMAnj5tpCuDcw9DHgYGqwgWeXS9IPdazw/X\nTJsyX4NVgCEPA4NVxExj+eThRuThBRvTn85gbcOQh4HBKoJFHs4yyMOJ8iTLWWtgcKYw5GFgsEqg\nlGKu6QJYXs6DyVbLJY8nTi2i7eS/r4EBYMjDwGDV8PDxBTgRAZyJbMW+Rx50XB83/Mld+OAXfpB7\nrYEBYMjDwGDV8G+PnoJVIHj5RePousshDxr9f3nkAQD3HjLTnA2WB0MeBgarhJbjo2ZbGBssLUu2\nYnKV4wXIO9StE5HVRh0GZ3D2YcjDwOAM8bHbnsCXvv987nUdN0DZtlApWmgtI/fgBSEBBDS/7MUi\nD1OoZbBcGDc2A4MzwFzTwae+8ywA4B0v3p1rbcf1US0VsGO0iqlGF23HR7Wkb1PiprrSW46fy+Kk\nE0U6FIY9DJYHE3kYGJwB7olyBsUCyb224/qoFC3smxgEpcCh6Xyd4ukqK2btrn9vJlvlWmZgEMOQ\nh4HBGeDZyXDD3zZSyb2244bRwr7NA+H3mmrmWp9OlM/lHGPLZCtDHgbLhSEPA4MzwKHpcMNfjrFh\nxw1QsQvYPlIFAJxe6ORa76XueTLn2pg8jGxlsEwY8jAwADC11MVTp5dyr3t+tgUAOLHQwcEjs7nW\ndrww8qiXi6jYBZxezEcArh+gFuVITs63893byFYGZwhDHgYGAN7xV/fgDZ+4M3fuIP31b//Le3Kt\n7bgBykULhBBsrlcwuZTP4NDxA2wZqqBkFXAyJ/Gw0uDAsIfBMmHIw+C8R8vxYvnpn39wPNfaM/GV\n6ro+Knb4FtxcL2NyKX/kUS4WsHW4gpPzy5WtDAyWB0MeBuc92FAlAPjHB4/lWpvtr2Cbsg7ablJe\nO1EvYypn5OH5FEWLYOtwBady5zyMbGVwZjDkYXDeY6EdmhMOV+3cszG6no+X7B2LP89DAJ1U5FEu\nFnJ7VDl+ANsqYPtwBScW8uY8EpK751ljUWKQHytCHoSQvyWETBJCHkld20QI+SYh5Ono/6Opf/sQ\nIeQZQsiThJA3pq5fQwh5OPq3TxJCSHS9TAj5UnT9PkLInpV4bgMDAJiPyly3DJVze0x13QCXbqvj\nL37mPwEAGjlyJh03QDWKPIpWIXfFlhuRx9bhKk4vdhDkaBdPR0w/PDqf674GBsDKRR6fBXBD5tpv\nAridUrofwO3R5yCEXA7gRgBXRGv+ghDCWmM/BeC9APZH/7Hv+R4Ac5TSiwB8AsDHVui5DQziyGPL\nUCW3zUfXC1CxLQyWQ7MG3YQ7pRQdz0e5GP7p2xaBm9MrpO0GKFkFbBuuwPUpppv6UU/T8VAqFmAV\nCJY6bq77GhgAK0QelNI7AWTrFN8K4HPRx58D8LbU9S9SSruU0sMAngFwLSFkG4AhSum9NHRruymz\nhn2vmwG8jkUlBgZnCkYem+uVXDkLP6BwoqT1QEQeupGHF1BQGspVAFAsFOL5HDpodj08dmIBl22r\nY6jKiEv/2RfbHoarNuqVIpY6+SrMDAyAs5vz2EIpPRl9fArAlujjHQCOpr7uWHRtR/Rx9nrPGkqp\nB2ABwBgMDFYA862IPIbK6OZwqGWVVuViOvLQ28BZd7gdkYdVILnGyT50dB6uT/Hy/ROx9JVnsNNi\nx8VQpRiRh4k8DPLjnCTMo0jirNd1EELeRwg5SAg5ODU1dbZvZ7BBsNB2MVBKCEA3cc16JcLII9zA\nG129jZgRT8kK34K2RXo6xlVgPSE7R6txxVbb1Y8gFtsu6hUb9bJtIg+DZeFsksfpSIpC9P/J6Ppx\nALtSX7czunY8+jh7vWcNIaQIYBhAX4kIpfTTlNIDlNIDExMTK/ijGKwHPH5yMXevBBBGHsNVO5aQ\ndPMe7OvKdiEmnoZm5OFkIo+iVYgt1nXAqrrGB8uolcJ7tx399YsdD0NGtjI4A5xN8rgFwLujj98N\n4Gup6zdGFVQXIkyM3x9JXIuEkOujfMa7MmvY93o7gDuomWJjkMLTp5fw4396Fz74D/nHqi60XQzX\nSihHJ3jdvAerzCoXrTjnoZswjyUvFnkUCFyfaktm040uSsUChirFRLbKka9ZimUrG4tGtjJYBlZk\nngch5AsAXg1gnBByDMDvAPhDAF8mhLwHwHMAfhoAKKWPEkK+DOAxAB6AD1BK2V/9+xFWblUB3Br9\nBwCfAfB5QsgzCBPzN67EcxtsHNz8QJguu+/wLLqpKiYdLLQdDFeLSeShWa7LZKuKXYBtFVAuFrTJ\ng83isIth3YdVCO8dUMDSKAWZWupiYrAMQgiqpXCtLnnMNh0cmmriugvHULJ8E3kYLAsrQh6U0ncK\n/ul1gq//KICPcq4fBHAl53oHwE+dyTMabGzc/cx0/PHkYhe7NtW01y60XewdH4xzB7llq4ioBstF\n7WorljAvWazPg8TXrYKa+KabDsYHSwCQ5DwcvXv/3b3PRR/RZSXMJxc7eNff3o8/ufFqXLp1KNda\ng40D02FusCEw03AwVAnPQnllmGzOQ1e2Yl/H1g3kIA8mW9kRabD/61ZcdV0/ltmSnIfec/vRPX7h\nlftQr9hodL1cs8wffH4eT5xawg1/chc+c/dh7XUGGwuGPAw2BBpdDztGw2hjsZ1PhllouxipnUHC\nPEUe2jkPFnmk+jwAaPd6uH4QV2olOQ/9tcUCwZ7xAdQrRQQUaOYo801PTfz9f31Me53BxoIhD4N1\nDz+gIXlE0/zyRB4d10fXCzBUtWP5ieUyVGAnfTZ3fLBs5Y48GAEUc0Yerk/jaIWRl27Ow/GCmLTq\nFRsAcklXndTrs29iQHudwcaCIQ+DdY9mpPWziXyLbf2NkEUKg9FAJkA/Yd6KNutaKcl55G0S7I88\ndMkj9LUCgEKBoGpb2jkPx0+TRyh55UmaM0feS7bUcxUmGGwsGPIwWDNoOR7e89nv49mpRq51jU4v\neeTZCNlpvWpbceK5pSnhdBxWbRWuyyVbxTmP3sjDzSFbsR4RIIx+ckUeVpY88kVrADA6YKOlSVgG\nGw8rUm1lYHCmcLwAV//Pb8LxA7QcH1943/Xaa5lUtG04v2yVlp6GqvkknDTxAGHksZS32iqOPPLL\nVowA2DPoNgmmZSv2M+fJEzHy2DRQwqGppvY6g40FE3kYrAk8P9uMk8h5T7Nssx+u2hgsF2OjQx2k\nCWA42kh117dj2So8g+WJPLp9kUf4f1+zyzyUrZLEdcUu6Dc3pmSr5VSosWffNFDSjtIMNh4MeRis\nCaQrRfPMxAASmapesTE6YGOu6WivZZtfrWRhoGTBKhBt8mBr09VWLcfXmqvBmgTZWrtAeq6r1wcx\n4YTPX9Qm3bRsNZDT0BEIIw9CQrJuOfnKfBnmWw4eOb6Qe53B2oEhD4M1gU4qSZ13pgbb+AbKFsYG\nypjJQR4seqiULBBCMFy1tcmDTQIsRBv/YGSO2NTYxPtzHvkS5mkCACLZKkfOg5FWzQ7JI0+013F9\nVIoWaqWwzDfv7wsAfuov78Gb/+zuZRGPwdqAIQ+DNYF0+edCK1+TXywf2UWMDZQw08hBHk5vxVQe\n8mg7fixZAUnuo6NRrSXOeejKVrRXtipZ2n0e6ZwHKzPOY+fecQNU7EL8mi1Hunp6MiyKyOPHZbC2\nYMjDYE2A6fU7R6tY6nrxyVwHSfRQwNhgCTM5JurFCfNo4x/KQR4tx4/XAcjVJ5LtMM/f55GU6gJA\nzbbi6i/lvVM5j1KxgGKBxGXHOjgy00TFtjBQyh+1AEmHOxD6bBmsTxjyMFgTYKf1l+4LZ3zNt/U3\nlU6KAMYGy5hpONpySCtTMTVUKWJRs9SXyVYMZZvZm6iJL7ZkZ7JV1OehU6pLKYUX0B7yqJYstDTn\neWQlr1rJ0o48Hj+5iLuensbJhQ5qTKbLkS8BgIt/+9b44/mcUabB2oEhD4M1ARZ5bBsOezXmmvkr\npiq2hYnBMryAap9oO5ku8YFSES3NhH3b9eN1QL7II2ttEntbaeQ8WFK9lOrzqCyzVBfIl2xPR2Wj\ntdCYMU/00PV8E3lsEBjyMFgTSMgj7NXIs6m0XR+2RWBbBVwwFvpbPTfb0lrbyshWtRzNdi3HixPO\nAOIoRCfyCG3jCwhH14RjaIFeSUeEeIRtKudRtS3tUt1QtkpIr1aytPMWQSqi2zQQksdcS/93lW3g\nzLPWYG3BkIfBmkAnOonvjMwNpxr58hasy/uCsdBr6bkZvea1puOFun8k41RySDhtN0BluZGHm1Q8\nAYl8pSNbsa9hUheQkJ6OXNdXqZXjZ2YR02d//sUYi8gjT3UbI4/f/s+XAUCusmqDtQVDHgZrAt3o\n1Lw3Mto7PtfWXttx/bjyZ9emKggBnpvRizzmmg42RfILECaedSOPjuOjaqelI31vrK4XxJbqQCJB\n6ZS9ZkfYAiEB+AHVmr/e7ZOt9CMPlugfHyxjNCKP2RzVbayhc2sUYeZx8zVYWzDkYbAmwCSXscES\nhqs2js/rbf5AlHuINuJy0UK5WNDeDOdabrwJAvlO8C3X6ynVzZfz8HsiD+YxpdMgGec8UrJVPItE\nI+/hZO5dLRW1q62cVK7GtgqoV4rLkq3GB8sgJF+JsMHagiEPgxVHx/W1tPveNQEICS3Kd45WcSxH\n5NFKyVYAYBcK2gaDcy0Hmwbs+PNKyQKlenmLthP03DeOPDSih64XZMiDeUypCwW8TKUWkJCHTuSR\nLtUFomgrR3c6kERK44PlXBIjizzqlSJqtn7EY7D2YMjDYEXx5KklXPrh2/ArX/xBrnWsa5kQgn0T\ng3j85KJ2uW0nU/VkF3OQR9OJq4aAcCMF9JrXOm6mzyNuEtTNeSRrB0oWCkTPEdjlkAfbzHV+bl6p\nru4m3s2Qx9ahCk4tdLTWAojLoIcqNmrlItqa5cVp5G0iNTg7MORhsKJ445/cCQD4+o9O5lrXdHwM\nRH0D1+3dhNOLXRye1kt6tzPNesUC0bb5mG05cdUQkJgcqkpXKaVop3ItAHJNIux6ftwXAgCEENQr\ntpajr+OFP1uaPHQT7p4fIKC9Zb55EuaOx/y8wp9720gFJ+f1o8TEh6yYi7QYHjo6jxf+3r/jX390\nItc6g5WHIQ+DFUMeN9ssJhc7mKiHSdRLttQBAEc1patsp7dtFbTkmyCg4Qjaaq9sBai1eMcP4Ae0\nJ+Kp5Ik8MrIVEG6oOpEHy6mUiknOQ5c8suNvgZwJ88z6bcMVnF7qasuUpxbaKBcLGKrYqC5Dtvre\nszMAgL++81CudQYrD0MeBisG3fJYHk4vdbBlqAwg2YR1LUqajhe7wwJh/4NO5OH4AShFT7mtrmzF\nEtMVmxN56FZbZabw1Su2ljV6I55+mJAeIw8WlYiQNWQEwoR529VzA86Oz902XIUfUExr5j2em2lh\n16YaCgWSq7Od4QfPz4XPoRlZGpw9GPIwWDFkZSZPM+8AAKcWutg6FEYeifyjt7E0u36GPPRyHmyT\nL2ca5gC12V8yy6M34rEKpMfkUXxvnxt56FijsOhkqJr8zCwKUUYeXn/kMRD9DDrPnfXkYlViunNM\nnp9tYfemsJcnT2c7AEwtdXHHE5MAgAXTXLjqMORhsGLI9lbo1vC7foCZZhdbYvKISl41XWKbXS+2\nQwdCe3OduRjdWL9P+1PpSU9s00vLZUB4IteJmJxMnwcA1DWHSSUVS/2Rh4o8YluUTMIc0POoYnIb\n64zPk+cBgOPzbewcDS1oqjlzHs/NNOEFFJdsqWPOJM1XHYY8DFYMRzKRh65dxlLHA6XAaC3cDMs5\nSl79gCWuM7KVhrV51l+KrQXUHlNpP600bItoEld/zkM3YmIjY9mpn60F1KW6vJxHNXrtdCSkbINh\n0tui97ta6nhxdVvehDnLqV0wVkPb9bX/vgzODgx5GKwYDs80cd2Fm/A/3hRaT+huDOwUzwggj2zF\nBi8NLke28voJgG3CKvJhfSBpV10g3JR1791HHsWCVq5mqeOCEGCw1E8eKuLiyVaxVKdRNuv4vaSX\n5HnUvyvWw8LG/Q6Ui9rz4oGEPPaMhy4EN91zRHutwcrDkIfBioBSimcnG9i3eRC7NoWyhG4ylJ0g\nWeVSntNsK54imGykxYLe6b/j8iIPdoKXr88Oc0qv1823ZBPmdoFoVYktdjwMlorxBEMgSWC7itcs\nm/AGktddh+yzPSKxzKfxu1rIkMe+iUHMtVxMLekl29l6Vlr9B994QmudwdmBIQ+DFcHpxS4WOx4u\n3VpPZBBtd9peZ9tSjqolVnk0kMp56J/+I/LoiTyixLNiM4zJw+KRh6ZsZfev1Ys8vB7JCgDsKGG+\nHNkqrjBblmylH3nMZ8jjiu1DAIBHT+jNMmfk8aYrt/V8H4PVwVknD0LIEULIw4SQHxJCDkbXNhFC\nvkkIeTr6/2jq6z9ECHmGEPIkIeSNqevXRN/nGULIJwnL2BmsOB45voB7D83kWvP05BIAYP/memoc\naz7yYPKJVSCwLaInWzHyKPVGHjqbMNvweJGHSrbilbyGn6ujhyAyMMzKVkWLaJFeo+tiMEMeJd0+\nD65sxRojdavElmfJwjb/kSi3xezzT8zrdagvtF0MlovYPVbD267e3lNtZnDuca4ij9dQSq+mlB6I\nPv9NALdTSvcDuD36HISQywHcCOAKADcA+AtCCPtL/RSA9wLYH/13wzl69vMKjhfgzX92N2789L3a\ncgKAeG74lqFyTB66OY9kjGyvvbnOhsRyHrVyb94iV+SR2kjZOFhd2aqfPApq6cjvLxFma3Vkq44b\n9FV5JX0e+ckjnmOuQfaNbm/Uk0dizMpWbK2ulcxC243XDlftuHDAYHWwWrLVWwF8Lvr4cwDelrr+\nRUppl1J6GMAzAK4lhGwDMEQpvZeGhkc3pdYYrCAOPjcbf/zij35Lex3bxAfKRVRL4Z+VrmzVzkQe\nQLih60QebO1AafkJ8/Qmrp074Ezz0713l5NrYd9LK2Ly/D7iSbyt5Ou7nJxHbKqoQQBLHa8n6kkq\n49S/qyx5xBKhJnkstl0Mpcmj42o1NhqcHZwL8qAAvkUIeYAQ8r7o2hZKKTM/OgVgS/TxDgBHU2uP\nRdd2RB9nrxusMO4/PKv+Ig7SBMCql+54/HSutdVMt7ZOzqOdSbYDYfTgaWwqSc4jv2zlcjbhcL06\nWR+TVibnESb6dWeB9JMWoN6IXb+fuPJUt4WRR5JrYCSm40LMGvsYAeSZYQKwyKMYfw9KgSXN5sTw\nPj7+7t7n8LzmrBcDOc4FebycUno1gB8H8AFCyCvT/xhFEityfCCEvI8QcpAQcnBqamolvuV5h0dP\nLOKizYPYXC/Hncc6YA1mtVIx1tC/+sMTWp5HLQ4BlG092SqbbAf0pCOAHwEU49OwouQ1HsjUm3rT\nkZ4SuaxfevICqnQTzk4hDNcuv8OcPYd25FFOy1b5Io+KXYgPF3ZB3wmYrWdRCyMgHQt7hs/f8xx+\n+6uP4C/vfFZ7jYEYZ508KKXHo/9PAvhnANcCOB1JUYj+Pxl9+XEAu1LLd0bXjkcfZ69n7/VpSukB\nSumBiYmJlf5Rzgs8P9PCnrEBvPPa3Wi5vrbFSMvxUC6G9hzpjVxnuFHHSYiHQVe2ypb5AtHpXyvy\n6Jet2Iam2khFOY9QelKRR3+inq0Nv7eauHjEw/5NtTZ9r/THOmS91HExVOGQh07kkdr8AaBQINrR\nVnY9azTMM+v+4JHQF+ueZ2e0rW8MxDir5EEIGSCE1NnHAN4A4BEAtwB4d/Rl7wbwtejjWwDcSAgp\nE0IuRJgYvz+SuBYJIddHVVbvSq0xWCFQSmPvodFaKAvoOuWmzQnTm6IOefCih5A8dAYyCSKPXKW6\nyfOyDU232oqf85Bv/rz+EiCUrQAdixFOg2Gcq9FsEuTMAlERgOMF6HpBT+RBCNH+Xc233L7y2lJR\nz84F6CWPzfXQRHMyR1HHw8fDkuDD00184ptPa68z4ONsRx5bANxNCHkIwP0Avk4pvQ3AHwJ4PSHk\naQA/Fn0OSumjAL4M4DEAtwH4AKWUHRHeD+BvECbRnwVw61l+9vMOU0tdtF0fF4zV4tGsuh5CLSeZ\nbVEoEFx34SYA0Oogbrs+SlHUwlAuWvlyHj3zPPQSzx1OqS7ASmZV1VZsFCwv56EpWwkqplTP3nX7\ncx5WgcDSOMXzSE+3NDp2882UCZeLBa2y7ND+vtRzTbcvpuP66LhBTB7MB21ySa/M1/ECnFhoxxY4\n33t2WmudgRhntVCaUnoIwAs512cAvE6w5qMAPsq5fhDAlSv9jAYJHju5CAC4eEs9ljfmNd1LW12/\np+LpA6+5CPcdvh8NDZfYtuP1lZ6W7YKWSWDbCU/h6W5ru6jXqd12fVgFwm300y155ZXqqnMefNKy\nLb1GP56dO1u/nHke4bNYyp+5EQ9y6o0ewvyUHnnsHK31XCtpRi1Za5PxwRIICZtTdXBqoQNKgQ+9\n6TJ858lJPPDcnNY6AzFMh7lBjEdPhORx+fahWJrQdcZtOl5PrwXrBdAZbpSdyAfkkK0yI2iBMG+h\nk6tpOT5qtoVsv2nJKqirrfwgPu1n12pHHiLpaRmyFVuvm6zPEqbOJs5mjaRlKwDaczmWOl5fY5/O\n6wUk8ilLlBetAsYHy5hc1Is8js2HFVY7R6rYNzGIyaWu9phjAz4MeRjEeH6mhYl6GcNVO44EdP2p\nWk5v5BGTh2bOoy/y0GwSzI6gBcKGwYCqZ0y0Hb+nMZGhaBFl7sD1gzhSyLuWN0cE0JOtKKVcR97w\n+6k3YuZNlSVMnQIFJlsNVbLkUdQ6ZPAOCbo5j2yPCACMVG3tnBzrYt82UsVAuQhK9ZtYGSaXOvjd\nWx7FaU3C2ugw5GEQo+Ek3cPsNK9rMdLsej0RAJtyp5Pz6HCiB91qqxZnLZNGjinG2PI2M0Av4e74\nQZ9kpbtW2OehIVu5PgWl/fmS+N4aCfOsZAWEr7eubJXNeYTW6hpVda6PSh9h6lVb8cijYlvaf59M\n9hqt2XFhh+4AK4bf/udH8NnvHcHv3vJornUbFYY8DGI0Oh7q0RurqjmOlaHpJGuBfLIVN/Kw9ZoE\nO5y1u6JhQ0dn5c1gvPsCkZSiKPXNussy5OvzyEhHGrKVKF+ie2/H97nkoSNbLXX7h1ABenM5KKXo\nuD63uXH55FHQak4E0pMfi/HgMJ1KQIappS6+FTW93vboKeXf1vkAQx4bGDONrnYNPRCexAay5KEZ\n2jc6vXPE8/hb8fIW2rKVyyGPaMzp0Tn5G7zt8COPUHpS5zxEm7CyWkpS5gvIZSvR2nC9ulBARHo6\nr3cceXByHi3FFELXpwgo+iIP3YS5KPLQH1XsoVggKBULsbyqMzmR4anTSwgo8OuvvxiU9k/NPB9h\nyGMD4h/uex6/+sUf4JqPfAsf/uoj2usa3aR7uJLTn6rZ9XvkjELULNjSrJjqz3loeltxiGdT1ECm\n0sNbjtfTmMigcxp2fSqQrfTLZctW73PryFaiqCV+bo0qMZFspXq9F+Nqq97XbKBUVA6S4g3eip95\nGQnz8Jkt7cgjXUrO/sbzRB7HIwn0kq11AHpy7EaHIY8Nhtmmg//x1YfxtR+eAAB88zE9fymglzxK\nVgEFopfz6Ho+HD/gn0g11suqrVQVMTziKUR9CyoNv+0GfcQDRBuaSrYSJMyZxYjMsI9VgmWtTbRk\nq+j1FEVqaaigAAAgAElEQVQ9OrkaLnnYGjmPrgfbIn3EVSurIw/R5EWdXAsQksdAyeoh7IpdQEcz\n8kgfFJaT8zg23wYhwP4tEXnkzJdsRBjy2GD45O1PI73fbh+paq9tdBPHVELCyEFHtmLhf9YLq1bW\nW99yOLKVbYFStVUHL/IA9GQYXn8JEG7ijmJTcjx+wpydrGWbGtvgi4VswlxNHuz14Pd5qBvuRLJV\nydLIeXTCeRrZSq2w2kq+mcYNmdzIQ10ym7U2ASLZSjPyaDp+XEoek4dGkp/h+FwbW+qVuMlQp39p\no8OQxwbD1354HG+4fAs++c4XAQibqXRAKe3JeQDhG+5v7j6sDO+bcedxJpFqF/WqcBwfVbu/axlQ\nG+7xIg9ArwS0Jch5VDT6FlzOMCcgNQ9csp5tltnIJR6sJNkQE+LhRT3qnEd2EiCDTkd/q+v3/H0w\n1EqhfCQzwRT6eWk0ZAK9duwMYcJc3/b/jGSr+RZ2jFaXtXajwpDHBsJCy8Vcy8WL92zCT7xwO669\ncJN2LXvXC+D6tE96AoA7npjkrEiwFCdSezfiqmYVTlhu2y9nsOeSoe36fTo6wE7SCuIRRC2DZUvZ\nt+AKSnXjQgGJjOP6AYoFwj3BA/ITceLmu7wyYWHOw9aoEhNIXmxTluXHEtkqE3lojgzmRR5hzkM/\nYc5eX9aoqNsjAgDH59vYMVJF0SqgaluGPGDIY0PhyEwTQDLec6hix0lOFeLogUMeI4pZ0elBUGno\nlHC6PoUf0L7Ete6EOlHFlI6G33UDLvEMlIpKPdz1+AnzeKSrJIHsBfy1bA67LOrxBJ5a7JpOzoMX\nMZWsgnIOuUjySsbYin9mUcK8XinGs81l4MtWBXQ0TRXDJlYrft56uYhJTWsTP6A4Od/BjqgEfLBS\nNAlzGPLYUGDkceH4AICwE1h33gHLW/DIQyeRyltbKxWV5ME2yuymEk+ok2xorh/AC6g4byHZSCkN\n54jzNsOBclF5shSewstq2crxgriyqmetrbaEkctWmk2CvFJdW53zcASd7bFUJ4m24sgjs37HSBWz\nTUcpb3LJo2jBD6hW5JKtrNs6XMHJBXkTKcPtj5+GF1DsjMijXi5q9S+l8ed3PI1vPymP4NcbDHls\nIByZboGQpM9hqGprn5BYA1g6erjxxeFoFVVFi6z+v63YFJLmrf5qK0AeefCmCMbrFU2GIoNAIPw5\nml1PWunlChLmNY3+GC/gb+DxLHHJa+ZKZCutaitZzkODPGTRlkxuEyXM2YZ8XOEGIEqYp7+3CEFA\nMbXUxXAtWb91uIJTC3o2I//04HEMVYp48wu2AwDqVRtzmoahQHi4+vi/P4Wf//++n6vvaq3DkMcG\nwnMzTWwbqsRvqu0jFSx2PNx7aEa5lkUe6Rr+97/6IgDqEaNNgVV3raTOHbATZz95qHX0eJYHhzxU\nkYfIUh1IvLFkm2nYJMiJHmIJRxI9CCSvUrGAklVQRB5Rsr3Az3noDIMSlfkqnYRVOQ/Jc4tKdZmV\njKyhs+v12rEzsOj0KweP8ZbFeHaqgcWOh6t3jsTXtg1XcHxejzwOTzdx3d6x+P57xwdwaKqptRYA\nHkw5+LKZIhsBhjzWKD55+9N405/ehSPT+n+kR2aauGBsIP78567fA0KA7z2jnl3Q4EQe7I2uOtkx\niac/51FUNgkycsjKViypKZPdeIOgGFSdy6JhToBeNY4wYR5XW0nWBnzZiq2XvWZJ5NG/vlTUa1Dk\nd5iHxCPrTxF11bNcjYz04pxHpsSYVQPONsW/58V2+HqkIwcAYK/An94uH+zENuwX7U7IY9/EIKYb\nXeXIAT+gODzTjKVgANi/ZRAnFzraUf2n7zwUf/wP9z2vtWY9wJDHGsX/+82n8NjJRbz649/BI5qn\nldOLXWwbrsSfV0sWRmslzGiM6mxwch5lTVkgJo9M0rteCd1WZSWcjACykcdwVd0lzhsEFT+7QoaR\nkUdiXyGpehImj9WncNen3LXhveVFBqLxt+yaqmei6/UPkgJSc8wl5CP6mVmZtUxuE1VbDWo07ImK\nOf7Pa8LJ1C+7aEy4FgBORvJUepbIpduGAABPnFqSrp1a6sLxglgKBoBLokZB1Vq2/u5npvF//9jF\neMsLt+PmB47hmMI2Z73AkMcaRFY+ePOf3a1cQynFdKOL8Wg8J8OmgZLWnGde3kI38gjLIK2+2Ras\nLl92QuONoAWAkeiUqUMePFt1lQwjGuYEpDuQJUlvn3LzDjp9Hp4vjjxqZXmRgUq2UtmTiPpidHJM\nonxJHHlIE+b8Po8BjSivKZA2a6Uirtg+pOxPObXQCccMpNZfvGUQAPD0ZEO6lr13JlL9UlfvCiOY\nBzUGSv37Y6cAAK+7bDN+5bWhDHzX0xtjiqEhjzWI/+tLPwAA/NeXXRhfk53egfDN1/WCvqbATQN6\nkQcvb5FYlKirrXjNY0wjZrIDD6KkN1s7LxmDG0ctgs1Q1ufh+GKbj5qO9CSo1Kpq9DyIJC8gjDxk\niWeRtQkQkkdXUWHW8QR9MRpNmaIGw6Q8WUIeglLdcrGAYoFIySOJTvv/xiq2pSzoOLnQ6YnIAWBz\nvQKrQHBKUXHFEuOjteR9NTZYxu5NNfxIQxH45weP49KtdVyxfQgXbR7EtuEK7nxqSrluPcCQxxrE\nQ0fDP8r/ct1u/PFPhVN8D0/LT0jTjfCPfHywN/IYGyjh/sOzyr4FFtqnN2JCiNbMhEbX55b4sqFB\n0uhBEHnYVgGD5aIWeXAT5srIQ5wwZxucbL3QVddSn+Bdn8ZWJLx768hWWWuT8N5hzkNUJeb4ASjt\n38CBVOShqFCTSXWyXE0nHoDVu54QgoGyvK+G5VIGyv3PrWPLfmqxja0Z8rAKBBODZZxakPd6sMhj\n00DvoWzbcAVTGn0iJxc6uGL7MAgJm0JfsX8c//HM9IaYYmjIYw2CEOBtV2/HRZsHccWOUJt95Pii\ndM10I/xDzpIHwz8+KK5I8fwAXzl4FBeM1XpmgQPhRqNy1m2mDBXTYLLVokS2Ss9ZyGK4amO+LY6a\n5DkPBXn4YnfakoaEI5okSAhRNuuFUQtftgot3WXPLSY92yqA0rAJkYeOw887AEl+S11hJu6qVyXM\nS5lZ8wyDir4aRkq8vxGdLvNTCx1sHar0Xd8yXFFOBYwjjwx5jNfLmGqoyWO+5cQSLABcuWMYix1P\ne/b6WoYhjzUGP6A4tdCJDQ33TQyiVCzg0RPyEHkm+kMey8hWv/pj+wHIq5YWOx6Wuh5+5rrdff9W\nKapPduEsj/4NKZGt8uc8gJB8pNVWgkot4MwS5ipfrSCgQkt2IPSYkhGA51Nu5ACEJ2KZRCmTrVTT\nHxPpSBwxqfJEPNJi9vuyhHnXDfoaBBkGdSMPrmwl97dyvADTDacv8gCArUNlnFKQB4s8si4LE4Nl\nTC/JCcDxAjQdv2ft3vEw13JoSq4krAcY8lhjeGayAS+gMXnYVgH7JgbxrKKufKrBEnu9kcclW+oo\nFohUCmEbNC9qqZTUmnJDEXnIZKtOnPTmyUfycltRpRZwZglzVfLYDcRrAebXJCYAxw+4yXYglKNk\na2WyVUXRoBi/1hxH3rijX5YnEuQ82HrZ7yqcIth/XyCUo6SRB0uY82QrxUwPFllkcx4AsGmgLJVF\nAWCmEUYOWZlxol7GUteTEhf7u09HHnsnwpLfQzlK8NcqDHmcRfw/X3ko1zwNAPi7e59D1bbwhiu2\nxNcm6uVYlhJheqkLQvq1WUJI2KwneXMyWWmo0u9hpePz1HT45KHTL7HYdlEuFrgW4+WivEtc2mF+\nBgnzWMIR3DuxRRcTgKzkNeww58tWtkXgBermRp5kpjIoZJus6PUCxIQZBBReQMXkofhddVyfG/EA\nzA5G/LtKLP85spUtjzBZZLGFI1vVK8W4v0mE04sdbKn3r2WFKVOS6GMhklzTbsBbhyqo2pZ2k6Ef\nUPzdvc/hv9/8I7z3poOYVERK5xKGPM4CFtoufvqv7sHNDxzDe286mGvtU6eXcMX2IWxO/cGOD5aU\nIfJ0o4vRWombiB1UvDlZNVTW8hoIT01zitNZdgQtQ1WjT4RnO8FQLlrS6qHYF4tDPCWrgIBCKB/J\nEubxRipY60qilvB7ysfYup5Ytipa8jG2IkdeQD36N5H5xH0eoo3YkfSXsPWqCYi83xMQkoJM8mo5\nHgjhP3fFlhs6zggKSYDwfdFxA2l+6vRiB5uH+teOaEyrTCKP5EBXKBBcOD6AQ4oCGIa/uesQfvur\nj+BLB4/im4+dxq2PnNJady5gyOMs4H/92xO4//Bs/Pl3c5TmHZ5uYk+qmxWI9NWGI63QmG50hbM7\nVNUsceRR5Tjq1kpYUHThpodIpVGKyjBlCff5ltsT1qcRnmblvQMVm5+EZSdk0YYm87aKE+aCe6s2\nUpXNuBvIZCsiTHgD8jJfVZmwTLaqKXy1ZONvAdbRr/pd8cmjaBEpYTa7Pmq2xSVMValuRxKdMise\n2WCn04tdbrKdRemyYhCWFN9U631f7p0YwDOK/hKG2x49hfHBEr76gZdh+3ClZ19ZbRjyWGE4XoB/\nevA4royqpADgywePaq1d6riYXOr2WCEA4anJ8QOpvfp0wxFWWtXK8klvLOfBk61GFZGH6wfoegEG\nOZICgCiRKt5IpZGHbUnzFi1BwxugLj11JJuhSsJJ8iUi6Uk+xtb1A9gcwgMi8lB4conuy6qRVDkP\nXu6BSYwit1hXQraAjmzFd+QF1D5kix0Xdc7fJhASIbP1599XXFShklX9gGKq0eVKXjr2OQePzKFc\nLODirYM916+7cBOOzbXx0NF54VogTNY/fGwBP31gF67eNYLr9o7hvsOza6bM15DHCmJqqYuf+PO7\n0XJ8fPC1+/HUR34cmwZKWqNYAcSnihftGum5zipFnj4ttkOYbnQxJiCPwbJmzoMnW1VtLHZc4Zuz\nKfC1YqiULLQlsy3m225sRZIFm2MuQtsVk0dJYbchS5irejVUG2mxIJetPEmlVlGHeESRh0K26khK\nm1VzvePqNJFUV5QTgKg5EVBHHrIDhsoFIYm2+p+bRR4iwmx0PPgB7SvTBfQaYH90bB4v3DnSl8/7\niat3AADuelquSPzVnc+CAvjJF4Vff+2FmzDd6OJJyT5wLrGuyIMQcgMh5ElCyDOEkN88l/c+OtvC\n5+85ImX9f3/sFJ44tYQdI1W8cv8ESsUCDlwwijufmpKeJhnuenoaFbuAa/aM9lx/zaWbUS8Xpb0a\nMw1HLFuVilLriMW2hwLpn0EOhLIVpWJtt8HpTE9DNQd9UZrzkEshbdfnWpOwtYAs8hAnzAkh0nvH\nkpdkI5XJVmHlkUS2UvSILF+24jvbAmpzQ1lpM6COPMLBW6LSZvnrJScPVXmyuLdlsBzNIxcQZsPh\nT8gE9CoJZ5sON18yXLWxc7SKp06Lpaub7jmCv/ruIewZq2F/5KX1uss2Y6Bk4f1//6BULjtXWDfk\nQQixAPxvAD8O4HIA7ySEXH4u7v2PDxzDK/7o2/jw1x7Fg8+LQ83HTixisFzEXb/xmviNvGO0Ci+g\n+LM7nlHe586np3D93rG+k8pguYiLt9ZxZJpvqNZxfTS6nlC2Ug03WuyE86F5mvLoQPgmEc0vEA2C\nYqgqmgznW448YS6rthJMEQTSOQ8FASxjM2TXRQQgMyiklApLm4HoFC6NPCi3xwNQzwORSTjlooWS\nVRCewlWvV0lV3CDJeajIgze/PHnuKPIQRHpS2YrlPAQVV7KoerBURIHIcx7zEtK7ZEsdT0kiCCZ1\n/5frLoivba5X8DtvuQKHppq4ew34Y60b8gBwLYBnKKWHKKUOgC8CeOvZutlTp5fwGzc/hD2/+XX8\n+lceiq//y0MnuNEHpRTfPzKLq3YM9yRw3/fKvQCAv7/veal0dGyuhUNTTbxi/wT333eMVHFC4MPD\nygWzPR4MIzVbekJabLvcfAcA1NnpTLCpqGSraslCW7AJs/nloqhF1TsgMvkD1F3isnke4Xpx9VCS\nPBZthkS61vWp8PWyFdVWSx0vPjFnUdOsthK9ZgMSeVMm8wHq4oa5ltNXRs5gW0Ta23JGkYcbOgFk\nTTsBtWwV/21z8nmFAkG9Im5iDQLa112exu6xmnQAVqPj4RX7x/HzL93Tc/1tL9qBUrGgZcp4trGe\nyGMHgHTm+Vh0bUWx1HHx4o9+C2/4xJ34MmfIzGe/dwR/+x9H+q4/fHwBT51u4C0v3N5zfdtwFTf/\n4ksw3ejin35wXHhfdpJ45f5x7r9vH6ni5HyHO28htiap89+cE/UyGl1PaPS32PG4lVZAqiJFFNrH\nVu78DalqW+gINrOuF3otyZLeshkTstOsKundVSS9ZZGHLNkefk+xxQjbkOoCwrQK8j6PxY4be4Zl\noS9bichDHKGqIw9xzsPzAyy03Z6S1TRsqyD9mc805yH6eeuKIoG4v0RA9EPVoljOdTwEFBgR5PNY\nkyFP0p1udHFkpoXr9471VRKWigW8aNcI7ubM6Dkx38Zv/fPDeO9NB/GHtz7Bve9Kgv+qrFMQQt4H\n4H0AsHt3v9WGDvyA4rWXbEatbOGSLXVsGijhRbtHMVEv4yf/4j/wg+fn8cnbn8ZPHdjZc1pnTpk3\nXLm173tec8EoRms2PvzVR/Cfr9rGPYE9dbqBWsnCRZsH+/4NCKcCOn6A6Wa3pwcESEwRxwb4kQeL\nSKaWurhgrP9XLos8BnVPZ5LIQ9RIlZgiinsHgHDjqhT6N4CO62Nznf8zx7KVpGKqZBW4Uh3Aoh4R\n6YnzJYBctlLJfLaiVHex7fbMluh5ZibhCEhPZIvOIPOYiglTGnnw77vQdkEpsElwCi9GrxeltO/3\n4foBWo4vrcgDZIcEMXkMKg9GfCt4huGqLayAXIgqFLMDrBjYe3hqqYvdY72/z28/Ec46f9XFfBXi\n9ZdvwUe+/ji+fPAofvrALgQBxe/962P45mOncXw+jGZqV/OfeSWxniKP4wB2pT7fGV2LQSn9NKX0\nAKX0wMQE/4VXYaRWwsfe/gL8zluuwI3X7sYbrtiKiWiD+qdfeilu+eWXYaHt4r2fOxif+FuOhy9+\n/yiu3DHEJQZCSFzu90t/9wD3vpNLHWwZqgg3M/Z9eXYKSeQhII96Qh48hKdZ/h85uy6aySEaBMUg\ny3m0JDX4gDrp3ZLkPJRNbxKrDbZeFbXIZCuRhs9IWES2xcjcUFTdttTxhBspIUSacO94PsoCc0Ig\nIg9RzkOZMBfLfCJzQQbWbc8jzVZ8+ue/1qxnRRR5tB1xZ3vVtlAgYkm25ciJfqgiloP/PpoYmPXE\nYmDvycml/o7xWx46gR0jVVy+bajv3wDgZ6+/AFuHKrj5gVAZeW62hc9+7wiOz7fx5hdsw7d+7VX4\n0xtfxF27klhP5PF9APsJIRcSQkoAbgRwy7l8AEIIXrBzBIPlIu47PItf/3KYC7n/8CyOzbXxy6/Z\nL1z7v97+QlyypY77Ds9y67snF7vxHxQPw5LqjtgUUfDmZKecSRF5tMWylaoWXivnIdLgY0t1/lrV\njIm26yuJRxh5+L6CPMT5FvY8MtlKtJHGspXg9WLavIh8FiRRIiBPuHcc8SkcYPmpM6m24q9lfUKj\nAtmKuSLwfuauL054h9flB4yOK+5sJ4RIoy3V3/aQJOdx8wOhwi5SEljEnHXX9QOK+w7N4oYrtwpJ\nvmJbeOMVW/DI8QXc/vhp3P54YoH0i6/aJ7znSmPdkAel1APwywD+DcDjAL5MKX10NZ6FbfLffWoK\nh6ebePxkWDVx7YWbhGuu2jmMv3n3AQDAW//3f/RVS0wudYQSDJBop/zIw0G9UhS+wWRRCyCPPAYV\nXbgtyawFICz/Fb05ZX0HgDpvIdsMVbKV64lHwbL1os1QVW0ls2RXlTbbklO45wdodMVED4QTBkX3\n7kjKZQG5jb3ankRMtnPN/oFKPc8ck0f/z9wVzAFhUJfqygmzXrGFFVNLMXnIZCv+WkqBd167C3sn\n+Bv5BWM1FAj6ejZOLrTh+IGSAF560Thajo/3fO4gPvL1xwEAP3Pdbly5Y1i6biWxbsgDACil36CU\nXkwp3Ucp/ehqPcdf/dw18cev+fh38LHbnsBIzRZWkzDsiJxyAeD2J5LTQtvxcWqx05fLSEMWeUw1\nusJKKyBdVdK/lmnKolJI2yqgYhekurBtEaGEU6/YaHQ9boWazI4dUM9QlzUJqmzVQ2db/smOrVda\nmwgb/cRNbw3FaZZ5Xvmc9WytMvIQ3LvjiV8vgEl1/NdL1RjJEua83zMro61ynJOBhDC5kYci4onJ\nQ/DcMkNGIDJH5ByMKKX48zuegRXZzfMgSpi3HR8zTafn/Z5FrVTE/s11PHysV4V4biYsx79gjJ/X\nYnjD5Vvw+2+7Ev/1ZReiZBVwzQWj+OhPXiVds9LYUAnzc4WLt9Txh//HVfjNf3o4vvaLr9qnXJcO\nQxdSUcBXHjiKjhvgjSkn3SySsaz9/RbTS92+OR5p1EqRtsshAKbBiyp4gLCZakkS2os2QiB8g/kB\nRcvx+74uccWVd0zzEsCOF8ALqLrPQ5EwF6FctGJTvSySyCN/34Iq2oo3Uk71EWvgE2nwAGAVCkLZ\nqq2QrWQVU/EmLok8KA2jh1KGlLtxol78egEi8pCvTaqt+M/ddgPF3zZftmq7PlqOj7e8cLswDzlU\nsdFxA3Q9v+f5WNJ6x6iYPIBQjfjOk5M9hQLMqv2CsQHZUhBC8HPXhz0gv/jqvcKo7mxiXUUeawk3\nXrsbX/3AywAAP3v9bi3yAIBfee1FAIBnU8NgHjuxiPHBEq7bOyZcV68UQQjfSyc0RRRHHkzb5VVM\nxb5WgsgDADYN2MJke6PrCZPl4XOLDeSSaiv+etkscdkgKECdMA/ncUtO4RrVVtKch6K/pCgoEbai\nyIMXPcRuvpKISTaIquMFQsIDzqw8WWZEqTJVLEaHKt7PHN9XUZEnik5nGl1hLhAI5UMeeTDbkZdI\n3pOsAODkfG/SmyXBeZ5Yabxg5zCmG048AhoAvn94FpvrZWznzB8RYXO9IpQTzyYMeZwBrt41gs+8\n+wB+602Xaa/5tTdcgncc2IVnp5rouD5OLrTxxe8fxW5B+SVDoUAwXLUxy4s8JKaIDPWKzScPySwP\nhgvHB4STz8LIQ7whxe6jHA8g5nklSnrHw404G4PMLRXQk62WnzAPUCDJppdFSTIMKp4EKLRkF0s4\nriLvwNYLE+auLyyLBhRSnUa1FcB3InYU1WlnQjyyyINSislFvrEhw0jV5ronyJymGV59yQQICauj\n0mDTB1XvyRfsDD3svn9kNn7e7z07g5fuGxNGO2sJRrY6Q7zuMrHUJMK2kQoaXQ+Xfvi2+NrOUTl5\nAMCu0Rqen+3tSnW8sAFLTR5Fbs5DNsuDYd/EIG5/fJLrq9Ts9stRabA3H+/ezG1XJOEkNuH9G5Js\niiCQnqonSpiLBzIBavIoFcU9IrJSXbaxW5JhUAC/VDeOWgTEA6gS5r40L1eSRR4aOY/016XRVUQP\nRUm0pSqLlpXqLrRdOH4grWLcPFTB5GK3r8dE5jTNsHO0hku21PHg873d3kzuVOVAr9oxjK1DFfzL\nQyfx1qt34O/vex7TjS5euo/fKLzWYCKPVUD2jfCqiyfwoTddqlx3wVgNz830TiCLTzmC7nKGuig8\n1zhh7RkfgBdQnJjvt1MQTRFM7iuWrZgcpSQPzsbAku2iMkyrQFAqFsSlp8rIQ2wH73iBcDMDws3Q\nCyg3eczIQxR5xLIVJ+eRJK3FpCdNmLu+8PUC5AlzHXsSgF8yGzdVSma+A4Kch6KxsVAgKFkFbsKc\nlcHKIo/N9TK6Xv+4A5nTdBqXbxvC4ycXe67NNMKpnqo8hFUgeMsLt+G7T01ivuXgD74RVk29XOAy\nsdZgyGMV8OKMa+6H33w5tg3Lk2sAsGdsAMfm2j1vMqavqiIPZc5DcsJiw3B4fSJNRc6DJSt5slVD\nUQopsxhn80lkUU/VtoRauDphLs95iDYzIDmF86QrJluJch523OfBIx61bCVLmHfcQCjzsecWTV90\n/QBEItXJckxdL/SXEvUtyBPmctkKALYMl3HbI6f6bGxizzdJ5BE362XGu8YRuSTZDgAXbRnE6cVu\nz8FspulgU63E9dPK4g1XbIXrU/zrj06i5fj4tddfjO2SKq21BCNbrQIO7NmEpz7y4zi10AEhENpN\nZLFnfAB+QHFsrh0PjDqiWdo3PljGD47O93VWL2gkzJmt9GnO/ORm10dNkvNgmzuPABodD7WSxR2d\nC6RdYjnkoSh5BeR28OoO80LkvdVvmdF15WvTJ+ns1yXSk2AYVPRa8GQrNjpXKltJZqCrylbTfTXZ\n34nKzkVW3aaK1GR9Hqp8CQC848AufPzfnwq771N2ICw/KJOP0g20zPocSN4Xom5+BjYlcLHtxhH4\nTENsApnFzqgiizX6veyi9RF1ACbyWDWUigXsHqtpEwcA7IkI4khKujrCSvs2yUv7brhyK+ZbLr73\nbG9z4mzLQckqcGd5MGxhb7DF/shDZi8OJLISTz4KHWLlm79obVNhWwEoOqZ9VbWVFZeeZtFVSF6y\nk7QfUFiCGeRAQiqyhLlUtiqIZau260s3YRkBdDXINvy6/tdbFanFjZHLyJcAwKbI0y37u2Zl7TL5\niB2MsjYhrKFWNMGQgR260rLsbNORls6nwRSDbz8ZeuOJLEnWIgx5rCOw2eaMMNjH24YrUjkCAC7f\nHv5RnsiUFc5GpyRZdcdIzUbJKuB05g1GKVX2eZQlrqdLXVfoLguEp/CSVZDLVhLJrCLx1XIiKUWE\nZJpg/3pXIXmxUzsveewGgTDqCNeqZStZ5FGU9Jh0FbKVXHo6A+KRjKBlzwyIku3ynAcgLumea4Yb\nusgWHUhsQrIHo8mlDkZrtpQwAX414XRTPNUzi6wEqXofryUY8lhHGBsooVaycDRVcXV4pok9ioYi\nIDQ2hPMAACAASURBVAndmQ8Ww2xTHWITQjA2WOprmutGjXqy6KFcLIAQfgnnUsdTnuyqJX7eQk+2\nKohzHr58Q2Okx9tIvUA8RhZIGf1xcx5USh4lSdTCZCvZvW1Bqa4f0NCdWJowFxNAs+sLbffTa3mv\nl6o4gf398BxqVdVWQLLhZg8Zcy0H9XJR+noNlouolay+fN7kUr97NQ8894bZpiPtLRHhD85xh/iZ\nwuQ81hEIIZiol2MXXSCMPG64cptybblooV4uYqbZSwAzmiH2UMXuK7dtKcpl2TNXihZ30ltIHvI/\nwaptcZsEVZ5agNqUUdScCMg30rBkWdaoJyYAz+/PJ/TcN7YY73/uJGEuvneYMBf3xchyHjIjypbj\noSaJ8mTDt8LIQ/x72rUp1P2PzvZPylT1lwDiqrz5loORAfnhhBCCzfUynzw4I2SzyMpWrh9gvuUK\nxyPw8NfvCj3vXn95/rL/1YQhj3WGicFyXEWy0HIx13Jx4bhe3mRssNRHHrNNR5lsB8JS3mzFlM7p\nHwg3LN4mvtRxsX1EfrqrlS3u/PVG10MxKtMUoWpbXDPIIKBRifHyJByHk1BOQ0oeAdWSy0Sklf7+\n3HsLLNlVTZWAPHpQ5baS10uQ85CQVq1UxPhgua8MnT13scCfBMggqsqba7lath2b6xWcXuiVZKcW\nO9g3Ie4uZxjKzLthDYebNHMewPojDQYjW60zjA8mkQdLnOvIVkAoXc02kxMWpRTTja7WKWmI4z6q\nGmzEUBGUzC51vHjMbZ77AkAryrXIcjWinEfL9UGpnPTYSZf33K4vz3nYMQGIZCud0z+PPOTWJuzf\neHIZi/xkspXs3i1HXlUni9S6nlwiBMJqwec5kYdWdCqoytORZAFg3+YBPHl6Ke7LoZRiqqErW7Gc\nR/g3enpBPhJ6I8GQxzrDRL2MqSx5jOuRx9hguSdvMdt00HL8uFxQhiGO/TQ7ZckSkkBEHpxNpe3K\nN6TkvrweEV9aIQaIR+DqREyMHLgeU748epA1vblBID1Fy07/cbWVIlnPM1WMpwguU7ZS9fNIcx6K\nUl0gLInlNbHKRtAyMDmN2d0wzCg83xiu2D6MhbaLY9FM8bmWC9en0hEJDKViAcNVO/anSt6T+lWU\n6xWGPNYZtg5XMN9ysdB28exUE4RA6YvFMDbQK1uxN4tOufBQpV+2YtUsqtNduchPXKvKP9l9lzhm\nkB3JICgGUamuTsRkS+w2eDYtPWsZ8XA2cV8hW0lzLYoub4DJVv2E11bY36fvzVsfuiIvL2rpKEp1\ngVDa5PlT6ZFHv2wVRtV6+bz90ewMtvGzsl1Zc2Eal26t4/GTi+h6Pj74hR8AUJfObwQY8lhnOHBB\n2J3+nScncdM9R7B3fEBqs53G2GAJc00n7sRl5KEbeSx13J4uXiaBqciDVzFFKdU6kfIiHkDdpwGI\nR+A2dchDYVBoS/sWFLKVYghVuJafLwHkspVVKAj6JeQuxOnn5v3Mja48YR7Pm+dJXl0fNZW0WeQX\nNyy0XaVFCE+2Wup6cPwA4xqSbLaRlZXt6kQeQFgG/8SpJXz7iam+Z9rIMOSxzvCi3aOo2hZ+55ZH\nMd9y8f5XX6S9dtNAGV5A48342FyoMWuRR8VGQJP+CgCYbcrHizJUiv3koWM7we672O4fJuUojA0B\nlmsJ+mwrGoo54oC8ZNb1aWwjwl1blBOPtFRXUfIKLK9Ul53ql0MelNIckQc/0pMVJwBhlRlv7aJO\n5MFJmDN5VuX5BqTJI/y7YJVXmxWW6gyXbRtCy/Hx374SjqX+x196ida69Q5DHusMpWIBF44PxFVE\nBzI+WTKMRyE8k66OzrUwUrOVvRZAYpyYzj/MtRwMVeR19ABfktAmj2oRjh/0baYq6QhITn/ZtVqy\nlZQ85PdmCXFRtZUscpBVWzE5aTmW7DqyVRwxZWSrrhfAD6iUbK0CQa1kcf3TWo4vjVqAM5Otipxp\nl6yoRKcYJCt7sWpG7cgj6gpf6nq4YvsQrrlAPI56I8GQxzrEr7/h4vhjHSt3hqRRMCSPY3NtragD\nSHfS9jZDjWpUs/CqreLOYYXkxrsvwPeNykJkb5KYKmpspBzpSVe2EpKHokPcKhA4Pr/Kq0AgTbgX\nBZbsqnGuQCrayhBX3FOjIIDRWimeV85AaVgWrVXcwJE2dcgDCEkiXQzCmmF1ch4xeXQT8hgoWcoS\ndIb9W5J54wJPyg0JQx7rEK+7bAvu+PVX4TPvPqDl3MnAnHuPz4dy1bG5NnaO6JFP3AyV2sSXOq7U\njTdeW7Exn9n841GuCgIQNYCF9iLLJI/YF0tWqiuTnqi04ilZy3fVlSXMgXAT5/d5yPMlAJskKLE2\nkVWJRc+dLRJgOSJZMyjA7yNqR2XRypyHbcELaE++pun48AKqRR6bBkqYSZWhTzf0BjIBSbVWnPNY\n6mgny4Ew3/OVXwylKp6TwkaFIY91ir0Tg7kHUe3eVINVIDg0FVaVnF7oYKvmuMs4AkjJEuEgKHVi\ncPtIFVNL3R5NW1e2Ep3iHV9uEQIAFUH9f9xtreX0utId5lRJ+OEIXP59ZaQFiL2tYslL6sjLf24W\nqan6eUZrpb6pfDpEDaQmAqZ+bl1nW4D1MKUjD72BTEAy+6UVlfpOLXVzkQcAXLw5dOS98dpdudat\nZxjyOI9QKhawa7SKQ9EI3KWup/0miXMeqQhCNb+cYUckjaVnPSeGd3LyEclHjkb5J4s8hMl6Sc+D\nijyW22HuBuqISRx5BNLIAQh/5uwJHtCMPAT5FkYAquhhbKDf/6wVG1jKf8/J5Mfkd7XQ0iePrPfa\ndKOLkZqtPdt7oGQlspVmg2AawzUbT/z+DXjvK/bmWreeYcjjPMP+LWFNOksojmvaKLDIYyFFHi1H\n7qjLsGOEyWWJoaPOBg6I5SNVox4glq06rg9C5FGPKHlMKY3uLU9a89YCYZ+HrNoKCEleJFstV6rT\n6U5PKsx6n1uXAEYzp38gRTyqhDlnnGwceSiaUAHWw9SNq/Jmmt1c5oS1UrEnYZ438gBCAlwPs8dX\nCoY8zjNcvWsEh6abuOWhEwD0NGEgcQ9N91w0FPPLGSaicsm0oaOjKVuVrHBT6ScPjYR5Kfx3nmxV\nlswgD+/LTx6zjVVWJixay9ZbEukIEM9P15GtKoIcEYtEZLJVMgGRn/NQ/a4Hy0W0Xb+nNFpX8kpc\njDnkoRV5lNFxg5gAphuO9t82EOZzWo4XRuQd/Yj8fIYhj/MMV+0YBgD80W1PAtAnj6IV2jCkCaCp\nUb8P8BvIdKy2gaRZL3sS10mYV4SRR6BsrLQFEY/OKFjRfQHNhHnR4lvBa8hWNY78Ez53uKFb0gZD\nggLhkYdetRUjgHTCnRGP0g0glhiTtYs5cx4A4shnWtOahKFWstDoevi3R08BOD+8qc4UhjzOM2St\nTHZoluoCwIXjA3Gy3Q9o6E2lkfPg+R6xqhRlwlxgE+Lo9HkIch4d15cmywFx3sJlo2AV5FEqFrid\n8WGfh+q5C30+TeGzaMhWosgjUCfMgfDnzr7WTLZS+ZDFzropAtCxzgcSwv3HB4/F13JFHgO90e2M\npjUJw7bhKu56ehq/+sUfAgAmNOzYz3cY8jjPsC1jgZ7ndLZ3IiEPXTkC4Ftu6FZbiXR4VzHMCRC7\nrXa8QDrXAkjGwWbzFmxjVXW3s874LFw/kHanA8BgxY674LP3VuVLqqLIw1cnzIHw9XYzxQkN3ciD\n02Wu2yNyWdRo9+iJxfjaUscFIeq1AOLJfbNNB44XYKHt5vrbvnr3SM/nJvJQw5DHeYa0THRxqrlJ\nB/smBnFqsYNG19PWwdP37C5LthKU6p5Bn0fH9ZWyFSHhrBBeriX9XCIMVYp8Ty4NM8h6pcjt1Pa0\n8jx88ogT5grysYuFvgbFluOhQOSDpAB+hBlHLQrZaqJexusu3Rz/XQHMObmIgkYvE4s8ZppOXC6c\nJ/J405XbcN2FSWe4zoyb8x1nbRgUIeR3AbwXAHML+y1K6Teif/sQgPcA8AH8CqX036Lr1wD4LIAq\ngG8A+FVKKSWElAHcBOAaADMA3kEpPXK2nn2jY9emKqq2hVt++eW51u2bCMnm0FQj3iB0bauB3shD\nVwvnGRT6AUVA1Ru4OOfhKzvb2b2zSe8lDV8sAKhXbS4B6NiqhMTDl620I48+2SqMWlTVQOHP3Bt5\nMLJVreVNQdTt8wCAwUoRjal0H5Gn1UcEJEQx3ejiRFTVl6fcdvdYDV/6hZfg8HQTVdvSsuw533G2\nJwl+glL68fQFQsjlAG4EcAWA7QC+RQi5mFLqA/gUQsK5DyF53ADgVoREM0cpvYgQciOAjwF4x1l+\n9g2Lu37jtctad9Hm0Gb62alGPL/gRZlwnwerQFAskJ5N5eRCB7ZFlOWUbKNNn2Z1RpMCyfz07EyP\nrhugolgLhKfwbOTB7LpVpBla2PdHHq5PNSKP/pG/4Vo18fDsyQG95kQgfL15UZ7qmYEk8ui4vZGH\nqiyaYaBc7I08NEvBgbDU1rYI/ui2J/Gul1wAIJRZ8+JCzdk4BqsjW70VwBcppV1K6WEAzwC4lhCy\nDcAQpfReGhZr3wTgbak1n4s+vhnA68j5VFC9RrB70wAqdgHfemwST55awo6Raqw1q5DtXTi10MaW\noYpSkihzykcTd1n5WkII15a946llq/D7F/pyHlOajqtCK3kNua1eLqLrBX0VZjrkIYq2wvG36rd7\niZMw1+nmB0SyVSg96bxd6+VeuU41gCoLJs3ddM9zKBaI9pwbg+XhbJPHBwkhPyKE/C0hhNm/7gBw\nNPU1x6JrO6KPs9d71lBKPQALANQDhg1WFKViATe+eDdufeQkJhe72JyjIiXbu3BioYPtw+pKL5vT\nMxFP1NM4zXLJw/WV+j0Abs6D2XWr+gB4w7MopdEcEnXOA0Bf9KGafw4kMmC2wkynzBeQRB5a5NEv\nW7UcT5nvYBiISJPdP49slcWe8QHt7nKD5eGMXl1CyLcIIY9w/nsrQglqL4CrAZwE8Mcr8Lyq53kf\nIeQgIeTg1NSUeoFBbuwYqSKgwPOzrVzVLNnI4/RiB1s0fLXsOPJIIoBYttLYHCq2hbbTuxnq9HkA\nYWSTPf1PLnZRK1lac9uzJnk6DYZAMhc7mzPJVSSQTZgr3HwZSsUCt7JNS7ay+yOPZtfXJg/2mjLp\nqtn1tar5ePhPGnKqwZnhjHIelNIf0/k6QshfA/jX6NPjANLuYTuja8ejj7PX02uOEUKKAIYRJs6z\nz/NpAJ8GgAMHDpxH5sjnDszj6vh8G6+8eFx7XbnYO+xntuFo2UfETYKp07DOPG4G3hTDcIKh3kk6\nO6BI10m4ZBXQXWal1mAUeWRneuvIVqLqNJ3mRCAkn2aXR1rqtbFslcl56PQCAQl5NLoeRmql0Mp9\nmeTxkn1GmDjbOGtxXZTDYPhJAI9EH98C4EZCSJkQciGA/QDup5SeBLBICLk+yme8C8DXUmveHX38\ndgB30OxoOYNzgvTGqTNoh6GUkq1cP8BS11NOIASSprZ0BMBO5DqbOE+20pGOgNDqo+1m9X+9taUo\n2Z7+M9VN9Ffs/tJmQE+2SqrTet8e4fhbNQEMVe0e/7Lwe+kmzHmylZ7zMtBPmqFspU8en3/Ptbhs\n2xA+8Jp9+IkX7lAvMDgjnM1qqz8ihFwNgAI4AuAXAIBS+igh5MsAHgPgAfhAVGkFAO9HUqp7a/Qf\nAHwGwOcJIc8AmEVYrWWwCkjPk8438yCRrdgUxNEB9eZfiCq10idplohWzbYGIvJw+iMPHT28Zlto\nO/2ncC3ysAqgtHfD1408eM12QJj3UXWnE0LCcts+WxU92WqkZuPRE73kodPN3/vcvTM5RjR+T0BS\nzssin3B8rf4W9Yr9E7j1Vye0v97gzHDWyINS+nOSf/sogI9yrh8EcCXnegfAT63oAxosC+nT/ptf\nsE3ylb1IRx7zURPXiEbkwdb2kEdbP/KolKy+klnd6KFasjC5lFmrKXnZqSqxbLmxTolx+usZXM2K\nKV7Sm/V5qDDCiTy0E+acnEer62G75swYRhRLHQ+eH6DjBrmqrQzOLUw5gkEusJwHAO0yXaA38phj\nkYeG1TbANsNEhkkiD/XGUrULPTkPSmlIABqbYbVk9fVLaMtWnNkYcZWYMvLo94hi63VyD9nXK1yr\n9tQCQh+pluP3RD25ZSu3V7bKm/Nodn00NT2xDFYPhjwMcoFVAm3TPE0ylFLJZ2YfoZPzAMLNML2Z\nsUhCN+fRTElPccWTbplvtsFQ8xTO66p3NEuMefbkQJi30Is8SF+vhm7CfKTWP7fF0bCCB5JKrzTh\nhjNf8uY83Fz2NwarA/ObMciF0ZqN/37DpXjTVVtzravZFk5Em8rh6dBccfuInqPvpgG7Z0rcYseF\nVSBaJaDjg2VMLYVDgggh2hs4EHZr82ansz4MGeLII7WJM9sP/ZxHf7Jeu1eDk2zXka2GI0JfaLmx\nvYfraTYYFguolawe4mk6vtKChmGwxMjDN+SxDmAiD4NcIITgl169DxeM5bNx2DxUjruzf/j8PC4Y\nq2nNlwZCjyLWnAeEOY+hil7X8tbhCjpuEOdJ8vSIcGUrzZzHGUUeHCNJQG8YFMDPebh+oJUwr5f7\ny4QdP4hzOCoMp3Imrh92yevmLViE0uh48f115sUYrA4MeRicE2yul7HQdtFxfTw9uYTLtg7lWjuV\nJo+Oq1VpBQBbIhuRU4uhJxXbzHU2w6ptwfEC+KnJeHlKddnXx2vZvZXDoFi/REJcfkBBNcwg2fd3\ng96chx/oleryZonrJsyBXvJgxKvbJFi0CqjYBcw0u7jjiUkAenbsBqsD85sxOCdgXlAnFzpY7Hha\nZboME0O90tNiW69RDwgjDyAkj0u21nNFHrXUYCWWzNXdSBNblWQT10+Y98tWbO1yZSvXp/FYXhlq\nnGFSIWHqWckNVW0sRAUR7Zg89LeZwbKNm+55Lv7cyFZrFybyMDgnYBHAOz99b67NHwhlK8cP4v6Q\nxY6nVWkFJONJ56LxpHlyHkkCOJFwup6fM/LoPcHr3FtGHrrJ+qxspZvor3JceXXlMqC31JcVKuSp\nmMrKVMu1JzE4+zDkYXBOcOX2UKY6tdhBVzPpzMDsz1neIw/5MBmGleuyDVwnb1GNTsx9Ek6OUt0u\nJ+ehkp4IIVFfTHLfrqe3FkDUVJl1A+5goq7OMfHmgeg2VQIZ2aqbP/LI9v6oRt8arB4MeRicE4wN\nlvH2a3bGG69uzgJIk0eYt1jU9JcCEM/tiMkjR+SRuNumksdegJKl3tCYzJPexNmmqvOzl4uFnj4P\nRmA6lUvZOeSuH2C64cTRnwy8SYS6fR5AL3kcmm4AyFfWvT01Jvlnr9+N8RwWOAbnFoY8DM4Zhip2\nfPLPFXlEm97kIos89GWrOPKI7pvkPNSbMHvG9FwO/SZBq+d+QPL8OvOxQ1PGfjPIqoYbcFa2YhHb\nVg3yyOY8KKVwNftLgLBPpO2GTYb3HprBUKUYzyfXwbbIpn+0ZuMjb7tKawStwerAkIfBOcNw6sSd\nL+eRyFaOF6Dt+mcsW+kQwFDGGj0IqNYkQACwo8gjTR5TjQ5Ga7b2VL60bNXOQR7ZUt1T0dRHncij\nUuzNebCpgDoOxkDyO15ouzg218beiUGtCYYMrPcnK7sZrD0Y8jA4ZxhORQt5ZkQPlIsYKFmYXOrg\nf/7LowD0ZS+rEBoFsk2QJbB1uq2z5MGkIK0+D441+uRiV9tMsmz3Ds/KJ1sReKnNdzYqFmBzvmUo\nFAgqKUsXVixQ0yAtIPm9LLZdtB39WR4MzAcra0dvsPZgShkMzhnSG76OhJLG5qEKnpls4K6np8PP\nczj6VopWKvLQtyeJZatIw3dyVjyF90tHHjnIo2j15jyi59cfn5s2kgyff1iTcNO2LHGvhmbVE0t4\nz7dctF1f+54Muq4DBqsPE3kYnDOkN5Jdm/JtEhP1Mp6fbcWfb82RhC3bSf6ASUGsi1uGwUzCPK7U\n0hxhC6BnIFSr66Ne1ttMs7JVrpxHRraKjSQ1o71aqRiTBiMt3QgiLVu1XX1rEoZtI/kOFQarBxN5\nGJwzXLF9GFftGMbrL9+iZS2SxuZ6Gfcfno0/z0MeFbsQd2sng6TUf/q2VUDVtuJZ4nkaDFnkkZ29\nrmvzkZ35Huc8NDbjokV6mhOZNYtukUKvbHUG5OH4WmSXhqmuWj8w5GFwzrB1uIJ/+eDLl7WWmfQx\n6FQsMVRsC53oFJ9nkBQQbrjZyGPZ9iR+AFszeVy2ew0G2Rz25STMFzsuaiVLy5IdYJFH+DOz/1dt\nzabMSLaaaTjLijxYddWBC0ZzrTM49zDkYbAusHkoIYurdgxrb4RAeIpnCfPFtoeSVdBKegO9zrp5\nekQSe5JM5KH53GGfx/Kqrap2r6Fj3o7+9OjepNFPN2EeFjecWGgvK/IAgMd+741aJo4GqwvzGzJY\nF0gnyP/nW6/ItbZiJwnzpY6LuqYjL1vbzpb5anZ5E5KxZPdpXMKrQnp4FpDkPCoa/lSjAyW0XT/1\nM+v3xQChNBYnzHPmPAgh2D5SxdHZNrpekDvyCO9V1G5KNFg9mN+QwbpAWrbK67Sa1vBDX6wcp/BS\nQjy6Y2SByGLE6iUAN4fNR7ZJsO34KBA94mJDttjQrcWOm6s0Oh15sBnueUhg+0gVh6Ya8fcy2Jgw\n5GGwLpCWrfL2DoSluky2crWS5QzpslVW/aR7Ki5lSmZ1J/IBrM8jkZ6ajodaSS9iYuN955rMoDBf\nv0UtNcektQxn3B2jVRyKBn4tJ/IwWB8w5GGwLpCWrfKSR71SRKProeP6+O5TU/kiD45spZsvKWWk\nJy/Qt/nIelsttNx4RKwKowOs1yKMPP7/9s41xq7quuO/NTN3HvYM47cZbIxxcEkcV1XAcRwEKS0I\nYysKEIXUVaVQhQZFfahRVUVQpCQq4gOt0keiJlXaoBCUllRJKSgNSnHaiE9ACDKvgPHwSINr/GA8\nNp7nnZnVD2efuWdu7p05+86cmWv7/5Ou5tyzz75n3X3mnnX2WmuvNVaezLU+JKUzM9uKjbYC2JBZ\nq6GZx7mLlIc4K8iuEYl5CoZk4drg8DhPvHocIPdCPUhupL/q88h3Q8wqj8kpZzJKecw0Ww2ORCiP\nYLYaCMpjtBznuF6WcbifHi1TarXcChNmKo/YayXOHqQ8xFmBmU0rkM6ceZZSertKnB6dmK4m+Pnd\n783dt6vUyuh4fLQVzAyZjSnmBMFhPjnFVKgIODg8zoqufGV7U7NVWv9ktDwVNWZdQWG6O4NDZVYt\nb49al5PNovuRX1uTu584u9BjgThr2P9nv8krb5+OXmCYPrG/fjyxw+fJ8ZRSy2yV2+fRVvF5xBRz\ngsoq9vHJKTpbWhkcKdOXM3VH6hxP80ONTsSZrbraW3FPAgQGhsenZzJ5uWxdNwD33rI9ylEvzi6k\nPMRZw9qeDtb2rI3ulyqP/mNnWLGslNt0BJWncIhXHqVMtFWaJTZPQkaopE8ZK0/RWWpNfB45fTWd\npRZaW4wzYXHjyHik8sjUMT85ND5djTEvq7s76L93T9RaHHH2oasrznlSc89rx8+wJmJlOqRrRBLz\nUUxiREhnHonSSGceMelJIInwcvcon4eZ0d2RBAm4O2MTU9NFsfKQrekxMDw+7YCPQYrj3EdXWJzz\n9Iab7pFTo6yOvBGmT+FjE1NRiREBOlpbGJ+YOWuJibaCxF8xNjHF5JSzPKKed3dHklYldbp3RkRL\npec5cmqE148PRY+ZOD+Yl/Iws1vN7CUzmzKzHVVtd5lZv5kdNLPdmf1XmtkLoe0rFgzYZtZhZt8N\n+58ys82ZPreZ2aHwum0+Movzj63ruklTSq2JiLQC6CpVytiORawwh6QgVKo0JoLjO2/f6RK4Y+Xp\nkN28fdP+Z8bKlZXpObIIp6QLMv9u/yEArr083lQozn3mO/N4Efg48ER2p5ltA/YB7wduBL5mZul/\n79eBzwBbw+vGsP924KS7Xwb8LXBf+KxVwBeBDwE7gS+ambKmidz0dJbYdlFSCnVN7MwjY8KJSU+S\nHleuNlvl7NvbVamLMRYKWHVE+C1Ss1VMHZCUtNbKz35xkhXLSvz2e9fn7ivOH+alPNz9ZXc/WKPp\nJuAhdx9z9zeAfmCnmfUBF7j7k+7uwLeBmzN9Hgjb3wOuC7OS3cDj7j7g7ieBx6koHCFysXn1coCG\nfB4QlMfkFKVWy11XO7vOo2K2ytd35fJKuO20uSxi5tEdsgGnK+tjQnXT1fzD45Nc1KviTKI2Rfk8\nNgC/zLx/K+zbELar98/o4+4TwClg9SyfJURu0pDRGL8BzIw8Gi1P5ioilZKt6Bc788jmp4qN8oIw\n8xidqJitYlaYl1qn14qosp+ox5y/JDPbD1xYo+lud39k4UVqHDO7A7gDYNOmTUssjWgmujuSm2da\nnyIvqdlqtDzJqZFyVFnVns4Sx06Pcmq4nAnVzWu2Smce41EJGSvnbuPdsYmoCoRZ1l/QycnhMhtU\n2U/UYc7/Rne/3t2313jNpjgOAxdn3m8M+w6H7er9M/qYWRvQC7wzy2fVkvUb7r7D3XesXSsnn6jw\nB9ds4ar3rOZ3Phj3UNGVMVsNRuSXAvjElRsYGp/kJ68ey8w88qeC7yq1zjRbNTDzGIqsx5GyPvg9\nNPMQ9SjKbPUosC9EUF1K4hh/2t2PAKfNbFfwZ3wKeCTTJ42k+gTw38Ev8iPgBjNbGRzlN4R9QuRm\n/QWd/MtndkXltYKMz2N8MkkREqE8+oK/YDTjbM+7zgOS2cepkXJ0WhSA7o4SI+VJ3hkaSz4rQm6o\nOM2lPEQ95rXC3MxuAb4KrAX+08wOuPtud3/JzP4N+DkwAfyRu6f5pf8Q+BbQBTwWXgDfBB40s35g\ngCRaC3cfMLN7gJ+G4/7S3SvFrIUokGy01eBw/hQhkF3oNzVdUjbG7NVRSnJjNRKq2x1Cff9vKeN+\nJgAACIFJREFUcDT6vADre6U8xOzMS3m4+8PAw3Xa7gXurbH/GWB7jf2jwK11Put+4P75yCpEI6Rm\nq9OjE7x+YogPv2d17r5paG125hGz4K4UQn3HGwjV7QmBAYcHh4F45XHZum7aW1vYvHpZVD9x/qDc\nVkLMQqo8/j4smIshTQkyVp5ipDxJW4tF1RJPo7Vi15dAZeZx+OQIpVaLdph/9Nf7+ODmlayODG0W\n5w9KTyLELKRmqxNnEt/Bnu19ufu2tSYJCscmphgYSnJE5V0jAtDeaonZqsFQXYDDgyP0dpWiMxG3\ntNi0z0aIWkh5CDEL2Qinvt5Ort4aV5+ioy0pJ/vO0Hh0jqi0HshYI9FWYebx6tEzUZUThciLlIcQ\ns2BWMfnELjCE5IY/PD7JwbffnQ5/zUuptYXyhDcUqtuTkXWDnN6iAKQ8hJiDNElhd0PKo5Wn3xjg\nfweGueUDcYkRSm1VPo8I5bE+U83vL/a+L+q8QuRBykOIOUjzYTWkPEotHDmVhMtuWbs8qu98fB5Z\nx/wlipgSBSDlIcQcpGVrG5t5tEyXg40tyZr6PBqJtsqyrF1BlWLh0X+VEHOQzjwa83lUQmRT81de\n0nUex8+M0ttViq7O9+DtOzl6eiyqjxB5kfIQYg7WTM884tZKwEwndyPK440TQ7w7Wm7I6X3NVuV3\nE8Uhs5UQc7BxZeIzaGTBXJobq72tJSqdO1SSKJ44M640IaLp0MxDiDn4vQ9tYvuGXrb1XRDdN515\n9DRg8souKNy4UspDNBdSHkLMQVtrC1de0ljl49RPEmuygkr1QaiYzoRoFmS2EqJAUnNTI872sYzy\niE1sKETRSHkIUSAXr2pceYxPTE5vK8WIaDakPIQokLSC38rIYkygmYdobqQ8hCiQ37p8Hbu2rOLO\nPfEpQtIiUAArlsnnIZoLOcyFKJAVy9p56I4PN9R3LGO20sxDNBuaeQjRpGT9JMvb4xcoClEkmnkI\n0aR8+ZO/wVd/3M+6ng7W9qiin2gupDyEaFLW9XRyz83bl1oMIWois5UQQohopDyEEEJEI+UhhBAi\nGikPIYQQ0Uh5CCGEiEbKQwghRDRSHkIIIaKR8hBCCBGNuftSy1AIZnYc+EWD3dcAJxZQnIWiWeWC\n5pVNcsUhueJoVrmgcdkucfe1cx10ziqP+WBmz7j7jqWWo5pmlQuaVzbJFYfkiqNZ5YLiZZPZSggh\nRDRSHkIIIaKR8qjNN5ZagDo0q1zQvLJJrjgkVxzNKhcULJt8HkIIIaLRzEMIIUQ0563yMLNbzewl\nM5sysx1VbXeZWb+ZHTSz3XX6rzKzx83sUPi7sgAZv2tmB8LrTTM7UOe4N83shXDcMwstR43zfcnM\nDmdk21vnuBvDGPab2Z1FyxXO+ddm9oqZPW9mD5vZijrHFT5mc31/S/hKaH/ezK4oQo4a573YzP7H\nzH4efgN/WuOYa83sVOYaf2GRZJv1uizFmJnZ5ZlxOGBmp83sc1XHLMp4mdn9ZnbMzF7M7Mt1L1rw\n36O7n5cv4H3A5cBPgB2Z/duA54AO4FLgNaC1Rv+/Au4M23cC9xUs75eBL9RpexNYs4hj9yXgz+c4\npjWM3RagPYzptkWQ7QagLWzfV++6FD1meb4/sBd4DDBgF/DUIl2/PuCKsN0DvFpDtmuBHyzW/1Te\n67JUY1Z1Xd8mWQux6OMFfAS4Angxs2/Oe1ERv8fzdubh7i+7+8EaTTcBD7n7mLu/AfQDO+sc90DY\nfgC4uRhJk6ct4JPAvxZ1jgLYCfS7++vuPg48RDJmheLu/+XuE+Htk8DGos9Zhzzf/ybg257wJLDC\nzPqKFszdj7j7s2H7XeBlYEPR510glmTMMlwHvObujS5Anhfu/gQwULU7z71owX+P563ymIUNwC8z\n79+i9g9rvbsfCdtvA+sLlOka4Ki7H6rT7sB+M/uZmd1RoBxZ/iSYDe6vM03OO45F8mmSp9RaFD1m\neb7/ko+RmW0GPgA8VaP5qnCNHzOz9y+SSHNdl6Ues33Uf4hbivGCfPeiBR+3c7qGuZntBy6s0XS3\nuz+yUOdxdzezhsLWcsr4u8w+67ja3Q+b2TrgcTN7JTyhNMxscgFfB+4h+aHfQ2JS+/R8zrdQsqVj\nZmZ3AxPAd+p8zIKP2dmGmXUD3wc+5+6nq5qfBTa5+5ng0/oPYOsiiNW018XM2oGPAXfVaF6q8ZrB\nfO5FsZzTysPdr2+g22Hg4sz7jWFfNUfNrM/dj4Rp87EiZDSzNuDjwJWzfMbh8PeYmT1MMkWd1w8u\n79iZ2T8BP6jRlHcco8kxZr8PfBS4zoPBt8ZnLPiYVZHn+xc2RnNhZiUSxfEdd//36vasMnH3H5rZ\n18xsjbsXmscpx3VZsjED9gDPuvvR6oalGq9AnnvRgo+bzFa/yqPAPjPrMLNLSZ4enq5z3G1h+zZg\nwWYyVVwPvOLub9VqNLPlZtaTbpM4jF+sdexCUWVjvqXO+X4KbDWzS8MT2z6SMSsUM7sR+DzwMXcf\nrnPMYoxZnu//KPCpEEG0CziVMT8URvChfRN42d3/ps4xF4bjMLOdJPeKdwqWK891WZIxC9S1ACzF\neGXIcy9a+N9j0dEBzfoiuem9BYwBR4EfZdruJolMOAjsyez/Z0JkFrAa+DFwCNgPrCpIzm8Bn63a\ndxHww7C9hSRy4jngJRLTTdFj9yDwAvB8+Afsq5YrvN9LEsnz2mLIFc7ZT2LbPRBe/7hUY1br+wOf\nTa8nScTQP4T2F8hE/RU8RleTmByfz4zT3irZ/jiMzXMkgQdXLYJcNa9Lk4zZchJl0JvZt+jjRaK8\njgDlcP+6vd69qOjfo1aYCyGEiEZmKyGEENFIeQghhIhGykMIIUQ0Uh5CCCGikfIQQggRjZSHEEKI\naKQ8hBBCRCPlIYQQIpr/B6D+zdfha8DnAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cr1.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "'full'" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.mode" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Full mode does a full cross-correlation." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "639" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cr1.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also create CrossCorrelation Object by using Cross Correlation data. This can be useful in some cases when you have correlation data and want to calculate time shift for max. correlation. You need to specify time resolution for correlation(default value of 1.0 seconds is used otherwise)." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cs = CrossCorrelation()\n", + "cs.corr = np.array([ 660, 1790, 3026, 4019, 5164, 6647, 8105, 7023, 6012, 5162])\n", + "time_shift, time_lags, n = cs.cal_timeshift(dt=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.83333333333333348" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEKCAYAAADq59mMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX2wPHvSeglQCAECCAtoHRICAGUtaCyrgoiIiod\nQQQLrhXd1d11i667rhUQFQhKFUGwoYhtpaVRQhEIIpBICb2XJOf3x9ys84tIEpjJnUzO53nmmXfe\ne9+ZM0A4ee99i6gqxhhjTFGEuB2AMcaYkseShzHGmCKz5GGMMabILHkYY4wpMksexhhjisyShzHG\nmCKz5GGMMabILHkYY4wpMksexhhjiqyM2wH4S61atbRRo0Zuh2GMMSVKSkrKPlWNKOi8oE0ejRo1\nIjk52e0wjDGmRBGR7YU5zy5bGWOMKTJLHsYYY4rMkocxxpgis+RhjDGmyCx5GGOMKTJLHsYYY4rM\nkocxxpgi82vyEJGHRGS9iKwTkZkiUkFEwkVksYhscZ5reJ0/TkTSRWSTiFzvVR8jImnOsVdERPwZ\ntzGmYJ+k7WLDT0fcDsO4xG/JQ0SigAeAWFVtDYQC/YEngCWqGg0scV4jIi2d462AnsB4EQl13m4C\nMAKIdh49/RW3MaZgM1buYPT0VPpMWMonabvcDse4wN+XrcoAFUWkDFAJ+AnoBSQ4xxOA3k65FzBL\nVU+r6jYgHYgTkbpAmKquUFUFpnm1McYUs6++38sfF6yje/MIWtWrxujpqbz+VTqeH09TWvhteRJV\nzRSRfwE7gJPA56r6uYhEqmreryq7gUinHAWs8HqLDKfurFPOX2+MKWbrMg8zZkYql9apyoS7OhIa\nIjz+/lpe+GwT2/Yd5++3tKFcGbuVWhr487JVDTy9icZAPaCyiAzwPsfpSfjs1xURGSkiySKSnJWV\n5au3NcYAGQdPMHRqEjUqlWPykE5ULl+GCmVDeen29oztEc3clAwGvr2Sg8fPuB2qKQb+/BWhB7BN\nVbNU9SwwD+gK7HEuReE873XOzwQaeLWv79RlOuX89b+gqpNUNVZVYyMiClwU0hhTSIdPnmXolCRO\nnc1hytBORIZV+N8xEWFsj+a83L89q3Ycos+EZWzbd9zFaE1x8Gfy2AHEi0glZ3TUNcBGYCEw2Dln\nMLDAKS8E+otIeRFpjOfGeKJzieuIiMQ77zPIq40xxs/OZOcy6p0Uftx/nDcGxtA8suo5z+vVPooZ\nIzpz+ORZer++lOVb9xdzpKY4+S15qOpKYC6QCqQ5nzUJeA64VkS24OmdPOecvx6YA2wAFgFjVDXH\nebvRwFt4bqJvBT71V9zGmJ+pKo+/v5blP+znn33b0rVprfOeH9sonA9GdyOiankGTV7JnOSdxRSp\nKW4SrCMkYmNj1fbzMObi/PvzTbz6ZTqPXNec+66OLnS7wyfPMmZ6Kt+l72P0lU155LoWhITY9KyS\nQERSVDW2oPNsWIQx5pxmJ+3g1S/T6d+pAWOualakttUqlmXK0E7c2bkh47/eyn0zUzl5JqfghqbE\nsORhjPmFbzZn8eR8z1yOZ3u35kIWdSgbGsLferfmD7+7jE/X7ab/pOXsPXLKD9EaN1jyMMb8P+t/\nOszod1NoEVmV8Xd1pGzohf83ISLcfUUTJg2MZcveY/R+fSkbd9mSJsHAkocx5n9+OnSSYVOTCHMu\nO1Up75t5xNe2jGTOPV3IVeg7YRlffb+34EYmoFnyMMYAcOSUZy7HidO/nMvhC62jqvHBmG40qlWZ\n4QlJTF26zafvb4qXJQ9jDGeyc7n33RS2Zh1j4sAYLq0T5pfPqVOtAu+N6kKPyyL504cbeHrBOrJz\ncv3yWca/LHkYU8qpKuPmpbE0fT/P3dqWbs3OP5fjYlUqV4aJA2K4p3sTpi3fzvCEZI6eOuvXzzS+\nZ8nDmFLupS+28H5qBg/1aE7fmPoFN/CBkBBh3A2X8Y8+bViavo++E5aTcfBEsXy28Q1LHsaUYnOS\nd/Lyki30janPA9cUbS6HL9wR15CEYXH8dPgkvV9fSuqOg8Ueg7kwljyMKaX+uyWLJ+elcUV0Lf7R\np80FzeXwhW7NajF/dDcqlStD/0kr+HDNT67EYYrGkocxpdDGXUe4991UmtWuctFzOXyhWe0qfDCm\nG22jqnH/zFW89uUW21wqwFnyMKaU2XX4JEOnJFGlfBmmDO1E1Qpl3Q4JgPDK5Zg+ojO3dIjiX59v\n5uH31nA625Y0CVR+20nQGBN4jjpzOY6dzmbOPV2oW62i2yH9P+XLhPJiv3Y0rlWZFxdvJuPASSYO\njCG8cjm3QzP5WM/DmFLibE4uo6enkr73GOPv6kjLev6Zy3GxRIQHronmlTs6sDrjELeMX8rWrGNu\nh2XyseRhTCmgqjw1P43/btnH3/u0oXvzwN9p8+Z29Zg5Ip5jp7K55fWlLEvf53ZIxoslD2NKgVe/\nTGdOcgYPXBNNv9gGBTcIEDGX1OCDMd2IDKvAoMmJzE7a4XZIxmHJw5gg935KBi8u3kyfjlE81KPw\nGzoFigbhlXh/dFe6NK3J4++n8Y9PN5KbayOx3GbJw5ggtjR9H4+/v5auTWvyXJ+2rs3luFhhFcoy\nZUgnBsQ35I1vfuDe6SmcOJPtdlilmt+Sh4i0EJHVXo8jIjJWRMJFZLGIbHGea3i1GSci6SKySUSu\n96qPEZE059grUlJ/AowpRpt2H2XUOyk0jajCxIExlCtTsn9XLBMawrO9WvP0jS35fMMebn9jBXts\ncynX+O1fk6puUtX2qtoeiAFOAPOBJ4AlqhoNLHFeIyItgf5AK6AnMF5EQp23mwCMAKKdR09/xW1M\nMNhz5BRDpyRSqXwoU4Z2IixA5nJcLBFh2OWNeXNgLFuzPJtLrf/psNthlUrF9avINcBWVd0O9AIS\nnPoEoLdT7gXMUtXTqroNSAfiRKQuEKaqK9Qz5XSaVxtjTD7HTmczdEoSh0+eZfKQTtSrHlhzOXyh\nR8tI3hvVBYDbJi5n0brdLkdU+hRX8ugPzHTKkaq6yynvBiKdchSw06tNhlMX5ZTz1xtj8jmbk8uY\n6als2nOU1+/qSKt61dwOyW9a1avGgjHdiK5dhVHvpvDCZ9+TYzfSi43fk4eIlANuBt7Lf8zpSfjs\nb1tERopIsogkZ2Vl+eptjSkRVJU/frCObzZn8bferbmyRW23Q/K72mEVmH1PF26PbcDrX21l2NQk\nDp+wvUGKQ3H0PH4LpKrqHuf1HudSFM5z3mbGmYD3APT6Tl2mU85f/wuqOklVY1U1NiIi8CdBGeNL\n47/eyqykndx3VTP6xzV0O5xiU6FsKM/d2oa/3dKaZVv3cdNr37Fx1xG3wwp6xZE87uDnS1YAC4HB\nTnkwsMCrvr+IlBeRxnhujCc6l7iOiEi8M8pqkFcbYwzwwapMXvhsE7d0iOLh65q7HU6xExHu6nwJ\ns0Z24dTZHPqMX8ZCW9rdr/yaPESkMnAtMM+r+jngWhHZAvRwXqOq64E5wAZgETBGVfOW1BwNvIXn\nJvpW4FN/xm1MSbJs6z4enbuGLk1q8vytJXcuhy/EXFKDj+6/nFb1wnhg5ir+9vEG2yPdTyRY18yP\njY3V5ORkt8Mwxq827znKrROWUSesAnPv7Uq1isExJPdincnO5a8fb2Da8u10bVqTV+/oQM0q5d0O\nq0QQkRRVjS3ovJI9a8iYUmzvkVMMnZJEhbKeuRyWOH5WrkwIf+nVmn/d1o7k7Qe5+bWlpGXYfBBf\nsuRhTAl0/HQ2wxKSOHjiDFOGdKJ+jUpuhxSQ+sbU5/1RXQG4deIy3kveWUALU1iWPIwpYbJzcrlv\nRiobdx3l9Ts70joqeOdy+EKb+tVYeF83Yi+pwaNz1/L0gnWcybb7IBfLkocxJYiq8szC9Xy1KYtn\ne7XmqkuDfy6HL9SsUp5pw+IYcUVjpi3fzp1vrmDvUVsX62JY8jCmBHnrv9uYvnIHo37TlDs7l565\nHL5QJjSEp37Xklfu6MD6n45w4yvfkbL9oNthlViWPIwpIRat28XfP93I79rU5bHrW7gdTol1c7t6\nzBvdlQplQ+k/aTnTV24nWEed+pMlD2NKgNU7DzF29mraN6jOv/u1IySk9M7l8IXL6oax8L5udG1a\ni6fmr+OJ99M4dTan4Ibmfyx5GBPgdh44wd0JSURULc+bg2KpUDa04EamQNUrlWPykE7cd1UzZifv\n5PY3lvPToZNuh1ViWPIwJoAdPnmWYVOTOJOdy5QhnahlE918KjREeOT6FkwcEMPWrOPc9Op3rPhh\nv9thlQiWPIwJUHnLq2/bd5yJA2NoVruq2yEFrZ6t6/DBmK5Uq1SWu95ayeTvttl9kAJY8jAmAOUt\nr/5d+j7+0acNXZvWcjukoNesdlUWjOnG1ZfW5i8fbeCh2as5ecbug/waSx7GBKA3vv3hf8ur3xbb\noOAGxieqVijLGwNiePja5ixY8xO3TljGzgMn3A4rIFnyMCbAfJK2i+c+/Z6b2tXj99eWvuXV3RYS\nItx/TTSTh3Qi4+AJbnrtO77dbJvL5WfJw5gAkrrjIA/NXk3MJTV4oW9bG5Lroqta1GbhfZdTJ6wC\nQ6YkMv7rdLsP4sWShzEBYueBE4xISKZOtQpMGhhjQ3IDQKNalZk3uis3tKnLPxdtYsyMVI6dznY7\nrIBgycOYAHD4xFmGTEkkO1eZPKST7T0RQCqVK8Ord3TgyRsuZdG63dzy+lJ+yDrmdlius+RhjMvO\nZOdy7/QUdhw4wRsDY2gaUcXtkEw+IsLI7k15Z3hn9h07Ta/XlrJk4x63w3KVv7ehrS4ic0XkexHZ\nKCJdRCRcRBaLyBbnuYbX+eNEJF1ENonI9V71MSKS5hx7RUrzPpsmqKgqT81PY9nW/TzXpy3xTWq6\nHZI5j27NavHh/ZdzSa1KDE9I5j+LN5ObWzrvg/i75/EysEhVLwXaARuBJ4AlqhoNLHFeIyItgf5A\nK6AnMF5E8i76TgBGANHOo6ef4zamWIz/eivvpWTwwDXR3BpT3+1wTCHUr1GJuaO60qdjFC8v2cKI\nackcOXXW7bCKnd+Sh4hUA7oDbwOo6hlVPQT0AhKc0xKA3k65FzBLVU+r6jYgHYgTkbpAmKquUM9Q\nh2lebYwpsT5c8xMvfLaJXu3r8VCPaLfDMUVQoWwo/76tHX++uRXfbM6i12tL2bznqNthFSt/9jwa\nA1nAFBFZJSJviUhlIFJVdznn7AYinXIU4L1HZIZTF+WU89cbU2KlbD/Aw++toVOjGvyzb1vsSmzJ\nIyIM7tqIGSPiOXoqm96vL2XGyh2lZjivP5NHGaAjMEFVOwDHcS5R5XF6Ej77kxaRkSKSLCLJWVk2\nqccEpu37jzNiWgpR1SsyaWAs5cvYkNySLK5xOB/dfzntG1TnyflpDJqcSGYpWJ3Xn8kjA8hQ1ZXO\n67l4kske51IUzvNe53gm4L0OQ32nLtMp56//BVWdpKqxqhobERHhsy9ijK8cOnGGoVOTyFXPkNwa\nlcu5HZLxgTrVKvDu8M4827s1KdsPcv1/vmVmYnD3QvyWPFR1N7BTRPK2PLsG2AAsBAY7dYOBBU55\nIdBfRMqLSGM8N8YTnUtcR0Qk3hllNcirjTElxpnsXO55J4WMAyeZNDCWxrUqux2S8aGQEGFg/CV8\nNrY7betXY9y84O6F+Hu01f3AdBFZC7QH/g48B1wrIluAHs5rVHU9MAdPglkEjFHVvCUtRwNv4bmJ\nvhX41M9xG+NTqsoT89ayctsB/tm3LXGNw90OyfhJg/BKpaIXIsH2hfLExsZqcnKy22EYA8ArS7bw\n4uLNPNSjOQ/ayKpSY+eBEzw2dy3Lf9jPFdG1eO7WtkRVr+h2WOclIimqGlvQeTbD3Bg/W7A6kxcX\nb6ZPhygeuKaZ2+GYYtQgvBLT7+7Ms71a/a8XMitIeiGWPIzxo6QfD/Doe2vp3Dicf9zaxobklkIh\nIcLALo34bGx3WkeF8USQ3Aux5GGMn2zbd5yR05KpX6MibwyMsSG5pVyD8ErMuDs+aHohljyM8YOD\nx88wbGoSAJOHdKJ6JRuSa87dCxk8JYmfSmAvxJKHMT52OjuHe95JIfPgSd4cFEsjG5Jr8snrhfyl\nVyuSfzzA9f/5ltlJJasXYsnDGB9SVR6fu5bEHw/wwm1tiW1kQ3LNuYWECIO6NGLRg91pFRXG4++n\nMaQE9UIseRjjQy99sYUPVv/EI9c1p1d7W4LNFKxhzZ97IYnbSk4vxJKHMT7yfkoGLy/ZQt+Y+oy5\nyobkmsLL64V8NrY7Lev93AvZdThweyGWPIzxgRU/7OeJeWvp0qQmf7/FhuSaC9OwZiVmjojnzzd7\neiHXvfgtc5J2BmQvxJKHMRdpa9Yx7nknhQbhlZg4IIZyZezHyly4kBDPUu+Lxl5By3phPPb+2oDs\nhdi/cmMuwgFnSG6ZEGHqkDiqVSrrdkgmSFxSs/L/74X851vmJAdOL8SShzEX6NTZHEZOS2bX4VNM\nGhRLw5qV3A7JBBnvXshldcN4bO5ahk4NjF6IJQ9jLkBurvLo3LUkbz/Ii/3aEXNJDbdDMkHskpqV\nmTUinj/d1JKVPwRGL6RMYU4SkfLArUAj7zaq+hf/hGVMYPvPF5v5cM1PPNazBTe2red2OKYUCAkR\nhnRrzFWX1ubRuWt5bO5aPk3bxT/6tKVOtQrFH08hz1sA9AKy8Wwnm/cwptR5L3knr36Zzu2xDbj3\nN03dDseUMt69kBU/HODa/3zDey70Qgq1n4eIrFPV1sUQj8/Yfh7GH5al72PQ5EQ6Nwln6tA4yoba\nlV/jnu37j/Poe54VDa5qEeGTXoiv9/NYJiJtLioiY0q4LXuOMurdFBrVqsz4u2IscRjXXVKzMrNG\nxvPMTS1Z/sP+Yu2FFPZf/+VAiohsEpG1IpLmbC1rTKmweuchbp+0gnJlQpkypBPVKtqQXBMYQkKE\nod0as+jB7lxWJ4w/LljH7iOn/P65hbphDvz2Qt5cRH4EjgI5QLaqxopIODAbz833H4F+qnrQOX8c\nMNw5/wFV/cypjwGmAhWBT4AHNVAGO5ug99WmvYx+N5VaVcsxbVhnGoTbkFwTeBrV8vRCNu4+Qt1q\n/t/qtlA9D1XdDlQHbnIe1Z26wrhKVdt7XUN7AliiqtHAEuc1ItIS6A+0AnoC40Ukb/ecCcAIINp5\n9CzkZxtzUeamZHB3QjJNIirz/r1daWzLq5sAFhIitKpXrXg+qzAniciDwHSgtvN4V0Tuv8DP7AUk\nOOUEoLdX/SxVPa2q24B0IE5E6gJhqrrC6W1M82pjjF+oKhO+3soj760hvkk4s0bGU7tq8Q+HNCZQ\nFfay1XCgs6oeBxCR54HlwKsFtFPgCxHJAd5Q1UlApKruco7vBiKdchSwwqtthlN31innrzfGL3Jz\nlb98tIGpy37k5nb1+Ndt7Wy9KmPyKWzyEDz3IfLkOHUFuVxVM0WkNrBYRL73PqiqKiI+u3chIiOB\nkQANGzb01duaUuR0dg6/n7OGj9fuYvjljXnqhssICbEVco3Jr7DJYwqwUkTmO697A28X1EhVM53n\nvU7bOGCPiNRV1V3OJam9zumZQAOv5vWdukynnL/+XJ83CZgEnnkehfxuxgBw5NRZRk5LZsUPB3jq\nhssY0b2J2yEZE7AKe8P8RWAocMB5DFXVl87XRkQqi0jVvDJwHbAOWAgMdk4bjGf2Ok59fxEpLyKN\n8dwYT3QucR0RkXjxbJIwyKuNMT6x98gpbn9jBck/HuSl29tb4jCmAOfteYhImKoecYbX/ug88o6F\nq+qB8zSPBOY7m+KUAWao6iIRSQLmiMhwYDvQD0BV14vIHGADnmVQxqhq3qWy0fw8VPdT52GMT2zN\nOsagtxM5dOIMk4d0onvzCLdDMibgnXd5EhH5SFVvFJFteG5+/+8QnlsWAfvrmS1PYgpj1Y6DDJua\nRIgIU4fG0aZ+8QxzNCZQFXZ5kvP2PFT1Rue5sa8CMyZQfPn9HkZPTyUyrAIJQ+NoZHM4jCm0ws7z\nWFKYOmNKijnJOxkxLYXo2lWZO6qrJQ5jiqigex4VgEpALRGpwc/Dc8OwuRamBFJVxn+9lRc+28QV\n0bWYMCCGKuULO+jQGJOnoJ+ae4CxQD0ghZ+TxxHgNT/GZYzP5eQqf/5wPdOWb6d3+3r8s69N/jPm\nQhV0z+Nl4GURuV9VC5pNbkzAOnU2h4dmr+bTdbsZ2b0JT/S81Cb/GXMRCtVfV9VXRaQ10BKo4FU/\nzV+BGeMrh096Jv+t3HaAP/zuMu6+ImAHCRpTYhR2D/NngCvxJI9P8CzR/h2eRQqNCVi7D59iyJRE\ntmYd4+X+7enV3m7VGeMLhb1T2BdoB6xS1aEiEgm867+wjLl46XuPMnhyEodOnGHKkDguj67ldkjG\nBI3CJo+TqporItkiEoZnPaoGBTUyxi0p2w8yPCGJMiEhzL6nC62jbPKfMb5U2OSRLCLVgTfxjLo6\nhmdJdmMCzhcb9nDfzFTqhFVg2rDONKxpO/8Z42uFvWE+2ilOFJFFeDZnsj3MTcCZnbSDJ+evo1W9\nMCYP6UStKuXdDsmYoFTQJMGO5zumqqm+D8mYolNVXvsynX8v3kz35hFMuKsjlW3ynzF+U9BP17/P\nc0yBq30YizEXJCdXeXrBOqav3EGfDlE837ctZUNt8p8x/lTQJMGriisQYy7EqbM5PDhrFZ+t38Oo\n3zTl8Z4tcLYBMMb4UWHneVQCfg80VNWRIhINtFDVj/wanTHncfjEWUZMSybxxwM8fWNLhl1uiz8b\nU1wK27efApwBujqvM4G/+iUiYwph1+GT3PbGMlbtPMgrd3SwxGFMMSvsHcWmqnq7iNwBoKonxK4N\nGJds2XOUQZMTOXoqm4ShcXRtZpP/jCluhU0eZ0SkIs5ugiLSFDjtt6iM+RXJPx5geEIy5cqEMPue\neFrVs8l/xrihsJetngEWAQ1EZDqwBHisMA1FJFREVonIR87rcBFZLCJbnOcaXueOE5F0EdkkItd7\n1ceISJpz7BXr9ZROn6/fzV1vrSS8cjnm3dvVEocxLioweTj/UX8P9AGGADOBWFX9upCf8SCw0ev1\nE8ASVY3Gk4SecD6nJdAfaAX0BMaLSKjTZgIwAoh2Hj0L+dkmSMxYuYNR76ZwaZ2qzB3VhQbhNmvc\nGDcVmDxUVYFPVHW/qn6sqh+p6r7CvLmI1Ad+B7zlVd0LSHDKCUBvr/pZqnpaVbcB6UCciNTFM6N9\nhRPLNK82Jshl5+Ty90828uT8NLo3j2DmyHhq2qxxY1xX2HseqSLSSVWTivj+L+G5vFXVqy5SVXc5\n5d1ApFOOAlZ4nZfh1J11yvnrf0FERgIjARo2bFjEUE2gyTp6mvtmpLJy2wEGxDfkmZta2eQ/YwJE\nYZNHZ+AuEdkOHMezHa2qattfayAiNwJ7VTVFRK481zmqqiKiRYz5V6nqJGASQGxsrM/e1xS/lO0H\nGD09lcMnz/Jiv3b06Vjf7ZCMMV4KmzyuL/iUX+gG3CwiN+DZfTBMRN4F9ohIXVXd5VyS2uucn8n/\nX+a9vlOX6ZTz15sgpKokLPuRv368kXrVKzLv3jha1gtzOyxjTD6FuWEeCnymqtvzP87XTlXHqWp9\nVW2E50b4l6o6AFgIDHZOGwwscMoLgf4iUl5EGuO5MZ7oXOI6IiLxzs37QV5tTBA5cSabsbNX86cP\nN/Cb5hF8eN/lljiMCVAF9jxUNccZOttQVXf44DOfA+aIyHBgO9DP+Zz1IjIH2ABkA2NUNcdpMxqY\nClQEPnUeJohs23ecUe+ksHnvUR65rjmjr2xGSIiNyDYmUIlnAFMBJ4l8C3QAEvHc8wBAVW/2X2gX\nJzY2VpOTk90OwxTCZ+t388icNZQJFV7u34HuzSPcDsmYUktEUlQ1tqDzCnvP448XGY8xv5Cdk8u/\nF29mwtdbaVu/GuPv6kj9GjZ/w5iSoLA7CX4jIpFAJ6cqUVX3nq+NMeez79hpHpi5imVb93NHXEOe\nuaklFcqGFtzQGBMQCrskez/gBeBrPMN0XxWRR1V1rh9jM0Fq1Y6DjJ6eyv7jZ/hn37b0i21QcCNj\nTEAp7GWrp4BOeb0NEYkAvgAseZhCU1Wmr9zBnz9cT2RYBebd25XWUbY+lTElUWGTR0i+y1T7Kfyi\nisZw8kwOT32QxrzUTK5sEcFLt7eneqVybodljLlAhU0ei0TkMzyLIgLcDnzin5BMsNm+/zj3vJPC\npj1HGdsjmgeujrZhuMaUcOdNHiLSDM9aVI+KSB/gcufQcmC6v4MzJd+SjXsYO3s1ISJMHtKJq1rU\ndjskY4wPFNTzeAkYB6Cq84B5ACLSxjl2k1+jMyVWTq7y0hebefXLdFrVC2PigBhbRt2YIFJQ8ohU\n1bT8laqaJiKN/BKRKfEOHj/DA7NW8d8t+7gtpj7P9m5tw3CNCTIFJY/q5zlW0ZeBmOCwNuMQ976b\nStbR0/yjTxv6d2qAbfxoTPApaMRUsoiMyF8pIncDKf4JyZRUsxJ30HfCcgDeG9WFO+IaWuIwJkgV\n1PMYC8wXkbv4OVnEAuWAW/wZmCk5Tp3N4ekF65iTnMEV0bV4uX8HwivbMFxjgtl5k4eq7gG6ishV\nQGun+mNV/dLvkZkSYeeBE9w7PYV1mUe4/+pmjO3RnFAbhmtM0Cvs2lZfAV/5ORZTwny1aS9jZ60m\nV5W3BsXSo2VkwY2MMUGhsJMEjfmf3FzllS+38PKSLbSIrMrEATE0qlXZ7bCMMcXIkocpkkMnzvDQ\n7NV8tSmLPh2i+NstbahYzobhGlPaWPIwhbYu8zD3Tk9h9+FTPNu7NQM622gqY0orvy1uKCIVRCRR\nRNaIyHoR+bNTHy4ii0Vki/Ncw6vNOBFJd7a9vd6rPkZE0pxjr4j9j1Xs5iTv5NYJy8jOUWbf04WB\n8ZdY4jCmFPPnyringatVtR3QHugpIvHAE8ASVY0GljivEZGWQH+gFdATGC8ieddDJgAjgGjn0dOP\ncRsvp7NzGDcvjcfmriXmkhp8eP/ldGxYo+CGxpig5rfkoR7HnJdlnYcCvYAEpz4B6O2UewGzVPW0\nqm4D0oGPtJVpAAARiklEQVQ4EakLhKnqCvVsuD7Nq43xo6yjp+k3cTkzE3dw75VNmTYsjlpVyrsd\nljEmAPj1nofTc0gBmgGvq+pKEYlU1V3OKbuBvPGdUcAKr+YZTt1Zp5y/3vjR7sOnuPOtFew6dIqJ\nA2Lo2bqO2yEZYwKIX5OHquYA7UWkOp6Z6q3zHVcRUV99noiMBEYCNGzY0FdvW+pkHjrJnW+uYN/R\n0yQMiyOucbjbIRljAkyx7AaoqofwTDLsCexxLkXhPOftUJgJeG9mXd+py3TK+evP9TmTVDVWVWMj\nIiJ8+yVKiR37T9Bv4nIOHD/DO3d3tsRhjDknf462inB6HIhIReBa4HtgITDYOW0wsMApLwT6i0h5\nEWmM58Z4onOJ64iIxDujrAZ5tTE+9EPWMW6ftJzjZ7KZcXe83Rg3xvwqf162qgskOPc9QoA5qvqR\niCwH5ojIcGA70A9AVdeLyBxgA5ANjHEuewGMBqbiWQb+U+dhfGjLnqPc+dZKcnOVmSPiuaxumNsh\nGWMCmHgGMAWf2NhYTU5OdjuMEmHDT0cY8PZKQkOEGXd3JjqyqtshGWNcIiIpqhpb0Hk2w7yUW5tx\niIFvJ1KpXCgzRsTT2NaoMsYUgiWPUix1x0EGv51ItUplmTki3vYYN8YUWrGMtjKBJ3HbAQa+tZKa\nVcox+54uljiMMUViPY9SaGn6Pu5OSKZe9QrMGBFPZFgFt0MyxpQw1vMoZb7atJehU5NoGF6JWSO7\nWOIwxlwQ63mUIp+v3819M1YRHVmFd4Z3tn3GjTEXzJJHKfHx2l08OGsVraKqMW1oHNUqlXU7JGNM\nCWaXrUqBD1Zlcv/MVNo3qM67wy1xGGMunvU8gtycpJ08Pm8t8Y1r8tbgWCqXt79yY8zFs/9Jgti7\nK7bzhw/WcUV0LSYNjLW9xo0xPmPJI0i9/d02nv1oA9dcWpvX7+pIhbKWOIwxvmPJIwhN+Horzy/6\nnp6t6vDKHR0oV8ZubRljfMuSRxBRVV5Zks5/vtjMze3q8WK/dpQJtcRhjPE9Sx5BQlX51+ebeP2r\nrdzasT7/7NuW0BBxOyxjTJCy5BEEVJW/fbyRt77bxh1xDfhb7zaEWOIwxviRJY8SLjdXeWbhet5Z\nsZ0hXRvxzE0t8Wy4aIwx/mPJowTLzVWenJ/GrKSdjOzehHG/vdQShzGmWFjyKKGyc3J5bO5a5q3K\n5P6rm/H7a5tb4jDGFBu/DcURkQYi8pWIbBCR9SLyoFMfLiKLRWSL81zDq804EUkXkU0icr1XfYyI\npDnHXpFS/r/k2Zxcxs5ezbxVmTx8bXMevq6FJQ5jTLHy5zjObOBhVW0JxANjRKQl8ASwRFWjgSXO\na5xj/YFWQE9gvIjkzWybAIwAop1HTz/GHdBOZ+cwZnoqH63dxbjfXsr910S7HZIxphTyW/JQ1V2q\nmuqUjwIbgSigF5DgnJYA9HbKvYBZqnpaVbcB6UCciNQFwlR1haoqMM2rTaly6mwOo95J4fMNe/jT\nTS255zdN3Q7JGFNKFcsMMhFpBHQAVgKRqrrLObQbiHTKUcBOr2YZTl2UU85ff67PGSkiySKSnJWV\n5bP4A8HJMzncnZDM15uz+PstbRjSrbHbIRljSjG/Jw8RqQK8D4xV1SPex5yehPrqs1R1kqrGqmps\nRESEr97WdcdPZzNkSiLLtu7jhb7tuLNzQ7dDMsaUcn5NHiJSFk/imK6q85zqPc6lKJznvU59JtDA\nq3l9py7TKeevLxWOnDrLoMmJJG8/yH9ub0/fmPoFNzLGGD/z52grAd4GNqrqi16HFgKDnfJgYIFX\nfX8RKS8ijfHcGE90LnEdEZF45z0HebUJaodOnGHAWytZs/MQr93RgV7tz3m1zhhjip0/53l0AwYC\naSKy2ql7EngOmCMiw4HtQD8AVV0vInOADXhGao1R1Ryn3WhgKlAR+NR5BLX9x04z8O1E0vceY+KA\nGHq0jCy4kTHGFBPx3HYIPrGxsZqcnOx2GBdk1+GTDJ6cyPb9J5g0KJbfNA+e+zfGmMAmIimqGlvQ\neTbDPMBs2n2UIVMSOXoqmylDO9G1aS23QzLGmF+w5BFAlm/dz8h3kqlYNpQ593ShZb0wt0Myxphz\nsuQRIBau+YlH5qyhYc1KJAyLI6p6RbdDMsaYX2XJw2Wqylv/3cbfPtlIXKNw3hwUS7VKZd0Oyxhj\nzsuSh4tyc5VnP97AlKU/ckObOrzYrz0VyoYW3NAYY1xmycMlp87m8Ps5q/kkbTdDuzXij79rabv/\nGWNKDEseLjh84iwjpiWT+OMB/vC7y7j7iiZuh2SMMUViyaOYZR7yzOHYsf8Er9zRgZvb1XM7JGOM\nKTJLHsVow09HGDo1kRNnckgYFkeXpjXdDskYYy6IJY9isjR9H/e8k0KV8mV4b1QXLq1jcziMMSWX\nJY9i8MGqTB6du4YmtaowdVgn6lazORzGmJLNkocfqSoTv/mB5xd9T3yTcN4YGEu1ijaHwxhT8lny\n8JOcXOXPH65n2vLt3Ni2Lv/u147yZWwOhzEmOFjy8INTZ3N4cNYqPlu/hxFXNGbcby+zORzGmKBi\nycPHDh4/w93TkkndcZCnb2zJsMttr3FjTPCx5OFDOw+cYPCURDIOnuT1OztyQ5u6bodkjDF+YcnD\nR9ZlHmbo1CROn83h3eGdiWsc7nZIxhjjN/7cw3yyiOwVkXVedeEislhEtjjPNbyOjRORdBHZJCLX\ne9XHiEiac+wVZx/zgPLt5ixuf2M5ZUOE9+/taonDGBP0/JY88Ow53jNf3RPAElWNBpY4rxGRlkB/\noJXTZryI5A1NmgCMAKKdR/73dNXclAyGTU2iQXgl5o/pRnRkVbdDMsYYv/Nb8lDVb4ED+ap7AQlO\nOQHo7VU/S1VPq+o2IB2IE5G6QJiqrlDPZuvTvNq4SlV57cstPPLeGjo3CWfOqC5EhlVwOyxjjCkW\nxX3PI1JVdznl3UCkU44CVnidl+HUnXXK+etdlZ2Ty9ML1zNj5Q56t6/HP/u2o1wZf3bijDEmsLh2\nw1xVVUTUl+8pIiOBkQANGzb05Vv/z8kzOdw/M5UvNu5l1G+a8tj1LWwOhzGm1CnuX5f3OJeicJ73\nOvWZQAOv8+o7dZlOOX/9OanqJFWNVdXYiIgInwYOsP/Yae54cwVLvt/LX3q14onfXmqJwxhTKhV3\n8lgIDHbKg4EFXvX9RaS8iDTGc2M80bnEdURE4p1RVoO82hSr7fuP03ficjbuOsKEu2IY1KWRG2EY\nY0xA8NtlKxGZCVwJ1BKRDOAZ4DlgjogMB7YD/QBUdb2IzAE2ANnAGFXNcd5qNJ6RWxWBT51HsVqb\ncYhhU5PIzlWm392Z2EY2FNcYU7qJZxBT8ImNjdXk5OSLfp+vNu1lzPRUwiuXY+rQOJrVruKD6Iwx\nJjCJSIqqxhZ0ns0wP4/ZSTt4cv46Lq1TlSlDO1G7qg3FNcYYsORxTqrKy0u28NIXW7giuhYTBsRQ\npbz9URljTB77HzGf7Jxc/vDBOmYl7aRPxyiev7UtZUNtDocxxniz5OHlTHYu97yTzFebsrjvqmY8\nfF1zAnApLWOMcZ0lDy9lQ4UmEVW45rJIBsRf4nY4xhgTsCx5eBER/nhjS7fDMMaYgGcX840xxhSZ\nJQ9jjDFFZsnDGGNMkVnyMMYYU2SWPIwxxhSZJQ9jjDFFZsnDGGNMkVnyMMYYU2RBuyS7iGTh2TOk\nJKkF7HM7iGJm37l0sO9cclyiqgVuxRq0yaMkEpHkwqyjH0zsO5cO9p2Dj122MsYYU2SWPIwxxhSZ\nJY/AMsntAFxg37l0sO8cZOyehzHGmCKznocxxpgis+QRYETkBRH5XkTWish8Eanudkz+JiK3ich6\nEckVkaAdnQIgIj1FZJOIpIvIE27H428iMllE9orIOrdjKQ4i0kBEvhKRDc6/6QfdjslfLHkEnsVA\na1VtC2wGxrkcT3FYB/QBvnU7EH8SkVDgdeC3QEvgDhEJ9t3HpgI93Q6iGGUDD6tqSyAeGBOsf8eW\nPAKMqn6uqtnOyxVAfTfjKQ6qulFVN7kdRzGIA9JV9QdVPQPMAnq5HJNfqeq3wAG34yguqrpLVVOd\n8lFgIxDlblT+YckjsA0DPnU7COMzUcBOr9cZBOl/LAZEpBHQAVjpbiT+YXuYu0BEvgDqnOPQU6q6\nwDnnKTxd4OnFGZu/FOY7GxMsRKQK8D4wVlWPuB2PP1jycIGq9jjfcREZAtwIXKNBMpa6oO9cSmQC\nDbxe13fqTBARkbJ4Esd0VZ3ndjz+YpetAoyI9AQeA25W1RNux2N8KgmIFpHGIlIO6A8sdDkm40Mi\nIsDbwEZVfdHtePzJkkfgeQ2oCiwWkdUiMtHtgPxNRG4RkQygC/CxiHzmdkz+4AyEuA/4DM+N1Dmq\nut7dqPxLRGYCy4EWIpIhIsPdjsnPugEDgaudn9/VInKD20H5g80wN8YYU2TW8zDGGFNkljyMMcYU\nmSUPY4wxRWbJwxhjTJFZ8jDGGFNkljxMiSAiNb2GPu4WkUyv18v88HlXishHvn7fX/ksEZEvRSSs\nOD6vIAV9dxGJEJFFxRmTCTw2w9yUCKq6H2gPICJ/Ao6p6r9cDcp3bgDWlJRlLFQ1S0R2iUg3VV3q\ndjzGHdbzMCWeiBxznq8UkW9EZIGI/CAiz4nIXSKSKCJpItLUOS9CRN4XkSTn0a0In/W002adiExy\nZhQjIp2cPVhWO3uyrHPqWzmfv9o5Hn2Ot70LyFvTrLKIfCwia5zPuN2pj3G+W4qIfCYidZ36ZiLy\nhXN+qog0dXoyLzjt07ze40oR+VpE5opnz5jpXvH3dOpS8SyPn/d9f+PVw1slIlWdQx84cZvSSlXt\nYY8S9QD+BDzi9fqY83wlcAioC5THs27Un51jDwIvOeUZwOVOuSGepSTyf8aVwEfnqA/3Kr8D3OSU\n1wFdnPJzwDqn/Cpwl1MuB1Q8x3tuB6o65VuBN72OVQPKAsuACKfudmCyU14J3OKUKwCVnPdYDIQC\nkcAO58/kSuAwnjW1QvDM/L7cabcTiAYEmJP33YEPgW5OuQpQxilHAWlu/1uwh3sP63mYYJOknj0V\nTgNbgc+d+jSgkVPuAbwmIqvxrC0V5qyCWhhXichKEUkDrgZaiWe3x6qqutw5Z4bX+cuBJ0XkceAS\nVT15jvcMV8/eD3lxXisiz4vIFap6GGgBtMZZsgb4A1Df6QVEqep8AFU9pZ710C4HZqpqjqruAb4B\nOjnvn6iqGaqaC6x2/kwuBbap6hZVVeBdr9iWAi+KyANAdf15r5m9QL1C/pmZIGTJwwSb017lXK/X\nufx8jy8EiFfV9s4jSlWPFfTGIlIBGA/0VdU2wJt4fmv/Vao6A7gZOAl8IiJXn+O0bBEJcc7fDHTE\nk0T+KiJP4+kNrPeKt42qXldQvL/C+88nhwLue6rqc8DdQEVgqYhc6hyq4HwnU0pZ8jCl0efA/Xkv\nRKR9IdvlJYp9Tk+lL4CqHgKOikhn53h/r/duAvygqq/gua/R9hzvuwlo4pxfDzihqu8CL+BJJJuA\nCBHp4pxTVkRaOb2VDBHp7dSXF5FKwH+B20UkVEQigO5A4nm+1/dAo7x7QsAdXvE3VdU0VX0ez6rA\necmjOZ5LdaaUsuRhSqMHgFjnBvYGYNSvnHeNeFaCzRDPqr+X4eltrMOzMm6S17nDgTedy0qV8dxb\nAOgHrHPqWwPTzvE5H+O5HwHQBkh0zn8G+Kt6tqztCzwvImvwXG7q6pw/EHhARNbiuS9SB5gPrAXW\nAF8Cj6nq7l/7w1DVU8BIPCsap+K5JJVnrHPjfS1wlp93trzKiduUUraqrjE+ICJV8i59icgTQF1V\nfbCQbesC01T1Wn/G6Esi8i3QS1UPuh2LcYfN8zDGN34nIuPw/ExtB4YUtqGq7hKRN0UkTEvAXA/n\nUtiLljhKN+t5GGOMKTK752GMMabILHkYY4wpMksexhhjisyShzHGmCKz5GGMMabILHkYY4wpsv8D\nOmuZIAzOx4IAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Yet another Example with longer Lightcurve\n", + "\n", + "I will be using same lightcurves as in the example above but with much longer duration and shorter lags.
\n", + "Both Lightcurves are chosen to be more or less same with a certain phase shift to demonstrate Correlation in a better way.\n", + "\n", + "Again Generating two signals this time without poission noise so that time lag can be demonstrated. For noisy lightcurves, accurate calculation requires interpolation." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "dt = 0.0001 # seconds\n", + "exposure = 50. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 * dt # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*freq*times + np.pi/2) + 900 * dt # counts/s" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Converting noisy signals into Lightcurves." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc1 = Lightcurve(times, signal_1)\n", + "lc2 = Lightcurve(times, signal_2)\n", + "\n", + "len(lc1)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAowAAAGICAYAAADLSrFdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXnYZUV1Lv7WGb7v6wEQFHAWicarxAn0EpOoaG5EvYom\ncYjBkUSj16tx+DlFQUUIV41er2MMGpwRY4JCjAMqOCGoiFFRgiDIKFNDQ3d/wzl71++PPZzadapq\nrdq79jn7dNd6nn56+FbvU/WetVatWu+q2kJKiShRokSJEiVKlChRbNKb9wCiRIkSJUqUKFGidFti\nwhglSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4JSaM\nUaJEiRIlSpQoUZwSE8YoUaJEiRIlSpQoTokJY5QoUaJEiRIlShSnxIQxSpQoUaJEiRIlilNiwhgl\nSpQoUaJEiRLFKTFhjBIlSpQoUaJEieKUmDBGiRIlSpQoUaJEcUpMGKNEiRIlSpQoUaI4ZTDvASy6\n3OlOd5IHHXTQvIcRJUqUKFGiRIlCygUXXHCTlHJ/3/8XE8aGctBBB+FHP/rRvIcRJUqUKFGiRIlC\nihDiN3X+X6Sko0SJEiVKlChRojglJoxRokSJEiVKlChRnBITxihRokSJEiVKlChOiQljlChRokSJ\nEiVKFKfEhDFKlChRokSJEiWKU2LCGCVKlChRokSJEsUpMWGMEiVKlChRokSJ4pSFSBiFEEcKIb4p\nhPitEGJdCHG1EOJzQogHaHr7CiE+IoS4SQixUwjxdSHEAw3PWxFCvFMIcZ0QYlUI8X0hxKNmN6Mo\nUaJEiRIlSpTFkYVIGAHsB+ACAP8bwOMAvAHAIQDOE0LcCwCEEALAmQAeD+BlAP4cwBDA2UKIu2vP\n+yiAFwI4DsCTAFwH4KtCiIe0P5UoUaJEiRIlSpTFkoV404uU8lQAp6r/JoT4AYCLATwNwLsAHAXg\nDwE8Vkp5dq7zfQCXA3gtgJfn//ZgAH8J4Bgp5Sn5v30LwEUAjs+fEyVKlChRokSJEiWXRakwmuTm\n/Pdx/vtRAK4tkkUAkFJuR1Z1fIry/44CMAJwmqI3BvBZAEcKIZbbHHSUKFGiRIkSJcqiyUIljEKI\nvhBiSQhxXwAfBvBbTCqPhwD4ueG/XQTgnkKIrYre5VLKXQa9JQD3CT/yKFGiRIkSJUqUxZWFShgB\nnA9gHcAlAB6EjH6+If/ZfgBuMfyfbfnv+zL19tN/IIQ4x/ar5jxqybvfDeyzD3DBBW69008HtmzJ\nfnfJBRcAd7gD8K53ufWuvRa4612B//W/3Hrr68AhhwCPe5xbDwCe+ETg/vcHVlfden/7t8Cd7wxc\ndZVb733vA/beG/jBD9x6Z56ZYfP5z7v1fvITYN99gbe/3a13/fXA3e8OvPCFbr3RCHjQg4DHPAaQ\n0q171FHA/e4H7Nzp1nv1q4EDDwSuuMKt96EPAXvtBZx7rlvvy18Gtm4FTj3VrfeznwH77QeceKJb\n76abgHveE3j+89164zFw6KHAIx9JY/Pnfw7c977Abbe59V7/emD//YHLLnPrnXxyNudvf9utd9ZZ\nmd4nP+nW++UvgTveEXjLW9x627YBBx0EPPvZbr0kAR7+cOARjwDS1K37F38BHHwwcOutbr1jjwXu\ndCfgkkvceqecks357LPdet/8ZqZ3yiluvUsuyb6TN77Rrbd9ezaPZz7TrZemGS4Pf3iGk0ue/ewM\n75tvduu99a2Zbf/iF269T30qiyNnneXW+/a3M987+WS33mWXAQccALzudW69HTuA+9wn8wOXSJn5\n06GHZv7lkhe8IPPTG2906514YhYTf/Yzt96pp2bYfPnLbr1zz81i9gc/6Na74ooszr3qVW69nTuB\n3/3dLH66RMosDj/4wcDGhlv3RS/K4vtvf+vWe8c7srX0Jz9x633+8xk2Z57p1uusSCkX5heA+wM4\nHMCzkB2CuRrAQfnPLgHwWcP/+WsAEsA98r9/DcB5Br3/kes90vCzc2y/DjvsMDkryUxdymOOces9\n9KGZ3u/9nlvvJS+ZPNMln/gET+9nP5vobdtm11tbm+idf777mYXee9/L0zv6aLfe4Ydneve9r1vv\nla/kzflzn+PpXXzxRO/66+16GxsTve98x/3MQu+d73TrLS1lek9/ulvvUY/K9O5xD7fe617Hm/MZ\nZ0z00tSud9llE71rrrHrJclE7+tfd392oXfCCW69rVszvaOOcus97nGZ3oEHuvXe/GYeNl/5ykQv\nSex6v/nNRO+KK+x6aTrR+4//cH92oXfssW69O94x0zvySLfek5+c6d3hDm69k07iYfPNb070RiO7\n3rXXTvR+9Sv3Mwu900/n6b3udW69u90t0zviCLfe056W6W3a5NZ717t42Hz3uxO99XW73o03TvR+\n+Uv3Mwu9U0/l6b3iFW693/mdTO8Rj3DrHX10ptfrufXe/34eNuefP9Hbtcuud+utE72f/tT9zELv\nYx/j6b34xW69+98/0zv0ULde2wLgR7JGDrZQFUYp5S+llOfL7BDMHwPYCuD1+Y9vwaSKqMp+ys85\netv0H0gpj7D9qjuXJnLlle6f/+d/Zr//3ETQK0JV7QpRqzmunby6C7vhBrve9dfz9KRSbaIqSoVc\nfrn758Xu+Fe/cutdcw3v89Rqjmu3ysVG3eVTO/5Ctm93/7wY16WXuvWKqgplF9ddxxvXNsWTdukN\nIIpwsVGrQ9umvJQeg0l27Mh+p6ptF1+c/a7arkmonxdy002TP7tsm4uNagO3mPgTg1D2VeD9y1+6\n9QrsqMom155VPdczudgU3zFA+0oh1PdYxIeLLnLrFT5HMSlU5bMQdZ6u/8PFZm1t8ufbb+eN4dpr\n3T8vqvpUJbKI1VTlXLUBdU3QRf3OXLbGxWY0mvxZtSGXXH21++eFL1GVyK7KQiWMqkgpbwVwKSY9\nhxch60/U5QEArpRS7lD07i2E2GzQ28if2WlZJo7lFA4ohFtPDRYuUZ3KFXBVR+QGepceNxlThcJm\nfZ33HC42apAKMWeunhrAKMqpkJUV98+52HD1Qs+Zq8f97lSh7Ib7TFXPtbjNCxt1ERwO7XqqhMJG\nTZpcScK8sFHHFAobrq+o7Sfqd6RL6Dmr8csV21VbXlqy66kSym7Ucbn+T2hs1KSTm0xTMbYQCpuu\nysImjEKIAwH8NwBFl9IZAO4mhHi0orM3gCfnPyvkTGT3Mz5d0RsAeCaAr0kpmS4+W1Ed1rUQ2f6P\nSXrKt+/SVSsgruoFV49bDalTNfGZM1dcCRl3jG1iSFV2CgmFjVpldi2Iob/nOlhzK0qhsFEXNFdV\ndV4+pS583Kp9KGzUTY7rs+flU2rSRvUPFxIKG/V7cflzm77i0lP9nJsEh8Km6+uPuj5QvbSFcNfw\nrslC3MMohDgdwI8B/BTAbQB+F8ArkV2pUxzZOAPA9wF8SgjxGmTU8xsACADvKJ4lpbxQCHEagPcI\nIYbI7ml8CYB7Azh6JhOqIaqTUvQGV9Sd7NoasGmTWU/9PFcgbVPPRQmoTuranQPAYEDrANWFf3U1\na1xvMsZ5YagGJiqYDZjRQP9s2255XvbAfZ4qFC1WB5sdO7IGd0qviz6lShvY7NyZHRKg9LroU6q0\nhc3++/P0OM+bJYaqUNj0+5M/S2lnxLrgK7P2qa7KolQYzwPwVAAfB/AlAK8C8C0AD5FSXgIAUsoU\n2VtbzgLwQQCnA0gAPEZKqXdlvQDAKQBOyJ93DwCPl1L+uP2p1BPVKEMljHpS1PSzQ+vVGV8dOpJ6\nZugxzlJPpfK5lQFKFskeXHpqAh0qgHfdHrjj86mAcNmP3cWnfEStPrmYiq77ShvYqPHIFbfn9T2H\nxnp3kIWoMEop3w6AuOAEkFJuA3BM/sult4os6SQO6ndH2jBKbqLF/ezQeqHH5yPzGuO8MASmF37b\njr/rcwn9ucA07aRWR7owxtAYqlV4qn9Y35TY+ri6/j1z9Xw2GlymYnfxFZ/WKX2MNoZrXt/zPAsW\nXZVFqTDu8cLd7ehO6nLaru/kQ48PqAZ4F0Xb9Z18G7tfbjWy63Npo2rS5iKzyBj66Hb9e+bqcStj\nbXx21zFUNxpU60/Xv+fQWKtrT6Sko7QqdRwWcFcHuu6IofXSlN8L2vW5tJEUdX2MEZvu6c3zs7uu\nN8/P7opeiBaF3UVPTSzHY/4BmS5JTBgXRFRj41IMlG4dQ+d+dgi90OPTq2ZdHOO8MNQD2CzH2HWs\npQzfb7VoGHKZikX+nuuMb2PDvfB3YYzzwlBKd5WxC2OcF9bUM7sqMWFcEKmz26F0u04JtDm+UM9c\nNAxtC38b2CySPayv22kiPbDvTvbAeV6a2hf+8bja39n17zn0+Ex/L0TKboxxXhhSul0Y47ywpnS7\nKjFhXBCZZ1K0SHquhX9Px8a18O/p2AD2hT9iY9eN2Nh1dUaj63OZJTZJUo1FXZ/LrJPprkpMGBdE\n1MVMdzabHhDGYbt+So274+diI2U35tIGNjbdNqpoi6Tn0o3YRGxsei7diM2eh836up3F8ZlzVyUm\njAsiunFxK0XcxJLba9J1PZcuV29jo+r0XZ/zLLFJkupBqq7PeZbY6BRk1+c8S2zqfnbX9Vy6uys2\nScJvbdnTsHHp+sy5qxITxgWR0EYZHTZiU0cvbjTseqNRtR2i63OOGw27XpLwW1v2tI2GSzfG2Jgw\nRumA6P0wtutyQuvpul3Xc+lGbCI2Nj2X7u6KTZraT/iGnrP+713HBrAv6KGx0ZPTRcBmVr6i31Cw\nJ2DTZYkJ44KI/lop16lFjp7+767djvrMWepxL4ENjQ1XT//ZPDG0UUTc77kNbOZlN6qelPakaJ52\n0wWfcunu6T7l0l0En2oTQ5duaAz1Km8XfaqN77mrEhPGBRHduGy7E64e13j1u7Rcu6LQenWToqbY\ncPVMY7QJN4DXwTBEUsQN4D7YtGk3PknRrOzBZxPWBZ/S/5/r37vuU6ExdOnOC0Ndd15xyfXZbWPY\nRZ9qI3Z2VWLCuCBS1yibGq+eiIQOPj5BSg8yNr3Q2MwrmQ5RKepKUjSvZNr1zHn5lK47T59q+j2H\n1tN/Ni8MXbrzwlD/2TyT6Vn5yp7oU12WmDAuiMxr4e9KRcn0d9u/z6oa0nYyHaIaMq9AL2U1wY8V\nRvvPok/ZdeeZFM0qdrYdY+eZFM0rmQ6N4XjcvO3H53vuqsSEcUGk7Z6iptSBrhtaD2g+xnlhqOuG\noJLa/p6bYu2TTNeZcwjadV72oCfT0afsuqF9ZZ4+FRqb0Bi6ToZ3Zf3ZE+yhyxITxgWRruzwYjXE\nf3z6z/aECmNXqiauZ87LHvRkOvrURPQ2j9C+4joZvqdXGF26XVl/9oSKc5clJowLIl1Z+EMnRW0s\n/KGxmVcyvScGep8FITRFtLv4lOsQVNd9qm4y3YavzOp75ur5VKa7khTNK5luY/2Zpd93VWLCuCAS\nuoTPNd62adcQ1ZC2adcQASD0dTltf8+zwlrX9aGauSfDZ2UPXWllcOnurj4VApuuY9hGMj0vvw8d\nl3x6ptu2mxB+31WJCeOCSOgdXtvXGnD1XM3EbV8JMysM9Z/57GqbngzvOob6z+ZZKeqanv6zENh0\n3R5m4VNdi51t2E2dSmSIz54Xhm0fQHTptvH9dVViwrgg0hVKgLvDayMp6hp9xh2frttGj1no77nr\nlDSwuPbQpWR6UTHUdee58HcNQ/1newIlvTv5VJclJowLIl2hBELQJV2nfkKPr+6p2FmOcREp6a7Z\nQ6SkIyXd5uf62A03KdpdKOm6PuVzMjxS0jFhXBjpyg4v9O7X55ld28lzx1e398jns7u2k28jmd5d\n7GF3qoZ0qcI4r0NQXcNQ/9k8T4Z3LS756MYK47TEhHFBJLSD1e0hCX2azaU7rzG2Pb42kqJZjbHt\n8bWRTM/KHkKPz9TI3/T1mLuLT+k/a+Nk+KJiCCye389ro+HSnZffd1liwrggUhjb8nL174umtwhj\njNjMXm9pafJ3KilSdWc5xjpzafK8YlHt97NfAJ0Udf17DqWnJtNdt4cYR7qjtyhj7KrEhHFBpAiO\nmzdnv1M7N0qvMNZQz+PqLcIY2xrfpk2T/0edDF/079lXb2lpkhTZDkEV/75ly3zGyNULPb7BABgO\nwzyz6/bAHV+ROPd6kwW4a2OcF4ZqMl3EnK6NcRHWn3n5fZclJowLIrqDUbuYeekVAcrVTDzvMc5L\nbzjMFn+APhne9bm0gU2RFHFtrKtzCT0+H2y6/j3P0266PpdQemplmlt97epcQuupyXRX/b7LEhPG\nBRHdKKmEg9LTd6BNn6cGcC59Nq8xzgtDn4Sx699zG3Yza2wWRS8kNl23h+hT4cbXZZ+aF4ZqMt1V\nbLosMWFcECmMa2Wl+ve6eoXx+j6PersGFaTU5vSCSpr1GOeFISeAz3uM89KbBzZd0WvqUz6fvTv7\nVFfHOC8Mu+xTbcWlYk1JEnPbzyLEmy5LTBgXRHQHo6p3belRAWAwcAdwdYdXUEmzHuO8MKSwUemS\neX/PXcNG1VXbHmY5Rq6e7/ia+lSdMe6OPtXVMc4Lwy7Yzaz1lpayvlbA3BLVJjah4lKXJSaMCyKL\nQglQO7c6u9+uUz+hsDEl0139nmdtN6ZkuqtziZT07Ma3J1LSy8uAEJlPmJIinyraonzP81h/IiU9\nLTFhXBCZ96IVigZp02G7nkio/Z1dDWbzwnAeyfSiYOjT5tF1H/BJioAsIXJViiifanOMXbWHOnGk\n63azJ60/XZaYMC6IhO6T4Bq57+cOBu4AztVrc4zzwpCiz3ywmff3PC+74SQI854Lt7qiJkWufisu\nNj6N/F21B1Mi6GptoXzKp2d6UXyKsgeVdu2qryzC+jMvbLosMWFcEJl3bwi3P4NqQufqtTnGeWE4\nT2y6gKEpKVokbNqwB1dStKdjE2LOpsr0ovtUKGxM9zV21R72pPWnyxITxgWRPbGHpK0xdrXfqg26\nZN4YcpvQd4feo3n5yu7oU/PAZlF8itu+0eU2j66vP/Ns8+iyxIRxQWSRKAEu7bq70GdLS7wmdB+6\nZN7XqHTNHtrAZt5688Bm3vZQ52R4E2pxT/Sp0BjWGeOirz8+yXRobLosMWFcEJl3NaTo/7ElRdwm\ndK5enR3ePA9shDjMwn1enTHOs0E/hD10AZt52k3Exq4Xfaq5Xter9nV6X2ftU/HQS5TOiK9Rhtar\n0xsSItD7VE18e0jawCbU4jbry8/bDODzohbn5Std9ak6Y/TtRZun3TTBsM4YfX0qFIZ7ok91uc0j\ndOzssixEwiiEeJoQ4gtCiKuEEKtCiP8SQpwkhNhL09tXCPERIcRNQoidQoivCyEeaHjeihDinUKI\n6/LnfV8I8ajZzchfCuOigk9benX6ZlxN6KH0THOhKIE2sZnFnFVahWrk75LdhJoz1civV6ZnPWfu\n587ap1Rd3zkvgk81wbDOGOeFYRdi7Dx9ivsGl1ljEyredFkWImEE8P8BSAC8AcATAHwIwEsAnCWE\n6AGAEEIAOBPA4wG8DMCfAxgCOFsIcXfteR8F8EIAxwF4EoDrAHxVCPGQ9qdST+a9w/O5yiFE5bBO\nhXGe2HDnMksM68xlntiE2PEX/+bTyD+vasisfaXNyvSi+1SdMbap57pRoA27CU27tlFx9n2Dy6xj\n7J5QYRzMewBMebKU8kbl7+cIIbYB+DiAIwB8E8BRAP4QwGOllGcDgBDi+wAuB/BaAC/P/+3BAP4S\nwDFSylPyf/sWgIsAHJ8/p3My7x6SWZf626RL9kRsFv2S4S5gs7vYjVqZ3h2wKRKIJti0eSrW5/Bc\nrze5rLxI4nznsjv7ysZGpttFbGIPY0dESxYL+WH++93y348CcG2RLOb/bzuyquNTlP93FIARgNMU\nvTGAzwI4UgixHHDowaQLOzxur9C8G/nn0W81ywb9OtjMs4dxlvbQJjZt2k1XfSp0D2Mbh+dCxqU2\nKpE+dwjOy1dCJ9Pz7Gmd9/qzO1cYFyJhtMij899/mf9+CICfG/QuAnBPIcRWRe9yKeUug94SgPuE\nHmgIGY8yjqIIuFSfRGg96i0SJj3qIt0Qeqa52BxxFtjMYs5NsJmn3exp2FBvcNkTfarNucwCQ1XX\n1x4oDLvqK4Verzc/n+oqNqY2j6ZzNgaNjshCJoxCiLsho4+/LqX8Uf7P+wG4xaC+Lf99X6befobP\nO8f2q/YkuHLbbcBf/RVelH4IALE7+eQn8fhbT6X1vvQlPPGy9wGQbr3zzsMR3z8JS1h397lccgkO\nPeMt2Bfb3Dv0G27AQR89FvfCFW699XVsffdb8RBc6NaTEnj3u3HE6Cx6zp/6FB6/7dO03le+gsdf\n8l6Q2Pzwh3j09/4eK1h1j/HSS/Hg09+M/XCzG8ObbsI9Tj4W98av3c/b2MDmfzgeh+ICGpv/9//w\n2I2v0HP+zGfwhBs/Qet97Ws48uL3QCB1N6FfcAEe+e0TsQm73GP89a/xwH99M+6EG91627bhbv94\nLH4Hl7r1RiMsv/NteDh+QFeK3vc+/PHal+g5n3YannD9x2i9b3wDR170bvSQVL7nqUXhwgvxR2e/\nDZux0z3GK67AIZ87Dgfgerferbfizh86DvfFJW698RjDt5+Aw3Eejc0HP4g/WT2DnvO//AueeN1H\nab2zz8bjfvoPJTbWz/7pT/EH33gbtmCHW+/KK3H/U4/DnXGd26duuw0HvP843A8Xu5+XJOi//e/x\nB/gejc2HP4w/2fkFes7/9m94wtUn03rf+hb+x0/eiT7G7s/++c/x+187HnvhNrfeNdfgfp8+DnfB\ntW69HTtwx/e+GffHL9wYpinwf/4PHolv09icfDIed/u/0nP+4hfxxCv/kdb77nfxxxe8HQOM3GP8\nxS/w37/8VuyN7e4xXnst7vOJY3E3XO3W27UL+77nzTgEP3frpSnk29+BR+OcSjJtnMspp+DI7Z+j\n5/ze9wIvepG5/N4BWbiEMa8UfhHAGMAL5jyc9uUb3wD++Z/xJpwAIOtzAczOgOc+F//3t3+JvbHd\nvqtNU+AZz8CLf/FyPBQXune/f/M3eNK5f4dn4VT3Tv7v/g4P/4+34tV4l1vvPe/BwZ85Ae/Aa916\nn/kM9n3PW3AKXuDWO/dc4NWvxueTpwKQdmxuuAF4znPwjmuejf1ws33OUgLPeAZe+PO/xeE4v6I3\nlRS95CV4wnffiKPxafcYjz0Wh/378Xgd3u7We+97cdAnT8C78Gq33mmnYe93vRkfx/Pcej/6EfCK\nV+BzG0+BQGqf87ZtwNFH44SrnocDcL0dQymBZz0LL/jPV+KP8F30+46k6KUvxeO+/SY8Dx93j/Et\nb8FDzzgef4e/d+t94AO4x8dPwHvwCrfev/4rtr79OHwSz3Hr/eQnwMtfjlNXn4IeEjs227cDf/EX\neMtvXoC74hq3rxx9NJ594avxGJzt/uyXvxyPPec4/BU+6tY7/ng86Atvw5twglvvH/8Rd//nt+F9\neJlb74tfxOaTjsVn8JduvYsuAl76Unzq9qdggJF9zjt2AM98Jv7u13+Ne+I3bmye+1w868evwZH4\nqvuzX/EKHPHN4/A3+LBb78QTcci/vQ1vxlvdev/0T7jLR96GD+Clbr0vfQnLx78Rp+JZbr1LLgFe\n/GJ8bPufYgnr9jmvrQFPfzpee+mLcDAus/sUADz/+XjGD1+L/4kvuT/7Va/CI7/+ZrwEH3LrnXQS\n7v/5t+FtONat95GP4MAPH49/xIvdel/5CobHvQGn4ZluvcsuA170IvzTtqdhBat2bEYj4GlPwysv\neQnuh4vddnPMMfiz81+Pp+IL7s9+zWvwB197C16G97n13vEO3O9zJ+BEvNGtd8op2P9Dx+NkvNCt\n941voPeG1+HzeJpb78orgWOOwftvfCa2YId9zuMx8PrXAx/5CPCd7xgAmb8sVMIohNiErCfxYABH\nSimvVn58CyZVRFX2U37O0dum/0BKeYTtV515eMlTnwq5soK74jrs07vdvsu6+OLyjwfj13ajvOYa\nYFfGxv8OLnMnlj/9KQDgAfiFuzT/r9mu8sk4s5JImIIUADwD/+LW+9a3AAAPwX+69fI5b8Eu7KMk\nyVPj+6//Kv/oxOb664Hbby/1BoPsDS6AtuGTErjgAgDAg/BT9xg/+1kAwJ/idHdQ+fjHc70vuJ93\n7rkAgN/DRW69X2adGsvYwH7YZp+zgo3THrZty34hw8b52eefDwA4FD92633ykwCAp1P28OmsMvyk\nfFG16v0wa2u+Hy5hYTNAggNwg33Ov/pV+UcnNtu3Z7YD4N643P3Z3/0uAOBwnO9Ouk85BQDKzZr1\neZ/LqhZH4mtuvQsvBAAcjMvR70kSGwC4C66z+9Rll5W7qPvgUjs2O3cCV2dhmsTm7Kz9/A/xPbfe\nP/0TAOA5+KQ7Lp1+OgDgj/FN9/N+9jMAwD1xFQa91FnJKuRurg3EZZeVAeO++JUdw7U14IorAGT2\n5RzjWRmLcgTOcet94AMAgOfjY269f/93AMCj8B13XMrnfBf8Fsu9EWv9uSeutGNz+eXlPzrtZjQq\n/e+++JV7jP/xHwCAP8FZ7jm///0AgOfhE269r34VAPAInMeKI3fCzdjcW7OPT8HmIFxhn/NVVwGr\nq8Bd7gI8+tHooixMwiiEGAL4PICHAXiilPJnmspFyPoTdXkAgCullDsUvXsLITYb9DYAXBpu1AFE\nCGD/AwAAd+7faDfKq64q/3hn/Na+q9X0itOSU03oN99c/nETVsleIQBYx7Jbr+j6BdF7tLZW/nG5\nN2LN+S7KXIw7vFx8sLGOcfv28o9L2GBhs4GlMNjsmrTebhKOIFXTHqzBTMHwQFxvH+POneUfe0hn\ni43yvewldgTHhqN3AG6wj3F9vfxjgj4LmxGGYbBR/Hnf3nZ3NSSXINhcPdnT748b7WNUsilyzrmM\nMXDrKf/g1MuTfQDYv3fz7HzqmmvKP94RN9vHqNAbZIzNhbQvLjbXXlv+8cBe+PXHqnfddeUf74Bb\nWXNew4qLlHjHAAAgAElEQVRbT7Extk/1pJP+L+QuvevD+dTBB6OrshAJY37X4qcBPBbAU6WU5xnU\nzgBwNyHEo5X/tzeAJ+c/K+RMZPczPl3RGwB4JoCvSSnX0TFJ77Q/gKrDTu1Wb7ut/OOdcJN9V6vo\n6QG8oqs9z7rTUoKZnjxNfXYxKBDNxErSsV/eF0nN5cD+Tc5epkL2x42tYGMdYy4DjN0VJS42eQW0\n+GwONvvjxjJIzcNuKGyGGPHtRgng1Fy42HDnHBIbZ4KgCIlN8cUCGPRS9px940jrPqXY9b64pZZP\nTY2x+AGAJTFizfkAwcOGO2cfDK1zVjaJ+2A7C5slym6UuL1ZrNrjUovY+GBojZ3KJmwLdrrnXFQU\nQMRYJWHcW9zOs5veTSwMWTF2n33QVRnMewBM+QCyBO9EADuFEL+v/OzqnJo+A8D3AXxKCPEaZNTz\nGwAIAO8olKWUFwohTgPwnrxqeTmyS8DvDeDoWUzGV+TedwAA7CNusy8wSsDdC7fbg5SitxU7SscZ\nj7NfpU9pertsi9vqavnHFayxFkGgWPgFa4yDwYGk3l49R0VJe54vNlO6mt7NNr2NjfKP+sLv2v0O\nxRiDXNE5Z1cVTdHbxwMb6+63JjZWPaWcLSDd2Cg4LosNDAbL5Bi52PjYQ2i74VSUAH7FeTN2YTDY\nSo5x7xZ8ZWbYaNLvT9pGpvR27Cj/mMWRfckxtmE3M/MpTZx6UzF2E6nXpt0Uh+eK71LXG4fApny4\nLzZ7k3pcu2GtzXvtha7KQlQYkb3dBQDeiCwpVH/9NQBIKVNkb205C8AHAZyO7O0wj5FSXqU97wUA\nTgFwAoAvAbgHgMdLKX/c7jTqSbolWwScDqvsYrgOuxduZwUpXc9WGXA+DzAsbrwxspIi106wRjJd\nF5vawUxZ3LZIXvBRd78h9GaKjTpfrTIQwh7Y2OB2eyvDDLGp2KzSkkFuwmpg46NnrYbMy25UuhAJ\nuxof2m585qwnRTa9xthoJ2uddKoam+R844ixMhcaG/X+GwADkYSNN72A2HQ4YVyICqOU8iCm3jYA\nx+S/XHqrAF6V/+q8pJuzhHEvscNOvwRw2FqOqCSqzuelaeWZW9Lb0e9vYY+R0gvisNy5hMZQyqkA\n3u/fgT1Go16lwsjTC2I3dTHsSfT7dMU5s5s7scdo1FPGOFNsamC4FTsx6KUY93vkXDJs7kKOcW/B\nn7O1OqZ9z1yfGgX0qRWsY4gRxGBIfnbmU7wxhraHwcDyBhdNb3tTn1JaeQBgBavo9zezx0jqueyG\naw+W7zlJMt1iHLreTo+E0TjGtbVKwrhF7kC/vw85RqfdaBvPYOtPhxPGRakw7tFSJIxbxU72btra\ns9agckgH+h3oC0sflRbMtqT8iiBHr84iGBIbSm8T1jAUY3sfjjJoLjZqZYDCxrf6OktsBkiwLNfM\neuNxpe2BO2cfu5mnT1GLIABsSnaYnydllXZtERtOwmG8UaBFuwGKJJkeYxu+4mMPvhvKINgk/Dhi\n7b+zJEXzXH9C2U3oGMvBkIVNTBijNJF0U5Ew8ijpedGuALAp3cnSUx02CF0SYofXNjZjyxhrYtMG\nzcbpt2oDm82JZYxKQgR0A5uiUmTTmxk2O3dWOM7QPrWPBzYh5xwEm/X1Cn0d3G48WhmCt7bYqGYu\nNklSaQ8Kjc28YuwmrGGQX4Du0gMc2BjYnpljExPGKE0kyRPGvcDrbduCnSyHdfaOOfRcO7eVhJcw\nWhPLNK1UIzdLi572TG71tW1sXHPmYmOdsxbMuNhsEUw9BRtXv9U8sbHajaZbvEmF0tvqgQ3HB/jY\n7LKf+K65CWPbAxObLR4+FdIeljAq3+7h0gOq2LgwDI3NvOymB4nldLWZr2ibsOB2g52sjWcn48jq\namU32GaMjQljlFakSBiLgxOAwdiUHeMK1txvaFD0rHSJQY8TfJbkOvk8AFiGRW+qD2fNPmd1jK47\nCRW9ZaxXKIFKUqTpcbDZhDX7Rcj6nKVljFwM19YqwWxZWPRMY+RgqNlDZXGrgc0ASXn1iUsPyLDh\n6FntYTyuXLHBtxsehr6+wpnLMOX5Ct+nLHOWsuJXXGw2CZ4e1x64egCwnPLsYSnl+ZQ13ljGSOlx\nseHGTh9suHbj41Oc2Mn3lXXe8+a4/nD12L7CxHDZ9YagQm/rVnRVYsK4AJIMs5dPOh1bWyytOzzD\nomqldHJZwqg8kejSAxwBXNOzJk+aHnfOzqRIm/NgkDWhA/Y7vbjYAMBQbrD0lmyLYF1sbHr6XFzJ\ntGHO1Bi9sEkti0dH7MYXG+qzfbDhzpmrZ7WH0aiyM/LxqXlhM0z49tDIp9K08g9t2U1InwrtK9aN\nhmGMLLtpyafmsf4se/oAR8/aylDoFS+b7qDEhHEBpEgYVUc0vmYql+V8h2dsQnc4rC15ArIdma8j\nup7H1oNjzjUD+GBAz5mrB1QXtxBzXrHNmaun6W7iYtgCNsHtoSmGmm4b2HB9ir1ozQubOfqUuvCH\nwJDtU64YG8BuXElRaJ/iYrjiOnCmLB517IbChuMry9iwX0o/L1+R0ppMN8ZGeVFB1yQmjAsgSX5R\n8bKr1K8FMyEsQYp7x5uiBziCj0Ov1g5Pe561aiLl1Fw4yXSQaog2Rms1hIuNrheiimbBhtLjzDlI\npSg0Nly70cbo3GiExsZhN+7NWmCf4toDc4PKtYeifSOoPTDjUpCqvQUbH7uxjXGABH1pObDBraLV\nxDCI3bToU4CDqeDG4pq+YtVTXiZQzIUz501YQ6+XFXOmXscbE8YoIWScVxjZ5XGRGajvrtblYIMx\nzxEbJwhcxx6PqzQbN0EIkUy3TC0uNw30UlYCWiu0K3Ph5wbwxrSrD5XETaZrYDPE2H5Ss66vMPXa\noNkaY6ONcZDy2zeC6nEThDnR9QDfHhonRW3Qs5pPFS0/UzcKtLz+NE6mZ9ACAxC+EhPGKE0k6ecV\nRlujLjDliACzb8Z2YMMQzLg9JCH1uD1KPj0kAI3NMjbQF2lQbEJjaMVG3/3a9LRnFoGe+uweJPrp\naDHtJkkqZR4fbLh9VIPE4qddx8ZAswXHZjwnX2Hq+doDYDg8V9tuOhZHGmAjBP3uZx9s5hZjuXoh\n15+YMEZpIqYKI9UbAtC9IX2kFRqE26fH3SWH7lHi9jpyHJbzzEGy7o1NiDkvceccug9Uq746sRnz\nPpuLzbzshtt75NObWAcbbtWkVbsxVO19kqd52E2dCmMtbLSq/XLuK2olzfRMrwpji9i06lOaLjfG\ndsVugsSRkNjEQy9RmohaYeRSAkDYUn+bi2AtKilQMHM9sz/yx6YW5aTPmasX+jR1y3bjxGZWtH6D\njYa1lSGAPczSp3woyF4vbFIU3G64B86aYmPoWQP8+za5SVGIOMK2m6bUtV61Z2Lj07cZes7B442r\nPcg3xsYKY5QmMh7kFUbX1RDKWw0WIikKvfAvQlK0B2ITfHFrYaNBNqEjx0Za+jZ3U7tZkTx7WMII\nPZnMx25m1etosBuAGWMTXt/mvOwh+EbDB5uub8qb2o1WtWdhExPGKE1knFcYrZeNarvfwig5vRf9\nEa9Hw8dh59WH47P7DY0Nd87cRTA0NsYmdG33u4wNIE3ZgT4oNly90L1HTF/pQQIjXt8mG5vQvsLV\n495d6OErYoPXt8m1B64ed+EPbTcrnjF2Lj7lEWO5SRG3nxwIG2N9EstOrT91sIkJY5QmMupnFUZq\n95tu3gIgo0GoasjtyG6TpxxxVy97JuWIa/2Jnut560vZ51KVgdFKpkcFs2RT9rlq43alCT3Xkysr\nSNDDAAkwdtMgXGx29ray5rw24GG4Mcz0qEWQjc3mXE9amtDz3a8cDLCG5fL/usa4E1uCYrM6yO2B\nmHNhNyQ2y1t42Ch2Axh2/ErP2o58zlhzP3OH4M258Kkh02642LThU4C7GuKLDRlv+p4+RSz8G0s8\nnxpvmvgKx6eWGdX4ApvehnuMOwUvdrKxGfJ8qsSGSIrGK7k9EHaTbsmxYdgNO8YqPuUa42qf5yts\nbJZ5vlLYDbXRKNbmWGGM0rqYKoym+7zkyiasI3/Fy8aG85TaduwDoLrDM+nd3sv0VIc16e0cZnrq\nzs2kt7bE09vYlOulbr3xlkxvKc2SoqnLyouEcWkZa8ibidfcz7xN8LDZ0edhs4uLzYofNktMbPQq\nWqmrBCguNtsF0x5ybPqE3mqOzYCY8zoTm9FmHjbJVgKbPFmUS0tYxabs3wLZzc4BExumrxTYLAXC\nJi2wSS3YjMdAkkAKgR35wk9hczsXG6ZPldgQeqXdEHNmY7MXgY1StS9iLIlNz89uuNhQPlXGEUJv\nXGAjPXxKSnccybFRk+lZYNPa+kNgk27ZCykEhhgD47FTNyaMURpJUWEcpusltQgYkqLlFawXlaLV\nVWdySSaMud4OymFzvV3cYLZMOGz+vHIRtDlsrkcmRUUy7ZEwzhybXC9YMNOwWbItbj7Y5LpFUkQG\n+mLhp7AZEgt/gQ3TbrjJdMLEBjWwIe2GwkbbaFA+tc7EZkRhU9jN1skiCLg3Gt7JNPE972D6CplM\n63GESqaZ2CRb9s4+FyMgTad189cwyn6/rMaz7Ya5CWNjQ+ix7YaZTMvlTdjAcKp9o9RN03Ijdhsy\nHMU6gQ1VsMj1fJPpxnbDxcYUY9cthZ+YMEYJIUWF0bqrLRx2uIyNosJoclhl91tUBnqJQU955o7e\nXtlnpm69XQOe3vow0xsQeqNl3vPGm/LnyezQjxWbpWWMkL/E04SNons7smf2iM8Ojc3aUq4nedgM\nCL2kRWyouexsyW5IbFZ4euPNTGyWa9gN4VNcbFa52HDtZoVnN2lOQfaRAklixQY+diPyMS46NsNl\nbLjmrCz6XGx2cLHpe2JDzGV9mYnNJl7MTil7UKr2znVKeWaBDeVTu5jYrA15ehtMu1HXn0IvTQ0t\nUUMCmyTJfqlXMXRQYsK4ALLRyyuMMjO+qWsuFIdVHXFKLz9JnfWsZc/sjTec12ZMgtlGxSF0vdJh\nE/fzih6SfurW2yj7stx64yLQp1kwsmEjl1Ym2GwYnqmcNN8p8wWTwGZX0ZdFzHm1DGYUNvlciOcV\n/TUDCpuyL2sDkNKBzbIbG0W3TIoIbMqFn7KHPg/D9SFvzmUyTegly5uRQpRJUQhsik0YNRcTNu6k\nKBQ2PL1kaWXS2qLEkalkeoXwKUWXi82uHtOnFGxccalIGCmf4mKTDgl7UNgePjY8X1llYrOW9wVT\ncy6xoeymTKbDYINlvk/tZMbYXcx4szrk+VSx/pAxVrGboh0KmE4YU2r9KbBZWUHlQR2TmDAugIx6\nWYVxmLgrjKm6izH1MBocVoyZu9/UsHAoeqXDEjuyItBTu1Xf3e9Qjsx9M5Zk2rX7LQ6AkNXXYvdL\nVdv6vDmvMatoG0u85yXDTRhjolC7Mj0eZ5Gt18NOuTkbI1V9FbydfLnRIObMrQysc6uvwxX3nGtU\n7W+XzAqjARvXJoxrN5TexjJPLx2Y5zyVFFHYKLq+lWnKp1YVbFxxie1TXhVG2m5AxRtFl4vNDs8Y\ny62+ctmegZxgLaUhKWJiI1vAhl2ZZvoUFxvVbgD32syymw7T0UBMGBdCxrJfqYZMGVvRJ6Ht8Fh0\nCXE4ZodSUWLRJYTeWhHMErfehlIZcC78g5VJUmRqJq6RTBd61JzLpIjQKxb+HjGXAhtqzmUynVLY\n8OZcoZKojYYcsuYyoZJ42FD2sDrkYbOhVE1mgk1x/6ly0pxtN4GwWRvy7GFjmYkN01ckhY2hak/G\nEa5PMePIpAUmDDYp026kR4y9nRtjezxsVpl2s861G4XFUd9uM+UrTGx81p9JmwcTGyqOMO2mbA8i\nsFEZDSBMMafLEhPGBZAkAWt3kiytuPskauzwJr2ORABX6BK3w04oafcOL9ejKkUDXpLsk0w79RRd\nbh8oF5s1JjYbCgXJxoZbRSMWwUKvNyICeEFBksl0gQ2x4+dis1QDGyIp4lYG1mWODZkUbWXprXLt\npmzzoCrTYX0qXSL0ivthl5awJnnJdElBUpUiX2wIvZGBggSmq6oJt4pG+ZRStd8lN/lhQ8XY3Keo\nKu0aM46o2ADMKloTnzL02lNxpLjGi1qnCmzI9YfpU6P8aqK+TMyHoDyxiQljlMaSJGAlgj5G6bvD\nIxuymfTsZPfLPORABIDxgGgmNu3wCCrJ+wAIe/fLpJIobMrdL73ws6poXGwUu6FaGbgHQHZ5VwZa\nwIZrN+zqK+8ACOUrZWWaWvi51bblaT1Tg37KxIY8LFUDm7Iyza3ac7HhHo5JCWqRW2FsAZudvgdA\nuJVp4nnFfY096T4ElTDjCFmZVqv2ktcetJN5cGgXN44wGY3xgHcIiotNTBijNBZ2wsitKFE7vDq7\n3x5vJ1hWGNnVNmLh7zOrITWqaEa9GifNi8Mx7N0vSSXxKgPjPs8e2BsNqqKk6HIr02W1jTz5ycRm\niadXqzLt8im1+kr5Crf66utT5EnziZ6AtN5Zyq4wemxQudVX76o92QLDrDAONiFBj0yKxswYS1Zf\nG2HDZXvCVO3HveXKIShrUhTYp2pV7akYy6xEFnZDxaUxd/1hYhMTxiiNpZIwOozNp/fIN5iJprvf\n4t49bmWAW2FkJkUklaTcl+VMzk27XyrQ9/wqA1ZsijsJh7znjT0qjL5JkfWetaJnrXjLBVGJ9O3L\nouxGvbapJybvcC2TouI+PY9k2vcgGXk4hqq+lvd88uyB27M26meHoHqQQZIicuEvfGp5UoXhVqa5\nVXt6o0FUGIu7J/u8ClCrSRFlD4ErjNyqPRlj8/FxK9M+PdPrKW/9IbHR1h8u20NWGAOvPzFhjNJY\nkoToYcwX6bQ/ZAd6b7qEbOQndm55P9MqtzLA7CGpBHpih+fUK09J85PpNSrQa7tfOikiqiH5GNeL\n16KlI/R7WVJkohZDJ0UklVT0rNWqDFCtDLxK0UafOASVjzF4Mk1hkyT8qn0+xl2U3RQ+NeBhOOox\nkyKuT1F2o9hDeSuDqfe1TtU+FKORj3HU4/k9u5XBJymSRTLtHmOJDbefL1DVfkTZQz6+NpLpcv0h\neqZJbAqfCl1h7IVdf2LCGKWxVCqMroSxN2T1hsjB0O3YRRVtOFQWfovj5Lq7ioqSLdDneqv5e3St\njpjrrfeL61vG6IvUqpf0iCSZm0wr2LAqjMMhNlIi0NfFhtAbiSWMkF3uKpLxNLWoYMOxBx9sOHqZ\n3RB9WQU2gjg964nNGLwx+tgNr9/KBxuiaqJjQ+it5dhYF/4CG8HzezY2zDmTPlX8odfDqszuhyV9\nyhMb0m4Ez+8r2ITwqeFEzxhjpVSq9ptZc1ll+tRanxeLE8H3KdY6NWD61HBIb8p1RoPpU9YKo4YN\n5VNcX+HqYThElyUmjAsgZMKYv8E87Q14wczDYdeZSVEZzKiFX/D0soV/knQA2t1fhR4zKUqYC3+t\nZNq2+y0TRiY2PSY2zIWfnSB4YMO3m+KezzDYrOXYcJIilj0w9SoLfyhsqKpJTWw4dsPCxmOj4Z1M\nE9iQjIYeRwh78LEbVuzkbso9sCEr00AlmebajbX6WmzKQ/sU11e4eoo9WCvT+dpX3A87D7sJ6isx\nYYzSVJIE/gu/I7GU/YF7t5PrZX16RFKU6+4qHJbQKxzWGsxyvTEmYxRjw+W8uV4CIknmJtMFNr2B\n27EVbMpk2rZbLbChFv5cb00QQUrBhjPGRAzCbDRMdkNhQyVFOjYEhuRGw2A3FDZcu2H51MADm5Sg\n6z3tZrIIujGsYOOYS+LhKyy9Ad+n1lJHta0GNmQyXWAj+D7FwTBl+oqP3RSMBtceqLhUJkXjjbK1\npYlPpUwM0z7Pp6BgY0wYlWS67Cdnrj8UhhtiGSkEhJToI7Fjw4wjXJ/q8msBgZgwLoSQFUZl98vd\n4XF3OxPa1UKXaDs8imYjg1lBu6JGNYTAhqPnQ7uWixux49+R0yWhKMhRHdqVWzVpQi2aKowUlVTY\nTSBKeuRBLbLsxqNqwseGOACi0WwUhq1WXwlsQvsU2c+nU5AEhqslNiNzUlRhNDxpV25FKZBPrXFb\nGZiV6XUsI8lTAGNSZLKbALRrrao9gU1ZiWRjw4+x/WTDqsf1FW68iRXGKI2FmzCSDlvu8Hh6Ug1S\npuBT/KHfp08Mc4NZ/tlkUlTu8IjgU+zwmEGKpOuLnWBlcXMn06vFIYemu19uMq1gw6owUtiU1RAP\nur5IimZeYWTS9VQyrdgNr8LIe16lhzEQXT+pMI6dlSKuT5EbDU+fIul6FZuylYFXYbRiWFSKsFwe\ngurL8bQeN5k2YRPAp7zo+sA+RSZF3BjLTaZLpoLnUyQ2it1wN+8+60/5xi9TS1Shx1x/uMWcmDBG\naSyVhJEoe/N2v7xexyol4NgVDQbKIshc+KlKkeSNkaTZijkzqaQKzUbMuQhSFF2yK80b+Zm7XwpD\n7pxJ2rUM9LznkdgYqEVrMq1XGIlAv4o86U4T5yEoNu3KtRtmXzDZ5mGyG+J73sm0hw05LA9BFRdP\nk9g4K4w1sHH5VA1s2Au/RxwxYtOST5HYcO3Gh67XsSEwJLHx9ak6duPcaNTwKWZ7EMlwySodPtUS\nVdhDHbshvucuS0wYF0CShHetDpcS4NJnfocceI38EyrJo4rmGGPwRn7mjl893Whc0E10SaCkaMSt\nojFPN3Ib+b1ONzKT6bKRn1gEN+TkEJRrceO2MnAPS6UeJ4a9D5LZGvmLhZ/ZyJ9hQy/8oX3K5wCI\nd2WasIcd+bupKZ/KkuncbhzUItun6rTABDos5fQpRZfbyqBi0xtvlD/Wb1vwibFBT5CH8ikDNpz1\nhzPGUeD1J1YYozSWSoXRuYvhUQK1KEjXrmg4xGpCVE2KpEiuZM3EaepsJiYDuIku4dJs3EBP0CVc\nmq3AhmrkX0+H5RsVXAu/GuhdY+TSbONQrQxKMu2k6ysUJNGzpmDDqRSpyZMzKfKgZ719qomvFH/o\n97ErWbbrKXNZT4mkyJM+C+5TVC+agVoEdSo2Le6ypH2qvLbGcdsCmUyXVbQadL3Lp3x6phMimdb7\nyQnqmvQVbiuDKbF0YUj10CvUNdenyKp9kTBKn6o9PcZarVPE99xliQnjAsh4jIrxFuXxcidooQSm\n9BRKQHVsmx76Zop7Sk89MTwyjE8Z40Y6mArgFT2FEuCMUT8xbNNLBKFnOd1oe55OJVkxVLEZW7Ap\nEsF0MLXjN2Go0/UubFj2QGFTzLnHwxAKNsLxPJ2edWGj2oMRm3Lh542RtAcLlVQbm8qcp33FRE1x\nfUq1B5dPjZk+ZcPGRC1ysNZPU/N8xTA+pTJd9EyrGw3KbsRoY/rOUstJYBY2s/QprQVmSs/U5uHh\nU64xknqWmwdc6w/Lp/oePpXwfGWncptH8SYoGzacMYZefyIlHaWxsCuMdS5qJugSLpXEpUvIaogn\nRURWTWrQJSwqaViDSjLpKboVapHAhkW7tkklBcKGSyVVKowubGRgu2HaQ61WhkA+ZaIWbVU071aG\nEHbjQS2W1VfTnGtiw7IHD5/i2g0XG1+63lh9Vds80uIAovtkOBcbn3tfQ7Yy+GDjtAclmV5Ll1iH\noMgKo4mpCOArscIYpbEkCa+H0efEMOv0rA+VlO/wwKDPuNQii3ZlUkncqyHInrUadD2JjUKflck0\nQUkHoUFMtKvLHkJdo2Kikkx6im6lF81hN+w+PS4F6UHXc09Tc6/X4PbzqT7lurOUS7uyqUXudUwe\ntzIUrQyU3awnxZuOLP2+3DhiSqYDYMNtbfG5jsnZyqBgk6RicgjKlBR5xli2TzF9hUvXs09TV5Jp\nd5tHkoowrS2hfSomjFFCSaXCGOROwhonP4nT1OQOT6GkWRXGOqekuSc/ndcf8E6a63RJbWwUXZWu\nd/aiSd5nkxd8c7Hh2o1yKpaNTZFMe2DjatAn7aYM4Hy7YdkD06fgc/k5NylKeWMM7lNMe+D6lN7K\n4LKbbOFnbK5S3hjZPuVhN7yqPd8eilYGyqfU9cIVY0lsPH0qYcYb8oLvGuuPszKtYKhiM0jd6w83\nxoZcfyIlHUCEEHcXQrxPCPF9IcQuIYQUQhxk0NtXCPERIcRNQoidQoivCyEeaNBbEUK8UwhxnRBi\nNX/uo2YxlzpSSRid1Tbuws8/Tc1t1C0c1rnD6/UwTnusE53cwwvchuzg75z2wGaSFBkoIi2Z5jbo\nh8SGrAz4YuPRyL+R9N2HoAxVNNczgx16KQP9/LBJUsE+BBXUHrjvDg6NzdADm2TCugzkDLHh2k3g\nOFJpZegqNh7vnA5pN+T6Y8Gmiz4VK4xh5D4AngHgFgDfMSkIIQSAMwE8HsDLAPw5gCGAs4UQd9fU\nPwrghQCOA/AkANcB+KoQ4iGtjL6hqEbeaOG3NPxzK0WuBv2y6XhjYzop0hyWc6KTrJooSTJLj7mr\n5Z+K5b/ubJT2kaBnfs2UlkyrDfq2wwb8E3zM151x9UJVXxUqaZwIO9VsqUwHqRSx58y0B+YrJW3Y\nmBr5udUQtZXB9dlNfWrqkAP73lfuqVi+T6nYFBXnJtXXDaqH0TPesF+Tx/Up7q0Mg0HlkGSIGMuv\nvjIvP6/zCkGX3SivIm1cfTW0BzXChms3yhi7LIuSMH5bSnmglPKJAP7FonMUgD8E8Bwp5alSyq/k\n/9YD8NpCSQjxYAB/CeCVUsqTpZTfQJaMXgng+DYnUVfICqOy42/tkAOxKxqnvUkzsZ4UaYFer6IB\n0wumT7N6kGqIEsC9KwNEE7Nzx2/Rc41RP8HHqoZw7cG14+f2d3LtRrOHqaTIUplutOP3vCqEffl5\nqAqj2ovmqoZYKtPOpKjOgaBZ+pTHIQdupYisTBcLOtenuAdAQlXRDDcPeFXRXJR0qCqaieHiVhid\nG09uHCGqr1yfUrHh0vWhKozKGLssC5EwSilTWgtHAbhWSnm28v+2I6s6PkXTGwE4TdEbA/gsgCOF\nEN33WxsAACAASURBVMtBBh1QKgkjsYvh0iWsXkeP043OaohFj1rcuM3qoU8Mc0/wcZuYnbvapthw\nT34SwYyFjceJ4Tp2MxXAW8SGO2efw1KtYqPbjZZMc8a4wbUHpk/Veq8ykSAE8SmfynRLPsXdvLOx\nCeVTii5ZRZtFjCWSaRY2wyHG+SEfjMfT/b4WbIyV6TmvPzFhnJ0cAuDnhn+/CMA9hRBbFb3LpZS7\nDHpLyOjvTgm3wsilBFJmAy7ZyK9QAmnq2NXaqmgEfcZtVmcdcuA2J3MvNWdiQ1bRLHquMVaqJiGw\n4R4IYlbb2Njo1dcm2HhW29jYMN+r7HMgiNvI76wU1fCpEdOnSF/xPTjE9SmPAyBObLRkOkj11RMb\nn0N2LJ8aKElRYjgExcXGpzLNjSPc6mtobBS7ASaHoKwsDoWN8szgMZa5/nSdku726PxkPwBXGP59\nW/77vgB25Hq3OPT2038ghDjH9qGHHXaYzxhrSWVB4CaMBCVQ2ZE5dngcPQyyzyx0B9CuctCCGeeZ\n6ynvs0fg6Y3FEOOcKjfqKUlRUGzyBX1su+bCouca40jyxsjFJhFMPWrOBYYDrt0MwmGjLPwsDLnY\ngIc116ckE0PSbmr4FIlNaLvx9anBECkmNxpnSVFvMX2KaQ9sn8qTohEGGGKcz3mJnHMv1bDRkumw\nPqVhuNwyNkoyDWRzXsIox2bZ7FMb09gAWUtUT0zua9xIefawIYcYstcfnt93WXanCuNuK5UKI5c6\ncBlvj6dXoQQYDlvSIEQA5zyzQgkQAZw1Z8HTS7jYDJjYDIfZvbEBsalQSQGwGQXGRjLtZooi0he3\nRbIb5pzTwRBJ3us7SYroOS+yT7HjSH8ItVI01QvdAWy4c2Zjw/UpLcZObcoJbNI0v22hTWxC241H\nvFGxqW0PWjI9jxjb9YRxd6ow3oKsiqjLfsrPi9/v5dDbpv9ASnmE7UMf9rCHSdvPQknFyE2VQ6Xs\nXe5iHHqJ4OmlPZ5eRgkoO369b0bd4a3B/kyNLuF8dqUyQGIjaD119ztLbPRKkeOZlR1/AGwSpt2k\nHnZTJkVJkp+aF9PYDIdI08DYMO2G6yuVykAAbGSvWinKFv4lcs5On2Jiw7WHKb2BWW/MnHPC9KnC\nVxIxAOQopxaHJDbF4bm5+JReRfOMsQk7jgwVbAy0q2XOYjyCEFloTVOgXwMbtt2Ah2Fb648vNsUz\nkyT7NUR7PjVm6nWdkt6dKowXIetP1OUBAK6UUu5Q9O4thNhs0NsAcGl7Q6wnZMLYFgXpufsdC2KH\np135QO3wuNR1yJ1g5YoZompS6SmyXCVUYJMw6DMnNsrrrdYT3hjZu18PWp+LTZEUOeecB3pOZWA8\nRlB74OqNmfZAUk5KJbLQ58yZrL5SPqXNmUuzhawoVa5RIe1m8j27qmgmbMo7S7k+pc455fsUl7oO\nymj0+L7irKK16FOVK2YCsT3c9iAgs0cKG6c9KD7Frb76tE7tDhVGr4RRCLEkhPh9IcSfCSGOFkIc\nabpAe05yBoC7CSEeXfyDEGJvAE/Of1bImcjuZ3y6ojcA8EwAX5NSrs9muHxJEt5hCNIolSoaRy/t\nDw2VIoNekRSJhj1FWtWEM0YygHP1uEGq3P1mSRF1lVBJJQnLwm+rFDVJpk1VEwIbDtY+vUfAxB5s\nPa1kMs21B1tlusnCX2DD7D0iF37Fp5zY6JswDRsbtci1h5A+xU6SuT5FJdMWXxHJuHpnKdenlDGS\nC7+nr3B71thJERVjuXOuEWOD9b4q6w8LG6qVQYsj48Drz0x9akESRrL+KYToA/hTAH8N4NHIThIL\nRUUKIa4BcCqAk6WUrVTohBBPy/9YnDJ5ghDiRgA3Sim/hSwp/D6ATwkhXoOMen5DPtZ3lIOV8kIh\nxGkA3iOEGAK4HMBLANwbwNFtjL2pVHZFTWg2pYrG0svpszH6GCDJHXE4pSfz3W+x8Pfq0mfaDo8z\nRpKCVCpFY8CuZwr0jucVO/5EDDCQSU6DDOzY5HSJ9eoYas5cDJVnTtElSy5sGPbgQSWpc86w2WRP\ninK9KWpRxcbVymBLpn2opC02bHj2QGKj2Q1FNctB1aes1OJwiGTswEZaGvl97MbpUwEo6bJSpNiN\nCZvSbgaVVobimWma6Q584ogpKQqBDdceuK0M2kajdhxpI8aakqIA6w+JjSEWG7EpfIWLjUeM9Vt/\nFp+Sdo4uT9JOAnAPAF8F8CYAFwK4EcAqsr6/ewM4HFlS+SohxMcAvElKeX3gseoXdn8w//1bAI6Q\nUqZCiCcB+If8ZyvIEsjHSCmv0v7vCwCcCOAEAHcA8J8AHi+l/HHgMQcRbnk8OLXYK4LUMEuKYEkY\ntSpa30GfOefCpVW0OVf0Bi49QT6PS5+p1OKyXGdUivIKY1MqyYMumdr9bjLrtdHIX+gD9h1/2d8p\nhlnCqFGLogbNVhubhpQ0m1rsT3zKiY3qU3LyzPE40+2r9rDumLOWTM/lsJQvJU22tlQPORTPHI08\n7UFLpoMeCGqJkua0MszLV1qlpBNDL7RWfQ2GTZMY21Bv0SuM70VWnfuYlPJWi84PkF2C/SohxOEA\nXgfgRQDeFmyUAKSUgqGzDcAx+S+X3iqAV+W/Oi/6biePHVNvR9GDWa+n6ZkogdHIqpcUCWNvACQT\n+kzX02m2olI09bozw86t8tmOKpptjOvpEKmSJPeWzHqjSUuz+XlKMON87iSZtsy50BvoemYMyTlz\nMVSeqVdNbHr6RsNlD87nTSVF1R0/hY2ziqbOWR+jj92YNldcbBx6Os3GtRtrFU075FDbHmr4lM1u\npqrxFDaFTzHjDddu5EDDRlmAp+a8yzFnR2Xaig3XHgTfp8q2n/E4u9oForZPFbcyeNuDPkbHAcSm\nPsWNsUne9pOIPvoyQU8mAAadWn90ur52HNlNEsaDpZRr3IdJKc8H8GdCiJVmw4qiiu7YtvutalEC\njF0ttbjpVFLtPj0bXULsaiWbEpD251kCvZuuB92LpukVwWyqikbN2ae/RsGG13tUg1Zx9R7pdmOt\nMFYDvbOKVodmc/UeMXsd2fbApdkobEoKsqpX2x5q+hQLG6496BjaKkWCazdVur62PbToUz5tHhI9\nJOihjzTvhR5MYTiVFFlYnClsXPaw7vApWzLt8ilmryNpNwo2xe99btsPHD6ltzIQ1VerXo02D66v\ndJ2Sdh568UkWQ/y/KGYhy+PFLqYFSqDQBxxJkYVmm2rQb4GSDn23HJs+K6uvbhpEp0umGvQ7QJew\n709j02dM2lWlpF1zXgCaberwguXUfNnK4Gk3te2hIz4l0Ssv5bbdPcmlpEtseoHsxsOnRi3cZQlM\n4ogtxnIpaf3Giln6FNdXfE6Qq3OxYqPZjf1GAXMrw9ScKXvQkuk9iZJmn5IWQvyuEOK/K3/fJIQ4\nSQhxphDif7czvCgA2Ltf7qlYdrN6vmNLbRXGkmar7vAKahGg6TPjjp+qKLVxX2MRzJj37iV6NcR2\neKHAptdwzlwMlc8OfZflVBXNlhSJ6pytdqNXGOtiw9VTxhj6brkx8qRI5EmR5dT8VBXNRklrPlXb\nHnyw8bQHbhVtkhTl1XjLPXlFHEnLKprFp/Tq6wx9Khg2ljhie61dsdGgYnEwbOr4lIeveK0/TLuh\n2zyq9mWd8zx8SklWuyw+1+q8H8DTlL+fCODVAO4K4P8KIV4acmBRJhLMYU16nB0eVQ3pEzv+Ipjl\nFzU3viOsxg6PfR2GR7VNxYjCxkotcnfyWjDjNPL73FHJpWcrSZHlfbYJs8KoHwCpTRH5VEMU+qyV\nShHRopBQdlMsggMCG649cH1KGWMwbAqf0uZsw2as9kzDfnhOahWl1n1K+Wz2vXueLI4VmzIpqsZY\nOyXth02nfUrv97XEkfIaLxs2mk9xsBmP+dVXlk8xfWW3qTACeDCA7wGAEKIH4LkAXielPAzZaeMX\nhR9eFABshw1NCRSOVezgqIU/pZIibn+NJ10SpPpazLmoFCE7fWGjz4qFPCWCWfCkiOrL0pLpkAmC\nf1JEYaNVX9u2B1vvEWEP3GRanbsVG3YvWhXD2vZQg1pcD/3OaWhVNCvtytxoDJjxpoX+Tp82Dx+7\noWJsolVfSWxm5VPKZ7fxjvts7oQ9WBJLvSVKaofsZulTI6ZP7U4J4z4Abs7//FBkr+H7fP73cwAc\nHG5YUVQJlhTp9BkEjO+ztVDSJCVgo121YDZTusSTEtADuG3ObNqVSUnLwWDqdOOsKEguRVToWLGx\nLW4EJU1SRKHswZZMO+bMfWUcmz7T9KwHyTQMW7cHpc1jFLjNYyopstiD7lO2V/7tTm0epU8RlHSq\nbcJIbOZASXN9hR1vPCnp4ndbSxTbblqIsdzDMbsTJX09gPvkf34cgMuU+w23Avm2MUpwCeawtqSI\nSZ/ZqiEJVUUrkyK/ZvWQOzwuJVDokJUiT0qaqobo9zWGoCDZ2HArSlQVrVz4eXaj02yt20MNCpJ9\nJyG4lSImJc1s8whWKdKS6aCUNLf62vNjNLhV+5BtHj5vPfGq2vfd9mCLxfrrEFONnp0lJR38Na1M\nFkdvgbF9z2SbR8sM1+5ASfuks2cAOEkI8XsAng/gw8rPHgjg1wHHFUURn4Xfa3HrD4F0lO/clujK\nAEEJpESFUXpWTcq5cCsDJCWQmp+nzplZRRvri5ulUqT311gTxr7yvNQxZ9OudsjAhthojJS74Fw0\nG2vOTGy4VTQymVbnrN2719/cDBvfKhq3T6882GF5uw1ZfXXZgw2bjRo+5cKG2TOt+xRlN2VSRGDD\nbWUgsfGsTFsxtGHDoaSJAxt61V6Ms7v89LfblEkREYtrJ0WmyrSnr4wwLE/MTxiunn8ybYk3xWeP\nx44Y68LGszLtvSl3VRh3o4Tx9cjennIksuTxROVnRwE4K+C4oiiSGRVNNbNPfkotKbJWingU0RTt\nSlTRrP01tlI/V4+kBBI7hloyLW1JcoGNtghaG601WsVGb0i1ny81jdGRJK/UwFAZY2Y3fRLDqWTa\nVinS7YaoolH2MIUNlyKq26OkjNGnzUOdC0W76nYzdVGzRrO5fKrSyuDyldUaPqXoTV1GzL2TkNp4\nEtgUn92zUJAYaZeL+9qD/nrFunFJw8aZFFnmzE6K8s8uE0aNkrYyGk0paaIyzcUGEEh6A/TTcR5H\nlmr7FHf9IXumbZR0XQzVNg+mr3SdkmaPTkq5E8ALLT/7g2AjijIlSQL75dRSlla3nvCbjgE6SFUq\nkQ69yYJAUAJN6JJNZr3xmLfDy+iS1K6nU9J9XqWIoqRtgV6fyyR5stFik2DmnHON3W928rNH6m1I\nwh4KDIWmR7Uy9N1z8Tnk4MRmzMRQm3MdStpqN5p9qQmjlIAoEgnKV4oEQaXZpEGvBgXp41PlW0oc\nSRE3jth8JUmyXz2urxTJtAclPV6rUW0jfUUg6Q/RT0bTSVGhp9mDPZk2+8poZI4jnBg7diXJLfqU\nag/GhNFznWKvPz2e3QS7eUBJpkcJ0eah4Nhl8bmH8ddCiAdbfvZ7QohISbck7KpJKrz69IrgYmsm\n1isDtipawiz1myoDrJ4iQs95KpZbfVVoFWCyU7cfetGwsVRfuQs/m0riVgZ8GvmZ/TVTSZHt0AsT\nG371lYchm4L0PORQJkVJMn33JDcpKuxBS4oKahGoNuiz2zz6LfsUYTdFpQiwJ8lTjIbNp7RNmG2M\nU/GGSqabUtJcDKewoVmcsc5o2Chppq9MVe25c2nqUz5sj44Nuf74+ZR1/dFbGbhV1bYxBCqxqcvi\nc+jlIADLlp+tALhX49FEMQprh+d1wSqPWpycUisqRZaeooKCZFaKyN2vJ7VoDeDKDs+nkV+di3VX\nW2BI6JFJUbHwl7RKoN0v9bYCrffImRR5znlCJVWraICWFDGrISmVFHHnzNVT5lIkRcUY7JVDgj6z\n+JR1zkx7aN2nXL5SbK6oarxWcZ5qUdCwkbZEUI83tsRSS6ZD+xT3ihl1ztZeaFRjZ+0qmqfdsG9l\naOFNQlPYUD7V5yXT5PrT4/lebXuoiyGqul0Wn4QRQPEy3il5GIBbG44likVqVU2cDsujiMpDDn1L\nhZFLu9p2vwEoAdYimOv5VIqKxYYO4FVs9Lu/SmyoYNavVhrYu9W62GjJNCcp4vZ3ThIE9xgLbKgE\ngawwcufsU5m2VccIbEjalcJGr5oQelON/G37lDKXSYuCu4o2RS3a4oiFdtXHyI0jJDY1fYq/0ZjE\nkaY+xW1t4erpr3Nt3adMc2bH2OrG07b+ULHTd/1pbA8+PrUglLQznRVCvBLAK/O/SgBnCiE2NLVN\nAPYD8Nnww4sCZEaV+iYIZVIk6KTI0kxcOKzUkiJbMJPMKhqXLmFRAhv8YAYIpL0+emmSB/DhdDDT\nKGkuNsXdX1JmSWOfG+g1SrrxCb46GOZzS3sD9JLxNDZTtCtVRTPPJUmyX8OS1q9Js+kYisCUdHG6\no0ymc18ZFZWiTf4bDYvd2MaY6BsIK83Wgk+59LQ2D3XOtiqarsf1KdsYuT41dciubZ9S5qLTrtzN\nle1keOkrfU9fsehVsMn/vb9cY85cDB3Y2CjpqXhDYcikpNkHEH3tYQ+gpKn6568BfCP/8/MA/AjA\njZrOOoBfAPhI2KFFKSQzNt4uplZSxKRdi2BW3P0lPCkB7iEHL/psFXZKWnsekAfKDQc23IM+GjbF\nGMfjTLevB3pmf+fMKGkTNrakyEIl2atoZmz0zy571siKEoGhDExJT/kUTZ+RGw0LBcmmXZtWX0NR\n0sWElGSasgd+9VX7nilqse/2e6NPLRnmHIqSNlSmi8SMSqYbHywsfYrnexWfSuwYtklJS2aMLQsW\nZDLNw4byPam2eZhurOAmyTa9xFDMUXS7LM7RSSm/COCLACCyq9OPl1JePoNxRVFED1KVJvliF6Mv\n/GmSO+Jw6sqOcoeXO0axuOl6+g5PJOPy7q80nSRFpsqAaYypoRJpavg3NZe79KzYGBb+apVj09RV\nITrN1rNgM0W7WsZooqSNhxwMu1/j92zYrVrnvMHUU5NpVF+tpc5Zp9mKAD513Qp437OpMu3ExoZh\nYq8cNsbQaDcuX8l+F4kZQ5evmKpo0mZfekVJ1Vu2z8Xbp/Tx+WBjsYcpu5nyKfcYXRXGit0YKowh\n7MGKoSGZ1jflNruhfKq0GyLemA5LmfRMGw1fezBhmCj3ufZElhSlKaYuPwemmQqrTw2qlLR3LPZc\nf0q76Q9QXOPFsgdy/ZkUc6bW5gWhpH16GP8GwA2mHwghtgghuj3TBRbWLsaw8Nt6ivSFn02f1e23\n0isDTCqpcd+MgXYle4qm6DN3XxaFzZjZi5bqCULdKkcb2HBpVz0povr0dJqtbu8Rd86OjYbxefom\nzDTnuj7F7O/kVtsa97626FNlpcjWC83FxpZM2+JIvx2fUpOiSi+0AxvrFVR6Mm3p09MPgDTFpkiK\nKD22T+UYSvQg86xpIJKJnq3Nowk23HWK61OF3bTkU9lkDb6iJNNdrzD6JIwn579M8mFU3/wSJaD4\nUAKApafIRJdQ9zAWdMnATf3Y6Fldz1QpctElVAAgT0kbaVc3tVgu/Fq1zRrAB+65FH0wZC+aB10i\nJcMe6lLS4PSiVXf89sWNR0mT9lAEcFv/Vs05e/mUbRNm3Wi4KWkSGybNxr53r8ml5mpS5PApm6/o\njEbtpEjDJqlDSQdo81CTouzuSTs2OotDxVgrNnr1tSntSvWTh/YVk90QMVb3KbX6WjlYyPUVLl1f\n9+YBxvqTmrApftjroSxRdlR8RvcY5PS0Qc4A8MfNhxPFJN7VEMIoyx0eFcw8qyHWBd1Bs7H6soiq\nKreilM3ZkkwXu1rmwq9X22xjrH1K2oJh2azOfL1inco0tfBThxe42HAPgBTVV+9T0hYMjXqmpMhB\nu9rsgVr4SWy0yjSll+pVNOJ75r4a0Fop4voUYLUHOt64x8g9XU9i47IHpq8MMXLrcU9J2w69OChp\nFjY2n2Ju3uscnjNuPAP4lEjGyDrjqpQviU3N9cfbpxjrD0y+siB0NOCXMB4ACyWN7CDMgc2HE8Uk\nvsHMWPZWEsvij0Wgt5b6tYqSdXFjV5SI3W9Jzw7Ksbr0yAqjI5muJEWmZNpWRZtKLN1z0ek4azBj\nV5QIPe175t7fqY6RSqbZlSJb9bVcBHlzmbIHWzKdj79xpYi7CQOmsAG18HN9hVu1p6ommj003nhy\nfQqTMZKV6al4Q9Cuut3YkmlmRYmsopliJxFjp7Cxba4s2ABaUgRevCkZDcL32C9RqMNUEHYzWX8s\ndmPZvDdef5jxhjw4pGHDfb2iFRsFw66LT8J4A4AHWn72QAA3Nx9OFJPUraJVgpRrh0ecbqQqjNy+\nrKmmYwftmunz5uyFjSnQuzBsiA3ZU2Srhtiw8bxLTKIHmd/3Y6TPKHswJNMIZDcJt4LNxKbsy2Ji\nA6AM0kPhtgfjnA2N/GWliOrvtG2GPO2Giw35zmlXNYTyFcIeprCx3Fnalk+1EUe42ITyFd/e11Dx\nZk/GZh7rT9fFJ2H8dwDHCiEepP6jEOKBAN4I4MyQA4syEdYOj9tDYtCzXVfg67AgdoJcSmCKLuHQ\nZ8ykqAxSajLtoFVIbGxVLw0bsteRS0HqzeqcinORFBH0GUw7fkfQs1XRvClpyh6YtD5JJTWhz0yb\nMEMyPakoNaSkmTQb+xWC6junHXp1sDH6lKnNI8ewuLMUqFbRJj7lHiM7QWDagxzUp6TZdkMl00T1\nPLhPdYGSNvmUCRtijFOtU8T6Y73L0pZME/YQKWmzHIfsbS4XCCHOFUJ8TgjxPQA/BrAdwJvaGGAU\nTCVFlZ4iQ6kfpiBlKI9bd3i57kaaB/qhJYBPLQhuxxl70iXkCT51zkNDT5GJBhk6kqIKhmEoaZ2q\npChpCsMSGwLDyvfMpogcwcyAobVPr5gzRUlDsy+CgqSTJx6GJrupRZ85MBTjPFHL7ywtfYrChusr\nGs1G+lS/vk+R2Jh8SkmmR0nPPWfdHogxTmFjswemTxXfmfWuW6NPuSnpqTiSmJPpIsZS9kDGWM1X\nSNq16IEmElWytaWGT+lJN7X+UGMsWxlscUTzKcoOfWLsWG3zIDC0znl3pKSllDcBeDiAkwAIAA/J\nfz8RwMPzn0dpQZxByrHj5+7wbFW0YocHZoWR3ZAdeIfnhY0pKaqx+y0DKLPC6E1BBsTGmAg6sKEq\njHqfnk4t6hQkhY01mfalkhpUX9nYEG0exVyKO0t13ZEnNqF8yreR3wsbU4XRYYe2z2ZX0bh0fQew\nMVYYlWRav2KGHUdCx1huKwMHG6Y9GPt91ds8dBbHlkyjZhwhGA2uPaRFGsVhuAi76bp4pbRSyluR\nVRqPa2c4UUxSGttwCIxGeVK0bA9SriqagYIkT3QSDksmRRolYD3MUpMuUZ9pTRh35HqmqqqBVimD\nmQWbqaSITKaJ3S/3/jTP3iMWNuuFHtduJkmR6XWIU8l0oN4j9klzqopGHRBrkEzrVYk0zXQHto2G\nrYrWBZ/yxKbiKw6sqYWfrqoa5rxi0KN8ShjaPBImNlxfMcUbB4ZWpkJPimbkU+V3IXqAhJIU9azf\ns2Ru3tnJNFV9pVqndJ8K3N8JCMjhEGI0ynuhl/ziyG5KSUeZk+hUM1XqN1ZDjJSAIdAbeo9AUD/k\nCT6NPvM+FcuhiAoaxEKn6no2SkBPuos3dujUIpcimtAgYShp6XmCr4JNMLsJQ59xWxS4lDSJjeF7\n5mPjpqSnFn7KV7iUdKBT0gV2HEp6ylcoapHrU76+QuhxT0lzfar8YZqSp+bZsbho30hm5FPcFgXq\nbtNyg5rHhIGYtP2YDohRMdbhU8aNhqF1qqlPcds3uKekS+wACKKdh7XRWHRKWghxhhDiodyHCSFW\nhBCvEkK8uPnQogBKogL402fcCqMazIw7PCYlwKRnKT3fQy8VbLiVIoouUXrRSmpxPE2XUHPxrZqQ\nFGSf97m16DNTb6KrGkLOOTDtSvV3tkm7lpsrioJ0j9Gbrqcw1CuMhE+pP6TuniyxYfoKhQ01Rv3S\nfDY2gdo8+gNRPpM6NV8myUwanl1hbOhTU9XXhj5VXsreh7evsH0qIfSI3kTv9iAmJc31qX4f5o1n\njfWn60JVGK8AcJ4Q4nwhxMuFEIcKUXTLZiKEuKsQ4qlCiI8CuA7AXyE7CBMlgCj5GwTXKF07PAeV\nBADphknPvdMikyKtUkTdz8d9vZVpzsYdP0XXO3aClc8eGV5vRe74eXMhA3ix42dWadU5G+3GpEfQ\nJTqGlc8eOyrTVIWROvTS0xZLm56eFNkqRardLPHsYZIg8HyKpBaJOU8o6TD2YEqKKHsosCH1TCfD\nHRiS2LDpeq7d8Kpt1oXf4SskNqZNGNenVGy4PkXdyuAZY8mkiMviNMGG6VPsWBzo4FB5gEVNppn2\nsFtS0lLKlwN4AIAfAHgLgB8CWBNCbBNCXCeEWAVwFYB/A3AIgFcAeJCU8getjnoPksLQfIxSuHYx\nJvpMdYg1h95oZGzkJ6kkvTJA3tfIex5JCRjmLLQkmdzxc7EhqCRy90udEPWtFFUCuKPKQVHSXLvZ\nmOxsyvsafZvVCXqWamovkqdKUmR6SwlFLRrswWk3FCU9NryWk/IVMPWY1bZKUuSqopnsgbKbYQOf\nMvgKFxsqLk21MhA+ZY2xAXzKWEXziSPcfnLdVwh6lqyiGeyG6ytsbOr4lCvGcu3Gho3O4vj4lOnq\nMg+76bqQI5RSXgbgZUKIVwN4BIDDAdwVwAqyy7ovBvBtKeVv2hzonirGhJFIipxGaSr1546YJFlS\nNNT16lDShiZ0Ls1m3P32JABRL9DXoaSHhjGu2Z/XmJJm0iCFXn8gUHxp2ZyH1WR6MMzuuFOeSVJE\nTEpamMZYAxtve2BS0qU9jMd5AB+Sc+G2KNB2YxijK5lW5my6kzDUyc9ErxStreX2sImNjTq+S6RS\nqgAAIABJREFUOtSi0W6MbR5uStr3laVe1KJr4TdVimz2sKM651BtHnP3KRY2hK+Uh+x4dkNeORSY\nkq5lN+yDpm5sui7slFZKuQHgW/mvKDOSSsLIpEu4pf4yKVIdcb0GXeJJSXOppEpSJBIAg4peOiAc\n1kGzkY3Whjkb6XomtRiKZpuiz5IkrxQNK3rFc4SYUNI0RWRY3Bz2RWFDzYXfyM/D0JgUMWlX6mCH\n026ozZXBp7jUImVfZaWI0Cv6srzoMxddb2h56DFp/coYDW0e9KGXwLS+6lMI277BjsWmMdZo82DH\nYoqSRouU9C4zNkAWR3pT2ISlpElf4bZ51KCkqVjcdYmnpDsulYRR261Wdvwm2jUxVAYMeiqlIzfc\nesZqiIF2LZ5nekk8pWekQeT0XKRBz1gN4WJjqYaUY1zn0fW1sHHQbKpeYlj4TXMuX9cWChtqzgZs\nxJDAxlAZMM7ZQJ8Z7UYw7cbQytBn2gOJjWHOJp+i6FRfn1KrJk18ymQP3BaF3tjfp7jYUL5iikts\nuzFU0ShfKTdXTHsQJmwoXxm5K9ON4ggXG26MrSRF9X3FGGNNesl0m0cobIqDZGKQG9V4jJ6Q9bHx\nsJuuS0wYOy6mhNH2WqEpSoBLSauVonWDHkFJlxd8U9S15+lG667WFejJOXtSRA2xIQ852JJpDjYF\nRWToRauFjamK5sAwFDbCVOk2UUlMWp9qUWjVbrg+RczZ9y7LUD5VaWVgxhHRpIfR1MpA+AoXG+4d\nlVy7IStFro2GWkVj+kotn/K0h4qeoRe6jq+Uc2bq0b7CbPNgxhESm1yvN+ihyChNvdAp06fY/Z2x\nwhilqZgSRoo+E1z6jElJ672OQJUuKXduFH3GvXePSZ8Z6RIimXZSAgYKko2NZS5TybTeD6PTZ0wK\nkqKIyP4aB81mvDPOgGFjup5pD2Rflo2StmHDbWWoVIDy5JbwKWOfXg1K2rfNg6TZqH7fRq0M+f9R\n7ywd8XzKfCuDJwVJ+JQ1KbK1eTDmLEzJtIPWr4yR6SslNkSrTNWn/Oh6a1LkirHM9g3yRgFmjDUy\nXDO4zUOdc2VT7vCpPrX+EGtz1yUmjB2XSsJYJkWG3YmDWqT0Ko7ooha5OzxLk/BURcmilxioRVOj\ntZESoLAZOrChghRBu1aSaRtdYtv95smTMeGgqiGGwywuCpLEpsapRYqud1WmKXvgnm50UdKVKpqD\nSiIrjJRPuaqvlN2Y7IHSMyXThkqRyaeMdmNoZeDOuXJnqaFy2MinXNgQPkVVirg+JfuDyZ24roMd\nphir2oPhtgXTnE3VNgob7q0MxhhrYCq4dmNMprnYUHEksE9R61SzGEvEzjLGmrHpusSEseNirDCa\n3sRh2sVYyt7FfxGmHT+TBil7jwiKwbm4EXqDAYJT0lz6zLnwqxia9JTeo0T2yv8TAhtf2nUwmOiR\nlCGTkqawcW40lGR6I2Um0zk2Jnttgk0tu0nc1CLbp4hkh9vmUakUCZH9l970+2yLvizVp0xzNl3U\nzMWmjj0YfYr4nn3pejIpYt62oNpNedAnkK+EboHhtnlQdCrXV9RWBirGTr5nrt3UX6eM2DD1uHZD\n+ZQ5md5DKWkhxB1DDGTWIoS4hxDi80KI7UKI24QQ/yaEuOe8x6WLMWG00Ge6I1IngY3BbMP0vGla\nxalnpWcHLL1iJ0jRZ8Xut+Kwltfa6WO0YeNMpk0UEaFXPK9XBEcLfTbyxMaaTPvSbOoYDQ3ZKrXI\nxcZpD8qp2CKZpuZcYFMmRVIa6TMTNqY5m+zGdsJ38v3x5myqXrCxUdo8imSaiw1pD6ZKkcmnev7Y\nNLEHo08RlPQUNjZKmukrCdNuSEbDhQ1lD8sNfMpgDxQlPVLnbGJxPH2qqEyrL5ig1x/mnJv4lMtu\nCEqaazfWSqQjjtiw6bqwE0YhxAuFEK9R/v5AIcTVAG4QQvxICHHnVkbYggghNgP4JoD/BuB5AJ4D\n4L4AzhZCbJnn2HSpJIyuXQxFu5oqkS5HpHbJLj1rAGf2olGUgLOHxNwboo9RhMKG3V/jXgSLXS2V\nFHGxcZ2mprEZF8UqpKMAdqPoSebzKnZjqBSZk50GdhPaHtRqvGnOJh8wJdM1sDEu/F3ApoFedeNJ\nVNE8sWHbjeEaFXaMpWInM45Q2JBtP1osJn2KejVgrmesTDPjTZ31p04cIe9rdMWbButP+dYd0Gtz\n18WnwvgyAKvK398N4FZkb3fZB8DxAcfVtrwQwMEAniql/IKU8osAjgJwLwB/M9eRaVLZfDiMUg6G\nZX9NucNLiMTSRZ8ResbrMAjatawUDftlUlR5dZvWa0LRJabmZDKZXq5i03TOTfTqzHnMnDNZYWTa\ng2RiY+49qq9nsht1LmS/lYtmC4QN127a9CmT3RixMegZ7caAIdXTyraHBnNOR0l2mkYIfptH4Dgi\nDXYTCpvQMZbSY/tKg3jTJjZ14gh5OLMDdtN18UkY74XsrS4QQuwD4NEAXiulfB+ANwM4MvzwWpOj\nAJwnpby0+Acp5eUAvgfgKXMblUEqFUbHzq1KCVQp6Qq1GKgC1GT3G2zHb9jhUTv+nmkugefcKjYN\ndr/BK85zrDAaq2gGPbOv7D7YmOyGXXHmVk3InmneXIy+1wWfYlbjTdW2Xp0qWugYO0rLZHos+7Wx\nGTTApqs+5axMN6wwtoFN18UnYewBKG7o+iMAEsA5+d+vAnBAuGG1LocA+Lnh3y9C9u7szkglYTT1\nFJl2MblRivGopBa5VS/uKWnj8yiKyNDzYaqGmHZ4pp2b6QSfcferXtRsnMukjBtizo0rRSZsHBiS\nu18HNuoYe6Y+Kq49GK5RaWw3jgojd86u3tfqwk9VQ5hz4VacW/QpbjXEdKLT1KdHYdMzjNHUm8ie\nM7faZmvzcPgU1x5CVdF6JrvpgE8Zq2h1YmyRFJnWnw74lJpMF5Xp3qC4NZ7BcHn6lMkeSGwqNGK3\nxWeEvwLwP5H1/v0FgHOllMVLfu4KYFvgsbUp+wG4xfDv2wDsq/+jEOIc24MOO+ywcKMyiLnCaHBY\nw31ZheOMx5i8cokKZmqQ2sj+yG5W96UWV1cxqJMUmQK9o9HaRAmQSRHRhO5MupmBvrLjr5MUcRv0\nXdj0B1OnG8m5GLBhb0hq3S3HswfuRsOIDXEPI3XoxbUIGjFsy6dg3mhU7KbHXPi5hxeMc6lvD+zk\nyefwXAifMm00kjrYMPW41LUJm+ItJWmaJ0W9YDGW7VMENmyfamAPprjUH4hsjKNR7itLfnbD3Wi4\nfEptidoYlWvzc58L3HYbcMopwL5Tmcj8xSdh/AcAnxRCPA9ZUvV05WePAfDTkAOLkok5YTSUvQ27\nmKLkPh7XpEFW7XpGysl0EthAl1SqaIZSP5dabEIJUBSRiT6rzHnswKZF+qwJNiYapHpRM28ubGqR\nSVV2ARvyYIdhLmy76QAlXcGm39xuKL8PPWcj1kWlKEnyuydFc2xC065cur6Br5j0+gORjXE8NidF\nTNo1BDZFS5SoOZeK3qbsj03aPMoxjkZ5HKmHTYj1J0mqvvLlLwM33TQpyHZN2AmjlPIzQojfAPh9\nAD+UUn5b+fH1AL4YenAtyi0wVBJhqTxKKY+wPehhD3uYtP0shNzvfsB55wErKwD+wa/sTdIg7EpR\nfRrEREVUFn4mJW2sDDDps1rYUNTPuic2pt30OEVR3isuP6doEFNloM+kZ02tDKbdL1kpYtJiJqrS\nqGfAkKqiNaHh2XajtDIY59LksBQbQ0ulyJM+q1V95dL1Db5nrq/AVimqJEXDYL5C2g2Xkq5DIa80\nx7Cci54wBvApNu2a37YgZTZGUXMuxnWKaYeN1x+XPTSgpIsxJkkWY/umMXZQ2AmjEOJRAH4spfye\n4cfvBHBosFG1Lxch62PU5QEAfjHjsThlyxbg8MPzv5gclkFJA0QTOqXnokEqu2keXUKV+o27WuN9\netNzboSNGsxclHQdbCisU+GPjYM+M707mMTGlEyb5mwM4Iqeo5XB2ZelVIoqybShMk1iAzs2pnfA\nmnqKqFYGZ6Woia/YKkW9BDq1SC78Dp8y0fAmuzFio1zUbPQVijIcNsewHON4nM95aK8wmvr0uK0M\nJrtRkiJg8jpEvYrGjiMun+JS0iZs1tb4MTZwvCnGOB5bvmcuNq6+c9WnqLjEXH+a+JT5jkpi/THM\npasJo8+hl7NhPxByv/zniyJnAPh9IcTBxT8IIQ4C8If5z7opZcJoKo8bdjEmSse0wzOV8E0LehM9\nEyUACw1i2uGZ5mzsKfKj6yvYcCmiGthUFsH81W3WZNoTm0GL2Djn0kRPT4pyhWLHX74tZzCoJtNt\n2c3Yv5WhNWxs1ZCchqeSadPpZ2MVzWAPLmzU2xZkXn31amUI7FMmbKwLvyftavIVEzbq6xCbfM9N\n6Ppg2MwixjaJnZReIGzYrS1MbKi12TrGDopPwigcP1sGkDQcyyzlZABXAPiiEOIpQoijkFHqVwH4\n8DwH5pTSeA1lb4PxkhQRk5I26TlPBJaVIrMeRYPUOiXNpQSMO7z6NAgXGzUpKi7kDoWNiWo2YmO4\nl7MWNg3unqTmXCSMC2s3M8CmssCYKtOGOTfBRr3IXTbApkm8MfmeCZtkLFEoVJJpzzlzD3aY2jfU\nd05z7SF0LP7/2XvzcPmOom78U2dm7vJdspIEAoGwhZBAWBIwQUCIsioCLwHZwqYssiqLEUgEgUAU\n/EVeFA2yKdGoyCI7GiGyBTECAoGQH0ISggmB7Pku987S7x9nmZ6e7q7qM31mztxvf57nPnPvTN0z\n3Z9T1V1dVd3Hyg2jD7HHG658Q9pnqa3UsSlbn2fZgGgdRzhuXCUFLYQ3JV1E3e6kvXUCEe0wxNYB\nPAfAFVFb1iCUUruI6GQAZwP4AHJn+N8A/I5S6paFNs6HWdKuoSv+GnKVUzQcVjVFdaJotmJ12wrP\n9vQK6wqvTqTIslrFLNyU3z0cYoX6ALq1oq9WbqyrWhk34iiaq8/bhHJBK/51lhtbFG2CG3JH4216\nQ0UUTU8tRo9Mz6I3GOtDrcj0DBuC9M1z5ThSJ/rKRtH2uuVstmeLFJX9mDUybY8Uufvc74/7UnKj\nn4lbSx/0vgyEHPr0QXOmbRFG6xhr05tAboL6PGeb8j0OsQ439uyfnxvbOLKUDiPyx+a9DoAqft6B\nyUijKv4eAHhREw1sCkqpKwA8YdHtCEJVN+NOCWQZHAY7XsVMHaMykUqSycFyveq7h8PCEHvjAbzX\nm5aDMYAbq1pdbsJgy9QcTctNDPTF9RTLjaWN+uBjKUKvzc3GRuUUeeVMbow0iJMbT7E6WbjRD3y3\ncmPpMze5ibjRB3rtu8sBvHTgnNx4+pxlQLUT2GYrFg7L1OJoNC7Q1yd+GzeYQR+C9QYWpyjEpoS2\n4htHcodxHEXzcaNsbbToTSxuyj7Xsaly4udsih1jpdyI+6xxuOmTm76e15nudDBSJOqzbbzxpaSl\n3ADx9cFWC60vXLz6oD3HvXoiWQ1uOnXG2CVKSXMO4/uRH85NyM9ffBGmN4VsALhUKbVM5zAuJyqD\nFaYEuCianhIofp1YoXtTRA4l7/Vyp6hOalFahK7ccrYCfS5dYtuBGaUInemzjes66RL7hiBtkDJS\n0mUbCYJ0iXBD0Cwc2vpca7NUhPSZXqfHpl2F3Ig5ZPRBalM2fRhY9MaWqWBTi7aatcg2VUdvrOl6\njhtf2rUON0K9gbjPHg41p8g6Zmt2L7Up66YXjhtpStrgRm/fzPpQRKZtGS7p/KMG4w9tZR5WmxLO\nP9wYC82ZnnD4Wwivw6iUuhzA5QBARA9Fvkv65nk0LMEC32BmC3vbBinXLrUyiibc0alHOUROEbdL\nzbLCcw5SI0ufDadoNMonNz1SxE78zA4+W1+kct7JzSFnG6Qm0q5w64Ntd2PZxuFQcxg5boR9tslx\nejMxOAbqDctNKRfITb+vOUWR9EbMoXBHZx1ubH2W7pK2tXHYpE1NbRAj8TgSjZtAvQFQjbHRxhum\n7CevhfaUtoRyI+wzO//4FhqxbEqX22X0RXcYa+iNbVwS643lsHKpTU2cievbMbJAiDe9KKX+PTmL\nC0aZPrOtYoRF6HpBNpcSqAxsVShnSYNw9VZlqL9a4WVZ9Qgnm5wzMqClFitj23SnZ521Qt56GMuK\nX8qhhRs97crWHlWRos6UXCZMSdv6wslZI0XWPlvu8wx6w8n5ShkmuBHudrWlz1hupLbCnafHbRAz\n066uSGSgrdjSZzY5W1+sm+wi2VSnl6HcepwfJRTADSNnrUXj9EZqUyU3TO2rrY1sDaOlL3kttJwb\nbrzpNGhTiMyNeBxhOKylN1JupHpjm8NbCrHDSEQrRPQ6IrqEiHYT0dD4GfBXSZgJpVKWhg/5xG8q\nZZZpESBp6lpSd1FG0TinqFzhcZNgtXJjBnpbGt6XSrIMZhMpgTWLnJAbNtXMbV6oVvwFN1qeacKZ\nLuXqcONLn3ETv63PvvSZ7hRxaVduoDe4YSPTnFNk0wcpN7Pog+UoITE3XJrNtiGI40ZoK1K98aak\nuYVGDX2QjiPsxD8LN77Fex29Ye5zdG6E44itFjqW3ojHm8i2ws4/3EJjBr2xOtMtBVfDqOOtyGsY\nPw3gw8hrFxPmCS1y2O3m+limFq1h736/8h25dEkpFyt9NjUJRkolDQaoUtKuFJHODVzcWPo8kRJY\nscjZ+lxGlAYDdDtGoXWvh+Hu+tyUfXbKZZOpxcFgLOvjBkClDyw3tj6vTeuDtY1a+mylE5Y+k8qN\nBuNKdpszHZI+M/ss1RuXrXg5LK9ZI30mLWXQ9cGWri+5kejN1CKsBje63oi42djAShamD7FKGWzc\nzKw3nrIfGzfOneHFNaXcSEtgSg5ZvQlIu5r6wM4/Qm7mPf90hWMsWUqiaqXrW4oQh/EUAK9TSp3Z\nVGMSGBi1iYMBqkFlwBYd108JTKTZipoiLr0hTQl0qhWe/3qTK7yw9BmfWrSsfqXclOmz0ahIn3Wj\npV073OrXthNYmFoUp6T7slIGb/psWO6aN7jZa8hp3LDps5FMjo1MR+AmThp+nbWBrtSm9DKP4jnu\ntjKPOukzc8fwlNxaKWeJFNlSi9JxpMGUtO2IGTYyXYeb7ZNyPDf++xxqK+wYK+yzLlc6ReJShlgp\naWE5T6yUtJQb/bSFss+DOvNPSxFycPcOABc21ZAEAXyTG2ewvhWebZCyRYqAIlLkkLOF+rmUQDXx\n+69nnfht0RBbStoRffUO9FJu9FWt5dgTURrEJTcyOIzIjTfCaBvM9LPltFKGKhqy6W9j7fSZK1I0\nksmVC418cVUO4DIbYPXBFw0J0JtxLZpMb7gyDzE3AXojiqJxTnINbqQ2VTlPQ5nejPoOZ7qMFFme\n/BPNpnzR11lS0qzeyLjhoq8TdeLl/CPsczRuxDblH5eqhefQPy7ZUtI2buwlUZxNWThsKUIcxo8D\neHBTDUkQwBI5FBuizynSrkdcNIQ72qOKhjCh/iqKln/OTYK2oxysq1qdG1/UhEsJ2K7HtLHkhq3b\nBCNncMOtkikWN1b98kQGbClpRm+qPjv0geWm1IdSb4ZcZGA6fSbmhj15YJIbwLUTWGZT/Caoss9+\nmyq5yVzcGOmzJmzKaver03LO8aamrbAR55GMw8lnRAttpdIbGYfWyDTHYQ1bCR1jucj0ZF9kNiV9\nQpBVH3Ruilpobp5ijy5z6Y1rnuLGWJ8+CG1lGSKMXV6kwjsA/A0RjQB8CsDUuYtKqR/GaliCBTZl\n25Qqb7nakUUirYNKdej0Grsi6wo3vYw3djiuV27SsURDbIX81hU/U3RMvglBlxOmiKRpEI7Dkhtu\n4p94DrLnjEp2Q5CuDyuTHHLRNu4+B0cYXdyUA/jQiJq4uJlh0wtbrG4b6C02xbUxlBvWpoYyPayz\nkQw2vbHKFWlxvZQhZPOCz6Y23NxwHLKlDFoUrUotSksZSn0Q6o01+lo5RZ6yH6neBKZnpdG2si+D\nQe4IEuS2Umv+sZX9CG0q9qbL0WCEUqEHI4szbRlH+PHGMv+0FCEOY5mOfj3yp7/Y0OKubgF4DIw1\nxLIYt05K2jdIueS4iX9qAHdcjyxOkTRFxMmtTMq1LSVdK7U4kqVLxBxG1hupkyxNn3EpSFtqUcoN\nOwnO2aaCnSIhN4BWiya0KWlqceJUhvJJHJpTFDvVzMmVtiJ1iiYcxljc2NpoO3Q6dHHV62G4Z3Zu\nuHtSaxyZJSU9FbDo2jm0La5C9YZxGCeuZzngexZuttqml+cAUE01JEEATzjbqZRVEXpYCnLW9Nk4\n1M+kz0ZM+qysnSvkRoMRyrNvrCu8WVIC805Jc+lUM30mSUmruClpa/S1DSnpkUwPJ1KLA0+BvuU+\n254Va+PGma4XbhALTrtyKWmOG+M+N5mSnrCpbDpSFLt8Q5qS5tK9ZV/6fQc3M9iKqTcoqEG3K9s1\nb+hNFjkl7RyLffMPozcVN9xTcHxt1J4gVislbdlkJ01Js9xESElvqQijUur9DbYjQQKPgbGDWVvT\nZ2YUzTnxW1aC3ApvKE2zxU1Jcw7eVBQtUkp6NBwBKJxp/YDvCCkiZ+2RMH1WOzo2Y/psIrUoTUmL\n064WbixOkTh9Jo6+MvrARdGM+xxU5iHkxupMA+5IEZeS5kpghGUemdCmrJEi4cbCWnqjcZNv2FgX\nONPCVDPHjVGiII2+lr9PcePrMzPelGPi1GPyCtlyMwtbEhU4/wRHGBmb0vvs5KYI5pi2koXsLJkz\nWty0hCnMkpL2pQR0B5QJ4UtTROMoGjMJclGTymBlcuKUgMWZdq4Ey0OnhX2OlS5hC/RLp6j4vIPi\nQ5czbemzNCU98Sg40g6dLp/EwekNyfRhSm+kqUWXPhR9JoxAI48zzUVNPLYyNFNJ5uIqkt5M2QoX\nfW3SVoTjiNUpgh5xFo4j0vKNUJuSRIp8pQw2fRCmpKdSkKG2Ihw7O0J9CLWpOtwMOL0pHUbzMXmu\ngIV0/nH1WWhTVMemhjKbsupNSyGOMBLRexkRpZT6zRnbk+BDnZR0NdB7wuN9+fmK4hSRrW5mY1qu\nHKTYHZ3F91VnE0rSJb6UADeA10iflYOZOEXEpqTDVrU9LpVkiapK02wjM11Sps+KSBEXfZ1a8TtS\nP+IomjR9VvRZ9R3OtC3K4dslbYuimdwY6TOnPhjcSOXYlLTQpsb3WYEKAdujJ1m98USKpiZBM1Ik\njExztlLaFMdh+TnHYZ0oGtnkbOlZ28kDGjfsQsNlUzNmKijQpnQenfpgRNGGHIflPOVYaEjLediI\nc6k3pq24bGoQalPwl3lwQZ+WQuwwAjgZ0zWMBwHYCeCG4iehSVhX/LKJ37qKsTpF4xWe7SHs4gij\nkhnYlFPkMNjy7K9yVS1Z4ZXX5DY5WGuPiu8Yp4i67iiHMUjJB3pNzvJEGHYwM/rSnTWi5HGmpyZ+\nM33GtLEbmnYVOkXSFT9BxqHeZzbN5uLGcIpiF+izNsVxY9znKsIpKPPwRhgtE78zwsiNIz5bqaM3\nBjfylLTmTLsm/nLznDDCWJUHMZFpbuEpXUCIbYpzpm02UDpF0kwFswgbR6btNjXe/Sy1Kb/di0tb\nAm0qJ0U4/1RO8haKMCqljrS9T0QPBvCXAJ4WqU0JLngijKWzUxVPA94BvKqTmIiGjKNoqjNWDVtK\nQF/hjcZPZ/Omz6xyllWtTa7sc2/AyHmOK7BdLxeYTJ/ZuZlcyduc6a4lomTv8/SkZZOzpc+83MDf\nPttCw8qNVG+A6dSio41dT1TVpjcT3GxauLFM/D5uMsg4ZLmxRYo6Dm4sR3tYubFETaz6ILSpUm+q\nNC1jKza9mepzdaJABJsCvDZl44a3lTCbqja/MPpQOdOdDkaKvH2ObVNg7rOPmwmnyGJ7Vm4CbUp3\npofFASmsrTC10Jkx/zhtKtL84zuzdJIb4Tzlyeq5uVmeCOPMNYxKqS8AOBv5OY0JTcKTEuBXMQ6l\nLGTNYmJXuoStTQxd1ZaD1MhxPTOKBv/3Thgily4x5bhVbbnjtmMfLHrS8xW5uhlXFI1JEbHcWPrM\n7pK2yXm4cX23NKIkf/LC9MQfixtp9LWyFYdNsbVoNdNnwdFXJn1WR2+kNuWKvoo3+ki5kZ4oEJiS\ndnLjidpztdCcTUkjh+KNPpUjyEXRwmyqqpnudPgyD1tdsKcW2jVPhdqUs8+BNlXqTelg8ilpQWTa\nWFwN9gWHscAPAdwn0rUSXLApZWmIttojW9ExyQZwV7pEnD6TpqTrps8CUtLi+k44BimTm6IgO8uK\n6GvgQF9FGEf+vpTcVJEiLiUdwI01XRIy8U8tNJiUNDeAm9FXFzc1U9K9gJS015mexSmScjNjSjo0\nfRbNpnSnKFZKWphqDrWpbOTnkOXG50zr3FicIm6MFddCCxflUjlWb2awKWn5hpMb6RjrshVGHySn\nLRDJ9cHpTHsjke1PSc/sMBJRF8CzAFw5c2sS/NAcwW5XU8ossz4PFf3x8yqtm14wll3JJlNEroGe\nLdCfSkEyA3jA+VbdLibSZ65BKu+zw5k2rqe30ekUldyUp/2zq19moBcWq0/tzJuVG73PvtrXAL0x\nI85TZ8uZcq5NL2b0VXh0jLQInY0UWbixOtODAbqdSaeIi9qztsIV8rsi085JUGhTxX2W6I05ubki\nReWz5jmbktqKLe3qnfiFNsU559FsSuvzajbZRnEUzbXQkHIjfVRkUcLTFepDHZtycWPOP7PalPRE\ngakSmFn1oY5NuaKqLYS4hpGIPmd5ewXAUQAOBvCCWI1KcCBKZIBZ8Y8cylszJc2lN0LP/hKlpNc8\nzrQ0Pav1eSrCyDnTbBRNlvqpduZFT7uqqo3OHZ3lrnkhN5mLGzMywPSF1RupMz1DStqadrVtEGPS\nZ6atuM6WG0dD4tgUScs8ZkhJW/VhOBxvEJu1lMGV0XDZipLZVOkUOVOLM6Sk2T4bjiAJGFehAAAg\nAElEQVTLDdMX8SNGbWOs5fGKNCz0YV42BUzNP85xxGFTtbkx5h+n3mRGn/vN2dQUNy1ESIQxA0DG\nz80APgzgl5VSfxW/eQkT0Cf0jmcVY8gBY0OcCntLUwLmAM6kfkJ3dHIpyFAnmU0daOmzjFn9Tg1m\n5dNnSuspJ3SOG2mKyEgtindJW/psK8jOMC7AnHCmS6cI0+mzqfrOqdRif4Kbus60dNf8lDPdQEra\nGQ0xbIVNSY8m9cY8W05qU9KoarXbNbJN6X2eiL5auKkeV+lyprk0vGkr3HgjTKeWB7lLIkWicaQG\nN9Wi3GFT0hMmfNzomx+bGmNr2RTZx06pTQXPP0w5T+2ARUSbKtswVS7WQogjjEqphzTYjgQJ9FXM\ninD1W0WK/E6Rmd7gVr8d12BWDlLcQadVNCT/vMPVFEmdZMvOz8kVoyVS5BrApyID3CQoTBEVfXX2\n2eSQizAGLiCccmVftKOEKn0w9SYwamJL/dijbTJ9qM7lZDgsU0nSzVIZhiClpp3psi/6+YqMTY0X\nGoUzzWwkY88QNCPTjE1JnSIS6E23KPNwLq4c+uCqmTbHG9XpQhWHttl2u/LjjVwfOh2gyzlPnK1Y\nUotOfTCj8a60q8ENW5vIcVONN6XeyPRBMo6E2JTODZeGly40OH0YjzdMxNkcb3o9jPRHCGaB+tDv\no7NNziGwdSOMCYuGdBXjixQxm14y1wrPrA0Rr/CY1GLs1a+ZEjDltL6Yq9rQCKNr9ctHTWQcjg+L\nnTGqKpXT+jI18TMRRic3gfogjYZUtWjCczmDuXE50wiIhmBy0hJz49IHM6I0azSEsxVpZFrry9Q4\nIiyB0aP21o1kbPSVcaal9zlChHFqjDWcIjbCaHA4VcogiDBOONPmLulI+hAlMu2IxnM2JZ1/xFH7\neduUZdf8MkQYgxxGIronEf0TEf2MiAbF6z8S0T2bamCCBmkUTZOtGw1xnrTPrfCMyY1b1Y5TizOu\nfqVyWl/M9Jkz+qom2+iaBKfSIIxTxHHIPt1mjty4dpBLuQk9yF1SoE8Uoc81uDFtxVUXbPbZZVOx\n9SZan2fQGz4aP9kXzqbY8SZw93NsbqrINJHAmWaibYZNlZFps5RByk15L9gsTixudOepLPsJnX9m\nHEfEesNlKmJzo28Qy5i5uYUQp6SJ6H4A/h3AHgAfA3A1gFsDeAyAXyWiByul/quRVibkcEXRXAP4\n5mYxgK9VKyi2QL9c8btSi1yUw4iiSdNnHW6FF1hM7OWmdvrMz2GHK7yfcqaZdEnxfRN92TstJ+ZG\nqjfQVvyu6KsriuZIu05x44qGcBuCzBU/80jC2twIoq+VTTnLPIwoGpuu97eRjaJJ+6xz2MPEoea1\n9cbUh5HMpipuHM60dDPL+AiqGe+zLrdNqDeZko03XPTVoQ+ujAbLjSv6asplwuirVB+Msh9CljvT\ngNuZpsk+sw7jaBx9nShlkI4jZqYipk1JbGU4LPrcW6qUtNhhBPAWAN9BvsHl5vJNItoJ4Pzi84fH\nbV7CBEql3NzkJzdH+oxLCWRsukSW+hFH0crIgCu1OIeUNLviF6ZLOsZgJnaKmJRO9YzoXg/DXW65\nJlLSzonfjAyUEUZXKUNoSprTh/I+648I23T0uaut+OumKrW+TJUyuJwiY0IXc8PZVKwzBKsTBWTp\nM4lN9UI3vRgp6Smb4koUqkVYoE3NuunFcIpk3Ew6yS6bMqP2Lmea5aZaeDJyEDrTLg5dfS5qobvF\nU2DQ602eSYhxG83FlcumXM50VcpgRhi5TS/cSRR1bEoy/xTcEFaRqVEemS54arPDGJKSPhHAW3Rn\nEQCKv/8IwEkxG5ZgQUiKSJv4CaNcKeFe4ZmhflfqIDhFxJyM34rUYjlIMWnXDpd2DeQmeOJvdbqe\nib5ymxIaThFJI0UhelO2kdUb16aXUG6ENtVU+kykN6E2JU1Jz7oJKrZN6X2mfpjeBDrT0WwqcmmL\ndHEl4kaoD9KxWFqbGKo3scdYL4ctRIjDqGb8PGFW1DTYCTlzheeIHDrTJaPJSYtLCXRihfobSknr\nzvTEAd+aHMuNNH0mnfhjp5pD0mcOZ5rb0cnqTWBKmi1RiJ0+A/hIkSMNX3vil6YWjfRZNJsKtJWY\nKWlTH2rblJGSZs8sDUlJS8fYTMYNu0B1cONMSQvLN6b0pmmb0vvM6U1pK+aGILZOvODGUQITalPi\njMY8baqFCHEY/wPAa4oUdAUi2g7gNABfjdmwBAtCUovaxC9KQQpT0q7BzEwJRE+fhaSkpekzCJ1p\nc+J3paQNZ9rpFJl1m3VTP6HpM8idItaZdkWKHHrD1m2Wk5t013zs9BkEK37DmebSZ5XzpBib4tLw\nNaOv0dJnJjeMTQHhKWmnTQlT0tVzkIW75mdOSWttZMdYY1EuTUmzUTTheEPcmaXzsikfh4Y+OBca\n5gKVsSkuJT3eWDjnlDRy/nQOR+NDCFqLkBrG1wC4AMDlRPQJAFch3/TyaADbADwkduMSDKys5K+B\nKWlJeLw604tJs5lpEPdgZgzgTORQdN6Z73yrMn02HKKXDWVpEOnqt5Dh02eTHLoekyd2pgOjr6Lz\nFYWpRakzXS0gSqdIyI07+lrIxUqfSSNFIdzQAIBCR+UCLme6I0yzZUrGTRUpimVTIekzITdTEUbX\nOKLstuIaRzh9KCf+rotDqmdTWURuzFIG6eY5boyV2lS3jk1ZnggTtHmOBuiVyUfJGMuVeRjzD6c3\nbEnUYJCXRHHcNGBTyxhhFDuMSqmvEdGJAP4AwCMAHATgOgCfB/BGpdS3m2liQoWQsLc0wlgZbFgU\nrcOkS8ZHOUSKHEpX/MOhfFUrjL5W0RDljwyw3BhRtA6XBokVfS37UhWhx4tMSyNFZjREdY0VtVRv\nYkemtTbW0htfZNroMxdF42xFHClqYhNUUKZCc6YdaVfTprgNQSw3XJTWfMSbUG/QoK24NiCafa6t\nN5WzU8jV0Yfdbm7kNqVYDk1uuDGWs6mpXfOcrQwEcl2jz32LnCTDJR1vWoiQCCOUUt8CcEpDbUng\n0OnkkTSlplKLU+FsW0qg252WM1ICHSNSZF7PrJspV3hTcpVTNF5pTXy3Nkh1dUM05TSD9cqV372x\ngdXOgJfDdEG2S25qR6fr6BhHfY3Jte2YCxc35mo1lENzwF3NhPpAMg47jvTZlJzpTDvOlqt2LSpG\nHyxPm6jFodZG1lYc0VcXh676TpetOPtscBPNpjgOZ+Wm08FIkVXOPFFgihtj4udspTqey8VhNsmN\n1KYguM+sTTki0yPqWOXMlDQ3xtr0ZsKZLp2iYSSbsmwQ8+sNpuTsC43p8WH68auy+YdC5x/L8VxT\ncmsGNxuanLZrfqUzFNuKNxLZQniz5USUEdFjiOgeHpl7EtFj4jctwQpt4o+ZkjZTAuzOPMWk2aR1\neoGP4Iq5a7GLgX+FV/ZZmC4x02eudIltMJtLShoh+iDkUE3eZzYlXXLjir4Wcs7UojT1Uzt9xtdl\ndSEs85CWb6jJPrsekzflFM1qU4Hps6g2pWTjjTglLT1tIWTTi3TXvJQbNelMi8s8nHXBQluJpQ/a\nrvmJgEUkvcmd6SLCyJREdTm9sSwgRNzUtSntu1e4ubns8xKmpLnyyqcBOA/ALR6ZmwGcR0RPidaq\nBDccK37RIOUbwI3omKvouHpmK5MSYIuJG0yf1U4tulJJRp/ZlDQ30Jvc1E0tNpF2LQd6Tm/MqKqL\nG0eKyLVjeEpv6urDrNz4FmHSMg8zas+lzww58zF5VZ0et4s1pEBfmD4LSbtKOBTbStPlG2YbQzaI\n2aKqUm4ENmVme1x609jjMT1tnIiqzqI3mq10MP7Q6Uw3lZKe1aa0Nq7GKolqITiH8VQA71NKXeYS\nKD57D4BnxmtWghM2h5EZzCSRyHxyU1XEyFnI79jY4Yqi1Sq09hhs7BW/bEMQEykyBinn6rec+Gcp\nQp81UiTVB2kUzeDGGX01oqpOvamcIkYfQiLTwkiRODLN6U2pD8KNZFJuoumD4RTNlRtp9NVhU66N\nZE1EVcVZHGk0XmhTmTAyzY6x0rFTalPad4ecPSmdf0JsioswRpt/QvQmMKvX4/rcQnAO430B/Ivg\nOucDOGH25iSwkBqsNvFLIpEdNRiv8LLMecD3VDTEabBh6TNp2lXSF3H0NSh9pjnTTEqa2zEsPsqh\nifMVpTvDuUiRuYBg+pyZco6IUrlrkdUHLjJQI30m1QexTXGRIkf6zCUnPvYkwFbM+rtZ+yy2KUMf\nXDZl7gznnOngccS32BbaStM25cpomHqjOp6aQwk3IZspA06YkM4/Ijnh/BOako5pU+LjubZgSnon\ngOsF17m+kE1oGrY0CLPCk6akJWF0V/psKooWKyWty0VOn4WkpDOMR2KxM+1wimCmFuum2Wqcrxh7\nl7TpFLl2xbILDWmfG0yfSVPSoWUezonfwY3r5IEm0mfi8g2hXN2UtNMpGsjGm2gpae2a0W1FmJKe\nKvtxZirsemOeiduash/fIkxoU+ZpCy6bYktbWmBTbJ9bCM5h/DmAOwiuc/tCthEQ0cuJ6ONEdBUR\nKSJ6vUf2uUR0CRFtENH3iegFDrnHEdE3iGgvEV1ORKcTUYtvVQGpUgamz+Tp2cl0qjMywKUWG0yf\nRU9Jj4TpEiMN4q7TGyDLPH3WuOl2PXJaG9n0WWCKqKPkHGYYIoPyOtNmisgZRWsgfRaNm0CbyiNF\nqjqBgEtJz8xNg+mzlVjcGM40ZysVN2C4KXb4Rj17UprFEfa5K7SpjlAfSme66yplaDAlHX+8CbEp\nnhtzvHGWMizSpjj9aiE4h/FLkNUmPquQbQrPBXAogI/6hIjouQDOAfAhAI8E8EEA7ySi3zbkHlHI\n/CeARwF4O4DTAbw5estjI9AQpSmiTDFyjlWtO8JopBZdK7yQp01ksjaKi9A5bspJi+OmWv2WgxkT\nYYz51ABtkIoiJ13xS7mpJn6GG2mfa0RDekK9kepDR6gPHS4yXdoKl66XclPHpsQRxkjcVFE0WdrV\nLG0RR18j2BQ73thSi0w0Pgo31VgsHG+asClhn8VlHtIx1ph/OG6i2pTwCWLiCCPHTQvRZT7/UwBf\nIqKzAZymlNrUPySiHoC3AjgZwAObaSIA4Fil1IiIugBcEcMugDMBfEAp9dri7c8T0eEA3khE71aq\nrIDFWQC+pJR6nia3A8DpRHS2UurqBvsyG2xKyaz4pfVWErlxNMRfQ1KtyAaylRv73Rsb4nqrXgA3\n0miI5HqVMw0ZN90+U18TWKAfXKIQQ2+GMg6zUG6c3x1eb7UaUKAfk5tsKJQbBNqUMBoSs95K2mep\nTWWjfv7oSSiAiI1Ms/Wd0hrGwA1iQ/16u+1yOTfDaBxmRvSVy+LMbFMupygkOrbp63PGXi94/mH6\nbGa4ate+aucrio8SChhHtlSEUSl1IYBXAHgpgCuJ6FwiOrP4ORfAlQBeDOAVSqnGniWtVPFAWz9O\nAnAIgHON9z8A4GAUDi0RHQHg3g65HvKIY3thU0rfyg1MeFxb/com/mJVC/9gZhpi7ZSA1kb5zrwa\n56LN4hSVkQEjReSs0wvc0VlrAJ8xRcTqTagzzXEj1Yca6bOQZ0RLd4ZLd3RKrmdObnNxirQoWsx0\nvVQfpDZVctPjuOH0IYZT5MloSMt5pCnpypkG3M50rJR0nbIfqVMkTUlLy36MlDRfEjXjIkyTjX72\nMTf/tBBchBFKqT8loq8DOA3A4wGsFx/tQf5s6bOUUl9srIVyHFu8fsd4/+Li9RjkjzG0yimlfkRE\nuwu59iJ04hcX6MdNSZuh/topAb3P0rSruAh9tpT01NMFjJS0K81mTvz6Y/JsTtEsKSLb00ek6VRp\n+kykNwY3ztQi1+fOAtNnlU0JORzKOFxk+qyHPrJ5puulelNFGIXcSDeImZEiRm/6wkV5FWH0cSO0\nKTK5Mc8kNPTGHGPNcQmDATo9wRhrZnFi2JQaoIvOlNz0k3/kKemJyHRx7emFRlESVcOmrE+jKZ41\nL7WpCTkz+iq1qRaCdRgBQCn1BQBfIKIMwK2Kt69VqnjGUTtwUPFq7uq+zvjcJVe+d5D5JhFd4PrS\n448/Xt7CGLA5jL0ehnvyX4PD3loaRCRnrPi5CGMpV/tsOU02WhQtkBtx2jUwUmRyYz4mbxm4keqN\nGUWT6s3UNWnSKYrZ55AomjQNL+JmKIyiSSNFhVMk1RuKaStSvZFyI40w9vvo9AS2UjhF8W2FT0nH\n1huEcLMm46aZcUSWko7KjVEStZTzTwvBbXqZgFJqpJS6pvip5SwS0a8UO525nwvqXH/Lw6aUKyve\nNIg37F2ufoX1VjQaiNIl5oq/fs3auI21zleMkD7LODkjfVbKuo6YmYq++lLXAemzKLVotkgRM4AH\n1ekF6sPUY/K09Jn5zNbGuZHqjS2KJnKmHXoTYita+kzSRvFZg8IUZEgtWh2bEp9ROQs3Ur2xZXGY\nlHRMm6J+H1kmGEdCxtgsrj50OTlb9NWnD0Kbijr/BOqD1KY6WzEl3QC+AuDuArndgdctI4YHArhK\ne7+MGF5nkTNxoCZXQSn1ENeXnnDCCSqolbNCM9gVbFbv+QaziUika5BSzHN0y0lwYFzPkS4xa4q8\nKQE9UuQL9XPP+tVS0hNyZrG65hSJ+jySPWOYhgNkGKJT7IydSpe4IoxmetZ4kL2oz0JuJmoTez0U\nwS3/in8Wbsr7XKTPqsi0Y3ejS2+qs+XKNprRkCa48TjTIpsaytpHg0luvLayMpabKmUoZYv0mcim\n0AckfZZyI9QHktrUQKg3ZqRoHvqgLVB7wpS0yKaGQpsqbWXk4MZwpiV9iW5TUlsR6sPU/MNxEzje\n+K4ZYlNRuGkh5u4wKqV2A7ikgUuXtYrHYtJhLGsSv2uRu7AUIqIjAWzT5NqJwAhjV2mOpS8SOZTJ\n0UAmV54hWMoOOyuTcppTtNodiq65msm+e8KZnic3Q+OeOJ6HynJTyhZOkeS7pXJT3OydjZtMyE02\n6I+daVvtkc7NuoybtU5cfZiSczjTsbnJU4sKq4Wsr/ZV15tRN+emKmXQZKW2skJ9IKKtROem7POg\n4CZbccp1Oog6jqxQH31xnwesXGfUEDd9h6049Gb+YyxF44YCuNH1IQY3tcdYT4RRl5t4Sk9L0eKm\nBeNC5IeHP814/+nIo4ZfBgCl1BUA/tsh1wfw6WabOSOkEUYtDeJ1LG2RIq/ByuSmIkWuiR/Gys3T\nxolVrW+QgkyO5ca2+vW0j+XGFUWbhRtb9HUWbmxRtFm4KfVB40b5nGmDm9IpmuAmUB+kch2h3mSx\nbWowQI/yD1Wn43amF2lTkfUhC7GVTGHFFX11cKN6K5OlDCHcSPXGFomcRW9mHGOnnGlXFM3TFyk3\n0j5LxxuxTcWaf1wZLp/DKLQpMTdcn1uIRaSkg0FEJwA4EmMH9xgiOqX4/VNKqd1KqT4RnYH8oO6f\nIH++9ckAngPgJcYZkq8B8AkiOgfAeQDug/zg7re3+gxGYGLlpivb1OpES4PojuWUXDXQM3JaTZFE\nDv0+OitaNER7bFWFMn1GsjaaTrLruyeiHB45lptqkLLLTQ30fVk/0O+js03ADYwVv6eNLm6m0yCy\nNoq5EeoD9ftVBE1f4Fj1psNwY4uG1OCmtt449GFq1zwnp/V5vbMJDHg5lhut3ldqU1SHmw0HN9Jx\nRMgh+n2sdsp61g5GxRQg5WYi+irlppr4hbYSS2+k3Oh91pzpqdIWfbzJlKgvUm6kNpXrg5qS82Zx\nfDYVMv/oEUZzB7lR9mMLvgT3OXCeMm0lOYzx8GJMPnHmicUPANwRwGUAoJT6SyJSyM+OfBWAKwC8\nWCn1Tv1iSqlPFQ7n65A/peanyJ/ycmZzXYiEauUmjDCOZKnrzEynetJnIrl+H511z+pXk53Ytcik\nBKRpeFFEqUFulCBdIooUCfscUqIgixRF5qbfx1qnDwx5uYVxI+yzWG8CbGWt088dxgVwQ4vQm1Bu\nODkjUhSFG9XHoI7e7HL0WWgrIdxUznS3Ox21J8r/GA4naqF90VexrQjl8l3ziu+zkJupsh+frWQK\nPdeml1LWrIWe5/zDybUQS+EwKqWehdyxk8ieg/zxgJzchwF8eKaGLQKlYY82RQW4HTUQbY7Jhoyc\nli6RyJUpAXOFZxvAeyRrYxey75bKsdyUfR7J2keDAdZoE1B+OZObqZq1EG4C5VhutM0LUbjR9GG9\ns5k7jF253li50dKpc+WmnNyENhXMDfKNLHx6Nq5NdSLailhvuHFE6/Na5uHGcIqicBNqK0JuWL2p\nMcaWeuOMUHW7OTfZYIqbiY1kgTYVNsaOxnLm8W9a+YZ0jJVyUy40VM+yObOULTaIlde0biRraJ5i\nbaWF2Eo1jPsGtFWMt7DWFvaeZYWnpRa9UTQtJdDL8k0OyrbJQZONVmht2xnurTGTXS8L2OgzHsAl\nq19HXVYIN7Z0ibc2UViQzUWKpNxo+lBN/IzchFM0S6TIlk6dxVZsqcVZIkVan1czj5xxlJCXG1va\ndZZIkW2Hr7fGTMZhyOYFb4RRu6aeqZiJG6lNaZEi0TgiHWPr2JRtvNHaqPc5hk31hH3uRt7oQwE2\nxXJjGWOtG8kC9SHEprzXayGSw7hssIW9vasYeahf7BQVhuiNFGmToOpZNjlosk2kXUUrvAbSIFWf\nmUL+lc4QGRRUltmdaRs3viha5LRrrQHct+LXJn7rAD7lFHmcacskKNYbX9REmnaV6k3AQsMbRdNk\nWaco1Kbq7H72RdECuBGnpOs4Rb4IY+TyjVo25YswhqSkM49NabJSvTHr70TcRJh/mrCpihvGpnRb\niWFT4tM3uGOWWojkMC4bApVSGuoPOftL6hSxk6A0DRIoJ94ZHitdL+2z5hRtozw3w61+J/rM7MyL\nkj6z7VqUpl2F+mBdaGiyFTedzvTB8AY3kjZOcOONvgq5kabPAmzK60xrsrlTxEemQ9JnkjaGnLYg\n5UZqU+zEb9nh64swRkstho4jwtMWEGu8MbjxOtM2m5KONzHGWKHeIMSmhBFGKTdSfWDPV7SNNynC\nmNAIpCs8aSqpToTRV28V4hRZVm5lSqC81ESfFxVhrFGgz/V5B+WV8SGrX++KP/amlwYijNJoyLbi\nzP5RVx5RihFhFEdDpDbVQISxtKlRx7LJwdXnSNGQtkcY17JNfpNDIDexN88tKsIojaKJI4yRbUqa\nxdFPouA2FlZjcaQIYxM2lSKMCc1ipVDoOrUhzCAlKiYOGMC3Uz7xqw5vsKJUktQRjM2NUC5o4q/h\nFHl3N9bhhnGmg/UmklNU6Q0jJ53cxLVoAU7Romyq1BvJJCid+GWbFyLbVL9Jm/JscgDQk3IT2aZC\naqHHNh+HmzXaQLd4Go2vBEZcpyccY6XjiHk8lzdg4etzSIQxdP4JSNeL+pxqGBMah23161NKYSop\n5NBpaYqonPhHgrSrJJVU69BpGzeBKaJa3DB9Zp0iGzee3Y3RDuSehRsP1zo3nD6wznRg+kyqD2Ju\npPrQgE1JuZHqA3t4sLZrXlqi0Bw3Qr1xLVCrzQuRDmC2ceOzFSmHgwFWyTOOWJwiTh/WkUemh11H\nPXmNMg/RGCudf6R6w42xtgwXow9rtCHanBl7jGVtqoVIDuOyQRpFs+1ajLTCG69qmQgjirQrE2Hs\nYXyoc4wVnjgaIowMhESKVmlT1GdphFHvsy9dEjsaIo2qBhWhkywaUukNF2HUIgPlocWAvZRhWSKM\nnD5IbUocYYwdtRf2eSK1yG6eK7mJb1PRI0WRIozBtdAcN0poU1JbqfNY1UjzT6kPnA2UZT/OBWoh\nt660hQZT5hE8/0jHkRRhTGgE2gAuijAGPM82uG4m0gC+poq6rMyxycE2gM9SGxLIzUT6TDjQc4NU\nOYA7oyETEz+/Y7hWLVqMXYu1UovCAZxL10NWexTbKQqp9y3bx0WKpM60lBt9clO9FefZcrUO5I4x\n3vT7+ZmlLm7K8xUBbEPpFMlsKppTVCftKq3TkzpFXJ+FY+zYKfLLSTNXXamTLLWpoIVnYC00M8bW\nsakou+aX8EkvyWFcNkgdhNB0yVC+27Wc3Lg0iDR9tg5mMKuRZhNFXxeYPqvS9Yzc6qhIJWWOTQ5l\nn+ukZ6W7XSNxI02fVdww+pAXoXs2OYSmXWOn63VHUJg+k9rUMCBd7ztbTryDXKgPIanFclMC1+cd\nmXAcKSb+Iac3sZ4RXaOUQX6iQFhpi3SMleiN9ESBxtL1rN6EzT/cWMw606H6IN1BzvW5hUgO47Ih\nMIoWkloM3e0qTxExK7xROdD75UJSRKJoiDR9ViMlLV7VMnJrI5mcdMUfUqAv0i8utag5Reu0N++L\nNIom5GbIpJIaTS2y+iC0FeEGMSk3PSXb5NCR1kILo2O1bEU6jnD6IORG1wdfKUOt1GKsMVY4jlRO\nEac30nFEuvu5AW6i21RkvRGnpOtE41OEMaER2JQydmpx1gjjVNqVSUkXD1/lrhdyzEVwimiW1KKe\nPuMiRSY3XLp+JOMw9rN+Q9Ku4wFcVn/Hps+KPjujIYbeOCNKNqeISS02diRMLG6kejPMJ8FBx7HJ\nwbbQkKbPInGzwkXjA7nZNpLJrShmk0ON1GLsY5bYDWI1bYobR/TTFrylDA0cyC0uiSKZTW2TcjOU\njTchB7lHKftpIZLDuGxoLBrCPJs6y6o/5AP4Lbkct/od5nLDjIsMbAqPhNmUDWYD2fVoc7PalKOv\najPdegrZHbhlSs478TMD+Pqg4IZzGEf2vkxFTYayPmecPpR6s7k5XkBwZ09irA9TE5Emt03J9KZa\naHB6o/fZO4AL9UGoN9jcxErpTDN92S50BLcVtsL1eW0g47ArfSb9QGhTfTk3a+Iomqzet1pocAvU\ngTbeeJzpjsOmao8jfRmHuk1xkcPtFluxjUvlWMxlcVaGe5BBYUQZRpQLTJQy2J/2TnwAACAASURB\nVMaRGmOsOS7RplxvKmdayA3nCK6PxjblG5e6ajwPiOcfZoxNm14SmoU0GrK6CgDI+ht+pSzkaGMs\n55z4C1l94vfJbeMMtpBb45yiQq43lPWlM9jwDz4lN5uy62Fjgy9Cn+LGL8cO4FPc+OW6IyE3Un0Q\nyk1ww7Rxu5SboUwfSm4GjNwENx59EHMTojecMx1qU6NAm8oYboQ2lQltqgluKqeI6XO58OQ4XO3L\n9Ks7iGxTmzIOJ7hh+sw6RVPc+OVWB8zi3aY3vjFWyCE4vel2c691NKqOCGK54QIWBjecPqz2iwUJ\ndaAomz4Tt9SHGW0qa7FX1uKmJVjhiDCWKyNTeam/MbHacclhY6OKhqiORQ4A1tYAADtxM4B88PHJ\nbR8Wcpn/eusDRq5yGPdWdVnodqdli+t1BhsTzrRLjuWmkMsH8PGq1roKLSd+dfOUnK0vFTcMhyU3\nQ0auN7T3pWqjjRuf3mzW4Kbrb6POjXVwLOS2jWQcrvUZueJ63aFMHzKOm1JvOG50m8qm9cZqK0p2\nn7cJbarkZshw2HHozZRN9YU2JeWm38cabfi5KW1qxPTF4IbjsOKG4bDLcaMtykW2sslw2Olom1nG\nUVWv3oym9cHqFA1k+rC2KeNQOsa6uLE5014OiSrZ8fwj5EY8xvrHpVWL3kxEX7WAhUQfMoc+pAhj\nQjxII4yVUu4NX/ELV7XiaEikSNHKZiGX9QAi2Yo/djQk1opfGGEUr/gHeyac6VlX/LW44SKMgdEQ\nsd6ERNHmEWHUoiHbFhYNEXIj1IdMaFNspIgIWMl3bVelLVzEWcmiY2tcut6MMDLciCNFsSKMmuy4\ntEXGTSybGnPjb19HGmEMGEfY9GwoN8Ixli37KbnZjBuZJs6mWojkMC4bpDWMtpWbx7HUI4ycIZaR\nIm6Q0lf83oG+z8gVbVzZyOUGWf6IPNdqNRswfZZyU0xseaH1hp+bqSiaX27bIJAbZnJb2cgHs362\nwjrTEn1gucmycTSEq2k1IkWsgzBg+myu+LlShv4edDDCCPnmJJ8zHUVviKzReL8zLetLGQ3hFlcs\nN2WkyIiiNc6NJltxw9jU9lEz3LClDFyfbVE0xikScyMcY1luyqiq1KY2x2Os12GU6oN0vNG4YcdY\nROKmWnjKxliWG1umgllopE0vCc1CusNKuqrtdvPJfzisdvhyK7JycuNW8uNVbZwoWhlhZFMCdSKM\nNjktGrKDK7w3V/yc3HCc3oix4u9p3AAIrpuZKRpCgRHnSHpTpc84bjY0bjzOtDSKFsKNnj6TTG6c\nnDiKVuoDcXqzGx2MMETmd6YD6u+Co2hCbvhIkdCmNoVRtMGGf5ODNFJk4cZ5uHjZZ8juM7sJyojG\n82OsjENxnXgAN9XGQuY+75DOPyMhN8IxdiVAb6KNIy1DchiXDTWcIumqVrphY7uw8H5duHJbE65q\ne2WEkfxyIWnX0GgIt1rdLoyirQ1labGKGy5dv3fMjVJwFmRLoyFs2lXnRhgdqyb+SHqzIky79vaO\n9QvwONMNRIrKiZ+NxgvLN9aF0bFVod50N8YcAm5uQjZBiccbod6EboLi5FaE4013Y7zJAVk2s95M\nbCyccxZHqjfjsh8+wrgiiEyzY6x2XM4al8WpAhay+yzOcAkj03qGy8tNQIlCijAmNIsqDbJXlEpq\nJBoijjBKV/wyucopYuTMQusoUbTASBEbRZNGQ8qBnosUBXAjXfF7OdRkK2eai4aMZHqzJo4UFXIc\nNxtjDr2lDA1E0XYKbaXcBMXdPyk3K1Ju9o7lAKEz7bOpjQ2sYryZReYwyqLx7HjTl/V5ZUNmU929\nYznA40xLszh6TSvHzUjWF3mmQqg3G7Lv7e4tHEv4nWlRFicwU7FDGI0vS1tYmxJnKmR6k8/N+ROo\nfPXkKcKY0DzK2qON3WOlnGVjhyYrjaLF3swirZvpaVE0sVMUqdBaHEUTr2ql0RBZJFLMTcAmKCk3\n0hV/5RQJ6zZjRUPKya1PK95SBuK4KcoTqN/HGvKn1jgf3RbIzbo04tyX2Uo58fel3HDRV24c0Wpa\n2UeCmgtPYaSIr00M3TzHcLOn4JAYbjYYvdFkK6dIupmF1ZuwWmheb8Jsio3aB3Ajnn+E3EizOKuB\nNsVzk0em++QvgRHNzS1DchiXDaXDeMuNAIC9tOZVyjCn6CYAkok/l+MG5vV+cT22mLi4HucU7cnl\nuEkw27tbtMlBj4bE4mbbUCZXcsP1eXVD1ueulJuNveO6LNcO3ywDjUbVxM+nFgO5Ydoo5mavUG92\ny+RYp0iraWU3bNTlhtObTaFNCbnpFtz0mVIGNiWtye4PWV92jITcDGR9XhPqzUogNwPGYQxZlO/X\nEDdcX9aEetPbKxxvdo31BnBzw+6a12T3E9pKMDecY7kRNv9wi/LObhk3yWFMaB7lGWGFw7hJ+d++\naEg18a+tMQabX3PY88vtGOZyg+6632A3c7k+I7e6t+hLxy/X21PIZf72jZ3pdbszrUVDyokf6/7v\n3llys+KXG3Pjb+N6bG5253IbmV8u2533dxM9eypJk90f+TVHK4zejGTcbB8U3PT8ciU3g47/e1cq\nbvxyXSE3tLEHK+jnCw3WKZLZys6RTK7kps9ws1Zws8noTclNn7GV7q5pm8oyW/R1o4qqsuMIZPpQ\ncsPZyraBTG5to+gzYysr1Tjilyu52Zut5/3xOEVSbvaXcjOUyW3rC/Wm4oaxKSE3nV1jmwL8TlHF\nDTPG7ie0KekYW3LDzVOroXrDjTfF/LPhmpu1YA7LTcuQHMZlQxlhvPkGAB6l1GpDykGKG8zYAbw8\n5oIbwMsDUfvMIFUe5bB3etLyTm7kv16HM1hNtuRGrfqvKZ3cqomfGVRKp8g5+JRHCe1hJv5yASHk\nJrtZwI3UKSqPuQjUG04fysmNG5hXuAXELNzYFhqarNRhLCe3PsNNNbkJueH0geXGsKkNhhvadQs6\nGKGPrr0uS5MtueH0IXTin1lvpNxY9KYsZQAs0de9e8ZR+9VV7zXLRTnLjdCmWG4Mh5HTByk37Bhb\nOYyb1ZNZpAELTh8qm2Luc7Uol+oN0+dyUe4cRwxn2hnM6XaBTgc0GlUbTZ3ctAzJYVw2lIY4yAvQ\n9xZKORjX2E7JVgc6r6155cqayGHPL9dV+Yf9jl+uM5LJZaO8ff1MJrfByFHx4YaAm7LPoxWmzwWH\ngy7TZ1X0hZMTclPKbcbiphiVQrjh9EEqJ+ZGyfRBzM2w0AchN3shtykxN0yfS5sS65fQpqTcbJLQ\npgTciMcRoU0FjzfSPkttxSVXPge58Cb3YhUgijrGSvVhINUHTk7ITWVThTNdljJMZHHKh0xglG+O\n6Xaj2JSUG6neiLlpcP7B6qpdrmVIDuOyoTxou8Am5YpXrk5sSgkAI9DErjKXHDC5woshp6/wfHL6\nCs8rRzI5c/Xrkx12V+NyI+xzX9pnodyGlBsEcNOLqw9ibiLrjZOb8oB2TQ6QcdN2W9mYlZtOZyLk\nsTfEpiLrjZSbuemNlsUBxguNVnMzL70xZLcSN9L5Zy+t2U9lMGQ3sDJRHpQcxoR4MBzGDeRK6QuR\nA7nBDkf+1W8JbuVWglu5leBWbpUcs3IrscFEQ0pIIkVAXs83RGch3Ig5nJWb8ryzApLIdIlhZ2Ux\neiPsMxcdK+HkRouGAHK9AfhoSAkuqlrJxbapWbkxZEO4EevDgvSGixRVclggNwsaR5ZBbxY13oj1\nxkhdV3XBhuzeYg5PEcaE+LCsYqRKORwuaKBvwBCtckY0ZMMwRK8zHZub2AP4rNw4oiHcNfcELDRi\nT25SuZn1xpCVcjNAB0Pyp9kq2djczEtvDNkgZ7rrSLM1zE1sp2jvEjhFcxtHkjMtd6YDuBmNksOY\n0AQsE7/VIQImopGmU+RynoBJg/XJ6Ybok9MN0StHMrkNl5whWxoikNOWZW65tnPj7LNnkOK4AcKd\n6TZyI9abfZAbqd7sDbApQMLN6sRCI0aft4pNDZFNLDSWmRvv/ONxiry20lltdZ+dcmYWJ4Ab5zjS\nMiSHcRlhcQQBfhUjjaL1M1lkYG5RjhlW/FI5MTeLSjU3ECnSi9WlznSsPkvrqBaiN0pWb9UUN1J9\nkNaYibiR2oqSRYpKbqS1aIuKoklqWkPGG2dq0eQmctR+buOIpaY15hgbUh7URBZHWpsozeLMzE3L\nkBzGZYTuMKowpeQMoo8uhtSNWkwcvUBf6CTvCXSmRZObdrhrjD7H3swiXkCoSTmulCH2pgRp6mcR\n3OwpnOkyOs0504va+DWTU2REQ0JsCojvTIv6LJQTb/wKqGmVjiOjkZybtm8YDBk7pXIL4SZAb6Sp\n5rlx0zIkh3EZMRFh9GzHrzGAhwz00Vf8rhXZDNGQmNw0Uc83MzdmNETIzZ7I0deQer651VuZ0ZAA\nvQlxpqNG7aV1m7NGVWeIhuhOUYy6YOl9jp3RWNQ4stDIdAMR54XNP/Pa+FU3U5EijAmtwAwRRqus\np9bRJQd4BjNzJ7fLwKRyvd7ErO01RO2aXqeoRp+9tSbmcUeuATw2N1k24TRKa1r3+PQmAje+vjhr\nimpy4x3AjTaG6k1IXbCrjRtYwVBlwdzEkPMW3te0lc3ijOqpTXY1uBmBMKDefGxFKmfpSx1bcel2\nkK2QY6HRsE0tAzfOBUSEsdjL4Tznn5YhOYzLiIkVnuPJAgCwvj6W8xlsDTnAM0jVlHMaLNFUG50T\nuianO0VNcDNh2LH7bMh5NyU4uJkaeObIDacP1vRLTW68mxL0Ngb0uXSKfBw2wY24z66nTZh60wA3\nGxsyOT3N5uXGtTmmaZuCg0ND1ruAMPrSz5+nML3JroY+mPV8Um5i2FTTY6yrjSG20qeV6HrjrGnV\nbuZc55+WITmMywhtdXIzdrgdhJ07q1+9dRI15ABgE456PkPOWcshlXO0kZPbo+TXGwwic+Nyigw5\n5yBlciPsi7du09JniZxUbyQcAp7oRV1uGtCH0imat02J++zicPv2yWi8rxatpt6EcMPd5yZsyqkP\nq6sTtYneKLvexgXqTYhNzSTX6VidGK4voWOsUhZnugY3ZXlQzPnHeyTZjh389cy+xJh/WobkMC4j\nNMO+eSRzGG/GTtEALpfb4U6zGYa4u7PTPblp2JU55CxtlMjdpHZWK/55crMXq+jDkWaTcrO6OvFG\nbG5uxk7R5BabmwE67miIlJtud2LRdAttDW4AYE/HYc8mNy59MCa3XVJuVPu5ceqDVM6QlerNTUvA\nzZ6ujBvxOLKFuJHqTRPzT8j1rJvsWoYWNy3Bif32q3690aeUmlyplNYUjEV5JQYrkQM8BptlE5Nb\nE4boTC3WHKT0Ps/KIeAZpIhqTW76xD+V2jDauHev4HoB+iDmcOhIQRrcSPssnvhrOIwchzFt5RZs\nFy/CYjvJTUz8MbnZwAo24XjiUNN6E8DNImxqiAx7sG63KW18BeqNI7G5madNAZ5F2NraRGN0W5G0\ncep6htyNo3o2NVEX3DK03mEkoqOI6B1E9F0iuoWIriKijxHRvRzyzyWiS4hog4i+T0QvcMg9joi+\nQUR7iehyIjqdiFpcPaDhgAOqX2/BjiqKxil5qZRZZiil4Vg66yk8g5lLbogMe2ibyBD1wWxKzuL8\nctcLmfid9VbSAbwGhwCwO9sxOzfSAdxoo5ObBvXB5Hqijcbkpi80ouhDgDNdJxoycc3YHK6vT4Qe\ndmU73fV3jsnNx+FNNbhpwqZqcdjrTdR164swSRs5uRt93EhtagZbEcm5Tm8wFuVebmrYVB294cal\nmDa1C9swUI46UGNRrtuUJPgydT1DLopNtQytdxgBPBzAyQDeD+DXAbwQwCEAvkpEx+uCRPRcAOcA\n+BCARwL4IIB3EtFvG3KPKGT+E8CjALwdwOkA3txkR6Jh//2rX2/BDvHkFjva5pTbtq361XtIrXHN\nJlb80j6XclPOdGxutIltBEJfOY6isVyz7dHXmeU6ncnz75TnyKgtmFr0yhFNlHDspu1JbxzfHT36\nGhAp2te4CYmibRVupLbizf5JuWkZWt48AMDfA/hzpcpnUgBE9DkAlwF4GYBnFO91AZwJ4ANKqdcW\nop8nosMBvJGI3q2UKmJxOAvAl5RSz9PkdgA4nYjOVkpd3XivZoHmMIZMblK5VUHRsTdSZMTUSxnJ\nd0uKhG9SMrkmuNk+KzcaMii/XEu4ce78NOSyAG6cA6mmO86idsc1ObkbR/G5kRToR5EDJsiXLsIW\nzY10Qucizrdgh58b7Y2+cjx4wPLdUqeodXqjLR72YN3PjXGc1pa3qYkHUfT83OjRV8gXYdI+S51k\nJzctQ+sjjEqpn+vOYvHejQAuBXBb7e2TkEcezzUu8QEABwN4IAAQ0REA7u2Q6yGPOLYbWkr6Bhwg\nUsobsb/IYG/E/qKB3iunYYTML1dj1+INan/ZQB/Q5zrcuNIgN2E/ETdDjhttoJcOZteP9re3z9KX\nJrlxTW7lxO9sY/kB4OdGu6Z0xR+iN/pZgz65wcBRrC7lJuQA39JzB8ONNgmWbbTKOfSmNeOI7gQW\nE7+zjVK9qaEPreRGX1ih47cpbcUuXWhIubkB+4s2FurccDY11/lH42YwykRj51znn5ah9Q6jDUR0\nEIB7APie9vaxxet3DPGLi9djfHJKqR8B2K3JtRdahPGnOMytbLe6VfXr1bi1WM5pYJoDUx6pwxks\nFVE0icF6BzO9jeowt9whh0z0xdnnGnI/xWGiyc0cwGtzo62T+iPH81XNvvi4kepDbG6MbX/eFX/p\nfYGZ+LUJc0M5NkMYbfzf0a1Fcl6b8nAzEVjXuL4Gh4om/iBbEUbbdqt1kT5IuQnVB6szffDB1a8/\nx63ijyPCRdjNaoebQ60vV6nD3E5RTZtytvHAA6tfr8eBcbiROtPaQuM6dWB0fZh5/tHmPanDGM2m\ntCDNz9St5jf/tAxL6TACeAcAAvCn2nsHFa/XG7LXGZ+75Mr3DjLfJKILXD+1Wj8r7nSn6tf/xeHu\nldtd7jIh54ya3OY21a/mIDVVJFzAjKJNXfPudwcAfB93E8mZ0bYpuduOg8m7Ro4dgQBw5ztXv3r7\nLOVGG8ykkUMvhwBw73sDAC7GsX65u92t+tUrd8QR1a83Dj3HLEn7LJUzNl9521h4DNfiYD+Hv/AL\nAIDv4yj/9bQ2euXucIfq12uHB4iup9vUVPuk+mWkurxtLI7JMp3uKbn73x8A8CMc6ZfTxgev3JFH\nVr9eMzxYzI2zz9r3XoXbTIxLE860dizYbmzzt7FwEv4Xh/vljs/L2X/CyWn64DwwHADueMfq12tw\nqHtjoZQbjevyPpfOyYSs9tQmlpvC6fgxjvDb1H3uAwD4meGc+8YRLzfaff4pDgseR6bap90Tc3E1\ncU3tD5ab290OAPAj3NEvd9xxAIAbubFdm3/0xbtv/rkKt5l9jG0Z5u4wEtGvEJES/Fzg+P9XA3gq\ngBcrpX4w18a3BSeeCBxzDP6l92jc5AtnH3448KAH4X/Wj8W3cU+3HBHwrGfhuvXD8Rk80r/SetOb\nsGftAPwFftsvd8YZ6K/twBtxhl/uBS/AcH07XoE/8cs95jEYHXQw/gwv8svd977AUUfh8ysPx3U4\n2L/Ce+hDcdn60fhv3MvPzXOfixvWb4OP4zH+7z7rLOxZOwB/zrXxNa/BYHU7/hCv88v91m9huG0H\nXoU/9ss96lFQhxyCc/A8f93fcccBRx+NL6881L/iP/BA4OEPxxXrR+G/cLx/9fvCF+LG9VvjI3i8\nv41vfSv2ru2Pt+Nl/oH5tNMwWNuO1+EP/dd79rMx3LYDr8ab/XIPexjUYYfhvXi2n5tjjwXucQ/8\n5+oDcSVu59/R+ehH4yfrd8Z/4n5+bl76Uty0fig+iCeyerOxth/Oxu/65V71KgzWtuMMvNHP4TOe\ngeH2nTgDb/Bf7+SToW5zG/wNTp14osiU3NFHA/e6F76+dhIuw5HuPm/bBjz2sbh6/Y64ECf5uXnF\nK3Dz+iH4OzzV38Y3vxmbazvxNrzSL/fyl2Owth2vxZl+uac9DaOd++ENxbjk7PODHwzc9rb4e3oy\nBui5+3LXuwL3vS++tXY//AB3ccutrgKnnIKfrt8BX8SD3JvsAOC003DL+q3wAZzKjsWbazvxx/g9\nv9zLXobB2na8Gm/xyz35yRjttz/ejFf75X7xF4Hb3x4fyZ6ADd9h5Xe8I3D/++N7a/fB93E3t1y3\nCzz5yfjZ+hG4AA/xf/drX4td6wfjfXi2X+4Nb8Dm2k6chd/3y73kJRiub8dp+CO/PpxyCkb7H4C3\ncnr4C78AHHkkPtF9LHZju7vPRxwBPOABuHT9OHwXxyxNhHERzfsKgLsL5HabbxRH5LwZwOlKqfca\nH5cRwwMBXKW9X0YMr7PImThQk6uglHqIq5EnnHCCcn3WGLZvBy6+GE8/FMDP4F65EQFf+AKe+YAR\nNi/M/Er5vvfhFaMRrvobpubjta/F/zd6Nb7+Bxke4ZN7ylPw0ew38M9PznCKT+6kk/DtL92Etx+f\n4Tif3BFHYM9l1+Al+2VY98lt2wZccgmefrgCrobfEfzc5/DsXxph7xcYbt71LvzeaIQr38NEQU87\nDe9Qr8LXXp3hwb42PvGJ+Hj2BHzolAyP9cnd73743oU34m33ynCMT+7ww9G/4mq8YJ3Q5SJZ3/0u\nnnYHBfyY/H3+7Gfxm788wp7PMdz8+Z/j1cN34PJzGL15+cvxF+p3cOErM9zf18bHPx6f+Yeb8A+P\nzfBoJmryg4tuxFnHZLirT+6ww6Cu/F/8Zo8An9zqKvCtb+Gpd1HAD8m/4v/kJ/HcR45wy2cZbt7+\ndpwxOhs//DOGm5e+FO9SL8YXf4exgcc8Bv/24Zvwt4/O8DCf3HHH4fJv3oA33TXDkT65Qw4BXXkl\nnt0lQHlspdcDvvENPO1oBVzK6M1HP4rnP2aEmz6R+Xd+vu1t+MPRH+P/P5vh5oUvxHvxAlzwogxH\n+eQe9Sj8+8duwl8/PMNDfXLHHIOffPt6vO7IDLfzyR18MHDFFXjWOgGbHm66XeCii/D0eyqoixl9\n+OAH8cLHj3DDRxm5s87CmerN+N4fM9w873n4AP0Wzn9ehmf7bOphD8NXPn0T3vPQDA/0Xe+oo/DT\n716H194uw2E+uQMOAC67DKfuALDbw02nA3z1q3j6fRWG38zcmTAAOO88vORJI1z7wQz9vuOJMADw\npjfhLPUGfOfNDDfPfjbOwzPxmedkONUn99CH4mv/ehPOeWCGX/BxeOc747pLr8XvHZbhIN/19tsP\n+OEPceqBAG70cJNlwJe/jFPvN8LgIkYfWoS5N08ptRvAJaH/R0SnAngngD9RSp1pESlrFY/FpMNY\n1iR+1yJ3oXb9IwFs0+Raj1K5nIfFFuj0siC5wcCfdu2utFsOROj08mX7MnBTDor7EjfOFXpAX6Ry\nWTcDUT4JeQfmlnAzTw6RZej28kWnty9Lxk0MDktuNvZRbrhxpFvsV9xK3ESxKSk3kPe5LViKGkYi\nejyA9wF4t1LqlQ6xCwH8HMDTjPefjjxq+GUAUEpdAeC/HXJ9AJ+O1OzGYTqMrvqHULl+3/+YolJO\nNxzbNRclp8vG5oYdfBbUZz21xa1W58GNtC/z4LBOX7gBfB7cLLutJG5ml0s2Vb+Ni+KwTl84ubag\n5f4sQEQPBnAecifv/UR0ovbxhlLqGwCglOoT0RnID+r+CYDzkR/4/RwAL1FKbWr/9xoAnyCic4pr\n3wf5wd1vb/0ZjBrKE2n27MlfXYbYE652TLmpYnVDrt/3G5gu51u5Sa9XtkcpTxre0ZdYcnpfbMZd\nhxtfhFF6vVKWjRShWW6kfZ6nXCnb78v7Etum2s5NSF9ic7gvcpP0Zna5fYmbtqDlzQOQO32rAO6L\nIkqo4XIAR5Z/KKX+kogUgFcAeBWAK5Bvjnmn/k9KqU8R0SkAXgfgWQB+irw20pbqbi3qrtxiybEh\nfE2ujFhyct4UUfG+ZOJvqs/OxysaciHclL/7BikpN7rDGHvFP6szXWfFL+WQ40Y6MDcVNeHaKL3P\ndaIhEr2R9KUuhzHHkdhy3MS/TGOs1PaSTbmvF2NcCulLchgjQyn1egCvD5A/B/njATm5DwP4cO2G\ntQBNrfibiAyURwrGihTF7ssiufE5jOV7IavaeffZ5kzbShliR5xD9KZ8P3bkMJY+SO9zbA5D+tIU\nh4uMFEmdomUYR+YdRQvVh3lzE9um9AwXV/YT26bagqWoYUywY18bzOq0MXHTPrl9kZuNDc/OT+zb\n3LTZKdrXuGnCKdoq3NRpYyy5tiA5jEsMcyXvCvU3JceF8G2G6JOTFBMvus/SqImUm1hyddrYBr3h\nUkmL1pt5c9gGvZm3HLfJLnafywi47hS1mZvQPs9iU3XauCibatJW2jZ2tgXJYVxihNZ8xJbjQvjS\nmg/p9eq0sSk5yU7zGH0OSZ+FtjF2DWOI3khqhWJxWKeNbagDnSXNVtbYSjaINXWf63DtqwuOqQ9t\nGUcktlI601JbmcWmQtq4aJuKNXZKx6U6bdxqNYzJYVxipJRAe+Vi9VnqINRpY+waxhBuYu+alx4l\n1Fa9kd7nkAXEou9zW21Kl11U/XdoHWjMEysWVdPapD5wTvKy21RbkBzGJcaiB7MmHMbyma1tHcDn\nzc0y1RQtcuJve58TN7PLJW7ccvsiN6UzLdlkt+zctAXJYVxi1A31z/tQWW4lqB9Rwz2Evam+lAYb\n88gH6RENsWqK6qZLZuUwtH1crVAIN021cVEcxtSbRd/nRY03IdyE2n1bx6VkU+721dGbto2dbUFy\nGJcYdYuJY8ltbo6Py5EWq8+7jU3JhRSrz7qqlQ64TRehx2qftJA/ZmpxWThs8+HBdTmMJddmbhYt\nl2zK3b46etO2sbMtSA7jEmPRKQFdjquvaft5Z7Frmbhi9WXipon0WayNMcDtOQAAGp1JREFUPovu\nS+JmfnJNcLMsNYwxuWlr2nVReqOntNta9tMWJIdxibHoVW2syEAb2hh7AJcWq2/F6GusaMi+yE2d\n41Ha2pdl4KYpu5/3uMT1WXeKFvVY1bbqTRvamCKMCY2jVK5YO7Gakov51ICtJreIXYux5ULbxz0R\npgm9WRYOQ3Z+chvEFn2f520r+lFCsXbNL4vcIsbYRetDrA1BbWhjijAmNI66tSFtO+C7DW1clFyd\ns7/a1pem2lenpmjZOSwdHdcTYWyRomW/z4vQh60mtwhuFq0P0va1WW+kHLYFyWFcYpRKuXt3/sqt\nYhYlFxJFW1QbpSvBJriRHiXU9vscS053iqQpnbb2JbbcMrSxKTnu8Yp1rrkou4/dvmUYY9P8U1+u\nLUgO4xKjVK5S2VZW2inX74+jIW1t47zl9KOESqfIJWsOKm3rS+z2LUMbF9W+ZWhj0+3r9ex1wfP4\n7rbKbWzkm+yI+DTpVtMHrn1tnn9C7L4NSA7jEkOqbIuS0yNF5Uq5bW0s5Xbtmu/3NnHNrSK3DG1M\n3LRPrs415233i2pfk21su5ye7pVGptvWl7YgOYxLjFLZyrMQy7/bImf7jAvNL6ovrr+b+t4Q2ZKz\ntt7n2O1bhjYuqn3L0MY2jDdtbeOixqUm2th2fdhKNtUWJIdxiWE6X5xSluDC6LHkTNlul08lzbuN\ni+LQJss5066/Q787tlzs9oXILqqNi2qf7Zrz6ktdDhdpU22z+0W1b5bvXlabMk9hCLGpNtp9G5Ac\nxiWGqVyzKmVsOfMzSbok1nfXlZsXh+ZnvZ7bmW77fY7dPttn3G5E7ppbhcMQ2bbc50XZVMg1l1Uf\nQpyituhDmn/c76eUdEJjaMtALzXEkMFsXm1cFIembBOD2bJyaMqurCzOmZ4Xh9KIkvkZkdyZbpuD\nV9cpWuTE3zabMj9rYqGxrDZlyi7z/NMWJIdxidGWgX5fWOE1zY1PLnZ6I7Zc7DSb+VmMqEnbOazr\nFM3TpupyGNspksplWXxnum3jkikbw1a2ik0Bk21s4/wTUlLQBiSHcYnR9jocUzaGU9T2WqG63MQY\nzNpehxPiFEm52Sr1VmabpLYyT5uqy2GMybKOPoToTdv0IWRxVafPvh3D+7pN+WRTDWPC0qItq995\nRoraLle3pmhf4Mb8LHHj/ixx4/4sceP+LHHj/kwqJzl+J1Ybk8OYMDeYyjWvlEBdpygkijbrjuG6\ncotKn4WsftuW+mlixR97cms7h0C9iHNKSc8uB7RPH6TtM2WTTU2ijk3N05lOKemEuWEZ0ql10me9\n3uKO34lh2LHTZ2abuOeSctdsy5EwKSXtblOIrUjkfN+dUtLt04emU9LJptzXjMFNSkkntA6LWiWb\nn8WOMC4yXdL2aEjIjuF9LRrSxI7heUZD6tjKVtoxnCKM4e0zZecZYVwUh01nuNo4/7QFyWFcYixq\noDdlYxviMh8NYcouikPfNdsy8S+KQ9vfrvfnxaEpG3vib+OO4bqRon1BH8zFzyIXGvMaO9P8429j\nG5AcxiVG02lXn/LWSYvFTl37ZJtOOcXmJjaHvmsuikNTdlEcAvOzlbakFpuwqVnTcXWfxBFbLmTH\ncNv1oQlbmdfYmeafFGFMaBBphZcijC453zVThHF+tlL3fMXYEcZFRpTarg9ttClTdlEcdrvxS2C2\n0vwTu88pwpjQGEwldClbbDlTdlFyPtnYciGGva9xQyRfoe9r3JiybZfzySZuEjcuOZ/sVuXG50w3\n0ec2IDmMS4y1tcm/XasYqVy3K4+G6NdclJxvk0NsboiA1dXwNi5KzicbW86UbbucTzZxk7hxyflk\nEzeJG5ecTzakz21AchiXGOvrk3+7VidSOaJJWd9qpy1yrhVebG5maeMi5HzO9L7OjU82cZO4ccn5\nZBM3s/e515PXtLahz/Pkpi1IDuMSw1Q2PQJWR86UjSGnr6Dm+b3SPpsrvEW1cVEc+mRD9KYN91na\nvk5H7kzPU2/awCHgnrSkfTYn/rbrwzxtJcsmo0ht1wdp+3yyUm7MgMVWsqkY40gbkBzGJYapbKaS\nhsqZsjHk9M/m+b3SPpvvL6qNi+LQJ7uyMhnBbft9jt0+n2ynM+lYtf0+S+XW1tw7hqW2QrS4+9wk\n1+Y9d8ktso2L4tD8P9/7bb/PbZ1/2oDkMC4xpAa7uhp/4l8mOZ9syMTfhr7Mk5uQib8NfZknN01/\nd9vlFvndbZdb5HcvSm51dfaFRtNtXJRcrIVGG5AcxiWGrlwrK26DNSd+l2NpXjOGXB2HI3b7ssz9\nbOq2tHFRHIbItv0+x25frO/eihya/9f0dy8T1yGyW0UffO0z06xtbOOiOOx2J+em5DAmNAapMYTI\nbsWUwPq6e3NMm9q4iPb5FhptaeOiOCSS74Rs+32OLbfI724j193uZF1sG9u4KA4XWaLQdg7Nz5PD\nmNAYQhRtUaH5tqc0gfa3scnB0bf6rXvNZebQPOg3xkJjq3BocuFbaCyqjYviGphcXPgWGltFH5oI\nWLT9Pi9y/mkDksO4xAiZ+NtuOLHlpCf8N/HdbZfTJ3rfpN/Ed7ddLgRt70viZn5yJua50Gi7HDAZ\nfXWdUNDEd7ddDpCf79sGtN5hJKKdRPSPRPQDItpFRDcQ0deI6OkO+ecS0SVEtEFE3yeiFzjkHkdE\n3yCivUR0ORGdTkQeVW4fQiZ+qcE2mRKIUWsildMHbN/gDcgjA21Iq8TgMASxa1/bzmEI2n6fm0if\nSbFMKelF2tQy64MuF+s4mLbf57qZCim4uWrR8GwFaA1WAAwAvAXAZQBWAfwGgA8Q0SFKqbNLQSJ6\nLoBzCtnzAfwygHcSESml/kKTewSADwF4D4CXA7gPgDcD2AngtDn0ae5QSiYXewWlG9i2bfP73rpo\nY2QgNoch0BcX0o1D87zPsTkMgfQ8vbbbStPOtHSh0UZ9kC4mQ7BM+uCTkwYhgH1v/gkJWEi5aQNa\n7zAqpa4F8FTj7U8R0VEAngPgbAAgoi6AMwF8QCn12kLu80R0OIA3EtG7lVL94v2zAHxJKfU8TW4H\ngNOJ6Gyl1NVN9qkJ+CZzANjclF1HN6r992+33H77ueV07Cvc6APYzp1uOR37Cje6Qyd1GDlu+v3x\n775Joe3c6JO9NFLEZTRGo/HvvghL27nR72ssW5Eeat52bnTE4kZ3yrdvd8vti9y0Aa1PSXtwLfLI\nY4mTABwC4FxD7gMADgbwQAAgoiMA3Nsh1wPwqCYa2zT0ycsGaVhcN1LfYHbooePfDzxwfnJ6m6Th\n+1jc6A6qbzBbFDf6xD8cuuV0xOLmoIPGv/sc+UVxo+sK12epnJSbQw4Z/37AAW652H2Wfq8OKTe6\nQ2hDHW7mqQ+3utX4d+nCM5Y+6HK+MWxRtqLb8o4dbjkdsbjRHUbfomRR3OhOojSLE4ubNmBpHEbK\n0SWig4noeQAegSK6WODY4vU7xr9eXLwe45NTSv0IwG5NbqnAhbXrDGY+SA3s1rce/+6btA4+ePy7\ndJAaDHgZgOdGmmqSDvSHHTb+XcqNT07/TBoBisWNVB/0dvkGeik3UjldV7iVfAmpM81Byo0+sfj+\nR6oPUm7075UurjhupBxLudHvn28ClnIjldNtXqoPnJNcZxzxQR8vfWNibJvSF57ScYTjUNpnqX7p\n84Uv0iedf3RufHJ1Fp6x9KYNWBqHEcCLAPQB/BzAnwF4mVLqb7TPy3XR9cb/XWd87pIr3zvIfJOI\nLnD91OhHVDyvSKq/wLq1Z4zf/M3JVxce/OD89UEP8svd6U75661v7U/xHX74+HiS8n9s6HSAI4/M\nf7/73f3f/bCH5a+PYmLBL3rR5KsLz3jG5KsLD3hA/nrSSX65sh8HH+yPXtz61mNH6853dssRAXe9\na/77Pe/p/+5HPzp/fexj/XIve1n++ju/45d7alEM8pSn+OXud7/89YQT/HIlNwccMDnomzj00LED\nUfbdBiLgmGKJd+97+7+75OT//B+/3Ctfmb++6lV+uSc+cfLVhbJd97qXX67kZseOyQWZiVvdahzh\nPuoo/zWPOy5/Le+PC6eckr8+6Ul+uZITjpvHPW7y1YV73CN/PfZYv9wd7pC/rq3lY4oLBxwwdiB8\negMAxx+fv5Z27cKTn5y/Pu1pfjmpTf3ar+Wvv/qrfrmjj85fjzrK7/CX3KysAEcc4ZbbsWMcPeS4\nOfHE/JWbB049NX991rP8ci9+8eSrC494RP768If75cr23/GO/vrJI47Iuet2xzzZsLY2dho5m3rg\nA/PXk0/2yz3nOfkrN+c+//mTr62GUmquPwB+BYAS/Fxg/N8hAE4A8EgA7wQwBPB87fPXFP+3Zvxf\nt3j/jOLvpxZ/H21p25UA3mN5/wLXz/HHH68WiZ//XKl3vUupPXv8crt3K/VXf5XL+zAYKHXuuUr9\nz//w3/3P/6zU17/Oy11wgVKf/zwv981vKvWRj/Byl12m1F//tVLDoV/u2mtzbnbv9svt2aPUu9+t\n1DXX+OWGQ6X+9m+V+sEP+DZ+7GNKXXQRL/eFLyj1b//Gy33rW0p96EO83OWXK/X+9+f30Yfrr8+5\n2bXLL7d3r1LveY9SV1/tlxsOlTrvPKUuvZRv4yc+odTXvsbLfelLSv3rv/Jy3/62Uh/8oFKjkV/u\nyiuVeu97ler3/XI33JBzc8stfrmNjfx6V13llxuNlPr7v1fqkkv8ckop9alPKfXVr/JyX/mKUp/9\nLC938cVK/cM/8Nz85Cf5fea4ufHGnJubbvLLbW4q9b735df1YTTK2/fd7/rllFLqM5/J+83hq19V\n6tOf5uUuuSTXWY6bq67Kx4fNTb/czTfn3Nx4o19uczO30R//2C83GuV6/Z3v+OWUUupf/kWpL3+Z\nl/va15T65Cd5uUsvVerv/o7n5qc/zbnZ2PDL3XJLzs311/vl+v18bL/8cr/caJSPh9/6ll9OKaXO\nP1+pL36Rl7voIqU+/nFe7gc/yOdIjptrrsnn3L17/XK7duVy113Hf3csALhI1fDfSM15iw4RbQNw\ne4HobqXUFZ7rvB/AEwAcpJTqE9FvI3ckD1dKXaXJHQrgpwBerJT6cyJ6FIBPAXiAUupC45q7ALxT\nKcWsn8c44YQT1EUXXSQVT0hISEhISEhYGIjov5RSTD5oGnPfJa2U2g3gkgiXugjAMwEchjwyWNYq\nHgvgKk2urEn8bvGqy1UOIxEdCWCbJpeQkJCQkJCQkIDlqmE08UsAbgFwTfH3hcjrG81Kk6cjr2P8\nMgAUUcv/dsj1AXy6ofYmJCQkJCQkJCwlWn8OIxE9H8CJyA/ivhL5ETlPAnAKgN9XSm0CQJGWPgP5\nQd0/KeRPRn5W40tKuQKvAfAJIjoHwHnID+4+HcDb1RKewZiQkJCQkJCQ0CRa7zAC+DaAxwJ4G/Id\nzD8H8D0Av6aU+qQuqJT6SyJSAF4B4FUArkBeu/hOQ+5TRHQKgNcBeBbyGsc3Iz/4OyEhISEhISEh\nQcPcN71sNaRNLwkJCQkJCQnLgrqbXpa5hjEhISEhISEhIWEOSA5jQkJCQkJCQkKCF8lhTEhISEhI\nSEhI8CI5jAkJCQkJCQkJCV4khzEhISEhISEhIcGL5DAmJCQkJCQkJCR4kRzGhISEhISEhIQEL9I5\njDOCiH4G4PKGv+Zuxev3G/6eBDnSPWkn0n1pH9I9aSfSfWkf5nVP7qCUOiT0n5LDuAQgogsAQCn1\nkMW2JKFEuiftRLov7UO6J+1Eui/tQ9vvSUpJJyQkJCQkJCQkeJEcxoSEhISEhISEBC+Sw5iQkJCQ\nkJCQkOBFchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF2mXdEJCQkJCQkJCghcpwpiQkJCQkJCQkOBF\nchgTEhISEhISEhK8SA5jQkJCQkJCQkKCF8lhbDGI6Agi+iciupGIbiKiDxPR7Rfdrn0FRHQ7InoH\nEV1IRLuJSBHRkRa5A4no3UT0cyLaRUTnE9E959/irQ8iOoWIPkpEPyaiPUT0fSJ6CxHtNOTSPZkT\niOgRRPQ5IrqaiDaI6Eoi+kciOsaQS/dkgSCizxRj2JuM99N9mROI6CHFPTB/bjDkWnlPksPYUhDR\nNgCfA3A0gGcCOBXAXQF8noi2L7Jt+xDuAuBJAK4H8EWbABERgI8DeCSAlwB4AoAe8vt0uzm1c1/C\nKwEMAbwawKMA/AWA3wbwr0SUAemeLAAHAfgvAC8G8HDk9+ZYAF8lojsA6Z4sGkT0FAD3sryf7sti\n8FIAJ2k/v1J+0Op7opRKPy38AfAy5BPjXbT37ghgAODli27fvvADINN+/y0ACsCRhsxji/cfqr23\nP4DrAPzfRfdhq/0AOMTy3jOKe3Byuift+AFwt+IevCLdk4XfiwMBXA3gKcU9eJP2Wbov870XDyn4\n/hWPTGvvSYowthe/DuCrSqkflG8opX4E4MvIFSqhYSilRgKxXwfwv0qpz2v/dyPyFWK6T5GhlPqZ\n5e3/LF5vW7yme7J4XFu8DorXdE8Whz8C8B2l1HmWz9J9aR9ae0+Sw9heHAvgO5b3LwZwjOX9hMXA\nd59uT0Q75tyefRG/VLx+r3hN92QBIKIOEa0Q0V0BnIM8qlU6KemeLABE9EDkEfgXOUTSfVkM/paI\nhkR0LRH9nbE3obX3JDmM7cVByGvnTFyHPMWQ0A747hOQ7lWjIKLbAngDgPOVUhcVb6d7shj8B4AN\nAJcCOA55icA1xWfpnswZRLSC3HF/m1Lq+w6xdF/mixsB/AnyEqeTAbwRef3ihUR0aCHT2nvSXdQX\nJyQkJMyCYqX9z8jTns9ecHMS8o15+wG4E/LNSf9KRA9USl220Fbtu/g9AOsAzlx0QxJyKKW+AeAb\n2lv/TkRfAPA15BtczlhIw4RIDmN7cT3sKwnX6iNhMfDdp/LzhMggonXkNT13AvBLSqkrtY/TPVkA\nlFJlScB/ENGnAVwG4PcBvADpnswVRYrztcgjWatEtKp9vEpEBwC4Gem+LBxKqa8T0aUA7l+81dp7\nklLS7cXFyGsZTBwD4LtzbkuCG777dIVS6pY5t2fLg4h6AP4JwAkAHq2U+rYhku7JgqGUugHAD5Af\nTQWkezJv3AnAGoBzkTsY5Q+QR3+vB3BPpPvSRrT2niSHsb34GIATiehO5RvFodG/WHyW0A58DMBt\niajceAEi2g/AY5DuU3QUZy3+LfL6n8cppb5qEUv3ZMEgosOQnyH7P8Vb6Z7MF98E8FDLD5A7kQ9F\n7tCn+7JgENEJyI+h+o/irdbeEyrO+EloGYrDuf8bwB4ApyM/l+mNAHYCOC6t/OYDIjql+PWXkafW\nXgjgZwB+ppT698KB+RKAIwC8CvnK/dXIi/7vpZT68fxbvXVBRH+B/D6cCeATxsdXKqWuTPdkviCi\njwD4OoBvAbgJwFEAfhfArQHcXyl1abon7QARKQBnKqVOL/5O92WOIKJzkS+ivoHcVu6DnO/dAO6r\nlPp5q+/Jog+yTD/uHwC3B/Ah5Ip1M4CPwjg4Ov00fg+U4+cCTeYgAO9FvottN4B/Q27YC2//VvtB\nXhfnuievT/dkIffkNORPermh4Pr7yHfnHmnIpXuy+Hs1cXB3ui9z5//VyBdWNwLoA/gxgHcBuM0y\n3JMUYUxISEhISEhISPAi1TAmJCQkJCQkJCR4kRzGhISEhISEhIQEL5LDmJCQkJCQkJCQ4EVyGBMS\nEhISEhISErxIDmNCQkJCQkJCQoIXyWFMSEhISEhISEjwIjmMCQkJCRYQkRL8XFbIvr/8vS0gov9L\nRObh5j75dSK6ioie1GS7EhISlhPpHMaEhIQEC4joROOtjyB/+tLrtfc2lFLfIKI7A9hPKfWNebXP\nh6I93wPwAKXURQH/97sAXgTg7kqpflPtS0hIWD4khzEhISFBgCKC+CWl1NMX3RYORPQOACcqpe4X\n+H8HArgawKlKqX9spHEJCQlLiZSSTkhISJgRZkqaiI4sUtYvIKK3ENHVRHQzEZ1LRNuI6C5E9Fki\nuoWIfkBEz7Rc815E9DEiup6I9hDRl4noQYK2rAJ4OoC/M97fQUTvIKIriGiDiK4hovOJ6OhSRil1\nPYDPAvitGehISEjYgkgOY0JCQkJzeDWAwwE8E8AfAPgNAH+JPL39SQCPR/5s2fcR0bHlPxHRfQF8\nBfkzZZ8L4AkArgVwPhEdz3zniQAOAPBF4/2zATwJwB8CeBiA5wP4ZiGr4wsAfomI1kI6mpCQsLXR\nXXQDEhISErYw/kcpVUYPP1tECE9FnvI9FwCI6CIAvw7gFAAXF7JvBXAFgJOVUpuF3GcBfAfAGQAe\n5/nOEwEo5I6ojpMA/L/27p01iiiMw/jzkhDUzmCjKGIpKGnUdPoFtLOziam10MbbF7BQJIKFRQqF\ngGARsJGIVSwEhVikiRaioAhRiUhUvJDX4uzqMm4mLLqwWZ8fLIc5O+/OmWb5c85cpjJzsqVvuk39\nE2AIaIZWSXKGUZK66G5le6HRzjQ7GsvAi8AOKHcrA4eA28BKRAxGxCAQwH3g4BrH3AZ8bAbNFo+B\nsYg4HxH7ImJglfq3Lb8jSYCBUZK6aamy/a2mv7kEPAwMUGYSv1c+J4DNEVH3370B+Nqm/yRwHRin\nhMfFiLgSEZsq+31ptBtrjiHpP+OStCT1lg/ACnANuNluh8xcqal/z5/XJZKZy5RrKs9FxE7KEvhF\nSlg907LrcKN91/HIJfUtA6Mk9ZDM/BQRD4ARYG6NcNjOAjAUEdsz89Uqx3gJXI6IY8Ceyte7Gu3T\nDo8rqY8ZGCWp95ym3K08ExGTwBtgC+VGlIHMPFtTO9toDwC/AmNEPATuAPPAMuU6yRHgRqV+FHid\nmc//wXlI6hNewyhJPSYz54D9lOXlq8A9YALYy+9AuFrtC+ARcKTy1SzlsTpTlEf6HAVOZeZEZb/D\nwK2/OwNJ/cY3vUhSn4mIMUrA3JqZnzuoG6U8Smd3Zj7r0vAkrUMGRknqM43H8MwDk5l5qYO6aWAp\nM8e7NjhJ65JL0pLUZzLzB3Ac6GR2cSPlzS8XujUuSeuXM4ySJEmq5QyjJEmSahkYJUmSVMvAKEmS\npFoGRkmSJNUyMEqSJKmWgVGSJEm1fgI4zeCrbh2lFgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, creating CrossCorrelation Object by passing lc1 and lc2 into the constructor." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Done\n" + ] + } + ], + "source": [ + "cs = CrossCorrelation(lc1, lc2)\n", + "print('Done')" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 2.86241768e-05, 4.71238867e+06, 9.42481318e+06,\n", + " 1.41372717e+07, 1.88497623e+07, 2.35622831e+07,\n", + " 2.82748324e+07, 3.29874082e+07, 3.77000087e+07,\n", + " 4.24126319e+07, 4.71252762e+07, 5.18379395e+07,\n", + " 5.65506201e+07, 6.12633160e+07, 6.59760255e+07,\n", + " 7.06887466e+07, 7.54014775e+07, 8.01142163e+07,\n", + " 8.48269612e+07, 8.95397103e+07, 9.42524618e+07,\n", + " 9.89652137e+07, 1.03677964e+08, 1.08390712e+08,\n", + " 1.13103454e+08, 1.17816189e+08, 1.22528916e+08,\n", + " 1.27241631e+08, 1.31954335e+08, 1.36667023e+08,\n", + " 1.41379696e+08, 1.46092350e+08, 1.50804985e+08,\n", + " 1.55517598e+08, 1.60230186e+08, 1.64942750e+08,\n", + " 1.69655286e+08, 1.74367792e+08, 1.79080268e+08,\n", + " 1.83792710e+08, 1.88505118e+08, 1.93217489e+08,\n", + " 1.97929821e+08, 2.02642113e+08, 2.07354363e+08,\n", + " 2.12066568e+08, 2.16778727e+08, 2.21490839e+08,\n", + " 2.26202900e+08, 2.30914910e+08])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.corr[:50]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "9.9999999999766942e-05" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Time Resolution for Cross Correlation is same as that of each of the Lightcurves\n", + "cs.dt" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAAERCAYAAABsNEDqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvX2wbddRH/hbe59z33syEMPYcQgfY4a4SJGEUBkBKcJM\nQUIIJMyQSYDAZCaEIjgmwIRJJQyBIVRIQiBUppJgD8aZGGIDJmCw+TJy+DAYg8GWZFuWbBlkW7Il\ny5YsWZ/v456z95o/9u61un+r+55zJd17n553V7169667zj77Y+3u/vWvu1fKOWORRRZZZJFF9pXu\nrE9gkUUWWWSRp5cshmORRRZZZJFjyWI4FllkkUUWOZYshmORRRZZZJFjyWI4FllkkUUWOZYshmOR\nRRZZZJFjyTVrOFJKL00p3ZdSunWPuf9jSunmlNI2pfSV9LevSyn94fzv607ujBdZZJFFnh5yzRoO\nAD8G4Ev3nPs+AH8XwE/qwZTSJwD4HgCfB+BzAXxPSunjn7pTXGSRRRZ5+sk1azhyzq8H8KAeSyl9\nekrphpTSTSml304p/cl57p0551sAjHSYvwLgV3POD+acPwLgV7G/MVpkkUUWuSZlddYncMryEgAv\nyDn/YUrp8wD8vwD+4hHzPwnA+9Xvd89jiyyyyCIftfJRYzhSSh8D4PMB/ExKSYbPnd0ZLbLIIos8\nPeWjxnBgCss9lHP+7GN85h4AX6h+/2QAv/kUntMiiyyyyNNOrlmOgyXn/AiA96aUvgoA0iR/dsfH\nXgvgS1JKHz+T4l8yjy2yyCKLfNTKNWs4UkqvAPBGAJ+RUro7pfQNAP42gG9IKb0NwG0AvmKe+zkp\npbsBfBWAH0kp3QYAOecHAfwLAG+e/33vPLbIIoss8lEraWmrvsgiiyyyyHHkmkUciyyyyCKLnIxc\nk+T4s571rPzc5z73rE9jkUUWWeRpIzfddNOHc87P3mfuNWk4nvvc5+LGG28869NYZJFFFnnaSErp\nrn3nLqGqRRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiWL4VhkkUUWWeRYshiORRZZZJFFjiVn\najh2bbaUUvrClNLDKaW3zv/+2Wmf4yKLLLLIIlbOOh33xwC8EMDLjpjz2znnLz+d01lkkUUWWWSX\nnCni8DZbWmSRa1kOtyN+8vffh8Mt7xm2yCJPH3k6cByfn1K6JaX0KymlPxVNSik9P6V0Y0rpxvvv\nv/80z2+RRRp5/MoWr3jT+zCMthfcz9z0fnznq96OV9509xmd2SKLPHm52g3HzQA+Nef8WQB+CMCr\no4k555fknK/POV//7GfvVTW/yCInJi983R34pz/3drzhjg+b8QceOwQA3PPQRTM+jBk//nt34bEr\n21M7x0UWeaJyVRuOnPMjOefH5p9fA2CdUnrWGZ/WIosUuf/RK/jpN78f3GX67o9cAgA8+PgVM57g\ny+/c8WH836++FS/8jTtO4jQXWeQplavacKSU/lia93lNKX0upvN94GzPapFFqnzvL70D3/6zt+A9\nH37cjIuBGInKyOXv1oRc2gwAgD/40KN2fs54+e/dhfseufxUnfIiizxpOet03GazpZTSC1JKL5in\nfCWAW+eNl/4DgK/JywYii5yBvO+Bi/i5m1te4rYPPAwA+Mjjh2ZcFukVIsE3wzj/PbvjjEje/+Al\nfPerb8X3veadT/DMF1nkqZczTcfNOX/tjr+/EFO67iKLnKl880/ejLff8zC++DOfg487vy7j3QSI\ncfFwMPPFv7m8seMy78rGGpTHZ26j66zpeOTyBgDw5js/0pzTK2+6G5/z3I/Hf/vfPOPY17PIIk9G\nrupQ1SKLnLa8895H8Eu3fKAZf/s9E7IQcltE9HxrOKb/LwWGg8cfvzL93iffcPRkUB69vME//pm3\n4QU/fvOR17PIIichZ10AuMgiV5V89YvfiEevbPHX/swnIqWWyr54aLOeBHEwstjO5AaPS/0G13EI\n4mgNxDS+6tmgTOPvvPeR5hx//q334NOf/TH405/0R5q/LbLIUyEL4ljko1JuvPNB/Oo7PtSMPzor\ncFHMLJcIWYgw4hBu43CwBmKcociW6jtk/pbY9GI4yKA8fkTa7j/8qbfi77z0TeHfF1nkycpiOBb5\nqJSvfPEb8Y0vi3eJZKQgwiEmMQQbMhBS+LcdsjvezJ+Pw0hkO8/j40T1HnLeDxJZDwC/+o4P4fff\nsyQlLvLkZQlVLXJNy+vedR9WXcL/8LzjFYUygojGt4EhKMgiMBBsCMbRRyIyf6BkwghxPBogJQDF\nUN75/X8tnLPIIvvIgjgWuabl63/0zfjf/1MctmGFL8JcRjS/IogAWYyRgYiOM7rzuXVJbDg27vhR\n8oY//DB+zQnbLbJIJIvhWOSakF982wfw5juP3y8zQhYRlxEhi1bhz/O3exqaAInIfK5e4voQkSiE\nNZLh0fK//affx987Imy3yCIsi+FY5JqQb33FW/BVL37jsT8XGQgmtUU2W6uARaGHISlGHNlHHGOA\nUOTzY/aP05xfcN7Mzewjb3rvg3j1W+459ucWufZlMRyLPK3kJ37/Ltw611SIcBhHJPKydfOBSKGy\n5y+yCRT+4b4k+A7EwQhFDARfY2AfwvEnYji++kfeiG/7L2899ucWufZlMRyLPG3k8mbAd73qVvyt\nH7HIIlKKl7d1XGcraTShFfs2GNfShJ6iUFUUeooQyvxry33Y49Vx//wiI6qRFX+3SLRHCI/fcvdD\n+M+/e6c7d5GPDlkMxyJXneSc8cO/+W68+/7HzPgjlybi93EKL0XhJj2ujYse10pRh5VCw9Egi/mz\nNF8MRhSSakJYQfru8RFHnaeRlU4v1tegUVlEuPP9/fsvvwnf8wu34cr2+ChmkWtDFsOxyFUn9z58\nGT9ww+34P17xFjN+XCL7klGWVdNe3vjIQitdDj2V+WwIsh+qqqR5FMIKQlWjb4AYSHB6rjeur0ff\nO424NMkeEe4XN9ag3Pvw1KmX26/ccd9jeNHr7mhazC9y7cliOBY5M9kOI/7tf30XPvDQJTP+0MUJ\nWbyXWpWHtRWb3Z7yJghDaQWulW4UzmFyvBb6BQWAHHqK6juigsEAcUT8zWhQU4Q46ndHxlXLvjUt\n3/7Kt+EHX/uuYlgWuXZlMRyLnJnccs/D+KHfuAP/6pdty/CohuLSHgZCK06DLJTC13yBVpZjEKrK\nwXz9magSnJFFWOgXIJHo+Prz2qhsDWraHYbThiPKJIvbrNjncecD066GH37Mbl71gYcu4Qdfe3to\nmBZ5+sliOBY5cbl0OOD7XvNOPEAK5bG5yvkeQhziyXLEY59QlQ71aG//MAxJ+cpVh570fA4l1RBT\nxFnsR6YPQZpuSL4HhsAYkWBcG9EIlVkDvB/iiMb/zQ2340Wvezduufthd/4iTz9ZDMciJy433HYv\nXvL69+Clv/NeMx4hi3jcV1Q6Nm+I3wApWOXqE8WbiDQPQlVRttXeJPiO8TGTIYhQkxn3w3DaWJps\nszBRYHemlv5ufn4femRyGB66aDmRBx67gn/5S+84smHjIlenLIZjkadM7n/0Cv75L97WtL24dDgp\npA8/ahWH7EHBIgaCu5pHIZMhUPjaSd/soXQNxzFGyni/OotSOR5ViIehqiNCUgHxrY1NFJIahn0M\nzX7XLMKhLflIszcJsjv+sjfehf/vDe/FDbd+0D3+IlevLIZjkadMfupN78OP/s6d+K+32b5HUQZQ\nhCwk3ZZbiUd1BpGy1Mo/QhzxeBCqCkhtvsYyvmddRtRuXX+3/tmgo9EPMR3uYyz1/O1uA6SFn0dB\nHFcYiUz/8/OWTaq4k++jlzf417/yzoYrWeTqkcVwLHJsueuBx/G9v/iOJo//wTkU8REKSVycQxGM\nIMRAkH3AZTEcvV2eWvlpwnoMwjBaZ2ulaJVlNN8f5zoJ+bWps9iRDdXWZdTx6NoiEjwycmEYbg/S\n/ChjGY3XKnpGIj7ikPm8Ln7rD+7Hj/zWe/DyN97lfu8iZy+L4Vjk2PLvfu0P8dLfeS/eTmSnKCre\nOU9i2KwsLwa73kX9mbaB4gyV6B5e9saEeQKEkv1j6svZ20BEBX3BsULEEaQORwrfEP9Bhtnhdvc9\n0sKGQ/ZLb8N50/9RS3quH5HW8JymvRlG/PNfvA13PWDTtBc5fVkMxyKh3PaBh/F9r3lnUzNw36NT\nnr7UW4iI4r1EIYnH5tAFKwj5vUlB3aN2IcoAssrPNwRWWQ7ueMQn7POz/jyHsCKDoq9hCBBHlIK7\nDwm+T6LAcREHFz3KNrr7ti6R588hLDEwByurnm65+yH86O/ciX/xSzZ9e5HTl8VwLBLKd/7c2/GS\n17+nSZcVRfU4vfCibB6jGLfUX0T8QLvr3Yw4SLlG2U1xuAU7x62nX38eA+9+b8MhqIl0aGRQLH9R\nx6NwU0TkRzzIPgYiSlnet29XHyKO7I7Lc+ckCWkt0xFyfeTStI44O2scM/7VL7+jaX65yMnJYjgW\nwY13PogXve6OZlwMBpOUogCi0APn/YuhaQxEVDw3K8IolRUArgx+0V+k/K6YVFMflUQcQuTpRyEs\nfU6xQYkNhzm/AHFERiG6hn0MXoxc9gtViZqPOgXz8y/b5TaZZP76EkeF7/U9D13Cf/zt9+KfvPIW\n9zwXeeplMRyL4O+//Cb84Gvf1eTTywsf1U9E81kR7BqPq67j1NRQyQVxeo0ajEe/B7IYj6mM9TmF\nBoURR3B+kYHY5zz2MS7hfJ2+q+7pUVX08b7pwXOW8cCh4PUi2Vp8rx+eEcq777NNMQHgB197O373\njg8344s8OTlTw5FSemlK6b6U0q3B31NK6T+klO5IKd2SUvpzp32O15LccOu9ePFvvbsZf2BOh+S0\nSHmBeVe5gznbKUIcEbI47viYY+UfFehFiGAbGJrjGoVxD8U8/c0fl+/O+QjFbpAM3DnRZ0NOZA+u\nJJq/byPIITIQxRDY+SHiLAjVri/hQjj5QtJ6V70dv7wZ8KLXvRvf9BM3Y5GnVs4acfwYgC894u9f\nBuB587/nA/jhUzina1Ze8OM34/t/5faweykbCFFOUWVv6EEGoSf2IKNNkMLU0UErLZ8cj8I545Mw\nFqHSDRCK/ttR7dAjEjw0EGF21+7r2ctIBSG8fQyK/tu+SCRaF5FDEdX3CPfRk0GR5A1BJFpe8vp3\n47/ethQePlE5U8ORc349gKM2iv4KAC/Lk/wegGemlD7xdM7u6Ss//eb34+VvvDP8exR6YsMhdRS8\nUdIYhSR2kN1R6Ik9S62oNDcRIYjIWOyTvht56yHKCAwQ13dEXMY+RLs1BL63r2+lQVPHDE/F4a96\n/DBNd2/OatfzZ+MahKqCglFBHB0ZFEbQWr7vNbfj+S+/Kfz7IkfLWSOOXfJJAN6vfr97HmskpfT8\nlNKNKaUb77///lM5uatVvv1nb8F3//xt4d8jBMGGQ7Jk2BAUsjtAFlFWTeRxRntW8GciInsfxPGk\nCOQ9Ql5W8cOd0847ngK3BsI3qPsYzv2MiJ/KHHXf1Z/ntOttsC52GxQ2HIM7Lp/nup+HLvmG46gN\nqF7+e3fhFW96X/j3RSa52g3H3pJzfknO+fqc8/XPfvazz/p0TkVe8vp342dvuvvYn2MDIXKFkIU4\ncK3CPxpxtIpDFASHczCP+8dvf9bHjDgOf9yktQaKdq8QVoQY9jAC/B0xeR+MZ/9e7GMIo3BWOB6F\n1ILv0iirec47EafvUPA6ks+z4o/QXVRPchQS+e5X34p/+nNvD/++yCSrsz6BHXIPgE9Rv3/yPLYI\nJrgNAH/zv/9k9++bYcS6b32D0HDQi5aCgq74hT/ueE27HcdcQg37xOAjhRrF46M5oVe+T0gpqreY\nP9slJ+02Z6y6hO2Y9/L8I6MQhtXCIkZ1Dtq4Ru1KNKIJwoKDueZ6/Cj0yOvruIhjV93PUehOi7Tz\nP4686i1344MPX8E3feGnH/uz16Jc7YjjFwD8nTm76s8DeDjnfO9Zn9Rpyw/ccHvTQTTaAU7XUOiQ\nVLTBkZbIQ4vI7uiFb8aD0FbEU0TK6bhx/WOHsHL0vUfPP+g7V5Gv+85VZmLM9wlv7ZVGG87fHeYL\nw3B7oBj7zPTxYSQqANy5XgIDEYXCuNiS0Z43ngM0xQkk/+d/eRt+4Ibb3eN9NMpZp+O+AsAbAXxG\nSunulNI3pJRekFJ6wTzlNQDeA+AOAP8RwD84o1M9M9kOI374N9+NF/y4JfIeC4jCR5U3pX+2vYoC\nwxFkPV2JPMJj1mtEHiT/PIYKyVd+UUjquHH9XW0/Vl1yP7vuk4tWDvoOObcNGddz2igbiAPHoByb\ndwlCezbMFxnR3TUwkWGyjSCfXEgq4kp2hUib3mbqvuTgful7oTshcEJI/az97htuvRf/8pfe4c69\nluVMQ1U556/d8fcM4JtP6XTOVHLO+M5XvR1f/ll/HH/hTzyrjHuphEBtyyCflbCS9t6uBNkwETl4\n/JBU3m9+2NiPDURvjsOfOW4VtTFA0d7izmdT8hXwuu9chXqw6lyuZL3qgCvTsaTGYBhz6cHEXXfX\nfcLhsCenEnA2IeLYg4PZq75jD8TRtIYvoSTY8fkjLRI5Ok23MShBqIrPSQy2Hr+yreFc3frk0uGA\n6w5a9fjI5S0+4RkH5ff/62ffjocvbfCP/8pn4Py6b+Zfq3K1h6o+auS+R6/gFW96P77lJ22xUmw4\nqnek02sjA6H3bNi3CZ14V1HIoA09+VlS8sI326Ie00DslRkVxfj38ZoVUvC+92DVuefAIakyf1ZI\ncixpw15CVYw4Vk4IKxgfci5Zb/sU+oVhu33uV5T6vEdITX+m3ZvENxBDme87GpGDc1RRZbS7oR5/\n7Ep919g4ifAmZfJ+8nv6u3d8GN/+yreFNVNPd1kMxynL4XbEt/3UW3DL3Q+ZcSlW+shFf2GyaC9N\nL/5oXL/8UfHccRFHs11q9MLPCqJRKHuQrsclimND06Kvg75zQzgNgsg7DMSqs+cs81fJfF4OWQwB\nfaYgEVLg1QDZ57YrtMXGQrLkQo4neh4RWtmDE9Gf521xi0GJHI2owPQIB8TsIa/XfPCOaOdKIw5t\nOPRnI4PyCL2n3/Fzb8dP33g3PvjIZXf+010Ww3HK8p4PP4ZXv/UDDdHGHT9FHgkyQBhui0Re1iaY\nv09efpj1EozzCy8vcKRQ+Lz3K9wLMoOc9hiSxSSiQ0yeQTm36tzCu3MB4jhYWYMiH2USXCMUvv5x\n9ElzE9oigyKhF/b8PSQyKsMUheeOWwOzz8/e9fN4sy6CcY0s9LEMmt6j5sSg8o2eHxmU+g5yA0+R\nRwiJvO/BiwCABx6z7/Vb3/8QvunHbwqP83SRxXCckDx8cYNvfcVb8O77beO1+x+dOs2+/0HbqjxE\nFmGDObX4dUjKjEcch/+yHNJ3xQbCz6rapQiOCiXEIRAfHfF86TbhKcV137nfe7Dq3O9lLiMMVUWh\nLTU+nXd7fL5+jSwawyGIgzz8g1XfjI9HHKdPCV3D32j0tY/BPp6B1/UdEeKMxtt15K/bIUAW0dre\nBu+Ifnd05uFjxnD4iOPSoT/Oe9a86HV34Fdu/SBu/+Cj7vyniyyG44TkxrsexC++7QP4EWoqKIaD\nN6nZB1lEW4Qe92WJ4r36JdLvbBOqkhe7CTH4Iako7h6Fp46bJbUdR5zzeIA5PLPirCelLL2iuojL\nYOUqxigkxynEVI/jI4VjIY4xl2u2uwEGnMiMRFadb+TOsRHdEeY7+ufd2W/6b+H4Ed2Ro3Wxj4Gw\naz7gBzd+2CpCCpxwIo4M10zdMXfw5e2V333/Y/iGH3tzGHm42mQxHE9SPvDQJXzzT97cbHMp0JWh\nqngs0aY2LDGy2B16CkNSe3AfUZsJ/XtjIEJP0Sp5kSjt9qjqalGW1vtuiWigEshRGu3BqnPbeLCB\n0JxFZFAiMl1/fjgCcRgSnNJ3oxBTSevV2VlHzO+7hL5L1gANcq49vKr7nu7dNvL6A6Vu04Z9Q9CS\n6eN87Ucg1MCJCjv5GoPivzvxO+UbDn18RiJy2WxQ5N4zJ/LSN7wXv377ffidOx7A00EWw/Ek5TVv\nvxe/fMu9eNVbbEG7GAxGFrI42wZxvuGIuIxtYFBsB1k9HpDpo/9C7ROz5nPexXHoOfwzKycvTh95\n06MK23hedt8FdRYNskAddwrDopDUuoSk2EDMyGKk4wRZUjxf5vgFg/pe+KQ516WIEfUUe4M41Dh/\nrz43keNmv+nzPirbLg6H+Y6N/tnyeoM7R3McYTg3QC7aiERI5BI1FJVnw4bjofl33lXzvkcv4wUv\nvwl3f+Sie/yzksVw7Cl/8KFH8Q0/9mZ8hPrcSCosd+6U0BNn44nh4JxzTmH1xvdDFupl2UTzfa8p\nUvBRnv1xyU4AlDHln58Ow4SIg5RFFKrq0+xlO+dwwFlSyqB4ynVNoa1RGRp9Thyq4joWH3G0oS2Z\nE4WevOPoe8Ghp75L6LrUGJqUJiPnrQXmgWScjbHclxahxA5IjDiOZ4RChyd0WHzHyXIcvqGJjMXl\noDYqKiTkcdkm92HiRF79lntww20fxCufQE+6k5TFcOwpL3/jXfj12+/DG2g3sbKdJQEGUbbsQdSX\nxc6PFr/xdsxi3geJBJlHexiL6IUdx1z4j31DWEeRqJHCjwxEJX41H1ORRcNxHBHXZ8ShFX4c2hqb\n4xTEQSEp9vybUBWn3QbZU+d2cB+swLuuJcG3sxFddanhnPo0GZSI4N+LTFfGeB/uSt+XzZBN4keU\nMRU5M1GoKuREgp/DkFwQwrq89Z00LU0IKxiXZ851IkK6s/P26OUNvu6lb8K7zohkXwwHyU13PYhv\nfNmNDcQUUpvHxUPgdDxZbE1fnaAFdIwI9jAQAdy2L5HvWcXwPyDlg9YN+ru3Y47bbJCiFgPBisAL\nwwxjxrl1G5LaRiGpcWoo2HXt9wJzqxBHcZzjUJVSolr3jWq+nIc+TotEMI8n83nJPKpGUX9HHNo6\n6B1DM1/zqmvDbZ1nXLMY1+TWz0SZZOfWcRW9N5/H9X2ZPu+PRwh1H1QTrecwrXufd0Q9nAhx6HNg\nZCGf59CWtAe6TPpiU+bb8Tff+SB+6w/uP7P+WYvhIHnhb9yBX33Hh/DODz5ixmVRcdqs8AVsUGTh\ncaty2e2OeQBDzG38BRwRefuQ2nHWi2+M9mki2CKOCDWNOCepo/QCe4ZgyFnNJy/bIcHHcc6eojBM\njeu3iGMlSjSo+I7DNu01slGMQlLyWR6Xr4pCUj7ZrefDzO9SaywjjmMc5V7ExY0eYozSd4+qgfG4\njK6kUQfOT7A+owzD2Cnyf97sgUSi77Vhq4Bkp/dfDAkbgsdmx5P1iCAQNkAffHjOznS6X5+GLIaD\n5A8lXY64DHnZeXOYzbwI2YPY7EAc7bhvIPbJ6IjDXL4B2uzxou1DULYtJOJjHSskNRwxf+3F9Ues\nuq6Nuysk0lRRi1e+TwjL9KRCM39XoV+pHBfEsed8+Q6v0M9Wjtvn3zvXJqiscziIEsLaIyQlCODc\nmjPJRnXv6j3SBkUfR+qEzjlJDfGuh7vRRBiGNT9HSGT3zxvzPu522Fjhy2eYExHnj+cLEmGDIpwq\nRy5OSxbDQSIkFRfuyGLgQh/JjmLDIQu1GZ+Pc2U72oK+wEBEHtEmeEE2pBRE9jI00c96/hEx6+2Y\ncd5V7L6BOMqgFC+bi968tNsRbhhGK0VO93Xj+lF4Ril8L22YkYI2NHq8pvVajoMLAxuU5RT6bcdR\nGSzU+Rku3zOOPsehQ1jevTi37v1Q1ap379E5rsYf6nwvNOWiqUEVdNLzl/W1j1HYZ81HjlP43qnG\nniY9Pkj35aSXijj20xcSAufkG2mPwu/gacliOEjEu3uIQlIl1rj1kQVDzwhxRH1vbBptAM8Dwi4a\nDz+7j4GY5zPJKsc5R5lH45iRM8IQk4SkWBG483NgULKPOMYscf0WcUxEMXvTUPUdrSFYR2m3q4nj\nEIMfI47pcwdBCCtCHLVrrr1HLuLIrQGa5o+K72mRiJeavHLuRTEcR5DjnlfOBkKn++rOAVu1joDW\nIYmz59r1ctyU3f3CU3sgkT3CYhqJjGMu738UoeBxMTSXSL+IIYn2YT9pWQwHibQn3/fBllAVGxSF\nLLSE6bIhT+Ev1H0yozaO59fMj7JQSoihb4zANB7HuPm42hDwyxyR4HHRm69QOickVZRi36aOVq8c\nZj4QV4JHCv8cKXA2BIxE2BDUDKajEwhYgfdJ0l/JQKT22uSaV13XkOAFcThJEBHHcW7dHkfme3wa\nP89BHUePy8/nC/dlr60iDju+KnU/kWIPeL19HKoQofg8o+VEVCRh63Mi+jtaB3Qav8SIY/49aoFy\n0rIYDhJZkA3ZvfWhZA1VHS+EBVAO+R6GIOQsgkUbvzjt8SfF0R7n3Lpzjcv5de8e8zyR3RWJ7OA4\n6Lxr7LtVEB5SkEyiyKBwfLzvEvrUKt2UgPURISx9DzjENAbjsUGB+VyYphuEsDrH+I0zmuJr0xwH\nH6dPk3F1kUVgRLlgcAjG2aGoiQLVMdHjAOZkCsm2s89N1hcjC3cdBe/UJvhZ36+odckmeAcjx88Y\njoATAaq+iLKwLjYchx/yOi1ZDAeJPBB+gIeDbyBEeXL2RBlv0usihR8gjiB7KkIKu1IWV11yc+DP\nBy/8eUYcQzUQoxN6OE8eJCuIKITFoaeIE+lSG27ZjqPysq2S84nficvqnR5W03ECcpzIa1EoO8lx\nGj/orVEs8x3julUoi1u9r1wDMfohqfnerajlSDEoKRnnJcqGKllVDcchjkZPRoCf/3zNQz2+Hpdj\nsQMiP/stZ+L5kdGt5xcYggiJPAmuJDIoQHUcm/GA+7g4cxxRm/eTlsVwkFwKLHkUqpL02tbQVGUR\nG4XjeUTHQSI9GYitUvh2wY9l3OvbxPn6TWyavGn2IDkksVdW1RhXS6/6tuZgHIGua9unS1y/S162\nlbMVbBYv3je6bRotIQgOPUWhqpXtMcUFg2z8PC5DFH4bbpsSBVZ9agyNzOe4u/A9XvfhthhyLOd6\nVJqu8ECoOyfbAAAgAElEQVSldQk9f8198DVrjoOzlcRAcMV3mU9r2wuFbcZxRzflhCice7iHIdgH\nfTSbnc1/4551pUURza+hqgVxnLnknHFx4yOOkOPY+sgi5g58BLEJ5hz1s+TAezntF8gQ1BBT53qW\nHHoqhmbVuwjlHGW3cEhCPsOGhsNnu3a92xdxSDqum5rK7TTGPM1PPkLpovqOQl7L+PR/7TGVzf8h\nCU4hKW5d0qTjdgkpoQkZyb3gNF1BIp4RbZocZsnCaqvoSwKBuRfT/+fWQQiLDETDfbFDMTsavIZd\nBDFknHcyzOx8H7lwGPZ8+d5W4Z9b9S6CmAyKF57tjnD8IkeR9UWEOHyDEjm4pyWL4VByOIxlMXAL\ngUJSBaGqpmlhkCUVIYjBeFBRfNV+dt136JI1KJsSMurdbKtz1AVVjhnFrM83iKMaFH39EbKIiGLZ\nRvVYvad04Z4ZR0jwCuLg0FPXTZ+xGUwoHIrfJj2V4+r/I6XI8yNOpBYGWnI854kf6jxDkHWWlHVS\nutn4NRs8pdQYy5qF1Xr9JfznIdEAcewyEI1BWbfrYjtqxU7roswfabydvxn89HBJvuC95aewoCRT\ntO/O+XXvvpsXeFy/X9vsjh8SgjgMkIXcp8igLOT4VSCaEG9CT1t5sL5B4e0s98myiKAr/3zB85pG\nyRjyewOFCn/duQjlHCGUjXrh3dh34FmeJy6DFUdjaAIS/JxXuzBIKKndO2LledM6DOMo0dabHkMl\nPZ2rjcc3pHYTkvLTdJv5gjgChBKhoC6JUSzDcRhu1KEt7160bVYErfn1HX6abkOCD9ZxKOti4PUy\n39P5kHFo00MoY2AgRtcAbYYR6z5h3XWNYZLMMw9xXFjbd0He+WZ8h9PYpVaPRAZC7l8bwprGL2+H\nM9nXfDEcSvTDaVuIRIYj8hT2QRDWq/GJvxEXDpxMkmHEqu+mDCBX4XcuNGaOQ5PaXiy75TjYEFhF\nECEOvrbIQ5XPsLcO2HqNdj9tnxAWr9lFIg7HIeNAG3rqOw5VEYIofA+C8aORC7eGl2sRY8b1HW79\nRZ7CcE3tSvaLJKV4sqkoH3y0ZtO0nRAmrYuRjG7ds2XmSppsq9Ecx9YfjSr5ghCHkwZ+VFpvMYr0\nbq67rglJFcNx0JvIQkHl0fiaEgsChKJ3SWz26ZFQVaB3cm7/dhqyGA4lUc8n/TuHpEqb9DGbF0xD\n1H1QxnbMykBY7uOCB8MLrKZ02WHEqktY953bBuHciudXz88zcFIhLF5NDXmxIaAXvnAc8hJFSCSo\nUei6ua+SvQYvY0gjDj5Oqe/Q3vqsFNuwzZxtlVrFLuEcPR4ii4bshpnPhX67Qlv12sqpEoKw476B\nGFV/LjTjjFBq3UfM94zZyRgL026twm8cCjpOQRBDNd5jRohE3TRdTZoTil/J+iInqu+dd2eoyMLL\nmLrQ8IPTz9cdrKweEIRysApD0IwstspwaGShz+MsMqsWw6EkIrUABRmbbIjAQDg8gswRBcHZF9fN\ni593K3OLnmblt+7bNMqjQgzn135BX4s47AvcptcerQgixBFl1TAi8JoQmt5TmV541xDU43DoSRBK\nSwgDfVPxPYeLkkUiley2BX1RCIsRChuIyKBUA1Gff2mf3rXdcUthoDEQUNesEQrc6vqa1kuFfowg\n8q51Ich1P46jRbSj+R5ej/LZKE131QdG1DMQ42xQ6J2q58qJItWgHJJTJ+MuJ3LQhU4qRy7k95yt\ncxXVmZyWnKnhSCl9aUrpXSmlO1JK3+H8/QtTSg+nlN46//tnJ3k+Ud99QJNXR3AZxhsZi8fJi1MQ\nBPMg592QlE5BtN7L5DV14HTcdd+5xXBAm3arxz2EwtktQzAeIYtQoTSxb4He2XrTHINOTmuR7Pdn\n0uQ4k93RfMm2stc8FmNsxpuWIzB/jyrEo/oOPo7o96Lw9yK7J7TWGJrZKHqciIc4hlHuKSlpeW5s\nFIP02i3ND7kvSV+nkGfMlVkjFxUGrvvpXnCxbekoQOHcVTdxH4zKuzQlBHhK/sJB36B+ALjuoCf9\nMI+vV65Bue6gb/RL1AU7CoWflpyZ4Ugp9QBeBODLAHwmgK9NKX2mM/W3c86fPf/73pM8J3kwXCQH\nHM1xiPLbkBcgoSdebNcdrMqcMj76JPhmzFj1TthmUBkgxInU9tlOSGrdNXHjadznPjiUcNzQE4cw\nmOPgKmr2stv6i67ZxU4XvbUIwt+8KGqr3nXTdwMqVDUrUUEcJX5PCp+9Yw5hNdlZDrIw35vruFb4\nkpHWBdfQd2gNSq7hmebeuQ0fR7cYsn1uovAtZyHPueE4Aodi7/ESwrKcwnknyUJCm8wDDiVUxe/C\nXCfEBmV+B9er5GZFsjO2CQxBmX/AiSjV0GzH3PB3zxA9srXffcGJUJyWnCXi+FwAd+Sc35NzPgTw\nUwC+4gzPhx64fRnlWXohrOsCA+FxE9thdLmM7TAqJEKwOgg99cJlGCTiGxSp++CCLmtQ2vHqEVLo\nYccLr7kffRwOz3BWlVaWfpVzmzE0jr5XLgilI8UhYZ6pt1UZrl48k+N58jjLOJHgXN/BdRxMjtc6\nDpi/8za3sj6kKJERSjF+DvHvXZvHfejiSa+ivO9gw4V0L9ihYCTCCv+42XYNEonSt9ctl7GdDYTX\ncmYKVTHiqJmK9l0QHoh2gFTvgpeOO6H41hm7bt27WZeiF+Rv4zih7+vOTY7mlaEm7BwOo6t3TkvO\n0nB8EoD3q9/vnsdYPj+ldEtK6VdSSn8qOlhK6fkppRtTSjfef//9T+iEZFF8zLkVGQFZCFOanpBU\nknN+nRdKUg+WuQzPQGiEwqEngc98TmsHiYg3NRkUJ37b0X7a6kXdi+OgF3jDBqUJYVlPNPYs7fdG\nnVx7J2Noq4lfuobOMUA6zGMyg5RB0edYQmccwiqhJ4sUasHY0Wm6LpeRqvGTU+Md/RokEvBATXfc\nWeGrW1TDc7SO6nFsJXhNWbX3olaIWwehNQRkIBqOo75r3rjf2+oIA9FFXIakstt7VDMV2/nrPjVc\nxrpPOOB3LUAcjETknsqcZ8yRiBLdUEhEf16+44IzflpytZPjNwP41JzzZwH4IQCvjibmnF+Sc74+\n53z9s5/97Cf0ZWLpryPDcdg82Gz+F4+Ae/KzByGfcQ3KWA0Kp92u+y6Az7N3RLDXC9tM6buzlxUU\nDLKCABzPbyQFERiUiBzn9N1VL4VYVqGUuowGZcFpyIe6/an2pnNAjo817XbMtU16qRxnEpzSdHXo\nqUto5of7ccy3PWp+WMhuMkw97ejH3AeHNmrdRxk2iKMpGCwJBzDjUoE+XZO9d32ALBrEMfj3gkOh\nG15fYT2QhzjGQoKzs9T3TueAoYZ/GRG43Mc4zvO7Zj0WMt3JorxwRKhKk916vr4X1dBM+kWHpDbD\n2Bia05SzNBz3APgU9fsnz2NFcs6P5Jwfm39+DYB1SulZJ3VC2iMwD2nLD9byHVGoqhoIuwg97sOQ\n4OztFAPRIgg2BIOEqoLipqamQYWqZJ4cx46P5u9xhfDRoQpWitweQ3vfmuCvpHnX9p6aDYRXc+C2\nWyevWf6k75E+R2nvUedbg9J3PmcRk+P+/Nq0sH4vUOs4GOn0nWRPWcQxzYej5CRRAGa+IBGzSdWM\nvpqEgDFIIOBkh8Gea+xQ2FBVi0TteG0h0l7bmsN249SupX0XarID84Al24oQxKqTpphWeUfIBQAu\nrFdhqEpfk/zPemRbHFbLZUikw3NMT0vO0nC8GcDzUkqfllI6APA1AH5BT0gp/bE0b5CRUvpcTOf7\nwEmdkBgI5jjk5wZKqvxuPS/nPCEIxyM4ivs4WM0ZIE2oqpvgsJMBwntIS+FWU8Q0Z1vxJkUbfoGL\nt1ORCOC88PQCR4WBNd7PHuR0/IKOCOn0HXnZ8ylLVpWJxw9VETTkeLKGCWgVvq4EjwzBSiEODmEJ\n4mjapzdZUnacjWiXbIV4vRcw49W4eoV+dQ9x75p5N0SdhaUNiijLjg3EWPd3N9fMKcV8L4IkixaV\nWUeDHYp1nwxClTkespzehW5eF05iiZN5WOuH7LiEhVvkMoWqjKOpnC6N4rVjCqjivqJ3LLLQEZDp\n86N7HK4tOw1Znfo3zpJz3qaUvgXAawH0AF6ac74tpfSC+e8vBvCVAL4ppbQFcAnA1+QTrK+XF+oZ\nBys3z/q6c/aBNw9QxW9zrp4C13G4CKUghTZF0O+fMy3aMbOhkdCW91II4rAEnxia6TxGXECvPEIb\nSpDvCj3IHU3u2IMsWU+ShUOIo/HK+xY1jVlnHrVKlHtSCYKoIaY63+Uyihff1nFEZDoQh6SaOo75\n+yupbedLUWLDiSSf1GYyXV8zumrIyjXMWVgN4lAoqxqzKWxTwnYqxJRSRVNtOjZxHxTa5Fb1UZdl\n6Y6sHZOcJyPachmV++K6jOu6Dut+tIZgHLF2jK44Jn0T2lKGhuYDMKFn7cgVh3Jr34UWcYjDOo1f\nKfNj7uO05MwMB1DCT6+hsRern18I4IWndT5CfF04mBSneJQxx+F7BLIQopDUBScdd0IQsvgt3K7p\ntXaRP2O9wpizaXRm5lPW1lrgOb1E8nIBuvGeNQTsQe7KqmJPsfE4B40sUqNoeH8No0S7ZAugVAqy\nSU0dKjnOmyMJWpPf5Tu65CCOI0JSnTpOvebpexoSXJHa/jgsOV7CeZ3xpnU4r8kYU8bMu+Yxt913\ni8HKE1pOM0Jb9ckxENXY870TpDP9PjtRlKY7NAiV07StY9KsCyLBJaQkDgUnQax6py5jNhCHe6L1\njToO84a1e4M9DmDR+rq3hYFA1SO60tyOWz0i84RPKfM1VDwludrJ8VMV8QCikBRDQ/YI2KBUj8Mu\n2qgAUMhrrkCXEBNzHJL1Etd9kAEib618r6v8rOcXh6RsPJbTaxvEIchCcRw6BMAZRlwb4VeU1zBP\n05PKqVGQZomsFKXNRulVpZSiJs21Yvfm8xaxzFlweK5wGRKqEgSkQlUaicjxSw8r1xBQJ4BBbxGr\nkIXymvV3Mg9UDcRoUJZOarDZVvO93uFQhBXlAaKVDDMm0z3nSjISe3VPAW0g2k2qhE/kosfKcTiG\nqecCQ58T3bIeCSIXHKripJkm2+qjrI7jqpMSqmIEIQaCxg8bTyGKQU6/55xD0lwMBBNtNbfcLlrh\nPtptTjVhp49f03F13LVkyXRtgV5KuuK3KgjAS5eMFAR5nA6X0etUUwpJFSU6KGXJseax8j1N2m3v\ntEnPwn3AntPgKz8mikel2IVD0efOHAeT4yXttjEQfkiKa1RqqMreixq2ma6Nw3alTqQOz1lY8Pmb\npHkdef7V8On5JZsr2flRhlmELGIOrXJimrOQz4liN9csThSHecdcKspb9C3vFIe82uJJ/U7pLKko\nw1BnVQFHOKbl2iJD4yOU05TFcCg5LAbCIohDerDy+3aHZ3GBoKRWrh21VhYDsaY46qakDrZxV+E+\n9MuyUQiCuQwTnlEvsBB/+pqEfO93xKyjkFRVotP3y94hHrLQHIccr0tWQQwBQuEq6ibt1iPHxViS\nURSDwsqPEYeer+s+2ni8XzneJdtjSpPjroHoLH/DoSpZLjZ9N26rzuS4DreN5FCU8WLkauorX7Mo\ndT3eIAhCZY1BGSpai9K0NWouad2CRAKHgkNMbvh3qJyIl/reku81fRew739KrVHUbdj1OOuRkqAy\nO5wX2IgG3Oppyl4cR0rpHIC/CeC5+jMn3QLktCVMu92y5bcP9jpKo2VDw6Gt1YwsZCFJep2MN/HY\n3jMEc5gkt3uIX1j3LZcxiLKshmDVKy/bSbv0Cr10u3U9Htd9KE9RGT/jZasXUsf1ddqtrqLWSlQu\nMa77sG3SRaFqElwjiHMrzffIOIyBaEJYTqgqeZlHhCy8EJZXx8FFjPY4bSFhWPQ4ow2Tjpstx6Wf\nz8Gqpt3qdNkIZa1mL96MN963fRfikJQlnbe0Xnjd9X3bn6siyM41BNN6tO+OVxulw7kW6VZORJ/L\nZpzaszOKl3vBrUI2NM4FgIUTHSmEdYbpuPuS4z8P4GEANwG4cnKnc7ais6qA9sFySKpNl/M9AllQ\nMn/aRCaBeQMhr7n1hxQZeaGtcTY6df6I/tzKXeQWWdTv9hSHwPYyHpGagUEpWTLKU9TptVpBaFKz\nkuZwlSWH7XQII0IW+poPZo9+UkDzvOL51/Yeerwo16IsUf7v3fGokHD6OyOCJoRF3IdkhnFtBHMZ\n+h416Ev4mAzDD3HtChc9shEte5c7yKJzDEpJu+3ZobCOBoewuKutNShVsZf5hCC0M9aENgPOYlMS\nVNp+XtNxPNQ/nY/8LueqnbGyS+j82QsHfqJIlFV1gdqptNzq1Ws4Pjnn/KUneiZXgUR51qUlwDlG\nEBTConQ5JsG3xXBYZGGQiArbyLGkKOmx7baOz4t/yGi8qXUvpHmrIGSR6zTKlVr8jDia1uBNuqRP\ngnvIQnt+ukbBhB7KeGeVpYzPjffqJksox9fjgFKWjAhGCQsRYV+MaJs6LFXd+lxkC9riZavQkw1h\noRwfQPmMhyA6R1lyexQd8tJbvnIrEplXtqBNCXkOF0r2lN67nJ+b5TLqWvWQqN4TRR9HelvtCmHx\n8y+9oUi5NhxHM+47Gpe3tc+TGJR1N7aFhE6693aY0BejfkEuJZVdJcdI2rA+R93zSn6X+YAKbXPW\nJiGOhuO4isnx300p/ZkTPZOrQLgQJyLBrwQkeIGSlC7HyrJmYgi0rUiE4XPxjhwEUVINHXjOFeWa\nE9HnKtWvLbKg8chA7PIgSwy6I2UpSMF2u424DA7PNIhjVqLaIxxHuEpuKEoO5jtbr1mOk+eaiTY1\n2WQYDaOan9AR+d6S476BaLgPev5Rhpk2KDoFmfmB6RrquXnp2PUe+dxHDWHVe6e9bJ3WLWEncy9o\nHXn1PS7iIK5BxouzRIap77wQ01gcBOYHxVlq2rD3sn7VtZXEFequMOTiHPI9Wql3sDEQ1B27FOFG\nWZtPgzqOLwDwd1NK78UUqkoA8txD6poRUaKymHmfcc6GYrKL4TNvZynHWdM+GlW5SjpuC7ebtgkz\nrB4T7TxYYHVd5JKO6mXDlLiu41nqcUYiHMvmmHUTVimpwALnUa5ZhxhEgXDLcMuJ1BeeEYcNw4xE\naisD0bVV0WXPCkIW9ZphjlOQRUnTlc9N55Nm4+FlSXUB4vCUZRmfjy/3Sq6Ba2+k/qJJOBBLJvem\n62uabmrXha1pQblm39CMrkGZyHe062X+v9mLvBg56SVlUTwbAl3f4TkaHvqujUDHhh9cd22FuCSW\n6GaWHRJ0tpV+LpqU1+eyGUas5y4Q8ru+hjbSMY035Hgw/zRlX8PxZSd6FleJFB4g8gg47ZYQSmMg\nVnOrkLJw5sW8so3U5HOFHCfva935LURW/dQmggsGVyrEJHH97TDiGTP3oY89GZTOzZ4yHIdCR8wb\nyPfKNXvZMG1Bn+ImjBKdroNRllWibUycx3W21YqU3BSnrwhCe/KGNNehJ4ezKMhiNijchl3OixFB\nQ44rZKH33dCGRhO/3IbdQxxeIWHfJYhdHZUhsHUZ1qFwM8w8ByTDGBTtUHhcmVzLem5yycYvRByd\nRRYtr8MhrM44LIDwgz6KFwdHumCnlBTqr+tl3U/zz6/ru6bT8SXdV48XZ6xBKBZZsF64sLZh4SiJ\n5zRlr1BVzvkuAM8E8D/N/545j11TcrgdS5tkQBsIa+G5XiPqalnIbuJEattzUcbVO5JFO80XD3Iy\nKE2oaobJLfGnFT4RdhTX17ueyTx3vowP2VcQFA6JsmFajoPn+55lQwi74ZxaoyK3JMoYktCWvobS\nzJCM6FE9rMw4hXMAGEQwsMJXJLse50LCVWBQmpCXvkdOvF/6fOm5oiy9azONHefvLtl5zTWP7nop\nZHpnjXH0/EU5HrWONNcg72Idt+soKtwrISnOYOyqYtdr26JybRTb9aI7UdvjSJdd65hKGUCjX0bR\nL9T2Zx4/t+rRd+2mc6chexmOlNI/BPATAP7o/O/HU0rfepIndhYifZ7WFG4pLUfO+SEpLtzRiEMv\n/mJQKL2WDUp5KQz3wS2j6yL0+vPwIpeCQeY4dI66vuajsq1cg0IIohoa9QIHCMIlhGm+JkE1spBb\norOexmwNUEuO1y67erz0tmqyoeJmhhqJDOYedeX7tWECVPv0xviB7gXMNbuV410yMfcy36T71uM0\n1fIjIQ66F40DQoZgUE5O37UJBHU9UkhKhWej56ydIhPC6luOQ5yoZnzOYNRIVGqjGHEMQ22KqM9V\nwsLNNY82sUQrfI1QKp84dettdsMsHMeqfB5QyGJN5Pg8ftB3JrR9mrJvqOobAHxezvlxAEgp/QCA\nN2LaI+OaEd1BFogrNeVBH5YH6xfoSMiIjyPEGSOUsm0lvVzsTcniX3cJQ4JZ/A03obOnPENAXpM2\nBJZYrshl3XduOiagM4BovD+asI0MB9d3TF6z4ocUOa6vQZSl9pqt8YOjIPyCvrIFbd8aFG10TQhr\nVqA6ZCRKt4yTQZFqdr4XXBi4JaXr3SMzXxlRET4nL8QU1a6s120IU5BFcSi0cfXQmkJHXn0PNzOM\nyO7K61huYjPqe1Q5Do1EOfVdQlhuyrqTWFLQuowrQ7CeN4TicYs4bEj6Atd9NQXGhKb6FjWdluxr\nOBKAQf0+zGPXlGyGceIf5gfL6bhNnvX8wM+ve1MJbg2EA597u4/GdlTzFQm+UfO1oZG13ncdMBPo\nujndpNg7c4zNOM7Ku82GsjHr6h3pgi6NRCKOo0tOBpB5gVtFIEqxSceltFttgIT4B8ibVp6/zjzy\nEIRLjnO8X4dzVLZVQyDz+HwcAKYz7zDCjPvEf2REu0bpHkWyd2niM0Z1L5gc1y1KmvRaRhzm+Vcv\nW4eejnJMWo5jWkeSQNCS3ZbX0SEsb7004yqbT3Mc8m6KYbIkuDV+OnklQt/mHaGU5ZYfrPt96HPh\nLKla6DcbFHJMZXz9NDAcPwrg91NKr5p//+sA/tPJnNLZyaFkPaz4wZJHQKQ5V5vWkNRsCEZ7nDUh\nCO1BrtTLsqX5g7P4O4k9j7V1c9+l4u1oJbR2FIR02eXMEEEoHhKxHIcKec0vnAkxkGfJ7dPLzm0b\nItM763Ear7xrja5Rfjmb3lZ8DRKecdNrPe94tE0RNQch4Z+UbChM5hryeq77kOvwQk8dIZTpGDBI\nxGSSBa1I9L3Q4TxNjpsWJW64rTWitV4DZZ6+RzWcY0NbYrPYGAMwCSE6JGU4scGuo0ubYT4Oc2I2\nzLvqfb5HwmfCiQHVWeK6DOYmNB+nE1E2yrhKjywzf7AtSmoYeXpnD/g48z08NyecMJm+Fgf0ag1V\n5Zz/n5TSb2JKywWAr885v+XEzuqMpHAcvfXKw6wqZSAO+jZ8UrZqDchu9jhKqMqd71Sa9wmDeuEl\n08PlLAabPaX7Z3ne0c5xx/vulbJswm0paJ8uoYRxKMeRe6Fbi2jyfYrrT89MZwzp+H1VioCXjrvq\najy+hjEovZaRiNNmQ8aYpNbkOFeUy/l65HXf1ZbxNQurs9yHNijuuN3mVofzoBR4CYU5yixKCNgK\nyhKjq67BOBQZZjwlq9h5vQzKAZIxt6CvFOixoQmQ6+xEaQQ0ze+w6uo7IGuEs6fk75qn0byO4ROV\noVnr+eqahccEKNuq04WE5DiuOqx1JEJnYXbd1ZeOm1L6uJzzIymlTwBw5/xP/vYJOecHT/b0Tle2\nQ8Z6VR+gDlWtOifbqlj+OV5K3MdBLzvutfPXfSr7aFSlKNlWLTmuxzUMT6iL6fy6r4u8Sa+18Vsd\ny9ZeEyMLr6J8NSsmE2KYjzOdV9u9VDzCJqwyK5QmJJVsKIFTWTllmb3soix7G1bh7VhlnK+Nx1kZ\nT+dUaz449FQNhFWucoxOFfo14RnnHunCQGNQUg3bMSdSr7meo8gwZKN0XcThpumOJhFBG2Oz8ZN6\nPhp9cQhLvt8PSfkFfeu+NQQN96HekV4hXe3UrZSDmFJW460CjxNLaqGfjixo501HItZ9zWC0410x\nrlx4LO/ztnFYJ6L9aiTHfxLAl2PqUaXPLs2//3cndF5nIoeEODgvu2ktsCVugr3jeXFKJbnhProO\n22Frxgsh6MJzf/OaJB7kDLnFq/G8HRu/1cpy/zitIA4ARGqOBc2w5yexbI/j4E2KNILQaZSsXMdc\n9yEHarxfrqGEc1Ta7dYgkTaE1So/OSeqB1GhJFECHHoqypLqKayX3RpFk75bjByM922MaxiGqc9N\nI5QEFc6jMKK55nFGqB7KmsM/8txl/LxDmg/KQPRdUska/nqJSHAOYfG9WEsvKScddyLBWyetIo7R\nII52F8Na96HP5Shy/BnnVo0zVkJeZf6oxlO5Dk7Hlx5zOrQFTIXEXN91WnKk4cg5f/n8/6edzumc\nrUhlZzEcsqHKXN/BHoHO3DhQ9RraQFgSvBqUdZ8KyWUWSO81cJO028k4aG8qoRq3raM42KthZVlJ\n81ZBnF/3rQc5pyYCaF5g60F6hkYVsYmC6CVOb+F5jd/XWHkZV+fqKUsdvzfkuDI0fe+Q44IsvDBc\nQqsUVYhDh1s04rDkuB0v4ZwgG4p7TzXZVh3ccX0No7pHEoKR58kbS+ljSOaZx/eYehB9zcoBsanM\nar3kdr2YddRkjHnI0josMu69a5JMUdY7efHynQLGPKeL+3M12VZMpo82bKcdUI3utSGQMR252Awj\nulRTk7m4cUr3PxtyfN86jl/fZ+zpLhyq0g9WCPO1yhWfHvhsUMz4/GAlo4NikxVxECfCi19BUl2U\n5MHtYVQGRcFn88LrxazTax1ksRl9xKFj0/raIo5DsnPKOPE0qy4oVuvsC69Tk/U5mfmqytkjx818\nLwzDxWrmmjtwdpZGEF3SoS0cQY4LErHpu3KubqEfV4gbI4pmnNNfOeQl58gorr0XTpt0qnUxiDah\nCfDO27IAACAASURBVGFJ+E+eNa9H+f7diMNmVUXcF6+jdWc3O9NciTYE5p1STpftsksIgrkJ9f5r\nMl0jFB250N23JZnlQHOfM0KR6+O6slWXsF51xQE9TdnFcZwHcB2AZ6WUPh41BffjAHzSCZ/bqctm\nGPEx5yvE1ByH9ggOVSW45ymUrIeVZFtxVpUtYuIsLC99Vys/7ZXpc+cW0zIu/3v1HUKatyEs6rdj\nMkbmF763XEbJqtIx5cEqCLl3pScVcRkVKdiQhA2rqPi9g0RMxlAHgyxc5FK4A8sP2Epw7X2jjjuZ\nQdLSBCDSXM3na9PGmLOtIsQhhiDy1uXY1bgC8goPo+J7jrjmFY+T920RSlcyzDzEyQairheNykYT\n2ry0cQyKete04+CFcyT5QlKTN4M+Ti3Q08hRcx8eotX9s7STpgt6bUNR++7UsK1C8UqP6FC18KpR\nCOvgagxVAfj7AL4NwB/HxHOIpnoEwAtP8LzORA4Hynoo3EQuYweG7K7elPEUTCW4IsEVl6HnGy/I\nQFUxNJF31CGleoyKOPyUUk12c0phnX80x8EepIdEOjM+2ri+8srlGF7BYNe1x5dj6HPaukhkNLUu\nLjnuIA6+F23lOMrv8jlNdoehKnXNvZ6vx5N3j+y1MffRd3aTKt5JUOaOajwFtS76+Qt3JIbA3iOb\nKKCzsHxkQc9fpWPXcUuC995xmpR163QxCV4Qhya7x1GNd+i7utYliidO3XQuowkve+E8fjfrNbTO\nmHRvkOuozVJzQSHrvrNJOb04JjYFvZMQ1hmFqnZxHP8ewL9PKX1rzvmaqhL3ZApJpaIkdHbDWj1A\nMSiHKoSlPQWd9bDuOzx2eSbByUBwCKvua0weZK8XYV3ME7ytXlNd5BahCNzW7RSMQenb8JyMi3dk\n4fn0nZwuG2VVRQolpbZgsG5exG3YWyWnlaVBHDkXJa6bEBoPsrfptWYL2tQqRVG6WoFLmu70/YjJ\ncTOOcr4l7VaNMyciY6ERlWtQ2VNmfMxG+WlyXHfZ1ZxFMbpuooBFHDUzjAyE41Csus7lONhArMtx\nvP1bbLZV4TjknaJ3h8NwGonoNd8XR4OdNGWwKOQ5FU+26fu15xU7Y1WPHGgDsa2Ri6nl0NGG5lAh\nlPWqw6VLujb7dGTfOo4fSin9aQCfCeC8Gn/ZSZ3YWYgOPZm0WHqwOiSlwzM1xjl5rimJR5DLcYBp\n0bhkV1+5kpxz+X69yDeD9bLLuWskopGFUpaWy7CoySVBFakZchwhskAznxVBDfN4bbL9vHzedChC\nIlWJwiAO7zhjzkZZspfNrUK8e2FaixDiCOs4vPTdhBZxcIW4RhbKEbCdglXYTl1zRRyjaVGiOQsd\n7/fSdFedj0SjeyTvDhsUN023WV82K7DWg9j1Imu75T5s4Z5GInrDrlGtRd17amucuohntO8Ut/3h\nwkD5nOkLVxCHJccPTLZVPf5BiYCcTZPDffcc/x4AX4jJcLwGU5v1NwC4pgwHh6Q2Ko3WjCuYvF6p\nUNVWednOQjAtRzrVBZfG5RgDGRTAek1T7nf1sEwFugO3e5VDbklthWjk2mavSY43KJh8bm66pklt\nzWXYvHzrNUXkKJOgovxK2wxCIoAd5/CMVEhPBC/qPXUQijaumsvQaKcrhkBXjlcSnJFCVYrUnl3m\nJ3/+kVvKEipjZOHxPVttIDqFOJRB0cpvGGtluhfOK/t3yPhQz9XNkhqn1uMyziHSOl+tFzE0vW9Q\n+q4tAKwch+XQmNerxnXaARCY3mNZIxJeBuZ3yhiaNkS66vy6DG//9SlrUwyUre8yDqhK6zWGRjum\nEgG5mrOqAHwlgL8E4IM5568H8GcB/JEn++UppS9NKb0rpXRHSuk7nL+nlNJ/mP9+S0rpzz3Z7zxK\nmpCUSq+zoSqfNK87AOrxNttqUuyqC67mMhTs1em4sgg3g427rnaMm8Xfec0J/Rz1YfBJzSb0oMYL\naa5gdZs9ow2K56Gi3iM5J1PlbDN3TAjLCc9octymptputzojiWPWJh5vwnOk/HS9hlNRLq1O3Pnq\n+JxtJZzCmOfaFY+baMJzOmznGxRtdPW+G16SRdM1N9H4UI0fd7W1DsIYjPuIw3AlqTpjHJISRDBm\nS4JPWXu1QE+38fFCWMxlVHSvs6TqcaK6jGkPHeIT1TulHccJWdTQk60faw2EdnDXK7tJ1WnJvobj\nUs55BLBNKX0cgPsAfMqT+eKUUg/gRZjQy2cC+NqU0mfStC8D8Lz53/MB/PCT+c5d0oSqhtYQcCW4\neBtcf1HmdxZ6yjF0Z069kVNN7RuJK2m9nb7TnmI2sNp6R9WLL4YmyFHXxrJ6NT6X0b7w1YhGWTUS\nErLjncmqAWxBnyVyrSdnlGLfjnfJJgTo8I/udqtj2Zx2q69ZIwLJwuJ7wYkCXIEu5yWKvrmnlECg\nuYYxW+7DGsX2OWtkoVOQbeYZZaoJ4ujasN12rH27dPaURhwdhaqi+p6I+6rjNrS5UutFIxegchzN\nczb3QjsUttmgdkD0uA5JaYRaG5M62VOEOEx9h2MgJLQFYE4dbh1T3bpII5epHuzqRRw3ppSeCeA/\nYsquuhlTW/UnI58L4I6c83tyzocAfgrAV9CcrwDwsjzJ7wF4ZkrpE5/k94ZiLHlve8NUErwzhXs1\nVJXMQtAIRafXdWletKaOI0IKKh3XkOPVAFUkYpWfrlr14LYQwvJCNoqAFHvMcTgIYs/5ZbzfgTjU\nNUgVtYyPFM7h8VXXmT0iPGJZKxpvu1RNdq8aQzDN4bTbkBz3yPRRh8I0JzKWMQ8pcC1KMTSdRRAe\n4hgiJDIwV0ZINFT4fkpxHJKM03R9xJGLY+BxHMzT1TXf0TtVkYJFHA6CGKPwLxkgxYnI/1wnIs9i\nra5BZ1WttN7Z1mvT/JBO35U9g9YKifz0m9+P7371rTgN2ctw5Jz/Qc75oZzziwH8ZQBfN4esnox8\nEoD3q9/vRlsbss8cAEBK6fkppRtTSjfef//9T+iEPu1Zz8BzPu4cAMw9YFpoqCvEDyk2abIeFBIp\nHsRoY5YMq6dUwGogTGir8xezMRBD+1JsFaye4ro1FCbef1m0lBZpuAllRP3K8dF94ZtwjoqJC0Kx\nNQo626oiBZ1tpSu7TX6/E2LoiBw3nWiNl61DWCjnKMfTIaZi5IIWIsb7PkJZejsG6p5U3CwRILJb\nIwLTQkTxNApZ2MJA3wCN6jiMOHSaLj+3hoNw1pEZH2Luq6yXno9j73XOuUnTneaOFmW7qFz3pPLr\nNUzCSd/ReH1npW+bRkfrrnPqNeo1c5JN5T4S9IZwuhWJDnnLuaxX1QDd/L6P4LW3fRCnIbsKAENO\nIaX053LONz/1p/TEJOf8EgAvAYDrr7/+CQX9fvFbv6D8vOpsiEnHGjWUPFCGwGQ9rBSZXrKqbEEP\nIHHXlsjbjDZ11HIfVYlmVKNkKtA7PV/BbfUS6dRE+b+S3Vbh786qqtdsQxVwFYruYaSRiM626kWB\nawOhQk8cvzdKbn6OpleV8srZm9Zhm5qCPJo0Xbk2FykkW69RkEVSKCs4zpC5dYm6dwqhyFyNssw1\nKOJXz9fK1SPHLffhK9EJxdV7Wp9bhCwqsuyc9dUgDp1tZxyQ+TiaHwg8fw9xrHrtgDAPWJ2unPU1\nt6nvenwgwzQdb8rCLP3i+nbNaz3CG7yZ5Bs97tV9UEj90HFwT1p2ZVX92yP+lgH8xSfx3ffA8iSf\nPI8dd86JiOE49INadbg4501vh4xza51tpbMkNCStpJnmDeQYuudVyZ4aLGehi5i0oRHQOAz0sqis\nKk8R2GKoFj5vdWigt4pdvxTa47xgPMia3RJzInV8zJX4LeMKTZneVk5dBu+nXdFUVRyj8iCZQ9GI\nQ47HNQ18DRHiMDsAdglXtmo81XG9x4VGFn5LkzYkxQkBmhPRqaZm4ycvHbfT3IefQGC9b98QmBDW\nfN/C0FbOOOel6Q4+QplQnIzXdSEGKCVG5TqNtkXrE89YnS6dGq57WHnV+NtBh7ZmQzC/O9rQyLjX\ndYFrTsy4ys46v9Ycqsd98Pi8wE5YdhUAftEJfvebATwvpfRpmIzB1wD4X2nOLwD4lpTSTwH4PAAP\n55zvPcFzKrJeEcehQlVb9aCecW66hfzAa0jKbvCkQ1iALM5a9xGS4+plEUOjF4kOSfHLYuK3oiwH\n7a3V9EebRusjDo+8PCrEYDzI4pXb0JYcQ3uWLqmplGKEOLZjLr2ceYe+XUVytf6Cj1+Px3uOT/Nt\n00JNjrs1LTo8lzUqgxvC8pCFNn7jqHteQV1b231XxrmhpNwjzxiPdO/kfybN67ifPaXXRe1IawsD\nQ46D7sV2nGqdNBfXPM/O5w0NWhsycqffnRoiNVyJk3xhQtKDzbbS16w7VwOWm9iMPoLYDiNWs35Z\n0zul0/114eHqKkEcAICU0nUA/hGAT805Pz+l9DwAn5Fz/qUn+sU5521K6VsAvBZAD+ClOefbUkov\nmP/+Ykw1I38VwB0ALgL4+if6fccVTXZvthUCRmlx7BEcqAdbM5g0VFUIQnsibojJpuPqkMSU7NZ6\nhFbROF7TaOO98v9mtJXmMq69JtPtVHlNu8lR1RIi1+/VCt8gEUXwcmM/me9lz8iWqHI/hRy3leZV\nAfKmRvI5TbLXVFMbqqrn6pPdelyHpHTdxzQfZdyQ7Aqh1OdZx3RISocwTUKACsOUAkDNZVAhoQ6R\nmvUi6y6p56lQk3E0tDJT43WnRx+JDgqVcysSPR+YFL4JeRbOwqJpy3HM42QgOkGWHdVAqZCUvheb\nwaKv9ZwlWbY8EMQxc5zaCZTP1Z532c5XjqbWO3IubZZnLlzp1RKqEvlRTNlUnz//fg+AnwHwhA0H\nAOScX4PJOOixF6ufM4BvfjLf8UTFGoixZE/pvGkNDTWXoS3/qpsarAmnoBcCILBXp/XWxa/JcV2U\npMdLyxGCybX61XIZuoWIVhDy90GT5l37AhvE0Sdc2Q7NeJglY7KnWsQh5DUriJG9YycMw2EVMRya\nHJ8MhOYBqgLSVdQAyiZVHHowNSdZG0u1/ekRISzhgZpKc3V8N31X3aOq8P0GjuaaR2sUTahKQl49\nh7yqQZE9wXWarkFHQ+toTKFHZfy04zDWMK/lyhTH5SKO0ayjae5oDEqUdms5Di99tzY5XPedKeiL\nOJE2zGsRh8mG0iFVRY4/fqXux1OypPqAW+11wXANYWmu9DRDVfuap0/POf8bABsAyDlfRG14eE2K\nbless6TWXfK75nZ2hy79wGWubFbP4yaP20kFlH06pnG7OAtnMVCoqq8Kghd536WCdOTc5XOeN6U5\nC9nTXI4jx96MflaVhucmC2ewyrVc8+iNj0ZZVgVhwzC6LsNuKYtyfMMDaO9bHUdfm1aigK3L0HUc\nXVcrrnUWFu/0Vw0ByrmE5Hhu0ZfwMV1CcQIAygxLFomY7CkdqlIhL0OOZ7su5JyY45D1Io5GRJpH\n6btynE4hWnZAhLi2hqYihek4VUnLuBu2VYZANydsDI16d/RxeJ1O86vDJ2Fne49SCakBMBEHs1dO\nMYqdMRA241FHLjpzPOFj5JpOWvY1HIcppQuYI8cppU8HcOXEzuoqEOYy9H4cZmOWvn3gnCUB1NDQ\nuqMHPr+QqwaJ1JCUVpaT97Ij1VCFGDYmrluN36CIP1u4Z8l0GY8UgTe+Tx0H74YHzJ6/Yzgkri+I\nyVY5t0qxzQyq5Hj1vlFqV9jQyP9Djkhzrdhh5sv3eJlEuo5DG5SGHM9TokB0LzhVGmiz7aJqea0U\nveysUSldvgY2ooIsGLnqcNuWrs2uC+V0eQjVPH9bkCpz7XyNCKa0bsNljNkgV43KB6XYqzOmQk+m\nxkr3sKpIZQpV1VDY9LnOfK910hSX4WRVyQZy8v013d+m9U7nOhq9c9Kyb6jqewDcAOBTUko/AeAv\nAPi7J3VSV4NwUzHvATJprquxdSuSaWwKPUnISxsI63HoRTt9b0oaVqu6jz4hz8BvM3Koqn1Z1koR\n6Ji1RiKuN8WKoK+KwCKIdj57kKIUvRBDUQSJFMfcToNDFbqmoe+t911CVUyOq8JAoIaetMdZznXM\nJhQGxE0LOzYohjR3QlJ0T5vwXKbUZPU8TTfdVK9Zk+NaifK+HtM4jDLT3vTIiGO+Ng+JMM8kfw+z\nrXR2nlkXso5GXHdQe6HJXA6FATXzkO+dZCoy96Gf80plVU1GtB5Dd7s1dSLqOI1z1SVrUJSR0xXo\nkiloQt5kFG3rks4cR+7RgeiRvhq/jbp3Jy07vyVNbNrtAP4GgD+PKUT1D3POHz7hcztTEQQh7Sjc\nrIfRkuOay6iL1j7YFSGOjSx+QhyCIHSB4TRft0HoioIcaNyH1fWcjLdOLzy/FMxZ7EIivVn8tupa\n5nLsG6hZTL3yXIGKsrSSno7tF7Hp3j06VDWae4HyHYYcN/UXdv8OuQarpFvlN4xqPPmJApx225Hy\nKyEpHpd75BgUw/eo8Jx+zm5/LuIyts616fAPG9eWNKfsKZnfx1lSEUIt1+YagnHHfJu+q8luk5o+\nVOQo3RhSmkNVhey23XH1FgnT/938jlfDJH/3nDcOedteVdUZWysDUcLCSi8cFD1ik2xOWnYajpxz\nTim9Juf8ZwD88imc01Uh6znrocYm5welPYWt3WgFaCHjulMPdrBNy8r80eE+5kwM5j6YsB0dTkSy\nZ4oXNNrFXGLWAxuIjkJb9VwvbYamclj3mNJIpMmSUYpD5rInasdtGEYyiXi+Jop11ouMybiOibuG\nYGyJX8l68hCH5gHcZoZRCCtbhW9IcDKKcm3a0AA19KS76co1m5CUukfu5lXDWPkeMhDjyOvChqR0\n2G6rSHZ9nJo9FfWqGs26M7UO5FBIhmEUtmvQ/UwUN+uLyW5VJ5TpOUuGYU3HrR0FpnVK4d8+GUem\neaccgyKkec5VH6y7VAoJbQeK2tuOWyNNY6PJtjpp2fdbbk4pfc6JnslVJrLTn1j/UiGuIONm1KEq\nHWvUoS27+PVCAKoXVLgPell0dkYZ19lWTs65NkKG+1Dejs70sK0fRseg2JCEz3GM7riXXisvPGcM\nDfM5yQtqveyx8b51KMEYDgqfFMQRKj+bpit/Z2J5+p94Ayeu35DjOrSlrsHbSbCQ2mM283XYzmSe\neVxGOiIduyAONA5CRRB0zTNnxUZ0chC843RFGRtHo+E4fOTK1ywKWfMDQG0VEpHmPTlj1lnyO07X\n0JDNkhJ+LXpHVvM7taF3rcynNN1V0S+c1lsjF9rR1L3tbLaVzQC7KgoAlXwegL+dUroLwOOYwlU5\n5/xZJ3ZmZyzS5FD6UulWAdv5pTDkuIK9OvSk6zUOh4wLB+wp5KZyFEBZtJp8k+Po3HLxrW17hLr4\nOaUQqCGDslFUb1/gSnaSQeHjdD4JagjhsY3fy3es1/X4QPWadeUwUMMwfBwTnknWcIjoFiUczgEU\nsigGRaVRjo6h6Ww4T/Mx+pq1IahIhFuOYB63mWdyjzRC0WE7L/OsMZZOcSP3qmoSAig816tr4D1R\nAHFMxuYeyb2Qx8BZUnJeGk3pdcTOklyD7Oths6F8jsNNIBgtaa5RvIBU/S7od8c2G/SctM4aII0s\nnPkHfYfDrZ7fGgLetmHMNdxaj6OMn0IoJy37Go6/cqJncRXKqp+aGZZW6CtrCK5spxdGcxzATHaP\ntnBnGpesqhY+2+6YYmgCAll5FpMHNJ2vZG3puX3HWVLKoAQIgkNhchyLUDSyCEISJgXVvsCy+Buy\nczZOkVJsuJLZ0KQEs+WrMRwdhxhaJWfGVeiJM5KAWjnukuaCICgkZZslynnBjJ9b2WuW7CZGaxJ6\n0plN5h4lm6bL5LhOx5VQFSv2JlEgMceBci80Elmpe6STLzSy8ByNFd+j4ixZR6MNeY42TZcyDJuQ\n1zga0lw7MrJGmndh4LBtsu19VKjq8sYnxy0SsZlk1TG17/9h4SzI0RzHZkdSQEc6rhLDMe+b8dqc\n8588hfO5akT2BBYCix/UpcPB/F5CVWM2UHJtPALFWawsgqgGpRogjzTnFMTSgVMrdvXd2zGuy9Cw\nHdBetv/Cc7ZVizgq95Fz9VLrC2+5Bh+J6HoQhRTUfLNPx6izsOp8EQkxSBiGDYTUZRRyXIeqlNLV\nYbLD7dhwJfuQ4CYkZbKw4JLgtg07XbMznwsPy7iuXRHDpIohm7RbRiJ9opTlqvzG3KbvrvheB4iD\nDdaUbdcqfAnbsAMia7JdR2NjmACUd0S3/ZDxLpFTJKEkeqcK4mhCUh22w1YV59b3VqNBjSy2Jt3X\n6pfLm0m/HPTtNegQeYtQZgt4wrLTPOWcBwDvSil96imcz1UjEpJijkMe7MWNGA7r7Wy2QoLb+aLA\nK2mukYgXqsouab4V8l1B0r5LpreVMQQOUpBxr6DLRxx28fscR5z+6GVVechiO+Smb5M5DqfpjkQg\nK34gDMOwIUjWQHDhnla65d5FSlGR4F0wzqGncTai8r4zCc48kJDmuh6kXHOARNwtZQfv2jrTTbdB\nHOWaUc7JXV8RUZyY+3KSIAaP4+BkCstl6JBqOc7YFuEOo814lDoeL8NQdugbGCkEGYlS0Mcp7tIm\nfTM483Uxbxmf9cvsmK7IQEjnCE6akTDZVYM4Zvl4ALellN6EieMAAOSc/+cTOaurQNZz+tvljUUW\n8qAuHW5pvMLhw6HNtppCWDZmqcc/Zt7HuxB/RJpzDrlOu6sFfX5lL6dRMoLgNNpmfueHHiQbppKg\nvnfMRO6kVEbDDwDVC9bHB6pyLQVmutBvaMnRIefS5FAbFe0dR8Q/E7YDKcteEAoZIM1ZaC/Y7jXi\nJApE9y5bI9p4zb2dL6iJ7/VAz19CMl64re/mBIWgGJIziSRRpJmfiAdSz1OjLy/bbutcm5DLTHZH\n2Vay5r3x9t3pZqdkOh/p5dXzO2LQukYQikzXKL7JYGwjFzmj0S/yPRdn/VI5zun/w8GGyE1Sjsry\nPGnZ13B894mexVUo9QEO5vfII+C6DJ2dAcwxS0N2z/NH2yqAM0Bq22brcfSEOAwBZ5RfS9j1wnE0\nsNoeZ02Lv0EcTKY3nuJ4pEHpe//F9jzO7ahCUuoeRYhDRHdg3SqlaKqfHSXXERLRIanJu0f5ffpc\nTevMuT0+YJGIaemeHYMiSESdD+DUceiCvrE9Pve20nuNiDetDW/YfkUhFG10L22CAsCsEYpdL42j\nkWhd7EAcPa0vdt6ENG95xtF/d4bRJA4AtXttm21lW4uYa3OzqjqfHxQHdGP1ixgCCYWXnUc7P0Ru\nkMh4lVWO55x/K6X0HACSkvumnPN9J3daZy/NA6QH9fgVjkFO41e2I8bcIhRR+OuVt5hVFpZKNdSk\nuYHVFMuUDpzifSWltDyksO5siiAjkYbj6JLxpjhmXRRE4yn6hVsNEmlCDDbDSDKAQgPEiGPMpZFa\n9fzbnf7KNWS4ytJL35W02zZ99wil69RraKTgpSaPc5prM39kA4RybH2PNELRva0AMX4o7d51K3nP\nQZBr072tyrWNPoobhuBeuMcnxEFJE5xJpkNS054V9jjSHVevazn+MNp3R4xZp97ZMu4YCEYiZmMm\nHZ7T5LjDlaxDQ0AGhQqGL1GI3JDpw+ml4+5lnlJKXw3gTQC+CsBXA/j9lNJXnuSJnbXIA7jYhKTk\nAdL4yi4EnaYH1KIkbi2is6Ts+BTOkZcEEC/Iwnn5TE1BtPN1T6q1eiFNw7cgtBVl2/BLcbQiGF2D\nsnWUKHMf1dDAhh7YQy3xfqjvZW+3Mwq/yTxzkMjgHEe61zbkeAcyKBUpuHUcITcxz80TqqlkfR2P\nEgK0MdaIQytjOTdjROn5D861mXRcCtswac7hP8txjI2jobPtPIUfORot92ENijeu15H8TRCBHpfa\nlQbF0z0yztWgN2WrhsCS6b4h4LT7i4fWQAjyeLyEsCzKktTeqy0d97sAfI6gjJTSswH8GoBXntSJ\nnbWIIeAHGIaqOmtQDsjQtPUdlstoCwPt4pe/Sb2GXiBa4a/M4pcXta3XmFIHj/YImePgGPekgKDa\ntltPkRU7hx48pOCFZ7aEOFhZyrjOnkoJ8796LKMUlTKT7zX3QqqinQwjlxynEFanjFklx22XXaDu\nCd6EpGYjVI195Xt03y42KDqkVu5prr2t5Jy146ANr1ev0QfKUsJ5TJq3aM2ul4G+V2fbeVlVNZOQ\n+MTiRBFCEYPijOtUeUDI7oyMTCi+ouwutZlnTfZU35V3XD4//Z12BiSHsugXSvdnJNJkc65onJDI\nScu+5qmj0NQDx/js01LkhRULzw/q4iGFqhqDYg1NkyWlYLjJkiihKglJOVzGMLoGRb8s03f73Efr\nTWmOw0tB7Ezu+rqzykk2pGk5DouCOkIK9fgw85smh4REdHim8RSVgTD3qIvTcYcRPiHszC/1HVEh\noVeBPmpyXM5zvgbmLBRSGJSytJ1/x8bQsLfe8EbJOhSy94m+n0LwVuNaz9UYAsU1WUfD58r6cny7\nXrzQk8dxxIjDonLTS2po07pLz7MGcYwhEtmMdle9khBAGYna0Ezj1ejacJ41EIUc73z9woZD9vCo\nWVi+oTlp2Rdx3JBSei2AV8y//y3QBkzXmkhzsYtXLMfBD4oXAj9wTRTrZmY1/3pCBLJwps12tDel\nvaDaBmXlGJQNGZTiWVLoSTgOXvwyv4w3cLv1voGJ1zHjir/JWSkUygzj+VKsuDeXQbUL8hnpjtuR\nsvQQx6rcC4fLyHo7VmVQvFCVFAbSuFHseY9mhoQUSpquNpbZqfsY/ToONij1XrSFoWxEdS2CJngZ\ncXBISvbXYIQq53yFHA2dbRfWZQz+VsNuWvd8TmXTrK42LfRQ/DBmZHW95ZrH0ewwKMfSiEOHDHVd\nhlbsGvXrjEegdTTr+LZ8Xv8fGRSOgJy0HGk4Ukp/AsBzcs7/JKX0NwB8wfynNwL4iZM+ubOUUTPz\nkQAAIABJREFUXZa/hZhMdlnEcWUz2mZmOgVxYM6iq00OzWKuip25DE7TnOb7OediIDZkUEIDQd43\noybZBZARR0EiCrkALcdRFQEIiZDhUCSuGXeMZZdgxiUdl1uGi4FovOkGQVRlOR6BUDzyHUAxNk0d\nhxg/Gud4vEYiXt1Hk9YbjMtnJAtr+h3lmnVrGbnPXQdjFC3H1ZLmklXFWVi8Xvq+KnZgCucaR2Mn\n4qCMRJk/h3OvI6QgBsWEquYMwz63vGHlDey7KcfpUn1esnOfl46rnbeCLIJQuLRLZ73TcBykXy6R\noTlp2WWe/h2ARwAg5/xzOed/lHP+RwBeNf/tmpVqIHY8KKV0p/kWiURpd01WlQOTvewpjxyviIMM\njWSAzMdPKsTgE3xdaCCsAbJx9xZx+EhEK4JRh2HK+Gji9Ls4EZ/UrHUWNvRgw3NVwbabHQEOJ8Ik\nOCOLztZ3uKgpSLvlNuxANXIeZ+GhsoIs1PmkVJEOh2GkNqZLMFl4GmVx9TNzIhKGEV6n1NmQQeFz\nbUKbPY07adrbMRsS396LFtFuRwd9UwhLzmEYfQOxGW1ab51vuRX5bjm+PhfZ14d5xsKJUvINIxGu\n14giIDz/pGXXtzwn5/x2HpzHnnsiZ3SViDwQsfA1xCTjNs+aDUoESV3SnBeh8vBZKQ5jWzmu4TAb\nFO4gKuekFYH1jtotZZkEbz3ItqXJND40xwFUSMKr48jepkb2GuRSmB8o10AhL/mMKMvp9/p8NAmu\nmxPqNhvMD3F4RjxaPr7mdXT4rK3jqOcv4/uF7eq9G8lA6KaFbtgut9lWGnFYHsjbJbHWTOhxLpKL\n1kvraAx0HOsgsKHZSpjXMSicKKLDbWvnHdmS01VS1gc/zMc8oxjRDSOLvjp1ctzpGo6OaDCCiOvH\n5nHKzjpp2WU4nnnE3y48lSdytcmaLfyKLD+n6ZKBOMdZEoQ4So+p0bYokWNuqNJcPrsZfYPCue5y\nHDEQ7DXxpjbyv1UENmTApGZ54Td+VpWMxw352vHt0PIAUrgnv5siNte4ojEoFU3VewCg7BXuNvzL\nXtjOb8/epYSca/hHz5drMOMKWTBSKONR7YopeqzzWclJ40X2pgsqG9tsq+keURaerAsieJvaFUIi\nNeTlGwg2KJc3bZPO6d5J7ynmDY9OCODQk2cI9DvSoHipveJ3x01999/z0jW3IJGjkcKaHNM2Kcc3\nKKdNju/6lhtTSt/IgymlvwfgppM5patDShZDgDgaElzGmxYl0/+XNy15pTM3mqKkofWapCe/zsKS\nY/K+HoB4U5ZYlHHT4VM8f+I4OC2SSc2Q4xDSfIhDDxpZ7IplM+Io1yAGgrxsz6CUDZgkHq+8Wt1O\no+MwTFQ53iCUauRknv6cNMv0DIEJ26lKcIuy5vFdabfGWKqQVOM1O2itkN0wx2YSXNeW2Kwqe04b\nJsFlHW34Xsj6IsTR23vH66IofEZfxYlqOQ4OPZV3hHlDFWLiBBUJYdlQFb3nXVLHaUOkrBdCQ9AJ\nx+Hrnb6bkmnYkT1p2ZVV9W0AXpVS+tuohuJ6AAcA/peTPLGzlpr+5lv+Ujm+Otryc++ZA1qEV7YT\nad4SdnNIamUX+eAs/nWfcGUztl5WV+OxbJhsW/XOzI9IcFnku7gMUV6sICp5yaEna1CqZ9nVcfaa\nxUA4WVXDCOTkxPUd7qPrfL6nT7BKVHn4o6NcS/x+aDvOAjXM19RxlMpxOZ/pf04I0FzG6CCOYnR7\ne4/qPVXXnPxsq1WfcGWrs6EqahKko5+LbHbUrJcg2644GlQMJ9d+JUAc7XHqutBdc4XXka4Ia1oX\nPiqXzrzk1CknakXzN9vWMdHZlrLlAVDfdzYQcszQAS1lAFa/PO4YiFXfNdlZJy1HGo6c84cAfH5K\n6YsA/Ol5+Jdzzr9x4md2xhJxHGGoSuZfOTqExaEnrjSXYxWYzIvWQSJT3H1wUg1rDrnLcRRlpo9T\nq18jA8HEf4tErAfJioA9SK4QjpQoe9Mu4ugmg5K7FBgIkJctBLL8XhWyVpa1/oLSbuVcxcsuyKKe\njzuukUVu03HLvhvsTR+ByrZ0j/QmVd7z97OtvGyoroS89HcK99WS5vNz3rKBYIdC7tH0wyGHc4Lk\nC9PPjRBBQRbOmq+GwDpj2yEjJad4drAdrYGaEr+ld1M+e2kzWK6EuQlVMKjHGxJ8RwGgvuaDvmta\nI5207Nur6nUAXvdUfWlK6RMA/BdMBPudAL465/wRZ96dAB4FMADY5pyvf6rOYZcwx8EtQR5vPIX5\nwW4sEpG6jHociywubtoHrkNPDIdL6xK9mDtNjlt4vikZI/yyjAWJlGyr4IWvBsIu2hp62IVELIKQ\n47i1COpcm3YavVWKJSTFBiUDuQlhtd66nJuEi6bjyvygtUhv27PrJoeAgyzIoDStRUabpts0cPS4\nDzdUhebaalqsvUd633R/vkVNxYg64Ta3uj7x84f5ew3bWc6CQ1WlTojCP726pw0SVSjb5TickNTj\n2y26lHBurd+pmsrepMoLcqFxYFLsHNoC2tYipRfexnIWbFB4O4fHHQOx7tOpI47TMU+tfAeAX885\nPw/Ar8+/R/JFOefPPk2jAVhoeNB3Rbm2WQ9Hk13ADCWdlgDrPtUsLHqBa5PDdvwoIo+PM3EZgVfm\nhCqAOCTF5GWTVUWG5rBRHDDjjFDYC5ZTq3nz7TV4XIZvUKqnaA1HEIYJUpaP2hnQXjN73/58Dp9Z\nLqMqz13puBGv4yELCduNznxJRGjWkUZlGnGMQEuai4GQdUTjDfdhkUi8vqwzxhwHIArfOiDyHVvH\noMj4hubr/m+aK5n26ZidLspsBCYDYZw61cOuS4pb20GOc0TjYOXrnelY3alzHGdlOL4CwH+ef/7P\nAP76GZ1HKGLRH7+ytcq+Y46jo3HbhGz6W8LlIFTlVXyWnlSq0lzGa6ohw2ep+7DzuW07YElwLjAE\ndpPguzgOHteEM+AoV8Vx6P0VTPZUbj1LjzQXJcfet2RPTQQyzHGi0JNXAFjmEzneorXWO/bu0XZs\n27ADwkGMDeIQI9eitTaTTBP5HMLi9i5yziXkpe9dCWG1z81rUdLUZexYR7vTdCXLy6L1Q+pMMM2R\nym6vtUicpss1UzXkNVK4uHMTTnTbc6svqoHgdkAyX9+zNu3WIhTROxyqemzWO+dW17bheE7O+d75\n5w8CeE4wLwP4tZTSTSml5x91wJTS81NKN6aUbrz//vuf9AnqkNTBSnsQ1iOQBypeEIeqps90uLhp\nPYJ119X5zksxZpBin8jIQ1rkETyX8Ta0JSmInG1lQ09tSIqQBSmCqI6D2680LSf6qizHsW0VIt1x\nm8ygoQ23lMZ7Hq/jZmd1bg8rNigaEeSMukteRI6Two/IcW7bzf28WLnWynGLyvxrqzyQJc3hZluJ\nQdHb+sp36/Raru/hnmclOWJH+rZGENN84gHK/LZGoe9Sw5XIHAlh2XdEIRE3NZ0RR1d6WEWdqD20\nHnEc03hraC5S9lTcscLXO/K3ajh6nIbs26vq2JJS+jUAf8z503fpX3LOOaV5w99WviDnfE9K6Y8C\n+NWU0u0559d7E3POLwHwEgC4/vrro+PtLbpd8TMvrMt4W9lpvRE3VNUF40eQ4yUsRONloyhGFoPX\noqSr3XRdg5IbLwtwQk+MIChm3aZX+goi8iA18asLugDxmoNYtoc4Zo8THVwvW2dtTceHH5JSYR45\nD/13RhDVQPh1HM34jjTdqXK8RSKcypxSqllSGY7hGBvSXLeiYQMxOkhE6kG4nUpFWT6CCOt+omyr\naB2RowFgzgBr0XpxosjRWPe1eJaPMxm+1kBsxmx255yO0ynD5BgIRhyz03mZDIduObLqkkGQKbX7\nAMn4446+WPVd0RcHp4Q4Tsxw5Jy/OPpbSulDKaVPzDnfm1L6RADuplA553vm/+9LKb0KwOcCcA3H\nUy0HzqKYfq6LOSX7oq77DhevOMhCGQiDRBTEZEPz8KWN+T7AvhQNZ3EE3N6otu0yPl2D9Y4qlzGY\na9Pj+lyjF1tvagU4SIQ8SE0gj6T8CpfBCl8pdv1CSqsQfX5ynHHM81azqPO7Gs5JiTc7ius1GFlw\nSKpzrk3PqwaIW5oI4rDddE2zRAd9CandGI7ckual6DHTcVSleU/rSCMODp9Fxi9CHFFrkSbbjrPz\n6JyYc5PPFAdkD45D3p32ODos3DpvXigMmJCFVt4HBSkQ9yHzD7cNob3uu3KP5H1OKWGtsqc8owVc\n+6GqXwDwdfPPXwfg53lCSukZKaWPlZ8BfAmAW0/rBPXD1A9jeoDT39aKNJfPcAFgGad0vGm8a5oi\nynxW0jJ/M3oV5Z16KZxxRha98oIcxHF5M7jEXxNiIoPSKg5LjnJ31MhDZT5mdAyENhwe8csKovSe\nyi2vw9XbfHwgVvgt4ogMhG9QOIHAkOPKWBqDkgkRpFpbYlBWCuo15rAdh6R0yNO7F7LPScTr8DVf\noXE2BG22na1YbxGtNgSd+470XSoOiGcgGieqr6nJK3LeJMzrZTZyKCwKSWkkYpHxjDiITAfQ1J+I\nHPRdrePoWuMEXPuG4/sB/OWU0h8C+OL5d6SU/nhKSdq1PwfAG1JKb8O0++Av55xvOK0TjCw6UBc6\n50yv+2kDev7bugs8hS417dlljkearzuf4JN0XL3D4HTMuk+H5x1d3rQGSMaP5D6CF343EvHHpXCL\n0zSB6gU31e9JKTnjTasd3Yzyq0pUHb54ol5Gkm4twnUWUV1G42XvXd9h711V+PP5zKcm2VYdP2eX\nm1D1GgE53vJJXsqy4tAcpcbIkh2H2vwQ9h6xoSEkWtbptuU4JsRhHRb5rsigCIJgVL4ZJMXdIgtg\ndqLIQEgtlcdxXCZOtKbXbi1XOs/P2dEjqr2RdkzXfSr6RacOax3xtOc4jpKc8wMA/pIz/gEAf3X+\n+T0A/uwpn1oRvVg4brjuEy5t7BzAegrrlV1UohQPaLzs3KUXW6fGyUupnIX1vmSLWOYyxjwp5I9V\ncVqNFPhlBKYX1UMiuxTEcWPWbMxqPUgZDpGFKHzdrkOOsxlGYOTjV3JcG+nqrfuEsNeGHahedmmW\n2BOyaMI5bZddPV9ud7Qtrs4wGynDTMJtnOygq+JlX275LiHHPe7La+znFWFy6Kk+/86Mt44GJ1/4\nCEUcCl5H8tkrFM6ZvsMPYUm9RtsqxN+PQ9bUpc0ATseVa/jY8y332SKO6efHrgz4uPOWK9HnoIW3\nXhCxIbDWCAHWoJyknBXiuOrFhqTIQFBRjsgqQCleloX8LHFjTvm75IWquoTL8rJw3NUpANReExOC\nMs4KApheVM+zZA8vzJJij5MUChsaYFKoHuKoNQTtBjxj4AXH9R2i/GCPH6Sgjtkjtae/s1IsXEaE\nOIK2LKx0dbW8nHe5tiQZZi2XUch0M94WDMr9jdJxo82xPD4pQpayBHdyHNE6ojUfGwgb8pKfvb5w\nsi64G8Oq6wrisHylrHlKx11pg9LOZ6fuIEAcXjirfiaZ7+J5B31HxL9vUE5SFsNxhJSQVPAAm9ik\n46UDdgGwIfDm9F1qCET5OXopJEvKvtg1lMTxW8AJVRnE0Y6HIamNfeGjvHwOVbCH741HRWx6i1j2\ngqM9KLgyvRx/8MMzgFPxLdl2hbPg+dSihI4TkuNsdGm+fBdnW8kcX7F3rtHVYbvGuHp7nKRqXF1H\no6nvkdCmbyAuh0i0JcH70EBUZNEYlGB9HQaGKQphTefqo+/Hr/ghKT4fnV57QO84z+Fj6XUKVKPA\nqEKn7GqDcpKyGI4jhDtWlvE53BQZlCY26Xj708++EfFaFkxzOndT+tIGgYg/brzG38UhqV692B5B\nJy+w/KlpRdIogiBU4ZKdKQxh7WoNviIl5zVFLPUdY5tJFB0faPcgafdZt4hjZx0HIY7GoDASaVKT\n///2rjRIsqpKfyez9uqN3umNhu6GhoZma1q72ZpVaEUEEcUVN9QZRUOdkWVG0XDCbYIwxiVGGAl3\nDWccBAVFUEdH3FCHpRFRwEFWQRwUUKprOfPj3Zt577n3ZL7srqqsyjpfREW9PO/me/e9fO9+96w3\n9n34Y2Y1C0pL1fs+58x2NY0jQxBaIAJQ/M7VSlq6pr7SX54gZH6PFiWVn2hUAt+HeI6G8wQkS577\nvjWqdisnXWF58x7t/W1gYfAgomRtnno7N74olg7px/DtJ8u/ARhxNIQnhoEe8UMpzvF69idl5fI7\nuZlJeHwgnTV551jONzE0kiYGAo4gMmG3Q8NxyGKNCIZHRR2e+PjJAJHMLCu144Tn812WYZe+jTyO\nlw+7DOFcAqCsGaTb6eulx2XUlo8YamS/Dxd4AkIiiNsnGeI1QmmcDxLWhYqOk4v0yoTR5ggldHZr\nWlxFEFC2EnFwL0KyDxP9pObi5YA+oVA1jkSzSE2b4fMiyazmHBfRUzl5PRk2X7SwaJO+p0/JfA2F\nIEKfpj5e5Cegfd1i3OnyBKFMWCcpogow4mgI/4P0yx/Q/7CSUPwMQvlh5bY2M4k0DkUdlg4+wNtX\n04dfFl4LfRxx+0pNHsfA1+W5aCs586tW4wEijEWPneDxsXK+j8hsJ2fBPnehVGRQ3a6vDbpScwGK\nwVJqLkDO9IRIXtc4Ynli71c0DukTia5N8+vkcl0y/huviWRDk2uRaulEY2cmeS53jzRTpRZ2HZpO\nw+P6NjkfR3eVAs0lvhfacXJyf0/TsuqN37WdI2PCVBX3rX7ekEQEcfjrV4ijV4w7PTVCidt7TWOy\nQnEBI46G8A9Df09XVt4nCUKUDai1V+yZucFctsnlUyTbIlu8fsy6up1rI4lAmh6k/OmR0aw2NCRe\nSG3g8NuajyPn16kGpgotATAZXLP2+Hq5jjwBpeU3gEJTkJoOkHFqSxOWN88IIkhMVbL4odREJCly\nPs9Chu+G9yi95opqtmukcQwJ06amcdTvUTzDlyZP/3zWfV+ZsNuAIDQfh/QXaBOQnH8wp6FLuW4x\nUKwEoVzxbwJ1IpEDvj+flA+4cUiapGa7aC1pGZlIGHE0QDONo1/8UDWi6ZZyZfCPknia+zs0DUV7\n4GX4opQ/PZKuhgZ4TSRv2pJmoeI4SgLgcN70IAddv50jCM1pHtUeUmblVUGWtZBVMegyw1VHjWfl\ngDPP5ExYo3I2Xam1L74f34uyiYGJc1xoOyOZyLOCUNIih6FfR+a0aITi+ySd4/7acrb8IRG1F5qk\nwoRBzVQlfV+ybI7m48hFHsZO8/xz1J255qK9QiIZc25y/Oi9zr+PCUFUFJOUoll4YpDO8Vm9BXEM\n9k5edoURRwP4HyrxcSgEof3goRNMZprnt/MPc7k2zX0o/gVMcheEL0O2f1oUcNN8HEkynHghtegZ\nGccPFIOO5jSvm1VS4pDObj+Ijon8jlAjiGbfQfRU3t4vNQW49nGUVM3er/o+NFNVWjYlJt2auJYh\nLsnSBxDI8ul+rfA0AbD4P5QkgDbRLEbHkvMW90i7d419H3pUVfo7S3kRVZXTXBSNQJmY5XyCUt6r\nmqryE8LEVKVZLrxcjC+eICQBzXIaR/hbTjSMOBrAE4PULFTnlapx+AckfxwgVj9V01Y0C8rPmnIz\nyGI7T0DxbK3Y1sMu8wOBNA3UEreUjF8tX0MWy6vLldm3EqabS1arlaTPJMkBGYLQCEXWpFKioSSJ\npiYpRO2lXPpE/HY2uz4kS0H4uUquzTSOoUyeCOB//7wmqvk4coOu5vuQ63X77Wweh2K29RpkIVfe\nnRLmKW1b1pqrbYeEEi4IpZBUuE/VOMR4MdDrxqPuvKlqtyu7tgAjjgbwD7rUOPzMQfvBpVOrppJK\n01bw0PZFJQSUWVATh13YB3l87Zg5XwaQ95sUoYnpS/e0GzgibaqSj3qpVipq9FQ22op0QvH5GvI6\nteKHhUM4f807R8ays++dowrRKLPmdKW/WK7md0iiUaKq6ppOTVxcWyaMtkhizAQKUECi1cw1qxOE\nvO8ruUc1jVMvognUn9X6RCPNswiJQJsgyQWYctua1iArMGTbtxjQEo4LkX9E1Sw0E1YsH3Q+jjBj\nHahrIpMJI44G8Iv1zB/sieRzXZn15AdXfSLKA6JoHOEDGRGKSgTN5bJSaLa98qLJSqmyjXSa+n1D\nGSIIZ5CJj2NYM201DtOVIaJZx28F0CrIAm6wzDh+d0rzjDQxCZNUUm49yRCvxMdRCCjrB9Ky60Nt\nKhNhlmoc+RpW9YW28hUFknsU/P65Zyq5d8IkFexClXSTVO24JbRpdfBv8d3RtZW86UmrUBv7MZUJ\npYye6qKs3DvH5UTWj0fh/ZxoGHE0gP/h5vTHDO9VQ8n8g+4HTQnCPQhK4k53ldSHvFeZvfRqNtsS\ns6/YkdcqMaWzrzGx4JTfpzvBlYV5lHUXmjvTw/PW1wTPRhKNprNywJlnMv6nnULuSW14dCwpww40\n10RkSXLpHCeSBR/jgbqmfYlBtwhBzvsB0sizMBw3JKbifyOTpKataaYqzcchNdTw99RMUqp2XGKQ\n1/0a1FQevoOaCStqHxBHpUK1z2H9uvD7kiD8uyRN5IPOVCWzww9duQf2WTiINx2/FpOFthQ5nC54\nzVF74+5HnsTG5XMjuR9swqJlQJ1gkhlENe8rkRnVNXmocSizl95SmoiiVivtq0p7fdaXP47cJ4+l\nObs1X4amoeRm3xVnwuKMeQZAWp8pmB33B/e0mcYx1CTaSiYMJiVKFOe4387di+geVeNrbpzrkiFR\nzqzrEYRvywrF/l5oJqw5fRkyHh6rTbLCvg2NjGZzGobEcX1f5feLvjYnFH27jFk4TwSaxhH2QYbL\n9nVXMTQyllgi/Heks9sTxBwxMfUahw/t9pg70I3vvH0bJhNGHA1wzL6LcOMFxydyuTKehycSmSE6\nS5HLvAePuNqlonEoznRNrr04GqG0rOaLa2h0rHr2uySUzJolCqEUpq28M7WIFsoT286R2K4fJvTN\n6q3fu1BTyJlONHlS4VUrUVKbfaeRQZUKZZ3jFaJ6LSxBNFJz8fJ6hngZjUPRIIJoO82ElfMhaBFp\nOQ1V9UEo2q4W8qoHfjSfXEVRUiWip8L3OdSeZLis3zUo8sH8syEnlP4dlr6Lbfstwoo9+vHSZ+6F\ndsOIYxdw5mHLcd3tD+O49YsjuTddhQ8pUCcU7zPx8A+8VD21hzY8bp8SuaG1z+VlNNpW80HE7J4I\nzs+gaxy5mTmQzhrHONOmEjrNBaFkBku/zCkjHnQiDUIpLRIvr5ofFEOi0QglvLZWneOA9GWIe6EU\ngsxFJFUryiJYCqGEGkHumncqUVXS9+GvfTRTDia3DdSfT6Jyz6fu42g++dEmS1omePhOadpHCKlB\n+CNJgvD3XmoW/vvyHi2b148fvCOdyLYDRhy7gAOXz81rIu5hk+HUXl33azZ79AQvS+44gP7Ah5pF\nVX3482q16vtQTQT5F81/lmudh+0qlNaYyp9Pl+fi9TXzTJdrz+K8YQSQanfPOcdH80mSkoC0UiR1\nuViPI3Ga5wlC5rTkyFIzbVUrQSmSrBN8LCGg2rWVIJTI/JcxbRXf1eTxc1Rb16SB5qpt62V88hMn\nTYuJtfW8PKwiIUsL5dqHGOwVpip3zXOFD/W0g5fhe79+FCfsH09MpxKMOMYRx6xbhL0WDOAlz4hV\nST+jkJqF94lIm2X4YMsQVw9NfY7V7eZytVSCNqhnfBnDYgEpoH6tjUwSmiZTZtbYpWko3lFM6awc\nKLKctbyMXJHD4ZGxKKghIo7MbFoO4NL3UY/CQu288hoqFBRFDM9B+eV1wwACec2+DlM8Q0etTzkt\nqzAl5QmlLNnntisVKpIVOX2Oulp8XppF+sljjZfGMRCYjge68wSRaBzeJNUdD7feaiCJ48Dlc/HN\ntxyTPfZUgRHHOGLl/AF87++OS+Tex1EVqoV/YGTijnSue+g+jtBprvlE8rMyzcGnD9hp9BQQDyjh\ndxKThHLcVrWS3CBfbBf9k+azWgmRRhpHbrBUalUNj3LiZ/DysJ1KKI2c44rGEZbfKBNAEPuHamJV\n42j2++eithq1l9u+3VhGQ/Xfb6RxqAEeJSIDY+d1CSe48o4MBFqDVhtqQPgmfJmY2SKY5rVH74N7\n//gXHCiCb6YD8rqWYVyxcfk8rFs8C289ad9IXiMOwRzS5ukRE0QZjUMxbZXQUHpESKEfv7ToqbID\nQauDTauEEg2QURhtsWNYIQKZLV33cYg6TMGAH/tW4NprpipFE1FMTHIdEH+OVjLKK0RBqZNU4xhj\n6NFJmXwNKS/zm2nPS+rjIKV9eD1B+/B6lGvQ6r9pZl6dUOrtw2NKn4WHJIglc/oAAAtn9UbyrWsX\n4jtv25bkiU0HGHFMAuYOdOP6tx6LrWsXxnIlkXBOf14RDGc4+kuhhQjmzVBae7UEtDIj1NZNripy\nud0qoegkogwoislPiwwqQxA5W34tuU0MkNL34fM1tOippr4P0T5HNHF7BPK836HMb1DGKa21L/YV\nn3VCyT93PV0Vtc5b9C5oPotQ3p1/BrWlXUN52AeNOGSY/kXP3h8Hr5yHvRYMZNtPR5ipqo1YOX8A\nB6+YizdsWxPJpc3TI0xE1NYc1pKVdIJoHtbrvzM8ygmhNNMsdk3jCPvaWvSMpnG0avJqZtffOTIW\nhUuGPgstxDXpa4PoKZVQsqatdMGp9JpDskC+TYtO7VYDHcJ9idydQ9Zz8uTfW80/d/I70TPcnX92\nymgWXUqkYoiB7vzwucdArEEct99iHLff1HV07wqMONqIvu4qrnrjUYlcM1VJFdgjHMBUjUOZZZXX\nOApfRpKL0sT0IOXaoBInoilEUMpUlb+enEM8PU763THOt9dKjw8rGor0ffg+5argVpTyGz5iDEjN\nM5pzvN4/RO2zbTJRZbK9vt2c4MPPUrPQTFheO5YRTP46e4Um0qqpStMsQjKapb13Qv52C5XrAAAX\nP0lEQVS+Mw/C1299cFqanlqFEccUxLyBbhy9biGes3HPSF6GUMLs1HBb9XF059VwOcvyL2SicVQV\nudZes4WX0j6af1ebTXcpA2TOgZ6eqy73A6pWQXinssaJFkarFjNUNJHwu3V5sTZJwzZKMT9V4yiR\nma3KG4Tdqk7wWvkd+bwUn9MJiybPPyNhwEmZGlNhsp5WRHCesAycs3kVztm8Ktu202DEMQVBRPjs\nq5+RyLUojvDBDtuEMyJtNqXFnGsvZEIE5OX5yr+lj6OYjyqK+SSX3AfIAbK5xhE7yjXzTPPZtD/O\nyBijvzvtWy5KKvJBKBqEdl80sixFriERliAFLUAh2hbO9AqlUVjhOVJNpJL0Ifws6zx5opEh7vK4\nHuF7EbbRJl3hceUk6j2nb8DN9z2enHsmoS3OcSJ6ARHdTkRjRLSpQbtTiOhOIrqLiC6YzD5ORRAR\nzjx0OS7avj6Sh/bYWGvIax+NFpepfbc7P7DnfB/ymKE8nUEq7YN+x87O5oNZl+IE14mg+YCqnSsi\nKWU7H76r5WtkEv1Ij57K9qlFLUDTOMppgM2JPOyHHMj9/Ss9oajm22vHl0saeGir42l+wxDhOwUA\nL9+yGpeefUi27UxBuzSOHQDOBPAJrQERVQF8DMBJAO4HcBMRXc3Mv5ycLk5NXPrCXXtgw5lVI5OU\nR9kX2w8emmlLW09ZWw0NiGeXrUbu7BYRiFDWmrzEjL6ZSal5GG0sH6vV89p101CpAAL13jW/R1pE\nlv88PMpqfbayps36c5fXaOWqd7N6FeLoUfwUihwA3rBtTc3XZIjRFuJg5juAlMkFNgO4i5nvcW2/\nBOB0ADOaODScd8w+yUsaQrPTyoqdHvIF9oOkNvNLB4Lis9Q4/IueRM8EA0/kIwg1kciRn2+jmp5K\nmGSi8uxK1eAyxJQjl2xxwkq4SFF+oG7dSd38uxopqhqHVuZciWYqPhfBFNKprT4vlJ9o1DVUTaOJ\nxLUKshKy3IdHI3PTO05Zr+6b6ZjKPo7lAO4LPt8PIDX8OxDReQDOA4BVq2aGgyrERdv3b7i/SyEV\nLVJLM2FpmkJ5DSVvwtLMHlrYZTiOaOGYrSYV5mpPFW3q5yrjE5EVAqqVIhqKqKTZSzEHaW1arwUW\nHFOtjtz8vBqpA/VkPRlGq/q+apqI4itLnrtK0gdA1yw0UxUAvHzLXrUkPUM5TBhxENENAJZmdl3M\nzFeN9/mY+TIAlwHApk2bJnP53SmNC09djwce/6u6Xws1lC9abVncFqOnykbJhLZvrT5X+J1wwAtn\ntZrtv4wTuFTOSInZemK2IcIoOEso9evRSKH5OVp3asd9q7VXyLLMuZKJQLWJxqlqFuU015qpStxr\nTbNotLzqe04/UN1nyGPCiIOZT9zNQzwAYGXweYWTGVrA645d03C/lmw4W7xo2szPFwBMfBmqZqHN\nIPMmLC3RMRzwtFUMexSnuRqdFJqqFEJpSBBOs0gcwhUAo+kgN24ah5q4h2x7de1uxTxXxs9U2meh\naKjaxKRZFJ6Ua5pFX3cVZx62HJtXz8/uN7SGqWyqugnAOiLaGwVhvAjAi9vbpc7Bh87aiB/d/Zga\njis1ET82SVOAn+FpL3aioajx+vmZaFTkTqvw25UfRLWFfEK56hyPtIy0n3K7aOc0i4xc9ll+P9Qs\nYp9NIC9RETbSFBSiDdtEgQglnOyyhllNrkTJqRqn+J19uKym0UpfnC/rIeu8aaZXADM+Emo80a5w\n3DOI6H4AWwBcQ0TXOfkyIroWAJh5BMAbAVwH4A4AX2bm29vR307ECzatzEZo+RdyXn+c/epfUEko\nPrFK92XkB1Fdnh845Hc0TSSeQTcnjjImnDKRR0Wf3P9YXK9b1cBUJRfIysl1s5KiKUT5La2Rq1Y1\nWQvAUMOuG2R8h/BObdne14OScTS+rMdOsSTB0jl9OOmAJbjsZYdn+2kYH7QrqupKAFdm5A8C2B58\nvhbAtZPYtRmPS88+BP/+8/uweHZcydNP7DRbsUxO1GzcTX0iDWbluklKIwjFxKLII00ksvHXt7WI\nJyDULPLXlpqq8tuao10lmhKmt7j8Rn67DLmWDZrQoqG85iAnDv75kcfx2dk+Ks1jD1fWY+nc2KlN\nRLj85WpqmGGcMJVNVYY24MQDluDEA5Ykcu8LkT6ROqHEck8wCaE08X2ky+jmtYwyg5w6+JVo32qh\nxfBzks3sBnatfbVCar0lTVPQiE3TPjRS7FFyZiKNQ9FQQkg5uydD0yA0U5U0Sc2tEUesWayaP4AT\n1i/G3xzX2IdnmBgYcRhK4aLt6/Gx796NtYtnRXJ2NiwZzeKJo1/4RLwmktjEfQmJxJyTH6ha1SBU\nJ7BaxiMkmnDwRrZ9eG45tsoS6/Vj5U1YakHGyMdRhtiCvirf1ciyR2mvmao0TUQSijdR9VSr2Xay\nvT/ufFFxtq+7ik+ee0T2nIaJhxGHoRQO32s+rjg3jUjxznLthZf2fp/ZqzmQ01l5vj/lNI4Sdv1q\nXl6JBt36B6Jg+VO1wmveUaz5OCQ3qpnqJfIpNFNarGUF11bJX7N2L7R1tqVJqltxgnvIicYY+zXZ\n43aHrdoDR69b2DQ60DC5MOIw7BZed+waPPLEELauWRDJ/QAwJqJevCYiE2384CzGDV3jUAfF1ggl\nNsM094kAxWC7c3QsXWe9RhDyGhqbqkqvs62apOpy1ZehkGhoqmpVEwmh+bJk1J7mK/MmKmnm22Ow\nJ1vw09BeGHEYdgtrF8/Cp1+1OZH7AX9Q+Dhm9fnlcmPq8O0koagaR7X5gF8qHFeZZWtO+dp3RssX\n3vNfl3Lv10iisETBw9rxFZKLIsy68oSiEYEWtaWVGy9rkvK/o9Qs/O8u1+U+49DluPHux3D2ppUw\nTH0YcRgmBGccuhw/+e1jOGvTikjuTVWjQhXxYb5jglDKaBya2aZMyY14Vl7OIVyLnlI0jkSD0Mxw\nlJ43bCed5qWSIZUcle4SJqmQjENNRDtvCK3mmcz78ZqGjJ5bPKcPn8lMQAxTE0YchgnB0rl9+NQr\n04HAD2bzhLPTDyiSOAaUASkkBXUFOHUN6d0zVfmBVA74tex3pUCk1CxqPg7FOS6JpqtFbaqqaCLx\nOtvavdB8GXn5gKJZyEzu1x+7Bn98ahhb1yzMHscwPWDEYZhUPHPNApy4/xK88fi1kdxn/I7FUZdq\nLS05qObksUkqP3Bqs29SCCU8R5JzQk3kZSsFK2tWlCnjrvl74igsKPLmxKE5x2VV2mJi8FQSvr3P\noln4t1dYnsV0hxGHYVIxp687O3D4PJCFIvFQKyGhDWBqOfAS+RoyvDbXJmwnNY66JqI4wVuUa4Qi\nUSbpsUczYSkZ4hpxaAmg0pf1rtMOwGXfvwdrFg9m2xumN4w4DFMCey8cxGkHL8Nrj947ks/uzRdh\nnKMQSrTOdBDRU1EdywjkmuNX8WWULJui+j5qmovSvkH5lVx72aZMDkioHYWH71eWKZYJnfMHe/DH\np3YmpseNK+bhoy8+LHsMw/SHEYdhSqCnq4KPnHNoIvemKmnymN2XJ5RwZq37LHYvK1od8JWseK1k\neEUhGv9Ri9qSCOWav0dzgodLrYbflRqEh9Q4PnrOofjarQ9i4ayebHtDZ8KIwzClscdAN87ZvAqn\nbdwzkmsmLG2J3HAQDSOAGjnB6/J4APettAFfmrx21YSl+VYkf2jL/2omrPD6pQZRa1OSOLauXYit\na83RPdNgxGGY0iAivO/MgxK5Fv6p2eDDwTUcFBs5wTV5bT1wzVSVLIvq25czSWmaSC3BUDBHn3Iv\n+jRtIoiAKhs9ddnLDscvfve4upKkYWbBiMMwLUFEeMO2NThk5bxIrg1sEXGUGGijYwqTlA8ZLh1t\npcqL/9p62pqPg4STXM2hUEk03z6EPMfJG5bi5A25BT0NMxFGHIZpi3ecsr502zKahTYAy/Y+00Rz\ndpfVILSSI/6zRijSVKURnuanaIQPnrURjz25s+XvGWYWjDgMHYcLT12PRSKsN4ScTXvIXAQPae9n\nReNoShBae7kcb3clf5xaiRJpqtIKCbb+elvJD0MZGHEYOg67WklV0zikfGTME4cSbaU6u/P5INKE\n5TUIyW+1UiTSVKU5uJXrAYB3P3eDSjgGQzMYcRhmDD74/I0YGhlV9/f15AdSaQoadsuVygHbj+fS\n9FTP44gHfF8SRWoifkCX9bx8u6S94rOQlWZDvGLranWfwdAMRhyGGYOzj2hshtGcxilBFAOyJBQ/\n0Kdl2PMmqfoyqtJUpRSCrNXzaty/EBecuh6rF1j2tmF8YcRhmPH415cejnsfe0rdL00+nhik3K+L\nLQmlzw3smkkqIQ5PYMIk5ZMeJaFoOS1AUVTQYBhvGHEYZjxOOTAfZtrfXcVfh0cxfzDOivYahCQI\n7zSXhOKJQEZb+axtacLqdaYqaWnyZVbk+tsDPV04/4R12LJPvJiWwTBRMOIwGBRcce4R+PE9jyUE\n4U1VMuva+zb6ha/Ef5bOaE8wWkKfjJ7yGsf6pbOTvr71pH2bXI3BMH4w4jAYFGxZswBb1qSz+CVz\nevHoE0OJJuIJIDFteUKRmogjEhk9VYuqEuddPLsXrz5qb5xx6PKWrsNgGG8YcRgMLeIDz9+Iq29+\nEEvn9EVy7/vQnOxSc6mbrmKK8KskysKOlQrhH59zwK5222AYN7SFOIjoBQAuAbA/gM3M/DOl3f8C\neALAKIARZrYVYAxtx4Zlc7Fh2dxEvsBpINriU0niofOJSPHGFfPwyiNX45Vb4xLzBsNUQbs0jh0A\nzgTwiRJtj2PmP0xwfwyG3cZbT9oP8wd7cfCKec0bA+h3mepzRIn47moF7zptw7j3z2AYL7SFOJj5\nDkAv/WAwTEesWjCAd56WmpLmOJPTbFECZPtBS7HjgT8li1cZDFMdU93HwQBuIKJRAJ9g5su0hkR0\nHoDzAGDVqlWT1D2DoTledeRqPDU0gu1iTZGBni5c8lzTLAzTDxNGHER0A4BcgPzFzHxVycMcxcwP\nENFiANcT0a+Y+fu5ho5ULgOATZs2ca6NwdAOzBvoMae2oaMwYcTBzCeOwzEecP8fIaIrAWwGkCUO\ng8FgMEwOpmx5TCIaJKLZfhvAySic6gaDwWBoI9pCHER0BhHdD2ALgGuI6DonX0ZE17pmSwD8gIhu\nAfBTANcw8zfb0V+DwWAw1NGuqKorAVyZkT8IYLvbvgfAwZPcNYPBYDA0wZQ1VRkMBoNhasKIw2Aw\nGAwtwYjDYDAYDC3BiMNgMBgMLYH84jOdBCJ6FMC97e5Hi1gIYKbV5LJrnhmwa54e2IuZF5Vp2JHE\nMR1BRD+badV/7ZpnBuyaOw9mqjIYDAZDSzDiMBgMBkNLMOKYOlAr/3Yw7JpnBuyaOwzm4zAYDAZD\nSzCNw2AwGAwtwYjDYDAYDC3BiKPNIKIPEdGviOhWIrqSiOYF+y4koruI6E4ielY7+zmeIKIXENHt\nRDRGRJvEvk695lPcNd1FRBe0uz8TBSK6gogeIaIdgWw+EV1PRL9x//doZx/HE0S0koi+S0S/dM/0\nm528Y68ZMOKYCrgewIHMvBHArwFcCABEdACAFwHYAOAUAB8nomrbejm+2AHgTIhFuTr1mt01fAzA\nqQAOAHCOu9ZOxKdQ/HYhLgDwbWZeB+Db7nOnYATA25j5AADPBPC37rft5Gs24mg3mPlbzDziPv4Y\nwAq3fTqALzHzEDP/FsBdKFZAnPZg5juY+c7Mrk695s0A7mLme5h5J4AvobjWjoNb2vmPQnw6gE+7\n7U8DeN6kdmoCwcwPMfMv3PYTAO4AsBwdfM2AEcdUw6sAfMNtLwdwX7DvfifrZHTqNXfqdZXFEmZ+\nyG0/jGKRto4DEa0GcCiAn6DDr7ktCznNNBDRDQCWZnZdzMxXuTYXo1B7Pz+ZfZsolLlmw8wDMzMR\ndVwOABHNAvAVAG9h5j8TUW1fJ16zEcckgJlPbLSfiM4F8BwAJ3A9seYBACuDZiucbFqg2TUrmNbX\n3ACdel1l8Xsi2pOZHyKiPQE80u4OjSeIqBsFaXyemf/TiTv6ms1U1WYQ0SkA/h7Ac5n5L8GuqwG8\niIh6iWhvAOtQrL3eyejUa74JwDoi2puIelAEAFzd5j5NJq4G8Aq3/QoAHaNxUqFafBLAHcx8abCr\nY68ZsMzxtoOI7gLQC+AxJ/oxM7/e7bsYhd9jBIUK/I38UaYXiOgMAB8BsAjA4wBuZuZnuX2des3b\nAXwYQBXAFcz8T23u0oSAiL4IYBuKsuK/B/AuAF8F8GUAq1Asd3A2M0sH+rQEER0F4L8B3AZgzIkv\nQuHn6MhrBow4DAaDwdAizFRlMBgMhpZgxGEwGAyGlmDEYTAYDIaWYMRhMBgMhpZgxGEwGAyGlmDE\nYZjyIKIFRHSz+3uYiB4IPv9wAs63jYi+Pt7HVc5FRPQdIpozGedrhmbXTkSLiOibk9knw9SDZY4b\npjyY+TEAhwAAEV0C4Elm/ue2dmr8sB3ALcz853Z3pAyY+VEieoiIjmTmG9vdH0N7YBqHYVqDiJ50\n/7cR0feI6CoiuoeI3k9ELyGinxLRbUS0xrVbRERfIaKb3N+RLZzrne47O4joMpc1DCI6wq2ncrNb\nX2WHk29w57/Z7V+XOexL4LKKiWiQiK4holvcOV7o5Ie7a/s5EV3nSliAiNYS0Q2u/S+IaI3TYD7k\nvn9bcIxtRPRfRPQfVKz/8vmg/6c42S9QlLv313tsoNn9DxHNdru+6vptmKlgZvuzv2nzB+ASAG8P\nPj/p/m9DkYW+J4pM/AcAvNvtezOAD7vtLwA4ym2vQlEqQp5jG4CvZ+Tzg+3PAjjNbe8AsMVtvx/A\nDrf9EQAvcds9APozx7wXwGy3/XwAlwf75gLoBvBDAIuc7IUoMs+BIjv5DLfdB2DAHeN6FBnqSwD8\nzt2TbQD+hKJOVgXAjwAc5b53H4ryLoQi2/nr7phfA3Ck254FoMttLwdwW7ufBftr359pHIZOwk1c\nrI8wBOBuAN9y8tsArHbbJwL4KBHdjKKe0BxX2bQMjiOinxDRbQCOB7CBihUbZzPzj1ybLwTtfwTg\nIiJ6B4C9mPmvmWPO52IdB9/Pk4joA0R0NDP/CcB+AA4EcL3r8z8AWOFm/8uZ+UoAYOanuah1dhSA\nLzLzKDP/HsD3ABzhjv9TZr6fmccA3OzuyXoAv2Xm3zAzA/hc0LcbAVxKROcDmMf1dWMeAbCs5D0z\ndCCMOAydhKFgeyz4PIa6P68C4JnMfIj7W87MTzY7MBH1Afg4gLOY+SAAl6OYratg5i8AeC6AvwK4\nloiOzzQbIaKKa/9rAIehIJD3EtE7UWgBtwf9PYiZT27WXwXh/RlFEx8nM78fwGsA9AO4kYjWu119\n7poMMxRGHIaZhm8BeJP/QESHlPyeJ4k/OA3lLABg5scBPEFEz3D7XxQcex8A9zDzv6DwY2zMHPdO\nAPu49ssA/IWZPwfgQyhI5E4Ai4hoi2vTTUQbnJZyPxE9z8l7iWgARcG9FxJRlYgWATgGjSsM/wrA\nau8DAnBO0P81zHwbM38ARYVfTxz7ojDPGWYojDgMMw3nA9jknNW/BPB6pd0JRHS//wOwPwotYweA\n61AMpB6vBnC5MyUNovAlAMDZAHY4+YEAPpM5zzUo/A8AcBCAn7r27wLwXi6Wmj0LwAeI6BYUJqat\nrv3LAJxPRLei8IMsBXAlgFsB3ALgOwD+npkf1m4GMz8N4DwA1zjneLhuxFuck/1WAMOor055nOu3\nYYbCquMaDLsJIprlzV1EdAGAPZn5zSW/uyeAzzDzSRPZx/EEEX0fwOnM/H/t7ouhPbA8DoNh9/Fs\nIroQxft0L4Bzy36RixXiLieiOTwNcjmc+etSI42ZDdM4DAaDwdASzMdhMBgMhpZgxGEwGAyGlmDE\nYTAYDIaWYMRhMBgMhpZgxGEwGAyGlvD/O0gluv+Hnr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "cs.plot( ['Time Lags (seconds)','Correlation'])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2495504991004161" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "cs.time_shift #seconds" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_shift` is very close to 0.25 sec, in this case." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has also separate class for AutoCorrelation. AutoCorrealtion is similar to crosscorrelation but involves only One Lightcurve.i.e. Correlation of Lightcurve with itself." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "AutoCorrelation is part of `stingray.crosscorrelation` module. Following line imports AutoCorrelation." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.crosscorrelation import AutoCorrelation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create `AutoCorrelation` object, simply pass lightcurve into AutoCorrelation Constructor.
Using same Lighrcurve created above to demonstrate `AutoCorrelation`." + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = lc1" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "500000" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac = AutoCorrelation(lc)\n", + "ac.n" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.12500000e+10, 1.12499978e+10, 1.12499911e+10,\n", + " 1.12499800e+10, 1.12499645e+10, 1.12499445e+10,\n", + " 1.12499201e+10, 1.12498912e+10, 1.12498579e+10,\n", + " 1.12498201e+10])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-25. , -24.9999, -24.9998, ..., 24.9998, 24.9999, 25. ])" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`time_Shift` for `AutoCorrelation` is always zero. Since signals are maximally correlated at zero lag." + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "5.0000099997734535e-05" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXYAAAEDCAYAAAAhsS8XAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvWuwbdlVHjbmXHuf++jW02oLLJRq5ACOwstVMjaYJA7B\nWDYVk2DjCk4RSKAUDHaCDamYGGIcUiXjYBdxCQwKCAISQgEjYWGBQEi8hITUrQfqltRS69Xdklrq\nVqvVj3vvOXuvufJjrTHnGN8YY+911Oee7nPvmlW37jnzrL32es1vfvMb3xgrDcNAS1va0pa2tGun\n5cf7AJa2tKUtbWkn2xZgX9rSlra0a6wtwL60pS1taddYW4B9aUtb2tKusbYA+9KWtrSlXWNtAfal\nLW1pS7vG2uMG7Cmll6SUPplSum3Gtv9pSultKaVtSulvw9++NaX0/unft169I17a0pa2tLPRHk/G\n/nNE9PyZ295FRN9GRL8oO1NKTyeif0pEf5GIvoKI/mlK6Wknd4hLW9rSlnb22uMG7MMw/D4RPSD7\nUkp/NqX0mymlW1NKf5BS+nPTth8ehuFPiKjAbv4aEf32MAwPDMPwaSL6bZo/WSxtaUtb2jXZVo/3\nAUB7MRF95zAM708p/UUi+gki+pod2z+LiO4Wv98z9S1taUtb2nXbnjDAnlK6kYi+ioh+OaXE3ece\nvyNa2tKWtrSz2Z4wwE6jLPTgMAxffozPfJSI/or4/fOI6HdP8JiWtrSlLe3MtSeM3XEYhoeI6EMp\npW8iIkpj+7I9H3stEX1dSulpU9D066a+pS1taUu7btvjaXd8ORG9iYi+KKV0T0rp24novyWib08p\nvZOIbieib5i2/QsppXuI6JuI6KdSSrcTEQ3D8AAR/TARvXX6939MfUtb2tKWdt22tJTtXdrSlra0\na6s9YaSYpS1taUtb2sm0xyV4+oxnPGO4+eabH4+vXtrSlra0M9tuvfXW+4dhuGnfdo8LsN988810\nyy23PB5fvbSlLW1pZ7allD4yZ7tFilna0pa2tGusLcC+tKUtbWnXWFuAfWlLW9rSrrG2APvSlra0\npV1jbQH2pS1taUu7xtoC7Etb2tKWdo21BdiXtrSlLe0aawuwL21pU3vw0hH9yq330FJmY2lnvS3A\nvrSlTe2Fr3kvfd8vv5Pe8/GHH+9DWdrSHlNbgH1p11372IOX6VVv/6jpf8+9DxER0Wcub1T/paMt\nvfTNH6FNj29mXNrSnphtAfalXXfte17xDvqeV7yDPv3okernN3dd2fSq/2ff+GH6gVfdRr/97k+c\n2jEubWmPpS3AvrRrtt35yUfoNe/6uOl/590PEhHRfY8cqn5+IeOlIw3sH7r/USIieviKZvJH20I/\n98YP0WXYfmlLe7zbAuxLu2bb3/1/3kzf9bK3UV90MLTLI4RHgHwZGPu0OaES8+t/8jH6oVe/m37+\nTR8+icNd2tJOrC3AvrQz3/7kngfpdY5M8smHR0aOmjm3CMBt//gH1Nh5v/d8+rLqL2Wgn3vjh+jB\nS1rqWdrSTqstwL60M9/+5oveSN/x83EZ6EtHW/U7Sy7I2JnXHwKws/aOEk2qf9ff97a7Pk0/9Op3\n04/85h17j31pS7sabQH2pZ2Z9kd33k9/8P77wr9H/nMEcAZqZOYs2Wx63M8w7UdPENtpe8D1ut8P\nfPIRc3y/8KYP00cfvExLW9rVbI8Z2FNKz04pvSGl9O6U0u0ppf/5JA5saUvD9nd/+o/pW37mLeHf\nr2x8OyICeJkmAHS/bCdA34Lkcjjt9wgAnyeMBJS9TiSA+Pc+dIV+8Ndup//1V/4kPIelLe0k2kkw\n9i0Rfe8wDM8lor9ERN+dUnruCex3addpe+3t99ItH37g2J9DAK/9wNiZaW8BqCtjh2DrlW0/ba8B\n/9L0fdsC/dP3ZQD2hy6PjP+d9zxojvHlb7mL7rh3SYxa2sm0xwzswzB8fBiGt00/P0xE7yGiZz3W\n/S7t+m3/4y/cSn/7J9907M+hls7tylYDbwNw6B9YitH9vBLA/kuH4/ddPtL9j07HkYHJP3K4cfuP\ntoW+/1ffRd/9i29zj39pSztuO1GNPaV0MxH9eSL6Y+dvL0gp3ZJSuuW++2KddGnXT/uVW++h2z76\nmWN/bq6Wzg2ZNn8eGXspvhTDkg0y+cNtBPjM2BHYx/4OqPxDkz/+TtDkiYj+3Ts/Rrd+5NOmf2lL\n29VODNhTSjcS0b8lou8ZhuEh/PswDC8ehuF5wzA876ab9r5ke2nXeNv2hb7vl99J3/gTf6T6o7R9\n6UWXWroE+aPgs7jPyL7YGLsGcJ4ANgHzj6QYdMs8csVn8g8FdsxhGOh/evnb6W/9mz9y/760pUXt\nRIA9pbSmEdRfNgzDr57EPpd27bSffeOHDBt9dAI/BGO0FHKT+rmUXA4F2Fo3i9+fc3L7myvGB/wt\nMPZwIpiAHlcELNF0MOoeuuJLSNH5EI1xiN9737LyXZrfTsIVk4joZ4joPcMw/KvHfkhLu5ba/Y8c\n0j979bvp7730VtUfZn3O6JeAJ50tUkIpAoSRUbMSgpJL2RNUxUmoRBNBwOR5O8yEfSQA9igYTDTG\nIb71JbFDaGnXdzsJxv6XiehbiOhrUkrvmP79jRPY79LOUCtloBe9/v3Go83Zme83jN0HM8nGpcwi\nAVwC6ZFg7BJ4e/HZzVYDaaI9UgwAchl87Z3x30wEAZPniQCBHScAbmjHnNPecMcn6dXv/NixP7e0\na6utHusOhmH4Q7I5Gku7ztp7732YfvS33kdvu+tBesm3/YXaz4FEbHPqtGzLQOvOJhNtIgAXQCrB\nM3S/oLRS7H7kvmy/Hzzdx+Thaw3Qc/tsiov99z/7ViIi+i+/7M8c+7NLu3baknm6tGO1w21PP/ra\nO+h+qIzIzPyjUDclZuZzJJcGjJIVhwAu2HsZ/H6i2P0SMvM9QI39kU9+W4HdnziwRVLM4fb4gP/W\nDz9AL3/LXcf+3NLOZluAfWnHam947330ojfcST/+hjtV/+XNCOADaZCKWGcE+FJOkRKKAmqlpbfP\nSkmjVxr7PKkkYuYl8Lfzr7j/ytgDSQfdmscFdqnJR5/FyembfvJN9P2/+q7ltX/XSVuAfWlue+jK\nhl74G+8xNcgZwO9/RFcu5CQdxI0IwK8EgC+xUGnmAsAiLV2m/Ef7GYahHuNxJRTje48miD0TAYJx\nH4CtvEbyM48KeSsC/0tB/8OH+n7c9tHP0E/93gfcbZd2dtsC7Etz28v/+C76qd/7oHmFHAYiuXHQ\nE//KGjtr5dyQ5bZ+aV8UUoxk4DOkGLmfcPsgeIpSSQkmgj6QdCqTDyaCuVLMpUCWkhNV5AqKVkoY\n8/jOl95KL/yN99YkqaVdG20B9uu83fuZK/TC17zHODA+fWkc6OixrgAO4MTMEeujsB6MhbIkmMmf\nJehJYIykGC25+Ex+GzD8yNYY9SOzjiSaEkg6vF+E8ehaKFlKyk/BOWwVq9/vOiJqteTvf1jHTO78\n5CP0f732veGks7QndluA/Tpv//fvvI9+6vc/SG+FolsM0AjgvMRH9YDZZZf1I8Vgg/uJmHN/XClG\n9UdSjN9vtPHBB/B9gG8TlAIphvdv3Dj7Jy35HTqQHASMg+SmKGiN/f/s1bfTj7/hA/ThTz3qbr+0\nJ3ZbgP06aXd+8mH6F7/5XpW4Q0T0iYdGpoYMj7dC8AuX+BXYdX9luzt0ZQ1mAUs9pvtlDmOPAByv\n0T4JBX3okbtG+tjlRBcBu/y+o+icA7kqKs0wF9g5HwGZ/EcfvEz/4jff+1l57Jd2em0B9uuk/eCr\nbqef+N0P0IeAgUUvcOaBi4DPgTvMwmTgiVjtLu+21sDbNpFffRtIF9FEEG0vtxmGoR6jcdFUAJ8Z\nPA3K/4ae+zle/BlMvhc/Y8DY249sGOTm78Ag7E//wQfpJ373A/RHH7jf3c/SnhhtAfZrrL3trk/T\nj73ufab/IxOgf/pR/z2cCODMzA/BA85a+pEpiMUvo/DlB2whaB2TjUYMPNTwA8CXGGyDpz6Tb371\neeV/50xC0TkfHfNa6FVNOwa8b9wwqMqTLfZ//MErRKSdOUREn7m0of/9125b3vP6BGkLsF9j7btf\n9jb6sde9nz5zSbscOHj5CAA4xzQfgYFai3QBEDCQRFY+0y9YZCQ/HIVSjA/ISpYIQDsE/CHYPvhZ\n/h751XE1wv3DEO83CnpG5xZKNHM0eXFN51bA5H0hk+d9oRTzy7feTT//po/Qr9x6j7v/pZ1uW4D9\njLY/eP999DN/+CHT//HPjIzqAWBODcD1QGUAwGzGy0H1RQabkLFj/ywJZYYUEzlnIgY+42cF8sGk\nI39Hxh4FQ/UxBcAb9M+pd6OCp9sZTH6G9o73bb2aXuB9iMA+7gufo09PzxvGYC4dbemfvPJd9LHl\nPa+n2hZgP6Ptv3vJW+iHf/3dBmy4YcVABnZcWu+VVqB/n+Mj0pvxM3Em6f7t5wB4OKHMkGsQqGPt\nPdheHZPcfv+5RauIo753t4+uRczkA2CH/tXkbsL7uZ6i4xiT4RrzKL39wfvvp5f98V30k0sS1Km2\nBdif4O2Vb7+HfuFNHzb9PH4eCTI7kVFtA2bOA/24AI4vdq6lbYOXURAB6wzkhygRKQKwOSuCOZLL\nLLcMau/scsHt1THt99BHqw59rORuE2nv8ppG90A2vM9MBBDwOdh+CFIMfwfGZHi/904rSXl8P/Cq\nd9H7PrG85/VqtAXYn+DtH77infSDv3Z7+PeoljcGQ5vk4gNvpLEaoO653x/Yu4Knc1jkHHkkBr/P\nfvsI/OUxRTVndtkXJWNXTP6YWr+cICLrZ3RNo4lAtugtU3j/+bgPgxekoBTDz+cKMo8/eP8j9NI3\n30UvfM173ONZ2mNrC7A/QdrPvfFD9G93BJ6i4k3IzLnZAewDLzNHA8gBUDcm7+vKR9uiQS5Ipok0\n89i1EgDnHGnlmPJLJK3slFzEn0rE2INzeywT1Rx7ZCRvyTa38Jm8z7JxRisSBy5VgJnHD07B/Q/e\nr+23wzDQj772Drr1IzphbmnHawuwP0HaD7363fS9v/zO8O84YLg9HDB2lFwiBhYtoSuT3/oDfpfk\nEmnaYSmAAJwiKWKORBFNFiWQXCK3jPzbriSr404qUWwgunZzvPva/RJNBP5zFN3/6D5bYPdjNQ9d\nnp5P4CVsi1xDRtunHj2iF73hTnrBz+s3bi3teG0B9lNuP/a699Fv3nbvrG2lPzqq/RH5ku0S2u/f\n1pdF+Awcl9yh9n5M1hkC7BypZBZ7t8eM/VGQU24vq0HuKgUQH7fY/pgBXXXOweR3pJh5+65QYw8s\npIaZ9/59riu8ANiRUPDv2M+MfQXFhdgn/ykn3+Jf/dYd9Pr3fsL0L822x/wGpaXNb8Mw0I+97v1E\nRPThf/71tT9Kz5aD8NHDnv7UjXabSDOdbUesDEwfQ12KH3M/c38O5YcZVsYI5I4bPPUY/iqnWfKO\n2W8YD/ABds5xh+AfSld+PoDcp2TmUUKT/EwYJIfnbl8QHlcE/MxjQHrXy0X+9evHdwDIsbM0vy2M\n/Sq0YRjo//z1d9ObP/gp1R/V6eC3DxEBixKDM3rg5UCS2jYOpG0wIPtAWtmnvUfOEfld2B8D0vFY\negR4keTiAXhKPtCuu+wec5eTOef4PNs2kd1xTvA0Dqr6gdE5Gv5cf3u0MtvumdjnSjpRrCZ6ziPJ\nkYjoJ3/vAzvjU9djW4D9KrSHD7f003/4Ifr7v/h21f/gZb/mtXQSyEw/VfsjyEiUS9yImcm/RS6X\nyH8evSYuqqey6+dZ9sWIUc8AxXCCcNj0QZf1fgYG9uRKKQddpmHYodeHmvnxgqehPTKSk+Zo+DPc\nRZaZ71vhzQuqbgKCEL0mMCoytwvY//lvvHdnfOp6bAuwP4a26Qv9b698F9320c+o/k9NbxfC94JG\ndTTkALuyiWxqvd8feMDnDry4v5h9EgnGjv0znCCPxY54bMlFSCseAz9YZXc/B6vO3Z5fFIKSC5s9\n5sQSwoDujJVGH8gsUeA5zAeIiobNzGOIpJXG2NEGu3uCwOeI39CFLbL14udle+mbP+JmZ18PbQH2\nx9DueuAS/eIf30X/5FW3qf4HHj10t8fCSdyiWh6y/zAIhkVBskhCwWBodb+Y0rN2n/L3Xd7tOZr5\nY7EvegC+7pLL8BHAa3+XXUA96JKrlx+ssntM7OqIj5vc/tD9EgQ3owqYx7d1+iuCHu9/AOx7GftM\neyTvFx1I/IpFbPiKRm6R3ZeI6AdedRv98K+/O/z7tdwWYJ/RHr6yoe962a30fsiSe2CK3N8FpXCr\nxQvaNtA3twFzivo34UTgbz8MQwPkwP2CAB4x9jnsOpRcZgRG9+nzOfkSzbrL7iSyBgDvg+35Mq5X\n2U0qOugssJeB6NzUj0DNbo9toIfPyoYNLZ775Zo5tsno2OTvUawGa9DzMR1ugokgJBTI2Oe9q5Wb\nBPa5L+p+1ds/Sj/62jtmbXtW2wLsM9o77/4MveZd99aoPDeWXNCLGyaBzJBQ5FI2TBEPAH8Okzcv\nheCBihpr7wP+HJ041JsDNjrL0y2Ys3cMB6usrkvE2KUU47lrDrrs6tzrlQPgZaj9eA4HtZ9a/wxf\neiS/zJKrwnyA40lj8veo30wEwfNyXAkwcohFJgEp0UQ16FEe+p5XvINe9IY7Z08EZ7EtwC7aJx++\nQt/x/95C93z6kurnZSC+Teahy74XFx96bnKAaeCd0R8w80M1QUQ/+8Ahf0fAP65fPQLk47o2Rnlj\nvJ6eJn0ArpUmoWTXEmiCpMzMQXJpwdNMZWjAgIwdZaCDgLEf1IlAg2pl/oHnfo6/P9LPI0kn8vRH\nK6thGMRzgc9LMZ+Vx4eSXitBga4rX3uXwdMoCC2feSnRyPiU3iYouwGB2te/9xP0gyCrntW2ALto\nr739E/S693yCXvHWu1U/v9gZ612wXh15erFJ54lkEZtIipnBwCPtfU42p/wdB3B9/+dJMnaod9JN\nEyIy0wqWDvDEQc/snqfpFwDu2h2ZaQ92e/k7nwOXt52jvZdCgskHzBwA2ZeA9oN/H0zyc+IZ8pab\n+9/7RCCW+nwAjzR5ydg3wXWRz7z+uX1Wgnm0CsCXznznL7yNfuHNH6llEM5yuy6B/YP3PUJ/76W3\nVo2cG1eswxmea013wMz76aE0y8/gRcJzAHmWxh68mCJiYFFa/7hdcA4B4M/J+oxWCwiwDbTa/svQ\n5A15bmUYHSir7GvmO5m8M9GcCwC/aeb6urjB0yEOnvqTUxFMXu4nCs4WOuf0z5Jr5rD98Of92nvU\nj5p5lMEspR55fPL53ATPcyRXSn1fau9XQPfnhnklPMmwxMrtLR96gP7hK95hrL9P5HZdAvsvvfVu\n+o3b7qXfeY9OT+YbnaFgEc/4CNj7Ao/jZ3xAPgr6DyPGfsw6K3MyNUsR7/mcqbEjUMl+z/pXhCyB\nx3fgAHhfBupSGm2KAE5dStRlcL9IzVwB3vj/egV2R2bmAeAzA+dDkj52+flSxlIDHoD38twUu262\nSWTs5wKJxpsI+LNRIFkep/050tv398u/hSu/KEhqVrU+mKtkqigOtfHHlxw7l458xi6POwrUPgT5\nJv/yt+6gV779o/SRBy652z8R2zUN7O+4+0H6rpfdqm4yUfOX4zKwvgVmM+8tQ9wPz3gIyGo5ufEH\nkgJ2ORFENcuPyeSilyibgSqkGBlk2mVTPOeA0LYfXNYpA4zI6rucKAOA98NAOSdadQlAaPx/DUFP\n5ZZxmGwk3aDkIreX21WGv3IkF7EaQYdNdM4ugA/+5CdlqTC2EU34M/qj/ci/2f7ARTVth8ld8nwO\ng1WqAvwAwCN5M5JuHg0AXzZcsb/j7geJiMwK/133fIa+62W3hnWcHs92TQP7i17/fnrNu+6l2z/2\nkOrnhwFvIL9dCJdo/FAZ6xd7cTHVfAaAHwVLzmMHSWe883KOEyIKntrtYg3c04P7APD7aPsJ2Fc5\nGafJKifqUtIp+wJ4vYJbGFSN7JFyeyK7YqkJSgX7/XPwgqfbEkk3YuKA+xkx9pR4MrPn1kFSFm8T\nlVHAn3fWpq9SjM/Mo6AqnkMUP4qsvJr8+AxcJ/eJiUAAuAThiLE/cuhr7Pge4X/ze3fSa951L71z\nAv4nUrsmgP2P7ryfvvsX32aWgfX9nzDTslSOSy5mCDiTV50QtLpNfcj1wxxJK5vgYVMPbdAfsauN\nGiyBXKNeEB1tYwdkV73YPmjh8Z1bd+b4dgG4x+T7YaDsSC5bIcV4cQVjUxSsNgqeajY9/r8GCaUA\nY+djivr5uyNnjy/dBNr7NJnlZO9Vuxb2Hh4EgH8OAs/H/Xn83XfFzJIl52TMhnGl/SQnYuxXRL/c\nJ74Fyts/UZvsPwN48YmHxpU/lgr5yKcepW/72bfQfQ/7iYqn0c4csHuOkx957R307//k43T3py+7\n2yKA801HZs4gicGWCvhbn8njyyXCQM+MhzMKJIVByBkvWohZur8fTmhygbccn4FHgccQzDoLWqWM\nUgz2S5+5y+QD98sIcsXsB88BmTm6hVz3yyAAH6Svc4H2fhAEYbtsJ7l+aKsaTw8Pvf7mWozb2/34\npED+zRABrjm0Y+UXrwL9sbDp7bESwUoxWB3L75LjWe5TMnZVfwmDrfy+YJgIeJJAwP//brmbfveO\n++g17/o4YTutAOyZAvZ//Tvvp29+8ZtNPy+FPgW1Wc6tRgaJF35TpZVIcsF+n7HHWvr+YGjEXjbR\nwx+UGtiU/eC/L7kFmRz/eM4Dp12M3ZEfRu29c7eP9lODpw6YuYCfGJzsNTVBUlGCoAyxXx2BHYG6\n+eF994tvdxxCu+O5te+H73K2k1nvX4tw0uL+dQf9JLbfP+HLv1lmPv4+DDu0+x2Bd25zgqrRWIgM\nCXIFLrePfO9I4PglIcjw+V4ivnxyYvKYAHX/I4f0n//L36U77r3673k9U8De5US3fOTT5kKyGwP7\neTlsmHmVXPxIvekvPuDPcrMEwdBN8JD3wTZzAmD7tjm3yjARRAyvTNt35vi2woJnkm8890u/I2AY\neLRdZl5Gt9JuwCe1H+/cegBk/lNl4Ctd7KsAk6+MfVfwtJBY7bRjkk6g8FrAfevyaPF0zzlZuaqd\nM6n98LEWdTzTfV53alLkY/AkHT7NXYlrcyTBOFjrA3VEfjbRxDHjZwn40mCBBI4/gRJNhC8sYWIM\n760feoDufuAy3fnJR+hqtzMF7M966gUissycB+mDENzg+x9p5tjfmDwGSYed/URowZrDOoIHOwDq\nOSDfWGpyB9G5II3+3KpTgI8sVTNkchn4NpBoImeHlBlwclo5oNWXMurNaHcskyaf0C0jQM7LYIXJ\nCROR8D2nCMhRUJX3FWWeRolLXgIUr168a9TlRF2X3EDn6NH3r4Ubh+iQsTPg+5IOBmHrOQerF/w+\nuS/cZo7dMay5FOwnMiTIsSllGbNiL0Hsra7kfYkGE53unjLa/5MvfAZd7XYiwJ5SeklK6ZMppaua\nj/uUC2sissycXecY5W43RAMyX3hb4GjqD/YTbU8Ey8Aonf+YS9HojTjRoJBA7U0Q59edK/WcX+ta\n4xIgvO9j0FKvWQskl9AtU3zW2TNQG9CiQFduIBcFSaN+IulX9wG8wPY99B+n6mPZAX7rLpsgaRFa\nOt7nVU60yn4dHHP/Rb8HrgjgkUSH/Sw11JiMJyfNWGlGjFqzcX8lGyc0+SvlaD9XFLALKbEMFT8i\nIoj9bKnEypMPXd5STkRPOnf1X1x3Uoz954jo+Se0r7A9+cJ4QRDYeeyYCz+9iNkEPUPGvru/L0P8\nIEXLxkAPDLNEZ2jv8X7G/vPr7PbvGsDyOHox4OXvwzAmNLnZkH0JGH4w4IWE4gUMEbRGicZa+aQs\ngd/L5+adMyYQxcHT8XP7gqcV8IveD97ntSPd9ANV+QmJQLSqycm6ZaqEsqNQWuiWcZ5HOxHw86Un\ncEkoxuPWJMRzV4Ur2VLo4kG3dxt5LWp/OAajn30pNfp5rnTL0ozXf/FgRQkSIK9GOxFgH4bh94no\ngZPY165247mRsWNd84EiQD7eTMsPxpXArz7+vJ9FhNuH4LxfV+8dVrNCt4Ri7DqAWfudwYJMe4vg\nFAC+/o4A8Pcw9lVO4BwZwduA1h5Zwl6L8X98I1IP52b96j6AHwQ+dpwg+Bg8AC9laBmmMJmveJKD\nSYvjCsh2G2Mvans+Jh0AnSb2zgd8BPC9QVggAvz/+YCxtyC8D8iSzGz6gS5ME0f0boJoTG2ccxv7\n/f1sgnEqcUGqACGOAHFswK77L2+2dGGatK52OzWNPaX0gpTSLSmlW+67777Pah/84FwBm9LeoOfM\nmZYfBnyxb5RAFLLoYwJ4qKtzcLPzl8TnweUgl9aeBHR+HSytAaiRgfHAiyYC/uxxsioZqHNGbbxU\nxu4HSbGOetuP+walqNgXaNr7JBfsj+IQGGzFVYp/LTgwbBn1qhtlJiNXOQHjvoyJS8bWOP2Iz4XW\n3v3+aCKQv++S7jb9UBk+xpL4GqGEgisC/FmvmsXPgVFhltSj3DI+sEe16Y0UM0kw2D8y9msM2Idh\nePEwDM8bhuF5N91002e1D77hcoZUP0dSzMyZlrV39OJGqc3Hf3h2s/pVTm4QE5kTTyjn19ll+CMz\nj5i8PU60NUrtXZ5DY/5eNqRk7PocfIuf8GIHQI22u1FysTp0rhmpGhSrDdIpiYBVGSXD1/0+gO/z\nvZ8Lztm7FjWrNiezomqBYT1BrLKTrDXtx1w7QRB8oM5mP0Rsj/QIhV7tNMZupRhZyAyfyUooYOx4\nzH/TDzWxcI4fXjtn/IkgKrin5JqtD/jy88eRYng1crXbmXLF8IMjazZLqxEGT/clFkXZc/hi5zAr\nLwri7EimaG/WcQYeuFYq8JoBNi2to2BYyLSyGnRSopHbWcauB3BLf5/B2HeUFPB96TJIqmWGMSPV\nMvDG/EltP0o6iYaheYpRiuFrgMFTtDUahg/MP9wejnXtMPnttErpnEnI698Kxo4M3yvHoFdyOjBI\ntDtIKoOhT3BBAAAgAElEQVTqyNg3sMKLmHnr1wDr2Wk3vWTsmiB4E0ekn8+RN0M3TpQzYgqZ+ZJu\nBXbAncvXImM/icYzuVwSSZA37pc9fnXMAuPf+zLAm3+Cpd8MwEcPuPfwb8qYgo46sQ6G2skC+3ux\nvZd5en7dUXEHqgYhBPAK+Mjwp/4WVPWX0G4AkIt6gX4sQc4DrS7j/ttEEGVtymOKgDfqb1UfwQaJ\nJQV6vf2+EgGYqZqnSQillcrMe30tVs45b0tQAVMAsp6MRb/z3Jmgunju5DUy2yMzD5xD5x3GrjV5\nDbY8djAjNfpe+dn6s+zfBmA+I/A6nvf4O8bkojyZR4+2dPHg6jtiiE7O7vhyInoTEX1RSumelNK3\nn8R+sR10mVKKrUmWmfsAzhf+CG6UuolBanOU5oyzvOuK6H3WwSC07jJ5ToDza5+Zn19H0krM5OXv\nlfkDo+phoPLvPTD8SK5AhrTK2bU1smyAejCzUXyhhMvwhVvGXNMkgD1g2ngOofsFJwjcDwZPA7uj\nx7RbMNT60usqBRk7A7hJaLKrHRkMj1aKURBe/o6JaxtBhIhIAK/+7nMuIPvau9TkcSK44DL/Ud5K\nyfaPx4qkaH/wNNTwEUdYug2AHW3Tl4/6Uwuensj0MQzDN5/Efva1lBJdWHdhirANkkYAXtT/2E80\n3mi2m+4KgK67RJt+oI0B8ExHfTHLPdSt+XvXTuq4ZOaeVn9+3al3PkoN1JdugGkBA0e9GTVQBHBM\n7ol0ZQYhw6iTXaWUMlCXyOrKpUkrCHKrnCmnZN78kz3GDlp6lWJEqQG5HQZPm3Qz/v0A6qvvYuxV\nA08RgFvA91YpNaiak3mz1qrLLmNPydamnyPdjb8XIurU8yWvafQc8c/nnf5NKfSUyeU2a1XbN00e\ng57rLtM6wxiZbuCFg06Nf3msnutmzM6OGLuvCMyVaC5vFikmbOfXnS7qs9U3mVsp7b2NUZF/I8U4\noMo/uxF8sTzEoNeFA8tSNv3I5F3LXseM3Q4w43LohUTjBb322Bqt+0WfGzKzKDAYAz6C0xQY7vX9\n4brrCNRcH0XGsOVEgCCXE1nwE/52dQ77XC6Rjx1KBETaewuqasAfhjEd3y2LMF2jnNHfzpOT4xBK\ngfbu7J8nFM91Q9TyG2ocIgDqfa4Y1NJb4pLW5Pk7znvuKhk8BZmxMnZnlTISLGe1C2OBj+HCQefm\npFw46Fx3zcFKj035HfKaDoNw6QGTP9w02ehqt7MH7KusgqRR4Z9NIJPI3/FGMfCa/ZZSgRqB9IKz\nzNz08iG0kksH7pdNP7JO+xKJ0d+8CiSaOMN0j62x9wdqKK0E/Sg/YOCxnXM2dsRt8QN9ZQK5kXXq\na5c96aZe09gGOe637T8nav1BwhEGQ6uPPdo+ukY8EUz93ktEeDIzmaSFyyv4cQtvkltN1wLBj1cE\nPjP3g+SYWBZN7Ohj32C/G2z3GbjU0o09MpBc1tMYweJgXU5GZuJjvrj2nWMXAgvxDTARlNJe6ReV\nF/Zwh5+Xq93OHLCPM2cgjWztDcSfiaREA+V2ldVKyzIXHP1w0w8+4Afe3U0/LpXXRhttCSobeAhX\nXTJJNnIgRRmD3sN8HphTlVBCH7sGLQPg0++7si1Hbdy3HXLAEF00jcmT2r6brH9eEo/H2PMEivJc\ne8Pk2/ZE7YXlGDzFejfRKoUfg1X2mbyXbVuma5STYwlNjqdfEAS8/36AuWn4Uc16dQ5BLEXaIIms\nxs7b4yQXumUgT6L2Oxo7O8rGlR9ci2mMmLGTxzduebVizh90Lim8sO7cvJWLB6tZxHGnJr8Ae9ww\nwMg34YbgRhHZN7GUwS/eNKYzj8K6jpgPIs1ZPjz+8lDqhBhsXXnsggE8I+uYAo85+zVeVliGtUk0\namltgHrafo+PfZ8NEpeiTd7QS3Fm7J48YLItK3u1/atuejUe+NW9kgImeCqAOov+NpmNnztAacWc\nG6l+9Lfz/jo4N8nYPSlmNTF2IzPlRDnjcxqVGiju6mVb2monqvqpzwGei3oOOlZTBn3OuMLztfrp\nmAKXy1ZINHb1Mq1qYJyvnf5tGar27gVPLwIDl3ErL6iKq+CwvDCvCA70BMGfYdy52u1MAvuRY1O6\nADMqgzlquxsxA4+/j/tibaxq41FABxjSBaeuhUyLNkA9sQsvqGaDp2UEM3Q5SH97wNiJrK6MA8xs\nH0grEUtFVluPtQYkx+Ny66sXoQcbCYUsky9cH8WvFdMkFwYh0v0CqPlaj9uT+ntka0TJJSrny/9z\n0hROip13DnxujkTD2rg7meG1G2g6t5ixI+ATeRM4BNtrTIqfu90STX1eYKWIx4S1iMZ9Frd/U0qd\n2A3gcz+Qri4nWq80w+fPXlyv3GDrxYPO7GfsXyntnX/uYAUhGX5ftG16Yew72hqkGL6QN5zzZ1oT\nDOEbe6DrUXC/J7lsA8BXWjo8bFVvxBs7BQaR4a+6XB028ljrEhq2H1PH9aQV+cz3aenWFaMBvO1n\nGvCdz/AwY5S3X3VWcmE92NPM8wROKLlEBbGYBfN2RMIG6QRPef9qe8PMg/69TH78fzUxbXTR+LXm\nOa7g2yMjTb7LGVY1ZcoN8MoxjM+dTDiymvk0FgRxGL/Pl1zw/iP5QX+7thO3aqD8DJeii8x58QZv\nxd7lPPYXvf8xNwS3n1a1u4KnxeILumt4m4tr3E/DI7ndMAx1FXEa7cwBO4JZW/roGXgjZmAvRRiZ\ntlxCyd95mwr4kIbsMfNNPwL1CMg2eLrK2WSnskTjglbA8FddVhY/y7SnATwdAzItXEJbKQZBjtR+\ncCLAYGgFszSeQxQ8RW3cY6l9IZ+xFx0klcfk9Vc3TuiWAYYflQ6Itp/+jqUAau2abC2bLD9FWbUm\nwDywJRR0677ZKdV++mniSHryqxIaVroM7r+RVvY8Lwj4NpNUb89jYj2NHSwOxhKdLXk8aezgZlnl\nTAdoPOjH4Pm5FTrQWMb0CeLFAy178mcvnvOBHRUB/n+RYoJmZ+xphjzoIDrN/SvalBYkrTMtALi0\nQcnPE2nJRQNsofOe9s5sAQB5I4KhKKGwLxlZhKe9Nr3RBsO6CfDlueGAjJj5PiZfJ4Kg6iPWV5dg\nhglKUfCUAR+ZPLtlXElHBUMFsEsmL45Jau9YUgBT/lvmabB9UAQMz4GvXc52kuMAM7pf6rXAa9T7\nE0Gt3w4vWhlry2TqnMCwd42QIGz2ALhh/sFEIGXPEdghVtOL58UxGKzZEuw989laf+u1AKbdVsd2\nJX/ByJuCIDo2yBsOVlQGMTn1Gl/4M1sxaZ1GO5PALpdEcqmkC/y0GXVQF37qX/OMOn6mMnkI6LCt\nKXTFONlwzBZwGdhPSzFk5ry0tiVmm8aOLMLV5GGg4hJ6LzMf/AGJbomongq+8IKlIS+TNAqetjci\nWe11xUlc6ChxMkx5wNt+8ieCIWDyAPimP0erF1LnzI8HO3v4msoAsxc8dS2hPBHsCKqaHIAAwN2y\nC3D/Cz4XMyWaSGOXHnMiQUAY2LtRWrGT2RQ8V2RplDeNjNkzuYIx2IsVIeyfyLpiqkSz9hUBJIIV\nd6CfzRirBdj9tu6yDmJIZg4+ViIJ4Pzw6BtiNPYDLa1UJu8FT6VEAw/DKngIeYChZXM9uRlQJ/T2\nsy2Fugr40v1S6vbj7wjUu1+QsC9IKksWyN9RivHkB8nAZLKODQA2L7Zmo1T1Zg+0GJBl0JOlG9k/\nZrYGwVaHyfNtRSlGMvOULPhFUsyYiCQAf9r/eEwaqGVcAdkou6WspMMTh2WvfC1kkJSlHnlus4Oq\nuH31pWuWeh7666S4SsqX3qQYn7SsOyvFtOApMvZSrcVR3MqzTZ9b+4rAxUl757GGAI5ZqDewFDOd\nA//9YJFi/HawCjT2czjT+gCOwY0qxcASqgK+CKrI7YjGm3bB0eTrw4ZpzsWXaHjgrVGT74Xd0Tyc\nuc7+vCvL2H0GZlwxQemAaCJoE4ceqKjvSvlBsle5vQkk9i24afVm64fvhyZvyH1L58i4nWbmpoaM\nCbaO++eBbOWq8e9otZSAL8+N2Ws31c2JGL52v0jfO4n+XdeobT8M+lrwcyHzEqRDCOUndLnI+ity\ne1ltVF8j/Rzh5LfOkx0RiIMnM1aXixs8tf526WPHCo3jqhlI1zQ2144VmWjEBbnybxLNSm1XceTc\nIsUcq0Ua+0XwsfOM2gBcP5wXQIrZQj8uD5srRjN2LkzmsoXOC55aiWYrHjYv4QRfTs3LSevFbmyX\nf+f98LWT/fu0dKOlCgYuAVYGDCVjb8k6ug5KZbUAivwdXro8a+k8cSjQmuyReKyetDKCorN9ZfJU\nt5N/j0oHoO1QxRuc1Qszdr79bSKwmvl2YtQ+Y3fkhEBaqftx4gddJ62f+v7E0h1IK4EN0hCHun1R\n16i6cdhFFciMPpOfasWYzFPJ5AHwuyk7F8byynXXoOTiE0GZ9EgkGPsixcxrWE9FXshNL4KkzNjX\nGJ0OmHm9gXrZaKWY8Xe2ZnFiEUox62yZ+WaSXDB4KgNA2mdc3Id5U4piYFozzQ5j1xJNFNxChm/t\njgKQBVBLJi819pqsA+nsEaut16JztPdBT2Z6lZJdjV0mItWkrCB4WoOwDsMnEu4XYKn1HERMhs9Z\nul9w8kP2isFTLoVcVzsgP3kOIVkcDK8FryzksUhZQh6LYeBGY9/nYw/6IZiPvvSmsXsW32YMwAxT\n7znaMFBnJ3iarWNNGhtc2zRkbTcpZjX9rokj4gv/v7higjYGT50LHyyVqp+09y88fx5v1AYeNtTY\nlTULmPm2Z33PWq1WHlD3jY349kgnU7GTjH0aSMDk5SvteOLgz8u/H3S7a8VgwgnWCEdduTHC8XgZ\nVBDMXCmG5YTALYNstNaWQWZeJZdpvwjgTkkBD/ysv53U/3ysYekAmMxWUxYugiK+RIRPvTmK9HPh\nJSJtYTKT95PB0lyLZFc1oW3WrORA0gNNnp/9qOYQAyx+LwfhXUadbUniancEssTBU5RWfDm01FWQ\nNluMOSPn1760YoOkWqLBwnoHC2P327mVlWKyvPAA1JHGfhGWSvgG9i1sfx72I3ViLD27qctAz7XC\nEX8HwM3D3DR2Y4+UjF0ArKexy1evyX6+jJEvvS25p+MM5AcJWrJfptfLdHYGuyh4ytu7bhkELdDM\nKzOfJggjxQxacrFSDDL5cbvoDUqZg6HBqoZvG587M3OUehCoVWmCzr4dqlZ9BIeQei7EMalrJ54X\nbyU3An5jl3aF5wfPMdFJAngnAJnHVC1Y5kx+WBBNxgO8ev/G7tiLqo9IHLJdEYyTX662VkkE19OY\n5d/l37HUiI3hLVLMrIaJCEfMjqEqo4lOg5Zuo9m6vwH+1I+MHaxZaGvkh9bWjtYyBlHz1tpyq83u\n6NkpWTNtrygrmskHgN+L7Yn2v0EJg6S4iuDv4RdeVFli0Nub4CmsXkoZ3TJ1/w7gY5JNVPullPF4\neJVSUJYAAJfvTpXHyN+Tky7SFU5yfI1SUtvXUgMgSxlNHuyRzV0zg7H3IEuJ7/ZiMk1jt/efwZKo\nTQRxTGb83/jSpeTirFIawOqx2Z4vzcy5tLWVXBzZc9Le3doynY1nsHzK9tWGF6VKNLK/4YXGlyMg\njhVfhOPnNNoZBHbQs7djrfQDuPC4VMKo9Xno3wYzsLRBySAp96+BmbMveVV96Rj05IcNWYc3ETQm\nXwbN8thFw7/j9rKf2YgH+ETOK/C4P0hEwmCoZmbZDOwu2D60BDp1U/icTYbpoPult36UPUidc1+a\nzo3nFmWq5jS+5EWyyApOVesm3Z91cFP2S+0dg6c4cYRyFTP2oou9sbtGnpvUoeV3NgC3z8u4EiGz\nHyIifNl0RBCM5LJHYzfPF1iLWzkOK28aTV66YnC121lDAsundfUijnXdScaOK39f6m0S8IQ72ybd\nnkY7k8Auy+22lGK48KCZ8yv06oxqJBdgHdDfLFgWtKStUaYO+8zceRFC708Eox4oBt4gHzbLzOUE\nwdeGt+e0ft6O/0/JVmWUwJ6SHajMCiuTE44Pj5mj3mzYLgL+xJz9ErYYxGya/Pg7tXMWDLwdU6ng\nqvdDLvjxxDEeV1DsK1tmXuUn73npPF1ZlwjA5C4X2Ou5UT3WlWDsSASsFDfVpq/+9sacJWPH+7nv\nJef7Jna0NRr5CcgSGxWqtGLIT3bqscsaMpqx8zWSZInlU8SRo17jC8YPLiKAV9OG1uQbLizA7jZM\nc+a6LFWKQQCHhKNQikH3CzxsXFAItfd1zsor2wpfBcHTSTPF6pHIgvkYmJkRgR7sMHPjiukbSHju\nh9gVMQ1IWELXgZq0g6c5RPzAIAZD5ZLbc8ugnVKec4ZjlS+5lt9ZX7FnGD5p94v4bs/HzlIPn4eZ\n5DB4KgPGzkRQGbs4TiKq1R3t6sXx7u9YmcnJbCv25QWeOZuX98OPZBn8iWCfi6reN5D6sA4SljZ2\nnxe5OhLOJJzkVK0YRZYKrQMm7wE1rwiq5CL65TUK3S9bjQs3nAO74yLF7G6odR1NUszaAXwiMjVe\nTH/kV3e09JVgC5E1qzF8K9EwkK49xu48hNWmCAOssQ47wFbuAPYnCPl6OtyeqNkU8YUaXaezJBnM\n+Fi9GuQegLdkGsvwctaVCFEDl5/ZNfnVc4t871LGkD520OSJSAOvWF3o4Ol4MYzMhNcUHUKwkmuT\nq61lX8/NuFmKe/9lwFD3EwB4UfuJYzI6U1kycCmhbGACRwBHsmQnCCQCebI7+vKmBvxhGrPjBCFX\n+HJVI7+DkwrH34vqx0CysVNXGyRINLz9IsXsbrhUqjN2Bo09DJIiM9eaOfrVq5aek3KzSGYuI/Ko\nE2IBpVW3w+WCNWR61Mbbdyj7GgA4PoSy5ozsjzRWHfR0NHOjN2sww2sRSS4cPJXsW+6HyAKvYeZD\ny8KU25dhUPuJZAlVgkBMHErDZ8aek8vAPYdQdfZgUDX7gI8OoV5daz+JCyW6AkCtQMtZ7dRgu5es\nJQF/ZkwmZ1I1XuR9lkweJRovDjGOHT3WeJyroKcwDGBJkXVuuKCeeTEWNuKYpEOouuv6MQkRAX8D\nAI6TWWXsixQzr6HkwlFuTxsjii88+kx5+/b6OIexO2ykJiJBsJXlIWTBOwM3OcgwdGxnkoG1GhzM\n2KxrQQ/4Brzukhv96gDgRjNnxt7tHqhesk72WG1OqhIhJ+uEzNyxNeK5SaBW1j/F5H2fPAOiBOR6\nP801orqtt30sP2V9TWWmamolAlrRMLEaEV5pryBarfoIk5mxQcJE4DH/LGyQJhhabY1+vyn2NUkf\nnotGFsTT0h2Qop7rtFvJpctOpVOQJeW1k5KuijcI6QZrS6HUuy8BcpFigoYa2NGW/aeBFFNLBOgL\nHNVjb7qc1sb45lophpeHgzqudYesQwOBx9gxoLPtW9IEkR14qLHKuhnyO1misYzd339fxqSMlmHq\nrEaSjStwgDYEdgNaO6QbAdR6PwTH6js+mIHXIKkE8OwFT8f+lHRRLx08tQwcJRctV9lzxmCo9rfb\n1UsHKyomq+M1IrXvvpAqERBN7NI37j1HfRlqfEXun1d4NgjbJvyVel6Exp6Teu6IdhEB311Vy3RM\nn5fyJhYBq+8XrnjRgHfVWavwBgB/KwFfaO9bIIJenkxO0uuvJZqFsQetzqjiQh44UgxXUuRl4xFc\nYGTySlrpbKAPg6QK8OUysyZfABtR/U7yRSSVBP388Mt+lmiQmbft/WDb1K33L+QH6TQhsuAkg56K\ngQfuFwyeYpBMMe1hUP2ojZeBXNZpGTjVz3lMnqUbIgySNj1erth0kNS3bEoJRfnbs5VuOHiKiU5c\nW4b7dOKSZpcmJtOLa5GzLSkQEAEEcJxEk/HiU70+0X2WMqPW0jOh1IPXDmvIYGJUW+3KMdWCp/JY\n2FFmZMxg5c9Z4SuHyRPZImBH034OOk00+dgWYA+ar7E3xi6XXBwtV/3TBcbaD9KmKN0sTVrRD5UE\nfKmlN+mm+Yzl9yJLUfW4nSJdCoTqA138h5P3EzJ2f1ma6kCaAEKwVNmvXCvBUlk6OJT8kOxEgIFE\nDDASTVa3CTgy9LdrZEsKIIDLpByt4ZO61kSkgXfaP38/lg7IiaUSfc41Wcuzfia7SsH3xUq5qkoo\nQ7sWclVTxMTLpQnkdUZJTz5f/NpC7M+JwueFv18ydl7h6clPnxuCYpvY/ZiMJw3KZEAdeNalAHoj\nxbTxLONKEhfYVy/33aRerb03Zm5t1lxmRPULHDmNdgaBnW1H0wXeaq+39p86MzC8Gg+1cWbmzaak\nAR+DrSzR2Ap1XAvaOgdW2Uo0a8WcxLJRWK3kwPBAq2nsgd6MAxtkBumh9gZw5EvGQCKWDugiicYE\nT0nth78Tq0rKY+FJ0TJ2mAhAWqnul3otSGnpUutWwVPBwHMiw16xCFjoEMKJAJKy8JrytpK92uBp\ny0jFayQBXxKBnBypb5IfspG9Sn2GMBjKxyKrKW7wnOE5WsPqeF+wFUmRlDcNkBYA5ArUEYBr774c\nt7G/XeCLvHaOnXKRYvY07wJ7F37D0Wy8sdP/51Zj8g1mjNVSnxgMZSmm1/vBgkLKBtk5y8luN8jJ\nffRFB7H0UtlZZtaldXb3EzH58fx0ZmAFObnklkxrRmBQgplktZKZ5zTaGke9tKjtiUawksk6fnne\nBsqyTg3HAsbtqf4fB0+pfr/UutW1YIY/IMPn/fsAbmQpnvxE8FTGGzCAzddfrl5s8DS2fsprgRq7\nmfAL6ecInjs+Lj25Ov1y7ADD52vhSS5IEPqix6D0mHO/qWvT4yq1rQp0XEmTIlzht9IEdqypiUO4\nX+TxHG315HRaRcBWp/ItJ9hM1LqMAI6JSzzTHsBSbDMlLqSky+3Kao0HbpA0qSCpAnxHJ1xPUozZ\nT27JF8MwQKITZLcVHcRSQN350o03ULelQFKO1N4laFnAj/Rjl6UimIl+BALZz30ym1OyUZmsYxh4\niTJS2WNOqp+llchFw8elGDsDeCJg7Mzwg8xTp9RADbYO+rng5Chk7DgJ1YnACW7WlZnxt0NJYgF+\nUns3NkjvWgtmLvfPQNnNYNobHAso3Uz3H2XSVR7HrCdvDtTq2uigqpZQ2P1i4gqVyTuumOwTR197\nb/giV+YM/IsUE7Rmd5wekj1SzKrDpVWp+5DldiXwekHSdce1nR2GnxMZiSbrCL7OSG0DLAI5/n8t\nlod6qRzJEtajGzE2Tu7g89Ys2OkvQ9NSO4exY1BNBlW9CSJrb7UMwtX+Hl0xbftWYdG+9q29FxTA\nD7R3fJUefw/652t/MBF4qxRZakCClvuiDcHAS/HPuS9tklOMXcRGfCnOf2VijU+Y1Q4EVaUOLQDc\nY+xucDPrICkGPfE5Gt1VWVXqlNein0gR2iaJxmde7h+JIBf7wtUxMnOppWtJt01OnvbOWj2R9vTL\nipan0c4gsNughC/FDFNiAd6ooW4rL/y2HwNAlV06TFv51QXgK4lGBU9t4aO1YNTbMpjaMnwO0q/c\ntvc1dtQ6DTMrzfeck2VyREQqhVtp7Np2xv05OQy8wyV0A17/dXA6MIhZm9yv67II8IMVBPfzd+ga\nMpppG1miSGaugTfLfjlBJL+f+3TZBQB86EcGjoFn3hZZ7dhPtTKmx8z5OUJHUS0pwNuDXJFzmmoF\nFbUf/n7lAa9MPpbo8JWMvLpkAlLgWshYExEpIFXxhk7Lj1vnmkppVQO+YOyCmW8B2DHOVQE/O0w+\nN+JY823KMNVeWoDdbZ7GfuDNqFsIYqgbxTNqEm84GdlxSjry3qLZuqCQHGBqgpDBU7G9dALwjd/K\ngSoe2r60hzNyvyjdTw3g9rChxs7HhUyOzwO12vF4NSjKge1p5l4/D2Cf1UoGTrV/5VwLrZkPeuIA\n1snauFf1sROg5fnVkWnzd646HTzlCVdJN+I+y1WKlpms9U8z8MENnuI5y+JdWA1SXgtcyTWXk101\n8f/1WqTkTuxdTmostGvX5Mp2/9FCHGnslpnL/cj4wbYfDOkiGsdrI1GOO6XAS2oEEVw5AM4MvAG4\nxpGa6wESMNGop9eJYMKj02pnVmNHLX1tbgjXXR5ZqtbGWGYQbpa+XXj1EE7/M/s3maedLiWKbKHp\nikVtTzSCwEY85J0D+NLxgUtfy8yneu+osfdNWtFSCYkBqfVdOVB9f7vjP67MzC6to7opKkgKfnje\nFgtljcc+GD1b7ru+As/T0h2/uin2JZJ+cgBySqLBIGkaE4hkQFKe267Vi5LowKPPhE8CeCnkPi+R\nRLMFpu1JgAeTHVjLUkUzdmC7RKRzOup9IxfAmWlb6UYHW+UqWEoubT+ZiNokoycOZOZlkjdxMuPS\nJA6+ZPsCDg6e8rWQ9utOMHauMstk7LTamQP2A/OGE+1jb9UdteQimbMCcKUfNlbr+9i1dMP9srKc\nSmjKo7+dZRWiibE7eqBKpihFaXLocqkvF4CHEJlZ5H5RQTIB7K59LWvLXsTkeVvJXnFp7QZVOwlm\nkxQDrDMCP2V3c8BJylgKwKdtpV/dZJiqSY5av0gs8pxDSvdXrFPITOLayUlRxgmiVc30I9znIvbT\ndNwtPBcmGNr773mVEp1ayfWgpctrLVYvSvbInNAUA7jP2P3tJSmS1k8WH8axI8aUYOyy/K8xHrCj\nrLpiGlB77hp+wQ8RKbMFJzSN359Jx/wWxh429JlarWu6wNtSHTHrLteZ80gw9gPhctn0pTprZN0J\nFZEXwdaNejhFpF4Avnx4MHGJ+5vFS1uqpPbaiQHMn9OgGGnsgkXwwOs001IMbOymfnLRjMelE0hW\nYrUTJSIZ33vS1Rojpl2zOYGlesFWZPK4etn1RqQ6mSVd72Zv8BSYttuP+3cmMy/zFAO6ejJrCUfT\n5upalMFf4WEFTMtS/bopOOErglB97BlesddY6uEm0ORh9coTr2eD9I0HbUxtSlFSDEPmRgK+kGhR\n3odqjxgAACAASURBVJTxLN6fSiySqxG5UhDkil/uI/NeJIlS+LItp8rYz57GDple/HCuvZlWSSt+\ncKO+nFY5RHQVR2YdMvkC36DkJTRJptWYuXbwyKBqpCtL7b1auTyNPbSvIWOXQO0w9l5vr4KtjkNk\nTMenysxQV1ZMGwODATOXgIyVEXnfCJbyO2vwFNioklayCJKWxswxS1YxfDERdEG/mwMwtH27madw\njXRtGar3BUsW8Hc26YbUcydfN2jeDgUOIRlIrIAMtkYp6fmuGC3dMZh1nX7u5Dm3fqr98tqpzFNn\nxSbdb1J7V5OZAXwrV7Kdcvy94ct6Cnpq91sjObLq60YweYUv5XSlmBP5ppTS81NKd6SU7kwp/eOT\n2GfUjL2o16Vt29IHpBiZWLBqrEPfEDkDN8Ze7UvZySQF7T1KmtgINqIAXDyE8s1Hcv9qoE4AEblf\nVp3vfpFL6Aioa8bo4C+5ObOx9Rez/6jUgAQVV2YIbI1yAEugliCnmTnVapCqCJgEs+pmgaJh3J+T\nmSD4+7UUQ6a/L6XtP+t+Iqp5CW6lS2c1shLPRRn08yKDp+3tQzoL18vaVc/LRFrkteDEJT4ulyB0\nUrorLhGIGDtq7HKlwOcmJcNGcvTrHTEI265FI1fSbKH9821MKbLUtf2P/xf1bMtqsFJyOVJaeuvn\n+3LUn27w9DEDe0qpI6IfJ6K/TkTPJaJvTik997HuN2oHnWbsm9ISAqKljwTkoylNn2h6MXb1saIN\n0mf40vdKxBH5rECOSC+he8Ei1llOQsA6HHah9lN0sNXLMG0DKbuALINVcgCjTU0CuCxM1al+qvvv\nBBDsZOwFAoOSgdftG+uUzFzZHQfhokk+89eTH5lrZFYd3A+Si8vAJeAHTF7HM9qxSlkqWqWowLMo\nEaCuaceTVivHMMs5JFZ42Xle1ESt7n9R185j7BhI9CQdVV7DMSrwG5T4GkkpRtoU1QQhbZCQLY79\n/JJrPha5asbyvOyiGf+uY28qH0bksTRZKtORIw2fRjuJb/oKIrpzGIYPDsNwRES/RETfcAL7dZtM\nOOqnZaYCalWnvS0nZSLSgQPgHOghImDgMtgqt9fLQ3xotV5XQD8Uup/DOiSTR3Yhg61ehunKAaGQ\nsUu3DDCz7IJTAdASjD21fk97jwKDcvUiS9VKZoZFw8btyZ0I+r5oTX4iScoG6WjpRZwDJhBp90vb\nn5RoeCXFshSRP8lxhinvw61oWUB+EhN7715TwdgxPuFMcp59MYuArmTmRmMPGLi3YosYewsk28ky\np5YARwQJR/Ic+qInCBF701Zh268nAr069gLPkvzI2Jsigk7w9OCMSzHPIqK7xe/3TH1XpUkpBium\nrTpd+a1d+KSCpEpy2fo3SrEOxfy15MIDbxh0MBSTJrxEJLlslA/bRrER+bBJ94PQ6ouO+BNp5oQD\nzBuoOMDc/oEEEOzOwkQnEH9uV/BUBVsl+AVgpiaCun1jrzkJmaGeg67W6JUOwAQifW6lnkeTaAAU\nWVfOnpae98pSKKFEtenrNR2g6mO219QLMOsM46zIjLTsRSUoIo29BUl1opvMzpRp966kJ45VvlBe\njX/F5KVE054L1S8mCFd7z3ps8jPciKPOb6nEMSf1Qg25vSf1nkY7tSkkpfSClNItKaVb7rvvvs96\nPzLTq3nDm6bVXsBRNFCLDDDPBqkZvvbQcsBGMv+NfDiFpaq9WUkGNzHN2T6E8h2mfcRS1DJTuxkk\nEBCB+0U8nJrJy2p9GCTzBnAJmLzenvuU5ML9M4KnObfJWnu0MVO1MXZZE0Yy+XrOAqh9m6JwxSQ9\nmanMU0fSwXIJ3opAero9mSm+Fj4Dx/iEJhR2P9KyF03gcjKTzh6fsUsn2I7iYAL8ogmiDFye2T5H\n4wpPW47rtXBWtX3RgC9ruUiJRk1+wrFWJV0gY+P/0tYo3HUrrQhIonnkbH8a7SS+6aNE9Gzx++dN\nfaoNw/DiYRieNwzD82666abP+sv4Qd+IpZhi5kKKYc+7qtmw1UEPlazReexF9uvsOSkBEWlpRS33\n5OpCLK23huHb7VG6aROEL9HIGi8R8CrbpKsTy4kgK9bpM3ntluA+DULtHLBoGJ+zx+TlpKjZqA48\nVtCSoCjOzQ+egq3R86sXWfUR68A38JPecL0ioLqfnKiyVHPfAgllTn+Bc3ZXBF1uspRYUemJWgBv\nZ+8zJrpt1f13ti+Djk+piaCRK95W2SYFacEXxBNxgpI0KgjJRZCr9gIebTmW39smAhlLK3ZMKXcd\nJigN9bianVrXljpNH/tJAPtbiegLUkqfn1I6IKL/hoj+3QnsN2wc9MQbgkV3pLcWX8xBpOUKuWyU\npQZk8ASZvPT0Eunl3qgfB4GeCmbai6uTdTzpRi8nZS1w2c/HNKeWh9IPxcDey8wlqxVghiDEYMZ/\nR8lFBk/lOSjQGixoGUlH7F9OHPw9XmBQSSVDcG6wvZfQpHRlpcmTu73KtpWTViC5qMnS0eS3Ra/Y\nJEGQE4F8XqbuQForOyZ8y8C1XCElQD9TlatHynvE51yvtRg7arWrckDaGFFBUuVAa/ZFWd9JyaF1\nItDPfCsAaImgLk0ig6p+ouNpM/bHnKA0DMM2pfT3iei1RNQR0UuGYbj9MR/ZjsYXEm+IBGSZ8rtW\nF1j7T2WUm19zpas+ClfMtPzk2uEyKk6kkyZ0LRehpQuJRgOy1Mz9xKVenDMyJ1mjRPbz90gNVLpl\nPKaFtkZXouk0Y0OmxWAjv5ePRckMTvBUvjWoF44PCX6G7UpQHPS1YNAapgQf9ao7cc7S7livhbRB\ngv9c9strJwur8fd6MkNf9teE0f2FigBcFZ/orXQjJ0UMhkrw479791kTgeJnmAbPkc5U1S/gkBME\n7xttk9yvy24wA5djIVEabL8BfGV4sL53xAUp9fD/RwGOXDra2v6VzkjlMXIa7UQyT4dheA0RveYk\n9jWnHQCwqxtSSwqU6ldfr1o2XKSlG/+p44qRgRucmXnbbdFVImu/1MZVkNQGW3tgEZ3DRpA5yf3w\n/1GJAMXYeaBGrDaBdCP2o0AOGLvVTKluK1+xF7HUBlqF+qFNYnN0aDlB8OdQz+bPuUXAgnOWjB29\n/h4zb6sR7RyS9W7ceANMTnKSy8nrj90vZsJP+lp47hc9sYuqn7DCUwxcjAW1fWefu763kxyvLnLQ\nz/uQsqesvyRXFbpENks0entJKJCZs/ul5p4o94uQeoUE3MaOYPI5KcbO0vBptNObQk6wsZvFXSox\nKwCm7ZXVlAB+tC16gmAtrYg0ehGIURqbsE6NwVbs1wEaCeDugOw1CHmarBwwm96CFg/UlnkobI2O\n710vucVSHO1rIsDIyR1ak5eTkC4aJvt52wjMtJZuGZuSYiaZISX0w7dj9Zi88at78sMOf3vnMHZ9\nTamdW9Hy1ngOOk4gJy0pJ8lJ7njXzmfmKBniOSuNPZHuh9UIETJzUTqg2OJz7SUYzgqvaDm0nUN7\n5sMx4hoSdO0Xb0zp0gQCLzyJptMxNmmnxqJh4zloReDMMfbTbijFoJbOGuK+zFOpB0rGrn3sRWlv\nRDQBaVHgyvtWVSJFerKUXOTDKa1cciLYOA+zq6VPbMVq7MkMCiI7gOW18wZ2tERv2ZAMilT3T9T0\nY8te/eCpDbbKfqr7kFJMBSd538Qkisxc2iC5X5cUEP2D6HcAvxRSqxQ3OJvFOTtMfhtM7BiHaLEX\nzdiV5CKvnVgFlcFei15ZRS1j11p6s+yhxh4x87a9lVbGSU5ajrVmjs+XllB0kFSOkYGlGLQQVwDX\nwVMZnMXJj2tFSW1/7M+tvrqQXA463wa5Xvm+99NoZ5Kxc4Yp+tgZ8OuSSwC4Su11mDxmjDEb1VJM\nA2qlE0pLVdFyxdiv3TIyIi+tXLLEqHzPo6cHGo29YH+Gfsk62kDNglFHGrtaoovlKu9DendRA0f2\nqtjiLCdIA7+cG4iz1CO/kzVwyeT5f81qqf7vSTEqMBg4Pkw/2xp7C+AMWjJQOZ4DhYAsZSadiBRI\nLgGTR2a+mo7VIwJFMGr5fPGEiP16lSIdJZK9tpUf72NTHClmus/eRCDlTfW88DiHuFVzoIkaL0Hw\ndCMmDpXQWHSFVf4744IsJqhicmqSy0KTP93qjmcS2FlLl1FxIhL+01J/J7JLJa7iGGaSZfkQthuo\nZIa+uNvroKp1y+CAVFauyiKaH77L+k02RkvPrLH7jL1HkFMMvADTsswcGbuUK4gYhMgMVP5uOdEQ\nacZutPHBAzkSmrxMRPLlJ9TqW7+WPfiaKAaupBWy/Vl7vXVQler5mWs0nXPrp9Y/SOeQmLQcl4t6\nmxRs35h/rklZMqgaXyNNBKZupaXHjN3GcOT7fJHJ87a9lCthEsLniDNGUaKRSXydIEVSlsRYmqoG\nWR1Cckxp+yKudvn9Dbz/A9Evy3PzsYz+9jZ2Fsa+p7HkIhMOZL8ESyItuXAtcyJm/l5QtQGytCmp\n13JBIgJvr4KqQnvnOhvjG5qm/l4nLklW0x5O7UuPgl49LCdrPwxs7QTxNValH8vtB524wuembG3S\nsqlskNTOzdkPgpBk5o11krI1Shsk70u+gKOl/FsJiP+uGXs7Vu1Xp7Z/cS3kagTfViSPC2UpzLa1\n7NWPQ5iENk+Wmo51VYHaPi+9s32XfU1eEYFe2xS9uEKbhDTDV3WTXAAfVFAVA8Mr3E+BZEAxpnAy\nY1ecDJ7yd0hy1dx12ViRuf9I+eEZwDXuSEm34s7yBqX9bbzApS5ztBQjiv1wffXpxvIyUy+hhN6M\n7pcpgGLdLyzFaNbBN1c+OOP2GvA1Yxee22Bg8/+9eAg78bBFGrtcfvoaO9THkcxMPJy1CFRvE5FK\nIfUmJlUTZpBBVa2lovtBMnZZrZEDwLxvXc6X9DXq0gSiU39q942PR20fBEOltBIm3/R6cmoSjZa9\n5LXo4Dnqi2by6u1Q8pwFY58ItZKl+iInLSGhCMlF19f3ts/+aifMPNVOEPtsg7QCJAfjULjCkzkg\nkoypiUBMQsxQeZVNRGacWwaeXLtjZfhFE0d+H4PZ/4QvyPzZzDEMeuV/Gu1MAvvB5GbhG8KSCwcx\njmBm5iCGnVHFhVfaewNk9So9ZXfUtkkioTdj8LTo5aS0R8plo3zIpT2SPyOXmdKForV3ZPLI2HMd\n2EUCcsDAcGldGWEnB3AxoMUBvRpgTBqEOpAr0IJXmXkUVFVA3b5Dn/PYn5PW5NGvLqUh/rt8C5SS\nXCZkVf52KaHMYOyYrGV05V5MTllLd9OPWpaSREBc122vy//y/7OC7d5kVrS01srt+kzbY+aNgVvA\njzR2STRkFrYcz2XwVjX8HdnEJ7i/LzLRERk+TAQTULOlGu3RqBQc1HdHDGcy8/TU23pa+hhtjGdU\nB8C9pRj60q0UU4DJC6Du7fLQ+NuVdKML8BNZ+5pk/r6bxdfYdS2a3Uy+aqyDP7D5eHGSKwMpBq7f\nfBT7ktEGiWDmyQ+yRICs/aKKeg2WdVb3C0o0cM6SjSp75F7G3nR6dc5C999C1ib3K3lLOIR6sXrR\nhc/K1CdXR7qejt6/lVB0PR09mcnXEPI56MJq7RmW56y1d/m8wNjhZx6AusqYMzV2thDjSpFlTJY3\nx/8xwAyaOUq3PHbMRACuGGbsGSWXhiNHQhrGFftRX9RYOI12JoF9hTOqkCUwEWH8P1XQ1f2SUVst\nfRM8hJy8gA6Rlj3nSDFF2ynH7cUx5SyCpM5D5QSAiDzNdLdbBicCXKITWU83n5sEoTogAbSQmTHD\nlMxcZ2dqJs99nhQjJzklV6H7BcFs0t573D7r7cN67I5zSPnblSRC/ipliOUnJAI8mVXQAqfReP31\n+z+Z4etrVMw572LmpZDTL7OtA4dQP6jni6hN7HLlx+eMdd3bucX2yMaOGxnbiP0QMdPWDjT+X2nm\n8hoJu6N0xW2K3Y9x3YHkgmSM/375qCeixuBPo51JYOcghlsELLzwUqLR7GKzHZQvVWnpva4JQdTS\nlkMt3TD8QdngtFtmtHLxoF9P0gc+VBbAJWO3QdXILdPlVANYdnvBzDo98MZB72ipvV4qI+B7iUtR\n8FQyZwZHFTyVmaTAXts1aoFMCaSlCB+7ZK+DfiEI90spxguS6rK9+hzkfuq1c2IsPYKlAnBxvjIg\nLa4FrhSIcJXSVhjtfu62wSIR6BJOKPK5sxY/SQRUPAtWZm6dpd7PPMUEKL4W275VXq3n4Kx213my\nRxcfkE0Vx6z3YzJSDY6MY4c97uusCSKXG1iJY73a7UwC+8HKDwy2GVVr76sdTJ6I6Mp2nFFlhhlR\ne8ORZeY6oKMrxel63EQcbHWY/PSQr8USDQFcauyeW6Zt77hiertE5yW0GcBZp4KjZjou08kdYJLV\ntsqCxQ2SMiB77LUvQ53kZLVGdLkwo0ZAZrkK/e0srVhNHgpxgbuGv98Ntg4O2NQ4RFbf02yN/irF\naPWTtGKkHnmsXbPBoj2yHatYmQmrpbZHilWNy+S1pCdrxZTBxg9QG7cSndbSo2ArVn3EVTa/gEMy\n9rqSE6tgIoexqzESSbpyTLXv9qWY8f8rm75+XvZfOurV/k+jncngqbnA6sLbxCX2m7YLr5n5Zbjw\nUqKRQVXFIopTUmDS2cwEMT3kRoqZtpcPJ1ukIv+xSRGfAjeGUXW7g2E+w28uB09aCfXjwQa9tj3I\nDGrJHQdPm82S6vci8Oa8Q1oZrJzAoGVBjgPJVPdb9x/42Me+wfjea/8gy/wKx4fDzE0gUa2CnElU\nuGKwtIP/vMhroSdwdMvUlZ9jj42eFz4m77lgYPTuv9TMZekAd7IUVmH1vWBsGPfFQVK9Cl5ljDdJ\nWdIGPVeTDdq3TccEkQG8q9trYGccOo12JoGdHSKelub6VeECo16H/TWIudVBVR08tSUFqiaPVq4J\nqD1dUa4I+BzkQ4glhk3En/sLDuxcl6tE+iGXVi4MqqFbRmugpF7MQdSWxIaBD9rWOMe77RXQQpbK\nn5GMvX0HuF/Ed8igqpRW1Is5KiBjRirpYwKHEMoD7jkM+loT2dWLDJ7KV+xJLX2A76yrEXP/NWPf\nB9RIHKq00kE8A+yr4wRuwSxi7KiZ6+fLJwKejMVkSY2d3NxvchXcYmwWL+QYkQmH2rHWcERlpMJY\nuLzpYXufUJ5GO7NSzFGva0UQNbsjLpX4ocALX4Mbm63bz8X8V7Affni8pAkVPAXphvfLUfzmrmkP\nZ9NA/USRpplCkLT32UiUoBIxsJobEAzI1k/1WqjEJbG9eok2eK5lYJNoArlAS40CgGEw1JFoVNEo\nlGgQFAN/u3qBhaOlW8mF1LVzpZsoeFqEpAcTCp6b9wYtjL3guXkau9sPE4R5Xrb+88Julkhaaftn\n8sOTYuCimq4Nlwjo6/41Y8c6TuO5gd1RxBs2vZ3M+E1pMseEiF0xjeHX6o4rWPnnpP7eiOMC7Dtb\nywzTwYpVzlSGNkPWUgMr/wLzjbx8ZGdyIhKzv3442WqJAxI1+VrjBdjLeKyNCcmZfGQddhnIHtp9\n/mMr3XjB1mKYPP+dgb2D1QjvS8oYqt8BZLlEV1a+wQJEZeypDeCc0K/e9uVZ+TAwKDNS1VuG5H48\n5p9TyPyJhLMHgqelBJmngXNoi9cOMkmlBMRuqWYJpXafnXPjVYo3yemJPddjVc+LuG/eCo//P5zi\nU/i8tGcegbq4DJw19ponIS3ERQO4jB9JAOdVyqa3Y01JKEIGwgxW7tfmDD3+mSDWSSsgjk0p2Kr9\nnEY7k8DOUowpArZioIYLXLX0rdreLKGEVk/UHlr0n9floRPZlyxCB08tgPe99vryd8iJIBmbGg4w\n0NjFAONKl/IYUcZAgOW69Vhu1zBwyVJFP2aG5jpQ28CW706VLFjaIOuxQhYm98vkGyWtuJILBFsj\nxg7BU/S3G2cHrF74M76V09oga0KTEzwtAuT4u+VqJyV9bn5gsK381IpNTYpi/86KINTYOwb2gLFP\nTNjGlfRqRI0psdptTqBixkiNpSFZ6lJ9x4HR3icZMyc9+bkSTc7gEGrkikjgy0rjhQ2ejv/X4Oni\nY9/d1izFgOQSLX1WcIFrpipPBMENaUFVDeCs43v12FVGam5Mvi8FrFmNXaJO2Bfr0cWIv2XsvnSD\nQTW5UsDtiQRjdxi1XEKj+8VnozbwzBY8BEtm4Cs4Z1UiAMAprLsOJQXY1rhPlsCXXHsMn6gBctS/\nwmtUJRcrM4SOkkGzVMmo1XOxwyFUhjgj2Ssp4BEErsfv7YdIMHaQH3dp7F5QdTwHLXsQ2eeu3R82\nKggAzw3APbK0EbIqUTNhoERTbY3GHsl4MRLEgwBf8H2uGMM7jXYmgR3foIRaOi99DgDwcQllmTww\nfMPkgXXUh7AxdimtjCVXW/qzlWJ0zRkiwbTQo5tB65TWrEADVf5joSsOA7XVDlgwD+EaSQD3QAgT\nUXSSjZUxcD9yIpBJPEQkSgS0LEz+TFQiQEsuvB/aLbkAM8cMVlf3H+xkVoHXSDR+ILlKNM7qZQyq\n1kvRGLv4Xv7uSIqTMRbUzK1bCkoTiOeid54j/tyVDTJ2raUjwzc5HWrs2DyJcVJBBp784Gm1KQKw\nTyv8HgCfk/6sRIPve9DnfAkI3wEwdpRurmwWjX1WW3cjOB1u+1qnmagtjfDCr4CBr1f+THsQbO8l\nX+g3KwnGXlBa4bex6IezpS0X8xBiXXf+bvUC7z0MvL2Aw/rYiYTkYhgYa+wa8Dnxxwy8QQ8wzBi1\nAzXQoZnhCdCq6e8DyA/JZ+AS/PDcJJOXstGu4ClKNBnO2Z2cis3O5X7GoMZqtR9eMXbnWqBDRJ/b\nvBgLWzltcF7HJ1bQj55u/r8+L8C0x6J7dvsaDOX9S4YfAL6NT+XJ7ogAztcImXlLOEJJx5NoapZ3\nvRZ+kDRy3a2A4TeNfQH2nU0CMi7FuF9uZ5ZEsFRqTN7vtyUIBiW5dPVhtgNvnSfXgvNwNk+vZh11\nuQoTAT/88jvNEjooHYAAiwOSBx67HJCN8kCNEosw+YalFfR6j+8w9aUe6d3mv42slhzAL/UtRxjo\nM4CMwVMp0RTymfzQXqKNwc0yfcYLqkomj7bGWtOmTn569YKVMb1rYVY1yKhrxuhul4sXVC+DJQJ8\nLkfbICaz1Ss8/hzqzSvxHCmNnfuBzHSKLOkCWl1ONUFJj5EsSFeC/vHlGDKtf3wRxqCSB7m/L04M\nD/DlAADcBFUN4LdjutrtTAK7XPrIi8XBU54hz3Xd2I9+9ZW+8IbJZ32jUDM/2hYqg50IWHKRDxsv\nibG6G2fD9UUX4OcIvpR6xv6Tc8UQ2QEZ2R3b9pGtDROUGtNyg61FW/80+PlxhRHMarcKJBKRzobc\nydj9YCtq8hXMON6QqG5P5NTHUZ57Z/ILfO+RWwatn/Ja4IoQg6E5iX6XgQc2yNyeR7k9jy+MvUQE\noXm3/e0ZMP3nwst41tINEbtZxv3g5FcrryrC197fIAGcM9j7Xk8ENSMdJyfU0tEtc+QTwcuLxj6v\nyZkQl1ZERI8eagBf1Zl2q35HzQxtjVcgGLKqE4qt45ISV4PUr8BivW4Eag/wLZjVCQIeWqlPV1mC\nXTQOIOultQ7cHRnGPg1UGJC5DmAIkgEIyZdaENliT03G0MHTem6DTuIhanZEvHb8hiO05lWQg1VN\nzVQ1JQUQ8En9jz5mnWGqGT6fs/T0qwqYbvKVlqWUX1344fkYOJDsMfbILeMFhr2SAru0eiIbe0EX\nlYzhEFniIF9SowFcSC5OpjK/k9SQpX4wTF5KK672jv25BU9RPiWS8QME6m3Q708Ejy4+9nlNArtm\nuyyh6OApLonOrfz+SHtvtiafyY/fnUw1SCIB1KVUZsnb88DTTL5ZrbyH2Va0g6V1ECSVtjYiy8Cb\nfU2nRctVityPfaGGHqhjso7dDwZPiZp+XIqVH5rUU7una1qEhNL6scyv3I8bbBUMHz36fO1Crz8G\nSQPtHX3vfLzmzUq5+dXl+2X5OziQrBi7dMvAROBr5kFMhic/x0VF5DFzDeA44dsVHsuYXAp7IhpG\nY9cEBIOwRDK4WYKxFks0aINk2zSumolGxq5ieBiTQ7wAs8UBAv5id9zdGvBu1Q1h++Kjh/4NsUEP\n7tfBDeuK0aCFMzb/zCzVMnanEl1u/R6YWRbRNHa5H1Otj8HMBEkx6KUBfB+Tb/362vGxImNn2cAu\nxckAezcxc5nQNO6rATtOBCp4CnVTjL890Js5eGqBffyeDQJ4MMmF8QbJzIPJD7X0EKj5/osaNfzd\nKG+N3+EncaHLZZ90h5KLcVGFBMEPwmOmKmrsMsO0HpMjS/GqVo81KcVo8sP96IrZOAxfMvA1jHGi\nBuCVOAIuGKmXieZKsJOr3M4ksPMFffSoN8EQogb4vCytEg1kgKHvHZeNVjMDxi6/Wzwk9iEsJlI/\nArWuA8/b80Oo99M0dgy2eq/9agNyAnDwjZsldAoGKrofEqm/V3aJoNVH1SCLkVxGsCFfZnDAbwVy\ngpJcipRcNDM370jtfL2Z/84BQ2TsbRWU1d9LoKUzOHmTH65SqrTiWD8ZwG225Qj4qL2HZRQCYJf2\nSJTuIiLAz0U2z5cfVLVB++ka9XpSlMe0LVozr/XSzWQ2OcqMFMMlAixjr/72rMcm0Vj1FccaEdGl\nQ40ja0Eoifb720+jnUlgb1r6VgG71NjPdfZGRZILA3VbWmnGjiyCSxAoViCSHdDWuJmWhyjdeEAt\n33xkSg1A7RoiwbQgLdr4jA3g2/rdYz8O4PF7joCBoX3NVn2EKpFKV9YDkl0uUp+W51ZwwIuknJRI\n2SDlm5XMS64dxu752w2AwzmgvIXMPHqhRuRv93zpGDyv/QOp7auEIrJ5eXvpBEJm7sVetHTnr1LQ\n5XIIsmRkg0RC4b50xlh/k6uZV/mxR8mlyZXeGMTV9KpLtNnyuxXk/htjl98rCaVUBDCGhxmp0HJW\nPgAAIABJREFUqL2fRjujwM4z5LZebKK21Ll0tFVsumnpkDEG9iWb6KRnYKLxZmLRMO6/Ag8t0fiQ\ntNIBenWBJQh4P9WLi6zWtU2yrVGXKkWgxoCO0dI7PYDbwEbGrsHpCNirYuaiGmTTj4uRExicpKTD\n3+HJUjn7Xu+IjVbvtueW8Vwxhpm3/YzXCLV6ms4Z3+c69QfauyczdfJazJBc5CrFMHax/1aaIuuS\nAsi0A6kkYtoRgF8JGDv38/MiC+IVZyXHBgN3VVtsEp/n9eeM1I3xt2dT6I9IEz4vqHr5qKcDoQhI\nwJe/V5xafOzzGl+gR4CxM0A+etQbnZvIArgtQZBge52RSjSyBW8GXuckGD4CdRCphxIE4zm0ZAoj\nuRSr1Y/MjOjIcdEQWW20DsgN9u9mWkcwQXRmItDfW5k5Mm2oLUPUwEkm8fAxVMYOS24ES7k9+tub\nrREAOY0stb59CALDPGmhj92wWhk8dVwxXpC0bh9JMaY/K6BW19SdILK7IsiJCYIu9hbd/9qPrpga\nw9Eyg9HkgURdAbcMfwa1d/6sN7HXVa2RN30AX3XTGNl6GrvjQJMAvrKA/+iRJpQrQTSJHNPGoTZt\nnEY708B+CS58u5A6qFp96Ue9ejkw1kuWbyVKKXC/dNkkLnH/lSP70NaHx9HSfc281VHHpIw6gJ1J\n63DbA/PfsyTe+kvicCIAxm6Z3KQ3y0QkB7QwqMr7bPKDvkbF0dijoCqz3VaVUe8/KhFQ7ZGGsUf9\nvnd7ZxKXk2HKjiJXS8egao4nAs/r3aVWpsEjCCYLd7pWhyA/1v49KzmzItzo2E5X+/V++Biq773z\nz806xIqRN7nUANogpSyJLjr2w6+BvBFZ192BAGpPEXj0cEurnEzm8SMM+Auw727yrSvn1AWebshG\nAz7//CgCvnDXjJ+XNze7dZTXXaLLVXLRkwdq9URaA3dZB+qBAvyMdDNp9Qh+RONDiy6asR+XxG0i\nkJ/ft7TGAdwCjP7S3WWXOVUPuGWp4/2U8SUlJyjmb+u18DEVR3KpwdOZkktl5mjxzPqcMasWJwJV\nqrh4Wbh29aIm8DmMPbfAMG4fOkoGwdjhubCJSADg+1wxzMwhtlPBdWvJUpeTCfLzZ/pSJlJkyZIv\nb1obpIyZKc1clAjAYCvRiAseMx/NGfp4xn6NOyklWnepXiO5r6vdziawS9Du7Mw5DLq/MvZNr7dn\njf3QPmzrLlUGjrM8lv/ln7E0wdgvkiBc94ujjU4RfHQ/tIfWspHDTW988mN/EPQKmblmbAhmVqKx\nOnRKFIBNwNgzlwgAZi6YdiRX6IAhvJhDHKu0QaLkgn51/r/2wyolysKMfO9Y9VH27wqe4mTGhdV8\noLYM3712Im7Bv8tzw7LN0X3G5wX7EcBNMD/rcYuEgn8+2nLNGXuNUN7k5wvHjlyxuyv5DdgaA6CW\nNmh01xCNZAZZuYzbLW9Q2tPkTVBSjLM8Imoz8KYf1DY5Ty6XQFq55EoxgpkD4CNL4c9eqW8vd9gI\nRvYF+HlM3itZQDQCNU4QY3+ggcLS1/QjgENma11ab228oSXT+GV4pQ2yXovJl45BVS49a1iq5wEX\n2jsfB5GXecrnTNO5oeTC/X7macTMjUQjVi+qDopg8lENehsk58S14k4Etmhc3jGJ2ozULJ4j/j55\nLlEJCgRqDJ5iUB1Xfvw3rwKilGhwbG4qk9er6VoHPlssuLLxY2/I2KUrxpNiNv3gau94nPJ6nKYM\nQ3RWgV0Y/RWwZ7//AG6+bAyY499AcnGlmNzeuJQTbK+DJ0Tjg33oBFX5JdSeBctbQtcEJccSRmQ1\ndvSf80dWewZq9Gq8QxyoIMUYB8fgxA8kYzeJSMVMBDmn+uo93yGCTM5n7GxrNIBvJBcfwCMbpHUg\n6WunXpwxDApEeVWDgUEJvBIwcrZvaOLv8iQdnhS9yZVovM+eDl3vZ9b9sSvGr4B6CGSG3S9XvFWt\nAHCURLxg6zr78mZ7J6k1KhCxy8WRbo961xXzKEgunvVxPB4fa4gaDp1m4JTorAK7M4tif3RDcEbl\n33NCFplFgFEz5MvgV639G8tepVvG9bGD3VHWr9A6ZEtQ8vTAw61lZkRTobSsa4iM/cFANYwdNVa9\nPU4E/PNmO5gldKuyCEEy5ezIqr++gKPT+6nWvzn+9gwZphFQR9o7MvngWpj9CC3dSiuywJl/LfTq\npZWa8OQqzx7pvXRC3mfveTncajKT9z0XUI8da5Djd2BhLexfG8D3nGZMiuxq1ysRsBYSiocFPEZa\nP0/INIuZ88qfyAI4X6dzq45Os51NYA+kmOjCy5uGM2qL5vv95mcJ1KClezUhxonAsg62NW6AOTX9\nEANDbYCtYf9EttKlZFrI/Md+/6UjKN3wV+1LOFFgkxMd9b6tzatBL4On8ja0VYqVaNh/jt/r1nWf\nbI1eFibRjuBpKMWAJh8x/9yAHQPGVR7y5CqwTbbtHcbeCcbe4X7IuKiiFV6ceRww805v367RuL/G\nwPUzjAlK3B8DvpMb0smJQE9+fEwesRsGO2aJHL+6I+OM37V75Y/bEzV1YZFiZrRQigmYPEencXv5\nGQR8LzjCP0/4YLV09yHMLuuovnTDwP0AkGRUHoCjK0YOvDWwHe6Xx4RLaMvYoxRxOyBXOZnaMvyZ\nOPmmhK+D8yQaL1mnAr4TbCWS2bMakKvGntv+5fbI5E0RsDpBRCsCLQ3xZ0vItHUJgnpunlyVpMau\nr3UtuOUQgcNtccnLvkQkm9msiUBKSQM1MvatI8V0OZwI9jN/S+yOttbfjtsQtXGKwVC5zbkZMTwi\n+bpNH0fOlBSTUvqmlNLtKaWSUnreSR3UvqYLfwXAHiyJzIxaZ1p/Bsa/xauCXAc8PiQe4LN9Eb3b\nq9zADJelRCOAR0toj+Ff2fQG/Mbtd2cYGskFBnxK42v/sDQBb9MAglQ/OkSINBuNAom+19uy4LGE\nsQ/s+4t66fgBAjJaPPncbP323cy/nlsht1YMa/LeqsYGSUWwVTzC47V2Cq5JYHcnv/F5kZmqREJa\nCbR0JCFef8TMVwLwMfkOJxSiKc7lyJs64zv4OXLRBTgSrvwRXyLiyFLM+gwBOxHdRkTfSES/fwLH\nMrvJiy21qy6nuhS0M2cA4GxHMlLM8ZZjnoecj6np0Jo54TsSx37hZnAYu2EXwjd8nAEc+tiBIUXB\nM/7upjfrc4sYe3WIwLXjgmgemO2qIeOxYM/fTjSjcmUI+NO16DRQY0mBqOoj7qedQzGSi7pGZjIL\nkr64ZjlIK1xbCL3hfEzehL/rOSKyjB1XcvxzqyGjV4ue3TFm4DmUaOqqWR1rxNL9MatxxAfwCOSj\nFT7iS5ViTtHqSPQYgX0YhvcMw3DHSR3M3CYv0g0HOijBF/hi0B9p6fZG7QftaPkWTQSRVo8lC4im\nLDnnAcNAjwRqXBHw9i5j3/hghkwrCqoSjYCGlkD+bi9FnIOhXiCxd2yQDGYeS+XXuBnr32Qh9HRl\nllwwuNk0cz4vn2lHTJ6v9VEQhEUmL48VVyPVu4/n3ElZSgN4lJFaBjLuKmlrRNlr7O8Na+bt1bXY\nNeF3uVp8O/UM72Dse7X3YBzNMExE23vJSuN+/JW/JI6RCeMAgqQX1yuzn9Nop/ZtKaUXpJRuSSnd\nct999z2mfcnZ9eK5lfobX+Dza32B+SZiPxbsqdvnxvBT2v9gRAzfS//n7QePdXQM7NqCFWmjfNxx\nkDRi7EW9wHdvIoqz6ljlbFwRRCNARgkn+KYc7i+FfKD2QC6L2uQAisNAtMHgKZxb5GZBAEdAjpK1\n+JJsYFLkQ/MYO78FCie56t13ANzLSJUBZi8mc9QXA6JEU0Kb87xETD4Ktkf2xUPHYBBJK132c0lU\n8FROEOGqOVhZq58FmAcMfKcvPdTSx89cBHy58fyITzccaJy62m0vsKeUXpdSus359w3H+aJhGF48\nDMPzhmF43k033fTZHzHpwWwZ+/i3C2ufsV9Y443yAR+LF9X9BA+G5y3H7aNtvJ9NULUyeawJ4/fL\nAawDUuPPtrYMDmCtN0dyAgN+BwMs2n5bBvX2+tavq0FyfxnILWTFVkHv2h1toYTt9GOUYWoBnNQ5\n8++2omUwEYhAYk7+qmb03NuKhuzdj5xAptJlAPhyAtf9bXXhyRiHW1sWmmhcQUoisE9jr4x9jsbe\n+Ss8qb17xzRuExGtGYxd7Edq4Fpy0YSPxzPiC+8XlYIbJuJ5w7nTBfa93zYMw9eexoF8tu0izITM\nrmNghxtSgxv+BIEzMy45cT/yu3CbSLqJ9hMx7ZXDUmZr7F1ytzcv1BDgl1OQYSqYmQZeq+Hz+aAO\nzd8xBk8tYx8BP5v9VEeJIzNsDGi1fpR6iJxVShD03KfJY3CW/+ZNcrvkqvZqRH1ufT+oOuD8WQ/w\n5SSnYzjj/8bHnhpBiBi7B4pRUS+2lkbB0JDYgCbvrWpDySXYT6Sr69IkbfxHduq2354uAICfnyYG\n7L9xAnRm7qfVTlf4uQrthnP6QvItxAtcmXzQfz5w0ZwHhh9Fyec9bAGrDz8bLA8dph191kg0cqA6\ngO8PvOwOYB0Yhu2d/eTsB1WllQ/lisjZ4ZX/lQCbPSmmx4mD6vby81ibnr8j0t4xHR/PwZViZHzC\nsbvGjN2px+7U6d/H2A/h7UBye09jRzstZ896wVMv6D9u4xMe1OG9nzWhCIiQE6vCbeR4Pm4+jPwd\nV/hPOrcmIsvYnzQB+o2nzNgfE7CnlP7rlNI9RPSVRPTvU0qvPZnDmt+efH6tfucbhBc+uiFx/3hz\nMWMsSiue0x89hJ4kIo9h7Pd1+2iy8Aat/BmZf01QcXzDUjNHphVJLn5QNblAoPRmh/lFZXuNJi8Y\nuHduqB9HpQNMIhIEW2OG7/jVo2uU/BrkWTh7fO++c408Tb4y9kCiC3zsR1vfjXUIQXveF7tTjgvg\nsRS5X3IJ7cdq7PhjUI5nmQ9zLgB2BGreLa78mZFfAAXhXIBHV7s9pmlkGIZXEtErT+hYjtU4gPaM\nJ51T/TwIkcmzxhVpY8jMI8bO/QddNi9/aPv0AXmO0yZcTmb/AfbYGO7HW2V4OjdRzNiPHGklJ9+v\nPEo0Ntgqt8fkmwjMdr1copSmf+M5eMFTI8UIJs/7lf0I1EaKMf3BSyScVU0WsgQy88rYnUlucPYT\nlfOt18KZzMZ+//5LPTjq579tev2GJjzPeY6y/WMEs7Pd7cV+JJBGtkaJBVFtKQRqfp4vHPjBU8SX\nBP+fVjuzUswLv/FL6Es/7yn0OU8+r/q5HshTLx6ofp55jfY+PSRzXTSVyRvA9x9atSQMZZz5Gjvu\nJ3II7GPsuP9mCQyCpI5ffdU1jR0TlNp+SG3vgVzT0m0Z3p1WPvRuCwDHhKaxfyDR3QA/KAK2175o\nGL5m/ryNm6AUMXaxPTL5BuD6GSnFvi9UTkLefT7cgK1R2B2j2Itl7Gww0P2RPBjLhv6zPc+XHgRD\nA1+6HLdSlsU66nWbYPxjP7+s5ek3aAXhv/rzz6JnPfUC/Y0v+Vw6zXa6ws8Jtr/zvGfT33nes00/\nA/jTAdj5wUV7ZJVuQHLhWRv797lo8G9dINF0wQN5XH0+BO1oP8FSlzVTLtyFDKwxbVKf95KvtESj\nGbuvNzf3Cx6rW0BLMGoveIpgJkHODZ7uqa+OkktYaiAIhoa1xqvGntX2frB1BPCByMhMbratYub+\nKmVWsD0gAvJvBvCDeFDE5OdJNP7PcqwpySVwuUgpRhovopR/lGL4GUPTBpsvbjyngf05N91Ib/zH\nX+Pu+2q2M8vYo/a//LUvoufcdAN9wTNvVP1ci/tpF/WFZ43eSC4hMx9/t1XcxMOmSgmLh2rtP+To\n3W3HELGXzx7wI/CXn+9goIaSU46BOspIjECLXyuHssFOjzaCkGLmEbD7DF9+PgLq6lfnySzwq2Pg\n1gX8qL+L4xackeoHhufVFopiLLJQVsSyu5nPS7N77nh25qxegwQiuT2+E8HtD/YjWXdUfRHNFvyy\nlqcBM/+Or/58+rM33UDPu/lp7n5Ou51Zxh6153/x59Lzv9guexiInwTB1idfWE3/636ekQ0zzxFj\nb4M8SmKKlofeW1qIdmjyoSsmcgvsB3/+HV/su+szYxle/zuOE1TNKQVWwVbyVoGZCG6iPk00Aixm\nDBIxSyW7n+2e4Klh8rpKJNcaPwTA520wCMv7uuJYRbsUy1VjDRmfvRoJRSUczYixqGMLgvmQ01EZ\nOybxTP24ffwc7g90ngsyQzUzl4xdMHlJrpzngih2raDkwrjwNFAEvuzZT6Xf+d6/4u7j8WjXHGOP\n2rd/9XPo859xA335s5+q+vmhQqB+8nk/FTgqnN9egRUzefmgzgH8OW6ZectbIYdMkgtuT2QZq78v\nn/F7GrjXjx5w3idWXhy3z7Vaow9mANSBzCCB2pN0DsOgqv9ijsjlsnEYu2LmnT6maPUSFVbzgqRa\nftKyFxGZiQADsnjO2L+LCPDfIiKw6zmK3p0gJwO5ivYmaiJbK6r179feZbt4zmfsT4UV/j/6q19I\n/+GfvpG+8JlPcrd/orRrjrFH7Ss+/+n0hu/7K6a/LrOTfgiZwWN/lGiAy/XaH7ALzSICTd55UTdR\nHFSaA/78+wZe8CE/P5exx4wv/tkFuQDwK2OPtPQeg6fj/0ZLF+CHgU2iMXjq2SYrUBvGvtuXvgr6\nZwF+0N/l5CbryKB3NJlHoB1tPydoT9Se1Uhjj6Q+IlJB7Ege1Ixdulx8oA6LegX7lA0Z+43nVvTI\n4ZaefoNm5l/73GfS1z73me4+nkjtumHsUfubX/5n6DnPuIGe/8Wfo/o5sSDB9izl8ODmFvlU57CI\ng0iTVyxlv0QTsZqIOZmBNw2MDgA/ZHnR4Ax+ZmeHPb7AjZOaj937XnS/SDcL7p+3d4OqyPBBS8fg\nqcuok+9+2VUB0w2qRtKN/Lmz5zwMCMj1x1nMfE5uROSKQe2dn58o2GrqLwVMPmbsfv8qkGLkPiPJ\nBa2cP/K3vpS+4uan0+c+5YK7/RO9XTeMPWpf+Mwn0esdJs8PDILikyvgA5OfHgzWX7lJENYBnf26\nn9YJ9wN4FEiyL9jNRFRiwJ/J2CMd3wtcmv0kvR8/uWfcv7EvTudztC3u5HKEPnYRVJWrJlk6IHKO\nyONmGevI0dJ1Vq1mpmGCkhdX6IKStE7CldkmWk3tWEF5+4w+i0SgAnUgP1rtnWVMTPoZ+3OK2XjM\nwPcHT+U2TwpW3H8KmPnXf+nn0td/6elaFE+yXfeMPWpf+Zxn0Bf86Rvpf/jLn6/6K5MHKs8SDdfI\n4CZBNWIpSqKJ7JHHZP4Sm6N6N/O10TbJpRmSS6S9ezLIeKwRUI3/Y0BXZ5Laa7ELqHXi0rT/qdIl\n7t/VzMNAb+BXz37AWMUbQoCd0R/KLBT0758UZD8XMsN++Xv0fGEp7C7YvjrQVp16vs4HxCaKW0k2\nLn+W+0Qp9Ye/4T+mr3vuM089M/Rqt+uesUftc55ynn77H/1npp+lGGQvTwqWeNHSb1YAKLBHzmHs\n/IoyfCm23NdsiWbP9kTkMmTcJg68tn16Wjrun7cf67SLzwalA6KSAjJI6gYknVVExMwjv/ou777H\n/Oew68hRMufnVdjvfxd/BuMZcjtbT4WB2mfyYT9YiyXYSnCO9HYZ6ET7ctte93/LV95M3/KVN7vb\nnuW2APsx23/0uU+mL3nWU+j7//qfU/03Bkwe7ZXcpD/23CyN3X+wV4HeyJ/ZliFmVGZJ7AN4DR7C\nyc0JvoUJUcHSP3ZkWMcH9vP+vRdzEMWAb14obmrFkPqbHzxNtDkKqju6hdJaMPTYsolaybVj8+rj\nmH6x/RqkJK+/fncfT/j2+cpuf/T6uAjwIwcLW5SJKGT4CZ7V7/2rX0iffPjQ3d+12BZgP2a78dyK\nXv0Pvtr0M4Dj8jPS9CSTnxPBnxPxt1p6osOg3zvWaAm9z9ZGRMamiPvEnz03C342OyydaB7b974X\nJRppFTy/Xpn+0SdPRn66vHFKBwTMvFMAHkxsx5RZMCC977NztPdoEpV/2xUM9baPAB8Bm+uxDFrF\nDOURLPw3p/2D/+ILjv2Zs9wWYD+h9h88/SL9pec8nb7tq25W/XOAXQaZLgZMXkkusj/5/fIzpr8y\np7kDchrA0B97ou0+8VhjsLHfi9tEoBh9Fx8nZm2q4GmQqYryg8Q2m0DkHXf0c3SeAYAH53bcEhTz\n8h78FVsUDI1WfhFBwOApF+zD+FTM2GNg/7avutkUALwe2wLsJ9S6nOiXXvCVpj9iF5H2HjF5CbZy\nYOQA8PmYiLwBlt1+Bs//v71zjbGrquL4f93HzMBM22nL9N0ZWmkH26G0MNCiECgUWh5SXpICtgUU\nQkKiFQNSa6JCMCFEIlE0qRUlBkETRfhCQiEm4IeK9RFFkVJBsQYLRYgIaJnO8sM9+95z1tnrnj2d\n6dy5567fl7mzz77n7n0f/7POWmuvrVn4mmUWf634eYLbA9wyIYIfEnj0jVlu2OH6Dw0zOsp+KxUY\nefZPULBZiVXUW/2b1e4rQSAf109rrH/BVwVc+Lnd8+V53GrOISnsisUud02L8+WLl6rHWgkT9iNM\nZ3sJ5w/Mwln9Pal2rb+jI/YF7gwoWCR/YM6FoLlcQgVc6x/iKgizUmPtmghlZM7I/pqIqsHZRLt/\nPJV+2QHHoNfQBFkR/IJqpWfHJ7THWtaVJuDt8vui3fm5dtHfCbL8frl2abFPUSxzIsJlJ83FwJwp\n3uOGCfu48O1PnJxq03Ytj4t2V0zMtcUa9c7pShhrwaqRBlXr+eRD0iB1Ucy25HW/crY/X/VnBzyO\nC23lvPHH8deotev5+tlWvfa+6Jkz8PZP3hH43ViyVG2BKiUI1OBmWf/8k/39lrkzWoR+Vyuuirca\ns6ckS3LHuffK5eoxw4S9oWxc1YfeaUcn2kgRlXo1oh3yB+Yq0WmWttYuN/AtZfTXLHw5piCLPcg/\nnf3ckKCib5OOeo+BmggTpYOqtfMGuEdC5hbklsm+g9AqI/oWrh08NJwS5IIq4BnfI2EgOAGXlrmz\n2KUPv7O9hAuXzcZ5TbCEf6Jhwt5A7rxk4LCepwVkUyVGo99PaHpZluCXlWCrDKrGRaWcCABn+95D\n/PZqfnuAu0b37Scvos56VQOJsj3A4g9LR/RfeHwFvurOLXFxjbUrtYiqr3fI43JR7vA0y1zLuuqK\ngprSveWCodJAAID7rz4p1WZkY8I+AdmyZlHKqomjFSKTmwK4c4zcx+7/AY/U8o+fE4CawRP/PeuW\nbHqclXb/xULzz2spl7LYW7FAGBZ13ePP19pTj2PdtAuJ9h6VlbsddWNndfs4f4BZfm6sGAJa0NNd\nJLTPX2anuCCpXOux4JhOnLHoGNxwxkIYY4MJ+wRky5rFdY+HVqhzC2mkJV8NqgamR2q34llZEUCd\njRMCqlKG5X3D20dbJJV0h6TnkuzHqXb32lpOd/rxyGIABU2Qldo/iYtlgIDXC5JqMRn3fWsr+vcm\nkAaFW9Mh3zuXACDPXy4W8INProQxdpiwNxF3rF+Kl994Vz0ut/1zu0ZJy+mQ4nvXLfb6t+LyFtoJ\nVYF0AdOsTk2cEnVwAvzZui8dSp8wy7y6GUegKyZ5p6EEN4NW3tbOE/98Ckp7iI9dxlKqrrvAGi/u\n9WSGl/u+yQqoy3u78ZEPTceta/thHFlM2JuITRk1LeQ+r+VipWSs3J+xasmnshyiW+7AdEcnZtqF\nQFpsmiWfdDP4BVwTrbLmihmh+yVlgVP9OaQs+eh/orA0ysT4lKX9WqlabfNzrYRtqMVeLFTKJMug\np35hr7TLYL7bJ1ju/9nVXsIPb1gF48hjwp4D7tuwHM/sOZByuZQLhINI5sADNYtdWvhZP+DUAiXF\nx1qoipzf2pXPCak1r66SVFw36qKfgAyUeD8tSKpdCOoFVUM2v1AvfprLRbPYE3c7tceUOE9awA/C\nH8QE0i4X9x7Li9yZ/T04+/gZuOrU9Gbzxvhgwp4D1i+fi/XL56bap3a24d2D72NaV9qSB9KC7wT9\nKNFeKPgFvJYt478QiN97IpCoiVObZrErZRRKipipqYWxMfhK+NbG5He5ZAVP6wVVNZ9+UImExHuh\nuLFKSn/xudXa/WPVfO8yhuN879KgmDm5Aw9ce4r3NY3xwYQ9x9x16Ql45LlXMWtycqGH+0HLfR6d\nBZayzDKCpJrrJrVqs+i3zAsBQq25XNqKfuFsC7DYNes9PqZQS746Z8WSrzsHJX6glWfWLXl/+WdN\n2LWFblLA3d4xMhvrmpW92LP/HZx9/AzveYzGYcKeY85c3IMzF/ek2l3esFyyrWU5OEGXF4KC4odW\nrdcAv7fqitFcLkqtcc1X7wsMHhr2pTWmn1uZg789666mWCA1/z6581W2xa5mFJX8F4XQlcou3VEG\nQ93uQlLwF/Z0WTbLBMWEvQX57JrFKBUIH541OdFeCwAmRctZajLNMiuLRuYry515aq9b66O6YhQx\nKykWe4jvHagI7CFwWpCrgWH/RSvtY0fd/qnMocTc/HcR5QCLPVFqIt4eL/ks/UwRUqg1l8st5y5G\nsUBYOif5fTEmLv5P3Mg1J87vxo7Np6R8o064jxZZDl3KUnBnFafdEoXory5mvv7xc8rna64bNT1S\ntYJloDfdJz5WNXgauFirasnL3YcCKlGWlTTI+HsRz3gqKxdF+Tk7pGXeM6kdQPpObmDuFHxn02Aq\nu8qYuNgnZVS57qPHYt9b76d8pk54pLC70gZi/+6qBV4v3dHXH9AXKOkWe3amSfxCkLKolZTNqmWu\nVDTUUj99dwSAJ8BcrN3VaDVntItZ/FzxVEOt6qdWn1wGz+++fBkefu5VzOk+ytvfaB5M2I0qfdM7\nsWPzYKrdiZu05JywD4mFKFpddyn0jqTwKsHTAN97IUTwFYtaFWRl8dVISxtr56m33aAoILHJAAAI\nlUlEQVTmQorfjcStcc2XfnTZ/zOP7xEKAKsWTseqhdO9fY3mwoTdyGTd0ll4ds8buHplb6LdBWGH\nhMneVS3PmmzXtjorKYtvNItdC4Zqtcbj15OyEuhNu2j87ZqPXXO51PLe5XnSc5HnTVT6VNIgNbdM\nHOmK2bFpEL/Ye0D9PIzmx4TdyKRnUju2b0pb8u7Wf8bk9kS722w4VZ5VcQmE5HdraZCayyVu4ZJy\nnvjzdRdNoOum6nKRF47K31RhLXdAuLG0OERJuetILDgKzH5Zs2Qm1lgp3Fxjwm4cNifO68aFy2an\nipa57QA/OCTrbisWpWbJF/2WaZCPXcndli4XzTeuWexZaY1py9y5pZLnd1b00HDSjaXFIWSqaQj3\nbViOVw7otYWM/GLCbhw2ne0lb71sJ+xyE5GQ7QDjFJQMETWnO9HfL5Cp7BRVkCt/Q33vWqVL10+e\n37lBZHVmLYNF2zu3Hr7VyEZrYMJujDlzujtw+UnzsPG0vkS7mp2hCHs8yyMueNomFVree5zgYOgI\ns2U0V4wTcFldX/NvT1Lei3r+8LsuHcAHQ8PqcaP1GJWwE9E9AD4G4CCAvwC4jpnfHouBGc1LqVjA\n1648MdXuBFzb5FjrDyRFXitVmxyD4qsOFGo1j13zyWdY5oeEy0VzP2mbqNTjmpV92Z2MlmK0FvtO\nAFuZeYiI7gawFcDnRz8sI49M7ijjU6cvSOXJa9kccQs/EQAt+C35OCMtfCUFvKQIvrba1q30lO1O\nwIeEz0Ubt1z1GefWtf2Y061v8GwYjlEJOzM/Gft3F4ArRjccI+988aIlqTY1m0MR5/gyejXwqmaX\nKBa+kqaouW5k/6PatCBppV2OpkPZBUsLMAPAzauPU48ZRpyx9LFfD+BH2kEiuhHAjQDQ29urdTNa\nlFvX9mPRjK5Em6xZ42vXhF2ziKWLxuXap4KkGUHVlIBH45DFxFy7nIsTfEmhQPj02cdhRd9U73HD\nCCFT2InoKQCzPIe2MfNjUZ9tAIYAPKSdh5m3A9gOAIODg/pOzUZLcrjWqLaMXhN8eRfghD20eFfN\nJ+8PkkrT3LXLS5Rb3DWtsw2SW86zreOM0ZEp7My8pt5xIroWwEUAzmFmE2xjTLnzkgF01cnh1hb0\naFkkHcKSd99YzRWj5b1LV4p2h1Cz2JPtPV3tuOGMBbjghNne5xnGaBhtVsw6ALcBOJOZ3xubIRlG\njY2rDi/jQxV2IciuHIL08zshltvH1XaZEsKekeXSLfajJSJsuzAdbzCMsWC0PvZvAmgHsDPyIe5i\n5ptGPSrDyOC+Dcvxzn+H1OOqBS3anStGCrOz5DvEht9O2KULqFrLXrxe/8xJ2HxaHzZmbERuGGPJ\naLNiLExvNISsVZVabrwUapc9Iy185+GR7W7lqlwx6nz3qV2pigV8Zf1A3bEaxlhjK0+NXPG9607B\n3v3/UTNqZAlb56OXWSrOApeWvOsv89JXHz8Dm07rs5REY0Jgwm7kitX9M7C6P7258vTONrz57kFM\n60r6up2AS9+7C5K2CwvfBXJ7xHk6ykXcYZa5MUEwYTdagh2bB/HsSwdSKzudXR+6gvWKk+dj31vv\n42IrsGVMYEzYjZZgRe9UrOhNL/qZMakDf33zvVQ++dQoi2WSqN0yrbPNLHNjwmPCbrQ0X73sBDz6\n232YPzVZYnjLuYswqaOEUxdMa9DIDOPwoUasKRocHOTdu3eP++sahmE0M0T0a2ZOb2cm8K/HNgzD\nMJoWE3bDMIycYcJuGIaRM0zYDcMwcoYJu2EYRs4wYTcMw8gZJuyGYRg5w4TdMAwjZzRkgRIRvQHg\nb+P+wqPnGAAHGj2IcaTV5gvYnFuFZp1zHzP3ZHVqiLA3K0S0O2TVV15otfkCNudWIe9zNleMYRhG\nzjBhNwzDyBkm7CNje6MHMM602nwBm3OrkOs5m4/dMAwjZ5jFbhiGkTNM2A3DMHKGCXsGRHQPEf2Z\niH5PRI8SUXfs2FYi2ktELxLR2kaOcywhoo8T0R+JaJiIBsWxXM4ZAIhoXTSvvUR0e6PHcyQgogeI\n6HUiej7WNo2IdhLRS9Hf9B6CTQoRzSeinxPRn6Lv9Gei9tzOGTBhD2EngAFmXgZgD4CtAEBESwBs\nALAUwDoA3yIi/47IzcfzAC4D8Ey8Mc9zjuZxP4DzASwBcFU037zxfVQ+uzi3A3iamRcBeDr6Py8M\nAfgcMy8BsArAzdHnmuc5m7BnwcxPMvNQ9O8uAPOix+sBPMLM/2PmVwDsBXBqI8Y41jDzC8z8oudQ\nbueMyjz2MvPLzHwQwCOozDdXMPMzAP4lmtcDeDB6/CCAS8Z1UEcQZn6NmX8TPX4HwAsA5iLHcwZM\n2EfK9QCeiB7PBfD32LF9UVueyfOc8zy3LGYy82vR438CmNnIwRwpiOhYACsA/BI5n3Op0QOYCBDR\nUwBmeQ5tY+bHoj7bULmte2g8x3akCJmz0XowMxNR7nKgiagLwE8AbGHmfxNR9Vge52zCDoCZ19Q7\nTkTXArgIwDlcS/z/B4D5sW7zoramIGvOCk095wzyPLcs9hPRbGZ+jYhmA3i90QMaS4iojIqoP8TM\nP42acz1nc8VkQETrANwG4GJmfi926HEAG4ionYgWAFgE4LlGjHEcyfOcfwVgEREtIKI2VILEjzd4\nTOPF4wA2R483A8jNHRtVTPPvAniBme+NHcrtnAFbeZoJEe0F0A7gzahpFzPfFB3bhorffQiVW7wn\n/GdpLojoUgDfANAD4G0Av2PmtdGxXM4ZAIjoAgBfB1AE8AAz39XgIY05RPQwgLNQKVu7H8CXAPwM\nwI8B9KJSTvtKZpYB1qaEiE4H8CyAPwAYjpq/gIqfPZdzBkzYDcMwcoe5YgzDMHKGCbthGEbOMGE3\nDMPIGSbshmEYOcOE3TAMI2eYsBuGYeQME3bDMIyc8X8krMmsAi63ZAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Another Example" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Another example is demonstrated using a `Lightcurve` with Poisson Noise." + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from stingray.crosscorrelation import AutoCorrelation\n", + "dt = 0.001 # seconds\n", + "exposure = 20. # seconds\n", + "freq = 1 # Hz\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*freq*times) + 1000 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "lc = Lightcurve(times, noisy_1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AutoCorrelation` also supports `{full,same,valid}` modes similar to `CrossCorrelation`" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "ac = AutoCorrelation(lc, mode = 'full')" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.00487599, -0.00485198, -0.99992797, ..., -0.99992797,\n", + " -0.00485198, -0.00487599])" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.corr" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-19.999, -19.998, -19.997, ..., 19.997, 19.998, 19.999])" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_lags" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ac.time_shift" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD8CAYAAACcjGjIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOW9x/HPL4ngAigIIoIaEFzAnRQ3XHHB0BZt1Ut7\nq3jrXrWLtr3gigKK9aq33roUq3WpG3WpVAQE9w01gLIjAWKBsgmWRSUQ8tw/5szknPOcmYQkMLF8\n369XXpx5njkzz0zOnO95lgnmnENERCSsIN8NEBGRpkfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiKco3w2or7Zt27ri4uJ8N0NE5Ftl8uTJXzjn2tV2v29tOBQXF1NWVpbv\nZoiIfKuY2ed1uZ+GlURExKNwEBERj8JBREQ8CgcREfEoHERExKNwEBERj8JBREQ8CgeRRrRpczWj\nyhZRXa3/fle+3b61X4ITaYoeemcBvxs3Fxyc9529890ckXpTz0GkEa1evxGANd9synNLRBpG4SAi\nIp5aw8HM9jazN8xslpnNNLNfBOVtzGyCmc0L/m0d2mewmZWb2VwzOyNU3tPMpgd195qZBeXNzezZ\noPxDMytu/JcqIiJ1VZeeQxVwrXOuO3A0cKWZdQcGAa8557oBrwW3CeoGAD2AvsD9ZlYYPNYDwCVA\nt+Cnb1B+EfClc64rcA9wRyO8NhERqadaw8E5t9Q5NyXYXgfMBjoC/YHHgrs9BpwVbPcHnnHOVTrn\nFgLlQC8z6wC0cs5Ncs454PHYPunHeg7ok+5ViIjItrdFcw7BcM8RwIdAe+fc0qBqGdA+2O4ILArt\ntjgo6xhsx8sj+zjnqoA1wO5b0jYREWk8dQ4HM2sBPA/80jm3NlwX9AS2+sJuM7vUzMrMrGzlypVb\n++lERLZbdQoHM9uBVDA86Zx7ISheHgwVEfy7IihfAoQXeHcKypYE2/HyyD5mVgTsCqyKt8M5N9I5\nV+KcK2nXrtb/yEhEROqpLquVDHgYmO2cuztUNRoYGGwPBF4KlQ8IViB1JjXx/FEwBLXWzI4OHvOC\n2D7pxzoHeD3ojYiISB7U5RvSxwHnA9PN7JOg7DpgBDDKzC4CPgfOA3DOzTSzUcAsUiudrnTObQ72\n+xnwKLATMDb4gVT4PGFm5cBqUqudREQkT2oNB+fcu0C2lUN9suwzHBieUF4GHJxQvgE4t7a2iIjI\ntqFvSIuIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWD\niIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuKpNRzM7BEzW2FmM0JlQ8xsiZl9EvyUhuoGm1m5mc01szNC5T3N\nbHpQd6+ZWVDe3MyeDco/NLPixn2JIiKyperSc3gU6JtQfo9z7vDg5xUAM+sODAB6BPvcb2aFwf0f\nAC4BugU/6ce8CPjSOdcVuAe4o56vRUREGkmt4eCcextYXcfH6w8845yrdM4tBMqBXmbWAWjlnJvk\nnHPA48BZoX0eC7afA/qkexUiIpIfDZlzuNrMpgXDTq2Dso7AotB9FgdlHYPteHlkH+dcFbAG2L0B\n7RIRkQaqbzg8AHQBDgeWAnc1WotyMLNLzazMzMpWrly5LZ5SRGS7VK9wcM4td85tds5VAw8BvYKq\nJcDeobt2CsqWBNvx8sg+ZlYE7AqsyvK8I51zJc65knbt2tWn6SIiUgf1CodgDiHtbCC9kmk0MCBY\ngdSZ1MTzR865pcBaMzs6mE+4AHgptM/AYPsc4PVgXkJERPKkqLY7mNnTwElAWzNbDNwMnGRmhwMO\nqAAuA3DOzTSzUcAsoAq40jm3OXion5Fa+bQTMDb4AXgYeMLMyklNfA9ojBcmIiL1V2s4OOd+lFD8\ncI77DweGJ5SXAQcnlG8Azq2tHSIisu3oG9IiIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfh\nICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4ag0HM3vEzFaY2YxQWRsz\nm2Bm84J/W4fqBptZuZnNNbMzQuU9zWx6UHevmVlQ3tzMng3KPzSz4sZ9iSIisqXq0nN4FOgbKxsE\nvOac6wa8FtzGzLoDA4AewT73m1lhsM8DwCVAt+An/ZgXAV8657oC9wB31PfFiIhI46g1HJxzbwOr\nY8X9gceC7ceAs0LlzzjnKp1zC4FyoJeZdQBaOecmOecc8Hhsn/RjPQf0SfcqREQkP+o759DeObc0\n2F4GtA+2OwKLQvdbHJR1DLbj5ZF9nHNVwBpg93q2S0REGkGDJ6SDnoBrhLbUyswuNbMyMytbuXLl\ntnhKEZHtUn3DYXkwVETw74qgfAmwd+h+nYKyJcF2vDyyj5kVAbsCq5Ke1Dk30jlX4pwradeuXT2b\nLiIitalvOIwGBgbbA4GXQuUDghVInUlNPH8UDEGtNbOjg/mEC2L7pB/rHOD1oDciIiJ5UlTbHczs\naeAkoK2ZLQZuBkYAo8zsIuBz4DwA59xMMxsFzAKqgCudc5uDh/oZqZVPOwFjgx+Ah4EnzKyc1MT3\ngEZ5ZSIiUm+1hoNz7kdZqvpkuf9wYHhCeRlwcEL5BuDc2tohIiLbjr4hLSIiHoWDiIh4FA4iIuJR\nOIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4\nFA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIi\nHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiIiEfhICIiHoWDiIh4FA4iIuJROIiI\niKdB4WBmFWY23cw+MbOyoKyNmU0ws3nBv61D9x9sZuVmNtfMzgiV9wwep9zM7jUza0i7RESkYRqj\n53Cyc+5w51xJcHsQ8JpzrhvwWnAbM+sODAB6AH2B+82sMNjnAeASoFvw07cR2iUiIvW0NYaV+gOP\nBduPAWeFyp9xzlU65xYC5UAvM+sAtHLOTXLOOeDx0D4iIpIHDQ0HB0w0s8lmdmlQ1t45tzTYXga0\nD7Y7AotC+y4OyjoG2/FyERHJk6IG7t/bObfEzPYAJpjZnHClc86ZmWvgc2QEAXQpwD777NNYDysi\nIjEN6jk455YE/64AXgR6AcuDoSKCf1cEd18C7B3avVNQtiTYjpcnPd9I51yJc66kXbt2DWm6iIjk\nUO9wMLNdzKxlehs4HZgBjAYGBncbCLwUbI8GBphZczPrTGri+aNgCGqtmR0drFK6ILSPiIjkQUOG\nldoDLwarTouAp5xz48zsY2CUmV0EfA6cB+Ccm2lmo4BZQBVwpXNuc/BYPwMeBXYCxgY/IiKSJ/UO\nB+fcAuCwhPJVQJ8s+wwHhieUlwEH17ctIiLSuPQNaRER8SgcRETEo3AQERGPwkFERDwKBxER8Sgc\nRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwK\nBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGPwkFERDwKBxER8SgcRETEo3AQERGP\nwkFERDwKB5FGVFlVDcDGzdV5bolIwygcRGK+3ljFl19tTKz7a9kiigeN4fnJixPrn5j0OQB3jp+b\nWD/y7fkUDxrD+JnLEutXra9kw6bN9Wi1SONSOMi30toNm3j6o3/w+aqvEuvPf/hD/lq2KLFuY1U1\nRw6dwGVPlOGc8+q73zSeI4ZOYNTH/v6/eW4aANf+9VNWrN2wRW1etPprbntlDgCXPTHZq7/vjXJ6\nDpvIgTeO8+qqqx3nPfgBhw4Zz+Zqv80Aj39QwaWPlyXWzV+5nic//JxvNip4pG4UDpI3X1VWsWp9\nZeIJetPmaooHjWHcjOQr7EOHvMrgF6Zz4p1venWrv9rIO/O+4DfPTWNTwvDO/jeMZfVXGxk/czmr\nYz2E9ZVVme3fPj8tZ/t73fZa5Pbrc5ZHbk/5x5eR28f/7o2cjxfubVRWRU/i5SvX81HFatZuqGK/\n617x9t2waTM3vTSTV2ctT+x59LnrLa5/cQYH3eQHD8C4Gcs49e63qE4IHuccK9dVKli2MwoHqdWP\nH5rEW5+t9Mq/2biZ7wyfmPUEPnfZOsZOX+qdgNN63DyensMm8r0/vOvVnXLXmwBc/pfJvD//iy1q\n75FDJ2S2u10/NlL3r6+jbZnyj39Fbh988/jI7WxX6Ul++mj0qv0H979f533jIXbkrRMit//83sLI\n7XgAhHsb4ddfF+NmLOXyv0ymfMV6zn/kQ6++9x1v8J3hE7MGy6r1lbw87Z/8Y9XXifUvTFnMcSNe\nTwzqMdOWcvFjyb0dyS+Fw3ZgxdoNTI1dxdZVn7ve5P35qxj4yEde3YtTl7ByXSWX/2UyS/71TaSu\nfMV6zvjft7niySkcOXQCS9dE63uETjQzlqyN1H2xvpJFq2vu/+OHoiesr0JX9wBrvtlU59dz68uz\nIrf/7/V5Oe8fbne8J9BQ85avy2zPXhp9D76KXaU//VF0iOvP71VkfdyvY/vGf/fxXsnlf5mS2X6v\nfBXrNkTfz/Dvtv9970Xqpi9eQ89hE7nqqamccOcbLFsTHWorX7Gea0Z9ypJ/fcOHC1Z7bb3yqSlM\nnL2cyxOG2eqirGI1q9ZX1mtfyU3h8G+ganM1f3pngfehT+t122ucneUqdtDz0ygeNIbiQWOoil3Z\nra+sYv7K5DF9gOtenJ7ZPm7E65G6WbGT3QtTlkRux09+4bY/8cHnWZ8TUj2OsB8/NCmzHX8NACvW\n1Zyw4u2YtnhNZjtpeGve8vWZ7aSeQF3nHeavXO+VPRua03j6o3/U6XHS7hg3J7Nd8YX/OwoPD8V/\n9wfckNwDSGrX1xujQfzpomhP69H3KyK3K2JzQKfe/VZm+ycP+72StHEzl3m9ocqqzZlj897X/BB3\nznHOgx/Qc9jExMf8qrKKR95dmDhUJrVTOGxDX1VWeVe9aVWbqznghrF8XOFfXa35elPWE/jGqmq6\nXj+WYWNmJ37oiweNSdyG1FDGM6ETwcFDoifd+BBL+LnjJ424nz89NXI7PJ6e9GHt+7/vZLZ/n3Ai\nyBZ8ADP/WRNEh9/qD6n0/8N7XlmSd8v94av/evTjnPu89Mk/6/TYfe56yyv707s1Q0XxnsGWOOl/\n3vTKzr6/bq95fcLxOGzM7Mx2PIghGqLPT4mu2howclLi/ZLKcg2NQTTE7p7wmfd4nQfXzL38+q+f\nes/V4+bx3PryLLpc94o3PLhhU03wrPna73m+MWcFR9z6atZgWbdhU62fgW+7JhMOZtbXzOaaWbmZ\nDcp3e+rj5Wn/5LH3K7Jevfa4eTw9bh7PjCVrInVvfbaSrtePpbKqmnMf/MC7Ejzs1lcz211jY+jH\nxq7Yz7jn7cx2fHgAYHnoSjc+Hr9hU027kz7Y4ec+7e63vfoL/+wPPSV5NmEV0cKEq9+wXMMoYUkn\nu6Vrcl/dr1yXGpZYt2HLP+yfr87d7oZIn5jKV6yr5Z6+Txevqf1OwHUvTM9Zn3AYMGHWcr8wQfjk\nnXZ16KIhaVVWLuEhwc+WR9+T5yYvZmNVzfEbvxCKD4uGnzv8+QKYs2wt//Xox3z59Sa6XPcKi1ZH\n51LembeSQ4a8SvebxicGRGXVZoa9PKvO71NT1STCwcwKgfuAM4HuwI/MrHt+WxXlnOOaZz9JvNqo\nrnac8j9vctVTU7l59EzvBL5szQZ6Da9Z2fLd/4tOwMYP3PCV4LkP+kMZi7+sOVi/iI23zl2+LnNi\nP2RI9KAHOCpYYRMfG05Lf8Cejw2/xMXnGADenJuatM72HYH00MngWk5ISUaMTQ2jZPt+QfjEsKXS\n8wpjpi/d4n3/Min1msIniQuO2TeznRSydfXi1NTv4OOK+s91ZFsM8M/g9zf607r1fMKeCn6PQ0bP\n3OJ9X56W+z3+aGGq55w0XPfn9yoyr+f0e/yLk7OC+ZCkq/1wrzA+NAbw5twVme1wLxaiq8ycc5z/\ncM3ntftN470e0AE3jONP7y7kksfLuPKpKZFjYNX6ysw55Hfj5jTo+NjamkQ4AL2AcufcAufcRuAZ\noP/WfMLKqs2s3bCJDZs2s7Gqmo1V1ZlfWvrn4XcX8uVXGxn18SI6D36FF6bWnDAPu/VVlq75hg2b\nNtPluldYELvyTV+5rK+s4ujbo0sew/XpVTlxI9+eDySfGHrfkTpY73ujPHHf0nv91T9xSW2C1DJP\nSO6mQ+7hnbQ7X03+AlhtoRBfkZPk2iztumtC8nOGhQPxshO6ZLa/Hww7jQmduL5/2F6Z7bpMeHa/\nqWb45brSgzLbl2T53kFY+Mr08hP3y2ynX2v4fevdte0WtevaUZ8kll+TpTxs+JhZieXpi4D4fENa\nXRY/JPVqAc774weAv0w4LTyHEZee5+qSsNQX4KVPUp/f+KQ6wIV/Tg0f3vbKbK8O4J4JnwHJvaED\nbxxH1eZqnHNej2XMtKV0HvwKVZurmbd8XWR+5P4359N58CuMnb6UFes2ZL4gGf6p2pw6N23YlDpf\nJY1KbC1F2+yZcusIhMcaFgNHbY0nGlW2iN8+l3v9etrQl2cx9OXkDwjAMbe/nrUO/K5t3AE3jM38\nuYW4216Zw/TYKp6wJyZ9nvVbuLOXruWdef7S07S/1+NqMe2AG8bxyIUlOe/z1Ic1k6sP/qQnl/+l\nZiVK/ITWdY8WlK9ITdbe8vdZbMnc4VUnd+UPQUD+8a0F/Ob0A3LePxw+F/XuzB/fXpD1vnedd1jm\nqvofq7+OXHn+51H78OSH2SeQd9yhMLM9cfYK7/sBPfZqlZkneWfeyshqq0FnHsiDb83P+thDzzqY\nk4Oe5eIvv2H3Fs0zdSfs3463Q0uOq6sdb8ytuf1fxxVnhucmJawcCvvb1CU89E7N+/XzU7py7+s1\nFyPx1/S7cw7NfK7Ovv99FtxWmvWxy1esz3mSz2X1Vxv5Q44VZrP+mf0z84tnPsk5xDjy7fmMzHJM\n/P61eYlzYWnx0YItqb/iySlZ67Lt95szDuDKk7vmfM6Gaio9hzoxs0vNrMzMylauzH7yy6UpfZEn\nWzCk5TqJ3/i3GZHb15y2f+R2uOsLUHrInpntq2OTxff+6IjI7XiovfvfJ0dux9fzh4VX0QCccuAe\nkdu/GhW98h/3i+Mjt8NhfON3oyOL8e77tadHX/PU0HBBx9124nuhq/9fPftJJAz2aLVj1tcAsENh\nzUfjvjfK+cUzNVfaw846mF7FbXLuHxbubV14bDFjfl7zmn/z12lc9dTUpN0SdW67S2a7/33vRX5X\nh3XaNXLfxV9Gh/5u7Bd9P+PDf+cfXTMc9stnoz2La2LBe0Ps+Du3Z6fI7dJ7o0MzYfFg+GDwKZHb\n8eNvyPei7f6fVz+raUe/gyJ18ecdfOaBkdvp4ckk6W+vfxvs3Kyw9js1UFMJhyXA3qHbnYKyCOfc\nSOdciXOupF27dvV6ooHHFlMxoh9zh/Vl1GXHROo6t92FucP6MndY38R9R191HAtvL6V4950T6/90\nQQmzb03eF2DWrWdkrbvr3MOoGNEva/2C20p5b9ApWet/3qdbzue9/z97Zq3//mF70W2PFlnrO7VO\nfr3pdt3zH4dlbj/wZvSqt6jAIrfDV7bThpxOUWH2Q/DkA9qxU+gqPLxkFcAs+tjnPvhBZvuJi3px\n17k17Xpxau45lLVZhjkgdfUff96bQies+Bfr4r5YX1P/s5P3i9Qtq2UpbHhOKfx6kvzq1P15/opj\nM7dPuDP6jeyC2O/iiNCX5UoP2ZOzj+yY8/GfuKhXZju+Sin+u5izrGbC+OGBJcwbfmbWx+2w605Z\n6/ofvhcXHtc5a/3Fx3fh4+tPzVp/2Yn7Za37+PpTc7arYkQ/+h3aIbGu1Y5FTLnxtKz7zh3Wl/v/\n88jEunN6dmLh7aU8d/kxXl1RgbHgtlLmDO3LgXu2jNSN+Xlv5g7rS8WIflx4bHHW524sTSUcPga6\nmVlnM2sGDABGb80nbF5USK/ObagY0S/z88avT6J5USHNiwqpGNGP8b88AYC2LZoz69YzOLTTbpgZ\nb/z6JKYNOT3yeOXDz+TU7u3ZqVlhYggsuK2UnZsVUZ7lYPxhcOWVLZgKCoyOuyV/iG75fg8gFV5J\ndm6WffTwot6pD95fEw5UgGcvPRqAH/XaO7G+oMA4+4hOiXXXlR5IQYEx8ZoTEutb7bhD1nYBdGnX\ngknX9cncDn+b+b4fJ3/wwvs2K8p9eKdfG6T+HEfaQxfkHjYDOKhDq8x2ePnsHi1Twzw7FNacLMNX\nyu1Cw0DZhF9bSWiM+sxQ7y9JQYHRc9/WiXVdgh5HvIeZdvd5h3PkPsn7ph3fLfmCbMYtqeP9rMP3\nSqzvc1D7SE8s7MmLU6PHD/4k+eLlznNyByJAu5bJ7+mbvz4JSAVMtv2ytSv9Oc12nE258TTa7NIs\n8fO88PZSmhcVUnpIB+YMjX6eZ9xyBneecyhmRklxG2bccgaHBj2+t35zEuW3lVJQYOy4QyHjfnlC\n5PzUY69daV6UuliKh/HW0CTCwTlXBVwFjAdmA6Occ1u+FKKRHbBnSypG9KPshlMjJ1gzo9WOO0R+\nceEr4J2bFTE9FB4Lby/NXLUVFRZQdkP0Sic8Ppv+5YeFexSTBvfx6gcGVxGHdtrNq3vwJzUHdzzQ\nAP67b6rbvdvOzbw6gKO67A7UhEjYR9f7bQm75PjUpG/XPVrmvN95JcnhArDrTskBkh4m++i63G1I\nkn5P0q8t7rTu7Wt9jMKC5A/n48HVdbaAyfWhPmKf1O+vNEsIpI/Bkw/Y8l7z6Kt7A3D1Kcnj1OF5\nkriJ15yY87FbNE+165bvH5zzfi9d6V+8dGuf6rH2PTj5NacDfuYt/gVX+MQ79Cz/uYuDQPz9gCO8\nuvDnM6nHHv48x3sXn9x0Wqa+qLAgUj9naN/I73jHHQoj54kWzYsi9S2aFzH6qt5UjOjHvrvXDBk2\nBU0iHACcc6845/Z3zu3nnBue7/Y0VMtQeMRPCG1bNKdiRD8u7t2Zpy45yuvufzbsTEae35P+h+/l\nHbh77rojvTrXjHcvvD068ffOb6PzA30PrukWJ12ph6+u4yeB239wSGY76QS/R8uacfv92vkHdl2v\nbtIhEvbjo/bJuU/6sWubO0hy0gF71H4n4I/n+1ezLZvnXsOxYxDuLWvpFSX5v2Dup7b37Z7/ONwr\na7Vj7nalT+BJj92pdU2PNB1QYW1bJF84xO26s/+aw8F/2N7+Y4ePoctOjB4H4WGbXRLe93CghedL\nAG+oKXwBdlHvzt7vZ+HtpVx2Qheev+JYPhsWDYMdCgt46uKjGHrWwVSM6OddSO1QWJD5rOcK2W+b\nJhMO26MbvtudY/dr65U3Kyrg9B57Jl7xAIy67JiswbN3m5r5gaRexs2hsfLw+DSkVg6FDfhOdCgp\n13DL6Kt6R27/foB/Agt7/oqaYaxu7f3gOXH/mqvjof175HysuPDwW9J4dF0/wH0O9EPk71f3Trhn\njfTVarbhnbSnLvYX4+Wa2wlL6uWFh99a1BJgceGhm/NK/OHD8POF5x0AfhCbp4hP1Cdd0ac9ExrW\nAxjUNzp53GaX6Ot8IDSGn3R8vXZtzcVNfKipoMAyn5n4QgdIhebg0oPouW/rxOHIY7u29QLo353C\n4d9Q+kOw567+VfWFxxYz9cbTmHjNiYknsN2DD+T7g07xgic83PLqr6LzCLs0L4r0Hg6LDXHFezg9\n98292uf00HOdGhvm+d0PD82578OhpbbZxqPT4osLWoauwJMmy4tDq4XiJ8bahCcoj+3qXxTk0mOv\nVjnrw8OeIxN6PGFXnBSdpD0ktMrpPxLCISw+73D3edGT9PWh1UOndW/vDZO+8LOaC5KjY8N6ZsYr\nwUqu/dv7CyTOPKQDE351Ap/efDr9D/ff+/3atcgc+9JwCoftjJnRepdmXi8hbfKNp1Exoh97ZZn8\nTn/49k+42n/t2pN4eGAJo686LnISTT9vSRBG8aAA+Huo5zH71ui4bXw1y3mxHk18+OfAPXOfSMOe\nja1Ye+TC79R539pCKq70kOSVL0nCc0VQ+wR82DH7RU+68QUBvzw1urIt3NMoKLDIcE56UjcsPURz\nZsI8wWF778bzVxzDExf1SuxpHrlP65wn8O57taJiRD9e/VXyPEe39i2zzkNJ41I4SKPqc1D7xIlx\nSJ2I5w7rmzjufUinXTMnjZ0S1nDfeU72E/EZPWpOUjclDBmEg2dqbPlh+9icRXw1UXgY5aTYRHC8\nZ3F9aXTNfa7lxXHxE3i8XfGwfT+0rDn+PQEzi4zfx+eLwlfzSV9obLNLs8zvIv68kAqQOUP7Zg2s\nnvu2ybqySb49mso3pGU7UFhgFBbUb8Lu3JK9Ob5bO1pkmXgt2bc1J+7fjp8mrKo6pNOuFBUYV5/S\njda7ZJ9c/elxnb2TYbiH9OdaehWXnBCdUL3mtP0T/9R02vzbSjP/q1txbKXKEfu0pv/he2X9q697\n7bYTF/fuzPNTFid+T2DwmQfhXPT/jAibNuR0NmzcXK8Jfaj7vI18e1lT/sNPuZSUlLiyMv0PUtJw\na77ZRIElrzDatLk689drk4ZCJi1Ylfkz1Un16W/7TrzmxMShvHR9tmGWtRs2YdRv9ZNIEjOb7Jyr\n9cs8CgceVBE4AAAEqUlEQVSRBhpVtohdmhUlfpv2hSmLKSosiPwhP5F8qms4aFhJpIGSln+m/eDI\n7F/wE2nKNCEtIiIehYOIiHgUDiIi4lE4iIiIR+EgIiIehYOIiHgUDiIi4lE4iIiI51v7DWkzWwl8\nXs/d2wJfNGJzGovatWXUri3XVNumdm2ZhrRrX+dcrX8Z8VsbDg1hZmV1+fr4tqZ2bRm1a8s11bap\nXVtmW7RLw0oiIuJROIiIiGd7DYeR+W5AFmrXllG7tlxTbZvatWW2eru2yzkHERHJbXvtOYiISA7b\nVTiY2Z1mNsfMppnZi2a2W6husJmVm9lcMztjG7frXDObaWbVZlYSKi82s2/M7JPg58Gm0K6gLm/v\nV6wdQ8xsSeg9Ks1XW4L29A3ek3IzG5TPtoSZWYWZTQ/eo7z9L1lm9oiZrTCzGaGyNmY2wczmBf+2\nbiLtyvuxZWZ7m9kbZjYr+Cz+Iijf+u+Zc267+QFOB4qC7TuAO4Lt7sCnQHOgMzAfKNyG7ToIOAB4\nEygJlRcDM/L4fmVrV17fr1gbhwC/zvexFbSlMHgvugDNgveoe77bFbStAmjbBNpxAnBk+LgGfgcM\nCrYHpT+XTaBdeT+2gA7AkcF2S+Cz4PO31d+z7arn4Jx71TlXFdycBKT/m67+wDPOuUrn3EKgHOi1\nDds12zk3d1s9X13laFde368mrBdQ7pxb4JzbCDxD6r2SgHPubWB1rLg/8Fiw/Rhw1jZtFFnblXfO\nuaXOuSnB9jpgNtCRbfCebVfhEPNTYGyw3RFYFKpbHJQ1BZ2DLu1bZnZ8vhsTaGrv19XBUOEj+RiS\nCGlq70uYAyaa2WQzuzTfjYlp75xbGmwvA9rnszExTeXYwsyKgSOAD9kG79m/3f8hbWYTgT0Tqq53\nzr0U3Od6oAp4sim1K8FSYB/n3Coz6wn8zcx6OOfW5rld21SuNgIPAENJnfyGAneRCn6J6u2cW2Jm\newATzGxOcLXcpDjnnJk1lSWUTebYMrMWwPPAL51za80sU7e13rN/u3Bwzp2aq97MLgS+C/RxwYAd\nsAQI/y/xnYKybdauLPtUApXB9mQzmw/sDzTahGJ92sU2eL/C6tpGM3sIeHlrtaMOtun7siWcc0uC\nf1eY2YukhsCaSjgsN7MOzrmlZtYBWJHvBgE455ant/N5bJnZDqSC4Unn3AtB8VZ/z7arYSUz6wv8\nFvi+c+7rUNVoYICZNTezzkA34KN8tDHMzNqZWWGw3YVUuxbkt1VAE3q/gg9G2tnAjGz33QY+BrqZ\nWWczawYMIPVe5ZWZ7WJmLdPbpBZm5PN9ihsNDAy2BwJNpcea92PLUl2Eh4HZzrm7Q1Vb/z3L50x8\nHmb+y0mNCX8S/DwYqrue1EqTucCZ27hdZ5Man64ElgPjg/IfAjODtk4BvtcU2pXv9yvWxieA6cC0\n4APTIc/HWCmpFSXzSQ3N5a0toTZ1IbVy6tPgeMpbu4CnSQ2XbgqOrYuA3YHXgHnARKBNE2lX3o8t\noDepYa1pofNW6bZ4z/QNaRER8WxXw0oiIlI3CgcREfEoHERExKNwEBERj8JBREQ8CgcREfEoHERE\nxKNwEBERz/8Dbm/uLf2AoOgAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ac.plot()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Crossspectrum/Crossspectrum_tutorial.html b/notebooks/Crossspectrum/Crossspectrum_tutorial.html new file mode 100644 index 000000000..4c2f61abb --- /dev/null +++ b/notebooks/Crossspectrum/Crossspectrum_tutorial.html @@ -0,0 +1,911 @@ + + + + + + + + Cross Spectra — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Cross Spectra

+

This tutorial shows how to make and manipulate a cross spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
import numpy as np
+from stingray import Lightcurve, Crossspectrum, AveragedCrossspectrum
+
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+

1. Create two light curves

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out “Lightcurve/Lightcurve tutorial.ipynb” for more examples.

+

Generate an array of relative timestamps that’s 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The first is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. The second is a sine wave with amplitude = 200 cts/s, frequency = 2 Hz, phase offset = pi/4 radians, and mean = 900 cts/s. We then add Poisson noise to the light curves.

+
+
[2]:
+
+
+
dt = 0.03125  # seconds
+exposure = 8.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal_1 = 300 * np.sin(2.*np.pi*times/0.5) + 1000  # counts/s
+signal_2 = 200 * np.sin(2.*np.pi*times/0.5 + np.pi/4) + 900  # counts/s
+noisy_1 = np.random.poisson(signal_1*dt)  # counts
+noisy_2 = np.random.poisson(signal_2*dt)  # counts
+
+
+
+

Now let’s turn noisy_1 and noisy_2 into Lightcurve objects.

+
+
[3]:
+
+
+
lc1 = Lightcurve(times, noisy_1)
+lc2 = Lightcurve(times, noisy_2)
+
+
+
+

Here we’re plotting them to see what they look like.

+
+
[4]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc1.time, lc1.counts, lw=2, color='blue')
+ax.plot(lc1.time, lc2.counts, lw=2, color='red')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_7_0.png +
+
+
+
+

2. Pass both of the light curves to the Crossspectrum class to create a Crossspectrum object.

+

The first Lightcurve passed is the channel of interest or interest band, and the second Lightcurve passed is the reference band. You can also specify the optional attribute norm if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘frac’.

+
+
[5]:
+
+
+
cs = Crossspectrum.from_lightcurve(lc1, lc2)
+print(cs)
+
+
+
+
+
+
+
+
+<stingray.crossspectrum.Crossspectrum object at 0x7f7aa3d518b0>
+
+
+

Note that, in principle, the Crossspectrum object could have been initialized directly as

+
ps = Crossspectrum(lc1, lc2, norm="leahy")
+
+
+

However, we recommend using the specific method for input light curve objects used above, for clarity. Equivalently, one can initialize a Crossspectrum object:

+
    +
  1. from EventList objects as

    +
    bin_time = 0.1
    +ps = Crossspectrum.from_events(events1, events2, dt=bin_time, norm="leahy")
    +
    +
    +

    where the light curves, uniformly binned at 0.1 s, are created internally.

    +
  2. +
  3. from numpy arrays of times, as

    +
    bin_time = 0.1
    +ps = Crossspectrum.from_events(times1, times2, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm="leahy")
    +
    +
    +

    where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. astropy units) yet, so the +user should pay attention to these details.

    +
  4. +
  5. from an iterable of light curves

    +
    ps = Crossspectrum.from_lc_iter(lc_iterable1, lc_iterable2, dt=bin_time, norm="leahy")
    +
    +
    +

    where lc_iterableX is any iterable of Lightcurve objects (list, tuple, generator, etc.) and dt is the sampling time of the light curves. Note that this dt is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.

    +
  6. +
+

We can print the first five values in the arrays of the positive Fourier frequencies and the cross power. The cross power has a real and an imaginary component.

+
+
[6]:
+
+
+
print(cs.freq[0:5])
+print(cs.power[0:5])
+
+
+
+
+
+
+
+
+[0.125 0.25  0.375 0.5   0.625]
+[-3264.54599394-1077.46450232j  1066.6390401 -2783.16358879j
+  3275.00416926 +196.64355198j -8345.12445869-6661.52326503j
+  5916.3705245 +3602.05210672j]
+
+
+

Since the negative Fourier frequencies (and their associated cross powers) are discarded, the number of time bins per segment n is twice the length of freq and power.

+
+
[7]:
+
+
+
print("Size of positive Fourier frequencies: %d" % len(cs.freq))
+print("Number of data points per segment: %d" % cs.n)
+
+
+
+
+
+
+
+
+Size of positive Fourier frequencies: 127
+Number of data points per segment: 256
+
+
+
+
+
+

Properties

+

A Crossspectrum object has the following properties :

+
    +
  1. freq : Numpy array of mid-bin frequencies that the Fourier transform samples.

  2. +
  3. power : Numpy array of the cross spectrum (complex numbers).

  4. +
  5. df : The frequency resolution.

  6. +
  7. m : The number of cross spectra averaged together. For a Crossspectrum of a single segment, m=1.

  8. +
  9. n : The number of data points (time bins) in one segment of the light curves.

  10. +
  11. nphots1 : The total number of photons in the first (interest) light curve.

  12. +
  13. nphots2 : The total number of photons in the second (reference) light curve.

  14. +
+

We can compute the amplitude of the cross spectrum, and plot it as a function of Fourier frequency. Notice how there’s a spike at our signal frequency of 2 Hz!

+
+
[8]:
+
+
+
cs_amplitude = np.abs(cs.power)  # The mod square of the real and imaginary components
+
+fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)
+ax1.plot(cs.freq, cs_amplitude, lw=2, color='blue')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Cross spectral amplitude", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_17_0.png +
+
+

You’ll notice that the cross spectrum is a bit noisy. This is because we’re only using one segment of data. Let’s try averaging together multiple segments of data. # Averaged cross spectrum example You could use two long Lightcurves and have AveragedCrossspectrum chop them into specified segments, or give two lists of Lightcurves where each segment of Lightcurve is the same length. We’ll show the first way here. Remember to check the Lightcurve tutorial notebook for fancier +ways of making light curves. ## 1. Create two long light curves. Generate an array of relative timestamps that’s 1600 seconds long, and two signals in count rate units, with the same properties as the previous example. We then add Poisson noise and turn them into Lightcurve objects.

+
+
[9]:
+
+
+
long_dt = 0.03125  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+
+# In count rate units here
+long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000  # counts/s
+long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900  # counts/s
+
+# Multiply by dt to get count units, then add Poisson noise
+long_noisy_1 = np.random.poisson(long_signal_1*dt)  # counts
+long_noisy_2 = np.random.poisson(long_signal_2*dt)  # counts
+
+long_lc1 = Lightcurve(long_times, long_noisy_1)
+long_lc2 = Lightcurve(long_times, long_noisy_2)
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')
+ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')
+ax.set_xlim(0,20)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_19_0.png +
+
+
+

2. Pass both light curves to the AveragedCrossspectrum class with a specified segment_size.

+

If the exposure (length) of the light curve cannot be divided by segment_size with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we’re using 8 second segments.

+
+
[10]:
+
+
+
avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)
+
+
+
+
+
+
+
+
+200it [00:00, 12346.54it/s]
+
+
+

Note that also the AveragedCrossspectrum object could have been initialized using different input types:

+
    +
  1. from EventList objects as

    +
    bin_time = 0.1
    +ps = AveragedCrossspectrum.from_events(
    +    events1, events2, dt=bin_time, segment_size=segment_size,
    +    norm="leahy")
    +
    +
    +

    (note, again, the necessity of the bin time)

    +
  2. +
  3. from numpy arrays of times, as

    +
    bin_time = 0.1
    +ps = AveragedCrossspectrum.from_events(
    +    times1, times2, dt=bin_time, segment_size=segment_size,
    +    gti=[[t0, t1], [t2, t3], ...], norm="leahy")
    +
    +
    +

    where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. astropy units) yet, so the +user should pay attention to these details.

    +
  4. +
  5. from iterables of light curves

    +
    ps = AveragedCrossspectrum.from_lc_iter(
    +    lc_iterable1, lc_iterable2, dt=bin_time, segment_size=segment_size,
    +    norm="leahy")
    +
    +
    +

    where lc_iterableX is any iterable of Lightcurve objects (list, tuple, generator, etc.) and dt is the sampling time of the light curves. Note that this dt is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.

    +
  6. +
+

Again we can print the first five Fourier frequencies and first five cross spectral values, as well as the number of segments.

+
+
[11]:
+
+
+
print(avg_cs.freq[0:5])
+print(avg_cs.power[0:5])
+print("\nNumber of segments: %d" % avg_cs.m)
+
+
+
+
+
+
+
+
+[0.125 0.25  0.375 0.5   0.625]
+[291.76338464-640.48290689j 182.72485752 -35.81942269j
+ 293.42490539+276.16187738j 771.98935476-595.89062793j
+ 361.32859119-101.50371039j]
+
+Number of segments: 200
+
+
+

If m is less than 50 and you try to compute the coherence, a warning will pop up letting you know that your number of segments is significantly low, so the error on coherence might not follow the expected (Gaussian) statistical distributions.

+
+
[12]:
+
+
+
test_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 40.)
+print(test_cs.m)
+coh, err = test_cs.coherence()
+
+
+
+
+
+
+
+
+40it [00:00, 7645.47it/s]
+
+
+
+
+
+
+
+40
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Properties

+

An AveragedCrossspectrum object has the following properties, same as Crossspectrum :

+
    +
  1. freq : Numpy array of mid-bin frequencies that the Fourier transform samples.

  2. +
  3. power : Numpy array of the averaged cross spectrum (complex numbers).

  4. +
  5. df : The frequency resolution (in Hz).

  6. +
  7. m : The number of cross spectra averaged together, equal to the number of whole segments in a light curve.

  8. +
  9. n : The number of data points (time bins) in one segment of the light curves.

  10. +
  11. nphots1 : The total number of photons in the first (interest) light curve.

  12. +
  13. nphots2 : The total number of photons in the second (reference) light curve.

  14. +
+

Let’s plot the amplitude of the averaged cross spectrum!

+
+
[13]:
+
+
+
avg_cs_amplitude = np.abs(avg_cs.power)
+
+fig, ax1 = plt.subplots(1,1,figsize=(9,6))
+ax1.plot(avg_cs.freq, avg_cs_amplitude, lw=2, color='blue')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Cross spectral amplitude", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_29_0.png +
+
+

Now we’ll show examples of all the things you can do with a Crossspectrum or AveragedCrossspectrum object using built-in stingray methods.

+
+
+

Normalizating the cross spectrum

+

The three kinds of normalization are: * leahy: Leahy normalization. Makes the Poisson noise level \(= 2\). See Leahy et al. 1983, ApJ, 266, 160L. * frac: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level \(= 2 / \sqrt(meanrate_1\times meanrate_2)\). See Belloni & Hasinger 1990, A&A, 227, L33, and Miyamoto et al. 1992, ApJ, 391, L21.. This is the default. * abs: Absolute rms-squared normalization, also known as +absolute normalization. Makes the Poisson noise level \(= 2 \times \sqrt(meanrate_1\times meanrate_2)\). See insert citation. * none: No normalization applied.

+

Note that these normalizations and the Poisson noise levels apply to the “cross power”, not the cross-spectral amplitude.

+
+
[14]:
+
+
+
avg_cs_leahy = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='leahy')
+avg_cs_frac = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='frac')
+avg_cs_abs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='abs')
+
+
+
+
+
+
+
+
+200it [00:00, 15141.07it/s]
+200it [00:00, 12807.43it/s]
+200it [00:00, 13023.36it/s]
+
+
+

Here we plot the three normalized averaged cross spectra.

+
+
[15]:
+
+
+
fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))
+ax1.plot(avg_cs_leahy.freq, avg_cs_leahy.power, lw=2, color='black')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Leahy cross-power", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=14)
+ax1.tick_params(axis='y', labelsize=14)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+ax1.set_title("Leahy norm.", fontproperties=font_prop)
+
+ax2.plot(avg_cs_frac.freq, avg_cs_frac.power, lw=2, color='black')
+ax2.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax2.set_ylabel("rms cross-power", fontproperties=font_prop)
+ax2.tick_params(axis='x', labelsize=14)
+ax2.tick_params(axis='y', labelsize=14)
+ax2.set_yscale('log')
+ax2.tick_params(which='major', width=1.5, length=7)
+ax2.tick_params(which='minor', width=1.5, length=4)
+ax2.set_title("Fractional rms-squared norm.", fontproperties=font_prop)
+
+ax3.plot(avg_cs_abs.freq, avg_cs_abs.power, lw=2, color='black')
+ax3.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax3.set_ylabel("Absolute cross-power", fontproperties=font_prop)
+ax3.tick_params(axis='x', labelsize=14)
+ax3.tick_params(axis='y', labelsize=14)
+ax3.set_yscale('log')
+ax3.tick_params(which='major', width=1.5, length=7)
+ax3.tick_params(which='minor', width=1.5, length=4)
+ax3.set_title("Absolute rms-squared norm.", fontproperties=font_prop)
+
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+    ax2.spines[axis].set_linewidth(1.5)
+    ax3.spines[axis].set_linewidth(1.5)
+plt.tight_layout()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_33_0.png +
+
+
+
+

Re-binning a cross spectrum in frequency

+

Typically, rebinning is done on an averaged, normalized cross spectrum. ## 1. We can linearly re-bin a cross spectrum (although this is not done much in practice)

+
+
[16]:
+
+
+
print("DF before:", avg_cs.df)
+# Both of the following ways are allowed syntax:
+# lin_rb_cs = Crossspectrum.rebin(avg_cs, 0.25, method='mean')
+lin_rb_cs = avg_cs.rebin(0.25, method='mean')
+print("DF after:", lin_rb_cs.df)
+
+
+
+
+
+
+
+
+DF before: 0.125
+DF after: 0.25
+
+
+
+

2. And we can logarithmically/geometrically re-bin a cross spectrum

+

In this re-binning, each bin size is 1+f times larger than the previous bin size, where f is user-specified and normally in the range 0.01-0.1. The default value is f=0.01.

+

Logarithmic rebinning only keeps the real part of the cross spectum.

+
+
[17]:
+
+
+
# Both of the following ways are allowed syntax:
+# log_rb_cs, log_rb_freq, binning = Crossspectrum.rebin_log(avg_cs, f=0.02)
+log_rb_cs = avg_cs.rebin_log(f=0.02)
+
+
+
+

Note that like rebin, rebin_log returns a Crossspectrum or AveragedCrossspectrum object (depending on the input object):

+
+
[18]:
+
+
+
print(type(lin_rb_cs))
+
+
+
+
+
+
+
+
+<class 'stingray.crossspectrum.AveragedCrossspectrum'>
+
+
+
+
+
+

Time lags / phase lags

+
+

1. Frequency-dependent lags

+

The lag-frequency spectrum shows the time lag between two light curves (usually non-overlapping broad energy bands) as a function of Fourier frequency. See Uttley et al. 2014, A&ARev, 22, 72 section 2.2.1.

+

In AveragedCrossspectrum, the second light curve is what is considered the reference in Uttley et al. and in most other spectral timing literature.

+
+
[19]:
+
+
+
long_dt = 0.0015231682473469295763529  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+frequency = 3.
+phase_lag = np.pi / 3
+
+# long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 100 * np.sin(2.*np.pi*long_times*5 + np.pi/6) + 1000
+# long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 80 * np.sin(2.*np.pi*long_times*5) + 900
+
+long_signal_1 = (300 * np.sin(2.*np.pi*long_times*frequency) + 1000) * dt
+long_signal_2 = (200 * np.sin(2.*np.pi*long_times*frequency - phase_lag) + 900) * dt
+
+long_lc1 = Lightcurve(long_times, np.random.normal(long_signal_1, 0.03))
+long_lc2 = Lightcurve(long_times, np.random.normal(long_signal_2, 0.03))
+
+# Note: the second light curve is what we use as a reference.
+avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc2, long_lc1, 53.)
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')
+ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')
+ax.set_xlim(0,4)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+plt.show()
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(avg_cs.freq, avg_cs.power, lw=2, color='blue')
+plt.semilogy()
+plt.show()
+
+
+
+
+
+
+
+
+30it [00:00, 264.86it/s]
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_1.png +
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_41_2.png +
+
+

The time_lag method returns an np.ndarray with the time lag in seconds per positive Fourier frequency.

+
+
[20]:
+
+
+
freq_lags, freq_lags_err = avg_cs.time_lag()
+freq_plags, freq_plags_err = avg_cs.phase_lag()
+
+# Expected time lag, given the input time lag
+time_lag = phase_lag / (2. * np.pi * avg_cs.freq)
+
+
+
+

And this is a plot of the lag-frequency spectrum:

+
+
[21]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(8,5))
+ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)
+ax.errorbar(avg_cs.freq, freq_lags, yerr=freq_lags_err,fmt="o", lw=1, color='blue')
+ax.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax.set_ylabel("Time lag (s)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=14)
+ax.tick_params(axis='y', labelsize=14)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax.spines[axis].set_linewidth(1.5)
+# plt.semilogx()
+plt.axvline(frequency)
+plt.xlim([2, 5])
+plt.ylim([-0.05, 0.2])
+plt.plot(avg_cs.freq, time_lag, label="Input time lag", lw=2, zorder=10)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_45_0.png +
+
+
+
[22]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(8,5))
+ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)
+ax.errorbar(avg_cs.freq, freq_plags, yerr=freq_plags_err,fmt="o", lw=1, color='blue')
+ax.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax.set_ylabel("Phase lag (rad)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=14)
+ax.tick_params(axis='y', labelsize=14)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax.spines[axis].set_linewidth(1.5)
+# plt.semilogx()
+plt.axvline(frequency)
+plt.xlim([2, 5])
+plt.ylim([0, np.pi/ 2])
+plt.axhline(phase_lag, label="Input phase lag", lw=2, zorder=10)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_46_0.png +
+
+
+
+

2. Energy-dependent lags

+

The lag vs energy spectrum can be calculated using the LagEnergySpectrum from stingray.varenergy. Refer to the Spectral Timing documentation.

+
+
+
+

Coherence

+

Coherence is a Fourier-frequency-dependent measure of the linear correlation between time series measured simultaneously in two energy channels. See Vaughan and Nowak 1997, ApJ, 474, L43 and Uttley et al. 2014, A&ARev, 22, 72 section 2.1.3.

+
+
[23]:
+
+
+
long_dt = 0.03125  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+
+long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000
+long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900
+
+long_noisy_1 = np.random.poisson(long_signal_1*dt)
+long_noisy_2 = np.random.poisson(long_signal_2*dt)
+
+long_lc1 = Lightcurve(long_times, long_noisy_1)
+long_lc2 = Lightcurve(long_times, long_noisy_2)
+
+avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)
+
+
+
+
+
+
+
+
+200it [00:00, 14681.05it/s]
+
+
+

The coherence method returns two np.ndarrays, of the coherence and uncertainty.

+
+
[24]:
+
+
+
coh, err_coh = avg_cs.coherence()
+
+
+
+

The coherence and uncertainty have the same length as the positive Fourier frequencies.

+
+
[25]:
+
+
+
print(len(coh) == len(avg_cs.freq))
+
+
+
+
+
+
+
+
+True
+
+
+

And we can plot the coherence vs the frequency.

+
+
[26]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(8,5))
+# ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)
+ax.errorbar(avg_cs.freq, coh, yerr=err_coh, lw=2, color='blue')
+ax.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax.set_ylabel("Coherence", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=14)
+ax.tick_params(axis='y', labelsize=14)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Crossspectrum_Crossspectrum_tutorial_55_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb b/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb new file mode 100644 index 000000000..1d84d7b80 --- /dev/null +++ b/notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb @@ -0,0 +1,1057 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from stingray import Lightcurve, Crossspectrum, AveragedCrossspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create two light curves\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The first is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. The second is a sine wave with amplitude = 200 cts/s, frequency = 2 Hz, phase offset = pi/4 radians, and mean = 900 cts/s. We then add Poisson noise to the light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal_1 = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "signal_2 = 200 * np.sin(2.*np.pi*times/0.5 + np.pi/4) + 900 # counts/s\n", + "noisy_1 = np.random.poisson(signal_1*dt) # counts\n", + "noisy_2 = np.random.poisson(signal_2*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy_1` and `noisy_2` into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(times, noisy_1)\n", + "lc2 = Lightcurve(times, noisy_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we're plotting them to see what they look like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAGBCAYAAADfUj3ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADl1UlEQVR4nOy9d7gjR5ku/paydPKZ6DweRzDG2Bgw2QFs7oIxcQNhyRcuC7vknC6L8Q8WFi5hl7zLAktckjFgY2xMcDbB4Oyxx57xeOLJyi3V74+qr7u6Vd3qlrolnTn1Ps95pNOSuqu7q756+/1CMc45DAwMDAwMDAwMRh+pYTfAwMDAwMDAwMAgHAxxMzAwMDAwMDBYJTDEzcDAwMDAwMBglcAQNwMDAwMDAwODVQJD3AwMDAwMDAwMVgkMcTMwMDAwMDAwWCXIDLsBg8D69ev5li1bht0MAwMDAwMDA4OuuOmmm/ZzzjfoPlsTxG3Lli248cYbh90MAwMDAwMDA4OuYIzd5/eZcZUaGBgYGBgYGKwSGOJmYGBgYGBgYLBKYIibgYGBgYGBgcEqgSFuBgYGBgYGBgarBIa4GRgYGBgYGBisEhjiZmBgYGBgYGCwSmCIm4GBgYGBgYHBKoEhbgYGBgYGBgYGqwSGuBkYGBgYGBgYrBIY4mZgYGBgYGBgsEpgiJuBgYGBgYGBwSqBIW4GBgYGBgYGqxqcR9u+mmGIm4GBgYGBgcGqRbUKHHcc8OpXu7cvLQFbtgD/9E9DaVZiyAy7AQYGBgYGBgYGvWL7dmDbNqDddm+/7Tbg/vuBX/5yKM1KDEZxMzAwMDAwMFi1aLXEa73u3r60JF6bzcG2J2kY4mZgYGBgYGCwamFZ4tUQNwMDAwMDAwODEYdR3AwMDAwMDAwMVgmM4mZgYGBgYGBgsEpAiluz6U5QMMTNwCAsPvpR4HWvG3YrDAwMDAzWAEhxA4BGw3lviJuBQVh85CPAZz8LzM0NuyUGBgYGBgc5SHED3O5SQ9xiAmPsTMYY1/wteL43wxj7EmNsP2OszBi7nDF28qDba9AD6PHnYBstBgYGBgYjB1VxU4nb4qJ4PdimomEW4P1HADco/9uXnjHGAFwMYAuA1wOYB/BOAFcyxh7BOd85wHYaRAU9/qijycDAwMDAIAF0U9xaLbH0FWODbVdSGCZxu41zfq3PZ88E8HgAZ3POrwQAxtg1AO4F8DYI0mcwqqBRpI4mAwMDAwODBOCnuBFxA4TqlssNrk1JYlRj3J4JYBeRNgDgnC9CqHAXDK1VBuFgiJuBgYGBwYDQTXEDDi536TCJ2zcYYy3G2AHG2H8zxo5UPjsJwF80v7kFwJGMsfHBNNGgJ1A+tnGVGhgYGBgkjLCK28GCYbhKFwF8HMBVAJYAnArgXQCuYYydyjnfC2AWwHbNbylNcQbAivoBY+xXfgd85CMf2XejDSLAKG4GBgYGBgPCWlPcBk7cOOd/APAHZdNVjLFfA7geInbtPYNuk0GMUKsfGuJmYGBgYJAwdIob54a4JQrO+e8ZY3cCeJTcNA+hqnkxq3zu3ceZfvs//fTTeb9tNAgJlbgZV6mBgYGBQcLQEbdq1a0dHEzEbdSSE4hg3QIR5+bFQwHczzlf0XxmMApQR4pR3AwMDAwMEobOVaqqbYAhbrGDMXY6gBMg3KUA8GMAhzHGnqx8ZxLA+fIzg1GFIW4GBgYGBgOETnE7mInbwF2ljLFvQNRj+z2ABYjkhHcCeADAp+TXfgzgGgBfZ4y9FU4BXgbgowNuskEUGFepgYGBgcEAsdYUt2HEuP0FwN9BrIhQArAbwPcBvJ9zvh8AOOdtxtgzAHwMwL8BKEAQubM45zuG0GaDsDCKm4GBgYHBAKFT3Gi5K4Ihbn2Ac34RgItCfG8OwMvln8FqgSFuBgYGBgYDhDrV1Gri1au4NRqDa0/SGIkYN4ODCOoIMq5SAwMDA4OEsdZi3AxxM4gXpo6bgYGBgcEAsdZi3AxxM4gXRnEzMDAwMBggjOJmYNAPTIybgYGBgcEAYRQ3A4N+YFylBgYGBgYDhFHcDAz6gXGVGhgYGBgMEEZxMzDoB8ZVamBgo9U6uCaM1QIqCWEwOFjW8Pp6kOI2MSFeD6ZxaIibQbwwrlIDAxuPexzwiEe4h4VBsvjJT8Rk/e1vD7slawuPfzxw6qnD6etBitu6deLVEDcDAz8YV6mBAQBR8PP664FbbwWWl4fdmrWD3/9emJ4bbxx2S9YO2m3R12+5BVhZGfzxgxQ3Q9wMDLrBuEoNDAAA8/POe2+8jUFyoEmcJnCD5FGtOu+H0dd1ihsteWWIm4FBNxjiZmAAAJibc94b4jY40ARt4twGh0rFeT+Mvm4UNwODfqAGOBhXqcEahlHchgND3AaPYRM3r+LGuSFuBgbhYRQ3AwMARnEbFgxxGzyGTdy8ilu9LvpBLgeMj4vthrgZGPjBEDcDAwCGuA0LNIkb4jY4jBpxozZMTgLZrHhviJuBgR9GxFXabgPPfS7wgQ8MrQkGI4T/9/+A884bbMC6cZUOB0ZxGzyGTdy8rlJD3AwMomBEFLedO4Hvfx/4/OeH1gSDEcKXvwxcdhnw5z8P7piq4kYZbgbJgyZok1U6OJTLznujuCUPQ9wM4sWIEDcy2iY/wgAQNdWAwaowRnEbDoyrdPBQFbdhPKQYxc3AoB+MSAFemqgPpsFq0DuoH6j1ppKGiXEbDoyrdPAYtqvUKG4GBv1gRJa8MsTNQMUwiJtR3IYDQ9wGj2ETN6O4GRj0gxFR3Iyr1ECFUdzWDoyrdPAYNnHzU9ympgxxMzDojhGJcTOKm4EKQ9zWDkxywuAxbOLmVdwozs4obgYGYTAirlIy2pybcnLDxF/+ArztbcMnLsNwnxlX6XDgd6937ADe8hbggQeSPf7NNwMvexnwwhcCb3yjO+PyYMWwiZuquHEOHDgg3h+sxC0z7AYYHGRQWFK9bCE/pGaQ4gaIAZtOD6khaxyf+ATwla8Ap54K/N3fDa8dg1bcODeK27Dg5yr90peAj39cLIH0zncmd/yPfQz42tec/x//eOB5z0vueKOAYRM378P5vn3i9WAlbkZxM4gXygiy6sNX3AAT5zZMkNowbNVh0MRtZcU9mRjiNjiorlLOne1EpJPui3SvSyXxurKS7PFGAcMmbl4bb4ibgUEE8JbjKuXW8GPcgINrwK420H1Q78egwblj2AdF3Igk0DqJhrgNDup4Vx/g6B4k3Repj61f39mGgxXDJm5GcTMw6AOthjOC2o3h13EDDq4Bu9owCsRNfRofNHE76ijxurTkDv80SA7qeFfdpRSwnrQ9oD42PS1e1yJxU5XOQcAobgYGfaBRc4jbMBU34yodDYwCcfObyJMEJSZs2ACMjYmJbNju4rUCb2kIAilBhrjFD5W4tdvu/wcBo7gZGPQBa0SIm1HcRgOjRtwGrbjNzIjJAzDu0kHBj6gP2lU6NSVe1xpxAwa/7JX34ZzaoxK3YdqguGGIm0GsaNYdf1C7OfwCvMDaIm71OvCjHwHLy8NuicBaJW6kuM3OGuI2aHQjbknbAzrmWlXcgMH3dVLcikX3dqO4GRiEQLOmrpwwGorbWnKVfvObwLOeBfzrvw67JQJrlbiR4maI2+ChjvdhKm5ribhRGEChIF4H3dfpno+NubdPTgK5nHhviJuBgQ8sNTlhRIjbwTRgu2HvXvG6e/dw20Gga79WiZtxlQ4ew1bcvMRtLSy9RYrb5s3idViKG5VgAUTtzmLRKG4GBl1hKa5SGFfpwEEEaVQmi1FYemyYyQlGcRs8dPe72XQIlUlOiB/DJm6kuFH5HUCMO8YMcTMw6Aq16C4fgbVKgbXlKh1V4mYUN0PcBgVdVqka85lkX+TcGXt03w1xSx401aiuUrr+hrgZGHSBa7WEESkHcjAN2G6gSWlUJotRIG7qsU1ywsEPneKmXvsk7QGNu1zOCZQflbGYFDgfPnEjsq66Sg1xMzAICauhrpxgCvAOGkZx64RR3NYWuhG3JPsi9a9iEcjLhZoPduLWaIjabbmceFABRiM5gcqxGOJmYNAF6soJA1PclpY6mMpadZWScTLEzcGolAMZZG2rhYWDq26VL6jSqgJdVumgFLdhErdGY/D10wBHbSuVhveQoktOMIqbgUFIuIjbIGLcGg3g+OOBs85ybV7rrlJD3BwMIzlhmIrb8jKwZQvwjGcM5nhDw8UXAxs3Ap/7nL2Jc7fZWUvE7QUvAI48EtixYzDHI4wCcdMpboa4GRiEhJu4DUDq2r8f2LMHuPVW12bjKh1uOwijRtwGobi128DKing/MeG4bAY1me3aJZSXG24YzPGGhttvd7+ic6yvFVfp0hLwwx+K14svTv54KkaBuBnFzcCgD1hNpRzIIFylPjn+RnEbbjsAoX7Qk/AoEbekF8CmYxSLopbUoCczutYLCwd5fBV1LuUGe8c6nf+gFDcad4WCU4x2EPfgiisc8nLppckfT4WOuA1rySujuBkY9ID2oBU3H+K2VmPcRimrVL0lo1LHjfPkSSSpbVRTatDETT3fPXsGc8yhgAa2MsC9Y32tKG6XXea8v+KKwY43lbgNWl0mBClu6bR4bbfF38EAQ9wMYsXAY9zIUlqWS0oxrtLhtgNw34NRUdyA5N2ltPzPsIibeq0PauJG9kVha2FcpQdjjBsRt1JJPDhce23yxyQM21WqxjXqiNvBWITXEDeDWNG2nEcaNgjipjIUxYAbV+lw2wGMLnFL+toMW3FTr/WoLH2WCDSKm9+9Vl13B5vitm2b+JuZAV7+crFtkO7SYRM3UtFSKcc9DThtAQxxMzAIRKvpkDU2SFcp4BqVa9VVOkrlQEaVuCWtuBFxo3gbo7glhB5dpQeb4kZq21OeAvzVX7m3DQKkMA+LuNE9T6edaw4Y4mZgEBpthbihPUBXKeAalaOiuO3eDTzsYcC///tgjjcyitt3v4t1T3gIjscdANYmcSPFbWJCvC4tJZ8YAQxPcTtwADjtNOCLXxzQAUO4SoeZnDBo4nbuucCTniQK4d54o7gfg4CquFFfX1x093XOgQsuECVL4gZ1g0ymO3FbWAAe+Ujgwx+Ovx2DhCFuBrGi7VLchkfcRiXG7frrgVtuAb73vcEcj8673R6y0njxxchuux1PxlWudg0Dw45xy+XEX6s1mHinYSluv/kN8Ic/ABddNBiCGsVVejAnJ2zfLl5PPVWovI98pLj+f/5zssclqMQtnwcOOUT09Vtucb6zZw/w4x8D3/xm/KHPURS3668Hfv974DvfibcNg4Yhbgaxot1UY9yG5ypVjeUwCYzuiT9JqJPSUFU3edGLEPdnLRE3r+IGDDZQfVjEjSbwe+8VMVeJQ1MOZC26Sul8cjnxeuyx4vXuu5M9LkElbgDw1KeKV9Vdq7aFxkdciKK4kQo5qBVUkoIhbgaxglsDdpWq7GQEFbc1S9zkRR9DWf13mE2xMajkBLWmFAVND+KeDMtVSkojMKAYqx4VN08CeqxQiRuRBctKtgwFnT4d75hjxOtAyDM6idu554pXNUFCbUvctjCK4maIm4GBBipxY0OMcTPEbTQUtxKEVV/ritsgiduw6rjRBA4MKKuxx3Iguu/FBZW4MTYY1Y3OZVSIGyluv/61cz2SJG5GcTMw6BNqOZBU27hKDXFbe8TNG+MGrA3FTSVuAykC26PipvteXFCJGzBY4pbJiFdylQ6LuG3cKOLtajUR9+htyyAUN8bc489L3IaevNUnDHEziBVGcXODDHalMhgCOYwF1bWQDVmLxG2UXKVLS4NTF1TiNpAisAHlQFTC1GqJ9jDmZD0m1R/VrFJvO5JCkKt0EEkiXuIGOO5ScpkPWnGbnBT3m2AUN4NVg5/+FHjtawdLXLTE7XOfAy68MJkDaogb56NTDkSdqJeXkz+eOiENddkrj+LWbg9mIQ0dBkHcPvc54EMfEu+DXKVx35P3vAf46lfd27ykZFDuUprAafJ89auBZz7TUV1iR4CrlAharebcj4kJp20Ho+JG5GT9enGui4uDKQlC991+UPnkJ/GKhY8BSI64cQ684x3Af/+3c/u9xE2Fl7i1Wqu7ppshbgcxPvQhUT9skMuftFsaV+nb3y5mmCSYiyY5watsjYLiBgzGXToyrlKP4gYMT3UbBHF7xzuA974XmJ8PziqN857s3i2eh971Lvf2YRO3Cy4Qr7fdBlx8MfCJTyR0wABXqUrcaNxNTjqZl0n1xVFwlTI22Dg3l+LWbgNveQuO/cLbMFls4s9/Fv1g/37n+3HYwfvvBz7yETHmiL+n08Bhh4nrQO5igpe4AatbdTPE7SAGDZaFhQEeVJFVUly+pxGShPXSKG5eozwKMW7AGiNuHsUNGD5xo4ktietCcW0HDgwuxo26vre8gvc6DyrOjSbw//W/gBtuAD74Qff22BFQDoSuvZe4JV1BfxQUN2CIxK1SAVotMM5x7hPEB5/7nPv7cdhBup7lsltx27ABuPVW4Pvfd3/fEDeDVYO5OfGqrtOXOLyuUs4dy5KEtdQQN6+RNIrbEDCCxI3cJ3EbbMtyJo+5ucHFuNH19J7PsBW3Ugk4/XTg8Y8X/ydGWgJcpX7E7WBU3LwxbsBgExRcxE15ijjvieIDrys/DjtI5VXqdXdyAgAcdxwwPe3+vrpyAmE1JygY4naQot0WbhtgsOvGqYpbum25WdOAiJvXKK8V4tZquetFjZqrdFj3wes+i5u4qfdYJW5JK27q85AaP+gtyDpoxY2C1BMnLT24SpNW3PySE5Ici15FGXAUt0EU4fUjbmc9RnxAwgFd+ziEBOrvlHwCuM/fC5XUEoziZjByWF52JvFBEjeuxLgx3hoKcfNOFKPiKk1a+fQSVqO4CSStuKnX2S/GLYnkBD91lbYffrh4HYbiBgyHuNFbIm71+sHtKm1JpwZjjuIEDNFVqhC3rZsrOOII53snnSRe45iPVOLmVdx0MMTNYFWA3KTA8BS3DLeSr8uhSU5Yq4qb97xHKasUWBvEbW5ucDFuar9Wz4muM02agyZu5CIepuJWKgky02w6noeD0VWqc5MCgyVu1N9LJbiWz2DVCs47z/neqaeK1ziJW7vtXFujuBn0hf237cNvXvYVVOeG1zPIWAHOQLn9drHIb1LgXKpsKpSZ6vfXNeNfCmfUXKWcA1/7mm0xB0ncBr20UyBGMKuUiFvc10W9x6ripsa4JeEyU69nEHFTXaXf+15yi48PXHHziXEbxzLOuvfL2JwXRnDvXvHZwai46RITAKG25nLi3qtLkQHAH/8I/OAH8bXBT3FDpWLXcwOA004Tr3ESN/X4QYobEXYVhrgZuPCXl/4Lnvifr8BN7/jO0NqgU9xe8xrgBS8AbrklmWPW60AKnkX5lNHxxtc18YxnxFwVZNRcpddcA/z93wNvfnNHWwatuBlXqcCgFbdBx7gBeuJ25JHilRS3bduA5z8feMUr4muDiqG5Sj1ZpS/HV/Cy374Sr4FIZ9y1S3w2NXXwKW66+DZAkBhS3bz2/iUvAZ7zHOe69Au678UiOojbOecIUjk2BjzsYWJz3MSNiGlUxc0kJxi4kJkXdTj47r1Da4OOuO3cKV7VmjpxolYD0vAobkotgNpKE81mzPL9qCluNEvK1zVL3FyKmyjfPmzillRygnqd9+8X+2fMmbyB4bpKSXHbvl28qrYhToxCjFuzCWzAPgDAurRQ3G6/XXx21FHDS04YtKsUAJ74RPF6+eXu7fvE5YnFhc65099yObiJW7mM2Vng5z8HLrkEWLdObB6G4mZcpTGDMfZzxhhnjH3Is32GMfYlxth+xliZMXY5Y+zkYbUzClJNMUpTtaQKGHWHzlVKBjspI6IlbsroyEJYy6SJ21DLgdDjn3xds8RNzigZtOz7PmziNgjFjR6OxsaAlGJdkywH4t0vbd+wQRCHlRXRHYnAJTX+R8VVWoS4wYW0uPGkOB177NpxlQLOslOXXureTm2Mk0Cl05I4qX5Z2SHOPht48pOd8Tcqipshbj2CMfZ3AE7RbGcALgbwNACvB/BcAFkAVzLGDh9oI3tAuims6DCJm1dxa7edGjZJTehhiVusKeoByQm0Vt1AXaX0xClf13pyAjD89UoHSdzuv1+8qvFtQDJZpd0Ut3we2LRJvN+zx1FYkroPo6K4FSBuSD4ltlOM2zHHJOsq5Xx0XKUAcM454uHh6qvd4SlxEjeX2gZ0uEpVJEXcjOI2QDDGZgB8AsCbNB8/E8DjAbyYc/5NzvnP5bYUgLcNrpW9IW0Jw5Gujw5xW1x0FhxOirhpY9yUwTsoxY2MCcUYDVRxGyHiNgquUsAhbsOu45ZUcoK6vx07xKsa3wYkr7hphgFyOTdxI8UtCdLSbAr+lMk4k6RKWhJZ7NynHAgpbvm0s71YBA45JFnFjcZ6LueorcNU3Kangcc8RlyTX/1KbFPXcR40caNQhaWl/vuDiXEbHj4C4C+cc12e4zMB7OKcX0kbOOeLECrcBQNqX8/IjABx87pK1f8HqrgpB8tBjPLYiJv6iAt0uEpJ9TDEbQgYQcVtEAV4vQ8NhCSySrspbtkssHmzeL97t6O4JUEiXCUhJMh9xnlCqreP4mYTt5RzgbZuFQp8koqbV20DhhvjBnS6S9X+F0ddSbWvAdC6SgmZjOgfnHdmukaFUdyGAMbYEwD8PYB/8PnKSQD+otl+C4AjGWPjms9GBqNA3LyKm/r/sF2lsRE3n2A2MiY0iQzUVUoWqVoFWq0hlgPhmN5zh3sphQTRagF33qk8SSuNGYO4JsMmboNwlRI25+Zc0d/DSE4Io7jdd188a4l63aSERIkLzd5UhRZu4pZLOQOfloBKQnGzLOCOO5x7QPcaCD7/RqN/WxjkKgVg11GjMkxqPxm04gaIzN44jq0St8zunRjHsnMNduzoYIaGuPUJxlgOwOcBfIxzfofP12YBzGu2E/2Y0ez3V35/sTQ8AjItMUozjdFQ3KpVdwZRkskJYVylO3bENIl7R55HcRuqqxQAKpWhKW5/je/gIz86EfjUp5I9qMSHPwyccALws5/JDSOouA2SuH3xlscCJ59sX4dhJCfkcnrFrdUSf7t3C0LzN3/Tf1uGQtzUJzL5XnWV5hTFjUpjJKG4feADwIknAhdfLP4Pq7j90z+J6//HP/Z+7CBXKQA86lGCLN11l0icGTZxozHYr9pHxG0KC3j3V4/DxThfKG7794uL+uxnu75viFv/eBuAIoALh3DsgSDbElY00xwNxQ0QT9aEYSlu4/kmtmwRIhCVJuj7gCo8ittQXaXy/bCWvDoWMgPk3nuTPagEJZxs2wZxg5Uglsn0cIkbHXeQxO3Q6jZRd0E++Q8jOcFPcaPv3H+/IDpxdJFRIW5qckKOOZ8TcUtCcSNbRnFkYYnbnXeKV9U2R0U3V2kmI8qgAE6pGsIwiVtcitsheBC5Vg3HYJtQ3EgV8HRq9fpQ/OFqJm4B4XzxgzF2JIB3A3glgDxjLK98nGeMTQNYhlDbOlQ1CCUO0KhxnPMz/Y57+umnJxEa6wsibtkhKm5E3NJp0clVopQkcZsJIG6HbWjimGNEW7ZtA44/vs8D+ihuo0rcVlbEvQiKxegHqhEda5TdGxMG3YpaDR0XfLZQAcrDV9zUhcdpfcc44B1PaVhI0woi8qQHmZygU9x27XLqd9F3qG/GMT66EbdEbI7qL1OIGylu2dRgiBvt6y8yuCcscSNT0Wp1fhb12EGB+WQHKxX39+IgbmoiDIDAGDcgPuJGESBE0ouoCrtKA8Fzg1Xitn69yDQ2yQnhsRVAAcDXIcgX/QHAW+T7kyFi2U7S/P6hAO7nnK9oPhsZ5NqSuA1RcSNXKS00PQjFrVtW6SHrm7YBjaUkSBdXKRmsocS4yffUFiJrKwn2XJqwJyaUFQsGxJaoT9Xr6LjgM/nRcJUWi+I+tNvxTtzeSTmPzmyFYce43XKLO9yxXnfaEsd9GRXFzeUqxWBcpXQfqNCvrvCy7vzJVMRB3PwUN8C5J+Xywae40VgroCZIqU+nVq8PPcysZsVt0MTtjwDO0vwBgsydBeBuAD8GcBhj7Mn0Q8bYJIDz5WcjDZu4WcMhbo2GGKTpNHDYYWLboBS3IFfpIeubdpBwLAkKI6648WVHcVu/XrwmGeemugQHTdyCFLfp3GgQt2zWmVTjNNre8eQibrIDDGOtUlVx8463QStug3SV2oqbdJWm0467MEnFjZoTNjkhDsWtm6sUcO5JpXLwErciqkineCjFjR5mVjNxG6irlHO+AOBX3u2i3i7u45z/Sv7/YwDXAPg6Y+ytEErcOwEwAB8dTGt7R57LGIshKW6kts3OOlk8quI2rJUTNs40weWTbyzEzSfGbSTKgQBoLa6AczFxzMyIOKM1Qdw8ihsRt2HXcSPitrIi2ktjo18EErcBKW6aOtTI5fzPUSVuq1Zx6+YqlYqbutRVEoqbV9GP6irtxyMQxlWqEjeVVB5MxC2Ntij/QoYoQHE7GIjb0Je80oFz3gbwDAC/APBvAH4AoAXgLM75jmG2LQxyXHSmnOVfrMayxKBLoloDxbfNzDgDRc0qHYTi1qRnAmXwbphxu0qbzT4LMYZU3MgwJlIE1AvFcDUXxPt8Pt6q4X5Qsydt4haBLfVzfYKI22RmbShudtFVjeI2DFdpNivc5iqRUJuVhOLmXTHCS1xiHYM+rlKKe8pIxe2YY5wDJ6m4EQYa49Zwn5cOg1DcwtRxA5IjboAk7GtEcRsJ4sY5Z5zz93i2zXHOX845n+Wclzjn53DO/zSsNoaGZSELYTDyLb3i9uUvi8Gdy4mFd2ktvbhAxG121hkoKpIkbhTj1oB8BFNGx/rJJrZuFe9vv12c/1ln9WHMI5QDqdeBk04CXvnKHo8VForhai2K9/l8fPWLgtBPjNsllwh3rndB6rAIcpVOrBHiRm7JIMUtTuUpjKuUMWei8v52EK5S9bzvuktco3/7t/6PB8BN3ORJqIpbhovPn577BbBxI3DppSND3CzL2dYzcXvnO/GUV27BNOaHTtyGrbgBQIGHI24bN4pXk5xg4EAZobl2XTsqL7nEsTkLC8B118XbBHKVqoqbiiSTE0hx0xG38UITExPAc57jSPtXXdXHZBYhxm37duC224Af/rDHY4WFYrisxcEqbv24Sn/8Y0H4f/vb3o4dlJwwkRod4rZhg3ivlsboF3TuhxwiXkcpOQFwCKUKVXEblKv0uutENt8VV/R/PAD6GLcGR0kSt5nxJg4/HHjG1K9FLYzf/nZkXKWqMNUzcfv5z1Hafz8egttCEze1/8VO3Fot9wGGobjR8S3LpQgYxc0gGF7LrOkdNGk87GG+X+kLw1TcvMSNqysncDHT/M//iEmHFLGejai3VHnAyglkQw4cSDDWqtVyGau2JG6FwmCJWy+KG8Uc9nptghS3MTY6xO2YOGMsJWhS1hK3BF2lOsWN885MwzCKW78uzDDEjb4TW5a3JsZNZUiTJQs7dgDHHNG0vz8IxS1McoIqTPVM3KqUPdsIHeOmzjXVav/XwVUOxLuO1QBWTlDHWp7X9Iv2whA3gy5olT2WWdN5Kd5syxbxGjeR0sW4qRjEygk2cSs7o4NZbivR99MvXTgq0BVQDkS1KXv39ni8bvDc6/bS6lHcYiVunpl5mMSNc8fIq8QtlnI0EtQNDz1UvOoUt6TXKqX9qqSN6tR1I25A/2QqCnGLhTR5ijzTCaQbmolbSftMshwIIYziFgtxkzc9i2ZPrlKgf3vkUtzopIidDdNVqjYOhrgZdEFzxTNCNZ2XFLejjxavcXcgXVapikEqbu2ycv5NPXHr2ZDThSNr4FHcCgWnfppqKOJ0k7ngeeLkK06M27AUNx5ihqIq+kAyxK04xCWv6HzSaUFkklDcAombnLHVvt5PMLoKnau0I+YIblcpTVqqq9S7r14wcMXNuxP5P6vXOr+jELek1ipVMTBXqaK4jRRxo9pH1WpH9l3cS165FLd2NZTiRjFuhrgZ2GguBytuKytiU7GYXAcaKVdpWT+QgBgUNx/iRkYyl3Ni6VQDpWbYxgpPdV2+PBzFrVhUiFu9+8Xdvt2xr71MaK2Wc2ydq7TIh0/cyHAnSdyCYtwYiz9BQecq7ahkD7fidsQRzm/rnc3sGQNX3LxsR7KnVD1AcWu1+n9Y1GBoilufrlIgIeKmpjJ7Dpik4pZvV92Tm4a4lUpOiI5JTjCw0Y24EWnYtCmZDDdgeMkJqqu0ySRxqwyeuNH+8nlnwKpPeIMibih3Erck1ytVjWgU4qaSmF4mNHVS0iluhfbw6rh5iZtaADqu0hRhiBsQP3ELUtx0leIZcwpyH6yKW6ZZ7fyORnFLwlVKrulhELdekhOA+IhbNgtHRhwfdx9UQeLErYurdGoquXl3kDDELWZYK8HEjdx0mzcn14H8FDdSsGnw/td/AS96UXwTqppVajHKKu3uKk2KuOVyeuI2KFcpW3GI22yhgm/gBVj49qV43OOAn/0s/sPbakuWKzFu3W9uv8RN7b/1urOTNsRMRmVxhqm4UV+j8IHlZZFoGAdoUtaWA1Fm7LgTFHSKm85VSorb+vVO3KdXcVv1xE2egCvGbcCuUopZ3rr9CuDZzwb27fONbeybuFmWfeCRc5WOCnHTKG6Tk+J9KuW6hKsOhrjFjG7ETae4xa2AEUmZmnITN1IE6Hgf/zjwjW8AN90Uz3FdBXhTYuZwxZzETdzoROgk5Y50rtKBKm4ysI5VnBi30xcuxwvwTbx35W245poYa1kpsF2lqTpSEHJSmBi3OImbqrgtQySN5KzhEzcy3EnEuVE3HBsTtQI3TgUrbnGNd11ygo64nXiisDWnnuoec3G6SumZZdiu0mEmJ5x5png9/Q9fFHWHLrkkuRg3pRN1c5Wqi8wPhLiNjfkSt6kpYR4XFvpTnnXELduq+SpuRx0l2vjQhwobsNpVt0jEjTGWY4ydwRh7DmPshYyx8xhjWxJq26pEWMVt0ybHkMfdedQq5jriRgNmedndpn6hEjdS3FK1AbhKPVmlOlfpQJITyHBJiSNVdRS3LRvFTTkFN2MzHkxksXmbuPFK58YAqBmWcRK3JYjOl22ODnED4s8spTm0UACuvRa46P16xS3uzNKwitu6dSKO8Uc/chOpg0pxI1epFZCckHA5kA9/GNixQyHuc3PJuUqVQdeL4kZxXv0SN5eiHUJxy2SAI48UYQr33tv7caMqbps2iQSsb31L/H/QEzfGWJox9jzG2M8BLAL4HYDvAfgagJ8B2MYYu58x9hHG2LHJNnf00aoGZ5WS2pOkq1Q1okGKG42zOImbHeMmFTftE7BE3/EmIZIThhLjJn1m6YpD3NTZ+im4PFHiRjFlro0BiF1xkztZhEhpzjRGk7jFrbgVCmLOGssMXnELIm6ASIQqFJJT3MIQN1KZYiFNYWLcBqy45fPA4YcrO5+ft8+/0XDHVA6buJH7PFbFLUSMGxDP+KNkKpfiZnmSEzw3edMmp/8nUVdxkAgkboyx5wG4HcDXAdQBvAfAUwGcAuB4AGcAeAEEkXs2gNsYY19kjGkqB60NtCIoboMgbmNjTtAslSvwEre4iIzbVZrv/EJSihvVPAmZnJB4jJu0iumaQtyUWfI8XDowxY01gy9uuw3cc4/zfy+Tqmr8dIpbulZ2tW+QGDRxA+DLiJJMTmg03Nm9XuJG8CNuB43iFjI5IYkYN7uP0U2Ym0Mq5YRrqP0/TuKWRTNyVmkixC2E4gbEM/50iluu5a+4eXGwK26fAvBZAJs55xdwzj/OOb+Cc/5nzvndnPPrOeff5py/iXN+PIAnAFgH4H8n3fBRRbsSLsZtUIpbKuV4EmmwNpvij44bF5FRkxNaKc3MMeA6bkMrB2ITNyfGTWU3T8UvUFlpe3/dN2zFreUE0HQjbrt29T+B+yUn2MStPlqKm5pZGgfo1hJJcV3QASUn0H67EbeDxlXqE+OWbQUQt4RdpR3ETab369ylfce49ai4Ud9LlLgFxLgByRG37BoibgE8HQCwlXMe2sxwzq8D8BzGWKHrlw9SdCNuquJGxjVuudZrRCcnxQBdt05MHrWak3kKxKu4kavUSocnbrElJ4R0lc7Pi+/kNaJgX/C4SrN1vat0E/biqMWbATwi1sPrXKWpllyzj2RXD7zGs1/i1mgA7YaFFJzkhFSjjhRaaDTS0XfeJ5JW3Dh3+puWuA3IVUr71dVxU5G0q5QC4QmJJSf4KG5Za3iuUlv1UhQ3QFyDctl9vftW3DzJCSPhKg2puMXx4BQ1OcGL1U7cAhW3KKQtjt8dDODV8FmlSSQntNudrhviNbOzzrYDB5zf9Ku4XXkl8KY3iXPrRXEbRB23hQX3TxNZ9ooM17p1QCqFjFVHGlYHcQOAJ5QvjeeYy8vAv/wLsHOnE2vT8hjLgJmSjCcVZu2VuB2B+/FmfAxjWIFVkwt+I4sKEwa8iOpQ6rjlbr4Rr8G/I5txAowOO0z0jT17OkvvRYVliTGXySgT9xAUtxfjv9C+4lfaOm4AgC9/Gbj66p4Ut3Yb+PSngT/9yf873RS3Wm0w5UCyanJCuy3+EnSV0spbjDmrtNg7D1Dc1H7X0/XwKG5RXaVU/H3QddyABBW35gAUt3vuAV79auArX4n4w3gROquUMXY8Y+zRyv9FxthFjLGLGWOvS6Z5qw9E3BqQFkLpuJwnX8eN9lUsCjcp4BTdPOIIx4ioNaz6Vdxe/nLgE58Alpc50lJxa6U0j4ADyirttnICkFCcm2q4ZNrWGMou4sYf+lAAwOnt6+J56v/2t4G3vQ34+McdwuolbgEHuu8+8XrcceK1V+L2ZnwcH8Nb8Vz8D5oVsRNB3IQEU0JlKK7SLR99Lf4dr8Vx1m32tlRKZLYBIguwH3TEt6kbAde1jzurlO7VZrYH/4WXYOqtr9K7SrdvB175SuAf/qEnxe2mm4B//EfgzW/Wf657WCQMuhxIrlXt3K5ZOSGuvqhTdHWKGzA8V2kuJ/p8o9ERzdF3QfBeFLetW8XrPff0XnyYfleAM5i6JSeo6Pkh6uabgS98AfjudyP+MF5EKQfyGQDPU/6/EMCbARwK4BOMsX+Is2GrFbwmRuccZsX/ylqdy8uio9CyG0kQN92T7+c/L8oKnXyy02HjJG40+D/0f2XcFmPgac0j4AisnEBGNJE4N9VwSeI2jhUXcWPSjVpAzVuvtzeQdLhvn2NErfDEjUrCUHHmXpMTJiGY8TQW0KyKSdRCBrWU6IjDIm65PWIRVmofgVx6/ZIoLWEZsKv0qHEhn6cW5vTEjeT1xcWekhNIrd63T/85DcNSqdMjP+jkhEDiloDi1uEmBUIRt0FmlTLmzAfUFYYZ4zY+Lo7faAAPPNDbcXWKW8YagOJGMiHJhkNCFOJ2CkQpEDDGUgD+HsDbOeePBPAhrOGEBBVcWmUibu1lZ3ZW1TZgcMTt6KOBCy4Q73Wu0nK5P5cRDd5/er0kbuk0eEoTzzTElRPIzh99tHhNRHELIm5ktaU6mEUznsxSsrxLSz0RNyKPMzPitVfFLQvxwzzqsKrivYUM6ukhErdWC7lFwTYK6Zj7nkRHYgLQ1VUa91qlG0riJrJ6TU/cFKnLz1UadB3oM79J3s9NCgyBuLWDiVvca5V2ZJQCzgVbWADa7aETN8C5N17FLdY6biFdpUD/7tKhuUqpwRSoNyREIW5TAGi6PxXADEQZEAD4FYCt8TVrFcND3FTFTY1vA5JZOSHIiAJ6xU1tWy+wJ4u0HE3pdCjFre86bprkBDVYXHWVEoi4Ja64SUnHq7gNgrhlmuGJG7Vhelq89krcMhAzWB51WHUnxq0+TMVt/34wWfApn3ZP9HERN+prw1TcNhTFTUzVq2jURSyfH3HrRXGLg7gtLTm1t5JylXIui7CqoBR6+Z241yoNdJW228DSUjLELcLKCUDnvRlmcgKQEHGrL7sJfRLJCatQcdsDgGjmuQC2cc4pQmQcwCpd9SteMDmg5iEkDJW4eRU3NeYlrgWvwxI3VXFT2xYVnCvGKyVHUyqlROoqSDrGzbJgNcWFzGREM7xPohRfkWiM29iYb4xb7MSNfMAKccs2ohO3OBW3Vs1xldYzQyRuCjvPp9wn5lfRPiq6ukoHkJywviBuIuMcVkVs1BK3RqOn5AT63uKi3k6FIW4yTh9Acopbu+2OebK/l2A5kEDiBriK8CYV45ZFM7TiRog7OSEqces3s1Rbx6284P6ScZUCAH4M4CLG2McgYtvU6LyTAdyj/dUaA63NaStuFX/FLZWKP2BZ5Q46xK24kf3MZADGFVdpBOLWkxHl3J2JIY9XL1uufXsN2sAUN58YN5W4xRLjplHcsj0obkm4SpvIojFM4qawcy9xi9tVOkzFbTbnPAG0y2JMRFXcwrhKWy39RBdE3OicvcSt7wdVDXFrNkX2sgsexS3u5ATV/tlQd+6z7NWgXaXqfJDLCScFY2K+6DVBAOgtxg1ISHErz7u/FHdyQrMpEn0AZyIZEqIQt3cA+AmA8yBI3IXKZ88E8IsY27VqwRru5ARUKqhWgZ/8BPj1r8UmIm5A/HFu3RQ3XVYp0LsC5Rq4LcdViqSTE2gNmWxWHE9arkZZEgh5ngNV3MIQN7k9h0a8rtLFRcdVGkFx6znGrV4HrrkGaLVQq7ldpa26o7ipxK3ZjE9ZXlgQ2Y4dmJtzPlDYeS7lnujjUtza9+/E8bgjFHGL8yFNVbpncs4TAK8EELdGoydXqfo9nUITRnHzluPphywA0JYD0RK3gOSEeh24+ur+FECt4qZezADiNo5lnI4b0LJ6GBQRyoEA7ntTLArSRhEmlKDUC3zLgagr22vQ73rBWsVtec79pbgVt/vvFwc+/HBnB0NCaOLGOS9zzl/FOT+Zc/5yzp11dTjnj+OcvyOZJq4usIZbcUOlgg99CDj/fCeDmJaeAgZP3Pxcpb0qUP7ELWFXKc1+dAGl5VyecxO3kYlxG0ByAl1eWqnARoAB6znG7aMfBR73OOD739e4Sp3khKYkbpMpYdRjcZNBlFI6/XTg1ls9H7zkJeKDO+7wELdkFLeT3vBU3IjTMZFRBvAAkhPoOqbTwARzOhKVI3IRCTU5IcftNkRV3AA9caP5Ooi4UXybt/09QxPjZlldFLdWyxXF8clPAo9/PPC1r/XejDCuUq+602iI330Sb8ANeDSO2ntD9AP3mJwAOCaTiFs/7tJeFTdyld51V28kXptVmrSrdETcpEC0Om73MMZO8fnsYYwx4yoFkPIQN1at2LWiTj8deNWrgOcpRVXiTlCImpxA8XaxKG5knQcR4+b1UUnLdd1vxTFOPdW1GYBo0rp14n0sbkovQtRxS4y4KRJKB3FLwlVKefwPPNBB3NoNJznByooOXpILr8floqLD33+/5wNyZfzhD25XKdP3vX5JVH7/TkxgBevTiptmAK5SNZtvXCVuQYob53YCUbXqJk/9KG6kphH5V+G3OknfMWZhXaUexQ1wbAIVFO61JAWgKQeiSqEAMDdn2xyyuWQmjoTovDMrPRQTjLByAjAA4payxD8U/0MH9DG069cL8rayAtzQA2/VETfmlfPjTk5YjcQNwBYAPsMQBQBH9d2agwBpDXGjMfaWt4jafbOzzvfjXj0hquJGfTB2xU2n3cdJ3LzrDEnL9etfimOce65rMwBxTUjBj524WZYwpoyJizzoGDcAhYZ4nxoEcaN73Wx2ZJWqrtJ2Vtyf8XStW1Migebtjgd6OqFt21ydOuvjKu23PbQW7GRGacgAkhNUF9U4D0nc4JRF8brHwmSVAvpJnpbPoz6kwo+49a24+RC3wOQED3GjB+p+SGRHORDvzubnOx6OqYsSyUxbPTw99OkqBeIhbnS6Be4p5tdFcQMcG33ZZdGPSxqBStx8G6fBWiJuAODnjD8dwEJ/TTk4kG66s0pV4uatKg4Mz1VKwcLUB+OPcdMobp5ZMgnidvVVYrCed57YrBq0UimUPekNqtrG2ODLgQAoNCVxqw0gxk1ZwLtDcas7yQmtrOhwpUERNzqhbdtCKW59tYdzpFpivxNpH+KWsOKWzQJFrjwBVIOJGyVpeCfrflylZEvUB1L7eEkpbt1cpbRsjMdVCjjXJg7i5rvAPGFuzo5ppueIJIhbFMXNuxRiHIqbvVoLHSiEoSUbfWkPq/+1WkAalr1ST2DjNOjJ00UBeUOu4QZ0WWSeMfZGAG+U/3IAFzPGvFejCGAWwLfib97qQ9pyE7dUrYJalQNgI0XcCNQH+1Xcslk4xjSVAjIOcWuDIQXeYSH7qqnkQ9wWDzRx+OHAiSe6jwGIa5LPC17VaIjJv9uTamioxE159UtOiIW41euuizeJJZHdKztBFQUUUfO9wKpI6Fk1rDsU4lar6V2lFjJo50SHG0sNQXFTUhmzHuIWS3JCq2W7ZwZN3NQHplLL6Uis1oW4SfMdRXHr5iolxS0KcUtKcbOJ28SEqF/SbDrf9Shu5CKNg7h1LDBPmJ/H5jPE26QUtyyawLBdpVZ04nbmmeK6XXedcLfrXO1+aLUcta2BLHLQ3MSAG9uTp2sVKW73APil/GMAblT+p7//gSB3r0qumasHNAiXMYEGsmDtNto10bt1RmxYWaUEVXHrJePPVTm77ZQDUbNKy5D+yVbLdZAkFLcsmjj3XGfpHS9xU1X8OFescCUmKK92jFsSyQkeizuJJXFNZSdYwLT4wOcCq1yTJh5al7srAhQ33nCSE4i4lWImbvSM4JoX1HoVd9/tUtyyLIECvMrEMMa6u0rjzCpVlZ6CQtxo590UNy9x60dxC3KVZjKdy2ABA4hxo3GoXmxaXSHn3kWsrtIQihuNu1FxlfazXmkHcaNYlBDEbXJS5De1WsAVV0Q7rkrcyhhDU6dBxekq5VwsrgqMBHELvN2c8x8B+BEAMDH6Psg5v3cA7Vq1yEjFrYYCKighh0XZefOBitugkxMImzaJsVYuC2NOgzks/FylTFHc6shjPF0Fa7XEYJKWs686bgHEjSR4oNNVSq/lsrhWpDT1DSWjinOADSLGrQtxm8cMDsFu+yY1Gu4JXeWajIlLSJ4lP6XERkCMW7vpJCcQcSuweJMTtIqbekF37XIxBu8TeSzJCUrHHU+FV9zUj9Xogl4OncsBBcshbql6sOKWQ8PbdO3/KnSKm9qXglyljIm+5LVvsStu3nIgk5NCUlM7iEdxU37aM+i3xXQDQK5zZ3NzvjFuFI/XE3HzJCe0hq24NT2pxSFjUs49V5TJuuwy4DnPCXnQZhMtK2MTtzryyMBCFp4n4TiTE3bvFucyOxtNGkwIUWLcXg1gr+4DxtgYY6xL11kb8BI3QMS5AfoYt2ElJxBowV+gtzi3MMkJTWTBM50ly+NU3Nppsf8cmjjnHOdrXsVNfY01zk1av1p6DLOzwNe+P4AYN8+jspe4LUrFzao2cckl4l5/85vO99XsfcC5VqEmsiDFrem4SnledLhiQq5SF/n1MmFF3c16iFssyQnKj8egHDtkcgLnwCMfKUpS9HrobBbINyO4SlP6mxs2OWFxUWTyrlsHvPWtYluQ4gboHwKSKgdiJyfQE5lqWD0xboR+idvr8Gn86Kop4MYbta5SVXHj3Bl3JUkyM63BxrglQdzsot9eI1suB7pyKEHhF2GrwFYqwDHH4B03PMdF3KrQ1FWLU3EbITcpEI24fVH+6fB5+bfmkW1FI27DjnEbH3cMbi8D2K8ciKq4NZBLnLjV2mL/xxzZtNPvAT1x61Ibsjdcfz0A4E4cj4UF4MobuituiblKJYGpZKfE60IDv/mNuPSqgfSG5UWKOaSZt9HoIG5oOMkJPCfuT5GJ8497cW/XPQy4oEm7Skt+rtKAGLflZVGS4rrroocpqK5SW+2Ao7i5JnKF0Ga5/oSjuEpvuEFc6iuvFNuCFDdAT9xic5VSEoJlodng7hg3wG1YE1DcLAs4A9ci364Bf/yjc7HIsM/NYXxc/FutinvuKG7DcZUmkZxgF/2mA2Wz4q/dDuxcD3mIeA0dY3333cCOHXjo3G/9iRtd+ziTE+jphOTTISMKcTsL0m2qwY8BnOPz2ZoCEbe6Qtwoy28UiVuIWomBCOMqbSCnlXPiJG7Vptj/lsP0CRBAwoqbzGn/YVX4ae96UIlxS1vi2qRS9g1Io43ycphgsgB0cZVWC9MABHEjw6hWKveG5UVS3BRXqXflBG45ihudbxEDSE4IIm4+iltfrlLlZEpUj7zddl/AAOKm3r6oCpQ67nJ157zTjfgVN6+rlPoSvQYlJwAJKW60A7qolgWr0kAKHE2WdbaHcJX20yddJUhqSiIQTfDz82DM+XfPHsGjU2ghL93W6VWquHGuLPnlJW6AY1iCxmXUtWNlpytZS/7EjU4szuSEbhPrgBGFuG2Ej6sUwD4Am3w+WzvgHNm26EyZsbxN3Kgg6igStxDrAQfCl7hlnUfAQRC3iiRuR2x2D1a/GDcgRuJWqQC/+Q04Y/i3O58CADhQV1ylXKkHwxi4TNyor/QpO3Qhbo3itGjeYsN2g6trA/ZF3AJcpbQDlbgVBkHcAoIGMz4xbnEpbgUibq4BIRsqlegg4hZV9VEVt4xC3KgAuB9x8xJYQhTFjfoSuf56cZXGVg5EIW5Uw66RKjgDfwCuUi1xm50VbSiXgXrdFY6ysuKuN7daXaVqHySvkutA5NoIIG50m0ITedn5cryBSYiGdxC3qSl3AzWIPO+uYuK2F2IxeR1OBnDA57O1A0vUlWkig9JE2iFu8mkkKKt0UMkJ3jbEStwCXKUsFzNxowsmT2ilriduA1HcrroKaDSweOzp2GMJP+0KFFcpFYmUkwyXjYqbuE1hEcWMzC5IpdAeE22oLzmK265djrFKKsYNSnLCQIkbnVCq06xleQLJCcrJFNsV9w4LhY4O7s0qjYO45XJAphZecUu39DegF8Wt2RT9qVaTZUlC2hwgGcWttULEregwgoSTE1xxdSpxy+cdJqsU4d2zp5O4ZXshbhFXTlAXmac5h/hNr8TNZft1Ew89EQY8UNFQDZ3NrvhUN2AfAEHcalAUCWKkcSYnrGLi9hMA72WMPVzdyBg7GcC7AVwcZ8NWJWpOfNvYGGzilq2LjjtqyQne1Ul6ITKuApQBrlKmYQVx1nFbromdHbZxCMRNukmvmzrX3qQSN3Kfe5fnio24bdwIQChu9pqZpRIyJRn/t9RwJZ5QVrtfjFsU4sYbTdTrblcpWo6rlBXFOeeo5tIgiNtxx9mbFgvi2lD7CLEkJygXKu8lbvl8Bzv0ZpWqE2bUdthB4RmOdM2ZGDPNYOLGrKaWSEVR3NR4pNtvF68zM/qyH8CAiFuziXZFPhyki05n1hC3RBU3lVGT71hJUNi9W4w7dWmufhW3LJpDWTkhNHELUNwomx0I2ScUQ6YSt6iu0rVE3N4HsTrCTYyxqxlj32GM/Q7A7wEsAnhPAu1bXVCI2/i4Qtys7orbMIgblYEYiKs0bsXNQ9wWq2L/h24YgqtUlv7+6m4R33bWWQ5xG0MZrJ4wcTviCACSuKWdDpAdExe4vtzAXiXIgdylccS4teQqCarixizVVSruD7mLB0LcTnYcA3MlcW0yPopbbK5SqhyvKsEedpiEq3QsXQNTpIpuxA2NhuszamKUJa/Uh4DbbhOvfvFt6jF07e8ZQa7STFHvKm23RThLzOVAtIpbNusobkpJEFLcXMSt3S9xs5BNB8tVo0rcgIjuUuWpYaOM3PIlbnEmJ6xW4sY53w/gUQAugijG+wj5eiGAR8nP1zY8ihsVni2hglxO68Hpi7h997vA+ee7CsRHJm7qd0PXFbvwQuD5zwfabT1x87hKrZRecYurjluzCSxVxP43ziSkuFWrwNOehsanP4/zzgO+SPnVO3YAt92G9tg4vrvzDExOAi94AdBEDk1kRP0wsoxyBiO3cbPS7KnosQ2539/cpyduuXFxgRf3N1zVEyhBIY4Yt7aWuDmu0pRU3Ii4/Z//A5xxRn8LeyuH18e4bdgAHHYYAGB/8XAAncQt7uQEuwCpTnELQdx6VdwmU+5JMWt5iBvn7ovUdCtuYVbM8HOVAsCttwLTmMfXHjgb+O//1v6ejrcZD+JKnIkL8MP4FDfauULcmmkfVykAtFqxEzc7FEJdySRAcfMSt2xU4kb1MBlDA079yg78v/8nJohmM5GsUteqObqJJ+TC0JHsTkyKWzYrRItms7OyjBarlbgBAOd8gXP+Ps75Yznnx3POH8c5/wDnvI/aywcRPMSNVJdJLGndpEB/xO0LXwB+8hN3ba5+iFtoIvNv/wZ873vA9u36GLd0GqmsQ9xaqWyiyQn33QdfAxYbcfvjH4FLL0XjM1/AZZcBX/qS3C5Z0PyWU2Ehi8c8xllui+4/9stnGnnxicSm2s3+iIO0uH/cL8iJl7jlJ+QyYPvc18SruPUT49auNcHQttcMzMJCSsZRWcggNynOeTInxsbevaL8xY9/HP40Aw6vV9zGx4XsOTaGbVOnARDrGqqIW3HTEjcPO8xkxHFpgYc4FLcJ5iZuGctTDsQ7MzWbLsWNbEBYV+niYqfi9kT8Bo9cuhL4yle0v6fL8GRchTNxFV6JL8VXDkSjuDUzBecCeA2rZcXqKvWNccvlnCCyxUWX4nbrrW7ilmuFlX3gHAcALxRQh7i4mbbmBn7+82KCuO22g1JxI+JWQ0GfnBDQqRmLOPeuZuJm0AV1Jz15fNxZr3QG876V6PtJTqA5QoZYAXD6lxqMqkIlbhFWJ3GDGlup+LtKc46PspVKNqv07rtlILxn/0CMrlK531RFGCF7sMvGV7m4kYcd5tRotInbAZm343GV9l3LTRbg3QmHuNkV/EslFCbEBV4+INpIMUhE3PqKcZP3ut1odsaPybpiTWQxc4g4540TNdx3H/CWt7jb0Cu0S16pTPSrXwUefBB7c1JxayebnGAXIA1Q3ABXvHpfxI12Oc7cagbFednkxNvJPa5SuvdhFbdm022rbrsNdnafn7JCto9WbdiEPYkkJ9CgbGYCFDfLGoyrNJdzBTWS4vaHPwC33ALMFJXkhKiKGxmfYlGEoQBgTY0RpRtVr2uJG9375eWQiQEeuJY77IO4xaG4aZMTuuzwoCVujLEfM8ZODbszxliBMfYmxthr+m/aKoRHcZuDkMpnMO+ruPWTnEA24oorRB9VvSLFov43KoHsWXEjSx5A3NKq4pbJaf2icRG3bdv8iZtqpHsmqsp+U1Uf4ibXnNm0SdRsKpUGQNzkzK8SN3vNzFIJhUlxga2qaCOFfsUS46a4Sr0qJy3BZCGDdYc5/sEjjwROP93dhl4gQ5UABChuqRQwMYGGLMyc9nGVxqW4ZYKIm8J8FO9ZX65SOvS4Z5mfjiWvvJ3cx1UaVnHzYs8ekc0MwHeCtlelk/0kFuKmiXEj+2tli/6KW6s1mHIguZxLcSXFbedO8XrGw/twldI5FRzipr1JtK3R0BK3dFoMFXU1hygYuOJmWY73Av25SoGDmLgB2A7gWsbYdYyxf2SMncYYc+WvMMYOZYw9izH2ZQAPAngFRMLC2oMnOYGI2yzmEnGVUr9cXgauvdbximSz6HiqJMTiKvUjbmo5EIW4tdPJKm5hiVscilvaS9zk9kpTnMzmzULZ2rrViXH0ukpV4tbXeqVdiFtxSrSJlI7HPlZ8tH27sIFxEDfe0BC3ljgpCxmsP9ydSklqZD/ETTXw2hg3OiEAjbYwV2merKvULkCqc5VqFLe5uXhcpUTc2tKUkwsuCcXNL2vUVtx8Jmi72yvErdnoJ7gTgYqblR2c4hboKlWCGklxIzz6ZIW48d6IW7tQdOxeF+KmPsgXNRyn71Vz+ohxC03c9u1zLTHSlbh1GdyRvF2ribhxzv8RwEMBXA/gAwBuAFBjjM0xxh5kjFUB7ADwfQAnAXgDgIdzzq9PstEjC4/iprpKkyBuar+87DJnfAT1rb5dpe22K8DIT3FLKVml7cxoErdIpEmesyi9wDsUt3LDUdwAQVD8YtziVtx2YzNaSKGEKibaUv0olVCadhO3LVuEK9eyxHqTfcW40b3WuEoLLbFjns5iepO7eBkRt3vuib7ME8FL3Oz9eJkogDopbh5XadzJCVripungquKmLjXba3JCqS3OuVJaDyAEceshOYGOpS4lJxOZAYR3lToJLA2klhb8DxgGmnIgNChbGZ8CvPJ3dG1kFZ34khO85UAU4jY25uqWOPVEJcatR8WNd1PcqC/W6+qiLa45IFHiFrer1LMuVr+KWyRvV5jJdYDoGuPGOd/GOX89gM0AzgbwLgD/BbH81b8CeCmAoznnZ3DOv8o5D5OjcXDCx1WalOKmjtVLLw33UNC34qbOdJWKbx23dE5R3HyIW1x13AYa49ZuIY+685Qmt1MBYHKJuIgbuUrtGSxe4raIKSxBGKtZSxq3UgljM27itnmzW/HyClSRsnxJcWt2Km4lLnY8tS6DVMmdSjkzI8hLuRxhfUL9oQF4lkL0MlE4a9h6iVvcilu61j05AXCIW1yKG13r5nRI4uajuIVxla5f72w75RTnfTfFzUvcACCzf7f2u6GhcZWSm9jKBbtK6SMin/0Qt1bdQpYeXNSs0mwW3jRieqjbsgXYPNWH4ib3184VHOKmOwlFcQMcuzcwxS1uV6nHYORkf6ojjzqLlpwAHNyuUhuc8wbn/CrO+Uc552/gnL+Gc/5uzvnXOOf3JdnI1YJWVQzAGgooFh3FrYO43XYb8K53AUtLoeTaP/wBePe7Fft/ww3Ae94DXhcd8zG4Fuff8D7suFf0/KjELdKi6x7i5lcORM0q5dnuxC2y+iLb0c7mcc89g3OVAsI9Va3KNsvty3VhQMk4H3us4ir1xrjJmTMu4raESYe41eWEqCFumza5iVtcS155iRsZ1Kn1WTdDkq50tQ3Ut6Oon14DL1ccw71/7lTcGi3pKm3rXaVxKW4pHXGLkJwQlUCefOWn8Gx831bcmGRV5LYb//zHgJ/+VKu4qcQtSjmQDRucbQ9XyrDbxK1a1dZWcJITFLV9PgRrL5eB97/fqRitQlMOhNWk4pYL5yo9XEQY9EXceE3pQAGuUsB5qDv3XDi1HQHkenSV8nyA4sa5S3EDkiNuvuVA4lbcKDHBU1erjrxY5oygKm6cAxddBPzylx27WxPEzaA7WisyODaVRzbrTk5wZZV+/OOiM118cSi59sILgQ9/GPj5z+WGf/5n4MIL8Zjly8Xuiu/Be/HPuOc/rgIwWMXNtxyIklXa9iFu6bT4A0LW0tG0Y6WZR60GpPMJEzeFLYxjBZxLwyUvwFLNrbg94hHhXKU9x7g1GkCthhZLCzeBNFZba7eIz2dm7AK8dmzRJkEoATdx63fJK6+rlDC7MSMCozxLBhBxu/tu4E1vEn378stDHNNzaEKlArzzncDe7Z0xbrSiRtLJCSyIuMWtuO3Ygadc/E/4Il6FoiRuucMEqyqiiqNxD4rvfSvwutd1dZVGUdxU4nbkkQ4JtYkboGXgdLxSNiJx+9SngA9+EPjXf+38LCDGjecDFDfLwiGHiLcPe5h47as0ifrE3YW4nXSS+PfZz3a3q1fi1goibq2W8zQsPzv8cMF51Hi7VRXjRorbUUe5NteRRz3t4yq99VYhkrz97R27M8TNAABgSeLWTBeQzXoUt7wiKVFwy/JyqM6zvCxe7aKlcpStb4gNR2XE64Hb9gII7luZjPPA0lOMWxjFzVPHzZUt4bGSPbusqPQKk0VtfYhb3K5SQKyGAMh7Rq7SRs5VLP2xjwXOfXaCMW6yU5TTkwAYpo4U7oFj77lMfP6kJ9nH8XOVxrFyArM6FTfCzAZ58X2I25/+BPzud+J9lFABHXHbu1fJsJQn1G4DO3aLkypmki0HYi+yPYjkhLvuAgCswxzWrdwPACge6RA3qiiPBx7oVDsiJieowo3qKt20ySEAvRC3/HwIV6lckcRexV6FxlXaWhbHTk2OBxbgfe1rxa5fI2sfJEbcPK7yj3xE9PenPQ2xELd2LoC4qf/L99/5DnD11fERN205ELUOVURXaWjF7fjjXZuF4uaTnEDV6WkSVXDQJicYREOr7CZuDeRRRgkZtDCdUTovDdp6PRRxI8Npl7CRG9Y1d7teF+4VnbRb3yJbF7viprpKFcUNPoqb/Tv0TtyakrjxjD7WIylXKSDvmWx4E1ls2uTOvDviIQkSN2lpV1LSSE2IV9ZoiIv65CfbF5eI24YNbrUrjrVKg4jbus1yh57V1akNX/uac6wo5SF0xG1+XiFucvLYtQuoNEU/zHiySuNX3GqCKUZITujZVUpLXwDYvPdP4vgbnBi3Wcw7O921q6PNUcqB0LXOZIDpaWe7L3HTdGg6nkqeC0tdFLflZYfV6waJrgDvkvheZmY8MDmhUBDuSuIYfRG3enjFbXoaeNzj0NGunhW3IOKm2mn5/ogjgMc8xv212BQ3XfB+RFdpaMVNR9z8FDc6tuYJLVJygiFuBy9s4pYp2J2R3KXrmPLU2CNxs2MzpSFYb+1BDnUUawviuHvEMYZG3BRXaSavKG755IhbnbnJUBjiFimmj+BH3OR2Im4ueA+kSU7o2VUqVdsVJo3U1KTz2ROeII6tELf168Vh445xY5a/q3TdJo/iJvstuWuVkkyRJk+vgV9ZEaIMKaF0QkHZxnEkJ9ByXzaq1dDJCQcO9KG4KbVUNu0WxI3ksCKq2JhRbM2997p/G1FxU8f3pNLFNm92wgJCEzdFcSsudFHcfvUr50aHJG6sLL6Xnx0PdJUSIvV3HzDVHnYhbi4o7bKzUsOC6tXlAsqBaBQ3HSiOf1UkJ5Bycdxxrs0u4saY2/8fQNx6cpX6VbYfMAxxixEtWbXcSncSt1koxlSpaK2Obb8A/Q7FTf5+Q2s3NsF5cp3m0YjboFylLJcccatxNxkKcpXSQO03xo0IQq3mHK+BnD2R2VDz/4FEFDdKSkipxO2888SrQtyIVM7MiL9KRTQ9nXbuQS+u0lTLX3Fbf4jcoWcCI/Kooh/Fbfdu8czgdZWGIW71eu9lSVpVT6etVEInJzzwgLtafaT+rxC3QnVBvJmeRiuVQQoch6QVNcsb2B+xHIh6OipxUxW3KRbOVVpMOwcpLXdR3MhNCoQjbs2mXRw7PzvmDHxv8GzsxE0hZfW6bzmQDijbMmhFC/JVyp5EUdx0iEVxy/pUfo97rdIAxa2ZLjjHV3dILtJ+iJtliZNNpeB66hki+iZujLF13b+1NtCWWaWtrEPc1FpuNhTFLZXqXlPKT3HbiD04BM6TKx1jkIqbK85BLQeSdxgTS1BxI+JGC7f7KW6FghPbl6Sr1IUBELdFLixvekaZVc89V7wqxE0llaR4URPJvduL4hZE3DYcolfcDjmkc2WPKMTNO8ft3Alk0EQBdbTBwPPieEHEjRJjOO8hMYbaUfOct5e4BShu27e7f9qr4mZjbAytrLiohzPFPUqKm8LQopQD0SluExNiDEVV3Aou4tZFcVPX8dNN/JoYN1FjEShtHHdL7brfwd3feyXvrOHjKtWUA3HByxaiBFsqhYZ9y4GEVNziIG5jaXl+qpEFBqq4NTNFdxso643iyfshbvSFUsm/CvWAEZq4McZexRh7q/L/yYyxnQD2MsZuZIx59YY1B1on0NK4Sqdaelcp0N3X7qe4bcZuHJZxnlxJ1YtK3KgDl8shDJhGcTsOd2LDtmtdKyeoddwQoLj1XMvNj7h5dkT7V69JrMRtyIrbQlsSt1lpgTdtcmo1aBQ3wK14qU3slbj5uUr9iButLKHZXSh4v/vAA44KuoJx7D8gjOvdd4vVG/wO0G+CQofiVi6HVty8XCQ0cePcFeNmY3wcXA7kw/CAs52IGwWoeVylxaKY5/wIrE5xo760aROQRQMFrhCTkMRtbCVAcbv3XpGAQSTAs89GA9i9s7McSK4uvje2adwttatQ+kEq5RyiV/KeVombzPQG0LFWaQfiJm5BilsI4qYWgw4Lm7gpq7W40I243XQTcMst4ZITmk0RX5BKAUceiZZCXVzEjSYzWzmRgkkAceuanDBi8W1ANMXt9QDU3vavABYgVkuYAvDB2Fq1SsGrVBgxbxtHUtwmW3rFDejO/FXFjXM4BR2xB4eloytuNFjp6T+TEXZGzSDzhYa4/QgX4LHvfLIzSDwFeFOF5BS3ajtYcSPboQZW0/V2Vd3vBk85ECCE4uaNh4izHIi0tHMtcTOzh24U288915mNFOJGNauAGIibMsun2/6K26bDPa5Spe+ceKJ4pb7YD3HbudNN3EiQClLcgP4TFDpi3CK4Sr0I3YZ9+4CVFbSZx3SPjyM1Jjr2oariRrMSBTN5XKX5fPDDk6q4UVYp9aUjjvCobYB2kqZ7rMa4jZf3+K9s/tvfileK5Pfs81vfAm68rjPGLd8U3xvfHI64Af27S1MNz6xPrjk1qzQhxa2ZCZlVmrCrtAQfYkP2b2Wl09DW6yKB6mlPC5ecQAGx69cDmYwdIgJI4jY2Lf4hQ29PwHJOarU6DhA6OWEEiZtP79biKAC3AwBjbArAkwE8i3P+U8bYAQAXJdC+1YWKjD3IFjsUt4mmv+IWlrjVamKATckNk1jGVuYEH4dV3P7lX0RauFpEs1QSA7FScdd6820MYBO3I3E/Us2GqMkAiOSEgtO1whC3yIaTVqno4irdvBn47GfdZCWdFja1Xhd/gedL6FIOZOCKmzRIc3wG2SyQfsmLgAN7gVe9yvmOvLizE0287nXOZvVaqNwy9CSmTLgp3vYNrp6eleRCM4FdeKFYcP7BB0W5rn6JG5FpIm5nnCGI21QAces3QaHVjbhpXKWZjHA1eqsThO7/kpXeP/VwHLpwi1PUdmwM2QlhSE6afsD9iA34Km7ELyk8y+vCVonb4x4HfOhDwFOfKraddRbw/jcsAZ9UfqB5EnnqU4H/+3+BR1zfBKS5Srct0YfXaSJt6OIcd5wgcZ597tkDbIDbVcotC0W5ikRx/RjwYHdXKSD6vN+5hwFrePo+MaAIyQmAKOQb2gkn99cMUtwG6Sr1U9wyGcfQ1mruC7y8bCvUoVylnhT4ZUxiBgsAgFe/Po+pZx4N3PJJpzifPQEr82697iL0oV2lI0jcoihuKQBksZ8AgAP4lfx/B4CN8TVrdYLb9XU6XaUu4qYkJwDdJVuVK+3ZzV1ffBi/2X4flrg94QnA297mdteHdh96iFurbmGMnrjI4HpcpelCcnXcKi0xOaZ86rgBwGtf68TrEyK7SzWu0loN0WLc4lzyiogbZsW5jI8D73sf7OqiynEm8w3X2pJ9K24eC1vsYAlAA1mwlOxgmgnshBOAd7zD6fv9ukrpnpQxhrvvFvZ6YQHIl5JzlfJa9OQEwFG6VYTu/5K47Ro7DvfiaGf7+Lh9nccWdnX+LoTiprvv6umk02KVi0c/WmzLZIDXv6S74lYsiq45PeY5gN+aZ3QxJibEQdWgf9lO2z2vKG7UB9hEeMWt5wdHiXQzQHELmZwAAK1KD4pbOlo5EB3iqOPmq7gB/u5SYkuWhVy65dqfFvR9aTBUxe25L8jjKU8B8E//BJxzjtjoVdyAjuuwVojbXQCeLt//LYCrOec07R0KqGmTaxOMiFveUdzIVTrW6N9VCgB7drojaU+y/mS/D+sq1aEn4lYuI1NVpAManAN0lYYhbjpEJm5+rlKlHEiH4hbCVdozcZNPkvOY8b/fPhfXm5xA6JW42YZbQTulTJwBE1jo4pv+h9cqbuQuPWzLEF2lPllHOuIWVXHbVTwG2+Bh4EGGJEBxC+sq1cI74wd1aO9J2kG7PgfN550OqqhujYZC3HI5gDGwdttx244HJCfE7Crtmbh57hEltoWCTdwKfZcDiUNxK/ZD3AAUU+LcAx/ePMRtAVPOZ65liSS8MW7AmiVuHwPwBsbYfgAvAPBp5bOzANys/dVagkwNb+U7XaWlmuS1rZZjJeSADvK1e+PO9u90G4FDWzvt90XUUEC1p1IzvSpuuZoy4sloeVyl6WLyxC1dSJi4hUhO6CWrtOcYN6/ipoPPxVWzOnsibh53Uz/ELXTxTQXe7zYanTFuFL9/xNburtKeFbe6RnGjcwxQ3HRxbqGJgzyxHflj/YmbDkTcPFmlajO7KW5aRCFu8jpUINvZTXHLZt1xUnDaaRO3TMZm/xOQ9mc8QHHTuEppn72gg7hFdJXWpWLWC3Grh1XcEiZuJR6CuHkNnXJNCky0NazixrlbceuXuB3UyQmc8/8G8CSIWLazOOffVz7eA+BTMbdt1YEWOeaFTuJWqMkOpLKzEIqbd8wdeCC4l81gfnCKW6WCfF1D3Lyu0riJm71QKFBuih0MkripMW4WZRZmsrY3ykaSMW59KG5qVmdPMW5hFLe0oniEUNz6IW6Av+J25Fb/A/StuDXEhaqmlM5E46NQCOUqjZxVLU9sR86juJVKwcQthuQELbwzftCTiOxYOyD99n6Km1pjSDPxN5tAWsa4NblD3FLgsJjMtBpQckLGCiBuQXWepLFfxDSAXhW3/pMTqErM0lL0kih0iEI7gNhoiDeAvhS3VisEcQvhKl3NyQlRyoE8CcCfOOcf55z/2vPxvwDoVTtY9bAs4JprgPaKJG4aV2mhIhW3iMTNO+bmH9QTNy79dLOY6+xf7bYI+AlAaCKjTr6VCgoNveKWLTjELVMKSdwqlXBlrJUn8lpDdOFhuUrry+J4pelcZ4mfJF2lYRS3dFpkmLbbHUoDxbkl5Sp1TZwBE1jcxK2WGsOePcC114rtRx2bXHICpOJWzkyL/4NcpdWqWPD61luxccLp4xSb73vNm033mKPkhKxC3IpFca9V4lYowPUk0SU5wa8NdDpdiVuYml3yADsh01K7KW4qcVP2q7pK55fSrr5Wz3qWAfHCh7h5+4A63xM471w21ddVGrKO20JKzA+BxM1rv+X+6qn+67hls6LbtNtAZbGpXdPTDzZxC6O4BRA3UtwCbQBdw0IhHHHzS05Q0IurdGkJ+POflXXDh4QortIrATzU57MT5OdrEi96kci4WtnvPBV4Fbd8WXYgdRD3Qtx2awZ4LgcmJRQtcXvFK0R65c6dnb+V6FVx8yNuagHeIOJmG846B049VaS6dnv0UyZHepsp9kbcQrsqfVyljRVhvcZmNBNFNouOWZK2Q5TpCFU7TwdpkAKJG9A1zi0OV6kuOQGZ4ShuqSlxQpdcIrYffXyCrlK5z0pWEiS/5IR6HTjtNOCkk4CTTsIHfngKRG6XU2JDO7dalsjiOPNM0UkWF0Xmdj6PB3AY7obnJqrp0bOz7tXEfRS3QiGc4tbVVXrooeI1BHHrqrh1IW6qq3T/QsZF3Bo5+f0+FLfPfU5cvp/+1P3TT35SEO0rrnC2pS1P56HB7C0H4h3kciwssWkAXYjba14j7uV994n/yVWa6j85AXDcpelnPE1I8aHWgFL6Rise4hbWVdpB3HRlAXRPIzEQN6rG8PKXd/lNwohC3IKylfMAWgGfH9R44hPFa7sse0Chc+WEXNnfVRr0sOodc0t7NU9vmzbZ/pennDaPM87wfP6nP4kd3Xqr7zn0StxKjQXnfzXGTVmrNDuW850daHy1yjXgzjtFDM+DD4ZrQz5vc4FhuEprNcCS1fNLkz5P+Coz8ihuxXQTnIe2k26EcZUCvsTtxS8W5Rye9zxnW6+K23hKXkRlsiyMR0tO6IW4qQon3ZOHPWYcJ50EPOQhwF/9FfD4J8l+2G531A3r11XKpau0kvMhbnSABx4Abr/dPtkN83fZJVQCFbfFRVGM9rrrxO+vukpsP+00NKwU7sAJOPC0FwJveIPYripuMzNwZcv4KG4BtbHp6/b3tPAStxCu0j2QhNLPC6AeVONqazQcV6mXuFmFLopbiBi3v/xFvHrN5Y03itdbbnG2ZVo+oSu5nFBBs1lB2rwXVw765ZToO4HE7eabxUnfcYf4XxqterrUdzkQwLl16Vv/LOql7dsX+H3vbgthiJu3X2jWao3VVaq7/70SN2p7qTQyXtPAOm6MsS0A1BrnpzPGPIE7KAJ4OYD7wxyQMXYegLdDqHczAPYBuBrABzjntyrfOwLAJwA8FYI0Xg7gDZzzUMcZJKjURAFyECuK2xIm0UIKmcqyGLwa4hYUIOolbsv7gonb+143B0x4PqfeptP/JUIvvO5p0Exzr9I4J8ZNdZW6iJuPq9TFWrdtc6xJUBsU4pYpDSc5gTILc+M+M9v4uCPXe4hbKdsEWuLUIxmCeh2oVNBOpbHcngj+rc91f8Qj3MpBwFc74bGw09kKUIc4VzkZq8kpcRM3mnsnJ52K73RPTnn8OP7yHvXbTBzEssSfwkD6VdyYnLmquWmxwU9xIwZwyimiby8soIQK6igEK27qjbjsMrGaAACcdx4a3wM4UnjgI1/HOqrHqBK3AMVNXZtWXX6xL1dpBMXtANa5f+uFTnHzxLjZitu821XaLkpD5lXcqJ5YCMWN3vu5T9X+kg0iboDo++Tupm3ttr2TlZQw/rwW0AlpziBjJV+rLIC4hUxOAETYxB/+oLQhpA2lrwUqbn4xbootIOLWs+IWFOOmIobkhFEhbt0Ut5dAEKZfQGj7n5b/X65svxjA+QA+EvKYswBuAvA6AOcCeCeAkwBcyxg7CgAYYyUAVwA4UbbhxQCOA3AlY6yHnMlkccwxwNFHOy4jVnKIG0fKVt2wsNAzcbOXpTog4xumNjhf2rzZiXjWkTPqbd4ADQU9KW4A1lmKu0MpB6Iqbpli9zpufEV5ItOtxahrg0Lcsj26SvuNcaNaXoWJHhS3jGhr5Dg3eY8bpRkArCfFTYdeidtEVvZpXaYDkJjipi56bi8wr0up9jmxfhU32l+t0MVVSmPy2GPtjkdxgYGKm7rx0kudhdfPPdf+yCUseImbqrgRcWs07PP2eO77c5VS/cCkiJuPq3TffMZ9EcZ8XKU+BQN1XYO+4iX0ZD5dxM2bnEBQiRvg7vtKvFYjJQsI90DcaqlSuHIgXZ5MKGwi1YxG3OzbZA0gxi2IuOnUtTgVtxEkbt1WTvhPiCK7DIJI/QMAr7+tDuBOznmoOm6c828C+Ka6jTF2PcSqDM8D8HEAr4JQ+k7gnN8tv3MzRC25V0MstzUyYEysNFT8fCdxA4Q7az0OiJHfI3E74gjhSazMiUFf2bgF+UUpaW/a5NQY0JGzEIpbr8RtQ2t352fpNDJZhhZSSKMt1KhGF+K2rAxs3VqMujaoxG1Iihu5y/ITPpKESiRiJm7V0izQTa1Lgrh53E2TaXkRVZKa0Shumgmkl6w+HXGbYCvi0dKbyUsHqVZ9i6/2rLg1xTWtFabFBj9XKeGYY8T6jHCIGylu2vNX79nll4svTU8Dj3qUK/HShtdVqipudLEUxY2aN7KKWzbrm5xArtI9B9yuUjbh4yqlPhjCVRpJcWt3IW66xByFhDQa4vNA4kZGTkPc4nCVikQljgzF64V8komLuOV4H8kJ+bx+4fcQxK2XrNJVQdw45/cBuA8AGGNnAfg95zx82kl4HJCvdOueCeBaIm2yLfcyxn4H4AKMGHEDhLuUiFtqzE3cKEEBc3Pa5IQwxG16WnwvvSR+XxvfgCoKKKLmVtyCiFsCitsmrgkwTqXAmFjgO42GIG7LwcSNlT2u0jBtiCE5ofcYN45qlQHNCIqbR+KgRbcj13KT97FakDUCh6y42TFuukwHIHDNxrgUt5lsGWhAT9x8qvz2nVVqyRp+xS6KG+GYYzoUt9CuUnp/zjlAJuPiNjb8FLdSycXOYlXcyFcdIcatK3FTWWmXOm5759zELTXZv+JG70Mpbi3xT3tsHCnVhoVR3IpFWFYI4uajuFUQ0lXa5cnkmGPgXm84ouKWbcYT49aTq9SvY0ZwlUYibgfst0NFlDpuV8VJ2hhjacZYjjF2HIDPA9gNR4k7CcBfND+7Bf6ZrUPF2U9sIoMWLKSRLWb0xG1+Xqu4kRcjiLjl8+IB2u7kmaIT5Ksqbl5Vrd12jhmCuHUlEZ7Ovxka4pYWbtIWxGtuvHuMW6/ErVfFLXRMH0Ex+ClwFFEVx5bHK3ZLTshk7OviJW6RFTd5H8s5cc+HTdxKKY2rVKe4JUjcprODd5UySdyafsRNp7j16iolnHuu6yMXcVOz61TFTSVuSnKCl7jFkpwwgBg3tRzI7n3uGLfMtE+MWw/ETe0XnOsVt5xU3PjUtPt4tGNd31dISDMliVs1INBKJW6KPa/yQmyKm2u94cjETd4b3dgLUcct10NywiKtnOBH3JJwlY6NjYziFqWOW44x9n7G2O2MsQpjrOX5i2B6AQDXQbpZATwcwNmcc4p0nwWg8+vNARQw1tG+X/n9RWxXT5jKi4FXRdGVqQU4maX9uEqJuFECRDOdx27IJ2qv4vbpT4sFSZeX3QbDz1X6wQ/i7//9DBRRER3zfe8DHv94fOBdDTzxiZ5x3ANxy094iNtLXwo8+9kA5w5xq3hi3DgHXvAC4P/8n8CLQqeXGxuc4gYId2m1CjC5vTTdxVWqTqoBxO3ee8U6yd/6VkBb5H1czg1JcfNbOaGbqzQO4vaZz+BZ//cRmMUBTE0B/4RPYj/W4Ynln3e2gRDw0PDPeA/+6qInhIhQ7kRKqq3NsWmxoZviFhDjFqi4qa4gSdy0hCpIcVOugZ+rdG4OOP104KKLnN2EdpVu2CAyHTzriurOZxFTsJAWtrAbW+wS4+Z1leZmfVyldG1CuEqpLx5/909FCZebb8bysvNTHXGzs3btDwIUN5oDCgVY6S6Km5p2rq7MUSzCaqf867hFSE447DBgIhuCuL3mNcDTn25nZ9vErdGDq1S5Hrn2ABW3cll08pkZ5A5dh7fho2g2O7qFGyPoKo1SDuRfALwXIs7skwA+6Pn754jHfjGAMyCWz1oC8AuZxbo6ITtWDUU84Qk+xK2P5IR8Xthih7gVcBnOFaUIHv1oh7gdOAB86EPA734nqpCqzMRPcfvqV7F5+3V4BP4ovv4f/wFcfTWu+6878NvfegQwD3HbiL3ogCRut294Iu7Kn4TpLdPOBVlcBL76VeCHPwSWluzNqYoysOfmgN/8BvjmN4EvfCHwotD4T62fFRdpzx6R0t4FsRE3S1iv0lQXxU1D3HKpTuL2i1+IcgM//GFAW+R9XE4no7h1/ap3kXmuIW5JJSd885tYv/NPeCyuwcQE8EJ8A+swhwxaggU97GGdv/E5SD4PvBhfw6H3/E6k1UUEa4n7Z43Jp/877xSDeHxclKT3Fkw75BCbyD/iuAoe+1jnkgUqbiefLM7raU8DtmxxfRToKj3xRBEc+6QnuW7usceKpjzpSe59XH21CMH78ped3YROTpia8neLec6niSzK6QCj16UciLpywq69GXCFuOVnFYVbhbIYvYogxe3h234gMoJ/+UvfOq453gdxUxQ3X3dms+mUsalUXCSi2UTfKycAwlwfd2QI4vaNb4jidtu3uw6R7oW49VEOpN0GtmMLdqaPcmpxeeGnuN18s+jkCwtgc3N4IftvAF2e20aQuHVLTlDxPADv55xfGMeBOee3ybfXMcZ+BmA7gHcAeA2E2qZT1vyUOHDOz/Q71umnn95LidNokB1r/ZFFbHiUu96i/XTgNVKtFtBqYXIyrf0YcBO3bNYhbo1UAe/HB7H35e/HZ45KO1/805+cEVAuu5mJn+ImC2Fuwh5UytyuaE61hbSKWy4HNBpIw10bC4B48gZw+u5L0LbaYvkrGkh33ul8b2kJOVkDK131DOx/+zfxSvW3Usozhkrc5DXLTxXEIL78cvH3t3+rP1eJfrJKARHnVq0CqVYXxS2AuOVTnTFuVJM08OlT3sfFdATFLYQS2aur1F7yZhCuUjmD0tJusxD/v/dpN+Cff/Rw/ZN2gOJGv8e2bcBjHxuyEQIpSdqt8WmxgeoPnn22mA3VtmzdKvqwvFkf/UAF+FtnhYdA4jY+Lh7EFHRV3GZmxO/uvVccl0r1NJuYnAR27HA897SPHTvE6333ifuRyURQ3CYnxfGWlkSH9hIZ5XyayKKcmsRUa158n2RH3cl1cZXOL6dh8QzlViI91UVxi0DcirS+dLXqS9zyUnFj08oqFYw5F1eXmKOQEFLcfMmVZ6WanohbiIe2Y4+sA/SA7mcAqC3btgFbt9pfy9T7i3HLtqMnJ9RQxFlHbsNd3/DRnvyIG12/I44AduzABFsGpKjpu8b3CBK3KIrbOIBrkmgE53wBwN0AlQLHLRBxbl48FJ1ZraMB2RGZNBCMOX3HRdy8DvV6PZTiVigI22MrbjKN3K6XRoqb2vtXVrorbsp3NmM3Uovz9sCluAvXgKIG6VbKJkijxVLMWbOULobanqUle0LoIG7/8z/Oez83gKK4FQqw3Ui47DL/tkn0qri15JAhxS3dEkZxYrYHxY11Km60ClAgeaLiuywEcYuwGGavrtJcS/bpbopbHEteyXOfxRyyWYd4NQ8/2p9d+JxYId3EBJUR6ZbJrAGR9taEZ5FaKuyotofWGJM3K1WruGqoBbpKNZNQKMUNEGNRNUbyh8Qr1H0QcbMs4P773e3SKm6WJQYQY2LW67bslULcltMBgb0RXKUWMqg01XIg/ce40VdKCnHTLXnJOZCHhrjlco57W5eYo7o7uxE3db7QEDffciARkhMA4JjDuihuVAcRsF0woRS3MDFuPLqrFABYJq3PKAX8XaV0/WRM5hQWvc3pxConbhdDLDIfOxhjmyBqthHn/zGAMxhjW5XvbAHwePnZ6EGJWyCQUahm+idu+bybuNUlcbP7p+4J16u46YibsuzMJuxBYXGP85k0MFrFLQRxc0H3BKQQt0zd80SmGtgA4qZeH5u4XXpp13WkeiVuS6lpAApxa4vtYzNdYtzUmc9e8qpH4iZnEXLB+z4pAgNJTrDLAfjFuAVklUYqB6JEiM9gHtlUyza8hc3T/r/zYYdTbWU27pYQowGR9vaE59jUD9V77iFu1PECz9+HuLVa4lKowg6AzuQEFQH9wEvcAIfHBiYnkIo3OemQNyAccWMhXKUhyoFYyKBcV/qamgykoodyIGMN2T9qNa3i1mo5bj6m2l/1YnVxlfZD3CwrPsVtyyFdiJvaPtk5bOJW689VGkpx0xA33TTj7LSL4ibjP8fbSxAVAgL2NYLELYqr9NMA/osx1gbwUwAdLIBzfk+3nTDGfgDg9wBuhohtOx7AGyFKgXxcfu2LEAV6f8QYew9EhaZ/BrADIgN19KB0LAL1nVpuUpzd0pJ74WcAqNcxsUG8XVpyDLLyMQCHuJGhaDAPcctkhAFVDaFXcatWhQFRDbyy0PNm7Ma+JYfIUfxGZOKW0jwPdCVucmBv2WLHUNgIq7id8HCRwbFrl4hNOUkn2gr06ipdYtOYwRzGUEatBmR574pbVkPcQrlK5Syyvz0a5UDscgBJJyeUy3bjZjGHpdYiUuBYwBRm1gdYcZ8Tm7QUE9YDcSPFzTWmt251KpqqEzht83S8XhQ3XzKlU9wIpLy124JxKLMe7UddX5wuR6CrVHWTAsExbsqyT6GJW4hyIC2ksVzTELcYXKXjjWDFrdlUVsvphbgpyQmhiZuy/FKgq1Tdn2V1hpt4cNTmLsRNbb9HcUuFIW7ePqHsL9NDcgLQhbh1U9xmZoBcDrlGA3nUUasVOr9PGEHiFkVxuwZi9YIPQGSE3qX5C4NrATwLwFcBXALgTQCuAvAIzvmdAMA5LwM4GyLj9GsAvgHgXojM06jFEwYDRf4muIgb4Ku4pdPCPnHe+WCiErdCQVHcIAa8q396yZSXuAGdcW4exW287BA5bdBoQopblojbKad0fs87oulae4kbVUIGurpLe1XcFpg4b1LcMlxs74e4qTYtiqt0X2s0iFtaxnolvnKCInvMYB4TTWe91qDumBRxI7WVTyrEjfofkJji5utBVYmb9wER8I131A1NuhyBrlI/4qZT3ORsy1MpcKSw7Bf3q7YvRIybhQyWKiEUtx5cpSpx0yluvsStW99XSUhGXFjW6M1VGkpx0/3vwREbIyhuHuLGVoviVqu5rh/120ksrTrFLQpxezmAl8m/l/v8dQXn/COc80dyzqc55yXO+Qmc81dzzrd7vnc/5/y5nPNJzvkE5/xZ3u+MFAIUt3peMVLeyatLZqmfq7TmVdwA5ylbHSzdiJtHcZusOETOjqeT4/hb3wIOPNgjcdM9ASnELUfE7eEP7/xeWMUNcOKLaHkgH5SKHB/GO/G4Xd8L/J63DQtsGoAkbhVuuzvHZ3yIW0A5kEyvipu8h/usIdVx88udD6O4XXcd8OpXO2uaRiFuSt+dxRzGmuL/Ocx2CEwu0Il5E0wayljYuxfvf9My+Pf+B/jwh0M0Bsi0xTVNjSvlNlTipl4DH+LmvT0f+xjwuc/J3/SquE1PBz88+dRSVKFV3BoNUZ7n/PPFH5XqIeNFfX3fPuCNbwSuUUKiPefim7DlPUHNxG812khBhEK0kcKBBeU6+8W4RXSVZtFAqS3JYhjiNuWJcfMet5ur1I+4Kb9rlwNcpc0m8OMfA296k2stVBtdxv/maec4VjVYcWvesQ3nP4PTEEaqGiLGbf9+0Wc++1nxv0rcWiEUN09yAhCBuNG9oXIg1NY+iFtgeMoAENpVyjn/zwTbsfoRQNwaxWDFDRB96MEHxVcOO6zj484YN2iI28kni3Tn5z9flPTwxrgBnXFuHsVtsuYQOS9xe/e7gcfP10X5TIW4LaenMNFadPYZxVUqJ9xsQw6ohz7UKebJubgofsStUOgkbk99qni96qpOt7CC2QN34Z34/7Bt1/EQCdNdQMSNTwMQxC1tP/Wnkcn4PAPRhH3UUc42edMybTdxK5ed92EUt92N0VDcbIRR3C66CPjRj4AnPxl4wQv6UtyW6+L/OcziuOMCfuezcoKtqEhc8ok78P4vvAysvAz8zd84906HVgspLjKqc8U0cMIJwkV/9tnOdxgT2WuVinP/AxS3SgV461sFV3nNa9CVuHUMqU2bhKE4/nh9m30SVUIrbr/8pcIqFZAbmEjWv/+7IOi33OIo35TwlMkCdWAxLHGj66UQt3ZTzNytVAZoM9RaGsWNAgBplo/oKp1Rixf4uEotC5jo5irVLXmleGdsxS2Eq7S8t4IJhTl0KG5vfztw++3Ai18c7DrVgBIEAGB5rtlZ0kEhbtlGBTdeshsWDsHMNAdWFDLkxdgYsHEjsHcv8JOfiAfq177WdV6ZVkTFTb4N7SqdnRVlqFRXaVjixrnzm2JxVSpuBkEISE5oFsIRN/qK5uMO4lblBdcxAACf+Ywwlk9+svhfp7h5iZtHcZttdCpuNKCqVaXCtkLcFnKb3PuM4CqlzbmmNMzT08D114s/Gh0+xI3n8p0xOBs3AqeeKgzNb37TeUyJQ0qCaJasLk9bBHkR5rg47wlWtl2dTeaTmAAAp50G/PGPwKc+5WyTJ53mbuKm3Ap/8qQE6O+uj8bKCTbyeYck6ZIT6nXgLhlREYfiJhWzR507gxNOCPidz4mV6m71+YX4BlJlGei1b19wW+S+6sghl2eC1Pzxj50uymuuEXWj6D4EEDfqB3Z/9CFummdEgelp8eD2k5/o2xzRVcq5R3Gje/f0pwt158c/Bi65xCndQ6TpuuvEK31fcy6LvPcYt3ZDdJZUNo2rrgIe/TgNcQPcfTCiq9RF3HySE5oN7tjDHhW3KK7S1kqAq7Raddj20lJkV6lK7JpdFDcAOAbb8IMfAH+4pgZmWeI8ddJtKgXccIPoK/m884SixrhFJW5RFTcqN9MLcavXZfpwHkinR4a4hVbcGGNf6fIVzjl/RZ/tWb0IUNysUvzEraZT3CYmxJP/X+RqYRFj3Eqo4simE+vjVdyaTT1xW8nNAO28a5H5DnSJcSsQcRsbcyRHPyYhj0NGL5fziHznnisKql52maPAeZCpieONYwX33iuEvkDINhxoi/Oeza8gV5N1vJiPm5Tgjdsj4tZ2x7iFIm5Uwn1sDItVcfEGXsfNz1WayQgDvrKid5VWq8A9Mn9JdnQfL6YeHsWtJBW36aOD/KT+B7HLPUi8FP+pPZYWSqB9Pg/xwKCDKp8Dga5SGqp21mhU4gb4q23qfgJcpTMzYiwdOCBMg8stS8TgyU8Wbi8vvKtW3H+/2EEu10nc2iGJGy1D02za++JNeR8zGVFE+MgscLWmDdmsY5MiKm6HqLl31SrmNNU8mlULabTRRAZZVW2OkJxgE7dmd+LGqh5X6R6lHMjevc5vVlYiu0rV77dCELfj2DY861lPAPZ44hx1OPJI8Tc9LYycZx5Mh3GV9pOcEIK4+Rbg9TC1USFuURS3swGc5fl7LoCXQiQbnBVz21YXApITbOK2uNgXcSsUHOJU45rkBIL6lOrN5glQ3ADg4fxP9nvv4r9+xK2WnXT35G7EjSZ1NcbNku3U1QLzIW5NGR/S4Q0NE+cmn+DHUMa2u0PUZ5ZtmJOu0unMiq24tVJdiJsX8rwoK5HEBIVD+xsxun+zs+GMSBJ13PxYVjbbuQAmIO53KiUYCY0T2dF9vJh6KH13FnMO8QrMTPA/SLEqfn9fVrhEZ7DgfOhXrJqgEDff4rQ6eBYF9rpKCZaFDrJD0JiacPBRX9Xdb9rkeIi3bfO4Som4kWvUC2/gT7stqvkCHeey0FZsohdeX7Anzq3VkDO3Tt3tVgQ6ZIzbrIe46VylrbIMW2EFtxFKSHFL1wMUNxUrK5FdpS7iVutO3E7IKOoeEEzcCJN6AWOkFTfl+5w702nksRczQhM3zvkWzvnRnr8pAGdCLBD/3KQauSoQoLilSgXxT6PhGCoyRn26SrWThpqJRR2PjJhfcsIGUZNkCk4DOhS3BkdBR9zyHuLWLcaNynQoxK1orbjbrv7Gj7gxH+L2uMeJ9vz5z041ey/kCEyB477bQ/hKpVVZwDQAYDKlErcoMzd8iVsoxU3ePz4z0xnfp0MEV2locS4McVMnTcY6G+khblFdpVlYmFqQVWIDMxPg24/yFbG/69und/6mm+Imr2cDud6IW4DiZje1F8UtCCEUt82b3cTN5Sql4m5+sX+6dWKJ7MljMnmw+VZIxQ3ocJfaihvN3H7ETRdn2WOMm7aOmyRujVTBnXYbhbhlxeepEMkJeSskcSuXO70fURS3epesUgDHMtkXohA3cid7BIxMU1N2SoXqs8/noytuZB96IW5KMkOjIZ5Fslm9A2mQ6DvGjXP+awCfgKjztnYRQNwKReZ0bJqdKZhVdkjq02GJW6UdgriprlIK+FctEOeOzKMpw+GNcaOR1U5nhFuW2pgLobipxvW008Sr6iptKa5Sgp9aRMQt5UPc8nngLCkA/+IXnW0BXDEzD9wRosKMPHcqejvOyshBFmDNxK+4+dpZef/aU05igl/xcACRiBuV+uK8y6LLQa5SneIGdN4k+QDTa3ICAEztl6QgLHHzrlVaEfu7tvWozt9EUNx81/HUwUPc1Guu1lELUtz6Jm5dFDcS1FyKW6Ylls8CRK06HVTiRi5iInt2iQ9xsHk/V2mrJWZHtbqw8iDabgOs7bhKXa+0LiBB/dyno/nFuEVR3BqpiIqbLjnBx1XarijZl2iCL8gHf29WqQpVcSM7HUFxawcobq0ZoV5t5fEpbmmri+KmlH9CKhWf4iYn3bCK26i4SYH4khPuAXBqTPtanQhITsjn0ZW4+Sluap/ti7gdfrh4VSe/5WVxgFJJ+xStKm6cAyk5wNrZvKv3NgohiBtjjvE8VXaVxUUnZrvtr7j9/romrr7a2UzXrOGnuAHuVRR0UIjbnm1u4vaDHwC33aZsUIqHEnGbgKO4tdO9KW7M6iHGTc4gzYkQiQlAJOKmNC1YdYuquAGRFbf77gP++7+d9bUBdBC3SSJuPbpKc2VxLf+AU+2lzMpThwAA9t0xh0su0ezrppuAn/88NsUNcK656jUMo7gFKq06qJLqD+QC6p7dq4rb3Xc783lp/gFxzps26ZU1wF1D7WUvE++9ils2i1QKWITPk6paw42eSGi/Cwtofe2/sR77xb68xM3bLtqezTrvg1ylc3PAf/4nMo2Ki7jxatVVsoeuSbviQ9zUC6rLKlUXTM+Kz1M+xM1acjOK6s4D4o1U3NpIg3s9HDriFkFxa+sUNzkRNY4V3pItLXlfqdNGIW4LC672pLoRN8+TyrBcpQcVcWOMZSDi3Hb23ZrVjCDFrQCn01KHJYlNDoiortJyK4C4qa4F6m30BKw+OpLEs3mzvQSICpW4qcu7tDIa4qYqZX4VuqemhAH1KG4Mbf1C5fICvuftTTz96cok7iFuWsXjKU8Rr57FuW0olnjfvc77e+4BnvMc4BVqmo08MGcMyxCGcIyv2Iobj6qbe9hRpSKub6gYN5nt2BwPUQoEcC5OqNTZBImb9yZ1IW5vfSvwwhcCv/2tslH23TbEhD42J9do6tFVml2WZVWwGXdB1BO589S/BQBcc8kczj9fk1z6/OcDz3iGHQzer+IGOGOY6mLZTU1KcbvtNtHJX/pS1/EB/xi30oNyog4qkbJJZpc/8YmOgu8hbshmkckE1HHTFakjQvbRjyL70hfiXfiw+N9L3LwxdnS+KnELUtw++UngZS/DC2tfdrlKac1mmv+bTbkARUVR/qMobtSpxsfBc8HErbHoHre1BwRpJdcdAPCsZxJQkxNiJm61Q49GFQXMtg+IB/9eFDc1kQJAutklOcHT4WkeGHRywigRtyhZpVdoNucglqxaB+A1cTVqVSIgOcFF3AghFbfO5AS34qblDLoYN53iRhLPpk2O0VWgukrVYpOtdA+KGyAklGrVaYssB1JEVRTULBa1q1/zZhMLC6JM1uGHI5ziJmP2fNdNVJI2Fh4o26sA7Zd20RUap0w65YaYHIqo2Ipb5IAHUtyaTZRKTkH0UIqbzMqsbj4aQAgjQtehW3kLd9NCEbc2mF0I1f5xWFdpF+JG62bS/QBg99250uFYX9lh11Hrqrj5nFRmyVl54UX4Oo7CfXjBERmcik8gV5m3K6/QJQTnomGtluiMEIpbMYriRuRCo7ipxC3R5ARyecpXP8Vt2zbndhZ3dUlMAIAzzwS+9CVRy45ORkPcsllgqRGBuNE1++lPAQAPgZTDvTFuYRS3IOImCcWJrVtQgmI3JHFYt040lxJcSXFrpiO4SqtV2O6DRz8a7S+Lt76K27KbuLX3OsSNXOs8mwPqCvMol/tzlTb8iZuVKWIfNuBI7BCpx70QN09CXK+KW8AKXu5Orca4ETzEbdsqU9xCEzcIdc6bfrcM4PsAvsU5/1VcjVqVCKu4EXyImzfJyqu4ZaXqVWkFZJWqmWtEXIgshVDc2qk0Uu2WK6tUzSi1PIpbszQVjriR+5LaIBW3cTKSPk/MRJC2bXMTtxoCiJvORaFCIXSF1gp27BDLpNLXXfOJUjy00hDnWWhXbMUN3ifebqDr025jYqyNSiWFcjkkcZMT4fImMbt2NSJEyD3G0g+hiJu0nDUUUIJi8dQYt5CuUr9yIPR84XoSpvp1Y8dgfUVZEb2XGDfOkVkW+5vHDHbjENyE0/FXKVH7b0ouh+XqPisrzj4OCJdVE1lMrzbFjfrCgQOAZSGXc+7Vpk3CFJRK4mO6nfkdXRITAOHaJKmaBtA99wiJJA7FTX52KARpdhEz9Xve881mnTEX5CqVqv/RfJsrdozVqgA4ZmcZdu0S363XHSWuGSXG7be/Fe9PPRXYuBHtrDD4vsRtxS0FZeblA1ip5Fw670NSn4obD1Dcmqk85jEjiNv8fDzErZvi5snC6qscCP14bMxuzxQWu7tKx8ZGirhFySo9k3N+lufvf3HOX7PmSRsQG3EL6ypdsQJcpem007tIsiBXaQjFrbpOkDzVVeoibh7FzSqFyCpVQcZkaQm5LHeIm4/hVYkbAPui1Hk8xG0cKx1L/CwtCYEFgD1Z83QGFTjEjdrFchEVN8bsc5sZdxIUQrlKZUMX14UkbkTI1Z0HIIriVoWHOfQR4+Y9HnF7F3GjFSNKHvLQjbjpDrKyAmZZKKNkr0ICODGMU1w0wNV91IcehbgNK8atZ8WN+gLnwL59HYobYw4/o/PP3h/CVapiclJIlbWaUCeVEh+ZDFDGGDhj4uFSJVO6ZSE8dmETpKstbIxbLtdVcWs0YN+TY7DNFePGOEcODczMuM2KrbhlCmL/FJMXRNwo5laWLCJXKQXoe9FacTOKUrmTuLG8xlVK19FTvcAXKnHTKW7k5UgVMAc53ubmYiVuJsYtPMzKCXEhIDmhg7gx1iFhx0rcAEe9ongCNcaNggR8FLelGbE8j+oqbTQU4pZyE7fWWEhXKSGTEd/nHLlmGWOQbssuxI0S1GzFLYi4qYHYrgh3CQ9xo32ry9nYpEFV3CRxy7cU4uY1nGEgz22qJPaxe7ewETQZazM7ObeJ2/zsEBW3MMTNz1VKrrYAVynnGsXNssRvGMPuwhb3MbtdBN1JzTtqm4oDXExKNHG75jv1oUc+EEVOTqBq0Y2GfdJDU9wAYPfujqxSoJOfpe+LSNzU727b1uEqBRj4hDR6ajptkOLmhddV6lXso7pK5cx8JO7HJrjHSxFVzM66iRspbla64C55E7TkFS0BJr0PFJ+WthrKk6KDVtnNKHItGa6SL6FcFoe17Q+d/+Ki2Fc67XSSKIqbbvCT4pYuOGOmV8WN5iR5vaiGXSLELZNxz7Vrkbgxxk5mjH2PMbaPMWbJ1+8wxk5OqoGrBhprSuPXlVVK3/EM6NiJGxk7GiRTU6IDt9uOofRR3OYn3MTNq7g1UyLtvsXEyIlM3JQTzteXelbcqu0A4sZYcEalEuM2hnKH4gYo90JD3HKW4ypN5Xso6uMhbnT8zZsDyNPevaLdMzNYTIdMTlBj3AJrfLiaFdpV6kKQq5S2n3yy6B+1GtBoaOfTlRWnqTZxI1YzM4OFzHrny7OzXeqhKCelHoTi5eBW6/a35MoYmAPAQylukZITGHNumrQZOsUtTDmQyFmlOuK2Z4/LhtACEG5+xsHuiY+40T1vj2uMXlCMmxfdFDedq9TDDly1C+XMnEELWyHi/yhjs4BaJ3GrUeiIvBE64qYqbrt2idqSY2Oi1iSAVCaFBq1+oLFTvKJnFGUu+tDEhFMbDw9/uHiVfRO5nNPgCMQNATFudRaj4ia9TlTDLmxyQiRX6fi4+6YdJMkJoYkbY+xRAK6DWCHhJwD+Rb6eDeBaxtgjE2nhakGU5IRCoSfils+2kZdkYakeEOMGOEaM2lUqOUHcpByoitvYGOpZYSD3jW0RzfQhbo1UHmAMzazowe2J3olbtrrUEeN24IBsYhfiRoqb78QZ5C4NcJUehp0ooNpB3NrpLOrIow2GbKtuX59UIT7itmlTAHmSsmD10GPwxz+KTV2NSDYLrF8vCLsa6c+52J/nKd97bN7muO+KbeBt5Xv9Km6TjtJCXnXOHWFUFbZsg0obZ2awmFJUsm5uUkDvKp1zEhNULDaKaOcLyKGJEirxK26A73qlYV2lfScnqFl9iuK2bp1zKJWfbUofAFtaEvdtvUKauyFQcQPaYxqjp5YDIZAtGx9Hc72S/R53ORDv8oAAWuvFA20RVdtVmoaF1vYd4HbAvoe4qfdLJW5UU/LMM+1xkk4DdQTYKUncGmk3S19piz40OQnnWlEmL/VTWjLMb98qQipuvsTNu0avDjTuad6Rv2EhXaW1VNH1UBdKcVOJW7UqzpMxsW2NKG4XAfgLgC2c85dxzt/JOX8ZgKPl9ouSaOCqgUZxo/5SKiEWxS1lCdJWRw5Ly0Jl6ErcCKWSM8mRcqAqbgAqsobVg/ktADqzSm3iJrM561lxDD4xFS3GDbBPOFNxiBsfG0e7LezPaacJhQtwu0o5RzjFDYhE3GgJzdTe3bgHW/FdPN+ZSJUYN4ChlhLnOgXxhXSktEIJaVgmi+Lcbr9dbA4kbpLd/eiWY/DP/yzb7uNFcoHUVDXO7T//EzjuOODLX9Y1yz72r//6MzjqnGNxzZu+63wpiLhRP/B2TNp+zDGuzq6W9yPDratSb/fZ2VkspBSy1i2jVHdSyv68ilulAliTjrvUj7jx/ULVsJDtEBe7wmf1hIG5SlWGuGePPX7UikAqcbOXN9q6tbu6qYJ2cs89WsWtRcRNbY9OcaP+ctZZaGw83NmuxrABrqLgdCz7NYKrlLCCMbTGBblQidub8XGc8NQjcci1PxDnIYvodlXcfvlL8Z6StBCCuEnCVC6sc21eshTiRsfwErd8vjfFLYC41VgMrlLydkjFjVFB9S7JCZf8soinPjUkcaNrMjHh3A/6IVUtX8XELYrJOQPAiznny+pGzvkyY+wjAL4aa8tWGzTW9OUvF337/PMB/CKYuCnx+mKBaeb6WHydBg8K9njpGuNG0CluJKnLp+g/nf9e3P0fv8b9E48Rx/TJKiXi9rPT34c9V92GzMYjgGpvihtbXsJ0pgxYQKs0jkYNeOAB8ZUGssjDIW6Li6Lp6+ruzNo4iBtdz/wD9yCHJk7Bn3CXRnEDgHq6hFK7bBO3TLF3xY2IGz2Mn3aaU3rOj7jdjWOxebNYOcxVb84PmzcDt9zidpGRZEeM1d0s59h33gkAqP75budLcvLTukpf+Upxbf/qr9yfveY1YqfPfS7w2c+KbUqcm2WJv1zO7ZHUKW7zexWyFUZxC+EqpdULKhWgOTaD3L5dmME86vUjnN8oDeP794Ohh3VqgVCKWyIrJ+iMxe7dOOUUUS9X4ROuqh9HZnYBdQBHHNHx80CQOre4qCVulk5x0xG3v/5rMSje/nY0/uE9sC0b2ZnnPAe44QbgJS9xH19V3HxcpUHEbR4zWJ8TF7mIKiYmhEk5Db8HABx+4w8BwF62yrY3fsSNqnqffrr9cTfiJjJagWpxHWbKD9jbF5sKcXvDW0VRaLqB9ATQo+LGghQ3nu/fVUqgBL2QMW7LVgF33x2SuD30ocCrXgU86UmOwmZXk5bjr1gET6dRbNXQLDcA3SoUBwFx67YSd4iVug9iaAJPHv1o4Nvflv+oUrKGuOVy4qe1mtgVdQ4/4qZLvnIhSHGjSVBZsBwA9pz393jVf/w9XlsT8R1+rtI6E+d4xfGvwRevAj6fA8B6I25YWsJ0ZkUQt/yYy75UGm7iBgjuEgtx88S40VfYsjBEm7AHNy1yAKyTuHkUt0ypd8VtPC/2Tbb2vPOAz31OvPcjbttwDP72b4FPfCLksXQJCqS+eYvSeohbui6sFRUbFf8Iy6lV3M44A/jWtzrb8MQnij/AvWah/FmtplfcOojb7CwW9ikqWxjFTecqlSRskc0AXJSZ2bFD2Ona2CzGEKy4kavUirpOLTB8xU3Fnj3IZICvfMW9+cgjHUJ9SMqtzIeGep4aV2mrFJK4bdggakACqE8rbaD7unWrYmjR+XmPrtI5zGJGkrIiqiiVhEmh4rypttiXTdy6KW4UD6HImd2IW6ou3YTj6wAl0mGhoRC3v/kb8eddpi2fD79yiou4ab5rl2AqYA5ybomquHndqeQqbTQAcFiWj5orO3wVRVdFj8BpJpUCvvAF538dcWMM7fEppBfnkCovQ5Sj9UAlbvvdPx8morhKrwPwLsaYS49mjI0BeDuAa+Ns2KpDN2vaxVWqfkW1Y37EjRDKVZrJCAulukpbLecRXz750PHnK2L/vsRNxpa5bGxUV6myOOt0RqhfVmHcFSS60nBcpXQ627bBcR9Y8SludFwibjk0UXtQGkIqOJsSxr+eEec6jQXRvj4Ut4mCQyZmZsTDeDdX6TYcEy0gXlcShEhcV+ImCC6VPgAQ7CoNA09HD3KV2v2BJqWZGbd7M4ripolxoyQPWn6zUgFqRR9XqTIxphYXADhkPhL6jHHrOzlBhU+ZmEwGOErkKOEQpsTCRoEPcbN5dEmz7FWXJ9LatCbGzQ99ukrnMQNLKm4F1FAqiWvuWscUXYgbDdSlJdF/xsacDBB4iJsmQj7VEDe7OeGQilYqg4WyVOxVvuT1svSYnEBL8bkg21bliqt0bq63Ja8IpZJ9A3JodE1OqKKIWi0kcfNCNZjKXEWZzenykvcXAhrFzS9XZpCIQtzeBeAkAPcxxv6LMfYRxthXAWwH8DAA706gfasH3SKGuyQnqF+JnbhRT5vxDDjOBYGSI4COf6DsJm7eGDcqfOtL3KIobouLmEgJctDMe4hbzSFuj5SpL9u2wb4oPStunPsSt9SKc/FbD7hVqbZ0izXSbsUtVehdcVOJ21OeIi5d7MStD8UtIxW3drWTuGldpWHgQ9zomIGu0tlZLPJJe23Rfl2lK1kxJo4WC1GgUgHKebFNuErR8RsVrajr1AK+xE1t3sBcpQFlYkgYsktjxKS4OcQtpOKmoDKhtCFM2SF5zK7ErcG1ipuVdVylY2PCpHiJWzsXgrgRjjnGFSfYTXHLNMXNtqacft7MjelzAnI5d1+J4ipVDG8Qcau0+8gq9cYgKgJGHnW02/rKTSpxIxEBiIe4YcqJtdZiRF2lUQrwXg8R53YFgPMAvAnA0wBcCeAMzvkNibRwtSAGxW3K8wBqWaIjp1LS7miIm6/IoT4WUE9TFTdFwfA2cf9KsOJW66a4RXSVTqYFiWrk3MRtWSFuj3qU2Hb3Xdy+ZqS4Rc4qrdddFsJF3NQnL48qRfFMjaxbcQutNKnwuEoBJ0RFS9yWloB9+9DIFPEgDhmY4pZpSmulELdWQ5YDYUpfT6XCKa1Ab4qbQtyarRQWMC3+79NVupztVNxWso7ipisArCIOxU3HURLJKo2guAEOcdvI+1TcymWtq7RZ6IG4TUZQ3HQxbj6uUlqQuZ3JYh9EbN48ZmBlHOLmdZUSWkHEjeKrCJ5yKt2Jm7jZ7WlHcaunS/58SX1g79VV2gombrbitnu32K+aTR4ENVkCcM2DY+mAODeFuAFOlEscxI0d7MQNADjnN3POn8c538Q5z8rXv+ac/zmpBq4KUGS1Kpd4EcFVurAgRCH6yFaUaMUAOKnkvp1XHcDU01TFzRPfph5//7JUslAHwDuJWztm4sYEcatnx1wT5VLVIW4Uz7v9bktcnFQKlYYwzJEVN8/6pWMQa5VaFpBRiFtqr5ywpDVpSVdpMxMfcRvLhSRuUm07MLUVHKn+FLdazQmo6kLcspK4MWUtxOqKtK6FYucPw8BL3NIiPJaMtqq4dWSVzsyg1VKyQft0lZbz4veq4rac8VHcvDFEAFqZ+BQ3FYmunACIe5BKievg46OiBIUN7WQUt4ZC3OyqNF2IW3lcE+PmhwiuUorlbBdKuBvixOcwi6aHuBWyLczIcc+lckarH2iTEwC3gfKs9dqNuGVb4mbzdQ5xq6VCEjfVVRohOSEVVnEjezI5GT7b2MfzNJ7VEDfqFB7BIk7ilpLELd9Y0qt9q5G4McZSjLHzGWMPC/jOyYyx8+Nv2ipCmKCTCMTtqU8VYRC33CL+t/ucpwMH1o/SETc1OSGAuC0up1CXGTY5NDpcpVWpuLlKLvVYDgRLSxiXxK2RHXfZF4rjUInbzm2O79izhF0nQhK3CXn8Wk3UlSNkDoRU3CIX8kIHcTvxRBEQrnykJW57J8QTe1+Km1rHqwtxy1mdxK22LKxrejwG4vaZz+D6Bw/HVmwLrbhZllJ/LUo5EHVWkCSsnOt0lVLcW2ByggTvR3GTM1BUxS2W5IT1651YK7U/KCBxaL0Vb4wbNYOI2/z2RRx6qKhQQ9/77o9y+OY3O3e5Mt6j4taFuNEDSrtQwjaIE5/HTAdxm2ELAIB6aRoPHiqMEvcqbn41DIHIiltOErfUeoe4VRBA3FRPS4+KWypAcSu38ljCJNophTWFcZPqvqvMg6W0pySIZQGPehTwohd1KG5EoOJU3HyL8K5G4gbgRQC+CdCaRFosA/gmY+zvYmvVakMYS1oqOYTGh7g9/enOONu/H7j8cvE+duLm4ypVS5KQMSmg1qG4VVvxKm7jsnvVMm5X6YP7HXJDlQhW9jtsrW/iJn9IxK1edxO3woI7DoyIWzMnjON6uUB0P4rbI05qYutW4E1vcj5yVXMnSNJ1oHC42vRw8CpuAYuieolbnoibsgh2rSzcTZkJpRFRipmpxO2738Xm1i48EjcFE7edO8Xr5s2wLOCHeBaah2+B7UMPgo4JS7Jy2rnrcdJJYs3vdFp8ZV8rAnHLxJecoCKRGDd1P7Oz+vp+Cp7wBOFCTkxxo4Lf91ewe7dcDUoalflKDp/8ZOcul0sRYtxCrJxAX8k0ZPZ0voTv4znYhUNwBc5GM+2EjZRKjpu0VpzBNY99E7bjKNy39Syxk6c9TaQnn3GGux1hiZuXXDWbSPMWLKSRWecEs1V4D4pbFOLW1hA3O664AIChUZp2PouBuI1lPIrbnj3ATTeJbGFpr5MgbmotN039ZUfeK5XUt0NHGOL2H5zze/2+wDnfDuDLAF7i952DHmGCTpSCf37JCa96lfj3rW8V/993n3j1I26BfEEX49bFVZrJiJ9x7hxDR9wqMbtKx7gcmGk3cXtgrwzgzzftuNtcy0nt6Zm40QiUExGtlVqrAbmaQ9yKy3LCIlcpEzOOJRW3rbOSuPWhuG2cbmDbNnHvPR+5OZW8X0uZWdephcKGDeKhYf9+cS5qQHo34tYW1zvddG5MvSLX2JyMQXGTq0HkUde6Sms1uNZoxbHHwrKAi/Au7Prtvc6SXkHwxrhxbhO39312E/7yF9F9qQs/WNO4SptN95qaEu1eXKU0NrvFuPlkWPacVaoeaGbGUdB8EhTWrQO2/WkFuWZFHMwbXN4NmYw4ZrvtPCypyQmSFLVWpF2rwT7nBnK44YZOrlxOT6JKMb69KG4+MW65prABrVwJP8BzcBh24TqcgXrKrbhNt0WDasVZ/PHEv8XR2I7lzceJnbz0paKmzIknutsRNsbNS65oxQAUkJt27Otyu4cYtyiu0gDFjZZabIwrIQr9EDfZiYspD3Ej425ZwB13AEgmxo3aM4VFPXFbpYrbaQAuC7GfywGc3vVbByvCPgJTp1U6rG5AkT29/37xmqji5okRoiaqxM3rKq1YbuKWzcJNFCO6SktE3FLuGLfFqtudOD4OlOCMHlfGrQ7dFDcibtxxlebrDnGbWPEobky0x8rJ60lxYn0obrr4oiDiRqsGRCJu6bRwjXEu1iyNoLgVJHHLWDU75KRRFtY1P90ncduzR6zfCMclD2gUt337BGmamrJdpUAEkc97UvPz4v3kpGvM0jDZUdYobspaqa4D93Lvo8a4eQZ6LMkJIRQ312ebN0dbNYFA57roqNO2qzQliZssNVOtwkXcOHe8DoSmxbAHst0JuEqtvHtWbqTdxG2qLexmpTDjJ4h2oqAQTU8R40xGnCuATjtFJThQRH5GIW5WBMWtB1dpWqe4ybYsN8W5WBNKiEISrlL1WsiYIS9xC5sLBaB3xW2VErcJAJ0RuZ2Yl99dm+iFuAUEjZI99VPc6Aktlhg3T4yQjrh1KG4xu0pLLUGcKim34taEm7iNjbmJW9+u0g0bAMZQ4hWk0EKtBhTqTjGtyZo7xs0i4kbGnfY7COImifaCXKczEnED3HFuERQ3Im4F1GyD2aiKya80W+j8YRjQvafVG+Cu49RB3NTCpYz1TtzohyoZUUBd+L4ljeJGDzrr1rlqMPBsMskJiZcDCaG4uT6L6iYlaIibrbilRCduV2UIhkLcaOxf5pENGg1gN2S7o7hKuxA3iuW0H8okiCyUUBXLW1pOUouded2tH5KB2rKl48thFLcqiijMOu1atEr+5dPUB+gekxPCELfWVAyKm+J5KnmzStWJQBqeJJITDlbith/AUSH2cyRcdZ3XGML6LkISN7KnHcRNqV4N9EDcxsdFby+XnckrhOLmJW4rVrzErdAWI7HM3MSNnkRLWb3iFpq4eaNOibhNTtrtLqEiiFvTUdxmG+6sUiJuLc9TeT+u0qiK2zx6UNwAd5xbWMWt1ZKZxaIf0FN+oyrcTaV1CnPoJcZNaQe5SptNd+5IvY6OivORiZvXVepDRqgL3z2nUdzUBx1l8uExKG5RkhM4H1yMm+uzqIkJhBCKGyNlyaO4AYK42RmnEJekJ8WtSzkQm7hl3WN72RIXeSJTBWPARFPW/8s5ym9oxc3jJgVEs3wVN4W4Fdc57Vppl+zbEks5EKo7JZHhAa7SpiTbKnELs8A8wUdxI1epbY40mQIDj3GjiS+dBnK5VUXcfotwsWsvld9dm0hIcaOOEpurlDGHqNEalT7EjZ4C1QnVz1Way8FtHCO6SguWmKnLzJ1VSk/dxUyfxM0vxm1szL5OYyijVgOKCnFb19orDJqtuImJoO0lbgNU3OZ4n4rbnj3hFTdl5WWVuFk1MWNNbOzTVaqAXKXeihsuxU2WUujbVdpFcbt3XkxE01hEsyYnejUmVGk/G4SrVPkCdeVcLqKriH5EmJ0duuJGS+elGv7EbccO4Pbbnd1FIm4RFDeK5Wx6iNuSVJjGM2IsjDdFB13J9OAq9ZQCATzEzUOuWit6xa2Ckp2rE0tygsc+dihunDuKW0Psj0/H6yr1jXFTkEiMmySdWuJG9k8uSr+aiNsnAZzDGPsEY6yDJjDGsoyxTwI4G0DYlRMPPoQNOumSnEDw2sieiJsuOQFwXKM0GYZwlZ67+6s449tvtEnTSjMPzj3EjTHnOFEUt/l5jNfFYvcrfEzrKtUStzDJCWocIediofPPfc6RdMbHbUM3jhXU60DJWpLHziCDFnDggEPcMADFbW4Ob/j9i/FYXK1V3A7wPhW33btDK27NRceS5VG3iVurX+KmeUKnBwTVIwloXKVwjHtow+11lXZR3NpIY14W+M2sLIiNaha2Ovn0cu9DKG6qq/Tfv+Rc254TEwD3PZqZGZriZmeVSsWNEl+qVdjn3EDObu4FFwBnnw1cf73HVdprjNtf/gI897nAnXeCMdGPyK40Pa7Sxbro42Mp0caxupMkFJq40WD1Udz8XKW1BXGzG6kCUuNu4kbCYcdQ6iU5QX7G5ZNAh+JmydqZmYxdO5PP9ugq9VmzuySv78CJW5Di5mFqq4a4cc6vAfBmAP8IYCdj7OuMsQvl39cB7ATwOgBv5pxfm3xzRxRhFbeHPlS8Hn98IHFbt87dKWNT3ABHYdu3z/2/hI64vfqB9+HUqz6Js3AlAFHHzbKcsWW374QTxLqncu3TQORywpBxjhRvYwcOx3KrpCVuhXQMMW733AN8/vPAe9/rS9xqlTZKLZE5eC9EYa/Gjj32ZNKUrtJ2MUHF7QtfwJPu+zpej09ridv+do+K25Yt4vXPfw5U3FTvcm3OsWQuxU2unDC9WbnwvbhKFZDiRsLWoYc67aDM09hcpV0UNwA4IBecLqzICBA/xS2XnOLWboj2XvjRrLcWaXQ3qfdAs7Nd67gBSERxo2aQjclDn1X6rGeJ7911F3DllcBXviKuyx/xCPEBFd/zAylcxxzjdpV+/evA978PfOtb1CSHuGXcY3uuKolbWtj4kiRui5lZ2+x3HYvHyaxTb5kQBLtKa/PiujTTRVfnrMB5r5p50VBPjFsYVykRtzGxsw7iphhae03ndTFllcqLV2DhXaWxEjd5vcaxEkjcWi1NQfwhoqvYzjn/JICzANwA4NkA3in/ng3gRgBncc7/X4JtHH2EJW7vfS+wfTtwzjnuAaUGcUC4QJR1iJMhboQQitu0JRSx9RCvdYjitx3r5V15JXDnneF79o03Ar/7Hb7wkt/h4bgZtUZKS9zy6RiySoms7d8PPPAA7B0qA9daLCMFjmWM4wEcBgCo3LPbiXGDJABxEDdtsTbY0dglVJyPOLcVn/1Wj8Tt7LPF6y9+Eai4Ubcpl4H6XNneTsStVoN9PcbXKY2Icg3GxjoyFL3E7ZBDxGutBvB+Y9y8JLmL4gY47rixFfldH+IWh+LWzVW60sjavKfn+DagMzlBzTL3Q4KKG7lK7fqQHlfp3/2dEMfe/37x/eVl8fEP8Gz8+1vvAd74xuBjv+hFwL33Aq94hVtxo7bIV5W4NXyIW4mJC1+siWu1yGb8EvM78dGPinY89rEdHwUpbnWpuDWzRdcNJ+JGIcsu9LJyAn0mf5tFd+KWXheDq1TxPHW4SjXtjS05wVukGML+BBE3j9d06Ahl+jjnvwbwa8ZYCpALuQEHOOetgJ+tHYT1X6RSwFFHOe+zWWGcG42OmXjzZuDBB8V7v6zSwLmyWBQ9jHO9q5TQRXGbxBJKvOz6Th15LC+L5mQyymkrClYoTE8Dj3sc9l0JLMjTIw5bLAJNWQ4kz2KIcVNH5c03i1dPjFtrXjDRJUzaE3f9/j2AjPkgItkuJOQqXVkBfitCRYuoOh9VKqKPFItYahZdpxYaJ54oShHs2OHe7kPcVlaAxkKn4rZ3L5CBsK6pXMbpw1GIG9U0pAkUjquUqm6sWyd2mW8ug+3dK074sMPAuRNH3bOrNITiRu64yYr8ro+rNJVPPjmhiSz27BHDpS/i5lXcVOLGuX5Giktxoxp4iuKmFvkGOolbsQicdJJQ3ADRJ8UlYahsOhroNoEy5ijNquJG/U4+eQYRtwMVD3GryCSh1KyuFKYe6bTTDs1HfoobETcrUxTzRaEA1Go2cdPypV6SE+i4ktBk0HL3Bx1x23CQKG7KIvdBxG2U3KRA9LVK25zzvfLPkDZCr9bUL+sRbjvZU1YpY86ThZ/ilst19EQvcTsED3bsuo687WmNskydH9RQNLIhW7Y4RCkXN3H7s1xa1+MqbS84xG0uJybu5gOKq5Rn7WO7EJer9Kqr7P9dxE0hDV1VRj8w5iyGqsJD3KjLlMvuGLcialha5Ni92yFuyGSU0vMRXKVAh7GnciDqZFgoAFshk2i2bgVSKTu2J52O0O/6UNwmq8GKW1KuUssCmOUQN+KasSpuVE+yXnclorgQl+JGUBQ3VdUHRBO4Ug6EzlF9mPApbdcdjDnZHHQvNcStni7Z2wDgQFm0sQhxffIVMRbnMatbfCYygpITGovimG1aUotircISt4jJCayQR1NqObyh2AUlJobeZjbGm5xAxC1MjBudSizETXakborbqiZuBj7oNfAkREkQ9WuRXKWAM4j9iNvMTMfs580q9SNu6vrC/YKIV63mXMqjjnKIG0n3fcW4qaOSHtk8rlIy5EuYREUuZs13dbpKuddVGpfiphStchE3hTT0TNwAN3Fbv77z+HBPktaS25KV5xvYswdIQ7InlbhFJa+ejuNNTpiZEff1GPTpJlW/HCHGjRS36Vqw4sbyySQnNBscTJ4sKW5AjMkJZAeIdejcpZzHp7gpbbBdpS7FjQs1teoobnSOLhW40XkqoUEHpnMNIG7U7L3LwqYXuDA2ubIYi3N8JrziFoAgV2lzSdzsVl7OK2GIm99apSFcpSyft22uVdUQt0LByWreFK/iRu7yIOJG8x7BEDeD/tCv4tYlszRW4qY+HmosTljFjeKZkyJuquJGxE1V3NrFEppNwTt9jbgfcSN4FDeVuNWm5aS+x1HcGkkrbpdear/VErd+FDcAeMpTHKJOFdwDiJuquAFAZb7uVtxkfSPX+YQFdRwlxkSNcSPF7Vj0mZigto3qVVHnVQNJoVfcphvBilscrlLdpWvV6WEhDYDZXDOW5IR83tmBWpTbCwpqVEIKIkMzVuw6bq00rFQWKXB7jLdqblcp4I677FlxA5xOQ+eqiXEj4kbHnKvJ0AQubHx2mZKEElDcPPOAJZcC41GIWy8rJyhGhWxufaXZ8TlXXKW5zTETNz9XqRyjzXQe3ENXjKvUoD8kQNxUMeCwyl3Au94lgvkRo+IWgrgdil0AgLlxZ6mWuImbK5NRo7ileSdxo0KZhUKAyywCcRtDGWzZIW6t9WLiTu/frZQoEO1hYwkobvfdZ6/JBziFjwG4lifri7jNzjqLsh9+uHj1GHSVuLWW3destlDDnj0+rtJeidsJJwBwiFtu+514PT6FdVOWS3F7cOxYfOYzTnN7Im7Npijv0mqJ2dZzEdVhslgQA3AdFWH2I26FeBS3Z+JHOA8/dy6jEt8GoENx68tVqirt6vrFXvSrtgGdM10u58oTUBdxB4C2hriRiBSb4hbgKq1J4kbHJPdcvl0FqlWkm3XUkMcDc0VYlvheTyRSQqe43XEH8B//AVjL4mbzQo/ELZ+PlpyQz9tFxhvlTsWN5wvgXFyvVBzJCUr7Cn6K20knifakOiXmuBU3csTYMMTtIEev/ouQittfXfNe4KKLRMYmgH3YACCEwSD2p+5MfTzUPCr6Ebe7Nz8R23EUmsjgANYlrrgddRSQKQgjQosej487C8JTEHHgJe9G3BQlYRwrYCsOcWObxZNedn6vbU2abWH4O4hbHIobuUklsdIpbnymT+IGAM94hnil0jQBMW464rZrl4+rNGqMG9X7OO00AI6r9IIb3oNP4Z9w7P2/RD4PHAWxfMgXfnE0Xv964Fe/6uFwqqs0gIyoRrk2JT5f15LfV8vnKJ0+Xejh3hMjqVQAzpFHHd/BX+M7+GtMTYrsnHbdTdxiiXGjBzV1vcygzFK5jmzP8W1AoOJmWZ2ZpXTeOsWtrxg3wJnpKQNGR9yYnrjlWlVl9ZIZ7N4jiG8/ahs1yau4vfWtwMtfDtz2e8/NlvfBjr/s5ioNq7gpMWxBxK2dlSS7IL6LDRvEP1EuwvS0OJ/160XMocdV2rFW6SMeAaTTWCps7NjVWlbcIlpbAy0uuAA47DDgiU+M9ruQittYQz4hvvKV2HH0k/Cbd4vjdDVen/0s8PvfAw9/uLOti+JGpT28rtLl3Cxegp9hE/ZgPza4khP6hbdOLu33376YBV4MsKYT48aoCHBbjKBAmxFGcVNi3FLLwnWyhEnkN04DADKVpQ5XaaLE7YILgBtu0CYntKfEyWYyPVTNJ7z97aK+1dlnAx/5SKCrlJc7idv9tZgUtwsvFGVxJieB//xPW3Er1sW5TpYfRKEArJMlaO5dEQ8rRGB6dpUGBNurRrm5bjOwB9jQ2i0m+AMHREfdtMlVRLQnxS2dFpNXVag4RauCPBrIo4ENk3XsP1DoIG6xKG5HHgn8+MfuCv5BrlIqw7J1aw8HkwiIcWs2gRp3Z5ZyRXHTxbiFLnqrAx2Y0pJ1xC3VnbjNYRb7ZXm/fuLbAH1yAlUT2H2vuNmpkrwQn/0s7v7O73HzO4U9D+Uq9YYJ6AyHRnFrVjqJW0slbgDwk5+IJ7wogkU+D/zsZ45t7hbjdsQRwE9/io/9fxsgy4jaGGSMW98PzDHDELc4cPbZTp2sKAipuOVa0lq/+MWoHfIk8HeLf7sar61bO41uSFcpyffjUuFazszidjwEt+MhAJCY4kbErVAAHvU4N7kZHwe4NLBLVkzETVXcpCGvpCdRWC9OLFftJG6pMc+s2a+r1LKAyy8X/z/rWcB73qNV3JoTPa6a4G3r3/2d0+cCiFvbQ9yayzVse8AT49YrcTvkEOCFLwR++UsAjuKWkVX0S9U5FApivVAAeLAmbjSJJT27SkMqbti0CbgV2Mj3OAWAZWZr34obIC50tQqsrKDYcq7zoeNLuA2FZFylAHD++e7/g5ITPPXzekIAcbMsoMrF4N88VcPORYDXO12lFA6hJr/2RdwIS0sA58hmmU3cqinB2Ii40QNsxqq5FDdCHMTN6yql+pgUV2fbm61bwZ6/VVRRRUhXKWNizDca4k9HslTilsoBLb3i1spIkk27ePSjo5yqgyc/2d1GADnuQ9wKBeDcc3HHpzp30zNxUweP7BNZWKiW23A5IRXi5lolaARgXKXDREjFLWc51lrtcz11ooiuUsJSxm2hknaVFgroUKXUGLfFppgQAg1nxBi3lHSVVjKTyG+QxK2+ZFuTuiRumULGffH7VdxuvFEwkmOPBR4iiHEBdVgNqQwQcRvvsfhut+MrBaDVeCJ4iFt1vob77ovJVUpQnngtC8i0RAcoVOeFFwaCUOysiBtNxC2S0VYlnpCK29j6IhYxiRyaaN9wk9hISpXS6TPFPogbAKys2Gv1AsCmouiDVI7Bz1UaW/X2MIpbP8RNdd0B7uSEBlC2xIlsPVQqbvXOciCMOZeL+GVfrlIC50C57FLcqh5XaQsZNJFBijtJLXNwjE4SrlIibqRCpsYdo68eT7u2u9dVqr76uUsV4tZK+btKLam4xao6eYhbR3KC7Oi6pkfyOlCjczm3rWIMraz4rLHiOYiGuI2K4maI2zARQNxmZhQxo5UQcdOwnokJ8eolbvSUSbaPiJvWeESELjkhn0cgcZuv96i4qaO9VHK5StNlYTGr2UmMzebRQBbZdsNedaHRkk9nWegNZBSo50Zu0nPPFbXK0mJ/vCb7hZytGuMxKG6EVMq5Fi2nJKMa4+Z1le7ZIVSxfCoGVylBySptNoFMS5xzoTKHYr6NaSwAAHYsTwNwaqf2rLgRA+qiuE1MAHtlLBH/7e/ERiIw/SYnAC6GnLecqOjNJT1x27PHtdZ374qbF0HJCUTcNIujh0aA4rZvH1CVdmbdmIyjksSNZ3KuoWpnec7Zu4kOXadZWkI268TOUuC/OrzJXUorrqjELUnFjWrHpRXiNjXl5JVoH5ozmQ43ZNcEBQ1xc7lK5edWxuMqjQNhFDfom96T4qYLUsuKMWxVPMSNshUUV6lR3AwCBxRjztySbcZI3HI5xyppWE8uJwt0e4gbLW5OxC7pOm46xU2t4zZX61FxO/548VosipGvuEozVWExa7lJTE4xLEGe3AG51FdblifJwm0A+lXcqAyIrLNm5eRNJnlFzlb1sRiJm7cNErQSBudAa8VN3LJSDculY3CVEmQnJlepfYyVOcymF5ECR6M0heWKsNI9uUpVkhoQcK/e0vFxYG9afudqf+KWLfWpuJXLyDcdxW1DXk/cmk3B3/t2lXrhl5zAeccasT0hIDlh507HzoxnZckJSdy8hDgWxS2AuHkVN9Xj6CVuqqu0X8Utk3ErbpblmCoibtkJ52an087Dsq/tpcb3oLi1U/513OwM4ASJW0dygvxc1/S4iBuXn1llzzxsXKUGWnR5EiLilrYcNqMOmp47ERlrH9YzOdlJ3Pa33cSNJpBhuUoPVHskbiefDHtnyusYysjXxKRZz0+KFZkgLaSMRE6EuN19N3DddcKCn3UWAKAliRuryYssZ6taUcwSsRlOn4Xu6dK0PcSNXDc5neIWk6s01xbHyKzM2/Ft1aJzk3tS3ACnnbROrUZxU1WW8XHgQFqWhLlHEJideUlgSiW0pOlMF3schIqrNNdwiNtsRvRBddUEwp49CRI3r+I2Nycu9vi4yB7sFQGK2z33KLG0GTnw5QzpLWxM94aIW0/PCbqZ3kPcyjxAcZOkP27FTU1OoJXBMhmVuLkHPB0zNHEjO3jJJcAtt3R+XyVu6QDilkqOuGWHqbjlfBS3EU5OMMRtmFAZiwZUMSGjKG6pVOeDVGSQIabq+R7MzHQSt71NQRqIuBHiziqlAdKNuO0r9+gqPeUUd8PlCa3DARSaDnGbmoKjuMlJrdFWXKWazKRIoN9fe61wVT72sXabbOJWdytuRGCSVNwAZdKSrgIufTNE3DIshpUTCEpWmWUBeVmhPrM0ZxO3laxzk3smbipbAEIpbgey7u887XXHCjcWY3abVDdWJKiu0mYncfMqboDw8sZO3PxcpWp8Wz9r2mmIG7V9717HzoylpQ2UfdFLiImLkFc/blepl7i5SsOQLbz3XgDxx7iprlLq34ceCqwriZtdnHXfbDLfvscmSc675OGrXw2ceqoT50JQXaVE3FQSYxM3T3JCHCDi1g4mbn0rbtSBvBMY0J24jY2NnOJmskqHCRpgymLbKt75TpHBn/2S21oXi6Ij99yJPvhB4MorgUc+UvvxRRcB89/OA992tu1puhU3QpJZpTpXKaSB3bvSo+L2qEcB7363Q+COPRZWYQzH1e7Gvqa4D43CJA4/HLjD4yqttWJU3M45B/jf/1vMxpkM8OY32x+1bcVNGi85qVbyMSYnAF0VNyavWa04g2JlziZuaR5jjJtHcSPillqYw/RhQl5ZTDs3uSdXqdq+HTvEAKI6dgpcyQljwHxuE2ToEyykcUf9KOzeLfr8p7f8Kyp37cT/2tCj5KIobtlG1d48nZIBTs1gxS325ASvqzSO+DZAS9zOOw945SsFf1h/UwF4wCFurBnsKiXE6SotZFt2AVjKctW6Sq+/HgDwx9QjAZk3FKviVq/b8W2Tk8BDx8rAbcDDHuNO8PjAB0RYrG9S54c+BPz2t04f/9CHgK9+VayFvLAgin2rq4YoT8s8QHFrJKm4taMnJ0QibiefDLzlLe6MVglWEG1oV7u7SkdFcTPEbZgISsWHEGEe+5g28FlVhhLzzuJi73Mlnv508eeDZz8bwLqCm7g1RFu9BjRR4kYjs90G2m1kMin7yfi+fT0qbmNjwpAp31k67UzMXn0JNnBRnK5ZnMSmTcDv05NAC3a0sK+rtJdZZHwc+PzntR/RotKpelVIDIuLAGOoZKdcp9U3uhC3VF1cs8b4rJ64xRHjpiQn1OuOqscW5jHd7iy/0DdxA4Tx1sw+XsXt3ryjuN2PI2Eha0+sF8/8Pa4HcEGvD09KjFu27rikJ+DvKt29e4DJCXHEtwFa4jY1BXzxi/L/FxWAbzjELWWJGTJTCiZucSpuJSbYsJUvoWkJdVHrKm21gOlp/Ll+OqQXM/bkBJW4TS6Kp4b0lPvkn/Y08eeL8893l3159rPF31OfKsoOee+16irNiAvbqnUSt3oquazSbopb367SVAr4l3/RfyTd8rRqhw2Nq3RUFDfjKh0mglLxCWoHli4LMtqJdiJlYlvBGBar4mBJKG6+WaXqQqTNJtBsIgsLFtK4Z4fYHllx08Q4lB93ruv/ZmkKjAF83H1y9ZaPq7RnBq1HWy5xk25UHaYyNYW6JSzVoIhbpiGuWZOyWaUqwdrxlwPJo47ychs5uWYlm5/HlCWUzn1WDDFu6g/OPVf7FS9xWyo6cXDbIAgMTax9x7woilum7rhKJ9ryBBXFjZqeSIzb9LR4XVx0ZRfHUgoE6L6ur7QzpZR8KGhJ4uYps+KtKhJLORAAWFzEGBP93MqW7KGgJW4AcM45ohyQRNzlQFTiRtnsPa8T64WfUKB0Zq4jbvLzOpJT3CibPDHFLQCkuKVbdbcpNMkJBlpEJW4SgyZuc5i1+3ASxC2bFRzNssTckUop86xKLmQjKihhx05BYkMTNyW124v6mee5/m+VxEmmZ90np3WVMhafBZGgRaVT9Wp865Tq0CXGLWfJCW1SXOQCalg3y8GsGBU3xVVaXVAeqznHupXtAIDdDecmE3HpS3E77zztV1QyND4OLJUcxe1uCJchTax9G3Ilxi1Td8qBjLU6FbfDDhOfJRLjlk4L8sa5O2RjwMStmBL3PtMWF9Yvxs1vN6Ggdhoas0tLNnFr5kq24uNL3M47zzX+4k5OSJS4+c033YibnINqLEFXacujuHmMXd+KWxD8Vk8wyQkGWnRxlQLQWmoaOIMibvOYSZS4MeY2Bq6F432IG/GwwCfedFr8ce7MuBriljrxeNyHI+W+i/bTfn59COKWwE2gRaXTzaprcfNBETeaJ8gt3ZpyiNtxx8jgHsYEw44xOaG24E7S2bAg3HUPVDtvcs/E7bDD7CLHXqRSTj8cGwNWxvwVt76Jm6q4VR3FrdTsJG5Hiq6ZjOIG6N2lccW4UfV+grefyPtfZDUAHDkuLmxuzP292IkbZX4tLdn9XFXc1OvrStQ691zX+Is7OUFL3LxyY6/wc4urhiWIuPEEiJvc2TAVtzDEzShuBg7CKG4aSz0QxU2xTnOYtZf3U4kbY/HZFC9xs6EhbmU4B+36xEvnQddYQ9wKRYZLIVSYJUzaPxk7xE3cqpaGuMXsJgUU4taoOe2emRkYcZssif9pQmvPOMTt2KMVN6m6j15dpek02iyFNNqwFsuuj2bmBXnYVeu8yT27Ss87LzBLkm7r+DhQmRiAq7RcRlohbvmGP3FTFbdYJ09vgkK5LBbMzGaBww/vb9+MORc1ne689vJE8qjZS6lZSCNfcs/KsSQnqDP9EUeIV4W4NRTils06x7AVtxNOAI46yr7nntXPeoKfq3R63BKdjLH4WLpfIoqquMnxTGvlqlWf7XVlE1Dc0oriZllAuyqOyfMxxbiFaEPHQvMjnJxgiNsw0aPiRm8T4AwOPIobQTWgk5P9VQrwOVxX4kbVzXO5EDaNRhpZZA1xy+eByyDinpYxYf9k8vAQMW5JsGd6Cm1Wcc9Nom/cdWBAxO0738Gn/mMCf4VL7AkNCnE77mglo1TdRx+dsS3XQLRnLYmp/YK4qf2P0LPi5hPfRqDbOjYGpIp5zGMaQLKKW0ohbrmqP3F78MEEkhOAzgdIWfYCRx8dz+wY9JAj+3oBNeTQuU4pQbNyVnSonYYIqULcmh7iRuPMJm6y79D2mZmIyy5p4CJuzSaWFkV21rqCfIgZH4/PyIZwlUIlbs97HvCwhzl1JJOMcZO1SqtVkQxL6vvzX1xAu624UBUMw1VqFDeDnhW3v/1bUY7njDMSbJsnxo2gKm5xuEkJKhlxEZMA4jY7G8KmeVmOxuoUCsDP8L9wKc7FF/Eq+yezW4ajuNG9zjSr2PmXBQDA9sUBEbef/xzZVh1PxS/sCY3NCuJ06GwNFzxdiW8DgAsuAB7+cLt4cC9oZYQ1ZCtu4paVyRFq/yNENtove5nIqgvIpgaAv/97cSrHHiuu85fxCty88RzcClFagYgbverKQoWCEuOWrjlKY6rcSdy2bBGVg3bvdsrQJeIqpQdIWf7GVTKiH4QhbryGrExM0RG32MuBKMRtPCX6WT3lxLipitsPMn8tSie99rUA3MStX4h+zNCQ2cPleUFeZ3Mxx7cBoZITXMTt0kuBW28VpUUAVNoJZJVOTACMIV9fQhoW7rkHuOsubmeXX/G7vItMq0Q5UcWNc2UJi+LIuUpNOZBhQiVunOtZiCY54RWvEH+JYsDErRfFLZThVK1MqaS9xvk8UMEYngax9NRr5U/WHT184oYlMZMsticHQ9xkbNNJuAUpcNSQR3pSkIwXPKcOnORR3LqUlgkDLolb2kPcCLEobm96k/jrggsvdN7n88Bb8TFc8lCgJWuWLi2JZ6laLaTi6wdFcWP0cAYgJa9BquUQt1JJlP37/vedHJtEFTe1dE4cCEHccrzuUty8z1exx7ipxG1a1itM6RW3a8efAtx4o/1T+8Guz8QEwCEfTZZDjjdRXWwAyDvELa57AIRS3Bhd2HrdibGTcxARt1gVt0wGWL8ebN8+rMd+7Ny5GVk0kQJHExksljMuu9duO90zCcWNxpdr3k2lTHKCgYJiUfSERsNR1rxIJBo5BJRHC3XiHCXiFspweombBpmM26bTT9IznuQEazCuUlYS9zprVcGWxUQ+Zw2WuD0cNwMQ19pecqdWc0pG9BrTpkErK90lFX0hap3iFuPhfUHXed8+Z9vSkivRt3cvlkLc7AkSDnFjCnHL5zs9vIkmJwySuFEdv7bjKm0iG+gqzWR6vO7qTK8Qt4m0Y1doKGQyztD2Xob4FTegwcROKwviGkxnFVdpXAiTnJAT9yi30ukFKrcSIG6AvfzcZuzGzp1O2aE68mi3HXU7n3cfO27i5lLcPOWjRk1xM8Rt2OjmLh0WcVNSPdWJU7UjtPBDHBgmcfMe0/6J5wRrsgBvJoNEFTcibhmrZrsPDwyCuFWr9lqemyAkpgpKyI4rhfYsj+IWA3hWPvFW9YrbKBG3xUWHuPU1cRMbKJcdGQ2wiXpKcZXmcgkTN2/QekDNw55A5xqguGXbwTFuqt3pecj5KG5UDqQCvavUexmSUNwozq22KAb5VDoBV2mI5AQmiVuhfKDj54kRN7n83CbswdycU4S7LsuPkOc+l0uIuClFwLsRN6O4GQj4DSbCsIgbYPfSoSpuZD0bjXhcpSGOb//Ec4JUDJUxJKu4jTmKW0bGPO2vD4C4UQCVgg7FzfLEuMWAtlTcxnkncWsga99vFYMgbtQn9u93ti0tuSq09A4fxY3VasiigXTbTdyOPho47rjOtsUCP1dpXMQthKs02xo+cStzvavUj7jFqbhRSZDakrgGEyxB4uYVCZSq5ylJ3IqVTuJWaSWQVQq4FDfAIW60xBY1N593275+E0Ns6JITPGPAJCcYuOEnXxOGSdw0ituqc5WqOwuYiLTJEZ4TtJBxJo0EFbdUScb9tKrISBVqb20AxI1qdymooITcZLKuUlLcptDpKhV9j7maG/PhfUHXmUrhAAkTN3mCE1h2xbhRO6hucDYbc81nP1fpIImbFZ649Tx50kXLZJzEi6UlFNtC8Vxu6V2lg1Tc6ktikI8jgRi3Ukncg1rNHZqjKm55cY9K1f0dP1+xklfcAIe4NT3ELWnFzbhKDcKjm6tUk5wwMAyQuPWSVToMxa2DuCUwklNSccu1qsjVBHHbU510LwcWB0IQtypKyIxrFLcEiNukXKdzubjB/kxVezc7CxkMlLipUGPc+lJciIksLzuuUqk8TGEJWSXei7oYuUtjf4ZL2lUagrhlPMTNa+5U/tK34jY56cg3loWxurC9yy23q7Sb4pYEcWusiGtQ4gnEuDGm9/AoxI0Ut7GaVNyOPtr+2nIzgaxSwFdxa2YGRNwiKG7GVWogMMqu0lNOQTk7ZdewSqXczVgVils/xK1YBFesg4u4nXii+OLDHhaiEdGQlsQt364iXxdkZoFP2l0kaeJmTTkXtpYuORenXk/EVcpz4oSIuC2NH2p/pj40HOpsHipxi0Vxo4FUq4mM8mLRZoKzmSW7NIaquJ11FnDUUcDpp/dxXB1ovVJaF3cIxC3dqievuKnEDbBjWKfvuA4AsItv1hbg9V6GU04RHOjUU3tsh6ZJ5Col4lZsJ+AqBfQeHkUcSEnFbbwuidtppwGPfzxw1FHY115HX4sXkriR4kbJCZaHuA00OYEyIuT1X9OKG2PseYyx/2GM3ccYqzLG7mCMXcQYm/B8b4Yx9iXG2H7GWJkxdjlj7ORBtnVgGGVX6f/8D97wnB1YgjBw2ax74Kw64hbgdtASN8ZcJ+lylR5+uFiD6POfD9GIaEiPyxi3dg0FWUl/CZPYu9fTvn7hJW53iyWmqo9/iv2VukrcElLc4FHcyhOH2B+pxO0QZ/PqV9xSKXd/HB+3+9pM2k3caLIYHwduuw34xS/6OK4OaqIEMFjiRpXzG+HruPWsuNFMT2Navo7/6XcAgF+lnxLKVfqmNwlzfeaZPbZD06QGFwdrVQVpyTcTIm46oYBc9RMTSBeku74hidvUFPDLXwJ3341yQyYuJOQq9SpuVJh7UK5Sl+Kmpo7DKG5vAdAC8C4ATwPw7wD+D4BfMMZSAMAYYwAulp+/HsBzAWQBXMkY63P9lRHEKCtumYy94DowesQtcVcpAKacpEtxA4RRiy1C1gERt0K7ipLlEDfKbkxacWs/5Tz7K410yTlgUjFuebfiVpl2pDVylSq8Ju7D+0J3nRsNsYIBEIOrTJ2Ux8a6EjdAmIHYu5wabwcMRXFLNYPLgeRynYt1RIZXcVM61J04DrfXjw7lKgUckbJfEPmowSEPExNAqiJJdJwxbkBnaA7nDmEfG7MVt7HWsthGbuVMJrmoHY/iRsStlRus4uYibh5ZfdQUt0EX4D2fc64k1+MqxtgcgK8COBPAFQCeCeDxAM7mnF8JAIyxawDcC+BtAP5xoC1OGqOsuMFtJFVjBgyBuEkDMzBXKeCvuCWI9JiMJeFVjLdEwP4ipsCSJG6WBWzfLo5/nqO4NbMDUNxy7uSE5uQ6sX/LshW3yf+/vTOPkqws8/TzRkbkVpWZtS8UVEFRQgvSgpSAaEuBrIqoPSo6oiCDLUxrj3ocHdTjKA0y2u1GK7Yztva0ijDt0ujpRnCFbgekGRURFAXZSmSxdqqKzMrMb/747s24cTMyKrMq7v2+zPg958SJiBvLfe/+u+/2DTbqnFDCDSZW0/5XFc6f77226es0dNfVPFRaGDEIt5FccUJOHKTjIm/b1sZQaebYvonTeeqpeiFKq1BpO8l73HoYbhxgvqhQaeoo2L3bi7feXujqmvC4TZBZR6nXqejihKGep2EYXE64dXc3HpOFFidkxoiG+IRbqR63nGhL+ffkeVXyfA7waCrakt9tw3vhXlashQGIuTiBxgtkOuRIuvPOpeKE7NcaVnWykHuoAlaOcEs8bgPsoM/tZowKu+ifaEvRtl0hu24fecSLsgMOoO+wg9hGstxTCbd2ljV2N4ZKra934rhIPW554dbWqsopyAum1Mvy0EP+eb89blOFSm3blB63QkiPi127GlvTlyjc7Omn6atMneMG9e1fhMftRs5g506m1Q6kndTbgdS9PoUKt/z1Jjefal9u5WZ6WRZ2KVqyBFepsJQ/UGUPK4b8jNIB5gvv49bM46ZQ6V45KXn+ZfJ8JPCLJt+7G1htZm3ekwMTc6iUxpNkegGZGIR9tuW47YfHbdwyoyYUTbKtlyVNcLczCFj7m0CmCzMyUq8oXbeOrqrxgPmClNHunHArIFRKLlRq/XXhlvW45bvnF01+Pa9Kbi3bJtymCJUOWcket0qlUbwFEG4MDzO/e3rCbb/bgeSFW7XKrd0bGB+ve1Za5bi1kzTsPZwJlQ4NUbzHbQrh1pUXbpmTfNur2lO6utizwFeSL+VJlg40CrcgxQnyuE2Nma0CLgO+65xLB4NbBDRTMalLqqmfxcx+ONWj7Ya3k1kWKoX6wRNauE0rz6RdodJaLftULE2FW51CQqVJYQKHesH2cHcT4ZatKm2jcrKcx63S1ztxXDxVa+5xK1u49ffXhVrqlWlLqDT7egrhVsrFIhsuDSHcnn6aebVAHrfnP7+xzxFeFJQh3NJ5pe1AJkKlmbyztpJ3FOTmU20RKi0y+DO6qN4SZMmAd29Zr4oTpiKYcEs8Z9cDo8AbQ9kRnFnkcUtfH3CAPwdm+2rtLzMRbuM9/Rx00DQv3m0Sbl19NczqDdcLJdnWNbxIKkW4bdzoX69ZA8Bv+p7t5z3/gMbRK9Jbz3bGKpMT9AA+IbrS3zvRP+rRbv8cWrgNDk6+USkqVDrIHBNuqasySUJvIFP4MlhNBnunt+npLl1d+7w+0qa7q1f75+QmhZe/fFLVqlm9ijk1vyiywi26UGmyT+7a5S9RZu03CWB0aT3PbfE8rxCtv/zihLQLSLY4YWysmEDD/hDEDDPrw+esrQVOcs5tzHy8heZetUWZzyfhnNsw1fzWr1/v9s3SEoh1rNKEfI4bwNe/Dk88AYsXt28+MxFuV32uH5tuL6s2CbdqT5Xbbquf8wsld0tbinBLb6eT5b1u1Tv43tbnMLDuRfyFmZ/p8HD9ot5Oj1uPP3FW8Idp1/xeuPwTcP753Pn6E2FnnMJtvysLp/C4DbCdXZnWGKUKt+zYqe0Sbhs2wLe/Dc997uTP0pU8PMzK+T45/QmWNfXq7LfH7c1vhsMP9w3xAC65BI46Cl70IuZ/rv61dN965zvh+OPh1FMn/1U76eqqh0p7GKZrEHiwpOKEvHDrby7cbrnFnybWr2+/ExBgbEnd47ao35+LKkmFSnoJLGPkhLTlUjZUmnrYu7uT4Q4joHThZmY14KvAeuA059xdua/cDZw+6YdwBPCwc+6pJp/NXtLkz61bvazP743pBTUij9vatf7RTmYi3J55bD/80TT/eB+KExqEUbp9ajWOO26a89xfctu6FOGW87JUB/u5gRfzuvS60dvrhVt6oi9AuKVU+3tg6VI4/XR6k1UROsctL9wGB9tgwxQ5bgNuO3vw54Exq5VSiDGxcovwuFUq9fG68mRuClY7nzz4OMuLCZX29cFZZzW+P+00oPnIDPPnN369KPIet/6AHrfaFB63m27yb09vdmVuA25pvSXIgl7v3kqr61MKqyrNeNwee8wX2VomVBpbmBTKb8BbAb4MnAK83Dl3W5OvfRNYZWYnZX43CLw0+Wxu0dVVv3XfNnmsxonbjUBVpc2EWxHMpKp0RheUNue4lUIEwi29XkyYkq6g9ETfRjWR5rKkVAfqGyObTxnS4zY01FBg15bhjqb0uLl6qLS0/a7IUOneSDbyqjEv3B5jRTHFCS1oS4PffSTrcZsIlRaV45bPqc7NpzaFx+3GG/3bqfT3/jK+rN6Ed6jHOyvywq3oUGlfZZjdu+GpHa7B4xZbYQKUn+P2aeBVwEeBnWZ2QuaRZg99E7gV+JKZvcbMzkimGfCRku0th1YFChGGSotgJh63IMKtzOSGSmXiDhzCCLf0ejGxXvLCrY3ro5L3uM2fLNyGhuIKle53YQJMmeM2fyygcNu5s74vFBETa0aykVeOeOG2qWt504tyak4Rq6TsfStL0+KEoj1uU4RKm/Vx27gR7rnHf+WEE9przgSZJrwDNS/csucBmBwqbVsj6uRAT4tjHn9wt8/l7e2Fvj553IDU8fxevDjLPi4CcM6NA2cD3wGuBr6BH23hZOfcIyXbWw6tChQiLE4oghkJt5lcUGajxw14ulLf3lF53NI79HYKt77GBeqewuMWU6i07R63TKh03nhduLlqycJtx476vlDWOSdZ0cuHHwZga2/zqqe57HErrTghm+M2Pj5pPtadW/iBgYkh1k4+uUCvU2bYq3k1r5Rq8xvPC1mPW6XSxnyzZKH6q164bb4v7lEToOQcN+fcwdP83mbgwuQx92lVoCDh5p9HRvYtbDxLhdtwpQ/Gk5EE+gZhd/2zOSfcehvPiN2D9Y2R7Rk45zxuU4RK52U8bpMupEWRquJNm3yST09POV2OYWLfqo37K+T2vibVp7Qhx60FzXLcyiJfnLCgf8Qfk9lmcu2iWvWtT3bs8APv5kOymfm5efOwrq7Cw6QAtqLucZtXeQYAtcGpPW5tHfYtOdD7Kl4wbnsg7h5uEEcDXpGv9MkSuDghmlBpmv8308Ea91e4paWzZYWNEkYqdYMqQ+V73NJdciKvq8Act0nCbaC+gKlYWrw4LuFWSI5bsrIHRreEC5WmZXVl5bdBw8E3TDcj/Quafi3dJ4toRxGTx21BLSOmiihjzDoK8p69zMKPzRtkbIwJj1tRhQkAPWu8x20Vj1Ib89e8nhbCra33FIki6zWv0HY8HHcPNwjUDkTkyHYtz6PiBP/8u9/55yVL9v2Pp1lV2nBndcwx8KEP+SadJTLSVRfq1UWD8Jh/Xam0UbS0EG4XX+yvGeedl3w3XUElhEp7hur7+gc+AMce6ztKpL1/2zz7KSk1x23ePH/xXLiQni1bOBDfIak0j1t64X4yGZUwkHB7nOX09TcXK+ee608DFxYQhwmd45YtTlizuKAwacrChX74j70It52VQX79E/+1Qw6BdeuKMQdg/sFL2NMzj6HhbfD73wON5wHwx2N6TBYh3HrwCu3pRxUqFdMh9abt3t043bngY5VGEypNG8TOtOvvDD1u6XisE5jBpZfObJ5tICvcupfWyxnbeteXnon27JnUu2v1arjiisx3iyxOaBEqPfZY/0hnWan41JyyxyotxeMGvinsHXdwMD5Rv/RQaWCP21QVpeDX+eWXF2NCyFBptdpYnLB6UcHCLZtT3UK4PblnqKENSKE9zMyoHbYW7roL7r4bgO6hkjxuyYFeIxm54/HE45bcncXocVOoNAamEm7ZweHaGtSfPtEIt0eSupRm3ddbMUPhFsvBmRVu/SvqiqGt9s2kYrfIUGnO42Z9zW9Ssl3bQ3vcChVuGUr3uAUWblP1cCuaWEKlC/pH6B0tSbht3jw5xy2z8Bu3D3LDDf51kWHSCdJ9P/G4dfU3jqCRLU4owuNWHfMKbXxT/B43CbcYmEq4BS5MgIhy3NILyv543Fqsx9iE255q3daepYMTJ43gwq2AUOmkM2IL73KZwq2rq3Fc8sKLE2CScKv0dIBwy+zUj7EiSHAhllDp4nnDxfVwS8nmVLfwuG3aM8iPfuTtO+WUYkxpIB+L7elp2C5Fe9y6xrxCsy0qThDTIRUUqYctJXBhAkTkcUvZV49brdZyAWITbqNd9ZVQXTQ4IRo6Qri1WMj0WlbWxTU1pZAGvPkcN5h08erIHLcO9rgN9Y8U1wokZZrFCWkbouOPb8PwbtMhd9NCb285wi05/1RGvUKr7oi/OEHCLQbSvXEqj1ug/DaIULjtq8dtLxei2ITbnlr96lVbXLBw27Fj7y0gCgyVTlqoSDxu0NiOpK+vvtiledzyDVGLIhWO7R6ndDpMM8etSGJpBzLUW4JwyzZ8T7d3C+FWSpgUmgq37HYpLFSanExsdBRjnN5dCpWK6aBQ6d6rSlNm6nFLj/S9hB3SrwXUyA2MVhuFW+rtKUS4pa1WWl2s0xWTfrcgj9sYrctmyxZu2QbAZvVwadtz3NJ1nxduZXvc8vaUQWQet5AjJwx0D5fnccuGSpvkuO1IhFuR/dsamIHHra3bKB0vF1g0b4QF442h0hg9bqoqjYGIhVtZHrdqFd76Vn8MNdxN7a/Hbc0aePWr4eijW37tiCPgnHPg1FNn9vdFMZrxuPUumV+sx206wu3ww/3z44/754KE20ill74W5Wt/9mf+5H388e2bfSve8hb4+c/9bgTwtrfBvffCQQe14c/7+uCSS/wCpcVHK1cy0tVLd9LLqvQct5RAwm3l0Ss4+7wW3y2IWEKl82ojxee4TTNUevxpg7zxQHjuc4sxYxKrV/vzStr3Jyfcenr8cXjuuXs9nc+c7m4YHuagZcMsfKAxVBqjx03CLQYk3AC46qq9GAAz97hVKnDddXv9Wq0G118/s78uktFuv823M8D8wUp44ZaPl7RTuGUWaqTSS6u9/bzzMr3lSuA972l8//73t3kGV1/d+L5SYdOCQ1m5ybdEqPZ1lnC76rrlcFh5s04JLdzSUGlfpQSPWzZU2kK4nfYfBjntzcWY0JRqFQ4+GO67z7/v6WnQrt3d/nR+7bUFzLunB3bsYNXSERY9oFCpmA4RFyeUFSqdkv31uM1Sxmv+YradwexoSO0N5abrNo0FtLpYH3qo78KZ0s4kk8wZcbQronhEIDYvrIeMSvO45b07gapKZ3xj1iZC57ilHrfqeInFCZs2TS5Kyh7X2TLqssiGS5uESgsj+fOVi0dYiPq4iemg4oTpGdDb68fZ6wDGJjxug9nxx4vxuKW0ulibNXrdCvK47emKJMkwIFsX1S9eXWUVJ8TgcevtDSMWCJ/jlnrcGCmxOCFtat7fXw/Vm9XPC5EJt0KFUyLcVi3cxUK24swmysjlcRPNUah0arJHy4oVBbfvjofxnrpwy3rcggk3aMxSLijHbbQq4bZtSf3iVVqotK+v8dgqc2zeVLgtXx7s+M7u+iE9bgyX0Mct9bilKRJ5gRiLcGvSx60wkhPrmj7fx/DpnqEJ76M8bqI5Em7TMyBQGCUEUQq3U06ph1IKCpWOSbixbZnv5TZKF909JQmZ7LAUEMbjFjANoqurfpoNKtzK8LjNn9944xWTcEv7GCYJbfl2IIWRnIMOrPpBoXfU6mXj8riJ5kQs3KLKceuQ/DZoFG59fZEIt6EhOOEE/7qgUOlYTcJtx1LvddhDrdy7/OxVMoRwC3xjVnarmZSGUOlwCcUJZo2NCPOevRg8bsk+UbbHbbnzwu3hpxaxYoWvHZJwE82JuDhBHrcwPHHgc9hJP7d3/wlmvv1FX19dN7WFmQo3gAsu8GewdtbjZ86I47WI4hGB2LXsYO7hmdzK88q9WITyuB1zjN+5SxlXaWqaFFaWwgknQK0/43F7zIsHFi8ubqbZRoR5gXjiibB2LaxaVdz8p+IZz/CP5z1vkmllFCcc0vMoAH9wi3n8cfjiF+MMlaodSAyoOGF6BnSQx23T6mNYwFaWLKrxEXwvpW3b2rwN9kW4XXQRnH9+ew3JnBHHu+Vxq/ZWOYq7ALiyE4Tbc55TwM49c0IJtw9+EN73X3pgMV4l3H+//yDfkLadZD1ueeH2T/8EY2Plux7BC6h77pkolii7OGFgy8MAHHPWCrjB9yiO0eMm4RYDCpVOTYd63Go1GKVWbJuCfRFuRRjS1cUYFboYZ7xHwq1ahXF8DmFHhEohuGiD8sfBzVKbl6iCtDBhYACWLCluhq08bmZhVkJKZt75Pm6FkR5oD3vhNu8Qf63ZsiVOj5tCpTEQsXCTxy0M6WIXlebSMJOUsi/WGUYryVlZwq1hs3REqDQSQnncms503bpiK2yzwq3MCuIZUlpj5PRAS4Rbz2ov3DZvrgu3mDxuEm4xkIZCh4dhfLw+XcKtoz1uULBwq1Tq/Zsg6MV6T8XfzrpYBosNSHaXL/UuX8INCHSeq1QaZ1xkmBRah0ojIjWtu7vgTjHpgZb0tqsdtIK+Pj/61pYtdRtiQcItBswaxVuKihMk3Io+p2bXbwQeN5Nwa4hSyeNWHkGFGzRu7KKFW6tQaUSkphV+A5Ou+3Sc1OXLJ1ZRWiuiUKmYTLMChQiKE6LKcevAUGnhUYzs+g0YMkk9btYb0dkxEMFCpSFz3CIgZI4b0KgMyvS4RRwqTU0r/DjIz2DFiknCTR43MZlmeW47dvjngHdEXV11F3UQ4dbX508yBx0U9Z1huznwQP+cHR60ECLxuKVnxXlL5HFTqDQM6bGWHnulI4/bJJYt85eAwrdJ/kBbvnxC2z7+uH+OSbipqjQWmgm3dI8JHCKs1XxJdBDhVq3CHXdEUXVWJqedBrffDs96VsEzikS4LV7RDdth1VoJNxUnhOHtb4cNG2D9+kAGZDd2OoJAUcwS4TYwAD/96cSwocWRXffVKixaNLGK0uhpTKFSCbdYiFi4VateuAW741i7NtCMw2Hme7cVTiTCrdKXhEr7JNyyobogHrdKJS73Qkl0d/tG18FIN3Z3d/HNb2dJcQLA4YeXMJPsgbZsGVQqDdoW4jokFCqNhfzoCc5FI9zSa3uHOb06g0iE28RZUcUJ4XPc+vuDDfbe0aQb+5BD2jsWcDNmSTuQ0sgeaEkudVbbQlweNwm3WMgXJ2zd6t1cg4NBq0pBwm1OE4twS8+KMZ0dAxE8VNqBYdIoSPf9ovPbYFZ53Eohe6AljhJ53MTeyYdK01KWCCop09CNhNscJBbhJo/bBMFDpRJuYUiPAQm38skeaIlwy3vcJNzEZPLCLZIwKcjjNqeRcIuO4B43hc7CUKZw6+6ub28Jt6ah0rzHLaZggIRbLETscUsregYHw9ohCiAW4bZgQeNzBxOsHUg6Nmb+iiXKId33n/nMcua3cqV/Xry4nPnFTBOPW8yhUlWVxkLEHrfPfhZ+85viC51EAGIRbh/8IJxwApx6ajgbIiGYx+2oo+Azn4HjjitxpmKCK6+EU04p7xj4/Ofht7+FAw4oZ34xM8uKEyTcYiENEaVVpRF53E480T/EHCRVCaFbQBx2mH+IcENemcHFF5c4Q9HAEUf4R1m84AX+IVScIPaRiD1uYg6TCje1gIiGYKFSITqV7IE2hcdNwk1MJuIcNzGHyQo3EQXBQqVCdCpNPG5DQ433sjEV50m4xYI8biIEEm7RESxUKkSnknrcarUJV1ulUve6dXfHFZCQcIsFedxECCTcoiPdJF1dxTfQF0JQv0NavrxBoaXCLbaUBQm3WMgWJ4yPwxNP+PfLloWzScx9JNyiI71IqKWdECWRHmw5R0laoBCb51tVpbGQ9bht3gyjo17uxyb1xdwiFW5quhoN8+fDu96l9lpClMZxx8FrXwt/+qcNk7Oh0piQcIuFrHBTfpsoC3ncouTDHw5tgRAdRE8PXHPNpMmpxy02/4lCpbGQFW7KbxNlIeEmhBBNiTVUKuEWC/K4iRBIuAkhRFNUnCBaky1OSIWbPG6iaCTchBCiKfK4idY0C5XK4yaKRsJNCCGaIuEmWtMsVCqPmygaCTchhGiKQqWiNVnh9tBD/vWqVeHsEZ3BSSf5XoEbNoS2RAghouL44/1l+IwzQlvSiNqBxEJWuN1/v3+9bl04e0RncPrpPjQf03guQggRAStWwCOPxHd6lHCLhbQ4Yds2L96qVVi9OqxNojOI7awkhBCREOPpUcItFlKP265d/nnNmsbRpoUQQgjR8SjHLRbyAxMeemgYO4QQQggRLRJusVCpNJauSLgJIYQQIoeEW0yk4VJQYYIQQgghJiHhFhPZcKk8bkIIIYTIIeEWE1mPm4SbEEIIIXJIuMVEVritXRvODiGEEEJEiYRbTKTCbeVKDUEkhBBCiElIuMVEKtxUmCCEEEKIJki4xURanKD8NiGEEEI0QcItJlKPm4SbEEIIIZog4RYTS5f65yOPDGuHEEIIIaJEg2HGxGWXwQtfCC99aWhLhBBCCBEhpXvczOxAM/sbM7vVzHaZmTOzg5t8r9fM/srMfm9mu5Pvv7Bse0tl1So4/3wNLi+EEEKIpoQIla4DXg1sAf61xff+DngT8H7gbOD3wI1mdnTRBgohhBBCxEgI184tzrnlAGZ2EXB6/gtm9mzgPwIXOue+kEy7GbgbuAw4pzxzhRBCCCHioHSPm3NufBpfOwfYA1yX+d0ocC1whpn1FGSeEEIIIUS0xFpVeiTwgHNuV2763UA3PtwqhBBCCNFRxJoFvwifA5dnc+bzBszsh1P92bHHHtseq4QQQgghAhKrx00IIYQQQuSI1eO2BVjTZHrqaduc/8A5t2GqP1u/fr1rj1lCCCGEEOGI1eN2N3CImfXnph8BjAD3lW+SEEIIIURYYhVu3wJqwKvSCWZWBc4FbnLODYcyTAghhBAiFEFCpWb2yuRlWjVwlpk9CTzpnLvZOfdTM7sO+ISZ1YAHgEuAQ4DXlW+xEEIIIUR4QuW4/WPu/dXJ883AhuT1G4ErgMuBBcCdwJnOuZ+UYJ8QQgghRHQEEW7OOZvGd3YD70geQgghhBAdjzk39wsukzDsQwXO4vDk+d4C5xEzWn5PJy5/Jy87aPk7efk7edlBy1/08q9xzi1t9kFHCLeiSZv/tmpJMpfR8nfu8nfysoOWv5OXv5OXHbT8IZc/1qpSIYQQQgiRQ8JNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswSVFUqhBBCCDFLkMdNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLjtB2Z2kJl91cy2mdl2M/u6ma0ObVdZmNmBZvY3Znarme0yM2dmB4e2qwzM7JVm9jUze8jMdpvZvWZ2pZkNhLatDMzsDDP7vpk9ZmbDZrbRzP6PmR0R2rYQmNm3k/3/8tC2FI2ZbUiWNf/YGtq2sjCzF5vZLWb2VHLuv8PMTgltV9GY2Q+n2PbOzL4d2r4yMLPnm9lNZvaEme0ws5+Y2YVl2hBkkPm5gJn1A98HhoHzAQdcDvzAzP7YObczpH0lsQ54NfD/gH8FTg9rTqm8E3gYeA+wETgG+ABwspmd6JwbD2hbGSzCb/ergSeB1cB/A24zs6Occ0WODRwVZvZa4Nmh7QjAXwD/nnk/GsqQMjGzNwOfSh5/iXeAHA30BzSrLP4zMJib9jzgY8A3yzenXMzsj4HvArcBbwJ2Aa8E/s7MepxznynDDgm3fedNwFrgcOfcfQBm9nPgN8Cb8TvyXOcW59xyADO7iM4Sbi91zj2ZeX+zmW0G/jewAS/q5yzOua8AX8lOM7PbgV/hT2QfDWFX2ZjZQuDjwNuBawKbUza/dM7dFtqIMkkiCp8A/qtz7hOZj24MYU/ZOOfuyU8zszcBI8C15VtUOq8BuvDn/6eSad9JBN0bgFKEm0Kl+845wG2paANwzj0A/Ah4WTCrSqQDvEpTkhNtKan3YVWZtkTEpuS5IzwvCR8GfpEIWTH3uRAYB/42tCExkESeXgV8yzm3ObQ9JdAN7AF256Zvo0Q9JeG27xwJ/KLJ9LuBjszzEZyUPP8yqBUlYmZdZtZtZs8APgs8Rs4TN1cxsxfg77L/PLQtgfiymY2Z2SYzu6ZD8ntfgPcqv8bM7jezUTO7z8w6dR94BTCAjzR0An+fPF9lZgeY2YLE4/givOe9FBQq3XcWAVuaTN8MLCzZFhEYM1sFXAZ81zl3R2h7SuTHwLHJ6/uAU5xzTwS0pxTMrBsvVP/aOXdvaHtKZhs+FH4zsB2f3/ke4FYzO2aOb/8Dksdf4Zf5frzH6VNmVnXOfTKkcQF4A/AEcENoQ8rAOfcLM9sAfAOf7wfeA3exc660ULGEmxD7iZnNB67HhwjfGNicsnk9Pll5Lb5g4ztm9gLn3INBrSqedwF9wBWhDSkb59xPgZ9mJt1sZrcAt+MLFt4XxLByqOA9TBc4576eTPt+kvt2qZld5TpkOCIzOwA4Ffikc64j0iOSyMLX8JG1i/Eh05cBf2tmTzvnvlyGHRJu+84WmnvWpvLEiTmImfUB38ILl5OccxsDm1Qqzrk0LPxjM7sBeBBfXXpxMKMKJgkJvhe4COgxs57Mxz1mtgDY4ZwbC2FfCJxzPzGzXwPPDW1LwWwCngF8Jzf9JuBMYCXwaNlGBeI8vJDtlDApwIfwHraznXN7kmnfM7PFwCfN7Ctl5H4rx23fuRuf55bnCGBS5Y2Ye5hZDfgqsB54sXPursAmBcU5txUfLl0X2JSiWQv0Al/C36SlD/Bexy3AUWFMC85c9zbdvZfPO6lg63zgTufcnaENKZGj8Mu8Jzf9dmAxsKwMIyTc9p1vAieY2dp0QuIufz4d0M+m0zGzCvBl4BTg5Z3WFqEZZrYc+CN83s9c5mfAyU0e4MXcyXgB2zGY2XrgcPwFbC7zjeT5jNz0M4GNzrnHSrYnCMn2PoLO8raBL746OslxzXI88DQ+x71wFCrdd/4X8BbgejN7H/5O8y+BR/BJyx2Bmb0yeZkmqJ9lZk8CTzrnbg5kVhl8Gp+UfAWw08xOyHy2ca6HTM3sG8BPgJ/jE9QPw/cyG2WO93BLPIs/zE83M4CHnHOTPptLmNmXgQfw238rvjjhUuB3wFXhLCuFfwF+AHzWzJYAv8WfB06ns/Jb34A/1kvJ6YqITwH/CHzLzK7G57idA7wW+LhzbqQMI6xD8igLIcl1+ThwGmDA94C3dUBi9gRmNtUOdLNzbkOZtpSJmT0IrJni4w865z5QnjXlY2bvxo+acSi+t9EjeDFzZSft/1mSY+EK59xcTs7HzC7FX6jW4EcLeAxfVfjfnXO/D2lbGZjZIHAlvtH0Qnx7kP/hnOuIBsxJisij+D6mLw1tT9mY2VnAu/GpUr34CMP/BD5bVl6rhJsQQgghxCxBOW5CCCGEELMECTchhBBCiFmChJsQQgghxCxBwk0IIYQQYpYg4SaEEEIIMUuQcBNCCCGEmCVIuAkhZiVm5qbxeNDMDk5eXxDa5hQzW2VmO5MO9NP9zdvM7K5k1A4hRIeiPm5CiFlJbrQK8MMR3Ql8IDNtGD928DHA/c65J8uxrjVm9nlgmXPu7Bn8pg8/YsGlzrkvFGacECJqJNyEEHOCZDSLf3POnRfallYkY7o+ArzCOffPM/ztR4CXOOeOLMQ4IUT0yOUuhJjTNAuVmtnfm9lGM1tvZv/XzHab2b1m9pLk83ckYdbtZna9mS3N/WfVzC41s1+Z2bCZPWpmHzWz3mmYdAGwA7gx959nJLZsM7OnEnven/vttcARZnbiPqwKIcQcQMJNCNGpDAL/AHwOeAXwBPA1M/socDLw58Dbktefzv32S8D7gGuAl+DHrvxPTG/Q7TOBW51zo+kEM1sLfBMfCj0XP3D1x4B5ud/+DC/6zpzeIgoh5hrV0AYIIUQgBoCLnXO3AJjZo/gcubOBI9IBo83sWcBbzazLOTdmZn+CF1fnO+f+Ifmv75rZZuBLZna0c+5nzWZoZgYcD3w899FzgG7gEufc9mTa9/O/d86Nm9mdQD6/TwjRIcjjJoToVHamoi3hV8nzd1PRlpleBVYm788ERoCvJiHTqplVgZuSz1/YYp4LgD4gXyTxM2APcK2ZvdLMlrX4jyeBA1p8LoSYw0i4CSE6la3ZN865keTlltz30ulp/toyvHdsJ15spY8nks8Xt5hn+h/DuXnfB5yBPyd/EXjMzG4zs5Oa/MduvPgTQnQgCpUKIcTM2AQ8DfzJFJ8/upffAizMf+Cc+wHwAzPrAZ4PXAb8s5kd7Jz7Q+ari4A/5H8vhOgMJNyEEGJmfBt4NzDknPveTH7onBsxsweAtS2+Mwx838zmA9cDh9Ao1A4Bbp+x1UKIOYGEmxBCzADn3A/N7Cv4HLeP4UXUOHAw8GLg3c65X7f4i1uA47ITzOxifG7cv+B7vC0BLsV7736R+d4C4DDgr9u0OEKIWYaEmxBCzJzzgLcCFwLvxeesPYjvzfb4Xn57HfCGJAT6YDLtTuAsfFuRZcBm4N+A1znndmd++xJ8zt032rIUQohZh0ZOEEKIEknGGv0N8AXn3OUz/O0NwB+cc68vxDghRPRIuAkhRMmY2evwDXYPcc7tmuZvjgZ+DByZVKEKIToQhUqFEKJ8rgFW4fPi7pnmb1YAF0i0CdHZyOMmhBBCCDFLUANeIYQQQohZgoSbEEIIIcQsQcJNCCGEEGKWIOEmhBBCCDFLkHATQgghhJglSLgJIYQQQswS/j+3tENHiYAiLgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc1.time, lc1.counts, lw=2, color='blue')\n", + "ax.plot(lc1.time, lc2.counts, lw=2, color='red')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `Crossspectrum` class to create a `Crossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'frac'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "cs = Crossspectrum.from_lightcurve(lc1, lc2)\n", + "print(cs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Crossspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Crossspectrum(lc1, lc2, norm=\"leahy\")\n", + "```\n", + "However, we recommend using the specific method for input light curve objects used above, for clarity. Equivalently, one can initialize a `Crossspectrum` object:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(events1, events2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s, are created internally.\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Crossspectrum.from_events(times1, times2, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Crossspectrum.from_lc_iter(lc_iterable1, lc_iterable2, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the cross power. The cross power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[-3264.54599394-1077.46450232j 1066.6390401 -2783.16358879j\n", + " 3275.00416926 +196.64355198j -8345.12445869-6661.52326503j\n", + " 5916.3705245 +3602.05210672j]\n" + ] + } + ], + "source": [ + "print(cs.freq[0:5])\n", + "print(cs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since the negative Fourier frequencies (and their associated cross powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"Size of positive Fourier frequencies: %d\" % len(cs.freq))\n", + "print(\"Number of data points per segment: %d\" % cs.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Crossspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of cross spectra averaged together. For a `Crossspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can compute the amplitude of the cross spectrum, and plot it as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABtEElEQVR4nO2debgcVbW+33VO5oSEBAgzhBhmkIDgRVEIg6CIICKOKE4IjhfUq6KoKIgT4oxXUfx5FfVeEA2KCCIkIIKCGlDmIRCmkEAmyJyc/ftj97bq1KnqruquHs/3Pk8/1d1V3b27u2rXV99ae21zziGEEEIIMVzoa3cDhBBCCCFaicSPEEIIIYYVEj9CCCGEGFZI/AghhBBiWCHxI4QQQohhxYh2N6ATMLN/AFsAD7S7LUIIIYRomBnAYufcvmkrJX48W0yaNGnbmTNnbtvuhgghhBCiMebNm8fy5csz10v8eB6YOXPmtnPmzGl3O4QQQgjRILNmzWLu3LmZ0Rzl/AghhBBiWNH14sfMRpnZ183sfjP7p5ld0e42CSGEEKJz6YWw13nAKGBX59yAmW3V7gYJIYQQonNpufNjZtuZ2bfM7GYzW2VmzsymZWy7vZldZmbLzWyFmV1uZjvE1o8D3g183Dk3AOCcW9iSLyKEEEKIrqQdYa8ZwOuApcCNWRtVhM11wG7AycBbgJ2B681sfOy9lgIfN7NbzewmMzummY0XQgghRHfTjrDXDc65LQHM7F3AkRnbnQJMx4ezHqhsfwdwP3AqcAG+/TsADzjnPmFmuwE3mNmBzrmHmvw9hBBCCNGFtNz5CeGpHBwL3BKET+W184GbgOMqTy0AHPDTyvp7gNuB/UprsBBCCCF6ik5OeN4TmJ3y/J3AiQDOuafN7Grg5cAVZrY1sDfwz7Q3NLM5GZ81s9HGCiGEEKI76GTxMwWfz5NkCTA59vg9wA/N7PN4F+jDzrl7W9A+IYQQQnQhnSx+cuGcexg4POe2s9KerzhCh5TWKCGEEEJ0LJ0sfpYy2OEJZDlChUiEwGY2+n5CCCGE6A46ucLznfi8nyR7AHe1uC0igXPtboEQQghRH50sfq4ADjSz6eGJSjHEgyrrGsI5NyvcgHmNvt9wYu1a2H13eNvb2t0SIYQQojhtCXuZ2Wsrd19QWb7CzBYDi51zcyvPXQS8H5htZmfhk5nPAR4FvtfK9orBPPYY3HsvrFzZ7pYIIYQQxWlXzs+liccXVpZzgVkAzrmVZnYY8DXgJ4ABfwROd84912gDlPNTP+vW+eX69e1thxBCCFEPbRE/zjnLud0C4IQmN0cUROJHCCFEN9PJo72aSnzYu4a6FyOInw0b2tsOIYQQoh46OeFZdChyfoQQQnQzw9b5Uc5P/Uj8CCGE6Gbk/IjCxMNeqvcjhBCi2xi2zo9yfuoniB+AjRthxLDdi4QQQnQjcn5EYeLiR0nPQgghug2JH1GYuPhR3o8QQohuY9gGLJTwXD8SP0IIIboZOT+iMGvXRvcV9hJCCNFtDFvnRwnP9SPnRwghRDcj50cURuJHCCFENyPxIwqj0V5CCCG6GYkfURg5P0IIIbqZYZvzo9Fe9SPnRwghRDcj50cURs6PEEKIbmbYOj8a7VU/Ej9CCCG6GTk/ojAKewkhhOhmJH5EYeT8CCGE6GYkfkRhJH6EEEJ0MxI/ojAKewkhhOhmJH5EYeT8CCGE6GaG7Wgv1fmpHzk/Qgghuhk5P6Iwcn6EEEJ0M8PW+VGdn/qR+BFCCNHNyPkRhVHYSwghRDcj8SMKI+dHCCFENyPxIwoj8SOEEKKbkfgRhVm7NrqvsJcQQohuQ+JHFEbOjxBCiG5G4kcURgnPQgghuplhO9RdRQ7rR86PEEKIbkbOjyiMxI8QQohuZtg6PypyWD8KewkhhOhm5PyIwsj5EUII0c1I/IhCbNwIAwPRY4kfIYQQ3YbEjyhE3PUBhb2EEEJ0HxI/ohBJ8SPnRwghRLch8SMKIedHCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotuR+BGFUNhLCCFEtyPxIwoh50cIIUS3I/EjCiHxI4QQotsZttNbaGLT+lDYSwghRLcj50cUQs6PEEKIbmfYOj+a2LQ+1q71y5EjvfCR8yOEEKLbkPMjChGcn3Hj/FLOjxBCiG4jt/gxs33N7HIze9rMNpjZfpXnzzOzlzeviaKTCOJn/Hi/lPgRQgjRbeQSP2b2EuBmYDfgZ4nXDQCnld800YkkxY/CXkIIIbqNvM7PF4GrgT2BDyXW/R3Yr8xGic5FYS8hhBDdTt6E5/2A1zjnnJm5xLqngS3KbZboVBT2EkII0e3kdX7WAOMy1m0NLC+nOaLTUdhLCCFEt5NX/PwJON3M+mPPBQfoncB1pbZKdCwKewkhhOh28oa9PgXcBNwOXIYXPieb2QXAC4ADmtM80Wko7CWEEKLbyeX8OOduBw4GngI+CRjw/srqQ5xz9zaneaLTUNhLCCFEt5O7wrNz7u/A4WY2BpgCLHPOrWpay0RHIudHCCFEt1N4egvn3BrgiSa0RXQBcn6EEEJ0O5nix8w+XeB9nHPunBLaIzocJTwLIYTodqo5P2cnHjt8rk+SMOpL4mcYoLCXEEKIbicz4dk51xduwF7AfODjwDRgbGV5ZuX5PZveUtERBPEzdiyYgXMwMNDeNgkhhBBFyJvz823gB865L8eeWwB8ycz6gO8Ah5fduDyY2RxgR6JCi5c75z7XjrYMB4L4GTUKRozwzs/69TB6dHvbJYQQQuQlb5HD/wBuy1h3K3BgOc2pmzOcczMrNwmfJhIXPyNH+vsKfQkhhOgm8oqf5cDLMtYdSYHpLcxsOzP7lpndbGarzMyZ2bSMbbc3s8vMbLmZrTCzy81sh7yfJconTfxoxJcQQohuIq/4uRj4iJl9x8xmmdnuleWF+Fnef1DgM2cArwOWAjdmbWRm4/DTZuwGnAy8BdgZuN7Mxic2/6KZ/bMilHYt0BZRkGTYC+T8CCGE6C7y5vx8Gj+q63TgtMpzBqwEzmPoyLBq3OCc2xLAzN6Fd47SOAWYDuzqnHugsv0dwP3AqcAFle3e6pxbYGYGvB24xsymO+c2FmiTyMnatX4p50cIIUS3knd6iwHn3KeA7YFZwBuBQ4DtnHOfds7lHu9TYNtjgVuC8Km8dj5+jrHjYs8tqCydc+5iYAI+AVo0ATk/Qgghup1CFZ6dc8uoEqoqmT2B2SnP3wmcCFCZamOCc+7pyuOjgY3Ao2lvWBkZlsbMBts6bFDCsxBCiG4nl/gxs4NrbeOcu6Hx5gxiCj4vKMkSYHLl/kTgKjMbBQxUtj/GOafTcZNQwrMQQohuJ6/zM4eoknMW/Y01pTjOuUXACwpsPyvt+YojdEg5reptFPYSQgjR7eQVP4emPLcZcAxeNLy/tBZFLCVyeOJkOUKFSITAZjb6fsMFhb2EEEJ0O7nEj3Nubsaqy83sa8CrgKtKa5XnTtKnzdgDuKvkzxI5UdhLCCFEt5O3zk81rsTX7SmbK4ADzWx6eKJSDPGgyrqGcM7NCjdgXqPvN1xQ2EsIIUS3U2i0Vwa74pONc2Nmr63cDfk6rzCzxcDimMt0ET6cNtvMzsLnHJ2DH8n1vYZbLepCzo8QQohuJ+9or7emPD0KP9v7O4HLC37upYnHF1aWc/F1hHDOrTSzw4CvAT/BF1X8I3C6c+65gp83BOX81EcQP6NHy/kRQgjRneR1fv5fxvNrgf8F/rPIhzrnLOd2C4ATiry3aC5KeBZCCNHt5BU/O6U8t8Y591SZjWkl8WHvGuqeH4W9hBBCdDt5xY8DnkwrHmhmI4BtwjQToncZGIiEzogRCnsJIYToTvKO9poP7Juxbp/KetHjBJEzahSYKewlhBCiO8nr/FTL0RlJwdFenYASnosTD3mBwl5CCCG6k0zxY2ab4qspB7aN19ypMBY4GVhYftNEp5EUPwp7CSGE6EaqOT//CXwGn+/jgMsytrPKdl2FEp6LI+dHCCFEL1BN/PwaeBgvbi4GzgUeTGyzFrjLOXdHMxonOgs5P0IIIXqBTPHjnLsduB3AzBxwpXPu6VY1THQea9f6ZdL5kfgRQgjRTeSd2PTHzW5Iq1HCc3EU9hJCCNELVEt4vg54r3Punsr9ajjn3OHlNk10Ggp7CSGE6AWqOT/x4e19+KTnPNt2BUp4Lk6W8yPxI4QQopuolvNzaOz+rJa0RnQ0CnsJIYToBfJWeBZCYS8hhBA9QbWcn4OLvJFz7obGmyM6GTk/QggheoFqOT9zqJ7nE7DKdv1lNKhVaLRXceT8CCGE6AWqiZ9Dq6wTw5AgfkaP9kslPAshhOhGqiU8z21lQ1qNRnsVR2EvIYQQvUDeWd0BMLOJwF7AtsDjwD+dc882o2Gi81DYSwghRC+QW/yY2aeBDwMTiOr6PGtmX3HOnduMxonOQnV+hBBC9AK5xI+ZfRb4FPAD4BfAU8CWwBuBz5rZCOfc2c1qpOgMFPYSQgjRC+R1fk4Bvuqc+6/Yc3cC15nZcuDdwNklt010GAp7CSGE6AXyip9JwNUZ634PvKec5rQODXUvjpwfIYQQvUDeCs9/AQ7IWHdAZb3oceT8CCGE6AXyOj8fBH5lZhuAS4lyfl4HvAM4zsz+LaSccwNlN7RsNNS9OEp4FkII0QvkFT93VJZfrNziGPDP2GNX4H1FF6GwlxBCiF4gr0j5HPmmuhA9jMJeQggheoFc4kfD2AXA2rV+qbCXEEKIbiZvwrMQCnsJIYToCYpUeN4deC2wPTAmsdo5504us2Gi81DYSwghRC+Qt8LzW4GL8Xk/i4B1iU2UDzQM0GgvIYQQvUBe5+dTwGzgnc65Zc1rTutQkcPiZDk/CnsJIYToJvKKn62A03pF+Ij6kPMjhBCiF8ib8HwTsHszG9JqnHOzwg2Y1+bmdAVKeBZCCNEL5HV+3g9cbmbPANcAS5MbdENVZ9EYQfyMHu2XSngWQgjRjeQVP48B/wB+mrFeVZ2HAQp7CSGE6AXyCpaLgNcDvwbuYehoLzEMUNhLCCFEL5BX/BwH/Jdz7hvNbIzobFTnRwghRC+QN+F5JXBXMxsiOh+FvYQQQvQCecXPj4A3NbMhovNR2EsIIUQvkDfs9QjwRjP7A/B70kd7XVxmw0TnkRQ//f1+uXEjOAdm7WmXEEKIzmPDBnjDG+Dww+E972l3awaTV/x8t7LcETg8Zb3DT38hepik+DHzeT8bNvhbcIKEEGI4snYtDAzA2LHtbklncMcd8Mtfwl13da/42amprRBdQVL8QCR+1q+X+BFCDF8GBmDvvb0TfuutMGVKu1vUfpYs8ctVq9rbjjRyiR/n3CPNbojofNLEz8iRsGaNkp6FEMOb1avh/vv9/fe9D37+8/a2pxNYtswvV69uazNSyZvw3HOY2ZxwQxOb1sS5SPzEHR4lPQshxGB34xe/8LfhztJKdnDXOj8AZnYk8B5gV2BMcr1zbnqJ7RIdRnB2RoyAvphkVq0fIYQYeoJ/73vhpS+FbbdtT3s6ga53fszsaOAqYBywG77K8wJge2AAmNusBjYLTWxajLSQF6jWjxBCQHSC33lnOPpo73q8853eNe9l7rwT9tkHrrpq6Lrg/Gzc2HnniLxhr08B3wGOrjw+qyIa9gT68cJI9DC1xI/CXkKI4UxwfsaPhx/8wCc8X301/PjH7W1Xs7nmGj+q67LLhq4Lzg90nvuTV/zsBvwG7/L8exJT59x9wNl4cSR6mCzxo7CXEEJEJ/exY2HrreEzn/GPr722fW1qBc8955dhZFecpbGKgN0qfgaADc45BywGdoitewJ4XtkNE52FnB8hhMgmOD/jxvnl9EoWbJoo6CWC+HnmmaHresH5uReYVrl/G3C6mW1tZlsAHwYeLr9popPoBOdn2bKoHUII0UkkxU+o89Pr4ufZZ/2y25yfvKO9LgF2r9z/DHAt8Fjl8UY071fPE0TH6NGDn29VwvOKFbDjjnDAAb1vIwshuo942AuGj/jpVucnb5HD78Tu/83M9gZejh/9da1zTjO+9zjtDnstWOAF0I03+s8akbtIgxBCNJ+k87PZZn45XMTPkiVD53jsBednEM65x4AflNwW0cG0O+wVrNV162D+fD+cVAghOoWk8zN5sl8uXeqnvujr0ZLCQfysWwcrV8KECf6xc53t/PTo3zF8efZZ+NGPYPnyct+33XV+wgEGcM89zf0sIYQoStL5GTECJk70wqfs/riTiPfNcZdr9erBOZoSP6KpfPe78I53wLe+Ve77tjvsFZwfgLvvbu5nCSFEUZLiB4ZH3k9c/MTzfuKuD0j8iCZzVyX76qGHyn3fTgl7gZwfIUTnkQx7QZT3k5YM3OncdtvgfjeLLOcnnu8DnTe/l8RPj/Hgg3755JPlvq+cn+aiOklCdDe95PzcdpsfWfvBD9beNt43VxM/cn5EUwmOT6vET6ucn2TOT6fNl+McXHhhfa7UBz4AW24JixeX3y4hRGvoJfHzwAN+ef/9tbdV2Eu0ndWr4Ykn/P1WOz+tDHstWwZPPdXczyvKtdfC+97n862Kcv31vnO8887y2yWEaA3Vwl7dJn6CcEm6N0k2bIA1a6LH3eT8ZA51N7P5+Hm88uCcc5rios08/HB0f9EiL0iCOGmUTgp7gXdYttqquZ9ZhPvu88tbboGnn4bNN8//2tBJ9PKIECF6nWrOT7fl/OQVPytXDn7cTc5PtTo/c8kvftqOmb0duBg43jn36zY3py2EfJ/AU0/BdtuV897NCnstXuyLYtUSC8FaHTnSf9bdd8OsWfV9ZjOYP98vnfMzOb/5zflfG66WJH6E6F7SnJ9uDXsF4VKr3fGQV3L7IJxGj4a1a7tI/Djn3tbCdjSEmU0DTgFuaXNT2kpyhNeTTzZf/KSFve65x4ual760+nsODMC++3rxs2DB4MqgSYLz8/znw9/+1nkjvuKu21VX5Rc/a9ZEtrHEjxDdSy/l/IS+KIiWuKCLkxQ/ac7P1lv7/rHTxE/Lc37MbDsz+5aZ3Wxmq8zMVcRL2rbbm9llZrbczFaY2eVmtkNimz58tekPAGub/w06lzTxUxZFwl5veIN3Ze69t/p7Ll0Kjz8Ojz3mD7JqBPFzwAF+2WkjvuLi5/e/h40b870ubitL/AjRvaSJn1YMdf/DH+CGG8p9z3jIqlroK4/zs802ftnV4sfM9jGz15nZW5O3Am8zA3gdsBS4scpnjQOuA3YDTgbeAuwMXG9m42Obfgi4yTn3tyLfpRcJ4idcbZQpfoI4yRP2euQR7+pcfnn191y0KLpfqwZEOMiC+OlU52fKFN/R3XprvtdJ/AjRG5QZ9lqxIl///dxz8KpXwVFH5avJk5e84id8ZprIizs/0KXix8w2NbObgL8DPwf+X+X2o9gtLzc457Z0zh0NXFplu1OA6cCrnXO/ds7NBo4FdgROrbRrL+AE4NwCn9+R/M//+Llgbrut/vcI4ufFL/bLMPKrDPI6P/FS7r/6VfX3jA/tTibOJYmHvUaNgkcfHXrV0S6efdYf9GPGwBvf6J/73e/yvTbeKUr8CNG9lBn2OuII2HXX2n3cgw/6C9M1a7zjXBZFnZ8dd/TLXnR+zgM2Aw4GDDgeOAy4BHgIeGHeD3TODeTc9FjgFufcA7HXzgduAo6rPPVSYBpwv5k9DBwIfN/M3p+3PZ3ClVf6He7HP67v9c5F4uegg/yyFWGvpPPz3HNRDZ5bb/UhrSzizk9e8bPpptGkprXCaq3ikUf8cscd4eij/f2rrsr3Wjk/w5tTT4XXv77z6lZ1CitWwMUXd8exUdZQd+fg9tt9nxf6lizig1xmz87/GbWI/97V2h7Ezw47RNuGfbknnB/gKLwACgnFjznn5jjn3gpcC/xnE9q2J/CvlOfvBPYAcM591zm3tXNumnNuWqV973bOfTvtDc1sTtoNmNmE9hdi4UK/vP76+l+/erU/2Hbd1T/XypyfIH6SwxurHZD1iJ9NNoHddvP3OyXvJ4S8pk3zuU5jxngHL08tolriZ84c2Gcfn+QteouBAbjoIvi//xt63AjPd74D73wnfDu1R+8s0pyf5MzueVi2LOpv431kGg88EN2/8sry6q0VdX422wzGj/cRgNBX94rzszXwkHNuI7AG2CS27nLglWU3DJiCzwtKsgSY3ITPaytB/Nx5Z30F/ILr87znRTtbOxKekyfwaqGvImGvcJBtsgnsvru/3yl5P3HxM24cHHqof5zHhq4V9rr8crjjDvjFLxptZTksWeJHsl19dbtb0v0sWxZdJXfbaKBWEepnzZvX1mbkIk381DOzezgXQO1zQdz5WbasvMTnouJnwoShNY3Ce4TzUbfO7bUQ2LRy/xHgRbF1M8psUCM452ZVq/FTWT/kBsxrVRuziAuVetyfIH6mT49sxmaIn9GjBz+fDHuFHX6PPaC/3zsXWR17XucnVBHt6/OWcic7PwCveIVf5gl91XJ+wm/XKdWfv/pV+NnP4MtfbndLup/4cdEu8fPMM17M/ulP7fn8WoSwT6cc61msX+9HePb3Dy0sWzTvJy548jo/M2f6ZRmhr3XrBrs0ecVPPMS3caMPWZr5qXuge52fP+HzaQB+AnzGzL5nZt8BvgI04zpwKekOT5Yj1LWsXDk4U78e8ROuAKZPjyofL1yYf8h1GvE8hLxhr3ACDyGgjRvht79Nf/+84if8NhMm+IOpk50fiMTP1VfXrnxdS/yE9Xfd1UgLy2H1avje9/z9+NB+UR/xk2G7KgDPnu3F7Ne+1p7Pr8WCBX55332dMfnvunVw3nlDR3OmuT6BosPd485PLfET+v0PfcgvZ89uPH8s2Q/V4/yE95g0yYfDoHvFz2eJBM5XgO/gQ11vBK7A19gpmzvxeT9J9gAaPhV0Us5PUPqhyN911xV/j7jzM2qUP+AGBuqfLPPWW71d+8lP+sd5w17B+dl0Uzj+eH8/K/SVV/zEQ14Q5TTdf39ndIhJ8TNjBuyyi/8tzj+/ugDN6/w88kj7R7f97GdRB75gQWPCWnSG8/P443756KPt+fxqDAxE7Vq/fmgds3bw/e/7PvFTnxr8fDixp4mfZjk/a9f647CvD173On/Ru2CBT5ZuhGT+WbV2xy9M485P6Nc23TRKAO9K8eOce9A5d2Pl/nrn3Iedc9s556Y4597knGvGdcsVwIFmNj08USmGeFBlXc8QlP5++3nB8cAD0RVPXuLiBxrP+zn/fH+yPe88f7Wfd7RXXPEfVxmTd/XV6fHevDk/8WRn8FcSO+zQOR1iUvyAH8UDcOaZ8JKXwD//mf7aeMeycuVQMRcXR+10f5yDb3wjerxhQ/mT59bDwAC85jVw+untbklxOkH8hP+w2qjMdrFoUdTvQPtDXxs3Rg7Z008PXhf6t7RKyEXFT96cn4cf9sfljjv6dIRXvco/32joKyl+6nF+wntMntzF4sfMRpnZEjM7tqwPNbPXmtlrgRdUnnpF5blDYptdBDwMzDaz4yqfPxt4FPheo23opJyfsLNvtx0cfLC/Hw99rVwJn/ucz7e48kpvdSavuuMJz9BY3s/ixYPdmve9D/7yF38/72ivTTf13+eAA/xOn5YgW0/YKxDyfv6VNh6whcRr/ITYNngb+vLLvQi95RYvbNNGrCQ7lhUrBj+Od5jNFD8PPVR9xNGcOV7AbblllF/QCaGve+/1++qPilQa6xDiYZB2hb1C/7Bw4WCh0QkkLwDbLX5+/euon00WFMwT9irb+Qn5PqHPDxebv/51vs/JIlzAhvzOPOJnk0160Plxzq0DNuBHeZXFpZXbaZXHF1Yefzb2uSvxtYTuw+cZXQLMBw5zzjUcAOiksFcQP1ttBYcd5u/Hxc9HPgKf+YxfHnOMD6tstVUU7121yndiI0fCttv65xoRPz/+sRczr3wlfPzjXmiFxMMs5yc52mvSJL8Moa/kAblhw+AOv9pIgGTYC6K8nxNPhBe+ED72MfjrX2t+tdKJuz7JucmOP94Llve+13/fj3xk6HDXZMcSD305N3h9s5Ke77zT/56vfW32NsH1ec97fEgPOkP8hFFAnXbizkMnOT/OdYaTFycpftqd43f++dH95EVKWo2fQNGZ3fPm/IT+f0ZlyNHhh3tXfN682vWBqhEugoKTXdT5WbJksPMzerTvG0NSeKeQN+fn10CVrrEYzjnLuM1KbLfAOXeCc26ic24T59yrnXMPl9WOTiFN/Fx3ne+QbrgB/vu/vbA59VS/g2++ubddzzvPbxtmFJ82zY82gEj8FK3y7JyvPQLw7nfD5z8PJ5wQrS/i/IBvLwyNQydt4yJhr9C2l77Ux7tvvdWPPjrooKHvW4snn4Q3val2Neos0kJecSZN8rVKpkzxMfpkBxhOemFW+7j4ee65wWGwZomfr3/di4e5c9Ovzh56CK64wv/3p50WfddGOtiyCPtVO8XPnDk+9JC3qnegk8QPdF7oK4ifffbxy3Y6P3/+s3dwQx+UFD/VnJ9mhb2Szs+YMfDyl/v7VzSQGBL68J128suio72eeWaw82Pm2wad5f7kFT9X4UNTl5nZSWZ2uJkdFr81s5HNoBPDXlttBXvv7XeiRx/1J7tTTvHrPvEJL4KuvRZuvtmf9H/yE79dMt8H6s/5ueEGP7Jim218teK+Pj/1xgtf6HficEAEsur8BOcnnCiTV3HJROyiYa899vBtXbrU19OZPt23Ia2DfPRRn6iYNnnqFVfAz3/u80Y+8pHiRcJqiZ9AfAReIO7shN813qmGdX2Vo7QZYa+nn4af/tTf37AB/vGPodt8+9u+rW94gw97he/aCc5PED8DA+25qnTOhzgXLIguGpLrv/51f8wmafdoL+cG74+dlvQc+oyjjvLLu+9uXyXs4Pp84AO+H1y1avD+1qyE55Urs/vGpPMD0cVmI3WRks5PvGpzkjzOD3Rm6Cuv+PklsC3wGuB/gD/gKzvHl6JO4uKnr88PEQcf0rnvPh+SOPPMaPsZM3x2//r1Pg8oTfzUG/b6/vf98h3viEJa48b5OiCPPDL4QIPsOj/B+dliC6/6ly4dHCdP2rlFnZ/AhAm+c3xhZYKVtATos87yrlnakPu40/LVr/rOo8hvVlT8xN971Sr/u40ZA1OnDm1P6Cx33dW7LvWM+Hr8cT89wOte5wXWJZcMXn/RRb6GUiDkdgU2boymXPngB/0yzOPTCeIn3smnidtmc9VVkWC84YahYc1rroEzzvC3JO12fpYsGeyYdarz84IX+AvCZ58td77CvDzwgA/bjxrlxU/oh+L9WbWE5yJD3QcGIvET+oSsEbtB/ATnB9Id5KKE1269te+b1q/PTkvI4/xAd4ufw4BDU26HxZaiTuLiB6LQ1z33+KuMH/xgaHHBIIYuuig6YcUPgnrEzzPPwC9/6T/zne8cvG7kSNh++6GvyarzE5wfs2jel7j7E8RPCNMVGeqeRvju8YqngZAUnWYhh/d+1au823XjjT5JO+8MyY04P6GDmDw5+r3inVZYv8UW0fD+vO6Pcz4/bLvt/H956aW+raecEr3H+vVw4YX+fsj3SeZNzZvnT5I77eRPQtA5Ya9Fiwb/nq0OfTkH58amVF6yZOj/84fKZWGasIifDOsRP41+32Tf0GniJz5nXsjxa0fo62tf8//1SSf543jiRP983KUtK+wVCgROmRL1t2n91saN6Re9QWzkmS7lmWfgu98dGsKLX8DGp+dII+7K96TzU5nHa261W7MbWjadmvAMkfgBP9IqzNIe5/nP9wnJq1b5sA007vz85Cf+6vmoo2qfzAPV6vwEgviJnyzD1Uw4wOt1fgJZ4sc5Xw8o/j5p7z1rFvz97/43fPxxPzdXHvKKn/B/xE/WoTOcMiVd/MTX71mpeJVX/Dz5pB8ZOGKEF3bf+Y6fcX71ah++WrPG5zk99pgfOXfWWf51SecnJN6HKTsgcn4eeST/fEXNIJlHVlQM3HGHdzjrTfSdM8eHs6ZMiUbaJKcXCOJn0aKhoYNGwl5XXulPOD/7WbHXxckjfq67LrtMQ7MJF0s77NDequ7BMX5/ZbrsNOcnT8JzHvET+octt4ycn7Sk58ce8xcvW28dFRGEYuLn61/3gzGSIyXDaydNqi1+8jo/QRR2nfgxs4fMbJ+MdXuZWQdUW+lO4nH3MFR611294NlrryipOY1PfGLw4yzxkzdOHnIWQp5RHqrV+QmEk2Wa8xNyXYrm/CQJ3z0Z9lq0KHp9NfEzYYL//YPDUmuusUAznZ/QWU6eHImfvEnPQWjus4/Pa3rve329phkz/Mnsox+NRnB94AP+/ceN88nzcZs9FNyMC/Lx4729vm7d4O9ThOeeg3339d97883977PLLum5MVkk8xqKhr2++U3f8dcrIILrc8YZPj8OfNJ44KmnvMACf3wkTyDxk2GRiS/Bh6HXr/ciqF6C+AnHZzLn58kn4cgj4ZBDWj+r+qpVPh9t5Eh/XLbT+Ql9RLiIK+r8FBnqHr8QriZ+QrJzMg2hiPgJfWUYMBPI6/xs3OjFjJn/3vFt430XRKKwk+b3yhv2mgaMzlg3BtixlNa0kE5JeF6yxHdikyZFO4gZ3HSTv7Kt5na8+MVRXSAYLH7GjvU77/r1+a4q58/3rsLkyVGxrDzUGu0F6c5POKCDaGhW2Cu4PlBd/MQLKNZqT2DFCv//xXN2skjL+ckb9poyxSd4Q3Hxs2PsyNxkE+8SjhwJ3/qWH8EyaRK89a1exO6/v98uhL7Wr/dhQBjs/EDjoa/bbvPiZcUKv38+9ZT/r046KX9eU6POT+j86/kOf/6zF4YTJ3pHIByHN9wQXWz88Y+DXxMPXwwMRP/v+PH+NUUERhCojdS5CvviAQf4ZdL5ueMOf4JbutTvL60kCLHtt/d5kO2c0ibp6hQVP0Vmdg/7yJZbRhfDaeInLd8Hiomf8P8nHcCwH266aXXXKvSRYdqhkSOjSVzDMdULOT8AWf7B/sCyxpsyPEmGvOL05fh3gvuz1VZDxUGR0FfoqA89dOjEfNWI1/lZu9aHU0aMGGz/xsMkgXqcn2riZ5ttfF7U4sWDRU5c/KSdVJPCKrhLecRP+D5pNX6SpDk/zQx7BZdtx8Rlyf77+/IFgXe9K/rOIWk8iJ/bbvO/z667RqMHA42O+ArtO+EE/5899pgvnvjQQ75mUx4aFT/hireeUU7hN/zAB3wHv+uuXgAvXBhdlYeQVyAuflas8CeJiRMj4Vwk9BVKOtxzT/ERioHQL+y3n99/n3xy8HvFXZYLLhiaG9JM4iEvaJ/z41w0ICAM1y4a9ioys3ua85OW85Pl/IR+ZNmy2o5/SB5Pnh/yOj/xkFcgiKVwbHVlzo+ZnWFmC8xsAV74/CY8jt0W4+f5+n2rGtxrVBM/eTjySJ/PcfHFQ9cVET9p4Y08xJ2f+BVDXAykJTyHK9eywl59fdF7xd2f++4b+j5p7510fvK4D3lDXpCe85PX+Zk82V/hFRnxleb8BD78YXj1q/37hhFcAP/xH34Z8n6q7RONjvgK+8KMGT7ste22flTZyJE+CTvpmiRZs8afCPv6YOed/XNFwl4bNkSip56pZH73O3+VH6bVMIvcn7lz/YkniJ9wgopfwQehM2VK8QrAEB0/69ZFJ8KihH5hhx18/5MsdBiEdn9/c90f54b+d0nxs8MO/vdeuDCfq1EWQfiMHh1djBZ1fiB/3k/c+akW9spyfkaN8m3YuLH2BVwt8VMr5ydN/IR9OVyIdKvz8xDwx8rNgNtij8Ptl8AZQIEskc6gUxKew8kwnByLYubzOcJM4nHyih/nohNdqBORl3jCc1q+D+RzfopWeE4jdATxvJ+8Ya9wABcJe4UTf7L2URqN5PxMmeKvHkM+Up6r3/Bbh5NHnL4+P6pv0aLB64P4+etf/T6RluwcaDTslTy5gU/i/8xn/P13vKO603DXXb6D32WXqIMt4vw8+mhUp6Wo8xMKYh53XDS0GAaHvu691yfOT50KRxzhn49fwYf/drPNiteBgcF5WfWGvkK/sPXWflQgDA59hf3sox/1ywsuyD8KsghnnOFHNMYvWpL7R19fsf2/LNIcnTTxU63OD+Qf7h6/GK4W9spyfmCw+5PFc89F/2UznJ9AVzo/zrnZzrm3O+feDvwY+EB4HLud5pz7pnOug9KYuotGnZ9q5C10eNddvmPeeuuog8lLPOE57vzE2W47L9KeeCKy1Yvk/OQJe0F63k/RnJ8iYa8izs/kyV4oLlsWdQDxnJ7QoWY5P1As6bma8wP+ZBL+u8B22/n9cOlS/xk33eSfD3Wn4pQV9kqKs499zOegLFjgiwdmEUJe++wTVR0vIn7iAnnx4mKd8uWX+2WYuiUQFz/B9Tn88OjYThM/U6YUn/4ABlcyL0P8hFGXQfw4Fzk/73ufr56+ZEn6/HSNcvXV/jj85S+j59LCtu0Y8ZUmforW+YHizk+1sJdz2c4PRP1vtRBb/JywcmX0XTZu9PfNfJ9UTfykOfJB5IF3y0KosKvET4JTgdRZRsxsvJkVyBLpDDol4bmZ4ifvFBchxHD44bVzV5LEw15xuzTOqFG+LQMD/mp47Vp/1TRihH/ezNvLWRV684S9YKj4GRgYHBJIEz9JV6lZYa++vuhKLnRm8RERtZwfyC9+nKstftIwi9yfb3zD/yd77+2vypOkuXlFyBI/I0ZE4a+LL84eYhtGesXFT5GwV3KES94aNwsX+hFpo0cPdVv32sufeB55JApDv+xlQ/93GPzfFg17JUeOlen8BBds8WLfnk028RdRwZH76leLF9qsxsBA9F/Ec6TSnMt25P3kdX7KCnvlGer+1FNesEyZEomTOHmSnpMXxOFx+E6bbOL7rGrtruX8xNvWzeLnosotje9Rwizrw5VWiJ9azk+9+T6QHvZKOj8wOO8nWPZTp/oDLHQYWaGvvM5Pcrj7E08Mfs+yR3sVET8wNO+nSM4PRCO+aiU9L1/uv9f48UNt6FqEpOf/+R+/zNon4jk/RacccC5b/IA/ye2yy2ARlyQ4PzNnRgVAizg/SfGTN+9n9mzfriOPHCrG+/v9fHMQibMjjqgtfoo6P8nt6hE/zz7r9/ExY/y+lwx7BYGxxx5eFB9xhB9d+swzvmRCklWr/Hx7ReeUevLJSLTeeGN0ckzbPzpZ/FRLeIbi4merraKLjqefHnxhWM31gXziJ3lBHM4RydG69eb8xN8Dulv8HArMzlh3BVAwU0QE2i1+NmzwxdqgPvETD3tlOT8w2CkIVzLh4A7iJ0twFM35CZ1DCHmFhNik+Nm4cegVW5GwV3w4bh6SeT9Fcn4gv/MTv2ou6uQF5ycIiax9YuJE3641a6rPPJ3GkiX+991kk/R9BaKTXlo+jnONh72C+AniPW/eTwh5veY16evjpSd23dXvG2lX8PGE56I5P/HBAv393t0selKJuz5mQ8NeQWAEwWEW5f784AdDBe/FF/s6YZ/+dLF2xMOPa9f6+kUDA+nHVjuGuxcNezWS87Nxoxc6Zr5vHDnS7xsDA4P3jeSEpknaKX560fmZSkbYC1gMbFlOc4Yf7c75+cc//An3ec8rFiIJpI32SjuhxZ2fcBIIJ4VqbkuaQMkiJB4/8ohvTxA/++3nl0nxEz94w0iOvGGvgYGoI4snvVYjWesnLm7iHerGjV6UrljhO8Lwe+Yd8VVPyCuw//6RYOrrG3wyT1Jv6Cuez5ElztJGCAYefdR30ptv7k/ejYS9gtOVx/lZtsy7pP392bWw4r/Xy17ml9Wcn802Kx72Cvk+223nhf3AQHFBEBc/4b0gEh3BXQyCA3whxy239J8VrwTuXDQn4H33FSvWmCxK+oc/+P5h3Tr/u8SrF++8s//t588fPB9dI2zY4Odf+8AH/PxdScpKeM4jcBcv9r/d5ptHF5VpeT9pE5rGKRL2CsdfeJx07/OIn/hFaS86P4uAvTPW7Q20YU7ixui00V7Ndn6yQhMh36ce1wcGh73SChwG4ifKeNgLqoufNIGSxZgxfsj0xo2+Ew/iZ++9fae5du3gOiZp4bS8Ya9ly3xHtemm+esiVXN++vsHC6D4bxm+94gR2dV44zQifiZNihJL99sv/b8M1Jv0XC3kFQhX/GmiJISUZs70nXcjYa9DDvHLPM7Pb3/r9/NDDhncycfZd99oH0oTP+E4bCTsFY6fLbbweUZQPPQVTnbhAqla2CswciS85S3+fry0xl//Gk2BsXp1sTnCgvgJjuMf/pC9f4wa5S9wkrl89fDww17wbLutn87n29+Gj3xk6HbVnJ+0nJ9Gwl7xYe6BtBFfoXxHGc5PONaTzk+44CrL+ena6S2A3wKfMrPnx580s72BTwK/Kbthw4H16/1VXF9ffvegCBMm+Nvq1dmZ//UOcQ+kjfaqFvYq6vzkDXkF4qGv0Enssku6VZ323uFAruX8hKvvIv9bPOfHuaGT/8VDX8mQVyBtSHKSRsQPRCeitCHuceqt9ZNH/FRzfuIhLyju/Kxa5U80I0dG3zWP8xOGuCdHecUZOdIXHj366Ej8TJjgT4qrV0f7VZr4KRr2KkP8hH1ym22iQocbNgwNewXe/na//MUvohN+cH0C996bvx1B/Lz1rf7iZd68aF69tP0jHN/JnK2ivOc9XvAsWhSJ+LTSCtWcn7LDXmkXwmkh01CENDjaSYo4P2Gy4jxhr+QF9HDJ+fk0vorz38zsz2b2f2Z2E/B3YDlwVpPa1zQ6YbRXXASE2c3LJpws00ITIcYOtU90WeR1fuJTXCRzfqqJn7zJzoG4+Inn/KSJn0acn3rET9z5CeGtCROi3zCInxUrhiY7B7bd1i8ffzz7c7KqO+flzDPhbW+rPtQc6q/1U0T8pDkyYb6spPjJ6/wEsbbjjtF3qOX8rFoFV13l77/61dW3/cQn/Jxb8elqkuGLRkZ7hX2vTPEzapR3GQYGohpFo0cPTebfYw8vGMPQ9BUrvBCCyEWrR/zsuWeULB4m2kzbf7Pm8CtK+P6XXRbtT2kDLlqZ8FxN/IT9ZtEiL/zGj49yAJMUcX6CgMoKe40e7QXdhg1DLwjTRuHWyvnpurm9nHNPAwcAX8AXPJxZWX4eOKCyXhQk7HDNCHkFwpVbWpLsLbf4g3bvvWvPTZVFmc5P2oGRd5h7IIif++8fHBuvJn7i790K8fPkk0Mn/oPynZ9q4qIau+ziT0C19stmhr2qOT/h5Br27aJhr+Aa7LTT4M+pNmrtmmv8sfLCF0b/QRGSeT9pCc9Fw16bb16e+IHoe4Uh57vumn5RFtyfMCnsqlW+FtQxx/jn41XVaxFEzPTpkVOWx/lJzuFXlHDsP//5g0ebJveBomGvRnJ+8oS9Qq7VAQdkXzDnKXIYxE8t5weyQ1/DxfnBObfMOfdp59yLnHO7OOde7Jw72zlXpZSSqEYz830C1UYINTLEPZBW5yfN+Zk0yV8xrVoVWep5wl5FnZ9wZThnjj8ZbrONPzjzOj/NDHvFnZ80Zycufmo5P80Me+WlmWGvbbf1jsnjj/urzkA83yOM4isa9oqLn0mT/H++cmX1k8XsyljXrFFetUiexOLiNn6lnlXrKk487DVjhhd/CxYUm3srTfyEPKsgfuL5PnHe8AYforr+evjSl/xz7353VCA1r/OzapU/FkaN8sdpED+BtP2jLOcnfuz39/vfMG2ajbxhrzISnvOEvW65xS8PPDD7fWoVOQzVnUePjv7jrJwfKCZ+4lMb9cpoLwDMbHMzO8bMTjazKZXnxphZofcRnnaLn3AgBbu5HuITm1Yb6g7RyTIkrDYz5+fvf/fLcILMm/PTqrBXo85PVthrzRp/BTlixNDJSMsmHvYqUusnT1hu1Cj/ew0MDB6t+PjjvgOdOjX6vYqGveLiJz7Mu1reT3BW6j1W4s5PfOhymLpk003zz+weFz/9/dEJLE/l70A15yeUvkjm+wQmTfIT0oIXvptt5vOgioqfIGCmTfPf4/nPH1xQs1XiB7JrjaWJnzFj/H+2dq3f55zLn/BcbWb3NOcnKX6C8xNy1dKoFfaKJ7tPmeIvYJcu9X1Ho85Pf3/02p5wfszzFeAxfF2fi4FpldWz8UnPoiCNzuuVhyzx45wf5g6R9VkPfX3RaKTQoWeNEAqdWbi6KpLzUzTsFagmftKcn/iohGpX4fWIn7Fj/Ylj/frIto+LmzzOT62wV8hd2W675uWRBTbd1Ld55cr8IZt163zn29dXW5ylhb6StZugsbBX/HOq5f2E14STb1Hi4ufZZ/0JcJNNIue0SOgrnvMD9YW+qomfcCLPEj/g514LnHyyFwQ77eRFwYIF+U5y8ZAX+H0izIMG6eIn/Gfz5xcbUh9nwwZ/oo8XWC0ifswG9ydpk58myTOze9rFcHy/2bgxSnYuQ/xsvfXgyvMLF6YXqi0ifiDal3vF+TkTeD/wOeA/8Pk+gd8Ax5TcrqbTCUPdW+H87LKLPwk++ODgHe+JJ/wV5OTJjYdHQgcerkhrOT+BZoS94vNkQT7xEz9481SchvrED0T/dQj9FXV+aiU8N5rvU5SitX4ee8wL7223HTq3WJK84qeRsBfUdn6efdaLkjFjBl+VFyGeuJr23xYZ8RXP+YHi4mfNGn8iGzFicI5GMpepmviZNcv3LSNGwCmVaa1HjvRCxrnBc+plkRQ/EIW+Ro5M/60nTvTfe82awZMEFyF+0g4hmiLiJ7QDfKixVrJzoNZ/HJ/aIhB3fu6+2++LO+xQ/YK5lvgJ+T7h4iNeEiXN+clqd5Yrv+uu/neN/6/dLH7eBXzOOXcefoRXnAeAjIoDohqtED+jR0dTBcQLoYWwUKiV0ghB/IQroFpVe8EfDEH0lBn2Mhvs/uyyy+DX13J+arUn0Kj4CUXkauX8JMXP1Kn+hLN4cfrJvlX5PoHw+37qU/kKz+XJ9wmkiZJq4qdZzk/Yftq0+o+V+BV8PNk5kHfEl3ONOz/xfifuVMSrKff3D/6Nk/T1+ZzBv/0tqhUDxUJfaeLnqKO8EHnBC7JdlEZDX2kXPUXFTzzpOW8R1vAfZ7U7PqlpIC5+QsirWr4PDE54TgtHJ12/NPFTb84PwCWX+LpP8ZGC3Sx+tgVuyVi3Dhifsa5j6YSh7q0QP5Ae+gohr6xaEUWIX8GPH599RR8/IU+dOvSqq4ywFwwWP0XDXvHPaob4CR1NcH6ywl5pOUHgT0rVJqxttfj5zGf8b3DVVXDssbWHshYRP2mipNGw19Kl/vcdPz7678JJP0v8hITuIJbqIZ7wXM35qRX2Wr7ch2022ST63kXFT1rICwY7P897XvT+WWy7rc/TidOo+NlmG1/HKSSYpxGO70bFT1q4u6jz8+yztZOdAy9/uV9+9rNDRcn69f6/7+8f7MZtsol3HFeujArSVgt5gd9+zBj/nmlio6jzU1T8bLrp0GH43Sx+Hgf2yli3D9BgyanhSSeIn333bfz94xWOq1UEjp/w4omNZYa9IOoc4y5Q3oTneHuqjfhq1PkJJ9qiYS+onvfTavGz115+1M/UqX6U0DHHVBeNRWoQpYW9wjDqesNe4YQZkp2zPidO0imqh7jzE5/aIpA37BVPdg5sv73fhxctyhcKyhI/8RysaiGvajQqfsCPYKtWeiNsnxzuvno13Hpr7c+tJn6S+26esFetZOfARz/q/7ebbvI1kuLEa5/Fc/XiNaJCnalazg9UD31VEz9Fcn6KXJh2s/i5FPi0mR0Ue86Z2S7Ah4FflN6yHuHPf84eCdNO8RPCXmWIn7jTkxXygqHOT6DMsBdEneP22/srIIgO0E4JewWKDnWH6nk/RZyVsthrL5g713ei118Pxx2XnYxaj/MTXrNxY3TCjM9rVCTslSZkajk/zRI/9YS9kvk+4E+QB1V65uRJNY0s8TN6dNTOZoufgYH6f9essNcnPuHrMF19dfXXl+H81BP2mjgRzjnH3//oRweL9WrngtBXLlvmLzTz9NnVav1khb2eeCJ/2KvInIvxbbpR/JwN3APcAIRUtkuBf1Yef7H0lvUA55zjO6Xzzx+67rnn/Ml17NhiJ/Z6SIqfZ57xJ5SxY6POqhHyOj9bbTV0wj4o3/kJVvzMmdFzeROe44+zxM+GDb4jMKv+fdNIdm61wl6d7vwEdtvNC6CpU709H5/7KU4jOT8LFgyu3RQoEvZKO+HGf8+0EX7xnJ962XRTv++vWBFdedcT9kpzfsCPuIKoOnI1ssQPRL9FVo2fWsTFT7XyBwsX+hyxzTcfPEAhD1ni53e/88twYZdFu8JeAO98p++P58+Hb34zej5tmHsg/tw++9R2mKA+5+f++70oHTducJ+e5kqG32n8+NpzLkJ0Ebp27eALo7PPhs99rnqNrWaRt8LzamAW8Dbgz8C1wK3Au4GXOecKTCk4fAjl9z/+8ah2RiBe3bnRhONa7Lyz35nnz/cn9BDy2mefcoZDxw+Uas5Pf390QksTP2VUeAYfE7/qKvjv/46eqyfhOSvsFRcmRX+/5AmnTOcnTOgKrXV+AjvvDN/4hr//sY9F7licIqPRttjCC5ulS/1/kZbvA8XCXmniZ+xY/1kbNgyePbvaa4rS1xft82n5XnnDXslk58CrX+1PeH/7WzTJaBbVxM8JJ3gBVG/h0y228O1YsSL9twwE4ZI1OWc10sTP4sVRSLTWxKplip8iYS/wAvirX/X3zz03ErN5nB/IF/KC6oUOk5Pahv0gDIhJXtClOT9Z+T5ZmEUCKD4w4utf93mDeYp7lk2RCs8bnXM/cc6d5Jw70jn3Rufcj51zG2q/enhy7LF+nqSBAXj966OT1dKlcOqp/n69dUOKMHJkNOLr7rvLzfeBwWGvWk5IOOk1M+fHzCcXxjv3enJ+spyfekNekC/stXChP5GPHp3eoWY5P2FSyqlT83XEzeD1r/eT5C5Z4gVQHOeKOT9mg5Oe0/J9oPGwV7w9ybwf58pJeIboCj5N/DQS9gJ/YnnjG/39pPuzZo2/+ArisJr4OfNM/xsEgV0Us3yhr6x8nzxsu63v0xYujITHn/8cra81T1u7wl6Bo47y/dOKFT5Mt8ce8F//5delOT9x8VMr2TmQ5fw895z/3NGjo23CfhD6tWaIHxg6v9eaNV6cjRiRfpHXbIpWeJ5hZm8ys/8yszeamYa41+Ccc3zhrkWL4MQTfQf+4hf73IittoquAppNPPRV5kgvyO/8QGSnxzu9snN+0ihztFezxU84wU2enO4KZjk/7cj3SWIGF17oBcnFF/vkzsCSJb7jmzix9n4SiIuSLOennrBX8qSblfezZInfTyZObLyDDie28D3SEp7rDXtBNOfWT38a/RYDA7768qGH+rDd5z8f/QZZtWIadaKD+Kk2x1cj4qe/PwpBhu8S389aIX7Swl5FLjjOP98fIw8/7MXwkiX+ex188NBt44KoqPOTFD9x1yf8z1tuOfg/Tx6b1cRPkX45mfQcn+MxT+isbPJWeB5jZhcDdwM/Bb4EXALcY2Y/MLMagyI7j1YVOezv95P/bb893HyzFyH33OOXf/lLFBprNnHxU2ayM+TP+QEf373sMu+KBcqs8JxFkZyfWmGvRsTP5psPDpXFf69k7kNavg9kOz/tyvdJsssuketz2ml+yC3UN9t8XJQ0GvYaGMh2cbKcnzJq/ATCSSzMVdaI85Mmfvbf3yefL17sZ5UH+PKX4fe/921fuBDOOisKbzSrsnyo/VTN+Qkjtep1vpPD3ePip56wV1bovUjYK6/zA9F54JZbfImC+fP9f//KVw7dNjg/m22WP0xYS/zE//sRIwbvT9Wcn5Cv04jzE37TVg34ySKv3jofeDPwGWAGsElleTbwFuArzWhcr7DFFnDppV4kbNjgq5jedFNrr9CD+PnLX/wV2YgRUX2QRsk72gv8yf+EE4bWBoLywl5plFnksBHxEy8nP2nSYCHU3z+4M8kSPyFW/+STg2PlnSJ+wIdPpk/3HfvZZ/vn6nGm0pyfcHIN5A17hXDi5psP7bSznJ8y8n0CyeHb9SQ8Z+X8gBc48RnX//QnL3YAfvtbX4og1JrZZpv6q1XXotlhr/jrHnrIh09uu81///5+/xtVG1VUdtirSMJznJ128mGsPff04jor8Tv000cemV+AZ4mfZLJzIC6GkuJn5Eh/vAwMRL9dPRelSfFTLcm7FdQoMP9v3gB8tlLhOfAQ8Hnz/8YZwAdLbltTqRQ3BLwLBBzSzM/7j//wV2D//Ce8972D3ZJWEMTPjTf6PIY996xdxCwvRZyfNNoR9ooP1QyfH2hm2Av8lc4TT6SHUSZNir5zVphl9Gh/8lu82FvHoePqJPEzdqxPOH/5y+G88wbXL6lH/Dz4oBciyQrekD/s9ZOf+GXaMO5azk8Z4ifZycfFT5gNO8zsnpVIn5XzEzjpJO+6/e53Pvl540Y/rProo/36I47wgmH06NrTi9RLK8XPgw/677lunRcJzz3n3b3HHsuuUF122KtIwnM97LOPnwy6yGjDPGGvOFtv7YtLxl8bZ/Jk/9suXTq4j+pm8ZPX+RkN/DVj3V+AUeU0p7c57DD4z/9svfABXxdl1Kho+GlZIS8o5vykES8wFh8eOzAQHWRJgVKUuPhxLhI2EyYMjTc3M+wFkc2b5uzEr/6ynB+I8n7iFv8dd/hlvAZOO3nZy+CHP/T3zzgjGn1Xj/i54QZ/Io/XbgrkCXstWOBDrhC5IXFa4fxUEz/x2bCrDfutFvYC7y698pX+t3riCZ9feO65g7eZPr3+hOY8zJjhhdxDD6UL0lWrvAs3cmT97Yg7PyHkddBBtSf+hfYnPNfDPvsU61trOT/JkGf8cdrnJPN+yhQ/nR72uhY4MmPdkcB15TRHNIsRIwbX9ClT/BRJeM56/ciRXuzET2BBoIwb1/iQ/FGj/G3jRm+TV7Ntmxn2gqijyXJ+AtUSbEMnH5Ken3vOz/jc1xcVvOsE3va2aPh7mM+siPgJoiSczNKu5vOEvU4/3Z+kTjzRhw+SZDk/IUeokRo/gbj4mTAhancgT+irWtgrEGZcnzwZfv7z1l9sjR3r3cd4Uco48Tyqeo/rLPFTq2AllD/UvZ6E52aTVeSwmvMTyHJ+oFzxkzaRayvJK34uAF5nZt8xs1lmtntleSHwOuB8M5sebs1rrmiEeI5PWSO9oPGwF6QLjrJCXoG4+1Mtl6gVYS+oLX6KOD9//rPPJ9tvv/oEaDP54AejyrZQn/gJpImfWmGv3/0OfvUrv49dcEH6NqEA56JFg/PCmuX8pP23tWr9rF7t98lRo6ofE696FVx0kZ94tF0j/6qFvhoNeUH0fzz0UDTM/cUvLlf8rF8fhSCTAjIt7NVM56cojTg/aX14SMgPr69H/CSrPHdL2GsusAPwHuCPwL8qy9Mqz8/FV3oON9GBhLwfs3JHmTUa9oJ08VNWsnMgr/hpdtgrdNBpB329zs/11/vloYfW16Zm88lP+pFHr31t/lol4P+L+JDwas5PWthr9Wr4wAf8/c9+dvDknXH6+33NFfC5eVB9dFg9xBOe08RPrRFf8XyfaomvZvCudw2ucN5qglOWNgVLcB+y/os8TJzof4e1a/3xuOWWXkyVGfaq5uiUkfDcTBpJeE7rw1/0Ir8MU4f0Qs5P3pS3tze1FaIlBPEzY0a5U2qU6fzEO5+yhrkH4uKnmqtUy/kJYYl6xc8b3+gdhpNOGrquXuen08WPWVTIrSg77BD95smRXlA97PWVr3h3YK+9vANVjeOP9y7Cr37lw2PVRofVQxAtzlV3frLCXrXyfTqJINzT8pfCc43WTXre86ILkYMO8r9tmc5PXvET+olOCntlVXiuN+x17LH++L3ySu8wl1Hnp905P7nEj3Pux81uiGg+Rx7py+Aff3y579tozg90pvPTrLDXxInwqU+lr6vH+Xn2WT/Ut78fXvKS+trUyWy/fVSYs2jY67LL/PL882vnvhx/fNTBr1tXzpxecUaM8PvM4sX1hb3y5Pt0CtWSt0PeSL0XSoHp033pDojy3FolfkaP9re1a6P/q9Odn5Urh1Z3DtQSP7vs4kOZ997rc6zKGOreLTk/QzCzPczsBDPbpvbWohMYN85f1b71reW+bwh79ffXPyqrlTk/zz2XL+E5Ley1bp3vQPr7m5NbU4/zc+ONPjdh//2bP0luOwh5K3196eGnamGv8B/mGQH3vOfB3nv7//e668oNeQVCRx8P5QWKhL06nXACjVcFDoQTchniJ5AUP80Oe8VfHxyMThI/Y8b442Lt2mgurRCC3HrroWHTuPuS9b+EwrSzZzce9mr31BaQv8Lzt83sv2OPXwPcjp/Z/S4zO6BJ7RNdQLiinjSp/iq41ZyfZoS96k14joe8mjEhbV7xE3d+Oj3k1ShB/EybNnSEFET734YNg2eMhuIjcV7zGr+8/PJyk50DQfz0etirmvNTVtgriJ8xY6LRq5tv7veRMJVKkrVrfSLziBGD65zFy20Eau07Iek5iJ9OCnuZDf0PQimM3XYbuv3YsZGoThPmAMcd55dXXNGY87NqVTS1xZZbtmdqC8jv/LwCP5t74LPAb4F98PV/PlNyu0QXEZyfRq7kOjHsleb8hNBDVgfRKHnDXhMn+o5n1Srv5kHvip8QdoqXaohjFomiMJVGIFz15j0xhZDw7NnRFAxlip+Q9FxN/IR9LEk3hb3y5Pw06vyEhO5DD43+/76+6MIgLfQVP+7jFy/1OD9B/HRi2AuGip9aczpedBF861vZ+9eBB3qB9OCD0RRJ9To/7U52hvziZ2vgYQAz2w7YE/iCc+6fwDcBOT/DmLjzUy+tHupe7b2r5fw0mu9Ti/hvWOvkEDr5Bx/0/0En1fcpk2OOgY98JCpSmEZW6CucwJKFEbN4/vO92Fm0yAsgKC/nB3zhxwkT0v+rkIQaRuQk6UbnJy3sVVbOz377wdy5Q2exrxb6yrroaSTsFegk5weyxU9WjbdXvxre//7s9+vv98ciRPtiveKn3fk+kF/8rALC1zwEWAHcVnn8HH6uLzFMCeKnWc5PM8Neae89apR3szZsGJpE2yrxM3Fi7ekH4tVxX/jCxqtgdypjx/pRW/vvn71N2oiveNHMvOLHLHJ/wkm6TOfn7W/3J6MwdDhOrWTdbsz5aWbYC/ws6MkTaF7nJ86oUd41Wr8+cg/zOj+BTnN+koUOa4mfPMQnpIbGnZ92jfSC/OLn78D7zGwv4H3AH5xzIbq+E/BkMxrXTFo1q/twIJyky3Z+2hX2MssOfbVK/FTL9wnE66T0asgrL2kjvkLIa8yYYvlZydGQZc+VllXVOJ7Hlcxdgu5yfloR9sqimojMOu7jx3wQPUWdn04TP3EBunChv02c2JiYf9nLBudKDYew1yeBA/FJzrsCsXqtvJrseb/EMKAM5yct4bBdFZ4hO/TVbPGz226+AOWJJ9beNu78DHfxkxb2qnfagRe9KOqUt9kmv2vUKCHpdP366OQQp5tyfuKuQ3y+PufKC3tlUU/YC4aGvoo6P50c9gquz8yZjSUYT5jgJ8cN1Fvnp2vEj3PuVnwl5xcCOznn7oit/j5dmPDsnJsVbsC8Njenqykz56cTihzGP7PV4mfsWD+D85e/XHvb4BSMGpUeRhlOpIW9iiY7B/r7o5EtZYa88lDNtegm52fUKC8mNm4c7J6uWeP/o1Gjmicq6wl7QWPix2ywI9IJxAsdlhHyCsRDX0Xcrvj0Ft2U84NzbqVz7m/OuRWJ5690zt1XftNEtxAs7kZmim5X2CtLWLUr7FWEULvmJS/pvKvOVpMW9iqa7Bzn7W/34dxDDmm8bUXIEj8bNvhRRWb5QqKdQFreTzzfpxmlIqC+sBcUFz/x9xg7tnnfp17iv38YnVXGnI7HHOMvEKZOLTYxbafl/OSd3kKITE45xXfIJ5xQ/3t0Us5PVnugs8TPEUf44anDPeQF5Ya9wA/rfeqp1k8Sm3XiDvvdlCn1z4TeaiZP9iPXli2LvlezQ17QnrBXp+X7QHrYqwznZ5tt/BxfRY+ruPgJ02600/mR+BENM3Giv1JuhDSxEYrMNeIoxSkiftoV9ipCmMBSpIe9GhE/0B6HJUv8hJpDZQ67bzbVnJ9mip/NNvNu37Jl3rmNu7vDUfw88oif32706PQCh/Vw+OHFX9OtQ92FaCpJ8bNqlT9oR4zw0w6UQT3OTyeHvUREtbBXN4UEs8TP/ff7ZdrcZp1KWq2fMoe5Z2GWnffTzLBXpxF+/z/9yS/33rv2/HbNJPxGy5Z552fkyPZNbQESP6JDSIqf+ypZZDvvXN4B2w0Jz6I+yg57tYteEj9pw91b4fxAduhrODk/IWQbvnMZIa9GCL9jmGNs6tT2TW0BEj+iQ0iKn7vv9suybFqIOrzly6PPySoMmBaGW7XK30aNKm8EmiiHMkd7tZNa4meXXVrbnkZIC3u1IucH5PzA0N+4U8RPqGHVzpAX5J/Y9Dgze3vs8Y5mdrOZPWtml5mZTgWiIZJi4557/LJM8ZN0c8aPz77ySAt7NXtSU1E/ZY/2ahfbbuv3rSef9CO8At3o/LQr5weyRWQ1x7fXnJ9OFT+BrhA/wFlAvLrEBcB2+Bo/BwNnl9ssMdzIcn523728z+jvH9xJVRtFlhb2Usirc+mVsNfIkX7478BANMeXc90tflqd8wMKe8Fg8dPX5+etayfJ37Gdw9whv/h5HnAHgJmNBY4GPuSc+zDwCeD4Kq8VoiatcH5gcKdXTfykhb2aPaO7qJ9mjPZqF0nXYuFCvx9OmdI9NX4gPeenVWGvLOdnOIW9xo2Lph7abbf2C7S+vug4he5xfsYAlV2BF+OHyF9TeXwvsE3J7RLDjHjHs3FjlPDcTPFTLW8nLewl56dz6ZXRXjD0xN2Nrg+0N+zVSM5PuOApIn7aLSzSMIt+53aHvALx37JbxM/DwEsq948D/uacq5QpYiqwPO1FQuQlVEhds8bXpFi71uc/lFXgMJDX+VHYq7volbAXDA3ZdLv4SQt79YLzM2JE9JpOFD/QeeIn/jt1S9jre8DZZnYb8F7gh7F1LwLuKrthYnhhFh0Yf/ubX5bt+kBjYa8wt5LCXp1HrVndu4lecX6qDXVvds7P5Mn+GH722cGfX038JOcXzCOew/t0qsAO88C94AXtbUeg65wf59w3gLcBNwPvcM5dFFu9CfCj8psmhhuh8wnip8xk50BR8RMPez3yiF/usEP57RKN0cs5P90qfto51N0sqob98MN+6Vy5zg9ESc+d6vx86Utw7rlw8MHtbomnk8RP7uktnHOXAJekPH9qqS0qiJn9L7A7sBFYD5zpnPtjO9sk6iMIjttu88t2Oj9pYa8wxUBZFadFefRi2KsXxU+rwl7gxc+dd3rxM3Om3x8GBrwTOCLlzNeI+OnUfeylL/W3TiH+O7U77JVL/JjZLsCmzrm/Vh6PBT4N7AVc7Zz7dvOaWJNTnXPLKu3aF/ijmW3unBtoY5tEHQTxE2YgbrbzkyfhOS5+HnjAL8Ns6qJz6NWE54GB7hU/QRgsX+4HMfT1tV78QOT81JrSph7xE96rU52fTiP8lu2e2gLy5/x8G3ht7PHngQ/jR3l9zczel/cDzWw7M/tWpUjiKjNzZjYtY9vtK0UUl5vZCjO73MwGBR2C8KnQ4jmYRZkEwbFihV92Qs5PCHs9+6yf5Xv06Ggkiegcesn52WorX5Pqqaf85L5r1vipAFo9w3yj9PdHbV6xwh9DAwP+2GrFHFOtED+dHvbqNMJvOXVq+wvF5hU/+wA3AZhZH/BW4GPOuRcA5wLvLvCZM4DXAUuBG7M2MrNxwHXAbsDJwFuAnYHrzWx8YtuvmdlDwC+BE+T6dCfxqSYmToStty7/M+oNez30kF9On97e+WhEOr0yvQV40bBNpXjInDl+2W2uTyAe+mql6wONiZ+BgUhIV0uYD5+hC6J8hGOx3fk+kF/8TAIqxf3ZF5gMXFZ5PAeYXuAzb3DObemcOxq4tMp2p1Te99XOuV8752YDxwI7AoPyjJxzZzjnpgNvBr5sZqOGvJvoeOLiZ7fdmnNlUO9orxDyUr5PZ9Ir01sEQujruuv8UuKnOI2In/hIwWr90Dnn+P/oyCMbbe3wIIifduf7QH7x8xTesQE4EnjQORcqKEwANqS+KoUCrsyxwC3OuQdir52Pd6COy3jv3+OF2d552yM6h6T4aQZ5c37iBc8GBpTv0+n0UtgLekf8hLyOpUtbN8w90Ij4ybvvTJwIhx4qNzgvneT85B3tdQXwBTPbCz/k/XuxdXsDD5XcLoA9gdkpz98JnAj/TrzeqiKKMLMXAZtltcfM5mR81swG2ypKIB43b0ayM+R3fvr7/YG6erW/hZFeEj+dSS8NdYdI/Cxc6JfdKn7izk9//+Dnms1mm/kLquXL/ec3Q/yIYnSj+Pk4foqLo/BC6LzYumOJprookyn4vKAkS/DuDsBY4GdmtgnefVqJz/lJe53ocFrt/NSqHj1+vO8EV66U89Pp9NJoL4jET0Dipzih1k8Y7i7x036CG7fnnm1tBpBT/DjnVuJzcNLWvbjUFhXAObcEX2E67/az0p6vOEKHlNMqUS9x8dNu5wd8WOzpp/2IL+X8dDa9GvYKdKvoThM/rRziXET8hP1k1apoxFc37judzOmnw6xZsN9+7W5JgSKHAGY2BS82puAdmJsrAqQZLCVyeOJkOUKiywniZ8QIP6qqGeTN+Ym355ln/DxL/f2w447NaZdojGqjvbo54Rn8qMda+2qnEs/5abXzA4PzfmqJn74+v6+sWRNVopb4KZeRI+GAA9rdCk9u8WNm5+Jr+4yOPb3WzM53zn2q9Jb53J40c2wPSphLLJH/M7PR9xONE8TGjBnNqwNSNOwF8M9/+tL406a1pj6JKE4vh726NeQF7Q17wWDxE6o6Vzvux43z4ueZytjmbtx3RD5y5aib2enAJ4CfAofip5M4tPL4E2b2wSa07QrgQDP7twdQKYZ4UGWd6DHC1W2z8n2geNgL4Pbb/bJbQw/DgV4Le22xRfSdekX8tHqoOxRzfiDK+5H46X3yOj+nAd9wzp0Re+5eYK6ZPYef6f2beT/UzEK16DDX7CvMbDGw2Dk3t/LcRcD7gdlmdhbggHOARxk82qwu4vk/yvnpDF7+cjjqKHhf7nrhxYl3fOPHZ28XXx/Ej/J9Opdk2CtvkbpOpa/PF8576KHuFj/xsFdwXlqd8wNe/ARhI/EjIL/4mQZcmbHuSuA9BT83WdzwwspyLjALfJK1mR0GfA34CWDAH4HTnXPPIXqO7beH3/++uZ8xbhwcf7zv1IINn0VS/Mj56VySYa+8Reo6mR139OJn113b3ZL66aSwVwgl5ilu+vTTfinx07vkFT/P4CcxvTZl3Z5E1Z9z4ZzL1R055xYAJxR577wo52d4YgaXX55v2xD2Cna9xE/nkgx7dXPIK/DpT8Mee3hHtFtpt/iJ1/p5tFKWV86PgPzi51fAOWb2DPBz59wGMxuBLzb4OeDHzWqgEO0iGRaT+OlckmGvbh7pFZg1y9+6mXYPdY/X+rn7bv+cxI+A/NNbnAnMw4uc1Wb2FLAauAS4HZ8M3VU452aFG/67CTGIuPgxg512al9bRHWSYa9ecH56gXjOTxg+3krnB6LQV9g3JH4E5C9y+KyZHQy8EngpUZ2fucBVzjnXvCYK0R7itVW22667XYRepxfDXr3A+PHe8QlFA838fFitJIifgMSPgBzipzJD+i3Ax51zvwV+2/RWtQDl/IhaxJ0fhbw6m2TYS+KnMzDzTk8QExMntn4S0HrEjxKee5+au6Fzbh2wEwVmbheiF5D46R4U9upc4jk+rcz3CSTFT7USF0H8qMJz75NXg/8BOLKZDWk1yvkRtYiHvVTjp7MJlbfXrvXVuHsh4blXiOf4tDrfBwaLnwkTqjtPQfyERA6Jn94l72ivbwE/rYzw+jXwJL7o4L9xzj1UbtOEaC9yfrqH/n5/27gRNmyQ89NJdJL4qVXVPYifgPaf3iWv+AlVlz8EnJGxTY2ScUJ0F3HnR+Kn8xk92ifWrlsn8dNJxAVPO8JeodbPypUSPyIir/h5e1Nb0QaU8CxqEXd+FPbqfEaN8uJn7VqJn04iLnja4fzEa/1I/IhA3qHuKmIohh3B+dlyy8EukOhM4iO+JH46h3aHvSASP7WOY4mf4UOm+DGzPnxdn/nOuX9lbLM3MM0595smta9paGJTUYtdd4WTToIDD2x3S0Qe4iO+JH46h04RPyDnR0RUc35Owk84uneVbZ4Ffm5mpzjnfl5qy4RoM3198JOftLsVIi/xQoca7dU5tHuoO0j8iKFUG+p+EvAj59z8rA2ccw8DPwROLrldQghRCIW9OpNOcH6OOMILryOOqL5dsgaQ9p/epZrzsx9+iHstrgXeXE5zhBCiPhT26kw6QfzMnOmrTJtV307Oz/ChmvjZBFia4z2WVrbtKjTaS4jeIh72kvjpHDpB/EBt4QMSP8OJamGvp4Edc7zHDpVthRCibSjs1Zl0Qs5PXiR+hg/VxM+fyJfL87bKtl2FprcQordIC3sp4bn9dIrzkweJn+FDNfHzdeBwM/taZWb3QZjZSDP7OnAY8LXmNE8IIfKRNtpLJ6/2063iZ8QIfxO9SeZf65y72cw+DHwVeLOZXQM8Ulm9I/AyYDPgw865W5reUiGEqILCXp3JmDHw0pf6OdeqzajeCcTFj/ad3qaqrnXOfd3M/g58DDgeCLvDamAO8EXn3I1NbaEQQuRAo706l7mV2SHzJB23k5EjvduzYYP2nV6npqnnnLsBuKFS8XnzytPPOOc2NrVlQghRAI326lw6XfTEGTcOVqzQvtPr5I5oOucGgEVNbEtL0VB3IXoLhb1EGUj8DA+qJTwLIUTXEA97aXoLUS8h70fip7cZtrnsmthUiN5CYS9RBhI/wwM5P0KInkBhL1EGEj/DA4kfIURPoNFeogwkfoYHEj9CiJ4gOD9r1vjQFyjnRxQn1CKS+OltJH6EED1BED/Ll/vl6NHdNcRadAZyfoYHEj9CiJ4ghL1WrPBLnbxEPUj8DA8kfoQQPUHS+dHJS9SDxM/wQOJHCNETBPGzbJlf6uQl6kHiZ3gwbOv8qMKzEL1FCHvJ+RGNsPXWg5eiNxm24kcI0VvI+RFlcNppMH06HHVUu1simsmwFT+q8CxEb5HM+dEwd1EP48fD8ce3uxWi2SjnRwjRE2i0lxAiLxI/QoieIDg/AwN+KfEjhMhC4kcI0RME8ROQ+BFCZCHxI4ToCULYKyDxI4TIQuJHCNETJJ0fJTwLIbKQ+BFC9AQKewkh8iLxI4ToCRT2EkLkReJHCNETyPkRQuRF4kcI0RPI+RFC5EXiRwjRE8j5EULkZdhOb6GJTYXoLTTaSwiRFzk/QoieQGEvIURehq3zo4lNhegt+vvBDJzzjyV+hBBZyPkRQvQEZoNDXxI/QogsJH6EED1DPPQl8SOEyELiRwjRM8SdHyU8CyGykPgRQvQMCnsJIfIg8SOE6BkU9hJC5EHiRwjRM8j5EULkQeJHCNEzSPwIIfIg8SOE6BkU9hJC5EHiRwjRM8Sdn2TFZyGECEj8CCF6hiB+Ro+GPvVuQogM1D0IIXqG4PYo5CWEqIbEjxCiZwjOj8SPEKIaEj9CiJ5B4kcIkYeuFz9mNtnMfmtm95nZ7WZ2jZnNaHe7hBCtJ4S9NLWFEKIaXS9+AAd83Tm3i3NuH+C3wA/a3CYhRBuQ8yOEyENbxI+ZbWdm3zKzm81slZk5M5uWse32ZnaZmS03sxVmdrmZ7RDWO+eWOeeujb3kz0DqewkhehuJHyFEHtrl/MwAXgcsBW7M2sjMxgHXAbsBJwNvAXYGrjez8RkvOx2YXWZjhRDdgUZ7CSHyMKJNn3uDc25LADN7F3BkxnanANOBXZ1zD1S2vwO4HzgVuCC+sZl9prL9u5vUbiFEByPnRwiRh7Y4P865gZybHgvcEoRP5bXzgZuA4+IbmtlZwNHAK5xzq8pqqxCie5D4EULkoV3OT172JD2EdSdwYnhQcXyOBo50zi3PejMzm5Oxamb9TRRCdAoa7SWEyEOni58p+LygJEuAyQBmtidwNvAgMNfMADY45/ZvURuFEB2CnB8hRB46XfzUxDl3J2A5t52V9nzFETqkvFYJIdrB5pv75dSp7W2HEKKz6XTxs5SKw5MgyxESQgxj3vxm7/686lXtbokQopPpdPFzJz7vJ8kewF2NvHEi/2dmI+8lhOgMxo2Dk09udyuEEJ1Op1d4vgI40MymhycqxRAPqqwTQgghhChE25wfM3tt5e4LKstXmNliYLFzbm7luYuA9wOzK0PZHXAO8CjwvUY+P57/o5wfIYQQYvjQzrDXpYnHF1aWc4FZAM65lWZ2GPA14Cf4xOY/Aqc7555rUTuFEEII0UO0Tfw45/KO0FoAnFD25yvnRwghhBiedHrOjxBCCCFEqXT6aK+moZwfIYQQYngi50cIIYQQw4ph6/wo50cIIYQYnsj5EUIIIcSwYtg6P8r5EUIIIYYncn6EEEIIMaww51y729B2zOyxSZMmbTtz5sx2N0UIIYQQDTJv3jyWL1/+uHNuu7T1Ej+Amf0D2AJ4oIS3m1lZzivhvTqZmZXlvDa2oRXMrCzntbENrWBmZTmvjW1oBTMry3ltbEMrmFlZzmtjG1rBzMpyXhvb0ApmVpbz2tiGVjCzspxXwnvNwE+XtW/aSomfkgmjyOI5Rb2Ivmdvoe/ZW+h79hb6nuWjnB8hhBBCDCskfoQQQggxrJD4EUIIIcSwQuJHCCGEEMMKiR8hhBBCDCs02ksIIYQQwwo5P0IIIYQYVkj8CCGEEGJYIfEjhBBCiGGFxE9JmNn2ZnaZmS03sxVmdrmZ7dDudpWJmb3WzH5pZo+Y2Wozu9fMvmBmm7S7bc3GzH5vZs7Mzm13W8rGzI42sxvM7LnKvnubmR3W7naViZkdZGbXmNkiM3vWzP5uZu9od7vqxcy2M7NvmdnNZraqsm9OS9lujJl9xcyerByzN5vZwW1ocl3k+Z5mtr+Zfd/M7qlss8DMLjGzndrU7MLk/T8Tr/l4Zbs/taiZDVPke5rZ7mZ2qZk9HTvf/GdZbZH4KQEzGwdcB+wGnAy8BdgZuN7MxrezbSXzEWAj8Ang5cB3gfcAfzCznt2XzOyNwD7tbkczMLNTgdnA34DjgROBS4Fx7WxXmZjZ84FrgZHAKcBrgFuBH5rZe9rZtgaYAbwOWArcWGW7H+K/86eBY4AngavNbGazG1gSeb7nG4A9gW8CrwA+DuwH3GZm27eikSWQ9/8EwMymA2cBi5rcrrLJ9T3NbH/gL8Bo4F3A0cBXgf7SWuKc063BG/CfeFEwI/bcTsAG4EPtbl+J33OLlOfeCjjgsHa3r0nfeTKwEHhj5Xue2+42lfjdpgGrgdPb3ZYmf8/zgHXAhMTzNwM3t7t9dX6nvtj9d1X2zWmJbfapPP/22HMjgHuBK9r9HUr8nmn90o7AAPC5dn+Hsr5nYvurge8Bc4A/tbv9Jf+ffcBdwK+a2ZaevVpvMccCtzjn/j0rvHNuPnATcFzbWlUyzrnFKU/fWllu28q2tJAvAf9yzv283Q1pAu/AnyD+u90NaTKjgPV4oRdnOV3qfjvnBnJsdiz+e/9v7HUbgF8AR5nZ6CY1rzTyfM+0fsk59wiwmC7pl3L+nwCY2ZvwztaZzWtRc8j5PWcBuwMXNLMtXXngdyB7Av9Kef5OYI8Wt6XVHFJZ3t3WVjQBM3sJ3tl6X7vb0iReAtwDvMHMHjSzDWb2gJn12vf9f5XlN81sGzPb1MxOAQ4Hvta+ZjWdPYH5zrlViefvxAvCGa1vUmsws92BqfRYv2Rmk/H77Eedc0va3Z4m8ZLKcoyZ3WJm6yu5et80s7FlfYjETzlMwccwkyzBh016EjPbFvgccK1z7rZ2t6dMzGwU3lY+3zl3b7vb0yS2weemfQX4InAk8Afg22UmFrYb59y/8FeTxwGP44/V7wCnOed+0camNZtq/VJY33OY2Qi8m7kYn/PUS3wFuI9I0Pci21SW/wtcA7wM+DI+TPazsj5kRFlvJIYXZjYBnyi7AXh7m5vTDD4KjAU+3+6GNJE+YBPgbc65yyvPXVcZfXGmmX3TVYLw3YyZ7Qz8Eu94nIYPfx0H/LeZrXHOXdLO9onS+TbwYuCVzrk08deVmNlL8U70fr1wXFYhmDI/dc59unJ/jpn1A180s92dcw07enJ+ymEp6Q5P1pVXV1OxHn8DTAeOcs491uYmlUqlRMEngU8Boythkk0rq8Pj8kYdtI9nKss/JJ6/BtgS2Lq1zWka5+FzX45xzv3WOfdH59wHgf8DvtHDIxWr9UsQOUA9g5l9EXg38A7n3DXtbk/JfA/vZD0W65NGAP2Vxx2fw5WTav0SwL5lfEivHvSt5k58fD3JHvis9Z7BzEYClwH7A0c75/7Z5iY1g+nAGOCn+BNIuIEf7r8U2Ls9TSuVO2usz52E2eHsDdzunFufeP6vwGb43JBe5E5gp0opjjh74Ee/PTD0Jd2LmX0S+BjwQefcT9rdniawO965jPdJBwEHVu53a9mGJC3plyR+yuEK4MBK7QUAKqGDgyrreoLKFfIlwGHAq51zt7S5Sc1iHnBoyg28IDqU3jhx/KqyPCrx/MuBx5xzC1vcnmaxEJhZyeOK8x/AGnrQAanwG3xtoxPDE5V8mNcD1zjn1rarYWVjZh8EzgU+6Zz7drvb0yTS+qTb8YNtDsVflPYCVwFrSe+XAErJL1XOTzlcBLwfmG1mZ+FrF5wDPIq3KnuF7+A70s8DK83swNi6x3ol/OWcW4avnzEIMwN4xDk3ZF2X8jvgeuB7ZrY58BD+/z2S3srj+ja+cONvzOxCfM7PsfjaTV9zzq1rZ+PqxcxeW7n7gsryFWa2GFjsnJvrnPuHmf0v8PWKYzsf7w7sBLy59S2uj1rf08zeAHwd+D0+Zy3eL61wznWF+57j/5yT8pplwIhu6pNyfM9nzOwLwKfMbAW+gPD++EKdP46XlGmIdhc96pUbsAM+qXIF8Czwa6oUqerGG/AwXtil3c5ud/ta8P17qshh5TtNxIvap/ChkDuAN7W7XU34nq/AC9rFleNzHvBeoL/dbWvgO2Udi3Ni24zF10tZiHe5/gLManfby/ye+JFPNX+LTr/V8x3osiKHeb8nYMCH8A77OuAR/MjikWW1wyofJIQQQggxLFDOjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIMcwxs7eZmcu4HdHu9vUKZvYCM1tlZtvGnptjZn/K2P5dlf9gWoHPeLWZPVWZeFgIkYHEjxAicCLwosTtr21tUW/xFeBi59zjTfyM2cCTwH818TOE6Ho0vYUQIjDP5Swdb2ajXQ/NDdVszOwF+PmXPtDMz3HOOTP7PnCOmX3BObemmZ8nRLci50cIUZVYWOxgM7u0Mp/QXyrrRpjZmWZ2j5mtNbMnzOyrZjYm8R7TzezKSthnsZl9w8xOTYZ1Ko/PTrx2WuX5tyWeP8TM/mhmz5rZSjO72sz2Smwzx8z+ZGZHmNnfK5//LzM7PuV77mNmvzKzZ8xstZnda2ZnVtZ9qxJOGpl4zSaVz/9ijZ/xXcAdzrlaM1ZnYmZnVwlPvi226f8BmwKvqfezhOh1JH6EEIH+ipgJt/7E+kvwk2O+Fvh45bmfAmcBPwNeCXwBeGdlWwAqs6n/AdgXeB/wNvzkmmfV21AzeyXwR+A54CTgTcAmwI1mtn1i8+cB38DPcfUafFjoUjObEXu/FwI3V7Y9o/JdLgC2q2zyXWAqkBRNbwLGU3sC45cDN1b5PiOSN4b2zz9gaFjyl8BG4L6wkXPuaeBuolmwhRAJFPYSQgTuSTy+CXhJ7PFlzrmPhgdm9lLg9cDJzrn/qTx9rZktAX5qZjOdc/OAk4HpwIucc7dUXnsV8M8G2voNYK5z7rhYe67Hz0z/YeD02LabAwc75+6vbPd3vAB6HXBeZZvzgWeAA51zqyrPXRfewDl3l5nNBU7FOyuBU4FrnHPzsxpqZlsC04DbMzY5CFhf5buGNjwGPBZ73xPxYu5059yfE5v/AzgQIUQqEj9CiMDxxE6u+NnP4/wq8fjl+BmXL6s4FYFrKsuD8bOnvwh4NAgfAOfcgJn9H3B20Uaa2c54h+a8xOeuwrs3Bydecn8QPpXPXmRmi4AdKu83Di9AvhITPmlcCPzCzHZ2zt1vZgfg3axa4aVtKsvFGetvx4fFkhxHhjtmZvsDPwYudM59M2WTxbHPFUIkkPgRQgT+VSPh+cnE46nAKGBlxvabVZZbA0+lrE97Lg9TK8sfVm5JFiQeL0nZZi0Q8pIm40NMj6VsF+dXwEK82/MR4DTgCeA3NV4XPicrQfw559xtySfNbGbaxma2HXAFMAf4z4z3XB37XCFEAokfIUReXOLxM8Aa4KUZ2z9RWT4J7JmyfsuU59biBVWczRKPn6kszwSuTXmPdRntyWIpMABsW20j59x6M/sB8F4z+zLwBuCrzrkNNd4/tHdywXYNwczG48XW08DrnXMbMzadEvtcIUQCJTwLIerl93h3YZJz7raUWxA/NwPbm9m/c1DMrA+fc5PkEWCvxHOvTDy+F3gY2DPjc+8o8iUqoa4/ASeZ2dgam38PP5LqUmA0cFGOj3gYLxKnF2lXEjMzfIL51sAxzrlkWDLOTvjfSQiRgpwfIURdOOfmmNnP8Tk/F+ALIg7gk3uPBj7mnLsPn5vyceByM/sEsAgfMpqY8ra/AM4ys08Ct+BdpTcmPteZ2fuA2ZWRZP+Hd0K2BF4MLHDOXVDw63wEmAvcbGZfxYfApgMznXP/rs3jnHvczK7A50f9xjn3aK03ds6tM7O/AC8s2KYkHwNejQ91bWNm8ZyeB51zi+HfIumF+BwlIUQKcn6EEI1wEj5p+bX46sKXAe8H7qeS0+OcWwe8DJ/8fCFeDM0Hzk15vy8A3668x6+B3YG3JDdyzv0On9g8Hj8E/Grgy8BWeKepEM65W/FJz48C3wJ+h6+SnJYHdGllWWt4e5z/BQ6rhK3qZbfK8hv47xi/xd2xF+NDbL9o4LOE6GnMuWQYXwghmk+lMN+PgJ2ccw+3tzX5MbNL8EJpunNuIOdrJuKF1Hudcz9tcvu+C+zlnMvKxRJi2KOwlxBC5KCSszQTX9voQ3mFD4BzboWZfQn4qJld4pp01WlmW+HrKqnAoRBVkPgRQoh83IyvKP1j6sunuQDoxycsP1Fj23qZBnzYOXdDk95fiJ5AYS8hhBBCDCuU8CyEEEKIYYXEjxBCCCGGFRI/QgghhBhWSPwIIYQQYlgh8SOEEEKIYYXEjxBCCCGGFf8fCwEpuI7VzCYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cs_amplitude = np.abs(cs.power) # The mod square of the real and imaginary components\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(cs.freq, cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the cross spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together multiple segments of data.\n", + "# Averaged cross spectrum example\n", + "You could use two long `Lightcurve`s and have `AveragedCrossspectrum` chop them into specified segments, or give two lists of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here. Remember to check the Lightcurve tutorial notebook for fancier ways of making light curves.\n", + "## 1. Create two long light curves.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and two signals in count rate units, with the same properties as the previous example. We then add Poisson noise and turn them into `Lightcurve` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAGBCAYAAAD2eQAbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADtf0lEQVR4nOxdd5gkRd1+a9Kmu73bS9xxcBxRsgiI8qlkSQoSRVRUVAyAigiogIIiAoKIImYFCSIZRJQkGckg4cgc4Q64u720extmdma6vj+qq7uquqq7etLu3db7PPvsTE+H6uoKb7+/UIRSCgcHBwcHBwcHh/GDzGgXwMHBwcHBwcHBobVwBNDBwcHBwcHBYZzBEUAHBwcHBwcHh3EGRwAdHBwcHBwcHMYZHAF0cHBwcHBwcBhncATQwcHBwcHBwWGcITfaBWgFpk2bRufOnTvaxXBwcHBwcHBwSMQTTzyxlFI6vZnXGBcEcO7cuXj88cdHuxgODg4ODg4ODokghLzZ7Gs4E7CDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDOMCoEkBCyLyHkPkLIACGknxDyOCFkN+H3HkLInwghSwkhg4SQOwkhW41GWR0cHBwcHBwc1jS0nAASQr4K4CYATwA4EMChAK4B0On/TgDcDGBvAN8AcDCAPIC7CSHrtLq8Dg4ODg4ODg5rGnKtvBghZC6ACwCcSCm9QPjpNuHz/gA+BGA3Sund/nEPAXgdwEkAvtmKsjo4ODg4ODg4rKlotQL4RQAegN/F7LM/gHc4+QMASmkfmCr4ieYWz8HBwcHBwcFhzUerCeCHAbwI4FOEkNcIIRVCyKuEkGOEfbYA8Jzm2HkA5hBCJrSioA4ODg4ODg4OaypaagIGsLb/dy6AkwG8BuYD+GtCSI5S+ksAUwC8oTl2uf+/B8CA+iMh5B7TRbfbbru6Cu3g4ODg4ODgsCah1QQwA2AigC9QSq/3t93l+wZ+nxDyqxaXx8HBwcHBwcFh3KHVBHAZgI0B3KFsvx0s6ncWgBVgKp+KKf7/FboTU0p3MV10++23p2kL6uDg4ODg4OCwpqLVPoDzEn73/H220Py2OYC3KKUR86+Dg4ODg4ODg4M9Wk0Ab/D/76Vs3xvAQkrpIgD/ADCbELIz/5EQ0g1gP/83BwcHBwcHBweHOtBqE/C/ANwN4PeEkGkA5oMFgewJ4Eh/n38AeAjA5YSQE8FMvt8HQAD8rMXldXBwcHBwcHBY49BSAkgppYSQAwCcBeBHYL5+LwL4DKX0b/4+HiHk4wDOA/AbAO1ghHBXSumCVpbXwcHBwcHBwWFNBKF0zY+P2H777enjjz8+2sVwcHBwcHBwcEgEIeQJSun2zbxGy9cCdnBwcHBwcHBwGF04Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODg4ODg4OIwzOALo4ODg4ODg4DDO4Aigg4ODg4ODg8M4gyOADg4ODg4ODg7jDI4AOjg4ODg4ODiMMzgC6ODg4ODg4OAwzuAIoIODg4ODg4PDOIMjgA4ODg4ODg4O4wyOADo4ODg4ODg4jDM4Aujg4ODg4ODgMM7gCKCDg4ODg4ODwziDI4AODg4ODg4ODuMMjgA6ODikwvLlwH77AbfcMtolcXBwcHCoFY4AOjg4pMLppwP//Cfw8Y+PdkkcHBwcHGqFI4AODg6psHz5aJfAwcHBwaFeOALo4OCQCpSOdgkcHBwcHOqFI4AODg6p4Aigg4ODw+oPRwAdHBxSwRFAh9Udw8PMl/XZZ0e7JA4OowdHAB0cHFLBEUCH1R3nngv86EfA1luPdkkcHEYPjgA6ODikgiOADqs7XnxxtEvg4DD6cATQwcHBwWFcgZDRLoGDw+jDEUAHB4dUcAqgw+oORwAdHBwBdHAYt6AU+Pe/gXffTX/cmgheH++8M9olcWg2HAF0cBgFAkgI2YUQQjV/K5X9egghfyKELCWEDBJC7iSEbNXq8jo4rKn45z+BffcFNtoo3XFrKgH8179YfWy44WiXxMHBwaH5yI3itb8J4DHhe4V/IIQQADcDmAvgGwBWAPg+gLsJIdtQShe2sJwODmsk/vtf9n9oaHTLMVbw4IPsf7E4uuVwaD6cAujgMLoE8AVK6cOG3/YH8CEAu1FK7wYAQshDAF4HcBIYeXRwcKgDmRr1/zVVAfS80S6BQ6vgCKCDw9j1AdwfwDuc/AEApbQPTBX8xKiVysFhDUI2W9txayoBXFPvyyEKRwAdHEaXAF5BCKkSQpYRQv5GCJkj/LYFgOc0x8wDMIcQMqE1RXRoODzPedmPETgFUMaael8OUTgCaIfly52LyJqM0TAB9wH4OYB7AfQDeB+AkwE8RAh5H6V0CYApAN7QHLvc/98DYED8gRByj+mC2223Xd2FdmgQPv1p4KqrgFtvBfbaa7RLM65RqwK4psIRwPEDRwCTMTAATJ0KdHQ4ErimouUKIKX0KUrpCZTSmyml91JKLwCwN4C14Hz71nxcdRX7//vfj245HJwJWIHzAXRwCDF/Pvs/PDy65XBoHkYzCCQApfRJQsjLAN7vb1oBpvKpmCL8rp5jF9P5t99++zV0ylqNsaayiNUIjgDKWFPvyyEKpwAmw/WHNR9jLQiEN7l5YH6AKjYH8BaldEDzm8PqBCe3jDqcD6CMNfW+HKJwBDAZrj+s+RgTBJAQsj2A9wB41N/0DwCzCSE7C/t0A9jP/63laGVnGBcdb1zc5NjGaBHAsfro3TvJ+IEjgMmop5+O1T7uIGM0VgK5ghDyE0LIQYSQ3Qgh3wFwK4C3AfzK3+0fAB4CcDkh5FOEkL38bQTAz1pd5rvvBmbNAm6/vfnXeuABdq2bb27+tUYVboQYdYyGCfg//2ldX0oL1yTHDxwBTEat/aFUArbaCjjmmMaWx6HxGA0fwOcAHA62wkcngEUArgdwGqV0KQBQSj1CyMcBnAfgNwDawQjhrpTSBa0u8J57ApUKC1pt9iRx8MHAkiXA/vuv4RPSGn1zqwdEBZBS+0mxnke3555MaWtFX0qLsVYeh+bBEcDm4b77gHnz2N9FF412aRzi0HICSCk9C8BZFvstB/BF/2/cYNwMTM7eNuoQCU+lAuTzo1eWsQBHAB0cQtTaH1x6qdUHY8IH0CHEuOk8jgCOOiqV8PPIiP1xaypRWlPvyyGKcfOiXQdq7Q+5MZFbxMEGjgBaoJWDxbghgG62HXVUq+FnRwDX3PtyiMIRwGQ4BXDNhyOAYwyt7Dzz5wMf/zjwyCOtu2YAN9uOOpwCKKPV97VoEfOJ/MhHgGeeae21m4mVK4EDDgD++c/ajr/vPmC//YCFCxtZKhnjhgBefjnwyU+yyIyUaIQC+PGPA/ffH7//JZcAn/oUUC7Xdj2H2uHEWgusqQrg5z/Poo5vuWUUJvU1lUWsRnAEUEarvRL++U/gjjvY5yuvBLbeurXXbxbOPBO46Sb2V0tb2dlP/pXLATfc0NiycYwbAnjEEez/PvsARx6Z6tBGKIC33JI8v/BiHXAAI4IOrYNTAMcYWuk/sWhR664VwZrKIlYjOBOwjFbf15Il4ee+vtZeu5lYurQx51m2rDHn0WHcEECO1WA9twG3vEPL4QjgGEMrFcBRHQRdEMioo1YFcE1Fqwlgb2/4ub+/tdduJhpVj80cC8cdAayhMmt9juKLpcPYhiOAYwytJIC1rgTREKypMtJqBHGgTuMitKY+ula/k4gEcE1SABvVPpppDRl3BLCGyhT7Q5pnWms/GnfPZAzAEUALrKk+gI0ggHfcAfz61zUcmGJEef114PTTmXO5Q+PQSh9AzwPOPrv2yWHBAtYGGmVe1KGelQ/OOCN9IIdoAm6lAvjUU8xPr1lO9+ONAF5xBfD3vzfufE1BCwmgUwBXH7ggkDGGVvoANoIA7rkn+7/TTimd2FOMKB/+MPDOOyxq+dJL05XPwYxW+gD+/e/A97+f/jiOvfcGnn8eeOKJ5i2TWCtxufBC4Ic/ZH9pzjFaJuBtt2X/e3qAo49u/PkbpaSuDgSwrw/47GfZ5zEdwFBDZYrjg+fZzxfOu2f1gVMALeAUwGSkVmZSjBLvvMP+P/FEyms4xKKVPoDz59d3/PPPs/8PPVR/WUyoVfF49dXarjdaCiBHvc/EhPGkAL7wQvh5TLtGOAXQQQNHAMcYVjcFsOZz1TBaOh+RxmJ1TAPTzMlFrI8012lvT38tSkffB7BZS/+tDgSwUZg3L/w8polPAxRAWzgFcPWBI4BjDKurAtgKAujQWLTSBNyox72mEMC+PuaDx0lYf3/ru0SzCFajCMDqEAUsEkCx/YwJ1Fkg8TmmeaZjmgg7SBg3BPCee4C33hrtUiSj1kFvaIglXk2T7qmRippTAFc/OAVQhhgUkeY6bW3pr8XVv3XXBQoFdu0aFmuoC81WALswwLJd1+hfsDqYgFtJAOfPT15VQ0KxGH6uoXAd8+dhWzC/m1ZEAa8u+M9/WFBaWlQqLCn2WIr4HxcEcHgY2HVXYL31ajt+dfABPOoolkn9tNPsj2mkApi6jpwCOOqoVQEcTYxFBbAWAsh9ZqdOBbq72edW+wE2mwBehcPYmm6nnlrTeVYHAvjyy+HnZitfG27Igu1eecXyAPGNoobCfeTrW+IJbI92DDsF0MfDDwN77AHMmZP+2PPPZ0vj7bVX48tVK8YNAVxdIJKyNBzpb39j/6+6yv6YUVUA1/TXxNUAIuFZXfIAjkUCWIsJmKuNbW3ApEnsc6uVgWYRLN4+PoZ/sQ9XX13TeVYHArhqVfi5VSZgHhCViDoJIMdErGqJArg6aAJPPln7sXxt7EceaUxZGoFxQQDr7eytVADFzlOLKjN3rv2+o+oDWMMo4UzAjcXquBTcWCSAogJoWzf8/NnsmqsA1otWBYHUU946rax1XzMWDSKAWVSdAuijnjmzUGhcORqFcUEAVyfUosqI+62zjv216iWAdYl4zgdw1NFKH8BGkYJmkk/RB7DWydy2z44rAlhjx20mARTLWI9iJVqXxjQBrKNwGXhNiwKuNdXMaKGewKRm9bd6MC4I4OqkAIr91Lajv/RS+DlN56uXAIplTT2Itqi3VypyvrVa0NvbvFUTRhNjPgikvx8YHATQmj6oKoDlsl3bERUPv7iJ4P0lkwkJYKtNwGORAIp12cxnXmuEq4hKRT62VQTQ2l1DowAuWpReocui2rQ8gGKd1VN/S5a0pv7raZNOARwlrE7KUS0KoJiM1HYCAuqvl9WBAO65J7DWWnIdpcH8+cCMGcDOOze2XGMBYzoNTKXCnOMmTADQmvRIKgHceWfWdt58M/44sR6HhuyuNVoKoPgcWpYGJsVA0yCrZSLEeqj1Oqpv+ZhWAKtVPPIIMGsWcOCB6a6X1gScZt9GEMDnn2f9dLfdajs+DcSmnHZMqyVYrNkYFwRwdYI4GNkSQHHiSEMAG6kAph5EW+QDePfd7P9116U/FgCuv579b+YKFKOFVq4Ekhqidz1aQwDVNDD8mT/wQPxxYj3a9j+RAPKJoRXPQLxGs97BVgefukYogGOeACqVyZfRTLuUYr0+gHF9txEE8IYb2P9UKXJqhNh/0gaXOhPwKGFNVwDFztlKAihOmGNVAeSodZBftqyx5RhLGNMKoNJpW60Aiqbf2bPjj6vHBJzNhvfWCud5kRM063r1mIBbpQCK40Gt11GJ2JgjgEplplJ8hYdYrwk47rqNMgG3CmLd26r9HM4EPAYw1iOUaiGAtZiggFFWAB0BHHWMeR9A4YKNjFg3QayPZ5+VLh+LWgggPyaTCfthKzIjiWNKs663upmA11gFUKnMVAqUUEF5lOsyAa9JBFB85mnEFmBsEsBUXiCEkAKAbQGsDaADwFIAL1FK32h80ZqDcjm9mjBaQSBjXQFsNQGs5znUOsjzhL1rIsZ0GhhFoslmm58TRGzPzzwjXT4W9foAtlIBbAUBbJQC2CoT8LhQACuVdAqgUEE5VOoyATsCyDAWCWAiBSCEZAkhhxBCbgXQB+BBANcCuAzAvwG8Rgh5ixByDiFko+YWtzaIA1IrfZ1uuQVYe23gwQftj6klCrgWBQIY5SjgFucBPOMMYIcdWJ7En//c/rjVQQFcuRLYeOOEVWDuuovZMv/zn2BT4svGk0+yYxQHytEhgPaH9vWx+vjhD9NdUnRpSEMAa/EBFE3AH3z5UizEbPz+G89im22aO0a1QmFT28f815MDaTjE8l1xBfDe98aPg4sWpe/TahnPP5+tEvX22+nOoSqArbIutdoEnEOlrkTQzfYBbCXGlQmYEHIIgBcBXA6gBOBUAB8F8F4AmwD4IIBPgxHCAwG8QAj5IyFkrWYWuh7UMrjWSjw+/nHg3XeBgw6yP6aVCmC9ymata6cCGJWkT489xiaiE06wP2Z1IIB/+hPw6qvAj38cs9MeewDvvMP++0g0AR9xBDvmkEOkzeKja9pjVPJrpCGAl17K6uOMM9Jd0mQCTnpXqdcEfMSdn8dsvIPv4Ww8/XRy0Ek9GA0TcLlC8NOf2h2rjnnPPAPccYd5//POS9+n1TKeeSZbJ/6ss9KdY7QUwFrTwKQyAQsVlNYE3OogkFZOJWuaApj0TvArAD8DcAmldKVhn0cBXAXgeELIBwB8F8BXAKQcfpsHsYG0esF19fpJaIQPIKV25G5NTwPTiEusDiZgq2g0TWWI7SZNnkM1eatNO0r9LMTCVaup1OpaczaK7Vkk/s02AXO8g7UBNNflpBUEUAUFsSbwOnVrxQrz/rXWle7e077Erm4+gLk0BERRAMdyGphWoh4CKPaBSqV1K93EIakIG1BKbZsbKKWPADiIEFLD6pitwZhLd6GgXgXQ89hxNuuTruk+gI0YUFYHBdCKABISqXOxfrSkyVDhtWTvrytNUEoTcK3P3UQcm2EC5ufsqoY5nF7H+gBaRwBbFgUM+/WSdWPeypXm/WutK10ZxzIBFLuDtelRSQOT66ztgmlNwGo9xtWL8p435iFWaVoCKD7DYjFIcTqqiKUAachfI45rFkbLB7AW1KsAAvYNc3VLA5N2sE+bp0kH/jy6uuo/V7NQ630mKoCGBiIeZ/vcU0+OdZiAa52ITcc1wwTMz7nuqueDbRSsgTeTAIoTWKuCQDxkrJPg6sa8VimAaeujlSbgmjI9xPgAJg6/DVQA4+qlEQpgK4M0xbE2rQ+g+AytVdwmw5oCEEI2IYTsIHzvIIScRQi5mRBybHOK13iMjAD/+hfzy4tbeolS4GtfA375y9YuJVevAgjURgAvuQT47GfTdcJWJ4JOi3o7mUiKJk+u71w2OPFE4Cc/SX+ctQKooBEKYNMIoCINjCYBbKYJeJ3+ecG2DFhlNmtCe+UVYK+9omXQglLgqKOAiy5KfR21TVAQtLUB3/wmcO658ceOJgEcywqgWLbbb2fzUiKEyrzztmq6RQYa6AMYV6+N9gFstmdRLQrgKacAp54q10MjxIlGII0V+tcA/gfm8wcAZwI4FsCzAH5BCKGU0vSjRQugKoAf+xj7vPHGwDnn6I+ZNw/4/e/ZZ75UU61IM0iJjURZDMHqGMB+EhIJ4JFHsv+HHAIccIDd8a32AWy1Aiianpr9lrlyJXNoB9hgkQa1EsBEBdBw0+Jxto+xLgVwNSKAixbZXSsggCtbRwA///kUqv2jj7LoIgA45phU11HbBAXBwoXAn//Mvp94ovnYtASwVitGI0zArVQA1Wd13HHAt76VcJBQmc/+r4J5W4c/DQ8nmOUbGAXcbAVQNSM307curQ9gpYIgAOpYQSZb7RRAsMjfBwGAEJIB8DkA36WUbgfgJ2CBH2Meogk4zr9LHIhGSwHs7bU7phEKIEca0tSKKOBGLStVC0Qi3Wz/lHrOXyvRXZ0UwDQTfa11afIBTLpH8d7mzTPvpzvn2itDE3AWzW1k776rL4MWdUTL6fqsrS9tq3wAV2cF0BpCZWZRlcazxLGxgXkAm60AinN6s1280pqAxfYstuOxogCmIYCTAPBu/D4APWDpXwDgHgAbNK5YjYXJBzCuUY/W8nG1EMBafQB191ir0tKsPID1OAnX28nEemy2xbqeRcabRgDHkQ8gpY1RAJ9/3q5O+DFrr4gqgM1CpxIEEHtfday9pzMBx6l4InQEMI48jkcfQGsoBFDs44ljRgNXAqlWzWPa6kYA05qAxf3FPrA6EsDFAHii5z0BvEYpXeB/nwBgzAZx1xIEIg4so7USiLgeaRxqVQB1nTqNfN6KKGBx0Eo7QKxOBFCsjnpNUVo00ATcEgVQMQHX2i5ruZyKtD6ANkmPq1WgG33oGVwYbGu2CVgNZIp9dnVEiOkIYJyKJ0LXluNehBtpAk7bx1cnBTCHilS+xLGxgVHAyukkNIIAii8NzU7zltYELJZHJICrown4HwDOIoScB+A7AK4RftsKwPxGFqxZEB9IXKNu5NqjhLBVQf7yl/j9PE/uKL29bBGGK66IP65WBVDXKdPcdysUwHoIYL2dLDUBfPJJ4OyzgwcyOAj86EfAyy8nH6oIXqkgDko//jHL3RyBwir+/nd5vyQCeOaZYd+x9gF86imWXbdSST+BtTgIRHf//JppTMCAnRnY84DN8by0zZYA9vcDp58OzE8ace+/H7jgguAhqQpg7H2JFU4pXn6ZJda2GVvUZ52GAOom8LgX4bFkAm6mm0gaUhVAGABVBTBxbEwRBbx4MRt3uP+rbl9Tn1ydFcDf/CZ59RgTARwrCmAad8nvAWgHsBcYGTxT+G1/ADH52kcXJgWwlQTw4x9nn/femy0Pp4PayZcsCRdhOPhgs9Ou2uFsg0B0HTVNEt1W+ACK10ib4LfeTibWoxUB3G479n/aNODLX8YJJwC/+x3w178mT9bi+ctl+7xpajlPOw248UbGRU2oVoHDD5e3JZmATz2VPbJTT02hAG67Lfu/1lqoVL4Ys6MGCiOu9cWknmM6O1kglq0COGkSyyyQSMz8YzZQ3pltCeCxxwKXXQbccAPw9NMxO+60E/v/3vcCu+6azgQs9s9yGVtvXUCpxOrjZz+LL5+uLushgCtXsrLqXgJqHafXBBPwyEjCOCFMdllUpfGwkQrgkUcC//43y67x8MP6slYq0KYCWt0IoFpvv/1tfOaGNUYBpJQOUkqPopRuRSn9IqV0SPjt/yil32tOERsLWwLYLDNMXGSv2gHEtwvbZJpA7elj0hyrlqlZUcD1DBAtVwA5XnsNAHD99ezr668nHyI+w3pN3U89pdlJaNC689uYgPnyaKl9AN98s6VRwOK91BOlzAmTLQHkiV1tXlSqVeZbJcLWB/Ba3/NaXK84FguYp456j7HPTryJUikYF7RtS4FOAYxLuSXC1GdNL7VjIRE0b5utJoCJY7VwUOogkBQ+gI/6eUEeeYT95/vuuKO2KBJWVwLI3/WTfFvHugKYJg/gfELIew2/bUkIGbMm4FoUQNPxtcB2kOIdoLOT+eKJnTRucFI752gQQOcDKMCfEbjpykalqMcEnNYHsFYCyJ9x6pVAurpamgdQrA9b1VhXvo6OaFHijuVqjM01PS8a9csJYFKd8nbNy2d1MUTNt7H3ZUhIatMP1LrkCa5tYOqzJtPzaJqAeTvjxL8VaWDWWYcZGIB0BDCHSl0KYNxznzpVf9l99w3zp9oEWNVqQh8NE/BRR7H/SS4RJv/E1U4BBDAXgCmfezuA9eouTQtgSwDrUWRqBb9OPg9Mn67/TQd1XdFWEcC6TMBrog8gh8L4NrCIj2+UD6ANaiWA/LjUCmAtBDDGBJxEkGohgLr9uAJouxIIN3HZ3Gu1yiZWEZwQxvUl8d7XXTf5OgCMBDD2vhwBTAQv68SJ7H8rFMBsNmxnieObUKB6FMAkE/CUKfJ3XrfZbBhUuCYogJUK+8tkQmKb5G5lmk9XOwXQh6kZbA9gZX1FaR7ExnvDDfrtKhQLVF2wHaT4dXK5dASQl5UrArUuIQcADzwAvPSS3fGtMAGPlg/gggXMr4UjrQK4dGn4VX2WOiRG5Kro7QVuuw0vv0SxeHGKsiEFAVSI7Ky+F/HCZY9LUZlNI4Ax0kBSfxSfu+11dfvxqFlbEzBXAG0JoEkBjKtT0S3Ednk1XkB1srI2AQtsoRYCmAYmYmJFAJcvB2691aqQcVHAd91lCKRSwMuahgAuWwbcc/lC0HvuTd5ZgEgAeTu78cYE38oYE7BpbBwYYL585VJYh0kmYK4AroVFwH/+E1w2k0k2j69OBJA/7/b2cGxIUgBN7Xm1IICEkG8TQt4ihLwFRv5u5t+Fv14AFwG4tZYCEEJuJYRQQshPlO09hJA/EUKWEkIGCSF3EkK2quUaIv71r/CzLQGs980urQlYRwDjJiH+G1csbJUvXae+8kpg003tjm+FCbieAaKeTjZnDovc5kirAIqRvzaEPHV722EHYO+9ceqm1yTvC0iNUPesbBTA396zGTb73PvRg+XBNmO9iDfR1qa9p9gmoLyBqUEycRCfeyMUwLQEsF4TcFxbE1/O+vuTryOecHU2AZuUFukd5UMfAvbZJzndAsxBIPfeC+y+O/Ce9ySXlY+znAzY9NsddwR2OWJdkF13sXOo9KFTAL/1LXa7iQfB3gR86KFspaxfXmAfBcwVwNewIbDHHtjg9f8EZV2TFECRAPKxIY0JWMRqQQDBUrv8x/8jAB4XvvO/6wB8G8BRaS9OCDkcbIURdTsBcDOAvQF8A8DBAPIA7iaErJP2OqaJplUmYNu1CkUCqK49a2MCTqsA1pvbrtUKYK0m4O22Y74z9SCtAig6vdsQ8tTt7Y03AAD74N/x+2lQqwLIIUavGh+jyE6qVe01YwlIHQSwFhOwLjiL9yfbNDBpTcC1EECxWm0DK1QCyB/raJmA47p+XQrgiy+y/7cmaxGmIJDbb2efBwYSTxG0Ld5ObJ77K68IX2JDuKNlA2QCCLCo28SDYG8C5lV38032UcCTJrH/XWAXmLvwAQCtUwBblQeQP+983l4BNJXHNlNHsxGbBoZSehOAmwCAcTL8mFJqEdOYDEJID4BfgJHHvyk/7w/gQwB2o5Te7e//EIDXAZwE4JtprlVLEEcjE//aOrqKBFBdf9jGBMzfSlpFAFP7AIoPogYfwFpNwAcdxDrsccelO15EWgIoDgw2b3tpCI6IdljKvQlBINo3ZwMBnBosCBRTL5YE0JjgWWHEzVYAdWparQpgMwmgOHH397MulWhhUAjg+eezvlCLAmgzliYRQM8zLzSS1gdQ20QtIoZMCqDtknVAbcRfQoocNiYCaHUQWFsTn3ealUCSFMBIm/B3FhXANcEEzOsgkwkJYK0+gLa5epuNND6AXwWgTclJCOkihORTXvscAM9RSq/U/LY/gHc4+QMASmkfmCr4iZTXMcJWARRRC2myNe+JBJC/Vdkcp5qAG0EA0w70VvVSw3IXjVAA29tTREwakNYEnMrhGvZtREUHLG0JDYgC5phiYwIWGVWl0lAFMKl+xPq2rUudmtZMAlirCVicuD3PUkmosiTAlYrsQ5YmDYx4zSQk3X/TFEAOC2JlCgJZvjy63YRanruEFKHt9RJANeCokWlgIml/PHZsJrNmmYDFZ1CvCXisKIBpCOAf/T8dfu//WYEQ8mEAnwNwjGGXLQA8p9k+D8AcQsgE22sB5gEnrlGbfqslIMQ2oGQ0FMAZWAxdbE+ScrJ4cdQHcOlS+0ndq8g7Ll6sf04qyUxDxMR0GWkSK+tAaQoluQYFsFaXA2sFUEAtBHC68O4nEkCe/T8CkVFVq9p2EdtWFNk8VgGkFGIkTKMUwFpNwInXHBxEbnhVQAC9DCMCwXfD9VatihIUKz9AzwvaY1eX5QonDTQBe8o0Y0twRaSaMC0IYNiXadC2+/sDzworqM897dwwNEywbJn9CwPAbq1WBVBEIxNBmwhgNlu7Cdg0H+hQLwG0vZZIAOs1Aa+OCuCu8M3BGvwDwO42JyGEFMDI4nmUUlO86RQAuhSLfPjr0Zz3HtOfTblUNJIANtsEXKsP4J6LLsVizMRPcGrkt7iO9OtfAzNnslXPOJ55hgWu7LlnzAWFSh0eqOLVV9nnSy9l5zv55Ogh6mSapv75INcIBRBIQQAzmdXKBEwIu7dI3QrHLMFawWeRAH7wg2xViggaqQAmmYBPOYU1IL8go2UCtjYFdnfjzAu7g0TQXpYZT7gCaCLL3d3AiSfK2638ABUCyPnRaJqATUhrAtYihQJ4Dr6LJVgLh+NveOYZ4LHH7C9TrwL4xaMymDYN+MAH7K8lKrjWByE9AeQkDkg2AavtaOVytnOtCuBf/8q682mnxZeRox4CeOWV7FqnnJK8r44AjicT8AwYTMAAegFhhojHSQA6IC8l11TUGwRisz0OtRDANCbgWhXAoxayHnYKfhr5La4jfetb7L+oRlx9Nft/110xFxRGkSyquMYPYOUdXSSUHOoEnoYc8c7Z2Sm/NTcyd1gAsTEpBLBUSp44a1UAOzCM92rTs5uhnj/vO29E6tYwkU7DUun7D36g2amJJuBIOc86i/3/0Y8A1BYE0jITMKXBvU0AizSgOZkApsnPmVYB7Oy0VADrSAMTUYRSEMC0JmDtuVIQwJNwLgDglBqmo3p9ALkyGrdsI0cjfABFJBEXQu3TwKjPe8liewVQN+7x+eCMM+LLyFEPAfzhD9l/PoTEQWcCHhqqrT2PFRNwmrWAlwDYCsDdmt+2AgTPcAMIIXMAnALgywDaCCFiU24jhEwGsApM/YuofGDKIKBRBymlu5iuO2vW9trp1zYNjAhbAijuJzZKGx/AbLY+BdA2DUyGmm8mriPVHDyiEEBOIOPOp07gaQZZ3sn42xpHrSu7WE+Ynhfp4MVivApZqw9gO4q44gpgyy3tj9ERwJERzRrEBqY8Q3kP1JITxQSsu6fY+0xjAlYwWiZgqzQwQufk/puqApimf1kRwGpV6gutjgJWEdf/0iqA2vE4lQm4dqjPvVYCaING+wAmEpAUiaDVZzA8HBLANAog36dQSCibgnoIYJp0LOIzyGTYcy8W2TnUOYZjTVIA/wngB4SQrcWNfm6+U8ACNJKwAdiqIZeDkTj+BwAn+J+3AvP120Jz/OYA3qKUWgTph6hFATQNdLaDs9gQbZd0a7UPIIlZe7QpzrSSY3ElWBsxrk7qIYCi2UtFvcE8ESgsX+3gSaS8VhNwG0rBc49FjAnYqAAaCOB09Erfte2tiSbguDZAqVyeeoJAuHrRUBOw0BA6/bQZNgqgqQytNgE3Ig1MIxUT3bkoqS0IRIRNfEa9JuA0+REbrQAmERBRAUwyAau/8XZcaxoY6/vzUQ8BTLNalPgMADs/wDWJAP4QbLWPJwgh/yWEXE0IeRDAkwD6AI0jWRT/A/MlVP8ARgp3BfAqmE/hbELIzvxAQkg3gP383xqCZpqATQvS2yR0blUUcK0KYM1QRooVy5IVD/W+05Aj0eylcpl6g3kiECusWo108KQ3zXqCQJpGAA1KSmoC2Ko8gJRGBvS0CqCo0jaFAAoNoQuskVALBdDU9sZaEAilrfUB1J1rqFQ/AVTXt9WhUSZgG7SaAIo+gGlNwLwd15oGJq0CWE8ewDQEUAzEAez8ANcYAkgpXQrg/QDOAksKvY3//0wA7/d/TzrHSkrpPeqf//Ob/vcBMJL3EIDLCSGfIoTs5W8jAH5mf3v8uum2A+HD3gQv4U3MwedxCQBg/fUhLYVlgolA2aaBURXAuElo9sp5eBNzsOMbLJ2iNQFstQKojCL/uLGKQw9NZwLebLNkMvX882wlD+7QrVMAkyb1s8jJmIfNMQFhhmBTOe+/H9h2S6HCvvc9HPfvvSBGV6dRAI1t5M03gblzgd/9LtjUgWE7AihAvfe0CqBqAtbemyhNff/7+MPCfaBGm6+/PqQl84yFtCWA8+cjv+2W6EQ4uu6yC5uI5syJiVhGSKTEtpJIlDwP2GknnPvWYQAslSChsjgB9BIUwDPPBDbaSN7Gn/lxx7GVe2KJ4KmnYtOzPh8cZ6UAGtLAJJlOtYqcZSJoSlP4AFIK7L03jvzj/+E1bIBv4/zgpxUr6zcB25CQ2hTA8MK1EkA1CGTOHOCFF2IOQnoTsKoAphFLCOpLA9NKE7DY3k49lfUlXVJ4oH4FcAs8hzcxB4fjb2PGBzDVWsA+gfshpXRHSukmlNL/o5Se7ufoaxgopR6AjwO4A8BvANwAoApgV0rpgsZdx/wbf9gfwf2YgwXY21/pbtUq4KKLks9tmqSaYQL+ytPHYA4W4PCbPwNg9VEAs6ji2mvTmYBXrADuuSf+Mscfz9by5ejqYss7bbZZuC2JAH6PnoXN8QJOnnNF4pqw++0HLH1XrrD3Lr4d62Bh8D2JtFoRwFNPZSTw618PNrWjGBC4WBgUwK99LT0B7IbMNrQESbnhXYZvjeQsrFaBP/zBUN5aFEAAuRfn4ZO4OnKqBQviV97ifFUk04lEacUK4P77sc+qq9GFATsfQKFeAhNwns14pjQwp54aJcpr+SF3/f1sebjrrou5JoA591wKgCmczVQAw8PCwZUoxN90jnI5miSa12lkwhweBm67DesufAgb4HWcj++EPzVAAbSxENSiAIpKnFovNuXRpYFZsAA44YSYg5BeAUyTCJpdJtxfVACbbQKmVO5vaectsV7PPDO+L6kE0CYXoDgXn4cTMAcL8Dd8ZvVTAJsJSimhlJ6qbFtOKf0ipXQKpbSTUro7pdR+7RzpXOx/bIoSBbzBTwKbGcTJy8aBuJUEUC1OIwhgU5bUUSqOD0px19LVo1o3KlT/nc5ONpHMm2e3cLv4jL731RUBQTINgpQCBURHns3xfPA5jQnYSCA0hW5HMXVUMz/N7rsDv/1tegLYBovGoSmrbsIz+usrNvE0QTJimhrTKVVwBU0kgIkmYOGHzfF8ahOwyQfQhnxwAshhmxqkrS19EAgtpieAcUTHdA5eNeIz4H1dqwAaULWY1kxl2Gkn/xwWzyBt+p9KBUHqHyBKyuLAy2syAWt9FhvoA5gkloj3xcfCViiA6phVq3Ah9h/TC7VJAbQ1ARcRXmRwsDGBSPUitqcQQv5BCHmf7ckIIe2EkOMJIV+rv2iNh9qwbEzAXO0Q863ZrOBTrwmYExWb46pKMPfqYgLmg5JJcgf0952keKkmUd5RCbHz6xKvSfr7EifMbFZPirbAvOB6DTEBaxpsG0aQqaZbI4+fn9djWh/AHKrIJE1emptQzVDitSNQFEDx1pP8+iZjpXZ7wwmgUJAtMC+1CThNEIgKlQBG3AAMg1t7e3oTsDcUljlpXNARQHWcMd2fuHIPx4QJ7H+EsMQUvkrTm4A5SZ0yJfH0AdIqgKWS3AfSEMAkH0DtC0CMCTiNAmjjAygSQD4WtkIBVNtjrfOW6PtrIqC1mIDFcX8lJkvnSru0aTOQ1FPeAPAwIeQRQsg3CSHbEkIktkEIWZsQcgAh5M8A3gXwJbDAkDED3pbVB2vj2MoJoKgA2igu9SqA6twbSxzlR9L0NDA1w0AA46Crx6SOo6ZbSTWpQ6nrvmQCmMvpFcAtMC9wJm9WEAgAZAYsIgE0JmD+dp5WAQQsVEDNQxInCQ7j236NJmAA6NHmkI9/5joTcKKpVCjI5ni+dhNwAwhgJMWQ4SRtbelNwN5w+KyTxhYdAVT7uenFW1y5h6MWAuhZEEDTvff0JJ4+gJoGJumYYtGsANoGGtVKANPmAVRXAkmaK8Xxj48NrVAAG0UAxfozEdB6TcAiAUw6rlWI7SmU0m+CpV55FMDpAB4DUCSELCeEvEsIGQawAMD1YGlbjgOwNaX00WYWOi34gJPmzSLOBGyjANZLAE2/ac/ZbAXwT38CjjwSqFbrMw03iAAmESRxAunokJ8X77z77w+8/LJ83JtvAgceCPz3v8LG3/0O3xhmcUdxCqDJBDxtGvucRgF87TXggAOAR9VeZJg5M8d+XbtdQqsJYD0K4FVXAZ/9rHSuNARwBpbgMnwWh+Nv0va0CmCiUibc4xaYV7MJGA0ggBFoT0IlE7BtGhiRACb1//YfnIjv4uyGK4ARwhJTyVVkcdJJMcl9KxWc9uoR+AwuDzbxQBV+vbi6ef55Nk7wMtkGgZRKZgKYRFxE8qEjSNq5rWJWGxNNkCnyAHqePP5xa1mtUcCpFMASxW/wdRyDX7PvNRLA3ap34Bocgh4sT60A2pqA+xCm9iDwcNZZwDHH6J9DaUVrokQSE0FTSl8D8A1CyHcA7AjgAwDWBsvntwzAiwDuo5S+2cyCNgJpTMCqAtgoE7BNwANvYBtuyMgAkEQAZQeQhgeBHHUU+3/ggejfcX+7k+tQAwFctiy6LYkAiJO4ahrjdfvww8DBBwPPPhv+9tWvArfdBtx4o+xX+cPB7+I0nJRaAdwcz2PqFAqApAoC+fGP2f+bb7ZTIsg116ATgxiCIRspUBsBjGnoTSWAn/qU/F1RAJPa9yfBlpj5LK7Alfg0OjoY7zLVZbnMzpnJyOVJYwJeBwvxZso8gEEamHx6Ajhjhvw9ck1NobOooq0tl9oH0CtaEsDFi9H12/NwNoDfIfQCast5EB99kg+g+ALH+2+k/8R0jMEhgnPZAh/4/vc1O9xwA/Zdfjn2FQggB5/U4+pmr72AhWF8VyoTsEgARWI8MhKfKF4kH7qypVUAq1V2TRPZUlcCGapRAaxlJRBRAPG8+PnWe/J/+DpYVoSLcGwqgUIc7y5dxAIEFmIdABfor6WkgeHPK25sN5WnBytw7rnMPHT00cAWStbjob7W2IfTpIEZoZTeSyn9GaX0OErp1yilp1BKLxvr5I8TPXWySeMD2CgTcNwgwUkX75TPPQd89KPJx1Va5QO4YIFd3jETlApfd1Yyu5k3L7otjQnYRAAB4O235d+S0vukVQAnoR+bdLKZIkkB1M1nkesp9deLacHnDts1gdEYBTBxDWJLE7AVFAKYNoUCDyQwcQb+bDo65H3SmICzqNopQToFMCEKWAdVAYxcU3OSPMr2JmDh3qitAjgQ5ucXCcdGG3p45x1g9mz/fIZxV6cA8rYZeXZxPoAVL363mAaUFPEPyOQPaIwPYBoFUFe2tD6AQEI/ShkFbPIBTGMC5qskivsmrrW7TF4TIg0B1Pme92BFIlnl/cemH4nlEecIMZWW7npD/Sn9gGrEmIgCbhUaFQRig1pMwHwQ4OVsbwfWXpt9TqMAVip2k0hqArhsmd3KAyYohVp/TnMIoPhcVQ4jEkD1tzAHnL5hpCWAALAFYTeQRgE0QmmwqzARywozAQCdGbl9RtrZGFUArRyhFRNwWt8ZHlBl6nv82bS3y8VONJUaCKDtUnAFf9LkaWDqMQHbKIA5VGoyAYtRwLFji3Bvkg8grWLWrOToY50CaCQQcSbgUriztq3ERJHZrv/MQUg4XrfKBKwrm1Y9NCiANsELaaOAa1UA1e3Vqrwtqa8XB+XKSJPYWTeXlZG3JoA2/UgkgOKzF5Pp6yK4HQFsIOoJAtH5ANr4GdRiAlYJIJDsQwHICiB/G7V5E8rWQADrUgCVCp80IX6UHR5mJnC1gyQNtOIErO4rnkvlN3xgNJmmayGA6w82jwCOoIBKlj3wjoz8wONISDN8ACPlbyQBbKECKJYn0QQs3GMGXmofwACKCbiWNDBpCGDaIBCqDCbGsUX4QUoD45OJeghg5Jg4BXAkgQDGRBnYKIAicjm7MRqIJ4BJ47VoftRdR2vKNRBAvspULLlKqQDqCGBaBZB/T0MAS0PyidMogLq5LA0BtAkoNBFAUQHU+fyrxLZZGBcEcEJpOT6OmyMvfnEPLk4BTGpk5TJwxhnA2ngbp+AnmILQkS2NCRhI7kAAa7Qc/NiLL44vo4gqMpG0M9p7rJMALn5XHkW62uMb+YsvApPpcpzX8xOsjbfxEdyHo3ERZt/2F1z3lduiQRI+ymVgBhbjFPwEOw/+CzjvvOCBigRQIpblMj694BxsiWeNZM40CE6jvfgxfqj9bXYfI4C1mIAj0BJAJju1E3sCuMUtPwOBFyGAaRyoVQJo46SvI4A213zjtWpdCmASARSJh1jsZpuAAzTDB1BzkhwqUhoYWxMwhsPG+1HcjnuP+JP+GOHexMmOE0D+PrF0KUu6q7pg6EzAxvEvLgp4JKwM7ctCjAIo+gAm5WnbDo/jBHousoTd3/Ll7L5ef12/f1wUcBoFUNe+tO9qBhOwDQFUfQDTmID/Dw/h1zgGU56+O7UCWKnITS/uZe+ee4Drr0lPAG+/HfjLX9IRwAceAH75S/ZZJYBrv3IvS6iqgTjui/OKqADqDC3Dq1qjACYGgawJmDH0Om7G/ji1IPdom2TAsg8gc+hPamRXXgncdx/wFD6GbfA0tsMTOAg3SOfVoVYFUDQBcwJ4zDHAHnsAm2wSX1aALUn0pS8BF1wQLYuEZctic/Yl4agvedJCzhM65MpQB7HXXwf+gK/gkKXXYa/81dis7Eds/IFFIpE/Uu0gXS4Df8XnsTduY6tUnwhggw2Agw4ym4B/+1scMe97OALfw2RDGhHTIHjG4q/gvXhG+9u0/vkA0kUBcyQt8TaCAio5dhOqAhh5fsLN7nDdd/FlTEY29xUAMQpgzAyoI4A8glJ/Mr0PoI0C+NeLq/C6w++NJoAi8fjYx4AHHwS23z6dCTgDL7UJOEANBFCqa10ZNYXmPoBpTcDigHc79gKuAxbd+xHM3Pk98jHCg5Hah6IAHnkk82++6irgGaHb8KoRX4Br8gFMUgBjsM02rKtwfzRtgmUfj+P9QAV49fapAL6IZ55h93PRRcA770T3b5QP4A47mH83bdQpgHHkSlwLOK0JGACOwW8weOHdyO31vLl8iM5rxaK9ArjrrsBeihXLhgDutRf7f+GF0d/KyGvL+pGPhJ9VE/Bhv92FfdhhB2C77aTjxOcqjn9TBVFI19+HB5wC2HAU8vYE0POADKqYCOZkmgENGnlSI3v3XfZ/G7CFS3bEQ8FvzTYBr1wZbn/xxfhycpBcFmefzQavHXeUyyJh2bK68gM+/7xc/6oCqA625TLwYTwAACH5s0C5DHwQD8sblyyJXEN683rppeCjOpjxlQVME/PWww/rfwCQ80aCMsXByq9HowB6OTZbqoQsyZz7UdwR1IWRAMYwEfV6kYG6gQqgaoJqlg9gRwdbUuuGG5hKkCYKmEXYss+tUABVEctWAazJBFyJVkDldc2KnMKDEfsQ8djxvL899xz7/6zSpdUE5eLnND6AXjmBAGoaXS4H3HknsOWWdqY9ET1P3Cl95+O/ikb5AO6xB3DLLfJYZksACQn7Q6wCKBCrJBOwmgYmOG5oVeL8pZZ76dJ0JmDVXSeNCfitt6Lb4kzAwTUVBTDAkiWRfXm9tbfLz14cC3XPrjiwmvgAEkKmNqIgrUAHSXCUF+B5wETIchc3Ayc1Mv6GFVxHUOhsTMBpCWBZIIDiJP7885qdNcjmM2hrA7baCth5Z7ksEpYtqysPoBp0ohJAVQr3vGiAiw3KZWAZlGbpZ2Q2moCFL3wwW5JnETjZhIl5MDspss3z84plaSUoUxx057YigHm9D2DShLIJXg7aFm9vo0EAbRTALOrzAUwTBJLPsxyMPT0WREnxAbQKBtApgIX0BDCmKAwNDALRPaTqSo0pQHgwEgFUTMAmqD5WQI0mYIEAatuK5n7aChS7784+W5nIBbS//ZrVfklpYOIg1g0hwL77AjNnRn/XHoSw7+Xz5gTG4vBCq+lWAtERQFIZSW0CXrJEfjzNJIA6a5YNAeTtI0IANbZcXm+FglxHYrl1dTvmfAAJIUcRQk4Uvm9FCFkIYAkh5HFCyMyYw8cEgrQLPpJMwOqi9zwQJMmcpzYskcQ0RQGkepKki6DVQmi4/NrNUABVAthZkG9K7T/VKjNPp0W5DCzHFHmjzwKMJmDBE5d31HJG9KymZgKY645s4+s+1kMAk0zAJbSFBFB5uUlSAEUCWIsJWI2KjwzUDTQBZ1GV2l1aBZC3aZsgEBFpo4CtggG0CmD6NDAqmpkGhp9cVIWqKzQOVCYTsCebgE1oFAGk5bAytG1F0+jE3pFWAWyrkQDWqgByiM88UlZKlUAOtkMuZ05gLFaLV00XBazr25lyKdGHnW/nfa+3V76vpJc9mQDSVFHAtRJA1QQcQPOGIxLANKvAjEUF8BsAxNHrfAArwVb/mATgxw0rVZPQSeXRIEkB5BHAHDYK4NNPAw89JG8TTbR1E8D+fpat2N/wyCPA8j69K6c1ARRGFW7G0g5IfX2NJYBt8SZgz6uNAG7y9t1RtcnviWLEldSBNQSwQgrBTqoKJWIwF1UAh8FGtKzHymEaVFauZOZGHRFKWt91BAV4bZZBIMrg1IEicll2vkaYgBsWBKKZaXKopDILqdBO6MUicOutQLEoKYCJx4lQfACN9cjR28uyeysgKRTAHfFfrI/5wK23YoJgobBVADurqzDp4duQTTDriScsFyvoRh/2Fzx46dKl0WOMJmA7ArjWC/dgPbyBHd66FvvjJmRRqc0ELJisbU3AYv/gz/2WW+Kj94tgg2Vu5TKYUkeJ0BFAAg974A54S5fHHisRwEcfBebPl+rEFCVdFcZPHvhlSgMjtlsC2QewJgWwnKwAdhaXY0/chlkz2fWWLElnAlYVVdPcPDzMujv/fWs8je63X/B/De+1LhNwjALY1mZWAHXjS2lw7BHA9cBW/QAhZBKAnQGcRCm9EMBpAPZqfPEaiw5Pbk21KoCmRlYqMSfiG25QzmWpAPLzxhLAffcF9t4buOACvPUW8MEPAsWqngDa+gBK5k+dAiiECFeGameARBkkVQLYEAXwzjtx2r274X34n7w9KQpYIICc3JSzoVySgWdOX5GdGN3mE8CM39FNpGC33ZhT8h/+EP0tktxVKcAICqAF3weQpDMBA8Dk4iIAjSGAQg5ghlpNwJqKSr2OqXq8jsh961vAPvsARx9tVADT+gAmKoAf/SiweHF0u0IATdfbCK/gv/gQ5mNDYJ99cCMOCH6z9QHc5icHY+Nv7I0Tca61Cfjdt8q4DXvhRhwYbMv0Rv2dTCZgfqFYAvjf/2L/X+yKN7A+vnLHobgJB2A/3GxWK2MVwAQCqOuMwvsRv+ZhhwFf+Yq5yOLarmJaDxOKxWgQyGdwBe7AntjhWx+MPZbf/5SBt4APfADYcMN4BTAggFlU/PmHt1GTCdhEADswXBMBzFRGEvvE6f/7BG7D3vhy9i8AogqgiQAGqd0UUmWam7/yFdbdjz8eKKCEp7ENfnPP5gCi41IjCSB/LqoCKF5TV7el4TFmAvb35UX9MBhtvsf/vgDADM0xYwod1J4Ael6UACYpgLqXYqA+H8DIG9SDD7L/N9wQLBNHhdHrgXur+PGP2XHDw5Y+ERoCKB0nqDJesXYCGFEAc/K5dD6AqQngPffot/s90RgEolMAM6ECGEcAeS4+EQEB9OJNwE89xf4/rIkjiQzqCqsbQQHwCWB7UhCIBh2UTdi1EMAJOfl6EXNKrQRQw1x165jag+qJ3B//yP5ffLE2/xxg4QsmrbXqJRPAp5/WbiaWQSCbQ3bq3R136YrCYFAAex67AwBwMK6zNgHnUMEH8Yj0c2a5ZtkcgwLILxTrA/j445FNs/Bu8OwUi2YsASReQhoYSxMwAFweXS0ugPgS1IEYqdCHTgHcG7cCACa880rssfx211nxbGSb+lncwAgga5g5X1E1+fxKSdCFsXoqlqOwahlMMJmASbWKQjb+BXjrPhbkd8iy3wOI+gCa+lIwV1oSQP4cL744XIIRYC/o4rPLolq7CTjBBzCNCXhkDCqArwD4mP/5UwD+Synl3WttAPEa9hhAhyePBkkm4LQKoCYIiF0npQ+gLg9gXO4nsbN+6P0j+MEPmBM7oM91FEGSD6AwU1SKtTfMSBBIVnbYUN+oalIAEzJwGwmgJgikmrUjgAXNqhiBD2ACAYxDEjkaQSFoLGmjgIHwPmvxAdxiI/l6kXamueH3bRHdFnlcughNhTimIYA5VPR9SLg3Xf45oHYFMO2ztjUBU0Sf4fe+y+7D1geQo4h2axOwjrjnlmsGu3p8ADWZjNtRRDZr8MWMmaXFydXeBCwcbxl3Jt6jzTKHcT6ASeD33lkJO5qtAlhVFEBTfzcpgAAwaaHZn8ikAAJAW6asvZaK2UOMAKsKoOkxB9YySwIolUkh7qI/s+puokNLTMBDY08BPA/AcYSQpQA+DUDMorMrYEiENobQXk1nAlZ9AJMIoGkt2UYEgcQdJw0k/kl47jPj0m3i5D5KBLAzK1dkQxTAhDX40iiA1YydD2CBRhuErQIYh0j71BBA0u4rgDWYgNtIAgGMYQgq6Y0QQE3n4gExIpqtAOZRTiRyJgUwlQ8g8SRzZZpAjnoIYHeRETFbBZBjGB3WJmAdASz0pVAAbUzAGgLYhhIIMTyHmMInEkCdAlgnAdTVkQodAdQ9Ux2CYIlyawigOlZPesecUsKUBgYAOrLxabCGMswhsbO0EkDUBzANAcyhgnI5vu9RKqu1XRisWQFMSwDTmIBHhsaYAkgp/RuAnQCcBWBXSun1ws+LAfyqwWVrOFQCaBpDykNlDL+zIp0JuFrFytf0MnmsCbhSAVawxMOFgeXIomIXBUyIVgHkK5VzAmhUAMUeKVSElgAKv3ulGpgMNOUE0OETwKlYCgJP6wMYnwZGo1AlKICTq8uCaEbpesIXPiBUswUrH8A4AkhMQSBLlyayBBsFMCCASBcFLJa7JgKo3HPkRUMzik4pLw58Io3ltCCAaXwAc6hYE0CTAsirYdkypUpEBZBWQUjYX7XuIOuvr70+abOLAta9DM1awSZmWx9AjhLarBVAnbrV1pfCB1AwAfeAjXHREzaHANZiAo4lqsuWIRN41oUV2JaxI4DiM8jAiyeAy5cD1Sp6e0UCGHa0aiUc/9KYgE1zCqsWimnojSiAPe/UqAD6L5mmYXlh24bB5ywquPdeOctGGgLYka9Kv6mY5q++IY6VKgHUKYCqIYS3j6aagMeaDyAhZCcAT1NKf04pvU/5+VwAqTxzRgNtFTsF8LUp2+PHv56CDSGH98emgdl3X3zy6GnYCFFfjlgFcIcdgClTgP/+F3/951Tcir2t08DwOV2aILfcErjttkQCSEtCjxRO3kwFUB1UOkgJO+ARLMV0XInDUyuAKqEEEK8A/u9/uP6+aYHzvHQ9oQ448VdNwKY5R0cAuQlYqwA++ywwfTrwiU/oT2i6FR0B7GDXSTIBDw431gRc8OROYGMC/tYrx+JW7C1tszEBN1UBJMQqDcwTTwDTpgEHHyzsINwjf6ng/XWttTQJgacoqYmCQtauAK613LDSguZmVRNwrAJY1qsVHO2r4hVAnQl4dvkNLMdU3INdoscaCOCkSekJoFjehpqAX3gBmDYN/8K+kf42sT35xVi3FJyRAM6fD0ydire3+ChmzAB+8Qu2uasYelrNWTu8T1OUdAW5YP7hBNDU3ysV4FT8BL2Ygc9Cdn7siVEATT6AANCeiVcAK8Iypny+ffPNyG1EoCOAPKhQRwCPwy/Qixk4qvKbiAIoEsIsqpG6VL+LCiDRzUECbPIA6ppyeXiMKYAA7gawueG39/i/j2kUqnZ5ADctMWv2Pvi3tD1WAbz9dgDAQbg+8lNsGhgeBfCtbwEA9sB/UucBjBCh730vSEZtQwBJkgIozEjVUm0Nk62sIpeznZTwFbDw18NwtdYHMA5aH5o4BfDSSwEA+4Ol4pAIoDBCBQQwZ+cDmPeiDYIWYgjglVey///8p/6E0SIxKPdWQhtyXXZRwLp2kKd1mIBpehMwAHwUd+KUU8LvkWtqOhef0HM59tJTKtnnaLv68gQCmMlYpYG55BL2+cYbhR2kIJBqUEYOHq+l218qQpsdAdS1986RPv2pExTAYXTU5wNY1gQ9JASB7NzP+t2HoVYMtOrJZhuU8M1vGghgPT6AKYJAJFx1FQBgL9weUdwntCePi/PnpyCAfkOb/RKbVn0jESYMh8rrzdeGfcWcBiaLom9m3W7TIXzzm/Em4DP8Nc0/g78BABb7sZ35otmZXFQAq5kcLsUReAvrAghdU0wEMEfDdrL7VtGXCtNj5i9tEgH088rq5udf4HgAwPmVb0oEsBNDiQqgWnaRAEp9Q9OhbEzAqwsBjHNWaANSeLSOEgoj9nkAAaDHXxOWh9En+QAC+rd0qyhg4aS2BJBvixDABQsSfQClaF7h5JE8gEr4Xa0EcHg4Ws42UpJUQV0ewLjougy8qEhl6q2azmkigNz3s5oNl02w8QH8Ev4Ubpvkm4CrGgIYWeJDDxsfwMJEuyAQvmC9iLoIoJfeBMzxk58A//634ZoxCmA2G6awsDUD775T7QpgYsJkJQ8gIC9jFnnMvAB//rNcBN8EnJQGRqey8Gdo4wNYaxCINskv1Tg6JqSBaaMxWXo15T1g7xK6ugzR2PX4AGraGCHmcUgHtb9N6EgeF+fNq90HkKNrKCRJW25cCppSnAl46gZsMvjX3/vxta/Z+QAG23yFLlM1359IAP+39/fweVwaWEAKCSZgvlQmAPzgW1GSaXrMfLqUAjoKZgWQ50PMoRoxAScFgZimlEwmmQDy8udyZhOwrh+Wi62hU/oEcj4IIXMBbCBs2p4QMkHZrQPAFwFoVtYbWyiU7YNAAGCSrwT1YjpmYZFVImjVzAlYBoGkJYCEBA0zogwsW5ZoApYIYJwCqLROOlKbD+DQkIYAekWpvnQ+gOqbtgjusCuti6qONPm870xYjZg0pYFeqGBOAL2cnQ9gvsrKOIQwc3Pb5A6gN1QApecXSfCnR5I6JhJANQ2MWg2NJoCq6mmrAAbH5/XljCOAmQxLYjs4yP4mTowvIy9HEgFMSgNTrRpSmEhRwB5AKbLZcMcIAeR1wjPx8iJYBoFo11s1EUDNScT0FxSkLhNwsI9ouk1QAGMJoK69+O29HhOwrQ+gCCMBFMaPiAm4Lf6cxSLw2mtAgVQC1+V6CSBKJXPbFgggnSBPBnEEsIJssGoI4GcagJxaR4VoAuYvM/y4dhJvAs4LCmB7KapWpPIBjCGARbSjy18JTDUBi/OzLghE/V6LApjPpzMB1+NqlQaxBBDA58GSPFP/70LISiD1v1cAHNOMAjYS+bJ9GhgRi7EWZmGRWQHU+EppHZ3jrim+PWerAPfbqEUBBNAzoQwgbzYBF4Wb0PgABveoFLhWBXBwMFrOAi1J23Q+gHEKYBZVlMsJBLBQYKOvhgBKk7pGAfRsTcBVVlmDCCf29h4eBFJVT187AdQogG3dXAGMDwLREsB6fADjTMCauo5c23TNmDQwmYwmiW3SW1w5WQFsxEogAABKUa2GjSpi1TQQQFsTsI4A5j17BXA6WRaQjwJG6jIBA4glgDofwLQKIJdmW2IC1qwEEgeVAHa1xbfDF19k1TBzWhlYGi2nLboGheCbYtGOAHb7/kC+TB8XBLICPZjOC4j0CmCmnU0gJX+VFL7dpADmBQWwoDEzN4MAiqJCJ4aCewTSm4ClZxhDAOMUQK0JuEUKYJIJ+BKwFC+7gxG9Y/3v/G83AP8HYCal9I/NK2ZjkCtZKICap7EYawGIMQELUSGT0Icn8T78GscG29iDp7gDe+ALd35WX7jloXNvRzVcViGOAPKGqSOA65VfBWBpAhYm7AgBVBq1N1I7AVTV0Vy1hBwxE8AkBTADL3kliZiFYJN8AG0JYM6LEsDOKYxNaE3AEtMwEyUbAtg+ySeAtAYF0KtBAfTJS6wCmETKSiXzmtMWCiDQWAIomYCffRaYMwfYZx9svt8GuBO745JX/i8g8hLUa1er0tJh2oh/AJggG1FUAnj++YFLMHDZZZiP9bExXtYrgP4z7O8Htt4aoX+l5tnNyC0LPhcwoq+P884DNtkEWLQo2JQ3EUD1BgW2xX3JxLK0SgGsOQ/gYYcBe+2FbCZ5Wbe0BPB5P4Zi9oz6TMCdgzUogBPtFMBKhRFAEZwcxSmAYhqYrN+WuQIYrKtu4QNYNwHMs511QZrcJA2kTwNTqwlYzbSmpqwxHAZgjCiAlNI3AbwJAISQXQE8SSnVLKG8ekAlgNoxRNN6ejEdADC5vQQUWeOjVFCQhNnvIFyPTfGStBRZHmWsjXewB/4DFuikSS8vKIDtI/1gyytrVgLhiDMBA5jmv8VZRQEDrBVms8HcFKzsYDABf/7zbK3Ms88Gvvxl5dw0ajLTKYAolZDLUfAXI7UjeFWKTgsFUIJOAQSSTcAJCmCcD2BeQwA33LIDuJUH2FCUy0KFCA2vC4MYhOpVwZDoA5jpQH6iPgpYXZlD95JQkwm4sxMYHESuGuMDmETKVq1CPt+mv2YCAeRm1YBo1UsA1SCQm24CFiwAFixAG4Dd8TowBKyz7H8AtoucW4LnScNH5N5MJmAlDQwA/OpXwC9/CeBzn8P6AM7H8fgX9o0Un798XHMNG7qefRY480z9zU7PhC+ZRgXwxBM1Gw1Qb1CbHiEsy2iYgCNLFAJaNpKBB1x9NQBg4harAHRHjxPGD/XFtDOBAPIVAJllJrymkQBKCmwZFeQxHUtQKAk3ZEkAVX+gOBOwiQCmVQBtCaBoAs4N2puAdUEgcQogT8sFRNPAiGOjjQLIhYOICVh5CLx/ZTLsL40CWKvQkhZp8gDeuzqTPwDIFi0UQM0gtgxTAQDHHVMOFDlpnhJYlpo7EDDnSDKhrRh2hFoVwAkdVbVoEiJLuvkXmOEv6BesaqK0Tlpm+335y2yf7ZQ5EdBb/3Q+gCiVkM/G5LLSkIEn8T70YhoAQ9LOFAqgRFI1PoA0b+kDqCGAha58cGyknMIIpSYbj7uVCAHsmBTkAVQTM6ur0mgJoJeQB1D3IH0brEoApXaWlPW6r69mEzC3OAZV2GgFcJ4p35lmolYLr1zAlgCqCqAOWVT1CmDVYGLTNNZpJFQA21BKlaxaC5soAg5KUUhrAo4jgJYmYO34pyln20g4teWy6RXACQVhcteYkIMk/0K+wFgTsCBdct/NLaC0TUsCSCbLJuA4AtjnCw9BuVP6AJoIoMkEXBAIIFnVH8kGlKQAbrSu4EMYkweQm6SBqAKopoFplA9gXQSwHNM2Gog0eQALhJDTCCEvEkKGCCFV5a81lLUOZEoWaWCGo4rTUp9wkEo5OgEBkvzRpUmHaLNMkIi2Ujhqxa0EwsuvG0gmdLLWZ60A+heYMoURoxUr/AFCadTcB7BQgJSkVYRuYtEqgMUiCrlwm3pcdiT6LMrIB067WhNwnAIYV06NCZjm06WBEYNAxIyrPEO9roy6FwYOSoVie16kwXoTusOl4BQTsLoqDaGatCCKCdiGRAQm4KowaGbZe1NwfBIp6++v2QTMrefWBDApCARKImgTAdRFgTSIAKpBIDpQkAjpAMJnaEoDImIKZAXQ1gfaiDQE0PPQ7sWsl9skE7DWBUbTxjqF/HoFi6TO6rNoy4XH6JoKv2SeWJqANQRQXQsapZJ5vWqRAE6SFcA4H0C1PIECmEAAAxNwh0wAucJnahrSi6swLnAkmoBJ1ARs8gEM9mtQGpgkE7BIAAmxNwFTCiBGcW0kkoJARJwLFujxbwDXA5rRaIwjMxwlZ56n+IIpCqAHEsriIyNoa2N9U2pkAsuaZFAAJf83nY1U3L8YJYBpFcCudjYAGH0AVQLoXyCbZQlve3vZygczC3oFkHdUXdZ8EwGMREhzE7DhOFKMThgjKATJoa1MwJzdeF5E0ZLmEJ0JON+WTAArFWRpFR6INMggl2N/pVJNBDCfZ0Uql/0BRzOCehMnAW3s+EQFkEYnTJUAWpuAEZoeAWZhWrGCmZ2nToUVAcx3G66pGb1FAthwBTCTCRXAfAV46SX9eXT9Vb22Ul9GH8DOTnl7PpkAAnpLQrZqkFY0z24KZB9AGwWwiLZIhHkA8eFRGr/+oOfVrADWkwamVGJ/krKk6UuFSjjWFEjyC7tKAEU/yUolOsQHCqCiAokBCBIEl6BOP3ihVgUwM9neB7BL8fcMFUB9ffMsYSEBVHwAaUwewGpVWk0F/f1SHk1eJh10PoBxCmCcCbieIJA4AsifSSbDfLDFe41TAEdGagsQqgVp8gAeAuA0Sul+lNKTKaU/Uv+aVchGQUcAIw1MUQD70R00ZpTLUQUCiFlvjSGPsjy484ZiiJTMD9mZgLe+4Uc4DadrJ47OdoMCeMEF8I47Hr84W68AAmyRCsAnEeos4feGSc89CBx8MNqWvRO5tm5iMZmAczEm4Gw5OmGICqCWAKob+Gin8QE0EcCAlBUsfAD9hlBCm5TwG/nQBBxHAE0mYF7s4LnrJtduQQFUVuaoRQFMFQQimIAnyRamsNDq6zxHShNwMwngUJHgjTfY5+4lrxpJTKEyhL/hcOyDf0nnlmCrALa1BblFAVgRwH3xbzmwwkfWM5Auzc1O9qIK4HFHj+DF9x8BXHut9jTSS42K2MVoo+VRc0caz8XhO1v/aOnR+Ap+X5MPIBD1h01yUTAqgDFpYHJUPqd0iVWr8MmrD8aD+D988KFfBJttTcC3Ym9siWdDAsgnBVMU8NtvAwcdxLYji+wUswn4/POBE04Iv6vWqiQFkF+XE9tcp6wA8iAPbbdSNy5fjouGjsRnBB/5RAIoWD6+/9hB+DDuR7EI/O53wNFHh49MXFFKHHN1QSBq06qVAIoKoFqvcQRQXTKwmUijAE4A8FCzCtIK6AhgZBxRCOBKTA7fEMrlwAldyi9lktl85FGWO3u1ylqPYSDKDVsogJ6H999yOt4P4GZ8PHKOyRPZ9d5R+dm3v40MgAGsLW8XLsAJYG8vgJlKEIivAK5/xIcBANPy0wD8Xi1aBCYCWMiaTcCZkl4BFE3AkXUby2XZiBETBCIdW6sPoD8SFdEur1usmIClayUogOutB6xcyT4HTUTzWksmdQPtbHZLUgDjCGAhfL+REeMDKBKPSGQuP1F7u37kT2kCbqYPYLlCAoIw8S3zeqe7PHk+3ovrcDj+jiByWxMEolxahpAVtoh2TODuIpYKoA5GBVBzs5OqMgEcGgIGfnspNsXlwKGXa583I4CG8U28wSS/T89DW5wJ2JQG5okn8OmVv8WnATxX/Wr4m/Dc38bauBhH4lScCSBKrPr6mFUjQJxSiRoJoDJhl8vC+8/dd2Orl6+PnM7WBLwh5uMf2D/cd7PNWLRPqYSsHz8mVd+xxwbrqVWRRbbHrACedhoLlDn1VD0B5EQuiQC2kRGAAjnFBFyIMwGrz+Hee3E47sXhuARXgGXLSCaA4TmmDS/A/dgJfy1RfP3rbNsXvwhsv718XzMQDo6dGMLczbvAres6BbBeH8BsVg524dcxHIZSaWwqgDcD2KlZBWkmFmTmAgDIcDQraKSBKSbgXkwPFcCRkSCgSnqrTFAACxiRGwq/qIkADlkQQGHDZKyMnGPaFA8TJjAioFuYfhqUjcIIIgWCGIJAOLIakqYjSqWSKQgk3GarAMaagFMEgZgUwDbfrGDlAxinANbgA3jccWzJ0YhCpiNGUycFjEjNy2ejAGZrUQD9ncXzRfxUeds05Tvs7x8zCqA4AU+IIYBdRU0nqlUBzOUkp3TeRmsZ9JNMwPfhI/gjWJj+hGpI5LjpLC4IqZTtMJsoAfkGE0hVognYpAAK47FOAby95zBshFfxA5yBD+N+ANF6tFmnWkTewp1djQJW876qCiAAWfX1yym5xYg3qGSwXhvvhOZOLrmbTMBvvx2eUmMCFgTEIEqau5uoBHDd9eMVwGCtW98XL9fJ9uftm79kWimAGpiEXt4sVGIFyO/KXM8RTcVrYXHwuQuD+MiOcmBOM3wAx6oCmIYAXgjgcELIDwkh2xNCNlD/mlXIetFPWAfIDKU3AfdiuqQAapdYszABRxRA7cUZsgMWBFBolToCSLwqNt+cfeY5qERMhGIXMSmASqMmlbKkNlXXXjdybpM7T5IJ2EYBTDIBR4JbYhRAEwGUjm0xAZw9m0Wj2hDA/JSJRgK4apX8LpPVqEs8gjQVAfTrU/QpjKQqEkydWjSAAAb3lmR6rFRi3Sg4ASQEaHvFTACJTg2t1Qcwl8OISAANCmBCLm0AQLZiMKv69bISk4M8puIKD3xC9GKmgHK2Q27TkR3SKYC6NbMDmAigEGWmI4BL8rNRRAcAgtewIYBw8pzKkjdEh+ckBVDwATRlClCD/dRcidIlfDXvKbxP2icDTyYGYh0qCQxXYnK478SJ7L+JAAqO2R4RooAVBVBIPYtqlV1eJR5Z36RrSgMTKIA8qbxqAvaSFUAvJhdikgKYRAA54ghgVjDf15UGJoYAZj17Algsjk0C+BCAjQGcDuARAK9o/sYkOGEgNiZgRQFcghkSAZwk9yWGBBNwWgVQPJ8NAeRrFkvwPGyxBfuoC2yMmB6FC0gKoJoHsFLBJng5+E40xELHG4rFMAhkmPsVFYvICQogrcoH6hRA1QScSgFMSQCr2XQ+gJIJmAeBQENUY3wA+eDCn3scAZw4OWskgICgAhqYBCcPqdLAaAhgpI2KJmAd+vrGjAmYE6CJEwHyguZNKYCmLtIogDwIiRAWeGJBAG2CNJIUwCqyWhLHJ8SqokqJGMm2xyuAYt0nqTnVanoTcBwB9K9dpuG9iS+GQDiORYbnFAqgRACFe1RfoGN9AH0170lsK+2TRVWeF2wJIE/WaiKAQp1RIuQBVHwAl4UxQahU2J+qVHnZ+ETQ/Lo8ujnflZ4A8iwbOiQRwFwCAeRDWBwBzNHwIo1cCUQkgGoAV9xawGPVBPxFAEf6f180/I1JeJTdJhkaihAWGwVQZwKWCKCFApiKAPLz3X8/Zt74O305kwhgNVQAAwIoTOgRBZD35Msuw7ZLbgXgE4iIR2xFikbLGiKrVYgKYJAupVSSIgwzVeUtyZAGJlUUsJEAUrlONc+iSNusfQCTFEBTHsBu9GN7PIZv4QIANCCANkEgkyYhYERTyotxHr6DjfFyMD+ccQbCe9cgWx0BBgYw+7KzMRevp1IARRNwZBLyCz1sCiBQFEDpsSQogBsvfwTH4kKUilS6lhGWJuApE8vmCGDoTei976bwARTUP0DOS2YigEm3BgCZSrwPoIeMlgByHzZRAVx23BnSPsuHG6sAFrwaTMCCmlWthA3ltZfDKNfgd4UAckvGd7/LcnvbltXoAyi0zZ/iFOmnLJWPkS7hkzmeTzY4JgUBXIGekEQIBFAbIS0QQC9jTgS9Qpg2uAKoEkCa4eMfDS5y773AN7/J4oYiCqBCALMxJmBurVmJyaCRfGLsWScSQE0QlE4BFH02ZyD0j/kIHkD22f8F3+PyAO6LW3A4/laTCVh9QRCPWy2CQCillzSxHE0FBZuMOlBEO4oYFvK1qZVPh4uSIK0qgFoTsDbdfIgsPPkNgF/UNBBxB8OddsIcANtjO5Qq75f3EY7laxxK8Dy85z3s42uv+duElh0hjZUKS1f/uc9hPwAAZSYClQRUK9gYbwRfTal1VIgEMAjJL5UkczLrzOHEmClHe7JqAo4MEGrvF6OAK/KbXrUqqBuakaZE05mA44JATArgRKzCY9gBAPAyNkE2u69U7DgFcMIEAJMnA/k8usoD+A7Ox1Qswy83ugT/+x/wxz8CP/gBsO5aeikpUx0BTjoJs377WzyIX2H3shIxZGkCjiiA/oeFS9qwse7C/f3IZpm6wnMdBukfdKZunmQ2A3zjig8CAK54fhMAezWMAG7SsYBV9rrrKmyBIZLCCMAzT5Sxu7ihWsXs2aELVr0EsFwWe4MeWQ0BpBQgggKoU/F0CuDUX8pRxkW0a03EHggjBGkJYDWGAAoPZ3CtDdC1eD7rW0IbZISB1chfL67ixwCWLAvLv812OeCJcPJci1m+8eKLwOGHAw884O9Yqwk45rgN10s2AQ+iC8VJM9Dex4IQsqiaTcCKD2CtJmBJAVR8AMXubSKAyGRQRo6ZuCsVoFDA0Uczt6ILLwTefZftVghMwHIaGO5momse1aEScmB9gUycGEa+gflYFtGRTAA1Crg4BfDnF7cYA3n8seBznAJ4ix9seUl5PwATU6WBUQlgkg/gWFQAV2vwVRpU342IG8+grDptsMN0HPvtMExSqwAmDX5QnIb5RU2tW9k+E4sSlwUDAHzta8B+jL6hWg0iloNdhXKKSWH5/qqtZGQEkdaZqZYlCb1uAiiYLlU/Cb6ObjUTvqckmYBJSZlkxDyAws6MAAr7aZ7hMOlMJoC+y0AJbaBid8pmJQIoCZDCsxMHptl4O6IABsXStJV8Hmxwv/NO3DydCfATMICLLgr3WbUKRltitjICPMQC+9fGuzX7AJqCQErUYD70R2ht9LHm9Z3nQRNzTnb1viFdy4iERNCcAM7qWMk2TJ0a3QlRBbBU0kyWnofHH0fgeqGNMs/l4HlKepU6FECiIYCeh0QF0MYHcBiKArjrrqA3/xO3YS92bCk+CGTl3G1Auc3e85C3UAAfwQ548LyHwnMK56VF4WXRn3hLHivfGWcA194gK4DrrRee/sEHw8+01iCQmOO22KSMm24K4zN0JuAhdOK+Xz3NxmmkUwBXYWKgsgUE0JQGRlIAc7LfBKXB2CKiUtH7AAIkbAP+MxJ4WmRJtmxHAY8+Cnzxq74CWDHnAeSrUZVRiCRH5/N0EgHUpUESr6UzAXM8jA9EtpmCQHJCX+dkLo0PYFoT8JjzASSE/CXh78/NLGg9oNSeANIhmQBuvvN07H9wuFSC1gfQIqW+mGsoUQFUtlOQ6CV0PePQQ8PBwfPMvlnQEECevVQthtI6c6hgrUwooZNiVH1MRQAFx3DVn4kTwHJHd1imOBNwpeKvvStANAELk0ke5UQT8CC6rH0AtfnS/AfQnq3IlzAQwEF0BWN3xAdQ08aCcX6nnfDQ1I8H5Vx3XWCrrYTjDQQwUx2RzpvOBzBqAlbbmdF8WIrxPdSt0qAhgNWyp1zUAEsfwBntfofu7o7uhGgQyNKlmkG6WsXMmawb+pcOIRDAalVQAAkJHnajTMCVCqx9AJMIoKQebrIJyMc/hmqGbSsPG8iLj8lf+xRIj59Ev1q1MgFfg0NRnTojbBwCERIJIJ9A+cvgoYcCPdNCAtjWBvBL+0WPLasIGx9AjlKG9XtSrWD//UPSqTMBD6ILdK2ZwMEHB+UU2xBfZ108JiiTT0CouCC2jQKYyYYvo5QClYqWAHIDiU4BVAmg6CUVBGPw4woFvP/9wNpzfQJoWqoQQHXYJ4AkSgB5nzf1AU48dUFQRY3WoiOA1+KQyDaTAij6zPP2YWsCzmZDcYO7xSSZgFulAKbJA7gbop7QUwBMBLDS/xuToDT0O+tUzKU6E7CIcs8MIB/m/dIqgH6LGUIHOqF3dJYIYJIPoNICPWRifQAD8EUHAaBaNZrmAI0JWBMkYSKAM0hIANMogNyMFpClUklSBSL+HP7DKbd3o32QEVZRAYwQQM0yfhIBFHbOo5yoAA7QLskHUMvzBROwhEwmJIC5ClAVcoMJo6EYwU1BzD6AmpFQdJupklBtzGQUchWnAMYRwDoVwLKlAihNDpqZgr+0iZNx4A/WIBPw1ILfofkbngLVd7i3V68AAgZiy8uZzcLzhPaSzUovGdAcEgcdASyXgTZBAYwzAccRwCLa5TL5xMPL5AEPqAyXw1avG4+EZOioVqXlAyPwy1tBjh3S1sbOaUkAMxlIQVc9PaGrHABsLPoiJJiA0xBAj8hvP9o2LRDAtjYANBy/xDZUHvQNp54XCUbkfcDL5pEVFL3EIBDfhw9tbayMpRLyGgZoNgELCqB/EbFoIQH0b5ifuyATwDgFcIS01a4AakzAtgRwFSZGtpkUQJEA1qIA8mjlYXSgA8XVLw0MpXQupXR95W8SgF0ALAJwcLMK2QiICmAPlmNX3AWA4skn5f1UBbA8ebrUq7U+gP4TfBezItetTmOhaHvgzsj+aq8IIgP7+oA77gi2e8hg/nzmohdAN4hls2HnFxTAoIEJ14sQ1YgCSNnuSuvMoywl0iSa1DrWCmCxKK0oEZHzOQFUFEBjIuinnope2JYAakaaQWphAjYRQGGh5DZfAdQFdMxGmLOrC4NmE3CcAggETtRZVEXuKalBKjL1EEBhADOlgWmUAtiOErowgA8NhX2iXG4sAZyW8zu0pQK4ZIlmsvQvwO/r0UeByy4DFi0SyqkqgEKf1fkAJoGUWX1tjaexsR+db6MA5lBFJi4RMTQmYD+qm0eGlofjTcDI58MX0mKR+Q3ycov3+uKLQd+tIsvaLo8gTyCAvHyZDIJ6zKOCnh7ZVCmSwWoxQQEUnqtIAFcsid5jR9Uvn/98pTY9fz7w5JMSASwUII0p4kQ/3O9fdyhqVeGEiObykknXSgEEpGO0JuAyxZxX7sRU1TJEQgXw7TcruP12vQIYECw+3vJxohISQNWgEJiAM4XI8ohGAjgygqEbb8fD1y3EZ3A5sqVoXYkEsFwGQKk1AYy4BvllELM1zHrpHuDdd1MRwA3fZQ6ofO5TTcCVCpvy334buP+ad7Ez7o2UrRmo2weQUnofgF+A5QlMBCFkL0LIXYSQRYSQEiFkISHkakLI5sp+6xJCriWE9BFC+gkh1xNC5tRaTpEAPoodcBd2x0G4HocfroSNqwrgpGlSr9aagP1WqiOA/NhjcVFkf3WED6JjH34Y2HPPYDt/Sz/qKLFgNSiAcTMKdwLxEUjhGgVwGhVMwJrk2qY0MLooYHFN2TzK0iDBk4+WOy1NwB/9aPTCdZiA19rA3gSsJYD+A2iLMQGLBLATQ8GAnuQD+DrmSutm0kx6BTBTLknnTWMC1iWCVtuZmKJDQpwCWNSrRNfgUPzprbBPVA0EMJJTzJIA9mQFE/B222lKINeFjQJ4113A5z4HHHmkcHEdARQIgQgrBbBcwgSswtPYBi/jPeFxCT6AACu/LriFowglDUxAANn5KkMJQSAiAVQC5YJ79Ty2ssV997FzigogIJtC/bZBaTjxSgqgQHx6JnlBGhixeH19QGkgngCKkzongAsXAg/dFz2umO2ULiC16Q03ZG3JX5VjCJ3sd+FlTbxWcVUyAfRyhXQEMBslgOp6uwAw6Z9X4Mt/14yfJFQAt39fBXvtJf8c5uMLTcDi9Uh5JPqC6IOvR19JYwI+5RR0HrgXFmJdXI4jtEFQIkHlIkZG085NBDBJAfy/33wWWGediAl48bt6AjidLsEnHjgRAFtaFogGgZxzDpvy11kHOOfy2fggHomUrRloVBDIfEDJcmnGFABPADgWwJ4Avg9gCwAPE0LWAwBCSCeAuwBsCuDzAI4Ay0F4NyGkS3fSJHDS0YVBbAQWFrsb7mK/if3Nbz0P4wP4Iv7MXh2F2TTOBCwRwEMOAR55RL8eqiEIZAid0X0B7LYbG4V4xBUvSwSZjFYBjCOAwYSpEKQgclWZNQsYwRRvafC9LgWwVEI7CQlgZIF6bhYSFECjCdjz9CqEQQG0CQI56riuZAXQv+YICvjEJ4TtAgFsz5kJ4DQsCz5bKYDvex9u3Ox72BV3ywpgRlYApeNNaWC8xpiATWlgyiYF0J/IuSojraojJicTsA9ulb4HJmA1955q7tQFgQjElhPAiVQggDfcAMycKZ1GpwDywT9Q7v0LqBPs4sWIBIE0igCS8gjmClH5gEz6TQogoMlPqiCiAPqTNPUVwMpwCgKoEPtgAuQLMfuoIisTQIE4cgWwUomagAOS4X+fOrmKL3xB8YUF892MiwgF9EEgr7wSPe5/eC+u3+i7CAoFg6rtZ+IPFMAkAuifq1iYiPvxYQAhAcy05SEuSJ+UBgaqAlgsahXAyXdcE90ISD6AurYSMQErCiBGRoxLTXrDggJoMAFHhq5LLpHPsc++kTJFCKAuLwyAw74eDfiyMQGzC3sRBfCN+XoCuG71jWDbqfgJAGCtqbIP4KWXhsfpyGqzUDcBJITkAHwBwEKb/SmlV1JKT6SUXkspvZdSehmAg8B8CblX5lEANgBwAKX0RkrpTQD2B7AegK9qT5yAIZ83ij6AxO9IUtSQrwD+GV/Cxfgi62C1mIDPPx/YYQeQgsHjVr0wQpVSxSEH0+juutlBmEySfAA5+jAp/E0xkerUoxlYIq0qUQsBFH0ASUkmgFKH93wCqCiAWgLo35uXy6NXTCwqpoFRFMAkAtgxTfYB1BJArnYhj7PPFrYLdtiIAmgYkEQCaHx2M2fiii3OwpuYq5iA0yuAuaQgkJil4MQ3WFNZRxJ8ALVqurqGnQGmIJAIAdQpgMI98zbZXvI79KRJLBXMeefJ51GigEUFMCBzigLIUalAIoDVqtAHYgiglQm4Uoks66gqgJE68Zl3G0o1EUAv5xPAknCs7uUrlwvJiPI7bz/es/Ok7RXkWHvSKIBkpBScSusDiNAkPHVSBe3tTFkRL5/N0MiqHSp0JuBKJUoAj8f5WFWYEu4AAwH0v+gIoHitQJn0n91wvhsn4WcAwnkr21GQyJxWART6bSAGJpiAM0OGVGaCAqhrK5El2RQfQIyMBJvUJkJFBdDSBEyV5PKZc38GfOEL2jIFx+t8N0Hw2WMnR7bbKIAcKgEcHtSngZnmMZepf2NvPIgPAQDaslWcdppfFs/uZa8ZsA4CIYTcpdlcALAJgKkAvlZHOfhrP6+G/QE8TCl9le9AKX2dEPIggE8AOD/tBYZJF0DlKOCRHFOipPbhvz5wlSqTQW0KoD9YkopmFE8yASvgjSxxQqhBAexHN3qwUquQ6cjD2vBzxc2cyZybBu0JIDc3lZFHlWSRpVXpDT+PsnQsjwIWCeAICoEJWPIB9D/QbA7VipKPjxcqjQ9gLicpGDYEUIxSFRXAQrYqX8LghN6FwWQTcC6nppRjt+c7o3MCaOMDSMojERMwX6yCnVRznF9Am7WAk0zA2r60ZEl0fw1MQSBWBFBoB5xItI0oUcCKjCfeL6WyD2AR7ZiE/ogPIIeOADZEASwUgJERzMSi6HEmBTCbZQRwYCBRASyiXT7Wn6SpTwCraRRA5Xd+r/Q5mQDGKYC83YjpSiQfQISEsKdbfhb88pViqE6biKAuCKRajZr8i2hHldePzgSsQGcCFk3wKgH0SDbIpxcEQuUtfADFcY7nNEwigIOrohsBewWQplcAuaLLFMAO6TcTAawWOmTS0t0d6asRBVDzMAaz3Ziosc6ZEkHr1szOZOQXYZUA8uFzqsdeansxPcy7Wa2KWo3Vy14zkEYBzAAgyt8qANcD2J1S+sc0FyaEZAkhBULIxgB+DxZIcqX/8xYAntMcNg/A5prtieAKoEgAq1nWKXSRpIGzZhaJPoDlkkYB9AdLolsmLqUC2Da4HHmMYKSUIA0nKYAGAhjspPORUzT4gADOnQsAIAMD6NBEVovrTPb1AYW+XmzsrxboIYNyRjabAYICWCoB8+YhX2HPwmvvDAbNJAWQZrJyQuaYIJBYH0BukkjyARRMwCYCGOcDKKITQ2gbXgmUy2YTsE8gADUIJIyAtFUAMTISeb7SV50PICcrtIoe32HclAam7NkRwKCLUGqtAA4PeuxNPyUBXLUKGBkKj+GTWltJIYDqLCnUhecBDz1Qxbq+0SOtAmgdBTxieG4cftuehXelzaLZP+ID2NUVLh+Ikdh0E5E0MLxP+O26f1kZr73mV01SEIjyXIPrKutURnwANQQwTgHk36dMYr+rhKw8GPZXE3RER6cASgqpqgCORPtOkgm49x2/s/vtSFRvg3nLhgDq0kwJZuPIohsAMkMmAkiCOjURQAIvXGeaTzq84gXCqQ6x5F02l1Q1JmCTD+AwVdJtdXdDvSFbAqhzhmykAhgQQN9nfglmhO1lZARdIywTx/Ll+gQWrUCaKOBdKKW7Kn/7UEq/Rim9p4ZrPwKgBOBlAFsD2I1Syl//pwC69c2wHECPZjsIIfeY/gCgmAl9ADnK2agJmOvH3EQTZwKmFPjFL4AnH2WNgC+6DiDspCs0t2HwARwmegVw1klH4BVsDK9sHqyDwgoKoGliFhEQwLQK4KxZwWj3LmZhElZimm95PeYYlk/3jjuYS9f2k1/BXS/MxKk4kxUNmaDuRQQ+gB/+MLDllvjsc98H4Dsy+4Q60QScyckTniEIJIcKKA3n9UhyWG6SSGEClghge3tqAjgXb2D/Y9cFPvlJswKYzcYSwBwqICSeAI7wSV1DAKWixSiAHXQYyzEVp+IMowKY2gTc1xdpo9ElohgWLKAstYfSh3oxXd5RIIArV7L54gPbyu0cACZUBRMwEJ0chLo4+fsUJ7/0ueB7YM41+ADWqgAmRavqCSCNKIASievsDI5LrQAGBJCd79K/lLHRRsAvf4lkBfDTn5Z+Cgjgiy9I2wMTsCYKWFQAzT6ArLxrz9CbZMtDYX81QRcEUixGCWAR7agQOV9TkL6pGK3XJBPweWeX8e9/QyDv4bMLCFahENaNyQQsEcCoAii8mwbImgggSVYAg3vI54WlN6IEUBpbbr0VU847GQBQifEBVMnYUFWZNyZOjBLAoZB8GwlgblL0TQ0pfADB3AnEOikNyWMpHzKmVRmtkRTAVavwnTOnYAO8ht/8hvmmjgZGcyWQIwB8EMCnAfQDuIMQMrdZFxvJswYm5r/L5NjtS2OXEtWpKoCFAtvGE2cef3w4GPViOm5a91i2+CTvCDoVxaAAlgt6BRAA1sNbdgQwpQ9gnAKoIw9B3rru7qCTT0I/ztv//iDq7i7fWeD884HHHgM2xYuS3yAFYZ1eQUAAH39c2k5yuWCA2PNjBXROCCdMVSGj2Zy1AigcFp3AeD1amoADBfAXvwA+9Slg551DE3DGjgB+BPcjXxwAnnnGnAhaUADlKGBzEAitygUPCIuGAErV4N/w09g63JaRh4wz8ENjGpgRL4dv4peobrSJdIzRBKxT/3hicwUZeFi4ULhodzeeW3dvnI7T5R2FIBC+wts7b8km4H33Beb2xJuAxXWqn3u6GqyH/frU7dC+jk86LRXAwUETAaQQo411JAIAsP32wDXXBJN68FIGwS0iTgG0JIDGIJAcJyXs2HnzoCeAog+ggoDsKhaSwATMCYGYy2Uk2QTcMYFd79OHyQpgYAJeJVt4tGUTnjXvHkNDdgogv54UIONjCJ3skfmFnTLZw4wpYf3nUWY+i/5Fq4IJONwpH76krFyZSACD4AxxNRBE26iRAGbifQBLJU0KGEBSHLUm4J/8JPhYzrRFfAAP309PAEtEIIATJ0q+1hxi3Zt8AIdy3VoCaFIAdSbgbLkoB/EM6RXAKVU2rs3cagb+fLHcH/bDzZHzthKpCCAhZCs/NUsvIaTi/7+aELJV2gtTSl+glD5CKb0SwO4AJgD4nv/zCuiVPpMyyBVK7R8AeB1sQBH9Zdoy/tugxmGXv3mpPoBApC9JKQn+sNWFkKMBNDD4AJayegWQozqSQAANeQBNCmAJhZAMaNLA6CJIJ/E3oY4O6e38y7u/rnID5P2ANWkZPLBJia8mIO2v+uWJ9+VPCAcdlsdOu4RkRyUdXsaOAHbmyuFhnheJ8gxgGQUcKIDHHQdceaU0MHECmOQDGORmHBoyJ4LOZsWPATxDGphKRQiY8GFNAP06kXJYqg8Z8WlgLsQ3UfrrVfIBJgLo+/+NTAtdKYiBAAa+U/yihx6K8/f4d6wCyCGqLnlSwS23ANnBeBOwuExhZbgcnGP9ey7BnPXlWVidV6pVSASwv18hgIQE0fiiT5hRAbzzTpZlwG/b6wjxd8FLkckHMCUBjKiHwg3yOjBNspICqCBQAJUxKTABc5IjRIXzZR7jTMAdXex7e15+Frx41X42ZpncbYAw/RQQdo/BQYMPIJHf1AKX46JcH2XkUEZBUgDXnlHFlIkyAdxkE5jVW34B/qa9ZImeAApBZoFvXgIBzA0n+wBuvkl0cJYUQB0BFKKOpUe9wQbBx2o2qgBuPldPACXLEe+rSgfnK4wE1/Qf/pBA+tMQwEpFrwDmSoN2BLDCxrVv/3Q6Dj1cJqvSXAUgutZGc2FNAAkh7wcz2+4K4J8AzvX/7waWwkWXPMsKlNKVAF4FsJG/aR6YH6CKzQE8X9M1OlkDE9+W20iYpDJAJYYAVioApUYCWEFO62AbgYEAjiQQQFpO8ApPmQdwCJ1ylnedj5zJf6xDeYN+/nktAWxrU1ZBga9KkGhFRdLAcAgmYHF1AZMJ2EgAhUmKk/9qFYKKp/OOTvABNJmAgdQm4ACDg6l9AMU6EV+Ky2WgUpIHbjENj40CKK0WoZnQTWlgRnwfwCxRKs5fkzTiA+grgP0T1g73TSCAQZ/IZjEyovcBVM1d4qAdEBFeCIMCmBMSlosEUFrtwkYBzGajBBCQAps4pLV2RSiO9iIBDF6KLH0AazIB6whgkglYgYkABomg+XMQnIlJjAk4uIzij6D2I28VIxamgDtAJoD8sQ0OpvMBVMk7J5wiAdSNueutB+nZRdpzoQBM919yenuRIawfSGOTYskBIEUOA3LzJjC/ABMhCrhnYrStGBVAPj8MD+tNwLNnh7eEkQgBzBT1PoAjWWHeMRBAkXyLBHCFoCkNNcAEnB+RCWBpWE8Ae3wFEDNmRMqqpmhq1QogHGkUwLPAAjPmUkqPpJR+n1J6JID1/e1n1VoIQshaYDn/XvM3/QPABwkhGwj7zAXwIf+39NfoYh1e9Jdpy2gIoODUD/jPS3SaKJcjBFAcjKwIIJ8plZZWypnfSgEkm4BFBVAggCYz5yC6QrKkmIBNCmAAJRwf8+ZFxvpCgZ1WSwDjTMAqcqECGNjgoZiATQRQTAMj3D9X5UQCqPULsvQBHEEhau1KaQIOMDiIfE5J/ZPCB1A1AavBBJICqAZRJBFAIDKpm1wNSp5vKiRCGxJmg4gPoK8ALskKwVQJBLDKU5HkckYCGKcA5ih7qQsKYfABFJecqhbL4UAtkhxLH8C+PiUNDPQE0KgA2hBASx/Aznx6EzDJs21WBNAQyhzcp/J7oADyyV1QADPlZB9A1R9BNT9yAhirAFble/E8MwEM6la5nvrshtAZumiLBFC4/6BdVsN705qA29pY/VQqyA2sFA9hEAmgl6wATo5bxVVQACdPiD5LyTdSPKlAALUmYOHLnPJrERMwX2JUbT5Sovd2uQ8F+6gE0L/nlZgcbB/Om4NA1CnP6ANYGpII29CAPg1MT8UngNOnJxJA1VrWbKQhgB8EcBalVNKK/e/nANjR5iSEkBsIIT8ghHyCELIrIeSrAO4FSwHzc3+3PwJ4A8BN/n77A7gJwAKwiOHUIBNYhxcJYCeGcQ92xvpnfincT2cCBqSRhPel6nMv4FVsiM3wIgDBgTkJBgWwnK/TBCwqgBYm4EF0xSqAsRGkqgI4b17wNhqcI0ex6Un74fdKhiAPGVQNCmCQ3kOA6AMoTrhWCqAhDUx7Njp5aQmgzgT8/e8D227LRj/VBCzC7+wSAbRJ+uR5+Omls/EJ3GidBob7ANoQwEB90iiAm2wiKHL+DUeWC9MQwMvwWRzwu72CBecBZvYiRIluFSYikw/gm2VBATQszcYJRHWEXeuZ53O45hrNM7z8cnTef5u0KbKCR0dHSDQMJmBxnWqvJCiAop9bXBoYQcG1VQCrJUM74dfzx6Q2gZi8io0w/frfg1aSfQDbUMKEjhoIYJusAJoc7ZHLRVYACW4hRgE0mYCvuaKEv/+dXcrkA2h6FiMjAH7wA+x4wocAxBPAwx79Dk72A9YA4C8938ERv95BCiAE/IA0gwlYNEPy6wUCWQwBVM33WgUQCFTA3Ipe8XaFm2Xg69bGEcDp6IURggI4qSss69U4FP/AfigVabwPoGACNq34M62yKKoA+gRQJWPatGrKpFu1UACH83oTcEQBvPlm/PCvG2AX3BPZd+KNl+GcwGsNGBr0Qpf/v/8d2+0+CcNox6yRt9i2GTOYmCSMn6oJuA36HLHNQhoCmGSctjVePwzgAAB/BXALgOPBCOA2lNKXAYBSOghmWn4ZwGUArgDwOliksCFjZTzKU1iE7nQhaeoGw89hZ9yHWf/6S7ijYgIOCLvQinlfmnLK17Ah5oeH6kzAF14YKUug5Kkm4Hy8AoiqhQlYowCagkD6MElWAC2igAO0twOnnx76o6xYEcmg30WGMP3hf0YOLbQRrLWO3gfQqxgiTz/6UXatbbaJNwETOxNwgURNwNoVE3QE8Oyz2dql//qXlQk4L/oAJql/PiYNvosbcWC4SkYdaWB0CuBwfqLvICiPsKUS8Pe/85P65iV1mFDeYrNZ4LO4Auu/fDtbzNK/x6A/bLstsOmmLBJUcA6PmID9m11SFtx/ExRAvprAbfew5xz1qQE6Hrhd+h4hgFzK32WXcKJUJpW8sGRhpViRTcDKcgxJQSA6AsgD0qQ1QjUm4PmbCGtxafKYzcIibHL+1+BVQxLxIjbFAqwDmskAe+wRJILeaHo/Nt3IPKaU0Kb1AeTJ7QMSJrxEjYg+Wvl8IgFUJ/SIAiiMP20o4fDDE0zACgGU1Cch8CCOAALAmTg1+Pzl/vOxwdLH0KWku5o0ieBLX5UHWS5klYfk+1qMtfQEUOd2w03ANKNXAIFg3M0uWyLeLoNEAKNpYMTTAMBEGPz/AEkBDAkgxaG4Fvvhn8DAgN4HMEkBFPKeXLjeeVECOMjajfquLC39xtmWMh6JSq045orPvJxrD/xvRXAfwIDI7b8/pq96Xbs6R/dFitHT80Je+69/ITfYj3YIYwu/R6G86pwzlgngIwBOJoRII7K/NNt3wYhdIiil51BKt6OUTqaUdlJK30Mp/Sql9A1lv7copQdTSrsppRMppQeo+6TBqnWj6QM7PKFD+z2IKCbgYGARZlQ+R2DE4L8i4thjWV4UAYN9egWwUohXAONydrEdsqkUwF5MlxVAizyAATo6gNNOY8mg/Qmlk8im3q6sXs4+6isZtHfrTcA6lZPksiyyetEitkqDYJZVyW3VMghE8gEMFKuUPoCUmvMAAqEJmAgKIK9jg2+UiiAwNsEE7ClpYMRnrxLAKrJYNMWcTjNo3yYTsDLg5jPCM1u5MrjHEtpYOQoFthzWFVdISkTEBOzf4xAV1GW+XpyCQAEclKM6JbXyl79k+5bkdqn1s3nwwTB8HYj6AAoKYLVo8AG0TATd1ycQQN5G2sM2zaESwBvxCVz3pX+HG3TLTPqg5VAB7MckrIc3cfctw8A3vhGQh4tO70VXwUwAq8jK9emTiEzBHARStiSAwX1qgkAkH0ABfHKMNQErg54pB12cD6AtVqwANniPbALmxR7uk1/05mELKwVQHHONQSBAoABmlycogDx4SVEAxeYdO68IUcDdnZXI/nTVgN4EnBQE4jOlI3Apnu3ZKUIAsYoNCp4naxCZquYFWhmPRBIljrkimeZrp0eCveABoEbdIw4ZeGH8jXB/u//fsDy2rKYE8GSwwIw3CSGXEkLOIYT8FcxUuyWAU5pQvoYhs9b00HnWR3clNC8EUosuCASQcgHytu158luBMQhE2di/In0aGMCCACoKoOgOQ2n0ekswI1YB9DzoFTkgfMMjJPis+i90ZvQEkGQzWvm9gJHAdCWBj1b8bS3GBFxVFUDDUnCN9gGMVwCr4a68DAZioyJYGENQAHUmYL4SSBbVSB5ANQrYQwZLpm0hbasKQ0FQNJ0JmNIIeW2jwnPu7ZUG3OAx82cXZwL2b2zY00T6KQiCQIbkvJ0S/EklMyK3w4gCCDCTo6gGqGlgBAXAKxl8AP36SvIB1CmAulyAKgEsI49sTihjwNSj4P2I9wWKDPJdsvmQ9C7RrnsbnANE9nvz6ydTkH0Ay2WE/UB00s/njRluTQpgxAQsgE+ONZuABSQpgAALjoj9nSBCOAMC2C/f1zxsET4usb3EmIAryMJDFlRsl4oJOEkBzFqYgOMCD4igAHICKPaf7GBfchCI78+sW3FrCJ3skSk+gKSvL+rDDiBbEQgSrxelw4ltVhxzgz6HMGuCzmdLFwhiA4kA+h9WYSIquXZ5bFkdCSCl9FEwP8C7AOwFZrrdG8DdAD5IKX2sKSVsELq7AWwhT3qTRkJzMJ+FSJIJWFAAqUIAtQqgeKyPVSv81qU6QLfFv5UmRggpPoDK13gFUAkC6fB95FTyEEAMAvE/t1N5sFe/S+XUqBd5lOGNRO+R5BSzXqwJWFEtxAFaGEm4AliTD2BQMGJFACUfQF7HnXYKhLUCSORcXXEmYA8Z9M6Q+0IWXjDhBdVkaQKWnrNAAEtoi/J8DQEMTMB+XQ6JBDAmDyAA0CF27bbJGgXQn4QyRbkdagmgGtQUE81FR9L5AHoewnadhgAqfSHSxmIUQG4CFp9dsDt32+jtjR1TPGQigQ9A1AdQMgHnBAIY4xDNlkHzQJROFTEBC+AvmDWbgAWwALj46S82OIJDSdjJi11cFSWAqRVAyspH88JzVkzAmaUJJmCLIJBYYYGEK4FMaGdllaLoB/r1JuBsll2EUnTmhRcFDl8hG0YHq0LVp7y/P2rBQnoTsFEB5MdYpoKxgY4AltAWnReEiGuimJbHLAEEAErpM5TSQyila1FK8/7/T1JKn21WARuFSZMQIYATdQSwbG8CVgmBrQIYEEBlVPIK5uSkAHA9Dor9XY0CxuAgLqefwT74F6p33g0ceaS0u7Q0zaWXAqeEIm57zn/D5ilEVLVB7LCCArgpXsDVOBSb4KUgb1cElBoVQG2ks4EABlHAN9/Mki8DoVO2sq+0QjhCH8Cuv1yIl/f6BoBkH8DTTweefjr86YorYGUC/vzTx+M9eFEmgG1tKGsCYby8PKnrFEA9AQxJMaAogIpZ3UMGy2bKfQEIJ/SgqixNwJICuGSJXgEMdg7TUZhMwMOe0NYSTMCerwB29mgUQJ/UERsFUJ2AYshLtWTwATz4YODJJ5HPA8fj5/gp2Eo2G+A1ZA47NDivLgpYRwCp4mJSQc6aAC5aKBMkaXduCVmyBMQzz3QURDshZdo0PoD+M+9dpZiADcjA05LPSBoYAaICqBLAQGAxmYBL8mA9hE6tv6iI2OAIDuV6vE2XVlmYgJcvl8iAzgQMhIm3pRviKu7SXhyAG/BXegRbW1dRFbOqCdjv3LYKoOgD2FmIKoDfumt/HM5XcFXbo9//ujLsBUznA1hEO6sOtb8pBPD445k7fdbCBGzyAUw0AfuNqB4FcOFC4LDDgJVLYgigwNZV8j2mCCAhJEMI2Y8QsmXMPlsRQvZrfNEai+5uADvtJG2THDt9GUKNAg7almACrlcBHOjTm4BpoS124tkGTxt/AxBRAHHBBTic/g3/wsdQ2Hu3yO69mI7Zc/37evRR6TeukAUmYJUAahTADgzjDnwUh+JaXI+DQIoGBbBYTEUAiVonggl4aAjA/vsD81kwTlUlcQkEcNqPv4lN5t8KgL2N/qnnRLbDySdHrgXITeja60mQdb6MvDENDABcg0PZSyEngPm8lAz7RbwHKzAZA+/ZTjrFwBLfT1UwIepWAqkqCmCcD+BFOAbbf95MAAOrnUAAl/VsyLbtsou1AjiCQrQ5C0pEVxcbcwcHZV9Mnj4GgJEABgMnn0gII3BvYj22XXBNUBVA7YSXggBmaRl50QTM64NSYLvtkM8DP8cJ+D7OxhQsw2U4Qjpvfz/wOtZnQRnrr8+2W5qApcnEYB4HgKuvCoNAOCIEsLcXxDOrP0/jvZhQiE642RgFUFphI4YAqsugcUQSQQsQfQBFE7DUHIUlyIDQz19dr3wQXdEXGwUzsCT2dwByjliEj6Q0YBEEop5Kyb1aoT4BFF8K+UmmTAEAkL6VuAEH4QhcDvrnv0Rs3c8f6L/U16EAcgLI3QXE5za5uBjfwK8ROSkQ9KkpHaz/ScudDYe+u9ksgJkz5WP7+5HLsvn1nXfYAks/+hGQFXxx8Z3vsP9JJmB/7B9BAY+Dja9Prf2xaJn9eSyHijpdWCEDD0cfDVx9NfD8UzEEUJj31bofa2lgPgvgSkCJf5exCsCVhJDDG1aqJqC7G8Chh2IrPIPvQrNSh2ICtlEAqa0CqDRQUxAIaSvETjyJUBVA3dJaAn528Qwc8Hn9JMKTFwfqkfp2p1MA6TDWwdsAgHWxIJ4AatQLMwE0m4DVW4wogPwBKj2aE1wRvZiOC2adA7z2GvD1r0vX4hNzoFb5oBYmYIDVx9AQQiKXz6MimJw/jAewGV5Aeao8EJKlvWw+SFgJRF2wXWcCfqFjW4y8OB/nvflJbLHn7AiBMBFACoLfHv0csHAhsOGGUR9AT3jOSQqgEI2YyYQW3lWrEPSHUlV4hlOnQofJfkQi5aYkf5H4y2+cCCxezF7ouALYYBMwz2tJObuICYqhIFLyeU4A38RcPPL3N4BLLmHblRcNIKoARl4yNt3UWEZ+niQTcEbJLHD12fNx3V8HMAvvYNMPT8eB++oIoNkHsF4CGPgApggC0ZLiIHye3beawkXKgWpAKgVQMQFzAjiwwdbowXIAJOxXMQRQzL3KTcBSPfLPmsgKb2Vf0PcG0IXDtn8N2152PPtRiQIWp5lYH8BsqADydq3tP4BRAdx0Luujz4tLOBRD393ABLxkCQsi6+gAPA/dWfbM+IJTAwOhAnjPD/4DfPaz7IckE7B/gkF04UN4EOvirTAITqwIf2LPoio2H2tk4OGll/xb94mclgAKpkO17seUAghGAC+mlL5u2sGPzP0zgM83sFwNR3c3AELwHLbCk9g2ukNAAMO8bkCSCTgaBGKjAA72+4O8qjMX6iSAYhCI5+nXIRaw1pbTkZ2sJ4Dtqg+ghQIovr0U0W42AQ8PayeHPMraIBATAczAixDACsnJfmAGBTBPKsgob19LMIM52W+wQSTgJGNyCC8lm4AB5gwsEcBcDlUS3tcyTMVizATtkJ3Tp9ElbDGEJBNwJkwDA8jzA1dxvUwOhfesjzlzwO5PcYngA2dQVaIPYHt7mL1fHXA9iyAQDkWJ4EJPX19YNxIBnDYNOgRJabkzuR85vN56YARn4sTgxURth1YEMKYfdnI1ie+jPPj8SEg2CKgccJDNBj6PbRutG06aOhOwsvJP5CVDeX5SGfha1ylNwL0T1kcp14VFmIV11pFXQAluod0cBSwF4yT4AOqIRzCGJgSBJBJAYY3hfF54Zj5sCKCVAmgwAZeH/NQjPbOx0s8/9+qr/jFJCqDfwbkCaEsAKTKS/+3aH94AJBMNvlJPGWsCTlAAJRhEgk3XY3103jzhN1UBBFi7nDQpqMTJmX5xV5RKIQEcmiO8/CQRwCH27AfRhRG0YSHW1SdhyIVWFGWJaitkEKaB4W01MHEbMKZNwAC2BXB7wj4AcCeA7esvTvMgjieR3EoAI4DVauCUHEkvYGkCtvEBHOo3KIDt8SbgRChLwSVixgyjGSlQAE0E0KAAchTRHkm/EcBAAE1RwBECKKglS5Qx2tYEnCflyKTQi+nR6k8ggFylSVIABzCBvYjyZ57LKQSdDdS0Qw4OmY5edo8JQSCqCVinAFK1gAqBkBRASoPyURD53lQfQFUB9CcZGwIoRQL791isJCuAfHURohBA6fnxNmqjACr5wOL6YaAAct8s1ST++gvB5yyqGIBgxvYVQEDhOIrSDERNwBEfwBgCOAEs/YqoAAZdmJPqZcuQLcsTTrEI2cWgZCaAujyAtgpgBp7RBJzJ+IVVjrdSACOOpXoF0NYHMCkS2GQCLg/6liRqziwQOZXBBAydCVhRHgH/WZsCsAwEMJOxTwPDCaCRMBpMwBuvy8ZeiQAKQSCR6vArkRNAcejO+QQw26EEnAiI+AAKCmDkEE3kfw6VsPmo40IMxL7L26pWARQw1gngRAArLM6zwt93zELkOWI4eIC+vtAEhQL4hKxTALlYoDMB2yiAw6tiTMBWa8kZIJqAbRIZ8TcuDYI8edwka2MCVhTAF56KUQANJmBtHsC8ntTlUBWXCgWgCeSI8QFUJ4UlmBEdjDSmORHcBKxVAIWTrcJENg4JJmCiNiAAXqesAM7AEpx2WpjWw7gSCOFElUZyQAYkntgRwGIREXIq1Ytyo5ICeP/9wH//CyDZBxD33ovDixcDYP49fct8AlgV5Qk9EeOR1fDVPR45LJUzMAEXhXGc4iT8THtOCRYEUJpFxcs+GyZEyMCTFUCBAErvXroXDTVNlPqSwf0HNTgSlwAwKID5PNDTA3geNpp3k3Tc8DDk9qVJXJ7rYPc9BctxIn6GaUNvNdQETAjYxKu8nIpRwEYfwEhuIVYMKxOwUt4ZWJKceYG3k/nzgfvuC1xWK0VOADVig4ERGE3AhRgFULAiiQQw0vd4v+vtBX72M8yqLADAmoFtGpjg5TKlCXjW5GFMmMDeDQM/QCEIJNLV/GfYk2EynEQA/YTsmXbhWqpLikCidnrlz8C/We5MsR8Gh2jSs2RRDZtPCkEmAw/tGMYJOBcb+ava2hLAiejHSTgHG+FV885NQBIBXApwr+pYzPH3HbPg48Iuu8QogJp0IBEFUDQBKxZWioyVD2BxUB8EkmlvgAlYVAATTMDo6EhUAL0UJmBRCSqiPUjSG4GqAPqjprUC6D+UiV1RAmUkgEpC2gKiBFCrAEaUGaVOhaXgIi+LiglYIoC5nJYAqvU8Fctw7bXA8t54BZBStvQaAKBalRXAskEB3F4W7fmbc6AAAvB80ihNsuobd1V5zosWAbBQAHfZBae89kVsjJdx3XXAfXf5BFQ0Aa+1FnTgagT37xv0YhTA4eGgyO/HY3g/HteeU76Ambxw5ZjwfVQfwOfDYK0sqtLEQ7O5wLyURACphgDGEXEdtD6AAHNz0KBYVAjgXv7KI1tvHeyTa2eV/AE8ip/hu7jizQ+B+q4QEQLI3QYUxAWBBDAQQCsTsEIAdSbgq/FJ+eIf/aj0dQqWG8mOt8VW7IPY4HbeGdks8z4I3CmEgKbAZdPw3AoYkU3AnsYEzB+izgcwkzW7X/B+d+utwHe/i58+tgcA5jIRpwASQQHMoYKOjvQmYFIcxiabsE2vveb/pjMBc/iixCQim4CBMK2NRACVeY7X/eaYh2P/92XgmWcAyMm/k0zAQfNJIchk4OEHOAPn4qRgWxIB5KT6pzgZ5+B7ONvPHNAqJI0gD8DOt+8L/r5jErMFf/cbbgB+eq49AYwogAYTMJ98bRTAYIRVfAAbQgAtfADvbtsbeOIJ9sVEALkCyBW5GkzAxogmlQD6kQDWPoD+Q+nuiu5bgcEHUDGJ50kllQLIJ2Zxgs7AC0zAFR0BFJ7vCArMFUUwAas5oAAgo0Rl8sGsXIz3AQQEtUchgB5/hupI9KEPAddfH7SBnXcUFEAeAOITQGlsVwlPVf+cY/MACq/1U8BkXFHVeW/mWeDuu4FZs7Tn5gQwU5KDQKTuI6xGwIs8FULy9zjY+AByZVqp18yy0DFVJYDFKnt+kyYpdapTADVBIJHJ5NVXcfaHbsaz0Cdq0CqAgJ/DKIpKRSGA3/kOC2sUVjLIdsgPdVZlIbwROXiO7ZgFHn9cSwLj0sAEUFaH4EuWWZmABScukwn4O/g5cNVVwAsvANddBxxxhLRPDpVIGZ/G1jgE18C7068PDUHo7g5JUslXs7fZBvjPf/wdDGZFkw8gadPkAUzwATQSQB+z+l/GtdcCe+4ZrwBSRQF8+WXggp+lUwBRLAaPMuj2QhCIyQQcJYA0WPeauyEAiFi7+Jg5TdGkEk3AggIYNJ+UBHBHPCRts1UAd+/4r/V1GokkAngBgN0JIb8ghERYEyEkTwi5AGzd3l80vniNwcyZ4XOcPBnYe38NAezrgy5fUHwUcDiB84HLxgcwmMGVN/xsez6Vz0EE4lJwMT6Aj3TuytZnBSxMwH7nMnVu4bOYD66EttBUpkI1AfujgykKmK88EMDvqCYCqNtXRV5jArbxAZSSoKIaPMNqVtOmVoTeE20oRRTADNWQXWXbhrN9c0Y5PE5nAgaEe69U9CuBqCMRIcCBBwamxP33EXwAlRyAUhNWTcC+Avjy9P+Tttv4AALhCxev2zLyeKVtSybXGxAogKV0CiAnb9fjQIzoEn9zpDEBK20ssyIkmRl4kg/gUImdV1mUyCoIJOIDCAAbboiXNv64MaUJyYbbpWfxnvdo1dUIAczngUMPlXwxiW6QK8nBc2xHwgbfww6L7G6lACoEcBLYrKyagG0UQJ0JuIgO4JOfZNLcQQdFxmldoMoQOnEdDkFupu9HqbaT4WF0dwtqusfGhS9+EVh77cjtSoj4AHrsxqT6josCJhYKoICDD/azGMUpgERWANdZB9j1IwbCqM5dQv/jlx8ZQdDIPJLRp8/yn2E3ZAIYPvMscm1iBJyeAKquXloTsAidApjSBKy2F1sC2D3NvKpPMxF7d5TShwgh3wHwcwCfIYTcDuBN/+f1AHwUwFQA36GUWq0FPCagS6BagwlYJICVWhRAlQAWsslm2zioCqABwTI4gFEB5BOsMQ+gRgFUTcBGAqjmAazRBDxBZwKmWdmzJ8bfRjULLcEMrG8ggLyjtmUq4HN0DpVgwBVz+gUQHBQ7MBzxAdQFlmSUqMwCYeenCUEggKCeCARQ9AGkGYPTu9+2O7KCCZi3H39Qj1MAOQEcyPdI20dQQKdaLUo6Cr4fIESVKumUBsgETKCyCT/nt8/siE8AqzEK4PAwcl0UAAmIwCC6UDCZsoDYFzHeroOJWWljZHlIANtzVQxVQtPTUJHtayKA0mSsLl8B/ftMZyei/mw+qBBpHrklNfIZGgKoQUWTwDxUwjUHGZbbMvkABlBWy+GEQDUB1+oDGIEyTusUwIj7kHpvvb3o7p4T+tNW2DkN79ny5RUfQK0CGBcEQokUgKXtCwqy2eQ0MGqKKV27BAC89Zb8PQjCKooxlIH6Vy10ACUSbR7cBAzZB5ATu8i9GQigamHRmoA1QSD1+ACqZNrWBOzlR4cAJjqRUEovALArgMcAHAjg+/7fgQAeB7ArpfSXTSxj45GCAEYUwNtuC7iQmCsoiJSy8AGEp1cA8wVSPwG08AH0skIhE0zAgSInEECaycj3xAmgoACmMgH7BDCPMjwdAczrTcATO6L7lk0mYA7/fk0+gJEJVvEB5CukAH7n9Z+hblIUFcAODGPCsjeBRx4BAHhZOxMwN3nAr5eVA2YTcDD53n47cqSKTfASlj/wPN592xAEwuE/C576RwwC0SqAyoVzvgl4IBclgMYgkMGw7vnzElUdmQBG48t4Ima+EshAVaMA8iTNnhf4tPJnLk4GsXkaNAhNwHoFEMtCAthRqErPudjHystT8all2AEsIfuHcT+6Vi2SdolEY/vo6jITQM/0zIFo8mvIq5OlIoBcCdeVQ3OiuCjgAIoCyAggrckErL7sSb6KhnLqSGoiAXzrLexauSNsZ2VWVzE5uwNETMC8LuOCQAQHuXffoXjzFXsFEEgmgFAUQABmAvjKK/J34QVMys/tl7mS0wRuAUFlTaSMhb18yyvYEs+mJoBqRK3WBCwiGxLdoPnYZNPghyuKcTWbB0XGKg3MaBFAK3pLKb0PwH2EkAwAnphrGaUaG9bqAB0BNJiAg4fHB6O//AVzTvg6gO0xPBQ1AdsogEHyVSXCjnTZrQ8bCwsFUFpaqEvzJowwyjJQACWTb4f85mQIAokogOuuCyxYAGy1lfwMBAUQWgKoN+tO0BDACs3Jwr/a+2bPBvr7kcdIhAD2ozs6JyqmufZcBZyTZVENlg6sZDRtau7c4GM7irj28bng8QceyWkVwMoc2Tk/71+sb1kFswAcd0IWPEhWbWvB5HvYYdj4S+fiJZwILAU+fvHN+BQAZA1kwH8WnACKCiD3AYwzAecr7Dmv0iiARhOwQI6D1UsEAig2j0fbPoL9h6+WTpMLfAB99VFHAAFGcgYG0JUZRi/ykgIYniyd321SHkCRAHZP8JAbCieF8kp2rEkBvAyfQwYe/oovRLyq4wigyQRc6MjCKHRqCKCoAJomru4pmvryTcBpFEBTHsAAythUQBntKKJc7pDUYrlwdgqgLQFMVADVueQTn8BZy5djlW/2H6wUpGLFQTUBe35QYawJWAhu+92vy3geI7gD9gQwl0swAQuJoLNUTwCfxZbYCs8BG28sH5ykAObZ75F2Nnky+0eZBeXXt7MIkrlg6YgjvsU1EECtAshfhFEMm4/kqpILVwDSQDUBe/k2oBofqxXUfT2+/3UgOYxMAKXUo5Qu8f9WT/IH6DvD4GC8AvjtbwfbZr/N3tLFN/tYBVDZSDgB9E2E92xxDL6O38CbMi21AjgMRdq3UQBFAmgwdfGl0gL/MdEZf0TJVWQwAUcUwPvuA046ia1+kI+SUJMJOGMwAXe0RwlUmSb4APr+bp3egDQpfBpX4AtfIOJyyP7FZQLIlSSAERa+cozWBPyDHwT+T2pS2Womr1UAV33uGOD73w/WbeYKIE8eXkEuGH+NCiCAdf5zSfCZP4dsLkEBzAiJoIVVQICEIJAKO/+qrAUB5GY9wTzOB0HRB1A87pSe3+IJJXk725eiw7+3gYrGBAyE65Fm/TWDESaFDRCzpq4OST6AomowY2pVmmCr/azNRRRAYZb4Ev5svHZaBbBnagYXXghcc43mR+GlbuFme2BLPGtlAt56O7MCWNb5VdZqAta8nHajHyMlGgQOrUAPFi8Wd4gSQDEI5K2uzXA0LsImO04LgzIM5dQRwMj95XLAH/4Qfvfb9UQ/D+PQiMEEfNVVwK9/zfIfnXgiAE0aGJ5XtqAxAWsIYB5lKf+c1Pc69eKCqABejUNxfv4k4Oc/D3cQooCDdiwEt+2Pm7A3bkXfUScAv/+9fHKNAjgyglABzBv6rB+hPmf4JSlZPx9DkxRAXgfq/COq/tqXG39u2BivBM2HCiINKegmd+BdsNWbVBNwNcd4ho0JuFCWXVzwgQ+YD2ogUhHANQa6AX9oKCCA2iCQzTYDzjsPADBt8bzI4WkUwMAE7Gcxvm3jY/E7fD3tPAQAKBGFANrkAcwmv23kuQLom4BpNoclYLIFUVcw8Tt6ZyUcdD1kogrg3LnAOecwx3CDAqgNAjGYgNvz0X1HkgjgRhsBALqq/QEZuBDH4o0dP42LL45kRon6AAoEMItqQAAlszrHpEnABRcAAKYo6TQrBgUQbW3AT3/KInQB5CkbgLhPpjhBqgOLSABzxXBA4QNiNh9PALnZX0oDY2MCLvt+eJkJUgfQEkA+qQsLgwarl5h8AAtTcALOk6+JijDZFTAwxMqpVQABdBJWRq0JOGXuzYgJOGaEL2RlAugNsOtHFEBBadC9GHCk9QEsoIxjjwUOOUTzo6AAPnHYuZiHLa0IoHYiLBsUOcOJrEzAGtLSjX5kh1ahHSUMohNDqi+fxgQsKoD/nnkkfoujccYZwG67KSfXBIEkmoAB4KijgOOOi24HMDhiMAF/8pPAMccAP/xhkGpHNQEHa8vrFEBepzEEUKp2g6Unmw373ztYGz/uPCcYIwEWWcyfSeCf7D/rm7A/bsb+eAezkfvFucA668gnF4JAdASwnDMogH5+0jmr5gWR30AY1dsIE7C2y/rX3QLzWPOhVLLS5dqi7Xg5enAyfsrOqSqAFgQwmFeKytIjn/mM+aAGYnwSQKFDLYIfCTc4KOV045Aap99AprwbJYBpFMDABOyvY7Y8y2aDWgjgCFHUzLQ+gAZwB3la9c0RJIvXsKF+Z7+jTxwJTV9ZVM1BIIDRB1CrAKoE0H8o7TmND6AtAaz0S+ZAowKv+AAGZhD4CmCcCRjQmtkAtmJJRjPRB+KRr1LzwYz7RgaDcSYq3ookIDsUDpz8OWQL8SbgNhJVAG2igDkBLKFdul+tDyCf1JfJbQUI3Q5UE3A2GzVx5lAN3vCLaA+aukkB7MywfbUm4JQEMFEBFJDPKo7h/rJUEQVQNBujHzrUYgLu8WLS3ggKII+0r1SUlUB00NUXD4ay9AGsRwFs62fjZi9UFo3EPIAD1Lc26LprLSZgjgijZ1hVsjAB+/VpMgHH5gEUfABzqEhr0NoogLlcqEIFiqPQyCpeqACqwYt8nuzsNPDLBBNwxUQAN9wQaGvDOt4CrIOFwWaRAEr3pvjp1WwCFghgfz87LxHnUE2778Jg0PdUAmijAAZj37DS5w0m+0ZjfBJA4YksBHtroQODWLQgasaQJtnN2QLSk95mBFBnAtYOmsrGDKpY9k4J6OsDzWbxRh8znbW1IbUJOEIAxcTHyuoXASwmvDypYBJWBopcxcvgdRhWHvAnkokjsqpjDAJRy+DnASxgJJL6AojxASwtiyzVVPZsFcA+OwKomIC7lXvMxCmAgDH6TquUQHCvKfDIWB4EEpIjQN/OxHOKBDAwAScogB2rmCIt+QDCIg+gv/btMDokAqjNA8hnCoHwBGYQojcBZ7NRYpFFJSBioj9XZDLxyzOTvgvAYAJOSQBn4235uJgRPp+RFUAybPABFEzik7FSe65agkAmV2MIoPCseB+zUQC1P6RUACVyJfQRKk5JAqsY8J/XZPShY4C10xV5lUX7xxDCXuh9YiCagJtGACOM3i93ySIIRCCApRIwPBBjAlZ9AMXT1GgC5u0zUN6FTuTRTCIBNHDfRBMwd1/SJt/3s2bvh5uDzdPBiH+tCqDWBBxHANVVcDR13oYRiQCK1/T8rAs2JuB80RHAUcG7YL5tZHgIn/1kGEKvxbrrAhMnoq1/KaahVyKAafIA5lDB1rMZkViRnYbb7xQm2bQEMGPwAbztNuDii7XHSEEgBuz+5p+xEj3Y5IazAQBlmsUz2Fq/M1cASykUQEMeQF3UlckEPPvWP+MiHCP9NFjKafcN4PuXdJb7JXOgDQE8Dafj/uHQRpxHGZlqjA8gABQKoBo/SymSUihjsCsngFQmgJE1qn1QqpiHK6G6wglgrmBQqvz2Oe0HX8f78aiSB5CIu0B38bz/9lpEuzSZpzUB5wQTsNg8ZsyIEpwcDQlg0Z9IxCD4AH55/r54V2yMlxuiAO6Ax/xC+I0mVgGUCWB/dUJwTyaYCCCgn0ziTMAkE5NXVCCAmbYUBDBGAeyHhulo6kcyAZsmO4EALgPLQzg504/OAUYEKj0a5pHJRFRA0QS8yoshgBZ5ALU+joDxgQ5X88jljO+B0nXzKOOll4ATjk/hAyieRiCARbRH+6xYCO7aktUogMLzqlQ1CmAlfFEDYgigKQ+gTwBfXmBQAIFAbDkLJwebjCbgSLCQngCK68RrSdnGG4Pmclgfr6O0cjhKADU3uhw9EgEU1Xvij6HJCiBFfkgxAcc2mMZh3BPAFegJ3kSCTPN+wz72WOXFiZCgo/dghTaKzcYHMItq4NC6cCQcOCKD0sRo+gsVgxllwLVIaZHNKCTz+usjS0NNKK8EALQNMt+1lf0Z/ArfxP3d+wJ/VpzU/Y4+oaRXAJejB28ep+QJb0AeQAD4On4n/dS7MiYNzMSJwDQWxN5R6ZfUoCQCmEUVp+NH0k98gKkgKyXclQtPQDSduSwqJYTgJz8BPvc5lp8XQNAYCpRdgyomYN1jNqmKnCjlEkzAAHA0fpOcBkY1AfsEUFUAYwmgEAW83XvZvXHzuuoD+Ne/AttuH1UAefviCqC26QvlOWb6NQ3xAYwcF6sAyibg49suAhAzaQKYZDABA/p71CmAP8fxuB0fxfXrfTt6AIdoAk6jAGrqi/vCXo+DcAMOwJsnXRT+qDnR1ElVbLN5AgEUBl+RAHYNsrFz6qYzcMghwPnnK8fxBXn9VEOSCdhj57RVAFUz9az1Crj0Us2xO+8M7L57ZPMICpg4MSG/v0AAgdDa4CHDivSZz7ClRPbYA9hxR21Z+fFGBRCQiZL/o2gCDtayF9pzNUYB5NunTDHclx/NixUrZAXQ7/srwX7X9tuvfjWyyUgAv/xlYN992bImCAlgnAVKe81CAZg8mbnmCC5hAPBA50dZUB/HLbcAu+6KvXFrMEZmUVUIYMV8LV4Of57kbmFPYFs8mNsZ2HVX80ENxLgngCsxOZgMenxH/TLy+MIXgAsv1BzgD1ZtKAUNDQjNwbYKIJezRT+WyKAUCVOLol/JvWazPih39g9w4IHAgw/GHtO7NINhdOL3+93C0tqL8CeSCQYFcD/cjBWfP04+JoUPYFZ1vo3pURElRNy3uzsg1Z1lSxNwZC3gEPz+tEt0STtq0m2IvoqZDE45hRGdiALor31JFAVQV16TChQogG2GQgonewUba1cCiTMB54bZi9MwOqQdAyd2ERpT1I9+4A+UVG8C3mAD4KLfymXP0qgJWPsMhZn3Wxesj43Xrl8BjBwXpwAKJmDv71fjiRXsRct/D0kFkwm4s1P2AfwGfoUT8HPshdsx1DHVfEJRASzUSQBHwrWAD8INWP6po8MfNSfaessqfvh9fxwyqR0CYVkOxjImoQ9dw2zsrE6ZjmuukRI0MPA25hNA0QTcX2Xn1HJOCxPw/gcX1BXjGCZNAu68E/jTn6TNZeRN1tcQCgEUcxzm82Bk4KmngDvuCEUBCxNwbN/LhS+SkesJ7blq4QNoNG9zVXTJEpkA+sGPfO7Tdp+ddwa++U1pk9EHsLOTEbIvfxmAWQEUofUBBIJ6qY5UUB1m51mI2Th6w9tllXebbYC77sJj2CHoexMwgJzo7uGTuiQTME94vQTTsT2ewAGT74k3ETQQ454A9mFSMBlw08sICuaHJhBA8e0wWCrMwgdQJIBLoCiAognYIjdQMat431oogDzFi4SEUWrJMnbeLbfU/OhPJGJQQwaepNBEyK3BBJxWAVQRuxRcdze7bns7srQaPIM0PoAiOAGJbS+AdraRTEm6g/36yXETcLV2BZA/h7xJAVwSpqhZhW5p+ThqYQLO+f6Gw7Rd+Y3EqxD8dNwELCiAkfaiXDNLK1IQCGDoLsrqBG3V+n0AI8dZ+gAODGfheUwYqSXgy3Sp9naZ/EvBQHHDgSEIpBYfwKz/EsDdZ6RyavYvZL3Q4dWCAHIFcILXj4k+AaxMMUyS/DhBAVQJoLb+FTKgzVWY1FaU30dQMAXgRo4xEkCL6wBqZLydAiiagHU+gFUargSSmgBymbu3VyaAvfLcZ3JVV2VyPl5ryS0QBrP5dVALASRCMuihFaFLWFsb9ME4CF++VNcNHjWdZALmqqHWfaLJcARQQwC16xNy8KTHCgFMowCKJuCIApiSAIpLPQGwUgDbiaZjJIxSi3vZeX0/WeWE0QFcVACLaI8OuAYTcBofQB1iCSBPEeGPWLPAAgNsfQBVWCuApWh9jygKYASKAohqsg9gEgE0KoAvvxx87Mr5E0jR3gTMJ/8h2hH5LZKNSNPOciTqAxjpRxoCaKUAzp8ffi6V0FZpoAnYwgcwJ5iA+wbYfnHm3ziYFMC2thoJoKAAcpXdZiUQnbMlj5bkpEC6rpYACheyMAFzBXCC14+JRTZ2VqcYKlIhgJICWIkxASvprbSRyknMXfm9jHxqAsjHmrQEMJUJWKMABv1ONAFbKIDGZe54QxcUwFIJEQVQXUAkgKKCGU3AHNxtxkIBNPYLYT3gYn+4MESEAAqfTQSQ+OnebAlgHyzWC2wwxj0BXInJWgJoowDqTMA2PoCH4+84BWcCSDAB2xBAtaA2CqBQbtvjYgmgxsQpEkCtApgmDUzB3gScqAACwYjFCaCNAvhtXBD5yZoAimsG+pCilS0UQO4jEhcFbDIB83LmTQRQyKTLCWBxyJ+EaLIJuLCYpWoYpu2RexGyVDBolOYMja4EEpm8lPO2D6/AnfgoK2ucAijii1/ErGXzAIyOArhyFau3eqw7uqbf1iabgOshgDYrgQAw1hknBUkK4Gfv/hIz2/Eb0EGjAE5EP7qLTAnyploQwKeewo+u3Bib4iUAwMpyjAKoIYARBTCJACr1koYAroe38Dw2C6LMAx9AHTQPJ++vlAIYCKDGBKxNAyMGgXiCD+BllzEztJKRwKgAcj+HZcvQ5qfs0imACxfqDoZRAdT6FgOpCGCSCTiHCob70hHALTFPOpWNCTiLamACdgpgK3HMMSjNWAfX4FCtCdg4+PmD1fqzalcAAWAamL+cyPpjSZIGA+gCzaRTAN/FTDy2wWH6H/fZx3gcVy/WXVfzo4EA8oa9ChPjTcBiEIhGAcyq0atpCKBYH9x/xh+xpvtvlMPoSDXQcogm4NjJUrN2ZqmawwG4AaVcFwvCUeG3s0AB9Go3Ac8BM4Pmpvdof8cllwQfJ+bZBDI0EJMH0HCz87MbR37z096F0MyGfP1jcSWQJBNw9/I3g893YTd2vO72//pXbVkH0YV5x/2Rtb1f/Uq7D044Qb+dI6UPYKwCeNppxnO8jrlYhim4GEdqu/c66wATJ9VnAuZ9zMoEDGjHJhbYRKLXNZ3oppvY/+23R2WDjfGPwsE46SThd6Gt8MmxE0PoGPEjJnmQgQpOdIaGgCOPxIy+V4OflpdifAA335xFYW22GQBgnVn1E8ARFKx9AAFgM7yI4/BLAOw5GrOBEBKp10QfQAsFMJeD9PA+uCPB/Enbhsf985/2JuBcjkWIUIqJZZbmSOcDeM45huOVN6Wp/uovA5hgDuKAGAQSEsDTIfcv4zQpEMDSqpAAtrdDrm+NCViFUQH89a/Dy6ESqNObbtuFzk7g7383lK0JGL8E8Ne/xjP/eBP9mBSYg9IogH+8sKglgDY+gCLElDNpTcCD6ALUxd5jRvyFW+6N2XgbI10GInDLLcB112l/qtCMbsxh0JiAOzCMyehDBVksx5R4ctvZCQ8EWXiBM7mIiA9ggglYigIW3/AUAsgRSwBjrmWtAGowVM7jJhyAM07sD6LXJPgVlvVkBdBkAhZ/U/E+PAUAyG2tk28B7L8/W30EwMQCGzQH+n0fQKpZCk5zs/+HB7GKToj8FiGAmpcF4lWRy4UmMBsTMMdfcCTOx3cAGNrm5z4HfOc7kc2D6MLyg77MVozYbjvtuXHuuXjyooekTcdDWCYrJQFc0R+jAJ5+ejS63se38EtMRy+WYrq2nWWzwB57N8YEbJUI2vCjdglNZd+Kro12diL3yov4+PC1MhkQCAtXebOoIltlbTTXlaAcDg5G3C+W+QRQm589nweefx648UYAwOSuCr7+5ZQ+gHWYgFVUkY0/Vjlu47kxaWAAYxBIXCLoCd0ZPLh8szCl2JIl9iZgIGjsk0r+Mm6CAtiL6TjnHGCXXQzHGnwllpHp+qhqhQB+6gD2MnsU/oAf4XRpV20eQMBIANvaIHcmMVeiQKPeQbhkqpEAHnMMU1MhW8pmbdCBVau0weRNw/glgAhNYql8AH0CmCnLJmDut2GrAHKIg2bkbc+GAKYwAVeybaBxZgVCjG+4VWRRKBjSGWhG07XAzIpLMQ0UmXgCWCgEK2mQksYjWL2nBAVQIoAi+GiqIYDGUzaJAA6X2UOYOCk+NUuORwHXoQDyN2e9/d4HT+WTZxPIqlXsRaRqqQCuQA8qFUQU6YgJOJOJmoGrVeRzNIigszEBczyBkLwZ27WmfQ6hk723JDy4fKdcEMlPh18w5hy5TLg6wPJ+tr/RB5CnL1FQRHuQINnUTom4eoOYENxWAUyTBxDQjmniy6xJAdTmWM3ngUwmWo1COwn8PFFB3ieA2U4LAihN1ARFtKOzM+aRZTLhMdUafADrMAGr8JBJRQALJCEIRHygXhi0GBcEAuL7na69Nvve22uvAAJBY5/gB+6ICuASzIivToOvxLKswYdCWT2p4NeFmCieI60CGJmbhYlQJICiGTcTlwaGB+GICyZ0dKSeR+rF+CaAfgepJQoYxaIc8p3CB1CESAAjCmCiCXhCKhNwJduWfNqYwcjYWTUKIPev4zJ/pAMpyU2rWT96cESTPFqt1DQmYBF8glVeWetVABOjgDUYGknwn+FBIP5kxwcTUxoYNRG0FnEE0H9A3AdwsF/2AUwigP3oRrUaEkaOiAIIRAlgpRL4CLHs+STRBMwxD+E9GZ+hxo7mIWtapU9Crk2+ruSnwyslZt1tawUQMEbilxCW39jOxMjNWhTAhpiAkxVALQE0XUijAOZQQc7zFcAJhuhhMQ2MUAHFTCcAkkzIBAIoLv0IoOkmYBFpFcACSQgCER9KJSQncWlggmOElC7WPoDCcV1DjPR5wyWgvx9VksVKTI5vYwZpkS+dGoGiABa8sC5UWCmAAyPB8XGrdIkEUGzfsVHAQrRxsGBCi5I/i3AEECkVQP6QhEW4gfQ+gBxig8nlkN4EnEIBLPsEMK1pB0gggNls5B4n+H4N3NE3clqDApgpagigek9pooBFGBTAItpr8gHkb261KIDGReI5FBMwockKINGsLczxDmYBPQbTPxAhgEsW+T6AOhOwgQAODwPPvZDgAwhE/QAHBnBJ6XAAwIgfHGNrAq6VAAJ2461KAFdBSM7OC6kED0jHk5AALutLiAI2zPZNI4DCQ+VJwp96KrCA1kUApesKX4wKoA4GAsiTo+cnJCiAQ0PSTfBl4KwJ4FtvYZc/K0n/mhgFrCKRAKb1ARQbj6/iqWlg1ETQAUESInpTmYD947oGmQL4lSdYgueBdmYZihUjDNmzl+cMb1BKGphc1UwAkxTALKp4e36MAihAJIDSS5A/HscRQFUBbDUcAQQiPoBWCqCBAKb1ARQbTGThj1oIYAwTKWcsCGDMYBQ79hlmU64ARvqyqgD6S6lldQpgShOwMek+H02Vim66D+AXvgAAWN45O9jEl6wzDp6cAFZ9H0Av2QdQXHFCxeIJG8UUEEG77siyQfPmf9ingQGYGr14MdC7XC7YMcdorqXOamedhU+UrwUQEtxIW9NccwUmY6kQRW9LAN/EHAB2422+Qz6pVgGMI4BCGphVg6xujDzcggAaV5QQU3fYEkChwnT7NcMErJuMjSxAaAQ1EcDBQS0BTFTk4iqtGXkAtWsYsr4XW1blWolpYDQKYC4nB4EUCoiYgAGEEb1LlwYrZFiZgKey6O32oeVYC4uw+0IWlLVw8la6W4igr2duZNuKnJ0CSEYsCCDPIn7UUey/oABedZmSB3DOHO1lpQj8TB7nTvoJAOA03+9QOzcIRDNQAB0BbC1UBbBbWAouyQdQTe0R6wOYEATy0EPAokV2PoDHtYdLnw0g6nQfqwBmLNJl1KIAAsbGO2Pz6VimW49eUQBDE7DGBzCFCbiKbCQuJgAfiZUR2ZhYFIglgHx5qRLa4gngn/4EvPIKHt3oM8GmgaKdCTjnE0DxLd1ULN3ShBxbfzhhWUFOAP0ckfOeDaOACTErOiFIsD/HK69Av2qCOqsJeSD4/dkogIuxVtIuDELHGupeC1vhWQANUAB5o7FUAEc8di7jpGdhAjaiFgVQKIiu/TcjCCSVAkgIIxy9vfjTxeHEzEmOFQEUKoC/6FsrgDqkNAEPoyP5eprjgPQm4JywPGIaE7AYBNLVBb0JuK2Nva1Wq4EPnxUB5En+y4PYgqdJyeVw/k436m4hgr+d/BzWxVtYiPDleWUhXgEMfPNLFibgL3+ZDVS/+11QNsB/0YASBTxxIvDuuyxwTIA45m37wQJ+P/VkbIyX8WP8EIAzAY9ZqASQwyYKWFUAOZKWo1JRRh5rrQWsxeeyBB/Atye8J/g8iC7QFOZRrgA23AcQMBJAOn2Gfq1IEwEs1W8CNlY39wEURlW2DjSpiwAmpoHJZoGNNgLNhxXIFUDj4MmdhL0yACq9pQPafNmxBDA7IUH2CAigP4EUQwJo64/H9+fYyCQ6xsxqfFKxIYDiKjqAnQK4avqGWOWreFYKYLuFCVj3MHiZBAJYrprVWwBWCqARrSaAaUzAtfoAAkxBmjYNa80OJ+ZgZRsTATT4AFoTwLjypDQB86CTRDSEACYogOJDEUzA4tgSIYDiYMrNwO+8E+wP2BHAvEgAjzwymHOTcndmJnZhIdaVXD36CnYKIF9iJFYBJIQNVHyDgQAGj3XmzMgNi2Nerj2PfIHgVWwM/lLsTMBjFCYCaJMHMJUPYAwiOc8SfADFdXGZCdjePGplAjb8GJuTCjC+vQxPMHRWJalmI03AmRQEMDGJcMy1RAJo5QMo3POqYoL/TCYjrRAgvqUDetEpzgScOOsJCc6BUNGmuuXcYm7WlBPLtixpTMBiEnXAjgBWC2E7tXnhVgmgNJlw4mdpAi57+gCeABYE0OCHXrcJuBEEUHKANyiAqUzAmsIUMIKCH5lbmGAgY6IPoJBWimcHaKUJ2FoB1FR2oglYOSbnyWlgYn0A4xRAcT/xMw8E8QkgJ/yG4HUG/wby5aGQAG6xRZAa1TarzkKsExa9YKgUgwLIx3gRSb60KgEUVsuMQBrz8vlIvVubgJ0C2FrUpQCmMQHHQHq7UKEphGiSSusDOEJq9wGsVQEcnmix7EEmEyiAy99pQBSwSQLkI7EuvUSdCqAVASyEdds/bPH27Ff4t/DLiAlYxzniFMDEWcgffOa88h98BpcHLzSezlE7wQSfCAsC2FAFUBhYK/mwndo8M9UHULo/PovZKoBebQqgbgKLoAkKYNqVQGpWAFMQQD5ZllBAod3wAEUTsL8cHBD2j1aagItotyOAGmafVgHM0pQ+gJRiyuO342CwRPQV5NjQmKQAvv46AMOqLyq4AlgarIsAii97xmOUNDBWJmAVfjs7Bhfhw3gAAGuzr75q2B/KmFCIrlKivZZANJ0COEpQg0A4rKKAFQLIJ8zYQVODiAJ4yCHsv2FVjmxbDiN+x7sPO6XyAeQEMLbTxSiAtQSBzHnfVP3+ymujl2Mnf3c+G+CpOPCo92SUQdggdl/nXuzL5pvLP3KbpGQCrp0A8jRA9gQwrMBVQ+yCkcAfzf7n4iSs5a8d3WwFEAAuxxGYizcApDcB34k9AABvF+aarzVzpvGnNCbgWhTASi7dINvWKV9XGux5kmHxYcyeLe0v+QBWExTAjg7tfVoFgdRCAAWn9kb4ANoogPUSQL5qQglt5nsTTcCtJoDK78PosDMBa14iUpuAvQQCuNNO8nfPw6bf2it6PZ0PIACsv750uEj4jfBvIFcaxOZ4nm2rgQDeESz7GOOv7f+QRwUdbV4sAUyKAt4fN+NzuMy/ZrsxWbW6DCPy+cg9JZmAXRDIKIE/KDVR5DBiEjLGmIBzMeIT/vc/4K678KedLpU2RwjgL34BXHkl+wOARx8FttwyLHN7FhvhVVy4y3W4EQek8o8rZi38LhqsAO7wkRhH7fvuAx5/HABQ6GIn553BywiFVCtVye4vooIc/jLlROCqq4B772Ubn32WrWE5d254bR/1mICD4iQFgfggggJYonm0tyfMJ5ofa1YAk2Yhxb7PF15PawL+DY7GsdOvQv7xh83X+sEP2HJIG2wQ+YkPppFLaK558Fem4amnwu82BLCcTWdmKXTEEEBuXhQn70cfZW3Pj/zOkqgJODbp+AMPAD//ObyZ4YoCTTMBz54N3Hkn8MwzY9cHUNlHJIBGGBRA/hzGpAKoIYBpE0FnqJwIOlKtn/40cM014XdlicrAB1CXBgYATj1V2v+UH+bw7LMx5QPCIJCFr2EKVmBlpgeYOdMu1yTC6r4Lu+MA3IAtMC92IYOS3756ukbqUgBFTJw7TV6iUMCrrwJn/rR2Arj1FlXsu5uvADoTcGuRzbL2rZpYYleGMJiAOQE04r3vBXbdFc9udKC0OWIC7uwEPvWp0Dns/e+X3txy7TkswBzcO/UgACSVAjicsSCADY4CFklPBB/5SLAMV0c3248TwEiCaxFFTaSwjwpyoLk88MlPhqkLttwS2GOPcKcGmYA5bBVAIlRgBbn4/FmGQpkUQErrNAErBJBPJB40KzQohJwK91VFDjO/+UnM2GotGDF9OssP86lPRX7iKy/09ys/aNr1Fh+ZIuW2tiKA+ZRv2cpJpbd9TgDFh7H22qztcWfyNAogAHzwg8DxxwNbbx2W2UZpMSiAidxq992BrbZqOAFslg8gJ4DcmqGF6AMoJKLkz6GpPoBCXyihAJpE4jgMCmAaH8CsoABWMm1RMSKTYRYmXiATATQpgFOnAt/6VvD1vdvnRW1CD/8GCq++AAB4Obc5QEhqBRAAbs4cgPnYMLZd8heMSR0jdkEgKjQn33zn6UZuts46wK67CycrFFL5AHZ3VDCl3SmAo4Z8PqoAFtGeWgHMwLMax7Lt8k5VEmNuDg4SBvT2nHz5FArgMGGdsZV5AK3e7gF09rCTc38Imo05LoEAJl4yjQLYQAKYaQvrtoJcvP8foM2i3DQfQIUA8pyYHjLqPBGRoUhHhzTZWE14gHai5f47K1cm74ueHum5JfZZhKmQrJGNUQB5xWjt8T7Z0/gA2nQJOam3OYuArpzWCqCARgeBNCQRtKYwnACWbQjgwIDUh1rtA8jnFav+oGlDaU3AmWo5GD+9fEz98AerrNMYEE6TDyAgZzG3eW7KDbyYYW9stRDAyZOTj5EIYB0mYBGVKQl+7JnaFUBUq+FzcApg66EjgE1RAH2IJABIUMg4hMJwkxS/PMmmVwBr8QGsVQG0jYrJd7KT74T7AQBlWhsBrCKbigDyZx9rlktAYhoYfqq0BFDJN8WPA/RxB43yAQTSEUB0dkp1Xg8B5ApGhADqnsOUKdL8ZDSPCvc2ktIHMJYA6nwAleNEE/BIUhoYASRmeTktajEBC9D1GSGA1uqAhucB1Fyvg+e5iyPyXDZ74w2pUVgTQELMvjwpCCB/ubSa1zXPO60JuG3xAkwCk86r+ZiL8uchmMcBgwlY7XfiOoY1EECezsWWAIrDEreY2CiAG2fnB/enC6JKYwKuTjFksuDIyAqgVVymSACL4yQIhBByCCHkOkLIm4SQYULIS4SQswghE5X9egghfyKELCWEDBJC7iSEbNWMMhUK0QZipQAqkzMBteoPJJtBRRigxdxwRojpGhQFcMWkufK+MYRliNTuA1izAmgbFq2cnOfJ08K4lpYlEW+wD6C1CbgtvMcy8vr8iCI0kwKf3COkDAkEMKUP4JTMSgDMBzCWCADABz5QGwHUVDpXANddV/lB9xz4AvU+jJxJuLeOnpRv2UoZJQLIneI1voy8QeRINSAepWpOd8pUML40CPUjLodoSwAbsRKIjQ+g1gScwgcwuFYmRuEyVNL/sA0ACxMwYK64JAIoHMfro1ZhJ9EEHDO2WimAihVLGwRSrwKo3MBzHgvMS+sDCNgRwLJPAH/7xt7Ctmg50yiA1anpFEB1bI4zAY83BfAEAFUAJwPYG8BvAXwdwB2EsPUbCCEEwM3+798AcDCAPIC7CSHr6E5aD2pWAJVABFsF0PPkBsnz38VCowDyvvv41l8ETj6ZOY8r+6qwIoCjpACq+8WmEzn4YOaQvN56kZ8y8JKfwyj5AKoK4OmnJx+jgvugNSsNDMdHt18ZXC9WAfzOd4A//lFa3sxqggWMJuB99wW+9z3lB3EiyueBX/4y8vyNBFC4ty2378App4TxQYloa5Ne2L52dBZnHvIkBo45Cfjud9nGb3+bfX7ssfA4IcrPOghEhCJn7r03cN55wMYbG/YXTurVoACq+/1/e2cebkdR5v/Pe5eEm5AVQTACCSJgoixDxhEYlmQUkAASQRGCAQF/iAgqghrD+PBDGBaBER03FoERXBEEZBDEENzQmSiLRkRRggKjJLKIBHKz1PxR3bl1+vZS3ae7z/Z+nuc+59w+XV3V1dXV337fqrfOP5/08V0ZLuAG3eDcXLFxIlMDjMYXcF2aABw/Hi68sGHTUws/xEl8cePPefPbSI44X1M3H+CSS2JeZjzJ6wJ2Cdd2Tk0XYwEc5QJOswD6PPAiJ/CHtbYyqnIBv3wbm2D8mmfshgsvJG4IRR4LYJrBARglAKMvzGlhYFi3rqUWwCbeRQtxiDFmpfP/PSLyNHAtsB+wBDgU2AuYa4y5G0BE7gUeBT4MnFZmgQYHc04CSVDpvhZAY2xHGboy1oqHBdApTBiXLBSAMjgA5503sm+aBTAId1N0JZDUfrpZARh54K1La5p9ffCJT8DKlfDFLzb+5CMA22AM4Gt3GWDPPbPTjMZ2ZlEXsDHluoCnT34WsNd9lAXQvVYXXwzY50IQH7bJMYBrueyyjPA4Rx4Jp43uBnwsgH3jhzj3Y57lAxDhpYEJbLruWQA+89k+YLfgL2BoCC64oDFdjAt4zTr/MYDR++GII+CEE1L2dxtgfz9hU/AVgK5gGxiIEeBRMiyADTgn3Di2McBHAEYtgP0ZaT7sCPS+PtZfcDErgwAMTQnALAugw/iJ/Zx+uvfuo8h0AafEn0yJlJVtAUyaBQxNjwH8i9mc9eubE4Bp98/YCZF2ccop8JHR++WxAPZNylhGM+ICjvaXmS7gsDK63QUcEX8h4WtzGEDrUODJUPwF6Z7DWgXfUnaZCk8CieAlPBhtAVwnOS2A4xoF4Kg8U3r8F5qwAGa6gJM6cV9/VxBcNCRVAIbE3DBellin1wktEnUIwP6hkQocO8HfkhBH6RbAaAUEg/AMkvac2Yj7XGhGAEITLrOkcrpts8DB1wz6npBD0CDKsgBmti/noO4M+rxxSb3ygsw4gEn7hgHzGyggANdlCUAYaZQbNmwMCAD1CcBCle+Q6QKOTOJwiRk+PELWGEBfC6DXrMfGOniWyQwPFxOAPi7gUdcnQVRlrQTScMixGZOwMiyAmS7g0ALYAy7gOPYNPh8KPmcBv4rZbzmwjYikLTyTm8Iu4Ah5LIDNCMAwMG04uW1UOVN67xeMhwBMOPFMF3DSoGlfC+Dvftfwr9eKEjE3jK8Qd/eHeuIA9jkzwMdNaM74HveG31QcwOj1CwRgrMsuJnP3ueDtAk6odB89EIeXACzwlj08pkCXE+MCbsYCmEcAut+LaBCvNAUtgLFWap8HXxEBGMb9xBY3tCBVOgbQpZnBntg+MPVapAjAlFCpI9cuNNkHZK4FDI3jK1OWQIwtUxAWZ3i4ujGADQmGhhJvnDwu4Mz+qMgYwLAAzz8/ota73QIYRUSmAecAdxljlgWbpwLPxOz+dPA5JeY3RGRp0l9aGQYHRw9M9goEDfZmCHxVq3iZ1/2+fn1zAjC6NFUuC6DxCAMjErtDpgBMwlcARu6yohbAtYxeizGNTAGY6kux+FoABxwBOJRDAP4PszP3mTTJtsFEvM1yATkFYJkWwKIC0McFXOQte92YAhbAGBdwnjAwrRSAXhbAmJ18BGBZFsD1Ax7XcdddG/4NX1LqGgPYrAUwc13tmDBRXoR1+d73NmzeaHFMcwG7/6eqzNGEYcheeqm6MYANCVIudB4XcOZzL+ICjlZLqgBctao3LYCBJe9mYB3wrlaVwzYm4UVnHGDq2ptuZzVzJtx9Nz8a2Jd53ObVN2zY0GjdSg14HBJjAQwZ1V5TLYAeYwATdhi1Yokvvh3mt77V8K+XAHSW3Vo9djI3cDg/ZO9cAjB8OCemyZwC6x8GxnUBj5voUcgbb2TVznOYx21czXH8G4sSd73oIrjw9Tfy19fuC5dfPnqHMgVgDK4FsO0EYII48mXtJgUsgMF9OHH8aAugVxEiJ5NptXLu+1pcwDEW/2FsENxF0WZahQt4wCPN+efDnDnwjW8AdtjowQc3xNhOJlJxwwzy3//0vnxWvSYF4JFHZaRPEIBnclF6uoRzWMeAfadOXM4q4OKL4a1vtUHLczDcbxvxihXFBOCBB8LcubBwoWeClJvGVwAezg35BGBeF7BL0Y6vCeqeBAKAiAxhx/RtB+xrjHnc+fkZ4q18U53fR2GM2S8pv9mzZyeaccIGuIaxGydmvMQmydZt9yLNmgW77878yUtZtQr+0aM2jWkcCJ11rwGxYwBjfkrYMMLwuozxbiEJ43sKCUDfDnOvvayKCdbc8XIBO8tALH3DIt52z4dzZQkeFkBPAehlARxyXMCTPITx/Pn8fNx8Vh4Ix3N16q5bbglX/ux1wFJ4+OHRO3j7ZQOC8zZxQYjLsgAmVHpmO0uwynqFzvNSN5HjDhW3AG6x2YgAfGltDgtghMxVY+q2AMawlkGuuQYWLIj84AayjxumUEAAbvARgJttBkuWbPz3lFPsnxeRivsIF7L5oR/k9Z7J446Rl3csyEgf4wL+7NYXcPGfzkxPlzLOe9S1j7vXPvQh+5eT9UPj4XlYvrxYHMCtt4bvfz8jE08LoI8L+FO8nxs5nAuqEIBxBfASA+VSuwVQRAaBG4DZwEHGmF9GdlkOzBqVEGYCfzTG/D3mt8KEDdC1dJi40Bchrpk2ECDhtfS1AObGaSybjM+wAKZ0Or7jLuJOZA1jiwnAPJ2gU7deAnDmTCefkeuXJ8tQjNchAPvH5bQAppUrjThXQsHxJUUsgM2EgYHi/WA7CsBxm2xgIBCAq4eLTwLJDBruHFQGWiMAN9AX316dCxrGeWygiAs4Lc5dGUTyG8Nw/nuxSQGYmT7GArh+wuTs4yY8qGK9Lh5DYHyRTe19tHz5yLMojwXQy5lUogs4HNKQ1wUc1Q6pYWBaTN2BoPuA64G5wGHGmLgV428BponIvk66icAhwW+lktSovC2AjFxL31nArlWldAtgSu/te9OVZgEcHMz3NHdEipcL2HkqTnn+jxu/l+oC9hjn4isABx0L4KaT/QpZqJ+IE3sFVZXvGMBwfA7kGCdfcifoJQCL1MO44rOA3Y7EZM04d8krAKNhYEZ/9aaoC3iQtZnnFq713EARC2DVAjBScWNZk78um5wEknkhYiyAZkrsEPlGUlzAoyhksYhncNKIAAxFUlYVub971b/blpq0ABYSgIODfmMAm20bJVF3KT4LvA04D3hBRNxBBI8HruBbgHuB60TkTKzLdxE2AFrG4Ib8JImhRAtgigD0nQWc2wXstKCh8Y2tqS4LYCEBmNeU4FiuvASgw+TnR0YRtMIFnBZ3dWO5HAE4frLf2MhC/USJs8l8XcB5hxgCpXeCVVkAmVB8FnAYH9ANJu1VhEgdt50LOEEAZlp0iloA+/rYgNAX9J0b0pY6K4NIxXWKBbBvanEBGOt1KdECuMnLRgvArPbitdSjS4ljAMOwRpWMAexFCyDw5uBzMVbkuX8nAhhjNgAHA98DPgfchA1rOscY86eyC5TbAjgwAHvuCXvssXEpqjwWwI9+tDlX/9C4xsSj2lHKwcM3k0osgCefzLpNJ/HJfifqZt6HrSNcvsY7+PvgZDjppPQ0X/gCTJjAj/cdGXnu1VFfeilrxk5gMTaIduL9OH++HUuUwjBj/JYzdVzAvhbA6LlcdZXtkL7ylZREURfw4Yd75cUZZ4wyNW3oG+Taa7OT7ryz9cjPn++XFdBQ6Q9uPpfVDHEiV+Q4QCOp8QqPPdZOGpozJ/dxt53VhAAMCB+u/f2e9/9ll/FS3xDv4fNAPhdwLWFgYki1AM6dy9+m7cTJfJ4XiDyYPZWVO7nFjKnPAjjMIJ/n5Pz1kidB3E2Wlf7WW63IuflmOOoo2G47Drv4n5kyhfRVhhKOe9wJFbmAP/1pmDSJsZ+5BBF4/PHAECJ+VbTffnZVmoxu2LKpc6+mvJUmGkpLcAF/+9vpyykDo0/8+OMzMqmGWi2Axpjpnvs9DRwf/FVKbgugCPzwhw0LhuexAG6/PZhtBVaMHC4T5yaMPttT+84bb2T4059nzNLvATlWnEmwAKa+qG+1FQPPPc2H6IP+YBmmJgTgKl7Ge474K9d9IeMYJ50E7343T10wsp/X8+SDH+TKgffz0GkZbrnJk+Gpp2Dq1MToqmsY62UBGxw3Uq8TphRzAR9wgPX8pFate/2WLoV9903ctYFPftIunTQwsLHNHXT4EBKddRfzUBgchF/+MufLjXNyD03Zi11Xfg9DH1fmOIRLqgXwmmvsDgUsgGOnNOECDggFoLcVafZs5r/x73z3TnucPLOAmx0DWIkAvOsubv+a4aGj+5jA82yQgdziYr0M0B9MItlQowCcwPMMM7ZaC+DChdaosMMOI9uy2upBB9k4cn19cMghYAxb9/WxalVG0oRhLRdeXJEF8NRT4ZRTGOjrY7PNbOQT8A8QsWSJLYbXrRszG01k9GkkLqkYIwDzxgE86CDrOPKOt3viifGRG2qgHQJBt5TcAhDsBXeedHksgNC4MmFea2BUvKXmOThI37oRe3Q4ZCRTABYdA9jX13iTNuECXk8/g2M90/f1NdxPvtdh4mRP0Ri53lGGGVOZAIyWa3AwZ7XmHcPT19fQQGQoxtWW8FDIqKbRuFYWGbNxjFwmRWcBF53dsGnzFsBwSEMeTbD6JUfUZdWruxJI/0ijKeJlL+oCTnWTirBugz2woa+QsNjQ5xy86pAZTn2GQqByF3D07d4nfXixRDZ+z7x+kRVANhJ3gmWNAQwK5eoz7+el5Lh1Y2ajxVVjovhssPyOSd83JGIBjOYZ6010d5g0qSUzgEEFYDEBGCG8/nlihIbkve65+oj+fvrWjrzteQvAsmYBN2EBzFx6LkIRAeiOq8pMU4IAHLPpyAlNmOrXWKLXN3cb81nHLYrbQKqMTu++bZvmlsaDUserN1JkgGOCCziPiEhZ6CE9vxaFgRnDcGr7jO1Tc3SADQKwagugQ/hiUqkLGEbf3FWNE0sKIB2XX4ljACH/UsJNZRDct9H2nNrkYiyAeV6+YmPoxrV7t1BFXjBLQgVg3jGAMeS1ALo3VaUWwP5+ZO2IBTB88csMOF7WLOAmLYBVC0B3XFUz8xGGGeMV+sS1AE6a6te5x1kAc1FEALoNJK6xlPVQiLGyNEORU/WiiABMcAHneabnEoAluoCrmgWcaQnJwNRpAYx5m8jdR+RNEL25iyrxLJIaVlx5SxaAeZcSbiqD4L6NNrGddkpJHzMJJJOICzhKpjFJBWDrSGqEeQaz5xkDGCXvGMCoAMyyAMr73gfA1Ry3UQAWHQOY+/za3AJYpgD00QhjJ4yc0NhN/JR/9Pp6lzM8Oa9lDyLUZQGMcbcUIZwn9IEPNFmeJPbe236+/OX+adrEAliZC9hh+Yx5AHyZd7L11sn77bOP/WzYJ0dmxj2ZqpfNihE+3lr1LW+xnyeckC/PaIdXlQUwyQUcl1/JZvVWWACjp5U6QSbGAphJjAvYJVMAFgqhUA7tEYymhcQ1wkcegVe9yv8YuS2Aec1+RSeB9PfDccfxD6fuxQMvvGpj1pnCKuaghSw0bW4BLOoC3omH+A2v2fi/rwDsG+hj5a/+Qt9gPz4T2uLK5d1pPvEEPPMMbLWVZwIHt5HFCcCyrAJFOtsYPvc5+OAHG8fPl8o228Bjj9mJQL5EnjphOJ3KBKCb9cBIWy3BeBmPcz/s8KubWHbzCj7zT6/mla9MTrLDDnYZsM03B8Jy5RA5fWNGKs9U+WICsW3c+9p985v2RBNnGiTQahdw3IWv0AJYSSi8jDGADz3kbwEsJACLWADzrtJUIioAY65xHvEHBSyAdbmAg1H5j4/bgQ2O+zczz5iDbqA/v4utSQtgHi9P5RZAp9J+S6PS8BWAAJvP2iJ7Jwe3XL5hEwDrVijqWnAbWZWWlpJcwH19sOOOZRQohW22ybd/5EKFAZArcwEnZF2ZAHQYHDfI7KP8xM622xbPbHCTkZtBqrYAxli+vK/d4GB+8Remc6nbBRxHp40BdGPFBG3ErcZU8QfqAu41ymiEuS2ADnldwAMDid6exIJlGXRGkdDx5PYGNKFu63YB53kwG2xQ2hDfMYBFyBhfXA1ZLuAKxgCuMcVdwG1J5B4KAyDn6SPCsE15qUUAljVrMceNNzA0UnmrTRtbAIvS35+4okup5OnIO20MoFtngdDNVY095gJWAViiAPQ+ltN5FulH3WeyT6wh15Lm9eKcUKjcArBFLmDfG96tl8xJP5E6cQek+8YBLIJ7fWtbPagFk0CGS5gF3FbErCQRszmVXBZA55q4eRR5Mal1kYIcfYQ4N8Bjf2njMYDN4D5E2mG1iE6zALoEYx1rFYAxJ5X5bGmhC1gFYHC9buAI++Wgg3IfI7z+RWYBH3povv2hUQCmNu5p04BGoeNlAUwQgHld482EQRBMLgHYrFCaMCHf/usGRio1jws4L24VVj3xcSNZFsBwUkSeMXFxOBfqtf9gL/brXtfcIduGBBdwnrb59rfbz6OPLp51ZRbANwSreFa93q2Lc2LbzarfAliVR7YBV0BUleGBB/rvu/32pWa95ZYj3yt/oQ0mwBUVgGW5gHfZJSP9jBl++VSAjgEMrtcH+XdO/M996TtkXu5jNDML+MIL86dxjTKxN9EDD8Cf/7xxul0ZAvA737HL8eQibwfm5DvI2spdwAD33Wcj07tvplllA/j7lq9m7B/vA+ybYlUvce65vOxl1eQxiqwxAyecYGfQhEKwKM5FO/wdg1z/FnjTmzzSlWyVqIRI2w/XsM3zMLriCvuCGE4q9aVZAehVxiOPtOe4xx75M8idWYBzM7z16PrHANaC2+lVZQH86lfhttvgmGPs/+997+ilyB56yM6G3HXXUrPebruR73lCreXiD3+An/98o9DN9Rgq0QX86KOwbBkcfHBCuvvvt6tMpU2dr5ieF4Dh9VrNeOSYBY3LdHjSzCxgL0GW1wK4884N4T/KcAHPy6+LmxonVJcA9O7fogJw2o5sFgjADfTXYgHMFKllkTUJpL/fCoBmcU5ucNwgR+dZR7jdSXh452mbEyfCggWeOzt9hPs8KjJZ1nsMYGiibIaCAnBwYsUWwBhqWayhDhfw5Mm2YYUCcO+9YffdG/fZaSePGRP5cfv03/++9MNbZsxosKrlqsYiE9MSLIDTp9u/RDJNg9WjLuDgevX3F7/Bm5kFXGT/TAtghLJcwLlpwoUxhuFaBGBRVr+i0TVSxxjAlgjAmlYCyR9lvM0pQQAWZXgk9nutK4EUIk9mbuW1IAxMLdThAo5SWQT1eMKJukVnueelchew+7ysbaB2OagADO63Zq5bM7OAi+A9CSSgrEkguekmARipk9XTGsM81CEAt8gXQaY4WZNAyqIlU5xrIqHtVzau3xEsa9ak7OdBRwjAFoSBqYU6XMBRKvPFxlNZvM4EKncBJ6TvBFQAligAvZ9hoenXd2WBYDJHiDvezKePyB0GJioAi3ZETTxJ/spmlccBzEXgK35qyMaDW7NTo/m+KoNEy13ANa0EkksAdsIYwLotgCUIwLBss2aVUB5fOsgCWIsL2O306hKAtXUslje+sdbs6hWAHebJ6Cy5WgEtsQBecYWdUnvyyX77H3kkLF++cYS8O66gFhdwUSFXoMd84kt3cOXxP+ZO9ucD7WQBvOYauOgintzrFM78Gex+/C589cpP8u1fbD0q/zJxq762SSDqAm6ehAZRxzO9aPzA+++HL30Jzjqr1OKkU7RCqra0tOolY/p0OwEDqjfF3nEH/OhH8OY3V5tPhMWL7WIkhx9eT35FXcALTxjD3JM80119tb3xqn4xKRkVgCUIwPA+9TZibLEFXHqpfwb9/XDeeRv/dd/QfRp30y7gGi2Aa+fsz9nsD+TTBJULwC23hEsvZVdg16Dj+sHrz+Abv6ggLwf3UrhB7itFXcDNk9D26/AQFRWAs2bBJZeUW5ZM8vQtrquyanNcqyyAs2bB7bfb71W/Ley/v/2rmbFj4eKL68uvqAD8yFmDMN0z3XHH5cikfVAXcCtcwE3iCsBaLIBFO6IC6VzR11YCMIa6A7g3G3bPm3Z3AXcCdVsASxwDWCt5XhIzl1QokVaNAcz7dq9kUlQAdp1XIgYVgB04CaR2C2BRV0SBdK4OUAHYSG0CsBUWwG7rbFs4C7ioBbAl5Okj6pys0EoLYEits3G6l8ICsNteSmPo+RZWhgAM09bVXl75ypHvbsiHJFo2CaRAj9lJArC2WbkBXT0GMM/Nk3fZllZQtwvYuck7SgDmadR1WgBjBGAt7yivec3Id7UAlkKuoTM9JgB1DGAJAvDoo+GJJ2Du3HLKlIWIHRK4bJnfjD13EnGtk0AKpCvDBVxXv3n88XDLLdUPZl60yLavV786e99ScCu+yk4wrwXwppvgssvgE5+orkxlUbcL+LDDbLT2Aw7gpdMqyqNMliyBs8+Gq67yT9MiF/CFF8JPf9r8wjdebLopnH46PPts/S6GLuXyy+HYYz0nN/WYC1gFYAkCcN68gitlNMHHPua/78yZI9/bfRJIJ1kAh4bsRLqq+bd/qz6PRKr0e+UdA3jYYfavE0i4ZyqrzsFBu14jQCAA2zok2Zw59i8PLbIAfvjD9WULtGAmTnczfTrcc4/nzt08LjkGdQE7K4F0K66VsNCQrhoFYFELfCsEoNIk3exuSWj7dUYXqTpWcu202AWs9ADufdsDDxIVgCVYANsd1wX8/PMeCVroAnazzmMtUQHYgfTgJJA6J5d2nQBs8SQQpQdwr3sts35aiwrAHhCAbjt+4omcCaAlK4HEFSMNFYAdSDe7W9pAAOZZSacj6IUwMEpr6THh3/MCcMcd7WzOWgb4tpCLLoKJE+GUUzx2bqEFEGC//exCKZEV8FJxRZ8KwCY54AA7O3PhwmrzGRiAnXeG3XbrvrftSNs/k4uAenTFl79s9ee111afV62oBVCpmle8ArbfHvbZp9UlqYWef1ROnQpPPtndYwABzjzTTi7zOs8WWwCXLLH9b57kagEskQkT4M9/rv6mEIH77us+8QeNdffb33LxDnYKdx264phj4KijurBP0zGAStX098PDD3dnnxSDPirpwo4yAe/zbLEFUCT//acCsGTquim6NditW39O7KW6PItd2aepBVCpg27tk2LonTNV/GlhIOiiqABU2gr3IeJMcNGhZU2gFkBFKRUVgMpo2mQSSB5UACptRcIMZ9UVTbB+fX156YVSegAVgMpo3vnOxv9PPTVf+vnz7eeJJ5ZTHg9UACptRYIAVAtgEyxebD8//vHq8/roR+3nGWdUn5eitAh9VCqjOeQQOxB2m21gxQo7VToP3/gG/P73+dM1gQpApa1QAVg+55wDCxbU068sXmzXeKyxD1OUutFHpRLPDjvYz512yp92YKD2jrMVawErSiKuC9FpkCoAm6CvD17zmnryEqkvL0VpEeoCVroCtQAqbYU7Xs0ZU6sCUFGUdkEFoNIVqABU2oqECQs6t0BRlHZBBaDSFagAVNqKKVNiN6sFUFGUdkEflUpXoAJQaSs23xzuvNMuNeSgAlBRlHZBH5VKV6ACUGk73vSmUZtUACqK0i6oC1jpClQAKp2ACkBFUdoFFYBKV6ACUOkEVAAqitIu1C4AReSVIvIZEblXRFaLiBGR6TH7bSIinxSR/xWRF4P996m7vEpn4K46p3EAlXZj3Dj7qaHlFEVpF1phK9keeDvwc+CHwP4J+10FzAPOBP4AnALcISJ7GGPur6GcSgchApdfbqNvqABU2o1ly+CLX4Szzmp1SRRFUSxiag5MJSJ9xpgNwfcTgSuAGcaYFc4+uwD3A8cbY64Otg0Ay4GHjTGH5slz9uzZZtmyZeWcgKIoiqIoSoWIyM+NMbOrzKN2F3Ao/jI4FFgLfN1Jtw74GnCAiIytqHiKoiiKoihdT7tOApkFPGqMWR3ZvhwYg3UjK4qiKIqiKAVo1/mSU4FnYrY/7fzegIgsTTrY7rvvXk6pFEVRFEVRuoB2tQAqiqIoiqIoFdGuFsBngG1jtoeWv6ejPxhj9ks62OzZs3UJdkVRFEVRlIB2tQAuB2aIyLjI9pnAMPBI/UVSFEVRFEXpDtpVAN4KDAJvCzcEYWCOBO40xqxpVcEURVEURVE6nZa4gEXkiOBrODvjzSKyElhpjLnHGHOfiHwd+JSIDAKPAicDM4AF9ZdYURRFURSle2jVGMBvRv7/XPB5D7Bf8P1dwHnAucBk4AHgQGPML2oon6IoiqIoStfSEgFojBGPfV4ETg/+FEVRFEVRlJJo1zGAiqIoiqIoSkWoAFQURVEURekxVAAqiqIoiqL0GCoAFUVRFEVRegwVgIqiKIqiKD2GCkBFURRFUZQeQwWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMFYCKoiiKoig9hgpARVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQYKgAVRVEURVF6DBWAiqIoiqIoPYYKQEVRFEVRlB5DBaCiKIqiKEqPMdDqAlSNiCwF1orIg60uS5uxY/D5cEtL0X5ovYxG6yQerZd4tF7i0XoZjdZJPDsCO1edSdcLwICfGGP2a3Uh2olAGKP10ojWy2i0TuLReolH6yUerZfRaJ3EE9ZL1agLWFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVFURRFUXoMMca0ugyKoiiKoihKjagFUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMTpWAIrI1iJyg4g8JyJ/E5EbRWQbz7SbiMgnReR/ReRFEblXRPapusxVIyJHiMi3ROSx4LweFpHzRWSCR1qT8LdrDUWvFBHZL+HcnvVI25VtBWy0+ZTr/t2MtF3RXkTklSLymeC6rg7OYXrMfk21AxF5t4j8RkTWBPfle0o9kZLxqRcRmS0ilwfntVpE/igi14vIDM88ktrfB6o4pzLI0V6auj86qb14tpWzU+rkJY88Oqqt+D6LRWSKiFwpIqtE5AURuUtEXueZR5+ILBKRFSLykog8ICKH5ylnRy4FJyLjgCXAGuBYwADnAneLyM7GmBcyDnEVMA84E/gDcApwh4jsYYy5v7KCV88ZwB+BjwGPA7sBZwNzRGRPY8yGjPTXAF+MbPttyWVsJacB/+P8v84jTbe2FYD3AhMj2/YALgVu8Uh/DZ3fXrYH3g78HPghsH/CfoXbgYi8G1tP5wN3Af8CfE5ExBjz+TJOogJ86uUdwCzg08ByYBrwr8AyEdnVGPMnj3weBE6KbFtRsMx14NteoOD90YHtxadOrgSiL5Xjg20+fQ10VlvJfBaLiAC3AtOBU4FngEVYHbOrMebxjDw+EeSzGFv37wC+KSIHG2P+y6uUxpiO+wPeD6wHtne2zcA+0E/PSLsLVjC+y9k2gF2M+pZWn1uT9bJ5zLaFwfnOzUhrgHNbfQ4V1ct+wfm9MWe6rm0rKed8FfbFamovtBegz/l+YnBe08tqB8F+TwHXRrZ/CVgFDLa6Dpqol7j+ZltgA3CORx5LgR+1+lzLrpfgt0L3Rye2F986iUn3zmDfed3WVnyexcBbgv/nOPtMAp4GPp1x/C2Cfvr/R7Z/H3jQt5yd6gI+FPipMeaRcIMx5lHgx9hKzUq7Fvi6k3Yd8DXgABEZW35x68EYszJmc2jxmlZnWbqErm0rcQSW9bcBtxpjnm51eerAZFvFobl2sAewOXBdZPuXgc2Af85V4JrwqZe4/sYY8xiwki7tbzzbSzN0XHtpok6OBf4C3FFicdoCz2fxocCTxpi7nXTPYa2CWTrmAGAMo9vJdcDrfIdhdKoAnAX8Kmb7cmCmR9pHjTGrY9KOwZqzu4l9g8+HPPY9ORhzslpElojI3lUWrAVcLyLrReSvIvIVyR4z2mttZT4wAbjWc/9uby8hzbSDWcFntL9aHnxm9VcdhYi8Bmud8OlvAHYTO457rYg8KCInVFi8uilyf/REexGRrYE5wPXBy5QPnd5Wos/iNB2zjYhsmnKsWVgL4COR7bnaSUeOAQSmYv3lUZ4GpjSRNvy9KxCRacA5wF3GmGUZu18HfAd4EuvGORNYIiJvMsYsrbSg1fMccAlwD/A37HiMjwH3ishuxpinEtL1TFsJWIh1P93usW83t5cozbSD8Ldo+q5rQyIyAHwBawG8yiPJD4DrsePiJmPb35UispUx5tyqylkTRe+PXmkvx2ANUL4vmx3dVhKexVOJH8MYXuspwN8TDjkVeNYEft+YtF7tpFMFoJJB8PZwM3Zc5Luy9jfGvNP594cicjP27eRc2tDtkAdjzH3Afc6me0TkB8B/YyeGnNWSgrURIvIK4I3AZT5v5N3cXpTC/AewJ3ZMV5xgbsAY8/HIpptF5CZgsYh8yhiT9PBre/T+yGQhcJ8x5kGfnTu5reR9FtdJp7qAnyHe0pf0pu6bFkYUdMciIkPYcQTbAQeY7NlEozDGPA/cBvxjycVrC4wxv8C+TaadX9e3FYe8b+QNdHl7aaYdhP1RNH1XtSERuQD4f8Dxxpg7mzjUV4FNAK9QGJ1Cjvuj69uLiLwe2ImCfY1D27eVjGdxVr+SpmWeASYHM4nj0nq1k04VgMsZGSvhMhP4tUfaGcGA92jaYUb71DsKERkEbgBmAwcZY37Z5CG7fbHotPPr6rYS4VjgAWPMA00epxvbSzPtIByTE+2vwjE6Wf1V2yMii4GPAKcZY75c0mG7sR1B9nl1fXvB9jVrga+UdLy2bCsez+I0HfPHDKvmcmAs8KqYtODZTjpVAN4CvEFEtgs3iA08uRfZMYVuBQaxsx3DtAPAkcCdxpg1pZe2JkSkDztOYi5wmDHmp00cayJwMNZN2nWIyGxgR9LPr2vbiktQFzNp4o28y9tLM+3gXmz4jgWR7cdg39J/XG5R60VETsO6NRcbY/6jhEMuAF4Emn1xbSty3B/d3l7GYOPV3Z4wUzYPbdtWPJ/FtwDTRGRfJ91E4BCydcx3sSI6rp38KoiKkkmnjgG8AngfdhzAWdg3gE8Af8IJvCki2wK/x8akOgfseDAR+TrwqUChPwqcjI0jGK3MTuOz2IfUecALIvIG57fHjTGPx9WJiJyBFUN3MzJo+QxgSzq/ThCR67HX+RfAs9hJIIuAJ7BBbHuxrbgsxI5PuT76Qy+0FxE5Ivi6e/D5ZhFZCaw0xtyTpx2IyCPAY8aYfwEwxqwVkX/FBvJ9AhvYdy5wPHCqMWa46vMrSla9iMg7gE9hH0ZLIv3N34wxv3aO1VAvwYzYjwI3YgfCT8Jahg4FPmqyg/m3DI968b4/uqW9ZNWJs+vBWDdl4stml7SVzGcxVuTdC1wnImcyEghagIvcg4nIOmxsyBMAjDFPicilwCIReR77bDsS21YO9S6lb8DAdvsDtgG+hZ3V+TzwbUYHKp2OFYdnR7YPYVc7+DPwEvAzYL9Wn1MJdbIiON+4v7OT6gT7xvFj7JvnWuCvQeN8favPqaR6WYSNIv9ccH5/Ai4HturVtuKc3yB21uatCb93fXtJuWeW5m0HwT24NGb7Sdgxp2uA3wHvbfV5N1sv2JUuMusurl6woXNux76ErcHOdvwJcFSrz7uEevG+P7qlveRoBzcH9TEm5Vgd31bweBYH+03FBvl+GliNDeS8S0L9XhPZ1o+dwPhYUC8PAkfkKacEB1IURVEURVF6hE4dA6goiqIoiqIURAWgoiiKoihKj6ECUFEURVEUpcdQAagoiqIoitJjqABUFEVRFEXpMVQAKoqiKIqi9BgqABVF6UhExHj8rRCR6cH341pd5hARmSYiLwSrsPim+YCI/DJYZUBRFKUpNA6goigdSSS6PsBNwAPA2c62Ndh1MXcDfm+aX36qFETkS8AWxpiDc6QZwq5CssgYc3VlhVMUpSdQAagoSlcgIiuAHxljjml1WdIQkZdjV6OZb4y5LWfai4B5xpi4ReQVRVG8UVeCoihdTZwLWESuEZHHRWS2iPxERF4UkYdFZF7w++mB+/hvInKziGweOeaAiCwSkd+IyBoReVJELhGRTTyKdBx2+co7Isc8ICjLcyLy96A8H4+k/RowU0T2LFAViqIoG1EBqChKrzIR+E/gSmA+8BTwLRG5BJgDnAJ8IPj+2Uja67DrcH4FmAecD5wAXO+R74HAvcaYdeEGEdkOu17so9hF3Q/Frj08PpL2fqx4PNDvFBVFUeIZaHUBFEVRWsQE4D3GmB8AiMiT2DGEBwMzjTHrg+2vBU4VkX5jzHoR2Rsr0o41xvxncKy7RORp4DoR2dUYc39chiIiwD8B/x756R+AMcDJxpi/BduWRNMbYzaIyANAdPyjoihKLtQCqChKr/JCKP4CfhN83hWKP2f7ALBV8P+BwDBwQ+AKHhCRAeDO4Pd9UvKcDAwB0cko9wNrga+JyBEiskXKMVYCr0j5XVEUJRMVgIqi9CrPuv8YY4aDr89E9gu3h+P7tsBa617Airbw76ng981S8gyPsSaS9yPAAdg++cvAn0XkpyKyb8wxXsSKSEVRlMKoC1hRFCUffwVeAvZO+P3JjLQAU6I/GGPuBu4WkbHAXsA5wG0iMt0Ys8rZdSqwKppeURQlDyoAFUVR8vFd4CPAJGPM9/MkNMYMi8ijwHYp+6wBlojIpsDNwAwaBd8M4L9zl1pRFMVBBaCiKEoOjDFLReSr2DGAl2LF2AZgOnAQ8BFjzG9TDvED4PXuBhF5D3bs4H9hYwS+DFiEtSb+ytlvMrADcHFJp6MoSo+iAlBRFCU/xwCnAscDi7Fj+lZgY/v9JSPt14GFgWt3RbDtAeDN2HAyWwBPAz8CFhhjXnTSzsOOSbyplLNQFKVn0ZVAFEVRaiRYy/d3wNXGmHNzpr0dWGWMeWclhVMUpWdQAagoilIzIrIAG+h5hjFmtWeaXYGfAbOCWcOKoiiFURewoihK/XwFmIYdN/hrzzRbAsep+FMUpQzUAqgoiqIoitJjaCBoRVEURVGUHkMFoKIoiqIoSo+hAlBRFEVRFKXHUAGoKIqiKIrSY6gAVBRFURRF6TFUACqKoiiKovQY/wdKnEeDz+k3vgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000 # counts/s\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900 # counts/s\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt) # counts\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt) # counts\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both light curves to the `AveragedCrossspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 12346.54it/s]\n" + ] + } + ], + "source": [ + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that also the `AveragedCrossspectrum` object could have been initialized using different input types:\n", + "\n", + "1. from `EventList` objects as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " events1, events2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " (note, again, the necessity of the bin time)\n", + "\n", + "2. from `numpy` arrays of times, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = AveragedCrossspectrum.from_events(\n", + " times1, times2, dt=bin_time, segment_size=segment_size, \n", + " gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curves, uniformly binned at 0.1 s in this case, are created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand. Note that the frequencies of the cross spectrum will be expressed in inverse units as the input time arrays. If the times are expressed in seconds, frequencies will be in Hz; with times in days, frequencies will be in 1/d, and so on. We do not support units (e.g. `astropy` units) yet, so the user should pay attention to these details.\n", + "\n", + "3. from iterables of light curves\n", + " ```\n", + " ps = AveragedCrossspectrum.from_lc_iter(\n", + " lc_iterable1, lc_iterable2, dt=bin_time, segment_size=segment_size, \n", + " norm=\"leahy\")\n", + " ```\n", + " where `lc_iterableX` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.) and `dt` is the sampling time of the light curves. Note that this `dt` is needed because the iterables might be generators, in which case the light curves are lazy-loaded after a bunch of operations using dt have been done.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again we can print the first five Fourier frequencies and first five cross spectral values, as well as the number of segments." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.125 0.25 0.375 0.5 0.625]\n", + "[291.76338464-640.48290689j 182.72485752 -35.81942269j\n", + " 293.42490539+276.16187738j 771.98935476-595.89062793j\n", + " 361.32859119-101.50371039j]\n", + "\n", + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(avg_cs.freq[0:5])\n", + "print(avg_cs.power[0:5])\n", + "print(\"\\nNumber of segments: %d\" % avg_cs.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If `m` is less than 50 and you try to compute the coherence, a warning will pop up letting you know that your number of segments is significantly low, so the error on `coherence` might not follow the expected (Gaussian) statistical distributions." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:00, 7645.47it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "40\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "test_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 40.)\n", + "print(test_cs.m)\n", + "coh, err = test_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "An `AveragedCrossspectrum` object has the following properties, same as `Crossspectrum` :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the averaged cross spectrum (complex numbers).\n", + "3. `df` : The frequency resolution (in Hz).\n", + "4. `m` : The number of cross spectra averaged together, equal to the number of whole segments in a light curve.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curves.\n", + "6. `nphots1` : The total number of photons in the first (interest) light curve.\n", + "7. `nphots2` : The total number of photons in the second (reference) light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the amplitude of the averaged cross spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAGBCAYAAACJhNCvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABmCElEQVR4nO2debgcVbW+35WTmYR5DmEIILNGQERABJyRy6A4oYgigwMi6nVGRVFwxFlExKtXuKIoCCoqyhAEwR+oTEEmGUIYkpBAQkLIdPbvj9Xbqq5T3ae6T/Xp6Xuf5zzVXV2ne1d31a6vvrX22hZCQAghhBCiXxjT7gYIIYQQQowmEj9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8xtt0N6ATM7J/ARsB97W6LEEIIIUbMdsCCEMLz816U+HE2WmeddabNnDlzWrsbIoQQQoiRccstt7B48eKar0v8OPfNnDlz2jXXXNPudgghhBBihBxwwAHMmjWrZjRHOT9CCCGE6CskfoQQQgjRV0j8CCGEEKKvkPgRQgghRF/R9eLHzMab2TfM7F4zu93MLmt3m4QQQgjRufTCaK8zgPHADiGEQTPbtN0NEkIIIUTnMurOj5ltYWbfNrMbzOwZMwtmtnWNbaeb2S/NbLGZLTGzi81sy9Trk4ETgI+FEAYBQgiPj8qOCCGEEKIraUfYazvgDcCTwF9qbVQRNlcBOwLHAEcD2wNXm9laqfd6EviYmd1kZteb2SGtbLwQQgghupt2hL2uDSFsAmBmxwGvqLHd8cAMPJx1X2X724B7gROBs/D2bwncF0L4hJntCFxrZnuHEO5v8X4IIYQQogsZdecnhqcKcChwYxQ+lf99ALgeOKyyag4QgPMrr98F3ArsXlqDhRBCCNFTdPJor12AO3LWzwZ2BgghPAH8EXgVgJltBuwG3D5KbRRCCCFEl9HJo73Wx/N5siwC1ks9fzdwnpl9AXeBPhRCuDvvDc3smhqfNbP5ZvYnIYBZu1shhBBCNE4ni59ChBAeBF7a7nb0EytXwvOeBy98Ifz4x+1ujRBCCNEYnSx+nqTa4YnUcoSGJYRwQN76iiP0kmbesx+ZOxfuuguWLm13S4QQQojG6WTxMxvP+8myM3DnSN88EwKbOdL36ydWr/blmjXtbYcQQgjRDJ2c8HwZsLeZzYgrKsUQ9628JtpEFD9xKYQQQnQTbXF+zOzIysM9KstXm9kCYEEIYVZl3bnAScClZnYqnsx8OvAwcM5I25AOgSns1RgSP0IIIbqZdoW9Lso8/15lOQs4ACCEsMzMDgK+DvwUMOBK4JQQwoizTRT2ah6FvYQQQnQzbRE/IYRCg6RDCHOA17W4OaJB5PwIIYToZjo54bmlKOzVPHJ+hBBCdDOdnPAsOhQ5P0IIIbqZvnV+lPPTPGnnR5WehRBCdBtyfkTDpB2fwaLT1AohhBAdQt86P8r5aZ60+Fm9GgYG2tcWIYQQolHk/IiGSYsfJT0LIYToNiR+RMNknR8hhBCim+jbsJcSnptH4kcIIUQ3I+dHNIzCXkIIIbqZvnV+lPDcPHJ+hBBCdDNyfkTDSPwIIYToZiR+RMMo7CWEEKKb6duwlxKem0fOjxBCiG5Gzo9oGDk/Qgghupm+dX6U8Nw8cn6EEEJ0M3J+RMOsWpU8lvgRQgjRbUj8iIZR2EsIIUQ3I/EjGkZhLyGEEN2MxI9oGDk/Qgghupm+TXjWUPfmkfMjhBCim5HzIxpG4kcIIUQ307fOj4a6N4/CXkIIIboZOT+iYeT8CCGE6GYkfkTDSPwIIYToZiR+RMMo7CWEEKKbkfgRDSPnRwghRDcj8SMaRs6PEEKIbqZvR3upzk/zyPkRQgjRzcj5EQ0j8SOEEKKb6VvnR3V+mkdhLyGEEN2MnB/RMHJ+hBBCdDMSP6JhJH6EEEJ0MxI/omEU9hJCCNHNSPyIhpHzI4QQopuR+BENI+dHCCFENyPxIxpGzo8QQohuRuJHNIzEjxBCiG5G4kc0jMJeQgghuhmJH9Ewcn6EEEJ0M31b4VlzezWPnB8hhBDdjJwf0TByfoQQQnQzfev8aG6v5lm1Knks8SOEEKLbkPMjGkZhLyGEEN2MxI9oGIW9hBBCdDOFxY+ZPd/MLjazJ8xstZntXll/hpm9qnVNFJ2GxI8QQohuppD4MbP9gBuAHYH/y/zfIPCu8psmOhWFvYQQQnQzRZ2fLwJ/BHYBPph57R/A7mU2SnQ2cn6EEEJ0M0VHe+0OvDaEEMwsZF57Atio3GaJTkbOjxBCiG6mqPPzLDC5xmubAYvLaY7oBuT8CCGE6GaKip/rgFPMbCC1LjpA7wSuKrVVomMJodrtkfgRQgjRbRQNe30KuB64FfglLnyOMbOzgD2AF7SmeaLTyIa5FPYSQgjRbRRyfkIItwL7A/OATwIGnFR5+SUhhLtb0zzRaWSdHjk/Qgghuo3C01uEEP4BvNTMJgLrA0+FEJ5pWctER5IVO3J+hBBCdBsNz+0VQngWeLQFbRFdgJwfIYQQ3U5N8WNmn27gfUII4fQS2tMwlUlJtyIZcXZxCOFz7WhLPyDxI4QQotup5/yclnke8FyfLHHUV1vET4UPhBB+3cbP7xsU9hJCCNHt1Ex4DiGMiX/ArsADwMeArYFJleXHK+t3KfqBZraFmX3bzG4ws2fMLJjZ1jW2nW5mvzSzxWa2pDK32JZFP0uUj5wfIYQQ3U7ROj/fAX4YQvhyCGFOCGFFZfkl4Dzguw185nbAG4Angb/U2sjMJuP1g3YEjgGOBrYHrjaztTKbf9HMbq8IpR0aaItoEIkfIYQQ3U5R8fNC4OYar90E7N3AZ14bQtgkhHAwcFGd7Y4HZgCHhxB+HUK4FDgUz+85MbXd20IIOwLPBS4HrsgUYxQlorCXEEKIbqeo+FkMvLzGa6+ggektQgiDBTc9FLgxhHBf6n8fwIstHpZaN6eyDCGEHwFTcIEkWoCcHyGEEN1O0aHuPwI+bmZTcLdmHrAJHr46ATijBW3bBbg0Z/1s4PUAlZpDU0IIT1SeHwysAR7Oe8PKyLA8Zo6wrX2DnB8hhBDdTlHx82l8VNcpwLsq6wxYhguf08puGF5I8cmc9YuA9SqP1wZ+b2bjgcHK9oeEEFa1oD2CRPyMHeuP5fwIIYToNgqJn0qo6lNm9jVgN3wm98eA20IIbZvRPYQwH59brOj2B+StrzhCLymnVb1NFDsTJkj8CCGE6E4aqvAcQniKOiO0SuZJEocnTS1HqCEyIbCZI32/fiGKnYkTYdkyhb2EEEJ0H4XEj5ntP9w2IYRrR96cKmaTXz9oZ+DOkj9LFCQtftLPhRBCiG6hqPNzDUkl51qUPbz8MuCrZjYjhHA/QKUY4r54scURkQ6BKexVnHTYC+T8CCGE6D6Kip8Dc9ZtAByCi4aTGvlQMzuy8jDm67zazBYAC0IIsyrrzq2876Vmdiouvk7HR3Kd08jn1WjDNamnM0f6fv2CnB8hhBDdTtGE51k1XrrYzL4O/Bfw+wY+N1vc8HuV5SzggMpnLjOzg4CvAz/FR5ddCZwSQljawGeJEsk6PxI/Qgghuo2GEp5r8DvgQuA9Rf8hhJA3QWrednOA1zXZruHe+4D4WGGv4qyqFBGIzo/CXkIIIbqNohWe67EDXmNH9AEKewkhhOh2io72elvO6vH4bO/vBC4us1GjgXJ+mkPiRwghRLdTNOz14xrrVwA/B95fSmtEx5MVPwp7CSGE6DaKip9tctY9G0KYV2ZjRhPl/DSHnB8hhBDdTlHxE4DH8ubMMrOxwOZxdnXR20SxM368LwcHIQSwQinsQgghRPspmvD8APD8Gq89r/K66AOi+Bk3DgYqZS0V+hJCCNFNFHV+6t3Xj6MLR3sp4bk50rO6Dwy48Fm92p8LIYQQ3UDNS5aZrYtPIhqZZmYzMptNAo4BHi+/aaITSYufsWNh5Uo5P0IIIbqLevfr7wc+g+f7BOCXNbazynZdhRKemyMrftLrhBBCiG6gnvj5NfAgLm5+BHwe+HdmmxXAnSGE21rRONF5ZMNe6XVCCCFEN1BT/IQQbgVuBTCzAPwuhPDEaDVMdCZ5zo/CXkIIIbqJohOb/qTVDRltlPDcHHJ+hBBCdDv1Ep6vAt4TQrir8rgeIYTw0nKbJjoROT9CCCG6nXrOT3p4+xg86bnItl2BEp6bQwnPQgghup16OT8Hph4fMCqtER2Pwl5CCCG6naIVnoUAFPYSQgjR/dTL+dm/kTcKIVw78uaITkdhLyGEEN1OvZyfa6if5xOxynYDZTRIdDZ5YS85P0IIIbqJeuLnwDqvdT0a6t4ccn6EEEJ0O/USnmeNZkNEd6CEZyGEEN1OQ3Nxm9nawK7ANOAR4PYQwtOtaFir0VD35lDCsxBCiG6nsPgxs08DHwKmkNT1edrMvhJC+HwrGic6D4W9hBBCdDuFxI+ZfRb4FPBD4EJgHrAJ8Gbgs2Y2NoRwWqsaKToHhb2EEEJ0O0Wdn+OBr4UQPpxaNxu4yswWAycAp5XcNtGBKOwlhBCi2yla5HAd4I81XvtD5XXRByjsJYQQotspKn7+BrygxmsvqLwu+oAodMaNU50fIYQQ3UnRsNfJwCVmthq4iCTn5w3AscBhZvYfIRVCGCy7oWWjOj/NsWqVL+X8CCGE6FaKip/bKssvVv7SGHB76nlo4H1Fl6GEZyGEEN1OUZHyOYpNddE1qM5PcyjhWQghRLdTSPxoGLuIKOFZCCFEt1M04VkIQBObCiGE6H4aqfC8E3AkMB2YmHk5hBCOKbNhojOR8yOEEKLbKVrh+W3Aj/C8n/nAyswmPZUPJGqjhGchhBDdTlHn51PApcA7QwhPta45otNRwrMQQohup6j42RR4l4SPUNhLCCFEt1M04fl6YKdWNkR0Bwp7CSGE6HaKOj8nAReb2ULgCuDJ7AbdUNVZjByFvYQQQnQ7RcXPXOCfwPk1XldV5z5BYS8hhBDdTlHBci7wRuDXwF0MHe3VdWhur+ZQnR8hhBDdTlHxcxjw4RDCN1vZGNH5yPkRQgjR7RQVP8uAO1vZkNFGc3s1hxKehRBCdDtFR3v9D3BUKxsiugMlPAshhOh2ijo/DwFvNrM/AX8gf7TXj8psmOhMFPYSQgjR7RQVP2dXllsBL815PeDTX4geRwnPQgghup2i4meblrZCdAWDgxACmMGYMXJ+hBBCdCeFxE8I4aFWN0R0PmnXB5TwLIQQojspmvAsxBDxo4RnIYQQ3Ujhqsxm9grg3cAOwMTs6yGEGSW2S3QgtcSPnB8hhBDdRCHnx8wOBn4PTAZ2xKs8zwGmA4PArFY1UHQOCnsJIYToBYqGvT4FfBc4uPL81EqRwF2AAVwYiR4nipxx43ypsJcQQohupKj42RH4De7y/GcS0xDCPcBpuDgSPY7CXkIIIXqBouJnEFgdQgjAAmDL1GuPAtuW3TDRedQKe8n5EUII0U0UFT93A1tXHt8MnGJmm5nZRsCHgAfLb5roNFat8qWcHyGEEN1MUfFzAbBT5fFn8FyfucDjwEHAp8tvWmOY2TvMLJjZ4e1uS6+ihGchhBC9QNEih99NPf67me0GvAof/fXnEEJbZ3w3s62B44Eb29mOXkd1foQQQvQCTRU5DCHMDSH8MITwrUaFj5ltYWbfNrMbzOyZiluzdY1tp5vZL81ssZktMbOLzWzLzDZjgB8C7wNWNLM/ohhKeBZCCNELtKPC83bAG/CZ4f9SayMzmwxchY80OwY4GtgeuNrM1kpt+kHg+hDC31vWYgEo7CWEEKI3KFzhuUSuDSFsAmBmxwGvqLHd8cAMYIcQwn2V7W8D7gVOBM4ys12B1wH7t7zVQmEvIYQQPcGoOz8hhMGCmx4K3BiFT+V/HwCuBw6rrHoxPgrtXjN7ENgb+IGZnVRag8V/UNhLCCFEL9AO56couwCX5qyfDbweIIRwNnB2fMHMrgG+EUL4dd4bVl7PY2bzzewfVOdHCCFEL9DJs7qvj+cFZVkErDfKbRHI+RFCCNEbdLLz0zCV+cYafr3iCL2k/Bb1Fkp4FkII0QvUFD9m9gA+j1cRQgih7CkuniTf4anlCDVEJgQ2c6Tv1w8o4VkIIUQvUM/5mUVx8dMKZuN5P1l2BtpaVLFfUdhLCCFEL1BT/IQQ3j6K7cjjMuCrZjYjhHA//KeS877Ax0b65ukQmMJexVDCsxBCiF6gLTk/ZnZk5eEeleWrzWwBsCCEMKuy7lzgJOBSMzsVd6FOBx4GzhnN9gpHzo8QQoheoCHxY2bPA3YAJmZfCyH8bwNvdVHm+fcqy1nAAZX3W2ZmBwFfB34KGHAlcEoIYWkj7c5DOT+No4RnIYQQvUAh8WNm6wK/w4sIggsRqM4JKix+Qgg2/FYQQpiDV3AWHYASnoUQQvQCRev8nAFsgE8jYcARwEHABcD9wF4taV0LCSEcEP+AW9rcnK5AYS8hhBC9QNGw1yuBzwI3Vp7PrUwkeo2ZnQ28H3hbC9rXMhT2ahyFvYQQQvQCRZ2fzYD7QwhrgGeBqanXLgZeU3bDROehsJcQQoheoKj4eRxYt/L4IeBFqde2K7NBo4XCXo2jsJcQQoheoGjY6zo82fm3+Mirz1Rq7qwGjsFr8ogeR3V+hBBC9AJFxc9ngc0rj7+CJz+/EZiMC5/3ld800WnI+RFCCNELFBI/IYR/A/+uPF4FfKjy17Uo4blxosgZN86XSngWQgjRjQyb82Nm481skZkdOhoNEp1L1vkZUzl6QoDBwfa0SQghhGiUYZ2fEMJKM1uNj/LqGTS3V+NkxY+ZP1692vN+xhRNnxdCCCHaSNHL1a+BI4fbSPQ2WfEDSnoWQgjRfRRNeP498C0z+yUuhB6jemoLQghXlds00WnkiZ+xY2HFCuX9CCGE6B6Kip9fVZavrfxFAj7dRQAGSmxXy1HCc+OsWuXLrPgBiR8hhBDdQ1HxcxAZp0f0Hwp7CSGE6AWKDnW/psXtGHWU8Nw4tcJe6deEEEKITqdQwrOZ3W9mz6vx2q5mdn+5zRKdSD3nR+JHCCFEt1B0tNfWwIQar00EtiqlNaKjqef8KOwlhBCiW2ikMkutnJ89gadG3hTR6SjsJYQQoheomfNjZh8APlB5GoDfmNnKzGaTgPWBC1vTPNFJKOFZCCFEL1Av4fl+4MrK42OAm4EFmW1WAHcCPyy/aa1FQ90bR86PEEKIXqCm+AkhXApcCmBmAJ8LITwwSu0SHYgSnoUQQvQCRev8nAiMy3vBzNYCVlZme+8aNNS9cZTwLIQQohcoKn7OxcXPUTmvnQOsBI4tq1GiM1HYSwghRC9QdLTXgVRCYDlcBry0nOaITkYJz0IIIXqBouJnY2B+jdcWAJuU0xzRycj5EUII0QsUFT/zgd1qvLYbsLCc5ohORuJHCCFEL1BU/PwW+JSZPTe90sx2Az4J/KbshonOQ2EvIYQQvUDRhOdPAy8H/m5mNwFzgWnAXsADwKmtaZ7oJOT8CCGE6AUKOT8hhCeAFwBnAoYXBTTgC8ALKq93FWZ2TfxDRQ4LoTo/QggheoGizg8hhKdwB+jTLWuN6GhU50cIIUQvUFj8AJjZhsDewAbAb0IIi8xsIl7kcLAVDWwVKnLYOAp7CSGE6AUKhb3M+Qqe63MZ8CNg68rLl+JJz6LHiQJnXKrWtxKehRBCdBtFR3t9HDgJ+BzwQjzfJ/Ib4JCS2yU6EDk/QggheoGiYa/j8IlNzzSzgcxr9wHbltss0YlI/AghhOgFijo/04Aba7y2ElirnOaITkZ1foQQQvQCRcXPI8CuNV57Hl7rR/Q4cn6EEEL0AkXFz0XAp81s39S6YGbPAT4EXFh6y0THoTo/QggheoGi4uc04C7gWuDeyrqLgNsrz79YestEx6E6P0IIIXqBQgnPIYTlZnYAcBTwSjzJeSFwOnBBCEH3/X3AqlW+VNhLCCFEN9NIhec1wE8rf6IPUcKzEEKIXqDRCs/b4ZOZTsMLHv6/EMK/W9GwVlOp6hyZ2aZmdA2Dg/4HMCYVLJXzI4QQotsoJH4qU1h8DzgaSNf5WWNmPwHeG0JY0YL2iQ4hOjtjx4KlSlwq4VkIIUS3UdT5+SrwFuAz+MiuecAmwJvxiU6fAU5uRQNbheb2aoy8kFf6ucJeQgghuoWi4udNwGdDCGek1t0PfMHcBvgAXSZ+RGMMJ37k/AghhOgWig51nwD8vxqv/Q0YX05zRKdSS/wo4VkIIUS3UVT8/Bl4RY3XXgFcVU5zRKci50cIIUSvUDTsdRbwUzNbCy9uGHN+3gAcDLzVzGbEjUMI95fdUNFeJH6EEEL0CkXFz6zK8t3Au1LrLfN6JDvzu+hyFPYSQgjRKxQVP+9oaStExyPnRwghRK9QdHqLn7S6IaKzGc75kfgRQgjRLRRNeB6Cme1sZq8zs83LbJDoTFTnRwghRK9QSPyY2XfM7Pup568FbsWTn+80sxe0qH2iQ1DYSwghRK9Q1Pl5NfDX1PPPAr8FnofX//lMye0SHYYSnoUQQvQKRcXPZsCDAGa2BbALcGYI4XbgW4Ccnx5Hzo8QQoheoaj4eQaYUnn8EmAJcHPl+VJgasntKoyZ/dzMbjOzf5rZ/zOzl7arLb2MxI8QQoheoehQ938A7zWzOcB7gT+FEAYrr20DPNaKxhXkxBDCUwBm9nzgSjPbMNU+UQJR3IwbV71eYS8hhBDdRlHn55PA3niS8w7A6anXDqf2vF9DMLMtzOzbZnaDmT1jZsHMtq6x7XQz+6WZLTazJWZ2sZltmd4mCp8K6xRth2gMOT9CiE5m/nw4/3wY1G2vKEDROj83VUTHjsC9IYQlqZd/ANzbwGduh0+L8XfgL9SYM8zMJuNzhq0AjgEC8HngajN7bghhWWrbrwOH4eLndXJ9ykcJz0KITubUU+Hcc138vO1t7W6N6HQK1/kJISwLIfw9I3wIIfwuhHBPA595bQhhkxDCwfhQ+VocD8wADg8h/DqEcClwKLAVcGKmDR8IIcwA3gJ82cw0y3zJyPkRQnQy//ynL6+9tr3tEN1B00UOm6UBV+ZQ4MYQwn2p/30AuB53efLe+w/AesBuI22nqKabxc/gICxe3O5WCCFaRQhw113++G9/a29bRHcw6uKnAXYB7shZPxvYGcDMJpnZNvEFM3sRsAGQO6u8mV2T9wfMLLvxjRICLFjQ7lbUppvDXmecARtsoDtCIXqVRx6BpUv98ezZ8PTT7W2P6Hw6WfysDzyZs34R7u4ATAL+z8zuMLNbgK/iOT95/9fRfOlLsPHG8Oc/t7sl+XSz8/PrX7s4++53290SIUQriK4P+I3kTTeN7P2WL89f/+yzcOyx8Pvfj+z9G2HlSvj850e+T1keeQQ++1l44on815cu9e+yV+lk8TMsIYRFIYQXhRB2DSHMDCHsG0K4qs72B+T9AbeMWqNr8Je/+PKvf62/Xbvo1olNV66E22/3x5ddpvCXSFi8GH7xi852LUUx0uIHRhb6uvBCmDIFLr546GtXXAH/8z/wxS82//6NcvbZ8KlPwSGHwKJF5b3vd74Dp50G55039LW773a3/MMfLu/zOo1OFj9Pkjg8aWo5Qg3RaWGv+yqZTQ880N521KJbJzadPdsFEPhd269+1d72iM7h9NPhjW+Ec85pd0vESIni5/nP9+VIxM/VV3ueYJ4LH/vp+fObf/9GWLkSvva15DM/+MHy3vvxx32Zd8258Ub/7KtqWgndT9GJTQ8zs3eknm9VqdPzdKUOz5R6/98ks/G8nyw7A3e24PPaxpo1yQHYreKnU52fv//dl1MqR+j557evLaKz+H+V6mRXXNHedoiRE8XP29/uy7/9rfmQzYMP+vK++4a+FtfVChWVzc9+Bg8/DFtvDRMmwE9+Ut7xGl2kOXOGvhbX3Xdf74a+ijo/pwIbpZ6fBWyB1/jZHzit3GYBcBmwt5nNiCsqxRD3rbw2Ijop7PXww7BqlT/uVPET29dtCc9R/Jxyince11zj37fob0KAOyrDKa69dvQK4y1aBN//PqxYMTqf1y/861++POQQWH99dzWaPc/riZ9//9uXixa1vs8bHPRcUPDw1Gmn+eMTT0ySu0dCEfHz9NOjJ/RGm6LiZ1vgNvARVsDBwAdDCB8CPgEc0ciHmtmRZnYksEdl1asr616S2uxcfDLVSyvO06HApcDDQE8Z1fGEApg7NxEanUS3Oz8HHQSHHuoXvZ/9rJz3DqFzRV8/ce21cOutjf3P44/Dk5Xg+ZNPJnlhrebkk+Hd7/a8ElEOS5bAo4/CxImw1Vaw116+/sYbG3+vwUF46CF//NBDScg8EvvqwcHk+GkVv/mNi7rp0+HNb4YPfcjDeg8+6AUdR0oUP3kiMS2I8kRgL1BU/EwEYv77Pnhl6Gi+3Q1s3uDnXlT5e1fl+fcqzz8bN6hUcD4IuAf4KXAB8ABwUAhhxLq3k3J+0gfX4GBnOhPdKH5WrYLbbvPHu+8ORx/tj3/603Ks3COOgJ12GtpBtoIVK7zTu/76zjw+2sVTT8HLXw4HH9zYb3pHpojGNdeU2ap8li/3kYeg37BM7r7bl895jjvRL3yhP28m72fevMSVGxxMXCDw/iT9vIgj8sADzd0ghQBnnumPP/QhGD/e51U87zzfx299a+gx3ChR/CxZMnQgSBSAIPHzILBf5fFhwN9DCPHr2hhoaAxNCMFq/B2Q2W5OCOF1IYS1QwhTQwiHhxAebOSzuoG08wOdGfrqxjo/s2d7R7bddrDOOvDKV/oIhjvuSERRsyxd6qPH7r3X7zrLJgTvvI87DjbZxO9qt9kG9tsPZswoz73qdu67z8Xno482Zs/HC8e66/py1qzSmzaE3/8ellUm5Wm1azDaDA76cOzrrx/Z+6xZ4y7Hl79c/H9ivs+OO/py77192Yz4SYsb8PM7MmdOdT83XF22M8/0c/WMMxpvx7XXevs32MD7gMjzn+83XSHAP/7R+PtGQoCFC5PnaacnhOrn2etTr1BU/JwDnGZmNwPvAdKD415EFyYgd1LOTzy41lrLl90kfjrZ+Ykhr9139+X48T66B0ae+PzPfyZOQxnx98jKlT609XnP8078vPN8lMfAAGyxBey2m3/Xb3mLb9fvpM+V6AAUIYqfY4/15axZrc/7+fnPk8dlDlkukxCaKwfxpz/5cOz//u+Rff6//uUhwW98o/j/RPGz006+jGGvv/+9dgrB00/n3wBlxU/a9ciKgHpi+5JL4BOf8MfNODRR/J18cnJdiGy4oS+XLaNpli2r/m7STuTChdV1jvra+QkhfBN4O3ADcGwI4dzUy1OB/ym/ad3PtdfCJz/pHUM94sH1kkrGUzeJn06u8xPFzx57JOti6OuCC0bmVt18c/K4jGqyIXiMf9dd4T3v8RyUDTd0y/uOO9zBevhh77C/+EXf/j3vgS98oXdHYxRhpOLn0ENdVC5a5E5hq1i2DH772+R5pzo/J50EG21U7XgUIZ5r9+fW1i9OFB9LltTdrIqY7Bydn/XXh+2399IWtRzeY4/1G4zsbx4/f9IkX6Yv/FkRUEv83Hpr0s9A47/1qlXJMPv3vGfo61EMjeSmKyu+005PfGzmy353fgghXBBCeF8I4X8z608MIfy0/Ka1ltHI+bnuOrc861VtDiE5uF72Ml9m7z46gW6s85Mnfl74Qg+DPfbY8KK0HmnxM1Ln5/774RWv8AvxvffCDjv43e8jj8BXvwq77JKITICPftRr05h54mMjd8m9RjPiZ3Awuejtumty09HKvJ/LL4dnnvHwJXSu8/OXv/jFt9Fk4Vtu8eX8+b6fzRL7vmXLivcp2bAXDJ/3E4+bG27I//wXv9iXec7PuHG+zAt7zZ/v5/GyZYnj3Kj4ueced4BnzEhcnjSxbEdev7N8OXz72+4YX3997eOsiPiJNZP62vkxs+eY2V6p55PM7Ewz+42ZndS65nU3m2ziy3nzam8zb56fKOutl5ws3eT8dGrYa9WqZARQ/F7BBUOsBfI/I/AryxQ/xx3nAnnddV3I3H67h+fGj6/9PyecAD/4gT++4IKRfX43k3Ya7rmn2P889JCfc5tu6jkVBxzg61uZ9/OLX/gyhl070fkJIel7Gr3bj+IHqpNlGyV941fkvFq1Krk4P+c5yfrh8n5iyCgbkoqfH29E88RPFAV5zs+b3+zi4YUvTPqXRn/r2G8973n5r0fxkxf2uugiD5Udd5znB26wAey889BQZlb8pMNeUfy88IXugD3xRG9Wxi/q/HwHODL1/AvAh/BRXl83s/eW3bBWMxo5P5tu6stYSTOPeEJtt50ntEJ3iZ+8hOcvf9k7gXa6QXfe6aGiGTNcWKZ529tcBP3618Pfgf/rX0PF6+LF1RfakYifwcGk2N5tt8H735/cWQ7H617nyzvv7EznbTRoxvmJF7xdd/VldH5mzWpNCHHpUvjd7/zxCSf4shPFz6JFybHciPh5+ulqkTAS5zotnIqEvh54wAXQVlvB5MnJ+uGcn1riJx5PBx3kfUR8f0j2Mb531vl56imviDxxouf8bLaZr2/U5Yuhuuc+N//1emGveK3Zfnt3vMeP9z4suuCRmOwcE/7Tzk/8DbbaCrbd1h/3YuirqPh5HnA9gJmNAd4GfDSEsAfweeCE1jSvu4nip57zE0+obbeFadP8wvf447Un1msXjTg/X/uah23Sd4OjTV7IKzJ9ug+PXrmy/qipefP8Lu+Vr6y+KGZHWYwk5ye6EJtt5u1qhPXW82Nm+fLOFMwj4X3vgze9qb4YSddkAe+giziQWfGz3Xaw+eZ+h3tnC4Zu/O53/hvts09yQevEsFdatDRysbvtturfaSTiJ/2/RcRPXsgLku/57rvzbwzyxE/6eNphBz8f16zxdSEkLmN0lbLOzyOP+HKrrfx8jjddTz3VWDL9SJyfKIje8hZ3pw87zJ9nr0Hx+IufkRf22nJLPzegN0NfRcXPOkAcGPd8fM6tX1aeXwPMyPmfjmY0cn5i2KuI87Pttu6ibLmlP++0vJ+i4mf16uSOaKR1KOpx881+B/byl/vd9JlnVuds1BM/kIS+fvzj2p9x113uHt16a/W+pENeMDLnJ3shbpT4f638rkeb+fN90sWf/9xzs2rx6KMuYDfe2C9Uq1YVE4HZ79ys2v0pmzjK641v9Lv2ceNcDD37bHmf8fjjIxduzYqf7E1OWeKnyE1FdqRXZPz4xCHJy0GK5+y8eUl/9fjjfjxtuKELjPSF/7HH/DfbcMPEDaklfqZN8+XYsTB1qgunRhK4o/hpxvmJ66JAqpV6EcVP/IxHHklEosRPNfOAytfAK4B/hxBilHAK0GEZH53Bxhv7csGC2mGJdNgLfA4XKN6BrF4Nhx/u4ZK8u+SvfMUv9CMdxls07PXEE0k7WnlBvuACDxf9+c9w7rk+rPTAA+Goo9zSHU78HH641/65+eba7YydGVRPiBrFTxSqIxE/sbLwaIifp57qjpFhaRFbbwLJKHS22cbv1KFY6CtPcMa8n7KTnhct8mRnMw9TmiWOQJmhr8MOc5cyb6qCoqT7nPnzix/XUfy84AW+bDbnZ9myakFRRDBkR3qlqSUSVq+uLkwak9/j/sc+OH3hTzv0MQk5G/aK/cXmqZK/9X7r//1f+Otfq9ctWOBCa8qUJA0iSxHnp6j4mTbNr1OrViXbpMWPwl4+l9aZZvZVPNfnotRruwEjHOA4+oxGzs/48T7scs2a6oJSadInFTSe93PbbXDppV7xMyZVRq64Aj7yEZ8Mb6R3hUWdn/RJVuSCfNll8Ic/NN6emKD34Q+7S3DyyR7z/9nPfHRU7JDTyc5pJk3yvCSonfg8d27y+Je/TB5H8XPggb5sp/Oz226+HG56ht//3jvir361uc+pxZVXusVeZud49dXJ47LFz6pViVuw887J+rTzU1a9nxUr4MgjfXnggYkjsP76vixL/DzxhN8IrFw5Mucqe8NVdNj6P//pyyOOyH+fomRF00jCXlBbJGSfx3OwnvhJO/QbVWa5HM75gUT8ZMOc998Pxxzjgjh9vMV8n912gzE1rs71nJ/olk2d6svhxM/66yfh9jlz/Fh9/HG/qd1sMzk/AB8Dfgu8EhdC6ZqVh5JMdSEyDJf3k3V+8sTPqlV+gc+7o0oLjPe9Lzkhn34ajj8+eW2kVYiLOj9FxU8IXqPmsMPgv/6rfmgwjyhMDj0U3vte+OY3vePYf/+kRP022yQXmjxi6Ov88/OLoaWdn9mz/cK6aJF3XBMnJsXUioifP/wh31UYrbDXuZXKXF/6Urn5ZF/9Kvzf/3kIcqTVfSNXXZU8rpcv14z4iRWht946uUCAjxTacksXW1de2VSzqwgB3vlOF3Kbbgo/+lHyWq0LYrOk3YOsk9AI8eIfE+6LCNpVq6prJqXfp9nPjwwX9gqhvvipJRKy4mc45+fee6v76alT/Ttatqz6XIp9bFr81BK6sf96/PFEPEIifmrl+0D9oe6NOj8bbJA42A8/nLRr2jTv6/te/IQQloUQjg8h7BZCOLYy71Z8bZ8Qwsdb18Tupl7ez1NPuSM0eXIikvLEzznnuLD52MeGvkfseAYG3DI95RR//tGPVlvg9XInihDFT3Yk0pgxbuWH4Hcw6ZNs7lzfxywh+L7EyflWr66fe5NHdH7SScLbbusXm298w0/+N7yh/nvstZfnCsyf785IltgRxIvVr36VhNOe//xkpMRwnfRjj/ls0wcfXN1Z1nIhGmGnnfz7v+ee2jOFP/NM4q4tXOhipSyiIF+40EfIjHTajUcfrR5JV7bzU0tsmiU3C9/7Xv5n/fjHxV2hT37SQ7NrreUJz1ttlbxWtvNz3XXJ42zdmkaIF/84mikrfu64w3/jdM7b3Xcnoyp33NH7h3nzmhPYWfEznPMzf773L+uum6QYpGmV82OWhL7S7k895yf7W6f/7/LLk8fDJTtDOWGvGIlYf/1E/MyZk1wz4vE6fbr/po8+OrL6TZ1I4SKHAGa2vpm9xsyOrizr3FcLqD/cPZ5QM2Yk1TTzxE+8oMQh0WliuOPMMz2Uc8EFLizOPtsP2le9yl/PEz/XX++2a5EZsWs5P+l1q1cPPcmyFVQHB71q6Ze/7P934om+/oc/LJ6PsmqV749ZdXwdXIy9//3eKX7xi/Xfx8yHvYOH37LEziwOT/7Vr5KOf88969+BpbnkEnfGli+vvjO/917flxkzkvdqlMmTvUNevbp2nZsrrvDPnjDBn3/jG+Xk/oSQiJ+3v90dlaOOGv57j6xePTQXLh3ygvriJ4ZlZsxIxM9wtX7SxQ2zHHecnzOXXVZ947BqFbzmNfCOd/ikuMNx3nl+Pg4MeLg0G3ot2/lJO263397c6MMQkov/S1/qy6z4Ofts/33SU1jE8PLMmdUDNprJ+8k6T8OJn3jjsMMOSf+Zptb5GUVDDF/dcUf1/kfxE1MRHnggEdVxXV7oqxHxk84XSt94DZfsDOUmPGfDXvF3i7/jwEByTRpp9e5Oo7D4MbPPA48AvwF+Ulk+Ymant6htLWW0ZnWvV+gwWonxDgOGJjw//HBywbz//qEnUbxrOfxwOL3yS3zpS7489VSvHAz54uc734GLL/ZiWLEOSS3qiZ906Cu7n9lwzJlnwve/7xfiSy6B737XO4t//7t4suljj3lntemmtWvipCsi1yNemPIs/tiZveMd3pn84x9J7s+eeyZhk+HEz8UXJ4/TIZ2Rhrwiw4W+4kziH/uYf2d33DFUZDTDokV+N7j22h7W+frX/SL08Y8nBRhrsXChnxsx7yoS2xXFTFHnZ/p0D0U+/nj9i2a973zTTZMcjHPOSdafc06SWPvd79Z+70g8/7773eTmI02Zzs/y5XDTTf69P+c53vabbmr8fWKNn7XX9mMbhp4T8X1nzUou0jFkEwv/RcegmdBXvPDGENZwIi6vuGGa4cJe223nv8VTT7mzkRU/kyd735QumBr76ryk50YSntOi6cYb/fmqVUluZszly6Oe81Mr52f+/OobnrT4SYe90snOkZGGvmIh306jaIXnU4BPAOcDBwI7VZbnA58ws5Nb1cBup4jzE+8mwA/WSZP84FyyZGgSc3pY6VNPeWhm0iS/+z3llCQP5bnP9YtdLLSVl/MTQ0dLl3q8/tvfrr0fjTo/MYyTvSBHF+v88z0UNDCQTC75wx/W/vy8djdaFyePWgnma9YkgnGbbTwvCZIaP0Wdn4ULq0VdK8VPXtLz6tU+Zxj4UOs4V1AZU2KkO0ozP/6i6HnPe/JDiZEbb/Rj/KKLqt2w+P286U2+rCV+Vqzwi82YMX4cjBnjhd2gfuhruO/8vZVyreee65+xaBF85jO+btw4FwD1xEW6Vkx6fqc0ZTo/N9/sF83ddvN6VNBc6Cte+LfZJumP0nf6K1ZU9z3f+pYv084PJMJhJM5PvPAP5/zk3TymGS7stdZayXFw223Vxf0i8b0HB337GF7LOj9xtJRZ0udDInSzv3VaNIXg7uzddyfTWqTz0bLEYo7Llg0Nw2adn0mT/L1WrkxSEELIFz/psFda/DQ74mv1ap/sdrPNkv6zkyjq/LwL+GYl72dWCOHuyvJ44Fv4TO9dxWjN6l4v4Tmb7Ax+8sQO5IEHvFggJBf6dIG92JHvvLOLiIEBFxfHHecXlfHjE/GT5/zEnJZjj/WT6OSTPVchjyLOT1r8ROs8fUF+5BEPO6y1VpIcCZ4YauZhpSIXhDLFT7xwP/xwddLzvHkugDbe2L/HWE0ZvP077JB0MPXuUC+7zN/nRS/y7+mmm5LtyxI/8WKR5/xce61/pzvs4PlBJ57o+/Pb3448iTHvYnHccV52YM0aeP3rq5M500QnBRLH8qGH/Jhfd93EsawlfubM8U485iRA7byfwUF/n5tu8lDjwECybZZ99/UbhwUL/Hj83Of8+zvoIM+7g/ycoEi6Vky64nCaMp2fmO+z775+jMHIxM/WW7sAMvPfI573t93m50e86F9wgX9HtcRPM85P/J8Y8hmp+BnO+UmLnz//ubrGTyT93jHfB4Y6P/Pm+fG4ySbVbvRwzk/M7fn974slO4ML/XhsZfNwsuIHhkYfli93MTtxor9POuxVlvMzZ46PcPz85/17ufrqzqtFVlT8bA3UCoz8rvK6yKFewnN2mHskuhFXXul3dlOm+JBuyBc/6YvnjBl+1xqt4FriZ3AwsWm/+113Ysw8XyOv+FoR5ycd9oriJ8bTIZlI9MADq+et2morv9itWFEspyKKtjLEz4QJbm0PDlbnecTP2GILX7761UmHs/vufgEt4vzEkNfb3+51UNas8ckjYXTCXpdc4ss4DHnjjT0vJ4T6Tl8R8jpK8A7vqKP8IvOa11TPGxSJ+Rrgydg33ZSEvPbfPzlua432Soe8Inni51Of8rvfTTZxV3Rw0B2iOMFoFrPE/fnc5/zcGDPGQ3rvfrevv/DC2qUrsgmjeZTp/MR8n/32qxY/jeZ0xe9z6639u5k2zc/5uD8x3/DVr/bE/RUr4NOf9n3YYIMkz6VZ8fPMMy5Qx41LfsfRdH5++1tfZmvrZMVPJJvwnJfvA8Pn/MScwz/8IblRqJfvE4nCLr1vIRQTP+lkZ0jSBxYsSM6dPPFT1Pn5859dDF93nYcAY0mQn/yk2P+PFkXFz0KgVhe9C0n1Z5GhiPNTS/ycdZYvDz3U7+wgX/zUiw+nxU+6Q5w3zzu3DTf0zu4tb/EDNd4lZ2k07LXHHl5EcOHCZN0VlYII8a4+zXHH+TImPi9d6i7WuecO7cjjxTQKk5Eyo1KfPB36ynZmkyd7xw9J4cThcn6WLPF9NvMh/Qcd5Ouvuso7+/vu8++ulgtRlO23987rgQeq2xJCku8TxQ94Qjh4ns5ILsC1xI+Zv/dLXuLH3Ve+MvR/o/iJI4tOPz0RPwcdlIQXsrkKkSLi569/dSG2cqV39M99rl+4v/a1+vt11FGe+3L33X5MH3ec/+9223lo6dlna9eGyiaM5lFWkcPBwWrxE6dVWLSo+CSvkWy+SzwnYh8VQ30veEFy/MS8qOc/P3FEmhU/6e+tyCjKEMp1fuL3FdsfSb93+nE27JWX7wPDOz8vfrEfw0884TegMLzzA/k3XitW+M3VhAnV7lNW/KRDXuDiPval9cJeRZyf1au9ftGTT/q5dsstfg6C718nTYBdVPxcApxeGeU1FsDMxprZm4HPAb+q+999TC3nZ/lyP2HGjh3aUcYOPZ5Qb3yjF+4bN8475HjAF6kOPHWqnyjLl1fPzJt1Nuq1FYqFvVatSu5oNt64OhwzOJg4Py9/+dD3OPRQ71DuuMNPmuhQnHBC4pREygx7QX7eT973c9pp3s6TTvLn6c417wJ9+eV+4d1vP/9u4x3Q1Vd72CcEd+jqzd5ehHHjkiTRdDHLm2/2/Zg2LUliBb8re+lLvd1xX5ohL+wVmTAhCaFmJ1WERPycc447M7/5TeJSHXigf7drreUdet5FcDjxMziYlH049VQX4bfe6on9Bx9cf7+mTElqQE2dmoTlIHGFzj47f9h7EeenrLDXnXd6Hsf06Un4ttnQV62RTlnxs9defv7uuGNyzMeQV/r/mxU/W23lwhPqOz+xAvV669Wu5VXE+dlll+rX6omfPOcn9ne1nJ/hcn422ii5qYr9bhHnJ2/f4nmSHTk6nPiB6r50nXWS3wD8Oxkzxn+jdGXsPH73O88vfc5z/JzeaCM/Jrff3vcvXgM6gaLi5+N4XsxPgOVmNg9YDlwA3IonQ3cVozXaa6ONvFN64olq1RuTCbfeeqigSJ+A66zjd5sTJrjICcE78RCKh03yQl95AqKeSxVryNRzfmKezHrr+QU9HY659Vb/DqZPz3c6xo/3OwZwC3j5ct93GDoUv8ywF+SLn7zObNddvZp27ATHjfPfZc2a/FBhnBIj5gvts4/v5z//6bk48T3LIC/0FV2fww4bWi32+99PKmLHvLJGqeX8ROId7G23VQuFBQtcjKy9tnf0sdzB0097CCXuS9r9yRJ/q+hQQHJc3Xuv32XedJMf+x/9aOP79uEPu2j9/vera8gcfLBfoO+/H/74x6H/V08QRsoKe6XzfSKtED9PP+1ifdw4/03NPD8wkhY/m2/u/cHjjzc2d1n686OjWk/8DOf6wPBD3ddaywVA2q3Jip+04Ek/ruX8FA17xf/bcMNqMV5vWos0ea5WXsgLiomf9DmcPZ8nTPB12YmE84hu4AknJH2OWdK3d1Loq2iRw6eB/fFqzmfhVZ7PAg4BXhJCGGawb/8ydqwf4CFUZ/hHaz6OUEmTPvgPPzypzxKHZf/jH965LFrkJ1fWas2SJ37qOT954idegPKKiUXxEzuA+D7pC3I65JVXkwP8InXssT5U+MEH3WmBoVNzlB32yqtjkff95FGrg12+PCleFkNOkyf7xSmEJGm2XsiyEbIjvtasSfKN0iGvyHbbeR4LeC5Lupr1okUetx+uoN9wIZ6NN/Zjb+nS6u82XZXXzIVGPMYPOCDpNOuJn/h+6XNlnXX82Fu+PAnNnHFGczWUttjCHcejjqpePzAA73qXP85LfB5OEEJzzk8IHkqMghaqQ16RZsRPvRo399/vzl0ILnzi73T00cnNSXr+vIGB6gTaoqQ/P7oO9cJeeYNFsuTlxaSfx9fTNyBZ8TN1avJbpqtIZ52fvOrOkC9+YmXoiRO9DQcemHyvz31u7Wkt0uQ5P42Knw02SLapJ34gOR7qhVMfeshvXNM3spGjj/Zz/de/zi982w6G/ZrNbLyZ/QN4eQjhtyGEj1ZGfX00hHB5CN0wVeJQRmu0F+Q7KnG0S3Y2Yqju0N/4xuRxWvykQ161xESkUfGTF/aKJ3d8rzQx7FVU/NRiww29QNxHPuJ3znG4fFr8rFzp3+OYMfltaYaizk8etfJ+rrjC83r23LO6M4mhr3jnWpbzkw0xvutdLjI23jiZtyrL8cd7QvJTT3kto8cf9/IIW23loY10uCfLs8/67zAwUF98R1cgPUw6OyXB5psnQ/APOyzZLoqfPDGeF/aCxP156ik/X2JCaZnE0gx/+tPQIo2NOj9Fe88zzvBRkUcc4TlIy5cnzk9a/Oyxhzs0d9xRfCbxhQv9IrrOOkm+Tdr5icnOceJS8Avs737nAxSyU0tkQ18huLt3wgm19zdP/IyG8wP1xQ94RfQLL6zuK4smPEeBuHhxcqxEwbThht53T56cTKxbJOSVbnszzk824RmqXfS8Yze2q16Zh/PO89/3da9Lvp/Illt637dixdDyLe1iWPETQlgJbINmbm+aPFERLwB54me99fwObrfd4GUvS9anxU8jI4XixSld66eRsNczz3hHNGFC0nGnic5PfP+4vzGefvvt3lGbJaPAihDFz+zZSaf56KP+ONrrZZCX8DxS5yeOHnnta6vXx6TnSNlhr9tv91yXH/7Qc2l+8YvahSDNfLsNNvAL+RZbuOsW9+UrX6k91Dz9/dQrKBnFTzp0mTcT91e+4jlKb31rsq6W8/P0096BT5xYXVMFqkOqX/96sbvoRtl4Y7/IrVgxNLelSMLz+PF+8Vqzpti8cBdc4HlLZn4Onneei5wHH3ShkD6GJk70BOQQ4G9/K7Y/WdcHqhOeo/iJNcQi++5b/XtFsuLn2mu9/tO551aL4DRp0Thxop/bK1bUzjGpNVI2Ta2E5/g8vp7O+8m78O+7b/VNKCQX94ULq0fOZm8EBgYSARQdjyiYYugMPPdu3XWHfk4t8vqdbIHDyEjDXpAI7PRUKmlWr/bjEpKK+FnyQl/pmkOjTdGu4U9AnXt2UY96zk/ehHzglvY//1l94YqW6OzZyTQLRcImIw17xf/bbLN8l6mW87Phhr7vzzzjndiee1ZbrcMxbZp37gsXJndLZYe8wPdrwgT/jJi8XNT5qVXrJ/5/9vfZay8XJeDLIvH9Imy1lXfm8+b5EPbx491iruX6RDbdNJn0dM0aT+j+29/cEVq2zB2HPIpc5KG+85MW/gMDfkFPH1/p6rRp0sOys8djrDT8utf5kPlWEduerle0eLH/TZo09M43S9G8n1mzEqfpG9/w32a77ZLPjfWj0jQa+soTP+uv7xftpUs9BArVzk89suLnm99MXquVX5Zug1lyAa8V+mrE+Ska9tpww2TdcIwf733TmjUuaur1F9kwZ9r5iRxyiL8eHaDhyAvptSrnB5K8shtvzJ8EOp3oXKvPee1rvd1//SsceaRfD9Zbz0XgcInUraCo+Pk28GYz+6qZ7Wdm25rZjPRfKxvZ7WSrPKdnI85zfsA7gGynNnmyb79mTTIXVRHnYKRhr3ohL6id85NtX72QVx5mQ0NfZY/0AheU6bL8Tz7pYYW1165faRVqOz95HQy4yIp3UbE4ZRmMGZPcwY4d69NwFP2+jzjC785vv90Tuvfay0WPmY9qyktyLDKqCZKk53phr1rUcn5qhbzAhcKFF7Y+sTKet+mQbPo7GS4UXSTv5667POdv5UrPYTr5ZP8+b745SaI/5JCh/7fPPr688cZhdwPIFz9miauyeLEf58P9XpG0+HnwQT+mIhdeODSXbPly73PGjk2ck+FCX0XET5Gh7uCi+53vTHIMixKdm/vv98+YNCkJG6bJ5v3kOT+NktfvFBE/2erOkXR/mid+NtnEhc2yZflzQcbK7iecUPvYT082HSeJXrzYf4e8GQhaTVHxMwuYDnyw8vge4N7Mn6hBVlTMnesH0YYbNuaEQBL6iidwM+InbdOmxU+tsFf8v1q5HbXCXlDtfDQqfmCo+Cl7pFcknfdT1PWB2jk/saPLCxPG0F+Reh6NcNhhLpAvuKDxcvIvfnH1sfTc5/q8WytX5l8UiiT2gl+cJk/2323hQr/QPfigHzP1QhbQnPiZMMFDB0Xv4Jslz/kp+p1AMefnE59wV+Hww6trE62zjldwnzMnGXqfJg6iSCex1yM9tUWa9O+zxx7FhXpa/HznO97fvOUt3tfMmTNUlMXvbfr0pC+pJ34WLfLza8qU/AEYkaLOz8CAh3/zvst6ROcmVmaeNi3/wp8VP3nOT6M04vxMmeLn4LPPupOWl/CczveqdUMTb9qypUceesgrVOclOmf50pc8xP2Tn7gDNH++C6C8XKtWUzRr4h0tbUWPkxUVw7k+9dh996QK8rRp+RfXLNn5vebPd+tygw2SEAzUDnsN5/xkw17pPIx4QV1rLdh77+HbmqWW81Nm2AuqR3zFDrjIZzTq/IBPk7ByZfnJuJ/4hI+cqpXj0yif+5znDP3v//r7xt8Cioe9BgZcSN14o98xbrCB331uu+3w7ayV8Jw3zH20id9FWvwUSXaOFHF+4jH/uc8NFR5mtW8AYp9QdFRNnvMD1eInm+9Tj7j/99yT7MMpp3j/8dWvuvsT3SnI/97qDXdPuz71HLbhEp6bGQWYJoqX6ITUulkaLeenVs4PeN/+wAN+LtXqm773Pe9fa/V7++3nIw6vuw4+8IFk/Y9/7Of0a187vKDbaCP47/+uv81oUUj8hBA6aHR+95F1fuqN9BqO6PxA8WTZ6NhEB6eWe7Leen5BWrzY7xLiFABFnZ/Y2aadnwMO8Pd505uaK+Y3GmEvqE56jndVRZyfvJyfEOo7P5Mn+7QLraAs4QN+8Tv+eA99nXpq9ez0RcNe4A7XjTd66Ct+p0VCKLWcnzjMuax8qWZIh71CSObCgnKcn8HB2o7McMQ7+DLFT9F8H/DfeGAgGVW0zz6e32Hm4ucXv/Bk9Cjo8j6/3nD3IiEvKD7UvVmieIkh3Vr9Y7bQYRnOTyND3aFa/OSN9gJ3euuRTnqOx3wIfnMESW5at1Az7GVmY8zsv8ys5iXWzHYzsw6cr3V4RqvIIQx1foZLdq5HuqBYUfGzzjouQJYu9b9a7olZvvtTNOcnkhY/M2a46Dv77GJtzdKOsFfRkV5Q+w5szRrvXEdavbndxLmxLrmkOvenkQt9esRX0XwfqC1+Zs/2ZTM3D2Wx0UZ+8Xj66eT8aEQQDuf8PP64j3bKTrRZhLXX9nN5yZKhQ/GzhJA4adl2p521RsTP2LHV52esubT77i5Y5s3zRO5IPfEznPNTj1qzn5clftrp/DQy1B2q+/V6rnQ9ttvOz8n585Pf4Prr3S2fNm3oSNZOp17Oz1uBnwHL6mzzNPCzyjQXogZZ52ckYa+1105i+kUL5JlV5/3Uu7jniZ/0aK88spZ8Ng6/zjrNOxLTpyejmBYubH3Yq4ycn9i5FAlJdjqbbZaU3//d73w5OJj8Do2In1tuaezYj3VQFi5MqqMvXeoXy/Hjh7/4tZJ0Mn68mSnT+amX1zQcY8Yk4iE9pU0eTzzhozHXXXdosu6OO/p7TZtWTNCliUJm2rSkyKaZO8CQjPoKIfn+0uKnaNirHgMDSVg/Pft52c5P/I6Lip/01BbN0kjCMyT9+oMPuqs/fnwiDoti5rmBkAx5j67PW99a3uCN0WI48fM/IYQHam0QQngQOA8YJs2p8xjNIocbbOAHxqJFnusxEucH3F7cZpvGEojTeT/13JO8EV9Fw16QuExlMWZMcqG85Ra/6xg7dmh9l5FSpvMTO7lG76w6lTiiKIqfBQvclVh//WKuxG67ecd5553JXXKRY39gYGgxuegA7rBDuSG+ZsgmPTfi/Aw3uWmtUFRRiub91PuczTf3elWXXTb86LUs8bs56aTq3ymKn1/9yqchOeSQpGp1usBfGWEvyA8Ple38RBp1flqV8Fwr5weSY3WDDRr/TaE66Xn58qRgYSuKibaaeuJnd+CKAu/xZ2DPcprTmwwMJCr/nnvcxZg0qdgdYh4f+5hbjY1UOE7n/dRzT/JGfBVNeIbqkFdZxDvsOCne5puXf5ex3nre4S5dOryNnSYv56eXnB9InJ84G30jDgd4R7399u7exM636Ez22aTnGPIqqzjkSEjn/axc6edJdEqGY7iw10icH0hcnOGm0IjT7NQSbK9+dXWeYVE+8xkf0ZNNbt1lF//tFi3y7+/yy/2G6Yc/TGo0QTlhLxgaHorz8JlVD/ZohqxzU+t3r5Xz06qE53rOTzz/mr0xS+f9XHaZu1577lk9GKJbqCd+pgJFZp95srKtqEMUFddc48sddmhN9dlaNBr2is7P8uV+9zhuXO1h+Wnnp5XiJ04kWXbIC7wzjDkO0elqRPz0svOz6abewT37rM9I34jDEUnnqm26aX49lDyyeT+xsnl2Nu52kA57zZ2bVB4v4ki1MuwFxZOeL7rIl8MVw2yUTTZxNyCvCnt0f9as8bov//qX19lJU0v8LFni4mHixGI3f1nnJ4a/Jk9uzvlIk3Vuajnjaedn9Wr/zc1G1j80MtQdyhM/M2f6Z997b1J+oRtdH6gvfp4AinRvW1a2FXXIip/RTtbMEz/1wl7xTnu46s4weuInjqooO9k5kr7QjB9fzJbOEz+95vxAEvr67W8bq2cTSYufRsK9WfHTic7Pv/7VuCAczvlpdqRXpEjYa8ECd14GBoYf6VMm73+/u9eXXw4//3m+iKlV4TmO9Nt228YmAI3nZ1khL2hO/KSTjUfiXjeb8zPSG7OxY5OSJTfd5M+jmO026h0+11Esl+ftlW1FHeLBF0c5tEv8PPJIIn7ynI1s2Gu4ZGcYvbBXZDTEz+abF+tc8xKee835AZ/uAjzvp9GwF1SLn0aO/ewUF53k/MRk/PnzfSoaKP6dFHV+ms35KeL8XHihOxGvfGX5OXT1mDIFzjwzCafmUcv5aSTkBUMdkjLFTzpstdFGtUd2psVPGcPcof5Q93o5P5GR9E0x6Rm8XxhJ+K6d1OvevwG81My+bmZDflYzG2dm3wAOAr7emub1DrFzicluzSY7N0sUL7fe6gUO118/P9s/G/aK+T71Zu5utfOz9dbVSdStCHtBtfgp+hn9kPMDnvexySaeL3b55b6ukbBXupp1s85PnEOpzDnRRoJZsi9/+IMvy3B+Vq9uLrSYpkjOTxyp04lhi7LETyudn3XWSfq+eiHytNAtY5g75A91L5LzE2l0ZoE0Me8HOvPYKUpN8RNCuAH4EHAyMNfMzjezL1T+zgfmAicBHwohFJxFpn/JHnyj7fxE8RJHy9RyT+qFvWrRaudnYKD6gjkazk+RfB/oj5wfcBfs4IP9cbwANeL8bLZZ0uE3I37mzauu79Mpw2qjKxkd3aJiZZ11XDwtXjy0Fs/cub5u882bHzk5nPPzr3/5HGFrr+2T2XYatYa6N+v8tEL8mCUOTr3+Yu21/fxZujTpT0fq/KQdrRD8cb2w19pr+9QvkZH0TS98oQu6adMSR7gbqWvshxC+ARwI3AQcAXy88ncEcDNwYAjhmy1uY0+QtpXHjElq9YwWUbzEE6WWs5ENe3WC8wPVoa9WiZ90UbdGnZ9ez/mBoZNoNiJ+zHxizv32S2aILkLa+emkfJ9IvIlZscKXRb+TMWNqC5SRDnOH4XN+4hQ5r3/9yEc9tYJaQ92bdX5aEfaCRMTU6x/Tv/W9lVkwR+r8DAy4MA7BB6WEUF/8pAvYwsjEz5Qp8I9/wN/+Vi2ouo1hsxpCCNeGEF6Dj+jatPK3dgjhNSGEv9T/bxHJVj0e7YNmgw2qR6HUurivu67Hrpcs8ZOqiPMz2uKnVWGv9MWmqPPTLzk/AC9/eXIMjR/f+G996qleH6SRC09a/HRSvk8k6+A2Eqaqlfcz0pFeUN/5GRxMxE+nhi1qhb3SCc9FyDo/cVm2+Bmuv4i/dRQ/I3V+oPrG69ln/XedODF/hB2UJ37A+8qifWSnUniwdQhhMIQwv/I3TNF0kSXt/Ix2vg+48k+3oZZ7YlYdauiEsBck4mfcuNZ9xqRJyXdUVGClO9foqjVbPr7TmToV9t/fH0+fPjqlGtIJz9H56STxk03Gb8QNq5X3U6b4ycv5ueYaD61tvXV1/kYnkRf2StdSatSZbZXzE4/P4doTxc899/iyjCThdOirXr5PpEzx0wsUndW956jM6RWZ2erPSx947ZqTaPPNi00Psemm3jnOm9c5Ya+YMDtjRmsvurvs4snez3lOse3HjvW7rWefdads8uT6k5p2O4ccAlde2XyBzkZJOz/Ll/vjTgp7zZjhLtjKlf575420qUUt52ekw9zT753n/KSnJBjNWmONkB7qHifRfOQRfzxtWvHq3rUSnkc6o3vk5JO9LYcfXn+7KDbKFD/pfYs3XkXFz0gSnnuFvhU/o02cMX3VqvaJn7R7U0/8pEd8NRL2mjKl8fliijJjhtcEafUon/POg9tuqx6dNBxTprj4WbrU979XnR+At78dbrjBl6PBWmu5I7d8uf9NmTJ6wqsIY8d6/t7s2Y2PzBrO+RlJzk+tsFcIPkktwNFHN//+rWb8+KE3Fc2UWGjlUHfwGev32Wf47bJTXJQZ9konPcv5KU7fip/KnF7Af1ygkmucVjNmjB98c+e2J+wF1QKmXtJwPEnmzPEL+dix9U/WGPZqlesTecMbWvv+4BewRi9iU6f6ENalS72Te/ppv1ONeQu9xLrruggdLWIYNl74dtll5JV5y2annVz8NCrKRiPnJyusFi/2UNJaaxV3N9vF1KkufpYscfHTzPD/Vg51b4SsC1xm2Gvp0mTW+nrOo8RPNR1qevYm73sf/Nd/wR57tOfz0+KnXrJazHuJFZU33bS+PR6dn1aLn04lXesn3mmvt17nhhS6jRj6gs7K94nENjXq1ORNbrpihYeaBwZGNqqxVtgrjuIczaKGzZId8dVMZfFWOz9FyYqfshOe6430isT+edy40d//TqRvnZ928JGP+F+7iOJnvfXqH/zxJIlVa+vl+8DoOT+dSroT6uV8n3aRFj+dlO8TOe44DxG/972N/V92wkvwC3wILnxqjdopwuTJ/v/Ll7ugiqNLo/jphnM1O+Irun/d6PxknZayE55jragi4mf99TvPPW0HEj99RBQxw91RxpMkDi0ebgLB2El3w91kK0h3sFEIylYuj/SFuhOdny22gO9/v/H/y3N+ysj3Ab+4rbuuh2MXL64ewQndKX6acX46Rfykb4YmTSonNzK9b6tXV6/LI9YxG+mx1StI/PQR++zjcyy99a31t4siZtUqXw4nfmLHOtqFGzuFdK2fGHuX81Mene78NEtewnMZ+T6RKH6efLI7xU92uHszzk8nhr3KmgsrvW9R/NTL+dlyS/jTnyR+IhI/fcS66yahrHpkO8bhwl7HH+9Fxw48sOmmdTXpnJ9nn/XHcn7KI1641113eCHeTeQlPJcxzD37/um8n24SP+mcnxB6x/kpI98Hqvct3qgON4T/ZS8r57N7AYkfMYRsxzjcBWfixGTep34kb4oLOT/lEcXPrrv2Vq5CPeenjLvzvOHu3Sh+lixxB2v5ct+nRkZR9rLzkx7qvnJl9ToxPBI/Yghxiot4Qg3n/PQ7afETvzM5P+Xx0pf6fGDveU+7W1Iuec5P2WEvqBZX3SR+0mGvZlwf6BznJ90flB32Wro0Kfoo8VMciR8xhDgJXqwG3UuhhlaQzvmJnaucn/LYdFO47rp2t6J8Wp3z00thr2byfWDo7Oed4Py0IuwVxU8jFcb7HVUiEbmkO0eJn/qkO6Feru4symXyZD92li/3astz5sCCBe66lnHO9VLYq1nnJzv7ebvEz5QpyUjQViQ8F6nzI6qR+BG5xBFfAwPlnay9SjrhWXV+RFHM4Dvf8Yvz+ecnw/i32qqcAplZ8ROC1yOC7hA/6bBXs84PVN+ctEv8mCV9QiucnyITm4pqJH5ELrFz3GST6lnbxVDk/IhmOeYYuP12OOCA5O69rPnrsjk/cTTipEndcZFMh72adX4g3yFpR4Xj2CfI+ekMul78mNl6ZvZbM7vHzG41syvMbLt2t6vbieJHyc7Dk875kfMjGmW77eDKK+EHP/BCdG96Uznvm835SU9t0Q2j5vLCXiNxfpYs8dAXtG4C5npEN72sPjVvegvl/BSnFxKeA/CNEMKfAczsZOCHwAHtbFS3E09U5fsMj5wfMVLGjPF6WccfX957ZsNe3ZTvA9Xip5kZ3SPRIVmwwJeTJ7dn3r2zzoLrr4e99irn/dLOTxSzcn6K0xbnx8y2MLNvm9kNZvaMmQUz27rGttPN7JdmttjMlpjZxWb2n1MghPBUFD4V/grkvpcozr77uj2uoljDk875ieJHzo9oN90ufqKLMW+eC5dx45qbQieen/Pn+7Jdk3rusQecfHJ5rlujE5uKatrl/GwHvAH4O/AX4BV5G5nZZOAqYAVwDO7yfB642syeG0JYlvNvpwCXtqDNfcXuu/ucQHEIpahNunNdudInkZw0qb1tEiI7d1i3iZ/o/MSQ1/TpzTk2UezE/e+VGc3ziqtK/BSnXeLn2hDCJgBmdhw1xA9wPDAD2CGEcF9l+9uAe4ETgbPSG5vZZyrbn9CidvcVEj7FiB3Oo4/6cr31uiOnQvQ23e78ZCs5N5PvA8n52WviJ1vDKL1ODE9bwl4hhMGCmx4K3BiFT+V/HwCuBw5Lb2hmpwIHA68OITxTVluFGI5oz8cOSPk+ohNIi58Quk/8ZF2MZvJ90u/T7rBX2Ywd6y7z4KD/vpMm+TpRjE7/qnYhP4Q1G3h9fFJxfA4GXhFCWFzrzczsmhovzWy+iaLfyXamyvcRnUAMvy5fDs88033iZ8wYFy4xrNOs89OrYS/wfVmxwh8r5NUYnT7UfX3gyZz1i4D1AMxsF+A0YANglpndYmY3j1oLRd8zMFCd4yPnR3QKafen28QPVIe+5PwMJS14JH4ao9Odn2EJIcwGCmVYhBAOyFtfcYReUl6rRL8RpykAOT+ic1h3XXjsMRc/3VTdOZKuWyPnZyjpfZH4aYxOFz9PUnF4MtRyhAqTCYHNHMl7CTF1alJHRM6P6BTk/PRuwjNUCx4VOGyMTg97zcbzfrLsDNw5ym0RoibpTkjOj+gU4rE4d67n/UyYMHQUVSeTbuv06c29RxQ7K1dWP+8FFPZqnk4XP5cBe5vZjLiiUgxx38prTRNCOCD+AbeM5L2ESHc8cn5EpxCdn7vu8mW3TG0RiW7Gxhs3XzsrKwp6Sfwo7NU8bQt7mdmRlYd7VJavNrMFwIIQwqzKunOBk4BLK0PZA3A68DBwzmi2V4h6yPkRnUgUP3ff7ctuCnlB4vw0G/KC3hY/cn6ap505Pxdlnn+vspxFZV6uEMIyMzsI+DrwUzyx+UrglBDCUkaAcn5EmaTj7XJ+RKcQhXi3i59mk51hqNjpJfGT3hfl/DRG28RPCKHoCK05wOta3BwhRoScH9GJyPkZ6oj0kkMi56d5On20V8tID3vXUHcxUpTzIzqRKH6WVWZB7Dbxc8QRcPXV8OY3N/8e/eL8SPw0Rt+KHyHKRM6P6ESi+Il0m/jZc0/4619H9h7K+RF59K34Uc6PKJN0vF3iR3QK2WOx28RPGfSy86M6P83T6UPdhegKYic0daomFxSdQ7c7P2XQy+JHYa/m6dtuWjk/okxix6N8H9FJSPzAuHFe3DFOANpL4kdhr+aR8yNECcSORyEv0Uko7OWkBU8viR85P83Tt86Pcn5EmcQ77A03bGszhKgiPT3E+PFDnaB+YcoUWLTIH/eS+FHOT/P0rfgRokwOOABOPhlep4pUooMYO9Yvik8/7VNEdNPUFmUi50dk6Vvxo5wfUSYTJsA3v9nuVggxlHXXdfGz6abtbkn7SAuDyZPb146yUc5P8yjnRwghepiY99Ov+T6QOCQTJ8LAQHvbUiZyfppH4kcIIXqYmOfTz+InCoNeCnlBteDptX1rNX0b9hJCiH5A4qd3xc/aa3su19SpveVojQZ9K3402ksI0Q8o7JWInl4TPwMDcNttKqzaDPrKhBCihzn6aHjoITj00Ha3pH1E56cX82L6WdSOhL4VPxrtJYToB176Uv/rZ3rV+RHNo4RnIYQQPU2v5vyI5pH4EUII0dPI+RFZJH6EEEL0NLHAo/JjRKRvc3402ksIIfqDww6DH/8YXvWqdrdEdAp9K36EEEL0BxMmwDHHtLsVopPoW/Gj0V5CCCFEf6KcHyGEEEL0FRI/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL6ib4e6q8ihEEII0Z/I+RFCCCFEX9G3zo+KHAohhBD9iZwfIYQQQvQVFkJodxvajpnNXWeddabNnDmz3U0RQgghxAi55ZZbWLx48SMhhC3yXpf4Aczsn8BGwH0lvN3MyvKWEt6rk5lZWd7SxjaMBjMry1va2IbRYGZleUsb2zAazKwsb2ljG0aDmZXlLW1sw2gws7K8pY1tGA1mVpa3tLENo8HMyvKWEt5rO2BBCOH5eS9K/JRMHEWWzinqRbSfvYX2s7fQfvYW2s/yUc6PEEIIIfoKiR8hhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq/QaC8hhBBC9BVyfoQQQgjRV0j8CCGEEKKvkPgRQgghRF8h8VMSZjbdzH5pZovNbImZXWxmW7a7XWViZkea2a/M7CEzW25md5vZmWY2td1tazVm9gczC2b2+Xa3pWzM7GAzu9bMllaO3ZvN7KB2t6tMzGxfM7vCzOab2dNm9g8zO7bd7WoWM9vCzL5tZjeY2TOVY3PrnO0mmtlXzOyxyjl7g5nt34YmN0WR/TSzPc3sB2Z2V2WbOWZ2gZlt06ZmN0zR3zPzPx+rbHfdKDVzxDSyn2a2k5ldZGZPpK437y+rLRI/JWBmk4GrgB2BY4Cjge2Bq81srXa2rWT+G1gDfAJ4FXA28G7gT2bWs8eSmb0ZeF6729EKzOxE4FLg78ARwOuBi4DJ7WxXmZjZc4E/A+OA44HXAjcB55nZu9vZthGwHfAG4EngL3W2Ow/f508DhwCPAX80s5mtbmBJFNnPNwG7AN8CXg18DNgduNnMpo9GI0ug6O8JgJnNAE4F5re4XWVTaD/NbE/gb8AE4DjgYOBrwEBpLQkh6G+Ef8D7cVGwXWrdNsBq4IPtbl+J+7lRzrq3AQE4qN3ta9E+rwc8Dry5sp+fb3ebSty3rYHlwCntbkuL9/MMYCUwJbP+BuCGdrevyX0ak3p8XOXY3DqzzfMq69+RWjcWuBu4rN37UOJ+5vVLWwGDwOfavQ9l7Wdm+z8C5wDXANe1u/0l/55jgDuBS1rZlp69Wx9lDgVuDCH8Z1b4EMIDwPXAYW1rVcmEEBbkrL6pspw2mm0ZRb4E3BFC+Fm7G9ICjsUvEN9vd0NazHhgFS700iymS93vEMJggc0Oxff756n/Ww1cCLzSzCa0qHmlUWQ/8/qlEMJDwAK6pF8q+HsCYGZH4c7Wx1vXotZQcD8PAHYCzmplW7ryxO9AdgHuyFk/G9h5lNsy2ryksvxXW1vRAsxsP9zZem+729Ii9gPuAt5kZv82s9Vmdp+Z9dr+/riy/JaZbW5m65rZ8cBLga+3r1ktZxfggRDCM5n1s3FBuN3oN2l0MLOdgI3psX7JzNbDj9mPhBAWtbs9LWK/ynKimd1oZqsquXrfMrNJZX2IxE85rI/HMLMswsMmPYmZTQM+B/w5hHBzu9tTJmY2HreVvxpCuLvd7WkRm+O5aV8Bvgi8AvgT8J0yEwvbTQjhDvxu8jDgEfxc/S7wrhDChW1sWqup1y/F13sOMxuLu5kL8JynXuIrwD0kgr4X2byy/DlwBfBy4Mt4mOz/yvqQsWW9kegvzGwKnii7GnhHm5vTCj4CTAK+0O6GtJAxwFTg7SGEiyvrrqqMvvi4mX0rVILw3YyZbQ/8Cnc83oWHvw4Dvm9mz4YQLmhn+0TpfAfYB3hNCCFP/HUlZvZi3InevRfOyzpEU+b8EMKnK4+vMbMB4ItmtlMIYcSOnpyfcniSfIen1p1XV1OxHn8DzABeGUKY2+YmlUqlRMEngU8BEyphknUrL8fn5Y06aB8LK8s/ZdZfAWwCbDa6zWkZZ+C5L4eEEH4bQrgyhHAy8Avgmz08UrFevwSJA9QzmNkXgROAY0MIV7S7PSVzDu5kzU31SWOBgcrzjs/hKki9fgng+WV8SK+e9KPNbDy+nmVnPGu9ZzCzccAvgT2Bg0MIt7e5Sa1gBjAROB+/gMQ/8OH+TwK7tadppTJ7mNcLJ2F2OLsBt4YQVmXW/z9gAzw3pBeZDWxTKcWRZmd89Nt9Q/+lezGzTwIfBU4OIfy03e1pATvhzmW6T9oX2LvyuFvLNmQZlX5J4qccLgP2rtReAKASOti38lpPULlDvgA4CDg8hHBjm5vUKm4BDsz5AxdEB9IbF45LKstXZta/CpgbQnh8lNvTKh4HZlbyuNK8EHiWHnRAKvwGr230+riikg/zRuCKEMKKdjWsbMzsZODzwCdDCN9pd3taRF6fdCs+2OZA/Ka0F/g9sIL8fgmglPxS5fyUw7nAScClZnYqXrvgdOBh3KrsFb6Ld6RfAJaZ2d6p1+b2SvgrhPAUXj+jCjMDeCiEMOS1LuVy4GrgHDPbELgf/31fQW/lcX0HL9z4GzP7Hp7zcyheu+nrIYSV7Wxcs5jZkZWHe1SWrzazBcCCEMKsEMI/zeznwDcqju0DuDuwDfCW0W9xcwy3n2b2JuAbwB/wnLV0v7QkhNAV7nuB3/OanP95ChjbTX1Sgf1caGZnAp8ysyV4AeE98UKdP0mXlBkR7S561Ct/wJZ4UuUS4Gng19QpUtWNf8CDuLDL+zut3e0bhf3vqSKHlX1aGxe18/BQyG3AUe1uVwv289W4oF1QOT9vAd4DDLS7bSPYp1rn4jWpbSbh9VIex12uvwEHtLvtZe4nPvJp2O+i0/+a2Qe6rMhh0f0EDPgg7rCvBB7CRxaPK6sdVvkgIYQQQoi+QDk/QgghhOgrJH6EEEII0VdI/AghhBCir5D4EUIIIURfIfEjhBBCiL5C4kcIIYQQfYXEjxB9jpm93cxCjb+Xtbt9vYKZ7WFmz5jZtNS6a8zsuhrbH1f5DbZu4DMON7N5lYmHhRA1kPgRQkReD7wo8/f/2tqi3uIrwI9CCI+08DMuBR4DPtzCzxCi69H0FkKIyC2hYOl4M5sQemhuqFZjZnvg8y+9r5WfE0IIZvYD4HQzOzOE8GwrP0+IbkXOjxCiLqmw2P5mdlFlPqG/VV4ba2YfN7O7zGyFmT1qZl8zs4mZ95hhZr+rhH0WmNk3zezEbFin8vy0zP9uXVn/9sz6l5jZlWb2tJktM7M/mtmumW2uMbPrzOxlZvaPyuffYWZH5Ozn88zsEjNbaGbLzexuM/t45bVvV8JJ4zL/M7Xy+V8c5ms8DrgthDDcjNU1MbPT6oQn357a9BfAusBrm/0sIXodiR8hRGSgImbi30Dm9QvwyTGPBD5WWXc+cCrwf8BrgDOBd1a2BaAym/qfgOcD7wXejk+ueWqzDTWz1wBXAkuBtwJHAVOBv5jZ9Mzm2wLfxOe4ei0eFrrIzLZLvd9ewA2VbT9Q2ZezgC0qm5wNbAxkRdNRwFoMP4Hxq4C/1Nmfsdk/hvbPP2RoWPJXwBrgnrhRCOEJ4F8ks2ALITIo7CWEiNyVeX49sF/q+S9DCB+JT8zsxcAbgWNCCP9bWf1nM1sEnG9mM0MItwDHADOAF4UQbqz87++B20fQ1m8Cs0IIh6XaczU+M/2HgFNS224I7B9CuLey3T9wAfQG4IzKNl8FFgJ7hxCeqay7Kr5BCOFOM5sFnIg7K5ETgStCCA/UaqiZbQJsDdxaY5N9gVV19jW2YS4wN/W+r8fF3CkhhL9mNv8nsDdCiFwkfoQQkSNIXVzx2c/TXJJ5/ip8xuVfVpyKyBWV5f747OkvAh6OwgcghDBoZr8ATmu0kWa2Pe7QnJH53Gdw92b/zL/cG4VP5bPnm9l8YMvK+03GBchXUsInj+8BF5rZ9iGEe83sBbibNVx4afPKckGN12/Fw2JZDqOGO2ZmewI/Ab4XQvhWziYLUp8rhMgg8SOEiNwxTMLzY5nnGwPjgWU1tt+gstwMmJfzet66ImxcWZ5X+csyJ/N8Uc42K4CYl7QeHmKam7NdmkuAx3G357+BdwGPAr8Z5v/i59RKEF8aQrg5u9LMZuZtbGZbAJcB1wDvr/Gey1OfK4TIIPEjhChKyDxfCDwLvLjG9o9Wlo8Bu+S8vknOuhW4oEqzQeb5wsry48Cfc95jZY321OJJYBCYVm+jEMIqM/sh8B4z+zLwJuBrIYTVw7x/bO96DbZrCGa2Fi62ngDeGEJYU2PT9VOfK4TIoIRnIUSz/AF3F9YJIdyc8xfFzw3AdDP7Tw6KmY3Bc26yPATsmln3mszzu4EHgV1qfO5tjexEJdR1HfBWM5s0zObn4COpLgImAOcW+IgHcZE4o5F2ZTEzwxPMNwMOCSFkw5JptsG/JyFEDnJ+hBBNEUK4xsx+huf8nIUXRBzEk3sPBj4aQrgHz035GHCxmX0CmI+HjNbOedsLgVPN7JPAjbir9ObM5wYzey9waWUk2S9wJ2QTYB9gTgjhrAZ357+BWcANZvY1PAQ2A5gZQvhPbZ4QwiNmdhmeH/WbEMLDw71xCGGlmf0N2KvBNmX5KHA4Hura3MzSOT3/DiEsgP+IpL3wHCUhRA5yfoQQI+GteNLykXh14V8CJwH3UsnpCSGsBF6OJz9/DxdDDwCfz3m/M4HvVN7j18BOwNHZjUIIl+OJzWvhQ8D/CHwZ2BR3mhoihHATnvT8MPBt4HK8SnJeHtBFleVww9vT/Bw4qBK2apYdK8tv4vuY/ku7Y/vgIbYLR/BZQvQ0FkI2jC+EEK2nUpjvf4BtQggPtrc1xTGzC3ChNCOEMFjwf9bGhdR7Qgjnt7h9ZwO7hhBq5WIJ0fco7CWEEAWo5CzNxGsbfbCo8AEIISwxsy8BHzGzC0KL7jrNbFO8rpIKHApRB4kfIYQoxg14Remf0Fw+zVnAAJ6w/Ogw2zbL1sCHQgjXtuj9hegJFPYSQgghRF+hhGchhBBC9BUSP0IIIYToKyR+hBBCCNFXSPwIIYQQoq+Q+BFCCCFEXyHxI4QQQoi+4v8DNs9Nqa0jVhYAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "avg_cs_amplitude = np.abs(avg_cs.power)\n", + "\n", + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_cs.freq, avg_cs_amplitude, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Cross spectral amplitude\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Crossspectrum` or `AveragedCrossspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the cross spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / \\sqrt(meanrate_1\\times meanrate_2)$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*. This is the default.\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times \\sqrt(meanrate_1\\times meanrate_2)$. See *insert citation*.\n", + "* `none`: No normalization applied. \n", + "\n", + "Note that these normalizations and the Poisson noise levels apply to the \"cross power\", not the cross-spectral amplitude." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 15141.07it/s]\n", + "200it [00:00, 12807.43it/s]\n", + "200it [00:00, 13023.36it/s]\n" + ] + } + ], + "source": [ + "avg_cs_leahy = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='leahy')\n", + "avg_cs_frac = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='frac')\n", + "avg_cs_abs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8., norm='abs')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot the three normalized averaged cross spectra." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAANYCAYAAACRv3nwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAC6JUlEQVR4nOzdd5xcVf3/8dc7nXSSQBqEhF6CLBBESiCU8EVARBRBRIkKgvjlK4qFACKoNEUUQZT6Cx0EaWpApASpAoGQhJJQUiC9kd42+/n9ce4sk8nM7szu3Jl7dz/Px2Mes3Pvufd+pux85px77jkyM5xzzrmkaVPtAJxzzrl8PEE555xLJE9QzjnnEskTlHPOuUTyBOWccy6RPEE555xLJE9QzkUkjZJkkrav0PEGR8c7rRLHcy5tPEE555xLJE9QzrlmkdSx2jG4lskTlHMlkvRdSW9KWiNpoaRbJPXKKfO/kl6StFjSJ5JelnR0gV22lfRLSXOisn+XtFXWvv4u6Y08cQyRVCfpzAZiHRE1Ix4r6boo3oWS7pTUM6ds96jMbElrJU2R9ENJyrO/4yXdJGkBMC9aN07S85KOlDRB0mpJb0jaV1I7SZdFz3GxpDGSuhT1grtWyxOUcyWQdAXwJ+BJ4FjgJ8CRwGOS2mYVHQzcDJwAnAi8BvxD0pF5djsa2B74NvADYD/gzqz1fwZqJH02Z7vvAiuBu4oI/RrAgJOBS4AvR8syz6sN8E/gW8DvgC8AjwNXA5fm2d+1gIBvAKOylm8P/Ba4gvDcOwKPRs+hf1T2l8DXgV8UEbdrzczMb37zmxmEL08Dti+wfjCwAbgoZ/kB0XbHFdiuDdAOeAJ4JGd/BozLKf/jaPmArO0/AG7JKtMemAv8pZHnNCLa1205y68D1gCKHh8TlRuVU+5mYC3QJ2d/D+U51jhgPbBt1rJjo/JP5pR9EJhW7ffcb8m+eQ3KueKNJCSLu6Imq3aS2gH/BZYDB2UKStpb0j8kzQNqCV/cI4Gd8ux3bM7jSdH9IAAzqwNuAE6S1CNadxzQN1pejH/mOUbHaB9EsdcBd+eUuxPoQKjVZXuowHGmmtmHWY/fje7/lVPuXWCr7OZD53J5gnKueFtG9+8TEk72rRvQG0DS1sBTQC/gbGB/YB9Ck1mnPPtdnPN4bXSfXfYWoC2hSQ3gTOAVM9vk3FQBjR2jF7DYzNbllJubtT7bnALHWZLzeF0Dy9sRnpNzebWrdgDOpcii6P4INv3CzV5/JNAD+KqZfZxZKalzUw9sZosk/RU4Q9K/gEOAcl4/tRjoJalDTpLql7V+o5DKeGzn8vIalHPF+zehGWyQmb2W5zYtKpdJROszG0rakXCuqjmuB4YSzgstBe5t5v6yPUv4PjghZ/nXCbWdl8p4LOeK4jUo5zZ1pKS5OcuWmtm/JV0JXCdpJ8KX+hpga8L5pZvN7BlCD79a4HZJvyP0XrsEmEkzfhSa2ctRd/ODgGvNbFVT95XHY8DzwF8kbQG8BRxFqKVdbmYLy3isvCS9D8wws8PiPpZLB09Qzm3q2jzL3gKGmtn5kt4Bvh/dDPiIcM7pPQAze0vS1wndqR8l9MA7j9D0N6KZsd0P7EnxnSOKYmZ10XValwE/I5xPmw78CPhDOY/VAD8n5TaS6WLqnEsBSS8AdWY2vNqxOBc3r0E5l3DRUEJ7AYcTegR+sboROVcZnqCcS77+wIvAJ8BlZvZodcNxrjK8ic8551wieQ0qj6in1BaECzKdc87FZ3tggZntmbvCE1RE0rish7v26NGjQ01NzcBqxeOcc63BhAkTWLp0ad51nqDyW11TU9Nh3Lhx1Y7DOedatBEjRvDss8/mba3yBBUxsxGZv6Pa1MFVC8Y555wPdeSccy6ZPEE555xLJE9QzjnnEskTlHPOuUTyThKRnG7mNVUKwznnXMRrUM455xLJE1TEzEZkbsCEKodTdsuXL+czn/kMV1xxRbVDcc65oniCaiUmTpzIpEmTePjhh6sdinPOFcUTVCuxfv36xgs551yCeIJqJWpra6sdgnPOlcQTVCvhNSjnXNp4gmolPEE559KmRSYoSVtLGifpbUkTJZ1Q7ZiqzZv4nHNp01Iv1K0FzjGzCZL6AeMljTWzldUOrFq8BuWcS5sWmaDMbA4wJ/p7rqSFQC/AE5RzzqVEIpv4JB0k6VFJsySZpFF5ypwlaZqkNZLGSxpeYF97A23N7KO4404yb+JzzqVNIhMU0BWYDPwAWJ27UtKJwDXAZcCewIvAY5IG5ZTrBdwOfDfugJPOa1DOubRJZBOfmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkfbdQQeBq4wsxfzHSdngNhsNU0MPbE8QTnn0iapNaiCJHUA9gaeyFn1BLB/VEbAGOBpM7ujogEmlDfxOefSJnUJCugDtAXm5SyfB/SL/j4AOBE4TtKE6LZ77o5yBoht0bwG5ZxLm0Q28TWXmT1POpNvbDxBOefSJo1f4guBDUDfnOV9gbmVDycdvInPOZc2qUtQZrYOGA+MzFk1ktCbz+XhNSjnXNoksolPUldg++hhG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJNBa9BOefSJpEJChgGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFPCa1DOubRJZIIys3GAGilzPXB9GY85IvN3dH3UweXadxJ4gnLOpU0iE1Q15Fy0W1OlMGLjTXzOubRJXScJ1zReg3LOpY3XoCLexOecc8lSdIKS1ANYY2ZrY4ynaryJzznnkqWoJj5J7YBFwBHxhuPi4jUo51zaFFWDMrNaSfMIIzi0SN7E55xzyVJKJ4k7gdPiCsTFy5v4nHNpU0onienAyZJeBR4hTKlu2QXM7NbyhVZZLf0clNegnHNpU0qC+lN0P5AwH1MuA1KboFo6T1DOubQpJUENiS2KBGjp56C8ic85lzZFJygf5y7dvAblnEubki/UlfQZ4CCgN3CDmc2VtD0wz8yWlztAVx6eoJxzaVPKhbodCT35jicM5GrA3wmTBP4GmAqcF0OMrgy8ic85lzaldDO/FDgc+AZh9trs0cYfA/6njHFVnKRxmRvei88556qulCa+rwEXmtndktrmrJsGDC5bVK7sPEE559KmlATVG3inwLo2QMfmh1M93ovPOeeSpZQmvmnAfgXWfRaY0vxwXFy8BuWcS5tSEtTtwHmSvg60j5aZpEOAH+IX6SaaJyjnXNqUkqB+A/wTuANYEi17HngSeNzMri1zbK6MvInPOZc2pVyouwE4SdKfCD32tiRMwfG4mT0bU3yuTLwG5ZxLm5Iv1DWz54DnYoilqlr6YLFeg3LOpU3RTXyS7pP0XUk7xhmQi4fXoJxzaVNKDWor4FqgnaQ5wDOZm5lNiyO4Smrp3cw9QTnn0qaUc1AHSOoCDAcOBUYAJwFtJM0Enjaz78QSpWs2b+JzzqVNKb34MLOVZva4mf3UzD5LqGU8DWwDjIohPlcGGzZswMwaL+iccwlSUieJaNTyQ/i0BrUl8DZwHSFRuQTy5j3nXBqVMpr5TMJsuu8Tzj2dQ2jWWxBPaK5cvHnPOZdGpTTxDQDWEMbjext425NTOngNyjmXRqUkqF6EEc2nAd8BJkiaF3U/PzNp3c8lPSRpiaQHqh1LtXmCcs6lUdEJysyWmdmjZvZDM9uDcP7p+4TE9SdCrSpJrgG+We0gksCb+JxzadSUKd+3JnSSOCS6bQ1sAMaXN7TmMbNxkkZUO44k8BqUcy6NShlJ4kZJ7wPTgVuA3YH7gWOAXmb2uXIFJekgSY9KmiXJJI3KU+YsSdMkrZE0XtLwch2/pfEE5ZxLo1JqUJ8jjGb+DDDOzD6JJaKgKzCZMMXH7bkrJZ1IaMI7izCi+lnAY5J2NbOZMcaVSt7E55xLo1JGkvhMnIHkHGssMBZA0pg8RX4EjDGzm6LHZ0s6EvgeMLrY4+QMEJutpth9pIHXoJxzadSUc1BDCSNI9AIWE2pTb5U7sAaO3wHYG7gqZ9UTwP6ViiNNPEE559KolAt12wFjCF3NlbXKJN0NjIrmjIpbH6AtMC9n+Tzg8MwDSU8CewBdJH0MnGBmL2VvkGeA2BbJm/icc2lUSg3qF8BXgYuAO4G5QD/glGjdh9F9IpjZ4Y2Xah28BuWcS6NSEtQpwK/N7NKsZTOASyW1Bb5FZRLUQkK39r45y/sSkqbL4QnKOZdGpQ519GKBdS9G62NnZusI11yNzFk1ksLxtWrexOecS6NSalCzgQOAJ/Os2z9aXxaSugLbRw/bAIMk1QCLo27kVwN3SHoFeAE4k5Ag/1KuGFoSr0E559KolAR1F3CBpLro7zmEc1AnARcAV5YxrmGE660yLolutxE6Y9wnqTdwIdCfcM3UUWY2o4wxtBieoJxzaVRKgroY2JaQKC7OWi7gHuCX5QrKzMaxcU/BfGWuB64v4zFHZP5uaVO+exOfcy6NSrlQtxY4WdKlhC/vzQnXQf2nktdBxSWnm3lNlcKIhdegnHNpVPKFulEySn1Cak08QTnn0qjUKd/bEqaw2I8wu+4sQs+5Oyp0kW5svInPOeeSpZTRzLch1JxuAY4kzAd1JHArMDla7xLIa1DOuTQqpQZ1HdAdONDM6q83knQAYdqNa4Fjyxte5bTkc1Beg3LOpVEpF+oeCozOTk4AZvYCcH603iWQ16Ccc2lUSg1qBTC/wLr5wKrmh1M9LfkcVHaCMrMqRuKcc8UrpQZ1J2HEhnzOIM/Egi4ZvInPOZdGpdSg3gdOkDQJ+Btheou+wFeAboQZbb+dKWxmt5Yz0Li15HNQ3sTnnEujUhLUn6L7rYDd8qzPHtXBCL37XAJ4gnLOpVEpCWpIbFEkQEs+B+VNfM65NCplqCMfiDWlvAblnEujUjpJ1FNwq6RB5Q7IlZ8nKOdcGpU8Fl+kDXAq4eLdmeULp3pacicJb+JzzqVRk2pQkQanw3DJ4TUo51waNbUG1eK05E4SnqCcc2nU1BpUHWF224VljMXFxJv4nHNp1KQalIXxcr5V5lhcTLwG5ZxLo1Km29hf0jFZj3tJukfSJElXRXNFuQTyBOWcS6NSmviuAPbOenwVcBQwFfgeYURzl0DexOecS6NSEtQuwGsAktoTxuD7oZl9GbgAOLn84VWOpHGZGy2sm7nXoJxzaVRKguoKLIv+/izQBfhH9Ph1wC/aTShPUM65NColQc0C9oj+/jww2cwy80NtTguYDypzAyZUOZyy8iY+51waldKL7x7gMkkjCOeefpG1bi/gvfKF5crJa1DOuTQqJUFdDKwBPkfoMHF11ro9gPvLF5YrJ09Qzrk0KmU08w3ApQXWHVeugFz5eROfcy6NSrkOqk/u6OWSzpB0bfb1US55vAblnEujUjpJ3Aqcl3kg6efAnwndyx+RdGKZY3Nl4jUo51walZKghgFPZT0+E7jMzHoTpoP/UTkDc+XjNSjnXBqVkqB6AfMAJA0F+hEGjAV4GNiprJE1g6RjJE2R9J6k06odT7V5gnLOpVEpvfgWAVtFfx8KzDazTNfy9jRvbqmykdSO0MPwEGApMF7SQ2a2qLqRVY838Tnn0qiUBPUkcLGkPsC5hFpTxs7AjDLG1RyfBd4ys1kAkh4DjiBcx9UqeQ3KOZdGpdR6fgp8BFwOfABckrXu68Dz5QhI0kGSHpU0S5JJGpWnzFmSpklaI2m8pOFZqwcQRr3ImAUMLEdsaeUJyjmXRqVcBzUPGFlg9eGEi3jLoSswGbg9um0k6i14DXAWISmeBTwmaVczm1nKgaKBYfOpKWU/SedNfM65NCr5vJGC3SQNj+5lZsvMbF05AjKzsWZ2vpk9QJi5N9ePgDFmdpOZvWNmZwNzCFN+AMxm4xrTwGhZq+U1KOdcGpWUoKIecXOAicC46H62pO+UP7S8x+9AmJPqiZxVTwD7R3+/AgyVNFBSV8LAtv/Kt7+cAWJbLE9Qzrk0KrqJT9LXgRsJ10LdCcwldDX/OnCjpFVmFndHhD5AW6Lu7lnmEZoZMbNaSecCzxAS8G9acw8+8CY+51w6ldKL76fAXWb2jZzlt0m6A/gZCekpZ2aPAo9WO44k2LBhA2ZW7TCcc65kpTTx7USoOeVzJ5W5UHchsAHom7O8L6FG53J4855zLq1KSVDL+fRC3VxbRetjFXXEGM+mvQlHAi82c98tcsJCb95zzqVVKU18jxEmLJxqZs9lFkraD/h1tL7Zoo4N20cP2wCDJNUAi6Nu5FcDd0h6BXiBMCbgAOAvzTzuuKyHNc3ZV5J4Dco5l1alnoP6HDBO0ixCb75+hNrT+9H6chhG6OCQcUl0uw0YZWb3SeoNXAj0J1wzdZSZJWUki0TxBOWcS6tSLtSdG9Vkvg0MJwweOx14lnBd0qpyBGRm4wA1UuZ64PpyHK+l8yY+51xaFZWgouuP7gN+b2bXAdfFGpUrG69BOefSqqhOElHnhMOLLZ9GLbWThCco51xalZJwXiCcg3Ip4k18zrm0KqWTxLnAw5JWEKbamANsdAWomeUbOy8VvBefc84lSyk1qEnAdoSRxGcA64D1WbeyDBbryssTlHMurUqpQf2SnBpTS5I9YGxUmzq4asGUkTfxOefSqpRu5hfHGIeLSaYG1bZtWzZs2FDlaJxzrniljGbeHuhgZivzrOsCrDOz1LYntdRzUJkaVPv27T1BOedSpZQmvlui8ifnWXcD4RzUt8sRlCufTA2qXbtS3mrnnKu+UjpJjAAeKbDuUeCwZkdTRS39Oqj27dtXORLnnCtNKQlqS2B+gXUL2HQKDJcA2U18zjmXJqUkqPnA7gXW7Q606llrk8qb+JxzaVXKt9Y/gJ9LGmdmEzMLJe0OXAA8VO7gKqmldpLwJj7nXFqVkqAuIkwMOF7Sq8DHwEDgs8A0wvQXLmG8ic85l1ZFN/GZ2UJgH+BywnQYNdH9pcA+0frUaumdJLyJzzmXNiWNTm5mn5jZRWa2n5ntaGb7m9nFZrY0rgBd83gTn3Mtw3//+19+/etft6rrGVvs9Bku8CY+5+K3cuVKZsyId1Lv888/n5///Oe8+uqrsR4nSTxBtXDexOdc/E466SS22247Zs+eHdsxFi4MZ1HWrl0b2zGSxhNUC+dNfM7F76WXXmLDhg3MmTMntmMsX748tn0nlSeoCqutrWX06NG89NJLFTsetO4a1IYNG3jnnXcwa7GD8bsqWrRoEYsWxX8Z6LJly2I/RtJ4gopIGpe5EeN1UGPHjuWKK67gJz/5SVyH2IjXoODyyy9n11135aijjuLjjz+udjhNNmvWLM4777xYm5Fc6d57772KHMcTVAMkfTcatdw1w9SpUwGYOHEidXXxT0DsCQpmzpwJwOOPP87QoUN59NFHqxxR09x2221ceeWVXHPNNdUOxWXJ/E/Hae3ata1y8tFSalB/BmZL+pOkz8QVULVU6jqo999/HwjtyXH3+gFv4svWv39/li5dyplnnlntUJokc3L8jTfeqHIkLlslElRrrD1BaQlqO+B64HjgDUkvSTpVUqd4QmuZspsDJk6c2EDJ8mioBrVmzRo+//nP85e//CX2OJLgF7/4BZ06dWLOnDmsWLGi2uE02YQJE/x8WoJ4gopPKSNJTDez0cDWwEnAKuBWYJak30vaJaYYW5RMDQqqn6AmTZrE448/zh/+8IeyHKuuro7TTz+dO++8syz7KzdJbLPNNgAVqb3GZcGCBcydO7faYbhIJRJUa+zBB03oJGFmtWZ2v5kdBuwETAL+D5gs6VlJR5c7yJZizZo1fPTRR/WPK5GgGmriy/wKnzlzZll+kY8dO5abb76Zb3zjG3nXP/bYYxxxxBE89NBDVasBDB48GIDp06fHdoyf/vSnXHHFFbHtH0ItylWfmVWkk4TXoEogqZuks4C/AQcRztlcQBh89lFJvyxbhC3ItGnTMLP6ZFHtGlTG6tWr6y8CbI7GfuXdfvvt/Pvf/+b444/n4IMPZvLkyc0+ZqniTlBLlizht7/9LT//+c9j7QTz5ptvNnnb2tpa1q1bV8ZoWoaVK1du9AOyGLNnz2bVqlUxRfQpT1BFkDRM0k3AbOB3hMS0n5ntbWZXmNkBwMXA98sdaEuQad4bPnw47dq147333ov9w11sL75KNHllvrAl8dxzz3HqqafGfsxccSeozPUwtbW1LF68OJZjQPNqUEOGDGHzzTdvVWO6FePLX/4y2223XUk/1irRvAfexNcoSa8D/wUOAX4JDDSzU83svzlF/w1sXr4Qm07SQ5KWSHqg2rHApwlq1113Zeedd8bMeOutt5g9ezYHHHAAN998c9mPWWwvvkqekxk9ejRAVToqZM5BxZWgspNSnKMKNKcG9fHHH7Nq1apW+6u8kHfeeYf169czb968orepVIJqre9VKTWoj4FjgB3M7LdmVujn4evAkGZHVh7XAN+sdhAZmbbq7bffns98JvTUnzhxIpdeeikvvvgit956a97tbrzxRnbffXfOOOMM/v73v5d0PUSSalAZHTt2rNixcsVdg8pOUHF2ZJgyZQorV66Mbf+t0dKlpU/K4AkqXqX04jvWzB6zRs5um9k6M0tEFykzGwckpm6cqUHtsMMO9Qnq8ccf55ZbbgEK/+K+8847mTx5MjfeeCPHHnssZ5xxRtHHTGKCitMTTzzBQQcdVHDEiJaSoMysKufwWqq6uromJQFPUPEquZOEpH6SPivpoNxbCfs4SNKjkmZJMkmj8pQ5S9I0SWskjZc0vNRYkyaToLJrUA888ED9BZhz585tsHfbIYccAsAHH3xQ9DFzm/gK7T9fgnr33Xf54Q9/yDe/+U2OP/74VIzA8NOf/pTnnnuOxx9/PO/6vn370rFjRxYuXBhLE2OlEhQ0r5kvbaZPn87f//53Pv7441h6gK5YsaJJ+820isTdKtBaz0EVPbyApIHAHcDB+VYDBrQtcnddgcnA7dEt91gnEprnzgKej+4fk7Srmc2MykwoEP8RZlbUYGXRuHv51BSzfSnWrVvHjBkzaNOmDYMHD6Zr164brW/bti1r1qxh6dKl9OzZM+8+DjnkEJ555pmSjtucGtQvfvEL/vrXv9Y/njlzJscee2xJx6+kiRMn1n9pF/qyadOmDdtssw1Tp05lxowZ7LbbbhutNzMkNTmGSiSo7t27s2zZslbV1fzYY49l0qRJAAwYMICbb76Zz3/+82Xbf1NqKLW1tfU/FrfddlveeeedssWTy2tQjfszsDvwU+DzwKFZt0Oi+6KY2VgzO9/MHgDy9cX9ETDGzG4ys3fM7GxgDvC9rH3UmNnQPLdEjqQ5ffp06urqGDRoEB07dmTAgAH06tULgGOOOYZtt90WKP+XWnM6SWR6GH7pS1/aaF9JdccddxRVLtPMl/2cZ8yYwVe/+lW6d+/Oiy++2OQYlixZUv93XAkqU/tuLTWotWvXMnnyZCTRs2dPZs+evdEPp3Joyvmn6dOnU1tby6BBg9hss83KGk8uT1CNGw78yMx+Z2ZPmNmzubdyBCSpA7A38ETOqieA/ctxjIyc8fdild28B6Gr9WGHHUb79u256KKL6N+/P1D+nl+Zrt1t2zZcuV2yZEnBZoQ999yzrDHFoba2tugRLHLPQ1111VXsvPPO3H///axYsYLXX3+9yXFUoga1xx57AKGreWvoKJG5fnDw4MH8/ve/BwrXkJuqKQlqypQpQDinHLfW2sRXSoJaDcyPK5AsfQhNhbl9PecB/UrZkaQngfuBoyR9LGm/8oRYukxbdfaHecyYMXzwwQfss88+9OsXnlo1h7DJjPqdRk899VTRr112gpo0aRI/+clPWLNmDb179252HJVIUFtssQX77rsvq1at4sYbb4zlGEmS++MuDk1JUJkL7YcOHVrucDaRtBrU6tWrNxq2LS6lJKibgPxj2CSUmR1uZluYWWcz28rMKjNLIGxyEWS+f7LOnTuz9dZbA8RWgypFWnry3XLLLZuci8s07xVz/ij7Wqi7774bgNNPP52TTjqp5Fiee+65jc4FVaqTxAUXXADAb3/7W9asWRPbcZIgc55nu+22i+0YTUlQmSbWTI22nFatWrXREEpJS1CjR49mxx13ZNy4cbEep8EEJenbmRvhOqj9JT0l6cfZ67LKlMNCYAPQN2d5XyDxI2SaGV/72tfYYostNvqyyr4GKp8k1KDSkKDeeecdTjvtNA499NNTnqtWreLBBx8E2Gh5IZka1LRp07jnnnsAOOWUU0qOZc2aNRxxxBEbnazPfs8XL15c30Oz3I455hhqamqYM2dOwevnWoqk1qDiTFDf/va32Wmnneq/Nxpr4lu4cCFDhgzh17/+ddljySczov6YMWNiPU5jNaibs243AIMJHSJ+k7PuZkINq9nMbB0wHhiZs2ok0PSz140ftyzzQUli/vz5LFmyhH/9619AOD/y8ssvA7D77rvn3S6ToLwG1bD58zdtZV64cCGrV69m4MCBDBnS+DXimQQ1fvx4ZsyYwVZbbcWBBx5Ycixr165lzZo1zJ07t/4LJJOgMr0m88VbDpK48MILAbjiiitaxNh6hZ5DEhPU6tWrmTp1Km3btmXXXXctezyZ7vSZa90aq0GNHz+e6dOn13/nxC0zHNQjjzwS62evsQQ1pITbtsUeVFJXSTWSaqIYBkWPB0VFrgZGSTpN0i6SrgEGALFNXFTOKd+PPjoM6D527FgAXnrpJZYuXcpOO+1U8As008TnNaima9OmuBbrfv360aFDh/oT7SeddFLR2xYyZ84czKw+QWXONcb5fn7pS19i11135aOPPuK+++6L7TiV8PTTT9OxY0euvPLKTdYlMUFNnjyZuro6dt55Zzp1im9KvMznqrEaVHbv0UrIJKhPPvmEp556KrbjNPhfaWYzSrmVcNxhwBvRbTPgkujvX0bHvQ84B7iQUJs5EDgqKSNUNOaoo44CwvQSGzZsqE9UmeX5eA2qcjLXQmWcfPLJzd7nrFmzWLFiBbW1tXTu3Lm+lhZngmrTpg1f+cpXACoy5UOcfvaznwFw3nnnbbS8tra2vrdl5lKMOJR6jifO5r1sc+bMYdWqVY2OjF/JBGVmGw2oe//998d2rOb9bGwiMxtnZspzG5VV5nozG2xmHaPR0v8Tc0xlm/J9p512Ytttt2XRokW88sorRSWoatagttxyS6D1JCj4tJlv5513pqamptn7mz17dn3tqVevXhU7p9jY5QNpN3PmTGpraxk4cGCs1xqVWoOqZIIqJnlWMkEtXbqUDRs21Lc6PPzwwyWND1qKUqfbOCIaIfxtSR/m3mKJsELK2cQnqb6Z74YbbmDixIl06dKF4cMLj9bUp08f2rZty6JFiyp+PmHgwIG0adOGOXPmtIhzGcXYcccdgVB7as7IERnVSlAtXSWa9yD9CeqTTz6JNY5smdrTNttsw6677sqSJUtia+YrZbqNo4DHgM7AzsC7wEzCFPB1QFku1G0pMgnqtttuA+Cwww5rcLyuNm3a0Ldv6LhYynD/5dC+fXsGDhyImZU8YVtanX/++fz+97/nJz/5SVn2N2vWLE9QMUhigjKz+mugiklQdXV13HXXXU0aoHj27NlFXaRbyRpUJkH16dOHE044AQhjisahlBrUz4E/AZl2qguj5rDdCBfWPlbe0CqrnE18AAcffDCdO3euf9xQ815GNc9DZc7JFNvMV1tby8knn5zaLs4DBgzgnHPOKdsJbq9BxaOpCWrVqlVcdtllRY82XkqCmjFjBkuXLmXLLbesf58bcscdd3DKKacU1cM0VxKb+PIlqIcffjiWCTBLSVA7A38n1JaMaKBWM5tKmEX35+UOrpLK2cQH0KlTJw477LD6x8UMbFnN81A9evQAKHqG30cffZR77rmH73znO3GGlRqeoOLR1AT1y1/+kgsuuIBddtmlqPKlJKhSm/deffXVoveda/78+UXNzFytBLXbbrtx00038frrr8dyPrSUBFUH1EbzQS0ABmWtmw3Ed5l3SmWa+YYOHcqgQYMaKZ2MnnzFag1jwJXCm/jikRlFotQElUkijfV+y4gzQTWHmRU1vU41zkH16dMHgNNOO62o77emKHq6DWAK4UJdgNeAcyS9ANQC5wLTyxpZhWUPGBvVovJNK1KSU045hddee62+GtyYJFwL5Zpm9uzZLFq0CNg0QTV3Co/Wqq6uriLDHJlZYhMUfDoobUOqVYOKWykJ6i4gU1/+BfAkYfgjCEMTNf9ikhamS5cu3HRT8QNspKkG5Ta2bt26+uaoXr160bVrVzp37syqVatYsWIF3bp1q3KE6TNr1izWrl3LlltuGevrt3r16pLOn7z77rtAZQaJzT5eQyqZoDI/xBKVoMzsT1l/j5e0O2FeqM2AJ83s7Rjiq5icyQtrqhGDNwulW2ZYml69eiGJfv368eGHHzJ37lxPUE2QxB58EGrLAFtttVUc4WyisY4edXV1TRpLsKkqWYNq8oW6ZvZxNKHgH9OenJIiCSOau6b78MNwKWBmIspif3DU1dXx7rvvxjKVeRwqFWdm+pfMRdVxKeXLffXq1XzyySe0b9++LNOzFCNTYylk2bJlFf3sJDZBKThW0lWS/p+kbaLlB0saEE+IlVHubuZN4TWodMt8SZSaoM477zx22WUXfvWrX8UbYBl88YtfZM899yy680FzZGZwjnOsOygtQWV+PPbv3z8x5xWb2rw3fvx4Lr744pJHgUjkOShJmwNjgX2B5UBX4FpgBnA6sBj4vxhibDX8xHrLkJugGqsR//a3vwXgyiuv5KKLLoo3uGZ69NFHAfjoo482Gs8wzUpJUJnmvQEDkvN7vKkJatiwYQBsvvnm/OAHP9hkfaHvoEyCqkQNspQa1G8Jo0YcAPQGsiN/Ejgs30aueJ07d6Z79+6sW7eu4qMTu/LJJKguXboAtPgJBdOuqTWopGjud0WmaTrb8uXL2XHHHesnxszYsGHDRpdTxK2UBPVF4IJoVtrcBs/MkEepVe4LdZvKz0OlW4cOHTYaQcQlX1pqUIUGy43jGqi7776b999/n8suu2yTY9XV1dGzZ8/6Oc/iVEqC6grMKrCuExvXqFwTZarNxVw97pIn04PPpUdTalDVSFDdu3fPu7ylXgMFpSWoKcARBdYdDExqfjjVk4ROElD8pHsumSrR7OHKqyk1qGo08RW6VKElJ6hSLtS9HrhO0lLg7mhZT0nfAv4X+G65g3MuDTbbbDPWrFmDmXmCSqFSJiv0GlRCE5SZ3ShpW8Lst7+MFv+bMEbfb8zsrhjicy7x2rdvT/fu3Zk3b54nqBRKcg2qY8eOrF27Fkn1nW5yVXMcvriVUoPCzM6T9GdgJLAlsAj4t5mlerJC55prwIABnqBSKsmdJPr378/06dPp2rVrweb/ljrMETRhJAkzm2FmN5vZZWZ2g5l9KOlwSRPjCNC5NBg4cCDg56DSqNgEVY1RJDI1tULNe9Cym/jKdUa+B2HiQpciaRlaJw0yv6g333zzKkfiSlVsgqrGKBKZz1VDCcqb+FqBJAwW69LrpJNO4rXXXuMLX/hCtUNxJcokqHbt2tUPr5RPNS7SzRyrocGGvQblXBFK/VXZkmpwhxxyCOPHj6/YHEGufDIJKjOrdCHVuEj3M5/5DAA77bRTwTLVSFCVauL0GlQkjgkLXX5+IatLkuwE1dDI4dWoQe2yyy588MEHDBw4kP/5n//ZZL2ZtegaVIMJKupWXox+ZYjFOecqau3ataxbt4527do1Omp6tYY52nbbwl/Dq1atarBZstwSlaCA99l03L18VGQ555xLjOzaU2M1+2qOIlFIJWtPtbW1LFmyBEkV6wzUWIL6VkWicM65Kij2/BNUdxSJQiqZoLJHMW/btm1FjtlggjKz2yoShXPOVUF2glq3bl2DZVvSXFBNUekOEuC9+JxzVVDJa3ca0pQaVJKa+DKvYzHxN9fatWsBKjqdTItNUJK2juZ3elvSREknVDsm5xw89NBDbL755px33nnVDqXoBLV69WqWLFlS0VEkipGpQbXUC8RbbIICaoFzzGxXwjQhf5CUf7RF51zF/PKXYazpK6+8ssqRhKnrofFmu7lz5wLQr1+/RE2Jk0lQPXv2rG4gMUnOK11mZjbHzCZEf88FFgI+UJpzrt77778PwPbbb99guSSefwKvQcVC0kGSHpU0S5JJGpWnzFmSpklaI2m8pOHNON7eQFsz+6g5cTvnWpZMgtpuu+0aLLdgwQIAttxyy9hjKkXmHJQnqPLqCkwGfgCszl0p6UTgGuAyYE/gReAxSYOyykyQNDnPbUDOvnoBt+MTKjrncnzwwQdA4zWozLBccXSvvueee/jqV79a3wmhFC29BlWVoY7MbCwwFkDSmDxFfgSMMbObosdnSzoS+B4wOtpHTWPHkdQReBi4wsxezLN+XIFNG923cy7damtrmTZtGtDwaA1xO/nkkwE47LDDOOOMM0ra1s9BVZikDsDewBM5q54A9i9hPwLGAE+b2R1lC9A51yLMnDmT2tpaBg4cyGabbVbtcFi+fHnJ26xYsQKArl27ljucREhcggL6AG2BeTnL51HamH8HACcCx0XNgRMk7Z5dwMxGZG7NCdg5lz7FNu+lQZJ6FpZTix3N3MyeJ5kJ2DmXAMX24HPVk8Qv8IXABqBvzvK+wNzKh+Oca4mK7cHnqidxCcrM1gHjgZE5q0YSevM551yztaQmvpaqKk18kroCmU9FG2CQpBpgsZnNBK4G7pD0CvACcCYwAPhLFcJ1zrVAXoNKvmqdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSJ1zLU5dXV19DcoTVHJV6zqocYRJDhsqcz1wfUUCwqd8d641mTNnDmvWrGGLLbaoyEjgrmlabC++UuVctFtTpTCccxXgzXvpkLhOEs45FzfvYp4OXoOKeBOfc62H9+BLB09QEW/ic6718Ca+dPAmPudcq+M9+NLBa1ARb+JzrvVYtWoV0HJHAW8pvAblnHMukbwGFfFzUM45lyxeg3LOOZdIXoOK+Dko55xLFq9BOeecSyRPUM455xLJE5RzzrlE8nNQEe/F55xzySIzq3YMiZCToPYeOHBg12qM0/XGG2+wbNkyampq6qcBmDBhAkuXLmXw4MFMnz6dHj16UFNTU9T+Jk6cyJIlS+q37dq1K3vvvTcAy5Yt44033qBbt260b9+exYsXM3ToUHr37g3ApEmTWLx4cf22Xbp0YdiwYQDMmzePd999F4CDDw79SebPn88777yz0bJsb7/9NgsWLKjfX6dOndh3331Len0++eQT3nzzzY2OsXbtWl5++WU6duzI5ptvzty5c9lxxx3p378/AFOnTmXOnDkbLcvnvffeY/bs2Wy//fYMHDiw0Vhqa2t54YUXaNu2LQceeOAm6z/88EM++ugjhgwZwqBBgwru59lnnwWgTZs2DB8+vGC56dOnM2PGDLbZZhsGDx4MwIwZM5g+fTqDBg1iyJAhjcacfbwDDjiAdu1K+42a2XbfffelU6dOJW2b8dprr7Fy5Urg0/dw/PjxrFixYqNlc+bMYerUqfTr14+ddtoJgLlz5zJlyhT69u3LzjvvXPAYmc999v6yvfLKK6xevZp99tmHzp07A/Dqq6+yatUqhg0bRpcuXTYqv3DhQt566y169+7N0KFDN9lfJv699tqLbt26bbQu87kqFEvmNd12223ZeuutgYa/B/bYY4/6C4xzvxu6d+/OnnvuWfB1yXfcgQMHbjIm4ezZs3nvvfc2innFihWMHz9+o++Bcnj//feZNWvWBDPbJHBPUHlI+gNNq0VltplQplCqpSa6n1DFGMqhJrqfUMUYyqEmup9QxRjKoSa6n1DFGMqhJrqfUMUYyqEmup9QxRgyJpjZObkLPUGVUaYWlt1lPY38eSSLP49k8edROd5JwjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5Lz7nnHOJ5DUo55xzieQJyjnnXCJ5gnLOOZdInqCcc84lkieoEkk6S9I0SWskjZdUeHTPUP7gqNwaSR9KOrNSsRaIZ7SkVyUtk7RA0t8lbTr65cbbDJZkeW5HViruPDFdnCeeuY1ss7ukZyWtljRL0kWSVKmYC8Q0vcBr+88GtslXvqKfK0kHSXo0eh1N0qic9Yreo9nR6z1O0m5F7PfLkt6WtDa6/1JsT4KGn4ek9pKulDRR0kpJcyTdLanwyL9huxEF3qPCo9vG+Dyi9WPyxPNyEfut6veXJ6gSSDoRuAa4DNgTeBF4rNAHVtIQYGxUbk/gcuBaSV+uTMR5jQCuB/YHDgVqgScl9Spi2yOB/lm3p2OKsVhT2Die3QsVlNQd+DcwD9gH+AHwE+BH8YfZoH3Y+DnsBRjw10a2Oz1nu9tijDGfrsBkwuu4Os/6nwLnAmcTnuN84N+SuuUpC4Ck/YD7gLsIA5neBdwvqbQh70vT0PPoTHg/Lo3uvwhsDTwuqZhh4Hdj4/fovTLFnE9j7wfAkznxHNXQDhPx/WVmfivyBvwXuCln2XvA5QXKXwm8l7PsZuClaj+XrHi6AhuALzRQZjDhS3NYtePNiuliYHIJ5b8HLAM2y1p2ITCL6HKLJNyAC4BPsuPMU8aAr1Q71qx4VgCjsh4LmANckLVsM2A5cEYD+7kP+HfOsieBe6rxPAqU2TV6/XdvoMyIqEyfJLwf0bIxwD9K3E/Vv7+8BlUkSR2AvYEnclY9QaiN5LNfnvL/AoZJal/eCJusG6EmvaSIsg9Kmi/pBUlfiTmuYmwbNSFNk3SvpG0bKLsf8JyZZf+6/BcwgJCAqy5qbvwOcGdOnPlcI2lh1Fx7pqQk/S8PAfqR9dmPns9/KPy/AoX/XxraptK6R/fF/L+8FjULPiXpkDiDKtKB0f/vVEk3SdqykfJV//5K0oc66foAbQlNRNnmEf4Z8+lXoHy7aH9JcA1hPpiXGiizAvgx8FVCs8BTwH2STok9usL+C4wiNDueTnitX5TUu0D5Qu9FZl0SjCR8ud/USLmLgBOBw4F7gd8B58cbWkkyr2cp/yuZ7UrdpmKiH6m/A/5uZh83UHQOocb+ZeB4QlP0U2rkfHXMHge+CRxGaHr9LPC0pI4NbFP17y+f8r0Vk3Q1cCBwoJltKFTOzBYS/jEzXpPUh3Ce4c54oywY02PZj6MTvh8CpwJXVyOmMjgdeNXM3myokJn9KuvhBEltCU2Dv44zuNYsOud0J9ATOLahsmY2hZCUMl6SNJhwzvO5mEJskJndm/VwkqTxwAzgaODBasRUDK9BFW8h4VxN35zlfYFCvcfmFihfG+2vaiT9HvgacKiZfdiEXfwX2KG8UTWdma0A3qJwTIXei8y6qoqaW75I47WnfP4LdJeU+/yqJfN6lvK/ktmu1G1iFyWne4DPAIeZ2aIm7CZp/y+zgY9pOKaqf395giqSma0DxhOaYbKNJPRyyeelAuVfM7P15Y2weJKu4dPk9G4Td1NDaMpIBEmdgJ0pHNNLwPCoXMZIYDYwPd7oijIKWEv4IixVDbCG0LkiCaYRvtzqP/vR6z6cwv8rUPj/paFtYhWda7mPkJwOMbOmJssakvX/0gcYSMMxVf/7qxq9TNJ6I7T7rwNOA3YhnL9ZAWwTrb8duD2r/BBgJfCHqPxp0fZfruJz+BOhN9uhhDbmzK1rVpnLgaeyHp8KnBw9h50I56PWAT+s4vO4Cjg4eo33Bf4RPa/Me5H7HHoQvjTvBYYSzg0sA85NwOdKwFRyeohG6/4XeDfr8RcITYFDge2iz9RS4JoKx9yV8KVbA6winBerAQZF638WxXV8FOu9hB8D3bL28RRZPWAJnSFqgfMIPzZGA+uBfavxPAinQB4m9PTcK+f/Jbs3aO7//TnAcYTayW7RZ9GA46v0PLpG/y/7EToEjSAkn49z3o/EfX9V7APdUm7AWYRf3GsJNaqDstaNA8bllD8YeD0qPw04s8rxW4HbxVllxgDTsx6fCrwdfViXAa8Bp1T5eWS+8NZFXyB/A3Yt9ByiZbsTepKtIfxy/AUJ6GIOHBK9B5/Ns+5iwLIeHwm8QeiyvRKYRLj2pV2FYx5R4HM0JlqvKPY50ev9LDA0Zx/TM+Wzln0FeDd6X98hxi/1xp4Hn15eke82KmsfG/3fE87Nvke4Hmkx4bzTUVV8HpsRet/Nj17XGdHyrXP2sdHziJZV9fvLp9twzjmXSH4OyjnnXCJ5gnLOOZdInqCcc84lkico55xzieQJyjnnXCJ5gnLOOZdInqBciyZpVIHJ40zS4dWOr6WQtLekVZIGZi0bJ+n5AuVPi96DwSUc4zhJ8yR1LUPILgU8QbnW4gTClfTZt1eqGlHL8lvgVjObFeMxHiFc+PuTGI/hEsRHM3etxQQze7+YgpI6mtnauANqKSTtTRgN4+w4j2NmJulG4FeSLjezNXEez1Wf16Bcq5bVBHiQpPslfUIYeRpJ7SSNlvSupLXR5Ii/yxlwFknbSvpn1MS1QNI1ks7IbcKKHl+cs+3gaPmonOUHRxPdLZe0UtK/JA3NKTNO0vOSDpf0enT8yZK+lOd57iHpIUmLJK2WNEXS6GjdtVHTWfucbbpFx7+ikZfxNGCimb3VSLmCJF3cQFPsqKyifyVMeXF8U4/l0sMTlGst2kYJJ3Nrm7P+LsJYY18hDFYKYf6fC4G7CfPmXE6Y8fauzEbRJHb/BvYEvk8YlXxItF2TSDqaMJDqCuAUwkC93YDnJG2dU3w7wqDFVxO+tOcA90vaPmt/nyUMDrod8MPouVwNbBUV+TOwJZCb2E4GugA3NBLykTQwz1HO694umr4i97vnZjZtgv0bYYqbqZlCFuYmeyc6pmvpKjnwn9/8VukbIWHkG0Tz+Zz1v8/Zbni0/Js5y78eLa+JHp8ePf5cVpk2hLmpDBictXyjQXmjZYPZdPDR98kaiT1a1p0wB88fspaNI4z2vUPWsi0JX+rnZy37D/AR0LmB12lcnmO+DjzeyOvbN4r/9AL7LDTYauY2uMB+TwDqgP/Ls+4OYGq1P1t+i//m56Bca/ElwvQCGctz1j+U8/hIwsjPD0S/+DOeiO4PAiYQful/ZGYvZwqYWZ2kvxJG8y6JpB0INZ3Lco67ilALOihnk/fM7L2sY8+XNJ8wzQKSOgMHAL81s1UNHPp64F5JO5jZe5L2IdQKG2tKGxDdLyiw/k1CE2CuL1KglilpGHAbcL2Z/TFPkQVZx3UtmCco11pMtoY7SeRO3LYl0IEwpUU+vaP7/sC8POvzLSvGltH9LdEt18ycx4vzlFkLZM6TbU6o0X2cp1y2hwjzZZ1BmO/rTMJ0Jn9vZLvMcQp1KllhZq/lLpRUk6+wpK2ARwm1rx8U2OfqrOO6FswTlHNB7rwziwjzGA0vUH52dD+HMCldrnzTr68lJL1svXMeZ6YTHw08mWcf6wrEU8gSQlPZwIYKmdl6STcDZ0n6DXAS8Dszq21k/5l4Ny8xrk1I6kJIiAuBE81sQ4GivbKO61ow7yThXH6PE36l9zCz1/LcMgnqJWBrSZ/LbCipDfDVPPucQZhdNtvROY+nECby263AcSeW8iSiZr3ngVMkbdZI8RsIPeTuBzoCNxVxiOmERL5tKXHlkiRCp5T+wDFmltsEm20I4XVyLZzXoJzLw8zGSbqHcA7qasJFvXWETg1HAT8zs6mEcyXnAQ9KOp8wa+mZhE4Nue4FLpR0AfAyoXb2tZzjmqTvA49EPQT/SqhR9CVMiT7TzK4u8en8mDCj7UuSfkdo7tuW0NGj/tolM5sl6VHC+bq/m9lHje3YzNZJ+i/w2RJjyvUzwjTpPwAGSMo+x/SBmS2A+kT2WcI5M9fCeQ3KucJOIXR0+AphFIMHgP8lTOc9D8IXNDCS0GHiekLCmgb8Os/+Lgeui/bxMLAL8I3cQmY2ltAZoguh+/W/gN8A/Qg1tpKY2auEjhIfAdcCYwmjMeQ7L3V/dN9Y1/Js9wGHRk10TbVzdH8N4Tlm37JrmfsTmhPvbcaxXEr4lO/OxSC6uPT/AUPMbHp1oymepLsIyWxbM6srcpvuhGR3lpndGXN8fwaGmlmhc4OuBfEmPucc0Tm0GuBE4EfFJicAM1sm6Urgp5Lusph+9UrqB5yKX6TbaniCcs5BaEpbQXT9URO2vxpoS+jkMLuRsk01GDjXzP4T0/5dwngTn3POuUTyThLOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE5ZxzLpE8QTnnnEskT1DOOecSyROUc865RPIE1UpJGiXJCtwOr1AMPSVdLGmvPOvGSRpXiTgakvU6Da52LK5h0ft0cbXjcOXjg8W6E9h0XqC3K3TsnsAvouO/nrPurArF4JxLKE9QboKZvV9MQUkdzWxt3AEBmFmlkmRsKvl6pZmktoSBq2urHUs5+PtePt7E5/LKato6SNL9kj4B/hut20fSA5I+lrRa0hRJl0naLM9+viTpBUkrJC2T9IqkY6Mms2lRsZuymhdHRdtt0sQnaSdJD0n6JDruy5KOzClzcbSfHST9MzruDEkXSWqTVa6TpN9LmhyVmSvp75J2pgmieJ+X9AVJb0haC5wlaUQUz3GSbpC0OIr/D5LaRq/l85JWSnpL0v/k7HcfSf+WtCh6zh9KanQ6jGK2k3SYpNclrZH0gaQzJI2RND2rTCb+ETnbbtL0KekkSU9LWhC9pm9IOjVPbCbpUknnSZoGrAN2j9YdLOkpScuj1+RfkobmbN9W0q8lzZG0Knrtd2vsNcmJ+3OS7oo+k7Ml/VFSp5yy/SXdLmmhpLWSJko6pcD+8v2fTJd0p6RvRP8jqyU9F302u0Sfh0WS5kn6nSSvMOTwF8S1zfnHMDPbkPX4LuAewrTnmXKDCFOcjwGWA7sBFwHbAidlNpR0NvBHwvTmpxLmG9qLMK/Pv4DjgQcJU6E/Gm32Qb4gJQ0Ano+O97/AUuD7wD8lHWNmj+Vs8hBhRtvfA18ALiFMef7/ovUdgW6EqdnnAL0IzYovSdrFzObmi6MRO0bP91fAh8DiaL8Af4ie64mE6dwvJMyfdDjwW2BWtOxBSduY2UJJXQmv0yvAqOi5DyZMe15QMdtJ2oUw9ftrhPesI2F6+65A9vtfim2BB4ArgLroed4saTMz+0tO2VGE1+jHwEpgtqSjgUeAfwKZRPAz4DlJnzGzj6JlFwPnE+agegIYxqefn2LdQfhcHw/sF+1zCaHJGYXp658lTC9/PuGzcwpwh6TOZnZjzv7y/Z8QvQbbRc+jA+Fz8Lfoub9PeO0zn4cPaNpcXC2XmfmtFd4IXxCW5/Z8zvrfN7IfEf4hTyF8KfWOlncnfDE+2MC2g6NjnJZn3ThgXNbjq4BaYPusZW2BKcDrWcsujvb5rZz9TQKeaCCWtkDnKOYf5nmdBjfyOoyLnn9NzvIR0fa35ix/PVp+YNayz0TLTo0eD4sef6bE97bR7QhfqAuBLlnLtibUZqbniX9Egc9P3teF0DrTDrgJeDNnnREmNdwsZ/n7wFM5y7pHcf4herw54YfOX3LK/Sza78VFfu4vyVn+D2Bq1uP/LfC8nwTmA20b+z8BphN+pPTIWvZ/Ufmb83weninlfW4NN2/ic18C9sm6fSdn/UO5G0jqLulKSR8Aa4H1hF+kAnaIiu1P+DWe+0uzqQ4CXras82UWanr3ADWSuueU/2fO48mEml/28/iqpP9GzTK1hF/yXYGdmhjjdDObUGBdbg3vXWClmT2fswxCogB4D/gEuEHSKZK2Joekdtm3Yrcj1BrGmtnKzAILNZQXCj67RkRNV/dImkX4TKwHTiP/6/m4ma3O3pZQ07gr5/msIsz2e1BUdHegC/DXnP3dW2K4uZ+PSWz8+TgImGVm43LK3QlsAeyas3yT/5PIS2a2NOtx5j3+V065d/n0fXcRT1Buspm9lnWbkrN+Tp5t/h9wJqE5ayQhsX0/Wpdpx+8d3ef2EGyqXgVimUtIjJvnLF+c83htVmxI+gJwH/AOcDKwL+F5LMguV6J88WUsyXm8jpBE6pnZuujPTtHjpcAhhNrG9cBMhXNmX46ew2A+TQTrgfWSBje2XaQ/MC9PnPmWNSpqVvw3sAdwHjCc8HreSmg+zJX7Wm0Z3d+S+5yAY/j089S/QJylxp3v85EdZ0Oft8z6bIXe+3zve6HlTf3ctVh+Dso1xrIfRCeSv0hoSrkma/nuOdstjO4HEmovzbUY6Jdneb8oxtx/+MacBLxvZqMyCyS1Z9MvnlJY40VK3GGokX05qk0MA0YDf5W0BzCVkASyzW5sOzObTPhC7ZvnkLnL1kT3HXKW9855vB+wDTA8u1bYwIn/3NdqUXQ/mtCMlivzxZ5JBH2Bt7LW53suzbGY/DW/flnrs5X9vXdeg3Kl60g4X7M+Z/monMcvEs4VfLeBfWW64m7S+y+PZ4HP5fQaa0vodPCGmS0rYh/ZOhOa9bJ9g/DcEsfMas3sZeDnhP/bXcxsXU7t97WsWljB7aJVLwFHRZ0BAIiaAg/IOfSM6H5ozvKjcx53ju7rPxeSNif8mCnGFMI5m93yPKfXzGxiVG4ioSn2qznbn0R5PQtsJSn39TiZcA4q9ZdBpIHXoFxJzGyppJeBcyXNIdSUvk2oKWWXWy5pNHCtpL8RTsovB2qANWZ2LaFZZhFwkqTMF880M1vEpn5PSIL/lvQLYBmh192ObPplWYzHgeMk/Z5wgnwYcDY5zW7VJOkYQoJ/mNAlvwvhJPtyQoJpzna/Jlyk/YSk3xJqSBeT01RmZnMkPQuMlrSQ8OV8CqHHXrYXCe/Jn6L3pwuhZ9pCoEdjz9XMTNL3gUckdSCcY1pIqBntD8w0s6vN7JPoPbtA0nJCL758506bawzwA0KvygsITdVfJzRpn2Eb93SNhaRa4DYzK/dzSw2vQbmm+BowHvgT4R95LuGfeSNmdh3hS3ArQoL6G6Eb7rRofR3hJPrmhGadVwldwjdhZrOBAwnNOn8mdGfuBRxtZo834TncBFxKqIH9HTgqOvbShjaqsPeA1YTaz2OEc3+1wEgza+jcXqPbmdk7hOfcmXAu7grgGuCpPPs7BXiZcM5xDDCTkODqmdkCQoebtoT35nLgZkKngqKY2VhC54Qu0bb/An5DaFbLTsgXA5cRaryPAkdQ4HPTVFHnkYMJCfAKQvf3PYBv2KZdzOPSloTW6CtFZt506pwLJI0hdK0eXOVQnPMalHPOuWTyBOWccy6RvInPOedcInkvvjwkvUG4WryoUb6dc8412fbAAjPbM3eFJ6iINh45e9cePXp0qKmpGViovHPOueabMGECS5fm7zzrCSq/1TU1NR3GjRtX7Ticc65FGzFiBM8++2ze1ipPUBEzG5H5O6pNHVy1YJxzznkvPuecc8nkCco551wieYJyzjmXSJ6gnHPOJZJ3kojkdDOvqVIYzjnnIl6DaiXMjOuuu47XX3+92qE451xRvAYVaendzCdOnMjZZ5/NIYccwtNPP13tcJxzrlFeg2olMldqr1q1qsqROOdccTxBtRK1tbmzmzvnXLJ5gmol1q9fX+0QnHOuJJ6gWglPUM65tPEE1Up4E59zLm08QbUSXoNyzqVNi05Qkh6StETSA9WOpdo8QTnn0qZFJyjgGuCb1Q4iCbyJzzmXNi06QZnZOGB5teNIAq9BOefSpioJStJBkh6VNEuSSRqVp8xZkqZJWiNpvKThVQi1xfAE5ZxLm2oNddQVmAzcHt02IulEQvPcWcDz0f1jknY1s5lRmQnkj/8IM5tdTBA5A8Rmqylm+zTxJj7nXNpUJUGZ2VhgLICkMXmK/AgYY2Y3RY/PlnQk8D1gdLSPmvgjbTm8BuWcS5vEDRYrqQOwN3BVzqongP3Leaw8A8S2WJ6gnHNpk8ROEn2AtsC8nOXzgH6l7EjSk8D9wFGSPpa0X3lCTB9v4nPOpU3ialDlZGaHVzuGpPAalHMubZJYg1oIbAD65izvC8ytfDgtgyco51zaJC5Bmdk6YDwwMmfVSODFGI87InMDJsR1nGrxJj7nXNpUpYlPUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZwIDgL/EGNO4rIc1cR2nWrwG5ZxLm2qdgxoGPJP1+JLodhswyszuk9QbuBDoT7hm6igzm1HxSFsIT1DOubSp1nVQ4wA1UuZ64PqKBNQKeBOfcy5tEncOysXDa1DOubRp0d3MS5Hnot2DqxZMDDxBOefSxmtQrYQ38Tnn0sZrUBHvxeecc8niNahWwhOUcy5tvAYVaennoLyJzzmXNl6DaiW8BuWcSxuvQUVa+jkor0E559LGa1CthNegnHNp4zWoSEs/B+UJyjmXNl6DaiW8ic85lzaNJihJ7SV9UdKQSgTk4uE1KOdc2jTaxGdm6yX9FTgSmBZ/SNXR0jtJeIJyzqVNsU18HwJbxhmIi5c38Tnn0qbYBPUb4AJJW8QZTDW19Bl1vQblnEubYnvxHQr0AqZJehmYA1jWejOzU8sdnCsfT1DOubQpNkEdCKwHFgDbRbdstskWLlG8ic85lzZFJSgz8x58Kec1KOdc2vh1UK2EJyjnXNoUnaAkdZH0f5IekPSMpB2i5SdJ2jm+EF05eBOfcy5timrik7Q1MA7YCngXGAp0i1YfAhwOnBZDfBXj10E551yyFFuD+h2wFtgR2BtQ1rpngeFljsuVmSco51zaFNuLbyTwXTObIaltzrpZwMDyhlV5LXmw2Lq6Ourq6qodhnPOlaTYGlQHYHmBdT0AP8GRYH7+yTmXRsUmqInAlwus+zwwvjzhuDh4855zLo2KbeL7LfCAJIC7o2W7Svoi8B3g2Bhic2XiNSjnXBoVe6Hug5LOAq4Avh0tvp3Q7Pe/ZvZ4TPG5MvAalHMujYqeUdfM/iLpDmA/wsjmi4AXzazQuSmXEJ6gnHNpVNKU72a2EngypljKKrp26w5CMq0FfmVm91c3qurwJj7nXBoVe6HuXOCZzM3M3os1qvKoBc4xswmS+gHjJY2Nkmyr4jUo51waFVuDuoUwYsR1QFtJs/k0YT1tZjNiiq/JzGwOYVoQzGyupIWEKUNaXYLyGpRzLo2K6mZuZheY2f7A5sAXgHuAXYEbgQ8lfVDKQSUdJOlRSbMkmaRRecqcJWmapDWSxktq8mgVkvYG2prZR03dR5p5Dco5l0ZNOQc1VtKHwAzgeELNapsSj9sVmEzoCXh77kpJJwLXAGcBz0f3j0na1cxmRmUmFIj/CDObnbWvXtExTs9znHEF4qsp/qkknyco51waFXsOalvCrLqHRLe+wDuEJr4/RfdFM7OxwNho32PyFPkRMMbMbooeny3pSOB7wOhoHzVFxN0ReBi4wsxeLCXGlsSb+JxzaVRsDep9YBWhae9HhI4S8+IISFIHwoC0V+WsegLYv4T9CBhDOEd2R74yecbfa5G8BuWcS6Nihzp6A+hEaNL7KvBVSbvGFFMfoC2QmwDnAf1K2M8BwInAcZImRLfdyxRjqniCcs6lUbEjSewtqSdhhO9DCedz/iBpAWGeqKeymuMSwcyex2cMBryJzzmXTkV/gZvZJ2b2iJn9wMw+AxwITCLUqP5SxpgWAhsI57my9QXmlvE4rYbXoJxzaVR0Lz5JWxE6SGQ6S2wN1AGvUmIniYaY2TpJ4wlzUGWP/DAS+Fu5jpPnuCMyf7e0+aA8QTnn0qjYXnzvAdtGD98kJIpngGebMhafpK7A9tHDNsAgSTXA4qgb+dXAHZJeAV4AzgQGUN6aWm5M47Ie1sR1nGrwJj7nXBoVW4N6jJCQxpnZkjIcdxgb17ouiW63AaPM7D5JvYELgf6Ea6aOSuKIFWngNSjnXBoV20ni/8p5UDMbB6iRMtcD15fzuI0cb0Tmb2/ic8656ivlHFRnwlxQBxPGtFtMqAX9PzNbHU94leNNfM45lyxF9eKLRgN/HfgjoXmuc3R/HfC6pNwedy5BvAblnEujYruZ/4YwUOxwMxtiZvuZ2RBCV/OewJUxxVcxZjYicwMmVDmcsvIE5ZxLo2Kb+D4P/MzMXsheaGYvSrqQMBV8qnkTn3POJUuxNaiuwOwC6z6O1ruEyq5BmVkVI3HOueIVm6CmAN8osO4U4N3yhFM93sTnnHPJUmwT31XA7VFniLsJM9X2A04CDqdw8nIJ4E18zrk0KvY6qDujbua/BG7OWjUPONPM7o4juEpqyeegvAblnEujoq+DMrMbJd0M7MSn10FNMbO6uIJz5eEJyjmXRqVO+V5HmEm3xWnJI0l4E59zLo2Knm5D0g6SbpM0VdLK6H6MpO0b39pVk9egnHNpVOxo5iOAscBq4J+Ec099gS8AJ0o60syejSlG10xeg3LOpVGxTXy/I0z7/j9mtiKzUFI34Ilo/bDyh1c53knCOeeSpdgmvl2BK7OTE0A0F9SVwG7lDsyVjyco51waFVuD+hjoUGBdB2BWecKpHu8k4ZxzyVJsDepK4BJJA7IXShoI/AK4rNyBufLxGpRzLo2KrUEdDHQHPpT0Mp92kvhc9PeIqCMFgJnZqWWO0zWDJyjnXBoVm6AOBGoJQxxtE92IHgMMzyrro5EmjDfxOefSqNihjobEHYiLj9egnHNpVPSFui69PEE559KopKGOACS1Ad4HvmBmb5U/pOpoyddBeROfcy6NmlKDEjAY6FjeUFxcvAblnEujkmtQLVVLvg7KE5RzLo38HFQr4E18zrk0KjlBmdkG4FvAtPKH4+LgNSjnXBo1qQZlZreZ2RJJvcsdkCs/T1DOuTQqKkFJOl3ST7Ie7y7pY2C+pNck9YstQtds3sTnnEujYmtQZxPmgsq4GvgEOAfoAfyyrFG5svIalHMujYrtxbcN8C6ApB6EHm7HmdlYSYuAy2OKr0kk9QSeJDy/dsA1ZnZTVYOqIk9Qzrk0KjZBtQHqor8PJIy3Ny56/BGwZXnDarblwEFmtkpSF2CypAfNbFG1A6sGb+JzzqVRsU187wFHR3+fBLxoZquixwOAxeUOrDnMbENWfB0JFxeriiFVldegnHNpVGyCugo4R9JC4GTg2qx1hwATiz2gpIMkPSppliSTNCpPmbMkTZO0RtJ4ScPz7Kqx4/SU9CZhssXfmtnCUvfRUniCcs6lUbGjmd8taSawL/Cqmf0na/U84NESjtkVmAzcHt02IulE4BrgLOD56P4xSbua2cyozIQCsR9hZrOjmD8B9pDUF3hQ0gNmNi/nWOMKxFhTwvNJPG/ic86lUdFDHZnZ84SEkbv8F6Uc0MzGAmMBJI3JU+RHwJisTg1nSzoS+B4wOtpHTQnHmxfVpIYDD5QSa0vhNSjnXBoVex3U/pKOyXrcW9I9kiZJukpS23IEI6kDsDfwRM6qJ4D9S9hPX0ndor97AAcBU3LLmdmIzK3JQaeA16Ccc2lU7DmoKwiJI+O3wFHAVELN5vwyxdMHaEtoNsw2DyjlYuBtgOeimtNzwLVmNqk8IaaLmbFhw4Zqh+GccyUrtolvF+BKAEntga8A55jZrZLOAc4AfhVLhE1gZq9Q4nmkljqauTfvOefSqtgE1RVYFv39WaAL8I/o8evAoDLFsxDYAPTNWd4XmFumY+TVUics9OY951xaFdvENwvYI/r788BkM5sfPd4cWJV3qxKZ2TpgPDAyZ9VI4MVyHKO18RqUcy6tiq1B3QNcJmkE4dxTds+9vQgX8hZFUldg++hhG2CQpBpgcdSN/GrgDkmvAC8AZxIuBv5Lscdwn/IE5ZxLq2IT1MXAGuBzhA4Tv89atwdwfwnHHAY8k/X4kuh2GzDKzO6LpvG4EOhPuGbqKDObUcIxXMSb+JxzaVXshbobgEsLrDuulAOa2TgaGXbIzK4Hri9lv83lnSSccy5Zir5QF0DSUMIXdy/C+HvjzOytOAKrtJbaScITlHMurYpKUJLaAWOAr7Fx7cck3U1omvOLbRLIm/icc2lVbC++XwBfBS4ChgCbRfcXASdG96mWM6rEhCqHUzZeg3LOpVWxTXynAL82s+zzUDOAS6Nhjr7Fxj37Useb+JxzLlmKrUENoPB1SC9G610CeROfcy6tik1Qs4EDCqzbP1qfai29iU9qtfM1OudSqtgmvruACyTVRX/PIQzeehJwAdE4fS55Mgmqffv2rFu3rsrROOdc8Uq5UHdbwgW1F2ctF2GUiV+WNaoqaKnnoDJNfO3atfME5ZxLlWIv1K0FTpZ0KWFupcx1UP9pKddBtVTZNSjnnEuTRhNUNIngXMK1To8CLTIhtfSRJDxBOefSptFOEtEI47WEsfhcymQ38TnnXJoU24vvYcIkhS5lvAblnEurYn9WPwb8UdIDhGQ1B7DsAmb2dHlDc+XgCco5l1bFJqi/RffHR7cMI/TkM6BtGeOquNbQi88559Kk2G+tQ2KNwsXGa1DOtQzr169n4cKF9O/fv9qhVEyx3cyfjTuQamupvfgyNShPUM6l2+mnn84dd9zB+++/z5AhQ6odTkUU1UlC0o6S8n5hSzpI0g7lDcuVS6YG5U18zsXnz3/+M8cccwxr166N7RhvvfUWdXV1zJw5M7ZjJE2xvfj+AHyhwLpj2HgKeJcg3sTnXPyuuuoq/vnPf/LWW/FdJrps2bLY9p1UxSaoYcB/Cqz7D7BPecJpHd5//31WrlxZkWN5E59z8Vq7di3Tp08HwMwaLtwMnqAK60bhC3XXAz3KE07LN3HiRHbaaSfOPvvsihzPm/jgqaee4qCDDuKhhx6qdijNYmZMmzYt1i9BV7oPP/yQurq62I+zfPny2I+RNMUmqA+BwwqsOxSYXpZoqkjSuMyNGLuZv/zyy9TV1fHUU0/FdYiNeBMf/PWvf+W5557j+OOP55RTTmHx4sXVDqlJxowZw7bbbsstt9xS7VBclqlTp8Z+jA0bNlSs1SVJik1QtwM/lPR9SR0BJHWU9H3gHOC2mOJrcd5//30AZs6cySeffBL78byJb+Nml7vuuovjjz++gdLJlWlGqtSPG1ecSiSo1lh7guIT1FXAo8C1wEpJ84GV0eNHaQHzQVVqwsJMggKYNGlSXIep11gT30MPPcR7770XexxJ8OMf/xiA559/PtUzDb/55pvVDsFlqcT/jyeoBpjZBjP7CnA48FvCcEe/AQ41sxPMLP4G2BYiO0FNnDgx9uM11MQ3ZcoUjj/+eL7zne+U7XivvPIKs2cnc4LlHXbYgQEDBrBhwwZmzZpV7XCabMqUKaxataraYbhIJWpQrbGDBBRfgwLCeHtmNtrMvmtm55vZuJjiapHq6uoqnqAaauJbunQpAO+++25ZjvX222+z7777MnDgwLzrFy5cyAMPPMDq1avLcrymGDx4MAAzZsyI7RhvvvkmU6ZMiW3/dXV1TJ48Obb9u9J4gopPSQnKNc+cOXM2+nKuZA2qoV58CxYsKMsv8saani644AJOOOEEdtppJ+68886K9HzKlUlQmfM55bZmzRoOOOAADj300Fj2n+HNfMmwfPly5syZU5HjtEaeoCooU3vaYYcw8MakSZNi/5IuthdfJa5Oz3QK+eijj/jGN77Bt771rdiPmSvuBLVgwQJWrlzJ7NmzWbFiRSzHAJgwYUKTt73uuuu44ooryhdMC/HHP/6R4447rqTzk5U6f+s1KBe7TIL63Oc+x4ABA1i5ciXTpk2jrq6O22+/PZYPe7G9+OJs8sp15JFHAqHLfaXFnaCWLFlS//e8efNiOQY0rwZ19tlnM3r06Fb7q7yQ6667jkceeaSkJrtKNO+BJ6gWSVJnSTMkXVXtWODTBLX99tvzmc98BgjNfLfeeiunnnoqP/rRj/JuN2XKFK677jreeOONki/SLPZC3UomqP32269ix8q1zTbbAPElqOxrrObOnRvLMSAkqObWvtPckzEOmRp+Kf9jlUpQrfXHRItOUMAFQOV/pheQL0G9/vrrXH755UC4Ij2fH//4x5x99tnstddebLXVVtx7771FH7PYJr5KJqg4ffLJJ9x55531zztX3DWoSiWoFStWFPy8uKbJdBoqhTfxxavY0cz7SBqUs+wMSddKOiae0JonGmF9Z8JswImQ+TBnJ6hrr722/oum0Bda5h+na9euzJ49mxtuuKHoY+Y28RX6dZjvHJSZ8c477/D888/z+OOPb9R8lVRnnnkm3/jGN3jkkUfyrh80KHyMP/roo1hqEJVKUOAdJcppzZo1rFu3ruTtvIkvXsXWoG4Fzss8kPRz4M/AycAjkk4s9oDR9ByPSpolySSNylPmLEnTJK2RNF7S8GL3n+UqYHQTtouFmW3USSKToLJ/tS1evLjB4fp/+tOfApTUtNOcJr7Ro0ez6667Mnz4cD7/+c/z9a9/vejjVsOSJUt4+OGH6//Op1OnTvTv35/a2tpYrteqRIJq0yb82zano0TanH322QwYMICjjjqKSy65hPnz55d1/01JAGZWn6C22mqrssaTy5v4GjYMyB5f5UzgMjPrDfwJyH/yJL+uwGTgB8AmF8REye4a4DJgT+BF4LHsGpykCZIm57kNiNZ/EZhqZpX5eVOEefPmsXLlSnr16sXmm2/OTjvtVF+rGTRoEP369asvV07NaeLLTB2w9dZbAyT2AtyM+++/v6j5eAo18z355JOce+65LFiwoMkxVCJB7bTTTkDrqUGZGbfeeitz5szhscce4+KLL+ZXv/pVWY/RlOa9hQsX8sknn9C9e3e22GKLssaTy2tQDesFzAOQNBTox6fj7z0M7FTsAc1sbHSR7wNAvqrAj4AxZnaTmb1jZmcDc4DvZe2jxsyG5rllvkE/B5wkaTqhJnW6pItyD5Q9QGzcg8Vmn38C6NChA7vtthsA5513Xv0vsHJfU7FhwwYA2rZt22C5WbNmFWzyOv3008saU1xuv/32osrlJqgPPviA4447jpEjR3L11Vc3a9TzSiSompoaAN54441Y9p80c+fOZdWqVfTs2ZNzzjkHKH+NoikJKlN72nHHHZFU1nhyeYJq2CIgU4c9FJhtZpmzg+1L2E+DJHUA9gaeyFn1BLB/sfuJRrvY2swGAz8GbjKzX5YjxqbKTVAQrrv41a9+xWmnnVZfg4rrS62xf6C0D//zwQcf8MILLxRVNjtBLVmyhH333Xejc1ZNOReRUYkEtf3229O7d28+/vhjnn322ViOkSSZ/50dd9yRPfbYI5ZjNCVBZVoYdt5553KHswlv4mvYk8DFkv4XOJdQa8rYGShXF7A+QFui2lqWeYRaW1nlDBAbq3wJavjw4Vx44YW0b9+e/v37A+WvQZUiLT35li5dukkvvTvvvLPo7bOHO3rwwQdZtGgRe+21F1/+8pdLjiW300klElTbtm35v//7P4CyN3UlUb7/nXJrSoLKNLHGlTSzJa0G9eCDDzJy5MjYOwIVm6B+CnwEXA58AFySte7rwPNljqtszGyMmf24gsfjiSee4Cc/+Ul98xpsOopErrhrUMVIQ4L65JNP6Nmz50ZfVmbGHXfcAXx6nVNDsmtQd999NwDf//7369+DYtXV1bHPPvvwhS98oX5ZdoKaN29ebCOFnH322XTr1o2nnnqKl156KZZjJEVrTFA333wzhx12WP1oJI0lqLq6Oi6//HL++9//lj2WfG688UaefPJJbrzxxliPU+xo5vPMbKSZdTOzQ81sYdbqwwkdHsphIbAB6JuzvC9QvW/uEkji+9//PlddddVGIyVkPsyFEpTXoIqTeR2zu8XPnj2bDz74gJ49exY1Bl4miU2YMIFnnnmGDh06NGmOqOXLlzN+/Hj++c9/1p+/y05Q69evj61r/uabb14/K/Ovf/3rWI6RFElMUHV1dfVjacaRoG677Taefvrp+mbrxhLUSy+9xPnnn8+FF15Y9ljyWbgwpID7778/1uM0+9yRmS0zs6Y32m+8r3XAeGBkzqqRhN58qXD00UcD8M9//hOAadOm8e6779K9e3f22muvvNt4DarpMjXVbt26NdoZBD69Fmrx4sWYGUcffTQ9e/Zs8vHNrP59yySoAQMGAPG+n+eccw6dO3dm7NixjB8/PrbjVMKCBQs488wz8/ZM/OCDDwDYbrvtYjt+qQlq+vTpLF++nH79+rHllluWPZ5M03HmB2tj56Ay3e7XrFlT9ljyySSoyZMnl202hHyKTlCSjpR0i6QnJP0n51b0mVpJXSXVSKqJjj8oepzpRn41MErSaZJ2kXQNMAD4SwnPq6qOOuooAMaOHQvAY4+Fa4VHjhxZsLu316AqZ7PNNtuoOe9rX/tas/c5e/Zs1q5dy8qVK2nbtm19TTnOBLXFFltw6qmnAp/+GEqrs88+mxtuuKG+h2JG9vWDSapBVer805w5c1i7dm2jl09U+iL6TIICeOCBB2I7TrEjSfwUGAscA3QhNMNl30ppaB8GvBHdNiOcz3oD+CWAmd1HmEb+QsLMtgcCR5lZar49Dz74YLp06cKbb77Jxx9/XJ+oMokrn2rWoDbbbDOgMiOaJ0XmPFTXrl055pjmD4Yye/bs+i+JXr161f/giPv9zHxu0j6uXqaWlGvRokUsXbqUbt26xXqtUamdECqZoIrpwVfJBLV69WpWrlxZ/zjOZr5ia1D/C9wADDCzA8zskNxbsQc0s3Fmpjy3UVllrjezwWbW0cz2NrP/lPa0SlfOKd87duzI4YcfDoTeLk8//TTw6Sje+WQnqFIHhG2uzDmZmTNnVvzY1ZJJUMcff3x9gm6OWbNm1Tfv9erVKxFNti1Bdu0pzmuNklyDSlqCWrRoEQB9+vShR48eTJw4MbYhn4pNUN2B+81sQ6MlU6rcF+pmzkNdeumlrF69mj333LP+vEQ+nTp1omfPnqxfv36jE+2V0L17d3r27Mnq1aubNYpCmpx88snssssunHvuuWXZ3+zZs/MmqGo22bYElWjeg/gTVFNruLNnzy6qdpcZib0SMs17/fv359hjjwXia+YrNkH9izA6gyvS5z//eeDTk5cNNe9lVPNLLVOLKuU81DPPPJPa81Zf+MIXePvtt+vHRGyuQgnKa1DNk2n6a0qCWrBgQdEtAqUkqGXLljFt2jQ6duxYP+xUQ6ZOnUr79u2b9GNozpw5RSWoStagMgmqT58+nHDCCUB8zXylNPEdJWm0pL0lbZt7iyW6CipnEx+EwSOzf11lElZDKnXeoqFjFzsW4IQJEzj00EPrm8paO2/ii0emBlVqD77HH3+cLbfcktNOO62o8qUkqEz38t12263RQZghjBgDcPXVVxd9jIykJ6gjjjiCYcOGcfTRR2903We5NP7qBgYsBy4FCl100Xj/3gSLmvYyasqxz6OPPpo333yTzTffnH333bfR8tWsQRXTPTvbpEmTYooknbwGFY+mNvFdc801ANx6663ccsstjZYvJUFVcgSJNWvW8NFHHzVarloJqmPHjrz66quxHavYBDWGMBbe74F3gbJc99TSfe1rX+N3v/sd3/zmN4v6pVXNGpRrHk9Q8UjiOahKJigIM2o3phrnoPr06RP7sYpNUIcA3zezMTHGUlXZ4/FFtamDm7vPoUOHsmjRIjp16lRUeT+xnl5LliypH2y3V69e9OnThzZt2rBo0SLWrVtHhw4dqhxh+ixdupSFCxey2Wab1f94i8P69etZvXqTmX8KyrQeJClBVasGFbdiz0EtYNMBXF0RunTpUnTzmdeg0m3y5MlASFBt27atH2Gg3JPrtRbZI0hkJmmMQ6nXQGWuF9x228qcem8sQZlZ1bqZx63Yd/2PwFmS4vuUOK9BpVxm+oVevXoByRi+Ks2a2kGiVKU0723YsKG+I1Gpgws3Ve7EmrlWr17drCliSpXEJr7NgaHA25L+DeSmazOzX5Q1sgqLo5NEqbwGlW6ZZqJSE9Srr77Kueeey7XXXluxZqOm+tvf/saiRYv47ne/G/uxMheoZl7PuJSSoBYsWMCGDRvo06dPxZptGxsRv6nnn2pra5k3bx4DBw4sabskJqgLsv7eMc96A1KdoJLAa1AtQ6kJ6qCDDmLNmjUcffTRfPzxx7HH1xxf+cpXAPjSl74U+zTnGXHPVltKgsr8bzZ00X2lNbV574gjjuCZZ57hhRdeYP/9i54Ptj5B9e7du0nHLUWx0220aeSW6i7mUP7roJqiV69etG/fnqVLl5Z00tYlSyZBZf6BGxsZJDMCdaUH/GyOVatWVTuEsiklQc2ePRsg1k4bpWrq5+aZZ54B4L777ttknZlx1VVXbTJLtZklq5OEpA6SHpJ0UOzRtHKS/LxFykmiR48eALGe2Hfl05QEVY0aVKHOVnH8sHnsscf4yU9+woEHHrjR8lWrVrFmzRo6depE586dy37cXI3+B0VzNB1eTFnXfH37hrkaix3RwSVLz549S77o2VVXU5r4qlGD6t69e97lcVwDVeji4OzaU9xNr1D8OagXCGPxjYsvlOpKQicJoP6aqfXr11crBNcMcZ/Qd+WXlhpU9+7d89aWWuo1UFB8gjoXeFjSCuBhYA6hY0Q9MytlTijnWoy2bdvWj0PmCSp9SrkOKok1KE9QkBl47ZrolstK2FcixTGShGsdunTpQl1dHStWrPAElUJJrkFJqh+RvVu3bnnLeIIKs922jpnsnGuCgQMHMmXKFE9QKZTkc1BbbLEF8+fPp1OnTrRv3z5vmZY6Dh8UmaDM7OKY43Au1QYMGOAJKqWKTVAbNmyo711bqVEk+vfvz/z58ws270H1ZtOtBO+Z14q1lundKyFzNb4nqPQpNkEtXLiwfhSJjh07xhxVkGlKLNS8By27ic8TlHNlsPvuuwOw4475BlpxSVZsgqrGRbqZYyWlBpXIJr7WICndzNOs1OsiWlIN7oc//CGHHnooe+21V7VDcSXKJKhu3brVj/+XTzW6mG+99dZAqJnX1tbmLdPqz0E5V06VuMCv0tq3b8+wYcOqHYZrgkyC6tGjR4MJqhpdzEeMGMHatWs5+uijufDCC/OWqUYNqhLj8IEnqHrezdy51mfDhg2sWLECaPg8D1SnBtWuXTsuv/zyguvXr1/PypUrKxaPn4NyzrkKydSYunXr1ujYidW8SLeQStaesgeKrVQNyhOUc67Vym7ea0w1hzkqpJLnn5YvX8769evp0qULm222WUWO6QnKOddqlZKgWnsNqtLNe+AJyjnXiqW9BpVJUJlBpuNUymtVLp6gnHMVNXv2bE466SReeeWVaodS9JduNUaRKEYmQW2++eYVO2Yl5znzBOWcq6gzzjiD++67j3333bfaoTB//nyg8ZP+mVEkevfuXbFRJIqROQdVyQRVSS02QUmaLmmipAmSnql2PM654OOPP652CPU++OADALbddtsGyyVxqnf4tAbVs2fP6gYSk5Z+HdT+Zrai2kE455Ipk6C23377BsslsYMEVKeJr5JabA3KOeca8/777wONJ6i1a9cCYe6vcps1axZPPvlkk7b1Jr4yk3SQpEclzZJkkkblKXOWpGmS1kgaL2l4Ew5lwLOSXpX09WYH7pxrUcysPkFtt912VYtjq622YuTIkTz77LMlb+tNfOXXFZgM3B7dNiLpRMKsvWcBz0f3j0na1cxmRmUmkD/2I8xsdvT3gWY2S1J/4ElJk8xsYs6xxhWIsabUJ+WcS5fFixezdOlSunXrxhZbbFHtcHj11Vc5+ODSRljL1KA8QZWJmY0FxgJIGpOnyI+AMWZ2U/T4bElHAt8DRkf7qCniOLOi+zmSxgJ7ARMb3so511pkN++ldQDjDRs2ABScbTftEnUOSlIHYG/giZxVTwD7l7CfLpK6RX93BQ4F3sotZ2YjMrcmB+2cS6UkNO+5hiWtF18foC0wL2f5PODwEvbTF3go+lXUFrjJzF4tS4TOuRah2B58rnqSlqDKwsw+BPaodhzOueQqtgefq55ENfEBC4ENhBpQtr7A3MqH45xrqbyJL/kSlaDMbB0wHhiZs2ok8GLMx84+HzUhzmM556rPm/iSr+JNfFGnhcwnog0wSFINsDjqRn41cIekV4AXgDOBAcBfYo5rXNbDmjiP5ZyrrmXLljF//nw6deqUqNHJ3caqcQ5qGJA9Nt4l0e02YJSZ3SepN3Ah0J9wzdRRZjaj4pE651qk7DH4Kjk6tytNNa6DGgc0eNGBmV0PXF+RgJxzrY4376WD/3RwzrU63oMvHVpkN/OmyL5YNzofVdqYI8651PAefOngNSjnXKvjNah08BpUxHvxOdd6zJsXBqsZOHBglSNxDfEalHOu1fIefMnmNaiIn4Nyzrlk8Z8PzjnnEslrUBE/B+Wcc8niNSjnnHOJ5DWoiJ+Dcs65ZPEalHPOuUTyBOWccy6RZGbVjiFxJH3co0ePgTU1NRU/9htvvMGyZcuoqamhR48eAEyYMIGlS5cyePBgpk+fTo8ePSg2tokTJ7JkyZL6bbt27cree+8NhCkH3njjDbp160b79u1ZvHgxQ4cOpXfv3gBMmjSJxYsX12/bpUsXhg0bBoQLHd99910ADj44tIbOnz+fd955Z6Nl2d5++20WLFhQv79OnTqx7777lvT6fPLJJ7z55psbHWPt2rW8/PLLdOzYkc0335y5c+ey44470r9/fwCmTp3KnDlzNlqWz3vvvcfs2bPZfvvti7qAs7a2lhdeeIG2bdty4IEHbrL+ww8/5KOPPmLIkCEMGjSo4H6effZZIFyTM3z48ILlpk+fzowZM9hmm20YPHgwADNmzGD69OkMGjSIIUOGNBpz9vEOOOAA2rUrrZU/s+2+++5Lp06dSto247XXXmPlypXAp+/h+PHjWbFixUbL5syZw9SpU+nXrx877bQTAHPnzmXKlCn07duXnXfeueAxMp/77P1le+WVV1i9ejX77LMPnTt3BuDVV19l1apVDBs2jC5dumxUfuHChbz11lv07t2boUOHbrK/TPx77bUX3bp122hd5nNVKJbMa7rtttuy9dZbAw1/D+yxxx707Nlzo2WZ/6nu3buz5557Fnxd8h134MCBm4yoMXv2bN57772NYl6xYgXjx4/f6HugHKLnMMvMtspd5wkqD0lvAFsA75e4aU10P6Gc8VRBTXQ/oYoxlENNdD+hijGUQ010P6GKMZRDTXQ/oYoxlENNdD+hijGUQ010P6GKMUCYH3CBmW2SWT1BlVGmq3p2h4s08ueRLP48ksWfR+X4OSjnnHOJ5AnKOedcInmCcs45l0ieoJxzziWSJyjnnHOJ5L34nHPOJZLXoJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0ieoEok6SxJ0yStkTReUuHRPUP5g6NyayR9KOnMSsVaIJ7Rkl6VtEzSAkl/l7Tp6JcbbzNYkuW5HVmpuPPEdHGeeOY2ss3ukp6VtFrSLEkXSVKlYi4Q0/QCr+0/G9gmX/mKfq4kHSTp0eh1NEmjctYreo9mR6/3OEm7FbHfL0t6W9La6P5LsT0JGn4ektpLulLSREkrJc2RdLekwiP/hu1GFHiPCo9uG+PziNaPyRPPy0Xst6rfX56gSiDpROAa4DJgT+BF4LFCH1hJQ4CxUbk9gcuBayV9uTIR5zUCuB7YHzgUqAWelNSriG2PBPpn3Z6OKcZiTWHjeHYvVFBSd+DfwDxgH+AHwE+AH8UfZoP2YePnsBdgwF8b2e70nO1uizHGfLoCkwmv4+o8638KnAucTXiO84F/S+qWpywAkvYD7gPuIgxkehdwv6TShrwvTUPPozPh/bg0uv8isDXwuKRihoHfjY3fo/fKFHM+jb0fAE/mxHNUQztMxPeXmfmtyBvwX+CmnGXvAZcXKH8l8F7OspuBl6r9XLLi6QpsAL7QQJnBhC/NYdWONyumi4HJJZT/HrAM2Cxr2YXALKLLLZJwAy4APsmOM08ZA75S7Viz4lkBjMp6LGAOcEHWss2A5cAZDeznPuDfOcueBO6pxvMoUGbX6PXfvYEyI6IyfZLwfkTLxgD/KHE/Vf/+8hpUkSR1APYGnshZ9QShNpLPfnnK/wsYJql9eSNssm6EmvSSIso+KGm+pBckfSXmuIqxbdSENE3SvZK2baDsfsBzZpb96/JfwABCAq66qLnxO8CdOXHmc42khVFz7ZmSkvS/PAToR9ZnP3o+/6Hw/woU/n9paJtK6x7dF/P/8lrULPiUpEPiDKpIB0b/v1Ml3SRpy0bKV/37K0kf6qTrA7QlNBFlm0f4Z8ynX4Hy7aL9JcE1hPlgXmqgzArgx8BXCc0CTwH3STol9ugK+y8witDseDrhtX5RUu8C5Qu9F5l1STCS8OV+UyPlLgJOBA4H7gV+B5wfb2glybyepfyvZLYrdZuKiX6k/g74u5l93EDROYQa+5eB4wlN0U+pkfPVMXsc+CZwGKHp9bPA05I6NrBN1b+/SptO07Uokq4GDgQONLMNhcqZ2ULCP2bGa5L6EM4z3BlvlAVjeiz7cXTC90PgVODqasRUBqcDr5rZmw0VMrNfZT2cIKktoWnw13EG15pF55zuBHoCxzZU1symEJJSxkuSBhPOeT4XU4gNMrN7sx5OkjQemAEcDTxYjZiK4TWo4i0knKvpm7O8L1Co99jcAuVro/1VjaTfA18DDjWzD5uwi/8CO5Q3qqYzsxXAWxSOqdB7kVlXVVFzyxdpvPaUz3+B7pJyn1+1ZF7PUv5XMtuVuk3souR0D/AZ4DAzW9SE3STt/2U28DENx1T17y9PUEUys3XAeEIzTLaRhF4u+bxUoPxrZra+vBEWT9I1fJqc3m3ibmoITRmJIKkTsDOFY3oJGB6VyxgJzAamxxtdUUYBawlfhKWqAdYQOlckwTTCl1v9Zz963YdT+H8FCv+/NLRNrKJzLfcRktMhZtbUZFlDsv5f+gADaTim6n9/VaOXSVpvhHb/dcBpwC6E8zcrgG2i9bcDt2eVHwKsBP4QlT8t2v7LVXwOfyL0ZjuU0MacuXXNKnM58FTW41OBk6PnsBPhfNQ64IdVfB5XAQdHr/G+wD+i55V5L3KfQw/Cl+a9wFDCuYFlwLkJ+FwJmEpOD9Fo3f8C72Y9/gKhKXAosF30mVoKXFPhmLsSvnRrgFWE82I1wKBo/c+iuI6PYr2X8GOgW9Y+niKrByyhM0QtcB7hx8ZoYD2wbzWeB+EUyMOEnp575fy/ZPcGzf2/Pwc4jlA72S36LBpwfJWeR9fo/2U/QoegEYTk83HO+5G476+KfaBbyg04i/CLey2hRnVQ1rpxwLic8gcDr0flpwFnVjl+K3C7OKvMGGB61uNTgbejD+sy4DXglCo/j8wX3rroC+RvwK6FnkO0bHdCT7I1hF+OvyABXcyBQ6L34LN51l0MWNbjI4E3CF22VwKTCNe+tKtwzCMKfI7GROsVxT4ner2fBYbm7GN6pnzWsq8A70bv6zvE+KXe2PPg08sr8t1GZe1jo/97wrnZ9wjXIy0mnHc6qorPYzNC77v50es6I1q+dc4+Nnoe0bKqfn/5dBvOOecSyc9BOeecSyRPUM455xLJE5RzzrlE8gTlnHMukTxBOeecSyRPUM455xLJE5Rr0SSNKjB5nEk6vNrxtRSS9pa0StLArGXjJD1foPxp0XswuIRjHCdpnqSuZQjZpYAnKNdanEC4kj779kpVI2pZfgvcamazYjzGI4QLf38S4zFcgvho5q61mGBm7xdTUFJHM1sbd0AthaS9CaNhnB3ncczMJN0I/ErS5Wa2Js7juerzGpRr1bKaAA+SdL+kTwgjTyOpnaTRkt6VtDaaHPF3OQPOImlbSf+MmrgWSLpG0hm5TVjR44tzth0cLR+Vs/zgaKK75ZJWSvqXpKE5ZcZJel7S4ZJej44/WdKX8jzPPSQ9JGmRpNWSpkgaHa27Nmo6a5+zTbfo+Fc08jKeBkw0s7caKVeQpIsbaIodlVX0r4QpL45v6rFceniCcq1F2yjhZG5tc9bfRRhr7CuEwUohzP9zIXA3Yd6cywkz3t6V2SiaxO7fwJ7A9wmjkg+JtmsSSUcTBlJdAZxCGKi3G/CcpK1zim9HGLT4asKX9hzgfknbZ+3vs4TBQbcDfhg9l6uBraIifwa2BHIT28lAF+CGRkI+kgbmOcp53dtF01fkfvfczKZNsH8jTHEzNVPIwtxk70THdC1dJQf+85vfKn0jJIx8g2g+n7P+9znbDY+WfzNn+dej5TXR49Ojx5/LKtOGMDeVAYOzlm80KG+0bDCbDj76PlkjsUfLuhPm4PlD1rJxhNG+d8hatiXhS/38rGX/AT4COjfwOo3Lc8zXgccbeX37RvGfXmCfhQZbzdwGF9jvCUAd8H951t0BTK32Z8tv8d/8HJRrLb5EmF4gY3nO+odyHh9JGPn5gegXf8YT0f1BwATCL/2PzOzlTAEzq5P0V8Jo3iWRtAOhpnNZznFXEWpBB+Vs8p6ZvZd17PmS5hOmWUBSZ+AA4LdmtqqBQ18P3CtpBzN7T9I+hFphY01pA6L7BQXWv0loAsz1RQrUMiUNA24DrjezP+YpsiDruK4F8wTlWovJ1nAnidyJ27YEOhCmtMind3TfH5iXZ32+ZcXYMrq/JbrlmpnzeHGeMmuBzHmyzQk1uo/zlMv2EGG+rDMI832dSZjO5O+NbJc5TqFOJSvM7LXchZJq8hWWtBXwKKH29YMC+1yddVzXgnmCci7InXdmEWEeo+EFys+O7ucQJqXLlW/69bWEpJetd87jzHTio4En8+xjXYF4CllCaCob2FAhM1sv6WbgLEm/AU4CfmdmtY3sPxPv5iXGtQlJXQgJcSFwopltKFC0V9ZxXQvmnSScy+9xwq/0Hmb2Wp5bJkG9BGwt6XOZDSW1Ab6aZ58zCLPLZjs65/EUwkR+uxU47sRSnkTUrPc8cIqkzRopfgOhh9z9QEfgpiIOMZ2QyLctJa5ckkTolNIfOMbMcptgsw0hvE6uhfMalHN5mNk4SfcQzkFdTbiot47QqeEo4GdmNpVwruQ84EFJ5xNmLT2T0Kkh173AhZIuAF4m1M6+lnNck/R94JGoh+BfCTWKvoQp0Wea2dUlPp0fE2a0fUnS7wjNfdsSOnrUX7tkZrMkPUo4X/d3M/uosR2b2TpJ/wU+W2JMuX5GmCb9B8AASdnnmD4wswVQn8g+Szhn5lo4r0E5V9gphI4OXyGMYvAA8L+E6bznQfiCBkYSOkxcT0hY04Bf59nf5cB10T4eBnYBvpFbyMzGEjpDdCF0v/4X8BugH6HGVhIze5XQUeIj4FpgLGE0hnznpe6P7hvrWp7tPuDQqImuqXaO7q8hPMfsW3Ytc39Cc+K9zTiWSwmf8t25GEQXl/4/YIiZTa9uNMWTdBchmW1rZnVFbtOdkOzOMrM7Y47vz8BQMyt0btC1IN7E55wjOodWA5wI/KjY5ARgZsskXQn8VNJdFtOvXkn9gFPxi3RbDU9QzjkITWkriK4/asL2VwNtCZ0cZjdStqkGA+ea2X9i2r9LGG/ic845l0jeScI551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gnHPOJZInKOecc4nkCco551wieYJyzjmXSJ6gXF6SbpJkkn5fYP3F0fqKjOcoaUR0vBFN2PY4ST8qf1SumjKfwWrH4eLjCcptIpp5NTMj7MmVSkIxOg7wBOVcyniCcvkcR5gRdiywJT69QVEkdax2DGnRkl4rBR2qHUdL5AnK5XMqsAQYBayOHheyi6RnJK2SNEfSLyXVf64kdZV0raSZktZKmi/pSUk7Z5XpLuk6SbOjMlMk/TCa3rsgSdMljcmz3CRdHP09Jop/YLTcJE3PKruFpL9ImhUd+11J323sBcpqcjw+ag5dQDTLrqRxkp6XdKSkCZJWS3pD0r6S2km6LHqtFksakz0TbbT+V5I+kLRG0sJoXwc2Ek+j20nqLOl6SYskrZD0qKQDo+cxKqvcOEnjGnu9o9fuBklTo/f/I0l3SxqYs12mOXiopH9JWkGYyj4T05WSpklaF91fkP0ZisrtKem56LnNkvRzoMHPR07cd0o6SdI7klZKei3fayrpFElvZr2Gd0jqX2B/35b0LrAOOFrSqOh57i/pr5KWS5onaXS03ZHR52ClpFcl7V1M/K1Z2ptuXJlJGgAcDtxkZgskPQwcL2lzM1uSZ5OHgVsJ05n/D/BzoI4wVTrA74FjgfMJU6X3JszY2jM6Xhvgn8BewEXAJMIU31cDW0TbNcevov3sE8UBsDY6dnfgeWCzKN5p0XP4s6SOZnZtEfu/FniMMHV7p6zl2wO/BS4lzLP0G+DR6NaOkPx3icrMB34abfcz4IfABYRp5LsDw4BejcRRzHY3ECYkvAR4lTBV/d1FPMdCegFrgNHAAmAAcC7wgqSdzWxNTvlHgFuAK4E6habjfwG7Et6nScDnCJ+hXtG+kNQHeBqYS/ixsZYwZf2gEmIdDuwU7XtNdLx/SBpsZp9Ex/ku4TW6L3pOA4DLgH0l7WVmK7L2dwhhgsdLCO/f9OgYEObUuh24ETgBuExST+AoNv48PCxpOzNbV8LzaF3MzG9+q78RvigN2C96/D/R4zNzyl0cLT8vZ/lNwHKgZ/R4MnB1A8c7JtrPqJzlNxO+iPpEj0dE5UZklZkOjMmzTwMuzno8Bvg4T7nMl9UOeZ7DQqBdA3Fn4nkoz7pxwHrCtOmZZcdG5Z/MKfsgMC3r8T+AB5vwvjW4HeHLeUOe9+vPua9/FP+4PPvI+3pnrW8LbB3t70t5Pis/yCn/jWj5QTnLLyDUSraMHl8aPd46q0yX6D2yIl6b6YQWgc2zlg2Ljn1yVuzzgGdytj0wKvd/OftbBfTLKTsqKntR1rJ2hAS2HhiS5/NwcKnvdWu6eROfy3Uq8J6ZvRQ9fpIwQ2qhZr6/5jy+F+gKDI0evwqMknS+pGGS2uaUP4hQ48r9JX8n0AHYr/SnULQjgf8C06ImsnZZv+p7E37ZN+ahAsunmtmHWY/fje7/lVPuXWArqb4581XgKEmXRs1vG53bkNQmO9asprAGtwP2JTTp53u/mkzS96ImsRVALTAzWrVTnuK5r9WRwAzgxZzX/wmgPaE2BeEz8LKZfZTZ0MxWAn8vIdSXbOMWgEnRfaYWthPhfOtd2RuZ2fNRjAfn7O9lM5tb4FiPZW1fC7xP+DxMyyqT+TxsXfQzaIU8Qbl6koYRvpQflNQzapboRviV/zlJO+bZbF6Bx5nzEGcTmk2+TfgSnS/p95I6R+t7AYtt02aOuVnr47IlIUGuz7ndH63vXcQ+5hRYntscuq6B5e0Iv+AhNCn9gvAL+zlgkaT/FzVzQWhOzY711iK3y5xHKfR+lUzS2YTp4Z8Ejgc+y6dJpVOeTXJfqy2Bbdj09X8lWp95/fsXiLOU2BdnPzCztTlxZj5n+d7PuWz6OSz0vkP+97jQ5yHf6+Qifg7KZcvUkn4W3XJ9E7gwZ1lf4MOcxwCzACy0248GRkvaBvgKcAXhH/RnhC+OXpI65CSpftH9Rl8sOdYQaln1JBWTVDIWEZpfflBg/ZQi9lHW63DMbD3hHM2VkvoRmkCvBjoTzh9dDFyXtcnCIrfLfKEWer+yrSGcw8qV+yV9EvCUmZ2bWSBpSENPL+fxIsJ5v6/mKQuhKQ1C7PnizLesqTKfs3551vUDxucs8+uvKsBrUA6AqEnoa4Qmr0Py3CYA38hqisrI/XI5iXASeFLOcsxshpn9LlqXaQJ8lvA5PCGn+NcJSewlCpuRtZ+Mo/OUW0voCJHrcWBnYKaZvZbntryBY8fOzOaa2c2EGsrQaNn0nBinF7Md4X2tI//7lWsGsGN2M6Gkgwi16WydCTWebN8q6skFjxOauFYUeP0XRuVeItTg65vDFHo+fqGEYzVmCqFGttHrIWl/Qi1vXBmP5YrkNSiXcTShSeVcMxuXu1LSDYQT6iOAZ7JWnR6dB3mV0KHiNEIHhaXRdi8Req5NIiSug4E9CD2dILTXPw/8RdIWwFuE3k6nAZdnfUnlcy9wq8JoF/+I9jsqT7m3CbW07wGvAWvMbBKhh+GJwHPRPqYQTr7vDAw3sy82cOxYSHoEeBN4ndAstCfhXM0NzdnOzKZIuhv4Zdb7dQThtc51L/Bdwms7BhhCuNB5aU65x4GfSTqf0Cx3KKGGXKy7CAntKUm/i+LvAGxHaKo8zsxWEd6ns4AnFC4fyPTiW13CsRpkZhskXQTcIOlOwjnQgYQOGu/xaVNqbKLjXwRsZ2Yz4j5eGniCchmnEnrf3V9g/T2EJqNT2ThBfZHQ1frnhC+wXxO68Gb8h/Cr/TzC5+1D4Idm9kcAM6uTdDThHMrPCElyOuEL8Q+NxHwb4Rf4d4AzCOdevkQ4KZ3tZsK5kcsI3dtnAIPNbGn0C/mi6NgDgU8IiepvjRw7Lv8h1Ca/T6ihzCR0Sb60DNudQfiR8GNCIngaOJnwA6GemT0j6cyo3JeBN4BT2PQ1+SXh9fwh4VzKs4QfKR9SBDNbL+l/CJ+N7xIS4UrgA8KlB+uicgslHQZcQ3jPFwF/IXyeLirmWEXGc6OkVYTk9wjhtRoL/DTqlBG3NoRzkUVd39UayMybUp1rrSQNJpwH+paZjaluNM5tzM9BOeecSyRPUM455xLJm/icc84lkneSyEPSG4Tx23JPtjvnnCuv7YEFZrZn7gpPUPlt0aNHj4E1NTUDGy/qnHOuqSZMmMDSpblXMASeoPJ7v6amZuC4ceOqHYdzzrVoI0aM4Nlnn83bWuWdJJxzziWSJyjnnHOJ5AnKOedcInmCcs45l0jeSSIiaVzWw5oqheGccy7iNSjnnHOJ5DWoiJmNyPwd1aZyp3hOvaVLl9KtWzfatPHfJc655PNvqlZizpw59OvXj+985zvVDsU554riCaqV+OCDD1izZg3vvPNOtUNxzrmieIJqJdavz52Z2znnks0TVCtRW1tb7RCcc64knqBaCa9BOefSpsX24pM0HVgG1AFLzOyQ6kZUXZ6gnHNp02ITVGR/M1tR7SCSwJv4nHNp4018rYTXoJxzaZPIBCXpIEmPSpolySSNylPmLEnTJK2RNF7S8JwiBjwr6VVJX69I4AnmCco5lzZJbeLrCkwGbo9uG5F0InANcBbwfHT/mKRdzWxmVOxAM5slqT/wpKRJZjYxZz/jChy/pizPIkG8ic85lzaJrEGZ2VgzO9/MHiB0csj1I2CMmd1kZu+Y2dnAHOB7WfuYFd3PAcYCe1Ug9MTyGpRzLm0SmaAaIqkDsDfwRM6qJ4D9ozJdJHWL/u4KHAq8lbsvMxuRucUadAJ4Dco5lzZlaeKT1ANYY2Zry7G/RvQB2gLzcpbPAw6P/u4LPCSJqOxNZvZqBWJLLK9BOefSptkJSlI7YBHwJeDvzY6oDMzsQ2CPErcZkfm7JY5m7gnKOZc2zU5QZlYraR6woQzxFGNhdKy+Ocv7AnObutOWPmGhN/E559KmXOeg7gROK9O+GmRm64DxwMicVSOBFysRQxp5Dco5lzbl6mY+HThZ0qvAI4QedZZdwMxuLXZnUceG7aOHbYBBkmqAxVE38quBOyS9ArwAnAkMAP7SvKfRcnmCcs6lTbkS1J+i+4GEHna5DCg6QQHDgGeyHl8S3W4DRpnZfZJ6AxcC/QnXTB1lZjNKDby18CY+51zalCtBDSnTfgAws3GAGilzPXB9GY85IvO3d5JwzrnqK0uCagk1l5beScITlHMubco61JGkzwAHAb2BG8xsrqTtgXlmtrycx3Kl8SY+51zalOtC3Y6EnnzHE5rmjHBN1FzgN8BU4LxyHCsu3sTnnHPJUq5u5pcSRnH4BuF6pOzzR48B/1Om48RG0rjMDW/ic865qitXE9/XgAvN7G5JbXPWTQMGl+k4rom8ic85lzblSlC9gXcKrGsDdCzTcWLjTXzOOZcs5WrimwbsV2DdZ4EpZTqOayJPUM65tClXDep24HxJ04G/RctM0iHAD4GLy3Sc2LT0bubexOecS5ty1aB+A/wTuANYEi17HngSeNzMri3TcVwTeQ3KOZc25bpQdwNwkqQ/EXrsbUmYguNxM3u2HMeIm5+Dcs65ZCnrhbpm9hzwXDn36crDm/icc2lTliY+SfdJ+q6kHcuxP1d+XoNyzqVNuWpQWwHXAu0kzSGMRP4M8IyZTSvTMVwzeIJyzqVNuc5BHSCpCzAcOBQYAZwEtJE0E3jazL5TjmPFxXvxOedcspSrFx9mttLMHjezn5rZZwmdDJ4GtgFGles4rmm8BuWcS5uydZKIRi0/hE9rUFsCbwPXERJVonkvPuecS5ZyjWY+kzCb7vuEc0/nEJr1FpRj/675vInPOZc25WriGwCsIYzH9zbwtienZPEalHMubcqVoHoRRjSfBnwHmCBpXtT9/Ezvfl59XoNyzqVNuXrxLQMejW5I6k04H3UG8CfCBIZlvSjYlcZrUM65tCn3lO9bEzpJHBLdtgY2AOPLeZw4tPRu5p6gnHNpU65OEjcSEtMQQm3pTeB+Qu+958xseTmO45rOm/icc2lTrhrU5wijmT8DjDOzT8q034rxbubOOZcs5ToH9Zly7MfFxxOUcy5tyn0Oaiih5tELWEyoTb1VzmO40pmZN/E551KnXOeg2gFjCF3NlbXKJN0NjIrmjHJVsGGDv/TOufQp13VQvwC+ClxE6CixWXR/EXBidO+qxJv3nHNpVK4mvlOAX5vZpVnLZgCXSmoLfIuQxFwVePOecy6NyjnU0YsF1r0Yra8oSZ0lzZB0VaWPnTReg3LOpVG5EtRs4IAC6/aP1lfaBcDLVThu4niCcs6lUbma+O4CLpBUF/09B+hHmLTwAuDKMh2nKJJ2AHYG/g4MreSxk8ib+JxzaVSuGtTFwAPAJcB7wArC1BuXRst/WeyOJB0k6VFJsySZpFF5ypwlaZqkNZLGSxqeU+QqYHTTnkrL4zUo51walSVBmVmtmZ0M7A6cTei197/A7mb2dTMr5Sd8V2Ay8ANgde5KSScC1wCXAXsSznE9JmlQtP6LwFQzm9qMp9SieIJyzqVRWS/UjS7KbdaFuWY2FhgLIGlMniI/AsaY2U3R47MlHQl8j1Br+hxwkqQTCMmuvaRlZrZJLS5ngNhsNc15DknjTXzOuTQq55TvbYFvAvsRZtedRajd3FGui3QldQD2JjThZXuC0BkDMxtN1LwXNQ8OzZecWhOvQTnn0qgsTXyStiHUnG4BjgS2jO5vBSZH68uhD9AWmJezfB6hU0ZJzGxE5laG2BLLE5RzLo3KVYO6DugOHGhm9ddDSTqAMO3GtcCxZTpW0cxsTKWPmUTexOecS6Ny9eI7FBidnZwAzOwF4PxofTksJEyA2DdneV9gbpmO0eJ4Dco5l0blSlArgPkF1s0HVpXjIGa2jjA778icVSMpPJJFq+cJyjmXRuVq4rsTOBN4LM+6M4Dbi92RpK7A9tHDNsAgSTXAYjObCVwN3CHpFeCF6LgDgL80OfoWzpv4nHNpVK4E9T5wgqRJwN8InRb6Al8BuhGuU/p2prCZ3drAvoYRZubNuCS63UaYtuM+Sb2BC4H+hGumjjKzGWV6Li2O16Ccc2lUrgT1p+h+K2C3POuvz/rbCL378jKzcWw8p1S+Mtfn7LPZWvKU716Dcs6lUbkS1JAy7adqci7aralSGLHwGpRzLo3KkqC8eS3ZPEE559KoXL346im4NTM2XlrkXLQ7ocrhlJU38Tnn0qisY/FF2gCnEi7enRnD/mPhTXzOOZcsZa9BRRrs5OAqyxOUcy6N4qhBpZL34nPOuWSJowZVR7hmaWEM+3ZN4DUo51walb0GZWYGfKvc+3VNl52gwtvjnHPJV5YEJWl/oJeZ/SN63Itw8e5Q4F/Az8o1J1RcWnInCW/ic86lUbma+K4gTCSYcRVwFDCVMNPt+WU6jmsCb+Jz/7+9M4+Pqr4W+PckshpAFmVfRbEKGgG1dQGty6P6bGuxpUp94qu+Wqy1tbVatX1Qq7aPp5bqE7u7YAW1iktdUdPiUioUUFEhAglbCDsJgQBJzvvjd2+cDDPJzOTe2XK+n8/9zMz9/e49585yz5zzO7/zM4xcJCgD9RlgEYCItMPV4Pu+qk4EbgEuDUhOaOTzPCgzUIZh5CJBGagioMp7fjJwKPC89/pfQE5N2s03LMRnGEYuEpSB2gCc4D3/AvCBqvrrQ3UnoPWgjNQwD8owjFwkqCy+x4A7RORM3NjTf0e0jQZKA5ITGvmcJGEGyjCMXCQoAzUNqAU+i0uYuDui7QTgiYDkGClgIT7DMHKRoKqZ1wO3x2n7chAywiafK0mYB2UYRi4SyBiUiPSKrl4uIt8SkXtF5N+DkGGkjhkowzBykaCSJP4I3OS/EJGfALNw6eXPiMikgOQYKWAhPsMwcpGgDNRY4LWI11cDd6hqT1xFiesDkmOkgHlQhmHkIkEZqB5AJYCIjAT64ArGAswDRgQkx0gBM1CGYeQiQWXxbQMGeM8/D2xUVT+1vB3hrTsVGPmcZm4hPsMwcpGgDNR8YJqI9AJ+gPOafI4BygOSY6SAeVCGYeQiQXk2PwLWAXcCq4DpEW2TgTcDkhMa+VyLzzwowzBykaDmQVUC58ZpPgc3idfIEOZBGYaRiwS6YKGICHAsLmliO/ChqlY1f5QRNmagDMPIRQJLXhCRK4EK4D2gxHvcKCLfDEqGkRoW4jMMIxcJakXdycBvcXOhZgObcKnmk4HfisgeVX0sCFlG8pgHZRhGLhJUiO9HwKOqelnU/odE5BHgRlzFcyMDmIEyDCMXCSrENwLnOcViNjZRN6NYiM8wjFwkKANVzacTdaMZ4LWnDRE5TEQWichSEflARK5Kp/xswzwowzBykaBCfC/iFixcqaoL/J0i8jng5157OqkGxqnqHhE5FPhARJ5S1W1p1iMrMANlGEYuEuQY1GeBEhHZgMvm64Pznj7x2tOGtz6Vv8x8B0C8rU1iIT7DMHKRQEJ8qroJV7/uOuAdoAr4B3AtcKI3kTdhRGSciDwrIhtEREVkSow+U0VkjYjUishiETkjqv0wEVkGrAdmqOrWlC4uDzAPyjCMXKTVHpSItAfmAveo6n3Afa3WCoqAD4CHvS1a5iRgJjAVV0ZpKvCiiByrqmsBVHUncIKI9AaeEpEnow1lVIHYSIoDuIaswQyUYRi5SKs9KFXdjytnFNikX1V9QVVvVtUngYYYXa4HHlTV36nqR6p6LS6s+O0Y56oElgFnRLe1FSzEZxhGLhKUUXkLNwYVOp7HNgZ4JarpFeBUr09vEeniPe8GjANWRJ8rqkBs3mIelGEYuUhQSRI/AOaJyG7cUhsVgEZ2UNVYnlAq9AIK8RZIjKAS58kBDMZVsPCTI+5V1fcDkp9zmIEyDCMXCcpA+Tf/md4WjQYoq0VU9Z/k2ThSqqiqhfgMw8hJgjIaPyPKYwqRrUA90Dtqf29cDUAjgvr6+kyrYBiGkRJBrQc1LYjzJChrv4gsxq0/9URE07nAX9KlR65g4T3DMHKVoKqZtwPaq2pNjLZDgf2qmvCdUkSKgOHeywJgkIgUA9u9NPK7gUdE5J+4BI2rgX7AA626kDzEwnuGYeQqQYX4/uCd69IYbb8B9gP/mcT5xgJvRLye7m0PAVNUda6I9ARuBfri5kydr6rlKegOuIw+/7k3P2p8qufKJsyDMgwjVwnKQJ0J3BCn7VlgRjInU9USWihNpKr3A/cnc97miJq0WxzUeTONGSjDMHKVoOZBHQFsjtO2hYMTGow0YSE+wzBylaAM1GZgVJy2UUDWVxGPmrS7NMPqBIZ5UIZh5CpBGajngZ+IyPGRO0VkFHAL8FxAcowkMQNlGEauEtQY1E9xad6LReRdXAXx/sDJwBpcMkNWk69jUBbiMwwjVwlquY2twEnAnbjkhmLv8XbgpLa81EWmMQ/KMIxcJbDyQ97yFj/1tpwjX9PMzYMyDCNXCWyJDCM7MQ/KMIxcJW0FXLOdfB2D8g3UIYccYt6UYRg5hXlQeY5vlNq1a5dhTQzDMJLDPCiPfB2DivSgDMMwcgnzoPIc30CZB2UYRq4RqIESkQIRGSki470q5kaG8UN85kEZhpFrBGagROQa3IKBy4DXgRHe/nki8t2g5ISFiJT4G3mYJGEelGEYuUYgBkpErsIt9T4PmETTSuQLgIlByDGSxwyUYRi5SlBxn+uBu1T1RhEpjGr7mPhLcWQN+ZokYSE+wzBylaBCfEOBl+O01QCHBSTHSBLzoAzDyFWCMlBbgSFx2kYAGwKSYySJGSjDyA/mzJnDRRddxJ49ezKtStoIcrmNn4rIsIh9KiK9gO/jxqaMDGAhPsMIn08++YRnn302VBn33nsv8+bNY9GiRaHKySaCMlC3AvuAD4D5gAK/Bj4C6oGfBSTHSBLzoAwjfC6//HK+9KUv8cknn4Qmo6qqCgBVDU1GthHI32pV3SoiY4HvAf8GrPLOfR9wj6pWBSEnTPK9Fp8ZKMMIB1Vl2bJlAOzatSs0Ob6BaksENg9KVatV9TZVPV1Vj1bVz6nq9FwwTulk165dnHfeeTz66KNpkWchPti2bRuzZ8+muro606oYeUhFRQU1NTWhyzEDlSIislpETojTNlJEVgchJ0xU9Ux/A5aGJeell17i1Vdf5a677gpLRBPMg4Jf/OIXXHbZZRx//PGUlJRkWp2UWbZsGeeeey5Lly7NtCpGBCtXrgxdhqq2yT9YQXlQQ4AOcdo6AoMDkpPzlJaWArB8+fK0LH9hBurTsEtZWRlnnXUWM2bMyLBGqTFv3jzmz5/P73//+0yrYkSQDgO1d+9e6uvrQ5eTbQRZiy/eyN1YYGeAcnIafxB1//79aflitxTia2hoCF2HbOGUU04B4LbbbsvJgWb/s/LHO4zswP/TGSZtMbwHrTBQIvJ9EVkrImtxxuk5/3XEtgX4P+CloBTOdSKzfN57773Q5TXnQe3YsYN+/fpx3XXXha5HNnDFFVfQpUsXqqur2bFjR6bVSZlly5a1qT8W2U46/mi2xfAetM6DWg285m0CLIp47W9/wc2Duqp1auYP2WSgSktLqays5LnnngtEVm1tLaNHj+bWW28N5HxBIyIMGTIEcOG+XKW6upo1a9ZkWg3DIx0GyjyoJFHVZ1T1ClW9AngIuNZ/HbFdraq/VtW2M/W5Gaqrq6msrGx8nQ4DlUgW37p16wKJbz/zzDMsWbKE22+/PWb7rFmz6NGjB7fcckvG/hGGbaAaGho455xz+PrXvx7K+X0szJcd1NXVsWrVqtDlmIFqBZ4xsr90LeB/kYuKioDMe1A+dXV1VFRUtFpWS2GnkpISduzYwR133MHw4cN5+umnWy0zWcI2UNu2beO1117j8ccfDzUJpjWZfOvWrUvLTTXXWLFiBS+88EJSx5SXlzf+xsKkrRqoQCbHiMhPW+iiqnpbELISQUQGAo8ARwB1wG2q+kS65MfDH0wdP348b7zxBuvWrWPHjh10796d/fv30759+8Bl+jfJlrL41q5dy4ABAwKXH4vDDz+czZs385Of/ISLLrooLTJ9fANVXl4eyvm3b98OuLTgLVu20Ldv31DktMaDGjRoEAD79u0L5TuXq1x++eUsXLiQtWvXMnDgwISOSUd4D2wMqrVMa2b7b+8xndQB31PVY4HzgF9lwwq//vjTiBEjGDlyJADvv/8+7733Hocffjg/+tGP4h67b9++lGT6/+5amqgb1g07Ft/5zncA0vLPM5qwPSjfQAFs2rQpFBnQOg/KJx2TS3OJ9evXA8l5K+nI4IO260EFFeIriN6AXsAUXH2+4UHISUKfClVd6j3fhKu23iOdOsTCN1BHHXUUxx9/PODCfNOmTaOqqoo33ngj5nE33HADHTt2ZOzYsUybNi2pcFyi86DSaaDCprkU8nwxUGvXrm0iy2g9qZQpSpcHZQYqYFR1u6o+DDyISzVPGBEZJyLPisgGEVERmRKjz1QRWSMitSKyWETOiHOuMUChqq5L4TICxTdQw4cPbzRQjz32WONYTDzDs3DhQgAWL17M9OnTufrqqxOWGR3ii3fzzhcD9cADD9ClS5e4HkakgQpjLlS6DBSkZwyzrVBfX8/u3buTPs5CfOESmoGKYBkwLsljinCe13XA3uhGEZmEW2L+DuBE4G3gRREZFNWvB/Aw8F+xhIhISayNkIrFxjJQb7/9dmN7ZWVls4kGkydPBmDnzp0Jy2xNiG/+/PmMGzeO4447jsGDB6etPFOqNDQ0cOedd1JTU8O7774bs0/37t0pKiqiqqoqqfcxUdJpoNpSyaOSkhKmTZvGvHnz2LhxY+DnT9VD8Q2Un/gUFuZBhce/A1uSOUBVX1DVm1X1SSDWHft64EFV/Z2qfqSq1wIVwLf9DiLSAbcO1S9U9e0Y50grNTU1bNy4kXbt2jFw4EBGjRrV2NauXTs6depEXV0d27Zti3uOESNGJC23NSG+++67jwULFvDhhx+ydu1aHnnkkaTlp5O///3vrF27ttk+zc2FOnDgQKv/EafDQB1xxBFA20o1v+yyy5g+fToXXXQR/fv3Z9asWYGePxUDsHfvXtauXUthYSFDhw4NVJ9ozEC1AhH5Y4xttogsxXlBfwhCjierPTAGeCWq6RXgVK+P4EKLr6tq3LtqVIHYUFm92tXLHTZsGIWFhfTo0YP+/fsDLnvI/4IHfVNLtJp5eXn5QSEvf27UNddcE6hOYfHwww8n1C+WgXrxxRcZNWoUI0aM4JlnnklZh0gDFUTqfiyKi4uBtuNB7d69m/Xr19OuXbvGa/fD3kGRyvjTqlWrUFWGDRsWeq1LC/G1js8DZ0VtY4BNwDeB2DM3U6MXUAhURu2vBPp4z08DJgFfFpGl3jaKDOJn+xx11FGN+yZPnszAgQO55ZZbGtORg76p+UanoKD5j7qmpibuoHvv3r0D1SkM9uzZwxNPJDaTINJANTQ0cMkll3D++eezYsUKwM0TSpV0eFCjRo1CRFi+fHmTid/5ij9n68gjjwytLFcqBsr/vhx99NFBq3MQ5kG1AlUdoqpDo7bPqOoEVX1Q01yZU1Xf9LIJiyO299OpQzSR408+v/zlLykvL2fIkCH06eNsa9jjFs2Ry4kSzzzzTMKD3JEGasGCBcyZM4eioiKOOeaYVuuRDgPVpUsXvvjFL3LgwIGsHxcMgli/naBJxUD5IdbIcH1YZJuB2rBhA0888UToRZfTMQYVNFtxy8hH/63vjfPYMo6qHrT0c7wfmYtG0migwgoLJUJL4zfZgKoydepUHnjggSb7/fBehw7xVn35lEgD9ec//xmAa6+9lrPPPjtpfWbNmsXcuXMbX6crScKvd3j//fc3O26ZD/geVLYaqBNOiLkUXqtYtWoVjz/+eKMBSCTEV1lZmZYlfABuuukmvva1rzFnzpxQ5bSmmvm4ZLagFFbV/cBi4NyopnNx2XypnjeQBQtVlRNOOIGjjjqqyQ3fDwfE+5H5IT7zoJpn0aJFzJo1i29/uzEfhl27dvHKK6/Qrl07vvCFL7R4Dt9AlZaWNoYFL7300qR1qamp4ZprruHKK69svJFEGqjq6urQJsOOHTuWCRMmUFNTw69+9atQZGQL/p+7I488MjQZ2Wagvvvd7zJp0iT+9a9/AS17UGVlZfTv358rr7wycF1i4RcrzloDBZQAbySw+f0SRkSKRKRYRIo9HQd5r/008ruBKSJypYh8RkRmAv2AB+KcMhGZgaSZi0ijEfLretXU1LBw4UJEhNGjR8c8Lhs8qFwwUHv2HFx3eNeuXTQ0NNCnTx969erV4jl8A/XRRx+xY8cORo0a1VjZIxnq6upQVXbv3t2Ysu4bqEMPdYVLwhwj8r2oX//616GkzKcTVWXJkiXs37//oLZsDPHt3LmT8vJyOnbs2GRcOWh9fO+xJQO1fPly6uvr01ZjcevWrQC8/PLLoYYfW2OgzsIlR7S0+f2SYSywxNs6AdO95z8DUNW5wPeAW3HezunA+aqaFXfYCy64APjUQL3xxhvs27ePk046icMPPzzmMeZBpY8ePXo0mbeSivcUzYYNG2hoaGhcZ8ofzwrz8zzttNM466yzqKqqyvopAC0xa9YsRo8ezaRJkw5qy0YD5U+SHjlyZIsZsq2hoqKChoaGFsdX0/0HxTdQ+/bt4/nnnw9NTmuW2/hbMluS5y5RVYmxTYnoc7+XnNFBVceo6t9TvRbvfIGE+IDGMNNrr71GbW1to6E6//zz4x6TSQ/Kz/BrKwZKRBg8eHDj6yCWxti4cSO7du1CVenatWtj4d2w/3CMHz8egC1bkppqmHX86U9/Atyy9pHU1tayfv16CgsLm3xmQZOsFxBmeC+SioqKhJJ/0rkAZ319fZNQdqLZs6kQaJKEiPQQkQtE5DLvMeP17xIlyEoS/fr148QTT2TPnj2UlJQkZKAy6UH169cPaDsGCj4N85166qmNz1vDxo0bG3+0PXr0SFtWpp9kk6+sWbMGVWXIkCGhzjVK1oNKp4FKxHim00Dt2LEDVW1MSHrxxRdDm6cVmIESkZ8DG4BncQsYPgdsEJG0LbORTfhhvhkzZlBeXs7hhx/OmDFj4vY/7LDD6NChA1VVVTHHWcKkT58+tG/fnq1bt7aZCtf+WOAVV1wRyPk2bNiQEQOV76QjQQKy10Bt3Lgx6wyUH94bNGgQp512WqhhvqAqSXwPuBmYjRtv+gxu7Gk2cLOIfDcIOWESZIgPPvWWXn/9dQAmTJjQ7GRZEcnYTa2goKBx/ZtkUs3TPL0tUG666SYWLFjAN7/5zUDOlykPKt9Jx/gTJGeg6urq+OCDDwAaa2o2R21tLddffz1vvfVW0npVVFQk5J2kcwzKN1C9evXiq1/9KgBPPvlkKLKC8qCuBmaq6lXemNMK7/Eq4NfA1IDkhEbQxWJPPvnkJhllzYX3fDI5DuUvYpdoFYWamhpGjBjBD3/4wzDVCo3OnTtz+umnBxYiMwMVDqkaqM2bNzNx4kRKSkoS6p+MgSotLaW2tpbBgwdz2GGHtdh/5syZ3HPPPZx++ukJy/DJxhBfpIGaOHEiAEuWLGksjRYkQRmoIcBf47T91WtvUxQWFjJhwgTAeSjnnXdei8dkchyqc+fOADHTfGPx1FNPUVpa2iYqGSSCGahwSNVA3XDDDTz11FOcddZZCfVPxkAlG95rbemsRBJgMmWgBgwYwKJFiygtLaWwsDBwWUEZqG1AvIkkx3ntWU3QIT6ACy+8EHAD8T16tJwvkg1zoYzUsDGocEi1isTmzZuT6h+mgWotiazamykDBTBmzJhQjBNAUAn8TwO3icg24DFVrRORQ4Cv4uYuPRSQnJzi4osvZtasWQn/i7ObWu6yadOmxn+6PXr0aCywu2nTJlQ177PtwuDAgQOUlZUhIqEuZ9HQ0JBUmnm6DdTHH3/cYp9MjUGFTVAG6sfACThD9EcR2Y5bYr0QeBOXQJHVeGNPPsVBnLOgoCCp1W/DqmhuhE99fX1jOasePXrQqVMnunXrxq5du9ixY0dCHrTRlPLycurr6xk4cCAdO3YMTU5NTU1SCT9+2PHYY48NS6UmJLJGWTo9KL/2Y84YKFWt9urtXQCcgTNO24G/AS+mu5p5rmIeVG7z/vuuYL5vjPr06cOuXbvYtGmTGagUyMYMPlVtXNHXnz8YNi0ZqLq6urSuF5VODyqweVDqeF5Vb/Sy+W70VsbNCeMUxhhUspgHldv4n1ukgYKW/3Ds2rWL2bNnJ7xcSCaprq5OW/V03xD4UyDCIhkD5RcA7ty5M127dg1Rq0/J1jJHOWOgRORoETk54nVHEblTRJ4Tke8EIaMtYB5UfpCsgZo8eTKXXXZZUuHgTNG1a1d69erF3r17Q5fl/7cNs9YdJGeg/D8hffv2zZpxxVQN1FNPPcWFF16YdJkn30D17NkzJbnJEJQHdR9wccTrO4Af4CqM3yMiubFmeIbxB9YrKytDmVNgpAffQEV+ns3x17+6GRpPP/10uIoFSLJZctlMMgYq3eG9REh1/GnixIk8//zzzJgxI2b75s2bOXDgwEH7c86DwiVIvAUgIgXAfwA3quoY4OfAfwUkJzSCnqibCu3bt6dnz540NDQ0fgmM3KN79+7Ap4snxvqRG9lDKh5UPhgon1ge1OrVq+ndu/dBywMdOHCAnTt3UlBQkNAk5dYSlIHqxqdznU4EugN+7YsSYFhAcvIeG4fKbTp37hxqxpkRPKl4UP7vNJ1ELhETSRgZfK+++ipAY0knn8i5fmHNfYokKANVCfipNucBq1TVnz5dBKRnHeJWkA1JEgDdunUDElvi2cg+LFsv98gVD6pLly4x9+frHCgIzkA9C9wpIv+LG3uKXCBkFLA6IDl5T7YMvBqpYQYq90gmSSCTHlS8rMFMVpEIm6DSY24COgL/hjNWt0e0fRF4JSA5hpF1FBUVsXfvXurr681A5SC5kiRhBipFVLUGuCpO26lByDCMbKWgoIC+ffuyfv16M1A5SKpp5umgqKiI3bt3U1BQQKdOnWL2yWcDFfSKul1F5FQR+ar3GDtoahh5Rv/+/QEL8eUi2exB+Yawa9euccP/6RyDSmeZIwh2Rd2fAuuABcBc73G9iNwalAwjWHKkyEdO4N+wzEDlHokaKL+KRKdOndJWRcL/XjUnL589qEBCfCIyHfgJ8HtgDi6rrzdwCTBdRA5R1WlByAqLMIrFGm2HAQMGAOn74RrBkaiBivSe0pXM5HtQ8TL4wAxUIlwF3KWqN0TsWw68LiK7cBN1pwUky8hSkv3R5pMHN3XqVGpra7nkkksyrYqRJL6B6tChA/v27YvbL93jT5Gy2qoHFeRE3ZfjtL3ktWc12TIPqi2Qj6n0xxxzDL/97W8bPSkjd/ANlD8HMR6ZyOD77Gc/S69evTjnnHPi9snEPKh01OGD4DyohcBJwPwYbSd57YZhGFmFqjYaqK5duzZbYzATc6D69etHZWUlBQUFnHnmmQe1NzQ05PVE3ZQNlFdzz+e7wNMiUoebpOuPQX0N+E/gS61R0jAMIwz8+WsdOnRorJ0Yj0xVkSgoiB/oqq6upqGhIW265IyBwpUvihxEEOAX3kbU/vdaKcswDCNwEg3vQX5VMk+Fffv2UV1dTWFhYULvVxC0xmj8jKYGyjAMI6dIxkBlIkmiJTI1Bypd48gpG6hsTxs3DMNoiUgD1dIijNnsQRUUFIQe6vMNVLoSJCDgShKxEJHxIvLHsOXEkPu0iOwQkSdb7m0YRrqor6/n9ddfp6amJtOq5LwH5RuodKzNVFfnFqVo37596LJ8QjFQIjJcRH4mImuAN3DJEulmJm7hRMMwsogZM2Zw9tln8+UvfznTqjTe4FsyUNXV1ezevZtOnTqlbfwlEXz9/UUy840gSx11E5H/EpG3gBXALcAO4Nu4pd/TiqqWALaokmFkGXPnzgVg/vxYs1LSS1lZGQCDBg1qtl+k95RN8/j8MSgzUDEQkQIROV9E5gIVwAPAYOD/vC7fU9XfqGriC664844TkWdFZIOIqIhMidFnqoisEZFaEVksIme05loMw2h7rFq1CoDhw4c32y8bx58gvSG+TNCaeVB3AZcCRwC1wNPAQ7jJul2B77RCryLgA+Bhb4uWPQkXwpsKvOk9vigix6rq2iSuoSROU3GS+hqGkYN88sknQMsGyjcEYRUDVtWUPDML8cXn+zjj9AIwSFUnq+orqtpAK9PPVfUFVb1ZVZ8EYqWmXA88qKq/U9WPVPVanAf37dbINQyjbeEbqCOPPDKh/s1Nmk2VadOmMWzYsJTmNJmBis8fcGM8FwArROQ+ETk5GLXiIyLtgTEcvErvK0BSiyNG1d8zDKMNUVtby/r16yksLGTw4MEZ02P69OmUlZXxhz/8IeljbQwqDqp6FdAHmAwsAr4FvCMiHwE3Et4k3l5AIa6cUiSVnj4AiMh8XNml80VkvYh8LiR9DMPIQdasWYOqMnjwYNq1a5dpdVLCn7sVb7XdXKdV5YdUtRZ4DHhMRPoCl+FSu2/yuvxCRO4HnvT6pg1VjV/+N3b/M/3n3tjU+IBVMgwji0h0/CkXyKbMwiAJLKCqqhWq+j+qOhI4GZfJdxQuyaEiKDnAVqAeV4w2kt7AplRPKiIl/oYlSRhG3pNoBp+ROUKZqKuqi7zEhX7ARKAkwHPvBxYD50Y1nQu8HZQcwzDym2QTJIz0E2qFcVU9gEs/fzqZ40SkCPD/1hQAg0SkGNjupZHfDTwiIv8E3gKuxhnDBwJS3TCMPCefQnz5SrYugTEWVyLJZ7q3PQRMUdW5ItITuBXoi5szdb6qlqddU8MwchIL8WU/WWmgvDJFzY76qer9wP0ByjzTf25JEoaR3xw4cKCxzNHQoUMzq4wRl6w0UJkgqqpEcYbUMAwjDaxdu5a6ujoGDBiQtyna+UDoy20YhmFkGxbeyw3Mg/KwEJ9htB0sgy83MAPlYSE+w2g7WAZfbmAhPsMw2hwW4ssNzIPysBCfYbQd1qxZA1gGX7ZjHpRhGG2OAwcOANC5c+cMa2I0h3lQHjYGZRiGkV2YB2UYhmFkJeZBedgYlGEYRnZhHpRhGIaRlZiBMgzDMLISC/F5WJKEYRhGdmEelGEYhpGViKpmWoesQ0TWd+vWrX9xcXHaZS9ZsoSqqiqKi4vp1q0bAEuXLmXXrl0MGTKEsrIyunXrRqK6vffee+zYsaPx2KKiIsaMGQNAVVUVS5YsoUuXLrRr147t27czcuRIevbsCcD777/P9u3bG4899NBDGTt2LACVlZV8/PHHAIwf7/JJNm/ezEcffdRkXyQffvghW7ZsaTxfx44dOeWUU5J6f3bu3MmyZcuayNi3bx//+Mc/6NChA927d2fTpk0cffTR9O3bF4CVK1dSUVHRZF8sSktL2bhxI8OHD6d///4t6lJXV8dbb71FYWEhp59++kHtq1evZt26dQwdOpRBgwbFPc/f/vY3AAoKCjjjjDPi9isrK6O8vJzBgwczZMgQAMrLyykrK2PQoEEJTzr15Z122mkcckhyQRT/2FNOOYWOHTsmdazPokWLqKmpAT79DBcvXszu3bub7KuoqGDlypX06dOHESNGALBp0yZWrFhB7969OeaYY+LK8L/3keeL5J///Cd79+7lpJNOapwL9e6777Jnzx7Gjh3LoYce2qT/1q1bWb58OT179mTkyJEHnc/Xf/To0XTp0qVJm/+9iqeL/54OGzaMgQMHAs3fB0444QQOO+ywJvv831TXrl058cQT474vseT279//oIoaGzdupLS0tInOu3fvZvHixU3uA0HgXcMGVR0Q3WYGKgYisgQ4HPgkyUOLvcelQeqTAYq9x6UZ1CEIir3HpRnUIQiKvcelGdQhCIq9x6UZ1CEIir3HpRnUIQiKvcelGdQB3OrpW1T1IMtqBipA/HGsyJT1XMSuI7uw68gu7DrSh41BGYZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGVWBafYRiGkZWYB2UYhmFkJWagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGKklEZKqIrBGRWhFZLCLxy0+7/uO9frUislpErk6XrnH0+bGIvCsiVSKyRUSeE5GDyzM3PWaIiGiMbUK69I6h07QY+mxq4ZhRIvI3EdkrIhtE5KciIunSOY5OZXHe2782c0ys/mn9XonIOBF51nsfVUSmRLWL9xlt9N7vEhE5LoHzThSRD0Vkn/d4UWgXQfPXISLtROSXIvKeiNSISIWI/FlE4pemd8edGeczil9+PcTr8NofjKHPPxI4b0bvX2agkkBEJgEzgTuAE4G3gRfjfWFFZCjwgtfvROBO4F4RmZgejWNyJnA/cCrweaAOmC8iPRI4dgLQN2J7PSQdE2UFTfUZFa+jiHQFXgUqgZOA64AbgOvDV7NZTqLpNYwGFHi8heOuijruoRB1jEUR8AHufdwbo/1HwA+Aa3HXuBl4VUS6xOgLgIh8DpgLPIqrtP0o8ISIJLcmS3I0dx2dcZ/H7d7jl4CBwEsiksg6JcfR9DMqDUjnWLT0eQDMj9Ln/OZOmBX3L1W1LcENWAj8LmpfKXBnnP6/BEqj9v0eeCfT1xKhTxFQD1zYTJ8huJvm2EzrG6HTNOCDJPp/G6gCOkXsuxXYgDcfMBs24BZgZ6SeMfoocHGmdY3QZzcwJeK1ABXALRH7OgHVwLeaOc9c4NWoffOBxzJxHXH6HOu9/6Oa6XOm16dXNnwe3r4HgeeTPE/G71/mQSWIiLQHxgCvRDW9gvNGYvG5GP1fBsaKSLtgNUyZLjhPekcCfZ8Skc0i8paIXByyXokwzAshrRGROSIyrJm+nwMWqGrkv8uXgX44A5xxvHDjN4HZUXrGYqaIbPXCtVeLSDb9locCfYj47nvX83fi/1Yg/u+luWPSTVfvMZHfyyIvLPiaiJwVplIJcrr3+10pIr8TkSNa6J/x+1c2famznV5AIS5EFEkl7scYiz5x+h/inS8bmIlbsOydZvrsBn4IfA0XFngNmCsi3whdu/gsBKbgwo5X4d7rt0WkZ5z+8T4Lvy0bOBd3c/9dC/1+CkwCzgHmAHcBN4erWlL472cyvxX/uGSPSRven9S7gOdUdX0zXStwHvtE4Cu4UPRr0sJ4dci8BPwHcDYu9Hoy8LqIdGjmmIzfv5Jb79nIK0TkbuB04HRVrY/XT1W34n6YPotEpBdunGF2uFrG1enFyNfegO9q4HLg7kzoFABXAe+q6rLmOqnqbREvl4pIIS40+PMwlWvLeGNOs4HDgC8211dVV+CMks87IjIEN+a5ICQVm0VV50S8fF9EFgPlwAXAU5nQKRHMg0qcrbixmt5R+3sD8bLHNsXpX+edL2OIyD3AJcDnVXV1CqdYCBwVrFapo6q7geXE1yneZ+G3ZRQv3PIlWvaeYrEQ6Coi0deXKfz3M5nfin9csseEjmecHgOOB85W1W0pnCbbfi8bgfU0r1PG719moBJEVfcDi3FhmEjOxWW5xOKdOP0XqeqBYDVMHBGZyafG6eMUT1OMC2VkBSLSETiG+Dq9A5zh9fM5F9gIlIWrXUJMAfbhboTJUgzU4pIrsoE1uJtb43ffe9/PIP5vBeL/Xpo7JlS8sZa5OON0lqqmaiyLya7fSy+gP83rlPn7VyayTHJ1w8X99wNXAp/Bjd/sBgZ77Q8DD0f0HwrUAL/y+l/pHT8xg9fwf7hsts/jYsz+VhTR507gtYjXlwOXetcwAjcetR/4fgav43+B8d57fArwvHdd/mcRfQ3dcDfNOcBI3NhAFfCDLPheCbCSqAxRr+07wMcRry/EhQJHAkd636ldwMw061yEu+kWA3tw42LFwCCv/UZPr694us7B/RnoEnGO14jIgMUlQ9QBN+H+bPwYOACckonrwA2BzMNleo6O+r1EZoNG/+6/B3wZ550c530XFfhKhq6jyPu9fA6XEHQmzvisj/o8su7+lbYvdL5swFTcP+59OI9qXERbCVAS1X888C+v/xrg6gzrr3G2aRF9HgTKIl5fDnzofVmrgEXANzJ8Hf4Nb793A/kLcGy8a/D2jcJlktXi/jn+N1mQYg6c5X0GJ8domwZoxOsJwBJcynYN8D5u7sshadb5zDjfowe9dvF0r/De778BI6POUeb3j9h3MfCx97l+RIg39Zaug0+nV8TapkSco8nvHjc2W4qbj7QdN+50fgavoxMu+26z976We/sHRp2jyXV4+zJ6/7L1oAzDMIysxMagDMMwjKzEDJRhGIaRlZiBMgzDMLISM1CGYRhGVmIGyjAMw8hKzEAZhmEYWYkZKCOvEZEpcRaPUxE5J9P65QsiMkZE9ohI/4h9JSLyZpz+V3qfwZAkZHxZRCpFpCgAlY0cwAyU0Vb4Km4mfeT2z4xqlF/MAP6oqhtClPEMbuLvDSHKMLIIq2ZutBWWquoniXQUkQ6qui9shfIFERmDq4ZxbZhyVFVF5LfAbSJyp6rWhinPyDzmQRltmogQ4DgReUJEduIqTyMih4jIj0XkYxHZ5y2OeFdUwVlEZJiI/NULcW0RkZki8q3oEJb3elrUsUO8/VOi9o/3FrqrFpEaEXlZREZG9SkRkTdF5BwR+Zcn/wMRuSjGdZ4gIk+LyDYR2SsiK0Tkx17bvV7orF3UMV08+b9o4W28EnhPVZe30C8uIjKtmVDslIiuj+OWvPhKqrKM3MEMlNFWKPQMjr8VRrU/iqs1djGuWCm49X9uBf6MWzfnTtyKt4/6B3mL2L0KnAhcg6tKPtQ7LiVE5AJcIdXdwDdwhXq7AAtEZGBU9yNxRYvvxt20K4AnRGR4xPlOxhUHPRL4vnctdwMDvC6zgCOAaMN2KXAo8JsWVJ5AM+scRb3vh3jLV0Tfe37PwSHYv+CWuFnpd1K3NtlHnkwj30ln4T/bbEv3hjMYsYpovhnVfk/UcWd4+/8jav9kb3+x9/oq7/VnI/oU4NamUmBIxP4mRXm9fUM4uPjoJ0RUYvf2dcWtwfOriH0luGrfR0XsOwJ3U785Yt/fgXVA52bep5IYMv8FvNTC+9vb0/+qOOeMV2zV34bEOe9XgQbguzHaHgFWZvq7ZVv4m41BGW2Fi3DLC/hUR7U/HfV6Aq7y85PeP36fV7zHccBS3D/9dar6D7+DqjaIyOO4at5JISJH4TydO6Lk7sF5QeOiDilV1dII2ZtFZDNumQVEpDNwGjBDVfc0I/p+YI6IHKWqpSJyEs4rbCmU1s973BKnfRkuBBjNl4jjZYrIWOAh4H5V/XWMLlsi5Bp5jBkoo63wgTafJBG9cNsRQHvckhax6Ok99gUqY7TH2pcIR3iPf/C2aNZGvd4eo88+wB8n647z6NbH6BfJ07j1sr6FW+/ratxyJs+1cJwvJ15SyW5VXRS9U0SKY3UWkQHAszjv67o459wbIdfIY8xAGYYjet2Zbbh1jM6I03+j91iBW5QumljLr+/DGb1Ieka99pcT/zEwP8Y59sfRJx47cKGy/s11UtUDIvJ7YKqI/A/wdeAuVa1r4fy+vt2T1OsgRORQnEHcCkxS1fo4XXtEyDXyGEuSMIzYvIT7l95NVRfF2HwD9Q4wUEQ+6x8oIgXA12Kcsxy3umwkF0S9XoFbyO+4OHLfS+YivLDem8A3RKRTC91/g8uQewLoAPwuARFlOEM+LBm9ohERwSWl9AX+XVWjQ7CRDMW9T0aeYx6UYcRAVUtE5DHcGNTduEm9DbikhvOBG1V1JW6s5CbgKRG5Gbdq6dW4pIZo5gC3isgtwD9w3tklUXJVRK4BnvEyBB/HeRS9cUuir1XVu5O8nB/iVrR9R0TuwoX7huESPRrnLqnqBhF5Fjde95yqrmvpxKq6X0QWAicnqVM0N+KWSb8O6CcikWNMq1R1CzQaspNxY2ZGnmMelGHE5xu4RIeLcVUMngS+g1vOuxLcDRo4F5cwcT/OYK0Bfh7jfHcC93nnmAd8BrgsupOqvoBLhjgUl379MvA/QB+cx5YUqvouLlFiHXAv8AKuGkOscaknvMeWUssjmQt83gvRpcox3uNM3DVGbpFe5qm4cOKcVsgycgRb8t0wQsCbXPonYKiqlmVWm8QRkUdxxmyYqjYkeExXnLGbqqqzQ9ZvFjBSVeONDRp5hIX4DMPAG0MrBiYB1ydqnABUtUpEfgn8SEQe1ZD+9YpIH+BybJJum8EMlGEY4EJpu/HmH6Vw/N1AIS7JYWMLfVNlCPADVf17SOc3sgwL8RmGYRhZiSVJGIZhGFmJGSjDMAwjKzEDZRiGYWQlZqAMwzCMrMQMlGEYhpGV/D/npk71V02pGgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_cs_leahy.freq, avg_cs_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Leahy cross-power\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_cs_frac.freq, avg_cs_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"rms cross-power\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_cs_abs.freq, avg_cs_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Absolute cross-power\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a cross spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized cross spectrum.\n", + "## 1. We can linearly re-bin a cross spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_cs.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_cs = Crossspectrum.rebin(avg_cs, 0.25, method='mean')\n", + "lin_rb_cs = avg_cs.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_cs.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a cross spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`.\n", + "\n", + "Logarithmic rebinning only keeps the real part of the cross spectum." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_cs, log_rb_freq, binning = Crossspectrum.rebin_log(avg_cs, f=0.02)\n", + "log_rb_cs = avg_cs.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that like `rebin`, `rebin_log` returns a `Crossspectrum` or `AveragedCrossspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_cs))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Time lags / phase lags\n", + "## 1. Frequency-dependent lags\n", + "The lag-frequency spectrum shows the time lag between two light curves (usually non-overlapping broad energy bands) as a function of Fourier frequency.\n", + "See [*Uttley et al. 2014, A&ARev, 22, 72* section 2.2.1.](http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2014A%26ARv..22...72U&link_type=EJOURNAL)\n", + "\n", + "In `AveragedCrossspectrum`, the second light curve is what is considered the reference in Uttley et al. and in most other spectral timing literature." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "30it [00:00, 264.86it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoYAAAF9CAYAAACZN6k+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAADXRUlEQVR4nOy9d5glR3U2/tbkmZ3ZnKRd7a5Wq1UOoAVERgIswAbjjxxtsI0BG/wDY5tgbD6CZYwJBgMGPptgkkgGhG1kgUAI0EpaSSiHlVarzTlMzvX74/SZrntvh6ru6q7q3X6fZ547c+fevmdqqk+99Z5QQkqJGjVq1KhRo0aNGjXaXBtQo0aNGjVq1KhRww/UxLBGjRo1atSoUaMGgJoY1qhRo0aNGjVq1AhQE8MaNWrUqFGjRo0aAGpiWKNGjRo1atSoUSNATQxr1KhRo0aNGjVqAAA6XBvgI5YuXSrXrVvn2owaNWrUqFGjRo1U3HrrrYeklMtsXKsmhhFYt24dtmzZ4tqMGjVq1KhRo0aNVAghHrV1rTqUXKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRoCaGNaoUaNGjRo1atQAUBPDGjVq1KhRo0aNGgFqYlijRo0aNWrUqFEDQE0Ma9SoUaNGjRo1agSoiWGNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJoYnKW69FXjwQddWnDwYHQVe+1rgG99wbcnJhZkZQErXVmTD9LRrC04+zMy4tiAbBgerOc9nZ11bkB1TU64tKA41McyBT30KWLsWuPtu15aY4SMfATZtAs46C9i507U1+rjnHkAI+vrFL1xbY4bPfx74j/8AXvlK15aYYWYGOP98GvOvf921NWa47jqgowNoawMmJlxbY4a//EugsxN4z3tcW2KGt76V5sp551WL2B49SnZ3dADPfKZra8xw9dXAggU0z++917U1+njwQaC9vZr+/HOfA7q7gd/6LWB83LU19lETw4z4/OfJCe7YAVxwAbB/v2uL9PFXfxV+/8IXOjPDGOefH37/9Ke7syMLVMf3hS+4s8MU3/seEXIAeNWrqrNLlhJ49avDn9/wBne2mGL/fuCf/om+//u/B/bscWuPLnbsoM0yQATlox91a48J1E3PddfR31IVfPaz4fcf/rA7O0zxz/8cfv/0p1dnngM0X6QErr0W+IM/cG2NfdTEMCOaF/fXvtaNHabYtq3x59tuc2OHDdxxh2sL9PDLXwLf/37487e/7cwUY3z3u40/V2Xh+fnPgb17w5+/8pXqqOOveEXjz9/7nhs7TPGDHzT+/MlPVie8+ZOfNP7c/Lf4iuFh4IYbwp+/8hV3tpjiM59p/PmTn3RjhykOHmwc86uuolShEwk1McyAffuALVvo+2XL6PH++93ZYwImJW3Kf74KuYYjI63PvfnN5duRBf/1X7RAXnQR/XzddcCBA25t0sHEBNkOAJdfTo/f+pY7e0zwZ3/W+tyuXeXbYYo9e4Cf/Yy+5zHn/4Hv+Nu/pcczzgBOPZX+ljvvdGuTDoaHw43bE55Aj81E0Vd897tk/5o14XMHD7qzRxdHjoTf85r005+6scUUH/84+fPLLgPmz6fnfvxjtzbZRk0MM+Dmm+nxkkvC/MLjx93ZYwImtB/9aEhqb7/dnT262Lo1/J7D37/+tRNTjPHoo/T4trcBT3oS5e195ztubdLBr35Fi87KlRTSBIC77qpGOHloiB4/9rEwZ6wKiuFvfhN+//nP0+PPflYNReLYMXocHQWe8xz6/n/+x5k52lBt5JDyr35VjcIIDmO+/e3AwoX0vTqHfAUT7zPPpLnS1kbRq8lJt3bp4Lrr6PEv/gJ4/evp+4cfdmdPEaiJYQb8/Of0uHIlsHQpJSwfP16NBHd2GpdfDhw+TN+//OXOzNEGO5JXvQr44hfD5x96yI09upicDG0/7zzg2c+m76+6yp1NurjvPnp83vOAxz8+fN535U1KUvUB4I1vDFWgKqRNsGryjneQ8rZpE/mVqmyCACpue+5z6ftrrnFriw44h/ZP/gQ4/XRSOw8f9j8KpCqDz3wm8LrX0fdVUDtf9jJ63LoV6O8HTjuNiDhvon3F7GwoBj3hCcC559L3mze7s6kIOCeGQogfCyGkEOKDTc8vEkL8PyHEISHEiBDiJ0KICzSv2SaEeJcQYrsQYlwIcYcQ4kW2bObE5CuuoJ0Oy/i+h0127iQi1dcHnHMO8M53hr/zvU0DF28873nhzhhozZn0DXfdRQ58wwZSmLu66PkqVOHxwnjOOVQ5yKFN323fs4dUzUWLgN7ekBiy0u8zHnmEHjdtosdzzqFH39VONd/3JS8JNxIPPODGHhPcdBM9PvnJNM+f9CT6+ZZb3NmkA54rp55KhXlPeQr9fNdd7mzSRU8PPTJBXL+eHn3357ffTmlNp51GotBjHkPP+263KZwSQyHEKwBcFPG8AHA1gOcAeAuAFwHoBPAzIcRqjUt/AMD7APwLgOcC2Azg20KI59mwmycBO7+nPpUefXcknMT+3OdSK4wPfQgYGKDnfM95Y2XwrLPokSV83xd7zt+88EJadNgRAhSm9RmsGDI54fCg7/OcE8P5/uTHW27xfwPEism6dfS4ciU97t7txBxtfPOb4fddXURW2tupAMj3SMqvfkWPvPHZuJEet293Yo42WBVncnLhhfTou0ABhPP7b/6GHpkY+q7Sci7hb/82Pa5YQY9V6kqiA2fEUAixCMDHAbw94tcvAPBkAK+RUn5DSvnj4Lk2AH8V8Xr1ussBvAPAP0gp/0lK+TMp5Z8A+BmAf8hrt5RhPgFP5sc9jh45adxXsNz9PIUe8w3q88Q+cIBISmdn6LSZpPgeYmPFhAntGWcAZ59N3/u8y5yaAm68kb6/+GJ6PPNMemSlwldwusSll9LjypWk6g8Ph2TXR4yPh2GqtWvpkUm574s9p0ZwPmdHB7BqFX3vc+rB8eOUjzpvHpFZIPSJvoc1edPJEav16ykatHt3mCbkK3ijw3OEVX3fi9tYuefWaStWUD/DvXuBQ4fc2WUbLhXDDwO4W0oZdRbECwDskVLOUS0p5XGQivi7Kde9AkAXgK82Pf9VABcIIU7PbjI1Qh0cJEeydCk9x8TQ54UeCHNSViuaKzsVn0M+fDOee26ocPLu2PcdZjMxBIgcAn4nLO/cSUUEq1eHzpt3x//9334XoDAR4QUeCFXDW28t3Rxt3HUX5aSuXh2ONecw+TxXgDBF4g//MHyOya3PPQHZttNOI0UfCOeNWvDmI669lh6f+ER6bGujnrqA3+Hkhx8OyTinBfFG3+eNGxAKKHx/dnVRCgIAXH+9G5uKgBNiKIR4CoDXAvjTmJecByDqPJF7AKwRQvQnXP48ABMAmssSghRjnGtgaguYiGzYEDoSDveofdN8BBNDJrRAqAZxAraP4ManvKMHyHkLQbt6nyvZeFfPSidQDWLIqiCr4kDj3+BzaJM3EqedFj7HaqfPJIVbeJx9ditJ8T2sOTZGj2qREm86fVbe2DZ1rjz2sTT+mzf7fXoL+w91zHnD7HOPV1b0n/70cJ6vWkUq89Gjfp8kwvNFFVc4lF+Ftm+6KJ0YCiG6AHwOwD9JKeN0qsUAjkY8z92PFiV8xGIAx6Rsaa16RPl9lF1vEEJsEUJsOZjQCIoVB54MABGW/n4ihj6TQ14wWQECwgnus91s2ymnhM91d/tfySZl6Cyqphiy+n26oq8vWQIsX07f+5x6EOW8qxDW5JyxJUvC55Yvp0T9I0fCFjy+YXY2vEfVzVsVFEMmUOcqcsGSJbTZn5721y+qlfeqX+ReqT6nHvB8UDedbW3h3+HrmE9Nhf58w4bw+aqkHpjAhWL4VwB6AXzIwWfHQkr5eSnlJinlpmXc4C8CLNGrxLCjI5Twfd01HDtGu7G+vnBxB8IF02cFiM//VB0g4D/B2rOH8tqWLgUWK9sR3+0GohVDIKyW9ZUY7thBDrq/vzGUzCTRZ2LIRRCcVwiQosJqp69h8EOHGqvAGawY+twmiPu68rxmsILoazX4tm1UHbt0aZheA4Rzx+c2XkwM1abcQOjffT0a76GHaMxPP70x6lYVVd8EpRJDIcQaAO8B8F4A3UKIhUKIhcGv+ed2kFoYpQry8hqlJkL53cKgsjnqvUeQAzypT2/KVOSffZ0cvNCffnoo3wPhDt/XmxEI20lwMQGDd22+OsGoMDIQki2fiWGUYgj4X4XHc+Hii0lVZjAx9HkDxIpDM0nhxHxf82nZd6iRCCAMcfpcIMb+WlX0gWoQQ4AECdWfM2E5kmuVKxZxxND3zRsHElVVHKiJoQ2sB9ADKgQ5qnwBVEl8FMAFoHzA8yLefy6AHVLKpEYf9wDoBnBGxHsB4N5MlgeIm9Q8OXyt2GRH0qwAsQN85BF/zzXl0IKqpAD+S/hMUpqJIZPzRx/1t4gjTjH0PZTMC3nVFh0gJK2rmxpy+R5iY7ubF8wLL6SWNQcP+tuyJiocC/hPDJuLIBgcmfC5QjZuDeXUA1/9OVd6q2oh0Gi3r2uoKcomhr8BcFnEF0Bk8TJQ0cgPAawSQjyd3yiEmA/g+cHvkvBjAFMAXtX0/KtBVdCZqZuU0YntgP8kRVUMVSxfTkfjDQ76uWhKGS6IXOTD8H3M2Tk3O++eHlJXZmb8zb+Kmy++5+qxetVMrpYto3ZHhw+HhRK+gcc0jhgyifENcYphe7vfpHZmJuzfqqbXAOH/wFdiyHOlmdAuW0b+Zd8+P0UKKcMNMxMqhu/EkO+/5rkyMECEfHzc/37AuiiVGEopj0kpf978Ffz60eDnYRD5uxHAV4UQLxdCXBE8JwD8o3pNIcS0EOLflM84AOBjAN4lhHi7EOIZQojPArgcwLvy2H/8OOWM9fVRPo0K33eYcYohEN6QPobZjh6lquOBAWpvoMJ3Cf9ooIWrJ7UwfM4zHBoilaenp5WM+z7PoyrYAUpu9zltYniY/Et3d2M+KuB/14O4MVef83HMDx2iwpklS8J2Owzf5zmnFXBPVEZ3N/C0p9H3PlYm79pF+e7LlrWSWl6HfG37xmS8eQME+L8WmcL5kXhRkFLOAvgdANcC+AyA/wQwA+AyKWXzrdoefKl4D4APAvhzANeAmmW/VEr5ozx2qWGq5gxG3x1J84kKKnwuQOFdb9TNyLt6HxcdIJkYshLn4+6YTzY57zwiVCp4nvuuGEaRFJ/DyWoYudm3sN2+LpjNzYpV8HM+3qOsADVvfoDqzPPmyBUQbv59tJ03N1FrKJNcX3Npk+b5iUYMO1wbAABSyuZCEUgpjwB4ffBl+t4ZEDH8YOs7siMujKw+t3MnyeUtpS+OEdVOgsHP+UgMederVoEzuHj8wAE/x5zDxFFj7nOSOC86zbmRgP8bICZPSRsJHxdMXlCifAufsnDffRT+bG/eBjsGN4KOGnOffYsOMfR1nifZzn4xoeuaM7Ddzek1QJhzuGePn/48LpcWOPGIoZeKoa9Qu+Q3Y/58+hob83Oxj+oFyPBZMeScjahFp7eX2pJMTVGOpG/gMHEUweJUBFYVfQLb1BzSBIjQdnbSa3zL1ZudDdtJceN2FT7P87jQIEDzfPFi+vt89C3cjoarp1X4HEpOIlennEIEfP9+Pwtn4opPgDAHzkdiyHZHjXlfH/nzyUn//LmUwM030/fNRZBATQxPasRVPDJ83WUmJVkDfod72LnFtZbkv8e3pN/Z2eT5wk2MfXTeTAyb82iBxlw93wjW8DDN9YEBWmSa4bNiyCSlufCEoarjPmF8nBbxzs5k3+LbXAGSiWF7O4VkpfQvtDk9TX5DiGi/6OtcAZLXIfV532wfHAyPwm0uyAP8T2syRU0MDZAUSlaf940YHjxIRGXp0tYka8Bv563rSHwjWAcP0s538eJoksLOxcfiE97Vx5FxX+fLsWP0uGBB9O99JoZRx1Wq8DU8yPYsXx4d+vNZMUxSrwB/j1E8dIgI65IlRMib4etcAapLDONa1TD4eZ/bBJmgJoYG0CWGvi08STtjwN+FHkhXDH3dHSelHQB+V4InpR0A/rasYaUzjhhWeZ77ugFichW30Ps85ml+kVV938L3aXb7OleA6hJDJnzqcZUqfCbjWVATQwPE9Rlj8OTg3YUv0F3ofdzVVzWUHNfbjeGr3UByZS/g7yk/fH/G2V0FxTBtA+TbwpO20PusGKYRLM6x9Y0Ypimdvs4VIH0j4atfTJsrPOa1YngSgm+0qIRfIHQkvhHDtEk9fz6FO4eH/Uv6rfqCGTdXFi6kM7YHB/1Lbk/bSHDOpG8EK+4YP8Ypp1C4c98+ytPyCSfqPF+wwF/foksMffXncWO+ZAnN88OH/ZvnafPFV2KY5hMXLaL866NH/T3NygQ1MdTE1BQ1oG1ri+5LB/i7w0yb1EL4GfKRsrqKYVLVINCYOO7TYq+eNBM3X3y0G4g/xo/R2Un/j9lZv470U0/AqVrxSZoCJIS/qmFVQ8lpvqWjg2yX0j8FSzeU7NP9CaT7xLa2cL74tpHIgpoYaoKdA+8MouCrI0lzgICfeSkjI1T12NvbeuoJw0e7gXQHqP7Op8X+8GHaBC1YQOMeBV9JCs/zuPA94OeY799PhUrLllG7jihUeZ77uOmcmCB1p6Mjui0T4O+5w2mqm/o7nwjWzEw4lnFFHD7aDaQTQ+DEKkCpiaEmeBcQl3wKVFcxBPzMkWAHuGxZfLNTX0mKjvP2laQA1dtEAKToA/HFJ4CfYx53prYKX1VaHWLoo2Koqm5xG33uP8p9Gn2B6hfjwPevT+drHz4cVlN3xBytwWuUbydC6cxzX+/RLKiJoSbSytUBf3eYaaEHIPy7fJrUaWFkwM+FHkgPsam/88l2nrtJY+6rA6w6MUzadPoaYtPZAPlIDNPy9ICQGPpEroDGFkFx8FF50/GJ3Jj+jjuIRPoCnbWIc68feqh4e4pGTQw1oeO8fbwZgVDBTCK1PiqGOjejryTFRDH0yfa0UA8QJrcfOeJXcnvViWHSmPOis327nwtmku0+dj3QUYD6+0lNHBnxa55XVTHU8YlcrDQ5SQVLvkBnw3zWWfToY29aU9TEUBO6oeTOTlqgfDoujG2Py6UBqqsYqsRwdrZ4m3Sho9L6GAbXmeft7TSXpPQr0bqqeZ06xHDBAvry7chNnXuU/y6f5oqO6iYEdWwAwk2HD6iqYqhzfwJ+FnHobIDYbh+POTVFTQw1oRNKFiLcqXFen2tIGS4kScTQR+VNx5F0dVGV+MxMePKFa0xP03xRK9WiUFWSAvg3X9KOCWNUecx9WzDVqtck2/loxaoRWiD8u3yZL1JWXzFMI4a+5epPTxPZEyJ5DeXf1cTwJIJOKBkIk2d9IYajoyTL9/bGV5kCflZU6RTNAP4pb+pcaW+Pf52PJEVnAwT4FwY/cIAWzWXL4hPbgWqPuW/EcHSUugb09EQf+8jwbaEH9MgVEPbE5B6ZrjE8TBXVfX3xnRoAPxVDnRxDwL95fuQI+ZZFi5J9i48boKyoiaEmdEJsQEhifNmp6aiFgH8KEBCOYRox9G2xNyVXvtgNhNWAcaeHMHybLzotmQA/x1x30+nbgqmqhXFdAwA/lRRdxZAJli8bZl1Cy3b7sg4B5qFkXwiWTn4h4Oc8z4qaGGpClxj6FkrWJYY+K4a6i70vJEV3zH2zGwiPuTvjjOTX+abSVnUTAVQ3lKxrt4+KoS4x5EImX3IMdckV+0yfFEOd4hPAvxNndPILgVoxPCmhK4P7dkOaEsODB/2petRVgXwjKaYqLYdBfQA747QF0zfF0HQT4dOYV50Yps0VdcH0pUCsqsTQJDdSCPof+XJEW1WLT7gxe1oUpVYMT0LoNP4F/JscuiRl3jzKFRofp9whH6C78PimAqmn5CRh3jzK+xwbo5YYPkCngh3wjxjqVIEDNOZ9fTTPfWmHUXVimGZ3Zye1fpmdBYaGirdLBzqVvYB/xFCXXHV0+BcFqmrxCZ8Jf9ppya9bsIDI+PHjVAxZZdTEUANS6jVEBfyb1LrEUAi/WtbMzobkOo1g+UZSTMbcJ1I7NUULd3t7ci9AwL8wuO6YA/41iz7RiSHg34ZZN1fPN2KoqxgC/o15VYtPdAWKtjbqkAH40yEjK2piqIGhIVIY+vrizzJlVJUYAn4RrGPHiJAvWJBcCQb4Ra4AfcUQ8ItgqXYnFRMA/oXvdTcRgF9jPjZGCj2raknwdcHUIYb8f/HB9pERGvfu7vQxPxGIoQ9r0cgIzfPubmBgIPm1vs1zE9/CtvviF7OiJoYaUMNUaQumTzcjYEYMfboh2e60Yh/Ar4Ue0FeXAb8IVlU3EUA2YujDmKsV7Gm+xaf7E9BPyldf44NfVMlV2pj7RgxN/KJPiqFaeFK1NdTEt6xbR4+PPFKYOaWgJoYa0C2CAPyb1Lo5Y4BfJxSY2O0TuQLCo7/4KLAk+ERSTgRiqGM7E3YfxtxEdfO1jYcJMfQh381EdeN72Jc+hib3qE9Vsrr5hYB/GyCTMV+9mh596UqSFTUx1IBuYjvgHzHMohj64LyzKIY+LPSAfmK7+hofbOe8GJOQyeHDfiRaV1UxzEIMfVkwTwZiePbZ9Lhtmx9V7Cb+3Ke1KAsx9MFuwMy38Gt8UGnzoCaGGjAhKWryqQ+tGUxs92nhMVEMq0xSfHKCTAx5Diehs5NeJ6UfidYmY+6Twqzb3Fp9jQ/3J1BdYmjiE7u6qJJ9dtaPKvaqEkPdwhOgkVz5sIaa+Bb2nTUxPAnA+SU6C2ZHB+WlSOlHXkpVcwx1G4oDNOZLltCY+2C7SVjTpyo2E2II+LU7NnHePi2YJurVvHlEVMbG6Ms1qk4Mde5PwK971MS3+HR/6p4GBYRr6OysX2NeK4Y1GsCTM62FB8OnhcfECfqUY2jqvH0JD6rOTIdg+bjoVI0YcpsdIYD589Nfz3b7MOYmxFAIf06FkDKb2ulDTmpViaGUZh0PfLk/AbM0FcCfNXR6GhgcpHtPZ/33aczzoHRiKIS4QghxnRBinxBiQgixSwjxLSHEucprfi6EkDFfP9b4jLj3XpzFZhPFEPAr6TdLsrJrBwiYKYaAP47k+HFy4PPnUz/ANPiy6ADVVQxVu9s0PJovdgNmuVeAP6o+N/EdGKAWJGnwacyrSgxHR4HJSTqIoLc3/fW++ETA3Lf4Ms+z+hbXcyUvUjrEFYLFAG4F8BkABwGsAfBOAJuFEBdIKR8F8GYAzXv/JwL4GIAfan7OlwB8rum5B7MYXFXFkENOXV3UgzENvjhAwNx5+9KawSTsAPg15qa7el/yaUzCa4A/dgNmiiHgz4JpEkYG/Lk/geoSQ1O7fSLjJwIx1IFPY54HpRNDKeU3AHxDfU4IcTOA+wG8GMBHpZT3Nr9PCPHHACYBfFPzo3ZLKTfnNBeA+eTwhRiqC2Za7yjArwXTVDH05YY8EYhh1Zyg6Zj7Yjdw8hBDn8a8JoblwzRNxZc1tKo+MS98yTFkNzcd9UshRB+AlwC4WkpZ+lThUHLVFMOqOkAguxN0PeZZiaEPjiSrE3Q9X7ISQ9d2A+Zqpy/EMOvGzfX9CWRXmF3Pl6xRFB/GvKqKYdY0Mh/8eR44I4ZCiHYhRJcQ4kxQyHcfmpREBb8HYADAlw0+4k1BDuNokNP41Ky2VlUxNGn5AjQumK57dlVVMcxDxl2PeVWLT0yJYV8fVT6OjQETE8XZpQPT8L0vC2bWDdDx4+5bkFR1w2xKaNX707VvqSoxNE0j82nM88ClYngTgAlQ3t+FAC6XUsbVlL4WwAEA/6N57a+C8hSfBeANAJYAuE4I8Yy4Nwgh3iCE2CKE2HKwqXTOdNfgCzE0dYA9PZRIPjlJZ0O7hKkT9GXMTRdMzv+cmaHzRF3ClKRUlRgK4Y/tVV0wTTcRHR1UkOVDGy+Tyl7AH2Jo6s9V3+K6B2NVxRXTtb+7mwqDpqfd+/M8cEkMXwPgUgCvBDAI4FohxLrmFwkhTgURvK9JKSNDzc2QUr5GSnmVlPIGKeVXATwFwB4AH0x4z+ellJuklJuWNSX8VLX4xNSRAH6ENqWkFgGAXvsRwJ/woClJAfxZeKqaT2O60KuvdTnm09O0YAsB9PfrvceXhuhZ5rkPflFKc9t9aRGUxZ/7co9WdQNkuvYD/ox5HjgjhlLK+6SUNwXFKM8E0A+qTm7Gq0F2moSRmz9rCMB/AXic6XtnZsx6pAF+OED183XDsYAfC+bICIWbOOSnA1/IVR4y7tJ29QSTLGETlzBVlwE/bFdzl3VaYQD+LJhZiKEPYz4yQj69r48UNR2sXEmPrs+/zbIB8mEtGh+nlI2uLr02O4AfdgPmiiHgxzzPCy+KT6SUxwA8BGBDxK9/H8AdUso7bHyU6RtYuRoY0HfevrRmqCpJ4ZtRl4gDIZlxTQyrqhgODREZnzePjrvTgS8OMM+Y+0AMTRYdX4ihadqB+lqXY24aAgdCYsjHurlCVRVDVS3U6Y4B+DfPTRRDX0htHnhBDIUQKwCcDeDhpuc3ATgXOdTC4DrzAfwOgJtN32sqgQP+TIyqhpKZjJvcjGpyu0tUlYxnmec+LDrq51eNpGQZc18WzKqGkvMQWtebzhOBGOrCl3lu2pEECG334fjHrCi9j6EQ4j8B3AbgTlBu4UYAbwO1qvlo08tfGzz/tZhrrQWRyfdLKd8fPPcOAGcB+Bkor3AtgHcAWAngVab2ZtnV++AA1c+vGknJohj6YDeQT72q2oLpCxmviWH5qOqYZ1EMffMtJv7ch7WoyuJKFtt9Olo2K1ycfLIZwEsB/AWALgA7AfwcwJVSyu38IiFEJ4BXAPhxQrWyANCORuXzAVB7m98DsABEPn8F4A+llJkVwyzJp0eOUO6WrnxuG3l2mC6dYB7F0LXzzjLmp5xCjy5zmLI4QCbufAygq3mexXYfSG2eMNXRoxT6101vsY2qEsMsGyCe54ODbsc8T5GVD2Nucn9y3u3gIJ2FrpveYht5FMOaGBpASvlhAB/WeN0UgMTzAAIiKZqeuxrA1TlMbEAWxbCnh77Gx6lXms5xdEXgZFIM+/vJkYyMuHUkWRbMU0+lxz177NujiyzOu6srnOejo5Sf6AJZ7lEfclKz2N3RQbYfP062m9zbNlH1ULLJmLe3U4750BB9mZAEm6hqukcWu9vaaL4cOkTzZcWKIixLRx5Vv8qhZC9yDH1Gll094EeunmmDa8APu02PCQNIrfJBBcpCxvm1LklKlhAbEN4XPihvVVUMTcfch/YpVVUMs85zHzbMWSIpVSXjgB+2n6yKYU0MU5BlV6++3qUjqWooed8+euRqQF24HvOpKepL19ZGCoMuqkqugNB2XrTKxuxsdXNSs46564VnaoqUeVbSdOEDMcwSSgbc36NqY3CTee7TmFdtngPZ1n9+rSufaAM1MUxBXsXQ1cIzMUHOu6PDzHm7thsIHQEn8erCte2qAzTJQ3Jtt/rZpgummmfoAkNDtGgODOj3vATcL/RAdRfMLO1HAD8UoKxj7voeHR2l/os9Pfr9F4FqE0PX80Ul4ybrv5qTWlXUxDAFWSe16xtSrWAzcd4+hJJNTz1huHbeVVUjgPyKoSvbq7pxUz/b1HafiKEJXPtEoLrEMAtBAfzoqZs3TcUVwVKboZvkrNfE8CRAVUPJWcLIgHu7AVKBAHNi6LqgoMr5S1UlhlkXTNdzBcjvW1wtPFkJrU/EMOt8cTXPs+QXAo0dMlyhqmkqWedKTQxPAuR1JFUjhj7kGKqnzZjAdUFBlRXDqhafZB1z13MFyL5g8n3hauHJq175UExQtc1blvxCwC8ynjVNxfU8N50rru22gZoYpiDr5GCnyepX2TgZFUPXYXAb5EoaH9poB3lJrSsneDKqtEwMXfmWrMSQjxUdHqYCFhfIqzBXTRlX5/nsrE2L9JF1nrvOX64VwxqxqOrkyEoMVaXTlSM52RTDjg7qATg7S4umC1TdeZuOeU8P5Q1NTFAfRhfI61tcE0PTudLW5j4iUdWc1KyhZPYtUlLOnAvk9S1VUwznzaO8fi4YqiJqYpiCvHKyqwUzKzHs7KRm0S5JStWLT7I0wPXF9qqGkk3t9qHvZVbf4jqUbGOeu1L1T7ZQsvoe1/OlasQw6zwXwv3mLS9qYpiCqiuGpkoK4N4J8s2UVTGs2q5efU/VCFZV7Vbf42K+ZO2/CFQ3lAy4XTCzth9RX+96E5FnzF2sRVJWlxhWdcxtoCaGCVAnddWIYdadsfoeFwsmN89tazM/Ys11onVWQgu4HfOZmewkxfWCmYcYurQ9a/9F4MQghi784ugoMD0N9Paa9QIE6k1nVoyPA5OTQHc3pW+YwPUamse3uLY9L2pimICxMXIkfPaxCVxPjKzhWMBtuEftv2h6WL0vzjvLmLt03uqi095u9t4qE0OX86XKi06eTadL2/MQWtddJqoaSj4R5nnVNkA2UBPDBOTJpXE9MfKQFJcJ4lnOd2ZUmRjWJCUbbCiGLsc8i2+pco6hS9ttbCLqULIZTlbf4tr2vKiJYQKqujNWP7dqJIUVw5MpNxJwq7xVNRwLVHexz+NbXLcIqipJydraSH2P601n1ULJVSZXeea5681bXtTEMAF5dsZVdt4uQ8lZ248A/jjvqpHxk50YVnXMq+hbXBaf7N9PjytWmL/Xda/RkzGUXGXf4prU5kVNDBNwsiqGLkPJeXb1/f2Ulzgy4qaBblVzDPOotFV23j6EkrPYzX3SRkYoB7psVNUvMjFcvtz8vT09VEAxOemm72VVVdo887ynhwqzJiZo3MtGVcfcBmpimABbk3piwqZVeqi6epWFpLjuTVf1Mc8yz3t73c5zGwpz1UJsbW1ulbeq5hjy/znLXAHcbiROxlCy2g+waqS2JoYnMPI4QNeT+mQkKer7XNh+MuYYupzneXoBAm7nSh41AnDXQD9PL0DAbaudPPcn4DaEb0O9culbspLxqlax18TwBEaekAngbnJMTVGrnfZ2oK/P/P0+5BhWjRjOzoYLT3+/+furTMZdkdrhYSIq/f3mbXYAf1oEZYErkqL2AuzuNn+/D5vlvMTQZbFSVdNUqraGArViWCMGeRRDwN3kUNVCIczf77JRdF5H4opg8fGBVSQpeee5K9vzEHHAD8Uwy0Kvvq/sMc+7ifBBMazamKsbfdOm/4DbnPE8kSvA3QZoaoo2QW1t2fxLTQxPYFRVMazqzah+ZlaS4mqx58/LO+YuSUoVFUMguwLkkhhW9R6tMjGsqmKYd6PvMgKUd567WkPVMHKWMa+J4QkMW0pK1YihD7v6rM7ble2HDtHjsmXZ3u+ymCCvelVVxdCHYoKqqVd5iaHLBdNWjmHZY573/nSpGOYdc1fz3FYOcE0MT0CcrIqhD3lAVbP94EF6XLo02/tdVmvmVWldjXmViwlqxdCGNWbIG0p2vdHPG0WpFUN9VDWNzBZqYpiAqu6O8+52XJIUWztMV2OetfqO/14uqCgTVVUM84aSVZJS9pjbIoa1kqKPvKHkqqpXalum2VkrJmmj6v68amu/LdTEMAFV3TXkXXS4B+PkZPm96aoaBs/rALmCXEpqXFwm8i48VQ0luxzzqqq0ee3m/5WLDdDJGkru6KBxVzsnlAVbeZ1VE1dqYngCw9auwWWychaovemqRrCqGtZU3+vKeVeVGOYZc9cEq2qKoVp9nwUdHdTqxgUZtxVKduXPs96fgHt/XtVQct6UicFBN0co5kXpxFAIcYUQ4johxD4hxIQQYpcQ4ltCiHOV1zxDCCEjvo5pfkaPEOIjQoi9QogxIcSNQoinmdp6siqGgBuSImX+HWZVFUP1va52x1VbMPMqhoCbMbcxz11tOm2MuQu/KGX1FUMbxLBqG+aqhu87OtxFI2ygw8FnLgZwK4DPADgIYA2AdwLYLIS4QEr5qPLatwK4RflZ92TQfwPw2wD+EsA2AH8K4BohxBOllL/RucD0NP1Ds/YxAtwTw6o5kvFxGvfu7mzNc4HqOkDAza6ezyHt7KQUgixwnQeUNa8TcDPmo6PAzAwpZ52d2a7hKsSWVzEE6B7Zv7/8MZ+dDY9wzALX8zzPRt/FPJ+epv6LbW3ZDloAqqsYAmT76CjZnud+cYHSiaGU8hsAvqE+J4S4GcD9AF4M4KPKr+6TUm42ub4Q4iIArwTweinlF4PnrgdwD4D3A3iBznXUm7Eto67qOj/ChmJYpu1VDsdW1fa8/br4veq1yoIt5w2UO89tKPquFkxbxBAod57buD+rHEp27c+z+hbXZDyvuLJvH9l+6ql27CoLvuQYHg4edRXBJLwAwBSAq/gJKeU0gG8CuEIIoaVFVVm+t7nwlOm8q7xgVp0Y5hnzKhNDF2NuY567zjGsWl5n3tA9UIeSTWFzzKuqGALVLEBxRgyFEO1CiC4hxJkAPgdgH5qURABfE0LMCCEOCyG+LoRYo3Hp8wA8IqUcbXr+HgBdADbo2Jf38G/gxCCGtWKoBxtO0KXzzrPoVJkY1oqhGaquGFaRjNsMJbvw51WzG6guGbcFFzmGjJsAXBJ8/xCAy6WUB4Kfj4NCytcDGATwGADvBnCjEOIxyuuisBhAVCvPI8rvWyCEeAOANwDAmjVrKj0xbIYeqqak1IqhGWzO8yoSQxchtiqTcZsFP1ULJdf+3Ax5izeBavuWKhNDl6Hk1wC4FJQPOAjgWiHEOgCQUt4upXyHlPJqKeX1UspPAHgOgBWgghTrkFJ+Xkq5SUq5admyZZWeGFXfYVbReVe1KvlkDyXXKRNmsKEYVjWsyQUUY2NUPFQWqipS5D0mFHC/hlZtzG3BGTGUUt4npbwpKEZ5JoB+UHVy3OtvA/AggMelXPoogKgAMCuFRyJ+14IqT4yqtquxYXdvLxULjY8DU1N27NJBVauSbakRQlAVf9UWzKqS8e5uqmienKS5Xhaq6ltshDXVDhVltiCp6kafieGSJdmv0dtLjejHx2mul4UqC0M24EXxiZTyGCicrJP/l9Yu8h4ApwshmgvkzwUwGXxOKmxMjL4+mtRjY+WSlKoqEjbIlavm3FVVO22Qq7Y2tyHZqs1zG3YL4SYxv+rEMM/9CTSe3FIWbIoULkLJefL01Xle1RSbmhhmhBBiBYCzATyc8JpNAM4CcHPK5a4G0AngJcp7OwC8DMD/Sim1DnmzMTFUklI1513VcI/6/qpV97okhnnsBsoPJ9toWAxUN5Ssvr9qG4kq+xYmhlVU9dVrlQFbY172fJHSbn5kFYlh6cUnQoj/BHAbgDtBuYUbAbwN1Krmo8FrvgbgkeB1x0DFJ+8CsBvAJ5VrrQWRyfdLKd8PUH6iEOIqAJ8QQnQG13kTgNMBvErXThsOEKDJcfQoTY48kroupqZIoeRzYLPCZSjZxpgD5ZGUkRFqZNrdXT3FsKpjbqNhMVBdpRMon4xPT9O4CwHMm5f9OlUNJQOh7WUphuopOVXbdNoacxe+ZWaGGv5nPWgBqImhKTYDeCmAvwC1j9kJ4OcArpRSbg9eczeAVwB4C4A+UCub7wH4OynlIeVaAkA7WpXP1wH4EIAPAlgI4A4AzwnyFLVQ1d2O6kSyNhXl96vXKwO2yHjZC+bBg/S4fHm+MXcRGqyqYlhl1a2qvkVd6G34FhebzqqFkoeHaQPU15dvA1TPc33YFIWAmhhqQUr5YQAfTnnNlQCu1LjWdhA5bH5+DMDbg69MsJWT4pIY5kFVw7FAmBdaFkk5GjRHypNLA1RbMSyb1NpWgMqc5zaaRAPlKym2FkzXp3DkQdnE0LaiX0WV1tUGqGprv014kWPoI3JPjslJ4N3vxjMmrgFQMWI4M4NlB+9FP4aqR1K2bsVjp24CEOaJFA1bjmTx8A4MYLDUti9W5ouUWDh/FkD5imGuMT90CKd/7YMYwGD1CiFuuAHPOvptALI0263Mlde/Hs94/XrMw3D1SMqb34xP3vR4LMOB0my3QsanpnDadz+BjXigeorhxAQWD0w1XK9oWLk/Z2bwlPc9C/+Av66J4YmE3I7kAx8ArrwSH9zyHPw+vlQdYjg0BHR04OwXnYchzMcVe/7dmm1pyK0Y3n03sHEjPnDtpfgU/qw0kpLbkUxPAwsXYsMz12IQCzB7rDxPknue//VfA21t+PpV7fgGXl6dUPLsLLBsGZZ/6r0YxAKIY1E98YtB7vny7/8OPO1peOsvX4r34gPVISnHjgFf/CJ69j6CYQyg6+h+W6alIjdJeeITgc9+FhuO3IJ/xp+Xphjm9olHjgBdXVj292/DAzjbyTzPbPvOncD69fiPq7rwazwRQ0dtnJibjtz3565dQEcHFt32U/w1/hFTR0ssYbeEmhjGINfkGB8HPvjBuR+/hNdhfN8xK3alIbfq9k//1PDjRw7/IWVAl4BcC8/MDHDBBXM//hk+jeW//r4Vu9KQ25H8+Z83SG13H8jREdYQuQjW1BTwkY/M/fhyXIWOh+63Y1gKco/5e9/b8OMHDr8pn0EGyGX7/v3AH/7h3I/vx99h6c3/bcewFOQm43//9w0/Xr7/6/kMMkCuMb/rLmDz5rkfX4Fvon17bAMNq8jtz5sqHv/u6P+Xyx4T5CLjDz8MrFkD7NkDAHgiNmP19V+zZ1wCcvuW005r+PHGuwfKC19ZQk0MY5Brcnz/+y1PXfL1zOmORsi9w/zUp1qeknffk90gA+Rygh/6UMtTL/n67+UzSBO5HclnPtPwYzcmMX13OQQrl/P+whdaNg2r7vpxfqM0kGvMpQS+9KWGp148fRVmjxzLa5YWctn+uc+1PLVxSzkEK7di+D//0/Dj/xn8cmkd0XOpV9/6VstTK3/zPxEvtA9beZ2M3539Hqanytno5xpzZZPPWLLtlnwGacJWalAD7r3X4sWKR00MY5Brcnz84/T4x3+MOy96DQDglG2/smNYCnLt6m+/Payk2L8fX2t7NQBg+pqf2jEuBblI7Z13zn17/6W/Hz4/odW2MhdyzZVvfzv8XrG17Ypn5zNKE7nmy1e+Qo+f/zx+8bukNP/2T95WSjf3XGN+882kRCxY0KDUTv/FX9kxLgW5bL8/2DCsXIlrX0FpHhff87VSVP1cc2XHDkr1ADD56F4AwAWzd0D+6Z9Zsi4ZuTZAd91Fj1ddhf9+0b8BAJ77X28pZcxz+cQtW8Lvr7sOh8RSDGAYk5/4TPx7LCLXmI+N0eM//zN+8Xu0nl5666dL2Ujkuj8VZXniuHIk0R135DOqZBgRQyFElxDiUiHE/xFCvEoIcQWfb3yiIfOknp6mhQcA/uzP8MtXfgazEFh8bFspC2Yu5/1f/0WPz342sHw5bux7Fv381f+wYlsaMu+ODx8Gvvtd+v6aa3Drn3wh/N2DD1qxLQm5HMmNN9LjaacBXV24q/OxAIC2PbvsGJcAtUease2jo6Gze/7zcfy8J4e/27bNin1JyLXofPaz9PiylwHz5+PbPbR5k/eUs6u3svBccw0OPuF3wud37sxtVxpyqVe//CU9/vZvo2vNyrmnxef+Nb9hGsisXo2PA1dfTd+vWYP9j31u+LtbilewckVRfvADevyDPwAuuww39PwWAKDrY6kNP3IjVwP66WlqUAoAv//72P+0l4S/+9GPrNiXhFz35w9/SI8vfjG653djDD3085vfbMW2spBKDIUQ7UKIFwshfgzgOIBfAfgOgP8A8D8AHhZC7BBCfFgIoXOknfeQksSbtrZwfmqDydXppwMXXojeZf3YhvVon50Gflx8mC0XMfzJT+jxTZRvdcPi3wUAdNxzR+E7tYkJKuTu6KDGokZQHfRTnoJ5CzvxfZDtc7v9ApHLkezYQY9Brt7XVigpBwUfyDoxQT64uztDI9dvfIMWzTPOAFaswPjFl+JhrKff3XSTdVubkXnMp6aAL3+Zvn/ZywAAn19B+YZtu4onV1KGrU649Yk2Dh4EHnmEukufdx66Vi3DfyMgKopSURRy+RbeAD3pSQCAPxj4rh2jNJCLpFx/PRUqrVoFPOYx6FxzSvi727Tb4mZGLjLOvu+KKwAAP1j+xwCA9v17LFiWjPFx8i1dXRl8y1VXkWK4cSOwYAE61q4Kf7d3r1U7o5DLn996Kz3+n/8DAPjQvL9PeLG/SCSGQogXA7gfwFcBTAD4GwDPBnAR6MSSSwG8EkQUfw/AfUKILwRH3FUWzIEGBjI0cmX5/rd/GwA50f8AKRK46io7BiYgs/OWkpwgADzucQAAsWghDmIpxPR0SGAKguoAjcecE3uf9CSgrw8DA8BNeAI9x7v9AmGFGK5ZAwC4cbWyOy5Yecu10G/fTo8vfSkgBAYGgE/hLfTcd4tf9DOPuTqPA5IyuHgdptGOjn07SQktECMjdKv19tLpREZgNWLTJqC9vXGel0DGc5GUX/+aHp/4RPpx6QswxW10Cx5zlaR0dRm+mQnt7/0e0N2NBQuA9yAoLOR7oEDkCiXfE+SGn3ceAOCRZY/HDNog29qBAwfsGBiDXPmFr6YUJqxfP3eNv8P76LkbbshtWxoy+xYpw2jh058OALhq+VtxHMEglCBS2EKaYvhJAJ8GsFJK+btSyo9KKa+TUt4lpXxISnmzlPIqKeXbpZQbATwFwBIAbyja8CIxSy3Zsk3qX/yCHp/97LlrbMal9NzXvhZevCBkXuz/7d/C71etmrvGrxCECK+7Lr9xCci16Py//0ePQcJyfz/wA1YMOYRVIDI7kqEh4L776PuAGPYt7MJVeCk9d801dgyMQa5w7EMP0eMGChLMnw9ciyAvsoRE69zE8MlPnpOme+d34h6cByEl8LOf2TMyArk2EddeS48veAGAJt/is2I4PExpB+3tc5vOvvkduAtBgUHB8zwXSWEi8ixKq1mwANiOdfRcCQt95lDy2BhV9nZ0AGedBQDoWtiH/8Fz0TYzXfiG2UoPwzcQjZg/H/gW+8T//d98hmkg8z16220kUixcCJxCynL/gnZ8Fy+i3/+0nFx9G0gjhuullJ+QUh7TuZiU8iYp5f8B8JHUF3sMVTE0xq4gN+zsswHQpL4Vl7T+viBkdt7f+U74fSDZDQwoxPA3v8ltWxJyqVecR3jxxQCIGN6Ps3G8bSGNd8H5V5kdyX//Ny2aj388cOqpAOjv/wmC3M6CE5ZzjTnPh4suAkB/+8M4A7MQFO4sOJ8285jzmJ5zztxT8+cDV+P59EPBG6BcagQvioEaMTAA3IzH03O33kq5GAUi83y5+mpyqo95zFz8fGAA+E8EXQMK3rzlIuMPPECP558PgNb860HjjxtuKHyjn3nDfP31NGfOPXdOJh0YUNYin6MR/Mc+4xlz17gfZ2Nc9ACHDhXe6TrzfGFF/+Uvn1tD588H7gD5yLm5VAEkEkMp5XjS722/zxfwvZ4pf4lJyOrVAGhiHMZS/KYnCPkUfENmntQrg4Tw971v7qn584EHQLvNOYWoIGR2gIOD4Zj/MeXQDAwAEm24tYvCVnPhoIKQecyZXD3jGQ2OZCvOpOd9dd4jI+TkOjrmFsyBAWACPdjdvoZIQMFFP5nHfOtWegzs5mtswSb64Z5iWzNltvvYMeoY0NcHXHLJ3DWOYREe6jiLEkaVyvwikPkeZTIepNcANOd2I8gdK/j+zKxeDQ8Du3cTsVq3DgD97buxCgfaVtI/s+DQZuZQMue6v/CFc08NDCj+vGD1KvM8n5mhf5gQcxONHgR2tK2j1zz6qCUro5HZ9kOH6PHcc+eeavDn7HsqAO2qZCHERiHE45Wfe4UQVwohrhZClNNzoCRkVgwfeIDI4fr15MAROtGdCJpe3n67HSNjkHlS80L+tKfNPTUwADyEoJ6oYGKYmaQwuXrMY+aStjip/2b5+MbXFITMoSpWpx772LmnFiwAtnERR0mbCGO7776b1IhzzpnLLOdr3NwWhDYLXjAzz3Me0yB/ia9xDygPq2himPlcbc5dUuyeG3NRTjg58z36cNAMeuPGuado8xYkE994Y6GtX3Lfnxs2zPkWJinXtlFBx1wqSEHIHEpmux4/t2RjYAD4LwTk/PbbKfGyIGSeK7t20VxYvpyqP5VrPCJPp298FVeOHKFHpan4CU8MAfwLgBcrP38IwF8AOBXAx4UQf2rTMJfITAybkn2BcFIfmQq+4Z1cQci8O2ZiGOSjAGT7NqyHFIISrQsMD2Z2JFwFFuQuASExfGiS8vawe3c+41KQ2ZHwgqmQcVZSptu7gH37Cq1MzjzmvOg0qW4AcN10EGb7+c9z2ZaGzIt9BDHkeT7V0UMLU4GnFGQmhqwGXnbZ3FM85r+aDqIRBRPDzOoV914844y5pwYGgF8gnPdF3qO5KpIBYFl4EtH8+SRm3TMdkFy+hwtC5nuUw5ZN/nwQCzA4fxWlHRSYYpN5zHmuKKkeXKh192zwXMEpNtw1wNj24JSW5vmyHesw29ZO4z1ejWCqCTG8CNSqBkKINgCvBfDXUspLAHwQFS84UWGTGM6bR47kRzPPoSd8zI84fJi++vvnkmb5GhPowfGB1bS7LFDtzNzCgx2JQlK4+nCnDEJVPhLDoSEa856eMIwPciSzaMfR/oDUFhg2ybyJ4DEP8mgBoLOTxMOb5abG1xSETLbPzISVpKefPvf0wACN+cElwcJTYPEMc86FCw3fyIu4Qmi5tdONMiCGvEkqCJnI+NGjpDD39gIXXjj3NJHxM3B0SRCRKFB5yzzP2W+8ONRD2trCfFoAfqpXw8O0wensnAuBq9c4PD+Y+488YsXGKGQmtBG+RQi6zi0INv8FV+BnGnMpw2KkJmFoGp04vmgdvaaEHq82YEIMFwA4HHz/GACLQG1qAODnANZHvKeSyJxjyAuKMjF4Uv8ST6EnfHQkvLvcuLGhVwzf1A+sDoohmo60soncoUFFjQCIYM7lMPlIDNkpr1vXMOZ8jf3zynPeNoghX+cQltIPLI0VhExjfvPNpJSccspcqod6jd0Liw8nZw4N8gYhqF5nzJ8PPIhAvdq+vdCQbKb5wnavX9/QFJav8fCaQAEtMDE/s7rMZLzpeLaGdA8fFUOO/px5Ju0eAvCYH+gr3rfkVgybfEt/v1IIecMNpaQeGNm+Zw/5vMWLG8QV/r8dXFCtcLIJMdwPcMIZfgvAw1JK1qL7ARSXsFAyWDHMHGJTkk/5OvuwErM9vaQSFaQaZm7kGhF2AMK//64lz6BvCiwosJkzxtfZgTWQbW10Mx4+HPHm/JidDaO98+YZvJHtVpQrIBzzvV3r6JsCe6VlXjCZOEXMl6MIYqQ7dhQaks00Xzgcq4Tu1WtsnxcQw+DotiKQye6ZmTBnM2Kej6Af04uWUphq/347hjZhepou39bWwKnT0VSMx5ib533FK2+ZfQt3kDjttIanFy5sUgwLIikzMxl9S4w/579/T3e1FEOAbN+F0zC9YDH9Qwua51JmTJlgtfCCCyLFlT39Jy4x/CGAK4UQ/wTKLVQOecUFAKqhkWogk2I4OxvuHs88s+FXNDkEplYEDqagljWjo2RGdzdFEbTBhSVNdvPfv3c26FdeYFPUTM57aooUCSEaQiYA7TCHMB9jZz+GPGxBioQaAm8zuZvYKccQw50dnu7qjx2j+dLT07IBGhgABqF404JCmxMT9K/v6DA8VYHHMvL+BLZ2B+kIBSqGmcZ83z5SIxYsmGsPxODrTJyyjr4paCOh2m3UgJ6JYRO5Yrt3dgUEq0DlLXPaAUcaVq1q+BVvgKb7F9DAcDWqZWT2LSnEcM63+EjGmRg22c4pRuOnFOsXR0bIv/T2Gm6AVGKoYG7Mu09cYvhOAD8CcAWIJH5I+d0LAFxr0S6nyJRjuGsXzaiVK1veyAvP2NJg11zQDZn5ZuSbrEmNmNvtzAY5cAWefpLJ9p076Z+1alXLOXrsSMZWBI6koFy9zOHYFGI4F6ryjaTwQn/66S27D24TdORxdCbrXDK2ZWQmKdwvT0n14OsAwP3txYeSc435hg0tfzDPl9Gla+mbEoihETi9pinVg6/zaHvxIdlMyvi+feRbli9v2X2QbxEYWRn8TQXlR2ZW9CMKCYFwzLeJ4lXaTIrhsWM07j09LSkTbPvIsmJJLQeWli41fCM3xt+0qeHpuYrqjoAYFtzdwxa0iaGUckRK+cdSyguklK+XUo4qv3uSlPKdxZhYPjIRQ3ZsTQ4QCPOJDq8PWgfw8VCWkbtSs4mk8N9/98w5VM3x4IOFVclmqgSLCSOr1xlaVGwRR24yHjPmvxZBPs3mzYWFqjLZzipK0JBbBc+7o6cGylsJxNAITLCUCnb1OtumAlVr//7CGhfnIoZNqpt6ncHF6+gb34ghN+V+6lMbnua58pAsPiSbafPGClCTugyEm87jy4PczoJOy8ndekxpDwSEY/7gTPEqbe6UpiaJdG7MlxSrGGYuDuPNQXDkI2MuGiGDLLwTTTEUQmwTQlwU87vzhRAnTCg5EzGMUd2AcHLsPyUYvoIqNm2TlLmFfqQrDKcUvNgbVSUnkPE5R7IwUFIqQgznHMnoKvojjh0rLD8yFzFsCq+p1zk+79TG11pG5qrBvXvpeyU5XL3OseEO+gdIWVgesG1iONcOa/46+qYgYphJAZIytEfp1QmEf/++sQWUsD82VljeWKYNMy/gTaFBQEmxWRv0j/RtzGOIIdv9yPgpFCs9dChMqLOMTLYzMWzKLwRC248sLFZhzpwDHJOPOufPp9ZR7svOnTTXPYdJKHkdgLiMnh4Aa3Nb4wky5RiqVaZN4MlxoDf4XUH9ozLtjEdGKHews7NFBWK7BwcR/s6nxV5DMTwyEEzLgsLgmR0Jbw5iiOHQsAgde0G7zEy2swNMIIYHFgZ2/+pX2Y1LQKZF5/BhSkxcuLAleahhnnODwX378poZCdvEkKMR+9m3+KQYHjtGYz4w0FCRrF5naAjhPVCQCpTJdt5ERMxz3nQemhf4Fp82bvv30xsXLWpotKxeZ3BIhD7TJ4IVkxsJhGO+d1GxBWKZ7D5wgKqzli1rmedz4spQRzjPK9CyxoQYAkCc1r8JwLF8pviDXIph00IPKIphe0CuClbdjBZMldAG3f0Zc45kEKGD9IkY8s54w4aWX7EjOdDroWL4q1/RJFu5sqXTMds9OAjIM4tNWM5kOzvkiDHn6zy0LAin+JRLy/dck1qoXmdoCGH+YUGk1jYx5Omzp+Aq9swLJgCsWNHyq7kNUAnEMNOGmTeSCcTwcFvQyLigTUQmu9lXNLUeU68zNISQGPqkdsa0HgPCMd/TF/idgv25UeSKN8tNlfdA06az4HluE4nEUAjxNiHEDiHEDhApvJp/Vr4OAvg0gB+XYXAZYMUwE8FKCCXvQ1DEsW9fIccRZXLenAybsNAPDQFyVTDpC1I7cxHDiB3mXGuGDiXHsIAcplw9DIND4lVw02Ipgel1xSYsZ7Kdz1hVjtpizCnjM0soJ/XYMSqVt4xMGyCet01J7UDTPH9CEB70iYwnEEPOhXoUygbIl3nOoeHly1t+1bDp5AWzYFJrm6Ts6g5+t3VroWNuZDeTlIh5znYPDwNyRbAWFRy+N5ov/P+PiLrN9XeVy0nAOHiQij0tw3YU5YQkhqAWND8NvgSALcrP/PVdAG8D8MfFmVkuMimGCWHNhly95cuJeRbQ+iXTpOZQQgQx7OwkkjI7C0yuCX5fUC9D4+KT2dnYNjuAEmKbXEShw+HhQvLGcuXpRSz06rXmqtg5rGUZxraPjVHblM7Olspe9TpDwyJMPShAHc+lAEUsmHxSzswMMLW22LPBM9mukWN4cHyAQofj44XMl0xKCi+Aysk+jAb1iv8unzad7BcT0lT2yRX0Q0F5wJnmCt9vEcVhHR0U6ZQSmFoaKOc+bToTom4874ZG28P5VMA8z1QEmaAY8slno6PAzNpiN0A2kUgMpZQ/kFK+Tkr5OgBfBvAW/ln5eqOU8pNqlXLVYUwMR0dJBezqSqzWbMjVK3DBzKSkrI1OEeVrjZwWJAQX1A/Q2JEcO0anWMyfH7laMTE8PijCG7YAUmu7gAMI/5zRgeIcIJDBdt7MLF8e2ScmMvWggHmeacyZGMaQ8bnQ5vKACPiS7zY5Sb6lrS3St/B1hocRni9bQP5VpjGPOMecwb1Wp6aAqZXFEkNjgjU6SnM9xp/PKW8jItxQF5Crl0kxjCmwYvC1hi8I0j1uvjmbcSng5hXaG4mDB0m97O9PzF8eHkahaU25FMMIYsgnnwFK67QTQDFU8ScAImUuIcQ8IYRJS2WvwaFk7UnN/+i1a1vy9IAmYujbpOZQQkQeEBDafmxp4AALyBtTT1Voyt2NBzeVVQ4sV8HEcHAQYW+pAtoEFUkMB+cFzr2AHKbJSfoyahKdkDMGNOWNFVislGnBTFAMAUXB6gnCngU0LZ6eJtFVCIOTLPbsIYnnlFMajjdjqOHBOZJSQKFVrnkeoQAJoSz2i8tpKaU9X9TjByM6S8+pV0MIyUAB8zyXYhhDDOcq8BcHG6AC7Gbf0t5u4Ft4zDdsSB9z/tsKVMZtEUNA8YtLT8ziky8EX1H4XPCVCiHEFUKI64QQ+4QQE0KIXUKIbwkhzlVe82IhxHeFEI8KIcaEEA8IIa4UQmj9u4QQMubrYp33A0RQIvxwNBLyC4EmklKgYpgrQTwiD0i91tH2oOPn4cPW82nUMJV2w+KDB+kxhhjyzXj8OMJQcwHhniKJ4fHe4hTDTE2iUzYRDeHBCoWS1Wsd7wgqOQsghupJFtpjnhBG5msBwZivVHKYLSNXwU/MPJ8jKcs3Eou47z7rfVInJjJsgDjUFxNFaSDjvm30b7mFHlk9bsLcmM9TFH3L/lw9xk97nqdsOht8CxPDAtdQo5QJ/t+nEMMjS5Q0lQLPerYBE2J4GYAfxPzuhwCeqXmdxQBuBfBnoDOX3wXgPACbhRB8J74DwAyAdwN4DoDPAngTgGuFELo2fwnAE5u+tGOJtvILgfLavhRBDOdsnwrOCJqaCj/IEjLZnUIM50LJxxG2bfCFGGoumEe7AidZQMNl28UE6rWGhlBKKLkIxfD47AAxiNFRP+Z5Sgi8IcS2QpkvlpFrnkeEYwHFt8z20983M2Od1GbaALF6FVEEwdcCyiOG2vNcynC+ROQAA8o8n55HTnJiwrpfNA4jA6G4kqJ0NnQOuOmmTPYloUjF8BgWUc/OkZHCin5swYQYLkdMKBnAQQDRVL8JUspvSCn/Ukr5HSnl9VLK/wDwfwAMAHhx8LLnSylfKqX8WvCaTwB4K4AnAHiGpr27pZSbm7608yCNJgY7kpQ8vcFBhM6mADk5U46hpmLYYLvlHKZMCb8mxJCdTQE5TMbOe3qaFj8hYp3gnAo02U2OZGbGuvO23X5EvZZ3GyD13NsU511kjzfbFclAk3pVAjHUXuwnJogYChFLDBvmy1IlImERmTYRKf68LMXQWBlX865jDvqN3LxZtl1VxrVxxx302NQIndFgN6uhPhSfSJlYlQw0rf8bFNXQY5gQwwMALoj53QUA8tzR/N5pAJBSHox4TaCRI3r0LSOTGpGS2H78OMKu7gWcfmK88OzaRYv9wECqYjg0BODCC+kHy6Q204LJ4xezq28ghtzOxofiE1b/li9vOWuY0RAe5Dll2fYiFMOGuVKgYmi8Adq7N+wbGRNPbFh4CnLeudrs6BBDn0LJDzxAm6Azz2w5x5zRMF9Y1bccws/VOD/GtzTcnz4phnyvRVSBMyLvUcu2q6FkbfCcTdu4qU3ojx7NZF8SjOfL4cO0CVq4MJYJRwpDBeXT2oIJMfwRgPcKIS5UnxRCXADgPQCuNvlgIUS7EKJLCHEmKD9xH4BvJLzl6cGj7onlbwpyGEeDnManmthnc1ffMDGYpDzwgPvwIMv3558fm1DZsKtnde5gFG/Pjlz9F2NyaRqIISsWPoTYEs4aZjQs9ryDvvPOTPbFoUjFsCHHkHfTFmFsOyt/Mfeneq2G5r+WnXcRoeSyFUNtksI2xKgoQNOYF6QYZspHvfdeekzJ0yuaGBrbnpKiol6ryELITIqhZhHk4CAoigIUkgecSVwBYgkt0GR7gcVKNmFCDP8WdLrJrUKIXwcFI78CcBuA4wD+xvCzbwIwAcr7uxDA5VLKuKrnVQDeD+AnUsotGtf+KoA3A3gWgDcAWALgOiHEM+LeIIR4gxBiixBiC2A/3CME3TAz8xeR4jI6an3RNJ7UvEvT2GE2hHsK2tXbTPhVHeDsgkWU3H7smPWmqJmJoYbzHh5GGM6y7EiKqGBvWHTWrqV2H9u3hyfTW4Kx7ZyQf8klsS9pUFJ4A+SDenXPPfQYcX4s0KheyeXB/2XfvsIKxLRtT+kaoF5rcBCFK4ZGKi0TrLQK9mZiWNCYa9tu4FvKUAxtEsOWTWd7O9lt+dzhwolhQRsg29AmhlLKQwAeB+BKULPri4PHDwF4XPB7E7wGwKUAXglgEFRYsq75RUKIflDRyzSA12na+hop5VVSyhuklF8F8BQAewB8MOE9n5dSbpJSbgIM85d4UsfkjLW1hbL66CgKW+yNQ2wGxLBhwfRBMUxxgp2dlGYjJTA82haGPy03Fi+CGDaoQLzZcL2JkDLMA4o4DQKgiGFHB9UnTaCbQrJqQrwlGM9zDjklqLSRJMV1XufsbLjpjBlztTn3xLzFpKYMDrpXO5lcxSz0QJNvKXjTqW339DRw5Ajt5JvOGmb09dGvx8aA6XkL6ImREesN9I0VQ41oRBnE0HijL2UqMWTfMjEBTKKLiJiU1lNVjG3PSgwLUDttwuisZCnlMSnl30opnyil3CilfJKU8n1SyuOmHyylvE9KeZOU8hugiuZ+AO9UXyOE6AWFqNcDuEJKmWl1lFIOAfgvELHVglGOwcwMOeSEfggNiz3HOV1XPfLNmEAMywglGyf8Tk2R7UJokdqGMFuFiGFDnzTLhTPGdg8N0Vzv64vsSwc09qYbGoI/ZFzjDZHtMFyTq6NHiagsWBCbpwc0NVw+/3z6wXLhjDEZ55YvMXMFKIeMG5Mr/vzFiyN70gI0z3nMR0ZF4QSriGhEkcTweMAGeJlLxdAQNbLt64tlZC2+hcPJlvMMjdeilMIT4CQghkVBSnkMwEMA5s5lCxpmfwfAJgDPk1LeZeOjdF9oMxwLNBHDhpliD8aOhMlGjNIJNO3qeaG3nMOUKQQuJZG9mAIOoGnMfbHdVDHk3b/lCrxcaQcJfT8aFvuCiKExSTElhhy2dV3wk9IxgNGQelDA8XJSZrA94dxbRmSOoetQskYIHCieYM3OZsjVM8gxLJIYcuYIn+OdihS1kFF0AUqmeZ6S0gScgMRQCPFDIcRjdC8mhOgRQrxdCPFGEyOEECsAnA3g4eDnNgBfA3A5gBdKKTebXC/i+vMB/A4A7fN/iiKGQ0NoKlO2A7WRa4K40Ahe+DZujH1JZAsS1ySFPz8hZAIUn5ifqXmuaY6hL6qbhroMNDVzL0ClzXRKjoZs1LAB4o2SL2OesmA2zHMmNBaVt7ExIip8jJ0WmJjG5OkBTWPOr7tPt7ZQD8aKYUobLEbRBItJ4bx5scJlK1KOwwPKOYXLWDHkNTRlnjesReyHLB4vNz5OwT+jeZ5VMbTsW2wj7WyP7aDG078BEbVfArhTSjnNLxBCnArg8QCeD+pHuAcJuYBCiP8EFazcCcot3AjgbaAcwo8GL/s0gJeA8hdHhBCXKpfYxSHloCH2wwDeL6V8f/DcOwCcBeBngS1rQQ2zVwJ4VcrfOwebeXpAjApk8TDtTI1cU5KsgaZJrR5FJKXBByUjc/5SggMEYoihxRsy05ibKoZLltDFDx8mVqR9HE8yMiuGKc6bVYJjx1AIqc005hq2Nyw6AwNhk+uREcO+G/EoSjFs2HRyiO3IEWP74pCpPyorOWxPBBrG/KKL6IcHHyQWGnEsWhYYK4ZMDHkBj0HRxDBT0UxK1wAgItWjo4N8y9iYwU4rGUwMjdvsJPhE9XpDQwAuvhj4+tfDCnILKCLXXb1ewwZoxw5iodqsv1wk3n1SyrcCOBektL0P1EtwXAhxRAixVwgxBmAngO+BTi/5/wBcKKVMUuY2A3ghgC+D8v7eDuB6ABdLKTl289zg8T0Abmz6+iPlWgJAe9Pf8UBg8ycBXAvgYwAeAfAUKeUNSX+vikJDydyyxmKftEzFBCl96YCmm3HePPqAiQmrlabGCb+GiuHICAoJJRflSBoW+vb2QsIPRVSwAyExPH4chYy5MUmRMswVTNhINDhvIQontVrQWOjV6w0NIQyxWVQMM81zZgcJ8cQGu3t76bVc/GEJRVRTq9crihgaK52a/rzB7ra2Qo6uLCoC1LCR4HvCYr57pu4YKaf7AE1jPm8eza3JSa9Vw1T5QUr5MIC3CCH+AnSs3BMAnAqgB9SY+n4Av5BSamVqSyk/DODDKa9Zp3mt7SByqD53NQx7KkbBeFKnqFcN4UFeXF2SlMFBInjz5iUqIg03I0A3wAMP0A3Bi1BOFNELECg+lJypCGJ4OFwEY9BgN0CO/uBBciQpxEwXRYU1G/pH+kCudu+mr0WLYit71evN1YMtW0bh0IMHEwsoTGC82Gss9Or1hoYQngt+l42UbOW6MLB7dlaLwTdsOgHyoceOkU9NUex0YTzmPFdTPr9h81ZAio3xmI+MkOrX05PIbFrm+apVpF7t3p14f5ggcwQoxZ8X3SHDuPBkfJwcXWenljLe4FsOHqSvFN7gCibtaiaD4+n+UUr5/0kp3yilfI+U8j90SWGVUKhiWCBJMW5Aq5nw2+C8AbdOMOXcW4Z3xFAltBoFHA3EEHBLsAzneYNKa9HuzORq7drEsE3LPPdhzDkHOGWeNyw8nC9ssb2RsUp7992kYK1alTjmLZtOnlsF+BZt21MaijMa7lGuqHYZvlfVZQ3f0kAMgULC4LaJYdEdMjJvlpcvT0x9aNhE8OuBQo70swUvqpJ9hLFiaJIgXkC+W+adsaYaMee8CySGxo1cEyrBgFAILaqIo4iKZCBGMQTc2q65kWgY8wLzOo0XTNN5zq93ufAwMeQWNDFoWOwLaPuSuemvid1AeF9YrKjO3KnBhIwX0DolF0lJQMuY+xBKNlQMGzoeuLw/NTfLLWN+7rn0aPk0K5uoiWEMtCcH9wvjY7Ri0LDYL13aWFBgAZnzOjRD4ENDwQl+/HqXjoRvyCzFJxbPkc3sADWJYcsO06XamUUZ94HQGhLDhnCP+n4LyJzvZmL7wACFtkZGKNRlAcZ2a5altqi03CbogQeM7EuC8YZZ07dEEkOXJCXrPC8wV892MWGD7apiaOnEmdKIIavRlvsB20RNDGOgpUjMzoYqEJ9mEoOGxb6jg3b2UlqbHMZKiuakbm8PVaCREfiRT5OlRRDL/QcPUoNsCyhadRsZCci4DzmpWULJ/f2U8zQ6qsif+ZA5xJayYPb20vSYmAimh2tFQkrtQoiGea6e2GFJNTT2LRqFJ0CESssbpgqk2DQs9qecQj593z5rR7QV5Vt6esinT07SlxebN81WWA2KYW8vOcrJSWv9gI2LTzR9YsuYF9TH2CZqYhgDrUk9OEgOfGAgtY1IS3jQcs5bUYqhes0GCd9VhezEBOXytLfHHlnFaMgD6uiwrhoaj7lmj7T29vA4v9FRhI7HldqpcWQVo2GeF1DdW5SSIkRMcrurMDgrfj09NBkS0KJIWK5iN1bdONcuhRj29tJcnyPjBZyXbDRfpqfpHhXCrCq5oyMUBiy1ICtynre0rFHfbwHG/vzYMRrDlGLGWFXf0ubNuPhEk9C2jHlDs1c/URPDGGhNDoMW7y0FBZbzrzKHTDSqXBsWTNfOW02yTul1VnQ+TWZimOK81WsODcE6MVQ7/Gvtjo8epZV7/vzUXmdF50cWtWCq1yzi1BbjUxX4/uK0kwS0+BYmhpYVQ9u5tC0LZgH5kUZ+8dAh+kctWZLa4bgl3YNTibZty2RnM4rKMVSvWQQxNJ7n/LnLlpn7c8vEsKgoinrNhpZSHp9+kpsYCiGSZZuKQuv0EHZgGsTQO8VQM5dGvWbDgmmp6pHlde3TQzQbLQPlEUPj5rkpagRQLDE0PslCUy0EmopP1PdY3gDZDiUDMQumpUVnYoIEqa4u+kqFSgxT0DLPLW/ejOc5+4aU4jCgybdYJobqKTkpoishg2+Zm+eWT8sx9uec656S0qReswhiyKeHaM9zA9/SMs8t36OZ11BT27kt0NatRvbFYWoK+PWvrVxqDtrEUAjxx0KIv1R+vkAIsQvAASHEFiGEnQZrHqC9XfNUBT6+iRtWJ6AsYqjtvDmUbKAYDg6CKg3b2qjjvIVcPfVm1BpzTfmer6l+hu38yMzqlQYxbBhzy8SwyJ3xiaAYFhFKzlx4YrqJAKwrhsbRCANiGBmNKEDp1PItGTbLRZNx7TFnpTLheFNGLDG0UMRRVG6kes2WwhlXESBubZSijKvXHBpCWHyyZ4+VMT94EHjyk3NfpgEmiuFbAKiZtR8DcAx02skCAO+3ZpVjaJ9Sw5M6pecVcGIohkNDICl10SKa0BZOPylNvgesV1QXlWOoXnOOpAhB75+ZMbazGUXujBuKTwDrFdVFKoaxDXRdLJiaR7Op12wJsbnyLRkUw7kQmxDkVyx0ayiqIlm9ZlFkPPMGyNQvzptH6SFjY1YKxDKnHaS0qlGv2VLFfs892vYlwbj4hNtJaQhDDbb39dGHTE6GhVo5MDceFmFCDNeCTjmBEGIBgKcD+Csp5acA/B2AK+yb5wbaxNAgxzC2BYmLHMOZGfpctTggAS1FVJwjYaGha6nEsEI5hg1j3tlJC8/srBVFoqiqQcAzxVBKI5W2Iaw5bx458IkJK54380KfhRha7jVqFI3go77a241UoMFBhMc/WurWUGQUpeiCH6P5MjlJecDt7YkncDBaqtgtihRF5aOq12xp++IikjI5SW/QHPPYMLgFv+iaGLYBmA2+fwoACeDnwc87AaSvdhVBSoFxiDzE0KViePAgkYylS7WSzFryaSw2dHVCDC11+TeyfXycBrCzU2ularHdYji5DMXQC2I4OEgOnEleCspw3qWoV5aJodGmUy2C0Nhht/QydElS8uQvFxgGT4UaiUgp4FCv6cWY5yGGLotP1LVfI08hdsxPAGK4FcBvB9+/HMCvpZSjwc+nArB3HpBjaCuGvDvU2DGwA/Qix9BgZwxELPb891ZNMbRcCJHZeWs4khaV1iUxzKMYuiw+MQgjq9csIrndeMwztJMqWjE0WjA1fKJ6zSJIinHaQYZ57oViaDjPvdp0VpUYsiiiIQqp16yKYqirjQHAPwH4DyHE7wNYBOAlyu8uA+Dv+S6G0EiNIWge5QM0hUwAt4qhAbkCPCWGWXb1Lh2JQUhTvaYXzttgzFuqkl0qhgahe/WaLfOlQoqhlIBwmUubccFs2QC5UK8yFCp50SLIoFWNes0iFUPtPD0DYjhvHu2px8YoBbXDpT83KA5Tr3nCEUMp5deFEI8CuBTALVLKXyi/3g/gB7aNcwWttimAEcHiZq7j41TM28kTintnaZXNxcMo3GOgRgBNJ58AITH0PN+N27FMTVGqWHdzQUHOMS+SpMQqhhZUoCJVWj5BZHw8cN4FFZ8UqaQUcV5ykWPe1dU4z3tUcjUzYxACiYaR8sbEMKVZMSM2lOxSGdfYAPX10TyfIykuq5LV3q4a8CqUbLABEoII59AQEfKFKhm3MM9LVWktEsMi+mSbtKt5GoA7pJQfbSKFAPARACMRbzuxYbBraGnm2tNDT0xNWa1M0nLeeRVDi4pEkeqVet25ajA+RqnsggKDimT1ml44b4MFs2WeqyE2ixXVRYSSi1QMjStk86id3d2U8zYzU/7mzZAYehVKNiBYTFKAwC8uXUoM/eBBq75FS3mzNc9dbIA0j09kNNje2Um2z86W7xfzRoA8VwxNcgx/BuDcmN+dFfz+5MH0NDlBIbLvji3dkDMzdHSaEKG6lwjDRaeFGHKs3UIRR+YCDj5WKAVFOUHj00MMiaE3OYZqhWiWXL3OzvBc8JxhNuN5XtUcw9nZcKw0qpLV67Zs3nIqzHxcnXYDes4xNCSGRaTYGI359DSNuXrWdAoafEtHR9i4OOfpJ5OTNObt7ZoHLRhs3ICIueKKGPLpBtp/aEJlcs4DF6Q0PBLPI8XQNTFMirt1A8gvB1QJR4/SbFq0SLuMucUJWroheUL392tGR3nR0XSALcSQ80EsnH5i5EjUxVIzDBybq5dT7RwZoX9/b6/mv7+qiiH3lBsYMHbeLSHZnE5QtVvr3++h89Ye85kZ2vxoHU1TXGsmVXXTGvO8oWSLOYZGKi2nlyxdauzPWzadObs1lD7PXRFDlYll9ee8huUc89FR2o/19Bj6cw98SxGh5MQhEEKsA7BeeWqTEKJZH+kF8HoAO+ya5jkMjqxixCqGOSeHcZiKCZZm5WBL02ImhmUrhjzmmoRWve7cmK9ZA2zeHHatz4giE9uBCMXQVe6VIaEFImxfvpxOCbJIDLWQN8fQVfGJYWK7et0W35JTpc1cTZ03383iPDdKO9C0G4ioTLbU39V4zPNuOl0p48YLV4TtHDnKmY5VZON8oJyNvk2kcePfBzWvlsHXp9CoHMrg52kAf2rfPI+RgRgWraRoT+q8imEBPZiMFswMY95yQ+Z0gqU7bw4N7t6du3CmyCRr9botC09OJ1gWMXS+YBqcesJosZ03fWUTQ4NODUDMJgIof8wNK3vV69ru1mA85oZ+sQzFUGst4oiT5lwBImxvmUDZYJgB4WU0wibSiOGXQE2sBYDrQOTv3qbXTAB4UEp5wvQx1IINxdASwTJ2JBmJ4dy9t3AhhbiGhqgsr7dX19QWZAol51EMLTWiLZoYtvi7JUvowwYHae4ZqEnNcKIYAtaU8aJ29UUp+uo1tWy3sQGyTFK0x9yg/QgQYbdarDQ7q9WwOQ6ZKtgNFMPYMbcYStZCXmKo+kRLY641X3bupMc1a7Sv32K7JZXW4KwKQl5iuHgxjfORI0GbEr2UkSiUTgyllI8CeBQAhBCXAbhNSlmAGRWEh4phUcSwZcHko/R27ybiYHBjN6N0xZD/5qqFe4SgROt776Uwm8fEMFalrWoo2UJ7o9JDyZaIoXG0z1AxbBnzri4KDx4/Tqu1ZrpLFIxIrWEBB1A8GS+NGHZ2EsE6epRsN/CvzTAihjxOeTb6ljpkMDHUrGnMTwz5+McDB+j/p9k6LgpO29VIKa+vSaECG4qhZSVFy5HMzBjr5pFqvQtSa1ipqV7XeYgtb44h4GbhyRBK9kIxVFu1ZF0we3row6anw3smI0oPJbtQxtUxN1TGG1QPS6HNskLJTokhn+Xd3p69UwNgbcz5HtUyxVimSyiyypnvbrSJsOFbAOtrqE2Y9DHsEkL8nRDifiHEqBBipulr2r55HsNDxVC7Aa2UdDNqVt+pSdazfFq22qA7B0ovPnGxYLLzNmizo465lMGTLkJVNhRDFzmGhw/TwC1ZYjzPR0Yi5nmZGyBe5PLkXrkIJR87RgPHqSYaKIOklJZL66L4JEenhsFBxbdYHvMimqEDEWuopUJIHnOt1mNHjtDALV6cqYJ9bswtHaPoIsdQxUdAOYb/A+B7oNzCkxc5FEPbPbuKztNrb6cbZniYvubPR8xW3xxGtnOysmZjbvW6LcTQ0s2o5QBVBUjTeXd0UD/u0VEiKv39cKNIGLZlAIpTDItWOtvaIub58uXAww/TOJx1lrHNDCPbDcOxQHHHVhqRqww+kY85Gx0NThDpgHXF0Civ02C+tFQlu9i4ZRjzri7qSTkxQSnifX2w3iGjaGI4N+ZMDHOGkovsYQjQPqllzC2JFKW3q2nCiwH8nZTyQ/bNqCBs5Lu5UlIAI2II0I0+PEyTcP58RKxE2WBk+8MP0+OGDdrXbxlzbohaZruaDKobX3t0lD7LGTE07PCvXreolAkjMm7gvAGyvWGeu1AM2fYM+W5zt6MLZTyDT+STcgYHg2POFsJNKDmHP28ZcxdRFMO8wPnzaXgHB5uIYZmKoXEpcEKxUpnzPAMx5Gtz8MgWMVQPWrAJk/KjfgA32jehorChGC5ZQp7xyJFcx4UZ3Yw5iKH6WTaIoTqpjRbMPIrh8uW0dTtyRGnMaA4ju7knWwZiqH6WDWI4Oxv+2UYntuRRDF0Un+Rw3upn2WifMjvb2IQ+FRl8S6x6VaYynpGkxLZPyTFfZmbCea51So6Njb6lQogyiGERLWsmJuggE1bHUpFBMWwJVM2fTzLz8DAZkBFG96ct32KBGE5MkNLe1ZX5EpEwIYZXA3ha3g8UQlwhhLhOCLFPCDEhhNglhPiWEOLcptedJoT4jhDiuBBiUAjxPSGEVvmrEKJHCPERIcReIcSYEOLG4Kxne7DhSDo66KaQMlf4IVOStSFJ4Rtyro9oy0pkjrExg27z6pFqeXIM1SOvchAsozG/8056PDfuRMloFBEeVBdLra4UNnIMBwZopRgZyUXGjTZAGZROoBi103jMbahXixbRBw4N5fItRYeS1WvbzBtTQ4NFj3nDXGlvp3tmclL7Os0oSzFUP8sGMTQ+JSfDhjmyQ4YFglV0FEW9tk1iaNzCSxMmxPBTAF4hhPhbIcQmIcT65i/N6ywGcCuAPwPwWwDeBeA8AJuFEGsBQAjRB+qbeDaoyfZrAJwJ4GdCCJ39378B+GMAfwvgdwDsBXCNEOJiTRvTYUMxVN+fY2dvNKn5HM/1uv8uQqwjyXEWq5Hdo6O0PerpCXR4PUQmt1sgWJkUw7VrjT6jCMXQyG71nOQ8fQy5vRGQi2BVdcE0sls9J9mgVUvLPk2IsI1UDoLlZMwtHLlpZPfUFO14DSp71Ws3tCDhaEZZfjFDQZ56bZvHsxqTFFZWNXteAhF2A1YIViZF3wPF0Lg7hiZMcgw5jPw+0GkoUWhPu4iU8hsAvqE+J4S4GcD9oDzGj4JI3XoAZ0kpHwpecyeArQD+BMDH4q4vhLgIwCsBvF5K+cXguesB3APg/QBekGZjKiYnaWbmdSQAOdEHH8xFDI0SZ1kxNEhsV689ZzuTnBy5emXkRkaOedk3ZIZcGqAYxdDY7ulp8vRasaHGa7e0N9q5k4jh6adrX0tFmfPFZuGM8ZgbVvaq127I7LBQIOYklMzvzzHPM6fXGDR3jvQtq1YREd+zx3gjyCi6UEm9dlGKYSpGRoiMd3cbbYAixZWy/XlOMn6iEcPXg47AKwI8Mtzy5gUANjMpBAAp5SNCiF8B+F0kEMPgvVMArlLeOy2E+CaAdwohuqWU+SqqMzqSohVDrd1OhrwOIMGRlDWpbRLDsgkWj7lBvy712jbbYZRRNBPJRyzkGZaRS1tEvlsZ4djIzI7IyW+GTLbnJeNlp3pk6BsJxPhzC228MnVqMFDdgAjby1bG1RNyDBrHx4orgJW1qKgcYPXaVQglaxNDKeWXbH6wEKIdpDCuBfAPAPYhVBLPA/CDiLfdA+AlKZc+D8AjUsrRiPd2AdgQfJ8dGRotAymTuizFMKN61WI7k5wcjX9PGmKYUzF0FkrOmGRdVEN0I9sznKoAJDShL2vBzKm6NSiGFoihk1CyhSb0ZdrtNDUoQwW7em2biqFRODZDr04gRTEsaw21dY96rBhmPxQxP25CcM4ygAsBXC6l5FVjMYCojOkjANJW16T38u9bIIR4gxBiixBiy8G0m8NWyES9hueKYcsNWbZ6dSKEkjMqhs5CyTna7KifBcAKMTRSr2zNl4rkRracZw6EN62FwjajUHLeMVfnucwWpCqjtVFLQR5QPjHMkI8KJOTSHjqUecwzEUNDpVOdK3NmWvTnWrbbEoY8JobaiqEQ4t9TXiKllH9o8NmvATAflEv4DgDXCiGeIqXcbnANa5BSfh7A5wFg06ZNyXdGRufd20uR5/FxpZlr2YqhrbDmihX0B+zbR4UhBgUhjDKIoZqnN3fcbdk3ZEYy3qIYzp9PE2hoKPPB62UQw95eSr8dH1fMtNCz04ik8OfkrZBV78/ZWaPUEUbZqtvcPOcCs4cein1fGozIeI7ekepnoasr7DQ+NJQpTla2Mj435q6IYd7wfXc3PTk0RBtZQ18FGLbB4jE3VDo7Osi/jI0pjf8tpB6UqRg2pAYJQevDHCEwgw9VyZcDuKzp60UA/gDAC4OftSGlvE9KeVNQjPJMUJ/Edwa/PopoZTBODVSR9F4gVA6zI+PE4GauQESitYVQVak5hl1dwLp15BEffdToWowyEn7ZkczOEn8F4M55ZxzzOefd1hZeI2MIv4xFJ3Kel6m8TUyQItHeDqxebfQZLXZ3dtKYz85mXnjKKODo7qavqSmlnRtXJZdVIWszJzVnODnTcXiGdnd2OvYtfIa3EPn9OZA7bYLJlVbfyIy+BYiIXpUZSZHSnjLe3h7+3zKq+s5DyVLKdVLK05u+FgB4Big/8EVZjZBSHgPwECj/D6AcwPMiXnougHtTLncPgNODljfN750MPicfMjpvIIEYlqEYDg3R3WRwZi8j0pHkTLQug6So12+R8Mtw3sPDtLXt6THe1vG/qCE8mNMJljXmto/FM2oSvX8/OfAVK4xV1UiSktP2MhRDICK0mdO3TE+T6tvWphEQmJgIOzXkjUYA1ua5Uc9LQ8VQvb6tMTdq+q9Gf9rbjT4nsXAmIzE0Ugwz5gADCTmpFohhqu0jIzTX+/qMo2RFpDU5J4ZxkFL+AsDHQX0OM0EIsQLUs/Dh4KkfArhU7Y0ohFgH4MnB75JwNYBOKEUqQogOAC8D8L+5K5IBr4ghKwTt7RodRR54gB7POcc4JFaEI3FGDHNWsU1PUyhDa8HkkObKlUbVd0BKcnsZJMXmmPPOuCEhSx8qKUydujbtBsqd5xaIYWQYPANUu1OnrqoW2vAtOcODZYSSgZjTrIDMY85N/7u7NfY0OchVEfO8LMWwJZKSkxhOTtI62tGhsYZmVAuBYoih86rkFGwD8BidFwoh/hPAbQDuBDAIYCOAt4Fa1Xw0eNkXQA2wfyCE+BtQm5wPANgJ4HPKtdaCyOT7pZTvBwAp5e1CiKsAfEII0QngEQBvAnA6gFfl+zMDeEQM1QUz1Xnzh2bIHzmhFENLC6bWmOeYK6wYNnApbqDLTbMN4UwxzFnFXvZcsVlRXUbKBGCfGGbKLzQMx6rXjyzKyzjmZeRGAglj7vlmOVIZL1MxtGl7zrSDsvy5802nAXITw0CN+wMAum3qNwN4KYC/ALWP2Qng5wCu5MITKeWIEOJykBL5HwAEgJ8C+P+klGpDBgFqedO8RX0dgA8B+CCAhQDuAPAcKeVtRn9cHHJMjpaCgpzO2+hmNCoba0Si8/bcCdoOJTsjV0B4HqvnxLBlzJnlZiSGZfQwBDxw3hY2ErYVwyIre4GYMT/tNHrM2EC/rFBySxP6im2WbUaAMimGhtXUgH3F0KjwJGNFsnr9hnnOxTcZi/KcE0MhxHURT3eBFL8lAN6ocx0p5YcBfFjjdTuQkrcYEMkWji+lHAPw9uDLPmzuGjg/ZHCQNG3D07CNbkajU+Ub4XzBtB3WFCI82cOwGqwsBeiEUgyXLKF5fvgwJa719Bhdr4wehsCJkWM4N+YLFuTyLWUUngAxGyBuY8InexiirHs0sqVUWxvl/2XoHJCJpOQgV5H+POM8LzvHMJIYzpWH68OoeNO2YpjTt/hQldwGImHq1xCA7wF4ppTyC3ZN8xg2J4cQuXLejG5GC8TQZjNXZ8SwvT3XLtOpYpjzLFZnikRHB6lAUmZSgZwqhmUSwxyKREshRE7fUkZlr3r9yNyrjNWa2rZLmbnPKBChGLa15VINMxHaHGQ8csxzKm9lVSXP2d7bS1+Tk0p5uD7K2ridkIqhlPIZdj+6wrA9OZYupYlx6FAYKtREppvRsCIZiHEkZRHD6Wla7YTI5LxjF57Dh8l2wxCSUZgqhwOMVAzLCiWr7VkyKBKxytv27ZlISpVDbEbz/OjRTO1HgIRipYy+xWkouayq5KEhmuv9/Zn6gkYeRbhsGY35gQOZx7wsktIwVyL/EfrQFinGx4nAdXbmSmtq6dawezfNF0PhwyjDqijF0DNi6PLkk2qCO2tyE1ZDJObqZSBYRorhw0HR9xlnGH9Oc6NoAOXl0/DisGiRcVsG9fqRY14BksJrF4DyFMNjx+hD58/PtGBGOu8cFXiZxjxniG1unpelGB49Sh+6eHGmeR5JDHMk5jsNJZfVlimHWqhev+EowhzzJdOY5yQpc/M8cjenD22RQr0/DcO+QErfy6IjQEUVn5RRIGYAI2IohLhACPEdIcRBIcR08PgtIcQFds3yGGqoJ8OkjnQkOYihkWLIjspwFwvQOtXXR06EyWhpimGOfBTA/pmmZRHDjg76v0oZkdxedN+rHAs9YN95lxVK7uyk9MfZWdoDAihPMcyx6AAxCnOOxd5o0bFQkDc8rGyALDW4Tp0vGRv+M1pCyUCuPOCyQsnd3aRtcK/Khg8tWjHMcX8CCYohkIsYGimGGWyPnOdlFogZQJsYCiEeBzrf+DIAPwLwkeDxcgCbhRCX2DXNU+R03k4VwxyhQSDihiybGGa02/bB62URQ8B+l3/tBTMnMfRCMcy58Mzdo2UphkX4lsh/hB7KGvO2tnBjO0ewyupjmFMxjCSGvPHOUDhTlnqlfkZDISSQOa9TW6QoYqNvgRgWeTIRQOJKyzwvM0/fACaK4ZUA7gawTkr5Oinlu6SUrwP1B7w7+P2JjyKJYQZFwkgxtESw5mwfGCCJZWREkVf0oT2pbS/0QCVCyUCECtTfT1Iid+A3RFnEsCjFsExi2FBRLQTZPT1tfL2yiGHkghn5pB7KyqVVPyOSpMzJK3owOiUn49nxjEjfwsQwQ7pHmcSwZcxz2A0Y+BbbcwXIpTBnikbYGnN1szwX09fD5GR4uIVhk4dUmBDDS0G9Bht05uDnDwN4ok3DvIVniqERMcwZNkmsqDa0fXqauI0QGs67CMUwBxkvq8oUiLBdiHAcDHf2ExNh15JUR2JpnttWDMsgKZFV7EuWkOM2tF09mUh7zG1ugPhaGea5CzI+Z3tHB+2KpDQ+LWdkhN42b55GqmZOnxjZnvPUU+mxaMUwR46h+hlz9+j8+VTdOzxsHE6WMgMxtBW5Uq/lsWKofsac7T09tABOTRmPuWp3hqy2RJgQwzQ6a0Z3qwrPiCFfR6vQ2FIo2UYvQ6NJbSn0ELlgVk0xBDI7QaOdsWeKofaYz8yEq3TGxd5mL0PV7tR5bsnuyH6Au3cbX097zFXC7EHemNH9mTOUHOlGcuQBZ6pgtxUBEiIzqR0dpVuvt1ejVs1TxVBrnufcvNnMdy8qjAyYEcObALxbCNFghhBiHoC/Bp1ocuLDM2LIhCF1sR8fp3BvZ2emPoaAXRUok3xvc4dZRih5bIy+uroyj7nNfBrtuQJ4l2NoVEwgJS30ho3LGUVsgMogKZF2WyCGqWM+OEhEZd48jcNmo5G42Be5YOZUDCOndI4ijky5kRkq2NXPiDxZyTCcbORbcm70I+1mQpuhR6pRa6OpKVL4MsZubfYDLqoiGTA7Eu/doKPrHhVC/AjAXgArATwPQB+AZ9g2zkt4RgwzVd9l1J1tKm9GxJB3rxmqqdXPsFWVnCmXJuOYO1MMc1Q8qp9ha1dfVgW7+hk2ehmWSQxtK4baC09OBUj9jNI3nWorrAzgf1XD/ZmDGGrbnjP6A9jNvWa7tSJXOTf6kb5lwwZ6fOQR4+tpz/Ocaz9QjGJouyIZMGtwfbMQ4lIAfwvgCgCLARwB8DMAH5BS3mXfPA+Rc3LENkRVr20A546kDOfNixovcoZwRsYtLJiJFdVFEkNLztuG3ep1yiApNjdARq0wilAMWUnJ0EDXuDjMwoJpg6SU1X8RiPHnFSGGNue5kWJou1MDEP7/iswxzBlGVj/DxlpUZCjZKNYipbwTwIvtm1EheKoYpu7UWDH0bIdp5Ehyqle229WU4Uj4/2qjabHRrr6IcI8FxbAMMm5zA+RcMVSLrAzPkS1zzBNJSpELZk5lPLIvbUWIYREqrZFimHG+NPcDbGtDOTmGnimGRYaSE3MMhRBtQojnCyHOT3jNBUKI59s3zVMUQQz7+ihnYWzM+KxHbUfCOSMZjqxiJDqSjJPaKNxjoWhmriMAh9SPHTNuQeJCvYoMJZcRYss45j09lOLHLRUA0KrR3k4efXLS6HpltTZSP6NqxHDePJrSXAgAgHL+5s+nOd5QOpsOF2NuIw84U5FVRn/e10fEZGxMcSORx0TpQZuMn8SKYVtbRP/IhQtDfz43+fVgHAHyhBgWGUpOKz55NYBvABhJeM0QgG8IIV5hzSqfkZMYdnfTgsltLADkavuiPak5Kfe004yur8JZjmFOJ9jVReM+Pa20W2xvLz5Xz8KCGakYluG8c465EDHtjSow5jaVFCNiuGsXPWbcvEWOOZC5vZGLDZCNTWeZiqHabmuOpHR0UHnu7GxxG31PU4NSFUMpwxNhMo45EHGPtreHG6qMGyDtCJBnxNBFVfKrAXxRShmb0Sml3A7g3wD8vkW7/ISFcvVY551xcmgv9rwz5uOaMsBmKFnb7ulperEQmnGKaNjM7SirSbT6GQ2KYdE5hrOzuas11c/Ju/CoRwJqH7fliZJiVMG+Ywd1Dchwljkj8h7l/6EBMZydLe+IM8BujmGm9iM5FnubeYbatnsWStb250eOEHHr788VvbLZDqvMUHJVqpLTiOFjAfyvxnV+AmBTfnM8B5820ddHXxlh87xkF0qKjTwgbbvV3m5tJt2VGhFZ3ZthzI1OVbBADIvIMUx1JIOD9IfyyTYZYWvh4YbFfX0anTmqGkpWw1QZ248AMYpEBmKozvHU265olbaoENvgYO72I0CMP+cb14CkTEzQV0eHhjkWqu+dRID4uitX5urKbKuN18yMwQbIomJos/jERSh5AICONzkavPbEhoWJAdjbNRg5Es9CbGXujIEY5S3DmLPzHxjQWDC5GbKFnXGkYpiRpGgrnTnmivo5eXf1mQqViiKGRTVbtrDQAzFjzsQww5iX0cQdSAmxFUXGc+YXMiLny9q19Lh9u/Z1MjX990wxTA3qGN3M8bDVEN1oA1SHkudwCMBajeusCV57YsMSMYxMhchwRFvZjqSIcE+qI7FEDCOVtww3pNGCyf/LHMTQZo6htk/m1iYZ+0YybC08ZZ40o36ODZVW3UgkwkIIXP2cvIphmUcQAsVEI7RDgzkUffVzGmznXG6DRtFl5l2rn1OqYmiJGNrqk5rpOLwq5tIaIo0Y/hJ6uYN/ELz2xIYlYhjJR3KQlDJaBAAxDpArTYeGjCpNXRHDvIqhkV9jxbCoHMOinLcFpVP9nLwLjyv1qkV1y1D1aKwYWlLGbRFDowKOohbMw4eNqnuNlfEiFMOifUtRxSeq6jY7q30tbcXQqAIuHrY2b5l8i23FUJ3nBmNuiWNHIo0YfgLAM4UQHxdCdDX/UgjRKYT4BIDLAXzcvnmewRIxjFwby3IktomhWmlqcEMaJSsDuYog1M+xpRiWcawcEKMY9vVRmfX4uFHVo/Zib6HwRP2cvE2ujXb1Rc1zrnqUshiCZYHQqp9jK3zvlIz39VF17+RkUwJfMrTH3JJi2FKVDGTyLUZkvKhQcmcn/TNmZ5t2o8kos4IdSIleZYy6pcJi8UmD3Z2d5OhnZ40qqp0phlLKGwH8BYC3AtglhPiqEOJDwddXAewC8GcA/kJKeeKflWyJGNpSr7TJlXrIvW1HAuRSgbR39TnVK1tjru1IZmet7DDnzaPcl9FRypMHQGS8yDG3RAxtKYauQsktBaVF2l6kYpjD7rJDyS2+JUOqSplVpurn5A2DexFKBnKNeRktX9TPiTz9pIgxt9CRRP2c2Hle1EbCEKllnlLKTwC4DMAtAH4PwLuCr98DsAXAZVLKf7Zvmoco0pEUqV6NjlKVSk+PlWrqhkbRQC5Hkhp6sBzWtBVK1jrkfmaGPrirRWzXhhAOCJYlldZWjqH2PB8bo6+uLmLUGWFzA1Q2MbRVUa1t98QElXV2dOSKacUumDkIVqpvsaDoA/aac5fdTqqIeV5Gk2jA3nnm2vP8+HEr/twmMSwylKx1JJ6U8hcAfiGEaAPA/9HDUkr9ZJsTAUUSwyJ3O5YqHru76Z7g0yzmKqGLXOwtEUPbxSfaO+Ociw5/1rFj5JvmeEOFFMO8Y54pHJujFYZ6asvkpLIOFEmwLIfYbJFxo6KZHGPOPH5khNbfuY49FVKvStvoc/7fggU0UTOiu5uimHzYQnd38IsMZNw4fF9EKDkDMSx7rrBv4Y4ic2NeNcVQhZRyVkp5IPg6uUghUF1HYqniEbAXNtFOVrZQwAE4yDG0SAxtVSa7yjG0Nc/LIlexTegzjLlxLq1nimEZ/VEBSpeI7AdYpG+xpBiWvuncupUeczRCB+zOc2NiWDXF0BKhjY0AVZkYnvQoKydFswJPO2RiyXkDdsImalPR1IifZcWwtKpki2NuozLZqDG3p4phmWNuo4jD6GANy30MS9tEFDDP8/qW4eHGo+piYXmjH3l/FuFb2Ceeeqr2teNgw59L6U4Zj+zXaVDAUXbUTf2sPMRwepoyxITIlTUTi5oYmqDI3U53N/1iejoiASEaZZ6rybCR72bUVNRyjmHD0GZoteNiwbRx+omLMU8kVwatGYzH3KIynodgjY5S4bhWaq/lPoaxzbkNN51lznMb0Qh1rqTOc0vtamJbBHF7o+lpresYnUykfnAOJPpzzTGfmKA/sbNTCY3Gocjik8jdfzLKzgFWPyvPhlntj5ojgyMWpRJDIcSLhRDfFUI8KoQYE0I8IIS4UggxoLzmS0IIGfN1v8ZnbI957wtz/wFFKobqdTUnh3aYymPnnYoiFUMhjHfHLsl4HsXQaC3hBtcrVmhdOw6Rzruzk9q+qAn0KTAO3xe1qzccc1V4LaMBPRAz5l1dtCMw2HS6UGltKIZGbfIspXtE+pb2dvpfGrQ30h5zizHExHSPInxLkcUn8+bRuI+NaW/0XUaA8hDDIsPIQPmK4TsAzAB4N4DnAPgsgDcBuDYobAGADwB4YtPXK4Lf/VDzc66JuMb1uSy3VK4OaLQJ0JwcLmRwG45Ee1KPjZHswgtbDtiqBnNBDG3kGBq1ZbBcrdkyzw1zgbTny65d9Lh6tdZ1k2Aj90o71UNKa/do7JjzxmrnTq3rZDrjOSdsqFfaYz45SUyO+1PmQOm+xeIhuTZO4tCeK9PTRJKFKKYVlhDhaU07dmhdp+yjWQE7HTKKrEgGNKuSLeL5Ukp1NbheCHEEwJcBPAPAdVLKhwE8rL5JCPHs4Nsva37OIet9FS2VqwMaiqHmgumy+CQPScl0fmxOvTw2ypBx4amaYqg95kND5MD7+zUO4E5G7IK5bBkl0B84AJx9dup1tJ03kx4+jiwHbBJDo3ZSvb1GdjYjdswf+1hg2zbg9tuB889PvY6LlAkbviVTFCU15pwMW612jLsGaB15lQwb89yoqE1K8olzZefZEDvmZ51FG8SHHgI2bEi9jnGeflHpWEWJKxlRqmLYRAoZtwSPqxLe+loAt0op77FvlSYshZEBe6FkFzK4DfVK+/zYAsiVrV298xxDJj8PPaR1jbLbMqifFateGSqGqbazSrBmjdZ1k2CjiMO4IrkoRR8I0wI0E/ONG9BbnC82Uia0K5It2B276SzKn1vseGCj+MSFupzahN72PLd4j9oohDyhiGEMnh483hf1SyHEkwFsgL5aCADPF0KMCiEmhBCbfcovBOznGGqfN1zUpC4q9FBAwu/QUFPNQ8Yb0rlieM459Lhtm1ZBQdntJNTPilQMgTB/NAXatu/bR48cTsqBUkPJZWyAOFyquWBqj7mltAMgZdOpWQmu7RMt9xkF8p/aUvaJLYCd8H3ZLV8ASicUgsT2htoew3nuMgKUJ8ew6FCyU2IohFgF4P0AfiKl3BLzstcCmALwDc3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMErJsHgz9vZS9GJ8XDnmTL12UYqhhUkded/xdY8epXB7ClwQw/Z2io5Kme9MU29yDDnsyH0LUuBCMWxuoDsHQ2KobTv/Yy14y0hSa9iuxsX92ddHvmVsLN+CWfZ5w0DKptN2+N6iYtjbS/5lfLyp5qFof16USKGOucGms0y7Y3swFkUMC4gANcxzrlA7elSriv2EVQyFEP0AfgBgGsDrYl7TA+ClAH4kpdS6u6SUb5FSfkVKeYOU8jsAngk6uu/KlPd9Xkq5SUq5aVmUk7O4YNpqcumNYtjRQTeklFo3pAtiCNiR8L3JMQSMnKALxVB13qWEqrQbNaYjclc/bx7lF/PReylwEUoufcEsOpQ8MED+ZWSkaXcRDReKoRB2mly7TPdosLu3l3YYk5NNu+houFAMgZg1lOe5ZssaF5u3yDE3rGI/IYmhEKIXpOytB3CFlHJXzEtfAGAhzMLIDQhOaPk2gNVCiOwxJos3I2DnWDwX7Wpi1xeD8IMrYliahD87C+zZQ9+vXGlkYxQiFx3AaLF30fJF/bysxFC7ea6UBl3T0xHb3shAwXIRSgZixpznisaio6rqqRy7gFByy5gb9Ox0QWjVz8ta3as2oC+TYKWmNRmMeZmbTiCll2FRimFRZFy9tsZ8OeFCyUKITgDfAbAJwPOklHclvPz3ARwC8N+WPl6vu2sUypjUBhNjYoI2dJ2dKcWjU1M0qVUHmwOpidYajsRFw2Igv2LIY97RkdLIdf9+euGyZRqdjdNhQzF0oUYA+ftejo7Sotnbm3Is7ORk2GU3Z9cAIIGMZyCGZaoR6ue1NFwGtIih9piPjREZ7+y0skLZGHMXiiGQv1hpZIQIObfii8XMTDnRiCI2+hbJlfp5WZVxPq84dQ2dnKR/bHu7lUpwG8VKJ5RiGPQq/BqAywG8MKmljBBiBShP8OtSyqm412l8ZgeAlwHYIaXcl/U6pSyYBhNDdYCJnVx27iQvv2oV3QE5kaoYGhDDVDXCM8VQzaVJHHMeHMuENo9i6CKUDORXDI0XnZz90RixztsgP9KYpBQ55gYhNmMFaNkyK8cvpLaU8lgxzLvp1Lb72DHy5wsXWvXnpWz0y4hG8P2vkQes7c/ViJuFeW5DMSyaGJbdx/DTAF4C4EMARoQQlyq/29UUUn4VgHYkhJGFENMAviyl/MPg51cA+F2QwrgTwAoAfwrgsQibZGeDZ4qhtiPhUywsnKsJ2HHeVc0xNG5Aa+muTVUMNVQgF60wgPyKoTZJsViRDCTMc76Pdu9OvYbxPZrzpBlGYu6VwSbCVTg2j2+pqmLoKhwbKyQb3KOuxjyvuOIijAzYUQxPtAbXzw0e3xN8qfi/AN6n/Pz7AO6WUt6WcL324IvxCIDlAD4CYDGAEVDhyXOklNdkNxvlKIZcmXTkCIUMEmIKLgpPgIT1pYjdjmeKoStiqCqGUiqbVgP1yrj9iGeKYeqYWzo6kRFLUph47ksPPmjnABdke6RiaJB2UGZFMqCh0hqQlLJTJvJWVLsiKan+XMN27TTTMsQVg1OVjOdKkUoncPIqhlLKdQavvUjjNaLp582gMLV9lDGpOzqIHB45Qlu4hM9yUR0LnICKYX8/5aSNjtJXQk6g9oKpHSvXQ3c3mTg5SS0x5g7HWBX0hN+1K/a9DFc5hpHzfP58muvDw5Tkk5CwaXSqAlDePNcIVWkXn1hWDCMrwdWk/NnZxNM+jJtEWyKGqWFNg81b2ban5nWmbPRdFYfZKCbUdhllEkObG/0y7AaKiaRkhNM+hpWC5Rsyb5NrY8XQouomBE3MhpaFRRBDVmWKdN5CaO+OXZx6wojMM2QiobE71ra9jMXeoLrX9QaoxXkb9DI0DiUXqRh2dNA/Xy3zjoFXeXrq9W2pQOq590Vv9LmNV0q6hyuSohLDhpaFBoqh9p6sjKhbXx9VknBhVAJcjbmNULL2+p8RNTHUgdqfz1Jye6qcnOIEjXukWVow29ry541pEcOxMVowOzqs5UfGhgc1b0htzmQ5NAjE2K42Fk+B1vS1XPEI5FckXKnL/f3EX4eHmzZABsRQ6x6dnQ0nVpHEENAOJ7vKGevrI1FtbKypUXQGFSjR9sFB6tZg4TxwRl6FWTtlwjJJ6ekhwX5ysqk1p+0cw+lp8lNtbeE8zInYjb5mONlFc2uAxryjI6yKnkMRynhG1MRQB0NDtDr091upBAMSjgvTnByueqQBMeuLwQ5Ty5Hw379iRe4D1xmxKpCm7Xv30mNqfUMBxDDSdoMKPP5fJfrkI0fCQ+4T+5ToI7Y+xlAx1A4lW9q4qRugrKefaN2jhw8TOVy82JpvSSWGttQry+qy2ig6skDMlmJomVypnxerMNtSxguwPfEoQlv+XG3JZMmf5426uRpz9YCLrPnutWLoA3gRsLToADGVg4BxKDl1UlvOvQLyJ1prrSdaTMYMeRVDngap/sEzxXB2VnM4C1h08hYruTibmpE4z1OI4cyMZpNoy+QKSCApmsVK2ouO5VCy+pmRxDDFt2j3di1zzDXni6uqZCAfSeF5LkTKPLesLgMa89y2Yli0X8xADE+YBteVhGU1AjgBFUNNYsg1Hl1dKY6kAGKYqhimjLn2wRq88Fp0gnkUw+FhIof9/SlCYAHOO2/fS1ehZCCGpGgqhqrdCXUeheSjxi6YnJPKOY0xcNXaCEgh4wZ514nt5gpU3Vo2nRVQDPO02lHtTpznZaq0msRQe4mxXF8AxLgRzXVIewOUAzUx1EEBxDBvAqqr4hP1MyOJ4aFDiQevqwKmVpNojxTD0VF6TD3MxHLOGBBju1r1mDDm2kNZgAKUtx2G9oJZ4D2aJZRsvHErgBi2RCNsE0PPFEOXdudVDHn6pt6jZW0kbK9DBRDDvKFk9kkubI/k3QsWUJh9cLApybYR2hugHKiJoQ4KWHRio4CaidbGMrhF2yMrTXt6SEqbnk6setR2JJaLfdTPzNomQFsxLCBUFWk7j/nUVMQfFcJ4Z1ymYuhp8QkQQ1L6+kjuHhtrytZvhKtqaiAhGqFJDI1DyQXMl4Yxb25vFANXRTNA/qPltJeYspS3vj6qShkfD3fEEXBJDPMqhmy7CzIeub9sa9NSaosOIwM1MdTDI4/QI/eNs4DYKKDtnVqBrVOyhAeNiaFHiqEWMZSyUEWixfaVK+kxoeHyiaAYln2uNhAz5uqZ4wm5ncb3ZwF2FxpKLqCCHYgh45rtjbQXzAKVzqxpKtr74LKKT9Q2Xgm2e6kYFhVK9kTtLLoiGaiJoR6YGG7caO2SsWuLzYqqmRma/UIUrxgCdh2JdmxFH3mdt1YxAbfCmDdP6USdH7G22ySGHiqGWrbPzrrJG0sIDxorhmXkGGrmjWkRLK5gX7TIWjU1kG/Tqb1gelgIoeXuuOWLZX+e5yhCLxVDQzKeOOYcjWlrs8rE8hDDoiuSgZoY6oFvDIuORFUMIxuL2lAMOfds4UJrLQLUz8zivF2qV2qftKkp5ReaY64V7ikgvAZoqJ0JY64dpipozDs6KCI1Pq78QlMx1LKdT5ZYtIjCvJZQCjEsUzE0rJBNtL2geR475rGH+obwQTE8frzJn2umBmkphuzPFy2y1k4KyBdJcVnBXkrxiXp/JlbXmMEGMaxDya5RQMikq4tEJbWtBQC77WoKCCMDCYqhzR1mAQUceftHaTmSghfMLCqQy5CJEDHzxWbuVQFV4EA+YuiyOEzNMWwgKYaKYaLtBbRkUj8zlhgmNOd2qRjysZVTUzFNizUVw8R5XsD9CZTkzwsY854e2uhzle4cDHMMtfrpWh7zWjE8EVAQwYrMM9SsTNJygjy5LC466mcWmmNY0GIfuTtWb8a81b0FOEAgX7jHWKW1bHuehuhaSkrBJCXLsXguQ8mdnZTFMDvbVDeg2TpF6x4tWzHk8UlY7F0qhurnmp7dq/YZTRxz7rBv6UxtRp5eoy5DyepGv4Fg2dzoF9DDEMhHDAuohW1BTQx1UEC4B0hItE6ZHFJqJuU//DA9rluXx8wWlJJjWIBiqH5uSwVeby9tPWPO15yaol+1tZXfsBiormKofm7DwrNwIQ3m8eNNcf0Q2gtmQcQwloxrECxtklKQb4kkKWpi8+xs5PtmZ92GkmNJyumn0+NDD8W+17iAowxSq96fMWM+NEQ+PfVgrZ076fG003LbqiJPr1GXxBCIIVgc9j16NNa3TE7Spqm9PaWYsIAehkA+YlhAkKEFNTHUQQG7eiB7L0N2JPPmpaSa7NhBj+vX57KzGTYUw1SSUqZiCKSOuWp3Yu+ogtWILO0wXBafqJ/bMF/a2lKVNw6FDgykzPOyw5r8v02o7nXZxxCIOf2uo4MMUs9+b8LwsKZvKYgYxkaMV6+mx4QiK60DqiYn6R/a3m61sA2IIeOdnfQ5s7Ox+ZHaClDBxDBLIaRrYhg55hptX7T9uSvF0EbOeA7UxDANk5P032tvt57tmZUYau+Mtc9wM0OenBQtBaigKlP1c00r2VyHYwtXDPlImu5ujUaNZshamaw9z8smhmecQY8J6pXLPoZAQq2G5oLpoochkEBSNML3WgummhZksZgA0KiSjQmDazdg2LWLHi22TVM/tzDFcGyMwi2px12ZI+uYGze3trxxy1NRXRNDH6D+Fyy3Gc9LDLUbc5YRpgLs7TCPHCFyaLkVBpBdMXRNDPPkGBolti9bZn2eZ114tBfMgohhbK9RDfVKK5R89CgtmH191hfMwolhwWPeMlc0qpJdFnAACf48Jc/QeKNfVvjeIBqROF9U1c2yb8nay9A4clVGeo36OTUx9BwFFZ4A2Ymh8fFJZRFDWzvMgsgVkJAeliLhG7d8KYgYDg01pSpphB6MqqkLWDCzOkHtMS+IpMQOrcaYa4WSWXE888zyyDj3vWT1qQlVVgy1xNcCfUvs5o0/i+dpE7TneUHlqLFkXGOeG/nzAnxL7FrEviBFMUxdQ7dvp0fLefp5+hjXOYY+gFUBy4sOkBCStbXDLMgJxvYDtJVjWNBCr16yxUfbUgwLytPjJGkpm9ob2QolF2Q3kLDweK4YquZFtn3RUFISFUO2+5RTspoYi1iB7cwz6TEmDK6dG1lCVXLDBkjjtBnXimEsGef/L1cVN0HbtxREDNWccdP2Ri5bvgDZFUPtUPKePfRoOa8zz8lntWLoA7iAY80a65cuPJRckPNO7QeYN8ewwF194cSwwN1xZJ6h6mFiqh69VwxtqbSWiWF3N/VKm55uOhaZK6qPHaNfRoBtTww0FDjPY4khK4YpRVauiGFHBy32aucFAPZyDF2M+amn0uPu3ZHv057nWtU15ujqos1+lp66Whv9AolhqmIYo9Jqh5ILKg7r7aVxn5ho8i39/fSLkZHYs9hrYugDeGKxQ7WI2Opez9UrIOaGnDePVlMuZIiAy+a56udWrfgEiAlVdXXRSqr2GVGg3X6kwLlS1eITIGbM29sTtvyNTyeGewpcMFNzDFOIYeJcKbA4DIiZL7295FvGxyMXzMlJWkvb21NaeLkc85SqZJe+JXLMuR3AyEjTsUUhjHIMC0jHiuxjCNhTDAtKx1JPNWyYFmq7uogNs5Q1MfQD2quTOQrNMZyYoLuFW1RYRiQxFCJcnCNaebjukaZ+rmn/KC1iyNV3nZ2FnFeUpeEyt3yZPz/lVMSq5hhOTtILVbJmEVk2EuoR5a6U8ViSkqLSGhWHLVxo9QhCRuyCmVCAol0j6GLMY3OGCFpLzNQUvVBt82QRTKYbFMMUkjI9Te5OiJTaqYIqe4HGU34aYEMxnJ4Ob2TLrY2AbJu34WEyq6+P9klFoSaGadDezpmj0HY16s7YcmI7kJBozV35I4gh90jr73fTlw7IXlFtfBxemWOekAtk3PS3TGKYsqs3rqa23H4EyHZGtTpXEsm4x4qhK0ILJMyXhA2QtopSwpi3mBf7BxGM5nkBbXaAsENVAzHkzwMi57m6yU80qaBegPzZqi1z0KxKTpznqvNMvJGzIXXzFnGPlqEWAjUxTEeB/4msjUVdntnLyEIMteX7EhTDQolhAQ4Q0OhlmOBIvAtTqZ+VhxgWuIkANI5oixhz7arBqiqGBfuW2GIlztXbtq3lPcb5qGWScZ4IeSpkCx5zJoYtBz/xOEUob9p5egUqhjy0jz7a9IsUxdAoBF5Q+W9qNXhNDD2GdnKZOWJTTypAUmKdYAIxdH1OMlAwMSwwTw9IIONcGBWxYLo+Dk/97BYHmNJSQovUlkQMTeaLNjF0oRimNP71gRjGbpjPO48eH3ig5T3GY14mGee+lzEtglwXzQBhKLiFGJ51Fj3+5jct79He6PNaUIDtl1xCj/fc0/QLG30MC8yNVD+7JoZVRIH/idieen19VA7JOWtN8IGkxHaPYGKYsMPU7jZfgO2x7Q345j94MLLSVIukFOy8Y0kKn8TRsm32o1ApVTFM2dW7VAyzhJKNFcMyieGiRWFFdcQ5sj6Q8VglhX1LxJj7oBjG+sRTTqEx37+fcmKb4AMxZL/YMuZMDPk4PgXa/vyRR+iRz7u2CHbbkeeZt7XRzRgxz7VsL1gxzBIxLKOHIVATw3RwH6OCc1IaOo2oSb9Zw4MlhXtaJnVC8YnrczWBxmTlhp5d3d20s5+ZSSRYWiSlbMUwYXesTQz5/1XAmPf2Uj3O+HhTcePAQFjF3pLc5MeYZwnf+6BexS466jmyEbZrpYOVpBi25OpppEwkzhUp3ai0HR0UBpcyXE8UGEWACiLj3Kavhf8lhGS11iEpw/6NrJxaRH8/TemRkab9fHt74hrqupoaqEPJcxBCvFgI8V0hxKNCiDEhxANCiCuFEAPKa9YJIWTM10KNz2gTQrxLCLFdCDEuhLhDCPGiTAYPDZH839MDrF+f6RJJ4KMjZ2fNqmS1FsySQsktzjtBMdR2JAXmpHR301dLbzogbEmUUlAQCyaUBfS8BBJISl5iODhI/8ienkIWHrWor4HUChGqCA8/3PI+H9SrLGRcixiqVaYFePmBAVobR0cjRKoE27XWwoKJYZZTIfi1iWM+OEjjPm8e7VYsQ+1N19Kti5tcR2yYjXJpCxpz5mwtrRYT0j20WvyNjtKA9PRQJMwy2toS7lENkSLRt7BPWrs2j4mxqEPJId4BYAbAuwE8B8BnAbwJwLVCiGZbrgTwxKavZvoUhQ8AeB+AfwHwXACbAXxbCPE8Y2v5Zli5spCqJCC8qUw6oPsQSs6iGGotOsePk2rHalIBiLU9NgNbc8w5h8hyl3xGHsUw0ZHw6T6rVhVSTQ0kOEF2uk35V1L6EUqOLT5JyKXVIobqzVBAlalKxk2KfrT2ZK6iERrhe+0K9gIghDmpHRsj3tTVlcJVXZHxBMVQixgW1CBaRZZ7VCt6xcfhbdiQx7xY+EwMk5qGFIHnSylVb3S9EOIIgC8DeAaA65TfbZNSbja5uBBiOYh8/oOU8p+Cp38mhNgA4B8A/LeRtQUqV4zFi0loOny4KQUjZnLMzNDGVz19JBIlORITxVArTFXSmO/bRzfZqlXKL5gYNm33JyfJgbe3p2x6C+x5CWRTDLVUN+1z0LLDlKSMjdG48+kjsXClGGosmK6aWzMWLaJ77siRpuGJGXO1/6JWNKKgMY/1LTxWWVW3gqMoQOhbjhxp8i0x/lzdcLrqvwgkjHlCHrBWCl7BeXoAjd2jj+oTQykNcwzLLuA82XIMm0gh45bgcVXE70xxBYAuAF9tev6rAC4QQphlv5bkSICEG7JpcqgnEyQKDQXbHrt5z6sYFng2NSM2DM6sr0kx1G6eWzDBKizHkPMYEo+MyAdTYmh86klBC2bs0OYlhgUv9Ornx6pATX/U0aO0aC5cqNlntGzFcP162p09/HDLSRzGPS8LQqw/j8mPNC6aKXvM1XWo6chNrXnuoWI4MkKboL4+yn2ORcEszGfF0Ifik6cHj/c1PX+lEGJaCHFcCPFDIcQFGtc6D8AEgOYT4rmY/Vwjy5ikFHDIPSM1lJx3weSbwzJiu15waCyiGkyLGHIFWwE5nQzTULL2zVjQIfeMWMVwwQLycMPDLQumdo4h4BUxNO6/WNBGgm99zp+fg0oMG6qY/FEMUzedTWOuLda7Cmv29NBnzs62/FFGZLyEMdcNg2v7c1dj3tVFN+HMTMsvtThfCYph7NGyMcTQuAjSZbuaJt9yUhBDIcQqAO8H8BMp5Zbg6QkAnwPwJwAuA4WGLwDwayHEOSmXXAzgmJRNowkcUX4fZ8sbhBBbhBBbDvJNyMSwgHOSGbEta2IkfO0Fs+AQW2xDfLUarGnhMUpsL3DMY4khF43cfXfD01o34+xsmCdXkO2xiqFaxR6zkdDq11Wgt4mtks2rGBZMsPj2adm89/TQP4SLSBRURjFs8i1akbOCz0kGUo6hjjy7rQKKYYwK5EMDeiBlzFPmi9YGqMAxT1UM866hBYkrsetQXx8lnE5MZBcpcsIZMRRC9AP4AYBpAK/j56WUe6WUb5RSfk9KeYOU8gsAngZAAnhPUfZIKT8vpdwkpdy0jCdxicSw5Ybkz2za7WhNjKkpumBB52oCjWcOt9DwlBsy0aSC8/TUz2+5Ic8/nx537Ig0KdGR7N1LiXHLlhXSDB1IUAyBVIKlVU1dUPWd+vmxTa6b5rmW3ePjRBAKOpta/fzI08xiFsyqKoZaG7djx0g9mj+/lOKwpuhl2Ik5DzF0MeZ5QsnT04WHZNUxb/HnMSKFlkkFpx0ACUdRxyiGWsv6+Dgtbp2dhUWAEn1LzEZCq8jKApwQQyFEL4CrAawHcIWUMrolfAAp5U4AvwTwuJRLHwWwUIiWTDB20VH7oXi4JIY8qdmGAMZJ1gVVU3d20sZmdjaiiJcXzCy2a7fTz47Y3XGM6mbUTqLAuRKrGAL5iCHHSRuy5e0iVjHkY86a+rtpjbkqcRVUTa2OeQtJiVl4fFMMrYaSCw7dA+RbYtt4pRBDb8c8pfgk1bdISRdPTP7Mju5u8ufT0xEtRfNsgAqOXAHmoWR2NYkZYgWfew+k+JaYowi15rkFlE4MhRCdAL4DYBOA50kp7zJ4e/Nephn3AOgGcEbT85xbeK/BZ5VCDGNDsjGTWmvB5DL7Ahd6IEHCZ+WJ7QigZXsJW6LUROumhDIfTiYAKAWyq4uEyZY+aSm5ei5bvqifH0sMmzYRPhz7CNA6PDBA63ILSYlYMNX0N1/Uq9gCsZjQoGsFCEhQ9XlCKARrbIwEntSWLy4Vw5gcQ62wJh9HxxGNgpDagixLKLlEYqjbx5CJIbueSJRgt+pbWqJAvHYrbbxmZws9obcBZTe4bgPwNQCXA3ihbjsaIcQaAE8BcHPKS38MYArAq5qefzWAu6WUjxgZ7ItiqGj7WhNj61Z6PCctJTMfYm/IdevoUQnJak9qJmUucgw3bKDw+8MPN3QF9uGQe4A2rjEZBpFV7Lz7b2sLhZZIlOAEYxd69QZQ5rnWgllC/pJqQ2wYXFkwh4Zorg8MpFQ88r3horAtZhOhFRosYZ4DCao+5wErvkW7a4BLxTBPKJntLqhxPsOkin1sjL66usKavUgUeE4yIzaUrNqtSHJaimFJG6DY008ijqJh39Lfn+JbLKBsxfDTAF4C4KMARoQQlypfqwFACPFRIcTHhRAvFUJcJoR4I4AbAMwC+JB6saBq+d/4ZynlAQAfA/AuIcTbhRDPEEJ8FkRE32VsrUti2N9Pd9zERMN2wijEVvCkZim8ZbcTkbHPR9DNn58S3WZiWOCCGesAe3vpl9zQDY2vc53YDsRmGEQu9mr1XWJrI5eKYU8PjfvUVENOglaIrQQFSLVBJ1Sl3eHioaBxwsaNec2LRaxiqN4AMzNzT/uijKs2xBaIxRDDRPA8d5ljePhwA0nRmucl5F2rl2+xPWIDpM7zRDLO/6eCmv4DCaHkri76o2ZmGm4Cfp3rlAkgYdMZQQzLyi8EyieGzw0e3wPgxqavPwp+dw9IHfwcgP8FnWLyKwBPkFI+0HS99uBLxXsAfBDAnwO4BsCTAbxUSvkjI0uHh+mLqw8LQmwoGQgJqcICjMKxBScixCqGEbl62s6biWGizp8PiRV4EXeq0dFsBS+YEVOi8XOVMdcOO7gkhkDkasomaTnvgolhbH5kyoIZi5mZUqrvYxXD9nb6o9ROv/DjzF5G7OaNiaFynrlW3pV6TnGBviWWGHZ10ToyM9Mw5lq+paT4YeyYRxSfaM3z2dmQ2BRY2MbzPKKNa2QhpFZ3rpI3QC3rP59RqISSy8ovBMpvcL1OSilivt4XvObfpZSPk1IuklJ2SilXSilfGUEKEbzvD5qem5FSflBKuVZK2S2lvFBK+R1jY1kFWLmysORTIMGRAJGKhBbBKmkGpRJDRTHUcoBjY+QEu7oKtT2RpET8UVob9hJC4EDCKU8RZFy7srfg6jsghYxHrEi8hiemybLqxqkLBcEklKx9HJ6UtKIVVEwApGw6I+REHxXDlvnCpE7JA9ZSUo4epbk+MFBov85Efx7hF40Uw4KJYRbFMHHjNjwcxj67uqzZ2YyE49YjHSbnCifqPSVsloGEPqkRZ2uX1aoG8KPBtZ8oIYwMNN6MLZVJEfIQ+xStbvMFz6DYBu0R+W5ak1olVwWS8URiGFGAYmR7gSFwQONYPMV5G+dGlrAB0lUM1X1ZLLi46YzmWjO7iCWGWUPJJS06saFkIFQktm2be0prvvDfWlBvN0bsfIlIstW6P7V2GvmRSAwjpC2jTg2uFMOIHEOtwhN2UgVG3IDwX7p/f0LrNGW+aJlV0gYopilD5NqvVRxmCTUxjENJxLCrizaws7MRi33EpNZqOffNb9JjwYph7KlgWUPJJZGrxJ5dTDKU7aeW2llCCBwIxY6WCtmIrafW/qCEIwiBRiFWSWsjRCyYRhWyrvKAsiqGJdrd1kZjPj3d9MuzzqJHVl2hqV452DA3ICGKkjjmu3fTY8H3J+dQDw21HPwUnub0QBj80vIt2h2Z8yFrjmEsCj4JitHdTen409N6a6hWKJmZWsEboJiTbxNFoZoYukRJDhDQaHKtTA6er7zhb4FSTVv0pI4lhpyRfOTIHAvwiRiqPbtaejDymCkyixbBKsn2WGKobj0DtstzJXEK84JZsJLS3p6QJM6TOchHktIvYshTQkn3afyF6YJZkhrR1qbRJihCGU/kHyX5xVj1ihtrj4zMNdzTuj9LUgyFSBjzM8+kRyU/0qjIquCNfmLnAPbnAdvVCiXfcQc9FlxNrdoR25rJNJTMR7NynLogxNrNPSuPHZs75lTrZCJLqIlhHHwghk27ndFRSsPjHVIk1K3HYx5j1c5mxDTEpwm9aBGt8IGX8YkYqna0jHmTPCSlRlhzepoWeyEKJymxleD9/fTLiYm5P0pLxGS2E7vTsAfdStPhYVp/+vqo9isWJREsLhzmLlBzWLiQ5vrx43PO2yfFULWjZeHheyzwc9r9F0tWDFvmihAtflHLt5S0AQL0T7OamaH7WIgUksIFHAUTrNgxV485DdYXrVAyE+CLLrJmYxxM+gGnKoazs2GaSsH5y7F2t7W12F4rhj6gpGICQF8x1DrogRfL888vNGcMSFAMgXCxDmw3ct4Fh3tUO2Ib6Aa/OH6cuBZ3D4oEJ7csX15oMQEQ27OVwIteoI5o7TBLJIaxigTnRQTEUEst5KKZjo7CQ2w85i33p7oRCO4734hh7MLTlHqgddLd2BjdEJ2dhecvJ+ZHZiGGJVQkM3RPs1IPeYptJzUzUxqp1TovuWmeJ96jJUpcqcQwuOdmZsIoUWxv1/37KfK2dGlKA9j8iM3TB1o2ErVi6ANKVAx1dztaO4YSF52InOQQTDQCp6alRvDOuMCeV4xYksLON8i90sq1L1HpjE1WVn8ZjLnWgumhYqhFDNW2KQVvgLQ6BwT3XeWIYTCRtNpwltSpAUhZMGOIoVaOoQ+KYRMxTD2VaGaGBqSgs6kZifO8SQUwOg+8BIkr5mCZlrmidriKJeN8fxacigWkdA7gezSYu3XxiQ9gYljCYp9FMYxFSeE1IEUxbGrQybUciUUzJRLDmNPvgHOD0xMDg30jhrHtDYBw0Wsi44nO2wExTDvNwqej2YCUBZPv0WAcfSOGsbY3qctaChD7xBIWzETf0qSkaG06fSKGTYQ2UfAu0e6Yo+IJTf8QrVByiUwm5mCZFmJofE5ywYi1G2jx5yX18wdQE8N4+JZjKKXZIfclLZhtbQ05ySGaGnQy5+PCvEiUSFI4D7wlb4z/GceOAVLqbR5LJIYrVpBYc+BAxJjHLDy+KIaxYfDly6k8/9AhYHRUbz3hExVKIFcqoW2pYucExKDSVIsYllTxCKQk5be10USanNRb6EtqVQM0kpSWNl4nQihZSj3FsKSiGaBR/G6Z57xZf/BBABUKJbNP3LsXmJ7Wy7su6RQroLEJfcs8b1pDa8XQB5ToBGMndW8vJaBMTQGHD+vdZyWqEW1tCSGfpkPAtRyJVvM6O2DH0EJSuroor2RmBhgamvt94nCWSAw7OmgM1crdOTSFNVMXTClLVSQimvkT2trChWfHDj0HuGULPW7aZNPESPT2UhHM5CQVgDWA1c6mcE8swZISuP9++p5bxhSIWN/S0dGwaBopnSX4RD7NTC2KmQPP1WBzkBpKnp6mG109bLxAsB0tPrG/nyqqxsaA4WG9E/q4nVAJlb19fWRi0ymshPPPp8dgJ601X9i3lEiwWuZ5Tw85nulp4NFH9Vx1ieJKZyfl9c7ORhwU0ZSOVSuGrjE9TV+LFhWe1wGkhKoUOdk3xRBICPkooSqtiseREVp1u7sLPZmAkZjDxKxx2zbvQslAQj5N0z8jlRgeOUJFHAsWlDLmTZGRRvCY79unRwz5H1dC2gGQsNgr1b1abXaOH6dVt7/frZICNNyjvoXA1Y9p8S2K3C+lhm/Zv59W3uXLaSUuGLHpHmpF9b59emIg9zxkYlYwYk9W4sEdHGyY57HzZXiYiHtXV0qYyA4S5zn7iD179PY2Ja+hseFkZSc9OUm1dmrbryJRE8MocIyuhN0lkEIMlcmhtWNwRAxb8lIUFnD8OPnl+fMT/HJJJ3AwEokhO+H77/culAzo9ew6eDDkH7GOpMQwMpBCDJV8Wi1iWGZcBZEtCwmK6jY0RPvJefMS9pOqQlviPI/M1VNYgBYx1JLP7SGWGPKYHzyI4WEa895ezTEvAYl5wMo818p3439MSf48lhgqHeqHhmg/OW9eSqcGgP64gjs1AAmbZaDhHjVKUynJL8barkTdVLtLcBs1MYyEI2KYeHTV7t16HXR82dUrFbJaqlvJhJY/JjLRmm/IvXv11sIS85eABFLLA7xz55xvO+OMhOq7kokhj6EV581jXtI8j+g1T1AUQy27SyYpTdGoRihsl+9frVQP175FSczS2pOVmKcHpHQOUCpNtdxGScebMlKJ4bFjejVIjlS3SH+uMHWte7SkHoYMHcXw8CHZ8NqiURPDKPD5USURQ61wz65devUwJVZrqh/T4ry5p9/hwzi0c2zuqVio7UdKQKJiqDgSH0PJsfPl7LMpUWjrVozspAXFl8ITIOFoOaCBYGmNeZAEX0aeHpBADPn+3LlTz3mXPOaxeZ1AA/O67z76lmtpIlFi1wAgQaVl2eTwYezbTo3FE2+9EvujqrZEKoZMNpR8t0R/zn6xZGW8hRjyH7Vrl14q+J130mNJ5CqxdZrp5k3r3Fl7aOocFWJggMJs4+M49gjlBZWRXwjUxDAaJSuGiW0CFM+eyj9mZ0t33rG7eqWgYOhesilxoeeVq+Q8vUOHIirwlC1/aih5drbUohkggdR2d885s6nttBgmnqjgEzFUCgpSFQk1abWkDVBTwXeIgQH6h4yPY3gr3aA+KYYrV9KtuG9fRBW7knrAi1LsOj45Cdx9N31fQs4YkOBburpoEzQzg9FbidEmcr6Sx1wt+G4Zc4UYsr9PnOdcfMJnuBeMxM4BfX3A0aM4tI2qJBLdHfcnK/j0LYYaAWrx5yaK4fR0aSfNMJo6uzUi8M1jW8lX14qhS5RMDJcsoaTSY8cajzoGMDcxpBJKjuVO+/dTSdnSpQnJH3aR2G8sICmTWx9teG0kOPZZ0s3Y00P5d1NTERV4yhYuNXp26BA5k8WLSylUAhJ29cDc4jezk1Z6n4hhfz/lmI6MRJxRzQufUvATe/sNDZH3HxgoJX8JaDm0ohGB7RP30mKYyFVLJimdnRpV7Hv3pkf+du2icT/ttNJTDyJ9S3CG7fhWWk19CiV3dIS2t8wXVqG2b08P7hw4QBXMixeXU3GABN8ixBypHb+XzhHWUjpL2rj19ob+vKW61yRNZfdu6khxyiml+XO2JWnDPP4Q+eqSKElNDCPB7Kwk9aqtLSEkG0yM2R27MDZGfC+2gLRkCRxIkfADkicf1SCGDmyPVWqDhW925y4MD5NAEeuXSw4jA42tuVoQSCejD9FimLiGl5xkLUTI/1gImUMwfnLfPhw61NgKqQVanYHtIjaUDMwpaFNbtwPw52xqBs/doaGmXwQL/ewj23HsGI15bOoBO6ayViakEEPeAO0goq2lGJYUSlY/quUeDcZcbt+e3sKL788SfWLipjMg47MPaxDDEnt1MmLXIvYte/fOqXKxU4HtLvH+5M17i0Ch2DHzKPmNspaZmhhGgYlhSeFYIOGGbNKZE29GTpot0ZHEElrFjo7dRPoSbXdIaltsb0jMknNNpSPByVklhXqAhpSZVgQeb3YXObjAl0ej5CRrILS9JQwe/DPkgYMAJJYtIxU9EkyuSiQpicQw+KNmdhML8CmsCSQsPDxng7DfkiUJhUolF56oHxXpW4J7tH2fxoJZsmIIJOSNzW2Wd0BKGvNY0bvkKAqgRww7dj7S8NpIcK/Os8+2Z1wKYgsK54jhPoyN0X4ydqNf4olnDB1iKPZobIAsoiaGUWBiWOINyQsP86M5LFoE9PWhfWQI83E8eb7ym0tc6HVCyX0HycElOhIHxDDWCc6fD8yfj7bxMSzC0eS1kHNpSnSAiSQl8Bx9x2lFinWAMzNOFAkW+VrOS543D+jtRdv4GOZhJHmuPEILU1m5bkDKghmMecd+GvNE/sGktkSSwhGGloVn2TJg3jy0HT+GhTiaHPUrufIe0FMMew75qRjyWLaE7xcsADo70TY6gh6MJY+5p8Swb3+KYihl6JxKVN5i274FSZ9thw6iA1PJa2iJJ54x2EcntavrPkR+oyaGLsE5hiU670suocfbb2/6hRBzjmENdiRPageKYaLzDuxeeJxIX+xiPzFBC6Z6AkYJiK16BOZuyNOwM5mk8KJTogPUCSUPDNFCHpt2EBwRhRUrKEGnJMQSQyHmVtNlOKhHDBPlULtIXDCDm7L7aIpiODFBUqmahFYC2PaWymQh5sj1GXg4ueLRITFMGvN5Q/vUH1sxMkJJZ93dKU0a7YIX+xYy3jTPK0UMg8biaw7dBiCBO42O0lzv6aGClZIQSwzb2+fGfAX2J3M+rVJxu2DhnhstNCDgIAPH61CyH3jsY0tLPgXCf3jkrkGXGDpQ3ebPpxy84WHKk25AYMey0RRiuG0bVeCtW1fqmCcuPAHRW41detXUJW4iFi6kYRoaiijiCBbuhaMpxNBBGFn9uJYNEDD3DzkNO5P9sgNiuHAhzfOhoYh5HtyUA8MpxFDtaBwbJ7cP7ugTufAEq9J6bEsmKVqHzNrFwoXEoQcHqaFyA4IJcsrYNnqM84tqGLmMzsABODzYUggBzP1DNmGLVwV5APmLnh7idsPDTb98whPInFEKE8feoxzLLau3SgCeA+weGhD4503YkuzPHSiGa9YQf963L6IAJViHFo/VoWQ/kNjQyz4SW3kEq+npeEQvx7DExV6IhKTfQP1bObMLbZiJn9TsAEsmKYmKYaCkXIC7kp23g5wx9cjXFlIbDPLScSKssVXJDtRlALj4Ynrkf3kDAtn88bjZO8VQnedxPd6WTOxVf2yFg02E+nGRCnMwzzfgIe8Uw0Tfct55kL292CC3YnnXsfiiGa5yKtm3sD18mzUgaOFyJrZ6pxgKkdCHMfijBuRxcO51JLYRWS/bt1x0ET3ec0/ELy+7DADwONySvIY6IIZtbWFWTEsqWUAMT5nZpQqfxdtUzsdUEGX9BwIwMYxUDINZsx7b4hcdKZ0ohkBCAUpvL2aWLkcnpnHuwr3xUQVeMEsMIwMpYZPHPx4AcD7u1tvVl2x7rPNetQqyowMrpvegF6PxZjlSDBObuQdEbyX2eacYAgkFBcEvVmMnlswbj5/nDtIOgJSGyxdeCICUlET+oXV+m33Epqp0d2NqGZHU85YdiBcD+azhkhqhMwJxDb/5TcQvA/+8DtuTfUvJ/fQYsU3ROzshe3vRgRmcumA0PrjDedcbNhRlYiTY7sh5HrDGM/Bwcm7kHXfQ9yVv3nj9b1GYFy/GbHcPFuI4zlg+FF8cZhk1MYxDyeSKJ3XLjgFo2NXH+uXDh0n/nz+/1DYeQENT/BaMLadxvGRp1B8WoOSm3IzYXmPA3P8/McdwaIhyxnp6St1hAgkFKB0dmF1H4cGL+h6KV1IcEcPEM02DgT4Fe+PHfGqKJpqSe1sW2CW03KMLFmBi/dnowQSevvCO+Atw/LxkYpiYkxoUTa3BjniXNzMT/tElKoZAcg7z2AD98uxFUTu7ABw/LzkCxP/iyDZewUCvxaPx/nxsjP7ozs7SfUvSaTnT8yh5cuPSKAUjABPDEjs1AClHEQZry2rsir/9jh6ljX5fH6WSlQiO7LREDIXAxDIy+LGLomLkxaAmhnEoecFk8WP79ojO7RdcAAC4BLfGO5KtW+mxxEpNBtseldtxbD45wfMHEoghLzolE0O2OzL3KrDlNOyM39XzH7xuXUKfj2KQVJk8dCotgk9a+mC8kuKggh1IOBcUmFu8z8M98Wvhjh2Uj7p6NSX9lQjmoVGbt+GVlJi/sT9qVQpw6630+JSnWLYsGYntjYJfnoK98b7lgQdoxVq9unSSkkQMh3pp93B6f1QuSABmwyWT8cSTOAIffSa2smDbCrXfZcm+JYkYjqwkFfCSeffHX8ARMVSV8ZYxDxTAVdgdLwbyH7xuXWmN8xlcrNRSlAfg0NpNAIAnd95Umj01MYxDyTvj+fOpY8fYWEQl28aNmEAXVmEPVs4fjb4Ah0xKbJvCSCKG+3uJGG7s2h5/Aba95F392rWUbH3gQHwvw9XYhWVLZqMvwLk0JYc0geTw4IGFNI4X90Ux3gCOFMNFi0jsO3aMhKgGBKGnxIIfR2FkIFQMo/Ijjw4Qa7yw7a74C3AoueR5rqZMtIx58MsV2I8Vy2LmOdu9YUOpBRxAw+EsLTjSQaxxbXeCYph6pmUxSDyJY+NGzKANZ+BhrDml+cy8AI5SVNSPjDqi7dBSWl/O7dwafwFHxHBggMZ8bCxizAM2eCr2YPWpMfPcQfN5Bg8VL4Uq9vWSr1vTlTDPLaMmhnEoOZdGiHgpfGKqDTtAC8/SkRjlzVEuDdBw/GcLtrfTYr9uOsGROLJdiJBHb202r7cXh8VSdGEKK9tiFAlHuTRAsmL4aBcRj42IIYazs+E/q+RwbHt7eERbS27nkiWYhcBSHMbKpdPRF3BIxmNDyQAeWkJJZWdO3Rd/AQeFSgAJq0uW0L+9JbTZ3Y0jYjE6MIOVHVEyLkIy7oCksG+J2nTubacFfM3s9vgLOAqBA/Fq5wS6cRDL0AaJFW1RsWY4KTxhJCmGO7tI7Txdbot+s5Sln++sIm7DLHv7cBiL0Y1JnNoeQ7CYCTsghrxXjCpW2jVJE2l1R1QuSICWY43yoVRiKIR4sRDiu0KIR4UQY0KIB4QQVwohBpTXPFMI8VUhxMPBax4WQnxWCKHV+EsIsV0IISO+XmhkbMkhEyB+Uu/bBzwKWpXadvpHDJNCVfdMkz2nDEZshQDSzo8cIbnUwZizkNAc2hwfB7ZLcspLDsaETdgBOiSGUUrKfTPkZVaPx5DxvXtJyggaHJeNoB1ay+54cqYdu0BOecn2W6Pf7FAxTAolbx+m5MmlIip5EuS4h4YoHzU28bM4xN2j4+PATkljvuj49ug3c0J+bNyzOPCt1XKEIoD72s4DAKw+HlWGCgq97N5NY16yMg6E92jzRv/BB4F9oF927o9gX0B4c5Sc6w4kE8MtR4K+l+Lh6DcfOkTzfP78hLP+ikNcgdiRI8BDoMnUtydiMgHhmDvw57GFbQBunzofALBuf0woeWzMerFs2YrhOwDMAHg3gOcA+CyANwG4VgjBtrwRwBIAHwxecyWAFwDYLITo1/ycawA8senrem0rOzrImZQMFhKab0iVGEb3P0CoXvGqWyKS1KstQ0QMF+6PIYbqKRYlh6mAsBiimRjefTdwI54IAOjccmP0mx0SQ04lvT+Cs94+QsRw6ZEYxZAdoIMdPQCccw493tckru3fD/wCTwMAtN0Xs9h7EEp+9NHWHKatR2gRXDAVowCpaqGDec4Lz//+b+PzmzcDD4Du0batMfcol9YGbVbKRNOpfQ24bZIWzCX77o5+M8/zM88stW8kg7los8veuxe4C5Q3Ppd32owf/5gen/70IkxLRBIxvGeaQizL9t4Z/WY1jOxwnjdvmPfuBR5EIMu1hIcC3HsvPZ57bjHGJYDn+V13tfqW649RRfX8gzFk/JZbqKG4RZSbYQk8X0qpes7rhRBHAHwZwDMAXAfgzRGveRBE7F4K4N81PueQlHJzZisd7NKAcHI074737gW2Yx39EEcMHRxvxlBzmKRs9Ae37zsFgxjA/MEjFMdq3tk4DA0C8cTwgQfCHebcot4Mh6Hks86ite6RR8gnqK0jbtt7CoYxD/2Dh2ir3Hziw52BU3egAAEhqW3O1XvwQeARBPMgsjwfIRN2MF8WLaIcpuFhypFUhb/NRzZiGu1YuONO6g7Q3LOGw1Qlh5EZXKfTTLAefRR4FEE+RdQuQ23hwY3iSsTatVR7sWNH6zy/9dgZGEc3eg/sIHWwuWmnwygKEJ97fegQcC8C8rEtIiQ7MxM24yu5UAmgEHhHB7nr8fFGjeT2yfMwgj7M27Mt2p87yi9kJBHDrQhEk8hqQ4Rjft55xRiXgHXraPoeOUJBNHbZUgK37VhKYz50jJInm885/fWvrdtTqmLYRPgYtwSPq3RfUzhKbvfC4DyD5nnbMKmjnPfgIK1Uvb2ld5sHKBrZ30+OWy23n54G9uwVuD9p4XGoAAHxxPDBB4HdPN2i9P3JSVpV29qchKk6OynlS21fCRBpuedeEc6XqN3xXUGBRFDtXjbiGovfe6+yAYpKKjt4kEhKV5cT24WIzjOUErhzx0Jsw3qI2dlo23/xC3p0RMZf/3p6bJ7Ke/ci+f48fpyO1xkYcOJburpozKVs3RPv2tuO+xDIz1FdjR0W5AHxxHD//pR5vmcPOc+VK0s9rpLR3h7uX5r3xPsOdeBukFIbWSnhKTHcvRvJPnFwkCTSnh4na1FcY/FDh4DhEYGdbQkRwzixKAd8KD5hrTwha1vrNSqeL4QYFUJMCCE2G+cXOsKZMRuaRx4B7kSwoNwZIeHzzXjaaU7keyA6tLl3LyW8b++JiR0Czokhb3ibG9E++CCwB0HCepRi+NBD9MetXVt62xRG1MKzcycJDnv6g10Gqz0qPCGGzaGqe+9FuND//Oetb2SHfuGFzjZvUXmGhw8TIX+0PVgMo1QgXkQvvbRYA2PA4cHmqZxKDL//fXq0nNxuAhbk1fV8dJTW8nvbApKSRAw9UwwfekhRxqMWdUeFYSqiwsmHD9Nmbnd7QFKiSK3DPD0gJFfN3O/BB5VQcpRiyGvT2Wc7STsAolOyeIh3DgQq5s03t74x8uiufHBKDIUQqwC8H8BPpJRbYl4zAOATIFL4fY3LXg3gLQCuAPAqAOMA/lMI8eoUW94ghNgihNhyMLIrafHYqKRAqHkGt99Ok3qms5tmSnM/G5aSg9M6XIDTj9QzcDl6dmBJsNhzDoeK2+hAdle7+ic/mR6jiOE2rA9/2Tzm/IfyGW8OELXwsFO5byUdAYVrr21808wMJVACzoghp/A0r+X33ANsxqWY6eqhydM85g5zOhlRiuFNQU74kYXBfIlKiGMyXnKrGkacArRnT5hjiK1bW3OVoshiyWDXoLoPXvh3zA+IIY8vQ8pwE+2IGMblGG7dmqIYMklxEIlgRBFDngp7V15M32yOyNb6+tfp0ZEyzifO/PSnJLoyfvazJmKo/hIIJ5Sj+xOIJoa8xzywKlhgo6qwotbVnHBGDINCkh8AmAbwupjXdAD4BiiE/HIpZUwPixBSyrdIKb8ipbxBSvkdAM8EsAVUxJL0vs9LKTdJKTctK/k4PMbixVTINTwcTg4piZfMoAPTZwdO8Fe/anwjzx4HuREM5keqQMX8Y+i0gAk0K4YjI8CWLbRDe9KTCrcxCmeeSYLfoUOkQgA05lQ5eAqmH/t4Chtvadq3MKF1kJDPYJVWXVuYsBzeEChTzexr2zaqYlu1qjX3sCSsW0f/8j17KIcJoDG/5x5Aog2zpwfEr3mx5zF36LyjehneEiS6dJ4V/EOanffRo7Sqdnc7ydMDSKXt6CBxgec5ANxwAzCKeRjfcD5VqvMfw5icpMcPfrA8Y5twfuD27lZqTH7yE3psvyjY3DTPlZ07Sb2aN8+ZXzztNMo02b075NvMV/djBWZ7+4Jy2ab58j//Q4/B+b4uwMRQ7WXIxHBsQ0D6mv25Gs3if1rJ2LiR7tGxscb92c6dwDAGMH3a6TSnm21n9u4ocgWEHZXUjQT79rY1Ef8QgCbWAw9YVzmdEEMhRC9I2VsP4AopZUv9U1Cl/GUAzwLwQillTBlUMqSUMwC+DWC1EKLc5oQZwJtbdoKPPEKkZdEioOu5z6Inm3dqjsOxQOh71fuNzVz61JhQ8gMPkIK1cSPlMDlAW1vYno0X+337iJwvWQJ0nBf8Q5p39lxN6JAYRimGHMlZcGHAYJrjtbyAOtrRA+TDWAxhpfbAAVojFywAOs4Nciq++MXGN/LC88QnlmFmJJgYqtFi3sR1XhRsgJpLf1lSvOQSZ2kHHR1h2heLI0NDlO/W0wN0Xx5I580bIE54ctDDkMG+Rd3j8B5h9XMDYnjnnY1hFmYFF1/cWghUEtQ8YPYtBw/SmC9cKCCeHfjzX/6y8Y18EzvaLAPhvztKMezaFPiOX/6SGBhDVQUcjTkQ3qPMoYaGaBq3tQFtlwT++gc/aHyTB2soiytqoTr7md6NwT+Ec5UZ/He0dK7Ph9KJoRCiE8B3AGwC8DwpZdxRAf8K4GUgpfCnlj6++aAc78CTg9dvTil46lMBcV6w8DTnSPCO02HogcODd98d+mdeMFc+aT2tPjt3Nurk3JLBQXsAFexIeC1hB7hxo/JLldROTISLvaOcMSBUDNVIAk+NNRcuJJY1NNQY92Ry5SiMzHjqU+mRzeH5ft55gOD4vrp1np2leBDgrLIXiA6D8zo+t9Bv3dr4T2G7+e9yBA7Jsr3qWihOX0c//Ou/Nr6J57mDNlgMddPJ6x9zkI2Xr6Z808OHG33LT4Mlw+FCD4T3KPsWzlJauRIQl1xCPzSHApmMl3zIggq+xT796dCfs5mrn7SGdhlTU407JP7+ne8sz9AINJ/c8pvfkPt4zGOAtudeQU+qJHZ8HPj3oNmJw3n+uMfRo5pGyPfowovX0Te7d9MOmhHXvSEnym5w3QbgawAuB6mAkS1lhBAfBfBHAF4npfx+zs/sABHMHVLKqNNCvQJzO96psSM59VSEITQ17+fGG2lV7elxutifeioVLR49Gs5VPtlixantIYFSd2q86Pzu75ZnaATYzpe8hB6ZpJx/PsI+YupO7Y47yJmce66TSk3GxReT0HrPPaFPZtvPOluEoSiOuwHA9UE7T0chTUZzDlNDR5TnPpd+UMMmqkruMCmf2wQ99BCJJRMTdAsKATzp6Z0kEwHAP/xD+CYupHnWs0q3VwVHI770JXrk/eTppyMkUCq5uv32cGVyGL5fuJCIytgYmTMzE9p+1tki9HtqKPMrX6FHR2lBDCbjLMTy8C5bhpDxqsRwxw5yogMDThpEM5jQAhQ9AZra/LH8zGFvwHnrMQYTQ7aX3cj69QiVl+98J3yDmmDuUKU96yz6t+/eHe4NeKO/8onKmKq7Um4z8I//aNWWshXDTwN4CYCPAhgRQlyqfK0GACHEXwN4O4AvAtja9JqGGnghxLQQ4t+Un18hhPimEOK1QojLhBAvB/AzAI8F8Ncl/Y25wP73xqCn8lvfSo/794McSUcHrf58GCRP8FWrnMr3QlCkDCAp/NixMNyzciWA3/kd+kElKayZc8awIzD346hIQ5u/xz2OFvtbbw29+r8FU85RHg2jpyfk2w88QP5t61Z6fuNGhMVIrHZKGZKU3/qtkq1tBA/dDTfQI/u6Cy9EWLa8Z08oV3zqU/R49tmtfbxKRE8PiQqzs7Q/27WLyOGaNUHKJveF4dVIynAj5zDtAAh9C89vJisXXgjgRS+iH44fJ/UNAL797fDNDkkKEM6Xe+6hoZ2YIEFtYAAhMVTzDLnK5hWvKNXOZjzzmfTIAuYXvkCPF1+MUH7++c/DZFuOUFxwAcU+HeGxjw2/37aNyOH27eQKzzgD4T3IxSbj46Ey7jgawbcZ+xZeS88+G42Fa3wD8A3x8pc7OdiC0dYGbNpE399yC+0Rdu6koT7zTABvehP98pvfpEcpgauvpu8t59GWPfMCKQDvAXBj09cfNb3m9RGveW/T9dqDL8YjAJYD+AiA/wWFoycAPEdK+U2bf0hR4PSp5mjxmjUgL/iEJ9CWmRd4Zl+qQuEIPKm3bAGuuip8fvlyhMTwuutoQl93Xei8HVaZAsDHPhZ+v2dP0wlgCxZQCHB2ljyMlMDnP08vUJs2OgJXsu3fH9YkveQlwYLJu/rvfY/s/sQnwjc6VDoB4PLL6fHmm6lAkNMJTzsNxLBOPZVWI15R2Rn+8z+XbmszeN27++4wG2KON735zfTIscPbb6fq6tWrnY/5y19Oj/v2URSwIRuiQznr4F3voscrg3q9D32oNBvjwOve3XcrYWQWMfkf8pd/STfwP/8z3a9A6JQcgTduW7bQNPjhD+nn17wGJBGddhoV4X3xi405kg4LTxg8p6+6CvjqV+n7c84JRPFXvpKeOHCA7L7mGmIxGzaEMVFHYJ3hppsoP5+1iKc9DY0Fdz/7GakBf/In9LNjQguEQ3fLLWFE/vGPD2pL3vhGeuIzn6Ex37uX/Ex/P/DsZ9s1REpZfzV9XXLJJdIVZmak7OqSEpDy1lvpEZBybCx4wXvfGz45ORl+v2uXM5sZ//mfZMpjHyvl294WmiallHJ2Nnzii18Mv+/rc2hxiGc9i8z5938PTTtyJPjllVfSE898ppR33x2+4Ne/dmqzlFL+zd+QKW98o5Rvfzt9/4EPBL88elTK9nZ68r3vlfKKK+j7nh6XJs+hrY3MeetbwyH95S+DX/7t39ITL3yhlA8+GL7gwAGnNktJ4wtI+frXh2bNzfOZGSm7u+mJm2+Wct06+v5FL3JqM2PtWjLn3ntDu/fuDX65cmX45O7d4ffXX+/SZClleF+ec46Ul19O3//RHwW/vOmm0Fa+CRr+KW5xySVkyqc/TY8rVyq/fOUr6cnHPEbKr389tHtqypm9jD/6o9Ccl7+cHl/zmuCX4+NSLllCT955p5Qvexl9/+d/7tJkKWXjsviud4Xf79sXvOBf/zV88k//NPz+0CGndksp5Xe+Q6asXx+a9c53Br9U19DPfEbK5zyHvhdCSiklgC3SEgdyTsJ8/HJJDKWU8nnPa/Rt7e3KL2+7rfGX/DU768xextGjrWZde63yAma86tc//qMrcxug8u2WNeXoUSkHBhp/+cpXujK1AXfe2Wr3//6v8oIXv7j1BT/9qTN7VfC6on7NrYe7dnk7z1VSxV8f+5jyggsvbH3B17/uzF4VTKr467TTlF/+5jfRY+4B1E1yy5DOzkrZ39/6grvucmozgzkTfz3vecov1Y0mfy1f7sxWFZs3t5rWsEd4xStaX/DlLzuzV4W62WyZxvv2eTvPd+xoNWvHDuUFHR2tL7jiCimlrIlh0V+uiSErb/z17Gc3vaB5Yjz96Q6sjEbiOr5lS+sLJiac2ariv/6r0az3vKfpBe94R+MLrrnGiZ1RWLUqYcyPHGkd84MHndmq4vrrG83q7W16wbOf3fiCxzzGiZ1RSFxTVNkZkPKMM5zYGIXvfrfRtKVLm17Q/IfNyRVuoYolACmfMzPKC/7yLxtf8PjHuzK1BRdd1GjaX/2V8suxsdYx94RcSdlq2siI8su77mp9weSkM1tV/PKXjWY1bNykbLXbk42+lFKuWBGa1RJo2Lmz1fbjx6WUsiaGRX+5JoYzM1I+7Wn039m4MSKq8P3vN04MDyRwxic+EZrVsDNmcCwLIDXLEwwONg5pwy5NShpjz3aXjHe/OzRr/fqIF6h2f/azpduXBFXBevDBpl8ePNho+/33O7ExCv/3/yZMh5kZIib8yy9+0YWJsVDtvvHGpl/ed1/4y5e/3AuFlqFmFLz97U2/PH688Q/7l39xYmMUmoXY225resG3vtX4ggbG6xbf/nZo1h/+YcQLVLvnzSvdvjg0bySOHm16wTe/2fgCTzbLUjZGulsIrZRSrl4dvuBtb5t7uiaGBX+5JoZS0sRO3Hxt2UL5ES0z3i2mpkhc+/CHY9aU6Wkpf/jDpninH7jvPil/9CMpjx2LecHmzVJ+5SteLZZSUrrPa15Dm97IOXPddXSrf/KTpduWG7t3U6LQvfe6tqQF3/ymlIsWSbl9e8QvZ2eJsf/7v5duVxpmZ6X8u7+T8uMfj3nB+99PiZSezXMpaQqff76SL6bi4EHaaXzqU6XblYZbb5XyiU+U8qGHYl7wsY+RIu5Brngz1q8nFWsuz13FwYOk7J93npRbt5ZuWxJ+9CMpzzxTyhtuiHnBe98r5WWXSXn4cKl2pWFmhvKXn/tcEixasHevlG95C93EyibCJjEUdL0aKjZt2iS3NJ8AUKNGlTE4SKXKQri2pEaNGjVqWIYQ4lYppZUy/I70l9SoUaPymD/ftQU1atSoUaMCcNdBs0aNGjVq1KhRo4ZXqIlhjRo1atSoUaNGDQA1MaxRo0aNGjVq1KgRoCaGNWrUqFGjRo0aNQDUxLBGjRo1atSoUaNGgJoY1qhRo0aNGjVq1ABQE8MaNWrUqFGjRo0aAWpiWKNGjRo1atSoUQNATQxr1KhRo0aNGjVqBKiJYY0aNWrUqFGjRg0ANTGsUaNGjRo1atSoEaAmhjVq1KhRo0aNGjUA1MSwRo0aNWrUqFGjRgAhpXRtg3cQQgwBeMC1HZ5hKYBDro3wEPW4RKMel2jU49KKekyiUY9LNOpxicZZUsoBGxfqsHGRExAPSCk3uTbCJwghttRj0op6XKJRj0s06nFpRT0m0ajHJRr1uERDCLHF1rXqUHKNGjVq1KhRo0YNADUxrFGjRo0aNWrUqBGgJobR+LxrAzxEPSbRqMclGvW4RKMel1bUYxKNelyiUY9LNKyNS118UqNGjRo1atSoUQNArRjWqFGjRo0aNWrUCHDSEEMhxGlCiO8IIY4LIQaFEN8TQqzRfG+PEOIjQoi9QogxIcSNQoinFW1zGcg5LjLm6+KCzS4UQojVQohPBf/n0eBvWqf53jYhxLuEENuFEONCiDuEEC8q2ORSkHNctsfMlRcWa3WxEEK8WAjxXSHEo4FveEAIcaUQIrVtxAnuV/KMywnpVwBACHGFEOI6IcQ+IcSEEGKXEOJbQohzNd67SAjx/4QQh4QQI0KInwghLijD7qKRdVyEEOsS5svCkswvDUKIHwd/2wc1XpvZv5wUxFAI0QfgOgBnA/h9AK8BcCaAnwkh5mlc4t8A/DGAvwXwOwD2Arim6o7KwrgAwJcAPLHp60HrxpaLDQBeCuAogBsM3/sBAO8D8C8AngtgM4BvCyGeZ9NAR8gzLgBwDVrnyvXWrHODdwCYAfBuAM8B8FkAbwJwrRAizb+ekH4lQJ5xAU5MvwIAiwHcCuDPAPwWgHcBOA/AZiHE2rg3CSEEgKtBY/kWAC8C0Any1auLNroEZBoXBVeidb4MFWOqGwghXgHgIoO3ZPcvUsoT/gvAn4Oc1AbludMBTAN4e8p7LwIgAbxOea4D1AD7h67/NlfjErxWAvig67+jgHFpU77/o+DvXKfxvuUAJgD836bnfwrgTtd/l6txCV6/HcBXXf8NBYzJsojnXhuMzeUJ7zth/UqecQled0L6lYS/96zgb/6LhNf8bvCay5TnFgA4AuCTrv8Gh+OyLnjNH7m2t+CxWARgH4BX6Nwfef3LSaEYAngBgM1Syof4CSnlIwB+Bbrh0t47BeAq5b3TAL4J4AohRLd9c0tDnnE5YSGlnM341isAdAH4atPzXwVwgRDi9FyGOUaOcTlhIaU8GPH0LcHjqoS3nsh+Jc+4nIw4HDxOJ7zmBQD2SCl/xk9IKY+DVMQT1VfrjMvJgg8DuFtK+Q3N1+fyLycLMTwPwN0Rz98DIC234zwAj0gpRyPe2wUKr1UVecaF8aYgJ2Q0yBF5qj3zKofzQIrhQ03P3xM86o7piYrnB/NkQgixuer5hQl4evB4X8JrTmS/EgedcWGc0H5FCNEuhOgSQpwJ4HMgNShp0U/y1WuEEP0FmFk6MowL40ohxLSgXPkfnii5lwAghHgKSG3/U4O35fIvJwsxXAzKi2rGEZBEm/W9/PuqIs+4AKSEvRnAswC8AcASANcJIZ5hyb6qYTGAYzLQ7RWcCHMlL64G5UZdAeBVAMYB/KcQ4tVOrbIMIcQqAO8H8BMpZdIRVSeyX2mBwbgAJ4dfuQm0iXwQwIWg8PqBhNenzRcdf10FmI7LBIhA/gmAy0C5rRcA+LUQ4pyCbS0cQogu0N/3T1LKBwzemsu/1Gcl18gMKeVrlB9vEEL8ALSr/SCAp7ix6v9v735jpLrKOI5/f7JKN0XEqtRKrbAmNaEm1gYrsSJFX4AFq00wbYRWrCbSGJKmL0RCbYipqTFCX5nGqG1TW8RIg2BQrEhJxdr2FYhF/FNZ2wZpS7srFuhi4fHFOdNOL7Ozszu7e3dmfp/khp0799w55+HOyTP3nnuuTUQRsar6taQtpBtz7uDsS+8tKZ+12Uq69PWlkqszYQw3Lh3Sr1wPTAV6SMnMbyV9PCJ6S61V+YYVl4j4N7CyatXvJe0gnRlbC7T6D8+vA93At8fzQzvljGEftX9RDZZVN1oWXs/AW1EzcTlLRPwX2A58pMl6tao+YFq+g7BaOxwroyoiTgM/By6UdEHZ9WmWpG7SWdEeYGFEPDtEkXbuV14zgricpR37lYj4S0Q8nseMfQqYAnyjTpGhjpdh99cT0QjiUmsfzwB7aPHjRWnauLXAN4HJkqZVTcFTeT1pkOJN9S+dkhg+SbrmXjQbONBA2Vl5apdi2VOcPZ6slTQTl3o69XE6TwKTgfcX1lfGFjYT03bW0seLpDcDm4E5wFURsb+BYu3crwAjjks9LX2cDCYi+kn/3/XGfdXrq5+OiJfHoGqlajAudXcxerUpRQ9wDumKSl/VAulsah/psnktTfUvnZIYbgPmSuqprFCamPeK/F49vyTNF/X5qrJdwLXAQxExMOq1HT/NxOUskqaS5kt6YrQq2GJ2kO4EW1ZYv5x0R9mh8a/SxFT1HXo6Io6UXZ+RynPyPQB8EvhcRDzWYNF27leaiUutfbV1vyLpfNJcsk/V2WwbMENS5QaeSlw+wwj66lbQYFxqlbuINOSg1Y+XvaRxk8UFUrK4gMETvOb6l7Ln5xmPBTg3B3A/6db+q4F9wD+BKVXbvY80Dua2QvlNpOz8K6TT25tJg+cvK7ttZcWF9Ivlh8AXgCtJE2TvJ/0amVd220YhNkvzchfpl+dN+fX8qm1eBX5cKPedfGzckuNyF3AGWFJ2m8qKC2nurU2kO+sWANeRJsgO4Lqy29RkPCpxuB2YW1guzNt0VL/STFw6oF/ZQro0+Nn8XfgqcBDoBy7O28zPcbmhqtybgEeBZ/L3ZyGwm3RJ8L1lt6vEuKwH7iRNvL+ANN7wX7ncB8pu1xjF6g3zGI5F/1J6I8cxmBcBDwLHSDOi/4LC5Ly8PlnmusL6bmAD6db5V0h3Tl1ZdpvKjAvpl+ofgKOks2Qvkn65Xl52m0YpLjHIsruwzb2FcpOAW3PnNAD8CVhadnvKjAspGdgFPJePlX5gJ2nMWeltajIevXVisi5v04n9yoji0gH9ymrSEz76gROkCYd/UN3nkhLiAFYUyp4H3E1KBk+QJs7/UNltKjMuwI2k+TH78vFyBNhImyaFuc3FxHDU+xflHZiZmZlZh+uUMYZmZmZmNgQnhmZmZmYGODE0MzMzs8yJoZmZmZkBTgzNzMzMLHNiaGZmZmaAE0MzMzMzy5wYmllHkBQNLL2SZua/V5Rd5wpJMyQdlzRnGGVulrQ/P57OzKwhnuDazDqCpLmFVVtIj4BcV7VuADgAfBh4KiJeGJ/a1SfpbmB6RCwZRplu4BCwJiLuGbPKmVlbcWJoZh1JUi+wJyKWl12XeiSdT3pG7jURsX2YZb8LLI6IS8akcmbWdnyJwcysSq1LyZLulfSspDmSHpV0UtJfJS3O79+SL0Mfk7RV0rsK++yStEbSQUkDkg5LWi/pnAaqtIL0HPPfFPa5MNflP5JezvW5rVB2EzBb0sdGEAoz60BODM3MGjMVuA/4EXAN8DzwoKT1wALga8DN+e/vF8reD9wKbAQWA3cAXwYeaOBzFwF/jIhXKysk9QDbSJeKrwWuBjYA5xbK7iUllYsaa6KZdbqusitgZtYi3gqsjIhHACQdJo1RXALMjojTef0HgVWSJkXEaUnzSMnbFyPivryvnZJeAu6XdGlE7K31gZIEfBS4s/DWZcBbgJsi4lhet6tYPiLOSNoHFMdXmpnV5DOGZmaNOV5JCrOD+d+dlaSwan0XcEF+vQg4BWzOl5S7JHUBD+X3P1HnM6cB3UDxJpi9wP+ATZKWSppeZx8vAO+p876Z2WucGJqZNaa/+kVEnMp/9hW2q6yvjB+cTjq7d5yUzFWW5/P776jzmZV9DBQ++x/AQlIf/hPgiKTHJM2vsY+TpOTSzGxIvpRsZja2XgReAeYN8v7hIcoCvL34RkQ8DDwsaTJwBfAtYLukmRFxtGrT84CjxfJmZrU4MTQzG1s7gNXA2yLid8MpGBGnJB0CeupsMwDskjQF2ArM4o2J4CzgiWHX2sw6khNDM7MxFBG7Jf2UNMZwAylJOwPMBK4CVkfE3+rs4hHg8uoVklaSxib+ijTH4TuBNaSzj3+u2m4acDHwvVFqjpm1OSeGZmZjbzmwCrgRWEsaM9hLmpvwuSHK/gy4IV8i7s3r9gGfJk17Mx14CdgDLIuIk1VlF5PGPG4ZlVaYWdvzk0/MzCaw/KzjvwP3RMTtwyz7a+BoRFw/JpUzs7bjxNDMbIKTtIw0gfWsiDjRYJlLgceBS/JdzGZmQ/KlZDOziW8jMIM0LvFAg2XeDaxwUmhmw+EzhmZmZmYGeIJrMzMzM8ucGJqZmZkZ4MTQzMzMzDInhmZmZmYGODE0MzMzs+z/pRDBkgvuIPwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlwAAAFlCAYAAAA+gTZIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAgQElEQVR4nO3de5RU5Znv8d8zEExiMpqox5lwEYzEiDrxgkjiOYl6YmxMJiTGcUATo2EguMJEnYwGTdaEzJilmdHjeEdUxJgIMoqE0Y5tFpFgRlTaWwQJixZRGoiNoxEFBJp+zh9v1dSu6trVVV39VvXl+1lrr6797ttTb+/a9eu9d1WbuwsAAADx/Fm9CwAAAOjvCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQ2eB6F1DKgQce6CNHjqx3GQAAAF165pln3nD3g4pN69WBa+TIkWpubq53GQAAAF0ys1fTpnFJEQAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwJ7tIdd0gvvFDvSgAAQH/Sq/95da01NUlTp4bH7vWtBQAA9B+c4UpYt67eFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACR1SxwmdkYM1toZrea2Vm12i4AAEC9VRW4zGyumbWZ2aqC9gYzW2tmLWY2M9M8QdKN7n6hpPOq2W4s7vWuAAAA9EfVnuGaJ6kh2WBmgyTdrBCwxkiabGZjJN0jaZKZ/ZukA6rcLgAAQJ9RVeBy9+WS3ixoHiepxd3Xu/tuSQskTXT3Nnf/jqSZkt6oZrsAAAB9yeAI6xwqaWNivFXSiWY2UtIVkvaV9G9pC5vZNEnTJGnEiBERygMAAKitGIGrKHffoEyQ6mK+OZLmSNLYsWNrelcV/9oHAADEEONTipskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS+KZ5AAAQA4ELAAAgMgIXAABAZAQuAACAyAhcCe71rgAAAPRHBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMCVwDfNAwCAGAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcCXwr30AAEAMBK4E93pXAAAA+iMCFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAEQ2uFYbMrP/I+nczDbHuPtnarVtAACAeqrqDJeZzTWzNjNbVdDeYGZrzazFzGZKkrs/7u7TJT0k6e5qtgsAANCXVHtJcZ6khmSDmQ2SdLOkCZLGSJpsZmMSs5wj6d4qtwsAANBnVBW43H25pDcLmsdJanH39e6+W9ICSRMlycxGSHrb3d+pZrux8E3zAAAghhg3zQ+VtDEx3pppk6Qpku4qtbCZTTOzZjNr3rp1a4TyAAAAaqumn1J09x+5+xNdzDPH3ce6+9iDDjqoVqUBAABEEyNwbZI0PDE+LNMGAAAwIMUIXCsljTazUWY2RNIkSUsibAcAAKBPqPZrIeZLWiHpcDNrNbMp7t4uaYakJklrJC1099XVlwoAANA3VfXFp+4+OaW9UVJjNesGAADoL/jXPgAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgJXglm9KwAAAP0RgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgS3OtdAQAA6I8IXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwJXAN80DAIAYCFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkdUscJnZyWb2uJnNNrOTa7XdSvBN8wAAIIaqApeZzTWzNjNbVdDeYGZrzazFzGZmml3Su5LeL6m1mu0CAAD0JdWe4ZonqSHZYGaDJN0saYKkMZImm9kYSY+7+wRJ35f04yq3CwAA0GdUFbjcfbmkNwuax0lqcff17r5b0gJJE929IzP9LUn7pK3TzKaZWbOZNW/durWa8irmXtPNAQCAASLGPVxDJW1MjLdKGmpmZ5rZbZLukXRT2sLuPsfdx7r72IMOOihCeQAAALU1uFYbcvdFkhbVansAAAC9RYwzXJskDU+MD8u0AQAADEgxAtdKSaPNbJSZDZE0SdKSCNsBAADoE6r9Woj5klZIOtzMWs1siru3S5ohqUnSGkkL3X119aUCAAD0TVXdw+Xuk1PaGyU1VrNuAACA/oJ/7QMAABAZgSuBf+0DAABiIHABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgSvBrN4VAACA/ojABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4Epwr3cFAACgPyJwJRC4AABADASuBAIXAACIgcCVQOACAAAx1CxwmdkRZjbbzO43swtrtd1KELgAAEAMVQUuM5trZm1mtqqgvcHM1ppZi5nNlCR3X+Pu0yWdLemkarYbC4ELAADEUO0ZrnmSGpINZjZI0s2SJkgaI2mymY3JTPuypIclNVa53Sg6OupdAQAA6I+qClzuvlzSmwXN4yS1uPt6d98taYGkiZn5l7j7BEnnpq3TzKaZWbOZNW/durWa8irGGS4AABDD4AjrHCppY2K8VdKJZnaypDMl7aMSZ7jcfY6kOZI0duzYmkYgznABAIAYYgSuotx9maRltdped3CGCwAAxBDjU4qbJA1PjA/LtPV6BC4AABBDjMC1UtJoMxtlZkMkTZK0JMJ2ehyXFAEAQAzVfi3EfEkrJB1uZq1mNsXd2yXNkNQkaY2khe6+uvpSAQAA+qaq7uFy98kp7Y3qpV/9AAAAUGv8ax8AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYErwazeFQAAgP6IwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuBK4Hu4AABADAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAkPPJB7vH17/eoAAAD9C4Er4cknc49ffbV+dQAAgP6FwJViz556VwAAAPoLAleK9vZ6VwAAAPoLAlcKznABAICeQuBK+N73co85wwUAAHoKgSvBPfd41qy6lVG2zZulXbvqXQUAAOgKgSth797c46VLpU2b6ldLV1papKFDpaOOqncl6CuWLpVWr653FUB8L7/cdz9p7i7deKP01FP1rqTnNDVJU6dygoDAlXD99fnjW7bUp45yLF0afra01LeOemtqkhYvLj2Pu/T66zUpp9d67TXp85/vOqA/9ZT0k5/k//GB8mzYIL39dtxtrFolvftu3G1UatGizsfOnrJ3r3TiidL555e/zJ490mGHSSNHxqkptkcflb77XWn8+PKXeestyUyaNCleXdVoaJDuuEO65Zbi09va4oSxF18M4bu3qFngMrNDzexOM7u/Vtus1ksvlZ7+85+n70C15p5/SbQcO3ZIHR3h8fbtYfkdO3q+ts2bpUsvDW/6pezZU/mHFRoapK9+Vdq5M32eyy+X/uIvpKuuqmzdHR09GzzcpWefld55p/vreP758t9wN2wIB2JJam0tb5nx46Uf/lCaPbs71dVGJfv5jh3SH/4Qr5asLVukUaOkj3ykZ9Z30UXS5Mn5z/W3v5WOPlo67rie2cYll0hDhkhPP118erl/pHzta9LFF0v/9V/p8+zaFd5Ub7qp69s13nsvvE7cpTVrQn13311eLdnlu2PPnhB20r70uqmpe/vSe+9Vdk9wsTNzu3eXfl7jxoWf992XPk8t/+h8+WVp4cLwO0we07du7Tzv5s3SwQdLo0f3zLaXL5fuuSccJ//qr0L47jXcvduDpLmS2iStKmhvkLRWUoukmQXT7i93/ccff7zXUi625IZy5v/Tnyrbzj/8g/tPftL9Ot3dZ8/Obb+jw338ePczzgjTtm93X706f/7XXnP/5Cfd58wJ41u3hmVPOsl93br85/y3f+ve2Bjm+4//cJ861X3nTvcLLnBfuLDyWk86Kaz3yCPT5+nocP/wh9332y99enOz+zvvuL/5Zq49W/Nbb6Wvu9zfZ6HRo90PPTRsO83Che6HHOL++9+XXldHh/t//meo4fDD3V94wf2NNyqr59e/Dst/4hOdpzU25teQ/f1K7k1N7nfdld8Hf/d37qecEn6vScm++s1vKquvFpYtc//Qh8J+WY4xY8Jz+e1vc22/+pX7hg3V1bFrl/tll7k/8oj7tde6z5vXvX0sTXZdmzfn2i67rOe2sWNH8dfFa6+5//u/u++zT2i/4YbOy+7a5b5lS+daJfc77wxtHR3ub7+dm2f48Pz5Xn/d/dln3a+/vvPr6+STwzzXXOP+N39T+XPetq3rZVpb3ceOdb/vvlzbFVeEZb74Rff33suff82a7vX9rl1hmY99rPj0wtefu/ttt+W2tWdPaNtvP3cz9/b24uvp6hh35ZXpv89KdXSE5+Xu3tLivmlTej2NjeF3nB3/+7/vPO/993eu/dxz3c8+u/yatmzJ7UfZdS1d2rOvyXJJava0zJQ2oZxB0mclHZcMXJIGSXpZ0qGShkh6QdKYxPReGbiyO2ThcPbZ4RfnHl4cjz8edvqFC/MPHklPP+3+rW8Vf0Nta8stlzxolXLNNe4zZuS3JQNX4UEp+yazbFkYnzat8wvyvvty47NmpYfNYu3FDhKlfOADXb+J793b+cWxfbv7N77hfsIJ7gcemF/DRRe5v/tubvzhh0NQ/N3vOq87udzzz3cdjgqXK3aQ27zZ/cwzc/OccEL6enbuLN6P73uf+yuvuC9eHA5gLS2l67n44uIHkJaWXPuzz7qPGOF++eXFtym5P/VU7vH06bn1JA+MkvuECfnb2brV/d57Q63ZN4KkBQvcjzoqPKfvf9/95ptz0zZuDK+l5ubSz3H79vDa2rat+PQDDsjvg02bwrY2biw+f3beyy4L49nQW+lB+Jln3FesyI1fd116//aE7LpefTXXdumlnbfR3Oz+s591Xj7tjTlr+/b8mp980v3RRzs/l3337bzskUeGaQsWhDe55PyHHRbm+eY3w/hdd+VCR3LYuDH3OBueC98wC4cVK8Jx4oYbwmvhRz9yP//88EdYUjmB67zz8udZtqzz9rKBcfFi96uv7rzOe+5xv+qq8PjBB93/8R9zz6Gtzf1zn3P/+tfzl/vFL9wfeCA8XrAgtM+enV/bv/5reh9s2xaGo48O71lZhfvfrl3hWFDYp8V+n7/7XQhCO3ak91fSOeeEdf3hD+n9nKxnypTSr49igSs7ng12Sc8+G34nWQ88EOb99rfdH3sst+z8+T37mixXtMAV1q2RBYHr05KaEuOXS7o8MV4ycEmaJqlZUvOIESMid02QDC9pw7x57qeeGh5feWXY4bPTHn00vBFlZdvPOqvztjZvruzgfPvtuXnXraus5uwBoNgbQvaAKOUfyAvnK9Y+d244wHzpS+GNZ8eO3EHvrrvCG/ppp4WDYltbfuAqfM7t7SEE3XRTbnpzc3hRfeELpZ/fJZek1+1e+gB+663hTNGsWeGs32uv5ZZ75ZVw5iI776c/HZ5TR0d4o8r+BZ4cSv1tcPzxXf+uksPatfn989BDIbwnn2/Wzp35B/XuDC++WLyfTj89/y/Ho47Kn37hhWH64sWhzmz7pz6Vezx1aniTOe20XNshh7gvWtS5nzo6wh8qkvuXv5xr37PH/YMfdJ80KX/7n/987vEHP5i/rm3b8s8UnHNO5+C7eLH7D37gvnx5CJOXXOI+c2YI0k88EcLc7t354WDSpLDuZPgtHP74R/clS0qHnvb28Dpav7749Oy6hg7NtRULXNnxa67JrTfbdsQR7g0N+W+kO3aEEDdiRHn7xr775p+pKtxPCkO6FP4o7Wq9yT79538Ob7rDhnX+HZc7JGss52zU6NG5ed54I329RxzRua2wH9avzz3+1a/yn1tySJ5VfOKJ/Gn/9E9hna+/Xvp5vvNO/rHSPRyvkvM0NeVC8a235tdaLHBlpxX+Ue8eXt/btxeff/r09H4u9RymTg0/P/GJcKa/0sCVnXb77SH0feYzubYzzsg9njMnf727dxfdFXpcrQPXWZLuSIx/Q9JNkg6QNDtz9uvyctZdqzNclb64ky/W5DB9ev6lBSn8ktvbw5voscd2Xuaznw1nxNzDG86pp7p/7Wvhr449e/LnnT07XE5bvry8Og85pHi7u/vgwV0vn9Y3J5xQvP2HPyyvruwZuXXrioeXcoe05/fEEyFsVrKu/fcPB5eDD06fJ3sQKzYcd1zor0ceCWeu9t3X/bnnQpCr9Hkde2w4a7V7t/stt4S2ww7LD1zZEPSDH3S//5LDhg3p08aPzz8D2VND0rJl6cE87exz4bB2bXjdnHtu/oG3p4eZM0sHrrTn6B7ejAtDxe2356Z3dIQzOMnp//Iv4Y+b7JkFKZwdefDBztv6+c8713DddSE8J9+YKh2uvz6cnT799J7pw3JCWSXDjBnFw4q7+6pV4TL+L3/Z/WN+cli3Lpzdyo4Xnh0rfA/IDl3txzt35oePYsO777rfeGP+8ys1//jx+Wf8kn+Y7NoV3n+K7a979uTvSyedFI4RW7YU307WFVfkB8Jyhgsu6Lye7PjXvx76c+/e0F5Yr+Q+alT526r2VoJy9IrA1Z11xw5czz+f+4s61pA8U1JquOQS9+9+N78tec9GTw6FlxPShsIDen8fGhqqWz55Ojs7HHpo99d3yinuX/lK+vQTTwwH1Fr0zbhxPb/O5CX3j3608/RFi8K9K9n7iboarr22vvtPsWHt2lw4+9jH0ucr1Q/lDu6lL0f1puH976/Ndr74xfzbEc47L9w/25PbuPXW/PHPfa5769m+vevAtXJluISeHe/OMWvWLPePf9z9r/+6+D6UvO2l3ME93BdXbV9mrzQUth92WM+8H82aFTVSZGrvRZcUKxliB66efNH1paHYXwkM1Q8zZ/b8OgvP+hQOgwbV/3lXMzQ1DezXYnb43veq74e2tnB5rt7PZaANPRX0N2/uOnCdf37c5+Le+Z7fcoZHHgm3JvREDd29rFzOUO/ANbjyzzV2aaWk0WY2StImSZMknRNhO+im5cvrXUH/dPXVPb/OUl93IfX978s6/XTpz/+83lXU37XXhq8uqcaJJ0r7798j5aACyX8JV43bbgtf+1HKvHk9s600P/2pNGdO5cs1NPRcDQsW9Ny6CrnHW3c5qvoeLjObL2mFpMPNrNXMprh7u6QZkpokrZG00N35fmsARW3bVu8KeodLL61u+VdekZ57rmdqQe39+Mflf19eLDNn1nf7se3eXd/tV3WGy90np7Q3SmqsZt0AAAwkF19c7wr6t3pfEeBf+wAAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAOj3+vTXQgAAAKBrBC4AANDvcYYLAACgnyNwAQCAfs+svtsncAEAgH7v5Zfru30CFwAA6PcWLarv9glcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgspoFLjM71MzuNLP7a7VNAACA3qCswGVmc82szcxWFbQ3mNlaM2sxs5ml1uHu6919SjXFAgAA9EWDy5xvnqSbJP0s22BmgyTdLOk0Sa2SVprZEkmDJF1VsPy33L2t6moBAAD6oLICl7svN7ORBc3jJLW4+3pJMrMFkia6+1WSvtSjVQIAAPRh1dzDNVTSxsR4a6atKDM7wMxmSzrWzC4vMd80M2s2s+atW7dWUR4AAEDvUO4lxaq5+39Lml7GfHMkzZGksWPHeuy6AAAAYqvmDNcmScMT48MybQAAAEioJnCtlDTazEaZ2RBJkyQt6ZmyAAAA+o9yvxZivqQVkg43s1Yzm+Lu7ZJmSGqStEbSQndfHa9UAACAvqncTylOTmlvlNTYoxUBAAD0M/xrHwAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDIaha4zOwIM5ttZveb2YW12i4AAEC9lRW4zGyumbWZ2aqC9gYzW2tmLWY2s9Q63H2Nu0+XdLakk7pfMgAAQN9S7hmueZIakg1mNkjSzZImSBojabKZjTGzo83soYLhf2WW+bKkhyU19tgzAAAA6OUGlzOTuy83s5EFzeMktbj7ekkyswWSJrr7VZK+lLKeJZKWmNnDku7tdtUAAAB9SFmBK8VQSRsT462STkyb2cxOlnSmpH1U4gyXmU2TNE2SRowYUUV5AAAAvUM1gasi7r5M0rIy5psjaY4kjR071uNWBQAAEF81n1LcJGl4YnxYpg0AAAAJ1QSulZJGm9koMxsiaZKkJT1TFgAAQP9R7tdCzJe0QtLhZtZqZlPcvV3SDElNktZIWujuq+OVCgAA0DeV+ynFySntjeIrHgAAAEriX/sAAABERuACAACIjMAFAAAQGYELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiIzABQAAEBmBCwAAIDICFwAAQGQELgAAgMgIXAAAAJERuAAAACIjcAEAAERG4AIAAIiMwAUAABAZgQsAACAyAhcAAEBkBC4AAIDICFwAAACREbgAAAAiI3ABAABERuACAACIzNy93jWkMrOtkl6NvJkDJb0ReRv9DX3WPfRb5eizytFn3UO/VY4+6+wQdz+o2IReHbhqwcya3X1svevoS+iz7qHfKkefVY4+6x76rXL0WWW4pAgAABAZgQsAACAyApc0p94F9EH0WffQb5WjzypHn3UP/VY5+qwCA/4eLgAAgNg4wwUAABDZgA5cZtZgZmvNrMXMZta7nt7KzDaY2Ytm9ryZNWfaPmpmvzazdZmfH6l3nfVkZnPNrM3MViXaivaRBTdk9rvfm9lx9au8vlL6bZaZbcrsb8+b2RmJaZdn+m2tmZ1en6rry8yGm9ljZvaSma02s4sy7exvKUr0GftaCjN7v5k9bWYvZPrsx5n2UWb2VKZv7jOzIZn2fTLjLZnpI+v6BHqhARu4zGyQpJslTZA0RtJkMxtT36p6tVPc/ZjER4BnSlrq7qMlLc2MD2TzJDUUtKX10QRJozPDNEm31qjG3mieOvebJF2X2d+OcfdGScq8PidJOjKzzC2Z1/FA0y7pe+4+RtJ4Sd/J9A37W7q0PpPY19LsknSqu39K0jGSGsxsvKSfKvTZYZLekjQlM/8USW9l2q/LzIeEARu4JI2T1OLu6919t6QFkibWuaa+ZKKkuzOP75b0lfqVUn/uvlzSmwXNaX00UdLPPHhS0v5m9pc1KbSXSem3NBMlLXD3Xe7+iqQWhdfxgOLuW9z92czjdyStkTRU7G+pSvRZmgG/r2X2l3czo+/LDC7pVEn3Z9oL97Ps/ne/pP9rZlabavuGgRy4hkramBhvVekX4EDmkh41s2fMbFqm7WB335J5/EdJB9entF4trY/Y97o2I3P5a27icjX9ViBz2eZYSU+J/a0sBX0msa+lMrNBZva8pDZJv5b0sqQ/uXt7ZpZkv/xPn2Wmvy3pgJoW3MsN5MCF8v1vdz9O4dLEd8zss8mJHj7qysddS6CPKnKrpI8rXMbYIunaulbTS5nZhyQ9IOlid9+WnMb+VlyRPmNfK8Hd97r7MZKGKZzh+2R9K+rbBnLg2iRpeGJ8WKYNBdx9U+Znm6QHFV54r2cvS2R+ttWvwl4rrY/Y90pw99czB/oOSbcrdymHfssws/cpBIdfuPuiTDP7WwnF+ox9rTzu/idJj0n6tMIl6cGZScl++Z8+y0zfT9J/17bS3m0gB66VkkZnPnExROEGySV1rqnXMbN9zezD2ceSviBplUJffTMz2zcl/bI+FfZqaX20RNJ5mU+PjZf0duJS0IBXcH/RVxX2Nyn026TMp6FGKdwE/nSt66u3zH0xd0pa4+7/LzGJ/S1FWp+xr6Uzs4PMbP/M4w9IOk3h3rfHJJ2Vma1wP8vuf2dJ+o3zRZ95Bnc9S//k7u1mNkNSk6RBkua6++o6l9UbHSzpwcy9j4Ml3evuj5jZSkkLzWyKpFclnV3HGuvOzOZLOlnSgWbWKulHkq5W8T5qlHSGwo24OyRdUPOCe4mUfjvZzI5RuCS2QdK3JcndV5vZQkkvKXzq7DvuvrcOZdfbSZK+IenFzP01knSF2N9KSeuzyexrqf5S0t2ZT2f+maSF7v6Qmb0kaYGZXSnpOYUgq8zPe8ysReGDMJPqUXRvxjfNAwAARDaQLykCAADUBIELAAAgMgIXAABAZAQuAACAyAhcAAAAkRG4AAAAIiNwAQAAREbgAgAAiOz/AwFTp6Fc5kCRAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.0015231682473469295763529 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "frequency = 3.\n", + "phase_lag = np.pi / 3\n", + "\n", + "# long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 100 * np.sin(2.*np.pi*long_times*5 + np.pi/6) + 1000\n", + "# long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 80 * np.sin(2.*np.pi*long_times*5) + 900\n", + "\n", + "long_signal_1 = (300 * np.sin(2.*np.pi*long_times*frequency) + 1000) * dt\n", + "long_signal_2 = (200 * np.sin(2.*np.pi*long_times*frequency - phase_lag) + 900) * dt\n", + "\n", + "long_lc1 = Lightcurve(long_times, np.random.normal(long_signal_1, 0.03))\n", + "long_lc2 = Lightcurve(long_times, np.random.normal(long_signal_2, 0.03))\n", + "\n", + "# Note: the second light curve is what we use as a reference.\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc2, long_lc1, 53.)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc1.time, long_lc1.counts, lw=2, color='blue')\n", + "ax.plot(long_lc1.time, long_lc2.counts, lw=2, color='red')\n", + "ax.set_xlim(0,4)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "plt.show()\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(avg_cs.freq, avg_cs.power, lw=2, color='blue')\n", + "plt.semilogy()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `time_lag` method returns an `np.ndarray` with the time lag in seconds per positive Fourier frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "freq_lags, freq_lags_err = avg_cs.time_lag()\n", + "freq_plags, freq_plags_err = avg_cs.phase_lag()\n", + "\n", + "# Expected time lag, given the input time lag\n", + "time_lag = phase_lag / (2. * np.pi * avg_cs.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And this is a plot of the lag-frequency spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAFPCAYAAADtO6y7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABTqklEQVR4nO3de5wbdbn48c+z993udksvtJTKtghyLV1ELkWhRa0HUY8iKuJygKMCinJTj+IP1KKgeEPrUYSiHoRW6AG8C0e80IJQwFYqQrnTFkovtNt2u9u97z6/PybpZrMzyUwySSbJ83698koymXznO5NJ5sn3KqqKMcYYY0y+VBQ6A8YYY4wpLxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5FVRBB8icpGIrBORXhFZLSInpVj3/SJyn4hsE5FOEXlURP7dZb0zRGStiPTF7k/P7V4YY4wxBoog+BCRM4FFwNeBo4GHgXtF5ACPt8wD/gq8K7b+PcCvEgMWEZkLLAOWAq2x+ztF5Pgc7YYxxhhjYiTqI5yKyKPAE6p6fsKy54G7VPWLPtN4DHhQVT8be74MmKiqCxLW+TOwTVXPCnUHjDHGGDNKVaEzkIqI1ADHAN9Jeuk+4MQASTUBOxOezwX+O2mdPwKfdsnDco80D8IJgC4LkA9jjDGmaInI9wGyvfZFOvgAJgOVwNak5VuBt/tJQEQ+BcwAbktYPM0jzWkB8jYFOE9EWgO8xxhjjClmrUAXcFk2iUQ9+MiKiJwBfBs4U1U3ZJKGqs73SHtjc3Pz/q2trfOyyGLoVqyAeVnmKIw0THBrN+0G4PDp4wuck/yw8yy9UjpG2e5LKR2LfMjV8VqzZg0dHR1d2aYT9eBjOzAETE1aPhXYkuqNIvIB4FbgHFX9XdLLWzJJM8kLra2t+y9fvjzAW3JPBLLNUhhpmODOvGklAMsunFvgnOSHnWfpldIxynZfSulY5EOujtf8+fNZsWLFC9mmE+neLqraD6wGFiS9tACn14srEfkQTjXLeap6l8sqK4OmaYwxxphwRL3kA+B64LZYj5WHgE8A04EbAUTkVgBVPSf2/MM4gcfngAdEJN6Oo19Vd8QeL4q9dgXwa+B04BTgLfnYIWOMMaacRT74UNVlIjIJuArYD3gSOC2hDUfyeB+fwNmv78ducSuA+bE0H44FKdcAXwVexGkX8mhu9sIYY4wxcZEPPgBU9QbgBo/X5qd6niLNuwC3KhljjDE5NjAwwMaNG+nt7fW1/r33wtNP5zhTJSSM41VXV8eMGTOorq4OJ1MJiiL4MMYYU1o2btxIU1MTM2fORETSrr9nDxx2WB4yViKyPV6qSnt7Oxs3bmTWrFnhZSwm0g1OjTHGFK+FC71f6+3tZdKkSb4CD5N/IsKkSZN8l0wFZcGHMcaYnLj66tSvW+ARbbn8fCz4KIBU/waMMcbkR2NjY+hprl+/nl/84he+Xlu1ahWXXHJJ6HlYuHAht92WPCtJtFjwUQDp/g0YY4wpTkGCjze96U384Ac/yFfWIsWCjxJgJSnGGJO55cuXM3/+fD7wgQ9w6KGH0tbWRnzG95kzZ/L5z3+e2bNnc9xxx/HCC87gnueddx533TXSYTJeinLFFVfw4IMP0trayve+971R20l+bfny5bz73e8GnNKKc889l5NOOomWlhZ++ctf7t3uqaeeysDAAACrV69m3rx5HHPMMfzbv/0bmzdvTrlvN998M8ceeyxz5szhjDPOoLu7G4AXX3yRE044gdmzZ3PVVVflpBQoFevtUgKuvtoCEGNM8Zp5xR/8rRhwcIT1173L97qPP/44Tz31FNOnT+fNb34zDz30EG95izPuZHNzM//617+49dZbueyyy/j973/vmc51113Hd77zHdd1kl9Lnp7jxRdf5P7772ft2rXMnTuXu+++m29961ucfvrp/OEPf+Bd73oXF198Mb/5zW+YMmUKy5Yt48orr+RnP/uZZ37e//73c/755wNw1VVX8dOf/pSLL76YSy+9lEsvvZSzzjqLG2+80fdxCouVfBQBCyyMMSa3jjvuOGbMmEFFRQWtra2sX79+72tnnXXW3vuVK1fmLA/vfOc7qa6uZvbs2QwNDXHqqacCMHv2bNavX8+zzz7Lk08+yYIFC2htbeWaa65h48aNKdN88sknOemkk5g9ezZLly7lqaeeAmDlypV88IMfBOAjH/lIzvbJi5V8FIFiLtlYuLB4826MyQ8/JRSrVsGb3pS7PNTW1u59XFlZyeDg4N7nib0+4o+rqqoYHh4GYHh4mP7+/tDyUFFRQXV19d5tVVRUMDg4iKpyxBFHBAqAzjvvPH79618zZ84cbrnlljGlLYViJR8mp6xxrTGm2C1btmzv/dy5zqzTM2fOZPXq1QD89re/3dsmo6mpic7OTtd0Ur3mxyGHHMK2bdv2Bh8DAwN7SzK8dHZ2st9++zEwMMDSpUv3Lj/hhBO4++67AbjjjjsyzlOmLPgoIlaCYIzJJfuNcbdz506OOuooFi1atLcR6fnnn8+KFSuYM2cOK1euZNy4cQAcddRRVFZWMmfOnDENTlO95kdNTQ133XUXX/jCF5gzZw6tra08/HDqydi/9rWvcfzxx/PmN7+ZQw89dO/y73//+1x//fUcddRRvPDCCzQ3NwfOTzYk3qLXBCMiy+fNmzcvkyIsEQhy2OPre70vcXnQtMPIX77SKnVn3uT8m1l24dwC5yQ/7NxIL9/HKOztpfptevrppzkswPjfua528TJz5kxWrVrF5MmT87/xLKQ7Xt3d3dTX1yMi3HHHHdx+++385je/GbNe8uc0f/58VqxYscLvPGperM2HMcYYU2ZWr17Npz/9aVSVCRMmpOwxkwsWfOSRNb40xpjiktjrpZScdNJJ/POf/yzY9q3NRx5Z40tjjDHGgg9jjDEFYm0Ooy2Xn48FH8YYY/Kurq6O9vZ2C0AiSlVpb2+nrq4uJ+lbmw+TFWvHYozJxIwZM9i4cSPbtm3ztf727fD00znOVAkJ43jV1dUxY8aMcDKUxIIPk5ViHn3VGFM41dXVzJo1y/f6hx9uXbODiPrxsmoXY4wxxuSVBR/GGGOMySsLPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMUXGepiZYmfBhzHGFBmbqsEUOws+jDHGGJNXFnwYY4wxJq8s+DDGGGNMXlnwYYwxxpi8suDDFBVr5W+MMcXPgg9TVKyVvzHGFD8LPowxxhiTVxZ8GGOMMSavLPgwxhhjTF5Z8GGMMcaYvLLgwxhjjDF5ZcGHMcYYY/LKgg9jjDHG5JUFH8YYY4zJKws+SsTSpTBzpvN45kznuTHGGBNFVYXOgAnHBRdAd7fzeMMG5zlAW1vh8mSMMca4sZKPEhEPPBKfX3llYfJijDHGpGLBRwl7+eVC58AYY4wZqyiCDxG5SETWiUiviKwWkZNSrLufiPxCRJ4RkSERucVlnfNERF1udTndkTw74IBC58AYY4wZK/LBh4icCSwCvg4cDTwM3CsiXpfWWmA7cB3waIqku4H9Em+q2htWvvOtoWHs82uvLUxejDHGmFQiH3wAnwFuUdWbVfVpVb0Y2Ax80m1lVV2vqpeo6i3AjhTpqqpuSbyFn/X8WbwYWlqcxy0tznNrbGqMMSaKIt3bRURqgGOA7yS9dB9wYpbJ14vIBqASWAN8SVUfd8nDco/3t2a5/VC1tTk3EVi/vtC5McYYY7xFveRjMk5wsDVp+VZgWhbpPgt8FHgvcBbQCzwkIgdnkaYxxhhjfIh0yUeuqOpKYGX8uYg8jFP6cTFwSdK6893SiJWIzMtVHo0xxphSFfWSj+3AEDA1aflUILQ2Gqo6BKwCrOTDGGOMybFIBx+q2g+sBhYkvbQAp9dLKEREgKNwGrIaY4wxJoeKodrleuA2EXkMeAj4BDAduBFARG4FUNVz4m8QkdbYw/HAcOx5v6qujb3+FeAR4PnYOpfgBB+uPWiMMcYYE57IBx+qukxEJgFX4YzH8SRwmqpuiK3iNt5Hcq+V9wAbgJmx5xOAxTiNVjti65+sqo+FmvkcW7p0ZAj1mTNtXA9jjDHFIfLBB4Cq3gDc4PHafJdlkia9y4HLQ8lcgSxd6j2ZnDHGGBNlkW7zYbxdeaX7ZHLGGGNM1FnwUaRs0jhjjDHFyoKPImWTxhljjClWFnwUqWuvdZ9MzhhjjIk6Cz6KxMyZI/dLlzrzuLhNJmeMMcZEXVH0dilnS5c69xs2jNzHe7W4TSZ39tl5z6IxxhgTiJV8RFx8HI9E3d3uy6Nk4cJC58AYY0xUWfARcV69WqLe2+XqqwudA2OMMVFlwUfEefVqyUVvl6VLx7YtMaZUWGmcMdFhwUeeBb24uw2Z3tAQ/lDq8RFTk9uWWABiSoWVxhkTHRZ85MHSpTB5svM46MW9rc25T+7VEl8eFq8RU7NpW2KlKMYYY9xYb5ccS56DJVH84u4nkFi/fnSvlrCF2bYkXQ8dY4wx5c1KPnLMrUQhUVQajobZtqRYe+gYY4zJDws+cixdcBGVYdK9RkzNpG1JLnroWGNYY4wpHRZ85Fiq4CIXDUcz5TViaibVJGH30LHGsMYYU1os+MgxtxIFgEmTctNwNIjkrodtbSNtStavzzxvYffQyUVjWGOMMYVjwUeOuZUoAGzfXvjGl7nqeujVQ+f55zNLr1gHWjPGGOPOgo88SC5RKBfJpSiZBjv5HGjNGGNM7lnwYSIvzMawxkSdjcRqyoEFHybywmwMa0zU2UisphxY8GGKQliNYY0pNVZSYoqRBR/GGFPE0pWUWHBiosiCD2OMKWFWjWOiyIIPY4wxxuSVBR8GsKJZY8Lg53tk3zVjLPgwMVY0a0z2/HyP7LtmjAUfxhhjjMkzCz5MRmyWWWOMMZmqKnQGTPGJzzIbn+wtPsss2Pgbxhhj0vNV8iEitSIyX0SuEJEfiMjNIvINETlPRA7MdSbLVXLpQlTYLLPGGGOykbLkQ0QOAi4D2oBmYBjoAHqAiUAdoCKyGrgBuFVVh3OZ4XLhVroQX17o0gWbZdYYY0w2PEs+RORHwFrgWOCrsfs6VZ2kqjNUtQHYD3g/sAa4HnhKRI7Pea7LgFvpQnx5oYU9y6x1PTTGmPKSqtplOnCcqh6vqt9T1dWqOpi4gqpuVdXfqOoFOIHIj4E5Ocxv2Yhy6ULYs8xa10NjjCkvntUuqnp6kIRUtQ/4QdY5MoBTihCvakleXmjxap8rr3Ty2NLiBB6Frg4yxhhTHKyrbUS5lS7El0eBzTJrjDEmU357u7xXRP4z4XmLiKwUkU4RuUtEGnOXxfLU1gaLFzulCjBybxd5Y/yLSnuiqOTDmKjwW/JxFTAl4fn1wAxgMXAysDDcbBkYW7pgjAkmKu2JwsqHDe7nnwV8mcnXcfMbfLweeAJAROqB04DPqOpngf8HBGofYtKzL44xJlG8+328LVji4H5mrKgEnsUg8XqTr+PmN/iowxnbA+BEnIaq98WeP4vTM8aEKNMT4CtfCTcfxcwCOFNKvAb3MyZbhQjU/AYf64G3xB6/F1itqh2x5/viDDxmIsAuuCPsn48pJVHoZm9MWPwGHzcBC0VkFXAR8NOE1+biDEZmMmDBgjHGjyh0szcmLL6CD1VdBJwHrAQ+qqo3J7zcBPxP+FkrD+Xw79wayRmTPa/B/Uqd/X6UJt+z2qrqUmDMx66qF4aaI1NybAZcY7KXPLjfpEnO8+5u56JcigP92QzapSvV3C51mSSY6fvSpHmRiKwTkV4RWS0iJ6VYdz8R+YWIPCMiQyJyi8d6Z4jIWhHpi91bj50csRlwTSGV0j/nxO73PT3Q3u48jl+Ui3nf3NgM2qUrVbXLehG5XEQm+ElIRE4Ukd8C/xVKzkbSPRNYBHwdOBp4GLhXRLxqQGuB7cB1wKMeac4FluGU5LTG7u+0SfGyl/xD78Uaz5l8ceueWgoX6WK9KAdp5xblOa5MdlIFHxcBFwKbReRXIvIZEXmbiBwlIoeIyAki8hER+b6IvAAsBzbjDDwWps8At6jqzar6tKpeHNvOJ91WVtX1qnqJqt4C7PBI8zLgflW9NpbmtbH8XxZy3suK2zgEXrwaz1kDXBO2Yr1IZ6IYLspB2rmFPYO2iQ7P4ENVfwkcAZyNU5pwDfAn4HGc3i0PAUtwut7eBRyqqheq6tawMiciNcAxjIwpEncfzngjmZrrkuYf3dIUkeVuN5wSE5PArYgUQGT081Qz4JZDA1xTeMVwkc5EqV2Uw55B20RHyganqjoE3A3cHQsEWnEGFKsD2oFnVPWVHOZvMlAJJAc0W4G3Z5HuNI80p2WRZtnz+kFXdeamsRlwTVSUwkW6oWF0sF+KF2WbQbt0Bent0g88lsO8RJKqzndbHiv9mJfXzETcAQe4V7W0tDiN5ERsjhqTf6V6kV68uDwuym1tzs1+P0qL30HGCmU7MARMTVo+FdiSRbpbcpBm2XMrIo0vN6ZQkmeHXry4NC7SyRNP+tkna1NlvOS7V1ikg49YactqYEHSSwtwer1kamUO0ix7bW1jf+jjy43xK+wLZCYX6VJlbaqMl3z3Cot08BFzPXCeiHxcRA4TkUU47U5uBBCRW0Xk1sQ3iEiriLQC44GJseeHJ6yyCHiriFwhIoeKyBeBU4Dv52F/QhelyeSSf+iNCapULpBWymCKSb57hflu81EoqrpMRCYBVwH7AU8Cp6lqvHWBW9Oxx5OevwfYAMyMpfmwiHwYpwfPV4EXgTNV1XVckKizHzljoufqq+27aYpbLnuFRT74AFDVG4AbPF6b77JMXFZNXucunC7CxhhjjEmSy15hxVDtYowxxhS1qJeC5Xs8FV/Bh4j8LMXtJyLy3dhop6HP6xJlxdqmoZTmujDGmGIQ9bZM+e4V5rfa5RSgGZgADOJ0gZ0ce/+u2DqXAy+KyCmqujHcbEZTquHDoyrVLJHGGGPKU77HU/Fb7fIRoAM4A6hT1fgopx8EduM06DwutuwbOcinCYnXLJFRllhcGaWePcaEyUokTTnxG3x8D/imqv5KVYcBVHVYVe8Gvgl8T1VX4QQeyeNnmAgpxjktEosro15vWi7scxgt28DBbVJGK5E0pcxv8DEHpzuqmxeBI2OP1wL7ZJsp4y6Mf/2lMKeFG7sY5lfU66/zKYzAoRhLJE35WboUHnkEYF7WU4v4DT62AB/weO2DjEzSNh7YmW2mjLswLrBes0QWO7sYmkIJI3AoxhLJqLLqq9yIB9l9feGk5zf4WAScLyK/E5FzReSdsfvfAx/DqZYBOImxA3yZCHEbAn3x4sLmyZhiFkbgUKolkvnmVQplAUj23ILsbPgKPlT1+8AFONUv/wP8IXZ/FHC+qv4gtuqPgPPCy57JBZvrwpSKKFS3pQoc/P7zLtUSyXzzKoXKdpjwKJxnhRZ26ZzvQcZU9SdAS+x2Qvyxqv40YZ31qrrVIwljjAmVV3VbPovevWZzBv/tP6xEMhxeF8hsL5xWrRt+6VygEU7V8YqqPha713CzU1wmv++9/O+qV9jeFVIlmDERFsa/v3z8g8x3z5HkwCGZ36JqK5HMntcF0qq1spcqyM6EBIkfRGQOcAjOeB6jqOqtY99RukRkecsXfj/PeQxzZkzgbYfuy9sOm8ph+zUhMnZ6GRFQHblPXOa1bqp1st8H920E2V66/Iexr37yk+n7ouTMm1YCsOzCuQXOibswzsmg50OQ9OJmzvQeADDX54PL137MttPtX9i/D5muGwa3bYdx7nhJHkQRnAtmtqN1hnFc8v17lOn3KNX7li6Fj31sPn19oLo87RxqqfgdXn2CiDwE/AO4HbgldvufhFvZaf/jn5h/yBSqKytY88ouvvun5zjtBw/y5uv+ylW//hf3P/MavQNDhc6mYfQ/bqu/LaxcV4lYz5Hy5VV9ZaVI4WhrgxNOAFixItu0fJV8iMgNwFtxerY8CJyOM+LpR4G5wIdVdXW2mSkmIrIc5s1TXU53/yB/e347f33mNf7yzGts6xyphqmtquC4WROZ94YpXHT6FPq2NVJRIVby4SMf6baRbp0w9i+fyqXko6Eh9T/TYi/5cNu/7m4r+chHyUc26+c6rVIo+QCYP38+K1asWOE2o3wQftt8/BvwdeCR2PONqrpcVc8B/gxcmk0mil1DTRXvOGIa151xFI9+8W389tNv5pK3HcyR+4+nb3CYB5/fzjV/eJrpH3+AE6/7KxNPfYI/PLGZju6BQmfdmLzLRW+ERIXuOWINR00xy9cUFn4nltsPeElVh0SkF2hKeO2XwB2h56xIVVQIR82YwFEzJvCZBW9gW2cff3thGw88t50Hn9/G5o5emua8wqd+8QoVAtPOnsD3/jSFeYdMYc6MCVRWZFWNZkxRCnOSxngJypVXOum2tDgBydlnh7eNdNtPnqArl9u2+Y5MmPJVLe03+NiCM6MtwAacqpblsecHhZul0jKlqZbTj57B6UfPYHhYWbt5N28+Yxvv/Og2Vm/YSe3+u1j0l10s+svzNNVVccKBkzjx9ZOonjwZ1UbXhqvGFJOFC/PfzibfAUAhWRsmU4z8Vrv8DWdsD4DbgK+IyE0i8iPg28Afc5G5UlNRIRy5fzO7Hz2IOy6Yy+Nffgev3fUmzpnbwsxJDXT2DvKntVu5+ndrmf6xBzj22j9z8e2P0zjnZTa076HMezabCMiksWjyGAk2mFb+2ZDjJmr8lnxcDUyPPf42MAk4E2gAfgtcHH7WSl9jbRU9L07lq++dCsDGnd08/GI7K19s584HtrOdPn73z01MOnUT874N+0+o58TXT+LEgyYx98DJTGse0+M50qx4uPgldmNMHD8jSG+CxYsLVyXiVyFKa3IpjM8tlVI7Xib3Ao3zYUYk9nYJ/l4/rdmVF17bw8MvbOcz32pn/6Pb2ZXUQPWAiQ0cO3Mix83ah+NmTWLmpIZA1TT57u0SNB/ptgHOP7jkC5lbrwnr7ZI9r1OrpWWkasPrfek+h7DPv3TbzjbdoNsLu3dK0H1x4/a5hdUTxe17efbZ1tulGHq7pBNWbxe/JR8m74TXT2nk9VMaOefXM9l6t/L0lt08/EI7D724nVXrd/Lyjm5e3tHN3f/YCMDkxlonEJk5kWNnTeTQaeML3oA1l6UdyQMK5eIfnUmv1MfVCOtfffyCDE7VR2KgXAi5+txSfS+NifMs+RCRLwdIR1X1a+FkqTjkvuQj9TqDQ8M8s6WTx9bt4LF1O/j7+h207+kftU5TXRVvatmHY2dN5LiZE5k9o5naqsq02wiz5CNoGkFKPrzGc4j/o7OSj3CVa8lHGO/zM75JkG1HueQj3TgrVvKRH8Vc8rEwQDoKlFXwkY0wSgOqKis4cv9mjty/mY++ZRaqykvb9ziByLodPLZ+Bxt39nD/s9u4/9ltgDPgWevrJvDGln04+nUTqGjYB6jNPjMhyORfYa4mkTLe3C6g115buPwUE6/xTfJR+pHPz82+f8YPz94uqloR4FbplY4ZKxcNs0ScapqzjjuA689s5W9feCsPX/FWFn24lbbjD+DgfRvpGxzm0XU7+PHyF7ngttW87uI/c9K3/sqldzxO0xvX8cTGXQwMDYefOR/cJgJL1yLfJpHKj8SeEvX1MGmS8zjsoavLsUdGvi7U+RxyPOzvX64asloD2cKyBqcZyqbaZXQ6+Rtefceefv6xYSf/eHknj7+8i4ee2UVFzei5Z2qrKuhY18ylbftw9AETeOMB+7DveO9eNfkoFvZKK90kUlbtkj2vY5w4XHg6fqta/FZLeKUdZNuZ5jno+5YsGWl46SZd1Uc+qjUzTdfrfenOmUyrT8Kudkl8PV27Hqt2GRFWtYsFHxkqxuBjzDYqhnlqYxf/eHknl31tJ0edsouXtu8Zs97+E+ppPWACc2Y0M3v/CRy5/3ia6qp95z9tPjyCDxEYHrbeLoUUxjwpfoMPN0HakwTZdqZ5Dvq+5IAqUT7bfOQz+IBwe7vkI/jI1XEJO41cba8QwYffQcZMKdIKDp8+nrNPaKH9nlb++rn5PP6lBWy981gufutBvOWgyTTWVvHqrh7+8MRmvn7PM5x18yMcdfV9vO27y7l82RqajlnHqvU76OkPf/ZeP8W3bW0jF6f16+H558uz+N6P+D+7IMXNha6/L/T2s9Hc7B14lPpsq8nfy1LdTz/s98idlXxkqCRKPnz8Ix0aVl54rYvHX97Jv17t4F+vdvD05t0MDI3OUIXAG6Y2MXv/Zo6a0czHz5jA7pebRvWuSZUPtyL3c8+Fe+5xL9Xw2he3tOKvJf8DC1u2XTJzXfKRyT9IK/nI/H0VFd7vyzbP+Sj5CHI+B/kdK6eSj3RVw7kU9ZIPCz4yVC7Bh5u+wSGe3dLJExs7uPTqDo47tYPntnYyNDz6TdWVwhumNnHE9PEcvt94jti/mUOnNe2tsknMR2LdeEsLnHYa/Pzn/r+0iT9QqQRtrxBEtp9TFIMPa/OR+fsyDdyiEnyEcfGKQvDhFUTlI/hINxxALlnwUaLKOfhwS6Onf4i1m3fzr427eOLVDu64r4PaKV2u6cyc1MDh08dzxPRmDt9vPAuOHc/A7lpEZG96Qb+0foOPOAs+/L8vVf19Mrcfer/BR3IA6qe7dZSDj0wDNws+3NMI+335CD68Sr9EnPZsuVRSwYeIHAWcjDO3y02qukVEDgK2qmpnNhkpNhZ8pF5XBDp7B1m7aTdrN3Xw1KbdrN28m+e2do6psgGY3FjDYfuN5/e3NfPzReP5wNvGM7CjAbRiTLpuX9p8Bx+JF9lUjV6DiGrwkfz+5Mde66R7Xy7PP7fXM61GyCY/QQK3INu24CP791nJR2br5jX4EJFaYAnwfkAABY5V1X+IyC+B51T1imwyUmws+Ei9rtfy/sFhXniti7Wbd/PUpg7WbtrNyqd3U1E3OGZdHaygf3sjA9uaGNjeRP+2JqbWjmfdWqeUxG17Iql7GOxNO8X++blIxbcXZp1uqQUfiRfe+Ngg7e3uF2GvtLPtApnLfQ2yvbADAAs+sn9fPoIPa/PhzW9vl2uBtwP/AUzFCUDi7gX+LZtMmPJRU+X0sHnydzM4aPcRPPqNubyy6B3wu1P4yAHHsOuhg3n7YfsyoboeqRqmdtpuGme/yj6nPMPUD/0d3vsXWr/6Jz5040q+9OsnWfLIBlat34HUjEy6lzigUnJJiJ/p25OngE/lyiu9R66MguQLd75a3cd/dOP/+trbnRsEm+sjyGdhjB/57H3S1pbfAd6Kid+Sj1eBr6vqj0SkEhgA3hQr+Xg7cKeq7pPjvEaKlXykXtfPPwm3BoaJ9eE/vXWAr/2gk/bBTiYd2MnMozvZOdxJR8+Aa5rTm+t44R9NXP7RJg6d1sSZpzax+DuNLPxSZcbF3unWCbNONxclH4klNMnT1gf9BxbkH3mqxpaJsq2CsZKPYHkq95KPMNrhZCpXv+NhbK8QJR9+Z7WdBDzt8VoFUZkgxBQVtxKDRB87p5qPnTMRkYl0rnGWqSqvdfbxzJZOnt2ym2e2dPLc1k6eWN/Fpo5eGl7fy00rnLlspv8nXL0WXndRPd2PNXHBRxupntJIzfRGOnoaaa4f3esmHbcqgAMOcL/Ijh8fKOmccyuJyeXcIsU8PkcqYc1wawrDq6SyXBVypmW/wcc6YC7wV5fXjgOeDS1HpiSEMXmeGxFh6vg6po6vY94bpowsr1Be2LqHo97SyTU/7OTZLZ387oFO6qZ088qOHhoO6mHxA68BsN9/wJyrobGqltkHNHLQvqNvTiwtY7Z99dVjLzzXXuv+T6qjY+R5oS9YS5d6l0JkGiSk+3y9grJi53YOmMIK8v0q1aA4iPjxSi4FSqwOzUcA4rfa5YvA/wM+AdwNdAPHABOAu4CFqvrfuctm9Fi1S3Z5S26LkSg5vSDVIMn70TcwzIb2PbSe3EXDtC5o7qJ6UhdVE7uoqHavFxnureKNB48EI7Mmj+PAyeN4w/4N6GDlmDwFaViZSq6qXVI1wA3S6j7I5+BWvJ0ouag7KtUu8R/msPNj1S7pq0/SjccR9Fi4fZZhjL2SqahUu6SrGk33mxBWtYvf4KMSWAp8COjD+WvYA9QBd6hq2TWfKeXgI4yRDf28L12bjyDb8Ao+Eh+PplQ197D/YV1c+c0uXnitixe2OfdebUp0GCbW1rPz5UZ2vzqO8TKO884Yx8c+NI7pE+qpqpS0o6u2tY0EKy+/7JQQxJeHGXwkBkRe/Lb5cPsR95JpUBaV4MPPeWTBh//8BAk+0i3P9FhYmw/35Zm2V8tr8DGSKTkJp2fLvkA78H+quiKbDBSrUg4+0kkMTrIJPtwGlXIrJchN8DGyPP5Fcy6Wyivb+nndEV285+xOJs/aw7rtzm39tm7Eo39YTWUFPdsa6Ns+joEd4xjcOY6BHY0M7BjHcHcNIHuHjE8euRWci/NB//4cLce3Zx18nHEG/N//pa/LXrLEX/FqkAZ/buv4uZAHvdj7HVslm+DD7/npZ3sWfEQj+IDsx17JVNSCj6Io+TBjlXPwEUbeglxschl8xL9ofvrjS+UwVRO6qZ64h+qJXVTts4fqiXuom7IH6vs88zbcV8XgrgYGdjUwuKuBwZ0NDO4a5zzeXcfIQGoay5MEbvi1cCEcfHD60o7k/U5OI5Nib7d1vZZl+jh5UDe/YydkE3z4LZnzsz0LPqITfKTKW9A0goha8BF0DJL4d7BQJR8C7IdT3TKKqr6UTUaKjQUf2eUtyMXGzzb81NWnmjvEz7+AVKUnu3sGOfL4PWzrcwKSeGBSPbHLdQC1OB0SBnfX7w1KBmJByVAsWDlgetWY6poNG6CyEoaGRldnBPks3Eo9Mv3xT5dGGMFH4rIg/9iyCT68WPDhPz8WfISbRhjbS1weZHTm+PvyGnyIyCTgR8DpePSQUdX005eWEAs+sstbkIuNn22kK0oVST13SKr6z9tuS12ikKr0BJSKugGq9ummasIep+RkQjdVE7qdZU29KfdrsKt2byCyt9Skw7kNdbn3ykmlpcXZjzB//NOlEXbwEaSu2oIPCz4s+Ei/PMh3O6zgw29X258CpwA/BJ4B+rPZqDFhStVlLFFbm3MTGfsP2atr6MSJqXttVFc7QUw8fRgJVJwvqzDcW0P/5hr6N08Y836pGqKqORaM7A1K9jgBSnMPVY19VDX2UTtj55j36mAFg7vrGNzdwGBHPYMd9Qx1xB+PDk7ipT7r16e+sMYVuntwKl6f1QEH5D8vxpjM+A0+TgEuVdVbcpgXTyJyEfBfOFU+TwGXqeqDKdafB1wPHAFsAr6lqjcmvL4Q+ErS27aq6rSQs27yIIyBg7zG60iVVrwUIbGYMh7g+G2DoYOVDLQ3MdDeNPZFUSobe53Skn32jAQnzT1Uje+hsrGP6ondVE90z6AOCYMd9VT3N/Cmw+r582/q+dXj9dTu38Dmjnr2baqjssI9EnEbzyJXY7cE5fVZxYPARNnk2avNhzEme36Djx3A1lxmxIuInAksAi4C/ha7v1dEDlfVMUPGiMgs4B7gZ8DZwFuAG0Rkm6renbDqs8D8hOdDudmD0haFC1I2AwfF/+Enl1rEq2X+4z+835uqFCF+4W5rc+99Eu/5cs89iaUkSYmoMNRZz1BnPX2vTBqzDakaonJ8j1Ny0twTu40NTqCbVTthwslw+TKYdjbM/QZUVwr7NdczfUId05vrmXBSHUseqWf/CfVUT67jJ7fWc82XqwDZO/ph2NxGWHRbnsjrs/JqJBdUfHv19c4tuXtwKlH4PpjyFeUSy2R+23x8BpgHvE/z3D1GRB4FnlDV8xOWPQ/cpapfdFn/m8D7VfXghGU/AY5Q1bmx5wuBD6jqkVnka7mfNh+ZzsqZrj4yjJMs7PrdMLadSZsPPwMH+Wlf4Ja3dGn7PRZeY3skvn7BJb1073Bm7M30+Mbz09ICX/naEBdc1sOfHu5m484eLr6ih7YLnMcbd/awvcu7h07ccF8Vg511DO2uh5463n1KPaeeXMf0CfXs1+zc11VXpmy4lurYe5UuuJUyBGkkmwmv+W+8BkMLIox2F5l2cbc2H+XT5iPT9kKFaPPhu7eLiHwHeBfwZyC5AlpVNfSYX0RqcEZTPUtV70xY/iPgSFWd5/KeB4B/qeqnEpZ9EPgF0KCqA7Hg4/PALpxB0x4F/l+QHjt+g49cfTFyGQAEeV/Y284k+PAzcFC67Xn9sKdKO17tkq6VuF/xQcb+vXFuUruRkXXiz916uwQZvAugp3+ITR09bN7Vy6ZdPVxweQ8XXtbLpo4e/vpID5VNvVTUpC8QbKisoWNzHQMd9QzudgKVyr46PntRPWefUcvMqXWuI8P6aXuSKIzeLKkEDWKDCCMACOP7GuTPkAUf/rfhhwUfo/mqdhGR04BP4YxseojLKsrYNhRhmAxUMrbKZyvwdo/3TMMJkJLXr4qltxkn2DgPp/HsvsBVwMMicoSqtie+0QkyXLX62YEoK5UiYq9i+HRF5Im85uxwS/u00+DHPx65UIU9J0K83QikLjFJvJAkPn7+eX/bqa+p5PVTGnnkvkauvBI6NsCyjc42lvwEQKmoHXSqdsY7wUhVcw/nfqKHTR29bO7oYUtHL91D/VTv20/1vrtHpX/zS3Dzt6Hlc9D61Wqmja9j3w/W8fm7apk2vo7GOXUMdTm3wc66vYOxecn1vBzlMO9HsRTJm9Lnt9rlGeA1nADkGVV1H386ZCIyHXgVmKeqDyQs/zLQpqpjAiEReQ5YoqpfTVh2MrACmK6qm13e0wi8BFynqtcnvbbcI3utMK+5mEs+Mk0vaiUfftL1KtlItz2392U6MmA6uZrbJdVxTFWy4yZ5H4eHlZrmPicwGd9DZVMPVeN7nYClsZcDj+hjY3svUpn+A9QhcQKRrlonKOmM3WLLpo2vY+3qOhpqRv4zWclHsG2HmU8/24hyyUeQaiwr+ShQyQdwAHCJqv4rm41lYDtOQ9CpScunAls83rPFY/3BWHpjqGqXiDwFHOzy2ny398SCkjHVPiaaMv3H51Yi4vUPOYr/nBNLt9xKulL1FEr+QXLrUVJRIcyYVMeGDXVjuhK3tMBDt4GI8trufrbu7uW4eb3cvLSXrbv7uPb6Xmon9EJ9L5WNvVQ2DOxtOOvl8C9DU20VU8bXMqWxlsn/XstXf1fHlKZapjTVsm/C/T4NNVR49OZx41ZaVogeLmGVSBZyuvQgCpVPKwUqLL/Bx+PA9FxmxI2q9ovIamABcGfCSwtwZtd1sxJnMLREC4BVXiU2IlIHHArcn12OTTkopnEmEn9g3X5sU3YDTvi3mapdS/qur7I3OOh5sZm2452ln31H0sBvs4b47Jf6+K8v93LpFb0s+20vuwd6GT+1l96KPt4wp5ctu3vp7Bukc9sgL23bw7jD4GcPuee/skKY3FjDvk11owKT0UGK81pddSVtbU7wkdyWJ0j1XRjCuCgWerp0v6Kez2LqPVJs/Fa7HAP8HLhQVT2+6rkR62p7G04X24eATwAfw+m9skFEbgVQ1XNi688CngRuBm4C3gzcgNNo9e7YOt8Bfge8jNPm40vAycBsVU3xczwqX8uLvcFppukVY7VLunWCFHUHnRPBr1xUu6Tjt9FnuuOfqrdLuiovP4/j96pKVcMAz6zvY1tnH+94bx/f+3Ef27r6eG13b+zeeb6r23/tcLw0Ze3qWj7w7lp+8bNavnZlLZMba/jPs2p5+P5aJo2roWVqLcMDwQdzDvt8TpdGplWD+a528TutQS6qXYLk36pdwq928Rt8vAKMBxqBPTi9RBKpqrZkk5E0278Ip3fKfjiBxeXxNiDxNhmJByI2yNj3GBlk7JtJg4zdgRNsTAa2AY8AX1LVtQHytNyCj3C2F7Xgw8/FMsicCH4VKvjwU7UQ1rmRbfCRat1kfYNDbO/qZ1vn2MBkW2cfr3X2sb3Tedw/lGIO8STjaiqZ1FjLpMYaJo2rZUqTcz+psYZJjU7AMrnRCVYmNNRQWSF5Dz4ynS49aD7TfQ/SfZZ+8mnBR3rp5rZKl48oBx+3AClXVNX/zCYjxabcgo9Mxxjws72oBR9B0gvzcyhU8JFY9eGlGIMPv1SVjp4BtnX2cdTxfdz+qz7O/UQvVyzsZ3tnP0vu7OO4k/tp7+rj1fZ+pMp/oFIhMHFcLZtequGUE50gZclPavnaVTVMbqxh4rhaJo6rZp8G57WmuqpR7VSiXPLhayZoK/kIlI9s0y654MOMVW7BR9g/+MUYfLjV/5ZC8JF4LDKZRt4rPT/bi0Lw4ZY/7+0pHT2DtHc5wcj2rj62d/U7z/f00d7Vz7auPtq7+mjf0x+o6gecdir7NDjByD7jarj//2o4/5waJjbU8NWrarh1sbP8ziU1XHF5NZPG1VJfM7YaKNOqwbADnHSfZZAAxoKP9GkXU/Dht8GpMWmVUuMstxb4pbJvqSxenN14KWGI9vgzwvi6asbXVTNr8ri0aw8MDbNjTz+vO7iPPz/oBCjnXtjPF692ApWde/pp39PPzu5+duzpp7N3kO1d/WzvcubuHHcI/OJRJ62Jb4PLlo2k/ftvOvd11RVMjAUrE2O3fZpq+PDXavjLPTVs21jDlPE1XHJhDQveU03fYDW1VdlPQh5Gr68gQ+UXk2L5LSxkPj1LPkTkHOAPqtoee5ySqt4aduairJhKPvycYGGUfIRRQlGIko/k3g3g/19jmF/efJZ8uNXV+x0ZNZUwSj7c1o9OyUdm2/ObRv/gMLu6+9kRC0YWvLufG3/Wz449A1x9XT9tH3MClh2xgKV9Tz/9g/6rgeIaaiqZUF/NhIYaJjRUx241/Pj71Xzza87j886qZvl9NezTUE1zQzUT6muoqarYm0YYJR9ex8htefLrfttdFaLkIx+l1W5ph13y6/a+nFe7iMgwcIKqPhZ7nIqqavahdBHJNvgI0lAr2+L+bL58bq/nO/gIcoEPkk+vuTzik4kly3YQsXTyFXwEHY4+3fHPdLAmCz6yf5+q0t0/NCoYSQxOduzp56e39TP/3wZo39NHR88Au7oHGBzO7KCNq6ncG7D0dlTz1JoaBrqqGe6pZqi3hqqhai76eA3ve6cT0Bwyq4be3dVUV1aEGnwEqVay4MM7H1ENPlqATbG5UFrSJeS3i2qpyCb4CNpQy2+62awbpeAjmzlTguQz1YiWXmmn6imQrXwFH2GP5BnkwuqnJ5Fb2hZ8hLNtcAKWrr5BdnU7gciunv7Y434u/uwAn/1/A+zs7mfJ/w5w0tucxx3dA+zqGWAow6ClsbaKXa9Vc+QhVax5rJr3nFpNc71zG19XTXN9FZ++sJrf3FnN+PrRrzXUVqA6usdQkAa1UQk+clnFUWrBx0vA6ar6z2w2UKqyCT6CFlf6TTebdaMQfCxdCv/5nzCQ0EYv6PgZQfLp1c3PS6mUfKTa73xeIMMOPsKc6Tl5G6MGQ8tRUBzm+7zSyGZ7qkpn3yAd3U5AsisWkOzq7ueSzw3wmSucx/Flu7oHeP7lAarH9ZNhzOJsd7CCKROq2LyhmmNbnaDknl9XM9xbxXBvNcN91aPu//5QPKCpprGuiqrK9LNE5yP4yKVSCz72Vrtks4FSlU3wEaRve5B0s1k3CsFHGHOmhFHyMWkS9PSEP4hYOuVQ8hH0fUGCjzB+8L2259YLKPF8CHu22HRtcjLZp6DrhvEbIwJDQ07QMnm/AR5/aoBjTxzgV38YoKNngN09g8597wA//skA73r/ALt7Yq/1Oq9l0qZl1PZ7qnjdtFhJSn0VTXXVNNVVMT5231hbxecureYXP6+iqc55fXzsfvqUKob6KqmoGAlgwmhDF7ZcBh/J52J9/XyeecaCj4Kxko/MtpPqRzXTgZES+Wl/kFjS4tbmY/Fi53G+W+AXus3HqafC3bFJCyz4GJ2um0y/r+nW9dMmJ4hCBx9+L3TJy/f+VmwcouWgATZtH2DlaicwuffPg/xs6QBDMkBFnXOrHjfAoUcNUD/eCVradw/QOzzobwdSqBAY6KnigGlOsLLm79W8a8FIoNJUV0XjqKClitPeXs2aVQmv11QFmmcoqFwFH27nYkXFfIaHn39a9dXDs8pzmuDjeFX9ezYbKFXW5iN4Gul+VMOeLdbvly9VG5N8/oMpdG+XxP0Ou5Fvpu874wxYvTr8Xjnp8uQn+Mi0pDLdun5KpoIoxuDD7bcCnOqv+Hma6hze+/4epaJmkIq6ARomDPDZLw5w3JudUpWu3kE6ewfp7B3gez8a5MyzB+jsHWR3bFln7yBbdwxQUR1OQ6/G2njAMhKUNNVV01hbRWNtJY211YyrrXSe11UxrrYq9trIbVxt1ageR8nHLuzgw/1cnA/096k+XJf50UgffPwfHjPBJlFVPTebjBSbfPZ2CZJupuvmI/hI96Ma9pwpufg3lkuFHmQsjDTCvNAF7ZWTq+BjwgTo6Bi7bq5KPvy0yQmiGIOPbBuUBv0jkypP/YPD1DUOsm7jILt7B3jT3EF+e+/A3sCls3fQmeww/rh3kD/eP8Dso0eCmz39Q2MTz1BNZUUsOHEClsbaSh74SxUfPL2K22+r4rJPOYHKV66s4qYfxoOYkeCm9fBqtmysZFxtFfU1YxvzJnI/F+cDoLo8q6KcdMHHFqDPRzqqqgdmk5Fik89xPjJJN+i6+Qg+/PyohjlnigUf6UU5+AjaNiVXwUfYJZXZBOnZNnYNsm4hg48gVbBu6QWtwk2Xp6DHJXmdoWGlq9cJXjp7B+nqGx247OlzSmK64o/7Rj/e0ze0d1mmPY7c6JCwT1MV2zdXceQho0tbxtVW8r9Lq9jVXoX2VzHcXxm7v5qe55/KuuQj3Qin77M2HyYsXlPRJ2prc24iuetZ8pWvjB3B1ERPqpEy46PO5kO+R+G89lr3KgeI3pTzueL1W3HAAfl5f9gqK4Tm2GBt2VBV+gaH6ewd5PY7B/nS1YP06SAVNYNIjXPfdt4gbzhiiGuuG+T8Tw7S1e8ENus3DrLh1UEGZZCq+kEq6wYZqlR2dQ9Q1TzAM1tcNngITBiz8H1s+OY9L2W1I/GdcbsBw8BxXq+X+w1YDvM0HadQKPjrXsuXLFFtaXFeb2lxnmeTB7/pJaYRNM+J22pocNaL3+LPg6blR6pjmJwPcN/3MPLh14dufFg/dOPD+dughn+cv/IV98fp3ueWj/h56XVLPnfC3Jeg53iQ77mffCZ+L91uLS3p0wiyvUzzmW5dt/T8rJvtd9Trt8bP75vb8qDHJR+/G17nR/zcSHc8GxpUqRzU9q4+rWreo0+92qGPrWvXvz69VX+75lW9/dENevMDL+pHv/uctvz7Wp34jie05cx/6KxzvqfAcs32Gur5ggUfqQ9cAYKPoF+odNsIkl4YwUd8m8nBTr6Dj3Rf2rDz4VexBR/pAtdsL8heF6Dkm9/t+RGV4CNxXbebSLA0Mlm3kMGH6tjzK+ix9/PHymudVNuOSvAhkvrcSMxDqkDWb37j68ybN8+Cj0LeChF8BLlo+tlGphfhbIIPv+nlMvhI96VNlO7fe5gKEXxkun9+AtcwLsjpSgDKNfgo9ZIPt+VhHPtEXufwJz+ZutQlKsFHkJIPr9+8QgYfY/vsjFTHVKi194iUMGaRzCa9pUtH2kfMnOk8L0Ze9b5uy4thZspsZLp/V145tk1Cd/dIO5qwtLXldlTZYtDQMPZ5vtq75FO+ZzP2OocXL3ZvbxP2uZ2ta68de27ElycrVFuXVDyDDxM9QS6auUjvggtGGnHFG74VYwAS5Etr3IUdCPvhdhEuB4sXO41cwbn30/W8GIPmfOfZ61wd8ugVm8tzOxNtbaPPjcrY1K5XXjn2d9ntN6/Q3x8LPoqI1wmU6UUzaHr5+KebD8lf2pYWeP/7S7v3QNjCDoT9cLsIl4PE0p/16/2dp1dfncsclQavc7XSY372KJYetLWN/F7Hg6bEHlGJ60Xu+5NtvU253ijD3i7p2kkUS5uPsLcTlkK0+chUvtp8pFu3WNp8JLatyXcbjGJp85EubWvz4S5dY9JUeYtkmw8TTZn8C8plelH8NxCX7zrkcuL1T8pKj9wVYzVIqfM6h2+4Yezy+PpR5Kc6KIrnnwUfxrdia/gWxS9cKQk7EDbGr7C+217ncPLyKPPzBzCK1XAWfBjf7J+uiZpCl26VSg+wYhPFi2mhuP0BLHRjUj8s+DC+2T9dEzW5Kt3yE9TE53wJ2gOs0AGTKS3x3+FINSb1wYIPU7SsWsXkip9zK9OxTuy8LV2FLAkrtj+GFnyYomVFryYsmVw0CjHWiYmuTEvCypUFH8aYgitkVUSmF41CjHVioitfo/6WCgs+TNas0Z3JViGrIjK9aIQ96F+xseqj0awkLBgLPkxWrKjRFLtMLxrlPtaJVXuOZiVhwVjwYbJiRY2m2GVz0bAeYCYuHyVhXqVNidWWxVISbcGHyUquihqtO2LxKPbPqtyrT4pd2OdfptVJ+SgJ8yptSsyzW0l0FFnwYbKSq6JGq08uHsX+WZV79UmxC/v8y6Y6KQolYW4l0VFkwUeWolqklS/2r9GUgihcNEy0FUt1RrGw4CNL5d62wf41GlP87MKanjWsD5cFH1myblT2r9HkV7G3MYkarx5rZrRiaVjvVhIdhrC/dxZ8ZCnK3ajs34wphFyfd8XexiRqvHqsRVHUftMy/fOZeA6HfT67lUSHIex8WvCRpai2bbDxN0wh2HmXO34nuwtrmPgoitq5lemfz8RGrWGPl1IsJdEWfGQpqh+sjb9hCiFX551VtaT/55lp9UmUS2+TFfI3zRrWh8uCjxyIQrGwDfVrCiFX510UvlOQuyAojP3LtPrEq8daEIUMDnP5m5a4X6XcsL4Qn58FHzkQhWGHbahff+wfdbhK/bzLVRAUxm9Gphfh5B5rkyZBfb3z2G/VTSGDw1yeW4n7VSzVGZkoxOdnwUeJKqbxNwoZAETlH3WpKKbzrtRkcxFOvLD29EB7u/M4Cu0qEpX6uVVOv0cWfBSpdBfsYhp/o5y+cKWumM67UhNG9QlEu61YqZ9bUSg1zxcLPiLGb2t1PxfsKBcTWnVH6YryeZcrUTifvQK/MESlrVg5nlulyoKPCCmnbopW2mFKSVTO51xdnEulzY6JDgs+IsS6xxpjCq3U21WYaCiK4ENELhKRdSLSKyKrReSkNOvPi63XKyIvicgnsk0zH6x7rDGm0Eq9XYWJhsgHHyJyJrAI+DpwNPAwcK+IuBYEisgs4J7YekcD3wD+W0TOyDTNfCn1borGmOjwqioqtXYVUWiPY8aKfPABfAa4RVVvVtWnVfViYDPwSY/1PwFsUtWLY+vfDPwc+FwWaeaFdVM0prwUcq6SQvSsKMS+RqU9jkmiqpG9ATXAIPDBpOU/AlZ4vOcB4EdJyz4IDADVQdMElnvcdsE8Pf/88zVu1apVCiho7H7041WrVu1d9/zzz3dZF4WztLr6VQXVlhbVJUuSXx99u+mmm/amedNNN3ms56SR6I1vfKPrOkDG+zR2X0Zub3zjG0dtP/t9cvKRep9Gbu775H5z/5xyv09Tz/qGTj3rGyW0TyPvd9+nselnt0/u+Q2yT4lZTX3upfs++dmnsxS6Yvl2bnV1g7pkSRj7NPr76r5P7u8bSdP7WMXzlv5zcl53fseSb12xY5Bun1T971Omn5Pu/ZzieU51PNN/n9TnPo08dvYj3T6l+y0fna77Pn3FdX2/vxGNjY0KLNcsr+9RL/mYDFQCW5OWbwWmebxnmsf6VbH0Mkkzj25n9uz3AKVR5JkbZwHrgGjMbGkKa+lSuP32b8SercM5P4rB14Fxo5b09laWXAPze+/dh3PPdXtlHM4xMOFZ6GOdaAwmIk4wFk0iMh14FZinqg8kLP8y0Kaqh7i85zlgiap+NWHZycAKYDogQdP0yNtymDdPdbnLa7F4Mumxezrur6d7XxB+0gqSz3zk2Uu8O3Jir6CGhtJoFHfmTSsBWHbh3ALnJByZnvtBeJ0Pp54Kd98dPL18nMNxFRXe36Ph4ezyk+n3NYzfruR1Ghq855hJ3Nd02wmSt6DSpR1025n+nob5ncnVb/b8+fNZsWLFClWdH+ydo0W95GM7MARMTVo+Fdji8Z4tHusPxtLLJE0TEdYd2STyOh9++cvC5CeIcmlgnmpyuyjtayHb35SjSAcfqtoPrAYWJL20AKeHipuVHuuvUtWBDNM0EWHdkU2iYv7cy72Bud99zVdvlUwGePRqzGo9bNKLdPARcz1wnoh8XEQOE5FFONUnNwKIyK0icmvC+jcC+4vI92Prfxw4D/iO3zRNdJXLv0XjTzF/7lGZB6cQvUEqK/3va77yl0mJqlePIethk17kgw9VXQZcBlwFrAHeApymqrEYlQNit/j664DTgJNj618JXKKqdwdI06RQyKi+3P8tmtHCmkytUKIwpkauu9y6fR4//3lxtNEq5pK1qIt88AGgqjeo6kxVrVXVYxIbiqrq/OSGL6q6QlXfGFt/lqqOKdFIlaZJrZBRfVT+LZpoyOVkaiYcyZ8PZP99zdcfoGIuWYu6ogg+jEkUhX+LJjrsfIiW5D8nyZ9PLrYRBitRDWL6vtmmYMGHMcaY0BRi5NQwWIlqEC0HZptCVRjZMAashbcxpni1tTk3kfBKaEpXTW22KVjJhwmNtfA2xphy0N+XbQoWfBhjTAnIV/Bvg3EVv+w/ww0vZZsHCz6MMaYEJLa1yFUVaHw4+6CDcZnoCOcz3PRatvmw4MMYYwos7GAhV6UgNr1BdqJQahSVz9CCD2NMTlgDZP+Kpb1U1Kc3yPQ45uNc9SpxyLeofIYWfBhjcqJYLqjGv6hPb5BpN98g52qmgYpXiUO+ReUztODDGGOMLza9QeZBdVRKh6LyGVrwYYwxZSS53UEQNr1B5qJSOhSVz9CCD2OMKRNu7Q7iy/0qp+Hsw2wgGqVJEKPwGVrwYYwxZcKt3UF8uRkt7G7FNgniaBZ8GGNMmYhKT4dikIsuqV4lDlHogptvFnwYY0yZiEpPh2KQz0CtHAdus+DDGFMyyvEfZBBu7Q7iy4tZLj73MAI1vz1jojDoV75Z8JEl+4EzJjqy/QdZ6gOjubU7iC8vVrka8j2MLqmpxh1JDJjclHpVmAUfWfI60aP0D6zUf1CNicv2H2Q5DIyW3O6g2OVquPBcd0lNDJjcJJawROl6EhYLPkLgdqJHqQ6vHH5QjfFS6v8gy10u22bksktqqtFNE0tYSnUyPws+QpJ8omcSiVuQYEz4rDFlaSu1RrTJJSxRmQgubBZ8hMTPiZ4uEs90XgJjjCMKw0ab/IrKcOFhSS5hKdXu0RZ8hMDviV6skbgxxSIKw0ab/IrKcOFB+R3ttNRKduIs+MiS14leSpG4McUiCsNGm/wL83P300A/jAagfkc7LbWSnTgLPrLkdaIXYyRujDHlLl3bu7AagPoNmIq1ZCcdCz5yxP6B5Z51ITbG5FshGoAW6nqSy04QFnyYomW9g4wx+VaqDUDd5LIThAUfBWb/3o0xpniUagPQfLPgo8Ds37sx5cu+/8WnVBuA5psFH8YYUyD5GNunnEpX87GvfhqAluJw6GGrKnQGjDHG5E45la7ka1/b2pybyNj5ceK9YeKNUuO9YeLvMw4r+TDGGGNCUqrDoYfNgg9jjDEmJOXUGyYbFnyYlKzu0hhj/LPeMP5Y8GE8lepUzsaUUzsIk1/WG8YfCz6MJ6u7NKXKZpA2uVKqw6GHzXq7GE9Wd2mMMcGl6g1jHFbyYTxZ3aUxpaucxv8w0WPBh/FkdZfGlC5r92IKyYIP48nqLo0xJnxW6mTBh0mjUFM5G2PKV6mXypT6/vlhwYcxxpiU8n2xtN5Ipc+CD2NMSbCi7NyxYMCEzYIPY0xJSPx3boFINNjnYLxEOvgQkVoR+W8R2S4ie0TktyIyw8f7LhKRdSLSKyKrReSkpNeXi4gm3e7I3Z4YY/LJ6tRzz09gYZ+D8RLp4AP4PnAGcBZwEjAe+L2IVHq9QUTOBBYBXweOBh4G7hWR5NEp/gfYL+F2YdiZN8aYUmWBhclGZIMPEWkGPgb8l6r+SVX/AfwHcBTw9hRv/Qxwi6rerKpPq+rFwGbgk0nrdavqloRbRy72wxhjyoFNQhmecgjsojy8+jFANXBffIGqviIiTwMnAn9MfoOI1MTe952kl+6LvSfRh0Xkw8BW4F7galXtdElzuUf+5sIa5s+f7/pi4mKPVUJ9XxjSbS/f+Sk3azftBmD+7eMLnJP8KeQ5FZXzOdvv3datsG6d87iuDmbNgqlTM8+Dn8dueXjuORgedp5v2ADnnAPXXDM6L/E0/Bx7t3WieL6E8buZfJxXrIDlyzNPzyvdTNJLfn3NmjUAB/nPhTtR1WzTyAkR+QhwK1CtCZkUkb8Cz6vqmGoSEZkOvArMU9UHEpZ/GWhT1UNizy8ANgCbgCOAb8TSfIdLmss9svgWYAhYmdEOlpfW2P2aAuahGLTG7tcUMA/FojV2v6aAeYiA6fvC6w+BioRS7OFhePFZ2PQaeTtOc0+Amtqxy/v7YOUjud12KFpj92sKmIccmL4vtBzofDb9fbDhpdh5kY25QL+qNmWTSN5LPkTkGiDdvKin5DIPqro44em/ROQl4FEReWOseidx3fluacSDEq/XzQg7Vv7YcfLPjpU/dpz8sePkX4o/5IEUotrl+8CSNOu8DJwAVAKTgW0Jr00FHvR433ac0ojkQsepwJYU21sVe9/BwD9SrGeMMcaYLOU9+FDV7ThBQkoishoYABYAv4gtmwEchtODxS3t/tj7FgB3Jry0ALg7xeZm4wQ6m33sgjHGGGOyENkGp6raISI/Bb4lIq8B7cD1wBPAn+PricgzwA9V9YexRdcDt4nIY8BDwCeA6cCNsfVfD7QB9+AEQYcD3wUej61vjDHGmByKbPARcxkwCCwD6oG/AOeo6lDCOofgVM0AoKrLRGQScBXO+B1PAqep6obYKv3A24BLgUbgFeAPOL1dEtM1xhhjTA5EOvhQ1T7g4tjNax1xWXYDcIPH+q8A88LKozHGGGOCiWxXW2OMMcaUpsiOcGqMMcaY0mTBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPlyIyBdF5O8isltEtonI70TkSB/vmy0iK0SkR0ReFZEvi8iY3jilJJNjJSIzRURdbqfmK9/5JiKfEpEnYsdpt4isFJF3pXlPOZ5PgY5TOZ5LbmLfQxWRH6ZZr+zOqWR+jlW5nlcistBln1ONDp7xORXprrYFNB+nq+7fAQG+CvxZRA5X1R1ubxCR8cCfgAeAY4FDgf8B9uAMYlaq5hPwWCU4FfhnwvN06xezjcAXgOdxgv5zgV+LyDGq+kTyymV8PgU6TgnK6VwaRUROAC7AGYAx1Xrlek7t5fdYJSjH8+pZnN/1OM/xr7I6p1TVbmluOIORDQHvSbHOJ4HdQH3CsqtwZtmVQu9DxI7VTECBNxU6vwU+VjuACz1es/PJ33Eq63MJaAZexJmMcznOaM9e65b1ORXwWJXleQUsBJ4MsH7G55RVu/jThPMvbGeKdeYCD6pqT8KyP+IM7T4zd1mLHD/HKu6XIvKaiDwkIh/Icb4iQ0QqReTDOIGa6zxF2Pnk9zjFleW5BCwG7lLV+32sW+7nVJBjFVeO59WBIrJJRNaJyB0icmCKdTM+pyz48GcRsAZYmWKdacDWpGVbE14rF36OVRfwOeBDwGk4w+YvE5Gzc567AorVjXYBfThzDZ2uqv/yWL1sz6eAx6kszyUAETkfOAjnn6Yf5XxOBT1W5XpePQqch1PddD7OefFwbMoSNxmfU9bmIw0RuR54C/AWtblfUvJ7rNSZ2TixPnCViEwGPg8syW0uC+pZoBWn+PcDwM9FZL6qPlnQXEWP7+NUrueSiBwCfB3nuzZQ6PxEWSbHqlzPK1W9N/G5iDwCvITT9ur6MLdlJR8piMj3gLOAt6rqS2lW3wJMTVo2NeG1khbwWLl5FDg43FxFi6r2q+oLqrpaVb+IU0J0ucfqZXs+BTxObkr+XMIp7p4MPCUigyIyiDNn1UWx57Uu7ynXcyqTY+WmHM6rUVS1C3gK7/3O+Jyy4MODiCxi5GL6jI+3rAROEpG6hGULgE3A+vBzGB0ZHCs3rcDm0DJVHCoArx++sj2fXKQ6Tm5aKf1z6dfAbJx9jd9WAXfEHve7vKdcz6lfE/xYuWml9M+rUWLnyqF473fm51ShW9dG8Qb8CKcF71tx6q3it8aEdb4B/CXheTNOpHcHcCTw/lgany30/kTwWJ0LfAQ4DDgEp261H7i80PuTw+N0HXASTiOs2bFjMgy8086nrI5T2Z1LKY7dchJ6cNg5ldWxKsvzCvgOTqnQLOB44Pexc6Ql7HPK2ny4uyh2/5ek5VfjdEUC2A94ffwFVe0QkQU4F+NVOL09vkvI9WQRFPhYxVwFtOB0y30O+KiqlmxdKk5AtiR234EzzsA7VfWPsdftfHIEOk4x5XYu+WXnlH92XjlmALfjVFNtAx4BTlDVDbHXQzunJBa9GGOMMcbkhbX5MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuSVBR/GGGOMySsLPowpESJynoiox+3thc5fqRCRY0SkW0T2T1i2XET+5rH+x2OfwcwA23ifiGwVkcYQsmxM5FjwYUzp+SDOfBaJt8cKmqPS8m3gZ6r6ag638RucIa3/K4fbMKZgbIRTY0rPGlV9wc+KIlKrqn25zlCpEJFjgFOAi3O5HVVVEVkMfE1EvqGqvbncnjH5ZiUfxpSJhGqZk0XkThHZhTNTJyJSJSJfFJFnRKRPRDaJyHeTJoxCRA4UkT/Eqh22icgiEbkwuVoh9nxh0ntnxpafl7R8noj8RUQ6RWSPiPxRRI5MWme5iPxNRN4uIv+Ibf9JETndZT/niMivRKRdRHpE5FkR+WLstf+OVWdUJ72nKbb969Icxo8DT6jqU2nW8yQiC1NUj52XsOr/AhNw5sswpqRY8GFM6amMBRPxW2XS60uBdcAHgCtiy5bgzGXxC+BdOBNIfSy2LgAiUgP8CTga+BRwHs4EVFdlmlEReRfOvEBdwNk4k3k1AQ+KyOuSVn89sAhn3oj341RL3CkiByWkdxzOTJuvBy6P7cv1OHNWAPwY2BdIDlo+AowDbkqT5VOBB1PsT1XyjbG/sz9hbLXY3YzMIQKAqm4Hno5t05iSYtUuxpSeZ5KePwS8JeH5Xar6+fgTETkJOBM4V1VvjS3+s4jsAJaISKuqrsGZ6fNAYK6qPhJ7773Av7LI6yJghaq+NyE/9wMvAZ8FLktYdzJwsqo+H1vvHzgByIeAr8fW+Q7QjjMZVnds2V/jCajqWhFZAVyIU7IQdyFwn6qu88qoiEzFmW33nx6rvBkYSLGv8TxsBDYmpPtBnGDqMlV9OGn1x4ET0qVpTLGx4MOY0nM6CRc3oDPp9V8lPT8VZ7rwu2L/1OPui92fDKzB+Yf+SjzwAFDVYRH5X0ZmMPZNRA7GKaH4etJ2u3FKL05Oesvz8cAjtu3XROQ14IBYeg04AcC3EwIPNzcAd4jIwar6vIgci1Oak656Y3rsfpvH6//EqZZJ9l48SodE5E3Az4EbVPUHLqtsS9iuMSXDgg9jSs+TaRqcbk56vi9QA+zxWH9S7H4/YKvL627L/Ng3dv/T2C3Zy0nPd7is0wfE26Xsg1PFsdFlvUS/ArbglHZ8DvgEsAn4XZr3xbfj1UC3S1VXJS8UkVa3lUVkBvBbYDlwqUeaPQnbNaZkWPBhTPnRpOftQC9wksf6m2L3m4EjXF6f6rKsDyegSTQp6Xl77P6LwJ9d0uj3yI+XncAwsH+qlVR1QER+AlwkIt8CPgx8V1UH06Qfz+8+AfM1hoiMwwl2tgNnquqQx6oTE7ZrTMmwBqfGmP/D+XfdrKqrXG7x4GMl8DoR2dsGQUQqcNpcJNsAHJm07F1Jz58F1gNHeGz3iSA7Eatq+RtwtojUp1n9JpyeJHcCtcDNPjaxHidIOzBIvpKJiOA08N0PeLeqJleLJZqFc5yMKSlW8mFMmVPV5SJyO06bj+txBiQbxmlceRrwBVV9DqdtwhXAL0Xk/wGv4VRZjHdJ9g7gKhG5EngEp1TlrKTtqoh8CvhNrCfN/+KUBEwFTgReVtXrA+7O54AVwEoR+S5OFcyBQKuq7h2bQ1VfFZHf4rSP+Z2qvpIuYVXtF5FHgeMC5inZF4D34VS1TBeRxDYdL6rqNtgbpByH00bFmJJiJR/GGHC6uS7E6X77G+Au4NPA88TadKhqP7AAp/HpDTjByDrgGpf0vgH8MJbGr4HDgP9IXklV78FpWDoOpwvqH4FvAdNwSloCUdW/4zQ6fQX4b+AenFFC3dqB3Bm7T9e9NtEy4K2xapNMHRq7X4Szj4m3xNKhE3GqeO7IYlvGRJKoJlf/GmOMf7GBsf4HmKWq6wubG/9EZClOoHKgqg77fM94nEDmIlVdkuP8/Rg4UlW92uIYU7Ss2sUYU1ZibVZaccY2+YzfwANAVXeLyDeBz4vIUs3RvzcRmYYzrooNMGZKkgUfxphysxJnRNWfk1l7iuuBSpwGo5vSrJupmcBnVfWBHKVvTEFZtYsxxhhj8soanBpjjDEmryz4MMYYY0xeWfBhjDHGmLyy4MMYY4wxeWXBhzHGGGPyyoIPY4wxxuTV/wcRU2RR5ajQbwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_lags, yerr=freq_lags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Time lag (s)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([-0.05, 0.2])\n", + "plt.plot(avg_cs.freq, time_lag, label=\"Input time lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgsAAAFJCAYAAAAVJ240AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA990lEQVR4nO3deZwcdZ3/8dcn4YgxgRXQkMBOBlQwQmAggmBCZlZFEVjFFWRxcM3P1YAIC4uugkFJwCAKIsEVIXggEgRFdMWFJXhM8AggAeRQ5DAJd4DIFQOEkM/vj6rOdDpVPdU91V1Hv5+PRz+6u85v1dR0fep7mrsjIiIiEmdE1gkQERGRfFOwICIiInUpWBAREZG6FCyIiIhIXQoWREREpK5Nsk5Au5jZbcBrgfuzTouIiEgbvAF40t33GO6GOiZYAF675ZZbbtfT07NdkoUXLYLe3o0/R7nxRnjppeh5UetVtjfUdpOs1+w2AFasgKVLg7RvvjnssAPcc0/9bTe670bS1+ixZO1Pjz4HwJsnbJFxSqItWgQjRsC6dYPTRoyAnXaCcePqrxf1N476PJzrr5F9N7LdNK65Ro5vqH2n8X/e7L6TrDfUtoY6R42mp5FroNFtJ91HEu34PUrjPNfb9pZb3s6zzz6bSlqtU/pZMLOB3t7e3oGBgYTLQ+XUVH+OMmJE/Pyo6ZXtDbXdJOs1u40FC2DmTFi9enDe6NHB93rbbnTfjaSv0WPJ2uEXLgbgiqP2zTgl0cyip0+cCMuW1V8v6m8c9bnZ66/RfTey3TSuuUaOb6h9p/F/3uy+k6w31LaGOkeNpqeRa6DRbSfdRxLt+D1K4zzX23Zvbx+LFi1a5O59w02r6iykoKsr6xQ0btasDQMF2Pi7lNODD2adAhEpGgULKZg7N3gqr1b7PW90w+hcRQxuRSRbChZS0N8P8+cH2bsQvM+fn22ahqIbRmeICmLnzs0mLSJSXKqzELt868pOVWdh+MvmQRHqLFx6aVDktHx5EMTOnRsEt0OtpzoLnVdnYautXmbJkod58cUX118vwAafq0VNb3a9JPOTbDvpPpJIYxuN7KPZ81wxatQott9+ezbddFMg/ToLndQaQqpUbhi1N5Ijj8w2XZKu/v7gZVa/UmMzursH35MEIZJvs2c/zNixY+nu7ubvfzcmTQqm//3vrP9cLWp69bRG1ksyP8m2k+4jiTS20cg+mj3PAO7OypUrefjhh9lhhx1aklYVQ3Sw/v7BG8iyZfqxl2QWLAjely8ffJ85c3C6FNMb3vAiW2+9NRbXjEZyy8zYeuutefHFF1u2DwULGTr11KxTINK4WbM2nrZ6dfR0KY4RI1CgUGCt/tspWMjQ7NlZp0CkcXEtadTCRoZrzJgxqW9z2bJlXHbZZQ2vN316+mmJ093dzTPPPNW2/TVDwYKINCSuJY1a2EgeNRssyIYULIhIQ6KaXqpJpqRpYGCAvr4+Dj30UN70pjfR399PpeVed3c35533GSZPnszee+/N/fcHw/3MmDGDK6+8cv02KrkUJ510Er/5zW/o6enha1/72kb7mT59OgcddBA777wzRx99NOuq+kefNWsWu+++O/vssw8rVqwA4Oqrr+atb30re+yxB+985zvXT1+0aBE9PT309PSwxx578PzzzwNw1llnsddee7HbbrtxaoKy50MOOYQpU6awyy67ML+qDf63v/1tdtppJ/bee2+++MWPc+yxxzZ8XodDrSFEpCH9/UGrmYkTG2uS2SjV6cnOoVf+L1xZNeHKmAWjptdZb9mZByVOw2233cbdd9/NhAkTmDp1Kn/84+/Ya69pAIwZsyV33nknl1xyCSeccAI///nPY7dz5plncvbZZ8cuc/PNN/OnP/2JiRMncsABB3DVVVdx6KGH8sILf2efffZh7ty5fOYzn+Giiy7ilFNOYdq0adx4442YGd/61rf4yle+wle/+lXOPvtsvvGNbzB16lRWrVrFqFGjWLhwIffddx8333wz7s573/tebrjhBqZPnx6b3u985ztstdVWvPDCC+y1116ce+4HePTRlzj99NO59dZbGTt2LHvv/Xa23373xOcyDcpZkJaK+sFXXY1yaHVLGl0nnW3vvfdm++23Z8SIEfT09PDoo8vWz3vXu44A4IgjjmDx4sXD3s+OO+7IyJEjOeKII/jtb38LwKabbsbBBx8MwJQpU1gWXvAPP/ww7373u5k8eTJnnXUWd999NwBTp07lxBNP5LzzzuOZZ55hk002YeHChSxcuJA99tiDPffck3vuuYf77ruvbnrOO++89bkZDz30EA89FAQbvb29bLXVVmy66aa84x2HDeuYm6GcBUnd7NmDP/RRP/hz5uhGIJJnVx56EG95S/D5lltY/7la1PTqaXHrJbX55puv/zxy5EheeWXt+u/VNf8rnzfZZJP1RQjr1q1jzZo1ifZT24pgcHubrv88cuRI1q4N9n/cccdx4okn8t73vpeBgQFmhz9mJ510EgcddBDXXHMNU6dO5brrrsPdOfnkkznqqKMSpWVgYIBf/OIXLF68mNGjR9PX18eaNa1rDtkI5SxI6ubMyToFIlJm119/BQBXXHEF++4b9KDa3d3NkiVLALjhhp/x8ssvAzB27Nj19Qei3HzzzSxdupR169ZxxRVXMG3atLr7fvbZZ9luu+0A+N73vrd++gMPPMDkyZP57Gc/y1577cU999zDu9/9br7zne+watUqAB555BGeeOKJutt+zWtew+jRo7nnnnu48cYbAdhrr71YtGgRTz/9NGvXruVXv/px3TS2goKFFOgpWUSkfZ5//ml222035s2bt77S4sc//nEWLVrE7rvvzp13LubVr341ALvtthsjR45k991336iCIwQ34mOPPZZJkyaxww478P73v7/uvmfPns1hhx3GlClT2GabbdZPP/fcc9l1113Zbbfd2HTTTXnPe97Du971Lj70oQ+x7777MnnyZA499NC6gcsBBxzA2rVrmTRpEieddBL77LMPANtttx2f+9zn2HvvvZk6dSoTJnSz5ZZbNnzehsXdO+IFDPT29npSEP25kWXj1htqe0Ptp5G0Jdl3I+lP4/jSPi9Z+eAFv/cPXvD7rJMRq9nrJMn1EHUtNrrtZuYnWa/ZY42anmRbjfzPNJKmNPadZL2Ka6/90/rPf/iDR36uFjW92fWSzK9Mnzhxol9//ZNNbaPWr3/9az/ooIOGtY3haOR8Pf/88+7u/vLLL/u0aQf7VVddtdGyf/rT4N8Q3Ht7ex0Y8BTuocpZEBERybnZs2fT09PDrrvuynbb7cAhhxzS1v2rgqOIiBTGsmXLuOWWdLbV19dHX19fOhtrsbPPPnv951tuCQaHayflLIhIaak+kUg6FCyISGmpZU5y69axvpdEKZ5W/+0ULIiUzIIF0N0dfO7u1tDRksz9949i5cqVChgKyN1ZuXIlo0aNatk+VGdBpEQWLICZM4MhoyHojnnmzGzTJMUwe/b2/PM/P8yTTz7JU0/Bn/8cTK/+XC1qerPrJZmfZNtJ95FEGttoZB/NnueKUaNGsf3227cmoShYECmVWbMGA4WK2u8iUZ5+elN22GEHAN78ZqhkMFR/rhY1vdn1ksxPsu2k+0gijW00so9mz3O7tL0Ywsymm9nPzOwRM3Mzm9HAum80s+fNbFULkyhSWA8+mHUKRKSMsqizMAa4CzgeeCHpSma2GXA5cEOL0pWIale3l853Y7q6sk6BiJRR24MFd7/G3T/n7lcC64ZcYdCXgTuAH7UmZcmodnV7VIIEne/GzJ0Lo0dvOK32u4hIowrRGsLMDgIOBo5LsOxA1AvoaXEyJUUKEprT3w/z58PEicH3iROD7+2gXCCR8sp9sGBmE4CLgCPdXXUVRIbQ3w/LlgWfly0LvreDAjxppVNPzToF6ShqUJ37YAH4PvBNd78pycLu3hf1Am5vZSJFRKR1inqTrVXUoLoIwcLbgVPNbK2ZrQW+Dbw6/K4W5CJNKsuPr4i0XhGChckE9Q0qry8QtKLoIePKjiLt0KqbelGfcCoU7Ii0Txb9LIwxsx4z6wn33xV+7wrnf8nMfllZ3t3vqn4BjwDrwu9Ptzv9Iu1QfSMs+k29VXReRNoni5yFtwC3ha9XAXPCz6eF88cDr88gXSK5oRuhiORJ27t7dvcBIHYkbnefMcT6FwMXp5kmERERiVeEOgsiIiKSIQULIiJSeKrw2loKFjJQls5FRETyQvV8WkvBQgYUAUseLVgA3d3B5222CV4QTFuwIKtUiUgetL2Co4jkz4IFMHMmrF4dfF+5cnDe8uXBPBHpXMpZKIDqJ77Ku0iaZs0aDBSi1JsnIuWnYCHnKk98y5cH3yvvyhaWND34YNYpEJE8U7CQc3FPfLNmtT8tUl5dXVmnQETqybqum4KFnIt74tOToKRp7lwYPTp+fr15ItJ6Wbf2ULCQc3FPfHoSlDT198P8+TBxYvB9662DFwTT5s/PLm1J1dbtKXpRnZpYS54oWMi5uCe+uXPbnxYpt/5+WLYs+PzUU8ELgmn9/VmlKrnauj1Fb8GRdbazSDUFCzlX+8RXeS/Cj7dIO9XW7VELDpH0KFgogOonvsq7iIhIuyhYEBERkboULIhIKdTW7cm6BYfqHEiZKFgQyQndXIantm5P1i04sm7qJpImBQsiOaGby/DU1u1RJWBJQkF6MgoWRDqA2uyLRFOQnoyCBZEO0O6nJz2tiZSLggXpWLqhtU5RntaU49K4svWUKckoWJCOVZQbWhnk9QajgLExUaPgzpyZn7+ntI6CBWmbvN4w8qos50s3mPKIGgV39WqNgtsJFCy0kLI4B+mG0biynC/dYMpDo+B2LgULLaQszkG6YTSuLOdLN5jy0Ci4navtwYKZTTezn5nZI2bmZjZjiOX7zOx/zOwxM1ttZneY2UfblFxJiW4Y6RjqfOUxQNUNpjyiRsEdPVqj4HaCLHIWxgB3AccDLyRY/m3AncChwK7AN4H5ZvahlqVQgHSLUXTDSMdQ5yuPlTZ1gymPqFFw589XB1idoO3Bgrtf4+6fc/crgXUJlj/D3U9x99+5+1/d/ZvAVcAHWp7YDpfmU6puGI0ry/nSDaZc1FNmZ9ok6wQ0aQvg4agZZjYQs05PqxIjQ6v8oMyaFVTWmzgxuPHphybe/PnlOV/9/cHLrP4w66oULJJPhQsWzOxg4B3A1KzTIo1JesOQQCeerzzWuRCRggULZjYVuAz4D3e/OWoZd++LWXcA6G1Z4kSkIyk3pJz0d91QYZpOmtk04FrgC2G9BZFEivS0WpaOmDpJka4vSU5/1w0VIlgws+kEgcJsdz834+SUWruj6Xb8Q+axhUCcqI6YJJ6CK5H2yKKfhTFm1mNmPeH+u8LvXeH8L5nZL6uW7yMIFC4ALjOzbcPXa9ud9k7Q7mg6ixt5nm8wUR0xxdGTj4IrkXbJImfhLcBt4etVwJzw82nh/PHA66uWnwGMBj4NPFb1+kN7kitlUqZup4uUY9IqjQRXeZfnIFYki34WBtzdIl4zwvkz3L27avkZMct3x+wiVqfUKC+adv5IqttpyaMyBbFSToWos5CWyj+iDE/aN/d2ZiXnsdvp6uKEqI6YpPzaFcQq90Ka1VHBgqQj7SegdmYl57Hb6erihKieDiVeWYKrdgSxyr2Q4VCwIA1rVzZ+5QloKI1U9Mt7t9PqSrcxZQmu2hHEqghOhkPBgqSiFdn4lSegoZ58GqnoFzdOwX33NZdGyVZZgqt2BLF5LIKT9FUXNd14I8CE16WxXQULkorhPAENlXWc9pNP1A2m3S0L1OxRqrVjsK08FsFJumqLml56CeD1O6exbQUL0rC0n4CqfySjlPHJpzY4UaUzaXUuSd6L4GT4ooqaYEQq9/lEGzGz7cxshpldYGY/M7PrzewHZjbbzP7JzBR0dJC0n4CqfySjtPvJp51P/ZXAYDitQbLOpVAN+2LQUOHl18oHK3P3+JlmvcB/Ae8GRhIMC/0k8AKwFdBF0GHSY8BFwDnu/lzrktu8YCCp3l73gYTLQ+XUxH0eatm0VbY9nP0Nlf5G1o9bb6jt1Tu3o0dvHBlfemn9H7RG9pc0HUnOx+EXLgbgiqP2HXrhmH13d8c36U16nps9juGcl+p91/7NKt+buTYa0Ug6m932cP6/0thGM/trdh+NnsNmfwubvS6b3ffs2fUD6lb+Zg+1v0bOV5JlN/496QPAfcCGm+7YHAEz+1+Cbpb/DnwQeJ27d7n7FHef5u5vBrYAeoDzgcOAB8zs3cNNlHSu2icfKM+TT9QPViufBNo1zkeZelGU8umknk6jippg3bo0tl2v+OBeYEd3P9zdf+LuT9Uu4O7r3P0Od5/r7rsA/w5smUbCpDPVlts2K+us+ShRP1qtLGJpxTmoLXIQkfyoLWrafHOAB/6SxrZjgwV3/093f7yRjbn7z9z9h8NPlhRRnsqu8/I0MdQNO6pyWZ47Fqrt1EdE8qX6gWuffQAefSKN7apioqRCvcNFGypoqRSxFKVjoagiBqspDc1zsCPZydPDhDRuk7gZZvZvjWzI3S8ZfnKkqOr1DleGOgdDVZJqxoIFG/chUXkiOPLIdPfVSu5BkLN8efA+d26x0i+tV3mYqPxGVLf6KcPvQyeIDRaAi2u+V+peWsQ0AAULHayovcNV37C7u+PbnM+Zk36wUPvjWUlP0X48J04MghyzYgY7rdauiqZ5VvaHiU5Qrxhih6rXfgTNJi8kaIsxKXyfDzwETGtlIiX/ito7XL0RL2uDg0o2qlnYROmmrRveX3VWbFSWft776Y8qYlCnPvXlsbJtuxX1YUIG1avguLzyIuhr4XJ3P8bdb3D3v4TvnwB+CHymXQmWfCpq73Bxzf66u4PchOqb+4c/vGFgccuC1zccMFQHJ1Hy/uNZ5qat0jpFfZiQQUkrOL4DuD5m3sJwvnSwsvUOV7mhf/Sjg59rO0F5Zc1IbvruGyMra1UHGdtsE7xg6D4I8v7jmVbTVuksRX2YkEFJg4WXgLfEzNsLWJNOcqTIijYC4JYJegRZM+SVbRu1/KhtGbJyZfBKIurHM+0yb9VKl3Yr28NEJ6rb3fP6hczOBz4KfB74EbACGEfQs+NpwLfd/ZMtTOewmdnAxM/+vDfrdIiIiLTL8i8fvMjd+4a7nXqtIap9ChgLfAk4s2q6A5eF80VERKSEEgUL7v4C8GEzOx14KzCeYPCom9z93hamL1XLv3wWSQeSqqaBpKKXbcVAUs0MwhN3TJdeGrQuqG7/H5ftGTeIVSPHtuWW8MwzG3dSFKe6T4Jm/q7V5yhu+7X1CkaMiP+bVXqQb/bv08qBnaIUZSCpZvfdyv110kBSaewvTa0cSKp2vd7ePtLqaLWhHhzd/V53/767fyV8L0ygIJ2n0R4l58+HrSMaN1RuxhMnwve/HwQhtZW1zODZZ2GTTTZcJ0pl3VbX64hqWaFa6SLSjIa7ezaz15lZV+2rFYkTGY64TmDi9PfDmDEbT69E8JWbe6Wy1uitXgR8gyj/lVcG16kEDFtvPRiEtLM756gAQLXSRaQZiYIFMxthZmeY2UqC4oelEa9EzGy6mf3MzB4xMzezGQnWmWxmi8zshXC9L5glzewVGTRUPwZJ+zno74eDz7iN0Vu9FJsdWJn+1FPBC1qXm5A0AFCtdBFpRtKchROATwJfJeju+QzgiwRBwgPAxxvY5xjgLuB44IWhFjazLQj6eFhB0EzzeIJOok5sYJ8yTFn0QteK5n1DZbfHzY9rZrn6b5sPL0EpaSQAKFoTVxHJXtJg4f8RNJH8cvj9J+5+KkG3z48AiYsh3P0ad/+cu18JrEuwSj8wGviIu98Vrvdl4ETlLrRPO4d8rgQGwx3Bspns9rgho7/xjZh9bPVSY4lqEQUAItJKSYOFHYFb3P0VYC3wKgB3fxk4l6APhlbZF/hN2CKj4jpgAtBdu7CZDUS9gJ4WplFSFFWvYKj6BlGayW6PGzI6br3J73swdkhmDdUsImWRNFh4FhgVfn4U2Llq3ibAVmkmqsa2BEUQ1VZUzZM2aVevf2kNOhP1tJ20OCXpU/rEt67cICgZOTKc3saKjCJlUPaeRYt+fEmDhduAN4efrwPmmNkRZnYYQUdNt7Yicc1w976oF3B7xkkrrLhigVZJ2ryvmX++VhSnVIISd1i7NphWCTI0PLHI0Gq7SG+26DGv4o6vSJIGC+cClYZopwKPAwuAK4BNgWNTT9mgxwm6lq42rmqetFhcsUCrxNUbqJ5elB+XuJyM6iAibwFF3tIj5TdrVuNNnYsk7viKJFGw4O7Xu/uF4efHgb2BnQjqAezk7ne0LIWwGNjPzEZVTdufoDhkWQv3K6F2D5ucpN5A2j8uad6849avnl4dRDTa0qQ2RyVtWbR8kc6WVtFjXpXhOIYMFsxsMzP7iZlNr0zzwP3ufkdYyTExMxtjZj1m1hPuvyv83hXO/5KZ/bJqlcsIcjUuNrNdzexfgJOAczzJKFgybFn17lev3kDaPy5RN+9mg4a4m20aN+GoHJXKdJGiKnvPomU4jiGDBXdfA7wzybIJvYWgDsRtBK0q5oSfTwvnjwdeX7X/ZwlyEiYAtwDfIOjv4ZyU0iNDiCsWyFI7flzy+IQdlaNSmS5SVGXvWTTu+OppdQ5io5IGAL8D9kljh+4+4O4W8ZoRzp/h7t0169zp7tPdfZS7j3f3OcpVaJ+4YoEslf3HJS5Xo+zZtdKZyt6zaNzxxcljDmLSYOFTwL+b2bFmtr2ZjQy7gF7/amUis1b2Cl9Jjy9Pnf6U/cclLlej7Nm10rnK3rFYI8eXxxzEpDf5OwmKBuYBy4E1wMtVrzUtSV1O5DE7Ok3tPr60gq+of76it2UeypQp0dmXq1aV71ilOMr+f9duecxB3CThcqcByvaXVLQqOKlk3VUi8qK1ZU4SRF11VTBE9vHHw8qVg9NXrizWsUp5FP3/Lo+6ugaLHmqnZyVRsODus1ucDpFhK3pb5qRBVH9/cKzVwQIU61ilPIr+f5dHc+duGIBVT89KqesaSGfppEp+nXSskm+6FtMXVSerMj0rscGCmZ1Y0xHSkMxsTzM7YPjJEmlcJ1Xy66RjlXzTtdgatXWyslYvZ+HDwFIzO9PMdo9byMxeY2YfNrOFwG+BLdJOpORfHiqBNtOWuajy0vdF2VsKydA66f+uk9ULFvYEPgu8B7jNzJ4xs9+Y2VVm9gMz+z8zuxd4CrgQeAR4s7v/sPXJlrxpdICmVtSebrQtc5Hlpe+LPASJkq1O+r/rZJakbyMzeytwAPBWgp4URwErgXuAG4D/cfdnWpfM4TOzAejtdR8Y5naC0QXjpkXNT0tl28PZX7PpG2rfjaSptvY0BE8iq1dvvI3qbc2eHX1zauRvkubf5/ALFwNwxVH7prPBBKKOpdnjS7JsI+cxjWujEa3cX9S5HU6amtl3K/eXxv9Ms7+FQ6Wz0euy2fQ3sr80NXueG/1bm0Fvbx+LFi1aFI68PCxJW0PcBNw03J2JQPO1p+fM0ZOsDF9c0Cki8dQaQtpOtaclS40WmYmIgoWOkLenqCxqT6uHORGR5ilYKLgktdHz9iSVRu3pRgOg2kFZZs5UwCDpUTAqZadgoeDylmuQRBq1pxsNgKLqSGhYZ0lD1AiB6u5YykbBgmQiDyPMqe6EpEHdHUsnULAgpdJITot6npM0KOiUTpAoWDCzrjqv7c1sbKsTKpJEXPFEVB2JLAdl6XRFLD6Lo6BTOkHSnIVlwNKY13LgGTO7z8w+3opEigzHqadG15HIclCWomhVd86trnTbzgqH6u5YOkGiTpmAo4HPAc8APwZWANsCHwC2BM4HpgMXmNnL7n5x6ikVaVLlKba/P+jVLA+DshRFUXMAqnsIra5w2IoAsbLNWbOCfU2cGAQQRx6Z/r5EspI0Z2En4BZ373H30919vruf5u67A0uAbd39YOAy4PhWJVY6hwYoak6S81bUAKAR7W79kocKu51ATVSzkzRYOBL4Vsy8bwGVf40fATsPN1EinXBDa4Uk5y1v/W60iyoiFltcE1UFDO2RNFgYC2wTM++1wJjw83PAK8NNlIhI2lQRsdjimqgef7xyG9ohabCwCDjDzKZUTzSztwBzgV+Hk94IKH4XkUyp9Uv5xOUMrVypDrHaIWmw8EngZeBmM1tqZjeZ2VKCkShfAo4LlxsDfCP9ZIqIJKPWL+WUNGeoCB1iFbHuRaJgwd2XAm8CPgH8ClgZvh8NTArn4+5fc/fzh9qemR0TBh0vmtkSM9tviOU/ZGa3m9lqM3vczC41s22TpF1EOsvs2apw2A7troQc1US1qIrYPXjSppO4+8vA/PDVNDM7HJgHHAP8Nny/1sze7O4bZTSZ2VTg+8CngZ8C4wiaai4A3jGctIiISHPaXQk5qonqqlVBMUTRFLF78Cy6ez4RuNjdL3L3P7v7ccBjBLkWUfYFHg5zLZa6+43A14G3tim9paImiSJSVLU5RvPmlbNDrDy2BkscLJjZu8zsJ2b2JzP7a83rgYTb2AyYAiysmbUQeFvMar8DxpvZP1tgG+BfgWti9jEQ9QJ6kqSx7PJ4EQ5XJwRARSjj7IS/g+RLGiPY5lEemzcnHRviQOBaYDRB3YV7CFo9/COwDrgh4f62AUYS9ABZrdIj5EbcfTFBcLAAWAM8CRjwkYT7lJIrYwBUrShDIJf975BUEQK7Mili/ZQi5oYkzVn4PEErhwPD76e4ex+wC8HN/9r0kxYwszcTFDucTpArcQBBYHFh1PLu3hf1Am5vVRpFWklDIBeLOg6SoRQxNyRpsPAm4GqCXAQnrBjp7vcCswmCiSSeIui0aVzN9HHA4zHrnAzc7O5nufsd7n4dQaXID5vZ9gn3K1JY6nmwWNrd1bQUTxFzQ5IGC+uAte7uBMUA1S1eHwVen2Qj7r6GYCyJ/Wtm7Q/8Pma10WzcK2TlexYVNEXaSj0PFp8CPim6pDfbvwDd4edbgBPMbLyZvRb4FMEQ1kmdA8wws4+Z2SQzmwdMAC4AMLNLzOySquWvBt5nZp8wsx3DppTnAbdGNbUUgXJVttMQyMWngE+KLmmwsACYFH4+laCuwsMERQdvB76QdIfufgVwAnAKQT2CacCB7h6W8tFFVc5FONz1icCxwF3AlcC9wPuS7lM6T5kq25W1xndZqatpKaOkPTh+w90/E35eAkwGjgL+E+hx9ysb2am7n+/u3e6+ubtPcfcbquZVKiRWL/91d9/F3Ue7+3h373f3hxvZp0iRFaWMUy0B1NW0lFPiHhyrhTfquCGrRaQN8lbUUmniWangl9cmnq3W3x+8zAYDPJGiUwVB6Sh5u8EOR6WoJS/HpCaeIuUVm7NgZpVmkkm4uzeVSyHSTmWqy1CRl2NSjX+R8qp3gz+N5MGCiHS4rq7BzoikMbNn5yfoE4kSGyy4++w2pkMSyEt2s0iUuXM3rLMAQUsAFUUMbc4cBQuSb6qz0CZp/BDoxySeauFnT008RcpLwUKb5HEUsbKIG2hJAUP7FaWJp4g0RsGCFF5cLXz1xy8ikg4FC1IoUcUNcbXwVTtfRCQdChakUKKKG7baKnpZ9ccvkg+qb1V8ChakUOI6/VF//CL5pTpbxZc4WDCzPczsKjN7yszWmtme4fQzzOyA1iVRpL6//U398Q9XK5781EJFpDwSBQtmNg1YDLwJuKxmvXXA0eknTSSZri7Vwm9Gdb8drXjyiyoyEpFiSpqzcCZwHcHQ1CfWzLsV2DPNRInEUXFDelpdjqxxIkTKI2mwsCfwTXd3Nu4C+ingtammSoYtywpFrexpUsUNIiLtlzRYeBEYHTNvPPBsOsnJVplq7GZZoaiV51HFDSIi7Zc0WPgtcIKZjayaVslh+HfgV6mmKiOqsSuSnqgiIxEppqTBwucJiiL+GH524CNm9mtgH0C32YIpUy6K5JPGiRApj0TBgrv/EZgOrABmAQYcG87udfe/tCZ50irKRZFWU5GRSHnEDlFdy91vBd5hZqOArYBn3F31m0WkdDQcvMiGGu7B0d1fdPdHgVFmNsXMNm9BukREMqNiOpENJe2U6RQz+1LV9+nAMuBm4D4ze2Nrkid5pqcvEZHOkDRn4Ujgr1Xfv0xQ2fEQgnoMp6ebLCkCPX2JiHSGpMHCdsB9AGb2WmBv4PPufjVB7477tSZ5UnbKnWjMcM6XxmoQkWYlDRZeATYLP08n6KTpd+H3JwkqPCZmZseY2VIze9HMlphZ3WDDzDYzs9PCdV4yswfN7D8a2ae0xnBvQMqdaEyz52vBguixGhQwiEgSSYOFu4EjzWwM8FFgkbu/HM77R+CJpDs0s8OBecAZwB7A74FrzayrzmqXAwcAM4GdgcOAO5Lus2iKcgPVDag4Zs2KHqth1qxs0iMixZI0WDgN+CBBt87vIKizUHEgwWBSSZ0IXOzuF7n7n939OOAx4BNRC5vZu8J9Huju17v7Mne/yd0HYpYfiHoBPQ2kMVNF6QNBN6DiePDBxqaLlJ2K5RqTtFOm64BJBAHDLu6+qGr2DWwYPMQys82AKcDCmlkLgbfFrHYI8AfgRDN72MzuM7PzwlwOyZBuQMXRFZNvFzddpMyUK9q4xP0suPtSd/+xuz9QM/1Cd78x4Wa2AUYStKCotgLYNmadHYFpwO7ABwh6jjwAuDgmnX1RL+D2hGmUhHQDKo65czW8t0iFckUbl7gHRwAzew3wRmBU7Tx3vyGtRNUYQTAWxYfc/dkwHccC15nZOHevDTykTebODaLx6n+6tG9Aai2RjkpXy7NmBU9REycGfyd1wSydSLmijUsULIRdPH+HoBjCYhYbGTO92lMELSvG1UwfBzwes85jwCOVQCH05/C9i41zKaRN2nEDKkplzyLo7w9eZoNjNoh0oq6uwSKI2ukSrZFRJ/uAjzA4iNTHCIaufgA4OMlG3H0NsATYv2bW/gStIqL8DphQU0dhp/A94s8taaqtBFRLgwWJSNGoWK5xSYOFDxC0iLg8/H6Tu3/X3XsJenI8oIF9ngPMMLOPmdkkM5sHTAAuADCzS8zskqrlLwNWAt81s13MbCpB08sr3T1xk01pXFQloMp0kU6gYrBy6u+PHkJdDzvxkgYLXcDd7v4K8DLw6qp53wEOT7pDd78COAE4haDS4TSCZpGVXIKu8FVZfhXwTmBLglYRPwQWEfT3IC0UVQmoMl2kE6gYrLyyyhUtagCatILjSqBSDPAQQcuE34TftwFe1chO3f184PyYeX0R0/4CvKuRfWSlqBdCFFUCEhFJV1ED0KQ5CzcS9LYI8GPgdDM72cz+CziLoO6CUNwLIUpemkaq85TyaFUwXaYgXSSPkgYLXwbuCT9/EfgVQR2GLxOMRhnZ+6IUW1QloMr0donrPCWObhr51qpgukxBupRHma7LpD043uLuV4Wfn3f3DxAUS/yDu7/N3ZUxXUJRlYAq09slrvOUOGX655R0KYdK2q0oXfcnkbgHx1ru/pK7P5dmYiR/aisBtZvqR0ga1L2vyPAk7sHRzLYgGDSqi417cHR3Pz3NhIlAfOcpIo2o171vpzSXmz1bOW/SvKQ9OE4Frgb+IWYRBxQsSOriupSuVxQhUkste4IscQUL0qykxRDnAsuAvYBR7j6i5pWkq+dCU3lnNuI6TxFpRF5a9ogUVdJgYRJwirsvCbts7igq78yWupSW4VL3viLDkzRYeBDYvJUJyTMNZypSbOreV2R4kgYLc4CTwkqOHUflnSLFpxyq8lEdjPaJreBYM5gTBMNILzWzxcDfaua5u38k7cTlhYYzFRHJH1XabJ96rSGmE7RyqHDgOWCXiGU9YlppxNXIV3lndtRTo4hI+8QGC+7e3cZ05Folu3LWrCCHYeLEIFBQNmZ29DQhImWwYMFg/bfu7vw+hCbtZ2EbYJW7v9ji9ORWf3/wMsumJ0MRESmf6lzroca+yVJsBUczG2lms83saWAF8JyZ/djM/qFtqRMRkVJREeKGGhn7Jkv1chaOBr4ADAB/AHYE3k9Qb+H/tTxlIiJSOipCLKZ6TSc/Dlzk7m9398+6+2HAJ4EjzWyz9iRPqqkXSRERyUK9YGFH4Ec1064ARgITW5YiiaReJEUCCpqlTKJ6Fs2jesHCGIIih2rPh+9jW5MciaNeJEUUNEv5FGXsm6F6cNzOzHasvAhyGzaaHs6TFuqEXiRV8ak4svpbKWiWsilKz6JDNZ28Mmb6TyOmlX7kySx1Qi+SqvhUHFn9rTohaBbJo3rBglo85Ih6kRTpjKBZJI9iiyHc/XuNvNqZ6CJJqzJWM6PmqSKYlI2GmhbJRtJRJ1NlZseY2VIze9HMlpjZfgnXm2Zma83srlanMQ1pV8ZqtGxLFcGkbDTUtEgyadcranuwYGaHA/OAM4A9gN8D15pZ3YxEM3sNcAnwy5YnMiVZV8ZSRTApo6JUCBPJUtr1irLIWTgRuNjdL3L3P7v7ccBjwCeGWO/bwPeAxa1OYFryWBlLFcFERKRRiQaSSkvY8+MU4OyaWQuBt9VZ7xhgHPBF4PND7GMgZlZP0nSmJY+VsVQRTEREGtXunIVtCJpYrqiZvgLYNmoFM5sMnAoc6e6vtDZ56cq6MpYqgomISBoyqeCYlJltTtDF9KfdfWmSddy9L+oF3N7CpEbKujKWKoKJiEga2loMATwFvEJQpFBtHPB4xPLjgUnAd83su+G0EYCZ2VrgQHdf2KrEpqG/P3iZDVbK6oR9i4hIebQ1Z8Hd1wBLgP1rZu1P0Cqi1iPAZIL6BpXXBcD94eeodUREpMOpn5l0ZVEMcQ4ww8w+ZmaTzGweMIEgCMDMLjGzSwDc/WV3v6v6BTwBvBR+X5VB+kVEJOfS7GdGXdFnECy4+xXACcApBPUIphEUJ1TaDXSFLykR/bOJSDul2c/MnDnDT0/RZVLB0d3Pd/dud9/c3ae4+w1V8yoVEuPWne3uu7YloZIa/bOJSNaG289MJz/05Lo1hIikT0OBS6cabj8znfzQo2BBpMN08tORdA71M5MuBQsiIlI66mcmXe3uZ0FERKTl1M9MupSzICIiInUpWBAREZG6FCyIiBSMeieUdlOdBRGRAlmwIOiNsNLpUKV3QpFWUs6CiEiBzJoV3TuhSCspWBARKZDh9kIo0gwFCyLSUuoxMl3D7YVQii+L/ykFCyLSUuoxMl1z50b3TphHqojZGln8TylYEBEpkP7+6N4J8yjNYaKHohys1lKw0GFaFenrH1VkQ638n+jvH+yVcNmy/HZjnOYw0UNRDlZrqelkB6nX5Gq4Pzb6RxXZkP4noqmCZjEpZ6GDxDW5alWkLyJSSxU0i0nBQgeJi+gV6YtIK2iY6PJQsNBB4iJ6RfoinaVddYw0THR5KFjoIHFNrhTpi3SWdtWnKEpFTBmagoUOEtfkSv/AIiJSj4KFDqNIX2T40noyV6dFxdVprV0ULIiINGjOnOFvo9KUubbTIimGNK6BIlGwICKpy0snXXlJRxSNHilFomBBpIO1Khs8L1m0eUlHFDVZliLJJFgws2PMbKmZvWhmS8xsvzrL/ouZLTSzJ83seTO7ycze2870ipRRXDa4ys3bQ02WpUjaHiyY2eHAPOAMYA/g98C1Zhb3r9ML/Ao4KFz+GuAn9QIMERmaevTMVpFGjxTJImfhROBid7/I3f/s7scBjwGfiFrY3Y939zPd/WZ3v9/d5wBLgEPal2SR8lGPntkq0uiRIm0dSMrMNgOmAGfXzFoIvK2BTY0Fno7Zx0DMOj0NbF+k9Lq6BosgaqdLe/T3By+zwSbNRx6ZaZJEIrU7Z2EbYCSwomb6CmDbJBsws08C2wPfTzdpIp1FPXqKSFKFag1hZh8AzgI+5O4Rz0Tg7n1RL+D2NiZVJPfUo2c5qGMnaYe2FkMATwGvAONqpo8DHq+3opkdClwC/Ju7X92a5Il0lqhscCmWmTMHK6pWd+ykoE/S1NacBXdfQ1A5cf+aWfsTtIqIZGYfJCh2mOHuV7YuhSIixaIWLdIO7c5ZADgH+L6Z3Qz8DjgamABcAGBmlwC4+7+F3/+VIFD4NHCDmVXqNqxx97+1Oe0iIrmnFi2StrbXWXD3K4ATgFMI6hFMAw6sqoPQFb4qjiYIas4laGJZeV3VlgS3kcoeRSQNatEiacsiZwF3Px84P2ZeX73vZVXpTU9lj/Hy3M+/SFZGj96wKEItWqQVCtUaoszUm97Q8tzPv0hW1KJF2iGTnAXZmHrTE5FmqEWLtINyFnIiroxRZY8i6VJxlkjjFCzkhHrTE2kPFWeJNE7BQk6oNz0REckrBQvk50mjv3+wzHHZsnwGCsrCFRHpPAoWgDlzsk5BceQlsBIRkfZRsCAiIiJ1KVgQERGRuhQsiIiISF0KFiQRVWwUEelcChbapOg3W1VsFBHpXAoW2kQ3WxERKSoFCyIikhtFz4UtKwULIiI510k5k510rEWiYEFEJOfUcZxkTcHCMCxYAN3dwefu7uC7iIhI2WySdQKKasECmDkTVq8Ovi9fHnyHfI7pICIi0izlLDRp1qzBQKFi9epguoiISJkoWGjSgw82Nl1ERKSoFCw0qaursekiIiJFpWChSXPnwujRG04bPTqYLiIiUiYKFprU3w/z58PEicH3iROD76rcKCIiZZNJsGBmx5jZUjN70cyWmNl+QyzfGy73opn91cyOblda6+nvh2XLgs/LlilQEBGRcmp7sGBmhwPzgDOAPYDfA9eaWWRpv5ntAFwTLrcH8CXg62b2gfakWEREJBt56f46i5yFE4GL3f0id/+zux8HPAZ8Imb5o4FH3f24cPmLgO8Bn25TekVERDKRl+6v29opk5ltBkwBzq6ZtRB4W8xq+4bzq10HfMTMNnX3l2v2MRC/ndvp6+sD4LHHHuPee+8NZ/VitqjqHXp7e9evuGTJElatWlWzbGD8+PHATvT1wfPPP8+tt94as3vYc889GTt2LAD33nsvjz32WMySvYTJBGDRokUbza+kYaeddgrTEHdMg5+rjwnY4DiqjR8/np122glo5zENij+miK3G/p021IpjGjX+DYwdM5a+H2xRgmMKrpExY8YwZcqU9VM3PKYNr/3hHBNMibz+Gjmm6muq3t+p/jFtKPkxbXg9D/6dejc6rmTHFKy35557AmPp66s9pg23W31MfX2VY9p437XHtPPOyY9p7Nhmjmnj3534Y9pQI3+n6rRGH9OG6agsG/3/FCxb/++04T0i6TE18lteu+zGf8sk96cNbbbZZgBviElcQ8zd09hOsp2ZTQAeAXrd/Yaq6V8A+t1954h17gUudffTqqZNBxYBE9z9sZrlB2J2Pw14BVg83OMouZ7w/fYM01AUPeH77RmmoQh6wvfbM0xDUfSE77dnmIYi6Anfb88wDUWwL7DG3ccOd0Ol6+7Z3fuipleCiLj5EtB5Sk7nKhmdp+R0rpLReUqmzsNzw9pdZ+Epgqf7cTXTxwGPx6zzeMzya8PtiYiISAu1NVhw9zXAEmD/mln7E7R2iLI4ZvlbausriIiISPqyaA1xDjDDzD5mZpPMbB4wAbgAwMwuMbNLqpa/ANjOzM4Nl/8YMIONK0mKiIhIC7S9zoK7X2FmWwOnAOOBu4AD3X15uEhXzfJLzexA4GsEzSsfBf7D3X/cxmSLiIh0rEwqOLr7+cD5MfP6IqYtAvZscbJEREQkQlubToqIiEjxaCApERERqUvBgoiIiNSlYEFERETqUrAgIiIidZUiWDCzk83sD2b2nJk9aWZXm9muCdabbGaLzOwFM3vEzL5gZtaONGehmfNkZt1m5hGvA9qV7iyY2SfN7I7wXD1nZovN7KAh1umo6wkaP0+dej3VCv8X3cz+e4jlOu6aqpbkPHXqNWVmsyOOOa4n5Mo6TV9PZRkboo+gKeYfAANOA35hZm92979FrWBmWwDXAzcAewFvAr4L/B34ahvSnIU+GjxPVQ4A/lj1fajli+5h4LPAfQRB9UeAn5rZFHe/o3bhDr2eoMHzVKXTrqf1zGwfYCZQ7/x08jUFJD9PVTrxmvoLwe96xStxCw77enL30r2AMeFJ++c6y3wCeA54VdW0UwhGxbSsjyFH56kbcOAtWac36xfBj89RMfM6/npKeJ46+noCtgQeAP4JGAD+u86yHXtNNXieOvKaAmYDdzWw/LCup1IUQ0QYS/CU83SdZfYFfuPuL1RNu46g6+nu1iUtV5Kcp4qrzOwJM/udmR3a4nTlipmNNLN/JQiu4sYw6fjrKeF5qujU62k+cKW7/zrBsp18TTVynio68Zra0cweNbOlZna5me1YZ9lhXU9lDRbmEYxzvrjOMtsCK2qmraia1wmSnKdVwKeBDwIHAr8ErjCzI1ueuoyF5XurgJcIxih5v7vfGbN4x15PDZ6nTr6ePg68geBpLomOvKaaOE+dek3dRDBO0gHAxwmuid+HwylEGdb1VJY6C+uZ2TnANGCau8eW33S6pOfJ3Z9iw/KsW8xsG+AzwKWtTWXm/gL0EGSJHgp8z8z63P2uTFOVP4nPU6deT2a2M3AGwf+bRsuN0cx56tRryt2vrf5uZjcCfyWoN3RO2vsrVc6CmX0NOAJ4u7v/dYjFHwfG1UwbVzWvtBo8T1FuAt6Ybqryx93XuPv97r7E3U8myIX5z5jFO/Z6avA8RemE62lfYBvgbjNba2ZrgV7gmPD75hHrdOI11cx5itIJ19QG3H0VcDfxxz2s66k0wYIFQ11XboD3JFhlMbCfmY2qmrY/waiWy9JPYT40cZ6i9ACPpZao4hgBxP1YdeT1FKPeeYrSQ/mvp58CkwmOtfK6Bbg8/LwmYp1OvKZ+SuPnKUoP5b+mNhBeJ28i/riHdz1lXaMzpVqh3yCo5fl2grKXymtM1TJfAn5Z9X1LgmjqcmBX4F/CbXwq6+PJ2Xn6CPAhYBKwM0HZ4BrgP7M+nhafqzOB/Qgq/kwOz8s64D26noZ1njryeoo5dwNU1fLXNdX0eerIawo4myDXZQfgrcDPw+tjYiuup7LUWTgmfP9lzfQ5BM1LAMYDr6/McPdnzWx/ghvoLQQtAr5KC8p6cqTh8xQ6BZhI0MzyXuCj7l7assDQtgTlndsCzxK09X6Pu18Xztf1FGjoPIU68XpKQtdUMrqmAtsDPyAotnkSuBHYx92Xh/NTvZ40RLWIiIjUVZo6CyIiItIaChZERESkLgULIiIiUpeCBREREalLwYKIiIjUpWBBRERE6lKwIJIBM5thZh7zemfW6SsLM5tiZqvNbLuqaQNm9tuY5T8W/g26G9jHIWa2wszGpJBkkVxSsCCSrcMI+sOvft2caYrK5SzgO+7+SAv38T8EXez+Vwv3IZKpsvTgKFJUt7v7/UkWNLPN3f2lVieoLMxsCvBPwHGt3I+7u5nNB043sy+5+4ut3J9IFpSzIJJDVcUU083sR2b2DMFIepjZJmZ2spndY2YvmdmjZvbVmgFiMLMdzex/w2z4J81snpkdVZvNHn6fXbNudzh9Rs30XjP7pZk9b2Z/N7PrzGzXmmUGzOy3ZvZOM7s13P9dZvb+iOPc3cx+YmYrzewFM/uLmZ0czvt6mL2/ac06Y8P9nznEafwYcIe73z3EcrHMbHad4qIZVYv+EPgHgv72RUpHwYJItkaGN//Ka2TN/AXAUuBQ4KRw2qUEfeFfBhxEMGDMv4fLAmBmmwHXA3sAnwRmEAw4c0qzCTWzgwjGFVkFHEkweM9Y4Ddm9o81i78emEfQ7/y/EGTT/8jM3lC1vb0JRsJ7PcGQ1geFy28fLvJN4HVAbZDxIeDVwIVDJPkA4Dd1jmeT2hcb/yZ+i42LiX7M4BgEALj7U8Cfw32KlI6KIUSyVTtM+O+AaVXfr3T3z1S+mNl+wOHAR9z9knDyL8zsb8ClZtbj7rcTjMS3I7Cvu98YrnstcOcw0joPWOTu76tKz6+BvwKfAk6oWnYbYLq73xcudytBwPBB4IxwmbOBlQSD36wOp/2qsgF3/5OZLQKOInhyrzgKWOjuS+MSambjCEbC/GPMIlOBl+scayUNDwMPV233MILg5wR3/33N4rcB+wy1TZEiUrAgkq33U3UzAp6vmf+Tmu8HEAy/e2X4JFyxMHyfDtxO8AT8UCVQAHD3dWb2QwZHGE3MzN5IkANwRs1+VxPkDkyvWeW+SqAQ7vsJM3sC6Aq3N5rghn1WVaAQ5XzgcjN7o7vfZ2Z7EeSWDJXdPyF8fzJm/h8JiilqvY+Y3BczewvwPeB8dz8vYpEnq/YrUioKFkSyddcQFRwfq/n+OmAz4O8xy28dvo8HVkTMj5qWxOvC92+Hr1oP1nz/W8QyLwGVehWvIcjyfzhiuWo/AR4nyE34NHA08Chw9RDrVfYTVyF0lbvfUjvRzHqiFjaz7YGfAQPA8THbfKFqvyKlomBBJN9qx5BfCbwI7Bez/KPh+2PALhHzx0VMe4kgAKm2dc33leH7ycAvIraxJiY9cZ4G1gHb1VvI3V82s28Bx5jZV4B/Bb7q7muH2H4lva9pMF0bMbNXEwQnTwGHu/srMYtuVbVfkVJRBUeRYvk/gqfXLd39lohXJVhYDPyjma0vQzezEQR1BmotB3atmXZQzfe/AMuAXWL2e0cjBxEWPfwWONLMXjXE4hcStDT4EbA5cFGCXSwjCKp2bCRdtczMCCqUjgcOdvfaYqJqOxCcJ5HSUc6CSIG4+4CZ/YCgzsI5BB04rSOozHcg8Fl3v5egbP0k4Coz+xzwBEEW/hYRm70cOMXMZgE3EuRaHFGzXzezTwL/E7a0+CHBk/Y44G3Ag+5+ToOH82lgEbDYzL5KUCSxI9Dj7uv7RnD3R8zsZwT1O65294eG2rC7rzGzm4C9G0xTrc8ChxAUPUwws+o6CQ+4+5OwPqjYm6COhUjpKGdBpHiOJKikeChB74FXAscC9xHWSXD3NcD+BJUdzycIHpYCX4zY3peA/w638VNgEvDh2oXc/RqCioyvJmhSeB3wFWBbgpyMhrj7HwgqOT4EfB24hqAXxKh6DD8K34dqLlntCuDtYTFCs94Uvs8jOMbqV3Xuy9sIijwuH8a+RHLL3GuLREWkrMKOhL4L7ODuy7JNTXJmtoAgsNjR3dclXGcLgsDjGHe/tMXp+yawq7vH1SURKTQVQ4hIboV1LnoI+pY4MWmgAODuz5nZl4HPmNkCb9GTkZltS9CvhTpkktJSsCAiebaYoMfI79FcfYBzgJEEFRQfHWLZZnUDn3L3G1q0fZHMqRhCRERE6lIFRxEREalLwYKIiIjUpWBBRERE6lKwICIiInUpWBAREZG6FCyIiIhIXf8ff2PCRPKbFt0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, freq_plags, yerr=freq_plags_err,fmt=\"o\", lw=1, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Phase lag (rad)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "# plt.semilogx()\n", + "plt.axvline(frequency)\n", + "plt.xlim([2, 5])\n", + "plt.ylim([0, np.pi/ 2])\n", + "plt.axhline(phase_lag, label=\"Input phase lag\", lw=2, zorder=10)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Energy-dependent lags\n", + "\n", + "The lag vs energy spectrum can be calculated using the `LagEnergySpectrum` from `stingray.varenergy`. Refer to the Spectral Timing documentation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Coherence\n", + "Coherence is a Fourier-frequency-dependent measure of the linear correlation between time series measured simultaneously in two energy channels. \n", + "See *Vaughan and Nowak 1997, ApJ, 474, L43* and *Uttley et al. 2014, A&ARev, 22, 72* section 2.1.3. " + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 14681.05it/s]\n" + ] + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "long_signal_1 = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "long_signal_2 = 200 * np.sin(2.*np.pi*long_times/0.5 + np.pi/4) + 900\n", + "\n", + "long_noisy_1 = np.random.poisson(long_signal_1*dt)\n", + "long_noisy_2 = np.random.poisson(long_signal_2*dt)\n", + "\n", + "long_lc1 = Lightcurve(long_times, long_noisy_1)\n", + "long_lc2 = Lightcurve(long_times, long_noisy_2)\n", + "\n", + "avg_cs = AveragedCrossspectrum.from_lightcurve(long_lc1, long_lc2, 8.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `coherence` method returns two `np.ndarray`s, of the coherence and uncertainty." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "coh, err_coh = avg_cs.coherence()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The coherence and uncertainty have the same length as the positive Fourier frequencies." + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "True\n" + ] + } + ], + "source": [ + "print(len(coh) == len(avg_cs.freq))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "And we can plot the coherence vs the frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgAAAAFJCAYAAADtx5XDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAtJ0lEQVR4nO3deZgcZbn+8e+dDWSLmEggQNgEZdNBEUGBRCDqARcUPAgqcPlT2QQVOEfA5SBwWA4QiEBAUdkEQTiHTUEQMWHfCZuskrCGkLCTPTPP74+3mu7pdE9Pz3RPz0zdn+vqq6ur3qp6qten36cWRQRmZmaWL0NaHYCZmZn1PScAZmZmOeQEwMzMLIecAJiZmeWQEwAzM7McGtbqAPqKpAeBDwLPtDoWMzOzPvAhYE5EbFFpYm4SAOCDI0eOXLOtrW3NVgdiZmbWbNOnT+ett96qOj1PCcAzbW1ta06dOrXVcZiZmTXdhAkTmDZtWtVeb+8DYGZmlkNOAMzMzHKozxMASdtLukbSS5JC0r7dmGdzSdMkLcjm+4Uk9UG4ZmZmg1IregBWAh4FfggsqNVY0irA34DZwCez+f4DOLSJMZqZmQ1qfb4TYERcB1wHIOn8bszyTWAFYJ+IWAA8KukjwKGSJoWvZmRmZla3gXAUwDbArdmPf8ENwLHAusCM0saSplZZTlsTYjMzMxuQBsJOgKuTuv9LzS6ZZmZmZnUaCD0AdYmICZXGZz0D4/s0GDMzs35qIPQAvAKMKRs3pmSamZmZ1WkgJAB3AttJWr5k3ETgZWBmSyIaBB55BL7zHZg1q9WRmJlZK7TiPAArSWqT1Jatf1z2eFw2/QRJfy+Z5RJgPnC+pM0kfQ04AvARAL3w0Y/CeefBlVe2OhIzM2uFVvQAbAk8mN3eB/wyGz4mm74GsEGhcUS8RfrHPxa4DzgLOBWY1HchDz777ZfuFy1qbRxmZtYarTgPwFSg6ln8ImLfCuMeAbZvXlT5097e+d7MzPJlIOwDYE2wdGnnezMzyxcnADnlHgAzs3xzApBTTgDMzPLNCUBOuQRgZpZvTgByyj0AZmb55gQgp5wAmJnlmxOAnHIJwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUewDMzPLNCUBOOQEwM8s3JwA55RKAmVm+OQHIKfcAmJnlmxOAnHICYGaWb04AcsolADOzfHMCkFPuATAzyzcnADnlBMDMLN+cAOSUSwBmZvnmBCCn3ANgZpZvTgByygmAmVm+OQHIKZcAzMzyzQlATrkHwMws35wA5JR7AMzM8s0JQE65B8DMLN+cAOSUEwAzs3xzApBTLgGYmeWbE4Cccg+AmVm+OQHIKScAZmb55gQgp1wCMDPLNycAORQBHR1p2D0AZmb55AQghwo//uAEwMwsr5wA5FBpt79LAGZm+eQEIIdK//W7B8DMLJ+cAOSQEwAzM3MCkEMuAZiZmROAHHIPgJmZOQHIIfcAmJmZE4Accg+AmZk5AcghJwBmZtaSBEDSgZJmSFoo6X5J29Vov5ek6ZLmS3pF0h8krd5X8Q42LgGYmVmfJwCS9gAmA8cDWwB3ANdLGlel/WeAi4ALgE2BXYFNgIv7It7ByD0AZmbWih6AQ4HzI+LciHg8Ig4GZgEHVGm/DfBiRJwWETMi4i7gDOBTfRTvoFP6o196XQAzM8uPYX25MkkjgE8Ap5RNuhH4dJXZbgeOl/Ql4M/AKOAbwHVV1jG1ynLa6gx30Crv9m9vhyHeG8TMLFf6+mt/NDAUmF02fjZQsaYfEXeSfvAvBhYDcwAB+zQvzMGtvNvfZQAzs/zp0x6AnpC0CanL/1jgBmAN4GTg18De5e0jYkKV5UwFxjcrzoHECYCZmfV1AjAXaAfGlI0fA7xSZZ4jgXsi4uTs8cOS5gG3SjoqIl5sTqiDV3kJwEcCmJnlT5+WACJiMXA/MLFs0kTS0QCVrEBKGkoVHrty3QPuATAzs1aUACYBF0m6h7SD3/7AWOAcAEkXAkREoXv/WuBcSQdQLAGcDjwQEc/3beiDg3sAzMyszxOAiLhM0ijgZ6Qf80eBnSPiuazJuLL250taGfgBcCrwFnAz8JO+i3pwcQ+AmZm1ZCfAiJgCTKkybUKFcWeQdgS0BnACYGZmrqHnkEsAZmbmBCCH3ANgZmZOAHLICYCZmTkByCGXAMzMzAlADrkHwMzMnADkkBMAMzNzApBDLgGYmZkTgBxyD4CZmTkByCEnAGZm5gQgh1wCMDMzJwA55B4AMzNzApBD7gEwMzMnADnkHgAzM3MCkENOAMzMzAlADrkEYGZmTgByyD0AZmbmBCCHnACYmZkTgBxyCcDMzJwA5JB7AMzMzAlADjkBMDMzJwA55BKAmZk5Acgh9wCYmZkTgBxyAmBmZk4AcsglADMzcwKQQ4V//MOHd35sZmb54QQghwr/+JdbrvNjMzPLDycAOVT4x19IANwDYGaWP04Acqjwgz9iROfHZmaWH04AcsglADMzcwKQQy4BmJlZ3QmApCGSNpM0XtKKzQjKmssJgJmZ1ZUASDoIeAV4CLgZ+HA2/ipJhzQ+PGsGlwDMzKzbCYCk7wGTgauAPQCVTL4V2K2hkVnTeCdAMzOrpwfgUODUiPg+cGXZtCfIegOs/3MJwMzM6kkA1gNuqDJtHvD+XkdjfcIlADMzqycBmAusW2Xah4GXeh2N9QmXAMzMrJ4E4M/ALyStXzIuJI0GfkzaN8AGAJcAzMysngTgZ8Ai4FHgJiCAXwGPA+3AMQ2PzprCJQAzM+t2AhARc4EtgROA4cC/gGHAmcA2EfFWUyK0hnMJwMzM6joPQES8ExHHRsS2EbFRRGwTEb+MiLfrWY6kAyXNkLRQ0v2StqvRfoSkY7J5Fkl63ucd6Dn3AJiZ2bDuNpS0EbBGREyrMG17YFZEPN2N5exBOp/AgcBt2f31kjaJiOerzHYpsBbwfeBpYAzwvu7Gbp15HwAzM+t2AgCcDvwTWCYBAL4IbJLd13IocH5EnJs9PljSF4ADgCPLG0v6HLAjsEFWhgCYWUfcVsYlADMzqycB2BI4p8q0W4B9ai1A0gjgE8ApZZNuBD5dZbZdgXuBQyXtDSwArgeOioh3K6xjapXltNWKLy9cAjAzs3oSgJWBhVWmLQFGdmMZo4GhwOyy8bOBnarMsz6wLekIhN1IJxw6AxgL7N6NdVoZlwDMzKyeBOBZUlf8jRWm7UDzuuWHkA453KtwpIGkHwA3SBoTEZ2SiYiYUGkhWc/A+CbFOKA4ATAzs3qOArgQ+LGkgyQtByBpuewKgT8CLujGMuaSzhkwpmz8GNJVBiuZBbxUdpjh49n9uG7GbiVcAjAzs3oSgFOAa0jd7/MkvUq6BsAZ2fiTai0gIhYD9wMTyyZNBO6oMtvtwFhJK5WM2yi7f67b0dt7vBOgmZl1uwQQEe3A7pJ2IP1gjyL9o78xIqbWsc5JwEWS7iH9uO9PquefAyDpwmx9e2ftLwF+Dpwn6WjSPgCTgSsi4tU61msZlwDMzKyefQAAiIibgZt7usKIuEzSKNKphdcgnVp454go/JsfV9b+XUk7kXoa7gXeIF134IiexpB3LgGYmVndCQCApNWA5cvHd3Ein/J2U4ApVaZNqDDuSeBz9UVp1bgEYGZm9ZwJcBVS1/sewHJVmg1tRFDWXOU9AE4AzMzyp54egLNIx+H/DniEdFy+DUDl+wC4BGBmlj/1JABfAP4jIs5qVjDWN1wCMDOzuq4GCDzZlCisT3knQDMzqycBuBT4UrMCsb7jwwDNzKyeEsCNwOmSVgauA14vb5AdImj9WIRLAGZmVl8CcHV2vx6wb8n4AJTd+yiAfq6jI91LMHx4GnYJwMwsf+pJAD7btCiszxT+7Q8dmm6l48zMLD/qORXwtGYGYn2j8GM/bFi6lY4zM7P8qPtMgJJGA1uTrgVwbUS8Lml5YHFEdDQ6QGusQnd/aQ+ASwBmZvnT7aMAlJwMvEi6+t/vgXWzyVcDP214dNZwLgGYmRnUdxjgkcAPgGOAT5F2/Cu4FvhiA+OyJnEJwMzMoL4SwHeBYyLiBEnle/s/A2zQuLCsWVwCMDMzqK8HYE3grirTFgMr9j4cazaXAMzMDOpLAF4CNqsy7WPAjN6HY81W+LdfWgJwD4CZWf7UkwBcDvxC0mdKxoWkjYDDSKcKtn7OPQBmZgb1JQBHA08AtwBPZ+MuJ10a+GngxIZGZk3hBMDMzKC+EwEtkDQB2Av4PGnHv9eAY4GLI8IdyQNAaQmgkAB0dKRrBEjV5zMzs8GlWwmApBHAZcBpEXERcFFTo7KmKe0BkGDIkJQAtLcX9wkwM7PBr1slgIhYDOzU3fbWf5WeBwBcBjAzy6t6ftBvJ50C2Aaw0vMAgI8EMDPLq3o6fQ8DrpL0LnAVMIt0CeD3+FoA/V9pCaD03j0AZmb5Uk8PwCOks/1NBp4jnfxnScltccOjs4YrLwH4dMBmZvlUTw/AMZT947eBp7wE4NMBm5nlUz2HAR7dxDisj7gEYGZm0MO9+iWtJGkdScMbHZA1l0sAZmYGdSYAkr4o6QHgLeBZYPNs/G8l7dWE+KzBXAIwMzOoIwGQtCtwNTAX+AlQet64GcA+DY3MmsIlADMzg/p6AP4LOC8iPgecXjbtUapfKdD6kdJTAZfeuwfAzCxf6kkANiadDhiWPRrgDWBUQyKypnIPgJmZQX0JwNvA6CrT1gXm9DoaazqfCtjMzKC+BOBvwJGS3l8yLiQtB/wAuL6RgVlz+FTAZmYG9Z0I6KfAPcCTwHWkMsARwEeBkcCujQ7OGs8lADMzgzp6ACJiJvBx4M/ARKAd2B64C/hURLzcjACtsVwCMDMzqK8HgIh4Efh/TYrF+oBLAGZmBj08E6ANXC4BmJkZ1NkDIGk8sCcwDli+bHJExI6NCsyawyUAMzODOhIASfsBZwOvA08Bi8qbNDAuaxKXAMzMDOrrATgMuAT4TkQsblI81mQuAZiZGdS3D8CapFMB9/rHX9KBkmZIWijpfknbdXO+bSUtlfRob2PIK18N0MzMoL4E4H5g/d6uUNIewGTgeGAL4A7geknjasy3KnAh8PfexpBnvhqgmZlBfQnAIcCPJG3fy3UeCpwfEedGxOMRcTAwCzigxny/Ay4A7uzl+nPNJQAzM4Ma+wBIeoHOF/4ZCfxD0nzSBYBKRUSsU2N5I4BPAKeUTboR+HQX8x0IjAGOA35eYx1Tq0xq62q+vPDVAM3MDGrvBPh3lr3yX2+MBoYCs8vGzwZ2qjSDpM1JlyLeOiLaJR9s0BvuATAzM6iRAETEvn0UR0XZhYYuAw6PiBndmSciJlRZ1lRgfMOCG6B8HgAzM4M6TwTUAHNJ1xAYUzZ+DPBKhfZrABsD50k6Lxs3BJCkpcDOEXFjs4IdjHweADMzgzpPBSxpc0lXSJqTHY43R9Kfsm76mrJDCO8nXUyo1ETS0QDlXgI2J9XvC7dzgGey4UrzWBdcAjAzM6jvTICfBKYBC4BrSP/YVwe+BOwiafuIuL8bi5oEXCTpHuB2YH9gLOmHHUkXAkTE3hGxBOh0zL+kV4FFEeFzAfSASwBmZgb1lQBOIP0Y7xgR7xRGSloZuCmb/rlaC4mIyySNAn5G6uJ/lNSV/1zWpMvzAVjvuARgZmZQXwKwNfDt0h9/gIh4R9JJpGP0uyUipgBTqkybUGPeo4Gju7su68wlADMzg/r2Aah1OGAjDxe0JnEJwMzMoL4E4G7gqKzL/z2SVgR+AtzVyMCsOVwCMDMzqK8EcBQwFXhO0p9Jp+9dHdgZWBEfYz8guARgZmZQRwIQEfdI2hr4BfB54APA68A/gGMj4pHmhGiNVO1UwE4AzMzypda1AIYAuwAzIuLRiHgY2L2szebAuoATgAGgWg+ASwBmZvlSax+AbwF/BOZ10eYd4I+S9mxYVNY0LgGYmRl0LwE4r6vz8EfETNKlevdpYFzWJL4aoJmZQe0E4OOkS/XWchOwZe/DsWZzD4CZmUHtBGBl4I1uLOeNrK31cz4PgJmZQe0EYC6wTjeWMy5ra/2czwNgZmZQOwG4je7V9vfN2lo/5xKAmZlB7QTgdGBHSadJGlE+UdJwSacDOwCnNT48azSXAMzMDGqcByAi7pR0GHAq8E1JNwKFq/atA0wERgGHRYRPBTwAuARgZmbQjTMBRsTpkh4gne//q8D7skkLSKcGPjEibm1ahNZQLgGYmRl081TAEXELcEt2ZsDR2ejXIsI/GwOMSwBmZgb1XQyIiOgAXm1SLNYHXAIwMzOo73LANgi4BGBmZuAEIHd8NUAzMwMnALnjqwGamRk4AcgdlwDMzAycAOSOrwZoZmbgBCB33ANgZmbgBCB3fB4AMzMDJwC54/MAmJkZOAHIHZcAzMwMnADkjksAZmYGTgByxyUAMzMDJwC54xKAmZmBE4DccQnAzMzACUDuuARgZmbgBCB3XAIwMzNwApA7PhWwmZmBE4Bc6egoDg/JXnn3AJiZ5ZMTgBwp3wEQnACYmeWVE4AcKd8BEFwCMDPLKycAOVK+A2DpsHsAzMzyxQlAjrgEYGZmBU4AcsQlADMzK3ACkCMuAZiZWUFLEgBJB0qaIWmhpPslbddF269JulHSHEnvSLpb0pf7Mt7BwiUAMzMr6PMEQNIewGTgeGAL4A7geknjqswyHrgZ2CVrfx1wZVdJg1XmEoCZmRUMq92k4Q4Fzo+Ic7PHB0v6AnAAcGR544j4YdmoX0raBdgVuLWZgQ42LgGYmVlBnyYAkkYAnwBOKZt0I/DpOha1MvBGlXVMrTJPWx3LH5RcAjAzs4K+LgGMBoYCs8vGzwZW784CJB0ErAVc1NjQBr9KJYDSBCCi72MyM7PWaEUJoMck7QacDOwREc9VahMRE6rMO5W0P0FuVSoBDBkCUvrx7+joPM3MzAavvu4BmAu0A2PKxo8BXulqRkm7k/717x0R1zYnvMGt/EqABd4R0Mwsf/o0AYiIxcD9wMSySRNJRwNUJOnfST/++0bEFc2LcHCr1ANQ+tj7AZiZ5UcrSgCTgIsk3QPcDuwPjAXOAZB0IUBE7J09/gbpx/9w4BZJhX0FFkfE630c+4BWaSdAcAJgZpZHfZ4ARMRlkkYBPwPWAB4Fdi6p6ZefD2B/UpynZ7eCacCEZsY62FTaCRBcAjAzy6OW7AQYEVOAKVWmTejqsfWcSwBmZlbgawHkiEsAZmZW4AQgR1wCMDOzAicAOeISgJmZFTgByBGXAMzMrMAJQI64BGBmZgVOAHLEJQAzMytwApAj1U4F7ATAzCx/nADkSLUeAJcAzMzyxwlAjrgEYGZmBU4AcqRWCcA9AGZm+eEEIEdqlQDcA2Bmlh9OAHLE5wEwM7MCJwA54vMAmJlZgROAHPFOgGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAHPHVAM3MrMAJQI74aoBmZlbgBCBHvBOgmZkVOAHIkWo7AfpqgGZm+eMEIEd8NUAzMytwApAjLgGYmVmBE4Ac8XkAzMyswAlAjvg8AGZmVuAEIEdcAjAzswInADniEoCZmRU4AcgRlwDMzKzACUCOuARgZmYFTgByxCUAMzMrcAKQIy4BmJlZgROAAUpKt3rUuhqgewDMzPLDCUCO+FTAZvXrSbJtNhA4AcgR7wRoZmYFTgAGuDvv7H5bXw3Q+spg/Nf88sutjsCssZwA9AP1flk+8EBxeO+9Yf787s3nEkDPdOf1GYw/eJX0t+1sdjz/+ldx+DvfgYjmrcv63/trsHMC0I889VTtNh0dcOCBxcfPPANHHdW95beiBOAPdGP15+ezENuECcVxTz/dvPU1+8d4yRL45jeLj2+4AX772/qX059fs/5k1qxWR9A9g+n1bEkCIOlASTMkLZR0v6TtarQfn7VbKOlZSfv3VazN9PbbcMABxcfbbAO33db1PL//Pdx9d/HxsGEweTJMm1Z7fT05D0Bv3uxvvFEcLu21qEdh/T0tT/Qm/rlzYbfdio9//vPKy3v44eLwf/83LF7cs/XVcsstxeE77mjOOroyfXpx+E9/Kg5HwCWXFB+Xvhe33hpuvbV7y6/ntXrzTdhzz+LjuXO7N189jj2282cN4NBDYebM7i+jNKmu9dnuz3rzOZo3r/r8hfGf+hSMHVscf/bZKQFrdCy91dFRHD7kEDjuuGI8PUlII1qcUEREn96APYAlwPeAjYEzgHeBcVXarwfMy9ptnM23BNitzvVOHT9+fDTSwoURt98ekV7GiLPPjrjvvohFi6rP09ER8fjjxXnKb8stF3HZZant229HPPVUxIsvRrS3R8ydGzFqVOf2//Vf6X699SIuvTRi8uTitOuvj5gxI2LWrBRXYfwdd3SO6bzz0vi9906PFy2KuO22iJ//vDjPfvtFXHxxxD//GfHQQ2kZ110XccYZEQcfXGx3ySURzz+fnovSWIcMiTjooIjXX++87qVLI2bOLLa7/faI6dNTTDvsUBy/5poRxxyTlv3QQxEXXlic9ve/p+W++mrEX/9aHP+xjxWHJ0xI8S9YkJ7Ha64pTrvuuohXXukc11/+EjFmTPXX6Xe/i3j33Yjf/CZi+eU7T9t887Qd8+en17vwur/9dsQLL0Q8/HDELbcU2591VnH4wAOLw8cdF3HrrRGzZ0d8//vLxrDnnun9sWRJ59iXLImYM6fr92G5RYsiXnstPY9vvhnxzjvpPVd4jU48MWL48M7r/+53I555JuLLX+48/swzKz9nDz+8bKxvvJHeM3vsUWw3ZUra5vnzI+66qzj+pptSjLfeGjFuXOdlr712alvu2WeLbW64Ib1mhefooYeK0+bMKc4zf37Etdem96xUbLP77ul+hx2Kz03htZ07N+KxxyLuvTfigQfSe3jKlIj11+8c5667RjzxRJqvvT29J0qf61JLl6bnZ+bM9Ll7++3itHffTZ/3wnInTYp48MHKyynV0RExb17Ev/4V8Y9/dH5un3kmre+JJyJuvrk47XOf6/z5nj+/+vLb29Nn9KabOn+nlT6H06en76Xy93T556hwO/zw4vC//Vvn9/+ZZ0bceWf6vP3tb8Vphff+okWdt+XXv06v0bx5xc9m4bmeNSvi/vsjrrgi4qSTivOcf36K+fLLIzbbrPp3wtprF4d/9KPi8OTJKbann4548smIRx9NMf34xxHrrlts9+Uvp++9uXO7fg3rMX78+ACmRlT5Xaw2oVk34G7g3LJxTwMnVGl/EvB02bjfAndWaT+1yu3NRiUAixdXfxOU3lZdtTi86aYRW20Vsdpqndt88pPF4dIv//Lb+95X/EHaYYfim3fRos4/dN25Pfhg5+0p/TEdMqS+ZXX3NnRocfhDH0q39dePGDGiOeurdlthha6njxzZ+fF22xWHv/OdztMqfWFtsEH17e7trfQHuPRLVYoYPTqtu/Q9BxHvf3/Ehz+ckpKNNy6OX2edrrejdP7y92z5+iFilVWKwxHF4YMOWna+jTaKWGut3j8fW2657POz887pi/QrX4nYcMPKz+Fmm6XPU/m0NddMt9JxRxxR/Jy8+mrEBz9YnLbyyo1973Wn3dixEZ/5TNdtSj9TK6zQ+T1dmtD09LbKKuk7aKedIiZOTMl1V99BldZZ/rm46qqU1BQel3+O6r0NGxaxySYRK61Uvc3QoZ3ft/XeJk2KOPLI3j+flW5vvNGQn6r+lQAAI4ClwNfLxp8FTKsyzy3AWWXjvp71Agyv0L7pCUBE8YXadNPi8Le+lb5sa724q69eHC79R9TREXHyycVplb6kIPUglCrtUShNIiZMKA6XfkDL/yU88kjl9ZT+sz/xxOLwZptFfOpTxcennFIc/vzni8OXX15MVB5+uPrzscYaxeFttikOn3tucfimmyK++tXi4912Kw5vtVVxeNtti8Ol/x7PPjvi4x8vPt5++8rDpbeTTkr/DCq97qVxXnRRcfq8ecXx5T+SpV/an/lMcXj//YvDv/pV59ey9P312GPF9cyYURxf/gXbmy/5kSOr/7Bdd11x/aX/nnfeOfVsVNLRUWy33nqVlzthQsRppxUf77JLcbh0+7feujh8xBGd/+Udckj17SkMlycMpT8yK65YHB42rDhc3otS2nNUbT1tbcXhyy4rDr/0UsT3vlff67HKKp3/WZbeSp+Pffap/7Uu/ayUfgY22KBz4nvllcXh0j8s1W6rrdb5/T17dnH4hz8sDn/728XhcosWFaeVfvdcfXVx+OyzOz8XO+5Y+TNQ+h7aa6/qcY8eXTnOr3+9ODxlyrIxFx6X9rKeempxuLSnozQpPeyw1NPa1bJ7q1YCoIjoYfGgfpLGAi8B4yPilpLxvwC+GREfrjDPU8AfIuKYknHbA9OAsRHRrV1HJE0dP378+KlTp/ZyK5LHHks1q1VXXXbawoWwaFGqWy9ZAgsWwLvvptvo0fChD3Vd83nrrXS/yirFdm+9lXb4W3VVWH/9hmxCJ4V4l1su7SPQm5pUROX5I+D551ONvPC2GzsWVlqp98tub0/jh9TYq+Xll2HUqLSdpTo6Uq2yvT09DyuskG5deeopWHFFWHPN6m2WLEnLXXFFGD686+VVs3gxjBhRffrSpakG/vbb8IEPpPfI0KFpm15/HV59NbUZNizdhg5NtyFD0uORI9O2lj+vS5em992bb8Jaay37nC1cCE8+CR/9aH21+5dfTq/5yiunW/lOqVCsG5e/BkuXpvfqiisuO8/06fDCC2m7OzpgjTVgyy07L//NN1PMG26YnquC9nZ49tn0vIwbVzmmgo6O9JosWpTuV14Zll++e9sP6XugoyM9B4X3a0dHOppn6dL0Phk+PMVQ+n5ub4fnnktHJmy4Iay77rLLXrSoOBxR/A5aujTFuMIKy+4DVK+nnkpxFH6uhg0rvu9GjUrPR1fefDPFM3p07+Loyrx58MQTsNpqsPbaldssXpye84ULU/xdfcb6Unt771+jggkTJjBt2rRpETGh0nQnAGZmZoNQrQSgr48CmAu0A2PKxo8BXqkyzytV2i/NlmdmZmZ16tMEICIWA/cDE8smTQSqHdh0Z5X290VElQNFzMzMrCutOA/AJGBfSd+VtLGkycBY4BwASRdKurCk/TnAmpJOz9p/F9gXOKWvAzczMxssutjVpTki4jJJo4CfAWsAjwI7R8RzWZNxZe1nSNoZOA04AHgZOCQi/rcPwzYzMxtU+jwBAIiIKcCUKtMmVBg3Dfh4k8MyMzPLDV8LwMzMLIecAJiZmeWQEwAzM7MccgJgZmaWQ316JsBWkvTiyJEj12xra2t1KGZmZk03ffp03nrrrZciYq1K0/OUADwIfBB4pheLacvup/c2nn6gLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqktu5/ewhgapS27n97CGBqpLbuf3sIYGqUtu5/ei2V8CJgTEVtUmpibBKARJE2FyocqDjSDaVtgcG3PYNoW8Pb0Z4NpW2BwbU9fbIv3ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5ZATADMzsxzyUQBmZmY55B4AMzOzHHICYGZmlkNOAMzMzHLICYCZmVkOOQHoJkkHSpohaaGk+yVt1+qYekLSkZLulfS2pDmSrpW0WavjaoRs20LSma2OpackrSHpguy1WSjpn5LGtzqunpA0VNKxJZ+bGZKOkzSs1bHVIml7SddIeil7T+1bNl2Sjpb0sqQFkqZK2rRF4dbU1fZIGi7pJEkPS5onaZakSySNa2HIVdV6bcra/jprc3gfhliX7myPpI0k/Z+kNyXNl/SApI17u24nAN0gaQ9gMnA8sAVwB3B9f/2A1DABmAJ8GtgBWArcJOkDrQyqtyRtDXwfeLjVsfSUpPcDtwMCdgE2Bg4GXm1hWL3xE+Ag4BDgI8APs8dHtjKobloJeJQU84IK0/8TOIz0+nyS9Br9TdLKfRZhfbranhWAjwP/nd1/BVgb+Gs/TdZqvTYASNod2Ap4uY/i6qkut0fSeqTvhRmk7+zNgJ8B7/Z6zRHhW40bcDdwbtm4p4ETWh1bA7ZtJaAd+FKrY+nFNowE/gV8FpgKnNnqmHq4HccDt7c6jgZuz5+BC8rGXQD8udWx1bkd7wL7ljwWMAv4acm49wHvAPu1Ot56t6dKm02AADZvdbw92RZgHeAlUhI9Ezi81bH2dHuAS4CLm7E+9wDUIGkE8AngxrJJN5L+RQ90K5N6gt5odSC98Bvgioj4R6sD6aVdgbslXSbpVUnTJf1AklodWA/dBnxW0kcAJG1C+gdzXUuj6r31gNUp+U6IiAXALQyO7wSAVbL7Afe9kPVa/BE4LiIeb3U8vSFpCPAl4J+S/pqVBu/NeqV7zQlAbaOBocDssvGzSV8CA91k0vWm72xxHD0i6Xuka17/rNWxNMD6wIHAs8DnSa/NiaRu84HoJOAi0pfXEuAxUo/AlNaG1WuFz/2g/E7I/vScClwbES+2Op4e+CUwNyLObnUgDbAaqZf2KFLCOZGU3FwsaZfeLrw/1nesj0iaBGwLbBsR7a2Op16SPkzqNt82Ipa0Op4GGALcFxGFGvmDkjYkJQADccfGPYC9gb1IP/5twGRJMyLid60MzCrL/j3/AXg/8OXWRlM/SROAfUnvtcGg8Cf96oiYlA1Pl7Ql8APgL41YuFU3l1QjH1M2fgzwSt+H0xiSTgP2BHaIiGdbHU8PbUPqoXlM0lJJS4HxwIHZ4+VaG17dZgH/LBv3ODAQdzYFOBk4JSIujYhHIuIiYBIDYyfArhQ+94PtO6HQdf5RYMeIeK3FIfXEBGANYFbJd8I6wEmSBmJvxlzSjtpN+V5wAlBDRCwG7id1vZSaSDoaYMCRNJnij/8TrY6nF64CNidl+4XbfcCl2fDilkTVc7cDHy4btxHwXAtiaYQVSMlzqXYG/vfODNIP/XvfCZKWB7Zj4H4nDAcuI/34fzYiBmoiM4W0DW0lt5eB04AdWxVUT2W/P/fSpO8FlwC6ZxJwkaR7SF/S+wNjgXNaGlUPSDoL+DZph7M3JBVqlu9GRO8PK+lDEfEm8GbpOEnzgNcj4tFWxNRLpwF3SPop6ct4C9IhdEe1NKqeuxY4QtIMUglgC+BQ4MKWRtUNklYi7VsCKWEZJ6mN9N56XtLpwFGSngCeonhY1iUtCLemrraH9AN5Oelwxi8BUfK98Fa2g2O/Ueu1oeyw2Wz/k1ci4sk+DbSburE9/wP8SdKtwM2ko52+QfoO751WH/YwUG6knbNmAotIPQLbtzqmHm5HVLkd3erYGrR9UxmghwFm8e8CPAQsJP2wHEJ21c6BdiMdYXI66Z/KAtLOjccDy7c6tm7EPqHK5+T8bLqAo0llm4XANGCzVsfdk+0B1u3ie2HfVsde72tTof1M+vFhgN3ZHtJ+DU9ln6OHgT0bsW5fDtjMzCyHBnotzszMzHrACYCZmVkOOQEwMzPLIScAZmZmOeQEwMzMLIecAJiZmeWQEwCzFpC0r6Soctup1fENFpI+IWm+pDVLxk2VdFuV9t/NXoN161jHrpJmZyd0MRswnACYtdbXSdc0KL3d09KIBpeTgd9HxEtNXMfVpBMC/UcT12HWcD4VsFlrTY+IZ7rTUNJyEbGo2QENFpI+QTpt6sHNXE9EhKTfAMdKOiEiFjZzfWaN4h4As36opESwvaTLJb0J3J1NGybpSElPSFok6WVJp2YXpCldxvqS/pJ1gc+RNFnSfuVd3Nnjo8vmXTcbv2/Z+PGS/i7pHUnzJN0gabOyNlMl3SZpJ0kPZOt/VNJXK2znxyRdKek1SQskPSnpyGzaGVnX+vCyeVbO1n9ijafxu8DDEfFYjXZVSTq6i1LNviVN/0S6hO7Xerous77mBMCstYZmP+iF29Cy6ReTrj63O3BENu4PpIvPXEK6dsAJwP/L2gIgaQTwN9IFeA4inUt8vWy+HpG0C/B30kVvvgXsRTrf/62S1i5rvgEwmXQhra+Rusgvl/ShkuVtBdyZtf1xti2TgLWyJmcDqwHlicNewIrAr2uE/AXg1i62Z1j5jWW/E3/LsiWa/yVd1fCpQqOImEu6ROsXasRk1m+4BGDWWuWXY74d2Lbk8RUR8Z+FB5K2A/YA9omIwlX1bpL0OvAHSW0RMR3YB1gf2CYi7srmvR54pBexTgamRcRXSuL5B+kiP4cBPyppO5p0wayns3YPkJKAfyddEAjgFOA1YOuImJ+Nu7mwgIj4p6RpwH6kf9gF+wE3RsSMaoFKGkO6yM1DVZp8BljSxbYWYngReO868pK+TkpofhQR5Zf+fRDYutYyzfoLJwBmrfVVSn5ggHfKpl9Z9vgLwGLgiuwfa8GN2f32wHTSP9UXCj/+ABHRIelPpKvY1UXShqR/6seXrXc+6V/89mWzPF348c/W/aqkV4Fx2fJWIP0In1zy41/JFOBSSRtGxNOSPknq1ajV1T42u59TZfpDpBJBua9QpZdE0pbABcCUiPhVhSZzStZr1u85ATBrrUdr7AQ4q+zxasAIYF6V9qOy+zWA2RWmVxrXHatl97/LbuWeL3v8eoU2i4DCfgqrkrrbX6zQrtSVwCukf/2HA/uTrl9/bY35CuupttPkuxFxX/nI7Drsy5C0FnAN6XLTP6yyzAUl6zXr95wAmPVv5dfrfo10/fntqrR/ObufBWxaYfqYCuMWkZKKUqPKHr+W3R8J3FRhGYurxFPNG0AHsGZXjSJiiaTfAgdK+h/gG8CpEbG0xvIL8a5aZ1zLkLQiKeGYC+wREe1Vmn6gZL1m/Z53AjQbWP5K+pc5MiLuq3ArJAB3AmtLeq8mLWkIqQZf7jlgs7Jxu5Q9fhKYCWxaZb0P17MRWbf/bcC3JL2vRvNfk/awvxxYDji3G6uYSUqU1q8nrnKSRNrpcg3gixFRXqIptR7peTIbENwDYDaARMRUSX8k7QMwiXTSoA7SDm87Az+JiKdIteojgP+TdBTwKqn7fJUKi70U+JmknwJ3kXoX9ixbb0g6CLg6O8LgT6R/xGOATwPPR8SkOjfncGAacKekU0nlgPWBtoh479j9iHhJ0jWk/SWujYgXai04IhZLuhvYqs6Yyv0E2JXU7T9WUmmN/18RMQfeSxS2Iu2zYDYguAfAbOD5FmlHvt1JZ6G7AvgB8DRZjT8iFgMTSTsETiElBDOA4yos7wTgzGwZVwEbA98ubxQR15F29luRdHjcDcD/AKuTehzqEhH3knYEfAE4A7iOdDa9SvsFXJ7d1zr0r9RlwA5ZF35PfSS7n0zaxtJbaS/Jp0nlhkt7sS6zPqWI8hKjmQ1W2clrzgPWi4iZrY2m+yRdTEoW1o+Ijm7OswopmTgwIv7Q5PjOBjaLiGr7Zpj1Oy4BmFm/le3D0EY698Gh3f3xB4iItyWdBPynpIujSf92JK1OOu+CTwJkA4oTADPrz+4knXnwAnpWX58EDCXtxPdyjbY9tS5wWETc0qTlmzWFSwBmZmY55J0AzczMcsgJgJmZWQ45ATAzM8shJwBmZmY55ATAzMwsh5wAmJmZ5dD/B87GMaNM5oqsAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(8,5))\n", + "# ax.hlines(0, avg_cs.freq[0], avg_cs.freq[-1], color='black', linestyle='dashed', lw=2)\n", + "ax.errorbar(avg_cs.freq, coh, yerr=err_coh, lw=2, color='blue')\n", + "ax.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Coherence\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=14)\n", + "ax.tick_params(axis='y', labelsize=14)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.html b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.html new file mode 100644 index 000000000..c9c3fe128 --- /dev/null +++ b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.html @@ -0,0 +1,403 @@ + + + + + + + + Quicklook NuSTAR data with Stingray — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

In this notebook, we will analyze a NuSTAR data of the black hole X-ray binary H1743-322 with Stingray. Here we assume that the user has already reduced the data with the official pipeline and ran barycorr or other tools to refer the event times to the solar system barycenter.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+
+import matplotlib.pyplot as plt
+import numpy as np
+from stingray.powerspectrum import AveragedPowerspectrum, DynamicalPowerspectrum
+from stingray.crossspectrum import AveragedCrossspectrum
+from stingray.events import EventList
+from stingray.lightcurve import Lightcurve
+from stingray.gti import create_gti_from_condition
+
+
+
+
+

Quicklook NuSTAR data with Stingray

+

Let us load the data from two event lists corresponding to the two detectors onboard NuSTAR. fmt='hea' indicates event data produced by HEAsoft tools or compatible (e.g. XMM-Newton).

+
+
[2]:
+
+
+
evA = EventList.read('nustar_A_src.evt', 'hea')
+evB = EventList.read('nustar_B_src.evt', 'hea')
+
+
+
+

For the sake of a quicklook, let us join the two event lists

+
+
[3]:
+
+
+
all_ev = evA.join(evB)
+
+
+
+

Let us calculate the light curve and plot it.

+

In red, we show the bad time intervals, when the satellite was not acquiring valid data due to Earth occultation, SAA passages, or other issues.

+
+
[4]:
+
+
+
lc = all_ev.to_lc(100)
+
+
+
+
+
[5]:
+
+
+
plt.figure(figsize=(12, 7))
+plt.plot(lc.time, lc.counts)
+bad_time_intervals = list(zip(lc.gti[:-1, 1], lc.gti[1:, 0]))
+for b in bad_time_intervals:
+    plt.axvspan(b[0], b[1], color='r', alpha=0.5, zorder=10)
+
+plt.ylim([5000, 6500])
+
+
+
+
+
[5]:
+
+
+
+
+(5000.0, 6500.0)
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_9_1.png +
+
+

The light curve shows some long-term variability. Let us look at the colors. First of all, let us check that the events contain the energy of each photon. This should be the case, because NuSTAR data, together with XMM and NICER, are very well understood by Stingray and the calibration is done straight away.

+
+
[6]:
+
+
+
all_ev.energy
+
+
+
+
+
[6]:
+
+
+
+
+array([ 6.24     ,  3.4      , 14.4800005, ...,  9.64     ,  8.76     ,
+        4.2      ], dtype=float32)
+
+
+

Other missions might have all_ev.energy set to None. In which case, one needs to use all_ev.pi and express the energy through the PI channels (See the HENDRICS documentation for more advanced calibration using the rmf files).

+

Also, we notice that some GTIs do not catch all bad intervals (see how the light curve drops close to GTI borders). We make a more aggressive GTI filtering now:

+
+
[7]:
+
+
+
new_gti = create_gti_from_condition(lc.time, lc.counts > 5200)
+all_ev.gti = new_gti
+evA.gti = new_gti
+evB.gti = new_gti
+lc.gti = new_gti
+
+
+
+
+
[8]:
+
+
+
hard = (all_ev.energy > 10) & (all_ev.energy < 79)
+soft = (all_ev.energy > 3) & (all_ev.energy < 5)
+
+hard_ev = all_ev.apply_mask(hard)
+soft_ev = all_ev.apply_mask(soft)
+
+hard_lc = hard_ev.to_lc(200)
+soft_lc = soft_ev.to_lc(200)
+
+hard_lc.apply_gtis()
+soft_lc.apply_gtis()
+
+hardness_ratio = hard_lc.counts / soft_lc.counts
+intensity = hard_lc.counts + soft_lc.counts
+
+plt.figure()
+plt.scatter(hardness_ratio, intensity)
+plt.xlabel("Hardness")
+plt.ylabel("Counts")
+
+
+
+
+
[8]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_15_1.png +
+
+

Despite some light curve variability, the hardness ratio seems pretty stable during the observation.

+

Let us now look at the power density spectrum. Notice that we are using a sampling time of 0.001 s, meaning that we will investigate the power spectrum up to 500 Hz

+
+
[9]:
+
+
+
pds = AveragedPowerspectrum.from_events(all_ev, segment_size=256, dt=0.001, norm='leahy')
+
+
+
+
+
+
+
+
+238it [00:01, 177.96it/s]
+
+
+
+
[10]:
+
+
+
plt.figure(figsize=(10,7))
+plt.loglog(pds.freq, pds.power)
+plt.xlabel("Frequency")
+plt.ylabel("Power (Leahy)")
+
+
+
+
+
[10]:
+
+
+
+
+Text(0, 0.5, 'Power (Leahy)')
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_19_1.png +
+
+

Nice Quasi-periodic oscillations there! Note that at high frequencies the white noise level increases. This is not real variability, but an effect of dead time. The easiest way to get a flat periodogram at high frequencies is using the cospectrum instead of the power density spectrum. For this, we use separately the events from the two detectors. The cospectrum calculation is slightly slower than the power spectrum.

+

For an accurate way to correct the power density spectrum from dead time, see the documentation of stingray.deadtime and the Frequency Amplitude Difference (FAD) correction.

+
+
[11]:
+
+
+
cs = AveragedCrossspectrum.from_events(evA, evB, segment_size=256, dt=0.001, norm='leahy')
+
+
+
+
+
+
+
+
+238it [00:03, 78.00it/s]
+
+
+
+
[12]:
+
+
+
plt.figure(figsize=(10,7))
+plt.semilogx(cs.freq, cs.power.real)
+
+
+
+
+
[12]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fe8c0e7d8b0>]
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_22_1.png +
+
+

To improve the plot, we can rebin the data logarithmically

+
+
[13]:
+
+
+
cs_reb = cs.rebin_log(0.02)
+
+
+
+
+
[14]:
+
+
+
plt.figure(figsize=(10,7))
+plt.loglog(cs_reb.freq, cs_reb.power.real)
+plt.ylim([1e-3, None])
+plt.xlabel("Frequency")
+plt.ylabel("Cospectrum Power")
+
+
+
+
+
[14]:
+
+
+
+
+Text(0, 0.5, 'Cospectrum Power')
+
+
+
+
+
+
+../../_images/notebooks_DataQuickLook_Quicklook_NuSTAR_data_with_Stingray_25_1.png +
+
+

For deeper analysis (e.g. time lags and other products), please refer to the relevant notebooks

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb new file mode 100644 index 000000000..8b75c0359 --- /dev/null +++ b/notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb @@ -0,0 +1,445 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this notebook, we will analyze a NuSTAR data of the black hole X-ray binary H1743-322 with Stingray. Here we assume that the user has already reduced the data with the official pipeline and ran `barycorr` or other tools to refer the event times to the solar system barycenter." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "from stingray.powerspectrum import AveragedPowerspectrum, DynamicalPowerspectrum\n", + "from stingray.crossspectrum import AveragedCrossspectrum\n", + "from stingray.events import EventList\n", + "from stingray.lightcurve import Lightcurve\n", + "from stingray.gti import create_gti_from_condition" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quicklook NuSTAR data with Stingray" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us load the data from two event lists corresponding to the two detectors onboard NuSTAR. `fmt='hea'` indicates event data produced by HEAsoft tools or compatible (e.g. XMM-Newton)." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "evA = EventList.read('nustar_A_src.evt', 'hea')\n", + "evB = EventList.read('nustar_B_src.evt', 'hea')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the sake of a quicklook, let us join the two event lists" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "all_ev = evA.join(evB)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us calculate the light curve and plot it. \n", + "\n", + "In red, we show the bad time intervals, when the satellite was not acquiring valid data due to Earth occultation, SAA passages, or other issues." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "lc = all_ev.to_lc(100)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5000.0, 6500.0)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAswAAAGoCAYAAABSXLPLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACkC0lEQVR4nO39efxkRXX/j79O9/s9C+sMq+wDiiCibCPihiB+EJcETTTiEtF88iUaNSafREVjXGN+xiVR4xajuMQFN1AUREbFBQRk37cBBhi2GRgYmIWZeb+7fn/0vd13qapbe9/u93k+HjPv7tv31qlbt5ZzT506RUIIMAzDMAzDMAwjpzPqDDAMwzAMwzBMm2GFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyGqVFnQMdOO+0klixZMups4G/uuQdP2LwZAHD/vHn47z32UJ77zjvvxKNTU4Pzm3j2I4/gRYcdJpWlk/erK6/E7xYtMpKhy3PTvVXzo2OnzZvx9gMO0J6jkmcj5+iHH8ajU1N4xdOfbnR+nj4APGvtWtyxcKHRNS9aswbPPuIIYxlVeab3c/Bjj+FVFveS84Nrr8U+mzfj7B12MDp/6dq1+JNDD7WWA9jdj2u52choaoeh5By7Zg2OcawDP7j2Wly3zTZG5+63YQNOfupTneT8/vLL8UvDOgC4ld2vrrwSm4hwyfbbG52/x6ZNuGf+fCd5Ns+HhMB98+cb9ZlFzr/iCpy+665Gcu6fNw9HPPooTnnKU2r5a5J18eWX4+eGz8ak/1XJ+80VV+D8xYuN5OjqWtO9nXvVVbjIsA6Y1GmVvEsuvxznGJbb0Q8/jOMOP9zoXJ38Jo5fswbPSTAeuPYFtv3n8x9+GK89+OCoco5dswbzAOdxdBRcfvnlDwohdpb9Rm0OK7d06VJx2WWXjTobwBvfCOSK+4oVwNe/rj53yRLgmGOG5zfxoQ8BxWdQlKWTRwR84ANmMnR5brq3an50fOlLwP33689RybOR86EP9e+/1zM7P08fAH74Q+Cf/slcjmv7sLmff/s3wLADKjFvHrBli3k9+MhHgNlZezmA/fNxKTcbGU3tMJQcnzowbx7w3veanfvJTwLr1rnJsekLALeyIwK6XeB97zM7/1vfAl7/ejd5Ns/nxz8GDj3UrM8sQgScfLKZnBUrgNNPBx5/vJ6/Jlm+/XSM8UBX15ruLZScJnk2clL106nkuPYFtv3nt74FzMzElfOhD/X/tljPrEJElwshlsp+Y5cMhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDUYKMxEtIqIfEtFNRHQjET2r8Ns/EpEgop2y70REnyWi5UR0DREdXjj3ZCK6Nft3cvjbYRiGYRiGYZiwTBme9xkA5wohXklE8wBsBQBEtBeA4wHcVTj3xQD2z/49E8AXATyTiHYA8AEASwEIAJcT0VlCiIeD3AnDMAzDMAzDRKDRwkxE2wM4GsBXAUAIsVkI8Uj2838CeBf6CnDOiQC+KfpcDGAREe0G4EUAlgkh1mRK8jIAJwS7E4ZhGIZhGIaJgIlLxr4AVgP4GhFdSURfIaKtiehEAPcIIa6unL8HgLsL31dmx1THSxDRKUR0GRFdtnr1apt7YRiGYRiGYZjgmCjMUwAOB/BFIcRhANYD+CCA9wJ4f+gMCSG+LIRYKoRYuvPOO4dOnmEYhmEYhmGsMFGYVwJYKYS4JPv+Q/QV6H0BXE1EKwDsCeAKInoCgHsA7FW4fs/smOo4wzAMwzAMw7SWRoVZCHE/gLuJ6IDs0HEArhBC7CKEWCKEWIK+Un14du5ZAN6QRcs4CsBaIcR9AH4B4HgiWkxEi9FfLPiLCPfEMAzDMAzDMMEwjZLxdgDfziJk3A7gTZpzzwHwEgDLAWzIzxVCrCGijwC4NDvvw0KINU65ZhiGYRiGYZhEGCnMQoir0A8Hp/p9SeGzAPBWxXmnATjNKocMwzAMwzAMM0J4pz+GYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDMNoYIWZYRiGYRiGYTSwwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0WCkMBPRIiL6IRHdREQ3EtGziOgT2fdriOhMIlpUOP89RLSciG4mohcVjp+QHVtORKdGuB+GYRiGYRiGCYqphfkzAM4VQhwI4BAANwJYBuBgIcTTAdwC4D0AQEQHATgJwFMBnADgC0TUJaIugM8DeDGAgwC8JjuXYRiGYRiGYVpLo8JMRNsDOBrAVwFACLFZCPGIEOI8IcRMdtrFAPbMPp8I4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3MZhmEYhmEYprWYWJj3BbAawNeI6Eoi+goRbV05568A/Dz7vAeAuwu/rcyOqY6XIKJTiOgyIrps9erVhrfBMAzDMAzDMHEwUZinABwO4ItCiMMArAcw8D8mon8GMAPg2yEyJIT4shBiqRBi6c477xwiSYZhGIZhGIZxxkRhXglgpRDikuz7D9FXoEFEbwTwMgCvE0KI7Pd7AOxVuH7P7JjqOMMwDMMwDMO0lkaFWQhxP4C7ieiA7NBxAG4gohMAvAvAnwohNhQuOQvASUQ0n4j2BbA/gD8CuBTA/kS0LxHNQ39h4FkB74VhGIZhGIZhgjNleN7bAXw7U3RvB/Am9BXg+QCWEREAXCyEeLMQ4noi+j6AG9B31XirEGIWAIjobQB+AaAL4DQhxPVB74ZhGIZhGIZhAmOkMAshrgKwtHL4SZrzPwrgo5Lj5wA4xyJ/DMMwDMMwDDNSeKc/hmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIwGVpgZhmEYhmEYRgMrzAzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAyThEc2bMbqxzaNOhvWTI06AwzDMAzDMMzc4NAPLwMArPjYS0ecEzvYwswwDMMwDMMwGlhhZhiGYRiGYRgNrDAzDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwTHJmZnv48E9vwKpHHx91VhphhZlhGGaO8vqvXIJ/+fF1o84GwzBzlAtvewinXXgH3nPGtaPOSiOsMDMMw8xRLlj+IP734jtHnQ2GYeYoPSEAADM9MeKcNGOkMBPRIiL6IRHdREQ3EtGziGgHIlpGRLdmfxdn5xIRfZaIlhPRNUR0eCGdk7PzbyWik2Pd1KSxeaaHLbO9UWeDYRiGYRgmOO1Xl80tzJ8BcK4Q4kAAhwC4EcCpAH4lhNgfwK+y7wDwYgD7Z/9OAfBFACCiHQB8AMAzARwJ4AO5ks3oefL7fo4X/efvRp0NhmEYhmGYYNCoM2BBo8JMRNsDOBrAVwFACLFZCPEIgBMBfCM77RsAXp59PhHAN0WfiwEsIqLdALwIwDIhxBohxMMAlgE4IeC9TDS3P7h+1FlgGIZhGIYJxjhYlnNMLMz7AlgN4GtEdCURfYWItgawqxDivuyc+wHsmn3eA8DdhetXZsdUx0sQ0SlEdBkRXbZ69Wq7u2EYhmEYhmGYwJgozFMADgfwRSHEYQDWY+h+AQAQQggEelEQQnxZCLFUCLF05513DpEkwzAMwzAM0zImyiUDfUvwSiHEJdn3H6KvQD+QuVog+7sq+/0eAHsVrt8zO6Y6zjAMwzAMw8xRhGi/c0ajwiyEuB/A3UR0QHboOAA3ADgLQB7p4mQAP8k+nwXgDVm0jKMArM1cN34B4HgiWpwt9js+O8YwDOPFlXc9jCWnno3L73w4mczP/upWfOm3tyWTxzAMM2kQjY+NecrwvLcD+DYRzQNwO4A3oa9sf5+I/i+AOwH8RXbuOQBeAmA5gA3ZuRBCrCGijwC4NDvvw0KINUHugmGYOc1vb1k9+HvEPmmC7/zHslsAAG9+/hOTyGMYhpk0xsGynGOkMAshrgKwVPLTcZJzBYC3KtI5DcBpFvljmLHgOR/7NfbeYSt895SjRp2VOckY9bnBuPKuhzHbE9KOmWEYhgmLqYWZYRgN9zyyEfc8snHU2ZjzjM/knj+v+MIfAAArRpsNhmEYZ8bJJYO3xmYYZuyZgwZmZ4QQeN+Pr8X1964ddVaYFnDnQxzjn2FMYIWZYZiJYRTGinsf2Yjf3Lyq+cSW8PiWHr518V1449cubT6ZMebc6+7Dw+s3jzobVvzultV4/id+g59cxQGrGKYJVpgZhhl/NE7MKx/egD/c9mA00S/+zO9Z+ZzjrH5sE978rSvwN/97+aizYsXN9z8GALh2Jc82MEwTrDAzDDMxkMSL+QWf+i1e+z+XSM4Ow9qNW6KlzYwHW2Z7AIC7H94w4py4wS5NzCj4f9+7atRZsIIVZoZhJprNM70kcn5+7X2YmU0jizEjj899b6IFueMWrWWM1lsxE8gZV94zVgu1WWFmGA8eXr8Z+77n7FFnY87TBj3lLd++Al/+/e2jzgZT4NuX3AUAuGB5PJccYPwVz3FT9BlmFLDCzDAeXLXyER5sWsSoFZdVj24abQaYkdAb8z5AtOKV049bHnhsZDtv/vTqe3H+TeOz8JdxgxVmhmHGnra8tHRGrbFbYJLTWx94DHevGU+/3JTMzvYrYCrF87t/vAtX3f2IdzqmMXCX3fAAnvHRX7ZarT7xcxfiYz+/Cb0RvL28/btX4k1f54W/kw5vXMIwHoyPejQ3GPXzmOqOOgfmmKgV/+c/fwdgAjZHiaxDzSZ+Y3vPGdcCAFZ87KVJ5H3wrOux+rF2z55s3DILoB3uWYw9bTF66GALM8N4ME67FE0ybZlSHicL81wg1dOY7fFiz7bQG6Hm9fUL78AdD/JGMDaMU5fJCjPDMFG5ZuUj2Lh5NomsUXe+U53x6f3HJ6ftZ9yDo4yDdc+U//rVrSML9fjBn96AV33pDyORzcSHFWaG8YCVDj2PbNiMP/3chfiHyPE22zLgd8ZIYW5JkU0EM2NqYR6f2mrOZ3+9HB/4yXUjk//o4zMjkx2Ch9Ztwu2r1406G62EFWaGYaKR+xWGWKDki0igVcfUl5/38V9j6b/+0judtrivpCT2Pc9mC83a8uIWmhRtJySj3Exo3F9Cjv74+XjBp3476my0ElaYGcaDUbsAjAttUNJSLJ6P6ZJx95qNeHCd/8KrvBjmWtX91sV3Bik/GbNjGlduUvuvmRE+j3Ev0/WJ3OeqtGGMaIIVZoZhopFvVd0GA1WKxUBj4ZLRgmeRmjse3ID3/fg6vPXbV0RJf2BhjpJ6PPLaOm4W5CZS7e4pgxf+2nHmFfeMOgvGsMLMMB7QnLPT2ZF67NBFLQmpMKsUjC4Plq0kV6Ae3rA5SvrjamE2ZdzubqQW5pFJHk/OuJIVZoaZE7B+ZEbs4csk/ZBGNNV43B0DC3NeDuOmBPmQT/fGesEdR4V5y2wPH/zpDUbnjpsBembcw5YwrYQVZoZhojGc8h1pNgCEVWpUURHGYzo2X6DWgocSmfxx5Lca6/GM0qLpytWFhbjjl3s9W2ZH6cM8Dn0A4wIrzAzjAXeNDQwKKO4AZqL7hXTJUEURS7HT3xPfew4++Yubna/PS2EO6MsDYr8cpN7pj9EzyjB/PCa48/UL78CSU89u7QwBK8wMw0QjtY+3zrgT0gioUpBSWJhnewKfO3+5dzqj3BEtNYPIIJGez+xsurByoZR/m1TGIYJBkVFamFljdkMI4JPn3QIA2LBlNJE6mmCFeYx4fMss1m4YXXxJRgJ3jloE0ikSTYS0MqrcO8bChzn7O4ZeBM4MXDIipZ/SwhxKVDGdpjTb0H5t2DJCC2X7e4D209b6xgrzGPEX/30RDvnweaPOBlOAo2Q0kGiBmYkFLKSC2FMpzOPgv5g/k7aOSgHJ22duTY/1eEL4x69+7HF89YI7Gs+LMTMwbhbkJkaqMI9DH5AQAeCDZ12PVY893nhuXnRtXUTLCvMYcc3KtaPOAsNYkbrb073AhFQ0VBbFcRorbYoj9HNcu3FLa/0UXQix6O+3t6zGR37WHLWipbpEq5jJXDL+eMcafPOiFcHSfWTDZuz7nrNxwa0PKs9J1Qf0emJsZpy//ocVeN+ZzduV50XX1r6BFWaG0bBm/WY8+Z9/jktXrJH+nlpB+srvb8cLPvWbtEI9EKmsmckX/cnTGgddZuiSUc7tuk0z+NBPr8e6TTNR5fd6Aod86Dy854xro8opMvRhjpO+qj5EkTWCmYFxqNdFNmcK11/890V4/0+uD5bu9fc+CiGAz2vWEKQaEj617GYc8uHz8PD6OLHFQ/fZJvU2t85vaelbISvMLeDxLbMjnUJi1Fx+58PYPNvDf//2tlFnBQDwr2ffiNtXrx91NowZ+DAnkqdTiEL2/0qLYjv7+QryZ/KTq+7B1y5cgU8vuyWq9Nw6n3LDgqEPcxx1Zlgf4leAcD7MovA5jcxUzERa9Jcv6tX5rKdyyTjn2vsBpNuMJ7aeIkTBJWOUizY1sMLcAg78l3Px4s/8ftTZCMIltz+Ex1u6wtWFfA2XSj8aoxn4kZBqoDUR42KZEwCe9/Ff17baVfnYjUPkiaHVv3x8120XAAC++8e7sOLBeC9loygiEdmHedItzONGrLBy+aJe3fNONSakDpXoq6c0ZXfTzOygX90ywrCAOlhhbgnLV60bdRa8men18OovX4z3/bjZV2lcyC0KPEi5kTrmr26wctVp7l6zEavXbaqkNXkuGd0shvT6zbM45pO/ibbwJpcbc8A/6csX4YwrVg6+5/cSS5nJLcwp6jn3Rc3ECivXzTQmvYU5iugasUMlynTWmHrKFXc9gsce77uDxZoh8IUVZiYYeR9yywOPjTYjAaEmC/MYrfISQiS1hOUyi39Hic+9V/OvUiZbcJvNKCzMpvcYOBtRuPj2Nfh/37968H2g4MSKw5zQIhbjsTQnOQ4VOz4DA4rOwpx4TIglLfSLmU1qbXVRZYWZYTTkHaRK4RsjfRk9Abz2KxcnlTmY/o8uxySsnI/CbJbWOIXnqua1qvPFsmTGtpDK6kIvsoV5YMEOIODqux/BCZ/+HdYrFl/GePkcixe9FmDkw5wqM5EZ5e6Vbd1qfmrUGWAmj0nqfJtcMlLd6+9uWY15U/7vtxffLo/2MSkk2+lPYQBpaT9fYuiSUT5ereOx6nYuN1b6xXTz+jATUKGVEdIl41/PvgE33f8Yrrr7ETxH8nuoOmaTzCT16T7kbURnAE3mkhF30iT4bKTNi17KGRsbWGFmGA2DRX+K9pvK1eANp/2xJnccLBlFJWzLbA+3PrAOB+2+XXA5Jo8hpIVZ6a4QqT7ECB1VLY8mBToUsduMzMo/2LgkksyQZdXkfxvnuejTZH25T172+kV/aXrm2LNZo9w8ZKRbm2tglwwPTvnmZVhy6tmjzkbrGKdp6SZyfzTVPY3qTsfBkgkU9EcB/P/OuQkv+ezvo0Zg0A1WPopazX1BkdbXLlwRxU/8mE/+JniaTT7M8VwyoiSrTX/oMhFWmZnt9fDVC+4YRFEJcWtNCxR50d/oyC3LqRf9Hfep3+D4//zt4PuqRx/Hg4/1X6JjVYeRumSwwjx5nHfDA6POAhOZpkV/o+pTxmXQLObyirseBgA8FMFaalIaPopatbhVPna3P7geP74qfHzhtRvD7eilenGoW5iDiaxkoH7oX358XTDjgyzbuaITWpe56f7H8JGf3YDvXXY3gDDtssl/c0ya/kSSv8ykDit32+r1uOWBYYSKI//tV9iYhW+N9mLbAzZunsVdD23A1y+8wzs9q0V/LXXJYIWZCc59jzyO/++bl2HD5rg7hhW5cPmDuOn+R4Onm3d+KiXj7jUbgsvMWf3YJvxEoXyNjcKcR8koHFv58IZaXONQ6H2YfSzMZTZodsO7e81GZzkpUJVC1aIUy3VC9hz+9+I7g6UvCsrMYCOEbAAObf3bktXjfIviEJaxpm2Bi+XnE/Peamv0MelvYpOXve6lJnWUjFgvtrNC4G3fuQJHf+J8fPCnzVu2N2FThdjCzMwZHlq/GctueADLElrgX/eVS3DCp+Nt/iLrlDZsnsG7fnRNNJl//Y1L8Y7Tr8JDlRjAwPhYmQYeGWLo1PCO068Kvi2ykQ+zh45eVfIe3qC2+K567HF3QSOk7pIRR06ol72H1m2SRpKQWpjzBVKh7X+VGajNAcJh3ZrHulVktfhc/rEQOs+Hxp3+gkgZX/L+K1eU22SwiPZi2xO4YPmDUdJuoq2L/lhhZqLRGaeYawrywUnWQa7TWBlDcM8jfcVLtviiTR22DlVYud/fujqKvAuXP4g7H5L7SPst+itf+8hGtVvJ6sfqLzjjQH0RYKRFf4XP9699HP/0Azel738vvlP6rGXZHkyhR+qS8ja6eaYX3RpbdAf4zc2rospi+ly6ou9OdtN9/VlMfRzmePmQhkyMZWHuCWw9P1xcCCuXDLYwMy6M81TYBOjLg/KXdUqppo3Wb65Pu47Lor9SN1moy7Gyf/7Nq/H8T/xG+puPAlg1HD6isTDH8NEOiaoYRhGH+QNnXYcfXj7ckS9Ef9eT1K54O/3V4/JuiuRulBPjsYzxMJOEex/pu1ndlbngFZ93tc7GHPfkY0GYh3fcp36D95wxnDHtCYGt5nWDpG1LrK3NfeGwcgGY7YnBHvPMkFThdWIyjBlb75Ri+eFWOVYSIWHsLMxRBnmB1Y9twi7bLTCKzOLzklG18uvCvI0yHJMZqkV/VR/mSNIL6VaLarYnvAclUWiWuaxBWLlIXZKoKMwLpuMpGqHafrHNjHtkoxM/f2HU9AfxvDMjyaykjg3OjTjuPbpxC7apWH1PPeNabNg0g2Wead+2ej1uWz2csekJga3njUZFZAvzBBNzG0dZtfG1wqx69HF88KzrGxeX+BLbwnzRbQ9h1aNyf9ETP3cB3numv5/sIO6mpMxHuX2naOcLeI2BD3NlSF792CZv14Wv/P4OHPlvv8Jtq9c1nww/RaN67SOaqBXt7OqHqIrBdDfDkPJr23EHkFlSBDUuVSEpKv6hXqRVilfxXlItMGv7+/nVdz+i/T3UTK3Mh7macsxH8ujj9X7n6rsfGfq9OyIrn9kesNX80ViY22p0YIU5AFGn4CT1xrftv/fMa/H1P6zA7yM79Mfuyl/zPxfjTz53gfS3q1euxXcuuctbxjBQff23+G/B6vRjKQBfu/AOPPPffhksPV02P3jW9V5p5/XXNFKJz6BZLW9dBJhxdaNq2sgkhhyZhdmXkkKO3CKYu2SE7ZXy1Ir53jTjHrmiicvvfBiv/8olNfmxGdc6neOb/eFz7mV/i3U4XdlsmYkjS+bqMdsLa2G2qUOxjXmusMIcgNSWRt8Gunk2lj9fmRTWjwcejbvASmehCrEi3pVYnfSHfnpDkDJ97PEt+PBPbxiEvZJl10c5um/tRvzulv7CQdNUQrpk6PzX265bqLJXLZ8UYeWqMppiEJtQtDDnyQ2iZCTQMGMaUO54cB3uXTueUViAvvX9Iz+7YRCGLxXe/WVWcbZI4jBX04652D3WmCNzMRulD/NYu2QQ0QoiupaIriKiy7JjhxLRxfkxIjoyO05E9FkiWk5E1xDR4YV0TiaiW7N/J8e5pfQkd8nwTDNv7LGjWEzCor+8M5T1t7F9mHV9fPTd0jwFfO7Xy3HahXfg9Ev7Vn4Bia+fR/24sDg7IkzDyoWzMOsUu3H1B63HYY4jR+vDHGCg7Ml8mAc7/Xkn38imLW79QtX6HT2vJdeYyLIyfnbNvfjqBXfgkA+fh/sTKv6+/eXAwpz7MJde+srn3vHgevzhtjizt6Esr5tne+j1xGAMk22MFDpKhg1tXfRnY2E+VghxqBBiafb94wA+JIQ4FMD7s+8A8GIA+2f/TgHwRQAgoh0AfADAMwEcCeADRLTY+w5agM80SfOV9TN835bz62MvVIyZetEytVEynRQKXVi50ArznQ+txxd/c5vRubGnSH19SXOFcmBta4EO6WdhLn/XKcwt7esbSbU1dtllokwYC3Pxsyilm2IhsqtLRpsNDKFqQnGm5vyEIfF863L+aHJFrvioZGl/5pe3AujvbhrSmh6ifQDA9fesRU8I/PjK/sZYD2+oW5hvfuAxTAXUEYQAvnPJXbhm5SON57bVwuzz+iAAbJd93h7AvdnnEwF8U/R734uJaBER7QbgGADLhBBrAICIlgE4AcB3PfLQCjbPxlPYZPiOY7OJrC2pFqQ85f3nRkt7YGGW/BbaV/Hk0/6IFQ9twCuP2BM7bztfe26IxVHa9HsCPgv98362aNWNZXk1TTekD/PMbA/TXZJ27O3s6oeow8ql92GuLfoL4sNct/4ltTA7vki3OqpQoLpQHBNS3q13d5lHyZDUT1naU13Cltke/uwLf8DSfRbjhw4iN83MYv5UuRMO5ZJRvQ/ZrMi7fngN/uywPYLIywmxEH+UmFqYBYDziOhyIjolO/b3AD5BRHcD+CSA92TH9wBwd+Haldkx1fESRHRK5uJx2erVcTY3CM3mQI7437vUbJGab+PPr+9GHj0mIdLeMA5zfAvzhsxSbmINie2S4WvJyN19cn0yppuCaXvwuaWqMjnTE5jujusSEHlBVMsnxcYlVXe2EFOxxfTze4j9glnEWWGu9Jcm3edjm2aCuASmKp1RDQm+/U/+MpOvXSgq/rJ2cvP96/Cp824BAFx371preWddfS8OeN+5WL7qsdLxULH/83FteqoeR7zIGZkFOjW+LoGxMO3xnyuEOBx9d4u3EtHRAN4C4B+EEHsB+AcAXw2RISHEl4UQS4UQS3feeecQSUYnlA/zu39Uf/uS1WPfxp9q8GjzFKMpwzjM9d9CL8DIlUwjhTlyh+LrS5oPKHk+hcTPOHX98Nq4RGJhnjcl7z7bHlFAlbt6HOY491GUc/Hta0q/xbcwB46SIUlu0xbHmSfHrP37z29yuq7kutJQ7KFqQrG8UrZ/bx/mLK/5WF92yaif/+C6TfjSb/vudVMd+xfrX1x/PwDghvuqCnMvSN+fv5fmeUuhoNroLS3Vl80UZiHEPdnfVQDORN8H+WQAZ2Sn/CA7BgD3ANircPme2THV8bEnfZQM3+vTWF1aPcVoSD6Ay5Qt18U9KgZuDAOrrJrnffz8qJ2cr6Uvv5eiAhQrwH9fGVeXRT7Y+dR3WfgzlYW55fqyknoc5lhy1AmH8NEsJpF/HPowx8f1Rdp1vuLmBx5rPmmEfOq8m/Ef590MoKIwJxwfQs2WDPqzQtabXiynug73mSVZnaVdvW4T9nvvOfbpVcjLI/dRTqGg2jyCti6cbmyjRLQ1EW2bfwZwPIDr0PdZfn522gsA3Jp9PgvAG7JoGUcBWCuEuA/ALwAcT0SLs8V+x2fHxp6Y0RJk1cbX8jNYyBZZz3/vmddiyalnxxUSGV2UjE2BX5SqVtkmYnYqvpa+oUuG2gc8FE1p52OOlw9zpTy2zArMUynMLe3sc5Q+zCNY9FcleBzm3DhQ8GFecurZUZ+Q6z24Wr9dox2ZPN6H1m3C3Ws2eLWd//r1cnz218udrw+B70ZPAwuzoQ9zERcLc96HvO07V5YMcqEii+QpTmV9WEqXJRPaamE2WfS3K4Azs8Y8BeA7QohziWgdgM8Q0RSAx9GPiAEA5wB4CYDlADYAeBMACCHWENFHAFyanffhfAHguELUbyyp4/H6Vqa88wsduqXa5u4b43ihOdo4zIFflPJ+NRc1yql92cBgQ3XRX8x7EcJMRfWp7lUlqG9hlisqLRt7jImxiYiJnCIhfDRlO/3d88hGAGkszKm3rXddK2KyNfaR//arbAOLMPF4S1blgA9jh63nYY9FC3HtPXJ/YX8f5j6zhlEyiqj6CRX9cG/DNO8qbMwUqknm/XKet7b5DLfVra1RYRZC3A7gEMnxCwAcITkuALxVkdZpAE6zz2Y7mer0V8mntjD7mkd02z0zZbQW5sBRMvLBpA1v+6F8mFPcS6OFOXuz/dz5y3Hf2o34SwcZ1fvY0lP7MLe9XRlbmAN3a9fdsxYv+68L8JGXH6w8J7SFuXpPKSL3/MP3rsaTd90WT919e6vrXLMW08KcP48oPsyV33o9gbd/5wr87TFPxFMt0+0JoQ2T6h+HWb7ob92mmZJCK8MmfOvaDVswtWUWv7zxgcGxYtjUjZodRm3In33uVpZiK2orl4yWdqHjusx75HziFzcNQkqdduEd8d7QJMn6Dsi5QTzUittJRhWHecWD6/Hxc28OKmvo9zv6QL7+PsyZwlwYcGu1LaDuomsSuZir7n4E//ITt+24c4vHN/6wAktOPRvrHp9R+zA7SRg91T4s9MvO72/tb+aw7IYHlOcEiZKh2VQiFfm92lBtDqZZd30JaNuL3dqNW3D2NffhnT+4xvraXq9JYfbWmAEUfOGz76/60kV4xRf+oL3UJpbxeolCvKGgMG8ItOdAD3HbugwTK/+TdtkGQPvqZg4rzI58/vzhBhMX374GZ119r+bssPhWpapfH6NGZY3/l59cJz3fZyppqGQ6J+HE3333ShzxkWWlY751I9cldRZ6ArBh8wyWnHo2Tv+jWUhFGU1FHsKomD+TfOX7qsc2KS3M7deY6xk85hPn41PLbikdC90/5AOmro2EkFlMotpuQ88KqXC5j6ria6o0uLtkqL5Izg1UFUpxmCv3uzGLLtIUg16GEHpLbrCNSyqd8433Pdp47ZRF+ElZPtdvGirRoRRmUVnMnsIlw+RdeNk/HA0A+MJvbsN1CveaUcIKcyAe2xRmqqROvSKH2ukv1dR/W/2RTBjGYS4fVy748rhVGlgx+j1LqlI76+p78dD68k5PvtEKqGJhBuT14Ob7+yv8v3XJnR7S5Hnt9QTuXrMhyGr8WYniP64WZln+VjxUn1YexaK/MDv9DdOoJrduUxw3qipBXjYMk3B1yShtje2WgjWk+AwMw/Ht4qAw94TQW3ID3aBLtBUbC7Os2pQtzGH0jGq41BS6gImM4kvUravaF/2FFeaWI43D7Fm38848lYV5nA3Zw46lfBPKGLwesqpuDKMkWJSMhnTuzBS1fXbc2lmWEPLpvq9ccDue9/HzgyzKHSxeLMhRvTS1dTrRllguW7qp2dA+zNUWuT60YUOhCzlZmCvfTVNwCMKQpW+ex1CRX3S6/eNZmM6dnBTmJguzdZIlBqEpHeJ524SVk1l6i24awVwyKjOnVbk7bj0viJwitm3C+UUwIqwwjyG+FtvBW2UixexdP7wGj0j2qo9FSIu2yqUg1IKvjZtnsXmmh1/e8EDBwhz3uXzxN7dJjxfLzd/C3P/bVMfynaT22WErZ1kqCZeteNg5zSqyejCuUTJM8xdL8S9OzT7/yTuXFJ3gcZgryQVXmBW4uWSUv5uWv7MP8wiWShQt8tVs52E6t5lvEryrTNOivz//ot7PuIk83/m6JZsxxiasXCqXjKqFuVpdbRYqmsu0axMpFujawgpzy5FVMd8hJZ8aCa2YqawQP7piJf6j4h8Zk5DjvGrRXyiXjNXrNgEAvnrBHfWFcpEUr38/V74zWHGQ9114OFjAqFFeiAgX3dZfHLW1wyBZRFZWSh9jB2TRAtSzDC3XmA0JpTBvnpnF+Tetkqbb7VBpyjqIL2Uh/eo9rEulMDuVXVlBME3COUpGSVaaOqvb6c/HgCOE3vUhDyvoTGVBtk1ebcLKydrcY48XFeZQLhnlGbPq/ajczQD3umLbn0TQ2b1hhTkUCc1KwXyYWzD1H4OQ/lhKH+ZAylKuIEx1afBGnTJ6yVcvuGPwufgC5ZuHfBDX7sAHN4tNFdWlIRVmuYVZMcsw+iAnWkxLOlT/cMHyB/Gmr186sJQVy7BDVCrHIBbmwudqam22MFeRpSDzmXZe9GfR5oIt+tP85uMq2GRh9mW46G/YD1x+p9k2Ejb5ktX/xx7fMvi8MdSiv4ErRv97VafQ5dm1LlQ94/bbSe+Gxy4ZE8yWhEqOb+eVN5KUCnPKqh9yKjlXaGsWZpXCbCk6T3e625FuJx2bj/zshlpegHCL/q5ZqV7pXJTgI05IXlPWbtiCaVfnTgmzPeCnV9+LB7MZAUA9y9B+zAo7VDt6eP2W0veyhbns4xkipGIx29VbSNW0YrlkyPqdEBbmkOcWqc4Y6LbGzp+9S73rL/qL3x5nCuPBn3/xIqNrdNbaKrL498VZkXtD7fRXmTmt1ledtd613lTbdtOLRBstzH7zoMyAxyOFK5JVzlADWVKFWdGpr3x4A9Zu3GIdqF5HSAtf1dcrJ5zC3P871aHBwBd6B0YV37/s7tL3Yn3wVZhNrFdbChv++FRpIerXH/Lh8zTnC+sXuJ4QePt3rywdU0bJaL0Ts9lpoWY6htO+dfFTnU5J0QnjwzxMI/aTUNWjEIv+ZJmXTe87B8mwKSfHgtxS68vUmR0qo/ZyegLoxLQwV/pmmzz6W5jDz4rkz14A+I9lt+Czv7q19Ls+z26VoaaUN7xIsA/zBJOv8PVBWkclddM7BrvGkimEwG9uXuXmS+hwydEfPx8v/ewF9hdqCGphztJat2kGh39kGR7NpsfmB4qQoLMwx1a83vXD8gYBxbHN19InK4fbH1xX+l6MXuHzzEThfxNcLVhVpqfkHXrbPZ1Msxd60d/QrWWYbqfiwxwmSoaQfk6Jy0uviYVZdjchdvprKibXSDO6mddqtmcc3bPys23Ct9kycMnI3UasFv3ZKMz1cg610E+GEKKmLANxIo7ctnp96XtTubBLxgSTx5D0wbSC+I4BupBfP77qHrzxa5fiu5e6byRhg2pRnQ8hfZiL+VqzfvMgmLrq7ddWcv5i0u3QYASJESXDZBAqdta+1kXZ+FodPLcUTvKRJoSwahMuY7+srczrdqXntj2snGn23vytK4LKnZVYELtUHpxDWLV1G5ekwk2/bF70JzvmqlY0lUyIl43Pn7+89F2nIw2UUcf+L6YPc05eJCZl86z9dgQAzJ+W9xMyZPU/ykLVbKxZr4hLrguFF6pFjaNLBivMgXg8pcLsWWWHEQzq6dy9pr+a+P5AvlI5Tbe2KYCFPkdEcMnIyf3uVAOx7QCdP4OpLtUtzFYp+VOsD76WPpNy2FxyyfCwMAu7cne5N9k1Kgvzqsc24cq7HraWMenkz+iqux8ZHOt0qBRHOIQ7UrEujGoBZhBfbMPzQliYZYR4b6+GsNRNs+e76LnKrVosL7n9IbeEJNSt/83X/N1x+2PvHbbCtKdLRqjIGEXyHP3jD66W/t7V1alAL6FN0UPYwjzBbAygMMvqh0w59u3Icl8vmRKQd1qhF1CodsTK3zJDlF9OLAtzSYbiIbj6ME93OiXL/91rNgT1XTPJVtWHuZf9c8HkupKF2eOR9SwtzC5WR9klKrccAHjFF/zivsZkVPZvWZ2Y6lBpcN4c2MI8qhB/Lhbmag8pdcmQHHPtqpt8vWNb56vKc64sur48V32YX/3li90yZoBJ2XQ7hG6HrMZr2biSW4E/c9Kh5gl5ostyqAnQJgtzC/VlVphDEcKH2XRKyXeqLB+gZNM/+YClsp5p86X5TVX5d8h2FAphoQf6ZRNyMWM9dnD/72xPYL5k4Z/tsymGlStamJ/38fOt86rFIFs/vfrewefZnsB+7z0HJ/2P26Bj8ghC+TDP9oT3oNR4jcyHOXKUjA2bZ/D585cPXmJDYRoOKzSyMuwWFrsC5VkHU6ptrvh9VP7ks72efT9d6SOlLhmyyyJFyQi9KLzvOjVMs5prX5eMJp9Yn3GzWsYmSXU7/fHCpm+TnZmHQtxqXjtiNISqFU1GuTZamNvxBMaYw/dehIfWbw7SucgqiPzN30/OQOmTNOTc6ucSkiuEH7cvPRF2oU8tLBKATTOz+O/f3S6NlOETVo5i+jAbnPNv5ww3NMnz8Mc73JQra5cMJynZtSK+JVHWvptWefvy7z+/Cd+46E4s8dg2vE3I9P4OUckyuMkh2pBAWfkq1b0RKcw/vupe/Piqe3EHfEJqyizM9bNixWEObWDuiar1X54f1+6vyeA00xNWm4gUcbmKqP8yaFWOknNzhTnkokavlALVi6Ytw9uoMLOF2ZOpTgfzup0g01fS+iFJ9j+W3ewlJ8+qzM9u4JLh0LHoVlKrUgu9in22J/DAo5uaTzRE1nl//cIVAOTWMNcoGQ+u24Q16/vbh4fwf/TF16ppUg7FRYA+7cfWJcNF0ibJs5bNMIRitifwjYvujC4nJTKXjG7VJcPBwlx9oCkX/cUc0k0VxxCKhawfDl12ff/0ghtIoHUgOU0K5RaPPs2liLvUnzW0szBLXDKyKBmdDmGPRQvtMyLDo8r0AmnMWj9p8KK/iUSgv8NQCAuzaf0459r7veQMg5XXf9sycBEI7MOsuLnQxtSeEPiTz4ULU1ft7IhI629tezv5M/jZNfdh+ap+2DWZhfnlh+5umXI1X3Y587Vy21qYbbJXHWhnK1O9BilYnNtno2ThzfzpeN1n0bI/PSkKs8Ilo9g3OCnMFUSh7hYlRhmAA6ZZLR55lAyBvzxqn9KmOa4Kc1MbDaEwP33P7QefZ3vlF1vV/YbyYa6yZSb+dMNfHrXP4HMnszCHevGY6hB+8rbn4Ogn7+ydVlON0WU51KL6pmrLcZgnECEQrFGkmj3M5egszPMcp65U/M/v78CKB9fXjof2k4vhd1fk7jUbtG/GrhbmItKIDL4vMJUkm6wt/hbm5nO2OPowV0/tCbu249JU10tioc6fMg8XZUtoJbINSH2YK1PWTj7MladfmvYvJB7bhSY0spdcgf5LxjYLht6U7huXlNOtEqIrLT7PmcpaA+WC6kgWZtdY0oB60XqVQ/ZaNPjc6fSVPhuxulvvEGGnbebjGfssBgC89pl7mycckHDub2xhnnPkHVisXfOizChmacqsiPk0eYxtRq+QhNoabmYQRsY5194XJqGMahH94w+u1g8klvchs6bIFmP6DvbVFG99YJ30vByfwQUwi5Kx2TFKRnVKUAi7RX8udW2DJBaqarfHEGwsKOgufr1tROWSURyAfesdUK4fRZE24b1Gg1rxL55RXUgWL6ycf6dcVJhnZ8ub2NcszPD1Yda3xxQuGcXTOplLRii3w9xHO7ek+yTbZL3VKcWhVJ2mMo25c6MrrDB70hMCnQ4hxC6ysurh08hV5FmVDWC5vBhB4KVh8xzKTUCtl76zsnudL7JB44wrV2rOt0tfVm9ksWhD72J1w32Pan/3tWraumT4KLzv/8n1pQgfMVgnCfBfnBa/7H0vDCpvfcEFJGSM8lEie8adTgALc3XGoeiSMc4WZkWYjOpCMpee4VsX31mOwSt1/3BIuELR93+2stZA1Ue4KpgxfZhNKersw7ByNj7MagYKs2rTrMj++qHlNNXbFurLrDDb8uC6TVhy6tmD70L0d6tyiVdrUvF+ddMD1umaypVZmHPrZozFMrKGHssyHwpZ9u58aIPyfNvpKlm9ke2+5LIIs0j1cTYFwy8NdA7PyNYlw6bcfOumy9Wy8ir6MO+0zfy6HMd89noC7/zB8MUvyk5fI0DlklEkhPtJse4VZbpGSEiFSXUR6CsS++y4VemYLZ/+ZX075CpBLMyz5X6kFPtZkXysnf7SWJiHJ/Y3b7WLw6x7mvn9Dd/7RjN2hlINqmV6aMGdpf97+9orK8yW3L2mrCz5uGTctWbDSKr8wMIsEZ53KrM9gfNvXhUsPrKKtm8jfN4NdgssbauB7P7XSxSk0DF/m+prUXFZ57CBikl7KEbJWPf4jPF0/CiqjNyHOewzWbN+M/7x+1fjd7euLi0s/cBZ1weVMyrULhlDZNFImqimWorDXEguRhzbkEN69T6kfaMQ6BDha298hv68BqrrV86+9r7ay0oIS+LmmR4WZltDVw00ZfcMuRuNDU0Ks0vdyjF9zkUdL3fJ8FmfUWSqYmGuu7SYY7Lo72dvf670t1BjdtUv/MdvfU7pO4eVmwBqjTLrwFwWKlTfeFO8US1fta5gIS3n+fp71+JXN60C0LcMvOlrl+J3t6yOmp8268sCwO2r6wsVtddYL/qrH5MpZ74uGVULrsxPukhxcHGKjWtZDj+4fCXOuuoew7Sts1O53j4BWYzx0ArzZSvW4EdXrAzuVtQWZC9R3Q6VnoePUpOjWli2zfzx2nZA4ZEBIsKOhRkNl/Ygm1385Y3l2cxQi/62mtdXmGdnqy4Z8mvihZXzuSF12vvtvDX+5JB6FKM8SkaoMS5XIJUvBiE1Zqit6qGG7EYf5vbpy6ww21KtrD3RP+biklF9w0rhg/TC//htQV75txsLfq1bsoHLdDrYJO+yN8a2W5htCXE7MgtzaB/mJmtuUXHZ4lC3Q25PXmUULhmy6dx53bBRMvL72ih5YZoEVGHlirgs+tNZZotKejGyRCup+mIr/Iqrk00u7UH2wlztYkK5ZCycl1uYe6U0VVtzu4ptsjCvfFjtSueDEMPxr2j06u9i6b/TX07ulqeyMNtgMprE9pVuVpjbpzGzwmxJVXEZxGF2qEQtrA8D8oErZKWVJRVTsRoFtrcjK12ZwtzpkNcbdzVfzRbmodLmEmLORse2XWA6ihojU+RCR8nIy6yo5LXRyuKKrE70euW5j80uEUGqU9MKH+Zto1iYwz0gnWvJ8Bwx6JOftMs2AFxdMurXVGc4ffdPEkJgticGLhkrHlqvjMNcemaRfJjf9p0rserRx53S1tETwzpczAENfJgt7kdzav7cn/OkHQEALztkt8qlYU3MqrE/XJQMfR7aqB+xwmyJLHRNhxwtzCOuELp2PJi+CphHWSzLCdOXrV8AZHVAZtXvEAWNXNK0AKYaP9UWGyvEPEv/bF8Lh8v1ssVovgsxqzyyYQuAch2SxXo+8AnbBpWbCpkitKHi6uK26K+cbk+IwctMsV/e2kNhFkLg0hVu28Q7y1QczxWNM//22QDcFBhZJJ6qghQq3m6e7l99/bKKJVmevqtl26R/3OA8e6POU0+Iwc/FIhxamENIGRrrnrTLtljxsZfi2U/cyTxhB5SeH8miZLRPY2aF2ZJqoxSZS4aThTnqxqrN6DrEXKEKWUH09X8yNOcQ21o/lG2RXaRDYTuQJoW56JLRZI2WYWMlso1e4GvhcOnvZYqcStF/1wkHWKc/2xN475nXAigPSDIr9gFjqjDLFKGNm2dLTd/JJUPiyjA/ezbFuuLjkrFlVuBVX7pIoiyE7LfKaVVl5d/zIWjbBdPYZdv5TgqMrA2FcPWQkbtkVNMsbTCjic9sionbmusd6a7r9Yb5L0fJIAdjmvrcqu7hYz8xWfSnsgCnsjCzwjwB1P28+g/WJWLNqOuD3sLcv6E2hnZpM34LS/rIfO0o63xdqT5rXT6JKj7MkV0y5lnumJcq3mgRmcKsilzi8pyKFr/8ZeMzJx0qXVgYOmJKKlQRYcouGWF8mPPtxIsvbj4uGXmdq74IxlOX1VEQivWrr5CFka9yyfCd2Xr5of0FcS98yi6lmyy14wAuGSbtzvklQHOZKMSXrkfJsIzDrDm1+hyqz8vq1gweqdrCbCHHIwttdEcbz563RQgh0O24xWGuVvjUyqkux7lCFTJHo2wAQginZ2TKS5/e9ydzscZWeVyyUUUeBD8UsinZnIXT3VI4QReXDNNBgsh+QaNvCbtcL41corCMuzylcmSH/t8OkdTCHCuecDUOamhMXDJCDMZCDK3/xXro6pLx6MYtg8+1thBRY1Yp0J2SUhbOEqxyyXjHcfs7pZfnaqrbwaF7LcKmmV7Jkly2MKNw3O1+TFykXMcArYVZDPNczEGH+mtPQg07sv4/5piqXPQXzFVH/3sbjXWsMFsia8u2u/moSO2baGZhDilRnVhsm+HyVetwxpUrnZ7Ty56+W+M5xx+0KwBgi6W5xzQ7/SD4VkmX5VRKWGdh3mpeWWF2cTMxHZimO51WWhJMUFl6nZ6Tol+RyQg5VXniocNwWM964o44ar8dgqVdRaYwb9w8O7A0ur4QyizMAx/mAGHlirHYq7MtMS3M1b5q4JJRKCf7jTHUVOXl6W41zy8aTLfTf/HbPNNTKskyubbI2sXSfRaXvsdYZN5TWJhzH2abGTHdmXKFeXgssIF55Iv+2jgusMJsieyt3zUOc7EhHfiEbbFgOmyYqkb5Bj7MbXzLc+GubMMZl/7S5Lnkik2snQtTLvpbOK9bCm3m4mZiWgxTXUo/sxLoEal8mEMptKl9+LpEePcJB2L7hdNR0pfVo+I9VjcxMaZqmRViYIUvVvMQYeVCzCCZYuKSsfqxTfjRFSuDKO6zlXsTWSNe6Kgw52XVJcK8bgdbZnuVyBhyv2VXlyupQlkNA+vovtJkYR7+Xn6Z6QR8oanuigm4R+opJiXboERA/eKfyiWOfZgngqoPmxjEYb7xvkft3iYLp86b6qRf9qazMM9kU0yGddYk7y2s/0aYbFCRK8w+26/q6BBJO0xT6mHl1PncanqqtNOc06I/w3Yw1aHk9SLUlGLoKBlVuh35suCQ5VV8TN0O4bC9F+N37zw2nIAC1ZfJk56xF/7tzw4ePA2f+l2kJ4btsdgfbxdAYbadQfLBxCXDZZGkiqq7SZ7yQkdDzmDheG5hntXFYR5+drUCt82H2SkOs86HWdLfFMcm117t4D22lx5XFWc4C7P+d1aYJwDZiuwuER54dBNe/Jnf4+ENW+QXytIqVPHqjlcp0PswZxbmkHFGRxhDzkeyyVt8btGKZYHqUFhrv85qvKDikuGiJJg+66luZ2xfpFS+16E6etXavsVbzQuSPlAezHMLHUUaFa69Z23p+zteuD922XbBoE+dcuwDqy9AAsOXmaLytfO28+FLtX0HdclQuGAMZWUuGZEaTPWFJq8bLi4Zxbx3qD8bs3mmZ7RBibtLRvOxGBtlicL/5QWZLi4z6pNlL5SlsJNWcprrUPSNSwp5+NifPa3+ewvHBVaYLam/9Qt0OjSwyNkE3i82JEK4qWIZM7M9LDn17NIxXcXfHMGHOeKau6jIYuFWyafndYvpfOh0SKlAmVAtep0lvEvlaAXVqVoTWctueACLtmqe2p/q+EX/cCHYKm9FvkPdTodIOq5tv3AabznmiUFkFItioDAHSbmZ6nOXWdBMkPXJuYX5kYIBY+dtFjilX6T2QhyxT6u5ZAysmHGeULXvyr8unGdvma/Wq+mpTv8lXRVWLoBLhkm5uLrM6WalekJg7x22BgAsLvR5/SgZcX2Y5087umRUvv/6H5+Pr73xGaVj6kV/YSiW6UlH7l37vepO0wZYYfZEoPrmZ/6Qi+2IiIJNFcvYJAnXZGJhDllndW/3IZSYp+y2Xen7vjttXRDgnq7KJaO4GDAPYxUirJyMDhG2chi4BlRdMjQDBxGVfnd5CdgyK7Db9gsbz+vQqKORhyfU/eh81l0XsNUoVIM8zVQvtvnd5f2e8/bvEsVyWrLBlKtyUaQ62xKyz66mVF/01//r2yerFLhayLzsvAUOfrK9koWZBhbmcjQYeT5crcAyBS/vXfK6FcPC3OsJvPvFB+C0Ny7F0iXDRbMuYeV01UnWHxTXUVi9aFSS2m/nbfDkStABZVg5hw7iiTtvXTvWlN0W6susMNtSfchdIuc3oWIFj21hliWtj5KR+TCbDv8GeY+1IC6nusK/tKjEI12VS8a/vvzgwefcohXPJYO8FmPVo2ToleDifbi+BJg0i/sffXxsLcwqQllGuoqXiQ6F8/su1otXHL4HADOf/RDkFsH8eTgv+qsghMD0lD6igCtRF/0pLMrDn/sHQi7+LSLzYZ7u0sAYYEPVN37eFPXDyikaX/Gw6zih8/fvDhRmp6S1CNGfhXzBgbuWjnc79ov+tBZmmUtGgJfAnOILqxBCvXGJQ9rn/v3RtWNNz5l9mCeBSoP/8huWOk+VF1MiijuQy95ydeLyKflYC4xiULVQhRKnUiCKilHuw3zXmg2O2/vq6RCMXBxM0SnMhPJiopgbCQwEJiVuRQx1OyrFu0N+awuK1+Zt8vOvPRzbLejXrwXTXXzp9Uc4p29K9fZcF/3V1pVAHvIviIW5GlYuYFWquZZUvwdwydg805PONgISH+aewFSnY711PVC1MGMYJaOSvvxaa3EA9IsF87Ehv8efX3sflpx6dmmthg7dc1ZZkPNQoKHi/8v6g6K7oI0UWQ0y3UnQxWVG1h6bLO8t1JdZYbal+Ijf+aIDsO9OWzt39L2ShTmuS4bMD9XIhzlkHiJbmKcqjbJ8e+6ylQpz4bnng8q/n3sT3vnDq51lqZjudrDIy8JcRmU13mb+FPbfddvKuW4vAKYbniS3MMcW4HI/kktUlsQDd9su2HSlapo/xAK5JmoW5i45Ppy6K8GUxCVj4XQX137weCzZcSsXIQCa6/S5f/8877jFOar+2efZX3vPWmU/LLu3DrlFgyl6ruQb8NRdMoafy1tjm1eC4hgqu6+8b+lWXDK+/ocVAMqb0riiqhKUhQK1ipJhKTvkbFDV4BQ7DnOzS0b7NGZWmC0pPuPBIpkQlpHIFmbbUD0x4jDH8B8rUrWEhHoBUS36K/YvxTfoX9+4KojcUh6mO1jkEx2h6sNcUYLzsnv/yw6qdZwuO/0BwCZD602IGnbaG5canxvdJSPgor9i+3vWfjviwlNfgKP229Fvm/TSbmuZ61XV2pvAgbAqQqbkmlB8nLmyJdsNcbrbwbYLpr3iMevCMQLAgU/YDk/dfTvtOaaoFv35PHvdY52V3BuRfPOcJqrRV6YHcZiLbnJmvtQ6iufKXuxfcOAuOOkZe+Gjr+hHYcgVedsuQHf+Cw/aVfmbdRxmy84ppMJctzCromSEkZc/O1V1ZoV5jPjSb2/DU99/rvacvH4571BVqHiEuJYv2bSQTp7tTn8meY+tqFR9jcsrr93TVU3lFht0yc8vQjufP9X19GEus7lgYT5ot+1KO75V63OTkqDCtF1Yd4ySZ2mTRmwLc6hljNXyExDYY1F/IWU4H+accoLFl6ZU41YIJT3v5qqzTUV8nk91Zqb47c3P94tcUnfJqMrqf/cpJl07qb4Y599kCyibKPa3eRzmmZ6oxGGWn2+jYBYVZpmiPX+6g4/9+dOx+6J+hJSB4Wjg3mIoSJGnf//zp+FTrzpEeRmRZRxm4zP7FMc837WF1RdWVXjJUGHlekLgm391JH77T8dKf2/jor9AS60nj4/9/Cbp8XJ8yfJ0jy3VtGK6LEithBpxw41LwtXaGNuSFqlZmCXiXO5G5cNXLJqiRSvGm/GC6Q62DbDxQk5RCa5mt/rd1cJsunNliOKyK/Ow9XC37cvhykJ19NVFf8Vpbt92edBu2+GFT9kFN9z3WJZe+ffSDnyRNOa8WuX94FSHsMmhrslCkskszCGoR4wZCj/1xQf6JV7psKpF0RsoeR4WZk3lrI8/AgRIF1A20RMCeevvFKzUm7YMy0+9ANDNwixbkJnX4/xvrrzazj6qzt990UJtnP4OkZ2xxrL6m4Q8NaWoLwuhcckIJK8ngKOfvLPy9zbuMswWZg+qjdGWYsWzfRO1RaaMG22N7SDrnS86QHo8ukuGpuPykWxiYS4q1THa+fyprt/W6VWXjEJ9qMXDrXx3jQywwHCRVYiO0aoNBqyGF7/nOJz3D+UV4MHiMFeKr7qQyocXPmUX/L/jD0BeGNXkpiK/AAL1/iCEnLxa6xaq+YgxicPs082d/Kx91Olk331eYHT1pvZiLACQfMFWEyWXDKKB60BxwWHpRad0rbmcohFG9mLfrSrM2TnDy/zqXNOzsN7pz1J+WB/mclohF/25pNNGC7NRaRPRCiK6loiuIqLLCsffTkQ3EdH1RPTxwvH3ENFyIrqZiF5UOH5Cdmw5EZ0a9lbSIPNhdg4fWlz057rexRBplAyNwM0ecZjf+Owlijyorwlx79WOPVTDVr3FFzvLouwY7XzBdMdLYa6+HBUjedSsi5WH7rodsLGF2Sn1MjazxiHb2RO2X4BtF5RdZUK6ZBSfTXmRsCeVBXdVZbX4PZahJ4/7nN/VVNd/t9O8jGJtW16LkhEwbYHyy6PKJcPneegUPJlRheDmklFMqtMZ9gWPPb6lcM7wpOJzd/VhnpX0U6qwcqLyuytNL/vWcZgrvPRpu2l/LxpzfNfsVMf62D7Mf37Eng35aZ/GbNMSjhVCHCqEWAoARHQsgBMBHCKEeCqAT2bHDwJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bqup+v5WfbMA9ygCeVpn/91z+1EyNDXRdzpe9vatVZhn3Bf9qS6pl2XYV4SaD3OkdHPKLhlFC3N4f9q+hTmcNaE4tVzNbbWjcrUwm04XOq71KqdhU+ZxJzqCKZhV5aYn6Xt8US36K26MEmPgWvGxl9ZeqJxd2wqf8/txsYqaYOKe5Fq9agZlRUI+j0NXb6prFXIF3sUlQ1QszE/ZrR9555rC9uiqcrJRMItjiizyz3Bhfv/77MDCbOmSoTi9qc7abo1dPPWNz16Cz7/ucO35IV0yquNWTH11uwVTeEnDy8C4K8xV3gLgY0KITQAghMhDA5wI4HQhxCYhxB0AlgM4Mvu3XAhxuxBiM4DTs3NbTa3xFget7Hmq4lo2kTfa3bZf2GhhLu4q58J1hY5qID+SS0bRwvbBPxm+E6l2rspz44tu0V+Mnf6KHUxpkZS7KCULpjtY4NE5Vm+/NLjUrIvlc119mF/ZYEEYiA9QYjbKVmR92c3FRJKpqnJT3ejIh/x6laWtGFbORzc3UUzyU5x3+iuFJOv/1SnMPmUX08IMUX4O1bILIUtVxFMdkrZzIrfoJdWXu6fuvj26HcI1K9cWzik8t8K1rovX9lxc31lUFVYuFE1V1nZr7OINmezmWZxJCekrLSBGrrC2UF82VpgFgPOI6HIiOiU79mQAzyOiS4jot0SUb0S+B4C7C9euzI6pjpcgolOI6DIiumz16tU29xIFmVtXTm4BKi5ksEq7ko6+wvvVnnecflXtmE5eblV0CilbuOaNz9l38Lm29Wpg1WVeZRq2FNvTJ10DP7HiPafyYba6p8rJxYG/aSrOJUrGCU99Ak44+AmN5735+U8M4qtml0ZclTnU49dZmF0rWU0Jy75WX1qKLyChrNnKPA2iP7jt9FeOsJC5ZMTaDc/Ah9mHYtuTrMED4LlpjaLeTHXVi85dFlBWt8ZeMN3FooXTAxndDikNGi6Lw085ej8c/9R6fzNwyagt+rOjNO5btA37xfx9RfVdJxyAt73gSY1nh16Qu7iwOZbSJSOoRDWjVthlmCrMzxVCHI6+O8Vbieho9CNs7ADgKADvBPB9CrB6RwjxZSHEUiHE0p13Vq+gTEXNKopyRwCUd0WzWnuU+w92+h1ZfUquKMs8XWP5mt82ecRhVl2SOqxcqKAjJtNe5XIK/7D6PszuE0J1C7PGJSNAHGZTH9K/ft6+Qd4wZJ3r5157GJ63/06147b18K+fu2/zScW8ZI/Jt/p1O1RSjkIu+suLa5CiJr1UA5ermLJLRv+v1iXD436qUTJkz9jV1Uyg/BiiuGSoFOZORxpWjuA2BlTjMAMohcXsUtkFUeZWY0J+6mF7LZL+Xt0rYba26M9Y0uDTVgXDRVPb6G9cYi/lb495ktEaENe2qcrSf//lMJ59zFZvUqfGdtGfEOKe7O8qAGei716xEsAZos8f0TeY7gTgHgB7FS7fMzumOt5qtC4Z2RPdNGO2QUOVvMPoD4yoteLStFahgoXbSUr9m30c5uJ0sfyialmGjqI3r1uxwAZy+bBdiRyjoc+f6gb1VytayqqdV80lw8GH2dSHdKpDgSzM9URe+JRd8fcvfHLtuO3d2PrWhlr0V31xKbaXUDLyPkiW2k7b9DfK8XLJMMoDsjxYhuCSCFGFlfvjPx/nkHAd1Q6ZQchcMl6VuTLVF/35o7JIdjtyS2iITblymdsXrJc1RbL0DO3lqbJZdcmopm16d8XrFhbGXxMLr8sLQJF3n3AgXnFYbTIeQLlthjBIxZ4ptWEsLcxEtDURbZt/BnA8gOsA/BjAsdnxJwOYB+BBAGcBOImI5hPRvgD2B/BHAJcC2J+I9iWieegvDDwr+B0FRuuSkZWeq0tGnlaH+kqDqYXZdhpGbfFQtzDVVK0JquxVp9pCDz31qcMwLhm2C4jiuGRILMw2lotK2ZfDypXPrYWVs4iSkS8WNd60pBNG9ZPJ6xDhiH0W44dvfpZX2qYuCQunu1i01XS0RX8hZ5yqpS4bnPLoH14Dl0UdDVFuKgvzLtsukJxtT909KZySCQgQET6RbYQRIyy/yh2578NcuTfhbmUsRXTJEilZmCtbRst2nzRheJ08p3k7yf8OLMzGEuoU+5qmRx2iTr/lmCfiP199qPS3ct/kX2FK86Tsw1zDRBPYFcAFRHQ1+orv2UKIcwGcBmA/IroO/QV8J2fW5usBfB/ADQDOBfBWIcSsEGIGwNsA/ALAjQC+n53baup+t0PygcR30V++BW7d/aMgq9AwbBcuqE43Sca20u6+/QLzcDSer8Snn3JU6XvIRX9F5SSWP6QNnQ75xWHWUFSeBEQ9rJyFVe2n19wLwPylrksUxJIgSyK/jaVLdij/YFkXZPci8+u85oPH49J/fmGwgabvqjX8LlNCbKneuipKBjCMzONzPyZF/ZTd+ltJu8aUlU3nx1r0VzOgSG4wlEtGDB821bOUWZgF3OtZMSmZSwaR/PaI7MLKDfy6GyzM+d/hTn+WY2jxs+TeQmH7xENbYfP6oS8et3r5p4fsjjc9ZwkAswXho1bYZTQuwxRC3A7gEMnxzQBer7jmowA+Kjl+DoBz7LM5Omqdn8RNYrOjwpz3C7lLRlVUOe5qUamxQ7WIwiQd2yHsdUftoxyQdCH6XNrgUfvtWPpei8Nsn+SAnhjee9dy0YudzXSYy+/89TPxjYtW4BfXPyA9U7WBip0UCZXs+iz6u++RjQDMQy12O/YKs+xeZGmEWrRSHBP/5vn7YfFW83DsAbvUzsvrX6huXrfoz3cwGfgwa2aScoU5dPjHKp977WG4/t5H8b1L74bAOq+0hgpznMFWVRIXvPvYIOnTQMFTy4qhSHQ7pHC9cpMl82FeVFCYhQBueeCx0negb5xwcslQHK+7ZJQtzC5lKVvHNCpKLhkB0ot5O599zWEA+hub+UR8GiW8018DusgOQwuzqw9zno78jbsU89nDV6mqqA7TCWhiLg3m8lOqirurZV5FdaGZalGJCcXnbusC49rpPG3P7bH7onJopM+cdCiu/1B/759YFmagnOeq0cTG4jPYAtfw2XY7FETDlFl61ItPze5nMANUSPs9L34K3vz8J+KAJ2yrvC7UIFq9p2rkAScUfYwsuTys1frNM26yMOwvVbt/An3Xj6P229G6GuTnl9p5rnhF2ulPFuptt+0XYM/FW5WOOaWNYd5kM47hndiGNEUoyS2DpghJXd1mMGMBrNs0gz/c9hA2bu6PnUUF1uYFrUnxHW4ullmYww45CB3u2/bltNg3udvMh6RQ/7eaNxU98k4sWGFuQDcFlzeWvztuf6e0BwtuiADIomQMPz/vyTtj63ld7LLtfOtwbD6+cLb1mqjeed344ROk+bhrzYbB5xBDQc3n0yOtoj+f/aIvNzpEWFhRiqe7HWydKS5ecZgbphF3276vqC/eal5NGdvioDA/vsXsJbJLoRb91Y+pBlHTuxm+0KZ4Yarnqh6HuSDDRUSBgbKZyZWll/swP+64RqPKLoXYziqs9IV8+rhwKFcyQ24Z3JiNUAmJYVqyGcfhbICfDBlEMlc/MajLrz1ybysxRXfovBrL4jlXX8Z1lnUX8vznogdh5WyFFM4XAtg236UyxjuMxQMu9U0B8tJGN4g2wQpzA7o3vryyHveUXZ3SLg5DfQtzWVbeuN9x3P54/pN3xvUfPgGvOGwPewuzh0tGCB+thfO66FDd0u0S31eHTsGwpdiR2/owu3Y6RYU5nw7fd6etB79Pd8k5Qsrpl941+Fx7pgJ42wuehC+87nD8n4N2rYeVs3hOthbmTiV0misxpkZ7WQuxbQMuTUZWVbvZ2oacf/g/w4gfRd3DpppXz83LTVZnfXcXrQr83bsa3BZsX85l4jJ5ISPKyNIfHqiXncxdx5SBgqex+MbQaTokcYUQ7sq5zCUjd5ORv7wLdT4MaHLJyP8O4zC722MFgHPe8Ty87pl7Y0mhfza6ODChDbV5etosx/XQajWsMDdQj+wQzn+paeeu/NddthtaZmTxmptQKsyVwzLFJdgCJskUY+gITdXn4eN7mUeRePmhu2und2W4FlmnM/RTfvXSvXDJe48bLIjqp0u4IbPW26J7ARAQmO528JKn7QaSWHxtFv3l2+hW3ZSOO1CtRKTfGtvwfhwtzKFsjt0OYa9s97Lz/+kY/Okhuw9+q/rv25Lf0idedQhOftY+OHLfHWrnvOqIfhTQw/Ze5CUrl2fiUmTTZGWlbGJh9nk6slBv1erxtmOfhN83vRwo0h7UNanFt85bj32itRwZHYm8souIXXqykKi6hZi56C6RlTKrcykqys5nH6txmC16jZLMvXbYCh99xdMaIyjZGgNsh6zgi/4q+f3OXz8Trz/KbnZhkmGFuQHVbkuAv/VVVDqV+hRcZuEqNAqZJboJYwtzxNmYjiSAu882pXlWv/6mZwyO6VwybMss71hlu0c15s1VYSbCvKwD3jLbw67bhQmFVaVab6tFU/191iKsXD7tWrUw76K5l9RbY5vSGyjMdteFGsM6RPjkXxyCL7zu8NJMA9B3ofn7F7q5ghXZY9FCfOjEg6Xld9Du22HFx16K/Xbaxjn9gY9p9owP33sRXug4I6eUUai/+TPzWSBrKiun+rw7HSptLW5D0SVD6T5RaC/HH2TfP8noGzR0smwVv7qFWWd4GPoiu80Mqtrc0CUjtzDn+bNLv3h+01jypdcfgY+8/GA7AXnalucXFWarmSaNa06RZz9pp4G7HmMQJWOuU4vsUPjsOzCWfBJlb/gSC5fMt60J1Yx6teGHGOdVyo/MgjHbE8qA+aYcU5j+rFkqPSzY+YpxF19IVwWwQ4TpTN7m0KtTCtQtzGWqswo2O/3lg6OpD3NfnvGp2jSestt2uPG+RxvPNfZhdnbJCGdh3m7BNF7ytN2kv8fYIll+rrOYWhpn/O1z1Oc4+2QMn+jQwqy2ZocNkyeCbSIDYFBQshm5mDPh0vEH7s9ebmFuTqzTsZtBHfrg69POm3A+nvuUZdO1Jxzs8xIjrGpTuW+KU0PYrXkIW5gb0HVa3hbmQmpE9eo+UJgrgdJDuWSkpEtUe/noCTGwqMbIok+SswYDrwqbDqYaCSUvj80z8Z5Zt/JmUX1xKlrqd9l2vnGIuH7aucJsfk0It59uh/DzdzwPXz15aeO5xh4Zg+leSx92q7PVxFhIbuu7CYR6kQ7PwPtVYv2rxmQPhSzKaIjnVN1xUWdpLVbHkLMZMstpMT82lCK6ZI/C2CXDpetTWZizv92BhTl3ybDzyfCZrbTB3iXD/VoZsucc9IVwzGGFuQFtlAzP3qq61W1t0d/AwlU+b7ZnN+ypw8oZXByob5BN+fV6IujUafF+XvK0J/iFlcstzA75c60VRDQY6GNamKuWnmrZ5J3wy56+G560yzZWW2Nvn0VW+OLrDze+JuTW2CF9+oaDuN11obLQpKinsvz4hWGLJ0dWPnkfE2uzoZoPs5Dnw8ctK/8b28zx1N2H6yM6RNB5XtneTmnRX3ZPsmeSl+fAUkwEm97aVO+tbVwCs+ukMh2uiUXoqBZ5OYXcVXSSYIW5gbq7QNEq7OvDXNKY1Rbmig+zLaoZ9Wrn73M3TZ2IbMpvVsQJ/7THooXYffuF5TxZ9nJ5WDknlwyPejHwYQ4co7pIk1JZjJzQ7ZCVS0ZeiZ66+/a2l1jzmiP3GqZR8VXUYb7mTxinWSSE0n5QYbGnCicpLv6hASxMpkXiYr0rW/+a5Xn1c1I/X3+q+SaoZwap9Nld+vf/ZrhlvDSsXOFlwLZPk0XC0Fr9B2Odqw+zWZ+mMh41UprFcL40OMVZbhc5CyoGIVkxpt6c5S+WNu8COCpYYW6gFqhe0hEUsalatbiqNWt2NmCXFGb7ymsaJSOEyUqVRLdT98nr9UTQ8E/FQac6pWltYe6VXTL+6jn7Gl/rU4r5tGVMC3Oe9hOyhXjVMaSoIE53O6WY1I049NquHfJR++04sFrlViyzWR+zTLrGYQ6hQf37nz/dPxENNrfkZWE29DHtn2OH7PzBQulCHf7GXx1pmXKAjFiS18hBUhLFMcSUe9FIksd3B+QzgKH8fPP+RBaHuYqrZV35CLIfhi4ZWf48lF6blzrbtmN7764uzAJ9XeKiU48rHZdHyqpfG5OPv/IQrPjYSyNLcYMV5gZ0nYjvVEXZh9ks7qaLSNWiunpYuXjIw8qJoBbmref3ldul+yyWygPMG/vMQGHu50+3U1kNj4IcuGREtDA/uG4TAGD3RVnkiko5Fev1lHLLXDkqZ6G/ft6+QcKTVRlYlvOpbEV1+uCfHIS/ef5+ACwW/eUuGSOwMJsk4SPGxjIZctFfDGQvxsVn8MxKyLygeRHy5u5q+a3WZ905PnzmpENL3zsduSJYtHi7kt9LdSdWYPi88r/djutOf0156P8dhJUbuIDYSoqrMNoq8r6z3Iu3nldJL7yMSYIV5gZqymbhq+/2jlULs0lH4eaSoVCYDZq+yyIhGURUi9bR64mgi3N23GY+zvm75+Fjf/50qYuLDb2KpcrKIuchN1f6F2o2KDncU/HMq8O+WbiwmoW5cLN9C7N/Hdht+wU4UxMhwQWi4cYeeVtUKRpvfM6+eM+Ln2IVtipfQ2AdVs7u9D6JHCPdxKQbMK3yJ8mWzKc1rF97ZcaxGDvZJ92SD2+/zqmjB/m56AHAztuUw96pDAwDhdnjFvNZn3mFxTgfz2dQKhZf60Xtg+ctz2B+vN9XDJ/f8FbNbszHvc8Ou8SLM2ohsiXbuITV5SGsMDegjZIRsCOWbQk6nKYrdJAO1Vel8NRdMqyTNqYrsWD0IvgwH7T7dlgw3e2XU4AexGXA8HkjP3zvxXjvSw7Ex/7sacpzzvjb5+DAJ2zrLCPnkL36fsbVOl60KnU7ZLXTn3Jlf6TKlaead/RN1mC7DU7srwHclAsX7yifepbMJcOiDdp7vuQXyBS9YWIhFy2ZxGF2S7ic1pTkRTWU8UIGEUk3khoonB7tN5/1KVmYFcnZ7vRnYynuEA0W/VmXpId7n6MYI0o7fgaJ3lHXmNnAPITjMCvILVH1Ojg84L3TX0me/A0/z4vssykqhSeGvqxKo0P1eMuzvV60LWz7lopw02g2z9qnHIkIpxzdvHuXj7L0pucswdoNW7DVvH7z10WCmeqS1U5/KmJ1ujWXjMbFPzYuGbmFmXDJe4/D+k0zRtcN8uBRbG0K5RSkXzCsAC4Kdsm/VDIrUH2J8ilbmVHDxO/TNN08rXndjtItK0Zb6pBM4QqjGg6jZAy1u+otFJ+bi+JnUiTdwixnNYxfE8UcbTM/otpkeevF/u78m1fhlQcbug6qDBuSAkm96K/NsMLcQG1r7JJLRjg5hPpgIZ9etE9bOaWeaBoYUISVE8OwbbZKTBO18vR8+7Yp9hT9i4/V7KRn7I0DnrAtzrxyJQD5NDPQv4/pjt2iP5dS9nkyVWWlycJMFnO+RR9mm10XXR/NKUfvh/vWPo6fXn0vtl0Qt2tOXZ9NkgjxkiCPLBTSJaN6IGx7z9Oa7lI9/nnE/lq1UUoIl4z8WcybUidS3HMg5G0W863y07bh/S87CC84cJfmEx2xtjAnGGxYXx7CLhkK8jqic8koVtZPvuqQ2u+NVByFzALVO7hkGFoIY7eL6pSiy6I/2Z284Vn74NVL9yods/aFa8CmY2p7J1a1yurCV011bXdibJ4lCcmrn9F/7nl0kaYXiQ7V66GK/CzrtQqO9zrdJXz8z5+O751yFPbaYatmMS6uHw6NwssiW3E1iI2RPB8XE8iUyvA3N2+qo9wwKEZR9jeWqhwUYWTJomTkZVatj7YblwzONXXJcNzpLz//r567L5ZUtqlvvDbiRieuY41NjnjR3xC2MCugzCejFrdR4dvzyiP2xDnX3mclo6wv1yvlsHP2q7Bqlwz1y4AtTX2CrM31F/1ZumRI5Hz4xIPr8iobwfh2WW3rM0Io5dVQSzkll4yOnUuGiw+zz4Dy/pcdhHedcMBg8ahJjGnjOMwDlwy7PLk+mw4RFs7r4pn77eh0vQ2pfJgHaRieF8pPN9ZLq2kcZl/p0121wlySE+g2iVRbY1MwOUUfZp3rnptLRnMGu8VZTleN2ZLYw0asTUUqtjwmgxVmBUMLc/l4yS+28pt9Jz1MoLiCt/qzrw/zFp+d/izR5k+imE1btvi+z6BZPsJO7ZWl3vSREwAAP3rLs3HDvWu158aA4H5/ee6mBgqzOqWpbsdu0Z9KZqQi6XRo4IsNBF70l6dpu+jP6uyyr7SdnDRDWaoBM0QdsQ8XZpt+nRiyprsdbJ6tK7B9eeEFytaYAB7PXtKnzJNujS1Kp7v226oiKbkzdgizmRldyE7QksZ/0Xpr7MAas/Tlr3IwoSdn62CXjAZ0LhlVpP2BhupbnFLZKH12ccno4eA96juHqeQdstci/M8bltZ2AfJB1hEKCIcdpNx8mEM38gXTfcv4Efssxl8+a0lNdmxCDJrDbVDV50x1SfnCZYPFe5QXzT7M5lbMvO3blrXrIJZycY1dHGYPlwzYlaHLS3ypnUt8mKt4lbLGzzck/UV/s9LffMeDWiLo+/dKX5wHPsxucr70+iMGn6e6RZeM8nl5PenHYTZPv2kOtpjvqU4hSoblor9U2M6wpOgzeNHfELYwK8jrSNUlQ9eYbUPiVN071D7MVDrPlpmewNbz6o+6vtirz/xuB//noF2DWrCqLhKD45YijIvX97XYQ4tL0b+EkNFtsDATUebb6DCCSdIq8r1TjsK2C6bN0zWkSVclwGnRnw22j6Y3UPLsrnPyYR6Rfcgkr2EszOHSMhMoj8Ps+0I7b6qDjVvkCnMMVHGYc1zvprhpzFSnPo5VJfZ3+rPvb1TlfcQ+iwefu4VNmBIOB1EFxXLJKMLq8hBWmBVQZvO10RVsLUvFpGUdhUy0a5SMrSQbYdTSj9gr1PTXmn+omXDTF5I8WSHsrdildCTX7rl4YcM15un7ulU4XZtdnNdX3Ra8oV5oqsnsv+u22KGyy1QIGn2YLVbhi0SK7CCkVorRLyP5Irw04gYVMNZOefVZsrD3lqc13SU8+ni6sHIkiWIUatFfTnGTqqoxptjWQsVhfueLDii97BY3YbKeyUikMduKYQtzWtglo4FaWLnC52o98tnIpL/oQvFb6bOTWUlqJVN2Gh7tQ7u4S3IsVmMcWDAidHQXvPsFWpkpCOGSkVt8qr6LTdOcelTW6sr34hUBn5GJD7OxwuyoyFo/GwMlTyrHToozQeq1qUuGp5joPsyJnJinJXGYo22aAnn846LLXAg5CwwWeLuGlTPxve12qLY1tik+9TKmrh2vng9zzfryEFaYVeQuGTrzWwWbkFVAtSHV3TlkIZLcpmH7/H/P21cjX3FtoNau8ikeKBem0+SGJ+aKe352CgNB/miShJULcHX+gqf0C3epa5WkfvLW5+Bvnr9fTYn0KyJdG2xSmLWXl6XkLhmRFdmULhkupNtExV+O6+6MxulXZwEVVlhf6dNTHWxWhZWLcGuyOPnA8D5C1IHtFg4ntKvdfv63Y7nqT+eCU81zP+KP+QLmEMRuo+6GE7UbXjgZkwe7ZCgoTukX0bVl6ynV2tS3mXXODcI/v/QgzJ/q4nPnL8/k6+8tZDuhimXPdbrb2CVjYGHOJk0Tum6m6F5CPJuBS4Z/UgOqaR2y1yIcstei2nkhBmBZCs3+xi4uGXEtzMUFT7FxisMcIFumSVjt9Ce73kBeiLjSpfQiPLb5icPKdUi+liFPP0gd0CVSdMlw0ZgNnmkxprxtO0g1fNjmK8lYk0DGuMAWZgV5265ttlSo0LsvKvuy2nfEhWkP1BvLYHqxkG7QXauCpdTcyVVzPdwK1VK5sPVhtkrdDwo5ujTJ8ujG8vBOTYv+ohKpiJrqk51/ee6SYZsHu/OHM0m2lmwfFzDza30elc4CWJPjbm8YHnMM0ecjM4ak6W4HW2YUBpQIEqU+zBFkvfRpu5XXgIj8T+5K4xglwyCb3U5nEFO+rT7MtoJcq7mNlJqMEQwXbYEtzAryjkKmTByxz2L86C3P9pZR9YdW1sNChXU1QskalmybV1+0RgSJT0Z+P7Z+pU3UF7Sla+VJ3sgdhbzs6bth7x37u8h1Bz7M5XO8dqaynAGofvYl5Hb1zhZmy4fjOtuSCq/nk78MJLZTRVv0VzNqyGcGfOv09FTdfSBEhBNV05b7MA8J9fQ+/7rDAQBnXX2vVFbXYo1BERMf5qlCHGZ70owftlJitatiPnjR3xBWmBuQdSLBBraiS4Yk7JpshbmbaLkDf70DrnpVu3PaG5eWLfCVF4KaD7Mhtrpc/sIzvMwsAZ/uMUlYOcfr/uzwPQafm3yYXTpj03IrprzN/HDdkM/C2yp53bEOK2dtKXWzivrcqs2lYeIwm1/hw6DPjDR3WuszhQiitFSboGzR34Diy6aj7Op10rByovDcAlj/y/LlF3Q6ti/sQ8t0lec+aafS96kuFaJk2NWzlC4Zdm0zrHyTF4+5DCvMDdTcyAJ1kIC5hbkch9m1g5TIj9gLvODAXevyJfJiR8nwTsfhXBfRC6fttgh3vb+igaWr8GH2qRbGizILN7Boq3DxmPN7CvFSW1qIZIHrs0kbZcXi3BDyIsjR+TBHs4pJLMxh13r0/87TLfoLJ26AbNFf2cLsOO4oLqseLz63EMPSio+9tHZsyiMOsw8xx9nAa/4UMlhjzmGFWUFeR2Q7/cVapWwSrMBXdvFyxU7cUag2OudFf6by8igZAx85f/7rNYfhgCds23iei4J1Y7bVtimuCkExTGKeRrWO75nNDBzwhG2wduMWu7Kz9DEHgO0XhlOY83oWYgGdcxxmR5eMFMOS0+CdcLz0VS5MdnDzcsmQHIuycYlk0V/MBYdEqkV/cR9+VaK1D7NF25nqdNwX/TnWy9jll8LV6ZgDdi59n8MuzLzoT0VeDWWdiEpZ8V20YrL4yrV5WEZvi0LR+uga49Z4a+zB/YbTmP/kkN3x5F2bFeYkLhnOFuZhQUx1qXYMAJ79pJ1wxt8+G3/93P3slT/D84r5X7Qw3AYmuaIcYqASji4Zzn7UkaNxlK61OtfHJSNLwyCJEIv+cjpEeP/LDsKrl+5ll6glQsRp79PdDnqi3jaBOEqYymAzmDULPvVfNaBkbS3i7EzfJaPqF94urH2YHcvLRs52C6bxxmcvcRM0YbCFWQEprG9BO8iiDzOhVottBhutGEXrqB7OXwS2znYFDNkxUyUf1RjTpg3Y1kc2ZQCIQZCMBG/9rjKK42/+vGVldPjei53SN6WY/+1DumSQiUuGoR/7wMJsqcg6+5W2k7Yv+pPHdwf+6rn7Ss/3CytnbkDxYegulaYDawwrF1jesMjKMgd9kqHMwfM2OLvbKfgwW5ZrsmHEcsAKXffyerf1vLJq+KbnLMGvb1qFu9ZsCCpv3GALcwOyRbXhKmlhMZ4sPqxksHFtuHkaZZeMcmr5VsWfeNUhjlI08kneF0QLK1dRxFMNPH3hCUQ4yii6ZMQIK+diYQ6pnOfW3UMlsZ8Bu0fj6g/r6mZk+0x9qlnqsHKmidjURKkPs+NLjimy0J+pXTxJ8dmFA7IZM+miPxQU5sA3WU1t0NYcG4+RhbnTGfowt820nJHKwqxiz8UL8d6XHIivnLy0dHyfHbfG7951LHbaZn5YgWMGW5gV5PWwvjV2uA6ytuhPIiv/bXAsckM/fO9FTo2iKV/1Kbj8eByGPszpesa+TNFaSyFQLo/cGqvakt1RgNFpxTr9pF22wfP23wnbB3DNmD/VxZl/+2w8cZdtvNMaxPS1NCtY9w8JrLBDUfYPO0R/Z5JEmGgT9T4zJDKjRgwXiVRK+Nl/91wIAKf+6NqacShFzzlYY5L9tY1yY5PHqdLW2HakHEdsCG/5J5xy9BM1vwcWOGawwqwit1AmWhkn8cioZkWeH9P0JRVdvoikothay1G3KKkPs7WF2daHOSEJOxPXQXq2oB3niuBILMyVwlpgESWkKbuHBbJYu1qYbSuCyF6yrC3MHvXNLkpGuoodSjGJEYd563ld6UJplVHURU5e1jJ3KdlMhK8CM5VtYiSLw1yMCBXPJaOMq/+/STl0u4Qt2VtBSv3X5iXVeqe/wo3vOMetvylgl4wGZKF2tAOoRYUvNg6Zy8Lge9HCbJ68/JpC3m135/NB7ZJhl469ZcDyggBYDWKO+XN9NsVFi1PZ6BS0jCxdZnxIZe2wFeO8uZDbZdEJ4sNskEiI5zl8yfFPK2fhdBedDmUhz6qzgHGeW56mrDkF2Va+koQsrFzxvPBtTe6UYW8IyK4zKJPpgoU5lSnFcbLJPP22dhoTCivMCgYuGdJVyvprXJB1xsN0C0quq4JlYGGO1fkX06/KjrVxySBdz37RpUNKsTOSrYjdtl8AADh4j+0Hx0ZrYfa5ut3kdc/0bkbiw+xxrQ0Dt7JU8hz7FSOUL/2JXDIiNo9ORxFCNZ7IgQzA3fe8unhcR9fDh7mtPdNo9OW2lkZ8WGFWoIySgXAdZNnyq/YlTeuP13iWE6r4mvbxcg1dMgZnp/Rhzv4m6MVcSq16TVdRx1NQVWiSdvyRb9f6Xhx9mF2UQpdHHeLZmGbV99HEbO9SHVbaZ6rPN5dl6lISpuWQwsKcCwvtlkPDDrr4xzus3FuOeSL2V6xfmOrUw8q1Tvez3Oov9aYic92gzT7MDdQGGLv6bAyBlI235MPsk34Fmb9g6TwnHzyz466L/qyjZIzCJSNFWLkAHeUwSoZ3UgP8LMzxSTG+WFvJ8g8pC8XKiTm8C4D0HG8pyPrnOAXZf+mXzTjGszCXZuUiandSH2YUnomzm5H8QlVyrm0nl/PuEw7Eu084UHruVJekM8ZWgiJj7ZLhczFjDVuYJVx3z1qs3bhF+ptAuA6y2EER1TtEWf13WhSjuKR+OHaLkyz660hGBqMU9Oh8AGMRz99PIitAGqbWfas613DuS572BACT7Xvnem+2l6X24fZeP2FyvmeDFUBjQbr23yS1aYhA27CXU9a5lFHpPH/ZgDysXHWNTUhUO7/6PJsmpjqELY5bY7dVF3Wd7W5r1I+2wxZmCW/+1uWDz/WKFSfuJkFuzQYCKehU+lNKv/Q10iBcXfTn6rdp68M8qR1DiCphojBbP5+G3z/96sPwwT/ZnHwqMSXjcGs2WQyy6M9AYpjdGeMZ6pUuGSorqsP9UK2fTtN/NS36S4X1InCLmcqpbnFr7HaqzGOx6G8yh1Qj2MIsYc/FCwefZXUjZBih4rV1fVnU0nXxN1VdIXVZM73Ykur9OS/yMMyQpeE6KGmUQX8ZKRYnVpk31cEu2y1ILjcl1s/f8cU41dNLtTV2CGKvWZCGlYswimpdymIYbEix018kkdVZi/y52a9pMafow5xy5iPgBN3IGQdjQEyMmjoRrSCia4noKiK6rPLbPxKRIKKdsu9ERJ8louVEdA0RHV4492QiujX7d3LYWwnHnou3GnyWhXoL5SNXTJog94/r/1aW74LcOqJPzOUu1Qtg5D9EU2xHsKBtGEPV/Bpnn/REFmZb2t7hp8DaLz9xJAkguQuzMSFmhJr6Z9fbIVkko0g+07KXWWnc/IDydHH5g+/0V1vUUpbnnZ6EbofS7/QXue3suI3/Zk+MOTbvxscKIQ4VQgz2TCSivQAcD+CuwnkvBrB/9u8UAF/Mzt0BwAcAPBPAkQA+QESL/bIfB52FOahFoeIjpvDISBclI6IsoDwYDnZRiyRwkOoI1niMh33ZflctxgzXOm19mUuUDOsrwtS1uLMuxX4lXh8mc5vrr2lRn+8sS2NICBKHufK9I7Ewi8J5sXuKXLJ9XP7hsr8mprodzPQEhBAtdtWzy9du2y/E+f90DJ657w6R8lOnrSWXAl/V7z8BvAvlMjwRwDdFn4sBLCKi3QC8CMAyIcQaIcTDAJYBOMFTfhS0O+bEsjDL3vAH3/092kwHrHgrzFUKejx5gH/jtimPlPpnCFmdGBbm4CmGJ3YeXf2+k8RhtvApHsjxqiZ2pe37bEz0IOdFmYo+LEoc5oZ8DD+HkS1b9FeVFZJquoOtsR37JNNFf0B/b4V2ejC7Wb733WlrTHfTeNem3PWzjZiWsgBwHhFdTkSnAAARnQjgHiHE1ZVz9wBwd+H7yuyY6ngJIjqFiC4jostWr15tmL2wLJgaFkv1TTTswjhRe4MvWWHz3wryfF+MdWn5JN2Ur6p1ZujD7CFUK4+M8hVWZp+QYdrUshy1MglbzTPflrpRTGstN31syi2k+5NeUH5dusHIziXDw4fZYlFWCOVMxIr7CQCoGzVEpEXgeaLJPAdki/4qM6BB5Q3657JQ65cPm/pVvsRJDjO3MY2S8VwhxD1EtAuAZUR0E4D3ou+OERQhxJcBfBkAli5dOpJqumBar0CoGrXtgGcatqfkw+zYcqU+zDJ/PE/rhfKKahihpvM9GVqY01ehFBJDDWD/+epDcOheo/eMcrmfVAqmvauE3enOFmaH2x9FewASz77ESpcAWWgh5XjgkZGORruLcX/yOMxi0Masx7amE6oWZskCdxs5NluvCwHrTjqZhXnC5EwaRhZmIcQ92d9VAM4E8HwA+wK4mohWANgTwBVE9AQA9wDYq3D5ntkx1fHWMb9kYa7+KqJ0WIM3btlvhc7Azeolv0i+yMMlfZdcZD7MnWIvFo6hxT5oslo+/7r++taF0/Gnx0I9p1cctif23WnrMIkxY0Mq/XX4Ymwo0aG9Fi8xCSvneu+2Psw+SDeaUuQpBLKwcsXZVOd7tLzO2f/f5JyB1d7ltdF9IEmnBLMaHJvGkZ2ItiaibfPP6FuVLxVC7CKEWCKEWIK+e8XhQoj7AZwF4A1ZtIyjAKwVQtwH4BcAjieixdliv+OzY61jvsbCLBDHjWDQT5TqfLgGIOuHTJTJUDnoDzblxTmA+xRco7xAPsw2HHPALnjyrtsksXy2NY4xd9ku5NY1u2c6Tv6EJrcW4n76LhIR12FILb4RfJg1M2Qx7k+26A+IaK3P/uYSXX2Yhxue2F1j6zrmvHbIYdbZpcytq4Sru9n4dDlRMHHJ2BXAmVkjnQLwHSHEuZrzzwHwEgDLAWwA8CYAEEKsIaKPALg0O+/DQog1rhmPScmHuWoXFeE6rNKiP9nvEv8sFx9R0ytEYQoOCNs4aos8sr+dwVt/WFQ+crGxHzzDudjEwiaHLXdhbiWu28T70NaBL82iP1crZj2snBDqnf58FGnplRFnBPNF50KUZ1DjLfqTJ+xuYTZ3yQAc6lmifo2txO2mUWEWQtwO4JCGc5YUPgsAb1WcdxqA0+yymJ6ihTmq24LEh1nuklG4xHMhUrFjkSmTMUMyFYm96C8XOAoFLkWnl8rCbC+FO3xX0vgwpyX9or94KC3MEZqizJDg6udbRFU+Tetywi/6KzM0oNilY1MmxYXgtuNCsnaTTDFnXOCd/iQsmC5amOvo3madp24kPhky/7+QK3xjNBqdIpfSZ9o7WY8pqxRKeksNhGxhhvsCKdvrfOpAaneOZBZtEV6WboFy30UvihNzWbjkJ6/kK3mWLSVJ2pRdXfQsKLq5tNuS29bevU+bSy42rDBLmD+ltjBrp+A83HGl10r8s5wtzBIB6rjP4anukpVbt+P5Gw6tCX7p2F+TokNp65R622lzuSXJW+LRzmZjCcDfhUoYLMr2KeZal6lz0bP0q3W5NNSLT774urqEJr+10C9YdRe9yiJwUyx8mAfvIC3W+FqcNQBtV+XjwwqzhAUNUQ7CDWzD5iGLGyxrPL7re8t+XPoFJSEbR3/RX/147J3+UlsSpBvQxJATXwSTCFcfZq+mk9DiC9gpNF7iYr/0R54lq25FnWpWbpimkB6PFYe5KtVVjE1YuYfWbcbjW3pW6XvVq7ZrwYwxrDBLKFmYJcHQ4uz0pz4vRGcle7sOunFJw9XqRX8eQg3kpbYmxFnCKJFjWSlSFUObrTdtJ4WF2eXxhOx/mvBe9IfmtuHnA1zPYYw+rCNRYJvWt/jJkxlsinGY41DtL2wNKDb1Jb+Xr1xwu5UMe0kFmbYGc+4/Ww0rzBJKPswSt4VOqFIrLvqrHxp8Ky/U8xO507bzZOJr+dCdo0PXQch3+oujYo4irFxRbnQ5acRY4/XSNUcHC1u3hZzgURhGjGvbKdWbqBbmevr9qBKqBXOesuriAqQsp6OQ59yfNTyHmkXbcxG4yWVD9xJ70nVN7e4E2xrONBWmO/3NKYoW5iq5ChsCFwuzs49flsZrnrE3tp43hYtvfwi/vHGVVlbIxlENyRRixbeOocUkfQdkI9I5e63ttxwtMRY31O4hxQELt4VxY/AqkOjmom1VjWxBr+R4lLj8svYQseJLDRdFg45ruDdL927XdUCT0nYmrm+bMNjCLKEYPF2mcIVa9Fe6Vrazk6T1+DaoTofw8sP2yBZXJGyelNaHOae6e1VsVINqcDkt1ZhTFne6QdLS8hvRSuZ3QeHSxBqGsUuGZwUy2/jBcWEZqDYemLiAuGAaZjQ2A5/q4Anr5RlTeDaNIiv+4a2EfaVbDSvMCi5497HS4/0OMry8+HGYqfK9jlAcD0HN1aPikhFcniRMXwpkg2oUOW3t88eg0x6DLBrhVAUcbt7n5cxmJ7YQikzIGcAqspdhIdT35mVAkQwIQeptUyIKebH6m1p0EGt92Xymsq1dZhHnCceUA8KkdKAOsMKsYNftFgCQ+TCLYEqeVK+SdFjlOMzhaqt8BbbfvemulrkaRlv0l8txXNjoWs7pLMzpsHIxiZeNILRx0EzttgCkLwfTW/Pt30xe+n1mAGLPklHlr+4cwONeqPo9vB+2Vr7S79vR9cPknLReLgUZ7esV25ej8YAVZgUq+2RYK+wwdV2nG2SVeq2DbG40ITvL2oKZgeUpnjWoIMY9HYfzk4SVS6XxtNaUPXlY1zWHZ9PGwTvH/v4lB818Mpzox5KviIPGRc9nUaZ2xjGCC0hDPkLLDBU1aVA+LbUw28psb+tkAFaYlejjYAayMJfSzI4VBMris7ooY9ItsGWuA/HGGuWiv3gWZvXzi4pkUI0ippW20rkb6cIHG7eFUKSSNZgyT1RfI+rL8nSFiKTAqpzmYiNKn9o6EzHAwoc53xSl1TYAjw7U6kruqJ1ghVnB0MJcWeSh8VlzXUzSdGVR3pN22cZOhiJ9lYU5SGgng3SHSkJsC3NqH+ZEclrb6XNH7IrtM/WpAjaygtQ1U5cMzwgzJmtMfG5HvujPI0EFsjjMOWWXjDDCVXHrSxtZBbzP2gyuyA0oji4ZLbUw2zIOQZPmcg/PCrMCbZi3KGHlqHZMFp/1FYftgemuv3yZ64C0Idi2Dk3Byf3/7OSYZkflw5yCubzoby53pjn2RjI3K6xLHUj9fKx2MQxQp2Ms+itO+0uNDCp/XI9syBTYqLsYWh73lhd4ltasfrW00xwj5noRssLcgFbJC4hpHGYiwtP22N47/f42r/Lu3yRPLvLli/4iW5gTawhtDXWWDNaY3UnpkpG4/pgqSDbVR+XD3CTJK+yfxMgQx62sbkAZ/ELVsyJRtTYHTFrtw2w7S5tHyWi+jgZ/W9p3Mq2HFWYFMosv0OSS4SFPdtDGOuNASJeMJqo+02LQ0eV5Ca1p5c/PMUyGh9SJWvRniXtYpKDZGCusrLAFnMqsxS80IRQZ0U8oCv1Ff/X+JMZLf+qomDKFM4S7ie3lrov+TC4bLmC0k+ELuwtPDqwwNyHZGztKWDmFgh6KWhxmkgmrSw+Vn2AWBUt56S3MkkE1hpzoEiaTNm9akDSsnI0Pcwh5AdIwIfaiv7obm3pnQZd85GnJ+sWhcuh+h019k95jOhwql7mOo7nezIc5fdtva3fDhg03WGHWIA1UDwTsQ4apy3x5Bx0kVZVduwyo/O70Dhn1byborhCSL9EU5iipmslNoaTH3iHRFbamuGNtYXao5cl9mLO/xtXVJQqQ5eXOsX4pbtSkUprZ30aXDB/3EkWaQ+JuMy49HkdcSaaTjJb3ay7PqZ0jSLthhVmDqkKplBVr96uSLPXFQSw8NR9mRbi5iK1ISF4GooWV04QFtEvIVq6nvJbJsaflI4sF7pvXuL3QtveZemAR9ivE/QsRUcmrhsbM3cpiyJL6Z0cQlMuzPB5NomvbMalfbiIYZgArzA3UpuAiTfnJfHmDxWeVWUUkh6Ouwq7FJzZfrOEkbyAlvQKXxIcZaVRT26eTsrRTjXvRB1gLpbLIOA38pnlN4s7kapVVWJjVBhT3B2R6aWw3g/h1TBT+dzCgWDgxj1N7YdoJK8waVP6oMXyYdSmG6BTlFuY4sqTyK99z2fEszGU5qahaoZpw9yVrZ+/PLhn2DMLKJXykqeqPTVsIkSOBuEpkyf0jYh82nCErGFDCiykKrMmIa0BBTR7g5y7TeE6Wdlv7zpQ4jztz3JGDFWYNtos8vGRJOhDVQBrC6qd6GfD1j9NeI+n8XRd5NNGRDABJULyIMC2ipc8nlQprS4j+Lu69lWfl4vndlhMO6UpT2zCkIqOcD395tTSVxxOtMXF8+bCJkpGfNLdVPsYHVpg1yBb9AZFcMiDRmANLUH+LLBr1soxtYc5vsJdYe03mKpFKEBMdYTXqD/Ga8ne+0g7be/NtriabBvkonOV1GHq3MhcxQz9bs6uDK8+VdSapjbH28sxd+0alKLfRdY7HDjdYYdZQfbsexg4O00GW6qxGg43VaclXfMeRJbPW9+XFsQQPLDTJw8ohSWfU1qkxn1ufvD7c7o5SPNNRzX6kWvTXlxWHWk8VMdJPbBe9WpoGa/BsXtCaqplyDLVd9Dfw/29mFK4Ybe2n/Zi8ntoUVpgbiKpUFhLXWXxDNPRaEkrrec3b2Ch92w4yf/mIF4dZN6kZD1sfZmc5be2HHTWy1t6PA663YlsGPkXWVsuhb8sRBsJChZWLGd1k4FJWKpB4/Yq0TIS/wtdkXFK5otjLMThHKmTuKn8uTFI/7QIrzDqoErUi+xts0V/hs7yDHGQjOCTTmAN0XroOVlaWkT0ynC1q7ovxHC+0lZNGjDU8/LjT1meaykrWdmuctVuZx+0M+xF91KToL2fR/MHL313HVquwcgMf5nbXM6a9sMKsgYDyDJzF9I+1LEkH2XyuRfqSNKqWUCE7MRAql4zoO/35puNQILw1NmPDKF7OUikNcV+M0zYCAlWiVojB8fCyNL9FuG1ZmqNoyz4h/2KlPS5w3xsfVpg1qBb9hYrsUExbHiWj/FtIlD7F1QOBWmFtOjOyf3Y+iI3ChznNor+W9v7ca9szaAt2z3QcdvqzvTeTRXveeChlqaJWDNaAN/q6hRVbNaLEmwGUu/5ZW5gtqsswrJyViLEg5Xgwl7t4Vpg1qBb9Kc+3rbOF5FQ+ZMrfLJHGYba8RktjK6qUZaWDDD1ODuMwj8CHOYHM1H2+6T2NQ2fatjyOJg5zGjk29+YaISEVVSPD0CVD76drJSNLS6c4prRoR9tYSpFsCguziwivxcwTFGd0At81rGCFuQFZZY/hw2wTh9lHzkCeQrHz7SB1l8vWr3Qsa6Bp3zPwYbZL3ptUFmbbnsu1z26jNcZn/Gnj/eTYZs3PJSONHFt5To/W8iLn26HybqUxZ8lk/VfMfkV+DyK6ghRKl2yrX3Jb+5vJUeHTwgqzhpSromtCivkIkGy1Q5ErdvE6yH5ZxltAWReYyRlBz5BmVrmdPXFKa0pbF1ja5itJv5LLGlVYORMLoH2qDjlxp29hjmdAKcnSWZhLi/7Cyq4q6MlmIhqs9Zorjc9srRvbuDGHtW1WmDUQ5KuigzW7Ylg5SWMe/Fp1pwhgXlT6MFeSDtU2ah5rTSvMveVlrh6pp20Tdcrc908QqobegE8VSOeSMTnU+0b9DKDXxjKJ27d04ywR0Yc5kEuGjZU/P6V47qR4S6TyZprrLx2sMGsgoqiRHUouGZoTYvgwy3qY6q3ayG1STGMMKkbyRmFhTiCjrd3WhIw/SUlpYU6O5ctAmggzgfpvx8WaJuSGBOlC6cJ5rrMZNQz6Z8vleNpfVWOL69hqchWHlWN8YYVZQ80qGnFxzmDxmywfMX3kKj4nvqJ018u2lY0WVm4gxxHXN3AgyajfWuXKudzaekPpSOnDnOqVy+plwPGGUr2kqWblQsyS1Q0O6h4sTNtvTiREudpKsS3LYf1qvpD7GMYXVpgbKG220WBRsG2QskV/0g7SKlU5Bgbm7HgsBZakZRnNJSNQ9A3b4rBe9DdhCiZbmF3IX8StVWYHSaN5Qslqq8HtueaFSN6HqdqiU7x8Kv9N+TJgc9xbXuX+bBRfaXpWMtO2gXb2ie65auf9pIEVZh2k8PMNlX4h7aHFV/pzKDEFeXWLduxV2KPZuGS0oaeiyWmnvoy53Z32sX5xDr02woDkPrJGFsBAsgKlI0tXPksWXpa+X3R1k3AgmkEjjDgXH+Zewi4qaTNLsth8bsMKs4bYC9XkFua6wNpg42S5oMp3xXkG57hQWzBT7egCN3aZD2AKqlaomHLaSNsX0bS02AC4zWZYk/z5tLxCWKCKmhQlSkYuQ6Kgx0A1I5d6JsvZh9nkhSw7pdf2TsqBYL7sjBZWmDX0F/0VQ6G5Tp0aSctkDBGlXyKhcp1zxDQOc2wf5vxGUneOySzM2V/u+MafYTtPp5ykkuRiPY8dmtA57J/CrUy5YM46Z4VrNReXwsoF6j/l9hoR7QVTtRNr3M1rwrjpxWKSNjiZVFhh1qBqvOGm4Iph5WqHGvPhg2mS4cLKVV8+suORp/xSd0HJYgNHHVjc4S7fAYtp5SKplN4QSpnRlHmLrf8AlC56cSzMoyqM8g3G9mE2Pa7CSl0ezDpyL8W4wQpzAyWraIOW5xpDElC84Q9+8+u2dJE3dKHkgnaW1cVwA/eWumU9kLiSnJRM0sYlbV1cOEmMYvhO5dIzCut5E86L/lAdD4Q2vRBxmKOuoZHIS4XK3dG6zCwaTz7WzPbsRDAF2tOMRwIrzBpU0+txOixJqoopPxf5NTdohUnbteNs6rdqHaSnvCYGPnnpbcxp4jC3tOOaKONNcv932/PtK8GoHo/ZoqyWVuoMqmrMGZ0Io6h8TYvkPNuEFRUglMXXF+tFfw5pp3bTSyVukrretsIKs4ZaGKHsb4yNSwaL1KT5CChId1qAlq0d9CTm+uhxmEeg9NiUo2v22qpaeL2gWF+ayMoe3Vcit1TaXejlI+txrRUJ2l+qNq4OjRmuNGnwt27Q8A29VpKjSKK6hibWS4xqhjPempYRGRmSCW3riDBZsMKsoWphHkzBxfApNjcwu6VfSSVUWB9j+SS3vMb2kfOOwxz5fFfaamGeuDeABNiExhoFPtlyqQ6x9V/nWL+Vy2xn1VxkNfWZoeqMVDEW1QWG5uk197thZzhNmOQoGaloaReVDCOFmYhWENG1RHQVEV2WHfsEEd1ERNcQ0ZlEtKhw/nuIaDkR3UxELyocPyE7tpyITg1+N4GJveiv7MOcr+CtN+YY/oYmq5RDyu2/fKTrqGRxpmXfg8tVLAwKL2eud11utHnaP0lYuQDXxpLX2iot6lbl7BuAOFbRmJZWUwT8n4m5q4dbWdq5ZPTTZoWZ3TdcsbEwHyuEOFQIsTT7vgzAwUKIpwO4BcB7AICIDgJwEoCnAjgBwBeIqEtEXQCfB/BiAAcBeE12bquRLfpT7uzkk7r04nDVuu7DHCzpPg1ZVVlnVL7UajFm541qRXSbFbIUcEfcbtLrCg7uJim9eiwgUowHEWccpWtoYsqr/xJemC4fthc4ODGzvsy44uySIYQ4Twgxk329GMCe2ecTAZwuhNgkhLgDwHIAR2b/lgshbhdCbAZwenZuiyFpoPpQHVax3crURlUM01jGhyA+a4YuzAanB2EUfWOajUuii2AS4RpJYuIszPGz4SVHGRpTZUDxeT6SY/IF6OPZEQxynd2Ta5QMm752uOjPSsRYYF3XfMog4ZqotmGqMAsA5xHR5UR0iuT3vwLw8+zzHgDuLvy2MjumOl6CiE4hosuI6LLVq1cbZi8O/UpY15iDTYcXDcyaNEOIM02iJitQna/6g8cmlA+zi9xbHliH2V7c2EXW2y9HygcTjpRKrE398cnXJI2ZVQtz8bgvKtc4uZEhYkXRuOiFRDXexfVhrrs9TlD1TMJcdwU0VZifK4Q4HH13ircS0dH5D0T0zwBmAHw7RIaEEF8WQiwVQizdeeedQyTpTF13zP2s4svqy8t/8xNo3ClE7D1UW0bH2mBEtso8BdesXAsAuDb7G4s53m+1Gtd47PYLTF2cwEajIrSqvrb5BSArKGNXtVCL/lQKbJjklSSNkpH9ZR9mxhUjhVkIcU/2dxWAM9F3rwARvRHAywC8Tgxf2+4BsFfh8j2zY6rjrSaVS4auowhiYTZIw2eRh+uK8ehhixL3jQ+t3wQAWLdppuHMHLcMptY/eIiJj3Xb8wrD4HGtBTYv/a1SqiWoIv1ornCXlX8ojT/+UZpU+VcZbKJZmBXHbY1RNv37KMaElldpxpJGhZmItiaibfPPAI4HcB0RnQDgXQD+VAixoXDJWQBOIqL5RLQvgP0B/BHApQD2J6J9iWge+gsDzwp7O2GpRTxoWPRXOMVJFlCZLgrVsKW+b8qcNF2qRddBjMQlw/F61+tyT4zYU1eplIu2KzFutEv9FwW1clKxCkkWLxte9D300uRuuPFSpPRNThIiuUEjqkvGIEpGPBmjxfzGfGaaRjVL1QamDM7ZFcCZWQOeAvAdIcS5RLQcwHwAy7LfLhZCvFkIcT0RfR/ADei7arxVCDELAET0NgC/ANAFcJoQ4vrgdxSQWqD6/LiiUVsvWGgKkqGQ59KJuShwQTuv6stHZFRh86zTsSyEmUxjjuG2U2RcF/uMmja/AKT1YU6DjbtJKv9I17aj8mGOgfOaE1d5CgNDPAuz3DBjv+jPQqbEKDUptH3B7KTQqDALIW4HcIjk+JM013wUwEclx88BcI5lHkdGPaZuPiUWqtrUNWapPO9qarGSOHEHGYvhzolpO8fcejEpFuaUmD6pVM80Wc1x9GF2EuVwUyHyNQn11Xbhss895y56ycLKmbjMJKih1hJsnof9JYwH/ahbkwXv9Kehtugva2nBNi4pyYrswxz4PGv5aifmPoF7seGuTmHTNaUNGw+MEy6llcwtJfL5rtY1H9q92j1uo3W99bTPR3LQyrXOnxAKj23IPfuNS+w1Zl70x7jCCnMDEhfmKG/asn4iVLvWJRM8OoWmw1NNhcUZh3ILTSgrvaX02C4ZrVZ4GBdSrvlLRQr/7JTqT+zZjZqRRnZOjJ1fA7kZxspHkLRlPsyJKs+kuIHM9WGHFWYNRCRVWoP5p0p8mOVxNwNQ9YOWKeiV4yEbB6Fyb5H7j1E37NgW5phTl0xaYu4YpyJ18xh1ewyBtUuGjyxF/xyftDGKcxnD2dt4FWUUPsyTUO+dmcAxhxXmBkqL/gIPbCWXDEmiqqnaFG/hwdNVLPqLF4c5S3dkLhlm57lmL/aiQlcmxJAyEtq6kDOEldFs0Z+3GJi0KHeXmXT1e6g41gUW8x/KAiztL0XENS0jqOqjHhNiMqcV84SwwqyBKmbRmNOLOgUoyKIbk1R8epKGS7U+2u5S1WkOwjKNpndkl4z20rbxMkR8XVu4+thB2f/RZgCraUoXgcdD6ZIRzYAifyFw3fTHRib7MDOusMKsodZ4Yy76k3SQI5mqLbpkuISv0/yWUnmtWROszUp+eY3ukpFa4ZmQMWaS9ESXl6YJeYxeuC/6s5vO92mjsr5XFtbUVYRp3Um9cUnMWZbhQnBuBa60dRYsFawwNxC1aZUarmYKLsSUqGESsZqDbjoz5iIW7zjMzvJb5sPccjmThPWzH4kPc/uerG2ekvthp5SlcVWL8+zyGbnEeG5cYhWHOb9mjuvLqXy4J7GYWWHWQKColUtqYVaeUT/XRc4gDY0FIwaqoP+xDL80qgEgI3rD4jn1iSFpWDmXOMyJq5ppG0/dtlP6MJuGlYspL2Yc3fp453pz9hb/Sd3pb66/CKSAFWYNtjs7+U3B1QlZ/02zVh+0zXLR7G6RdtStrohOHxVgMizMTDpGYcFsE+niarsJqu78GkNOXgaDaxs2LgleZrpFfxaymkeDMBm3UxIzI0rKKBmJWnXKGaO5rJezwqyBkNKiELHCO96DS5Z015T8s4vX2IsxZlSNO/6iv7jpp4YXMaZ5pskXwSYRl+aeRmFhLuuv8YTLq57wbpfq+M5VSfGJFZEpFG3NV5G53k2zwqwh6c5O2d9qWJ9g6ZsEyQgnTiFf7Z8dPKyc2iU8CcYLQ11fZtjG7E7LRibX7PjUgEmYcXFfX5D2OidZhr/F7AdiumQUZaS6Pr8Xl0V/7O7AAKwwNxKrnVSnhdQ+ZLHC+sgyFXdVtHrRXwR5Iw8r164oGRPV33vcTCst2fmiv5RqrIUoXmA6JJWL3iDKTiJNTdkuUkXJSHCbw7By8WW1Ge/bn8Plxwqzhr6Sl6Z22IQhcwv3ZhhGqHJeqLtPraeMekV063b6m0CSKXKWgqwXsiaMwzwOlrK2ZjH2IvCSLKlLxiAjHigWkvsk6YJEoNMLo00c5vyScWgElrTTDjB55cwKsw5VZAeto65Z0qrTan6+ARqCa8V1EW1eNHEbU3XAsVdiwsiPRRs7yD6T10mmIumivxa+cjnXacXaiOByKuNBSL2rmpQuyk/x2Tm7l1jmIzbxY2QUF4I7CvOgVb1iqzIzXrDCrEHhdqs5330ZsdJFwjxFLcZxmKNNwcmtM4Q4nXJu4fWOw+yYtdhbV7dR4WHccLUctvelaTJRjQchvRkG7VoxHsRC6RIYcTwYCGnIhx77qCUpNy7hNjpZsMKsIaa/o/pNvhiZMn7Druej4QRHbEP0ecvL/o5qV6foCi13xJPDCHyY5/ZAbnfzxTjZqXoT3Qt3nDUfkoMBDTYqeUnHhEzmXN/pL9lCywksZlaYG0jlhxO7AzHp+GrKs0XPbBuFudZnBQ+TESfZttBW/13GndaWtUfG7KIYtLUA+tiuafExuAwWLY9YuUu9NXZMJn7jkgQyWrloOiGsMGvQRXbwpaqI20zrRauzAaJk6AY9WVlS3ycjOMMpP1cv5jQ4hxSb4x2XD7EHFtcIJml9mNMSU14q/SflLJmuvGKUparfbmvkFrfk2/ESEgMeDtLACrOGqIHqq75bg8Zcy0UYeUYtyj9QvVq8foV5aEt+24PU+zJp/WMyi3kiOVbku1EmGPXa3B6S7fTnsVBulFtjyxegh5Vb7KNrRp2AcgZ1PZOXxjra/zupFmYmPqwwa7DeCtWjR5F2kCNo2DXXiYBpq9KKYzHJZLbbwOwMWxQmB9cq6mP94xkKe/o+zNGmHEsMFi0r8hEc1QxnQpeM2DVyqKOzxsy4wQqzhpjbd1bT6qgsoqEMzAYZaVwAqKOhcJLHYR6RD+BJz9griRzWdyaPJM/UoTmkrmrRXWYSX2clQydEGmXIcgGjonBVqcS+Z1H7EI9hlIz4smq0SEf3eemb68MOK8wNSP1uo0iSRcnwl6VSGGPt7KTv8GXi0pRmqob+1mOflERO2xdIMeYM6yhHyWglRaPCCBWfkH2Z6vnXDTaxXPSiJGskM6URJaTRiRk9rDA3EM2F2TAOcyiM4zBHU2DVIZlihknyjsPcUsWUFZ74JBtXE77VjcXuW6ZZHMHKRZs6Ec2dIUp/mbYwqxuzDHa7jPhQ6yYpG9rdbnz2gIhFu0vMDVaYNfQXqiWSlX8ouUhMTpXrL6AsW8+jyqt0yJMG+6CmKwPbQdx10LfegttnzYT7pdGwfp6Ojdt90V/7Si1UE0h+ZyO0MPcSjkOtxuEZzPVhhxVmDbYql01dqoeVU0gL1iE2J1Tb2SngS6vSRy5WA5zwBR5t7bcms7Tj0vZ1qSHaaLKBNmIFbIuy0EbFfVTYde+ZD3MvSlaYOQArzBpSdpCxFl3Yjh8xb1kdJSO81LYMbrFIfX8Towi3sl6kCyuXM0nto77hkv788P2NPL3gId+MJduTflG25FgimXN9pz/GHVaYG0gdd7MoT7mi2aF3q14iTSGydUZXlqHLuRZWbsJIZWVK6/oxoQ+rgbyOtjRIRjKs73+ilH75k5H2X1GiyoVNtKnflbkgxmaCqoucNjfuCYEVZg0pd3bqKBQT70ZueQPFbITsYHQxTGMuYpkkP/Aik2QhBCbvflxIG1auzQU+mW3WhPypxF4ErkKn6LrUT2UwphE0+FxmSgtzsttMtOZvrvfTrDBrIOh3p4tBLGmm9Tx2mLdU1CzMc7yhM5OHT5W2GfjSzWYkEZNOTqy+tGjUCHQzo1KEygaNuJnIU+ed/tIwibO7rDBrUFmYY4ZBKxKivtmkEcIaq+vAQzQg0yR0O2WFlMMwVVyDPaRQTLlejz8haom6rsXbDluXbgrlinf6Y3xhhVmDbWfhtzW2LEqkCKadq5OpRuvQ/uyRgcqdidJPwQm2wIMt00wi2rDIODQuzS+2PuNz76NUtqIu+guUjrE8mUCK2wYGoUYnVF9OHTZ+LsIKcwMjjcMs5B1ZEAuDyresdE643ouqGnNDPkKRckGVC3O582H6TOoAXsTEet7WNpqT0oCiTzfKqr+JZ5KjZNg8Pp/bn+shDVlh1kHq3ekiiAIQ0Yc5uvlKn3Od+Bh5m+uLExg5ba4W1nU2yIwWMz7EH43SGYjqLnPJZj0SyRm1TCY8rDBrIKSbgpO9uYXxYfYIk+GA7uqUESuG02/cVU0ak/dE428LXJVlQ7rFeJMYKtGOPGu6ulCeBQwkN/GrZDXfKdq0j4XZNX82dW1s+rU5PKaywqwhqU9hZAuzKXUX5jA56r98qH8Pfd+yuNbMZJEsYlMqt6EJ9GFOTcrm3tQ3hi7jmH1Zi98hgjEIK8c7/TkzF+qJDlaYNdj7rFm8TVY6P1XczdhxmPN8yCyxYeMwqxatxLFtVJdQzvF2HoAE08HRJbSbJPblMSjkMchiiVHuktdma7kJKevjMNTouNWw8WQS90BghbkBk533QjBQG2v7vErOdegjjXb6c0wbMNnZKfWU32SviLYtzbaXw3gP+34MXurm+NbYbczTpKHqBuph3mQGFPsHpLomWjQmXV5aMosbAzvXj0ksgTSwwqxBtTtdzDjMo67KvoqtrmzKnXD1Tg3v3PC0oYXZsURH/SCYOYf9mr9EPr9JpHiQsK3aiAr9AhQyXrcqazV7TaxIHyOoVbnMSYySwaSBFWYNTX63oWXFTV8vIfYGLdpNYGK+gPiGYR5tcBEmBi0r89H4MI92kZf0HNs0nXLiXs4xn4+dIh5e/qhdO3LDRsxcDBf9RRSipGWdjiOtf3mODCvMGohcFC63hkGhNLwKxqlFHrQbXz4C9ycDl4y4YpgxY9SKgY4UeZuk+j+JGzXkLzKj9ItOKi9hXLmhD3NcOczkwgqzBlsrjE97l/UfITHtEKP1WZoMRO0nR2G+Y+Y09lUt/Qg+l5vDpLmyjOOzjD3e6YTO9UV/c/z2vWCFuYFUDvI2nV6I/jGWNct0MErRaFVuIAzTJtxjvKYRlkwhcxQ0V9p43EXn8WWU5EmedSq3xEn0YU75zmRaehNYzGYKMxGtIKJriegqIrosO7YDES0joluzv4uz40REnyWi5UR0DREdXkjn5Oz8W4no5Di3FBAnlwxXUXIXgnDpu1wTrhmqQvpE9VlD+7fGZpg5o/EZYlocc7VNx1x0Psm0ZWH9WDMXKooGGwvzsUKIQ4UQS7PvpwL4lRBifwC/yr4DwIsB7J/9OwXAF4G+gg3gAwCeCeBIAB/Iley2QkjXuCiSrb8tb3mpt8bO063NELSkPBgmJ+1mG+2l5YZsB0ETJSYowzyn3P21T280q/6YCcBHTTsRwDeyz98A8PLC8W+KPhcDWEREuwF4EYBlQog1QoiHASwDcIKH/OiQg8bsPL3qm0BT+oZhhGx/N5bfYEGPcdudhDMEVbhLdiBRoXEc0pYbilr8eJL3JxJ5abZ6issorL0dSWz+yfJnnqR7aSdkUmGI6A4AD6P/RP5bCPFlInpECLEo+50APCyEWEREPwPwMSHEBdlvvwLwbgDHAFgghPjX7Pi/ANgohPhkRdYp6FumAeAAADd73+V4sROAB0ediQmHyzg+XMbx4TKOD5dxfLiM48NlbM4+QoidZT9MGSbwXCHEPUS0C4BlRHRT8UchhCCiIK83QogvA/hyiLTGESK6rOD2wkSAyzg+XMbx4TKOD5dxfLiM48NlHAYjlwwhxD3Z31UAzkTfB/mBzNUC2d9V2en3ANircPme2THVcYZhGIZhGIZpLY0KMxFtTUTb5p8BHA/gOgBnAcgjXZwM4CfZ57MAvCGLlnEUgLVCiPsA/ALA8US0OFvsd3x2jGEYhmEYhmFai4lLxq4AzswiGUwB+I4Q4lwiuhTA94no/wK4E8BfZOefA+AlAJYD2ADgTQAghFhDRB8BcGl23oeFEGuC3cnkMGfdURLCZRwfLuP4cBnHh8s4PlzG8eEyDoDRoj+GYRiGYRiGmavwTn8MwzAMwzAMo4EVZoZhGIZhGIbRwApzYIjoNCJaRUTXNZz3DCKaIaJXFo79OxFdl/17deH4t4no5uz4aUQ0nR1XbkM+ySQu49dlZXstEf2BiA6Jd2ftIWUZ69KaZFKXMREdQ0RXEdH1RPTbOHfVLhL3FdsT0U+J6OqsjN8U787aQ6Qy/mpWjtcQ0Q+JaJvs+Hwi+l425l1CREui3ViLSFzG/4+IbsiO/4qI9ol3Z2OGEIL/BfwH4GgAhwO4TnNOF8Cv0V8g+crs2EvR3/1wCsDW6C+O3C777SXob8VEAL4L4C2F4z/Pjh8F4JJR3/8ElvGzASzOPr+Yyzh8GavSmvR/ievxIgA3ANg7+77LqO9/Asv4vQD+Pfu8M4A1AOaNugzGtIy3K1z7HwBOzT7/LYAvZZ9PAvC9Ud//BJbxsQC2yj6/Za6Usck/tjAHRgjxO/Q7Sh1vB/AjDGNXA8BBAH4nhJgRQqwHcA2yrcOFEOeIDAB/RD+GNaDehnyiSVnGQog/iP5W7gBwMYZlP9EkrseqtCaaxGX8WgBnCCHuys6bE+WcuIwFgG2JiABsk8mdCXYzLSVSGT8KDHYRXojhvs8nAvhG9vmHAI7LzploUpaxEOJ8IcSG7Po5M+aZwApzYohoDwCvAPDFyk9XAziBiLYiop3Qf8vbq3LtNIC/BHBudmgPAHcXTlmZHZvTBC7jIv8XfYv+nCdkGWvSmtMErsdPBrCYiH5DRJcT0Rvi5n48CFzGnwPwFAD3ArgWwDuEEL2I2R8LXMuYiL4G4H4ABwL4r+zwYMwTQswAWAtgx6g3MAYELuMiPOYVMN0amwnHpwG8WwjRK74YCyHOI6JnAPgDgNUALgIwW7n2C+i/Lf4+UV7HlU8jcBkT0bHodx7PjZjvceLTCFfG0rSYoGU8BeAIAMehb026iIguFkLcEvcWWs+nEa6MXwTgKgAvAPBEAMuI6Pe5JW8O82k4lLEQ4k1E1EVfkXs1gK+lzPSY8WkELmMiej2ApQCen+IGxoJR+oNM6j8AS6DwNQJwB4AV2b916E+fvFxy3ncAvKTw/QMAfgygUzj23wBeU/h+M4DdRn3/k1TG2fGnA7gNwJNHfd+TWMamaU3iv4RlfCqADxW+fxXAq0Z9/xNWxmcDeF7h+68BHDnq+x/XMi4cPxrAz7LPvwDwrOzzFIAHke0nMen/UpVx9v2FAG7EHFnrYPqPLcyJEULsm38moq+jX0l/nL3lLRJCPERET0dfSTsvO++v0bdeHCfKU3xnAXgbEZ0O4JkYbkM+pwlZxkS0N4AzAPylYGvcgJBlrEorxX20mcB9xU8AfI6IpgDMQ7+/+M80d9JeApfxXehb8H9PRLsCOADA7WnupL3YlnHmU/tEIcTy7POfArgpS+IsACejbyl9JYBfi0zDm8uELGMiOgx9Y9wJYo6sdTCFFebAENF3ARwDYCciWom+JWIaAIQQX9JcOo1+RwsAjwJ4vej7aAHAl9Dffvyi7PczhBAfhmIb8kkncRm/H30fuS9kx2eEEEtD31PbSFzGc5KUZSyEuJGIzkV/0U8PwFeEENoQVZNA4nr8EQBfJ6Jr0Y+g8W4hxIPBb6plhC5jIuoA+AYRbYd+OV6NfrQGoD8z8r9EtBz9RXAnhb+j9pG4jD+B/qLVH2TX3SWE+NPgNzWG8NbYDMMwDMMwDKOBo2QwDMMwDMMwjAZWmBmGYRiGYRhGAyvMDMMwDMMwDKOBFWaGYRiGYRiG0cAKM8MwDMMwDDO2ENFpRLSKiBqj/xDR3kR0PhFdSUTXENFLTGSwwswwDMMwDMOMM18HcILhue8D8H0hxGHohyb8gslFrDAzDMMwDMMwY4sQ4nfox+YeQERPJKJziehyIvo9ER2Ynw5gu+zz9gDuNZHBG5cwDMMwDMMwk8aXAbxZCHErET0TfUvyCwB8EP0dD98OYGv0twJvhBVmhmEYhmEYZmIgom0APBvDHQsBYH729zUAvi6E+BQRPQv93SMPrmx1X4MVZoZhGIZhGGaS6AB4RAhxqOS3/4vM31kIcRERLQCwE4BVTQkyDMMwDMMwzEQghHgUwB1E9CoAoD6HZD/fBeC47PhTACwAsLopTRJCRMouwzAMwzAMw8SFiL4L4Bj0LcUPAPgAgF8D+CKA3QBMAzhdCPFhIjoIwP8A2Ab9BYDvEkKc1yiDFWaGYRiGYRiGUcMuGQzDMAzDMAyjgRVmhmEYhmEYhtHACjPDMAzDMAzDaGCFmWEYhmEYhmE0sMLMMAzDMAzDMBpYYWYYhmEYhmEYDawwMwzDMAzDMIyG/z+p7ZdY2+FbMAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12, 7))\n", + "plt.plot(lc.time, lc.counts)\n", + "bad_time_intervals = list(zip(lc.gti[:-1, 1], lc.gti[1:, 0]))\n", + "for b in bad_time_intervals:\n", + " plt.axvspan(b[0], b[1], color='r', alpha=0.5, zorder=10)\n", + "\n", + "plt.ylim([5000, 6500])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The light curve shows some long-term variability. Let us look at the colors. First of all, let us check that the events contain the energy of each photon. This should be the case, because NuSTAR data, together with XMM and NICER, are very well understood by Stingray and the calibration is done straight away." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 6.24 , 3.4 , 14.4800005, ..., 9.64 , 8.76 ,\n", + " 4.2 ], dtype=float32)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "all_ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Other missions might have all_ev.energy set to None. In which case, one needs to use all_ev.pi and express the energy through the PI channels (See the HENDRICS documentation for more advanced calibration using the rmf files)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Also, we notice that some GTIs do not catch all bad intervals (see how the light curve drops close to GTI borders). We make a more aggressive GTI filtering now:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "new_gti = create_gti_from_condition(lc.time, lc.counts > 5200)\n", + "all_ev.gti = new_gti\n", + "evA.gti = new_gti\n", + "evB.gti = new_gti\n", + "lc.gti = new_gti" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEGCAYAAACkQqisAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3qklEQVR4nO2dfbgdVXnof+852YSTaHNCPfLIgUi0SBQxCZwCiqWCLaBeIIUKWPsU0F6ut+AVrje3oVoJqIV7U4vYWltKsVpRwmcaiyXgBbWlBkg8iSFASuQr2WgJTYKVHMhJ8t4/9uyTOfvMx5rZM3tm9n5/z5Mn+8yej7VmZq93rfdTVBXDMAzDSENf0Q0wDMMwqosJEcMwDCM1JkQMwzCM1JgQMQzDMFJjQsQwDMNIzbSiG5AHr3vd6/Twww8vuhmGYRiVYu3atS+q6lCSY7pSiBx++OGsWbOm6GYYhmFUChF5Nukxps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBS05XeWYaRlBWjdZat2sTzO8c4ZHCAxacdyaKFw0U3yzBKT64rEREZFJHbReQJEXlcRN4pIp8VkR+LyDoRuVdEDvH2FRH5kohs9r4/xneeC0TkSe/fBXm22eg9VozWueLODdR3jqFAfecYV9y5gRWj9aKbZhilJ2911vXAPao6D5gPPA4sU9V3qOoC4B+Bz3j7vg84wvt3MfAVABE5CLgSOB44DrhSRGbn3G6jh1i2ahNj43snbRsb38uyVZsKapFhVIfchIiIzAJOAv4WQFV3q+pOVf25b7eZQLOgyVnA17XBamBQRN4AnAbcp6rbVXUHcB9wel7tNnqP53eOJdpuGMZ+8lyJzAW2AV8VkVERuVFEZgKIyOdFZAvwYfavRIaBLb7jt3rbwrZPQkQuFpE1IrJm27Zt2ffG6FoOGRxItN0wjP3kKUSmAccAX1HVhcDLwBIAVf2Uqh4G3AxcmsXFVPUGVR1R1ZGhoUSpX4weZ/FpRzJQ65+0baDWz+LTjiyoRYZRHfIUIluBrar6kPf37TSEip+bgXO8z3XgMN93h3rbwrYbRiYsWjjMNWcfzfDgAAIMDw5wzdlHm3eWYTiQm4uvqv5MRLaIyJGqugl4L/CYiByhqk96u50FPOF9XglcKiK30DCiv6SqPxWRVcCf+IzppwJX5NVuozdZtHDYhIZhpCDvOJGPAzeLyAHAU8BFwI0iciSwD3gW+Ji373eA9wObgV3evqjqdhH5LPCIt9/Vqro953YbhmEYDoiqxu9VMUZGRtRSwRuGYSRDRNaq6kiSYyztiWEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqrJ6I0TVYTRDD6DwmRIyuoFkTpJnSvVkTBDBBYhg5YuosoyuwmiCGUQwmRIyuwGqCGEYxmBAxugKrCWIYxWBCxOgKrCaIYRSDGdaNrqBpPDfvLMPoLCZEjK7BaoIYRucxIWIYXYTFyhidxoSIYXQJFitjFIEJEcMoCe2uIqJiZUyIGHlhQqRHMbVHuchiFWGxMkYRmItvD9IcsOo7x1D2D1grRutFN61nySLi3mJljCIwIdKDWIqQ8pHFKsJiZYwiMCHSg5jao3xksYpYtHCYa84+muHBAQQYHhzgmrOPNjWlkSu52kREZBC4EXg7oMBHgLOBM4DdwE+Ai1R1p7f/FcBHgb3A/1DVVd7204HrgX7gRlW9Ns92dzuHDA5QDxAYpvYojsWnHTnJJgLpVhEWK2N0mrxXItcD96jqPGA+8DhwH/B2VX0H8G/AFQAi8jbgfOAo4HTgL0WkX0T6gS8D7wPeBnzI29dISZnVHitG65x47f3MXXI3J157f8/YaWwVYVSV3FYiIjILOAm4EEBVd9NYfdzr22018Nve57OAW1T1VeBpEdkMHOd9t1lVn/LOe4u372N5tb3bKWuKkLLFOXTag81WEUYVyVOdNRfYBnxVROYDa4FPqOrLvn0+Aiz3Pg/TECpNtnrbALa0bD++9WIicjFwMcCcOXOyaH9XU8YBq0xxDmUTaIZRVvJUZ00DjgG+oqoLgZeBJc0vReRTwB7g5iwupqo3qOqIqo4MDQ1lcUqjw5TJ4G8ebIbhRp5CZCuwVVUf8v6+nYZQQUQuBP4L8GFVVe/7OnCY7/hDvW1h240uo0xxDmUSaIZRZnITIqr6M2CLiDStte8FHvM8rf43cKaq7vIdshI4X0Smi8hc4AjgYeAR4AgRmSsiB9Awvq/Mq91GcZTJ4F8mgWYYZSbvtCcfB272Bv+ngItoCIXpwH0iArBaVT+mqhtF5FYaBvM9wCWquhdARC4FVtFw8b1JVTfm3G6jAMpk8M/K5dYwuh3Zr03qHkZGRnTNmjVFN8NwoMw5vMrcNsPIAxFZq6ojSY6xBIxGYZTdAypPDzYTUEa3YGlPjMLoVQ8oS4BpdBO2EjEyJ2qW7f8uTJHa7R5QZYqHMYx2MSFiZEqUigqYYqwOIsgDqpvUP93kPtxNz8VIhwkRI1PiVFRxAiTIAyoP20mRg1+3JMAsu03L6AxmEzEyJWqWHTXTjko6mLXtpGibRJniYdqhrDatXk3iWRS2EjEyJW6WHfTd8OAADy45JfScWat/irZJlCkeph3KqJaz1VHnMSFiZEpckF6aAD5X9Y+riqoMg18ZE2AmpYxquaInCL2ICREjU1xm2Uln4C7R40lmoGUc/MBdCGZlz3H1ogu7Rhmj+sswQeg1LGLdSE0njdNx1zrx2vudVWWtAgcag1+RRaBc2/TpFRu4efVzk9yjB2r9nHPsMA88sc35WURdD4JXjEH3p2zeWUneA2MqaSLWTYgYqSjbQDx3yd2BcScCPH3tB6Zsr+Lgt2K0zuXL14X2s1WwRD2LqOtBOttVGSjbe1k1LO2J0Taug2vZdM9JVVRls0m4qGGWrdoUGqDZuj3uWaRR+1RBJdQtTgtVwoSIMUESu0KaQSjP2X/W+vlO2ydchGDSQTxq/zRedEXbjFwp2wSh27E4EWOCJH7/Sett5B2bsWjhMNecfTTDgwORMScuuLY1yz65xI4kHcSj9o+6XrfEsRidwVYixgRhM9f6zjFOvPb+SbPtpDP/Tqi/spqBurY1yz65qGFOnjfEN1Y/N+XYI14/k607Xkm0CsvDi87oTUyIGBOEqTiE/eqN5mz7mrOP5pqzj3YeaKrkeuna1qz7FCcEH3hiW+D2Xbv3JXoWLtczlZDhigkRY4Kg1UWr1w/sn20/uOQU54GmrLEZQbi2Ne8+tdpbgq4FDaGV1aBfNq81o/yYTcSYIMiukFW69irp2V3bmmefVozWWXz7+kn2ljCyFFqtNp7Ll6/j0ys2xB5r9C62EjEm0TqjDYsnSDpwVcn10rWtrfvNGqghApcvX8eyVZva6t9V397I+N74GK4sBXGQjUeBm1c/x8gbDyrlszKKx4INjUgseMuNrO/T4UvuDv1ueHAgF0EcFrDZvGbZAw2N9rFgQyNzkq4g8tSpl1lf38ngy7wG8zi7i2EEYULEiMXVaJtnGu6yp/jO2lNrcKDGzrHxwO15sfi0I0PTqpTRAcIoB7ka1kVkUERuF5EnRORxEXmniHxQRDaKyD4RGWnZ/woR2Swim0TkNN/2071tm0VkSZ5tNtKTZ5GishZAapI0+BKiiyctPfMoan0yaf9an7D0zKOyaXAAixYO8+ET5iAt28vqAGGUg7y9s64H7lHVecB84HHgUeBs4Af+HUXkbcD5wFHA6cBfiki/iPQDXwbeB7wN+JC3r1EyXGbjaavOlT3OJKmnVly0+6KFwyz74PxJnnLLPjg/91XX5xYdzXXnLcgk8t/oDXJTZ4nILOAk4EIAVd0N7AZ2et+3HnIWcIuqvgo8LSKbgeO87zar6lPecbd4+z6WV9uNdMTFTbSjksoqJiNLu0rruZKkY3exoRQV8GeBhkYS8rSJzAW2AV8VkfnAWuATqvpyyP7DwGrf31u9bQBbWrYf33qwiFwMXAwwZ86c9lpupCIuFUo7xucsEixmaVcJOtcda+vOs/ayr6yadNqZIU8hXyZHjG4iT3XWNOAY4CuquhB4GcjNnqGqN6jqiKqODA0N5XUZI4K4JIjteP5kkWAxTIgtXbkxsYqtXRtNGhtKp8k7aWae1+t023uZPFciW4GtqvqQ9/ftRAuROnCY7+9DvW1EbDdKRpgqZMVoPTCFCrgPnO2qWcKE1c6x8QlPqOZgs+bZ7ZGqqXZXEifPGwqsUFgmA3ana8Zkeb2y1bvpZnITIqr6MxHZIiJHquom4L1E2zFWAt8UkT8DDgGOAB6mkb7pCBGZS0N4nA/8Tl7tNvIhqqDSrt17mLvk7txVDlFxEH7GxvdOGuCD1F7t2GhWjNa5Y2190v0Q4Jxj27dFZKnCicvqnPWzylLF1w3qwqqo4/L2zvo4cLOI/BhYAPyJiPyWiGwF3gncLSKrAFR1I3ArDUFzD3CJqu5V1T3ApcAqGt5dt3r7Gm2Q1ksqLVE/3h27xjuicgjyoAojLOlk1LlcVxJh6UW+sfq5tp5F1iqcKIGYx7PKUsWXtct1HkQ9ryqp43IVIqq6zrNTvENVF6nqDlW9S1UPVdXpqnqwqp7m2//zqvpmVT1SVf/Jt/07qvoW77vP59nmXqCIF9R1IMgz9iPIrjJ7hnvwnl8QtmOjiRKo7TyLrGNp4oRu1s/KRTC7DvRZu1znQdTzKntclB+LWO9BitAXB3lXhZGHyqFVNXDdeQtYtHCYFaP10CjtVloFYVobTZxaLe2zyKO+CTTel06kQ4lLsZPEuy5pup4ifhPdUufehEiXE6RXLUJfHPSjfvnVPYGpPbLwUPL3e3BGjV+8sofxfQ1R0Tr4XLZ8Xez5sjR6uwjUNM/CxU6TVM/eFJRZZXOOI0owJx3okwj5In4T3VLn3uqJdDFhS/TBEBVO3i/oooXDPLjkFJ6+9gM8uOQUlp55VC71OFr7vWPX+IQAaeJXDQyH9LtfJJeobb8qLIw0zyJOhfPpFRu4fPm6VCqbMtSDyXOgL8Llulvq3JsQ6WLCZm6qlOIFzSL2I4igfgfRHHzCfrBfOHf+hMDLWqXRFKi/e0JwYOzJ89LFOk2ftv8nPXtGbeJ+rhitT3EpBnc9e17PKgl5DvRFDNpR97QM99sVU2d1MWEztJfGxrnuvAWlcB/0qxyaqpbLl69rq02uM9Pm4FNkwaywuulh28MIqmfyyvi+ic9RLtau96vodChZZC0Io6h3oOh7mgUmRLqYKJ1rHi9vO37tWaYkcYkHaR18WgeR5uw877iNrFQ0YavOT966PtZxQGR/EayBWh8H1vrZuWs8k4E0y1iHvAf6Mg3oZS994MeESBeT58ytlXZf+iy9Y06eN8Q3Vj83ZftArY9XxvcFDj5p2x8XLBZ3zqwSS4YJnb0OlUv95qKx8X2MeSuYdgeuPAbCMg30eVKliHuziXQxSfWq7QRbtevXnqXRNEwVdNDM6aE2jjTtj4stcDlnVrr4vAzA7cQmVCnWoWxUJeIebCXSFUTNhtupSnj58nWseXY7n1t0dOzx7b70Wc3I07YlzTFxs0WXc2alokkShyO4p4BpbW8SXO9pVdJ7dJIsfw95YyuRipNVpG1YKo6bVz/ndK52PWey9I5J05Y0x8QNkq7nbHpqXXfeAgAuX74u8UqwddXZP7VeD9BYjTZXY1EuxlHtdcWl/ytG6yy+bf2k93fxbetLmd4jL4I0AObia3SMrFQGYQOieteIo92XPkr1FqZmC9uepi1pjokbJJOcM4vJgD8O5wvnzg+9dvO+uaxEotobp/oM6r+wP4HjitE6S1dunBLDM75PWboy+/R4nc6N5dqmoOcOmIuv0RmyUhlEqTdc631Ae2qZINVbmHF2zbPbuWNtPdJomzQyO+kxcY4LSc6ZtSE17NpApNrLxTvL1WAelDbFnxk5KlNAUCaDdiirt1PUc88jPikPRB28N6rGyMiIrlmzpuhmdISwGeXw4AAPLjkFCI4hGKj1T5rZROWQ8p8rC5LowF1nzE2ybmscWenz5y65O/DeC/D0tR9ou51NXN6XPM6x8Op72bErmWB4xrHfLs8gi37nQaeeuysislZVR5IcYyuRiuPixutaz3vNs9tzL5SUdEaY1Kjbae+VrFxOO2VIzcLrJ805kgoQ1+zKru9TVG2UIqmSAT0Ms4lUHBc3Xtcf/ecWHc115y3IVQ+b1IaT9MeU1Y+v0/rzThlSs0gdkneeqf4+4cozjnLa1/V9CmubQKG2kSoZ0MOwlUgXEDcbTjLbSTOzTqLSSTqLTeK6mtWPrwj9eZbR2FHPI4sA1DTnGByoOds5ksxsXd+nxacdGaiubTqOFGV7KDLlTlYkFiIiMhs4TFV/nEN7jBzIM3I96YCbdPne+iPrEwmMwu4XyWzVlFe0cNDg3rxeVgNI3PPIygEi6TmWnnkUi29bP8UTK4jxfep8r13fp0ULw1P+Fx3AV/UofCchIiLfA8709l8LvCAiD6rq/8yxbUZG5DnbSTLgrhits2v3ninniBNorUka45wE2iWPaOGgwX3xbetBYHxvcJ2TNMQ9j6wcAZImzgyzuYXheq+TTJCGu8D+UEZcVyKzVPXnIvL7wNdV9UqvbrpREfKa7SRxMQ5SSw0O1Fh65lHObevE8j9sdjtroMaJ196f6rpBg3vQrLzdFU+UAfnTKzbEukUnJclK9IEntjkJEHAf2JO8D53MJddLuAqRaSLyBuBc4FM5tseoGK7qhLAaHzOnT0s8gGUlEMNm5WF2mP/0VWJMOgBn4f3kQlS8T1Q9kaxXPp+8dT2XLV9Hv6d+DFsFBJF0YHd9H7rB/hBFUeljXIXIVcAq4F9U9REReRPwZH7NMrIkz5fLdXZXZEK5MFtE1Aw6SPWyN6Q6YtC9bL3mrASG5aYAbp6jvnNs0mAc9fyiHBHarSeS5Nim3ar5f33nGBLShsGBGjOnT+vI4Fd1+0MYRQZTugqRn6rqO5p/qOpTIvJncQeJyCBwI/B2Gu/PR4BNwHLgcOAZ4FxV3SEiAlwPvB/YBVyoqj/yznMB8GnvtJ9T1a85trvnyfvlcp3d5eEP7yIcw/p/YK0v0nbgqnrxD6L+Qd8/YNZ3jlHrF2p9MkmFVeuTSTYRmJyaxN9u/2Ac9fya21zqxjdpFVoug3lz3yShykH7DtT6E6kzu4ksJ3dFpo53ilgXkR+p6jFx2wKO+xrwz6p6o4gcAMwA/gjYrqrXisgSYLaq/qGIvB/4OA0hcjxwvaoeLyIHAWuAERrv4VrgWFXdEXbdXopYj6MskbphBvFzjm0M2El/SK4G9qQR781I4bBI4lZmz6gx44BpkTPt1n1dvLPi2h30/PyDUpgXW2sbm/cMpqZDCXNYCLNvuTI4UOOlsWyKXlWVrB1Esop8zzxiXUTeCbwLGBIRvyfWLwH9wUdNHDsLOAm4EEBVdwO7ReQs4D3ebl8Dvgf8IXAWDaO9AqtFZNCzw7wHuE9Vt3vnvQ84HfiWayd7lRWj9bbyYWVJ84dx1bc3TkQvC8ryh7dMzM6TrJLCZl5LV26cNCgnjUhuzspdjq31C794Zc9Ef+KEzs5d44x+5tSJv6NmonHPJ85xIUiARAnthVff6zyTjaph3x8ivPzMnD6NdVeeGrlPt5P1yqHIyPc4ddYBwGu8/V7r2/5z4Ldjjp0LbAO+KiLzaawgPgEcrKo/9fb5GXCw93kY2OI7fqu3LWx7TxO3FG4OKmEU5dbor/u9y/e5iesPKWyQ3Tk2Psn4Hbc68OO35YRVR5x5QD+7du/lkMEBXvYZ2l1oTYHeqma7bPk6rvr2Rq4846hYIebquNAvwj7VyFn/itF6aFqSoPscJeB+aWAav3hlT2Q8SF4TmCrVJcnaRlik51mkEFHV7wPfF5G/U9VnU5z7GODjqvqQiFwPLGk5v4pIJhkgReRi4GKAOXPmZHHK0uJi54iaLRbl1hjVJj8uPyTXVYYyVYUTRKvB+h/X/zRwv1p/H09fezrQUCG4UuuX2Hxm0MgxdcWdGzjn2OFJ7ritnDxvCJhshwlin2qsOiMq1X+QW3PUvd+xa5xav0RGqOcxgSlrlt4wsl45FOl55pphYLqI3CAi94rI/c1/McdsBbaq6kPe37fTECr/7qmp8P5/wfu+DhzmO/5Qb1vY9kmo6g2qOqKqI0NDQ47dqiYu+YKiBuKi6hIkqXIYR1DOoTCagiSMpn3Bf0/CBkD/9iQ/+JkHTHZljroXY+N7eeCJbVxz9tGhxaUeeGLbpFoUYbi0MaotL+/eM6XWxcnzhiLv/fheZeb0aXzxvAUdywtVtVK8eeTMWrRwfz2ZTqaRdxUitwGjNDykFvv+haKqPwO2iEjzrrwXeAxYCVzgbbsA+Afv80rg96TBCcBLntprFXCqiMz2Uq6c6m3rWVyWwmGDx/DgQGEzM5cBzfWHFJR4Mizza79I6EqknR9uEkH20tj4pKSOfSHCocnzO8dYtHCYfSH2hed3jsWu7FwLSs0aCL5v0uI5Bo2B+Rurn2NsfG+ogIOGwFm2ahPnHDvckcJKVapJDm6JU6uCq4vvHlX9Sorzfxy42fPMegq4iIbgulVEPgo8SyOAEeA7NDyzNtNw8b0IQFW3i8hngUe8/a5uGtl7FZelcBmjc+OSKSbNf9W6hJ81UKPWL1NcZqMG2rDrzZ5RC7QT+AVVkAph1+49gccNzqjFGr79xBn4myuDMPpFOOdYtyJfQe7Hcfet2YcoVWF95xh3rK07PdN27RlVTKneLTErriuRb4vIH4jIG0TkoOa/uINUdZ2nYnqHqi5S1R2q+h+q+l5VPUJVf6MpELTBJar6ZlU9WlXX+M5zk6r+ivfvqyn72jW4LIXLONNptimMfaqJ2tdaWnTn2DhoY6Bv9vmcY4dDVVn9IqH1zK884yhq/ZOPrPVPTVHeqkK48oyjAp+NKs4usf5nmWS142evKnesrU/q14rROp+8df3U9Ct7ldccOG3Ku+JSgz3O1uSiUsqiNHARKdXLWG63CFxXIk31k1+FpcCbsm2O4YKrEa2MM51FC4dDDcFJZ41h+ahmHDCN0c+cOjFohg10UQF8aQ2VYcddniD4zy/s/edL6q7cmnjxijs3hK6AWt2Pm7QTD9IkTqWUNIln0DPptGG5aob8PHESIqo6N++GGMkoo4BwJStVW5QePG7QbCVo0Ep7j4OOcxUC/rVP64CZhrp3L+LsJ4cMDgQO0NecfTSfvHW9830MO3cUcc+x2abBGbVJ7sNBae479ZsoMkK8bDips0Tk94L+5d04ozokWdpnpWqLqrDn6k7sJ08jrKtaqlkkKUjFE6aWGx4ciFQ9xXlwDdT6OXneUKBKCeBDxx8WemwcLpODsOfYtCM127Rj1/iU+JOiPLCqZsjPE1d11q/6Ph9Iw9PqR8DXM2+RUTmyXNq3zoZPnjcUGGG9YrTOy6+G1yaJyh0VZgzO0wgbpG6JyiYQJATDck8FJZT00/SkiirmlYeLrGua/7CVqasdqYiBu4qG/Lxwyp015aBGYsVbVPX0zFuUAZY7q7Mkzc8VlUcrKsAubr/ZM2pceUZj0HrzFd8JVcEM1PrYs0+neHGlWQ2141UUdd+e92bfUbQO0itG65HCs9Xjyt/nqNxL4B71Dw3B9IVz5yd2kgiyI7lct9N54KAzxdGKIPPcWRG8TCOtiVEiOpn2wX+tKBfPIMJmvd96aEus7j1qvxm+gL6o84yN76PWJ8yeUWPnrvSJAFeM1ieVfJ2oVojbCizKNuRiQ2mtxRLltNB0TW5eq1UARc2sw9yWITyhYxY1YlzuQVFu691emyQJruVxv83+d6UfeCtwa16NMpLTSW8R1yyuYcFocTUo4gjbz3/euCJIfi+utCxduXGKjn58n7J05cZMiiTF3eOgJIxB5YebiSL9bX11z+S8ZWEC7eR5Qyx/eAut1PqFZb89P7L97RLUplq/MPOAaaXIAlxl55YscV2J/Knv8x7gWVXdmkN7jJRk6S0StqKJy9PUSthgHzbrdckAG7VfXLBlK+3q0l1So8QRNhC5uPZGJXRsMlDr45U9+2i9Xa3vRphAW7ZqU2AyRX8al7wGUpvtVwNXF9/vi8jB7DewP5lfk4w0ZOUtEraiWfPs9lh7RSvDLYOc31UzKELa1SZyzJxZ/OtPtk9Ro7QGW0L8IBwnMKO2501TwITp310SOr4yvs+5omGQQAuLb3kpgaBsh7jZfpUy93YrrkWpzgWW0aj9IcCvAYtV9fZcW5eSXjSsZ1V8Kuw8rquEJn7deNAgGKaWiPPOOnne0BRBI8CHT5jD5xYFR8MnMeQn3R7E7Bm1RGoy1wqNfiGsyqR752qE9uOSJj6qOFZQqd5O2+W60bhdJGkM665CZD3wm6r6gvf3EPBdVZ2fqqU504tCJKsflGtFvzAEpgweWVZXjDpXU/0SNIAFDW5hq5Qod9g4Qdq0Fbje86TPLWz/A2t9ocZvF9JWMYybLOQ5qJelamfWFLm6ytM7q68pQDz+A/e8W0YHyEp/3I69IuzHm2VgVtisuKl2C3MsSKKqCeunS/+T3vOktqyw/adP65uiIkxC2DXj1IL+4zodxd2NAX9VTKfiKkTuEZFV7C9Jex6NrLtGicjCWyTMSydOlRPlaplVYNaK0Xpk1tikA1i7Bn4/aWe/SQfCsO0vjY0zGJJ5OE1bksRtNI/r9KDejQF/VUynErmaEJFfEZETVXUx8NfAO7x/PwRu6ED7jA4TlpLkc4uOnrR9cKA2KVtulMoiqwyry1ZtSqxqixrAwtp1wptmT0kxEl39I/1AGZW6Jen2nY4CJKwvzXOHZdUNqzvSJ8KK0XriNrdLEZl786aKq6u4lcgXgSsAVPVO4E4AETna++6MHNtmFESU22nahISQXNXWOhtOmsUWprrBtrbhnGOHJ4IX+0U4Zs4sfvTcS5OElUt53SQDpb8dYTVQwgbCdgMUBXjXmw/iR8+9FOrtFTYbPrDWF1hnZK9qaEnfPAf1bnQBruLqKtKwLiKPqOqvhny3QVXDi0MUSC8a1ruNICNt3GAeFT0d5iGGMsmOEHaNKBVXEuNxYDv6hNccOM05ej7K/dglCLSpngzKSQbhzhUCXHfegtCsvnHODUY8RXuc5WFYH4z4rryi0ag8YQkIwwb5uIExsPbI3qlniqo9EjQLn3lAP5//LfcfeFwNlDiiPHdca480a7iH2XCiZsOLFg6HOiQ0S/qa0EhPFVdXcUJkjYj8V1X9G/9GEfl9YG1+zTJ6nTAdsLI/pUlzddAvMjEwhv3g2tUpD3sxKjevfm6SoHFxhnLJM+bSPhfPneYgHhXfEXS9JCq2KqpcqkTVBHGcm+5lwEUi8j0R+YL37/vAR4FP5N46o2cJG5CaXlDPXPsBvnDufAZq/VMqFAbVMkkywLUanpsD6ANPbJsiBOLSpbcaqcNwaV+SdO1x9UuCUqb4ywyP79VJ92H6tP1DRVYGbSsv2x1EChFV/XdVfRdwFfCM9+8qVX2nqv4s/+YZVSHrAcFloMpyUPVzYK0v0PMsjeeMS3Es1wE4yfWbXnbN7L1R1wtro1/o7RwbnxDQWRQVy6KuelJMaOWDa+6sB4AHcm6LUVHyCJBy0Q0nHVT954taFYyN7wOE685bMOl6adQ4UQImKLo/yuaR9Pr+3Ftp7mMr/niFdnNadToeIugdXXz7epau3FiKjMBVJm09EcOYIK8BIW6gSjuoQnROKAhuf5BNJG4VEdbGoODEOGGctjZ92vsYRLu2G4g2/OcVDxHmWNHMuFyFyPCykmvqEhF5RkQ2iMg6EVnjbZsvIj/0tn9bRH7Jt/8VIrJZRDaJyGm+7ad72zaLyJI822wkx2VFkIcqoR3dvIt6q7X9d6yth9pEwvqTpI1hwviy5es48dr7AZzUSC732r/Prt17qPXFhVM2aMd2s3Tlxth673kZ512EU1H12qtOJ1YiJ6vqi76/bwT+l5de/iPAYuCPReRtwPnAUcAhwHdF5C3eMV8GfhPYCjwiIitV9bEOtN1wIGpFsGK0ztKVGyfV2Gh31tfqSXRgrS9xhcKk9TqibBtR/WlVo80aqCHSyNu1bNWmSe2NGujqO8e4bPm62LrlLmqb1kzIO3aNU+sXBmp9niovmHZtN3F1VvIMTHRdbZU5MrysFJFE8S3AD7zP9wHneJ/PolG3/VVVfRrYDBzn/dusqk+p6m7gFm9foySEzbZPnjfEFXduCBw80s76gjyJXhnfx3XnLeDBJackEkqLFg7z4JJT+OJ5C2JXC3GDS1R/mte57rwFvPxqo9Rs05i8+Lb1EysFl1m438AdRJTapnnNm1c/F7jPQTOn88XzFkysdGbPqDE44Jbaxk+a1UQa43wSXB0rzE05OXmvRBS4V0QU+GtVvQHYSEMIrAA+CBzm7TsMrPYdu9XbBrClZfvxrRcSkYuBiwHmzJmTXQ96iLQpqFtn9c24jbia6WlmfXnYX1yM+C4z2bj+xJXTdanGCNH9dbmnUbEqeSXxjKITqdtbn/HgjNqUksFVz7tVFHkLkXeral1EXg/cJyJPAB8BviQifwysBHZncSFPQN0AjbQnWZyzl2jXw6q5j/8ccZlw08z6XD2ykgrEuMHTZWCM609UOd0Tr71/YnCbPq0vVvUTdh/S5hiD/YkU2xUirpHz0NmBu/UZZ1W3o9erK+YqRFS17v3/gojcBRynqn8KnArg2Tw+4O1eZ/+qBOBQbxsR242MyGKG7xIT0STt4OHikZWny/FlISk/gMj+xDkSNPu0Y9c4A7V+fveEOZGp98MElusqICh9TDORIrTvoeQSOZ+m/kqWZLHqqmL9j6zJzSYiIjNF5LXNzzQEx6PeqgQR6QM+DfyVd8hK4HwRmS4ic4EjgIeBR4AjRGSuiBxAw/i+Mq929ypZpKBOsm9a/XfWQYhJWLRweFLdeD+zZ9Rijd2ujI3v5e4f/9Q5WLC1jX4PrtlePXs/tb6GET3s2ll6KIU9ry/6bFhVDgLM612rEnmuRA4G7hKR5nW+qar3iMgnROQSb587ga8CqOpGEbkVeAzYA1yiqnsBRORSYBXQD9ykqhtzbHdPEjbDD6shkeQcrQx7ifyiCFMRZB2EGHWtIMJiNa4846jQ8+3avcd5hdakWVxq9DOntq2aa/Vme3n3HnZFeGFl6aEU97yqPpOvYv2PrHGqsV41LBV8claM1ll82/opht8kNcNdUpG7pLVuNx12ktrbaa4VNai7pmN3IQ+Dc1yQZV7XTdqeqtRJr3r7W0mTCt7qpBtAY9b3mgOnLkzH96rz0jwop9LvnjAncY6ldlUEWQT4ffLW9aFqlabL7tPXfmCKW3ESu1Acecxm487ZaQ+lqs/ky1RdsSi1oKU9MSYIK69a3znm7LWThbGy3YElSU2GsHOmNTJnOfjlEbMQpXLsF+GcYzubhrzqaeXLUv+jSLWgCRFjgqgBppN66iwGFldhFtXnKO+0MJVW2PkGB2rMnD5two1XldAIcshvNhvlvbVXlTvW1hl540EdGwTT5gMrE2Wo/9HphJZ+TIgYE0QNMJ16IcPaUcSgCsEri6hZX1jbo1KVAIy88aCOzGbjYjg6+Zxb29OrcRZZUKRa0ISIMcGihcOseXY731j9XOD3ndJTd3JgaZ4zrG540OonatbXNKYmbXsnZ7PNa4XVUnfN1JvV8ynDTL7qFKkWNCHSBST9QUft/8AT20KPmzVQmxRZ7VfJZD3Id3pQBSJXP0lK3FZlUAwbePpEmLvk7tDnmkb/3utR3XlTpFrQhEjFSfqDjts/ahb68u49E+k4dviM8FXz7Q8iavXj6rZbFmOw64AdpsprLTcMk59rUv171WNBqkCRakFz8a04Sd1h4/YPGwj7pOHuG0bVo3SjBt4sS9zmTdKysweGRK438T/Xpgtp0oJSFtXdGaJcz/PEhEjFSWpQi9se5ve+zyEmtSq+/a3EDbxxJW7zTmOeBNcBu9nnHSFu3X6e91y80xaUqnosiBGNqbMqTlKDWtz+Yctil4ysrdesih48Tj2TpMRt0bgO2EmCIg8ZHIjdP2olVnQsSFXew6piK5GKkzRi1mX/oGVxXFGf1nMkVasUSdrVWRnUV61ETR78uK4ChEb/o/aPW4kVef+q9B5WFRMiFSco1UjUD3rRwmHOOXaY/kZiTOco5aDssFFV76qkB48beJPe4yJxHbBdVgECfPiEOROrsSCaq7G4hJBF3b8qvYdVxdRZXUASl9IVo3XuWFuf8MBJEqWc5DpV0oO7uEdWxW3X1UsnqM+1fmHmAdMC3bbbdSEt6v5V6T2sKiZEeoxOpUcoWg+ehDJETXc6eC9pn8twj9JQpfewqpgQ6TE6NTOrWk6kIlcaRcVRJO1zVVZjfqr2HlYREyI+esGLo1Mzs6rOXIsgyeqwF97RLLH3MH9MiHj0SlRt1jOzqEGtijPXInBdHfbKO5o19h7miwkRjyJTKXeSLGdmWQ9qvTrLdl0d9so7GkevvidlxYSIRy95cWQ1M8tyUCvrLLsTA5br6rCX3tEwyvqe9DIWJ+LhGqRl7CfLQa2M/vydClRzjaOwd7Sc70mvY0LEo0pRyWUhy0GtHYGUV23psg1YZX9HO1Hj21Zj5cPUWR55e3F0ox43SyN9Wq+xPNUbnRqwXPtQZk+jTqmZLO6jfOQqRETkGeA/gb3AHlUdEZEFwF8BBwJ7gD9Q1YdFRIDrgfcDu4ALVfVH3nkuAD7tnfZzqvq1PNqblxdHt+px2x3U/IJ11kCNWr9MSjfvIpDyNDZ3asBK0oe072jek5hOGf0t7qN8dGIlcrKqvuj7+/8CV6nqP4nI+72/3wO8DzjC+3c88BXgeBE5CLgSGAEUWCsiK1V1Rwfangnd7FXTzqDmHwx2jo1T6xNmz6ixc5d7tcQ8VwsnzxsKLBV88ryhts/tJ+8VTycmMZ1atZV5NdarFKHOUuCXvM+zgOe9z2cBX1dVBVaLyKCIvIGGgLlPVbcDiMh9wOnAtzra6jYwPe5UggTr+D5lxgHTGP3Mqc7nyXO1EFYqOKqEcBryXvF0YhLTSTWTxX2Ui7wN6wrcKyJrReRib9tlwDIR2QL8KXCFt30Y2OI7dqu3LWz7JETkYhFZIyJrtm3L9kfeLuZVM5WsBGuexuZOpojJ02DeiX4E9UHIftVmlI+8hci7VfUYGqqqS0TkJOC/A5er6mHA5cDfZnEhVb1BVUdUdWRoqFwvbtm9aoogK8GaZ5rxTgn/vFOld6IfzRID4tumwB1r61a7o8vJVZ2lqnXv/xdE5C7gOOAC4BPeLrcBN3qf68BhvsMP9bbVaai0/Nu/l1ujc8D0uFPJ0kCal3qjk0bcPFU0nerHA09so7WKcrfY/oxwchMiIjIT6FPV//Q+nwpcTcMG8us0BMEpwJPeISuBS0XkFhqG9ZdU9acisgr4ExGZ7e13KvtVYJXB9LiTqYJgrUIbXehUP8z215vkuRI5GLir4bnLNOCbqnqPiPwCuF5EpgGvAE1byXdouPdupuHiexGAqm4Xkc8Cj3j7Xd00shvVpgqCtQptdKET/bAYjt4kNyGiqk8B8wO2/wtwbMB2BS4JOddNwE1Zt9GoJt0YuNkNWAxHb2IR60al6NbAzW6gW9R/RjJMiBiVopsDN4sg61Vdt6j/DHdMiOSEqVzyoV3jrT2X/diqzsgCy+KbA51KId6LhBlpFWIzx5bxuXQi820YZctSbFQTEyI5YD/O/AgK3GwSJxTK9lyKFmrmklsMRU4c8sCESA7Yj7NBHj8Wf3R3EFFCoWzPpWihZul4Ok/RE4c8MCGSA/bjzPfHsmjhMA8uOWVSig0/YUKhbM+laKFm6Xg6T9EThzwwIZID9uPszI8lqVAo23MpWqjlnbPLmErRE4c8MO+sHDB/+c5ljk0S3Fa251KG4Dxzye0s3RjVb0IkJ3r9x9mJH0saoVCm51I2oWbkTxkmDlkjjWwj3cXIyIiuWbOm6Gb0NK0xCND4sZi6xOh1yhyrJCJrVXUkyTG2EjFywWbZhhFMmVbDWWBCxIgl7cyp234shmFMxYSIEYmlxjAMIwpz8TUi6Ua/dsMwssNWIl1MFga8bvRrNwwjO2wl0qVkFTFedECcYRjlxoRIl5KVGqpsUd6GYZQLU2d1KVmpocxV1zCMKEyIdClZRoybq65hGGGYOqtLMTWUYRidIFchIiLPiMgGEVknImu8bcu9v9d536/z7X+FiGwWkU0icppv++nets0isiTPNncLlqHVMIxO0Al11smq+mLzD1U9r/lZRL4AvOR9fhtwPnAUcAjwXRF5i7frl4HfBLYCj4jISlV9rANtrzSmhjIMI28Ks4mIiADnAqd4m84CblHVV4GnRWQzcJz33WZVfco77hZvXxMihmEYBZO3TUSBe0VkrYhc3PLdrwH/rqpPen8PA1t832/1toVtn4SIXCwia0RkzbZt2zLrgGEYhhFO3kLk3ap6DPA+4BIROcn33YeAb2V1IVW9QVVHVHVkaGgoq9MahmEYEeQqRFS17v3/AnAXnnpKRKYBZwPLfbvXgcN8fx/qbQvbbhiGYRRMbkJERGaKyGubn4FTgUe9r38DeEJVt/oOWQmcLyLTRWQucATwMPAIcISIzBWRA2gY31fm1W7DMAzDnTwN6wcDdzXs50wDvqmq93jfnU+LKktVN4rIrTQM5nuAS1R1L4CIXAqsAvqBm1R1Y47tNgzDMByx8riGYRgGkK48rkWsG4ZhGKkxIWIYhmGkxoSIYRiGkRoTIoZhGEZqTIgYhmEYqbF6IoZRAlaM1q3wl1FJTIgYRsGsGK1zxZ0bJsoZ13eOccWdGwBMkBilx9RZhlEwy1ZtmhAgTcbG97Js1aaCWmQY7pgQMYyCCat7H7bdMMqECRHDKJiwuvdh2w2jTJgQMYyCWXzakQzU+idtG6j1s/i0IwtqkWG4Y4Z1wyiYpvHcvLOMKmJCxDBKwKKFwyY0jEpi6izDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAzDSI0JEcMwDCM1XVkeV0S2Ac926HKvA17s0LXKgvW5++m1/oL1GeCNqjqU5ARdKUQ6iYisSVqTuOpYn7ufXusvWJ/TYuoswzAMIzUmRAzDMIzUmBBpnxuKbkABWJ+7n17rL1ifU2E2EcMwDCM1thIxDMMwUmNCxDAMw0iNCZEQROQmEXlBRB6N2Oc9IrJORDaKyPd9208XkU0isllElnSmxe3TZp+fEZEN3ndrOtPi9onrs4gs9vq0TkQeFZG9InKQ913lnnOb/e3WZzxLRL4tIuu99/oi33cXiMiT3r8LOtfq9mizz3t978DK2Iupqv0L+AecBBwDPBry/SDwGDDH+/v13v/9wE+ANwEHAOuBtxXdnzz77H1+Bnhd0X3Ius8t+54B3F/l55y2v938jIE/Av6P93kI2O4904OAp7z/Z3ufZxfdnzz77P39iyTXspVICKr6Axo3NozfAe5U1ee8/V/wth8HbFbVp1R1N3ALcFaujc2INvpcWRz67OdDwLe8z5V8zm30t7I49FmB14qIAK/x9t0DnAbcp6rbVXUHcB9wet7tzYI2+pwYEyLpeQswW0S+JyJrReT3vO3DwBbfflu9bd1AWJ+h8VLe622/uKD25YaIzKAxgNzhberm5xzUX+jeZ/wXwFuB54ENwCdUdR/d/YzD+gxwoIisEZHVIrIo7kRW2TA904BjgfcCA8APRWR1sU3KncA+q+q/Ae9W1bqIvB64T0Se8GZD3cIZwIOq6jqLrzpB/e3WZ3wasA44BXgzjb79c6Etyp/APqvqz2nkz6qLyJuA+0Vkg6r+JOxEthJJz1Zglaq+rKovAj8A5gN14DDffod627qBsD6jqnXv/xeAu2ioe7qJ85ms2unm5wxT+9vNz/giGmpaVdXNwNPAPLr7GYf12f+cnwK+ByyMOpEJkfT8A/BuEZnmLf2PBx4HHgGOEJG5InIAjR9jvIdDNQjss4jMFJHXAojITOBUINTDq2qIyCzg12n0v0nXPueg/nb5M36OxuoaETkYOJKGEX0VcKqIzBaR2TT6vKqwVmZLYJ+9vk73tr8OOJGGM00ops4KQUS+BbwHeJ2IbAWuBGoAqvpXqvq4iNwD/BjYB9yoqo96x15K42XrB25S1Y0FdCExafvsLXvvatjomAZ8U1XvKaIPSYnrs7fbbwH3qurLzeNUdU8Vn3Pa/gIH073P+LPA34nIBkCAP/RW2ojIZ2lMGACuroo6M22fReRdwF+LyD4ai4xrVTVSiFjaE8MwDCM1ps4yDMMwUmNCxDAMw0iNCRHDMAwjNSZEDMMwjNSYEDEMwzBSY0LEMAIQkV+0/H2hiPxFm+d8xvO9N4yuwYSIYeSAiFgMltETmBAxjISIyBki8pCIjIrId72IX0RkqYj8vYg8CPy9iPyyiNzr1Wu4kUZQFyJyuIg8LiJ/4313r4gMeN+9WUTu8ZIc/rOIzPO2f1Aa9T3Wi8gPvG1HicjDXt2HH4vIEcXcEaOXsWBDwwhARPbSyG7a5CBgpape6qXA2KmqKiK/D7xVVT8pIktpJC58t6qOiciXgBdV9WoR+QDwjzRqN7wG2AyMqOo6EbnVO/c3ROT/AR9T1SdF5HjgGlU9xYssPt1LjDeoqjtF5M+B1ap6s5d6pV9VxzpzhwyjgS25DSOYMVVd0PxDRC4ERrw/DwWWi8gbaBQvetp33ErfQH4ScDaAqt4tIjt8+z2tquu8z2uBw0XkNcC7gNu89CIA073/H6SRpuJW4E5v2w+BT4nIoTSS6T2ZvruGkQ5TZxlGcv4c+AtVPRr4b8CBvu9eDj5kCq/6Pu+lMaHro7HCWeD791YAVf0Y8GkaWWXXisgvq+o3gTOBMeA7InJKW70yjBSYEDGM5Mxif0rwqLrbP6BRDRIReR+NEquheLUcnhaRD3rHiIjM9z6/WVUfUtXPANuAw7zEl0+p6pdoZNx9Rxt9MoxUmBAxjOQspaFyWgu8GLHfVcBJIrKRhlrrOYdzfxj4qIisBzayv+TuMhHZICKPAv9Ko6b7ucCjIrIOeDvw9RR9MYy2MMO6YRiGkRpbiRiGYRipMSFiGIZhpMaEiGEYhpEaEyKGYRhGakyIGIZhGKkxIWIYhmGkxoSIYRiGkZr/D6KEpiMUE7OOAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "hard = (all_ev.energy > 10) & (all_ev.energy < 79)\n", + "soft = (all_ev.energy > 3) & (all_ev.energy < 5)\n", + "\n", + "hard_ev = all_ev.apply_mask(hard)\n", + "soft_ev = all_ev.apply_mask(soft)\n", + "\n", + "hard_lc = hard_ev.to_lc(200)\n", + "soft_lc = soft_ev.to_lc(200)\n", + "\n", + "hard_lc.apply_gtis()\n", + "soft_lc.apply_gtis()\n", + "\n", + "hardness_ratio = hard_lc.counts / soft_lc.counts\n", + "intensity = hard_lc.counts + soft_lc.counts\n", + "\n", + "plt.figure()\n", + "plt.scatter(hardness_ratio, intensity)\n", + "plt.xlabel(\"Hardness\")\n", + "plt.ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Despite some light curve variability, the hardness ratio seems pretty stable during the observation." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us now look at the power density spectrum. Notice that we are using a sampling time of 0.001 s, meaning that we will investigate the power spectrum up to 500 Hz" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:01, 177.96it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(all_ev, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power (Leahy)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmQAAAGtCAYAAAC4HmhdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABUSElEQVR4nO3dd3hUVf4G8PdMS++FFkLoRQTpTVBUUETsDcu6lnVdt1nWXfytbVdX2V3L2nZd1FVXXV0XVFQQRJEmIE06hJpASAgJIT2Zycyc3x9TMpNMTWZyb27ez/PwOLlz5+bgkOTN95z7PUJKCSIiIiJSjk7pARARERF1dQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUZlB6AO2RmZkp8/LylB4GERERUVBbt24tl1Jm+XquUweyvLw8bNmyRelhEBEREQUlhCj09xynLImIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECuuUgUwIMUcIsaCqqkrpoRARERG1W6cMZFLKz6WUd6ekpCg9FCIiIqJ265SBjIiIiEhLGMiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgYyIiIhIYQxkRERERApjICPqAk5WNSJv3hJsKahQeihEROQDAxlRF/D1vlIAwP+2FCk8EiIi8oWBjKgLOFVjBgBkJ8coPBIiIvKFgYyoCyiraQQApMWbFB4JERH5wkBG1AWcqnZUyKx2u8IjISIiXxjIiLoA15SluYmBjIhIjRjIiLqAijoLAMBsZSAjIlIjBjKiLqCmsQkAYLbaFB4JERH5wkBGpHF2u0SN2QqAFTIiIrViICPSuDqLFVI6HlsYyIiIVImBjEjjqhut7seskBERqRMDGZHGVTc0uR9zDRkRkToxkBFpnFcgY9sLIiJVYiAj0rCTVY0or3W0vDDqBacsiYhUyqD0AIgoeiY+8437cWZiDKcsiYhUihUyoi4iKymGFTIiIpViICPqIjITY9j2gohIpRjIiDRKupqPAeiflYDEGAMrZEREKsVARqRRdmcee2DGIHz9wHmIMehgbuIaMiIiNWIgI9Ioq91RDdPrBIQQiDHqWCEjIlIpBjIijbI5S2QGnQAAxBj0DGRERCrFQEakUVZnINM7A5nJoGPbCyIilWIgI9Ioq80RyIx6x5e5Sa9Dk03CbpeBXkZERApgICPSKM81ZICjUz8A2CQDGRGR2jCQEWlUyzVkep3O6zgREakHAxmRRrmmLF0VMlcwszKQERGpDgMZkUa5K2R6V4XMOWVpYyAjIlIbBjIijWq+y9LxZe4KZq61ZUREpB4MZEQa1XoNmfA6TkRE6sFARqRRrkqYO5AJriEjIlIrBjIijXIt6m+1hoyBjIhIdRjIiDTK3xoyBjIiIvVhICPSKH99yDhlSUSkPgxkRBrVslO/gVOWRESqxUBGpFH+7rJk2wsiIvVhICPSqOY1ZKyQERGpHQMZkUa5OvIb9Y4vcz23TiIiUi0GMiKNalkhY9sLIiL16pSBTAgxRwixoKqqSumhEKlWq8awrgoZ97IkIlKdThnIpJSfSynvTklJUXooRKpla7WGzPHlbpcMZEREatMpAxkRBefu1K/jGjIiIrVjICPSKHeFTN/yLku2vSAiUhsGMiKNsvrrQ8Y1ZEREqsNARqRRthaL+rmXJRGRejGQEWlUc4XMubk415AREakWAxmRRrVcQ6YTrJAREakVAxmRRjXZvNeQuSplrJAREakPAxmRRrnWkLk79TsrZXYGMiIi1WEgI9Io99ZJwrvtBStkRETqw0BGpFE2u4ROALpWe1myDxkRkdowkBFplNUuYdA3f4mzQkZEpF4MZEQaZbNLdwgDPCtkDGRERGrDQEakUVabdIcwgHdZEhGpGQMZkUbZ7HavCpkzj7FCRkSkQgxkRBrVZJfQ6zzXkDkrZNzLkohIdRjIiDTKZvNeQ+Z6aJMMZEREasNARqRRVrv3GjIhBAw6wbYXREQqxEBGpFE2ux1GvfA6ptcJLuonIlIhBjIijWpZIQMAs9WOf64+gh3HK5UZFBER+cRARqRRTTY7jHrfX+KLthV18GiIiCgQBjIijaq32BBv0vt8Li3e1MGjISKiQBjIiDSqzmxFQozB53Np8cYOHg0REQXCQEakUXVmGxJMvgNZUiwDGRGRmjCQEWlUncWK+BjfU5Z29iIjIlIVBjIijaozW/1WyBjIiIjUhYGMSKPqLDa/a8hs7A1LRKQqDGREGtRks8NitSOhxV2WM4Z1A8Dtk4iI1IaBjEiD6s02AEB8iwrZ/KvPBgDY2a2fiEhVGMiINKjOYgUAJLZY1G/QOb7kbQxkRESqwkBGpEF1Zkcgi2+xqN+ZxxjIiIhUhoGMSIPqLI4py4QWFTLX3pZcQ0ZEpC4MZEQa5KqQtWx7oRPOQMYKGRGRqjCQEWmQO5C1WNTvqpBxUT8RkbowkBFpUL1zyrLl5uJ6wSlLIiI1YiAj0iDXXZYtK2Q6VsiIiFSJgYxIg8xNjlb8MYbWX+IGnWCFjIhIZRjIiDTI4twbyeQjkOl0AlZWyIiIVIWBjEiDLFZnINO3/hLXC8EpSyIilWEgI9Igi9UOnQAMvgKZTnBzcSIilWEgI9Igi83uc7oSAHQCsHMNGRGRqjCQEWmQxWr3OV0JuCpkDGRERGrCQEakQWarHSaD3udzet5lSUSkOgxkRBpksdp9trwAHNsncVE/EZG6MJARaVCTzQ6jXvh8zsC2F0REqsNARqRBFmuARf06VsiIiNSGgYxIgwLdZck1ZERE6sNARqRBAe+yFLzLkohIbRjIiDQo6JQlK2RERKrCQEakQWZbgLYXrJAREakOAxmRBgWastRx6yQiItVhICPSIIvV5rcPmUEnYLMzkRERqQkDGZEGBdzLUidg44wlEZGqMJARaVDguyzBPmRERCrDQEakQU02GbgPGQMZEZGqMJARaVDAtheCjWGJiNSGgYxIgwIFMj23TiIiUh0GMiKNkVLCYrPD6G8NGbdOIiJSHQYyIo2xOJuM+Wt7wTVkRETqw0BGpDEWqyOQcS9LIqLOg4GMSGPcgSxQHzIGMiIiVWEgI9IY15Sl30X9gpuLExGpDQMZkcYEnbJkhYyISHUYyIg0prHJEchijXqfz+t0AsxjRETqwkBGpDGna80AgPQEk8/n9QKskBERqQwDGZHGlNdZAABZSX4CmU7HQEZEpDIMZEQaU17jqJBlJMT4fF6vY4WMiEhtGMiINKa81gyDTiAlzujzeXbqJyJSHwYyIo0przUjI9EEnU74fF4nuJclEZHaMJARaczpWovf6UqAFTIiIjViICPSmPJaMzKT/AcyHbdOIiJSHQYyIo0pr7UgM9H3HZYAYNQLNNnskKySERGpBgMZkcZUNTQhNc5/IOuZGofGJjvKay0dOCoiIgqEgYxIQ6SUqLNYkRDju0s/AAzMTgIAHDxV01HDIiKiIBjIiDSksckOKYF4k8HvOQOyEwEAh0/VdtSwiIgoCNUEMiFEPyHEm0KIhUqPhaizqrdYASBghaxbcgwSTHocKa/rqGEREVEQUQ1kQoh/CSFOCSF2tzh+iRAiXwhxSAgxDwCklEeklHdGczxEWldvsQEIXCETQiAhxoDGJltHDYuIiIKIdoXsbQCXeB4QQugBvApgFoBhAOYKIYZFeRxEXUKdq0Jm8l8hAwCjXocmG++yJCJSi6gGMinlGgAVLQ6PB3DIWRGzAPgQwBXRHAdRV1FndlbIYvxXyIDm1hdERKQOSqwh6wXguMfHRQB6CSEyhBCvARglhHjY34uFEHcLIbYIIbaUlZVFe6xEnUp9iBUyg14HKytkRESqEfjX6A4kpTwN4J4QzlsAYAEAjB07lj9RiDy4K2QB1pABgEEnYGGFjIhINZSokJ0A0Nvj4xznMSJqJ1eFLD5Ihcxk0MHKQEZEpBpKBLLNAAYKIfoKIUwAbgTwmQLjINKcOtddlgHaXgCOCpmV+1kSEalGtNtefABgA4DBQogiIcSdUkorgF8AWA5gH4CPpJR7ojkOoq6i3uxaQxZsUb8OFisrZEREahHVNWRSyrl+ji8FsDSan5uoK3JVyOKMwdteNLAPGRGRaqimUz8RtV+DxYp4kx46nQh4noFtL4iIVIWBjEhD6iy2oHdYAmwMS0SkNgxkRBpSb7YG3MfShY1hiYjUhYGMSEPCqZCx7QURkXowkBFpSL3FGrRLPwAYdJyyJCJSEwYyIg2pM9sQF0IgMxk4ZUlEpCadMpAJIeYIIRZUVVUpPRQiVXFUyIJPWRp0OjaGJSJSkU4ZyKSUn0sp705JSVF6KESqUme2Be3SDzjbXrAxLBGRanTKQEZEvoVaITPpdWiyM5AREakFAxmRhtRbwqiQcVE/EZFqMJARaYTVZofZag+pQmbU62CzS9i5joyISBUYyIg0ot65N2V8CHdZGvWOL31OWxIRqQMDGZFG1JsdgSwhJpS7LB17XVo5bUlEpAoMZEQaUWexAgizQsZeZEREqsBARqQR7gpZSGvIHBUyLuwnIlIHBjIijWhLhczKNWRERKrAQEakEfWuQBbKGjLXlKWVFTIiIjUI+J1bCDEJwC0ApgLoAaABwG4ASwC8J6Xk3kVEKlHnnrIMpULmnLJkhYyISBX8VsiEEF8CuAvAcgCXwBHIhgF4BEAsgMVCiMs7YpBEFFw4FTIu6iciUpdA37lvlVKWtzhWC2Cb889zQojMqI2MiMJSbwm9QuZqe8EpSyIidfBbIXOFMSHEL4UQaYHO6WhCiDlCiAVVVZwxJXJxBbL4EO6yTIx1nFNjborqmIiIKDShLOrvBmCzEOIjIcQlQggR7UEFI6X8XEp5d0pKitJDIVKNOrMVRr2AyRD8yzo1zgQAqKpnICMiUoOg37mllI8AGAjgTQA/BnBQCPG0EKJ/lMdGRGGot9hCqo4BQFqCEQBQ2cBARkSkBiG1vZBSSgAnnX+sANIALBRC/CWKYyOiMNSZrSGtHwOaK2SVrJAREalC0F+nhRC/BvAjAOUA3gDwkJSySQihA3AQwG+jO0QiCkW9xYa4EANZrFEHk0GHynpLlEdFREShCGV+Ix3A1VLKQs+DUkq7EOKy6AyLiMJVZ7GGtLE4AAghkBpnZIWMiEglgn73llI+LoTQCyF6ep4vpTwmpdwX1dERUcjqzbaQtk1ySYs3obKBFTIiIjUIZcryFwCeAFAKwNVFUgIYEb1hEVG46ixWdE+ODfn8lHhWyIiI1CKU+Y37AAyWUp6O8liIqB3qLbaQuvS7ZCXF4IfCMzheUY+UeCOSY41RHB0REQUSyl2WxwGwAyuRytVbQr/LEgCm9M9EcVUjpv7lW8x+aW0UR0ZERMH4/XVaCPGA8+ERAKuEEEsAmF3PSymfj/LYiCgMjjVkoVfIpg5s3vnseEVDNIZEREQhCvTdO8n532POPybnHyJSGSml8y7L0Ctk2ckxURwRERGFw28gk1L+oSMHQkRtZ7baYZeh7WPpEmMIPbwREVF0hXKXZRYczV/PAuC+hUtKeUEUx0VEYagzWwEgrApZSza7hF6n+Fa1RERdUiiL+t8HsB9AXwB/AFAAYHMUx0REYaq32AAAcca2B7KKOvYkIyJSSiiBLENK+SaAJinlainlHQAUrY4JIeYIIRZUVfHmTyLA0YMMQMid+n05XWcOfhIREUVFKIHM1TmyRAgxWwgxCo7tlBQjpfxcSnl3SkqKksMgUoTFasep6kavY3VmR4UsnE79LZmb7MFPIiKiqAglkD0lhEgB8CCA38Cxwfj9UR0VEfn1+092YfzT38BstbmP1UegQtZkYyAjIlJKKHtZfuF8WAVgenSHQ9Q5ldWYYbXb0SMlLuqf66u9pQCAqvomZCc7KmKbC85ACKBXanifXycAu3Q8tlgZyIiIlBK0QiaEGCSE+EYIsdv58QghxCPRHxpR5zFv0U786oMfOuRzxRgcX7ZnnPtQWqx2/Of7Y5g+OBs9wwxkQjTfVWlmhYyISDGhTFm+DuBhONeSSSl3ArgxmoMi6mz2n6zBiTMd0+0+1nknZeHpOpTVmLH9eCXKa824fmzvsK/l+ZomVsiIiBQTSiCLl1JuanHMGo3BEKlNY5MNS3eVQEoZ8JziqgacrrMEPC9SYo2OL9u7392KcX/6GhuPnIYQwKR+GWFf68krzsLCeyYBACyskBERKSaUQFYuhOgPQAKAEOJaACVRHRWRSizaVoR739+GVQfKAABWmx0fbyvyWgB/vKIeUjq65ddZmhfaV9RZUNPY1Oqa7RXbotfYxiOnMaxHMlLijWFfy6DXISPRsYUSF/UTESknlED2cwD/BDBECHECwH0A7onmoIjUYvPRCgDAoq1Fjv9uK8IDH+3Al7tPus85Wl7nflxR29xc9Uf/+h6Pfrq7zZ/7aHkd7vvwBzQ22byOx7bY8mjH8UqM7ZPW5s9jcq5J46J+IiLlBA1kUsojUsqLAGQBGCKlPBfAVVEfGZEKbC44A8BxZ2NVQxPeXl8IANh09LT7nMLT9e7H5c7mqrVmK/YUV+NAaa37OYvVjiNlzR97OnSqBrVm75UAq/JP4dPtxcg/WRNwjHUWG7KS2r5RuEnvDGS26E+3EhGRb6FUyAAAUso6KaXrJ8MDURoPkWqcqGzAicoGXD2qFyxWO/7w2R7sK6lGjEGHzUfPuM87erp1hWxfSTWkBIrONIe1RduKcPHf1rTaoshqs+PyV77DgtWHvY6XVjvC3XGPawBAo9W7YgYAKXHhT1e6uAMZK2RERIoJOZC1wB2ISfO2FDimK+84ty8GZCfi4x9OICXOiLum9kV+aQ0q6x3BqqC8zl2hcm0/tKvIsa1XdaMVVQ2OdWTHK+rRZJPYf7LacW6tGZ/vKEZJVSPqLTavahoAdzf+ohZ3bzZYWgey5PYEMueUJdeQEREpp62BjHMbFDG7T1R5VZLUYnNBBRJjDBjSPQnXjM4BANwwrjemDcwCAGxxTmcWlNe513Cddla/dp9o3mfV9XdzVcYOOKcg/72hEL/84AdsO+a4TmFFPaw2uztwnapxVsgqvP/fNDRFNpAZ9Y7fr1ghIyJSjt9AJoSoEUJU+/hTA6BnB46RNO6e97bimaX7lR5GK1sKzmBUbioMeh1uGNcbV43qhbvO7YuRvVNh0uuwuaDC2fKiEUO6JyPOqMdp55TlrhNV6JbsqJodr3BUuFxh7cApRyVsb4mjUrYq33EHZ+HpOjy6eDcuen41KuosKHVWyI63qJC1XOQPAMmxbQ9kBr0OOsFARkSkJL+BTEqZJKVM9vEnSUrZ9g3ziDw02ewormxAfmnghesdraq+CfmlNRiflw4ASE8w4YUbzkF2cixijXqMyEnBpoIK94L+vMx4ZCSaUFFnQb3FisNltbjkrO4AWlfIDjr/rq6pyzXOlhr1FhuW7jqJE5UNePCj7e4KWVHLCpmPKcuUuPZ9SZoMOk5ZEhEpKFCFLDHYi0M5hyiQ0upG2KVj2k9NgWDrsQpICYx1BrKWxvVNx66iKizd5WjJl5eRgIwEE8przdhXUg27BKYMyERijMG9BswVyPJP1qCmsalV5QwAqhqa0D05Ft/ml6GqoQkGnUDRmQbYnRtOSinR0GTDhUOycfe0fu7XtWfKEgCMeh3MrJARESkm0BqyxUKI54QQ04QQCa6DQoh+Qog7hRDLAVwS/SGSlpVUOablrHbp1T4iWlbln8Kq/FNBz9tScAYGncA5vVN9Pj99cDZsUuLFbw5CJ4C8zARkJMagos7iXtB/dk4KctLi3BWy07VmmAw6VDdasfZgOQDH5t4AkJnY3LbiznP7uh+f1SsFFpsdJ53TlxabHXYJjO6Thtsm57nPa8+UJeDYH1NNgZiIqKsJNGV5IYBvAPwUwB4hRJUQ4jSA9wB0B3CblHJhxwyTtKq4snl91KFTvnt0RYqUEv/38S78eVl+0HP3FFdjYLckxJn0Pp8f3zcdm39/Ed65YzzeuWM8UuKMSE9wTFnuLq5GZqIJ3ZNjkZMWj6IzDWiy2VHdaMXo3FQAwOLtJwAAE53bHU3slw6dAPQ6gRvG90a88/O6pj2/2FkMAGi0OEJTnFGPpFjHNGWMQdeqe3+4jHod15ARESko4F2WUsqlUsqbpZR5UsoUKWWGlHKylPJPUsqTgV4bTUKIOUKIBVVVVcFPJlU74RHIDvtpmhop+aU1KK5qxLHTdUH3nNxbUo1hPZIDnpOZGIPzBmVhqvOuy4xEE07XWrD7RBWG90qBEAI5aXE4XlGPM85pycn9M2HQCazYW4rkWIP7tf0yE9ArLQ6DuyUhOdaIMc67Ns8fnIWJ/dLx1ncFaLLZ3XdYxpn0SDA5All7pysBriEjIlJaW9teKEpK+bmU8u6UlBSlh0LtVFLZiNR4I3qkxEa9QrZyv2Oqss5iQ3mtxe95ZTVmlNWYMbRHUljXz0gwwWKzI7+0Bmf3cvzb7J0ejzqLDYecYbN/ViIW/GgMuiXHYmK/DAzIdizDzEmLxwMzBuH+GYMAAJP6Z0CvE+iREou543NRUtWI/SU1zYHMqIdeJ5AYY0BybPvvsTHpdVHbXHzx9hP4/Se7onJtIiKt4N2SpKjiygb0SIlDZqIp6oHs2/2noNcJ2OwSxyrq/G43tM/ZjmJYz8AVspYyEhzXkxI4q6cjkOWmxwMAthU6eo2lJ5gwqX8G1v0uG3YpUWe2YurATEzqn4HeznMB4I4pfTG5fyZS403omRoHAKiot0DvXHTmmqJMjDG0q0u/SzSnLH/94XYAwJ+uOjsq1yci0oJOWSEj7SiuakSv1Fj0z0rE4bJa992EkVZV34SthWfca7IKyv3fQOAOZEGmLFtKTzS5H5+d4whkrlC3xrmIP8N5jl4nYNTrkBpvwrt3TvAKY4AjcLluKEiLdwSuynqL15QlACTHRSaQmQyOuyyDTeWGo7LewsoYEVGIAgYyIYReCKG+jp2kGcWVDeiZGoeB3RJRb7GhxHk3YaStPlgGuwRundQHOuFowurP3pJq9EyJRWq8ye85vmQkOM5PTzChZ0osAKBnSizSE0xeFbJwucZRWd/kbgob56yQPXzpUPzigoFhX7Mlk0GHtQfLMeyx5e2+lstb3xXg/e+PRex6RERaFmxRvw1AvhAit4PGQ11Indmxz2OPlDgMyHKspYrWtOW3+08hPcGEcXnp6JESh8IK/xWyvcXVYU9XAkCGs3WFa0E/AAghcHavFFjtEkIAaWGGPABIdVbAztRb3E1hY42OL93pg7PdNwC0R+80R4WuockGW4SqlAkx7bvzk4ioKwllyjINjrYX3wghPnP9ifbASPtKqhx3WPZMjXUvbj8YhY79NrvEqvxTOG9QFvQ6gbzMeBT46XnW2GTDkfI6DA1zuhJwVMiM+ta9y1wL/FPjjO41YOEw6HVIijWgsr7Ja1F/JA3u3tzj2fW+tFd7e6MREXUloSzqfzTqo6Au6USlY3qyZ2ocMhJjkBZvjErri+3HK3GmvgnTh2QDAHLTE7Bsd4nPcw+U1sBml2GvHwMc674W3jMZ/bO9N7BwrSdry3SlS2q8ESVVDfj3hir354qkHilx7sevrT6Me88f4L6ZoK1attGw2yV0bQikRERdQdAKmZRyNYACAEbn480AtkV5XNQFuJrCun7wD8hODHnKsrHJhkc/3R1wLZjLt/tPQSeAaQMzAQB5GfE4U9+EqoYmAI7tm574bA9KqxvdC/rbUiEDgJG9U5EY4/17zghnIHPdhdkWafEmLN9Tis0FZxBr1LlvDoiUWcO7Y+54x8qE9zYew4/+tand12xs8g5k1ijdsEFEpAVBA5kQ4icAFgL4p/NQLwCfRnFM1EWUVDZAJ4BuzvYT4QSyL3aW4N2NhXjru4KA5y3bfRIL1h7BlAGZ7sXxfTIcO4Edc05bfrT5ON5eX4Cr/74ey3afRIJJ725XEQndk2ORlRTjt81GKDxvMNjx+EzEmyLbscag1+GJy4e5P66o89+nLVSuGxBcXlt9uN3XJCLSqlDWkP0cwBQA1QAgpTwIIDuag6Ku4URlI7olx8Kgd/wz7J+ViDP1TThdaw762nc3FgIAlu4q8bsI/cNNx3Dv+1sxrEcyXrxxlPt4nwxH2CpwVtfWHz6NnLQ4WGx2fJtfhqE9kiM6tSaEwGu3jMYDMwe1+Rqu1heDuiUixhCdxfKe141Es9nnVhzw+vj5Fh8TEVGzUAKZWUrp/nVZCGEAwLkHajdXywsX18L+YFWynUWV2HG8EhP6puNUjRmbCypanfPa6sOY9/EuTB2Yhf/8ZILX+i1XIDtWUY/GJhu2HjuDWcO74+OfTcao3FRcMrx7JP56Xsb0SUf/rMTgJ/rhutOyb2ZCpIYUUHu3Y9p9gtuaERGFI5RAtloI8X8A4oQQMwD8D8Dn0R0WdQUlVX4CWZCF/e9tLES8SY+X5o5CrFGHJTu9F+gXnanHX5btx6zh3fHGbWNbTe/FmwzISopBQXkdthWegcVqx+T+meidHo9P7p2Cu6b2i9DfMHJcASmSU6mBtLfZ7GUvr4vQSIiIuoZQAtk8AGUAdgH4KYClAB6J5qBI++x2ieKqRncDVQDomRKHOKM+YIWsqr4Ji7cX48pRvdAtORYXDumGL3eXwOpxR9+/NxRCCIFHLhsGo973P/G8jHgUVtRj/eHT0OsExvVNj9xfLgpqzVYAQHo7bgwIB1tWEBF1rFAC2XQA70kpr5NSXiulfF1Gcn8V6nQi8fafrrPAYrV7Vch0OoH+2QkBA9n/th6H2WrHLRP6AABmj+iB8loLvj/qmLasM1vx4aZjuGR4d/QK0LYhNz0BhafrsP5wOUbmpLS6M1JtXMGyZ2pskDPb56Kh3ZyfLzJr6O46t29ErkNEpHWhBLIfAdghhNgohPirEGKOEKL9rcGpU9paeAaTnlnpt49XqFzNR3ukeAeMgdlJOOwnkNntEu9/fwxj+qS5O+lPH5yNeJMeXzinLT/eVoTqRivumJIX8PPnZcSjtNqMHUVVmNw/s11/l47wywsGYN6sIbhsRM+ofp5Xbx6F1HgjmtrRosIzsI/vm46HLh4ciaEREWlaKH3IbpNSDgJwNYDjAF6FYwqTupgjZbW4653NOFndiEcX70FNY1Obr9WyB5nLgOxEFFc1os45Redp/eHTOFpeh1sn9nEfizPpcdHQbli2uwQWqx1vrS/AyJwUjM4N/DtDH+fieJtdYnL/jDb/PTpKUqwR95zXv02d/sMRY9Cje3Ismqx2LNpahLx5S9zTpaGqbmg+32qX7psoiIjIv1D6kN0ihPgnHL3ILgLwCoCp0R6YGny+oxiPfrobR6LQPb6zKasx47a3NkEnBF6aOwrltWa8sOJgm69X7OzS33Ja0XUnoq+O/e9uLEB6ggmzzva+C3L2iB44U9+E+V/ux5GyOtxxbl/3XpL+9HEujjcZdBgdgb0gtcRk0OGrvaV48H87ADga54bD86aMcwdmwsDu/EREQYWycOZvAA4DeA3At1LKgmgOSE0KT9fhv5uP473vC3HhkG6489y+mNgvPegPe62pM1txx9ubUV5jwYd3T8TI3qnYeOQ03tlQgOvG5rSpq31xZQNijTqkxnsvHvdsfTEiJ9V9vOhMPVbsLcVPz+vfqg/XeYOykBhjwL++O4puyTGYNbxH0M+f52wOOyY3LeLbEHV2LQNUuEsGb3N2+f/q/mlIjjWiurG5Yial7HJfP0REoQhlyjITwB0AYgH8SQixSQjxbtRHpgK/uGAg1s2bjl9eMBDbjp3B3Nc34rKX1+HjbUWwWO3BL6ABVpsdv/jPNuwprsIrN43CSOfG2b+9eDCSYw14bPHuNi3yL3a2vGj5w7lPRjwMOtFqYf9zXx2AQa/DLR7TlS6xRj1mDHMsRv/RpDyYDMGXRqbEGzF1YCauGZMT9ti1ruW0aMuO+8GYrY7z+zmnhc94dP3n7klERL6FMmWZDCAXQB8AeQBSAHSNNAIgOykWD8wYhPXzLsAzV58Ns9WOBz7agXP/vBKvfnsIlfXt32JGraSUeOTT3fg2vwxPXXk2LnTegQc4tvKZN2sINhecwcfbToR97eLKRvRMaX0XpFGvQ16m952W249X4pMfTuCuc/v6vXPy1kl9MCo31b0fYyjevXMCrmUga6VlaKq3hBfI+mclYuawbu4dGFwhHoDfXRWIiLq6UO6yXAdgDoCdAG6QUg6WUt4W3WEF5rzTc0FVVcd1A4816jF3fC6+um8a3r59HAZ3T8Jfl+dj0jMr8cinuzS5zuylbw7hw83H8csLBuCmCa2DznVjemNUbiqe+XKfe6PuUDm69Ptu4TAgq3lPSyklnvxiLzITY3Dv9AF+rzc6Nw2f3DvFqyM/tU3LTcDrLeEt6rfY7DB6VCkn9svAry4cCICBjIjIn1CmLEdIKe8F8BmAyqiPKARSys+llHenpKR0+OfW6QTOH5yNd++cgGX3TcWckT3w0eYiXPDcatz1zmasP1wekT5dSvtoy3G88PUBXDM6Bw/M8L0Ho04n8OQVw1FRZ8HzX+WHfG2L1Y6yWnOrOyxdBmQnorCiHharHV/sLMHWwjN46OJBqu8VphU2u3cBPNwpyyabHTEtGvImxjjW6dk08LVBRBQNoUxZDhdC/ABgD4C9QoitQojh0R+a+g3pnoy/XDsS3827AL+6cCC2HavETa9/j9kvKb/OzGy1Yf2hchworUGTLbxxrMo/hYc/3oWpAzMx/5qzAy7CHt4rBbdO7IN3NxaGvH9haXUjpITPKUvAEchsdon8kzWY/+V+DOuRjGvH9A7r70BtZ7V5h6alu05izsvrvHZDCKTJKlvtkKBz/htihYyIyLdQSg4LADwgpfwWAIQQ5zuPTY7esDqXrKQYPDBjEO49vz8+/eEE3lx3FA98tAPzv9yP2ybn4abxuUjroKm0w2W1+HDTMSzcWoQz9Y5pRKNeoH9WIgZ3T8Lg7kkY0j0Jg7sno2dKbKuwtftEFe59fxsGd0vCP24Z43frIU8PzByMJbtK8Oji3Vh0z2TogrQ5OOGnB5mL607LRxbvxonKBvz1uhFR779FzVqGps92FAMAKuotyE4KvlOAY8rS+/1y3blpZyAjIvIplECW4ApjACClXCWESIjimDqtWKMeN47PxQ3jemPNwXK8sfYI/ro8Hy+vPIhrRufgjnP7uvtsRVJjkw1f7i7BB5uOY9PRChh0AjOGdcNVo3qhzmLF/pM1yD9Zg81HK7B4e7H7dUmxBgzu1hzSeqXF4bcLdyEt3oS3bx8X8hRhSpwRD88aigf/twMLtxbh+nGBq1nNTWF9/3Dvl+X457XjeCVmDuvWKTrpa4m/Kla92QYkBX99k9UOk967lYgrULdcn0ZERA6h/MQ9IoR4FICr1cUtAI5Eb0idnxAC5w3KwnmDspB/sgb/WncU/9tahPe/P4YLh2Tjzql9MalfRrv7MR0orcEHm47h420nUNXQhD4Z8fjdJUNw7ZgcZCX53oS6qqEJB0prnCGtGvkna/DZjmK8/71j4XZKnBEf3j0B2cnh7Zl49ehe+HDzMcxfth8zz+qG1Hj/FcGSKkej0R5+pizjTQbkpMWhtLoR/3fp0LDGQe3nWuf15BVn4dHFe9zHy2rNyMsM/ruYrwqZq2paVmP2+2+TiKgrCyWQ3QHgDwA+BiABrHUeoxAM7p6EP187Ar+5eDDe21iI9zYW4qbXv8fQHsm469y+mDOyZ0h9s1waLDZ8sbMYH24+jq2FZ2DUC1x8VnfcND4XE/tlBJ0uTIkzYlxeOsblpbuPSSlRUtWI/NIaDMxORE5a+FvdCCHwxyuG47KX1+Gvy/Pxp6vO9nvuicoGpCeYEGfy35D17mn9oBMipABAkeVaQzYqNw1GvUCT8+PrXtuART+bhIq6Jnfft5aklLDY7DC1mOrWO3/5uOrv3yH/qVlRHD0RUefkN5AJIWIB3ANgAIBdAB6UUrZ988IuLispBvfPGISfnd8fi7efwBtrj+LB/+3A/GX7cdukPrh5Qp+A68z2Flfjw83H8MkPJ1DTaEW/zAT8/tKhuHp0L2Qktq/iIIRAz9Q4v2u6QjW0RzJum5SHt9YfxY8m5WFwd9/zW8WVDa02FW/pR5Py2jUWajur8y7LOJMesUY9mmzNbS+u+ccGAMCah6ZjzcGyVo16bXYJKdEqkLkmKs1dpKEyEVG4AlXI3gHQBEdFbBaAoQDu64AxaVqsUY8bxuXi+rG9sfZgOd5YdxTPfnUAr3x7CFePzsEdU/q6F7XXma34Ymcx/rPpOHYcr4TJoMOlw7tj7vhcjO+rzi2cfnXhALz/fSHe3ViAp670XSUrqWxELjecVi3XzZSxRj2SY42oaWzdh+y6f65HabUZ147J8dp6au7rGwHAqw8ZAK87fQ+W1mBgtxAWoxERdSGBAtkwKeXZACCEeBPApo4ZUtcghMC0QVmYNigLB0od68wWbi3Cf74/hguGZKNbciw+31GMWrMVA7MT8dhlw3D16F4B12apQWq8CZeN6IlPtp3AvFlDfd4YUFzZgEn9MxQYHYXC1Ycs1qBDWoLRfVesp1M1Zue53ov0NxecAdB6P0zPFjDXvrYBOx6fGdExExF1doECmXt6UkppVWM1RisGdUvC/Gua15m9u6EQtWYrLhvRE3PH98aYPmmqrIb5c/PEXCzaVoTF20/g5gneU1rVjU2oMVuDTlmSctISTDhT3wSTQYfUON+/ALj6u/q7a7K6RVXNc6qyzhxe538ioq4gUCAbKYSodj4WAOKcHwsAUkqZHPXRdTGZiTG476JBuPf8AbBL6TUV1JmM6p2KYT2S8d7GY7hpfK5XmCypdNxh2d71ahQ9/75jPNYeLEdSrDHouf6axZa0qKp5VsjYrZ+IqDW/t/dJKfVSymTnnyQppcHjMcNYFJkMuk4bxgDHdOzNE3Oxr6Qa249Xej1XHKQpLCkvJy3evUl7g3PbpOmDs3ye61kh++3CHe7HQ3t4f4uweAQ35jEiotZC77dAFIYrzumFBJMe72085nW8uCpwU1hSlwaLI5D1Tvd9E4bnYv2PthQBAOaOz8WPJ+d5nafkNmJERJ0BAxlFRWKMAVeO6oUvdhajst7iPl5c2QC9ToS0BQ8pz1Xp6uWnotly30sA6J+V0Kof3kw/fcuIiMiBgYyi5uYJfWC22rFo2wn3seLKRnRPjuXelJ3EU1cOx8J7JqGPnzYlrp5lnnw1Op7QLwOZ7eyXR0SkZQxkFDXDeiZjdG4q3v++ENK5cKi4soHTlZ1InEmPsXnpfjeZ93WXZWe6I5iISC0YyCiqbp7QB0fK6rDhyGkAjjVkXNDf+Rj8BLIFq1tva2vzc+elUc+gRkTkDwMZRdXsET2QEmfE+98fg90ucbKq0e+m4qRe/sLUxz+caHXMX28yTlkSEfnHQEZRFWvU47oxOVi++yT2naxGk02iF6csOx1/U5YAUFrd6NXepGX3fpehPbhdEhGRPwxkFHVzJ+TCapf429cHAbAHWWcUKJDd9c4WXPnqd+6P/VXInrj8LABA73S+/0RELTGQUdT1z0rE5P4ZWLG3FAA4ZdkJtdyb0lP+yRqvjy8cmu3zvHiTAdeNyYHNR6sMIqKujoGMOoTnnpb+elqRevlqZeHi2YV/fF46hnT3v5GHQa+DhYGMiKgVBjLqEDPP6oaspBjEm/RIjgu0hSqpkWeFrF9Wgt/zdEG+o5j0wmfvMiKiro6BjDqEUa/DQzMH48ZxuexT1Ql5riGbNby73/OCNfw16HU+u/sTEXV1LFVQh7l+XG+lh0Bt5BnIHpgxGH0zE/Gb/+1odZ4uSNg26AXMVhuklAzmREQeOmWFTAgxRwixoKqqSumhEHUJnn3I9DqBcXlpPs8LFsjqzFY02SR++u5WWP00kCUi6oo6ZSCTUn4upbw7JSVF6aEQdQktO/X769wfbMqyos6x0fxXe0vxzobCyAyOiEgDOmUgI6KOFWt0fKv41YUDAfhvgxGsQuapprGp/QMjItIIriEjoqBiDHocefpSuPKWK3ZlJprQJyMBWwvPAACCFMjQ2NQ8TckGwUREzVghI6KQ6HTCvRDfNTU5qFsSFv1ssvuc0urGgNdobLK5H+u5qJ+IyI0VMiIKW0ZiDN66fRxG53ov7tcFKZF5BjL2IyMiasYKGRG1yfTB2UiJM3od87ONpdtvZg52P/7dol1YlX8qGkMjIup0GMiIqN1evPEcAIA9SCKbPCATWx+5yP3xgjVHojksIqJOg4GMiNotxrnXpS1YiQyAwWN/JW40T0TkwDVkRNRurk7+dhk8kOk9msyuPViGvHlLMHd8LirqzPjnrWOjNkYiIjVjICOidjOEEcg8e5idqjEDAD7YdCw6AyMi6iQ4ZUlE7ebaWimEGcug3fyJiLoiBjIiajf3lGUIiSxQ/zEZQoWNiEiLGMiIqN1cgcwWQqAK1KvMbGVvMiLqmhjIiKjdXOvCQrnLMpB6iy34SUREGsRARkTtZnK2vWjvjGOd2RqB0RARdT4MZETUbpGqkHHKkoi6KgYyImq3cNaQBfLV3pMAgIG/X4q8eUuwq6iq3WMjIuoMGMiIqN1cgay9d0n+ZVk+7HaJJpvjOnNeWcdQRkRdAgMZEbWbQR+ZKUsAmPHCaq+Pj56ua/c1iYjUjoGMiNrNqHN16g/t/JfnjsLin0/x+dzhMu8AZtLz2xQRaR+3TiKidnPtFx5KY1gAmDOyZ8jXNhnY2Z+ItI+/ehJRu8Ua9QCAmybmRvzaRlbIiKgLYIWMiNrNqNfh4J9meW0cHslre9p0tAKjc1PdG5oTEWkBv6MRUUQY9TqIAPtUttW6g+UoKHesK9t27Ayu/+cG/O3rgxH/PERESmIgIyJVe+XbQzj/2VUAgFPVZgDA0t0lCo6IiCjyGMiIqFPYUlCB4xX1AIAjZWyFQUTawkBGRIr567UjQj732tc24E9L90VxNEREymEgIyLFXDmqV5tfW2e24qzHlmHl/tIIjoiISBkMZESkGH07bgK44tXvUGex4dnlByI4IiIiZTCQEZFidDqBJ68c3qbXHjpVCwCIwo2dREQdjoGMiBSVGONoKmsytO3bEQMZEWkBAxkRqUJb96wUYCIjos6vUwYyIcQcIcSCqqoqpYdCRBHCChkRdWWdMpBJKT+XUt6dkpKi9FCIqJ2kcz9yzwrZQxcPDvn1zGNEpAWdMpARkfbEGJu/HYVV9WKJjIg0gIGMiFTBs0IWzrowAeCRT3fhjbVHojAqIqKOwUBGRIoa0ycNAHDDuN7uY+EUvYQA3tt4DE8tYRd/Iuq8GMiISFF9MhJQMH82pg/Jdh/ThRPIojAmIqKOxkBGRKpg8EhhqfGmkF+37Vilz+PFlQ2oqm9q77CIiDoEAxkRqYLeI5BdOzoHf7j8rLCvsf9kNfLmLcGhUzWYPH8lpv5lZSSHSEQUNQxkRKQKBp3j21Gv1DjodALTBmWFfY3F24sBAMv3ODYcr260Rm6ARERRxEBGRKrQLTkGPz2vH96+fRwAIC3eCAC4/6JBIV/jH6sOR2VsRETRZlB6AEREACCEwMOzhro/To03Ye8fL0acUY8Xvj4Q5rV8Hz9TZ0FaQujr04iIOgorZESkWvEmA4QQWHjPpLAqZTofiWzZ7hKMenIFNhdURHKIREQRwUBGRKo3Ni8dv75oYMjn+yqQfX/UEcQ+2HQsQqMios5u5f5S5M1bghOVDUoPhYGMiDqPCzx6lQXyzJf7Wx1zdf//eNuJiI6JiDqv/24+DgDYVVSp7EDAQEZEncjrPxrb5teu2HcygiMhIoosBjIi6jT04bTwb+F4hfJTEkSkjKqGJtz2r004Vd3odVxKhQbkAwMZEXVal43oEdJ5Uk3fdYmowy3cWoTVB8rwj9X+WuMovwkbAxkRdSomg+Pb1kc/nYS/XjsypNc8+YX3xuMfbTmOvHlLUF5rjvj4iCh8ZqsNteboN3Ju+buZmn5VYyAjok5l6a+m4s/XnI3xfdMRZ9IHPf8X/9mGf3131OvYh847LQtP10VljETkLW/eErz67SG/z1/56noMf3y5++Onl+7Dst2OdZ/PLs9H3rwlAa9vt0sUnq7Dy98cxKr8U62e91f/cgU0f70LOxIbwxJRpzIgOxEDshNDPv+LnSV+n+NMJlHH+evyfPx8+gAcLqvFqWozJvXPcD+3r6QagGOtV1lNIxasOQIAKJg/G684g9ye4ir0yUjA8MeX44UbRuKqUTk4dKoWFz2/GrdMzMV7G71b2jwyeyjumtovpLGpII8xkBFR1yOcvw5LAFPmr8Tc8b3xiwtC73NGRG134XOrvT5+/64J7sczX1iN0urmpQQ/HDvjfjz7pXXol5kAALj/vzuQkxaP617bAACtwhgAvLDigDuQuSpgb68vwIMzB8FuBx5auANf7yuNzF8qAhjIiKjL8fxt+ERlA5796gADGZFCvthZ7H7sGcYA4Kq/r/f6+Eh58zIDVxjzp85i83n87Ce+anVMqGDOkmvIiKjLcX3v9ZyytNrsvBuTKArO1FkCPp9/sibqYwgWt37y7y1RH0MwDGRE1OW4uvbbPQLYgN9/idve2qzUkIg0yWK1Y9STK9wf3/VO6+Cz7Vhl1D7/vpJqrNhbipdW+r+hQC04ZUlEXY+PChkArDlQhkOnajAgO6njx0SkMQvWHEb3lDivYx29ZmvWi2tDPldKqejUJStkRKQ5X90/LeDzm5wbjc99fWOr505UNrY6RkTeKuosWH+oPOA5Ty/dj1998EMHjajzY4WMiDRnULe2V7js9sDryJpsdtilRIzBfw+0WrMVCSa9KhYKE0XaG2uP4KkljmbLh5++1GtLs5KqBry88hCM7djmTCl2CegVHDYrZESkKRsfvrBdr7d5BDK7XXrddg8A059dhcGPLPP7+uMV9Rj++HK8u7GwXeMgUitXGAOAl745iI1HTiNv3hK8ue4oJj2zEv/5/hje2dD5/v1/teekop+fgYyINKNfZgK6p8S26xo2j4Vlb6w7gqv+vh7rDzdPzRSdCbxJeYGz+/9Xe9TT34i6ptO1ZkyZvxIHSsO/i/FkVSMe/GgHzFbfrSNcXvzmIG5c4Jj6f/KLvW0ap1p0xNZNgTCQEVGntv2xGVj1m/MBAFMGZLb7ep5TlvtLHD/IioOsK5NSYmvhmYDnEHW0lftP4URlA/65+khI55+ps+Dlbw7Cbpd4/LPdWLStCP9YdRjFlQ3YXFCBr/eWBt3CqDNTeokB15ARUaeWGm9CarwJ3827ANlJMe7j6+ddgMnzV4Z9PauPNWTBvk1/tOU4frdoF/5x82gkxvLbKqnLom1FWH3gFCb3z8RLc0f5Pe//PtmFL3efRK3FiuXOCu/fvj6Iv319sKOG2qWxQkZEmtArNQ5GffO3tJ6pcQHO9s/upzlsk82OF1YcaHX83D+vxO8W7QIAHKuodx+XYJNZUpZnxae81oLPdhSjzmzFoVO+pzBdU3ahVtS0RunG0AxkREQePt9Rgp1FlY7O/R7HF24twovfNFcKzFYbKuosXmvKbFLCYrUDAMprAncnJ1LC7W9txkXPrwEANDbZ8M76Avc0fVffqMLs/NpVCmvrREQevt5Xiq/3lWLu+Fz3MSGAhhb74t3+1masP3za69hfluW7H+e3YSE1UST5mmrfVFDhfvzC1wfwz9VHkBpvxBXn9PJbHe4q/re1CLdM7KPY52eFjIg06+xeKW1+7QebjgWcwmgZxkKx8chpHPeY1gzVst0lId0BVllvCXnaZW9xddA9BgHgSFktPttRHPQ8iqxPfihC3rwlyJu3BLtPVPk9rz13BlbVNwEAfv3hduTNW9Kmf9NawilLIqIoMbSzy2NNo+OH3QMf7cCJysDtLkJx44KNmPqXb8N6zYHSGtzz3jb8btHOgOcdOlWLc/64Au99f8zreGW9BRe/sAaHy2q9jl/60lpc/uq6oJ9/xgtr2G1dAf9aV+B+vHBrkc+wsGhrEYY/vhwr95fiw03HWj0f7KZB9i1WFwYyItKstHhTu17/zf5T7sdvrjsa9uvz5i1B//9bisr60NeTfbOvFIXOXmYAUOesgATrf3a03PGaVR5jdlzvFPJLa/DEZ3taveZ4hfc11x4sw2/+t8PrmC3IzgUUfW+vL8CHm4+3Or4y3/Fe3/H2Fsz7eBcam7yn1V2/UFDnwEBGRJr17HUj8dtLBis6Bptd4pw/rsDra5rvXLs0wIbHd76zBef9dRVeWRm41cC/NxTgoMc6NddONeW1ZnzjsYGzzvldfu3BwPsOAsCtb27Cwq1FQc/r6hasOeyeRtxTXIWxT63A6Vqz1zlLd5XgH6sOex07XFaLvHlL8G2L0OxLy+rVxiPBpxNbFtEe9xHCyb9ahQMsAxkRaVZ6ggn3nj9A6WEAAP60tHm7mb0l1bDbJfYWV2P94XL31jOeYejZrxwtNvzVpx5bvAczXliDk1WNyJu3BP90Br4dRVW4850tqLc4frjofMxLXffa+gj9rTqelBLPfZXfagq2Iz29dD8ue9kx3Tv7pXUor7VgXYuNtu99fxv+vGw/th+vBAC8+PVBXPjcagDAkl0lAa//xtoj2Fnkf92YP5UNFuw/WY1PfzgRtIHrnW9vxgebWlfdurIj5XXBT4oi3mVJRJo3OjcV245VKj0ML+99X4jHFntXMFpOF3ryjFXvbihwP574zDcAgE1HK7zOt9oljp2ux+c7Wv/w31zQvKvAuoPluOXN73H/RYPcxx78aAcWbStCwfzZofxVAjp2uh4GvWhzX7iWymrMeHnlISzaWoT17dy3tCNc+ep3KJg/Gy983dzDrqqhCe9uLMStPu7oa7DYvPaK9OVEZQO6J7feIuyi51ajzhJ4qyOXb0Ko0lHHYiAjIs1beM9k1FqsGPHEV0oPxa2sxhz8JABX/711NevRxcGnoqQELnt5LaqDTMO49h/0DAyLtrWetqy3WFHbaEW2jyDgz4HSGsx8wdHzKhLhDgBcS9osNuXXtvmberz8lcA3S6zYW4oVe0sxOjcVZ/VMwanqRmwuOIN4kx63v7054GvXHizDrW9uwo8n57VqaxFqGCN1YiAjIs3T6QSSY41KD8NLtG9we/Hrgz7DmKVF88tA/dI8F/Rf+ep3OFBaG1awWrE38husu3plldeGFmgjQUqJV789hMtH9kJuRrz7uGd48uyKH+p04wsrDuCR2cNw/rOrAAD9shL8nrv7RBUq6iy49c1NABwL/UlbGMiIiBSwOoRF9i1bHUgp0RRiZehf37W+K/Sd9QVhrb36bMcJ9+MDpd6vW7S1CBab3auBbns9vXQf8k/W4J07xvs9JxJ3fS7efgJp8SZMG5QV0vml1WY8+9UBx5/rRvo8x/VeFZ0Jvc/c1/tO4et9zVW2I2X+1zAdLqvD6CdXhHxt6nwYyIiIFLDDudg7kL4PL3U/3n680uvjtnj8sz1IMOlDPv/+//pf0/agc73b3PG5mLdoJw6eqsUFQ7Lx8+m+b6KoamjCh5uO4e5p/VDV0IQ1B8tx+cieXucsWBN8D8WthWeCntPSFzuL8e3+Mjw4cxB6psbh1x9uBwAcfvpSmK02HDpVixE5qQAc78s7Gwrw7LUjodMJSCnd6/QA/+v8fv3hdrz1XQEuG9Gj1XMHuGsDhYCBjIi6tEvO6o4pAzLw6fbiNv2w72zau85oX0k1hvZI9jrm6pG1tfCM30D22OLdWLy92DHteboOWwvPYFTvVPROj/d5/s6iSvxpyT7cPa0fLhzaDQBgtdlx2mN3gdO1jspVvEmPRy8b5vX67w6VY+X+U5g9ogd+8R9HY9uWNyr87esDOFBag+V7SrH9sRlIjTfh9rc3o6LOgsn9MzEiJyWsqcHtxyvdd1V68rUOkKglBjIi6tJeu3UMAODWSXlBWwWQY0cAz0D2ZYsWDj/59xaszi/DgT/Nwn88dg1YvN2x/ZLnDQMHSmv8BrLLX/kOAPD90QoUzJ+N2S+txZ7iatw0oXmKdMxTX7sfT+yXgV9+sA3bHp2BeJMBN7/xPYDWDX09p2xfXnkISbGOH4PPfpWPSf0y3VOPrkrYOb1TA/3vCEl7tjeiroN9yIiInPpk+A4H5N/P3t/m9fGKvaWw2OwwW21Bt5u6850t2HasdVWyprGp1bE9xdUA4BXyPP3k31vQ2GTHZS+vCxiAluz0DpCubvbvbTyGn/9nG87Ue39uXxUvomjolIFMCDFHCLGgqir8xnlERCNyfG86vvqh6R08ks7n0cW7Q+o0P/iRZSFd7+q/r8ey3SfxnUdjVVcrjrY4UlaH4Y8v9/v88ysO+H2OSEmdMpBJKT+XUt6dkuL7myoRkS/JzumpxT+fovBIOq/K+qagvbLCdc97W91TjEDrhfvLdgfubE+kBVxDRkRdxpJfTUX+yRqvnlGkPodbtH+4571tfs4kipwYg7I1KgYyIuoyeqfH+11ETkSkpE45ZUlEFC0r7p/m97lchjkizdIpXDlnICMi8jCwW5Lf5wJ1kCciag8GMiKiEPXNTEBKnLr2xCSiyLh+bI6in5+BjIgogIvPcnSJn9gvHQAwLi9NyeEQUZTEhrGtWDQwkBERBXDVqBy8dstovHnbOADAc9edo+yAiCgqBLiGjIiow/VOjwvxTIlLhvdAQozjpvSUeCPeuWM8Vj54XvQGR0RdDtteEFGXtPLB82F37lvY0gs3jMQjn+xGncUGX6ecNygryqMjoq6GFTIi6pKMeh1iDL7XjFw1KgdTBzpCl+/IRkQUWQxkREQ+uFoS+SmiERFFFAMZEZEP7kDGGhkRdQAGMiIiH1x3XEWyQtYrNdQbCYiooym9xS0DGRGRL+4KmX/PXz/S73MF82e3OhancJ8jIvJP4TzGQEZE5ItBF/zb89Wjc7DriZkhXW/bozMU/4ZPRP7FGtkYlohIdR6ZPQxzx+e6O/X7kxRrbFUN2/bojFbnpSeY8Lcbz4nkEIkogvplJSj6+RnIiIh8yEqKwTNXn+23NUZLY/s0b6mUnmDyes4V2M7qmdLm8UwdmIlHZg9t8+uJKDB26ici0oAP7p7YrtfHGAJ/O373zgm4a2o/9Mts/i1+9oge7fqcRKQe7NRPRBQBRr0Oi342CdlJsW16ff5Ts7C1sALX/GNDwPNc61wenDEIN0/sgyU7S9r0+YhIXVghIyKKkDF90tE7PT4i15o1vLvP467tni4c2q3V1GhLvVLjcO2YnIiMh4iii4GMiEg1HGtYRuWmYmxeuvvobZP6uB+7Apnex12gN03I9fr4k59Pxj3n9Y/GQImibu1vp3fo5zPquYaMiIhaMDl/ONwxpS+euPws9/EeKY7msnE+btH3XF8GANlJsex9Rqq264mZ+PjeyT6fC1RtzkqKQWJMZFddnZObGtHrhYuBjIhIQZ7dwVPijACAQdlJuG5sb9wxpS/unzEQwuOkF288By/NHYXcjNY/rHztKtArNQ53nds34uMmioSkWCNG56Z5HUuMMWB4r2SvYz+f3lzpHdMnDe/cPh67/3BxZAej8C5pXNRPRKSA8X3TseloBZbfNw2bjlYAAAZkJ+I/P5mA0blpiDXq8dicYa1elxpvwuUje/q8pq9pTACYNigLb6w7GrnBE4Xhtkl98M6GwpDOzX/qEq9WM+/fNQEZiSYM6Z6MV789DABY9LPmitqOx2ZizivrcKyi3uf17pjSFzqBkP79ZyXFhDTGaGGFjIgoSvpkxCPPRyXrgiHZeOvH4/D1A9MwqFsSbpnYvEZscv/MsDqGr3loOh6YMQg/Pa8fbpqQi0N/mtXqnIQYx/Um9kvHF788F1eP6tX6HE5tUgR5Nke+f8Ygn+e89eNxrY617Ps3ZUAmhnRPbnWeS0q8EanxRr/P//S8fpg3a0iw4QKAVyVaCayQERFFyeqHWi9K3v/kJTDoBAx6HQZkJ7X7c+RmxONXFw4MeM7o3DT85doRuPTsHkiMMeD5G87B9CHZ+OUHP2DrIxeh1mzFpS+ubfdYiADgiTnDHDtT3HAOlu0+idR4E/54xVl4bPEeZCaaUF5rAQBMH5Lt9Tpfv7x4evWm0ahubAp5HOvnXYBuyW1rQ6MEBjIiog7UEfvl/XhyHnafqHJ/LITA9WN7e50zZ2RPzHFOfWYkBp6quWZ0DhZtK4r8QEmTRvZOBQBcOaoXrnRWY3unOcLW8F4pWJVf1uo1+5+8BLogFapQGyF/8JOJGN83vdUU/uBuSbhral88tHBnSNfpaAxkREQa43lXZqgCTdc8d/1Ir0DWKzUOJyob2jS2PhnxKDzte70PaUMoU3+Zid499CLxi8pVo3rhL9eOgFHfejXWhocvQHKsEesPnwYAdEuOgVGvw9zxuRjaIwnVDdZ2f/72YiAjIqKwfPPgeRjy6LKwX7fziZlIMBnQ//+WRmFUpBa+4tiUAZm4ZnQO7p8xEGU1ZvRKi4vY55vUPwM7i6rw4MxBPsMY0NwuZrSztcWLN47CxH4ZERtDJHBRPxERhcWzmvHQxYNbPS+E4+62hfdM8rpZIDnW2OqH9U+msiWH1vgqkJkMOjx3/UjkpMVjVG5am7cY8+W3Fw/BmoemIyct+C4ZGYkxKJg/W3VhDGAgIyIi+K5qhOLn0we4H6/6zfkYn5eOlQ+ej8fmDMPYvHT84YrhXue3bPUUb+JEjZr96oIBwU9qIS0+8JZekabXCZ99+TobBjIiIsKLc8/BKI9O5RnOfTL/dsM5Xud9+5vzW7120c8mYe743uiTEY+P7pmEvh47Blw7JgcXetxN51pn/csLBuDuaf3ci74psg481br9SVvExxgCto24ZWIuDB6L5//147ER28+1q+GvJkREhAuGdMMFQ7ohb94SAMBWjz5Snvq22J4JcGyqPqZPuo+zHRb8aCyabHYAjgXfBfNnu5/zdXPA1kcuwoYjpzGpXwbGPPV10LH3z0rA4bK6oOd1FQeemgWTITL1lhnDumHF3lL3x+Pz0lHZYMGB0lr3sdun5OH1tY7GqyNyUiPyebsiVsiIiCgk14/NadPr9Drh9y66nimxXjsPPH/9SGQkxuCyET2DtuMAgH1/vAQv3jgK2T66rKfGG/H4nGFBm96O7J2K/KcuCfq5lHCrR9NgT3++5myfx0fkpAQMY3PH9/b7XEsF82ejf1aiezr77mn98NE9k/D89ee4zxncPRkPzxqKrY9chA9+MhGZIbxn5BsDGRERBXX46Uvx52tGRPy6Qgg8fbXvcBGKOJMew3ulYNPvL2q14fqn907B7VP6Ys8f/YetOKMer986plWH+GAeDrH7e3vMGdkTyXG+J7JuGJeLT+6djGX3TcXWRy5yH7f72tAUwEtzR+HAU7Pw6wsdXfPH5/muaH768ykAAKPe/6pCz0X7t0zIhU4nkJEYg0n91bdQvjNhICMioqD0OhG1rWUSY4Kvnnnm6rMxOcwf+Hk+plcBRyd5l31PXoLsELu5Xz26eb3bT8/rH+BMb8vumxryuZ7+cs0IjPWYCnZV+lxVrlG5aRjSPRkZiTHugJjlp0I1Pi8dJoMO3VNisey+qXj3rvHY/PuL8MjsoTj6zKVY/dD52PHYTIzMScF1Y3Lw/l0T3a8d08ex+XfLwDW0R7Li2w1pCQMZERG1iWvhfyS4bh6Y4KcdwdzxuXjlptEBryFb3cPpW7oztMwc1s3vOd88eJ7XWjcAXlN14RjSPRnzrz4b/717Ip69bqT7+D3OUNcvM8G9a4KnOJPea3uhlb85H+cOyMS8S4a2Oven5/XHc9eNxAstbsIAgD9cfha6pzSHziHdkxFj0CMrKQZ3Te0HIQT6ZCQgJd4IIQT+et1IjO/bHATH5qVj7x8vxvTBjrH0yXAE3XvPDz2UUnBc1E9ERG5JMQbMPKt70PPW/W46kmL8b+ocLs9tdjwt+tlk7D9ZDQBI9wiAk/tnuLuuu8y7ZAie+HwvAMf2OZ4K5s+GlBJSAt8dLgfg2DXA09rfTsfJ6kaMyEnxO4W54v5pKK5qDPNvB9w4PhcAMAHA4u0ncO6ATOQ670Yc1C0Jj84eCqPOMX3rr+lut+RYvHfXBL+f45oxvtf43TY5L+zxtuTZniQxxtAqrFL7MZAREZHbrj9cHNJ5oTThjIQxfdLcU2YA3JtT/+2Gc5DWokL34yl93YHM13omIQSEAM4dkIm/3zwaFw713ty6d3p8q5YN3zx4Hi5+YQ2udYadgd2SMLCb703hf3fJEPx52X4AwPL7puHppfswvFdyq/PevdMRqvYUO/YbHZuXhuzkWDzvo7oFAG/dPg5bCip8PkfawUBGRESdjhDC7zY5obz20rND26i6f1YiDj19acBz5o7vjQ82Hcc1Y3rh0x9O4OrRvTC4exLeuWN8wNed1TMFa387HTktthG6YEg2Vu4/5f54+uBs93RhOPplJqDeYgv7daQMBjIiIuo0fn3RIDz66W6/dx8CgdeGRZKr/9kfLh+OO8/th+ykWCy/f1pY1/DVRPXN28bCHtpyuIBW+mjiS+olpJ9bZDuDsWPHyi1btig9DCIiUolasxWxBh0MbayehaO81owDpTWY3D8z6p+LtEEIsVVKOdbXc6yQERGRZoTSQiNSMhNj2AiVIoZtL4iIiIgUxkBGREREpDAGMiIiIiKFMZARERERKYyBjIiIiEhhDGRERERECmMgIyIiIlIYAxkRERGRwhjIiIiIiBTGQEZERESkMAYyIiIiIoUxkBEREREpjIGMiIiISGEMZEREREQKYyAjIiIiUpiQUio9hjYTQpQBKGzDS1MAVEXh/GDn+Xs+nOO+jmUCKA9hfJEW7v/HSF0jlNe09b3w91yo7xHfi/DPCfe98HdcS+9FW67D71O+daWvDb4XbX9NR32fGiilTPF5FSlll/sDYEE0zg92nr/nwznu59iWzvD/MVLXCOU1bX0vwvn/7us434vovxehvked+b1oy3X4fSp670dn+drge6Ge9yKc98P1p6tOWX4epfODnefv+XCOhzv2aIrEWNpyjVBe09b3wt9z4b53Ha0rvRf+jmvpvWjLdfh9yreu9LXB96Ltr1H8+1SnnrIkByHEFinlWKXHQXwv1ITvhbrw/VAPvhfq1FUrZFqzQOkBkBvfC/Xge6EufD/Ug++FCrFCRkRERKQwVsiIiIiIFMZARkRERKQwBjIiIiIihTGQERERESmMgUzjhBBXCiFeF0L8VwgxU+nxdGVCiH5CiDeFEAuVHktXJIRIEEK84/x6uFnp8XRl/FpQF/6cUAcGMhUTQvxLCHFKCLG7xfFLhBD5QohDQoh5ga4hpfxUSvkTAPcAuCGa49WyCL0XR6SUd0Z3pF1LmO/L1QAWOr8eLu/wwWpcOO8FvxaiL8z3gz8nVICBTN3eBnCJ5wEhhB7AqwBmARgGYK4QYpgQ4mwhxBct/mR7vPQR5+uobd5G5N4Lipy3EeL7AiAHwHHnabYOHGNX8TZCfy8o+t5G+O8Hf04oyKD0AMg/KeUaIURei8PjARySUh4BACHEhwCukFI+A+CyltcQQggA8wF8KaXcFuUha1Yk3guKvHDeFwBFcISy7eAvoxEX5nuxt4OH1+WE834IIfaBPycUx29KnU8vNP+WDzh+yPQKcP4vAVwE4FohxD3RHFgXFNZ7IYTIEEK8BmCUEOLhaA+uC/P3vnwM4BohxD+grv39tMzne8GvBcX4+9rgzwkVYIVM46SULwF4SelxECClPA3HGg1SgJSyDsDtSo+D+LWgNvw5oQ6skHU+JwD09vg4x3mMOh7fC3Xi+6IefC/Uhe+HijGQdT6bAQwUQvQVQpgA3AjgM4XH1FXxvVAnvi/qwfdCXfh+qBgDmYoJIT4AsAHAYCFEkRDiTimlFcAvACwHsA/AR1LKPUqOsyvge6FOfF/Ug++FuvD96HyElFLpMRARERF1aayQERERESmMgYyIiIhIYQxkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxq2TiKhTEULYAOzyOHSllLJAoeEQEUUE+5ARUacihKiVUib6eU7A8X3N3sHDIiJqF05ZElGnJoTIE0LkCyH+DWA3gN5CiIeEEJuFEDuFEH/wOPf3QogDQoh1QogPhBC/cR5fJYQY63ycKYQocD7WCyH+6nGtnzqPn+98zUIhxH4hxPvOMAghxDghxHohxA4hxCYhRJIQYo0Q4hyPcawTQozsqP9HRKR+nLIkos4mTgix3fn4KID7AQwEcJuUcqMQYqbz4/EABIDPhBDTANTBsXffOXB879sGYGuQz3UngCop5TghRAyA74QQXzmfGwXgLADFAL4DMEUIsQnAfwHcIKXcLIRIBtAA4E0APwZwnxBiEIBYKeWO9v1vICItYSAjos6mQUp5jusDIUQegEIp5UbnoZnOPz84P06EI6AlAfhESlnvfF0omyrPBDBCCHGt8+MU57UsADZJKYuc19oOIA9AFYASKeVmAJBSVjuf/x+AR4UQDwG4A8DbYf6diUjjGMiISAvqPB4LAM9IKf/peYIQ4r4Ar7eieQlHbItr/VJKubzFtc4HYPY4ZEOA76dSynohxAoAVwC4HsCYAGMhoi6Ia8iISGuWA7hDCJEIAEKIXkKIbABrAFwphIgTQiQBmOPxmgI0h6RrW1zrZ0IIo/Nag4QQCQE+dz6AHkKIcc7zk4QQrqD2BoCXAGyWUp5p19+QiDSHFTIi0hQp5VdCiKEANjjX2dcCuEVKuU0I8V8AOwCcArDZ42XPAvhICHE3gCUex9+AYypym3PRfhmAKwN8bosQ4gYALwsh4uBYP3YRgFop5VYhRDWAtyLzNyUiLWHbCyLqkoQQT8ARlJ7toM/XE8AqAEPYloOIWuKUJRFRlAkhfgTgewC/ZxgjIl9YISMiIiJSGCtkRERERApjICMiIiJSGAMZERERkcIYyIiIiIgUxkBGREREpLD/B60i90GDljRkAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Power (Leahy)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Nice Quasi-periodic oscillations there! Note that at high frequencies the white noise level increases. This is not real variability, but an effect of **dead time**. The easiest way to get a flat periodogram at high frequencies is using the **cospectrum** instead of the power density spectrum. For this, we use separately the events from the two detectors. The cospectrum calculation is slightly slower than the power spectrum.\n", + "\n", + "For an accurate way to correct the power density spectrum from dead time, see the documentation of `stingray.deadtime` and the Frequency Amplitude Difference (FAD) correction." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "238it [00:03, 78.00it/s]\n" + ] + } + ], + "source": [ + "cs = AveragedCrossspectrum.from_events(evA, evB, segment_size=256, dt=0.001, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAGfCAYAAACQtOy5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABA/0lEQVR4nO3deXicVd3/8c+Z7GvbtGm6Ny3daUtLFwqlRaBAWWRHlkdEQQEVt0dRQNTHB0UE9VGRn4iCKCCLIKDsW9lLS0pL931P0yZNmq3ZZjm/PyYzzTZJJpl0Tpv367q4krln5p6T3Mzk0+/53uc21loBAACg8zzxHgAAAMCRhgAFAAAQJQIUAABAlAhQAAAAUSJAAQAARCnxcL7YgAEDbH5+/uF8SQAAgC5ZtmzZfmttblv3HdYAlZ+fr4KCgsP5kgAAAF1ijNkR6T6m8AAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKBCjAQQ2+gEbf+qL+WbAr3kMBALSBAAU46EBNgwJWuufVDfEeCgCgDQQowEH13oAkKSWJtygAuIhPZ8BB9T6/JCklMSHOIwEAtIUABTio3hesQCUn8BYFABfx6Qw4qKahsQLFFB4AOIlPZ8BBtd5ggEplCg8AnESAAhxU2+CTJCUn8hYFABfx6Qw4KDyFR4ACACfx6Qw4KDSFl5LEFB4AuIgABTiotrECxVl4AOAmPp0BB4Wm8OiBAgA38ekMOCg0hecxcR4IAKBNBCjAQaEpvIC1cR4JAKAtBCjAQTWNyxj4AwQoAHARAQpwUG3jxYT9gTgPBADQJgIU4KDQQppM4QGAmwhQgINCFxNmCg8A3ESAAhzU0BigqEABgJsIUICDvH4CFAC4jAAFOMjrDwYnpvAAwE0dBihjzEPGmGJjzOom2+4xxqw3xqw0xjxrjOnbo6MEeplQBYqz8ADATZ2pQD0saWGLba9LmmytnSppo6RbYzwuoFdrYAoPAJzWYYCy1r4rqazFttestb7Gmx9JGtYDYwN6rUMVKAIUALgoFj1Q10p6OdKdxpjrjTEFxpiCkpKSGLwccPTz+oLBiQoUALipWwHKGPNDST5Jj0V6jLX2AWvtTGvtzNzc3O68HNBrcBYeALgtsatPNMZ8UdJ5kk63lk95IJYamMIDAKd1KUAZYxZK+r6kU6y1NbEdEoBwBYqz8ADASZ1ZxuBxSYsljTfG7DbGXCfpD5KyJL1ujFlhjLm/h8cJ9CrhdaAo7gKAkzqsQFlrr2xj84M9MBYACk7bhabumMIDADexEjngGG+T1TNpIgcANxGgAMc0DVBUoADATQQowDGh/idJIj8BgJsIUIBjmk3hkaAAwEkEKMAxDb4mU3j0QAGAkwhQgGN8TapOVKAAwE0EKMAxoSm85AQPFSgAcFSXL+UCIPa++ugylR5skCSlJHo4Cw8AHEWAAhzy8uq94e9TkhJEAQoA3MQUHuAoKlAA4C4CFOCo1CR6oADAVQQowFGpSQmchQcAjiJAAY5KTUqgAgUAjiJAAY5KTaIHCgBcRYACHJWayBQeALiKAAU4KjUpgYsJA4CjCFCAQ9KTE8LfpyXTAwUArmIhTcAh2alJOiY3U9eenK9N+6qZwgMAR1GBAhxiZXXskGxdNH2YEjyGChQAOIoABTgkYCVjjCTJY4yslSwhCgCcQ4ACHGKtlSeYn5TQ+A1LGQCAewhQgEOCFajg9+EARQUKAJxDgAIcErBWnsYEFQpS5CcAcA8BCnCItQoHqATDFB4AuIoABTgkYC1TeABwBCBAAQ5pWoEKfWUtKABwDwEKcEjAWjUWoDgLDwAcRoACHGKt5GkMTh6m8ADAWQQowCHNeqAavyE/AYB7CFCAQ5r3QAW3MYUHAO4hQAEOadoD5aEHCgCcRYACHGLVeh2oAHN4AOAcAhTgkECTa+F5Gt+d5CcAcA8BCnCEtVbWSqblOlAkKABwDgEKcEQoJ4XOwguhBQoA3EOAAhwRykktVyI/dA8AwBUEKMARoam6cA9UeAovXiMCAERCgAIcEQpQpsU6UPRAAYB7CFCAI1r2QIW+BgLxGQ8AIDICFOCIUIAKTd2FKlGWHigAcA4BCnBEpB4oZvAAwD0EKMARhwIUPVAA4DoCFOCIlmfbhXugyE8A4JwOA5Qx5iFjTLExZnWTbTnGmNeNMZsav/br2WECRz/bogIV7oGiAgUAzulMBephSQtbbLtF0pvW2rGS3my8DaAbDjWRh76yDhQAuKrDAGWtfVdSWYvNF0j6W+P3f5N0YWyHBfQ+4R4oT/MeKCpQAOCervZA5Vlrixq/3yspL9IDjTHXG2MKjDEFJSUlXXw54OgXCK8D1fJiwvEaEQAgkm43kdvgP48jfsRbax+w1s601s7Mzc3t7ssBR61QpSl0BbzQV87CAwD3dDVA7TPGDJakxq/FsRsS0Du1vJiwYR0oAHBWVwPUvyVd0/j9NZKej81wgN6r9UKawa/0QAGAezqzjMHjkhZLGm+M2W2MuU7SXZLOMMZskrSg8TaAbgi0uJRLqJmcHigAcE9iRw+w1l4Z4a7TYzwWoFcLhLvIm32hBwoAHMRK5IBjWl9MGADgGgIU4IhIPVBUoADAPQQowBGteqC4lAsAOIsABTgiVGkKXUQ4fDHhQJwGBACIiAAFOMJGWImc+hMAuIcABTjCtuiBMvRAAYCzCFCAI+iBAoAjBwEKcESg5bXwwhWo+IwHABAZAQpwRKQeKKbwAMA9BCjAEZGvhRenAQEAIiJAAY6wLXqgDBUoAHAWAQpwRMt1oA41kcdrRACASAhQgCMOTeE1VqBabAcAuIMABTgiFJOoQAGA+whQgCNsywoUC2kCgLMIUIAjWi2k6aECBQCuIkABjggEWlxMOLSdBAUAziFAAY6I2AMVn+EAANpBgAIc0fIsPA89UADgLAIU4IjIC2nGa0QAgEgIUIAjWi6kacKXciFBAYBrCFCAIw5VoEJfOQsPAFxFgAIccagCRQ8UALiOAAU4gh4oADhyEKAAR4QrUI23PfRAAYCzCFCAIyJXoAhQAOAaAhTgiJZn4R2qQMVpQACAiAhQgCNaXQuPHigAcBYBCnCEjbAOFFN4AOAeAhTgiJYVKKPQOlAEKABwDQEKcIRV6Fp4avaV/AQA7iFAAY4IVaAMPVAA4DwCFOCI0FSdhx4oAHAeAQpwRMtLuRhDDxQAuIoABTii5cWEQ98TnwDAPQQowBEtz8ILfc8UHgC4hwAFOKLlSuRSKEDFaUAAgIgIUIAjbIseqOANmsgBwEUEKMARkXqgaIICAPcQoABH0AMFAEcOAhTgCHqgAODIQYACHBHugdKhBGXogQIAJxGgAEeEYpKneQ8518IDAAd1K0AZY75jjFljjFltjHncGJMaq4EBvU0gELqUS5MeKI9hJXIAcFCXA5QxZqikb0qaaa2dLClB0hWxGhjQ20RuIo/TgAAAEXV3Ci9RUpoxJlFSuqQ93R8S0DuFe51aLGNADxQAuKfLAcpaWyjpV5J2SiqSVGGtfa3l44wx1xtjCowxBSUlJV0fKdBLNO2BkqhAAYCLujOF10/SBZJGSRoiKcMY8/mWj7PWPmCtnWmtnZmbm9v1kQJHuVClqfkUnsRKmgDgnu5M4S2QtM1aW2Kt9Ur6l6STYjMsoPeJ2AMViNOAAAARdSdA7ZQ0xxiTboIX7zpd0rrYDAvofdpeSJMeKABwUXd6oJZIelrSJ5JWNe7rgRiNC+h1wj3kTdeB4iw8AHBSYneebK39iaSfxGgsQK9m2+iBMkay9EABgHNYiRxwRKQeKGbwAMA9BCjAEYfOwju0jR4oAHATAQpwRCDcA9V0Co8eKABwEQEKcIW1zRrIpWAPFBUoAHAPAQpwRMA273+SGm+TnwDAOQQowBEBa1tcxoUeKABwFQEKcETASkatK1AEKABwDwEKcIRV6x4oSXp1zT4VV9Yd/gEBACIiQAGOsG30QBWW10qSvvbYJ/EYEgAgAgIU4Ah/oHUPVE2DX5JUXe+Lw4gAAJEQoABHNPgCSk5s/pb0Ny4ClZKUEI8hAQAiIEABjmgrQIWkRtgOAIgPPpUBR9T7/BEDVFoyFSgAcAkBCnBEgz+glMS2g1IaU3gA4BQCFOCIBl9AyQkRKlAEKABwCgEKcER9Oz1QNJEDgFsIUIAj2msipwIFAG4hQAGOCPZARTgLL4m3KgC4hE9lwBHt9UC1dYkXAED8EKAAR7TXA+UPHObBAADaRYACHNHgizyFZ609zKMBALSHAAU4or0m8gABCgCcQoACHNHgbx2gzpyUJ0kKkJ8AwCkEKMARwSby5ssVPPCFmcpKTaQCBQCOIUABjog0hecxRuQnAHALAQpwgLW2zSk8SfIYeqAAwDUEKMAB9b7gOgVtnYXnMYYABQCOIUABDmjwRw5QxhiayAHAMQQowAENjRWoiFN4JCgAcAoBCnBAOEC1cSkXpvAAwD0EKMAB7VWgEjxM4QGAawhQgANCPVBtBSjDWXgA4BwCFOCAjqbwyE8A4BYCFOCA+o6ayElQAOAUAhTggHqfX5KUkpjQ6j4PyxgAgHMIUIADDjWRm1b30QMFAO4hQAEO8PqDASkpYg8UAQoAXEKAAhzgazwLL1KA8jOHBwBOIUABDvAGQhWo1lN4HtaBAgDnEKAAB4QqUImets/CYwoPANxCgAIc4GvsgUpsqwLFWXgA4BwCFOAAb6C9HijOwgMA1xCgAAeEK1CetpYxoAIFAK7pVoAyxvQ1xjxtjFlvjFlnjDkxVgMDehNvqAcqQgWKHigAcEtiN5//O0mvWGsvNcYkS0qPwZiAXsfX3ll4xjCFBwCO6XKAMsb0kTRf0hclyVrbIKkhNsMCepf2z8IzamyRAgA4ojtTeKMklUj6qzFmuTHmL8aYjJYPMsZcb4wpMMYUlJSUdOPlgKPXoZXI276Ui58KFAA4pTsBKlHS8ZL+aK2dLumgpFtaPsha+4C1dqa1dmZubm43Xg44enn9ASV4jIxpHaASPFzKBQBc050AtVvSbmvtksbbTysYqABEyRewbVafJNaBAgAXdTlAWWv3StpljBnfuOl0SWtjMiqgl/H6A0pqo/9JCk7h0UQOAG7p7ll435D0WOMZeFslfan7QwJ6H5/ftrkKuUQFCgBc1K0AZa1dIWlmbIYC9F6+QKDNNaAk1oECABexEjngAK/fKqmNVcgl1oECABcRoAAH+PyRK1CGdaAAwDkEKMAB3kB7PVA0kQOAawhQgAN87ZyFxxQeALiHAAU4oL2z8BI8nIUHAK4hQAEOaGi3B4opPABwDQEKcIDPb5XczjpQ5CcAcAsBCnCALxBQYsQeKCpQAOAaAhTgAG+HK5EToADAJQQowAG+QEBJrAMFAEcMAhTgAJ/fKjHiSuRcygUAXEOAAhzg9UeuQHmMkZ8ABQBOIUABDvC1txK5R6wDBQCOIUABDghO4UWuQDGFBwBuIUABDghO4bV3Ft5hHhAAoF0EKMABXn+AiwkDwBGEAAU4oL0pvOAyBgQoAHAJAQpwgDcQUHJiez1Qh3lAAIB2EaAAB3S0DhRTeADgFgIUEGfW2sZlDCJUoDw0kQOAawhQQJz5GtNRUoQKlDFiIU0AcAwBCogzrz94obukdnugCFAA4BICFBBn1fU+SVJGSmKb9yewDhQAOIcABcRZdV0wQGVFCFA0kQOAewhQQJyFKlCZEQKUaVzGgGk8AHAHAQqIs1AFKjM1UgUq2FxOfgIAdxCggDirDE3hRQxQwa9M4wGAOwhQQJyFpvCyUpLavN/TmKBoJAcAdxCggDirrvNKijyFZ6hAAYBzCFBAnB1axiChzftDPVAEKABwBwEKiLOqep+SEz1KSYwUoIJfmcIDAHcQoIA4q67zRVwDSqICBQAuIkABcVZd74vY/yQ1WcYgcLhGBADoCAEKiLPqOl/ERTSlQ1N4vgAJCgBcQYAC4qyqvv0AlZOZIknaX91wuIYEAOgAAQqIs44qUEP7pkmSCstrDteQAAAdIEABcVbn9Sstue0z8CRpWL/GAHWg9nANCQDQAQIUEGe1Xr/SkiIHqNzMFCUneLS7nAAFAK4gQAFxVtPgV3o7FSiPx2hw31TtpgIFAM4gQAFxVuv1K7WdACVJfdOTVdV40WEAQPwRoIA48gesGnyBdqfwJCnJY+Tzs4wBALiCAAXEUZ3XL0kdB6gEj7wEKABwBgEKiKOahmCAaq8HSpISE4y8fi7lAgCu6HaAMsYkGGOWG2NeiMWAgN4kVIFK7UQFipXIAcAdsahAfUvSuhjsB+h1akNTeB1UoJISjLw+KlAA4IpuBShjzDBJ50r6S2yGA/QunZ/C88hLBQoAnNHdCtRvJX1fUsRPdmPM9caYAmNMQUlJSTdfDji61DZ0cgrPY+SjBwoAnNHlAGWMOU9SsbV2WXuPs9Y+YK2daa2dmZub29WXA45KnIUHAEem7lSg5ko63xizXdITkk4zxjwak1EBvcShKbzIFxOWGqfwqEABgDO6HKCstbdaa4dZa/MlXSHpLWvt52M2MqAXqO1kBSo5wVCBAgCHsA4UEEehAJWa3P5bMTHBw0rkAOCQ9ucNOsla+7akt2OxL6A3qWvoXAUqMcHIG2AKDwBcQQUKiKOaTgaoZJrIAcApBCggjmq9fiUneJSY0MEUnscja4MXHwYAxB8BCoij2gafUpM6fhsmJhhJogoFAI4gQAFxdLDBr4yUjlsRkxsrVAQoAHADAQqIo4P1vk4FqFAFitXIAcANBCggjqo7HaAaK1BcDw8AnECAAuKopsGvzJT2z8CTggtpSmI1cgBwBAEKiKOD9T5ldHAZFyl4Fp4kFtMEAEcQoIA46uwUXlIiTeQA4BICFBBHwSbyjqfwkjxM4QGASwhQQBwdrO/cMgahJnLOwgMANxCggDhp8AXU4A8osxM9UEmNTeQNTOEBgBMIUECc1DT4JEnpnemBSqCJHABcQoAC4qS6PhigOrOMQWJjD5SPa+EBgBMIUECcHKz3S1JUZ+ExhQcAbiBAAXESqkB1KkB5aCIHAJcQoIA4CfVAZXaqAtXYRO6jAgUALiBAAXFysLEClZ7ccQ9UVmqSJKm63tujYwIAdA4BCoiT6sYeqM5UoLJTg4+prPX16JgAAJ1DgALipLI2WE3KbqwutScjOVEeI1XWUYECABcQoIA4CYWhrNSOK1Aej1FWalI4dAEA4osABcRJRa1XmSmJ4cu0dKRPWpIq63xaXVih9Xsre3h0AID2dPxPXwA9orLWF+5t6ozstERV1Hp13r3vS5K233VuTw0NANABKlBAnFTWeZWd1nH/U0g2U3gA4AwCFBAnlbVdCFA0kQOAEwhQQJxU1HrVJ4oA1SctSeU1BCgAcAEBCoiTqjpfp5YwCJkwOEvFVfXh216uiwcAcUOAAuIkOIXX+Sbya07Mb7ZqOf1QABA/BCggDvwBq6p6X1RTeB6PaRagyglQABA3BCggDqrqOr8KeVMpiYcCVAUBCgDihgAF9LDaBr/+8+meZttC17SL5iw8SUpJOvSWraChHADihgCFo4rXH9CjH+1QbYM/3kMJe3l1kb7x+HJtKakOb9teelCSNCg7Nap9Na1A1Xrd+RkBoLchQOGo8tqafbr9udV68uOdXXjuXj29bHfMx1R2sEGStL/JGXQfby9Tgsdo2oi+Ue0rtUkFqt5HgAKAeCFA4ajy2tq9kqR/t5gy64x7Xt2g3725MdZDCp8td6CmIbxtybYyTR6SrcyU6K6m1LRnqs7LMgYAEC8EKBw1vP6A3lpfrLSkBH2ys1y7ymoiPvaNtfv0q1c3hG8XV9ZpU3G19pTXhddXstZqZ2nkfXRWqNn79bXFeuDdLdpTXqsVO8s1e1RO1Pu6+9Kpumj6UElSPVN4ABA3BCgcNZZsLVNVnU/fXzheUuQqlLVWd768Tn98Z4safMGwtHhrqaTg8gJF5XWSpA+3lGr+PYu0Zk9Fq31s2lelfZV1nRpXZV2wYfyZT3br7lc26Bcvr5fHI33hxPyofj5JystO1c8vmixJqvdRgQKAeCFAIWp1Xr9TTdohr63dq9Qkj66YNUIzR/bTv1e0HaAKdhzQ1pKD8gesdjQ2c3+4uTR8/46y4LZQ0/f7m/ZLCp5N948lOxUIWH3p4Y91xwtrm+3X5w/oyY93tlohvOlyA76A1Zvr9umcyYM1PCe9Sz9nckLwbcsUHgDEDwEKUfvm48v1lb8XxHsYzVhr9frafZo/NldpyQk6f9oQbdhXpSseWKxZP39D33h8uVYXBitJTyzdJWOCz9tUHAxJH27drylD+0iSdjZO/RVVBCtMS7eVSZKeW1Go255dpbc3Fmv3gVqtLaqUJH20tVQX3veBXl69Vz94ZpVeXbO32dhartdU0+DXoD7RnX3XVGKCR4keQxM5AMQRAQpRsdbqo62l+mDLfpVW13f8hMNkdWGliirqdMakPEnSuVMGa1B2qsprvDphVI4WrS/Wefe+rysf+EgvrtqjC6cNlTHS5uJq7Sqr0a6yWl00faiSEzzhALU3FKC2l8kfsPp0V7kkhStb2/cfVJ3Xr0c/2qEVu8rDZ/At2VrWbGxtXXJlYFZKt37e1KQEpvAAII6iOwUIvd7OsppwT89b64t12czhcR5R0LubSiRJp00YKEnqn5mij247PXx/ZZ1XTy7dpYc+2KZ6X0DXzh2lgh1l2lRcrcVbgtN3J48doGFL0sKN40UVtZKCF/1dv7dSn+4OVrBeW7tPkhSw0rqiSi1aXyxJeq9xDEu2HZoOlNpeMTw3q+sVKElKSfSojiZyAIgbAhSisqpxGiwpwejNde4EqOU7yzU6N0P9M9uu7GSnJukr80fri3PzVXigVvkDMjQmN1Obi6vlMdKAzBSNHZipETnpzSpQM0f2U8GOA3p7Q4k27quSFJyCC3nog+062Hg7YIPbNu6rVml1fXgsbQWogdndq0ClJHqoQAFAHDGFh6isKqxQUoLRhdOG6r1NJU704VhrtWLXAU0f3q/DxyYleJQ/IEOSNGZgpraWVOvDLaU66Zj+MsYEA1Rpjay1Kqqo0/Ej++nYIdm6b9Fm+QNWo3ODzx09IEOJHqMXVu5Rv/QkzRs7QJJ04uj+kqS3NwSrUXVef5tBhyk8ADiyEaAQldWFFRo/KEtnTxmkgw1+fdSi3yfWdpXVaPnOA+0+ZveBWu2vboh6Ve+xA7NU7wuopKpeJx0TDD4jctJVVe/T9tIa1fsCystO1a1nTwxXna6YFay4TRySrVEDMmSt9O0F4zR9ePC1PzdrmPL7p+upgl2SglOHTSUlBLvXB3ZzCi+5B6fw/vPpHs27+y35QyU1AEArXQ5QxpjhxphFxpi1xpg1xphvxXJgcI+1VqsLKzVlaB+ddMwApSZ59Oa6fT32el5/QNc+/LGueWipfP7I1ZYVjc3doRDTWccMzAx/f9IxwQrSiMalBZY29jEN7pOqk8cO0IKJeRqRkx7usRqTm6mZ+TmaNDhbV50wQieM7h+8NMvwfrps5nAt2VambfsPhhvI77jgWP31i7M0ZmCWslISlZacoO5I6cEK1A+eWaldZbWqafD1yP4B4GjQnQqUT9J3rbWTJM2R9HVjzKTYDAsu2lVWq4paryYP7aPUpATNG5urN9cVy9qeqVQ89P42bSquVmWdL9x71ZblO8uVkujR+EFZUe1/TGOAGto3TcNz0iQdClWvrQkGw9ByA3+4arqe+/pcHZObqZvPGq9LZwzTzy+crOdvmqukBI/mjhmgZbcv0KgBGTrr2EGN4zoQ7n8anpOuUycMVG5WinK72f8kSamJHm3cW9Wla/5F4g9Y/eGtTeFqGxUoAIisywHKWltkrf2k8fsqSeskDY3VwOCe1Y0rcofWS1owcaAKy2u1rqgq5q9VVFGr3725SSeMypExhxazbMuKXQc0dVgfJSVE979zn7QkjR6QodMmDJRpXBhq9IAMjRmYqTcbz6wb3BigUpMSlJORLGOMvn7qGA3PSZfHY5q9Zt/0ZEnSsH7BMLb7QK32VQaXeuifEQxN3zp9rH58Xvf/nZGSlKC9lXX6wTOrVFhe2+39SVLB9jL96rVD1wL0+glQABBJTHqgjDH5kqZLWtLGfdcbYwqMMQUlJSWxeDnEyarCCiV6jMblBSs9pzZOZ/XENN4dL6xVwFr96rLjdOyQbL23+VCAqvcF116qqPWqwRfQ6j2Vmhbl9F3Iv752kn547sTwbWOMLjhuiCTJY6TcCGf1tSc1KUEDs1K0+0CNlmwtVXpyQrg6NmNkP31m/MAujbWplMRDb90H39umkqrur8m1rEWvWcsV1QEAh3Q7QBljMiU9I+nb1trKlvdbax+w1s601s7Mzc3t7sshjlYXVmhcXpZSk4L9OwOzUnXc8L56o7FaEytvrd+nl1bt1U2NlZ65YwZo+c4DOlgf7Ml5etlu3f7can310WVaVViuBl9A0zpxBl5b+qYnh3+ekPOnBQNUblaKEqOsaoUM65em3Qdq9cGWUs3Kz1FyYmzP12g6vfbQB9t0zu/f6/Y+735lQ7Pba/e0ejsDABp161PdGJOkYHh6zFr7r9gMCS6y1mpVYUV4+i5kwYSB+nRXuYqrOr6w7q6ymg6XPXh+RaFufPQTjR2Yqa/MHy1JmjcmV16/1dJtZbLW6h9LdqpvepI+3FKqbz6+QpI0Pcoz8Nozsn+GZozsp/z+GV3ex7B+6fpk5wFtLq4On+EXS7Pyc9Q/I1mexkvSxKIC1dKX/17QbvM+APRm3TkLz0h6UNI6a+1vYjckuGj3gVqV13g1eVjzAHX6xOClUxa1U4XaUlKtrz/2iebdvUhX/XmJKmpaLyxprdVv39iobz2xQtOG9dWTN5yolMRgZWhmfj8lJ3r03qb9Wrm7Qmv2VOq7Z4zTVz9zjArLazUwKyXcqxQrf7p6hu69cnqXnz88Jy18sd95Y2Nfef3qZ47Rsh+dEW6E764Zd7ze5vYGAhQAtKk7K5HPlXS1pFXGmBWN226z1r7U7VHBOaEL8basQE0cnKUhfVL1xrpiXT5rRLP79lbU6XdvbtRTBbuVkujRFbOG61+fFOryBxbr79fNDq+FVFRRq//59xq9umafLjl+mO68eHI4PEnBnqLZ+Tl6f3OJDtb7lJaUoAumD1VmcqJKq+uVl50abgKPlQFd6H1qali/4HIIqUkeTRwc3dmB0QhN5aV3Y1mEqjqvSg82SAo21jddOb3BF1BjbzwAoIkuByhr7fuSYvtXq5s27avSkm1lWjh5ULf/AKK5UAP5hBZLBRhjdPrEPP1z2S7Vef2NK2T79ed3t+oPjat3Xz1npG46bYwGZKbo3KmDdcMjy3TZ/Yv10Bdn6bU1+3TvW5vkD1jdds4EfWXe6DbD0MljB+iul9drR2mNLpw2VNmpSZKkuy897rD8/NHKyQimjtmj+sc83DX1k88eqy88tFTDGwNbV2zfXxP+fs7oHL265tBJAQ2sdg4AbTqqroX32tp9uufVDfrx86t14jH9de6UITrr2LyI10c72h042KA31xfrw837NXfMAF18/NAu/zFfVVihsU0ayJs6feJAPfLRDn24Zb88xuh//r1G20trdM6UQbr17IkannPoj/u8sbl69Msn6Et//Vin//odSdKCiXn6yWcnNXtcSyePCS50We8L6KoTRkR8nCvmjhmgi6cP1c0Lx/fo68wfl6szJ+VpZ1nw8jPriqo0aUh2VPtYuj24mvy4vEz99PzJzQMUU3gA0KajKkB97TPH6PSJA/XiyiK9sLJItz27Sj96frVOOqa/zpkyWGcdOyhcGTha7Sqr0etr9+m1tXu1dFuZAlbKTEnUv5YX6t+f7tGdF0/R0L5pUe0zuAJ5hc6YlNfm/XNG91d6coK+//RK7a9u0OgBGfr7tbM1f1zbvT/Hj+inp244Uf/3+kZdPmt4eDmE9kwanK2cjGQNyk7V1BZ9WC7KTEnUby6fdlheKy05QbVevx5fuku3PbtKj335BM1tDJydsWJXuYbnpOm175wiSfrnjSfqsvsXS6ICBQCRHFUByhijCYOyNWFQtv77jHFaV1SlF1ft0Ysri3Trv1bp9ueCYeq8qYN15qRB6udImGrwBfTy6iI980mhrLXqn5Gs/pkpGpCZov6ZyRqQmdz4fYr6ZzQ/7d5aq/V7q/Tqmr16bc0+rS0Knno+Pi9LXz91jM6cNEiThmTr0Y926JevrNeZv3lHt54zUVfNHiGPp3PVqMLyWh2o8bbqfwpJTUrQmZPy9Mqavbr5rPH68rxRzXqY2jJ+UJbuv3pGJ39Dksdj9MDVM9QnLalHp8SORGlJCdpXWacPtwTXytpRWqO5Yzr//Jp6n/qkJTXbXwgVKABo21EVoJoyxmjSkGxNGpKt7505Xmv2VOqlVUV6cVWRfvDMKv3w2dWaO2aAzp0yWGcemxdeRfpw2ldZp8eW7NQ/luzU/up6jchJV05GsraXHtT+qgbVRrhYbFZKovpnBkNWcVWddpXVyhhpxoh+uu2cCTpz0iDlD2h+Cv41J+XrtAkDdcu/Vur251brhZV79MtLpmpkJ07VDzWQT44QoCTprkum6qcXTG72hzjWZubn9Ni+j2SpSQmq8wb0wsoiSVK0+bLW628WmpquMUUFCgDadtQGqKaMMZo8tI8mD+2jm88KhqkXVhbpxVV79P1nVuq2Z41OHtsYpiYNUp/0ngsB1loV7Dighz/crldX75XfWp06fqC+cOJIzR+b26wqVNPgU2l1g/ZX12t/dYNKq+tVerBBJVXBr6XV9cFK02fG6PSJecrNar/Xa3hOuh697gQ9VbBLP3thnc767bv63pnj9aW5o5TQTjVqVWGFEjxGEwdH7q1JTUposz8KPa/lhYk/2XFAjy3Zob9fe0KnpqxrvX5lphz6KKhrEtxZjRwA2tYrAlRTTcPUDxaO16rCCr24qkgvrizSzU+v1G0JqzRvbK7OnTJYCyblxayiUtvg1/MrCvW3xTu0rqhS2amJ+tLcfH1+zsiIVaD05ESl5yS221wdLWOMLp81QvPH5er2Z1frZy+u04urivTH/5oRvnBuS6sLKzV2YCYByVFJLcLvP5ftliS9uKpIV88Z2eHzaxv8GtgkfM8Y2U8TBmVp/d4q1VOBAoA29boA1ZQxRlOH9dXUYX11y8IJWrn7UJh6a32xkhKM5o/N1blTg2EqdOp8NHaW1uiRj7brqYLdqqj1asKgLP3i4im6cNrQVpWDw2lwnzT95ZqZen7FHv3w2VW64dFlevL6Oa1CUqiB/LRONHojPqrr257qXba9rMMA9eD727R+b1Wz5SkSEzy68+Ipuvj/fUiAAoAIenWAasoYo+OG99Vxw/vq1rMnaMWu8mDP1Moivbm+WMkJHs0fl6vzpg7W6RMHKqudMBUIWL23eb/+/uF2vbWhWB5jtHDyIF1zYr5m5fdzpgnaGKMLpw9ValKCbnx0mX7y/BrddcmUZuMrqqhT6cEGTTkCznzrrarrgwtffuv0sXp62W4VltdKkp5bsUc/PHdSu1O7d7ywVlLracDkxmsA3vDIMm382dk9MWwAOKIRoNpgjNH0Ef00fUQ/3Xr2RK3YXa4XVxbppVVFemPdPiUnenRKOEzlhftHKuu8embZbj2yeIe27j+oAZnJ+sapY3TVCSMjTo+5YOHkQbrp1DH6w6LNmjq8j/7rhENVi1WdaCBHfFU3XmR5zMBMnTEpTw9/uD1839sbinWgpkFnTx6s376xSb+4eEqbFzZuedZkqBLZ4Avoy38r0F+umdlzPwAAHIEIUB3weIyOH9FPx4/opx+eM1HLdx3Qiyv36qVVRXp9bTBMnTo+VzkZKXp+RaFqGvw6fkRf/e6KaVo4eVCHp/O74jtnjNOqwgr9z7/XaMKgbM0Y2U9S8Aw8j5EmDopucUYcPt86fZx2ltXolPG5yslIbhagbn56pSTp7Q0l+nBLqS6aPlQnj229RtT20oPNbo8ZmCmPkQJWemPdvlaPB4DerssXE+6NPB6jGSNz9OPPTtKHt5ymp288UVfNHqHlO8v1zCe7dc6UwfrPTSfrX1+bqwumDT1iwpMkJXiMfn/FdA3uk6avPrpMxZV1khpXIB+YFdd+LbRv/KAsvfCNecpOTdLcMQP0+Ffm6O5LpjZ7zL7G4/n5B5fIWttqHye3sfDmyT1wEWQAOFpQgeoij8doZn6OZubn6MfnTVKDP3DEn6XWJz1JD3xhhi6670N97bFP9I+vzNHqwgqdMo4G8iPJicf0V1Zq87d2UUVd+PuKWq/6pifrnY0lkqSvzBul604e1Wo/TYOWtdaZ3j0AcAEVqBjweMwRH55CJgzK1i8vnaqCHQf0rSeWa391g6YMZfruSJOR0jxA1TQcOlNvX2W99lbU6ZqHlkoK9vy1FY4CTQKU19+6agUAvRkVKLRy/nFDtLqwQg+8u1WSOAPvCJSREjnQry2q0Hee/DR8OzRd21LTVcjrff42m88BoLfiExFt+v5Z4zV3TH8lJ3raXYEcbspIjvxvo/c27W92+9ghbQfk0yYcung0l3QBgOYIUGhTYoJHf/nCLL3wjZOV3s4fY7gprZ0p5X99Utjsdlv9T5J0w/zRuu2cCZKk+xZtid3gAOAoQIBCRGnJCRqXl9XxA+GcptdUvP/zx+umU8e0+bhRAzKaPbblPkILxj70wbbYDxIAjmAEKOAodd3Jo3TvldO1cPJgfeP0tgNUSgd9TdV1vvD3720qObS93qfNxdWxGSgAHIGYmwGOUj86b1L4+9ClWVoqO9jQ7j6q6rzh769+cKmuO3mUzpkySL96daMWby3VljvPUUKEChYAHM2oQAG9QKQ1nIqr6tt93injmy+m+eD723TJHxdr8dZSScE1pQCgNyJAAb3EQ1+cqXdvPlXHDeujU8d3bpXxGSNztP2ucyPeX1rdfgADgKMVAQroJU6bkKcR/dP1/E0n66fnT47JPks7mAIEgKMVAQrohfqkJcVkP6XVwQC1t6JO+be8qA827+/gGQBwdCBAAb1QZmpszh954uOd+s3rGzXnF29Kkm5/bnVM9gsAriNAAb1QtGfO/fi8ScpIbr0453ub9uv3b24K3962/6BW7a7o9vgAwHUEKKCXun7+aN3/+Rmdeuy1J4/SZTOHd+qxL64q0uV/Wqx/FuzqzvAAwGnG2sN3lfWZM2fagoKCw/Z6AGJnV1mNbnp8uT7dVd7p51xz4kgN6pOmr37mGEnS0m1lGp2boQGZKT00SgCIHWPMMmvtzLbuYyFNAJ0yPCddz399rvJvebHTz/nb4h2SpD3ltTpjUp6+8NBSjRmYqTf++5SeGiYAHBYEKAA97pGPduiRj4JhanNxtarrfUr0GKW2c9FjAHAZPVAAovJ/lx/X7X1M/smruuAPH8haq2eW7VZ1va/jJwGAQwhQAKIyc2ROq23trVYeyYZ9VVq244C++89P9dN/r5G1VoezJxMAuoMABSAqKYnBj438/und3lfoWnr7q+v1mV+9HV5PKmR1YYXe3VjS7dcBgFgjQAGIysDsVP3i4il6/Po5zbbPH9e56+s15fUHK06LNpRoR2mN9lXWa9mOMn26q1ybi6t03r3v6wsPLVVtg1+/fGW96rz+mPwMANBdNJEDiNqVs0e02vb3a2dLkv7z6R594/HlndrPsh1lrbZd8sfFkqQ//tfx4W1/fm+r/vj2FvVNS9INpxzTlSEDQEyxDhSALntl9V6NzcvUMbmZzbYHAlbltV4t/O27Kq6q19Ifnq7nlhdq+c5yvbx6b9Sv883Txuj3b22WJD1x/Rx5jFH+gHTlZqbImOhWVQcQX6sLK/S9f36qZ756kjJS3K7jtLcOFFN4ALps4eRBrcKTJHk8RjkZyXrl2/P15y/M1MCsVF0//xjdevbELr1OKDxJ0hUPfKTP/WmxZv/8zfC193aW1qiqzquqOq+ufnCJCstro9r/c8sLo34O0BU+f0CrC4/cyx35/IFWZ80u3lIa3mat1TUPLdVb6/dF3MfPX1yn9Xur9PaGQ/2Nr67Zq11lNZKCFydvOV2/Yld5+PdmrXViOp8ABaDH5GQk64xJeeHbI2LQeN7UY0t26puPL9f8exbpsvsX66VVRXpv037Nveut8GMqarz6cMt++QNWb63fJ2utAgGr0up6SVKDL6BvP7mi2XN62iuri6Ja0R1Hj9+8vlHn3fu+1u+t7NHX2VNeGw4kbVm2o0xvrtundUWHxlHn9au2IRhM/uffa7R0W+sp9u/981NN/smrqqj1qs7r10dbS3Xlnz/St59YIUkKWOmdjSW69uEC1fsOhZxAwKq8pkGl1fVavLVUkvT1f3yiB9/fpvxbXtQNjyzTvLsX6fRfB08muf6RZc1e98L7PtB5976v6nqf/vjOFk340SvaE+d/9DCFB+CwentDsb741497ZN8TBmVp/d4qSdKi731GowZk6Lx739Pqwkr1z0hW6cEG/eSzk7RmT6WeXrZbkrT+joWa8KNXJAWXYwgErK5/ZJmuPTlf97+zVVV1Xv3swsk6dkgfVdZ5tWRrWbNQWFheqyF9UsNTiYGAVcBaJSZE/vdpaDX3754xTmdPGawxA5tX8d5ct0/V9T5dMG1o1L+DsoMNentDsS4+fljUzz3aFFfW6aVVRfri3FEx3/fH28s0c2S/8HEvLK/Vl/9WoL9fO1u5WZEvVXT1g0v03qb9+tu1s3VKGydebNpXpRH907V8Z7lOGJUT3n+d16+7X9mg75wxVpV1Pvn8AVXV+TR5aJ9mz1+/t1KD+6TpuJ++Ft6WmZKol745T/PvWaR/3niiBvdJ1cm/XBS+Py87Rf/4yhyd/ut3JEnvff9Uzbs7eP9TN5wof8DqxGP6q8EX0LjbX474syV6jK4+caT++sH28LYzJ+XptbX7lJORrLKDDRGfG8kVs4Zra8lBLd3eOsz94arpOm/qkKj3GY32pvAIUAAOuz++vUW/fGW9huekKcEY3XL2RN346LKOnxilT350ho6/4/Vm2z573BD959M94dtN+6te/tY8DcpO1fQWz5GkOy44Vk98vEtr9gTDWHZaku676nid8/v3NHtUjn5+4WSNzcvSNQ8t1TsbS8JrY+0oPajtpTWaPqKvkhM82l9d3+yPV1KC0XfOGKfr540Oh65QwLr7kqn6xcvr9MT1J2rxlv2qrPPpm6ePbTW22ga//vupFfrxZyfpO0+u0Edbg39s7r1yuj57XPf/wHj9Af31g2364kmjlJwY/cTFY0t2aF9FnYqr6nXXJVMlSaXV9Zrxszf0wjdObhUCWnqqYJeyUhJ19pTBHb5WbYNfxkiVdV5d+/DHWl1Yqbe+e4oGZKXou099ql9cPEXJiR5lpybpvkWbdc+rG/T+D05V2cEGfbC5VFtKqjUuL1NXzB6hLcXVmj6iX7P91zT4NOnHr0oK/j+RnZaksycPbhYsLpw2RN9eME6VdV71S0/WS6uKdP380Xrw/W16aVWRPtlZLkn68xdmalZ+P82+8001+AL63Mxheqpgd3g/91w6VZfNHK7t+w/q5dV79ctX1mvO6Jzw8ZWkP109Qzc8Evv3zpFgaN80fXDLaT36GgQoAM7bX12vW55ZqTfWFcdsn135V++CiXl6Y13k/o2mEj1GvsChz9AxAzO1ubg6/NqXzRimP727tdOvvf2uc8N/1COZMrSPbjtnor795HL97wWT9b//WRvu37po+lA9u7ww/NjjhvfVc187SdYG+9JW7i7X+X/4QJL08Q8XqE9akhb+9l3defEUVdZ6tXJ3hb531njtKqtRwFrtKK3RnNH99ffF2/WzF9dJkgZkJuvjHy4IV0Y+3VWu8YOylJqUoL8v3q5B2alaMDFPL6wq0jcfX67fXTFN32qc3gn9jPsq63TCnc3X/JoytI/+94JjWwUW6VCgvP/zx0syuvHRZXru63M1bXhfScGm5PPufT/8+LzsFO2rrA/f/tzMYXpnY0mzbfdeOb3ds0UzUxJVXe/TuzefqvsWbdab64u1v7o+4uNx+KUmebT+jrN79DUIUACOCL99Y6N++8ameA/jqJKRnKCDDX5dP3+0HogizDU1d0x/fbC5NHz7nkun6n//s1ZVjY3D/TOS9bdrZzcLMZF878xx+tVrGyPef/clU/X9Z1ZKkhZMHKiR/TP04PvbIj5+SJ9U7amo6+yPgqNIcqJHG39GgAIAHaz3acFv3lFRJ/8g3nPpVN389MoeHhUAFyV6jDbfeU6PvkaPLWNgjFlojNlgjNlsjLmlO/sCgIyURD15/YmSpN9dMU0njGp93b1/3niihuek6WcXTtZlM4fr15d1/+LGAI48TafP46HLAcoYkyDpPklnS5ok6UpjzKRYDQxA7zSif7o2//xsXTBtaKv1Zpb/6AzNys/Re98/TZ+fM1KSdMkMzjYDcPh1ZwnQ2ZI2W2u3SpIx5glJF0haG4uBAei9Qmej/d/l03T/O1t006ljlJmaqH4ZyW0+fvVPz5Lfb/Xn97bqD4uCZ9RNHpqtm8+aoAmDslo1LANAd3VnCm+opF1Nbu9u3AYAMTEuL0u/+dw0jc7N1MCs1IiPy0xJVJ/0JN102pjwtme/NlenjMtVXnaqnvv6XP30/GMPx5AB9BI9vhK5MeZ6Y0yBMaagpKSk4ycAQBelJiVo/R0Ltep/zlRSk4Uspw3vq2tOytfS205vc/HCrgqeVg+gN+pOgCqUNLzJ7WGN25qx1j5grZ1prZ2Zmxu7Dy4AaEtqUoKyUpPavG9gdqp+/bnjdOMpx+iBq2dICjalv3vzqZKkfulJ+vCW03T7uZGv2ZffeDmaF75xshZOHqx3bv6MciJMLbb09VOPieZHAdCOi6bHd9KrOz1QH0saa4wZpWBwukLSVTEZFQD0kAGZKbrl7AmSFF4tXJIe/tIsjcvL0pC+afryvNE6b+oQ+QLBC79mpSZp7pgBkqRHPtqhHz23WsP6pUmSRvbP0JWzh+u+RVskSZ+fM0I/u3CKdpQe1LB+6frHkh360fNrdNOpY/S9s8brilkjtKe8VqMGZGh2i96sK2eP0ONLd+q3l0/ThdOHaum2Mn3uT4tb/QxnTMrT62s7t9gncLRK9Ji4vn631oEyxpwj6beSEiQ9ZK39eXuPZx0oAEcjnz+gZTsOyEqaMbJfs+lDKXhh17zsVCW0+MAvr2nQ5x9cotWFlXr2aye1uQr3xn1VOvP/3tUNp4xWXlaqMlMTdenxwzT6tpeaPa5vepLKa7ySpKyUxPAil5H848sn6Kq/LGm27bXvzNeZ//duZ39sIK4unj5Uv7l8Wo++RnvrQHWnAiVr7UuSXurwgQBwFEtM8OiE0f0j3j+kb1qb2/umJ+uui6fqjhfWauLg7DYfMy4vS5/+5ExlpSTK0ySAHTesjz7dXRG+vfS2Baqs8+rJj3fp/OOGaEdpjf62eLv6ZyTriY+D5/s0vazKSWMGqOD2BXry412659UN+vlFkzUuL0t3XzJVFbVeXXvyKC3ZVqqr/rxEV84eoao6r15YWaRrThypvy3e0eZYp4/oq6tmjwgvbvqDhRP0y1fWR/7FAd2wqrCi4wf1IFYiB4Aj0IPvb9MdLxxaNabpdGRLm4urtHFftc6ZMlgNvoAC1io1KaFTr+PzB8LLSizZWqrpI/rphZV79N9Pfaq+6Un67eXT9MW/fqxlty9Q/8wUSdJ9izYrJdGjL88b3WoaclZ+P/3uiunqn5msLcUHdc7v35MknX/cEP33GeO0srBCp08YqLKDDZp39yJ9f+F43f1K82sDPnLdbL29oURLt5V16Y/ov2+aG74mYEtMjx45uJQLACBq1lp5/VY/fHaVEjxGd10yNd5Datcrq/eqpLpeVzcugNpZgYDV6Nte0g3zR2vXgRq9tGpvOCzuKqvRvLsXhR/7ly/M1Jf/XqD3vn+q8rJTNe72l7Xw2EE6Y1KePtl5QD+/aEr4sXe+tE4rdpXroS/O0uSfvKqhfdP0wS2nSZKq6ry67uECzRs7QL9+PXjdvgGZKeGLCa/734V6eXWRHnh3q7z+gPL7Z2hGfj+9unqvPt1dER7fGb95R5saLy7dGbeePUGfPW6ITrrrrah+R73VFbOG9/j/9wQoAMARr8EXUFWdN1zpOnCwQdPveF2XzhimX7VxSZ+KWq/SkxNa9aR1lT9gW/WxtXy93QdqdOyQPpKk/dX1mnPnm3ryhjmaMTJHa/dU6tqHP9bL35qnfhnJKiyv1Ya9lVq/t0r/b9EWfXjracpOTVJVnVeVdT7d+Mgy/fyiybrs/sW686Ip6puepPnjcrV9/0Gd0Uav2uJbT9PgPmnKv+XFZtu/e8Y4zcjvp5TEBF3yxw9j8rtwwdY7z2k2rd0TCFAAgKPSlpJqDeuXppTEzk1JHi3eXLdPS7aV6cJpQzVpSPP+uVdWF6lferImDcmWlZTdZFkPf8DKY6RRtwbbl5fdvkAzfvZG+P4nrp+j44b11Q+fW6V/fXJoZaL/OmGEHluyU8cN66OUxARt3X9Q1508Sl/9zDHNAtvNZ43XPa82n3Jt6g9XTddN/1jebFvTEyj2V9drZpPxtDQgM0VPXD9HHiONzs1s5zcUGwQoAAAQ9qd3tmhk/3QtnDxYL6zco+o6n66YPaLZY55YulO/fn2jFkwcqF9cHHmqbE95rTJTE5WelKAEj9GZ//euNhVX66fnH6tZ+TlKTjRa8JtgxWz7XeeqYHuZLr1/sQb3SdWjXz5Bx7QIQo8t2aG7X9mgitrgWaVPXj9Hs0flaHNxtfpnpnR63bVYIEABAIDD4hcvrdOf3t2qR66brXljgwtof7qrXCVV9VowKa/T+3lxZZHGD8rSmIE9X2mKpMeWMQAAAGjqu2eO1/QR/cLhSZKOG9436v2cO3VwDEcVez1+LTwAANB7JCd6tHDyoHgPo8cRoAAAAKJEgAIAAIgSAQoAACBKBCgAAIAoEaAAAACiRIACAACIEgEKAAAgSgQoAACAKBGgAAAAokSAAgAAiBIBCgAAIEoEKAAAgCgRoAAAAKJEgAIAAIgSAQoAACBKxlp7+F7MmBJJO7rw1D6SKnrg8R09LtL90Wxva9sASfs7Mb5Yi/b3GKt9dOY5XT0W7d3XmeNxJB+LruwnFu+NnjoWUnyOx5F8LNq7/0g8FpHGcjj2wedUa0fyeyNWx2KstbZPm3ux1jr/n6QHeuLxHT0u0v3RbI+wreBI+D3Gah+deU5Xj0V3j8eRfCy6sp9YvDd66ljE63gcycci2t+568ciVseDzyl3jkVX9uP651TovyNlCu8/PfT4jh4X6f5otkc79p4Ui7F0ZR+deU5Xj0V797l8PGI1jni8NzgWsdkPn1Nt43PKneNxJL83evxYHNYpPAQZYwqstTPjPQ5wLFzD8XAHx8IdHAs3HSkVqKPNA/EeAMI4Fm7heLiDY+EOjoWDqEABAABEiQoUAABAlAhQAAAAUSJAAQAARIkABQAAECUClGOMMRcaY/5sjHnSGHNmvMfTmxljRhtjHjTGPB3vsfRGxpgMY8zfGt8P/xXv8fR2vB/cwd8JNxCgYsgY85AxptgYs7rF9oXGmA3GmM3GmFva24e19jlr7Vck3Sjp8p4c79EsRsdiq7X2up4dae8S5XG5WNLTje+H8w/7YHuBaI4H74eeFeWx4O+EAwhQsfWwpIVNNxhjEiTdJ+lsSZMkXWmMmWSMmWKMeaHFfwObPPX2xuehax5W7I4FYudhdfK4SBomaVfjw/yHcYy9ycPq/PFAz3pY0R8L/k7EUWK8B3A0sda+a4zJb7F5tqTN1tqtkmSMeULSBdbaX0g6r+U+jDFG0l2SXrbWftLDQz5qxeJYIPaiOS6SdisYolaIf+z1iCiPx9rDPLxeJZpjYYxZJ/5OxB0fSj1vqA79K1oK/lEY2s7jvyFpgaRLjTE39uTAeqGojoUxpr8x5n5J040xt/b04HqxSMflX5IuMcb8Ue5cG6w3aPN48H6Ii0jvDf5OOIAKlGOstb+X9Pt4jwOStbZUwR4DxIG19qCkL8V7HAji/eAO/k64gQpUzyuUNLzJ7WGN23D4cSzcxHFxC8fDHRwLhxGget7HksYaY0YZY5IlXSHp33EeU2/FsXATx8UtHA93cCwcRoCKIWPM45IWSxpvjNltjLnOWuuTdJOkVyWtk/SUtXZNPMfZG3As3MRxcQvHwx0ciyOPsdbGewwAAABHFCpQAAAAUSJAAQAARIkABQAAECUCFAAAQJQIUAAAAFEiQAEAAESJAAUAABAlAhQAAECU/j/WgDsQLF04kQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.semilogx(cs.freq, cs.power.real)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To improve the plot, we can rebin the data logarithmically" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "cs_reb = cs.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Cospectrum Power')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAGtCAYAAACm11juAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABeoUlEQVR4nO3deXxcZb0/8M93tkz2rU26pGnapnQvtLRlF1CWgmwqgoJeFwS9iutPr+B+vSiiXi4XZVdAvQgiCoIUCghlKaW0pZTupXuTNkmzL5Nktuf3x5kzW2bPTObM5PN+vfpq5syZc57J0OTD99lEKQUiIiIiMh5TthtARERERJExqBEREREZFIMaERERkUExqBEREREZFIMaERERkUFZst2ATJgwYYJqaGjIdjOIiIiI4tq0aVO7UmpipOfyMqg1NDRg48aN2W4GERERUVwicijac+z6JCIiIjIoBjUiIiIig8qroCYil4rI/T09PdluChEREdGo5VVQU0o9o5S6oby8PNtNISIiIhq1vApqRERERPmEQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY2IiIjIoBjUiIiIiAyKQY1oHDvWM4j7Xt2Htr6hbDeFiIgisGS7AUSUHU9vOYr/9/i7cHkUAOCLZ8/KcouIiCgcK2pE49TjG45gSkUhbBYTOgec2W4OERFFwKBGNA4ppfBeUzdOn1WN6mIbOhjUiIgMyfBBTURmisjvReSJbLeFKF8c6nCgd8iNxXUVqCq2oYtBjYjIkLIS1ETkQRFpE5FtYcdXishuEdkrIjcBgFJqv1Lqumy0kyhfvdfcAwBYNLUcVayoEREZVrYqag8DWBl8QETMAO4CcBGA+QA+KSLzx75pRPnvvSPdsFlMmDOpVKuoORjUiIiMKCtBTSn1GoDOsMMrAOz1VdCcAB4DcHmi1xSRG0Rko4hsPH78eBpbS5R/3mvuwfzJZbCaTagssqGzn0GNiMiIjDRGbSqAI0GPmwBMFZFqEbkXwBIRuTnai5VS9yullimllk2cODHTbSXKWR6vwrbmHpxYVw4AqC62oW/YDafbm+WWERFROMOvo6aU6gDwpWy3gyhfHOl0wOH0YMEULahVFtsAAF0OJ2rL7NlsGhERhTFSRa0ZwLSgx3W+Y0SURh0DwwCAmrICAFpFDQDXUiMiMiAjBbUNAGaLyAwRsQH4BICnk7mAiFwqIvf39PRkpIFE+aDDNx6tulgLapUMakREhpWt5TkeBbAOwBwRaRKR65RSbgA3AlgNYCeAx5VS25O5rlLqGaXUDeXl5elvNFGe0ANZVYkW0FhRIyIyrqyMUVNKfTLK8VUAVo1xc4jGFX3NtKoiLaCxokZEZFxG6vokojHQNeBEodWMQpsZAFBRaIUIgxoRkRExqBGNM50DTlT5qmgAYDGbUF5oZVAjIjKgvApqnExAFF/HgBPVJbaQY1XFNnRydwIiIsPJq6DGyQRE8XUOOFFZFBbUuDsBEZEh5VVQI6L4Ogec/pmeOu73SURkTAxqRONM+Bg1QAtqHRyjRkRkOAxqROPIoNODQZfHv4aarqLIhh6HC0qpLLWMiIgiyaugxskERLHpEwaqwsaolRVa4PR4MeTixuxEREaSV0GNkwmIYtMnDIR3fZYXWgEAvUOuMW8TERFFl1dBjYhi0zdkD1+eQw9qPYMMakRERsKgRjSO+Pf59G3IriuzM6gRERkRgxrRONI5EHmMmr/rk0GNiMhQGNSIxpHOAScsJkFZoSXkeBm7PomIDCmvghpnfRLF1jngRGWxDSIScpxj1IiIjCmvghpnfRLF1hFhVwIAKLNrFbbeQfdYN4mIiGLIq6BGRLG19g5hYmnBiOMWswnFNjMrakREBsOgRjSONHcNoq6yMOJz5YVWBjUiIoNhUCMaJwadHnQMODG1InJQKyu0csFbIiKDYVAjGieauwcBAFOjVNTKWFEjIjIcBjWiccIf1CqKIj5fXmjlOmpERAaTV0GNy3MQRdfcFbuixqBGRGQ8eRXUuDwHUXRHuwdhNglqI8z6BLRtpNj1SURkLHkV1IgouubuQUwqs8NijvzPvrzQigGnBy6Pd4xbRkRE0TCoEY0TzV2DUbs9AaDct61U3xAXvSUiMgoGNaJxorl7EHVRluYAuN8nEZERMagRjQNujxctvUNxKmoMakRERsOgRjQOtPQOweNVURe7BQJBjTM/iYiMg0GNaBzQl+aYwq5PIqKckldBjeuoEUUWb1cCAKjwBbVuBjUiIsPIq6DGddSIIvMvdhujolZVbINJgOO9Q2PVLCIiiiOvghoRRdbcPYgJJTbYreao51jMJkwoKUALgxoRkWEwqBGNA83dgzGrabpJ5Xa09A6PQYuIiCgRDGpE40Bzd+zFbnU1pXa0saJGRGQYDGpEeU4phaMJV9TY9UlEZCQMakR5rmPAiSGXN7GgVmZHt8OFIZdnDFpGRETxMKgR5Tn/jM/Korjn1pbZAQCtrKoRERkCgxpRnvOvoZbgZAIAaOWEAiIiQ2BQI8pzgYpaYl2fADhOjYjIIBjUiPJcc/cgSgss/r08Y6nRuz57GNSIiIwgr4Iat5AiGqmpazDmHp/ByuwWFFrNrKgRERlEXgU1biFFNFKia6gBgIhgUrmdkwmIiAwir4IaEYXyeBWaOh2oSzCoAUBtWQGDGhGRQTCoEeWxrc096Bt24+TplQm/ZsaEYrx7pBv//cJueLwqg60jIqJ4LNluABFlzqu7j0MEOGv2xIRf8+0L5qB/2IPfvLwXC6aUY+XCSRlsIRERxcKKGlEKlMqNStOre9pwYl0FqoptCb+muqQAv/zYYogAu1p6M9g6IiKKh0GNKAXf+Mu7uO7hDXB5vNluSlTdDifePdKNs09IvJqmK7SZMa2yCHvb+jPQMiIiShSDGlGSmroceHrLUfxrVxt+vmpntpsT1evvt8OrgLPnJB/UAGB2TQmDGhFRljGoESXpb5uaoRRw6YlT8NDag/j7O03ZbpKfw+n2f/3k5mZUFllxYl1FStdqrC3B/uMDcBu4akhElO84mYAoCV6vwl83HcHps6px+1Unoq13CDf/fSsGht0osJohAE6cVoHZNSUQkajXcXu8sJgD/5806PRgb1s/FtWlvgagw+nGmbe9gjMbJ+BjJ9fh5V1tuPmiuTCborcjlsaJJXB6vDjc6cDMiSUpt4uIiFLHoEaUhLcOdKCpaxDfvmAOrGYT7rp2Ka64ay1++I/tIedNry7CB+fW4MS6CsybXIZuhxPrD3Ri8+EuvN/Wj+buQfzk0gX4zOkNAIA7/rUH9726H+fNq8VPLpuPusoiANqkhbV7O3CgYwB9Qy4snFKOZQ2VKLKN/Ke76VAXOgeceHrLUaze3oLp1UX47BkNKb/X2bWlAID32/oZ1IiIsoRBjSgJT2xsQmmBBRcu0JasmFBSgJe+dTaO9w0DAFweL9bt78AL21vxyPrDeGjtQf9rRYATakqxtL4SZpPg8Y1H8JnTG6CUwvPbWlBXWYi1e9txwf+8hj9dtwInT6/C7984gFueDR0HZ7OYcNHCSfjM6Q1YWh9YH+2t/R0wmwTXrKjHn946hO9fPA8FFnPK77WxRgtne9v6ceGClC9DRESjwKBGlKC+IRdWbTuGjy6tQ6EtEIDsVjOmVRX5H8+cWIJrT5kOl8eL/ccHsPNYL0oKLFjeUIXyIm1j9Ade24+frdqJQx0DGHZ7cajDgVuuWIhz5kzEtb9bj+v/uAk/uWwBfvHcLlwwvxa3fGQhCq1mbD7cjZd2tuLJzc3453vH8NK3zsaMCcUAgPX7O7Foajl+evkCfPncWZhcnvhuBJGUFFgwpdyOPa19o7oOERGljpMJiBL07HvHMOTy4uMn1yV0vtVswpxJpbhiyVScN7/WH9IA4KJFWkVu1dYWvLijFQBw/vxa1FUW4aHPLodXKXzt0c2oLbPjV1eeiJpSO0rtVnzghIn46eUL8cI3PwClFB7feASANj5tS1M3Tp1ZDREZdUjTnTKzGi/uaEVH/3BarkdERMlhUKOckMkFZtv7h+Ne/7U9x/Gbl/eisaYEJ02rGPU96yqLcOK0Cqzaegwv7GjFiXXlqC2zA9Aqcg/82zLMn1yG316zJCTg6SaXF+LcOTV4YlMT3B4v3jnUDZdH4ZSZVaNuW7CvnNuIIZcH9722P63XJSKixDCokeHtbunDybe8hPtf25f2wPb4xiNY/rOXogaRPa19+MyDb+PfHnwbZpPg5x9ZFHM2ZzIuXjgJW5t7sOVIN86fXxvy3PKGKqz6+llYUh99j86rl0/D8b5hvLL7uH982rIk9vRMRGNNCa5YMhV/ePMguh3OtF6biIjiy6ugJiKXisj9PT092W4KpdGTm5vROeDEz1ftwjf+8i4GnZ60XPfv7zThu397DzazCXf+63209g6FPL+ntQ+X/OYNbD7chR98eB5e/NYHsGJG+ipWFy+a7P/6/PnJ76d57twaTCwtwA+f2obfv3EAi6aWo9Q+svo2WtesqMew24u39nek7ZptvUMYcqXncyQiymd5FdSUUs8opW4oL099LSoyFm1G5DGcNXsCvnPhHDy95SiuvPdNNHU5Rpzr9SpsOtSFvW3xB78/veUovv3XLThtZjWevvFMuD0Ktz2/y/+8x6vwH0+8h2KbGS9+62x84ayZo5pBGcm0Kq37s6G6CCfUJr/8hdVswvVnzYBJgMtPmoL/vurEtLZPt7iuAnarCW/t7xz1tZRSePCNAzjztldw/R835syeqURE2cJZn2Rou1v7cLDDges/MBPXnjId8yeX4WuPbcZlv12Lu65ZitNmVWNXSy+e2nwUz2w5iubuQZgE+MzpDfh/F8xBScHI/8Sffe8YvvmXd7GsoQq/+8wyFNksuO6sGbhnzT58+tTpWFJfiYfWHsC7R7rxv584yT92LBPuumYJnG5vyt2pN3xgFm74wKw0tyqUzWLC0vpKrD8w+qD2+MYj+Ok/d+CE2hK8/n47/rqpCVctm5aGVhIR5ae8qqiNlfb+YfQNubLdjHHh+W0tEAEu8HUNnju3Bv/4yhmoLLLiU79fj/NvfxUr73gdD7y+H7NrS/A/V5+Ia0+ZjoffPIjzb38VL2xvAQAMuTx4YlMTrrhrLb7y53dw0rQKPPjZ5f6FY79ybiMmlhbgP5/ZgYPtA/j1C7vxobk1uOzEKRl9f3WVRTmxmOwpM7RA3ONI/b/7Qx0D+NE/tuPMxglY9bWzsLS+Ar95+X1W1YiIYmBFLQV3v7IP//fWIZzeWI0LF0zCefNqMbG0INvNyrrDHQ68ua8dk8rtOPuEiWkZdP/8thYsn14V8v2dObEET33lDPz4H9txpMuB/7xsAT68eDImlGjnfGRJHa5YMhXf+/tW3PCnTVgxowq7W/rQM+jCrInF+NEl8/GJFdNCVvcvKbDguyvn4tt/3YKr718Hq8mEn6Vx4kCuO2VmFdRLwNsHO0dMfEjU2wc6Mez24ieXzYfFbMKVJ0/D957cit2tfZg7qSzNLSYiyg8Maim4/KQpMAmwekcLbv77VnxPtmLZ9EpcMH8SLlwwCfXVRfEvkgc6+ofx5r4OrN3bjjf2tqOpa9D/3Gkzq/GDS+ZhwZTUxwseaB/ArpY+/PCS+SOeK7VbcfvVJ0V97cnTK/HPr52JB17fjz+8eRBnzp6AT50yHafOrIoavj66ZCr+tO4gtjT14NaPLsKk8sx1eeaak6Zp49Re3tWaclA70umASYDp1doCvefNq8H3ngRe3N7KoEZEFIXkY7fDsmXL1MaNGzN+H6UUdh7rwws7WrB6eyt2HusFAMydVIoLF0zCBQtqMX9ymWGqMkopvHukG39efxh72vpRWWRFZZHN98eKymLf18Xa8apiGyqKrP5B9A6nG28f6MSb+zrwxvvt2OF7v6V2C06bWY0zZ0/AaTOr8db+Dtz+4h50D7rw8ZPr8P8umJPSOK97X92HXzy3C2tv+iCmVqRnAdd4DrYP4JXdbfjs6Q2G+dyM4jt/3YJVW49h/ffPizj2L56vP7YZmw514Y3vftB/7Iq71sKrFJ6+8cx0NpWIKKeIyCal1LKIzzGopc/hDgde2NGCF7a3YsOhTigFTKsq9FfaTp6u7fE41vqH3XhqczMeWX8YO4/1oshmxpL6CvQNudE54ES3w4X+YXfU1xfbzKgosqGtbwguj4LNbMLJ0ytx5uwJOKNxAhZOKYPFHDrcsWfQhbtf2YuH1h6ExSz40tmzcP1ZM0O2Xorn8rvWQvGXuGFsPtyFj9z9Jr72odmYXVOCixdNTuq/54/cvRaFVjP+fP2p/mO/Xr0bd63Zi93/dRFsFg6ZJaLxKVZQY9dnGtVXF+ELZ83EF86aifb+Yby0oxWrt7fgT+sO4fdvHEB1sQ3nzavFhQtrcfqsCbBb07vcQ7htzT14ZP1hPP1uMwacHsybXIZbrliIy0+aMmK9rWG3Bz0OFzodTnQNuNDlcKLLoYW4zgHt64mlBTizcQKWTa+KG7jKC624+eJ5uOaUetz2/C7c/uIe/Hn9YfzHyjm44qSpMMX5BX+0exBbjnTjOxfOGfX3gdLjpGkVmD+5DHf+630A2hImVyyZmvDrj3Q6cN680G7T+uoiKAW09AyNmyEDRETJYFDLkAklBfjEinp8YkU9+ofdWLO7Dau3t+LZrcfwl41HUGwz45w5NbhgQS3OnVuDsjQtVOpwuvHPLcfwyPpD2NLUA7vVhEsWT8G1p9TjpGkVUbvzCixm1JSZUZPmpSimVxfj7mtPxoaDnbjlnzvwrce34JH1h/HHz69AcYzuM3225kULk18IljJDRPCLjy3ChoNd+MObB/Ho24cTDmoDw2609ztDNq8HgLpKrUu7qcvBoEZEFAGD2hgoKbDgksVTcMniKRh2e7BuXwdWb2/Fizu04GY1C06fNQEXLKjF+fNrUVOafFja3dKHP68/hL9vbkbfkBuza0rw40vn46NL6iLuFTnWljdU4ckvn4En3mnCTX97D9/923v4zSeXRA2Oz21rwQm1JTmxdMV4sriuAovrKjDs9uCXz+/G/uP9CX1GR3wLFNeHB7UK7XHwRBQiIgpgUBtjBRatknbOnBrccsVCbD7chRd8XaTff3IbfvDUNiytr8SFC2pxwfxJaJhQHPVaQy4Pntt2DH9efxgbDnbBZjbhokWTcO0p07G8odJwg+FNJsFVy6ahvX8Yv3x+N5bWV+LzZ84YcV57/zA2HOzEjec2ZqGVlIgrT67D7S/swf+9dRg/unTkrNxwhzsiB7VJ5XaYBBF3miAiIga1rDKbBMsaqrCsoQo3XzQXu1v7sHpbK17Y0YKfr9qFn6/ahTm1pVpoWzAJC6ZoM0j3H+/Hn9cfxhPvNKHb4UJDdRG+d/FcXHnyNFQV27L9tuL697Nn4d3D3fj5qp1YOLV8xP6ZL+1ohVcBKxdOjnIFyraaUjsuPXEKHn37MG78YGPc/+4Od0YOajaLCZPK7KyoERFFwaBmECKCuZPKMHdSGb5+3mwc6XT4K22/fWUv7nx5L6ZWFGJKhR0bDnbBYhJcsKAW154yHafNrI47ON9IRAS/vupEXPFbbZeAZ796ZsjYuOe2taC+qgjzJpdmsZUUz5fPmYUnNzfj4bUH8K0LYk/6ONLpQGmBBRURuuHrKosY1IiIouB8eIOaVlWE686cgce/eBo2fP88/PJjizF3Uil6B934zoVz8ObNH8Td156MMxon5FRI05XZrbj30yejf8iNLz/yDlweLwBtWY8397Vj5cJJhuu6pVCza0uxcsEkPPzmwbhbqh3udGBaVVHEz7SuspBdn0REUTCo5YDqkgJctXwafv/Z5Vj9zQ/gK+c2pjThwGhOqC3FbVcuxsZDXfj5qp0AgFd2tcHlUbhwAWd75oKvnNuI3iE3/vTWoZjnHe50jOj21NVVFqKldwhOtzcTTSQiymkMapRVl504BZ8/YwYeWnsQ/3i3Gc9tO4basgIsmVaR7aZRAhbVleMDJ0zE718/gEGnJ+I5Xq/Cka7BqMtv1FcXw6u0LcOIiCgUgxpl3c0Xz8Xyhkrc9LetWLP7OC5cMCknu3PHqxvPbUTHgBOPbTgMAFi/vwP3vboP+q4nbX3DcLq9I9ZQ0506U5tM8vr7x8emwUREOYRBjbLOajbhrmuWosRuwbDbi5Xs9swpK2ZUYUVDFe5/bT9++/L7uOZ363Hrc7tw0LckR7QZn7q6yiI01pRgzW4GNSKicAxqZAg1ZXY88G/L8KlT60cs10HG95UPNuJYzxB+/cIeLG+oBABsOtQFIH5QA4BzTpiItw90wuGMvucsEdF4xKBGhnHStArccsWiERu8k/F9YPYE3HzRXDz0ueX48xdORandgk2HujAw7MbB9gGIAFMrCqO+/uw5E+H0ePH2gc4xbDURkfFxHTUiGjURwRfPnuV/vLS+Eq/tOY4ztx1D96ALU8oLYbNED+An+iaPbD/ai3Pm1GS6uUREOYOlCyJKu2XTK9HcPYgBpweNE0tw6szqmOeX2a2oryrC9qM9Y9RCIqLcYPiKmogUA7gbgBPAGqXUI1luEhHFoY8zvPHcRnztQ7MTes2CKWXYfrQ3k80iIso5WamoiciDItImItvCjq8Ukd0isldEbvId/iiAJ5RS1wO4bMwbS0RJWzGjCo9efyq+cm5jwq9ZMKUMhzoc6I2zywER0XiSra7PhwGsDD4gImYAdwG4CMB8AJ8UkfkA6gAc8Z0WeUVNIjIUEcFps6phTmI9vAVTygEAO1lVIyLyy0pQU0q9BiB8etcKAHuVUvuVUk4AjwG4HEATtLAGxGiviNwgIhtFZOPx41yPiSjXLJxaDpMAd7z0PnocrKoREQHGmkwwFYHKGaAFtKkA/g7gYyJyD4Bnor1YKXW/UmqZUmrZxIkTM9tSIkq7iaUFuO1ji7HxUCd+8sz2bDeHiMgQDD+ZQCk1AOBz2W4HEWXex5dNw45jvfi/tw7h5ovmoqbMnu0mERFllZEqas0ApgU9rvMdI6Jx5DOnNcDtVfi/tw5luylERFlnpKC2AcBsEZkhIjYAnwDwdDIXEJFLReT+nh6uxUSUqxomFOPk+kqs3deBtr4hrN/fke0mERFlTbaW53gUwDoAc0SkSUSuU0q5AdwIYDWAnQAeV0olNVBFKfWMUuqG8vLy9DeaiMbMzInFONThwF0v78VnHnobXq/KdpOIiLIiK2PUlFKfjHJ8FYBVY9wcIjKY6dXFaO9vwuYj3RhyedEx4MTE0oJsN4uIaMwZqeuTiAgAML26CADwXpM2jKG1dyibzSEiypq8Cmoco0aUH6ZXFYc8PtajBTWn25uN5hARZU1eBTWOUSPKD/W+ipqupWcQa/e2Y8lPX8Aru9qy1CoiorGXV0GNiPJDeaEVlUVW/+NDHQ784KltGHB68LNVO+H2sLJGROMDgxoRGVJ9dTFsFhMmldnx2IYjONA+gGtPqcfetn6s3t6a7eYREY0JBjUiMqRTZlThtJnVmFJhR/+wG1XFNvzksgUotpnxFtdWI6JxwvBbSBHR+PS9i+cBAL78yCYAwOmzqmE1m7CkvhKbDnVls2lERGMmrypqnPVJlH8mlRUCAM5onAAAWDq9ErtaetE/7M5ms4iIxkReBTXO+iTKP9OqtKB2pi+onTy9El4FbDnSja1NPVxjjYjyGrs+icjQrl4+DYvryjGtSluyY0l9BWxmE361eje2H+3BjAnFePZrZ8Fqzqv/7yQiApBnFTUiyj9FNgtOnl7lf1xmt+JHl87Hu0e6UWg1Y09rPx54fX8WW0hElDmsqBFRzvnUqdNRardg4dRy/Hr1bvzPi3twVuNELKrjsAciyi95VVHjZAKi8ePyk6Zi1sQS3PrRRZhYUoAbH30HfUOubDeLiCit8iqocTIB0fhTUWTD/35yCY50OvDDp7ahtXcImw9z+Q4iyg/s+iSinLe8oQrfPO8E/PeLe/DUu0cBAAduvRgikuWWERGNTl5V1Iho/PryuY04o7Ha/7itbziLrSEiSg8GNSLKC2aT4OHPrcA91y4FABxoH8hyi4iIRo9BjYjyhtVswsKp2hjVgwxqRJQHGNSIKK9MqSiEzWxiRY2I8kJeBTUuz0FEZpOgvroI9722Hx+/9014vSrbTSIiSlnMoCaaaWPVmNHi8hxEBACldm1C+4aDXeh0OLPcGiKi1MUMakopBWDVGLWFiCgt5k0u83/d1svZn0SUuxLp+nxHRJZnvCVERGny/Yvn4dcfPxEA0No3lOXWEBGlLpEFb08BcK2IHAIwAECgFdsWZ7RlREQpKi6w4JQZ2kbux1lRI6IclkhQuzDjrSAiSrOasgIAQGtvoKK26VAnfvvyXvzmmqUoKeDGLERkfHG7PpVShwBMA/BB39eORF5HRJRNBRYzKoqs/h0KNh7sxMfuWYdXdh/HpkPcC5SIckPcwCUiPwbwXQA3+w5ZAfxfJhtFRJQOtaV2tPYO4ZXdbbjy3nUotJoBADuP9Wa5ZUREiUmkMvYRAJdBG58GpdRRAKWZbBQRUTrUlBWgrW8YL+5oRWmBBZt+eB6mlNsZ1IgoZyQySMOplFIiogBARIoz3KaUicilAC5tbGzMdlOIyABqSu3Y19aOQacHS6ZXoshmwbzJZdhxlEGNiHJDIhW1x0XkPgAVInI9gJcAPJDZZqWGC94SUbDasgIc7RnC7tY+LJteCQCYP6UM+9sHMOTyZLl1RETxJTKZ4NcAngDwNwBzAPxIKfWbTDeMiGi0FtdV+L/Wg9qiqeXweBVe3NGapVYRESUukckE1wE4qJT6jlLq20qpF8egXUREo7Zy4ST89PIFOGVGFZbUa0HtQ/NqsWBKGX727E4MOllVIyJjS6Trsx7AfSKyX0T+KiJfFZGTMtwuIqK0+LfTGvCXL56GQps249NsEnzjvBPQ0juELU3d2W0cEVEciXR9/lgp9UEACwC8DuA7ADZlumFERJkyp1abuH6405HllhARxRZ31qeI/ADAGQBKAGwG8G1ogY2IKCdNrrDDbBIc7mBQIyJjS2R5jo8CcAN4FsCrANYppbh5HhHlLKvZhKkVhTjEihoRGVwiXZ9LAZwH4G0A5wPYKiJvZLphRESZVF9VxK5PIjK8RGZ9LgRwLYDPALgaQDOAlzPcLiKijKqvLsLB9gFsOdINr1dluzlERBElMuvzFwDKANwJYJ5S6lyl1I8y2ywiosyqrypCz6ALl9+1Fjf8aSNcHm+2m0RENEIiXZ+XAPgfAL0A5oiINeOtSpGIXCoi9/f09GS7KURkcA3V2m54MycU46WdbVi/vzPk+Y7+Ydz/2j54WG0joixKpOvzbADvA7gLwN0A9ojIBzLdsFRwCykiStR582rw5+tPwWM3nAoAeL+tL+T5zz28AT9ftQsPvL4fF/zPq+gfdmejmUQ0ziUy6/N2ABcopXYDgIicAOBRACdnsmFERJlkMZtw+qwJUEqhosiK99v6/c81dTnwXpNWmf/d6wfQ3j+Mncd6sbyhKlvNJaJxKpExalY9pAGAUmoPAMN2fxIRJUNEMLumBKu2HsNH716Ljv5hrNp6zP98e7+2GtHeoCBHRDRWEglqG0XkdyJyju/PAwA2ZrphRERjpbGmFN0OF9453I3X32/Hun0dmDmxGPMml/nPYVAjomxIJKj9O4AdAL7m+7PDd4yIKC9MLC3wf727tQ9vH+jE6bOqMbumxH+cQY2IsiHqGDURqQHwPQCNALYC+KxSqnesGkZENFYuWjgJD75xAP3Dbjz29mEMOD04beYEHGjXwlltWQGDGhFlRayK2h8BDAD4DbR9Pv93TFpERDTG5k0uw7b/vBCXnTgFXQ4X7FYTzmycgPPnT8I5cybiI0vq0Nw9iAHO/CSiMRYrqE1WSn1fKbVaKfVVACeOVaOIiLJhcrkdAHDevFqUF1kxZ1IpHv7cCpwyQ5vtuaWpO4utI6LxKOYYNRGpFJEqEakCYA57TESUVy5eNBkA8OVzGkOOL51eCRHg7QOdkV5GRJQxsdZRKwewCYAEHXvH97cCMDNTjSIiyoYTp1XgwK0XQ0RCjpcXWjFvUllCQe2HT23D3MmluPaU6ZlqJhGNI1GDmlKqYQzbQURkCOEhTbdiRhUe23AYLo8XVnP0zogXdrSgc8DJoEZEaZHI8hxEROPewqnlGHJ50dw1GPO8gWEPBl2eMWoVEeU7BjUiogQ0VBcBAA50DEQ9RymFAacbg04GNSJKDwY1IqIETK8uBgAcao8e1IZcXigFVtSIKG0S2ZQdIlIJYFrw+Uqpd6K/IjtE5FIAlzY2NsY9l4goGRNKbCiymXGwwzHiudtf3IPntx3DZ05vAAAMMagRUZrEDWoi8l8APgtgH7TZnvD9/cHMNSs1SqlnADyzbNmy67PdFiLKLyKC6dXFOBSh63PN7jbsae3HHS+9D4AVNSJKn0QqalcBmKWUcma6MURERtZQXYTdLX1wON3o6HdiWpU2bs3hG5PW3j8MAByjRkRpk8gYtW0AKjLcDiIiw5teXYwjXQ5cdd86nPXLV/zHux0uAIDy9TmwokZE6ZJIRe1WAJtFZBuAYf2gUuqyjLWKiMiA5k0uhcujsK25FwBwuMOBAacbPYOhHQ4co0ZE6ZJIUPsDgNsAbAXgzWxziIiMa2l9ZcjjHz29DVubeuDyKJTZLegd0jZtd3lU3IVxiYgSkUhQcyil7sx4S4iIDK6ushATSwtwvE/rXHi/tR8dA1o1bXp1MbY29/jPHXJ5GNSIaNQS+SnyuojcKiKnichS/U/GW0ZEZDAigiXTKvyPm7sDuxTU+xbE1XGcGhGlQyIVtSW+v08NOmbI5TmIiDLt8pOm4s19HegfdoccbwgLakNOjhQhotGLG9SUUueORUOIiHLBhxdPxsKpZTj7V2tCjk+vKg55zIoaEaVDIgve/ijScaXUT9PfHCIi4ysvtI44Fq3rc9XWYzijcULE1xARxZPIGLWBoD8eABcBaMhgm4iIDK3UboVI6LHp4UHN6cH+4/348iPv4LtPvBf3mn9efxhvvN+ezmYSUR5IpOvzv4Mfi8ivAazOWIuIiAzObBKU2a3oGdQWui2wmFBTag85Z8jlQZdvIdxjvUMxr+f2ePG9J7cCAA7+4sMZaDER5apU5o4XAahLd0OIiHKJ3pVpNQsqiqwwmwSlBRbYrdqP1UGXBwO+CQd2S+wftXta+zPbWCLKWYmMUduKwGbsZgATAXB8GhGNaxVFVhzuBE6ZUQ2vb++oskKtS7SpaxCDTg9cHm3mp91qjnqde1/dh9ue3zUmbSai3JPI8hyXBH3tBtCqlHJHO5mIaDzQK2r/c/VJqCzSvm6YUASr2aQFNZcHzkE9qGkVtTf3tuNrj23Gv751Duw2ExzDHvziuUBI088jItLFDGoiYgawWik1d4zaQ0SUE8p91bOqYhvMJm1mwX2fXoZBpwfLf/YShlwe/2btFt8OBTc/uRXt/U7saevDw28exLPvHUORzQyHU5shOuTyYmDYjeKCRP4fmojGg5j/+6aU8gDYLSL1Y9QeIqKcMLWyEFMrCv0hDQBKCiyo8FXXBp0e//ZSQ74gdqjDoT12efD8thYAgMPpwX+snIPbPrYIANDePzxm74GIjC+R/22rBLBdRN6GtkQHAEApdVnGWkVEZHBf++BsfO70GSOOW80mWM2CQZcHXb6gNuB0o6UnMPOzZ9CFhuoi7Duu/UhtnFgCm2/CQXv/MKZXF4+4LhGNT4kEtR9mvBVERDmmuMAStYvSbjVjYNiNTl9Qczg92Hy4y/9876AbdZWBoDa9utg/8eB4nzPDLSeiXJJIULtYKfXd4AMichuAVzPTJCKi3LZoajmeevcoCnxVMofTg/3t/g4J//pruvqqIvQOacfY9UlEwRKZYnR+hGMXpbshRET54r+uWIghlwdtfVrocgy7sf/4AGpKC2A1C3oGXf4tpqZWFKLQZkZVsQ1A5KD21OZmXPPAW1BKjXiOiPJb1KAmIv/uW0Ntroi8F/TnAICtY9dEIqLcMmtiCb59wRz/4wGnBwfa+zFzYjHKC63oHXJh0OnB4rpy/OHzKwBoY9smlhagqWtwxPVWbT2GN/d1+Hc60DV1OdBw07PYdKgzs2+IiLImVtfnnwE8B+BWADcFHe9TSo3ZTwURmQng+wDKlVJXjtV9iYhG4/NnzkD/sBs7jvVize427G8fwMWLJqOtb9hfUZtTW4rGmhL/a+bUlmJPa9+Ia21r7gEAHOwY8FfeAGDN7uMAgL9ubMLJ06sy/I6IKBuiVtSUUj1KqYMA/hdAp1LqkFLqEAC3iJySyMVF5EERaRORbWHHV4rIbhHZKyI3RXu9rx37lVLXJXI/IiKjMJsE3zz/BCyeWg6XR6Hb4cLMCcUos1vRO6hV1MJ3LJgzqRS7W/rwfmsfTvj+c9h+tAcd/cM46psxeqhjIOR8fYsqrrtGlL8SGaN2D4Dgjej6fccS8TCAlcEHfIvo3gVtnNt8AJ8UkfkiskhE/hn2pybB+xARGVJRUIjyd336KmpFttCgNndSKYbdXnzniffg9HixZvdxbPVV0wDgQLsj5HwGNaL8l8i/blFBI1iVUl4RSeinglLqNRFpCDu8AsBepdR+ABCRxwBcrpS6FaHbVRER5bzioDA2Y0IJygqtONQxgEGnB4VhQW3e5DIAwLtHuv2v3XKkR9sBocg2oqLWP6xNSLAGLbpLRPklkYrafhH5mohYfX++DmD/KO45FcCRoMdNvmMRiUi1iNwLYImI3BzjvBtEZKOIbDx+/PgomkdElD56Rc1iEkyrLER5oQXdvopaeNdnY00JSoKqY31Dbmw81Ik5taWYN7kM/3j3KP668Qg2HuxEU5cD3YO+ddp8M0jDfeEPG/D8tmMZemdENBYSqYx9CcCdAH4AQAH4F4AbMtmoYEqpDl8b4p13P4D7AWDZsmWcw05EhlDkC2P11UWwmE0oL7T69wAN7/q0W814+dtnQyngnF+tQafDiXcOdeEjS6dielUx3tjbjntf3edfKPes2RMAaNtVhfN4FV7a2YaXdrbh4C8+nMm3SEQZFDeoKaXaAHwijfdsBjAt6HGd7xgRUd4pKtDC2MwJ2uzOMrvV/1xhWEUNAGpK7dp5hRZsONiJAacHyxuqcPlJU7G3rR+v7G7zn3tcX6fNqY1Ve3lXK9bt68D3PzwfQ1GqbESUW+J2fYrICSLyL33mpogsFpEfjOKeGwDMFpEZImKDFgKfHsX1iIgMq9im/f/wzIna/p2VQctrRApqulK7FduaewEAi+sqAAAVRVYcD1oQd1eLtpTHgK+i9vmHN+KB1w9gyOXxL6hLRLktkTFqDwC4GYALAJRS7yHBCpuIPApgHYA5ItIkItcppdwAbgSwGsBOAI8rpban0vgI97tURO7v6emJfzIR0RgoK9QqaI0TtYpaTWmB/7nwyQQhr7MHOjwml2tVtvIiKyJtThDe9fnOoS609XIrKqJ8kMgYtSKl1NsiIbOK3IlcXCn1ySjHVwFYlcg1kqGUegbAM8uWLbs+3dcmIkrFjAnFuOfapTh3rrbaUG2Z3f9crIqaHvBK7Rb/pIOKQlvEc/WuT5MAXgVc87v1Ic+f86tX8NDnVmDGhGLcvWYvth/txV3XLE39TRHRmEmkotYuIrOgTSSAiFwJgNOIiIgSdNGiyf6wlWhFrdQ3li34/IqiwPi2x794Grb+5AKcfcJEf0Ut2npqBzscePrdowCAXz6/G8++xx/hRLkikaD2FQD3QdvzsxnAN5DALEwiIhqpsihojFoCXZ/65AIAqCgMBLXKIitK7VYU2cxwOD1we7zoH47e2VFqDw1xSin86B/bsHZv+4hz97b1Y9/x/hHHiWjsxQ1qvi2czgMwEcBcpdSZvq2kDIdj1IjI6ExBi9Mm0vVZUxaoqJUHVdQqfIGv0BfUOgacEcev6bodzpDHL+5oxR/XHcLPnt0JABhyebDhoLaN83m3v4oP/ferCb4jIsqkRGZ9VovInQBeB7BGRP5XRKoz37TkKaWeUUrdUF5enu2mEBHFFXvWpyXkbyAQzgCg3BfktIqa279Ux/9+4iR8eNFk/3lL6ysAAC29Q9joC2IA8MDr2rrlUysLAQBPbW7GVfetQ0c/JyEQGUkiXZ+PATgO4GMArvR9/ZdMNoqIaDwIX/A2mECrvNktgXP0rs9imxk2i8l3DQscTo8/qNVVFoVMWPjFxxZj5sRiPL6xCVfeu85/vKVX2+i9x7f4bqdDq8h1D7rS8daIKE0SCWqTlVL/pZQ64PtzC4DaTDeMiCjf2WMENX3B2uBtpopsZtjMppDKWqHVjGG31x+8akoLQgKg3WJGVdHI2aIut9ZP2jGgBTx9QkL/UGCc25rdbWjrG0r6fRFR+iQS1F4QkU+IiMn35ypoa6AREVEKPrpE2944VtfnhBItXNVXFfmPiQjKi6whsz+LfTsf7GntgwgwsbQgZJKC3WYKWWRXN+TWglnHgDZ2bcC3wXtbX6Dr8wt/2Ig/rTPkkGSicSORddSuhzbT808ABFq4GxCRLwJQSqmyzDUvOSJyKYBLGxsbs90UIqKobrtyMW66eC6s5uj/r3zNKdNRWWzDxQsnhxyvKAwNaoW+nQ+e2XIMy6ZXwm41ozg4qFkjV9Qcvgpat8OFhpuexSzfzgnNXQ7/OW6v8u9LSkTZkcisz1KllEkpZVVKWXxfl/r+GCakAZxMQES5wWo2hSy7EYnZJLhk8ZSQWaIAcOMHG3HdmTP8j/VN39v7h3HhgknaMVvg/8HtFjMqirVgd968Gpw0rQIA4HR7Qyp6+kbvTV2DIffrHWJQI8qmuBU1ETkDwLtKqQER+RSApQDuUEodznjriIgoxOUnTQ15HDyGTQ9qeten2SSwmgVm384yC6eWo8xuxbtHugFoW1Ptbx8IuV5zd2hQ6xtKaCMaIsqQRMao3QPAISInAvh/APZB6wYlIqIsm1SurbP29Q/NxjTfeDZ93JrdYoKIYMC3EG5JgQVWiynotSOreuFBrZezQImyKpGg5lZKKQCXA/itUuouAKWZbRYRESViaX0l3rr5Q/jm+Sf4jxVatc4Svdp22ixt6cvlDVWwBnWlRgpq4V2frKgRZVcikwn6RORmAJ8GcJaImABY47yGiIjGgIiMCFz+ipovqK1cOBlbfnQByouseL8tsDXUlPLCEdfrHAjdwYBj1IiyK5GK2tUAhgF8XinVAqAOwK8y2qoUcQspIqLAQrp2a+BHvL79lNUcqKhVl9iw9qYPYuaE4qjXYkWNKLsSmfXZAuARAOUicgmAIaXUHzPeshRw1icRUWDJDnuEddqClwSxmk2YWlEYsodouP5hNzzeGJuIElFGJbLX51UA3gbwcQBXAVgvIldmumFERJSaYlto12cwS9AYNZsvtJXZQ4NacNUNCOxWoJSC1xfa3m/tGzHxgIjSL5Guz+8DWK6U+oxS6t8ArADww8w2i4iIUqUvzxFp54PgWZ9WixbIygpDg9qy6VUhj/Vxanev2YdLf/sGlFK48t51OOu2l/HlRzah2xE6ro2I0ieRoGZSSrUFPe5I8HVERJQFNrMJZpOEjFHTWU2hXZ8AUGoPnVe2YkbkoLa3rR/vt/Wj2+FCz6ALsyaWYNXWFqw/0Jnut0BEPokErudFZLWIfFZEPgvgWQDPZbZZRESUKhFBkc2Mgkhdn0HdmhZT5K7P5Q1hQW3Qjd4hF/qG3HC6vTjYoS2Se8niKQAAl8eb1vYTUUDc5TmUUt8RkY8CONN36H6l1JOZbRYREY1GRZF1RAADQsef2Xxdn+EVtcXTymEzm2CzmNA/7Mbz247hMw++jbpKbTmP91u1JT6mV2sL7DKoEWVO1KAmIo0AapVSa5VSfwfwd9/xM0VkllJq31g1MlHclJ2ISHPfp5ahqnjkZuzhsz6BwBi1H14yH6V2C8rsVhQVmFFbasfu1j5sOtwFp8fr325qT2sfAPh3QnC5OSuUKFNidX3eAaA3wvEe33OGw+U5iIg086eURdx5wBJhjFqZr6K2aGo5rlo2DQBQVWTD7NoSANrYtGB72vphNgmmVGjXd7KiRpQxsbo+a5VSW8MPKqW2ikhD5ppERESZEtz1qQe1eZPLUFtWgAZfVyYA3Pvpk1FRaMXLu9rgcHpCrrGnpQ81pQWwW7QxcG4GNaKMiVVRq4jx3Mh9R4iIyPCCuz71ddROqC3F+u+dh5qyQAXuhNpS1JTZUVNaMOIaLb1DmFRu9y/14fIoDDo9aO0dynDricafWEFto4hcH35QRL4AYFPmmkRERJkSPOtTX0ctluDwFmxKeaG/Ouf0eHHPmr34yF1r09NIIvKL1fX5DQBPisi1CASzZQBsAD6S4XYREVEGBFfUgserRROpogYAdZWF/jXZXB4vmruHcKx3CF6vgskUPwASUWKiBjWlVCuA00XkXAALfYefVUq9PCYtIyKitIvU9RlLTWnkilpdVRFMJoHZJHB5vOgbckEpoG/YjfLC6HuHElFyEllH7RUAr4xBW4iIKMOS7fqsLYtcUZvmW1PNaha4Pcq/e0HvoItBjSiNuBUUEdE4EmkLqVhqogU13xpqVrMJTo8Xfb6N2/W/j/cNY+Udr2Fbc89om0w0ruVVUBORS0Xk/p4e/mAgIook0vIcsdT6JhMU20K3o5paoVXUbGaTr+tTC2h6Ze21Pcexq6UP33sysMrTip+9hKvvWze6N0A0zuRVUOOCt0REsZmDBvonMkbtlBnVuPWji/z7eursvn1ELWaByx3a9QkA7/sWyd3b1g+nW1tnra1vmBu4EyUpr4IaERHFJiL+qlrweLVozCbBJ1fUY0Kpth3VxYsm4dw5E/3PW8Mqavrf249qPRsOpwfbjrKXgyhVDGpEROOM3uVpSWIZjRPrKjB3Uinu/MQSPPS5Ff7jNrMJPYMueLzafp+9Qy4opbCtuQcnT68EABzpdIRcy+F0R7yH2+PFj/+xbcT5ROMZgxoR0ThjMQlsZhNEEg9qFyyYhOe/8QFYwrpLrWYTOgac/se9g268/n47uhwuXLFkKgAtqLmCtplq7hqMeI9dLX34w7pD+Oqjm5N5O0R5jUGNiGicsZpNIZMKRsNiFnQGBbW+IRduf3EP6ioLcfWyaagpLcDhTgcGhgNVtKYoQU3viuVWVEQBDGpEROOMxSz+fTpHy2o2hQS1nkEXtjX34JLFU2CzmDCtqghHOgfRHxLUIndtDru0qltHvzPi80TjEYMaEdE4o1XU0vPj32Y2hYSwoz2DcHsVJpRokw/qq4p8FTWP/5wD7ZGD2pBLO8cZ1E1KNN4xqBERjTNWsymhpTkSulbQ7gblhVYc6tBCWEWRFtSmVRXhWM8guh2BKtnmI10RrzXsZkAjCsegRkQ0zlhMktDSHIkIrsxNrSj0jz+rKta2kZpcbodXwR/gljdUYltzDwadWvXs7jV7ceU9bwIIVNQAoMfh4lg1IuRZUOPOBERE8aWz69MStCXVzInF/q/1itqEEm0LqkOdAwCAc+bUwOVR2NLUDQD45fO7sfGQVmELrqj9fNVOrLzjNSil0tJOolyVV0GNOxMQEcVnNUv6xqj5uj5NAsyaWOI/XuULatW+sWoHfRW102dVA0DEPUCDK2rbjvagy+HieDUa9/IqqBERUXwWswm2NHd9Ftss/v0/AaDSF9Qm6hW1Dq2iVl9VBLvVhJae0G5Nr1dhKKii1uPbisoRNAmBaDxiUCMiGmfsVhMKLOb4JybAH9QKLJgSFNRK7RYAQV2fvpmexQUWTCqzoyVs/Nmw24vh4DFqelBzMajR+GbJdgOIiGhs/ceFc+FN09gvfeHc4gIzJlfY/cdNvu2pCm1mFNvM6Bt2w2ISFFhMqC2zj5goMOTyhIxR0/cMHYyy3RTReMGgRkQ0zpw4rSJt19IraiV2K6aUF0Y8p7qkAAOdDhQXWCAimFxu908g0A26PCEVNZ3DyYoajW/s+iQiopT5g1qBGYW2yN2p+uK3JQVabaC23I623uGQGZ1DLk/IGDUdgxqNdwxqRESUsuDJBAAgAsybXBZyTlWxNk6tuEALcpPK7HB6vCGbuQ+5tDFq4QvxDkYIajf//T0s/PHq9L0JIgNj1ycREaVMH6OmV8t2/ddKmCR0RmmBb1/Ry0+aCkBbBBcADrQP+M8ZdHkw5PKirNCC9qC9PiNV1B59+0ga3wGRsTGoERFRyvSKmt3X7RlpNuk3zz8BH5pXg48s0YLa9GptYdz7Xt3nP2fY5cGw24MimwUWkwtur9Yt6uBkAhrnGNSIiChlelDTq2aRNNaUoLEmsBju3Eml+NwZDXho7UH/sQfXHsBb+zsxpcIOu9Xs3+g9vKLm4gK4NM5wjBoREaVMQat82WIEtXAigo8trQs59tLONvQPu2G3mmG3Bq4VHtT0vUSDbWvugZsBjvIUgxoREaXM6ZupWZDkllT11UURjxdYQhfjDV9H7UB7f9jjAVzymzfws1U7k7o/Ua5gUCMiopTpi9QWWJPb6aDMbo143G41oyBGRe2wb89Q3YCvi3T9/k50O5zYcqQbAHDLP3fg5V2tSbWJyIgY1IiIKGXDLl9QS6LrMxab2QR7UEUtfAupAV9w02eb2n0BccDpxsfueROX37UWAPC7Nw7g8w9vTEubiLKJkwmIiChlTo8WnJIZoxaLw+kJqaiFr6Omd7WafVtU6YvmDgy7/ct6qDRtj0VkBHlVURORS0Xk/p6enmw3hYhoXNCDU/hCtYlYWl8x4ljvkCu0ohY2Rs3pmzSgZzGP7wt9ligAeLwMapQ/8iqoKaWeUUrdUF5enu2mEBGNCzd8YCamVxfh/Pm1Sb/2oc+twCNfOCXkWO+QK+YYNT0Y6lFMD2VDrsCsTzeDGuURdn0SEVHKGmtK8ep3zk3pteWFVpzROCHkWO+gO6yiFjmo6UnNG2FVDq61RvkkrypqRESU2zxeFXMdNT2oeX1dnu4ISc3tYUWN8geDGhERGcLXPzQbj15/qn8dNbNJMBw269M/Rs332Bth4oArUpmNKEex65OIiAzhm+efAAD+iprdYkJ4DPOPUfMFtEi9nKyoUT5hRY2IiAxFXxvNHmER3WF/16f2ONIMTwY1yicMakRElFXFttBApi+eG2kR3fCJAuz6pHzHrk8iIsqqDT84D8GFsYKgilq0rk9A6/6MV1HrG3Lh8Y1N+PwZDRCRtLabaCywokZERFlVZLOgpCBQN9AraZF2O3AGVdS8KnLXZ3DV7SdP78B//XMHXn+/PZ1Njuq821/F5x56e0zuReMDK2pERGQo+ti0AqvZPyZNl1BFLehYt8M54nWZtLetH3vb+sfkXjQ+sKJGRESGcurManx48WRMKbePeC4kqCGwhdSN5zZiakUhAMAdUnXTnjfxtx3lKP6nS0REhtJYU4K7rlkKa4T9Q51hIczrq559ePFk/OrjiwEArqAxanpxTcDxaZSbGNSIiMjwdrX0YsjlCev6DFTUzCbxB7vg3Qr0yMZ5BJSrOEaNiIgMrXfIhZV3vI6LFk4aMWZNH6NmNgksJi2NBU8m0BfGNTGpUY5iRY2IiAxtyLeN1IaDXXC6A1tKeYMmE5glUFEL7fpkUKPcxqBGREQ5w+kJ6/r0Ruj6DApq+vOmNOe03S19ONLpSO9FiSJgUCMiopzhdHv966wpBM/qFFjMWhoLHqPmr65FCWptfUPY1tyTdDsuvOM1nPXLV5J+HVGyGNSIiCgneLxeeFVgnTWt61N7ziwCq2lk1+ewr6s0Wtfnub9ag0t+88ao2+b1qjFbq43GF04mICKinKAHIX9FLWzWp7+iFtQ9qr8mWlAbcHoiHk+U2+OFxWzCf/ztPTyxqWlU1yKKhBU1IiLKCXqlrMDq+9WlAI8vlAUHNZc3uKKmB7XMtOlYzxAAMKRRxjCoERFRTtAnEhRYgro+fZksuOszuKI27NK+Dt6QfW9bf9q6KQ91cEIBZRaDGhER5ZSQyQTewBZRga7PkWPU9JzWP+zGebe/ii8/8k7c+9z1yl789JkdMc852DGQbPOJkmL4oCYiV4jIAyLyFxG5INvtISKi7AqMUVMRdyZwBc36HA4bo3bYVwF7aWerP+RF86vVu/Hg2gMRn9O7Upu7B1N8F0SJyWhQE5EHRaRNRLaFHV8pIrtFZK+I3BTrGkqpp5RS1wP4EoCrM9leIiIyvsCsz8g7EwRX1JxhY9QOdwYqYJsOd6V0f49X+fcQ9cQJe0SjlelZnw8D+C2AP+oHRMQM4C4A5wNoArBBRJ4GYAZwa9jrP6+UavN9/QPf64iIaBwLdH2G7kxgNo2c9en2hu5MEDymbHsK66cBoVtUEWVaRoOaUuo1EWkIO7wCwF6l1H4AEJHHAFyulLoVwCXh1xBtBOgvADynlIo6qEBEbgBwAwDU19en5w0QEZHh6JMJEFZRExFYzRIy61Onj1E71OlAeaEVLo8Xh1LcWSB8v1GiTMrGGLWpAI4EPW7yHYvmqwDOA3CliHwp2klKqfuVUsuUUssmTpyYnpYSEZHh2H3Lc3iVNvNTJDCr02IyhVTUdOLbmuBIpwMN1UWoryryj1dLllEXtm383irc+tzOmOfsaunFw1HG3ZExGX4ygVLqTqXUyUqpLyml7s12e4iIKLv0ipre9WkOWnrDYpaQnQl0vpU7cLjTgWlVWlBLtaJm1K5Pt1fhvlf3xzxn5R2v4ydxZrKSsWQjqDUDmBb0uM53jIiIKK6CoIqaRymYglaztZpNIXt96vQxakMuD0oKLJheXYS9bf0jzusfduNXq3f5l/WIxKgVNcpP2dhCagOA2SIyA1pA+wSAa9JxYRG5FMCljY2N6bgcEREZkB66lFLweJR/ticAWEwSMusz8JrQx/XVxRGvffsLe/Dg2gOYOaEk6v2dBq2oUX7K9PIcjwJYB2COiDSJyHVKKTeAGwGsBrATwONKqe3puJ9S6hml1A3l5eXpuBwRERmQ3tOp7/UZ3PVpNZsidn0CoUmtrrIw4rUP+7pD9SVAIsmHilq8NeTIODI96/OTUY6vArAqk/cmIqL8pE8MUEoLHMFdnxazROz6DFdTWhDxeHv/MADA6YnR9ZkHFTWvUjAhQxugUloZfjIBERFRMH9FDdrOBOYEuj7D1ZTaIx7vGNCCWt+QO+prjVhRUyq5CpknyfMpexjUiIgop5iCuz69gTFrgN71GT9IVRXbIh5v73MCGH1Qu2fNPrT0DMU9L10i7ZCwq6UX6/Z1RDyfOS135FVQE5FLReT+np7UVpsmIiLj09dM8yoFrzdsMoFZEgpq5vDZBQC6BpwYdGldnrGCWiLXv+35XfjS/22Ke166RKqQrbzjdXzygbcinu9lUssZeRXUOJmAiCj/6RFLQVs7zDxieY7UQog+Pg0A+oZcUc9LtOuzN8Y10i3Z3MU9SnNHXgU1IiLKfyJBkwmU8i9mCwBWk9b1GaFgFteAMzCBIGbXZ4KTCcZyZmWywYs5LXcwqBERUU4JLM8ReWcCt0eFjFuLdx2dYzgQzvqHowe1RPf6zFQY+sZjm/HMlqMhx5KdHJDs5INg/cNuvLijNeXXU3IY1IiIKKcEd32G70xgMZvgCluyI5qSgtAVqvSKWmmBJWbXZ6JbSI22e/E/ntiCF7a3jDj+1LtH8dVHN4ccS7Z6N5q2ffXP7+D6P27EsZ7BlK9BicuroMbJBERE+c8koeuoBU8msJoE7ghdn99/citO/fm/Qo7d9+mTAQAVRVYAgMOpVdFqygrSsjzHaAbsDzo9eHxjE274U2ITEvTgFWmSROS2pdw0bDrUBSCwnh1lVl4FNU4mICLKf3qXpVcpuL2h3ZzRuj7XH+hES2/ochmnz5qAT51a7+86HRjWKmqTyu1pCWqjqVod7BgAMHLrq2j0W5kT6PLVzk+9bb2+7w3XYhsbeRXUiIgo//m7Pn0VteAqktkkWndogoElmF5Rqy2zo9vhjHqeHtSs5tj3GE0YOtCuBbUJJZF3UIh2r1hvOzg4pmN5Dk8CCwvT6DGoERFRTvHP+oywM4HeHZdCTvNX1GrL7CEzQMPpY9TidTOOpnsx2aCWSNfnkCvwntIx0SGRrbpo9BjUiIgop4Rsyu5NrXoWicPlhs1iQkWhNeZ5wx4vbBZT3DFao+n63H9cC2qJXsEf1GJ8L4Jnq6Zj6RCuxTY2GNSIiCinhGzKHlZRGw3HsAfFNjOKwmaDhnO6vSgwx//1OZowdLhTC2r9w4ktmqt3Zcaa7RpaUUutbcEzXjlGbWzkVVDjrE8iovzn3+sTvnXU0hTUBpxuFNksMUPYa3uO46G1B2G1xP/1OZogo4+DO9I5iMt/+waOdDpinu+fTJDhrs/OgcDYPTfHqI2JvApqnPVJRJT/ArM+MWLB29FwDHtQXGCGLUYI+84TWwCEBpZo0rWf5pamHrx7pDvmOXo3ZKzMGtz1mWq3ZVtvYJstdn2OjbwKakRElP8CW0hlpqIWK6gtm16V8PXSOdb+SJcDu1p6o99L7/qMEVqDK2qp7kzQ3B2o7KW6pyolh0GNiIhyin8yAQCPij0uKxkOp6+iFqPrs66yMOHrpXMM1y+f342Vd7weNWAFz/o82D4wYucCIKyilmLbdrX0jbgnZRaDGhER5ZTAZAKlraOWpgXyB4bjV9R0t350UdxzMhFkol0z0PUpuPnvW0fsBQqEjVFLsdq3OyiocXmOscGgRkREOSV8eQ6zKT2/ygZd2qzPeEHNbjXhkyvq03LPZEXrblQJTSYIWp4jxYra7pY+VBfbtGtkMae19Q5hMMZad/mEQY2IiHKKKbjr06uQwEoZCRkY9qCoILGK2liI1I5oQc2jEplMMLrlOQadHhzsGMCCqeW+tmQvqa34+b9w9f3rsnb/sWSM/xrThMtzEBHlP73r0+sduTPBaDicbq2ilq7kl6RNh7qw7JaX0DOorZ1WGmE9t2jbNvm7PmN8L4L3KE2lV7a9fxheBUyvKvLfs6nLkdAM2Ex4ryn13/Vr97bjua3H0tiazMmroMblOYiI8l/wZAJvmnYmUErB4fSg0Bq/6zNT7nhpD9r7h/1LcZTYRwa1aFUsvUIWa6mS4GyWSkVNf4n+/XF7Fc687RUs/9lLSV8r2373+n7c+fLebDcjIXkV1IiIKP8FludA2ipqepei1WzKWkUtXEEyXZ9x9vpctfUYegcDuxyksmuC8kU9i2/2hn5Po87+dLq9Uat9To83ZJcFI4u9TwYREZHB6FEkneuo6avsW8wmw4xRm1JRiM+ePgNHuhy4Z80+ANGDWqx11PYf78eXH3kn7Pzk26NX1Cy+77fR11H78iOb8NLONhz8xYdHPOdyK7hzJKgZ479GIiKiBEn4ZII0dH3qXYpWsxgmqAHANafU44xZE/yPo4ULvUc00gTYgeGRsyNTqYLpr7D4bpKOjd0z6aWdbVGf0ypqxm6/zjj/NRIRESXAFNz1meaKmtlkrKAGAGfOnoBfXrkYQPxZn5FCa6TFbVPZmUB/TfAYNd3AsHvE+Z0DTsz63iq8faAz6XulU6T36nR74WRFjYiIKP0Ce30qeJVKy84EeuiwGGiMWrBimzZSKdpG6N4Ysz4jTRxIpRjmDev69ARNbDjeNzzi/E2HuuDxKtz/2r7kb5ZGkcKty+Nl1ycREVEm+MeoIf1dnxaTGDKo6QP4o8369E8miPC9iNRFmdoWUoEwq7UlcI22CEHNKCKFWxe7PrOD66gREeW/TGzK7p9MYJK07R2aToEqVpzJBBHaHuk1o1mew2oe2ZZIFbVss8YIt+z6zBKuo0ZElP+Ct5DyqtjbJiUq0PVpvJAGBN5jtCqQN8bOBGkboxbWFrdHoaLICgD4yp/fwbZmYxVJgtsZzunhrE8iIqKM8G/KDgW315umipre9WnMX4tWX3dj9E3Ztb8jfS8i9ZamklH0MKi3xasUKgqt/ueDN2w3AqtpZBetzuXxwquMuwZcMGP+F0lERBSFKbii5o28dliy/BW1Mez2bO8fxuEOR0LnBqpDUcaoxVhHLVJFLR1dn27frhCLfHt/6re+9Ddv4LRb/5X09dPNHKfrE0BOLHrLBW+JiCinBGZ96jsTjP6awQvehlNK+cfFpdOKn70Er0LEBVnDBYejSPQJA2aTjOjqizSZINk10K7/40Z/qNGrjv79RcO+NVsN0gWqtzPaZAL9b7vVPKbtShaDGhER5RR/16evxCNIR0XNF0IijFFTKhAO0ymZrGT2d+Mlv9dn5MkEid8bAF7c0er/2h8aDT5rMtoOCl6v8h/LhZmf7PokIqKcErwzQbrE6vo0wq9yS4yB8UAgjEWq/KWr61Ond696ooRGowjsSRrazuDZnrnQ9cmgRkREOSV4eY50CSzPEbnrM5OO9w1jyDVym6dglnhdn3pFLcJv9Yhdn6MMahaTpLgW29ixRJkp68qxoMauTyIiyimBTdnTd82YXZ/pu01Ey3/2EpbWV6C4IPqv5Hgbocea9ZnuipqIbyycwWdMWiLMlO1xuPDXTUf8j9n1SURElGZ60SutXZ+eGF2fY/C7/J3D3TGfDwzgT2HWZ8TJBEk2MIiI9n3yGDzkBCpqgTf7zHtHccuzO/2Pc6GixqBGREQ5RZ88MJqqULjAGLWRvxbTeZ9UxVvwVvm7PhPb63M03ZYCyZGK2sgdFMI3j2dQG2PcQoqIKP8F70yQLv4Fbw26M0H8BW9jVdRGnj+acXciWrei0ReL1WfKBofbwbCxgOz6HGPcQoqIKP/pkwkyUVGzRlmeI9viLngbI6hFrKiNqutTYBLjV9SsEfZHHRnUWFEjIiJKq0zUvPTJBOZIsz4NsEBH3AVvE5j1GZzhRjWZANr4r2QXzc2kXS29eHNve8gxf3dx0IC8IWfuBTXO+iQiopxi8i/Pkb5rZnsyQTyxNhgHEpv1aRaB2/f1aLs+jTZGbeUdrwMI3eXB313Mrk8iIqKxE9hCKgOTCXyVqwklNv9zRphMoIeOeBW1iF2ferdoUIgbzfgygcBiFsMveOsPt0HtHHSFttnlNvZ7ABjUiIgox2RmHbXQWZ+rvn4WPrxosnaf9N0mZfHGqHljTiYYub3UaIphJgNW1CKJ1F08GNb1GW1LLiNhUCMiopzi35kgjdf0z/r0BaKaUjuW1Fdo9zFAHom74G2M5Tn03r3g50ZVJdTXUTN4UIvUXRy+A4STXZ9ERETplZGuT09o16d2nwxsKpoiEW3tsmjhKNKEgfDnTElOJugdckVuC3Jj1qclQnfxiDFq7PokIiJKL3/eyGDXJxAINkaY9QloFSJXnJ0JYj0XWlGLfa/X9hzH4p+8gLVhMykBfR01Y836jMQSobuYXZ9EREQZ5p/1mcYAFWnBW/0ro+QRa4xtm2K10T9GLYnJBOsPdAAA3jnUNeI5kwjMJpPxK2qmkRU1dn0SERFlWKDrM33XDFTURnZ9jmYpi3SKNYA/VnUr0kSDeO9Jv5wpwpg3yZExahErauz6JCIiyqyMbCHl9cJsksC4tOD7pO82o2I1m6J21cUKTal0fcaaRSrQQ6MxQ47D6YZSyl8djTVGzajvIRiDGhER5RTJRNenV41Y7DYTy4CMhtkk0Re8jdHISKErXjUs1k4HRq6otfcPY/6PVuPuNfsizpQNH6PGBW+JiIjSLBNjx9yeCEEtA4FwNLSKWvJdn5Eqagl3fUaaRgox7Dpqrb1DAIB/vnfMP+tTD5Rer8JwWFenk12fRERE6SUZ6Pv0eJX/F3vgPmm/zahoFbUoC97GaKP+XDJdn3q4kQhBTV/wNldmfer7eQ65Q6tpRu6+DcagRkREOcWUgbFjLo83Qtdn+vcUHQ1LjCpWIl2fwZkr1vlAoOJmjlBQE5GYbUnFkp++gO8/uTVt1wMCIVMPneHdnjazKWrX57DbY5ggmldBTUQuFZH7e3p6st0UIiLKED1ApfMXqdujQpbmAIInExjjF7a2v2YKXZ8Rt5AaxaxPIOLiu8d6hnDPmn0xrxtNl8OFR9YfTum18ehhLHwigcUsEbs+vV6FOT94Hv/5zPaMtCdZeRXUlFLPKKVuKC8vz3ZTiIgoQzIxG1ObTBD6K9GUhq7PdIZJsyl6BSjpWZ9x2qW/JlLXpzaZYOR4uV+t3o3bnt8V87rZoG8er6+hdvtVJ2LLjy+ALcosWv19ZSo4JiuvghoREeW/TC3PMaKiplfuRnGjdG5zZTWLP3SES3bWZ7z8GOj6jFRRi72dldH4K2pO7XtXZreivNAKq9kElzvwHpRSUEr5P7NI1cRsYFAjIqKcko4AFS7S8hxIQyCMNxYsGbFmWsa6TeR11OJU1CLsD6oTyZ2B+EDQGDVfRa3QZgagdX26giZnfP2xdzHj5lURFz/OJgY1IiLKKRFXjBglt8c7ouszHbdJZ5axmkzR11GLOUZN+ztkU/a466jpr4nc9anN+ozdXqPQA6V/mzDfN8JmNsEZFNSe3nIUQOQxfdnEoEZERDnFv9dnGnvetOU5oqyjZqiKWupdnyHH4u1M4LvewY4B/OPd5pDnBPqsz9xIatHG9YlEHueof7/Mkaa8ZoEl2w0gIiJKRmCvz/SFIFeEBW8Dy4Ckfp+dx3qxvKFqNE3zs5gFQ+7IbUlkwduQ8+PN+vRd7+4Iszj1ilqujFFLtp1uVtSIiIhS59/aKY3X1CYTRF7wdjR55OP3rsP+4/2jaFlArG2bYoWRyBW1xLo+IzFlYB21THJFWSQ4Gk4mICIiGoV0dEmGc3tUyGB7IHjB29HdqG/IParX62ItzxErM0WsqMXJLrGCnIgWYjxjuE/mzmO9WHnHa+gbciX92mQrah5OJiAiIkpdJro+3V4Fa9QFb0enuMA8yitoYi3PEet7ESmoxBs7FzOoIRBix8p/v7Abu1r6sG5fR9KvTXbjdU+E5UyyiUGNiIhySiZ+fUZa8FY32jxoM6cnqGl7fabQ9Rn2BkQSGaMW/blU80tH/zCO9w2n9Fq9ippKb2u0cBv9/JHLmWQTJxMQEVFOCcz6TOcWUiP3+gxUVEZ3n3QVZkwiUVuSTEXNJBI3fMYOcqm9oZNveQkAcPAXH076tYGPJvnPItmxdHq1kV2fREREKUjHIP9wkZfnSP99dOkMmUC8ilroY5PEH7cVK6hlI7+YRlFRi1aFjMbf9cmgRkRElLzAIP/0XdMVccHb9N9Hl+6lLWIFq/BZnyaRUc36jLT/Z6YFgloqFbUUuz4NMkaNXZ9ERJRTAoP80xd2YlXU0nkfXbqrdLGySPjEgUS6PmMFyWzEl9FUN91ehbN++TLmTipL6HyOUSMiIhqFTHRJetXIWX7+EWoZqKilc8YqEHsW58gxaqPr+sxGoUlGMS7R7VE40jmII52DCZ1vtKDGrk8iIspNmUhQQTKxXpsu7UEtiVmfJlP8rs9YT2dj2Qr/LhEpVtSSoYdejlEjIiJKkSnKPo3plIn12nRjOUYt0qzPeO/JaNtDjWaMWrwN6KOdz1mfREREKZIEwsao75HBa6c7B8X6VoSPXzObJOFN2SPJTten9vdY5Efu9UlERDRKgvjdYKMtiGS063MMK1YjJxPEr0zFejrXZn0my+tfniPjt0qIQZpBRESUuFiLvwafMxqB5W4z0PU5BoHDf6+wUCgiWLP7OH73+v7or4mzhVSmRJssIHGeT6fAgrfGiEjGaAUREVEyEqgKjTao6b+n42WDVMLDWFSGot1L79K75dmdCb8mWCYnE0Qb+G/KYHUzWhs4mYCIiChFAsSdTTDaPKEveDuabsJoklyDdVQiLc8RT+wFb0fZoBii7SKgh+ax6DH2+seoZf5eiTB8UBOReSJyr4g8ISL/nu32EBFR9iXS9TnqdbD8C97Glkp2GMuKWnhQSyTsxBpDl8n84oqSYGUMx6gF1lEzRkTKaCtE5EERaRORbWHHV4rIbhHZKyI3xbqGUmqnUupLAK4CcEYm20tERLlBJP6A/LSNURvVBuaRjeXyF+Ht6xtyJf2aENmoqPnXURvLoJbxWyUk0814GMDK4AMiYgZwF4CLAMwH8EkRmS8ii0Tkn2F/anyvuQzAswBWZbi9RERkINF+MceqqOmvSTSnRbtOIOgpbG3qQcNNz2LHsd4I90vsPqN9TarCM+GA05P0a4JJBpOa2xO5ojaaTdmTpU8mMMrOBJLpdCoiDQD+qZRa6Ht8GoCfKKUu9D2+GQCUUrcmcK1nlVIfjvLcDQBu8D2cA2B3Cs0tB9CTgfPjnRft+WSORzo2AUB7Au1Lt2S/j+m4RqY/i2jP8bNI/TXp/iyiHQ8/lsufRSrX4c+pkfL1s4j2nJE/i2htGYtrGOnn1GylVHnEqyilMvoHQAOAbUGPrwTwu6DHnwbw2xivPwfAnQDuA/CVDLf1/kycH++8aM8nczzKsY2Z/nzT8X3Mhc8iye/7uP4sEn1Nuj+LRD+PXP4sUrkOf06Nn88iye+7IT6LdH0e+fZzKviP4TdlV0qtAbBmjG73TIbOj3detOeTOZ5s2zMpHW0x2mcR7Tl+Fqm/Jt2fRbTjRvk80tUOo/3b4GeR/vP5c2psrpETP6dyquuTkiMiG5VSy7LdDuJnYST8LIyFn4dx8LMwpmzMadgAYLaIzBARG4BPAHg6C+0YD+7PdgPIj5+FcfCzMBZ+HsbBz8KAMlpRE5FHoY0xmwCgFcCPlVK/F5GLAdwBwAzgQaXUzzLWCCIiIqIclfGuTyIiIiJKjUGWcyMiIiKicAxqRERERAbFoEZERERkUAxq45SIXCEiD4jIX0Tkgmy3ZzwTkZki8nsReSLbbRmPRKRYRP7g+/dwbbbbM57x34Kx8PeEMTCo5aA0bXb/lFLqegBfAnB1Jtubz9L0WexXSl2X2ZaOL0l+Lh8F8ITv38NlY97YPJfMZ8F/C5mX5OfB3xMGwKCWmx5GGja79/mB73WUmoeRvs+C0udhJPi5AKgDcMR3WvzdqilZDyPxz4Iy72Ek/3nw90QWGX4LKRpJKfWab8eHYCsA7FVK7QcAEXkMwOW+HR8uCb+GiAiAXwB4Tin1ToabnLfS8VlQ+iXzuQBoghbW3gX/5zXtkvwsdoxx88adZD4PEdkJ/p7IOv5Qyh9TEagKANovn6kxzv8qgPMAXCkiX8pkw8ahpD4LEakWkXsBLNG3VKOMiPa5/B3Ax0TkHhhr/8N8FvGz4L+FrIn2b4O/JwyAFbVxSil1J4A7s90OApRSHdDGgFAWKKUGAHwu2+0g/lswGv6eMAZW1PJHM4BpQY/rfMdo7PGzMCZ+LsbBz8JY+HkYGINa/uBm98bBz8KY+LkYBz8LY+HnYWAMajnIt9n9OgBzRKRJRK5TSrkB3AhgNYCdAB5XSm3PZjvHA34WxsTPxTj4WRgLP4/cw03ZiYiIiAyKFTUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIoBjUiIiIig2JQIyIiIjIobiFFRHlBRDwAtgYdukIpdTBLzSEiSguuo0ZEeUFE+pVSJVGeE2g/77xj3CwiolFh1ycR5SURaRCR3SLyRwDbAEwTke+IyAYReU9E/jPo3O+LyB4ReUNEHhWRb/uOrxGRZb6vJ4jIQd/XZhH5VdC1vug7fo7vNU+IyC4RecQXEiEiy0XkTRHZIiJvi0ipiLwmIicFteMNETlxrL5HRGR87PokonxRKCLv+r4+AOCbAGYD+IxS6i0RucD3eAUAAfC0iHwAwAC0vQ1PgvYz8R0Am+Lc6zoAPUqp5SJSAGCtiLzge24JgAUAjgJYC+AMEXkbwF8AXK2U2iAiZQAGAfwewGcBfENETgBgV0ptGd23gYjyCYMaEeWLQaXUSfoDEWkAcEgp9Zbv0AW+P5t9j0ugBbdSAE8qpRy+1yWyGfUFABaLyJW+x+W+azkBvK2UavJd610ADQB6ABxTSm0AAKVUr+/5vwL4oYh8B8DnATyc5HsmojzHoEZE+Wwg6GsBcKtS6r7gE0TkGzFe70ZgiIg97FpfVUqtDrvWOQCGgw55EOPnrFLKISIvArgcwFUATo7RFiIahzhGjYjGi9UAPi8iJQAgIlNFpAbAawCuEJFCESkFcGnQaw4iEJ6uDLvWv4uI1XetE0SkOMa9dwOYLCLLfeeXioge4H4H4E4AG5RSXaN6h0SUd1hRI6JxQSn1gojMA7DON76/H8CnlFLviMhfAGwB0AZgQ9DLfg3gcRG5AcCzQcd/B61L8x3fZIHjAK6IcW+niFwN4DciUghtfNp5APqVUptEpBfAQ+l5p0SUT7g8BxFREBH5CbQA9esxut8UAGsAzOXyIUQUjl2fRERZIiL/BmA9gO8zpBFRJKyoERERERkUK2pEREREBsWgRkRERGRQDGpEREREBsWgRkRERGRQDGpEREREBvX/AdehXHQ656kXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10,7))\n", + "plt.loglog(cs_reb.freq, cs_reb.power.real)\n", + "plt.ylim([1e-3, None])\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"Cospectrum Power\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For deeper analysis (e.g. time lags and other products), please refer to the relevant notebooks" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Deadtime/Dead time model in Stingray.html b/notebooks/Deadtime/Dead time model in Stingray.html new file mode 100644 index 000000000..5f118b9f5 --- /dev/null +++ b/notebooks/Deadtime/Dead time model in Stingray.html @@ -0,0 +1,947 @@ + + + + + + + + Stingray’s dead time models — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray’s dead time models

+

Here we verify that the algorithm used for dead time filtering is behaving as expected.

+

We also compare the results with the algorithm for paralyzable dead time, for reference.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+import matplotlib.pyplot as plt
+import seaborn as sns
+from matplotlib.gridspec import GridSpec
+import matplotlib as mpl
+from stingray import EventList, AveragedPowerspectrum
+import tqdm
+import stingray.deadtime.model as dz
+from stingray.deadtime.model import A, check_A, check_B
+
+sns.set_context('talk')
+sns.set_style("whitegrid")
+sns.set_palette("colorblind")
+
+mpl.rcParams['figure.dpi'] = 150
+mpl.rcParams['figure.figsize'] = (10, 8)
+mpl.rcParams['font.size'] = 18.0
+mpl.rcParams['xtick.labelsize'] = 18.0
+mpl.rcParams['ytick.labelsize'] = 18.0
+mpl.rcParams['axes.labelsize'] = 18.0
+mpl.rcParams['axes.labelsize'] = 18.0
+
+from stingray.filters import filter_for_deadtime
+
+import numpy as np
+np.random.seed(1209432)
+
+
+
+
+

Non-paralyzable dead time

+
+
[2]:
+
+
+
def simulate_events(rate, length, deadtime=2.5e-3, **filter_kwargs):
+    events = np.random.uniform(0, length, int(rate * length))
+    events = np.sort(events)
+    events_dt = filter_for_deadtime(events, deadtime, **filter_kwargs)
+    return events, events_dt
+
+
+
+
+
[3]:
+
+
+
rate = 1000
+length = 1000
+events, events_dt = simulate_events(rate, length)
+diff = np.diff(events)
+diff_dt = np.diff(events_dt)
+
+
+
+
+
[4]:
+
+
+
dt = 2.5e-3/20  # an exact fraction of deadtime
+bins = np.arange(0, np.max(diff), dt)
+hist = np.histogram(diff, bins=bins, density=True)[0]
+hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]
+
+bins_mean = bins[:-1] + dt/2
+plt.figure()
+plt.title('Non-Paralyzable dead time')
+
+plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');
+plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');
+
+plt.xlim([0, 0.02]);
+# plt.ylim([0, 100]);
+
+plt.axvline(2.5e-3, color='r', ls='--')
+plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')
+plt.ylabel('Probability density')
+
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_5_0.png +
+
+

Exactly as expected, the output distribution of the distance between the events follows an exponential distribution cut at 2.5 ms.

+

The measured rate is expected to go as

+
+\[r_{det} = \frac{r_{in}}{1 + r_{in}\tau_d}\]
+

(Zhang+95, eq. 29). Let’s check it.

+
+
[5]:
+
+
+
plt.figure()
+plt.title('Non-Paralyzable dead time - input rate {} ct/s'.format(rate))
+
+deadtimes = np.arange(0, 0.015, 0.0005)
+deadtimes_plot = np.arange(0, 0.015, 0.0001)
+
+for d in deadtimes:
+    events_dt = filter_for_deadtime(events, d)
+    new_rate = len(events_dt) / length
+    plt.scatter(d, new_rate, color='b')
+
+plt.plot(deadtimes_plot, rate / (1 + rate * deadtimes_plot),
+         label=r'$\frac{r_{in}}{1 + r_{in}\tau_d}$')
+plt.xlim([0, None])
+plt.xlabel('Dead time')
+plt.ylabel('Output rate')
+plt.semilogy()
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_7_0.png +
+
+
+
+

Paralyzable dead time

+
+
[6]:
+
+
+
rate = 1000
+length = 1000
+events, events_dt = simulate_events(rate, length, paralyzable=True)
+diff = np.diff(events)
+diff_dt = np.diff(events_dt)
+
+
+
+
+
[7]:
+
+
+
dt = 2.5e-3/20  # an exact fraction of deadtime
+bins = np.arange(0, np.max(diff_dt), dt)
+hist = np.histogram(diff, bins=bins, density=True)[0]
+hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]
+
+bins_mean = bins[:-1] + dt/2
+plt.figure()
+plt.title('Paralyzable dead time')
+plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');
+plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');
+plt.xlim([0, 0.02]);
+# plt.ylim([0, 100]);
+
+plt.axvline(2.5e-3, color='r', ls='--')
+plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')
+plt.ylabel('Probability density')
+
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_10_0.png +
+
+

Non-paralyzable dead time has a distribution for the time between consecutive counts that plateaus between \(\tau_d\) and \(2\tau_d\), then decreases. The exact form is complicated (e.g. )

+

The measured rate is expected to go as

+
+\[r_{det} = r_{in}e^{-r_{in}\tau_d}\]
+

(Zhang+95, eq. 16). Let’s check it.

+
+
[8]:
+
+
+
plt.figure()
+plt.title('Paralyzable dead time - input rate {} ct/s'.format(rate))
+
+deadtimes = np.arange(0, 0.008, 0.0005)
+deadtimes_plot = np.arange(0, 0.008, 0.0001)
+
+for d in deadtimes:
+    events_dt = filter_for_deadtime(events, d, paralyzable=True)
+    new_rate = len(events_dt) / length
+    plt.scatter(d, new_rate, color='b')
+
+plt.plot(deadtimes_plot, rate * np.exp(-rate * deadtimes_plot),
+         label=r'$r_{in}e^{-r_{in}\tau_d}$')
+plt.xlim([0, None])
+plt.xlabel('Dead time')
+plt.ylabel('Output rate')
+plt.semilogy()
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_12_0.png +
+
+

Perfect.

+
+
+

Periodogram - non-paralyzable

+

Let’s see how the periodogram behaves at different intensities. Will it follow the Zhang+95 model?

+
+
[9]:
+
+
+
nevents = 200000
+
+rates = np.logspace(2, np.log10(3000), 6)
+bintime = 0.001
+deadtime = 2.5e-3
+
+plt.figure()
+plt.title(f'bin time = 1 ms; dead time = 2.5 ms')
+for r in tqdm.tqdm(rates):
+    label = f'{r} ct/s'
+    length = nevents / r
+
+    events, events_dt = simulate_events(r, length)
+    events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+#     lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+#     pds = AveragedPowerspectrum.from_lightcurve(lc_dt, 2, norm='leahy')
+    pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)
+    plt.plot(pds.freq, pds.power, label=label)
+
+    zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)
+    plt.plot(zh_f, zh_p, color='b')
+plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+  0%|                                                            | 0/6 [00:00<?, ?it/s]OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
+100%|████████████████████████████████████████████████████| 6/6 [00:02<00:00,  2.72it/s]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_15_1.png +
+
+
+
[10]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.powerspectrum import AveragedPowerspectrum
+import tqdm
+
+nevents = 200000
+
+rates = np.logspace(2, 3, 5)
+deadtime = 2.5e-3
+bintime = 2 * deadtime
+
+
+plt.figure()
+plt.title(f'bin time = 5 ms; dead time = 2.5 ms')
+for r in tqdm.tqdm(rates):
+    label = f'{r} ct/s'
+    length = nevents / r
+
+    events, events_dt = simulate_events(r, length)
+    events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+#     lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+#     pds = AveragedPowerspectrum.from_lc(lc_dt, 2, norm='leahy', silent=True)
+    pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)
+    plt.plot(pds.freq, pds.power, label=label)
+
+    zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)
+    plt.plot(zh_f, zh_p, color='b')
+plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')
+
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Power (Leahy)')
+
+plt.legend();
+
+
+
+
+
+
+
+
+100%|████████████████████████████████████████████████████| 5/5 [00:04<00:00,  1.07it/s]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_16_1.png +
+
+

It will.

+
+
+

Reproduce Zhang+95 power spectrum? (extra check)

+
+
[11]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.powerspectrum import AveragedPowerspectrum
+import tqdm
+
+bintime = 1e-6
+deadtime = 1e-5
+length = 40
+fftlen = 0.01
+
+plt.figure()
+plt.title(f'bin time = 1 us; dead time = 10 us')
+
+r = 20000
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy')
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+4000it [00:00, 6396.64it/s]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_18_1.png +
+
+

Ok.

+

An additional note on the Zhang model: it is a numerical model, with multiple nested summations that are prone to numerical errors. The assumptions made in the Zhang paper (along the line of “in practice the number of terms needed is very small…”) are assuming the case of RXTE, where 1/dead time was low with respect to the incident rate. This is true in the simulation in figure 4 of Zhang+95: 20,000 ct/s incident rate, 1/dead time = 100,000. However, this is not true in NuSTAR, depicted in our +simulation below where the incident rate (2,000) is much larger than 1/dead time (400). A thorough estimate of the needed level of detail (that implies increasing the number of summed terms) versus increase of numerical errors has to be done. This is a quite long procedure, and I did not go into so much detail. This is the reason of the “wiggles” that can be seen in the model in red in the plot below.

+
+
[12]:
+
+
+
bintime = 1/4096
+deadtime = 2.5e-3
+length = 8000
+fftlen = 5
+r = 2000
+
+plt.figure()
+
+plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')
+
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy', silent=True)
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy', silent=True)
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_21_0.png +
+
+

The script check_A checks visually the number of ks to calculate before going to the approximate value r0**2*tb**2. The default is 60, but in this case the presence of additional modulation for k=60 tells us that we need to increase the limit of calculated A_k to at least 150. The script check_B does this for another important quantity in the model.

+

Somewhat counter-intuitively, there might be cases where too high values of k could produce numerical errors. Always run check_A and check_B to test it.

+
+
[13]:
+
+
+
def safe_A(k, r0, td, tb, tau, limit=60):
+    if k > limit:
+        return r0 ** 2 * tb**2
+    return A(k, r0, td, tb, tau)
+
+
+check_A(r, deadtime, bintime, max_k=1000, linthresh=1e-16);
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_23_0.png +
+
+

So, we had better repeat the procedure by using limit_k=500 this time.

+
+
[14]:
+
+
+
check_B(r, deadtime, bintime, max_k=1000, linthresh=1e-16);
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_25_0.png +
+
+
+
[15]:
+
+
+
bintime = 1/4096
+deadtime = 2.5e-3
+length = 8000
+fftlen = 5
+r = 2000
+
+plt.figure()
+
+plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')
+
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime, limit_k=500)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+1600it [00:00, 3036.28it/s]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_26_1.png +
+
+
+
[16]:
+
+
+
from scipy.interpolate import interp1d
+
+deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value="extrapolate")
+
+plt.figure()
+plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)
+
+
+
+
+
[16]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x17564cf10>]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_27_1.png +
+
+

Still imperfect, but this is a very high count rate case. In more typical cases, the correction is more than adequate:

+
+
[17]:
+
+
+
bintime = 1/4096
+deadtime = 2.5e-3
+length = 8000
+fftlen = 5
+r = 300
+
+plt.figure()
+
+plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')
+
+label = f'{r} ct/s'
+
+events, events_dt = simulate_events(r, length, deadtime=deadtime)
+events_dt = EventList(events_dt, gti=[[0, length]])
+#     lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)
+# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)
+# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')
+pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')
+plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')
+
+zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime, limit_k=250)
+plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)
+plt.axhline(2, ls='--')
+plt.xlabel('Frequency (kHz)')
+plt.ylabel('Power (Leahy)')
+plt.legend();
+
+
+
+
+
+
+
+
+1600it [00:00, 2957.61it/s]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_29_1.png +
+
+
+
[18]:
+
+
+
deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value="extrapolate")
+
+plt.figure()
+plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)
+
+
+
+
+
[18]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x317604a10>]
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_30_1.png +
+
+
+
+

New dead time model function

+

Stingray versions >2.0 introduce a new formulation of the dead time modeling, which includes:

+
    +
  1. Using detected rates, not incident (which means, the rates that the user can actually measure!)

  2. +
  3. Allowing for background rates (e.g. the events which produce dead time but get filtered away during source selection or other filtering processes)

  4. +
+
+
[19]:
+
+
+
from stingray.deadtime.model import non_paralyzable_dead_time_model
+non_paralyzable_dead_time_model?
+
+
+
+
+
+
+
+
+Signature:
+non_paralyzable_dead_time_model(
+    freqs,
+    dead_time,
+    rate,
+    bin_time=None,
+    limit_k=200,
+    background_rate=0.0,
+    n_approx=None,
+)
+Docstring:
+Calculate the dead-time-modified power spectrum.
+
+Parameters
+----------
+freqs : array of floats
+    Frequency array
+dead_time : float
+    Dead time
+rate : float
+    Detected source count rate
+
+Other Parameters
+----------------
+bin_time : float
+    Bin time of the light curve
+limit_k : int, default 200
+    Limit to this value the number of terms in the inner loops of
+    calculations. Check the plots returned by  the `check_B` and
+    `check_A` functions to test that this number is adequate.
+background_rate : float, default 0
+    Detected background count rate. This is important to estimate when deadtime is given by the
+    combination of the source counts and background counts (e.g. in an imaging X-ray detector).
+n_approx : int, default None
+    Number of bins to calculate the model power spectrum. If None, it will use the size of
+    the input frequency array. Relatively simple models (e.g., low count rates compared to
+    dead time) can use a smaller number of bins to speed up the calculation, and the final
+    power values will be interpolated.
+
+Returns
+-------
+power : array of floats
+    Power spectrum
+File:      ~/devel/StingraySoftware/stingray/stingray/deadtime/model.py
+Type:      function
+
+
+
+
[20]:
+
+
+
rate = 1000
+tmax = 10000
+deadtime = 2.5e-3
+dt = 0.0005
+segment_size = 1
+import copy
+source_fraction = 0.65
+
+def split_between_source_and_background(times, source_fraction):
+    times_shuf = copy.deepcopy(times)
+    np.random.shuffle(times_shuf)
+    times_source = np.sort(times_shuf[: int(source_fraction * times.size)])
+    times_bkg = np.sort(times_shuf[int(source_fraction * times.size): ])
+    return times_source, times_bkg
+
+
+times = np.sort(np.random.uniform(0, tmax, rate * tmax))
+times_dt = filter_for_deadtime(times, deadtime)
+
+times_source_dt, times_bkg_dt = split_between_source_and_background(times_dt, source_fraction)
+
+source_rate = source_fraction * rate
+
+pds_source_dt = AveragedPowerspectrum.from_time_array(times_source_dt, gti=[[0, tmax]], dt=dt, segment_size=1, norm="leahy")
+
+model_source_nobkg = non_paralyzable_dead_time_model(
+    pds_source_dt.freq,
+    dead_time=deadtime,
+    rate=times_source_dt.size / tmax,
+    bin_time=dt
+)
+
+model_source_corr = non_paralyzable_dead_time_model(
+    pds_source_dt.freq,
+    dead_time=deadtime,
+    rate=times_source_dt.size / tmax,
+    bin_time=dt,
+    background_rate=times_bkg_dt.size / tmax,
+)
+
+plt.plot(pds_source_dt.freq, pds_source_dt.power, label="PDS of source events")
+plt.plot(pds_source_dt.freq, model_source_nobkg, zorder=10, label="model of Source")
+plt.plot(pds_source_dt.freq, model_source_corr, zorder=10, label="model of Source+Back")
+plt.plot(pds_source_dt.freq, pds_source_dt.power / model_source_corr, zorder=10, label="ratio")
+
+plt.legend(loc="upper right")
+
+
+
+
+
+
+
+
+10000it [00:00, 25078.61it/s]
+
+
+
+
[20]:
+
+
+
+
+<matplotlib.legend.Legend at 0x17571e290>
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_33_2.png +
+
+
+
[21]:
+
+
+
plt.plot(pds_source_dt.freq, pds_source_dt.power / model_source_corr, zorder=10, label="ratio")
+plt.xlabel("Frequency")
+plt.ylabel("PDS / model")
+
+
+
+
+
[21]:
+
+
+
+
+Text(0, 0.5, 'PDS / model')
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_34_1.png +
+
+

The function is also used internally in some timing products, to easily correct the spectrum, through the method deadtime_correct. Please note that the example below works a little too well because, in our simulation, dead time is constant. In general, this correction is appropriate for relatively low values of constant deadtime, while we recommend using the FAD correction from stingray.deadtime.fad for variable dead time and high count rates.

+
+
[22]:
+
+
+
pds_source_corrected = pds_source_dt.deadtime_correct(dead_time=deadtime,
+    rate=times_source_dt.size / tmax,
+    background_rate=times_bkg_dt.size / tmax)
+
+plt.plot(pds_source_dt.freq, pds_source_dt.power, label="PDS of source events")
+plt.plot(pds_source_corrected.freq, pds_source_corrected.power, zorder=10, label="Corrected")
+
+plt.legend(loc="upper right");
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_Dead_time_model_in_Stingray_36_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Deadtime/Dead time model in Stingray.ipynb b/notebooks/Deadtime/Dead time model in Stingray.ipynb new file mode 100644 index 000000000..9e4bd17ca --- /dev/null +++ b/notebooks/Deadtime/Dead time model in Stingray.ipynb @@ -0,0 +1,1026 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Stingray's dead time models\n", + "\n", + "Here we verify that the algorithm used for dead time filtering is behaving as expected.\n", + "\n", + "We also compare the results with the algorithm for paralyzable dead time, for reference." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "from matplotlib.gridspec import GridSpec\n", + "import matplotlib as mpl\n", + "from stingray import EventList, AveragedPowerspectrum\n", + "import tqdm\n", + "import stingray.deadtime.model as dz\n", + "from stingray.deadtime.model import A, check_A, check_B\n", + "\n", + "sns.set_context('talk')\n", + "sns.set_style(\"whitegrid\")\n", + "sns.set_palette(\"colorblind\")\n", + "\n", + "mpl.rcParams['figure.dpi'] = 150\n", + "mpl.rcParams['figure.figsize'] = (10, 8)\n", + "mpl.rcParams['font.size'] = 18.0\n", + "mpl.rcParams['xtick.labelsize'] = 18.0\n", + "mpl.rcParams['ytick.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "mpl.rcParams['axes.labelsize'] = 18.0\n", + "\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import numpy as np\n", + "np.random.seed(1209432)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Non-paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate_events(rate, length, deadtime=2.5e-3, **filter_kwargs):\n", + " events = np.random.uniform(0, length, int(rate * length))\n", + " events = np.sort(events)\n", + " events_dt = filter_for_deadtime(events, deadtime, **filter_kwargs)\n", + " return events, events_dt" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAARLCAYAAAADAKrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xTZf/G8Sud0JZV9h4KZYn4gLJBcPNDQBAVHIg4cAsOQEUUVEQRRVzog6I+CAqKAiIoICiITNlCkT3LKLvQjHN+f5Qcks50pEnbz/v1wp6TnNznTnJa4eo339tmmqYpAAAAAAAAAIDfhQR6AgAAAAAAAABQVBDIAgAAAAAAAEA+IZAFAAAAAAAAgHxCIAsAAAAAAAAA+YRAFgAAAAAAAADyCYEsAAAAAAAAAOQTAlkAAAAAAAAAyCcEsgAAAAAAAACQTwhkAQAAAAAAACCfEMgCAAAAAAAAQD4hkAUAAAAAAACAfEIgCwAAAAAAAAD5hEAWAAAAAAAAAPIJgSwAAAAAAAAA5JOwQE8AAADkrX379umaa66x9hs0aKBp06YpPDw8W+N8//33Gjp0qLW/adMmhYUVnb863H333VqxYoVPx4aFhSkyMlJlypRRzZo11bx5c1133XWqW7eun2cZfFJffwsWLFC1atUCOKPA8fweqlq1qhYuXJjrMYcMGaIZM2ZIkm655Ra98cYbuR4zkArb88mOuLg4a/vLL79UixYtcj3mtm3btGrVKvXu3Tvd+z1/rj322GN6/PHHc31OAACQfVTIAgBQyP3zzz+aMGFCoKdRqDmdTp09e1b79u3T0qVLNW7cON188816+umndebMmUBPD0Ahd+7cOb311lu65ZZbtG7dukBPBwAAZKHolLkAAFCEffzxx7r22mtVv379QE+lQCpVqpQuu+yyDO93uVw6f/68Dh48qEOHDkmSTNPU7NmztX37dv3vf/9TTExMfk0XQBHz+uuv69tvvw30NAAAgI8IZAEAKAIcDoeGDBmSo9YFSPlo8cSJE306dvXq1Ro5cqT++ecfSSkVym+//baGDx/uzykCKMIcDkegpwAAALKBlgUAABQRtC7IH82aNdPnn3+umjVrWrdNnTpVCQkJAZwVAEhfffWVtm7dqq1bt9I/FgCAACKQBQCgkPNciOvjjz/Wli1bAjiboqFMmTJ65JFHrH3DMPTzzz8HcEYAAAAAggWBLAAAhdx9990nm80mKeVjrUOHDpXT6QzwrAq/66+/3mt/69atAZoJAAAAgGBCD1kAAAq5Vq1a6dSpU5o6daokafPmzfr444/12GOP5fm5/v33X3333XdasWKF9u/frzNnzqhEiRKqXLmyWrVqpa5duyouLi7TMcaPH6/3339fkjRs2DDdddddstvt+vHHHzV37lxt375dR48eVYkSJVS7dm116tRJt99+u0qUKJHnzyc3oqKiFBsbq8TEREnS4cOHMz1+/fr1WrBggVatWqUDBw7oxIkTcjqdKlmypCpWrKj//Oc/uummm9SsWbMMx/j+++81dOhQSSlB/ODBg7Vo0SKrMjoiIkJVq1ZVy5YtNXDgQEVERHg9/sCBA/r555+1YsUKbd++XSdPntS5c+cUHR2tMmXK6PLLL1eHDh10ww03KDQ0NNuvycSJE/Xmm29KkkJDQ7V48WKVL18+y8fNnz9fjz76qCQpJiZGS5YsUfHixbO8ljJTtWpVLVy4MMP7ly1bpt9//12rV6/WoUOHdPLkSUlSyZIlVaVKFTVv3lw333xzthfKs9vtmjZtmn766Sdt375d586dU/ny5dW0aVPddNNNuuaaa6xfoOSFxMREff/99/rjjz+0c+dOHT9+XFFRUapQoYJatGihrl27qkmTJnl2Pk/r16/XtGnTtGLFCh08eFDh4eGqVq2arrvuOvXp00exsbHZHvPs2bP64YcftHjxYm3btk3Hjh1TRESEypcvr+bNm+umm25S69atszVmXr/XDodDs2fP1pw5c7R582adPHlSpUuXVlxcnHr27Kmbbropz97j9L4HZsyYoRkzZlj7nr8Muvvuu7VixQpJ0mOPPZambYHnz9+XX35ZvXv3VlJSkmbNmqVZs2Zp165dOnXqlMqVK6f69evr9ttvV4cOHbzG2Llzp6ZOnaolS5bowIEDkqRq1aqpffv2uvfee336npcCe+0CAOBvBLIAABQBzz33nP744w/t379fUkrrgmuvvTbbYVJGTp06pVdeeUU//fSTTNP0ui8xMVGJiYnatGmTJk6cqK5du+qll15STEyMT2Nv2bJFTz/9tP799990x129erUmTpyoMWPGqE2bNnnyfPKKZyVyVFRUusfs3btXw4YN07Jly9K9/+jRozp69Kg2bdqkr776Sh07dtSYMWN8ev1++OEHDRkyxHpPzp07p5MnT8rpdGrw4MHWcefOndOoUaP0/fffp7s40IkTJ3TixAnt3LlTP/zwg+rUqaP3339fl1xySZZz8NS1a1eNHTtWTqdTLpdLP/30k+69994sHzdz5kxru3PnzipevHi2zpsdGzdu1PDhw7Vx48Z07z9//rwOHz6stWvXauLEierZs6eGDx+eJtxOz549e/TII49o27ZtXrfv27dP+/bt0+zZs3XFFVdo9OjRXj2Ic2rSpEl67733dPbsWa/b7Xa7Tpw4ofj4eH311Ve68cYbNXLkSJUsWTLX55SkpKQkjRgxwisUlKTk5GRt2bJFW7Zs0eTJkzV69OhsjTtz5ky98cYbOnbsWJpxT58+rR07dujbb79Vy5YtNXr0aFWqVCnT8fzxXm/atEmDBg3Srl27vG4/cuSIjhw5oiVLlmjq1Kl69913fXrOgbZ+/Xo988wz2r17t9ft+/fv1/79+7VgwQLddtttevnllxUaGqovvvhCb731VpqfI/Hx8YqPj9f333+vCRMmZBmkBuraBQAgvxDIAgBQBERHR+u1116zwi9364Jp06Z59ZjNiaNHj6pPnz5e/2C32WyqW7euypQpo8TERP37778yTVOmaerHH3/U5s2b9dlnn6lChQqZjr1r1y69//77On78uCSpbNmyqlOnjs6fP6/t27crKSlJUko4+/DDD2vGjBnZDgn95eDBgzp16pS1X61atTTHbN++XXfffbdXwFSiRAnVqVNH0dHRSkpK0o4dO7zG+e233zRo0CB98sknmZ5/+/btmjx5cpqAXEoJRt3OnTunvn37at26ddZtERERqlOnjsqUKSOHw6G9e/d6LUq2Y8cO9e3bVz///HO2KpPLly+vtm3batGiRZJSArasAtlTp07pt99+s/Z79Ohhbbdt29bnc+/bt88rJGvatGmaY1auXKkHH3zQuq6klH7AtWrVUvHixXXq1Cnt2LHDut80TU2fPl0REREaPnx4puc/c+aM+vbta1UMxsTEqF69ejIMQ1u2bNH58+clSX///bfuuusu/e9//8txKGuapl544QV99913XrfXrFlTlSpVUlJSkuLj45WcnCxJmjt3rrZt26YvvvjC5+rFjCQnJ+uBBx7QqlWrrNtCQkIUFxenEiVKaM+ePTp06JASExP16KOP+vwc33//fY0fP97rtipVqqhatWpKTk7W9u3bdebMGUnSX3/9pV69emnSpEkZ/jzwx3u9bt063XvvvV5jlixZUpdeeqlcLpfi4+N17tw5LV++XPfff79Pzzsr7u+B+Ph4qwq/QoUKqlevXq7H3rp1q8aMGWO9rpUrV1b16tV18uRJxcfHWz9bvv32W9WtW1cOh8OqgI+MjFT9+vUVGhqq+Ph4a4zExEQ9/vjj+vnnn9P9JVUgr10AAPITgSwAAEVEq1atdPvtt+ubb76RlDetCxwOhx588EGvMPbWW2/VE088oYoVK1q3HTp0SO+8845++OEHSdK2bdv01FNP6YsvvlB4eHiG43/11VeSpBo1aujFF19U+/btrY/6njlzRuPHj9ekSZMkpQRB48ePD5rKs2+//dZrP3X1rjt4cIexJUuW1IgRI3Tdddd5heSGYWjRokUaOXKkFeYtXrxYGzZs0GWXXZbh+RcvXixJatSokYYOHarGjRvr8OHD+vHHH70C2Q8//NAKY202mx577DH169dP0dHRXuNt2bJFr776qlauXCkppeLv22+/Vf/+/bP1uvTo0cMKZDdt2qQdO3aoTp06GR4/Z84c2e12SVLt2rV1xRVXWPdNnDjRp3MePHhQvXr1svbj4uL06quveh2TnJysoUOHWmFa5cqV9dprr6l169ZeHy93OBz66aefNGrUKJ04cUKSNHXqVD322GMqW7ZshnM4efKkTp48qYiICD399NPq06ePVWl55swZffzxx/r0008lpbS3ePbZZzV16lSFhGR/yYdPP/3UK9C65ppr9Mwzz3i9zufOnbMqNd2/4Bg0aJAmTZqUo3YUbm+//bZXGHvDDTfohRde8Pp5sGTJEr300kvav39/mmrh9Pz0009eYWyzZs00dOhQr+vfbrdr9uzZGj16tE6cOKHDhw/rscce0/Tp09Ncy/54r8+cOaMnn3zSGrNYsWIaPHiwbr31Vut9TkpK0meffaYPP/xQmzZtyvJ5+8L9PTBkyBCrIrlNmzZ64403cj32lClTJEm1atXSiBEj1KJFC+u+LVu26P7779eRI0ckSe+8847OnTsnm82mAQMG6MEHH7QC16SkJI0ePdpqm3Po0CHNmjVLt99+e5pzBvLaBQAgP7GoFwAARchzzz2nqlWrWvvu3qI59e2333oFC08//bRee+01r/BFkipVqqTRo0d79StcvXq1FQ5nplq1avr222/VoUMHr7AkJiZGQ4cO1f/93/9Zty1evNgK7wJp8eLFVrgmSZdeemmavpYrVqzQ33//be2PGTNGN910U5qK5ZCQEHXq1EkfffSR1+1LlizJch6VK1fWpEmTdOWVV6p48eKqWbOmV1h+7tw5K/SWpP79++uxxx5LE2BJUv369fXf//43TbCWXR07dlTp0qWtfc92BOn58ccfrW3P6lhfJSUlacCAAVZwVKZMGX344YdpqvN++ukn7d27V1JKf9sJEyaoTZs2aXp9hoeHq3v37ho1apR1m2EYWrp0aZZzCQkJ0QcffKB7773X62PvMTExeuaZZ6z+v1JKteXs2bOz/Xz37t2rcePGWft33XWXPvzwwzShd/HixdWvXz/997//tX4psmLFCn3//ffZPqfnuSdPnmztd+3aVePGjUvz86Bt27aaMmVKli0FpJSg8+WXX7b2r7nmGn355ZdpfhkRERGhHj166Ouvv1apUqUkpVRye34fuvnjvf7iiy908OBBSSm/2Pjggw+8QncppW3JY489ptdffz3L5x0sKleurKlTp3qFsVLKz4PnnnvO2k9KSpJpmho8eLCeeuopr++vqKgovfzyy14tcv7888805wrktQsAQH4jkAUAoAiJiYnxqgx0ty7w7HWaHZ5hR4sWLfTggw9mevyjjz6q5s2bW/sTJ06UYRiZPuaJJ55QmTJlMry/d+/e1nZSUpIVtOSnc+fOaf/+/Zo/f74GDRqkhx56yOqhGBoaqhdffDFNpaNnz9hGjRqlWRgntfr166tWrVrW/qFDh7Kc11133ZVpb8XVq1dbAXZ4eLgeeOCBTMcrVqyY1zx9mUNqERER6tKli7WfWei4d+9erVmzRlLK69itW7dsncswDD399NPWLx3Cw8M1fvz4dNtH/PXXX9b2tddem+WCYR06dFCxYsWsfV/fj/bt22d4/7333utVAeyuUMyOL774wvp+rl69uoYMGZLp8VdeeaXuuecea//zzz/P9jndZs+ebZ27VKlSeumllzJcvKpixYoaNmxYlmNOnz7datlRokQJvf7665m2Wbnkkkv05JNPWvtTpkyx2kG4+eO99vzFwi233JJpO43u3bvr2muvzfScwSKzn7+pF6CrWrWq+vbtm+6xNptNV199tbW/Z8+eNMcE8toFACC/EcgCAFDEtG7d2uujou7WBdkVHx9vVYRJUr9+/bJ8jM1m8/qI+4EDBzKt0A0JCdE111yT6ZiXXnqp1/7p06eznEd2rVixQnFxcRn+adq0qTp16qRHH33Ua2GzsLAwDR8+XK1atUoz5lNPPaW1a9dq1qxZeuutt3yaR7ly5axtdw/FzFx11VWZ3t+2bVutX79ev/zyiyZPnuxVuZpXc0jPLbfcYm17hq6peVbHtm3bNk2lZVbeeustLVy40Np/8cUXdeWVV6Z77JtvvqnVq1drxowZevbZZ7McOzQ01Cuoyuq1sNlsGYZVnu644w5r+++//7Y+Ku+rX3/91dru0qVLpi1B3Lp3725tb9++Pce/1HC3yZCkG2+8Mcv+wp06dVLlypUzPWbevHnWdurq6ozcfPPN1kfXT5w4obVr13rdn9fv9c6dO736E992221ZjnnnnXdmeUyg2Ww2XX/99RneHx0drdjYWGu/ffv2mbbY8Pz+Te/ndCCvXQAA8huBLAAARdBzzz2nKlWqWPs5aV3g2ScyNDRULVu29OlxrVq18urzt3r16gyPrVatmmJiYjIdL3UFaOrVvQPBZrOpbdu2mjx5crp9Et2KFy+uevXqZbkQ2c6dOzVt2jSvsMHlcmU5B8+PCGckLCxMNWvW1OWXX57pcUeOHNEvv/ziVV2Y1Rwy0rhxY69Fh2bNmpXucamrDrNj2rRp+uyzz6z9Pn36eIWd6YmJiVHDhg1VvXr1DI8xDEPx8fH63//+57XYWlavRc2aNdOtzE2tWbNm1rZpmmnCxMzs37/fq3rT1wXu6tat61UBmlFAnhm73e61MNx//vOfLB8TEhKS6S8N7Ha7Nm7caO37+nxKliypGjVqWPvpPZ+8fK89fxZGRERk2tvZrXnz5rleUNHfqlSpkuXPX8/rpnbt2pkeGxkZaW2n/mREIK9dAAACIbj/FgAAAPzC3brgvvvuk3SxdcG0adN8DgncK3pLKR9VLV68uE+PK168uKpVq2YtBOY5Tmq+VMOlXsQlqxYIOVGqVKkMQxabzabixYsrJiZG5cqVU4MGDXTFFVdkWfmXmt1u15YtW7Rz507t3btXe/fu1e7du7Vt2zZrhXJP7ircjMTExHj1r/SFYRjauXOntm3bZs1hz549+vfff60erNmZQ2Z69OhhLTz0888/6/nnn/eqiPv777+ta6R06dJZVkp7WrFihV555RVrv0WLFnrhhReyNb+kpCT9888/2rVrl/Va7Ny5Uzt27NC5c+fSHJ/Va5HZwmWeqlevrvDwcOsXC55V6FlJ/THwZ555Rs8884zPj3dLSEjI9mOOHj3q9b3n2V4jM6kr3D0dOnTIqyf0O++8o3feeSfbc8vq+eT2vfYcv2rVqj79DI2IiFD16tW1c+dOH59F/stskbr0ZBXeZtS+QgrstQsAQCAQyAIAUES1adNGt912m7799ltJKa0LJkyYoEcffdSnx3t+lDqzPqXp8Tw+s49ke1Y+5VSnTp20f//+LI/78ssv0yxc4xYXF2etZp7X4uPjNWHCBC1YsCDd8MdTWFiYz/1+swpHPCUmJurTTz/VzJkzdfTo0TybQ2a6du2qMWPGyOl06vjx41qyZIk6duxo3e/ZrqBLly4+h8u7d+/W448/bgWa1atX17hx43z+RcOaNWv0ySefaMmSJZlWW9tsNtlsNp9/AZCd75GYmBgdP35cknTy5EmfH5edY/N6nGPHjnnt+3r9Zfa6+Pv55NV7nZiYaG1n5/vOvfhYsPKsaPVFZoFrVgJ57QIAEAgEsgAAFGGDBw/WkiVLdODAAUnSRx995NMiN1LuqiM9P/KbWc/Bwm7y5Ml67bXX0v24e3h4uGrUqKEGDRroP//5j9q2basXX3xRK1as8GlsX1/X1atX65FHHkk3GLfZbKpSpYrq1aunpk2bqlWrVlq8eLE++OADn8bOTNmyZdW+fXurx+usWbOsQNZut+vnn3+2ju3Ro4dPY546dUoPPfSQ9VyioqL04YcfZroonKcxY8Z4LVTnKTIyUrVr11bDhg31n//8R+3bt1fv3r19Cvuzy/N7Kzu/lEgdlF955ZXZDtUkZfox/ozktFVIZkF76udz2WWX5SjETK8KNy/fa38892CQm4A1uwJ57QIAEAgEsgAAFGEZtS5wV81mxjMY8eyv6AvPKqbo6OhsPbaw+O233zRixAhrPzo6Wt26ddNVV12luLg41ahRI01VZ15Upno6ePCgHn74Yev9CAkJ0XXXXad27dqpYcOGqlOnTppWFJ6LZOVWjx49rPHcFcLFixfXH3/8YYWqcXFxatSoUZZjOZ1OPfHEE9ZHwG02m9566y2vXrWZ+d///ucV0JUtW1bdunVTs2bNFBcXp6pVq6YJubPzfpw9e9an40zT9GpRkZ3K2tTHDhs2zKdfruSF1Of29WdCeu04MhrzkUceUadOnbI/uVTy+r32XLwsO4sKZvbci5pAXrsAAAQCgSwAAEVc6tYFmzZt0oQJE7LsgVqpUiVre//+/VaYlpUzZ85YFblSSs9Ff8rLADEvvf3229Z21apV9fXXX3u9punJ64/jfvLJJ9aY4eHh+vTTT9WqVat8m8PVV1+tMmXK6Pjx4zp//ryWLl2qa6+9VvPnz7eO8bU6dsSIEVq2bJm1/8QTT+jaa6/16bF2u13jx4+39hs1aqQvvvjCK2hLT3Z+EbFv3z6fjtu5c6dX+Oe5OFVWPFexl1IC9/wKtapVq6aQkBDrY/3bt2/3aWGv1L1DPVWsWFE2m82qGM5OP92M+OO9rlmzprW9b98+JScnZ1ndaZqm1yJ9RV0gr10AAAKh6H5GEAAAWAYPHuwVwH700UeKj4/P9DGeYYvL5fIKwzKzbNkyr49k+1L9WNjs27dP27Zts/YffPDBLMPYpKQkr/AqNy0j3BYvXmxtX3/99VmGsZK0ZcsWazu3C6iFh4erS5cu1v78+fNlGIY1r/DwcHXt2jXLcSZNmqRvvvnG2r/pppv0yCOP+DyPv//+26tlw8CBA7MM6Hbu3OnV8zer9yOjxdlS8/w+Cg8Pz3AxufTUrVvXa95//fWXT49LTEzUkCFD9N5772n69Ok5asNQrFgxNWjQwNr39efB6tWrM7wvJiZGdevWtfZ9fT4Oh0PPP/+83nnnHX3zzTf6999/rfv88V5fccUV1rbT6fSprcjWrVuzVU1b2AXy2gUAIBAIZAEAgNW6wM3hcOjLL7/M9DH16tXzqm6dNGlSlucxTdPruNjYWDVu3Djb8y3ojhw54rVfvnz5LB/z9ddfe/WqzIv2BYcPH87WHNatW6e1a9da++n1vs2unj17Wtu//fab1qxZYy0QdfXVVys2NjbTxy9evFhvvvmmtd+wYUONGjUqW3PIyfuR+vsjq/fD6XRqxowZmR7jcDg0efJka79du3bZ6qMZEhKi9u3bW/szZszwqYr3q6++0owZM/TBBx/ohRdesBYUy64bb7zR2v7111+9KuHTs379em3evDnTY66++mpre+HChT5Vlf7444/67rvv9PHHH+ull17S9u3brfv88V7Xq1dPderUyfD49EydOjXLY7IjP/u9+kOgr10AAPIbgSwAAJAktW3bVr169bL2swrbQkJCdM8991j7y5cv1yeffJLpYz766COtWrXK2r/zzjvT9EktCkqXLu21v2TJkkyPX758ucaNG+d1W04XEspoHsuWLcv0PT948KCeffZZr+rAvJhDgwYNVL9+fUnSiRMnNGbMGOu+W265JdPHxsfHa+DAgda8K1asqI8++sin1hmesvt+zJo1S1OmTPG6zZfX4p133vEKB1N7++23ve7v169flmOm5u4HLaW8ns8995zsdnuGx2/YsEETJ0609ps0aZLjX5L06tXLWkDNbrfrueeeU3JycrrHnjlzRi+88EKWY951110KDw+XlBKEPvXUU5lWGu/bt8/rGqpcubK1WJzkv/f6oYcesrZ///13r2A9tT///NOrojsveAb3Gb3mwS6Q1y4AAPmNQBYAAFiGDBmSZe9YT3369PH6B/Dbb7+tF154QQkJCV7HJSQk6Pnnn/cKFS+55BLdf//9uZ90AVS7dm2v6uIpU6Zo4sSJacKHffv26a233lK/fv3S3JeUlJTrebRr187a3rp1qwYPHmxVp7qdPn1aX3/9tbp3767du3fn+Rwk7+D177//liSVK1dOHTp0yPAxx44d04ABA6zFsqKiojRhwoQsWz+k5z//+Y+ioqKs/XHjxmnGjBlpAupt27bpxRdf1DPPPJPmY+u+vBZnz57VnXfeqXnz5nm1ezh69KgGDx6szz//3LqtR48euuqqq7L9XBo3bqw+ffpY+7/99pvuvvturVu3zus4u92uyZMnq1+/flaAFxoaqqFDh2b7nG5lypTR888/b+2vXLlS99xzj7Zu3ep13Pr169WnT58s26JIKSH7U089Ze1v3LhRt912m5YsWeL1HrhcLs2cOVN9+vTxqpJ87rnnFBERYe37673u3r272rRpY+2PHDlSY8aM8QqP3a/5ww8/nOt2H6l5Bs1r167N837T+SGQ1y4AAPmt6JWkAACADMXExGjkyJE+B6UREREaP3687r33Xiusmz59ur777jvVrVtXsbGxSkxM1LZt27xCjerVq2vChAkqVqyYX55HQTBo0CA9/fTTklJaObz55pv66KOPVKNGDRUvXlwJCQnat2+f1+tWpUoV62PgqT96nRMDBgzQ3LlzrYBp1qxZmjdvnmrUqKHY2FgdO3ZMe/fu9QqDPefgcrmUmJiYZVuBrHTt2lVjxozxqjzs2rVrptXTr7zyile/yNq1a+uLL75QUlKS7Ha7nE5nln1du3btqm7duikqKkoPP/ywtdCa3W7XkCFD9MYbb6hGjRoKDQ3VoUOH0iwqVblyZeu2rN6P5s2ba+fOnTp27JieeOIJlS9fXjVr1tS5c+e0detWr4/BN2/eXMOGDct0vMwMHTpUe/fu1R9//CEpJaC77bbbVKlSJdWoUUNnzpzRrl27vIJFm82mF1980aeFuDLTtWtXbdy4UV988YV17q5du6pOnToqX768Dh06ZP2sCA0NVceOHb0WcUvP/fffr507d2r69OmSUhYM69+/v8qWLavatWvLbrdr9+7daULIBx98UJ07d/a6zZ/v9ahRo9S/f3/r592nn36qL7/8UvXr11dYWJi2bdtmfQz/kksukc1m8+pvmxv16tWztg8cOKDOnTurbt26On36tD777DOVKlUqT87jb4G8dgEAyE8EsgAAwEu7du106623WuFHVqpUqaJvv/1WL730kubNmycpJWBMr/rNZrPp//7v//TCCy/kOsQr6Lp06aLDhw/r7bfftsK406dPa9OmTWmOLVWqlJ577jmVL19eDz74oCRpx44duQ5Da9asqQ8//FBPPfWUtdCR3W5PNyQKCwvT3XffrYceekitW7e2KvxWrVql66+/PsdzkFJ6CXfo0MErmOvRo0emj0ndK3LTpk3pvnaZadq0qbX9wAMP6NixY149jk+cOOG1AJRbpUqV9PLLL+vgwYN65ZVXJKUERy6XS6Ghoemeq3Llyho6dKgef/xxHThwQEeOHEkT7NlsNvXs2VMvvfRStnrHphYREaEJEybovffe0+eff25VER46dEiHDh1Kc3z58uU1fPhwXXfddTk+p6fnn39eVatW1VtvvWWF7Dt27NCOHTusY4oVK6bhw4crOTk5y0BWkl577TXFxcVp/PjxVqh57NixNBXdUsovlp599lndcccd6Y7lr/e6YsWK+vrrrzVw4ECrFUJycnKaCs+6devqo48+sn4hkxeuu+46NWzY0OrJe/ToUR09elRSykJ8LVq0yLNz+VOgr10AAPILgSwAAEhj6NChWrp0aZoqsYyULl1a7733njZv3qxZs2Zp+fLlOnDggE6fPq1ixYqpVq1aatGihXr06KFLL73Uz7MvOO677z61b99eU6ZM0YoVK7R//36dP39eUVFRKlu2rOLi4tSiRQt169ZNMTExOnfunKKjo3X27FkZhqHvv/8+120fWrVqpZ9//llTp07V77//rp07d+rMmTOKiIhQ6dKlVadOHV1xxRXq1q2bqlevLklq0aKFli1bJimlIjq3gayUEii5g7nLLrtMdevWzfWY2WGz2TR06FB17txZ33zzjdasWaOEhATZ7XZFRUWpYsWKiouLU9u2bdW5c2dFRkbqwIEDGjlypAzD0MmTJ/XLL7/opptuyvAcjRs31syZMzV58mTNmzdPe/bskcvlUsWKFdWqVSvdeuutedYDMzQ0VAMHDtSdd96pH374QX/++ad27NhhhY6xsbFq0KCBOnbsqP/7v/9TdHR0npzXrW/fvrrmmms0ZcoU/fHHH9qzZ4+klNCybdu2uvPOO1WnTp00/Vkzc88996h79+764YcftHTpUsXHxysxMVGGYahUqVKKi4tTu3bt1K1bN6uXbXr8+V6XLFlSEydO1O+//64ZM2bo77//1tGjRxUdHa1atWqpc+fOuuOOO3IVuKcnPDxcX331lT744AMtXLhQCQkJcjqdKl++fIFrXxDoaxcAgPxgM7P6LBcAAADgZ8OHD7dWnh8xYoRuv/32AM8IAAAA8A8W9QIAAEBA2e12zZ07V5IUHR2tLl26BHhGAAAAgP8QyAIAACCgZs2aZX0cuXv37nwEGQAAAIUagSwAAAACZu3atRo9erSklIXD+vXrF+AZAQAAAP7Fol4AAADIN2vXrtWQIUNUsWJFJSYmKj4+3rrvwQcftBYOAwAAAAorFvUCAABAvjl27Jhat26d5vaOHTtq/PjxCg8PD8CsAAAAgPxDhSwAAADyTdmyZdW6dWtt2LBBTqdTNWrUUM+ePXXXXXcpNDQ00NMDAAAA/I4KWQAAAAAAAADIJyzqBQAAAAAAAAD5hEAWAAAAAAAAAPIJPWSRK6tXr/baDwkh4wcAAAAAACiKDMPw2m/WrFmAZhLcCGSRp1J/4wEAAAAAAAC4iHJGAAAAAAAAAMgnVMgiT9GyANmWlCR5VlaHhEhRUYGbDwoszwp9fhYhJ7iGkFtcQ8gtriHkBa4j5BbXEHKDT077hkAWuRISEuL1zXbZZZcpLIzLCr4z69eXbevWi/txcbJt2RLAGaEgcjqdWrdunbXPzyJkF9cQcotrCLnFNYS8wHWE3OIaQm79/fffVk5EoJ8xXhkAAAAAAAAAyCcEsgAAAAAAAACQT6g7BxBQro8/1s4NG6z92pddxg8mAAAAAABQaJF7AAistm11qkSJi/uXXx64uQAAAAAAAPgZLQsAAAAAAAAAIJ8QyAIAAAAAAABAPiGQBQAAAAAAAIB8QiALAAAAAAAAAPmEQBYAAAAAAAAA8klYoCcAoIhbu1bRGzde3DdNqXnzwM0HAAAAAADAjwhkAQRU6F13qf7Wrda+GRcnbdkSwBkBAAAAAAD4Dy0LAAAAAAAAACCfUCELAAAAACgQTNOUYRiBnkbQcrlcafZtNluAZoOCiGuoaAkJCeH9DRACWQAAAABAUDJNU0lJSTp16pTOnDkjp9MZ6CkFNdM0vfa3b99O2IJs4RoqesLCwhQTE6OSJUsqKiqK9zufEMgCAAAAAIKO3W7Xnj175HA4Aj2VAiUsjH/mI3e4hooWp9OpEydO6MSJEwoPD1eNGjUUERER6GkVevSQBQAAAAAEFcLYnLHZbAoLC7P+UOmG7OIaKtocDof27Nkju90e6KkUevzaAwAAAAAQNEzTTBPGRkdHWx+nDQ0NDeDsgpu7xYMbHz9GdnENFS0ul8tqC3P27FlJF0PZSy65hPfejwhkAQAAAABBIykpySuMrVixomJjYwM4o4LDNE2vwDo0NJRABdnCNVS0hIaGKiIiQqVLl1ZiYqISEhIkpYSySUlJio6ODvAMCy9aFgAAAAAAgsapU6es7ejoaMJYAMgHsbGxXgHs6dOnAzibwo9AFgAAAAAQNM6cOWNtlyxZMoAzAYCixfNnLoGsfxHIAgAAAACCgmmacjqd1n5UVFQAZwMARYvnz1yn0ynTNAM4m8KNQBYAAAAAEBQMw/DaZwEvAMg/qX/mpv6ZjLxDIAsAAAAAAAAA+YRAFgAAAAAAAADyCYEsAAAAAAAAAOQTAlkAAAAAAAAAyCcEsgAAAAAAAACQT8ICPQEARZtr3jz9s369td+gSRN+MAEAAAA5FB4eHugpAACyQO4BILCqVpX96FGvfQAAACAnTpxz6MQ5R6CnETCmTLmcLms/NMyhMsUjVLo4IS0KBofDwS8VUCQQyAIAAAAACoUT5xzalZgU6GkElMvwCGRDQmWLteV7IPv9999r6NCh1v6ECRN09dVX+/z4Q4cOqUOHDtb+1q1b83J6+aJTp07av3+/JGnBggWqVq1agGeU98aPH6/3339fkvTYY4/p8ccfz/FYR48e1VtvvaVWrVqpe/fuae4fMmSIZsyYIUkaNWqUevTokeNzAcGAQBYAAAAAUKj8tfu4nIYZ6GkEgCmHI6VCOCzEpnaXVgzwfFK8+OKLmjVrlsqUKRPoqSAIzZkzRy+99JJOnz6tFi1aBHo6QL4gkAUAAAAAFCpOwyyygWwwPu8jR47o5Zdf1rhx4wI9FQSh33//XadPnw70NIB8FRLoCQAAAAAAgMJt7ty5mjlzZqCngQLqjTfe0NatW7V161baFaBQIJAFAAAAAAB+N3LkSCUkJAR6GgAQcASyAALK9sMPKjtrlvXH9sMPgZ4SAAAAgDxSr149lS5dWpJ06tQpPf/884GdEAAEAXrIAgiokBdfVC2PVVPNuDjp1lsDOCMAAAAAeaVs2bJ6+OGHNXDgQEnSkiVLNHnyZN155515do7t27fr22+/1YoVK7R//34lJSWpdOnSql27ttq3b6/bbrtNpUqVyrPzHTt2TJMnT9aiRYu0c+dOGYahypUrq1OnTurbt68qVszeYmrr16/XDz/8oOXLlyshIUHJycmKjY1Vw4YNde2116pr164KDw/PchyHw6G5c+dq6dKlWr9+vY4dO6YzZ86oePHiKl26tC677DJ16tRJnTt3VmhoaKZjGYahefPm6ZdfftHGjRt16tQplSlTRk2bNlWfPn3UqlWrbD3H9HTq1En79+/3um3o0KEaOnSoJGnUqFFWe4IhQ4ZoxowZaW53i4uLkyRdc801+vDDD3Xq1ClNnTpV8+bN0969e+VwOFShQgW1a9dOffv2VfXq1a3H/vPPP5o8ebL++usvJSQkqFixYqpfv766d++uHj16yGazZfo8TNPUr7/+qnnz5mnt2rU6duyYbDabypcvr2bNmqlLly5q06ZN7l4sFDoEsgAAAAAAwG86d+6sBQsWaPbs2ZKkMWPGqG3btqpZs2auxk1KStIbb7yhb7/9VqbpvZjZkSNHdOTIEa1YsUITJkzQ0KFD1bNnz1ydT5IWL16sgQMH6uzZs16379y5UxMnTtS0adP09ttv+zz/YcOGWa+Lp0OHDunQoUNauHChPv74Y73zzjtq3LhxhmMtX75cQ4YM0YEDB9Lcd/r0aZ0+fVp79+7VnDlz9Mknn2jChAmqUqVKumMdP35cAwcO1Pr1671uP3z4sH755Rf98ssv6t27t2JjY316nvltzZo1euqpp9K0x9i1a5d27dqlH3/8UR999JGaN2+uTz75ROPGjZPT6bSOs9vtWrFihVasWKFFixZp3LhxCglJ/wPmu3fv1sCBA7Vp06Z079u9e7e+//57tWnTRmPGjAna1wz5j0AWAAAAAAD41UsvvaQVK1bo8OHDSkpK0uDBgzV58uQsKzUzkpycrIceekgrVqywbmvQoIFatWqlUqVK6cCBA/rtt990+PBhnT59Ws8//7wOHTqkRx99NMfPYd68eRo0aJAV3pUvX17XXXedKlSooIMHD2r+/Pk6duyYHn/88SyrKpOSknTXXXdZQV5ISIhat26tyy67TJGRkdq3b58WLVqko0ePas+ePbrzzjs1ceJENW/ePM1Yq1evVv/+/eVwOCRJlSpVUvv27VWlShXZbDYlJCTozz//1K5duyRJ8fHxGjRokKZOnZpmrOPHj6tv377at2+fJCk8PFxXX3216tevL7vdrj///FMbNmzQlClTrFYUOTVgwACdPn1ac+bM0caNGyWlhPfu4Pmyyy7L9ph79+7VQw89pFOnTqlcuXK67rrrVK5cOe3evVtz586V3W7XqVOnNGTIEPXq1Utjx45VSEiIrr76al122WVyOBxauHCh4uPjJUm//PKLvvnmG/Xu3TvNueLj43X33XfrxIkTkqSoqCh16tRJderUkWEY2rZtmxYvXqzz589r6dKl6tWrl6ZNm0YoC0kEsgAAAAAAwM9KlSql1157TQ888IAk6e+//9Z///tfPfTQQzkab9SoUVYYW7x4cb3++uvq3Lmz1zHJyckaM2aMvvzyS0nS+PHj1bBhQ3Xs2DHb5zt16pRefvllK4y9+eabNXLkSBUvXtw65rnnntMLL7yguXPnZjne8OHDrTC2bt26evfdd3XppZd6HXP+/Hm99dZb+t///qfz58/rqaee0k8//ZSm/cLLL79shbFdu3bVa6+9poiICK9jTNPUJ598orFjx0pKef03bdqkRo0aeR03duxYK4ytVKmSJkyYoPr161v3Dxo0SD/88INefPFFK4jMqdtuu02StG3bNiuQbdeuXZp2BNnhDlJ79uypl19+2et1uPvuu9W7d285nU7t3btXY8eOVWxsrCZMmKAmTZpYxz355JN67rnnNGvWLEnStGnT0gSy586d0+OPP269Btdff71GjhyZJqROSEjQ008/rZUrV2rfvn169tlnNXHixBw/PxQeLOqFPOX+LaBhmFkcCQAAAAAoStq3b6877rjD2h8/fry2bNmS7XF2796tadOmWftjxoxJE8ZKUmRkpF544QXdfvvtklJCyTFjxsgwjGyf87PPPlNiYqIk6YorrtCbb77pFcZKUkxMjMaOHaumTZtmOtY///yjmTNnSpJKly6tSZMmpQljJalYsWIaNmyYFSAfOXJEX331ldcx69evt0LIcuXKaeTIkWnCWCnl3+oPPfSQLrnkEuu2DRs2eB2za9cuTZ8+XZIUFhamd9991+rN6ql79+5Wn9dg1KhRI7366qtpXocmTZrommuu8bpt5MiRXmGslFKt/Oyzz1r7W7Zskd1u9zrm22+/tSqOr7zySr377rvpVgxXrFhRH3/8sSpUqCAppYfyypUrc/rUUIgQyMIvHASyAAAAAIBUBg8erBo1akhKWYTq2WefTRN2ZWX27NlWpWrLli117bXXZnr8M888o6ioKEnSv//+q9WrV2d73r/++qu1/fDDD2fYUzQ0NNRawCwjnq0Cbr/9dpUrVy7T4z3bLPz4449e95UuXVrDhg3Tfffdp6eeekrFihXLdCzPatfTp0973Td//nyrF2/Hjh1Vr169DMfp06ePqlatmum5AqVv374Zvj8NGza0tsuXL58moHWrWLGiSpYsKUlyuVw6efKk1/2e7+GAAQMybb0RExOje++919r/4YcfsnoKKAIIZOEXTlf2f+MIAAAAACjcoqKi9MYbb1iBWXx8vN57771sjfHXX39Z2zfddFOWx5csWVLt2rWz9pcvX56t8x08eFD//vuvJCkiIkKtW7fO9PgWLVpk2l/Vs+9t6pYB6WnYsKEVKO/Zs0eHDx+27qtRo4buuusuDR48WL169cp0nMOHD+v48ePWvudCVpL0xx9/WNuer1d6bDabrrvuuiznHgipK149eYbfjRo1yrTXb3R0tLWdnJxsbR89elQ7duzwGicrzZo1s7ZXrVqV5fEo/OghC7+gQha5ZZqGbDZ+ZwQAAAAUNs2aNVP//v316aefSpImTpyoTp066T//+Y9Pj9+zZ4+13aBBA58e07BhQ82bNy/N432xf/9+a7tWrVoKDw/P9HibzaZ69ep5Ba9uLpdLO3futPafeOKJbM1Fkg4cOGB9BD6j+3fv3q19+/Zp79692r59u7Zs2WL1hnVzV8O6eT7POnXqZDkPz2rbYFKxYsUM7/OsnHVXwPpyrKdt27Z57bds2TIbs0t5fwACWfiFMwc9eQAvLocUFhnoWQAAAADwgyeeeEKLFy9WfHy8DMPQ4MGD9eOPP1qVoJnxXEyqTJkyPp3P87jsLkZ19OhRazurEC+reZ08eTJNEJpd6c1/165d+uyzz/Trr79avW7TExoaKpfLle59x44ds7Z9eZ6+vvb5LXVv34xk1mYgM7ldzMxutyspKcmnax2FF4Es/MLhokIWuWMadtlEIAsAAAAURhEREXrrrbd06623yuFwaM+ePXrjjTc0YsSILB+bk0DTM4TMqPIxL6W3sJaUtk3Agw8+mGl7g/TUrl3ba3/69Ol6+eWX5XA40syhZs2aqlevnpo0aaKWLVtq0qRJmjFjRrbOl5GMnmOgZdaGIC94XkslSpTQww8/nO0xwsKI44o6rgD4hZOWBcgl03BkfRAAAACAAqt+/fp6/PHHNXbsWEnSN998o2uvvTbTxaQkqVSpUlYf1ePHj1uLhGXGs3dqiRIlsjXP8uXLW9u+VkemXjDLrVSpUl77N954o089SDOyZs0avfTSS1ZI2KxZM912221q2rSpatSokSZ8PnfuXIZjlS9fXrt375aUUslbrVq1TM996tSpHM+7IPOsHjYMQ/379w/gbFBQ0aARfuFgUS/klotAFgAAACjs7r//fl1xxRXW/gsvvJBmRfvUatWqZW3/888/Pp1n8+bN1nbNmjWzNUfPYHLXrl06f/58lo/Zvn17urdHRkZ69ThN3Y80Ixm1IZgwYYIVxl599dWaPHmyunfvrlq1aqVbCew5TupKY8/nGR8fn+WcMnqOhZ3n9XP27FmfesLa7fYMQ3oUTQSy8AtaFiC3qJAFAAAACr/Q0FC98cYbVt/Pw4cPa+TIkZk+5sorr7S258yZk+U5Tp06paVLl1r7nive+6JixYpWFavT6dSCBQsyPX779u3au3dvhvdfddVV1vbcuXOzPP+WLVvUqlUrXX755ercubNXqLpmzRpr+7bbbsv04/pJSUlat26dtZ86kO3UqZO1PX/+/CzntXjx4iyP8YW/WwzktZo1a3qF6u7F4jIzdepUNW/eXFdeeaUGDBjgz+mhgCCQhV/QsgC5ZRr2QE8BAAAAQD6oVauWnn32WWt/5cqVmR5/yy23WAsyLV++PMvwcOzYsdZH9StVquQV6Prq5ptvtrbfe++9TD/6P27cuEzH6tmzp7W9aNEir7A4NdM09dZbb0mSzp8/r5IlSyo2Nta637NvbGaLeUnSW2+9peTk5HQfK0k33HCDwsPDJUl//fWXli1bluFYv/32m1e4mxuelbwZLTgWbDzfw08//dRqoZGe48eP65NPPpGU8suBrFpyoGggkIVf0LIAuWXSsgAAAAAoMvr06aM2bdr4dGz16tV16623WvvPPPNMupWydrtdo0eP1pQpU6zbhg0blqMFle68807VqVNHUkrbggcffFDHjh1Lc77XX389y4rJVq1aWc/VNE098cQT6YbKSUlJGj58uJYsWWLd9uSTT3odU79+fWt7woQJOnLkSJpxTp8+rRdffFFff/211+2pWy+UL19eDz30kDWvwYMHe53bbenSpV4Bem7FxMRY2/v378+zcf3pnnvusXoLHzt2TH379k23/cTBgwf18MMPW+9L6dKl1a9fv3ydK4ITi3rBL6iQRa7RsgAAAAA5FBZSsD4CnZfMC8+9oL0GNptNr7/+um6++WafFot64YUXtHXrVq1du1bnzp3TwIED9emnn6pVq1YqWbKkDh48qN9++00JCQnWYx544AFde+21OZpfRESERo8erX79+unMmTNasWKFrr/+el1//fWqWbOmEhMTNX/+fO3fv19hYWGqXLlypm0LxowZo9tvv1179uzRmTNn9Oijj6pRo0Zq2bKlYmJitH//fi1cuNCr6nXAgAFq1aqV1zj9+vXT33//LUnau3evNafq1avLbrdr165dWrx4sRW+hoeHW5Wx6S1Q9tBDD+nPP//UmjVrdObMGd1///1q2bKlmjVrJpvNptWrV1uVs7Vr19bOnTtz9Hp68uxd+9lnn8lut6tEiRK68sor1bx581yP7w9lypTRuHHj1L9/f507d047duxQt27d1KZNGzVu3Fg2m03bt2/XggULrNc7PDxcb775psqUKRPg2SMYEMjCLxwGFbLwUXi4jIgIa9d24SMypuGUaZoFrp8QAAAAAq9lzaIbeLiMgvGR7/RUqlRJL774op577rksj42MjNQXX3yhV155RTNmzJBpmtq8ebPX4l1u0dHRGj58uLp165ar+TVp0kRTp07VQw89pP379+vMmTP6/vvvvY6JiIjQyJEjtXDhwkwD2djYWH377bcaMmSIFi1aJEnatGmTNm3alO5zfeqpp3Tfffelue+GG27Q448/rvfff1+maSopKUk//PBDuue86aab1K1bN6uH6caNG9McEx4erg8//FAjRoywqo7/+usv/fXXX17HderUST169NBjjz2W4XP01U033aT3339fJ06cUHJysiZOnChJuuuuu4I2kJVSehFPmTJFgwYN0o4dO+RyufT777/r999/T3NshQoV9MYbb/hcBY7Cj0AWfuFkUS/4yPX33169hy6//PILP5jMlCrZ0IiMHgoAAAB4KV08XLViowI9jYAxZcrlvBjIhoaFqnTx8ADOKPu6deumBQsW+LRQUrFixTRq1Cj17dtX3333nZYvX65Dhw7pzJkzKlGihOrVq6f27durZ8+eXn1Xc6Nu3bqaM2eOpk2bpp9//lnx8fE6f/68KlSooJYtW+ree+9VvXr1tHDhwizHKlOmjCZMmKDVq1dr1qxZWrVqlRISEpSUlKSYmBjVrl1brVq1Uq9evVSlSpUMx3nsscfUrl07ff3111qzZo0SEhJkGIaio6NVo0YNNW7cWN27d9fll18uu92uMmXK6Pjx4/r333+1YcMGXXbZZV7jRURE6NVXX1XXrl01c+ZMrVmzRseOHVNMTIzq1aunW2+9VV27dtVvv/2W69dTksqVK6epU6dq3LhxWrlypU6cOKFixYpl2qc3WDRo0ECzZ8/WvHnzNH/+fK1bt06JiYlyOBwqXbq04uLi1KlTJ3Xr1s2rNQNgM1Mvqwdkw99//y3Doxq2adOmCg0N1aLtR9W+dlmFFLCPySD/OZ3OtIFsWJiSD/+t8DL1FBIeHcDZoaDI6DoCfMU1hNziGkJucQ2lcLlcio+Pt/br1atnLd6ErJmm6bVQU3h4OJ84Q7a4q2zdoqKiuIaKkLz4GeyZE4WEhOiKK67I0zkWFkXv//DINw7DUGQIf3lCDpmmZDgDPQsAAACgQEkdyAIAgk9IoCeAwstB2wLkksnCXgAAAAAAoJAhkIXfOA0CWeSGSSALAAAAAAAKHQJZ+I3DZWR9EJAZWhYAAAAAAIBChkAWfkOFLHLFpEIWAAAAAAAUPizqBb+hhyx8YXvnHVXdtOnifqNG0rPPSjJlughkAQAAAABA4UIgC79xGrQsQNZCJk5Upa1brX0zLu5CICtaFgAAAAAAgEKHQBZ+Q4UscsOUKdGyAAAAAAAAFDL0kIXfOKiQRW6YokIWAAAAAAAUOgSy8BsnFbLIFRb1AgAAAAAAhQ+BLPzGYRDIIncIZAEAAAAAQGFDIAu/cbpoWYDcMCXTlEnbAgAAAAAAUIgQyMJvqJBFXiCQBQAAAAAAhQmBLPzGMEwZhLLIKfPCtUPbAgAAAAAAUIgQyMKvHAZtC5BTKYEsfWQBAAAAAEBhQiALv3K4qJBFLhHIAgAAAACAQoRAFn7lpGUBcupCywLTRQ9ZAAAAAABQeBDIwq8cLloWIHdoWQAAAAAAAAoTAln4FRWyyDkW9QIAAAAAAIUPgSz8ih6yyC3ToGUBAAAAAAAoPAhk4VdOg5YFyKkLPWSpkAUAAAAAAIVIWKAngMKNClnklOm+dKiQBQAAAHwWHh4e6CkAALJAIAu/clAhiyyYcXE6Z14M7ovHxbnvSfkvFbIAAADwkev8CRnJJwI9jYByOS8WNNjCwhQSWVqhxUoHbkJBzuFwEGIXMbznCAYEsvArJxWyyILx3Xf6Z906a79p06YKlcSiXgAAAMguI/mEnKd2B3oaAeUyXBd3QkIVVlL5FshOmjRJo0aNkiRVrlxZixYt8ulxXbt21datW6394cOHq0+fPlk+7qefftKgQYMkSbGxsfrzzz9ls9m0fPly3XPPPZKkq666Sl999VW6j1+2bJleffVV/fTTT+neH2cVi8hrfsEi2OeXF4YMGaIZM2ZIkkaNGqUePXrkeKw9e/botdde03333acWLVqkuf/uu+/WihUrJElffvlluscAeYVAFn7lMAhkkUMXLh3TcMk0DdlstLwGAACAb5IP/lUkF4c1JTkcKc/bFhKmEjXa5uv5W7dubW0fPHhQBw4cUJUqVTJ9TEJCQpow8ffff/cpkF2+fLm13aZNG9lsNp/nOnDgQM2ZM8fn41GwTZo0SW+//bbsdrvuu+++QE8HYFEv+JfTRcsCZJ9ppgryi+BfpgEAAJBzpuGUTFcR/eOUTGdAAul69eqpQoUK1v6qVauyfMzixYvT3PbXX3/Jbrdn+VjPQLZdu3Y+zjIFYWzRsmDBAp+uKSC/EMjCr6iQRa5c+EskfWQBAACAgqFNmzbWdnYCWZvNpquvvlqSdO7cOa+wNT2HDx/Wrl27rMd6BrItWrTQ1q1btXXr1gzbFQCpffXVV9Z1Q7sC+BuBLPzKMEwZhLLINu8FvQhkAQAAgILBs23B6tWrMz3Wbrdr2bJlklKqazt37mzdl17lrCd3r09JatiwoWJjY3MyXQAICAJZ+J3DoG0BcsYKYglkAQAAgALBs5fr9u3bdfz48QyPXb16tc6ePSspJcht166dQkJSYorff/890/N4BrLZbVcAAIHGol7wG5dpKtRmk8NlKpIrDdlxoYes6Urp8VMUF2QAAAAACqKyZcuqfv36+ueff2SaptasWaNrrrkm3WM9Q9d27dopNjZWjRo10oYNG7R7927t2rVLtWrVSvexmfWPXb58ue655x5J0lVXXWW1LfC83VNcXJy1nXqBMU/JycmaOnWqfvnlF23fvl1nz55V+fLl1aBBA91yyy269tprM3xsdu3du1eTJ0/WkiVLtHfvXoWEhKh69eq64YYbdM8996hEiRLZGu/PP//U7NmztXr1ah0+fFiGYahs2bK6/PLLdeONN+r666/3aVG0c+fOadasWVq2bJk2b96s48eP6+zZs4qOjlZsbKyaNm2qG264QR07dsxyLLvdru+++04///yztm7dqrNnz6pcuXK66qqrdM8996hx48bZeo7p8Xxv3TyvgS+//NJqT3D33XdbQb/n7ZK0b98+6zq+55579MILLyghIUFTpkzRggULtH//ftlsNlWpUkWdOnXS3XffrXLlylmPX7lypaZMmaK///5bR44cUUxMjBo1aqTevXv7dN04nU7NmjVL8+fP16ZNm5SYmKjw8HBVrFhRV111lXr06KEmTZrk7EVCQBCTwW+cLlOhYTY5aVmATIQ8/rgu+ecfa9/WsKH0/viUHXdlrIsKWQAAAKCgaN26tf658Hf8VatWZRjIutsSREVF6corr5SUEq5u2LDBuj+9QNazf2yJEiXUtGnTvH0C6di8ebMee+wx7d+/3+v2/fv3a//+/Zo/f76uueYavf322ypevHiuzjV9+nS9/PLLcji8/x3k7m/6zTff6MMPP/RprGPHjumZZ57Rn3/+meY+99znzJmjRo0aady4capWrVqGY82ZM0cjRoxIt+r55MmTOnnypHbu3KkZM2boqquu0vvvv69SpUqlO9aePXv04IMPaufOnV63Hzx4UD/++KNmz56txx9/3KfnGAjz58/X0KFDderUKa/b4+PjFR8frx9++EGfffaZateurddffz1NL+Pjx49ryZIlWrJkifr27avnn38+w3OtX79ezzzzjHbv3u11e3Jyss6cOaPt27drypQp6tKli0aOHKmoqKi8e6LwGwJZ+I3DMBUpyeGiZQEyZvvtN5X2+C20eeiQ0vaQpUIWAAAAKCjatm2riRMnSsq4j+y+ffu0fft2SSmLcEVEREiS2rdvb4WNixcvVt++fdM81rM6tnXr1goL8y3aqFGjhp577jlJ0ptvvmnd7r4tM3fddZfOnj2r4sWL65prrlHt2rWVnJysP/74wwqfFyxYoDFjxmjYsGE+zSc9kyZN0qhRo7zm3LFjR5UpU0a7d+/Wr7/+qoSEBPXv3z/LsQ4fPqw77rjDCpHDw8PVoUMH1a9fXyEhIdq1a5cWLVqkU6dOadOmTbr11ls1ZcoUVaxYMc1Yc+bM0aBBg2Re+DRjrVq11KZNG1WsWFEul0sHDhzQ77//roSEBEkpLSVeeeUVjR07Ns1Yu3btUu/evZWYmChJ1mt6ySWX6PTp01q8eLG2b9+ud999V2XKlMn+i+jB/d5OmTJFe/fulSTdcccdqlGjhiRZX7Nj7dq1mjJlihwOh6pVq6aOHTuqVKlS2rZtm3799VcZhqFDhw7pxRdfVKNGjfTVV18pPDxc1157rerVq6czZ85o3rx52rdvnyTpiy++UNu2bdW+ffs051q2bJkGDBig8+fPS5LKlCmjjh07qnr16nI4HNq0aZOWLl0qp9Op2bNna/fu3Zo8ebIiIyNz9Hoh/xDIwm+cLkNSKBWyyIEL14xpSKaLRb0AAACAAqR58+YqVqyYzp8/r82bN+vcuXNpqkY9F+3yDKKaNGmi0qVL68SJE1q5cqWSkpLSVPzltH9s5cqVrSDTM5D1Jdw8e/asOnTooNGjR3uFhE8//bTefvttffLJJ5KkqVOn6tFHH83RImN79+71CjD79++vQYMGeQXOzzzzjAYOHOj1GqTHNE0NHDjQCmObN2+uMWPGqHLlyl7HnTx5UsOGDdO8efN04sQJPfHEE5o8ebLXOZOSkvTaa69ZYeyDDz6ogQMHWv1+3RwOh15//XV9/fXXkqS5c+fqxRdfTPNajBgxwgpj69evr48++khVqlSx7n/22Wc1ceJEjRkzJtMexL5wv7eLFi2yAtnOnTt7tSPIrvXr10uSHnnkET3++ONer8P8+fP16KOPSpLWrFmjNWvWqGbNmvrkk0+8qr2feOIJPfjgg9YvF6ZNm5YmkD18+LAGDRpkhbF9+vTRc889l+Z7afv27XryySe1bds2bdiwQa+99ppGjBiR4+eH/MGiXvAbx4Ug1uEikEU2eVwypuFgUS8AAACgAImIiFDz5s0lpYR0a9euTXPMH3/8YW17BlGhoaFq3bq1pJQeo8uWLUvz2EAs6BUXF6cPPvgg3YrNgQMHWh/1dzqdWrNmTY7O8d577yk5OVmSdNNNN+m5555LU/1brlw5ffzxx5m2FpBSqnVXrVolKaWa9dNPP00TxkpSqVKl9M4776hBgwaSpG3btmnu3LlexyxatEhHjx6VlBKgDho0KE0YK6VU4A4dOlQlS5aUJLlcLm3atMnrmGXLlmnp0qWSpJIlS+rTTz/1CmMlKSQkRA888IBPQXmgXHvttXryySfTvA7XXnttmt6348aNS9N6o1ixYnryySetfXfI6+m///2vFVx36dJFw4cPT7cdxiWXXKJPPvnEum/69OlW+IzgRSALv3FeaFXgNGhZgOxyV8iaMl0OWhYAAAAABUybNm2s7dRtC+x2u/766y9JUp06ddKEi54BrWclrSQlJCRY/WPr1q2rSpUq5eW0M9SvXz+Fh4ene19ISIhatmxp7afuM+sLh8Oh3377zdrPrH9qdHS0HnnkkUzHmzp1qrV93333ZdpXNDQ0VAMGDLD2Z8+e7XV/nTp1NHToUN1zzz167LHHMl38KyIiQnXq1LH2T58+7XX/L7/8Ym3fdtttqlChQoZjPfroo0HbD7Vfv34Z3tewYUNru2nTplbYnVq9evWsbXfw6uZ0OjV9+nRr/7HHHst0PlWqVFGPHj0kpQThs2bNyvR4BB6BLPzGZUou06RCFjlmypQMJxWyAAAAQAGTWSC7fPlynTt3TpLUoUOHNI9t27atFfotWbLE675AVMdKUrNmzTK9v1y5ctb22bNnsz3+unXrrPCyevXquuSSSzI9/rrrrsswGHW5XF6veaNGjbI8v+fzW79+vZzOi0Ux9evX17333qsXXnhB1113Xabj7N27V0lJSda+5ziSd2V0x44dMx0rOjra6zoKFjabTZdddlmG93teC5m99tHR0da23W73um/Tpk3WdRQVFaXatWtnOS/P9zCj3s0IHvSQhV85XaYcVMgi2y6G+KbhoIcsAAAAUMDExcWpfPnyOnLkiNauXSun02l9/D6j/rFu5cuXV4MGDbR582bt379fe/fuVfXq1SUFLpDNqiesZ2sBl8uV7fHdCzxJ0qWXXprl8SVLllSVKlXSrcY9cOCAVyjas2fPbM3l/PnzOnHihFew6Mk0Te3du1d79uzRnj17tHfvXu3YsUObN2/W4cOH0xzruX3w4EFrP6vQWUoJg3/99ddszd/fSpcunemiWZ5tDNztG7I6LrVt27ZZ20lJSYqLi8vWHHNSpY38RSALv3IYppxUyCK73JeMaco0nCl/TDPTj8YAAAAACC6tW7fWjz/+qKSkJG3evFlNmjSRJP3++++SUir/3L1mU2vXrp02b94sKaXvaOpANrPH+kNMTIxfxz927Ji1nVmI56lMmTLpBm+5XQhLSlnsK3Ugu3HjRk2aNEmLFi1K04rAU2hoaLqh9PHjx70qZn15nun17A209Pq4ZiQ0NDRH5zhx4kSOHpdXj4f/EcjCr5wuw1rcC/CdxzVjOCTTlEyXZONHFgAAAFBQtGnTRj/++KOklI9QN2nSRLt27dLu3bslSS1atFBERES6j23fvr0mTJggKSWQve2227z6x1511VUZPraoyOj5pw5Dn3nmmUyrMT2ZpimHw5GmIviDDz7Q+PHjvSpepZRgvFatWqpXr56aNGmi1q1b66WXXvKqZM6NYHyP86NQyPM9rFq1qu68885sPT6zCl4EB9IN+FVKhSwtC5A9Hh9qsdoVmIZDthB+ZAEAAAAFRevWrWWz2WSaptauXSvJuydsev1j3Zo2baoSJUro9OnTWr58uSRp5cqV1v352a4gP5QvX97a9rW6MaMq1dSVp7169VLp0qV9GtM0Ta92B5I0Z84cvffee9Z+x44d1b17d1122WWqUqVKmoDS3R84tTJlyig8PFwOR8q/8U6ePJllK4hTp075NO/CxvM9jI6OVv/+/QM4G/gDi3rBr6iQRc6kqpD1/AoAAACgQChfvry1kvyGDRskSX/99Zd1f3r9Y93CwsLUunVrSSkf5z906FChDmSrVatmbW/ZsiXL4x0Oh1VpnFrVqlUVHh5u7Xv2I82IYRgZtjr48MMPre3evXvr448/1o033qiqVaumWy2amJhobXtW1NpsNlWtWtXa9+V5bt++PctjCqOaNWta27t3706z6Fd6zp8/nyZMR/AikIVfOQxTxoU/gM+s/2mn9JCVJNNFIAsAAAAUNG3atJGUssjQkSNHrFD1kksu8Qrn0uMZuv7zzz9as2aNJKlGjRpegVVhcPnll6ts2bKSpISEBKuiOCPLli3LMKQrVqyYLrvsMmt/3rx5WZ7/t99+U8uWLdWsWTPdfffdVq/X06dPewW6d9xxR6bj7Nmzx6uvbeoWB506dbK2586dm+lYTqfTq6K6KLniiiusUD05OVmLFi3K8jHvvPOOrrjiCrVs2VLDhw/38wyRWwSy8CvHhQW9HAZtC5ADpqyWBTKcmR8LAAAAIOi4A1lJmj59uvVx/MyqY908j1m5cqX+/fdfSXlTHeu52FJ6C1Dlt9DQUHXu3NnaHzNmjIwM/h3tcrn0/vvvZzpez549re1p06YpPj4+w2PtdrveffddSdLZs2dVvXp1hYWltItztxdwy2rBsNdee81r33MRL0nq0qWLtT1jxoxM5zV16lQlJCRkej5feb7fGb2uwaR48eJe18M777yTafXr7t27NXXqVEkp71HDhg39PkfkDoEs/MrdP9YdzAK+uVghK48esgAAAAAKliuvvNJaYOh///ufdXtm/WPdKlasaLU8mDFjhhWk5UUgGxMTY217VnQG0iOPPGL1VF25cqUGDRqkM2fOeB1z9uxZPf3001q3bl2mY3Xr1k1169aVlPJR9vvuu0+rVq1Kc9zx48f11FNPWcFoeHi4HnjgAev+MmXKqEKFCtb+O++8k2ZOknTkyBENGDAgTSVn6n6yjRo1Uo8ePSSlBMH333+/Nm3alGa8H3/8UW+88UamzzE7PN/vffv25dm4/vTII48oKipKkrRjxw71799fBw8eTHPctm3b9OCDD+r8+fOSUtod3HLLLfk6V2QfK+TAr9z9Y520LECOmFarApMKWQAAAPjIFhImM/iL4PzDlvJvr2BZEDcyMlLNmzfX0qVLdfToUUlSVFSUmjVr5tPj27Vrp/j4eKsvaUREhFq0aJHreVWrVk0nT56UJD366KP6v//7P507d06PPvqoIiIicj1+TsTGxuq1117TE088IYfDoZ9//lkrVqzQddddp8qVK+vQoUP69ddfdfToUcXExKh48eI6cuRIumOFh4dr/Pjx6tOnjxITE3XkyBHdeeeduvLKK9WsWTOFh4dr9+7dmj9/vlfl5bBhw1S7dm1r32azqV+/fho9erQkad26dbrmmmt03XXXqUqVKjpz5oz+/fdfLV261KqG9Vy4K70FyoYOHap169Zp+/btSkhIUK9evdShQwc1atRIDodDf/75p9avXy9Jql27tnbu3Jnr19azR++YMWO0f/9+hYeH6/rrr7eC62BTq1YtjRo1Sk8//bScTqfWrFmjG264QR06dFBcXJzsdrvi4+O1ePFi65cV0dHRevfddwN2DcN3wfETGoXWxQrZovq3IeSIu8+QKcl0ybNSFgAAAMhKZOWWgZ5CwEQYgf/4fWqtW7fW0qVLrf2WLVv6HBi1b99eEydOtPabNWtmVQ3mRu/evfXiiy9KkuLj460K0euuu06NGzfO9fg51alTJ33++ed67LHHdOLECR07dsz6KLpbTEyMxo0bp7Fjx2YYyEopYea0adP09NNPWz1pV65c6bU4mlvJkiU1bNgw3XzzzWk+Gt+vXz/t2LFD06ZNk5QSsrq3PYWEhKh3795q0KCB9dpu3Lgx3XNNnTpVTz31lJYuXSqXy6WFCxdq4cKFXsf17t1bl156qUaOHJnhc/RVz549NXnyZNntdp04cUIfffSRpJTWAMEayErSjTfeqFKlSmnw4MFKSEhQcnKyfvnlF/3yyy9pjq1Vq5bGjh1Lu4ICgkAWfkWFLHIn5boxDQctCwAAAJClkMjSCisZ6FkEmEfPzrCwMIVElg7cXC5o27at3nrrLWvfl/6xbs2aNVN0dLTOnj0rKW/aFUhSr169FBkZqa+++ko7duzQ+fPnVaZMGauKN5CuvPJK/fLLL/r666+1YMECbd++XS6XS5UqVVL79u3Vr18/Va1aVWPHjs1yrGrVqumbb77R4sWLNXfuXK1Zs0ZHjhxRcnKySpYsqUsvvVTt27dXz549FRsbm2YRLimlSvbVV1/VDTfcoOnTp2vdunU6duyYTNNUyZIlVatWLV1++eXq2bOnLr30Uh07dsyqkv3zzz+VkJCgihUreo1ZsmRJTZw4Ub/++qtmzJih9evX68SJEypdurQuu+wy9e7dWx06dPBqc5EbdevW1f/+9z998MEHWr9+vU6fPq2YmJh02y8Em1atWmn+/Pn68ccf9dtvv2nz5s06fvy4DMNQ2bJl1aBBA91www3q3LkzlbEFiM1M77sN8NHff//t1RC7adOmCg0N1aLtR7XvxHntPX5OrWqVUZ2y0apRpngAZ4pgZTz1lE5s3mztl27YUHpzpJIT1siRuEWupARFVmyu0BJVFVn+8gDOFMHM6XR69dG6/PLLrYUIAF9wDSG3uIaQW1xDKVwul9ciP/Xq1fNajAeZM03TaxGm8PBw2Wy2AM4IBY1pml4VslFRUVxDRUhe/Az2zIlCQkJ0xRVX5OkcC4ui93945CvHhW9CZwFYxRCBYYwZo50e//ho2rSpbC73XwDcFbJOiR6yAAAAQJZSB7IAgOATEugJoHAzTMllmnK4KMRGNlwo3HdfNbQsAAAAAAAAhQWBLPzO6TKtSlnAN+5FvS58NRxUyAIAAAAAgEKBQBZ+5zBMOamQRS6YhlOm4ZJpEuwDAAAAAICCjUAWfud0GXIYBLLwnXmxWUHKf93tCmhbAAAAAAAACjgCWfhdSoUslY3IBiuP9WhZIMl0EcgCAAAAAICCjUAWfkeFLLLP+3oxL/SPNekjCwAAAAAACriwQE8AhZ/DMGVc+BMSYgv0dBBkQrp0UaMtWy7u168v44cpF/YuBLMuWhYAAAAAAIDCgUAWfue4sKCXwzAUGRIa4Nkg2Nh27VKx3butfbNYMaWtkL3QsoAKWQAAAAAAUMDRsgB+5+4f6w5mAd+xqBcAAAAAAChcCGThd+7+sU76yMJX7sW83JeM1UOWQBYAAAAAABRsBLLwu4sVskaAZ4KCw0z71XASyAIAAAAAgAKPQBZ+R4Us8oJpOGlZAAAAAAAACjwCWfid072oFz1k4TN3y4KL14xpOFjUCwAAoJALCfH+J6rL5QrQTACg6En9Mzf1z2TkHV5Z+J3DSGlV4DRoWQAfWS1kPUJ8w0HLAgAAgELOZrMpLCzM2k9KSgrgbACgaPH8mRsWFiabzRbA2RRuBLLwO8OUXKZJhSyyIe21YhoOa3EvAAAAFF4xMTHW9qlTpwI4EwAoWjx/5pYoUSKAMyn8CGSRL5wu06qUBXzn2bIgZVEv0yTYBwAAKMxKlixpbZ89e1aJiYkBnA0AFA2JiYk6e/astU8g619hWR8C5J7DMK1eskDW0rlWDEfKzaZTsoXn+4wAAACQP6KiohQeHi6HI6VdVUJCgs6cOaOSJUsqKipKoaGhAZ5h8DJN06sHpMvl4iPHyBauoaLF5XIpKSlJp06d8gpjw8PDFRUVFcCZFX4EssgXTpchh0EgCx+5LxXTu0JWkkyXQ7YQAlkAAIDCymazqUaNGtqzZ48Vyp49e9YrLEDGDI9PJrIgD3KCa6hoCw8PV40aNQji/YzvLOSLlApZWhbAN2ZGPWQl+sgCAAAUAREREapRo4bCw/lFfHaYpimn02n9od0XsotrqGhzh7ERERGBnkqhR4Us8gUVssgeM9VXSa6UQNYKZgEAAFCoRURE6JJLLlFSUpJOnz6t06dPy+nkl/NZ8XyNCLSRE1xDRUtYWJhKlCihEiVKKCoqisrYfEIgi3zhMEwZF/6EhPDNjexzB7EEsgAAAEWHzWZTdHS0oqOjValSJZmm6fVxanhzOp3auHGjtX/JJZcoLIx/9sN3XENFS0hICAFsgPBdhXzhuLCgl8MwFBlCE35kIZ0esqJlAQAAQJFns9lY1CsTqT9eHhoayuuFbOEaAvIHPWSRL9z9Y93BLJC5tC0LrEW9qJAFAAAAAAAFGBWyyBfu/rFO+sgiFePhh5WwaZO1X6lx4/QPNF2SaVyslAUAAAAAACiACGSRLy5WyNLvCd7MRx/VwXXrrP2KTZtK5w657/U+1nBalbIAAAAAAAAFES0LkC+okIWvbDZbeh0LUhgOWhYAAAAAAIACjUAW+cLpXtSLHrLwSfqJrGk4WNQLAAAAAAAUaASyyBcOI6VVgdOgZQF8YXr81+NWKmQBAAAAAEABRyCLfGGYkss0qZBFNqW6Xgwni3oBAAAAAIACjUAW+cbpMq1KWSBT5oUgNlUem1Iha8g0XPk/JwAAAAAAgDxAIIt84zBMq5cs4JvUPWQv9I+ljywAAAAAACigwgI9ARQdTpchh0EgC2+hjRur2dat1r4ZFydzxTz3nvfBrpR2BabhkE2R+TRDAAAAAACAvEOFLPJNSoUsLQuQc+4FvVjYCwAAAAAAFFQEssg3VMjCZ1YP2dQtCy4EsQSyAAAAAACggCKQRb5xGKaMC3+AHLnQO9akhywAAAAAACigCGSRbxwXFvRyGLQtQFbMVF8v7NGyAAAAAAAAFHAEssg37v6x7mAWyFgG1wgtCwAAAAAAQAFHIIt84+4f66RlAbJiFcimvVZMw0mFLAAAAAAAKLAIZJFvHFaFLC0LkJVMQnvDLrkIZAEAAAAAQMFEIIt8425VYKdlAXyWToWsy0GFLAAAAAAAKLAIZJFvqJCF7zIO7U2DQBYAAAAAABRcBLLINw7DlCkCWfjAtP6TluGQScsCAAAAAABQQBHIIl85XIbVugDIWCYVsi6HZBoyDVc+zgcAAAAAACBvEMgiXzlcpuxUyMIXZvqhrGnYvb4CAAAAAAAUJASyyFdUyMI3mVwj7v6x9JEFAAAAAAAFEIEs8pXdZchhUCGLzJmmqYxCWXf/WPrIAgAAAACAgohAFvnK4TLlcJkXAjcg+8wLlbG0LAAAAAAAAAURgSzylcNlyDRNOQ0CWWTGzLKHrAxnPs4HAAAAAAAgb4QFegIoWuwX+sc6XIbCQ/l9ACTjzTe1e+NGSVJoaKiqN2woSTIz6iNrtSygQhYAAAAAABQ8BLLIVw5XSv9Yu8tUVIDnguBgdu6s41WrSpLCw8NVvXFj6cTWzB4hGU6rdQEAAAAAAEBBUuQD2c2bN2vatGlatWqVDh06pHPnzqlUqVKqU6eO2rVrp9tvv12lSpXyebz169dr2rRpWrlypRISEmSapipWrKhGjRqpW7duat++vWw2m8/jmaap+fPna+bMmdqwYYOOHTum4sWLq2LFimrZsqV69uyp+vXr5+SpB4Q7kHV/BdJlWv9J/27DIRHIAgAAAACAAqjIBrLnz5/XiBEj9N1336W57+jRozp69KhWrFihjz/+WCNGjFCXLl0yHc/hcGjkyJH65ptv0ty3a9cu7dq1Sz/99JPatm2rUaNGqUKFClnOMSEhQQMHDtTq1au9brfb7Tp58qTi4+P11Vdf6d5779WgQYMUERGR5ZiBdrFlAT1kkRkzszxWpuGQ6SKQBQAAAAAABU+RbOJpt9s1YMAArzA2NDRUDRo0UIsWLVStWjXr9rNnz+rpp5/WlClTMhzPNE099dRTXmFsZGSkmjRpoiuuuEIxMTHW7UuWLFHfvn116tSpTOeYmJiou+66yyuMLV26tJo3b65GjRopLCzMOvfnn3+uIUOG+P4CBNDFlgVUyCIrmVfI0rIAAAAAAAAUREWyQvbTTz/VsmXLrP2OHTtq+PDhqly5snXbypUrNXjwYO3fv1+S9Oqrr6p58+aqW7dumvE+++wzzZ8/39rv06ePBg0apBIlSkhKqcadNGmSxo8fL6fTqR07duj555/X+++/n+Echw4dqj179khKCXeHDh2qXr16WUHskSNH9Prrr2vOnDmSpJ9++klNmzbVPffck9OXJV84jJSlmmhZgPRcbOeRRQW1y07LAgAAAAAAUCAVuQpZu92uzz77zNpv1aqVPvjgA68wVpKuvPJKffnll1ao6nQ69dFHH6UZLzExUR988IG137t3bw0fPtx6nCQVK1ZMAwYM0IgRI6zbfv31V61ZsybdOf7xxx9atGiRtf/GG2+od+/eVhgrSeXLl9c777yj7t27W7d9+OGHOnPmTBavQOA5XAYtC5A501TWFbIumYYr/+YEAAAAAACQB4pcILt27Vqv0PLJJ59UaGhousdWq1ZNffr0sfYXLVok0/QOiaZPn66zZ89KSmkp8Nxzz2V47p49e+rqq6+29j///PN0j/viiy+s7bZt26pz584Zjjl8+HCVLVtWknT8+HHNmDEjw2ODhcNl0rIAF+3Yochdu1L+7Nwp7diRcntmPWTd/WOpkgUAAAAAAAVMkQtkDx065LXfqFGjTI+//PLLre2zZ8/q+PHjXvf//PPP1vZNN92kqKioTMe7/fbbre3ff/9dSUlJXvefPHlSf/75p7Xfs2fPTMeLiopS165drf25c+dmenwwcLgMOQwqZJEitGtXNb71VjW+9VbV69ZNti5dlJLGZnKNXAhi6SMLAAAAAAAKmiIXyHq2EpBkVbdmxOl0eu1HRkZa2ydOnNA///xj7bdt2zbL87ds2dKqyD1//rxX+CpJK1askMuV8jFsm82mNm3aZDmm5zFr1qzRyZMns3xMINldBj1k4YPMWxZ4fgUAAAAAACgoilwge+mll3rt//HHH5kev3TpUmu7cuXKio6Otva3bt3q1cIgq2pbKaWitUaNGtb+hg0bvO7fsmWLtV2tWjWVKlUqyzHr169vbRuGoU2bNmX5mEByuEw5XGaa9g+AJYtrw3TZvb4CAAAAAAAUFEUukK1evbpXH9d3331XR48eTffYVatW6fvvv7f2PfvJStKuXbus7YiIiDQLg2WkWrVq1vaePXsyHLNmzZo+jVe+fHkVK1bM2t+9e7dPjwsUh8uQaZpy0rYAGTClzENZd2Ws4cz4GAAAAAAAgCBU5AJZSXr++edVrlw5SdL+/ft166236vvvv9fRo0fldDq1d+9effzxx+rfv78cjpTgp2HDhrrrrru8xjly5Ii1Xb58eZ/P73ms5xiSdPjw4RyN6V7YK70xg43dlRK00bYAGcuiQtZqWUCFLAAAAAAAKFjCAj2BQKhZs6a+++47vfrqq5o/f74OHjyooUOHpnuszWZT165dNWzYsDQLdp04ccLaTt2bNjMxMTHWdup+r5772RnT89hTp075/Li85nK5ZLPZZJqmTMOQYaQNXZOdTpmmqWSnS5GhNloXFHEhpilbqttMw5Rhpn/9pDBkGk4ZzmQZGVxnKFrcvbcz2geywjWE3OIaQm5xDSEvcB0ht7iGgPxRJANZSYqNjVX79u21bds2rzYBqbVp00YPPPBAuuGo3X6xOs+zZUBWIiIi0h1DkpKTk3M9pucY+W337t2Kjo7W2TN2HT9xUgkJiWmOcZ4tplolQnQwIVlnwkyvqmAUPY2Sk+V5pTudTp08dVLGmVM6npCQ4eNiYxJls0fIlVxKx44dS/O9hKJt48aNgZ4CCjiuIeQW1xByi2sIeYHrCLnFNQT4R5EMZLds2aInnnjCq9dqZGSk6tWrp6ioKCUkJFgh7ZIlS9StWzf17dtXTz/9tMLCLr5k7nYGkhQS4nv3B88xnE7vHpie+9kZMzQ0NMMxg02yI+U3bA7DzNZzRBFimjKzaFtguOwKM1Ouda4jAAAAAABQUBS5QHbv3r3q27ev1W6gWLFiGjhwoO644w6vitS9e/dq7NixmjNnjlwulz777DMdPnxYb7/9tnWMZwianY9Mewam4eHhXvfldEzPjxGkHjPY2C/M1WmktIRwtzgALjKzaiMrw5UsEcgCAAAAAIACpsgFsiNGjLDC2MjISH3++ef6z3/+k+a46tWr65133lGNGjX08ccfS5Jmz56tjh07qkuXLpK8Wwpkp02A57GRkZFe9/ljzPxUs2ZNhYWFKTrpmMo4QlTRGZHmGJuk6OgYlShVTJXKRatChQr5P1EEjZBU12tYWJhKlSwpZ8hpRVasmOHjImKiFBZdTJGVKqlixYqE+kWcy+Xy+jhV48aNvX7BBWSFawi5xTWE3OIaQl7gOkJucQ0htzZs2MA6Lz4oUoHs3r179fvvv1v7AwYMSDeM9TRw4EAtW7ZM69atkyT997//tQLZ0qVLW8edOXPG53mcPXvW2vYcQ5JKlSqVozE9j009Zn4KDQ1VSEhISuVrSEiGlYsuI6VCNiSTY1A0mLbUS3q5K6ezqHw1nZJpXDiOvyDAW2hoqFd7GCC7uIaQW1xDyC2uIeQFriPkFtcQ4B9FKglbtWqV1/6tt97q0+PuuOMOa/uff/7RsWPHJEkVPar33Lf54siRI9Z2uXLlvO7L6Ziex5YvX97nxwWK3WXIwW9MkJksCl5N40IPZ5cj8wMBAAAAAACCSJEKZA8fPmxtlypVyuePytevX99rf//+/ZJSPp7vlpSUpKNHj/o03t69e63t2rVre91Xq1Yta3vPnj0+jXf48GGdP38+3TGClcNlyO7iI+bIiKksE9kLQawVzAIAAAAAABQARSqQjYi42M/U4fA9xEn9sWnbhY9YN2zY0NqWUqpns3L27FmvoDV12NuoUSNre/fu3Tp37lyWY3qe12azKS4uLsvHBJrDZcrhokIWOWcadq+vAAAAAAAABUGRCmQrVapkbSclJWnnzp0+PW779u3pjhMTE6OGDRtat//5559ZjvXXX39ZzY1DQ0N11VVXed3frFkzqz+Ly+XS8uXLsxzT87wNGzb06kMbrOwuQw6XyUJMSJ+ZdYWsVRlLhSwAAAAAAChAilQg26JFC69q12+++canx3333XfWdt26db16tN5www3W9syZM7OsaJ0yZYq13bp1a5UsWdLr/pIlS6ply5bW/tSpUzMd7+zZs5o5c6a1f+ONN2Z6fLBwuAyZpimnQSCLDGR1abhbFtBDFgAAAAAAFCBFKpCNjY31ClC//PJLLVu2LNPHfPXVV1q6dKm1f/vtt3vd37NnTxUvXlySdPToUY0YMSLDsaZNm6Y//vjD2r/nnnvSPe7OO++0tn/77Td9//33GY758ssvKzExUZIUFRXl80Jlgea4EMQ66COLdPleIUsPWQAAAAAAUJAUqUBWkp555hmrKtXlcumBBx7QBx98YIWabkeOHNErr7yiV1991bqtUaNG6t27t9dx5cqV0/3332/tf//993r66ad17Ngx67bz58/r448/1vDhw63b2rdvr/bt26c7x06dOqlFixbW/rBhwzRhwgQlJydbtx09elQDBw70qo595JFHFBsb69PrEGh2Z0rbBvrIwjVtmjZPnqzNkydrx3ffyfzuO5lZlsdKMl2SadCyAAAAAAAAFChhgZ5AfqtWrZref/99DRgwQElJSXI4HHrvvff00UcfqXbt2ipTpoyOHz+uf//91+r1Kkk1a9bUxx9/bPV39TRgwABt2LBBixYtkiTNnj1b8+bNU1xcnCIiIrRt2zadPn3aaw6jR4/OdJ5vvfWW7rzzTu3du1dOp1Njx47Vp59+qrp168put2vr1q1eC5N17NhR/fv3z+Wrk3/cFbJ2Alk0aKBz9pSFuWxRUVJcnJSwSln3LEipjqVlAQAAAAAAKEiKXIWslNJLdtq0aWrUqJF1m8PhUHx8vJYvX674+HgrjLXZbLrppps0ffp0VahQId3xwsLCNH78eN16662y2WzWeBs3btSaNWu8wtgrrrhCX3/9dZaVrBUrVtRXX32l//znP9Ztp0+f1po1a7Rx40avMPbWW2/Ve++959UfN9i5K2Md9JBFunxb8M102WlZAAAAAAAACpQiVyHrdumll+r777/X4sWL9euvv2rNmjU6cuSIkpKSVKJECVWtWlVXXXWVunfvrri4uCzHi4iI0Guvvabbb79dM2bM0F9//aWEhATZ7XbFxsaqSZMm6tKli66//nqfg9PKlSvr66+/1q+//qo5c+Zo/fr1Onr0qEJCQlSxYkU1a9ZMt912m5o2bZrLVyP/uStjHU4qZHGR+xcaPjMcMg27fyYDAAAAAADgB0U2kHXr0KGDOnTokGfjNWnSRE2aNMmz8Ww2m66//npdf/31eTZmMHC6UrqE0rIA6ct6US/pwoJetCwAAAAAAAAFSMH5jDsKFVMpoSwtC5AbpuGQaTp9am8AAAAAAAAQDAhkETB2l2H1kgW8mGbKn6y4HCnpPn1kAQAAAABAAVHkWxYgcBwuQw4XlY1FnW3BApXauFGSVLxYMWnPHqlxCZ8e617Qy3TZZQuN8NscAQAAAAAA8gqBLALG4TLpIQuFPPmkLt261do34+KkhZ/Jpx6yrpQFvUwqZAEAAAAAQAFBywIEjJ0KWWTEx56wVhBLIAsAAAAAAAoIAlkEjMMwZJqmnFTJIl0+hLLulgUEsgAAAAAAoIAgkEXAuKtj7VTJIg3fFvWyWha4CGQBAAAAAEDBQCCLgHFcqIx1UCGLnDJdkmnQsgAAAAAAABQYBLIIGHdlrMMgkEVqvldNm4ZDpmH341wAAAAAAADyDoEsAsZdGUvLAqRmmsrWwl6my+nfCQEAAAAAAOQRAlkEDC0LkDHT9xpZl0OiQhYAAAAAABQQBLIIGIcrJXRzUCGLdGWjQpYesgAAAAAAoIAgkEXAmJKcLlN2KmSRmo/tCqSLgayZjccAAAAAAAAECoEsAsphGLQsQAZ8DFgNR8qhVMkCAAAAAIACgEAWAWV3GrQsQPp8vCxMV0r/WNoWAAAAAACAgoBAFgHloGUBMuR7D1lJMl0EsgAAAAAAIPgRyCKgUloWUCGL9Ph4XbiDWCpkAQAAAABAAUAgi4CyuwyZpiknVbKwmF5fsjzaoGUBAAAAAAAoOAhkEVDu6lg7VbJII5stCwhkAQAAAABAAUAgi4ByXKiMdRhUyCKHDKckU7qwuBcAAAAAAEAwCwv0BFC0uStjHbQsKLJcq1dr/bp1kqTSpUurZs3qUuIa+dyzQCnVsVTIAgAAAACAgoBAFgFlVcjSsqDoioyUGRkpSSlfIyKyP4aLQBYAAAAAABQMtCxAQLkDWTsVsrC4F/XKXoWsXASyAAAAAAAg+BHIIqAcVssCKmSRc6bLToUsAAAAAAAoEAhkEVCmJIdh0kMWHswL/81OhawzpY9sNqpqAQAAAAAAAoFAFgHncBm0LIAkyWazXdzJTrhq2FOON515PykAAAAAAIA8RCCLgLM7DVoW4KIcVLm62xWY9JEFAAAAAABBLizQEwBoWVC02T79VBU3b5YkFS9eXLZaNaSbL5Oy07LAHcTSRxYAAAAAAAQ5AlkEXErLAipki6qQceNUbetWa9+sV1e6+dPsDeKukDXseTk1AAAAAACAPEfLAgScw2XKNE05Dapk4Sk7FbL2C1/pIQsAAAAAAIIbgSwCzr2gF31k4SUbl4NJhSwAAAAAACggCGQRcO7+sXb6yMJLNhJZw5FyPD1kAQAAAABAkCOQRcC5K2OpkEVumIbz4uJeAAAAAAAAQYpAFgF3sWUBFbLwYGYzoDccVusCAAAAAACAYEUgi4CjZQHSl71A1nTZaVkAAAAAAACCHoEsAo6WBcgLJhWyAAAAAACgACCQRcCZkhyGScsCpJLNgN7lSKmSBQAAAAAACGIEsggKDpdBhSy8ZPdqMA2HZJoyDadf5gMAAAAAAJAXCGQRFBwugx6y8JbNRb3c7QpoWwAAAAAAAIIZgSyCgt1FywLkjhXEughkAQAAAABA8CKQRVBwuAw5DFoWwFN2e8im9I81DfrIAgAAAACA4EUgi6DgcJkyDFNOgypZ5CyYp2UBAAAAAAAoCAhkERTc/WNZ2AuW7PaQddGyAAAAAAAABD8CWQQFhxXIUiELt2yG81TIAgAAAACAAiAs0BMApIuVsXYqZIscs0oV2U+dkiSFhoYqpHLlnI4k03ASyAIAAAAAgKBGIIugYKdCtsgyfvlFG9etkySVL19elctFScc2KUe9ZA27tbgXAAAAAABAMKJlAYICLQuQRg7yWNNwyDSceT8XAAAAAACAPEIgi6BAywJIks1m81jMK/vXgulyyDSokAUAAAAAAMGLQBZBwVRKKGunQhY5KY11P9JlT/ljEuwDAAAAAIDgRCCLoGF3GbI7CWThloNQ1ZWcUmHLwl4AAAAAACBIEcgiaCQ7DSpkISuIzUkPWVey11cAAAAAAIBgQyCLoGF3EchCHnlsTnrI2r2+AgAAAAAABJuwQE8AcLO7DDldpgzDVEiILdDTQT4JeeEF1dy8WZJUvFgxhdSoJD11q3K2qJe7QpZAFgAAAAAABCcCWQQNd/9Yu8tQsZDQAM8G+cX2448qt3WrtW/WveRCIJt9puGukKVlAQAAAAAACE60LEDQcLcroG0BJKUszpVdhlMyDQJZAAAAAAAQtAhkETTsLvPCVwJZ5JzpSpYMWhYAAAAAAIDgRCCLoOFuWZDszEFlJAqhnF0HpstOD1kAAAAAABC0CGQRNGhZgLxgupJpWQAAAAAAAIIWgSyChtMwZZimVSmLIi4nPWR1oULWcMg0uY4AAAAAAEDwIZBFULG7TCpkkSumKzml2wFtCwAAAAAAQBAikEVQsTsNAllckMMK2QsLetFHFgAAAAAABCMCWQQVu4tAFm45XNztQv9Y+sgCAAAAAIBgRCCLoGJ3GbI7TZk57B+KQiSHl4C7MpYKWQAAAAAAEIwIZBFUkp2GTNOU0yCQRU4X9bpQIWtQIQsAAAAAAIIPgSyCirtdgd1J24KiLseRvGlIhpMKWQAAAAAAEJQIZBFU3EEsfWSRi0hWpiuZHrIAAAAAACAoEcgiqNhdptdXFEWm15ccjeCyS1TIAgAAAACAIEQgi6BitSygQha5qZA1kmlZAAAAAAAAghKBLIKKu2VBMj1kkQumyy7TcMo0XIGeCgAAAAAAgJewQE8A8GRKcrhMKmSLELN1a52KjZUkRUZGKrx6Bfc9OR/zQnWs6UqWLSQqt1MEAAAAAADIMwSyCDp2l2FVyqLwMz75RP+uWyebzaZKlSqpXFSydHqPZOZuUa+Ur3YpnEAWAAAAAAAED1oWIOjYXQYVskVa7hd0s/rHGsm5HgsAAAAAACAvEcgi6Nidhuyu3IdyKOhycQ14VsgCAAAAAAAEEQJZBB27y5DTZcgwCGWLEpvNlrKRi1YFbhd7yBLIAgAAAACA4EIgi6DjbldA24IiLlfBrCnTsFu9ZAEAAAAAAIIFgSyCjt2ZEsQRyBZVeVMZbbrsVMgCAAAAAICgQyCLoJNMhWyRZlqVsbkMZl3JBLIAAAAAACDohAV6AkBqdueFQNZJD9miIKRPH8X9849sNpvCw8IUWrOS7O8NzvW4pssuGbQsAAAAAAAAwYVAFkGHHrJFi239esVs3WrtG6drKy/aFpguu0zDkGk4ZAsJz/V4AAAAAAAAeYGWBQg6TsOUYRLIInfcC3rRtgAAAAAAAAQTAlkEJbvLULKTQLbIMvOmQjblK20LAAAAAABA8CCQRVCyuwwqZJErVMgCAAAAAIBgRCCLoGR3EsgWbXlRIXuhMpZAFgAAAAAABBECWQQlu8uQ3Zn7UA5FmOGQZNKyAAAAAAAABBUCWQQlu9OQaZpyUCVbNOVBD1kppV0BLQsAAAAAAEAwIZBFUHK3K6BtQdGUV7XRpiuZClkAAAAAABBUCGQRlOyulEjO7iSQLZrysELWoEIWAAAAAAAEDwJZBCV3EOsOZlHU5G3LAjOPWiAAAAAAAADkFoEsglIyLQuKtrzKT13JKf1oDUceDQgAAAAAAJA7BLIISu7FvGhZUFTlVYVsstdXAAAAAACAQCOQRVAyTMlhmFTIFkl5117AdNm9vgIAAAAAAAQagSyClt1pEMgWWXldIUsgCwAAAAAAggOBLIKW3WXI7mQxpiIpj95203BXyNKyAAAAAAAABAcCWQQtu8uwFvdCUZNHiazhlEyDQBYAAAAAAASNsEBPAMiI3WnIaRgyTFMhNlugpwM/Me66S0c3b1ZoSIiKFSumyApReTq+6UqWDFoWAAAAAACA4EAgi6BldxmSmRLMFgsPDfR04CfmkCHat26dIiMjFRsbq9iwI9LZA3k3vstOD1kAAAAAABA0aFmAoOXuH8vCXkWQmXe9g01XMi0LAAAAAABA0CCQRdByB7F2Fwt7FS15+36bLrtMwyHTJNgHAAAAAACBRyCLoHUxkCVIK1JMyczDUNZ0JadkvLQtAAAAAAAAQYBAFkHL7jS8vqKoyOMK2QsLetFHFgAAAAAABAMCWQQth2HKMKmQLSpsNtvFnTzsIasL/WNNgz6yAAAAAAAg8AhkEdTsLoMK2SIn73vISpLppEIWAAAAAAAEXligJwBkxu4yqJAt5EJbttTlW7fKZrOlVMnWrqZz372RZ+ObVMgCAAAAAIAgQiCLoGZ3GrK78rZiEkHmzBmFnTlj7Rpnzubt+KYhGU56yAIAAAAAgKBAywIENSpki6q8X9jLXSkLAAAAAAAQSASyCGp2lyHDMOUglC1a8nJRL0mmM1miQhYAAAAAAAQBAlkENbszJZijSha5YRrJtCwAAAAAAABBgUAWQc0dxLqDWRQVeVwh67LLNJwyDVeejgsAAAAAAJBdBLIIanbnhUCWCtmiJY/zd3d1rGlQJQsAAAAAAAKLQBZBzaqQJZAtYvK6QjZlQS/TycJeAAAAAAAgsAhkEdQIZJEXrP6xBoEsAAAAAAAILAJZBDXDlJyGabUuQFGRxz0L3BWyLOwFAAAAAAACjEAWQc/uMqiQLVLMvI5jL/aQJZAFAAAAAAABRiCLoGd3GrI78zqiQ1Az8zySlWk4rF6yAAAAAAAAgUIgi6CXTIVsEZT3AbzpSqZCFgAAAAAABByBLIKe3WnIYRgy8rxqEkUKgSwAAAAAAAgCBLIIenaXKZmSgyrZosMP4bvpsksGLQsAAAAAAEBgEcgi6LnbFSQ7CWSRc6bLLtMwZBqOQE8FAAAAAAAUYQSyCHr2C0Gs3UXLgqLDPz1kU77StgAAAAAAAAROWKAnAGTFXSHLwl6FkzFsmPZt3KjIYsVULDJSUSXO++U87iDWdNml8Gi/nAMAAAAAACArBLIIelaFLC0LCiXz9tt1tH59xcTEyChRQpHGDuns/rw/j1UhSx9ZAAAAAAAQOLQsQNBzGKZMUSFbdJj+6FhwsVUBLQsAAAAAAEAAEciiQLA7DQLZQs5ms3ns+SGRNeySTHrIAgAAAACAgCKQRYFgdxmyO1nUq2jw3/tsuhwyDVoWAAAAAACAwCGQRYGQ7DSU7HIFehrIB6bp/o8fxnYlUyELAAAAAAACikAWBUKyM6VC1vRTUIdgYvqtRtY07ASyAAAAAAAgoMICPQHAF8lOQ6Zpyu4yFRlmy/oBKDiOHFHY0aMKPX9eIUlJkk5IkX6KZF0EsgAAAAAAILD8EshOmDBB3bt3V8WKFf0xPIqg5AsLeiU7XYoMo7C7MAnt2FGXb91q7RuXVNfZWW/45VymK1kyDZmGQ7aQcL+cAwAAAAAAIDN+SbbeeecdderUSffff79+/vln2e1UpCF3kp2G11cUdv7qIWv3+goAAAAAAJDf/NaywDAMLV26VEuXLlXJkiXVpUsX3XLLLWrcuLG/TolCLNnpuvCVQLZI8FPHgouBbLIUHu2fkwAAAAAAAGTCLxWy9evXl2ma1p+TJ0/q66+/Vq9evXTzzTdr0qRJSkxM9MepUUhZFbIuAtmiwV8VsskXvlIhCwAAAAAAAsMvgewPP/ygWbNmqX///lYfWXc4+++//2r06NFq3769HnnkEc2fP18ul8sf00AhYpiSw2VSIYtcsYJYAlkAAAAAABAgflsdqW7dunr22We1aNEiff755+revbuioqKsYNbpdOq3337T448/rnbt2mn06NGKj4/313RQCCQ7XQSyRYXpp54Fhl2SSYUsAAAAAAAIGL8vV2+z2dSqVSu98cYb+vPPPzV69Gi1adNGoaGhVjh7/PhxTZo0Sd26dVOPHj00efJknTx50t9TQwGT7DIIZIsMPwWySqmSNY1kv40PAAAAAACQGb8t6pWeYsWKqVu3burWrZuOHDmimTNn6qefftLmzZutYzZv3qx//vlHo0eP1jXXXKNbbrlF7dq1k81my8+pIgglO1MCWdM0uR6QY6bLToUsAAAAAAAImHwNZD2VL19e/fv3V//+/XXw4EEtXLhQCxcu1IoVK+RwOGS32zV37lzNnTtXlSpVUq9evdSrVy+VL18+UFNGgLnDWIfLVEQYgWzh5scKWYNAFgAAAAAABI7fWxb4onLlyurYsaM6dOiguLg4SbIqIE3T1KFDhzR+/Hh16tRJw4YNU2JiYiCniwBxtyugbQFyhQpZAAAAAAAQQAGrkJWkXbt2afbs2VqwYIG2bNli3W6z2WReWNSnevXq2r9/vwzDkMPh0PTp07VgwQKNHTtWLVu2DNTUEQBWIOtyqURgL134m78W9ZJkupIl05DpcsgWGu638wAAAAAAAKQn31OtY8eOafbs2Zo1a5Y2bdpk3W56BDCxsbG6+eabdcstt6h+/fo6fPiwZs6cqW+//VZ79uxRYmKiHnnkEX377be69NJL8/spIECokEVecFfHmq5kAlkAAAAAAJDv8iWQTUpK0q+//qqZM2dq+fLlcrlckrxD2LCwMHXo0EG33HKLrr76aoWFXZxahQoVdP/996tfv3568cUXNWPGDJ07d04fffSR3n777fx4CggCyU7Xha8EsoWd6c8esq7klK8GbQsAAAAAAED+81sgaxiG/vjjD82cOVMLFy7U+fPnJXmHsJIUFxenW265RV27dlVsbGymY4aGhuqVV17RwoULdfLkSa1cudJf00cQcpmS0zAJZJErFytkCWQBAAAAAED+80sgO3LkSP388886fvy4pJQQ1rMvbOnSpdWlSxf17NlTDRo0yNbYERERqlevnlauXKkTJ07k9dQR5JKdBoFsUeDvHrKSRCALAAAAAAACwC+B7OTJk70CWCmlurVt27bq2bOnrr76aoWH57x3o9PplCRVrlw513NFwUIgW1T4L5CV4ZBkXgxmAQAAAAAA8pHfWha4w9i6deuqR48e6tq1q8qWLZsnY1eoUEG9e/dWy5Yt82Q8FBzJTpeSXQSyyB3TZadlAQAAAAAACAi/BLKlSpVSly5ddMstt6hx48Z5Pv64cePyfEwUDMlOQ4ZhyuEyFB4aEujpIA+4PvtM2zdsUIkSJRQZblN05An5tUJWFwJZFvUCAAAAAAAB4JdAdsmSJblqSQBkxN2uINlJIFtoXHWVzkRGKiI2VrZwqbixWzrxr19PabqSqZAFAAAAAAAB4ZdAdsKECZKkmjVr6uabb87xGEuXLlVoaKg+//zzvJweCjB3u4Jkp6GYyABPBnnP6jvt3wpZuez0kAUAAAAAAAHhl0D2/fffl81mU9u2bXMcyC5dulQrVqxQyZIl83h2KMg8K2RRGPk5iHWfxbBLpinT5ZAtlGp+AAAAAACQf4L2M9/nz5+XJCUlJQV4JggmBLJFhf97yKZ8pUoWAAAAAADkrxxXyB49elR2e+Y9GM+fP68DBw5ka9zk5GQtXrxYGzZskJSyQBjg5jRMuQxTyS5XoKeCPGaz2S7u+LlQ1h3EsrAXAAAAAADIbzkOZH/88UeNGTMmw/tN09SqVat0zTXX5Gh80zRls9lUv379nE7RJy6XS7/88ot+/fVXbdy4UUeOHJHL5VK5cuXUuHFj3XzzzbrmmmsUEuJbMfH69es1bdo0rVy5UgkJCTJNUxUrVlSjRo3UrVs3tW/f3jt4yoJpmpo/f75mzpypDRs26NixYypevLgqVqyoli1bqmfPnn5/jYJNssugQrbQyp8eslTIAgAAAACAQMlxIHvvvffqhx9+0LZt2zI8xjRzFqq4A0ubzaZ+/frlaAxfrF+/XsOGDdOWLVvS3Ld//37t379f8+bNU9OmTTV27FhVrVo1w7EcDodGjhypb775Js19u3bt0q5du/TTTz+pbdu2GjVqlCpUqJDl/BISEjRw4ECtXr3a63a73a6TJ08qPj5eX331le69914NGjRIERERPjzrgi/ZSSBbqKxYoZgNG1SsVCmFh7gUUuyUVNP3X1rkhFUh66JCFgAAAAAA5K8c95ANDQ3Vyy+/nK1qT1/ZbDZdcsklGjt2rNq2bZvn40vSsmXL1LdvX68wtnz58mrWrJmaNGmi8PCLC/2sXbtWd999tw4fPpzuWKZp6qmnnvIKYyMjI9WkSRNdccUViomJsW5fsmSJ+vbtq1OnTmU6v8TERN11111eYWzp0qXVvHlzNWrUSGFhYda5P//8cw0ZMiR7L0ABdt5BIFuYhN53n+IGDFCl3r1V9va7FDFolP+X9jIckkyJQBYAAAAAAOSzHFfISlKzZs20aNEiOZ1O6zbTNHXttdfKZrOpefPmeuONN3weLyQkRJGRkSpZsqQVOPrD7t279cgjj1gLhlWpUkUvvfSSrr76aitgPnXqlMaPH68vv/xSUkrF7MiRIzV+/Pg043322WeaP3++td+nTx8NGjRIJUqUkJTSS3fSpEkaP368nE6nduzYoeeff17vv/9+hnMcOnSo9uzZIykl3B06dKh69eplvS5HjhzR66+/rjlz5vw/e3ceJ0dZrn38qpmeJckkkz1sSdhC2EQQVJAcFJcoCIEEhINsgoqKoAaOAgKiyHo4iAucAy8iIAiI7Jsg+74HIQlkIZB9mcxktt6r6nnePzpTzCSTZKa7a2q65/f9fHK6arrq6TuxwOOVu+9HkvToo49q77331kknnVToH0+/l/F9+cbK841ilf12XzoUIs/u+l59hJ+lQxYAAAAAAPS5glPPcePGdftza61qa2s3+zX/qFx88cVBGLv99tvrlltu0dZbb93lmmHDhun888+XMUa33367JOnJJ5/U4sWLtf322wfXrVu3Ttddd11wftxxx+miiy7qslZtba1++MMfasyYMfrlL38ZrDVr1ix95jOf2ai+F198Uc8991xwfsUVV+jQQw/tcs2YMWN0zTXXqLq6Wg888IAk6X//9381Y8aMLh255aijOzbjEcgif9bPsKkXAAAAAADoc6GkWWeccYbOOOMMHX744WEsX5DZs2frpZdekpTryL3qqqs2CmM7++lPfxrMZrXWdglKJemee+5RIpGQlBsp8Itf/GKTax111FH60pe+FJzffPPN3V536623BsdTpkzZKIzt7KKLLtKoUaMkSc3Nzbr//vs3eW25CAJZn7EF5auvOmTZ1AsAAAAAAPStUOYCnHHGGWEsWxT33XdfcHzkkUdqr7322uz1w4YN09lnn62mpibV19frU5/6VJf3//nPfwbHhxxyiAYPHrzZ9Y499tgg1H3hhReUTCa73NPa2qpXXnklOD/qqKM2u97gwYM1bdq0INx9/PHHdeKJJ272nlLXuUMWyNv6kQXW2lBmYQMAAAAAAHQnvEGt/VTnDtdjjjmmR/d85zvf6fbnLS0t+uCDD4LznmxAtv/++6uyslK+7yudTuuVV17RV7/61eD9N954Q77vS8ptbnbggQducc0DDzwwCGRnzZql1tZW1dfXb/G+UkUgOwD0xQxZk819jnGlyurQPw8AAAAAAEAqIJDtmFva4cgjj9zke4XqvHYhVq9erZUrV0qSBg0atMXu2C2ZP3++bKfgaI899tjiPYMHD9aECRP08ccfS8qNUOgcyM6bNy843m677XoUrO66667BsTFGc+fO1Re+8IUe/R5KkWesfGsJZFGQjnEF1s/KIZAFAAAAAAB9JO9A9txzz+3yNd/OoemG7xWqWIHs/Pnzg+Mdd9xRlZWVkqTly5frgQce0LPPPqsVK1YolUpp7Nix+tznPqejjz5a++yzT7frLV68ODiurq7e7CzazrbbbrsgkF26dOkm15w4cWKP1hszZoxqa2uVTqclSUuWLCnrQFbKdccSyJazvpkhK4mNvQAAAAAAQJ8qeGTB5uYv2iJ87biYwW7n8HPs2LEyxuimm27Sn/70J2UymY2uXbp0qe655x5Nnz5dv/nNb1RTU9PlmrVr1wbHY8aM6XEdna/tvIYkNTQ05LXmqFGjtGLFim7XLEcZzyjt+VGXgdD0RSCb6fIKAAAAAADQF/IOZLfZZpu83otSY2NjcDx48GD99re/1R133BH8bOedd9aoUaPU2NioRYsWBT+///77tXTpUt1yyy2qrv7kq80tLS3B8dChQ3tcR11dXXDc2tra5b3O571Zs/O1bW1tPb6v2Hzfl+M4stbKGiNjwuliTbu+0q4vY0zus/pg5ijCUWGtNvxrFxPisxNwM7LWyriZvvk8hKpj9vamzoEt4RlCoXiGUCieIRQDzxEKxTME9I28A9lnnnkmr/ei1DmofPHFF4Pzr371qzr33HM1fvz44P1ly5bpt7/9rZ5//nlJ0ttvv61LLrlEF198cXBNNvvJV51ra2t7XEfnULfzGpK6dOrmu+aG3b59acmSJRoyZIgS8ayaW1q1Zs26UD5nREVGdRX1WrEqq0wquVGwjdKxRyajzk+6MUaNaxvlJhs3eU+xjK5vl3XXyE9Wq6Ghgf9no4zMmTMn6hJQ4niGUCieIRSKZwjFwHOEQvEMAeGoiLqAvtQ5/OwIY4899lhde+21XcJYSRo/fryuv/56feMb3wh+dvfdd2vBggXBueu6wXFFRc//KGOxT3Jwz/O6vNf5vDdrdszD7W7NcpTK5n6Prm+7/N5RLvqm49l4Gcnk/jnmOQIAAAAAAH1hQAWyG86jHT9+vC644IJNzqmtqKjQJZdcEowYsNbq9ttvD97vHOD05uvOnQPTqqqqLu/lu2bnzr4N1yxHaTf3Z5g1BLLlqa8C2bQcSyALAAAAAAD6TsGbehVLPB5XLBbr1df0e2vw4MFdzv/zP/+zy1f9uzN06FAdeuihuvvuuyVJr7zySvBe51p7Myag87UbbhQWxpp9aeLEiYrFYhqSbNIIt0LjvM3/+earriamuiF1Gjp8iLYaWtNv5xZjyyo2eF4rKio0evRomUz4f7FQPaRWsbpa1Wy1lcaOHRv65yE8vu93+TrVnnvuSciOXuEZQqF4hlAoniEUA88RCsUzhELNnj2bPVp6oE8C2SVLlshxHE2YMGGj9/7yl7/o1ltvVUNDgxzH0cSJE3XKKafoW9/61iY7V/M1ZMiQLuef+cxnenTf3nvvHQSyy5YtUzabVXV1tYYPHx5cE4/He1xHIpEIjjuvIUn19fV5rdn52g3X7EuVlZWqqKiQ4zhyKip6NXahN1xj5TiOXENnY6mz3fxz7jhOaM9OF8aVjCvHcbqMEkHpq6ys5D9TFIRnCIXiGUKheIZQDDxHKBTPEBCOUBOP1157TUceeaS+8Y1v6N57793o/XPPPVdXXXWV1qxZk9vt3Bh9/PHHuuiii/TTn/60y4zWYhgxYkSX85EjR/bovlGjRnU5b2lpkSSNGzcu+FlTU1OP61i7dm1wPHr06C7v5btm52vHjBnT4/tKletbGStlPP7WBQXwM5K1wRxZAAAAAACAsIUWyD777LP63ve+p/nz50uSli9f3uX95557Tg888ICkjWe7Wmv15JNP6pprrilqTZMmTepy3rGx15ZsuElWx98OTZw4MfhZMplUY2PPdoVftmxZcLzDDjt0eW/77bcPjpcuXdqj9RoaGpROp7tdo5xlPF8Zn0C2PPXNDFlrchv9WT+7hSsBAAAAAACKI5RANpvN6qKLLgqCTGut1q1b1+Wam2++OXgvFotp5syZuu6663TYYYcFP7/tttu6hJeFmjx5cpfzxYsX9+i+1atXB8e1tbXBSIDdd9+9S5j8wQcfbHGtRCLRJWjdddddu7y/xx57BMdLlixRKpXa4pqdP9dxnI1+n+Uq4xk6ZMuA/+yzevfxx7Xy7bfV8MazSv/jj7mu1T7QEcRav+fzmgEAAAAAAAoRSiD78MMPBzNha2tr9bvf/U5//vOfg/ebmpr05ptv5uaMOo5++ctf6gc/+IG+8pWv6H/+5390wgknSMp1pj722GNFq2vkyJFdwsqnnnqqR/e9+eabwfHuu+8ezLasq6vT7rvvHrzXecOvTXnttdeC4caVlZX63Oc+1+X9fffdN+jA9X1fr7/++hbX7Py5u+++e5c5tOUs4xPIloUxY+SNHi0zdqzMmNHSqOF99tEdQWxHpywAAAAAAEDYQglkX3755eD4oosu0qGHHtpl46Xnn39exhhZa1VbW6vp06d3uf/MM88MQskXX3yxqLUdccQRwfEzzzyjDz/8cLPXr1q1Sk8//XRwPnXq1C7vf/3rXw+OH3rooS12tN55553B8Re+8AUNGzasy/vDhg3T/vvvH5zfddddm10vkUjooYceCs6/8Y1vbPb6cpLxjDzfyDd9002JvmA3eA3503xGFgAAAAAAgL4VSiA7d+5cSVJ9fb2mTZu20fsdIavjOPrc5z6n2traLu/X19dr5513lrVWK1asKGpt06dPDzpIXdfVueeeq/b29m6vzWazOuecc4LNxerq6jRjxowu1xx11FEaNGiQJKmxsVEXX3zxJj/7H//4R5eA+aSTTur2uuOPPz44fvbZZ3Xfffdtcs1f//rXwTiIwYMH6+ijj97kteWmozuWLtnysOEs6T5hXElWIpAFAAAAAAB9JJRAtrm5WY7jaPz48cHX+zt77bXXguMDDjig2zVGjBghKTfeoJhGjhyp8847LzifPXu2vv3tb3epSZI++ugjnXrqqV1GBvzsZz/baBzA6NGj9b3vfS84v++++3T22Wd3qTudTuv666/XRRddFPzsoIMO0kEHHdRtjV/+8pf1+c9/Pji/8MILdcMNNyiT+WTOZWNjo2bOnNmlO/b000/XyJEjt/hnUC4IZMvR+s7YPpohK+XGFjBDFgAAAAAA9JVYGIsmk0lJ0tChQzd674MPPlBzc3Nw3jl47CybzXWsdR51UCzTp0/X4sWLdf3110uSFixYoJNPPllbbbWVxo8fr9bWVi1YsKDLPUcccYROPPHEbtf74Q9/qNmzZ+u5556TJD3yyCN64oknNHnyZFVXV2vhwoVdunC32247XXnllZut8aqrrtLxxx+vZcuWyfM8/e53v9ONN96oSZMmKZvNav78+UHnriQdfPDB+u53v5vPH0fJCgJZ35dUFW0xKFnWzzKyAAAAAAAA9JlQOmQ7gtjOwWuHl156KTgeMWKEdtttt27X+PjjjyVpoxmrxTJz5kxddtllQSeuJK1evVpvvvlmlzA2Fovp9NNP1xVXXLHJtWKxmP70pz/p6KOPDr527bqu5syZo1mzZnUJY/fZZx/dcccdW+xkHTdunG677TZ95jOfCX7W3t6uWbNmac6cOV3C2KOPPlp//OMfu+1GLmcZz1//Sods+ejbGbLS+kCWTb0AAAAAAEAfCaVDduedd9abb76pRYsWKR6Pq66uLnjv2WeflZSbFzllypRu73/11Ve1bt06OY6jnXfeOYwSJeXmv371q1/VQw89pKefflofffSR1q1bp6qqKm2//fY64IADdNxxx2n8+PFbXKu6ulqXXnqpjj32WN1///167bXXtGbNGmWzWY0cOVJ77bWXDjvsME2dOrXHwenWW2+tO+64Q08++aQee+wxvffee2psbFRFRYXGjRunfffdV8ccc4z23nvvAv8kSlPWt7IikC11zt//rtFz5mhIfb0cP67K+grp8xt314elo0PWWhvNHFsAAAAAADCghBLI7r///nrzzTfluq6uuuoq/eY3v5GUC2NnzZoVXDd16tSN7l22bJl+9atfBeebGmlQLPX19TrxxBM3OY6gt/baay/ttddeRVlLygXXU6dO7fbPCrkwlkC2tFX89reaOH9+cG52Gq/UHWf0XQF+Jjez1rhSZXXffS4AAAAAABiQQglkZ8yYoRtuuEGu6+ruu+/Wu+++q2222UYvvPCCHMeRtVZjx47Vl770peCeDz/8UI888ojuvPNOtbW1SZJqamp0xBFHhFEiykTG8wlky1LfjizIvWbkEMgCAAAAAICQhTJ0dOutt9bPfvYz2fU7pc+fP1/PPvusfN8PvhZ8/vnnKxb7JA/++9//rhtuuCEIYx3H0U9+8hONGzcujBJRJuiQLU99F8dK1mRyr2zsBQAAAAAA+kAoHbKSdOqpp8pxHF1zzTXKZj8JOgYNGqTzzjtvo6/g77DDDkGAW1lZqdNPP12nnnpqWOWhTGQ8I9cYGWNVUcH8z/IRQYcsG3sBAAAAAIA+EFogK0mnnHKKpk+frueee04NDQ3aaqut9MUvflH19fUbXbvDDjtoxIgR+tKXvqSTTz5Zu+66a5iloUxkPCNZKeMbDaqojLocFEsftsh+MrKAQBYAAAAAAIQv1EBWkoYPH64jjzxyi9d9/vOf16uvvhp2OSgzHeMKMp7RoCoC2fLRh4mscSVrcpt7AQAAAAAAhCyUGbL5qKjoN6WghHQOZIF8WZOlQxYAAAAAAPQJUlCUNALZctWX23rlxhUQyAIAAAAAgL4Q+siCDtlsVu3t7XJdV8b0LjzbZpttQqoKpS7rG1lJGc+PuhSUMOtn2NQLAAAAAAD0iVAD2ZaWFt10003617/+paVLl+a1huM4ev/994tcGcqFlZT1DB2y5cZG0yFrrZXjOH362QAAAAAAYGAJLZCdN2+eTj31VDU3N8v2cbiCgSXjGWV8Atny0sf/zvCzuRDYuFJldd9+NgAAAAAAGFBCmSGbzWb14x//WOvWrSOMRegydMiiQB3zY62fibgSAAAAAABQ7kLpkL333nu1YsUKOY4ja6323ntv/ed//qcmTZqkYcOGqaKCvcRQPBnfV9Y3Mtaqgq+bl4e+HllgckEsG3sBAAAAAICwhRLIPvnkk8HxYYcdpv/5n/8J42MASVLaNZLNdcoOqqqMuhyUoE86ZAlkAQAAAABAuEJpVV2wYIEkqaqqSr/85S/D+AggkF4/roCxBeWkjztkvXTu1U/36ecCAAAAAICBJ5RAtrW1VY7jaOedd9bIkSPD+AggkPF8SVLa9SOuBCXL+pLxmCELAAAAAABCF0ogO3z4cEnS0KFDw1ge6CLt5jpj03TIlqa6Ovl1dTLDhskMrZMdMjiSMqyfkfUIZAEAAAAAQLhCmSG7/fbba+3atVq2bFkYywNduMbKN1Zpjw7ZUuS/9prmzJmjsWPHqjK1TEOrktKKF/u8DuunGVkAAAAAAABCF0qH7Ne+9jVJ0qpVq/Tuu++G8RFAF2nPBJ2yKHG2b+fHBh/rZXJdshF9PgAAAAAAGBhCCWRnzJihcePGSZIuueQSZbPsXI5wpT2fkQVlIbow1PqZXBjs8+8rAAAAAAAQnlAC2bq6Ol1xxRWqrq7WnDlzdNJJJ+mdd94J46MASbk5shnP0N1YohzH6XQWzX+GZv24AsYWAAAAAACAMIUyQ/b555+XJH3nO9/RDTfcoHfffVff/va3NXLkSE2ePFnDhw9XTU1Nj9ZyHEeXXXZZGGWijKQ9X9ZaZTyj2qrKqMtBCbJeRyDLxl4AAAAAACA8oQSyP/jBD4KOt45Xa62ampr06quv9no9AllsScf82DSBbImzkXU5dwSxBLIAAAAAACBMoQSykjYZqvQ2bOn6VWagex3zY9OeL6kq2mKQvyhHTvgZSTbolAUAAAAAAAhDKIHs9OnTw1gW2KRcEPtJpyxKh3PFFdpm3jwNqq2V47WpakydsjO2j6QW62fokAUAAAAAAKEKJZC9/PLLw1gW2CTXt/KtDTplUToqbr9dY+bPD87NjttJM74fSS3WI5AFAAAAAADhqoi6AKBY0q5R2vWjLgMlzPppRhYAAAAAAIBQEciibKQ9nw5ZFMT6GVnjyRqCfQAAAAAAEI7QNvXalDVr1mjNmjVqbW3VsGHD9OlPf1qSlEqlVF1drcrKyr4uCWUi7RplPCNrLZvBIS/Wy40rsH5aTsWQiKsBAAAAAADlqE8C2aVLl+qWW27Rc889p1WrVgU/nzJlim688UZJ0tNPP61LLrlExxxzjL7//e9r6NChfVEaykh6fRib8Yxqqwj20XvWT69/zUhVBLIAAAAAAKD4Qh1ZYK3VH/7wBx1yyCG68847tXLlSllrg1+drVy5Ui0tLbrxxhs1bdo0zZ49O8zSUIY65scytgD56tjQq6NTFgAAAAAAoNhCDWR/9rOf6frrr5fv+xsFsBt+pXz58uXB8apVq/Td735XixYtCrM8lJnM+iA2QyCLPHVs6NXRKQsAAAAAAFBsoQWy1157rZ544ong/FOf+pQuvPBC3XXXXd1ef/jhh2vfffcN5n+2tbXp3HPPDas8lKG0t75D1mVDJuTJ+pLxCGQBAAAAAEBoQglkV69eHcyGlaSzzz5b//jHP3T88cdr77337vaez372s/rb3/6mCy64IPjZnDlz9Pzzz4dRIspQ1rcy1jKyAAUxfpqRBQAAAAAAIDShBLL33HOPMpmMHMfRt771LX3/+9/v8b0nnHCCTj755OD8scceC6NElKm0Z4JOWSAf1s8Es2QBAAAAAACKLZRA9qWXXpKUmxP7k5/8pNf3n3baaYrFYpLE5l7olbRrlHbpkEX+rJcLZDecew0AAAAAAFAMoQSyy5cvl+M42nnnnTV69Ohe3z9y5EhNmDBB1lqtWbMmhApRrtKer7RnCNNKWrT/2Vk/LVkr+dlI6wAAAAAAAOUplEC2tbVVUi5YzdeYMWMkSdksoQh6Lu3mwtisT5cs8tMxroCNvQAAAAAAQBhCCWSHDh0q6ZNgNh9NTU2SpPr6+qLUhIGhY34sYwuQL+vlgljmyAIAAAAAgDCEEshuvfXWstZq4cKFeYWyq1at0qJFi+Q4jrbZZpsQKkS5SnumyyvQW590yBLIAgAAAACA4gslkD3wwAMlSb7v6y9/+Uuv7//jH/8YzAD9/Oc/X9TaUN7S7voO2fWdskCv+RlJNuiUBQAAAAAAKKZQAtlp06apoiK39J///Gc98cQTPb73hhtu0P333x+cf/Ob3yx6fShfWd/KWMvIghJi99pLyb32UnaffeR+ejf5u24fdUmyfoYOWQAAAAAAEIpYGIvuvPPOmj59uu699175vq+ZM2dq2rRpmj59unbccceNrk8mk3rjjTd066236rXXXpMkOY6jqVOnatdddw2jRJSxtGfokC0h5o47tHjBAg0fPlyx+DwNdtqlxncjrcl6BLIAAAAAACAcoQSyknThhRdq3rx5mjt3rqy1evDBB/Xggw92uebNN9/U/vvvr/b2dhmT62jsGFUwfvx4XXzxxWGVhzKWdg0zZFEQ66cZWQAAAAAAAEIRysgCSaqtrdVNN92k//iP/5C1tssvx3EkSZlMRi0tLfJ9PwhiJWn33XfXzTffrPr6+rDKQxlLe74ynunyTKFU2PW/Iq7Cz8gaT9bQaQ0AAAAAAIortEBWkoYPH64bb7xRV155pSZPnhz8vHM429nYsWN1zjnn6K677tK2224bZmkoY2nXyBirrB99sIdespL6QZBuvdy4AuvTJQsAAAAAAIortJEFnR1xxBE64ogjtHTpUs2aNUtLlixRW1ubXNdVfX29xo0bp3322Ue77bZbsBkYkK/M+nEFac9XTYznqdREH8d+EsRaLy1VDYm4GgAAAAAAUE76JJDtMGHCBE2YMKEvPxIDUMeGXhnXSLURF4Me6Rhj0m9GFqyfH8vGXgAAAAAAoNhoH0TZSbufdMgC+egIYglkAQAAAABAsfVphyzQFzK+kbFSev3oAvRvFaedpvELFyoWi8nx4nK2qpd31kHRFmX93KZezJAFAAAAAABFlncg++abbxazjs367Gc/22efhfKQ8fygUxb9m/PKK6qbPz8493fYRlLEgaxyc2Q7NvcCAAAAAAAolrwD2RNPPLHT3MfwOI6j999/P/TPQXlJe4aRBSiI9TOMLAAAAAAAAEUX2sgCa6PfmAcDV9r1GVmAglgvF8haa/vkL58AAAAAAMDAUFAg25PQtSPI6Lg2Fotp/Pjxqq+vV1VVlRKJhJYtW6b29vYu1++8884aPHhwIeVhAEt7RsZYZT2j6hh716H3rJ+WrJX8rBSribocAAAAAABQJvIOZOfNm7fZ95ubm/W9731Pc+fOlSR99atf1fHHH699991X1dXVG10/f/583Xnnnbr77rtlrZW1VldffbW22267fEvEANbRHZv2fAJZ5KVjXIH103IIZAEAAAAAQJGEllTNnDlT77//vmKxmK644gpde+21OuCAA7oNYyVp8uTJ+vWvf60///nPqqmp0aJFi3T66acrm82GVSLKWNr1178ytgD5sV4698ocWQAAAAAAUEShBLKPPfaYXnvtNUnS6aefriOPPLLH937hC1/Qz3/+c1lrtXDhQt19991hlIgy90mHLIEs8vNJhyyBLAAAAAAAKJ5QAtn77rtPklRbW6tTTz211/cfc8wxGjZsmCTpkUceKWptGBiynpFVbmQBkBc/I8kGnbIAAAAAAADFEEogO3/+fDmOo8mTJ6u2trbX91dVVWnSpEmy1mrJkiUhVIhyZ5UbW0CHLAph/QwdsgAAAAAAoKhCCWSbm5slSZWVlXmv4XmeJCkejxelJgw8ac8Es2SBfFgvQ4csAAAAAAAoqlAC2eHDh8taqw8//DAIVnsjkUho3rx5chxHY8aMCaFCDARp19AhW5Js1AUErJ+mQxYAAAAAABRVKIHs7rvvLklqa2vTvffe2+v7r7/+emUyuRBkn332KWptGDjSni9jrLKEssiT9TKyxpM1vf+LJQAAAAAAgO6EEsgecsghkiRrra644gq9+uqrPb73jjvu0J///OfgfPr06UWvDwNDZn0Qy8ZeyJf10+tf6ZIFAAAAAADFEUoge/jhh2vixIlyHEepVErf/e53dcEFF+jdd9+VMRt3K2azWb388sv6wQ9+oN/+9rey1spxHE2ZMkVTpkwJo0QMAB3zYxlbgHx1BLHMkQUAAAAAAMUSC2XRWEy/+93vdOKJJyqVSskYo3vvvVf33nuvqqurte2226qurk5SbqzB8uXL5fu58Mza3PzInXfeWddcc00Y5WGA6AhiMwSyyFNHEEuHLAAAAAAAKJZQOmQlaY899tDNN9+scePGScoFrdZaZTIZffzxx5o9e7Zmz56tJUuWyPO84H1JOvDAA/XnP/85CG2BfGQ8I6tPOmWB3go6ZAlkAQAAAABAkYTSIdvh05/+tB599FHdcssteuihh7RkyRJJn3TBbmjHHXfUaaedpiOPPDLMsjBAWOVCWUYW9G/2iCPUvnChYrGYKtwmOaMGR13SJ6yf29TLZ2QBAAAAAAAojlADWUkaMmSIfvzjH+vHP/6xFi9erDfffFMNDQ1at26dXNfV0KFDNXHiRO2zzz6aNGlS2OVggEm7vtIugWx/Zi69VGs+/lhDhgxRVess1Zhmqe3jqMsKWD8t69EhCwAAAAAAiiP0QLaz7bffXttvv31ffiQGuLRnlPYYWVAauu+cj5r1M4wsAAAAAAAARRPaDFmgP0i7vnxj5fp0yfZnjuMoCGQ3MdIkKtbLBbKbGrUCAAAAAADQGwSyKGsd82MZW1AC+mneaf10LiT2s1GXAgAAAAAAygCBLMpaEMgytqBk2H6WzHaMK2BjLwAAAAAAUAwEsihraTcXxKbokC0BdoPX/sF6uSCWQBYAAAAAABQDgSzKWsYzMlZKuXTIloz+lccGQaz12NgLAAAAAAAULhZ1AUCYrHLjChhZ0H9VTJ2qiQsWyHEcOSYru90otf/+P6Mu6xN+VpINRhcAAAAAAAAUgkAWZS/l+ows6MeclStVtWJFcO5X97/GfeulGVkAAAAAAACKov8lH0CRpVyzfnRBP/suPEqG9VIyXirqMgAAAAAAQBkgkEXZS7m+rLVK0yWLPBkvneuSJdQHAAAAAAAFIpBF2Uuv39CLjb2QL+ulJGsZWwAAAAAAAAoWSiD7zjvvhLEskJeO+bFs7IV82fXjCixjCwAAAAAAQIFCCWSPO+44HXLIIbrxxhvV0NAQxkcAPZb2fFmJjb2QNwJZAAAAAABQLKGNLFi8eLF+97vf6eCDD9Zpp52mJ554Qq7rhvVxwCYZK2U8w8iCktH/5rTmglhLIAsAAAAAAAoWC2XRWEye50mSfN/Xiy++qBdffFHDhg3T4YcfrunTp2uPPfYI46OBbqVcn0AWBbCyfoZAFgAAAAAAFCyUDtkXX3xRF1xwgfbaay9JkrVW1lq1trbqb3/7m44++mhNmzZNt956q9atWxdGCUAXaddX2jOytv91X6I0WC8l67GpFwAAAAAAKEwogeyIESN0wgkn6O6779Y///lP/eAHP9A222wj6ZNwduHChbriiit00EEH6YwzztAzzzwjY5jxiXCkXCNjrDIezxjyY720jJcm1AcAAAAAAAUJbYZshx122EEzZ87UM888o9tvv11HHXWUhg4dGgSznufp6aef1o9//GMddNBBuvLKK7Vw4cKwy8IA0zGuIE0gizwZLyVZI+tnoi4FAAAAAACUsNAD2c72228/XXrppXr55Zd1zTXX6Etf+pJisVgQzjY2NuqWW27RtGnTdPTRR+vOO+9UW1tbX5aIMtURyDJHFvnqmB/LHFkAAAAAAFCIUDb12pLq6modcsghOuSQQ9TS0qLnnntOzzzzjF5++WUlEglJ0pw5czR37lxdccUVmjp1qo499ljtt99+UZSLMpByzfpXAlnkx7rJ3KuXkjQi2mIAAAAAAEDJ6tMO2e4MHz5cRx55pP74xz/q5ptv1j777CNJchxH1lplMhk98sgjOvHEEzVt2jQ9/PDDEVeMUuRbq6xvgmAW6C3r5zb0okMWAAAAAAAUIpIO2c7efPNNPfXUU3r66ae1YsUKSZ+EsR06jhcuXKhf/OIXuueee/Tf//3fGjduXCQ1ozSlXUOHLPK3fn4sgSwAAAAAAChEJIHsvHnz9NBDD+nRRx9VQ0ODJG20c/luu+2m6dOna+rUqZo1a5YefPBBvfjiizLG6PXXX9fJJ5+su+66S8OHD4/gd4BSlHJ9pT0CWeTPeilZLx11GQAAAAAAoIT1WSC7atUqPfzww3r44Yf14YcfSto4hB0xYoQOP/xwzZgxQ7vuumvw80MPPVSHHnqolixZopkzZ+r999/XkiVL9P/+3//TL37xi776LaDEpVxfnm/l+kZVlZFP68B65qc/Vdvixap0fFVk16pisBt1SZtkvZSMl5K1Vo7jRF0OAAAAAAAoQaEGsm1tbXr88cf10EMPadasWUEA2zmIjcViOuiggzRjxgx96UtfUiy26ZImTpyo66+/Xl/5ylfkeZ6eeuopAln0WMr7ZGMvAtn+w37/+2pbsULVFVnF4vNVlVoiZZqiLqtbxkup0hrJz0ix2qjLAQAAAAAAJSiUQPaJJ57Qww8/rBdeeEGum+t227AbdpdddtGMGTM0bdo0jRw5ssdrjx07VrvvvrveffddrV69uqh1o7x1zI9NuUbDyNL6nw3+HdEfdcyPNV5KlQSyAAAAAAAgD6EEsj/96U+Djbk6b9A1fPhwHXbYYZoxY4Z23333vNevqamRJNXX1xelXgwM6SCQZY5s/9Z/g9mOQJY5sgAAAAAAIF+hz5CtrKzUlClTNGPGDB188MGqqqoqeM1Vq1Zpp5120le/+tUiVIiBIutb+cYSyPZbttP/7Z8+CWRTEVcCAAAAAABKVWiB7M4776zp06friCOO0KhRo4q69r/+9S821EFeUq6v9PpZsug/uv7z3I8jWWtk/SyBLAAAAAAAyFsogew999yjPffcM4ylJW0Y3gA9l/IMHbL9lu3y0l9ZL0kgCwAAAAAA8hZKIJtKpfTmm2+qvr5eu+yyS15rvPzyy3rnnXfkuq5mzpxZ5AoxUKVcX1nPyDdWlRUE+/1CJiOl05IyUiYrZd2oK9os66VkfQJZAAAAAACQn1AC2RNPPFGO42jKlCm68cYb81rjuuuu0zvvvKNRo0YRyKJoUp029qqrCX2EMnqgct99NWH+/ODcnzhWbXf+OMKKNs96aVljZP2MnMqaqMsBAAAAAAAlpiLqAjalsrJS1lq1tLREXQrKSNrNzY9lbAHyZdaPKzCMLQAAAAAAAHnol4Hs3LlzNWfOHEnS4MGDI64G5aQjiGVjL+SrY34sc2QBAAAAAEA+8v7O9rXXXqv7779/s9e8+eab+spXvtKrdTOZjNatWydjjBzH0YQJE/ItEdhIxjMylg5Z5I9AFgAAAAAAFCLvQPaEE07Q3/72t02OFLDWKp1Oa+XKlb1a19rcFuuOk9twafr06fmWCGzESkp7PoEs8md9WZMlkAUAAAAAAHnJe2TB8OHD9V//9V+y1m70q7Pu3t/cr86+/e1v6/jjj8+3RKBbKddXymVkAfJnvZSsl466DAAAAAAAUIIK2mb+qKOOUk1NjVzXDX5mrdUvf/lLOY6jSZMm6ZRTTunxeo7jqKamRsOHD9cuu+yiUaNGFVIe0K2Ua9aPLrCqWN+Jjf7EbvmSiOUCWTpkAQAAAABA7xUUyErSYYcdttHPfvnLX0qSxo0bx8gB9Dtp18+N1HCNBldXRl0OSpD10rLGl/Wzciqroy4HAAAAAACUkIID2e589rOflSRNnjw5jOWBgnTMj017PoEs8mLcpKRcpyyBLAAAAAAA6I1QAtnbbrstjGWBouiYH8vGXshXx7gC46VUUVMfcTUAAAAAAKCU5L2pF1Cq0p4vK7GxF/Jm/dyGXsyRBQAAAAAAvZV3h+zKlSu7nG+zzTabfK9QndcGCmWslPEMHbLIn/FkjUsgCwAAAAAAei3vQPbLX/6ynPU71DuOo/fff7/b9wq14dpAMaRdn0AWBbFeStZLR10GAAAAAAAoMQXPkLXW5vUeEKWU6yvtGVlri/aXBxhYcoEsHbIAAAAAAKB3CpohSxiLUpVyjYyxyvrMkUV+rJeSNZ6s70ZdCgAAAAAAKCF5d8g+/fTTeb0H9Acd4wpSrlFNrDLialCKOrpjrZeUU1kfcTUAAAAAAKBU5B3Ibrvttnm9B/QHnwSyvoYPqoq4GpQisz6QNV5KFTUEsgAAAAAAoGcKniELlKK0lxtVwMZe0TN/+INaV6yQ47aqItsox66JuqQe+aRDlo29AAAAAABAzxHIYkDyjJXrW6VcZshGzX7lK0o3NKgi06DK9HJVts6WY0tgLqvxcjNk2dgLAAAAAAD0QkGbegGlLOX6Snt0yPYfpbcRoPWSBLIAAAAAAKBX8u6QPemkk4pZxyY5jqNbb721Tz4LA0vK8xlZ0A9ZWTlRF9FD1ksRyAIAAAAAgF7JO5B944035DjhxibW2tA/AwNXyvXl+Vaub1RVSbN4v1FCjbLWS+fGFhhXTgWbwwEAAAAAgC0raIastSWUnAAb6Jgfm3J9Atl+wW7w2v99srFXSk41gSwAAAAAANiyvAPZM844o5h1AH0uvX5cQco1GlYbcTGQSvAveEynQFbVwyKuBgAAAAAAlAICWQxYHfNj08yRjdYHHyi2apUqso25X5k1stuPjrqqHunokDVeWpUR1wIAAAAAAEpDQSMLgFKW9a18Y5UkkI1U5be+pbHz5wfn/oTRarvrzAgr6gXjSsZjYy8AAAAAANBjDM7EgJZ0/aBTFsiH8VIEsgAAAAAAoMcIZDGgJV2fDlkUxBLIAgAAAACAXsh7ZMF5550XHDuOo8suu6zb9wq14dpAMSWzvjzfKusZVcf4+wn0nvWSsr4r62flVFZHXQ4AAAAAAOjn8g5k77//fjmOE5x3Dk03fK9QBLIISzKb645Nuj6BbL9hoy6gV4ybDF4rCWQBAAAAAMAWFLSpl7W54KS78LXjvUIVM9gFNtQxriCZ9TV8UFXE1aAUWTeRe/USkoZHWgsAAAAAAOj/8g5kp0+fntd7QH+Scn1ZiTmyyJv1UpI1sus7ZQEAAAAAADYn70D28ssvz+s9oD8xVkq7fjC6AOg9K+ulZNZ3ygIAAAAAAGwOQzMx4KVcQ4csCmLchKxHhywAAAAAANgyAlkMeEnXU9rzZUxpbSaF/sN6SVnflfWzUZcCAAAAAAD6uYI29crHokWLtGrVKrW2tqqmpkb19fWaMGGCxo0b19elAJJyG3rJ5ubI1tX0+T8SKAMd4wqMm1BlZXXE1QAAAAAAgP6sT9Knd955R3feeaeef/55tbW1dXvN1ltvra997Ws64YQTNH78+L4oC5CkYH4sgSzy1bGhl3WTUu2IiKsBAAAAAAD9WagjC1paWvSzn/1M3/72t/Xwww+rtbVV1lpZ+8lXwzvOV65cqb/+9a865JBD9H//939hlgV00TE/lo29kC/rpSRrZD029gIAAAAAAJsXWiC7bt06nXjiiXriiSc2CmEldfszSfI8T3/84x911llnhVUa0EXWt/KMZWMvFMDKeikZl429AAAAAADA5oX2/ezzzjtPCxculOM4kqRtt91WM2bM0H777acddthBQ4cOlbVWbW1t+vDDD/XKK6/o/vvvV3Nzs6y1+uc//6kJEyboZz/7WVglAoGk6ytFIIsCGDehCpcOWQAAAAAAsHmhBLKvv/66nn/++SCMPfHEE/Xzn/9c1dUbb3YzePBgbbXVVpoyZYp+9KMf6YILLgi6am+66SZNnz5dEydODKNMIJDM+owsQEGsl5Q1nqyflcPGXgAAAAAAYBNCGVnwyCOPBMfTp0/X+eef320Yu6GhQ4fqmmuu0X/8x39Iyo0vuPvuu8MoEegimfXlG6uMRyiL/Jj13bGGLlkAAAAAALAZoQSyb7zxhiSpsrJSP//5z3tXUEWFfvWrXwXdtS+88ELR6wM2xMZe0fEfekgNzz+vxsf/psYH/6C2q46PuqS82PVBrGWOLAAAAAAA2IxQRhY0NDTIcRztuuuuGjFiRK/vHz9+vHbZZRfNnz9fq1atCqFCoKuOIDbp+ur9E4uC7LijvLo6VSYrpVSNnLZ14e02GCLrpSRrZD06ZAEAAAAAwKaFkntUVVVJkgYNGpT3GsOGDZMkWWuLUhOwOWnPlxUdstGyJf/Pu/GSMnTIAgAAAACAzQglkJ0wYYKstVq0aFHeAcuKFSvkOI622WabIlcHbMxYKeX6wegCRKW0A1nrJoPRBQAAAAAAAN0JJZCdOnWqJKm5ubnLBl899dprr2nlypWSpC9/+ctFrQ3YFALZiFmVeh4r6yZkjSfrZ6IuBQAAAAAA9FOhBLLHH3+8tt56a1lrdckll2j+/Pk9vnfdunU6//zzJUn19fU68cQTwygR2Egy6yvjGfmmxFPBklX6iazxcuMKGFsAAAAAAAA2JZRAdsiQIfrjH/+oYcOGqbW1Vccdd5xuu+02pVKpzd733HPPacaMGVqxYoUGDRqkq6++WqNHjw6jRGAjyawvWdEli7x1jCtgbAEAAAAAANiUWL43nnTSSVu8pq6uTm1tbUomk7rsssv0+9//Xnvvvbd22mmnYNOuRCKh5cuX69///rcaGxtlrZXjOPrc5z6nt956S2+99ZZ++tOf5lsm0GMdQWwy62toTd7/aKCXnMceU+2KFapIr5HNNKuycq38KbtGXVZerJeSrJH16JAFAAAAAADdyzt1euONN+Q4zhav67jGWqtEIqFXXnlFr7zyykbXdWz+1XH9Cy+8oBdeeEGSCGTRJ5LZ9YEsHbJ9quIXv9DITmNN/Amj1FaigayUG1tg6JAFAAAAAACbUFAbYEeIWsx7Nny/J6EvUAyusXJ9GwSzQD6sm5BlhiwAAAAAANiEvAPZM844o5h19DvnnXee7rvvPknS5ZdfrhkzZvTovkWLFumuu+7S66+/ruXLl8vzPI0dO1a77LKLDj/8cH3ta19TLNa7P/ZXX31V9957r/7973+roaFBsVhMW221lfbZZx9Nnz5d++23X69/f+he0vWVokMWBbBuUtZ4sl5GTqwm6nIAAAAAAEA/QyDbjeeffz4IY3vjT3/6k66//np5ntfl58uWLdOyZcv09NNPa88999RVV12lHXfccYvrxeNxnXPOOXrqqae6/DyTyWjRokVatGiR7rnnHk2bNk2/+tWvNHTo0F7XjK6SWV9J1w9mGQO91TGuwHgJVRLIAgAAAACADVREXUB/097ergsvvLDX911yySW69tprgzA2Fotpjz320H777acRI0YE182ZM0cnnniiVqxYsdn1MpmMTj311C5h7JAhQ7TPPvtor732Um1tbfDzhx56SD/60Y+UzWZ7XTe6Srq+jLHKeCbqUlCiOjb0YmwBAAAAAADoDoHsBi677DKtWbOmV/c8/vjjuu2224Lzr3/960GX7d/+9je9+OKLuvjiizVo0CBJUmNjo84888zNztO98sor9e6770rKzdH9yU9+oldeeUV33XWX/vGPf+jFF1/USSedFFz/5ptv6uqrr+5V3dhYMpsL1NnYC/myXkqyho29AAAAAABAt/p9IDtnzpw++6x8RhW4rqsrr7wyOD/44IP1+9//XqNHjw5+VlVVpWOPPVbXXnttMD927ty5euSRR7pd88MPP9Rdd90VnJ999tn68Y9/3KUrdtiwYTr//PP14x//OPjZ3/72Ny1fvrxX9aOrjiCWjb1QCOMlg05ZAAAAAACAzvKeIdtTvu/rvffe0+rVq5XJZOT7fredodZaeZ4n13WVTCa1du1avfXWW1q4cKHef//9sMtUW1ubLrjgAkm5ADUWiymVSm3xvieffFIrV66UlBtT8Ktf/UoVFd3n3FOmTNGxxx6rv/3tb5Kkm2++WYcffvhG1912223y/VwguOOOO+q73/3uJj//jDPO0JNPPqkFCxbIdV3dfvvtOvfcc7dYN7qXdo2MpUMWhbFugpEFAAAAAACgW6EGsn/5y190ww03qK2tLa/7+3Jjpcsuu0wNDQ2SpNNOO00PPPDAFue8StJjjz0WHH/hC1/QNttss9nrOweyc+fO1bJlyzR+/PjgfWOMnnjiieB8xowZmwx4JamiokLHHHOMLrnkEknSE088QSBbACsp7fl0yKIg1k3KGk/Wy8hhYy8AAAAAANBJaCMLfv/73+uqq65Sa2trl45Ya23wa0Od39vcfNVie+6553T//fdLknbZZRf98Ic/7NF91lq9/vrrwfmBBx64xXsmT56sMWPGBOfPPPNMl/fnzZun5ubm4HzKlClbXLPz565cuVLz5s3b4j3YtGTWp0MWBemYH2s85sgCAAAAAICuQglkly9frj//+c+SFHS4dg5ZHceR4zjdBrAd740dO1bf+973dPvtt4dRYqCtrU0XXnihpNzIgcsvv1zV1dU9unfFihVdun/33HPPHt03efLk4Hj27Nld3uscplZVVWnSpElbXG+HHXboMl92wzXRO8msr6xn5BkTdSkoUXZ9EMvYAgAAAAAAsKFQAtn7779fnpfbrb6mpkYXXHCBXnjhBX3wwQc6++yzZa1VZWWlXn/9dc2dO1evvPKKbrrpJn3xi18Mwtl169bpq1/9qvbdd98wSgxccsklwaiC7373uz0OVSVp8eLFXc4nTJjQo/u222674Hjp0qWbXHPbbbcNNgHbHMdxuoxKWLJkSY/qQPfY2AuFsl5asibolAUAAAAAAOgQSiD7xhtvBMdnn322TjjhBI0dO1aO4+iAAw6QlNvs66WXXlJlZaVGjhypAw88UDfccINmzpwZvH/hhReGOrrgmWee0YMPPihJ2mmnnXTGGWf06v61a9cGxxUVFRo9enSP7us8sqDzGhuejx07tse1dP7sDddE73QEsYwtQCGMm5D16JAFAAAAAABdhbKp17JlyyRJ1dXVOuaYY7q8t+uuu6qqqkqe5+mtt97SN7/5zS7v/+AHP9Ds2bP11FNP6cMPP9RTTz2lr33ta0WvsbW1Vb/61a8k5cLU3owq6LxGhyFDhmx2863O6urqul1DklpaWoLjoUOH9riWztduuGZf8n3/k3EUxsiU4Nf+4xlX1lolMp7MkNL8PZSSyg3+0sVKZfFnbrIJmWxcxpg+n4s9EPm+v9lzYEt4hlAoniEUimcIxcBzhELxDAF9I5RAtrW1VY7jaKeddlJNTdcdxmOxmHbccUfNnz9fc+fO7fb+0047TU899ZQk6dlnnw0lkL3kkkuCTtLvfOc7+vSnP93rNTKZTHDceYbrlnQOfrPZbJf3Op8Xa82+tGTJEg0ZMkSJeFbNLa1as2ZdZLUUYt3ImGJeSoOybWpqaor0z7Tc7em66vxvCd/ztWbNmsjqKZZBXp3qNEQtK5cqlTVdNutD+ObMmRN1CShxPEMoFM8QCsUzhGLgOUKheIaAcIQysqBjfuzw4cO7fX+HHXaQJC1atKjb9/faa6/gK/idN7kqlqeffloPPfSQJGn77bfXT3/607zWcV03OO5pd6ykLnNhO/6sCl2zsrJyk2ui9+IZVxk/19HYkzm+wIb8TDx3YNKqqqqKthgAAAAAANBvhBLIdgSxncPFzsaPHy9JSiaTm+yE23bbbWWt1cqVK4taW0tLiy666CJJuc2wLr300l51onbWOQTtzVesOwemGwY1+a7Z+WsEhD+Fi6ddZTwrKwJZ5MfLtEuSHD+lyspKOY4TcUUAAAAAAKA/CCVpGjNmjNauXaulS5d2+/6ECROC4wULFmjcuHEbXdPRHZpIFHeX8s6jCk444QTtt99+ea81aNCg4Ljz+IIt6fz19w1HOnQOh3uzZudrN1yzL02cOFGxWExDkk0a4VZonNe7ubz9RfWQQRo8ZIiGjxqurcaNY/5niMy8eVrZ2KhY+1xlW5eqJrtU48okvBw0eJAq62pVNWKrXm3Sh97zfb/L16n23HPPLn/BBWwJzxAKxTOEQvEMoRh4jlAoniEUavbs2WWxL0zYQglk99lnH73//vtqaGjQnDlztOeee3Z5v3Mg++9//1v/8R//sdEaHRuDFbM78amnntLDDz8sKdele9ZZZxW0Xn19fXCcSCRkre1RF1w8Hg+ONxzr0Pm883WFrNmXKisrVVFRIcdx5FRU9GrsQn+S8owcx1HasxpSw3/5hOmTjvFc6F3hOCX73GzIeinJS6mihP9ZKFWVlZV0t6MgPEMoFM8QCsUzhGLgOUKheIaAcISSEBx44IHB8QUXXKCmpqYu7+++++5BOPHggw9uNNrg2WefVWNjoxzHCWbJFqqlpUW//vWvJeVGFVxyySUaPHhwQWt27uz1fb/Hm/Z0dOhK2uj317mLbsM/t81pbGwMjseMGdPj+9C9ZDY3AiLpsqNkn7GSyqwT2XoJWS9JhzUAAAAAAAiE8tccBx98sLbffnstWbJE8+fP1yGHHKJvfetbOuWUUzR69GgNHTpUn/3sZ/X6669rxYoVOvPMM3Xeeedp9OjReumll4LgVJI+/elPF6Wmv//970EQOmjQIN1444268cYbN3l954Dz5ptv1qOPPhqcX3nllRo9erQmTpzY5Z5ly5Zp5MiRW6xl+fLlwXHHBmcdtt9++y7X9aTr1lqrFStWdLsG8pPxjIy1QTCLvmDV0SVbLoyblDW+rJ+RE8tvVjUAAAAAACgvoQSyjuPoggsu0A9/+EP5vq+2tjb95S9/0SGHHBJ0hH7nO9/R66+/Lkl6/vnn9fzzzwf3d+4mmzFjRlFq6jy3NZlM6qWXXurxvQsWLNCCBQuC83Q6LSm38djw4cPV0tIiSfrggw96FCDPmzcvON511127vLfHHnsEx6lUSh9//LF23HHHza730UcfdZkhu9tuu22xBmyelZRyDR2yfay84ljJuolPXglkAQAAAACAQhpZIElTpkzRf//3f2vo0KHBzzrPjj344IM1bdq0IHy11ga/OjpCDz30UH3hC18Iq8Si+PznPx8cv/LKK1u8ft68eV26b/fff/8u70+aNKlLl+2rr766xTVffvnl4HjEiBGaPHnyFu/BliWyHh2yfcqW38iCjkDWS0ZcCQAAAAAA6C9Cncx86KGH6vOf/7zuuOMOvf766xo2bFiX9y+77DKNGjVKt912W6eNfXKOPfZYXXDBBUWr5cwzz9SZZ57Z4+u//OUvB2MALr/88k126k6dOlVPPPGEpNzs2zVr1nSZLbuhO++8MzjeaaedNgpPHcfR1772Nf3973+XJN1999067rjjNrkhkDFGd999d3D+9a9/vUcbi2HLEllfrm+U8YxqYmzI1DfKLJD1M5L1ZdYHswAAAAAAAKFvlTdq1KhNhqGxWEznnHOOTj31VL300ktau3athg8frgMOOEDjx48Pu7SimDp1qsaOHauGhgZls1mde+65uvHGG7vdhfDFF1/UP/7xj+D8xBNP7HbNb3/727r77rtlrdW8efN03XXXbTJM/sMf/qCFCxdKkioqKja5Jnovsb47NpH1VBOrjria8uVcd52GLl2qiswa1aRbFBtmlP3W/lu+sUQYN6EKlw5ZAAAAAACQE3og2xNjxozR9OnToy4jL9XV1TrrrLN07rnnSsqNLfj+97+viy++OAiVPc/Tfffdp8suu0y+nwv5dtllF33rW9/qds1dd91V06dP13333SdJuvbaa9Xe3q4zzzwzGAHR3t6uP/7xj/rrX/8a3Hfsscdq5513Du33OtAkst76V18jB0dcTBmr+L//09D584Nzf8KosgpkrZuU9ZI92qAPAAAAAACUv34RyJa66dOn65133gnGDLzyyiuaOnWqJk+erLq6Oi1atEjr1q0Lrh8+fLj+8Ic/dNtF2+H888/XggULNGfOHEnSrbfeqrvvvjsYcTB//nylUqng+k996lNBKIziSLlGvrFBMAvkw7gJWePL+mk5sUFRlwMAAAAAACLWp4HsvHnzNGvWLK1evVotLS2qra3VsGHDNHHiRO2zzz7abrvt+rKcovrNb36jESNG6KabbpLrujLG6IMPPtjoup122kl/+MMftOOOO252vbq6Ot1yyy36xS9+oWeeeUaSlEql9O9//3ujaw8++GBdddVVqq1lF/diS7i+4hk29kL+rLd+Yy83IRHIAgAAAAAw4IUeyKbTad166636+9//rlWrVm322smTJ+uUU07REUccEXZZRec4jmbOnKlp06bpnnvu0UsvvaTVq1crlUqpvr5eu+22m77xjW9o2rRpqq7u2TzSoUOH6v/+7//06quv6qGHHtJbb72lxsZG+b6v0aNHa5999tH06dM1ZcqUkH93A1ci4ynp+nzdHHkz6+fHWjcpkccCAAAAADDghRrIvvfeezrrrLO0YsUKWZvbPd1xnOC4Q8fP5s2bp3PPPVcPPfSQ/vu//1ujRo0Ks7zN6uhK7a2ddtpJ55xzjs4555yi1XLAAQfogAMOKNp66Ll41pcxVinX1+BqJnwgD35GMp7M+k5ZAAAAAAAwsFWEtfDs2bN16qmnasWKFV1+XllZqYkTJ2rPPffUHnvsofHjx6ui4pMyrLV65ZVX9J3vfEft7e1hlQf0SCKbG1cQzzK2APkzXjLXIQsAAAAAAAa8UFr+fN/Xeeedp3g8HnS/fvOb39Rxxx2nT3/606qqqupyfTqd1muvvaZbb71Vr776qiTpww8/1Hnnnadrr702jBKBHklkvPWvvlQXcTEoWdZNyLhJRl8AAAAAAIBwOmQfe+wxffjhh3IcR7FYTNdee62uvvpq7bfffhuFsZJUW1urL33pS7r55pv1y1/+UlKuU/bpp5/W66+/HkaJQI+4xirrGyWyXtSloIQZNylZI+uloi4FAAAAAABELJRA9vHHHw+Ozz77bH31q1/t8b0nnXSSTjnllOD8gQceKGZpQK/FMz4jC1AQ6+bmx1qPsQUAAAAAAAx0oQSyH3zwgSSprq5Oxx9/fK/vP/3001VTUyNJeuutt4paG9BbiayntOfLN3bLFwPdMOsD2Y5XAAAAAAAwcIUSyDY2NspxHO2yyy7djijYkrq6Ou26666y1mrt2rUhVAj0XCLrS1aMLUD+TFbWeGzsBQAAAAAAwglkhw0bJim3uVe+KisrJeXmywJRiq/f2IuxBSiEdRPB6AIAAAAAADBwhRLITp48WdZazZ8/X8lk7zvCPM/TokWL5DiOdthhhxAqBHou6fqykhIZOmSRP+slZbyUrGX0BQAAAAAAA1kogey0adMkSel0WjfeeGOv77///vvV2toqSTrssMOKWhvQW8ZKKdfPjS4A8mTchGSNrJeKuhQAAAAAABChUALZI444Qp/5zGdkrdUNN9yge+65p8f3vvnmm7rsssskSbvssouOOeaYMEoEeiWe8QhkUZCOcQWMLQAAAAAAYGALJZCVpOuuu0677babjDG68MILdcYZZ+itt96SMabb6z/++GNdeeWVOuWUU5RKpbTjjjvquuuuy2tTMKDYEllfrm+U8bp/foEtMeuDWOOxsRcAAAAAAANZLN8bd9tttx5d5ziOrLV6+umn9fTTT6u2tlYTJ07U0KFDJUmJREIrVqxQW1ubJMlaK8dxFIvFdM4558hxHN1+++35lgkURUd3bCLrqSZWHXE1ZWb77eV6nhyTlvWyslvXR11ROIwra1w6ZAEAAAAAGODyDmQ7gtPNbVDjOE6XV2utUqmU5s+fv9FaHdd1XLtw4cLgM4Coxddv6JXI+ho5OOJiyox59FGtXb1CVW3vKdEwX0Nj7eG17kfMugkCWQAAAAAABri8A1lJW9wtfFPv9/bnQNTSnpFvbBDMotjs+v9b3v8OMG5SxkvJWiPHKdfYGQAAAAAAbE7egexf//rXYtYB9HuJrM/GXmHpyGHL/C9lrJuQrJX1UnKqhkRdDgAAAAAAiEDegeznPve5YtYB9HuJrKek6zNKIwROmXfGdrBeblyBdRMSgSwAAAAAAAMS35kFeiie9WWMVdKlSzY85R3MmvXzY42bjLgSAAAAAAAQFQJZoIcSnTb2QrHZLi9ly3iyJht0ygIAAAAAgIGnoE29emPp0qV69tln9fbbb6uhoUEtLS2qrKzUkCFDtO2222r33XfXF7/4Re2yyy59VRLQKx1BbCLjS3URF1O2yj2RzY0rsHTIAgAAAAAwYIUeyK5Zs0aXXXaZnnrqKRljur1m9uzZevzxx/W73/1On//85/WrX/1KO+64Y9ilAb3iGquMZxTPelGXUlacs8/W8I8WyfFaNSjdqsqxg5X+6SFRlxUa4yZlvJSsNXIcvqQAAAAAAMBAE2oa8Pbbb2v69On617/+Jd/PdRdaa7v91fHea6+9pqOPPlovvfRSmKUBeUlkfUYWFJnz+OMa9PAjqv3ni6p79j1Vv7ow6pJCZd2EZC1dsgAAAAAADFChdch+/PHH+tGPfqS2trZgR/pYLKY99thDkyZN0rBhw+T7vlpbW7Vw4ULNmzdPnufJcRwlk0mdeeaZuvvuuzVp0qSwSgR6LZH1lPZ8+caqssKJuhyUoI6NvayXkKqZfQEAAAAAwEATWiB73nnnBWFsZWWlvv/97+ukk07SiBEjur1+3bp1uvXWW3XTTTfJ932lUildeOGFuuuuu8IqEei1eNaXbC6YHVZbFXU5KEHWy3XGGjepyohrAQAAAAAAfS+UkQUvvvii/v3vf8txHFVVVenGG2/UT3/6002GsZI0cuRIzZw5U3/+859VXV0tSXr33Xf16quvhlEikJdEJjc/Ns7YAuTLeLJ+Jje6AAAAAAAADDihBLL/+te/guMzzzxTBxxwQI/v3X///XXmmWcG548++mhRawMKkXR9WX0SzAL5sG5ShhmyAAAAAAAMSKEEsm+//bYkqaamRieccEKv7z/++ONVU1MjSXrnnXeKWhtQCGOlJBt7oUDGS8j6KVnDcwQAAAAAwEATSiDb2Ngox3E0adIkDRo0qNf3Dxo0SJMnT5a1VitXrgyhQiB/iazHyAIUxLoJyX4yTxYAAAAAAAwcoQSyqVRKkvIKYzvU1tZKknyf4Av9SyLry/ONMp6JuhSUqI5xBZaxBQAAAAAADDihBLL19fWy1mrFihV5r9Fx7+Y2AgOiEF8/PzaRZY4s8tOxoZfx2NgLAAAAAICBJpRAdtKkSZKklStX6oMPPuj1/XPnztWKFSvkOI4mTpxY7PKAgnTMj41n6N5Gnqwv62eCYBYAAAAAAAwcoQSyX/jCF4LjSy+9tFdjBzzP02WXXRacT5kypai1AYVKe0a+sXTIoiDWTQSjCwAAAAAAwMARSiB71FFHqaamRpL09ttv6yc/+Yna2tq2eF9bW5t+8pOf6O2335aUmyM7ffr0MEoECpLI+kGnLJAP4yZk/bSs4TkCAAAAAGAgiYWx6MiRI/WjH/1Iv//97+U4jp555hl9/etf1/Tp0zVlyhTttNNOqq+vlyS1trbqww8/1EsvvaQHHnhALS0tkiTHcXTqqadqzJgxYZQIFCSe9ZR0fVlr5ThO1OWgBFk3KVnJekk51UOjLgcAAAAAAPSRUAJZSTrttNM0Z84cPfXUU3IcR83Nzbr55pt18803b/KezuHWF7/4RZ155plhlQcUJJH1ZYxVMutrSE1o/xihjHVs6GXchCoIZAEAAAAAGDBCGVkgSRUVFfrjH/+o448/vksHobW221+d3z/hhBN07bXXhlUaULB4Jjc/Ns7YAuQpt6GXlXXjUZcCAAAAAAD6UGiBrJQLZS+88EI9+OCDOvzwwzVixIhNXjts2DBNmzZNDzzwgC644ALFYnQdov+KZzxZSe0ZNvZCnqyRdZMyWQJZAAAAAAAGkj5JPSdNmqSrrrpKkrRo0SI1NDSopaVF1lrV19drq6220k477dQXpQBF4Vsp5fpBpyzyZ7/8ZWUmbCvHT8hNNSu21bCoS+ozxo2rwo0zixgAAAAAgAEklED2zjvv1EcffaRp06bpU5/6VJf3dtppJ8JXlIX2jKd41iNMK5D905/UvHyBYslFalnymkYOjYXbut+PmGxc1viyXkpO1eCoywEAAAAAAH0glNzjscce0+23365jjjlG11xzTRgfAUQunvHk+VZpz0RdShmwG7wODDbbnnt12yOuBAAAAAAA9JVQAtmPP/442Kjra1/7WhgfAUQunslt6MUc2SIaWHmszPoNvZgjCwAAAADAwBFKINvW1hYc77zzzmF8BBC5jiCWObLFYwdaImt9WY+NvQAAAAAAGEhCCWS322674HjVqlVhfAQQOc/kxhV0dMoif85AC2I7Mdl22fUbewEAAAAAgPIXSiB7zDHHBMfXXnttGB8B9AvtGY+RBUUxMGfISh0be3myfjrqUgAAAAAAQB8IJZA9+eSTNWPGDFlr9dhjj+mMM87QnDlzwvgoIFLxjCfXN8p4dMkWxQDsErXr58h2bPAFAAAAAADKWyyMRV944QV9/etfVzwe17/+9S89/fTTevrppzVkyBDtsssuGjlypOrq6uQ4zhbXchxHl112WRhlAgXr6I5tz/iqiVVGXE1pqpgxQ6MWzpdjshqaTahiuxFKXPntqMvqM2Z9EGuycVUOHhtxNQAAAAAAIGyhBLI/+MEPgrC149Vaq3g8rnfeeafX6xHIor+Kd9rYa/SQ6oirKVHz56tq/nxJuX8h+f4A6za2vqyXknHpkAUAAAAAYCAIJZCVtMkNanq7cU1PumiBqGR9q6xvgmAWyIfJtqsiOzTqMgAAAAAAQB8IJZCdPn16GMsC/VJ7xlN7lkAW+TNubmMv46VUERsUdTkAAAAAACBEoQSyl19+eRjLAv1SPOMr4xq5vlFVZSj75KHMdWzoZbNxiUAWAAAAAICyRnoEFOiTjb3okkV+jBvv8goAAAAAAMoXgSxQoM4bewF5MZ6sl5bJsrEXAAAAAADlrqgjC5qbm7Vo0SI1NDRo8ODB2m677bTzzjsX8yOAfiftGbnGKp7xoy4FJcy47apw2dgLAAAAAIByV5RA9r333tOf/vQnvfrqq/L9rqHU2LFjdeKJJ+rEE09UTU1NMT4O6HfibOyFAtlsXNZ3Zb20nFht1OUAAAAAAICQFDyy4P/+7/903HHH6aWXXpLnebLWdvm1Zs0aXX311Tr66KO1bNmyYtQM9DvxjKeU68szJupSUKKM277+lTmyAAAAAACUs4IC2bvvvlt/+MMfNuqK7cxxHFlrtXDhQn3ve99TPE7YgPLTnvEkK8YWIG8mu35jL+bIAgAAAABQ1vIeWRCPx3X11VfLcRxJkrVW+++/v6ZOnaptt91Wnudp/vz5uv/++4PO2KVLl+q6667TOeecU5zqgX6iI4iNZzwNH1QVcTUoScaV9dOydMgCAAAAAFDW8g5kH3/8cbW2tspxHNXU1Ojqq6/WV77ylS7XfOUrX9Fpp52mCy+8UPfff7+stbrvvvv0s5/9jHmyKCsp15dvbK5TFsiTycaDTlkAAAAAAFCe8h5Z8PrrrwfHP//5zzcKYzvEYjH99re/1aRJkyRJbW1t+ve//53vxwL9kpUUz/qKZxlZgPxZNy7rZ2W9TNSlAAAAAACAkOQdyM6bN0+SNGTIEB1zzDGbvTYWi+m4444LzufOnZvvxwL9VjzjKZn1ZYyNuhSUqI75sR0bfAEAAAAAgPKTdyC7du1aOY6jCRMmqKpqyzMz99133+B46dKl+X4s0G+1ZzxZaxXPMrYA+QkCWcYWAAAAAABQtvIOZJPJpCRp6NChPbp+2223DY7b2+n+QvmJr58f27HBF9BrxpX1M7J0yAIAAAAAULby3tTLdV1J6lF3rJQbbdAhkUjk+7FAv5XI+jJWbOzVS/Z731Piw9mq8BNKNn2sQduMirqkSBmXjb0AAAAAAChneQey1lo5jiPHcXp0fefrfJ8OQpQfKymR9RhZ0FtnnaX44lmqzKzW2nmPa9zY0fm37pcBm22XrR0l62flVFZHXQ4AAAAAACiygZx7AEUXz3hKZH1Zy8ZevWM3eB24OrpjO+bJAgAAAACA8kIgCxRRe8aXMVaJLF3gyI9ZPz/WuIwtAAAAAACgHBHIAkX0ycZejC3IC53Fkp+V9bOydMgCAAAAAFCWCGSBIopnPVmxsVdvOYws6MK67XTIAgAAAABQpghkgSIyVkpmfcUZWdA75LBdmGxc1svI+tmoSwEAAAAAAEUWK3SBNWvW6IEHHgj1niOPPLJX6wNRimc8xTOerLVyHCfqckoG0wo+0bGhl3HjqqwcGXE1AAAAAACgmAoOZBcuXKjzzjuvx9dba3t9D4EsSkl7xpNvrFKu0eDqyqjL6fecvffW2PnzJVmNtkZmwii13/bjqMuKVMe4ApuNS7UEsgAAAAAAlJOCA9ne6G23IB2GKEWdN/YikO2BbFZONvfVfEeSdRn3ID8ja9ygUxYAAAAAAJSPggJZy3eMgY20Z3xZSW0ZT2OH1kRdDkqUybbJVA2JugwAAAAAAFBkeQeyTz/9dDHrAMqGb60SGU+taTfqUlDCTKZVtnaUjJdSRWxQ1OUAAAAAAIAiyTuQ3XbbbYtZB1BWWtOehtb68o1VZQVjN9B7JtO6/rWFQBYAAAAAgDJSEXUBQDlqS3uy1qp9/TxZoLdstl2yRibTFnUpAAAAAACgiAhkgRB0jCtoY2wB8mZzc2SzrVEXAgAAAAAAiohAFghB2jPK+kataTpkkT+TaZN1U7J+NupSAAAAAABAkRDIAiFpTXtqI5BFAUy2JfeaoUsWAAAAAIByQSALhKQt7cr1jZJZQlnkJzc/1jK2AAAAAACAMkIgC4SkY1wBYwuQN+vLuAk6ZAEAAAAAKCMEskBI4hlPxlrGFqAgJtMq4yZkDc8RAAAAAADlgEAWCImxUnvGU2vajboUlDCTaZWslcm2RV0KAAAAAAAoAgJZIEStaU9J15frm6hLQYnqGFeQmycLAAAAAABKHYEsEKK2tCdZMbYA+TNZWS/FHFkAAAAAAMoEgSwQorb14woIZFEIk2mVddtkLZ3WAAAAAACUOgJZIERZ3yrl+syRRUFMtlXWGNlsPOpSAAAAAABAgWJRFwCUu9a0p7oaT9ZaOY4TdTn9jr30UrV9+JZspkWJhnkats3YqEvqd4I5stlWVdQMi7gaAAAAAABQCAJZIGRtaVdbDa1RPONraC3/yG1k+nSlF42WSaxU60dS7bhxtO5vwHopWZPNBbNDx0ddDgAAAAAAKAC5BxCy1vXzYxlbsAU26gL6N5Npzc2StfxBAQAAAABQyghkgZAls748Y9nYa3OsFYns5plMq6zxZL1k1KUAAAAAAIACEMgCIbOS2tKeWjN0yG6OJZDdrGCO7PpXAAAAAABQmghkgT7QmnaVcY0ynh91Kf2UpUF2C6wbl6wvkyWQBQAAAACglBHIAn2gLZgjy9iC7jiSSGS3rGOOLAAAAAAAKF0EskAfaEt7wegCbGDFClUsX63KFQ2qamhTxdq2qCvqt0y2TdbLyHrpqEsBAAAAAAB5ikVdADAQ+NYqkfHUmmaO7Iacr31No+fPlySNk+RPGKW2u34SbVH9VDBHNtuqylhtxNUAAAAAAIB80CEL9JHWtKd4xpdv+Go+8mOybZIsYwsAAAAAAChhBLJAH2lLe7LWqj3D2ALkyRqZbLtMhrEOAAAAAACUKgJZoI90jCtgbAEKYTKtMl5C1vAcAQAAAABQighkgT6S9oyyvmFjLxTEZFolK8YWAAAAAABQoghkgT7UmvaC0QVAPkx2/cZejC0AAAAAAKAkEcgCfagt7cr1jVKuH3UpKFXGk3UTQTALAAAAAABKC4Es0Ida148raGVsAQpgMq0y2XZZQ7APAAAAAECpIZAF+lA848lYyxxZFMTPtEjW0iULAAAAAEAJIpAF+pCxUlvaU3PKjboUlDCTac69ppsjrgQAAAAAAPQWgSzQx5pTrtKuzxxZ5M94Mtl2mUxL1JUAAAAAAIBeIpAF+lhHdyxdsiiEybTIuHFZPxt1KQAAAAAAoBcIZIE+1p725Bmr5iSBLPJn0s2SFV2yAAAAAACUGAJZoI9ZSS0pVy0pV9baqMtBiTLZVska+cyRBQAAAACgpBDIAhFoTrlyfaNEljmyyJM1MtlWOmQBAAAAACgxBLJABDrGFTBHFoUw6RZZLy3jpaIuBQAAAAAA9BCBLBCBpOsr4xnmyKIgfiY3rsAwtgAAAAAAgJIRi7oAYKBqSbkaXF0pY60qHCfqciJj77hDzQueV7Z9lVJNH2rEVmOjLqlk2Gy7rPFkMs1S3TZRlwMAAAAAAHqAQBaISHPK1bihNWpLexo+qCrqcqKz997yBq1WtqVWqVXtGjZuHK37vWAyzTKxWllr5QzgYB8AAAAAgFJB7gFEhDmyG7A26gpKkkm3yBpP1o1HXQoAAAAAAOgBAlkgIhnfKOn6zJGVJNn1v9BbhjmyAAAAAACUFAJZIELNSVftGU+eMVGXghJlvZSsnw42+AIAAAAAAP0bgSwQoeaUK2utWlJe1KVEj5EFeTPpZplMm6wl2AcAAAAAoL8jkAUi1JJyZSU1J7NRlxIph3EFBfEzLZI1MpnWqEsBAAAAAABbEIu6AGAg84xVe8Yb0Bt72RdeUNWCt2XaV8u2LFVs67TMPjtEXVZJ6ZgfazLNqqwdEXE1AAAAAABgcwhkgYg1J10Nq4kp4xnVxAZe03rFD3+o4fPnB+f+hFFqu+snEVZUgowr48Zl0i1SfdTFAAAAAACAzRl46Q/Qz3R0x7YM4C5ZFM6kW2TcdlnDcwQAAAAAQH9GIAtErC3tylir5tTAniOLwphMs2RzwSwAAAAAAOi/CGSBiBkrtaQ8NScHamcjG3oVgwk29mqOuhQAAAAAALAZBLJAP9CScpXxjJJZL+pSUKqskcm2yadDFgAAAACAfo1AFugHOsYVNKcIZJE/k2mR9VIyXjrqUgAAAAAAwCYQyAL9QDzjyzXMkUVh/HRuXAFjCwAAAAAA6L8IZIF+wEpqSbpqSbmydoDNVB1gv90w2WybZDyZNIEsAAAAAAD9FYEs0E80p7LyfKv2DGMLkD8/05IbXTDQgn0AAAAAAEoEgSzQTzSn3C6vQD5MpkXWd2XdRNSlAAAAAACAbhDIAv1EyjVKe0bNSQJZ5M8wRxYAAAAAgH6NQBboR5qTrtoynnzD182RH+slZf1MsMEXAAAAAADoXwhkgX5kXTIrYyxjC1AQk26WzbbKWhN1KQAAAAAAYAMEskA/0pxyZZULZgcOuoGLzWSaZY2RybRGXQoAAAAAANgAgSzQj3jGqiXlqmlABbIoNp85sgAAAAAA9FsEskA/sy6ZVcY1ime8qEtBqTKujBuXSbdEXQkAAAAAANgAgSzQzzQlcvNjB9bYAhSbSbfIuO2yhnnEAAAAAAD0J7GoCwDQVdL1lXJ9NSVdTRgRdTXh8196Vi0fvaj4mveVbl2usePGyYm6qDJgMs2S3U4m3aLKwWOiLgcAAAAAAKxHhyzQD61LumpLe3J9E3Up4Rs2THZYnUxdrcyQGtkhNVFXVBZMpkWyhjmyAAAAAAD0MwSyQD/UlMzKWqvm5ED4urld/2KjLaPcWCOTbQs2+AIAAAAAAP0DgSzQD7WkXPnWqmkgzJG1XV5QRCbdLOulZbxU1KUAAAAAAID1CGSBfsjYXCi7LunKln3nqN3gFcXirx9XYOiSBQAAAACg3yCQBfqppkRWrm/UnvGiLiVktMiGxWbbZY3HHFkAAAAAAPoRAlmgn2paPz+2KTEQ5shKJLLhMJlmmXTLAOi0BgAAAACgNMSiLgBA9zKeUSLrqymZ1Q6jBkddTmic2+7UoI9myWldLi/dppptxsj95meiLqtsmHSL7KAxsm5cTvXQqMsBAAAAAGDAI5AF+rGmRFZDaiqV8YxqYuXZ0F7xP9eobsFC1a0/9yeMIpAtItNpjmwFgSwAAAAAAJErz4QHKBNNyaxkpXXJbNSloERZLyXrpYMNvgAAAAAAQLQIZIF+rC3tyTM2F8yWLWabhs1kmmUybbLGj7oUAAAAAAAGPAJZoB+zynXHNiddGTZlQp78dLNkjUy2NepSAAAAAAAY8AhkgX6uKenKN1atKTfqUlCiTKYl95pmbAEAAAAAAFEjkAX6uXXJrKxywSyQF+PKZNuDYBYAAAAAAESHQBbo51zfqj3tsbEXCmIyLTJuXNbnOQIAAAAAIEqxqAuI2uuvv65HH31U77zzjhoaGhSPx1VXV6ett95a++23n2bMmKHdd9+9x+u99957+sc//qE333xTa9askbVW48aN0x577KEjjjhCBx10kBzH6fF61lo99dRTeuihhzR79mw1NTVp0KBBGjdunPbff38dddRR2nXXXfP5raOENCWzGlYbU8r1NaiqMupyiovRuH3CpJuloeNlMs2qHDwu6nIAAAAAABiwBmwgu3z5cp1zzjl66623NnqvpaVFLS0t+uCDD3Tbbbfpm9/8pi6++GLV1dVtcj3XdfXb3/5Wf//73zd6b/HixVq8eLEeffRRTZkyRZdffrnGjh27xRrXrFmjmTNn6u233+7y82w2q9bWVi1YsEC33XabvvOd7+iss85SdXV1D37nKEXrklntMHKwmhJZbTd8UNTloASZbKtkjfx0C4EsAAAAAAARGpAjCxYvXqxvfetbXcLYqqoq7bHHHtp///01adKkLl2sjz76qI4//njF4/Fu17PW6mc/+1mXMLampkZ77bWX9tlnny5B7ksvvaSTTz5ZbW1tm61x3bp1OuGEE7qEscOHD9d+++2nPfbYQ7FYLPjsm2++Weeee27v/hBQUtozvrK+URNjC5Ava2QyrTIZNvYCAAAAACBKAy6Q9X1fZ555ptatWydJqqys1BlnnKHXXntN9913n2699VY98sgjev7553XkkUcG982bN0/nn39+t2v+5S9/0VNPPRWcf/vb39bLL7+sf/zjH7rrrrv08ssva+bMmUGI+tFHH+mXv/zlZus877zztHTpUkm5cPfXv/61Xn75Zf3tb3/Tfffdp+eee06HHnpocP2jjz6qv/71r3n9maA0NCVctaY9+Ybv+CM/fqZZ1svIuMmoSwEAAAAAYMAacIHsfffdpwULFgTnV1xxhc4888yNxhGMGzdOV155pU455ZTgZ48//rj+/e9/d7lu3bp1uu6664Lz4447ThdddJGGDh0a/Ky2tlY//OEPdfHFFwc/e/LJJzVr1qxua3zxxRf13HPPdanxuOOOCwJdSRozZoyuueaaLqHx//7v/26yixelrymZlTGWzb2QN5POdcfSJQsAAAAAQHQGXCD74IMPBsdTpkzRtGnTNnv9WWed1WXe66OPPtrl/XvuuUeJREJSbqTAL37xi02uddRRR+lLX/pScH7zzTd3e92tt97apcbOnbAbuuiiizRq1ChJUnNzs+6///5N/2ZQ0tYls/Kt1doEgSzyY924rMnKpJqiLgUAAAAAgAFrQAWy2Wy2S1fqYYcdtsV7qqurNWXKlOB89uzZXd7/5z//GRwfcsghGjx48GbXO/bYY4PjF154Qclk168Ot7a26pVXXgnOjzrqqM2uN3jw4C6h8uOPP77Z61G6jJXWJVw1JXKdsuWjnH4v/Z9JNcnPtMgaL+pSAAAAAAAYkAZUILtixQrV1NQE5zvttFOP7hs+fHhw3Nz8yVd9W1pa9MEHHwTnnYPbTdl///1VWVkpSUqn013CV0l644035Pu+JMlxHB144IFbXLPzNbNmzVJra+sW70Fpaohn5BurdSm6ZJEfP9UoWSuTXhd1KQAAAAAADEgDKpDdYYcd9M477+itt97So48+ql122aVH961YsSI4rq+vD47nz58vaz/p7ttjjz22uNbgwYM1YcKE4HzDjtt58+YFx9ttt12Xz9uUXXfdNTg2xmju3LlbvAelaV0yK2Ot1sYJZJEfk26WrJ8LZgEAAAAAQJ8bUIFsh6FDh2rnnXdWbW3tFq+Nx+N6+eWXg/POXbWLFy8Ojqurq7X11lv36PO322674Hjp0qVd3uu85sSJE3u03pgxY7r8XpYsWdKj+1B6fCs1JV01JnLBbDmwo0bKjBoub/gQecMHydRvfuwHCmXlp9fJpNfJWhN1MQAAAAAADDixqAvo72666SbF4/Hg/OCDDw6O165dGxyPGTOmx2t2vrbzGpLU0NCQ15qjRo0KOnk3XLMv+b4vx3FkrZU1RsYQ+BTbmra0Rg+uUlM8o5GDq7p0aZcax3HkP3G/Wle8o3UfvSg/06YxY8eqgucmVF5irSpqR8tLrVNFzYiSfoY6dIx62dQ5sCU8QygUzxAKxTOEYuA5QqF4hoC+QSC7Ge+9955uvPHG4Hz77bfXl7/85eC8paUlOB46dGiP162rqwuON5z32vm8N2t2vratra3H9xXbkiVLNGTIECXiWTW3tGrNGuZUFlvTWkfjh0zQQj+l7YfF1NTUpGy2NEcYbLXVVqp01yk3VTkXCq7t9JcSCIdTsU6jaraTdT+UP2iCGhsb5bpu1GUV1Zw5c6IuASWOZwiF4hlCoXiGUAw8RygUzxAQjgE5sqAnli9frtNPP71LSHHuuecqFvskw+4cgvVk/EGH6urqbteQpEwmU/CanddA+fGMVUN7Si0ZI2ulQYMGRV1SgUq/O7PUWOPKTTbJcXN/AdSbf9cAAAAAAIDCEMh2Y9WqVTr55JO7fPX/O9/5TpdxBZK6hLUVFT3/o+wc6nqe1+W9zue9WbOysnKTa6L8rGpJyLdWba4pnzCNeaZ9KtO+Wo515fiJ8nmGAAAAAAAoAYws2MCiRYv03e9+V6tWrQp+NmXKFP3Xf/3XRtd2DkF7Myu1c2BaVVVVlDU7z3XZcM2+NHHiRMViMQ1JNmmEW6FxXvWWb0LvVTgaPLhOqq3RNmPrtNVWW0VdUV4cx5EXN2pLfbK53ZixY1XhOBFWNTA4lVa1Q+oUq3MUq99O22yzTdQlFcT3/S5fp9pzzz27/PsU2BKeIRSKZwiF4hlCMfAcoVA8QyjU7Nmz2U+oBwhkO5k1a5ZOP/10NTc3Bz/bf//9de2113YbcnbuKuvNmIDO19bU1IS+Zl+qrKxURUWFHMeRU1HRqy5f9JyR1JJ2VVNVKcdxunRdlxp/ffbasbFUhePw3PQF68q67TKZdaqo2Lns/swrKytL+p8LRI9nCIXiGUKheIZQDDxHKBTPEBCO8vpf4AV4+OGHdfLJJ3cJY7/4xS/qhhtu2OSMzuHDhwfH8Xi8x5+VSCS6XUOS6uvr81qz87UbronytDaelecbNafKazMm9B2TapJ1UzJuYssXAwAAAACAouCvOST96U9/0rXXXtvlZ9OmTdPll1++2b8JGjduXHDc1NTU48/rPJt29OjRRVmz87Vjxozp8X0oXY2JrIzNBbMjB5fuaIjKS69W3eL5irWtkDW+arcdrcz3vxJ1WQOCn2pUrH4HmVSTKqqGRF0OAAAAAAADwoAOZF3X1fnnn68HH3ywy89/8IMfaObMmXK2MMdy4sSJwXEymVRjY+NGAWt3li1bFhzvsMMOXd7bfvvtg+OlS5eqJxoaGpROp7tdA+XLM1bNqaxqYhXaxdotPq/9VcX9j2jQwkXq6EP3J4wikO0j1kvKeslcMDtsQtTlAAAAAAAwIAzYkQXZbFZnnHFGlzA2Fovpkksu0VlnndWjcGv33Xfvct0HH3ywxXsSiUSXoHXXXXft8v4ee+wRHC9ZskSpVGqLa3b+XMdxNHny5C3eg/KwNp6V6xu1lPTYAht1AQOan2qScdtl/Z7PrAYAAAAAAPkbkIGs53n6yU9+oueeey742ZAhQ3TDDTfoW9/6Vo/Xqaur0+677x6cv/LKK1u857XXXgt2m6usrNTnPve5Lu/vu+++wZgE3/f1+uuvb3HNzp+7++67d5lDi/LWmMjKSlqbyEZdCkqUn2qUbC6YBQAAAAAA4RuQgexVV12lZ599NjgfOXKkbrvtNk2ZMqXXa339618Pjh966KEtdrTeeeedwfEXvvAFDRs2rMv7w4YN0/777x+c33XXXZtdL5FI6KGHHgrOv/GNb/SobpQHz1g1J12tjWdlLZ2m6D2bbZP1s7lgFgAAAAAAhG7ABbLPP/+8br311uC8vr5ef/3rX7uMCuiNo446SoMG5aZfNjY26uKLL97ktf/4xz/04osvBucnnXRSt9cdf/zxwfGzzz6r++67b5Nr/vrXv9a6deskSYMHD9bRRx/dq/pR+tYmMuvHFnhRl4ISZdJNMpkWWcMzBAAAAABA2AZUIOv7vi699NKgk9BxHF199dWaNGlS3muOHj1a3/ve94Lz++67T2effbaamj75+m86ndb111+viy66KPjZQQcdpIMOOqjbNb/85S/r85//fHB+4YUX6oYbblAm88mMx8bGRs2cObNLd+zpp5+ukSNH5v17QWlqjHeMLWAGKPKTG1tgZdKMLQAAAAAAIGyxqAvoS48//riWLFkSnA8aNEi33HKLbrnllh6vMXr0aF155ZVdfvbDH/5Qs2fPDmbSPvLII3riiSc0efJkVVdXa+HChWpvbw+u32677TZaY0NXXXWVjj/+eC1btkye5+l3v/udbrzxRk2aNEnZbFbz58+X636ykdPBBx+s7373uz3+faB8uMaqJeWqJlahSaNtjzakAzoz6WbJ+vJTTaocPC7qcgAAAAAAKGsDLpDtLJlM6qWXXurVGttuu+1GP4vFYvrTn/6k3/zmN7r33ntlrZXrupozZ85G1+6zzz76wx/+sMVO1nHjxum2227TWWedpVmzZkmS2tvbg+POjj76aF100UWqqBhQDc/oZG08oxGDqtSa9jR8UFXU5aDkWPmpJjmV1bLWyHH4dwkAAAAAAGEZUIHsRx99FNra1dXVuvTSS3Xsscfq/vvv12uvvaY1a9Yom81q5MiR2muvvXTYYYdp6tSpPQ5Ot956a91xxx168skn9dhjj+m9995TY2OjKioqNG7cOO2777465phjtPfee4f2+0JpWJvIatIYqSGeIZBFXvx0kyoHj5VJN6ty0KioywEAAAAAoGwNqED20UcfDf0z9tprL+21115FW89xHE2dOlVTp04t2pooP65v1ZTIKlbhaKdRQ1RZwdgC9I5JNUnWyE81EsgCAAAAABAivpcKlIlVbWn5xqohzuZeyIP1ZTLNMqlGWeNFXQ0AAAAAAGWLQBYoE+uSrjKe0aq2dNSloER57ctljSc/vjLqUgAAAAAAKFsEskCZsJJWtafVlvaUyJROh6O1NuoSsJ7JtMhk2+TFl8saP+pyAAAAAAAoSwSyQBlZ3ZaRlbSSLlnkyWtbIuu78hOroi4FAAAAAICyRCALlJG0Z9ScdLUmnpUxdJ6i90x6nYwbz3XJWhN1OQAAAAAAlB0CWaDMrGxLy/ON1iayUZeCEuW1LZX1MvITa6IuBQAAAACAshOLugAAxdWUyCrrG61sS2vc0Jqoy9ki+5m9lB0xRG6ySZIU225MxBXBpNbKekl57UtVOWQrOY4TdUkAAAAAAJQNAlmgzFjlZslWV1YomfU0uLp//2Pu/e8Val29QI3z/ylJGjduHK37/YDXtlRVscHyk2sUG7JV1OUAAAAAAFA2yD2AMrSqPbep16q2TMSV9BTzbvsbP9kg66Xlty+TtfznAwAAAABAsRDIAmUo5Ro1p1ytbs/I9Pswrb/XN1BZee3LZNykTKox6mIAAAAAACgbBLJAmVrVlpbrGzWWwOZedGD2T35ilayfkde+NOpSAAAAAAAoGwSyQJlqTGTl+lar2tJRl7J51oou2f7KymtfLpONy081RV0MAAAAAABlgUAWKFPGSqvb02pOuUq5ftTlbB4dsv2Wn1gpa1y6ZAEAAAAAKBICWaCMrWrLSFb9v0sW/Zc18tuXy2Ta5Kdboq4GAAAAAICSF4u6AADhSbq+WtOuVrdXaIeRg+U4TtQlbST243M14qNFqks15863G6PkRUdFXBU68+IrFBs6Xl77ElXWDo+6HAAAAAAAShqBLFDmVrVlVF9bpaZkVqOH1ERdzkacWXNU/eHHql5/7rf3/03IBhzry0usVKwiJuMmVFE1JOqKAAAAAAAoWYwsAMpcQzwjz1itbMtEXcomMD+2FPiJVbnXZEPElQAAAAAAUNoIZIEy17G517pkVsmsF3U5KFHWS8tk2+QnG2TZhA0AAAAAgLwRyAIDwIrWtKyVlreyuRfy5yfXrA9mW6MuBQAAAACAkkUgCwwAKdeoKZHVmvaMXN9EXQ5KlJ9cK8nKMLYAAAAAAIC8EcgCA8SylpR8Y7WqjS5Z5Mm4Mul18pNrZS3BPgAAAAAA+SCQBQaI1rSn9oy3fnwBM0CRHy/ZIGs8mfS6qEsBAAAAAKAkEcgCA8jy1rQyntHaeDbqUlCiTKpRsr58xhYAAAAAAJAXAllgAGlozyjrGy1rTUVdCkqVNfJTjfJTTbLGi7oaAAAAAABKDoEsMIBYSSta02pPe2pNu1GXgxLlJ9esD2bXRl0KAAAAAAAlh0AWGGBWtqZlrNXyFjb3Qn5MulnWZBlbAAAAAABAHmJRFwCgb7nGanV7RpUVFUq7vmqrKiOuiA3GSpGfXCunslrWz8iprIm6HAAAAAAASgYdssAAtKI1LWutVrTSJYv85MYWiC5ZAAAAAAB6iUAWGIASWV/rkq5Wtaflm4g7VGmQLUk22y7rpQhkAQAAAADoJQJZYIBa3pqS51utaqNLFvnxk2tksnEZNxF1KQAAAAAAlAwCWWCAWpd0lXT9YHwB0Fsd3bF0yQIAAAAA0HNs6gUMYMtbUhpcVammpKvRQ6ojqcEc8TWlFi9SJr5GklS77ehI6kDvWS8lk22Tn2xQbNj2chwn6pIAAAAAAOj3CGSBAWx1e0Y7jBqi5S2pyAJZ7+enqWX5+2pd+pokady4cbTulxA/2aCK6mGy2TY5NfVRlwMAAAAAQL9H7gEMYMZKK1vTakm5as940RTBtISSlhtXYOUn10RdCgAAAAAAJYFAFhjgVrSmZGxufEEUrKxIZUuYcWXSzfJTjbLWRF0NAAAAAAD9HoEsMMBlfauGeEYN8awynh9BBVZiU7GS5ifXyPquTKox6lIAAAAAAOj3CGQBaHlLStZaLW9N9/2Hk8WWPD/VKOun5bYupksWAAAAAIAtIJAFoHjWV3PK1aq2tHzT9wmpJZUtbdbIbflI1kvJb18edTUAAAAAAPRrBLIAJEnLWlLyfKtVbX3dJWvpki0DJrVWJtMir32prJeJuhwAAAAAAPqtWNQFAOgf1iVdJbK+lremtW19rRzH6ZPPrT7yB9p60WJtZVxJkh0/WvEbvtcnn43icls+VEVNvdy2j1Q9creoywEAAAAAoF8ikAUQWNaS0pDqSq1NZDW2rqZPPtNZ16KKdW3BuT8s2Sefi+KzbkJefJUkR2bINqqoqY+6JAAAAAAA+h1GFgAINMQzyvpGy1tSUZeCEuW1fSxrXLktH8paZlEAAAAAALAhAlkAAWOlFa1ptaU9tabdqMtBKTKevNbFMtm4/MTqqKsBAAAAAKDfIZAF0MXK1rR8a7WMLlnkyU+slHHj67tlvajLAQAAAACgXyGQBdCFa6zWtGfUmMgq5fpRl4MS5bV8KOu78loXR10KAAAAAAD9CoEsgI0sa0nJWjFLFnkzmVb5yQZ5iZUybiLqcgAAAAAA6DcIZAFsJOUaNSWyWt2ekeubqMtBiXJbP5KMJ7flw6hLAQAAAACg3yCQBdCtZS0p+cZqZVs66lJQqvyMvPZlMukW+am1UVcDAAAAAEC/QCALoFutaU/tGU8rWtMy1kZdDkqU175M1s/Ia1sWdSkAAAAAAPQLBLIANmlZS0pZz2hNeybqUlCqrJEfXymTbZfJtkddDQAAAAAAkSOQBbBJa+NZpVxfS5tTsnTJIk9eYrUkKz+xKupSAAAAAACIHIEsgE2ykpY0p5RyfTXEsyF+CsqaycpPNcpPNsgaL+pqAAAAAACIFIEsgM1a055R2jNa0pykSxZ58xOrZI0vP9kQdSkAAAAAAESKQBbAZllJS5uTSmZ9rU2E1SWLcmfSzbJeirEFAAAAAIABj0AWwBatbs8o4xktKfIsWTpuBxY/sVomG5fJtEVdCgAAAAAAkSGQBbBFxkpLW1JKZDw10iWLPHmJVZLs+lcAAAAAAAamWNQFACgNq9rSmjhikJY0pzSmrqZIq1q5p39bicULlI2vkSTVbTOmSGuj3zGu/ORaORWVsmYnORX8VxAAAAAAYODhfw0D6BFjpaXNKVVXVqgpkdWoIdVFWdc/+htqX7K1EmvnSZKqxo2jdb+M+YlVqhw8Vn5yjWJ120ZdDgAAAAAAfY7cA0CPrWpLy/WtljQni7NgMEOWWbIDhcm05Db3ijO2AAAAAAAwMBHIAugx30rLWlJqS3talyzeLFni2IHFS6yScRMymdaoSwEAAAAAoM8RyALolRWtabnGaklzqgirrY9iLZHsQOInVkvWsLkXAAAAAGBAIpAF0Cu+tVreklJrylVLyi1wNUYWDEjGlZ9qlJ9cK2sKfYYAAAAAACgtBLIAem1Fa1qesVq8rsBZsuSwA5afWClZIz+xJupSAAAAAADoUwSyAHrNM1bLW1NqSblqLahL1krtCVW0JVWRyKgikZGTyBStTvRfJtMq6yXlM7YAAAAAADDAxKIuAEBpWt6S1nb1g7SoKal9th0mx3HyWqf2iB9pwqJlwbk/YZTa7vpJscpEP+bFV8mJDZafaVFlzfCoywEAAAAAoE/QIQsgLx0jC9rSrla25dvVysyCgcxP5jb38uN0yQIAAAAABg4CWQB5W9GaVlvG00dNCWU8v/cLkMcObMaTn1wjP9Ugt3WxrOWBAAAAAACUPwJZAHmzkuY3xOUZqwVrE3mugIHMbVkkP9kor22J3Ka5ssaLuiQAAAAAAEJFIAugIImsr6XNKTUlslob793oAuJYyPpym+bKa1ssP9WkTMMsGTefcB8AAAAAgNJAIAugYEuak0q5vhY2JuT5phd3Eskix2tbomzjHNlMu7IN78hPrY26JAAAAAAAQkEgWjIATAAAagVJREFUC6Bgxkrz1yaU9YwWNSV7fiMzQ9GJSa/vkM22K9v0vtzWj5krCwAAAAAoO7GoCwBQHlpSrla1ZSRHGje0RsMHVUVdEkqQ9VLKrJmlqpG7SlayblxVI3eXU1EZdWkAAAAAABQFHbIAimZRU65LdsHauIzpSWcj3Y/oRpe5suvkx1dEXREAAAAAAEVDIAugaDxj9WFjQsmsryXNqajLQYnz2pbIZNvkxZfLGj/qcgAAAAAAKAoCWQBF1RDPqimZ1dKWlBIZb/MXMx8UW+C1LZH1XfmJlVGXAgAAAABAURDIAii6BWsT8nyjeWvjMoSuKIBJr8t1ybYvo0sWAAAAAFAWCGQBFF3GM1rUlFB72tNHTcnNXElYiy2jSxYAAAAAUE5iURcAoDytbMuovrZKkjSsNqaxdTURV4RSleuSbZfXvkyVQ7aRU1EZdUkAAAAAAOSNDlkAoVmwNq5E1tf8hriS2e7mydIhi57x2hbTJQsAAAAAKAsEsgBC41tp7up2ZT2juavj8s0GASzzZdFDn3TJLmeWLAAAAACgpBHIAghV0vU1ryGuRNbT/LXxqMtBCcvNks3KT6yKuhQAAAAAAPLGDFkAoVubyGp5a0qSVF9bpW3rayVJVlbuFf+ldQvekJtqliQN33psZHWifzPppk6zZLdmliwAAAAAoCQRyALoE4sakxpaU6UPGxMaWlOpYbVVkpXM5/ZSsr5Z2fbVkqS6ceNo3ccmeW1LVFE9VH5ilWJDt4u6HAAAAAAAeo3cA0CfsJLeX92ujOdr7pp2+cYo2NSLWbLoIZNuknHj8tqXyVoTdTkAAAAAAPQagSyAPpPxjd5fE1faNVrdlpFkJUcKglmgB4JZsnFmyQIAAAAASg+BLIA+1ZJy9XFTUknXV1vakyOpuqoq6rJQQv5/e/cdJ0V9/3H8ve06cHSkSkcsiA1FRImKxqgRG7GjImqUJJYgpigqRmOJUTCxJigWBMWfmih2jYigggIiRwepB8dxXL9t8/tjuWHnbtvdbbvj9Xw8lJnd737nOzuf/d7sZ7/zHX9V0b5Rsj8xShYAAAAA0OyQkAWQdD+VVKm8xqeyao/cPkNOp1NOJ1NaI3a1o2S9pRslSTabTTabLbWNAgAAAAAgBiRkAaREYXm1PD6/qtw+efxSZlaW7Ha6JMTGX1UkX9UueUs3y1OyTjabTe3atSMpCwAAAABIewxJA5AShiHtrnSr1Y9r5dm0QTlGuTJkyFHikzGwa6qbh2bAs3ul1C4w/7Df51FGRmu1b99excXFKW4ZAAAAAADhkZAFkBI2m00+v1/5t9yvThu3mI/7erZX6azfpLBlaD4MeYpXSoZPhmHI4S6Wcnqpffv2qW4YAAAAAABhkZAFkFJGqhuAZs+zZ7UcPo/s9rZShU/K7c3UBQAAAACAtMWEjQBSIly6zEeGFo3gKVmnil2rZffulaNinWT4U90kAAAAAABCIiELIGVsIcbH+g1DlR5fClqD5q6yaI3KC3+U3Vsmz+7lMvzeVDcJAAAAAIB6SMgCSAmbTSHnKzAMqajcLbePEY5ouKriDSrbvkz+mr1y71omw09yHwAAAACQXkjIAkgJm0JnZH1+Q16/oV3lbvkN5i9Aw1WXbJa7eJX87jJ59hTIII4AAAAAAGmEhCyA1AgziawhQ0UVNfL4/CqqcHPTLzSKr2KHvKU/yVdZJG/pxlQ3BwAAAAAAkzPVDQBwYAp3Uy9JqvT4VVLlkSTtrfIoP9uVnEahRfGWbpDNlS1Jsjmz5cztkuIWAQAAAADACFkAKRTqpl61Sqq9qvL4VFLt4SZfaDRPccG+qQvWyF+zN9XNAQAAAACAhCyA1AiMkI08IcGuCre8PkNFFW55/ExegEYw/HLv/kGGt0ru3Svk91anukUAAAAAgAMcCVkAqRFpzoJ9/Ia0s7xGPr+hXeU1IieLRvG55S76QYa3Rp6iH2T4valuEQAAAADgAEZCFkBKxJCPlSS5942QdXv9Kq50J7RNaLkMT7ncxQXyeyrkKV4pwyC7DwAAAABIDRKyAFLEpmhTFtSqcPtUWuNVeY1XpdWMbkTj+Kt2yVu6Ub6qYnn3rk91cwAAAAAAByhnqhsA4MBks8U+SlaS9lR6lOGwa0+VRxlOu7Kc/J6EhvOWbpLNmS1Jsjmy5GzVLcUtAgAAAAAcaMhoAEiJWG7qFcyQtKu8Rl6fXzvLa1Tj9SeoZWjpPMWr5K8pkWfvWvkqd6a6OQAAAACAAwwJWQDNhs+QCstr5PH6VVhWoyoPSVk0hiF30Q/yuwPzyvqq96S6QQAAAACAAwgJWQBJZ05V0IgbK7l9hnaU1ci9b6RspccX17bhAGH45N61XIanSp7dK+R3l6e6RQAAAACAAwRzyAJIqZ+e/osKlrwvj7dGkpTVqlXU13j8hnaU1qhz60ztKnerQ26GcjMciW4qWhq/W+6iZcroNFTuouXK6HSk7PvmlwUAAAAAIFEYIQsg6Wz7hsjaZMjbuYPKO7RWRftWqmjfStXt8mKqw2sY2lFarRqvT7sqalRW401gi9FSGd4quYuW7//X5051kwAAAAAALRwJWQCp14ipC6TAnLI7ympU4/Frd6VbpdUkZdFwhrtM7t0/yvBUyl30gww/02AAAAAAABKHhCyApDPnkJVR59+G8xtSYVmNqj1+FVe6VVLlaWLrcCDyVxfLU7xKfneZPLtXyDC4YRwAAAAAIDFIyAJIAZtlrfHp2AC/AknZKo9PJVUe7a5wN7lOHHh8lYXy7F0vX/WewPQFfpL7AAAAAID4IyELIOls1nxsXEYjGpJ2lrtVVuNVWY1XhWU18jVyKgQcuHxlm+UpWSd/9R7VFC6R31OR6iYBAAAAAFoYErIAks5m/rsvYRqnvKkhaXelR8WVHlV7fNpRWiOPj6QsGsZXvkXuouXyu8vl3vmdfFVFqW4SAAAAAKAFcaa6AQAOQEEjZFt9skB9vl8l/75Rso62rbX92H5Nqr60xiuv36+OuZnaXlatTnmZynLy+xNi56/eI/fOJcrocJjcu1fI2fpguVr3SnWzAAAAAAAtAAlZAEkXfFOvjk/MUPeNW8xHyg7Kb3JCVpIqPX4zGVtYVqN2OS61yqTLQ+wMb5VqCpfI1f4QyZAMT4VcbQfKZnekumkAAAAAgGaMIWMAUifBc7y6fYa2l1ar2uvT7gq39lR5uNkXGsbwyVP0g7xlP8lXuUvuXd/L8FanulUAAAAAgGaMhCyApLPtGyNri1IuHnyGtKO0RhVun/ZWebSrvEZ+srJoIO/eDXIXr5S/plQ1u5bK8NakukkAAAAAgGaKhCyA5EtGJjaIIWlXhVsl1R5Vun3aUVYtL1lZNJC/cqfcRctleCrlLlomw+dJdZMAAAAAAM0QCVkASRc8h2wylVR5tavCrRqvX9tLq1Xj9Sd1+2j+/DUlcu/+UX5PRSA56/elukkAAAAAgGaGhCyAA0qF26cdpTVy+/zaUVajcjcJNTSMv3q3PMWr5HeXyb37BxkGiX0AAAAAQOxIyAJIOps5RDY10wbU+PzavrdGNV6fispruNkXGsxXWShPyVr5q0vk2f2jjATfoA4AAAAA0HI4U90AAAceW7InkQ3BaxjaUVqjDnkZkiSPz68OuZmyp75paCZ85Vtls7sCK3tWydV2oGw2AggAAAAAEBkJWQApE0hdpW5koV/SznK32mYHkmrbfNXKz3YpN8ORBiljNAfe0o2SPfCn1GZ3ypXfL7UNAgAAAACkPRKyAJIu1VMW1LWnyqMar1/tclwq8vlV6rQrP9ulHJcj1U1DM+AtWSvbvqSsbA45W/XYvw4AAAAAQB18YwSQQumRkJWkSo9PVXt9yst0Kj/bKbfXryyXQ/nZLmU5mW4bkXmKV0m2QJx4yzbLntFajuz2sme1k92Vm+LWAQAAAADSCQlZAEmXrtMBGJLKaryqqPGqVZZTbQyp2uNTdoZDbbNdynCQmEU4hjy7f5Qvq63sWR3kyKqSv2avpPWyObPkyGoXSM5mtWOeWQAAAAA4wJGQBZAyNkPpNEjW5Je0t9qrshqv2mS5ZEiq9viVn+1Smyy6TYTnr94jf/UeeSXZnDmyZ7eXI6udDG+VVL5NdleOnPl95chql+qmAgAAAABShMwCgKRLtzlkw/Ebgflly6q96pCXIcMw5Pb61T7XJTujHBGF4a2Ur6xSvrLNks0hR04nOVsfLP+u5XJkt5OzTV/ZXTmpbiYAAAAAIMlIyAJIgf3JzPROyQZ4DUOFZTXKz3ZJktw+vzrmZTCFAWJn+OSr2C5fZaGcrXpKhl++6j1y5naVs00v2eyuVLcQAAAAAJAkJGQBJF3zSscGGAqMlq3x+tQhN1PbS2vUPtelvAy6UTSA4Ze3dKN8FdvlbNNHMoxAkrZ1LznyujG/LAAAAAAcAMgkAEi64JyT4XLK53SY6/6g5XRU6fFre2m1OuZlqKjcUE2mX+1yMkQeDQ1h+GrkKV4pb/lWufL7yfB75a3YJlfrg2XP7khiFgAAAABaMBKyAFLI0JpXH9PSb94xH8nNy1O6p6I8fkPbS2vULidwmXmNz6+22S5lu9I7mYz0Y7hL5d65RI6cznK2OVhuT5XsGVvkbNNbjqy2qW4eAAAAACABSMgCSDqb5d/mM21BMEPS7kqParyBEbKF3hplOOxqleVUboZT9nTPKiOt+CoL5avcKUdeNzlb95TfXSZ7Vlu52vSWPaNVqpsHAAAAAIgjErIAks+8HNuQ0TzzsaZyt0+VnirlZTjVOsspt8+vkiqP8jKdapXplJPMLGJmyFe+JTC/bKsecho+1dTskSO7o5xtesvuzE51AwEAAAAAcUBCFkDSWVOUzTwjK8lvSKU1XpXVeJXtcqh1llM+v6HSaq9yXA61ynIq02lP+6kYkCYMn7ylG+Ut3ypn64Mlw5C/uljO/H5y5nZJdesAAAAAAE1EQhZAChlqCQnZWoakSo9PlR6fMhw2tc50yW8YqnB75XTYlZfhUB6jZhErv0fekjXylW+Rq/1gGcWr5K8pkSu/v2x25isGAAAAgOaKhCyApKudscAmNfspC8Jx+wwVVbq1p0rKzXAqL9Mhr8+vkmqPspwO5WU4lMNcs4iB4a2Su3CJnPn9AuvuMrnaD5bdlZvilgEAAAAAGoOELIAUa6EZ2X18+6YzKK3xKsNhU16GU75MQ9Uen+yVHuVmONQm28WoWURhyFuyRv6aEmW0HSD3ziVy5vdnCgMAAAAAaIZIyAJIOjP1aBjq+NLbGrpqqfmcv31rrTvr6JS0K9HcPkPFVR7tqfIo22VXXoZTfsNQudunVplOtcl2ymEjMYvw/FW7VOMpk6sdUxgAAAAAQHNFQhZA0tmCko7t3/5E3TZtM9fLDspvsQnZWoG5Zv2q9LiVUW1TfrZLhmGovMar1llOtc5yMZUBwjK81XLv/E7O/L6SJL+7VI7MfNkcWbI5M/f9myXZMyyfNQAAAABAeiAhCyCFjJY+Y0FUbp+hneVuZTrtapsduAlYWY1XbbJdapXpFOk0hGbIW7JW/poSOVv3kuGukGx2axGbXTZnphxZ7eTM6x5I0gIAAAAAUo6ELICks9X5F1KN168dZTXKdgUSsz6/odJqr3IzHMpxOZThtPN+oR5/VZHcVUWBFUeGOTrWvu9fmzNbhqdK3vJtcuR0krNVT9ldOaltNAAAAAAc4EjIAkihA3x4bAhVHr+qPDWBm31lOeX1+bW3yiOH3aacfcnZLJeD5Czq87ll+Nwy3KXyBz1sc+XK2aqHZPjlqyyUI6uDnK17yJ7ROmVNBQAAAIADGQlZAElnndaSpGwoFW6fKtw+Oe025bgcyslwyOc3VFbtld1uU7bLoWyXXVlOh5xMOIsIDE+FPMUF8u7dIEerHpLfL19VkexZ+XLmdZc9qx1zzQIAAABAEpGQBZBCJGOj8foNldZ4VVrjld0mS3K2oiZQJsNhV5bLoax9CVryswjF8NXIW7JW3tJNcuZ1k8Pvlb+6JDDPbE5nOXK7yO7MTnUzAQAAAKDFIyELIOlsXHDfKH5DKnf7VO72ySYp02lX9r5ErNvnV2m1ZLPZlOm0K8tpV3aGQxkO5p5FHX6PvKUb5S3bLEdORzlyu8jw1shb9pPsGfly5HaWI7ujbHZHqlsKAAAAAC0SCVkAyWer/YcRso1lSKr2+lXt9UtVkt0mZTkD0xhkuxyq9thUUjv3rMuh7AwHo2dhZfjkq9ghX8UO2Zw5cuR2kSPXLX9Nibz2dbJnd5DdlSObIzNwgzBHlmyOjFS3GgAAAACaPRKyAJIuOCdISjY+/IZU6fGp0uOT5JHLnGfWIa/fUFmNVzabLTBy1uVQptOuDCejZxFgeCvl3bte3r0bZM9qJ0feQXL43PLZ7JZyNrs9kJh1Zsme1V6OnE6y2TmVAAAAAICG4FsUgKQjCZh4Hr8hT+3cs5KyXA7luOzyZjhU5fFJ2j+9QaYjkJzNdNq5QdgBz5C/erf81bvlkQKjY/clYAOjZPeNlnXmyFZVLO/edbJnB6Y9cGTmp7rxAAAAANAskJAFkHy1OT+D8bHJ4FfQ6NlKjzIcNmU67Mp0OuR22lXt2J+EdTpsynYyxQECDF+NDF+N5N5b7zl7ZttAItbnla+iUDZXtpw5XeTI7cLUBgAAAAAQAQnZZmLdunWaNWuWFi1apC1btsjr9apTp04aMGCAzjnnHJ1++ulyOjmcaB7I8aWW22fI7fOpzB0YKWu3aV+C1q4sl0MeX50pDjIcynE5GD0LC3/NHvlr9shjd8qR01nO3IPk8VTJU7pRdmeOZHcGbgxmd8pmc+5bd8rmyJA9sy1JWwAAAAAHLDJ4zcC0adP01FNPyev1Wh7fvHmzNm/erI8//liHHXaYHn74YfXp0ydFrQQawrbv/4yQTQd+Q6ry+lXl9UvVwVMcOOTNsKvK41OxpAxHIGGb6bQry2mXgwQtJMnvla98q3zlW2XLaCVHTmfZXTmSLZCArU3EWn6KsUl2V57sWW1lz2wne2Zr2erMVwsAAAAALRUJ2TQ3depUzZw501x3Op0aOHCgsrOztW7dOu3Zs0eS9MMPP+iKK67Q7Nmz1a1bt1Q1F4iJjTxeWrNOcRAYPZudYVeOyyG3z2+WczoCidnMff+5HNwk7EBnuMvkdZeFftJml+xO2Z05sme1CyRj3eWSNstmd8iemb8vQZsfmKOWjgIAAABAC0VCNo3NmzfPkow944wzdNddd6lDhw6SJI/Ho7lz5+qBBx5QVVWVioqKNHHiRL3xxht8kUUzYez7D+msxudXTZVfJVXewPQGTruynIGRsh6fXeU1gXI2m01Oe+A/R51/nXa7nA4bCdsDmeGXfG75fW75a0qkvZLsGXJktQ0kaL3VslXtliTZHC7ZM1rLntlG9sw2srla8XcNAAAAQItBQjZNeTwe/fWvfzXXR40apb///e+y2/df0ulyuTR27Fh169ZN119/vbxer1asWKH//Oc/Ouecc1LRbCAmpFWaL78hVXn8qvIERsraFJjKINNpV4YjkHStTcLWPc42W+A5l90ml8Mmp8O+bzkw/QFxcQDyu+WrLJSvslCSZHPlmUlYe2bl/gSt3SFbRuugeWf3R4uZqLVnBF6X0Towdy0AAAAApCkSsmnqww8/1LZt2yQFpim46667LMnYYCNGjNDYsWP18ssvS5L+/e9/k5BFs2CToeqeB6nK7zYfq+7UJoUtQkMZ2jeCNmgqg1oOm+qNkHXZ7YFkbJ35Z2uTtc7g/xz7XrdvpG3EhK3NJqfTKcMw5PfXbwuaB8NTLp+nXL7yrZIkmzNnf4I2o1zaNxetTQqa+2Tfv7Vz0Npssme0kj2jzf4Rtvbopzs2m00dOnSQ2+1WTU1NvHcNAAAAAEwkZNPUu+++ay4PHz5cXbt2jVg+OCG7YsUKbd68WT169EhoG4HGCr7yePX9E7V6xRfmem5eHiMlWwifIfl8htw+Q4GZafezSXLuGynrctiDErGhpzYIng7B6Qgqu2/dLikrKyv4BQneOySD4a2Uz1spX8X26IUdGYF5aDPayJHZRn5XqVS2WbJJNke2bDabDBn7ZkmpnSrFkGST3ZUrZbRRht0rV26ucnNzmSIBAAAAQMKQkE1DhmFo0aJF5vqJJ54Y9TUDBw5Ux44dtWvXLknSJ598oquuuiphbQSawpJuM5hD9kBkSPL4DXn8huQJPbq2NjlbN1kbejoEye/xy2EPvNZf45XLYZfdZpPdpn3/BpbRQvnc8lfulL9yp7xS4AZitaNkXbn7Chn78rH7E7I2m13+jNZSZZGcFeUybA4Zjjz5yr2yZbcN3GCMKRAAAAAAxBEJ2TS0detWlZaWmuuHHXZYTK8bOHCgmZBdvnx5QtoGxJfBLb0QUmB0rV81vvrP2aT60xvYbfJ5PHI57XLa7fJUekLWawtK0DrsNjlq/7UHr0sOm002W+DHAwZKNlN+r/zVu+Wv3h1TccORrbIKnzJy2suV017evT75SgMH32Z3yObIlOwZsjlcsjkyA/PZ2p2y2RySzSHZ7PuW7ZLdEVgOvNo6vYLNJsnGCFwAAADgAEZCNg1t3LjRst6zZ8+YXte9e3dz+aeffopnk4C4suYhSMmiYQxJXr8hr39/7BiGoYryckmB+GrTqpVcztAjZGuXHXaZSdhobLbAqFybbd98t0FTKDj2TZtQ+5g5fNew/BOoR/uTwkgvhqdC1XsKVb1nkyTJ1a23nNltZXNmyebIkM2eITkyAslYu6vJ27PZnfsTu47MwLJz37825744qjNPrhRI9tozGLULAAAANGMkZNNQ7ShXSbLb7erQoUNMr+vYsWPIOoB0ZTMMpixA3BlGYDoEb4ipEEKxSSFGysocwWiz7U+k1iZla6dQaHRi1SbZFUjM2kIlje2hE8k287H97UFiGN5K+SqqwzxrkxyuQGLW5pDNZg+MkrUHLdvsgelZLDcfs5mJVlttcnfff+ZNyWJkJnT3JXG1L7lrHbEb1Babo86vYTZr0re2PAAAAICEIyGbhvbu3Wsu5+bmym6P7QtSXl5eyDqSyefzyWazqVvrLLXLdqlPu+yUtAPpLdMZiOlMt02dOnaXp3LQ/ucyMrghExrOMFTjdpuryYgjnwKjX+3BUx/UZm+DfmeoP0I2fNOMffWGmKmhfkFDZoLWrLvOFAu1I3pr/4qYidwoCV1L2s6cvmF/ktpet2wL+MjaDamds7257szKbtR+mXPUGr7I4/+9+5O9NtkC0x8Ej5ANPCEFj5K1KZAAdmRKfo8Mv0fylDe8kWHtC04zyVz7nyOQALa7JLtLNse+f+0u2eyBthqGf98PbIa0b9mQv86PbnWGjdts5jbM6R4siWRHYCSwza7mEGR2u139+/e3rPv9sf0wBEiBPrZv374y9n1ubDYbMdRCJfK4+ny+iOtANMQQkBwkZNNQTU2NuWy5a3gUGRkZ5rI7KDGRTLt371ZeXp4Mn0+ZdkOZ2Yy2QXgZdslm2NS795BUNwU4IOxLlyVNtGRttBSbLcxKvZu6RXmxrc5SqJvCSZIzZ/9j3hjb1pD3M1QiPuJ7ULfy2nVf6DmSQ9aX4jxm3DYfNNpXcoQIrtqRviEea9B29o1kDprvd/+/gcSwmayWfX9SufZnCvP1UnlNcZj67NZ1wy8ZPkn+/cvGvuXa8kEJa3Nd9qD3wVZv++EZUcrY6tUbbs5jI+gGeea/Rp31QMF9bQu8Z4kcjW2YPwwY+0ekN6PR3w7H/ulIKisrU9gSJFphYWFSBtH88MMPCd8GWjZiCEgMErJpyOPZ/0Ur1tGxkuR07j+cXm+0r5KJUXvC3olELGJgZA5R9u13yL59u/mY/6CDVPXwX1PYKgCIXbqN20y3SWDqtcdm+afR9TVhtpC0e49qRwNLIX6EiNZYo/b2mCEmrY5l0+EeqFOPYZnPuG4SNkaGJPn2tTkoOW0mkesmc4NfGEOS2fDvX5Z10TDbbmtA0jp4taFvbPD7pRi3ab44RHVN62mMeu0PsR7yvQ9qU93kf+gt1X9d3UeasC/19yP2bTbltYkSPJgGAHDgISGbhoJ/GW/I5SzBSViXq+k3HGmMbdu2qVevXg1KJONA5pTzf1/IuXat+Yi3Xz+5Y5z7EwAaYv+8wLaQj0crF4u6X/oT+WW+WWpc3jBcNUlns9mCZlywWR4PVTbSel21sWP512aNx5Dbibn1zUCL2pn0UT9uGjpcP+YtxaOS8LWH/AzFts2mvDYRvF4v9/wAgAMcCdk0lJ29f97V4OkLogmepiAzMzOubYrVoYceakkoA9HUTd7b7Xa1b98+TGkgNJ/PZ7mc6rDDDqMvQoMQQ2gqYghNRQwdWIYMScyUXcQRmooYQlMtX76cOdBjQEI2DbVp08ZcrqiokGEYMY2wKS/ff2OP/Pz8RDQtKofDYZk6AYjGCDGCiBhCU9EXoamIITQVMYSmIoYQD8QRmooYAhKD68rTUOfOnc1ln8+nPXv2xPS64MteOnToEPd2AQAAAAAAAGgaErJpqFevXpb1zZs3x/S6LVu2mMu9e/eOa5sAAAAAAAAANB0J2TTUrVs3y5QDK1eujOl1BQUF5vKgQYPi3SwAAAAAAAAATURCNk0NGzbMXF6wYEHU8gUFBSoqKjLXjz/++IS0CwAAAAAAAEDjkZBNU6NHjzaXP/30UxUWFkYs/+qrr5rLffv21cCBAxPWNgAAAAAAAACNQ0I2TY0ePVqdOnWSJLndbk2ePFlerzdk2S+++EJz5swx16+44oqktBEAAAAAAABAw5CQTVMZGRm69dZbzfUFCxbouuuus9zgy+v1avbs2Zo4caJ8Pp8kacCAAbrooouS3l4AAAAAAAAA0TlT3QCEN2bMGH333Xd67bXXJAWSsqNHj9bAgQOVl5endevWqbi42Cyfn5+vxx9/XE4nhxUAAAAAAABIR2Tu0tw999yjtm3b6vnnn5fH45Hf79fKlSvrlevbt68ef/xx9enTJwWtBAAAAAAAABALErJpzmaz6ZZbbtG5556r119/XfPnz9eOHTtUVVWlNm3a6JBDDtGZZ56pc889VxkZGaluLgAAAAAAAIAISMg2E3379tUdd9yhO+64I9VNAQAAAAAAANBI3NQLAAAAAAAAAJKEhCwAAAAAAAAAJAlTFgBIKePMM7WnZ09zPX/wYNlS2B4AAAAAAIBEIiELIKX8jzyiDUuXmutDhgxh6D4AAAAAAGixyHsAAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEmeqGwDgwGY/+2wdWlCwf33QIGnevBS2CAAAAAAAIHFIyAJIKdvGjcratMlcN7KyUtgaAAAAAACAxGLKAgAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCSxGYZhpLoRaL4WL15sWbfbyfGjgSorJb9//7rdLuXkpK49aLb8QXFEX4TGIIbQVMQQmooYQjwQR2gqYghNERw/knT00UenqCXpzZnqBqBlqfvBA6LKyqr/GHGEJqIvQlMRQ2gqYghNRQwhHogjNBUxBCQGP3UAAAAAAAAAQJIwQhZxxeUMAAAAAAAAByZGVceGOWQBAAAAAAAAIEkYzggAAAAAAAAASUJCFgAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAkoSELAAAAAAAAAAkCQlZAAAAAAAAAEgSErIAAAAAAAAAkCQkZAEAAAAAAAAgSUjIAgAAAAAAAECSkJAFAAAAAAAAgCRxproBB7J169Zp1qxZWrRokbZs2SKv16tOnTppwIABOuecc3T66afL6Yz/Idq+fbtmzZql+fPna9OmTaqurlbHjh3Vp08fnXXWWTrrrLOUnZ3doDqXLVumOXPm6JtvvlFhYaEMw1Dnzp116KGH6pe//KVGjhwpm80Wc32GYeijjz7S22+/reXLl2v37t3Kzs5W586ddfzxx+uCCy7QoEGDGtTGiooKvfnmm/roo4+0atUqlZWVKT8/X127dtWpp56qMWPGqFOnTg2qMx0QR+FVVlbqrbfe0vz587Vy5Urt2bNHXq9X+fn5GjBggE488URdeOGFat26dUz1nX322VqzZk2D9unCCy/U/fff36DXJBsxFNr111+vzz77rEHbP+GEEzRjxoyIZdxut/773//qvffe048//qiSkhLl5eXpoIMO0siRI3XBBReoZ8+eDdpuqhFD+02ePFlvvvlmk/bruOOO08yZM0M+11L7IallxVEokyZN0ltvvRXx+IbDeVFsiKHwOCeKDTEUGudEsSOG9uOcqPFaShz5/X59+umn+vDDD7V06VLt2rVL1dXVatWqlXr06KHjjjtOF110kXr16tWgdn711Vd644039P3332vnzp1yOp3q0qWLhg4dqjFjxuiYY45pUH2p6otshmEYca8VUU2bNk1PPfWUvF5v2DKHHXaYHn74YfXp0ydu2501a5YefPBBVVVVhS1z8MEH66GHHtKQIUOi1ufxeHTffffptddei1huxIgReuCBB2I6sS8sLNQtt9yixYsXhy1js9k0btw43XrrrcrIyIha5+LFi3Xbbbdp+/btYcvk5ubqT3/6k84///yo9aUL4ii8d999V/fcc49KSkoilsvLy9Odd96pCy+8MGK5mpoaDR06VD6fL+q2g6X7H31iKLyTTjpJO3fujFouWLQvH+vWrdNvf/vbiCePLpdLv/nNb3Tdddc16AeIVCGGrBL55aOl9kNSy4mjcD766CPddNNNkiJ/uQyF86LYEEPhcU4UG2IoPM6JYkMMWXFO1DgtJY5WrlypSZMmafXq1RHLORwOXXrppbrjjjvkcrkili0vL9cdd9yhjz76KGK5c889V3fddZdatWoVtZ2p7ItIyKbA1KlTLZ2K0+nUwIEDlZ2drXXr1mnPnj3mcx06dNDs2bPVrVu3Jm93xowZeuCBB8x1m82m/v37Kz8/Xxs3brT8kc3OztbLL7+sQw89NGx9hmHo5ptvtnwYMjMzNXDgQDkcDq1Zs0bl5eXmc3369NFrr70W8Zf34uJijR07Vj/99JP5WH5+vvr166eqqiqtWrXK0jH94he/0N/+9reI+7148WJdc801qq6uNh/r1q2bunXrpl27dmnDhg2W8lOmTNEll1wSsc50QByFj6O6bZSkdu3a6eCDD5bD4dDGjRu1a9cuy/MTJ07UzTffHLbOZcuW6aKLLpIkZWVlxfyr20knnaRx48bFVDbZiKHIfdEJJ5xgro8YMSKmfRs8eLBuu+22kM9t2LBBl1xyieV97dixo3r37q2SkhKtWbNGwX+Sr7vuOt1+++0xbTdViKH6MfSvf/1LX375ZYP2Z+3atdqxY4e5fsstt+iGG26oV64l9kNSy4mjcJYtW6arrrpKlZWVkhqWCOG8KDbEUOxtlDgnCoUYCo9zotgQQ/VxTtRwLSWOvvvuO40bN85yrpGVlaUBAwYoOztbhYWF2rhxo+U1I0aM0NNPPx125G9NTY2uuOIKLV261HwsNzdXAwYMkM/n0+rVqy3bO/bYY/Wvf/0r4g/VKe+LDCTVe++9ZwwYMMD8b+LEicauXbvM591utzFr1ixjyJAhZpkxY8YYfr+/Sdv97rvvjEMOOcSs87LLLjM2bdpkPu/3+43333/fGDZsmFlm5MiRRmVlZdg6n3vuOcu+TJkyxSgtLTWfr6qqMv75z38agwcPNsvcdNNNEds5YcIEs+zhhx9uvPLKK4bH4zGf37lzp/G73/3Ost0XXnghbH1lZWXGiBEjzLInn3yysWDBAkuZH3/80fjlL39plhk8eLDxww8/RGxnqhFH4eNoyZIlxsCBA82yo0aNMj777LN6+75gwQJj9OjRlm1/9tlnYet97bXXzHKXX355LG9XWiOGIvdF8+fPt8RQU3m9XuPcc8816zz22GON9957z/J+/vTTT8aVV15p2ZePPvqoydtOFGIocgzFau3atcbQoUPNem+99dawZVtaP2QYLSuOQlm0aJFx9NFHW/axIceO86LoiKHwOCeKDTEUGedE0RFD8cE5UcuIo7KyMuOEE04wyx5xxBHGiy++aFRXV1vKrV+/3hg/frxln//617+Gbec999xjlhs4cKAxffp0o6qqynx+7969xtSpUy31/eUvfwlbXzr0RSRkk8jtdhunnHKKeSCvv/56w+fzhSz7xRdfWL74vf32203a9sUXX2z50AYHbrCVK1daOsF//vOfIcvt3r3bUu7uu+8Ou+3XX3/dEsCLFy8OWe5///ufpdx///vfsHVOmjTJLDds2DCjrKwsZLlHHnnELHf00UcbGzZsCFmurKzMOPvss82yV199ddhtpxpxFDmOLrnkEssfiuA/YnXt2bPHOP30083yZ555ZtiyU6ZMMctNnTo1bLnmgBiKHEOGYRjPPvusWe7GG29s0D6G8uqrr5r1DR48OOy23W63cdVVV5llf/7znxter7fJ2483Yih6DMWiqqrK+PnPf27pgyoqKsKWb0n9kGG0rDgK5bnnnrO0uaFfHDkvio4YioxzouiIoeg4J4qMGIoPzolaThw99thjls/4okWLwm7b7/cbEydONMsfeuihxtatW+uVW7NmjSVp/Mwzz4St8/HHH7fUt3nz5pDl0qEvssdvrC2i+fDDD7Vt2zZJgaHnd911l+z20IdgxIgRGjt2rLn+73//u9HbXbp0qb7//ntz/c9//rOysrJClh00aJA5L4wkvfDCCyHnZXn99ddVUVEhKXDp3KRJk8Ju/4ILLtApp5xirofblxdeeMFcHjFihM4666ywdd59991q3769JGnPnj0h56apqamxzAV43XXX6eCDDw5ZX15enmUumS+//FKrVq0Ku/1UIo4CQu3L5s2bLXPsTZo0SR06dAhbZ35+viZPnmyur1+/XitXrgxZNvjxht44Jd0QQwGR9iXex/vFF1+0tOOoo44KWc7lcumvf/2rOX/SunXr9Pnnnzd5+/FGDAU0ZV8k6eGHH9a6deskBY79Y489ppycnLDlW1I/JLWsOAq2ceNGTZgwQQ899FDE+d+i4bwoOmIoPM6JYkMMRcc5UWTEUHxwTtRy4ujtt982ly+44AIdd9xxYbdvs9k0ZcoUZWZmSgrc0+GDDz6oV27mzJnmtvr06aNrr702bJ0333yzBgwYYNb30ksvhSyXDn0RCdkkevfdd83l4cOHq2vXrhHLB3/IVqxYoc2bNzd5u3379tXQoUMjlr/wwgvNeTuKi4v19ddf1yvz3nvvmcs///nPI3aWknVf/ve//5lzz9Tau3evFixYYK5fcMEFEevLycnRueeea67PmzevXpn58+dr7969kiS73R71phRHHHGEZR6UUHWmA+IoIFQcLVy40FzOzMzU6aefHrE+KTCPUPDk4cuXL69XxjAMyxfR5v5HnxgKCBVDtQoKCszlph7vgoIC8wRTUtSbpXTu3FmjRo0y19OxLyKGAiLFUDTffvutXn75ZXP9+uuvjxhrLa0fklpWHEmS1+vV1KlTdfbZZ1tO1IcOHdrgOVg5L4oNMRQe50SxIYai45woMmKo6Tgnajlx9NNPP2nr1q3m+tlnnx21De3atdORRx5prtf92+P3+/X++++b6+eff37YZLUUOMe5+OKLzfXg19ZKl76IhGySGIahRYsWmesnnnhi1NcMHDhQHTt2NNc/+eSTRm37q6++atB227Rpo8MOO8xc//TTTy3Pl5SUWH6RimVi9+OPP14Oh0OSVF1dbfmSIUlff/21+YuHzWaLqZ3BZZYsWWJ+yagVvN8DBgywvJex1Fl3v9MBcRQ5jgoLC80/ED169IjpTtMul0t5eXnmevCE3rU2bdpkJl2cTqf69+8ftd50RQxFjiEpMIos+KY2TT3JC/5S3KZNGx1++OFRXxP8/nz22WeWyeRTjRiKHkPReL1e3XPPPeZx7du3r66//vqIr2lJ/ZDUsuKoVmVlpWbOnCmPxyMpcJyuv/56vfjii+bo1VhxXhQdMRQZ50TREUPRcU4UGTHUdJwTtaw42rp1qznaVZL69esXUzvy8/PN5ZKSEstzBQUFlr9HsZyvB+/Ltm3bLD8sSenTF5GQTZKtW7eqtLTUXA8O4kgGDhxoLof6lToaj8ej9evXm+ux3lEx0nZXrVplCb5Y6szJyVHPnj3D1hn8AenevbvatGkTtc7gEwK/368VK1bUa2dD2li3zjVr1qimpiam1yULcRQ5jm6++WYtX75cX3zxhaZNmxZTG8vKyixfWkPdNT04YdO7d++YvtSkK2IocgzV1lubCMnJyVGPHj1iams4wf3bIYccIpvNFvU1wX3R3r17LXdYTzViKHoMRfPaa69p9erV5vqdd94ZtV9pSf2Q1LLiKJThw4frjTfe0K233tqoY8V5UXTEUGScE0VHDEXHOVFkxFDTcU7UsuLohBNO0LJly7Rw4UK99dZblkRrJFu2bDGX6/7tCe43XC5XTAn43r17W6ZeiJR/SmVf5GxyDYjJxo0bLevBX+Yi6d69u7ncmAO+ZcsW89ctSerVq1eTtxu8LxkZGTrooINirrP2F9ZIdcbaxo4dOyorK0vV1dWSAr+UDR8+3Hw++Nfcxuy31+vVli1b1Ldv35hemwzEUeQ4kgKXKHTq1EmdOnWKqb4PP/xQfr/fXA91vIM77IEDB2rv3r1666239Omnn6qgoEBlZWVq3bq1evfurZNPPlljx46N6ctzKhBD0WOo7vGurq7Wf//7X3344YdasWKFSkpKlJubqx49euikk07Sr371K3Xu3Dns9hrTvwXvtxTo32J9baIRQ9FjKJKKigo9+eST5vopp5yik046KerrWlI/JLWsOKplt9s1atQoXX311Ro2bFiD2xaM86LoiKHoOCeKjBiKjnOiyIihpuGcKKAlxlHbtm3Vtm3bmOrbvHmzfvzxR3O97t+e4PenW7du5tUfkdhsNnXt2tVMOG/atClsnansi0jIJsmuXbvMZbvdHnFS/WDBw9CD62jMduvWF+t2d+/eLb/fb87TEVxnrPXVLVu3XTt37mxUne3btzfnKAmu0+/3q7i4uMF11j0uu3btSpsvHhJxVLdsY/YlWE1NjZ5++mlzPT8/P+Rk3sG/wm7YsEGnnXaa5VdMKbB/u3fv1rfffqtnn31Wf/jDHzRmzJgmtS8RiKHo+xJ8vEtLSzV69GhLHyUFLqUpKSnR8uXL9a9//Us33XSTJkyYEHJ7jenf2rVrJ4fDYY5KaWqsxxMx1LR9mTlzpnbv3i0pcLJ4yy23xPS6ltQPSS0rjmrl5eXpqaeeanCbQuG8KDpiKL44JyKGQuGcKDJiqGk4JwpoiXHUENOmTbNcsRY8V2vddsb6A6MUOIepTcjGI/+UiL6IKQuSJPjyn9zc3JgDNngep7pzgTV0u1LoS49CadWqlblsGIalgwue0yO4XDSR9iV4vSF1BpcNbmNZWZnljn+N2e+6daYD4qjp+xLskUcesfw6duWVV4b8xS34j/6KFSvM/ejVq5eOO+44HXbYYZa5ckpLSzV58mRNnz69Se1LBGIo+r4EH+9169aZf7C7du2qY489VkceeaRyc3PNMtXV1Xr00Ud15513htxeY/o3u91uublUOvVFxFDj96WqqkovvPCCuT569OiY5+NrSf2Q1LLiKBE4L4qOGIovzomIoVA4J4qMGGo8zon2O5Dj6MMPP9Rbb71lrh9//PH1pk5o7Pl6cNl45J8S0RcxQjZJgufcCp7LIprg+VDcbneTttuQbQffYbVuPcHtiNe+xOP9Ca6j7n4Hd8ix1heqnlQjjpq+L7Vee+01vfjii+Z6t27ddPXVV9crV1xcXG8kwLnnnqtf//rX6t27t/lYTU2N5s6dq0ceeUTl5eWSAr/29enTR2eddVaj2xlvxFDkfal711YpcNfpW265xXJy4PF49MEHH+iBBx4wfx2dO3eu+vTpo+uuuy5sm+PRv6UaMdT4fZk7d65llOKNN94Y0+taWj8ktaw4SgTOi6IjhuKHcyJiKBTOiaIjhhqPc6L9DtQ4WrFihSZNmmSp94477qhXrjnknxqLEbJJEjw3R0OGcwf/Mu31ehu83bqviXXbdX8RDx5VkYh9CV5vSJ21d7quW0fd+oPLxVqfZN3vdEAcNX1fJOn//u//NGXKFHPd5XLp73//u+UXr1rr1q2ztO/OO+/Uww8/bPmDLwW+3F5yySV65ZVXLL9WPvDAA2l14kgMRd6XrVu3Wo7XlVdeqWeffbbeL7Uul0u/+MUv9MYbb6hLly7m408++WS9y1eCtxFrX1S3bGNjPRGIocbvyyuvvGIuDxs2TIccckhMr2tp/ZDUsuIoETgvio4Yig/OiQKIofo4J4qOGGo8zon2OxDjqKCgQNdcc40qKyvNxyZNmqTBgwfXK9vY9ydSv5EufREJ2SQJPnDBk+VHE3yQ6/4SEYu6ARvrtusGV/C2E7Evja0z+MMfro11y8VaX6h2phpx1PR9eemllzR58mRzmzabTVOnTtURRxwRsvyxxx6rpUuXat68eXr55Zc1bty4iPUPHDjQ8kvfzp079d577zW4nYlCDEXel+7du2vZsmX66KOP9OKLL+rOO++MeNfNzp076/777zfXq6qqNHv2bEuZ4HY25IQluGw63T2WGGrcvnz77bdau3atuX7llVfGvL2W1g9JLSuOEoHzouiIoabjnIgYioRzouiIocbhnMjqQIujxYsX68orr7RMRXDhhReGjYN4nxPVrTOVfREJ2STJzs42lxvyi0zw0OpYLy8Lt92GbLvukO7gbQcP6W7IvgSXrbsv8a6z7rDzWOts7CV9yUIcRY6jSAzD0GOPPab77rvPnDTcZrPprrvu0nnnnRfxtRkZGerdu7eOOeaYmLY1ZswYy3xaX375ZcztTDRiKHoMOZ1O9ejRQ8OGDYvpV9gRI0ZYfpWve7zj0c50+vJBDDWuH3r77bfN5Q4dOuiUU06JeXtSy+qHpJYVR4nAeVF0xFDjcU4UQAxFxzlRZMRQ43BOZHUgxdFHH32ka665xjKH6znnnKN777037GvSNf9EQrYZadOmjblcUVFhuYtcJLXznUiBu502Zbt164t1u06n0zLRcXA7Yq1PCux3qDrqtrMhdYZ7f1q1amU5aWjMfodqZ6oRR5HjKJyamhrdcsstljuGOhwOTZ06VZdeemnM245VRkaGDj/8cHN906ZNcd9GYxFDjYuhaILvRF33eDemf/P7/ZZLeNKpLyKGGh5DXq9X77//vrl+7rnnhrxZTjylcz8ktaw4SgTOi6IjhhqHc6L9iKHE4JwougM5hjgnqu9AiaPnnntOEydOVHV1tfnYhRdeqIceeijitAGNPV+P9P6kS19EQjZJOnfubC77fD7t2bMnptcFz7vToUOHJm1XkoqKihq83Xbt2lkuTwmuc/fu3TG3JdK+NLbO4LIdO3Y0l+12u2U91jrrvj+Nec8TiThq+L4UFRXpiiuusFyakpmZqSeeeEIXXnhhzNttqOC2Neaul4lCDDV9X0KJdLwb087i4mLLJTnB/VmqEUMN35fFixdbLsv6+c9/HvO2miJd+yGpZcVRInBeFB0x1HCcE1kRQ4nBOVF0B3IMcU5UX0uPI4/Hoz/96U96+OGHLZ/lCRMm6P777486+r5Tp07mckPOiYL3p26/kS59EQnZJOnVq5dlffPmzTG9bsuWLeZy3YmqY9G1a1fLfBmN2e7BBx9seS54XyorK2P+4AZvu+6+BG/jp59+iqm+nTt3Wn5didTOWOsMbqPL5VK3bt1iel2yEEeR46iu9evX6+KLL9bSpUvNx/Lz8zVjxgyddtppMW2vsYIvZwi+RCbViKGGxVCsIh3vxvRvdd+fuvueSsRQw2Pof//7n7ncpUsXyyiNRErXfkhqWXGUCJwXRUcMNQznRPURQ4nBOVF0B3IMcU5UX0uOo4qKCk2YMEFz5swxH3M4HLr77rt12223xbS94G1s2bIlphHEhmFo69atYduZLn0RCdkk6datm2VI88qVK2N6XUFBgbk8aNCgBm/X5XJpwIABDd5ucLm6dzwcPHiw5VeQWOqsqKiwBHrdfQm+W+emTZtUVVXVoDbabDYNHDjQ8vxhhx1mLge/j7HW2a9fv7S44UIw4ihyHAUrKCjQpZdeWq8jfu211yyXUkXz73//W3fffbcmTpyo5557LubXBXfYBx10UMyvSzRiKHIMvfHGG7r33nv129/+Vn/9619jaqMU+XgH92+N6YvatGmTVkkQYij2fqjWV199ZS6PHDmywSNSWlo/JLWsOEoEzouiI4ZixzlRaMRQZJwTRUcMNRznRPW11DgqLS3VVVddpQULFpiP5eTk6Mknn2zQFDnB/UZVVZU2bNgQ9TXr16+3JOHrtjNd+iISskk0bNgwczk4KMMpKCiwjNY5/vjjk7LdkpIS/fjjj2G3m5eXp8GDBzeozoULF5rDux0Oh4477jjL80cffbQ5d4zP59OiRYui1hm83cGDB9ebAyV4GytWrFBpaWmD6mzs+51oxFH4OKq1bt06XXXVVZbLPYYOHapZs2Y1+JesTz75RLNmzdIHH3ygN998M6bXFBYWavXq1eZ6rBPOJwsxFD6GvvnmG7388suaN2+eXn/99XqT1odSXV2tb775xlyve7yDt7Fr1y6tWbMmap3B+xL8vqULYih6P1SrsrJSq1atMtfD3b08kpbYD0ktJ44SgfOi2BBD0XFOFBkxFB7nRLEhhmLHOVF4LS2OKioqdM0112j58uXmYx07dtRLL72kUaNGNaiN/fv3V7t27cz14KR+OME3bmvbtm29H6nTpS8iIZtEo0ePNpc//fRTFRYWRiz/6quvmst9+/atF0SN2e4PP/ygH374IWL52bNny+v1Sgpk/ocPH16vzBlnnGEuv/3221FHbgTvy/Dhw9W6dWvL861bt7Z8mGfNmhWxvoqKCsvdGc8888x6ZU444QRzgmmPx6PXX389Yp1Lly61dC7Jms+moYijgFBxJEllZWWaMGGCZW6iUaNGacaMGWrbtm3E+kMJ7qzXrl2rJUuWRH3Ns88+ayZsXC5X2sUSMRQQKoaCj3dpaanlpgOR6gxObJxzzjmW5wcMGGC5jCha/7Z9+3Z99tln5nq6xY9EDNUK1w8FW7FihdkGSY26NK8l9kNSy4qjeOO8KDbEUGScE0VHDIXHOVFsiKHYcU4UXkuLo8mTJ1uSsb169dKrr75qGZkaK5vNptNPP93ShuC5XOvy+/2aPXu2uX7GGWfUG4mdLn0RCdkkGj16tDkhsdvt1uTJky0dUrAvvvjCMs/GFVdc0ejtDh061BL4d955Z9g7ya1cuVL//Oc/zfWLL75YWVlZ9cpdcMEFys7OlhSYLPnee+8Nu/05c+boiy++MNevvPLKkOUuu+wyc/nTTz/V3Llzw9Y5ZcoUFRcXSwoMew91I4KsrCzL49OnT7f8IhesrKxMf/zjH831I488UkOGDAm7/VQijgLCxdFdd91lmdfmlFNO0bRp00JuPxbnnXee5c6fU6ZMsdxhva733ntPL730kuX1Xbp0adS2E4UYCggVQ2eccYYlwfbwww9r586dYetcvHixHnvsMXN9+PDhIfuO4P5t1qxZYX+B9ng8uuOOO+TxeCQF5nZK9Nx+jUEMBYTrh4IFXwaVlZWlfv36RX1NXS2xH5JaVhwlAudF0RFDkXFOFB0xFB7nRLEhhmLHOVF4LSmOXn31VX3wwQfmerdu3TRz5kz16NGj0e289NJLzaRqQUGBnnzyybBlH3/8cXPEq91uD/v+pENfREI2iTIyMnTrrbea6wsWLNB1111nmc/E6/Vq9uzZmjhxonw+n6RA9v6iiy4KWefPfvYzDRw4UAMHDtTPfvazsNu+4447zABevXq1rrjiCkuHaBiGPvjgA40bN06VlZWSAkPKr7/++pD1dejQQePHjzfX586dq9tuu81yh7rq6mo99dRTuvvuu83HRo4cqZEjR4bdl+Ch33/+85/19NNPW+b+KCoq0i233GIZBfLrX//aMoQ92IQJE8znKioqNG7cOH344YeWiaALCgp0xRVXmB9ah8OhyZMnh6wvHRBH4ePom2++0bvvvmuuH3zwwfrb3/7WpDnvevTooXHjxpnrq1at0mWXXaZly5ZZypWWluqxxx7TbbfdZsZX165ddccddzR624lCDIWPodzcXN1yyy3memFhoX71q19p/vz5lnLV1dWaMWOGrrnmGrOPysvL03333ReynWPHjjV/hfV6vbrppps0Z84cy4nW5s2bNX78eMulyb///e+VkZERss5UIoYi/z0LtnbtWnP5oIMOsnyJiFVL7IeklhVHicB5UXTEUHicE8WGGAqPc6LYEEOx45wovJYSR+Xl5frb3/5m2a9//vOf6ty5cyxvQ1iDBg3SmDFjzPXp06frL3/5i8rKyszHysrKdP/99+upp54yHxs7dmzYxH869EU2I5ZblCGu7rrrLr322mvmut1u18CBA5WXl6d169aZIxykwN1PX331VfXp0ydkXT/72c/MCfq7deumTz75JOx2n376acuHQwrcoKFdu3batGmTZVh8VlaWnn/++Yjzq9QGbfDQbZfLpYEDByojI0Nr1qyxfEC6d++uOXPmhP2SIAX+0F922WWWjqdVq1bq37+/3G63Vq1aZf4yIQUuu/rHP/4huz38bwtfffWVbrjhBsudh7t06aKePXtq9+7dWrdunaX8pEmTdO2114atL10QR/Xj6Nprr7WcJPbu3bvBk22fe+65+uUvf2l5zOPx6Oabb7a0sbYt3bt3V1lZmVavXm2JzU6dOmnmzJlpdSfYuoih8H1R3fdGChzTgw8+WDU1NVq9erXl0va8vDw999xzGjp0aNg6a09wgi8dbdeunfr27WvGUPDlN5dddpnuuuuusPWlA2IofAzVGj9+vDmqdsiQIZZLqBqipfZDUsuJo0imTZum6dOnSwpcbjlz5syYXsd5UWyIofo4J2oYYig8zoliQwxFxzlRdM09jp555hk9+uij5nq7du0s92uIxcCBAzVp0qR6j5eXl+uqq66yTKuQnZ1tTtewatUqS190+OGH66WXXoo4GjzVfVHDf5JAk91zzz1q27atnn/+eXk8Hvn9/pB3tOvbt68ef/zxsB+whrr++uuVm5urRx991PxlI/hXqlpdunTRI488ErWjdjqdmjZtmu655x698cYbMgxDHo8n5LwjQ4cO1eOPPx71y2vnzp01c+ZM3XrrreZ8MGVlZSHnhrnwwgt19913R/zSIQXmTHv22Wd1xx13aNu2bZKkHTt2aMeOHZZyWVlZmjRpkmXoejojjqxKS0vrTfC9YcOGmO7CGOzII4+s95jL5dL06dP1xBNP6F//+pf5q9mWLVsslwLWOvnkk3X33Xen1V1gQyGGwrvnnnvUp08fPfbYY2bSYufOnSEv1TvyyCN17733Rp27acCAAXrxxRd12223mSPPiouLLSdWUmA02nXXXaff/e53EetLB8RQdME3XKidv7MxWmo/JLWcOEoEzotiQwxZcU7UcMRQeJwTxYYYio5zouiaexzNmzfPsl5cXFxvVH004W4gmJeXpxkzZmjSpElmcrmqqkrff/99vbKjRo3Sww8/HHVqjlT3RYyQTaF169bp9ddf1/z587Vjxw5VVVWpTZs2OuSQQ3TmmWfq3HPPjToUuiG/etTasWOHZs+erc8//1xbtmxReXm58vLyNGDAAJ122mm64IILlJeX16B9WbZsmd58800tXLhQhYWFcrvdateunY444gidffbZGj16dNQvCMEMw9CHH36od999V8uWLVNRUZHsdrs6d+6so48+WhdffHHIk8RIqqqqNHfuXH344Ydau3atSkpKlJmZqV69eunEE0/Ur371q2bRSddFHO1/bbjLNRri5ptv1sSJE8M+v23bNs2ZM0cLFy7Uxo0bVVZWptzcXHXq1EnHHHOMzjzzzLS8A2wkxFB4xcXFev311/Xll19q3bp1KikpUVZWljp27KghQ4bojDPO0CmnnFJvovhIvF6v3nnnHb3//vtauXKldu/eLZfLpe7du2vYsGH61a9+1ag5tVKJGApv9OjR2rRpkyTprLPOssyv11gtsR+SWlYc1dXUUUWcF8WGGArgnKjxiKHwOCeKDTEUHudEsWuucXTkkUdGvUFuNLHE1ldffaW3335b3377rYqKiuTz+dShQwcNHTpUY8aM0YgRIxq0zVT1RSRkAQAAAAAAACBJuKkXAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAkISELAAAAAAAAAElCQhYAAAAAAAAAksSZ6gYAwIFqy5YtOvXUU+Ne78cff6zu3btr2rRpmj59uiTpuOOO08yZM+O+reaqub03hmFo7ty5OuSQQzR48OBUNwfNXHOLf6SndO+XmlOcp/t7me5OPvlk7dixIyF1v/zyyzrmmGMSUjeahuMOoLljhCwAAGlszZo1uvzyy/WHP/xBZWVlqW4OANAvxRHvZdMUFhYmLCnncDh06KGHJqRuNA3HHUBLwAhZAEiRrKwsjRgxImKZvXv3avny5eb64YcfrjZt2kStFy3HmDFj5PF4Ut0MADDRL8UP72XTrF+/Xj179oxabufOnaqurjbXY3lNz549lZ2d3aT2ITE47gBaAhKyAJAiHTp00PPPPx+xzKJFi3TllVea67///e81bNiwRDcNaYQv6gDSDf1S/PBeNs0JJ5ygDz/8MGq5M888Uxs2bJAkdevWLabXIH1x3AG0BCRkAaCFmjhxoiZOnJjqZgAAAKRMRUWFNm3aZK4zT++BgeMOIN0xhywAAAAAoEVauXKl/H6/uU5i7sDAcQeQ7kjIAgAAAABapJUrV1rWuWHTgYHjDiDdMWUBALRQ06ZN0/Tp0yVJxx13nGbOnBmxzJQpU3TJJZeosrJS77zzjt555x1t3LhRpaWl6tChgwYNGqSxY8fq5JNPttSxYcMGzZo1S/Pnz9e2bdskSd27d9fIkSM1btw4dezYMab2rlmzRm+//ba+/PJLbd++XWVlZWrTpo169OihESNG6IILLtBBBx3UlLckovLycr3yyit6//339dNPP8nr9apTp0469thjdfbZZ+v4449vUH1N2Z+5c+fqzjvvrPd48HzCY8aM0bZt27Ro0SJJ0tlnn61HH300bHvmz5+va6+91lx/4IEHdP7554ctP3XqVDNmItWdiOMWjzqDY/vPf/6zLr/8crndbr311luaN2+e1q1bp6KiIrVq1Uq9e/fWz372M40dO1atWrVqUFsjKS8v13/+8x999tlnWrlypYqLi+V0OpWfn68+ffro+OOP1y9/+Ut16tQpbB2TJ0/Wm2++KSlwzB988MGI29yyZYtOPfVUc/3jjz9W9+7dY2prPOI/HvtcV7xjzOPx6D//+Y/effdd/fjjj9q7d6/atm2rAQMGaMyYMTrrrLNkt9v1m9/8Ru+//74k6cUXX7TM352M45Jun4NY+6Vo70W0dt52222aMGGCSktLNWvWLM2bN09btmxRVVWVOnbsqCOPPFJjxozRSSed1ODteL1evf3225o3b54KCgpUXFys/Px8de3aVaeddprGjBkT89+s77//Xm+//ba+/fZb7dixQ5WVlcrPz1f37t114okn6rzzzlOPHj1CvjYe72VTtl8rUf1kIvqBpvjxxx8t64ccckhStovU4rgDSHckZAEApmXLlun222+3zLklSVu3btXWrVv18ccf6+KLL9aUKVPkcDj0wgsv6OGHH653U5LVq1dr9erVmjt3rp5++mkdccQRYbdZVVWlqVOnau7cuZZLyySpqKhIRUVF+u677/TMM8/ouuuu08033yybzRa/nVZgv3/729+aCeVaGzdu1MaNGzVnzhydfPLJevDBB9WuXbuIdSVzf0aNGmUmZL/66isZhhG2rgULFljWv/7664gJ2f/973/mcnAiqVYi9jOR711BQYFuu+02rV271vJ4cXGxiouLtXjxYj3//PN65JFHdOKJJ8ZUZyQLFizQ73//exUVFVked7vdqqys1LZt2zR//nxNnz5d119/vX796183eZuNFa/4j/c+JyIeli9frttvv10bN260PL5z507t3LlT8+fP1xtvvBHxx41Ea0mfg8ZauXKlbrrpJm3dutXyeO3fov/+978aMWKEHnroIbVv3z6mOletWqVbb7213r7v2rVLu3bt0tKlS/Xcc8/pL3/5i0477bSw9RQWFuoPf/iD5s+fX++52rq+++47Pf3007rssst0++23y+VyxdTGWCRy+/GIj3Ts+1asWGEud+zYMWmJYKQWxx1AuiMhCwCQFPiy+sgjj6i8vFySdNBBB6lHjx7au3evVq9eLcMwJEmzZ89W//795fF49NBDD0mSMjMzNWjQIDkcDq1evdqso7i4WBMnTtR7772nnJycetvcs2ePxo8frx9++MF8zOFwqH///mrTpo327NmjNWvWyDAM1dTUaPr06VqzZo0ee+wxORyOuOz31q1bde2116q0tFSS1LZtW/Xt21dVVVVatWqVvF6vJOnzzz/XFVdcoZkzZ4ZNSsVrfzp37qwRI0ZIkuVL9+GHH642bdpIkgYMGKBTTjnFHEG1e/durVq1SoMGDQrZtoULF1rWv/7667DvycaNG82kvMvl0siRIxOyn4muM3h/pk+frj179kiS2rdvrz59+qi6ulrr1q1TZWWlpEC83njjjXrzzTfVt2/fiHVGsnTpUk2YMMHyQ8XBBx+sTp06yefzaevWrdqxY4ckqbq6Wo8//rj8fr9uvvnmRm+zseIV//He50TEw+LFizV+/HjzeEtSq1at1L9/f3m9XhUUFMjtdmvBggW66aabzM9aMqXz5yDWfqmpamNy9+7dkqT8/Hz169evXkzOnz9fl156qV599dWoP5T99NNPuvzyy804b926tXr37i2n06k1a9aYj+/du1e//e1vNWvWLB1++OH16lm/fr0uu+wyFRcXm485nU71799frVu3VmFhoZns93g8mjFjhlasWKFnnnnG8jewse9lvLYfSjz6yXTs+9xut9atW2euM4/ogYHjDqA5ICELAJAkvfrqq5ICX57uvfdey+W5BQUFGj9+vHbt2iVJeuyxx1RVVSWbzaYbbrhBEyZMML/sVVZW6q9//atmzZolSdqxY4feeecdjR071rI9wzA0adIkM/Fgt9t17bXX6tprr1Xbtm3Ncjt37tS0adM0e/ZsSdL777+vJ554Qrfccktc9rt2BFbr1q31xz/+Ueecc46Z2CguLtbDDz+suXPnSpLWrl2rKVOm6IknnqhXTzz358QTTzRHHw0cONB8/Pe//73luEiB41X7BXzBggUhE7J79uypN5fa1q1btXnz5pCXtH7++efm8rHHHqu8vLyE7Gci6wxWO/VCz5499ac//UkjR440RxSWl5dr2rRpmjFjhiSppqZG06ZN09///veIdUZy7733mgmJI488Ug8//LB69uxpKfP111/rz3/+s3nsnnnmGV100UXq3Llzo7fbGPGK/3jucyLiobS0VL/73e/MpFJGRoZuv/12XXLJJcrIyDDLPPnkk5oxY4aWLFkiuz25t1pI989BQ/qlpqj925Gdna3f//73uvjii80RnkVFRXrwwQf1zjvvSAokEf/0pz/pH//4R8Q6a5OAbdu21eTJk3XWWWeZx93j8WjmzJl65JFH5PP55PV6df/995vtqFVSUqLx48ebydDa4zN+/Hjl5+eb5davX68HHnjAvMrgm2++0R//+Ec99thjZpnGvJfx3H4o8egn07HvC07iS1y2fqDguANoDripFwDAdNBBB2nWrFn1vhAOGjRIkyZNMtcrKytlGIbuuOMO/e53v7OMvMnJydGUKVMsicG6l8tL0ttvv21+YbTZbHr00Ud1++23WxIPktSpUyfdd999uu2228zHnnnmmXqXHDdFTk6OXnzxRZ133nmWUWbt2rXTAw88oCuuuMJ87P3339fixYvTZn9GjRplLn/55ZchyyxatMi89DkrK8vyeCjB0xX87Gc/szyXiP1MxnvXvXt3zZ49WyeffLLl8u68vDzdeeed+sUvfmE+9vnnn8vtdketM5Rt27aZCTWHw6F//OMf9RISUmBe5+eff16ZmZmSAgmOzz77rFHbbKqmxn+89zkR8fD8889r586d5vrjjz+uq666ykzKSYGk9J133qnJkydLUr3pAhKtJX0OmsrlcumZZ57RZZddZrncvkOHDnrkkUd0ySWXmI99/PHH+vbbb6PW2b59e73xxhs677zzLMfd5XLpmmuu0bhx48zHvvvuO8soVCnwHgdPofDII4/o9ttvtyRDJalPnz56+umndcEFF5iPvfvuu/r000+jtjGSZGy/KfGRrn1f3XlEubHTgYHjDqA5ICELADD95je/qfflv9app55q+YLWrVs3XXXVVSHL2mw2nXLKKeb6Tz/9VK/M888/by6fc845OuussyK2bcKECeYlpH6/3xypEw+//e1vI46emDRpkrp162au144mDpaq/Ql+nxcvXhwygRKcEL/wwgvN5VDTFlRVVembb74x1+smZBOxn8l47yLFtiRLgqeyslKbN2+OWmcowUm/nJyciNvs3r27Lr74Yp166qm66qqrQiYvkqGp8R/vfY53PHi9Xs2ZM8dcP/fcc+vFdbCrr77avJw8mVrS56CprrvuOh133HFhn7/zzjstMVl7g7VIbrvtNstr6gred0mWeVQrKir08ssvm+vnn3++JTlZl91u1913361evXqZjz377LNR2xhOsrbflPhI174veB5RiUvXDxQcdwDNAVMWAAAkBZKoo0ePDvt8bm6u2rVrZ87rN3LkyIiX9AZfflhWVmZ5btOmTVq1apW5HunmUsHOO+88LV++XJL1svqmyMnJ0UUXXRSxTEZGhs4//3xNmzZNUmAEafANtFK5P8ccc4xatWqlsrIyVVVVacmSJTr++OMtZb766itJgfkyL730Ur300kuSQidkFy5cqJqaGkmBS2mDExiJ2M9kvHd2uz3kjcmC9evXz7JeN2Zj1aVLF0sdf//73/W73/0u7GflT3/6U6O2Ey/xiP947nMi4mH58uVmvyWp3vQpoVx77bUhb5qUKC3tc9AULpdLV155ZcQymZmZuuCCC8zpMz777DP5/f6wMWe323X66adHrLNHjx7Ky8sz50APvinV119/rerqanP96quvjrofmZmZuuKKKzR16lRJ0pIlS1RSUlJvRGsskrH9psZHuvZ9wdP1tGnTRt27d29UPZ9//rkmTJggKfB3MlLCOVkMw9D69eu1bNkyLVu2TMuXL1dBQYE5bURwn9JUwfOxxlv79u0b9bmIpCUfdwAtBwlZAIAkqWvXrpa5QkMJvty9d+/eEcvWXo4o1b/0d8mSJZb1Pn36xNTGww47zFzetm2bduzYYfkS2BhDhw5Vbm5u1HLHHHOMubx3716tXbtW/fv3l5Ta/XE6nRoxYoTee+89SYHRsMEJ2a1bt5ojlI855hj17dtX+fn5Kikp0fbt2/XTTz9ZRicFJ3XqjiJMxH4m473r3r171Nhu3bq1ZT34pjQN0aVLFw0ZMkRLly6VJD399NOaN2+eTj/9dI0YMUJHH3205XLpVItH/MdznxMRD7UJSymQ7BsyZEjU+oYNG6asrCxLEiyRWtrnoCmGDBkSU9IjeGqdoqIibdiwIezN+Lp161Zv30Jp1aqVmZANvtogeEqEjh07xnzzstp5YqVA8mzJkiURR2eHk4ztNzU+0rHv8/l8Wr16tbnelHlEaxN8Xbt2TZuk3NatW6OOpI+XRG7ntttuM5Oe8dDSjzuAloOELABAUmCEQkNE++IWPL1BXZs2bbKsjxw5skHbrlVYWNjkhGysiY+6Cejt27ebCalU788pp5xiScjeeuut5nPB0xXUJmqPOuooffLJJ5IC88gGJ2QjzR+biP1MxnsXy8ibuneob8r8oXfffbcuv/xy8wZSmzZt0nPPPafnnntOWVlZOvroo3XiiSfqlFNOCZtASpZ4xL8Uv31ORDwEz7vZrVs3y5yk4TgcDvXr18+cEzPRWuLnoLFC3ZgwlLqxu3PnzrCx1aZNm5jqDB7NGbzvwZfj1x0lGknv3r3lcrnMxGVwPQ2RjO3HIz7Sre9bu3at5UeVply2XjsnabreHKpz58464ogjVFJSYpl26EB0IB13AM0bc8gCACRZR7TGIlLCNZrS0tJGvzZYSUlJk+uIZdSUFBg5FWzv3r3mcqr35+STTza/KK9YscLStoULF5rLtQnZ4BG0wTf2WrdunZm86tSpkzk/Za1E7Gcy3rvgkd3JcOihh+qVV17REUccUe+56upqffnll3rooYd01lln6Re/+IVmzpyZkpGIUnziX4rfPiciHmpHPEr19yOSeF9CG0lL/Bw0VqzJ07o/CgZPMVBX8I0nGyP4fY31MyMF/k4Gx1xj+/hkbD8e8ZFufV/wZeu17WusJ554QqtWrdI//vGPRtexZcsWDRw4UAMHDmx0HcHy8/P15JNP6osvvtD//vc/TZ8+XcOHD49L3c1Zuh13AAiHEbIAAElNS7A2lNfrNZczMzN17LHHNqqehnwxbSrDMCzrwV9eU70/bdu21ZAhQ7RkyRL5/X4tXLhQZ5xxhgzDMBOy+fn55pfA4IRs8DyywdMVjBo1ql5MJGI/U/3eJcohhxyiOXPmaMmSJXrvvff0+eef1xsFKQVG8kydOlWvv/66ZsyYkbaXREaK/1rx2OdExEPwj0119yOShv5I1RQt9XPQGE5nbF9P6o7ObMixbaim1O3z+czlSPOup/P2GyKd+r66N3ZqaaMc8/LydNpppyVlW/GcjzbRWvpxB9BykJAFACRdcNIgOzvbcnfxZKuoqIipXN0RbMH7kA77M2rUKHMeyi+//FJnnHGGVq9ebY4aGzZsmJlgHTBggNq3b6/du3ersLBQGzdu1MEHHxxxugIpMfuZDu9dIh111FE66qij9Mc//lGbN2/WwoULtXDhQn355Zfas2ePWa6goEB33HGHnnnmmbB1xZKUqb0hW6ziEf91NWWfEx1jDblJVfDI2kjicVxa+uegIWJ93+vGZCJHNAeP2m3IaGafz2fZn1jma07H7TdGPPu+xqq93FwKjJKONvd9OG+99ZYmTZokl8ulJUuWpNU84KiP4w6guWDKAgBA0nXu3NlcLi0tjfkLeCJs2bIlpnJr1661rPfq1ctcTof9OeWUU8zl2nljg0e/Bt8Ax2az6bjjjjPXFy1apIqKCvPGMTk5OTrhhBPqbSMR+5kO712y9OjRQxdddJEeffRRLViwQM8884wOOugg8/nPP/9cGzZssLwmeJRy8CjKcIITHbGIR/xH0tB9TkQ8HHzwwebyli1bYr5RV+3N8EKJ93E5kD4H0YQaTRlK3bu+NzbpEovgeXnrfhYiWb9+vWWEamPv9J7q7TdVY/q+pjIMw3Lp+qBBgxo9QrigoECS1LdvX5JyaY7jDqA5ISELAEi6oUOHmst+v9+SOIzk66+/1l133aWnn35a77zzTsyj+yJZunRpTCPcgm+OddBBB1m+IKfD/gwYMEDdunWTJG3evFmbN2+23Jk7eJqCuuuLFi3SV199Zc7lN3z48JCXaydiP9PhvYunFStWaO7cuXrkkUc0b968sOXsdrtOPvlk/e1vf7M8XjfJFHwDqliSdGvWrGlQe+MR//Hc50TEw9FHH20u+3y+mOrcunWrtm/fHvb5eB+XlvY5aIrvv//ekkQMJ3h+7E6dOqlHjx4Ja9NRRx1lLu/atSvmy7e//PJLy3pjL51O9fZjEe++r6k2bdpk+Tw0ZR7R2gQfl76nP447gOaEKQsAAEl3yCGHqHPnziosLJQkvfDCCyEvka/r8ccfN5OM+fn5OvPMM5vcll27dunTTz+NuP3S0lK9+eab5nrdOdsSuT82my3m+QNHjRqll156SVLgi3ht3R07dqx3R+vgEbBff/215QY54dqeiP1Mp1iIh6eeekoffPCBpECSLVq7+vfvb1kPTvRJssyrGEvC4r///W+sTZUUn/iP5z4nIh569OihQw891JxX8MUXX9TIkSMj1vfqq69GfD7ex6W5fQ4a0i81VFFRkT766COdccYZYctUVFRo7ty55nqi9/u4445TTk6OKisrJUkzZszQAw88EPE1NTU1euWVV8z1wYMHq1OnTvXKxfJeJnL78RLvvq+pgi9bl5qWVKsdKTlo0KAmtQmJx3EH0JwwQhYAkHQOh0Pjxo0z1xcuXKinnnoq4mteeukly4jPCy+8MG5f4KZMmRL2Dt0+n09//vOfzUuOHQ6HrrzySkuZRO5P8EjVaPNQBk9b8Morr1jmj62rV69e6tq1q6RAUu6dd96RFBi9NGrUqJD1J2I/0y0Wmir4vfv+++8jjhSTZHnebrfXu/t28BfBzZs367PPPgtb12uvvaZvvvmmgS1uevzHc58TFQ/jx483l7/44gu9/PLLYetbvHixZsyYEXGb8T4uze1z0JB+qTHuv/9+7dy5M+RzhmHo3nvvNZ93uVy6/PLL496GYK1atdKFF15ors+dOzdikt0wDE2dOtUy/ULdz02tWN7LRG4/XuLd9zVV3Rs7NXak5I4dO8z+j5GS6Y/jDqA5ISELAEiJyy+/3HKi/Nhjj2ny5Mnatm2bpdzu3bv14IMPaurUqeZjnTt31oQJE+LWlsLCQl188cX66quvLI9v3rxZN9xwg+WL469//Wv17NmzXh2J2p/gG9UE33QrlGHDhiknJ0eS9Y7IdacrCC5fq3bk1ZAhQ9SuXbuw20jEfqZTLDTVL37xC/NyfsMwNHnyZL322mtyu92Wcm63W7Nnz9Z9991nPnbmmWdapgKQpJNOOsk8ppL0+9//Xp988omlzK5du/Tggw/q7rvvlhT7XeprNTX+473PiYiHs846S6eeeqq5ft999+mhhx6y3OTL6/Vqzpw5Gj9+vDl9RziJOC7N6XPQkH6pMQoLC3XJJZdYpsqQpG3btunmm2/W//3f/5mPXXPNNTHPadwUN910kzktjCTdfvvtevTRR1VSUmIpt3HjRt14442aPXu2+diwYcN03nnnhaw31vcyUduPl3j3A00VPI9oRkaG+vXr1+R6YknM+Xw+VVRUhPwveP7qcGUqKioSNvr8QJCq4w4AjcGUBQCAlMjIyNATTzyhcePGafPmzZKkN998U//3f/+nvn37qn379tq1a5c2b95sSY60atVK06ZNs9x1uilGjhypb775Rlu3btW4cePUtWtXde/eXXv37tXq1astX4zOPPNM/frXv07q/gwYMEA7duyQJM2cOVPffPON8vPz1bdvX91111312jB8+HB99NFHlsdDjZCVAona4EvRpfDTFSRyP9MlFuIhMzNTDzzwgCZMmCCPx6OqqirdddddevDBB9WvXz/l5eWpoqJCa9eutcxz16tXL/3hD3+oV19eXp6uv/56PfbYY5IC0wfceOON6tKli3r06KGSkhJt3LjRfF8uvvhirVq1SkuXLo2pvfGI/3jvc6Li4cEHH9S1116rZcuWyTAMPf/885o5c6YGDRqkzMxMrVmzxkxudevWTVu3bg37viXiuDSnz0FD+qWGateuncrKyrRlyxZdffXVZkyWlpZq9erV8vv9ZtlTTz1Vv/nNb5q0vVjl5+frySef1LXXXqvdu3fL7/frmWee0b/+9S8NGDBArVq10s6dO+vdnOrQQw/VE088YbkRXLBY38tEbT9e4t0PNFXwpev9+/dv8A9VtWoTc926dVPr1q2jlv/2229jGo0cPC9wXR9//HHKbsDW3KXquANAYzBCFgCQMt27d9ecOXMscwUahqG1a9dq0aJFWr9+vSXxcOihh+qVV17RkCFD4taGwYMHa9q0aeYopW3btunrr7/WqlWrzGSUy+Uyky+R7tabiP258cYbLZchFxQUaOHChWEvkQ6etkCSunbtGnJErxR65GzwKMJwErGf6RAL8TJ8+HD985//tMzXWFlZqWXLlmnBggVaunSpJSExatQovfjii+rYsWPI+m644QZdf/31cjgc5mM7duzQN998ozVr1sjj8chut2v8+PGaMmVKg9oar/iP9z4nIh5at26tF154Qeecc475mNvt1rJly/TNN9+YydgBAwbo3//+d9h6aiXiuDSXz0FD+6WG6Nevnx5//HEzCVIbkwUFBWYy1uVy6YYbbtATTzzR6IRLYxxyyCF6/fXXLX2n1+vVjz/+qEWLFlmSoU6nU1dccYVefvllyyjYuhryXiZi+/EU736gsbZt22Zebi417cZOzCPafHDcATQ3jJAFAKRU27Zt9cQTT2jlypX6z3/+o0WLFmnbtm0qLS2Vy+VS586ddfjhh+uss87SySefHDEh2lgnnXSS3nnnHb300kv65JNPtHXrVtlsNnXt2lUnnXSSLr74YvXu3Tsl+3PUUUfp5Zdf1jPPPKPvv/9eJSUlyszMVG5urmpqaizzD0qBhGzwTWLCjY6VpC5duujggw/Wxo0bJQVGKtW9+Vey9jNRdabKSSedpHnz5undd9/V559/rlWrVqmoqEhut1tt2rRRp06dNGzYMI0ePVpHH3101PpuvfVWnX322ZozZ44WLFhgXsbepUsXnXDCCbrooosafVllvOI/3vuciHjIycnRI488ossvv1xvvPGGFi1apMLCQmVmZqpfv34655xzdMEFFygjIyOm9y4Rx6U5fA4a2i811Kmnnqr//Oc/mjlzpj755BNt27ZNNptNPXv21EknnaSxY8eqR48ecdqbhunatateeOEFff3113rvvff07bffaufOnSorK1NeXp769u2r4cOH6/zzz7dMMRBOQ9/LeG8/3uLdDzRG3Rs7DR48uNF11Y6UjPVzPGzYMMuUQcG2bNli/ugZrgwaL5XHHQAaw2YwSQ0AAABgEXyToRdffDHijxtommnTpmn69OmSpOOOO04zZ85McYsAqby8XMccc4wMw9CTTz6p0047rUn1JSMh+49//EOPP/54QrfR0sX7uANAOOk7tAQAAAAAgBQoKCgwrzbh0vUDB8cdQLKQkAUAAAAAIEjtPKKtW7fmJlsHEI47gGRhDlkAAAAAAILUziOazqMk165dq/LycnN9x44d5vL3339vKduvXz/l5eUlq2nNVnM47gBaBhKyAAAAAAAEaQ6JuXvuuUdff/11yOfGjh1rWWcu7Ng0h+MOoGVgygIAAAAAAPbxer1au3atJOmQQw5JcWuQLBx3AMnECFkAAAAAAPZxOp1atmxZXOvs3r27Vq1aFdc6Z86cGdf6DnSJOO4AEI7NqL2FIAAAAAAAAAAgoZiyAAAAAAAAAACShIQsAAAAAAAAACQJCVkAAAAAAAAASBISsgAAAAAAAACQJCRkAQAAAAAAACBJSMgCAAAAAAAAQJKQkAUAAAAAAACAJCEhCwAAAAAAAABJQkIWAAAAAAAAAJKEhCwAAAAAAAAAJAkJWQAAAAAAAABIEhKyAAAAAAAAAJAkJGQBAAAAAAAAIElIyAIAAAAAAABAkpCQBQAAAAAAAIAk+X++UmHyZDlL5gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time')\n", + "\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Exactly as expected, the output distribution of the distance between the events follows an exponential distribution cut at 2.5 ms.\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = \\frac{r_{in}}{1 + r_{in}\\tau_d}$$ \n", + "(Zhang+95, eq. 29). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSYAAARHCAYAAADujb0AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3gU5d7G8XvTSIOEGiD0klBtIFhQBEQBAWl28YAeURGPokeKDVHsKEdFBT1SRARBUUERFUQECyjSMQmEEBJqIKQH0vb9I2/m7GRTNnVSvp/r4mLn2dnZX7KTLfc+xWa32+0CAAAAAAAAgErkZnUBAAAAAAAAAGofgkkAAAAAAAAAlY5gEgAAAAAAAEClI5gEAAAAAAAAUOkIJgEAAAAAAABUOoJJAAAAAAAAAJWOYBIAAAAAAABApSOYBAAAAAAAAFDpCCYBAAAAAAAAVDqCSQAAAAAAAACVjmASAAAAAAAAQKUjmAQAAAAAAABQ6QgmAQAAAAAAAFQ6gkkAAAAAAAAAlc7D6gIAoCqIjY3VgAEDjO3OnTtr5cqV8vT0LNFxVq1apenTpxvb+/btk4dH7XmqHTt2rLZt2+bSvh4eHqpTp47q16+v1q1bq2fPnho4cKA6duxYwVVWPfnPvw0bNqhFixYWVmQdx7+h4OBg/fjjj2U+5rRp0/TFF19IkkaOHKmXX365zMe0Uk37eUoiNDTUuPzRRx+pd+/eZT7mgQMH9Oeff+q2224r8HrH57VJkybpoYceKvN9omg8J7pm+/btOnHihG644QarSylX1f3nmjJlir766iv16tVLS5YsKdFt7Xa71q9fr9WrV2vPnj06c+aMfHx8FBQUpMsuu0yjR49Wp06dSnTM1NRUffHFF1q/fr3Cw8OVnJyswMBANW/eXAMGDNDIkSPVpEmTEh3z+PHjWr58ubZs2aLo6GidO3dOjRs3Vrt27TRkyBANGTJEPj4+JTpmZbLb7Vq1apU6d+6sLl26uHSbjIwM9erVS+np6brhhhv0xhtvVHCVQO1Bj0kAKMDff/+t+fPnW11GjZaVlaXU1FTFxsbql19+0Ztvvqlhw4bpscceU0pKitXlAajh0tPT9dprr2nkyJHatWuX1eUALjt79qyefPJJ3XHHHTp06JDV5ZSbmvBzrV+/Xl999VWpbnvy5EndcccdmjRpkr7//nsdP35cGRkZSkxMVEREhD766CONGDFCL7/8sjIyMlw65vbt23XDDTfo+eef12+//ab4+HhlZmYqLi5Ou3bt0htvvKFBgwZp1apVLte5fPlyDR48WPPmzdPevXuVnJyszMxMHTt2TFu2bNETTzyhESNGVNnn1QMHDujOO+/UE088oeTkZJdvt3XrVqWnp0uSrr766ooqD6iVak83HgAooXnz5unaa68t8TfTyBUQEKDu3bsXen12drbOnTun48eP68SJE5Jyv8H++uuvFRkZqY8//lj+/v6VVS6AWubFF1/UihUrrC4DKLHHHntMv/zyi9VllLvq/nPt3r1bjz/+eKluGx8frzvvvFNHjhwx2gIDA9WhQwelp6crPDxcWVlZstvtWrhwoU6dOlVsj73t27fr7rvv1rlz54y24OBgBQcHKy4uTlFRUZJye1ROnz5d58+fL7TneJ5FixbppZdeMrZtNps6duyowMBAHT58WKdOnZIkHT58WP/4xz+0dOlSde3atcS/j4o0cuRIZWZmlvh2mzZtkpT7MxNMAuWLYBIACpGZmalp06aVakg3codcfvjhhy7tu337dj3//PP6+++/JeX2WH399dc1Y8aMiiwRQC1Wmg+mQFVQU8/d6vxzbdu2TRMnTlRaWlqpbj99+nQjlKxTp46mT5+um266yZgOKC4uTi+++KLWrl0rSfrmm2900UUX6a677irweCkpKXrkkUeMULJZs2Z66aWXdPnllxv7/P3335o+fbrx3mvWrFm64IILCg0Sd+7cqVdffdXYvvTSS/Xiiy+qVatWknK/XP7hhx/0zDPP6OzZs0pPT9fEiRO1bt26KjWsu7Tn2c8//yxJ6tatmxo0aFCeJQG1HkO5AaAIDOmuHD169NDChQvVunVro2358uU6efKkhVUBgLRkyRKFh4crPDyc+SUrSYsWLYzfeXh4OPNLokr78MMPNX78+BINC3a0efNm/fTTT8b2yy+/rNtuu800R3njxo01Z84cjRgxwmh79913C536Zv78+Ubvxbp162rRokWmUFLKnU/9448/VkhIiKTcKXZef/31Qut86aWXlJ2dLUnq2rWr/vvf/xqhpJTbk/C6667TokWL5OfnJ0k6ceKEFi9e7MJvoWqLjo5WdHS0JKlv374WVwPUPASTAFAAxzeD8+bNU1hYmIXV1A7169fXxIkTje2cnBx9++23FlYEAABQsMOHD2vChAl69dVXlZWVVerjOAZ3ffr00ZAhQwrdd8aMGWrYsKGk3Dk58xZCc3T+/Hl9+umnxva9996rNm3aFHg8f39/vfDCC8b2L7/8ovDwcKf9du3apZ07dxrbTz/9tLy9vQs8ZqdOnfTggw8a24sXLzYCzeoqbxi3RDAJVASCSQAowN133y2bzSYpd8jH9OnTy/SmE6657rrrTNsFvTkGAACwSlZWlmbNmqWhQ4eaAquLL7642Dka80tMTNSvv/5qbI8ePbrI/X19fTV8+HBje926dU77bNmyRYmJiZIkNzc3jRo1qshj5h++XdAx84aQS1L79u118cUXF3nMMWPGGF/yx8fHa9u2bUXuX9XlPc4NGjRQt27dLK4GqHmYYxIACnD55ZcrKSlJy5cvlyTt379f8+bN06RJk8r9vg4ePKjPP/9c27Zt09GjR5WSkqK6deuqWbNmuvzyyzV8+HCFhoYWeYy3335bc+fOlZT7Lfadd96pjIwMffXVV1q3bp0iIyN1+vRp1a1bV23btlX//v11yy23qG7duuX+85SFr6+vGjRooPj4eEkyhiEVZvfu3dqwYYP+/PNPHTt2TAkJCcrKylK9evUUFBSkSy65RIMHD1aPHj0KPcaqVas0ffp0SbmB9NSpU/XTTz8ZPWW9vLwUHBysyy67TJMnT5aXl5fp9seOHdO3336rbdu2KTIyUomJiUpPT5efn5/q16+vCy+8UH379tX1118vd3f3Ev9OPvzwQ2NOJ3d3d23atEmNGzcu9nbr1683eiz4+/try5Yt8vHxKfZcKkpwcLB+/PHHQq//7bff9PPPP2v79u06ceKE8cGoXr16at68uXr27Klhw4aVeEGpjIwMrVy5Ut98840iIyOVnp6uxo0b66KLLtLgwYM1YMAA44uE8hAfH69Vq1Zp8+bNioqK0tmzZ+Xr66smTZqod+/eGj58uC644IJyuz9Hu3fv1sqVK7Vt2zYdP35cnp6eatGihQYOHKjbb7+9VPNapaam6ssvv9SmTZt04MABnTlzRl5eXmrcuLF69uypwYMH64orrijRMcv7sc7MzNTXX3+ttWvXav/+/UpMTFRgYKBCQ0M1evRoDR48uNwe44L+Br744gtTzyPHL0XGjh1rfKieNGmS03Bux+ffZ599VrfddpvS0tK0Zs0arVmzRocPH1ZSUpIaNWqkTp066ZZbbnHqcRMVFaXly5dry5YtOnbsmKTc4cxXX321xo0b59LfvGTtuVueYmNjNWDAAGN7w4YNTsO5+/fvr6NHj0qS/vrrL/n5+SkmJkafffaZfv75Zx07dkzp6elq1KiRLrzwQg0dOtR0zILknRteXl7as2ePpNyVeJctW6bdu3fr1KlT8vb2Vvv27dW3b1/deuutRf5Nbt261TQHoCtfthV2vuX/neSZO3eucf4V9xxdmGnTphnn/7x589S3b1999NFH+vTTTxUbG6t69eqpXbt2GjRokO644w6n25fltbisP1dOTo5++OEHrV+/Xrt27dLp06eVnZ2thg0bqmvXrhowYIBuuOGGcp0rPC0tTUuWLDG2PTw8dM8992jSpEklnv5n27ZtRm9Cm82mK6+8stjbXHnllVq4cKGk3HM/MTFRAQEBxvW//fabcTkkJMSl548rr7xS+/btkyRt3LhRDz/8sOl6x2O6UmNAQIC6detm9LLcuHGj01Dy0jp58qRWrVqlLVu26ODBg0pJSZGPj4+Cg4N16aWXasyYMU6vPY7v9Rw5/n2OHDlSL7/8stM+6enp+uOPPyTl9mh1cyu4b9exY8e0atUq/f7776a66tevr65du+rKK6/UsGHDVKdOnbL8+ECNRDAJAIWYMmWKNm/ebHzwKe9VupOSkjRz5kx98803stvtpuvi4+MVHx+vffv26cMPP9Tw4cP1zDPPuLxKdVhYmB577DEdPHiwwONu375dH374oWbPnu3SG8zK5Ngz1dfXt8B9YmJi9PTTT5veKDs6ffq0Tp8+rX379mnJkiXq16+fZs+e7dLv78svv9S0adOMxyQ9PV2JiYnKysrS1KlTjf3S09P10ksvadWqVQVOpJ6QkKCEhARFRUXpyy+/VLt27TR37ly1b9++2BocDR8+XG+88YaysrKUnZ2tb775RuPGjSv2dqtXrzYuDxkypEInnt+7d69mzJihvXv3Fnj9uXPndOrUKe3cuVMffvihRo8erRkzZjiFvAU5cuSIJk6cqAMHDpjaY2NjFRsbq6+//loXX3yxXnnlFdMcpaW1aNEivfXWW0pNTTW1Z2RkKCEhQREREVqyZIkGDRqk559/XvXq1SvzfUq5H3Sfe+45p2F558+fV1hYmMLCwrR06VK98sorJTru6tWr9fLLL+vMmTNOx01OTtahQ4e0YsUKXXbZZXrllVfUtGnTIo9XEY/1vn379Oijj+rw4cOm9ri4OMXFxWnLli1avny5/vOf/7j0M1tt9+7d+ve//23MR5bn6NGjOnr0qDZs2KCbb75Zzz77rNzd3bV48WK99tprTs8jERERioiI0KpVqzR//vxiA0Wrzt2q4qOPPtLs2bN1/vx5U3ve733t2rXq1auX5s6dawpxCmO32/Xyyy9r0aJFpvbMzEzt3LnTOMefeuopjRw5sjx/FMs99dRT+vzzz43tvNfU/KF+Rb4Wu2Lv3r164oknCgx88x7377//Xu+++65eeOEFXXrppeVyv46uuOIKTZ06tdTvDR2nCmrRooVL56bjfeXk5Gjfvn2mL5ccfx+urojteMwDBw7o/PnzRoCWmZmpQ4cOlfiYoaGhRjCZF/SXRWZmpubOnasPP/zQ6fkyOTnZeK38+OOPdeutt+rJJ58sl0B669atxvNKYcO4FyxYoDlz5igjI8Op5qSkJEVHR2vt2rV68803NXPmTPXv37/MdQE1CcEkABTCz89PL7zwghEC5Q3pXrlypWkOytI4ffq0br/9dtMHV5vNpo4dO6p+/fqKj4/XwYMHZbfbZbfb9dVXX2n//v1asGCBmjRpUuSxDx8+rLlz5+rs2bOSpIYNG6pdu3Y6d+6cIiMjjRUj4+Pj9cADD+iLL74ocVhWUY4fP66kpCRju6AFDyIjIzV27FhT0FK3bl21a9dOfn5+SktL06FDh0zH2bhxox599FG9//77Rd5/ZGSkli5d6hQUSzINnUpPT9c//vEP7dq1y2jz8vJSu3btVL9+fWVmZiomJsa0eM+hQ4f0j3/8Q99++22Jeqo2btxYffr0MSbGX716dbHBZFJSkjZu3GhsOw7j6tOnj8v3HRsbawqLLrroIqd9/vjjD02YMMG0Emn9+vXVpk0b+fj4KCkpSYcOHTKut9vt+uyzz+Tl5VXsquspKSn6xz/+YfQg8/f3V0hIiHJychQWFmasNrpjxw7deeed+vjjj0sdTtrtdj355JOmD+OS1Lp1azVt2lRpaWmKiIgwPpysW7dOBw4c0OLFi13uzVaY8+fP695779Wff/5ptLm5uSk0NFR169bVkSNHdOLECcXHx+vBBx90+WecO3eu3n77bVNb8+bN1aJFC50/f16RkZHGwgm///67brrpJi1atKjQ54OKeKx37dqlcePGmY5Zr149dejQQdnZ2YqIiFB6erq2bt2qf/7zny793MXJ+xuIiIgwemU3adLEWACiLMLDwzV79mzj99qsWTO1bNlSiYmJioiIMJ5bVqxYoY4dOyozM9PoEV2nTh116tRJ7u7uioiIMI4RHx+vhx56SN9++22BX9ZYee5WFQsXLjTOdZvNpnbt2qlRo0aKi4szBSrbtm3TpEmTTL3dCvP6668boWTe63NgYKAOHz5snDcpKSmaNm2akpOTC10dubx4e3sb5+6ePXuMXsqtWrUyFiBp1KhRme/niy++0HfffVfgdY6vg+X1Wlzan2vTpk16+OGHlZ6ebrQFBASoXbt28vDwUHR0tPE4RUdHa/z48Xrttdc0ePDgEv9O8nNzc1O/fv00fvx49e7du0zHcnyNdfW5vXHjxvL29jZeA6Ojo03BZFRUVImP6fh+KysrS7GxscZrQWxsrCkILM0x81YcL63MzExNnDjRWBk7T8uWLdWsWTOdPn1aR44cUVZWlux2u5YtW6ZTp07pnXfekc1mU1BQkHGebdmyxbh99+7djTC4sNeAvGHcbm5uBX6Zv3DhQtOXhp6enmrfvr3q16+v5ORkxcbGKiEhQVLuSKCHHnpI//3vf8utBylQExBMAkARLr/8ct1yyy3GJOLlMaQ7MzNTEyZMMIWSY8aM0b/+9S8FBQUZbSdOnNCcOXP05ZdfSsr9BvuRRx7R4sWLi/wGOO8DV6tWrfTUU0/p6quvNoZApqSk6O233zY+bJ0/f15vv/12lemJtGLFCtN2/jeAeR/A8z4I1atXT88995wGDhxoCotzcnL0008/6fnnnzdCrU2bNmnPnj3q3r17ofef9+aza9eumj59urp166ZTp07pq6++Mn0ge/fdd41Q0mazadKkSRo/fryxCmWesLAwzZo1yxgCFBcXpxUrVuiee+4p0e9l1KhRRjC5b98+HTp0SO3atSt0/7Vr1xrf2rdt29Y0F9SHH37o0n0eP35cN910k7EdGhqqWbNmmfY5f/68pk+fboRKzZo10wsvvKArrrjCNOw2MzNT33zzjV566SXjzfny5cs1adIkYxL/giQmJioxMVFeXl567LHHdPvttxs971JSUjRv3jx98MEHknLf7D/++ONavnx5ocOsivLBBx+Ygp0BAwbo3//+t+n3nJ6ebvTcywv6H330US1atKhUw/TzvP7666ZQ8vrrr9eTTz5pej7YsmWLnnnmGR09etSp92hBvvnmG1Mo2aNHD02fPt10/mdkZOjrr7/WK6+8ooSEBJ06dUqTJk3SZ5995nQuV8RjnZKSoocfftg4pre3t6ZOnaoxY8YYj3NaWpoWLFigd9991xhmWFZ5fwOOw1evvPLKAofwldSyZcskSW3atNFzzz1nCi3CwsL0z3/+U3FxcZKkOXPmKD09XTabTffff78mTJhgBI9paWl65ZVXjOlETpw4oTVr1uiWW25xuk8rz92qIu9cHzp0qCZPnmwKRCIiIvT4448bPdO2bdumTZs2FbmARUZGhvHc0qtXLz333HNq27atpNzXoQ0bNuiZZ54xXoteeeUVXXzxxUW+vpRVo0aNjHPXcbj38OHDy3W1+LxQcsiQIZo0aZKaNWumgwcPav369Uav3fJ8LS7Nz3X48GFNnjzZCCWbNm2qJ598Utdee63p+X/r1q2aNWuWIiIilJmZqWnTpqldu3ZlmtJEyv2SbN68eWU6Rh7HKWtK8kVBw4YNjRE9ec8pUu7vPG86nJIcM3/4GxcXZwSTjscvyTEd9ztz5oxycnJK9fos5T5fOoaSvXr10pNPPmnq6RkbG6vnn3/eeL+0YcMGLVu2TLfffruuvPJK4z2l4+P/+OOPFxsu593vhRdeqPr165uuO3v2rN544w1j++abb9aUKVNMX0BnZWVpzZo1mjlzptLT05WVlaWXXnrJNLIFqO1Y/AYAijFlyhQFBwcb22VdpXvFihWmD9iPPfaYXnjhBVMIIeW+0X7llVdMb8y3b99uWmmxMC1atNCKFSvUt29fU2jg7++v6dOn64YbbjDaNm3a5DT0xAqbNm0yPghKUocOHZzmvdu2bZt27NhhbM+ePVuDBw926sHq5uam/v3767333jO1O35LXphmzZpp0aJFuvTSS+Xj46PWrVubQuP09HRTb5u8eaXyBzlS7tCo//73v04BU0n169dPgYGBxnZxb2a/+uor43Jxk94XJC0tTffff7/xYaR+/fp69913nXprffPNN4qJiZGUO//l/PnzdeWVVzrNBejp6akRI0bopZdeMtpycnL0yy+/FFuLm5ub3nnnHY0bN840HNjf31///ve/TXNG7dq1S19//XWJf96YmBi9+eabxvadd96pd9991yn89fHx0fjx4/Xf//7X+HJg27ZtWrVqVYnv0/G+ly5damwPHz5cb775ptPzQZ8+fbRs2bJih1pLuYHfs88+a2wPGDBAH330kVNo4uXlpVGjRumTTz4xeowcOnTI9HeYpyIe68WLF+v48eOScgP+d955xxQ+S7nTOUyaNEkvvvhisT93VdGsWTMtX77c6cNup06dNGXKFGM7LS1NdrtdU6dO1SOPPGL6+/L19dWzzz5r+tDtuEBGHivP3apm7Nixev3115162oeEhGjBggWmoOCHH35w6ZjXXHONFixYYISSUu65eu211+rjjz82hsNnZWVp9uzZ5fBTVA39+/fXG2+8ofbt28vX11cXXHCBHn30UeP6yngtLsqzzz5rTFnQsmVLff7557ruuuucQq/evXtr2bJlRqB67tw5zZw5s0z3Xd7yeohKKtFoCsd9HXulJicnm1bAdnXKhvz37XhMxxpLe0y73W46ZknExMToo48+Mrb79++vhQsXOg2fb9GihebOnauePXsabe+//75ycnJKdb9Sbs/g2NhYSdJVV13ldL3je+jQ0FA999xzTr9LDw8PjRw50rT6eXh4uKlnK1DbEUwCQDH8/f1NPcXKukq344f+3r17a8KECUXu/+CDD5reZH344YfFvsn617/+5fStriPHVSPT0tKMwKEypaen6+jRo1q/fr0effRR3XfffcZQIXd3dz311FNOHzIc57Hq2rVrkT1epNwgoE2bNsb2iRMniq3rzjvvLPJN9/bt2403oZ6enrr33nuLPJ63t7epTldqyM/Ly0tDhw41tosK32JiYvTXX39Jyv093njjjSW6r5ycHD322GNG+O7p6am33367wGH1v//+u3H52muvLbYXSt++feXt7W1su/p4XH311YVeP27cOFOP0LweayWxePFi4++5ZcuWmjZtWpH7X3rppaZhm3mLEJTG119/bdx3QECAnnnmmUIXeQkKCtLTTz9d7DE/++wz4wNg3bp19eKLLxY5/UT79u1NCx0sW7bMGCKYpyIea8eAfeTIkUVOMzBixAhde+21Rd5nVVHU82/+hZqCg4P1j3/8o8B9bTabrrnmGmO7oKGQVp67VUndunVNwVl+DRs21MCBA43tiIiIYo8ZGBiol156qdARCu3atdPkyZON7d9//90I2qu7Bx54oMjFpirjtbgw+/fvN93/888/X+QQdn9/f73wwgvGz7N9+3bt3r271Pdf3hznRHV8ziyO4xc4jsfIP8eqqwut5J8HuKhjulpn/r+d/Mdx1cqVK433h76+vnrhhRcKfU3z9PQ0PRccP368TPNbOq66XtB57tjjtXnz5kX+3Vx//fW67LLLNGTIEN13333lumgfUN0RTAKAC6644grTELq8Id0lFRERYfrgMn78+GJvY7PZTEN/jx07VmSPTTc3t2JXHu3QoYNpOzk5udg6Smrbtm0KDQ0t9N9FF12k/v3768EHHzQtAOTh4aEZM2YUOPfOI488op07d2rNmjV67bXXXKrD8QOLK2+Ke/XqVeT1ffr00e7du/X9999r6dKlpp6M5VVDQRwXV3AMH/Nz7C3Zp08fp553xXnttddMq58+9dRThS4Y8Oqrr2r79u364osv9Pjjjxd7bHd3d1NgU9zvwmazFRraOLr11luNyzt27DCGELvKsffU0KFDXZosf8SIEcblyMjIUof7jh96Bg0aVGyPmf79+6tZs2ZF7uM4P1z+3raFGTZsmDGkNyEhwViwIE95P9ZRUVGmudVuvvnmYo9Z0GrAVY3NZtN1111X6PV+fn6mVZyvvvrqIoc2Ov79FvQ8beW5W5VceeWVhS6Wlqdjx47GZVd6bo0cObLIFbfz9nHsLV+aFbGrGj8/P3Xr1q3IfSrjtbgwjs9vTZs2dWmevpCQEHXp0sXYzhvqWxU4fsldkmHOjlMwOB4j/5fmrk7VkH8/x16X+Y/pap35w0PHY5aE45zZgwYNKvbvskePHnrsscf0yiuvaOXKlWWaPzhvGHejRo0KXPTH8Tl68+bNRT4HeHh4aPHixZozZ44effRRU1gP1HYEkwDgoilTpqh58+bGdmmGdDvOI+fu7q7LLrvMpdtdfvnlpjeN27dvL3TfFi1aFLviZf4egQWtKl3ZbDab+vTpo6VLlxY4j1oeHx8fhYSEFLtgT1RUlFauXGn60F3cm2KbzebSypoeHh5q3bq1LrzwwiL3i4uL0/fff2/qbVbaN+bdunUzvbles2ZNgfvl74VWEitXrtSCBQuM7dtvv90U+hXE399fXbp0UcuWLQvdJycnRxEREfr4449NgUBxv4vWrVsX2FMzvx49ehiX7Xa7U6hWlKNHj5p677i6EFTHjh1NvUYKC4qLkpGRYVpA6ZJLLin2Nm5ubkWG5xkZGaYVs139eerVq2csNCEV/POU52Pt+Fzo5eXl0tx8PXv2LPPCYxWtefPmxT7/Op43jkOEC+LY2yl/T3krz92qxpU5Ax1Df1de84rrBSjlvh45nrt58wlXZyEhIS4FTxX5WlwUx/O1JAv3OYatVemcd3xvV5Ihx46/Q8cvJIoKGF09Xv5j5j8fXK0zf6BZmhWy09PTTfMqu7qy+oQJEzRixAhdcMEF8vHxKfH9SlJqaqrxWnXVVVcV2MOxb9++xvGzsrL0wAMP6LbbbtP777+v/fv3F7iYIgBnVfvdHQBUIXlDuu+++25JpVul23HIR3BwsMtvlnx8fNSiRQtjwRzH4+TnSu+o/G9cyzL/TmECAgIKDRtsNpt8fHzk7++vRo0aqXPnzrr44ouL7QmWX0ZGhsLCwhQVFaWYmBjFxMQoOjpaBw4cMFa0dVTcG0R/f3+n4UzFycnJUVRUlA4cOGDUcOTIER08eNBpwnhXaijKqFGjjAU6vv32Wz3xxBOmN/o7duwwzpHAwMBie8462rZtm2nurd69e+vJJ58sUX1paWn6+++/dfjwYeN3ERUVpUOHDplWTs1T3O+iqAV+HLVs2VKenp5G2FCS4ZT5h8f++9//1r///W+Xb5/HcQV2V50+fdr0t+dq74n8PZ4dnThxwjRn7Jw5czRnzpwS11bcz1PWx9rx+MHBwS49h3p5eally5ZVel6uohZzKkhxIWZRQ/2sPHermpK+7rnyPOzKl1RS7vNU3pdPRb02VxfF9UYrSHm/FhfF8bz/5ZdfSrWQTVU65x2/JChJT1LHfR2/wMg/zNrVYxY1BDz/e9Xz58+79F4p//zlrg4rdxQbG2s6X4r7Mqc8/fbbb8b7isKmlAkMDNT06dP1zDPPGG1//fWX/vrrL73++uuqX7++LrvsMl111VXq27dvkdMOALUZwSQAlMCVV16pm2++2Vg9ev/+/Zo/f74efPBBl27vOMTU1cnDC9q/qKGqJZmjqDD9+/c3VnssykcffVToaoahoaEurwBdUhEREZo/f742bNhQYAjiyMPDw+X5QIsLCRzFx8frgw8+0OrVq3X69Olyq6Eow4cP1+zZs5WVlaWzZ89qy5Yt6tevn3G94zDuoUOHuhyyRkdH66GHHjLegLds2VJvvvmmy4H7X3/9pffff19btmwpsieSzWaTzWZzOQgvyd+Iv7+/zp49K8l5ov6ilGTf8j5O3oq2eVw9/4r6vVT0z1Nej7XjqrEl+bvLW6SnqirpB++yzDFm5bm7detW01yVhQkODq6U4c3l8brnyGazuXyuOfbEzP83XR2V5O+xol6Li1LaBVQcldffTnlwPM8KCnEL47ivYzBft25dubm5Gc+9rh4z/36Ox8z/t5CSkuLSQj2Ox/Tw8CjR4j558k9hUZpjlFbeVCvu7u5FzoF8yy23KCAgQC+88ILTlxNnz57Vt99+q2+//VZubm669NJLNX78eNN7NwAEkwBQYlOnTtWWLVt07NgxSdJ7773n0mIQUtl6CTgOsynJPEQ1zdKlS/XCCy8UODzJ09NTrVq1UufOnXXJJZeoT58+euqpp7Rt2zaXju3q73X79u2aOHFigQGxzWZT8+bNFRISoosuukiXX365Nm3apHfeecelYxelYcOGuvrqq40P+mvWrDHe3GZkZOjbb7819nV1Ne6kpCTdd999xs/i6+urd999t8jFkxzNnj27wFWcpdyQpm3bturSpYsuueQSXX311brttttcCr1LyvFvqyQhRf4PypdeemmpenUUNby5MKWdQqGowDn/z9O9e/dShXkF9cosz8e6In72qqAyFzOw8tyt6dzc3Fx+PXB8LaoJwzZd/bkr8rW4KI7PHa1atTJNQeEqx3lBreY4R2FJgm3HfRs3bmxcdnNzU+PGjY1eoa4eM/8XrI49+/LPVX369GmXRrg4jhpp0KBBqZ4frVwgJm9+yYsuuqjYL0oHDRqk/v37a9OmTfruu++0ZcsW48vSPDk5Odq6dau2bt2qG2+8US+//HKtfj8POCKYBIASKmxId14vyqI4BgQl/dbf8Rv+qvSmujJt3LhRzz33nLHt5+enG2+8Ub169VJoaKhatWrl1MuvPHpoODp+/LgeeOAB4/Fwc3PTwIEDddVVV6lLly5q166d07Cn8uwxNGrUKON4eb1UfHx8tHnzZiNcDA0NLXCS9vyysrL0r3/9yxgaa7PZ9Nprr7k8UfzHH39sCqoaNmyoG2+8UT169FBoaKiCg4Od3nSX5PFITU11aT+73W7qmVGSnpb593366adLNTSwNPLft6vPCUX1gMl/zIkTJ6p///4lLy6f8n6sHXu9lGTxrZL0KKrprDx3a7rs7GzjubU4judvcUPK7XZ7sUFLWRaGqSxWvhYHBAQYIdqAAQOKXYm+qnOcwiP/9AyFOXXqlM6dO1fgMaTc+ZnzgklXj+k4B6inp6eCg4ON7ebNm5umS4mJiXFpXuDY2NhCa3RV/ue5ilissSDh4eHGHL6uzDcr5X5xNnDgQA0cOFA5OTn6+++/tXXrVv3222/atm2b6TH76quvFBISon/+858VUj9Q3RBMAkAp5B/SvW/fPs2fP7/Yb5CbNm1qXD569KjLH3xSUlKMHpqSTG8YK0JVXVn09ddfNy4HBwfrk08+Mf1OC1LeQ7bef/9945ienp764IMPil0VtDxruOaaa1S/fn2dPXtW586d0y+//KJrr71W69evN/Zxtbfkc889p99++83Y/te//qVrr73WpdtmZGTo7bffNra7du2qxYsXFzvMqiSBvOOHmqJERUWZPvSWpAdN/p4gx48fr7Rwp0WLFqYhd5GRkS4tgFPUB82goCDZbDaj51ZJ5tssTEU81q1btzYux8bG6vz588X29rPb7TViBenyYuW527t3b4WHh1fKfVklOjrapXkmDx48aFzOH77kDyEzMzOL7fWbv5dVVWTla3FQUJARTDq+L6quHL9EjI6Odul94d9//21cttlsTn/33bp1M3qnurpIo+MxO3ToYJq/2tPTUyEhIdq3b5+x75AhQ0p0zM6dO7tUR35NmjQxvaZFR0fr4osvLvZ2v/32mxITE9WiRQu1bt26xEPA84ZxS4XPL1kUNzc3de3aVV27dtXdd9+ttLQ0ffHFF3rppZeMgHfx4sUEk8D/o+8wAJTS1KlTTUHke++9p4iIiCJv4xg6ZGdnm0Khovz222+mIWKu9IaraWJjY00rM06YMKHYD0JpaWmmEKc8htk5vlm97rrrig0lJfMHg7IuNOTp6amhQ4ca2+vXr1dOTo5Rl6enp4YPH17scRYtWqRPP/3U2B48eLAmTpzoch07duwwDWWfPHlysW/8o6KiTPOQFfd4FLZwQn6Of0eenp4u9eTI07FjR1PdjiuoFyU+Pl7Tpk3TW2+9pc8++6xUw9O9vb1NH9ZcfT7Yvn17odf5+/urY8eOxrarP09mZqaeeOIJzZkzR59++qkpbKmIx9rxg2VWVpZLQzzDw8MrrbdMdWDluVsbOK4cX5iUlBQjrJFyV453lD+ELO75LC0trco/Hla/Fjs+d2zfvt3lnpjvvvuuXn75ZS1ZssTlv5XK0KNHD6N3aXZ2trZu3VrsbX799VfjcpcuXZym6+jVq5dxed++fS59Ieh4zMsuu8zpesf5xB33LUxCQoL2799f5DFdUbduXdPq60W9/jmaO3euHn74YY0ePVpz584t8f3mDeNu0qRJoaFq3vv4pUuXatasWUV+BvD19dUdd9yhSZMmGW2nTp0qlzlTgZqAYBIASilvSHeezMxMffTRR0XeJiQkxNTbcdGiRcXej91uN+3XoEEDdevWrcT1Vnf5V7h2nFOpMJ988olpPqryGErmOLG5KzXs2rVLO3fuNLYLmo+rpEaPHm1c3rhxo/766y9jHqlrrrmm2FVVN23apFdffdXY7tKli1566aUS1VCaxyP/30dxj0dWVpa++OKLIvfJzMzU0qVLje2rrrqqRPPsubm5mXpDfPHFFy59UFiyZIm++OILvfPOO3ryySdL3ctp0KBBxuUffvih2B5Au3fvNn3YK8g111xjXP7xxx9d6mX41Vdf6fPPP9e8efP0zDPPKDIy0riuIh7rkJAQ06rrxT13StLy5cuL3ackrJy7rDxYfe7WdCtWrCj2i6SVK1cawzM9PT01YMAA0/X5h3Y7/l0V5Ntvv3XpNcLKc7ciX4td+bkcn99Onz6tr7/+utjbREVFae7cuVq4cKFmzZqlH374odjbVJZ69eqZQrvinudSU1O1evVqY9vxNSTP5ZdfbnxpkZmZqc8++6zIY+7atcv0ujJ48GCnfa677jrj8t69e7V3794ij7lixQrjcQ4ICNAVV1xR5P5FcXyeW7duXbFfUB0/flx//fWXsZ0/FC3uPEtOTtaOHTuc7js/Nzc3TZ48Wc8995yWLFmib775psjjSub5m202m8uLDAI1HcEkAJRBnz59dNNNNxnbxX2gcHNzM61kunXrVr3//vtF3ua9994z9dy44447auUbmfwf8LZs2VLk/lu3btWbb75paivtghuF1fHbb78V+ZgfP35cjz/+uKl3SHnU0LlzZ2OIYUJCgmbPnm1cN3LkyCJvGxERocmTJxt1BwUF6b333nNpSgFHJX081qxZo2XLlpnaXPldzJkzp8gP86+//rrp+vHjxxd7zPzy5ouVcn+fU6ZMUUZGRqH779mzx7Ti/AUXXFDqLwtuuukmY6GhjIwMTZkypdA55lJSUvTkk08We8w777zTGIaXlZWlRx55pMieWrGxsaZzqFmzZqYVQyvqsb7vvvuMyz///LMpYM7v119/NfXwLQ+OAXZ1mNevIFaeuzVdeHi43nvvvUKvDwsL01tvvWVsDxs2TA0bNjTt06JFC9Mq10uWLCn0eMePH9cbb7zhUm1WnrsV+Vrsys911VVXmeZBfuGFF0w9vPPLyMjQE088Ybzmubm56ZZbbimy5sp2xx13GJc3btyoVatWFbrvs88+q/j4eEm5vfDGjBnjtI+3t7epfe7cuYVOvZCcnGx6Xbnooot04YUXOu138cUXm0brTJ8+vdDXlb///tv0t3PzzTeXaFG6/G6//XZjDuOkpCTNnDmz0F63drtdL774ovGlQtOmTZ3CxeLOs19++cUIVYsKJm02mykoX7ZsmaKjo4v8WdatW2dcbt26tXx9fYvcH6gtCCYBoIymTZvm0uqEeW6//XbTB8HXX39dTz75pDFReZ6TJ0/qiSeeML2hb9++fa2dj6Zt27am3qbLli3Thx9+6PQhPDY2Vq+99prGjx/vdF1aWlqZ67jqqquMy+Hh4Zo6darTqpfJycn65JNPNGLECKc3qeVRg2QOIPO+2W/UqFGRk7SfOXNG999/v7GojK+vr+bPn1/sMLyCXHLJJaY31G+++aa++OILp6D2wIEDeuqpp/Tvf//b6YOEK7+L1NRU3XHHHfruu+9MvZdOnz6tqVOnauHChUbbqFGjTEPYXNWtWzfdfvvtxvbGjRs1duxY7dq1y7RfRkaGli5dqvHjxxsfZtzd3TV9+vQS32ee+vXr64knnjC2//jjD911111OHyJ3796t22+/vdjpIqTcsPmRRx4xtvfu3aubb75ZW7ZsMT0G2dnZWr16tW6//XZTr7kpU6aYhqBW1GM9YsQIXXnllcb2888/r9mzZ5s+7Ob9zh944IEyT4OQn2PAsnPnznKfj7YyWHnu1gZvvfWWZs2aZTo38v5u7rrrLuO8DgwMNP3N5fHw8DAtPvXdd9/phRdeMJ3jWVlZWrt2rcaMGaPTp0+79MVj/i/Iigqjy1tFvha7+nPNnDnT+PIlKSlJt956q5YvX+60//bt2zV27FhT77lbbrnF5QXeKkv//v1NQ6WffvppzZ8/3xSanT59WpMnTzb1lpw4cWKhIyQmTJhgXJeamqpx48bphx9+MD03h4WFaezYscbQfHd39yIXE5o6darR2zAiIkJjx441TVVjt9v1/fffa9y4ccZj3LhxY9OXUKXRsmVL03vfNWvW6MEHH3QaDXDy5ElNnjxZ33//vdE2ZcoUubu7m/ZzPM/yhmw7cpwax/E1qiDjxo0zjp+YmKh77rlHv/76q9NrYEJCgmbNmqU1a9aYbgsgV+3rcgMA5czf31/PP/+8y4Ghl5eX3n77bY0bN84IrT777DN9/vnn6tixoxo0aKD4+HgdOHDA9MamZcuWmj9/fpm+da7uHn30UT322GOSct8Av/rqq3rvvffUqlUr+fj46OTJk4qNjTX93po3b24Mj80/BK007r//fq1bt854071mzRp99913atWqlRo0aKAzZ84oJibG9AHJsYbs7GzFx8cXO9y6OMOHD9fs2bNNPU+GDx9e5IfamTNnmuYva9u2rRYvXqy0tDRlZGQoKyur2Lm/hg8frhtvvFG+vr564IEHjEUQMjIyNG3aNL388stq1aqV3N3ddeLECafFV5o1a2a0Ffd49OzZU1FRUTpz5oz+9a9/qXHjxmrdurXS09MVHh5uGg7Ys2dPPf3000UeryjTp09XTEyMNm/eLCk3qLr55pvVtGlTtWrVSikpKTp8+LDpA7XNZtNTTz3l0oI1RRk+fLj27t2rxYsXG/c9fPhwtWvXTo0bN9aJEyeM5wp3d3f169fPtNhRQf75z38qKirKGMIXGRmpe+65Rw0bNlTbtm2VkZGh6OhopzBuwoQJTosaVORj/dJLL+mee+4xnu8++OADffTRR+rUqZM8PDx04MABY3hy+/btZbPZiuwdVRKO4cSxY8c0ZMgQdezYUcnJyVqwYIHTvG1VlZXnbk0WFBSkkydPasmSJVq+fLk6d+6sOnXqKDIy0uixJkk+Pj566623nBYjyvPggw9q/fr1xu//o48+0meffab27dvL3d1dUVFRxt9h8+bNNWLECL377rtF1uZ47u7du1eDBg1Sq1atdP78eafeyhWhol6LXf25LrnkEj377LOaMWOGsrKylJycrBkzZuiVV15Rx44d5enpqZiYGKcvfHv16mX6Iqgqee2113THHXcoJiZGWVlZeuONN/TBBx+oY8eOysjIUHh4uOn1vl+/frrnnnsKPV6DBg30xhtv6P7779e5c+cUHx+vSZMmGc8LZ86ccRqN8NhjjxW5sEzv3r01efJko2fv/v37deONN6pDhw5q0KCBoqOjTb9zb29v/ec//ynxwjMFefjhh3XgwAFt3LhRkrRhwwZt2LBBHTp0UKNGjZSQkKADBw6YvjAbO3asbrjhBqdjhYSEGCtuL1myRH/88YcCAwPVvn17Pf3008Zz6cUXX2zq8VyQTp06aeLEicYCcTExMRo/frwaNGigtm3bysvLS2fPnlVkZKTp8bv22mt18803l+2XAtQgBJMAUA6uuuoqjRkzpth5fPI0b95cK1as0DPPPKPvvvtOUu6b+4J6Q9lsNt1www168sknyxxmVXdDhw7VqVOn9PrrrxuhVHJysmnxgTwBAQGaMmWKGjdurAkTJkiSDh06VOZQsHXr1nr33Xf1yCOPGAuCZGRkFBiWeHh4aOzYsbrvvvt0xRVXGD2+/vzzT9N8TaXRoEED9e3bt0SrceefS27fvn0F/u6KctFFFxmX7733Xp05c8Y0B2pCQoJpoZQ8TZs21bPPPqvjx49r5syZknIDlOzsbKfeDHmaNWum6dOn66GHHtKxY8cUFxfn9IHWZrNp9OjReuaZZ0o0t2R+Xl5emj9/vt566y0tXLjQ6Kly4sQJ4wOMo8aNG2vGjBkaOHBgqe/T0RNPPKHg4GC99tprxoeXQ4cO6dChQ8Y+3t7emjFjhs6fP19sMCnlDnEMDQ3V22+/bYR7Z86ccerhK+V+wfL444/r1ltvLfBYFfVYBwUF6ZNPPtHkyZONIaHnz5936vHXsWNHvffee0YYUh4GDhyoLl26GHOrnT592ljtNywszNSDqSqz+tytqZ577jktX75cGzduVGZmpnbv3u20T0hIiF555RV16dKl0OO0adNG77//vh599FFjjuK0tDTt2bPHtN9FF12k2bNnFzs0WsodGrt06VIj+D969KjxpVNsbKxatGjh8s9ZGhX1WlySn2vMmDEKDg7WjBkzjC9u0tLSnJ47pNzh27fffrumTp1a7KroVgkKCtKSJUv06KOPGj08k5OTTb0984wZM0YzZswwhjcX5vLLL9cHH3ygqVOnGqFwQc8L3t7emjJlimlIeWHuu+8++fn56fXXXzfC9oLe/zRt2lSzZ892WhCqtDw8PPTOO+/oP//5jxYuXGi8Th48eNDp/j09PfXII48UGtw+8MAD+u2334xj5PX6jImJ0ejRo433Ga6uxj1p0iR5e3vrrbfeMp5/4+PjTV9gONZ255136tFHHy30vQ9QGxFMAkA5mT59un755RenXkOFCQwM1FtvvaX9+/drzZo12rp1q44dO6bk5GR5e3urTZs26t27t0aNGmWaLLu2u/vuu3X11Vdr2bJl2rZtm44ePapz587J19dXDRs2VGhoqHr37q0bb7xR/v7+Sk9Pl5+fn1JTU5WTk6NVq1aVeTj85Zdfrm+//VbLly/Xzz//rKioKKWkpMjLy0uBgYFq166dLr74Yt14441q2bKlpNyeBnmrLn/22WdlDial3GAlL6Dq3r27aTXmymCz2TR9+nQNGTJEn376qf766y+dPHlSGRkZ8vX1VVBQkEJDQ9WnTx8NGTJEderU0bFjx/T8888rJydHiYmJ+v777wucaD9Pt27dtHr1ai1dulTfffedjhw5ouzsbAUFBenyyy/XmDFjym2OPHd3d02ePFl33HGHvvzyS/366686dOiQEb41aNBAnTt3Vr9+/XTDDTfIz8+vXO43zz/+8Q8NGDBAy5Yt0+bNm41VbIOCgtSnTx/dcccdateuXYl6RN11110aMWKEvvzyS/3yyy+KiIhQfHy8cnJyFBAQoNDQUF111VW68cYbjbkuC1KRj3W9evX04Ycf6ueff9YXX3yhHTt26PTp0/Lz81ObNm00ZMgQ3XrrrWUKngvi6empJUuW6J133tGPP/6okydPKisrS40bN652w7qtPndrIh8fH82bN0/ff/+9Vq5cqf379ysxMVGBgYHq3r27hg0bpuuvv96lcOHSSy/VunXrtHLlSm3YsEGRkZFKSkpSo0aNFBoaqmHDhmnw4MEuBxUBAQFasWKF5s6dqy1bthiBepMmTXT69OkKDyalinktLunPdfnll2vt2rX67rvv9NNPP2n37t06ffq0zp07J39/f7Vt21aXXnqpRo0apbZt21b476SsmjVrpk8++UQ//PCD1q5da/w8bm5uCgoKUo8ePXTzzTebviAsTq9evbR27VqtWrVKP/zwgw4ePKiEhATVqVNHrVu31pVXXqlbb73VNDy/OHfeeaeuvfZarVixQps2bVJsbKxSUlLk7++vkJAQXXvttRo9enSxvQ1Lyt3dXY899phuvfVWff755/r111915MgRJSYmytfXV23atNEVV1yh2267rcgpai655BItXbpU77//vnbu3Gn8Pvz8/ExDu4uaGie/f/7znxo6dKi++uor/f777zp48KCSkpKUnZ2thg0bKjg4WFdddZVuuOEGtWrVqky/B6AmstmLG7MFAACqpBkzZhgreD733HNVbkJ/AKhOQkNDjcsfffRRtek1CwBAdcbiNwAAVEMZGRnG6o5+fn4aOnSoxRUBAAAAQMkQTAIAUA2tWbPGGKY5YsQIhmYCAAAAqHYIJgEAqGZ27typV155RVLuhPDjx4+3uCIAAAAAKDkWvwEAoIrbuXOnpk2bpqCgIMXHx5tWb58wYYKxwA4AAAAAVCcEkwAAVHEtW7ZUVFSUoqKiTO39+vXTxIkTLaoKAAAAAMqGYBIAgCquYcOGuuKKK7Rnzx5lZWWpVatWGj16tO688065u7tbXR4AAAAAlIrNbrfbrS4CAAAAAAAAQO3C4jcAAAAAAAAAKh3BJAAAAAAAAIBKxxyTcNn27dtN225u5NoAAAAAAAC1VU5Ojmm7R48eJbo9wSRKLf/JBwAAAAAAALiKLm8AAAAAAAAAKh09JlFqDOVGeXDsecs5hbLifEJ545xCeeOcQnnifEJ545xCeeJ8qh3KOpqWYBIuc3NzM51w3bt3l4cHpxBKLysrS7t27TK2OadQFpxPKG+cUyhvnFMoT5xPKG+cUyhPnE+1x44dO4ysqDQBNJE1AAAAAAAAgEpHMAkAAAAAAACg0hFMAgAAAAAAAKh0BJMAAAAAAAAAKh3BJAAAAAAAAIBKRzAJAAAAAAAAoNIRTAIAAAAAAACodASTAAAAAAAAACodwSQAAAAAAACASkcwCQAAAAAAAKDSEUwCAAAAAAAAqHQEkwAAAAAAAAAqnYfVBQAAAAAAABTGbrcrJyfH6jJQAtnZ2U7bNpvNomqQx83Nrco9DgSTAAAAAACgyrDb7UpLS1NSUpJSUlKUlZVldUkoIbvdbtqOjIyscoFYbVWnTh0FBAQoICBAHh7Wx4LWV4BCpaen66OPPtLatWt1+PBheXh4qG3btho6dKhuu+021alTx+oSAQAAAAAoNxkZGTpy5IgyMzOtLgVlVBVCLzg7f/68Tp06pbi4ODVr1kwBAQGW1sNZUkXFxcVp3LhxOnjwoCTJ09NTOTk52rNnj/bs2aMVK1Zo4cKFCgoKsrhSAAAAAADKjlCy5rDZbKZgkt6SVY/dbtfx48fl4eEhPz8/y+ogmKyiHn30UR08eFD169fXzJkz1b9/f7m5uenXX3/VU089pcjISD388MNavny51aUCAAAAAFAmdrvdKZT08/NTvXr15OvrK3d3dwurQ0nlDcfP4+vrSzhpMbvdrqysLCUlJSkhIUHZ2dmy2+2KjY1V+/btLevhSjBZBW3dulXbtm2TJL388su65pprjOuuuuoqvfbaaxo7dqx27NihP//8Uz179rSoUgAAAAAAyi4tLc0USgYFBalBgwYWVoSysNvtpjDZ3d2dYLIK8PDwkLe3t+rWravo6GhjYanU1FTLhnS7WXKvKNKvv/4qSQoODjaFknl69eolf39/SdLevXsrszQAAAAAAMpdUlKScdnPz49QEqhAPj4+qlevnrGdkpJiWS30mKyCJk+erDvvvFMJCQkFXp+Tk2OscOXp6VmJlQEAAAAAUP4cgxHHwARAxfD391diYqIkKTU11bI6CCarqMaNG6tx48YFXrd69WqlpqbKZrPpsssuq+TKAAAAAAAoP3lz3+Xx9fW1sBqgdvD29jYu5803acVwe4LJauLcuXOKjo7WZ599pk8++USSNH78eLVv397iygAAAAAAKL2cnBzTNgvdABUv/99ZTk6OJX97BJPVQHR0tK677jpj22azacqUKbr77rstrAoAAAAAAAAoPRa/qQaOHz8uT09Pozu73W7Xu+++q3feecfiygAAAAAAAIDSIZisBi688ELt3LlTO3bs0MaNG3XTTTcpJSVFb7/9tt58802rywMAAAAAAABKjGCyGvDx8ZGHR+6o++bNm2vWrFkaO3asJGnBggWKj4+3sjwAAAAAAACgxAgmq6lx48ZJyl0UJzw83NpiAAAAAAAAgBJi8Zsq6PDhw4qOjlZQUJA6depU4D5NmjQxLp89e7aySgMAAAAAAADKBT0mq6Bp06ZpwoQJevvttwvdJzIy0rgcHBxcGWWZZGVJ69bZlJZW6XcNAAAAAACAGoBgsgrq27evJOmnn35SRESE0/V2u11vvfWWpNxQsnv37pVanyRlZLhp2DB3BQdLjz4qFVAmAAAAAAAAUCiCySrozjvvVFBQkLKysnTvvfdq/fr1yszMlCQdOnRIkyZN0o8//iibzaannnpKbm7WPYwJCdKcOVJoqDR6tJSYaFkpAAAAAAAAhgcffFChoaGaP3++UlNTNXfuXN1www264IIL1KVLF50/f97qEms95pisgurWrasPPvhAEyZM0IkTJ/Tggw/Kw8ND3t7eSklJkSR5eXnp2WefVf/+/S2u9n9WrcrtOblunWTB6HIAAAAAAABDWFiYpNwMZdiwYTp69Ki8vb3l5uam1q1bq06dOhZXCILJKio0NFSrV6/WkiVL9MMPPyg6OlqZmZlq06aNrrjiCo0bN06tW7e2ukwne/dKgwZJW7ZIAQFWVwMAAAAAAGqjlJQUHT16VJL01ltvKTg4WIsXL1bv3r1ls9mM62AtgskCvPnmm3r33XcVHBysH3/8sUS3jYyM1PLly7V161bFxsYqKytLTZo0UUhIiIYNG6aBAwfKw8O1X3tAQIAmTZqkSZMmlebHsMzevdLdd0uff251JQAAAAAAoDYKCwuT3W6XJDVu3FjLli1T3bp1jeuDg4OVkZGhSy65RPfcc48mT55sVam1GsFkPrt379YHH3xQqtu+/fbbmjdvnrKyskztMTExiomJ0YYNG9StWze99tprateuXXmUW2WtWiUdOCB17Gh1JQAAAAAAoLYJDw+XJNlsNr344oumUDLPoUOHlJmZqc6dO1d2efh/LH7jICYmRhMnTjQWmimJWbNmae7cuUYo6eHhoa5du6pnz56qX7++sd/evXs1duzYWtFleN48qysAAAAAAAC1Ud78khdeeKF69uxZ4D4hISHavXu3rr/++sosDQ4IJv9fRESE7rjjDsXFxZX4tuvWrdOSJUuM7euvv16bNm3SqlWrtHTpUm3evFnPPfecfHx8JEmnT5/WQw89ZHQprpZsxde+cKGUllYJtQAAAAAAADjICyYHDBhQ6D5ubm6qU6eObDZbZZWFfBjKLemrr77SjBkzlJ6eXuLbZmZm6pVXXjG2+/Xrp//85z9yc/tf5uvp6albbrlFwcHBuu+++5SVlaV9+/bp66+/1rBhw8rlZ6h0HtmSf7qU4lPoLmfPSj/+mK1Bg6pxAIsKlZ2dXeQ2UBKcTyhvnFMob5xTKE+cTyhvVp5T2dnZRscdm80mu91evTvywOnxq+zHMycnRwcOHJAk9ejRo9D7nzRpkqKjo7VmzRqj7d5779WZM2f06quvas6cOdq6dau8vLw0evRoPfbYY5VSf2XI+53k/Z+VlWXJ312tDiZPnjypN954Q19++WWpj/HDDz/o2LFjknKHbz/zzDOmUNJRnz59dMstt2jp0qWSpIULF1bfYFKSLjgi/Rpa5C5//hmjZs3OVFJBqO727t1rdQmoQTifUN44p1DeOKdQnjifUN6sOKc8PDzk4eGhtLQ0ubu7V/r9o+KUpiNYWURHRys9PV1ubm5q3bq10goZzvn333+re/fupuvDwsJUt25djRs3TkOGDNG//vUv/fDDD/rggw/UpUsX9e3bt7J+jAqVnZ2tnJwcZWVlKSsry7LXkVo7lPu9997ToEGDTKFku3btdP/995foOGvXrjUuX3HFFWrevHmR+99yyy3G5X379ikmJqZE91eltDxd7C6pqbX2FAMAAAAAABaIiIiQJLVs2dKYVi+/1NRUHTt2TCEhIUZbYmKi4uLidOrUKf33v//VI488ojFjxmj27Nmy2Wzav39/pdRfm9Ta1OjDDz80JeI33XSTVq5cqdatW7t8DLvdrq1btxrbV155ZbG3CQ0NVePGjY3tH3/80eX7q3KanZU8sorcxc8vp5KKAQAAAAAA+F8w6Rg65nfgwAHZ7XZ17NjR1CZJ48ePV6tWrYx2T09P2e12eXp6VlDFtVetHsotSd26ddPUqVPVq1evEt/26NGjSkpKMh3LFaGhocYiO3v27Cnx/VYVNne77MHxUnSTQvfp2bOlLrywRSVWheokOzvb1F28W7duDNlAqXE+obxxTqG8cU6hPHE+obxZeU5lZ2crMjJSUu4ck76+vpzP1ZzdbjcN3/bx8anUBWbyzqfu3bvL19e3wH2io6MlSRdccIGxT17b4MGDTbfLaw8JCSn0eNVNdna23Nzc5OnpKU9PT7Vv375Uf3d79uxRTk7pO6XV2mCyV69eGjVqlAYMGFDqP47Dhw+bth3T9KK0aPG/oO7IkSOluu8qo9WZQoPJ+vWl/v3d5VFrzzKUlLu7uzw4YVBOOJ9Q3jinUN44p1CeOJ9Q3irznLLZbKbP5fm3Uf1V9mMaHh4uSercuXOh9xseHq7AwEA1bdrUaIuIiJC/v7/atWtnul3eCt+dOnWqMedm3s+R97+Hh4clXwjU2leud999t8zHyOv1KOUuMd+oUSOXbuc4lNvxGNVSEfNMjh8v1ZAvEgAAAAAAQDWQmJio48ePS8oNJgsTHh6u0NDQAtvyh49hYWHy8fEp0fR/cE2tnWOyPCQmJhqX/fz8Cl2NOz9/f/8Cj1EtBSVIXpkFXlXCdYQAAAAAAADKJCAgQOHh4QoPDzd1DHNkt9sVERGhTp06mdoOHjxYYJgZFhamkJAQl3MfuI7faBmcP3/euOzt7e3y7by8vIzLGRkZ5VpTZbO5SWpxxql91CjJYf5YAAAAAACAKiEmJkapqammHpNHjhxRWlqaKazMEx4eXmA7yo5gsgwyM//XU7AkqbnjPB1ZWUWval0ttDQHk926SQsWWFQLAAAAAABAEfLmoHQMJvNW8s7fY/LEiRNKSEhwGvaN8lFr55gsD46TgpZkBSLHMLJGLDXf6n/zTHbvLn37rRQQYGE9AAAAAAAAhRg4cKARThbVJklNmzYtsB3lgx6TZeDj42NcdhzWXRzH4dt16tQp15qsYGuSJPmc16hR0ubNUnCw1RUBAAAAAACgqqPHZBkEOHQLTE1Nld1ud2nZ+JSUFONyYGBgRZRW6d764oweur651WUAAAAAAGqJzOwcPfdDhNb+fVJpGdlWl1Ol+Hq5a0jnID0zMESe7vRJQ9VFMFkGQUFBxuXs7GydPXtWDRo0KPZ2cXFxxuVGjRpVSG2VLSz1jCSCSQAAAABA5Zj5fYRe3HDA6jKqrB1HkyRJzw9i0RZUXcTmZdC6dWvTdkxMjEu3i42NNS63bdu2XGuyysaDp4vfCQAAAACAcrLtyFmrS6jytkbzO0LVRjBZBsHBwaah2H///bdLtwsLCzMuV9fl5t3yDVkPO5WiY4nnLKoGAAAAAFDb9GpV3+oSqrzerfkdoWpjKHcZ9e7dW999950k6ddff9Wtt95a5P5hYWE6ffp/vQsvu+yyCq2vorgXMJXmT5GndfslLSq/GAAAAABArTPjuhDZbGKOyQI4zjEJVGUEk2V03XXXGcHkxo0bdfLkSdPck/ktW7bMuNy+fXuFhoZWeI0Vwa2AvrY/HjxDMAkAAAAAqBSe7m56flAn5lCsAqprtlHThIeHW11CiTGUu4yuu+46NWnSRJKUkZGhadOmKSsrq8B9N2/erJUrVxrbY8eOrZQaK4KbJF9Pd1Mb80wCAAAAAADAVfSYLCMvLy89+uijmjZtmqTc4dz33nuvnnvuObVs2VKSlJWVpVWrVunFF19UdnZu9/KQkBDddNNNltVdVjabTX3a1tf3Ef8LI6Pi03Q4Pk1tGvhaWBkAAAAAAKhM+Xvq2e12paWlGdu+vr6y2QqYEw61HsFkORg5cqR27NihTz/9VFJuOHndddcpNDRU/v7+ioyMVHx8vLF/YGCg3nzzTXl4VO9f/zXtG5qCSSm31+T4Xq0sqggAAAAAAADVRfVOxqqQmTNnqn79+vrwww+VmZmpnJycAlfpbt++vd588021a9fOgirLV7/2DZ3aCCYBAAAAAKidUlJStHXrVu3Zs0e7du3S/v37lZCQIElau3at2rdvb22BqHIIJsuJzWbT5MmTNXz4cH322WfasmWLTpw4ofT0dAUEBKhz584aNGiQhg8fLi8vL6vLLRcXNa+nAG8PJZ7735yaPx48I7vdThdtAAAAAABqmd9//10PPvig1WWgGiGYzGfUqFEaNWpUqW/fvn17TZ06VVOnTi3Hqqomdzeb+rZvqNX7Thptx5LO6cDpVIU09rewMgAAAAAAYIWGDRuqW7duCg0NVZMmTTRr1qxyv4+8VcCr4yrUMCOYRJn069DIFExK0o8HThNMAgAAAABQy/Tr10+//vqrsfjNsWPHrC4JVRzBJMqkX/tGTm0bD57W/Ve0qfxiAAAAAACAZdzd3a0uocQefPBBrV+/Xo8++qjuvPNOLVy4UN9++61iYmKUlZWlHTt2qE6dOmW6j8mTJ2vt2rUu7z916lTdfffdZbrP6oJgEmXSrWldNfLz0unUDKPtp8gzysmxy82NeSYBAAAAAEDVFRYWJkny8vLSsGHDdPToUXl7e8vNzU2tW7cucygpSbGxsWrUyNyx6/Tp05Kk+vXrOwW6PXr0KPN9VhcEkygTNzeb+rVvqJW7jxttcakZ2ncyWd2b1bOwMgAAAAAAgMKlpKTo6NGjkqS33npLwcHBWrx4sXr37i2bzWZcV1YrV640bR85ckQDBw6UJH3//feqV6/25iduVheA6q9fB+fh3D8ePG1BJQAAAAAAAK4JCwuT3W6XJDVu3FjLli3TZZddJpstdwRocHBwhdxv3qI9TZs2rdWhpEQwiXJQUDC5kWASAAAAAABUYXkBoc1m04svvqi6desWuF9GRoa6deumOXPmlOv9hoSElOk4w4YN0wMPPFAeJVmGodwos5DGfmpez1vHks4ZbRsPnlFmdo483cm+AQAAAABAyXz44YdasGBBkftceeWVBbbffffduueee4q9j7z5JS+88EL17Nmz0P0OHTqkzMxMde7cudhjuiIiIkJS2YLJrKwsRUVFacCAAeVSk1UIJlFmNptN13ZspI+2xxptyeez9Nvhs7q6fUMLKwMAAAAAANVRWlqasUBMYQq7Pi0tzaX7yAsmiwv3QkJCtHv3bnl5ebl03OLk9ZgMDQ0t9TEOHz6szMzMMve6tBrBJMrF9Z2amIJJSVoXfopgEgAAAAAAlNhDDz2khx56qMDr8gK9vICvNHJycnTgwAFJKrK3pCS5ubmVy+rcknTu3DkdOXJEUtl6TObVXpZwsypgnC3KxcCQRvr/uWEN34WfsqYYAAAAAACAIkRHRys9PV1ubm7q1KlTkfs++OCDGjp0qKntn//8p0aOHKmDBw9q4sSJ6tGjhy6//HLNnj27yGMdOHBAOTk58vDwULt27VyqdcOGDRozZowuuOACDRkyRD///LMOHDigOnXqqE2bNi4do6oimES5aORXR5e2CDS17TiapBMO804CAAAAAABUBXnDuFu1aiVfX99i983fMzE8PFwZGRkaN26c2rRpo8cff1whISH64IMPtGHDhkKPFR0dLUlq2bKlS0PDP/30U02cOFENGjTQE088oX79+umRRx7RTz/9pA4dOsjd3b3YY1RlDOVGubm+UxNti0kwtX0fEae7era0piAAAAAAAIAC5AWTxS1ok5KSoqNHj+qWW24x2hISEnTq1Cmlp6fr888/V+vWrSVJN9xwgy699FLt3bu30HkrExISJEkNGjQotsbIyEg9//zzGjt2rJ566imj3dfXV2+99ZZGjhxZ7DGqOnpMotwMCm3s1PZdeJwFlQAAAAAAACvEx8fr7NmzOnv2rJKSkoz25ORkxcfHG/9ycnIsrPJ/81N26dKl2P3sdrupx2TebSdMmGCEkpLk6ekpu90uT0/PQo/n5+cnKXfxmqNHjxZ53/PmzVOdOnX08MMPm9p79+4tqWxzVFYV9JhEubm0ZaDq+3jqbHqm0fZ9+Cll59jl7mYr4pYAAAAAAKAmuPzyywtsd+xxKOXOm9iiRYvKKKlAeT0mi5tfMi+EdNwvIiJCkvNq3lFRUZKktm3bFnq83r17y9PTU2fOnFH//v0VGBioqVOnatSoUab9srKytGHDBg0bNkx169Y1XZcX6lb3hW8kekyiHHm4u2lgiLnX5Jm0TG2PTbCmIAAAAAAAgHwSExN1/PhxScUP5Q4PD1dgYKCCgoJMbf7+/k6L1/z999+Sig47mzdvrrfffludO3eWp6enEhISCgxoY2NjlZqaqm7dujldt3fvXkn0mAScXB/aWCt2HTO1rQuLU69W9S2qCAAAAAAAVJa8oc9paWlGm6+vr2y28htJmdeLsbQCAgJcPkZ4eHiBC9+EhoY6/UxhYWHy8fExDe8uSL9+/dSvX78i9zl3ruDFhLOzs7V8+XI1aNBAjRs7T6lX3dBjEuXq+tAmTm3fhZ+yoBIAAAAAAIDSs9vtioiIMPWAtNvtOnjwYIE9LcPCwhQSEiI3t7LHbc2aNZMk/f7776b2JUuWKDo6ukb0lpToMYly1jzAWxc0q6fdx/83we3WI2cVn5ahBr5eFlYGAAAAAADgupiYGKWmppp6TB45ckRpaWkFDtcODw/X9ddfXy73HRAQoH79+unrr7+Wt7e3LrzwQm3btk1btmyRzWarEfNLSvSYRAW4Pt/q3Dl2aX3EaYuqAQAAAAAAKLm84d6OIWDewjf5e0yeOHFCCQkJ5RoYvvjii7ruuuv03Xff6bXXXlNqaqpefPFF2e12ekwChRnUqYle+ynS1LYu/JRuvqi5RRUBAAAAAACUzMCBA53moiyoTZKaNm1a5rkv82vQoIHefvttp/byvh8r0WMS5e7KNg3k5+Vuavsu/JTsdrtFFQEAAAAAAKCqIZhEufPycNOAjo1MbceTzmvP8WSLKgIAAAAAAEBVQzCJClHQ6tzrWJ0bAAAAAAAA/49gEhUi/wI4kvRdGMEkAAAAAAAAchFMokK0a+inkMZ+prYth+OVfC7LoooAAAAAAABQlRBMosLkH86dmW3XxsjTFlUDAAAAAACAqoRgEhVmUAHDudcxnBsAAAAAAAAimEQF6tu+oep4mE+xdWGnZLfbLaoIAAAAAAAAVQXBJCqMr5eH+rZraGo7fDZdB06nWlQRAAAAAAAAqgqCSVSo6zsxnBsAAAAAUDg3N3M0kZ2dbVElQO2R/+8s/99hZSGYRIUalG8BHEn6LjzOgkoAAAAAAFWRzWaTh4eHsZ2WlmZhNUDtcO7cOeOyu7u7bDabJXUQTKJCdWrir1aBPqa2nyJPKz2Tb8AAAAAAALn8/f2Ny0lJSRZWAtQOKSkpxmU/Pz/L6iCYRIWy2WxOw7nTM3O0KfKMRRUBAAAAAKqaevXqGZdTU1MVHx9vYTVAzZaenm76AsDxi4HK5lH8LkDZDAptog9+P2JqW7P/pAZ1ch7mDQAAAACofXx9feXp6anMzExJ0smTJ5WSkqJ69erJ19dX7u7uFleIkrDb7aY5DLOzsy0bKoxcdrtdWVlZSkpKUkJCgux2u6TcuSWt7DFJMIkKNzCksbzc3ZSRnWO0rdl3QnNHduOJCQAAAAAgm82mVq1a6ciRI0Y4mZqaqtTUVIsrQ2nl5PwvA7BqYRUUzWazqUWLFqY5XisbZwYqnH8dDw3o2MjUFpt4TjuOJlpUEQAAAACgqvHy8lKrVq3k6elpdSkoo7zeeXn/8nrnoeqw2Wxq1qyZpb0lJYJJVJLhXYOc2lbvO2lBJQAAAACAqsrLy0vt27dXq1atVL9+fUt7cqFsHINJVB116tRRkyZN1KFDBwUEBFhdDkO5UTmGdgnSA5/vMbWt2X9Cz14falFFAAAAAICqyGazyc/PT35+fmratKnsdrtpWDCqvqysLO3du9fYbt++PSFzFeDm5lblptTjrEClCA7wUc8WAfoz9n/Dt3ccTdKRs2lqVd/XwsoAAAAAAFWZzWZj8ZtqJv/QbXd3dx5DFIih3Kg0w7o2dWpbs5/h3AAAAAAAALURwSQqzY0FBZPMMwkAAAAAAFArEUyi0nRvVlet6/uY2jZGnlbSuUyLKgIAAAAAAIBVCCZRaWw2m9Nw7sxsu9aFxVlUEQAAAAAAAKxCMIlKNbxLkFPbmv0nLKgEAAAAAAAAViKYRKXq276hArzNi8F/8/cpZWbnWFQRAAAAAAAArEAwiUrl6e6mwZ2amNoS0jP1S1S8RRUBAAAAAADACgSTqHT555mUpK/2MZwbAAAAAACgNiGYRKUb3KmJPNxsprbV+07KbrdbVBEAAAAAAAAqG8EkKl2gj6f6tm9oaouKT9P+kykWVQQAAAAAAIDKRjAJSwwrYHXu1QznBgAAAAAAqDUIJmGJYV2c55kkmAQAAAAAAKg9CCZhibYNfdW9WV1T29YjCTqRdM6iigAAAAAAAFCZCCZhmeEFrM799d8nLagEAAAAAAAAlY1gEpYZXsBw7jX7CCYBAAAAAABqA4JJWKZHiwA1q1fH1PZDRJxSz2dZVBEAAAAAAAAqC8EkLOPmZtPQfKtzn8vK0foDpy2qCAAAAAAAAJWFYBKWurGAeSa/YnVuAAAAAACAGo9gEpbq36GRfD3dTW2r951QZnaORRUBAAAAAACgMhBMwlLenu4a0rmJqS0+LVMbDzKcGwAAAAAAoCYjmITlxlzQ3Knts93HLagEAAAAAAAAlYVgEpYb0rmJvD3Mp+KXe08oi+HcAAAAAAAANRbBJCznX8fDaTj36dQMbTp0xqKKAAAAAAAAUNEIJlEljC5gOPfKXQznBgAAAAAAqKkIJlElDO0cpDr5hnN/sec4w7kBAAAAAABqKIJJVAl1vT00uJN5OHdcaoY2R8VbVBEAAAAAAAAqEsEkqozRFzRzalu565gFlQAAAAAAAKCiEUyiyhjWJUhe7vmGc+89oewcu0UVAQAAAAAAoKIQTKLKqOftqetDG5vaTiaf15YoVucGAAAAAACoaQgmUaWMudB5OPdnu1mdGwAAAAAAoKYhmESVMqxLU3m620xtq/YcVw7DuQEAAAAAAGoUgklUKYE+nrouxDyc+3jSef0azercAAAAAAAANQnBJKqcMRc0d2pbuYvh3AAAAAAAADUJwSSqnOFdgxjODQAAAAAAUMMRTKLKqe/rpWs7modzH008p9+PnLWoIgAAAAAAAJQ3gklUSaMvYHVuAAAAAACAmoxgElXSiG5N5eFmHs79+e5jDOcGAAAAAACoIQgmUSU18PVS/w6NTG0xCef0R0yCNQUBAAAAAACgXBFMosoac6HzcO6Vu49ZUAkAAAAAAADKG8EkqqwR3ZrK3Wk493HZ7QznBgAAAAAAqO4IJlFlNfKro37tG5raos+ma+uRBGsKAgAAAAAAQLkhmESVNubC5k5tS/+KtaASAAAAAAAAlCeCSVRpYy5oJk9383DuFTuPKTM7x6KKAAAAAAAAUB4IJlGlNfD10uBOTUxtcakZWh8RZ1FFAAAAAAAAKA8Ek6jybrs42Klt2Y6jFlQCAAAAAACA8kIwiSpvWJcg+ddxN7V9sfeEUs9nWVQRAAAAAAAAyopgElWer5eHRnVrZmpLzcjW6v0nLaoIAAAAAAAAZUUwiWrh9kuch3N/wurcAAAAAAAA1RbBJKqF/h0aqYm/l6ntu/A4nU49b1FFAAAAAAAAKAuCSVQLHu5uuuUic6/JrBy7Vu46blFFAAAAAAAAKAuCSVQbdzCcGwAAAAAAoMbwsLoAwFWXtgxUh0Z+Ong61Wj75fBZvTY/Td4ZvvL3l5o2lfr2lXx9LSwUAAAAAAAAxSKYRLVhs9l0+8XBeu6HCFP7lAVHpW0dje3AQGn8eOn++6WQkEouEgAAAAAAAC5hKDeqjcRE6dcFzsO51TlWkt3YTEiQ5syRQkOl0aNzbwcAAAAAAICqhWAS1cLRo1KfPtIPK/xlPxFgus7WKEVqnFTg7Vatyr3d0aOVUSUAAAAAAABcRTCJKi8hQbr+emnv3v9v+LuF806dC08e9+6VBg2i5yQAAAAAAEBVQjCJKu+ee6R9+xwawpvLnpNvp05H5TicO7+9e6W7766I6gAAAAAAAFAaBJOo0iIicodjm6R6SzGNTE22uuekFmeKPNaqVdKBA+VcIAAAAAAAAEqFYBJV2rx5hVxRwuHcxR4PAAAAAAAAlYpgElVWWpq0cGEhVx5oKntmvtM35Ljknl3kMRcuzD0uAAAAAAAArEUwiSpr06bchW8KlOEpHQoyNdm8M6W2p4o85tmzuccFAAAAAACAtQgmUWWdOFHMDmHBzm1dYos97smTpasHAAAAAAAA5YdgElVWSkoxO0Q1kT3d09zW7qTkc77ImyUnl60uAAAAAAAAlB3BJKosf/9idsh2d+o1aXO3S52L7jVZt24ZCwMAAAAAAECZEUyiymra1IWd9rZ0busWI8le6E2Cggq9CgAAAAAAAJWEYBJVVt++UmBgMTudCpA9ztwF0tY4WWqSWODu9evnHhcAAAAAAADWIphEleXrK40fX9xetiJ6TTobPz73uAAAAAAAALAWwSSqtPvvd2Gnv1vInm0zt3U6Krlnl+54AAAAAAAAqHAEk6jSQkKkUaOK2Sm9jnTIPHGkzSdTan/S1DZqlNSxYzkXCAAAAAAAgFIhmESVt2CB1K1bMTvtK2g495H/XeyWexwAAAAAAABUDQSTqPICAqR164oJJ6OayJ7qZW5rHSf5p6t799zbBwRUaJkAAAAAAAAoAYJJVAvBwdKWLUUM685xk/abe03a3KSuN8Vq8+bc2wMAAAAAAKDqIJhEtREQIH3+uRQeLk2eLAUG5tuhgNW5M0NiVK+evVLqAwAAAAAAgOs8rC4AKKmQEOmNN6RZs6RNm6STJ6XkZKlu3bp6+UigIpISjH0PnE7Vr4fP6sq2DawrGAAAAAAAAE4IJlFt+fpKgweb28792lITVyWY2hb+EUMwCQAAAAAAUMUwlBs1yq0XB8vbw3xar9h1VKnnsyyqCAAAAAAAAAUhmESNEujjqZHdm5naUs5n6/M9xy2qCAAAAAAAAAUhmESNM+5S50VwFv0RY0ElAAAAAAAAKAzBJGqc/h0aqWWgt6ntp8gzOnQm1aKKAAAAAAAAkB/BJGocdzeb7urp3Gty8Z+xFlQDAAAAAACAghBMokYaV1Aw+UeMsnPsFlQDAAAAAACA/AgmUSO1b+Snvu0amtqOJKTr+/BTFlUEAAAAAAAARwSTqLHu7u3ca3L+79EWVAIAAAAAAID8CCZRY425oLnq+3ia2r7ef1KxCekWVQQAAAAAAIA8BJOosXw83XVXzxamthy79OG2IxZVBAAAAAAAgDwEk6jR7ru8tVPbf7ceUVZ2jgXVAAAAAAAAIA/BJGq0Tk3qOi2CczTxnNaGsQgOAAAAAACAlQgmUeNNKKDX5PzfWAQHAAAAAADASgSTqPFGdW+qRn5eprZ14ad0OD7NoooAAAAAAABAMIkar46Hu8Zd2tLUZrfnzjUJAAAAAAAAaxBMolaYcJnzcO4F244ok0VwAAAAAAAALEEwiVqhQyM/XduxkantRPJ5rd53wqKKAAAAAAAAajeCSdQaBfWafP93FsEBAAAAAACwAsEkao0buzVVUN06prYfIk7r4OlUiyoCAAAAAACovQgmUWt4urtpfL5FcCTpA3pNAgAAAAAAVDqCSdQq9/ZuLZvN3Lbojxidz8q2piAAAAAAAIBaimAStUrbhr66PqSxqS0uNUNf7GERHAAAAAAAgMpEMIlaZ8LlLIIDAAAAAABgNYJJ1DpDOwepeT1vU9tPkWcUdirZoooAAAAAAABqH4JJ1Doe7m66p3crp/Z3f6XXJAAAAAAAQGUhmESt9M/ereSWbxGcxX/EKOlcpjUFAQAAAAAA1DIEk6iVWgb6aES3pqa25PNZWvxnrEUVAQAAAAAA1C4Ek6i1HurT1qntnV+ilJNjt6AaAAAAAACA2oVgErXW1e0aqnuzuqa2iLhUfR8RZ1FFAAAAAAAAtQfBJGotm81WYK/Jt7dEWVANAAAAAABA7UIwiVrt9ouD1cDX09T2bdgpHYhLsagiAAAAAACA2oFgErWar5eH7unVyql97i+HK78YAAAAAACAWoRgErXexCvayM1mblv0R4ySz2VZUxAAAAAAAEAtQDCJWq91A1/d2LWpqS35fJYW/xljUUUAAAAAAAA1H8EkIBW4CM7cX6KUk2O3oBoAAAAAAICaj2ASkNS3fUN1b1bX1BYRl6ofDsRZVBEAAAAAAEDNRjAJSLLZbJp0pXOvybc3R1lQDQAAAAAAQM1HMAn8vzsuCVZ9H09T29qwUzoQl2JRRQAAAAAAADUXwSTw/3y9PPTP3q2c2t/59XDlFwMAAAAAAFDDEUwCDiZe0UZuNnPboj9ilHwuy5qCAAAAAAAAaiiCScBB6wa+urFrU1Nb0rksfbQ9xqKKAAAAAAAAaiaCSSCfSX0KWARnS5RycuwWVAMAAAAAAFAzEUwC+VzTvqG6Na1raouIS9XXf5+0qCIAAAAAAICah2ASyMdms+nhq9o5tb/+U6QF1QAAAAAAANRMBJNAAe64JFhBdeuY2jZHxWtr9FmLKgIAAAAAAKhZCCaBAnh7umvSlW2c2t/YRK9JAAAAAACA8kAwCRTi/svbyNfT3dT2+Z7jOnQm1aKKAAAAAAAAag6CSaAQDf28NL5XS1Nbjl36z+YoiyoCAAAAAACoOQgmgSI8clU7udnMbQu3HVF8WoY1BQEAAAAAANQQBJNAEdo38tOo7s1MbakZ2Zr/W7RFFQEAAAAAANQMBJNAMR7t296p7e0tUTqflW1BNQAAAAAAADUDwSRQjMta19eVbeqb2k4kn9cnfx21qCIAAAAAAIDqj2AScMFj1zj3mnx9U6TsdrsF1QAAAAAAAFR/BJOAC4Z1aaqOjfxMbftPpmhd2CmLKgIAAAAAAKjeCCYBF7i72TT56nZO7a9vOmRBNQAAAAAAANUfwSTgort6tlAjPy9T248HT2vH0USLKgIAAAAAAKi+CCYBF/l6eWjiFW2c2t/YFFn5xQAAAAAAAFRzBJNACUy8oo3qeJj/bJbvPKYjZ9MsqggAAAAAAKB6IpgESqBJ3Tq6q2cLU1t2jl2zmWsSAAAAAACgRAgmgRJ69Or2stnMbf/9PVqnks9bUxAAAAAAAEA1RDAJlFBoE3+N7t7M1HYuK0f/2UyvSQAAAAAAAFcRTAKlMK1/B6e2d389rIT0TAuqAQAAAAAAqH4IJoFSuKRFoAaFNja1JZ3L0ju/RFlUEQAAAAAAQPXiYXUBQHU1fUBHrQuPM7X95+codTnXTglxHkpJkfz9paZNpb59JV9fiwoFAAAAAACogggmgVK6ql1D9WnbQFui4o22M2kZGvXMEWlHO9O+gYHS+PHS/fdLISGVXCgAAAAAAEAVxFBuoAwevqyjc+OlkZJbjqkpIUGaM0cKDZVGj5YSEyunPgAAAAAAgKqKYBIopaNHpRnjGst+sp6p3Vb3nNQlttDbrVol9emTe3sAAAAAAIDaimASKIWEBOn666V9e23S1gJ6TfY6KNnshd5+715p0CB6TgIAAAAAgNqLYBIohXvukfbt+/+Ng81kj/czXW+rnyqFHCvyGHv3SnffXUEFAgAAAAAAVHEEk0AJRUTkDsc22G3StkJ6TarwXpNS7nEOHCjX8gAAAAAAAKoFgkmghObNK6Dx72DZk3xMTbYmSVK7U6U7HgAAAAAAQA1HMAmUQFqatHBhAVfkuEl/tHdu731AxfWaXLgw97gAAAAAAAC1CcEkUAKbNuUufFOgva1kT/UyNdman5VanCnymGfP5h4XAAAAAACgNiGYBErgxIkirsxyl/5q59x+WfGTSJ48WfqaAAAAAAAAqiOCSaAEUlKK2WFnG9nPeZiabK1PS8FF95pMTi5jYQAAAAAAANUMwSRQAv7+xeyQ4SntKKDX5BXhRd6sbt3S1wQAAAAAAFAdEUwCJdC0qQs7bW8r+/l8vSZbnZFanC70JkFBZSwMAAAAAACgmiGYBEqgb18pMLCYnc57FTzX5OURBe5ev37ucQEAAAAAAGoTgkmgBHx9pfHjXdhxezvnuSYL6TU5fnzucQEAAAAAAGoTgkmghO6/34Wdznu63GvSpeMBAAAAAADUMASTQAmFhEijRrmw41/F95ocNUrq2LGcCwQAAAAAAKgGCCaBUliwQOrWrZidCus1eUVur8lu3XKPAwAAAAAAUBsRTAKlEBAgrVvnQjj5VzvZz3mammwtz6jt1ae1bl3ucQAAAAAAAGojgkmglIKDpS1bihnWfd5T2u7ca7L56HA1b26vuOIAAAAAAACqOIJJoAwCAqTPP5fCw6XJk6XAwAJ2+qutbOfNvSZ/PRKvnyLPVEqNAAAAAAAAVZFH8bsAKE5IiPTGG9KsWdKmTdLJk1JyslS3rhQU5Knf7O0068dw022e/S5c17RvKJvNZlHVAAAAAAAA1iGYBMqRr680eLBz+xXpbTX3t0NKSM802jZHxWvjwTPq37FRJVYIAAAAAABQNTCUG6gEAT6eerSv81yTz34fLruduSYBAAAAAEDtQzAJVJJ/9Wmr+j7muSa3RMXr+4g4iyoCAAAAAACwDsEkUEnqeRfca/LJtWHKyaHXJAAAAAAAqF0IJoFK9K8+7dTIz8vU9tfRRH2+57hFFQEAAAAAAFiDYBKoRHW9PTR9QAen9mfWhSkrO8eCigAAAAAAAKxBMAlUsgcub6MWAd6mtvC4VH20PdaiigAAAAAAACofwSRQybw93fXMdSFO7TO/D9e5zGwLKgIAAAAAAKh8BJOABcb1bKmOjfxMbTEJ5zT/92iLKgIAAAAAAKhcBJOABTzc3fTcoFCn9hfXH1DyuSwLKgIAAAAAAKhcBJOARW66oLkual7P1BaXmqH/bD5kUUUAAAAAAACVh2ASsIibm00vDO7k1P76pkidSc2woCIAAAAAAIDKQzAJWGhQpybq07aBqS3pXJZe2XjQoooAAAAAAAAqB8EkYCGbreBek3O3ROloYroFFQEAAAAAAFQOgknAYle1a6jBnZqY2s5l5WjW+gMWVQQAAAAAAFDxCCaBKmBWAb0mP9x6RAdPp1pQDQAAAAAAQMUjmASqgIuDA3TLRc1NbVk5dj29LsyiigAAAAAAACoWwSRQRcy8PlTubjZT26c7j2nbkbMWVQQAAAAAAFBxCCaBKiKksb/u7tXSqf3xNftlt9stqAgAAAAAAKDiEEwCVcjM60Ll5+VuatscFa/V+05aVBEAAAAAAEDFIJgEqpCm9bz172vaO7VP+2a/MrNzLKgIAAAAAACgYhBMAlXMY33bq2ndOqa28LhU/XfrEYsqAgAAAAAAKH8Ek0AV41/HQzOvD3Vqn/l9uJLPZVlQEQAAAAAAQPkjmASqoPGXtlSXIH9T26mUDL3600GLKgIAAAAAAChfBJNAFeTh7qZXbuji1P7GpkgdTUy3oCIAAAAAAIDyRTAJVFFDOjdRv/YNTW3pmTl65rtwiyoCAAAAAAAoPwSTQBVls9n06jDnXpOL/ojRnuNJFlQEAAAAAABQfggmgSqsR4tA3XFJsKnNbpemfr3foooAAAAAAADKB8EkUMXNGtRJdTzMf6rrwuO0PiLOoooAAAAAAADKjmASqOJaN/DVQ33aOrVP+Xq/snPsFlQEAAAAAABQdgSTQDXwxICOauDraWrbeSxJC/84YlFFAAAAAAAAZUMwCVQDgT6eeuraEKf2p74NU2J6pgUVAQAAAAAAlA3BJFBNTLyijUIa+5naTqVkaNb6AxZVBAAAAAAAUHoEk0A14eXhpteHdXVqf2vLIR2IS7GgIgAAAAAAgNIjmASqkSGdm+j60Mamtsxsux7/er9FFQEAAAAAAJQOwSRQjdhsNr0+rKvc3Wym9tX7Tmp9RJxFVQEAAAAAAJQcwSRQzXRpWlcTr2jj1D75q33Kys6p/IIAAAAAAABKgWASqIZmXBeiBr6eprZ9J5M1//doiyoCAAAAAAAoGYJJoBpq4OulmdeHOrXP+C5c8WkZFlQEAAAAAABQMgSTQDV132Wt1TWorqktPi1TM7+PsKgiAAAAAAAA1xFMAtWUh7ub3rixq1P7u78e1t8nky2oCAAAAAAAwHUEk0A1NjCksYZ3DTK1ZefY9ejqfbLb7RZVBQAAAAAAUDyCSaCae21oF3m620xt34XH6ev9Jy2qCAAAAAAAoHgEk0A117Gxv/7Vp51T+yNf7VN6ZrYFFQEAAAAAABSPYBKoAZ66tqOa+HuZ2qLi0/TqxoMWVQQAAAAAAFA0D6sLAFB2AT6eeuWGLhr/6U5T+ys/HtTYHi3U1MdPmzZJJ05IKSmSv7/UtKnUt6/k62tNzQAAAAAAoHYjmARqiLE9WuiDrdH69fBZo+1cVo4GvrhP8Qt6KSHB+TaBgdL48dL990shIZVWKgAAAAAAAEO5gZrCzc2muSO7y828Do6ibCeVUL/ghXASEqQ5c6TQUGn0aCkxseLrBAAAAAAAkAgmgRrlouAA3XVhG+cr+u+V3IteCGfVKqlPH+no0YqpDQAAAAAAwBHBJFCDJCRIv83uJHuaeSEcW2CadGlksbffu1caNIiekwAAAAAAoOIRTAI1yD33SGG7PKWfuzhf2euAVC+t2GPs3SvdfXcFFAcAAAAAAOCAYBKoISIicodjS5L2tZD9aH3T9TbPHKnfXpeOtWqVdOBAORcIAAAAAADggGASqCHmzXPcskkbusueY97H1uGk1LbghXCKPh4AAAAAAED5IpgEaoC0NGnhwnyNcQHSrjbOO/crfiEcKfd4acWP/AYAAAAAACgVgkmgBti0KXfhGye/FLAQTn3XFsI5ezb3uAAAAAAAABWBYBKoAU6cKOSK857Sz52d23sfkAJTij3uSddGfQMAAAAAAJQYwSRQA6QUlTHuayn7sXwL4XjkSNfukWQv8rjJyWWvDQAAAAAAoCAEk0AN4O9f1LU2aX132XNs5tbWp6VOR4s8bt26Za8NAAAAAACgIASTQA3QtGkxO8QFSNvbObf32yd5ZxR6s6CgstUFAAAAAABQGIJJoAbo21cKDCxmp19DZE/yMTXZfDOkq/4ucPf69XOPCwAAAAAAUBEIJoEawNdXGj++mJ2yPKQN3Z2abRcckYLPOLWPH597XAAAAAAAgIpAMAnUEPff78JOh4Jkj2jm3H7tbsktp+THAwAAAAAAKCWCSaCGCAmRRo1yYceNXWU/72FqsjVKkXpGGtujRkkdO5ZzgQAAAAAAAA4IJoEaZMECqVu3YnZK8ZF+6eTcflmEFJCqbt1yjwMAAAAAAFCRCCaBGiQgQFq3zoVwcmcb2U8EmJpsnjmqO2KPvv3WroCAQm4HAAAAAABQTggmgRomOFjasqWYYd12m/TDBbKbp5VUSqM4bY47VqH1AQAAAAAASASTQI0UECB9/rkUHi5NniwFBhaw06lAee9v59Q8+au9ik/LqPAaAQAAAABA7eZR/C4AqquQEOmNN6RZs6RNm6STJ6XkZKluXSkoSOpxWah6zj2m2MRzxm1OpWTo36v3a8GtF1lXOAAAAAAAqPEIJoFawNdXGjy4oGs89PbI7hq56A9T66I/Y3Trxc11XWiTSqkPAAAAAADUPgzlBmq5G7s11ejuzZza7/tst1LOZ1lQEQAAAAAAqA0IJgHo7ZHdFOjjaWqLPpuuJ78Ns6giAAAAAABQ0xFMAlDTet56Y3hXp/a5v0Tp18PxFlQEAAAAAABqOoJJAJKkf/RsoYEhjUxtdrv0zxW7dC4z26KqAAAAAABATUUwCUCSZLPZNH/MhfLzcje1h51K0QsbDlhUFQAAAAAAqKkIJgEY2jTw1QuDOzm1v/LjQe06lmhBRQAAAAAAoKYimARg8uCVbXV56/qmtqwcu/65YpeysnMsqgoAAAAAANQ0BJMATNzdbPrgpgvl5W5+etgem6g5Px+yqCoAAAAAAFDTEEwCcNKlaV09NbCjU/uM78J1IC7FgooAAAAAAEBNQzAJoEBTrumgC5rVM7Wdy8rRPSt2KTvHblFVAAAAAACgpiCYBFAgLw83/ffmC+VmM7dviYrXW1sY0g0AAAAAAMqGYBJAoXq2DNRjfds7tT+5NkzhpxjSDQAAAAAASo9gEkCRZl4fqk5N/E1t57JyNP7TnQzpBgAAAAAApUYwCaBI3p7uWnTrRU5Dun+PPqs3NkVaUxQAAAAAAKj2CCYBFKtXq/qa2r+DU/sz34Vr/4lkCyoCAAAAAADVHcEkAJc8MzBE3ZrWNbWdz8rRuOU7lJWdY1FVAAAAAACguiKYBOCSOh65Q7rd843p/jM2Ua/+xJBuAAAAAABQMgSTAFx2SYtAPTGgo1P7zO/Dted4kgUVAQAAAACA6opgEkCJPDmgoy5qXs/Ulplt17jlO5TJkG4AAAAAAOAigkkAJeLl4aaFt14kT3fzkO4dR5P0wvoDFlUFAAAAAACqG4JJACV2YfMAPT0wxKn9xQ0H9GdMQuUXBAAAAAAAqh2CSQClMrVfB/VoEWBqy8qxa+wnfyktI8uiqgAAAAAAQHVBMAmgVDzd3bTo1ovl5W5+GgmPS9WUr/+2qCoAAAAAAFBdEEwCKLWuTevqxSGdnNrf/fWw1oWdsqAiAAAAAABQXRBMAiiTR65qp37tGzq137Nip86kZlhQEQAAAAAAqA4IJgGUiZubTYtuu1gB3h6m9uNJ53X/Z7tlt9stqgwAAAAAAFRlBJMAyqxloI/eGdXdqf3zPce1ZHusBRUBAAAAAICqjmASQLm47eJg3XJRc6f2h77Yq8PxaRZUBAAAAAAAqjKCSQDlwmaz6Z1R3RUc4G1qTz6fpX8s26HsHIZ0AwAAAACA/yGYBFBuGvh6aeEtFzm1b46K1+ubIiu/IAAAAAAAUGURTAIoV9eGNNa/rmrr1P70ujDtPJpoQUUAAAAAAKAqIpgEUO5eGtJZXYL8TW2Z2XbdvvQvpZ7PkiSlpUnr1tm0enVDLV/eWKtXN9S6dTalMR0lAAAAAAC1gofVBQCoeXw83bXk9kt02VublZn9v7klw06l6J4l+9Rs34VatEhKSHCX1MZ028BAafx46f77pZCQyqwaAAAAAABUJnpMAqgQFwcH6LnrOzm1rwg7ov98fVwJCQXfLiFBmjNHCg2VRo+WEhn9DQAAAABAjUQwCaDCPH5Ne/Xv0Mj5iut2SXXTi739qlVSnz7S0aMVUBwAAAAAALAUwSSACuPmZtPbN1ws9wxPU7vNJ1Ma/Jdksxdyy//Zu1caNIiekwAAAAAA1DQEkwAq1FOPeCvrm4uc2m0t46VeB1w6xt690t13l3NhAAAAAADAUgSTACpMRETucGwdair7jjbOO1wRITWLd+lYq1ZJB1zLMQEAAAAAQDVQaatyZ2RkaOfOnfrrr7908uRJJSYmqkOHDpo4caIkKTIyUocOHdI111wjT0/PYo4GoDqYN89h4+cusrc4I1vjZKPJ5maX/Ya/pI/6ShnF/93Pmye9/noFFAoAAAAAACpdhQeT6enp+uCDD/TJJ58oMd8kcX369DEub9++XTNmzFCzZs00ZcoUDRo0qKJLA1CB0tKkhQsdGrLcpW8ukf2OzbJ55hjNtoB02a/dI629WJKtyGMuXCg9/7zk61sxNQMAAAAAgMpToUO5Dx06pDFjxui9995TQkKC7Ha78S+/o0ePym6369ixY5o8ebLmzJlTkaUBqGCbNkkJCfkaz9STNnV12tfW+ajUJbbYY549m3tcAAAAAABQ/VVYMHny5EmNGzdOhw4dMtrc3d3Vtm3bAvc/ffq0JMlms8lut+v999/XypUrK6o8ABXsxIlCrtjVWvaDQc7tA/ZIDZKd2/M5ebJsdQEAAAAAgKqhwoLJqVOn6tSpU5KkevXq6ZlnntHvv/+ub7/9tsD9Z86cqVmzZikwMNAIJ1999VWn4d8AqoeUlMKusUnfXyh7sre51StbGrpd8sgu8rjJxWeXAAAAAACgGqiQYPK3337T77//LpvNpoCAAH3yySe6/fbbVbdu3UJv4+HhoTFjxmjlypVq0qSJJCklJUVffvllRZQIoIL5+xdxZXod6duLlX9WB1vjZKnf3iKPW8TTCAAAAAAAqEYqJJh07BU5bdo0tW/f3uXbtmjRQo899pixvXnz5nKtDUDlaNq0mB1iGkm/hzg12y44InU6WujNggoYBQ4AAAAAAKqfCgkm//zzT0mSv7+/hg4dWuLbDx06VAEBAbLb7YqIiCjv8gBUgr59pcDAYnb6LUT2Iw2d2wfukuo7jwWvXz/3uAAAAAAAoPqrkGAyLi5ONptN7du3l4eHR4lv7+bmptatW0sSc0wC1ZSvrzR+fDE72W3S2ktkT/MyNRvzTbqb55scPz73uAAAAAAAoPqrkGAyIyNDkuTl5VXMnoXLu62bW4WtzwOggt1/vws7pXpLawuYb7JJknTNvpIfDwAAAAAAVAsVkvo1bNhQdrtdsbGxpT5GVFSUJKl+/frlVRaAShYSIo0a5cKO0U2krR2dmm0XRUshxyTlHqej8y4AAAAAAKCaqpBgsuP/pwfHjx/X/v37S3z7X375RWfOnJHNZlNIiPPiGACqjwULpG7dXNjx1xDZYxs4t1+3Sx17pWrBgnIvDQAAAAAAWKhCgsm+DqtTvPTSS8rJyXH5tikpKXrxxReN7T59+pRrbQAqV0CAtG6dC+Gk3U36poD5JutkyXv0n6rjm13IDQEAAAAAQHVUIcHkiBEj1LBh7kq7f/75px5++GElJSUVe7vY2FiNHz9ekZGRkqR69eppxIgRFVEigEoUHCxt2eLCsO4UH+nbi52a955K0uTV+wq4AQAAAAAAqK5KvmS2C3x9fTV16lRNmTJFNptN69ev19atW9WvXz+1b9/e2C8xMVE//fSTjh07pt9//10//vijsrNze0XZbDY99NBD8vf3r4gSAVSygADp88+liAhp3jxp4UIpIcF5v/qJTdTB3kF/2g6a2uf/Fq0r2tTX2B4tK6dgAAAAAABQoSokmJSk4cOH68iRI5o7d65sNpuSkpK0evVq43q73a49e/bogQceMLXZbDZJ0pgxY3TnnXdWVHkALBISIr3xhjRrlvTjj9n6888Ypaa6yc8vRz17tlT//u7yrBOq/u+d0S+Hz5pue/9nu3VR8wB1b1bPouoBAAAAAEB5qbBgUpImTZqktm3baubMmUpKSjKCx7zwUfpfGGm323ML8vDQI488onvuuaciSwNgMV9fadAgu5o1O2O0XXhhC3l4SJKblo/toR5zftaplAzj+vTMHI1Z/Kf+eOQq1fP2rPyiAQAAAABAuamQOSYd3XDDDdq4caOmTZumSy65RJ6enrLb7ca/PB07dtSECRO0YcMGQkkACg7w0Sd39JCbzdx+4HSq7vl0l+n5AwAAAAAAVD8V2mMyj5+fn8aNG6dx48YpIyNDJ0+eVGJiorKyslSvXj01adKEuSQBOOnfsZGeG9RJT30bZmr/fM9xzfn5kB7t276QWwIAAAAAgKquUoJJR15eXmrZsqVatnRtAYuMjAx5eXlVcFUAqqpp/Tro98Nn9fXfJ03tU7/5W71aBapP24YWVQYAAAAAAMqiQoZyT58+XdOnT9eiRYtKfYznn39eAwYM0E033VR+hQGodtzcbFp820Vq28DX1J6dY9ctS7brZPJ5iyoDAAAAAABlUSHB5BdffKEvv/xSv/zyS6mPERkZqaNHj+ro0aPlWBmA6qi+r5dW3tVDdTzMT1nHk87r9o+3Kys7x6LKAAAAAABAaVX44jellZCQIEk6d+6ctYUAqBIuaRGot0Z0c2rfGHlGT60Lt6AiAAAAAABQFqWeYzIsLEzJyclF7pOYmKg//vijRMc9f/68Nm3apLCw3MUuAgMDS1sigBrmn71b6bfDZ7XozxhT+6sbD6pniwCNubC5RZUBAAAAAICSKnUwuX//fj355JOFXm+327Vnzx7dddddpb0L2Ww2XXzxxaW+PYCaxWazae6obvrraKJ2H08yXTf+053qHFRXXZvWtag6AAAAAABQEqUeyj1q1Chdcsklstvt5VmP6Xienp669957y/X4AKo3Xy8PffaPngr08TS1p2Zka+SiP5SQnmlRZQAAAAAAoCTKNMfks88+Kw8PD9ntdtO/PPnbi/snSd7e3goKCtLVV1+txYsX64ILLijbTwigxunQyE8f336xbDZz+8HTqbpz6V/KySnfL0wAAAAAAED5K/VQbknq2LGj9u7d69TeqVMn2Ww29enTRx988EFZ7gIACjSkc5BmXh+qZ/ItfLM27JRm/hChmdeHWlQZAAAAAABwRYWtyl3eQ7wBIL8n+nfUjV2DnNqf/yFCX+09YUFFAAAAAADAVWXqMVmYl156SZIUFOQcGABAeXFzs2nxbRer95ubFR6XarrurmU7tPXhPurUhMVwAAAAAACoiiqkx+TIkSM1cuRIXXHFFRVxeAAw1PP21BfjL1XdOubvWZLPZ2nUoj+VdI7FcAAAAAAAqIoqbCh3eSloDksAcNSpSV0tvu0ip/awUykat3wni+EAAAAAAFAFVchQbkfZ2dnavXu3Tpw4ofPnzys7O7vA+SftdruysrKUmZmptLQ0xcXF6c8//9SBAwe0f//+ii4TQDU3olszPXltR72w/oCp/cu9J/TcDxF6lsVwAAAAAACoUio0mFywYIHmz5+vpKSkUt3ebrfLZrOVc1X/x959x1dZ3o0f/9wZjEBImAHCHgERZOMC4xZtrRW02jqhWmmtfYp9uvs8HfJr7dNW0NpCh4Baa60SR4e40AgOhiISEAIoG8IMBMLIuH9/HKVgTkISzoFAPu/X67w8576+13V/7/a8IHxzDUmnqp9c2ouF63fx72Vbjrj+s5fy6ds2lWv6tz9BmUmSJEmSpE+L21LuSZMm8atf/Ypdu3YdMUMyDMNDr087vM1TvSXVVGJCwF9uGESPVk0qtN36t/d4b8OuE5CVJEmSJEmKJi6FyfXr1/PnP/8Z4NCMx8OLjUEQEARB1ELkJ21t2rThtttu4y9/+Us8UpR0ikpvnMyzUQ7DKS4p4/PT5rOl6MAJykySJEmSJB0uLoXJp59+mtLSUgAaNmzIj370I15//XU++OADvvWtbxGGIYmJicydO5clS5bw5ptv8tBDD5GdnX2oSLljxw4uvvhiBg8eHI8UJZ3CTstI5a83DOLTO0GsLdzHNY8s4GBp+YlJTJIkSZIkHRKXwuS8efMOvf/Wt77FjTfeSJs2bQiCgLPPPhuIHIozZ84cEhMTadGiBeeeey5/+MMfGD9+/KH2//mf/3FJt6Ra+UyfDH5++WkVrs/5aAdff3qxf7ZIkiRJknSCxaUwuW7dOgAaNGjAF77whSPaevfuTXJyMgALFiyo0PeOO+7g4osvJgxDVq5cycsvvxyPFCXVA9+5oDtfGphZ4fqf567l92+uPv4JSZIkSZKkQ+JSmNy1axdBENC9e3caNmx4RFtSUhLdunUjDEOWLFkStf9XvvKVQ+9fffXVeKQoqR4IgoA/faE/QzqkVWj75rNLmLVi2wnISpIkSZIkQZwKk5/sL5menh61vWvXrgCsWrUqavsZZ5xBq1atAFi2bFnsE5RUbzROTuTpMUNpm3rkL0nKykO+8OgCVm3be+hacTE8/zxMmwa//W3kv88/H7kuSZIkSZJiK+noITWXnp7Otm3bKCkpidresWNHAIqLiykoKCAjI6NCTGZmJtu2bWPjxo3xSFFSPZKZ1pinbx3K+ZPf5MBhB9/sKC7hyqnzeOTy4Tw2NZnp06GwsGL/9HQYMwbGjYOsrOOVtSRJkiRJp7a4zJhs3bo1YRiydu3aqO2dOnU69D4/Pz96YgmR1Pbu3Ru1XZJq4szOzfnDNWdUuL5syx6G/nQBkx4oj1qUhEixcuJE6NULRo+GXbvimqokSZIkSfVCXAqTAwcOBGDLli3k5eVVaD+8MPnee+9FHeOTA3SSkuIyqVNSPXTzkI58K7t7hetBl21wQR5w9JO6c3Jg+HDYsCEOCUqSJEmSVI/EpTB57rnnHnr/ox/9iO3btx/R3qdPn0MzIp999tkKS75fffVVtm3bRhAEh/aalKRYuPczpzGyZ8XtI4IBa2DgR9UaIy8PRo505qQkSZIkScciLoXJCy64gC5dugCwfPlyLr/8cn71q1+xbVvkBNzU1FSGDh1KGIZs2LCBu+66izVr1rB3715eeOEFfvCDHxwaq3///vFIUVI9lZgQkPzSIMItzSo2nr8EuhZUa5y8PBg7NsbJSZIkSZJUj8SlMBkEAT/60Y9ITEwEYPfu3UydOpXNmzcfirn11lsPvc/NzWXkyJEMGTKEb37zm+zcufNQ26hRo+KRoqR6Kj8fnpuRBM8MI9xz5EndQQLwmXeh1e5qjZWTAytWxCFJSZIkSZLqgbgUJgGGDx/O//3f/5Gamnro2uF7S15wwQV87nOfIwwje7qFYXjoFQQBAFdccQXnnHNOvFKUVA9NmfLxm6LG8OxQwpIj/xgMGpbC5+dByoGajSdJkiRJkmokboVJiBQWn3/+ee68804GDx5Ms2ZHLp38+c9/zpgxYw7NrDzcddddx7333hvP9CTVM8XFMG3aYRc2N4eZAyvEBWn74Kr5kFR21DGnTYuMK0mSJEmSaibuR163bNmSu+66i7vuuqvizZOS+O53v8vYsWOZM2cOW7duJT09nbPPPpuOHTvGOzVJ9UxuLhQWfupifnvCOXsIhi8/4nLQfifhZe/BvwYBQaVj7twZGffyy2OdrSRJkiRJp7a4FCbfeust9u7dS3Z2NsnJyUeNb926NVdffXU8UpGkQw7b5vZIc3sStthD0GfDEZeD3hsJC1PgjdOqHLegeuflSJIkSZKkw8RlKfdf/vIX7rrrLoYPH87jjz8ej1tIUo3t2VNZSwAv9ifc0Lxiy1krod+aKsctKjr23CRJkiRJqm/iUphcunQpYRiye/duMjMz43ELSaqxpk2raCxLjByGU5hSse3ixdB5S6VdDzvjS5IkSZIkVVNcCpPbt28/9H7QoEHxuIUk1VjbtkcJ2NcQnh5GuO/ILSiChBCufAda74raLSMjRglKkiRJklSPxKUwmZ6efuj9/v3743ELSaqx7Gw47I+n6HakRmZOlh75x2PQsBSungdN9x1xvXnzyLiSJEmSJKlm4lKYvPTSSw+9f+qpp+JxC0mqsZQUGDOmGoEbWsIL/StcDlL3R4qTDUoOXRszJjKuJEmSJEmqmbgUJv/rv/6LXr16EYYhDz74IA8//DAlJSVH7yhJcTZuXDUDl3UgnNOrwuWgzW747DuQUF6z8SRJkiRJ0hGS4jJoUhIPPfQQP/vZz3jxxRe59957+f3vf8/AgQPp3bs3LVq0oGnTpiQkVK8u+vnPfz4eaUqqh7KyYNQoyMmpRvDcnoRp+wj6rT3ictB1K+FFi7k69Qx69gzik6gkSZIkSae4uBQmDz/wJggCwjBk165d5ObmkpubW+PxLExKiqWpUyE/H/LyjhYZwMv9CFOLCbpsO7LljLWcfn5jICteaUqSJEmSdEqLy1LuMAwPvSBSnAyCoEJbdV6SFGtpaTBzJvTtW43g8gT4xxDCrakVmv7fa8uZNm9tlE6SJEmSJOlo4jJjsn379vEYVpJiJjMT5syBsWOrsaz7YDI8fSbhF+dEDsA5zFeeep+2qQ25/LSM+CUrSZIkSdIpKC6FyVmzZsVjWEmKqbQ0mDEjsqx7yhSYNg0KCyvGNW8OY8Y05vxrh3HjP96k6EDpobay8pBrH3mHV796DkM7pR+33CVJkiRJOtnFpTApSSeTrCy47z6YMAFyc6GgAIqKIDUVMjIgOxtSUgDSyGk5hCv+PJeSsv9sNVFcUsZnH5rLG3cNp0erJifsOSRJkiRJOplYmJSkj6WkwOWXVx1zUc/WTL9+IDc89u4R17fuPcjIP73NG18fTkZqwzhmKUmSJEnSqSEuh99I0qnsiwMz+dVn+1S4/uH2Yq58aC57DlvqLUmSJEmSorMwKUm18K3zu/PN87pVuL5g/S6ufWQBJWXlJyArSZIkSZJOHhYmJamWfv3ZPlw3oH2F6y8s38rtf19EeXkYpZckSZIkSQILk5JUawkJAdOvH8AF3VtWaHvknfV8519LCUOLk5IkSZIkRWNhUpKOQcOkRHJuHcoZ7ZpVaLsv90P+79VVJyArSZIkSZLqPguTknSM0hon8+/bzqRTeuMKbd//9wc8NHftCchKkiRJkqS6zcKkJMVA+7RGvHjHWbRq0qBC2x1PLeLpxZtOQFaSJEmSJNVdFiYlKUayWjfl+dvPpGnDxCOul4fwpcfe5bWV205QZpIkSZIk1T0WJiUphgZ3SOeZW4fRIPHIP14PlJZz1bT5vLu+8MQkJkmSJElSHVPnC5MHDx480SlIUo1c2LMVj90wkITgyOtFB0q5/E9zWbF1z4lJTJIkSZKkOiQuhcnvf//7fP/732f69Om1HuOee+7hoosu4tprr41dYpJ0nIw+oz2TR59R4frWvQe59I9vs75w3wnISpIkSZKkuiMuhcmnn36aZ555hjfeeKPWY6xatYoNGzawYcOGGGYmScfP7Wd1ZsLlvStcX7NzH5f+8W227jlwArKSJEmSJKluqLNLuQsLCwHYv3//iU1Eko7B9y/swX+N6Frh+rItexj5p7fZta/kBGQlSZIkSdKJl1TbjsuWLaOoqKjKmF27djF//vwajXvgwAFyc3NZtmwZAOnp6bVNUZJOuCAI+M2Vp7OjuIRH31l/RNvCDbu5cuo8Zt5+JikNav3HsSRJkiRJJ6Va/0t46dKl/PCHP6y0PQxDFi9ezM0331zbWxAEAQMHDqx1f0mqCxISAh76Qn+KDpTyTN7mI9rmfLSD0Q8v4JkxQ2mYlHiCMpQkSZIk6fir9VLuUaNGMWjQIMIwjGU+R4yXnJzM7bffHtPxJelESEpM4PEbB3Fxz1YV2l5YvpUbH1tIaVn5CchMkiRJkqQT45j2mPzJT35CUlISYRge8frEp68f7QXQqFEjMjIyOO+883j44Yc544yKp9pK0smoYVIiT986lLM7N6/QNmPxJr7y5PuUl8f2lz2SJEmSJNVVx7SpWc+ePcnLy6twvXfv3gRBwPDhw/nTn/50LLeQpFNKk4ZJ/Ou2M7lg8pss2rj7iLbpC9aR2iiJSVedThAEABQXQ24ubN4Me/ZA06bQti1kZ0NKyol4AkmSJEmSYiNupy3Eeom3JJ0q0hsn88LtZ3He798gf+veI9p+O+cjUhsmcXP33kyeDNOnQ2FhlDHSYcwYGDcOsrKOR9aSJEmSJMVWXAqTv/jFLwDIyMiIx/CSdNJrk9qQl+44mxEPvsHawn1HtP38lRX8v58mwNzKK46FhTBxYuQ1ahRMnQppaXFOWpIkSZKkGIpLYfLqq6+Ox7CSdErpmN6Yl+44i/N+/yYFRQeOaAuGLycsTYR3uh91nJwcyM+HmTMhMzNe2UqSJEmSFFvHdPiNJOnY9GzdlBduP4v0RskV2oLzl8KAj6o1Tl4ejBwJu3bFOEFJkiRJkuIkLjMm58+fH9Pxhg4dGtPxJKkuOaN9MwasOotXW71F0LD0iLbgorzIzMm8TkcdJy8Pxo6FGTPilakkSZIkSbETl8LkTTfddOhE2WMVBAFLly6NyViSVBfl58Orf0uH9mcSjn6boEHZkQGXLoKyBPigw1HHysmBFSugZ8/45CpJkiRJUqzUiaXcYRhW+ZKkU9mUKR+/2dgCnh5GWHLkH81BAIxcCFkbazaeJEmSJEl1WFxmTAK1LigGQUBiYiIXXXQRiYmJMc5KkuqW4mKYNu2wC+tbwbPDCD8/jyCp/NDlIAHCK96NzJxc1bbKMadNg3vugZSUOCUtSZIkSVIMxKUwuWzZsmrHHjx4kJ07d5Kfn88///lPnnvuOcrKyti/fz/3338/jRo1ikeKklQn5OZCYeGnLq5pDf8YQvi5+QSJ//klT5AYEn72HXhuCHyUUemYO3dGxr388vjkLEmSJElSLJzwpdwNGjQgIyODESNG8Mtf/pI//vGPJCYm8vrrr3PPPfec6PQkKa42b66k4cMM+NcgwvIj9+sNksrhcwugy5Yqxy0oiFGCkiRJkiTFyQkvTH7aiBEjuOuuuwjDkJycHN55550TnZIkxc2ePVU0rmgPzw/g0ztjBEnlcNV86Fx5cbKoKDb5SZIkSZIUL3WuMAnwpS99iYYNGwIwY8aME5yNJMVP06ZHCVjWAWZWUpz8/HzovDVqt9TU2OQnSZIkSVK81MnCZGpqKt26dSMMQ2dMSjqlta36HJuIpR3hxf4VLkdmTs6DThWLkxmVb0EpSZIkSVKdUCcLkwApHx8nu2VL1fuoSdLJLDsb0tOrEZjXifDFMypcDpLL4fPzoOO2Q9eaN4+MK0mSJElSXVYnC5Pl5eWsXr0agOTk5BObjCTFUUoKjBlTzeDFnSsvTl49FzpEipNjxkTGlSRJkiSpLquThclnnnmG7du3EwQBHTp0ONHpSFJcjRtXg+DFnQlf6lfhcpBcDqPmQYdtNRtPkiRJkqQTpE4VJg8ePMhf//pXfvKTnxy6NmLEiBOXkCQdB1lZMGpUDTq834Xw5WjFyTKSrp3LWqIfiCNJkiRJUl2SFI9Bb7755mrHhmFIaWkpe/bsYf369ezfv5/w4+NnGzZsyPXXXx+PFCWpTpk6FfLzIS+vmh0WdSEMQoKLjuxQllDOlQ/N45kxQ7m0V5vYJypJkiRJUozEpTA5b948giCocb8wDI/o9+1vf5t27drFMjVJqpPS0mDmTBg5sgbFyfe6RoqTFy454vL+0nKumjafp28dysjeFiclSZIkSXVT3JZyh2FY49cn/dq3b8+vf/1rbrjhhnilJ0l1TmYmzJlTw2XdC7txxra+FS4fKC3n89Pm86+lBbFLUJIkSZKkGIrLjMmvf/3rNe7ToEEDmjdvTu/evenXr+LeaZJUH6SlwYwZkWXdU6bAtGlQWFgxrnnzyOnb48ZBz55dmfxmwJ05i4+IOVhWzqiH5/PkzUP43Oltj88DSJIkSZJUTXWmMClJ+o+sLLjvPpgwAXJzoaAAioogNRUyMiA7G1JS/hP/1XO6kJQQcMdT7x8xTklZyDUPL+CJmwZzdT+3xpAkSZIk1R1xKUxKkmIjJQUuv7x6sbef1ZnEhIDbn1zEx7tjAFBaHvKFR9/hrzcM4tr+7eOTqCRJkiRJNRS3PSYlScff2GGdmHbdAD59/lhZecgX//IOf3ln/YlJTJIkSZKkTzmuMyZXrVrF/Pnz2bJlC9u2bQMgPT2dLl26MGTIEDp16nQ805GkU9LNQzqSmBBwy+MLKT9s5mR5CLf8bSH7Ssq4/azOJy5BSZIkSZI4DoXJvXv38sgjj/DMM8+wdu3aKmN79+7NrbfeylVXXRXvtCTplHbDoA4kJQTc+NeFlB1WnQxDuOOp99lXUsY3RnQ7gRlKkiRJkuq7uC7lXrRoEVdeeSUPPPAAa9asIfx407MwDI94fXLtgw8+4Hvf+x433ngjW7dujWdqknTKu25AJk/cNJjkxKBC2zefXcIvZ608AVlJkiRJkhQRt8JkXl4et956K5s2bTrienJyMj169GDAgAGcccYZdOnShcTExEPtYRiyYMECbrrpJnbu3Bmv9CSpXhjVrx05twylYVLFP+6//+8P+PELyw/9gkiSJEmSpOMpLku5S0pK+Na3vsW+ffsIgoAwDLn88su54YYbGDhw4BGFSICDBw/yzjvv8PDDD/Paa68RBAFr1qzhxz/+MQ888EA8UpSkeuMzfTL455eHcdXU+RSXlB3Rds9L+RQfLOP/PnsawadPzJEkSZIkKY7iMmPy2WefZc2aNQRBQGJiIvfddx8TJ05kyJAhFYqSAA0aNODss89mypQp3HPPPYeKmS+99BILFy6MR4qSVK9c1LM1M79yJqkNK/4+6je5q/j603mUlztzUpIkSZJ0/MSlMPn8888fev/Nb36TK664otp9r732Wu64445Dn5966qmY5iZJ9dXwri15+Y6zad44uULb5DdXM/aJ9ygtKz8BmUmSJEmS6qO4FCaXLVsGQNOmTbn55ptr3P/222+nUaNGAMyfPz+muUlSfTa0Uzqzvno2rZo0qND2yDvrue7RdzhQWhalpyRJkiRJsRWXwuSuXbsIgoCsrCwaNKj4j9+jSUlJoXfv3oRhyObNm+OQoSTVX/3bp/HaV8+hXbOGFdqeztvM56bOY++B0hOQmSRJkiSpPolLYTI9PR2A0tLa/8M2KSmyD1rjxo1jkZIk6TB92qaS+7Vz6dy84p+xL+Vv49I/vk3hvpITkJkkSZIkqb6IS2GyR48ehGHIsmXLKCoqqnH/0tJSVqxYQRAEdO3aNQ4ZSpJ6tGrC7DvPpXebphXa3lqzkwsmv0lB0YEKbcXF8PzzMG0a/Pa3kf8+/3zkuiRJkiRJ1RWXwuTnP/95AA4ePMj9999f4/4zZsxg165dAHzmM5+JZWqSpMN0SG9M7tfOYWBmswptizbuJvv3b7B2Z6TimJ8P48dDZiZccQWMHQvf+Ebkv1dcEbl+992ROEmSJEmSjiYuhcmrrrqKs846izAMeeyxx/jjH/9Y7b7z5s3j3nvvBaBr165cd9118UhRkvSx1k0bMmvcOQzv2qJCW/7WvZz72ze49Lo99OoFkyZBYWH0cQoLYeJE6NULRo+Gj3+/JEmSJElSVHEpTAZBwP3338/QoUMJw5CJEydy8803k5ubS0lJ9D3LVq5cyYQJExg7diz79u2jbdu2TJ48uVaH50iSaiatcTIzbz+Ty3q1rtC2Yfd+Xmr5BmQUVnu8nBwYPhw2bIhhkpIkSZKkU0pSPAa9/fbbAUhMTAQgDEPmz5/P/PnzSUpKomvXrqSlpZGcnMyePXtYs2YNu3fvPhQbBAEFBQWMHDmyyvsEQcDSpUvj8QiSVO+kNEji2THDuPGv7/LU+5uOaAtSDhJ+4U14biisqVi8jCYvD0aOhDlzIC0tHhlLkiRJkk5mcSlMzp49myAIAA79FyJFx5KSElasWHFEfBiGh2I/HS9JOn4aJCXw1xsG0bTh+0yfv+6ItqBBGeHVc+H5gbA8s1rj5eVF9qCcMSMe2UqSJEmSTmZxWcoNkaLip1+VtR3tuiTp+ElKTOA7A/oTLuhWoS1IDAk++y4M/LDa4+XkwKd+HyVJkiRJUnxmTD7yyCPxGFaSdJz88Q8B5J5OuLchQfYHFdqDC5cQphyAN3oDQcUBPmXKFPjNb+KQqCRJkiTppBWXwuSwYcPiMawk6TgoLoZp0z7+sKAHYXFDuGwRQcKRM9mDs1YSNjkIL/WDsOoJ+NOmwT33QEpKnJKWJEmSJJ104raUW5J0csrNhcLCwy4s7QjPDCUsqfhXRtBvLXxuASSVVTnmzp2RcSVJkiRJ+kRcZkw++OCDAHTu3Jkrr7yyVmP84Q9/4I033iAxMZFph6buSJLibfPmKBc/yoAnzya8eh5B45IjmoIeBYSj34ZnhsKBBpWOW1AQ40QlSZIkSSe1uMyYfPDBB/nd737Hc889V+sx3njjDebNm8eSJUtimJkk6Wj27KmkYVML+Nu5hEWNKjQFHXbAdW9Ck/2VjltUFKMEJUmSJEmnhDq7lHv//sg/bouLi09wJpJUvzRtWkXjjlR4fDjh9opBQesi+OIcaB69spmaGqMEJUmSJEmnhFov5d62bRsHDx6sMmb//v1s3LixRuMeOHCA3NxcFi9eDEBaWlptU5Qk1ULbtkcJKGocmTl59TyC9juPaArS9hFe/wbknAkF6Ue0ZWTENk9JkiRJ0smt1oXJZ599ll//+teVtodhyIIFC7joootqNX4YhgRBQO/evWuboiSpFrKzIT39UwfgfNr+BvDkWYRXvkPQbcsRTUHKQcIvvAnPDYE1bQBo3jwyriRJkiRJn6j1Uu5bb72VHj16EIZhhdcnorVV5/WJIAgYM2bMsT2hJKlGUlKgWn/0libBs0MJl3So0BQ0KIOr50Hv9UBkvJSUGCcqSZIkSTqp1bowmZiYyE9+8hOCIIhlPkCkINm9e3fuu+8+hg8fHvPxJUlVGzeumoHlCTBzAOH87hWagsSQ4DMLYfAq7rgjjNJZkiRJklSf1XopN8DgwYN57bXXKC0tPXQtDEMuvvhigiBgyJAh3HvvvdUeLyEhgYYNG9KsWTOSko4pNUnSMcjKglGjICenOtEBvN6HsLghQfbSiq3nL+WBvGLu79GXxITY/zJLkiRJknRyOubqX0YlpxmEYUijRo3IzMw81ltIkk6AqVMhPx/y8qrZYUF3wr0N4LJFBIlHzpD8/ZurWVe4j7/eMIgmDf3FkyRJkiQpBoXJaL7+9a8D0KlTp3gML0k6DtLSYOZMGDmyBsXJDzrCvgaEn3uHILnsiKZ/LC3g/Mlv8o+xw2jbrFHsE5YkSZIknVRqvcdkVb7+9a/z9a9/nc997nPxGF6SdJxkZsKcOZFl3dW2OoMLtpxDmyYNKzS9s34XZ/92Dks3F8UuSUmSJEnSSSkuhUlJ0qkjLQ1mzIDly2H8eEhPjx7XvDncfXdk+fesx9N5+7+Gc1qbphXi1uzcx7kPzuHVldvim7gkSZIkqU6Ly1LujRs3xnS89u3bx3Q8SVLNZWXBfffBhAmQmwsFBVBUBKmpkJEB2dmQkvKf+C4tUpjz9XMZ/fACXlu1/Yixdu0vZeSf3ubPX+jPTYM7HucnkSRJkiTVBXEpTF544YUEQWxOXg2CgKVLK57yKkk6MVJS4PLLqxfbPKUBM28/i9ufXMSj76w/oq2kLOSWx9/jo+37+J9Lesbs7w1JkiRJ0skhrku5wzCMyUuSdPJqkJTA9OsH8D+XZEVt/8mLy/nyE4s4WFp+nDOTJEmSJJ1IcZkxCdS6oBgEAYmJiZx++ukxzkiSdKIEQcBPL+tFl+aNueOp9yktP/LviOkL1rF+1z6evHkIaY2TT1CWkiRJkqTjKS6FyVdeeaXasQcOHGDnzp2sWLGCf/3rX8yfP5+ysjJ69erFT3/6U5f2SdIpZMywTnRMb8w1jyxg9/7SI9peXrGNEb97g39+eRidmqdUMoIkSZIk6VQRl8JkZmZmjfsMHjyY66+/nieeeIKf/OQnPPnkk6Snp3P33XfHIUNJ0olycVZrZt95Lp99aC7rCvcf0Za3uYizfzuHf375TAZmpp2gDCVJkiRJx0Nc95isjeuuu45bbrmFMAx56KGHWLZs2YlOSZIUY/3aNeOtu0YwoH2zCm2bdh/gvN+9wb8/KDgBmUmSJEmSjpc6V5gEuO2220hKSqK8vJynnnrqRKcjSYqD9mmNyP3auVzRu02Ftr0Hy/jc1Hk8OOejE5CZJEmSJOl4qJOFyVatWtG1a1fCMOStt9460elIkuIktVESz4wZylfO6lyhrTyEbzyTx9dmvE9JmSd2S5IkSdKppk4WJgHS09MB2Lx584lNRJIUV0mJCUwe3Y97P3Na1PYpb63hij/PZUfxweOcmSRJkiQpnuJy+E0srFu37kSnIEk6ToIg4DsX9KBL8xRu+dtCDpQeOUPylRXbOPuBOTw3dhi92jSt0L+4GGbNCpg/vyXFxQmkpJSzaVPAhRdCigd8S5IkSVKdVCcLk6+++iqbN28mCALat29/otORJB0nXxjQns7NG3P19PlsLjpwRNuKbXs5+7dzeOKmwVyS1RqA/HyYPBmmT4fCwkSgyxF90tNhzBgYNw6yso7LI0iSJEmSqqnOLeXOzc3le9/73qHP55xzzgnMRpJ0vJ3ZuTlz/yv6id2F+0q44s9z+fXLHzF6NPTqBZMmQWFh9LEKC2HixEjc6NGwa1c8M5ckSZIk1URcZkx+//vfr1F8SUkJe/bs4cMPP2TdunWEYQhAYmIi1157bTxSlCTVYR3TGzP7znO55W8LyVl85F7DZeUh35mZR7hrDyScDuXV+x1bTk5khuXMmZCZGY+sJUmSJEk1EZfC5NNPP00QBDXu90lBMggCwjDky1/+Mj169Ih1epKkk0CThkn8/aYh/O8Ly/n5KysqtAcDVhM23wP/GAwHGlRrzLw8GDkS5syBtLRYZyxJkiRJqom4LeUOw7DGr080atSI8ePHM378+HilJ0k6CSQkBEy4vDePfmkgDZMq/pUVdN4GX5oDzfdUe8y8PBg7NpZZSpIkSZJqIy4zJq+++uoa92nQoAHp6emcdtppDB8+nKZNK566Kkmqn24Y1IHkvU247q/zCZoceShO0GIv4ZfmRGZOrm1drfFycmDFCujZMx7ZSpIkSZKqIy6FyV/84hfxGFaSVI+9/XRzeGw44efnE7TZfURb0KiEcPRcmNUXFnWp1nhTpsBvfhOHRCVJkiRJ1VLnTuWWJOnTioth2jSgKAX+di7hirYVYoKEkODixXDhYgjKjzrmtGmRcSVJkiRJJ4aFSUlSnZebC4WFH38oSYLnhhC+Hf1wtGDgahg9FxodrHLMnTsj40qSJEmSToy4LOU+3I4dO/jwww8pLCxk3759NG7cmLS0NLp160bLli3jfXtJ0ilg8+ZPXwngjdMId6TCpYsIko6cIRl03kZ4w2x4dihsa1bpuAUFsc9VkiRJklQ9cSlMvv/+++Tk5PD666+zadOmSuPatGnD+eefz+c//3kGDhwYj1QkSaeAPZUduv1BByhMIbxqPkGTI2dIBunFkUNxZg6A/PZRuxcVxTZPSZIkSVL1xXQp9wcffMANN9zAddddxxNPPMHGjRsJw7DSV0FBAX//+9/50pe+xJe+9CWWLl0ay3QkSaeIpk2raNzUAh4bQbil4szIILmM4Mp3YMQHEIQV2lNTY5ikJEmSJKlGYlaY/POf/8w111zDu+++SxhW/MdfVcIw5N133+Xaa69l8uTJsUpJknSKaFvxrJsjfXIozvJ2UZuDYSvh6or7TmZkxChBSZIkSVKNxWQp97333svDDz9MGIYEQQBAEAT079+fIUOG0K1bN1q0aEHDhg3Zu3cvu3btYtWqVSxcuJDFixdTWlpKEASUlZXxwAMPsGXLFn784x/HIjVJ0ikgOxvS0w87ACeakiT452DCLSth+DI+/uvokKDr1iP2nWzePDKuJEmSJOnEOObC5GOPPcb06dMPFSQbNGjAjTfeyE033UTbo05xgS1btvDYY4/xyCOPsH//fsIw5G9/+xudO3fm1ltvPdb0JEmngJQUGDMGJk48WmQA83rClmaEn1lI0KjkyNb0YsIvRvadHHNle1JS4payJEmSJOkojmkp97p16/j1r399qCjZo0cPnn76ab797W9XqygJkQNwxo8fz5NPPkn37t0JgoAwDJk0aRJr1649lvQkSaeQceNqELw6I7Lv5LaKm0gGDcoIPvcOxQM/oKy8ZluPSJIkSZJi55gKkw888AD79u0DoFu3bjz66KN069atVmP16NGDRx55hE6dOhEEAQcOHOCBBx44lvQkSaeQrCwYNaoGHQqbwF+HE+ZH/0XZH95byeemzmNn8cGo7ZIkSZKk+Kp1YbKgoIB///vfACQlJTFp0iSaN29+TMm0aNGC3/3udyQmJhKGITNnzmTLli3HNKYk6dQxdSr07VuDDiVJ8I8hhLN7E+1ctueXbWHY/bNZsrkoZjlKkiRJkqqn1oXJF198kbKyMoIgYPTo0fTs2TMmCfXo0YNrrrkGgLKyMl566aWYjCtJOvmlpcHMmTUsTn6y7+TTw0goqbi18qrtxZz1wGxmvL8xZnlKkiRJko6u1oXJefPmHXp//fXXxySZT1x77bWH3s+dOzemY0uSTm6ZmTBnTg2XdQOjBmYw779GcFqbphXa9h4s49pH3uFHzy9z30lJkiRJOk5qXZhcvnw5AGlpafTu3TtmCQGcfvrph5aFf3IfSZI+kZYGM2bA8uUwfjykp0ePa94c7r4b8vMj8YO6NeXtb4zg6r7R9538+SsruGrqPHa476QkSZIkxV3FNW3VtGPHDoIgoEuXLjFM5z/atWvHzp072bZtW1zGlySd/LKy4L77YMIEmDWrjAUL1rF3bwJNmpQzZEhHLrwwkZSUI/ukNkriyZuH8PNZK/jxC8sr7D3572VbGDLxdZ68ZQiDO6Qft2eRJEmSpPqm1oXJ/fv3A9C4ceOYJXO4Zs2aAXDgwIG4jC9JOnWkpMDIkSHt2m0/dK1//w4kVfK3XEJCwI8uzmJA+zRu/Ou77N5fekT76p37OPe3b/DA1X25/cxOBEEQz/QlSZIkqV6q9VLu9I/Xze3cuTNWuRyhsLAQgJRPT3WRJClGPtsng7nfGEHvKPtOHiwrZ9xT7zP2ifcoPlgapbckSZIk6VjUujDZokULwjBk/fr1lJeXxzInysvL2bBhA0EQ0KpVq5iOLUnS4Xq1acrb3xjONWe0i9r+8IL1nPPbN1ixdc9xzkySJEmSTm21Lkz26NEDgL179/Luu+/GLCGAd999l6KiIgBOO+20mI4tSdKnNWuUzBM3Dea+z51OUkLFZdvvb9rN0Ptn8/TiTScgO0mSJEk6NdW6MDlixIhD7x977LGYJPOJv/71r4fen3XWWTEdW5KkaIIg4JvndePVr55D+2aNKrTv3l/K6IcX8O1/LKW0LLYrBSRJkiSpPqp1YfK8884jKSmJMAx54YUXWLRoUUwSWrBgAf/+978BSE5O5pJLLonJuJIkVce5XVvwzvjzuKB7y6jtv8ldxcV/eItNu/cf58wkSZIk6dRS68Jky5Yt+cIXvgBE9oQcP378MR+Es27dOv7rv/4LiMxcGT169KFDdiRJOl4yUhvywlfO4nsX9oja/vqHOxg08XVyV207zplJkiRJ0qmj1oVJgK997Ws0adKEIAjYuHEj119/PStWrKjVWAsWLODGG29k+/btAKSlpXHnnXceS3qSJNVaUmICP7/iNJ4ZM5S0RkkV2guKDnDxH97mV6+uJAzDCu3FxfD88zBtGvz2t5H/Pv985LokSZIk6RgLk61ateJXv/oVQRAQBAFr1qzh2muv5Wc/+xkffvhhtcZYtWoVP/rRj7j11lvZsmVLJKmEBCZMmOCJ3JKkE+5zp7dlwTfPY0D7ZhXayspDvvuvDxj98AJ27SsBID8fxo+HzEy44goYOxa+8Y3If6+4InL97rsjcZIkSZJUn1WcAlJDF154Id/97ne59957CYKA/fv38/jjj/P444/Trl07zjjjDLp27UpqaiqpqamUlpaya9cu1q9fz4IFC1izZg3AEbNNfvjDH3LxxRcfa2qSJMVE91ZNeOOu4dz1dB5T562t0P5M3mYWbXidrnlDeOVvaVWOVVgIEydGXqNGwdSpkFZ1F0mSJEk6JR1zYRLglltuITMzk+9///sUFRUBkULjxo0b2bRpU6X9PilGBkEAQEpKCr/4xS+47LLLYpGWJEkx0zg5kT9/oT/ndGnO13MWs7/0yJO5P9pZzIcZc+CM0+H9zkBw1DFzciIzJ2fOjMyklCRJkqT65JiWch/u4osv5plnnmHUqFEkJdWs3pmYmMhVV13FzJkzLUpKkuq0scM68cZdw+nWMqVCW5BUTnDJYvjMu9CgpFrj5eXByJGwa1esM5UkSZKkui1mhUmAzMxMfv7zn/Pyyy/z3//935x33nk0adKEMAwrvJKSkhgwYADf/OY3eeWVV/jlL39JmzZtYpmOJElxMTAzjQXfPI/PnZ4RtT3ovRFufB3aFFZrvLy8yB6UkiRJklSfxGQp96dlZGRw2223cdtttxGGIYWFhRQWFrJr1y4SEhJIS0ujQ4cOJCYmxuP2kiTFXXrjZO49ZyjPTl4Fw5cRJBx5MnfQvJjwS3Mgtw8s7MrRlnbn5MCKFdCzZxyTliRJkqQ6JC6FycMFQUDz5s1p3rx5vG8lSdJx9cc/BDC/B2xoQfjZdwhS9x/RHiSGcOESwo7b4YX+cKBBleNNmQK/+U08M5YkSZKkuiOmS7klSaovioth2rSPP2xsAY9kE66qZGl3z81w0+vQbmeVY06bFhlXkiRJkuoDC5OSJNVCbi4UFh52YX8DeGYo4at9CMsqLtsO0vbBdW/AkJVAWKEdYOfOyLiSJEmSVB9YmJQkqRY2b452NYB3u8PfziXc1bhia2JIkP0BXD0PGh+IOm5BQWzzlCRJkqS6ysKkJEm1sGdPFY2bm8Oj2YT57aI2B922RJZ2Z26v0FZUFKMEJUmSJKmOszApSVItNG16lIADyfCPwYQv9yMsrfjXbZC6H77wJpyZD8F/lnanpsY4UUmSJEmqoyxMSpJUC23bVicqgEVd4K/DCXc0qdiaAMHw5TD6bUiJnOidEf38HEmSJEk65ViYlCSpFrKzIT29msFb0+Av5xF+kBm1Oei8DW7JpWm/ArKzY5aiJEmSJNVpFiYlSaqFlBQYM6YGHUqS4N8DCV/oT1gSZWl3ykH2XjqP772Yx/6SstglKkmSJEl1lIVJSZJqady4mvYIIK8TPDaCcFv0TSofnPMRZz4wm7xNu485P0mSJEmqyyxMSpJUS1lZMGpULTpubxYpTi7uGLV58aYiht0/m9+98RFhGEaNkSRJkqSTnYVJSZKOwdSp0LdvLTqWJsGLAwj/MZiEkqQKzftLy7nr6TyumjqfrXsOHHuikiRJklTHWJiUJOkYpKXBzJm1LE4C/Rq2581x2Yzo2iJq+z8/KKD/b3J5cfmWY8hSkiRJkuoeC5OSJB2jzEyYM6fmy7pHjYLZs2HYaSnM+uo5/GxkLxITggpxm4sOMPJPc/nWc0s4UOrBOJIkSZJODRYmJUmKgbQ0mDEDli+H8eMhPT16XPPmcPfdkJ8fiU9Li1xPTAj40cVZzL7zXLq2SInad+LrH3L2A3NYtqUoPg8hSZIkScdRxU2tJElSrWVlwX33wYQJkJsLBQVQVASpqZCRAdnZkBK97gjAWZ2bs/Du87jr6TwefWd9hfb3Nu5m8MTXmXhVX24/sxNBUHGGpSRJkiSdDCxMSpIUBykpcPnltevbrFEyD39xIJf2as3XZiym6EDpEe37SsoZ99T7vLBsC3+8tj8tmzSIQcaSJEmSdHy5lFuSpDrqhkEdeO/ubM7u3Dxq+9N5mxlwXy6vrNh6nDOTJEmSpGNnYVKSpDqsa8sUcr92Dv9zSRZRzsVhw679XPKHt/nms3nsK/FgHEmSJEknD5dyS5JUxyUlJvDTy3pxSVYrbnxsIWsL91WIeWD2R7y0fCuPfGkggzukVzpWcXFk78vNm2HPHmjaFNq2Pfrel5IkSZIUaxYmJUk6SQzv2pL3vpXNV2e8zxPvbazQ/sGWPZz9wBz+99IsvndBD5IS/7MwIj8fJk+G6dOhsLDi2OnpMGYMjBsXOcBHkiRJkuLNpdySJJ1E0hsn89cbBjH9+gGkNqz4+8XS8pD/nbmc837/Jiu27mHXLhg9Gnr1gkmTohclIXJ94sRI3OjRsGtXPJ9CkiRJkixMSpJ00gmCgJuHdOT9b2WT3a1l1Ji31+xkwG9ep8/1q8nJCWs0fk4ODB8OGzbEIltJkiRJis7CpCRJJ6nOLVJ4ZdzZ/OqzfWiQWPGv9H2lZWw6fTFcPQ+a7K/R2Hl5MHKkMyclSZIkxY+FSUmSTmIJCQHfOr87C745gv7tm0WNCbptgVteg54V96WsSl4ejB0bgyQlSZIkKQoLk5IknQL6tmvG3G+M4HsX9iAhqNgeNC4h+Nw7cPm70LCk2uPm5MCKFTFMVJIkSZI+ZmFSkqRTRIOkBH5+xWlcU3YuYWFK1Jigzwa4+TXouK3a406ZEqMEJUmSJOkwFiYlSTqFFBfDC9NawCPZhO93ihoTNNtP8IW34Pw8SCo76pjTpkXGlSRJkqRYsjApSdIpJDcXCguBkiR4qT/h08MI9zaIGhsM/ghuyoV2O6scc+fOyLiSJEmSFEsWJiVJOoVs3vypCx9mwMPnE65oGzU+aLEXrp8DI5ZCYuWzJwsKYpejJEmSJIGFSUmSTil79kS5uK8hPDeE8PkBhAeSKjQHCRAMWwU3vQ5to8+eLCqKcaKSJEmS6j0Lk5IknUKaNq2sJYClHSN7T65rGT2i5R744hwY/kGF2ZOpqbHNU5IkSZIsTEqSdAppG33F9n/sToG/n034Sl/CksQKzUECBGeuhBtnQ0bhoesZGbHNU5IkSZIsTEqSdArJzob09KNFBfBeV3g4m3B9i+gRrYrgS3Pg3GWktywjOzvWmUqSJEmq7yxMSpJ0CklJgTFjqhm8qwk8cQ7hrNMJSyr+SBAkhARnrSDpltks21EY0zwlSZIkycKkJEmnmHHjahIdwMJukb0nNzSPGrE9KOLMB+bw4xeWc7C0PCY5SpIkSZKFSUmSTjFZWTBqVA07FTaFJ84lfK1P1NmTZeUh97yUz5kPzOa9Dbtik6gkSZKkes3CpCRJp6CpU6Fv3xp2CgN4pzs8mk24MfrsyUUbdzPs/tn89EVnT0qSJEk6NhYmJUk6BaWlwcyZtShOAuxsSt+8c/nhiD40TKr4o0JpechPX8xn6P2vM39t4THnKkmSJKl+sjApSdIpKjMT5syp+bLuUaNgzuyAe67qzrvjz+PMTulR4xZvKuLs387m2/9YSvHB0mNPWJIkSVK9YmFSkqRTWFoazJgBy5fD+PGQnh49rnlzuPtuyM+PxKelRa6flpHK7DvP5d7PnEaDxIo/NpSH8JvcVfT/TS6vrdwWvweRJEmSdMpJOtEJSJKk+MvKgvvugwkTIDcXCgqgqAhSUyEjA7KzISUlet+kxAS+c0EPPntaBmOfeI956worxKzaXsyFU97i9rM68X+f6UNa4+T4PpAkSZKkk56FSUmS6pGUFLj88tr17dM2lTfuGs79sz/kf2YuY19JxcNv/vT2Wv61dAuTR/fjytPbHmO2kiRJkk5lFiYlSVK1JSYE3J3dnatOb8tXnlzEq6u2V4jZuHs/V02bzxcHZjLpqtNp3bRhlWMWF0dmcW7eDHv2QNOm0LZt1bM4JUmSJJ38LExKkqQa696qCS+PO5uH5q3lv/+xlN37Kx5+8/jCDby4fAuTPt+XLw3MJAiCI9rz82HyZJg+HQoLK94jPR3GjIFx4yJL0SVJkiSdWjz8RpIk1UoQBNx2ZmeWfPt8Pnd6RtSY7cUl3PTXhXxu6jzWFe4DYNcuGD0aevWCSZOiFyUhcn3ixEjc6NGRfpIkSZJOHRYmJUnSMclMa8zTtw7l8RsH0bpJg6gx//pgC31/9Rr3/ns15w4Pycmp2T1ycmD4cNiwIQYJS5IkSaoTLExKkqRjFgQB1w3IZMl3zufGQZlRY4oOlPKDWYtZcvqb0KKoxvfIy4ORI505KUmSJJ0qLExKkqSYadWkIY98aRD//PIwOqQ1ihoTdNgBN70OZy+HxLIajZ+XB2PHxiJTSZIkSSeahUlJkhRzV5yWQd63z+er53SJ2h4klROckw8350KHbTUaOycHVqyIQZKSJEmSTigLk5IkKS6aNUrmd6P68dpXzyE9bBI1Jmixl+C6t+Cy96DRwWqPPWVKjJKUJEmSdMJYmJQkSXE1pF1Lyh/OJpzbg7AsiBoT9F0HY16F09YD4VHHnDYNiotjnKgkSZKk48rCpCRJiqvcXNi1PRHmnAZ/OY9wY/OocUHKQYIrFsLotyFtb5Vj7twZGVeSJEnSycvCpCRJiqvNmw/7sK0ZPH4u4cv9CA8kRY0PumyDW16DYSsgobzScQsKYpunJEmSpOPLwqQkSYqrPXs+fSWARV1g2gWEy9tF7RMklxOMWAY3vg7tdkSNKSqKaZqSJEmSjjMLk5IkKa6aNq2kYW8j+OcQwqeHEe5uFDUkaF0EX3wDLnofGpYc0ZaaGuNEJUmSJB1XFiYlSVJctW17lIAPM2D6BYQLuhFGWbkdBBAMWAO3vgpZG/nkcJyMjJinKkmSJOk4sjApSZLiKjsb0tOPElSSBLmnw2MjCAvSooYETQ8QXPkOjJpLs057yc6OeaqSJEmSjiMLk5IkKa5SUmDMmGoGb0mHx4YTvtqH8GBi1JCg61aKr3mN/5u9nP0lZTHLU5IkSdLxZWFSkiTF3bhxNQgOE+Dd7jD9fMJV0ddrlwXl/OylfPr9+jVmLtsSmyQlSZIkHVcWJiVJUtxlZcGoUTXsVJQCzwwlfG4wYVH0w3FWbS/mij/P5QuPLGB94b5jT1SSJEnScWNhUpIkHRdTp0LfvjXtFcCK9pHZkwu6QXkQNeqp9zdx2v+9ym9eW0VJWZQTdCRJkiTVORYmJUnScZGWBjNn1qY4CRxMpt+O03nh5hGc3bl51JC9B8v49j+XMmTS68z5aPuxJStJkiQp7ixMSpKk4yYzE+bMqfmy7lGjYPZsuGRAGrPvPJc/f6E/LVOSo8Yu3lTEeb97k7FPvMfWPQdikLUkSZKkeLAwKUmSjqu0NJgxA5Yvh/HjIT09elzz5nD33ZCfH4lPS4tcT0gIGDusE8u+eyG3ndmp0vtMn7+O3r98lT++vYby8jD2DyJJkiTpmCSd6AQkSVL9lJUF990HEyZAbi4UFEBREaSmQkYGZGdDSkrl/Vs2acAfr+3PmKEd+VrOYhZt3F0hZue+EsY99T7T5q3ld6P6MahDerVyKy6GWbMC5s9vSXFxAikp5WzaFHDhhVXnJEmSJKn6LExKkqQTKiUFLr+89v3P7tKC+f81gt+9uZr/nbmcogOlFWLmri1k6P2z+cpZnZkwsjctmzSIOlZ+PkyeDNOnQ2FhItDliPb0dBgzBsaNixRWJUmSJNWeS7klSdJJLykxgf8a0Y0PvnMB1w9oHzUmDOEPb62h1y9nMeXN1ZQdtrx71y4YPRp69YJJk6CwMPp9Cgth4sRI3OjRkX6SJEmSasfCpCRJOmW0T2vEX28czItfOYus1k2ixuwoLuFrOYsZdv/rvLl6Bxs2wPDhkJNTs3vl5ET6bdgQg8QlSZKkesjCpCRJOuVcnNWaRd/K5mcje9EoKfqPOws37Gb4g2/Q978Xkvfh/lrdJy8PRo505qQkSZJUGxYmJUnSKalhUiI/ujiLpd+5gFH92lYatytzPYx9FQavgoTyGt8nLw/Gjj2WTCVJkqT6ycKkJEk6pXVpkcJTtwzlha+cRe82TaPGBA1LCc5fCjfnQqetNb5HTg6sWHGMiUqSJEn1jIVJSZJUL1yS1Zr37s7mV5/tQ9OGiVFjgpZ7CK59Gz67AFKLazT+lCmxyFKSJEmqPyxMSpKkeqNBUgLfOr87733jQpJXZlYaF/TaBGNehTPzIbGsWmNPmwbFNatlSpIkSfWahUlJklTvLH+3EQefHUT4t3MItzSLGhMklxMMXw63vgbdNwNhlWPu3Am5ubHPVZIkSTpVWZiUJEn1zubNH7/Z0BL+ch7hy/0I9yVHjQ3Siwk+Px+ueRta7q5y3IKCGCcqSZIkncIsTEqSpHpnz57DPoQBLOoC0y4gXNSJsJKJkUHnbXDz63DhYmh0MGpMUVHMU5UkSZJOWRYmJUlSvdM02uHc+xrCy/3hsRGEG9Oj9gsSQoKBq2HsLBj4ESSUH9GemhrzVCVJkqRTloVJSZJU77RtW0VjQTo8Ppxw5gDCvQ2jhgSNSwguzIObc6HzlkPXMzJim6ckSZJ0Kks60QlIkiQdb9nZkJ4OhYWVRQSwpCOsaEt45koY9CFBUnnFqJZ74Jq5hKsyaLawD9nZ0aZiSpIkSYrGGZOSJKneSUmBMWOqEXgwGWafBtPPJ1xR+TTLoHsBe0e/xv++soRd+0pilqckSZJ0KrMwKUmS6qVx42oQvKsJPDeU8O9nE26NvpFkeRByX+6HZN07iz++vYay8kpO0ZEkSZIEWJiUJEn1VFYWjBpVw07rWsGj5xG+3I9wX3LUkK17DzLuqfcZMul1cldtO/ZEJUmSpFOUhUlJklRvTZ0KffvWsFOYAIu6wEMXEr7TFcqDqGGLNu7mgslvcc3D81m5be8x5ypJkiSdaixMSpKkeistDWbOrEVxEuBAA/pt78urY7K5vHebSsNyFm/m9F+9yvhn89hRfLD2yUqSJEmnGAuTkiSpXsvMhDlzar6se9QomD0bsvul8q/bzuSfXx5Gr9ZNosaWlIXcP/sjev5iFpNe/5CDpRVP+JYkSZLqGwuTkiSp3ktLgxkzYPlyGD8e0tOjxzVvDnffDfn5kfi0tP+0XXFaBu//9/nc97nTSWuUFLX/zn0l3P3cEvr++jVyFm8iDD0gR5IkSfVX9J+aJUmS6qGsLLjvPpgwAWbNKmPBgnXs3ZtAkyblDBnSkQsvTCQlpfL+yYkJfPO8btw4OJOfvpjPlLein869ctternl4ASO6tuDXV57O0E7pR82tuBhyc2HzZtizB5o2hbZtITubKnOSJEmS6ioLk5IkSZ+SkgIjR4a0a7f90LX+/TuQVM2fnFo1achvr+7Hned24bv//IB/LC2IGjf7ox2c+cBsbhiUyf+7vDedmlesMObnw+TJMH06FBZWHCM9HcaMgXHjIoVVSZIk6WThUm5JkqQ46d0mlWfHDuPlO85mQPtmlcY99u4Gev/yVX74/AcU7S8FYNcuGD0aevWCSZOiFyUhcn3ixEjc6NGRfpIkSdLJwMKkJElSnF3YsxXzv3keU68bQPtmjaLG7C8t5xevrKTnva/wy+dXc+6IcnJyanafnBwYPhw2bIhB0pIkSVKcWZiUJEk6DhITAm4d2pHl372An1zai5TkxKhxW/Yc5PuvLGbJoNehawFQswNy8vJg5EhnTkqSJKnuszApSZJ0HDVpmMT/XppF/vcuZMywjgRB9LigVRHBqHlw7VuQUVije+Tlwdixx56rJEmSFE8WJiVJkk6A9mmNeOgLA3jnm+dxUc9WlcYFnbYT3DgbPvMOpO2t9vg5ObBiRSwylSRJkuLDwqQkSdIJNCAzjRe/chb/GDuM5mHTSuOC3hthzKtwQR40PlCtsadMiVWWkiRJUuxZmJQkSTrBgiDggi4ZlE3LJny5H+HeBtHjEkOCQR/Bl2fBsBWQVFrluNOmQXFxPDKWJEmSjp2FSUmSpDogNxd27UyARV3goYsI38oiLIl+QE7QsJRgxDIY+yr0XQtBedS4nTsj40qSJEl1kYVJSZKkOmDz5sM+lCTBm73goQsJF3UmLI9+Qk6Qup/gskVwcy50i36Cd0FBfPKVJEmSjpWFSUmSpDpgz54oF/c2gpfPgIezCVe0rbRv0GoPwdXz4AtvQtudR7QVFcU4UUmSJClGLExKkiTVAU0rP/cGdqTCc0MJHz+XcGPzSsOCjjsIbpgDn10AzSOVztTUGCcqSZIkxUjSiU5AkiRJ0LbyCZH/sbEFPH4uYY/NMOIDghZ7o4YFvTYR9twMizuSmJYFNI5prpIkSVIsOGNSkiSpDsjOhvT06kQGsLIdPHw+4Uv9CPc2jB6VEBL0X8sdc2fxnX8uZUfxwRhmK0mSJB07C5OSJEl1QEoKjBlTgw7lCfB+l8gBOW9mER6MfoL3/tJyfv3aKrr//BV+/soK9h4ojUm+kiRJ0rGyMClJklRHjBtXi04lSfDWxyd4v9eZsCz6Cd679pfyo+eX0ePeWfz+jdUcLC0/tmQlSZKkY2RhUpIkqY7IyoJRo2rZubgRvHIGTL+A8IPMSsMKig7w9acX0+dXr/LXd9dTXh7W8oaSJEnSsbEwKUmSVIdMnQp9+x7DAIVN6Lt2EK/ffh5X9G5TadiH24u58a8LGTTxdf61tIAwtEApSZKk48tTuSVJkuqQtDSYORNGjoS8vJr379cPnn8eMjPT+GevM3l91XZ+8PwHvLl6Z9T49zft5sqp8xjetQU/v6I3w7u2rPa9ioshNxc2b4Y9e6Bp08jp4tnZkT0zJUmSpKpYmJQkSapjMjNhzhwYOxZycqrfb9SoyIzLtLT/XDuve0tm33ku/1xawA+fX0be5qKofed8tIPzfvcmnzmtDfeM7M2AzLSocQD5+TB5MkyfDoWFFdvT0yMH+YwbF1meLkmSJEXjUm5JkqQ6KC0NZsyA5cth/PhIsS+a5s3h7rsjxcIZM44sSn4iCAKuPL0tC+/O5uEvDqBL88aV3vdfH2xh0MTXue6RBXxQcGQRc9cuGD0aevWCSZOiFyUhcn3ixEjc6NGRfpIkSdKnOWNSkiSpDsvKgvvugwkTIsumCwqgqAhSUyEjo2bLphMTAm4a3JEv9G/Pn95ey4SX89my52DU2Cff38SMxZu4YVAHfnxpFg33N6nV8vKcnEjRdObMyExQSZIk6RMWJiVJkk4CKSlw+eWxGathUiJfH96VW4d2ZNLsD/n1a6vYvb+0Qlx5CI++s57HF26g6ZqO7FydBVQ+27IyeXmRPTPnzIk+o1OSJEn1k0u5JUmS6qmmDZP40cVZrPz+hXwruzuNkqL/aFhaHlLYcS18eRacnwcpB2p8r7y8yJ6ZkiRJ0icsTEqSJNVzrZo05FdX9mHl9y/ia+d0ITkxiBoXJJUTDP4IbnsFhn8AjaIvA69MTg6sWBGLjCVJknQqsDApSZIkANqnNeLBUf1Y/t0LGTOsI4kJlRQok8sIzlwZKVCelQ8NSqp9jylTYpWtJEmSTnYWJiVJknSELi1SeOgLA1jw9fNJXpVJGEaPCxqWEpy7PFKgHLoSkiruU/lp06ZBcXGME5YkSdJJycKkJEmSotq4pCkHnxkEj2QTrmhbaVzQuITgvA/gtlkwaBUklVUau3Nn5HRxSZIkyVO5JUmSFNXmzR+/2dYMnhtKmFEI5y4j6Lo1anzQ5ABcsJRw6CqY1wPe7wxliRXiCgril7MkSZJOHs6YlCRJUlR79nzqQkE65JxF+LdzCNe1qLRf0PQAwYVLIqd4D/gIEo+cQVlUFPtcJUmSdPKxMClJkqSomjatpGFDS/j7OYRPnUW4Kb3S/kHqfoKL8iIFyv6rDxUoU1NjnqokSZJOQi7lliRJUlRtK99WEghgTWtY04qwWwGcs5wgY3f0yNT9cPFiwmErYG5PWrTuhL8flyRJkoVJSZIkRZWdDenpUFhYVVQAH7aFDzMIe2yGs/MJ2lRSoGy2Hy5ZzDcWrqSgZU9uHdqR5EQLlJIkSfWVPwlKkiQpqpQUGDOmutEBrGwHj55H+OwQwq2Vr9deW7iPO556n173zuKhuWspKSuPSb6SJEk6uViYlCRJUqXGjatpj48LlI9kEz43mHBb5QXK1Tv3cfuTizjt/15l2jwLlJIkSfWNhUlJkiRVKisLRo2qTc8AVrSHh7MJ/zGYcFtlJ+nAh9uL+fLfF9Hr3ln86e01HCy1QClJklQfuMekJEmSqjR1KuTnQ15ebXoHkN+e0xu0Y/yUjfx6znKWb90bNXL1zsgS7wkv5/O9C3sydlhHGiYl1uhuxcWQmwubN8OePZGTxdu2jeyXmZJSm/wlSZIULxYmJUmSVKW0NJg5E0aOrF1xsl8/eP75gMzMTG49uz1/e28D97yUT34lBcp1hfu5M2cxP39lBd+9oAe3ndmJRslVFyjz82HyZJg+PfphPenpkf0yx42LzAKVJEnSiedSbkmSJB1VZibMmVPzZd2jRsHs2ZH+AIkJATcM6kDef5/Pw18cQI9WTSrtu2HXfr7xTB7df/EKk17/kOKDpRVidu2C0aOhVy+YNKnyE8QLC2HixEjc6NGRfpIkSTqxLExKkiSpWtLSYMYMWL4cxo+PzEKMpnlzuPvuyCzGGTMi/T4tKTGBmwZ3ZOm3z+fRLw2kd5vK96DctPsAdz+3hG4/f4Vfv7aKPQciBcoNG2D4cMjJqdlz5ORE+m3YULN+kiRJii2XckuSJKlGsrLgvvtgwoTIfo4FBVBUBKmpkJFRs/0ckxITuGFQB64fkMlT729kwksrWFJQFDV2y56DfOefS/m/V1fytWHdeOIHXVmWV7sfZ/PyIkvT58yJXjiVJElS/FmYlCRJUq2kpMDll8dmrMSEgOsGZHLtGe15Om8T97y0gvc37Y4au23vQX726jLC4augcTdY2BUOJtf4nnl5MHZsZFanJEmSjj+XckuSJKnOSEgIGH1Ge94dfx5P3zqUQZmVT2cMGpcQDF8OX3kZzv0AGh+o8f1ycmDFimPJWJIkSbVlYVKSJEl1TkJCwFV92zL/myP4x9hhDO2YXmls0LCU4KyVcPsrcH4eNN1Xo3tNmXKMyUqSJKlWLExKkiSpzgqCgM/0yeDtbwzn+dvP5MyOzSuPTS4jGPwRfHkWXPw+NCuu1j2mTYPi6oVKkiQphixMSpIkqc4LgoDLerXhf3qeS/jkWYTrW1Qem1RO0H9NpEA5ciG0iH6Yzid27owc4iNJkqTjy8NvJEmSdNIoKAhgbWtY25owczuclU/QZVvU2CAhhNPXE/ZZDyvawdyesCX6npUFBfHMWpIkSdFYmJQkSdJJY8+ewz5saAkzzibMKIwUKHtEry4GAZC1CbI2EX7YJlKg3HjkjMuiqidVSpIkKQ4sTEqSJOmk0bRplIsF6fDsMMJWu2HYSui1gaCSDYuCblug2xbCdS0jBco1rYCA1NQ4Ji1JkqSoLExKkiTppNG2bRWN25rBvwfBm1mEw1ZBn3UEiWHU0KDjdui4nXBzGszrQas27YAgLjlLkiQpOg+/kSRJ0kkjOxvS048SVNgUXuwPD11E+G5XwpLKf+QN2u4i+Nw73L3oVf709hoOlJbFNF9JkiRVzsKkJEmSThopKTBmTDWDixrDq33hzxcTzutOeDCx0tCV2/dyx1Pv0/X/vcL/vbqS3ftLYpOwJEmSKmVhUpIkSSeVceNq2KG4IczuA3+6mPDNLMJ9yZWGbi46wPf+9QGdJ7zM9//9AZt37z+2ZCVJklQpC5OSJEk6qWRlwahRtei4vwG81StSoHytD2FRo0pDd+0v5ZezVtL1568w7qn3Wbltb+0TliRJUlQefiNJkqSTztSpkJ8PeXm16FySBO90p8/Brtz52/X89u2VLN8avfB4oLScP769hj/PXcO1/dvznQt6MDAzrca3LC6GWbMC5s9vSXFxAikp5WzaFHDhhZHl6ZIkSfWRhUlJkiSddNLSYOZMGDmydsXJfv3g+ecTyMzsxLgRHXl2yWZ+OWsl89YVRo0vD+GJ9zbyxHsbuTSrNd+5oAcX9GhJEFR9knd+PkyeDNOnQ2FhItDliPb09MiemePGRWaCSpIk1Scu5ZYkSdJJKTMT5syp+bLuUaNg9uxIf4CEhICr+7XjrW8MZ9a4sxnZq3WV/V/M38rFf3iLsx6YQ87iTZSVhxVidu2C0aOhVy+YNAkKC6OPVVgIEydG4kaPjvSTJEmqLyxMSpIk6aSVlgYzZsDy5TB+fGQGYjTNm8Pdd0dmMM6YEen3aUEQcH6PVvz79rN4d/x5fHFgJglVTIicv66Qax5ewOm/epWH5q7lQGkZABs2wPDhkJNTs2fJyYn027ChZv0kSZJOVi7lliRJ0kkvKwvuuw8mTIDcXCgogKIiSE2FjAzIzq7ZXo4DMtN47IZB3DOyF7/J/ZBp89ayv7Q8amz+1r3c/uQifvzCcu4Y2o2/fq8Ty/IqP/m7Knl5keXpc+ZEL55KkiSdSixMSpIk6ZSRkgKXXx678bq1bMLvRvXjx5dk8cCcj/j9m6sp3FcSNXbj7v38+JWlhCPyoVkXWNgV9lZ+8ndl8vJg7NjIzE5JkqRTmUu5JUmSpKNok9qQCZf3ZvUPL+L/PtuH9s0qLzgGjUoJzlwJt78Ml70HLXfX+H45ObBixTEkLEmSdBKwMClJkiRVU7NGyfz3+d1Z9YML+dO1/clq3aTS2CAxJOi7juDWXBj1NnTaClQ8KKcyU6bEIGFJkqQ6zMKkJEmSVEMNkxL58pmdWPLtC3jqliEMzkyvMj7oupXg2rfhptfhtHWQEH2/ysNNmwbFxTFKWJIkqQ6yMClJkiTVUmJCwKh+7fhpr+GEfz+b8KPWVcYHbXYTXPEe3PYKDF0JDaPvVwmwc2fkIB9JkqRTlYffSJIkSceooCCAda1gXSvClrthyIdw2nqCxOhLt4PU/XDeB4Rn5cPiTvBuN9hd8djwgoJ4Zy5JknTiWJiUJEmSjtGePYd92N4MXhgAc3oTDvgI+q8haBx9ZmTQoAwGf0Q4cDXkt4MF3aEg/VB7UVE8s5YkSTqxLExKkiRJx6hp0ygX9zaCN06DeT0J+66DQR8SpEffNDJICKH3Rui9kXBdS1jQDT7MIDU1iG/ikiRJJ5CFSUmSJOkYtW1bRWNJEizsCu91IeyxCYasImhfWGl40HE7dNxOuKMJC0u7c31JBxolJ8Y8Z0mSpBPNw28kSZKkY5SdDenpRwkKA1jRHh4fTvj4uYQr2hJG34ISgKDFXn677H06T3iZn72Yz7a9B2KZsiRJ0glnYVKSJEk6RikpMGZMdaMD2NgCnhsKUy8gfK8zYUnlP5Zv3XuQn7y4nE73vMy4p97ngwI3npQkSacGl3JLkiRJMTBuHEycWMNOhU3hlTPgzV6E/dfAgI8ImhyMGrq/tJw/vr2GP769hst6tea/RnTj0qzWJCTUbh/K4mLIzYXNmyOH9zRtGlmSnp0dKbRKkiTFm4VJSZIkKQaysmDUKMjJqUXnfQ3h7SyY352wz3pSz/+QPQ32VBr+wvKtvLB8K73bNOUbw7ty0+AONGlYvR/t8/Nh8mSYPh0KCyu2p6dHZn+OGxd5JkmSpHhxKXcdt2fPHv7whz9wzTXXMHjwYPr27Ut2djZ33303ixYtOtHpSZIk6TBTp0LfvscwQFkifcPOrPnZ+fxj7DDO796yyvBlW/bwtZzFdJrwMt/71wesK9xXaeyuXTB6NPTqBZMmRS9KQuT6xImRuNGjI/0kSZLiwcJkHbZmzRquuuoq7rvvPhYvXszBgwdJTk5m8+bN/Otf/+L6669n6tSpJzpNSZIkfSwtDWbOrH1xsl+/SP/m6QGf6ZPBrK+ew/xvjuCLAzNJqmLJ9s59Jfzfqyvp9vNXuP7Rd3hr9Q7Cw07W2bABhg+v+WzOnJxIvw0bavc8kiRJVbEwWUeVlpbyta99jfXr15ORkcEf//hH3nvvPd59911mzpzJBRdcQHl5Ob/85S957bXXTnS6kiRJ+lhmJsyZE1nWXROjRsHs2ZH+hxvcIZ3HbhjERz+8iO9f1IMWKcmVjlFWHvL3RRs598E3OPuBOTy+cANbt5dz2WWQl1eLhyHSb+RIZ05KkqTYszBZR7344ousXLmSIAi4//77yc7OJjExkSAI6Nq1K7/73e8YOHAgAA8++OAJzlaSJEmHS0uDGTNg+XIYPz6yb2M0zZvD3XdH9n2cMSPSrzKZaY35f5efxtofXcwfrjmDPhlNq8xh3rpCbnjsXTrf8wpLmqyARtEP1amOvDwYO7bW3SVJkqLy8Js6Kjc3F4BBgwYdKkAeLjExkWuuuYaFCxeSl5fHvn37aNy48fFOU5IkSVXIyoL77oMJE2DWrDIWLFjH3r0JNGlSzpAhHbnwwsQan4Cd0iCJ28/qzG1nduLlFdu4//UP+feyLZXG70/aTzBiGeFZ+bC0AyzsBttTa/wsOTmwYgX07FnjrpIkSVFZmKyj+vTpw759++hbxQZFrVu3BiAMQ/bs2WNhUpIkqY5KSYGRI0Patdt+6Fr//h1IOoafxoMg4JKs1lyS1ZrlW/bwwJyPeHj+OopLyqLHJ5dD/7XQfy3h6lbwbjf4qA1Q+d6VnzZlCvzmN7XPWZIk6XAWJuuoW265hVtuuaXKmHfeeQeAhg0b0rx58+ORliRJkuqgXm2a8rtR/Zgwshd/nruW372xmrVVnNAddNkGXbYR7mgSKVAu7QAlR/+nwbRpcM891HiWpyRJUjTuMXmS2rFjB0888QQAI0aMIOlYft0uSZKkU0LzlAZ8+4IerPz+hXy/72DCDVX/8jposZfg4sXwlZcgewmk7a0yfudO+HjHIUmSpGNmNeskVFpayre//W0KCwtJSEjgq1/96olOSZIkSXVIUmICPcL28Lf2hBmFMOhD6LWRIDGMGh80KoUhHxIO/hA+bAPvdYXVrYm2zLugIL65S5Kk+sPC5EmmrKyM7373u8yZMweAO++8s8p9KCVJklQ/7dnz8ZuCdHh+ELzeh3DAaui/mqBxSdQ+QQB03wLdt0SWeb/XBZZ0hIPJh2KKiuKcuCRJqjcsTJ5EDhw4wN13383LL78MwOc+9znuvPPOE5yVJEmS6qKmTT91YW8jeKM3zO1JeNp6GPgRQevKq4xBi71w4RLC4csie1C+1xW2p5Ja8wO9JUmSorIweZLYsWMHX/va11i4cCEAV111Fb/4xS8IguqfoihJkqT6o23bShpKE2FxZ1jcibDTNhj4EXQvoLIfK4MGZTBgDQxYQ7i2JauCrpSWZZCU6Hb1kiTp2FiYPAmsXr2a22+/nbVr1wJw880384Mf/MCipCRJkiqVnQ3p6VBYWFlEAGtbR17NiiPLvPuurXSZN0DQaTv/b/F2Hv1FY8ad05nbzuxEqyYNY5+8JEmqF/w1Zx2Xl5fH9ddfz9q1awmCgO985zv88Ic/tCgpSZKkKqWkwJgx1QzenQKv94E/Xkz4Qn/CLc2qDF9buI8f/HsZHe95mTF/W8g76wuPOV9JklT/OGOyDluxYgVf/vKXKSwsJDk5mXvvvZfPfvazJzotSZIknSTGjYOJE2vQoTQJ8jpBXkfCzB0wYDX03FTpad4HSst5eMF6Hl6wnrM6N+fr53bhmjPa0yCpdvMfioshNxc2b44c3tO0aWRJenZ2pNAqSZJOLRYm66ji4mK+/vWvU1hYSIMGDfjd737Heeedd6LTkiRJ0kkkKwtGjYKcnJr2DGBDy8iryX7C/mtoNHQNB5IOVNrj7TU7eXvNTr71j6XcfmYnxp3dhfZpjap1t/x8mDwZpk+PvvQ8PT0y+3PcuMgzSZKkU4NLueuoKVOmsHr1agB+8IMfWJSUJElSrUydCn37HsMAexvRd3cv1v7vxfzlSwM5q3PzKsMLig4w4eUVdPl/L3P9o++Qu2obYRh9xuWuXTB6NPTqBZMmVb4fZmFhZOZnr16R+F27juF5JElSneGMyTro4MGD/PWvfz30+cEHH+TBBx+sss9TTz1Fu3bt4p2aJEmSTjJpaTBzJowcCXl5Ne/frx88/zy0bpHAl1p04EuDOrBgXSG/f2M1j7+3gQOl5VH7lZaH/H3RRv6+aCN9Mpoy7uwu3DS4A2mNkwHYsKF2OeXkRGZYzpwJmZk1fx5JklR3OGOyDsrPz6eoqOjQ523bth31VVZWdgIzliRJUl2WmQlz5kSWddfEqFEwe3bFAuCQjulMvX4Aa390MT+/ojcd06tesr20YA/feCaPDve8xFeeXMTry3Zx2WW1K5RCpN/Ikc6clCTpZOeMyUrcf//9/P73vyczM5NZs2bVqO+qVav429/+xty5c1m/fj2lpaW0adOGrKwsrrzySi655BKSkir/n75v374sX778WB9BkiRJOiQtDWbMiMw2nDIFpk2LvnS6efP/7OfYs2fVY7Zu2pDvXdiT/87uzj+WFvDgnI94ddX2SuP3Hizjz3PX8ue5awnPaA5hZ1jeHsoSa/w8eXkwdmzkmSRJ0snJwmQU77//Pn/6059q1fe3v/0tU6ZMobS09Ijr69atY926dbzyyiv07duXX/3qV3Tr1i0W6UqSJEnVlpUF990HEyZETsAuKICiIkhNhYyM2p2AnZSYwNX92nF1v3Ys2VzE7974iEffWc/eg5Wv6gna74T2OwnPXwJLOsKiLlDYpEb3zcmBFSuOXkCVJEl1k4XJT1m3bh1f+9rXKCkpqXHfCRMm8Oijjx76nJSURK9evWjcuDGrVq1i586dAOTl5XHTTTfx97//nUw3xpEkSdIJkJICl18e+3FPb5vK70efwS+uOI2/vLueKW+uYUlBUaXxQeMSGPIhDPmQcHWrSIFyVQaE1dt1asoU+M1vYpS8JEk6rtxj8jD5+fnccMMNbN26tcZ9Z86ceURR8rLLLiM3N5ecnBwee+wxZs+ezc9+9jMaN24MRPaNvOuuuyo9oVCSJEk6maU1TubOc7vy/n9nk/u1c/jiwEySE4Mq+wRdthFctQBufwXOyocm+496n2nToLg4VllLkqTjyRmTH3v22Wf58Y9/zL59+2rct6SkhF/+8peHPl9wwQVMmjSJhIT/1H2Tk5O57rrryMzM5I477qC0tJQlS5bwz3/+kyuvvDImz3C8eeCOjtWnv0N+p3Qs/D4p1vxOKdbq83fq7E5pnN3pDEY27s3Nv9wAZ6whSKv85+4gdT+cu5zw7HxY2RYWdYa1rYCKhc2dO2HWrDJGjqxfv/Cvz98nxYffKcWS3ydVVxDW8yl7BQUF3HfffTzzzDNR26tz+M2///1vxo8fD0SWb7/00ku0b9++0vif/exnPPbYYwCcfvrp5OTk1C7542zhwoWUl5ef6DQkSZJ0knruuZb87GddIAihyxbovxq6bSGoeiIlAOGOJpFl3ks6wIEGR7T9+MerufLKyg/dkSRJ8ZeQkMDAgQNr1idOuZwUJk+ezMiRI48oSnbr1o1x48bVaJx///vfh96fc845VRYlAa677rpD75csWcK6detqdD9JkiTpZFRc/PE/P8IAPsqAZ86EP19EOLcHYXGDKvsGLfYSXLAE7ngJLnsP2u4EInMs9u6t1/+skSTppFWv/wZ/6KGHKD5sQ5prr72WJ598ks6dO1d7jDAMmTt37qHP55577lH79OrVi9atWx/6fLQZmZIkSdKpICUlyuqb3Skw5zT448WE/xpEuL5FlWMEyeUEfdcR3DAHbnod+q8mMaXmB1dKkqQTzz0mgb59+/Ld736XYcOG1bjvhg0b2L179xFjVUevXr0OHbKzePHiGt+3Lujbty+JiYknOg2dxMrKysjLyzv02e+UjoXfJ8Wa3ynFmt8p2LSpijXbZYmwLBOWZRK23A3910Cf9QQNSyvtErTZDRcv5v59iWxZ0Y7bhnVkaMc0guqsDT/J+X1SrPmdUiz5fao/Fi9efEzb/tXrwuSwYcMYNWoUF110Ua1/eFm9evURnzt16lStfh06dDj0fu3atbW694mWmJhIUlK9/gopxvxOKZb8PinW/E4p1urjd+rCCyE9HQoLjxK4vRnM6gezTyPsvQEGrI4UIStxoLyM6QvWM33Bes5o14zbz+rEDYM6kN44OZbp12n18fuk+PI7pVjy+6TK1Otvxe9///tjHuOTWY8Q2eSzVatW1ep3+FLuw8eQJEmSTlUpKTBmDEycWM0OJUmwuDMs7kTYrjByWE6vjQRJlc/MeH/Tbu56Oo/v/HMp1/XP5PazOnFW5+a1nohQXAy5ubB5M+zZA02bQtu2kJ0deR5JklR79bowGQu7du069L5JkyYkJFRv286mTZtGHUOSJEk6lY0bV4PC5CEBbGoeeb12OmGf9XDGGoKWeyrtsa+knOkL1jF9wTr6tk3l9rM6c+OgTJqnVH3Izify82HyZJg+PfoMz/T0SJF13DjIyqrp80iSJKjnh9/EwoEDBw69b9SoUbX7NWjwnx+IDh48GNOcJEmSpLoqKwtGjTqGAfY3gHe7wfTzGbHxHG4a3IGGSVX/syZvcxH/9UwemT97iTF/W8ibq3cQhmHU2F27YPRo6NULJk2qfNl5YWGkwNqrVyTeuQaSJNWchcljVFLynxMAqztbEjhib4XS0so39JYkSZJONVOnQjXPjKxU374Bz01uycNfHMiG/72ESVedTp+MplX22V9azsML1jP8wTc449e5PDD7Q3YW/2eSwIYNMHw45OTULJecnEi/DRtq8ySSJNVfFiaP0eGnStXkFKLDi5HJyfVnU25JkiQpLQ1mzqx9cbJfv0j/tLTI5xYpDfjGiG4s/u/zmX3nudw8uAONjjKLcklBEd98dgmZP3uJWx5fyMz3t3PpZSGHHSJbI3l5MHKkMyclSaoJC5PHqHHjxofeH76s+2gOX77dsGHDmOYkSZIk1XWZmTBnTs2XdY8aBbNnR/p/WhAEnNu1BdM/nkV5/+f70rdtapXj7S8t59F31nPFI2+ydOhrMGgVNK7+z/WHy8uDsWNr1VWSpHrJwuQxSvvk17TA3r17K92r5tP27PnPRt3p6emxTkuSJEmq89LSYMYMWL4cxo+PHCgTTfPmcPfdkQNpZsz4z0zJqjRPacBdw7uy6FvZvPH1c7l1SEcaJ1f9z5+g5R6CC5bCHS/BZxdA5y0QVO/n+0/k5MCKFTXqIklSveWp3McoIyPj0PuysjJ27txJixYtjtpv69ath963atUqLrlJkiRJJ4OsLLjvPpgwAXJzoaAAioogNRUyMiA7G1JSajd2EASc3aUFZ3dpwX1Xnc5f3lnPn+auYfGmosr7JIbQaxP02kS4uxHkdYK8jlBUvSSmTIHf/KZ2+UqSVJ9YmDxGnTt3PuLzunXrqlWYXL9+/aH3Xbt2jXlekiRJ0skmJQUuvzx+46c3Tubrw7ty57ldmLu2kD++vYYn3tvAvpLK94oPmu2Hc/IJz86HNa0iRcqVbaEssdI+06bBPffUvpgqSVJ94VLuY5SZmXnEUuwPPvigWv2WLVt26H3v3r1jnZYkSZKkSgRBwFmdmzP1ugE8fM6lhC/3I9zS7Ch9IOiyjeCz70aWel+QB612R43duTMy81OSJFXNwmQMnHnmmYfev/nmm0eNX7ZsGdu2bTv0+ayzzopLXpIkSZKqVrQtGRZ1gUfPI/zLCML3OhMeqHphWdC4hGDQRwS35MKXZsMZq6FByRExBQXxy1mSpFOFhckYuPTSSw+9f/XVVyk4yk8hjz/++KH33bt3p1evXnHLTZIkSVLl/nMmZQAF6fDKGTDlEsLnBxCuO/oWTUG7QoJLFsO4F+GyhZC5HQgpqnwLS0mS9DELkzFw6aWX0qZNGwAOHjzI9773PUpLS6PGzp49myeffPLQ55tuuum45ChJkiSpoqZNo1wsTYKlHeHv5xI+dAHh3B6EexpWOU6QXE7Qdz3B9W/CmFeZvX8lm3fvj0/SkiSdIixMxkCDBg24++67D31+8803uf3221m3bt2ha6Wlpfz973/nrrvuoqysDICsrCyuvfba456vJEmSpIi2bY8SUNgU5pwGf7yY8JmhhCszCMuDKrsELfbyVMEHdJzwMp+fNo/nlmymtKzyA3YkSaqvPJU7Rq6++moWLlzIE088AUSKk5deeim9evWiadOmrFq1ih07dhyKT09P5/777ycpyf8LJEmSpBMlOxvS06Gw8CiBYQKsaht5NdlP2Gc99F1L0GJvpV3KykOeW1LAc0sKaNesITcO6sCtQztyWkbqMeVcXAyzZgXMn9+S4uIEUlLK2bQp4MILPQlcknRysSoWQz/96U9p3rw5Dz30ECUlJZSXl0c9pbt79+7cf//9dOvW7QRkKUmSJOkTKSkwZgxMnFiDTnsbwfweML87YeYO6LcWsjYSJFc+K3LT7gP86rVV/Oq1VZzZKZ1bhnTk+oGZpDdOrvZt8/Nh8mSYPh0KCxOBLke0p6dHnmXcOMjKqsHzSJJ0griUO4aCIGD8+PE8++yzjB07lqysLJo1a0ZycjKtWrVixIgR/L//9/945pln6Nmz54lOV5IkSRKRQl7tBLChJcwcCFMuJXypH+Gm9KP2mru2kK/lLKbdT1/kS395hxeWb6GsPKw0ftcuGD0aevWCSZMqn91ZWBgpsPbqFYnftas2zyRJ0vHjjMkoRo0axahRo2rdv3v37nz3u9/lu9/9bgyzkiRJkhQPWVkwahTk5BzDIAeT4f0ujOrRhR/fvZuH5q3lsXfXs6O4pNIuB0rL+dt7G/nbexvJTGvETYMjS72zWv/nRJ4NG2DkSMjLq1k6OTmRGZYzZ0JmZm0fSpKk+HLGpCRJkqR6b+pU6Nv32Mbo2zcyzhntm3H/5/uy/n8u4fEbB3FpVmuCqs/LYcOu/dw7ayW9f/kqwx+cw5/eXsPazSVcdlnNi5KfyMuLFDWdOSlJqqucMSlJkiSp3ktLi8wurM3sRIB+/eD55yPjfKJRciLXDcjkugGZrC/cxyPvrOfh+etYsa3yA3MA3ly9kzdX7ySxPI/STu2gqCOsbQUcpboZRV4ejB0LM2bUuKskSXHnjElJkiRJIrLkec6cyLLumhg1CmbPrnrJdIf0xvzgop4s++4FzPn6uXz5zE6kNqx6nkhZQjlBnw0E174Nt78M5yyDtKqLmtHk5MCKFTXuJklS3FmYlCRJkqSPpaVFZhcuXw7jx0dOuo6meXO4++7IPo4zZhw5U7IqQRBwTpcW/Ona/mz68SU88sWBXNSz1VGXegfN9hOcvYLgtllw3Rtw+lpILq32c02ZUu1QSZKOG5dyS5IkSdKnZGXBfffBhAmQmwsFBVBUBKmpkJEB2dmQknJs90hpkMSNgztw4+AOrNlRHFnqvWAdH24vrrJf0GEHdNhBeFEe5LeDJR1hXUuqWuo9bRrcc8+x5yxJUixZmJQkSZKkSqSkwOWXx/8+nVuk8D+XZPGji3vy68d38J1H1kHWRoIGZZX2CZLL4PT1cPp6wt2N4IMOsLQD7EitELtzZ6TAejyeRZKk6rIwKUmSJEl1RBAEtDrQEl5oCbP6EvbcBKevI+i0vep+zfbDmSvhzJWEm9IjBcrl7WFfw0MxBQVxTl6SpBqyMClJkiRJdciePR+/KUmCpR1haUfCtL3QZ32kSJm2r8r+QbtCaFdIeP4S+KhNpEj5YQZFRYlxz12SpJqwMClJkiRJdUjTplEu7moCb/WCt7IIO26H09dB1qbIcu5KBIkh9CiAHgWE+5J5uqg9Q1Z34KzOzQmOdtqOJEnHgYVJSZIkSapD2ratqjWAda0ir1f6RZZ691kPnbZVebJ30LiE13as4dwH19CjVRNuHNSBGwdn0q1lk5jkXFwc2cNy8+bIjM+mTSPPEYtDgiRJpy4Lk5IkSZJUh2RnQ3o6FBYeJfCwpd6k7iM8bT30WU/Qck+V3VZu28tPXlzOT15czoiuLbhpSAeuPaM9aY2Ta5xrfj5MngzTp0fPNz0dxoyBceMiJ51LknS4hBOdgCRJkiTpP1JSIsW8GilqDPN6wvTzCf8ygvDdroTFDY7abfZHO/jKk+/T9qcvcv2j7/CvpQWUlJUftd+uXTB6NPTqBZMmVV5ELSyEiRMjcaNHR/pJkvQJZ0xKkiRJUh0zblykoFdzARSkR165fQi7bIE+62lwWgEl5ZUXHA+UlvP3RRv5+6KNtGnagC8OzOSmwR0YmJlWYT/KDRtg5EjIy6tZZjk5kRmWM2dCZmbNn0ySdOpxxqQkSZIk1TFZWTBq1DEOUp4AH7ZlVIMhbP7JJUwe3Y9zujQ/arctew5y/+yPGDJpNqf/6jUmvJzPR9uLgcgMyMsuq3lR8hN5eZGipjMnJUngjElJkiRJqpOmTo3MMKxtERCgb9/IOGkpDbjj7C7ccXYXVm7by1/eWc+j76znox3FVfZftmUP/ztzOf87cznndGnO3gUdWPJhO6BhrXPKy4OxY2HGjFoPIUk6RThjUpIkSZLqoLS0yLLnvn1r179fv0j/tLQjr/do1YSfXNaLld+/kNfvPIfbzuxEWqOjz1l5c/VOFrVaDHe8BJ+fB702QFJprXLLyYEVK2rVVZJ0CrEwKUmSJEl1VGYmzJlT82Xdo0bB7NlV7+UYBAHDu7bkj9f2Z9OPL+WJmwbz2dMySEwIKu8EBIkhQfcCgs++C199ES5bCJ23QhDWKMcpU2oULkk6BVmYlCRJkqQ6LC0tsux5+XIYPx7S06PHNW8Od98dWf49Y0bFmZJVaZScyLX92/Pcl4ex4X8u4f7P9+XMTpXc6DBBgzKCvusJrnkbvvISZC+BNoXA0YuU06ZBcdUrySVJpzj3mJQkSZKkk0BWFtx3H0yYALNmlbFgwTr27k2gSZNyhgzpyIUXJpKScuz3aZPakLuGd+Wu4V1ZsXUPf124gT/N3sDGfXur7Bc0PQBDPoQhHxLuaAJLO8CyTNjVJGr8zp2QmwuXX37sOUuSTk4WJiVJkiTpJJKSAiNHhrRrt/3Qtf79O5AUh3/d9WzdlB9f2ouO67P48g8L4bQN0HsDQcrBKvsFLfbC8OUwfDnhxuaRImV+O9h35KE5BQWxz1mSdPKwMClJkiRJqtLevQFsbh55vdaHsPM2OG099NxMkFxWZd+g/U5ov5PwgjxY3Ro+6ACrMqA0iaKi4/QAkqQ6ycKkJEmSJKlKTZse9iFMgNVtIq+XSgl7bI7MpOyylSCh8r0lg8QQum+B7lsISxJhZVtWhe05WNqGBkkefyBJ9ZGFSUmSJElSldq2raShNAmWdYi8Gh8g7LURTltP0L6wyvGC5DI4bQMPrN3Aoz9NZtQZ7fjigEyyu7c86qng1VVcHNnDcvNm2LMnUlxt2xays4nJXpySpGNnYVKSJEmSVKXs7Mhp4IWFVQTtawjvdYX3uhKm740s9e69IbLfZBV27ivhoblreWjuWto1a8i1/dvzxQGZDOuUThDUvEiZnw+TJ8P06dHzTU+HMWNg3LjIgUKSpBPH+fKSJEmSpCqlpESKedVW2ATe6gXTLiD8ywjCd7sS7m1w1G6bdh/ggdkfcfZv59Dz3ln88PkPyNu0u1q33LULRo+GXr1g0qTKi6iFhTBxYiRu9OhIP0nSiWFhUpIkSZJ0VOPG1aZXAAXp8Gpf+MMlhE+dSZjXkfDA0Rfvfbi9mF+8spIzfpPLGb9+jZ+/soKPthdHjd2wAYYPh5ycmmWXkxPpt2FDzfpJkmLDwqQkSZIk6aiysmDUqGMYIEyANW3ghQFctelSZtwyhGvPaEejahx8k7e5iB89v4zuv3iFsx+Yzf2zP2TT7v1AZAbkZZdBXl7t0srLg5EjnTkpSSeCe0xKkiRJkqpl6tTIHo61LQIC9O0LDz+USFpaO67u146i/aU8s2QTf1u4kZfyt1JaXvnJ3gBz1xYyd20h33puCed3b8XOt9qzZGU74OhLxSuTlwdjx8KMGbUeQpJUCxYmJUmSJEnVkpYGM2dGZhjWpjjZrx88/3xknE+kNkripsEduWlwR7btPcBTizbxt/c2MPujHYRV1CjLQ5i1chu03gZfXQyr28Cy9rCqLZTU/J+6OTmwYgX07Fnz55Ik1Y5LuSVJkiRJ1ZaZCXPm1HxZ96hRMHt2pH9lWjVpyLhzuvDa185lzQ8v5lef7cPgDmmVd/hYkBgSdC8g+MxC+OoLcOUCyNoISaU1ynHKlBqFS5KOkYVJSZIkSVKNpKVFlj0vXw7jx0N6evS45s3h7rsjy79nzDhypuTRdEhvzLfO7878b57Hsu9ewE8u7UXvNk2P2i9ILifI2kRw5TvwtRfhM+9Aj02QWHbUvtOmQXH083UkSXHgUm5JkiRJUq1kZcF998GECZCbCwUFUFQEqamQkQHZ2ZCSEoP7tG7K/16axf9c0pNFG3fz+MINTH97I1v376uyX5BcBr03Qu+NkZPAV2XA8vawpjWUJVaI37kz8hyXX37sOUuSjs7CpCRJkiTpmKSkHJ9iXhAEDMhMY0BmGllbTuO2/9kJvTdAr40EKQer7tuwFPpsgD4bCPcnwcp2kSLl2lZQ/p/FhAUF8X4KSdInLExKkiRJkk46xXsD2Ngi8nr1dMKO26HXRui5iaBxSZV9g0al0Hcd9F1HuC8ZVnxcpFzXkqIidzyTpOPFwqQkSZIk6aTT9PDtJsMEWNs68nqlH2GnbZEiZY9NkSJkFYLGJXDGWjhjLeHeBjxT1I4zVrVneNeWJCYE8X0ISarnLExKkiRJkk46bdtW0lCeAKvbRF4v9yPsvA16bYDuBZHl3FUImhzk1R1reHXyGto1a8g1Z7TnC/3bc3bn5iTEqEhZXBzZx3LzZtizJ1Jgbds2dvtxStLJxMKkJEmSJOmkk50dOQ28sLCKoLJE+DAj8kosI+y6JTKTsntB5GCcKmzafYDfzvmI3875iA5pjRh1RjuuPaP2Rcr8fJg8GaZPj55zejqMGQPjxkUOFZKk+sDNMyRJkiRJJ52UlEghr9rKEiMH3vxrMPz+UsJ/DCbMb0dYcvR/Fq/ftZ8HZn/EiN+9QacJL/ONZ/KY/eF2ysvDo/bdtQtGj4ZevWDSpMoLqYWFMHFiJG706Eg/STrVOWNSkiRJknRSGjcuUsyrsdIkyG8feSWXEnbfDL020iBrKyXl5VV23bh7Pw/O+YgH53xEu2YNubpvO67t3y7qnpQbNsDIkZCXV7P0cnIiMyxnzoTMzJo+nCSdPJwxKUmSJEk6KWVlwahRxzhISRIs68CoxGFs+emlTL9+AFf0bkNSNZZrb9p9gN+/uZoLJr9Fx3te4s6cxby6chtl5SGFhXDZZTUvSn4iLy9S1HTmpKRTmTMmJUmSJEknralTI7MLa1sABOjbNzJOWuNkbh7SkZuHdGRH8UGeXryZGe9v5OUV2yg9yrLtzUUHmPzmaia/uZo2TRvQZGM7PtzdHoIWkVPDayEvD8aOhRkzatVdkuo8C5OSJEmSpJNWWlpkyXNtlkwD9OsHzz8fGedwLVIa8OUzO/HlMzuxo/ggz+Zt5qn3N/Hyiq2UlFVdpNyy5yA0W0PwhTWExQ1gRdvIsvF1LWtcpMzJgRUroGfPmj6ZJNV9LuWWJEmSJJ3UMjNhzpyaL+seNQpmzz76Po4tUhowZlgn/nXbmWz+8aVMu24AnzmtDcmJR1/uHaQcJOi/luDat+GrL8Ili6DzFkioei/Lw02ZUu1QSTqpOGNSkiRJknTSS0uLLHnOz48U8qZNi34CdvPmkdO8x42r3SzE5ikNuGVoR24Z2pHCfSX8Y+lmnlq0iReWb+VgWdXFxqBxCZyxFs5YS7gvGVa2hRXtYG2ryKnhlZg2De65J3ISuSSdSixMSpIkSZJOGVlZcN99MGEC5OZCQQEUFUFqKmRkQHZ27Ap86Y2TuWlwR24a3JFd+0r45wcF/O7Fjby1eStBUjWKlP+/vTuPr6K6/z/+vlmAhIQkJCSBhB0StojUiv6QgjtLtcpirWutK22hbi1ftRUXaLFaoBUtSJXg1oJKrKiAgghCUUBEWYQkbCEs2RNICGSd3x8D471J7paEC9y8no/HPJy5d+bMmZuPl5NPzpKSLaVky6gIkvbGmUO+98Waq4bbKS42n2XUqOapNwCcK0hMAgAAAAD8TmiobxN5ESHBuu1Hiar8LlFfPlUlo0eelHRY6pYnW7CbJGXraqnvIanvIRlVAdL+WLMn5d44qSJYkplgBQB/Q2ISAAAAAIBmUlYmqTJY2pVgbsHVMnrkSklHpO657pOUwbVS7xypd46MGps5zDuzow6XxEtq7ZNnAABfITEJAAAAAEAzCQur80JVkJSeYG7B1TK6n+pJ2SNPtuAal2XZAg2pe77UPV9PHtyqFf+M1piUeI1J6ajOkSHNVufycmnVKps2bYpWeXmAQkNrdeSITVdeybyWAM4sEpMAAAAAADST+HgXb1YFSRmdzC2oWka3fKlXjtQzR7Y21S7LNSSt2VuoNXsL9dAHOzS4c6TGpHTUuAs6qldM20bVNSNDmjNHWrBAKikJlNTN4f3IyB8WCkpKatQtAMAlEpMAAAAAADST4cPNhF5DK4I7qA6Sdnc0t4BaGZ0LzOHevXJkC610e5+N2SXamF2ix5fuVErHcI0ZYCYpB8SHy2azubz26FHp7rultDTX9ygpkWbNMrexY6X5883VzwGguZCYBAAAAACgmYSGmr0MZ83y4qLaACkr1txWXiCjU5GZpOx9RLbwk24v33akVNuOlOrZFRnqFdNWYwbEa9wFHXVx58h6ScpDh6SRI6Xt2717rrQ0s4fl8uVSQoJ31wKAMwFnuwIAAAAAAPiTCROacLFhkw5FS58PkOZdLeOtn+i+C3t5PFx7d8FxvbB6jy59cZ26TlupB/+7XWv2FKim1lBJiTRihPdJydO2bzeTmkePNu56AKiLHpMAAAAAADSjpCRz6LO7odLu2TT2ski9cnukDKOPtueUKm3bEb2/LUdbjxxze/XBoyc1e90+zV63Tx3atlLbI/Had7yjFBBj9tJshO3bzWHgixc36nIAcEBiEgAAAACAZjZ/vjn0ubG9EyVpwACzHEmy2WxK6dhOKR3b6alrk5WZX6b3t+fo/W1HtOFAiduy8o9XKr/dAdnGHZBRESTti5V2x5v/rQz2ql5paVJmptS7dyMeCgDskJgEAAAAAKCZRUSY8zE2Zj5HSUpJkZYtc77YTO8OYZp8RS9NvqKXsktO6L/bc5S29YjW7itUreG6bFvraqnPYanPYRk1NulAjJmk3BMvHW/jUf3mzpVmzPDyoQCgDuaYBAAAAADgDEhIkNatM4d1e2PsWGntWs8XmekcGaJJQ7vr898M0eEp12reTRdoZHIHBQe6Xp1bkmyBhmzd82W7ZptsE1ZIt6yVBmdK7UtdXpeaKpWXe1Y/AHCGHpMAAAAAAJwhERHmfIwZGWYvw9RUqaSk/nlRUeZq3hMmNG2IdGx4a917SVfde0lXlZyo0sc7c/XPFUe0/nCebMG1bq+3dSqROpVIP9klo6ittLuj2ZvySKSkHxKdxcXSmjXSqFGNrysAkJgEAAAAAOAMS0qSZs6Upk0zE3q5uVJpqRQeLsXFScOHS6GhzXvPyJBg3fajRFV+l6j1f6qW0T1P6pUj9ciTrU2V2+tt7Y9Lg3dLg3fLKGst7Ykzk5TZMVJNoHJzm7e+AFoeEpMAAAAAAPhIaKjvexmWlUmqDpIyO5lbQK2MhCIzSdnriGztTrotwxZWIQ08IA08tXjO/litzonXmBOxigjxbvEcT5SXmwncnByz/mFhUnz8mUngAjh7SEwCAAAAAODHwsLqvFAbYPZ6zI6RPu8vI/boqSRljmwdXM8tKZ1aPCf5sN4oOKz/PG3TFT1j9LP+8bphQJwSIkKaVNeMDGnOHGnBgoaHvEdG/jDkPSmpSbcCcA4gMQkAAAAAgB+Lj3f1rk3KizS39X1kRBy3kpTqVCSbmyVzq2oMfZqRr08z8jXx/W26uHOkbhgQrxv7x6tvXJhsNvcLl7GnxQAARxxJREFU8EjS0aPS3XdLaWmuzyspkWbNMrexY6X5852vXA7g3EdiEgAAAAAAPzZ8uNnTsKEeiPUcbStt7mluIRUyeuSaScqu+R4tnrMpu0Sbskv0p2W71DumrW4YEK8b+sfr0q5RCgxoOEl56JA0cqS0fbtXj6W0NLOH5fLlnq9gDuDcQmISAAAAAAA/FhpqDn+eNcvLC0+0lnZ0Mbegahnd8k8tnpMrW4j7xXMyC47rb6v36G+r9yg2rJV+2i9OP+sXr6t7x6htazMdUVIijRgh7djh/XNJZjJz5Ehp3Tp6TgLnIxKTAAAAAAD4uQkTGpGYtFcdJO3uaG62Wr2+qkhfl+Tog+05OlBywu3leWWVSt2YrdSN2WoTFKCresfoun5x+mBWnHbsaNq8lNu3m8PAFy9uUjEAzgISkwAAAAAA+LmkJHNORndzOHpi7JgA3XF5jO5QjP5+Q399e/iYPtieow925Oi7w8fcXn+yulYf78zTxzvzpC7bpNsipD3x0t44Ka+dJM/mpbSXliZlZkq9ezfigQCcNSQmAQAAAABoAebPN+dk9HYuR3sDBpjlnGaz2TQoIUKDEiL09Ihk7Sss1wc7zJ6Ua/cVqtZwX6Yt/qgUf1S6LF1GaRtpT5yZqMyOlmoCPa7b3LnSjBmNeCgAZw2JSQAAAAAAWoCICHOhmMYsNCNJKSnSsmWu53LsHh2qh4b10EPDeqjgeIU++j5PH2w/ohUZBSqvqnF7D1v4SenCLOnCLBmVgdL+DtLeeGlvrDnnpQupqdLUqeacmgDODyQmAQAAAABoIRISzIVi7r7bu2HdY8eaPSW9WWAmpm1r3XVxZ911cWedqKrRqswCffh9rj76PleHj510e72tVY2UlCMl5cgwJB2OMntS7omTisJUd8h3cbG0Zo00apTndQRwdpGYBAAAAACgBYmIMBeKycgwhz+nppqrY9cVFWWu5j1hQtPnbgwJDtRP+8Xpp/3iZBiGnp5zVM++lSv1zJEtzv28lDabpIRicxu2U0ZxqDkn5Z546VB7qTZAkpSb27R6AvAtEpMAAAAAALRASUnSzJnStGnSqlU1+vrrbB0/HqC2bWv14x931pVXBp6RYdE2m00xNZHSl5HSl8kywk9IPXLNrUuBbEG17suIKpcu2iddtE/GyWBpX6y0N065R2MlBTd/pSWVl5s9MnNypLIyKSxMio+Xhg9n+DjQWCQmAQAAAABowUJDpZEjDXXsWGi9NnBgooLOYMYgLMzuoDRE+q6buQVXy+iaL/U0E5W20Eq3ZdnaVEl9D0l9D+lP2TZ9Oqe9ru8fr+v7xalnTNsm1zUjQ5ozR1qwoOGepZGRP/QsTUpq8u2AFoXEJAAAAAAA8Kn4eCdvVAVJuzuam82Q0bHY7EnZM1e2mFK35dbI0Od7CvX5nkI9smSH+saGmUPI+8ZqSLf2Cg4M8LiOR496NhdnSYk0a5a5NWYuTqAlIzEJAAAAAAB8avhws6dhQz0QLYZNOtze3Nb1lRFx3EpSKrFQtkDD7X125pVpZ16Z/rZ6jyLaBGlkn1iN7hurUX1iFdPW+Srfhw41bvXytDSzh+Xy5eZCQwBcIzEJAAAAAAB8KjTUHP48a5YXFx1tK23pYW6tq2R0yzOTlN3zzOHc7i4/Wa1F3x7Wom8Py2aTLukSpZ/2jdVP+8ZpYKd2stnMVb5LSqQRI6QdOxr3bNu3m0nNdevoOQm4Q2ISAAAAAAD43IQJXiYm7VUES+kJ5hZQK6NTkX41LVdrD+doT2G528sNQ/oqq1hfZRXryeXpSohoo9GnkpSvPRWjHTuali7Zvt0cBr54cZOKAfweiUkAAAAAAOBzSUnmnIzu5nB0qzZAYwfHaP4vY2QY/bQrr0wffp+rj77P1fr9Rap1P+Jbh46e1L++OqB/fXVARmKANDZa2htnbscat+R2WpqUmSn17t2oy4EWgcQkAAAAAAA4K+bPN+dk9HYuR3sDBpjlSJLNZlPfuHD1jQvX5Ct6qai8Up+k5+vj73O1PD1PReXuh3zbgmql7vnmdtV2GYVhp5KUseZ8l7WeL6Azd640Y0ZjnwzwfyQmAQAAAADAWRERYS4U05iFZiQpJUVatsz5XI7tQ1vplkEJumVQgqprarXhQIk+2pmrpTtzte2I+1W+JckWXSZFl0kX75FxMkjKipX2xEr7Y6UTzhfQkaTUVGnqVHNOTQD1kZgEAAAAAABnTUKCuVDM3Xd7N6x77Fizp6SnC8wEBQbosu7tdVn39po+uq8OFJfr4515WrozV59lFuhkda3bMmxtqqXkw1LyYRmGpCNRZk/KvXFSfjtJNofzi4ulNWukUaM8fy6gJSExCQAAAAAAzqqICHOhmIwMc/hzaqq5OnZdUVHmat4TJjR97sYuUaH69ZBu+vWQbjpRVaMn5hTo70typR55srU74fZ6m01Sp2JzG5ouo7SNtO9UkjIrRqo2Uy65uU2rJ+DPSEwCAAAAAIBzQlKSNHOmNG2a2dMwN1cqLZXCw6W4OGn48DMzLDokOFA9bHHSZ3HSZ4aM6FKpZ67UPU/qVCSbB9NK2sJPShcckC44IKM6QDrUXtobq91FsTKMMNlsNveFeKm83PyccnKksjIpLEyKjz9znxPQ3EhMAgAAAACAc0poqO+HP4eFnd6zSYXtzG1jb6lNpYxu+VKPXKlbnmwhHi6g07VA6lqgvxz+Xv/+S4hG9onVqD6xurJXjNq2blo6JiNDmjNHWrCg4Z6lkZE/9CxNSmrSrYAzisQkAAAAAABo8eLjnbxxspW0K8HcbLUyOpaYScoeubJ18GwBnf3FJzT3yyzN/TJLrQIDNKxHe43qayYqkzt43pvy6FHP5uIsKZFmzTI3b+fiBHyJxCQAAAAAAGjxhg83exo21APRYgRIh9ub27q+MsLLzeHePXKlLgWyBbtfQKeyplYrMwu0MrNAjy75Xt2iPOtNeehQ41YvT0sze1guX24uNAScS0hMAgAAAACAFi801Bz+PGuWFxeVhkpbu5lbUI2MzgVmorJ7nmyR5R4VUbc35fCe7a1E5enelCUl0ogR0o4djXgwmcnMkSPN1c/pOYlzCYlJAAAAAAAAmXMyepWYtFcdKO2LMzcZMqKO64l/5WlzYZ7W7C1URbVnvSlXZBRoRcYPvSlH9Y3TlrRY7UiPVlPSONu3m8PAFy9udBFAsyMxCQAAAAAAIHOhmLFj3c/h6J5NY68I05/HhUnqoeMV1Vq9p1BLd+Vp+a487SvyvDflnPX7pfj90m8DpIPtpX2x0v5YqShMkncrfaelSZmZUu/e3j4PcGaQmAQAAAAAADhl/nxzTkZv53K0N2CAWc5pbVsH6af94vTTfnEyDEMZ+ce17FSS0tPelLagWqlbgbnpexkloWaCcl+sdCBaqvYsxTN3rjRjRiMfDGhmJCYBAAAAAABOiYgwF4ppzEIzkpSSIi1b5nwuR5vNpuTYMCXHhumhYY3vTWmLLJcu3C9duF9G9anelPtP9aYsdN6bMjVVmjrVnFMTONtITAIAAAAAANhJSDAXirn7bu+GdY8da/aU9GaBGVe9KVdlFqraaERvytI2p5KUHaSsGKmilXVucbG0Zo00apTndQTOFBKTAAAAAAAAdUREmAvFZGSYw59TU6WSkvrnRUWZq3lPmND0uRvr9qac+1q1fv2XQnOl726er/RtCz8ppRyQUg7IqJWUE2UmKfd3kHKilJvr3dyU3igvl1atsmnTpmiVlwcoNLRWR47YdOWV9NJEfSQmAQAAAAAAnEhKkmbOlKZNM3sa5uZKpaVSeLgUFycNH37mEm5V5UHS3jhzO7XSt7rnSd1zpcQis6ekG7YASZ2KzW1IhowTwXpxb4xqNsRqRHIHJUaGNEtdMzKkOXOkBQukkpJASd0c3o+M/CGBm5TULLeEHyAxCQAAAAAA4EZoqO+HP4eF2R/ZpOIwc/umhxRULaNLI3pThlTp2/Ijuu/dI5KkfnFhujY5ViOTO+gnPaIVEhzoVR2PHvVsyHtJiTRrlrk1Zsg7/BOJSQAAAAAAgHNQfLyLN6vr9KaMPC51z5e65kldCmULrvHoHt/nlun73DL9/Yu9ahMUoOE9o3VtcgeNSIpV37gw2WzOh30fOtS4RYLS0swelsuXm/N5ouUiMQkAAAAAAHAOGj7cHALd0NyWjmxSSZi0JUza0l0KrJHRqVjqlid1y5ct9phH9ztZXatP0vP1SXq+HtX36hzZRtcmx2pEUgdd1TtGUaE/LKJTUiKNGCHt2NG4Z9u+3UxqrltHz8mWjMQkAAAAAADAOSg01JyXcdYsLy+sCZSyY8xtrWS0PSl1zZe65Su0T75O2Co9Kia75KRe23BAr204oACbdEmXKLM3ZXKsnn8kUjt2NG0Rne3bzWHgixc3qRicx0hMAgAAAAAAnKMmTGhEYrKu422k7ztL33fWN7MMlYYc1Sfpefo0PV/rs4pVU2u4LaLWkL7MKtaXWcV65tMMGfHB0nWnVvrO6iCVNm4RnbQ0KTOz6Sua4/xEYhIAAAAAAOAclZRkLhbjbnEZT4wdKyUn2SRF6sedI/XHq5N09ESVVu0u0Cfp+fo0PU/7i094VJYtpEpKPmxukozCMDNBmXWqp2aV5ymnuXOlGTMa80Q435GYBAAAAAAAOIfNn28uFuPtIjP2Bgwwy6krIiRYY1I6akxKRxmGocyC4+Y8k7vytHpPocqrPFtExxZdJkWXST/aJ6PGJh2JOpWo7CDlREhGgNNrU1OlqVPNoetoWUhMAgAAAAAAnMMiIswVrBuzArYkpaRIy5a5X2TGZrMpqUOYkjqEadLQ7qqortG6fUWnelPma+sRzxbRsQUaUmKRuV2WLuNksHQg+odE5dG2DucXF0tr1kijRnn/bDi/kZgEAAAAAAA4xyUkmCtY3323d8O6x441e0o2ZuXr1kGBuqp3B13Vu4Oev046fPSknnwtX/NX5Uld883h3B6wtamSknLMTZJREvrDsO8DMVJFK+Xmel8/b5SXm8nPnByprEwKC5Pi482Vz+mpefaQmAQAAAAAADgPRESYK1hnZJjzMqamSiUl9c+LijJX854woXkXlekU0UYXBneWPu4s2QwZsUfN1b675ksJRWZPSQ/YIsulyCxpYJaMWkk5kVqY3UE99nTQpV2j1CrI+bBvb2VkSHPmSAsWNPxZRUb+8FklJTXbbeEhEpMAAAAAAADnkaQkaeZMado0sxdgbq5UWiqFh0txcWe2F2BY2KkdwyblRprbxt5ScLWMxMJTicoC2WJKPSrPFiCpU4k+PVqiT+dkKqx1oC7vEaOrk2J0TVIH9YkNk81m87qeR4961ru0pMRc9XzWrKb1LkXjkJgEAAAAAAA4D4WG+n5exvh4J29UBUn74sxNkhF2QupSYPWotLWt9Kj8sooafbQzVx/tNMd2J0a00dVJHXRNUgdd3TtGHcJauy3j0KHGzceZlmb2sFy+3Bw6jzOPxCQAAAAAAAA8Mny4Ofy5oWHRDspCpO87m5sMGR2OSV1PJSoTCmULrvXofgePntSCTdlasClbkjQooZ2u7m0mKi/r3l4hwYEO55eUSCNGSDt2ePtkpu3bzaTmunX0nPQFEpMAAAAAAADwSGioOSfjrFneXGWT8iPM7eueUmCNjISiH3pTxnm22rckbTl0TFsOHdMLq/eodVCALuvWXlf2jtHVvWN0UWKk7rnH1uik5Gnbt5vDwBcvblo5cI/EJAAAAAAAADw2YYK3ick6agKlAx3Mba20/rsK7asp0IqMfK3MyNfBoyc9Kqaiulardhdo1e4C/WmZFN4qSMeqY6QLT632XRQmyfv5KSVzWHdmZvMuHoT6SEwCAAAAAADAY0lJ5kIx7haW8cTYsdKlF7TWpUrQLYMSZBiGduWVnUpSFmj13gKVVdR4VFZpZbVsvXOk3jmSJKO0jZmgPL2VhXhVt7lzpRkzvH4keIHEJAAAAAAAALwyf765UIy3C8zYGzDALMeezWZT37hw9Y0L1+9+0kOV1bX6KqtYKzLN3pSbsktUa3hWvi38pNT/oLlJMgrDfkhSZsdIFcEur09NlaZOPXMrnIPEJAAAAAAAALwUEWGuXt2Y1a8lKSVFWrbM/QIzrYICNKxntIb1jNbUkX1UXF6pz/cU6rPMAn2Wma+M/OMe39MWXSZFl0mD9suolZQbKWXFmEPKD0eZQ8ztFBdLa9b4fuXzloTEJAAAAAAAALyWkGCuXn333d4N6x471uwp2ZhVr6NCW2lsSkeNTekoScouOaHPMgs0b3m+vjxUIFtYhUfl2AIkdSwxt0t3y6gKkA63l7I6mD0q8yIkw6bcXO/rCM+RmAQAAAAAAECjRESYq1dnZJhzMqamSiUl9c+LijJX854woXkXlOkcGaK7Lu6s0q8668sphozoMqlLvtS1QEoslK11tUfl2IJrzWu6FkiSjBPBUna0lh3uoCH5Meod01Y2W+MW0oFzJCYBAAAAAADQJElJ0syZ0rRp0qpVNfr662wdPx6gtm1r9eMfd9aVVwae0bkaw8IkySYVhpvblh6SrVZGfInU5VTCsVORbIGeTVBpC6mSknL0blGO3v2r1Dmyja7q1UFX9o7Rlb1i1CmizZl7mBaExCQAAAAAAACaRWioNHKkoY4dC63XBg5MVNAZzkDFxzfwohEgHWlvbhuSpKBqGQlFZpKyS74Ue0yedoLMLjmpBV9na8HX2ZKkPrFhuqJXjK7sFa3Le8Youm2r5nuYFoTEJAAAAAAAAM5rw4dLkZENDyO3VAdJWbHmJkkhFTI6F5pJyi4FskWVe3y/XXll2pVXpjnr98tmky7s1O5UojJGP+kerfA2pNw8wacEAAAAAACA81poqDmH5axZXlx0orWU0cncJBntyk8N+z6VqAyt9KgYw5C2HDqmLYeOaeaavQoKsGlwl0grUfn/ukapTXCg+4JaIBKTAAAAAAAAOO9NmOBlYrKuY6HS9i7mJkMffFmq3ZX5+iyjQGv2Fup4ZY1HxVTXGlq/v1jr9xfrzysz1SYoQEO7t9eUa5M0tHt0Eyrof0hMAgAAAAAA4LyXlCSNHSulpTW9rLFjbbr+0naS2unhYT1VVVOrjQdKtGp3gT7fXaD1+4tVWVPrUVknq2u1MrNAKzMLtOF3P9HFXSKbXkE/QWISAAAAAAAAfmH+fCkjQ9q+vfFlDBhglmMvODBAl3Vvr8u6t9eT1yTpRFWN/revyEpUbsouUa0HC37/d8cREpN2SEwCAAAAAADAL0RESMuXSyNHNi45mZIiLVtmluNKSHCgrk7qoKuTOkiSjp6o0tpTicpVmQXaeuRYg9cN6uSm4BaGxCQAAAAAAAD8RkKCtG6ddPfd3g3rHjvW7CnpLinZkIiQYF3XL07X9YuTJOWXVWj1nkKt2l2gtXsLVWtIt/4oQeMu6Oh94X6MxCQAAAAAAAD8SkSEtHixOax77lwpNVUqKal/XlSUuZr3hAlS797Nd/8OYa1108BOumlgp+Yr1A+RmAQAAAAAAIBfSkqSZs6Upk2T1qyRcnOl0lIpPFyKi5OGD5dCQ892LVsuEpMAAAAAAADwa6Gh0qhRZ7sWqCvgbFcAAAAAAAAAQMtDYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HM2wzCMs10JnB82b97scBwQQF4bTVdbW2vtE1NoKuIJzY2YQnMjptCciCc0N2IKzYl4ahnsf86SdNFFF3l1fVBzVgYtS93gA5qKmEJzIp7Q3IgpNDdiCs2JeEJzI6bQnIgnOEPKGgAAAAAAAIDP0WMSjUZXbAAAAAAAgJarqb1hmWMSAAAAAAAAgM/R5Q0AAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD4XdLYrgPr27NmjhQsXasOGDTp48KCqq6sVGxurpKQkXX/99brmmmsUFNT8P7ojR45o4cKFWrdunbKysnTy5El16NBBPXr00OjRozV69GiFhIR4VebWrVv17rvvatOmTcrNzZVhGIqLi1P//v11ww03aNiwYbLZbB6XZxiGVq5cqSVLlmjbtm0qLCxUSEiI4uLidOmll2rcuHHq06ePt4/u14gn58rLy/XBBx9o3bp12rlzp4qLi1VdXa3IyEglJSXpsssu0/jx49WuXTtvH9+vEVPeKyoq0nXXXafCwkJJUnp6epPL9CfElGt5eXlasmSJVq9erQMHDqioqEht2rRRYmKiBg8erJtvvlk9e/b0qkx/Rjw5V11drY8//lgrV67U9u3bVVRUJJvNpujoaA0cOFCjR4/WVVdd1Szfe/7En2KqIZMnT9YHH3ygwYMH68033/TqWtrmjUNMOUf73HvEk/dom59bbIZhGGe7EvjB7NmzNXfuXFVXVzs9Z8CAAXrhhRfUo0ePZrvvwoUL9dxzz+nEiRNOz+nWrZuef/55DRw40G15VVVVmjp1qhYtWuTyvKFDh2r69OmKjY11W2Zubq4efvhhbd682ek5NptNd911lx555BG1atXKbZn+jnhybunSpXrmmWdUUlLi8rywsDA9/vjjGj9+vNsyWwJiqnEeeughLVu2zDqm8fMDYsq11NRUvfjiiyovL3d6TkBAgO699149/PDDCgho2YNhiCfndu3apYceekj79u1zeV5KSopmzZqlzp07uy2zJfCXmHJm5cqV+u1vfytJXv/ST9u8cYgp52ife494ahza5ucWEpPnkGnTpjn8jxYUFKTk5GSFhIRoz549Ki4utt6LiYnRO++8o4SEhCbfd8GCBZo+fbp1bLPZ1Lt3b0VGRmr//v3Ky8uz3gsJCdHbb7+t/v37Oy3PMAxNnDhRK1eutF5r3bq1kpOTFRgYqMzMTJWVlVnv9ejRQ4sWLXL5V6+ioiLdfPPNOnDggPVaZGSkevXqpRMnTig9Pd3hy/inP/2pZs6c6fmH4IeIJ+fxVLeOktS+fXt169ZNgYGB2r9/v/Lz8x3enzRpkiZOnOj+A/BjxFTj/jK/fPlyPfjggw6v0fgxEVPOY8owDD377LP697//bb0WGBioLl26qEOHDsrNzVVWVpbDNTfffLOeffZZzz4EP0Q8OY+nnTt36vbbb3e4Ljw8XMnJyTIMQ7t27dLx48et9zp06KCFCxcqMTHR8w/CD/lLTDmzdetW/fKXv7T+8OHNL/20zRuHmPK8jhLtc3eIp8ahbX4OMnBOWLZsmZGUlGRtkyZNMvLz8633KysrjYULFxoDBw60zhkzZoxRW1vbpPtu2bLF6Nu3r1XmbbfdZmRlZVnv19bWGp988olxySWXWOcMGzbMKC8vd1rmq6++6vAsTz/9tHHs2DHr/RMnThhz5swx+vXrZ53z29/+1mU977//fuvclJQU49///rdRVVVlvZ+Xl2c89NBDDvd9/fXXm/DJnN+IJ+fx9M033xjJycnWuVdccYWxevXqes++fv1649prr3W49+rVq5vw6ZzfiCnX31HOFBYWGpdeeqnD/ZKSkhpVlr8hplzH1CuvvFLv8zlw4IDDOTt27DBuvPFGh/M+++yzRn4y5zfiyXk8VVZWGiNGjLDO7d+/v5GammpUVlZa51RUVBhz5sxxeJabb765SZ/N+c6fYqohGzZsMC666CKHZ7z99ts9vp62ufeIKedon3uPeGoc2ubnJhKT54DKykrj8ssvt/6neOCBB4yampoGz127dq1DQ3TJkiVNuvfPf/5zhy+qEydONHjezp07jUGDBlnnzpkzp8HzCgsLHc576qmnnN77vffec/gy2Lx5c4PnffHFFw7nffzxx07LnDx5snXeJZdcYpSWljp/eD9FPLmOp1tuucXhH0n7f8DrKi4uNq655hrr/JEjRzp/eD9GTLmOKVd+97vf1Wv40PghptzFVHZ2tjFgwACHxJSzXySOHj1qDBs2zDr3F7/4hesPwA8RT67j6eOPP3Y4b/HixU7LTE1NdTj3iy++cP7wfsyfYqohr776qkOdvf2ln7a594gp12ife4d4ajza5uemlj0R0TlixYoVOnz4sCSz+/WUKVOczhE1dOhQ3XzzzdZxampqo+/73Xff6dtvv7WOn3zySbVp06bBc/v06WPN7SBJr7/+umpqauqd995771lDgSIjIzV58mSn9x83bpwuv/xy69jZs7z++uvW/tChQzV69GinZT711FOKjo6WJBUXF+v99993eq6/Ip5MDT1Ldna2wzxIkydPVkxMjNMyIyMj9dhjj1nHe/fu1c6dO52e76+IKZO3z7Js2TItX75ckpigvQ5iyuTsWebPn6/KykqrHn/605+cLkbSrl07TZgwwTresmWLjh496rQO/oh4Mjl7lrVr11r73bt319ixY52Weccddyg+Pt46Xr16tdNz/Zk/xZS9/fv36/7779fzzz/vcj46d2ibe4+Yco72ufeIp8ahbX7uIjF5Dli6dKm1P2TIEHXq1Mnl+fZfLDt27FB2dnaT79uzZ08NGjTI5fnjx4+3VvMqKirSxo0b651jP4HsqFGjFBoa6rJM+2f54osv6k3uf/ToUa1fv946HjdunMvyQkND9bOf/cw6Pv3F05IQT6aG4umrr76y9lu3bq1rrrnGZXmS9JOf/ETBwcHW8bZt29xe42+IKVNDMeVMUVGRNddfq1at9PDDD3t0XUtBTJkaiqmqqip9+OGH1vEf//hHBQYGuixz5MiRuv322zVx4kQ98cQTbhv+/oZ4Mjn7jsrJybH2+/Xr57K8wMBApaSkWMcHDx50eb6/8qeYkszV2KdNm6brrrtOa9assV4fNGiQbrnlFq/qSNu8cYgp52ife4948h5t83MbicmzzDAMbdiwwTq+7LLL3F6TnJysDh06WMerVq1q1L2//PJLr+4bERGhAQMGWMeff/65w/slJSUOf60aOnSo2zIvvfRS6xeukydPOjR0JGnjxo3WL1g2m82jetqf880337SoniPEk+t4ys3Ntf5x7Ny5s0erQwYHByssLMw6tp9EuiUgplzHlDNPP/20ioqKJJkTs/fs2dOj61oCYsp1TG3evFnHjh2TZK5mOXjwYLdlRkVF6cknn9SkSZN05513qn379m6v8RfEk/vvqPDwcGvfkz+u2PdSad26tdvz/Y0/xdRp5eXlevPNN1VVVSXJ7GH1wAMP6I033rB6M3qKtrn3iCnXaJ97h3hqHNrm5zYSk2fZoUOHrF9AJDn8j+tKcnKytd+YvxBVVVVp79691rGnq2S5um96eroMu0XePSkzNDRUXbp0cVrmrl27rP3ExERFRES4LbNPnz7Wfm1trXbs2OH2Gn9BPLmOp4kTJ2rbtm1au3atZs+e7VEdS0tLHRrQLa3bPzHlOqYasnTpUn3yySeSzM/rnnvucXtNS0JMuY6pb775xtq/5JJLPKpjS0Y8uf+O6tWrl7W/efNml8nJEydOOMRgS/zFzZ9iqiFDhgzR4sWL9cgjj3iUAKqLtrn3iCnXaJ97h3jyHm3zcx+JybNs//79Dsf2jUtXEhMTrf0DBw54fd+DBw9af5GQpK5duzb5vvbP0qpVK3Xs2LFZy/S0jh06dHCY6yIrK8uj6/wB8eT+WQICAhQbG6sePXp4VN6KFStUW1trHbe0X9KIKe+epbCw0BomEhwcrOnTp7sdhtvSEFOuy0xPT7f2e/fube2vX79ejz32mEaMGKELL7xQl1xyicaPH6+XX37Z6gHQEhFP7p/l5ptvtn65O3bsmP761786Leu5556zftkPDg7WTTfd5FEd/Ik/xdRpAQEBuuKKK/TGG28oNTXVIVHoLdrm3iOm3KN97jniyTu0zc8PQWe7Ai1dfn6+tR8QEOByol979l2x7ctozH3rlufpfQsLC1VbW2tNtGtfpqfl1T23br3y8vIaVWZ0dLQOHTrUYJn+jHhq+rPYq6io0CuvvGIdR0ZG6kc/+lGTyjzfEFPePcvTTz9tDSf69a9/raSkJI/v01IQU66fxX7ep7i4OOXm5urJJ590mHNJMnu2lZSUaNu2bVqwYIGeeuopXXfddR7XwV8QT+6fJS4uTpMnT9a0adMkSQsXLlROTo7uu+8+9e/fXzabTd9//73mzZvnMMxu0qRJbuct80f+FFOnhYWFae7cuV7XqSG0zb1HTDWvlt4+J568Q9v8/EBi8iyz74Letm1bp6tp1WU/p0Zj5mmpe42n3d/t5ykyDEPHjh1TZGSkJHNupIbOc8fVs9gfe1Om/bn2Xd39HfHU9Gex97e//c3hr5J33nmnNQdOS0FMef4sH3/8sT799FNJUt++fXX//fd7fI+WhJhy/SwFBQXWfnl5uW699VZrAZKQkBAlJSWpVatW2rt3rwoLCyWZ/879/ve/V0lJiW6//XaP6+EPiCfPnuWOO+5QQkKCpk+frgMHDmj16tVOV9yOjIzUH/7wB40fP97jOvgTf4qpM4G2ufeIqebV0tvnxJPnaJufPxjKfZZVVFRY+/ZDHNyxn2+hsrKySff15t72q5/VLce+Hs31LM3x+dR9Vn9GPDX9WU5btGiR3njjDes4ISFBv/rVrxpd3vmKmPLsWQoKCqxhIkFBQZo+fXq9usBETLl+Fvtf2P/85z/r4MGDat26tR5//HFt2LBB77zzjt566y2tW7dOL7/8stUTwTAMTZ8+XV9//bXH9fAHxJPnz5KUlKSrrrrK5XdTUFCQ7rrrLo0aNcrj+/sbf4qpM4G2ufeIqeZD+5x48hRt8/MLicmzzH6eBk//2iHJ4a9C9qsneqruNZ7eu+5fo06vyiedmWexP/amTPt5Ixrz+ZyviKemP4sk/fe//9XTTz9tHQcHB+vvf/+7QkNDG1Xe+YyY8uxZnn76aau303333ae+fft6XH5LQ0y5fhb7XxaOHTum4OBg/etf/9Jdd93lsEJyQECArr76ai1cuNDqeVBdXa3nnnvO43r4A+LJs2dZsGCBRo4cqdTUVOs+sbGxuvjiizVo0CCHGPr73/+uESNGaN26dR7XwZ/4U0ydCbTNvUdMNQ/a5ybiyTO0zc8vJCbPMvt/pO0n8HXH/ouhMZn/ul8knt677heS/b3PxLM0tkz7L7yW9JcR4qnpz/LWW2/pscces+5ps9k0bdo0XXDBBV6X5Q+IKffP8tFHH2nFihWSzMVKfvOb33hcdktETLl+FpvN5nB87733ulydOzExUZMnT7aOt23bpm+//dbjupzviCf3z/L6669r+vTp1i+zffr00VtvvaW1a9fqrbfe0sKFC/Xll19q7ty51iIK+fn5uv/+++vNbdoS+FNMnQm0zb1HTDUd7fMfEE/u0TY//5CYPMtCQkKsfW+6Ndv3qLDvQdGY+3pz77rdvu3vbd+d25tnsT+37rOciTL9GfHU+J+9YRiaNWuWpk6dKsMwJJmNnilTpujGG2/0uBx/Q0y5jqmCggJNnTpVktlQ/Mtf/uIwVAb1EVOuY8q+54fNZvNozsjrr7/e4br//e9/HtflfEc8uY6nQ4cOacaMGdbxoEGDtHDhQl188cUO551eEfW9996zFgaoqanR448/rtLSUo/r4g/8KabOBNrm3iOmGo/2eX3Ek2u0zc9PJCbPsoiICGv/+PHj1heuO2VlZdZ+YyaPtb9v3fI8vW9QUJDDZLb29fC0PMl87obKqFtPb8ps6udzviKeXMeTMxUVFXr44YcdVoMLDAzUtGnTdOutt3p8b39ETLmOqaeeesoaJnL33Xe3yL/ce4uYch1Tbdu2tfa7du3q0WqbrVq1Uv/+/a3jvXv3elyX8x3x5DqeFi9ebP3yGBwcrBdeeKHeL5f2IiIiNGPGDKtHTmFhodLS0jyuiz/wp5g6E2ibe4+Yahza5w0jnlyjbX5+IjF5lsXFxVn7NTU11lL27uTn51v7nvzS4uq+kuMqoJ7et3379g5DzuzLPL1SqLdl1n2WxpZpf+7phQFaAuLJ+2cpKCjQHXfcoWXLllmvtW7dWi+++GKLXZHUHjHl/Fk+/PBDrVy5UpLUo0cPTZo0yeMyWzJiyvWzREVFNbjvTvv27a19+9Wd/R3x5PpZNm3aZO1fcskl6ty5s9vykpKSdNFFF1nHLW2uSX+KqTOBtrn3iCnv0T53jnhyjrb5+SvI/Sk4k7p27epwnJ2d7fDLhTMHDx609rt37+71fTt16qTg4GBrvqHs7GylpKR4dd9u3bo5vGf/LOXl5SooKPDoSy87O9var/ss9vc4cOCA27IkKS8vTydPnnRaT39GPLmOp7r27t2re++9V4cOHbJei4yM1Jw5c/SjH/3I7b1aAmLKeUy99NJL1r5hGC7nrzl69KjD8T333GPtJycnO8wR6O+IKdffU7169dL3338vSV4NobWfw8l+/il/Rzy5jqe8vDxrv1evXm7LOi05OVkbN26UJId/I1sCf4qpM4G2ufeIKe/QPneNeHKOtvn5ix6TZ1lCQoJDV+qdO3d6dN2uXbus/T59+nh93+DgYGsOIW/ua39e3ZWt+vXr5/AXEE/KPH78uEOjpu6z2A9Ny8rK0okTJ7yqo81mU3Jysttr/AXx5Dqe7O3atUu33nqrQ6OnW7duWrRoEY0eO8SU85iyXxVx3759WrdundNt27ZtDuW6es/fEVOuv6fs/806dOhQvbmZnMnJybH24+PjPbrGHxBPruPJfl4tT2NJckxue7Pqqz/wp5g6E2ibe4+Y8hztc/eIJ+dom5+/WlZL4xxlv9rm+vXr3Z6/a9cuh67Tl156qU/uW1JSYvXiaOi+YWFh6tevn1dlfvXVV9aKXoGBgRo8eLDD+xdddJGCgsyOvTU1NdqwYYPbMu3v269fv3rzYfg74sl5PJ22Z88e/fKXv3QY+nB6QYCW9ld8TxBT7mMK3iGmnMfUkCFDrP0TJ054tJBNaWmpMjIyrGNPejD4E+LJeTx17NjR2vf0l0hJ2r17t7Vfd/heS+AvMXUm0DZvHGLKPdrnniOe4G9ITJ4Drr32Wmv/888/V25ursvz//Of/1j7PXv2bPRfHe3vu337dm3fvt3l+e+88441VCwiIsLhl6fTRowYYe0vWbLE7V9R7Z9lyJAhateuncP77dq1c/gCW7hwocvyjh8/riVLlljHI0eOdHm+PyKeTA3Fk2T+An///fc7zMF2xRVXaMGCBV7N59aSEFOmujG1atUqpaene7S98cYbDuXav/fmm2+6rIM/IqZMDX1P9evXT71797aO//Wvf7md2H7hwoVWL4Hg4GBdfvnlLs/3N8STqaF4sr/Hli1bHHrMOJOdne2QbGqonv7On2KqudE2bxxiyjXa594hnhpG2/z8RWLyHHDttdcqNjZWkjnM5rHHHnOYK8re2rVr9e6771rHd9xxR6PvO2jQIIfhGI8//rjT1bV27typOXPmWMc///nP1aZNm3rnjRs3zlrtsaCgQM8++6zT+7/77rtau3atdXznnXc2eN5tt91m7X/++ecuV4d8+umnVVRUJEkKDQ1tkZMjE08mZ/E0ZcoUh7lOLr/8cs2ePbvB+8NETJmcxRS8R0yZnMXUL3/5S2t/8+bNmjdvntMyd+3apZdfftk6Hj16dItbWIJ4MjUUT9dff73DSu+TJ092uZLqyZMn9X//939Wojs0NFTXX3+90/P9lT/F1JlA29x7xJRrtM+9QzzB35CYPAe0atVKjzzyiHW8fv163XfffQ6TmVdXV+udd97RpEmTVFNTI8lcNfGmm25qsMwrr7xSycnJSk5O1pVXXun03v/3f/9nzWeUkZGhO+64w+Gv6YZh6NNPP9Vdd92l8vJySeZKeg888ECD5cXExOjee++1jtPS0vToo486rMR38uRJzZ07V0899ZT12rBhwzRs2DCnz2LfbfzJJ5/UK6+8ooqKCuu1goICPfzwww5/kf3Nb37j0UTA/oZ4ch5PmzZt0tKlS63jbt26aebMmQoODnb6TCCmJNffUfAeMeU6psaPH+/QI2nmzJmaMmWKQ4+I2tpaLV26VHfeeafVqy48PFwPP/yw02f3V8ST83iKjo7W7373O+s4PT1dY8aM0eeff259Dqd9/fXX+sUvfqHNmzdbrz344IPWL78tiT/F1JlA29x7xJRztM+9RzzB39gMd+OD4DNTpkzRokWLrOOAgAAlJycrLCxMe/bssf7aKJkrk/3nP/9Rjx49GizryiuvtCYNTkhI0KpVq5ze95VXXtHMmTMdXuvVq5fat2+vrKwsh1+E2rRpo9dee00//vGPnZZXXV2t3/72t1q9erX1WnBwsJKTk9WqVStlZmY6rDSamJiod99912VDJTc3V7fddpvDl214eLh69+6tyspKpaenO0x2e8UVV+if//xni5uw3R7xVD+e7rnnHq1bt8467t69uxISEpzeuyE/+9nPdMMNN3h1jb8gphr/y9SGDRscejOlp6c3uix/Qkw5j6mioiLdc889DnMzBQUFqXv37oqKitLevXsd5osKDg7Wyy+/rOHDhzst098RT87j6dlnn9Xbb7/t8FpkZKS6deum4OBg7d+/X/n5+Q7v33bbbZoyZYrTMlsCf4kpV2bPnm2tZDt48GCPhzDSNm8cYqo+2ueNRzw1Hm3zc0vQ2a4AfvDMM88oKipKr732mqqqqlRbW9vgROU9e/bUP/7xD6dfKt564IEH1LZtW82YMcP6q4b9pOenxcfH629/+5vbL5WgoCDNnj1bzzzzjBYvXizDMFRVVdXgHBSDBg3SP/7xD7e/8MfFxenNN9/UI488om+++UaSORfJ6X1748eP11NPPdXiGz7Ek6Njx47pyy+/dHht37592rdvnzePpwsvvNCr8/0JMYXmRkw51759e73xxhv685//rP/+978yDEPV1dXKzMysd26nTp30/PPP6+KLL3ZZpr8jnpybMmWKkpKS9Le//c1KapaUlOjbb7+td254eLgeffRR3XLLLS7LbAn8JabOBNrmjUNMOaJ93jTEE/wFPSbPQXv27NF7772ndevWKScnRydOnFBERIT69u2rkSNH6mc/+5latWrlsgxv/uJxWk5Ojt555x2tWbNGBw8eVFlZmcLCwpSUlKSrr75a48aNU1hYmFfPsnXrVr3//vv66quvlJubq8rKSrVv314XXHCBrrvuOl177bVeNVIMw9CKFSu0dOlSbd26VQUFBQoICFBcXJwuuugi/fznP2+x/zA5Qzz9cK2zoQvemDhxoiZNmtTkcs5nxJT3+Kusa8SUazt37tSSJUu0fv165eTkqKysTO3atVO/fv107bXX6sYbb1Tr1q29KtOfEU/OlZWVKS0tTf/73/+Unp5urX4bGRmp5ORkDR06VGPHjvW6nv7On2Kqrqb2RqJt3jjElIn2efMgnrxH2/zcQmISAAAAAAAAgM/Rnx4AAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzQWe7AgAAAPCdgwcP6qqrrnJ7ns1mU1BQkNq2bauYmBh169ZNw4cP18iRI9WuXTsf1PTclZaWpscff1ySlJCQoFWrVjW5TMMwlJaWpr59+6pfv3713q/7c/vss8+UmJjY5PsCAACcTfSYBAAAQD2GYaiqqkolJSXavXu3Vq5cqSeffFJDhgzRjBkzVFlZebar6DcyMzN1++2364knnlBpaenZrg4AAIDP0GMSAACgBUtKSlJsbGy912tra3Xy5EkVFRXp0KFDqqqqkiRVVVVp3rx5WrVqlV599VV17NjR11X2O2PGjLE+XwAAgJaExCQAAEAL9qtf/Upjx451eU5lZaW+/PJLvfzyy/ruu+8kSbt379add96pd999V5GRkT6oqf8iKQkAAFoqhnIDAADApVatWmn48OH6z3/+o9tuu816/cCBA9ZcizizEhMTlZ6ebm3MLwkAAPwBiUkAAAB4JDAwUE8++aSuvvpq67VVq1ZpzZo1Z7FWAAAAOF+RmAQAAIDHbDabnn32WbVt29Z6bd68eWexRgAAADhfMcckAAAAvBIdHa2f//znSk1NlSR9/fXXys7OVufOnV1el5mZqSVLluh///ufjhw5otLSUkVERKhz584aOnSoxo0b59ViOsePH9eyZcv01VdfaceOHSouLlZpaalCQkLUrl07JScna8iQIRozZozCwsI8KvPIkSNauHCh1q5dq/3796u6ulrx8fEaMmSIbr31ViUlJXlcP1fS0tIaHAZ/5513WvtjxozRc889J0k6ePCgrrrqKuu9zz77rN5w7iuvvFKHDh2SJG3dulWtW7fWvn379M4772jt2rU6cuSIbDab4uPjNXToUN122231fmYrV67U4sWLtWvXLuXn56tt27bq16+fbrjhBl1//fUKDAz06Pm+/fZbffzxx9qwYYNyc3N1/PhxRUVFqXv37ho2bJjGjRunqKgozz4sAADgt0hMAgAAwGujRo2yEpOStGbNGt1+++0NnnvixAlNmzZNaWlpqq2tdXivoKBABQUF2rJli+bNm6f77rtPEydOlM1mc3n/BQsWaM6cOSopKan3XmlpqUpLS3Xo0CGtWrVKs2fP1rRp03Tttde6LDM1NVWzZs1SRUWFw+tZWVnKysrSe++9p9/97neKiYlxWc65Yt68eXrxxRfrLa5TWlqqzMxMLVq0SLNmzdLll1+u4uJiPfbYY1q9erXDuSUlJVq/fr3Wr1+vDz/8UHPmzFGrVq2c3rOoqEhPPvmkVq5cWe+9vLw85eXlacOGDZo7d64eeeQR3Xrrrc3yrAAA4PxEYhIAAABeS0lJUWhoqMrLyyVJW7ZsaTAxWVxcrHvvvVfbt2+3XgsMDFTv3r0VERGh4uJiZWZmyjAMVVRU6KWXXlJmZqZmzZrltHfetGnT9Oabb1rHNptNXbt2VWxsrGw2m/Ly8pSVlWUlQY8ePaoHH3xQ//nPf3ThhRc2WOZf//pXzZ8/3+G1rl27Ki4uToWFhdqzZ4+qqqo0Y8YM9e/f36vPqiFxcXEaOnSoJGndunXW6ykpKYqIiJCkJvXOfPHFF/Xqq69KkoKDg9W9e3dFRkZq//79ysvLkySVl5fr4Ycf1gcffKBHHnlE27ZtkyTFxsaqW7duOnbsmNLT02UYhlXPGTNmOF3wKDs7W7/61a+UnZ1tvdaqVSslJSWpbdu2ys3N1f79+yWZydFnnnlG+/fv1xNPPNHo5wQAAOc3EpMAAADwWkBAgDp37qz09HRJ0r59++qdYxiGJk+ebCUlAwICdM899+iee+5xGMabl5en2bNn65133pEkffLJJ3rxxRf18MMP1ytz7dq1DknJESNG6PHHH683BDw3N1f//Oc/tXDhQklSbW2t5syZo1deeaVemStXrnRISiYnJ2vatGm64IILrNf27t2rp556Shs3btSOHTvcf0BuXHbZZbrsssus+532hz/8QZdcckmTyz+dlBw7dqweeughxcXFSTJ/JqmpqfrrX/8qyUxOjhkzRmVlZYqLi9O0adM0bNgwq5zdu3dr4sSJ1s934cKFmjhxosLDwx3uV1FRoUmTJllJydatW+vBBx/ULbfcotDQUOu8rKwsPf/881aPytdff129e/fWTTfd1ORnBgAA5x8WvwEAAECj2CcDjxw5Uu/9JUuW6IsvvpBk9mqcMWOGfv/739ebWzA2NlZTp07Vo48+ar02b948q3edPfuFdgYNGqS///3vDc5LGRcXp2eeeUbXXHON9dr69etVU1PjcF5tba1eeOEF67hXr156++23HZKSktSjRw/Nnz/f6uV4Prj11ls1ffp0KykpmT+Hu+++W0OGDLFeKysrU3h4uN5++22HpKRkfh4zZsywjk+ePKlvvvmm3r1ee+017dy5U5KZlJw/f77uueceh6SkZPZCfemll3TLLbdYr02fPl3Hjh1r2sMCAIDzEolJAAAANEpISIi1f/z48Xrvv/baa9b+9ddfr9GjR7ss7/7771dKSookM2G4YMECh/fLysochoQ/8MADCghw3ZwdMWKEtV9ZWani4mKH97ds2eKQAH366afr9QY8LTg4WNOnT3d47nNVeHi4HnnkEafvX3311Q7Ht99+u9PFi/r37++Q3MzKynJ4v7KyUm+99ZZ1fPfdd+vHP/6x03vbbDY98cQTVpnHjx/XokWLnD8MAADwWyQmAQAA0ChBQT/MClS3J2JWVpY1zFsyhxR74sYbb7T216xZ4/BeWFiYvvnmG33xxRd66623rKHQrtRdqObkyZMOx/b36Natmy6++GKX5cXGxtZL6p2LhgwZ4jTBKqnBFb1dsU9MlpaWOrz39ddfq7Cw0Dr25GfdqlUr/fSnP7WO6/6sAQBAy0BiEgAAAI1SVlZm7YeFhTm8V3e4b48ePTwqc8CAAdb+4cOHlZOT4/C+zWZTXFycLr74YperQ5eVlenLL7/UkiVLHF6vuyr4pk2brP2LLrrIozpeeumlHp13NvXu3dvl+23atHE47t69u8vzW7dube3X/Qztf9bBwcHq0qWLR3W0/1lv3bpV1dXVHl0HAAD8B4vfAAAAoFHse87V7Z1Xd7hv3bkLPZWbm6v4+Hin7+fk5GjXrl06cOCAsrOzlZ2drT179ujgwYP1EmiSrBWmTzu9QrVk9pj0RK9evTyr/FkUHR3t1fl1E8t12Ww2p+/Z/6yrqqocFvPxVEVFhUpKSur1cAUAAP6NxCQAAAAaxT6pFxsb6/Becy1mUlJSUu+1yspKLVq0SIsWLVJmZqbL64OCglz2xCsqKrL227Zt61Gd2rVr59F5Z5N9D0dPuEo8utNcP+ujR4+SmAQAoIUhMQkAAACvlZSU6MCBA9bx6UVrTrNPBrZu3drt3I3O1E0C5uXl6YEHHtD333/f4PlRUVFKSkpSSkqKBg8erICAAN17771Oy6+qqvK6Tq6GkJ8rmpJo9Jb9zzoiIqJeLHjqfPhcAQBA8yIxCQAAAK999913DscDBw50OLZPKIaEhDis0N1Y1dXVmjRpkkNSctCgQRoxYoRSUlLUs2dPRUVFOVyzfv16l2WGh4dbvSbrLurijP3cmnD8WScmJjbLzxoAALQMJCYBAADgtQ8++MDab9OmjX7yk584vG+/ivOxY8dUVlbmdh5Dd1asWKFvv/3WOn7wwQf1m9/8xuU1DQ0Ft9e1a1crMbl7926P6mHfUxSOP+vDhw+fxZoAAIDzDatyAwAAwCu5ubn69NNPreOrr7663uI3gwYNsvZra2u1ceNGj8reuHGjpkyZoldeeUUffvihjh8/br23Zs0aaz8uLk4TJkxwW96uXbscjusuiGNfz40bN6qmpsZtmZs3b3Z7Tkti/xkWFxcrPT3do+uWL1+uZ555Rq+++qqWLl3q0WcPAAD8C4lJAAAAeMwwDP3xj3+05mYMCAjQfffdV++8vn37OvSke/311z0q/x//+IcWLVqkmTNnatq0aQ7zDubn51v70dHRCghw3ZQ9duyY3n//fYfX6ia/RowYYe3n5ubqk08+cVnm8ePHtWTJErfP4Q1fzgd5Jlx66aUKCQmxjhcsWOD2msrKSs2YMUP//ve/9cILL2jOnDkKDAw8g7UEAADnIhKTAAAA8EhNTY2mT5+utWvXWq/dfPPN6tOnT71zAwMDddddd1nHX331lebOneuy/Lfeektff/21dTx+/HgFBwdbx5GRkdZ+ZmamcnNznZZVUVGhxx57zGHlcKn+YjcXXnihLrnkEuv4z3/+s7Kzsxss0zAMTZ061WEl7+Zgv4J2RUVFs5btCxERERo3bpx1nJaWpg8//NDlNbNmzXIYEn/LLbecsfoBAIBzF4lJAAAAuFReXq6lS5fqpptucuj5eMEFF+jxxx93et3tt9+u/v37W8ezZs3SY489Vm8ewsLCQj333HOaNm2a9VpcXJzuv/9+h/OGDh1q7VdVVenXv/51vaHaVVVVWrlypcaPH6/PPvusXp3sh4afNnXqVLVp00aSVFBQoFtvvVWfffaZDMOwzsnNzdWDDz5Yrwdmc7BPuH7xxRfNXr4vTJw4UZ06dbKO//CHP+ivf/1rvSRudna2Jk+erPnz51uvJScn66abbvJZXQEAwLmDxW8AAABasNTUVH388cf1XjcMQydPnlRBQYEOHjxYbwj0RRddpJdeesmht19drVq10osvvqi77rrL6oX4/vvv67///a969uyp6Oho5efnKzs726EnY3h4uGbPnq2IiAiH8q677jrNnz9fGRkZkqQdO3boxhtvVGJiojp27KjS0lJlZ2c7rJodHR2tsrIyqyei/XDw07p27arp06dr8uTJqqqqUl5enn7zm98oNjZW3bp1U1lZmXbt2mXNTzlixAi3Q769kZSUpJycHEnSm2++qU2bNikyMlI9e/bUlClTmu0+Z1JUVJRmz56t++67T0VFRTIMQ/Pnz9frr7+uXr16KSIiQrm5ufViKS4uTi+99JJDz1gAANBy0GMSAACgBcvIyNC6devqbf/73/+0efNmZWVlOSSS2rVrp0cffVQLFixQ+/bt3ZafmJiod99912EuR8MwtHv3bm3YsEF79+51SEr2799f//73vzVw4MB6ZQUHB2vevHlKTk52KCs7O1sbN27Uzp07HZKSw4cP1/vvv+9wvrOFa0aPHq358+crOjraei0vL08bN27U999/byUlb731Vj344INun9sbv/71rx0Sc7t27dJXX32l1atXN+t9zrQBAwbo3XffdRgaX1NTo/T0dG3cuLFeLA0ZMkSLFi1Sly5dzkZ1AQDAOYAekwAAAKjHZrMpJCREbdu2VWJiopKSknTZZZdp+PDh1rBnT0VFRenFF1/Uzp079dFHH2nDhg06fPiwjh07puDgYMXFxSklJUWjR4/W8OHDXS5q07FjR7333ntasmSJPvnkE+3cuVMlJSWy2Wxq166dunbtqv79+2v06NHWatFXXHGFtm7dKkn66KOP9Pvf/77BZxg8eLA+/fRTvffee1qxYoUyMjJ04sQJxcTEaODAgfrFL36h//f//p/27Nnj1fO786Mf/Uhvv/225s2bp2+//VYlJSVq3bq12rZtq4qKCpe9Us81iYmJeuONN7Rp0yZ98skn2rRpk3Jzc1VaWqo2bdqoU6dOuvDCC3X99ddr8ODBZ7u6AADgLLMZ9pPnAAAAAAAAAIAPMJQbAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD5HYhIAAAAAAACAz5GYBAAAAAAAAOBzJCYBAAAAAAAA+ByJSQAAAAAAAAA+R2ISAAAAAAAAgM+RmAQAAAAAAADgcyQmAQAAAAAAAPgciUkAAAAAAAAAPkdiEgAAAAAAAIDPkZgEAAAAAAAA4HMkJgEAAAAAAAD4HIlJAAAAAAAAAD73/wFf/jRm+BluggAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Non-Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.015, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.015, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate / (1 + rate * deadtimes_plot), \n", + " label=r'$\\frac{r_{in}}{1 + r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Paralyzable dead time" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "rate = 1000\n", + "length = 1000\n", + "events, events_dt = simulate_events(rate, length, paralyzable=True)\n", + "diff = np.diff(events)\n", + "diff_dt = np.diff(events_dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWQAAARLCAYAAAADAKrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDYOxm8iaZTDZIoSIdr/sqWhRaVEp0UabQmkRFRX1pVURUUjJLvuWfQ3DmJgxGGZhznb//pjm7pxZz5g5c2Z5PR8Pj+7rnPtc5zrn3Ob79Z7P+VwWwzAMAQAAAAAAAAC8zs/XCwAAAAAAAACA4oJAFgAAAAAAAADyCYEsAAAAAAAAAOQTAlkAAAAAAAAAyCcEsgAAAAAAAACQTwhkAQAAAAAAACCfEMgCAAAAAAAAQD4hkAUAAAAAAACAfEIgCwAAAAAAAAD5hEAWAAAAAAAAAPIJgSwAAAAAAAAA5BMCWQAAAAAAAADIJwSyAAAAAAAAAJBPCGQBAAAAAAAAIJ8E+HoBAACg+Dlx4oRuvPFGj861WCwKDAxUcHCwqlSpokaNGqlt27a6/fbbVaZMGS+vtOCZNGmSJk+eLElq06aNvv32Wx+vyHfuv/9+bdq0SZI0ZMgQPf3007meMywszDz+5ptv1LZt21zP6UtF7fV4au7cuRo5cqQk6corr9Ty5ctzPadhGJo7d64aN26sJk2apLs/7c+1ZcuWqUaNGrl+XgAAUPRQIQsAAAo0wzBktVoVFxenQ4cOacGCBXr11Vd14403atasWb5eHoBi4NChQ7rvvvv08ssvKz4+3tfLAQAAhRwVsgAAwOcaNmyoqlWrZnq/1WpVQkKCjh07psTERElSXFycXn/9dcXGxuqpp57Kr6UCKIZ69+4tm83m62UAAIAigkAWAAD43EMPPaQ+ffpke57VatWPP/6o9957T8nJyZKkyZMnq0OHDmrRooWXVwmguCKMBQAAeYmWBQAAoNAICgrSfffdpwkTJpi3OZ1OTZo0yYerAgCpRo0aOnDggPmH/rEAACAzBLIAAKDQuemmm9SuXTtzvH79ep09e9aHKwIAAAAAzxDIAgCAQumWW24xjx0Oh/7++28frgYAAAAAPEMPWQAAUCil/Trw6dOnMz3XarXqjz/+0Pr167Vz506dPXtW58+fV1BQkMqVK6errrpKbdu2VZ8+fVS5cuVM57n//vu1adMmSdKCBQtUu3ZtTZkyRfPnz1dMTIzKly+vhg0bqm/fvurWrVu6x69fv16rV6/W1q1bderUKZ0/f16SFBISourVq6t169bq3r27GjVqdDlvibp3766DBw9Kkjp37qzPP//co8c99dRTWrp0qSSpX79+Gjt2rObOnauRI0de1jokaciQIXr66aczvC8xMVG//fabNmzYoD179ujcuXOKj49XqVKlFBISorCwMLVv3169e/dWmTJlcvS8kZGR+vbbb7V69WqdOnVKQUFBqlatmjp16qTevXvrqquuuuzXlJHt27fr119/1caNGxUdHa3ExERVqFBBdevWVadOndS3b19VqFAhT59TSulpunDhQi1atEh79+7V+fPnVb58eYWFhalv3766/fbbZbFYcjzvoUOHNH/+fK1du1YnT55UfHy8ypUrp5o1a6pjx47q27evqlWr5vF83visT548qZkzZ+rPP/9URESE7Ha7rrjiCrVv314DBgxQw4YNc/y6M5LZ34EHHnjAPO7du7feeecdSdKJEyd04403mvctW7Ys3c+prl27KioqSpK0c+dOlShRQkePHtWPP/6oP//8UydPnpTFYtEVV1yhjh076t5771XNmjXd5li6dKl++ukn7d+/X6dPn1bp0qXVpEkT9ezZU927d5e/v79Hr89X1y4AACCQBQAAhVTaTXZKlSqV4Xnz58/X+PHjFR0dneEciYmJ+ueff7RmzRp98sknevHFF3Xvvfdm+/xOp1NPPvmk1qxZY94WExOjmJgYdezY0e3c3bt3a9SoUdq9e3eGc126dEkxMTHavn27pk2bpr59+2rUqFEKCgrKdh2uevXqpffee0+StHbtWp09e1YVK1bM8jFxcXFatWqVOfZkc7Xc+Oqrr/TZZ58pLi4u3X3x8fGKj49XVFSUli9frkmTJmns2LFu1dBZ+emnnzRmzBhdvHjRvO3ixYs6f/689u/fr+nTp+uBBx7Q888/73FolZmzZ8/qtddeM4NsV6nXwcaNGzVlyhQNHz5cAwYMyNXzudqzZ4+GDx+uiIgIt9tPnz6t06dPa82aNZo5c6Y+/PBDj+e8ePGiGcQ7nU63+2JjYxUbG6u//vpLn3/+uR599FENGTIk28DXG5/1l19+qYkTJ5qb+qU6duyYjh07pjlz5uiZZ57J8hcrBcnnn3+ujz/+ON3Ps/j4eB06dEizZs3SxIkTdcMNN+jcuXMaMWKEVq5c6XZuXFyc1q1bp3Xr1mnBggX67LPPsvzZ4ctrFwAApCCQBQAAhdKBAwfcxhltoDN9+nS9++67brddeeWVuvLKK+Xn56ezZ8/qyJEjstvtklKC0dGjR6tixYq6/fbbs3z+Tz/91C2MTeXv76//+7//M8ebN2/WY489pqSkJPO2ChUqqE6dOipVqpQuXLigI0eOmPcbhqE5c+YoKChIo0aNyuZdcNejRw9NmDBBdrtddrtdixYt0n333ZflYxYtWmSGQXXq1NE111wjSQoNDU0XLGdl69atZhBqsVjUrFmzdOeMHTtW3377rTm2WCyqXbu2qlatKovFopiYGB07dswMBM+fP6+hQ4fqhx9+UIsWLbJ8/iVLlujgwYMyDENSyvVQvXp1xcbG6siRI5Iku92u6dOn6+TJk5o4ceJlVZBKKVW4Dz30kCIjI83bgoKC1LBhQ5UuXVrR0dFmWBofH68333xTERERevnlly/r+Vzt2LFDDz74oNv1FBISovr168vhcOjgwYO6ePGiNm7cqEceecSjOc+dO6dHHnnE7RcG/v7+atCggcqVK6dz587p0KFDMgxDycnJmjx5sg4dOqSJEydmGmx747N+9913NX36dLfbateurdDQUJ05c0aHDx+WzWbTBx98oPDwcI9ee1Zc/w64/l1v2rSpypUrJ0m5qsb9+OOP9b///U+SFBgYqLp166p8+fKKiIhQTEyMJCkpKUnDhg3TL7/8ouHDh2vXrl2SpKpVq6pOnTq6cOGCDhw4YF73a9as0QcffJBpdbsvr10AAPAfAlkAAFDo2Gw2zZs3zxxXrVo1XTBy6NAhffDBB+a4TZs2euONN1SvXj23886fP6+vv/5an332mRkOffLJJ9kGsosXL5aU0sbgwQcfVPny5bVv3z5t27ZNVatWlSQlJydr5MiRZnhWrVo1vfXWW2rfvr1bGGiz2fTrr79q3LhxZjXhzJkzNWTIEFWqVMnj96VKlSq6/vrrtWLFCkkpbRWyC2R/+eUX87hv377mcYcOHdShQwePnnf27NlugdUzzzyjzp07u53z559/ugV0t956q0aOHJnu6+/R0dH69NNPNXPmTEkplcifffaZpk6dmuUaUgP6+vXra/To0WrVqpV538GDB/Xqq69qx44dkqTffvtN1157rUeV0GklJyfr6aefNgOtEiVKaOjQoerfv7+Cg4PN844dO6b33nvPrEL8+uuv1aBBA/Xr1y/Hz5kqISFBQ4cONa+nkiVL6qWXXtKdd95pVkQmJSVp+vTp+vTTT7Vnz55s5zQMQy+++KIZxvr5+WnQoEEaNGiQ29fVY2JiNGnSJP3444+SUq7/jz/+WMOGDUs3pzc+66VLl7qFsWFhYRo7dqxb8H/kyBGNGjVKmzZt8ui1Z8f170BYWJh5+wsvvKC2bdvmev7UMLZPnz569tlnFRoaKinlM/nyyy/NXyYlJSWpd+/eSkhIUGhoqMaOHatOnTqZ8/z9998aMmSIjh49Kum/nx1ly5Z1ez5fXrsAAMAdm3oBAIBCxWaz6fXXX3er8Lr//vvTnTdt2jSz8rVGjRqaOnVqujBWksqVK6dnnnlGAwcONG87dOhQhi0O0rr//vv16quvqkaNGipTpoyuvfZaPf744+b9v/76q7lOf39/TZ06VR06dEhXmRkYGKhevXpp3Lhx5m1Op1Nr167Ndg1p9e7d2zzevn27jh8/num5x44d0/bt28319ezZM8fPt2HDBr355pvm+LbbbtOTTz6Z7jzXfrYtW7bUhx9+mGEv0tDQUL355pu6+eabzdvWrVsnh8OR7VoaNGig77//3i2MlVKqGL/++mu3ysuJEye6tTbw1LRp07Rv3z5JKYHW9OnTNWjQILdAS0qp3Jw8ebL69+9v3jZu3DhduHAhx8+Z6uuvv9bJkyclpVScfvLJJxowYIDb19ODg4M1ZMgQvf322x7NOX/+fK1evdqc84MPPtDzzz+frndo1apVNWbMGD333HPmbZ9//nm6tgmpt6fKi8/a6XTq/fffN8f169fXjBkz0lVhX3XVVZo+fXqOKrt9bcCAARo3bpwZxkopn8PDDz+s9u3bm7clJCSobNmymjFjhlsYK6W8H66/fLp06ZK2bduW7rl8ee0CAAB3BLIAAKBAczqdio+P1/79+zVjxgz16dNHc+fONe+vX79+ukDWMAxz8y1Jeuihh9KFDmml7V156tSpLM+3WCwaPHhwluds2LDBPL7pppvcquwy0rlzZ5UsWdLjNWSkS5cuKl++vDmeP39+pue6Vsd26NDBLRTyREREhIYOHWq2PGjSpIm5wZGrhIQEt6/DP/744/Lzy/r/ht56663msdVq1blz57Jdz3vvvWd+lTytUqVK6e233zbD8Pj4eC1cuDDbOV1ZrVZ999135vjhhx9W69atMz3fYrHo5ZdfNt/XxMREzZo1K0fP6cr1s+zdu3eWwWOvXr100003ZTvntGnTzOPu3btnuBmdq8cee0xNmzaVlPJ386uvvnK73xuf9V9//eUW/L7xxhvpqj9TBQYGaty4cZn2lC5IypYtq+HDh2d6f9rP77777ku3wVeq8PBwt7+/x44dc7vf19cuAABwRyALAAB8buTIkQoLC8vwT+PGjdW6dWv17NlTo0eP1sGDB83H1apVS5988km68MVisWj58uVau3atZs6cqR49emS7hipVqriNL126lOX59erVy3bjoPfee09bt27VvHnz9MILL2S7Bn9/f7fKxLQbF3kiKChId9xxhzlesGBBpue6Bnw53czr/Pnzevzxx80WC5UqVdKnn36aYRBWpkwZbdu2TatXr9Z3333nUSuEtO9tdp9HmzZt1KRJkyzPqVevntq0aWOOU1s7eGrLli06c+aMOfbkPQsKCnLrKey6gVpOHD161C2UvOuuu7J9THYtGY4dO+bWi9nTa6BXr17mcdrX443P2vU56tSpo2uvvTbL+apWrepRGO1r7du3zzRYltL3xe7atWuW87kGsvHx8W73+fLaBQAA6RHIAgCAQickJEQDBw7U3LlzVadOnUzPq1y5slq2bKmQkJBMz0lOTtbWrVv1/fffu92edqf5tBo1auTRWsuUKaMmTZpkWtmW+lwHDx7Ud9995/a1YE++pp8R17AlIiJCO3fuTHfOli1bzHYK5cuX14033ujx/DabTc8884wZEAYGBmrSpEkZfi09lcViUWhoqK699tosd4BPSEjQ+vXr01X2Zvd5eNrv1rUqMKOvdWfF9fzAwEDVqlXLo8ddffXV5vHOnTvNVho5sWXLFvM4KCjIrFLNSuvWrRUQkPmWEWlf/1VXXeXRWlxfzz///JOukjuvP+vNmzebx2nbUWSmXbt2Hp3nSw0aNMjyftdqeUmqW7dulueXKFHCPE77Hvry2gUAAOmxqRcAAPC5hg0bmhthpRUQEKDSpUurTJkyqlWrlsLDw9WiRYscfyX57Nmz2rt3r44fP67IyEhFRkbq8OHDOn78eIYhQ+qu5ZmpWLFijp5fStmcZ9++fYqIiDDXcPToUR05ciTDfqbZrSEz4eHhatiwoVlNPH/+/HT9Nl1DsP/7v//LMjhLa/To0W7tGEaNGuVxUJbq1KlT2r9/f7rP48SJExmGr9m9Fxn1B86Ia6h17tw5JScnuwVZWXH9GrjNZsu2BUVGkpOTFRcXl211dVquPY2vvPLKLIPWVEFBQapZs6a52VNaab/WnrY3aU7WdsUVV2R6f24/65iYGPM4q1/AuKpfv75ni/ehnGzYJ6X8cicraXtTu/LltQsAANIjkAUAAD730EMP5fgr854wDEPz58/Xd999l2GVqKuAgIAcVX9lF4642rZtmz7//HOtWbPG7LeaEYvFIovFkm01qCf69Olj9nP97bffNHLkSPn7+0tK6Sf522+/uZ3rqS+//FI//vijOb7//vs93n3darVq1qxZmjVrlg4dOpTluTn9PLL66ndW58XFxXncOzevNjU6f/58jkOts2fPmsc5ufYy66kr5d3rSW1b4SovP2vX1166dGmP1pRVVXxB4ekvAlJlFbhmx5fXLgAASI9AFgAAFEkJCQl65plntHbt2gzvL1u2rBo0aKDw8HC1adNGtWvX9qjXbKrsNipKNX78eH3xxRcZ3leiRAnVrVtXTZo00TXXXKNOnTqpf//+ioqK8ngdmenRo4fGjx8vu92u2NhYrVu3Ttdff70kafny5WZA07BhQ7evJWdlxYoVeu+998xx+/btNXLkSI8eGxMTo8cff1x79+7N8P4KFSqoYcOGatq0qdq0aSM/Pz898sgjHs2dE2mrL9N+LTwrrqFhuXLlPGobkJGcVCOnyirIv9zncn09JUqUyLY3a2bShp95/Vlfzmu/nPc4v+UmYM0pX167AAAgPQJZAABQJL388stuYWzDhg31f//3f2revLnq16+fbhOvtF/fzgvfffedWxhbqVIl9ezZU61atVJYWJiuvPLKdMFuXvVorFSpkjp16qTly5dLkn799VczkF24cKF5Xt++fT2a78CBA3ruuefM6t1atWpp4sSJZtVtVux2u55++mm3gK5ly5a69dZb1bRpU9WrV89tMzNJWrdunUfrSpWYmOjReefPnzePLRaLx5W1knvwWKNGDU2bNs3zBeaS6zrTbtiUlYSEhEzvc309pUqVypPX443PumzZsmaVrKevPavXXRz58toFAADpEcgCAIAiZ+fOnVq8eLE5vuuuu/Tmm29mWdXqGtTlBavVqkmTJpnj8PBwff3119kGgHn11WIppRVBaiC7YsUKORwO2e12rVmzRlLK5j6eVAXHxsZq8ODBZuhZunRpffbZZypfvrxH61iyZIm2b99ujocOHaonn3wyy8dk9DX4rJw4ccKj8w4fPmwe16xZ0+NKZ8l9F/t//vnH88Xlgdq1a5vHJ06c8Kj3rWEY5sZtGXF9PRcuXFBCQkKO2iFkxBufde3atc1A9u+///ZoHcePH/fovOLCl9cuAABIz/P/BwoAAFBIrFq1yjwODAzUSy+9lG3wtm/fPrdxbvu4/vXXX25B07Bhw7INY48ePeq2udflbuqV6oYbbjCrEePi4rRlyxatW7fOfI7OnTtnuzlZcnKynnrqKTPE8fPz0wcffJCjTZNcP4/Q0FANHjw428fs37/fbZzd5+EaAmbFtRqzZcuWHj0mo/PPnTunAwcOePS433//XW+++ab+97//adGiRXI4HDl63rTPbbfbtWnTpmwfc+DAgSwrSl3ndDqdHs0pSZs2bdLrr7+uqVOnasGCBW7Vyd74rF3XuWnTJo/ev61bt2Z7TnHiy2sXAACkRyALAACKnNOnT5vHwcHB2Vb92Ww2/fDDD2635TZ4cF2DpHQtEjLyzTffuI1z274gMDBQ3bt3N8fLli0zK2Ylzzbzevnll93CzmHDhqlLly45Wofre1GpUqVsw/ELFy5o3rx5brdl93ksX75csbGxWZ6zdetW7d692xzffPPNWZ6fVrt27VSqVClz/NVXX2X7GKvVqg8++EDff/+93n//fX322WcetXlIq2HDhrrqqqvMcdprJSMzZ87M8v7GjRu7VU5+/fXXHq3lo48+0qxZszRhwgSNHTvWra+oNz7rW2+91TyOjo52q37PSGJioubPn5/t68iJ/Oz36g2+vHYBAEB6BLIAAKDIcf0q/fnz57Vz585Mz3U4HHrrrbfSVche7iZKGa1BktkmIDMLFixIFwrndg2Se+i6dOlSrVixQlJKWNa5c+csHzt58mS3frO9e/fWY489luM1uL4Xhw4dUnR0dKbnJicna8SIEYqJiXG7Pbv34tKlS3rppZcyDW7Pnj2rl19+2RzXqlVLN954ower/0+5cuXceu7OnTtXCxYsyPIxEydOdPv6fP/+/XP0nK4ef/xx83j16tWaMWNGpueuW7dOs2bNynI+f39/Pfjgg+Z4w4YNmjJlSpaP+e6777RlyxZzfOeddyowMNAce+OzbtGihdq2bWuO33rrrUxbMRiGoTFjxpgtDvKKa3uI5OTkPJ07P/j62gUAAO4IZAEAQJHTsWNHt/Hw4cPdQiQpJbhZv369Bg4cmC4IlTzfJCoz11xzjYKDg83xRx99pHnz5qULDA8dOqRXX31Vzz//fLoWBUlJSblag5RSBdmoUSNJUlRUlFnB2KNHDwUEZL6dwKJFizR58mRz3K5dO40ZM+ay1uD6edhsNj3xxBPpvqZus9m0dOlS3XnnnVq2bFm6OTz5PNasWaNBgwYpIiLC7fbNmzerf//+5u1+fn4aM2ZMjvrHphoyZIiqV69ujl944QW9++676QLAyMhIvfjii5o+fbp5W1hYmPr165fj50zVq1cvdejQwRyPGTNG48ePd9vAymq1asaMGXriiSc8artx3333KTw83BxPnDhRI0aMSNdn9MyZM3rnnXc0duxY87bQ0NB0Ab23PusxY8aoZMmSklJ6Gg8YMEDLli1z+zsTHR2toUOHpqu4zQuuQfPq1avzfP784MtrFwAAuGNTLwAAUOS0adNGHTt2NKtSIyMjde+996p69eqqXr26Ll68qKioKLcer8HBwQoKCjJvS9tyIKeCg4P1xBNP6IMPPpCUEpSNGDFC77zzjmrVqiV/f3+dOnVKJ0+edHtctWrVzNtyu4ZUffr00dtvv53utsycPXtWI0aMcAu7KlWqpBEjRujSpUuy2+1yOBzZ9rh99913VblyZd1xxx2aPn26Dh48KEnas2ePevXqpRo1aqhatWqKj49XZGSkW7BYqVIlJSQkmNWI2b0Xt956qxYvXqz169frtttuU/369VWhQgVFRUUpKirKPM9isWjkyJFq165dlvNlpkKFCpo0aZIeffRRnT17VoZhaPr06fr6669Vv359lStXTtHR0Tpx4oRb+B4aGqrJkye7VZNejnHjxmnQoEE6dOiQDMPQF198oW+++UaNGjVSQECADh06ZG4MV69ePVksliw3wgoKCtLHH3+sBx980Kw6nTdvnn7++WfVq1dPlSpV0unTpxUZGelWuVq2bFlNmjRJ5cqVc5vPW5917dq1NW7cOL344ouy2WyKiYnRk08+qapVq6pOnTpKSEjQ/v37zRA69XrIKw0bNtSpU6ckSd9++602b96s8uXLq169enr99dfz7Hm8ydfXLgAA+A8VsgAAoEj68MMP1aZNG7fb/vnnH23ZskV79uxxC2NbtGihOXPm6LrrrjNvS1tRezkeffRRt6+ESymba+3cuVN//fWXWxh7xRVXaMqUKW4Vh9u3b8+TTXS6d+/uFqZcffXVatiwYabnJyUlpfta9q+//qqFCxdq6dKlWrlypf7880+tWbMmyz+XLl2SlNLL9vPPP1dYWJg5n2EYioyM1KZNm7Rv3z63gK5z586aN2+e2/nZbdJ0zz336LnnnpO/v78Mw9ChQ4e0adMmtzC2QoUKmjBhgh544IFs3rGsXX311Zo9e7bb1+gdDocOHDigTZs26dixY26fW/v27TVr1izVqlUrV88rpYRj33//vVslanJysnbs2KGtW7eaYWyDBg00depUlS5dOts5a9SoodmzZ7v1ajUMQ3///bc2btyoI0eOuIWx4eHh+v7779W8efN0c3nzs+7WrZumT5+uSpUqmbfFxMRo06ZN2rt3rxnGDhgwQEOHDs32defEE0884fZ3aP/+/dqwYYNWrlyZp8/jbb68dgEAwH+okAUAAEVS2bJl9fXXX2vx4sVauHCh9uzZozNnzsgwDJUtW1Y1atRQ48aNdfPNN+v666+XJHXp0kW//fabpJSvv0dHR7ttepRTqdWY3bp106xZs7Rt2zZFR0fLarUqODhYoaGhCgsLU8eOHdWtWzeVKFFC//zzj8aMGSOn06nz58/rjz/+0O23356r96JixYpq1aqVNmzYIMmzzbzyWrVq1TRnzhzNnz9fixcv1r59+xQXFyeLxaKQkBDVrl1b4eHh6tatm7kjfJcuXcz+vwsXLtTzzz9vfm09I4899pg6dOig7777Tps2bVJMTIyCg4NVt25dde3aVXfffXe6is7LVaNGDX3zzTfavHmzFi9erM2bNys6Olrx8fEqWbKkqlevrhYtWqh79+7pfjGQWyEhIZo2bZpWr16tefPm6a+//lJsbKxKly6tOnXqqFu3brrnnnvc+p5mp0KFCvr444+1b98+LVy4UBs3btQ///yjCxcuKDAwUKGhoWratKm6deumzp07Z9nuwZufdZs2bfTHH39ozpw5WrJkiQ4ePKiLFy+qcuXKat68ue655x5dd911Onz4cA7f1axdc801mjFjhj7//HNt375dcXFxKlGihEqXLq3k5OQcvde+5strFwAApLAY2X3XDAAAAIWa1WpVhw4ddOHCBZUsWVJ//vmnQkJCfL0sAAAAoFiiZQEAAEARt2zZMvOr7N26dSOMBQAAAHyIQBYAAKCImzFjhnk8YMAAH64EAAAAAD1kAQAAiiin06mPP/5YmzdvliS1a9dOTZs29fGqAAAAgOKNHrIAAABFyNtvv62//vpLJUuW1JEjRxQbGytJCgoK0rx581S/fn0frxAAAAAo3qiQBQAAKEKqVKli7lafKiAgQGPGjCGMBQAAAAoAAlkAAIAipGXLlqpXr54iIyNVpkwZNWvWTI899phatWrl66UBAAAAEC0LAAAAAAAAACDf+Pl6AQAAAAAAAABQXBDIAgAAAAAAAEA+oYcscmXr1q1uYz8/Mn4AAAAAAIDiyOl0uo3ZxyBjBLLIU2n/4gEAAAAAAAD4D+WMAAAAAAAAAJBPqJBFnqJlAXIsKUlyraz285OCg323HhRarhX6/CzC5eAaQm5xDSG3uIaQF7iOkFtcQ8gNvjntGQJZ5Iqfn5/bX7amTZsqIIDLCp4zGjWS5cCB/8ZhYbLs3+/DFaEwstvt2rFjhznmZxFyimsIucU1hNziGkJe4DpCbnENIbf++usvMyci0M8c7wwAAAAAAAAA5BMCWQAAAAAAAADIJ9SdA/Apx5QpOrprlzmu27QpP5gAAAAAAECRRe4BwLc6dtSFsmX/Gzdv7ru1AAAAAAAAeBktCwAAAAAAAAAgnxDIAgAAAAAAAEA+IZAFAAAAAAAAgHxCIAsAAAAAAAAA+YRAFgAAAAAAAADySYCvFwCgmNu+XaV37/5vbBhS69a+Ww8AAAAAAIAXEcgC8Cn/++5TowMHzLERFibt3+/DFQEAAAAAAHgPLQsAAAAAAAAAIJ9QIQsAAAAAKBQMw5DT6fT1Mgosh8ORbmyxWHy0GhRGXEPFi5+fH5+vjxDIAgAAAAAKJMMwlJSUpAsXLighIUF2u93XSyrQDMNwGx8+fJiwBTnCNVT8BAQEqEyZMgoJCVFwcDCfdz4hkAUAAAAAFDhWq1XHjx+XzWbz9VIKlYAA/pmP3OEaKl7sdrvi4uIUFxenwMBA1apVS0FBQb5eVpFHD1kAAAAAQIFCGHt5LBaLAgICzD9UuiGnuIaKN5vNpuPHj8tqtfp6KUUev/YAAAAAABQYhmGkC2NLly5tfp3W39/fh6sr2FJbPKTi68fIKa6h4sXhcJhtYRITEyX9F8rWq1ePz96LCGQBAAAAAAVGUlKSWxgbGhqqihUr+nBFhYdhGG6Btb+/P4EKcoRrqHjx9/dXUFCQypcvr7Nnzyo6OlpSSiiblJSk0qVL+3iFRRctCwAAAAAABcaFCxfM49KlSxPGAkA+qFixolsAGx8f78PVFH0EsgAAAACAAiMhIcE8DgkJ8eFKAKB4cf2ZSyDrXQSyAAAAAIACwTAM2e12cxwcHOzD1QBA8eL6M9dut8swDB+upmgjkAUAAAAAFAhOp9NtzAZeAJB/0v7MTfszGXmHQBYAAAAAAAAA8gmBLAAAAAAAAADkEwJZAAAAAAAAAMgnBLIAAAAAAAAAkE8IZAEAAAAAAAAgnwT4egEAijfH4sXat3OnOW7crBk/mAAAAIDLFBgY6OslAACyQe4BwLeuvFLW2Fi3MQAAAHA54i7aFHfR5utl+IwhQw67wxz7B9hUoVSQypcipEXhYLPZ+KUCigUCWQAAAABAkRB30aaIs0m+XoZPOZwugayfvywVLfkeyM6dO1cjR440x1OnTtUNN9zg8eNPnTqlzp07m+MDBw7k5fLyRdeuXRUVFSVJWrZsmWrUqOHjFeW9SZMmafLkyZKkIUOG6Omnn77suWJjY/X+++/ruuuuU69evdLdP2LECM2bN0+SNG7cOPXp0+eynwsoCAhkAQAAAABFyoZj52R3Gr5ehg8YstlSKoQD/Cy6vn6oj9eT4tVXX9WCBQtUoUIFXy8FBdCiRYv0+uuvKz4+Xm3btvX1coB8QSALAAAAAChS7E6j2AayBfF1nz59Wm+88YY++ugjXy8FBdDq1asVHx/v62UA+crP1wsAAAAAAABF2++//6758+f7ehkopN555x0dOHBABw4coF0BigQCWQAAAAAA4HVjxoxRdHS0r5cBAD5HIAvApyw//6xKCxaYfyw//+zrJQEAAADIIw0bNlT58uUlSRcuXNDLL7/s2wUBQAFAD1kAPuX36quq47JrqhEWJt15pw9XBAAAACCvVKpUSU888YSGDRsmSVqzZo1mzJihe++9N8+e4/Dhw/rxxx+1adMmRUVFKSkpSeXLl1fdunXVqVMn3XXXXSpXrlyePd+ZM2c0Y8YMrVy5UkePHpXT6VS1atXUtWtXDRw4UKGhOdtMbefOnfr555+1ceNGRUdHKzk5WRUrVlSTJk100003qUePHgoMDMx2HpvNpt9//11r167Vzp07debMGSUkJKhUqVIqX768mjZtqq5du6pbt27y9/fPci6n06nFixfrjz/+0O7du3XhwgVVqFBBLVq00IABA3Tdddfl6DVmpGvXroqKinK7beTIkRo5cqQkady4cWZ7ghEjRmjevHnpbk8VFhYmSbrxxhv16aef6sKFC5o5c6YWL16syMhI2Ww2Va1aVddff70GDhyomjVrmo/dt2+fZsyYoQ0bNig6OlolS5ZUo0aN1KtXL/Xp00cWiyXL12EYhpYsWaLFixdr+/btOnPmjCwWi6pUqaJWrVrpjjvuUIcOHXL3ZqHIIZAFAAAAAABe061bNy1btkwLFy6UJI0fP14dO3ZU7dq1czVvUlKS3nnnHf34448yDPfNzE6fPq3Tp09r06ZNmjp1qkaOHKm+ffvm6vkkadWqVRo2bJgSExPdbj969KimTZum2bNn64MPPvB4/a+99pr5vrg6deqUTp06peXLl2vKlCmaOHGirr766kzn2rhxo0aMGKF//vkn3X3x8fGKj49XZGSkFi1apM8//1xTp05V9erVM5zr3LlzGjZsmHbu3Ol2e0xMjP744w/98ccf6t+/vypWrOjR68xv27Zt07PPPpuuPUZERIQiIiL0yy+/6LPPPlPr1q31+eef66OPPpLdbjfPs1qt2rRpkzZt2qSVK1fqo48+kp9fxl8wP3bsmIYNG6Y9e/ZkeN+xY8c0d+5cdejQQePHjy+w7xnyH4EsAAAAAADwqtdff12bNm1STEyMkpKS9NJLL2nGjBnZVmpmJjk5WY8//rg2bdpk3ta4cWNdd911KleunP755x+tWLFCMTExio+P18svv6xTp07pqaeeuuzXsHjxYg0fPtwM76pUqaKbb75ZVatW1cmTJ7V06VKdOXNGTz/9dLZVlUlJSbrvvvvMIM/Pz0/t27dX06ZNVaJECZ04cUIrV65UbGysjh8/rnvvvVfTpk1T69at0821detWDRo0SDabTZJ0xRVXqFOnTqpevbosFouio6O1bt06RURESJIOHjyo4cOHa+bMmenmOnfunAYOHKgTJ05IkgIDA3XDDTeoUaNGslqtWrdunXbt2qUffvjBbEVxuQYPHqz4+HgtWrRIu3fvlpQS3qcGz02bNs3xnJGRkXr88cd14cIFVa5cWTfffLMqV66sY8eO6ffff5fVatWFCxc0YsQI9evXTxMmTJCfn59uuOEGNW3aVDabTcuXL9fBgwclSX/88YdmzZql/v37p3uugwcP6v7771dcXJwkKTg4WF27dtVVV10lp9OpQ4cOadWqVbp06ZLWrl2rfv36afbs2YSykEQgizxmsVhkGEa2/+MDAAAAACg+ypUrp7feekuPPvqoJOmvv/7S//73Pz3++OOXNd+4cePMMLZUqVJ6++231a1bN7dzkpOTNX78eH3zzTeSpEmTJqlJkybq0qVLjp/vwoULeuONN8wwtnv37hozZoxKlSplnvPiiy/qlVde0e+//57tfKNGjTLD2AYNGujDDz9U/fr13c65dOmS3n//fX333Xe6dOmSnn32Wf3666/p2i+88cYbZhjbo0cPvfXWWwoKCnI7xzAMff7555owYYKklPd/z549Cg8PdztvwoQJZhh7xRVXaOrUqWrUqJF5//Dhw/Xzzz/r1VdfNYPIy3XXXXdJkg4dOmQGstdff326dgQ5kRqk9u3bV2+88Ybb+3D//ferf//+stvtioyM1IQJE1SxYkVNnTpVzZo1M88bOnSoXnzxRS1YsECSNHv27HSB7MWLF/X000+b78Ett9yiMWPGpAupo6Oj9dxzz2nz5s06ceKEXnjhBU2bNu2yXx+KDjb1Qp6yWCxyOI3sTwQAAAAAFCudOnXSPffcY44nTZqk/fv353ieY8eOafbs2eZ4/Pjx6cJYSSpRooReeeUV3X333ZJSQsnx48fL6XTm+DmnT5+us2fPSpJatmyp9957zy2MlaQyZcpowoQJatGiRZZz7du3T/Pnz5cklS9fXl999VW6MFaSSpYsqddee80MkE+fPq1vv/3W7ZydO3eaIWTlypU1ZsyYdGGslPJv9ccff1z16tUzb9u1a5fbOREREZozZ44kKSAgQB9++KHZm9VVr169zD6vBVF4eLjGjh2b7n1o1qyZbrzxRrfbxowZ4xbGSinVyi+88II53r9/v6xWq9s5P/74o1lxfO211+rDDz/MsGI4NDRUU6ZMUdWqVSWl9FDevHnz5b40FCEEsshzNgJZAAAAAEAGXnrpJdWqVUtSyiZUL7zwQrqwKzsLFy40K1XbtWunm266Kcvzn3/+eQUHB0uS/v77b23dujXH616yZIl5/MQTT2TaU9Tf39/cwCwzrq0C7r77blWuXDnL813bLPzyyy9u95UvX16vvfaaHn74YT377LMqWbJklnO5VrvGx8e73bd06VKzF2+XLl3UsGHDTOcZMGCArrzyyiyfy1cGDhyY6efTpEkT87hKlSrpAtpUoaGhCgkJkSQ5HA6dP3/e7X7Xz3Dw4MFZtt4oU6aMHnzwQXP8888/Z/cSUAwQyCLP2Rw5/20jAAAAAKDoCw4O1jvvvGMGZgcPHtTHH3+cozk2bNhgHt9+++3Znh8SEqLrr7/eHG/cuDFHz3fy5En9/fffkqSgoCC1b98+y/Pbtm2bZX9V1763aVsGZKRJkyZmoHz8+HHFxMSY99WqVUv33XefXnrpJfXr1y/LeWJiYnTu3Dlz7LqRlST9+eef5rHr+5URi8Wim2++Odu1+0LaildXruF3eHh4lu0WS5cubR4nJyebx7GxsTpy5IjbPNlp1aqVebxly5Zsz0fRRw9Z5Dk7FbIAAAAAgEy0atVKgwYN0hdffCFJmjZtmrp27aprrrnGo8cfP37cPG7cuLFHj2nSpIkWL16c7vGeiIqKMo/r1KmjwMDALM+3WCxq2LChW/CayuFw6OjRo+b4mWeeydFaJOmff/4xvwKf2f3Hjh3TiRMnFBkZqcOHD2v//v1mb9hUqdWwqVxf51VXXZXtOlyrbQuS0NDQTO9zrZxNrYD15FxXhw4dchu3a9cuB6tL+XwAAlnkOZuDQBYAAAAAkLlnnnlGq1at0sGDB+V0OvXSSy/pl19+MStBs+K6mVSFChU8ej7X83K6GVVsbKx5nF2Il926zp8/ny4IzamM1h8REaHp06dryZIlZq/bjPj7+8vhcGR435kzZ8xjT16np+99fkvb2zczWbUZyEpuNzOzWq1KSkry6FpH0UUgizxHywIAAAAAQFaCgoL0/vvv684775TNZtPx48f1zjvvaPTo0dk+9nICTdcQMrPKx7yU0cZaUvo2AY899liW7Q0yUrduXbfxnDlz9MYbb8hms6VbQ+3atdWwYUM1a9ZM7dq101dffaV58+bl6Pkyk9lr9LWs2hDkBddrqWzZsnriiSdyPEdAAHFccccVgDzncBoyDMPrPwQBAAAAAIVXo0aN9PTTT2vChAmSpFmzZummm27KcjMpSSpXrpzZR/XcuXPmJmFZce2dWrZs2Ryts0qVKuaxp9WRaTfMSlWuXDm38W233eZRD9LMbNu2Ta+//roZErZq1Up33XWXWrRooVq1aqULny9evJjpXFWqVNGxY8ckpVTy1qhRI8vnvnDhwmWvuzBzrR52Op0aNGiQD1eDwopNvZDnDNFHFgAAAACQvUceeUQtW7Y0x6+88kq6He3TqlOnjnm8b98+j55n79695nHt2rVztEbXYDIiIkKXLl3K9jGHDx/O8PYSJUq49ThN2480M5m1IZg6daoZxt5www2aMWOGevXqpTp16mRYCew6T9pKY9fXefDgwWzXlNlrLOpcr5/ExESPesJardZMQ3oUTwSy8AraFgAAAAAAsuPv76933nnH7PsZExOjMWPGZPmYa6+91jxetGhRts9x4cIFrV271hy77njvidDQULOK1W63a9myZVmef/jwYUVGRmZ6f5s2bczj33//Pdvn379/v6677jo1b95c3bp1cwtVt23bZh7fddddWX5TNSkpSTt27DDHaQPZrl27msdLly7Ndl2rVq3K9hxPFLZv19auXdstVE/dLC4rM2fOVOvWrXXttddq8ODB3lweCgkCWXiFjQpZAAAAAIAH6tSpoxdeeMEcb968Ocvze/fubW7ItHHjxmzDwwkTJphf1b/iiivcAl1Pde/e3Tz++OOPs/zq/0cffZTlXH379jWPV65c6RYWp2UYht5//31J0qVLlxQSEqKKFSua97v2jc1qMy9Jev/995WcnJzhYyXp1ltvVWBgoCRpw4YNWr9+faZzrVixwi3czQ3XSt7MNhwraFw/wy+++MJsoZGRc+fO6fPPP5eU8suB7FpyoHggkIVX2B0EsgAAAAAAzwwYMEAdOnTw6NyaNWvqzjvvNMfPP/98hpWyVqtV7777rn744Qfzttdee+2yNlS69957ddVVV0lKaVvw2GOP6cyZM+me7+233862YvK6664zX6thGHrmmWcyDJWTkpI0atQorVmzxrxt6NChbuc0atTIPJ46dapOnz6dbp74+Hi9+uqr+v77791uT9t6oUqVKnr88cfNdb300ktuz51q7dq1bgF6bpUpU8Y8joqKyrN5vemBBx4wewufOXNGAwcOzLD9xMmTJ/XEE0+Yn0v58uX10EMP5etaUTCxqRe8gpYFAAAAAHwlwK9wfQU6Lxn/vvbC9h5YLBa9/fbb6t69u0ebRb3yyis6cOCAtm/frosXL2rYsGH64osvdN111ykkJEQnT57UihUrFB0dbT7m0Ucf1U033XRZ6wsKCtK7776rhx56SAkJCdq0aZNuueUW3XLLLapdu7bOnj2rpUuXKioqSgEBAapWrVqWbQvGjx+vu+++W8ePH1dCQoKeeuophYeHq127dipTpoyioqK0fPlyt6rXwYMH67rrrnOb56GHHtJff/0lSYqMjDTXVLNmTVmtVkVERGjVqlVm+BoYGGhWxma0Qdnjjz+udevWadu2bUpISNAjjzyidu3aqVWrVrJYLNq6datZOVu3bl0dPXr0st5PV669a6dPny6r1aqyZcvq2muvVevWrXM9vzdUqFBBH330kQYNGqSLFy/qyJEj6tmzpzp06KCrr75aFotFhw8f1rJly8z3OzAwUO+9954qVKjg49WjICCQhVfQsgAeCwyUMyjIHFr+/YoMAAAAcLna1S6+gYfDWTi+8p2RK664Qq+++qpefPHFbM8tUaKEvv76a7355puaN2+eDMPQ3r173TbvSlW6dGmNGjVKPXv2zNX6mjVrppkzZ+rxxx9XVFSUEhISNHfuXLdzgoKCNGbMGC1fvjzLQLZixYr68ccfNWLECK1cuVKStGfPHu3ZsyfD1/rss8/q4YcfTnffrbfeqqefflqTJ0+WYRhKSkrSzz//nOFz3n777erZs6fZw3T37t3pzgkMDNSnn36q0aNHm1XHGzZs0IYNG9zO69q1q/r06aMhQ4Zk+ho9dfvtt2vy5MmKi4tTcnKypk2bJkm67777CmwgK6X0Iv7hhx80fPhwHTlyRA6HQ6tXr9bq1avTnVu1alW98847HleBo+gjkIVXUCELTzn++sut91Dz5s35wQQAAIDLUr5UoOpUDPb1MnzGkCGH/b9A1j/AX+VLFa6Ch549e2rZsmUebZRUsmRJjRs3TgMHDtRPP/2kjRs36tSpU0pISFDZsmXVsGFDderUSX379nXru5obDRo00KJFizR79mz99ttvOnjwoC5duqSqVauqXbt2evDBB9WwYUMtX74827kqVKigqVOnauvWrVqwYIG2bNmi6OhoJSUlqUyZMqpbt66uu+469evXT9WrV890niFDhuj666/X999/r23btik6OlpOp1OlS5dWrVq1dPXVV6tXr15q3ry5rFarKlSooHPnzunvv//Wrl271LRpU7f5goKCNHbsWPXo0UPz58/Xtm3bdObMGZUpU0YNGzbUnXfeqR49emjFihW5fj8lqXLlypo5c6Y++ugjbd68WXFxcSpZsmSWfXoLisaNG2vhwoVavHixli5dqh07dujs2bOy2WwqX768wsLC1LVrV/Xs2dOtNQNgMdJuqwfkwF9//SWn87/wtWXLljoed0lWh1MNq/DDBtmz2+3pA9nL6OmE4o3rCLnFNYTc4hpCbnENpXA4HDp48KA5btiwobl5E7JnGIbbRk2BgYGFbgd7+FZqlW2q4OBgrqFiJC9+BrvmRH5+fmrZsmWerrGoKH7/C498YWNTLwAAAADId2kDWQBAwePn6wWgaKJlAQAAAAAAAJAegSy8ws6mXgAAAAAAAEA6BLLwCpuTClkAAAAAAAAgLQJZeAU9ZAEAAAAAAID02NQLXuF0GnI6Dfn5sRsjsmaZOFFX7tnz3zg8XHrhBR+uCAAAAAAAwHsIZOE1NqehEgSyyIbftGm64sABc2yEhRHIAgAAAACAIouWBfAam4M+sgAAAAAAAIArAll4jd1JH1kAAAAAAADAFYEsvIYKWQAAAAAAAMAdgSy8xkaFLAAAAAAAAOCGQBZeY6dCFgAAAAAAAHBDIAuvoUIWAAAAAAAAcEcgC6+xOQhkAQAAAAAAAFcEsvAaWhYAAAAAAAAA7ghk4TW0LAAAAAAAAADcEcjCa2xUyAIAAAAAAABuCGThNXYqZAEAAAAAAAA3BLLwGjb1AgAAAAAAANwRyMJrDMOQ3UnbAgAAAAAAACAVgSy8yk6VLAAAAAAAAGAK8PUCULTZnIZK+noRAAAAAFBMBAYG+noJAIBsEMjCq2wOWhYga0ZYmC4a/1VSlwwLk8WH6wEAAEDh5bgUJ2dynK+X4VMOu908tgQEyK9EefmXLO+7BRVwNpuNELuY4TNHQUAgC6+iZQGy4/zpJ+3bscMcN2/enF4qAAAAuCzO5DjZLxzz9TJ8yuF0/Dfw81dAiPItkP3qq680btw4SVK1atW0cuVKjx7Xo0cPHThwwByPGjVKAwYMyPZxv/76q4YPHy5JqlixotatWyeLxaKNGzfqgQcekCS1adNG3377bYaPX79+vcaOHatff/01w/vDwsLMY9f1FRQFfX15YcSIEZo3b54kady4cerTp89lz3X8+HG99dZbevjhh9W2bdt0999///3atGmTJOmbb77J8BwgrxDIwqtsTgJZAAAAAPkr+eQGGU579icWMYYkmy3ldVv8AlS2Vsd8ff727dubxydPntQ///yj6tWrZ/mY6OjodGHi6tWrPQpkN27caB536NBBFovn37UbNmyYFi1a5PH5KNy++uorffDBB7JarXr44Yd9vRyAQjR4Fy0LAAAAAOQ3w2mXDEcx/WOXDLtPAumGDRuqatWq5njLli3ZPmbVqlXpbtuwYYOsVmu2j3UNZK+//noPV5mCMLZ4WbZsmUfXFJBfCGThVXYqZAEAAACg2OjQoYN5nJNA1mKx6IYbbpAkXbx40S1szUhMTIwiIiLMx7oGsm3bttWBAwd04MCBTNsVAGl9++235nVDuwJ4G4EsvMYQFbIAAAAAUJy4ti3YunVrludarVatX79eUkp1bbdu3cz7MqqcdZXa61OSmjRpoooVK17OcgHAJwhk4TV2p0EPWQAAAAAoRlx7uR4+fFjnzp3L9NytW7cqMTFRUkqQe/3118vPLyWmWL16dZbP4xrI5rRdAQD4Gpt6wWvsDqfsVMgCAAAAQLFRqVIlNWrUSPv27ZNhGNq2bZtuvPHGDM91DV2vv/56VaxYUeHh4dq1a5eOHTumiIgI1alTJ8PHZtU/duPGjXrggQckSW3atDHbFrje7iosLMw8TrvBmKvk5GTNnDlTf/zxhw4fPqzExERVqVJFjRs3Vu/evXXTTTdl+ticioyM1IwZM7RmzRpFRkbKz89PNWvW1K233qoHHnhAZcuWzdF869at08KFC7V161bFxMTI6XSqUqVKat68uW677TbdcsstHm2KdvHiRS1YsEDr16/X3r17de7cOSUmJqp06dKqWLGiWrRooVtvvVVdunTJdi6r1aqffvpJv/32mw4cOKDExERVrlxZbdq00QMPPKCrr746R68xI66fbSrXa+Cbb74x2xPcf//9ZtDversknThxwryOH3jgAb3yyiuKjo7WDz/8oGXLlikqKkoWi0XVq1dX165ddf/996ty5crm4zdv3qwffvhBf/31l06fPq0yZcooPDxc/fv39+i6sdvtWrBggZYuXao9e/bo7NmzCgwMVGhoqNq0aaM+ffqoWbNml/cmwScIZOE1Nochm4MKWWTN7+mnVW/fvv/GjRtLn33mwxUBAAAAyI327dtr37//H3/Lli2ZBrKpbQmCg4N17bXXSkoJV3ft2mXen1Eg69o/tmzZsmrRokXevoAM7N27V0OGDFFUVJTb7VFRUYqKitLSpUt144036oMPPlCpUqVy9Vxz5szRG2+8IZvN5nZ7an/TWbNm6dNPP/VorjNnzuj555/XunXr0t2XuvZFixYpPDxcH330kWrUqJHpXIsWLdLo0aMzrHo+f/68zp8/r6NHj2revHlq06aNJk+erHLlymU41/Hjx/XYY4/p6NGjbrefPHlSv/zyixYuXKinn37ao9foC0uXLtXIkSN14cIFt9sPHjyogwcP6ueff9b06dNVt25dvf322+l6GZ87d05r1qzRmjVrNHDgQL388suZPtfOnTv1/PPP69ixY263JycnKyEhQYcPH9YPP/ygO+64Q2PGjFFwcHDevVB4DYEsvMbmdNKyANmyrFih8i6/hTZOnfLhagAAAADkVseOHTVt2jRJmfeRPXHihA4fPiwpZROuoKAgSVKnTp3MsHHVqlUaOHBguse6Vse2b99eAQGeRRu1atXSiy++KEl67733zNtTb8vKfffdp8TERJUqVUo33nij6tatq+TkZP35559m+Lxs2TKNHz9er732mkfrychXX32lcePGua25S5cuqlChgo4dO6YlS5YoOjpagwYNynaumJgY3XPPPWaIHBgYqM6dO6tRo0by8/NTRESEVq5cqQsXLmjPnj2688479cMPPyg0NDTdXIsWLdLw4cNlGCn/xq9Tp446dOig0NBQORwO/fPPP1q9erWio6MlpbSUePPNNzVhwoR0c0VERKh///46e/asJJnvab169RQfH69Vq1bp8OHD+vDDD1WhQoWcv4kuUj/bH374QZGRkZKke+65R7Vq1ZIk8785sX37dv3www+y2WyqUaOGunTponLlyunQoUNasmSJnE6nTp06pVdffVXh4eH69ttvFRgYqJtuukkNGzZUQkKCFi9erBMnTkiSvv76a3Xs2FGdOnVK91zr16/X4MGDdenSJUlShQoV1KVLF9WsWVM2m0179uzR2rVrZbfbtXDhQh07dkwzZsxQiRIlLuv9Qv4hkIXX2B2G7E6nDMPw6KsPAAAAAIDCr3Xr1ipZsqQuXbqkvXv36uLFi+mqRl037XINopo1a6by5csrLi5OmzdvVlJSUrqKv8vtH1utWjUzyHQNZD0JNxMTE9W5c2e9++67biHhc889pw8++ECff/65JGnmzJl66qmnLmuTscjISLcAc9CgQRo+fLhb4Pz8889r2LBhbu9BRgzD0LBhw8wwtnXr1ho/fryqVavmdt758+f12muvafHixYqLi9MzzzyjGTNmuD1nUlKS3nrrLTOMfeyxxzRs2DCz328qm82mt99+W99//70k6ffff9err76a7r0YPXq0GcY2atRIn332mapXr27e/8ILL2jatGkaP358lj2IPZH62a5cudIMZLt16+bWjiCndu7cKUl68skn9fTTT7u9D0uXLtVTTz0lSdq2bZu2bdum2rVr6/PPP3er9n7mmWf02GOPmb9cmD17drpANiYmRsOHDzfD2AEDBujFF19M93fp8OHDGjp0qA4dOqRdu3bprbfe0ujRoy/79SF/sKkXvMbmdEpGyuZeAAAAAIDiISgoSK1bt5aUEtJt37493Tl//vmneewaRPn7+6t9+/aSUnqMrl+/Pt1jfbGhV1hYmD755JMMKzaHDRtmftXfbrdr27Ztl/UcH3/8sZKTkyVJt99+u1588cV01b+VK1fWlClTsmwtIKVU627ZskVSSjXrF198kS6MlaRy5cpp4sSJaty4sSTp0KFD+v33393OWblypWJjYyWlBKjDhw9PF8ZKKRW4I0eOVEhIiCTJ4XBoz549buesX79ea9eulSSFhIToiy++cAtjJcnPz0+PPvqoR0G5r9x0000aOnRouvfhpptuStf79qOPPkrXeqNkyZIaOnSoOU4NeV3973//M4PrO+64Q6NGjcqwHUa9evX0+eefm/fNmTPHDJ9RcBHIwmtS+8fSRxYAAAAAipcOHTqYx2nbFlitVm3YsEGSdNVVV6ULF10DWtdKWkmKjo42+8c2aNBAV1xxRV4uO1MPPfSQAgMDM7zPz89P7dq1M8dp+8x6wmazacWKFeY4q/6ppUuX1pNPPpnlfDNnzjSPH3744Sz7ivr7+2vw4MHmeOHChW73X3XVVRo5cqQeeOABDRkyJMtvwAYFBemqq64yx/Hx8W73//HHH+bxXXfdpapVq2Y611NPPVVg+6E+9NBDmd7XpEkT87hFixZm2J1Ww4YNzePU4DWV3W7XnDlzzPGQIUOyXE/16tXVp08fSSlB+IIFC7I8H75HIAuvSa2MtTudPl4JAAAAACA/ZRXIbty4URcvXpQkde7cOd1jO3bsaIZ+a9ascbvPF9WxktSqVass769cubJ5nJiYmOP5d+zYYYaXNWvWVL169bI8/+abb840GHU4HG7veXh4eLbP7/r6du7cKbvdbo4bNWqkBx98UK+88opuvvnmLOeJjIxUUlKSOXadR3KvjO7SpUuWc5UuXdrtOiooLBaLmjZtmun9rtdCVu996dKlzWOr1ep23549e8zrKDg4WHXr1s12Xa6fYWa9m1Fw0EMWXmNzOP/9LxWyAAAAAFCchIWFqUqVKjp9+rS2b98uu91ufv0+s/6xqapUqaLGjRtr7969ioqKUmRkpGrWrCnJd4Fsdj1hXVsLOByOHM+fusGTJNWvXz/b80NCQlS9evUMq3H/+ecft1C0b9++OVrLpUuXFBcX5xYsujIMQ5GRkTp+/LiOHz+uyMhIHTlyRHv37lVMTEy6c12PT548aY6zC52llDB4yZIlOVq/t5UvXz7LTbNc2xiktm/I7ry0Dh06ZB4nJSUpLCwsR2u8nCpt5C8CWXiN2bKAClkAAAAAKHbat2+vX375RUlJSdq7d6+aNWsmSVq9erWklMq/1F6zaV1//fXau3evpJS+o2kD2awe6w1lypTx6vxnzpwxj7MK8VxVqFAhw+AttxthSSmbfaUNZHfv3q2vvvpKK1euTNeKwJW/v3+GofS5c+fcKmY9eZ0Z9ez1tYz6uGbG39//sp4jLi7ush6XV4+H9xHIwmtSWxXYqZAFAAAAgGKnQ4cO+uWXXySlfIW6WbNmioiI0LFjxyRJbdu2VVBQUIaP7dSpk6ZOnSopJZC966673PrHtmnTJtPHFheZvf60Yejzzz+fZTWmK8MwZLPZ0lUEf/LJJ5o0aZJbxauUEozXqVNHDRs2VLNmzdS+fXu9/vrrbpXMuVEQP+OseujmFdfP8Morr9S9996bo8dnVcGLgoFAFl7Dpl4AAAAAUHy1b99eFotFhmFo+/btktx7wmbUPzZVixYtVLZsWcXHx2vjxo2SpM2bN5v352e7gvxQpUoV89jT6sbMqlTTVp7269dP5cuX92hOwzDc2h1I0qJFi/Txxx+b4y5duqhXr15q2rSpqlevni6gTO0PnFaFChUUGBgom80mKaUKN7tWEBcuXPBo3UWN62dYunRpDRo0yIergTewqRe8xuE0ZIiWBQAAAABQHFWpUsXcSX7Xrl2SpA0bNpj3Z9Q/NlVAQIDat28vKeXr/KdOnSrSgWyNGjXM4/3792d7vs1mMyuN07ryyisVGBhojl37kWbG6XRm2urg008/NY/79++vKVOm6LbbbtOVV16ZYbXo2bNnzWPXilqLxaIrr7zSHHvyOg8fPpztOUVR7dq1zeNjx46l2/QrI5cuXUoXpqPgIpCF1xhK2diLlgUAAAAAUDx16NBBUsomQ6dPnzZD1Xr16rmFcxlxDV337dunbdu2SZJq1arlFlgVBc2bN1elSpUkSdHR0WZFcWbWr1+faUhXsmRJNW3a1BwvXrw42+dfsWKF2rVrp1atWun+++83e73Gx8e7Bbr33HNPlvMcP37cra9t2hYHXbt2NY9///33LOey2+1uFdXFScuWLc1QPTk5WStXrsz2MRMnTlTLli3Vrl07jRo1yssrRG4RyMKrbA6DClkAAAAAKKZSA1lJmjNnjvl1/KyqY1O5nrN582b9/fffkvKmOtZ1s6WMNqDKb/7+/urWrZs5Hj9+vJyZ/Fva4XBo8uTJWc7Xt29f83j27Nk6ePBgpudarVZ9+OGHkqTExETVrFlTAQEpHS5T2wukym7DsLfeestt7LqJlyTdcccd5vG8efOyXNfMmTMVHR2d5fN5yvXzzux9LUhKlSrldj1MnDgxy+rXY8eOaebMmZJSPqMmTZp4fY3IHQJZeJXd6aSHLAAAAAAUU9dee625wdB3331n3p5V/9hUoaGhZsuDefPmmUFaXgSyZcqUMY9dKzp96cknnzR7qm7evFnDhw9XQkKC2zmJiYl67rnntGPHjizn6tmzpxo0aCAp5avsDz/8sLZs2ZLuvHPnzunZZ581g9HAwEA9+uij5v0VKlRQ1apVzfHEiRPTrUmSTp8+rcGDB6er5EzbTzY8PFx9+vSRlBIEP/LII9qzZ0+6+X755Re98847Wb7GnHD9vE+cOJFn83rTk08+qeDgYEnSkSNHNGjQIJ08eTLdeYcOHdJjjz2mS5cuSUppd9C7d+98XStyjk294FU2hyG7k0AWAAAAQP6x+AXIKPhFcN5hSfn3l8WvYPxzv0SJEmrdurXWrl2r2NhYSVJwcLBatWrl0eOvv/56HTx40OxLGhQUpLZt2+Z6XTVq1ND58+clSU899ZT+7//+TxcvXtRTTz2loKCgXM9/OSpWrKi33npLzzzzjGw2m3777Tdt2rRJN998s6pVq6ZTp05pyZIlio2NVZkyZVSqVCmdPn06w7kCAwM1adIkDRgwQGfPntXp06d177336tprr1WrVq0UGBioY8eOaenSpW6Vl6+99prq1q1rji0Wix566CG9++67kqQdO3boxhtv1M0336zq1asrISFBf//9t9auXWtWw7pu3JXRBmUjR47Ujh07dPjwYUVHR6tfv37q3LmzwsPDZbPZtG7dOu3cuVOSVLduXR09ejTX761rj97x48crKipKgYGBuuWWW8zguqCpU6eOxo0bp+eee052u13btm3Trbfeqs6dOyssLExWq1UHDx7UqlWrzF9WlC5dWh9++KHPrmF4rmD8hEaRZXMYsjmK6/8TAgAAAOALJaq18/USfCbI6fuv36fVvn17rV271hy3a9fO48CoU6dOmjZtmjlu1aqVWTWYG/3799err74qSTp48KBZIXrzzTfr6quvzvX8l6tr16768ssvNWTIEMXFxenMmTPmV9FTlSlTRh999JEmTJiQaSArpYSZs2fP1nPPPWf2pN28ebPb5mipQkJC9Nprr6l79+7pvhr/0EMP6ciRI5o9e7aklJA19diVn5+f+vfvr8aNG5vv7e7duzN8rpkzZ+rZZ5/V2rVr5XA4tHz5ci1fvtztvP79+6t+/foaM2ZMpq/RU3379tWMGTNktVoVFxenzz77TFJKa4CCGshK0m233aZy5crppZdeUnR0tJKTk/XHH3/ojz/+SHdunTp1NGHCBNoVFBIEsvAqu9Mph9OQ0zDkl8HuiwAAAACQV/xKlFdAiK9X4WMuPTsDAgLkV6K879byr44dO+r99983x570j03VqlUrlS5dWomJiZLypl2BJPXr108lSpTQt99+qyNHjujSpUuqUKGCWcXrS9dee63++OMPff/991q2bJkOHz4sh8OhK664Qp06ddJDDz2kK6+8UhMmTMh2rho1amjWrFlatWqVfv/9d23btk2nT59WcnKyQkJCVL9+fXXq1El9+/ZVxYoV023CJaVUyY4dO1a33nqr5syZox07dujMmTMyDEMhISGqU6eOmjdvrr59+6p+/fo6c+aMWSW7bt06RUdHKzQ01G3OkJAQTZs2TUuWLNG8efO0c+dOxcXFqXz58mratKn69++vzp07u7W5yI0GDRrou+++0yeffKKdO3cqPj5eZcqUybD9QkFz3XXXaenSpfrll1+0YsUK7d27V+fOnZPT6VSlSpXUuHFj3XrrrerWrRuVsYWIxcjobxvgob/++sutIXbLli11PO6SIs4mac3Rs6oeUlJXVQpW+zoVFRRAy2Kk53z2WcXt3WuOyzdpIr9/G8oDnrLb7W59tJo3b25uRAB4gmsIucU1hNziGkrhcDjcNvlp2LCh22Y8yJphGG6bMAUGBspCYQxywDAMtwrZ4OBgrqFiJC9+BrvmRH5+fmrZsmWerrGoKH7/C498Zfv3L6HN4SSQRYac48fraJp/fHClAAAAAJcnbSALACh4yD3gVXZHSgG2jY29AAAAAAAAAAJZeFdqEGt3srEXAAAAAAAAQCALr7I5UlsWUCELAAAAAAAAEMjCq8yWBQSyAAAAAAAAAIEsvMvc1IuWBQAAAAAAAACBLLzLaUgOwzArZQEAAAAAAIDiLMDXC0DRZ3cYVMgiU3533KHw/fv/GzdqJP3+uw9XBAAAAAAA4D0EsvA6m9OghywyZYmIUMljx8yxUbKkD1cDAAAAAADgXbQsgNfZHE5aFgAAAAAAAAAikEU+oGUBAAAAAAAAkIJAFl5nczpld1IhCwAAAAAAABDIwutsDkNOpyEHoSwAAAAAAACKOQJZeJ3933YFNgdtCwAAAABkzs/P/Z+oDofDRysBgOIn7c/ctD+TkXd4Z+F1tn839LJRIQsAAAAgCxaLRQEBAeY4KSnJh6sBgOLF9WduQECALBaLD1dTtBHIwutSK2PtVMgCAAAAyEaZMmXM4wsXLvhwJQBQvLj+zC1btqwPV1L0EcjC61I39KJCFgAAAEB2QkJCzOPExESdPXvWh6sBgOLh7NmzSkxMNMcEst4VkP0pQO6YLQscBLIAAAAAshYcHKzAwEDZbDZJUnR0tBISEhQSEqLg4GD5+/v7eIUFl2EYbj0gHQ4HXzlGjnANFS8Oh0NJSUm6cOGCWxgbGBio4OBgH66s6COQhdfZnLQsAAAAAOAZi8WiWrVq6fjx42Yom5iY6BYWIHNO53//7mJDHlwOrqHiLTAwULVq1SKI9zL+ZsHr7GzqBQAAACAHgoKCVKtWLQUGBvp6KYWKYRiy2+3mH8Pg32DIGa6h4i01jA0KCvL1Uoo8KmThdYZS+sjaqJAFAAAA4KGgoCDVq1dPSUlJio+PV3x8vOx2u6+XVeC5vkcE2rgcXEPFS0BAgMqWLauyZcsqODiYyth8QiCLfGFzOM3NvQAAAADAExaLRaVLl1bp0qV1xRVXyDAMt69Tw53dbtfu3bvNcb169RQQwD/74TmuoeLFz8+PANZH+FuFfJFSIUsgCwAAAODyWSwWNvXKQtqvl/v7+/N+IUe4hoD8QQ9Z5AubwzA39wIAAAAAAACKKypkkS9sTqe5uRfgyvnEE4res8cch4aHi9+/AgAAAACAoopAFvnC7jBkdxoyDIP+JHBjPPWUTu7YYY6rNm/uw9UAAAAAAAB4Fy0LkC9sDqcMw2BjLwAAAAAAABRrBLLIF7Z/g1gCWQAAAAAAABRnBLLIF6n9Y20ONvYCAAAAAABA8UUgi3xhc6YEsTY29gIAAAAAAEAxRiCLfJEaxNKyAAAAAAAAAMUZgSzyhd2skKVlAQAAAAAAAIqvAF8vAMVDaoWsjQpZpOF/9dVqdeCAOTbCwqT9+324IgAAAAAAAO+hQhb5wu40ZEiyUyELAAAAAACAYoxAFvnG7jDY1AsAAAAAAADFGoEs8o3N6ZTNSYUsAAAAAAAAii8CWeQbGxWyAAAAAAAAKOYIZJFvbA4qZAEAAAAAAFC8Ecgi31gdTipkAQAAAAAAUKwRyCLf2ByGnE5DdqpkAQAAAAAAUEwRyCLf2BzOf/9LlSwAAAAAAACKJwJZ5BurGchSIQsAAAAAAIDiiUAW+Sa1MtZKhSwAAAAAAACKKQJZ5BsbFbIAAAAAAAAo5ghkkW9oWQAAAAAAAIDijkAW+YaWBQAAAAAAACjuCGSRbwxJdqdBhSwAAAAAAACKLQJZ5Curw2lWygIAAAAAAADFDYEs8pXN4TR7yQIAAAAAAADFTYCvF4DixeqgZQHcOd97T8d27zbHta++Wv4+XA8AAAAAAIA3EcgiX9kcTtmctCzAf4xu3XTuyivNca3mzX24GgAAAAAAAO8q9oHs3r17NXv2bG3ZskWnTp3SxYsXVa5cOV111VW6/vrrdffdd6tcuXIez7dz507Nnj1bmzdvVnR0tAzDUGhoqMLDw9WzZ0916tRJFovF4/kMw9DSpUs1f/587dq1S2fOnFGpUqUUGhqqdu3aqW/fvmrUqNHlvHSfsDkMOZ2G7E6nAvzomAEAAAAAAIDipdgGspcuXdLo0aP1008/pbsvNjZWsbGx2rRpk6ZMmaLRo0frjjvuyHI+m82mMWPGaNasWenui4iIUEREhH799Vd17NhR48aNU9WqVbNdY3R0tIYNG6atW7e63W61WnX+/HkdPHhQ3377rR588EENHz5cQUFB2c7pa6n9Y20OQwHksQAAAAAAAChmimUkZrVaNXjwYLcw1t/fX40bN1bbtm1Vo0YN8/bExEQ999xz+uGHHzKdzzAMPfvss25hbIkSJdSsWTO1bNlSZcqUMW9fs2aNBg4cqAsXLmS5xrNnz+q+++5zC2PLly+v1q1bKzw8XAEBAeZzf/nllxoxYoTnb4APpfaPZWMvAAAAAAAAFEfFskL2iy++0Pr1681xly5dNGrUKFWrVs28bfPmzXrppZcUFRUlSRo7dqxat26tBg0apJtv+vTpWrp0qTkeMGCAhg8frrJly0pKqcb96quvNGnSJNntdh05ckQvv/yyJk+enOkaR44cqePHj0tKCXdHjhypfv36mUHs6dOn9fbbb2vRokWSpF9//VUtWrTQAw88cLlvS76wOQy3/wIAAAAAAADFSbGrkLVarZo+fbo5vu666/TJJ5+4hbGSdO211+qbb74xQ1W73a7PPvss3Xxnz57VJ598Yo779++vUaNGmY+TpJIlS2rw4MEaPXq0eduSJUu0bdu2DNf4559/auXKleb4nXfeUf/+/c0wVpKqVKmiiRMnqlevXuZtn376qRISErJ5B3zrv5YFVMgCAAAAAACg+Cl2gez27dvdQsuhQ4fK398/w3Nr1KihAQMGmOOVK1fKMNwrO+fMmaPExERJKS0FXnzxxUyfu2/fvrrhhhvM8ZdffpnheV9//bV53LFjR3Xr1i3TOUeNGqVKlSpJks6dO6d58+Zlem5BQMsCpHPkiEpERJh/dOSIr1cEAAAAAADgNcUukD116pTbODw8PMvzmzdvbh4nJibq3Llzbvf/9ttv5vHtt9+u4ODgLOe7++67zePVq1crKSnJ7f7z589r3bp15rhv375ZzhccHKwePXqY499//z3L832NlgVIy79HD119553mH3+X6xkAAAAAAKCoKXaBrGsrAUlmdWtm7Ha727hEiRLmcVxcnPbt22eOO3bsmO3zt2vXzqzIvXTpklv4KkmbNm2Sw+GQJFksFnXo0CHbOV3P2bZtm86fP5/tY3zFkGRzGrQsAAAAAAAAQLFU7ALZ+vXru43//PPPLM9fu3ateVytWjWVLl3aHB84cMCthUF21bZSSkVrrVq1zPGuXbvc7t+/f795XKNGDZUrVy7bORs1amQeO51O7dmzJ9vH+JLN4aRlAQAAAAAAAIqlYhfI1qxZ062P64cffqjY2NgMz92yZYvmzp1rjl37yUpSRESEeRwUFJRuY7DM1KhRwzw+fvx4pnPWrl3bo/mqVKmikiVLmuNjx4559DhfsTmctCwAAAAAAABAsRTg6wX4wssvv6zdu3crNjZWUVFRuvPOO/XMM8+oU6dOKl++vE6ePKlff/1Vn332mWw2mySpSZMmuu+++9zmOX36tHlcpUoVj5/f9VzXOSQpJibmsuasVKmSoqKiMpwzPzmdThmGU4ZhyOl0yulMH7wm2xyy2h3/3k+lbHHnZxiyuIwNw5AjTasQIDuprV4yGwPZ4RpCbnENIbe4hpAXuI6QW1xDQP4oloFs7dq19dNPP2ns2LFaunSpTp48qZEjR2Z4rsViUY8ePfTaa6+l27ArLi7OPE7bmzYrZcqUMY/T9nt1HedkTtdzL1y44PHj8lpMTIzOJjqUkGhXTEx0hr1iqwbaFGwJ0alTyUpISFB8fLwPVoqCIjw5WSVdxtbkZO3ZscNn60HRsHv3bl8vAYUc1xByi2sIucU1hLzAdYTc4hoCvKPYtSxIVbFiRXXq1CnbtgAdOnTQo48+mmE4arVazWPXlgHZCQoKynAOSUpOTs71nK5zFERWu0OGDDkMmRucAQAAAAAAAMVBsayQ3b9/v5555hm3XqslSpRQw4YNFRwcrOjoaLOX65o1a9SzZ08NHDhQzz33nAIC/nvLUtsZSJKfn+fZtusc9jRfzXYd52RO12Az7ZwFTbI9pWrW7jRy9BoBAAAAAACAwq7YBbKRkZEaOHCg2W6gZMmSGjZsmO655x63itTIyEhNmDBBixYtksPh0PTp0xUTE6MPPvjAPMc1BM1JL1TXwDQwMNDtvsud07WvS9o581PVqlWVfP6SLuiiqlYNlT2DHrJly5RQmdJlVL5SiEJKBKhmzZo+WCkKCr8SJdzGQSVKqHnz5j5aDQorh8Ph9nWqq6++mgp85AjXEHKLawi5xTWEvMB1hNziGkJu7dq1i/2CPFDsAtnRo0ebYWyJEiX05Zdf6pprrkl3Xs2aNTVx4kTVqlVLU6ZMkSQtXLhQXbp00R133CHJvaVATtoEuJ5bIk0Y5Y0585Ofn58sFj9ZLBb5+fnJT+kDWYeR0puXlgWQJMNicRtbLBa3KnLgcvj7+3MdIVe4hpBbXEPILa4h5AWuI+QW1xDgHcXq++KRkZFavXq1OR48eHCGYayrYcOGuVXr/e9//zOPy5cvbx4nJCR4vI7ExMQM55CkcuXKXdacruemnbOgsf670ZfNkT6sBQAAAAAAAIqyYhXIbtmyxW185513evS4e+65xzzet2+fzpw5I0kKDQ01b0+9zROnT582jytXrux23+XO6XpulSpVPH6cL9j+DWRTg1kAAAAAAACguChWgWxMTIx5XK5cOVWtWtWjxzVq1MhtHBUVJUmqXbu2eVtSUpJiY2M9mi8yMtI8rlu3rtt9derUMY+PHz/u0XwxMTG6dOlShnMURKmVsVTIAgAAAAAAoLgpVoFsUFCQeWyz2Tx+nJ+f+9tk+bfnZZMmTcxjKaV6NjuJiYluQWvasDc8PNw8PnbsmC5evJjtnK7Pa7FYFBYWlu1jfMmQZHMaZqUsAAAAAAAAUFwUq0D2iiuuMI+TkpJ09OhRjx53+PDhDOcpU6aMmjRpYt6+bt26bOfasGGDuducv7+/2rRp43Z/q1atzIbZDodDGzduzHZO1+dt0qSJWx/agsrmcNKyAAAAAAAAAMVOsQpk27Zt61btOmvWLI8e99NPP5nHDRo0cOvReuutt5rH8+fPz7ai9YcffjCP27dvr5CQELf7Q0JC1K5dO3M8c+bMLOdLTEzU/PnzzfFtt92W5fkFhdXupGUBAAAAAAAAip1iFchWrFjRLUD95ptvtH79+iwf8+2332rt2rXm+O6773a7v2/fvipVqpQkKTY2VqNHj850rtmzZ+vPP/80xw888ECG5917773m8YoVKzR37txM53zjjTd09uxZSVJwcLDHG5X5ms1pUCELAAAAAACAYqdYBbKS9Pzzz5tVqQ6HQ48++qg++eQTM9RMdfr0ab355psaO3aseVt4eLj69+/vdl7lypX1yCOPmOO5c+fqueee05kzZ8zbLl26pClTpmjUqFHmbZ06dVKnTp0yXGPXrl3Vtm1bc/zaa69p6tSpSk5ONm+LjY3VsGHD3Kpjn3zySVWsWNGj98HXbA4qZJHCMXu29s6YYf5xzJ7t6yUBAAAAAAB4TYCvF5DfatSoocmTJ2vw4MFKSkqSzWbTxx9/rM8++0x169ZVhQoVdO7cOf39999mr1dJql27tqZMmWL2d3U1ePBg7dq1SytXrpQkLVy4UIsXL1ZYWJiCgoJ06NAhxcfHu63h3XffzXKd77//vu69915FRkbKbrdrwoQJ+uKLL9SgQQNZrVYdOHDAbWOyLl26aNCgQbl8d/KP1eGUYRiyO5wK8C92vxeAq8aNddFqdRsDAAAAAAAUVcUyCWvbtq1mz56t8PBw8zabzaaDBw9q48aNOnjwoBnGWiwW3X777ZozZ46qVq2a4XwBAQGaNGmS7rzzTlksFnO+3bt3a9u2bW5hbMuWLfX9999nW8kaGhqqb7/9Vtdcc415W3x8vLZt26bdu3e7hbF33nmnPv74Y7f+uAVdanWslSpZAAAAAAAAFCPFrkI2Vf369TV37lytWrVKS5Ys0bZt23T69GklJSWpbNmyuvLKK9WmTRv16tVLYWFh2c4XFBSkt956S3fffbfmzZunDRs2KDo6WlarVRUrVlSzZs10xx136JZbbvE4OK1WrZq+//57LVmyRIsWLdLOnTsVGxsrPz8/hYaGqlWrVrrrrrvUokWLXL4b+c/2b/9Ym9Mpyd+3iwEAAAAAAADySbENZFN17txZnTt3zrP5mjVrpmbNmuXZfBaLRbfccotuueWWPJuzIEitjLWxsRcAAAAAAACKkcLzHXcUKalBLC0LAAAAAAAAUJwQyMInzJYFVMgCAAAAAACgGCn2LQvgGzazZQEVssWdZdkyldu9+79xbKx0660+XBEAAAAAAID3EMjCJwylhLFWKmSLPb+hQ1X/wAFzbISFSfv3+3BFAAAAAAAA3kPLAviMzemkZQEAAAAAAACKFQJZ+IzV7qRlAQAAAAAAAIoVAln4DC0LAAAAAAAAUNwQyMJnrA4qZAEAAAAAAFC8EMjCZ2xOpwzDkJ0qWQAAAAAAABQTBLLwmdTqWCtVsgAAAAAAACgmCGThM1Z7SmWsjQpZAAAAAAAAFBMEsvAZm9P4978EsgAAAAAAACgeCGThM6mVsbQsAAAAAAAAQHFBIAufsf4byNrsVMgCAAAAAACgeCCQhc/YHYYM/de6AAAAAAAAACjqCGThM4ZSQlkrm3oBAAAAAACgmCCQhU9ZHU6zlywAAAAAAABQ1BHIwqdsDiebegEAAAAAAKDYIJCFT9kcBhWyAAAAAAAAKDYIZOFTKS0LqJAFAAAAAABA8RDg6wWgeLM5nDKMlCrZQH9+P1AcObZu1c4dO8xxs+bN+cEEAAAAAACKLHIP+JTNmVIda3MYCvT38WLgGyVKyChRwm0MAAAAAABQVFGSCJ+y2lP6x9JHFgAAAAAAAMUBgSx8KjWItRLIAgAAAAAAoBggkIVPmS0LnGzsBQAAAAAAgKKPQBY+lVoZa7NTIQsAAAAAAICij0AWPmV3GDJEywIAAAAAAAAUDwG+XgCKN0MpfWRtDloWFFeWL75Q6N69/42bNJGeeMKHKwIAAAAAAPAeAln4nM1hyOakQra48vvoI9U4cMAcG2FhBLIAAAAAAKDIomUBfM7mcMpKhSwAAAAAAACKAQJZ+JzV4ZSNHrIAAAAAAAAoBghk4XM2hyGbw5BhUCULAAAAAACAoo1AFj5nczhlGIbsTgJZAAAAAAAAFG0EsvC51P6xtC0AAAAAAABAUUcgC59LDWJtbOwFAAAAAACAIo5AFj6XGshaqZAFAAAAAABAEUcgC5/7r2UBFbIAAAAAAAAo2ghk4XNUyAIAAAAAAKC4IJCFz9mchgyxqRcAAAAAAACKPgJZFAg2h5OWBQAAAAAAACjyCGRRINgcBi0LAAAAAAAAUOQRyKJAsDmcsjmpkAUAAAAAAEDRRiCLAsHqcNJDFgAAAAAAAEUegSwKBJvDkM1hyDCokgUAAAAAAEDRFeDrBQBSSoWsYRiyOw0F+lt8vRzkI6N6dVkvXDDHgdWriysAAAAAAAAUVQSyKBBSN/Sy2p0K9Kdwuzhx/vGHdu/YYY6bN29O6T4AAAAAACiyyD1QIFjt/way9JEFAAAAAABAEUYgiwLB6kjpHZtMIAsAAAAAAIAijEAWBcJ/LQvY1AsAAAAAAABFF4EsCgRaFgAAAAAAAKA4IJBFgWBIsjkMAlkAAAAAAAAUaQSyKDCsDqdZKQsAAAAAAAAURQG+XgCQyupwUiFbDPm98opq793737hJE+ndd324IgAAAAAAAO8hkEWBYbU7ZXWwqVdxY/nlF1U+cMAcG4cOEcgCAAAAAIAii5YFKDCsDqfsDqecTkJZAAAAAAAAFE0EsigwUtsV0LYAAAAAAAAARRWBLAqMZDuBLAAAAAAAAIo2AlkUGKn9YwlkAQAAAAAAUFQRyKLAsKZWyNrpIQsAAAAAAICiiUAWBQY9ZAEAAAAAAFDUEciiwLA7DTkNAlkAAAAAAAAUXQSyKFCsDqfZugAAAAAAAAAoaghkUaBYHU4lUyELAAAAAACAIopAFgWK1e6kZQEAAAAAAACKLAJZFChWh1M2h+HrZQAAAAAAAABeQSCLAsVqd8rpNGSjShYAAAAAAABFEIEsCpTUdgW0LQAAAAAAAEBRRCCLAsX6b7sCq522BQAAAAAAACh6CGRRoFjtVMgCAAAAAACg6Arw9QIAV7QsKH6M9u11oWJFc1y2USNZfLgeAAAAAAAAbyKQRYFiBrJ2Atniwvn55/p7xw5z3Lx5c0r3AQAAAABAkUXugQLFaUg2p0GFLAAAAAAAAIokAlkUOFa7k0AWAAAAAAAARRKBLAocq8Mpq93w9TIAAAAAAACAPEcgiwLH6qBCFgAAAAAAAEUTgSwKHKvdKZvTKadBlSwAAAAAAACKFgJZFDhWhyEZKcEsAAAAAAAAUJQE+HoBQFqp7QqsDqdKBvr7eDXwNr8BAxS2b99/48aNpR9/9OGKAAAAAAAAvIdAFgVOamWs1UHLguLAsnOnyhw4YI4Nm82HqwEAAAAAAPAuWhagwHGtkAUAAAAAAACKEgJZFDhmhSw9ZAEAAAAAAFDEEMiiwLE5DTkNKmQBAAAAAABQ9BDIokCyOZwEsgAAAAAAAChyCGRRIFkdTloWAAAAAAAAoMghkEWBZHU4ZXUYvl4GAAAAAAAAkKcIZFEgJdtpWQAAAAAAAICih0AWBZLV4ZTTachOKAsAAAAAAIAihEAWBZLVntKugCpZAAAAAAAAFCUEsiiQUoNY+sgCAAAAAACgKCGQRYFkBrJ2KmQBAAAAAABQdBDIokBKDWKTaVkAAAAAAACAIoRAFgXSfy0LCGQBAAAAAABQdBDIokByGpLdadCyAAAAAAAAAEUKgSwKLKvDSYUsAAAAAAAAipQAXy8AyIzV7pTVYfh6GfAy5333KXbvXnNcuUkT+ftwPQAAAAAAAN5EIIsCy+pw0rKgGDBGjNCJHTvMcaXmzX24GgAAAAAAAO+iZQEKLKvDKZvTKcOgShYAAAAAAABFA4EsCiyr3ZAM0UcWAAAAAAAARQaBLAqs1CDWaqdCFgAAAAAAAEUDgSwKLDOQpUIWAAAAAAAARQSBLAqsZDuBLAAAAAAAAIoWAlkUWP+1LCCQBQAAAAAAQNEQ4OsFAJmxOQwZokK2qPNv107NDxz4bxwWJm3Z4sMVAQAAAAAAeA+BLAo0q90pq4NNvYq0hAQFJCSYQ8PlGAAAAAAAoKihZQEKNKvDafaSBQAAAAAAAAo7AlkUaFaHk5YFAAAAAAAAKDIIZFGgWe2GbASyAAAAAAAAKCIIZFGgWR1OOZyG7E5CWQAAAAAAABR+BLIo0FLbFVjtbOwFAAAAAACAwo9AFgWa9d8NvegjCwAAAAAAgKKAQBYFmlkhSyALAAAAAACAIoBAFgXafy0LCGQBAAAAAABQ+BHIokCjZQEAAAAAAACKEgJZFGgOQ3I4DQJZAAAAAAAAFAkEsijwkh1OWe2Gr5cBAAAAAAAA5BqBLAo8q91JhSwAAAAAAACKBAJZFHhWB4EsAAAAAAAAigYCWRR4VkdKD1nDoG0BAAAAAAAACjcCWRR4VrtTMiSbg0AWAAAAAAAAhVuArxcAZCe1XUGyw6mgAH6HUNQ4X3tNJ3bvNsc1rr5a/j5cDwAAAAAAgDcRyKLASw1krXanVMLHi0GeM+6+W7GNGpnjK5s39+FqAAAAAAAAvItyQxR4Vvu/gSwbewEAAAAAAKCQI5BFgZf8byCb+l8AAAAAAACgsCKQRYFncxpyGgaBLAAAAAAAAAo9AlkUCsl2p5JpWQAAAAAAAIBCjkAWhUKy3UmFLAAAAAAAAAq9AF8vAPBEssNpbu6FIub0aQXExrqNVa2a79YDAAAAAADgRV4JZKdOnapevXopNDTUG9OjGLLanbI5nHI6Dfn5WXy9HOQh/y5d1PzAAXNshIVJ+/f7cEUAAAAAAADe45WWBRMnTlTXrl31yCOP6LfffpPVavXG06AYSW1XQB9ZAAAAAAAAFGZea1ngdDq1du1arV27ViEhIbrjjjvUu3dvXX311d56ShRhZiBrd6pUoL+PVwMAAAAAAABcHq9UyDZq1EiGYZh/zp8/r++//179+vVT9+7d9dVXX+ns2bPeeGoUUamVsWzsBQAAAAAAgMLMK4Hszz//rAULFmjQoEFmH9nUcPbvv//Wu+++q06dOunJJ5/U0qVL5XA4vLEMFCGuFbIAAAAAAABAYeWVQFaSGjRooBdeeEErV67Ul19+qV69eik4ONgMZu12u1asWKGnn35a119/vd59910dPHjQW8tBIWe1O2VIstJDFgAAAAAAAIWY1wLZVBaLRdddd53eeecdrVu3Tu+++646dOggf39/M5w9d+6cvvrqK/Xs2VN9+vTRjBkzdP78eW8vDYWIIcnmcFIhCwAAAAAAgELNa5t6ZaRkyZLq2bOnevbsqdOnT2v+/Pn69ddftXfvXvOcvXv3at++fXr33Xd14403qnfv3rr++utlsVjyc6kogJLtTiXbaW8BAAAAAACAwitfA1lXVapU0aBBgzRo0CCdPHlSy5cv1/Lly7Vp0ybZbDZZrVb9/vvv+v3333XFFVeoX79+6tevn6pUqeKrJcPHku1Oc3MvAAAAAAAAoDDyessCT1SrVk1dunRR586dFRYWJklmRaxhGDp16pQmTZqkrl276rXXXtPZs2d9uVz4SLLdKas9pc0FAAAAAAAAUBj5rEJWkiIiIrRw4UItW7ZM+/fvN2+3WCxm6FazZk1FRUXJ6XTKZrNpzpw5WrZsmSZMmKB27dr5aunwgWS7U4ZhyOYwFBRACwsAAAAAAAAUPvkeyJ45c0YLFy7UggULtGfPHvN216rHihUrqnv37urdu7caNWqkmJgYzZ8/Xz/++KOOHz+us2fP6sknn9SPP/6o+vXr5/dLgI9Y/21XkGx3KiigQBR3AwAAAAAAADmSL4FsUlKSlixZovnz52vjxo1yOFI2ZnINYQMCAtS5c2f17t1bN9xwgwIC/lta1apV9cgjj+ihhx7Sq6++qnnz5unixYv67LPP9MEHH+THS0ABkGz/N5B1OFTWt8XdAAAAAAAAwGXxWqrldDr1559/av78+Vq+fLkuXbokSen6f4aFhal3797q0aOHKlasmOWc/v7+evPNN7V8+XKdP39emzdv9tbyUQCZgaydHrIAAAAAAAAonLwSyI4ZM0a//fabzp07JyklhHXtC1u+fHndcccd6tu3rxo3bpyjuYOCgtSwYUNt3rxZcXFxeb10FGD/BbIOH68EAAAAAAAAuDxeCWRnzJjhFsBKKdWtHTt2VN++fXXDDTcoMDDwsue32+2SpGrVquV6rSg8HIYhu9Mwg1kAAAAAAACgsPFay4LUMLZBgwbq06ePevTooUqVKuXJ3FWrVlX//v3Vrl27PJkPhUey3Wlu7gUAAAAAAAAUNl4JZMuVK6c77rhDvXv31tVXX53n83/00Ud5PicKB6vDSYVsEeOYPl2Hd+0yx/WaNmXLNgAAAAAAUGR5JfdYs2ZNrloSAJlJthPIFjlt2iihRIn/xs2b+24tAAAAAAAAXuaVQHbq1KmSpNq1a6t79+6XPcfatWvl7++vL7/8Mi+Xh0Is2e6Uw2nI7nQqwM/P18sBAAAAAAAAcsQrgezkyZNlsVjUsWPHyw5k165dq02bNikkJCSPV4fCLLU6NtnuVEAQgSwAAAAAAAAKlwKbaF26dEmSlJSU5OOVoCBJtjv+/S9tCwAAAAAAAFD4XHaFbGxsrKxWa5bnXLp0Sf/880+O5k1OTtaqVau0699NfsqVK3e5S0QRlBrEWglkAQAAAAAAUAhddiD7yy+/aPz48ZnebxiGtmzZohtvvPGy5jcMQxaLRY0aNbrcJXrE4XDojz/+0JIlS7R7926dPn1aDodDlStX1tVXX63u3bvrxhtvlJ+H/Up37typ2bNna/PmzYqOjpZhGAoNDVV4eLh69uypTp06yWKxeLw+wzC0dOlSzZ8/X7t27dKZM2dUqlQphYaGql27durbt6/X36OCxOr4r2UBAAAAAAAAUNhcdiD74IMP6ueff9ahQ4cyPccwjMuaOzWwtFgseuihhy5rDk/s3LlTr732mvbv35/uvqioKEVFRWnx4sVq0aKFJkyYoCuvvDLTuWw2m8aMGaNZs2aluy8iIkIRERH69ddf1bFjR40bN05Vq1bNdn3R0dEaNmyYtm7d6na71WrV+fPndfDgQX377bd68MEHNXz4cAUFBXnwqgs3q8OQ05CSHQSyRcamTSrzb0W8JCk5WWrf3nfrAQAAAAAA8KLLDmT9/f31xhtv6L777rvs4DUzFotFV111lZ5++ml17NgxT+dOtX79ej355JNuPWqrVKmiWrVqyWazad++fbLZbJKk7du36/7779fMmTMzDFINw9Czzz6rpUuXmreVKFFCYWFh8vf316FDh5SQkCBJWrNmjQYOHKhZs2ZluWHZ2bNndd999+n48ePmbeXLl1f9+vV18eJFHThwQHa7XYZh6Msvv1RMTIwmTJiQ6/elMLA6nFTIFiH+Dz+ssAMHzLERFiZl8EsSAAAAAACAouCyA1lJatWqlVauXCm73W7eZhiGbrrpJlksFrVu3VrvvPOOx/P5+fmpRIkSCgkJUUBArpaWpWPHjrmFsdWrV9frr7+uG264wazOvXDhgiZNmqRvvvlGUkrF7JgxYzRp0qR0802fPt0tjB0wYICGDx+usmXLSkrppfvVV19p0qRJstvtOnLkiF5++WVNnjw50zWOHDnSDGNLlCihkSNHql+/fub7cvr0ab399ttatGiRJOnXX39VixYt9MADD+T27Snwku0EsgAAAAAAACiccp16hoaGZni7YRgqWbJkll/z95XRo0ebYWydOnX01VdfqVq1am7nhISE6JVXXpHT6dR3330nSVqyZIkiIiJUp04d87yzZ8/qk08+Mcf9+/fXqFGj3OYqWbKkBg8erCpVqujll18259q2bZuuueaadOv7888/tXLlSnP8zjvvqFu3bm7nVKlSRRMnTlRQUJB+/vlnSdKnn36qPn36qEyZMjl7QwqZZLuDQBYAAAAAAACFkmc7VeXQkCFDNGTIEHXv3t0b0+fKrl27tGbNGkkpFbnvv/9+ujDW1dChQ83erIZhuAWlkjRnzhwlJiZKSmkp8OKLL2Y6V9++fXXDDTeY4y+//DLD877++mvzuGPHjunCWFejRo1SpUqVJEnnzp3TvHnzMj23qLA6nLI5nXLmcasMAAAAAAAAwNu80hdgyJAh3pg2T8ydO9c87tWrl5o1a5bl+SEhIXruued05swZlStXTk2bNnW7/7fffjOPb7/9dgUHB2c53913322GuqtXr1ZSUpLbY86fP69169aZ4759+2Y5X3BwsHr06GGGu7///rvuv//+LB9T2CXbnZIhWe1OlQz09/VyAAAAAAAAAI95r1FrAeVa4XrXXXd59JgHH3www9vj4uK0b98+c+zJBmTt2rWTv7+/HA6HLl26pHXr1ummm24y79+0aZMcDoeklM3NOnTokO2cHTp0MAPZbdu26fz58ypXrly2jyusUtsVJBPIAgAAAAAAoJC57EA2tW9pql69emV6X265zp0bp06d0j///CNJKlWqVLbVsdk5cOCADJevzYeHh2f7mODgYNWqVUtHjx6VlNJCwTWQ3e+yu3yNGjU8ClYbNWpkHjudTu3Zs0ft27f36DUURmYg66CPLAAAAAAAAAqXyw5kR4wYIYvFYo5dQ9O09+VWXgWyBw4cMI+vuuoq+funVFeeOHFCP//8s1asWKGoqChdvHhRVatWVZs2bXTnnXeqZcuWGc4XERFhHgcFBWXZi9ZVjRo1zED2+PHjmc5Zu3Ztj+arUqWKSpYsqUuXLkmSjh07VjwCWTb2AgAAAAAAQCGT65YFhmFkGr4aebDpUl4Gu67hZ9WqVeV0OjVt2jRNmjRJycnJ6c49fvy45syZo969e+vNN99UiRIl3M45ffq0eVylShWP1+F6rusckhQTE3NZc1aqVElRUVEZzlnUWP+tjLUSyAIAAAAAAKCQuexAtnr16pd1ny/Fxsaax8HBwRozZoy+//5787b69eurUqVKio2N1eHDh83b582bp+PHj+urr75SUFCQeXtcXJx5XLZsWY/XUaZMGfP4/Pnzbve5jnMyp+u5Fy5c8Phxec3pdMownDIMQ06nU05n7kP5dM8hyWp36KLN/u9zEMwWZn6GIddfuxiGIYfd7rP1oHBK7b2d2RjIDtcQcotrCLnFNYS8wHWE3OIaAvLHZQeyy5cvv6z7fMk1qPzzzz/N8U033aQRI0aoZs2a5v2RkZEaM2aMVq1aJUnaunWrxo4dq9GjR5vnWK1W87hkyZIer8M11HWdQ5Jbpe7lzpm22jc/xcTE6GyiQwmJdsXERMvmpT6vp8v7KdBRUqeMRJ07d85s14DCJzw5Wa5XujU5WXt27PDZelA07N6929dLQCHHNYTc4hpCbnENIS9wHSG3uIYA7/Dz9QLyk2v4mRrG3n333Zo8ebJbGCtJNWvW1JQpU3TbbbeZt/344486ePCgObbZbOaxn5/nb2VAwH85uD1NJaDrOCdzpvbDzWjOouii1S7bv9W3rq8dAAAAAAAAKMiKVSCbth9tzZo19eqrr2bap9bPz09jx441WwwYhqHvvvvOvN81CMzJ1+ZdA9PAwEC3+y53TtevEaSdsyhKtjlk+/clE8gCAAAAAACgsMj1pl55JSEhQQEBATn6mn5OBQcHu43vuecet6/6Z6Rs2bLq1q2bfvzxR0nSunXrzPtc15qTNgGu56bdKMwbc+anqlWrKvn8JV3QRVWtGiq7F3rISlKpssEKLh2silUqKDTUkicbyME3/NJcr0ElSqh58+Y+Wg0KK4fD4fZ1qquvvppf1iBHuIaQW1xDyC2uIeQFriPkFtcQcmvXrl3s9eOBfAlkjx07JovFolq1aqW7b/r06fr6668VExMji8Wi2rVr66GHHlK/fv0yrVy9XKVLl3YbX3PNNR49rkWLFmYgGxkZKavVqqCgIJUvX948JyEhweN1JCYmmseuc0hSuXLlLmtO13PTzpmf/Pz8ZLH4yWKxyM/PT37yTlBqdRiyWCyyO6WSgfyPQ2FmpPl7brFY3Np6AJfD39+f6wi5wjWE3OIaQm5xDSEvcB0ht7iGAO/wasuCDRs2qFevXrrtttv0008/pbt/xIgRev/99xUdHS3DMOR0OnX06FGNGjVKQ4cOdevRmhcqVKjgNq5YsaJHj6tUqZLbOC4uTpIUGhpq3nbmzBmP13H69GnzuHLlym73Xe6crudWqVLF48cVVtZ/NwtLtvNbFwAAAAAAABQeXgtkV6xYoUceeUQHDhyQJJ04ccLt/pUrV+rnn3+WlL63q2EYWrJkiSZOnJina2rQoIHbOHVjr+yk3SQr9bdDtWvXNm9LSkpSbGysR/NFRkaax3Xr1nW7r06dOubx8ePHPZovJiZGly5dynCOoio1iCWQBQAAAAAAQGHilUDWarVq1KhRZpBpGIbOnj3rds6XX35p3hcQEKBhw4bpk08+0R133GHe/u2337qFl7kVFhbmNo6IiPDocadOnTKPS5YsabYEaNKkiVuYvG/fvmznSkxMdAtaGzVq5HZ/eHi4eXzs2DFdvHgx2zldn9disaR7nUWRGcg6CGQLO8eKFdrx++/mH8eKFb5eEgAAAAAAgNd4JZBdsGCB2RO2ZMmSmjBhgv73v/+Z9585c0abN2+WxWKRxWLRyy+/rMcff1w33nijxo8fr/vuu09SSmXqokWL8mxdFStWdAsrly5d6tHjNm/ebB43adJEfn4pb1uZMmXUpEkT8z7XDb8ys2HDBrO5sb+/v9q0aeN2f6tWrcwKXIfDoY0bN2Y7p+vzNmnSxK0PbVFldxpyGAYVskVBlSqyV65s/lExaLkBAAAAAACKL68EsmvXrjWPR40apW7durntyrdq1So5nU4ZhqGSJUuqd+/ebo9/+umnzVDyzz//zNO19ezZ0zxevny5/v777yzPP3nypJYtW2aOb7nlFrf7b731VvN4/vz52Va0/vDDD+Zx+/btFRIS4nZ/SEiI2rVrZ45nzpyZ5XyJiYmaP3++Ob7tttuyPL8oSbY7lWx3+HoZAAAAAAAAgMe8Esju2bNHklSuXDn16NEj3f2pIavFYlGbNm1UsmRJt/vLlSun+vXryzAMRUVF5enaevfubVaQ2mw2jRgxQvHx8Rmea7Va9dJLL5mbi5UpU0Z9+vRxO6dv374qVaqUJCk2NlajR4/O9Llnz57tFjA/8MADGZ537733mscrVqzQ3LlzM53zjTfeMNtBBAcH684778z03KIm2e6U1W74ehkAAAAAAACAx7wSyJ47d04Wi0U1a9Y0v97vasOGDebxddddl+EcFSpUkJTS3iAvVaxYUSNHjjTHu3bt0oABA9zWJElHjhzRww8/7NYy4Nlnn03XDqBy5cp65JFHzPHcuXP13HPPua370qVLmjJlikaNGmXe1qlTJ3Xq1CnDNXbt2lVt27Y1x6+99pqmTp2q5ORk87bY2FgNGzbMrTr2ySefVMWKFbN9D4oKq92pZAcVsgAAAAAAACg8ArwxaVJSkiSpbNmy6e7bt2+fzp07Z45dg0dXVqtVktxaHeSV3r17KyIiQlOmTJEkHTx4UAMHDtQVV1yhmjVr6vz58zp48KDbY3r27Kn7778/w/kGDx6sXbt2aeXKlZKkhQsXavHixQoLC1NQUJAOHTrkVoVbo0YNvfvuu1mu8f/Zu/P4uOqy///vMzOZLM3WHShtgba0tEjpDd6C9lZxqTcKxRaEH7IJKCqCCt4KKLgii3xxQfwqX0RAQBBZZL1B2XcEgdKFllKga9o062TWs31+f0xymrRpm+1kJsnr+XjkMefMnPOZK7nHevvOletz1VVX6aSTTtL69evluq5++ctf6vrrr9eMGTNk27ZWrVoVdO5K0hFHHKEzzzyzLz+OISvn+nI9I883ikas3d8AAAAAAAAAFFgoHbIdQWzn4LXDc889FxyPHj1aBxxwQLdrvPfee5K0w4zVgXLeeefpsssuCzpxJWnz5s165ZVXuoSxsVhMZ599tq644oqdrhWLxfTb3/5Wxx13nCwrHww6jqNly5bptdde6xLGzps3T3/5y19228k6ceJE3XLLLfqP//iP4Lm2tja99tprWrZsWZcw9rjjjtM111zTbTfycJbz8ht6sbEXAAAAAAAAhopQOmSnT5+uV155RWvWrFEymVRlZWXw2pNPPikpPz92/vz53d7/4osvqqmpSZZlafr06WGUKCk///VTn/qU7r//fj3++ON699131dTUpJKSEu2zzz46/PDDdeKJJ2ry5Mm7XSsej+vnP/+5TjjhBN1777166aWXtGXLFtm2rTFjxuiggw7SUUcdpQULFvQ4ON1zzz31l7/8Rf/85z/18MMP680331RDQ4MikYgmTpyoQw45RMcff7wOPvjgfv4khqaOIDbn+qqID3wnNQaH9de/atyyZdvOV66UOs1RBgAAAAAAGE5CCWQPO+wwvfLKK3IcR1dddZV+8pOfSMqHsa+99lpw3YIFC3a4d/369frhD38YnO9spMFAqamp0SmnnLLTcQS9ddBBB+mggw4akLWkfHC9YMGCbn9WI10QyHqepJLCFoM+i/zsZ5q6alVwbmbOJJAFAAAAAADDViiB7OLFi3XdddfJcRzdeeedWrJkifbaay8988wzsixLxhhNmDBBH//4x4N73nnnHT344IO6/fbblUgkJEmlpaU65phjwigRw4DdHsjajCwAAAAAAADAEBHK0NE999xT3/72t2WMkSStWrVKTz75pDzPkzFGlmXpBz/4gWKxbXnwX//6V1133XVBGGtZlr75zW9q4sSJYZSIYcD2fBkxQxYAAAAAAABDRygdspJ0xhlnyLIs/epXv5Jt28Hz5eXluuiii3b4E/x99903CHCj0ajOPvtsnXHGGWGVh2HAKN8dSyALAAAAAACAoSK0QFaSTj/9dC1atEhPPfWU6uvrtccee+hjH/uYampqdrh233331ejRo/Xxj39cp512mmbNmhVmaRgmcp6vnEcgCwAAAAAAgKEh1EBWkmpra/X5z39+t9d96EMf0osvvhh2ORhmcnTIAgAAAAAAYAgJZYZsX0QiRVMKhpCc6+dnybaPuwAAAAAAAACKGSkohjTb9SWT3+ALAAAAAAAAKHahjyzoYNu22tra5DiOfL934dlee+0VUlUY6jrGFeRcX6WxaIGrAQAAAAAAAHYt1EC2paVFN9xwg/7xj39o3bp1fVrDsiytWLFigCvDcJFzvfZHOmQBAAAAAABQ/EILZFeuXKkzzjhDzc3NzPdEaHLetg5ZAAAAAAAAoNiFEsjatq1vfOMbampqCmN5IBCMLGCGLAAAAAAAAIaAUALZu+++Wxs3bpRlWTLG6OCDD9b/9//9f5oxY4aqq6sVibCXGAaGbyTHN3TIAgAAAAAAYEgIJZD95z//GRwfddRR+j//5/+E8TaAJCnneASyAAAAAAAAGBJCaVV9++23JUklJSX6/ve/H8ZbAIGc5xPIAgAAAAAAYEgIJZBtbW2VZVmaPn26xowZE8ZbAIGskw9k2TwOAAAAAAAAxS6UQLa2tlaSVFVVFcbyQBcdYazNxl5DU2Wl3E5fqqwsdEUAAAAAAAChCWWG7D777KOtW7dq/fr1YSwPdNExriDn+iqNRQtcDXrLe+klLVmyJDifO3duOP8wAQAAAAAAFIFQOmQ//elPS5Lq6uq6BC1AGLKu1/5IhywAAAAAAACKWyiB7OLFizVx4kRJ0qWXXirbtsN4G0BS1w5ZAAAAAAAAoJiFEshWVlbqiiuuUDwe17Jly3Tqqafq9ddfD+OtgPwMWRHIAgAAAAAAoPiFMqrx6aefliR96Utf0nXXXaclS5boi1/8osaMGaOZM2eqtrZWpaWlPVrLsixddtllYZSJYcJIsl0/GF0AAAAAAAAAFKtQAtmvfvWrsixLkoJHY4waGxv14osv9no9AlnsTs716ZAFAAAAAABA0QttM3NjTK+e35mOQBfYFQJZAAAAAAAADAWhBLKLFi0KY1lgp7KuJ9vz5RujCCH+kGJdcYX2XrFi2/ns2dLFFxewIgAAAAAAgPCEEshefvnlYSwL7FTO9SWTfywviRa6HPRC5NZbNXHVquDczJxJIAsAAAAAAIatSKELAAZCx7gCxhYAAAAAAACgmBHIYljItgexWdcrcCUAAAAAAADAzoW2qdfObNmyRVu2bFFra6uqq6s1d+5cSVImk1E8Hlc0yp+bo/dy7UFszqFDFgAAAAAAAMVrUALZdevW6aabbtJTTz2lurq64Pn58+fr+uuvlyQ9/vjjuvTSS3X88cfrK1/5iqqqqgajNAwTtmfkGynnEcgCAAAAAACgeIU6ssAYo9/85jc68sgjdfvtt2vTpk0yxgRfnW3atEktLS26/vrrtXDhQi1dujTM0jAM5VwvGF0AAAAAAAAAFKNQA9lvf/vb+sMf/iDP83YIYC3L6nK+YcOG4Liurk5nnnmm1qxZE2Z5GGZyrs+mXgAAAAAAAChqoQWy1157rR599NHg/AMf+IAuueQS3XHHHd1ef/TRR+uQQw6RMUaWZSmRSOjCCy8MqzwMQ/lAlk29AAAAAAAAULxCCWQ3b94czIaVpO985zv629/+ppNOOkkHH3xwt/d88IMf1G233aaLL744eG7ZsmV6+umnwygRw1DW9eV6Rq5PlywAAAAAAACKUyiB7F133aVcLifLsvSFL3xBX/nKV3p878knn6zTTjstOH/44YfDKBHDUMe4AsYWAAAAAAAAoFiFEsg+99xzkvJzYr/5zW/2+v6zzjpLsVhMktjcCz3WMa6AQBYAAAAAAADFKpRAdsOGDbIsS9OnT9e4ceN6ff+YMWM0ZcoUGWO0ZcuWECrEcJRtD2KzBLIAAAAAAAAoUqEEsq2trZLywWpfjR8/XpJk2/aA1IThj5EFAAAAAAAAKHahBLJVVVWStgWzfdHY2ChJqqmpGZCaMPy5vpHnm2B0AQAAAAAAAFBsQglk99xzTxljtHr16j6FsnV1dVqzZo0sy9Jee+0VQoUYrrKur6xDhywAAAAAAACKUyiB7Ec+8hFJkud5+tOf/tTr+6+55hoZYyRJH/rQhwa0NgxvOddXziOQBQAAAAAAQHEKJZBduHChIpH80n/84x/16KOP9vje6667Tvfee29w/rnPfW7A68PwlXM9ZsgOMeagg5Q88MDgyxx0UKFLAgAAAAAACE0sjEWnT5+uRYsW6e6775bneTrvvPO0cOFCLVq0SPvtt98O16fTaf3rX//SzTffrJdeekmSZFmWFixYoFmzZoVRIoaprOvL941s11c8FsrvGzDA/L/8RauWLAnO586dG85vigAAAAAAAIpAKIGsJF1yySVauXKlli9fLmOM7rvvPt13331drnnllVd02GGHqa2tTb6f72rsGFUwefJk/fSnPw2rPAxTHd2xOY9AFgAAAAAAAMUntMSqrKxMN9xwg/7rv/5LxpguX5ZlSZJyuZxaWlrkeV4QxErS7NmzdeONN6qmpias8jBMBYGs6xW4EgAAAAAAAGBHobYQ1tbW6vrrr9eVV16pmTNnBs93Dmc7mzBhgi644ALdcccdmjRpUpilYZjKtgexWYc5sgAAAAAAACg+oY0s6OyYY47RMccco3Xr1um1117T2rVrlUgk5DiOampqNHHiRM2bN08HHHBAsBkY0BedRxYAAAAAAAAAxWZQAtkOU6ZM0ZQpUwbzLTHC+EZyPKMcHbIAAAAAAAAoQrSjYtjJuh4dsgAAAAAAAChKg9ohCwyGnOsHs2RR/CJnnaXpK1duO581S/rTnwpYEQAAAAAAQHj6HMi+8sorA1nHLn3wgx8ctPfC0JdzfdluftM4y7IKXQ52w3rhBdWsWhWcm6amAlYDAAAAAAAQrj4HsqeccsqghF2WZWnFihWhvw+Gj5zryxgj2/NVGosWuhwAAAAAAAAgENrIAmNMWEsDu9QxriDrEsgCAAAAAACguPQrkO1J6NrRRdtxbSwW0+TJk1VTU6OSkhKlUimtX79ebW1tXa6fPn26Kioq+lMeRqicm9/QK+f4UlmBiwEAAAAAAAA66XMgu7LTJjzdaW5u1pe//GUtX75ckvSpT31KJ510kg455BDF4/Edrl+1apVuv/123XnnnTImP//z6quv1t57793XEjFCBYGs5xe4EgAAAAAAAKCrSFgLn3feeVqxYoVisZiuuOIKXXvttTr88MO7DWMlaebMmfrxj3+sP/7xjyotLdWaNWt09tlny7btsErEMJVzfRlJWccrdCkAAAAAAABAF6EEsg8//LBeeuklSdLZZ5+tz3/+8z2+98Mf/rC++93vyhij1atX68477wyjRAxjRpLt+kGnLAAAAAAAAFAsQglk77nnHklSWVmZzjjjjF7ff/zxx6u6ulqS9OCDDw5obRgZcq7PyAIAAAAAAAAUnVAC2VWrVsmyLM2cOVNlZb3fVamkpEQzZsyQMUZr164NoUIMd1nXU9YhkAUAAAAAAEBxCSWQbW5uliRFo9E+r+G6riQpmUwOSE0YWXKuL8f35fum0KUAAAAAAAAAgVAC2draWhlj9M477wTBam+kUimtXLlSlmVp/PjxIVSI4S7n+pIRYwsAAAAAAABQVEIJZGfPni1JSiQSuvvuu3t9/x/+8AflcjlJ0rx58wa0NowM2fYNvRhbAAAAAAAAgGISSiB75JFHSpKMMbriiiv04osv9vjev/zlL/rjH/8YnC9atGjA68Pwl3O9Lo8AAAAAAABAMQglkD366KM1depUWZalTCajM888UxdffLGWLFki39+xY9G2bT3//PP66le/qp/97GcyxsiyLM2fP1/z588Po0QMc7n2DtmORwAAAAAAAKAYxEJZNBbTL3/5S51yyinKZDLyfV9333237r77bsXjcU2aNEmVlZWS8mMNNmzYIM/LdzIak9+Eafr06frVr34VRnkYAWzPyDfbRhcAAAAAAAAAxSCUDllJmjNnjm688UZNnDhRUj5oNcYol8vpvffe09KlS7V06VKtXbtWrusGr0vSRz7yEf3xj38MQlugL3KuR4csAAAAAAAAikooHbId5s6dq4ceekg33XST7r//fq1du1bSti7Y7e23334666yz9PnPfz7MsjBC5FyfQHYIMMcco8YVK4LzMbNnyypgPQAAAAAAAGEKNZCVpFGjRukb3/iGvvGNb+j999/XK6+8ovr6ejU1NclxHFVVVWnq1KmaN2+eZsyYEXY5GEGyrq8sm3oVPf/nP9faJUuC89q5c8Nr3QcAAAAAACiw0APZzvbZZx/ts88+g/mWGMFyri/PN3J9X7EIER8AAAAAAAAKj5QKw1auvTs25zC2AAAAAAAAAMWBQBbDVrZ9fmyWObIAAAAAAAAoEgSyGLY6NvTKeQSyAAAAAAAAKA4Eshi2gkCWkQUAAAAAAAAoEgSyGLZc38j1jbLts2QBAAAAAACAQosVugAgTDnXDzplUZwiCxbowJUrt53PmiU98UQBKwIAAAAAAAgPgSyGtazrsalXkbM2bVJpXV1wbqqrC1gNAAAAAABAuBhZgGEt4+Q7ZH1jCl0KAAAAAAAAQCCL4S3jeDLGKOswRxYAAAAAAACFRyCLYS3THsSmHcYWAAAAAAAAoPBCCWRff/31MJYFei1t5wPZDB2yAAAAAAAAKAKhBLInnniijjzySF1//fWqr68P4y2AHsnPj90WzAIAAAAAAACFFNrIgvfff1+//OUvdcQRR+iss87So48+Ksdxwno7oFtGUtb16JAFAAAAAABAUYiFsmgsJtd1JUme5+nZZ5/Vs88+q+rqah199NFatGiR5syZE8ZbAztI2wSyAAAAAAAAKA6hdMg+++yzuvjii3XQQQdJkowxMsaotbVVt912m4477jgtXLhQN998s5qamsIoAQhkHE85z5fnm0KXAgAAAAAAgBEulEB29OjROvnkk3XnnXfqf//3f/XVr35Ve+21l6Rt4ezq1at1xRVX6KMf/ajOOeccPfHEE/J9P4xyMMKlHU8ybOwFAAAAAACAwgtthmyHfffdV+edd56eeOIJ3XrrrTr22GNVVVUVBLOu6+rxxx/XN77xDX30ox/VlVdeqdWrV4ddFkaQjOO3PxLIAgAAAAAAoLBCD2Q7O/TQQ/Xzn/9czz//vH71q1/p4x//uGKxWBDONjQ06KabbtLChQt13HHH6fbbb1cikRjMEjEMZex8EJsmkAUAAAAAAECBhbKp1+7E43EdeeSROvLII9XS0qKnnnpKTzzxhJ5//nmlUilJ0rJly7R8+XJdccUVWrBggU444QQdeuihhSgXQ1zO8+UZQ4csAAAAAAAACm5QO2S7U1tbq89//vO65pprdOONN2revHmSJMuyZIxRLpfTgw8+qFNOOUULFy7UAw88UOCKMRRlHD8YXQAAAAAAAAAUSkE6ZDt75ZVX9Nhjj+nxxx/Xxo0bJW0LYzt0HK9evVrf+973dNddd+kXv/iFJk6cWJCaMfRkbE9pmw5ZAAAAAAAAFFZBAtmVK1fq/vvv10MPPaT6+npJ6hLAStIBBxygRYsWacGCBXrttdd033336dlnn5Xv+3r55Zd12mmn6Y477lBtbW0BvgMMNWnHk+P5cj1fsWjBG8MBAAAAAAAwQg1aIFtXV6cHHnhADzzwgN555x1JO4awo0eP1tFHH63Fixdr1qxZwfOf/exn9dnPflZr167VeeedpxUrVmjt2rX6f//v/+l73/veYH0LGMI65sdmHF9VBLJFxf/Wt1S3YkVwvufs2YoWsB4AAAAAAIAwhRrIJhIJPfLII7r//vv12muvBQFs5yA2Fovpox/9qBYvXqyPf/zjisV2XtLUqVP1hz/8QZ/85Cfluq4ee+wxAln0SEcgm3Y8VZUVfFIHOjFf+Yq2LFkSnO8xd24BqwEAAAAAAAhXKMnUo48+qgceeEDPPPOMHMeRtGM37P7776/Fixdr4cKFGjNmTI/XnjBhgmbPnq0lS5Zo8+bNA1o3hq900CHLHFkAAAAAAAAUTiiB7Le+9a1gY67OG3TV1tbqqKOO0uLFizV79uw+r19aWipJqqmpGZB6Mfw5npHrmyCYBQAAAAAAAAoh9L/djkajmj9/vhYvXqwjjjhCJSUl/V6zrq5O06ZN06c+9akBqBAjRcbx6JAFAAAAAABAQYUWyE6fPl2LFi3SMccco7Fjxw7o2v/4xz9kWdaAronhL00gCwAAAAAAgAILJZC96667dOCBB4axtCQRxqJPMrYn1zOyXV/xWKTQ5QAAAAAAAGAECiWQzWQyeuWVV1RTU6P999+/T2s8//zzev311+U4js4777wBrhAjUbCxl+sRyBaTXE5WLtflXLHQp6kAAAAAAAAURCipxymnnCLLsjR//nxdf/31fVrjd7/7nV5//XWNHTuWQBYDIuP4+UfbU01Z/2cZY2BEDzlE/7FqVXBuZs6UVq4sYEUAAAAAAADhKdo2wWg0KmOMWlpaCl0KhomO+bFp5sgCAAAAAACgQIoykF2+fLmWLVsmSaqoqChwNRguXN/I9vygUxYAAAAAAAAYbH0eWXDttdfq3nvv3eU1r7zyij75yU/2at1cLqempib5vi/LsjRlypS+lgjsIOP4QacsAAAAAAAAMNj6HMiefPLJuu2223Y6UsAYo2w2q02bNvVqXWOMJMmyLEnSokWL+loisIOM4xHIAgAAAAAAoGD6PLKgtrZW//M//yNjzA5fnXX3+q6+OvviF7+ok046qa8lAjtI25483yjnEsoCAAAAAABg8PW5Q1aSjj32WJWWlspxnOA5Y4y+//3vy7IszZgxQ6effnqP17MsS6WlpaqtrdX++++vsWPH9qc8YAcd3bEZx1dpLFrgagAAAAAAADDS9CuQlaSjjjpqh+e+//3vS5ImTpzIyAEUlY5ANu14qi0vKXA1AAAAAAAAGGn6Hch254Mf/KAkaebMmWEsD/RZ0CFrM7IAAAAAAAAAgy+UQPaWW24JY1mg3zwj5VxfaTb2AgAAAAAAQAH0eVMvYKjKOF7QKQsAAAAAAAAMpj53yG7atKnL+V577bXT1/qr89pAf6UdT1nXlzFGlmUVuhwAAAAAAACMIH0OZD/xiU8EYZZlWVqxYkW3r/XX9msD/ZVxPPm+Udb1VV4SLXQ5AAAAAAAAGEH6PUPWGNOn14BCSbdv6JVxPAJZAAAAAAAADKp+zZAljMVQlHH89kfmyAIAAAAAAGBw9blD9vHHH+/Ta0ChZV1PRts6ZQEAAAAAAIDB0udAdtKkSX16DSg030hZxws6ZQEAAAAAAIDB0u8ZssBQlHF8RhYUCf83v9F7y5YF5/seeKCY7AsAAAAAAIYrAlmMSBnHU9b15RujiGUVupwRzXzyk2odN27b+dy5BawGAAAAAAAgXP3a1AsYqtKOJ2OMsnTJAgAAAAAAYBD1uUP21FNPHcg6dsqyLN18882D8l4YOTrGFWQcXxXxAhcDAAAAAACAEaPPgey//vUvWSH/qbcxJvT3wMjUEcimHU9jC1wLAAAAAAAARo5+zZA1xgxUHcCgyjq+jMTGXgAAAAAAABhUfQ5kzznnnIGsAxhUHWFs2iaQBQAAAAAAwOAhkMWIlXE8ZVwC2YJ76y2Vr1q17Twelz7wgcLVAwAAAAAAEKJ+jSwAhrK07Snn+vJ8o2iEWcWFEv3CFzS7UyBrZs6UVq4sYEUAAAAAAADhiRS6AKBQMo4nGebIAgAAAAAAYPAQyGLESju+JAJZAAAAAAAADJ4+jyy46KKLgmPLsnTZZZd1+1p/bb82MFDSttv+SCALAAAAAACAwdHnQPbee++VZW2bu9k5NN3+tf4ikEUYbM/I843SdMgCAAAAAABgkPRrUy9jjCR1G752vNZfAxnsAttLOx4jCwAAAAAAADBo+hzILlq0qE+vAcUk7XjBLFkAAAAAAAAgbH0OZC+//PI+vQYUk4ztyfV82a6veIw97gAAAAAAABAuEiiMaB3zYxlbAAAAAAAAgMFAIIsRLW3ng1g29gIAAAAAAMBg6NemXn2xZs0a1dXVqbW1VaWlpaqpqdGUKVM0ceLEwS4FCDpjCWQBAAAAAAAwGAYlkH399dd1++236+mnn1Yikej2mj333FOf/vSndfLJJ2vy5MmDURYgz0g511fGJpAFAAAAAABA+EIdWdDS0qJvf/vb+uIXv6gHHnhAra2tMsbIGBNc03G+adMm/fnPf9aRRx6p3//+92GWBXSRdjw6ZAEAAAAAADAoQgtkm5qadMopp+jRRx/dIYSV1O1zkuS6rq655hqdf/75YZUGdJFxPGUcv9vPIwAAAAAAADCQQhtZcNFFF2n16tWyLEuSNGnSJC1evFiHHnqo9t13X1VVVckYo0QioXfeeUcvvPCC7r33XjU3N8sYo//93//VlClT9O1vfzusEgFJ+Y29jDHKur7KS6KFLgcAAAAAAADDWCiB7Msvv6ynn346CGNPOeUUffe731U8Ht/h2oqKCu2xxx6aP3++vv71r+viiy8OumpvuOEGLVq0SFOnTg2jTEDStg290rZHIAsAAAAAAIBQhTKy4MEHHwyOFy1apB/84AfdhrHbq6qq0q9+9Sv913/9l6T8+II777wzjBKBQKYjkGWOLAAAAAAAAEIWSiD7r3/9S5IUjUb13e9+t3cFRSL64Q9/GHTXPvPMMwNeH9BZ1vHlm23BLAaXd//9WnbXXcGXd//9hS4JAAAAAAAgNKGMLKivr5dlWZo1a5ZGjx7d6/snT56s/fffX6tWrVJdXV0IFQLbGOXD2LRNIFsQ++2nXFtbl3MAAAAAAIDhKpQO2ZKSEklSeXl5n9eorq6WJBljBqQmYFcyjsfIAgAAAAAAAIQulEB2ypQpMsZozZo1fQ5UN27cKMuytNdeew1wdcCO0o4n2/Xl+n6hSwEAAAAAAMAwFkogu2DBAklSc3Nzlw2+euqll17Spk2bJEmf+MQnBrQ2oDsd4woyNoEsAAAAAAAAwhNKIHvSSSdpzz33lDFGl156qVatWtXje5uamvSDH/xAklRTU6NTTjkljBKBLjo29GJsAQAAAAAAAMIUSiA7atQoXXPNNaqurlZra6tOPPFE3XLLLcpkMru876mnntLixYu1ceNGlZeX6+qrr9a4cePCKBHooiOIzRDIAgAAAAAAIESxvt546qmn7vaayspKJRIJpdNpXXbZZfr1r3+tgw8+WNOmTQs27UqlUtqwYYPeeOMNNTQ0yBgjy7L0n//5n3r11Vf16quv6lvf+lZfywR6xPGMHN8EowsweKyHH9boZcu2nW/cKC1cWMCKAAAAAAAAwtPnQPZf//qXLMva7XUd1xhjlEql9MILL+iFF17Y4bqOzb86rn/mmWf0zDPPSBKBLAZFxvYYWVAAke99T/t1GmtiZs4kkAUAAAAAAMNWnwNZaVuIOpD3bP96T0JfYCCkHY+RBQAAAAAAAAhVnwPZc845ZyDrKDoXXXSR7rnnHknS5ZdfrsWLF/fovjVr1uiOO+7Qyy+/rA0bNsh1XU2YMEH777+/jj76aH36059WLNa7H/uLL76ou+++W2+88Ybq6+sVi8W0xx57aN68eVq0aJEOPfTQXn9/2FHa9uT5RjnXU2ksWuhyAAAAAAAAMAwRyHbj6aefDsLY3vjtb3+rP/zhD3Jdt8vz69ev1/r16/X444/rwAMP1FVXXaX99ttvt+slk0ldcMEFeuyxx7o8n8vltGbNGq1Zs0Z33XWXFi5cqB/+8Ieqqqrqdc3YpqM7Nm37BLIAAAAAAAAIRaTQBRSbtrY2XXLJJb2+79JLL9W1114bhLGxWExz5szRoYceqtGjRwfXLVu2TKeccoo2bty4y/VyuZzOOOOMLmHsqFGjNG/ePB100EEqKysLnr///vv19a9/XbZt97pubNMxP5axBQAAAAAAAAgLgex2LrvsMm3ZsqVX9zzyyCO65ZZbgvPPfOYzQZftbbfdpmeffVY//elPVV5eLklqaGjQueeeu8t5uldeeaWWLFkiKT9H95vf/KZeeOEF3XHHHfrb3/6mZ599Vqeeempw/SuvvKKrr766V3Wjq4zjyUhs7AUAAAAAAIDQFH0gu2zZskF7r76MKnAcR1deeWVwfsQRR+jXv/61xo0bFzxXUlKiE044Qddee20wP3b58uV68MEHu13znXfe0R133BGcf+c739E3vvGNLl2x1dXV+sEPfqBvfOMbwXO33XabNmzY0Kv6sY1vpJzrE8gCAAAAAAAgNH2eIdtTnufpzTff1ObNm5XL5eR5XredocYYua4rx3GUTqe1detWvfrqq1q9erVWrFgRdplKJBK6+OKLJeUD1Fgspkwms9v7/vnPf2rTpk2S8mMKfvjDHyoS6T7nnj9/vk444QTddtttkqQbb7xRRx999A7X3XLLLfK8fCi433776cwzz9zp+59zzjn65z//qbfffluO4+jWW2/VhRdeuNu60b207SljE8gCAAAAAAAgHKEGsn/605903XXXKZFI9Ol+Y4wsyxrgqrp32WWXqb6+XpJ01lln6e9///tu57xK0sMPPxwcf/jDH9Zee+21y+s7B7LLly/X+vXrNXny5OB13/f16KOPBueLFy/eacArSZFIRMcff7wuvfRSSdKjjz5KINsPacdT1vXlG6PIIH32AAAAAAAAMHKENrLg17/+ta666iq1trZ26Yg1xgRf2+v82q7mqw60p556Svfee68kaf/999fXvva1Ht1njNHLL78cnH/kIx/Z7T0zZ87U+PHjg/Mnnniiy+srV65Uc3NzcD5//vzdrtn5fTdt2qSVK1fu9h50L+PkO7jZ2AsAAAAAAABhCCWQ3bBhg/74xz9KUtDh2jlktSxLlmV1G8B2vDZhwgR9+ctf1q233hpGiYFEIqFLLrlEUn7kwOWXX654PN6jezdu3Nil+/fAAw/s0X0zZ84MjpcuXdrltc5haklJiWbMmLHb9fbdd98u82W3XxM9l24fV0AgCwAAAAAAgDCEEsjee++9cl1XklRaWqqLL75YzzzzjN566y195zvfkTFG0WhUL7/8spYvX64XXnhBN9xwgz72sY8F4WxTU5M+9alP6ZBDDgmjxMCll14ajCo488wzexyqStL777/f5XzKlCk9um/vvfcOjtetW7fTNSdNmhRsArYrlmV1GZWwdu3aHtWBHXVs6JVmjiwAAAAAAABCEEog+69//Ss4/s53vqOTTz5ZEyZMkGVZOvzwwyXlN/t67rnnFI1GNWbMGH3kIx/Rddddp/POOy94/ZJLLgl1dMETTzyh++67T5I0bdo0nXPOOb26f+vWrcFxJBLRuHHjenRf55EFndfY/nzChAk9rqXze2+/Jnou5/ryjFHa8QtdCgAAAAAAAIahUDb1Wr9+vSQpHo/r+OOP7/LarFmzVFJSItd19eqrr+pzn/tcl9e/+tWvaunSpXrsscf0zjvv6LHHHtOnP/3pAa+xtbVVP/zhDyXlw9TejCrovEaHUaNG7XLzrc4qKyu7XUOSWlpaguOqqqoe19L52u3XHEy+78sYX8YY+b4v3x+8WcADJZVzlc457fUTzIYtYow6b59mjJHX3mEP9JTnebs8B3aHzxD6i88Q+ovPEAYCnyP0F58hYHCEEsi2trbKsixNmzZNpaWlXd8wFtN+++2nVatWafny5d3ef9ZZZ+mxxx6TJD355JOhBLKXXnpp0En6pS99SXPnzu31GrlcLjjuPMN1dzoHv7Ztd3mt8/lArTmY6uvr1ZTylEy5qq/fIscbeoFmXZmnEq9Sm6MZtbW1KZlMFrqkYW1OLqfOn3Q7l9PyJUsKVg+Gh2XLlhW6BAxxfIbQX3yG0F98hjAQ+Byhv/gMAeEIZWRBx/zY2trabl/fd999JUlr1qzp9vWDDjoo+BP8zptcDZTHH39c999/vyRpn3320be+9a0+reM4TnDc0+5YSV3mwrrbdQL2dc1oNLrTNdE7qZwj1xi5vno0wxcAAAAAAADoqVAC2Y4gtnO42NnkyZMlSel0Wlu2bOn2mkmTJskYo02bNg1obS0tLfrRj34kKb8Z1s9//vNedaJ21jkE7c2ftncOTEtKSgZkzc5/RrD9muidZC7/uc16hkAWAAAAAAAAAyqUtGn8+PHaunWr1q1b1+3rU6ZMCY7ffvttTZw4cYdrOrpDU6nUgNbWeVTBySefrEMPPbTPa5WXlwfHnccX7E7nkQLbj3ToHA73Zs3O126/5mCaMGGCcq1ZJZTRhAkT5Q7BGbLlpTFVjqpUZW2lJlbGNWnSpEKXNKx5q1bp353+DObAAw/U3E6/mAB6wvO8Ln9OdeCBB3b5BRewO3yG0F98htBffIYwEPgcob/4DKG/li5dyn48PRBKIDtv3jytWLFC9fX1WrZsmQ488MAur3cOZN944w3913/91w5rdGwMNpAdio899pgeeOABSfku3fPPP79f69XU1ATHqVRKxhhZlrWLO/I6zyTdfqxD5/PezC7d1ZqDKRKJyLIisixLkUhEEQ29QDbn5f/vmHV9/ounAKLRKJ3J6Dc+R+gvPkPoLz5D6C8+QxgIfI7QX3yGgHCEMrLgIx/5SHB88cUXq7Gxscvrs2fPDjpg77vvvh1GGzz55JNqaGiQZVnBLNn+amlp0Y9//GNJ+VEFl156qSoqKvq1ZufOXs/z1Nzc3KP7Ojp0Je3w/U2YMCE43v7ntisNDQ3B8fjx43t8H3bk+ka25yvtsJskAAAAAAAABlYov+Y44ogjtM8++2jt2rVatWqVjjzySH3hC1/Q6aefrnHjxqmqqkof/OAH9fLLL2vjxo0699xzddFFF2ncuHF67rnnguBUkubOnTsgNf31r38NgtDy8nJdf/31uv7663d6feeA88Ybb9RDDz0UnF955ZUaN26cpk6d2uWe9evXa8yYMbutZcOGDcFxxwZnHfbZZ58u1/Wk69YYo40bN3a7BvombXvK2LTYAwAAAAAAYGCFEshalqWLL75YX/va1+R5nhKJhP70pz/pyCOPDDpCv/SlL+nll1+WJD399NN6+umng/uN2fZn7osXLx6QmjrPbU2n03ruued6fO/bb7+tt99+OzjPZrOS8huP1dbWqqWlRZL01ltv9ShAXrlyZXA8a9asLq/NmTMnOM5kMnrvvfe033777XK9d999t8sM2QMOOGC3NWDXMo6njOv1eAwFAAAAAAAA0BOhjCyQpPnz5+sXv/iFqqqqguc6z4494ogjtHDhwiB8NcYEXx0B2Gc/+1l9+MMfDqvEAfGhD30oOH7hhRd2e/3KlSu7dN8edthhXV6fMWNGly7bF198cbdrPv/888Hx6NGjNXPmzN3eg11LO5583yjr0iULAAAAAACAgRPqZObPfvaz+tCHPqS//OUvevnll1VdXd3l9csuu0xjx47VLbfcItd1u7x2wgkn6OKLLx6wWs4991yde+65Pb7+E5/4RDAG4PLLL99pp+6CBQv06KOPSsrPvt2yZUuX2bLbu/3224PjadOm7RCeWpalT3/60/rrX/8qSbrzzjt14oknBjN3t+f7vu68887g/DOf+QwdnQMgbefnx2YcT+UlbOwFAAAAAACAgRH6Vnljx47daRgai8V0wQUX6IwzztBzzz2nrVu3qra2VocffrgmT54cdmkDYsGCBZowYYLq6+tl27YuvPBCXX/99d3uQvjss8/qb3/7W3B+yimndLvmF7/4Rd15550yxmjlypX63e9+t9Mw+Te/+Y1Wr14tSYpEIjtdE73TsaFXyvY0pn97v2E3rN/9TnsuX77tfM4c6VvfKmBFAAAAAAAA4Qk9kO2J8ePHa9GiRYUuo0/i8bjOP/98XXjhhZLyYwu+8pWv6Kc//WkQKruuq3vuuUeXXXaZPC8f9O2///76whe+0O2as2bN0qJFi3TPPfdIkq699lq1tbXp3HPPDUZAtLW16ZprrtGf//zn4L4TTjhB06dPD+17HUmyji/PGKVsd/cXo18iv/+99lq1Kjg3M2cSyAIAAAAAgGGrKALZoW7RokV6/fXXgzEDL7zwghYsWKCZM2eqsrJSa9asUVNTU3B9bW2tfvOb33TbRdvhBz/4gd5++20tW7ZMknTzzTfrzjvvDEYcrFq1SplMJrj+Ax/4QBAKo/+MpFTOUzLnFboUAAAAAAAADCODGsiuXLlSr732mjZv3qyWlhaVlZWpurpaU6dO1bx587T33nsPZjkD6ic/+YlGjx6tG264QY7jyPd9vfXWWztcN23aNP3mN7/Rfvvtt8v1KisrddNNN+l73/uennjiCUlSJpPRG2+8scO1RxxxhK666iqVlZUNyPeCvKTtKu14XTaaAwAAAAAAAPoj9EA2m83q5ptv1l//+lfV1dXt8tqZM2fq9NNP1zHHHBN2WQPOsiydd955Wrhwoe666y4999xz2rx5szKZjGpqanTAAQfov//7v7Vw4ULF4/EerVlVVaXf//73evHFF3X//ffr1VdfVUNDgzzP07hx4zRv3jwtWrRI8+fPD/m7G5lStiffN0rbnkaV0kwOAAAAAACA/gs1ZXrzzTd1/vnna+PGjTLGSMoHlx3HHTqeW7lypS688ELdf//9+sUvfqGxY8eGWd4udXSl9ta0adN0wQUX6IILLhiwWg4//HAdfvjhA7YeeiaZy8+PTRLIAgAAAAAAYIBEwlp46dKlOuOMM7Rx48Yuz0ejUU2dOlUHHnig5syZo8mTJysS2VaGMUYvvPCCvvSlL6mtrS2s8oDdStle+yMbewEAAAAAAGBghNL253meLrroIiWTyaD79XOf+5xOPPFEzZ07VyUlJV2uz2azeumll3TzzTfrxRdflCS98847uuiii3TttdeGUSKwW65vlHV9NvYCAAAAAADAgAmlQ/bhhx/WO++8I8uyFIvFdO211+rqq6/WoYceukMYK0llZWX6+Mc/rhtvvFHf//73JeU7ZR9//HG9/PLLYZQI9Egy5ypJhywAAAAAAAAGSCiB7COPPBIcf+c739GnPvWpHt976qmn6vTTTw/O//73vw9kaUCvpGxPtuvL8fxClwIAAAAAAIBhIJRA9q233pIkVVZW6qSTTur1/WeffbZKS0slSa+++uqA1gb0RrCxF2MLAAAAAAAAMABCCWQbGhpkWZb233//bkcU7E5lZaVmzZolY4y2bt0aQoVAz3SMK2BsAQAAAAAAAAZCKIFsdXW1pPzmXn0VjUYl5efLAoWSdXx5xihFIAsAAAAAAIABEEogO3PmTBljtGrVKqXT6V7f77qu1qxZI8uytO+++4ZQIdAzRvk5sowsAAAAAAAAwEAIJZBduHChJCmbzer666/v9f333nuvWltbJUlHHXXUgNYG9FYy5yrteDLGFLoUAAAAAAAADHGhBLLHHHOM/uM//kPGGF133XW66667enzvK6+8ossuu0yStP/+++v4448Po0Sgx1K2J983Stt0yQIAAAAAAKB/QglkJel3v/udDjjgAPm+r0suuUTnnHOOXn31Vfm+3+317733nq688kqdfvrpymQy2m+//fS73/2uT5uCAQMpmevY2ItAFgAAAAAAAP0T6+uNBxxwQI+usyxLxhg9/vjjevzxx1VWVqapU6eqqqpKkpRKpbRx40YlEglJkjFGlmUpFovpggsukGVZuvXWW/taJtBvqfYgNr+xV2lhixmGzD77KJfNBufxffaRVcB6AAAAAAAAwtTnQLYjON3VXE3Lsro8GmOUyWS0atWqHdbquK7j2tWrVwfvARSS6xtlXZ8O2ZD4Dz6o5UuWBOdz584Nr3UfAAAAAACgwPocyEra7SZHO3u9t88DhZbMucHoAgAAAAAAAKCv+hzI/vnPfx7IOoCilrI92a4vx/NVEqV/EwAAAAAAAH3T50D2P//zPweyDqCoBRt75TyNriCQBQAAAAAAQN+QLAE9kLTdLo8AAAAAAABAXxDIAj2QdXx5xihFIAsAAAAAAIB+6NemXr2xbt06Pfnkk/r3v/+t+vp6tbS0KBqNatSoUZo0aZJmz56tj33sY9p///0HqySgx4zyc2STOa/QpQAAAAAAAGAICz2Q3bJliy677DI99thj8n2/22uWLl2qRx55RL/85S/1oQ99SD/84Q+13377hV0a0CupnKu048kYI8uyCl3OsBH5n//RvitWbDufPVv69a8LVxAAAAAAAECIQg1k//3vf+vcc89Vc3NzEGIZY7q9tuO1l156Sccdd5yuueYazZ8/P8zygF5J2p583yhtexpVOmjN5cOe9cgjGrNqVXBu1q0rYDUAAAAAAADhCi1Veu+99/T1r39diUQi6CaMxWKaM2eOZsyYoerqanmep9bWVq1evVorV66U67qyLEvpdFrnnnuu7rzzTs2YMSOsEoFeSeY6NvYikAUAAAAAAEDfhJYqXXTRRUEYG41G9ZWvfEWnnnqqRo8e3e31TU1Nuvnmm3XDDTfI8zxlMhldcskluuOOO8IqEeiVlO21P7qSSgtbDAAAAAAAAIakSBiLPvvss3rjjTdkWZZKSkp0/fXX61vf+tZOw1hJGjNmjM477zz98Y9/VDwelyQtWbJEL774YhglAr3m+kZZ11fSZmMvAAAAAAAA9E0ogew//vGP4Pjcc8/V4Ycf3uN7DzvsMJ177rnB+UMPPTSgtQH9kcy5wegCAAAAAAAAoLdCCWT//e9/S5JKS0t18skn9/r+k046SaWl+T8Jf/311we0NqA/UrYn2/XleH6hSwEAAAAAAMAQFEog29DQIMuyNGPGDJWXl/f6/vLycs2cOVPGGG3atCmECoG+CTb2yjG2AAAAAAAAAL0XSiCbyWQkqU9hbIeysjJJkucRfKF4dN3YCwAAAAAAAOidUALZmpoaGWO0cePGPq/Rce+uNgIDBlvG8eQZoySBLAAAAAAAAPoglEB2xowZkqRNmzbprbfe6vX9y5cv18aNG2VZlqZOnTrQ5QF9ZpTvkmVkAQAAAAAAAPoilED2wx/+cHD885//vFdjB1zX1WWXXRacz58/f0BrA/orlXOVdjwZYwpdCgAAAAAAAIaYUALZY489VqWlpZKkf//73/rmN7+pRCKx2/sSiYS++c1v6t///rek/BzZRYsWhVEi0GdJ25PvG6UdumQBAAAAAADQO7EwFh0zZoy+/vWv69e//rUsy9ITTzyhz3zmM1q0aJHmz5+vadOmqaamRpLU2tqqd955R88995z+/ve/q6WlRZJkWZbOOOMMjR8/PowSgT5L5tz2R0+j4qH8RwgAAAAAAADDVGhp0llnnaVly5bpsccek2VZam5u1o033qgbb7xxp/cYY2RZliTpYx/7mM4999ywygP6LGV77Y+upNLCFgMAAAAAAIAhJZSRBZIUiUR0zTXX6KSTTgpCVikfunb31fn1k08+Wddee21YpQH94vpGWddXW3unLAAAAAAAANBToQWyUj6UveSSS3Tffffp6KOP1ujRo3d6bXV1tRYuXKi///3vuvjiixWL8afgKF5tWVdtOWbIAgAAAAAAoHcGJfWcMWOGrrrqKknSmjVrVF9fr5aWFhljVFNToz322EPTpk0bjFKAAZHIuRrv+co4nspLooUuZ0gzRxyh1j32CM6rDzhA1i6uBwAAAAAAGMpCCWRvv/12vfvuu1q4cKE+8IEPdHlt2rRphK8Y8tqyjiQpkXUJZPvJ/+1vtWbJkuB87ty54bbuAwAAAAAAFFAoucfDDz+sW2+9Vccff7x+9atfhfEWQEG15TwZiTmyAAAAAAAA6JVQAtn33nsv2Kjr05/+dBhvARSUZ4zStkcgCwAAAAAAgF4JJZBNJBLB8fTp08N4C6Dg2nKu2nJu8MsHAAAAAAAAYHdCCWT33nvv4Liuri6MtwAKLpF15ftGKdsrdCkAAAAAAAAYIkIJZI8//vjg+Nprrw3jLYCC6xhXwNgCAAAAAAAA9FQogexpp52mxYsXyxijhx9+WOecc46WLVsWxlsBBZOyXfkm3ykLAAAAAAAA9EQsjEWfeeYZfeYzn1EymdQ//vEPPf7443r88cc1atQo7b///hozZowqKytlWdZu17IsS5dddlkYZQL94hspabt0yPZT5NhjdcDKldvOZ82S7ruvgBUBAAAAAACEJ5RA9qtf/WoQtnY8GmOUTCb1+uuv93o9AlkUq7asq1SZJ883ikZ2/wsG7MhatUoVb78dnJse/KIGAAAAAABgqAolkJW0053ne7sjfU+6aIFCacu5+V822K5qykoKXQ4AAAAAAACKXCiB7KJFi8JYFig6HfNj27IEsgAAAAAAANi9UALZyy+/PIxlgaKTcTy5vmGOLAAAAAAAAHokUugCgKHMSErmXCUIZAEAAAAAANADBLJAPyVybr5T1vMLXQoAAAAAAACK3ICOLGhubtaaNWtUX1+viooK7b333po+ffpAvgVQdNqyrmTyweyYinihywEAAAAAAEARG5BA9s0339Rvf/tbvfjii/I8r8trEyZM0CmnnKJTTjlFpaWlA/F2QFHpmB/bRiALAAAAAACA3ej3yILf//73OvHEE/Xcc8/JdV0ZY7p8bdmyRVdffbWOO+44rV+/fiBqBopK1vVle36+UxYAAAAAAADYhX4Fsnfeead+85vf7NAV25llWTLGaPXq1fryl7+sZDLZn7cEilIbG3sBAAAAAACgB/o8siCZTOrqq6+WZVmSJGOMDjvsMC1YsECTJk2S67patWqV7r333qAzdt26dfrd736nCy64YGCqB4pEIutqbIWvnOurNMZeeQAAAAAAAOhenwPZRx55RK2trbIsS6Wlpbr66qv1yU9+sss1n/zkJ3XWWWfpkksu0b333itjjO655x59+9vfZp4shpVtc2Qdlcb4bAMAAAAAAKB7fW7le/nll4Pj7373uzuEsR1isZh+9rOfacaMGZKkRCKhN954o69vCxSljvmxCebIAgAAAAAAYBf6HMiuXLlSkjRq1Cgdf/zxu7w2FovpxBNPDM6XL1/e17cFipLjG2UcL+iUBQAAAAAAALrT50B269atsixLU6ZMUUlJyW6vP+SQQ4LjdevW9fVtgaLVlnPVlnNljCl0KQAAAAAAAChSfQ5k0+m0JKmqqqpH10+aNCk4bmtr6+vbAkWrLefK9Ywyjl/oUgAAAAAAAFCk+rypl+M4ktSj7lgpP9qgQyqV6uvbAkWrY35sW85VRTxa4GqGDv/MM7W10xiT8XPmiJ8eAAAAAAAYrvocyBpjZFmWLMvq0fWdr/M8r69vCxStZM6VUT6QnVhVWuhyhgxz3nnauGRJcD5u7twCVgMAAAAAABCuPo8sANCVZ6S07QWdsgAAAAAAAMD2CGSBAZTIukrabOwFAAAAAACA7hHIAgOoLefI942SNmM5AAAAAAAAsCMCWWAAteXcLo8AAAAAAABAZwSywABK5jz5xqiNObIAAAAAAADoRqy/C2zZskV///vfQ73n85//fK/WBwrFKB/KJuiQBQAAAAAAQDf6HciuXr1aF110UY+vN8b0+h4CWQwliZyrGtuT5xtFI1ahyyl60XnzNO/tt4Nza//9paVLC1gRAAAAAABAeAZ1ZIFlWbKsngdU7FSPoSiRdWSMUYKxBT3jOIrYdvAlxyl0RQAAAAAAAKHpV4csgSmwo9b2IDaRdTS6oqTA1QAAAAAAAKCY9DmQffzxxweyDmDYyLm+cq6vVubIAgAAAAAAYDt9DmQnTZo0kHUAw0oi62pUqStjTK/GdAAAAAAAAGB4G9QZssBI0Zp15Hq+Mo5X6FIAAAAAAABQRAhkgRAk2scVtLKxFwAAAAAAADohkAVCkMy58k1+dAEAAAAAAADQgUAWCIFvpLacSyALAAAAAACALghkgZAkso5SjivX8wtdCgAAAAAAAIoEgSwQkkTWlcy2ebIAAAAAAAAAgSwQktasI4k5sgAAAAAAANiGQBYIie0ZZV0/CGYBAAAAAAAAAlkgRImso7acK2NMoUsBAAAAAABAESCQBULUmnXlekZp2yt0KQAAAAAAACgCBLJAiBLt4wpa2dgLAAAAAAAAIpAFQpXMefKMCYJZAAAAAAAAjGyxQhcADGdGUlvWVaKUDtmd8S+9VOuXLQvOJx94oKIFrAcAAAAAACBMBLJAyBJZV7UVnhzPV0mUpvTtmc9/Xo377huc7z13bgGrAQAAAAAACBfpEBCy1qwjmXwwCwAAAAAAgJGNQBYIWaJ9Q69W5sgCAAAAAACMeASyQMgczyjjeHTIAgAAAAAAgEAWGAytWVdtOVfGmEKXAgAAAAAAgAIikAUGQSLryvONkrZX6FIAAAAAAABQQLFCFwCMBIn2+bGJrKuqUv5j18XGjYpv2rTtfNw4aerUwtUDAAAAAAAQIpIhYBCkbE+eb5TIOppUU1bocopK9DOf0QdWrQrOzcyZ0sqVBawIAAAAAAAgPASywCAwkhI5V6PY2AsAAAAAAGBEY4YsMEgSWVdZx5Pt+oUuBQAAAAAAAAVCIAsMktaOObI5p8CVAAAAAAAAoFAIZIFBkmgfV9DK2AIAAAAAAIARi0AWGCSub5R2vCCYBQAAAAAAwMhDIAsMotaMq7acK9+YQpcCAAAAAACAAiCQBQZRIuvI942SObpkAQAAAAAARiICWWAQNWfyG3o1pdnYCwAAAAAAYCQikAUGUdb1lXG8IJgFAAAAAADAyEIgCwyy5oyjRNaV5zNHFgAAAAAAYKQhkAUGWVPakTFGLXTJAgAAAAAAjDgEssAga8k4MpKa0nahSwEAAAAAAMAgixW6AGCkcX2jtqyr5jgdsgAAAAAAACMNHbJAATRnHKVtTznXK3QpAAAAAAAAGEQEskABdIwraE7TJQsAAAAAADCSEMgCBZDIuvJ8oyY29gIAAAAAABhRmCELFICR1JJ1VFYSlTFGlmUVuqSC8W69Ve8sWxacTz/wQP5hAgAAAAAAwxa5B1AgzWlHYyviStmeKktH8H8UDz5Yqc6B9Ny5hasFAAAAAAAgZIwsAAqkqX1+bDNjCwAAAAAAAEYMAlmgQNKOp5zrBxt8AQAAAAAAYPgbwX8nDRRec8ZReTwq3zeKREbuHFkAAAAAAICRgg5ZoICa045836g1y9gCAAAAAACAkYBAFiig5ozd/kggCwAAAAAAMBIwsgAoINszStqemtKO9htb6GoK5LnnVL106bbztjbp4x8vWDkAAAAAAABhIpAFCqw5bauyNCrH81USHXlN69GvfU0zVq0Kzs3MmdLKlQWsCAAAAAAAIDwjL/0BikxzxpFMfp4sAAAAAAAAhjcCWaDAWjKOfMMcWQAAAAAAgJGAkQVAgflGas06Ko/z+xEAAAAAAIDhjgQIKALNaUc5x1fa9gpdCgAAAAAAAEJEIAsUgeaM3eURAAAAAAAAwxOBLFAE2nKeHM+oiY29AAAAAAAAhjVmyAJFojljq6wkImOMLMsqdDkAAAAAAAAIAR2yQJFoTjvyfKNE1i10KQAAAAAAAAgJgSxQJJozTpdHAAAAAAAADD8EskCRyLq+0o6npjQbewEAAAAAAAxXBLJAEWlK20rkXDmeX+hSAAAAAAAAEAICWaCINKUdyeTnyQIAAAAAAGD4IZAFikhLxpFvjJqYIwsAAAAAADAsxQpdAIBtfCO1ZFyVlTBHFgAAAAAAYDiiQxYoMk1pW7brK5lzC10KAAAAAAAABhiBLFBkmtvHFTQztgAAAAAAAGDYYWQBUGRStqec66spbWtybXmhywmd98ILWvbmm8H5gQcdxD9MAAAAAABg2CL3AIpQU9pWeTwqzzeKRqxClxOu6mp5VVVdzgEAAAAAAIYrRhYARagp7cj3jVoYWwAAAAAAADCsEMgCRag548go3ykLAAAAAACA4YORBUARcn2jRNZVU5wOWQAAAAAAgOGEDlmgSDWlbWVsTxnHK3QpAAAAAAAAGCAEskCRak7nu2Ob0nTJAgAAAAAADBeMLACKVFvOleMbNadtTaopK3Q5obH+/GdNWL582/mSJdIZZxSwIgAAAAAAgPAQyAJFykhqTtsqi0XkG6OIZRW6pFBEfvELTV61Kjg3M2cSyAIAAAAAgGGLkQVAEWtKO/LaN/gCAAAAAADA0EcgCxSxprTd5REAAAAAAABDG4EsUMRszyhpe2zsBQAAAAAAMEwQyAJFriltK2m7sl2/0KUAAAAAAACgnwhkgSLXnHYkIzVlGFsAAAAAAAAw1BHIAkWuNevIMyYfzAIAAAAAAGBIixW6gEJ7+eWX9dBDD+n1119XfX29ksmkKisrteeee+rQQw/V4sWLNXv27B6v9+abb+pvf/ubXnnlFW3ZskXGGE2cOFFz5szRMccco49+9KOyLKvH6xlj9Nhjj+n+++/X0qVL1djYqPLyck2cOFGHHXaYjj32WM2aNasv3zqGCN9ILRlHZbGojDG9+vwAAAAAAACguIzYQHbDhg264IIL9Oqrr+7wWktLi1paWvTWW2/plltu0ec+9zn99Kc/VWVl5U7XcxxHP/vZz/TXv/51h9fef/99vf/++3rooYc0f/58XX755ZowYcJua9yyZYvOO+88/fvf/+7yvG3bam1t1dtvv61bbrlFX/rSl3T++ecrHo/34DvHUNSUdjS2Iq5kzlNV2Yj9jy0AAAAAAMCQNyJHFrz//vv6whe+0CWMLSkp0Zw5c3TYYYdpxowZXboQH3roIZ100klKJpPdrmeM0be//e0uYWxpaakOOuggzZs3r0uQ+9xzz+m0005TIpHYZY1NTU06+eSTu4SxtbW1OvTQQzVnzhzFYrHgvW+88UZdeOGFvfshYEhpSufnxzJHFgAAAAAAYGgbcYGs53k699xz1dTUJEmKRqM655xz9NJLL+mee+7RzTffrAcffFBPP/20Pv/5zwf3rVy5Uj/4wQ+6XfNPf/qTHnvsseD8i1/8op5//nn97W9/0x133KHnn39e5513XhCivvvuu/r+97+/yzovuugirVu3TlI+3P3xj3+s559/XrfddpvuuecePfXUU/rsZz8bXP/QQw/pz3/+c59+Jih+GcdXxvHUxBxZAAAAAACAIW3EBbL33HOP3n777eD8iiuu0LnnnrvDOIKJEyfqyiuv1Omnnx4898gjj+iNN97ocl1TU5N+97vfBecnnniifvSjH6mqqip4rqysTF/72tf005/+NHjun//8p1577bVua3z22Wf11FNPdanxxBNPDAJdSRo/frx+9atfdQmN/+///b877eLF0NeYdpTIunI8v9ClAAAAAAAAoI9GXCB73333Bcfz58/XwoULd3n9+eef32Xe60MPPdTl9bvuukupVEpSfqTA9773vZ2udeyxx+rjH/94cH7jjTd2e93NN9/cpcbOnbDb+9GPfqSxY8dKkpqbm3Xvvffu/JvBkNaYsmWMUWOasQUAAAAAAABD1YgKZG3b7tKVetRRR+32nng8rvnz5wfnS5cu7fL6//7v/wbHRx55pCoqKna53gknnBAcP/PMM0qn011eb21t1QsvvBCcH3vssbtcr6Kiokuo/Mgjj+zyegxdLRlHrm/UmGJsAQAAAAAAwFA1ogLZjRs3qrS0NDifNm1aj+6rra0Njpubm4PjlpYWvfXWW8F55+B2Zw477DBFo1FJUjab7RK+StK//vUveZ4nSbIsSx/5yEd2u2bna1577TW1trbu9h4MPUb5zb2a0rZ8YwpdDgAAAAAAAPpgRAWy++67r15//XW9+uqreuihh7T//vv36L6NGzcGxzU1NcHxqlWrZDoFY3PmzNntWhUVFZoyZUpwvn3H7cqVK4Pjvffeu8v77cysWbOCY9/3tXz58t3eg6GpMeXI841aMnTJAgAAAAAADEUjKpDtUFVVpenTp6usrGy31yaTST3//PPBeeeu2vfffz84jsfj2nPPPXv0/nvvvXdwvG7dui6vdV5z6tSpPVpv/PjxXb6XtWvX9ug+DD2NaVtG+Xmyw8bYsXI6fal9JjIAAAAAAMBwFCt0AcXuhhtuUDKZDM6POOKI4Hjr1q3B8fjx43u8ZudrO68hSfX19X1ac+zYsUEn7/ZrDibf92WML2OMfN+X7/On9QPJ9qWWtK3SqKVpYytkjOnSpT0UeU88oWXLlgXnBx54oKKuW8CKMBR1jHrZ2TmwO3yG0F98htBffIYwEPgcob/4DAGDg0B2F958801df/31wfk+++yjT3ziE8F5S0tLcFxVVdXjdSsrK4Pj7ee9dj7vzZqdr00kEj2+b6DV19erKeUpmXJVX79FjucXrJbh6m0/rdikMXp3Q1YlxlVDQ0OhSxpQncNZoK/4HKG/+Ayhv/gMob/4DGEg8DlCf/EZAsIxIkcW9MSGDRt09tlny3G2zeq88MILFYtty7Bte9ufjfdk/EGHeDze7RqSlMvl+r1m5zUw/GxJpCVJrTlfJSUlwSZxAAAAAAAAKH4Est2oq6vTaaed1uVP/7/0pS91GVcgqUtYG4n0/EfZOdR1t/vT7M7nvVmzcyi3/ZoYXlI5V8mso9Zcvvu4tLS0wBUBAAAAAACgpxhZsJ01a9bozDPPVF1dXfDc/Pnz9T//8z87XNs5BPX9nv9pfufAtKSkZEDW7DzXZfs1B9OECROUa80qoYwmTJgolxmyobCjZbLKyjV63GhNnDhxSM+R9TxvxxmydP2il/gcob/4DKG/+Ayhv/gMYSDwOUJ/8RlCfy1durRXedZIRSDbyWuvvaazzz5bzc3NwXOHHXaYrr322m5Dzs4jBXozJqDztdt3N4ax5mCKRCKyrIgsy1IkElFEQzcoLGZNaUdTR1eoOetqr+qej7YYCqLRaJcucqAv+Byhv/gMob/4DKG/+AxhIPA5Qn/xGQLCwciCdg888IBOO+20LmHsxz72MV133XUqLy/v9p7a2trgOJlM9vi9UqlUt2tIUk1NTZ/W7Hzt9mti+ElkXTm+UWPK3v3FAAAAAAAAKBr8mkPSb3/7W1177bVdnlu4cKEuv/zyXf4maOLEicFxY2Njj9+v82zacePGDciana8dP358j+/D0GQkNaZslcYi8nyjaMQqdEl9FvnJTzRlxYpt57NnSz/7WQErAgAAAAAACM+IDmQdx9EPfvAD3XfffV2e/+pXv6rzzjtPlrXrkGvq1KnBcTqdVkNDww4Ba3fWr18fHO+7775dXttnn32C43Xr1u12LUmqr69XNpvtdg0MX40pW3tUlao542jcqHihy+kz629/0/hVq4Jzs3w5gSwAAAAAABi2RuzIAtu2dc4553QJY2OxmC699FKdf/75uw1jJWn27Nldrnvrrbd2e08qleoStM6aNavL63PmzAmO165dq0wms9s1O7+vZVmaOXPmbu/B0NeUduQbMbYAAAAAAABgCBmRgazruvrmN7+pp556Knhu1KhRuu666/SFL3yhx+tUVlZq9uzZwfkLL7yw23teeumlYLe5aDSq//zP/+zy+iGHHBKMSfA8Ty+//PJu1+z8vrNnz+4yhxbDl2eMWjKOGtO2jGHzNAAAAAAAgKFgRAayV111lZ588sngfMyYMbrllls0f/78Xq/1mc98Jji+//77d9vRevvttwfHH/7wh1VdXd3l9erqah122GHB+R133LHL9VKplO6///7g/L//+797VDeGh8a0Ldv11ZZzC10KAAAAAAAAemDEBbJPP/20br755uC8pqZGf/7zn7uMCuiNY489VuXl5ZKkhoYG/fSnP93ptX/729/07LPPBuennnpqt9eddNJJwfGTTz6pe+65Z6dr/vjHP1ZTU5MkqaKiQscdd1yv6sfQ1jGuoDHlFLgSAAAAAAAA9MSICmQ9z9PPf/7z4M+7LcvS1VdfrRkzZvR5zXHjxunLX/5ycH7PPffoO9/5jhobG4Pnstms/vCHP+hHP/pR8NxHP/pRffSjH+12zU984hP60Ic+FJxfcskluu6665TL5YLnGhoadN5553Xpjj377LM1ZsyYPn8vGHqyrq+k7akxzRxZAAAAAACAoSBW6AIG0yOPPKK1a9cG5+Xl5brpppt000039XiNcePG6corr+zy3Ne+9jUtXbo0mEn74IMP6tFHH9XMmTMVj8e1evVqtbW1BdfvvffeO6yxvauuukonnXSS1q9fL9d19ctf/lLXX3+9ZsyYIdu2tWrVKjnOtq7II444QmeeeWaPvw8MH40pW5XxqLKOp7KSaKHLAQAAAAAAwC6MuEC2s3Q6reeee65Xa0yaNGmH52KxmH7729/qJz/5ie6++24ZY+Q4jpYtW7bDtfPmzdNvfvOb3XayTpw4UbfccovOP/98vfbaa5Kktra24Liz4447Tj/60Y8UiYyohme0a0zZmjq6XI1pW5NqygtdDgAAAAAAAHZhRAWy7777bmhrx+Nx/fznP9cJJ5yge++9Vy+99JK2bNki27Y1ZswYHXTQQTrqqKO0YMGCHgene+65p/7yl7/on//8px5++GG9+eabamhoUCQS0cSJE3XIIYfo+OOP18EHHxza94Xil8i5sj1fDSkCWQAAAAAAgGI3ogLZhx56KPT3OOigg3TQQQcN2HqWZWnBggVasGDBgK2J4acxZas0FpXj+SqJ0ikNAAAAAABQrEhugGFgc1tOxhhtbsvt/mIAAAAAAAAUDIEsMAy0Zl2lbE91iWyhSwEAAAAAAMAuEMgCw0RdIqu07akl4xS6FAAAAAAAAOwEgSwwTGxuy8k3Rpta6ZIFAAAAAAAoViNqUy9gOHN9o/qkrWgkwuZeAAAAAAAARYrEBhhG6hJZNvcCAAAAAAAoYnTIAsNIx+ZemxJZ7V1TJsuyCl3SbplDD1Vy1KjgfNQBB6j4qwYAAAAAAOgbAllgmNmUyGpUPKqWjKvRFSWFLme3/Jtu0ttLlgTnc+fOpXUfAAAAAAAMW+QewDCzpX1zr7oEm3sBAAAAAAAUGzpkgWGm8+ZetusrHuP3LgAAAAAAAMWCpAYYhjaxuRcAAAAAAEBRIpAFhqFE1lXS9lTXHswCAAAAAACgOBDIAsNUXSKrjOOpJeMUuhQAAAAAAAC0I5AFhqktbTl5xmhTgrEFAAAAAAAAxYJNvYBhyvWN6ttsxYp8c6/Il76k/d96a9v5AQdIt95awIoAAAAAAADCQyALDGN1iaz2rC7V5raspoyuKHQ53bJefVVVq1YF5yaVKmA1AAAAAAAA4SrOljkAAyKR69jcK8fmXgAAAAAAAEWAQBYY5ja15jf3amZzLwAAAAAAgIIjkAWGuS1tObm+0YaWbKFLAQAAAAAAGPGYIQsMc54xqktkFYtYSuVcjSrlP/YAAAAAAACFQocsMAJsbM3KSNrQSpcsAAAAAABAIRHIAiNA1vW1NZnTlmROtusXuhwAAAAAAIARi0AWGCE2tGTl+0abEnTJAgAAAAAAFAqBLDBCJHKuWrOuNiXywSwAAAAAAAAGH4EsMIJsaMnIdn1tSeYKXQoAAAAAAMCIRCALjCANKVtZ19eGFsYWAAAAAAAAFAKBLDCCGOW7ZFO2q6a0XehyAAAAAAAARhwCWWCEqUvk5PpGG1rpkgUAAAAAABhssUIXAGBwecaoLpFVLGopZbsaFeefAQAAAAAAgMFChywwAm1szcoYMUsWAAAAAABgkBHIAiNQ1vXVkLS1JZmT4/mFLgcAAAAAAGDE4G+VgRFqfWtG4yvj2tSa1dQxFQWrw3zhC2pYsSI4Hzt7tqyCVQMAAAAAABAuAllghEpkXSWyrjYmspo8ulwRqzAxqP+jH2ndkiXB+ei5c2ndBwAAAAAAwxa5BzCCrW/JyHZ91bflCl0KAAAAAADAiEAgC4xgDSlbGcfT2paMjDGFLgcAAAAAAGDYI5AFRjAjaW1zRhnb02a6ZAEAAAAAAEJHIAuMcFvacko7ntY2Z+TTJQsAAAAAABAqAllghDOS3m9KK+t4qktkC10OAAAAAADAsEYgC0D1SVtJO98l6/l0yQIAAAAAAIQlVugCABSH95vSqoxXaVMiq8m15YP2vtGPfUwHrVq17XzmTOn55wft/QEAAAAAAAYTgSwASVJDylYi52pdc0Z7VZcpGrEG540bG1XS2Bicmk7HAAAAAAAAww0jCwAE3mtMy/F8bWjJFLoUAAAAAACAYYlAFkCgOeOoJeNofWtGrucXuhwAAAAAAIBhh0AWQBfvNaXlekbrW7KFLgUAAAAAAGDYIZAF0EVr1lVT2tGG1owcumQBAAAAAAAGFIEsgB2835SW5xuta2aWLAAAAAAAwEAikAWwg0TOVUPK1sZEVjmXLlkAAAAAAICBQiALoFvvN6Xl+0brmtOFLgUAAAAAAGDYIJAF0K2k7ak+mdOmRE5Zxyt0OQAAAAAAAMMCgSyAnXq/KSPfGK1rYZYsAAAAAADAQCCQBbBTacfT1mROdXTJAgAAAAAADAgCWQC71NElu7aZLlkAAAAAAID+IpAFsEtpJz9LdnMbXbIAAAAAAAD9RSALYLfW0iULAAAAAAAwIAhkAexW2vFU35bvks3QJQsAAAAAANBnBLIAeuT95nR7l2y60KUAAAAAAAAMWbFCFwBgaMg4vra05RSxLE0d7am8JDog6/rf+542LV8enO81Z44GZmUAAAAAAIDiQyALoMfWNqc1sapU7zeldcDEqgFZ05x6quqXLAnO95w7d0DWBQAAAAAAKEaMLADQYxnH1+ZETvVJW2mbWbIAAAAAAAC9RSALoFfWMksWAAAAAACgzwhkAfRK1vW1OZFt75J1C10OAAAAAADAkEIgC6DX1jZn5Buj95szhS4FAAAAAABgSCGQBdBrWddXXSKr+mROqRxdsgAAAAAAAD1FIAugT9Y2Z+T7Ru829XOWbCKhaFtb8KVEYmAKBAAAAAAAKEKxQhcAYGjKub42tGYVsSy1ZBzVlpf0aZ3ohz+sg1etCs7NzJnSypUDVSYAAAAAAEBRoUMWQJ+ta87I9Y3ebUwVuhQAAAAAAIAhgUAWQJ+5vtHa5owSWVdbk7lClwMAAAAAAFD0CGQB9MvG1oxyrq/3mtIyxhS6HAAAAAAAgKJGIAugX3wjvdeUVtr2VNdGlywAAAAAAMCuEMgC6LctbTmlbE/vN6Xl+XTJAgAAAAAA7AyBLIB+M5LebUzJdn1taM0UuhwAAAAAAICiRSALYEA0ph21ZBytb8nI8fxClwMAAAAAAFCUCGQBDJh3m9JyPaO1zXTJAgAAAAAAdIdAFsCASWRdbU3Z2tiaVdbxCl0OAAAAAABA0SGQBTCg3mtMyzdG7zWlC10KAAAAAABA0SGQBTCg0o6nukRWW5I5tWXdQpcDAAAAAABQVAhkAQy499tnyS7bklDOZXQBAAAAAABABwJZAAPO9oyW1SWUsX29Wdcm1/cLXRIAAAAAAEBRIJAFEIqWrKu3trQplXO1rK5NvjGFLgkAAAAAAKDgCGQBhGZrytY7DSm1ZBytrE/KEMoCAAAAAIARLlboAgAMbxtasyqN5X/3UxqLaNrYUQWuCAAAAAAAoHAIZAGEbk1jOghly2IRTaopD17z/vAHvbd0aXC+7wc+wD9MAAAAAABg2CL3ADAoVtYnFY9GtLohpXg0ovGVpfkX5s9Xoqpq24Vz5xamwBAY35XdsEyx6qmKlo0udDkAAAAAAKAIMEMWwKDwjbRsc5tSOU9v1SfVmnEKXVKojO/K3vqm/FyrnMZl8rLNhS4JAAAAAAAUAQJZAIPG9Y3erEsoY3tatrlNOdeTZVmKRIbXP0X5ztil8u2EnNZ35dspQlkAAAAAACCJkQUABlnO9bVsc5vmTarR8s1tOmjPKo0ePVqNjY27vdf4rpyWd+Slt8qKlsiKxGVF819qP46U1ihSUriNw4IwNpeQ0/S2vPRm+el6xccfLKdxmTT2QMYXdOKmNsvPbFXJmFmyIiWFLgcAAAAAgNARyAIYdG05V6sbkpo5vlJrGtOqisdVXV2tRCKx03u8bLOc5lUybk5epkGSgjDWisQlKxI8VzrxkHxIO8iM78luWJYPY5vzYawkGS8ne+sbhLKdGC+X/xllmvLn9W+oZNyBisTKd3MnAAAAAABDG4EsgIKoS+RUXVoiY4zGRX2NHTVKjrPjXFnje3Jb35Wb2iTj5uQ0r5Lf3Z/+R2KKxKsVH3eg7MYVio+fK8uyBuE72VZnPoxtzQeNqbqurxPKBtzUZrkta2R8R25inXwnqfiYWbLrX1d83IGKxKsLXSIAAAAAAKEhkAVQMKsbktrz3XVKZJKqrYpqXERSOi0deqgkyc+1ym5aJeNm5KU3y2l+RzJe94v5rvxsk5yWNSqpnS63Nf/YU07rezJuWtGKPRQpG9OrMNf4nuzGZfJzLXJaVu8QxgbXjfBQtnNXrO8k5TStknGSkqRc/RuKj/uA7K1LVDLmAEXLx+1+PeNLsmRZ+a+KigplMhkZY0L+TgAAAAAA6DsCWQAF4xvpA+d9VWM3vBc8Z2bOlHlrhdzW9+Um18t4tpymt+Vndz9jVpK85EZF4lWSpEi8WtGKCbu83hgjt2W13GSdJCMv3SArGle0YoKiFRMViVd2f59ny7fb8l/ZJvl2W36+bXLTrt9vu1DWr9xbscpJPR6xYIwvL7VFXqZesVF7KlI+flA7gfvCGCMvvaVLV6ybWCtpW3BqnKTs+tfyoWzjcpXUTFesalI3a/nys83yMvXyM41SpETRUXsoUjZeNTU1qq6uVjabHcTvDgAAAACA3iGQBVBQfnfP2Qm5bevlZRvlNK2S/B1HGeyK0/y2rJJRwePONvkyxshpXikvVS8vVSenZY2i5eMUHTVRxrPltm1QJF6paMVEWSUV8u02GbtNvpOUcXPb1vFyclvfD2bG7k5HKFsyZqaM78tt26BoxQTFqiYrUlLR/T2+Ky+5SW5yo4xnS8aXnW1RpGSdYtVTiiqYNb7bHlYnZHKt+Z+b78o4KdlNK4Ou2B3u83LKbX1D8bFz5Jh3ZLyMYjXTJEl+rkV+Zqu89FYZ35WMLy/bKCtaJuNmZVrfUzQbkYmPVXl5jSKRSK/r9t2MvHQ+6I2U1ihauRczbQEAAAAAA45AFkBR8X0jebYkyU2s63UYK0kyvpzG5bImHCK7cblKJ/yHrEjXf+6M8eU0rpCXaZTbtkFu6xpJkpfeIi+9RVa0VNGKiYqOmijfTnZa2s6HsnYy6JCVb/e+RC8ne+ubskoqFauaLBlPXnqzomVjFK2crGhZbXCd27ZRXmqTjO8FYbWfbVK0YqJi1VPlO6ldBrO+k84HmrkW+blWyYrkg+fycbLi1f0Oco0x8rON8rPN8u2EfCcltY8NMF5Ofq5Vfq5FXmqzOnfFdst3ZW99UyVjZuZP7bZ84OrZkoz8bJO8dL28TGMwvsIqGaVI+UTJr1DUTShixeSUpRUrHyurpEJWtGyn36PxHXnprfLSW+Tn8pvKGTcr326Tm9ygaOloRSsn7XKMhfEd+dn8z9f4rqIVE3o99gIAAAAAMHIQyAIoKp4xcnJZRaQgmO0L42blNK1UfNyBcppWqmTsnCAgC2a+ZlvkJt5v//P57e73cnLb1sltWyerpFJWNJ4PGr3cDtf2h3GScprektv6rqJVe0u+Jy/TpEi8SlZJhbz0Vsn48rNN+SA21xLc66Xq5KU2KzpqT8Wqp2wLZqsmyxgvCGBNx8/Rd+XbrVIkJuNm5bZtyI9nKB+nSPk4RUprexUi+m5GXmqzvNTmbYGpncyHsrlW+Xaijz8vI6dppYyTVrRyr/YZwvXyMlsl3+3mZ5iSk3tHjfVbFa+coLLayfIqSuV3zPK1LFnRMkVKymVFy2XFyqVIVH6mQV62STJGxsvl3yO9RcZJyYqV59/bc+Vlm2XFyhSr3EvRij0kKyLfbm0PYZvlO8n2nNlIxshL1/do7EV/mfa65eXyvyjwXBnfljxHxnfyx0aKVe2laPn4UGoAAAAAAPQegSyAotOSSqmmI2zqBz/bGIStkbb1ilVPkfFd2Q1L5ecSclrWyEtu2O06xknK9KFRtzeMl5PbskZuYm0+YK2cJMuOy0tvldu2fqd/5i8ZealN8lJ1XYJZSUEA67V3qBq7bdttkXjQJWu8nJTcJCtakg9lYxWKlFTIilXIipXLikS3vZvx5Wca5Kbq8uGwUf49knX5wNR0N4SibzoC8R4zvuy2zbLbNqvc26xYaXW+/liFIrEy+bFyWbEySe2hs+/Ky3R0x7Z2XcrN5P/v0fpevlO6cq98yN/6vjqCV0nyneS2YLZ9jWj5+G7HXkQrJvR4VnBnvpNqD9Zz7d3CORmvvWu42w3MTH6sg2dL0RL5uRZF4lWKVU9VtHxsr98fAAAAADCwCGQBFBXXN/K9nNqyGcV8X7FI//7s2028r0i8So5lyYqVym3bkN+Aq/nt9j+hLzK+K69tvby29ZIV6UXAuS2YjcSrZeR3DWB3eB+7/fpNUiSmaNk4RSrGKeKkZUVKtl1nSVa0NB/ORuPys00y7R2YXmqLvFSdjJvu17ccCs+Wn23q5gUrH8pGYjJ2UrsdoWD89k7kOlnBJnFWMAKiu5EaXnqzvPTm/NiLUXsoWpEfe+G0vpufTVs+XtHy8bKiJTvcG7yt58jL1MtLbcmPxQjKcboGs+2P8h0Zz5bxna41WRFFR+2lWPVk+XabIqXVilXvo2jZ6F1/3wAAAACA0BDIAigqxkht6bQqvZwa23Lao7pU0X7O4rSb3lLphENkN66UZGQ3viU/s3VgCg5Tn7pNTX4sQW/4bhAiSpIiJYrEKmSV5LtLrZKK/Hk0np9hm6yTn2nQbsPMomRk3Ezf7rQTcu1Ez6/3cnITa+Um1gZhbtTNyc+2yGl5pz2cnZCf5RstyXcfZ5vyQXe2MT9Kwc3m5xpntsq42WBubs+L8OUlN8hLbVK0cpJiVZPl5xKKlNaqpGYfRUprevlTAAAAAAD0F4EsgKLjubZa0ym5nq/6tpwmVpWpX42yvqtc/Wv5TsVcyy7+/B+SJN/Jh7q9DXaxUx1hrtsexEbKx3cKZ1fnu5rdtIzn7HKUQt8L8POd18lNilXtrVjl3srlWhStGK+SmmmyYqUD8z4AAAAAgN0ikAVQdKLGViKbVVvK1rhRcW1N5jShqlT96pP1nR7NiwXC5uda5edaO4WzExQpbZM8u70btmFAZ/F2Ybx8125yo2LVUyUZ+dkmxaqmKFq1tywrEs77AgAAAAACBLIAio4lT66TVdL2FI3k52E2JG2Nq4z3L5QFikxHODv4b+zKbVkjL7VZJbXTZXxPXnqLYrXTFC0bs9PbjJuVl2uRfE/Ryj0JcAEAAACgDwhkARQVq30uqevkJEmtWTeYIRtNS2Mqer9LPYDuGScle+sSRSsmKFYzTf7WpYqWj1NJ7TRZsTIZNycv19weHLfk59i2c5MbVFKzj6IVEwekFi+1RW6qTpHSWkXLRsuKV8vq5/xoP9cqN1UnK1qqWOXeu9xIDQAAAAAGC4EsgCLTHsi6ueCZpoyjSPsQ2YhlqbacUAUYSF66Xl6mcdsYg1yTFIlvC2CNL99OyM+1yM+1SJESldTsJ9vNKpLcpJKa/fq8QZgxJtj8TL6bD1ETa2VFYoqU1ipSNkaRstGKxMp6tp7n5Ec/pOrkO2nl/02x5CU3KjpqT8Wq9pYVZWYuAAAAgMIhkAVQVLbvkO3QmLIVtfLdsZZlqaaMf76AAWU8ua3vykttVqxmH1lWTL7d2h7CJtTxy5IOuUyjopWTFKueKj+XULRivGI1+yoSK+/5WxpfTtNKeemt8jINcprekhUp2RbCullZmQZJkhUry39FyxSJlXc6L5ciMfm5FnmpuvYZvEbGTctN1slLb5EVK1eseoqM7+Xn547aQ9GqyV1qtSxLFRUV8jxPrusOyI8UAAAAALpDogGgyHR0yGZ3eLY+aWtiVama07aMjGrL6JQFBppx03IaV/TkSnnJDfLSmxWr3id/nmlUrHIvRUftqUhJxa7v9mzZjcvl5xJy29bLbX23/flcPlhN1UmSrHiVomVjFIlXyYqVy4qWydt+dq0VyW+EZnx5mXq5yToZO7HtvWxHTsMyuSWjFKuaIhlfbmqzouXjFR01UVasXLLiqqnZ1uW7/bgEY3z5uUR7SN0q4yRVMuYARctG9+BnBQAAAADbEMgCKErbd8hK+VB2S1tOEyrjUvtfIjO+ACgw35Xb8o685EbFavbLh51tGxQprVF01ERFyyfIikS73uKkZDcsk3EzcprflpfavNPljd0m127r+mQkLivWqVM2EpfvpOSlt0jG2/laTkpO01tyE+8rVjVZ8j156fr8a5JiaUcmUipFSuWlfClWKt9py8/Qtdskk/+FkfGykiJyGpdJ4z6gaGltX35yAAAAAEYoAlkARcWSkec6Msbv9vWOTtnxlfHgfDShLFBwxs3IaVwuN1au6Kg9FPUm5ufBRtYoUj5esVF7KFJaIy/TKKfpLfluTk7j8vxM2t7ybRnbltepC7bXtTa/Laf1PUXi1fkO2WiZnLStaHyUIrFyuS1pee1dssZJdZqh2yrj5WRFyxSfMFdOwzJZ4z7Q5xm6AAAAAEYeAlkAxcWYLht6dXuJpK1JW+NGtYeyxmh0RVz9248dwEAwbkZu63tyW99TpGxMezjryEttlhUrk/FyMk5adsNSGTdT2GJ9R362MX/o+2rdsiX/vBVRbK+pipaU5jcG850dbjVeVvbWJYqPP1h2w1LFCWUBAAAA9BCBLICCuumyP6l5S50m1Y7SzL1Ga1K8rttxBdszkhpStow6QllpzChCWaCY+Nkm+dkmOZESRSsmKFo+TsbLyWl5R/KLeOMs48u4afl+dteXuR2h7Nx8KDv+IEXi1YNUJAAAAIChikAWQEG1jZuoRs9o7B61yuxRKz+Skdu8vkf3BqGsKQnOxxLKAsXHd+QlN8pLbix0JQPOuJltnbJbO0LZqt6vY0x7gN2o6Ki9FIlXhlAtAAAAgGJAIAugKJSVRGUZXxHjyXV23ZW2vca0I9PpnFAWwGAKQtkJc2VvfbNXoazxXXmpzXJTm2Sc/AgHN1WnaMVElVTvIytWFmbpAAAAAAqAQBZAUSgriSmq/JzG3c2Q7U5TetuMR0v5UBYABotx07Lrlyg+4WDZW99UtGKirJJyWbH2r2iZLGvbr4p8Jy0vuUleerOM78m4abltG+XnmhWrmiwZIy+9VbGqSYpVTZEVCe//ZTNuVorGZVmR0N4DAAAAwDYEsgCKQllJdFsg24MZst1pSjtBZ6xlWRpTUTJA1QHA7uVD2TdUMmZ/Gd+ROvfqW5asWJkisfL8eIJccz50zTbJaw9iOzjNb8tt26BY7X6S8eWlNitWNVXRyj0HLDTtGJHgJjfIz7ZIVkSReKUi8WpFSqsVidfIig7OL7aM78q4GRk3I7/9MVY9VZFY+aC8PwAAADDYCGQBFIWyWFRRk5bU90BWyo8viLR3oVmWNLqcUBbA4OkIZaV8AGvFKoIu2UisXH6sXLIkL9MgL7kx3526k3WchmXySmsVq9lPxnPkJjfkN0crGyMrXt2l47bH9fmevPQWecmN8p10fmRCerMsKyoTr5ZfkpDa8tdasTJFSmsUKamUVTIq/xjt37+pxs3JyzXL2An5TiofxHrOjtfZbYpPmNerzmDfzcppWCorXq1oxURFSmv69DMCAAAAwkYgC6DgLEuKx6KKmvyu6+5OAoqeakjZspTv7LIk1RLKAhh0Juj67A8/1yK7/jVFKiYoVjVZxs3KTayTFYkpUjZakbIx+YB2N92sxsvJTW6Ul6wLOlLd5AZ5qc2S8bddGInlu2TbO2WNk5JnRYOXrWi8PZwdlX+MlUtWNB+cRmL5404hqHFz8nMt8nIt8nMt2wJo48t30zJOWsbNtnfHpmXcjCKlNYqPnSOncYVKxn2gR6Gq8WzZDW/K2CnJSclLbZYVK1W0fIKiFRPYJA0AAABFhUAWQEEd8MJjmlm/SXuvHaMKv0WjaiJyJ/S9Q1aSjKStKVsTrHxAEbEsVZfxzx2AoctP18tO10vRuKJlY/JBrJuVl94qx1K+ezVWJvmejPG2PbZ/GT8fuvq55vys2mzjTt7IlZ9tkp9tCp6yYuXbOmTbw1h/Z+MELMmy2sNZGZmOmeDGl28n5LcHs34uIXXZjrFTCZkGua3v5ZdrWaOS0dN3+bMxvie7YZmMk5bduFy+ncgHsaMmyLg5uW3rFSkZpeioiYqO2ktWJLrL9QAAAICwkVAAKKhP3fQrjd/wXnCemzpJ5tJj+72ukVSftDWxqlRNaVuWJVWV8k8egCHOs+WlNstLbZYjKz/vtT2gtSIl7eFrewjbHszKeDKeIy9TL+Okev2WwXzXTMO2J62orJJRsqKl+e7YTl2yViQqWTFZliXfbssHsHZb107c3XDb1skqqci/VUmFYpV7dV+b8dtD2DY5TauCINlLbZKX2iQrWpYf8zBqonwnJTe5SSW10xQtH9frnwMAAAAwUEgnABQVs5OOqb6tJdW35TSxqlSNaVuWpEpCWQDDhpGfa5Wfa5Va39v95QP61p6MnRjAf7F35DStkhUrk9PyjqxYuaJlo7uWYIycppXys81yWtbIS2/ppsys3LZ1ctvWKVI+TiW102Q3LFe0bLRitdMVaQ99B1pJSQnzawEAALBTJBMAiooxA/s/731JW5I57VFVqoaULcc3qi0vEf8zGQCKnZHdsFylE/9DTuMKWRPmdQlQ3ZY18tJb5batl5fcsNvV/EyDctkmxaqmSMaXl2tVrGpvxaqmDNgYg9LSUlVWVioej0vGl5usl3xHipbIisTzXczBMaMTAAAARioCWQDFZYADWUnyjbQ5kdO4UfmZsrbra1xlXFG6lwCguPmO7IZlKp0wT3Zj/tGKlMhJrM1vUpbeLLf13Z6vZ3y5ifflpTcrVjs9H8ymt6ikZpoi5eP61dVqWZbGjBkjGVeRbJ3sLe9Jvrvz6yMRKdIezkZL2o9L8hu0RWLbPU+ACwAAMJwQyAIoKqYXMwZ7w5dUn7JV4+X/2atL5DS+Mq7SaCSU9wMADAzjpGQ3vqX4uDmyG1coWj5ebuv78rKNcpre7tuablZOwzJ5ZWPzYwzcFbIiUVmxClklFYqUjGo/bp+T24Og1rgZRTPrZNlNsuTL81x5yY3y7TZZ7V2x+e7Y7ULYjtciJfk5vDuRD3DjQWjbscGaFa+SFS3baY3GmPwcYCcp30nJisYVrdiDgBcAAKCACGQBFJWBnCHbndasK9v1Nb6yVJsTOY0dVaLKOP8UAkAx87ONclreVUntNPnZFvl2Qk7jCqmf/53hZxuV29KsaMVEReLVQRjrWdvCynxQW95912q0RJIlL1UnN9MgK5dUrq1OmaZ3FakuVSSS/6Wf8W0Z9WRDNavLeIP8e3U+bg9wo6WyomVdayypVKSkUlZ8lOR78p2UjJOScVMyftdfdrqJtYpWTlKscq/8GIV+Mp4tWZFdBsoAAADYhv+vCUBxCWFkwfYyrq9NiawmVMbVkDSyy3yNrogzVxYAipiX3CDjZWVFS+Wl6qSB+osK48tL1eXXbGdFS/PdsSWjFIlVyIqVtc9/jbeHjtv9N4bx5LZtUtO7r8t30vnnqif2pRjJs2U8e/dRcySWD2BLKhWJ58NYv6RiW21mWyjb+TESr1KsaoqM58hrW6/oqD0Uq9xbVqxsl2+3Q6XGl59plJfeLC/bLMuyFCkbo2j5BEXKx8qy+AsUAACAnSGQBVBUBnpTr51xfaO6RE5jO+bKekZjK+IqiRLLAkCx8jMNg/I+xsvJeDkp2ySvuws6z3u1IvLthHzX3hbGDgbflZ9rkXIt22q0IrJiFZLxZNxM97dlm2Rnm2TFqxWrmizje3KTmxStmKDoqD0UiZZJuxjT4DupfICdrpfxHBnflZ+ulyJRRT1HXrpBViSqSPk4RcvHK1I2pk+zeY2Xk5fequioPRmvAAAAhh0CWQBFZnAC2Y53akjZst2YRldImxJZVZXGVFMeY8MvAMDO+Y6M78i4gxjA9oTxZZxkzy61E3Ial8uNVShWPbm9U3hL/kVL7SMZSvPzaqOlUqREfrZJvt0mSfKzzXLTm/MheXu3smNFFCkbq2jF+Hw4m9oiK1qSf658nCJlo3fbOevnEvkN2zJbJWPkZRoUH3dgr8chGOMPeJdux5x7un8BAEB/EcgCKKjtY8/B6pDtLJFzlXY8jS4vkTFGSdtVbVmJqspijDEAAAxrxk3LaVolp/U9RUpr20PYbUFsx7FkybjZ/IiC1OZ8B/EOi/nyM1vlZ7bKsaKKlo9TtGKCjJuTl9qc75wtG90e0I4N5tca48tPb5XbvgmajJ/vwHUzitXsI3vrEsXHHdQ+s3c334/x5baskZfe0t71u6ci8ar+/5w8W3bjCsl3VTJmliLxyn6vCQAARi4CWQAFtWMj6uAHslJ+hMHWlK22XERjKkrU5Bu15VyNrihRRQl/KgkAGOY8Oz96YGciMcl3e76e8eSlt8hLb5GsaPt82XGKujl56QY5lqVIaY0iJZXt4w/s/JiC5Ca5qTrJdyRJvpdVfMws2VvfyIeysdKdvqXvpOU0vSXfTsq322R8V26yTpF4paKj9lC0YmKfNh7z7TbZjctl3Kzke8rVv6aS6n0UrZrcp3EMAAAABLIACqrY/odM1vW1KZFTZTz6/7d333FS1OcfwD8zW64Xejl6uQMsiAUUEcGChqgRQYgFRUXQKEkUBUxBVIxGMQTBRFETBAuC4k9MFLtGRIqggMjR2x1wheP6tim/P+ZumLnbelvv+LxfL3Rmd/Y7MzvPzs0++53ni1YpNhRXKUixWdAq1Qa7hbcoEhHRaSqUZGxDqnyq5ywEiEnZWo1ZyQnFUg7FXQmpqqCuRrD5h1mlthhuRYa9zQC4Sn6Evd3ZEK0pjVYh1xTBU74HquyG5+QeLREs2mFN6whLWkco7mpIFfshprSDNa0TxKSsoDZdri2C5+RuKJILnhM7oEhO2FvnwaOqkJ1lsLXO87o9+q6rKhR3BRRXBSyp7f0uS0RERKcPJmSJKK4SKx17SrVbRq1bRmayFSoAR6WMdLsV2Sk2WMVE3WoiIqJEp0JxnYTiOgmpfE9Qr1CcJ+Au3Q572zPhLq5LytrStNYUGZ7yPZBriqB4quE58fOpAc0UN6Sqw5CqDkNMyoYlrRMssgS5pgiiLU2bT/Pea1ZVVUgVByBVHdHaLf1JL9PgLtkGS3oObFm94C7aDGt2b1jTOpleq7groNSWQHaUQpXdAACp8hAsqe1hzegG0ZYazptIREREzRwTskQUVwnWQdZEAVDulFDtkpGdYgVUoKYuSZuVbIWYyBtPRETUgiiucrjqaslqNWXPAiBoJQo8tZCqj0Iq3wtfpY8UVzkUVzk8og2W1A6wpneG4qmBVLkfYkp7WNM767VmVUWCp2wnZEcZ5NpieE7u0gcuqydXF0JxnoStdT+oZbuhOE7Akt4ZiuOEIQmrQnGVQ64tgeKp1pK2qqLVt01pB2tmdz2xDGh3DWVnZ0MQBP0fERERtUxMyBJRXAkJ20f2FElVUVrrQaVL0gf+qnJJyEq2ITPJmtBJZSIiopZCdVdptWTbaUlZQIUiueE5uauu3EEQFA/k6gLI1QVar9n0zrAoMuSa4xDtGbCkdoBUUwjVUwup4iCkqsO+t0eqhbv4B1gzuwNQITtOwJiElR2lei1cAPC4qyBVHoY1sxugKJAdJbCktIU1oxsEawqgyEhJskKACkCFKtVCkbUEsSq7gLo6u9o/bRqCAGt6F1jSOkEQWfOeiIiouWBClojiqjklM92yiqJqN5KtIlql2qDUDfyVnWJDmt3SDFLLREREzZvqqYG7+EdYs3oCqgKp4iBU2dmktk71mq2rNZveCYq7ClAkuMvyoThPBLNFkCoPQq4thmBLg+IqNyVhGy0tO+E5uRueykOwZnTVErO1WjJZVVXYaqr1Zd1KupdesqqejFVlFwRrClTJpZVDSO8Ma3oOBIs99DfD67a6oHgcUGUHVI8DqlT3T/FAsKVCtKVDtKVDsKdDsKb67NGrqoqWTFbcEKxpTBwTERGBCVkiijebHbLdDgEqVFWBYk38i3SnpOBYpQtpdYN9lcoKKq0iWqXYkGJL/O0nIiJqzlTJAc+JnyPXoKHWrGBL1xK8IQ5ipkq1UKXa4F8guyCV74VUeRiW1PYQRCsURUb1iVJAVaFCga1VK4gCoKqyloCVXIDibtSUmNwK1oxuUBUJcnUBLKkdYcnoEvQAYqrsgeKphuqpgeKpgeqp0fZHkRss5657XIJoS4NiaF8QRQg2LTELKFrJBtmtvcbwXgrWZNiye8GS0i749ypKVFUFVIUJYiIiigsmZIkorr5b/SWstUfRVj6MvfnfQIC72fQ0rfHIqK2QkZGkDfZVJLmQUpektVvEeG8eERERhUj1VAdeKJIUN+TqAm1SUeAoK9Kfku1OqGLg6wnFeRJu50kI9gxYM7pCVWRINcdgSW4NiDbfL5RdWgJWNiR5VcWQlHVAkRx1yWYnoJoTtBAseg9Z0ZYGwZ4B0ZoKVZX1HrGqfOofoMCa3hXu0p9hSW4Fa3afoAY3U1UVqrsKgAoIFkAQIQiiPq3NB3f1qCqyNqics0wrMaEqsGZ0hSU9h4lZIiKKKSZkiShuBAA2iwgRWs8Jye2Ezd68EpkqgEqXhGqXhKwUG1QAjkoZ6XYtSWsVm0t6mYiIiJoz1V0Fz4mfIVlTtMSs7NYSl76Wb9Qzthqq5AhhhTIUdwXgroAceGkAgFxzHNaMbtrgZq5yWDO6ajV0GyRDVVWpS5qWQnGcMPWybUQABEsSBEsKRFsKBGsKBGuyVkbBmgLIbsjOMijOE5Cd5doAbaoCxVUBiCJURYJUXQhrZjetFq+f9yxaVNkD2VEMubYEgADBYoMg2gDRBsFihyBaAYsdoj2Lg70REbUQTMgSUdzYLSIEABZVq7XmkVyw2YO7vS7RKABOOjyodHqQnWIDVKDGLSMzyYqMZCsTs0RERBQTquSA5+Ru4OTueG9KY6pSV3P3OKzZfQBVhVxbBFtWL4jJbbSkqaMUirNMK5mgKnoyVVVkCKZesXW9ZEULBEsSRGuKVkbBmFAVoP16DkBVPFAcJyA7T0BxntR7/IrJrWHN6glVdkOqKoA1szssqR38Jj5VRdKSpOG8FfVJ55rjkJ1lWqkK2VnXth2CxVa3A6dYUtvB1rpfXJLGREQUWUzIElHc2K3axaQFHsiyp1GtsuZIVoETtR5UOiW0SrVBVVVUuiSk2i3ITLIiycoLaCIiIjq9qZITntKfICe3hi27D9zSTm2kV1UFVBmy41RitlGphAAES1JdL1ntH1QZsrOsruxBY4qzDG5nGcSUdrBl9YRHckKuOgJLRpe6JKlL/4f6AdUUGYLFDjEpC2JStvZ/W1rg/VZkqJ4ayLVFkB0lUGUPoEiQHSWQa4q0HsdGolXvKVtfd1eVXbC3OSNig7cREVF8lVWP3AAAX1dJREFUMCFLRHGTpCdkJXjcTRshOVF5FBXF1W7YLQIyk2xQVBU1LglJVhGZyTak2i3NplYuERERUTQozjK4jm/Sarhak6E4tfquerfWJtCTp67y0LbFUQKXoxSWtI6wZnaH4jEM0qZIpsSsqnggWFMhemoh1JYAgClBK1hsUCWX1uNVchpe66nfSijOk5Bqi6A4SrUyCl43Sqor1+CA5K6E6qmBrXUuXMU/wN7mDIj29JDfHyIiSgxMyBJR3NgtWkrSonrg8rSshGw9t6yitNaNkw4go658gUtSYBUFZCRbkZFkhchaYERERHTaUvWBzeJPhVxzDHLNcQi2NECVtQHJ/PTSFWzpWi/Z5GxYPLV1dWBPtafW96qtT8xKDsjOE4BxMLUgybXHocoO2NqcAXfJj7C17g9LSptGy6WkpMBut8Nms7HmLBFRgmJClojixm7sIdtCE7L1ZBUod0qocEpIs1uQmWyFpKiocErITLIiM5mJWSIiIqLEoEL1VAe3pKcasqcacnUBPNAStIJoqesh60I4vX29UVwVcBf/AHvbs+A+sQO2rN6wZuToz4uiiOzsbAAKBNkBueYoFLl+sDZRKw0hiACEujq8olYWwZIEwZqklXyIco1aVZEBxQMVqj7IGlQVKrT/az2D3XXJbDdgmBZEKyxpHWFJ7VhXZ5eIqHliQpaI4ibJIqLrqy8g89h2tKo5ibZVpVDaZGLf6PPivWlRowKodsuodstItorITrFBUVRUuSRkJFuRmWQDx/8iIiIiap5UT3WEU7Be1iE54CreAnubM+BR90KVamFJz4HqroLkqoC1uhCQayFAhaSmQ6jfIkFAw4HCvBFEa10tXi1BC9F+Kllb/68Jg5opkgNydSHkmuPBjx1R10u5PkErWlOheGrhqTgIS0pbWNI7wZKUHbgZVeFgaESUUJiQJaK4sVtFdF7xOlIP7NMfq+qU3aITskZOScHxKhdS6hKzsqKiyikhM9lWV8og3ltIRERERAlJkeAu2QZbq1wAgFR9FICWeJRrjsHjKIfkOAlLhh2C3kO2Tl0PWQiilqS02M3J1gbz8JLIFESLVkc3uRXEpFYQkzJ9JjxlVznkqkLIzlJABWTnCSjOcqC+R6yqGHrLqoAqneod66VchGDPhDW9szYgWm0xRFsaLGmdYEltB1XxQJUcWokIqRZK/bTshCBYIdhSIdrSIFhTT01bksI5El6psgdyzTEokqOuJ7IAYw9lAQIEazLE5NZNSm4TUfPHTz4RxU2SRUSkb+NqjhySAkeVCym2U4nZSqcHGUlWpCdZYWVmloiIiIgaUeE5uQuy8wQESxJUdzUkVyVOHj96aonkDhDEBonS+kHEVFm7EpddUFHlezX1PWYbJG1FeyYUdxWAwxBES92gZq0hJrfSBmmrLYFUXagto8qQaoogVxdAlRy+1xXMXrsr4SmrhEfcC0tqR1jTO0Hx1MBTvrfR+6NKDj0pK4hWCLY0iNZUU5JZezwdYlIGRHsmRHtGk5O0irsKUnWhVktYVeoSyoLXpLa2cgGiPROW5NYQk1s3aaA2VZGhuLQB8WRnGQTRBktqB1hS20Ow2INrQ1WgSk6ItlSIooi2bdvC4XDA4QjvWBGRb0zIElHc2K3iqVuoCA6PAofHhVSbiKy6xGy504NkqwXpSRak2thrloiIiIjMFEfpqZn6ZGtEVyBBVSSonprGz4l2WJJbaT1lJScERxkAQBBFqIoCVXZpCcqaY4AiRXy75OoCyNUF2sBqSVmnesh6HFBl32NUCNYUPTkr2NIg2tOhuFINzydBtGsJWsGWbijVYGnUlqqqUBwlkKqPQnFVAFAh1xZDqi6E6jYmugVDDV8Roj0dYnJrWJJba6+rOKAlupNbQ0zKgiDatPq+ovXU/+vGnFAlV11P4xNQXOVQFa0Wr+KugGBJhuKuhqdiP8SkbFhS28OS0s607aqqQHFV1P0rr0uaKxBsKRCT28FuAWyZmcjMzOTAcERRwoQsEcWFAMDGHrJe1XoU1HpcsFsEpNutkJNUOD0yRMGDVLsF6UlWJFnFICqAERERERFFkeKGXFsEubYIgDaomZjcqi4pWAGltgSxuN5XXOVQXOVBL6+VNXDAlL4WrXoPWdGeCcVeDUEsNb1Oq69r1wZBq6ulKztKtEHcFDfk6mNa+QjF7W2teokGAFCcZVCcZZCgJYjrk7Oq5IRcc7zxywVAEKxA3aBxAKAqHiiOE3XJ2ZN6iQfBnqH1kpVdUJwnIYl7ICa3gWBN1ZKw7kp9O1TJoSV1ZRfE5DZQ3LWw1lRDtaRBsbcGlDaApXEiWlu/VJdoFwCLLe51elVVgeIsgyo5YUnr5DWBTpQomJAloriwW5hQDMQtqyhzeHDS4UGKTUR6khWyqqLaJcFqEZBitSDZZkGyTYSFv1wTERERUZypnmrInup4b0bTKJKeJK0nWFO0erNWX/V1LVDcVdpgZbXFaGryWa0f8Ky6UKsxa0vTasuKNi0JLNr0aQgWqJ5ayM4TUN2V3ttzV0FyV0Eq3wcxuZXWS1b2aK+tS8AqrnLIrnJANiSPKw9BtaSg1mVDUmYOLHINXMfLYUluBUEQ6xKwHq3HtOLREswGgmjRBoGz2AzbbANECwTBcur/df+0hGnd95j6QefqvtcIELTEd4DvOaqqQnVX1v0wUKJtIwCp6gismd21xGyUvispkhOqpxqKpwZQpLqaytlxT0xT88CELBHFhd2q/ZFiyYLAVNT3mnXDIgBpditS7RZ4ZBVVLgkQtAR3is2CZKuIZKsFzM8SEREREYWnvietbwIi3gNYVaC6qyLUqqonmT0QANESsHSE6qlBTUkRakp2wZbSGkndzwBkp9bBV/HUlbA49X9VkQBB0EssCBablpStnxbC6KUqCBCtKXUlJlK1nsR1A7KpsqcuCVsMVXLq+yrVFgOKDFtWT3hkN6TqAtgye8KS2s7/fiuy1nNY8fhZRivdoXhqoHpq9OSvrqpAq6ec3BqWlDZar2Qvg7apqgpVdkL11NbFlzbIm2BNhmBJZs/e0wQTskQUF0l1CdmGv6qSf7IKVLokVLokiACSbGJdT1kRbklBBQBBEJBq0+rOJtss7IlMRERERBQVzem7jBpyHV+Powyek7shV4TT41Mw94wVLXrpBa0nqXCqdyyEug6zWq1dwZIM0VbXS9nHQGuKuxJybbHWQ9mQTHU5T8CS2gHWrB5wexwQqzNhzewJS3K29jrJCbWufIPirtR6uQb13VTVE7Kn/l8NqIo2OFtKW1hktzawmyBodXyTW2nJXKkWqkcbaM5nvWcBEES7nqAVrWkQ7BnaYHNekrvUfPFoElFc2C31acLmdBGTWBTUDwSmAA7AIgDJNgtSbRYoqooatwSLKCA9yYo0uwV2C2+dISIiIiKiWNISwSok4yOhEyxaD1lbKgRrKlRVhuIo9duDub4HrSU9B9bMblBclRDtGVBlF1S9VIMKxV2tJWVdFVBll59dkaF6an3uQX1i2ANBKxWR0haqpNXxBQBVceu9YhVPrZaglWqh95C1pJh6yorWFMj1SVgBhuSsVutYsKUl5qBr7HQVFCZkiSguWLIg8mQVqHHLqHHLEGuANLsFaUlWyIqKCocHSVYRaUlWpNkssIgJ+IebiIiIiIjIG1VuYo1iFXJ1AeSaY7BmdIWY3EorteCq1Aaec1f57q3a9I011SMWrMmGAdB8vEJyADjZ6HHBkgTBnmkYcC4DslA36Ft9b2IIhsTsqR7HWgI7TRtsz5ZWV5s4tHIIqqpqdXJdlVDc5VDc1VrP5vqaxqY6xxatjq+q1G8c+cGELBHFRZJFBBDpP3xUTwFQ5ZZR5ZZhEwWkJVmQbrfCJSkoE7T3P8VmQSp7zhIRERERUUunypAqDwKVB2O/asnZ9NfKLqiOEiiOkrpHBAi2NIj2TAi2VNQNf2YYFA2oL/kgWlOh1C2D+octyRBt6VoJCNFaNxCbtW7QNSsE0QpVVbSEtascirsSqiJr26J4oLqrtIYshkSsoU6wqngAZAJgHdxAmJAloriwW0VYVN8F0ylyPIqKcoeEcoeEZKuIVJsFKXYLXJKCcocHVotWc1YbFIwDghERERERESUmNcSewgIEW6qWhLWlQbSlQbGlawOuBejFqsouKK4K7Z+7Aqqnxuc69GSu5ARso9hBNghMyDYT+/btw/Lly7FhwwYUFBRAkiS0b98eubm5uPbaa3HllVfCauXhpObDbhEhqk3/pZCaxikpcEoK4PDAJgpItWuJWElWUemUtB87BQFWUYTVIsAqGv5ZRNhY6oCIiIiIiKiZUKF6aiB7S6YaesVCsNSVILACqgrVXQVVDvb7ugoonrresRQsZvCagYULF+LFF1+EJJnrjRw5cgRHjhzB559/jjPPPBPPPvssevXqFaetJApNklWERXUHXpCixqOoqHBKqHBKEAUgxWZBklU0JGFFNMy/WkQByTYLkq0ikq0W2CxM0BIRERERETU7qgzIsj6QGUd3iS0mZBPc3LlzsWzZMn3earUiLy8PKSkp2LdvH06e1Io+//TTT5g4cSJWrFiBnJyceG0uUVAEADaLCFHiL2iJQjEMCGYkCtATtDaLiGSrCElWUVOXh7XWJWjrE7miIEAQAFEQ6v7FYWeIiIiIiIiIEhgTsglszZo1pmTsVVddhdmzZ6Nt27YAAI/Hg1WrVuGpp56Cw+FAaWkppk2bhnfffdcwwh5R4rFbRAgARIU9ZBOdogJuWYVbVgGPggpoCXW7RUSyTesl65FVVPs45Qh1CVqrKMBuEbV/Vu3/TNYSERERERHR6YgJ2QTl8Xjw17/+VZ8fOXIk/v73v0MUT42GbrPZMGHCBOTk5GDq1KmQJAk7duzAf/7zH1x77bXx2GyioNitWhxbVAlQeWNEc6MCcMkKXLKCCkh1CVoBoniqV6yxh6wgCLCJAuxW8VRtdwGwiVpi1mYVYBUEWMRT/0RBYB14IiIiIiIiapGYkE1Qn376KY4ePQpAK1Mwe/ZsUzLWaNiwYZgwYQLeeOMNAMC///1vJmQpodnr6o6KqhvO7p1QIzv055zts+K1WdREWoJWBWT/yXUBWk/ZJGuDnrJeOkoLggCL6GOAMYtWHkEwvwCpqalQFAWKokRw74iIiIiIiIgiiwnZBPXhhx/q00OHDkXnzp39Lm9MyO7YsQNHjhxB165do7qNRE2VVNdDVlQ92POX32Lnti/159LS09kzsoVSoQ0k5nHLAE7VqrUI2mBhVlGApUFPWV+Diwl1y9lEAba6ZK2kCrBYrLBbwbItRERERERElLCYkE1Aqqpiw4YN+vzFF18c8DV5eXlo164dSkpKAABffPEFbr/99qhtI1E4TpUscEPyuOK8NRRvsgrI9XVqfRCBul6yYl0v2fpkrDYPAG631jNWFIBq1QWrKNYNMFZXyxanatqKAiDgVEkF/f84NU9EREREREQUDUzIJqDCwkJUVlbq82eeeWZQr8vLy9MTstu3b4/KthFFQpJFBKBAgAxJYkKWAlNQP7iY3Og5rRQC4HE5YbdaYLeKkAUrrBZBT7qGSmhQC9cimuvi1te5tei9erXniYiIiIiIiAJhQjYBHTx40DTfrVu3oF7XpUsXffrw4cOR3CSiiLJbRVhUDwDAwx6yFCYVWrK2xukBoMVVlSSayhZovWOhDxbmr2esMRmrJV7NyVhfBEGARYBpcDOLUD/YmbkNscHjTOUSERERERGdPpiQTUD1vVwBQBRFtG3bNqjXtWvXzmsbRInGbhEhqk4AgORxxnlr6HSgAlBVQFHVBo+Gpj6Zq/eQrU/a1g1AZtGTsaeSswGTrYakrAAAhgStIOBUqYX6eUMCWZs3ll/Qphs/dqpd8zJkZLPZ4r0JRERERER0GmBCNgFVVFTo02lpaRBFMajXpaene20jllRVRVayFd1bpaBrdk5ctoGaB4vbBTusyMq7ALm9zj71uMUSx62i5kw2lDNIpDiqT4LGgxLkcgK07KwxEaw9bl6q8XPCqXkfCV5/A6wJDWaCeZv0ZRr0LBYME015u1UVaNfOrc/b7Pa4HTdqnlQV6MwYojAwhigSGEcULsYQha00cb6LJTImZBOQy3XqFu7k5OSgX2e32/Vpt9vtZ8noqa2thSSpsKqh9zyj04sgCIC9DQDAlhTnjaEWIbifrsgbtcH/mzW1vkdwaC8TBAB15yIBgNvH61XjhJ/kr2D4r2kdwWxLcIs1XrbhC30d0DC/VAV6ubfng4ktX+2GGpc+t08IYpkwCYZO1lKYbdWFGJ1mIhlDdPpiHFG4GEMUFkFpIV8soosJ2QTk8Xj06WB7xwKA1XrqcEpSfE6bkiQh2WpFspVfISiApFZAeiskPfgghGPH9IfVTp3g+tvf4rhhRERERERERNQkRXvAjGxgTMgmIOOttooS7A2n5iRsvOrg7d+/H6mpqSElkun0pKoqZFlGn88/h/3AAf1xV8+eHJSOiCgB+So/4e1x42NqkHfNeGsn2NeGuk1EREREFB1NvX473TAhm4BSUlL0aWP5gkCMZQqSkuJzD/iZZ56ZULUbKfGJDX48sNlsyMvLi9PWUHMlyzJ++uknfZ7nIgoVY4jCxRiicDGGKBIYRxQuxhCFa/v27SF1LjxdMSGbgLKysvTpmpoaqKoaVK+O6upqfTo7OzsamxaQxWIxlU4gCkQVGtZYFBhDFDaeiyhcjCEKF2OIwsUYokhgHFG4GENE0cH7yhNQhw4d9GlZlnHy5MmgXldSUqJPt23bNuLbRUREREREREREROFhQjYBde/e3TR/5MiRoF5XUFCgT/fs2TOi20REREREREREREThY0I2AeXk5JhKDuzcuTOo1+Xn5+vT/fr1i/RmERERERERERERUZiYkE1QQ4YM0afXrVsXcPn8/HyUlpbq8xdeeGFUtouIiIiIiIiIiIiajgnZBDVq1Ch9+ssvv0RRUZHf5d966y19unfv3hylnoiIiIiIiIiIKAExIZugRo0ahfbt2wMA3G43Zs2aBUmSvC77zTffYOXKlfr8xIkTY7KNREREREREREREFBomZBOU3W7Hgw8+qM+vW7cOd999t2mAL0mSsGLFCkybNg2yLAMAcnNzceONN8Z8e4mIiIiIiIiIiCgwa7w3gHwbM2YMfvjhB7z99tsAtKTsqFGjkJeXh/T0dOzbtw9lZWX68tnZ2ViwYAGsVh5WIiIiIiIiIiKiRMTMXYJ77LHH0KpVK7z66qvweDxQFAU7d+5stFzv3r2xYMEC9OrVKw5bSURERERERERERMFgQjbBCYKABx54ANdddx3eeecdrF27FsePH4fD4UBWVhb69++Pq6++Gtdddx3sdnu8N5eIiIiIiIiIiIj8YEK2mejduzdmzpyJmTNnxntTiIiIiIiIiIiIqIk4qBcRERERERERERFRjDAhS0RERERERERERBQjLFlARHGlXn01Tnbrps9nDxgAIY7bQ0REREREREQUTUzIElFcKfPm4cDWrfr8wIED2XWfiIiIiIiIiFos5j2IiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEaYkCUiIiIiIiIiIiKKESZkiYiIiIiIiIiIiGKECVkiIiIiIiIiIiKiGLHGewOI6PQmXnMNzsjPPzXfrx+wZk0ct4iIiIiIiIiIKHqYkCWiuBIOHkTyoUP6vJqcHMetISIiIiIiIiKKLpYsICIiIiIiIiIiIooRJmSJiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEaYkCUiIiIiIiIiIiKKESZkiYiIiIiIiIiIiGKECVkiIiIiIiIiIiKiGGFCloiIiIiIiIiIiChGmJAlIiIiIiIiIiIiihEmZImIiIiIiIiIiIhihAlZIiIiIiIiIiIiohhhQpaIiIiIiIiIiIgoRpiQJSIiIiIiIiIiIooRQVVVNd4bQc3X5s2bTfOiyBw/hai2FlCUU/OiCKSmxm97qNlSDHHEcxE1BWOIwsUYonAxhigSGEcULsYQhcMYPwBw3nnnxWlLEps13htALUvDDx5RQMnJjR9jHFGYeC6icDGGKFyMIQoXY4gigXFE4WIMEUUHf+ogIiIiIiIiIiIiihH2kKWI4u0MRERERERERESnJ/aqDg5ryBIRERERERERERHFCLszEhEREREREREREcUIE7JEREREREREREREMcKELBEREREREREREVGMMCFLREREREREREREFCNMyBIRERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQjTMgSERERERERERERxQgTskREREREREREREQxwoQsERERERERERERUYwwIUtEREREREREREQUI0zIEhEREREREREREcUIE7JEREREREREREREMcKELBEREREREREREVGMMCFLREREREREREREFCNMyBIRERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQjTMgSERERERERERERxQgTskREREREREREREQxwoQsERERERERERERUYwwIUtEREREREREREQUI9Z4b8DpbN++fVi+fDk2bNiAgoICSJKE9u3bIzc3F9deey2uvPJKWK2RP0THjh3D8uXLsXbtWhw6dAhOpxPt2rVDr169MHr0aIwePRopKSkhtblt2zasXLkSmzZtQlFREVRVRYcOHXDGGWfgV7/6FYYPHw5BEIJuT1VVfPbZZ1i9ejW2b9+OEydOICUlBR06dMCFF16IsWPHol+/fiFtY01NDd577z189tln2LVrF6qqqpCdnY3OnTvj8ssvx5gxY9C+ffuQ2kwEjCPfamtr8f7772Pt2rXYuXMnTp48CUmSkJ2djdzcXFx88cUYN24cMjMzg2rvmmuuwZ49e0Lap3HjxuHJJ58M6TWxxhjyburUqfjqq69CWv9FF12EJUuW+F3G7Xbjv//9Lz766CP8/PPPKC8vR3p6Ojp16oThw4dj7Nix6NatW0jrjTfG0CmzZs3Ce++9F9Z+DR48GMuWLfP6XEs9DwEtK468mTFjBt5//32/x9cXXhcFhzHkG6+JgsMY8o7XRMFjDJ3Ca6KmaylxpCgKvvzyS3z66afYunUrSkpK4HQ6kZGRga5du2Lw4MG48cYb0b1795C287vvvsO7776LH3/8EcXFxbBarejYsSMGDRqEMWPG4Pzzzw+pvXidiwRVVdWIt0oBLVy4EC+++CIkSfK5zJlnnolnn30WvXr1ith6ly9fjqeffhoOh8PnMj169MAzzzyDgQMHBmzP4/HgiSeewNtvv+13uWHDhuGpp54K6sK+qKgIDzzwADZv3uxzGUEQMGnSJDz44IOw2+0B29y8eTOmT5+OY8eO+VwmLS0Nf/rTn3DDDTcEbC9RMI58+/DDD/HYY4+hvLzc73Lp6el45JFHMG7cOL/LuVwuDBo0CLIsB1y3UaL/0WcM+XbJJZeguLg44HJGgb587Nu3D7/73e/8XjzabDb89re/xd133x3SDxDxwhgyi+aXj5Z6HgJaThz58tlnn+G+++4D4P/LpTe8LgoOY8g3XhMFhzHkG6+JgsMYMuM1UdO0lDjauXMnZsyYgd27d/tdzmKx4Oabb8bMmTNhs9n8LltdXY2ZM2fis88+87vcddddh9mzZyMjIyPgdsbzXMSEbBzMnTvXdFKxWq3Iy8tDSkoK9u3bh5MnT+rPtW3bFitWrEBOTk7Y612yZAmeeuopfV4QBPTt2xfZ2dk4ePCg6Y9sSkoK3njjDZxxxhk+21NVFffff7/pw5CUlIS8vDxYLBbs2bMH1dXV+nO9evXC22+/7feX97KyMkyYMAGHDx/WH8vOzkafPn3gcDiwa9cu04npl7/8Jf72t7/53e/NmzfjzjvvhNPp1B/LyclBTk4OSkpKcODAAdPyc+bMwU033eS3zUTAOPIdRw23EQBat26NHj16wGKx4ODBgygpKTE9P23aNNx///0+29y2bRtuvPFGAEBycnLQv7pdcsklmDRpUlDLxhpjyP+56KKLLtLnhw0bFtS+DRgwANOnT/f63IEDB3DTTTeZ3td27dqhZ8+eKC8vx549e2D8k3z33XfjoYceCmq98cIYahxD//rXv/Dtt9+GtD979+7F8ePH9fkHHngA99xzT6PlWuJ5CGg5ceTLtm3bcPvtt6O2thZAaIkQXhcFhzEU/DYCvCbyhjHkG6+JgsMYaozXRKFrKXH0ww8/YNKkSaZrjeTkZOTm5iIlJQVFRUU4ePCg6TXDhg3DSy+95LPnr8vlwsSJE7F161b9sbS0NOTm5kKWZezevdu0vgsuuAD/+te//P5QHfdzkUox9dFHH6m5ubn6v2nTpqklJSX68263W12+fLk6cOBAfZkxY8aoiqKEtd4ffvhB7d+/v97mLbfcoh46dEh/XlEU9eOPP1aHDBmiLzN8+HC1trbWZ5uvvPKKaV/mzJmjVlZW6s87HA71n//8pzpgwAB9mfvuu8/vdk6ZMkVf9qyzzlLffPNN1ePx6M8XFxerv//9703rfe2113y2V1VVpQ4bNkxf9tJLL1XXrVtnWubnn39Wf/WrX+nLDBgwQP3pp5/8bme8MY58x9GWLVvUvLw8fdmRI0eqX331VaN9X7dunTpq1CjTur/66iuf7b799tv6crfeemswb1dCYwz5PxetXbvWFEPhkiRJve666/Q2L7jgAvWjjz4yvZ+HDx9Wb7vtNtO+fPbZZ2GvO1oYQ/5jKFh79+5VBw0apLf74IMP+ly2pZ2HVLVlxZE3GzZsUM877zzTPoZy7HhdFBhjyDdeEwWHMeQfr4kCYwxFBq+JWkYcVVVVqRdddJG+7Nlnn60uXbpUdTqdpuX279+vTp482bTPf/3rX31u52OPPaYvl5eXpy5atEh1OBz68xUVFercuXNN7f3lL3/x2V4inIuYkI0ht9utjhgxQj+QU6dOVWVZ9rrsN998Y/rit3r16rDWPX78eNOH1hi4Rjt37jSdBP/5z396Xe7EiROm5R599FGf637nnXdMAbx582avy/3vf/8zLfff//7XZ5szZszQlxsyZIhaVVXldbl58+bpy5133nnqgQMHvC5XVVWlXnPNNfqyd9xxh891xxvjyH8c3XTTTaY/FMY/Yg2dPHlSvfLKK/Xlr776ap/LzpkzR19u7ty5PpdrDhhD/mNIVVX15Zdf1pe79957Q9pHb9566y29vQEDBvhct9vtVm+//XZ92V/84heqJElhrz/SGEOBYygYDodD/cUvfmE6B9XU1PhcviWdh1S1ZcWRN6+88oppm0P94sjrosAYQ/7xmigwxlBgvCbyjzEUGbwmajlxNH/+fNNnfMOGDT7XrSiKOm3aNH35M844Qy0sLGy03J49e0xJ48WLF/tsc8GCBab2jhw54nW5RDgXiZHra0uBfPrppzh69CgArev57NmzIYreD8GwYcMwYcIEff7f//53k9e7detW/Pjjj/r8n//8ZyQnJ3tdtl+/fnpdGAB47bXXvNZleeedd1BTUwNAu3VuxowZPtc/duxYjBgxQp/3tS+vvfaaPj1s2DCMHj3aZ5uPPvoo2rRpAwA4efKk19o0LpfLVAvw7rvvRo8ePby2l56ebqol8+2332LXrl0+1x9PjCONt305cuSIqcbejBkz0LZtW59tZmdnY9asWfr8/v37sXPnTq/LGh8PdeCURMMY0vjbl0gf76VLl5q249xzz/W6nM1mw1//+le9ftK+ffvw9ddfh73+SGMMacLZFwB49tlnsW/fPgDasZ8/fz5SU1N9Lt+SzkNAy4ojo4MHD2LKlCl45pln/NZ/C4TXRYExhnzjNVFwGEOB8ZrIP8ZQZPCaqOXE0erVq/XpsWPHYvDgwT7XLwgC5syZg6SkJADamA6ffPJJo+WWLVumr6tXr1646667fLZ5//33Izc3V2/v9ddf97pcIpyLmJCNoQ8//FCfHjp0KDp37ux3eeOHbMeOHThy5EjY6+3duzcGDRrkd/lx48bpdTvKysqwcePGRst89NFH+vQvfvELvydLwLwv//vf//TaM/UqKiqwbt06fX7s2LF+20tNTcV1112nz69Zs6bRMmvXrkVFRQUAQBTFgINSnH322aY6KN7aTASMI423OFq/fr0+nZSUhCuvvNJve4BWR8hYPHz79u2NllFV1fRFtLn/0WcMabzFUL38/Hx9OtzjnZ+fr19gAgg4WEqHDh0wcuRIfT4Rz0WMIY2/GArk+++/xxtvvKHPT5061W+stbTzENCy4ggAJEnC3Llzcc0115gu1AcNGhRyDVZeFwWHMeQbr4mCwxgKjNdE/jGGwsdropYTR4cPH0ZhYaE+f8011wTchtatW+Occ87R5xv+7VEUBR9//LE+f8MNN/hMVgPaNc748eP1eeNr6yXKuYgJ2RhRVRUbNmzQ5y+++OKAr8nLy0O7du30+S+++KJJ6/7uu+9CWm9WVhbOPPNMff7LL780PV9eXm76RSqYwu4XXnghLBYLAMDpdJq+ZADAxo0b9V88BEEIajuNy2zZskX/klHPuN+5ubmm9zKYNhvudyJgHPmPo6KiIv0PRNeuXYMaadpmsyE9PV2fNxb0rnfo0CE96WK1WtG3b9+A7SYqxpD/GAK0XmTGQW3CvcgzfinOysrCWWedFfA1xvfnq6++MhWTjzfGUOAYCkSSJDz22GP6ce3duzemTp3q9zUt6TwEtKw4qldbW4tly5bB4/EA0I7T1KlTsXTpUr33arB4XRQYY8g/XhMFxhgKjNdE/jGGwsdropYVR4WFhXpvVwDo06dPUNuRnZ2tT5eXl5uey8/PN/09CuZ63bgvR48eNf2wBCTOuYgJ2RgpLCxEZWWlPm8MYn/y8vL0aW+/Ugfi8Xiwf/9+fT7YERX9rXfXrl2m4AumzdTUVHTr1s1nm8YPSJcuXZCVlRWwTeMFgaIo2LFjR6PtDGUbG7a5Z88euFyuoF4XK4wj/3F0//33Y/v27fjmm2+wcOHCoLaxqqrK9KXV26jpxoRNz549g/pSk6gYQ/5jqL7d+kRIamoqunbtGtS2+mI8v/Xv3x+CIAR8jfFcVFFRYRphPd4YQ4FjKJC3334bu3fv1ucfeeSRgOeVlnQeAlpWHHkzdOhQvPvuu3jwwQebdKx4XRQYY8g/XhMFxhgKjNdE/jGGwsdropYVRxdddBG2bduG9evX4/333zclWv0pKCjQpxv+7TGeN2w2W1AJ+J49e5pKL/jLP8XzXGQNuwUKysGDB03zxi9z/nTp0kWfbsoBLygo0H/dAoDu3buHvV7jvtjtdnTq1CnoNut/YfXXZrDb2K5dOyQnJ8PpdALQfikbOnSo/rzx19ym7LckSSgoKEDv3r2Dem0sMI78xxGg3aLQvn17tG/fPqj2Pv30UyiKos97O97GE3ZeXh4qKirw/vvv48svv0R+fj6qqqqQmZmJnj174tJLL8WECROC+vIcD4yhwDHU8Hg7nU7897//xaeffoodO3agvLwcaWlp6Nq1Ky655BL8+te/RocOHXyurynnN+N+A9r5LdjXRhtjKHAM+VNTU4MXXnhBnx8xYgQuueSSgK9rSechoGXFUT1RFDFy5EjccccdGDJkSMjbZsTrosAYQ4Hxmsg/xlBgvCbyjzEUHl4TaVpiHLVq1QqtWrUKqr0jR47g559/1ucb/u0xvj85OTn63R/+CIKAzp076wnnQ4cO+WwznuciJmRjpKSkRJ8WRdFvUX0jYzd0YxtNWW/D9oJd74kTJ6Aoil6nw9hmsO01XLbhdhUXFzepzTZt2ug1SoxtKoqCsrKykNtseFxKSkoS5osHwDhquGxT9sXI5XLhpZde0uezs7O9FvM2/gp74MABXHHFFaZfMQFt/06cOIHvv/8eL7/8Mv7whz9gzJgxYW1fNDCGAu+L8XhXVlZi1KhRpnMUoN1KU15eju3bt+Nf//oX7rvvPkyZMsXr+ppyfmvdujUsFoveKyXcWI8kxlB4+7Js2TKcOHECgHax+MADDwT1upZ0HgJaVhzVS09Px4svvhjyNnnD66LAGEORxWsixpA3vCbyjzEUHl4TaVpiHIVi4cKFpjvWjLVaG25nsD8wAto1TH1CNhL5p2ici1iyIEaMt/+kpaUFHbDGOk4Na4GFul7A+61H3mRkZOjTqqqaTnDGmh7G5QLxty/G+VDaNC5r3MaqqirTiH9N2e+GbSYCxlH4+2I0b948069jt912m9df3Ix/9Hfs2KHvR/fu3TF48GCceeaZplo5lZWVmDVrFhYtWhTW9kUDYyjwvhiP9759+/Q/2J07d8YFF1yAc845B2lpafoyTqcTzz33HB555BGv62vK+U0URdPgUol0LmIMNX1fHA4HXnvtNX1+1KhRQdfja0nnIaBlxVE08LooMMZQZPGaiDHkDa+J/GMMNR2viU45nePo008/xfvvv6/PX3jhhY1KJzT1et24bCTyT9E4F7GHbIwYa24Za1kEYqyH4na7w1pvKOs2jrDasB3jdkRqXyLx/hjbaLjfxhNysO15ayfeGEfh70u9t99+G0uXLtXnc3JycMcddzRarqysrFFPgOuuuw6/+c1v0LNnT/0xl8uFVatWYd68eaiurgag/drXq1cvjB49usnbGWmMIf/70nDUVkAbdfqBBx4wXRx4PB588skneOqpp/RfR1etWoVevXrh7rvv9rnNkTi/xRtjqOn7smrVKlMvxXvvvTeo17W08xDQsuIoGnhdFBhjKHJ4TcQY8obXRIExhpqO10SnnK5xtGPHDsyYMcPU7syZMxst1xzyT03FHrIxYqzNEUp3buMv05Ikhbzehq8Jdt0NfxE39qqIxr4Y50Nps36k64ZtNGzfuFyw7QHm/U4EjKPw9wUA/u///g9z5szR5202G/7+97+bfvGqt2/fPtP2PfLII3j22WdNf/AB7cvtTTfdhDfffNP0a+VTTz2VUBeOjCH/+1JYWGg6XrfddhtefvnlRr/U2mw2/PKXv8S7776Ljh076o+/8MILjW5fMa4j2HNRw2WbGuvRwBhq+r68+eab+vSQIUPQv3//oF7X0s5DQMuKo2jgdVFgjKHI4DWRhjHUGK+JAmMMNR2viU45HeMoPz8fd955J2pra/XHZsyYgQEDBjRatqnvj7/zRqKci5iQjRHjgTMWyw/EeJAb/hIRjIYBG+y6GwaXcd3R2Jemtmn88PvaxobLBduet+2MN8ZR+Pvy+uuvY9asWfo6BUHA3LlzcfbZZ3td/oILLsDWrVuxZs0avPHGG5g0aZLf9vPy8ky/9BUXF+Ojjz4KeTujhTHkf1+6dOmCbdu24bPPPsPSpUvxyCOP+B11s0OHDnjyySf1eYfDgRUrVpiWMW5nKBcsxmUTafRYxlDT9uX777/H3r179fnbbrst6PW1tPMQ0LLiKBp4XRQYYyh8vCZiDPnDa6LAGENNw2sis9MtjjZv3ozbbrvNVIpg3LhxPuMg0tdEDduM57mICdkYSUlJ0adD+UXG2LU62NvLfK03lHU37NJtXLexS3co+2JctuG+RLrNht3Og22zqbf0xQrjyH8c+aOqKubPn48nnnhCLxouCAJmz56N66+/3u9r7XY7evbsifPPPz+odY0ZM8ZUT+vbb78NejujjTEUOIasViu6du2KIUOGBPUr7LBhw0y/yjc83pHYzkT68sEYatp5aPXq1fp027ZtMWLEiKDXB7Ss8xDQsuIoGnhdFBhjqOl4TaRhDAXGayL/GENNw2sis9Mpjj777DPceeedphqu1157LR5//HGfr0nU/BMTss1IVlaWPl1TU2MaRc6f+nongDbaaTjrbdhesOu1Wq2mQsfG7Qi2PUDbb29tNNzOUNr09f5kZGSYLhqast/etjPeGEf+48gXl8uFBx54wDRiqMViwdy5c3HzzTcHve5g2e12nHXWWfr8oUOHIr6OpmIMNS2GAjGORN3weDfl/KYoiukWnkQ6FzGGQo8hSZLw8ccf6/PXXXed18FyIimRz0NAy4qjaOB1UWCMoabhNdEpjKHo4DVRYKdzDPGaqLHTJY5eeeUVTJs2DU6nU39s3LhxeOaZZ/yWDWjq9bq/9ydRzkVMyMZIhw4d9GlZlnHy5MmgXmesu9O2bduw1gsApaWlIa+3devWpttTjG2eOHEi6G3xty9NbdO4bLt27fRpURRN88G22fD9acp7Hk2Mo9D3pbS0FBMnTjTdmpKUlITnn38e48aNC3q9oTJuW1NGvYwWxlD4++KNv+PdlO0sKysz3ZJjPJ/FG2Mo9H3ZvHmz6basX/ziF0GvKxyJeh4CWlYcRQOviwJjDIWO10RmjKHo4DVRYKdzDPGaqLGWHkcejwd/+tOf8Oyzz5o+y1OmTMGTTz4ZsPd9+/bt9elQromM+9PwvJEo5yImZGOke/fupvkjR44E9bqCggJ9umGh6mB07tzZVC+jKevt0aOH6TnjvtTW1gb9wTWuu+G+GNdx+PDhoNorLi42/bribzuDbdO4jTabDTk5OUG9LlYYR/7jqKH9+/dj/Pjx2Lp1q/5YdnY2lixZgiuuuCKo9TWV8XYG4y0y8cYYCi2GguXveDfl/Nbw/Wm47/HEGAo9hv73v//p0x07djT10oimRD0PAS0rjqKB10WBMYZCw2uixhhD0cFrosBO5xjiNVFjLTmOampqMGXKFKxcuVJ/zGKx4NFHH8X06dODWp9xHQUFBUH1IFZVFYWFhT63M1HORUzIxkhOTo6pS/POnTuDel1+fr4+3a9fv5DXa7PZkJubG/J6jcs1HPFwwIABpl9BgmmzpqbGFOgN98U4WuehQ4fgcDhC2kZBEJCXl2d6/swzz9Snje9jsG326dMnIQZcMGIc+Y8jo/z8fNx8882NTsRvv/226VaqQP7973/j0UcfxbRp0/DKK68E/TrjCbtTp05Bvy7aGEP+Y+jdd9/F448/jt/97nf461//GtQ2Av6Pt/H81pRzUVZWVkIlQRhDwZ+H6n333Xf69PDhw0PukdLSzkNAy4qjaOB1UWCMoeDxmsg7xpB/vCYKjDEUOl4TNdZS46iyshK333471q1bpz+WmpqKF154IaQSOcbzhsPhwIEDBwK+Zv/+/aYkfMPtTJRzEROyMTRkyBB92hiUvuTn55t661x44YUxWW95eTl+/vlnn+tNT0/HgAEDQmpz/fr1evdui8WCwYMHm54/77zz9Noxsixjw4YNAds0rnfAgAGNaqAY17Fjxw5UVlaG1GZT3+9oYxz5jqN6+/btw+2332663WPQoEFYvnx5yL9kffHFF1i+fDk++eQTvPfee0G9pqioCLt379bngy04HyuMId8xtGnTJrzxxhtYs2YN3nnnnUZF671xOp3YtGmTPt/weBvXUVJSgj179gRs07gvxvctUTCGAp+H6tXW1mLXrl36vK/Ry/1piechoOXEUTTwuig4jKHAeE3kH2PIN14TBYcxFDxeE/nW0uKopqYGd955J7Zv364/1q5dO7z++usYOXJkSNvYt29ftG7dWp83JvV9MQ7c1qpVq0Y/UifKuYgJ2RgaNWqUPv3ll1+iqKjI7/JvvfWWPt27d+9GQdSU9f7000/46aef/C6/YsUKSJIEQMv8Dx06tNEyV111lT69evXqgD03jPsydOhQZGZmmp7PzMw0fZiXL1/ut72amhrT6IxXX311o2UuuugivcC0x+PBO++847fNrVu3mk4usapnEyrGkcZbHAFAVVUVpkyZYqpNNHLkSCxZsgStWrXy2743xpP13r17sWXLloCvefnll/WEjc1mS7hYYgxpvMWQ8XhXVlaaBh3w16YxsXHttdeans/NzTXdRhTo/Hbs2DF89dVX+nyixQ/AGKrn6zxktGPHDn0bADTp1ryWeB4CWlYcRRqvi4LDGPKP10SBMYZ84zVRcBhDweM1kW8tLY5mzZplSsZ2794db731lqlnarAEQcCVV15p2gZjLdeGFEXBihUr9PmrrrqqUU/sRDkXMSEbQ6NGjdILErvdbsyaNct0QjL65ptvTHU2Jk6c2OT1Dho0yBT4jzzyiM+R5Hbu3Il//vOf+vz48eORnJzcaLmxY8ciJSUFgFYs+fHHH/e5/pUrV+Kbb77R52+77Tavy91yyy369JdffolVq1b5bHPOnDkoKysDoHV79zYQQXJysunxRYsWmX6RM6qqqsIf//hHff6cc87BwIEDfa4/nhhHGl9xNHv2bFNdmxEjRmDhwoVe1x+M66+/3jTy55w5c0wjrDf00Ucf4fXXXze9vmPHjk1ad7QwhjTeYuiqq64yJdieffZZFBcX+2xz8+bNmD9/vj4/dOhQr+cO4/lt+fLlPn+B9ng8mDlzJjweDwCttlO0a/s1BWNI4+s8ZGS8DSo5ORl9+vQJ+JqGWuJ5CGhZcRQNvC4KjDHkH6+JAmMM+cZrouAwhoLHayLfWlIcvfXWW/jkk0/0+ZycHCxbtgxdu3Zt8nbefPPNelI1Pz8fL7zwgs9lFyxYoPd4FUXR5/uTCOciJmRjyG6348EHH9Tn161bh7vvvttUz0SSJKxYsQLTpk2DLMsAtOz9jTfe6LXNyy67DHl5ecjLy8Nll13mc90zZ87UA3j37t2YOHGi6YSoqio++eQTTJo0CbW1tQC0LuVTp0712l7btm0xefJkfX7VqlWYPn26aYQ6p9OJF198EY8++qj+2PDhwzF8+HCf+2Ls+v3nP/8ZL730kqn2R2lpKR544AFTL5Df/OY3pi7sRlOmTNGfq6mpwaRJk/Dpp5+aCkHn5+dj4sSJ+ofWYrFg1qxZXttLBIwj33G0adMmfPjhh/p8jx498Le//S2smnddu3bFpEmT9Pldu3bhlltuwbZt20zLVVZWYv78+Zg+fboeX507d8bMmTObvO5oYQz5jqG0tDQ88MAD+nxRURF+/etfY+3atablnE4nlixZgjvvvFM/R6Wnp+OJJ57wup0TJkzQf4WVJAn33XcfVq5cabrQOnLkCCZPnmy6Nfnhhx+G3W732mY8MYb8/z0z2rt3rz7dqVMn05eIYLXE8xDQsuIoGnhdFBhjyDdeEwWHMeQbr4mCwxgKHq+JfGspcVRdXY2//e1vpv365z//iQ4dOgTzNvjUr18/jBkzRp9ftGgR/vKXv6Cqqkp/rKqqCk8++SRefPFF/bEJEyb4TPwnwrlIUIMZoowiavbs2Xj77bf1eVEUkZeXh/T0dOzbt0/v4QBoo5++9dZb6NWrl9e2LrvsMr1Af05ODr744guf633ppZdMHw5AG6ChdevWOHTokKlbfHJyMl599VW/9VXqg9bYddtmsyEvLw92ux179uwxfUC6dOmClStX+vySAGh/6G+55RbTiScjIwN9+/aF2+3Grl279F8mAO22q3/84x8QRd+/LXz33Xe45557TCMPd+zYEd26dcOJEyewb98+0/IzZszAXXfd5bO9RME4ahxHd911l+kisWfPniEX277uuuvwq1/9yvSYx+PB/fffb9rG+m3p0qULqqqqsHv3blNstm/fHsuWLUuokWAbYgz5Phc1fG8A7Zj26NEDLpcLu3fvNt3anp6ejldeeQWDBg3y2Wb9BY7x1tHWrVujd+/eegwZb7+55ZZbMHv2bJ/tJQLGkO8Yqjd58mS9V+3AgQNNt1CFoqWeh4CWE0f+LFy4EIsWLQKg3W65bNmyoF7H66LgMIYa4zVRaBhDvvGaKDiMocB4TRRYc4+jxYsX47nnntPnW7dubRqvIRh5eXmYMWNGo8erq6tx++23m8oqpKSk6OUadu3aZToXnXXWWXj99df99gaP97ko9J8kKGyPPfYYWrVqhVdffRUejweKongd0a53795YsGCBzw9YqKZOnYq0tDQ899xz+i8bxl+p6nXs2BHz5s0LeKK2Wq1YuHAhHnvsMbz77rtQVRUej8dr3ZFBgwZhwYIFAb+8dujQAcuWLcODDz6o14OpqqryWhtm3LhxePTRR/1+6QC0mmkvv/wyZs6ciaNHjwIAjh8/juPHj5uWS05OxowZM0xd1xMZ48issrKyUYHvAwcOBDUKo9E555zT6DGbzYZFixbh+eefx7/+9S/9V7OCggLTrYD1Lr30Ujz66KMJNQqsN4wh3x577DH06tUL8+fP15MWxcXFXm/VO+ecc/D4448HrN2Um5uLpUuXYvr06XrPs7KyMtOFFaD1Rrv77rvx+9//3m97iYAxFJhxwIX6+p1N0VLPQ0DLiaNo4HVRcBhDZrwmCh1jyDdeEwWHMRQYr4kCa+5xtGbNGtN8WVlZo171gfgaQDA9PR1LlizBjBkz9OSyw+HAjz/+2GjZkSNH4tlnnw1YmiPe5yL2kI2jffv24Z133sHatWtx/PhxOBwOZGVloX///rj66qtx3XXXBewKHcqvHvWOHz+OFStW4Ouvv0ZBQQGqq6uRnp6O3NxcXHHFFRg7dizS09ND2pdt27bhvffew/r161FUVAS3243WrVvj7LPPxjXXXINRo0YF/IJgpKoqPv30U3z44YfYtm0bSktLIYoiOnTogPPOOw/jx4/3epHoj8PhwKpVq/Dpp59i7969KC8vR1JSErp3746LL74Yv/71r5vFSbohxtGp1/q6XSMU999/P6ZNm+bz+aNHj2LlypVYv349Dh48iKqqKqSlpaF9+/Y4//zzcfXVVyfkCLD+MIZ8KysrwzvvvINvv/0W+/btQ3l5OZKTk9GuXTsMHDgQV111FUaMGNGoULw/kiThgw8+wMcff4ydO3fixIkTsNls6NKlC4YMGYJf//rXTaqpFU+MId9GjRqFQ4cOAQBGjx5tqq/XVC3xPAS0rDhqKNxeRbwuCg5jSMNroqZjDPnGa6LgMIZ84zVR8JprHJ1zzjkBB8gNJJjY+u6777B69Wp8//33KC0thSzLaNu2LQYNGoQxY8Zg2LBhIa0zXuciJmSJiIiIiIiIiIiIYoSDehERERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQjTMgSERERERERERERxQgTskREREREREREREQxwoQsERERERERERERUYwwIUtEREREREREREQUI0zIEhEREREREREREcUIE7JEREREREREREREMcKELBEREREREREREVGMMCFLREREREREREREFCNMyBIRERERERERERHFCBOyRERERERERERERDHChCwRERERERERERFRjDAhS0RERERERERERBQj1nhvABHR6aqgoACXX355xNv9/PPP0aVLFyxcuBCLFi0CAAwePBjLli2L+Lqaq+b23qiqilWrVqF///4YMGBAvDeHmrnmFv+UmBL9vNSc4jzR38tEd+mll+L48eNRafuNN97A+eefH5W2KTw87kTU3LGHLBERUQLbs2cPbr31VvzhD39AVVVVvDeHiIjnpQjiexmeoqKiqCXlLBYLzjjjjKi0TeHhcSeiloA9ZImI4iQ5ORnDhg3zu0xFRQW2b9+uz5911lnIysoK2C61HGPGjIHH44n3ZhAR6Xheihy+l+HZv38/unXrFnC54uJiOJ1OfT6Y13Tr1g0pKSlhbR9FB487EbUETMgSEcVJ27Zt8eqrr/pdZsOGDbjtttv0+YcffhhDhgyJ9qZRAuEXdSJKNDwvRQ7fy/BcdNFF+PTTTwMud/XVV+PAgQMAgJycnKBeQ4mLx52IWgImZImIWqhp06Zh2rRp8d4MIiIioripqanBoUOH9HnW6T098LgTUaJjDVkiIiIiIiJqkXbu3AlFUfR5JuZODzzuRJTomJAlIiIiIiKiFmnnzp2meQ7YdHrgcSeiRMeSBURELdTChQuxaNEiAMDgwYOxbNkyv8vMmTMHN910E2pra/HBBx/ggw8+wMGDB1FZWYm2bduiX79+mDBhAi699FJTGwcOHMDy5cuxdu1aHD16FADQpUsXDB8+HJMmTUK7du2C2t49e/Zg9erV+Pbbb3Hs2DFUVVUhKysLXbt2xbBhwzB27Fh06tQpnLfEr+rqarz55pv4+OOPcfjwYUiShPbt2+OCCy7ANddcgwsvvDCk9sLZn1WrVuGRRx5p9LixnvCYMWNw9OhRbNiwAQBwzTXX4LnnnvO5PWvXrsVdd92lzz/11FO44YYbfC4/d+5cPWb8tR2N4xaJNo2x/ec//xm33nor3G433n//faxZswb79u1DaWkpMjIy0LNnT1x22WWYMGECMjIyQtpWf6qrq/Gf//wHX331FXbu3ImysjJYrVZkZ2ejV69euPDCC/GrX/0K7du399nGrFmz8N577wHQjvnTTz/td50FBQW4/PLL9fnPP/8cXbp0CWpbIxH/kdjnhiIdYx6PB//5z3/w4Ycf4ueff0ZFRQVatWqF3NxcjBkzBqNHj4Yoivjtb3+Ljz/+GACwdOlSU/3uWByXRPscBHteCvReBNrO6dOnY8qUKaisrMTy5cuxZs0aFBQUwOFwoF27djjnnHMwZswYXHLJJSGvR5IkrF69GmvWrEF+fj7KysqQnZ2Nzp0744orrsCYMWOC/pv1448/YvXq1fj+++9x/Phx1NbWIjs7G126dMHFF1+M66+/Hl27dvX62ki8l+Gsv160zpPROA+E4+effzbN9+/fPybrpfjicSeiRMeELBER6bZt24aHHnrIVHMLAAoLC1FYWIjPP/8c48ePx5w5c2CxWPDaa6/h2WefbTQoye7du7F7926sWrUKL730Es4++2yf63Q4HJg7dy5WrVplurUMAEpLS1FaWooffvgBixcvxt133437778fgiBEbqeh7ffvfvc7PaFc7+DBgzh48CBWrlyJSy+9FE8//TRat27tt61Y7s/IkSP1hOx3330HVVV9trVu3TrT/MaNG/0mZP/3v//p08ZEUr1o7Gc037v8/HxMnz4de/fuNT1eVlaGsrIybN68Ga+++irmzZuHiy++OKg2/Vm3bh0efvhhlJaWmh53u92ora3F0aNHsXbtWixatAhTp07Fb37zm7DX2VSRiv9I73M04mH79u146KGHcPDgQdPjxcXFKC4uxtq1a/Huu+/6/XEj2lrS56Cpdu7cifvuuw+FhYWmx+v/Fv33v//FsGHD8Mwzz6BNmzZBtblr1y48+OCDjfa9pKQEJSUl2Lp1K1555RX85S9/wRVXXOGznaKiIvzhD3/A2rVrGz1X39YPP/yAl156Cbfccgseeugh2Gy2oLYxGNFcfyTiIxHPfTt27NCn27VrF7NEMMUXjzsRJTomZImICID2ZXXevHmorq4GAHTq1Aldu3ZFRUUFdu/eDVVVAQArVqxA37594fF48MwzzwAAkpKS0K9fP1gsFuzevVtvo6ysDNOmTcNHH32E1NTURus8efIkJk+ejJ9++kl/zGKxoG/fvsjKysLJkyexZ88eqKoKl8uFRYsWYc+ePZg/fz4sFktE9ruwsBB33XUXKisrAQCtWrVC79694XA4sGvXLkiSBAD4+uuvMXHiRCxbtsxnUipS+9OhQwcMGzYMAExfus866yxkZWUBAHJzczFixAi9B9WJEyewa9cu9OvXz+u2rV+/3jS/ceNGn+/JwYMH9aS8zWbD8OHDo7Kf0W7TuD+LFi3CyZMnAQBt2rRBr1694HQ6sW/fPtTW1gLQ4vXee+/Fe++9h969e/tt05+tW7diypQpph8qevTogfbt20OWZRQWFuL48eMAAKfTiQULFkBRFNx///1NXmdTRSr+I73P0YiHzZs3Y/LkyfrxBoCMjAz07dsXkiQhPz8fbrcb69atw3333ad/1mIpkT8HwZ6XwlUfkydOnAAAZGdno0+fPo1icu3atbj55pvx1ltvBfyh7PDhw7j11lv1OM/MzETPnj1htVqxZ88e/fGKigr87ne/w/Lly3HWWWc1amf//v245ZZbUFZWpj9mtVrRt29fZGZmoqioSE/2ezweLFmyBDt27MDixYtNfwOb+l5Gav3eROI8mYjnPrfbjX379unzrCN6euBxJ6LmgAlZIiICALz11lsAtC9Pjz/+uOn23Pz8fEyePBklJSUAgPnz58PhcEAQBNxzzz2YMmWK/mWvtrYWf/3rX7F8+XIAwPHjx/HBBx9gwoQJpvWpqooZM2boiQdRFHHXXXfhrrvuQqtWrfTliouLsXDhQqxYsQIA8PHHH+P555/HAw88EJH9ru+BlZmZiT/+8Y+49tpr9cRGWVkZnn32WaxatQoAsHfvXsyZMwfPP/98o3YiuT8XX3yx3vsoLy9Pf/zhhx82HRdAO171X8DXrVvnNSF78uTJRrXUCgsLceTIEa+3tH799df69AUXXID09PSo7Gc02zSqL73QrVs3/OlPf8Lw4cP1HoXV1dVYuHAhlixZAgBwuVxYuHAh/v73v/tt05/HH39cT0icc845ePbZZ9GtWzfTMhs3bsSf//xn/dgtXrwYN954Izp06NDk9TZFpOI/kvscjXiorKzE73//ez2pZLfb8dBDD+Gmm26C3W7Xl3nhhRewZMkSbNmyBaIY26EWEv1zEMp5KRz1fztSUlLw8MMPY/z48XoPz9LSUjz99NP44IMPAGhJxD/96U/4xz/+4bfN+iRgq1atMGvWLIwePVo/7h6PB8uWLcO8efMgyzIkScKTTz6pb0e98vJyTJ48WU+G1h+fyZMnIzs7W19u//79eOqpp/S7DDZt2oQ//vGPmD9/vr5MU97LSK7fm0icJxPx3GdM4gO8bf10weNORM0BB/UiIiJdp06dsHz58kZfCPv164cZM2bo87W1tVBVFTNnzsTvf/97U8+b1NRUzJkzx5QYbHi7PACsXr1a/8IoCAKee+45PPTQQ6bEAwC0b98eTzzxBKZPn64/tnjx4ka3HIcjNTUVS5cuxfXXX2/qZda6dWs89dRTmDhxov7Yxx9/jM2bNyfM/owcOVKf/vbbb70us2HDBv3W5+TkZNPj3hjLFVx22WWm56Kxn7F477p06YIVK1bg0ksvNd3enZ6ejkceeQS//OUv9ce+/vpruN3ugG16c/ToUT2hZrFY8I9//KNRQgLQ6jq/+uqrSEpKAqAlOL766qsmrTNc4cZ/pPc5GvHw6quvori4WJ9fsGABbr/9dj0pB2hJ6UceeQSzZs0CgEblAqKtJX0OwmWz2bB48WLccsstptvt27Zti3nz5uGmm27SH/v888/x/fffB2yzTZs2ePfdd3H99debjrvNZsOdd96JSZMm6Y/98MMPpl6ogPYeG0sozJs3Dw899JApGQoAvXr1wksvvYSxY8fqj3344Yf48ssvA26jP7FYfzjxkajnvoZ1RDmw0+mBx52ImgMmZImISPfb3/620Zf/epdffrnpC1pOTg5uv/12r8sKgoARI0bo84cPH260zKuvvqpPX3vttRg9erTfbZsyZYp+C6miKHpPnUj43e9+57f3xIwZM5CTk6PP1/cmNorX/hjf582bN3tNoBgT4uPGjdOnvZUtcDgc2LRpkz7fMCEbjf2MxXvnL7YBmBI8tbW1OHLkSMA2vTEm/VJTU/2us0uXLhg/fjwuv/xy3H777V6TF7EQbvxHep8jHQ+SJGHlypX6/HXXXdcoro3uuOMO/XbyWGpJn4Nw3X333Rg8eLDP5x955BFTTNYPsObP9OnTTa9pyLjvAEx1VGtqavDGG2/o8zfccIMpOdmQKIp49NFH0b17d/2xl19+OeA2+hKr9YcTH4l67jPWEQV46/rpgsediJoDliwgIiIAWhJ11KhRPp9PS0tD69at9bp+w4cP93tLr/H2w6qqKtNzhw4dwq5du/R5f4NLGV1//fXYvn07APNt9eFITU3FjTfe6HcZu92OG264AQsXLgSg9SA1DqAVz/05//zzkZGRgaqqKjgcDmzZsgUXXnihaZnvvvsOgFYv8+abb8brr78OwHtCdv369XC5XAC0W2mNCYxo7Gcs3jtRFL0OTGbUp08f03zDmA1Wx44dTW38/e9/x+9//3ufn5U//elPTVpPpEQi/iO5z9GIh+3bt+vnLQCNyqd4c9ddd3kdNClaWtrnIBw2mw233Xab32WSkpIwduxYvXzGV199BUVRfMacKIq48sor/bbZtWtXpKen6zXQjYNSbdy4EU6nU5+/4447Au5HUlISJk6ciLlz5wIAtmzZgvLy8kY9WoMRi/WHGx+Jeu4zluvJyspCly5dmtTO119/jSlTpgDQ/k76SzjHiqqq2L9/P7Zt24Zt27Zh+/btyM/P18tGGM8p4TLWY420Nm3aNOlz4U9LPu5E1HIwIUtERACAzp07m2qFemO83b1nz55+l62/HRFofOvvli1bTPO9evUKahvPPPNMffro0aM4fvy46UtgUwwaNAhpaWkBlzv//PP16YqKCuzduxd9+/YFEN/9sVqtGDZsGD766CMAWm9YY0K2sLBQ76F8/vnno3fv3sjOzkZ5eTmOHTuGw4cPm3onGZM6DXsRRmM/Y/HedenSJWBsZ2ZmmuaNg9KEomPHjhg4cCC2bt0KAHjppZewZs0aXHnllRg2bBjOO+880+3S8RaJ+I/kPkcjHuoTloCW7Bs4cGDA9oYMGYLk5GRTEiyaWtrnIBwDBw4MKulhLK1TWlqKAwcO+ByMLycnp9G+eZORkaEnZI13GxhLIrRr1y7owcvq68QCWvJsy5Ytfntn+xKL9YcbH4l47pNlGbt379bnw6kjWp/g69y5c8Ik5QoLCwP2pI+UaK5n+vTpetIzElr6cSeiloMJWSIiAqD1UAhFoC9uxvIGDR06dMg0P3z48JDWXa+oqCjshGywiY+GCehjx47pCal478+IESNMCdkHH3xQf85YrqA+UXvuuefiiy++AKDVkTUmZP3Vj43GfsbivQum503DEerDqR/66KOP4tZbb9UHkDp06BBeeeUVvPLKK0hOTsZ5552Hiy++GCNGjPCZQIqVSMQ/ELl9jkY8GOtu5uTkmGqS+mKxWNCnTx+9Jma0tcTPQVN5G5jQm4axW1xc7DO2srKygmrT2JvTuO/G2/Eb9hL1p2fPnrDZbHri0thOKGKx/kjER6Kd+/bu3Wv6USWc29bra5Im6uBQHTp0wNlnn43y8nJT2aHT0el03ImoeWMNWSIiAmDu0RoMfwnXQCorK5v8WqPy8vKw2wim1xSg9Zwyqqio0KfjvT+XXnqp/kV5x44dpm1bv369Pl2fkDX2oDUO7LVv3z49edW+fXu9PmW9aOxnLN47Y8/uWDjjjDPw5ptv4uyzz270nNPpxLfffotnnnkGo0ePxi9/+UssW7YsLj0RgcjEPxC5fY5GPNT3eAQa74c/kb6F1p+W+DloqmCTpw1/FDSWGGjIOPBkUxjf12A/M4D2d9IYc009x8di/ZGIj0Q79xlvW6/fvqZ6/vnnsWvXLvzjH/9ochsFBQXIy8tDXl5ek9swys7OxgsvvIBvvvkG//vf/7Bo0SIMHTo0Im03Z4l23ImIfGEPWSIiAhBegjVUkiTp00lJSbjgggua1E4oX0zDpaqqad745TXe+9OqVSsMHDgQW7ZsgaIoWL9+Pa666iqoqqonZLOzs/UvgcaErLGOrLFcwciRIxvFRDT2M97vXbT0798fK1euxJYtW/DRRx/h66+/btQLEtB68sydOxfvvPMOlixZkrC3RPqL/3qR2OdoxIPxx6aG++FPqD9ShaOlfg6awmoN7utJw96ZoRzbUIXTtizL+rS/uuuJvP5QJNK5r+HATi2tl2N6ejquuOKKmKwrkvVoo62lH3ciajmYkCUiopgzJg1SUlJMo4vHWk1NTVDLNezBZtyHRNifkSNH6nUov/32W1x11VXYvXu33mtsyJAheoI1NzcXbdq0wYkTJ1BUVISDBw+iR48efssVANHZz0R476Lp3HPPxbnnnos//vGPOHLkCNavX4/169fj22+/xcmTJ/Xl8vPzMXPmTCxevNhnW8EkZeoHZAtWJOK/oXD2OdoxFsogVcaetf5E4ri09M9BKIJ93xvGZDR7NBt77YbSm1mWZdP+BFOvORHX3xSRPPc1Vf3t5oDWSzpQ7Xtf3n//fcyYMQM2mw1btmxJqDrg1BiPOxE1FyxZQEREMdehQwd9urKyMugv4NFQUFAQ1HJ79+41zXfv3l2fToT9GTFihD5dXzfW2PvVOACOIAgYPHiwPr9hwwbU1NToA8ekpqbioosuarSOaOxnIrx3sdK1a1fceOONeO6557Bu3TosXrwYnTp10p//+uuvceDAAdNrjL2Ujb0ofTEmOoIRifj3J9R9jkY89OjRQ58uKCgIeqCu+sHwvIn0cTmdPgeBeOtN6U3DUd+bmnQJhrEub8PPgj/79+839VBt6kjv8V5/uJpy7guXqqqmW9f79evX5B7C+fn5AIDevXszKZfgeNyJqDlhQpaIiGJu0KBB+rSiKKbEoT8bN27E7Nmz8dJLL+GDDz4IunefP1u3bg2qh5txcKxOnTqZviAnwv7k5uYiJycHAHDkyBEcOXLENDK3sUxBw/kNGzbgu+++02v5DR061Ovt2tHYz0R47yJpx44dWLVqFebNm4c1a9b4XE4URVx66aX429/+Znq8YZLJOABVMEm6PXv2hLS9kYj/SO5zNOLhvPPO06dlWQ6qzcLCQhw7dszn85E+Li3tcxCOH3/80ZRE9MVYH7t9+/bo2rVr1Lbp3HPP1adLSkqCvn3722+/Nc039dbpeK8/GJE+94Xr0KFDps9DOHVE6xN8vPU98fG4E1FzwpIFREQUc/3790eHDh1QVFQEAHjttde83iLf0IIFC/QkY3Z2Nq6++uqwt6WkpARffvml3/VXVlbivffe0+cb1myL5v4IghB0/cCRI0fi9ddfB6B9Ea9vu127do1GtDb2gN24caNpgBxf2x6N/UykWIiEF198EZ988gkALckWaLv69u1rmjcm+gCY6ioGk7D473//G+ymAohM/Edyn6MRD127dsUZZ5yh1xVcunQphg8f7re9t956y+/zkT4uze1zEMp5KVSlpaX47LPPcNVVV/lcpqamBqtWrdLno73fgwcPRmpqKmprawEAS5YswVNPPeX3NS6XC2+++aY+P2DAALRv377RcsG8l9Fcf6RE+twXLuNt60B4SbX6npL9+vULa5so+njciag5YQ9ZIiKKOYvFgkmTJunz69evx4svvuj3Na+//rqpx+e4ceMi9gVuzpw5PkfolmUZf/7zn/Vbji0WC2677TbTMtHcH2NP1UB1KI1lC958801T/diGunfvjs6dOwPQknIffPABAK330siRI722H439TLRYCJfxvfvxxx/99hQDYHpeFMVGo28bvwgeOXIEX331lc+23n77bWzatCnELQ4//iO5z9GKh8mTJ+vT33zzDd544w2f7W3evBlLlizxu85IH5fm9jkI5bzUFE8++SSKi4u9PqeqKh5//HH9eZvNhltvvTXi22CUkZGBcePG6fOrVq3ym2RXVRVz5841lV9o+LmpF8x7Gc31R0qkz33hajiwU1N7Sh4/flw//7GnZOLjcSei5oQJWSIiiotbb73VdKE8f/58zJo1C0ePHjUtd+LECTz99NOYO3eu/liHDh0wZcqUiG1LUVERxo8fj++++870+JEjR3DPPfeYvjj+5je/Qbdu3Rq1Ea39MQ5UYxx0y5shQ4YgNTUVgHlE5IblCozL16vveTVw4EC0bt3a5zqisZ+JFAvh+uUvf6nfzq+qKmbNmoW3334bbrfbtJzb7caKFSvwxBNP6I9dffXVplIAAHDJJZfoxxQAHn74YXzxxRemZUpKSvD000/j0UcfBRD8KPX1wo3/SO9zNOJh9OjRuPzyy/X5J554As8884xpkC9JkrBy5UpMnjxZL9/hSzSOS3P6HIRyXmqKoqIi3HTTTaZSGQBw9OhR3H///fi///s//bE777wz6JrG4bjvvvv0sjAA8NBDD+G5555DeXm5abmDBw/i3nvvxYoVK/THhgwZguuvv95ru8G+l9Faf6RE+jwQLmMdUbvdjj59+oTdTjCJOVmWUVNT4/WfsX61r2Vqamqi1vv8dBCv405E1BQsWUBERHFht9vx/PPPY9KkSThy5AgA4L333sP//d//oXfv3mjTpg1KSkpw5MgRU3IkIyMDCxcuNI06HY7hw4dj06ZNKCwsxKRJk9C5c2d06dIFFRUV2L17t+mL0dVXX43f/OY3Md2f3NxcHD9+HACwbNkybNq0CdnZ2ejduzdmz57daBuGDh2Kzz77zPS4tx6ygJaoNd6KDvguVxDN/UyUWIiEpKQkPPXUU5gyZQo8Hg8cDgdmz56Np59+Gn369EF6ejpqamqwd+9eU5277t274w9/+EOj9tLT0zF16lTMnz8fgFY+4N5770XHjh3RtWtXlJeX4+DBg/r7Mn78eOzatQtbt24NansjEf+R3udoxcPTTz+Nu+66C9u2bYOqqnj11VexbNky9OvXD0lJSdizZ4+e3MrJyUFhYaHP9y0ax6U5fQ5COS+FqnXr1qiqqkJBQQHuuOMOPSYrKyuxe/duKIqiL3v55Zfjt7/9bVjrC1Z2djZeeOEF3HXXXThx4gQURcHixYvxr3/9C7m5ucjIyEBxcXGjwanOOOMMPP/886aB4IyCfS+jtf5IifR5IFzGW9f79u0b8g9V9eoTczk5OcjMzAy4/Pfffx9Ub2RjXeCGPv/887gNwNbcxeu4ExE1BXvIEhFR3HTp0gUrV6401QpUVRV79+7Fhg0bsH//flPi4YwzzsCbb76JgQMHRmwbBgwYgIULF+q9lI4ePYqNGzdi165dejLKZrPpyRd/o/VGY3/uvfde023I+fn5WL9+vc9bpI1lCwCgc+fOXnv0At57zhp7EfoSjf1MhFiIlKFDh+Kf//ynqV5jbW0ttm3bhnXr1mHr1q2mhMTIkSOxdOlStGvXzmt799xzD6ZOnQqLxaI/dvz4cWzatAl79uyBx+OBKIqYPHky5syZE9K2Rir+I73P0YiHzMxMvPbaa7j22mv1x9xuN7Zt24ZNmzbpydjc3Fz8+9//9tlOvWgcl+byOQj1vBSKPn36YMGCBXoSpD4m8/Pz9WSszWbDPffcg+eff77JCZem6N+/P9555x3TuVOSJPz888/YsGGDKRlqtVoxceJEvPHGG6ZesA2F8l5GY/2RFOnzQFMdPXpUv90cCG9gJ9YRbT543ImouWEPWSIiiqtWrVrh+eefx86dO/Gf//wHGzZswNGjR1FZWQmbzYYOHTrgrLPOwujRo3HppZf6TYg21SWXXIIPPvgAr7/+Or744gsUFhZCEAR07twZl1xyCcaPH4+ePXvGZX/OPfdcvPHGG1i8eDF+/PFHlJeXIykpCWlpaXC5XKb6g4CWkDUOEuOrdywAdOzYET169MDBgwcBaD2VGg7+Fav9jFab8XLJJZdgzZo1+PDDD/H1119j165dKC0thdvtRlZWFtq3b48hQ4Zg1KhROO+88wK29+CDD+Kaa67BypUrsW7dOv029o4dO+Kiiy7CjTfe2OTbKiMV/5He52jEQ2pqKubNm4dbb70V7777LjZs2ICioiIkJSWhT58+uPbaazF27FjY7fag3rtoHJfm8DkI9bwUqssvvxz/+c9/sGzZMnzxxRc4evQoBEFAt27dcMkll2DChAno2rVrhPYmNJ07d8Zrr72GjRs34qOPPsL333+P4uJiVFVVIT09Hb1798bQoUNxww03mEoM+BLqexnp9UdapM8DTdFwYKcBAwY0ua36npLBfo6HDBliKhlkVFBQoP/o6WsZarp4HncioqYQVBapISIiIiIyMQ4ytHTpUr8/blB4Fi5ciEWLFgEABg8ejGXLlsV5i4iA6upqnH/++VBVFS+88AKuuOKKsNqLRUL2H//4BxYsWBDVdbR0kT7uRES+JG7XEiIiIiIiIqI4yM/P1+824a3rpw8edyKKFSZkiYiIiIiIiAzq64hmZmZykK3TCI87EcUKa8gSERERERERGdTXEU3kXpJ79+5FdXW1Pn/8+HF9+scffzQt26dPH6Snp8dq05qt5nDciahlYEKWiIiIiIiIyKA5JOYee+wxbNy40etzEyZMMM2zFnZwmsNxJ6KWgSULiIiIiIiIiOpIkoS9e/cCAPr37x/nraFY4XEnolhiD1kiIiIiIiKiOlarFdu2bYtom126dMGuXbsi2uayZcsi2t7pLhrHnYjIF0GtH0KQiIiIiIiIiIiIiKKKJQuIiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEaYkCUiIiIiIiIiIiKKESZkiYiIiIiIiIiIiGKECVkiIiIiIiIiIiKiGGFCloiIiIiIiIiIiChGmJAlIiIiIiIiIiIiihEmZImIiIiIiIiIiIhihAlZIiIiIiIiIiIiohhhQpaIiIiIiIiIiIgoRpiQJSIiIiIiIiIiIooRJmSJiIiIiIiIiIiIYoQJWSIiIiIiIiIiIqIYYUKWiIiIiIiIiIiIKEb+H7juATif3X31AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 2.5e-3/20 # an exact fraction of deadtime\n", + "bins = np.arange(0, np.max(diff_dt), dt)\n", + "hist = np.histogram(diff, bins=bins, density=True)[0]\n", + "hist_dt = np.histogram(diff_dt, bins=bins, density=True)[0]\n", + "\n", + "bins_mean = bins[:-1] + dt/2\n", + "plt.figure()\n", + "plt.title('Paralyzable dead time')\n", + "plt.fill_between(bins_mean, 0, hist, alpha=0.5, label='No dead time');\n", + "plt.fill_between(bins_mean, 0, hist_dt, alpha=0.5, label='With dead time');\n", + "plt.xlim([0, 0.02]);\n", + "# plt.ylim([0, 100]);\n", + "\n", + "plt.axvline(2.5e-3, color='r', ls='--')\n", + "plt.xlabel(r'Time between subsequent photons $T_{i+1} - T_{i}$')\n", + "plt.ylabel('Probability density')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Non-paralyzable dead time has a distribution for the time between consecutive counts that plateaus between $\\tau_d$ and $2\\tau_d$, then decreases. The exact form is complicated (e.g. )\n", + "\n", + "The measured rate is expected to go as \n", + "$$r_{det} = r_{in}e^{-r_{in}\\tau_d}$$\n", + "(Zhang+95, eq. 16). Let's check it." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSwAAARHCAYAAAD5ry3JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3xT9f7H8Xc66YC2rLI3LVNkyB7iAERBARUcqIgDFVTQqzguXq84cLAFXAxxAAoqAuIAZUOZMgTKpi1QRgd00JnfH/313KRJ25SOpO3r+XjwIOd8z/nmc5JvkuaT7zCZzWazAAAAAAAAAMAFuDk7AAAAAAAAAADIRsISAAAAAAAAgMsgYQkAAAAAAADAZZCwBAAAAAAAAOAySFgCAAAAAAAAcBkkLAEAAAAAAAC4DBKWAAAAAAAAAFwGCUsAAAAAAAAALoOEJQAAAAAAAACXQcISAAAAAAAAgMsgYQkAAAAAAADAZZCwBAAAAAAAAOAySFgCAAAAAAAAcBkkLAEAAAAAAAC4DA9nBwAAyF9kZKRuvvlmh441mUzy9PSUr6+vqlWrpmbNmqlTp0667bbb5O/vX8yRup4ZM2Zo5syZkqSOHTtq4cKFTo7IeYYPH66wsDBJ0ujRozVmzJhC1xkaGmrc/vLLL9WpU6dC1+lMZe16HLVs2TK98sorkqTatWtr7dq1ha7TbDZr2bJlat68uVq0aGFTnvN9bc2aNapTp06h7xd54z0xf+np6Zo/f74GDhyo6tWrOzucIlParys2NlZ9+/ZVfHy83n33XQ0ePLhA58fExOi7777TX3/9pePHjysxMVGVK1dWvXr11LdvXw0cOFABAQEFqvPYsWNatGiRtm3bpsjISKWnp6t69eoKCQnRgAEDdOutt8rDo2Bfubds2aKlS5dqz549On/+vDw8PFSjRg21bdtWgwYNUocOHQpUX0mLjY3VV199VaC/MX788Ue9/PLLkqTPP/9cPXr0KK7wAJQiJCwBoIwxm81KTU1Vamqq4uLidOTIEf3888/68MMPNW7cOA0dOtTZIQIo444cOaL//Oc/2rFjh7788ktnhwM4bOfOnfrPf/6j8PBw9evXz9nhFJnSfl1ms1mvv/664uPjr+n8P/74Q6+99pri4uKs9kdHRys6Olrbt2/XJ598orffflu9evVyqM4ZM2Zozpw5Sk9Pt9ofERGhiIgIrVmzRq1atdIHH3ygRo0a5VtfQkKCXn75Zf3xxx9W+1NSUnTs2DEdO3ZM33//vQYOHKgJEyaoYsWKDsVZUrJ/pPrggw/k6+tboITl+vXrJUk+Pj7l5odCAPkjYQkApVBISEievSNSU1OVkJCgU6dOKTExUZIUFxenCRMm6OLFi3rmmWdKKlQA5dCgQYOUlpbm7DCAAjl37pweeOABmc1mZ4dSpMrCdX3wwQc2iTxHrV69WuPGjVNGRoaxr2HDhqpWrZqioqIUFRUlSbpw4YKeeuopzZo1SzfeeGOedU6cONGqd7KHh4dCQ0Pl4+OjY8eOKTY2VpK0f/9+DR8+XEuWLFHt2rVzrS8lJUWPPvqo/v77b2Ofn5+fQkJClJGRofDwcF29elWStHz5cp09e1Zz586Vl5dXgR+P4rJixQq9+uqrkiRfX1+Hz8vIyNCmTZskSZ07d3apawLgXCQsAaAUGjFihENDoVJTU7VkyRK9//77SklJkSTNnDlT3bp10/XXX1/MUQIor0hWojRKT08v1Um93JTm68rMzNSkSZM0f/78azo/IiJCr7zyipGsDAkJ0aRJk6ymqdi6dateffVVRUVFKSMjQ+PGjdMvv/yi4OBgu3WuXr3aKlnZt29fTZgwQVWrVpWU9f63bNkyvfvuu0pOTtbFixc1ZswYLV26VCaTyW6dkyZNMpKVJpNJY8aM0ciRI1WhQgVJ0uXLlzVjxgyjx/r27dv10UcfGVN5uIJrfd/fs2eP0fOVoeAALLHoDgCUYV5eXnrwwQc1efJkY19mZqZmzJjhxKgAQKpTp44OHz5s/GP+ypIxZswY4zFn/kq4spiYGD366KPXnKyUpClTpigpKUlS1vy8CxYssJlTt3Pnzvrmm2+MkSuJiYnGPK85paWladKkScZ27969NXXqVCNZKUmenp4aOnSoZs6cacxfeeDAAa1YscJunUePHtWiRYuM7RdeeEHPPPOMkayUpEqVKum1116zGiHz9ddfKzIy0qHHwZVlDweX5PBwfADlAwlLACgHbrnlFnXu3NnY3rJli2JiYpwYEQAAgH2rVq3SXXfdpS1btlxzHdHR0fr111+N7XHjxqly5cp2j61Ro4Zee+01Y3vZsmU2811K0u+//64zZ85IyhoGPmHCBLm52f9K3b17d6t5w+fNm2f3uIULFxo9QBs1aqSRI0fmek2jR49WSEiIpKzk6VdffZXrsaVFdsKycePG/HAFwAoJSwAoJ/r06WPczsjI0NGjR50YDQAAgLVjx45p2LBhGjt2rKKjoyVlDZF+9tln85wD0p5ff/3VWBCnYsWK6tu3b57H33rrrUZCMz093e6cmatWrTJud+3aVbVq1cqzTsuE5YEDBxQREWFVnpmZaZVUHTx4cK4JUElyc3PTvffea2xbnlsanT9/XgcPHpQk9ezZ08nRAHA1zGEJAOVEzl+tL1y4kOuxqamp+u2337Rlyxbt3btXMTExio+Pl5eXlwICAtSoUSN16tRJgwcPthoGldPw4cMVFhYmSfr5559Vv359zZkzR8uXL9f58+cVGBiokJAQDRkyRP3797c5f8uWLVq/fr127typc+fOGauDVqpUSbVq1VKHDh00YMAANWvW7FoeEg0YMEDh4eGSsoYhffrppw6d98wzzxhfZO655x5NnDhRy5YtK9RcUqNHj851Rc3ExET98ssv2rp1qw4cOKDY2FhduXJFPj4+qlSpkkJDQ9W1a1cNGjRI/v7+BbrfiIgILVy4UOvXr9e5c+fk5eWlmjVrqmfPnho0aJBDK5sWxJ49e7Ry5Upt27ZN0dHRSkxMVFBQkBo2bKiePXtqyJAhCgoKKtL7lLJ6oqxYsUKrVq3SP//8o/j4eAUGBio0NFRDhgzRbbfdluvcYnk5cuSIli9frk2bNuns2bO6cuWKAgICVLduXXXv3l1DhgxRzZo1Ha6vOJ7rs2fPatGiRdqwYYNOnjyp9PR01ahRQ127dtX9999v9NYprNxeAw899JBxe9CgQXrvvfckSZGRkbr55puNsjVr1ti8T910003Gghh79+6Vt7e3Tpw4oSVLlmjDhg06e/asTCaTatSooe7du+uBBx5Q3bp1rer4448/tHTpUh06dEgXLlyQn5+fWrRooTvvvFMDBgyQu7u7Q9fnrLZb1GbMmGEMd+3YsaPNsPBt27YZz1nfvn01ffp0SdK6deu0fPly7d27VxcuXJCHh4dq1apl9CKrX79+rvdp2TaGDh2q//73v0pJSdH333+vn3/+WadOndKVK1dUuXJltWrVSgMGDFDfvn3zTNyMHz9eP/zwgyTrdpWbvNqb5WNiyfL4vN6j8xIaGipJCgwM1LZt23Tu3DlNnTpV69atU1JSkqpWrao2bdpoxIgRat26tdW5hf0sLux1xcTEaNmyZdqwYYNOnDih2NhY+fr6qnr16urUqZMGDhyo6667rsCPSV42bNig3bt3G9u1atXSW2+9pe7du2vp0qUFqsuyd2bHjh3l6emZ5/Hu7u7q0qWLVq5cKUn6888/dffddxvlZrNZ27ZtM7a7deuWbwyhoaGqVq2a8TfX2rVr9fDDDxvlhw4dMhbokbJ6ZebH8n7PnDmjQ4cOXfPfQTmFhYVpxYoV2rVrl6KiopSWlqaAgACFhISoV69eGjx4sCpVqmR1juXfetmioqKMti9JX375pd3Vv9evX2/Mr5rXcPAtW7Zo5cqV2rNnj86ePauUlBQFBAQoODhYHTp0UJ8+fdShQ4fCXDoAF0TCEgDKiZyTofv4+Ng9bvny5frwww+Nng0560hMTNSZM2e0ceNGffzxx3rppZf0wAMP5Hv/mZmZevrpp7Vx40Zj3/nz53X+/HmbP9D379+vN954Q/v377db19WrV3X+/Hnt2bNHX3zxhYYMGaI33nijwCtL3nXXXXr//fclSZs2bVJMTEyuw8WyxcXFad26dca2I4sfFcb8+fM1e/Zsu0PTrly5oitXrigqKkpr167VjBkzNHHiRKvetHlZunSp3nrrLSUnJxv7kpOTFR8fr0OHDmnu3Ll66KGH9OKLLzqc1MlNTEyM/v3vf9vtsZLdDrZt26Y5c+Zo3Lhxuv/++wt1f5YOHDigcePG6eTJk1b7L1y4oAsXLmjjxo1atGiRpk6d6nCdycnJRqI6MzPTquzixYu6ePGidu/erU8//VSPP/64Ro8enW9CtDie63nz5mnKlCnGolvZTp06pVOnTun777/Xs88+m+cPD67k008/1fTp023ez65cuaIjR45o8eLFmjJlim688UbFxsZq/Pjx+uuvv6yOjYuL0+bNm7V582b9/PPPmj17dp7vHc5su64gNjZWr7zyiv7880+bsuy5ML/88ks999xzevzxxx2qMyoqSs8884zRsypbdHS0oqOjtWbNGrVs2VJTpkzJMxFa2kRHR2vYsGE6e/assS8yMlKRkZE2w4CL67PYUfPnz9f06dOVmJhotT81NVVxcXEKDw/XwoUL1a9fP7311ls2SazCqlChgoYPH65Ro0YV+Ie4bIcPHzZut2zZ0qFzmjVrZiQs9+3bZ1UWFRWly5cvG9utWrVyqM7Q0FAjYZmzzkOHDhm3PT091bRp03zra9iwoSpUqGCsGr5v375CJyxPnz6t1157zSbxKP3vM23z5s2aM2eOJk6cqFtuuaVQ95ctezi4r6+v2rdvb1MeFxencePGGauI24vrwIEDWrBggbp06aKPPvpIVapUKZLYADgfCUsAKCcs/3CXbHtcStLcuXOtJpOXsiapr127ttzc3BQTE6Pjx48bQ6yuXr2q//73v6pcubJuu+22PO9/1qxZVsnKbO7u7rr99tuN7e3bt+uJJ54wJsmXpKCgIDVo0EA+Pj66fPmyjh8/bpSbzWZ9//338vLy0htvvJHPo2Bt4MCBmjx5stLT05Wenq5Vq1bpwQcfzPOcVatWGcmSBg0aqF27dpKk4OBgh3pGZNu5c6eRKDSZTHZ7qUycONGq95PJZFL9+vVVvXp1mUwmnT9/XqdOnTISZvHx8Xruuef07bff5rsK/O+//67w8HCjZ0OdOnVUq1YtXbx4UcePH5eUNSRu7ty5Onv2rKZMmXJNPRClrF6cI0aMsBoK5+XlpZCQEPn5+Sk6OtpIJl65ckVvvvmmTp48qVdfffWa7s/S33//rUceecSqPVWqVElNmjRRRkaGwsPDlZycrG3btumxxx5zqM7Y2Fg99thjVgl1d3d3NW3aVAEBAYqNjdWRI0dkNpuVkpKimTNn6siRI5oyZUquid/ieK4nTZqkuXPnWu2rX7++goODdenSJR07dkxpaWn66KOPHP4ynxfL14Dla71169YKCAiQpEL15pw+fbo+//xzSVlf7Bs2bKjAwECdPHlS58+flyQlJSVp7Nix+umnnzRu3DgjOVC9enU1aNBAly9f1uHDh412v3HjxjxX2nVm23UFV69e1ahRo7Rnzx5JWT90hYaGyt3dXSdOnDDmQk5LS9OHH36oKlWq5PsjzpUrVzRy5EidOHFCUlaiIjQ0VJmZmTp06JCRXD9w4IDuu+8+ffvtt8WetKxXr566d++ulJQUbd++3dh/ww03yNvb2zimsF588UWrZGW2xo0bW70Gi+qz+Fquy2w267XXXrPpzVi/fn3VqFFDSUlJCg8PN56n1atX68iRI1qwYIGqVat2LQ+LlcDAQD322GN66KGHcl2l2xGpqanGXJPZ8TvC8m+j6OhoXb161Vj8JuePXo62Ccs6T58+bVVmWWft2rWNRXryYjKZVKtWLeOz+tSpUw7FkZtDhw7p4YcftvqxzNPTUyEhIfL19dXJkyeNhGtsbKyeffZZTZ48Wf369ZOU9R7v5eWl8+fPG6NWvL29dcMNNxj1ZX8GWEpPT9fmzZslSV26dLH54SgtLU2PPvqoDhw4YOwLDAxUw4YN5e3trfPnzysiIsL4m2zLli0aPny4fvjhB6N9AyjdSFgCQDmQlpZmDJ2Tsr6850wcHDlyRB999JGx3bFjR/3nP/9R48aNrY6Lj4/XggULNHv2bCN58vHHH+ebsMyeZ2n48OF65JFHFBgYqIMHD2rXrl3GypwpKSl65ZVXjORSzZo19fbbb6tr165WybK0tDStXLlS7777rvEH9qJFizR69OgC/bJerVo19ejRw+g59PPPP+ebsPzpp5+M20OGDDFud+vWzaHhYZL03XffWSV0nn32WZuhUBs2bLBKYPXt21evvPKKzfDi6OhozZo1y1hhNDMzU7Nnz9Ynn3ySZwzZCewmTZrov//9r1XPhvDwcL3++uv6+++/JUm//PKLbrjhhmvqvZOSkqIxY8YYCR9vb28999xzuu++++Tr62scd+rUKb3//vtGL7YFCxaoadOmuueeewp8n9kSEhL03HPPGe2pQoUKevnll3X33XcbX4ySkpI0d+5czZo1y+pLUW7MZrNeeuklI1np5uamkSNHauTIkVbDgc+fP68ZM2ZoyZIlkrLa//Tp0zV27FibOovjuf7jjz+skpWhoaGaOHGiVWL8+PHjeuONNxQWFubQtefH8jVgORTwX//6l92hgAWVnawcPHiwnn/+eSOZYTabNW/ePCPBk5SUpEGDBikhIUHBwcGaOHGi1dxoR48e1ejRo42EWfZ7R8WKFa3uz5lt11Vk9yb39fXVCy+8oHvvvdd47aSnp+vHH380hndL0uTJk3XnnXfm2SM7ew5Ad3d3Pf300xo5cqTR4z8hIUEzZ840Fie5dOmSxo4dq++++67Qvbzzcuedd+rOO++0GTb+3nvvFdkiIHFxcQoLC5OPj4/+9a9/qX///jKbzdq6datVL+2i/Cy+luv67LPPrJKVN998s1588UWr6UGSk5ONXulXr17VsWPHNG7cOM2fP7/Qz9Ndd91VqPOzXbhwwfhhQpLDydScvc0vXLhgTDNhOZWOm5ubwz3TLe8753Q8ltvZfws5Gmd2wjKvKX7yk5SUpGeeecb4W8rd3V2jRo3SiBEjrN4T//jjD7355ps6f/68MjIy9Nprr6l9+/aqVq2aXnrpJUnWUz9UrVpVX3zxRZ73vWvXLl25ckWS/eHgS5YsMT6bfHx89P777+uWW26xmiriwoULmjx5spYtWyYpaw7Ub7/9Vo888si1PSAAXAqL7gBAGZeWlqYJEyZY9RAaPny4zXFffPGF0VujTp06+uSTT2y+IElZv5I/++yzVnMwHTlyxO6wtZyGDx+u119/XXXq1JG/v79uuOEGPfnkk0b5ypUrjTjd3d31ySefqFu3bjY9+zw9PXXXXXfp3XffNfZlZmbaHTKUn0GDBhm39+zZY9P7wdKpU6eMnkbu7u668847C3x/W7du1Ztvvmls9+vXT08//bTNcZbzabZt21ZTp061OxdicHCw3nzzTd16663Gvs2bNxsrjualadOm+uabb2yGYYWEhGjBggVWPfemTJliNXTcUV988YUx7NPb21tz587VyJEjrRI+Ulbvl5kzZ+q+++4z9r377rtWw+8KasGCBUZvJpPJpI8//lj333+/VS8OX19fjR49Wu+8845DdS5fvtwYwmYymfTRRx/pxRdftJm7sHr16nrrrbf0wgsvGPs+/fRTmx462fuzFcVznZmZqQ8++MDYbtKkib7++mubXryNGjXS3LlzC9Qz2Nnuv/9+vfvuu1Y9r0wmkx599FF17drV2JeQkKCKFSvq66+/tlnIoUmTJlYJoatXr2rXrl029+XMtutKPD09NW/ePD344INWrx0PDw/dfffdVr1JL1y4YLxH5mfSpEkaPXq01fQk/v7+Gj9+vNXr5sCBA/r5558LfyEu4v3339cDDzygoKAgVa5cWf3799cdd9xhlJfEZ3FuIiIiNG3aNGP7wQcf1KxZs2zmMvbx8dGIESP0+eefG/NChoWFGUkjV5A953U2R4es5/zhwvJ1bFmnn59fnnOsWrIc0p4zLstejTnv29E4c9ZZEPPnz1dkZKSx/eGHH+rZZ5+1ieWWW27RnDlzjN6mCQkJhV6h3HJ6HXsL7lguKPTcc8+pT58+No95tWrV9M4776hHjx7GvtWrVxcqLgCug4QlAJQxmZmZunLlig4dOqSvv/5agwcPtvoS0aRJE5uEpdlstpq3aMSIETZfynPKOXfeuXPn8jzeZDJp1KhReR6zdetW4/Ytt9xi1UvLnl69ehl/PDsSgz29e/dWYGCgsb18+fJcj7XsXdmtW7cCD1c7efKknnvuOWP4UosWLewuFJGQkGA13PjJJ5/M94uR5eqnqampVpP45+b999+3O0xLyvpC+s477xjJ4itXrmjFihX51mkpNTXV6gvNo48+muek+CaTSa+++qrxuCYmJmrx4sUFuk9Lls/loEGD8kzM3XXXXQ7NyWXZY2TAgAF2F4uy9MQTTxgLaWRmZmr+/PlW5cXxXO/evdsqMfqf//wn1y/Cnp6eevfdd3Od09aVVKxYUePGjcu1POfz9+CDD9oswJOtZcuWVq/fnEMqnd12Xcmdd96Z5xQTgwcPthp+mT0kNL86BwwYkGv5448/bnWfP/74oyOhurwmTZrkOe9sSXwW52XBggVGsrRu3boaP358nsffcMMNVotqZfeMdQU55+11dIhwzmHJlvVY3rb826MgdaamplqVWW4XVZ2OyszMtHqfuv322/P8TGvZsqXV6/a33367pvvNlv3jX0hIiN0f6bKn+pCU5wrxJpNJDz/8sDp37qx77rmnyObXBOB8DAkHgFLolVdeuaYVqevVq6ePP/7YJjlhMpm0du1aXbx4UREREXZ7c+SUc3hV9uTvuWncuHG+w6fef/99TZgwQadPn3aop4G7u7uCgoKMXnQ5v6A4wsvLS3fccYeRnPj55581evRou8daJsAKuthOfHy8nnzySaM3RZUqVTRr1iy7iSJ/f3/t2rVL58+f1+nTp9WmTZt868/52Ob3fHTs2FEtWrTI85jGjRurY8eOxqqof/75Z4GGue7YsUOXLl0yth15zLy8vHT77bcbw5nXrVvn8EIelk6cOGGVtLv33nvzPeeBBx6wu7BKtlOnTlnNBetoG7jrrruMuRQte5RIxfNcW95HgwYNrOYRs6d69eq65ZZbXL4XW9euXfN8X7C3wnhegoODjd5o2cMSszmz7bqa/BZ28vLyUv369Y1EZc7H0p6cC8zkZDKZdN999xm9NXfs2KHLly8X+cIuJa1jx455lpfEZ3Fefv/9d+P2HXfcke+q2lLW+1v2DznHjh1TRERErj8UlKTsxGs2R4eq5zzOsge75WJfjvaulGQ1L2XOuK61Tss4c9bpqH/++ccqwW3ZSzw3Dz30kBo0aKCGDRuqYcOG13S/UlZiPfs9w17vSkmqUaOGMXXHxx9/rLZt2+Y6tL9Hjx5WvSwBlA0kLAGgHKhUqZIGDRqkMWPG5PmFv2rVqvkmFVNSUrR//36bxE7OlZJzcnQFS39//3wTaZmZmTp69KjCwsKshms5MgzansGDBxsJy5MnT2rv3r02w2d37NhhDFcPDAy0mg8sP2lpaXr22WeNBJqnp6dmzJhht0dBNpPJpODg4Hx7cSYkJGjfvn02PUPzez4cnW+zQ4cORsLS3rDZvFge7+np6fACBZYrr+7du1fp6ekOLURgaceOHcZtLy8vo5djXjp06CAPD49cv/zlvP6cwyRzY3k9Z86c0blz51SjRg1jX1E/15aLa9hbddWezp07u3zCMr/Vc3P2Tsrvy7Rlj6ucj6Ez266rya+nu2Q9PDW/3l41a9Z0qE7LeU/T0tK0e/duu/PclSbNmzd36Lji/CzOTVRUlFXyypFkqZT1urRcsXrXrl0ukbDMmfxz9O+DnMdZJm0tk4QFeZwtP1NyJoGvtU7LOB1JLNuzd+9eqzoc+cEsJCSkUIunZctvOLiUNZpgy5YtkrIWBurTp49uuukm9ezZU127di2SRZ4AuLbS/RcUAJRTISEhuU7O7uHhIT8/P/n7+6tevXpq2bKlrr/++gIP+YyJidE///yj06dPKyIiQhERETp27JhOnz5tN6FjObm9PZUrVy7Q/UtZk8EfPHhQJ0+eNGI4ceKEjh8/bnc+xfxiyE3Lli0VEhJi/Nq/fPlym4SlZZLo9ttvtxk2lpf//ve/VsPd33jjDYcTSdnOnTunQ4cO2TwfkZGRdr/k5PdYOPpl1DLpExsbq5SUFIeH1lkOs01LS3MoSZFTSkqK4uLiHF7cIJvlPG6Orrzq5eWlunXrGj06cso5bDi3L1mOxGaZsMypsM+15TC6Bg0aOBRTkyZNHAveiQqyoJZkPW+cPXmteu/MtutqLKfMyI1l0iW/9x5Hf7yqWbOmfHx8jPd6y3ZdWl3L52BRfxbnJuf8zS+++KJefPHFAtdTmDk0i1LOv3kcHTad11ByyzoLMqLD8r5zfn5a/tBSkDotj73WFbEt5zavXbt2gf6uKazshKW/v3+ufw8NGTJEq1atMqZJSEpK0ooVK4zpaZo2baquXbuqZ8+e6tSp0zUnbgG4LhKWAFAKjRgxosBDkh1hNpu1fPlyffXVV1a/vNuTV080e/JLHljatWuXPv30U23cuNFquFROJpNJJpPpmnuUWBo8eLAxn+Qvv/yiV155xfgSnpqaql9++cXqWEfNmzfPWClaylp4yNFh1ampqVq8eLEWL16sI0eO5HlsQZ8PRyf3z3lcXFycw3N3FtWiI/Hx8QVO+sTExBi3C9L2cpvTUyq667FcZCFbUT7Xltfu5+fnUEylYahtQb+U55WQzI8z2+748eP1ww8/5Hvc6NGjNWbMmGsNzWEFmVfPEXm9xnLy9/c3EpaWQ/RLK0dfj8X5WZybwizcUhz1FFbOdpaQkODQeTmPs0zYW9aZmJgos9ns0PuMZZ05fwCw3HY0xvzqvJY6CrLgT2GlpqYaPSe7deuW6w+KXl5emjNnjqZMmaJvv/3Wpp0fOXJER44c0YIFC1SxYkXddttteuqpp1SrVq1ivwYAJYOEJQBAUtYfrs8++2yuK21XrFhRTZs2VcuWLdWxY0fVr19fAwcOdLh+R+dm+vDDD/XZZ5/ZLfP29lbDhg3VokULtWvXTj179tR9992nqKgoh+PIzcCBA/Xhhx8qPT1dFy9e1ObNm435kNauXWskMEJCQqyGfeblzz//1Pvvv29sd+3a1eG5R8+fP68nn3xS//zzj93yoKAghYSEqHXr1urYsaPc3Nz02GOPOVR3QeTsrVOQ5IXll4uAgACHhmXbcy29PvJKdF/rfVlej7e3d75zQ+YmZ3KwqJ/ra7n2kuxZc60Kk4AsKGe23bKuIEPkLX+Mutaeg67Ekc/B4v4szk3OZNANN9xwTT33XGE4uJQ1t6ebm5vRhi5evOjQeZbHmUwmq57dlj/WZWRkKDY21qFesxcuXDBu5/wBw3K0TEGS8pZxXuvQ6JJ8T7W0c+dOJSUlSVK+8076+fnp9ddf1+OPP65ffvlFa9as0a5du2za65UrV7RkyRItX75ckydPLtC0PQBcFwlLAIAk6dVXX7X6ghQSEqLbb79dbdq0UZMmTWz+IM45PLYofPXVV1bJyipVqujOO+9U+/btFRoaqtq1a9t84SuKniXZ99WzZ0+tXbtWkrRy5UrjD2nL1bGHDBniUH2HDx/WCy+8YHxZqlevnqZMmeLQxP/p6ekaM2aMVQKrbdu26tu3r1q3bq3GjRsrKCjI6pzNmzc7FFe2xMREh46z7C1jMpkK1AvDMjFXp04dqxW2i5tlnI4sApItrx4ultfj4+NTJNdTHM91xYoVjV6Wjl57QXr2lAfObLtlnaNtzWw2W7XfvHqROZLMvJZF2ZzBWZ/FOX9I+fe//31NUyG4Ci8vL9WsWdP4QTPnkPfcWA6TrlWrltWPDvXr17c51pGEZWRkpHE759y6ltN2REZGOtRr02w2W/1Q6+jUHzlZPucF+ZwsLEfmr8wpODhYjzzyiB555BElJCRo586d2rp1qzZt2mS1GN7Vq1c1duxYrV69mp6WQBlAwhIAoL179+rXX381tu+99169+eabefYGKephX6mpqZoxY4ax3bJlS2OYT16KauimlDXUOzth+eeffyojI0Pp6enauHGjpKxJ6R3pyXLx4kWNGjXKSAr6+flp9uzZDg/b+v33343VcSXpueee09NPP53nOfaGGefF8gtUXo4dO2bcrlu3boFWMbXsjXLmzBnHgysCll8sIyMjHZp702w2W31Zzcnyei5fvqyEhIQCDTe3pzie6/r16xsJy6NHjzoUh6Nf5ssLZ7bd9957z5ieoixyNMEWERFhNfdfzqSMZVLHkR+uYmNjHQvQiZz5WZxzqo+zZ8+W6oSllLUIVnZi79ChQw6dc/DgQeN2zkWSateurcDAQOM9+ODBgw4tVGN53znncG3ZsqVxOzk5WSdOnMh3Qbfjx49bJeAdXcwpJ8vnPCoqSmlpaQ7NA7l48WLVrFlTdevWVZ06dQo8d2R2wrJZs2YOTzFjyd/fX7169TIW4Tp9+rQ+/PBD47WTkpKixYsXa+zYsQWuG4BrcfxbBwCgzLL8tdvT01Mvv/xyvokpyz/qpWtfmTTb7t27rRIxY8eOzTdZeeLECavFdwo7ZPDGG280erPFxcVpx44d2rx5s3EfvXr1yrc3RUpKip555hkjyeHm5qaPPvqoQIuaWD4fwcHBGjVqVL7n5Pwylt/zYZkky4tlb762bds6dI6942NjY616QeRl9erVevPNN/X5559r1apV17T6u+V9p6enG5P25+Xw4cN59jKxrDMzM9OhOiUpLCxMEyZM0CeffKKff/7ZqndrcTzXlnGGhYU59Pjt3Lkz32PKE2e23bLu6NGjDiXZtm3bZty2t4KxZZLEkV6b+c0N6wqc+VnctGlTq89cy4Xi8hITE6Px48dr+vTp+v7774tkipai0rFjR+P2tm3b8n1sMjIyrNpd586dbY6xXL3ekZENhw4dshq+nbPOpk2bWv1dkT23Y14se+AGBQVdc2LZ8jWVlpamffv25XtORESEJkyYoMcff1z9+vWz+lHTERERETp+/LgkGQlHey5evKjff/9dn3zyiSZNmpRnndkjWCwTvaXh9Q4gfyQsAQBW8yv5+vrm22ssLS1N3377rdW+wn4xt4xBcmxOpi+//NJqu7DDwz09PTVgwABje82aNUaPS8mxxXZeffVVq2Tg2LFj1bt37wLFYflYVKlSJd8vrJcvX7ZZpCO/52Pt2rX5zum1c+dO7d+/39i+9dZb8zw+p86dO1utqjp//vx8z0lNTdVHH32kb775Rh988IFmz57t0DD6nEJCQqy+vORsK/YsWrQoz/LmzZtb9QZZsGCBQ7FMmzZNixcv1uTJkzVx4kSrIYbF8Vz37dvXuB0dHW3VY8uexMRELV++PN/rKAhnzY1WVJzZdsu6tLQ0LV26NM9jMjIy9M033xjbPXv2lK+vr9UxllMlOJI0WblyZb7HFKQHeXEors9iR67Lzc3NanjuDz/84NAIhoULF+qHH37Qxx9/rNdee82lerLecsstxmswOwGWl19//dXone7h4aE+ffrYHGO5788//8x3VXTL56dx48Y2yUWTyWT12bpkyZI8E6uZmZlWC/n17dv3mt9vW7RoYTWn5nfffZfvOZavo8qVKyskJMTYdqSdrV+/3rid13DwvXv3avTo0Zo8ebLmzp2bb89sd3d3q898VgwHygYSlgAAq6HK8fHxea5KmpGRobffftumV8e1LnJiLwZJxjDs3Pz88882X9QKG4NknZT8448/9Oeff0rKSibl1RtAkmbOnGk13+WgQYP0xBNPFDgGy8fiyJEjeX4hSklJ0fjx43X+/Hmr/fk9FlevXtXLL7+ca2IzJiZGr776qrFdr169Ak9iHxAQYDXn57Jly/Tzzz/nec6UKVOshiffd999BbpPS08++aRxe/369fr6669zPXbz5s1avHhxnvW5u7vrkUceMba3bt2qOXPm5HnOV199pR07dhjbd999t9UXqeJ4rq+//nqrXkBvv/12rkPdzWaz3nrrLauVxYuC5fD70jJ3oCVnt92ybsaMGXlOVzBjxgyreV0tX3fZLIfWRkRE6K+//sq1vsWLF2v79u35xpVz2oiSbrvF9Vns6HU9+uijxu24uDi99NJLVsPyc9q3b5/V/K7XXXedw4vSlYQaNWpYfW69/fbbub7Hnj17Vu+8846x3adPH7vDlfv06WMslJOamqrx48fn+mPphg0brJKAw4cPt3vc/fffbyQdDx06pI8//jjXa5o2bZrRe9DNzS3XOh3h4eFh9T71ww8/WCUUc4qKirJ6vu+++26rJKXlj3G5tbHs+itVqpTnqI2OHTta/Ujx3nvv5TmKJiYmxmrUQ4sWLXI9FkDpQcISAKDu3btbbY8bN84qySJlJTa2bNmihx9+2CZRKDm+iEtu2rVrZ/XH6bRp0/TDDz/YJNSOHDmi119/XS+++KLNH6/Zq04WRvPmzY0vwlFRUUaPl4EDB+a5uu2qVas0c+ZMY7tz58566623rikGy+cjLS1NTz31lM0w4LS0NP3xxx+6++67tWbNGps6HHk+Nm7cqJEjR+rkyZNW+7dv36777rvP2O/m5qa33nrrmnofjR492mri+3/961+aNGmSTYIsIiJCL730kubOnWvsCw0N1T333FPg+8x21113qVu3bsb2W2+9pQ8//NBq+Ghqaqq+/vprPfXUUw4NpXzwwQet5hybMmWKxo8fbzPP4aVLl/Tee+9p4sSJxr7g4GCbBHZxPddvvfWWsaL7xYsXdf/992vNmjVWr5no6Gg999xzNj02i4Jl4iWvL8CuzJltt6xLSkrSgw8+qF9++cXqdRcTE6MJEyZo9uzZxr477rjDamhvth49elh9ZvzrX/+y6hEvZfVYfO+99/TGG29Iyn+F8kqVKlm9z5V02y2uz2JHr6tVq1a6//77je0///xTw4cP199//211XPb75ogRI4zElLu7u1555ZV8rrDkjR071kjYRkdH6/7777eZzmPbtm164IEHjM97X19fjRs3zm59Xl5eVmWbN2/W448/bvWjUHp6upYsWaIxY8YYf8OEhITk+p7QrFkzDRo0yNieOXOm3nnnHaspSq5cuaK3337b6keyoUOHFmi6GXseeeQRY35Ys9ms0aNHa/78+bp69arVcZs3b9bw4cONXrfVqlXTY489ZnWMZa/nS5cu2QwxT0lJMYbcd+vWLc8e6P7+/ho2bJixvXbtWr344os6e/aszbH79+/XiBEjjNh8fX15/wXKCBbdAQCoY8eO6t69u9GrMSIiQg888IBq1aqlWrVqKTk5WVFRUVZzTPr6+srLy8vYl3NId0H5+vrqqaee0kcffSTpfz0X3nvvPdWrV0/u7u46d+6czR+rNWvWNPYVNoZsgwcPtuppkb0vN9lzeFkmg6pUqaLx48fr6tWrSk9PV0ZGRr5zbE6aNElVq1bVHXfcoblz5yo8PFySdODAAd11112qU6eOatasqStXrigiIsIq8ValShUlJCQYXx7zeyz69u2rX3/9VVu2bFG/fv3UpEkTBQUFKSoqymoOMpPJpFdeecXuXF6OCAoK0owZM/T4448rJiZGZrNZc+fO1YIFC9SkSRMFBAQoOjpakZGRVsnp4OBgzZw5s9DDut59912NHDlSR44ckdls1meffaYvv/xSzZo1k4eHh44cOWJ8yWncuLFMJlOePb+8vLw0ffp0PfLII8YX1B9++EE//vijGjdurCpVqujChQuKiIiw6ulUsWJFzZgxQwEBAVb1FddzXb9+fb377rt66aWXlJaWpvPnz+vpp59W9erV1aBBAyUkJOjQoUNGsii7PRSVkJAQnTt3TlLWkNHt27crMDBQjRs31oQJE4rsfoqTs9tuWeXr6ys3NzfFxsbq+eefV9WqVdWoUSMlJSXp8OHDVq+b66+/Xm+++abdevz9/fXkk09qypQpkrKmS3jqqadUo0YN1a1bV3FxcTp58qRR37333qvDhw/bJN8seXp6qmHDhsYQ80mTJmnVqlWqUKGCunbtqqeeeqqoHga7iuuzuCDX9corrygiIkIbNmyQlDXf8b333qsaNWqoXr16SkhI0MmTJ61+IDSZTHr99dfVrl27on5ICq1Ro0aaOHGiXn75ZWVmZioyMlLDhw9XvXr1VKNGDZ09e9Yq2ejm5qa3335bdevWzbXOQYMGaffu3Uav/M2bN6tPnz4KDQ2Vv7+/jh07ZvXDRmBgoKZNm5Znwvy1115TeHi4MQ3LggULtGTJEmMI+eHDh63m7G7durXGjx9/bQ+KBX9/f02fPl0jRozQpUuXlJKSonfffVfTpk1TSEiIvL29derUKeP9XJJ8fHw0depUm8+zpk2bymQyyWw2y2w2a/jw4WrdurXS09P19NNPy2w2W80Jnp8xY8Zo48aNxufjihUrtGrVKjVo0EDVq1c3nk/LHwyznz9HVm8H4ProYQkAkCRNnTrVphfLmTNntGPHDh04cMDqC9L111+v77//Xl26dDH25ewFci0ef/xxm6F/cXFx2rt3r3bv3m2VrKxRo4bmzJlj1WNtz549RbLIxYABA6ySDa1atbKapymnpKQkm+FPK1eu1IoVK/THH3/or7/+0oYNG7Rx48Y8/2X3aPD09NSnn35qNddV9grWYWFhOnjwoFUCq1evXvrhhx+sjs9vEZVhw4bphRdekLu7u8xms44cOaKwsDCrZGVQUJAmT56shx56KJ9HLG+tWrXSd999ZzVMOSMjQ4cPH1ZYWJhOnTpl9bx17dpVixcvVr169Qp1v1JW8uibb76x6rmUkpKiv//+Wzt37jSSlU2bNtUnn3wiPz+/fOusU6eOvvvuO6u5Is1ms44ePapt27bp+PHjVkmXli1b6ptvvrG7mmxxPtf9+/fX3LlzVaVKFWPf+fPnFRYWpn/++cdIVt5///167rnn8r3ugnjqqaesXkOHDh3S1q1b8xy264qc2XbLqqCgIH3++efGsNqLFy8qLCxM+/fvN143JpNJ99xzj+bNm5fnPI6jRo3Sk08+adVT69y5c9q+fbuOHDmitLQ0ubm56bHHHtN//vMfh+IbM2aMMTzXbDZr7969CgsLc2iBlaJQXJ/Fjl6Xl5eXPvnkE40aNcpqKPm5c+eM9w7LZGW1atU0Y8YMq56ZrmbgwIGaMmWKVc/v06dPKywszCpZGRAQoKlTp6p///751vnmm29q1KhRxvtcZmamDh48qO3bt1slKxs3bqyvvvoq35W//f39NX/+fN10003GvuTkZO3Zs0d79uyxSlb27t1b8+bNM3rRF1ZoaKiWLFmi9u3bG/uSkpK0Z88ebdu2zSpZ2aBBAy1cuFAdOnSwqadq1apW7SA5OVlhYWHatWuX9uzZY/TsNZlM6tGjR75x+fr6asGCBVaf35mZmTp+/Li2bt2qsLAwq2RlrVq1NHPmTIeePwClAz0sAQCSsnqALViwQL/++qtWrFihAwcO6NKlSzKbzapYsaLq1Kmj5s2b69ZbbzX+0Ozdu7d++eUXSVnDi6Ojo+3O+eSo7N58/fv31+LFi7Vr1y5FR0crNTVVvr6+Cg4OVmhoqLp3767+/fvL29tbZ86c0VtvvaXMzEzFx8frt99+02233Vaox6Jy5cpq3769sUqqI4vtFLWaNWvq+++/1/Lly/Xrr7/q4MGDiouLk8lkUqVKlVS/fn21bNlS/fv3N+aB6t27tzHn2YoVK/Tiiy/m+YXmiSeeULdu3fTVV18pLCxM58+fl6+vrxo2bKibbrpJQ4cOtelBca3q1KmjL7/8Utu3b9evv/6q7du3Kzo6WleuXFGFChVUq1YtXX/99RowYIDd4Z+FUalSJX3xxRdav369fvjhB+3evVsXL16Un5+fGjRooP79+2vYsGE287zlJSgoSNOnT9fBgwe1YsUKbdu2TWfOnNHly5fl6emp4OBgtW7dWv3791evXr3yHE5fnM91x44d9dtvv+n777/X77//rvDwcCUnJ6tq1apq06aNhg0bpi5duhR4pdf8tGvXTl9//bU+/fRT7dmzR3FxcfL29pafn59SUlIK9Fg7mzPbblnVtm1brVy5Ul999ZV+++03nT59Wunp6apTp446d+6soUOHOrzy8bhx43THHXfou+++0+bNm40ERo0aNdSlSxfdc889at68ucOx3XbbbfLz89P8+fN18OBBXb58WT4+PiW2kFRxfRYX5Lrc3d01duxYPfDAA/rxxx+1efNmHT9+3EiWVq5cWc2bN1fv3r11++23O/RDj7P169dPnTt31nfffae1a9fq1KlTio+Pl6+vrxo3bqxevXpp6NChDvfMM5lMGjt2rAYOHKjvv/9eGzdu1Llz55ScnKyAgAA1b95c/fr108CBA63mdsxLxYoVNXv2bG3ZskXLly/Xjh07dPHiRWVkZKhq1apq27atBg0aZDN1QFGoU6eOvvnmG23YsEGrV6/Wzp07deHCBaWkpCgoKEgtW7ZU3759dfvtt+d5Pf/+97/VsGFD/fDDDzp9+rTxeKSmphoJy5yL/eSlcuXK+uKLL7R9+3atXLlSe/fuVVRUlBISEuTt7a2qVauqWbNmuummm9SvX78iS+ICcA0mc37j0wAAKGdSU1PVrVs3Xb58WRUqVNCGDRtUqVIlZ4cFAKXSsmXLjPkNa9eubTPXJAAAQE4MCQcAIIc1a9YYQ4X79+9PshIAAAAAShAJSwAAcvj666+N2648LxcAAAAAlEXMYQkAwP/LzMzU9OnTtX37dklS586d1bp1aydHBQAAAADlCwlLAEC59s4772j37t2qUKGCjh8/rosXL0rKWin13//+t5OjAwAAAIDyh4QlAKBcq1atmrHacjYPDw+99dZbatKkiZOiAgAAAIDyi4QlAKBca9u2rRo3bqyIiAj5+/vruuuu0xNPPKH27ds7OzQAAAAAKJdMZrPZ7OwgAAAAAAAAAEBilXAAAAAAAAAALoSEJQAAAAAAAACXwRyWcNjOnTuttt3cyHcDAAAAAACUV5mZmVbbRbUWAAlLXLOcjRIAAAAAAAAoLLrIAQAAAAAAAHAZ9LDENWNIOPJj2QuX9oL80F5QULQZFATtBQVBe0FB0F5QELQXFERpaC/FNfqWhCUc5ubmZtUQW7duLQ8PmhDsS09P199//21s016QF9oLCoo2g4KgvaAgaC8oCNoLCoL2goIoLe1l9+7dRq6oKJOqrpmeBQAAAAAAAFAukbAEAAAAAAAA4DJIWAIAAAAAAABwGSQsAQAAAAAAALgMEpYAAAAAAAAAXAYJSwAAAAAAAAAug4QlAAAAAAAAAJdBwhIAAAAAAACAyyBhCQAAAAAAAMBlkLAEAAAAAAAA4DJIWAIAAAAAAABwGSQsAQAAAAAAALgMD2cHAAAAAAAAXIvZbFZmZqazwyhTMjIybLZNJpOTooGrK4724ubmVmraHAlLAAAAAACg9PR0xcfHKz4+XikpKc4Op8wxm81W28eOHSs1ySOUvOJqL97e3goICFBAQIA8PFw3Lei6kUHJycn68ssvtWrVKp08eVIeHh5q2LCh7rjjDt13333y9vZ2dogAAAAAgDIgLi5O586ds0mSoGi5coIIrqc42ktKSorOnz+vCxcuqGbNmgoICCjy+ygKvFJc1IULF/TII4/o6NGjkiRPT09lZmZq37592rdvn5YsWaJ58+YpODjYyZECAAAAAEqzxMREnT171tlhlHkmk8kqAUXvSuSluNuL2WzW2bNn5eHhIT8/vyKtuyiQsHRR48aN09GjRxUUFKQ333xTN910k9zc3LR582a9/vrrOnbsmJ577jktWrTI2aECAAAAAEqp9PR0RUZGGtvu7u4KDAxUpUqV5OHhQVKtCJnNZiUlJRnbvr6+PL7IVVG3F7PZrPT0dF2+fFlxcXHKyMiQ2WxWZGSkGjdu7HK9f10rGkiStm3bprCwMEnSe++9pxtvvNEo69Gjhz744AMNHz5cu3fv1o4dO9ShQwcnRQoAAAAAKM0SExONxXVMJpPq1q0rHx8fJ0dVNpnNZrm7uxvb7u7uJCyRq+JoLx4eHqpQoYIqVqyoU6dOGYtrJSYmutzQcDdnBwBbmzdvliTVrl3bKlmZrWPHjvL395ck7d+/vyRDAwAAAACUIQkJCcbtgIAAkpVAOeDj46NKlSoZ25bvA66CHpYuaOzYsXrwwQcVFxdntzwzM9OYCNnT07MEIwMAAAAAlCWJiYnGbVecxw5A8fD391d8fLwk6/cBV0HC0kVVq1ZN1apVs1u2fPlyJSYmymQyqXPnziUcGQAAAACgLDCbzcrIyDC2K1So4MRoAJQky9d79nyWrjRFAQnLUuLq1as6deqUvv/+e33zzTeSpBEjRqhx48ZOjgwAAAAAUBplz12ZzXK+PABlW87Xe2Zmpku9B5CwLAVOnTqlPn36GNsmk0kvvfSSHn30USdGBQAAAAAAABQ9Ft0pBc6ePStPT0/5+vpKyuq2P2vWLH388cdOjgwAAAAAAAAoWiQsS4E2bdpoz5492r17t/7880/dc889SkhI0IwZMzRt2jRnhwcAAAAAAAAUGRKWpYCPj488PLJG79eqVUsTJ07U8OHDJUlz585VTEyMM8MDAAAAAAAAigwJy1LqkUcekZS1GM/hw4edGwwAAAAAAABQRFh0xwWdPHlSp06dUnBwsJo1a2b3mOrVqxu3Y2NjSyo0AAAAAAAAoFjRw9IFjR8/Xk888YRmzJiR6zHHjh0zbteuXbskwrKSni6tXm1SUlKJ3zUAAAAAAADKMHpYuqBevXpp9+7d+uuvvxQeHq6QkBCrcrPZrOnTp0vKSla2bt26xGNMTXXTgAHuCgyURoyQRo2ScoQJAAAAAADg8p555hn98ccfGjdunB588EHNmzdPv/zyiyIiIpSenq7du3fL29u7UPcxduxYrVq1yuHjX3rpJQ0bNqxQ91ma0cPSBT344IMKDg5Wenq6Hn/8cf3xxx9KS0uTJB0/flyjR4/W2rVrZTKZ9Prrr8vNzXlPY1ycNGWKFBoqDRkixcc7LRQAAAAAAIACO3TokCTJy8tLAwYM0IwZMxQZGSk3NzfVr1+/0MlKSYqMjFTVqlWt/mULCgqyKWvfvn2h77M0o4elC6pYsaI+++wzPfHEEzp37pyeeeYZeXh4qEKFCkpISJCU9SL6z3/+o5tuusnJ0f7PsmVSeLi0erXkhFHqAAAAAAAABZKQkKCoqChJ0vTp01W7dm0tWLBAnTp1kslkMsoK67vvvrPaPn36tG699VZJ0m+//aZKlSpZlZvNZiWV43n4SFi6qNDQUC1fvlwLFy7U77//rlOnTiktLU0NGjRQ165d9cgjj6h+/frODtPG/v1Sv37Sxo1SQICzowEAAAAAAMjdoUOHZDabJUnVqlXTt99+q4oVKxrlxbVuyOHDhyVJNWrUsElWgoSlXdOmTdOsWbNUu3ZtrV27tkDnHjt2TIsWLdK2bdsUGRmp9PR0Va9eXSEhIRowYIBuvfVWeXg49rAHBARo9OjRGj169LVchtPs3y89+qi0dKmzIwEAAAAAAMhdduLQZDLpnXfesUpWWkpNTVW7du00cuRIjR07tsjuN+e6JQU1YMAA1alTR7Nnzy50TK6EhGUOe/fu1WeffXZN586YMUNz5sxRenq61f6IiAhFRERozZo1atWqlT744AM1atSoKMJ1WcuWSUeOSE2bOjsSAAAAAABQVsycOVOzZs26pnMff/xxm2Rj9vyVbdq0UYcOHXI99/jx40pLS1Pz5s2v6b5zCg8Pl1S4hGV6erpOnDihm2++uUhiciUsumMhIiJCTz/9tLHATUFMnDhRM2fONJKVHh4eatmypTp06KCgoCDjuP3792v48OFFNgeCK5szx9kRAAAAAACAssRsNisjI+Oa/+WUnbDML+kXEhKivXv3qm/fvkVyHdk9LENDQ6+5jpMnTyotLa3QvTRdET0s/194eLgee+wxXbhwocDnrl69WgsXLjS2+/btqwkTJhgrPqWlpWnZsmV69913lZycrIsXL2rMmDFaunSpTCZTkV1DiTKZ8z1k3jzprbckX98SiAcAAAAAAJR5Y8aM0ZgxY4qkrszMTB05ckSS8uxdKUlubm5Fslq4JF29elWnT5+WVLgeltmxFybp6apIWEr66aef9MYbbyg5ObnA56alpWnSpEnGdu/evTV16lS5uf2v86qnp6eGDh2q2rVr68knn1R6eroOHDigFStWaMCAAUVyDSXOI0PqekjaEiqZ7SddY2OltWsz1K9f/slNlD05f7my90sWkI32goKizaAgaC8oCNoLCqK0t5eMjAxjsRGTySSz2Wxso+jlfGx5rJ3v5MmTSk5Olpubm0JDQ/N8TkaPHq1Tp07p559/NvY9/vjjunTpkt5//31NmTJF27Ztk5eXl4YMGaIXXngh17rCw8OVmZkpDw8PNWzY0O795ty3Zs0azZkzR+Hh4apTp47Gjx+v8PBweXt7q379+gVuT9nHZ/+fnp7uUm2yXCcso6OjNXnyZP3444/XXMfvv/+uM2fOSMoaBj5hwgSrZKWl7t27a+jQofr6668lSfPmzSu9CUtJpi5HZK4dI61sJyVVsHvMjh0RqlnzUglHBle0f/9+Z4eAUoT2goKizaAgaC8oCNoLCqK0thcPDw95eHgoKSlJ7u7uzg6n3LiWTlP5OXDggIYPHy5JqlmzplauXClJ+vvvv7Vy5Urt3LlT0dHRSkpKUkhIiBYtWlTkMeTn4MGD+uOPP7Rjxw6dPXtWcXFx8vHxUZ06ddS5c2cNGzZM1apVK5FY9u7dK0mqW7euJCkpKSnPuFu3bm11zKFDh1SxYkU98sgj6t+/v5599ln9/vvv+uyzz9SiRQv16tXLbl3ZPSPr1Kmj9PR0m7VQclq6dKnefvttde/eXS+88IKioqL0/PPPq169emrYsKFSUlIKdN1S1g8WmZmZxv272vtXuU1Yzp49W59++qlVQ2vUqJH69OmjOQWYfHHVqlXG7a5du6pWrVp5Hm+ZsDxw4IAiIiKMF0ZpZKp3Sebh67OSlpFVbcoTE5kmFQAAAACAknDw4EHjdkhIiGJjYzVp0iT99ttvNseW9DDi06dP67333tPWrVttyq5cuaKDBw/q4MGD+vbbb/Xaa6/p9ttvL/aYHF34JjExUWfOnNGQIUOMffHx8bpw4YKSk5P11VdfqV69epKypgm88cYb9c8//+SasIyLi5MkBQYG5hvj8ePH9f777+u+++7Tv/71L2O/r6+vZs+eXao7wuWl3CYsv/jiC6tk5T333KPx48fbfRHnxmw2a9u2bcZ2t27d8j0nNDRU1apVM+bKXLt2rR5++OECRO56TP4pMt+zRdrUTAprIul/Q8T9/DKdFxgAAAAAAOVI9gIyklS5cmWNHDlSJ0+elMlkUsuWLdWwYUOlp6fr2LFjJZqw3Lhxo1555RUlJiZKktzd3dW8eXM1aNBAnp6eOnv2rHbv3q2UlBRdvXpVEyZMkJ+fn2688cZijSs7YdmsWbM8jzty5IjMZrOaNm1qtU+SRowYYSQrpaxpAc1mszw9PXOtz8/PT1JWEvfMmTN5dn6bO3euvL29NWrUKKv92XNuNmnSJM/YS6tym7DM1qpVK7388svq2LFjgc+NiorS5cuXrepyRGhoqJGw3LdvX4Hv1xWZ3CT1OJQ1RPyXttJVL0lShw511aZNHecGB6fIyMiw6lLeqlUrhpcgV7QXFBRtBgVBe0FB0F5QEKW9vWRkZOjYsWOSsuaw9PX1LVXxlzZms9lqGLiPj0+RL8SbnUSTpOXLlysjI0Ndu3bVv//9bzVs2NDq2IyMjBJ5vvfu3auXX37ZuPa7775bo0ePVo0aNayOu3Tpkl599VWtW7dOZrNZkyZN0s0331xkC93Yc/ToUUnSddddJ988Vgw+deqUzXHZ+2677Tarc7P3h4SE5Fpnjx495OnpqZiYGN1xxx0KDAzUSy+9pMGDBxvHmM1mXblyRevWrdNtt92m6tWrW7WX7IRoq1at8ow9NxkZGXJzc5Onp6c8PT3VuHHja2oP+/btU2Zm0XdWK7cJy44dO2rw4MG6+eabr/kN4uTJk1bblhn1vNSp878EXvaqUKVOpv2h3qZG52Uevk5a0V5BVyvrppvc5VFuWxksubu7y4PGAAfRXlBQtBkUBO0FBUF7QUGUtvZiMpmsvg/n3EbxKurHOz093egxKGUlpAYPHqyJEyfaTUSVRFuNjo7WU089ZSxs8+677+quu+6ye2zVqlU1c+ZMDRw4UCdOnFB0dLQ2bdqkm2++uVhii4+P19mzZyVJzZs3z/O5OHz4sAIDA62SrOHh4fL391ejRo2szs3u5dqsWbNc66xdu7ZmzJihadOm6ejRo4qLi1PdunVtjj9z5owSExON+CzLDxw4ICmrU9y1tKPsc7L/9/DwcKkfLErPO2kRmzVrVqHryO4lKWUtb1+1qu0cjvZYTh5rWUepkuEm8+o20s37ZPK0zqSbKl2VeehmtXFrIR+fhrIcIg4AAAAAKL3SMjL139/DtepgtJJSS9eq6MXN18td/ZsHa8KtIfJ0L/n1HI4ePWq1+EqbNm303//+16lJqKlTp+rSpayFeMeMGZNrsjKbl5eX7rzzTk2dOlVSVu/M4kpYBgQE6PDhww4de/jwYZsh9Nn7ciYLDx06JB8fH9WvXz/POnv37q3evXvneczVq1ft7s/IyNCiRYtUuXLlElugqKSV24RlUYiPjzdu+/n55bo6eE7+/v526yh1DtSTogNlHrBDpsqJVkUmd7PW6YDuXnBJXwy9XoE+uc/dAAAAAAAoHd78LVzvrDmS/4Hl1O6orGnj3uqX95yIxcFywR1JmjBhQp7zKFoaNWqU/vzzT7300ksaOXJkkcXz448/SpIaNGigJ554wqHzgoODjduxsbFFEkthmM1mhYeH6+6777bad/ToUash3NkOHTqkkJAQh3NEecnu0bl9+3Y98MADxv6FCxfq1KlT6ty5c6Hvw1WRsCwEy18uKlSo4PB5Xl5exu3U1NQijanEXawkfdVT5j5/y9TsjE3xD/vP6e+z67VkeHu1qxNY8vEBAAAAAIpM2GnnJ5Bc3bZTznmMsocIS9INN9zg8Dob0v+GMRflQjxffvmlMbehn5+f3nnnHYfOs+z1WJzzVzoqIiJCiYmJVo/N6dOnlZSUZHexnsOHD6tv375Fct+VKlVSz549tXr1ar3++utq06aNwsLCtHHjRplMphJf6b0kkbAshLS0NON2QTLnlvNEpKenF2lMTpHmIa1sJ3NkFenGAzJ5WA8RP34pSV1nbNLUO1vqyS71mRMFAAAAAEqpjvWC9MeRi84Ow6V1qh/klPv9559/jNsFSZglJSXJx8dHDRs2zHe1bEdlZmZqzZo1xvaBAwesEqqOcoXhztkJVMvkYPZcoc2bN7c69ty5c4qLiyvSROIbb7yht99+W7/++qt+++03dejQQe+8846eeuophYSEFNn9uBoSloVgOQ9EQVZEskxSOto92/WZpL8bqIlfoNL67tTpy0lWpakZmXp62T5tPBGjOXdfJ39vmh4AAAAAlDZv9AmRySTmsLTDcg7LkmY2m41eklJWD0tH+fr66pdffinSeI4ePVokU+A1adKkCKIpnFtvvdVmrkt7+6SsIdyOzovpqKCgIH344Yfy9fW16gBW1PfjasgaFYKPj49x23J4eH4sh4G7QvfmojJ4sDR3bqAyPXvo0cV79NOBaJtjvtkdpV1R8VoyvL1a1azkhCgBAAAAANfK091Nb/Vr5pQ5GpG7kydPKjExa22JChUqqGnTpk6N58SJE8btNm3aaMmSJU6MBqVRyS9bVYYEBAQYtxMTE2U2mx06LyEhwbgdGBhY1GGVqKAgadw4KTxcWrpUCgiQgny9tOyRG/ThgBbycLMd/n3ofII6Td+gBdsjnBAxAAAAAABli+Vw8GbNmhVoZfBnnnlGoaGh+vTTT632jxo1SqGhofr888+VmpqqhQsX6p577lG7du3UrVs3jR49WhER9r/Xx8XFGbcrV65csIsBRA/LQrFcuSojI0OxsbEOvRAvXLhg3K5atWqxxFbcvLwy9fPPGbrpJnf5+tqWm0wmjevVWJ3rB2nYwp2KjL9qVZ6clqkRi/dow4kYzRjUSj6ejr+ZAgAAAACA/7FMWLZo0aJA5+a24E72/oCAAA0ZMkTh4eHy8fGR2WzWxYsX9fvvv2vfvn1atWqV/Pz8rM61XOfj8uXLBYoHkOhhWSj169e32s7tl4WcIiMjjdsNGzYs0phKioeH1K+f2W6y0lLXBpW1a1xP9Qu1P1Hu3LDT6jJ9o8IvJNgtBwAAAAAAebNMWLZs2dLh8xISEhQVFSVJVgvuxMfH6+zZs5KkDz/8UH5+flq0aJF2796tPXv2aNq0afLw8NC5c+e0atUqm3qrV69u3D5w4IAxXB1wFAnLQqhdu7bVkO6DBw86dJ7lRLhFtQKXK6vq560VIzvprX6hsjNCXHvPXlaHqeu1ZM+Zkg8OAAAAAIBSzjJh2apVK4fPO3TokMxms4KCgqxGkVou6FK/fn19+eWXatu2rUwmk0wmk/r166cbb7xRUtb8mTm1bdtWHh5Zg3qvXr2qmTNnOhxTSkqK1ZBylE8kLAupU6dOxu3Nmzfne/yhQ4d08eJFY7tz587FEpercXMz6bVbQvT7k10UXNF2oaGElAwN+2qnxvywTynprDQHAAAAAIAjzpw5YyT4vLy8CrSydnZiMmdnquyOVh4eHvroo4/k5eVlc26lSlkL6VquXG1ZNmDAAGN77ty5euedd/JcOfzQoUOaPn26br75Zl26dMnha0DZxByWhdSnTx/9+uuvkqQ///xT0dHRVr9K5PTtt98atxs3bmwzR0RZ17tJVe0e21P3f71Lfx2zfQP6eNNJbTsVq8XDO6hhlXzGmwMAAAAAUM5Z9q4MDQ01ejY6IjsxmTNhmZ3I7NSpk+rWrWv33Ozp7mrXrm23/MUXX9T27duN4xYsWKBFixapTZs2qlOnjjw9PZWYmKjz588rPDzcSLr6+vqW2unzUHToYVlIffr0MeZmSE1N1fjx45Wenm732A0bNui7774ztocPH14iMbqaGpUq6LcnOuvVm5vaLd8RGa/2U9dr+YFzJRwZAAAAAACly4EDB4zbBZm/Usp/wZ3evXvnem54eLgkqWlT+9/tq1atqq+++kodO3Y09qWkpCgsLEzLli3T4sWLtWLFCoWFhRnJSjc3N/Xp08dq0R6UT7SAQvLy8tK4ceOM7c2bN+vxxx+3WoAnPT1dS5Ys0ZgxY5SRkTXcOSQkRPfcc0+Jx+sqPNzdNPG2Zlo5sqOq+HralMclp+muedv10op/lJaR6YQIAQAAAABwfZbraRQkYZmZmakjR45Isu5hmZGRoaNHj+ZZX/YwdJPJlOfaHDVr1tTChQu1YMECDR06VM2aNVNAQIDc3d3l7e2tqlWrqk2bNho8eLDefvtt/fXXX5o0aZLD14CyiyHhRWDQoEHavXu3Fi9eLCkradmnTx+FhobK399fx44dU0xMjHF8YGCgsaJWeXdb82DtGtdLwxbu1JZTsTblH/51TFtOxujbB9urTqCPEyIEAAAAAMB1zZkz55rOO3XqlJKTk+Xp6anGjRsb+0+ePKmrV6/Kzc0t12RkdpK0Tp068vf3z/e+OnfuXG7W8EDRoIdlEXnzzTc1atQoeXpm9RbMzMzUwYMHtX37dqtkZePGjfXVV1+pUaNGzgrV5dQN9NFfT3fVuF72H5NNJ2PVbsp6/Xb4fAlHBgAAAABA2ZQ97Lthw4ZWi+pkz19Zr149+fraX1si+9zmzZsXc5Qor0hYFhGTyaSxY8fqp59+0qOPPqqQkBBVqlRJnp6eqlq1qnr06KG3335bP/74Y67zO5Rnnu5u+nBASy17pIMCKtj2PL2YmKrbPt+mN349rIxMsxMiBAAAAACg7MhvwZ28kpG5zX0JFBXGJOcwePBgDR48+JrPb9y4sV5++WW9/PLLRRhV+XFXq5q6bmwl3fvlTu2KircqM5ult34P16YTMfr6gXYKrujtpCgBAAAAACjdshOTOROW2cnIFi1a5Hpu9pBweliiuNDDEi6nURU/bRzdTU91bWC3fO3Ri2o7eZ3WHbtYsoEBAAAAAFBG5NfDMrf5KxMSEhQZGZnnMUBhkbCES6rg6a6PB7fWNw+0k7+3u035uSspunnOFr275ogyGSIOAAAAAIDD4uPjdfbsWUnWw7ot9+fWe/LQoUMym82qVKmSateuXfzBolxiSDhc2rC2tdW2doDu+XKH9p+7YlWWaZZe++WQNp2I0YL72qqKn1cutQAAAAAAgGwBAQFGT0pH9lvq0KFDvscAhUUPS7i80Or+2vpsdz3Soa7d8lWHzqvdlHXaeiq2hCMDAAAAAABAUSNhiVLB18tDc4ddry/ubSMfT9tmGxF3VT0/3qSp64/LbGaIOAAAAAAAQGlFwhKlyoiO9bT12R4KqeZnU5aeada45Qd0z5c7FJ+c5oToAAAAAAAAUFgkLFHqtK5ZSduf66mh19eyW75s3zm1n7peuyLjSjYwAAAAAAAAFBoJS5RKFSt46JsH2mnmoNbycrdtxscvJanbzE36ZMtJhogDAAAAAACUIiQsUWqZTCY93a2BNo7upgZBPjblKemZemrpPg3/ZrcSUtKdECEAAAAAAAAKioQlSr0OdQO1c2xP3dky2G75N7uj1HHaBu0/e7mEIwMAAAAAAEBBkbBEmRDk66Vlj9ygD+5oIXc3k035ofMJ6jR9g77cEeGE6AAAAAAAAOAoEpYoM0wmk164sbH+eqqragdUsClPTsvUI4v26LElfys5LcMJEQIAAAAAACA/JCxR5nRrWFm7xvZU39Bqdsvnhp1Wl+kbFX4hoYQjAwAAAADX4eZmnRLIyKBjB1Be5Hy953w/cDbXigYoItX8vbVyZCf9t1+o7IwQ196zl3XD1A367u8zJR8cAAAAALgAk8kkd3d3Y/vq1atOjAZASbJ8vbu7u8tkspM8cSISliiz3NxMev2WEP32RBcFV/S2Kb+Skq6hC3dqzA/7lJLOL4kAAAAAyh8/Pz/jdmJiohMjAVCSEhL+N+rU8n3AVZCwRJl3U9Oq2jW2p3o1qmK3/ONNJ9Xz4806GZNUwpEBAAAAgHP5+/sbt+Pj45WcnOzEaACUhOTkZF2+fNnYtnwfcBUezg4AKAk1K1XQ70921hu/Hda7a47alG+PiFO7Kes1f9j1GtiyhhMiBAAAAICS5+fnJzc3N2VmZspsNisiIkKBgYGqVKmSPDw8XG6YaGlmNput5g3MyMjg8UWuirq9mM1mpaen6/Lly4qLi5PZbJaUNXelK/awJGGJcsPD3U1v39Zc3RtU1vBvdysmKc2qPC45TXfN264Xb2yst29rJk93OiADAAAAKNs8PDxUp04dnT59WlJWUuTSpUu6dOmSkyMrmzIzM43brrbICVxPcbcXk8mkOnXqyMPD9dKDvDpQ7tzWPFi7x/VS5/pBdss//OuYbpq9WVHxDIUAAAAAUPb5+fmpZs2a9PYrZtk93LL/ZfdwA+wp7vZiMplUs2ZNl+xdKZGwRDlVN9BHfz3VVWN7NrJbvulkrNpOXq/fDp8v4cgAAAAAoOQFBgaqSZMmql69ury9bRctRdGwTEAB+SmO9uLt7a3q1aurSZMmCggIKLJ6i5rr9fkESoiXh5s+GthS3RtW1qOL9yj+qvUbwMXEVN32+Ta9fkuIJtwaInc3218bk5Kkdeukc+ekhATJ31+qUUPq1Uvy9S2pKwEAAACAwvPw8FCVKlVUpUoVmc1mq+GoKLz09HTt37/f2G7cuLFLDsWFayiO9uLm5lZqelLzykC5N6h1TV1Xs5KGLtypXVHxVmVms/TW7+HafDJGX93fTsEVs35pDA+XZs+W5s+X4uJs6wwMlEaMkEaNkkJCiv0SAAAAAKBImUwmubu7OzuMMiXnkF53d3ceY+SqvLcXhoQDkhpX9dPG0d00qkt9u+VrjlxUuynrtGrvJQ0ZIoWGSlOn2k9WSln7p0zJOm7IECk+3v5xAAAAAAAAsEbCEvh/FTzdNWvIdfrq/rby87L91eLs5RTdsWCzlkUekeT4ZLfLlkndu0tRUUUYLAAAAAAAQBlFwhLI4f52dbT9+R5qGVzRttAkmXockgaFSRVSHa5z/36pXz96WgIAAAAAAOSHhCVgR7PqFbXtue56uEMdu+WmRuel4eukmrEO17l/v/Too0UVIQAAAAAAQNlEwhLIha+Xh+YNa6u3e7aROc32pWKqdFUauklqd1yODhFftkw6cqSIAwUAAAAAAChDSFgC+bjwVz3pmx4yx/jZlJnczTL1PiAN2CF5pTlU35w5RR0hAAAAAABA2UHCEshDUpI0b56ki5Wkr3vIfLiW3eNMIeekB9dL1fOfpHLevKx6AQAAAAAAYIuEJZCHdeukuLj/30j1lFa0k3lNK5kzTDbHmoKSpPs2StedVF5DxGNjs+oFAAAAAACALRKWQB7Oncu5xyTtaSh9213meB+b400emTLduk+6bbfkmZ5rvdHRRRsnAAAAAABAWUHCEshDQkIuBdGB0sKeMh8NtltsahElPbBBqnLFbvkV+7sBAAAAAADKPRKWQB78/fMoTPGSfrpB5nUtZM60M0S8SkJW0rJ5hE1ZxYpFGCQAAAAAAEAZQsISyEONGvkdYZJ2NJYWd5X5SgXbUs8MmfrvkW79W/LIMPYH2++YCQAAAAAAUO6RsATy0KuXFBjowIFnKmcNET9ZzW6x6brTWQvyBCYoKCirXgAAAAAAANgiYQnkwddXGjHCwYOTvaVlnWTeFCpzpm2xqfpl6cEN6jbijHx9izRMAAAAAACAMoOEJZCPUaMKcLDZJG0Nkb7vInOil02xyTtdK0079eyP+5WSnmGnAgAAAAAAgPKNhCWQj5AQafDgAp4UUVVa2EvmiCp2i2duPKGeH2/WyZikwgcIAAAAAABQhpCwBBwwd67UqlUBT0qsIH3XWeatTewWb4+IU/sp67Xin+jCBwgAAAAAAFBGkLAEHBAQIK1efQ1JS7ObtKm56u/qqMAKnjbFsclpGjg3TC+v+EdpGXYmvgQAAAAAAChnSFgCDqpdW9q4seDDwwcPlvb8EKw9L/RU5/pBdo/54K9junnOFkXFJxdBpAAAAAAAAKUXCUugAAICpKVLpcOHpbFjpcBA+8cFBUnjxknh4VnHBwRI9YJ89ddTXfV8z0Z2z9l4IkbtJq/X7+EXiu8CAAAAAAAAXJyHswMASqOQEGnyZGniRGndOik6WrpyRapYUQoOlnr1knx9bc/z8nDT5IEt1aNhZY1YvEeXr6ZblV9ITFW/z7bq37eE6N+3hsjdzVRCVwQAAAAAAOAaSFgCheDrK912W8HPG9S6pq6rWUn3Ltyh3VGXrcrMZum/v4dr08kYfXV/OwVX9C6iaAEAAAAAAFwfQ8IBJ2lc1U+bRnfXk13q2y1fc+Si2k1Zp/XHLpVwZAAAAAAAAM5DwhJwogqe7po95Dp9dX9b+Xm525SfvZyimz/Zoklrjyoz0+yECAEAAAAAAEoWCUvABdzfro62P99DLYMr2pRlZJr1yqqDunNemC4lpjohOgAAAAAAgJJDwhJwEc2qV9TWZ7vrofZ17JavPHhe7aes17ZTsSUcGQAAAAAAQMkhYQm4ED9vD80bdr0+v7eNKnjYvjxPxyWr56xNmr7huMxmhogDAAAAAICyh4Ql4GJMJpMe7VhPW5/toaZV/WzK0zLMev6nA7r3y52KT05zQoQAAAAAAADFh4Ql4KKuq1VJ25/voXvb1LJbvnTfWXWYul67o+JLODIAAAAAAIDiQ8IScGGVKnjq2wfbacagVvJ0N9mUH7uUpK4zNurTracYIg4AAAAAAMoEEpaAizOZTHqmW0NtfKa7GgT52JSnpGdq1Pd79fC3u5WQku6ECAEAAAAAAIoOCUuglLihXqB2ju2pgS2D7ZZ/tStKnaZt0D/nrpRwZAAAAAAAAEWHhCVQigT5eumHR27Q+3e0kLub7RDxg+cT1HHaBi3cGeGE6AAAAAAAAAqPhCVQyphMJr14Y2P99VRX1Q6oYFOelJahh7/doye++1vJaRlOiBAAAAAAAODakbAESqluDStr19ie6hNSzW7559tOq+uMjTpyIaGEIwMAAAAAALh2JCyBUqyav7dWPtZJb/YNlcl2hLj+PnNZHaZu0Hd/nyn54AAAAAAAAK4BCUuglHN3M+nft4botyc6q7q/l035lZR0DV24U8/+uF+p6ZlOiBAAAAAAAMBxJCyBMuLmptW0e1wv9WxU2W75zI0n1PPjTToZk1TCkQEAAAAAADiOhCVQhtSsVEF/PNlF429qYrc8LCJO7aes188HzpVwZAAAAAAAAI4hYQmUMR7ubnqnf3OtGNlRlX09bcpjk9N057ztennFP0rPYIg4AAAAAABwLSQsgTKqf/Ng7RrbU53qBdot/+CvY7p5zhZFxSeXbGAAAAAAAAB5IGEJlGH1gny17ulueq5HQ7vlG07EqN3k9fo9/EIJRwYAAAAAAGAfCUugjPPycNOUO1vpu4faq1IFD5vyC4mp6vfZVv3n18PKyDQ7IUIAAAAAAID/IWEJlBNDrqulnc/3VNvalWzKzGbpv7+H67bPtur8lRQnRAcAAAAAAJCFhCVQjjSu6qdNo7vric717Zb/ceSi2k5Zpw3HL5VwZAAAAAAAAFlIWALlTAVPd825+zotvL+t/LzcbcrPXk7RTXO2aNLao8pkiDgAAAAAAChhJCyBcuqBdnUU9lwPtQyuaFOWkWnWK6sO6q552xWTlOqE6AAAAAAAQHlFwhIox5oHV9TWZ7vrofZ17JavOBitdpPXK+x0bAlHBgAAAAAAyisSlkA55+ftoXnDrtdn97RRBQ/bt4TTccnq8fEmTd9wXGYzQ8QBAAAAAEDxImEJQCaTSSM71dOWZ7uraVU/m/K0DLOe/+mAhi7cqfjkNCdECAAAAAAAygsSlgAMbWoFaPvzPXTPdTXtln+/96xumLZBe6LiSzgyAAAAAABQXpCwBGClUgVPLRreXtPvaiVPd5NN+dGLieoyY6M+23oq1yHiSUnS6tUmLV9eRYsWVdPy5VW0erVJSUnFHT0AAAAAACjtPJwdAADXYzKZNLp7Q3WqF6R7F+7Qqdhkq/KU9Ew9+f1ebTwRo1mDW8vPO+utJDxcmj1bmj9fiotzl9TA6rzAQGnECGnUKCkkpEQuBQAAAAAAlDL0sASQqxvqBWrn2J4a0CLYbvnCnZHqNH2Dth29oiFDpNBQaepUKS7Ofn1xcdKUKVnHDRkixTOyHAAAAAAA5EDCEkCeKvt66ccRN2jS7c3l7mY7RPyf6AR1nblByw5GFqjeZcuk7t2lqKiiihQAAAAAAJQFJCwB5MtkMulfvZvoz6e6qFalCjblZo8Mmfrvlm79W/LIcLje/fulfv3oaQkAAAAAAP6HhCUAh3VvWEW7x/XUrSFV7Zabrjst3bdRCkx0uM79+6VHHy2qCAEAAAAAQGlHwhJAgVTz99aqxzrr2Q6hsrdIuKn6ZenB9VLTMw7XuWyZdORIEQYJAAAAAABKLRKWAArM3c0kt7AQ6fvOMid62ZSbvNNlGrhT6r1fcst0qM45c4o6SgAAAAAAUBqRsARQYElJ0rx5kk5Xkxb2kjmist3jTO1OSMM2SRWT8q1z3rysegEAAAAAQPlGwhJAga1bJ8XF/f9GYgXpuy4yb2ti91hTzThp+HqpUXSedcbGZtULAAAAAADKNxKWAArs3LkcO8xu0sbmMi/rKHOyp83xJp80mQaFST0OSqbch4hH553TBAAAAAAA5QAJSwAFlpCQS8GJYGlhT5nPBNotNnU8Kt27RfK7arf8ypWiiQ8AAAAAAJReJCwBFJi/fx6FV3ylxd1k3tnQbrGpToz00Dqp3gWbsooViyhAAAAAAABQapGwBFBgNWrkc0Cmm/RXK5mXt5c5xcOm2OSbKt29VepyWDKZjf3BwUUcKAAAAAAAKHVIWAIosF69pMBABw48Ukv6qqfM5yvZFJlMkqlruDRkq+SToqCgrHoBAAAAAED5RsISQIH5+kojRjh4cJyf9E13mf+ub7fYVP+iNHy9bh1xSb6+RRcjAAAAAAAonUhYArgmo0YV4OAMd+mP62Re2VbmVHebYlPFq1rmtkXv/3lUmZlmOxUAAAAAAIDygoQlgGsSEiINHlzAkw7Vkb7uIfNF21V7MsxmjV95UHfN266YpNSiCRIAAAAAAJQ6JCwBXLO5c6VWrQp4UkzFrKTlgTp2i1ccjFa7yesVdjq28AECAAAAAIBSh4QlgGsWECCtXn0NSct0D2n19ap14Dp5u9u+DZ2OS1aPjzdp+objMpsZIg4AAAAAQHlCwhJAodSuLW3cWPDh4YMHm3RgUX1tfa67mlT1sylPyzDr+Z8OaOjCnYpPTiuiaAEAAAAAgKsjYQmg0AICpKVLpcOHpbFjpcBA+8cFBUnjxknh4VnHBwRIbWoFaMfzPXT3dTXtnvP93rO6YdoG7YmKL74LAAAAAAAALsPD2QEAKDtCQqTJk6WJE6W1azO0Y0eEEhPd5OeXqQ4d6uqmm9zl62t7XqUKnlo8vL1mbjqpF38+oLQM62HgRy8mqsuMjZoxqJVGdqwnk8lUQlcEAAAAAABKGglLAEXO11fq18+smjUvGfvatKkjjzzecUwmk8Z0b6hO9QI1dOFOnYpNtipPSc/UE9/t1YbjMZo1uLX8vHn7AgAAAACgLGJIOACX0rFekHaO7ak7mgfbLV+4M1Kdpm/QP+eulHBkAAAAAACgJJCwBOByKvt66ccRN+i925vL3c12+Pc/0QnqOG2Dvt4V6YToAAAAAABAcSJhCcAlubmZ9FLvJlo7qotqVapgU56UlqHh3+zWk9//ratpGU6IEAAAAAAAFAcSlgBcWo9GVbRrbE/d0rSq3fLPtp5W1xkbdfRiYglHBgAAAAAAigMJSwAur3pFb/3yeGe90SdE9hYI33PmsjpMXa+le8+UfHAAAAAAAKBIkbAEUCq4u5n0Rp9Q/fp4Z1Xz87Ipv3w1Xfd8uVPP/7RfqemZTogQAAAAAAAUBRKWAEqVW0Kqafe4XurRsLLd8ukbTqjXrE06FZNUwpEBAAAAAICiQMISQKlTK6CC1ozqopdvamK3fNvpOLWful4r/4ku4cgAAAAAAEBhkbAEUCp5uLvp3f7N9fOjHRXk42lTHpOUpgFzw/TKqoNKz2CIOAAAAAAApQUJSwCl2u0tgrVrbE91rBtot3zS2qO65ZMtOhN/tWQDAwAAAAAA14SEJYBSr35lX61/ppue7dHQbvn64zFqO3md/gi/UMKRAQAAAACAgiJhCaBM8PJw09Q7W2nJ8Paq6O1hU34hMVV9P9uq//4WroxMsxMiBAAAAAAAjiBhCaBMubtNLe0c21PX16pkU2Y2S//57bD6f75V56+kOCE6AAAAAACQHxKWAMqcJlX9tGlMdz3euZ7d8t/DL6rdlPXaeOJSCUcGAAAAAADyQ8ISQJnk4+muT+5uoy/vaytfT3eb8jOXr6r37C364M+jymSIOAAAAAAALoOEJYAy7cH2dRT2XA+1CPa3KcvINOvllQc1aP52xSSlOiE6AAAAAACQEwlLAGVeixoVte3ZHhrevo7d8p//iVb7KesVdjq2hCMDAAAAAAA5kbAEUC74eXto/rDr9ek918nbw/at71Rssnp8vEkzNp6Q2cwQcQAAAAAAnIWEJYByw2Qy6bFO9bVlTHc1qepnU56WYdZzP+7XsIU7dflqmhMiBAAAAAAAJCwBlDvX1w7Qjud76O7ratot/27vWd0wdYP+PhNfwpEBAAAAAAASlgDKpUoVPLV4eHtNu6uVPN1NNuVHLiaqy/SN+mLbaYaIAwAAAABQgkhYAii3TCaTxnRvqA3PdFP9IB+b8qvpmXr8u781YtEeJaakOyFCAAAAAADKHxKWAMq9jvWCtHNsT93RPNhu+Zc7I9Vp+gYdjL5SwpEBAAAAAFD+kLAEAEmVfb3044gb9N7tzeXuZjtE/J/oBHWctkHf7Ip0QnQAAAAAAJQfJCwB4P+5uZn0Uu8mWvNkF9Ws5G1TnpiaoQe/2a1R3+/V1bQMJ0QIAAAAAEDZR8ISAHLo2biKdo/tpZubVrVb/unWU+o6Y6OOXUws4cgAAAAAACj7SFgCgB3VK3pr9eOdNeHWEJlsR4hrz5nLaj91vZbtO1vywQEAAAAAUIaRsASAXLi7mfSfvqFa/XhnVfPzsim/fDVddy/YobE/7VdqeqYTIgQAAAAAoOwhYQkA+bg1pJp2jeup7g0r2y2ftuGEes3apNOxSSUcGQAAAAAAZY+HswMAgNKgdoCP1o7qotdXH9b7fx61Kd92Ok7tpqzXl/e1Vf/mwXbrSEqS1q2Tzp2TEhIkf3+pRg2pVy/J17e4rwAAAAAAgNKBhCUAOMjD3U3v3d5c3RoE6ZFFexSbnGZVHpOUpju+CNP4m5rov31D5eGe1Yk9PFyaPVuaP1+Ki7OtNzBQGjFCGjVKCgkp9ssAAAAAAMClMSQcAApoQMsa2jm2p26oG2i3/L21R3XLJ1t0OPKqhgyRQkOlqVPtJyulrP1TpmQdN2SIFB9fTIEDAAAAAFAKkLAEgGvQoLKvNjzTTaO7N7Rbvv54jFpNWqdl2y8WqN5ly6Tu3aWoqKKIEgAAAACA0oeEJQBcIy8PN02/q5UWD2+vit62M2xkeKdKd2+ROodLMjtc7/79Ur9+9LQEAAAAAJRPJCwBoJDuaVNLO57voTa1KtmUmdwkU7fD0pBtkk+Kw3Xu3y89+mhRRgkAAAAAQOlAwhIAikDTav7aPKa77mlWz265qcEFafh6qVaMw3UuWyYdOVJUEQIAAAAAUDqQsASAIuLj6a7a/7SRedX1Mqe525SbKl6Vhm6WOhyTo0PE58wp4iABAAAAAHBxJCwBoIgkJUnz5kk6WFf6uofMl/xtjjG5mWXq9Y9053bJOzXfOufNy6oXAAAAAIDygoQlABSRdeukuLj/37hUMStp+U9tu8eamkRnDREPjrNbni02NqteAAAAAADKCxKWAFBEzp3LsSPNQ/qlrcy/XSdzuu3brSkgWRq2Sbr+hPIaIh4dXbRxAgAAAADgykhYAkARSUiwt9ck7asvfdNd5lhf21KPTJlu3i/dsUvySrNb75UrRRsnAAAAAACujIQlABQRf9spK//nQoD0VU+Zw2vaLTaFnpEe2CBVvWxTVrFiEQUIAAAAAEApQMISAIpIjRr5HJDqKf3cXua1LWXOMNkUmyonSvdvkFqdluUQ8eDgoo0TAAAAAABXRsISAIpIr15SYGB+R5mk3Y2kRd1kvuxjW+qZKVPfv6W+eySPdAUFZdULAAAAAEB5QcISAIqIr680YoSDB58Lkhb2lPlYdbvFplaR0gMbNXDEFfnaTn0JAAAAAECZRcISAIrQqFEFOPiql/RjR5nXN5c5084Q8apX9L3nBn2zK7LoAgQAAAAAwMWRsASAIhQSIg0eXJAzTNL2JtKSLjIneNuUJqVn6MFvduuppXt1NS2jyOIEAAAAAMBVkbAEgCI2d67UqlUBT4qqIn3ZS+ZTVe0Wf7LllLrN3KhjFxMLHyAAAAAAAC6MhCUAFLGAAGn16mtIWiZ7S0s7q9qxENkOEJd2R11Wh6nr9cO+s0URJgAAAAAALomEJQAUg9q1pY0bCzo8XBo8yKTw+aFa/URnVfPzsimPv5quIQt2aNzyA0pNzyyiaAEAAAAAcB0kLAGgmAQESEuXSocPS2PHSoGB9o8LCpLGjZPCw7OODwiQbg2ppl3jeqp7w8p2z5m6/rhunL1Zp2OTiu8CAAAAAABwAg9nBwAAZV1IiDR5sjRxorRunRQdLV25IlWsKAUHS716Sb6+tufVDvDRmlFd9Povh/TBX8dsyreeilW7Keu18L62uq15cAlcCQAAAAAAxY+EJQCUEF9f6bbbCnaOp7ubJt3RQt0bVtYji/YoNjnNqjwmKU23fxGmV25uojf7hMrDnY7zAAAAAIDSjW+2AFAKDGhZQzvH9tQNdQPtlr+75qhu/WSrzl6+WrKBAQAAAABQxEhYAkAp0aCyr9Y/01Wjuze0W77u+CW1m7Jea49cLOHIAAAAAAAoOiQsAaAU8fZw1/S7Wmnx8Paq6G07q0f0lRT1+XSL3vo9XJmZZidECAAAAABA4ZCwBIBS6J42tbT9+R66rmYlm7JMs/TGr4d1+xfbdCEhxQnRAQAAAABw7UhYAkApFVLNX1ue7a6RnerZLf/18AW1m7Jem07ElHBkAAAAAABcOxKWAFCK+Xi667N72mj+sOvl6+luUx4Vf1U3zt6sj/46JrOZIeIAAAAAANdHwhIAyoCHOtTVtud6qFl1f5uyjEyz/rXiHw2ev12xSalOiA4AAAAAAMeRsASAMqJljYoKe66H7m9b2275Twei1X7Keu2IiCvZwAAAAAAAKAASlgBQhvh7e2jh/W015+7r5O1h+xZ/MjZZ3Wdu0qxNJxkiDgAAAABwSSQsAaCMMZlMeqJzfW0e012Nq/jalKdmZGr0D/t0/9e7dOVquhMiBAAAAAAgdyQsAaCMals7QDue76nBrWvYLV+854xumLZee89cLuHIAAAAAADIHQlLACjDAnw89d1DHTTlzpbycDPZlIdfSFTn6Rs0L+y0E6IDAAAAAMAWCUsAKONMJpOe69FI65/pprqBFWzKr6ZnauSSvzVi0W4lpjBEHAAAAADgXCQsAaCc6Fw/SLvG9lL/ZtXtli/YEanO0zfq0PkrJRwZAAAAAAD/Q8ISAMqRKn5eWv5oR73Tv5nsjBDXgegrumHqBn2zK7LkgwMAAAAAQCQsAaDccXMzafxNTbVmVBfVrORtU56YmqEHv9mtp5bu1dW0DCdECAAAAAAoz0hYAkA51atxVe0a20s3N61qt/yTLafUbeZGHbuYWMKRAQAAAADKMxKWAFCOBVf01urHO2vCrSEy2RkivjvqstpPXa9l+86WfHAAAAAAgHKJhCUAlHPubib9p2+ofnmsk6r6edmUX76arrsX7NDYn/YrNT3TCRECAAAAAMoTEpYAAElSn9Dq2j2up7o3rGy3fNqGE7px9madjk0q4cgAAAAAAOUJCUsAgKF2gI/WjOqiF29sbLd866lYtZuyXqsORpdwZAAAAACA8oKEJQDAiqe7m96/o4V+HHGDAn08bcpjktJ0xxdhenXVQaVnMEQcAAAAAFC0SFgCAOwa2LKGdo3tqRvqBtotf2/tUd36yVadvXy1ZAMDAAAAAJRpJCwBALlqUNlX65/pqtHdG9otX3f8ktpOXqe1Ry6WcGQAAAAAgLKKhCUAIE/eHu6aflcrLR7eXhW9PWzKzyekqs+nW/TW7+HKzDQ7IUIAAAAAQFlCwhIA4JB72tTS9ud76LqalWzKMs3SG78e1u1fbNOFhBQnRAcAAAAAKCtIWAIAHBZSzV9bnu2ukZ3q2S3/9fAFtZuyXptOxJRwZAAAAACAsoKEJQCgQHw83fXZPW00f9j18vV0tymPir+qG2dv1od/HZPZzBBxAAAAAEDBkLAEAFyThzrU1bbneqh5dX+bsoxMs15a8Y8Gz9+u2KRUJ0QHAAAAACitSFgCAK5ZyxoVte25HnqgXW275T8diFb7Keu1IyIu1zqSkqTVq01avryKFi2qpuXLq2j1apOSkoopaAAAAACAS7Nd7hUAgALw9/bQl/e1VY9GVfTcj/uVkp5pVX4yNlndZ27S5IEt9VTX+jKZTJKk8HBp9mxp/nwpLs5dUgOr8wIDpREjpFGjpJCQErkUAAAAAIALoIclAKDQTCaTnuhcX5vHdFfjKr425akZmRr9wz7d//UuRZ5P15AhUmioNHWqFBdnv864OGnKlKzjhgyR4uOL8woAAAAAAK6ChCUAoMi0rR2gHc/31ODWNeyWL95zRk3eWK9l6y8XqN5ly6Tu3aWoqKKIEgAAAADgykhYAgCKVICPp757qIOm3NlSHm4mm/JUv0Tp/g1Sy9MFqnf/fqlfP3paAgAAAEBZR8ISAFDkTCaTnuvRSOuf6aa6gRVsyz0zZer3t9R3j+SR7nC9+/dLjz5ahIECAAAAAFwOCUsAQLHpXD9Iu8b2Uq+61e2Wm1pFSPdvlCpfcbjOZcukI0eKKkIAAAAAgKshYQkAKFZV/Lx0/amOMm9oJnOmbbmp2hXpgQ1SqOMTVM6ZU4QBAgAAAABcCglLAECxSkqS5s8zSWFNpe+6yJzgbXOMyStDpjt2STfvldwz8q1z3rysegEAAAAAZQ8JSwBAsVq3ToqL+/+NyKrSwl4yn6pq91jT9aek+zZJAYl51hkbm1UvAAAAAKDsIWEJAChW587l2JHkLS3tLPOWpjKbbY83BcdLD66XmpzNs97o6KKLEQAAAADgOkhYAgCKVUKCnZ1mk7S5mbS0k8xJXjbFpgrpMt25Q+p1QHKzM/GlpCuOr9MDAAAAAChFSFgCAIqVv38ehaeqSwt7yhwVZLfY1OG4NHSzVDHZpqxixSIKEAAAAADgUkhYAgCKVY0a+RyQ4CMt6Srz9sZ2i021YqXh66QG5632BwcXUYAAAAAAAJdCwhIAUKx69ZICA/M5KNNNWt9C5h9vkPmqp02xySdNpiHbpG6HJFOmgoKy6gUAAAAAlD0kLAEAxcrXVxoxwsGDj9XIGiJ+LsBusanzEenurbpnxFX5+hZdjAAAAAAA10HCEgBQ7EaNKsDBl32lRd1k3t3AbrGp3iX94Ltefx69WCSxAQAAAABcCwlLAECxCwmRBg8uwAkZ7tLa1jKvaCdzqrtN8cXkFN36yRa9/Ue4MjPNRRcoAAAAAMDpSFgCAErE3LlSq1YFPOlwbemrnjJfsF0SPNMs/Xv1Yd3xxTZdTEwpmiABAAAAAE5HwtLFJSQk6JNPPtHdd9+t9u3bq1WrVurVq5fGjRunv//+29nhAYDDAgKk1auvIWkZ6y9900NBkfXsFq8+fEHtJq/X5pMxhQ8SAAAAAOB0JCxd2KlTp3TnnXdq8uTJ2rdvn1JTU+Xp6alz585p5cqVGjZsmObOnevsMAHAYbVrSxs3FnB4uKTBA911/JM2mjf0evl42n50RcZf1Y2zNuujv47JbGaIOAAAAACUZiQsXVR6erqefvppRUZGKjg4WJ9++qn27NmjXbt2afXq1erdu7cyMzM1adIk/fXXX84OFwAcFhAgLV0qHT4sjR0rBQbaPy4oSBo3TgoPzzo+IEB6+Ia62vZsDzWr7m9zfHqmWf9a8Y8Gz9+uuOS04r0IAAAAAECxIWHpon777TcdPXpUJpNJ06ZNU69eveTu7i6TyaSGDRvq448/Vtu2bSVJM2fOdHK0AFBwISHS5MlSVJT0888ZeuONk3rxxdN6442T+vnnDEVGSh99JDVtan1eq5qVFPZcD93ftrbden86EK32U9ZrZ2Rc8V8EAAAAAKDIkbB0UevWrZMktWvXzkhMWnJ3d9fdd98tSdq/f7+Sk5NLND4AKCq+vlK/fmYNGHBJw4Zd0IABl9Svn1m+vrmf4+/toYX3t9XsIa3l5W77UXYiJkndZmzSrE0nGSIOAAAAAKWMh7MDgH0tWrRQcnKyWuWxOkW1atUkSWazWQkJCfLx8Smp8ADA6Uwmk57s0kA31A3UvQt36vilJKvy1IxMjf5hnzaeuKRP7m6jihX4yAMAAACA0oBvby7q4Ycf1sMPP5znMTt37pQkeXt7KygoqCTCAgCX065OoHY831MjF+/RD/vP2ZQv2nNGu6Li9d1DHdS6ZiUnRAgAAAAAKAiGhJdSMTExWrx4sSSpR48e8vAg9wyg/Ar08dT3D3fQ5IEt5eFmsikPv5CoztM3aF7YaSdEBwAAAAAoCBKWpVB6err+9a9/KS4uTm5ubnrqqaecHRIAOJ3JZNLzPRtp3dNdVSeggk15clqmRi75W48u2qOk1HQnRAgAAAAAcAQJy1ImIyNDL7/8sjZu3ChJeuaZZ/Kc5xIAypsuDSpr17ieuq1Zdbvl83dEqPP0jTp8PqGEIwMAAAAAOIKEZSmSkpKiZ599VitWrJAkDRw4UM8884yTowIA11PVz1s/P9pRb9/WTHZGiGv/uSu6Ydp6fbs7quSDAwAAAADkiYRlKRETE6OHH35Yf/zxhyTpzjvv1HvvvSeTyc43cQCA3NxMeuXmpvrjyS6qUdHbpjwhJUMPfL1LTy/dq6tpGU6IEAAAAABgDwnLUuDkyZMaOnSodu/eLUl66KGHNGnSJLm7uzs5MgBwfTc2qapdY3uqd+MqdsvnbDml7jM36filxBKODAAAAABgDwlLF7d//34NGzZMp0+flslk0ksvvaTXXnuNnpUAUAA1KlXQb0920eu3NJW9t89dUfFqP2W9fth3tuSDAwAAAABYIWHpwo4cOaKRI0cqNjZWnp6e+vDDDzVy5EhnhwUApZK7m0n/7ddMqx7rpKp+Xjbl8VfTNWTBDr2w/IDSMjKdECEAAAAAQCJh6bKSkpI0evRoxcXFycvLS7NmzdIdd9zh7LAAoNTrG1pdu8b2VNcGQXbLp6w/rhtnbVZEXHIJRwYAAAAAkEhYuqw5c+bo5MmTkqRXX31VPXv2dG5AAFCG1An00Z9PddULvRrbLd9yKlbtJq/TLwejSzgyAAAAAICHswOArdTUVH3zzTfG9syZMzVz5sw8z/n+++9Vs2bN4g4NAMoMT3c3fTCghbo3rKwRi/coLjnNqvxSUppu/yJMr97cVP/pEyIPd37jAwAAAICSQMLSBYWHh+vKlSvG9sWLF/M9JyMjozhDAoAy685WNbSzZk8NXbhDOyLjbcrfWXNEm0/G6OsH2qlmpQpOiBAAAAAAyhcSlrmYNm2aZs2apdq1a2vt2rUFOvfYsWNatGiRtm3bpsjISKWnp6t69eoKCQnRgAEDdOutt8rDI/eHvlWrVjp8+HBhLwEA4KCGVXy1YXQ3vbD8H83afNKm/K9jl9Ruynp980A79W5SteQDBAAAAIByhISlHXv37tVnn312TefOmDFDc+bMUXp6utX+iIgIRUREaM2aNWrVqpU++OADNWrUqCjCBQAUAW8Pd80c3Fo9GlXW49/9rYQU657r0VdSdOsnW/Rm31C9clNTubmZnBQpAAAAAJRtTMiVQ0REhJ5++mmlpaXlf3AOEydO1MyZM41kpYeHh1q2bKkOHTooKOh/q9Hu379fw4cPV1RUVJHFDQAoGkOvr60dz/dU65oVbcoyzdK/Vx/W7V9s08XEFCdEBwAAAABlHz0sLYSHh+uxxx7ThQsXCnzu6tWrtXDhQmO7b9++mjBhgqpWzRo6mJaWpmXLlundd99VcnKyLl68qDFjxmjp0qUymUpnLx3mzURecrYP2gvy4mrtpVFQBW14qovGLv9H83ZE2pT/eviC2k1er6/vv15d6gfZqQHFzdXaDFwb7QUFQXtBQdBeUBC0FxREeW8vJrPZbHZ2EK7gp59+0htvvKHk5GSr/Y7MYZmWlqY+ffrozJkzkqTevXtr1qxZcnOz7cC6ceNGPfnkk0YvzA8//FADBgwooqsoXrt371ZmZqazwwCAErXieJLe2xGvlAzbj0t3kzTm+kq6P9Sv1P74BAAAAABFwc3NTW3bti2auoqkllIsOjpaL7/8sl566SWbZKWjfv/9dyNZ6eHhoQkTJthNVkpS9+7dNXToUGN73rx513SfAICScUcjX83vU1X1K9oOSsgwS1N3X9a/NsTqSio/6AAAAABAUSjXCcvZs2erX79++vHHH419jRo10qhRowpUz6pVq4zbXbt2Va1atfI83jJheeDAAUVERBTo/gAAJatJoKe+7FtVfev72C1fF3VVD66+oIMxqSUcGQAAAACUPeV6DssvvvhCSUlJxvY999yj8ePH67fffnO4DrPZrG3bthnb3bp1y/ec0NBQVatWzZgrc+3atXr44YcLELlraNWqldzd3Z0dBlxURkaG9u/fb2zTXpCX0tJelrc36/OwCI1d/o9ScwwRP5OYocf+uKSPBjTXE53qMUS8mJWWNgPXQHtBQdBeUBC0FxQE7QUFUVray759+4pl+sBynbDM1qpVK7388svq2LFjgc+NiorS5cuXrepyRGhoqJGw3LdvX4Hv1xW4u7vLw4MmBMfQXlAQrtxenurWSJ3qV9a9C3fq+KUkq7LUDLPG/PiPNp2M0yd3t1HFCq55DWWRK7cZuB7aCwqC9oKCoL2gIGgvKIjy1l7K9ZDwjh076uOPP9b3339/TclKSTp58qTVdr169Rw6r06dOsbt06dPX9N9AwCco12dQO14vqcGtapht3zRnjO6Ydp67Tt72W45AAAAACB35TphOWvWLN1yyy2FGraX3UtSyloNqWrVqg6dV61aNbt1AABKh0AfT33/cAdNHthSHm62nyPhFxLVefoGzd/OPMUAAAAAUBDlOmFZFOLj443bfn5+ua4OnpO/v7/dOgAApYfJZNLzPRtp3dNdVTewgk15clqmHl28R48u3qOk1HQnRAgAAAAApQ8Jy0JKSUkxbleoYPtlNTdeXl7G7dRUVpUFgNKsS4PK2jW2l25rVt1u+fztEeo8faMOn08o4cgAAAAAoPQhYVlIaWlpxm1He1dKspooNT2dXjcAUNpV8fPSz4921Dv9m8nOCHHtP3dFN0xbr8V7oko+OAAAAAAoRUhYFpLlkvIFWcbdMknp6elZpDEBAJzDzc2k8Tc11R9PdlGNit425QkpGbrvq116Ztk+paRnOCFCAAAAAHB95Wc99GLi4+Nj3LYcHp4fy2Hg3t62X2oBAKXXjU2qatfYnnrg613689glm/LZm08q7HSsFg9vr0ZV/OzWkZQkrVsnnTsnJSRI/v5SjRpSr16Sr29xXwEAAAAAOA8Jy0IKCAgwbicmJspsNju06nhCwv/mMQsMDCyO0AAATlSjUgX99mQXvfnbYb295ojMZuvynZHxaj9lveYPa6s7W9Uw9oeHS7NnS/PnS3FxtvUGBkojRkijRkkhIcV5BQAAAADgHAwJL6Tg4GDjdkZGhmJjYx0678KFC8btqlWrFnlcAADnc3cz6b/9mmnVY51Uxdd2+o/4q+kaNH+7Xlh+QBdjMjVkiBQaKk2daj9ZKWXtnzIl67ghQ6T4+OK8AgAAAAAoeSQsC6l+/fpW2xEREQ6dFxkZadxu2LBhkcYEAHAtfUOra9e4XuraIMhu+ZT1x1X/X5u17PfkAtW7bJnUvbsUxTo+AAAAAMoQEpaFVLt2bash3QcPHnTovEOHDhm3mzVrVtRhAQBcTN1AH/35VFe90Kux3fLkoFhp+DqpwfkC1bt/v9SvHz0tAQAAAJQdJCyLQKdOnYzbmzdvzvf4Q4cO6eLFi8Z2586diyUuAIBr8XR30wf/x959h0dV5+0fv09mUkghCS1A6CX0ltBJggURLKggigoIViyIwd1Vny3q6k/dddcAFrBRRERFIroWbGgKnQSQ0ELvhJqQkJ6c3x9Zs8YZIAlTUt6v68q1k/mc8809++R6drgz33Nu7KrPJvVToI/tZaSNeoXS6LXS4B2SYdpZwb7UVOmeexyZFAAAAADch8LSAYYPH172+KefflJ6evpFj1+8eHHZ4/bt26tTp05OywYAqH5u6t5UyTHR6tYo0GZmGJIxaJd062rJN6/Ca8bFSbt2OTIlAAAAALgHhaUDDB8+XE2aNJEkFRQU6KmnnlJRUZHdYxMTE7VkyZKy7ydMmOCSjACA6qVdQz9deWKIzI1t7M6NVqeliQlSi1N25/bMmeOgcAAAAADgRhSWDuDl5aXp06eXfb9q1Srdf//95W7AU1RUpE8++URTp05VcXGxJCksLExjx451eV4AgPvl5EgL51mkFT1kfhkus8Bic4zhly+NXS313yXp0lvE580rXRcAAAAAajLbC2ihSm655RZt3LhRH3/8saTS0nL48OHq1KmT/P39tWfPHp05c6bs+KCgIM2cOVNWK/8nAIC6KD5eysj47zc7Q6UTgTJv3CCjcVa54wwPSVE7ZLY4LX3TR8r1vuCaZ8+WrjtypNNiAwAAAIDT8QlLB3ruuec0ZcoUeXp6SpJKSkq0fft2rV+/vlxZ2b59e33wwQdq166du6ICANzs+PHfPXHWX/owUuaWlnaPN9qelCYkSM3O2J3/6hKXUQYAAACAao+P9zmQYRiKiYnRqFGj9OmnnyopKUnHjx9Xbm6uAgMD1aVLF40YMUKjRo2Sl5eXu+MCANwoO9vOk0VW6bveMo80lK7+RYZnSbmxEZAn8/ZVUkIXKaWdJMNmiawsm6cAAAAAoEahsLRj9OjRGj16dJXPb9++vZ588kk9+eSTDkwFAKhN/P0vMtzaUkr/7xbxBufLjQyLKV25TWaLM9K3vaV8z3LzgADHZwUAAAAAV2JLOAAAbtC06SUOOFVf+iBa5o7mdsdGx+PS+ASpSUa550NCHJMPAAAAANyFwhIAADcYOlQKCrrEQYVW6atwmT/0kFlk+z/ZRlCOdMdKqed+SaaCg0vXBQAAAICajMISAAA38PWVJk+uyJGGtLmNtHiIzAxf26m1RMY1W6TrNuquyUXytT0EAAAAAGoUCksAANxkypRKHHwiqHSL+C77e8mNLkf0dXCCUo+dc0g2AAAAAHAXCksAANwkLEyq1D3e8j2lL/rK/LmrzGLbO4TvyzivAbMStWD9IceFBAAAAAAXo7AEAMCN5s6VunevzBmGlNxe+mSwzCwfm2luYYkmf7xJ936ySTkFRQ7LCQAAAACuQmEJAIAbBQZKy5dXtrSUdLSBtDBa/qca2x3PW3dIg15LUtrJ7MsPCQAAAAAuRGEJAICbhYZKSUmV3B4uafRIbx2YMUAvjOwsD9sd4tpyLEt9ZyTok01HHRMUAAAAAFyAwhIAgGogMFBaulTauVOKiZGCguwfFxwsTZ8upaWVHh8cZOj/ru6o7x8cpJAAb5vjs/OLNe6DZE39bIvyi4qd+yIAAAAAwAGs7g4AAAD+JyxMevVV6YUXpPh4KT1dysqSAgKkkBBp6FDJ19f2vCs7NNLGmGjduShFP+85bTN/Y+V+rT1wVh9P6Ku2De0sAAAAAADVBIUlAADVkK+vNHJk5c5pWt9H3z84SM9+t1P/74ddNvMNhzMVMSNB88f11qhuTR2UFAAAAAAciy3hAADUIhYPQ8+P6Kyv7xughr6eNvOM3ELdPG+9/vifbSosLnFDQgAAAAC4OApLAABqoRGdmyhl+lANah1sd/7v+D26cvYqHc7IdXEyAAAAALg4CksAAGqplkH19PPDgzV9aDu781X7zyo8NkHf7Tzh4mQAAAAAcGEUlgAA1GKeFg/968ZuipvUV4E+tpeuPnW+QCPfXau/Ld+h4hLTDQkBAAAAoDwKSwAA6oCbuzdTcky0IloE2sxMU3rhh10a/tZqHT+X54Z0AAAAAPA/FJYAANQR7Rr6KfGRIXpocBu785/2nFZ4bILi95xybTAAAAAA+A0KSwAA6hAfT4veGN1DH94VLn9vi838eFa+rp6zWi/9uEslbBEHAAAA4AYUlgAA1EHj+oRq/bRodW8aYDMrMaU/f7NDN85dp9PnC9yQDgAAAEBdRmEJAEAd1amJv9Y8FqlJ/VranX+z44TCY+O15sBZFycDAAAAUJdRWAIAUIf5elk19/beeu+2Xqrnafu24FBGnqLfWKkZCXtlmmwRBwAAAOB8FJYAAECT+7fSmseiFNbYz2ZWVGJq+hdbdeuCDcrILXRDOgAAAAB1CYUlAACQJPVoVl/rp0VrXO/mduefpR5X3xkJSjmc4dpgAAAAAOoUCksAAFAmwMeqRXeF643RPeRlsX2bsPd0joa8vlJzVu1nizgAAAAAp6CwBAAA5RiGoYcGt9HKqUPUtoGvzTy/qEQPx23RhA83Kju/yA0JAQAAANRmFJYAAMCuiBZB2vB4lG7qFmJ3/uHGI+o/M1Gpx865OBkAAACA2ozCEgAAXFCwr5fiJvXTv27sKquHYTPfcSJbA2YlasH6Q25IBwAAAKA2orAEAAAXZRiGpg9tr58fHqwWgT4289zCEk3+eJPu+2SzcguL3ZAQAAAAQG1CYQkAACpkcJsGSpkerWs7NbY7n7vuoAbNSlLayWwXJwMAAABQm1BYAgCACmvk562v7h2gv4/oJDs7xPXLsXPqOyNBn2w66vpwAAAAAGoFCksAAFApHh6G/jIsTN89MEghAd428+z8Yo37IFlTP9ui/CK2iAMAAACoHApLAABQJVd1bKSUmGgNbdfQ7vyNlfsV9fpK7Tud4+JkAAAAAGoyCksAAFBlzer76PsHB+rpqzvYnW84nKmIGQn6YutxFycDAAAAUFNRWAIAgMtitXjo/43soq/u7a8Gvp4284zcQt08b73+9OU2FRaXuCEhAAAAgJqEwhIAADjEyC4h2jh9qAa2DrY7/9fPe3TV7FU6nJHr4mQAAAAAahIKSwAA4DAtg+rp54cGKya6nd35yv1nFR6boO92nnBxMgAAAAA1BYUlAABwKC+rh/49qpuW3t1XgT5Wm/mp8wUa+e5aPfPtThWXmG5ICAAAAKA6o7AEAABOcUuPZtrweLTCQwNtZqYpPf99mq59e43Ss/LdkA4AAABAdUVhCQAAnKZ9Iz8lPTpEUwa1tjtfsfuUwmPjlbDntIuTAQAAAKiuKCwBAIBT+Xha9OaYnlp0V7j8vCw282Pn8nXVnFV66cddKmGLOAAAAFDnUVgCAACXuKNPqNY/HqXuTQNsZiWm9OdvdmjU3HU6fb7ADekAAAAAVBcUlgAAwGU6NwnQmscidXffFnbnX+84ofDYeK05cPaCa+TkSMuXG/rii4b66KPG+uKLhlq+3FBOjrNSAwAAAHAl21t3AgAAOJGvl1XzxvVRdLuGeiRui/KKSsrND2XkKfqNlfrnDV01LaqtDMOQJKWlSbNnS/PnSxkZFkltyp0XFCRNnixNmSKFhbnkpQAAAABwAj5hCQAA3GJy/1Za81iUwhr72cyKSkxN/2Krxr6/QQfTCzVmjNSpkzRjhpSRYX+9jAwpNrb0uDFjpMxMZ6YHAAAA4CwUlgAAwG16Nq+vddOidHvv5nbncVuOq+NzCYpLqlz7GBcnRUZKR444IiUAAAAAV6KwBAAAblXfx1Mf3hWu12/pIS+L7VuTQt8c6Y4kqed+SRW/i3hqqjRiBJ+0BAAAAGoaCksAAOB2hmHo4SFtlPToELUJrmc7t5bIuGaLNHKj5FlU4XVTU6V77nFkUgAAAADORmEJAACqjb4tg5QcE62rW4fYnRtdj0h3JUoNsyq8ZlyctGuXoxICAAAAcDYKSwAAUK0E+3qp+75+Mn/uKrPEsJkbDbNLS8uuhyq85pw5jkwIAAAAwJkoLAEAQLWSkyPNn2dIye2ljwfLzPKxOcbwLJYxcpM0fLNkLb7kmvPmla4LAAAAoPqjsAQAANVKfLyUkfHfb442kBZGy9zX2O6xRo+DpTfkCc6+6Jpnz5auCwAAAKD6o7AEAADVyvHjv3si11uKGyAzqZPMEtvjjSbnSreIhx296Lrp6Y7LCAAAAMB5KCwBAEC1km33w5KGtDZM+nSQzPPetlPvIhk3JktXbZEs9reIZ1X8Pj0AAAAA3IjCEgAAVCv+/hcZHmpUukX8UEO7Y6PPfun2VVJ92wtWBgQ4Jh8AAAAA56KwBAAA1UrTppc44LyPtGSgzDUd7I6NZhnShASpXfm95SEhjskHAAAAwLkoLAEAQLUydKgUFHSJg0wPaWUXmUv7y8z1tBkbPoUyblkvRW+TPEoUHFy6LgAAAIDqj8ISAABUK76+0uTJFTx4f4i0cKjMo8F2x0a/PdLY1Ro7OVe+vo7LCAAAAMB5KCwBAEC1M2VKJQ7Oqid9PFjmhnZ2x0aLM/q0XoK+23nCMeEAAAAAOBWFJQAAqHbCwqTRoytxQomHFN9N5ud9ZeZZbcZn8wo08t21eubbnSouMR0XFAAAAIDDUVgCAIBqae5cqXv3Sp60u5n0QbTM9Po2I9OUnv8+TSPeWaP0rHzHhAQAAADgcBSWAACgWgoMlJYvr0JpmeknLY5Ug0Ot7Y5/3HVK4bHxit9z6vJDAgAAAHA4CksAAFBthYZKSUmV3B4uafRNFu15u6c+uLOP/LwsNvNj5/J19ZzVennFLpWwRRwAAACoVmwv8uQkBQUF2rRpk1JSUpSenq7MzEx16NBBDz/8sCRpz5492rt3r6644gp5enq6KhYAAKjmAgOlpUultDRpzhxp3jwpI8P2uODg0ruLT5kidexY+tyd4S0U3iJQYxcka2t6VrnjS0zp/77eoaS9Z7Tgjj5q6Ofl/BcDAAAA4JKcXljm5ubqnXfe0YcffqjMzMxys8jIyLLHycnJeuaZZ9SsWTP96U9/0ogRI5wdDQAA1CBhYdKrr0ovvCCtWFGsDRsO6fx5D/n5lahv35a66iqLfH1tz+vcJEBrp0XqkbgtWrDhsM386x0nFBGboI8nRGhA62AXvBIAAAAAF+PUwnLv3r2aOnWq9u7dK9Msv93KMIxy3x85ckSmaero0aOKiYnR9u3bFRMT48x4AACgBvL1lUaMMNWs2emy53r1aiHrRd7V+HpZNW9cH0W1a6hH47Yor6ik3PxgRq6i31ypf97QVY9FtrV5nwIAAADAdZx2Dcv09HRNmjRJe/fuLXvOYrGobdu2do8/dar0wveGYcg0Tb399ttasmSJs+IBAIA66J7+rbTmsSiFNfazmRUWm4r5fKvGvr9BmbmFbkgHAAAAQHJiYfnkk0/qxIkTkqT69evrb3/7m9asWaNvvvnG7vHPPfecXnjhBQUFBZWVlv/85z9ttpEDAABcjp7N62vdtCjd1qu53XncluPqOyNBG4/wHgQAAABwB6cUlqtXr9aaNWtkGIYCAwP14Ycf6s4771RAQMAFz7Farbr11lu1ZMkSNWnSRJKUnZ2tZcuWOSMiAACow+r7eGrx+HC9fksPeVls3w7tOZ2jwa8l6a3V+20uawMAAADAuZxSWP72U5RPPfWU2rdvX+FzW7RooSeeeKLs+8TERIdmAwAAkEovQ/PwkDZKenSI2gTXs5nnF5XooaVbNHHxRmXnF7khIQAAAFA3OaWw3LBhgyTJ399fN9xwQ6XPv+GGGxQYGCjTNJWWluboeAAAAGX6tgxScky0RnULsTtflHJE/WcmauvxLBcnAwAAAOompxSWJ0+elGEYat++vawXu2XnBXh4eKh169aSxDUsAQCA0wX7eumzSf30yg1dZfGwvUP4jhPZGjAzUe9vOOSGdAAAAEDd4pTCsqCgQJLk5eVV5TV+PdfDw2n3BQIAAChjGIaeuKK9fn5osEIDfWzmOYXFmvTRJt33yWblFha7ISEAAABQNzilDWzYsKFM09Thw4ervMa+ffskScHBwY6KBQAAcElD2jZQSky0hoc1tjufu+6gBs1K0q6T2S5OBgAAANQNTiksO3bsKEk6duyYtm3bVunzV65cqdOnT8swDIWFhTk6HgAAwEU19vfWV/cN0HPXdpKdHeL65dg59Z2RqCWbj7o+HAAAAFDLOaWwHDp0aNnjl156SSUlJRU+Nzs7Wy+++GLZ95GRkQ7NBgAAUBEWD0N/vSZM3z0wSE38bS9zk5VfpNsXJmvqZ1uUX8QWcQAAAMBRnFJY3nzzzWrYsKGk0juGT5s2TefOnbvkeYcPH9bkyZO1Z88eSVL9+vV18803OyMiAABAhVzVsZE2Th+qoe0a2p2/sXK/ot9Ypf1nclycDAAAAKidKn8L7wrw9fXVk08+qT/96U8yDEM//PCD1q5dqyuvvFLt27cvOy4zM1M///yzjh49qjVr1mjFihUqLi79hIJhGJo6dar8/f2dEREAAKDCmtX30fcPDtQz3+3USz/utpmvP5ShiNgEzR/XWzd2a+qGhAAAAEDt4ZTCUpJGjRqlgwcP6vXXX5dhGDp37py++OKLsrlpmtqyZYseeuihcs8ZRumFom699VaNHz/eWfEAAAAqxWrx0P8b2UVD2jTQxMUbdSansNz8bG6hbpq3Xn+8or1eGNlZnhanbGQBAAAAaj2nvpN+9NFH9e9//1sBAQGSSgtJqfTTk78Wk78+9+t/Wq1W/fGPf9Tzzz/vzGgAAABVcl2XEKXERGtg62C781d+3qOr56zWkcxcFycDAAAAagen/+n/+uuv108//aSnnnpK4eHh8vT0lGmaZV+/6tixox544AH9+OOPuvfee50dCwAAoMpaBfvq54cGa1pUW7vzpH1nFP5qgr5PO+niZAAAAEDN57Qt4b/l5+enSZMmadKkSSooKFB6eroyMzNVVFSk+vXrq0mTJlyrEgAA1CheVg/F3tRdUe0a6p6PN+lcXlG5+cnzBRrxzhr9dViY/npNmCwehpuSAgAAADWLSwrL3/Ly8lLLli3VsmXLCh1fUFAgLy8vJ6cCAAComtE9mqlXs/q6beEGbTxyrtzMNKW/f5+mlfvPaNGd4WoS4O2mlAAAAEDN4ZQt4U8//bSefvppzZ8/v8prPP/887r66qs1duxYxwUDAABwgvaN/LTy0Ug9OKi13fmPu06pT2y8EvacdnEyAAAAoOZxSmH52WefadmyZVq5cmWV19izZ4+OHDmiI0eOODAZAACAc/h4WjR7TE99cGcf+XlZbObHzuXr6rdW6x8rdqukxLSzAgAAAADJBTfdqaqMjAxJUl5ennuDAAAAVMKd4S20/vEodQsJsJkVl5h6+uvtumneOp0+X+CGdAAAAED1V+VrWO7YsUNZWVkXPSYzM1Pr16+v1Lr5+fmKj4/Xjh07JElBQUFVjQgAAOAWnZsEaM1jkXokboveTz5sM/9q+wlFxCbo4wkRGtA62A0JAQAAgOqryoXltm3b9Oc///mCc9M0tWXLFk2cOLGqP0KGYahPnz5VPh8AAMBd/Lytmjeut6LbN9SjcVuUV1RSbn4wI1fRb67UKzd01dTItjIM7iIOAAAASJexJXz06NEKDw+XaTr2Gky/Xc/T01P333+/Q9cHAABwFcMwdE//VlrzWJQ6NvKzmRcWm3r886267f1kZeYWuiEhAAAAUP1c1jUsn332WVmtVpmmWe7rV79//lJfkuTj46OQkBBFR0drwYIF6tmz5+W9QgAAADfr2by+1j8epbE9m9mdL91yTH1nJGjjkUwXJwMAAACqnypvCZekjh07KjU11eb5zp07yzAMRUZG6p133rmcHwEAAFAr1Pfx1EcTIhS9ar+mf7FVhcXld6nsOZ2jwa8laebN3XX/gFZsEQcAAECd5bS7hDt6qzgAAEBNZxiGHhnSVkmPRKpNcD2beX5RiaZ8+ovuXrxR2flFbkgIAAAAuN9lfcLyQl566SVJUkhIiDOWBwAAqNH6tQpScky0Jn20Sf/Zlm4z/yDliJIPZ2rJxL7q2jTADQkBAAAA93HKJyxvueUW3XLLLRo8eLAzlgcAAKjxgn29tGxyP/3zhq6yeNhu/95+Ilv9ZyZqYfIhN6QDAAAA3MdpW8Idxd41MgEAAGoDwzD0hyva6+eHBis00MdmnlNYrLsXb9IDSzYrt7DYDQkBAAAA13PKlvDfKi4u1i+//KLjx48rPz9fxcXFdq9vaZqmioqKVFhYqJycHJ08eVIbNmzQrl27tG3bNmfHBAAAcJshbRsoJSZaEz7cqO/STtrM3117UOsPZeiTCRHq2Njf7ho5OVJ8vHT8uJSdLfn7S02bSkOHSr6+zn4FAAAAgOM4tbCcO3eu3nrrLZ07d65K55umyR0yAQBAndDY31tf3TdAL/64S899t1Mlv/v77uaj59R3RqLeva2XxvZqXvZ8Wpo0e7Y0f76UkWG7blCQNHmyNGWKFBbmzFcAAAAAOIbTtoTPmDFDr7zyijIzM8t9otI0zbKv3/vtjLuMAwCAusbiYeiv14TpuwcGqYm/l808K79Ity9M1mPLUnXyTInGjJE6dZJmzLBfVkqlz8fGlh43ZoyUmenMVwAAAABcPqcUlocPH9a7774rSWWfkPxtCWkYhgzDsFtQ/jpr0qSJ7rvvPn3wwQfOiAgAAFBtXdWxkTZOH6rodg3szl9P2qc2f1qpuB9yKrVuXJwUGSkdOeKIlAAAAIBzOKWw/Oyzz1RUVCRJ8vb21l/+8hclJCRo+/bteuKJJ2SapiwWi9auXautW7dq1apVeu+99zR06NCy8vLMmTMaNmyYIiIinBERAACgWmtW30c/PDhIT13Vwe48NyhDGp8gtUuv1LqpqdKIEXzSEgAAANWXUwrLdevWlT1+4oknNH78eDVp0kSGYWjQoEGSSm/Gk5SUJIvFogYNGmjIkCF66623FBMTUzb/61//ytZwAABQZ1ktHnrxui768t7+auDraTM36hXKuGWdFLVNMkoqvG5qqnTPPY5MCgAAADiOUwrLQ4cOSZK8vLx02223lZt17txZnp6lb7g3bNhgc+6DDz6oYcOGyTRN7d69Wz/88IMzIgIAANQY13UJUUpMtHo1CbI7N/rvkW5bLfnnVnjNuDhp1y4HBQQAAAAcyCmFZWZmpgzDUPv27eXt7V1uZrVa1a5dO5mmqa1bt9o9/4EHHih7/NNPPzkjIgAAQI3SKthX0ceHyExua3dutDgjTUiQWp+s8Jpz5jgqHQAAAOA4Tiksf71+ZVBQkN1527alb7T37Nljd96zZ081atRIkrRjxw7HBwQAAKhhcnKk9+d5SD93l/l5X5n5VptjDN8CacwaadBOybj0ZXXmzStdFwAAAKhOnFJY/lpUFhYW2p23bNlSkpSTk6P0dPsXig8NDZVpmjp69KgzIgIAANQo8fFSRsZ/v9ndTFoYLTO9vs1xhiEZg9NKi8t6+Rdd8+zZ0nUBAACA6sQphWXjxo1lmqYOHjxod96qVauyx2lpafaDeZRGO3/+vOMDAgAA1DDHj//uiUw/aXGkzM2t7R5vtD4lTYyXQk9fdN0L/O0YAAAAcBunFJZ9+vSRJJ04cUKpqak2898Wlps2bbK7xq837rFabbc7AQAA1DXZ2XaeLLZIP/SU+VUfmQUWm7Hhn196M55+uyXZ3yKeleXYnAAAAMDlckphOWTIkLLHf/nLX3T6dPm/7Hft2rXsE5Sff/65zdbxn376SadOnZJhGGXXsgQAAKjL/P0vMtzRQloUJfOU7UGGhykjert083rJp8BmHhDgwJAAAACAAzilsLzyyivVpk0bSdLOnTs1cuRIvfLKKzp16pQkKSAgQP369ZNpmjpy5IimTp2qAwcO6Pz58/r222/1f//3f2Vr9erVyxkRAQAAapSmTS9xwJmA0tJyawu7Y6N9euldxJueLfd8SIiDAgIAAAAO4pTC0jAM/eUvf5HFUro16dy5c5o7d66O/+biS5MmTSp7HB8frxEjRqhv3756/PHHdfbs/95Ijx492hkRAQAAapShQ6X/3tfwwoqs0vLeMr/tJbPQ9m2eUT9XGrdS6rNXkqng4NJ1AQAAgOrEKYWlJEVGRuqf//ynAn6zz+i316688sorNWrUKJlm6fWUTNMs+zIMQ5J03XXXafDgwc6KCAAAUGP4+kqTJ1fkSENKbVV6Q54zfrZTiynjqq3SDcm6c3KhfH0dHhUAAAC4LE4rLKXSwvGbb77RI488ooiICNWvX7/c/MUXX9TkyZPLPon5W7fffrtefvllZ8YDAACoUaZMqcTBJwNLt4jvbGZ3bHQ6pq8CE7XpSKZjwgEAAAAO4vRbcDds2FBTp07V1KlTbX+41aonn3xS99xzj5KSknTy5EkFBQVp0KBBatmypbOjAQAA1ChhYdLo0VJcXAVPKPCUvoyQeXi/dMVWGZbydwo/cO68Br2WpFk3d9d9A1qV7XIBAAAA3MkpheXq1at1/vx5DR06VJ6enpc8vnHjxrrlllucEQUAAKBWmTtXSkuTUlMreoYhbWorHQuWeeMGGYG55ab5RSV68NNflLTvjN4c3UN+3k7/ezYAAABwUU7ZEv7BBx9o6tSpioyM1OLFi53xIwAAAOqkwEBp+XKpe/dKnpgeJH0QrYAT9m8LvjD5sAbMStS241mXnREAAAC4HE4pLLdt2ybTNHXu3DmFhoY640cAAADUWaGhUlJS6fbwyhh9nZcOzOqnf1zfRRYP2+3f29Kz1X9moj5IPuygpAAAAEDlOaWwPH36dNnj8PBwZ/wIAACAOi0wUFq6VNq5U4qJkYKC7B8XHCxNn166jXzpUikoyNAfr+ygnx4apOb1fWyOzyks1sTFG/XAks3KLSx27osAAAAA7HDKRYqCgoJ04sQJSVJeXp78/f2d8WMAAADqvLAw6dVXpRdekOLjpfR0KStLCgiQQkKkoUMlX1/b8yLbNlRKTLQmLE7R92mnbObvrj2oDYcy9MnEvurQyM8FrwQAAAAo5ZRPWA4fPrzs8aeffuqMHwEAAIDf8PWVRo6UJk2Spk4t/c+RI+2Xlb9qEuCtr+8bqGeHd5K9G4RvOnpOEbEJ+nTzUWfFBgAAAGw4pbCcNm2aOnXqJNM09frrr2vBggUqLCx0xo8CAADAZbB4GPrb8DB998BANfH3spln5RfptoXJmrYsVQVFJW5ICAAAgLrGKVvCrVar3nvvPf3973/Xd999p5dffllvvvmm+vTpo86dO6tBgwby9/eXh0fF+tKbb77ZGTEBAADwX1d3bKyUmKG6c1GyEvaesZm/lrRPaw+c1ccTItS6wUU+tgkAAABcJqcUlr+90Y5hGDJNU5mZmYqPj1d8fHyl16OwBAAAcL7mgT764cFB+tu3O/Xyit0283WHMhQem6AFd/TRDV1D3JAQAAAAdYFTtoSbpln2JZWWlsZ/L4z021lFvgAAAOA6VouHXryui/5zT38F1/O0mZ/NLdSouev01FfbVVTMFnEAAAA4nlM+Ydm8eXNnLAsAAAAXub5riFJiojXug2StPZhhM//nT7u1ev8ZLR4foeaBPq4PCAAAgFrLKYXlihUrnLEsAAAAXKh1A1/FPzxET361TTMT99nME/edUZ9X47XornANC2vshoQAAACojZyyJRwAAAC1g5fVQ7E3ddeSiRGq72P7t+6T5wt07Ttr9Nx3O1VcwuV8AAAAcPkoLAEAAHBJY3o214bHo9W7eX2bmWlKz32XppHvrNGJrHw3pAMAAEBtQmEJAACACunQyE+rpkbqgYGt7c5/2HVK4bEJStx72sXJAAAAUJtQWAIAAKDCfDwtmnNrTy28s4/8vCw286Pn8nTVnNX650+7VcIWcQAAAFQBhSUAAAAq7a7wFlo3LUpdQ/xtZsUlpp76artunrdeZ3IK3JAOAAAANRmFJQAAAKqkS0iA1j4WpQkRLezOv9yerojYBK07eNbFyQAAAFCTUVgCAACgyvy8rZo/rrfeGdtLPlbbt5YHzuYq6o2Vei1pn0yTLeIAAAC4NApLAAAAXBbDMHTvgFZa/VikOjTys5kXFpuatixVty9MVmZuoRsSAgAAoCahsAQAAIBD9GoeqA2PR2lsz2Z255/+ckz9ZiZq05FMFycDAABATUJhCQAAAIep7+OpjyZEaNbN3eVpMWzmu0+d16DXkvTOmgNsEQcAAIBdFJYAAABwKMMw9GhkWyU+MkStg+vZzPOLSvTgp79o0kebdD6/yA0JAQAAUJ1V+8KyoKDA3REAAABQBf1bBSs5Jlo3dAmxO1+YfFgDZiVq2/EsFycDAABAdeaUwvLpp5/W008/rfnz51d5jeeff15XX321xo4d67hgAAAAcKkGvl5aNrmf/nF9F1k8bLeIb0vPVv+Zifog+bAb0gEAAKA6ckph+dlnn2nZsmVauXJlldfYs2ePjhw5oiNHjjgwGQAAAFzNw8PQH6/soBVTBql5fR+beU5hsSYu3qgHP92svMJiNyQEAABAdVJtt4RnZGRIkvLy8twbBAAAAA4R1a6hUmKiNaxjI7vzd9Yc1ODXkrT71HkXJwMAAEB1Yq3qiTt27FBW1sWvN5SZman169dXat38/HzFx8drx44dkqSgoKCqRgQAAEA10yTAW9/cP1Av/JCmv3+fpt/fKHzT0XPqOyNB793WS2N6NndPSAAAALhVlQvLbdu26c9//vMF56ZpasuWLZo4cWJVf4QMw1CfPn2qfD4AAACqH4uHoWeGd9KQNg1016IUnTxf/iaL5/KKNPb9ZD0WdUb/vL6rvKzVdlMQAAAAnKDK7/5Gjx6t8PBwmb//s/hl+u16np6euv/++x26PgAAAKqHYWGNtXH6UEW1bWB3Pitxn6LfWKkDZ3JcnAwAAADudFl/rn722WdltVplmma5r1/9/vlLfUmSj4+PQkJCFB0drQULFqhnz56X9woBAABQbTUP9NGPUwbpyas62J2vO5Sh8NgEfbUt3cXJAAAA4C5V3hIuSR07dlRqaqrN8507d5ZhGIqMjNQ777xzOT8CAAAAtZzV4qGXruuiyDYNNHHxRp3NLSw3P5tbqBvnrtOTV3XQ89d2ktXCFnEAAIDazGnv9hy9VRwAAAC12/VdQ5QSE63+LYPszv+xYreGvbVaRzPzXBsMAAAALnVZn7C8kJdeekmSFBIS4ozlAQAAUEu1buCrhEeG6E9fbdOsxH0284S9Z9Tn1Xh9OD5cV3ds7IaEAAAAcDanFJa33HKLM5YFAABAHeBl9dCMm7orsk0D3fvJZmXlF5WbnzxfoOFvr9Ez13TSn4d1lMXDcFNSAAAAOAMXAAIAAEC1dGuv5kqOiVbv5vVtZqYpPfvdTl337hqdyMp3QzoAAAA4i1M+Ybl+/XqHrtevXz+HrgcAAICaoUMjP62cGqnHP0/VO2sO2sy/Tzul8NgEfTQhXJFtG9rMc3KkFSsMrV/fUDk5HvL1LdGxY4auukry9XXFKwAAAEBlOaWwnDBhggzDMVtzDMPQtm3bHLIWAAAAap56nha9dWsvRbVtqCmf/qKcwuJy86Pn8nTl7NV6cWRnPTG0vTw8DKWlSbNnS/PnSxkZFkltyp0TFCRNnixNmSKFhbnqlQAAAKAiqsWWcNM0L/oFAAAAjI9ooXXTotQ1xN9mVlxi6smvtuuGd9brxrEF6tRJmjFDysiwv1ZGhhQbK3XqJI0ZI2VmOjM5AAAAKsMpn7CUVOWi0TAMWSwWXX311bJYLA5OBQAAgJqsa9MArX0sSg/HbdHC5MM28+W70mUGJUhNI6TjwRVaMy5OSkuTli+XQkMdnRgAAACV5ZTCcseOHRU+tqCgQGfPnlVaWpq+/PJLffHFFyouLlZeXp5mzpwpHx8fZ0QEAABADeXnbdX8cb0V1a6Bpn6WqvyiknJzIzBX5riVUnw3aWMbSZe+VFFqqjRihJSUJAUGOic3AAAAKsbtW8K9vLwUEhKiqKgo/eMf/9Dbb78ti8WihIQEPf/88+6OBwAAgGrIMAzdN6C1Vk+NVIdGfrZziynjqlTphmTJq7BCa6amSvfc4+ikAAAAqCy3F5a/FxUVpalTp8o0TcXFxSk5OdndkQAAAFBN9Q4N1OIbomTubGZ3bnQ6Jo1PlBpX7CKVcXHSrl2OTAgAAIDKqnaFpSTdeeed8vb2liQtXbrUzWkAAABQnS2a6yl9GSFzRXeZxbbbv43g89IdSVL3g5IufZ31OXOcEBIAAAAVVi0Ly4CAALVr106mafIJSwAAAFxQTo40b54kGdLGttJHQ2Rm1rM5zvAskXHtZmnEJsladNE1580rXRcAAADuUS0LS0ny9fWVJJ04ccLNSQAAAFBdxcdLGRm/eeJ4sPRBtMw9IXaPN7odlu5KlBpkXXDNs2dL1wUAAIB7VMvCsqSkRPv375ckeXp6ujcMAAAAqq3jx+08meclLesnM6GLzBI7W8QbZZeWlp0PX3Dd9HQHhgQAAEClVMvCctmyZTp9+rQMw1CLFi3cHQcAAADVVHb2hSaGtL6D9MkgmVk+tlOvYhnXb5SGbZYsxTbzrAt/ABMAAABOVq0Ky4KCAn344Yd69tlny56LiopyXyAAAABUa/7+lzjgSENpYbTMA43sjo1eB6U7k6Sg8+WeDwhwUEAAAABUmtUZi06cOLHCx5qmqaKiImVnZ+vw4cPKy8uTaZbevdHb21vjxo1zRkQAAADUAk2bVuCgXG9p6UCZA9OkQWkyfrdL3GhyTub4BOnbXtKu5pKkEPuXwAQAAIALOKWwXLdunYzfvxOsANM0y533xz/+Uc2aNXNkNAAAANQiQ4dKQUG/u/GOPaYhre4kHWkg8/oUGb4F5caGd5E0Kllm8hkFbemqoUOr1UYkAACAOsVp78RM06z016/nNW/eXP/617901113OSseAAAAagFfX2ny5EqccLCx9P5QmYcb2B0bEftU7+6VOpWf45iAAAAAqDSnfMLy0UcfrfQ5Xl5eCg4OVufOndWjRw8npAIAAEBtNGWKFBtbiRPO+5TejCdyp4z+u23Gx40MhccmaMG4Prq+K3vDAQAAXK3aFJYAAABAVYSFSaNHS3FxlTjJ9JASu8g80kAasVFGvcJy4zM5hbpx7jo9eVUHPX9tJ1ktbBEHAABwFd55AQAAoMabO1fq3r0KJ+4NKb2L+LEgu+N/rNitYW+t1tHMvMvKBwAAgIqjsAQAAECNFxgoLV9exdIyy1fdUofo3j5t7Y4T9p5ReGy8ftx18vJCAgAAoEKcsiX8Qvbs2aP169frxIkTOnXqlCQpKChIbdq0Ud++fdWqVStXxgEAAEAtEhoqJSVJ99xTue3ho0dLc+d6KDCwu67t3kD3frJZWflF5Y45kV2g4W+v0TPXdNKfh3WUxcNwcHoAAAD8yumF5fnz5/X+++9r2bJlOnjw4EWP7dy5syZNmqSbbrrJ2bEAAABQCwUGSkuXSmlp0pw50rx5UkaG7XHBwaV3F58yRerY8X/P39qruXqHBuq29zdo09Fz5c4xTenZ73Zq5f7TWnhHuJoEeDv3xQAAANRRTi0sN2/erJiYGB07dkymaUqSDMMoe/yrX5/bvn27nnrqKS1ZskSxsbFq3LixM+MBAACglgoLk159VXrhBWnFimJt2HBI5897yM+vRH37ttRVV1nk62v/3A6N/LRyaqSmLUvVu2tt/+D+fdophccm6KMJ4Yps29DJrwQAAKDucVphmZqaqkmTJikvr/wFyj09PdWqVSv5+/urpKRE586d0+HDh1VUVLrtxjRNbdiwQRMmTNDixYsVHBzsrIgAAACo5Xx9pREjTDVrdrrsuV69Wsh6iXfB9TwtentsL0W3a6gpn/6inMLicvOj5/J05ezVenFkZz0xtL082CIOAADgME4pLAsLC/XEE08oNze37NOTI0eO1F133aU+ffrIYrGUO76goEDJyclasGCBfv75ZxmGoQMHDuiZZ57RrFmznBERAAAAuKTxES0UHhqose9v0PYT2eVmxSWmnvxqu5L2ndG8cb3VwNfLTSkBAABqF6fcJfzzzz/XgQMHZBiGLBaLXn31VcXGxqpv3742ZaUkeXl5adCgQZozZ46ef/75spLz+++/18aNG50REQAAAKiQrk0DtG5alMaHh9qd/2dbuiJiE7T+YIZrgwEAANRSTiksv/nmm7LHjz/+uK677roKnzt27Fg9+OCDZd9/+umnDs0GAAAAVJaft1UL7uijt27tKW+r7VvoA2dzFflGkl5P2mdzvXYAAABUjlMKyx07dkiS/P39NXHixEqff//998vHx0eStH79eodmAwAAAKrCMAzdP7C1Vk+NVIdGfjbzwmJTjy1L1biFyTqXV+iGhAAAALWDUwrLzMxMGYahsLAweXlV/lo+vr6+6ty5s0zT1PHjx52QEAAAAKia3qGBWj8tSmN6NLM7X/LLMfWbkajNRzNdnAwAAKB2cEphGRQUJElld/6uCut/b91Yr149R0QCAAAAHCawnqc+mRihGTd1k6fF9g7hu06d16BZSXp37QG2iAMAAFSSUwrLDh06yDRN7dixQ1lZWZU+v6ioSLt27ZJhGGrbtq0TEgIAAACXxzAMPRbVTgkPD1GrINs/sucVleiBJb9o8kebdD6/6n/IBwAAqGucUljefPPNkqSCggLNnDmz0ucvXbpUmZmlW2iuv/56R0YDAAAAHGpA62ClTI/W9V2a2J2/n3xYA2Ylant65f+QDwAAUBc5pbC86aabNHDgQJmmqUWLFuntt9+u8Lnr1q3Tyy+/LElq27atbr/9dmdEBAAAABymga+XPp/cXy9d10UWD9st4tvSs9V/ZqI+TDnshnQAAAA1i1MKS8MwNHPmTPXr10+maSo2NlYTJ05UfHy8Cgvt3zFx9+7deuGFF3TPPfcoNzdXTZs21ezZs6t00x4AAADA1Tw8DD15VQf9+OAgNavvbTM/X1Cs8R9u1JRPf1FeYbEbEgIAANQMVmcsev/990uSLBaLJMk0Ta1fv17r16+X1WpV27ZtFRgYKE9PT2VnZ+vAgQM6d+5c2bGGYSg9PV0jRoy46M8xDEPbtm1zxksAAAAAqiS6fUNtjBmquz5M0Y+7TtnM315zQOsOntWSiX3VvpGfGxICAABUb04pLBMTE2UYpVthfv1PqbSMLCws1K5du8od/+udEw3DsDkeAAAAqGmaBHhr+f0D9fz3aXr+hzT9/m3tpqPnFDEjQXNv763RPZq5JyQAAEA15ZQt4VJp2fj7rwvNLvU8AAAAUNNYPAw9e20nLb9/oBr72V7m6FxekW5dsEExn6eqoKjEDQkBAACqJ6d8wvL99993xrIAAABAjXNNWGOlTI/WHR+kKGnfGZv5zMR9WnPgrD6eEKFWwb5uSAgAAFC9OKWw7N+/vzOWBQAAAGqk0MB6WjFlkP6yfKf++dNum/nagxkKj03Q+3f00XVdQtyQEAAAoPpw2pZwAAAAAP9jtXjo5eu76It7+iu4nqfN/ExOoW54b53+7+vtKipmizgAAKi7nFJYvv7663r99df1n//8p8prvPXWW5o4caImT57swGQAAACAe93QNUTJMdHq1zLI7vzlFbt1zVtrdOxcnmuDAQAAVBNOKyzfeOMNffHFF1VeY+XKlVq3bp22bt3qwGQAAACA+7Vp4KvER4bo0ci2dufxe0+rz6vxWrHrlIuTAQAAuF+13RKel1f6F+WcnBw3JwEAAAAcz8vqoVk3d9fHEyIU4G17afkT2QW65u3Vev77NJWUmG5ICAAA4B5VvunOqVOnVFBQcNFj8vLydPTo0Uqtm5+fr/j4eG3ZskWSFBgYWNWIAAAAQLU3tldz9W5eX7ctTNbmo+fKzUxTeubbnVq574wW3tlHjf293ZQSAADAdapcWH7++ef617/+dcG5aZrasGGDrr766iqtb5qmDMNQ586dqxoRAAAAqBE6NvbXqqmRmrYsVe+uPWgz/y7tpMJjE7R4fLgi2zZ0Q0IAAADXqfKW8EmTJqlDhw4yTdPm61f2ZhX5+pVhGNx0BwAAAHVCPU+L3h7bSwvu6C1fT4vN/Ehmnq6cvVr/+nlPuffMAAAAtU2VC0uLxaJnn31WhmE4Mo+k0qKyffv2evXVVxUZGenw9QEAAIDqakJES62dFqUuTfxtZsUlpv705TbdMn+9zuZc/PJMAAAANVWVt4RLUkREhH7++WcVFRWVPWeapoYNGybDMNS3b1+9/PLLFV7Pw8ND3t7eql+/vqzWy4oGAAAA1FjdmgZo7bQoPbT0Fy1KOWIz/2JruiJiE/TxhL7q1yrI9QEBAACc6LJbwZCQELvPm6YpHx8fhYaGXu6PAAAAAOocf2+r3r+jj6LbNdRjy1KVX1RSbr7/bK6i3lipf4/qqocHt3HKzicAAAB3cMrHGB999FFJUqtWrZyxPP7r7Nmzuv766+Xj46MVK1a4Ow4AAAAczDAM3T+wtfq1DNLY9zdoz+mccvOC4hJN/SxViXvP6O2xPVXfx9NNSQEAABzHqYUlnKewsFB/+tOfdPr0aT7FCgAAUMv1Dg3Uhsejdd8nm7V0yzGb+Sebj2rjkUwtmdhXPZvXd0NCAAAAx+FCkTVQbm6u/vCHPyghIcHdUQAAAOAigfU89cnECL2WtE9//HKbCovL3yl816nzGjgrUa/d0kP39G950S3iOTlSfLx0/LiUnS35+0tNm0pDh0q+vs5+JQAAABfnlMLy6NGjDl2vefPmDl2vJtu5c6eeeOIJ7dq1y91RAAAA4GKGYeixqHYa0CpYty9M1sGM3HLzvKIS3b9ks5L2ndbrt/SQn3f5t/tpadLs2dL8+VJGhu36QUHS5MnSlClSWJjTXgYAAMBFOaWwvOqqqxx20W/DMLRt2zaHrFWT5eXl6cUXX9Snn36q4uJiNWrUSD169NBPP/3k7mgAAABwsQGtg5UcE61JH23UV9tP2MwXbDisDYcy9cnECHUJCVBmpnTPPVJc3MXXzciQYmNLv0aPlubOlQIDnfMaAAAALsTDmYubpumQL0inTp3Sxx9/rOLiYl177bX64osv1K1bN3fHAgAAgJs09PPS55P766XrusjiYfthga3pWeo/M1Gv/3hYkZGXLit/Ly5OioyUjhxxUGAAAIAKcto1LKtaNBqGIYvFQhn3O4ZhaPDgwXr44YfVr18/d8cBAABANeDhYejJqzpoUOtg3bEoWcfO5Zebny8o1mPfbJQZckba3k0qtlRq/dRUacQIKSmJT1oCAADXcUph+eOPP1b42Pz8fJ09e1a7du3SV199pfXr16u4uFidOnXSc88957Ct5TVdaGio5s2b5+4YAAAAqIai2zfUxpihuuvDFP2465TN3Oh9QGazs9J/+kqZfpVaOzW1dDv50qWOSgsAAHBxTiksQ0NDK31ORESExo0bp48//ljPPvuslixZoqCgIE2fPt0JCQEAAIDapUmAt5bfP1DPf5+m539I0+83PBkh52ROSJCW95Z2N6vU2nFx0q5dUseOjssLAABwIU69hmVV3H777br77rtlmqbee+897dixw92RAAAAgBrB4mHo2Ws7afn9A1XP9LKZG95FMm7aIF2RKnmUVGrtOXMclRIAAODiql1hKUn33XefrFarSkpK9Omnn7o7DgAAAFCjDGnRWNaPomUebmB3bkTsk25fJQXkVHjNefOknIofDgAAUGXVsrBs1KiR2rZtK9M0tXr1anfHAQAAAGqU+Hjp3NF60pJBMte1t3uM0fysNCFBapteoTXPni1dFwAAwNmqZWEpSUFBQZKk48ePuzcIAAAAUMOUvYUu8ZASu8r8rJ/MXE+b44x6hTJGr5Mit0vGpbeIp1es2wQAALgs1bawPHTokLsjAAAAADVSdvbvntjbVPogWuaxILvHGwN2S2PXSH55F103K8sx+QAAAC6mWhaWP/30k44fPy7DMNS8eXN3xwEAAABqFH9/O0+e85U+Hiwzpa3dc4yWp6UJ8VLLUxdcNyDAQQEBAAAuotoVlvHx8XrqqafKvh88eLAb0wAAAAA1T9OmFxgUW6Sfusv8T4TMfKvN2PArkG5dLQ1Mk2TazENCHJsTAADAHtt3KQ7w9NNPV+r4wsJCZWdna+/evTp06JBMs/TNkcVi0dixY50REQAAAKi1hg6VgoKkjIwLHJDWXDpZX+YNyTKanCs3MjwkDdkpM/SM9HUfKddbkhQcXLouAACAszmlsPzss89kGEalz/u1qDQMQ6Zp6t5771WHDh0cHQ8AAACo1Xx9pcmTpdjYixx01l9aHCnzylQZPQ/ajI02J2VOSJC+jJCONtDkyaXrAgAAOJvTtoSbplnpr1/5+PgoJiZGMTExzooHAAAA1GpTplTgoCKL9H0vmd/0lllosRkbAXnS7aukvnv04IO2W8QBAACcwSmfsLzlllsqfY6Xl5eCgoLUpUsXRUZGyt/ulcLdY+bMmXrzzTcVGhqqFStWVOrcPXv26KOPPtLatWt1+PBhFRUVqUmTJgoLC9ONN96oa665RlZr1f7PMHXqVE2dOrVK5wIAAKB2CwuTRo+W4uIqcPC2llJ6kMwbN8hoWP4W44aHKQ3dpj+tPK15LXor2NfLOYEBAAD+yymF5UsvveSMZd3il19+0TvvvFOlc1977TXNmTNHRUVF5Z4/dOiQDh06pB9//FHdu3fXK6+8onbt2jkiLgAAAFBm7lwpLU1KTa3AwacDpEVRMof9IqPrEZvxF1vTFRGboE8m9lXflkEOzwoAAPCraneX8Ork0KFDevjhh1VYWFjpc1944QW9/vrrZWWl1WpVt27d1LdvXwUHB5cdl5qaqgkTJujIEds3hQAAAMDlCAyUli+Xunev4AmFVumbPjK/6ymzyPafCvvP5iry9ZV6Y+W+cpd0AgAAcCQKywtIS0vTXXfdpZMnT1b63OXLl2vhwoVl31977bWKj49XXFycFi1apMTERP39739XvXr1JEmnTp3S1KlTedMHAAAAhwsNlZKSSreHV4whbWmtq9Ij1TbY9i47BcUlmvpZqu5clKKsvCI75wMAAFwep2wJ/60zZ85o7969ysjIUG5ururVq6fAwEC1a9dODRs2dPaPr5LPP/9czzzzjHJzcyt9bmFhof7xj3+UfX/llVdqxowZ8vD4Xzfs6emp22+/XaGhoXrwwQdVVFSkrVu36ssvv9SNN97okNfgCsXFxe6OgGrs978f/L7gYvh9QWXxO4PK4PdF8vOTPv64dHv42297aMECQxkZhs1xwcGm7r7b1AMPlKhjRz9l5g3W/Uu2aNnWdJtjP950VCmHM7X4rt7q2ay+K16GS/D7gsrg9wWVwe8LKqOu/74YphM+1vfLL78oLi5OCQkJOnbs2AWPa9Kkia644grdfPPN6tOnj6NjVFp6erpeffVVLVu2zO68Ijfd+frrr8vubm61WvX999+refPmFzz+73//uxYtWiRJ6tatm+IqdFV099i4caNKSkrcHQMAAACXKS/PUHJygM6c8dT58x7y8ytRgwaFiojIko9P+X8emKapj9LOa+bGcyq28y8Hb4v0p75BGtXO9tOYAACg7vDw8HBYv+fQwnL79u164YUXlJKSIkkV2uJsGKV/2e3Tp4/+8pe/qGvXro6KUymzZ8/W22+/rZycnLLn2rVrp+HDh2vOnDmSKlZYPvroo/r+++8lSdHR0Ze8Yc/OnTs1atSosu9/+OEHtWzZsqovw6koLAEAAOquLacK9PTKs0rPsf8Jjxva1tOTfQPlY+WqUwAA1EWOLCwd9m7i3Xff1a233qqUlJRKX4vRNE2lpKRo7Nixmj17tqMiVcp7771XrqwcO3aslixZotatW1d4DdM0tXbt2rLvhwwZcslzOnXqpMaNG5d9f6lCFAAAAHCHHo289MGIxhrS3Nvu/Mt9uZr03SntP1f5G1YCAAD8lkOuYfnyyy9rwYIFMk2z7BOThmGoV69e6tu3r9q1a6cGDRrI29tb58+fV2Zmpvbs2aONGzdqy5YtKioqkmEYKi4u1qxZs3TixAk988wzjohWad27d9eTTz6p/v37V/rcI0eO6Ny5c+XWqohOnTqV3dxny5Ytlf657tK9e3dZLBZ3x0A1VVxcrNTU1LLv+X3BxfD7gsridwaVwe+LY/3Y19S/Evbqb9+mqeR3n1PYk1mkSd+f0ezR3TWu94Uvi1Sd8fuCyuD3BZXB7wsqo6b8vmzZssUpu3Evu7BctGiR5s+fX1ZUenl5afz48ZowYYKaNm16yfNPnDihRYsW6f3331deXl7pNXI++kitW7fWpEmTLjdehfXv31+jR4/W1VdfXfZaKmv//v3lvm/VqlWFzmvRokXZ44MHD1bpZ7uDxWKR1er0+zahluD3BZXB7wsqi98ZVAa/L5fv/4Z10pC2DXXnohQdO5dfbna+oFgTP9qslQcyFDuqm3w8q98/riqD3xdUBr8vqAx+X1AZde335bK2hB86dEj/+te/ygq+Dh066LPPPtMf//jHCpWVUumNd2JiYrRkyRK1b99ehmHINE3NmDHDpeXdm2++qWHDhlW5rJRU9ilJqXTffqNGjSp03m+3hP92DQAAAKC6Gtq+kVJihurqjvbf8761+oAiX1+pvafPuzgZAACo6S6rsJw1a5Zyc3Mlld6gZuHChWrXrl2V1urQoYPef/99tWrVSoZhKD8/X7NmzbqceC6XmZlZ9tjPz08eHhX7r9ff39/uGgAAAEB1FhLgreX3D9RfrwmTvb/7pxzJVERsgj7bcsz14QAAQI1V5cIyPT1dX3/9tSTJarVqxowZCg4OvqwwDRo00BtvvCGLxSLTNLV8+XKdOHHistZ0pfz8/22H8fHxqfB5Xl5eZY8LCgocmgkAAABwJouHoeeu7aRv7hugRn5eNvPMvCKNWbBB07/YqoIix1/jCgAA1D5VLiy/++47FRcXyzAMjRkzRh07dnRIoA4dOujWW2+VVHqB0e+//94h67pCYeH/7ohY0U9XSip3DYKioiKHZgIAAABcYXinJto4PVpD2tj/EMOMhL26cvYqHcrIdXEyAABQ01S5sFy3bl3Z43HjxjkkzK/Gjh1b9njt2rUOXduZfnu3psrcIem3JaWnp6dDMwEAAACuEhpYTyseGqw/XtHe7nz1gbMKfzVe32xPd3EyAABQk1S5sNy5c6ckKTAwUJ07d3ZYIEnq1q1b2fbyX39OTVCvXr2yx7/dHn4pv90G7u3t7dBMAAAAgCt5Wjz0jxu6atnkfgqqZ/vH+NM5hbr+vXX68zfbVVTMFnEAAGCryoXlmTNnZBiG2rRp48A4/9OsWTOZpqlTp045ZX1nCAwMLHt8/vx5maZZofOys7PLHgcFBTk6FgAAAOByo7o1VUpMtPq1DLI7f+nH3Rr+9hodO5fn2mAAAKDaq3JhmZdX+sbit58qdKT69etLqtwnFd0tJCSk7HFxcbHOnj1bofNOnjxZ9rhRo0YOzwUAAAC4Q5sGvkp4ZLAejWxrd/7zntMKj03QT7trzocUAACA81W5sPz1k4AVLeUqKyMjQ5Lk6+vrlPWdoXXr1uW+P3ToUIXOO3z4cNnjtm3tv5kDAAAAaiJvq0Wzbu6uj8ZHKMDbajNPz8rXNW+t1gs/pKmkpGI7lAAAQO1W5cKyQYMGMk1Thw8frtQNZiqipKRER44ckWEYNeoTh6GhoeW2dG/fvr1C5+3YsaPssaOvBwoAAABUB7f1bq71j0epZ7P6NrMSU/rb8p26/r21Opldc3ZYAQAA56hyYdmhQwdJpddqTElJcVggSUpJSVFWVpYkqUuXLg5d29kGDBhQ9njVqlWXPH7Hjh3lrtM5cOBAp+QCAAAA3C2ssb9WPxapewe0sjv/dudJhccmaOW+My5OBgAAqpMqF5ZRUVFljxctWuSQML/68MMPyx7XtAJv+PDhZY9/+uknpaenX/T4xYsXlz1u3769OnXq5LRsAAAAgLvV87TonbG9NH9cb/l6WmzmRzLzdMXsVfr3z3sqfBNLAABQu1S5sIyOjpbVapVpmvr222+1efNmhwTasGGDvv76a0mSp6enrrnmGoes6yrDhw9XkyZNJEkFBQV66qmnVFRUZPfYxMRELVmypOz7CRMmuCQjAAAA4G4T+7bU2mlR6tzE32ZWXGLqj19u0+j563U2p8AN6QAAgDtVubBs2LChbrvtNkml15yMiYm57BvwHDp0SNOmTZMkGYahMWPGlLsmZE3g5eWl6dOnl32/atUq3X///eVuwFNUVKRPPvlEU6dOVXFxsSQpLCxMY8eOdXleAAAAwF26NQ3QumlRurNPqN3551vT1XdGojYcynBtMAAA4FZVLiwl6eGHH5afn58Mw9DRo0c1btw47dq1q0prbdiwQePHj9fp06clSYGBgXrkkUcuJ57b3HLLLbr99tvLvl+1apWGDx+um2++WePHj1dUVJT++te/Kjc3V1LpHddnzpwpq9X2rokAAABAbebvbdXCO/to9pge8rba/vNk35kcRb6+Um+u3M8WcQAA6ojLKiwbNWqkV155RYZhyDAMHThwQGPHjtXf//537d27t0Jr7NmzR3/5y180adIknThxojSUh4deeOGFGnWH8N977rnnNGXKFHl6ekoq/RTq9u3btX79ep0587+LiLdv314ffPCB2rVr566oAAAAgFsZhqEHB7XRykeHqF1DX5t5QXGJHv1si+5clKKsPPuXWwIAALXHZX+k76qrrtKTTz6pl19+WYZhKC8vT4sXL9bixYvVrFkz9ezZU23btlVAQIACAgJUVFSkzMxMHT58WBs2bNCBAwckqdxfS//85z9r2LBhlxvNrQzDUExMjEaNGqVPP/1USUlJOn78uHJzcxUYGKguXbpoxIgRGjVqlLy8vNwdFwAAAHC78BZBSn48Wvd8vEmfpR63mX+86ag2HsnUJxP6qmfz+m5ICAAAXMEhe5DvvvtuhYaG6umnn1ZWVpak0gLy6NGjOnbs2AXP+7WkNAxDkuTr66uXXnpJ1157rSNiOcTo0aM1evToKp/fvn17Pfnkk3ryyScdmAoAAAConQLreerTu/tqZuI+/enLbSoqKb8NPO3keQ2clag3RvfQ5P6t3JQSAAA402VtCf+tYcOGadmyZRo9enSlr8VosVh00003afny5dWqrAQAAADgeoZh6PHodkp4ZIhaBvnYzPOKSnTvJ5t1z0eblFPAFnEAAGobh97lJTQ0VC+++KKmTZum//znP1q3bp1SUlKUnZ1tc6ynp6e6deumK664QrfccotCQkIcGQUAAABADTewdbBSYoZq4uKN+mbHCZv5/A2HtOFwhj6ZGKHOTQLckBAAADiDU25LHRISovvuu0/33XefTNNURkaGMjIylJmZKQ8PDwUGBqpFixayWCzO+PEAAAAAaomGfl76zz399Y+fduuvy3fodzvElXo8S/1mJOrtsb10R59Q94QEAAAO5ZTC8rcMw1BwcLCCg4Od/aMAAAAA1EIeHoaevrqjBrcJ1h0fpOh4Vn65+fmCYt21KEWJe0/r1VHd5OPJByMAAKjJHHYNSwAAAABwpqHtG2nj9KG6qkMju/M5qw8o8vWV2nv6vIuTAQAAR6KwBAAAAFBjhAR469sHBuovwzrKMGznKUcyFRGboM+2HHN9OAAA4BAUlgAAAABqFIuHob+P6Kyv7xugRn5eNvPMvCKNWbBBT3yxVYXFJW5ICAAALgeFJQAAAIAa6dpOTZQSE60hbexfLz82Ya+ueHOVDmXkujgZAAC4HBSWAAAAAGqsFkH1tOKhwfrDFe3tzlcfOKvwV+P1zfb0S66VkyMtX27oiy8a6qOPGuuLLxpq+XJDOTmOTg0AAC7G6XcJBwAAAABn8rR46J83dFVk2waa9NEmZeQWlpufzinU9e+t09NXd9BzwzvJain/uY20NGn2bGn+fCkjwyKpTbl5UJA0ebI0ZYoUFubUlwIAAMQnLAEAAADUEqO6NVXy49Hq2yLQ7vylH3dr+NtrdOxcniQpM1MaM0bq1EmaMUPKyLC/bkaGFBtbetyYMaXnAQAA56GwBAAAAFBrtG3oq8RHh+jhwW3szn/ec1rhsQlasuaUIiOluLjKrR8XJ0VGSkeOXH5WAABgH4UlAAAAgFrF22rR66N7aPH4cPl7W2zm6Vn5un3JaqX6pUkyK71+aqo0YgSftAQAwFkoLAEAAADUSrf3DtWGx6PVo1mA7dCQjMid0ui1Ur38Sq+dmirdc48DQgIAABsUlgAAAABqrbDG/lrzWJTu6d/K7txoe1KakCA1P1PptePipF27LjchAAD4PQpLAAAAALVaPU+L3r2tl+bd3ltW0/afQEZAnnTbKilijyq7RXzOHAeFBAAAZSgsAQAAANQJY7u1lM9nUTJP+9vMDIsp44pt0k3rJe/CCq85b56Uk+PAkAAAgMISAAAAQN0QHy9l7asvLYqSuT3U7jFGh3RpfILUJKNCa549W7ouAABwHApLAAAAAHXC8eP/fVBolb7uI/P7HjKL7GwRD8qR7lgp9dqvimwRT093aEwAAOo8CksAAAAAdUJ29m+/M6Rf2kiLh8jM8LU51rCWyBi2Rbo+RfIsuui6WVkOjQkAQJ1HYQkAAACgTvC3vXSldCJI+iBa5q6mds8xOh8t3SLe6NwF1w0IcEw+AABQisISAAAAQJ3Q1H4nKeV7Sl/0lflTN5nFhs3YaHBeujNR6nbQ7ukhIQ4MCQAAKCwBAAAA1A1Dh0pBQReaGlJKO+njITLP+dhOPUtkjNgsXbtJsv5vi3hwcOm6AADAcSgsAQAAANQJvr7S5MmXOOhYsLRwqMy9TeyOje6HpDuTpODSC2JOnly6LgAAcBwKSwAAAAB1xpQpFTgoz0v6rL/MxM4yS2zHRuOs0utadjpSsfUAAEClUFgCAAAAqDPCwqTRoytypCGt6ygtGSQz29t26lUs44YUxf7yi/KLih2eEwCAuozCEgAAAECdMneu1L17BQ8+3Kh0i/iBRnbHc1YfUOTrK7X39HnHBQQAoI6jsAQAAABQpwQGSsuXV6K0zPGWlg6UubqjTNN2nHw4UxGxCVqWesyhOQEAqKsoLAEAAADUOaGhUlJSRbeHSzINaVVnDUkfoIa+XjbjzLwijZ6/QU98sVWFxXYufAkAACqMwhIAAABAnRQYKC1dKu3cKcXESEFB9o8LDpamT5fS0qSkD5po4/RoDWkTbPfY2IS9uuLNVTqUkeu84AAA1HJWdwcAAAAAAHcKC5NefVV64QVpxYpibdhwSOfPe8jPr0R9+7bUVVdZ5Ov7v+NbBNXTiocG6/++3qF/x++xWW/1gbMKfzVeC+8M14jOTVz4SgAAqB0oLAEAAABAkq+vNGKEqWbNTpc916tXC1nt/KvJ0+KhV27sqsi2DTT5403KyC0sNz+dU6jr3l2r/7u6o54dHiarhc1tAABUFP+rCQAAAABVdFP3pkp+PFp9WwTanb/44y4Nf3uNjp/Lc3EyAABqLgpLAAAAALgMbRv6KvHRIXpkSBu785/3nFaf2AT9tPuUa4MBAFBDUVgCAAAAwGXytlr02i09tHh8uPy9LTbz9Kx8XfPWav2/H9JUUmK6ISEAADUHhSUAAAAAOMjtvUO14fFo9WgWYDMrMaW/Lt+pG95bq1Pn892QDgCAmoHCEgAAAAAcKKyxv1ZPjdQ9/VvZnS/feVLhryZo1f4zLk4GAEDNQGEJAAAAAA7m62XVu7f10rzbe6uep+0/uw5n5umKN1fp1fg9Mk22iAMA8FsUlgAAAADgJHf3a6m1j0WpU2M/m1lRiak//GebRs9fr4zcQjekAwCgeqKwBAAAAAAn6t6svtZNi9YdfULtzj/fmq6I2AQlH85wbTAAAKopCksAAAAAcLIAH6s+uLOP3hzdQ14W23+G7TuToyGvrdSbK/ezRRwAUOdRWAIAAACACxiGoSmD22jV1CFq28DXZl5QXKJHP9uiuxalKCuvyA0JAQCoHigsAQAAAMCFwlsEKTkmWjd3b2p3/tGmo+o3M0Fbjp1zcTIAAKoHCksAAAAAcLGgep5aendf/XtUV1k9DJt52snzGjgrUfPXH3JDOgAA3IvCEgAAAADcwDAMxUS3V/zDg9Ui0MdmnltYons+3qR7Pt6knAK2iAMA6g4KSwAAAABwo0FtGihlerRGdm5idz5//SENei1JO09kuzgZAADuQWEJAAAAAG7WyM9b/7mnv/7fyM6ys0NcW45lqd/MBH286YjrwwEA4GIUlgAAAABQDXh4GHr66o764cFBahrgbTPPzi/WHR+k6JG4LcovKnZDQgAAXIPCEgAAAACqkSs6NFJKTLSubN/Q7nz2qv2KfH2l9p3OcXEyAABcg8ISAAAAAKqZpvV99N2Dg/TnYR1l2Nkinnw4U+Gx8fo89bjrwwEA4GQUlgAAAABQDVk8DD0/orO+uneAGvp62swz84p0y/z1+sN/tqqwuMQNCQEAcA4KSwAAAACoxkZ0bqKU6UM1uE2w3fmr8Xt15exVOpyR6+JkAAA4B4UlAAAAAFRzLYPq6aeHBmv60HZ256v2n1WfV+P17c4TLk4GAIDjUVgCAAAAQA3gafHQv27sps8m9VNQPdst4qdzCnXdu2v11+U7VFxiuiEhAACOQWEJAAAAADXITd2bKvnxaEW0CLSZmab0/37YpeFvrdbxc3luSAcAwOWjsAQAAACAGqZtQ18lPTpEDw9uY3f+057TCo9N0M+7T7k2GAAADkBhCQAAAAA1kLfVotdH99Di8eHy97bYzI9n5WvYW6v14o+7VMIWcQBADUJhCQAAAAA12O29Q7V+WrR6NAuwmZWY0l++2aEb3lurU+fz3ZAOAIDKo7AEAAAAgBquUxN/rZ4aqcn9W9qdL995UuGvJmj1/jMuTgYAQOVRWAIAAABALeDrZdV7t/XW3Nt7q56n7T/1DmfmaeibqxSbsEemyRZxAED1RWEJAAAAALXIpH4tteaxKHVq7GczKyox9cQX23Trgg3KyC10QzoAAC7N6u4AAAAAAADH6tGsvtZNi9aDn27WR5uO2sw/Sz2uTUcT9MnECEW0CLroWjk5Uny8dPy4lJ0t+ftLTZtKQ4dKvr5OegEAgDqNwhIAAAAAaqEAH6sW3RWu6HYN9fjnW1VQXFJuvu9Mjoa8tlIzbuqmBwe1lmEY5eZpadLs2dL8+VJGhu36QUHS5MnSlClSWJjTXgYAoA5iSzgAAAAA1FKGYWjK4DZaNXWI2jaw/ThkQXGJHo7bovEfblRWXpEkKTNTGjNG6tRJmjHDflkplT4fG1t63JgxpecBAOAIFJYAAAAAUMuFtwhScky0bune1O588cYj6j8zQT9sPqfISCkurnLrx8VJkZHSkSMOCAsAqPMoLAEAAACgDgiq56lP7+6rf4/qKquHYTPfefK8rp2fqFTzUJXWT02VRozgk5YAgMtHYQkAAAAAdYRhGIqJbq/4hwerRaCPzdy0lMgYsUkavkmyFlV6/dRU6Z57Lj8nAKBuo7AEAAAAgDpmUJsGSpkerRGdGtudGz0OSXcmScHZlV47Lk7atetyEwIA6jIKSwAAAACogxr5eevLewfohZGdZZi2c6NxljQ+QepU+QtTzpnjgIAAgDqLwhIAAAAA6igPD0OPD+oo328GyTzvbTM3vIpl3JAiXbVFshRXeN1586ScHEcmBQDUJRSWAAAAAFCHxcdL2dsbSe9HyzzY0O4xRp/90riVUv2KtZBnz5auCwBAVVBYAgAAAEAddvz4fx/k+EifDpK5uqPd44ymmdKEBKn9cbvz30tPd1BAAECdQ2EJAAAAAHVY9m/vq2Ma0qrOMpcOkJnraXOs4VMo4+b10tCtkkfJRdfNynJwUABAnUFhCQAAAAB1mL+/nSf3N5EWDpV5NNjuOUbfvdJtqyT/3AuuGxDgoIAAgDqHwhIAAAAA6rCmTS8wyKonfTxY5oZ2dsdG6NnSLeKtT9idh4Q4KCAAoM6hsAQAAACAOmzoUCko6ALDEg8pvpvMz/vKzLPajA3fAmnMWmnwDskwy54PDi5dFwCAqqCwBAAAAIA6zNdXmjz5EgftbiZ9EC0zPdBmZBiSMWiXdOtqyTdPUul6vr5OCAsAqBMoLAEAAACgjpsypQIHZfpJi4fI3NTG7thodbp0i3iLUxVbDwCAC6CwBAAAAIA6LixMGj26AgcWW6Qfe8j8MlxmgcVmbPjny7httZYc3KWSEtPOAgAAXBqFJQAAAABAc+dK3btX8OCdoaVbxE/auRW4If3lmx26ce46nT5f4NCMAIC6gcISAAAAAKDAQGn58kqUlmf9pQ8jZaa2tDv+ZscJhcfGa/X+M44LCQCoEygsAQAAAACSpNBQKSmpgtvDJanIKn3bW+Ene6me1fafl4cy8jT0zVWakbBXpskWcQBAxVBYAgAAAADKBAZKS5dKO3dKMTFSUJD944KDpenTpbQ0acOCVlozLUqdGvvZHFdUYmr6F1t164INysgtdG54AECtYHV3AAAAAABA9RMWJr36qvTCC1J8vJSeLmVlSQEBUkiINHSo5Ov7v+N7NKuvddOi9eCnm/XRpqM2632WelybjyXokwkRCm8R5LoXAgCocSgsAQAAAAAX5OsrjRxZsWMDfKxadFe4oto1VMznW1VQXFJuvvd0joa8vlKxo7rpwUGtZRiGExIDAGo6toQDAAAAABzGMAw9NLiNVk4dorYNfG3m+UUlejhuiyZ8uFHZ+UVuSAgAqO4oLAEAAAAADhfRIkgbHo/STd1C7M4/3HhE/WcmKvXYORcnAwBUdxSWAAAAAACnCPb1UtykfvrXjV1l9bDd/r3jRLYGzErUgvWH3JAOAFBdUVgCAAAAAJzGMAxNH9pePz88WC0CfWzmuYUlmvzxJt33yWblFha7ISEAoLqhsAQAAAAAON3gNg2UMj1aIzo1tjufu+6gBs1KUtrJbBcnAwBUNxSWAAAAAACXaOTnrS/vHaDnR3SSnR3i+uXYOfWdkaBPNh11fTgAQLVBYQkAAAAAcBkPD0N/Hham7x8cpJAAb5t5dn6xxn2QrKmfbVF+EVvEAaAuorAEAAAAALjclR0aaWNMtK5o39Du/I2V+xX1+krtO53j4mQAAHejsAQAAAAAuEXT+j767oGB+r+rO9qdbzicqYgZCfpi63EXJwMAuBOFJQAAAADAbawWD70wsrO+ure/Gvp62swzcgt187z1+uN/tqmwuMQNCQEArkZhCQAAAABwu5FdQpQyfagGtQ62O/93/B5dOXuVDmfkujgZAMDVKCwBAAAAANVCy6B6+vnhwYqJbmd3vmr/WYXHJui7nSdcnAwA4EoUlgAAAACAasPT4qF/j+qmuEl9FehjtZmfOl+gke+u1d+W71BxiemGhAAAZ6OwBAAAAABUOzd3b6bkmGiFhwbazExTeuGHXbr27TVKz8p3QzoAgDNRWAIAAAAAqqV2Df2U9OgQPTS4jd35it2n1OfVeMXvOeXaYAAAp6KwBAAAAABUWz6eFr0xuoc+vCtc/t4Wm/nxrHxdPWe1Xvpxl0rYIg4AtQKFJQAAAACg2hvXJ1Trp0Wre9MAm1mJKf35mx26ce46nT5f4IZ0AABHorAEAAAAANQInZr4a81jkZrUt6Xd+Tc7Tig8Nl5rDpx1cTIAgCNRWAIAAAAAagxfL6vmjuut927rpXqetv+kPZSRp+g3Vio2YY9Mky3iAFATUVgCAAAAAGqcyf1bac1jUQpr7GczKyox9cQX23Trgg3KyC10QzoAwOWgsAQAAAAA1Eg9mtXX+mnRGte7ud35Z6nH1XdGglIOZ7g2GADgslBYAgAAAABqrAAfqxbdFa43RveQl8X2n7h7T+doyOsr9dbq/WwRB4AagsISAAAAAFCjGYahhwa30cqpQ9S2ga/NPL+oRA8t3aIJH25Udn6RGxICACqDwhIAAAAAUCtEtAjShsejdFO3ELvzDzceUf+ZiUo9ds7FyQAAlUFhCQAAAACoNYJ9vRQ3qZ/+dWNXWT0Mm/mOE9kaMCtRC9YfckM6AEBFUFgCAAAAAGoVwzA0fWh7/fzwYLUI9LGZ5xaWaPLHm3TfJ5uVW1jshoQAgIuhsAQAAAAA1EqD2zRQyvRoXdupsd353HUHNWhWktJOZrs4GQDgYigsAQAAAAC1ViM/b3117wD9fUQn2dkhrl+OnVPfGQn6ZNNR14cDANhFYQkAAAAAqNU8PAz9ZViYvntgkEICvG3m2fnFGvdBsqZ+tkX5RWwRBwB3s7o7AAAAAAAArnBVx0ZKiYnWnR+kKH7vaZv5Gyv3a+2Bs/p4Ql+1beh70bVycqQVKwytX99QOTke8vUt0bFjhq66SvK9+KkAgEugsAQAAAAA1BnN6vvo+wcH6pnvduqlH3fbzDcczlTEjATNH9dbo7o1tZmnpUmzZ0vz50sZGRZJbcrNg4KkyZOlKVOksDCnvAQAqPXYEg4AAAAAqFOsFg/9v5Fd9NW9/dXA19NmnpFbqJvnrdefvtymwuISSVJmpjRmjNSpkzRjhpSRYX/tjAwpNrb0uDFjSs8DAFQOhSUAAAAAoE4a2SVEG6cP1cDWwXbn//p5j66es1obduYqMlKKi6vc+nFxUmSkdOSIA8ICQB1CYQkAAAAAqLNaBtXTzw8N1uPR7ezOk/ad0aA3EpSadaJK66emSiNG8ElLAKgMCksAAAAAQJ3mZfXQq6O6aendfRXoY3urh2KvAmnMWmnwTskwK71+aqp0zz2OSAoAdQOFJQAAAAAAkm7p0UwbHo9Wn9D6NjPDkIxBadKYNZJvfqXXjouTdu1yREoAqP0oLAEAAAAA+K/2jfy08tFIPTiotd250fqUNCFeCj1d6bXnzLncdABQN1BYAgAAAADwGz6eFv17ZE/V+6mPzAKLzdzwz5duWy312y2p4lvE582TcnIcGBQAaikKSwAAAAAAfic+XspJaSEtipJ5KsBmbniYMqK3Szevk3wKKrTm2bOl6wIALo7CEgAAAACA3zl+/L8PzgRIiyJlbm1h9zij/QlpQoLU9GyF1k1Pd1BAAKjFKCwBAAAAAPid7OzffFNklZb3lvltL5mFtv+MNurnSuNWSn326lJbxLOyHJsTAGojCksAAAAAAH7H3//3zxhSaivpwyiZZ/xsjjcspoyrtko3JktehRdcN8B2dzkA4HcoLAEAAAAA+J2mTS8wOFW/9LqWO5vZHRthx6TxiVLjTLvzkBAHBQSAWozCEgAAAACA3xk6VAoKusCwwFP6MkLmj91lFhs2YyP4vHRnktTjgH67RTw4uHRdAMDFUVgCAAAAAPA7vr7S5MkXO8KQNrWVFkfKzKxnO7WWyBj+izRyo+RZJKl0PV9f5+QFgNqEwhIAAAAAADumTKnAQelB0sJomXvs7/U2uh6R7kqUGmRVbD0AAIUlAAAAAAD2hIVJo0dX4MB8L2lZP5nxXWWW2Nki3jBb1rsTtebcIceHBIBaiMISAAAAAIALmDtX6t69Ikca0ob20seDZWb52EyLPYp19+JNemDJZuUWFjs8JwDUJhSWAAAAAABcQGCgtHx5RUtLSUcblG4R39/Y7vjdtQc1+LUk7TqZ7biQAFDLUFgCAAAAAHARoaFSUlIFt4dLUq63FDdAXc52ku0GcWnz0XPqOyNRSzYfdWRMAKg1KCwBAAAAALiEwEBp6VJp504pJkYKCrJ/XHCwNH26lLbT0Nb3wvTdgwPVxN/L5ris/CLdvjBZjy1LVUFRiXPDA0ANY3V3AAAAAAAAaoqwMOnVV6UXXpBWrCjWhg2HdP68h/z8StS3b0tddZVFvr7/O/7qjo21cfpQ3fFBshL2nrFZ7/WkfVp34Kw+nhCh1g18beYAUBdRWAIAAAAAUEm+vtKIEaaaNTtd9lyvXi1ktfOv7Gb1ffTDg4P0t2936uUVu23m6w5lKDw2QQvu6KMbuoY4MzYA1AhsCQcAAAAAwMmsFg+9eF0XfXlvfzXw9bSZn80t1Ki56/Tkl9tUVMwWcQB1G4UlAAAAAAAucl2XEKXERGtg62C781d+3qOr56zWkcxcFycDgOqDwhIAAAAAABdqFeyrnx8arGlRbe3OE/edUfirCfo+7aSLkwFA9UBhCQAAAACAi3lZPRR7U3d9endf1fexvfDlyfMFGvHOGj377U4Vl5huSAgA7kNhCQAAAACAm4zu0UzJj0erT2h9m5lpSn//Pk0j31mjE1n5bkgHAO5BYQkAAAAAgBu1b+SnlY9G6oGBre3Of9h1Sn1i45Ww57TdOQDUNhSWAAAAAAC4mY+nRXNu7amFd/aRn5fFZn7sXL6ufmu1/rFit0rYIg6glqOwBAAAAACgmrgrvIXWTYtSt5AAm1lxiamnv96um+at0+nzBW5IBwCuQWEJAAAAAEA10iUkQGsei9TEiBZ2519tP6GI2AStPXDWxckAwDUoLAEAAAAAqGb8vK2aN6633hnbSz5W23+6H8zIVfSbKzUrca9Mky3iAGoXCksAAAAAAKohwzB074BWWv1YpDo28rOZFxabevzzrbrt/WRl5ha6ISEAOAeFJQAAAAAA1Viv5oFa/3iUxvZsZne+dMsx9ZuZqE1HMl2cDACcg8ISAAAAAIBqrr6Ppz6aEKFZN3eXp8Wwme8+dV6DXkvSO2sOsEUcQI1HYQkAAAAAQA1gGIYejWyrpEci1Tq4ns08v6hED376i+5evFHZ+UVuSAgAjkFhCQAAAABADdKvVZCSY6J1Q5cQu/MPUo5owMxEbTue5eJkAOAYFJYAAAAAANQwDXy9tGxyP/3j+i6yeNhuEd9+Ilv9Zybqg+TDbkgHAJeHwhIAAAAAgBrIw8PQH6/soJ8eGqTm9X1s5jmFxZq4eKMeWLJZuYXFbkgIAFVDYQkAAAAAQA0W2bahUmKidU1YI7vzd9ce1JDXkrT71HkXJwOAqqGwBAAAAACghmsS4K2v7xuoZ4d3kmG7Q1ybjp5TRGyCPt181PXhAKCSKCwBAAAAAKgFLB6G/jY8TN89MFBN/L1s5ln5RbptYbIe/zxVBUUlbkgIABVDYQkAAAAAQC1ydcfGSokZquh2DezOZyXuU/QbK3XgTI6LkwFAxVBYAgAAAABQyzQP9NEPDw7SU1d1sDtfdyhD4bEJ+nJbuouTAcClUVgCAAAAAFALWS0eevG6LvrPPf0VXM/TZn42t1Cj5q7TU19tV1ExW8QBVB8UlgAAAAAA1GLXdw1RSky0BrQKsjv/50+7dfWc1TqamefaYABwARSWAAAAAADUcq0b+Cr+4SGaFtXW7jxx3xn1eTVeP6SddHEyALBFYQkAAAAAQB3gZfVQ7E3dtWRihOr7WG3mJ88X6Np31ui573aquMR0Q0IAKEVhCQAAAABAHTKmZ3NteDxavZvXt5mZpvTcd2ka+c4ancjKd0M6AKCwBAAAAACgzunQyE+rpkbqgYGt7c5/2HVK4bEJStx72sXJAIDCEgAAAACAOsnH06I5t/bUwjv7yM/LYjM/ei5PV81ZrX/+tFslbBEH4EK2F60AAAAAAAB1xl3hLRQeGqix72/QtvTscrPiElNPfbVdSXvPaP4dvdXA1+uia+XkSPHx0vHjUna25O8vNW0qDR0q+fo681UAqE0oLAEAAAAAqOO6hARo7WNRejhuixYmH7aZf7k9XRGxCfp4QoT6twq2maelSbNnS/PnSxkZtusHBUmTJ0tTpkhhYQ6PD6CWYUs4AAAAAACQn7dV88f11jtje8nHalsXHDibq6g3Vuq1pH0yzdIt4pmZ0pgxUqdO0owZ9stKqfT52NjS48aMKT0PAC6EwhIAAAAAAEiSDMPQvQNaafVjkerYyM9mXlhsatqyVN2+MFnb9xYqMlKKi6vcz4iLkyIjpSNHHBQaQK1DYQkAAAAAAMrp1TxQ6x+P0tiezezOP/3lmPq8kqjU9Kp9VDI1VRoxgk9aArCPwhIAAAAAANio7+OpjyZEaNbN3eVpMWzmBX7npTuTpB4HJFX+LuKpqdI99zggKIBah8ISAAAAAADYZRiGHo1sq8RHhqh1cD3bubVExvBfpBGbJGtRpdePi5N27XJAUAC1CoUlAAAAAAC4qP6tgpUcE60buoTYnRvdDkt3JUoNsiq99pw5l5sOQG1DYQkAAAAAAC6pga+XPry9n3zWdZFZYrtF3GiULY1PlLocrtS68+ZJOTmOSgmgNqCwBAAAAAAAFZKYaCg3sYP0ySCZWT42c8OzWMZ1G6VhmyVLcYXWPHtWio93dFIANRmFJQAAAAAAqJDjx//74EhDaWG0zAON7B5n9DpYekOeoPMVWjc93UEBAdQKFJYAAAAAAKBCsrN/802ut7R0oMxVYTLt3CTcaHJOGp8gdTx6yXWzKn/pSwC1GIUlAAAAAACoEH//3z1hGtLqTtKnA2XmeNkcb3gXyRiVLF2RKnmUXHDdgAAHBwVQo1FYAgAAAACACmna9AKDg42l94fKPNzA7tiI2CeNWykF2L+7Toj9m48DqKMoLAEAAAAAQIUMHSoFBV1geN6n9GY86zrYHRvNMqQJCVLb8hesDA4uXRcAfkVhCQAAAAAAKsTXV5o8+SIHmB5SYheZn/WXmetpMzbqFcoYvU6K3C4ZpVvEJ08uXRcAfkVhCQAAAAAAKmzKlAoctDek9C7ix4Lsjo0Bu6XbVkt+eRVbD0CdQmEJAAAAAAAqLCxMGj26Agdm+UofDZGZ3Nbu2GhxRt73x+uAedKxAQHUeBSWAAAAAACgUubOlbp3r8CBJR7Sz91lfhEhM99qMy6wFOjad9bo79+lqbjEdHxQADUShSUAAAAAAKiUwEBp+fIKlpaStKu59EG0zBP1bUamKT373U5d9+4ancjKd2xQADUShSUAAAAAAKi00FApKamC28MlKcNPWhypNuda2R1/n3ZK4bEJStp32nEhAdRIFJYAAAAAAKBKAgOlpUulnTulmBgpKMj+ccHB0vTpUto2i/a+3Uvv39FHvp4Wm+OOnsvTlbNX65WfdquELeJAnWV7AQkAAAAAAIBKCAuTXn1VeuEFKT5eSk+XsrKkgAApJEQaOlTy9f3f8eMjWig8NFC3LdygbenZ5dYqLjH15FfblbTvjOaN660Gvl4ufjUA3I3CEgAAAAAAOISvrzRyZMWO7do0QGsfi9JDS3/RBylHbOb/2ZauiNgEfTwhQv1bBTs4KYDqjC3hAAAAAADALfy8rVpwRx+9PbanvK22FcWBs7mKemOlXkvaJ9NkizhQV1BYAgAAAAAAtzEMQ/cNaK3VUyPVoZGfzbyw2NS0ZakatzBZ5/IK3ZAQgKtRWAIAAAAAALfrHRqo9dOidGvPZnbnS345pn4zErX5aKaLkwFwNQpLAAAAAABQLQTW89THEyI08+bu8rQYNvNdp85r0Kwkvbf2IFvEgVqMwhIAAAAAAFQbhmFoamRbJT4yRK2D69nM84pKdP+SzZr80Sadzy9yQ0IAzkZhCQAAAAAAqp3+rYKVHBOtG7qE2J2/n3xYA2Ylant6louTAXA2CksAAAAAAFAtNfD10rLJ/fTy9V1k8bDdIr4tPVv9ZyZqUcphN6QD4CwUltXc999/r7vvvlt9+/ZVz549de211+qVV17R2bNn3R0NAAAAAACn8/Aw9KcrO2jFlEFqXt/HZn6+oFgTPtyoBz/drLzCYjckBOBoFJbVWGxsrB599FGtWbNGeXl5slqt2r9/v959912NGjVK+/fvd3dEAAAAAABcIqpdQ6XERGtYx0Z25++sOajBryVp96nzLk4GwNEoLKupr7/+WnPmzJFhGPrDH/6gDRs2KCUlRUuWLFG7du104sQJPfrooyou5q9HAAAAAIC6oUmAt765f6CeGR4mw3aHuDYdPae+MxK09Jejrg8HwGEoLKuhkpISzZo1S5I0ceJE3X///fLxKf3Ye8+ePTVv3jz5+vpq165dWrZsmRuTAgAAAADgWhYPQ88M76Rv7x+oxn5eNvNzeUUa+36yHv88VQVFJW5ICOByUVhWQ2vWrNG+ffskSZMnT7aZN23aVDfddJMkUVgCAAAAAOqkYWGNtXH6UEW1bWB3Pitxn4a+uVIHz+a4OBmAy0VhWQ2tXbtWktS2bVs1a9bM7jGDBw+WJCUnJysnh//nCwAAAACoe5oH+ujHKYP0pys72J2vPZih8NgEfbUt3cXJAFwOCstqaNeuXZKk9u3bX/CY1q1bS5KKi4u1d+9el+QCAAAAAKC6sVo89PL1XfTFPf0VXM/TZn4mp1A3zl2np7/erqJitogDNQGFZTWUnl76l5+mTZte8JiQkJCyxydPnnR6JgAAAAAAqrMbuoYoJSZa/VsG2Z3/Y8VuDXtrtY5m5rk2GIBKo7CshrKzsyVJ9erVu+Axv96E57fHAwAAAABQl7Vu4KuER4bosai2ducJe88oPDZeP+7igz9AdUZhWQ0VFRVJkjw9bT/K/isvr//dCa24uNjpmQAAAAAAqAm8rB6acVN3fTIhQgHeVpv5iewCDX97jf7+XZqKS0w3JARwKRSW1dCvn54sLCy84DEFBQVljy9WbAIAAAAAUBfd2qu5kmOi1at5fZuZaUrPfrdT1727Riey8t2QDsDFUFhWQ35+fpKkvLwLX1cjNze37LG/v7/TMwEAAAAAUNN0aOSnVVMjdf/AVnbn36edUnhsgpL2nXZxMgAXQ2FZDf16s50TJ05c8Jhfb8wjlb8BDwAAAAAA+J96nha9dWsvvX9HH/l6WmzmR8/l6crZq/XKT7tlmmwRB6oDCstqKCwsTJK0b9++Cx5z4MABSZLValWbNm1cEQsAAAAAgBprfEQLrZsWpS5NbHcpFpeYevKr7bp53nqdySmwczYAV6KwrIYGDBggSdq1a5dOnTpl95hVq1ZJknr16lXujuEAAAAAAMC+rk0DtG5alMaHh9qd/2dbuiJiE7T+YIZrgwEoh8KyGoqIiFDTpk1lmqbefvttm/mxY8f0xRdfSJLuuOMOV8cDAAAAAKDG8vO2asEdffTWrT3lbbWtRQ6czVXkG0l6PWkfW8QBN6GwrIY8PDw0ffp0SdKCBQv02muvKScnR5L0yy+/aPLkycrJyVFYWJiuu+46d0YFAAAAAKDGMQxD9w9srdVTI9WhkZ/NvLDY1GPLUjVuYbLO5RW6ISFQt1FYVlM33XSTxo8fL0l6/fXX1a9fP0VERGjs2LHat2+fmjRporfeeksWi+0FgwEAAAAAwKX1Dg3U+mlRGtOjmd35kl+Oqd+MRG0+muniZEDdRmFZjf31r3/VG2+8ocGDB8vPz0/5+flq0aKFJkyYoGXLlql58+bujggAAAAAQI0WWM9Tn0yM0Mybu8vTYtjMd506r0GzkvTe2oNsEQdcxOruANXRzJkz9eabbyo0NFQrVqyo1Ll79uzRRx99pLVr1+rw4cMqKipSkyZNFBYWphtvvFHXXHONrNaK/9c+bNgwDRs2rLIvAQAAAAAAVJBhGJoa2Vb9Wwbp9oXJOpiRW26eV1Si+5dsVuLe03pjdA/5eVeuTsnJkVasMLR+fUPl5HjI17dEx44ZuuoqydfXka8EqB0oLH/nl19+0TvvvFOlc1977TXNmTNHRUVF5Z4/dOiQDh06pB9//FHdu3fXK6+8onbt2jkiLgAAAAAAcJABrYOVMj1ady/eqK+2n7CZv598WBsOZ2jJxL7qEhJwyfXS0qTZs6X586WMDIukNuXmQUHS5MnSlClSWJhDXgJQK7Al/DcOHTqkhx9+WIWFlb+g7gsvvKDXX3+9rKy0Wq3q1q2b+vbtq+Dg4LLjUlNTNWHCBB05csRhuQEAAAAAgGM08PXS55P76+Xru8jiYbtFfFt6tvrPTNSilMMXXCMzUxozRurUSZoxQ8rIsH9cRoYUG1t63JgxpecBoLAsk5aWprvuuksnT56s9LnLly/XwoULy76/9tprFR8fr7i4OP3/9u47Oqpq/f/4Z1JJCCS0BASkJ0gRAlKkYwFEsQCKInJFRSwggvcieC9FwC8qF1AsKEpT0FBVVBBFpPeiAkJoEgJKaAkJCSFtfn/kx7kzmcxkJgnJTPJ+rcVa58w+s8/ek4eZ5JldFi1apE2bNmnixIkKCAiQJF24cEHDhg1j7QsAAAAAANyQl5dJo7rW189Dble18v425clpmXrii30asuw3paZnWpWdOSN16CCtWOHaPVesyH4e45sApoRLkr755huNHz9eV69ezfviHNLT0/XWW28Z5127dtU777wjL6//5YJ9fX3Vr18/Va9eXUOGDFFGRoYOHjyo7777Tr169SqUPhSHzMzMvC9CqZUzPogXOEK8wFXEDFxBvMAVxAtcQbyUfO1qBWvXS+01MOo3rTt20ab8k+2ntDMmXlEDIlWvUlklJEjdu3vr4EHbkZnOOHBA6t7drA0bMhUcXMDGw6OV9vcXk7kUD/OLi4vT9OnT9fXXX+da7symO6tWrdKIESMkZU8D/+mnnxzu3j1x4kQtWrRIktS4cWOtcPUrl2K0b98+ZWVlFXczAAAAAAAoUplZZs05mKRPD1xRbkmUsr4mjWsTotUzG+uXXyrkcoVrunaN19SpJwpcD1CUvLy8FBkZWTh1FUotHmjWrFnq0aOHVbKybt26eu6551yqZ9WqVcZxu3btHCYrJalfv37G8cGDBxUbG+vS/QAAAAAAQNHy9jLp2abl9V6Xiqrgb5tKSU4369XN8frFfEbyKvhAn19+qaBTp2ynogOlRalNWM6ZM0cpKSnG+cMPP6ylS5eqVq1aTtdhNpu1Y8cO47x9+/Z5PiciIkJVqlQxzvMawQkAAAAAANxDm2pltLBHFTWv4pdruanln1K/LVK5lFzLXbF8eZW8LwJKqFK/hmWTJk306quvqnXr1i4/98yZM0pMTLSqyxkRERHG5j779+93+b7uokmTJvL29i7uZsBNZWZm6sCBA8Y58QJHiBe4ipiBK4gXuIJ4gSuIl9Kra+ssjfvxqP67wXbatummBJmf2CitjpT+DMv3PVatCtWHH1ZSYGBBWgpP5SnvL/v3778hyweW2oRl69at1bt3b915550ymfK3GO7Jkyetzm+++WannlejRg3j+NSpU/m6tzvw9vaWj0+pDSG4iHiBK4gXuIqYgSuIF7iCeIEriJfSw8dHertXY3WsW0lPRv2q+KvpVuWmgHSp906Zd9SXtkRIZtcnuMbHm7Rli4/uuaewWg1PVtreX0rtlPAPP/xQd911V76TlZKMUZJS9sKilStXdup5llPCLesAAAAAAACeo1fjqtozopPqBITkWm5qc0x6eLtUNjVf9cfFFaBxgAcrtQnLwnD58mXjuGzZsvLycu7lDAoKyrUOAAAAAADgWWpXDNTQKu1l3lsn13JTzYvSExukmhdcrjspqaCtAzwTCcsCuHbtmnFcpkwZp5/n5/e/xXnT0tIKtU0AAAAAAKBohZTzkn5pIvO3LWW+Zjtt11Q2TXp4m9T2iCSz0/WWK1eIjQQ8CAnLAkhP/98aFc6OrpRkteZARkZGobYJAAAAAAAUrapV///BkZukhR1lPlfe5hqTSTK1j5b67JACrtmU5yYs/3v2AB6NhGUBWO7O5MqOSJZJSl9f30JtEwAAAAAAKFqdO0shIf//JCFI+rKDzL/nvjGvqfZ56YmNUvWLDuusUCG7XqA0ImFZAAEBAcax5fTwvFhOA/f39y/UNgEAAAAAgKIVGCgNGmTxQIa39FMzmVc1lznd2+Z6U7lU6ZFt0m3HZW+K+KBB2fUCpREJywIIDg42jpOTk2U2O7cOxZUrV4zjEOMrGAAAAAAA4Kmeey6XBw/VlBZ1lPlikE2RycssU+c/pAd2Sf62+1vkWh9QSpCwLIAwi8UkMjMzFR8f79Tzzp8/d9pSmQAASgBJREFUbxxXrly50NsFAAAAAACKVni41Lt3LgUXy2UnLf+onuvzTPXjsqeIhyUYj/XuLTVocGPaCXgCEpYFUKtWLavz2NhYp553+vRp47hOnTqF2iYAAAAAAFA85s6VmjTJpSDdR1odKfOPt8qcYZuKMQVflR7dIjX/U42bmDV37o1vK+DOSFgWQPXq1a2mdB86dMip5x0+fNg4btiwYWE3CwAAAAAAFIPgYOmHH+wkLWWS9tfK3pAn3nZxSpNPlkx3HlDdYXtl8k+/4W0F3BkJywJq06aNcbx169Y8rz98+LAuXLhgnLdt2/aGtAsAAAAAABS96tWlzZvtTA+XpHPB0sJOMh+plmvxd0f+Uqt3Num3vy7fuEYCbo6EZQF169bNOP7ll18UFxfn8Povv/zSOK5Xr54iIiJuWNsAAAAAAEDRCw6Wli+XoqOlESMkm/1203ylb1sqYHtjeZlNNs8/eiFZt8/crDk7Tjm9wS9QkpCwLKBu3bopNDRUkpSWlqbRo0crIyMj12s3bdqkpUuXGudPPPFEkbQRAAAAAAAUvfBwafp06cwZ6dtvMzV+/En985+nNH78SX37bZbO/1hXW15qr5tDAmyem5qRpcFLf9NTi39V8rXc8wxASUXCsoD8/Pw0cuRI43zr1q0aPHiw1QY8GRkZWrJkiYYNG6bMzExJUnh4uB5++OEiby8AAAAAAChagYFSjx5m9ep1UY8+el69el1Ujx5mBQZKbWpV0J4RnXTvLaG5PnfB7tNqO3OzDsUlFXGrgeLjU9wNKAkeeugh7du3T4sXL5aUnbTs1q2bIiIiFBQUpOPHj+vSpUvG9SEhIXr33Xfl48PLDwAAAABAaVeprJ++GdRaU9cf139+OKzMLOtp4AfjktT63U36uO+t6t+iRjG1Eig6jLAsJK+//rqee+45+fr6SpKysrJ06NAh7dq1yypZWa9ePS1cuFB169YtrqYCAAAAAAA34+Vl0qt31NfPQ25XtfL+NuXJaZka8MU+Pb/8d6WmZxZDC4GiQ8KykJhMJo0YMULffPONnnrqKYWHh6t8+fLy9fVV5cqV1bFjR73xxhv6+uuv1aBBg+JuLgAAAAAAcEOd6lXSvhGddWeDyrmWf7wtRu3f36zjF5KLuGVA0WFOcg69e/dW79698/38evXq6dVXX9Wrr75aiK0CAAAAAAClRWg5f/0wuK0m/XREk9YeUc6NwvedSVTLdzZqbr/m6t20WvE0EriBGGEJAAAAAADgZry9TJrQPUI/DG6rKmX9bMoTUzPUd8FujfjmgNIysoqhhcCNQ8ISAAAAAADATd0dXkV7R3ZShzoVcy1/d9Of6jJrq07FpxRxy4Abh4QlAAAAAACAG6seHKCfn7td/+pSL9fy7THxajFjo1YdiivilgE3BglLAAAAAAAAN+fr7aW37mukbwa1UoUAX5vySynpum/OTr226pAyMpkiDs9GwhIAAAAAAMBD9GpcVXtGdFKrmiG5lr+57pju/ni7/k5MLdqGAYWIhCUAAAAAAIAHqV0xUBtfbKehHerkWr7hxEVFTt+gdUcvFHHLgMJBwhIAAAAAAMDD+Pt4a+aDTbT4iZYq5+9jU37uSpq6zd6mST8dUVaWuRhaCOQfCUsAAAAAAAAP9XCzm7Tr5Y66tVp5m7IsszR+TbR6frpD569cK4bWAflDwhIAAAAAAMCDhVcJ0raXOujpNjfnWv7jkfNqMWOjtvx5qYhbBuQPCUsAAAAAAAAPF+DrrU8ebqb5jzZXoK+3TfmZy6nqMmur/rv+uMxmpojDvZGwBAAAAAAAKCEG3lZTO4Z3VMPQIJuyzCyzRn33hx6av0vxKWnF0DrAOSQsAQAAAAAASpDGVctp5/COerxF9VzLVx6MU8sZG7U7NqFoGwY4iYQlAAAAAABACRPk76PPHovUR31vlb+PbfrnZPxVdXh/iz7Y8idTxOF2SFgCAAAAAACUQCaTSc+2raWtwzqoXqVAm/K0zCwN++qA+i/aq6TUjGJoIZA7EpYAAAAAAAAlWGT1YO1+uZN6N62aa/niX/9Sq3c36ve/Eou4ZUDuSFgCAAAAAACUcMEBvlo68DbNeKCxfLxMNuVHzier7cxNmrvzVDG0DrBGwhIAAAAAAKAUMJlMGt6xrja+2F41Q8rYlKdmZOmZJb/pqahflZLGFHEUHxKWAAAAAAAApUjbWhW0d0Rn9WwYmmv5/N2xajtzsw6fSyrilgHZSFgCAAAAAACUMpXK+mnlU631fz0bKpcZ4jpwNkmt3tmkL/edKfrGodQjYQkAAAAAAFAKeXmZNPqOBvr5udtVrby/TXlyWqYeX7RXzy//XanpmcXQQpRWJCwBAAAAAABKsc71KmvviM66s0HlXMs/3hajDu9v0YmLyUXcMpRWJCwBAAAAAABKubBy/vphcFuNvTtcplymiO89c1ktZ2zUV/v/LvrGodQhYQkAAAAAAAB5e5n0evcIrX6mjSqX9bMpv5yaoT4LduuVlQeVnplVDC1EaUHCEgAAAAAAAIZuEaHaN7KT2teukGv5jI0n1OXDrYpNuFrELUNpQcISAAAAAAAAVqoHB2jd8+30ry71ci3fFhOvFtM3aPWhuCJuGUoDEpYAAAAAAACw4evtpbfua6SvB7VSSICvTfnFlHTdO2en/r36kDKYIo5C5FPcDQAAAAAAAID7ur9xVe0d0Un9Pt+jXbEJNuVTfj6mbSfjtejxFqpWvozT9aakSBs2SGfPSleuSEFBUtWqUufOUmBgIXYAHoeEJQAAAAAAAByqXTFQG19sp399d0jvb/7Tpnz98YtqMWOjvni8hbrWr+ywriNHpFmzpPnzpYQE2/KQEGnQIOm556Tw8EJpPjwMU8IBAAAAAACQJ38fb818sImiBrRUOX/bMXBxSdd098fbNHntEWVlmW3KL1+W+vSRIiKkd97JPVkpZT8+Y0b2dX36ZD8PpQsJSwAAAAAAADjtkeY3adfLHXVrtfI2ZVlmadwP0bp3zg6dv3LNePzMGalDB2nFCtfutWJF9vPOnCloq+FJSFgCAAAAAADAJeFVgrTtpQ56us3NuZaviT6vFjM2auvJS0pIkLp3lw4cyN+9DhyQevRgpGVpQsISAAAAAAAALgvw9dYnDzfT/EebK9DX26b8zOVUdflwqzqNOK6DB22niLviwAHpqacKVAU8CAlLAAAAAAAA5NvA22pqx/COahgaZFOWkWXWgUp/SA/skvzTCnSfFSuko0cLVAU8BAlLAAAAAAAAFEjjquW0c3hH9Y+snmu5qX6cNGCTFJZQoPt89FGBng4PQcISAAAAAAAABRbk76PP+0fqo763yt/HNuVkCkmRHt0iNTspKX9TxOfNk1JSCtZOuD8SlgAAAAAAACgUJpNJz7atpS1D26tqQKBtuU+WTHftl+7dK/lmuFx/fLy0YUNhtBTujIQlAAAAAAAAClWLGiH6d61OMh+pmmu5qeFf0oCNUuVEl+uOiyto6+DuSFgCAAAAAACg0GVd9ZW+vU3mdY1lzjTZlJsqJkv9N0mNT7lUb1JSYbUQ7oqEJQAAAAAAAApdUJAkmaR9daXF7WVOLGNzjck3S6Yev0ndf5V8nJsiXq5coTYTboiEJQAAAAAAAApdVcvZ4H9XkD7vLPOJ0FyvNTWJlfpvlirmPXwyLKyQGgi3RcISAAAAAAAAha5zZykkxOKBVD/pq9Yyb2ooc5bt9aYqSdLjm6SGZ+zWWaFCdr0o2UhYAgAAAAAAoNAFBkqDBuV81CTtbCAtvV3mK/42zzH5Zcp0717pzt8l70yb8kGDsutFyUbCEgAAAAAAADfEc8/ZKThdOXuKeEzlXItNzWOkx7ZIwcnO1YcShYQlAAAAAAAAbojwcKl3bzuFKf7S8rYyb2sgs9m22BR2WRqwUar/t6Tseho0uHFthfsgYQkAAAAAAIAbZu5cqUkTO4Vmk7S1obS8jcwpfjbFpjIZMj2wW5X7HNTHn+Sy8CVKJBKWAAAAAAAAuGGCg6UffnCQtJSkmFDp804yn6mQa/HF2if0wKKtik24emMaCbdCwhIAAAAAAAA3VPXq0ubNDqaHS9KVAGlJO5l31cu1eFtMvFpM36DVh+JuTCPhNkhYAgAAAAAA4IYLDpaWL5eio6URI6SQkFwuyvJShf2NdL+5lcr7+doUX0xJ171zdurfqw8pI5Mp4iWVT3E3AAAAAAAAAKVHeLg0fbo0ebK0YYMUFyclJUnlyklhYVLnzlJgYFX9ebGT+n2+W7tPX7apY8rPx7TtZLwWPd5C1cqXKYZe4EYiYQkAAAAAAIAiFxgo3XOP/fI6lQK1aWh7/fPbP/TBlpM25euPX1SLGRu1qH8L3dGg8o1rKIocU8IBAAAAAADglvx9vPXeQ0315YAWCvL3timPS7qmbrO3afLaI8rKMhdDC3EjkLAEAAAAAACAW+vXvLp2v9xJTauVsynLMkvjfojWvXN26ELytWJoHQobCUsAAAAAAAC4vfAqQdr+Ukc91frmXMvXRJ9X5PSN2nryUhG3DIWNhCUAAAAAAAA8QoCvtz59pJnm9WuuAF/btNaZy6nq8uFWTVt/XGYzU8Q9FQlLAAAAAAAAeJR/tKqpHS91VMPQIJuyjCyz/vXdH+o9f5fiU9KKoXUoKBKWAAAAAAAA8DhNqpXXzuEd9Vhk9VzLvzkYp9ve2aQ9pxOKtmEoMBKWAAAAAAAA8EhB/j5a2D9Ss/o0lZ+3bZrrz0spav/eFn245SRTxD0ICUsAAAAAAAB4LJPJpCG319bWYe1Vt1KgTXlaZpaGfrVfjy/aq6TUjGJoIVxFwhIAAAAAAAAer0WNEO1+uZMealI11/KoX/9Sq3c3av/fiUXcMriKhCUAAAAAAABKhJAAXy37x22afn9j+XiZbMqPnE9W25mbNH9XbDG0Ds4iYQkAAAAAAIASw2Qy6eVOdbXxxfaqGVLGpvxqepaeWvyrnor6VSlpTBF3RyQsAQAAAAAAUOK0rVVBe0d01j0NQ3Mtn787Vm1nblb0uStF3DLkhYQlAAAAAAAASqRKZf307VOt9cY9DZXLDHEdOJukVu9uVNS+M0XfONhFwhIAAAAAAAAllpeXSWPubKCfn7tdVcv525RfuZap/ov26oXlv+taRmYxtBA5kbAEAAAAAABAide5XmXtG9lZd9SvnGv5R9ti1OH9LTpxMbmIW4acSFgCAAAAAACgVAgr5681z7bVf+5qIFMuU8T3nL6sljM26usDfxd942AgYQkAAAAAAIBSw9vLpIk9GmrVM21UuayfTfnl1Az1nr9br6w8qPTMrGJoIUhYAgAAAAAAoNTpHhGqvSM6qX3tCrmWz9h4Ql0+3KrYhKtF3DKQsAQAAAAAAECpVCMkQOueb6dXOtfLtXxbTLxaTN+gHw6fK+KWlW4kLAEAAAAAAFBq+Xp7aWqvRvrqyVYKCfC1Kb+Ykq575+zQf1YfVgZTxIsECUsAAAAAAACUeg80qao9L3fSbTWCbcrMZun/fj6qbrO362xiajG0rnQhYQkAAAAAAABIqlMpUJuGtteL7WvnWr7++EVFztioX45dKNqGlTIkLAEAAAAAAID/z9/HW+891FRfDmihIH9vm/K4pGu6++NtemPtEWVlmYuhhSUfCUsAAAAAAAAgh37Nq2v3y53UtFo5m7IsszT2h2jdN2eHLiRfK4bWlWwkLAEAAAAAAIBchFcJ0vaXOmpQ65q5lv8QfV4tpm/U1pOXirhlJRsJSwAAAAAAAMCOAF9vzXmkueb1a64AX9tU2unLqery4VZN33BcZjNTxAsDCUsAAAAAAAAgD/9oVVM7XuqoiCplbcoyssz657d/qPf8XUq4ml4MrStZSFgCAAAAAAAATmhSrbx2vdxJj0VWz7X8m4Nxajljo/acTijahpUwJCwBAAAAAAAAJwX5+2hh/0h92Lup/LxtU2t/XkpR+/e2aNbWk0wRzycSlgAAAAAAAIALTCaTnmtXW1uHtVfdSoE25WmZWXpxxX49vmivklIziqGFno2EJQAAAAAAAJAPLWqEaPfLnfRQk6q5lkf9+pdavbtR+/9OLOKWeTYSlgAAAAAAAEA+hQT4atk/btO0+xvJx8tkU37kfLLaztykhXtOF0PrPBMJSwAAAAAAAKAATCaTRnSqpw0vtFON4DI25VfTszRo8a/aeSq+GFrneUhYAgAAAAAAAIXg9toVtXdkJ93TMNSmLDPLrDXR54uhVZ6HhCUAAAAAAABQSCqX9de3T7XW5HsaKucM8YgqQcXTKA/jU9wNAAAAAAAAAEoSLy+TXruzgdrXrqApPx/T0QvJGnhbDT3crFpxN80jkLAEAAAAAAAAboDO9Sqrc73Kxd0Mj8OUcAAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZMZrPZXNyNgGfYs2eP1bmXF/luOJaVlWUcEy/IC/ECVxEzcAXxAlcQL3AF8QJXEC9whSfEi2UbJally5aFUq9PodSCUilnUAKOEC9wBfECVxEzcAXxAlcQL3AF8QJXEC9wRWmLF/dMzwIAAAAAAAAolRhhiXxz1+HIAAAAAAAAuPFu1MhP1rAEAAAAAAAA4DYYIgcAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNvwKe4GwNbx48cVFRWlHTt26PTp08rIyFBoaKjCw8PVq1cv3X333fLxKfwf3d9//62oqCht3rxZMTExSk1NVZUqVVS3bl317NlTPXv2VEBAgEt1/v7771q6dKl27dqluLg4mc1mhYWFqXHjxnrggQfUqVMnmUwmp+szm81au3atVq5cqf379+vixYsKCAhQWFiY2rZtqz59+qhhw4audt2jES+uSUtL03333aeYmBgNHTpUw4YNK1B9noZ4sS8lJUXffPONNm/erEOHDik+Pl4ZGRkKCQlReHi42rdvr759+6p8+fKudt9jES/2JSUlafny5Vq/fr2OHDmixMREBQcHq1q1aurUqZPuv/9+1a5d28WeezbixXWXLl3Sfffdp4sXL0qSoqOjC1ynJyFmcjdkyBCtX7/epfvffvvtmj9/vkvP8TTEi2Pnzp3TypUrtX79ep06dUqXLl1SmTJlVKNGDbVu3Vr9+vVTvXr1XKrTkxEv/zN69Gh99dVXBepX69at9fnnnxeoDndGvNiXkZGh77//XmvXrtWBAwd06dIlmUwmVapUSc2aNVPPnj115513FsrvRTmZzGazudBrRb699957+uijj5SRkWH3miZNmmjq1KmqW7duod03KipKb775pq5evWr3mtq1a+vtt99Ws2bN8qwvPT1dkyZN0uLFix1e16FDB02ZMkWhoaF51hkXF6cRI0Zoz549dq8xmUx68sknNXLkSPn5+eVZp6cjXlz3xhtv6LPPPpOkUpewJF7sW7VqlV5//XUlJCQ4vC4oKEhjxoxR375986zT0xEv9q1Zs0bjxo1zGC9eXl4aNGiQhg8fLn9//zzr9HTES/68/PLLWr16tXFemhKWxIx9HTt21Llz5/K8zlJJT1gSL47NmzdPM2fOVEpKit1rvLy89Mwzz2jEiBHy8irZEy2JF2skLB0jXuw7fPiwXn75Zf35558Or2vatKlmzJihmjVr5lmnK0hYupHJkydbvQn4+PgoIiJCAQEBOn78uOLj442yypUra8mSJapevXqB7zt//nxNmTLFODeZTGrQoIFCQkJ08uRJq1+YAgICtGjRIjVu3NhufWazWUOHDtXatWuNx/z9/RURESFvb28dPXpUV65cMcrq1q2rxYsXOxy1dOnSJfXr10+nTp0yHgsJCVH9+vV19epVRUdHW73B3HvvvZo+fbrzL4IHIl5cH+W2aNEiTZw40TgvTQlL4sV+vORsoyRVrFhRtWvXlre3t06ePKnz589blQ8bNkxDhw7N+wXwUMSL/XhZunSpxo4dK8tfn6pXr64aNWooJSVF0dHRSktLM8o6dOig2bNny9vb2/kXwsMQL/kbdf3DDz9o+PDhVo+VloQlMeP4d97bb7/dOO/QoYNTfWvUqJFeeeUVp671NMSL/Xgxm82aOHGivvjiC+Mxb29v3XzzzapSpYri4uIUExNj9Zx+/fpZ/T5c0hAvtvEyd+5cbdmyxaX+HDt2TGfPnjXOR4wYoeeee86lOjwB8WL//eXQoUMaMGCA1fPKlSuniIgImc1mHT58WMnJyUZZlSpVFBUVpRo1ajj/QuTFDLewevVqc3h4uPFv2LBh5vPnzxvlaWlp5qioKHOzZs2Max566CFzVlZWge67b98+8y233GLU+fjjj5tjYmKM8qysLPOaNWvMbdq0Ma7p1KmTOSUlxW6dn376qVVfJkyYYE5MTDTKr169ap41a5a5UaNGxjUvvviiw3Y+++yzxrVNmzY1f/HFF+b09HSj/Ny5c+aXX37Z6r4LFiwowCvj3ogXx/GSm3nz5pkjIiKs7jVz5kyX6/FExIv9eNm7d69VXHTt2tW8fv16m75v3brV3K1bN6t7r1+/vgCvjvsiXuzHy+HDh82NGzc2ru3WrZt5165dVtdcvnzZPGnSJKv7Tp8+vQCvjHsjXlz/PDKbzeaLFy+a27Zta3W/8PDwfNXlaYgZxzGzefNmq8+k0o54cRwvH3/8sc3rc+rUKatrDh48aH7wwQetrvv555/z+cq4N+Ilf59JOR07dswcGRlp1Dty5MhCqdfdEC/24yUtLc3cvXt349rGjRub582bZ05LSzOuuXbtmnnWrFlWfenXr1+BXpucSFi6gbS0NHOXLl2MH/KQIUPMmZmZuV67adMmqyBbuXJlge79yCOPWP3nu3r1aq7XHTp0yOpNa9asWbled/HiRavrxo8fb/fey5Yts/pPtWfPnlyv27hxo9V133//vd06R40aZVzXpk0bc1JSkv3OeyjixXG85JScnGweOXKkzR+F4eGlI2FJvDiOl8cee8zqFwHLX1Jyio+PN999993G9T169LDfeQ9FvDiOl+eee864pn379uZz587ZrXPChAnGtZGRkVa/NJYUxItrn0eWXnrppVw/l0o6YibvmPnkk0+M655//nmX+ljSEC+O4yU2NtbcpEkTqwSFvUTK5cuXzZ06dTKuffTRRx2/AB6IeMn/Z5Klq1evmu+55x6r33eTk5MLVKc7Il4cx8v3339vdd3y5cvt1jlv3jyrazdu3Gi/8y4q2YtXeIiffvpJf/31l6TsIcjjxo2zu65Ihw4d1K9fP+N83rx5+b7vb7/9pl9//dU4Hzt2rMqUKZPrtQ0bNtSLL75onC9YsECZmZk21y1btswYFhwSEqJRo0bZvX+fPn3UpUsX49xeXxYsWGAcd+jQQT179rRb5/jx41WpUiVJUnx8fIHX6nBHxEs2Z/qydetW9enTR999912e15ZUxEu23PoSGxtrtSbuqFGjVLlyZbt1hoSEaPTo0cb5iRMndOjQIbvXeyLiJVtufblw4YLVJhgvvPCCqlSpYrfOYcOGGa9dcnKytm7davdaT0W8ZHO1L6tXr9YPP/wgSaVqEy+JmLnOUV8sP1dK20aSOREv2ez1Ze7cucYSJA0bNtR//vMfu5telC9f3mo67759+3T58mW7bfBExEu2gvRFkqZOnarjx49Lknx9fTVjxgwFBgYWqE53RLxks9eXTZs2Gcd16tRR79697db5xBNPqGrVqsa5q5vGOULC0g2sWrXKOG7Xrp1uuukmh9db/mc5ePCgYmNjC3zfevXqKTIy0uH1ffv2NXbGunTpknbu3GlzjeXC8ffcc0+eb26Wfdm4caPNQtGXL1+2+iOvT58+DusLDAzU/fffb5xf/4OgJCFesuUWL9fFxcXp2Wef1aBBg3TixAnj8UcffVQtWrRweI+ShnjJllu8bN++3Tj29/fX3Xff7bA+KXsjBF9fX+N8//79eT7HkxAv2XKLl6NHjxrJJZPJ5PDLMyl7HdTrX6BJsllDrCQgXrI5+jzK6dKlS8bacX5+fhoxYoRTzyspiJlsjmLm8OHDxnFpT1gSL9lyi5f09HR9++23xvm///3vPNdK7tGjhwYMGKChQ4fqtddeyzXx4cmIl2yufCbltHv3bi1atMg4HzJkSIl9HyJestmLF8v1Sxs1auSwPm9vbzVt2tQ4P336tMPrXUHCspiZzWbt2LHDOG/fvn2ez4mIiLAa1bFu3bp83Xvbtm0u3Tc4OFhNmjQxzn/55Rer8oSEBKtvhZ1ZJLxt27bGh2tqaqrNCJSdO3caH6Ymk8mpdlpes3fv3hL17SHx4jhertu/f782bNhgnIeEhGjq1Kl6/fXXjTf80oB4cRwvcXFxRjzUrFlTfn5+edbp6+uroKAg49xyIW5PR7w4jpfbb79dO3bs0ObNm7Vo0SKFhIQ4rM9sNlstUl62bNk82+BJiBfnPo9ymjBhgi5duiQpexRuvXr1nHpeSUDM5B0z165ds9qJtaQmCpxBvDiOlz179igxMVFS9i7CrVu3zrPOChUqaOzYsRo2bJgGDhyoihUr5vkcT0G85O8zyVJGRoZef/11Y1PBevXqaciQIS7X4wmIl7zjpVy5csaxMwlwyw2Q/f3987zeWSQsi9mZM2eMDxtJVsHoSEREhHGcnxE+6enpViPPHO045ex9o6OjrXZNdabOwMBA3XzzzXbrtPyWuUaNGgoODs6zTstf7rKysnTw4ME8n+MpiBfH8ZKTj4+P+vXrp1WrVlmNvC0tiBfH8TJ06FDt379fmzZt0nvvvedUG5OSkqy+BClJ0zmJF+feX6pUqaKWLVvmWd/mzZt19epVl9rgSYgX1z6PpOxRFWvWrJGU/Xo9/fTTeT6nJCFm8o6Z6Oho44v6wMBA1axZ06m2lkTEi+N42bt3r3Hcpk0bp9pYkhEvrn8m5bR48WIdOXLEOB8zZoxTX+Z7IuIl73ipX7++cbxnzx6HScurV69avScV5pexJCyL2cmTJ63OLQPHEcut4k+dOuXyfU+fPq309HTjvFatWgW+r2Vf/Pz8VK1atUKt09k2VqlSxWodiJI0DY94ca4vAQEBeuyxx/T9999r4sSJVtMySxPiJe++eHl5KTQ0VHXr1nWqvp9++klZWVnGeUkaHUW8FLwv1504cULjx483ziMjI9W8efN81+eOiBfX+nLx4kVjKrivr6+mTJmS5/TNkoaYybsvll/UR0REKDU1VcuWLdOQIUPUoUMHNWnSRG3atFHfvn317rvvKi4uzqn7eiLixXGd0dHRxnGDBg2M461bt2r06NHq3r27mjdvbsTLBx98YIzuLomIl4L1JTk5WR988IFx3qVLF3Xs2NGlOjwJ8ZJ3X/r162ckrBMTE/XWW2/ZrevNN980BnT4+vrq4YcfdqoNzig9cyPd1Pnz541jLy8vhxs+WLIcjmxZR37um7M+Z+978eJFZWVlGYvTWtbpbH05r83ZrnPnzuWrzkqVKunMmTO51unJiBfn+tK+fXunhtiXdMRLwfti6dq1a/r444+N85CQkBK1Jirxkv++ZGZmKiUlRdHR0Vq9erWWLl2qa9euSZJCQ0M1depUp+vyFMSLa32ZMGGCsYTE888/r/DwcKfvU1IQM3n3xXJaX2Jiorp162b1u7CUPf0vISFB+/fv19y5c/Xiiy/q2WefdboNnoJ4cdwXy/XzwsLCFBcXp7Fjx1otiSRlj3y6Hi/z58/X+PHjdd999zndBk9BvBSsL59//rkuXrwoKXsZtpK+vjLxkndfwsLCNGrUKE2ePFmSFBUVpbNnz2rw4MFq3LixTCaT/vjjD82ePdtqmvqwYcPyXA/UFSQsi5nl1MKyZcva3ZkqJ8s11PKzRmPO5zg7rdFyLQOz2azExERjHa+EhIRcr8uLo75YnrtSp+W1lsO9PR3xUvC+lCbES+HGy3//+1+rbzEHDhxYotZEJV7y35c2bdooKSnJ5vHOnTtr7NixJXJaJ/HifF++//57/fjjj5KkW265pUQml5xBzOTdF8uE5fVdeiXppptuUvXq1ZWenq6jR48au8GmpqZq2rRp+vPPPzVlyhSn2+EJiBfHfblw4YJxnJKSov79+xsbXQQEBCg8PFx+fn46ceKEkYhKTEzUP//5TyUkJGjAgAFOt8MTEC/578vVq1e1YMEC47xbt24lfv1c4sW5vjzxxBOqXr26pkyZolOnTmn9+vV2dwAPCQnRv/71L/Xt29fpNjij5Pyl5aGuj8CQZHc7+9xYrieRlpZWoPu6cm/L3XFz1mPZjsLqS2G8Pjn76smIl4L3pTQhXgovXhYvXqzPPvvMOK9evboGDRqU7/rcEfGSv74kJSXlmqz08fFRYGCgzpw5UyITlsSLc325cOGCMRXcx8dHU6ZMsWlLaUHMOO6L2Wy2muYrSR07dtSIESOs1iRLT0/Xjz/+qClTphijYlasWKG6detq8ODBTrfF3REvjvtiOSDjjTfeUGJiovz9/TVy5Eg99thjxqYXWVlZWrdunSZMmKDz58/LbDZrypQpatiwoW677Tan2+LuiJf892XFihVWywU8//zzTj/XUxEvzvclPDxcd955pxYuXGg1nd2Sj4+PnnzySd1zzz1O399ZrGFZzCx/6M5m9iVZjeqx3JHJWTmf4+y9c44mur4wuHRj+mJ57kqdlutC5ef1cVfES8H7UpoQL4UTL19//bUmTJhgnPv6+uqdd95RYGBgvupzV8RL/vpy5swZVahQQZGRkWrdurXCwsKM569evVr/+Mc/NGbMmBL3fkW8ONeXCRMmGKMfBg8erFtuucXp+ksaYsZxX86cOWP1R+jAgQP1ySef2Gyg4Ovrq3vvvVfLly9X1apVjcc/+OCDErUMEvHiuC+WCYbExET5+vrqk08+0ZNPPmm1Q6+Xl5fuuusuRUVFGSOyMjIy9OabbzrdDk9AvOS/L1988YVx3KZNm1LxOUW8ONeX+fPnq0ePHpo3b55xn9DQULVq1UqRkZFW7ynvvPOOunfvrs2bNzvdBmeQsCxmlok1y40c8mIZVPn5pj5nMDt775zBbHnvG9GX/NZp+Z+4JI1kIF4K3pfShHgpeF8WLlyo0aNHG/c0mUyaPHmybr31VpfrcnfES/760qBBA23fvl1RUVH6/PPPtXHjRi1atMhqR8cVK1Zo0qRJTrfDExAvefflu+++008//SQpO05eeOEFp+suiYgZx32pUaOGfv/9d61du1afffaZxowZI5PJZLeusLAwvfHGG8b51atXtWTJEqfb4u6IF8d9yRkbzzzzjMPdwmvUqKFRo0YZ5/v379evv/7qdFvcHfGSv77s3r1bx44dM84HDhzo9P08GfGSd18WLFigKVOmGInKhg0bauHChdq0aZMWLlyoqKgobdu2TR999JGxadH58+f17LPP2qylWxAkLItZQECAcezK1GXLb9Usv0XLz31duXfO4cKW97YcguxKXyyvzdmXG1GnJyNeSu7P9kYgXvIfL2azWTNmzNCkSZNkNpslZf9xMG7cOD344INO1+NJiJf8xUtuOz3fdtttioqKUpMmTYzHoqKidODAAafb4u6IF8fxcuHCBSNJ7e3trf/7v/+zmn5VGhEzeb/H+Pj4qGbNmmrTpo1TI2U6dOigOnXqGOdbtmxxui3ujnhxHC+WszxMJpNTa1L26tXL6nnES+mJF3tWrlxpHFeuXFldunRx+n6ejHhxHC9nzpzRtGnTjPPIyEhFRUWpVatWVtd5eXmpa9euWrZsmbGZYGZmpsaMGZPrckn5QcKymAUHBxvHycnJxh/Gebly5YpxfH0obn7vm7M+Z+/r4+NjtbCrZTucrU+SsXB4zjpyttOVOgv6+rgr4sVxvMAa8ZK/eLl27ZpGjBihjz76yHjM29tbkydPVv/+/Z2+t6chXgr3/SUwMFBvvvmm1SiYr7/+ukB1uhPixXG8jB8/3pgK/tRTT5XIUdmuImZuzO8wLVq0MI5jYmIKpU53QLw4jpeyZcsax7Vq1XJql2M/Pz+rJQZOnDjhdFvcHfHi+vtLRkaG1qxZY5zff//9JWozSUeIF8fxsnz5ciOh6evrq6lTp9okWy0FBwdr2rRpxpf4Fy9e1IoVK5xuiyMkLIvZ9bWupOxsdHx8vFPPs1yjxpkPKEf3lax3mnP2vhUrVrT6Q8yyzuu70blaZ86+5LdOy2urVKni9PPcHfFS8L6UJsSL6325cOGCnnjiCa1evdp4zN/fXzNnziz0Xe/cDfFS+O8vDRo0UKNGjYzz/fv3F7hOd0G82O/Lt99+q7Vr10qS6tatq2HDhjldZ0lGzNyY32Es68nPrrXuinhx3JcKFSrkepyXihUrGseWuwt7OuLF9b7s2bPHKgZuxIYp7op4cdyXXbt2Gcdt2rRxavPI8PBwtWzZ0jgvrLUsSVgWs1q1almdx8bGOvW806dPG8eWU0GcddNNN1mtVZCf+9auXduqzLIvKSkpTv8HtLx3zr5Y3uPUqVNO1Xfu3DmlpqbabacnI14cxwusES+uxcuJEyf0yCOP6LfffjMeCwkJ0fz583XXXXc5dT9PRrzcmPcXy7aUpD8OiRf78fL+++8bx2azWS+88IKefvrpXP9NnTrVqk7LsrffftupdngKYubGvMdYTuuzHHXn6YgXx/FSv35949iVqZeW69bltqSJpyJeXH9/2bhxo3FctWpVNW3a1Kn7lATEi+N4OXfunHFs+V6TF8v128+cOeP08xwhYVnMqlevbjUE99ChQ0497/Dhw8Zxw4YNXb6vr6+vsc6AK/e1vC7nDmKNGjWyyvY7U2dycrJVIjJnXyynLcTExOjq1asutdFkMln9x/F0xIvjeIE14sX5eDl8+LD69+9v9eFau3ZtLV682Gq6XUlGvDiOl++//17jxo3T008/rbfeesupNkrWyQTLKTyejnixHy+WO3b++eef2rx5s91/OUfdOirzdMSM4/eY5cuXa+LEiRo+fLhL7zGWf3RWq1bN6ee5O+LFcbzkTAzkXOPOnrNnzxrHlrvMezrixfW/kbZt22Ycd+rUyeEmXyUN8eI4XizX3Hb2vUWy/hLElR3LHSFh6QYsd3TbunVrntcfPnzYKnPetm3bIrlvQkKC/vjjD7v3DQoKspr65kyd27dvN3az8vb2VuvWra3KW7ZsaaylkZmZqR07duRZp+V9GzVqZLNWhKcjXuzHC2wRL3nHy/Hjx/WPf/zDajrI9cWlS9IIbWcQL/bjZc+ePVq8eLE2b96sb775xmbHRnssN9rJ+Y2+pyNe+DxyFTFjP2Z27dqlRYsW6YcfftCyZcuc+iMxNTXVaurebbfdludzPAnxYj9e2rVrZxxfvXrVqQ10kpKSdOTIEeO8pI2oI16c/0xKSUlRdHS0cV4a11kmXuzHi+WXX84mVSVZ7Tifc/p7fpGwdAPdunUzjn/55RfFxcU5vP7LL780juvVq5fvEYSW9z1w4ECeu5cuWbLE+AMtODjY6oPyuu7duxvHK1euzHNEpGVf2rVrp/Lly1uVly9f3uo/ZVRUlMP6kpOTrXY769Gjh8PrPRHxki23eIEt4iWbvXhJSkrSs88+azVVt2vXrpo/f75La0KVFMRLttzixfKz6OLFi1YL1duzZs0aq9ewa9eueT7HkxAv2XLGy7p16xQdHe3Uv88++8yqXsuyzz//3GEbPBExky239xjLPxgTExOdeo/58ssvlZiYaJz36tUrz+d4EuIlW27x0qhRIzVo0MA4/+STT/LcOCQqKsoYAe7r61vidoQmXrI58zfSwYMHrb54LWnJa2cQL9lyixfLe+zbt89qZKk9sbGxVoPLcmtnfpCwdAPdunVTaGiopOwht6NHj7Y7cmPTpk1aunSpcf7EE0/k+76RkZFWU67HjBljd2epQ4cOadasWcb5I488ojJlythc16dPH2MHqQsXLmjixIl277906VJt2rTJOB84cGCu1z3++OPG8S+//OJwx6kJEybo0qVLkrJ3aC2Jm2QQL9nsxQusES/Z7MXLuHHjrNaF6dKli957771c718aEC/ZcouXrl27Wn1b/PbbbztcJ+jkyZMaP368cV6rVi2rX1JLAuIlG59HziNmsuUWM927d7f6o3Hq1KlW64jltGfPHs2YMcM4b9eunZo1a2b3ek9EvGSz9x7zj3/8wzjes2ePZs+ebbfOw4cP64MPPjDOe/bsWaI2JpWIl+uc+UyyTECVKVPGpXUKSwriJVtu8dKrVy+rNZFHjRrlcAfy1NRUvfrqq8YXIoGBgYX2BRoJSzfg5+enkSNHGudbt27V4MGDrdakycjI0JIlSzRs2DBlZmZKyt6J6eGHH861zjvuuEMRERGKiIjQHXfcYffer776qrHmwZEjR/TEE09YvYGZzWb9+OOPevLJJ5WSkiIpe9ftIUOG5Fpf5cqV9cwzzxjnK1as0CuvvGK1Y1Vqaqo++ugjqz/kOnXqpE6dOtnti+XQ6bFjx+rjjz+2WhfswoULGjFihNXoyhdeeMFqJ7ySgnhxHC+wRrzYj5ddu3Zp1apVxnnt2rU1ffp0q8WwSxvixX68+Pr66j//+Y9xfvbsWfXv399qDSgp+5fe5cuX65FHHjGWGfD19dXEiROt1gQqCYgXPo9cRczYj5myZctqxIgRxnlcXJweffRRm51WU1NTNX/+fD311FPG78JBQUGaNGmS3b57KuLF8XtM3759rUb/T58+XePGjbMaKZaVlaVVq1Zp4MCBxqircuXKWcVaSUG8OP+ZZDl1t1q1asYSbKUJ8WI/XipVqqSXXnrJOI+OjtZDDz2kX375xXgdrtu9e7ceffRR7dmzx3hs+PDhRjK4oEzmvMaOo8iMGzdOixcvNs69vLwUERGhoKAgHT9+3Bg5KGXvXPvll1+qbt26udZ1xx13GJtHVK9eXevWrbN7348//ljTp0+3eqx+/fqqWLGiYmJirD70ypQpozlz5jhcIycjI0Mvvvii1q9fbzzm6+uriIgI+fn56ejRo1a72dWoUUNLly51mFyMi4vT448/bvUGUq5cOTVo0EBpaWmKjo62WuS+a9eu+vDDDwttsVd3RLzkLxn9xBNPaOfOnZKkoUOHatiwYfmqx9MQL7bx8vTTT1v9IVinTh1Vr17d7r1zc//99+uBBx5w6TmegHix//7ywQcfaObMmVaPhYWFqXbt2sbn0fVfLq/fb8qUKSVuqqYl4iX/X47u2LHDanSD5ZpiJRkxYz9mcr42khQaGqratWvr2rVrOnLkiNV0v6CgIH366aeKjIy0W6enI17sx8ulS5f09NNPW61x5+Pjozp16qhChQo6ceKE1WwAX19fffDBB+rcubPdOj0d8ZL3Z9IzzzxjjLJr1qyZlixZkudzSirixX68TJw4UYsWLbJ6LCQkRLVr15avr69Onjyp8+fPW5U//vjjGjdunN06XUXC0o2YzWa98847mjNnjlXyLad69erp3XfftVq3JCdX/rNI0sKFCzVt2jSrP7Jyqlq1qv773/+qVatWefQke4TJ66+/ruXLlztcTyUyMlLvvvuuU4uy/v333xo5cqT27t3r8Lq+fftq/PjxJW4kS07ES/6U1oQl8WItMTFRbdu2tfmW0FUlNYaIF8dWrlypSZMmWa0dl5u6detqypQpat68eZ51ejLiJf9Ka8KSmLHPbDZrwYIFmjFjhlJTUx1e27x5c02cODHfa6l5CuLFsaSkJL3xxhv6+uuvHdZ500036e2333aqnZ6MeMnbgw8+aGym0qFDB82ZM8ep55VExItjUVFR+u9//2uV7MxNuXLl9Morr+ixxx7Ls05XkLB0Q8ePH9eyZcu0efNmnT17VlevXlVwcLBuueUW9ejRQ/fff3+eyThX/7NI2dPblixZog0bNuj06dO6cuWKgoKCFB4errvuukt9+vRRUFCQS335/fff9dVXX2n79u2Ki4tTWlqaKlasqFtvvVX33XefunXr5tIoSLPZrJ9++kmrVq3S77//rgsXLsjLy0thYWFq2bKlHnnkkRL/h2FOxItrSmvC8jri5X/PtTedwxUlPYaIF/uuXLmi5cuXa+PGjYqOjlZCQoL8/PxUuXJlNW/eXHfeeafuvvvuEj3SPyfixXWlNWF5HTFj36VLl7Rs2TJt2bJFx48fV0JCgsqUKaMqVaqoWbNm6t69u7p06WJMKywNiBfHDh06pJUrV2rr1q06e/asrly5ovLly6tRo0bq1q2bHnzwQfn7+7tUpycjXuzr1q2bYmJiJGWvZ2q5Hm5pRbzYd+XKFa1YsUJbtmxRdHS0seRRSEiIIiIi1KFDB/Xu3dvldjqDhCUAAAAAAAAAt1F6vvYHAAAAAAAA4PZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALdBwhIAAAAAAACA2yBhCQAAAAAAAMBtkLAEAAAAAAAA4DZIWAIAAAAAAABwGyQsAQAAAAAAALgNEpYAAAAAAAAA3AYJSwAAAAAAAABug4QlAAAAAAAAALfhU9wNAAAAQNE5ffq07rzzzjyvM5lM8vHxUdmyZVW5cmXVrl1bnTt3Vo8ePVS+fPkiaKn7WrFihcaMGSNJql69utatW1fgOs1ms1asWKFbbrlFjRo1sinP+XP7+eefVaNGjQLfFwAAwB0xwhIAAAA2zGaz0tPTlZCQoGPHjmnt2rUaO3as2rVrp2nTpiktLa24m1hiHD16VAMGDNBrr72mpKSk4m4OAABAsWOEJQAAQCkWHh6u0NBQm8ezsrKUmpqqS5cu6cyZM0pPT5ckpaena/bs2Vq3bp0+/fRTVatWraibXOI89NBDxusLAAAAEpYAAACl2qBBg9S7d2+H16SlpWnbtm364IMP9Ntvv0mSjh07poEDB2rp0qUKCQkpgpaWXCQrAQAArDElHAAAAA75+fmpc+fO+vLLL/X4448bj586dcpYyxE3Vo0aNRQdHW38Y/1KAABQkpGwBAAAgFO8vb01duxY3XXXXcZj69at04YNG4qxVQAAAChpSFgCAADAaSaTSRMnTlTZsmWNx2bPnl2MLQIAAEBJwxqWAAAAcEmlSpX0yCOPaN68eZKk3bt3KzY2VjVr1nT4vKNHj2rlypXasmWL/v77byUlJSk4OFg1a9ZUhw4d1KdPH5c28UlOTtbq1au1fft2HTx4UPHx8UpKSlJAQIDKly+viIgItWvXTg899JCCgoKcqvPvv/9WVFSUNm3apJMnTyojI0NVq1ZVu3bt1L9/f4WHhzvdPkdWrFiR63T6gQMHGscPPfSQ3nzzTUnS6dOndeeddxplP//8s8208DvuuENnzpyRJP3+++/y9/fXn3/+qSVLlmjTpk36+++/ZTKZVLVqVXXo0EGPP/64zc9s7dq1Wr58uQ4fPqzz58+rbNmyatSokR544AH16tVL3t7eTvXv119/1ffff68dO3YoLi5OycnJqlChgurUqaNOnTqpT58+qlChgnMvFgAAKHVIWAIAAMBl99xzj5GwlKQNGzZowIABuV579epVTZ48WStWrFBWVpZV2YULF3ThwgXt27dPs2fP1uDBgzV06FCZTCaH958/f75mzZqlhIQEm7KkpCQlJSXpzJkzWrdund577z1NnjxZ3bp1c1jnvHnzNGPGDF27ds3q8ZiYGMXExGjZsmV66aWXVLlyZYf1uIvZs2dr5syZNpv6JCUl6ejRo1q8eLFmzJihLl26KD4+XqNHj9b69eutrk1ISNDWrVu1detWffvtt5o1a5b8/Pzs3vPSpUsaO3as1q5da1N27tw5nTt3Tjt27NBHH32kkSNHqn///oXSVwAAULKQsAQAAIDLmjZtqsDAQKWkpEiS9u3bl2vCMj4+Xs8884wOHDhgPObt7a0GDRooODhY8fHxOnr0qMxms65du6b3339fR48e1YwZM+yO5ps8ebI+//xz49xkMqlWrVoKDQ2VyWTSuXPnFBMTYyRHL1++rOHDh+vLL79U8+bNc63zrbfe0ty5c60eq1WrlsLCwnTx4kUdP35c6enpmjZtmho3buzSa5WbsLAwdejQQZK0efNm4/GmTZsqODhYkgo0mnPmzJn69NNPJUm+vr6qU6eOQkJCdPLkSZ07d06SlJKSohEjRuibb77RyJEjtX//fklSaGioateurcTEREVHR8tsNhvtnDZtmt2NlmJjYzVo0CDFxsYaj/n5+Sk8PFxly5ZVXFycTp48KSk7afr666/r5MmTeu211/LdTwAAUDKRsAQAAIDLvLy8VLNmTUVHR0uS/vzzT5trzGazRo0aZSQrvby89PTTT+vpp5+2mg587tw5vffee1qyZIkkac2aNZo5c6ZGjBhhU+emTZuskpXdu3fXmDFjbKaSx8XF6cMPP1RUVJQkKSsrS7NmzdLHH39sU+fatWutkpURERGaPHmybr31VuOxEydOaPz48dq5c6cOHjyY9wuUh/bt26t9+/bG/a7717/+pTZt2hS4/uvJyt69e+vll19WWFiYpOyfybx58/TWW29Jyk5aPvTQQ7py5YrCwsI0efJkderUyajn2LFjGjp0qPHzjYqK0tChQ1WuXDmr+127dk3Dhg0zkpX+/v4aPny4HnvsMQUGBhrXxcTE6O233zZGYC5YsEANGjTQww8/XOA+AwCAkoNNdwAAAJAvlknCv//+26Z85cqV2rhxo6TsUZDTpk3TP//5T5u1C0NDQzVp0iS98sorxmOzZ882RuNZstzgJzIyUu+8806u616GhYXp9ddf19133208tnXrVmVmZlpdl5WVpalTpxrn9evX16JFi6ySlZJUt25dzZ071xgV6Qn69++vKVOmGMlKKfvn8NRTT6ldu3bGY1euXFG5cuW0aNEiq2SllP16TJs2zThPTU3V3r17be41Z84cHTp0SFJ2snLu3Ll6+umnrZKVUvao1ffff1+PPfaY8diUKVOUmJhYsM4CAIAShYQlAAAA8iUgIMA4Tk5OtimfM2eOcdyrVy/17NnTYX3PPvusmjZtKik7kTh//nyr8itXrlhNLR8yZIi8vBz/Otu9e3fjOC0tTfHx8Vbl+/bts0qMTpgwwWb04HW+vr6aMmWKVb/dVbly5TRy5Ei75XfddZfV+YABA+xumtS4cWOrpGdMTIxVeVpamhYuXGicP/XUU7rtttvs3ttkMum1114z6kxOTtbixYvtdwYAAJQ6JCwBAACQLz4+/1tdKOfIxZiYGGO6uJQ9NdkZDz74oHG8YcMGq7KgoCDt3btXGzdu1MKFC40p1Y7k3CAnNTXV6tzyHrVr11arVq0c1hcaGmqT7HNH7dq1s5t4lZTrDuOOWCYsk5KSrMp2796tixcvGufO/Kz9/Px07733Guc5f9YAAKB0I2EJAACAfLly5YpxHBQUZFWWc9pw3bp1naqzSZMmxvFff/2ls2fPWpWbTCaFhYWpVatWDnervnLlirZt26aVK1daPZ5zl/Jdu3YZxy1btnSqjW3btnXquuLUoEEDh+VlypSxOq9Tp47D6/39/Y3jnK+h5c/a19dXN998s1NttPxZ//7778rIyHDqeQAAoORj0x0AAADki+VIu5yj+XJOG865NqKz4uLiVLVqVbvlZ8+e1eHDh3Xq1CnFxsYqNjZWx48f1+nTp20Sa5KMHa+vu75jtpQ9wtIZ9evXd67xxahSpUouXZ8z4ZyTyWSyW2b5s05PT7faRMhZ165dU0JCgs2IWAAAUDqRsAQAAEC+WCb7QkNDrcoKaxOVhIQEm8fS0tK0ePFiLV68WEePHnX4fB8fH4cj9y5dumQcly1b1qk2lS9f3qnripPliEhnOEpI5qWwftaXL18mYQkAACSRsAQAAEA+JCQk6NSpU8b59c1yrrNMEvr7++e5NqQ9OZOD586d05AhQ/THH3/ken2FChUUHh6upk2bqnXr1vLy8tIzzzxjt/709HSX2+RoKrq7KEgC0lWWP+vg4GCbWHCWJ7yuAACgaJCwBAAAgMt+++03q/NmzZpZnVsmGgMCAqx2DM+vjIwMDRs2zCpZGRkZqe7du6tp06aqV6+eKlSoYPWcrVu3OqyzXLlyxijLnJvJ2GO5diesf9Y1atQolJ81AAAo3UhYAgAAwGXffPONcVymTBl17NjRqtxyV+nExERduXIlz3US8/LTTz/p119/Nc6HDx+uF154weFzcptSbqlWrVpGwvLYsWNOtcNyZCmsf9Z//fVXMbYEAACUFOwSDgAAAJfExcXpxx9/NM7vuusum013IiMjjeOsrCzt3LnTqbp37typcePG6eOPP9a3336r5ORko2zDhg3GcVhYmJ577rk86zt8+LDVec6NeCzbuXPnTmVmZuZZ5549e/K8pjSxfA3j4+MVHR3t1PN++OEHvf766/r000+1atUqp157AABQOpCwBAAAgNPMZrP+/e9/G2s/enl5afDgwTbX3XLLLVYj7xYsWOBU/e+++64WL16s6dOna/LkyVbrGp4/f944rlSpkry8HP8qm5iYqK+++srqsZxJse7duxvHcXFxWrNmjcM6k5OTtXLlyjz74YqiXG/yRmjbtq0CAgKM8/nz5+f5nLS0NE2bNk1ffPGFpk6dqlmzZsnb2/sGthIAAHgSEpYAAABwSmZmpqZMmaJNmzYZj/Xr108NGza0udbb21tPPvmkcb59+3Z99NFHDutfuHChdu/ebZz37dtXvr6+xnlISIhxfPToUcXFxdmt69q1axo9erTVTuaS7SY7zZs3V5s2bYzzN954Q7GxsbnWaTabNWnSJKudxQuD5Y7e165dK9S6i0JwcLD69OljnK9YsULffvutw+fMmDHDamr9Y489dsPaBwAAPA8JSwAAADiUkpKiVatW6eGHH7YaKXnrrbdqzJgxdp83YMAANW7c2DifMWOGRo8ebbPO4cWLF/Xmm29q8uTJxmNhYWF69tlnra7r0KGDcZyenq7nn3/eZsp3enq61q5dq759++rnn3+2aZPlFPPrJk2apDJlykiSLly4oP79++vnn3+W2Ww2romLi9Pw4cNtRmwWBstE7MaNGwu9/qIwdOhQ3XTTTcb5v/71L7311ls2yd3Y2FiNGjVKc+fONR6LiIjQww8/XGRtBQAA7o9NdwAAAEqxefPm6fvvv7d53Gw2KzU1VRcuXNDp06dtplK3bNlS77//vtXowJz8/Pw0c+ZMPfnkk8aoxa+++kpff/216tWrp0qVKun8+fOKjY21GvlYrlw5vffeewoODraq77777tPcuXN15MgRSdLBgwf14IMPqkaNGqpWrZqSkpIUGxtrtYt3pUqVdOXKFWPkouW08utq1aqlKVOmaNSoUUpPT9e5c+f0wgsvKDQ0VLVr19aVK1d0+PBhY/3L7t275zl13BXh4eE6e/asJOnzzz/Xrl27FBISonr16mncuHGFdp8bqUKFCnrvvfc0ePBgXbp0SWazWXPnztWCBQtUv359BQcHKy4uziaWwsLC9P7771uNpAUAAGCEJQAAQCl25MgRbd682ebfli1btGfPHsXExFglmMqXL69XXnlF8+fPV8WKFfOsv0aNGlq6dKnVWpFms1nHjh3Tjh07dOLECatkZePGjfXFF1+oWbNmNnX5+vpq9uzZioiIsKorNjZWO3fu1KFDh6ySlZ07d9ZXX31ldb29DXN69uypuXPnqlKlSsZj586d086dO/XHH38Yycr+/ftr+PDhefbbFc8//7xVwu7w4cPavn271q9fX6j3udGaNGmipUuXWk2xz8zMVHR0tHbu3GkTS+3atdPixYt18803F0dzAQCAG2OEJQAAAGyYTCYFBASobNmyqlGjhsLDw9W+fXt17tzZmD7trAoVKmjmzJk6dOiQvvvuO+3YsUN//fWXEhMT5evrq7CwMDVt2lQ9e/ZU586dHW6mU61aNS1btkwrV67UmjVrdOjQISUkJMhkMql8+fKqVauWGjdurJ49exq7V3ft2lW///67JOm7777TP//5z1z70Lp1a/34449atmyZfvrpJx05ckRXr15V5cqV1axZMz366KO6/fbbdfz4cZf6n5cWLVpo0aJFmj17tn799VclJCTI399fZcuW1bVr1xyOYnU3NWrU0GeffaZdu3ZpzZo12rVrl+Li4pSUlKQyZcropptuUvPmzdWrVy+1bt26uJsLAADclMlsuTgPAAAAAAAAABQjpoQDAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAboOEJQAAAAAAAAC3QcISAAAAAAAAgNsgYQkAAAAAAADAbZCwBAAAAAAAAOA2SFgCAAAAAAAAcBskLAEAAAAAAAC4DRKWAAAAAAAAANwGCUsAAAAAAAAAbuP/AfpFTjBdu4k5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.title('Paralyzable dead time - input rate {} ct/s'.format(rate))\n", + "\n", + "deadtimes = np.arange(0, 0.008, 0.0005)\n", + "deadtimes_plot = np.arange(0, 0.008, 0.0001)\n", + "\n", + "for d in deadtimes:\n", + " events_dt = filter_for_deadtime(events, d, paralyzable=True)\n", + " new_rate = len(events_dt) / length\n", + " plt.scatter(d, new_rate, color='b')\n", + "\n", + "plt.plot(deadtimes_plot, rate * np.exp(-rate * deadtimes_plot), \n", + " label=r'$r_{in}e^{-r_{in}\\tau_d}$')\n", + "plt.xlim([0, None])\n", + "plt.xlabel('Dead time')\n", + "plt.ylabel('Output rate')\n", + "plt.semilogy()\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Perfect." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Periodogram - non-paralyzable\n", + "\n", + "Let's see how the periodogram behaves at different intensities. Will it follow the Zhang+95 model?" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/6 [00:00" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, np.log10(3000), 6)\n", + "bintime = 0.001\n", + "deadtime = 2.5e-3\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, 2, norm='leahy')\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|████████████████████████████████████████████████████| 5/5 [00:04<00:00, 1.07it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAARHCAYAAAAiFIfrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1QUZ9sG8IuOSBMLKmIJAvbee4saXzVqosYYe48aI/beo8bee+8Nu9EoFuxYsKAiCoIISBXpLFu+P/iY7LCFBRYVvX7neM7MzswzM7szg3vv/dyPgUKhUICIiIiIiIiIiIgonzD83AdARERERERERERElB0MahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+wqAmERERERERERER5SsMahIREREREREREVG+Yvy5D4CIiCivrFmzBmvXrgUA1KtXD3v27Ml1m5MnT8bx48cBAF27dsWiRYty3WZeePXqFe7fv49evXqpXd6nTx94eXkBAEaNGoXRo0d/ysMjHWzbtg1///13trYxMjLC8+fP8+iIKLtcXV2F6d27d6N+/fqf8Wg+HXd3d0yZMgUA4ODggMuXL+e6TYVCAXd3d1SsWBGVKlVSWf7u3Tu0bt1amPfw8ECpUqVyvV/Sv9jYWLi7u+P27dvw8/NDbGwsAKBQoUKoWLEimjVrhq5du8Lc3Fyv+507dy727duXrW1Kly6Nixcv6vU4iIhIf5ipSURE9BVJTk7GkiVL0LVrVzx+/PhzHw7lAoOTROlevXqF3377DVOnTkV8fPznPhzKIYVCgT179qBFixZYvHgxPD098f79e6SkpCAlJQVhYWG4fPkyZs+ejVatWuHq1at63T+fqUREXx9mahIREX1F/vrrLxw+fPhzHwbpga+vrzBdrVo1WFtbZ7mNkZFRXh4S0WfRtWtXpKWlfe7DoFxauHAhdu3aJXrN3t4epUuXhkwmQ0BAgJC1GR0djeHDh2PhwoXo2rVrrvetUCjw8uVLYb5evXowNTXNcrtixYrlet9ERJR3GNQkIiL6ivCL/9chNTUVb968EeZXrlwJBweHz3hERJ8Pn2v537lz50QBzQoVKmDmzJmoXbu28JpcLselS5cwd+5cREZGQqFQYMaMGahYsSIqVKiQq/0HBQUhKSkJAGBiYoLt27fDxMQkV20SEdHnx6AmERFRNixatOiLraOZHfqoL0p55+XLl5DJZAAAa2trBjSJslCqVClRJh59OeRyOZYuXSrMV6xYEfv374eFhYVoPUNDQ7Rt2xYVK1ZE9+7d8eHDB6SlpWHp0qXYunVrro7hxYsXwrSTkxMDmkREXwnW1CQiIiL6wih3PVcebIaIKL/x8vJCSEiIMD979myVgKYyR0dHjBw5Upi/efMmPnz4kKtjUH6m5jbrk4iIvhwMahIRERF9YZSzivgFnIjyszt37gjTDg4OqFGjRpbbKI9kL5fLcz3ID5+pRERfJ3Y/JyKib0pCQgL279+PCxcu4O3bt5BKpShWrBjq1q2Ljh07okGDBlq3nzx5Mo4fPw4gffCKzF3R3d3dMWXKFADAwIEDMWnSJMjlcpw/fx5nz57FixcvEBUVhQIFCqBUqVJo0aIFfvnlFxQtWjRX56Uum+/48ePCsQIQdc3s06cPvLy8AACjRo3C6NGjRduuWbMGa9euBZCeVdOrVy8kJSXh9OnTOH36NAIDAxEXF4ciRYqgQoUK6NmzJ5o3by5q482bNzh48CBu3LiB0NBQAOldRJs1a4b+/fvrfM4xMTFwd3fH9evX8ebNG3z48AEWFhYoVqwY6tevj86dO6NatWo6tZVfKH8B/5SZmsrX75AhQzB+/HikpaXh/PnzOHHiBF6/fo2YmBgULlwY3333HX766Se0b99eNEBReHg4Dh06BA8PD4SEhCAtLQ3FixdHo0aNMHDgQDg6OmZ5HLdv38bZs2fx6NEjhIWFITU1FTY2NrC3t0edOnXQtm1b1KlTR+dzAdIHKenWrVsO3xmxtLQ0nDlzBufOncPz58/x8eNH2NrawtXVFT/99BN++OEHGBgYZLvdV69e4dSpU7h58ybCwsIQHx8PGxsbODo6okmTJvjpp59QokQJndtLTEzEP//8gzt37uDZs2f48OED4uPjUaBAAVhbW8PV1RWNGjVC165dYWlpqVObYWFhOHjwIK5fv47AwEBIpVLh8/3111/h4uKS7fNWJ/Pnl6Fv377CtPIz+N27d6JAmIeHB0qVKiXatlWrVkLG4JMnT2BmZoY3b97g8OHDuH79OsLCwmBgYIDixYujSZMm6N27t8r1eunSJRw7dgy+vr6IjIxEwYIFUalSJfz444/o1KmTzoN1PXr0CGfPnsXdu3cRHh6OxMREFCpUCOXKlUOzZs3w008/oVChQrq9WV+4yMhIGBoaQi6Xo3z58jptY2trK5rPbabm5wpqfgl/S+VyOS5fvozz58/j6dOniIiIgFQqha2tLUqWLIn69evjhx9+QMWKFfPmTSAiykMMahIR0TfjyZMnGDNmjPClIENgYCACAwNx5MgRNG/eHIsWLYKdnZ1e9vnu3TuMHz8e3t7eotdTU1MRGxsLHx8fbN++HbNmzUKXLl30ss+88OTJE4wfPx5BQUGi10NCQhASEgIPDw/06NEDs2fPhpGREXbt2oUlS5aoDPDh5+cHPz8/uLu7Y9OmTVkGI3fu3InVq1cjMTFR9LpEIkFsbCz8/PywZ88etG/fHvPmzdNphHBtNAVSsis3AbTMo/R+zqyiwMBAuLm54dmzZ6LXw8LCEBYWhps3b+L06dNYvnw5LCwscO7cOcyYMQMJCQkq7QQGBuL48eNYuXIlWrRooXZ/sbGxcHNzw82bN1WWRUVFISoqCs+ePcOuXbvQsGFDLFu2DIULF9bb+eri2bNncHNzQ2BgoOj1yMhIREZG4saNGzh48CBWrlypc5vJycmYP38+3N3dIZfLRcsyztvb2xubN2/GkCFDMGrUqCyDpjt37sSGDRuE0aSVxcfHIz4+HiEhIbh8+TLWrFmD+fPno23btlrb3LFjB1asWIHU1FTR60FBQQgKCsLRo0fxxx9/oEiRIrqd+Ge2efNmrF69WuU5FR8fj1evXuHQoUNYsWIFWrRogQ8fPmDy5Mm4evWqaN3Y2FjcunULt27dwunTp7Fhwwato2rHxMRgxowZuHTpksqyiIgIRERE4O7du9i4cSPc3Nzw66+/5vo8lX/Eyo2c1ixdsGAB5syZg8jISEilUp22effunWg+N8/2mJgYRERECPOfs6THp/5bGhISgtGjR6s8w4H/rrdHjx5h8+bN+OGHH7BgwQKtpQGIiL40DGoSEdE3ISQkBIMGDUJcXBwAoFChQnByckJycjJevnwpfNG6du0a+vTpgz179uQ6sBkTE4MBAwbg7du3ANK/lJUvXx4KhQL+/v7CsSQlJWHKlCmwt7dHw4YNc7SvJk2aAEj/opPx5a1YsWJ6yZp6+fIlli5dKgSqSpQoAUdHR3z8+BF+fn5QKBQAgMOHD8PZ2RlpaWn4+++/AQBmZmaoUKECjIyM4OfnJ7QRExOD0aNH459//lH7BUqhUGDatGk4duyY6PUyZcqgePHiSEpKgp+fnxBcOX/+PF69eoVdu3blOuv1c1MepdfIyAjly5eHp6cnTp8+DW9vb0RERMDExAT29vaoX78+unbtmieZqu/fv0ffvn0RHh4OAChSpAjKli2LlJQU+Pr6CvfMlStXsGrVKtSoUQNubm5QKBQwMTGBi4sLLCws8Pr1ayHLKjk5GW5ubjh37hyKFy8u2l9aWhoGDhwo+vJta2uLcuXKwczMDBEREQgODha+3N++fRt9+vTB8ePHYWZmpvfzV+fx48fo37+/8PkA/93XMpkMfn5+SE5Oxt27dzF48GCd2vzw4QMGDx4MHx8f4TUjIyM4OzvDxsYGHz58wKtXr6BQKJCamoq1a9fi1atXWLFihcaswPnz54sGAzMwMECZMmVQrFgxGBgYICIiAkFBQUIA9ePHjxgzZgwOHDigsWvw4sWLsX37dtFrZcqUgb29PaKjo+Hv74+0tDQsW7YMlStX1unctbG3txeeazdu3BBer1q1KmxsbAAgV8+31atXC4PPmJiYoFy5crC1tUVgYKDwDE1KSsLYsWNx8uRJuLm54enTpwDSn61ly5ZFXFwcXr58KTwDb9y4gWXLlmn8YSQ4OBgDBgxAcHCw8JqpqSlcXFxQsGBBhIeHC8Hy+Ph4zJkzB4GBgZg6dWqOz/NLYWxsnK0s4wsXLojmv/vuuxzvWzlLs2jRorCyssI///yDf/75B0+ePEFUVBQsLCxQokQJNGrUCN27d8/V/jT51H9L4+Li8Ntvv4l+yC1atChKly4NIyMjhIeH4927d5DJZFAoFDh37hxiYmJEo9QTEX3pGNQkIqJvQkaXQ2tra0ybNk3UTTAmJgZLliyBu7s7AOD169eYPXs2Vq9enat9njhxAgBQuHBhTJkyBR06dBD2mZqail27dmHFihWQy+WQy+VYvnw5jhw5kqN9bdu2DYC4e3zjxo31MlL7gQMHAABly5bF3LlzUb9+fWGZr68vBg8ejMjISADAihUrkJycDAMDAwwfPhxDhw4VvmglJSVh8eLFOHjwIID0oNnp06fRs2dPlX1u2bJFFNBs3bo1xo8fL/qimZycLGTEpaSkwN/fH25ubti5c6fOXUAzUw6k5Ia9vX2Ot1X+Am5hYYE+ffoIwZQMqampSEhIgL+/P/bv349OnTph7ty5es2wOX36NID0YOacOXPQqlUrGBqml2MPCQnB0KFD8fr1awDAvn37cODAASgUCvTs2RNjx44Vus5KJBJs2bJFuJ8SExOxf/9+uLm5ifZ3+PBhIaBZoEAB/P3332jTpo2wTyA9G3L58uXCverv748DBw6gf//+ejtvTRISEjBmzBghoGlubo5Jkybh559/FjLzkpKSsH37dqxfv15tZlRmCoUCEydOFAKahoaGGDRoEAYNGiTqehwREYE1a9bg8OHDANIDPqtXr8bYsWNV2rx+/boooNmuXTtMmTJFJaAUHh6O9evXC/ejXC7Hhg0bsGnTJpU2L126JApourq6Yv78+aJgekBAAGbNmgUvLy+dzj0rjRs3RuPGjYX9ZZgwYYLoGZRTGQHNbt264c8//xTuWYVCgR07dmDx4sUA0j/Trl27IiEhAfb29pg/fz6aNWsmtPP69WuMGjUKb968AQAcPHgQo0aNgpWVlWh/qampGD16tBDQNDMzw5gxY9CrVy/RfRsUFIS///5byOTctWsXnJ2d0b179xyfa9WqVbVmj35pYmJisHfvXmHexcVFpZRAdig/U42NjdGxY0eVTOuPHz/i48eP8PX1xa5du9CnTx9MmDABxsb6+7r8qf+WbtiwQQho2tnZYeXKlSr3ztu3b7FgwQIhA/nOnTu4ePEivv/+e72dNxFRXmJQk4iIvhkWFhbYvXu3St0oOzs7LFy4EAULFhSCARcuXMCDBw9Qu3btXO3TxsYGBw8eROnSpUWvm5mZYejQoYiPj8fmzZsBpHdLCw8Pz1VALK+UKFECBw8eVKnxVqFCBUycOBETJkwAACHgM3nyZAwYMEC0roWFBWbPno1Hjx4JI9HeunVL5YtYcHAwVq1aJcz/9ttvmDFjhsoxFShQAAMGDECVKlUwYMAApKWlwcvLC+7u7jkOACgHUj4X5VF64+PjhYBmoUKFULp0aZiYmODt27ei7pSnT5/G69evsWfPHpVgSm5YWFjg4MGDKnUFHRwcMHfuXKFrbEb2ZJ8+fTB9+nTRuqamphg5ciSePn2KK1euAEj/3DMHNZUzs8aMGaO2K3TRokXx119/ITIyEtevXweQnqWrLqjZrVs3vdXQBNKDS2FhYQDSMx/XrVunEgC3sLDAqFGjUKpUKUyaNCnLNk+dOgVPT0+hzWXLlqFDhw4q6xUrVgzz5s2Do6Mjli1bBiC963TXrl1RtmxZ0boZzxMAqFmzJlauXCkKDGewt7fHnDlzEB0djYsXLwJI/1xkMpnoRwG5XI4lS5YI8+XLl8e+fftUrrPvvvsO27dvx/Dhw0WZlV+yX3/9FbNmzRK9ZmBggIEDB+L69eu4desWgPSAtpWVFfbt26dyL5QvXx7Lli0TrrWUlBQ8fPhQpS7itm3bhOCamZkZtm/frrYubJkyZbB27VrMmTNHCIItXLgQ7dq1y3EX7IkTJ+Zou89BoVBgxowZorIJgwYNylWbykHNjHsYSH+eODo6QqFQ4M2bN8I+ZTIZdu7cidevX2Pjxo0wMTHJ1f6Vfcq/pf/++68wPWfOHLU/BpQuXRpr1qzBzz//LJQXOH/+PIOaRJRvcPRzIiL6ZowZM0ZrIfyJEyfCwcFBmM/4Qpkb/fv3VwloKuvVq5doPqc1y/LaH3/8oXHQitatW4vq+zk4OKBfv35q1zUwMBDVU8zomq9s165dQtdmR0dHTJ48Weux1a1bVzR4yI4dO7Su/6VT/gIOpGf1bNy4ETdv3sThw4exb98+XL9+HQcOHED16tVF22UOFOaWtoF9ateuLSrRYGFhgTFjxmhsS3kQF3Wfu3KQVvk+zMzAwAD9+vVDgwYN0L17d7Rp00brOejLqVOnhOmuXbtqzejt0qWLTseVkWENAJ06dVIb0FQ2dOhQVK1aFUB6sHHnzp2i5QkJCaJu7MOGDVMb0FTWrl07YVoikagMyOLt7S3Kaps9e7bGwLmJiQkWLlyIAgUKaN3nl8DKykrr/ZL58/vtt9803guVK1cW/RiVuV6iRCIRZR4OHDhQ60BXBgYGmDp1qtBmYmIiDh06pPlkviIrVqwQ1RutVq0aOnfunKs2lX8oAtIzV/fu3YsbN27gwIEDOHjwIG7fvo0tW7agXLlywno3btzAggULcrXvzD7l31Jdn6mmpqbo168fmjRpgl9++SXLAROJiL4kDGoSEdE3wcLCIsvsPVNTU1Fml6enp1DjKqeyGnijZMmSoq6H8fHxudpfXjAwMNB6HgULFhQFt5o1a6Y1kKL85V/d+WZkjQFAx44ddcqSUR5kyd/fX1SzLr9RDiDVrFkT7u7uaNmypUqX+lq1amHv3r2i4Jqnpyc8PDz0dizt27fXuly5S2idOnW0ZokWK1ZMmFb3uSvX2Fy3bp3QDVOdpk2bYteuXZg/f77OtStz482bN6LPpUePHllu07t3b63Lg4KCRD9i6JpVqnytX7t2TbTM0tISDx8+hKenJ/bu3atT1nHmQX1SUlJE88r7KFu2LOrWrau1vWLFin2yQHNuNGrUSOv1qm7kdG20Pdfu37+P6OhoYV6Xz9rU1BT/+9//hPnMn/XXaP369aLyBzY2NlixYkWWgXltJBKJaNChdu3a4cCBAyrXsaGhIZo1a4YjR46Ifvw8ePCgSlA0pz7131LlZ6pyLU91fvrpJ2zbtg1z5szJVakDIqJPjUFNIiL6JtSsWRMFCxbMcj3l7JmPHz8KNQNzwsTERKfBBpS7FGYe4fRLULJkSVhaWmpdx9zcXJhWznRRR3lQl8wjPYeEhOD9+/fCvJOTk07H6OzsLDqGhw8f6rTdl+jChQvw9PTE/v37sX79eq3XrampKZYsWSJaZ/fu3Xo5DiMjoyw/S3197oA4Y9DX1xdt27bFuHHjcPLkSa0Bzk/h/v37wrSpqamQLalNnTp1tNbjy3yN6jowSZUqVYTp0NBQ0f0CpAdO7O3tUbduXa11FBMSEnD79m1RBiqg+tncu3dPmNa1HEd+yPRydnbWulz52gZyd30rf9YmJiZas/eVKX/WT5480Xnk8PxoyZIlorIjJiYmWLVqVa5qaQLp96u3tzeuXLmCPXv2YPHixVp/KLOyssKyZcuEYKJCodDbM/VT/i0FxM/UW7duoXXr1pg+fTouXLiAjx8/6nrYRERfNNbUJCKib4KuAYPMXyLCwsKy/PKribW1tU4ZJpnr131pChcunK31s/rSpty9LrPMXejGjx+P8ePHZ2v/AIQRu/OjjKCUrrVV7ezs0LFjR6F76oMHD5CcnJzrLsC2trbZGiQjN587kJ4pdO7cOXh5eQFIryl35swZnDlzBkB6EKpRo0Zo1qwZ6tevr9c6d1lRvp4cHBx0el9MTU3h6OgoDCCTWeYuysqDz2T32DKPJK/s/fv38PX1xdu3bxEcHIzg4GD4+/vj3bt3ap83mbPTlbuwZq7fqUn58uV1O/jP6FM+15Q/67S0NNHAR7pKTU1FbGysSmZtfieRSDBz5kxhgDvgv4Bmw4YN9bIPQ0NDlCxZEiVLltRpfScnJzRq1EioDXvz5k29HMenvOaA9HIVV65cEX6cjY2NxZEjR3DkyBEYGhqiUqVKaNy4MZo1a4ZatWrlKiOWiOhzYVCTiIi+CboOsJC5O2JushkyZ/rkV8rZILrI6ouWNvrKHslpOzdv3hSN8pxTAwcO/KQDDtWqVUsIaqalpSE0NFTnLFdNPuXnDqQHATdu3IgVK1bgwIEDKllpr169wqtXr7Br1y5YWVnhhx9+wIgRI3QOVORGTEyMMJ1VoEGZjY2NxmVxcXG5OqYMygOqZJBIJDh06BAOHTqEV69ead3e2NhYawag8rnrku0O6P68/Zw+5fWtr8/648ePOQpq/v3333qp16xcA1YfYmNjMXr0aOGHDCB9ALhVq1apDLT0qdWqVUsIar5//x6pqanZvmYy+9TPVGtra+zZswcLFizA2bNnRT9YyOVy+Pj4wMfHB5s2bUKRIkXQuXNnDBkyRNQFnojoS8egJhERkZLMWUpfS2AyN3L7xSo7MgdX6tatm6MvkpoG9MhKeHi4XkZuVq6F9ylkDnToIzj8KT/3DAULFsT06dMxZMgQ/PPPP/Dw8MDDhw9Vrov4+HgcPnwYp06dwvLly0WDEOWFnJaF0Nb9W/mczMzMsqxVqUnmAGJERASGDRuG58+fq12/UKFCcHFxQdWqVVGvXj0YGhpqrUuak3PXdt5fis/1XLOxsdGpfIE6OX1fnz59KgocfgnevHmD4cOHi2rV2traYsOGDahVq9bnO7D/l/mZGhsbq3P2vCaf45lqZ2eHZcuWYcyYMTh79iw8PDzw7NkzlSztqKgobN++HceOHcPWrVtRrVq1T36sREQ5waAmERF9ExITE3VaL3NGTX7IOPqaZH6/Z8yYkaOumt+a1NRU0byuGXVfKnt7e/Tv3x/9+/dHQkICHjx4gDt37uDmzZuijLOUlBSMHTsW58+fz9OMTeUM7uwM5qVtYA7la71AgQJ6yYKTSqUYPXq0KKBZs2ZNtGvXDlWrVoWTk5PKyMu3bt3S2qaVlZWQranruWs772+R8mddqlQpvWc85jcPHz7EiBEjRFnGpUqVwpYtW3QuFZPXvrZnaunSpTFixAjhfffy8sLt27dx69YtUWD548ePGDZsGDw8PESDGBIRfakY1CQiom+C8uin2mQeGKhMmTJ5cTikQeZMmLCwsE8a1OzWrZvOo1DnBS8vL1y6dAnR0dGIj4/Hxo0bdapzpjzau4GBgdYai/mNpaUlmjdvLnRHffv2LZYuXYoLFy4ASA8+HDp0CGPHjs2zY1B+Drx7906nrqgKhUL0uWSmfK3HxcUhISEhW13b1bl48SIePXokzI8ZMwa///671m3UdV9XVqZMGSGoqevAaZlr437rlD/r0NDQT77/PXv2fPJ9anLz5k38/vvvSElJEV6rVq0aNmzYkCf1Qi9duoQ7d+4gJiYGxsbG+Pvvv3XaTvnetba2zvW9+SWxtbVF27ZthZHYfX19sWDBAiGbNyYmBmfOnEGPHj0+52ESEemEQU0iIvomPH78GAqFIsvuX8pZSyVKlPiqgkP5gbOzM6ysrISMsDt37qBFixZZbhcTE4O///5bGAyiYcOGcHBwyOOj1b93795h165dwryPj49O3QCvX78uTDs7O2ut5fglioqKgre3NwICAhAbG4tJkyZpXLd06dJYsWIFOnbsiICAAADIsm5kbtWsWVOYlkql8PLyQtOmTbVu8/LlS62ZjcptyuVyeHl5oVWrVlkei5eXF86cOQMHBweULFkSrVq1ErLIrl27Jqxnb2+P4cOHZ9mer6+vaD5zt9SaNWvC29tb2LdMJhMNbqbOgwcPstzvt6RmzZrYsWMHAODDhw94+fKlTj/WnD9/Hnfv3hU+63bt2mX53n/JvLy8MGLECFEWZJs2bbBs2bI8K/Xy4sULIahrYGCAiRMn6hQ8VS5DUrt27Tw5trz07t07PHnyBAEBATA2Ntb6LKhQoQI2b96Mpk2bCs+svH6mEhHpC4c4IyKib0JkZCSuXLmidZ24uDjRCKxt2rTJ68PSu89Rs0ufDA0NRaNAHz9+XKdBNvbs2YPjx49j3bp1mDZtGj58+JCXh5ln6tatK/oMjxw5kuU2Pj4+otF5O3XqlCfHlpeePHmCUaNGYfny5di+fbvKyOCZGRkZibqp5vVI6C4uLqL97d69O8ttDh48qHV5xYoVRRl8ysFsbVatWoVDhw5h+fLlmD9/vqjOYmRkpDBduHDhLLN8Mz/zAEAmk4nm27VrJ0yHh4cLGbKaJCYm4tSpU1meR3bk9+dagwYNUKBAAWF+586dWW4jkUiwbNky7N+/H0uWLMGGDRvydUAzJCQEI0eOFAU0e/bsiTVr1uRp7ep69eoJ0wqFAkePHs1ym3///Vf4wQQAOnfunCfHlpeuXLmCsWPHYs2aNVi3bl2WJXgKFCiAUqVKCfN5/UwlItIXBjWJiOibMXv2bERFRaldJpPJMGPGDCEYZmRkhL59+37Kw9ML5S6xmWuC5RcDBw4UpmNjYzFx4kRIJBKN6z99+lRUo65atWqoUqVKnh5jXnF0dESDBg2E+WPHjuHOnTsa14+MjMS4ceOEAa7s7Ozwyy+/5Plx6lu9evVE9dsWLVqkMmiXspiYGNHAJ5UqVcrT4wOAYcOGCdOenp7Yt2+fxnVv3boljEaviZGREfr37y/M37lzBxs3btS6zd69e3H//n1h/ueffxYFH2xtbYXpV69eITw8XGNbqampmDx5MiIiIkSvZx4YqEaNGqhfv74wv2DBAo3d6hUKBebNmycaMV0f8vtzzcbGBj/99JMw7+7ujtOnT2vdZsWKFaJu/L169cqz48trMpkM48ePF/1A1bNnT8ydO1en8hq5Ua9ePZQtW1aY37x5s9YyCgEBAZg5c6Yw/9133wndtPOTFi1aCD8GSCQSLF++XOv6/v7+8PPzE+Y/xTOViEgfGNQkIqJvRnh4OHr06IHbt2+LXg8ODsbw4cNx/vx54bXff/8dpUuX/tSHmGvKQY1Hjx7pZRTsT61KlSr49ddfhfkrV66gT58+ePz4sWg9iUSCffv2YcCAAUKgw8jICFOmTPmkx6tvkydPhrFxeoUgmUyG4cOHY9++faLArlwuh4eHB3r27Cka5GHOnDn5cnArS0tLUTD28uXLGD9+PMLCwlTW9fHxwYABA4QAiYWFBbp3766ynru7O1xdXYV/7u7uuTrGLl26oHHjxsL8vHnzsHTpUtGgOBnX5IgRI1S6cavz22+/oXLlysL8ihUrMHnyZJW6i9HR0Vi0aBHmz58vvGZvb4+hQ4eK1mvSpIkwnZaWhhEjRqh0L09LS8OlS5fw888/w8PDQ+WY1GV0zZs3T8imi4qKwq+//goPDw9R4Dk8PBxjxoxRyfzUB+Xnmqenp97b/xRGjRolGsxqwoQJWLx4sUoAODg4GBMnTsT27duF11xdXdVe4/nF6dOn8fDhQ2G+bt26mDVrVq7bvXv3rugeX7Nmjco6BgYGmDp1qjCfmJiI3377DWfPnhXdo2lpaTh+/Dh69eol/LhpYmKCxYsXC8/j/MTR0VEUjN27dy8WLlyo9geH27dvY8iQIUKWdokSJfJlIJeIvk357wlNRESUA82aNcO9e/cQEhKC/v37o2TJkihVqhQ+fvwIPz8/0Zfz9u3bZzm4xpfKxcVFmA4NDUWHDh3g7OyM+Ph4bN++Pd/UWpwyZQqCg4OFWpGPHj1Cjx49ULx4cZQuXRoJCQkIDAxEUlKSsI2BgQGmT5+OWrVqfa7D1osKFSpg4cKFmDRpEuRyOZKTkzF37lwsW7YMrq6uMDQ0xJs3bxAdHS3abubMmfn6i+jo0aNx48YNIVvozJkzOHfuHMqWLYtixYpBLpfj3bt3ooCfoaEhFixYADs7u09yjAsXLsSgQYPw6tUrKBQKbNmyBbt370aFChVgbGyMV69eCcFWJycnGBgYaM0KMzU1xerVq9G/f38h+/H48eM4ceIEnJycULhwYURGRiI4OFiUQWllZYU1a9ao3M8dO3bE9u3bhffw2bNn6NKlC0qVKoUSJUogPj4ewcHBokBs4cKFkZCQIPwwoNyFPUOZMmWwcOFCTJw4EWlpaYiIiMDvv/+OYsWKoWzZskhISICvr68QJGrXrl2W3dSzw8XFBe/fvweQXmri3r17sLW1hZOTkyir7ktWqFAhrFmzBkOGDEFMTAwUCgW2b9+OXbt2oXz58rCxsUF4eDjevXsnKgFgb2+PtWvX5uvuwJs2bRLNJyQkqATkszJw4EDRjwrZ0bx5c4wbNw7Lli0DkF7X1M3NDXPnzoWzszOkUin8/f1FmaQmJiZYuXKlTjWNv1TTp0+Ht7e3kI29c+dO7N27F9999x0KFy6MtLQ0BAUFie55c3NzLF26VFTWgojoS8ZMTSIi+iZUqlQJa9asETJ+QkND4eXlhZcvXwoBTRMTEwwbNgwrVqzI8y5xeeX7778XdRuLiorC7du34ePjo5Kx9SUzNTXFpk2bMHz4cFHX0/fv38PLywvPnz8XBTSLFi2KNWvWiDI887POnTtj27ZtopqLiYmJePjwIe7fvy8KaGYEPXr37v05DlVvLCwssGvXLlG2oVwuR0BAAO7cuQMvLy9RQLNkyZJYu3YtOnTo8MmO0d7eHvv37xcdY2pqKh4/fowHDx4IQRFnZ2ds2rRJGMBHm1KlSuHIkSOi2pUKhQKvX7/G3bt3ERAQIApoVq5cGfv370f16tVV2jIxMcHmzZtFg9BkjMLu5eWFFy9eiAKazZs3x/Hjx0Xraxrkp0OHDti+fTsKFy4svBYRESHcjxkBzV9//RVjxozJ8ryzY8SIEaKgnq+vL+7cuYOrV6/qdT95rUqVKjhy5IioO79MJsPLly/h5eWFoKAgUUCzUaNGOHToUL7sNZDh5cuXovqUQPrgPTdu3MjWP22lFHQxdOhQLFu2TPRDQGxsLO7duwdvb29RQNPJyQk7duzIl3W1lRUrVgz79+8XBWalUin8/Pxw+/Zt3L9/XxTQdHZ2xvbt21GnTp3PcbhERDnCTE0iIvpmNG3aFKdPn8bevXtx+fJlhISEwMDAACVLlkTTpk3Ro0cPlCtX7nMfZq6YmJhgz549WLduHS5fvozw8HBIpVIULVo033VFNzIywtixY9G7d2+cOHECt27dEkbHBtLrR1asWBEtW7bE//73P50CSPlJo0aNcOnSJZw5cwZXrlyBj48PYmJiYGBggMKFC8PZ2Rlt2rTBDz/88NWcu52dHbZt24Z79+7h7NmzePLkCUJCQpCQkAAzMzMUKVIEFSpUQKtWrdC+fftsDTCir8FmrK2tsW3bNnh6euL48ePw9vZGVFQUChYsiLJly6JDhw745ZdfRMH4rBQqVAirV6/GixcvcObMGdy9exehoaGIi4uDiYkJ7O3tUbVqVXTo0AHNmzfX+qNLiRIlcPToUZw6dQoXLlzAixcvEBsbCwMDA1hbW6NMmTKoXLkyOnToIIzA3rJlSzx58gRAeobs+PHj1b639erVw7///oujR4/i4sWL8PPzQ3JyMooUKYLq1avjl19+QcOGDeHv75/Nd1W7WrVqYd++fdi8eTMePXqE2NhYmJmZoWDBgkhNTc3We/25lSpVCrt378a9e/dw4cIF3Lt3D+Hh4YiPj4e5uTlKliyJGjVqoFOnTqJBbvKrzAHNz6ljx45o0aIFTpw4AU9PT/j6+iI2NhZGRkYoWrQoKlWqhLZt26JNmzZfTaaio6MjDh06BE9PT1y4cAE+Pj54//49kpKSYGFhgSJFiqBq1apo3bo1WrdunS+72hPRt81Aoa0KOxERERFRPjZr1iwcPHgQ69aty/eZV0RERET0n/zZt46IiIiISAcZgw0VK1bsMx8JEREREekTg5pERERE9FWKjIzEnTt3YGdnJ6o1S0RERET5H4OaRERERPTVCQgIwLBhw5CamooBAwawVhwRERHRV4ZBTSIiIiL66nz48AG+vr7o06cPhgwZ8rkPh4iIiIj0jAMFEREREdFXKTg4GI6Ojp/7MIiIiIgoDzCoSURERERERERERPkKu58TERERERERERFRvsKgJhEREREREREREeUrDGoSERERERERERFRvmL8uQ+Avg0PHjwQzRsaMp5ORERERERERPStksvlovnatWtna3sGNemzyHzhEhERERERERER6YrpckRERERERERERJSvMFOTPouvpfu5csbp13JORJ8L7yci/eC9RKQ/vJ+I9IP3EpH+fE33U2578TKoSZ+EoaGhcLEaGhqiZs2an/mIck8qleLx48fCfNWqVWFszFuKKCd4PxHpB+8lIv3h/USkH7yXiPTna7ufvL29RbGi7MrfIV0iIiIiIiIiIiL65jCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPkKg5pERERERERERESUrzCoSURERERERERERPmK8ec+ACJ9USgUkMvln2x/MplMZd7AwOCT7Z/oa8L7iUg/vpV7ydDQ8Ks8LyIiIiLSHYOalG8pFAokJSUhLi4OCQkJkEqln3z/yvz9/fkFiyiHeD8R6ce3dC8ZGxvD0tIS1tbWsLCw+GrPk4iIiIjUY1CT8iWJRIK3b98iLS3tsx6HsTFvISJ94f1EpB/fyr0klUoRGxuL2NhYmJiYoHTp0jA1Nf3ch0VEREREnwhralK+86UENA0MDGBsbCz8Y4YIUc7xfiLSj2/1XkpLS8Pbt28hkUg+96EQERER0SfybfyUT18NhUKhEtAsWLCg0PXMyMjokx5LUlKSMM+ub0Q5x/uJSD++lXtJJpMJJWgSExMB/BfYdHJy+irPmYiIiIjEGNSkfCUpKUkU0LS3t4ednd1nORaFQiEKohoZGfFLFFEO8X4i0o9v5V4yMjKCqakpbG1tERMTg/DwcADpgc2kpCQULFjwMx8hEREREeU1dj+nfCUuLk6YLliw4GcLaBIREdGXwc7OThTEjI+P/4xHQ0RERESfCoOalK8kJCQI09bW1p/xSIiIiOhLofx/AgY1iYiIiL4NDGpSvqFQKCCVSoV5CwuLz3g0RERE9KVQ/j+BVCqFQqH4jEdDRERERJ8Cg5qUb8jlctH8pxwUiIiIiL5cmf9PkPn/DERERET09WFQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoXzH+3Afwud29exdnz56Ft7c3IiIikJCQAEtLS5QoUQJ16tRBt27dUKlSJb3vNyYmBkeOHMHVq1cREBCAxMRE2NnZoXTp0mjXrh06d+4MGxubbLXp7++PgwcP4u7du3j37h2kUimKFSsGFxcXdOrUCd9//z2Mjb/5j5yIiIiIiIiIiPK5bzbC9e7dO0yaNAn3799XWRYbG4vY2Fi8ePECe/bswf/+9z/MnTsXlpaWetn3pUuXMG3aNMTGxopeDw8PR3h4OO7du4dNmzZhwYIFaN68uU5trlmzBhs3boRUKhW9HhwcjODgYHh4eKBKlSpYsmQJvvvuO72cBxERERERERER0efwTXY/DwwMRPfu3UUBTRMTE1SuXBkNGjSAs7MzDAwMhGVnz55F7969kZCQkOt9nz9/Hn/88YcooFmuXDnUq1cPDg4OwmuRkZEYMWIErl69mmWb8+fPx9q1a4WAprGxMSpXrow6deqgUKFCwno+Pj7o06cPQkJCcn0eREQAkJaW9rkPgYiIiIiIiL5B31ympkwmw+jRoxETEwMAMDIywogRIzBgwABRJmZ4eDiWL1+OEydOAAB8fX0xbdo0rFq1Ksf7Dg4OxpQpUyCTyQAALi4uWLx4sah7+507dzB16lSEhIRAJpPBzc0N//zzD+zt7dW2ef78eezZs0eYb9euHWbOnIkiRYoASA84uLu7Y+HChUhOTkZUVBRGjx6NY8eOiQK3RF+KdevWYfXq1ahXr57o2s5KbGwsDhw4gKtXr8Lf3x8pKSkoWrQoXF1d0alTJ/zwww8wNNTtdxx9tqWrp0+f4sCBA7h//z7ev38PY2Nj2Nvbo1GjRujevTsqVKig1/3l1tu3b7FgwQIMHDgQ9evXz3L95ORk1K9fH6mpqZg7dy569uz5CY6SiIiIiIiIvlbfXKamu7s7/Pz8hPlFixZh9OjRKl3L7e3tsXjxYgwYMEB47fz583j06FGO971ixQokJSUBABwcHLBr1y6Vep0NGjTA/v37UaxYMQBAYmIi1q5dq7a9tLQ0LF68WJhv2bIlVq5cKQQ0gfQM1J49e2Lt2rVCPc1nz57hzJkzOT4Porxy//59bNiwIdvb3blzBx06dMDKlSvx6NEjxMfHIy0tDaGhobhy5Qrc3NzQu3dvhIWFfdK2dKFQKPD333+je/fuOHbsGIKCgpCamorExEQEBARg79696NatG1asWAGFQqGXfebWzp078b///U+nTPIMN2/eRGpqKgCgRYsWeXNgRERERERE9M345oKaJ0+eFKabNGmCzp07a13fzc1NCDAC6V3RcyI8PBwXLlwQtWtnZ6d23eLFi2PatGnCvLu7u0r9TQC4ePEiQkNDAaR3OZ85c6bG7LEmTZqIMqN27NiRk9MgyjNPnjzBiBEjst2d+cmTJxg6dCiio6MBpP9g0K9fP4wZMwYdO3aEubk5AODhw4cYPHgw4uLiPklbulq0aBG2bdsmBCwbNWqEkSNHYvjw4ahZsyaA9AzzjRs3YsWKFbnenz54eHhAIpFka5uMAGilSpU0Zp4TERERERER6eqb6n4ukUjw8OFDYb5jx45ZbmNqaoomTZrA3d0dQHoX0Zy4cOGCUPPSysoK7dq107r+999/Dzs7O8TExEAqleLSpUv4+eefReucO3dOmG7UqBFKliyptc2ePXti3759ANKzNYODg+Ho6JiT0yHSqzNnzmDGjBlCJrOuJBIJJkyYIGQAduvWDXPmzIGpqamwztu3bzF8+HD4+/vj9evXWLZsGebMmZOnbenqzp072LlzJ4D0Z83q1avRsmVL0TonTpzA1KlTIZPJsGnTJrRq1Qo1atTI8T4/B4VCgWvXrgFgliYRERERERHpxzeVqRkSEgIzMzNh3snJSaftbG1thekPHz7kaN+3b98WpuvVqwcTExOt6xsZGaFhw4bC/JUrV0TLFQoF7t69K8w3btw4y2NwdXVF0aJFhfnLly9nuQ1RXkpISMCMGTMwbty4bAc0AeD48eMIDAwEkF6jdv78+aIgJACULl0aW7ZsEbIsjx49iuDg4DxtS1crV64UpseMGaMS0ASALl26wM3NTZj/UrI1s+PZs2eIiIgAALXnSERERERERJRd31RQs1y5cvD29sb9+/dx9uxZuLi46LSd8mjhNjY2Odr3y5cvhenKlSvrtI3ywCCZM0RDQkJEXV+rVKmiU5uurq4a2yT6VCQSCXbt2oU2bdrg8OHDAAADA4NsB7yOHj0qTA8bNgxGRkZq13NwcED37t0BAFKpFKdPn87TtnTh7+8Pb29vAOnZ27/99pvGdfv27SuUq7h7967e6nl+Khldz4sUKYKqVat+3oMhIiIiIiKir8I3FdTMYGVlhfLlywvZVtokJCTg5s2bwryu2Z3KJBKJUPsSAMqUKaPTdqVKlRKmw8PDkZKSIsxnZJRlKF26dLbbfPv2rU7bEOmbp6cn/vrrLyHzuUSJEti0aZNoYK6sxMTECIF5IyMjNGvWTOv6yt2e//333zxrS1eenp7CdMOGDbU+j0xNTdGoUSMA6VnaOd2nsri4OOzcuRN9+/ZFgwYNULlyZdSuXRvdunXDkiVL1Gagurq6wtXVFV5eXsJrffv2FV5Xzh5XlpFp3qxZMxgYGKgsj4iIwMaNGzFo0CC0bNkS9erVQ4MGDdCpUyfMnj1bY7tERERERET07fomg5rZsW3bNiQkJAjzOek6GRkZKRq1WLkLuDbKo5hntKNu2tDQUGVdTZT3rdwG0edQoEABDBs2DGfPnkXz5s2zte3z58+F+8rJyQnW1tZa11euQ/ny5UtRd3d9tqUrHx8fYTpjQCBd9/no0aNs70/Z8ePH0apVKyxcuBB3797Fhw8fIJVKkZCQgGfPnmHr1q3o0KED9u7dm6v9AOkBy2fPngFQX0/z3LlzaNeuHVauXAlvb298/PgRUqkUsbGx8PPzw4EDB9C3b18MGjRI9CwmIiIiIiKib9s3NVBQdj158gRbtmwR5suWLYtWrVplu52PHz+K5rMKmGSwsrISzSt3N1dus2DBghpHPc/M0tJS43F9KkkSGSoszn49T3MjYFrtgihW0AzFrMygUChEweIM72KT8TFFmqtjtDIzRulCBTQu949OREqaHHKl/RvGxWdrH0UKmsLeykzj8ufhCWrPLztK2pijUAH19VslMjleRSbmqn0AKGdnAQtT9V21E1KlCPqQrPJ6tNQY3fsNRvsff4atXWG8iZMBcXF4E/1fcDAxVQqfsPRrvkIxSxgZijP8AgIChGmbosWFdbWxtLJGQnwc5HI5Lj98gbJOzgCAO09eCOuUKlVK5X0PjUvBh6Q0ndrSxMLUCOXsLNQef6lSpRAQnYgkiUzj9tICtsL0i1f+as+3kIUJSlprzvh8GZGAE4f2Yce6/+py2hSyQ+2GTWBfvCRiP8TA2+s23ocEQyKRYN68eYhIlKJt524AgL7D/4CVmTFOuR8RMjl/+eUXYcCxkg6lVI7r0pnzUCgUMDYxgV35aqLlL589wfRx4yGXp5+3S+WqqFClOkoUsYUkKRFPnz7F/fv3AQA3btyAm5sbVqxZjzcx2Q8iZ+ZctCBMjdQ/Nz8kpyH0Y4raZboyMDBAJXtLjcvD41MRlZi9EeQzMzcxhFPhghqXv/2QjPjU3D0LbcyNUcpW87PwVVQiJFJ5rvZR1NIUxSw1Pwufvc/es1WdUrbmsDFX/yxMlcrxOir3z8LvCluggIn6Z2FcihTBsarPwuyqaG8JQzXZzgAQmShBRHz6QGc5/dtkYmQIl6Kar6mQjymITU7TuFwXlmbGKKPl72tAdBKS0zQ/CzVRyOVIS5PhQ1IaDAyA76RSjX9DG669let7Y0ab8uhZXf0AjZEJqWi5KfcZ5jt6VENdR1u1y+4Fx2LA4Se53seVYfVRVMP9d+hxKOZdep2r9q3MjHF7VCONyxdd8cfehyEal+uiWgkr7P9V84+Dw44+xc2gnNXEh0KB1FQJWpQyx6ga1pDJ1F+b7bZ4ISQud383/mxSFoPrq+95lSqVofaqm2qXZceqzpXQ2ll9IsSLiAR03/NQ7bLsONW/Dr4rbKF22TnfCEw865vrffiM09yjZv2tIKy/HZSr9ssVKoDTA+tqXD7hzAv88zJ3ySGtnApjdRfNJcl+2v0AL3P5//RBdR0xtlk5jctrrbwBiSx3f8Pnt3NBlyrF1S4L+ZiCdlv/v3fP/99LGcwuXgM0/D3LbG+vGqhRUv335xtvYjDc3Uftsuy4NbIhrDX8P2H3g3f4+2qA2mW6KmJhiqsjGmhcPufiKxx5krvyUnVL2WBHz+oalw849Bj33uXu+3/3aiUw63vN33labLiDqKTc/f92Yovv0Ld2KbXL4lLS0GjdbbXLsmNjtypoUs5O7bJHoXH47cCjXO/jwuB6cLBR/73shM97TL/gl/PGFQrI0yQ40KEYAKj927TC8w223cv52A8A4Fq0II71ra1x+R8nnuGyf3Su9vGDa1H01a0js0YMamrw7t07/P7770hL++8/75MnT4axcfbfsozRlDMoD1akTeZBSpTbUZ7WpRu9ujYlktw9cHJKrlDALwd/pC2MDZCSVgBpMjnkcjmSkpLU1j1MlsiQovQlWyqTY6vXW9x8EyN6XRtDA8DYUPMf2jSZArkLNwJGBlAJ1CmTyHK7B8DYADDUtA9F+rLG5ewwuF5pGGsI8GQlOSUFkKrfR1KaQu177lS5Bpwq1wAA0XLl/1jJFf8tS05ORubTUC7pYFukmE6frW3hokiITw+qRUREoniZ9HISylnLRYoUUcm8TEmVqbSvqS1NDA0UonYzBs4BgEKFCiElTYoUqebP3LLQf19CPkRHqT3flNQ0JCVpfh9evvTFrg2rhfnm7Tuh78hxMC/wX4Dhl2FS7Nu4Cv+eSK91unP9CtRo1BzWtoXQ7ufesLcwwp0b14SgZqtWrVCnTh0A6Z9Z+AdxwMPr1nUAQIWqNWFgWkB03Ad3bBECmn1HjkO7rj0AAI5WxrA0Sf/APTw8MHnyZMhkMly7dg2PHnnDrKT2ALIukpOTIdVwb6SkynV+VmhiYACtGbzJaq6pbFMotO4jJS33+zCVSLPcR26fVSmpEiQZag5i5fp9ApCckgoTufpgnESm/jmV/X2kQJGm/ppKTsv9NQWkX7ea/mpovm51/3xkcu3XVOa/rzlhZJCGpCTNx5TVs1AjuRxQAGlyOWRSqSgbPrOX4XFISMvddfvsVSAeQ31QIypZlqP/52T29IUfTGPU/5/xaXiqXvbxxOcZihRQH4x/9iox1/uwNDHA48ePNS5//uZjrvdhKpdo3ceLd9Hwi0zVuFwXUSnpzyhN15Xv+1iEJWY/GK/sWcBbPDZXH3xNleXs/86Z+fi9RpEk9UHklx/S9HPdPn+OeGv1waFnQcl62Ye2z/tZQFyu95Gakqr9un0bA7/I3AWxS5jK8Pix5h9XfENj8Co2dz++PHvzDo9tNP/o7xcRD0ku/zT5vHqDcrJwtctCE6SaP4t43c/N58VLGESaql32NDRFP8/Cpz6wMlX/XejZ64Rc7yPKPFn7cyooFn6RufvR3tIgTfs+QqLgF5m77/8vgkLx+LHm4/QN/4iYlNxdVM9eB+GxsfpAWbxErp/nlO8rWMWpj6H4REn09vc1ylJ97MgnICn3f/uULld1f5uevcn9s1CRpv1Z+CI498/CMgVkkDuqDzDrikFNNcLCwtCvXz9RoKN///45HrVXKhU/tDUNQJJZ5vWUI/DKwVZdszQBiIKymY/ra7Xl7lvsyOWvFF+zjF+Bhzcs+3kPJJuUuyKbmWvO+lFmpvQDQFJigtrpAgVy15aulI9flx8mTM1ytz8AOHVorxBErFG/MYaOn66yjrGxMfr8PhaBr3zh9+wJUlNScO38aXT6pW+295cmkcDn4T0AQM0GjVWWv3qeXsfUwtIKbbt0V9tG69at8cMPP+DMmTMwMjKCz9OnqK2HoCYRERERERHlbwxqZuLv749BgwaJRhdu0qQJxo8fn+M2MwcdNXVdySzzeiYm//3qqRzwlMt1/zVEOZCp3N7XTB9dF792PmH57z1SDuybmuqa/fzfemlpEqXp/9rSPZNafVu6Ut6nubk5surQaWqmvL/sd/9MS0vDw9s3hPmeg0ZoXNfQ0BDtf/oFqSkpKO7gCBu7wtneHwA8f/QAqSnpXW5rNmiisjzjOZaclIi3Aa9QxslFbTt//PEHhgwZghIlSiANRgiM+zZ+kCEiIiIiIiLNGNRU8vDhQ/z+++/CiMwA0KBBA6xduzZXAcDMmV+6dvvW1m1duc3M62mjvG9dgzf6ZmhgoLVmlybmRuk15EyMDGFoaAgLCwu1Wa8FJMmQyP8LelQvaQ2v4NjcHPJXr4aDNcyNc9b9vIC5ucaamvJUKcyTdQ+6K9c4NDSAcEwFChRQ6aqvfE8aGxrodPzKTZgaGQrbmChdRyYmJrCwENeCMpemwFwmDiRqaksTcxMjUbuGhobCDxfm5uYwMjGGXKH5Bw8zpffGAOrP19zMBBYW6rM+7927J2R4FrUvARcXV63H27zV92je6nuV1wuYmYp+qDEzMxPOSyZXwDz+v3N44pVe/6ukYxmUKa1aJ6xyzdq463kFCrkc891GoH3X7qjTqBkca1VBgQKWwkjppZW2TZLIYJ6DgZlUzqNAAY01NVMN0mCemvuampmvI9H+Zakwl+a+pqa2fZinJiNNnrsAcAFTY1hYaM5eNk9KhKFB7roZmZuZwsJC898j82zWK1angLkZLDTUyjKSymGemPtuRgXMzTXW1JSmSGGenPuamgUKFNBYUzNRIYG5RE1NTR1rlgHpNTW1XrdpKUiV5a6mZpbXVHISFMhJTU0gzQAwMTSEqZkpqlSppLFnjOv1xFzX1KzsXBbVtdTUdLmZ+4HNqlZ0QXUNNTUlwbFweZr7mprVqlTWWFPTF6FwCcp9Tc3q1TXXeKsU4w+XD7mrqVmhhJXWfVR89RQxstzV1Cxinn4tValSRe11VcHLC1a5rKlZ+bvSqF5dc01NlytZ1w7PShWX8qiuoaamaUQCXB7k/u9r1UqVNNbUDDGLgMur3NfU1PZ5V04Mgkt47mtqar1ug18gKDl3NTUrOhZG9eqaa2pWePwABia5+9tUuVwpVK+uuaamy5X4XNfUrOJcDtU11NQs8jEFLnf+/xwy19Q0M9W5pmaViq6orqGmZrx1DFye576mZrWqVTTW1HwsfQeXd7mvqan1ORXxCi4fc1dTs6KDjfZ9+D5GgiJ3NTUrlimB6tU195iqcCs51zU1K5cvg+rVNdfUdPHM/f8Lq1ZwRnUNNTUVoXFweZT7/7NVq1JZY03NN0bv4RKQ+5qaGdT9bar88Q1conJfU1PrNfXmGcIkuaupWal0URgaSrOVqJcZg5r/7/Tp05g6daoo6Ne8eXOsXr06WzUr1bGxsRHN6zqCb+b1bG1t1baZmJgIhUIhBAB0bVO5vU/JwtQIvpOyP+CSTCaDn99/N7+BgYHac3YsZAFHpfm13aqimJUZzr0I1zoQS07k9Ivjl8LC1AgdKtpj5vcuMMlhTU1trMxNUKWE7j8IJL797z/BBc2MUaWE5kG1Chb8LzBuYwqt62YwUvz3JdbJ3lbYpmTh/+4niUSicl052BSAg434S7imtnRlYWEhDNYlkUjg5Kg90O+f9N9/ns3NzbK9P+Xs8yqVKmR7e2XK74/yfWhsZCBq9+m9WwCA9t+3Vru/mZPGo+fDe0hISEBSYgLc9+6A+94dsLa2Rv369dG4cWM0bdoUpUr99x+brK4LfbCzMIWdhfraTfpS3NocxbUM6qQPZew0B6f0xaWo5sGQ9CWvP29zE6M834dNARPYaBi0TV+KWZqhmGX6IHrKdTEtLCx0+v+BLkrZFtA6cJQ+OBXJ/o+ewP//HyHOCAVs0v9Tb2xsrDGoee9PzYOM6EMJW+Mc/T8nOxqWK5Ln++hduzR611YfZNOX6d+7Yvr32n9ky61tv2geRCgrUqlUVE/MyMhIbX19jxGaB0PSB2PjvL+mqpa0zfN9dK5SEp2rqP8xQF/+aOaEP5ppr3OeWyu6VMWKrFfLlZMD6+fxHoAn41vkaftlClsK11Tme6l69eo5GqsisxbOxfL8uh1YvywG1i+bp/uY90NFzPuhYp7uY09vzQO+6MuN0ao9s/TJzjLvn4V1Stvl+T5+rlEKP9dQH7jVhS5/mya0csaEVnlbsmv9z5oDntnh7e2dq+0Z1ASwZs0arF27VvRa586dsXDhQr08bIsWLQpDQ0Mh+hwVFaXTdsrrGRgYoHDh/7qA2tvbC9MymQwfPnyAnV3WBVYzD4jyLTAxMsS89hUwr30Fvbabl18cKWvK2UQpKbplRyivZ239XxBDn23pSjmoqcs+k5WyvKysrLK9v+jo/35Fy8nxZtfLly8REpKefdOiRQu165QvXx67d+/GtGnT8OLFfyPQx8XF4eLFi7h48SIAoGLFiujWrRt++eUXlQHUiIiIiIiI6Nuk/9SsfCQtLQ0TJ05UCWgOGzYMf//9t14CmkD6iOMlSpQQ5t++favTdhmjCwNAyZIlRV/my5Qpo3Fdbd69eydMlyunuTsC0ZdOObAfHq5+1MXMlNcrWrRonrSlq+zuM7f7+9QDg129ehVAegC1dm3NvwxXrlwZx48fx549e9CrVy9RV/MML168wIIFC9C5c2edPx8iIiIiIiL6un2zQU2JRIJRo0bh5MmTwmvGxsaYP38+3Nzc9J5xV6VKFWHa11e3WjLKmUsVK4rT0R0cHETdx5XX1UZ53xUq6DdzkehTcnb+L50+IyNQm4SEBCEz0sjISPTDgD7b0lV296m8Tk5+kFDOzoyLy31drqxcuXIFQPpAa1n9QGRgYIC6detiwoQJOHHiBP755x/8/fff6Nq1KwoVKiSs9+bNG0yePDlPj5uIiIiIiIjyh28yqCmVSvHHH38ImURAen2+TZs2oXv37nmyz3r16gnTd+/ezbIQqkwmw927d4X5Bg0aqKxTv/5/tVZu3bqV5TH4+vqKurSra5Mov3B1dRUGrPHz8xOVAlBHuVaHs7OzKPNZn23pSvlHhUePHmW5vvI6yj+S6Eo5A/L166wHfkhLS8OYMWOwePFiHDx4MFv7+vDhg1DnRVPXc23s7e3RuXNnLFq0CNevX8fQoUOFZbdu3WK2JhEREREREX2bQc0lS5YIWUQAYGdnhz179qBJk7wrbNumTRuhYH1UVJRQK06TCxcuICYmBkB6Bmnbtm1V1lF+7cqVK1l+0T9w4IAw7eTkBFfXvC3MTpSXLC0tUbduXQDpAbjr169rXV/5nm/WTDxIhD7b0lXLli2FjPBbt24hNTVV47qpqamiHy5ysk/lguzBwcEICNA+iuPjx49x/vx5bN++Hfv27cvWvq5duwa5XA5DQ0ONx+rp6YmhQ4eiTZs2mDlzpsa2TExMMHbsWFEdUQY1iYiIiIiI6JsLal67dg27du0S5m1sbLB7925Urlw5T/dbvHhxtG7dWphfsGCBxi/mYWFh+Ouvv4T5tm3biurvKb9erFgxAOnd6SdPnqyxbt7169dx5MgRYb5Pnz45Og+iL0mnTp2E6XXr1kEikahd7927dzh69CiA9K7O3bp1y9O2dOHg4IBatWoBAGJiYkTPpcx27dqFDx8+AABq1aqF7777Ltv7K1iwINq0aSPMr1u3Tuv6u3fvFqaVtwMgGlFYXdZ5RtC3evXqou7jyoyNjXHt2jUEBwfj4sWLWrvEJyUliQZKUvc8JCIiIiIiom/LNxXUlMlkWLBgARQKBYD0gMSyZctEte1yok+fPnB1dRX+aTJ27FiYmZkBSM80+vXXX+Hl5SVa5+7du+jdu7cwSrmFhQXc3NzUtmdqaipaduvWLQwZMkQ0aJBUKsXhw4cxevRoyGQyAICLi0uedbMn+pR+/PFHODk5AUgfbdvNzQ2JiYmidYKDgzFkyBAhE7Jz585qa1Lqsy1dKdfvXblyJU6cOKGyzokTJ7By5Uph/o8//sjx/kaMGAETExMAwJkzZ7BkyRKkpaWJ1lEoFFi3bh0uXLgAIL0WZ+/evUXrWFpaCtPKg48B6ZmuN2/eBJCejapJgwYNhC7xMTExGDt2rBC4VSaRSDB9+nThB5tatWoxqElERERERETQz/De+cT58+cRFBQkzBcoUAA7d+7Ezp07dW6jSJEiWLx4cY72/91332H+/PmYNGkS5HI53r17hz59+qB06dIoXrw4wsLCRAFJQ0NDLFiwAI6Ojhrb7Nq1K7y9vXHo0CEA6YHNtm3bwtXVFZaWlvD39xe6sQOAra0tVq1apbeR3Yk+J1NTUyxYsAD9+vVDamoqLl68iEePHqFdu3YoUqQIAgICcPHiRSHLz9HREdOmTcvztgCgVatWwuA+Xbt2xaJFi1TWqVOnDn777Tfs2bMHMpkMkyZNwsGDB4V6t3fv3sXDhw+F9fv164eGDRvm7M1Ceh3PadOmYfbs2QCArVu34ty5c2jZsiXs7e0RGxuLq1evCl3TDQ0NMW/ePBQpUkTUTqlSpYTppUuXIiQkBCYmJmjbti2ioqIQHx8PQHs9TUNDQ8yaNQtDhgyBXC7HzZs30bFjRzRr1gwODg6wsbFBWFgYPD09ERoaCiD9R56pU6fm+PyJiIiIiIjo6/FNRbbOnz8vmk9KSsKNGzey1YaDg0OujqFz584wNTXFrFmzEBsbCwB4+/Yt3r59K1rPxsYG8+bNQ7t27bJsc86cOShUqBC2bduGtLQ0yOVytaOhOzk5YdWqVTnqukr0papZsyY2bdqEcePGITo6GpGRkdi7d6/KehUrVsSGDRtgY2PzSdrS1bRp02BiYoKdO3dCLpfD29tbNBARkJ5VPmDAAEycODHX++vVqxesra0xe/ZsxMXFITQ0VG3NTGtra8yfP1/tM+inn37Cvn37IJFIEBsbiw0bNgBI/6Eoo6yGg4NDlnV7mzRpgqVLl2LmzJlISEhAcnKykCGamYODAxYtWoSqVatm95SJiIiIiIjoK/RNBTWzGhjjU2nfvj0aNGiAI0eO4PLlywgKCsLHjx9hYWEBJycnNG/eHD179oSdnZ1O7RkYGGDs2LHo3Lkzjh49ihs3buD9+/dITk6GjY0NKlasiPbt2wsBVaKvTcOGDXHhwgUcOHAAHh4eCAwMREJCAqysrFCpUiV06NABXbp00SlDWZ9t6cLAwACTJk1Cx44dcejQIdy9excRERGQyWSwt7dHnTp10KtXL1SrVk0v+wOA//3vf2jatCkOHToET09P+Pv7Iy4uDubm5sIz6JdfftH4DHJ2dsbevXuxbt06PHnyBPHx8bC0tERCQgKuXr0KAGjevLnOx1K/fn0cO3YMnp6eCAwMRFxcHAwNDVG4cGG4urqiVatW6Ny5s1C+g4iIiIiIiMhAkVFgkigPeXt7CwOKGBoaombNmtluQyaTwc/PT5h3cXERDVjyqSkUCiQlJQnzFhYWQn1EIsoe3k9E+vGt3ktf2v8R6OsglUrx+PFjYb569eos4USUA7yXiPTna7ufchsr+qYGCiIiIiIiIiIiIqL8j0FNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiIiIiIqJ8hUFNIiIiIiIiIiIiylcY1CQiIiIiFWlpaZ/7EIiIiIiINDL+3AdARKRs3bp1WL16NerVq4c9e/ZoXM/d3R1TpkzJ8X5GjRqF0aNH672tnLpz5w7c3d3h7e2NyMhIyGQy2NnZoVKlSmjfvj06dOgAExMTndq6ffs2Tp06hcePHyM8PBypqamwsrLCd999h0aNGuGXX35B4cKF1W67Zs0arF27NsfnsXDhQnTr1k3tMm9vbxw7dgz37t1DREQEZDIZihcvjtq1a6Nbt26oVKlSjvcLpAdgevXqhadPnwIAXr58meO2dL0OM4uNjcWBAwdw9epV+Pv7IyUlBUWLFoWrqys6deqEH374AYaGuv2eqM+2fHx8cPjwYdy/fx9hYWGQy+UoVqwYKleujA4dOqBNmzbZOq7Dhw/j2rVreP36NRISEmBhYQFHR0fUq1cPPXv2RLly5XRqKyYmBgcOHMD169fx5s0bJCYmwtraGhUrVkTbtm3RpUsXmJmZ6dRWYmIiTpw4gWvXrsHX1xexsbEwNDSEnZ0dqlSpgvbt26Ndu3YwMjLKsi2JRIJz587h0qVLeP78OWJiYiCXy1GoUCFUrFgRrVu3xo8//ghTU1Odjk2f9/enEBUVhSVLlqBhw4bo0qWLTtu0bNkSoaGhGDZsGNzc3PL2AImIiIiIwKAmEX1B7t+/jw0bNnySfRkYGHwRbSUmJmLKlCm4cOGCyrL379/j/fv3uHz5MrZu3YqVK1fCyclJY1sRERGYPHkybt68qbIsJiYGMTExuH//PrZs2YJp06ahe/fuOT5uTdS9F0lJSZgxYwbOnDmjsiwoKAhBQUFwd3dHixYtMGPGDBQqVChH+161apUQ0MyNnF6Hd+7cgZubG6Kjo0Wvh4aGIjQ0FFeuXMHevXuxfPlylChR4pO0lZaWhvnz5+PQoUNQKBSiZW/fvsXbt2/xzz//oFq1ali0aJHW6wsArl69ikmTJiE2Nlb0elxcHJ49e4Znz55hz549GDFiBEaNGqW1rePHj2Pu3LlISkoSvR4dHY0bN27gxo0b2LBhAxYuXIiGDRtqbevatWuYOnUqoqKiVJaFhIQgJCQEFy5cgIuLC1atWoXvvvtOY1uPHz/G+PHj8fbtW5VlGffklStXsH79eqxYsQI1atTQ2JY+7+9P5dy5c5g5cybi4+NRv359nbbx9fVFaGgoAKBFixZ5eHRERERERP9hUJOIvghPnjzBiBEjdO7uWLVqVUycOFHn9v/99188evQIAGBnZ4cff/wxT9rKDrlcjpEjR+L27dvCa/Xq1UOVKlVgamqKV69e4erVq5DJZPDz80OfPn1w+PBhlCpVSqWt2NhY9OvXDwEBAQDSg4sNGzZEtWrVUKBAAYSEhODKlSuIjIxEcnIypk+fjuTkZPTt21fUTuPGjWFhYaHzORw+fBiBgYEAgLJly6oENFJTUzFgwADh/QKAMmXKoEWLFrCzs8O7d+9w8eJFxMbG4urVqwgMDMSWLVuydQxAenbqtm3bsrWNOtm9DpW3Gzp0KFJTUwEADg4OaNOmDWxtbeHv749Lly4hJSUFDx8+xODBg3HgwAFYW1vneVvjx4/H+fPnhfkqVaqgZs2asLa2RmBgIDw8PJCSkoInT56gX79+OHToEBwcHNS2devWLYwaNUp4bwoVKoSWLVvCwcEBkZGRuHXrFt6+fQupVIo1a9YgOTkZEyZMUNvWzp07sXDhQmHewsICrVq1gpOTE5KSknDjxg28ePECYWFhGDx4MJYvX4527dqpbevy5csYNWoUZDIZAMDW1hYtW7ZE6dKlIZVK8fz5c1y/fh1SqRR+fn7o3bs3Dh06hNKlS6t97/v37y8EWi0sLNCyZUshCPr69WtcuXIFKSkpCA0NRb9+/bB7925Ur15dpS193t+fkqenJ+Lj47O1zZUrVwCkXxPagrxERERERPrEoCYRfXZnzpzBjBkzVDK2tHF2doazs7NO6969exfLly8HAJiYmGD9+vVwdHTMk7ay4+jRo0LAw9raGqtWrUKjRo1E6/j5+WH06NEIDAxEdHQ0FixYoDaLcMmSJUJAs3jx4li7di2qVq0qWic1NRULFizAoUOHAACLFy9G48aNRdlhtWrVQq1atXQ6/lOnTgkBTSsrK2zevFkly3LRokVCQNPAwABjx47F4MGDRV2AJ02ahClTpuDixYsIDAzE9OnTsWvXLp2OAQA+fPiASZMmQS6X67yNOjm5DoH0rsoTJkwQgpDdunXDnDlzRF2T3759i+HDh8Pf3x+vX7/GsmXLMGfOnDxt6+TJk0JA08jICIsWLULnzp1F64SGhsLNzU3oFj1v3jxs3LhRpa20tDRMnz5dCGh26tQJs2fPhqWlpWidjRs3CuULtm3bhg4dOqBy5cqith49eoTFixcL83Xr1sXy5ctRrFgx4bXx48fjyJEjmDNnDtLS0jBp0iS4uLiodGuPi4vD1KlThYDmDz/8gPnz54uOCwD8/f0xcuRIvHnzBjExMZg8eTL279+vco6TJ08WPv969ephxYoVKFKkiGi98PBwjBkzBt7e3khJScG4ceNw7tw5la7o+ry/v3RXr14FADRr1kznMgZERERERLnF/3kS0WeTkJCAGTNmYNy4cdkOJOkqJiYG48aNg1QqBZAeLKlZs+ZnbwtIr+WZYeLEiSoBDwBwcXERgqhAejfbjx8/itaJiorC8ePHAQCGhoZYv369SkATAMzMzDBnzhw0bdoUACCVSrFz584cHXtAQABmzpwpzC9cuBBlypQRrRMSEoLDhw8L82PGjMGwYcNUahpaWVlh+fLlQvDr7t278PDw0PlYpk+fjvDw8BzXJMztdXj8+HEhuOvi4oL58+erBLhKly6NLVu2wNzcHEB6wCs4ODhP29q6daswPWrUKJWAJgCULFkSq1atEt67q1evCt2Ild29exchISEAgFKlSmHhwoUqgUMTExOMHj0aLVu2BAAoFAqcOnVKpa3Vq1cLAWhXV1ds3bpVFNDM0L17dyHTMzk5GUuXLlVZ5+jRo/jw4QOA9CzUpUuXqhwXADg5OYneswcPHuDhw4eidS5fvgx/f38AQIkSJbBhwwaVgCYA2NvbY/PmzShatCgAIDg4WG33cn3d31+6mJgYPHnyBAC7nhMRERHRp8WgJhF9chKJBLt27UKbNm2EoJeBgYEQDNGn6dOnIzIyEgDQsGFD9O/f/4toCxAPZKOtdl3lypWFgX1kMhnevXsnWn7lyhUhU61Ro0YqmXHKDAwMRMd969atbB+3TCbD+PHjkZycDAD46aef8P3336us5+HhIQSAHR0dMWTIEI1tmpiYYPjw4cJ85iw6TQ4cOIBLly4BAMaOHavzOQD6uw6PHj0qTKsL2mZwcHAQ6phKpVKcPn06z9oKDQ3Fq1evAKRnafbq1Uvj8dvb28PV1RVAeiDSz89PZR3l12rVqqU1gNysWTNhOigoSLTs48ePuHPnjjA/depUIdCoTu/evWFvbw8gPegYHh4uWn7x4kVheuDAgTA21twBxdHREW3atBHmM1/7ym39+uuvaoOjGaytrUUDYqm7j/R1f3/prl27BrlcDmNjY+EHEyIiIiKiT4FBTSL65Dw9PfHXX38JGVYlSpTApk2bMGDAAL3u559//hEy/iwsLLBgwYIvoq0MygGrzMEaZRKJBImJicK8nZ2daLmvr68wra62X2bKGZURERE6HauyHTt24NmzZwDSA2KaRo5XHrTn+++/1xpwAtK7IWes4+XlJXTB1sTf3x+LFi0CADRo0AADBw7U+RwA/VyHMTExwnkaGRmJAnrqKGey/fvvv3nWVsmSJfHgwQMcPXoU69evz3LwJYlEIkyrC1gqdynWdq0CEN5PQPVaff78uRCAt7Ozy3IgGmNjYzRo0ABAeo1KT09P0XLlwGG1atW0tgVAVEcz87Wvz7YA/d3fOZGSkgJ3d3eMHj0aTZs2FWqpduzYEXPnzhWda4ZWrVrB1dVVyPoGgClTpsDV1RWurq6izFNlGfU0a9WqBSsrK5XlcXFx2LlzJwYMGIBGjRqhSpUqqFu3Ltq3b48pU6bAw8NDZRArIiIiIiJdsKYmEX02BQoUQN++fTFs2DAULFgQd+/e1VvbSUlJ+Ouvv4T5ESNGaBwA5VO2pczZ2VnoArtx40bUqlVLbWbetm3bkJKSAiC9u27m0a4nTpyI/v37Izw8XG033syUAywFCxbM1jGHh4dj3bp1wvzkyZPVBjKA9CBdhrJly2bZtqmpKWxtbREVFYW0tDT4+vpqDNJKJBK4ubkhJSUFtra2+Pvvv3M8Cn1ursPnz58LARknJyeNA/ZkUB5E5eXLl0hKShIGRdJnW0D6Z6uuDEFmvr6+QlanmZkZKlasqLKOi4uLMH3v3j14eXmhXr16KutFR0fj4MGDwnzm7sjK10SZMmV0+syKFy8uTPv4+AgZqkB69mZERAQiIiKEjE5ttF37Bw4cQHh4OCIiIlCpUqVctQXo7/7OLk9PT0ybNk3IKs+QlpaGV69e4dWrVzhw4ACGDBmCsWPH5vi+yWjzxo0bAKA2w/nu3bsYM2aMKNCdsV1cXBzevHkDd3d3VK5cGRs2bNDpMyQiIiIiysCgJhF9cjY2Nhg5ciR+/fVXtTXr9GHbtm1C9lTZsmVz1VVcn20p69u3rxD0uHHjBnr27InRo0ejcuXKMDc3R0BAAHbt2oUzZ84ASA+czJ49W6UdMzMzODo66jxgkfJo2MrBKl2sWLFCNJBKhw4dNK6rnPGna+BEOWMwJCREY1BzyZIlQobq3LlzcxQM0cd1+ObNG2Fal1GrLS0tYWNjg48fP0Iul+Pt27eoUKGC3tvShUKhwM2bNzFjxgwhmNqnTx+1mYINGjSAi4sL/Pz8IJfLMWTIEPTv3x+dOnVCqVKlEB0djdu3b2PNmjXCvdKuXTu0bdtW1E5O6p4qZ+xm1PXMYGtrC1tbW52u49TUVGFAGwBCl/sMlpaWsLS0FA2cpY1yHU11+9fX/Z0dFy5cwNixY4VsWEtLS7Rs2RLlypVDXFwc7t69ixcvXkAul2PTpk1QKBQYN24cAGD48OGIj4/HuXPn4OPjAwDo0KEDqlSpAgBqA+T37t0TskwzB7AzBrTKeF64uLigUaNGKFy4MOLi4vDy5Utcv34dCoUCz549w5AhQ3DixAkONEREREREOmNQk756ClkaYu/OR9Kbf6CQ6m8wGgUAhfy/LnMxhgbIeb7L52FgbAGLcj/Atv50GBjlbJCVnKhbty7q1q2bZ+3HxcVhx44dwvyff/6pMtjK52grsx9++AHPnj3Dli1bAKR31x46dKjadRs0aIApU6ZkK2ilTmBgoGjwnnbt2mVr25MnTwrzGYO4aKKcYZeRCahNZGQk4uLiRPPqXLt2DXv27AGQPjp4ds5BmT6uQ+Vj1DXDzt7eXhgMJjIyUvhM9dmWJsHBwTh16hTCwsJw7949YVAiIL02akaAKzNDQ0OsXr0aAwcORGhoKFJSUrBx40a1I6Xb2tqif//+GDZsmMoy5WvizZs3kMlkGuuGZnj9+rUwHRUVpXVdbbZt24bo6GgA6T8E5GZQm5MnT4q6cKu7Bj/1/R0VFYUpU6YIAc0mTZpgzpw5cHBwEH5UUCgU2Lp1qzDo0pYtW9CxY0e4urqiR48eANLv1YygZtOmTUW1QzPL6HpepkwZfPfdd6JlW7duFQKaAwcOxKRJk1S2f/jwIQYNGoSkpCS8fPkSly5dUgmEExERERFpwqAmffU+3J2Hj16LPvdhfLEkkY8AAIUazfm8B6JHBw4cELKHKlWqhPbt238Rbakzfvx4NG7cGIsWLRLVxlRmbW2NRo0aiWr45URSUhLGjh0rZL4pDzaji+3btwujVrdp0ybLuoP16tXDgQMHAABnz57Fn3/+qbW7e0bGWgZ1NTUzAjcKhQJlypTB9OnTdT7+vBAfHy9MFyhQQKdtlAfGUd5en21pcv/+faxevVrl9SFDhuDPP//UmiVXrlw5HD9+HNu3b8fWrVuF4FlmlStXRv369dW2ValSJVhaWiIhIQGxsbG4cOGC1mzf0NBQUTmAjG7a2eXl5YX169cL83379oWtrW2O2vL398e8efOE+Q4dOsDZ2Vntup/y/t6zZ4/wrKpQoQKWLVumkhlrYGCAIUOGwNfXF2fOnIFCocD+/fsxZ07Onv/Xrl0DoH7U80ePHgnTyoOAKatVqxYGDBiAdevWwdDQEI8fP2ZQk4iIiIh0xj4+9NVLfX/vcx/CFy/lvdfnPgS9kUgk2L17tzA/dOjQHNeM02dbmjx58gSbNm3Cy5cvYWxsjJYtW2LUqFEYPXo02rdvD3Nzc8TFxWH58uXo2LGjThmP6qSmpmLUqFF4/vw5gPRBTObPn69z1mlUVJRoABF1WXiZtW7dWqjxGR0djcmTJ4u6lyt7+vSpkNGWIS0tTTSvUCgwZcoUREdHw9jYGEuWLMl2TVB9Uz4fbaN4K1NeT3l7fbalSebu2xm2bNmC9u3b4/bt2xq3lUgk2LdvHw4fPgyZTAZHR0f06dMHY8eORf/+/YXA3s2bN9GrVy8sXrxYpQ1jY2P8/PPPwvzcuXPh7++vdn/JycmYNGmS6DqQSqVZnmNmPj4+GDlypNCOs7MzRowYke12gPRM18GDBwsB5KJFi2ocKAv4dPc3IB69fdiwYVq7+vft2xcuLi5o06aNTvVu1fH39xdGt1dXT1N5YLCMbvjq9OvXD//88w8eP36cZfY3EREREZEyZmrSV8+seF2kvPX43IfxRTMvrjrgR3514sQJoYuqo6NjrrJ+9NmWOmfOnMGkSZMglUpRvnx5rFmzRqULZ3h4OMaPHw8vLy+EhIRg4MCBOHnyZLZGSE5ISMDIkSNx584d4bXx48ejUaNGOrexZ88eIWhWr149nUaHNjMzw7Rp0zBmzBgA6SN09+zZEyNGjEDdunVRsGBBhISE4OzZs9i6dStSUlJQsmRJhIaGAoBKwHXXrl3C6Ne///67TiO957Xc1v9TDpLrsy1NOnTogJ9//hmFCxdGbGwsbt68iQ0bNiAwMFAI2G3YsEFl5PWEhAQMGjQIjx49goGBAcaOHYshQ4aodB0/duwY5syZg9TUVGzfvh02NjYqWXrDhw/HxYsXERISgg8fPqBHjx4YOnQo2rdvj5IlSyI+Ph537tzB+vXr8erVKzg4OAjB2OyWfnjw4AGGDx8ulDWwtbXFmjVrchQM9/f3x6BBgxAWFgYg/fpetWqVxsG5PtX9DaRntGYEh01MTLK8t6tXr47Tp09nax+ZZdQnLViwIOrUqaOyvF69enj27BkAYMyYMejRowfatm2LmjVrigKuNjY2sLGxydWxEBEREdG3iUFN+uoVqj8DBjDI85qaBvm8pubXwt3dXZju2bNnlvX6PlVbmQUEBGDKlCmQSqWwtbXF9u3b1Q52Y29vj82bN6Nnz554+fIlIiIisHbtWsycOVOn/YSHh2PYsGF48eKF8NqoUaMwcOBAnY9VoVCIsjR79eql87bt27fHlClTsHjxYsjlcjx//hyjR49Wu+6QIUOQkJAgdFlX7oLt6+uLZcuWAQBq166tsTvrp6Y82ri67vLqKHehNjMzy5O2NFEOqhUtWhRdunRBmzZthIClVCrF1KlT4eHhIWpvwYIFQnfioUOHanz/f/rpJ5iYmAgZd+vWrUPXrl1F13ahQoWwadMmDBkyBGFhYUhISMDy5cuxfPlylfYqVaqEiRMnCoNz6ZrBCqQPmjNhwgThvcy4z8qVK6dzGxnu37+PkSNHIjY2FkD6e7127VrUrl1b7fqf6v7OkPFDAJA+mFlOBmTKrox6mk2aNFG7v0GDBuHcuXMIDw9Hamoq9uzZgz179sDCwgJ16tRB48aN0bRpU50HZiIiIiIiyoxBTfrqGRiZoFCjOXqvGalQKIRBEID0gIS+uyZT9rx//14IvBgbG6NLly5fRFvq7NixQ8h87N+/v9bRuwsUKIDx48djyJAhANIHKZk2bVqWQdYnT55g5MiRwmjUBgYGmDRpEgYMGJCtY3348CHCw8MBpAeG2rRpk63t+/fvj4oVK2Lx4sVC5payypUrw83NDTVr1hQFcwoXLgwgPXDn5uYGiUQCS0tL/P3333oNMOeGciBS13qPyutZW1vnSVvZYWlpiaVLl6J9+/aQSqWIjIyEh4eHUOsyLCwMJ06cAABYWVll2XW7c+fO2Lt3Lx4/fgyJRIIzZ85g0KBBonWcnZ1x7NgxLF++HCdOnFDpVm5ra4vffvsNw4YNE3Vd1nWU+vXr12P16tXCqO729vbYunWrTqOkZ3bs2DHMmjVL6L5uaWmJ9evXo379+hq3+RT3t7KMAZAAfJKsx48fP8Lb2xuA+nqaQHrQfO/evZg+fbqoLmpSUhI8PT3h6emJhQsXomzZsujcuTP69esHS0vLPD92IiIiIvp6MKhJRF+NCxcuCEGMBg0aoGjRol9EW+rcvHlTmG7SpEmW6zds2BCmpqaQSCRISEhAUFCQSldWZadOncL06dOFLDVTU1MsXLgQHTt2zPaxXrhwQZhu165djkZ/r1+/Ptzd3eHv7w8fHx/ExcXBzs4OLi4ucHZ2Fn4kUB6Nu2TJkgCADRs2CF1rq1SpIjoebbZt2yZMN2vWTONgLrmhHKzKCPxmRXk95etKn21ll6OjI6pXr44HDx4ASK9xmhHUvHPnjjBAVO3atXUaxKhZs2Z4/PgxAKgNZAPpQesFCxZg8uTJ8PLywvv372FqaopSpUqhdu3awnUWEBAgbJPVqPDJycmYOnUqzp07J7zm7OyMLVu26DyifAaZTIbFixdj165dwmvFixfHpk2bshylPK/v78xyUms0N65fvw6pVApDQ0M0b95c43qlS5fG7t278ezZM5w/fx7Xrl2Dn5+f8GwFgMDAQKxevRoHDhzAjh078uQ+JSIiIqKvE4OaRPTVUA525bb+pT7bUicjexKATqMwm5iYwMbGBpGRkQDSaxxqsmLFCmzcuFGYL1SoENauXau27l1WFAoF/v33X2E+t++Fk5OTxu6mEolEGCjF0NBQyKpTDtzduXNHVBtUm7///luYLlSoUJ4ES5Tb1DQIj7KEhAR8/PgRQPpgTWXKlMmTtjLI5XJIJBKdum0rB/2Ury/l91/XLEDlAGtWo7JbWVmhdevWGpc/ffpUmNYWTIyMjMSwYcNEQdQmTZpg1apV2c4ATExMxJgxY3D9+nXhtcqVK2PDhg1asy4z5OX9rY5ylm7GNZGXMrqeV61aVcio1qZy5cqoXLkyxo0bh5iYGHh5eeHWrVu4du0a3r9/DyD98xs9ejTOnTuX6/qyRERERPRt4P8aieirkJCQIHQXB6Ay0MnnaksT5SCTLll5MplMFBxSF1ySy+WYNm2aKKDp5OSEI0eO5CigCQCvX78WDYyircutOsnJyQgODkZwcHCW696+fVvILK1cubJOGYGfm6urqxCA8fPzE5WkUCejyy6QHsRUznrVZ1snTpxAu3btUK1aNcyaNUunc8moFwmkB4EzZPdazdxW5mtVJpMhMjJSVOdVE5lMJgxIAwB169ZVu967d+/Qq1cvUUDz119/xaZNm7Id0IyNjUXfvn1FAc3vv/8e+/bt0ymgCeTN/a1N6dKlhemgoCCdMjenTZuGv/76C3v27EFycrLO+5LJZLhx4wYAzV3PtbGzs0P79u0xd+5cXL16FTNnzhRKt7x580bI8CUiIiIiygqDmkT0VXj48CFkMhkAoFixYtnuappXbWmi3LX08uXLOh1TRv1Ea2trODg4qKwzc+ZMHD16VJhv0KABDh48CEdHxxwf5/3794XpSpUqZWsAkufPn6NGjRpo06YN/vzzzyzXP3bsmDCtnBG6aNEivHz5Uqd/ypRf79atm87HnR2WlpZCoC0tLU0UCFMnI8MNUA2W67utwMBApKWl4cqVK1nW6ExISBDVrlQe3V75Wn3w4IFOmYDK3a8rVaokWta1a1c0adIEXbp0ETJzNbl48SJiYmKE4yhfvrzKOuHh4ejbt68QODc0NMSUKVMwa9YsGBtnr0NKQkICBg4cCB8fH+G1gQMHYs2aNdkKsufF/a1NmTJlhOxYiUQCLy8vreuHhYXh6NGj2LVrF1atWiUaFCqr2tDe3t5C0FpTUPPp06f4/fff0b59ewwePFhjWwYGBujdu7coSznjRxQiIiIioqwwqElEX4UnT54I08oBmc/dlibff/+9MH3w4EGtmYxSqVQ0MnTbtm1VgjX79u3DkSNHhPl27dphy5YtOR48JkNu3gtnZ2dh/z4+PvD19dW47uXLl4XsLwsLC3Tv3j0HR/t5dOrUSZhet26dMEBMZu/evROCzgYGBmoDrfpqq0mTJrCysgKQ3h15586dWs9h2bJlQmZokSJFRHUgGzRoIGQOpqWlYdWqVVrbunbtmjAwjLGxsUrJAuURw5WD8JnFxcUJI94DEEZAVyaVSjFmzBihu76JiQmWLVumdl1dTJs2TZTtOXnyZEyaNCnbg8Dp+/7WRefOnYXprVu3CnVQ1dm9e7cw3apVK1F3b+XpjB93lGUEae3t7VUC1hmsrKzg4eGBN2/e4Pbt21rLKSgUCnz48EGYL168uMZ1iYiIiIiUMahJRF8FPz8/YbpixYpfTFua9O7dW+jKmpiYiEGDBuH58+cq68XFxWHs2LFCFp2FhQVGjRolWicwMBCLFi0S5hs1aoTly5fnaECfzJSzHzUFMDQxMTERBdsmTZok1M9Tdv78eYwfP16Y//3333WqQ/il+PHHH4U6oS9fvoSbmxsSExNF6wQHB2PIkCFC9/rOnTujXLlyedaWubk5hg4dKsyvXr0a7u7uKvtLTU3FokWLsH//fuG1CRMmiLpPm5qa4vfffxfm9+3bh6VLl6oNuF6+fBlubm7CfK9evVCqVCnROj169BCChPv27RPVbM0QEhKCwYMH4+3btwDSyxH8/PPPKutt2rRJ1A1/3rx5wgBH2XXixAmcP39emB89ejQGDBiQo7b0eX/rqn///kLw+dGjR5g5c6baEgbHjh0TgtwmJiYqmZTK3fXVBSMzygFo63petmxZoVSFVCrFyJEjERoaqrKeXC7H4sWLhVqiDg4OqFq1quaTJCIiIiJSwoGCiOiroDxqtp2d3Wdvq1WrVkJAoGvXrqKgI5AevFi7di369euHpKQkBAUFoVu3bqhXrx6qVasGCwsLBAUFwcPDQ6i1Z2xsjGXLlql0h9+wYYMowFSxYkXRiM1ZGTRokMZlQUFBwrRynUVdjRw5EhcvXkRISAh8fX3Rrl07tG3bFmXKlEFiYiLu3r0ryozr0KEDevXqle39fE6mpqZYsGAB+vXrh9TUVFy8eBGPHj1Cu3btUKRIEQQEBODixYtC3UJHR0dMmzYtz9saOHAgHj58iCtXrkAmk2HKlCnYu3cvGjdujIIFCyI0NBSXL18WAkoAMHjwYHTp0kWlrX79+uHJkyc4e/YsAGDLli1wd3dHq1at4ODgIHyWypm9derUwcSJE1XaqlixIvr06YPdu3cjLS0No0ePRp06dVCjRg2Ym5vj1atXuHz5MtLS0gCkl4BYs2YNjIyMRO3ExcVhx44dwnzJkiURExMjGvVeG2dnZ6HbvlQqxdq1a4VllpaWMDc317mtEiVKiIKp+ry/dVWsWDEsXrwYo0aNglQqxblz53Dnzh20bt0apUqVQmJiIm7evCm638aNGycMyJVBOQi9fft2SCQSWFlZoW7durC3t4e/vz+ArOtpTps2Dd27d0dqaipevHiBtm3bokWLFihTpgxsbGwQERGBmzdvCqPbGxkZYcaMGdkqcUFERERE3zYGNYnoq5CTEZo/RVvaVKtWDQcPHsS4cePw6tUrKBQK3L17V+i6q8ze3h5LlixRGagnKSlJCDRl0DUQk0FTUDMhIUE0CnNO3gtra2vs2rULv//+O/z8/JCSkoJTp06prGdiYoJ+/fph+PDh2e7q+yWoWbMmNm3ahHHjxiE6OhqRkZHYu3evynoVK1bEhg0btL6X+mrL2NgYq1evxuLFi7Fv3z4oFAo8e/ZMFNTKULBgQUyePBk9evRQ25aBgQGWLFmC0qVLY8uWLZBKpYiOjhaVPFBet1u3bpg1a5bGbOEpU6ZALpcL53X//n1R/dYMtWvX1hjoO3/+vGhwndDQUNGI91np2rWrENS8e/euqIt4QkIClixZonNb9erVU8kQ1cf9nV0tW7bE1q1bMX78eERFRSEmJkbtZ2RmZoZJkyahd+/eKst++OEHrF27FrGxsUhNTRWeJ7/99hvKlCkjbN+wYUOtx+Lq6orNmzdj3LhxiIqKQlpaGi5evKh2XTs7O8yaNQstW7bM7ikTERER0TeMQU0i+iood9HNqCX4JbSVFVdXV5w8eRL//vsv/v33Xzx58gQxMTGQSqUoVKgQKlWqhJYtW6Jr165qA0T+/v5CRpu+Ze72nNP3wtHREceOHcPJkydx/vx5PH/+HHFxcTAzM0PZsmXRsGFD9OjRA0WKFNHHYX82DRs2xIULF3DgwAF4eHggMDAQCQkJsLKyQqVKldChQwd06dJFp3qJ+mrL1NQUM2bMwC+//IJDhw7h7t27CA0NRWpqKmxsbFC+fHk0bdoU3bt3zzJobWRkhD///BPdu3fH4cOHcefOHQQFBSE+Ph4WFhYoUaIE6tWrh+7du8PV1VVrW4aGhpgxYwY6deqEQ4cO4f79+wgPD4dCoUDRokVRo0YNdO7cWWs2oLYardmlz7aU5fb+zokGDRrg1KlTOHnyJDw9PfH69WvExsbC1NQUZcqUQePGjfHrr7+iZMmSarcvUqQIDh48iFWrVuHevXuIjY2Fubk5kpOTha7nDRo00GngpAYNGuDChQs4fvw4rl27hlevXuHDhw9QKBSws7ODk5MTWrRoga5du+b5s5aIiIiIvj4GCoVC8bkPgr5+3t7ewqAFhoaGqFmzZrbbkMlkolqHLi4uKt0RPyWFQiGqV2ZhYZEvM8yIvgS8n4j041u9l760/yPQ10EqleLx48fCfPXq1XM0kBfRt473EpH+fG33U25jRRwoiIiIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIiIiIiIiPIVBjWJiIiIiIiIiIgoX2FQk4iIiIhUpKWlfe5DICIiIiLSyPhzHwARfbt8fHxw+PBh3L9/H2FhYZDL5ShWrBgqV66MDh06oE2bNjA0zPlvLydOnMCkSZPg4OCAy5cvZ2vbp0+f4uTJk7h9+zYiIiKQnJyMQoUKoUqVKujUqRPat2+fq2NTtz93d3c8ePAAYWFhSEpKgqWlJUqXLo369evjl19+QalSpXRqKyAgAEeOHMG9e/cQHByMhIQEFCxYECVKlEDdunXRo0cPuLi4qN327t276Nu3b47Po2vXrli0aJHe21JHn5+Rv78/3N3dcfPmTYSFhSExMRHW1taoWLEi2rdvjx9//BGmpqY6tfXvv//ixIkTePLkCWJjY2FpaYmSJUuiTZs26N69O4oWLapTO+oEBQWhY8eOkEgk8PDw0PmaAID379/j6NGj8PT0xLt37xAXF4eCBQvCxcUFrVq1Qvfu3WFpaZllO3K5HJcvX8apU6fw9OlTREdHw8DAAIULF0a1atXQqVMntGzZUqf3Pi0tDWfPnsX58+fh4+OD2NhY4Vpt0qQJfvzxRzg7O2vcfvLkyTh+/LjO70Fmu3fvRv369dUu8/T0xKlTp/Dw4UPhHB0cHFC/fn306NEDFSpU0Hk/CoUCly5dwvnz5/Ho0SNER0cDAIoVK4batWuje/fuqFWrVo7PQ98kEgm2bduGiIgIzJo1S6dtJk6ciJMnT6JmzZo4ePBgHh8hERERERGDmkT0GaSlpWH+/Pk4dOgQFAqFaNnbt2/x9u1b/PPPP6hWrRoWLVoEJyenbO8jICAA8+fPz/Z2qampmD17No4fP65ybBEREbh8+TIuX76MXbt2Ye3atbkKUAFAQkICZs2ahTNnzqgsi42NRWxsLJ48eYIdO3Zg5MiRGDFiBAwMDNS2lZaWhiVLlmD37t0qx/7x40d8/PgRvr6+2Lt3L3799VdMnjxZ50CdrjQdmz7b0udnJJfLsWzZMuzcuRNSqVS0LDo6Gjdu3MCNGzewfft2rF27Vuu1GB8fjzFjxuDmzZui1z98+IAPHz7g2bNn2LlzJ+bOnYv27dtndfoqkpOTMXbsWEgkkmxvu3PnTqxcuRLJycmi12NjY+Hl5QUvLy/s2LEDK1asQO3atTW2ExkZCTc3N3h5eaksCwkJQUhICP755x/UrVsXy5Ytg729vca2/P398eeff8LPz0/lmGJjY/HixQts374dv/32G8aPH6/3axVQf43FxMTAzc0Nt2/fVln2+vVrvH79Gvv378fPP/+MadOmoUCBAlr38e7dO4wfPx7e3t4qy4KCghAUFAR3d3d0794ds2fPhrHx5/2v2cuXLzF69GgEBQWha9euOm0jl8tx7do1AECLFi3y8OiIiIiIiP7DoCYRfXLjx4/H+fPnhfkqVaqgZs2asLa2RmBgIDw8PJCSkoInT56gX79+OHToEBwcHHRu/+3btxg0aBDi4+OzdVypqakYPHiwELAxMDBA48aNUaVKFZiYmODx48e4fv06FAoFHj16hP79++PYsWMwNzfP1n4ySCQSDBs2DPfv3xdeq1mzJurUqQMrKytERETg2rVrCA4OhlQqxapVq/Dx40dMmTJFbXsTJ07EuXPnhHlXV1c0atQIhQoVQkxMDG7dugU/Pz8oFArs27cPUVFRWLlypSijrnTp0pg4caLO53Dnzh14enoCAMzNzdGrV68ctaVQKHDr1i0hIJi5rQz6/IwUCgUmTJggCijXqlULNWvWhKWlJXx9fXH58mWkpaUhICAA/fr1w4kTJ1CkSBGVtiQSCQYPHoxHjx4Jx9+mTRs4OTnh48ePuHTpEt69e4ePHz/Czc0NBQoUQPPmzXV6b4D0gObIkSPx7NkznbfJsHTpUmzZskWYr1ChAho0aABbW1u8efMGFy9eRFJSEsLDwzF48GAcPnxYbXZkYmIiBg4cKAQhDQwM0KxZM1SoUAFyuRzPnz8XPr979+6hb9++OHLkCKytrVXaevfuHX777TfExMQAAExMTNCqVSs4OTkhKSkJT548wcOHDyGTybBr1y5ER0dj6dKlKkHIDh06aM3kzGzr1q3CPmvVqoXq1auLlsfExKBnz554+/at8JqrqyuaNm0KS0tLBAQE4NKlS0hKSsKRI0fg7++P7du3awxsvn37Fr/99hvCw8MB/HddlCtXDikpKbh58yaeP38OADhy5AhkMhkWLlyo8/nkhWfPniEoKChb23h7eyM2NhYAg5pERERE9OkwqElEn9TJkyeFgKaRkREWLVqEzp07i9YJDQ2Fm5sbvL29ERkZiXnz5mHjxo06tX/79m2MGzdO6N6ZHevWrROCZUWKFMGGDRtQrVo10Tre3t4YOnQo4uLi8Pr1a2zZsgWjR4/O9r6A9ABLRkDT2toay5cvR9OmTUXrTJ06FRs2bMCaNWsApGfctWjRAg0bNhStd/LkSSGgaWJigvnz56NLly4q+zxy5AhmzZoFmUyGCxcu4NixY+jevbuwvESJEhg0aJBOx+/v74/169cL84sXLxa9X9lp6/Xr19iwYYMwv2jRIpX3HtDvZ3T48GEhoGlhYYEVK1aoBGT8/f0xZMgQhISEIDIyEkuXLlXbJX7jxo1CQNPBwQHbt29H2bJlheXjx4/HwoULsW/fPshkMkyePBkXL17Uqbt3cHAw/vzzT/j4+GS5bmY3btwQAprGxsaYPXu26PMGgPDwcAwfPhzPnz9HUlIS5s6diz179qi0tXnzZiGgWbJkSaxduxaVK1cWrXP//n388ccfiI6ORmBgIFavXo3p06ertDV9+nQhuOjs7Ix169ahTJkyonUuXbqE8ePHIzk5GWfOnEG7du3Qtm1b0TrNmjVDs2bNdHovNmzYIOzTwcEB69evh5mZmWidyZMnCwFNExMTzJkzBz/99JNonYiICIwZMwYPHz7Ew4cPsWDBArVZ4QqFApMmTRICmjVq1FDJHB4/fjz279+POXPmAADc3d3RpUsXjV3iv1RXr14FkH5dZKdbPhERERFRbnCgICL6pLZu3SpMjxo1SiWgCaR/MV61ahVMTEwApH9hDg0N1dquRCLBypUrMXDgwBwFNAMDA7Ft2zYA6QGuffv2qQ2q1axZE5MnTxbmjxw5ku19AeldxXft2iXML1y4UCWgCaQHfkeNGoWePXsKryln3WVQfl8nTJigNqAJAN27d8eff/6pdrvsSE1NxZgxY5CQkAAA6Nu3b466VGe09eeffwpt9erVS21b+vyM4uLisGTJEgCAoaEhtmzZojbDzMnJCX/99Zcwf/bsWSQmJorW+fjxI7Zv3y7Mr1y5UhTQBNIDZDNnzhT2ERMTI/r8NTl37hy6du2ao4CmTCYT1UNctGiRSkATAOzt7bFy5UoYGRkBALy8vNRm6rm7uwvTf/31l0pAEwDq1KmD2bNnC/OnT59WWcfHx0fo2m1ubo61a9eqBDQBoE2bNhg1apQwv2/fPnWnqRMvLy+sXr0aQPpnsXLlShQqVEi0zsOHD4Uu1ED6OWYOaALpdTA3b94sZI8fPXpUyLZU5u7ujocPHwJIz47duXOn2lIIv/76q+h+zekz5XPKCGpmJ/uYiIiIiCi3GNQkok8mNDQUr169ApAerFPXvTiDvb09XF1dAaRnPGWuu5dBLpfjxIkTaN++PTZs2AC5XA4AaNWqVbaO7dixY0JNxd9//10lKKWsY8eOcHFxQZUqVeDs7Iy4uLhs7QtI756b0V2zXLlyaNOmjdb1BwwYIEx7eXmJ6j8GBQUJ74+lpaXW9xUAevfuLQSMAwMDswwYq7N06VLhsyxfvjwmTJiQ7TbUtfXdd99hzJgxatfT52d07tw5oTxBz549UadOHY1tNWjQAPXq1UOlSpVQp04dREREiJafPXtWqFXZpEkTtYHWDH/88YcwffLkSY3r3b9/H7/88gvGjh0rHGfNmjVVAnHa3Lp1C+/evQOQntHYqVMnjeuWKVMGP/zwg9A1PTIyUrT8w4cPovOuV6+exraUMycz6mMqUw4cNm7cWOvnqBwke/nypcb1tElISMDEiROFZ8OIESPUfkYXLlwQpuvWrav2B5cMVlZWGDJkCID055O6gXEOHz4MIL2b/ty5c7XW3uzduzfKli2LGjVqwMLCQrcT+0KEhIQIz5+WLVt+5qMhIiIiom8Ju58T0SdTsmRJPHjwAAEBAYiOjs4yQKM8IEpGEC6zly9fYtKkScK8ra0tpkyZgjp16mRrxPOMjDILCwv89ttvWtc1MzNTm4GWHb6+vsJ05rp+6pQuXVqYTktLw4cPH4SsL+W2KlasmOWAKgULFkSRIkUQFhYGIL07bcmSJXU+9sePH2Pv3r0A0rMcFy5cmONBXDK3NXv2bI1t6fMzylhmYGAgBKe0UdcdO0NGTVEg63qClStXRrFixRAREYGgoCD4+vqq7a47fPhwIZhpbGyM/v37Y8yYMWjfvj0+fPiQ5fEC4izJYcOGZbn+smXLNC7LyOLMEB4ervGaUT4+ExMTWFlZiZaPHDkSP//8MwICAmBnZ6f1mFJTU0Vt5cSyZcuEa71ixYoa34unT58K0z/88EOW7TZp0kSYVg7UAum1NDPKEdSvXz/Le7xatWqioGpuKRQKXL9+HRcuXICPjw/Cw8NhYGCAIkWKoHr16ujSpYtKVqW6keSPHz8uvNa1a1e1pRcysjTNzc3VdpuXyWQ4f/48Lly4gKdPnyIqKgrGxsYoVKgQKlasiKZNm6JLly45rk1MRERERN8uBjWJ6JMqWLAgqlatmuV6vr6+QvaemZkZKlasqHV9Y2Nj/PTTT/jzzz9hZ2cnZKjpIiwsTAh61KlTJ8vRjPWhT58+aNeuHSIiIlCwYMEs18+cHai8TZs2bXDt2jVEREToNPq4RCIRagtmbisrcrkcc+bMEbLeevTooTUzMTttdevWDVWqVFG7rj4/I6lUiidPngBIzwzNziBU6ih3Da9Zs2aW69eoUQP//vsvgPT6n9pqEDZp0gQTJkzIUZ3CjK7PFhYWqFWrVra3V2ZtbQ17e3uhPuTatWtF3fKVrVu3Tphu0qSJSkAUSM/E1jYyegblQZx0eW8ze/bsmZBFaWBgoHV0ceV7Ql13+MyUj//9+/eIiooSBpHKeO8BcfDzU3jz5g0mTJigtmRBxgj1586dQ/PmzbF8+XKd6rpqk/HjUcOGDVUCk2FhYRgxYgRevHghel0ikSApKQkhISG4dOkS1qxZg5UrV6Ju3bq5OhYiIiIi+rYwqElEXxSFQoGbN29ixowZUCgUANIDgJoyuszNzdGvXz/06dMHjo6OOdqncrdWFxcXAEBKSgpOnDiBf/75B/7+/vj48SPs7OxQu3ZtdO/eXWWgnuwyMTGBg4ODzgE15dHiS5UqJeqiamRkhOLFi6N48eI6tXX16lUhA65AgQLZet9OnDghjMBta2uLsWPH6ryttrZsbGwwcuRIjevq8zN68+aNkAWc0ZZMJsPZs2dx9uxZ+Pr6Ijo6Gra2tqhWrRq6dOmiMkBNhoSEBFFXbV3eS+UMx8DAQLXrtG/fHl27dkXt2rWzbE+dxMREIbBfvnx5YYR7Dw8PnDp1Ck+fPkVkZCQsLS1RsWJF/O9//0OXLl3UBiAz9O3bV6hDeuzYMbx//x7Dhg2Di4sLDA0N4efnh02bNuH69esAgKJFi4pqm2ZHQkICdu3aJdQdNTExwYgRI7LdzqJFi4SgeZcuXVCjRg2N6ypngur644CykJAQIaip7noNDw/HkSNHcPnyZbx79w4SiQTFixdH48aN0adPH63d8HUVFBSEX3/9VciWNTIyQuPGjVGlShUoFAr4+PgIn8+1a9cwdOhQ7NmzB0ZGRsJI8j4+PsKgY1WqVEGHDh0AQO0o80lJScLAXZmzlCUSCYYPHy5kkhctWhQtW7ZEyZIlIZVKERQUhEuXLiE5ORlRUVEYMmQIzp07l62scSIiIiL6tjGoSV+9NLkM8x5dxLngF0iSSbLeQFcKQP7/QTcAMDQwALL+HvxFsTAyRQfHiphR43uYGGoOZuS14OBgnDp1CmFhYbh3754o0PPTTz9h3LhxGrctV64cpk6dmqv9+/v7C9P29vZ49OgRJk6cqDJYyvv374XA1//+9z/89ddfn6TL5IcPH0SDA7Vr1y7HbUkkEqxatUqYb968uc7nIJPJsHbtWmF+yJAhsLW1zdFxZG5r6NChsLGx0bi+Pj+jzG0FBARg/PjxQoA1Q2RkJDw8PODh4YEGDRqoHVxGOaBpYWGh9RyU96lue2XqRtPOjoCAAOFHAXt7e0RGRmLSpEm4efOmaL2YmBjcvHkTN2/exO7du7Fu3TqUKlVKbZv9+/fHy5cvcerUKQAQtsvM0NAQrVu3xuTJkzW2pY6HhwcePXqEt2/fwtPTE0lJSQDS39dly5Zlma2d2e3bt4WAm6mpqcZarRmKFy8u1IZ89eoVGjdurHX9jEzyDMqfZUBAgDBtb2+PY8eO4a+//hIGw8rw5s0bvHnzBocOHcKff/6JwYMHZ31iGigUCkyYMEEIaJYqVQrLli1D9erVRUHaO3fuYNiwYUhJScGDBw9w8OBB9O7dWxhJ3t3dXQhqOjs7Y9CgQRr3eevWLSG4m7me5sWLF4WAZu3atbFt2zaVDOvIyEj07dsXAQEBSE5Oxvbt2zF9+vQcvwdERERE9G1hUJO+enO9/8VfTzw+92F8sbxjQgAAc2vlbORqfbh//74wMrGyIUOG4M8//xSyzPKK8iAygYGBWLVqFRISEmBtbY3WrVujTJkySExMxK1bt4TA19mzZxEdHY3t27drzW7LLZlMhokTJwojuhcsWFBrkCEr8+fPx+vXrwH8N7K6rv755x+EhKRfL8WKFcuyrmV22urdu7eQUaeOPj+jjFqVQPpANv3790d4eDjMzc3RqlUrlC9fHhKJBA8fPhSCYnfu3EGfPn1w6NAhUXd95bZ07RKvHGRV3l6flNuVSqUYOHAg/Pz8YGxsjKZNmwqZe0+fPsX169chl8vh6+uLX375BceOHVPbNdzY2Bh///032rRpg8WLFwufX2ZFixZFw4YNdepermznzp3C+53B1tYWa9as0TowkSZbt24Vpnv16oUSJUpoXb9evXpCfdRjx46hb9++Wp89metPKtf/VL5ez549i82bNwNIDzS2bNkSRYoUQUREBK5cuYLQ0FCkpaVhyZIlSEpKEg0mlR23b9/G48ePAaQHgjds2KA2E7xBgwaYOnUqZs6cCQDYu3cvevfunaN9XrlyBUB6rdLMn7e3t7cwPWDAALX3R9GiRTFr1iz069cPAISyEEREREREumBQk756d6Pefu5D+OLdiQzKeqU8pCk4smXLFpw/fx7z5s3LdXdvbRITE4Xpffv2AQBat26NhQsXqmTenThxAjNmzIBEIsGdO3ewYcOGbAUGs0Mul2PatGmigWimT5+OwoUL56i9VatW4dChQ8L8iBEj1HYp1UQ5SNSvX79cZamqaysjM08dfX5GytlyJ06cAJBer3HlypUqXfhv3LiBsWPHIi4uDq9evcL8+fOxcOFCYblyF2Rd3w/l9TJ3YdYX5XPMCDyVK1cOa9euRfny5UXrPnv2DL///jvev3+PyMhITJw4Uej2ndnNmzexZcsWhISEoECBAmjZsiXKly8PmUyG58+f4/r16wgPD8fcuXNx5MgRbNq0SefgZmhoqMprsbGxQv3Z2bNnZzmwUIYXL17gxo0bANK7levyQ0CXLl2wdu1apKSkwM/PD3/99RemTZumtiv65cuXceTIEdFraWlpwrTy+58R0Bw9ejSGDx8uquk5efJkLF26VHi/169fjwYNGuQoiJtRpxVIH9RHW2mLH3/8Ef/H3n1HR1F2YQB/dtN7LyShJSShhBLpvRdBEEEEC6CCKM0CCALWD1BUUIoIKAiICEhvSgu9hZJCQklII73XTdk63x/LTnZ2Z0t6gPs7J4ctszOzJZo8ue+9f//9N1xdXdGiRQtIJJIqD/tiGIYdkMQ3IEv9eYaFhWHo0KG8++nWrRuOHDkCHx+fGvf3JIQQQgghz5e6LX8ipBHo7trM8EbPuR5uhodi1KWRI0fi4sWLiI6OxpUrV/D999+z/eVSUlIwffp0TrBX28rLyznXg4ODsW7dOt6lxGPHjsXixYvZ69u2bdNaUlobpFIpPv30U0412FtvvYVx48ZVeV8Mw+CHH37Ar7/+yt42aNCgKoWxV69eZYd92NraYtKkSVU+j5rsqzbfI819NWvWDFu2bOHtSdqnTx+sWrWKvX7kyBEkJ1f+oaSmVcTG9G6sDs3n6OjoiO3bt2sFmoByIvvmzZvZnpI3btzQqpgElEH09OnTERUVhc6dO+PUqVP4+eefMXv2bHz44YfYtGkTjh07xvaQfPDgAaZPn250cPvTTz/h9u3biIqKwvHjxzFjxgz2nE6dOoUpU6YY/b2mHpq/9NJLRgWrbm5unCXqO3fuxNSpU3H58mWIRCJIJBLExMTg22+/Zb931Ks/1UPBiooKzr6nTZuGOXPmaA0pMjc3x5IlS9hp6wzDYP369UY9R02qXpkAtCaba7K0tMSRI0ewdetWfPHFF1UONAHlgCzVknu+UFM9mP3jjz8wZ84cnDlzRqs6WSgUonXr1hRoEkIIIYSQKqNKTfLM+zJ4GAQCAfXU5KHeU7Mh+fr6spfd3NwwduxYDBkyBNOmTUNERARkMhmWLFmCkJAQWFhY1PrxNfc5f/58nROSAWDixIn47bffkJGRAZFIhOvXr+usQqoOkUiEuXPn4tq1a+xt48aNq1avOYlEgqVLl7J9EAGgb9++WLNmTZUCtYMHD7KXR48eXaMAgm9fjNr3Ep/afI809zV79my9z6d///4IDg5GeHg45HI5zp07h7fffhsAOAOb1Jcf66MeeNXF55lvv5MnT9Y7SKp169YYPnw4O2389OnTnFAqNDSUHRLUokUL/Pbbb7yvma+vL7Zv346xY8ciOzsbsbGx2Llzp1GVkh07dmQv+/v7Y/78+ejfvz/effddiMViPHr0CGvXrsXSpUv17kckEnGqFt944w2Dx1Z59913kZ2djW3btgFQPu/Q0FCt7UxNTfHVV1/h4sWLyMjIAMBtP6D++tva2uodggUAH3/8Mf777z8AynYcBQUFWv1b9WEYhp1MD4A3vK5tqgpgFxcXdOjQQev+gQMHonfv3mzf1TNnzuDMmTMwMTFB+/bt0atXL/Tp0wedOnWq0xYehBBCCCHk2UWhpoa1a9fi119/hbe3N86dO1fj/aWmpmLw4ME13s+ff/6J7t27a91+8uRJg8MP+Fy8eNHoSclPOzOhCf73woha7xnJMAxnuay1tXWdVV09j2xtbbFq1SqMGDECMpmMHdqimsRbm9R7JNra2hqcOG1iYoKePXuy4Vx0dHSthZqPHz/GBx98wBk0MnXqVCxevLjKn6+8vDzMnj2b09tuxIgR+PHHH6tUmSUWi9kAAwBeffXVKp1HbeyrNt8j9X0BhqvaAGXFpup1jI6O5j0vzepIXdRDTTs7O6MeU1Waz5Gvkk5Tnz592FBTc2jS5s2b2cuGQmAXFxfMmjULX3/9NQBl78nq9oHt0qULZsyYwVYvHjhwAIsWLdIbaJ87d44z3Z4vcNPns88+Q3BwMH766Set6fQCgQBdu3bFokWLEBQUhGPHjrH3qbeFUH/9u3btqvV+aGrRogW8vb2RlpYGhUKBBw8eoFevXkafc2FhIWf5e119rtRduHABANCvXz/eimWBQID169fj+++/x759+9ieuXK5HBEREYiIiMCvv/4KJycnDB8+HNOnT0fTpk3r/LwJIYQQQsizg5afq7l79y5nwvDTQLWEk5BnUdOmTTnVW1FRUXVyHPWKKFdXV6OWFKsvZ1VNG66pa9euYcKECWygKRAIsHDhQixZsqTKgeb9+/fx6quvcgLNKVOm4Oeff67yUtPLly+zPS1btmyJoKCgKj2+NvZVm++R+r7MzMyMqojTtS83Nzf2XEpLS41aHq1eUefm5mZw++rQfE7u7u4GH6P+hy715yiRSDjL0fv06WNwX+pBcVxcnNZy7KoYM2YMe7m0tBSJiYl6tz916hR7efTo0dU65vDhw3Hq1CkcPnwYK1euxOeff441a9bgzJkz2LlzJ/u5VT8XLy8v9rL662/Maw/ofv2NIZPJqrR9TWVlZeH+/fsA9AfmNjY2+N///odz585h0aJF6NatG9tSQKWgoAB79uzBiy++yAmJCSGEEEIIMYQqNZ9ISUnBrFmzOJUOtcHS0tKoXwDVaf4C6eHhoXMpmXqoGRAQYPQvT9Xpn0VIbVEoFJBIJEYNVlHvWVcXvSsBcIblqE8t1kcul7OXa6MX3O7du7Fs2TJ2v1ZWVvjhhx8wbNiwKu8rJCQE8+fPZysHTUxMsHTp0mpPOFYPiapzPrWxr9p8j9T3JZVKUV5ebnByua59WVpaomnTpnj8WDlsKy0tDYGBgXr3pT4YS731Qm3y8/ODUChkq+OKi4sN/v9BPRhTf44FBQWc/zfy9THV5Orqyl5mGAalpaVa3+8VFRUwNzc3GFBrrirQNzG+tLSUHRAEoMYV1G3atEGbNm1470tLS0Nubi4A5fNVf87+/v5sRXJRUZFRx6rJf1M035OSkhI4OjpWaR9VcfHiRTAMAzMzM6N+xmnSpAneffddvPvuuygvL0d4eDhu3LiBixcv4uHDhwCU34uLFy9GcHAwfHx86uzcCSGEEELIs4NCTQCxsbGYPn062/C+Nrm6umLr1q1Vesznn3/OhppWVlbYtGmTzmnH6qHmF198Ua2JqYTUl8OHD2Pjxo1IS0vDqFGj8P333xt8TGFhIXu5Kj3mqkI9tCgoKEB2drbBACglJYW9rB68Vscvv/zCGQ7i7u6OjRs3Vqsi8sCBA/j888/ZMMvW1hY///wz+vXrV+3zUw+JarKfmuyrNt+jFi1awNramm0fERMTg06dOlVrX4CyH6Uq1IyMjDQYakZERLCXa1L1qo+VlRVatGjBVv3GxMQY7LOo6zlqBr7Z2dkGP/Pq37cCgQD29vbs9Q8//BBhYWHIzc3F9u3b0aNHD6P3Bej/78CtW7fYqtCmTZuiZcuWevetSSQSIS8vD5aWlgaHC4WEhLCXu3TpwrlP/fMaGxtr1LHVX/+qtocxNzeHh4cHWwWckJCAF154Qe9j/vjjDyQlJaFp06YYMWJElZZ+qwLbLl26VDmAtbKyQq9evdCrVy/MmzcPt2/fxsyZM1FcXAypVIoTJ07g/fffr9I+CSGEEELI8+m5X35+5MgRvPbaa5zlgA3p4MGD2LdvH3v9888/R9u2bXm3zc/PR3Z2Nnvd0C/ShDQ0W1tbJCUlQSqV4vz58waXpIpEIoSFhbHXq9obz1iurq7sMneGYXDixAm921dUVOD69evsdb5+t8bauHEjJ9AMDAzEvn37qhV2HT58GEuXLmUDTS8vL+zevbtGQWR8fDzy8/MBKIej1CSEq8m+avM9EgqFnCWzqj6S+qj6B2ruC1BOklcx1Is5KiqK/QOam5sbWrdubfDY1aXez9mYZb3qvU7Vn6O9vT2nCtGYftPqQ678/f05S45VPXIZhmGH4+hz6dIl9rKjoyOaNWumc9vbt2+zl9VbVxjjzJkz6Ny5M4YNG4YVK1bo3ZZhGM7/q4cPH865v0+fPuywoISEBK0epZru3r2LvLw8AMrPenUG/aj3mVUN59Fn9+7d2Lt3L1atWsWpJjXU6kIsFrPfW7qWnotEIsyfPx+vvPIKevXqpXeIVpcuXfDyyy+z11WDlwghhBBCCDHkuQ01s7KysGjRIixcuNDo4Q51LTU1FcuXL2evjxw5Uu8QDfUqTS8vL6OWBBLSkPr06cMOsCgqKsL27dv1br969Wq2ms7V1bXKrRyqQv17bePGjXort7ds2cJWj7Vr1w4BAQHVOub58+exdu1a9nqXLl2wa9euag3xunfvHr744gt2irifnx/27NlT7XNTUe9j6u/vb1TLgLraV22+R+r72rNnD2JiYnTu6/Dhw4iLiwOgHAbTt29fzv1DhgxhqxkvXLjAqcRUxzAM1q1bx14fP358nQ4XGzduHLv/8+fP4/Llyzq3vXnzJnu/mZkZRo0axblffRn377//rrcFgEgkwq+//spef/HFFzn3q18/dOgQkpOTde6roKAAGzZsYK+PHj1a76Tsu3fvsper+kcQ9SncFy9eZJeW89m1axdbgenl5aXVSsHe3p7zmi1fvpz9Y4MmhmHw008/sdcNPUddxo4dy14+ePCg3vM/f/48+7p7e3tz/niq3g5AfUm8yo0bN9ifm3SFmra2trh16xbu37+PvLw8zjR6PqpAF6h6lSohhBBCCHl+PZeh5saNGzFixAgcPnyYvc3X1xcffPBBw50UgC+//JIdoOHk5IQvvvhC7/bqoSZVaZKngaWlJWbMmMFeX7duHTudWp1YLMbKlSvx999/s7d9+umnNQrUDBk3bhzatWsHQBm4Tp48mTOBXGXXrl1syCIQCDB//vxqHa+oqAifffYZG0IGBARg8+bN1ZpaLJPJMG/ePHbis4eHB7Zt22Zw+awx1MM+Xb0F62tftfke9e7dm62wlEqlmDZtGm8Yefr0aXz11Vfs9U8++URr8ratrS37uWYYBnPmzOFMSFcdY9myZWzVoYODA95++20jn3n1+Pr64q233mKvf/TRR7xVlrdv38bcuXPZz+K0adO0lnjPnDkT1tbWAJSVdO+88w5nubRKVlYWZsyYwS7Hd3d3x9SpUznbjBgxgg2ZxWIx3n//fXZ7dUlJSXj77beRnp4OAHB2dsasWbP0Pmf1z5iuVQ66uLm5sZ+JiooKLFy4UGvpO6D8fH333Xfs9aVLl/JOY583bx479TwsLAxz5szR6gdaUVGBJUuWsJWPjo6O1Z4U369fP7aNQlFREebOncu+duqioqKwZMkS9vqMGTM4Qab6cnL1/q8qqoreFi1aoEWLFjrP57XXXmMvf/3115wqWnWnT5/GyZMnASj7/9a0by8hhBBCCHl+PJc9Nbdu3cpWfwHAhAkT8NlnnxmsJKhLJ06c4CwXW7x4MZydnfU+Rj3UrMsljITUpnfffRdhYWE4f/485HI5Fi9ejL/++gu9e/eGjY0N0tPTce7cOU4V3vTp0zlVSHXB1NQUq1atwpQpU5CTk4PExES89NJL6NevH9q2bQuZTIbLly+zE38BYOrUqejduzfv/j777DMcOnQIgLISSjNM2rFjBycw6dixI/bu3Wv0+U6cOJENH44cOYKkpCTOvoxZUq0ycuRInT0S1fdr6L9JhtR0X7X9Hi1btgxJSUlISEhATk4OJk6ciJ49e6Jjx44wMTFBaGgoJ4gZNmwYJkyYwLuv6dOnIyQkBNHR0ey+Bg0ahNatW0MkEuHMmTNsCCgQCLBixYo66xGrbv78+bh//z7u3LmD0tJSzJw5Ex07dkTXrl1hZWWFu3fv4tKlS2yg2bFjR8yZM0drPx4eHvjpp58wZ84cyGQyREdHY8SIEejbty8CAwNhbm6O2NhYXLhwgW0rYW1tjV9//ZUN9lTMzMzw008/4a233kJhYSESEhIwatQo9vWSy+W4d+8eLl++zA4vsra2xubNm/V+boqKijjfU9X5jC1atAg3b95EUVERrl69imHDhmHIkCHw8fFBYWEhLl68yPkcf/DBBxgyZAjvvry9vfHdd99h/vz5kEqlCAkJwYABAzBs2DA0bdoU+fn5OH36NNv+xsTEBMuXL4ebm1uVzxtQfq5++uknvPbaa8jNzUVMTAzGjx+PAQMGsCFyVFQULl26xFaNDh48GBMnTuTsR31Iz507d/Dpp5/C398f7u7uGDt2LC5evAgAGDhwoN7zmTZtGo4dO4akpCSIRCK8+eab6Nq1K1q3bg13d3eUlJQgPDwct27dYh/zzjvv1NnwLEIIIYQQ8ux5LkNNlaCgICxatKjBh+uIxWL8+OOP7PXg4GBOfyldVBNDAQo1ydPD1NQU69atw/fff49du3aBYRjcu3ePt+ecjY0NPvvsM07FT13y9fXFnj17sGDBAoSHh0Mul+P8+fOcXoOAcnnmJ598wqk6rar9+/dzrqv35zPG8OHD2VBT87GnT5+u0h9pgoKCdIaa6v2Ga9riojb2VZvvkaurK/7++28sXryYffz169c5vThVJk+ejM8++0znvszNzbFt2zZ89NFHuHbtGmQyGe/7YG1tjWXLltV4KrexrKys8Mcff+Cbb77BoUOHwDAMIiMjERkZqbXtiBEj8N1333H6X6obOHAgtm3bhk8//RSZmZmQyWS8rz2gfJ/WrFmjcxWBv78//v77b8ybNw8PHz6EVCrFqVOncOrUKa1t27Rpg9WrV8PPz0/vc83MzORcVx9OZKymTZti69at+PDDD5Geno6ioiIcOHBAaztra2ssWLAAb775pt79DR8+HHZ2dli6dCnS09MhEol4q9MdHBzw008/1bjFhre3N/bu3YuPPvoI0dHREIvFOl/XCRMm4Msvv9RqgRAQEIDOnTvjzp07AICjR4+yt7du3Zqt/tS19FzFysoK27dvx+zZs9n/vt+6dYsTYqqYmZlh2rRp+Pjjj6v6lAkhhBBCyHPsuQw1u3XrhnHjxmHw4MF12s/MWH/++SfbGF8gEHCWhekiFouRmJjIXg8MDMSdO3dw+PBh3L59GxkZGRAIBHBzc0Pnzp0xZswY9OzZs86eAyFVYW5uji+++AKTJk3C3r17ERoaivT0dIjFYjg4OKBVq1bo27cvJkyYUO+9Yn18fLBnzx6cPXsW//33HyIiIpCbmwuGYeDt7Y2ePXvijTfeqNYgD5X8/PxaHU6mrx9kTalaYgCo1tL4uthXbb5HTk5O2LRpE0JDQ3H06FHcvn0b2dnZkEql8PT0RNeuXTFx4kSD09EBZYi2bds2nD17FkePHkVkZCTy8vJgZmaGZs2aoW/fvnjzzTcNTg6vbZaWlvjuu+/w1ltv4dChQ7h+/TqysrJQUVEBFxcXBAcHY/z48Vq9Qvl069YNZ86cwdGjR3Hu3Dncv38f+fn5EAgEcHFxQfv27TFs2DCMGDHCYF9IPz8/HDx4EKdOncLJkyfZYTkmJiZwdXVFp06dMGLECKP/X63++QKqF2oCQPv27XHs2DHs378fZ86cQVxcHEQiEaytreHr64t+/fphwoQJcHd3N2p/vXr1wn///YdDhw7h7NmziI2NRUFBAczMzODn54cBAwbgjTfeqHEltIq3tzd27NiBCxcu4MyZM4iKikJeXh4YhoGnpye6dOmCiRMn6hykJBAI8Ntvv2HdunUICQlBdnY2hEIhGIZhB2bZ2dlpTXzn06RJE+zfvx+nTp3C6dOncf/+fWRnZ0MikcDR0RFeXl7o06cPxo4di+bNm9fK8yeEEEIIIc8PAaNac0Zw8OBBLF68GAD/ctG6UFpaikGDBrFL5oYOHYpffvnF4OPu3r3LLoMUCATo0aMHb3WRuj59+uCHH36Ai4tLjc+7qsLDw9nlbkKhEO3bt6/yPuRyOeLj4wEon7O/v3+1hinUFoZhOEOmrKysGkVITsjTiL6fCKkdz+v3klwux6NHjzjD0hryZwTybJDL5ZweyUFBQfS5IqQa6HuJkNrzrH0/RUVFcbKi4ODgKj3+uazUbEx2797NBpoCgQBz58416nHqS88ZhmEDTTs7OzRr1gw2NjZIS0vjNPm/cuUKJkyYgL/++gteXl619ySqSKFQ8C59NJapqSlMTU1RVlbWqL551X+JJITUDH0/EVI7npfvJblcDoVCAZlMxvZ9JaS20eeKkNpB30uE1J7n/fuJQs0GJJVKsX37dvb6oEGDjJ5irj4kCFBObV24cCFGjBgBc3Nz9vbY2Fj8+OOP7MTdtLQ0zJo1C//88w9nO0IIIYQQQgghhBBCnhbChj6B59mZM2c4E57feecdox+rPn21efPmOHLkCMaMGaMVVAYEBOC3337D+PHj2dsePHiAPXv2VP/ECSGEEEIIIYQQQghpQFSp2YD27t3LXm7Tpg26du1q9GO3bduGvLw8pKamwt3dXW+fTIFAgK+//ho3btxgl6P/+eefmDJlSvVPvgZqq6emtbU19dQk5BlB30+E1I7n9XtJLpdDKBTCzMyMHcLUmFrUkKfTs9a3jJCGQt9LhNSeZ+37Sb2nZnVQqNlAsrKycPPmTfa6eiWlsVxcXIwe+mNubo5JkyZh9erVAICUlBQkJyejWbNmVT5ubTA1rfpHTyAQcH4x07ze0Brb+RDyNKPvJ0Jqx/PyvaR6jqp/TU1Nn+of8EnjZGJiUq2fYQkhXPS9REjted6/n2j5eQP577//2DTazMwML730Up0f84UXXuBcV1/CTgghhBBCCCGEEELI04JCzQYSEhLCXu7VqxecnJzq/JiaVZ1FRUV1fkxCCCGEEEIIIYQQQmobhZoNQCQSITw8nL0+dOjQejmuWCzmXLexsamX4xJCCCGEEEIIIYQQUpue34X3DejWrVuQSqXs9X79+lXp8Q8fPsSRI0eQl5eHvLw8/PDDD0b11kxNTeVc9/LyqtJxCSGEEEIIIYQQQghpDCjUbABhYWHsZU9PT3h4eFTp8UVFRfjjjz/Y6zdv3sSLL75o8HGXLl1iL9vZ2SEgIKBKxyWEEEIIIYQQQgghpDGg5ecNIDIykr0cFBRU5ccHBQXB2tqavb5v3z6Dj8nMzMTRo0fZ66NGjYJQSG8/IYQQQgghhBBCCHn6UKrVAGJiYtjL7du3r/LjbWxsMHLkSPb61atXcfjwYZ3bi0QifPzxxygvLwcAWFhYYNq0aVU+LiGEEEIIIYQQQgghjQGFmjU0aNAgBAYGIjAwEIMGDTK4fW5uLgoLC9nrTZs2rdZxP/roI9jZ2bHXly5dil9++QWlpaWc7W7duoXXX3+dM5ho3rx5aNasWbWOSwghhBBCCCGEEEJIQ6OemvUsLS2Nc109mKwKd3d3/PLLL5gxYwbEYjFkMhnWr1+P33//Ha1bt4a5uTmSk5ORmZnJedy0adPw9ttvV/f0CSGEEEIIIYQQQghpcBRq1rOcnBzOdXt7+2rvq0ePHti9ezc+/fRTxMfHAwAqKioQERGhta2DgwPmz5+PiRMnVvt4hBBCCCGEEEIIIYQ0BhRq1rOysjLO9epWaqq0a9cOx44dw9mzZ3H69GncvXsXubm5kMlkcHV1RYsWLTBo0CCMGjUKzs7ONToWIYQQQgghhBBCCCGNAYWaasaNG4dx48ZV6THnzp2r0vZjxozBmDFjqvQYQ0xMTDB8+HAMHz68VvdLCCGEEEIIIYQQQkhjRIOCCCGEEEIIIYQQQgghTxUKNQkhhBBCCCGEEEIIIU8VCjUJIYQQQgghhBBCCCFPFQo1CSGEEEIIIYQQQgghTxUKNQkhhBBCCCGEEEIIIU8VCjUJIYQQQhqQVCpt6FMghBBCCGlw5VI5ZHJFQ58GeYqYNvQJEEKeTxMmTMDdu3eN3v7NN9/El19+qXebqKgoHDlyBNevX0d2djbKy8vh5OSEoKAgjB49GiNGjIBQaPhvOQUFBdi/fz+uXr2KR48eoaioCGZmZnBzc0PHjh0xevRo9OvXz+hzN0Z0dDT++ecf3L59GxkZGVAoFHB3d0e7du0wcuRIDBkyxKhz12f27Nk4e/YsACAkJAQ+Pj7V2s/hw4exaNEieHt749y5c0Y/LjExEXv27MGNGzeQmpoKiUQCNzc3BAQEYMSIEejfvz/Mzc2N2ldtvUd///03vvnmG6Ofg7W1NcLDw43eHgAKCwvx4osvIj8/H3/++Se6d+9u1OMkEgmOHDmC06dP48GDBygsLISlpSV8fX3Rr18/TJw4EW5ubkafR1RUFHbv3o3bt28jMzMTpqam8PDwQK9evTBhwgS0bt3aqP1IpVKcOHECJ0+eRHR0NAoLC2FjY4MmTZqgT58+ePnll+Hv72/0efFJS0vDyy+/jJKSEnTr1g07d+406nGXLl3C0aNHERYWhry8PAgEAnh7e6N79+547bXXjH6O9UUkEmH9+vVwdHTEzJkzjXrMm2++idu3b+Oll17C6tWr6/gMCSGEEELqx2cnHmD1xXiYCQVYOzYI7/Vo3tCnRJ4CFGoSQuqdTCZDTExMre1PLBbj66+/xqFDh8AwDOe+7OxsnDt3DufOncOOHTvwyy+/6A2CDh48iOXLl6O0tJRzu1QqxePHj/H48WMcPXoU3bp1w+rVq+Hu7l6jc5dKpVi+fDn27t2rde7JyclITk7Gf//9hw4dOmDlypXw8/Or1nF2797NBpo1kZCQgOXLl1f5cevXr8emTZsgk8k4t6elpSEtLQ3nz59H8+bN8fXXX6Njx45691Wb79G9e/eq/FyqQi6XY9GiRcjPz6/S46Kjo/HRRx8hNTWVc7tUKkVkZCQiIyOxZcsWfPLJJ5g6darefTEMgx9//BF//PEH5zMmFouRkJCAhIQE7N69G++99x4+/vhjCAQCnfuKj4/Hxx9/jNjYWM7thYWFKCwsxIMHD/DHH3/grbfewoIFC4wOqdXJ5XIsWLAAJSUlRj8mPz8f8+bNw/Xr17Xui4uLQ1xcHP7++2+8+uqrWLp0KaysrKp8XrXtxo0bWLBgAXJycjBnzhyjHlNYWMiG6gMGDKjDsyOEEEIIqT9XE/Pxw/k4AIBcwWDOoSi80t4TrjYWDXxmpLGjUJMQUu/i4uIgFosBAAEBARg7dqzBx7Rt25b3drFYjOnTp+PmzZsAAIFAgN69eyMoKAhmZmaIjIzE5cuXwTAMIiIi8Pbbb+PAgQOwtLTU2teuXbvwv//9j73u7u6OgQMHwsvLC+Xl5YiMjMSNGzfAMAxu3ryJyZMnY8+ePXBycqrGq6C0YMECnDx5kr0eFBSE4OBg2NvbIykpCSEhIaioqMDdu3cxdepU7N27F97e3lU6Rnx8PFauXFntc1RJTk7GtGnTqhQ2AcD333+PP/74g73u5+eHbt26wdXVFSkpKTh//jyKiorw+PFjzJ49G7///js6d+7Mu6/afo/UQ82PP/7YYAhnZmZm9POWy+VYsmQJLly4YPRjACA8PBxTp05lv0dUn+mOHTtCKBQiIiICV65cQXl5Ob799lukpaVhyZIlOve3cuVKbN++nb3eq1cvBAcHQy6XIzQ0FOHh4ZDL5di0aRMYhsG8efN495Oamoq33nqLDWjNzMwwaNAg+Pn5oaysDHfv3kVYWBjkcjl27NiBvLw8rFq1Sm9IyufXX39FWFiY0dvn5+dj4sSJSE5OZm8LDAxE3759YWtri4SEBJw9exZlZWXYt28f4uPj8ccffzR4sHnr1i3k5ORU6TGXLl2CXC6HiYlJrVeLE0IIIYQ0lNOx3J+JpHIGoY8LMaqtRwOdEXlaUKhJCKl30dHR7OVBgwZh2rRp1d7Xhg0b2EDT1dUVGzduRIcOHTjbhIeHY8aMGSguLkZcXBx+//13zJ07l7NNcnIyJ/ibMmUKPv30U62QKzw8HHPnzkVOTg6SkpKwYsUKrFq1qlrnfuTIETbQNDExwcqVKzFmzBjONunp6Zg3bx7Cw8ORk5ODZcuWYdOmTUYfQyKRYN68eaioqKjWOapcv34d8+fPR15eXpUed/v2bWzbto29/umnn+Kdd96BiYkJe1tBQQGWLFmCc+fOoaysDN988w2OHj2qta/afo8kEgni4pR/EXZ3dzd6+a8x8vPz8emnn+LKlStVepxIJMLcuXPZQNPDwwPr16/Xql6NjIzE7NmzkZOTgx07diAoKEjrswMoqwFVgaa5uTnWrVuHgQMHcrY5fPgwlixZArlcjs2bN2PQoEHo1KmT1r4+//xzNtD09/fHhg0b0Lw5d1nQ2bNnsWDBApSXl+P48eMYPnw4hg0bZvTzv3PnDjZu3Gj09gDw2WefsYGmmZkZvvnmG4wfP56zTXZ2Nj766COEhYUhLCwMK1asqFbFcUNTBeTBwcFwcHBo2JMhhBBCyFMhLrcUVxLz0dbDFt2aVb8Yoy7FZIu0bssrkzTAmZCnDQ0KIoTUO/XquKCgoGrvJykpCVu3bgWg7HW4a9curUATUAYAn332GXt93759Wtvs2LEDEonyf5xDhgzB0qVLeav2goODsX79erb67Pjx48jKyqrW+W/ZsoW9PGfOHN5QysvLC2vXrmUrBC9cuID09HSjj/Hjjz/i4cOHAKpWZagikUiwZs0avPvuu1UONAHlc1QteX711Vcxffp0TqAJAE5OTli1ahVbTRkbG4vbt29r7au236OHDx+yA1pq8jnUdP36dYwdO7bKgSYA/PXXX2z1nrW1NbZt28a7HL9jx47YtGkT+1r+8MMPvMH1mjVr2MsfffSRVqAJAGPHjuVUZ/78889a20RHR7NLuy0tLfHLL79oBZqA8n1RX0q9a9cuXU9VS0lJCT799FPI5XKjP6thYWG4ePEie/3bb7/VCjQBZWj922+/sVXO+/fvx/37940+t8ZAJpOxnylaek4IIYQQY1xNzEen1Rfx7t4I9Fx/Bb/feNzQp8TrQbb2SjAKNYkxKNQkhNQ79VCzffv21d7PgQMH2B6Ns2bNQosWLXRu+9JLLyEgIABBQUHw9/dHcXEx5/4zZ86wl9977z29xw0ODmYr2RiG4e3jZ0h6ejoePXoEQFml+frrr+vc1sPDA4GBgezxNPsZ6nLx4kV2wMqbb75Zpf6fCoUChw8fxogRI7Bx40YoFMophIMGDTJ6HxKJBDdu3GCvv/XWWzq3tba25iw55+u5WtvvUW19DlViYmLw/vvv4+2332ZDVF9fX72fS02nTp1iL7/zzjt6e6gGBQVh+PDhAICcnBytnqnx8fFs/0U7Ozu9r/+UKVPg7OwMAAgNDUVGRgbnfvXgsHfv3nqfU//+/dnLVemd+9VXXyEtLQ0mJib48MMPjXqM+uvVtWtX3j8MqNjZ2bGfG4ZhsGfPHqPPrTEICwtDUVERAPCG04QQQgghmjZcTUSZVA4AYBhg1YX4Bj4jbXIFg9icUq3bc0sp1CSG0fJzQki9kslkbOWgm5sbPD09q72vY8eOAVAGYvoCGwCwsLBgt9dUWFjIhlBCodCogKtZs2ZsYJSdnV2V0wagrMC8c+cOEhISkJeXZ7Avp6pCETCu4jI3NxeLFy8GwzBo1aoVFi5cWKXejjExMVi0aBF73dHREYsXL0aXLl2Mnnhubm6O0NBQJCYm4vHjx2jTpo3e7VVLrgHt51gX71FtVQyrLFy4kP1sA8C4ceOwdOlSzJw5E0lJSQYfL5VK8eDBA/b6iy++aPAxvXv3xr///gtAGTy+9NJL7H2XLl1iL/fs2ZO3j6yKubk5evXqhePHj4NhGJw+fZozgGj27Nl49dVXkZCQwIafuuh7H3U5ePAgTpw4AUD5BwpDw6JUoqKi2MvGvF59+vRhL6sHtdUlk8lw6tQp/Pfff4iOjkZubi47Vf6FF17Aq6++qtUfdvLkyWzLDJVffvkFv/zyCwBl1bZmewwAOH/+PADAx8cHrVq10rpfLBbj6NGjOHPmDO7fv4/CwkJYWFjAyckJHTp0wIABAzBy5EiYmtKPfoQQQsjzIiaHu6w7Lq8UMrkCpiaNp77tcUEZxDKF1u0UahJj0E+2hJB6pT4kqF27dgCUfQTDw8ORmpoKhmHg4eGBLl266O0Zl5GRwVaTdenSpUZDPxwcHHD9+nVkZ2cjPz9fa3k0H/XlzDY2NtU6ro2NjVHh3MOHD9mqTgsLC4PhIMMwWLx4MfLy8mBmZobVq1frDbT0MTU1xfjx4/Hxxx/D2dlZaxq3IRYWFmjdujVat26td7ucnBzOknPNUKsu3iPNUJNhGNy/fx8xMTEQiURwcnJCmzZteAMkfTp06ICFCxeia9euVXpcYWEhZzo53/JuTep/FFDvVat5PTg42OC+OnXqhOPHjwMAIiIitKaqe3h4wMPDcLN21T6MPe7jx4+xbNkydvuZM2fyth/goz5V3pjXS/38MzMzkZubC1dXV6OOpenu3bv49NNPtQJrqVSKpKQkJCUl4eDBgxg3bhz+97//Vav9gzpVqMm39Dw2NhYffPAB0tLStM5FJBIhJSUFJ06cwPr16/Hrr7/C39+/RudCCCGEkKeDZjDIMEBemRQedo1nqviDLO1+mgCQR6EmMQKFmoSQeqUeJLm4uGDx4sX4999/tfoBmpiYYPjw4Zg3bx6aNm2qtR/1Za0BAQEAgIqKChw+fBj//fcf4uPjUVRUBGdnZ3Tu3BkTJkxAz549ec9JIBDA2dnZYAWaSk5ODu7cuaN1/NrGMAyuXr2KL774gg27Jk+ebPA8d+zYwVbpzZs3z2CgyMfS0hJTp07F5MmTeV//2hQZGYnPP/8c5eXlAIChQ4eyy+1Vavs9kkgkbFDs7u6OEydOYNu2bVqhEAC0atUKn3zyCYYMGaL3mL169cK8efM4y6+rojqhl3pVpGav1cTERPayMe+hl5cXe9mYylJNIpEIO3bswI4dOwAon4+h4UtSqRTz589HWVkZbGxs8OOPPxoVWKuov2bGTFlXr3gGgLS0tGqFmmFhYXj33XfZz6yFhQX69++PgIAAiMVihIWFsZ+/gwcPQiwW46effgIAvP766xgwYACuXr2Kq1evAlBW3Pbu3RsAfxCcnJzMvp+aoWZRURGmT5/OhvjNmjVDjx494O7ujvLycqSkpODcuXOQyWRITk7GO++8g5MnT8LW1rbKz5sQQgghTw+GYZAj0g4Gc0TiRhVqPuQZEgQAeaXSej4T8jSiUJM88xiZFDlH/gdR5AkoJGW1uGNAwVSWyQsFQsDw79SNitDcGrYdR8Ht5S8hMK1ZFZGx1EPNAwcO6NxOLpfj33//xdWrV7F27VqtQDI+vrIfjIeHByIiIrBw4UI8fsxtfp2ZmYkTJ07gxIkTGDVqFL799ttqVy2qrFmzhh0w4+bmhhdeeKFG+1OXkpKCo0ePIiMjA7du3eKES+PHj8f8+fP1Pv7hw4dYvXo1AOWS43feeada59GyZUssWbKkWo81pKCgAHv37kVGRgbu3r3LGdjSu3dvfPPNNzU+hqH3KCYmhr0/Oztb7yTsuLg4zJ49G1OmTMGSJUt0hmfqy/Wrw8HBAVZWVmxQFh8fb7AqVzW9HVCG+iUlJbCzswPAXXJvTJsH9SpG1bAiQ0JCQhAREYHk5GRcunQJZWXK/8ZaW1tj9erVBs9/7dq17BLyL7/8ssoBuqenJ9tj9tGjR2wwqIsqyFYx9nmqE4vFmD9/Pvs+tW/fHmvXrmWHEKkcO3YMCxcuhEKhwIkTJzBmzBh2CTgAlJWVsaFmcHAwpk2bpvOYqpYP1tbW6N69O+e+vXv3soHmiy++iB9//JET3lpbWyMxMRGTJ09Gbm4ucnJysG/fvmr/t4EQQgghT4cyiRwVPMu6cxpZBeQDHaEmLT8nxqBQkzzzcg5/g9xjKxr6NBqtisfKnoPu45fVy/HUQ01AOdzjnXfeQceOHWFvb4/09HSEhITgt99+Q2FhIYqKijBr1izs3r2bU3GoPugnKSkJa9euhUgkgr29PQYPHozmzZujtLQU165dY4954sQJ5OXl4Y8//qhSNZi6Y8eOYf/+/ez12bNnV3tffG7fvo1169Zp3f7ee+/h448/hlCou/9NRUUF5s2bB4lEAkdHR3z//fdGVa/Vt0ePHvFO2B45ciQ+//zzGofOxrxHmp9DFxcXTJs2DUOHDoWnpydEIhHCwsKwZcsWti/nn3/+CRsbG3z88cc1Oj9dBAIBunbtylbZ7t27F19//bXO7RUKBY4ePcq5raKigg01RaLKHxCtra0NHl+9hUNJifYESj7bt2/X6g/p6OiI9evXo1u3bnofe/36dWzduhWA8r0fO3asUcdU161bN/b1OnDgAKZMmaL3e+TQoUOc6+qVrsY6evQoWxXr6emJrVu38rbKGD16NB49eoTNmzcDUE62r+7UclU/3F69esHc3Jxzn+rzCQAzZsyAqampVkWqr68v5s2bx/6h4u7du9U6D0IIIYQ8PXSFl3zVmw0phmfyOQDk0vRzYoTG0x2WkDpSnhDa0KfQ6JXH3zC8US2Qy+WcQSrvvfcedu7cicGDB8PV1RXm5uZo0aIFpk2bhoMHD7KVT2VlZfj88885+yotrZyQt2vXLohEIgwePBhnz57FypUrMXPmTCxYsAAHDx7E999/zwYBN27cwMaNG6t1/hcvXuRUL/bo0QOvvfZatfalC9/yZwD4/fffMWLECL2T1r/99lu2gnXZsmVG9T9sCJrLpFX+/fdfjB49mjPRuqqMfY/UQ83AwEAcOXIE06ZNQ7NmzWBubg5nZ2cMGTIEu3btwoQJE9htN2/eXKWJ3lU1adIk9vLevXvZIUB8Vq1axanUBJSDa1TUgy0LC8NLjNS30QzFdOF7LwsLCzF58mR8+OGHnJ6X6goKCrBo0SIoFAo0adKk2tW5Y8eOZUPw2NhYfPvtt5y+pOrOnTuHffv2cW5TVetWxenTp9nL06ZN09v794033oCfnx8GDhyItm3bVvlYgDKcVvUY5QtF1Qf/hIWF6dzPyJEjcfz4cURGRvL+UYEQQgghzxZd4WVOadX/qFuXdC8/l+j8ua6m8koluJdZgoonk+HJ04tCTfLMs/Ltbnij55yVX496OY6JiQlCQkLwzz//4Ndff8WCBQt0VhJ6e3vjhx9+YK9HRUUhNLQyoFYt/VQJDg7GunXreAOGsWPHYvHixez1bdu2carYjHH69GnMmTOHDXt8fHzw888/12qVJqAMHi5evIjo6GhcuXIF33//PVq0aAFAuTR9+vTpnKnWKmfPnsXevXsBKJepDxs2rFbPqzZ17doVZ8+eRVRUFG7cuIFffvmFHRqVl5eHxYsXa4VPxqjKe7RkyRIcP34cmzZtwm+//QY3NzfefZqYmOCrr76Cr68vAGV15LZt26p8bsYaPHgwBg4cyB5r3rx5+PLLLxEdHY2KigqUlpbi5s2b+OCDD7B161Y4OztzqjDVq/j0VSwaYmyF708//YTbt28jKioKx48fx4wZM9g+l6dOncKUKVN4v9c+//xzZGVlQSgU4ocffoC9vX21ztPNzQ0fffQRe33nzp2YOnUqLl++DJFIBIlEgpiYGHz77beYM2cOAKBJkybs9ppVj4ZIpVLOHxYGDRqkd3tPT0/8+++/2LRpE+bNm1elY6lcuXIFUqkUAoGAt1+rekXsihUrsHjxYly9elWrT7GVlRX8/f1rXAlNCCGEkKdDro7wsjFVauaIxMgr4/8js0zBoLhCxntfTfz7IAt+34Wg/aoL6PzzJTzOr8UWdaTe0fJz8sxzG/sVIBBQT00e6j0164urq6vRgzm6dOmCtm3bsj0XL1++zPaT06w8mz9/PqdiSdPEiRPx22+/ISMjAyKRCNevX8fQoUONOo+dO3fi22+/hUKhfL+9vb2xY8cOo4fWVIUqPAOUgc3YsWMxZMgQTJs2DREREZDJZFiyZAlCQkLY1yArKwtLly4FoJwArVnV2tio9x40NzfH0KFD0b9/f3z44YfshOcVK1agf//+RlebVvU9UgU8xkyBNjMzw+uvv44VK5RtLC5fvmzUOVXXqlWrMHPmTNy8eRMMw2Dv3r1sYK3O0dERmzdvxrvvvsveph5YWVtbo6ioCIBxy6zVtzGmshPgTqn39/fH/Pnz0b9/f7z77rsQi8V49OgR1q5dy34+AWD37t04e/YsAGD69OkGl6kb8u677yI7O5sNm0NDQzl/AFExNTXFV199hYsXLyIjIwMAd8m9MfLy8tjqTmtra/j4+NTo3I2h+p5o27Yt3N3dte5/9dVXsW/fPsTExEChUODQoUM4dOgQzM3N0aFDB/Tt2xd9+/ZF27ZtG2U7CkIIIYTUDZ3LzxtRr0pdVZoquaUSOFjV3uwHhmEw/+g9Nix9kC3CuiuJWD2mXa0dg9QvCjXJM09gagb38ctqvWckwzDsUAxA+Qsu/cJY+zp06MCGmsnJyeztNjY27GVbW1t07txZ735MTEzQs2dPHDx4EAAQHR1tMNSUyWRYvnw5du/ezd7WqlUrbN261ajBK7XF1tYWq1atwogRIyCTyZCTk4OQkBCMHDkSCoUCCxcuRGFhIUxNTbFq1Sqj+ic2NmZmZvj6669x584dFBcXo6KiAkePHsV7772n93H19R6ph3e5ubkoLS3lfAZrk62tLf744w/88ccf2Lp1KxtMqpibm2PEiBFYtGgRnJ2d2UpIa2trzjmph5qaVXt81KufVX05q6NLly6YMWMG1q9fD0DZ63LRokUwNTVFfHw8Vq5cCQBo164dPvzww2ofR91nn32G4OBg/PTTT1qT21W9ShctWoSgoCAcO3aMvc/FxaVKx8nNzWUv61t2XlsUCgVbma2q4NVkZWWFbdu24ZtvvuG0bpBIJLh9+zZu376Nn3/+GZ6enhg5ciSmTZtWrYnvhBBCCHm66Bq0kytqPMvPjQk1/Vxr72fubJEEMTmlnNtupxTW2v5J/aNQkxDSqDk6OrKX1ZexOjk5sZddXV2NWmqrXvVXUFCgd9uCggJ8+OGHnCEoXbt2xYYNG+olzNDUtGlTdOzYEXfu3AGgXI4/cuRIHDhwADduKHuiBgQE4NatW7h16xbvPtRfv3379rFLfoODg2t1gnt12dnZoU+fPmwfSdVUbF3q8z3S3J9IJKqzUBNQhrzvv/8+3nnnHYSFhSE5ORkymQxNmjRBcHAw+30RHx/P9hrSDHE9PDzYisSsrCx2ib8uqgnaAHQuxzfWmDFj2FCztLQUiYmJ8Pf3x+eff84GrO3atcOff/7J+3j1P2BkZGSwA4UAZdW1ra2t1mOGDx+O4cOH48GDB3j48CFEIhFcXV0RFBTEmaqemJjIXvby8qrS81LvWVofIiMj2b6k+oYMubi4YN26dUhISMB///2Hc+fO4cGDB5DLK/tEZWZm4o8//sDevXvx66+/okeP+mk7QgghhJCG8TRUauqafK5S2xPQozOLtW7LKGk8IS+pOgo1CSH1Ti6XQyKRGLX0Uz2IU++7p75sWH0SuqHjqvCFIiqJiYl47733kJKSwt42duxYLFu2rMo9+AxRKBSQSCRG9blT7wWoel0yMzPZ2+7fv89WtRqyadMm9vKcOXPqNNRkGAbl5eVGVZCqB8/6+p7W1ntkbMWl5rnUV7Btbm6OHj166Ayg1KdYt27dmnOfv78/IiIiAOgeQKVOfZuWLVvyblNRUQFzc3ODf0TQDFhV09TVg9N//vnH4DkByl6y6v11hw8frvf7t02bNmjTpg3vfWlpaWy1ZVVaYaio/zfI2P/u1IRq6rmbmxuCgoIMbu/r64tZs2bh7bffRklJCcLDwxEeHo6LFy+yFaylpaX48MMPce7cOb2vIyGEEEKebjoHBTWinpoxBkLNvFqegB6dqT1pPaPY8Iom0njRoCBCSL3ZsmULevTogaCgIMyfP9+ox6hPS2/VqhV7WT20KCgoQHZ2tsF9qQdg6gGhunv37uH1119ntxUIBPj44485E9Rrw+HDhzF8+HB06NABX331lVGPKSwsZC+rV6o2VteuXcPIkSPRqVMnzJgxw6jHqC+11vUca/oepaSkoH///mjfvj06d+6stbybj/rn0MfHp86GrTAMg4KCAsTFxbFBoD4hISHs5S5dunDuUw85VeGmPurbaAZoH374Ifr06YNOnTpxKmN1Uf+sAnX7eRWJRHj8+DEnMNVF3+tlDC8vL3YQUmlpKVsJq8/q1auxbNkybNu2DXl5eVU6nqqfZv/+/avc3sTOzg79+vXD4sWLcerUKaxfv54996KiIjYwJYQQQsizKU/HoKDsRrT8/EGW/p93a7tS8x5PqFkqkaOkDgYSkfpBlZqEkHrj5ubGLvu+ceMGysrK9FbvpaSkIDw8nL3et29f9rKrqys6duyIyMhIMAyDEydO4J133tG5r4qKCs7UYtXAIXWxsbF455132JDLwsICK1euxMiRI41/kkaytbVlK6fOnz+PiooKvUGZSCRCWFgYe71Dhw4AgLlz52Lu3LlGHXPQoEFsNV5ISEidDzlxcnJCfHw8ACA8PBxZWVl6B//I5XJ2KT0AtG/fXmub2niPPD09UVhYyE5JP3/+PMaOHav3Mep9GPv06WP0sapqxYoV2LlzJwDgyy+/xJtvvqlz28zMTFy8eBGAsmfskCFDOPcPHDgQy5cvB8MwuHbtGsRisc4BQGKxGNeuXWOv9+vXj3O/qpcrAPz3338Gly6r+kACyhYSzZo1AwCcO3dO7+NUQkNDMWXKFADK6d6q10TTmTNn2Knmw4cPx7p163Tuk2EY7Nu3j70+fPhwo85FnaWlJdq2bYvIyEgAwMWLFzFp0iSd21dUVOCvv/5i+y+//PLL7H2GQsr09HTExMQA0L30PCUlBT/++CMSExPBMAyOHz+uc3/Dhg1Dnz592KDUmECWEEIIIU8vXcvM88okUCgYCIUNOw+iTCLD48JyvdvUR6gJAOnFFQi01F7BkpBXirWXE2FuIsSCAX7wsDNumCapP1SpSQipN4MGDWKDu9LSUk6fPE0Mw2DZsmXskvGOHTtyhrUAyqm/Khs3bmRDFz5btmxhq8fatWuHgIAAzv0ikQizZ89mwzIbGxts2bKlTgJNQBmMqYaxFBUVYfv27Xq3X716NRuMuLq61mmwVlvatGmDFi1aAFCGYr/88ove7f/66y+kp6cDUIaVL774Iuf+2nqPzMzMOAHg5s2b9U4H//fff9mwVSgUYvLkyVU6XlWoD7w6cOAA2y+Tz7fffssGsy+++KJWYOzt7c22FcjPz8eOHTt07mvHjh3sHxxeeOEF+Pr6cu5Xfy8OHTrE6XmpqaCgABs2bGCvjx49GiYmJjq3r4lOnTqx+7548SJnkI+mXbt2ITY2FoCy4nLYsGHVOqZ6MLl161bOgCVN+/fvZ79vu3TpAmdnZ/Y+9SX86q0xVFTho7m5OXr16sW7fxcXF5w7dw6xsbF49OgR5w8ffFT9OQHtFgGEEEIIebboCgQVDJBfXj9L0GVyBQ7cTcdXp2JwJ7WQc9+j3FLo+VEXQO2GmgzD4J6OylC+JehF5VJ0/vkS1l9JxOqL8ej9yxXI5IpaOx9SOyjUJITUGzs7O7z99tvs9V9//ZUztVqlpKQE8+fPZ6vQzMzMeJdojxs3jh1+UlRUhMmTJyMhIUFru127drEhi0Ag4F36/u2337JBjampKTZs2IBu3bpV/UkaydLSkrMke926dexkdnVisRgrV67E33//zd726aef1tny59qmPt36n3/+waZNm7SCOrlcjq1bt7KDZQBgxowZWiFdbb5HM2fOZJfiJiQkYO7cubw9Eg8fPoxFixax16dOncppg1DbBg8ezA7puXfvHlavXq01nKa8vBxLlixhJ13b2NhgwYIFvPubN28eWxG4Zs0aHD58WGubw4cPY82aNex1vonkI0aMYP8QIBaL8f777+Px48da2yUlJeHtt99mw2lnZ2fMmjXLwLOuPjc3NwwaNAiAsipy4cKFWkvfAeV/A7777jv2+tKlS2FqWr3FKuPHj2ernJOTkzF79mxOWKhy8eJF/Pjjj+z1Dz74gHO/ej9Lvp6nquXh3bp109n31draGqNHj2avz5s3D48ePeLddseOHWyFqY2NDafynRBCCCHPHn29M+urr+ZXp2Mw4c87WHYmFr3WX8H1pMqfmR5k6e+nCQD5tdhTM7WoAsU6lpnzDQs6GJWBIrXtE/LKcD6+aq2ESN2j5eeEkHo1e/ZshIeHIzQ0FAqFAl9//TX27NmDvn37wtbWFsnJyQgJCWGDCaFQiOXLl/NObjY1NcWqVaswZcoU5OTkIDExES+99BL69euHtm3bQiaT4fLly5zhOVOnTkXv3r05+0lKSuKEPa1atarS0B2+6eHr16/nVCaqlpGqe/fddxEWFobz589DLpdj8eLF+Ouvv9C7d2/Y2NggPT0d586d41SgTp8+3eBS6cZk1KhRuHnzJvbs2QMA+Pnnn3H48GEMGDAATk5OyMnJwYULFzj9TocPH64VhNX2e9SqVSt88cUX+PLLLwEoA6ghQ4Zg2LBhaNq0KYqKinD16lVOL82BAwdi3rx5VX4NqsLc3BxfffUV5s6dC4Zh8Pvvv+PMmTPo06cPXFxckJ6ejjNnzrDfH2ZmZvj555919ojt0qUL3nrrLezcuRNyuRyLFi3Cnj172OXjoaGhnOq+qVOnomfPnlr7MTMzw08//YS33noLhYWFSEhIwKhRozBo0CC0bt0acrkc9+7dw+XLl9kQ1traGps3b+ZUJ9aFRYsW4ebNm+x7NmzYMAwZMgQ+Pj4oLCzkDMkBlOGi5lL9qrC0tMTatWsxefJklJWV4erVqxg6dCgGDx6Mli1bQiKR4Pbt25zeo5MnT9YKEdXbPxw7dgx2dnbw8PCAv78/evbsidDQUAD6p54DyiDz/PnzKCgoQEZGBl5++WX06NEDvr6+cHJygkgkws2bN3Hv3j32MQsWLICjo2O1XwNCCCGENG5SuQIF5VKd9+eIJGijuytUrcgRifHD+Xi1c2Kw9L+HODdTuQLloYEhQUDtVmpGZ+ge8shXqZmQX6Z124OsEgwNcKu1cyI1R6EmIaRemZubY9OmTVi2bBlbmfjw4UNOeKTi5uaGr7/+Wm8A4evriz179mDBggUIDw+HXC7H+fPn2aWbKkKhEJ988gnvwJpDhw5xln/qOh9dqjs93NTUFOvWrcP333+PXbt2KZdE3LvHCR9UbGxs8Nlnn+G1116r8nEa2tdffw0PDw9s2LABMpkMiYmJSExM1NrO3Nwc06dPx7Rp07T6DdbFezRx4kTY2triq6++QklJCYqKijg9F1VMTEzwxhtvYOHChbU6LEqXoUOH4rvvvsM333yD8vJyJCUlcUI5FS8vL/zwww/o2rWr3v0tXboUZmZm2L59OxQKBTsRW51AIMA777yDhQsX6tyPv78//v77b8ybNw8PHz6EVCrFqVOn2IpRdW3atMHq1avh5+dn3JOugaZNm2Lr1q348MMPkZ6ejqKiIhw4cEBrO2trayxYsEBvn1JjBQUFYffu3fjoo4+QlJQEkUiEI0eOaG1nYmKC9957Dx9//LHWfb169UKLFi2QlJQEhmGwa9cuAMrwnGEYtiWCoVDTzc0NO3bswJw5c5CcnAyFQoFr165xeqSqqF6DN954o+pPmhBCCCFPjfwy3YEmAOToGCJUmw7czYBcwV2hdSE+Dwl5pfB1sUFMjnaoaWthApG48mf+2gw17+mpDM0o1n49Unn6fT7KLa218yG1g0JNQki9s7a2xnfffYe33noL+/btw507d5Ceng6xWAxnZ2f4+flh8ODBGDt2LGeJpi4+Pj7Ys2cPzp49i//++w8RERHIzc0FwzDw9vZGz5498cYbb+hcNlyVcKy2mZub44svvsCkSZOwd+9ehIaGsq+Fg4MDWrVqhb59+2LChAlwcHBosPOsCYFAgFmzZmHMmDHYu3cvrl27huTkZJSVlcHOzg4tWrRAr169MGbMGHbptaa6eo9GjRqFPn364J9//sGlS5fYqeM2Njbw9PREr1698Morr2j1YK1rr7zyCrp164Zdu3bh6tWrSE5OhkQigaOjI1q3bo3hw4djzJgxRrUhEAgEWLRoEV566SX2M5adnQ25XA4PDw906dIFr7/+Ojt8Sh8/Pz8cPHgQp06dwsmTJ3H37l3k5eXBxMQErq6u6NSpE0aMGIHBgwdXeVp3TbRv3x7Hjh3D/v37cebMGcTFxUEkEsHa2hq+vr7o168fJkyYAHd391o7ZuvWrXHixAkcP34cZ86cwb1795CXlwdTU1N4eXmhR48eeP3113X+d8fS0hI7d+7EmjVrcOXKFeTn58PMzAwSiYRdet6qVSs0bdrU4LkEBgbixIkTOHbsGEJCQvDgwQPk5+dDJpPByckJzZs3R//+/TF27NhafQ0IIYQQ0jjlGJhwXh/Lz/dEaLfXAYAdt1PxzfBAreXnTlZm8HWxxp3UIva2Wg01M3VXamaWaFdqphZp3xZPoWajI2D0TSEgpJaEh4dDoVA21RUKhQgODq7yPuRyOTvkAQACAgLqbPiEMRiGYQdAAMqgrj5/iSfkWULfT4TUjuf1e6mx/YxAng0ymYztRQsohxZWtx8vIc8z+l6qfxficjFo03Wd938zPBBfDK27P9qnFpaj+YqzvIOAmjtZ4dFng2C/9D9UyCoH7/Rs7gR7S1OciqlsvWUiFEDy/Sitn2WySsR4mF2C1u52Rk8k77bmEm6rBabqBrVyxdkPuC2YWn9/DrE53BDTz8UajxYPNup4deVZ+36qaVb09D5zQgghhBBCCCGEkAZwJ7UQyQXlGNjKFY5WZg19Ohw5BiocDd1fU3sj0nVONn9cUI4dt1M5gSYAtPawhUTjNrmCQVGFjPP6XorPw8vbbqKoQgYnKzMcfbcberfU38NdodA9+RzQ7qnJMAxSC7UrNZMKyiGVK2BmQjO3Gwt6JwghhBBCCCGEEEKMtOpCPLquuYzxO26j7Q/nkVygPVSmIRlaXm5oeXpN6Vp6rvL1ae0hqq3dbOFio92/XnMJ+oqQWHYqeUG5FN+fizN4Pon5ZSiXKnTerzn9vKBcijKpXGs7uYJBIs8AIdJwKNQkhBBCCCGEEEIIMYJYJse3IY/Y65klYmy4mtRwJ8TDUC/Kuuyp+ShHxOmLySeNp19la3dbuBoRat5O4e47Wk+vTBV9VZoAUFguRblaiJnCMyRIJY76ajYqFGoSQgghhBBCCCGEGCG5oByF5dzp4oZCvPpmaLp5XU4/3xORrnWbjbnhPtdtPOzgaq0dauaphZolFTIUaLz2hU+qNvWJztQfagJAptoEdL6l5yo0Ab1xoVCTEEIIIYQQQgghxAjJPFV8j3JFPFs2nLwGqtRkGAZ7wrWXnq9/pb3ex5mbCNHCycrg8vPHPMv8iyqkUCj0z7++b0SomaE2AV1fpeajHAo1GxMKNQkhhBBCCCGEEEKMkFygHXilFFZwli83NEODgHJLJWB0TfKpgbsZxXiQzQ14uzdzxJTOPvB1sdb5uAA3G5iaCA0uP3/M89ozDFAs1l+taUylZrrakvhUnuXxKrT8vHGhUJMQQgghhBBCCCHECHyVmkDjCrsM9dSUKRitJfS1YXe49tLzScHeEAoFmNK5qc7HtXa3BQD+ULNMf6gJQO9zkckVeKgRtAoE2tupDwtK1ddTM6/xvM+EQk1CCCGEEEIIIYQQo+gK1hpTr0VjlpcbquasKoZhsFdj6rlAAEzo4AUAmNrFhzdMBIBAPaFmnoHl54D+UDMurxQSOXfyeRcfR63tMoqNq9RMyi+DRKZ7kjqpXxRqEkIIIYQQQgghhBhBV7/FxtJrkWEYowYB1XZfzRuPC7QC3wG+LvBysAQANHe2xqBWrryPbfMk1HQxMChIV5Ws5vAgddEZ2kvPhwRon4f6oCB9PTUVDJCYzx+ukvpHoSYhhBBCCCGEEEKIEfh6agL1W6kZky3C9H8i8e7eCDzI4oZ2JWIZpHLD/TJrewL6bp6p55OCvTnX3+7KvwRdtfzc3FQIOwtTzn2GemoC+is172Vph5oD/Fwh1KgaVQ0KYhgGqUW6Q02gcbUaeN6ZGt6EEEIIIYQQQggh5PnGMIzOasFHOfUzAb2kQoaBG68h80kPyINRGXi8dAgcrMwA8FdgNnO00jrv7Fqs1JTJFdgXyQ01zUwEGN+hCee2V4I8YW9piuIK7mCfQDdb9rKrjTlK1Ab/GJp+DhgINXmGBHVoYg8POwtkqFVnqi7nl0lRLtW/vLwxtRp43lGlJiGEEEIIIYQQQmqMYRhcTsjDfw+yIJPrD4YS88rw69UknInNqaezq7kckQRiHf0U6yvo2n83nQ00AaC4QoYj9zLZ63xDgtp62GrdliOqvUrNC/F5yCrh7m94gDucNZaTW5ubYkoXbrVmrxZOsFGrztTsq5n3ZFCQWCbnhJDqCiv0LD/XCDVdbczhbmuOJnaWnNtVPTUNVWkCFGo2JlSpSQghhBBCCCGEkBqbvi8S226mAAA6+zjg6pw+vJVUd9OL0fuXKyiVyAEAXw8LxJfDAurxTKtHV5UmAGSWiFFSIYOdZd3GLOficrVue6A23ZtvAFAbDzucjOGGx8YMClIoGBx/kIWL8XkY1MoVo9p68G63h2fp+cRgL95tV4xojdhsEU7H5iDAzQa/vNKec7+LtRnnel6ZFAoFg5RC3cN7Csr4Q02xTK4VQLbzsINAIEATewtAba5RTqkEUrlC73FU4nLrpyqXGEahJiGEEEIIIYQQQmokIa+UDTQB4E5qEQ5GZeDV9tpB2IZriWygCQCrL8bjs0GtYG7auBeT6lr+rPIoV4QXeCZr1xaGYRDySDvUjFUPNXkqMNt62GndlmvE8vPfbjzGrINRAICfLyVgx+udMLkzt9JSLJPjYFQG5zYrMyFebufJu087S1OcnNEDYpkcFqYmWvdrVmrKFQyKKqR6X/tCjeXsKjHZpZAruP1F23kqXwtPe0ut7bNKxHqHBKnE5dKgoMaicf8XgxBCCCGEEEIIIY0eX+/CO6lFvNtGZWgPt4nPa/xLevVVagJ1vyz5QZaIs/RcJVZt8jrf8nM/F2uYmXAn4xgaFMQwDJadjeXctuj4A0g0lt+fisnR6mk5uq0nbC3019DxBZoA4GKjPQE9t1Sic0gQABTp6KnJNyQo6Emo2cTOQuu+jGIx7/JzzerRxwVlWq9DbWMYBr/feIzBG69h9sEoFOtZYv88o1CTEEIIIYQQQgghNcK3nDlBR1AZzxP+qS+hbihlEhmuJObpPG9dk89V6jrUDOFZeg4AcXmVFYl874O7rYVWBSTfQCF197NEWj0sM0vEWlWZe8LToGmSjqXnxtA8T0C5BF1fqKlrUFB0ZrHWbapKzSY8lZoZJRVI5Vl+PrCVK+e6ggES8uv2vT56Lwvv77+L8/F52HgtCVN3h9fp8Z5WFGoSQgghhBBCCCGkRrJ5lj3H52kv0y0Ry3iDt4cNHGqmFZXjhZ8vod+Ga2j9/XlsDU3W2sbQ0uRHOXUbdJ3XEWqKZQp2eTZfpaarjTncbLiViYZ6ap59xD/AacPVRPZyqViGo/eyOPfbW5piRKC73n3r42LNX6mZrGf5eYGuSk2e6uHKUJOvUrMCqRrvsYWpED2aO2ltW9dL0H+/8Zhz/Upifp0e72lFoSYhhBBCCCGEEEJqhK/yLyG/FAzD7WmYwBN0AsBDnqXC9Wnz9cfsMm6ZgsFnJ+5rLTFuyEpNuYLBhfg8nferzl2zV6ZAADhbm8HNVrtSU/O9URcSyx+gXk0qQHiasq3AsftZKJPKOfePC2oCSzP+peXG4KvUNLT8XFelpmao2cTegp3I7sVTqZleLEZKEbdS08fBEgFu2tPjH9XxsKCIdG6VqaHl/M8rCjUJIYQQQgghhBBSI3wDakRiuVZFYEI+f6jZ0MvPwzT6f+aVSRGTwz0nfcEaADzKqbvnEJZapDO8A8Ceq2avTCcrM5iaCOGmERZK5AqUiPkH7EjlClxI4A81AWDD1SQAwJ6I2l16DtReqFkmkWl91lT9NAEdy895KjV9HKzQytVaa9u6rMrNLhEjvZgbrnbysq+z4z3NKNQkhBBCCCGEEEJIjehazqxZmamzUjNbBIVCd+VgXUsr1u6lGJVRWS1XLtUOaDXllUmRX2Z4qnh1hMTxLwdXiXkSCmsuP1eFma622sutdfXVDE0ugEgs570PAHaHpyIhrxT/Pczm3O5ua45BGv0nq4ov1MwW6Z9KXsgzROdBtgiahajtPCuDQQ+e1+NeZgkqNKpzmzpawtfZBkLunCXE1WFVbkS69oCtTt4OdXa8pxmFmoQQQgghhBBCCKkRvp6aABCvUS2XqKNSs1Qi5w0W60taEU+oqbZ82VA/TZW6quA790h35SRQufRdM3h1exLeaVZqArrfs7M6lp6rlEsVmPDnbUjl3NTw1Q5eMDWpWczEN/08OqMYMj2Bt0gsh1TODSP53q9ANxv2srmpUCtAVS2rV+ftaAVzUyGaO3GrNesy1AxP0x5w1MmLQk0+FGoSQgghhBBCCCGkRnRV/WlVauoINQHgQQP11ayQynkH7ESp9TXk66fZ1oOv12Lth10VUrnBQTEx2SJIZAoUV3CXlKuCO75QU1flaYiOIUHq+IK3mi49B/gHBd1J1Q4bNRVpVGvyfR497LjVmZrDgjSrNAGgqYMVAGgtQU8uLIdYpruatSYi+So1afk5Lwo1CSGENApSqe4eQYQQQgghpPFiGAbZOkLNxHxuGKhr+Tmgu69mVokY0RnFkNfR8nTN/oUqUZlqoSZP5d8gfzet22LroK/m9ccFvIGbutSiCnYCujpVqOluZ9zy8+IKKW4kF3JuC/K0Qxcf/ZWCTR0t0au5s95tjGFuKoS9JXcojqFl/wBQWM4Nc3VNgVfXxE67r6YmH0flNq1cuQG2gtH/WQaAvFIJfr/xGEfvZeodyqRJc0iQk5UZmjlZGf345wmNTyKENCobNmzAunXr0K1bN+zcudPoxxUWFmL37t24cOEC4uPjUVFRATc3NwQGBmL06NF48cUXIRQa93ecxrovY0VFRWH37t24ffs2MjMzYWpqCg8PD/Tq1QsTJkxA69ata/V4NZWcnIzly5fjzTffRJcuXQxuX15eju7du0MsFuN///sfJk6cWA9nSQghhBBCdCkRyyCR84duyuBHGcjIFAweF+peYv4gSzsQ3HErBTMP3EWFTIEuPg44/X5POFqZ1cp5q/AtPQeAlMIKFJRJ4GRtzlupObiVK365ksi5rS6WJYfwLD1v7mSlNTznWlKB1nb6KzW1l59fSsjXCo+HBLihYxN7vLM3Quc5TuzkDaFm48lqcrUx16o4NURzWBBfEOpmo79Sk09TR+Vn19/VRuu+uNxStPGw07odUA77ab/qAnse73Rriq2vdTJ4vFKxTGtAVScvewgEtfPaPmuoUpMQ0mjcvn0bGzdurPLjbty4gZEjR2LNmjWIiIhASUkJpFIp0tPTcf78ecybNw9vvvkmMjIyntp9GYNhGPzwww+YMGECDhw4gMePH0MsFqO0tBQJCQn466+/MG7cOPz8889V+kthXdq+fTtGjRqFixcvGv2Yq1evQixW/gA2YMCAOjozQgghhBBiLF1VmgB3uXlmmVxvtWWMRqVmmUSGT47eY6sUb6cWYeO1pJqdLA9doSYARD/pq8kXanZp6qBVVVgXy8/PxWmHmtO7N9O67WqS9hJ1N1tzzr/q+Co1z/IsPR/i74qJnbzgYq07TH492FvnfVXlyrME3ZACjVAzl6dfqOZr4MkzAV2Tj4NyG75QU997/fPlBE6wuu1milGBd1RmidaAIxoSpBuFmoSQRuHu3buYOXNmlZcg3717FzNmzEBeXh4AwNvbG1OnTsVHH32El156CZaWyv8JhYWFYfr06Sgu1u790tj3ZayVK1di69atbGDZq1cvzJ49Gx988AGCg4MBAHK5HJs2bcLPP/9c4+PVhpCQEEgkVZsQeeHCBQBA27Zt4eHhUQdnRQghhBBCqiJHx8AZAMgsEaP8SSiZVqK/+u5BNrenZmhyoVYF3sX4vGqepW76Qs27Tyagay4/NzMRoImdpVbYFZtTWqsFBMUVUtxKKeTc1tHLHr1aaC/1vsYTalZWampXJfIt0Q7RGBJkKhSgn68LLM1MML1Hc95zDHCzqdWej3zDggzR/JxoPjcToQCOltxQtgnPknx1FmrDhFpVMdQ8Gp2pddtJjWnxfPiGFXXypn6autDyc0JIgzt+/Di++OILlJXp70miSSKR4NNPP2Wr9saNG4dvvvkG5uaV/xNMTk7GBx98gPj4eMTFxWH16tX45ptvnpp9GevGjRvYvn07AMDc3Bzr1q3DwIEDOdscPnwYS5YsgVwux+bNmzFo0CB06tSp2sdsCAzDsFWdVKVJCCGEENI4GOp5mCaSo5WjEKki/YNVskUS5JdJ4PykUu9SgnaAGZ5WBIZhanU5bmqR7snmURlPKjU1Qk0fBysIhQL4u9pwBtmUiGXIFkm0htJU18X4PK3q1kGtXBHopj2k6D7P8n1VmOlkZQYToYCzL80wOqO4Avc0hjX1bO4EWwtldPRBj+b48XwcNIttJ3XyrtX3Q7P3pTEMLT93sTbTWh7fxEClpo+DJfu8WjpbQygA57nrqryMyy3l7Q97KiYbc/q01HvMCN4hQVSpqQtVahJCGoxIJMIXX3yB+fPnVznQBIBDhw4hKSkJABAQEIDly5dzgkMAaNasGX7//Xe2MnL//v1ISUl5avZlrDVr1rCXP/roI61AEwDGjh2LefPmsdcbS7VmVdy7dw/Z2cq/cPI9R0IIIYQQUv+y9VRqAkCaSFmhmSoy3CdRva/m5QTtysOcUgkyS/Qfr6rS9S4/L4ZCwSBFI9Rs/mRwiz9PuPgot/aGBYXwLD0f7O+KJvYWsLUwMfh41ZJroVCgtXxcM/jj6905WG0YUnNna4xp56m1TW0uPQcMV2qa8vTu1Ao1NZbW81WqGuqpqeqnCSgHGLVwtgbDAIxMCEZsipjHEmRlAenpQEoKkJgIxMUBW0/mgcmzBZNjBybLHkymA5gMR5y9oMDZc3KcPw+cPQucPAmcOAEcPQocOgQcPAic+9cMTGwTMDHKL9NH3og8b4vdu4G//wZ27xYgMdHwsvnnBVVqEkLqnUQiwe7du7Fx40YUFCibWQsEAgwYMADnz583ej/79+9nL7///vswMeH/n7q3tzcmTJiAnTt3QiaT4dixY5g1a9ZTsS9jxMfHIzw8HABgZ2eHt956S+e2U6ZMwdatW5Gfn4/Q0FBkZGSgSZMmVT5mQ1EtPXd1dUX79u0b9mQIIYQQQp4xD7JK8NWpGGQUV2Byl6aYoWO5sSa+3ozqVBWaaQYqNQHgYbYIvVs6QyJT4Ppj7VATACLSigxW2VVFmo7p54CyUjNbJIZYY/p4Mz0DZGJzStGnpUutnNv5OP7l4AKBAAGutgjjWa6sTr0/pZuNBaf/qeb7FsLXTzPAlXN92YjWCHmUixKxMqB+u2tTBLprB7s1wVepyTAAZCaATAg/Jwc8zCgHZMInt5ng9mVzHCwAysuBigog/ZInGLGQ3abQxgbvxwFisfJLIgEKRA5gYroDCiEgf/KlELCXQ03M4P6VcluJBKgQD1Le/0QKAM/v+J5BsydfXBUAhv5l6Nm35VyTAph8VP0WEwDt8Npr2Vi4sPpFMc8KCjUJIfXu0qVL+Pbbb9nrTZo0wTfffANLS0ujQ838/HxERUUBAExMTNCvXz+92w8YMICdpn769GlOeNhY92WsS5cusZd79uzJVn/yMTc3R69evXD8+HEwDIPTp09j6tSpVT6muuLiYhw8eBDnzp1DbGwsSkpKYGlpiebNm6Nnz56YNGkSmjZtynlMYGCg1n5mzJjBXt6xYwd69OihtY3q89GvXz/eJS7Z2dk4cOAArly5gri4OIhEItja2sLd3R2dO3fGiy++iO7du9fo+RJCCCGEPIuuJ+Vj5JZQFD2ZOn01qQAOlqaY2MlwFZ6hSs3UqlRqPumrGZZWhHIp/0T18PRivNim9nqr6+upWSKW4XKidrja1El3qFlbw4KyS8Ts8neV7s0c2eXgge6GQ0314ThutuZAltr+RWJ2KT/DMDirUalpZ2GKrk0dObe187TDtbl9cOBuBlq6WGFCBy/O/QwDlJYCIlHlv7q+dN2fkNkMTJYnIDUBpKbKf+WVhSIPeZ7nP0++KgVxrqUC+E3rV01TAO48e1Mqe/JVqfFMIP/nH3dMmZKJjh0b+kwaFoWahJAGY2VlhSlTpuD999+HjY0NQkNDjX7s/fv32Qbcfn5+sLfX3zxZvXdkTEwMysrKYG1t3aj3Zazo6Gj2smogkKFjHj9+HAAQERFRo1Dz0KFDWLFiBUpKuD9siUQi3Lt3D/fu3cOff/6JRYsW6a0gNUZ2djbu3bsHgL+f5r///oulS5dqtTIoLCxEYWEhYmNjsXv3bvTp0wdr166FrW3t/kWZEEIIIeRpdT4uF2P+uIlSCbeS8vP/HmJ8+yYwNdHfuY5v4Iy61BI5GIbRqtRs62Gr1Qfy4ZPrfP00VSINBHlVoVAwekNNADhxP0vrNrZS00071IzLqXmoKZUrsPJ8nNbtg9SWg/MFquqszISwNq+MfdxtucutK2QKlErksLUwRUyOCKkFYkBsBkhMAbEZ2jdxx8l/hSgqAvtVXAwUFdmhqMgOoUXAZva2yvtrPifJ4skXIfpRqEkIqXcODg6YPXs23njjDbi6uhp+AI/ExET2so+Pj8HtbW1t4eDggKKiIigUCiQnJ6N169aNel/GUj+mZkUkHy+vyr+mqnp/Vsf27dvx3XeV6y1cXFwwYMAA+Pj4IC8vD5cvX8bjx48hkUiwbNkymJqaYtKkSQCAhQsXAgB2797N9hJ99dVX2desWTPt5RoXL14EwzAwMzND7969OfeFh4djwYIFkMuVPygHBwfjhRdegKOjIwoKChAVFYVbt24BAK5cuYL58+dj8+bN1X7uhBBCCCGNkVzBYMPVRERlluC1jl4Y4u9qcIDLfw+yMH7HbVTItKsi4/PKsDsiDZM76/8Z01ClZnqpDAViBcpk3LSrQxN7lIhlSCmsDBVVA1au8PTTVIlIL9Z7vKrIKZVApjn5RsO/PFOrmz2p1HS2NoeLtRnyyip7OsYa6KkpVzA4E5uD3FIJujVzhL+rDed9up9Zgrf3hON2qnZ4O7hV5e9PfMu+GQWUwWSFOezNbHHyJJCfDxQUAIlXfMDEOinvL1du88JxIUpLgNwCG6D8Jc6+rgIY84Pep0IayBtvZMHTU2p4w2cchZqEkHrXtWtXdO3atUb7yMmp7PdibE9IDw8PFBUVsY9XhYeNdV/GUg3OAQBPT+3G3XzHU1E/36p4+PAhfvih8iec8ePH4/PPP+dUmUqlUnz//ffs8vqVK1di2LBhcHZ2xrRp0wAoe2SqQs1hw4ahS5cuAMBbrapaet61a1etKstffvmFDTQ///xzTJ48Wevxp0+fxscffwy5XI4LFy7g3r17aNeuXbWePyGEEEJIYzTnUBQ2X38MANgamowT07rpXaZ9MCoDr/91B1K57lBvxdlHeCPYByY8w1lUDPXUTC+VI6VEe+m5r4sN8suknFAzqaAMpWIZLifqrtSMyytFSYUMdpY1jzTS9Ew+V+GrRG2mNkTG380WeY8LKs8vtxQKBaM1bRsAGIbB1N3h+Ds8jb3N18UaIwLd8WJrd9zPKsGXp2JQIVUol12Xmyu/yixgI7fC9YNOOFWoDCrjU93ARPUAKswqv8SVy80zAbzI+Tu+9mfhEXvp+ZsjLRAAAlM5FAIFYPLkS8iwl9t4WcPRxhTm5oC5OSCFDBcSczjb2luZ4PXOXjAzFQACBr/dTIREoQAEjHJf6v8+uTzpBS/09nWCiQk4Xz9eiMP9rJInq9wZCATA7xM6wtrCRHmuAkChkMPS8gGaNavdYVlPKwo1yTOPkSuQHpKIopg8KKSGG1Mbv2OAYSr/mikQCBtTiw2jCM1M4BDoAq/BLSEwsKSksVFf7mxlZaVny0rqvSbVH99Y92UskajyL8HGLF1XP6/qHA8AtmzZwoaIAwYM4PRIVTEzM8OSJUtw7949hIWFoby8HPv37+f0zjSWRCLB9evX2eNpioiIAADY29vrXOY+bNgwjB49GocPH4aJiQkiIiIo1CSEEEJIgwl9XID3999FlkiM93s0x5dDA3hDMGNFpBWxgabKbzce6ww1d4enYcrucMgNVCnG5pRiT0Qa3nxB9yqkbAOhpkwBhGVrb+PnYg2RRIbTsZV/aGcY4GB0Btvbkw/DAHczitG7pbPe4xrD0NJzXdRDzQBXG9xQCzXLpQqkF1fAR20bmUwZRB4KzceuoxVAeZMnYaU54svNsaHcHBvKhUCZG1DurbxPrY8kAJQC+IwzNMYcgBueJba2gJU1gxxJGWAmA8zkyi/Tyq/3+vhg370UFErFgKkCMJXD08kU370cCCsr4EZaDtZci1Pe9+Sx615tgwmdPWFpCVhYKENKExPgrV2RnIBZ3aVvhsHVpjI2YxgTtPruPhLzK9tdlQBo/4oEs3u3RMijXGzYfI8TCwR52iE6k/s7l7xDOeZM6cK5jWEYfJoQB4FrZfWlv6sNpr3N/QzIZAwiIynQVKFQkzzz0kMSkXk+qaFPo9EqT1f+B9Z7mF8Dn0nVSCSVPxTpG4yjTn079cc31n0ZS/0xFhaGe8+ob1Od40mlUnYKOQB88sknOrcVCoWYOnUqysvL0bx5c7i5Ve+Hrhs3brC9MgcOHKh1v6mp8n9nIpEIMTExOqtdFyxYgNmzZ8PLy4t9DCGEEEJIfYvJFmHob9chEiv/SPy/M7Ho3syxRsNvlp2J1botVkdvx7jcUry9hz/QfLmdB47c4/aQXHH2ESZ18uat1mQYBjmlhkOWG5na2/i52GhNFQeA3zTCWT4R6UV1FmoKBYC+rNfF2gw2FqYQi4GsLMAyzwVMvBQotQDKLIBSC7x1XwimVHl/To5y+bey16QLgF41Pu/GQCgE7O0BB4fKL3t75ZedHWBjowwp+b747rOyUu5TKmdgsegc7zFdrM3w2/+aIXzNY9xRW54vsLPA228rh5GmXSyGIJ079KhtgAn4FrV52vP//mRpKoSLNXcKu0AgwBdDA/Du3gjO7f87HYspnZvi6D3t3qtLh/hj7qFoTrXvmdgcyOQKTq/a1KIKTgsDAAj2duA9N1KJfqMjz7zSlNrrt/KsehpfI6GwZpWl6j1rGuu+jCUUCtmqyfo4XkREBFvh6e3tbXC5/IgRIzBixIhqnZ+KKkRt2bIlb7/Nbt264fTp01AoFHjrrbfw5ptvYvDgwQgKCuK8J9UNVQkhhBBCaku5VI6JO++wgabKvw+zqx1qRqYX4VB0ptbtSQVl7HRrdadjcrSWnAsFwB8TO+H1YG+0/v48pxrtYbYI+yLTMSlYexJ6UYVMa1+WpkKtHp13c7X/mO7rYg0G2unh1aQCrds01VZfzVSNUJORCdHRyR1hsRVsQMn5t8wCJWIrOK5TDsZRavbkq9LFiFo5vbplIYGTMyASVEBqIgEspICFDDCXYnwXN/QIsOOElerhpYODMpisxq8TBpmZCOFgacpbrdvcSbkyzcnKjHN7YXllIJjD0y7AzYY/vGxix1+I4uNoxfu70uTOPvj5UjxnKn1OqQSrLsbj2D3u96CZiQAvtnbH8EA37AqrrAYtqpAhNLmQE8pH8Ay/6uilf+gsoVCTPAdsmtqjJE53k2mifI2eNurLrMVi48rvKyoqf2BRr1ZsrPsylrW1NduT05hjqm9TneOlp6ezlwMCAqr8+OpQhZp8VZoA8NFHH+HatWsQiUQoKSnBpk2bsGnTJjg4OKB79+7o1asX+vbta9TwJkIIIYSQuvTR4WjczdAO5LJKqr+klK9KE1Aug84WSeBhx/2ZLy5Pu4Jz62udMKWLciDQ4sGtMGPfXc79y8/G4rWOXlpL5HN4hgR1aeqIK4nc38E0CzItTIXwsreEuRFtsFyszVAqkXOC0qpOQJdKgcxMID2d+/XPVTcwSc5AqSUgsgQqzBFmYF/iJ1+NgdBUAYWFBLCUApaqf5WXh7R3wNgurnB2BpydgQJFKV7ff0N5v4UUAiFgaWeBwhIxZ8l0G3db7F3QEg3ZoczVxlxHqKlc0u+oEWpWyBSokMphaWbC2wPVzdZc6zYAaKKjUrOpA3/YaSIU4LuRbfDS1puc21eee6QV7g/wc4G9pRmGB7pzQk0AOBmTzQ01eUL6ThRqGkShJnnmeQ1uCQDUU5OHek/Np416eKgeCuqjvp29feX/IBrrvoylHmoac8zy8spm6HZ2dlU+Xl5eZdP26pxvVcXExCAtTflDAF8/TQBo1aoV/vzzTyxduhQPHjxgby8qKsLp06dx+vRpAECbNm0wbtw4TJo0Cebm/D/YEEIIIYTUlV1hqdgSmsx7X3VDzcj0IhyM0q7SVEnML9MKNRN5Qs3xHSqHXE7p3BTLzzxCcmHlz433s0Q4EJWBCR29OI/j66fZvZmTVqipydfZGkKhAG625nC2NkN+me5Jzv18XZBaVIFbKYXsbVGZJZDKFRBCiJwc7bBS8ys7W7X8W5OL3vOsT0JTBcxsZXBxYRDY3Bwe7gK4ugJubuD86+ICNqjcdCsRC47d593fhFc7YEaPymnp2SWmEISUcbbJ5PncfTUsUO9gqPrgYm2O+LwyrdtVU+cdNEJNQFmt6WlmglyeoF1zKblKE3vdlZq6vNjaHQP8XHAhvvL3Ir5hW6PbKte7DwvQXi126mE2lo2oXPHGV6lJy88No1CTPPMEJkJ4D/Or9Z6RDMOwPf4AZbBUnaW8pHrUJ3hnZWn3LuGjvp36MuTGui9jeXh4ICMjg92XoeE3NT2eTKa7aXtdUFVp2tvbo3Pnzjq3a9euHQ4dOoTbt2/j1KlTuHz5MpKSkjjbPHjwACtWrMDff/+NHTt2cN4vQgghhJC69DC7BB/sv6vz/myeIMYYuqo0VRLzy9CjuRPntoR8bljkbmsOW4vKeMDcVIjFg1th5oEorWONb9+EU63J108zwM3GYFDp66IsBhAIBGjjbsu75JxRACi1RNNyLxQ9loIJc1ZWU5ZYoaLECj5/AnnZQDU7MdU5SysFvJoI4ebG4G5RLspNygFrCWAlAazEmDPUG2/1cWfDSjs7IQSCqv3hPdDNVud9bjbcfbnYmEMg0BXuKgV52uFVtYC7obja8L8OquXnjpY8oWaFFJ72llrLzx0sTWFuyl92qqtS08dR93wEgUCAlaPaoMe6Kzq3AYDRbZW/a7jbWaCzjwOnB+idtCLkiMRws1UeX7NS08POAp46AldSiUJNQshTyd/fn72squLTRyQSsdWMJiYmaN68eaPfl7H8/f3Z6d/GHFN9m5Ytq16lq16dWVxc9/1Yz58/DwDo06ePweE+AoEAXbt2RdeuXQEAmZmZCA0NxfXr13HhwgUUFCh/WE5MTMRnn32Gbdu21e3JE0IIIYQAKJPI8Nqfd1Aq0Z2+ZRmYIM7HUJUmACRpBJgMwyBBowLO18VG63Fvd22KFWcfcXpORmeW4FB0BsZ3qKzW5KvUdLM1h5+LDfLLCnWeV0snG2RkAKmpgEWiD5hwR6DYig0tUWIFiCwARoi1OvaRrXPvdchUBg9PwLepKTw9AQ8P5dee2ATElOYB1mLARgxYiyG1kGPxqx0glikw91A0Z2Gfn4s1fvq4I8xMdB7JKIHuekJNjSXXJkIBXKzNeZdnq3w9PFCrxUBD0B1qKisonaz5KjWVxRc5Gp9JVXDIR2dPTQfdlZoA0K2ZEyZ0aIJ9dzN47+/QxB7NnStX8Q0PdOeEmgyjHBj0xgs+KCyXcnrYAkAwLT03CoWahJCnUmBgIIRCIRQKBWJjY1FWVsZZ+q0pPDycvezv789ZetxY92Us9UE9ERERmDx5st7tVQEoAAQFBVX5eOqDeuLi4gxuL5VKsWDBAnh5eaF58+aYNGmS0ccqKChAZGQkAN1Lz/Xx9PTEyy+/jJdffhlSqRTr1q3Db7/9BgC4du0asrKyqFqTEEIIIXXuoyP3EJ1ZonebwnIpxDI5LEyNT7kMVWkC0ApLckQSrXDV11n751ULUxN8Nsgfcw5xqzU3XE3ihJp8PTXdbS3QzNoWN3PlyqCy2AootgZKKgPLX9daYT27AKiFwedRpwQKZRBpW4EmTYAx3ZxwMTMND0V5bECp+ldgLseRuX3QXaP6NSjSEq/t5AbMCgaYse8urHmSy2+GB8KsFppWtnCygpmJgHf5M18w6GajO9Ts5GWPse14RoQ3ABcDoSZfpWZBmfJ5aT4/zYpVdfaWprAyE6Jcym362lTP8nOVFSPb4FB0JmQKnqXn7bi/Y4xo7YZvQx5xbjsVoww1I9N5hgTR0nOjNGDbV0IIqT5bW1u2Gk8qleLy5ct6t1dV+wFAv379nop9GWvgwIFs64Nr167pHRYkFotx7dq1Gh2zY8eObMVkSkoKEhIS9G4fGRmJkydP4o8//sCuXbuqdKyLFy9CoVBAKBTqPNdLly5hxowZGDJkCL788kud+zIzM8Mnn3zC6SNqbIsAQgghhJDqup1SiK08fTTtLbVrjPiqHnW5m16sVaVpYSrU6oWoWampufQcAFq68P8R/t1uTeGlsQT2TmoRFAoGBQVARARwPcQCTFhLOFxslQABAABJREFUMBfagjnSBczOvhj1ghP2zwgGdgwADnUHQjoAt1oBD32ANBeg2BpyWd1XAwoEyirK4GBg1CjgvfeAr74CNm8Gjh0DDpwpAz44DXx8AoL3z0Lw5hVM+DINmzYBEz4ogaDTYwj8MyHwLoDAsQwCc2UYrOrrqO7Vjl7YOL49+IocyzRmO7RvYodJnbQnyVeHqYkQfjyVtgD/xG9dA3MAZdDaGKo0AX2h5pPl51ba3z+FFTJI5QoUlHPbHuiq+gSUK734+mr66BgUpK6Vqw1m9OBfaTemLTcc7tHMCQ4a3/P/PczGoagM/PtAu+aYhgQZh0JNQshTa/To0ezlDRs2QCLh/yEwNTUV+/fvB6D8n9a4ceOemn0Zw9vbGy+88AIAID8/Hzt27NC57Y4dO9gl2C+88AJ8fX2rfDwbGxsMGTKEvb5hwwa92//555/sZfXHAcol9ypynmZIqtC3Y8eOcHJy0rofAExNTXHx4kWkpKTgzJkzepfEl5WVcQYlUZUmIYQQ0vgwDIPEvDLEZIsa+lRqxdF72svDB/i5YHbvFlq3V2VYEF+V5owezbWmNicVlHOuJ/AMCdKs1GQYICcHiIowQcs8PzC3fMGEBIE51BXFv/WGo5NySE1wMHBiZXPgfBBwxw+IawJkO6KwoB6CMQspTNxKMHw4g3feAZYuBTZsAA4dAkJDgZQUQCxWTjwPCwOOHwd++w34+mtgxgzgpZcAx+ZlENiIIVBLRlRhVocm/KGSmYkAHjqWM7/fswX+mdLF4ET3ZSNa12p4GOimHWoKBYATzzAdvqATALr4OOClto3nZ2O+INLG3ATOT5ada04/B5TVznk8VaiueoJcAGhip/2aGFOpCQBfDg2ArQW3EtfzSQ9NdaYmQgzx584zyC2VYPyO2/jxQrzWfmlIkHEo1CSEPLVefvll+PkpB0DFxMRg3rx5KC3l/pCWkpKC9957j61eHDNmDG8fyca6L2PNmzePrdZcs2YNDh8+rLXN4cOHsWbNGvb6hx9+WO3jzZw5E2Zmyh8kjh8/jh9//BFSKfcvogzDYMOGDTh16hQAZS/ON998k7ONrW1lDyDVsCMVqVSKq1evAlBWo+rSo0cPdkl8fn4+PvnkE+Tna0/blEgk+Pzzz9lBRy+88AKFmoQQQkgjo1AwmHkgCn7fhaDND+cx5e8wMPqmmlSBTK7Aw+wSHI7OwPfn4vDu3gj0Xn8FnVZfxEeHo1EhrZtpM6HJ2gNwtk/qpFUBCRgfaibkleJAFPdnJwtTIRYNbIUWGgHl44IyyNWWx6oqNRmJCZgcOzCPPHH7sDPmzAFGjgTatgVsbQF3d6BbN+DKOl/gUjsgoiWQ4Ank2qOkuI5DSzMZ4FwCNM/BqAkV+OorYMsWoP+nscDb54G5/0Iw5yQUUy7g9z0V+OMPYPlyYNYsYOxY5Xn7+ABm2rkXR1pxudZt3k9CzfY6Qs2mjlZ6A8lx7Zvgv/e6w86Cv9tf92aO7ACZ2hLAMyzIxdqc9zx1BXzfDA9sVINv+ULN5k5W7DnqCjU1hwQBuoNclXae3Pe6ib0FG54a4m5ngZUj23Ju+2JoAO9rP7y1cUNabcxN0EpH9S3hop6ahJCnlrm5OVasWIGpU6dCLBbjzJkziIiIwPDhw+Hq6oqEhAScOXOGrcxr2rQpli5d+lTtCwAGDRrEDvd55ZVXsHLlSq1tunTpgrfeegs7d+6EXC7HokWLsGfPHvTo0QMAEBoairCwMHb7qVOnomfPnoZeYp1at26NpUuX4uuvvwYAbNmyBf/++y8GDhwIDw8PFBYW4sKFC+zSdKFQiGXLlsHV1ZWzHx8fH/by2rVrkZ6eDjMzM4wcORJ5eXkoKVH2ntLXT1MoFOKrr77Ce++9B4VCgStXrmDw4MEYOHAgmjZtCmtra6Snp+PSpUtIT08HAFhbW2PJkiXVfv6EEEIIqRu7I9Lw243H7PW/wtIwup0nJnT00vMow47fz8IH++8ivbiC9/67GcWwNjfBdyPb1Og4mhQKBqHJhZzbWrnaoJmTNW+1X5aRE9CP39duoTOjR3N4OVgqQ834POXkcJElJEU2WLNRisJMcyQkAGdueYNJaw6UVR7/16NVelo1YyqHqUMF+neygY8P0LSp8uv7W1FIkOQBduWAhQwCgTKoPbB8BFT5YM45AS79y63gjUgrMrqqTlNqofbnQRVqtnK1gaWpEBUybq/FZkYca2ArV1yY1Qsjt4RqBdUrXmxT6+EhX6ipa8k1X3/JHs2dMKK1e62eU025WvOFmpWBPV8VakG5lLdfqL6emgAwp3cL7ItMR0G5FAIB8PmQgCq9R7N6t4CXgwUuxuehn68LXtbRl3R0W0/YWdxHiVjGe79KRy/7RtMGoLGjUJMQ8lQLDg7G5s2bMX/+fOTl5SEnJwd//fWX1nZt2rTBxo0b4eCgu4y/se7LWEuXLoWZmRm2b98OhUKB8PBwziAiQLnM/Z133sHChQtrfLzXX38d9vb2+Prrr1FcXIz09HTenpn29vZYvnw5hg8frnXf+PHjsWvXLkgkEhQVFWHLli0AADs7O2RnK3vLeHt7IzAwUO+59OnTB6tWrcKXX34JkUiEsrIynDhxgndbb29vrFy5Eu3bt6/qUyaEEEJIHSqTyLD4xAOt29dfSaxRqJlbKsabu8IMBgkn7mfVeqj5MFuE4grucXs0cwQAePAseTW2UvNUTA4AZbUlCm2AImtY2LbC7DPA5Zv+YOJbKYfzyJXLYhf8o/7ouq0AM7GWomNrMzRrxuBYaiLkdmWAfRlgX64MLC2l6O3njLOzenMed8FagsQI7jCl7s0cOYOTOnlp/8wckV6M0dUcbpNWxBdqKkNLE6EA7TztOBOrgcpBNYYEezvgyuzeeHnbTdzPUgaxn/TzxSB/VwOPrLpAd+33VFfvzCBP7QrUxlalCfCHsuq9THVWavL0pdXXUxMAgprYI/rTAbickI9WrtZ4wcexyuc7NqgJxgY10buNh50Ftk3qhHlH7iG5ULtKWOX14Nrpt/o8oFCTEPLU69mzJ06dOoXdu3cjJCQESUlJEIlEsLOzQ9u2bTFy5EiMHTuWHW7zNO7LGAKBAIsWLcJLL72EvXv3IjQ0FNnZ2ZDL5fDw8ECXLl3w+uuvo0OHDrVyPAAYNWoU+vbti7179+LSpUuIj49HcXExLC0t4efnh/79+2PSpElwdnbmfby/vz/++usvbNiwAZGRkRCJRLCxsYFIJMKFCxcAAP379zf6XLp3746DBw/iypUrSEhIQFFREYRCIVxcXBAYGIhBgwZhzJgxsLDQvwSFEEIIIfVv9cUEpPKETFcS8xGWWlitoAEAtoQmGww0ASCzCv0sjXWDZ+m5amo2b6jJU6mZnw88egTExSn/jYlV4OTFADAFnYDyyn38yFZb1vGyVesKOHnKMLSLLZo3Z7A6PBoKteBySJAzTs7oAUCAtj88xkOe3qi+PEtrW7vbad3W19eFc51veEpEmvbkaGPxVe56q/Ukbe9prxVqVqUq1M/VBpHzB+BifB5cbMx09umsqQBX7UpNXUuuX2rrjp7NnXD9sfKz+V6PZhhSB0FrTQW628LbwZITPA8PrFy+zRdqFpVLkVOq/T2kbziSShN7S7zWqWYV4cYY174JxrbzRHJhOWJzRIjJKUVsjgixOSJUSBUY2cYDH/RsUefn8aygUJMQ0mh0794dMTEx1XqsnZ0dZsyYgRkzZtT4PBrbvs6dO1el7du1a4f//e9/1T5eVdnb2+O9997De++9V63Hd+zYEZs3b0ZZWeUkTmtra3z00UdV3perq2utvXeEEEIIqT/pRRX4/lyczvt/uZKEPyZ1qvJ+ZXIFNl5LMmrbvDIJZHIFTA0MeakKvn6aPVShptryc6bcDCi0wc2TNvg6vDLAfPQIKNDahRAA/wDFmhIIAC8voEUL5Vfz5sp/F166jUKzYsCuHAIzBbw97LD30wEoKJNi1ZdJUK/xUw+Q/FyseUNNP55p692eVLCq0wzbPO0t4WFnwalojUjXPSTSEM1KTWdrM1iZVVaGtvfSDlr5Jp/rYyIU1El1pjo3W3P0auGEa0mVH5YX2/AvJ7c2N8W5mT0R+rgQNhYmeMHbodFVaQLK1+3P14MxbW8EskRivN+zBUarTRS3NBXC3EQIibyyPUBhha7l542roEEoFKCFszVaOFtjmP4FacQACjUJIYQQQgghhDSoz/97iDI9g3r+Dk/DylFt4M5T3ajPkXuZSNHom9jJyx7fjmyDLaGPcTCqcjI5wwA5pRI04RngU12hjwsr919uBosSO0Sds8exBODRI1PgfB8wBTZAhTIIvP7kq06ZyQDHUsChDHAoQ79gS3w2zhu+vsoQ05Ln6e+UiHElsXLwZVxeKeQKBtk8S33d1MJavopMAPDjuX1YgBsG+rngfHweAODldh7op1GpCSjfP9XyewBIzC9DYbmUt3LPkNQi7hJgb43J8UP9tQe78J1TQxMIBNjyWkfMOhCFxPwyjO/QBG+94KNzewtTE/Tza3zPQ9PAVq5IWDqE9z6BQAAnazNOwF1Qxr/83JhKTfJ0olCTEEIIIYQQQkiDCUstxI47KXq3kcgV+D30MZYOCajSvtdfSdS67dOBrTCitTsuJeRp3ZdVIq5RqFlSAsTGAjExQNR9Be4e9FOGloXK4FIM4J2dqq0FqIuKS4GAAWNXzoaWcChDmwAhtr0fgERZNl4/GAr1wryXR7fFiwa6/bRytcGVxHz2ulimQEphOf9SXxtupSYfX57bhUIBTr/fE+fjcmEiFGCAnwtvBWEnbwdOqAkAd9OL0aO5E26mFOBuegncbc3xSvsmMNEzbEUmV2j1MPXWeO+DmtjjfyMCsexMLBhG2XuSbyhPY9Da3Q7nZvZq6NOoV46Wppz3sLBCxlupaainJnl6UahJCCGEEEIIIaRBMAyDeUfvgWG4t/do7oQbj7nrrjddf4yFA1vBzMjl4ZHpRbiUkM+5rYm9Bca3Vw7z4OtpmW3E9HG5HHj8WBlcan6lp6tvKQSgu1quRlTVlo5l8GmmwJLxykpLZbWlAO1/uoFHuZWVleVOVujePQC3r5ZCMyfkq5rUFOCmvc2j3FLeXqXuapWauvat63YToQBDArSrI9Xx9dV8958IZBRXoFxauRT5tY5e2DO5s879ZJaIodD43Hk5aC8t/3xIAD7p6wsToQCWakvTScPTrM5VDgrifg9bmgphY07v27OKQk1CCCGEEEIIIQ3iUHSmVvBoZSbEP5M74/W/7uCqWo/AtKIKHIrKNHqYx/orSVq3vd+jBcxNlaGoevimoj6op6CAP7iMiwPEtT9TSIutLdCqFeDvX/nvA0kmfoy4C1iL2XBy1outMXMw97EtnK04oWZKYTmkcgUS8sqgia9qUhNfdWJsjgimPJWQ6kt9+fbtYGkKZ+uqLxVX4ZuAzve8/olMx8KBfjoHTPFNPvdx4K/StbGg6KQx4g01NSo13WzNG2XPUFI76DuTEEIIIYQQQkitUygYCPUs/xXL5Fh4/L7W7QsGtIKPoxXm9vHF1aQ7nPvWX0kwKtTMK5Xg77BUzm1mJgLM6NGMve5hawFGLgCKrIF8W6DAFr88cMBvxcrwMidHc6+1z8xSDqmdCHAqVX45luLQx23Qo5MFPDygVVX56o4UCGy4ieqI1toDYVo4c8NEBaMMNhPySrW2belsRKjpql1ZGZtTyrusVz0sbulsDYEAnEpc5W3VD5laudrA2sxEbw9WlT0R6bpDTQOTz0nj56QRasoUDB4XcPukNrYhQaR2UahJCCGEEEIIQUGZBFI5U+VBLIRffG4pTsfmoJWrDYb4uz5XlUKHozPw3j+RKCiXYm6flvhpTDve57/zTqpWhZ2XvSUWDvADALzS3hPeDpacirqrSQW4k1qIzjqCKpUtocmokFUuRWYkJhji7ovThy3x4AHw4AEQGe0MJI4EFJXL2W9W5wkb8mSpuJV7OT552ZNTfbkuLBYrNaa+N2/fEp6e2t+HUrkCZx/lcm7zsLNAxybay7FbOGkHlUn55UjI577e7rbmsDWiCtHP1UYrnHyUIwID7QpO9Z6almYm6N7UETeSC9nb+vs6GzyePiZCAbo2dcRFnp6omv6JSMfKkW14w/XUwnKt2yjUfLo48AyH0myJQP00n20UavJYu3Ytfv31V3h7e+PcuXO1uu+oqCi8+uqrVX7crl270KVLF73bxMfHY8+ePQgNDUVqaipkMhnc3d0REBCA0aNHY+jQoTA1pbecEEIIIYRwfRvyCF+efAgFA8zu3QLrX2nf0Kf0VItML0KfX66iVKKsJPtiaAC+GR7YwGdVP8okMry7NxKF5VIAwNrLiRji74ZRbT20tj0bm6t124oXW7NLfc1MhJjZqwU+/+8hZ5tfriRi26Rg3uPn5QFR0Qr8sFYKJrWdsgIzzw4oscK/AP7lbG1cb05jmJgo+1kGBiq/XHzEWHLjtrL68slS8VHtm2DFVE/O4zx5/oigObxG5cbjAhRXcAObYQFuvIEdX/VlYn6ZVoisazq5JiszEzR1sEKyWhD4KLeUN1TSXNb/w6jWeHX7TWSXK9DW2Qyf9Gtp1DH1WTDAD1eS8iFXa4oZ4GaDCqmCc47JheW4kVyAXi20g1S+5ecUaj5djJl4T5PPn22UcGm4e/cufv/99zrb/4MHD+pkv+vXr8emTZsgk3H/J5eSkoKUlBSEhIQgKCgIP/74I3x9fevkHAghhBBCyNMnuaAMX5x8yFZgbbiahDeCvdGTJwQgxvnlahIbaALAynOPMLdPC7g+B8sgI9KL2UBT5b+H2byh5v2sEs51RyszTO7MHazzXvdmWHYmFmK1qsu/w9LxcXBb5KRY4P59sJWX9++rlowLAbSprafE4epaGVyqf/n6AuZq2cme8FwIUrm9Qrs1c9TaH9+wIl2h5smYbK3bhgfyD9XhCzVvphRwPpcA4GvE0nOVADcbTmCYmF+mNSnewlQIWwvuUJYezZ1wcLQHSqUKOJgL4VWD6fIqo9p64NZHfXE5MR9uNubo7+eCJvaW2BqajPf2RXK23RORzhtqpvMsP/fhGRREGi9HS8OhJlVqPtso1FSTkpKCWbNmQSqVGt64mtRDzebNm6Np06ZGPc7BQbsZssry5cuxc+dO9rqpqSkCAwNhZWWF+Ph4FBQom2tHR0dj8uTJ+Oeff+Dt7V3NZ0AIIYQQQp4lN5MLtSZPX0zIo1CzBiLTijjXpXIGeyPSMbt3zSvUGrt0nuo3zfASAGRyBWJyRJzb2nnYcqoO5XKgOMsCfRRtcPZWBZBnC+TbQZJni04/Vn/QjCHm5srl4ZrBZUAA4Gzkt8WN5AKt23o0d9K6zcPAsCJ1px5ym3wKBMBQHZPCNXtqAsC5R9qVsS2NGBKk4u9my1n+rmCAO6mFnG3cdQxlsTARwMKkdidQd/J2QCdv7u/Jr7T3xKyDdyGVV/5HbV9kOn4e0w4mGhWtmpWaFqbCGg0wIvXP0cpwpEWh5rONQs0nYmNjMX36dOTUcTdo9VBz5syZeOWVV2q0v5MnT3ICzeHDh+PLL7+Eq6srAEAqleLgwYP47rvvUF5ejtzcXMydOxcHDhx4rvr6EEIIIYQQfrkak2IBIC5Xe5IwMQ7DMHioEdYBwM7bqc9FqJnBU2V4L1M71EzIL2ODJ4YBUGQNq2RvrFgB3LunrLqMiQEqKgCgblaaNWkClFgXQmRbCDiJAOdSuDeVIH11X9Q0f7up1kMSUPaB7OyjXahibKVmVokYYRpheRcfR7jxhKKAMlzUHKYTzzMh3M/I5eeAslJTU7lUwbne0ENZnK3NMTzAHccfZLG3ZZWIcTE+D4P8XTnbpmqEmt4OlvQ78lPGycpwYKnre4Q8GyjUBHDkyBF89dVXKC/XbhRcmxiGQUxMDHu9devWNdqfVCrF999/z14fOHAg1qxZA6GwsjeMmZkZJk6cCG9vb7z//vuQyWS4d+8ejh8/jtGjR9fo+IQQQggh5OmXwxNqxudqT0gmxkkvroBIrD2V+WZKIR5ml6C1u10DnFX94VvSm1MqQY5IDFcbC6SkKEPLPWcVYE52Uva7zLMDZCY4A+BMrZ8RA0dPKXq9YI62bYE2bSq/HB2BEb89xOnYysKWAqEAAgEDoPrhllgmR1gqN4Ds2MQe1ubav37zhZrZPJWaZ2K1i290LT0HAIFAgBbOVrifpR2wq6vK8nN/ngnomtwbQf/CicFenFATAPZEpHFCTYZhkFbE/f3fuxaWxZP6ZUylphtVaj7TnutQMysrCz/99BMOHz5cL8d7/PgxysqUfx0zMzODn59fjfZ35swZpKenA1AuOf/yyy85gaa6Pn36YOLEidi1axcAYNu2bRRqEkIIIYQQ3krN+DwKNasrJlv3a/fn7VR8O7Juej02FhlFFcrKyzILIPdJYJlrhwEhQqTEAyVs0ab9k6/aYWoKNPdVIJ7JApxLABcR4FwCc7cy3P96IHgGhAPQDuFkCgYF5VK41CAIiUgrhkTOrWDszrP0HACcrMxgZiLgLJfmq9Q8xdNPc0Rrd73n0cLJ2nCoWYXl5wFu2pPONTWGqrgxbT1haSpEhVof1gN3M/DLK+1hbqr8fbmwXKpVZUpDgp4+NCiIPLeh5saNG/Hbb7+xISMA+Pr6YtiwYdi0aVOdHFN96XnLli1hbl6zb65//62c3derVy94eXnp3V491Lx37x5SUlKM7ulJCCGEEEKeTXyhZmpRBcqlcliZ1W4PvPp0JjYH34U8glAgwMBWLpjQ0cuoUKamHmbrDpH+upOK5SNa806rflrl5SkrL6Ojlf8ePeMHpLQDKri/69yvrQOaypVLxV2UweX3k5tidD8btGoFzDkShYQbyZzN3+7RTGuYjTp3Hcu/axJq8vfTdOTdViAQwN3WgtPfUbOnpkLB4FQMt1LT0coM3Zry71OFr6+mOnOTqg3taeFkBVOhADIFo3ObxhAg2Vma4qW2Hth/N4O9raBcijOxOezAKv7J5zQk6GljTKhJPTWfbc9tqLl161ZOoDlhwgR89tlnOH36dJ0d8+HDh+zlmi49ZxgGoaGh7PXevXsbfExgYCDc3NzYvqHnzp3D1KlTa3QehBBCCCHk6ZajYyhJQl4Z2nk+nUul04rK8dLWULb67VxcLr44GYP2TezwagcvvNqhCdp41M1z4+unqZJaVIELPL39ngbFxcrQUj3AjI4GMjM1t6yd6kt7e7DLxVX/XshPxKrwaAjUFqfdty/HwjbBSCsqx45bqZx9CAXAwgGt9B5H16Cetqj+5yP0sXao2b0Zf6Wm6hw4oaZGpWZYWpHWHx+G+LvC1IR/lZ6KoVCzpbNVlQJ2UxMh/FysEZOjuxq5oXtqqkzs5MUJNQFgb0RaZajJ0yaBKjWfPk7GVGo2ks8kqRvPbaipEhQUhEWLFqFbt251fiz1Ss2ahpppaWkoLi5mrwcFBRn1uMDAQDbUjIqKqtE5EEIIIYSQpx9fpSYAxOWWPrWh5oG7GZzlvCpRGSWIyojBV6di8OYL3vh9QkdY1nI1aky29lAcdTvvpDSqUJNhGFx/EsL1bO4EuVyAR4+Au3eVX1FRyn8fP66jEzCVAa4lcGsmxqLXPBEUBLRrB3h7K6d7q+te6oVf7t2HWG1Z8Z6IdHz/Ulv8dDFBa8n3pE7e8DPQB9LYnpZVEaoxJMjJykxvP0rNc8gtlUCuYNhp3fz9NPUvPQeUoaU+vlUYEqQS4GarN9RsDD01AWBkGw/YWZiiRCxjbzt8L5OtQE8tpFDzWeBgqT/UNBEKjAo+ydPruQ01u3XrhnHjxmHw4MH1NuFMPdQMDAzEw4cPceDAAYSGhiI1NRUymQyurq7o2LEjXnzxRQwdOlTnuSUlJXGuN2vWzKhz8PHxYS8nJyfr2ZIQQgghhDwP+AYFAcpQ82n1QM8ScJVdYWkY7O+Gt7vWbjsmfcvPAWD/k95+Nhb8v4rJ5AqcisnBzjupeJgtQpemjvh+VJsaLYfWJSuLwfhVsbh6Swbk2sNRZIHyTGuIxXXw+5GJAh2DBAgKEqBJSwlWRUcArsWAfTkEAuClrk0xf6Kn3l242ljg9WBvbL+Vwt4mkSvwbcgjbA3V/t3ms0H6qzQBwJ2vUpOnp6WxskrESMznThnv0dxJ7++cmtWiCkYZbKrCzgiNqecAMDTAcDDe0mClpvH9NFVaGQiJG0NPTQCwMjPB2CBP7LxTWb0rEsvx74MsjO/gpWP5OYWaTxtzUyGszUxQJtUezgYALtZmz1S7D6LtuQ01f/3113o9Xn5+PrKzK5s7b9myBdevX9faLi0tDWlpafj3338RFBSEn3/+mTewVFVbAoBQKISrq3F/7XVzq5yQp76P+iaTyQxvpEEul4NhlH9xFwgEYBiGvd4QNI/dkOdCyNOOvp8IqR3P6/eS6nmq/pXJZM/Nc68phmH0VGqKqvUzW2PwMEt/taRKSGw23gpuwnufXC7Xe51PqUSGFJ4KMO42cuy/m4Y3g705tz/IFmHH7VT8HZ6OTLVQ7W5GMcAosGl8e4PH16WiAnjwAIiKEjz5AqKjBcjKEgAIZLcrrPYR1AgUgFMp4FqiDC1dRMp/Hctw4ouB8LCzwIkHuVhdzp1O3drN2qjP28weTTmhJgCsv5Kotd3otu5G7dPFSrtSN6O4otqf/WuJuVq3dfWx17s/VxvtSrK0wlL23KIzuZ9nZ2szNLE1M3iOPvb6g/CWTpZVfp6tXPRXf7pYmWjtszrfS7Xh1fYenFATAHaHp+Hltu5ILSzT2t7TiNeUND6OVqZ6Qk3zZ+49bajvp8bquQ0165t6lSYANtC0srJC8+bNYW9vj+zsbE4FZnR0NCZMmIBt27ahbdu2nMcXFVX+tc7Gxkbn1HNNtraVzdHV91GfFAoFIiMjq/14U1NTmJqaoqysDCYmjad5fXl5eUOfAiHPDPp+IqR21Pf3koIBCsUKCAA4WAhRX8URcrkcCoUCMpkMMpkM0dHR9XPgZ0CpVMFZyqsuIikLkZFP5y+D0emFnOuOFkJ42Zjgfr6Uc/u91Fyjfy415nMVo7F/APB3NMWjQu7ruOliDIKEucql3xlibL1Xgru52o9V2RWWhukt5TAz0f9NxTBAZqY54uKs8OiR8isuzgrJyZaQy2v3G1IgYODtLYafXwX8/Mrh61sOuXMJvopJhcCU/zN17Fokunpa4Nx97dDZsjQHkZGGw2ghgGA3c4Tn8IfxKuO8jfudI69MOxB4+DgDkZHV++/nschirdvcZPl6z0VWrF3deyPyAZhsS0jlDGI1+rQ2txHg7t27Bs+FYRjYmAlQKuX/I4+gOAuRPOerj7BIfxVrTnI8IvP1xwz19d9oNzkDB3MBiiSVz/9gVCa8vjmFchn3NREAyEmMQQFV9T11LAW6Qz0rSGqUPTwNnvefeSjUrCeaoaatrS3mzZuHsWPHwsamsoQ/NTUV69atw5EjRwAAhYWFmDVrFg4dOgQnp8rm0mJx5f9MLC2NL5NXn7gukej/QYAQQgghxFgMgMRiGSRP+hgWihVo4WCKhv71UK5gcCVdWTnX28sSpvQLK0ehmD98AoCUEuMDzaMJZdhxvwQWJgLM7WSPnk0abhlniUSBvAru8+rkZo4f+zpjwolsJBVXPq/00toNbZOKtYPJca1ssO1eCbLLK8/pZqYY51LKsTe2FGHZhn8mF8sZPCyQor1r5c/yIpEQ8fHK0FIVYsbFWUEkqv1f8dzdJWjVqhx+fqqvCrRsWQ5LS24wFJJcDkG87s9UQrEUXT0tkFCs/bq3tDf+vCcG2OgNNbt6mCPI1bjl+k6W2sUh+eLqVT4xDIOLqdqVuu1c9J+LM885qD7Dj0tk0GwP6+tg3GslEAjgZWOiFaqreNtW/bPSzE7/Y/ieS0MxMxFgYFMrHI7nVmXmlmt/Rp0shfT/h6eUnZnuz5yTReP5PJK6QaFmPVGvwHRycsLu3bvRsmVLre18fHzwww8/oFmzZli/fj0AICMjA5s2bcLixYvZ7aTSyh+YjK3SBJRVjirPWhk2IYQQQhpOiUTBBpoAUCFnIJIq9P6yUdcUDINZ5/PY0CjYzRybBrtAWE/91J8G+kLNzDI5pHLGYHVgfJEUy0MLoXr3F18twNExHrA3b5j3PoknMGv+JIhpYmPCuT+nTPm5NTfwHI0+Nk8Q7OtgihEtrPHng8pqOwbAoivaE7L5MAyAYivs/88O18qcERtrjbg4K6Sl1UHvQlMZrD1FGNZFilatytkvR0fjQr7cCv3bJRQpX5/EIu7rZGkigKeN8Suw+vtYwt1aiOwy/s/vu+2MH3BlKhRoVfPlV+j+vtDnbq4UiRqfv9ZOZrAz8L3gbKn93FXnkFDE95kyfvCJ1//ZO+/wNur7j79O05bkveM4O3H2TggrYe/dlr2hpbRQyqZ0wq8USik0QAu0hRbKCrOsUCBAAtlk753Yjh3vqT3ufn8oknW60/C2k3s9jx5bd6e7r6STdPe+9+fztiqdwu3zOl71lpeqI0Uv4FYJ4jLrBVIN/UtEOmOIUtRUI1+lDYHGwCDNFPv7O1MTNY94NFGzl/j973/PvffeS0VFBVarVVXQjOSnP/0pS5cuZf369QAsWLCAu+++O+y0jCy7FsXkf3QjhUyjsW9SwHQ6HZMmdbwnUCAQYO/evUDwqqPFYunT8nNJkmRlfampqb0WOqWhcaShfZ40NLqHvvwsNXhdgFzQ8El6LJb4/de6g0AggE6nw2g0YjQaGTlyJHq9ns931bGu9lB4ufV1XhqsgzmtHyVP9zVVO2oBZQ9ACLYTSC8ZzZi8+MEgHy3ajUR7r3aHT6LGXMiJk9V7VfY0G9YcJPo5zZ04gilTipm8fysrDrUHykhA5pDRqsnUgUBAVtY3ceLEhMeezVvXA/JS4XPmTGG208sr25cmHLvk1yE0pDFaKmLXNj3UZkBdOniNfJLw0ckjCBIlQ0XKDbWQ1xq8He57mWIx8tZvTkUQshKvKIq3Du0EYpcz1/jNTJ48mbJ3v5BNH1eYxrSpUzu0rZ+17OVX/9ulmH7MkExuPH1Wh777ir5soaW2PRjLHjAwZcqUDo0H4Nm3lSXht84dzZQpQ+M+TlfQBl/L9w9DRg5Tpozl/ZpdgFwAP3NGKVNG5CQ1pinl21lSeUAxPd9m4tiZ05JaRzRjlixl0yFlq4DCtBTV160zn6XuYtIkif9WruHzXerfcyHOGF/MlCnjemVMGt1LyfaNUFWlOq90SBFTpozp5RH1LH35eeoJNm/e3CFNKxpN1OxFMjIyyMjISGpZQRC45pprwqKmy+Vi7dq1HHvssUDwJCVEZCl6IiJLzs3mvkumi3SMJosgCLKDk+j7fU1/G4+GxkBG+zxpaHQPvflZcniVDq02b6BXth/aRuivwWBAr9ezolzZP3x9VRtnjYufsHw00eiK76wra3Yzvij+8eumamU/wE3Vdi6f3jenGrvqla6sCUXpGAwGRuQoxcuDrV7GFSY+Rtfr9QmPYXdHbTsz1cigTAvFWVZmDM5g7cH2fVJymoKCZW061GWgb8hAqrchigJKqa7zZGXB5MkwaVLw7+TJMGGCwEe7q7nqtXWK5ZtcPpo9YqdSrGva4pfSb6uxc8juU3xfTChI6/D5wY+OHcbvF+3BHdUT9sFTR3fYvFGYlsKOCFGzxu5Br9d36Pur1e3j7U3VsmkpBh1XzyhJ+NyKM5Qp5PUOHwaDge0R4woxuTgz6ddrRIy08hE51k6dkwGU5tlURc08mympdSbzWepO3r1uFm9sqGRFWROHWtxUtXqobHHR4AxWP84dkc2Dp43p1TFpdB/Z1tjtHQrSU4/497W3P0/9jaP3mQ8Apk+fLrt/4MCBsKgZKY46HA4kSUrqR9dubz/ozMzM7J6BamhoaGhoaBzViJKkmjzq9AYIiBL6PupTtraiWTFtR61SgDuaqYuRfB5iT0Piss31lUrxeIPKtN5iZ53yPS7NC4ZlDstWikf7GxM/x2QQRYmdUfvX2HwbkiSwezdMbC1lzdLWwyJmOtjlLuau5tcaDDB2bLtwGRIxi4tB7TRhdXns8vftNfZOiZqH2uInvze5fHy1p0ExfVxB8uXiIXKtZq6fVcLzK8rC06YVp3Pe+IIOr6sgTf5c3X4RuydAWkryp8tvbqhSfA9+f3IRWZbEvT1zrCZ0QtAdHaKmLWhc2VojFw/zbSZyrcm/N2r7PMCIGNOTYXSeTXV6fif2md7AajZw8zFDufkYuWPW4w/gD0hYzZosMpDJTI19ESMvjuCpcWSgfXr7MTk58pKCyLTygoL2H+tAIEBTUxPZ2dkJ11lX114alJurlV5paGhoaPQ9Pp+vz1qiaHQPLl8g2PdPBbvXT0ZK77+/kiSx5qBSWNtWkzhd+WiiPpGoWa90iUXS4PBS1qRMiV5f1bFE5e5ke41cWByUnkLG4ZPe4SpCzoFuEjXLm124XALUZ4bLxvc480j/BTgcAAWHb12nsBCmTGkXMCdPhtJS6Egh1ncqon+IHXV25o5UljcfaHTyzb4GJhelM7VY6W6tSpCMDfDORmWZ6PhOiJoAT5w/nuo2D5/uqGVyUTpvXTOjU+5wNQG3xu7pkKj54qpyxbRoES0Wep1Ans0cFjJD23f7AorP4MTC9KTHBOr7PMCInM6LmrFaUuTZBpaAZDbo0fTMgU9mnGOMXE3UPOLRPsL9mOh08siU9KFD5T+QFRUVSYmaBw8eDP+fqK+nhkZPUFpa2uV1XHzxxTz22GPh+9dccw2rV68G4JVXXuGYY47p8jY0OofX6+WDDz7g888/Z/v27TQ3N5OSksKIESOYO3cul112GXl5eQnXs3fvXs4999wObfudd97pVL/eo5H33nsvHD4X/XkCeOCBB3j//fcBePTRR7nkkkt6bCyffvop//nPf3j99dcV8w4ePMipp54KQHFxMV999VWPjUOja6iVnoewe/pG1CxrcqkKdjtq7YiihE5LuQWgzhFfhNqbQNTcUKXuyKxp81Dd6qYwvXdT0D3+APuiRMqx+e2usmHZyh6vnRE1JQmqq2HjRtiwIXhbttoEB84GqX3fqou5hiQRRMi2Q34r5LUwb46Rt+4eQ35+/IeJosQ/VpWx5mALZ4/N55JJ8v6mvoDIOhXRP8R2FfF/2f5GTnthBR6/iE6Af10+lWtmlMiWSeTUBPhit/JVGV+g7vxLhMVk4L3rZ3XZEV6gIsbVtHkYFaN0O5qNVS0KkXh0rpUTRyQ+P2sfQ5So2eYNfl9FXTAaX9gxAXhYVixRM7nnpsaYGE7Nzrh7NY5svI07qV90C/7mvVhGXUT23MfRGbq313Zcp+YAE9o1Oo4mavYClZWVvP766zQ2NtLQ0MBdd93F2LFjEz6uoqJCdr+oqP1gpLi4mMzMTJqbmwHYvn17Us2sd+zYEf4/mTFoaGhoJMuWLVu44447ZBdPIOjC27hxIxs3buSf//wnd955J9ddd13cdW3durUnh6rRD3A4HNx2220sX76c4uLivh6ORhdxxhU1u1pU2znWxHChObwBKppdDO1C6eWRREPC8vP4oub6ytiOzPWVLZzdy6Lm3nongSgVqDRC1MyxmLCZ9bL98oCK0zQSUYSKCjM7dghs2tQuYtbWRi/ZtVOrtDSYOjXowAz+lTj7/S9p8LQLhbssZvLyRgPxBbxf/W8Hj321Bwg6CF+/ajqXT2v/rt1S3aboRRlJdBk9wCOLduE5/BhRgkcW7ZaJmm5fgMbDPQpDjM23KVo++KJSs80GXUw3YbJ0tcVFdPk5BJ2SyfJPFZfmTccM6ZBrtCDNBO25ZtTaPWypVorLEzooAKelGMixGMP9I0N0qfw8htirlfpqRNPw1W14qpYD0LbpBUw5E0if8uNu3UZmauzv3rwOtGrQGJhoomYvIEkS//znP8P3Z8+enZSg+O2334b/FwRB0WPzmGOO4bPPPgNg+fLlXH755XHXt2PHDurr21Pf5syZk9T4NTS6k/vuu6/Dj/n2229ZsWJF+P6gQYO6c0ga3cD69eu57rrrwsFlgiBw/PHHM2XKFHQ6HRs2bGDp0qW4XC7+8Ic/UFlZyYMPPhhzfZGi5iWXXMKoUaMSjiHywo9G/6epqYnly5f39TA0ugmH1x9znt3rR5QkdL0c/qVWeh5ie61dEzUPU2ePL2rub3TGdcGp9dMMz6tq5exx3VNuHUIUJf6z9iBba9q4YEIBJwyXl0hvr1WKQOMiRE1BEBiebWFzRMhJZE9Nnw+2bYP162HNGh3Llo1h1y4LTmf3JssOGRIULkO3KVNg2DDQ6SKXEpi7JZP3t7SHz1S3edhT74jZ0xCgssXFE4v3yqY9/MUuLps6KCyyxeunCcreswFRYumBRtm0XXUO2tz+cIn2oValCHjiiGz2NTjxBmILqKV5Ngx6Xcz5vUGBisOwti05UdPlC/DaukrZNINO4NoZg7s0Br8o8e1+Zf/RjpafQ7AEvcEp/6x2pfw8x2oi22JUiNiaU1MjEtHvwn1wiWyaq+yzbhc1s1Jji+la+fmRjyZq9gKDBw+muLiYysrgj917773HDTfcgF4f++DIbrfz6quvhu+fcMIJivLyM844Iyxqfv3119TU1Mh6bUbzxhtvhP8fOXJkt5QBa2h0lJtuuqlDy69evZq//OUv4fvTp0/n1ltv7eZRaXQFu93O7bffHhY0CwoKeOaZZxTu8Y0bN/LTn/6Uuro6Xn75ZSZOnMgFF1ygus5IUfOWW25h2LBhPTZ+DSWPPfaYoiS9Lxg8eDA7d+7s62FoJCAgirh8sQULSQo6OW293Lhs7cHmmPO21bRx1tgE9btHCYl6avoCEhXNrphhI/FEzZ4IC3rw0x08/nXQgfjE4r189qM5nD6mva2JWhBUZPk5BMtxNx9qQ/LpoD6d6g0Z3HizyKYNOjZvhvYOUDqgc70eQxiNEhMmCGH35dSpwf6XSXSNAuDEETkyURPg2/2NcUXNZ5cdwB/lVt1Ra2fToVamDAr2wfyuIv57U9bswun1YzEFP7fba9pUXde76u3MGJwJqJeel2SmUppvlYnI0XS29Lw7UQu4Sdap+d7mQzS75OLe+eMLOtx6IV/FLfq1SqjShA6Wn0NQCI280JOVamRQF13UY/JsrCyTi+P5WqmvRgQBR41ymku5T3eVWE7N9BQDJkPfXjDR6Hm0d7iX+P73vx/+f+/evTz//PMxl/X5fDzwwAPU1AS/BARB4Mc/Vl7NOOOMM8g/3FDH6/XywAMP4PerOyW+/fZb3n777fD9a665plPPQ0OjNykvL+f2228P95fNz8/n6aef1gJFepDS0lJKS0s55ZRTkn7Mq6++Gg4hs1gs/Otf/1JthzFlyhSef/758AWdxx9/HLdbeQIkiiLbtm0DID09XdFDWENDo38Rr59miDZPbCdnTyCKUszyc4BtNVoCeohE6ecQOyzI4fGrJo2HiCd4dgZRlHh+xQHZtJDAGUJN1BxXYKO5GRYvhqeegp2vjEH69zx45hx4/UT4cjL/elHH2rWRgmbHEVJ8UFIPM/bCWesZ9rPV2O0C69fDv/8NP/85nHRS8oImoNqT8dt9sUUBu8fPCxFp4JG8uaE9oOe7ivhOTUkKOjFDrCpvVl0usky9qkX5mz4oPSWhs7AzyefdjWr5eZJOTbWAoJuOGdLxMagIq9GfveKMlLj9A2Pxk+OHkWpsP/W/56SRXe4rPEalBF0r9dWIJOBUipqiuydETfXPhNYO4ehAEzW7gVNOOSWhEHDDDTfIeoY9/fTT/P73v6epSX5AsX37dm644Qa++OKL8LSrr76amTNnKtZpMpm46667wveXL1/OD3/4Q1kvTr/fz1tvvcXtt99OIBA86RgzZgw/+MEPOvdkNTR6CYfDwa233hruG2s0GnnmmWeSCpnR6F1CjnEIfteNHDky5rITJ07kzDPPBKCuro5FixYplikrK8PpDJYCTpgwoVMpphoaGr1HMqKmvZdFzf2NTlrcsbe5Q6VE+WjEFxAVDjO1MvNYoubGQ60xU+8B9jY4aXX7Yi8QwX+3HOKCF1fzo7c3Ut2qHjZT3uyiNep9/XZfI86I9gc7au1IDhPS/jykVaPQfzKTudNTyMqCk0+Gu+6CnUsyoSFdFujTUUaOhO99Dx5+GD78EDbv8iH95H8Il65AOGkbwoSDTJ0Kpi6eU08pSictyuX87f7GGEvDv76rULynIRasr0SSJOweP1tVejVGEykQr4pRrh65zCEVEbAozZzQidkfnJpqomZtEk7N3XV2Fu+VizSDM1I4s7TjTnC1MUQzoZMC8MySTDbefRLPXjyJz340h1+cOrpT64nkmKFZsvspBl3MVHSNo5OAo1o5zRX7+6uzxBQ1tXYIRwVa+XkvkZqaygsvvMDVV18dFmn+85//8OabbzJmzBhsNhuHDh2ivFx+pe+8884LJ9SqcfHFF7N+/XoWLFgABIXNM844g9LSUmw2G3v37qWxsf2LIzMzk/nz52MwaG+9Rv/mF7/4BXv2tLsvfv3rXzN16tSkH//555/zwQcfsGnTJpqamsjMzGTYsGGcc845XHzxxaSmJk7d27JlC59++ilr166lsrKSlpYWBEEgLS2N4cOHM2fOHC699NKYQuszzzzDs88+C7Qnc2/cuJG3336b1atXU1tbi16vZ/DgwcydO5err746bguJELW1tbz22mssWbKEsrIyAoEAhYWFnHjiiVx77bUMHTqU3/zmN+HvhZ5MhPf5fGzfvj18/+yzz074mOOPP56FCxcCsGTJEs477zzZ/Mj1TZw4sZtGGpvI9+m1115j5syZLFmyhDfeeIMtW7bQ3NxMeno6EyZM4MILL+Scc85Bp1O/JhiZKj5//nxOPvlknnnmGT744ANaW1spKChg1qxZ3HHHHWGnfYjq6mreeustli5dSkVFBW1tbaSnpzN8+PBwcnxmZmZSz2nx4sW89957rF+/nqamJtLT0xk3bhyXXXYZZ5xxRsLHdyT9fPv27bz77rusWrWKgwcP4vP5yMjIYOzYsZx55plcdNFFmCLO6iNfoxCVlZXhliiRKecdST+32+28//77LF68mJ07d9Lc3ExqaiqFhYXMnj2biy66iEmTJsV8fPR7d9ZZZ7Fnzx4WLFjAsmXLqK6uRpIkCgsLOf7447nyyisZMWJEvJfxqEEtJEivE2RhLXZvAEmSeu0ixboEDsFtNfZeHU9/RS0kaEpRuuL1ixUWlIwTc2NVKyeOyIm7zJK99Xzv5TVhgXR9ZQur7zhR8f5EuzAlCTxNZh77ux1qM1m/XmLt4tlgby+r9QP7Eo4yNnq9xPDhLsaOdXLyyVnMmqVnyhRIjzIfriqzE707leZ33YFo0Os4flgW/9vZnhi+r8HJwWYXgzPlxzIBUWL+t7Gf7YEmF6vLm/H4RUWi9qySTEV69/aI13t1DKdmpJuzSkWMHpSRgidOP02A8f3AqZlq1JNmNshc5bUJ+s0CvPRdhWLaDbOHdCq4KBlRs6PJ55GMyrUmneaeDNfOGMw/VpaxoSoYFvbL00aT0QkXqcaRS8CpSFND9DQhSSKC0H3+uowUzal5NKMpW73I6NGjeeedd7j33ntZv349EBQE1FJ+U1JS+PGPf8yPfvSjuL03AR566CGysrJ48cUX8fl8iKIoEwVCjBw5kvnz52snYRr9nn/+858y99+ll17KZZddltRjW1pauPbaa1m1apVsel1dHXV1dXz33Xe89tpr/O1vf4tZ1tza2sr9998fU0Bxu93U1dWxevVq/v73v/P73/+e888/P+64JEni0Ucf5eWXX0aKsrXs2LGDHTt28J///IfHHnuMs846K+Z6vvrqK+6+++6wkzFEWVkZZWVlvP322/z617+OO5bupLm5WfZ8kikVLywsDP+/ZcsWxXw1UbOiooJNmzbR2NiI1Wpl2LBhTJkyJeH3Y2f43e9+J+tBDNDQ0MA333zDN998w6uvvspzzz1HVlZWjDW0c/fdd8uc92VlZdTV1fGrX/1KttwLL7zAX//613Bf0sjtNjQ0sGbNGv7+97/zq1/9iosvvjjm9lwuF3fddZdi321oaGDp0qUsXbqUU089lblz5yYceyIcDge/+93v+PDDDxXz6uvrw9t78cUXefbZZxk9uuuukFgsXLiQhx56KHzRMITP56O1tZVdu3bx6quvct555/Hwww9jtSY+qXvxxRd56qmn8Pnkjqd9+/axb98+3njjDe6//36uvfba7nwq3YIoQUCSMHaxtDBZop2aRr1AutlIg7NdEAiIEi5fINyfr6dJJGo2u3zUtHk63PPuSEOtn+YxQ7MUr9++BqdiOYiffN6+TEtCUfP/vtgtc3yuPdjCzjo7YyNEQVGEb9Z4kLYPgtqM9pvbxP+FlxKAzr+nZnMwsGfaNJg+HSZN8nPIvp4sG6SbdEyZkkksX4BaGX5pN7nWThiRIxM1IejWvCIizRzgg63VMd+rEG9uqKQ4Q3lh95oZgxWiZqi03O7xs6Va/b2WOTVjlJ9bjLF/qw06oVuFtq6QbzPJRM1E5eduX4B/rZYbUgQBbphVEuMR8VErP49mYhdEze7Gajaw+o4TWVneRK7VJPu8amgABJxKpyaSiOhpRp/SgT4cCdDrBNJTDAonf44mah4VaKJmL1NSUsKbb77JsmXL+Pjjj9mwYQO1tbV4PB6ys7MpKSlh3rx5nH/++Ukn+QqCwJ133skFF1zAO++8w9KlS6mursblcpGRkcG4ceM466yzuOCCC2RuGQ2N/sjKlSt58sknw/enTp3aIZHugQcewOFwhNO3J06ciNFoZOPGjXz77bdIksSePXv4+c9/zltvvaXoz+nz+bjuuuvCPR1NJhMnnngiY8aMwWKx0NbWxpYtW1i5ciWiKOJ2u3nggQcYO3ZsXNHmySefDCe4T5s2jdmzZ2M2m9m7dy+LFi3C4/Hgcrm45557KC0tZfjw4Yp1LFy4kHvuuSfcSqKgoIDTTz+d3NxcKisr+eKLL2hububXv/51ryWBd6a/aaRwV1VVpZgfKWo2NDRw6aWXsnHjRsVyWVlZ3HzzzVx33XXd1mf1mWeeYeXKlUCwVce8efNISUlh8+bNfPPNN4iiyPr167niiit46623SI+26kQQcg1Gc8opp8icwpGuWoDx48czZ84cMjMzaWhoYNmyZezZswe73c4DDzxAU1MTN954o2K9Xq+Xa6+9lk2bNgHtCfRTp05FFEXWrl3LqlWr+PLLL1m7dm1nXyIg+B7eeOONbNiwITxtwoQJzJkzB6vVyv79+/n888/xeDwcOHCAa665hv/+978UFhYyadIk7rvvPlpbW8P9pTMyMrjlllsASEvr2EnRG2+8we9+97vw/aysLE4++WSGDBmCw+FgzZo14QuJH3/8MXv37uXVV1/FZotd7vjmm2+GP69jx47luOOOIz09nfLycj7//HPsdjt+v59HHnmEMWPGMGfOnA6NuSdpdHo50OxDksBiEBiTImHQ95y46fWLilRjq8mAzawnWltp8/SeqLkhTvJ5iG019qNe1FTrpzki20K+zSRzqcUqP19f2ZxwGxsSCJ+bqlr5ak+9bJoUEPjoaxcrnGmsWxdMIt+wARyOEqBzgpECkw/yWyG/BfJbOONEI5/cNzEsWvoCIhf/aw0Ld9Rh1sM9MzJQaRcdJpmAos4yN0ZfzWhR88klexXLRfP2xkMcO1R5Ue7ccQX89rOdNEWUroee09qDzQpnZ4hddXZEUUKnExRBQQadQI7FRLbFRIpBh9uvdGyOybNi7OPk8xAFaWb2RnxxJQoKemXtQYWb8/TReTFDtZLZfiI6W37eUxj0Ok4YHv+ihcbRi1pQEIDobuxWURMgM8WoEDU1p+bRgSZqRnHJJZfELbNTI145XCyOP/54jj/++A4/Lh4jR47k/vvv5/777+/W9Q50fL5gv6NPPgFn/IvXHUYU24WJGNWo/RqLBc49F37zG+gP2TvV1dXcddddYdEuLy+Pp59+ukNivMPhYNiwYcyfP5+xY8fK5i1evJif/OQnBAIBtm3bxuLFizn99NNly7zyyithQbOwsJCXX35ZNXl7+/bt3HjjjTQ2NuL3+1mwYIHCfRfJihUryMrK4qmnnuLYY4+Vzdu3bx/XX389NTU1+Hw+XnnlFX7729/KlmlsbOShhx4Kvzbf+973+M1vfkNKSvsJ+b333sv999/P119/rSoW9gQZGRmkpqbicrmAYBDauHHj4j4msq2A2+2mra0tLDBJkiRLu3744YdjrqepqYk//elPLFmyhGeffZaMjIyuPBUgKKoLgsC9997LjTfeKCt9XLduXbjP6/79+3nqqacU71MkixcvRqfTcccdd/CDH/wAg8HAypUrZWXnb7/9dljQTEtL47HHHuO0006TrUeSJN555x0eeughfD4fTzzxBFOmTGHGjBmy5V588cWwoJmRkcGzzz7L7NmzZcssXbqUO+64Q+Fo7Cjz588PC5oWi4VHH31U4TCuqqrihhtu4MCBAzQ1NfGHP/yBp59+mtGjRzN69GgOHjwYFjVtNhs33XRTh8exYcMG2T5yySWX8Mtf/lIhWC5ZsoR77rmH1tZWtm/fzoMPPsjTTz8dc70rVqzAbDbz2GOPcc4558jm3Xnnndx0003s2rULgJdeeqnfiJpev0hZkyvseHP6JRqcXgrSek64c/qUpecWk17RAxCCbq9kTtq7iiTBhkOJHYTba9s4ZXRuj4+nP1OnUl6bZzMxMscqE2v2NjjCwlUIr19kS1RfxlklmWytbpPtF+ur4gvMTy7ej1STAeFbJtSncd9fus+Jn5fX7r6cPj34/+x/f0lzRL/PRkuGzIX5ypqDLNwRdEd6AvDUulbuONtHbpr66dNOFVGztJtEzVklmZgNOjwRouC3++R96VaWNbH8gLzvZVG6mXH5aTLRuKrVzQdb5e6pPKuJYdmpjCuwydaxs85OQJRihgQBuP0i5c0uhmVbqGqRi4BF6ebwPjM23xYuU45kXD9y90U7JVvdfty+ACkqTtOAKPHnxUoR+SfHD+v09vOsJgSBuH1q+0OpvoZGsqg6NQn21TRmdu+2MlONlDe7ZNO0nppHB5qoqXHE89BD8MgjPbFm4fBtYHPYwMT//V/85Xoar9fLz372Mxoags3WjUYj8+fPT6rHZCSpqan885//pKRE6eQ46aSTOP/88/nvf/8LwOrVqxWi5rvvvhv+/5e//KWqoAkwbtw4brzxRp544gkANm/enHBsf/zjHxWCJsCIESP42c9+xi9/+Usg2Bs3mueeey4sRJ1wwgk88sgjil5jGRkZPPPMM1x++eWqZd0hvvnmG3bv3h13rHa7nRdffFF13ujRo8Ply4IgMGvWLL755hsAFixYIHPNRSOKoqJc2e12h0WosrIyHI52R5DRaOTKK6/koosuYujQoUiSxI4dO1iwYEF4PatXr+b222/npZde6pZ+wbfddpuqwDZ9+nSeffZZrrnmGiRJ4s033+TGG29U3ddC3Hrrrfz4xz8O3w+FJEFwn58/f374/vz581UvdgmCwA9+8APa2tr44x//SCAQYP78+bzyyivhZex2Oy+88EL4/p/+9CeFoAnBfefJJ5/kRz/6UZxXID4Oh4NXX301fF9N0AQYNGgQf/vb3zjvvPMQRZEvvviC2tpaRS/RrvDnP/8ZUQye5J9++uk8+uijqsvNmzeP5557jmuvvZZAIMBnn33Ghg0b4vbpfeCBBxSCJkB+fj4PPvgg119/PUDYtR2rz2pvcqjNrXBTqfW77E4cXmUYj9Wkx2zQYdQL+AKRfTX9vdLH0u0PKJ63Wr9ALQFdvfw812piVK6VFWXt4pbLJ3KozS0rW95W0yZ7fwFmDM7AoBNkj91W04bXL2Iy6PB6YcsWWLMG1q6FVd+JbNw0EQLd2EokzRV2X1LQwle/Gc9JU22KfpfDc1JZX9kuah5olF/5/t8OeS84p19iZXkz501Q78kd7dTMtwUdit2B2aDnmCGZfBMhZG6taaPB4Q2XVz6l4tK87fjhDEpPUThh/VFfFLOHZCIIAqX5clHT4xcpa3KyOkZIUIgdtXaGZVsUTs2iiAsqEwrT1EXNfhASFCI/RljQkCyl8/KDrdXsjnIwj8u3cd64jh23RmLQ68ixmFQ/lwBDs1JJS9FO3zUGDmo9NaFnEtCzVPq5ak7NowPtW1HjiCeqtaKGCoerbfuU3//+97IS4wcffFDhREuGs88+O67IdNxxx4VFzWg3YyAQ4Oabb6ayspK6urpwQEksIp2gbW3xU0SHDh3KvHnzYs6PdHrV1soPACRJ4tNPPw3fv/vuu2OKAkajkXvvvZfrrrsu5rYWLlwYDoGJRUtLC48//rjqvIsvvljWk/Hyyy+XiZqzZ89WFYMAnnjiCZlTE8DvbxdFIkvPrVYr//rXv5gSVe83c+ZMZs6cyXHHHccDDzwAwKpVq1iwYAFXXXVV3OeViLy8vHAZtBqzZs1i7ty5LFmyBFEUWbRoETfccIPqsoIgcPXVV8dc16JFi6irC7qApk2bltC9f+211/Lcc8/R2trKqlWrqK6uDvcn/fbbb8Nu2cmTJ8fd1+bNm8esWbP47rvv4m4vFkuWLAm3EBg/fnzcHrAjR47knHPOoaamhqFDh9LW1tZtouahQ4dYvXo1ADqdLrwvxGLmzJmcc845fPTRR0BwX40lalosFr7//e/HXNeMGTMwGo34fD48Hg/Nzc1kZ3dvGVVH8fgDqifC0eJFd6OWfG416hEEAZvJICtl9QUkPH5R1fXUnagJuZdPG8S6yhZZeNGOmoGdgF7d6sZk0HVJOKtzKMtr86xmRuYoexzuqXfIRE21vqXTijMQhKCoKQUEqE/HW5PBFdf7KNthZvNm8Mp20y5eDMiyhwXMk4414M9tZllNe7mjXidw/KSZCkETYHi2RdYTtMHpo83tJy3FgCRJMmE2xNqDLZw3QdnexR8QFWFK3VV6HuLEETkyURNg6f5GLpxYyP4GJ+9uPiSbZzHqueXYoegFgVve0SnaREQyqyRYjj42Tznm7TX2uE5NCDo6TxqZQ6NT3oN4UEa7qBnLYdifnIf5Kq6umjavQtSUJInHv9qjWPaek0bK3MydocBmjilq9rfScw2NRMQqPw/0gKiZmaqUtnI1UfOoQBM1NY54jjkGFi3q61H0b/q6cvK9996T9RT83ve+x5VXXtmpdU2fPj3u/Mik8khHIIBer0+6/YTX6+XAgQPh+5HCnBrRwlw0OTnt/YjcbrnTYcuWLWHxq7i4mPHjx8dd15w5c8jOzqaxsTHuct3Fqaeeysknn8zXX3+NKIrcddddrFy5kksvvZRRo0YRCATYunUrL730El9//TXZ2dm43e5w2FFke4HTTjuNiRMn0tDQQFZWVtznevHFF7NmzRreeecdIFh+3VVR8+yzz07Yn/P0009nyZIlQND1GkvUHD58eFyhKzLMasKECQnHZjAYmDx5MkuXLgVgzZo14eT4b7/9NrzcSSedlHBdZ5xxRqdFzchtnXLKKQmX//Of/9yp7SQi1PMSgkLu4MGDEz7mvPPOC4ua0WFikYwbNy5u2wuTyURaWlr4MxYd8NQXHGr1qJYs+npQ1JQkSSFqphh0GA73x7OZ5aImQJvH3+OipprQevywbEblWNgZkdS8TaVceCAgSRI3LtjAy2sOYtQLPHrOOO6aN7JT64rt1FQ60/Y2OIncTGTyueTXQUMa+xfnsXllNtKKEqhPBzG4L7zXqdG1YzDAsFF+9uirZH0wBVP7e73FbMTglIukI3MsmAzqwulQFffdgSYnk4rSqWh2qSZ5r4nRq3V/o1PhWh2jIhB2hROHK39PXlt3kD31Dj7YWq1waV8/qyQseJ89No8PtqqLCxB0agKMUxHNvtxTT6VKAFAkO2rtHGpVfg8Wpcudmmr0J1FTLahHra/mt/saWR3l/B6UnsKV04sVy3Z4DGlmtsa44BLrNdTQ6I9IkhSz/Fx0df85SqaaU9OmiZpHA5qoqXHE89vfBpMIu7+npoQYcQQZvDI7sMrRI3tq9hXbtm2TlStPnjw5bvlyIiLFQTUi07JD/SnjYbfb2bdvHxUVFVRUVFBWVsauXbvYuXOnLBU5OtE8mtzc+H3bIoNjQuW0IcrKysL/jxkzJuGYIegiVStjB3jsscd47LHHVOeVlpYCQfG0I/2Cn3jiCW699VZWr16NJEksWLBAJlSHyMzM5IUXXpAF3UT2BTUajZSUlFBaWppUieo111wTFjUrKyvZu3cvI0d27uQe2tPW4xEZCBWvd2k8xzDIe4u++uqrspLuZIjcdmVlZfj/UaNGJXxsdL/ZjnDoULsbKNn9sScoL29PnE32+UT2e62qqiIQCMi+E0Ik+rxC/M9sb+P2BWRJ45H4Az0nanr8osz5CMF+miFsZuVra/cGyFNM7V6i+3wa9QJTBqUzriBNJmrWtHlodHq7rUS4t/jfjlpeXnMQCLpff7FwO5dPLZa54pJFTdTMs5lU06hDYUEeD2zeDJ8uSEXaNjnYB/OwgKneAKKD6AOQ1woFLfzmqgLOPzmViRNhweZD3LBAGRoXoiHKJQjBcuBYDFcJc9nfGBQ1o3tThlh7sEW1hUJPhgSFOHZoNnqdIPvMvbPpEO9sOqRYVhDg53NHhO9fNrU4rqg5qyQTUB/z6+sOJhzbzlq7ovQcgj01Q6i5DHVCMCiov1CQpvwuUEtA/9NipUvzjhOHYzZ0/YJNvL7DmqipMZCQvG1IfpfqvJ4oP1dzWg86ysMAjxY0UVPjiMdoDPaL7O6ekZIETmf7F7XFYlEtb9KITXNzM7fddlvY5ZSTk8MzzzzToWCgaKzWrh8cu91u3nzzTd5//3127twZU7DU6/VJCaMQ3D86S8ilCSQdhpOVpUw27UlsNhsvvfQSL730Ei+++CItLXI3i8lk4qyzzuL+++8nOzsbuz14AmixWLBarQlF4ViUlpbKgorKy8u7JGomI2ZFvgeR70008ZLRgS6H9TQ1tZ90h3rRJrNd6Nr+0dFt9RSRr1+yzydyOUmSaGlpUXXTdvTz2tn9t7uI5dIE8Itij/WxVC09j0g3txj1ChHG7onvau8qkiQpys8nFaZjNugZV2Djv1HthrfX2DlexQHXn/lqj/xk0BeQWHagkR9MGdThdUWLmmaDDqtJHxY1Jb8O6tOgJpMFa3L57NdBQTN4TS/xBZSERAiYFDQH/+a0IeiD+8zY04zMPJzwvaOu487a0jghNLFETUC19Bygus1DVau8tyj0jqiZlmJg2qD0mG7RSC6aUCgTps8fX4DFqFcN9hqZYwn35RyebcGkl5eqR6d7A4owm511dqpU3JyRgsLwbAupRh0uX/u6R+ZYe9y53RHUBMXaKKfmlkOtfLJd3iYoPcXAj+YM7ZYx5MdxlmmipsZAIuCMfSEl4O5+p+alUwfxp4jwrhOGZzM4U70HssaRhSZqamho9AmiKHL33XeHHWYGg4H58+eHewT2FRUVFdx8882y0nII9kcsLCxk5MiRTJgwIdzvsyuBK8kS6QhNVkTtC5HFaDRyyy23cMMNN7Bu3TrKy8vx+/0UFRUxbdo0MjMzgWBCemh8XX2/BUEgLS0tLGqGxNLOoubaiybSlRdPgE8UWhTZsuCss85i8uTJSYywnWRK1mPRlQsHkftjX9KZfTzaUdnTgTW9QTyXJoAoBW/6JJ9qQJSos3sISJBrNcZ1HqmLmu3LB/tq6mlxt+/rHr8YDo3pCXwBCTFq35hRErwQoZayvL22bcCJmttUSlO3Vrfxg/hdTlSJTD+X/DrS7bm88ILA2rUmdB/PJVCbFi4h39fpEQcxmyWmTBGYMQPSh9j547a1MgEzWkwD2FLdCgRFTbV08UTEc2oOUxE1Q2FBK2OImgDfVTQrRU0VwbW7RU0I9tVMJGoadAIPnjZaNs1qNnD+hAIWbFBWF8we0n6xR68TGJNnVaTaRyIIMHd4Dkv2tYvrh1o9qq9BpKip0wmcO65A5iw9e1z3Bcd1B6o9NaNEzT+rBDLdMmcoGSqlr50hllNTEOLvzxoa/Y14oqbo6n6n5ozBmXz+ozn8c1U5+WlmfndG31UTafQumqipoaHRJ8yfPz/cGxCCScOzZs3qwxEFxZqf/OQnYUEzOzub6667jmOPPZbRo0cr3Fuhvoo9TaQzsLVVmRyqRrLL9QQmk4k5c+bIwo8i2bRpU/j/WGXDHo8Hg8GQVJp5pJDZVedgMqJopEMwskdrR4l8X6dOnRqzN2cy5OXlhRPtk3GAdmX/6Mz+2BOERHKQu1bjEbmcTqfDZhv4J4hqff+i8Ysiel1iwV6SJHbV2cNiZZ3dw8TCtHCPzGiik88FIejOjMRmNshETQimoGcbeqbk26MShjJzcCYA41VSlgdiArqaqKk2LR5ud9BxWbY4H6lsGNRkQn0ataKOW8NLJVcZoIbOKCLmtMgcmOsem8H4QcH34Acv70Col39/3HvySB5ZtFs2bWuEuBbthixMM5OVamR7HLEznrA4LEvp4DnQ6MTlC8j6hUbzXUUzF02UhwVFC65mg061Z2dXuWn2EOZ/u0/RPxOC7R5mDs7k3pNGMuPwPh/JZVMHqYqaodLzEGPzbXFFzbF5NmYPyZSJmgCL9yhFisjyc4A/njuemjYP6ypbOHlkLr88dbTiMX2JWk/N2ojy84pmF6+tq5TNN+oF7jhxRPTDunUMACOyLVhM2qm7xsAh4FDvpwkQ8CR33NZRThuTx2ljerrJjUZ/Q/tm1NDQ6HW+/PJLXnjhhfD9iy++mGuuuaYPRxTkyy+/ZNeuXUCw/PStt96K2xcxsgy3J52RkT0SQ8JVIkLPozeQJInm5mYaGhooKCggLS1+edSXX34Z/n/mzJmyeVdffTUHDhzA6XTy17/+ldNOOy3uuioqKsKBQyDvd9kZ9uzZk3CbO3bsCP8/dGjny82GDBnCxo3B/nDJvl8tLS3YbDaFozQyJGfHjh2cffbZcdezd6/SaZIsJSUlbNiwAQi+XmeeeWbc5b/99ls++eQTBg8ezJw5cxTveWcZNmxY+P/I9yQeW7duDf9fVFSEwWCg1u7B7RNxqZRl9ndc3oAibVgNX0DCnMQRn8MbkLkv/aJEk8tHnspJtihJilLWVKNekfxrU9mw3RNAxSTXLaglPEf2C4wum90eJQZ+ubuOz3bWMXNwJj+YUtTv3Lx2j5+yJmWPsq1xRKiQgLlmDaxdG7xt2QJBs/i4mI9LGkOwhPyiU1M5/+QUZsyARQ0HuHfhVtliW2pbGT/IRlmjk/e3yPtA2sx67pk3kpdWl8sCZ0LPyxcQwz09Q4zNtzF5UHqnRU2r2UCe1URdRAn+gSYXaw82448TsLW2Qi54+gOi4vUfnWtF38UUbDXGF6ax6JZjeX5FGaIkMbEwncmD0phclM6wLEvc5O2zSvNJTzHQGnWRIRQSFCKRw/SYIVmUqiyz/ICynDS6n93wHAtLfnp83PX3JekpBswGHR5/+/dIZE/Nv3yzT7FvXD1jcKf62cYillNTKz0/Ogg4aqhffAfe2g2kDJ5Hzrwn0JkG5nsfcNbGnNcTTk2No5eeqf3R0NDQiEFZWRn3339/WAScMGECDz30UB+PKsi6devC/x9//PEJg14i05d7Mihk0qRJ4V6hVVVVCQWcLVu2UFsb+0Ciu3nkkUeYM2cO5557Lh9++GHcZaurq8MOV71erxAQbTZbWKRMJqgocnsjRoxg0KCO95SLZPHixQmX+eKLL8L/n3rqqZ3e1jHHHBP+f8mSJQkTtL1eL+eeey6TJ0/mlFNOiZlC/vnnnyfcdldcxqHWCxBMf0/Ep59+yvvvv88zzzwjc+l2VSyKFEc3bdrEwYOJwyw+/fTT8P8zZsygotlFeZOLWruHapUwiP6OmkvToCJqxBNoIlHrt6cmEgK4fAFFH8/I0vPwNJV+ebHWGQtRlGhweqm1e/AleKzXL59vNujCYoDFZGBoVH+t7RFOzTfXV3L6Cyt5YvFeLn91LQ993nsXh5IlliNzd70Dr1/E7YbVq+G55+Dmm2HaNEhLg9mz4Sc/gRdfhA0bQoJmxzGZJY45BgbPq4YzNsC1i+G2TxGuXMrL/9Bz440wZQrMGKJ0za+vaqHN7efH725SSeoeQkaqkYlRws2+RicOj599DU7Fflyab+PMOI6conRzwpLg6L6a+xudMUOCQqw52Cy7kLmirEnhRp5c1HP9hk8alcub18zgrWtn8pszxnDRxCJG5FjjCpoAKUY9F0+Ut3yxGPVMHSQfayJRc/aQTNVl3FGfPYNOIGeAhXAJgqBwSoZ6ija7fPxjVZniMffM63wfbzU0UfPopnHZL3Hufg9/yz7sW/9Fy9on+3pIncYfI/kceqanpsbRiyZqamho9BpOp5PbbruNtrbgSVl2djbPPvssZnPspMfeJLJXYGNj/B/b9evXs3DhwvB9f2fPEJPAZDJx4YUXhu//5S9/ibv8/Pnze2wsakSKXO+++25c1+of/vAHvN7gCcLZZ59NQUGBbP7pp58e/v+jjz5i377YXdzKysp48cUXw/evvfbaDo89mvXr18cV6pYvX87KlSuBYPp1V0TNM888MyxWNzQ08Nxzz8Vd/qWXXqKurg6/309jY6OsB+fxxx8fDsHZt28fb731Vsz1bN++XSbMdmbcocT6DRs2yNpIRFNXVxcWEgVBkL1ekW7TZHvFRlJSUsLs2bOB4EWFxx57LO7y69atk4ma559/PvWO/tEftDO4fAGaXPLxC4Ky3BNIKASG16nSIzOWIJqon2YInU7AGNXQM1p4jIfD62dbbRv7G5yUN7nYVmPHH+P5SIA3Ku196qB0jBHl8+OjEpjLm13YPX7a3H7uiEoR+sOXu9nViXCaniTSESj5dUiHMpE2DMX36SQmT5VIS4NjjukeAdNoFqGoEabuhzM3wLWLeX7JQVaskHDP3YAwqQIhL9gTc3SulfSUdgFxarGydP3LXXWc8NelfLZTHrAmCHD78cMA5fsjSbC91h4ziGfuiBxMMdojjM1L3F5ieI5c1Gx1+/l0e/yLgo1OH/sa2isEokNjAM4a2796RYb47RmlZEYIvb88bbSipHmcSkp5JMcMzaI0ide2KN2cUGjtj0QH9YR6ar669iB2j/x774IJBQlfr44Sq/xcLT1e48jDufcj+f39C2Ms2f8JOOL01OyB9HONoxdN1NTQ0Og1fvWrX4XLbE0mE3/961+77KzrTiL7O65bt04mWoaQJIlPPvmEH/7whzIh0+1O3NeuK9xyyy1hAezrr7/moYceCouDkWP49a9/nZR7LhY7d+5k586dSbkkQ5x66qnh3pJbt27lz3/+s0LkdblcPPjgg3z22WdAMKX+nnvuUazrvPPOCztkvV4vt9xyi2qp9ObNm7nuuutwOILliJMnT+bSSy9NeszxuPvuu2Uu3BArVqzgjjvuCIu2P//5z7vUwzM9PV0WNPX888/z7LPPKoJ4RFFkwYIFPPPMM+FpN954o6y3pclk4v777w/ff/jhh/nvf/+r2Oa2bdu45ZZbuhT2k52dLWsXcffdd4eF3kjq6+u57bbbws7bc845R1auH9nPsrGxUdZGIFl+/vOfh8XRL774gl/84heqfVGXLl3KrbfeGhZPTzvtNOYcd4IiUGYg0aRSdp5nNSt6WkLXnJqBGI+NThgHefJ5JNGiUzJOTUmSONTqZketHXdEWrIvINIQo+ReEiWC0mY70b0Fx6r01dxRa+fPS/bKypAh+Lr94pPtCcfaG7jdsGoVvPYvI9JnU5BemQvPnA2vnwhfToYtQ9m5Vd9pARNDAIoamX1BMy+9BBs3wuebmxCuXIZw6haEiUEBc/7SfTz+9V7FezAtSsTMTDUqXJBrDraw+ZDSaXrxxEJGHxbJJhYqv1O3VrfFFDWtZgMnxAh6UiuRjkat7+U3+xOfbK852Bz+/5Nt8hN3nQBnje2fPd2GZVvY84tTePXKaSy//QR+odLTckxEano0qUYdkwrTyLGayLXGd2FGl54PFKKdkg1OL/6AqOrSvGtu97o0QT2sCDSn5tGA6GlFjOo1Ga+Eu78TLyhI8jmQ/AOvQkajf6L11NTQ0OgVvvzySz755JPw/alTp7J+/XrWr1/fqfVddtll3R7yce655/LMM89QV1eHJEnceeedvPnmm0ycOBGr1UpNTQ1Lly6VJbYHAgEkSaKtrQ2/359UsE1nKCws5Le//W24dP/111/n66+/DguKNTU1LFq0iNraWvR6PTqdLixc6XQ9e/3KZDLx29/+lttvvx1JkvjHP/7BF198wQknnEBOTg5VVVV88cUX4QAbo9HIU089RVFRkWJdZrOZRx99lFtuuQWHw0F5eTkXXHABJ598MuPHj8fv97Nx40aWL18eLvkfMmQITz/9dFLJ5YkwGo20trZy/fXXc/zxxzNt2jQgKHIvX748vNyJJ57YLc7QW265hc2bN7No0SIkSeKZZ57h3Xff5aSTTqKgoIC6ujpWrlzJnj17wo+ZPXs2P/nJTxTruvjii1m6dCkff/wxPp+P+++/n9dee43jjjsOk8nEli1bWLJkCYFAgOHDh7N///5Oj/uOO+5gw4YNfPfddzQ3N3Pdddcxe/Zspk+fjsViYfeevSxa9AWuw0LlkCFD+NWvfiVbh81mIzMzk+bmZrxeLzfddBMnn3wyfr9f9fmpMWPGDO677z4effRRAN577z2+/vprTjnlFEpKSnC5XHz33Xey1hLDhw/n0Ucf7XAJdH+jxa0U9grTzARUWmEkI2pKkoTLl/xj1dyfKTESzU16HQ7kvToDohSz56DHH+BAo4s2j7pCF6v/aUBFpI4OQYl2AgJ8vadeNdEY4P0t1Szd38AJw3NU5/cELhds2tTe/zLUAzOoySu/NztKSgpMnQo5w5180rgzGOaTY0fQSdxwySRuOC4TgOpWpbi16VArmw4pA8KmFivFyGnF6exvjH+xYly+jb9d0u46jy4/B9hS3UZDlOAM7U7M08fk8dWeeuW6k3C2Dc9WhgVF70a5qTrqXfL9/buKZi6bWkxZo5OtUS0B5gzNItfaPypQ1Mi2mLhy+uCY861mA0MyUylvVvZunTE4MxwcVppnpV7lfQlRNEBFzfwoUVOS4OPtNQpBfnyBjRNHqAvqXcFk0JGVapQ58fU6ISl3rMbAxt9WrpgWcNYiSVK/6++cDPFETYCAuwGDrf+YWzQGLpqoqaGh0Su0tMgb669evZrVq1d3en1nnnlmt4uaNpuN5557jh//+MfU1wdPkFatWsWqVasUyw4ZMoRHH32UBx98kLKyMkRRZNu2bbKS4O7mwgsvxOfz8cgjj+B0Ojl06BCvvvqqbBmLxcJjjz3Go48+yqFDwSAGk6nne1qdfvrpPProozz00EO4XC4OHDgQTpGPZNCgQTz++ONxk+7Hjx/Pf/7zH+6++27279+P3+/niy++UC2ZPuGEE/jDH/6gKGPvLNdeey27d+/mm2++YdmyZSxbtkyxzDXXXMMvfvGLbhGLBUHg6aef5sknn+Tll1/G5/NRVVXF66+/rrr8hRdeyMMPPxxTPH/iiScoKCgIl+Vv2rRJ1scSghcU7rvvPq688spOj9toNPLiiy/y29/+lvfffx+I/ZkeM2Eyzz87n+xs5cnf5ZdfzvPPPw8EheOQ+HjFFVeEy+kTcf3115Obm8vDDz9MS0sLTU1NvPvuu6rLXnjhhfz2t7/FarXS6Ix9Mt7XtLp9uHwiGSkGUlScl76AqCj/tpj0mAw61PS+ZMrPPX5R1bkaS9SMnm7QCTFPukwqYqc3IJKqksje5PRyoMkV0yEKsUVNtYfMjBI1x6m49373+U5VQTfEfR9vZ9ltx/fISaXLFXRFRgqYW7eGBMyuk5oaFDBnzGi/jRsHBgP8a3U9C9+S96KNdN8VpJljilvRTFcpN59anMF7m2P3VDtjTB4Lrpkh63upJjpvq2lTtFpINeooOdwf9YzSPH6xUOmoTdQbEoLOxURcNNLCS1vtsv1rTUUzoF56fs647vk96kvGFdhU3/fIUKHS/DSWxek/OlBFTbXy70cWKUMafzhnaI8JTcOyU2mqbN/nS/Osqr8FGkcW/rYK5UTRh+hpQZ+S2evj6Srxys/hcAm6JmpqdAOaqKmhoaERwaRJk/joo494/fXXWbx4cTiJOyUlhby8PEpLSznppJM477zzMJlMzJ07l//85z8A/Pe//+1RURPg+9//PscddxxvvPEGS5YsoaqqCq/XS1FREXPnzuWmm26isLBQFr5ksfRQzHAUF198MbNnz+a1115j2bJllJeX4/V6yczMZOzYsZx55plccMEF4X6M8Rg/fjwfffQRCxcu5PPPP2fLli00NjZiMBjIz89n+vTpnHPOOZx44ond+hxSU1P5xz/+wYcffsg777zDzp07cTgcFBYWMnv2bK644gomTZrUrdvU6/Xce++9XHHFFbz99tusXLmS8vJyWltbMZvNFBcXM336dL73ve8l3L8EQeC+++7j7LPP5o033mDVqlXU1NRgsVgYMWIE559/PpdddlncXqXJYjabeeyxx7j66qt57733WLVqFdXV1bjdbtIyshhROo7jTzuLWSecTEqGurjw85//nJycHN555x0qKirw+Xzk5uZSXV2dtKgJwbYFJ510Em+//TbffPMNu3fvprm5GYPBwODBg5k5cyaXXHKJ7PXrSF/H3qS6zc3B5mA7i4MClObZFAni0enFABkpwWX0AgjIi7CTcWrGdD92QNSMhVrPQ69fJDXqJN3p9bOv0alwykXj9ouqzpXofr4pBp1C2FJz78UTNAFWljXxzqZD/GBK106+elrAFIwB5szUh8XLmTNh7NiggKmGmssuL6KfoCAIPHruOG54c0NCZ3N0+TnAtEHKaSF+evwwnrpgQtj1FyItxcDQrFRZwvvmQ63Yo0T80jxbuF/jlKJ0RYo5qAvY0USXyKsxp9DMVxVu9rW0f+7WVbYQECU+2a48aT/vCBA1S/Ntit6nEEw+D5FINB6k0t93IKAW1LP2oPzCvNmg45oZsd2uXeWGWUNYX9ne4/cnxw3vsW1p9B/8rUqnJgQdjwNN1JQkKQmnZvxQNg2NZNFETQ0NjV7hkksu4ZJLLumRdYdExWQ45phj2LlzZ9xlsrOzue2227jtttsSru9Xv/qVoqw2xO23387tt9+e9NgSjSvEoEGDuPvuu7n77rtjLhMKYwLIzc1Negxdpbi4mPvuu69b1mU0GrnwwgtlIUm9xQUXXMAFF1zQ4cd1ZT8fPHgwd955Z6ceG82kSZPiiq9jxoyJu7899thjCYN3QkycOJGJEyeG79e0eaiIcvhEp+KGEASBa6+9NmYp/+DBg5P+XNhsNm644QZuuOGGpJaPDpSZd+Z5zDvzPMYV2GL2hoykI31nk0WSJGoiUtglCSpb3IregGql5xmHQ1oEQUCvg8iX3B9ILGqq9dOEjjk1Y2HSK+epiWRNLn9CQROCQqsvIGEytK9XkiSFU3N8QZqixD0z1cig9BTV5PgQ2RYjjVE9Ix9cuJ0LJxSquk7VCAmYa9a0C5jbtnWfgIkhAPktUNAcLB8vaEGX6+Drx87CbEjO0RUtAgKKsukrphUzY3AG//6ugjfXV3KgSenem1acTp6Ku21mSSY6Qe6g1esE5l84kZ8cDgZSY2JhmkzUPNiifK8iBTWdTuDccQX8e027y2lQegrFGYkvoA3JVJafR2LUC4zNNjEu2ygTNe2eAOsrW/g6qux9cEYKk4oGfu/DWILwMZFOzbzYvTdh4Do1Y/W0jOT7k4vI7sFk958eP4xcq4mV5U0cPyyb70/uetsJjf6PWvk5gOiqA0p7dzBdRPQ0gRi/f7sWFqTRXWiipoaGhsYA4MUXXyQnJ4chQ4Ywffr0uMvu27cvHCKUlZXVIcebhkZXUROr+mP/ylhj8iUhAPYU/sNiXSRtHj8efyAsVEmSpHBqGnSCLHncIAj4I7yavqScmuqvR0CUECUJnSAXEKMdnPo47RhilZ9H4/ErFb98mwm9TuBQqzxQwO0PyNbrDYhEP8tY4tK4AltMUdOgE/jqx8dx3ourZGLa3gYnz604wB0njlA8xulUOjC7U8C0WIIl5KmD2/iydU9QxMwO9sCMRAR21zmYWJRcgJmqU1Ml/GVMno0/nDOOR84ey6ryZt5YX8lbG6uoafMwOCOFpy9Sv4BSkGbm1uOG8ddlB4CgoLzgmhmcPiZ+iM74gjTVsu5IooX+35wxhk+211Dn8GLQCfz+7LFJlQanGPVxRe6pg9Ix6wXGZ5v4ZL9c0H386z2KCzbnjCsYkL3volFzYRammcMl/7GWiWTABgUlIWr+8JihCZfpCoIgcPm0Yi6fVtyj29HoX8QSNQdiWFDAEbv1SHgZV2MvjETjaEATNTU0NDQGAB9++CE7duwA4N1335U546L597//Hf5/9uzZPT00DQ0Zav0b+2OpdyxRsy8FWE+M16ne4aU4IygmOLwBhUsyPcUgE1L0OojI5cEvqpdrRxKr/ByCwqYuwm2p5t40qLgxQ6iXnyvXEf38dTqBksxUml1Kt4fLJxKpmbhVRNkJKknaECxB/3K3MlgGgn3yJg9K5//OGssNCzbI5v3fF7v4wfgSynYZw+LlmjWwfXv3C5ih8vEZM4Il5Ho93PNROV8tORj38Vtr2pIXNe1KUTPbYlRZMoggCMwZmsWcoVk8ecEEml0+rCZ93F5/T180kfPGF3Co1cOFEwrISsLdNjEJp2O0oBZM9T6VZQcaGZljCaepJ8Pw7NSYouacIZmAjwk5ytflnU2HFNPOGz/wS88BxuUr34NjhmTKvkOGZ1sw6oWYF4KKjqDy80hK86w9EhCkoaHaUxMIOJWtIPo7iUrPQXNqanQfmqipoaGhMQA47rjjwqLm73//e5577jmFAzMQCPCvf/2LBQsWAMHU8+5I6NbQ6AgDxqkZQ0BMJlSnp4glajY4fAxKT0EQhLil5yEMgryrpiQFk8ENMURNvyjG3HZwvkSkbqUqasYpPw+GCMlTpdWdmvJpKXodgiCoimbuKBHWpeLyjOnUjOEws5n1/Ob0MQBcPWMwT355gE0bBajJgNpMGmoyGPyIAambdhGLBaZNk4f4hARMNbZVt6nPiGBrEsuEqI8Ky8q2GBU9LmOh1wnkqLg6oxEEgTNL85MeE8CEJFLL1VyCaSkGzhrbsW1BUBCNFXgT7CFZy6hMI3oB4hm5Uww6ThmV0+Ht90fy08ycMipXlip/7cwS2TIGvY5ROVa219pV1zFgnZpp8ffrm4/puYAgjaObmD01XUemU1N0a05Nje5BEzU1NDQ0BgA33ngj7733Hs3Nzaxfv56TTjqJU045hSFDhmA0GqmpqWHZsmVUVlaGH/PDH/6QmTNn9uGoNY5G1Bx43kBip2BvEhClmL0i+7L8PJaw6A2ItHn8pKcYaXEpQ4LSU+SHc2q6lD8gEasdZKKgnOhSc7XwoHiipiAImPU6WalutKjpF0XFe2I+PGCzQacQRV1Rr1W0yAnB3oxqjC9QCmKST88Piifw1r/Nhx2YAtu3nwBiVBiR6hoTEy1gzpwJpaWxBUw1ttbIBcvMVKPCxbqtJnlRs84uL+lXKz3vC8YVpCne70gEAUbnxu/n2BHiJaAfOzSTxrJazHqB0ZlGdjTF7hF38qhcLEn04x0o/OfKaTzwyXb2Nzq5YloxF00sVCxTmm9TFTWNeoGcHuw52ZNkpwZbXqh9z5n0Oq6b1XMBQRpHL1LAR8BRpTpvQJafJzHmgEtzamp0D0fOL6+GhobGEUxeXh4vv/wyd9xxBwcOHMDtdrNw4ULVZU0mEw888ABXXXVVL49S42hHkiRVB54kBUWsZANMepp4bsz+6NSEYAl6ikGvCPSxmvQYo1RMNUemT5SI5ZuKV3oOSmdmR52aEOyrGS1qRgrdas89JGrqBIEUg142ToVT0ycfUygQSI2htjSkyiyoyQy6MGsyoDGNl6To59BJEd7gh4IWCke5+cMNRRwzS9dhATOaVrePimZ5ifRxQ7P4rqJZFvjTEadmdFBQbj8RNVONekblWNld71CdPzQztVvFw2FZ6qJmcUYKJZmpNJYF74/PiS9qnnsEpJ5HUpSewstXTIu7THRv0xCFaeZwOv1AQ6cTyLOaqG7zKOZdMqlQEaalodEd+O2VxCoDGJCiZlJOTU3U1OgeNFFTQ0NDY4AwduxYPvroIxYuXMgXX3zB9u3baWhoQJIkcnNzKS4u5pRTTuG8884jLy9+EIOGRk8Qz+Xo9UuY+8lRR7xy+OhU9N7EE6cxY6h/YTTRpecQy6kZ+zm7vB0VNZXrSihqRg1KkoJCaygZPZ6oCcHS3khRMxiqJGLU6xAlSREyND7fhiAIOBywYYM8xGf7djOIJ8Qdb7JYrUEH5rCxXl6t3BpMI8+yI+igBtieM5Ibxo/v8na21yjdcOML03D6Aize235iuKfBKQuWioXXLyoCp9QSzPuKCYVpMUXNRAE1HWV4DKfmsUPlLV7GZcfuNwpw7riOl74PdMbG6F06UEvPQxSkmVVFzZt7OCBI4+glVj9NgIDrCOmpKehkwm1AKz/X6Cb6yemFhoaGhkYymEwmLrroIi666KK+HsoRw+23387tt9/e18M4IogvFvafvprxxtJfnZqiBJWtypPsjBTloZxeRWCMVW4PKNyf0QTE6FLxjjs1o92kEBTWQmJnQlHTqIeoUmu3L4BRr8PtE9tLlf16cJqp+e9QJjwLO3aAigbbOYx+yG+BghZ+f10hl5xuYcyYoAPzZ//dhbBUGeLzxOK9zBuRw7ldDJCJLj2HYO9Jp1cuagZEiZ21DiYPih8WpJZ8nkyPzN5iQmEa/92i7vSJ5Q7sLLFEzTlRoub47Nivz4SCNIbGKWM/Uon1Xgx4UVNF4B+Va+WkkUdGz1SN/oe/rSzmPHEgOjWjxyzoMaSV4G89EJ6k9dTU6C40UVNDQ0NDQ0OjW4gnFnr6k6ip0vczhF+UECUJXS/3/wyIUsJ+nmKUmGjQCVhU3JsGlaH7YoiakiQl7KmZTPm5Xhc/YMakko4eub8kEjVTjVHrlwSaWyWcLdDUCthtENCDUw9tsGdpJk5n3CHFxWZr74FZa6nh9aptYQcmQN1QJ+PGTQTA6fXznzWxXTbXv7me9XfNY3BmaqfHo1ZWPuGwUzOabTVtnRI1+0tPTYgfFtTdTs3BmSnohOCFg0iinZojMgykRLVRCNFV0XqgUpqn3tu0cICLmvk25Wfh5mOGDNiSeo3+T6yQIDgyys/1lgJ0qTkQIWpqTk2N7iK5iEMNDQ0NDQ0NjQTEdWrGcSH2Nolco33h1ozn0oxFRopRNXxJLRDIH0Mw9fhFxFiJLKHHRouaKutK5NQ0qwwqnqgpCO0l64EAiJ6gA5MWCzSkQW06NeUmKirA3qIPCpqdxGaDE0+EO++EV1+F7duhuRm++QaeegqefCATQ54jLGgCvL6uMrxPv7XxEC1uZYBTiAanjytfWxe3BUAitqs4Ncfm21TFPzVXZzR1DqXrt7/01ITYIU/Q/aKmUa+jJEpwNul1TB+cIZtm0AlMjSEWH42l5wBZFpOqADgovf+0MugMU4vl771Jr+O6qPR3DY3uJBCn/Fz0NCMFlBeiukrzd49T9lwBFS+Oxrnv425dd3T5ud5agD5F7nQW3Y1ICY4/NDSSQRM1NTQ0NDQ0NLqFeA7IgVJ+Dn2TgK7WT9MUK678MBmp6gU3ehWhU60PJiQOCYIk089VnJiRRPfUBPn+EhY1JQG8BvSuFPbvF9iyBdavhwN79dCWCm5TsMS8kyE+NhvMnSsXMFtaggLmk0/CVVfB2LHyUJ+CNDPnjJWLVvUOLwt3BE/aXlhxIOF2l+5v5Def7ezUmEEpVA7LSsVmNjBBRfzblkRYkKpTU0Wc6ivG5NliCuVj82MLnp0luqz49DG5qn1JZ0YJnQBZqUaFq/NoQk1kLhrgTs3rZpYw/bCwqdcJ/OXCCRSkDWyhVqN/E8+pCd3fV9NV8TVNy36F6GnC31ZG7afXInqVvZs7gyQGFOPVWwrRpWTLFxT9SN7WbtmmxtGNVn6uoaGhoaGh0S3ELT/vT07NBGPpCwFW7fUpSjNT1uSK+Zj0GMlLOiHodIw0QMQSahP104TE5ec6QUhYrq/WU9PjE2lrA4dDwtuYEhQr/TpAwA90tTAtLQ2mTw+WkIduo0dDgkp5Va6bVcJH2+TOk5e/q2B4toVV5c2y6cOzLZxZmsfzK+Q90h77ag/zRuZwZmnHXH1qyechMTPHGnTK1dojEtCTcWralaJmrqX/iJomg44xeVa2RQUkZaQYVJ2BXeU3p5eyoaqVjVWtTChI40/nq4c7Rbs3Ac4am49BLZ3rKGFMno1v9sk/rQO9p2aO1cSy249nW42dfJuJ4ozOt47Q0EgGf1sCUdNZi8FW3G3ba9vyL9l9yWfHU72K1CGndnndoqtekeSut+SjMyrbVQTcDejMyu9VDY2OoImaGhoaGhoaGt1CvLJtb0BEkiTVcuneRJKk/unUVBE108wG0lMMipRqAJtZH1dIMQgCvghVM1ZQkFo/zej+golEzUSl5wCSKKD3Gwl4deDTg19Pi19HCxB0XXZRqBJEECQw+bHkBli7FsaM6ZyAqcZ54wrIsRhpcLaHFX2yvVZVrL35mCHcOXcEK8ua2FAld6Fc+3qwv+agjORFn2hhD2B8RNn5hII0au0RCej1Dty+QDBcCfh2XwMry5qYNzKH2UOCjkJ1p2b/cqJNLExXPPexh1Ptu5vhORbW/nwubR4/VlPsz9ZJI7Mx6gXZd8T3Jxd1+3gGEjNLMvnnKrkgM66bWwT0BWaDnmnFmtii0fNIkpSEqNl9Tk3R78a5/xPFdL/jULes3+9UhrzprQUIOuXvvOhqhIwR3bJdjaOXo/eyooaGhoaGhka3Ek8slKS+EQujCYiSIhAkmv7SU9Nk0MXsc5iRYoy7vmhNJtnyc6Nepyh7jy43j15XdOm5zxcs6T50CPbuhc2bYcMGCDRYu6WEHEEEkw8sbrKLfJDbGrzpRSSzj/RMqdOOzFiYDDqumD5YNs0vSryzSX4SaNAJ3DCrhBSjngXXzMBmlpcw1zm8XNXB/pqxQoJCjI8qQRcl2FkXFAPnf7uPeX9bzv2fbGfO00t5Z2NVeBzR9KeemoBqaX1399OMRKcTyEg1xr1YMDgjlcfPG4/x8D5/w+wSLppY2GNjGghcPb2Y0bntDqzrZg4+KpPgNTQ6i+huQPLHrsoAZY/KruAq+xzJq/xdiQ736SwBh3KsekthMCgoell3g2JaNO6q5Rx8ZQplzxXQuPSXWh9ODQWaU1NjwKCLOjsJBALo9Z0PBtDQ0NDQ6D5EKXF6tzcgJuwT2dMkU1reH8rPTQYdOkEgM8WIXicohMWMlPiHcNEJ6L6ApHDK+kVRsV2LUUdAiu3MlCRJ7tQUdeA2UFUFTmfw5u3GPAO9HiyW4E00+KnzOEEfETBk0IMowuF9T5Qg1ahXHDN0B9fPHMyzS/fHXeaiiYXh5OfReTb+/v0pXPnaOtkyS/Y18PAXu3j4rLFJbXebSjl5tFMzmq3VbTQ5fdz94VbZ9J9/sJXzJxTQ0M/Tz0Fd1ByT1/cOwDtOHMH1M0vw+EXytT6LWEwGNtw9j4+21pCRauCMMXl9PSQNjQFFon6aAGI39tR07H5XdXrA3j1OTTUBVm/JB0nZ7kZMkIAuiX5qF15NwH4QgJY1f8KUNwVb6aXdMlaNIwNN1NQYMAiCgMFgwO8PluE5nU5Mpv51AK6hoaFxtJKMu9ETEOlrScKbhFu0tx2laiXx5sNuMZ1OINdqoqatPa06xaAj1Rj/op5eJwBKcdIY4apUKz1PNepx+0Wg/eQj6G6V8HkF7HaQ2lLCJeSIOpyAM8nnGhdBBGMADAEG55rITNdhNgf7gwI4vFBXIx+zw3t4nP7g6+PxB0g1p/ZIifK04gwmFaWx+VDsnpU/mjNUdv/yacV8vbeef6yUn7Q+8uVu5o7I4bQkBCA1UTOyvFdN/PtyTz0Lt9cqXMlVrW5eW1dJnV2efp5i0GEx9a8LxaeOyiUjxSBLlu8vrsiM1PhO6aONVKOeS6cO6uthaGgMSBKVnkOwp2Z3IPrdMZPOA91Ufq4qaloLkfxu5bIJRE1fw7awoBmibeu/uyRqBpy1tG19GfuO1wnYK7GMvoScuU+gM/X1EapGZ9HKzzUGFDZb+5dNa6uWlqahoaHRX0gUvpPsMj1NMmPoqfJzUZQQVWrfg/1G5dPMEY7WQekppB92ZpoNOoZlWxKKdtFOTVD2wlRLPk816YPp6X4duI3QlgJNVjZuCJaR798vgCMFvMagS7OzHC4hz8oNYMl1B8vH81shywFpbvJzBVJS2gVNgBSVNOowXhcBUcLpC5Cfndn5ccUbsiBw/aySmPNH5lg4ZVSuYvpfLpzI5KJ02TRJgmveWE91q/IkL5ro8vPh2RasESFRaqLmv1ZXyITwSP709R5qokTNPJupz/vdRpORauSta2cydVA6Y/Ks/OuyqYxTcaVqaGhoDGSScWp2V0/NWKXnoN4LszOol58XoFcpPxdd8cvP/W0Vimnuiq8JJHhcNJIk4ir/itpPrqD8n8NpWvZLfA1bET3N2Le8RNuWFzu0Po3+hebU1BhQpKen09zcDIDD4aCxsZHs7Oy+HZSGhkav4fYFONjixhsQybWY+uWJ+NFKMg7IfiFqqgiW0eXd3kRNNzuIKEkcaHTS6PRh0AkMzUolKyJpWq2fZqSoqdcJjMmz4Q+I6HVCUvu8XiW8xx8QIcLh6Qq7HPVh52WN3YjLaQRJ/vjEGemxMRiC5eM6U4BmnzvoxjxcQp6elUpNmxciXgOTXodOZfx6nYDJoFPuR+428Llp9fgwG3RkZ/ZcuMdV0wZz/8fbVYOXfjhnqOq4Uw/315z5l2/anaVATZuHa95Yz/9+OEf1/QJocfk42BKVfB4l7GVbTBSmmamOIWJGs7POoZjW3/pphjh9TB6n3zWvr4ehoaGh0WOoCXfRdJdTM1bpOXRn+blKUJClANGjEhSUwKmp6mKVAjj3fUzahOuSGo+7chn1i36Er2l3zGWc+xeSMf2OpNan0f/QRE2NAYXFYsFoNOLzBdNHa2pqsNvtpKenY7FYerXHpiRJBAIR5XmBgCauaGh0kmQ+T5IksbfeERZiyt0+jIJEulYG2C9w+3zB3oZxl/HL3ue+wKMyTovJQJu7fVyiCF6fD3039WVsdHppPOyM84twoMGB1agLC1kur3JMRkFSvFYCqDo9Iwl9lnSSpFin2+tH8upwuYK9LxtbDeAzERnY46RrwrPRGBQwU1Pb/xqNQcelw+Onue6w8HZ4M26fD4/PL6uUNxl1MfeTFB14xUDQ6uj3gNcFPjdOr5/aNi86gwGLpedCSvLTzJwzLp8Pt8qdKEa9wPUzY7s4S/NtPPe9yVz7xnrZ9C931/OHL3fz69PHqD5ue60y+XxcgbJEbkJhWtKiphp5Vq03pIaGhkZf4G8rU0wTTGkyR2XA1XVRM17pOQTLz6N7b3eGaAFW0JvRmTMQBOUxVaKgoFguVsfu95ISNUVPK9UfXBDTnRoeh70y4bo0+i+aqKkxoBAEgSFDhlBeXh4WNh0OBw6H0nXQG4gRJ4w9EUqgoaFGKKhDEAQMMdw9A5FEnydRkhQ9AMtaBZmj7UjHFxDxixI6QcCoF9D1owspXr9IdAO/6K6ODgF2NfZt3z63LyAblAC49UI4aCbEboeu217f6NcmAOxqbRc1vQFRsf0ah466Tm5fFMWg8zRA0HEpCSBBWV037y+CBAIY9MEEdJ0uKF76/dDWFrxFIkkSRH2G61tQlN67dQK7mtQ/19GvVUCUaPX4qG3zUusM4LZk9PgFxutmlihEzUsmFSUMjbl6xmC+3lvPv1bLXTkPfb6Ty6cOYrRKCE6i5PMQ4wrS+HJ3vep2Jxel0+D0UtkSu9S9vzo1NTQ0NHqbgLsRz6GVGNKGYMqd2OPbi3Zq6lKy0dsG4avf0j6mbig/d5V9EVfck/xOJG8rgrlr1Q7RKep6S2Hwd9mUBjoDiO19kkVXJ5yagKt8EQF3M/qUzLiPd1V8nVDQBPDbqxIu01eI3jZc5YswZo7ulf1xIKKJmhoDDpPJpBA2+wJJksKhRQBGo1Fzamr0OH5RpKrVExQHAJvJQM4RcDKazOfJ7ROpd0SHW+gpGODps05vgAanF0mCtBQDWTGcpw6vn/qIxGKzQUdhWkpvDTMhzW6fokejSa+TlXsLCAzJSu3tocmod3hl6d5GnQ6rWU+zS/57UmAzk5IgjCdZWtw+nFGvTbrZSJYl+F63uJTzSzKTf538fvD5gqnjXq+ExyMQCHSv2K83SKSYBURdAFfAHywfF4KvY77NnGSlhHB4H5YipghIUYFGmanGmBcrvH6ReocXUQqGAjl9ASQJal0B/rimhed+MLyzTzFpzh1XwLTidNZXBnt7mw067j95VFKPfeaiiawua2ZrRPiPKMFr6yr53ZmliuW3qoQEqYmaE1TcmwDpKQbevnYGH22r4Z6PtsUcV65t4P+OaGhoaHQVX8t+Dr19ajicJnvek2RMu61HtxntRjSklaBLySHyqCTgqu2yi9Kx+53EY3EcwtRVUTMqKEhvLQCC5iRdSjZihJMzoVMzVmm+6MO5/2PSxl0d9/G+ZmXJuWBKQ2dMI+BoFzIlnx3R04rOnK5Yvi/xtZZR9focxMOvU86pfyN90s19PKr+hyZqagxITCYTI0eOxOl00tbWRltbm0wQ6S2iRZijnYAo0ezyodcJZGolwT1CTZuX2ogSw3rBS0aqAcMR4BRO9Hlqdvuos3tl01KMugEtagZEiZ119nA/x1q7h1G5VtXPT3mTS9aPDyAjxZgwBbu3qHd4cUaMz6jXkZ5ioMEhf8+K0s0Y9X2zv0qSRI3dI3MGZqQYMBt1in3LZjZ0m6jZ6PTR5pH/Rjm8gbCoWRf12hn0AkOzlCXUkgQeT7B0PPIm//nr2sU1QQCTWcIj+MJJ5BgClKSnkJtmpqrVR51D7vjLTbJ0WRCg1e1T7SEaSZo5/uFpSNxv9oisq/WyusbDjkYfEjCxsOdPSEwGHf+9YTZ/XrKX2jYPNx0zhKnFyZ0EWkwG3rh6OpP/vEQ2/YOt1aqi5qqyJtl9QZAnn4dQEzoBXrpsKqPzbPzwmBQeWbSbJpf6xWDNqamhoaEBbVtelKVtNy3/NWkTb0Rn7Jm2JqLfheiSuzANaUMQorcX8HbJRZmo9Dy8GUc1ZI/t1DYApIBX0SdTb8lv/z9K1EzYUzNOiJJz9/uJRc2mXYppxVesoHXTP2hdP1++LftBTObxcdfX27SufSosaAK0rHlCEzVV0ERNjQGLIAhYrVasViuFhYVIkiQrX+1p/H4/W7a0lwWMHDkSg+Ho/Ui1unzMeeZbKluCgtulU4r4x6VT+3ZQRyC/fXUtC7fLr2ouvHkUxw8f2IFZyXye/vDGet7fIn/uJr2Omt/NUA3nGAh8u6+BHy3aJ5t2xhgdb183QTatvMnJtS/LRRCAR87O47YTet6ZlgxnvL2IJme7YDKtOJ1TRqfx58XyxvNf/XgME0oye3l0QSqanfz4Ffnrfd3MwfxgShG3vr1aNv13Z+Ry59QR3bLdqxZ+wy6VcJb9D04iy2Lk5DcXYY8QPacPzuCT2WPYuhU2bQqmjm/cCFu3gjtxWHby6AOQ2wZ5rZDXwpM3DeHqMzLY0dDCvL8tly1638kj+eWMMfzj4238fYX8c7jx7gkMy7Ymtck7l6xi6YH4JzGLby1lzGD1E7cWl4+T3lyE2x/t7ww6Jkfm9Fw/zUhKMlP5y4WdKwObWJTOrJJMvqtoDk/bWNXK/gYnwyPGX97kZEWUqDk+Pw2LSXmsMWNwJvk2E7UR4vzP547gkklFQNAF/tPjh/H7RepBCXmaqKmhoaGBr0HuaJd8DjxVy0kdelqPbE9NtDOkDwFU+k86a9B1UtRUKz2P7tsJyNyLnUEt0EhvKQz/r0uRJ6AH4oiaUsBLwBE7vMhV9jmitw2dSf2iHqiImnoThoyRGNKKFcsG7FWQ079ETXf1Ktn9gKvrbQiORI5eBUbjiEMQhF4PCopEr9f36vb7Gws2VbC7of1s++V1VfzfOeMpzujbUtMjjW21Dpz+qN5/DS7mjhrY+14yn6e1VW2K5+70B6h3+SlK7z9l2B2hvMWjeE4f7aij0eUnz9bufnt3S61iOYD/7arnjnnJlb32JE6vn8pWudMxPy2VwZlWxbjLWjzMHtY3+2tlq08xnsIMC4MyLYrpFa2ebvtOr1B5nwG+OdDE3BE51NQJUJsLtelQm8HGtmwy79Anyl3qGEY/6UMcXHdOBtOnwz/3b2JZazmCvn1c3z9jPFarnhxPimK8tQ4/er2eWrvyNcy1pSb9WhVkpKq+FpGMzLPFXF+2TU+WxUxVq1LdHV9gw9BHLuCOctHEQpmoCfD+lkPcNW9k+P5bG5Unc9+bXKS6vlSjnhcvncqP3tlIvcPLT44bxh/PHSdb5mcnDufPS/YqehMDsu8bDQ0NjYGC316Ft24DxuxxGDO6fpE34FKWQ7sqvu4xUTOgUl5tSBuCFPAql3XWYcxSD5VLhFrqedr462nd8Ix8Gw5lcnlHiC49h/bycwg6NSORvK1IAR+CXlmh5LcfBMXly4jHBjw49y/EVnpZzGWiE8+NGSMRdHr01kEq2+tffTUlScTXuEM2zZg5uo9G07/RRE0NjaOUqhY3H2+vYVSOlVNG53Z5fdF9vyQJ9jU4NVGzGxFFib0NTsX0XXXKdNwjDbcvwO569UCwsibXgBU1K5pdimkBUeLtjYf4yfHDwtPe3qh+oLVkbwMuX6DPS9ArmpUC0+DMVIaq9M880Kjch3uLcpXXe0hmKoNU9p+qOKEqHcEfEGk8XPIrSUCzBeoyoDaDu7624aw0Qs2Zsse0dnGbWVk+SkudbNHVY89sgYJmyHQwqMDK0/efgiRJ3PvbKpmgOSLHEu7Pm2NRuvZCZcsNTvmJlkEnkJ6S/OFkol6hWalGslS2H8n4ApuqqNkbpefdxcWTCvnlp/KTlQ+2VMtEzQUblGmsl01VnoiFOHd8AQd/fXrMnmu5VjM3HzOUZ5buV85L8JpraGho9DfcVSup/u95wbJsfQr5576BZcS5XVqn6FYGrrkqvu7SOuOhFoRjSCtBVAm36WwCulrpuWBKwzb+GoWo6bfHdkbK1+nCVbYIT/VqDLbB2CZch86QoiqK6i3toqYuNUcxX3Q3yoTP8FhaY/TTjMCx+72YombA3aQo7Q+Jwgab0qnpj2g70B8ItB1E8snPfYxdaA1wJKOJmhoaRyG76uzMeOqbcH++h84s5dend+7KX4hDKieY0cEbGl2jstWt2osulth3JBHZdzKasiYnc4Zm9fKIugc1kQ3g9fUHw6Lm/ganwtEVwu0X+XZfA2eU5qvO7y3UnkdJZirDspWlwGVN6s85EV6/yKryJto8fk4ZldupfpflKtsuyUzFZjaQnmKg1d1eAq4mmnUEtxu2bYMlKwKIiyZCXXrw5m13I8TuFJU8o0bB1KnB27RpMHGin9raTQgC3Ph5HZsb2r+H6w73ojzQ6KLBKf9+njk4M/y/zazHoBPwR3zmGg+LmdE9UrMtHQvJSxQUlUz5+NiCNBapJH1PjNFXsj8yNj+N0jwrOyPaEiw90Ehtm4f8NDO76+ysPdgie8zkonTGFcR/jonei7vnjeC55Qdk7y1AnhYUpKGhMcBoWfM4kjd4GVAKuGla9UiXRc2AU/nb4q1dl1TSdmdQFTXTh6o6HjubgB4sPZdfLrWMOE/V2Rqv3Fv0tuHc/ynOPf/FeeBTmeDmKv+C/PPeVi8/j+PUhGBYkKqo2VYWcyzh7R74DNHnQGdUtsBR66cZEjX1KqJmoJ85Nb2N2xXTTNnjVJbU0ERNDY2jkMe/3isLHPnzkr3cf/IoTDHSZpOhqtWjmNbs1kTN7mRPDPHyaHBqbqlWXrEO0VmRrD9wUMXhCLD8QFO4v97bm+IfZH2+q67PRU01x2lJZgpDVFx5ZU3JOzWbXT4+3VHLR1urWbijNiw6js61suJnJ5DdQXeZ2jhDItug9BRa3e2fpcoknZqSBFVVwd6XGze2/925EwIBACPQ9ZI4kwkmTmwXL6dOhcmTIT3KnOj3Q93h856sFD1E5Kc2On34AiJrDjYr1j8zos+pIAhkW4yy/owhMTNaDFVzdcZDbZ+IZGRu4t6c41WCcmBgiZoAF00q4o9f7QnflyT4cFs1Nx8zlAUq7ux4Ls1kGZJl4arpxby8pt2RkmLQJXTQamhoaPQ3PDXrZPe9dRuQRD+CrnMShyT6ET1NajNwV36LdeT5nVpvPNR6aurTShRtmUC9tDsZHDteV0yzjv4egikdwZCK5G8/NlJzWoqeVhqX/gL7tleQAsrzPQDn3g9x7FxAwKnm1IzdUxNihwWpvTbG7LGykmzJ78R14DOsoy9RLBtP1DTYlL+nAYeyOqIviS49BzDmaKKmGpqoqaFxFLJkr/wqZKvbT0WzK6mTyViolWo2u3o/kf5IJpaouafeSUCU0A/QsJxk2HzoyBQ11US2EK+vP8gvTxsTs/Q8xOc766D7j7M7hLqomUqKUU9hmpnqtvaD4GTer+UHGnn48118tade4SiDoDv5/77YxVMdDGpRG+fgjGDpeXFGCjtq20XNQ21uRFGShVCF3JeR4uWmTdCgbMHVJTIyJKZNE8Li5dSpMG4cGJUtp+KSZVZeqKp3eFWdvzOjgnmyLfLQmcYY5ec5HQyYSSSejUjCqTk+hltxUtHAKT8HuHhioUzUhGAJ+s3HDOWtDT0jagI8cvY4Fu2uDwv3d80biS1B4ryGhoZGf0L0u5ShNqIff+sBjJmd6zUeL4nbXfF1z4iaUT01Bb0ZvSUfya88r+qMU9PXsg/Hnvfl2zClkTr0jGAehXUQ/pa97eNRCQpqWv4b2jb/I+G2Gr+5j9ShpyqmR6af69Scmip9TEH52gCkT7uDhi9vlU1z7H6vw6KmoDehS82Tlaf3t56a6k5NrfxcDe0IRkPjKKOmzaPal3F/o7PToqYoShxq08rPe5pYoqY3IFLe5JKl5h5pbK2O3WWwvAPOv/5GrPJzgNfXVXLFtGJFCWo0W6rbqGpxMyij7/qKqvXUDIlXQ7NSZaLmgSYnkiTFLJPdVWfntOdX4FZptRDJ31eW8eCpozsUcBItaubbTOEy9si+mpIE3mYzC973c2CXMSxg7toVcl92I+nOYPp4fgvkt2AustPw7Ml0R0ZRVopS1Kyze1kTJWoKQjBxPZIci1xBDbk8I0v01ZZLRElm/P10ZE7i36FxBUqnZkaKgeI+/Ax0hpmDMxmUniJrdfDFrnpWljUp3OmzSjIZkcRrkwyDMlLYcs9JfL6rjsEZKRw7THmSqaGhodGf8bfsU53ua9rTaVEzXrJ0T/XVjHYj6tNKEAQdekueYtnO9NRsWfsXkOTHU7axV6IzBH8v9dZCmaip5tRUCxlSI+Csxr5d6QqN7KmpT1X+3sR0akaX5gt6bOOupGnpLxA9zeHJzv0LEf3u8HMKEU/UhKBb0ysTNfu5U1NvwpAxom8G08/RRE0NjaOM5QfUfzgOdEEYqnd48QWUbqr+LGo2Ob24fCJF6eYO9YPrS2KJmgC76+1HtKh5JJaft7h8CoEoku21dn71qbL0pCDNTE2bvPzn8111XD+rpNvHmCwHo8RCnQBFaUGxcVi2hVXlzeF5dk+AJpcvZun4E4v3JhQ0AVw+kfnf7uf3Zyd/1TpaRB6SmYrLFXRf1q0sQFqa0d770m3iyr8nverECCLk2A+Ll62Q1wJ5rQip8u/JUQU29Pru+U5Sc2pWt7kVQnlpno30FLk4Gf3+NLt81NmVaazZHXRqpqcYyUw1xvx9GJWEcJdnM1OUbuZQRNuTacUZA+a7PIROJ3DhxEKeW34gPM0bEPnR2xsVy3aXSzNERqqRH0zp3nVqaGho9Ba+5hiiZvMe1enJEMsxCOBr2ErAUaPa+7GzSGJAEU5jSBsCgM5oRTBaZX0rxQ46NQPOWuxb/y2fKOjImHFn+/ashUQeUUo+O6K3DZ0pWBEhelpUy9515izMg47FtX9h9LOSb85oQ2dqvxCpVn4eiCFqBqJETYNtMDpDKpYR52Pf/h/ZmF1lXyictL5mefK5LiUHfURQkd5WDHXtv7eisxYp4EXQ932PaUmS8DXInZrGzNGdbq1wpNP5BnoaGhoDkmUxRM39XUgkjhWo0V97av5jZRnFD3/B4P/7gh+8sgZfILGA0h/Y0xBb1NxVd+SGBbW6fXGFy7Iml2rvoa6ysqyJ+z7exkOf7+SLXXW0xREgO0O80vMQb6qUoD5x/njFtC92da55fHcR/VwGpadg0AcPMdR6KMZKQG9yenltnXr6ZGaq0hH412X7aUny4ond7aehRo+0Lx9p1Sikj6ez40+zsNlg5kz49OlBsG4EVOSCu2sHtJmZMHcu3HYbnPfzQ3D1N/CzTxGuW4Jw9gaEGfsQhjQoBE2AEdnd48YDdafmsgPBsKVIZkX00wyRreLA3KvyHdTRnpoQv6/myNzkLs7cdry8T+ltJ3S9b2lfcPHEQsU0tYs4l2oCpIaGhkaYWE5NfxdEzeik7GhcBxd3et1qBJzVIMqPAwxp7Reo9an5Uct3zKnZuvFvSAH5OZp19PcwRrj99Fa13pLtYUFqIrFtwg0M+dFBCi54n9Th58Qdg94q/41TCwoS3UoxWZIkRfq5Pr3k8HO4WLG8c897UY8X8TfJx27MGi27r5qAHicoqTcJOGsU/V21kKDYaFKvhsZRxvIDKg2wgbLGzrvdYomayYoNvUmzy8ddH24NO8He21zNu5sOcfk05Q9bf0KSpLhOzV1HcAL61jguTYA2jz+u868zLNvfyNy/LSNSK9UJMHVQBscPz+bM0jzOHpvfJWdYMqJmNNOK07l8ajE/e38LTRGfry921Sn6P/YWkiRR0SJ/LpF9E2MloE+PSNsO8e81Fbh88osMJwzP5qEzSzlheDbnv7iazyME3Ba3n78tP8AvTpUfqLa0wNatsGULbN4cvG3YpIem02XLxd+zEqPTwejRMGVKMLQn9LekJFjSDXDru3UIK+K3EIhkRJKiXjJkqzg1F25XOi5mqoiaWSqfJ7WLJ50VNTcdUraUSDHoKEpLroT8gVNGMTLHyoaqFk4bnccpo3M7PI7+wLyROXGdqxD8DAzWgnw0NDQ0wvhilZ/3kFMTwF2xGFvpZZ1efzTRoh2AIX1I+H+9JR9/6/728XVA1BS9dlo3PKeYnjHzHtn9aNERwO+oDpdp+5p2K+abC2cj6IMXPnNOepLK8q8U4mnkc4hEl5qcU1N01SnWGXKxpgw5DcGUhuRtP4pzlX8la23kby1XPD6y9BxArxYWZK/EmD5U9bn0JqohQVo/zZhooqaGxlGE2xdgrUrqLfSQU7MfBgWtLm+SJb8DLNnX0O9FzUOtHoXYE8nuJBPQRVHiuRUH+GhrDWMLbPzm9DHdKgb2BPFKz0OUNbm69Xk8v+IA0eZPUYJ1lS2sq2zhmaX7uXBCAe9dP6vTwmaFSrhWikEXt/T6B1MGodcJnDY6l7c3tV9Nrnd4WV/VwgwVobCnaXH7sXvkn6lIUXNolopTU6XdhShK/G3ZAcX0x84dx3GHe/794tRRMlFT8uv401t15FeMYPcOPZs3B4XMcmVgJtA1wTczUyleTpgAlgQaZJ1dPSk0Fsn0lEyWYPq5HLUerdEhQaDeK3OXyvdMjrWD6UVAico+AcGQoGSFeUEQuHTqIC7t5rLs3sao13HeuHxeXRe7l1d3l55raGhoDHT8PVJ+Xh93vqticafXrYa/rUwxLSTcAYq+mqKnKeny6Lat/1I4/VKGnIo5f5psmt5WpHhsICIwJ7qEG+SOR2PGCDJmP0Dzit+pjiOynyaAXi39XEVMVks+D7lYdYYUUktOxrn3w/YxOw4FQ6IyhscZt1zUNNgGK7fbS301JdGPY9c7SH4n1tHfR2eWBx36VEKCtOTz2GiipobGUcSag82qvS+ha6JmpYo4A/2zp+bWGqVAFs8B2V9INMZky8//s/Ygt7+/BQj2Yaxp8/DG1TO6PL6eJDlR08m0YqUwo4bXL+Lxi6SlxP4JXJcgnAfgg601LD/QxPHDOxeyUa5SUn/j7CH8LaK/XjQ/mBwUN84ozZeJmgCf7azrE1FTNVE8IgxmWJa6UzOaz3bWKkLMphWnc+zQLAIB2LcPGjbnULJjMuW7jVCfBk1WmiQdN3dr70sJsuyQ28qsGTp+c2URU6ZAs76Vf6wux2LUc/YJw5MOZoruQ2k16TEbdDQ61b8fR3Zjb1y1nprR6HUCU1U+O2oXCdS+h7qz/Lw7Bd2BxEWTimKKmjoBvj9ZEzU1NDQ0IvFFhNtE4m890Om+iGICUdPfshdfa1m3OfnU0r0jnZq6KJcjBIVXg4rDMBIp4KNl3XzF9MwZdyu3Z1URNZ3tYUFqInF0EFPmjLuxb39VtfQ/2gkq6E0IRhuSr/0iqVpQkCIkCDBEvO4pg46TiZoAnqrl7aKmakiQvKpH3anZ8wnokiRR88HFuMo+A6B59WMUX71O1nvUq+LU1MrPY6P11NTQOIpYtl+99Bygus2Dy9e5WN+B1FNTTSAbEKJmnH6aEBT1PP7E79/r6+X9Ct/aWNVhJ1lvk6j8HJIPC/rnqjIyfvUpWb/+lNvf36zai9PlC7AzSefryrLYn6lERIfrANxx4nBSDOo/zTMGZzAyNyj6nFGqTMX8fGfHUzG7AzVRM5FTs0zlIsrflgfdsZLdjHQgD2nNCFK/nMGsWQJpaTBmDHzvewLlnwyFXYOgMQ2krh3GpKWLzJsHP/sZPP+CCFd9A7d/inDDYoTz11F4agXnnQeSzckpzy/n2aX7efzrPcz727Kk22vURn2+CtLMnDRS6VQI0Z3CXmYSoubEwjRSjUpHp1pPzd3dJWrGcWoejZw5Ji/m5/7kUbkUHA7d0tDQ0NA4HLDTqnQ5Hp6Jr2W/+rwEJHJqQrAEvbtQdyNGODVTVRLQkyhBt+9aoAjZMeVNJWXIqYplVcvP7RE9NaPKzwWjFX2UECoYzOSe8ozqWKLLz0Hp1gyo9NRUFTUjXhtz0XGK+e6qFRHjjp98DqiKw/5eEDU9VcvDgiYEhfi2bS/LlokOCULQYcyUi7Ia7WhOTQ2No4gVZeohQSHKmpyMzU/r8HoPtaiLYv3SqXlIKZCVN7tw+wKkqJzY9xcSCa+iBPsanIwriP/+ba2Wi3WSBJ/uqOXamX2XnJ2IzVG990x6Hd6ocKdkRM1Gp5fb39+C53B591+XHeC88QWcWSo/4NpW04YYpXVOGZSOUSewJsrBqeb8TZboJG6TXsfIHCsXTCjkrY3Kg6rIpOKSzFTG5dvYXtv+fi4/0ESb2x/XgdoTJBI1rWYDuVYT9Y52x2JZk4vm5mDfy82bYfkaHx9/Ngrqp8lCepZ10xh1OkgrdNOS1gB5rcFbbivbHz+R4rCrVMdvKl3UOdovDlS2Bp/bo1/toSHCWbm3wcnvF+3mTyqhTdHUOeROzXybmZNH5fLe5mrFsoIAw7K7r3eiUS+QlWqU9V+NRq2fJnTAqdnB9HPQnJrRWM0GzijN48Otyn6nWum5hsaRgehpoXn1Y9h3vIFgtJB94h8Vac0ayeFvq1AE7MjmN+/BlF3a4fWqlUFH46r4mrQJ13V43WqoCncRJdFqgmAiUVOSJFrW/FkxPWPmPartkuIFBUmSpHBfGjNHqa4ndcipWMdcimPXW7LpBpvy/EKXkgURpfeiS8WpqSb4prevy5w/DUFvRgq0n4O6Dy0P/6/sBSpgzJA7TPVWZeuxgF09rBLA7wePJ3jzetv/j755vcFl/X4IBJT/t+6opW3/jxBFPX7RgCjqEdbbsJS2L9fw3fmIvlORJAFJEtClZGOrNAcv/ksQCOjIzs5m3rxmrNaBEXjbk2iipobGUYIkSTFDgkIcaHR1StSM3VPTJ2va3NeIoqQqQkmHBcHxhR1/7r3F3iTcpLvqHHFFzWaXT/W9+mRbTb8VNWvbPApR6KSRObK+igDlKj0ao1lT0RwWNEMs3F6rEDU3VikDTG4/YTjXzSwh7cGFsp6X25JwkcYiWgwcnJmCTidw5fRidVEzqgT1jNI8majpFyW+3lvPBROUV907iiRJrC5vptbu4eRRudjMsQ8XKpqV+1RJRrto1dQEOU0F1O0QoCENGmxsaEwnS1YFZQRiuxc7QkkJTJoEEye2/x07Fs5/eT1f7m53YRj1AkXpcgdccUaKbH+ravVQ0+bh398pS8SeXrqPH84Zwpg8m2JeCF9AVJSZ51lNnBoj1KYkIxWzoXsvruRaTfFFTZV+mqDeU1Ot36vacomI5dQclXt0ipoAF00sUoiaBp3AJZOUpYEaGhoDB0kMYN/2Co3Lf40YIUjVLbySlB9WoE/J7LvBDVBiJZ+H6GxfzUBU+rnOkg9+D6K3/YK2u+Lrbju3iRY19dYiBEP7cYmqqOmKL2q6DvwPX8NW2TRD+nCsoy9RXV5nzlSIgwFH8KKr6KpH9DTLlo/nFsye+ziug4vD+7lgtGIZeYFym6lKp2b0a5rIqSkYzJgKZuKuXIbHl4Ldk4a9zk3dd624/ensX56Ds/lcXD4LTq8Fr64E85NmnE5wOMDpBKczg7pNb+J0m3F7Lbh8FjxSLn6zulgpdpt2ePHhWzxuV05aGHlHBwzn2GNbmD+/831kjxQ0UVND4yhhV51D5pRSo7N9NWOJmqIEdk+g151jsShrcilCgkLsrnf0a1EzUfk5qId4RLIthqvws111eP0iphjlj32JWruAOUOzWHOwWSYWJePUrFEps19T0ayYpiZqThmUjl4nMDbfxoaI+dtq2zp1cCuKEgejetGG3GtnleYr3HUzB2cwPKo094wxecz/Vl5i9fnOum4RNe/8cCtPH173+AIbK24/MebnOFRGL7mMh0XLNF74g41f7IFt2+DQIYCpsseod/btGDqLDzG7BXLbDt9aefHWEdw4V93ZFt3DtDg9RRFKMyg9Rfb+1to9PLlkr0IMB/AFJO75cBsf3jQ75hgbVL5z82xmSvNsFKWbOdQq3ye7s59miHybSbVsPMSsDjg1u7JcJEVpZvQ6gUCUJbonnv9A4bzx+YrX5Iwxef0+yE1DQyM27qrlNCy+E2/tesU8KeDBU70Ky7Az+2BkA5tYyefh+Z0VNaPKoPWWfIzpw3Hu+6h9GcchfE07MXVDEnW0GzEUhBO5/WhEZ51iWiQta55QTMuYcSeCTv0YThAE9NZB8pR1R/DCutrraMgapZgWnmcbxKDLvqV59WNIATeZM+9VFe31KdlIErh9qbS6MmlxZlGx2IXdZaG1FdraoGLxCbQ0TMHuTsPuTsfhzyHwmTU8v7UVWps+oc1uxC9GXFz9Q+if/ygH+Lri2QPqYu9AYcWKDKqqTEyblnjZI5n+oTRoaGj0OMsPxC89h86Jmr6AqCoWhWh2+/qNqBmvVDjeSX9fI0kSe+rl702e1aRwMO5K8BxiiZqtbj9L9zdySgz3WF+ypVopME4sTGNoVmqHRc3qVuV+ur6yBV9AxKhvF3Q3RYmaOgHGH3bATihMk4ledk+AimYXQ1TCcOJR5/AqhLJQybbJoONP54/n5rc2hrevVuY8b2SOohQ/2sHaGfbWO3hmafvB7bYaO08s2ctDZwZLuerqgmXj27YFbx98MQLp4HhwtrsLXlzU5WGEsViCKeMTJ8rdl/+rqOamtzbIln1u3R5VUVOSJIUzVs0tGB3+I0nw9NLYvbk+3l7D/3bUctZY5YkHQK1dTdQ0IQgCp4zK5bWocJjhPVB+nRenPNxs0DGxMF11nlpPzWjSUwyduhhi0OsYlG6WuXx1Agzt4OfoSCLXauaek0byx6+CJ5EmvY7/O7vrJ80aGhq9T8BZR8M39+DY8UaC5fqmF/ZAx9+sHhIUojOipiRJCsFQn5JLypBTZKImBN2aXRU1RU8Lkld+vBnpRISO99R0Vy7FXfmtbJouNRfb+GvjjkVvLZSJmv7DTk3VBPEop6bLBfX1waqc4G04TU0vBP9fFpzW3Bw5HxpqnqOl9SW8gYhqmcejt/TzuGMOcvQeM4QwmUQsFq38vH8oDRoaGj3OsgSl56Ae3pGImjYPKlkrYZpdPll/vb5ETSALsbs+uWCYvqDO7qXN45dNO3lULu9vOSRLs9+d0KkZe/7H22v6qaipFGInFqUxNMvC+sr297Pe4cXh8WONUyZd3aYUNd1+ka3VbeH0Z0mS2BTVw7M0zxYOUhmvUt6/tbqtw6Jmoj6UN8wqYUyelVVlzZw+Jo/Jg5TCk8Vk4MQR2bKS6j31DvY1OBjRBXHsi111wRIbpxkabNCQxlPfWlj8B4lt2wTqFX30k0udT4ggQrYDclq59qwMLj7ZxqRJMHx4sCdmNFfnF/PQ5ztlvUnXHmzhu/JmZg3JlC1b7/AqSqfVvpcGpSsTzdVcmpHc+cEWTh19kkwYD1HnUO5zIZFRTdTsKadmLKYUpccUJdPMBgw6AX90g9kIOhMSFGJiYbpM1BxfkNYv3eK9ycNnljKrJJPNh1q5aGIhUwZ102dLQ0Oj13Dseof6r+9AdCW+yKiJmp3D1xr7YiOAv6kToqbfiRSQV9DoU3NJLTlJsayr4mvSp9za4W1EouY2jUw+h1jl57H3q+bVjymmpU/9KTpj/GMLvS3Y5sQXMNDsyKHRkcu+RS7KV5o4uPGHNDlyaXTk0OTIxfnBOTS2BYXM+vpgKXfHUb+YqtExMjL8/OxnB8nO9ide+AhHEzU1NI4Sop2aFqMeg16g1d3+RdgZp2as0vMQ/SksKF6K9p66/uvUVCs9L823MSrHKuupuCvBc9gex6n6ybYanrxgQucH2UNEi5pmg45ROVZVl115sytuT9HoFOoQ31U0h0XNgy1uRf/BKRGC4gSVFgVba+ycPa4g9pNQITokCKAks11QEwSBE4bncMLw+H0mzxiTJxM1IRgYlKyo6ffDgQOwY0f77YNvcqHiTFlgTxvwTVJrTAYJMpzocu2IOa3h0nGyHAgGkVG5Vv5138mqQmYkRr2O204Yzn0fb5NNf275AWYNmSqbpvbdpipqZihFzWhSDDqZQLqzzsFflx3g53NHKJatU3Fq5tuCzoRzxxVgM+uxe9pbYpzbwf0oGXLjODVjhQRBcB/MthhV3aYhOtNPM8Rd80bw1Z56PH4RnQAPnBK7pO1owajXccmkIq2PpobGACTgrKX+65/h3P1e0o9JRvjUUOJvjl9+7m8rR/S70RkS/6aHUEs+16XmYswej95SQMDZ3vPYXbEESRIRhM5fiPPUrFVMM0S5IHUpOSDoQGo/5oglhHuqv8NV9rlsmmBKRzfyp+zdC9XVUFPT/lf2f/kz1Dc+T5s7s/3BjwNcfvh2ZCMIIhaTgxSjk1STE2tOESmWFMxmMJvBZCL8fzI3kwmMRtDrwWBo/6sT/DQuugGd2IZB50ev86PXBcJ/DXqRQd//lLaVD+KrWYqAhCAEb8VXrkRvsiAIwQv9gYCf5uaNGDQ1D9BETQ2No4IGh5cdtXKX3uwhmTS7fLJS2gNJlPBGM5BETTXXX4j+XH6uljg8KtfC6Dy5qFnd5ombfh2r/ByCz39XnT1u6ElvI0mSwl07Lt+GQa9jqIqoWdYUX9RUc2pCUNT84ZyhgHo/zUlFEaKmyvo7ExaUyKmZLMcOy1JM26ni2G1rg5075eLljh2we3cwpVFO9+wDOh2MHAnjx0NuiYcX922F7DbIdiAYA0gEuxlFc+txQxW9LmNxw6wSfv2/HTI35ZsbKnnigvGyXoQvrCxTPFZtHypWcWpGMmNwBjcfM4Rb390sm/7Q5zu5anoxeTZ58JCakJ532DmZn2bmP1dM556PtuLyiTxwyihVR25XyY8aUyTxRE0I9suMK2p2Ivk8xKmj89hw1zxWlDUxuSiN6YPjj0VDQ0Ojv2Lf+RYNX9+BGNWTMYRgSiNj2u00r/qDbLrm1Ow4kiQl7KkJEv6WfZhylK17YiGqiJr61FwEQSCl5CQcOxe0L+tpwlu3EXN+5xsZeqq/U0wzF86U3Rd0enSpubKAqYCzFo8HqqrkQuXeb/ZSVfYM9W0Fh2/51DtKcP40md9pZZl7f8RggPR0SEtr/5vi3UKKbwe2lFas5jasZgfWDCsmfxkWs4MUo4tUk5OhFzxHWm4eFkuwrZHVGvzr3/0C9uW3E9kav+DC/2IZfk63j991cDnVlQviLpOf/yUNGZ8S0LX3WzWkDaVkktxt6/fDxo3dPsQBiyZqamgcBawoU5aeHzcsm+01bTJRs97hxe7xx006jqayJYGo6e4foqY/ILI9Tvn1wRY3Tq8fi6n/fS2qipo5Vkbn2gB5Wu7ueruqONDq9qmmVEfy8bYa7prXf0TN8iaXzMUGwX6aoN5770ACp7FaT00IipohokvPQe7UHJ5tIdWow+VrF9Hi9WqNhZqoOaQTomZphAgtSYA9hW+/1vHsHrl4WVkZex1dRhAh0wk5wcCeC0608vBVxYwZA6mHn1KrW8dLv0o8CItRz/UzSxIuFyLHauKyKYN4Ze3B8DS3X+Tf31Vw17yRQPDz88qag7LH6QQ4Y4yyrCuRU/O+k0dxyaQinl9RJhPAW9x+fvW/Hbzw/Smy5aP73oJcZLxwYiEXTux6sFM88uKUn8cKCQqRqK9mV8rPIeg4L83vP985GhoaGh2lec2faVr6i5jzraWXkT33T+gt+TSv/iNI7cc1gQShLxpKRHeDohelGr7mPR0SNdWcmvrUYFumlMFyURPouqhZIxc1BUMqhqwJ1NYGj9kqK4PC5fZPf03VISM1rUXUtBRT0zqYpqvU1ti/HZU6HWRlQWYmZFhasHhWk2FpJj21iQxLM4UTT6Rw3LGkpYGh8TPEHY9jS2nDam7DltLKiIv/SvaEi4jO5Wzbupb6L34Yd9uCwcLQC3IUjwVw5BTgiJrub+uZg2bX/k8TLuPc+yGBqOR3Y864HhnPkUT/O3vX0NDodpaphAQdPywLl0+ZBL6/0SlzpiUisVOzf/T52NPgkAWqqLG3oWPPvbfY26AU60blWhmTpywx3lXnUBU14wm6IT7ZVhMWgvoDas7aCYdDTVSdmipCYSSxAq22VLeFBe3okCCQi5o6ncC4/DTWVbaEp22raUMUpaTdhQAVKq7oZJ2abjfsOSxabt9uwvjZDLx1Fmi0gc/AEmBJ0iPpADqR4qEBjp1hZPz4oAOz2ljPz79ZhWBo/2ydddEkpsi1PdJTjBw7NEv1AkskD59VSlYHhbJbjxsmEzUBnl9Rxs9PHIFOJ/D7L3YpUravmj5YkSYP6j01Q4zKtXLJpCL0OoG/XDiBk59bIZv/z1Xl3H78cCZGfIeoOjW74G7sDLG2ZzXpGZtAUMxOjT/W7F5+LhoaGhr9CUn006LSxxBAbykk59RnsY68oH1aah4BZ3X4fsClOTU7ik+l9NyUP02RMO/vYFiQmlNTlxpsAWTKnaiY52+J39czGq8XDh6E8nKoKHOz9d2zqGm+gZrWQdS0DKLGPpzauwz4FF6QWzq0nZ7GYIDc3PZbXh7k5ARvIdEyK0t5S0sjLCq6D+3k0IJzZevNnPMbsuYcC0DjsqW0+OWBR7a8ElVRMmXQsQnHbMwaHbNVgME2WDEt4OgZUdNZ9pl8gqADnQEC7RfA7bveUjzO2MVQqqMBTdTU0DgKWKEias4ZmsUeFbHsQAdFzUMtsZPPof+Un8frpxliT72jX4qa0U7N9BQDuVZTTFFTjXil5yG+3d9Ii8tHRmrn++R1J5tjJJ+DuqhZHqd9gi8gUq/imgMIiBIbqlo5blg2G6taZPOyLUaF0DWhUC5qOrwByptdDMtOPuSlIsrhnJ5ikL3ugQCUlcGuXcES8V272v8vKyMY5AMEC7iVad9dQh+ATEfQeZljDzswyXQwdUIeb998THjRZ5e2yQRNiC3OvnLFNG55ZxMbq1pIMxvIs5nJs5rIs5nIt5k5szSfk0fF7yGqxuwhmUwvzpC9J3vqHSzaXcfQLAuvrpMLnnqdwK9OGx29GiAoAMYKx7l73gj0h4XreSNz+cHkIt7edCg8X5LgjQ2VPBLxHVIfI/28N4m1venFGeHnE4scayKnZv/4rtDQ0Oh/eOs30/DN/YieJtKn/pS0cVf39ZC6HW/9FkRvi2K6bdzVZM97An1Ktmy63hIlampOzQ7jb1Emn6cOPUMhavo6GBak7tQMlmUbM4Yr5vkiRE1JgoaGoGAZ61ZdTUSwagrwB8U6+4LMTMjL8ZAuriHb2kCWtZ4sawN5hSmkSxvIttaTbQtOG37STQw59V5VcbEj6FOzFdNEd/tFb3+UUxHAkKZexWPIHI0uNS9uf1pj1pjYY7Epj6H99qqYy3cWf1sFvvotsmnmwmMQDKm4K75qnxhQHjeasjWnZiJ6TdRsampi7969HDx4kObmZpxOJzqdDqvVSkZGBsOGDWPEiBHYbFoZkoZGd+L1i6wub5ZNm1CQRpbFxHAVEaajYUH9qafm6+sOsnB7LbOGZPKT44bJ0ojj9dMM0V/7akaLmqNyrAiCoNr/MlaKu1ry+QnDs1m6v13w9osSn++q4wdTulkk6yRqQvSkoqComWMxYTHqcUa4jcuaYu+7aoEtkXxX0czUQemKfWBKUTpC1NFbrAT0joia5U2ucLk4TVasgRzuuadduNy7F5Wr9d1Lbi6MHdt+Gz1G4pr/fUOruZVYve8/21VHdaubwvQUJEliyV5l/7DIwKNIRuZaWfTjxFfUO4ogCNx63DB++La8udDzK8qwGPVE65PXzBjM6Bi9Y3U6gaJ0s6JVQ0GameuiyuL/eN54magJsCPqcxbt1ExPMWA26BM+p+4kP4abMlE/TSCha7ar5ecaGhpHJpLop+aDS/C3BfsZ1392I6bs8ZgLpvfxyLoXtb6IWcc9TObsB1SX10WlWQdctUiSpDjOONoJuJtw7v8EJAnr6O/J0rvV+mmmlpxMy9o/g9heHebroFNTPSgoeKHVr8/jQNMkKutyqWoqoappCDUfTKf+ycPOywpwdTyWoMdItzopGmyhoAAKCqCwUP439H9+fjDYJuCyU/7CyfKVCHpZqwSAnJIhXRY04XAAUhSBiH60/raKqKGkoEtV7/spCAIpRXNw7vso5vaMWeoXsgH0lgLFcw30gKjpPPC5YlrqsDMRdEa5qKmCURM1E9Jjoqbf72f58uUsWrSIVatWUV6uVNyjEQSB0aNHc+yxx3Laaacxc+bMhI/R0NCIz/rKFllSL7SHiwxTcbt1NCwooajZSz01X193kKtfD16lfX19JYdaPTx2bvuPQDJOzf4oajY6vYo07lG5QYdmYZpZkZ68O4ZTUy35/J6TRspETQiWoPcXUTNaiE4zG8IuQEEQGJqVKgtKKouz71a3xd9P11Q0c9zQbIUAphbcop6A3sa545XJ1aGr95GOy527JCqXzIYmK/iDP8NVwJ/jjrBz6HQwYoRcvBw7FkpLg6JmJOsOttC2pFUW3iMIkc6CoKv1jQ2V3Dl3JP/+roJ3N8tFPYNOYJhKv9Oe5vKpg7jno620uNtPaD7cWk2039IQx6UZojgjVSFq/uyE4aQY5WLksGwLeVaTrG/mngb55y+6p2a80J6eIttiUryPkJyombCnplZ+rqGhoYKnZl1Y0Azh2PX2EShqrlZMSx1+dszl9dHCTMCL5G1FMGd099AGLKK3jer3zgo7L9u2vEjR979E0AV/g9WSz41ZozGkD5OVnHdE1BRFOFgeYPve4znYOJyKhmEcbBxG7Ttj2V8GlZUCkqRMK+9NdEKA3LQaCjKqGDpuBCUjs8nPasS891fk2Q6Rm1ZDblotuRmNjPrhBgzpQ5Jfd0o26E1yl6CkbFFmzIx//JT09swZilR30R1hsmiV60aG9JK4wr950HEJRM3YTk1Bp0dvLSRgby8599sPxlw+Ek/NWvz2KlKHnobOEL+FlOuAsp+m5fB3RdOyX8Z9rFZ+nphuFzXr6+t54403WLBgAQ0N7Yq7dPhoOrRDShFH14IgIEkSkiSxa9cudu3axcsvv8zgwYO59NJLueKKKzQHp4ZGJ1leptZPM2j7V3OWJQpbiSZRUFBLLzk1//Dlbtn9+d/u48FTR5GeEjwpjxbIsi1G2jx+fIH276I9MQTBvkQtJGhkbvB9EwSB0blW1le2l2nvqneoXvWPDrMZmpXKWaX5pKcYaI0QghbuqCUgSgnLUnsatWCniYVpsucVLWpWtbrx+kVMBqXNMFbyeYjvKprZeEhZQjZZpR1BdAK6JMHanS5WpAQdlnv3BntehoTMJkUbSQHo5hMYox+y7eHbTWdncedFBYwaFbwKnwxf7VG6Ln9y3DD+uuyAbNp/1hzkjDH53Pb+ZsXy35tc1CftC6xmA9fNKuHpb9vLwVQqyLl+VgkjcpRtGyKZUJjGyojenzaznh8fO1R12VG5VrmoGfX5i3YI93Y/TQiW2+daTAqBNVFIECTuqamVn2toaKjhV3HT+Zp29sFIepZoUVMwWDDlTIi5vN6iDKgLOGuDIk8/I+CoIeCqw5gzoVedpK0bnpWVknuqluPc9yHWURcDSqemoDejtxVjzBwtEzUD9oOIPic6owVJgsZG2L9f/XbgAHi9fVcOnpbSSvGwNIqLBYqLobgYBg0K/s10f0jKzp+Rm1aDQR8UGvPPewvrqIuoW/Qg9ryXZOuyTbyxQ4ImBM8nDJYixYWIaIyZozr2xGJuT4cuJVvWx1R0BY9BJdEvExgB9Gnqx2AhUgYdF3e+Mas07nyDrVi2zWScmo3LfkXLd48fHt8Qiq9arWg3EUIKeHGVy92YeksBprxgA3pdaq5qT1cAvbUIfUpmwvEc7XSbqNnU1MTf//533njjDTye4MmjFG0LODzNbDaTlpaGTqfD5XLhcDjCy0Y+5uDBgzz55JM8//zzXHXVVfzwhz8kLU3pkNHQ0IjN8v3KYI7jhwe/dG1mg8Jp1JHyc5cvoHARRtMbQUG76+yK8mqPX+SDrdVcM6MEjz+gcGFOLkrnUKubnRFCZl86NRudXv62/ADVrR6umTGYY4YG3bSxks9DjMmzyUTNZpePeoeXvAhHmN3jV7gYxxekYTLoOHNMnqyEtt7hZXV5E8cOU/9h7i12NzgVwU7RDskhUY5ASYKDLS5V0aomgai5q87Bt/uUFwBCIUGBQLC8aM8e2L07FcPS8fgaLdBsgWYrb/kMKFt7dy+CAEOGwJgxwdu4cUHXpZTVxumvLZaVBFknDGfCBKVzNB6L9ygPqO6cO4Jv9zXKUuE3VLVyzj9XyhLgAYrSzcy/UNlMv7e49dhhMlEzGqNe4JenJnYZ/OyE4fx38yEanMHvtqcvmhSzDHtUrlUWfuTyiRxq9TAoIwVfQFR8P+b3cj/NEIXpZtn3fGaqkZEqQUnRJOypqTk1NTQ0VPC3Kr+LfU27+mAkPYfoacXXuEM2zVQwHUEX+/Ra4dSEoHAYpzy2L2jb+m/qv/wpiD7MhbMp/N7nshLwnkL0ttGybr5iumPPB2FRM1owN6QPQxB0GDJGUdNSRFn9SPbXjaKsfhS1X/nYVwH79kFr4sD0HiEtDYYODR6/DRkCgwvtpO66nYLMSgozqijIqCS3dC6FF32g+njHXoHaGrnIFnDW4aldj33bf+QLC3oyZ97bqXHqrYVxRU29pQCduftyB/RRombgsFMzYK9SuERj9dMMYc6fjqA3IwXUj/UTOUyj+2qKnmZEnwOdUf0iuGP3u2FBEyDQVk7rxufIOkbdcemuWobkk5+npg47MxxelFpyMo5db6uPXXNpJkW3iJpvvPEGTz31FG1tbTJRMicnhzlz5jBu3DjGjBlDaWkp2dnZGI3yg2S/3091dTXl5eVs2bKFjRs3smrVKuz24JvvcDj4xz/+wYIFC7jtttu4+uqrtd4jGhpJIEmSwqmZZzXJTmaHZVtkJ7sdcWoeSlB6DtDkit/LsDv4YGuN6vQF66u4ZkYJO2sdivTj8QVp2EwGmahZ1erG4fFjNfduhpooSlzy7+/45rCo9tLqcr669TjmDM1SFVpD5ecAo3OVP7i76hwyUXNHrbKf5riCoPv93PEFir6AH2+v6TFRs87u4df/28mGyhbOm1DAL08drfp9riYwRoc4qSagN6mLmomcmgBvr61GqrdBsxVarAgtVn6xJYP9+4JX8dt7XApAz6XEFxXB6NFB4TLy78iRkKLSrtLls6DTycuLd9Wp91b1B0R21zsoyUzFFrGf+wIi3+yXOzWHZKYyPNvCNTMGc+/H22TzosuzdQK8ftV08tN6v7w6RGm+jVNG5fKVijgLcNPsIQxNou/ppKJ0ttx7MssPNDKxMC1m/02AkSr72u56O4MyUlSDqXL7oPwc4LzxBWw+1O7WvmJacVLHUdlaT00NDY1O4Gs5oDJtH1LAh6A/Mhzentq1ENXkJKVwdtzHxHJq9idEv5vG/2fvvMPjqM4ufqZs39Wq92pLsi333rGxwXQDppPQAoFACJCQAEkghISQQEJIgI9QAwESIKHYdGMwNu69W5Zl9d612l5m5vtjvWV2ZovKSrJ9f8+jR9o7d2aupJV29sx53/PdgwDvvehxtu5E34EXkDjr53E/d9/Bl0RlyD7sNZ9D4NzgPG40NtGo6zwLtR3FqO0sRqNtIRqeBqoq/wSbIx6NfMLDMDxyc2m/YJmfD+TlQfTYGGLCtdV8h7Y1/xaNqTJmhj+HVnqD2t1TAdPuv/h/Rz7046+FInFg16eMPividnaIhffQvpqctRmco1fSTxNAVOcpxaqgzJgJZ/NWyTZGmxlVjGX1OZIxztIEWqZs3WNpQufXd0nGnc3bwh7fXrtWMqYpPC/wdf45YUVNEhIUG4N6597Q0IBf/OIXOHDggF/MTE1NxeWXX44VK1Zg8uTJsS2CZZGbm4vc3FwsWOC1D3s8HuzZsweffvopvvzyS5jNZphMJjzxxBP49NNP8cQTT2Ds2Pi9qSQQTgcaeu1o6ROLOQsKk0RvZouStdjV0Ot/bHJ40GNzRQ2IAKL30wTCOzVDW1IMhjWHW2THvzregS6rC4fDpGgrWRooF4+f6LJiavbwlgF9crTNL2gCgMPD4473D2DPfWehKoqoKRcWdLzD4nfjAvLJ576wmwvGp0v67X12tB1/uCA+L6J3f3jIL6LubOgFzwO/WSG+aPDwAv76nbR0bXqO+KJErn1CuL6arWan93u0qgCT1vvRd9JpadIBvVrYLWKRVAAgbes9RKhdQJIVSLIAiVY8cnU2LlucgJIS7139/qBRMChI1Ij64VbICNm13Tac9/J2VHZakaJV4P2bZmHJWG9jzT2NJlFvVgBYVpwKiqJw/YwcPPjZUdlybh+PrhjnP9ZIcueCAllRU8nQ+FUMLk0fGQYVLp8c+QIfAIpTpc/BE502LBkrDQkCRqb8HAB+vbwEZieHzdVdmJOfhMfPj1yK5SNqT00iahIIBBk8JhnXPO+B21QF5WniPHK2SPtpqjJnR9yH0co4NUdZArrHVAXeKa7ystV8HndRk3fbYNrzDHieQospF3WdY1HbUYy6zrGo6yxG49+cqK7XwuEIV5Ex9GK5UgkUFgJFRUBeSj2S+15ETlI9spPqkZ3UgPEX3Yfk2ff265jO1t2SsUjPG7nnTN/+50X9KAEAFAPj7Af7tRbReXSRr3mGqvQ8cLwxcLYEhEDBY4dp91NQpkorfqI5NQFAnTVfVtSM1E/TByMjanoszZJ9BYFHx9pbJX8fAODqOCAZ82GrCemnSdHQ5J/jf6jOXxZ2X+LUjI0Bi5qrV6/G73//e9hsNgiCgIkTJ+K2227DueeeC5YdvMuJZVnMnTsXc+fOxcMPP4yPPvoIb731FqqqqnDgwAFceeWVePjhh3HFFVcM+lwEwunKjpDUcwD+smYfcm632h57TKJmtH6agHz6+bF2M657ey8ONPdhWXEq3r5+OjIT5BOTo9FudmJrnfTFBfCKYx8dbkF1l9R9OinLIAkRAbxBO+FEzSaTHeuOd2Ld8Q5sre0GQ1P4zbmluHFW9BfbSDy9sUoydqjFjOe21OBEyNq1CgaZQW640jQZp2aIECqXfO4TNdP0KszLTxKV0B5s6cPhlj5MkuknORjazE68HxIs86f1lbhlTh6y9IGL0a/q7KjuFouT49J0mF8gdo+GPncFAThS48QO3uus9PVJqqkBth0sBjomANzwJU/rdPKOy1ePH8Xrh8S/85u+l4fBaIKlaXqRqFnXa4fDzYnCbX67tsLv/O2yuXHFv3bjwP1LkGPU4FsZIXBpsfcuelaCGueWpmFthfwbr+Ulqf0SDOPJyomZyE5QS2643D6/ALmJkZu4D4SSVOlNBV9YUGg/TWBkgoIAQKtk8exl/W8NEKmnpoKhoFcNb5I7gUA4NfD01cqOu7srTh9RUyYkSBXFqUlrZJya9tHl1PSYmyRjzpYd/v6UQ4XF4i0Lr6gAjh0DDm9vwLEjn6G6vRQO9/AEDlIUkJsLFBUJSLO/jbyUauQl1yI3pQYlU4sw9ZbXQZ9s0+7qtqPpzb+I9uct0hvw0XC2yYiaGeHDkeXcvRJBE0DyoicG9bfF6jIjbh+qkCAf+gnfh6Vc7Fjt2/cc9GU3SdcWpacm4A0Lwh6pUzeW1g5sSPk5AElfT9/6wiWVc7Y2eKytkp+jp68e7m6xg0aVNR+MOvB+XJFQADaxWNQT1r+NODVjYsDq40MPPQQAyM/Px89//nOsWLFiyBYVikqlwrXXXotrr70Wn376KZ577jnU1dXhkUceIaImgRCBHfVSsW9uvljULJJxu9V02zA9xyvsCYKAyk4rjndYcU5JqkgkkXNqqlgazqC0dZPDDZ4XQAcFzzz0WTkONHvdk+tPdOIvG6vwl0vCN1aPxCdH2ySpvsG8t78ZWoX0jffEDAMcbulFQWi5d1WnFf+3tRbrKjokYTsAcOt/D2BOfiLGpw+s3+/2uh5JArmPR9dWgILYyVqcqhO5W+XKz0MDj47KJL9PSA+IMReVZYhETQC4d/VhfP2j+bJO2m213dhe34N5+Un9KlP/vFz6u3J4ePz683L88+opALzp2q8flYqwvzqnBDRFobs7IFTuLzdA+GZSwHVp0uAvHhZ/kewNAAMTzaOidgGJViDRimWztLhheTLGjvWWimdlAXJG5D+VS7+/3MTBra80XY+vjgdER0Hw9mP1CdOCIODLCvEbp26bGz94bz++uG2erKh5dnFAZb1hZq6sqJlhUOGt66aPeLCUDwVD40cLCvCbLwOBFGqWxkNnD63DwIecU9PnrpZ1ao5QT82BEqmnZopWSVoBEQgECQLnhsdcL7vtdOmrKQgCnK27RGOMLguMPjfifnKuO36UOTXlxBzwbjhbtkGTv7xfx+J5oLHRK1oeOWDB7rW1qG1MQ3VHGVq7Q2WI2CoI+ktysveabMwYr+My+CM/3+vG5OxdqH/pVtF++tyxfkETANiEAnjbDwUuZGUdyRGQe96wCUWyzwsftEIHitVC8IRvD6YtvgwJM+7r11pCYXRSYS8YRdLQXkdp8pdDk38u7PXr/GMC54T50CuSuWxCDE7N7Pmy4zE5NXXyTs1gXB0H0R0lpdzVcUAiatpkSs+1QaXnPjT558AsI2oqU4ioGQsDFjV1Oh1+/OMf44YbbpD0yIwnF198MS644AK89dZbeP7554ftvATCqcjOEKcmRQGzchNFY0UyYRE1Qe7AF7bW4icfHQYAZCeoceD+Jf5wiGaT9E37+HS9X7AEvAnEFpfHn0IOAN9UigUUOUElVtYcbo24/dsTnZK+cDlGNZK0SllBMFjUPNZuxoy/fgeHRyp++uB4Ae8fbMHD50hFTUEQ8J99Tfj0aBsmZRrwi6XFkmTuv8q4NH2ElgMDUhElSatEqk4p6t93vFMsmh1tF4uauUa1KKH6+uk5eOyrClES/LdVXXh3fzOumy5+oX92UzV++vERvzj57+/NkMwJx2fl8r1P397bhB8vKADFAasP8qg5ZgD6NIBZA/RpoHXo8ed1qbi7NrTRuwJAUUznHii+u/g+odL3oU2z45IPN4BSBdor5M7Mxc3XRRd563vFLtQMgwoqdnCOt1KZ53JFh8UvatZ029Au4xxcd9x7U2FLrVhYL07VIS/I2XjZpEzoVYzoOUlRGJTLOl48sLQY22t78PmxdmgVDN66fjqyjfFZY5JWiWStAt22gCPdF+4VmjYOjJxTc6AYVCwYmpL0JAZI6TmBQJDHY2mQdZIBp08COmduAGcTX3+qMmdHvdFzKvTU9FgaZcftDRvCipo2W8BxeeyY92vfh91/yZMIID5mpNRUbyVMNvUx8hL2oTDtBApST2BMvhVT7jsYdX9OJnma1ojLZ2hWDUafAy7o5xMaWhQNT18NeIe4f7kqM7xL0wejTQ/rfmYTi5F27quDvsnIRHVqDv3N4eTFf0TTv7+GuDdt6PUGBTbKzQIAYDSpUCSVSm6cxCJqRnNq8h4H2r+8CeAi50S4Og5IBEtH82bJPI2sqLkc5oMvisZodTJomXAxgpQBi5pffvkl0tJG5ofMMAxuvvlmXHTRRSNyfgLhVMDN8dgd1CsT8PaRNKjFf/aFSVJRs7bHK2q2mZ342cdH/OPNfQ488U0lnl7pdVXKBQWVZRhEoibgLUH3iZoWpwdWl1iskyvTjAWL04N1lZHvcPMCJIEdk06maOclaiTO0uAelo+vq4woaPr4rqoLOEc6/p99TbjhP/sAAO8B2FLTjU9unet3tVV1WvHhIfl+oOGQCyYpTdOJvsfKDqvfHWtzeSSJ9r7Scx+FyVrcv2Qs/rRefIfw558cwUUT0v2/u0+PtokETQB4ekNVTKKm08Nh7aEeCJ1iwRJm78eSN3Tw9E4Hx9GSfW0ADkU9wyBgOCDB7ndcItEGJFqx8ZfTMGeySjach+fV0K8TEPzUOiLjiJWjIUTUzBsCwW1culxv1cBzeWutfIsGwOucDuXsYnEDd62SxS+WFuPRtYE3pL9dMQ7LS0bfxZaSpfHpbXPR0udAilYpuZEw1BSn6LDT1ut/fKLLCkEQZP+vjVRPzYFCURSSNQpZgTZaMjqBQDgz8ciEBPlwd58eoqazbZdkLFrpOSDvuuPso8up6ZFzagJwNGyA1XrSdXkEOHo08LmmBhGrpoaCFH0bCtNOoDC1CgWpVSeFyyos/uVGJKV6bxi2ffw6bNWfifbjXRbQyvCBfwDA27skY4wmRTKmMBaJRE13Xy0EgfenWEcj1KUJRO/DCoQXNSlWi4yL/zskqeRslJ6abBxETWXaFOjLboDl6Jth5zD6bFBMbNdOquwFAxI15XtqBv4OerY8DHfXEfEEipbcvJHrq+ls2SF6TCuNUKZNlczT5C0FKEaU/K5InkAqYmJkwKLmSAmao20NBMJo5VBLn0SQmxNSeg6E6al5UgT71+4GkXsPANZWtONpeEXN0PJzNUujMFl6vF67B75TywmhHVYXBEHo9z/ur453iARJAJhXkITtYXps+vCJejRNYWyKVtRz0ufU7LW7YxYct9b2wOXhJeLJs5vEZSlfVnTg0bUVePwCb8+bv22qloSvhLrhQimWceSVpupFopXDw6PRZEd+khYVHVbJhaYv+TyYXy8vwb/3NopSrVv6nHjsq+N4euVEHGrpw/X/3iM51uFWMzhegNtFobkZaGoC6uuBhgbvZ99HdS0Fqzl8m5Lo2eQDh6YF8Do7YLQBRjuQYMOMMgWuWZKIBzftBfR2hF6PpuqUWDxLKVs+7j0mhbIMgyhkq7zdLGm1EIrV6RG5+gCIHJEDZZxcb9WgBPTQ9gLROFumwecvlxUjx6jGtroeLC9OxbUxOnRHiqxhcpAWp+qwM+h5YHFyaLe4ZMvPTzWnJuANC5ITNVNPMYGWQCAMD+4IJbnunuMDut4bbciLU9FFTUAqUA3Wqcl77LAeewe82wr9hBvAqBMHdTzO3ASrU4cTbeNxorUMla1lqGwbjxNtZWi8XoAgxO93l6DpwZj04yjOa8PU5UuRVHsHClKrkJ9aBYNaeuOYMeT5BU0AYGX6Prp7T0CVPi3ieeWEZUbGIccai4CmTUE7usBZmsEaojsJgTAhQRmxiJrymkfqOS/IBusMhEhBQYwhDzQ79H3JASBp/m9hPf4/CB75oM9YQoJ8GCb+AJYjb/gfqzJmxyTG0gotaFWSKACIO1l+7mzdjb59z8qu27T3b+AdgUqnUFGTs7VL3LyqzDmyIjitMkJXehWsFe/6x/Tjrom6doKXwSf6EAiEUYlsSFB+omRMrWCQlaASpaTXdtshCAJe2yHtiXS0zYLWPgcyE9SSoKBsoxpJMsESwWFBrWbpG32nh4fFyUlcpNGQKz3/zbmluHf1YUlvzGB8Tk3AK0gEi5qtZifMDg/e298kEYXHp+tx/Ywc7KzrxadBpdQ2N4fdjb1YENRfstPqxO7GXsm5n/imErPzErGoKBmv72wQbaMpYN3t83HhqzvQIxOw5FtvKCUyglZ5uwX5SdqIyefB6FQsnrl0Eq78l/iC6++barAoMxN3v1UJc3MKYFYDlsCH06JG2qtAj3xb0ODvLtqEwaG3e92WRhvuvSgDk8crUFTkTa0U9HaUPPWNaPqc+QX4wfk5eOiA/EXU1OyEqG+6JoaImnY3j5puG8bK/I58NJik58uTubHQX3KNGmgUNOxBfWIrgpya22qj/oJEBPfT9MEyNH4wJx8/mJM/8IWehsj9vk90WiUOceDUFAJTdEqgQ/r/NLStB4FAIADeEttw8M4e8PYO+fCTUwiHJCSIgip9Rkz7Mpo0sag5CKcm73Gg9YPz/SnSpr1/R+5Nh2IWoMxmoLxc7Lo8uPMlNHZG7q84GGiKQ15KDcakV2BM+nGMPfm5KP04UvXtoCgg/cL/QFeagOb3muFs2R/2WArjGPFjGQHLE5OoKXVq0jJOTdYobXnkNtXELmqGhgRRNJRR1gYAjEF63WWY8iPox18f03ljgdakADQL8B7JtqEOCQqGNeQiYca9MO38U5jtsV9zqrPnIf3i/8F8+J9gdJlIWvBYzDdQGH22SNT0OTV7tj0mmavKWQTjrF/A3vAtHA3f+sfdPZXg3VbQCu91oSPEpQkAqqy5YdeQsvQZ0KpEuLuOQFN4HgyTb4tp7YQ4iZrnn38+Vq1ahUsvvRQZGRnxOAWBQIjCzhhCgnwUJWtFomZNtw0bq7rCCoPfVnXh2mnZEqdmdoIaiRrpv5VeR0CgCz5PMB1Wp6yo+UV5Gx7+8hh4AXj4nBJcMcV7oeXheHx6VNyj0aBicXZxCq6Zlo3Hv66UPQ8ATMoMlGnIiYQnuqx4Y1eDZPzlq6ZgUVEK3t7TKBI1AWBjVZdI1Pz6eGfYUpwb39mHK6ZkweYWOzKvmJyFuQVJ+MMF43HXh/IF17JOTRlR82/fVWNFaZpsSbRP1HS7gZYWr7uyqQloaMhEwaGZqK3nAYsGsKjBWdRY9RcGgPTizkf/PIADIy0t0Ni9sDDw+dPGajx/qBwUGxDzrv7xQtHvYme99DmXoVchVadCYZJGlBruY3IMye9lmVJx+EibObKo2St1KucZBy9q0jSFklQ9DrYEWj/4nJoWp0c0DniTq0Nd2D7KMvTIMJx6jsKRQi4s6ESnVeLUTNQo4l4KHw/CJaCnnIICLYFwumKt+hhd39wN3mWCccZ9SJz/2xFzQ0YLT3F1V0BzCouaAu+Bq22vaEyRMiHmEmA6xHXH27sg8B5QdP/flpt2/9kvaAIAZ66H9di7MEy6RTTP4wEqK4GDB4FDh7wfBw96gxelDI2gaTQC48cD+ZqvUaDb4Bcw81OroGLDt51SJE+AtmQVAEA7dqXo+wuFjUHUdMuEr4TCyzo1pTd3Q0VU4GRfzdzFUc8h8B642sXPG2XKRL8AFgn9+O/BfOBF+PpNqrLmI+WsP0fdrz9QFA1GlwXOLH3/E49+msEkzvw5zIdek/099MepCQC64kuhK76032tg9bmiEnPO1gpH0xbY68RBPxSrRdqKf4KiGSjTpopETUCAq/Mw1CeFS2fLdsl5VFnzwq6B0aQgdZnUFUqITlxEzdraWjzzzDP4+9//jgULFuCKK67A8uXLhzVQiEA40wl1aupVjKxDD/CKmsHlyzY3hz+uDy8Krj/RiYsmpEt6Y2YnqJGolv6di52aUlEHANotLowJ6RfZYXHisjd2+cWXq97cg2cudeDexWOwqaZb4ma8YHw6VCyDa6blRBQ1y4LKr+XCgj4+0ir5+ZWk6rDwpFC2ZKxU4Puuugu/XB64kxmcRB2K2emRFU1/tmQsAOCH8wrw+q4GkQsQ8CbL58iU1J41JgUsTcHDC14h1cXiy202/EnRjXU7FBCOFQFWFWBVA1YVbv8yER3tQGdnaA8kCkN1MdsvWA4w2L0fCYHPd5ybjvtXZiM3F9CE0f2ad7KgysWO2roeOxYUBh7LuYMzT4p2s/MSZUXNqTGImhNlyviPtpmxcmL4Zuv1MufKHwKnJuAtQQ8WL7ttbnRanTjYbJa0ObhzQSH2NPRii0yvTTmXJiE8xTJ9bis7rZKemqdaP00fyVr5azcSFEQgjA54txWda28F7zIBAHp3/hHq/HOgiUFoiQeRemoC3hL0kVrbUODqPCxJoo619ByQCwsSwNu7wOj6ZwRy91TCtOsp8ZEEoO5IBZqaxOJleTngjFOfn5wcoKwMmDgRmDDBK2SOGwekpwPO1h1oee9C0Xye0cNc8hsk1PwFgrNXcrzEOQ/5y3N1Y1eiZ/Mvw547FqdmLKKmnFNTTtQMFVGB2MOCXF1HJCXWyhj6aQKAOmsOsq5aD8ux/5x0Nv4UFDv0N59Zbaa8qJkUP6cmANCqBCTNewRd394jXVNCQVzP7YMJDQsSeHR9e69kXsK0u6AwFgLw9gQNxdVxIEjUlHFq9uN/BSF24lp+znEcNm/ejM2bNyMhIQGXXHIJLrvsMkyaNDS9HwgEgjw9NheOtYsTsGfnJvoDakIpkAkLWnc8fCL5tyc6JS5NwFt+nqiJLGq2yAhMgFfADOXryk6Jm+yna46A4wXUyYhDl07yikkTMw2YlGnAYRmX4pgULXSqwL++klSpMPXXjdILlJtm5/ldD3mJGhQla0UBPFtqu+HheLAMDUEQ8FVF/8qJFhclY26B10nL0BT+b9VkzH12k190FDgKRdok7N9PobXV67AMfFYh7cgyNLcIXuHS403S/tXrgJzD8mi/VjY4KArQJ3tgVppFwuWt56TijhUZ+MHnW3HY1C3pXZmiVeAvd09CtBaEcs/duh7xm402OVEzwXvgWXmJ+N9Bae/UqdkxiJoyTs2jUcKCQkOCgKHpqQkAJWnS53JFuxXb6qSl54uLknHvojGY9teNMDvFpUZE1Owfcu7pqi6pUzNdf2qKgElhRU1yo5pAGA042/b4BU0f9rqvRkw4dEcoPwdO/QT0wfTTBMIloLf1S9QUBAF1nz+IQ9VTUNEyCRXNk3CsZTIqWiahxxqf1/CsxHqUZB7DjBVnYdIUNcrKvGKm0Rh+n96df5SMObOvgjttOTJmXYquL66BuytwVapImQhd6dWBx0klUKSUieYEwyaKRUbGkAuKUUPgAu9RYnJqOqKnnwPeoKBQIvWQDWag/TR9qHMWQp2zMOb5A4HRZwFt0vF4OzUBwDDpVvTtfw7uHrEppb9OzYEil4Du6jwoekwp9DDO/Jn/sUom8MfXV1PgPZJ2A4rk8YPueUuQJy6i5i9/+Ut8/PHHOHLkCIST78hNJhP+/e9/49///jeKi4txxRVXYOXKlUhOTo5yNAKB0F9CHX4AMKdAvvQc8Do1+0N1l002Tdlbfi4nagZEk7aw5efSUhS5UCEA+PknR6FRiMs4FQyFC8cHLhSvnpaNw19KL5wnhrhV5fpRhoo8FAXcMFPcL2fJmBSRqGlxctjbZMKc/CQcbbNIRF+dkhE5WwUegEMJ2JSAXYV5WWV4/nmgowNobwfa2xORfWwZGlsEwK4EHEqUA5j5e9kfCYD+/Q6HBgHQOZGQ6sHZ0/TIyfHesc/NBQoKgPx87+NzX9mBTTViYe2XtxdhbCqFvxlLce5L0vKMexcXQa+K/hIlF3QVKnjLOTUz9AGnZigsTcmGKYWSl6iBQcWKni9HZHqYBlMvI2rmD5GoOS5dPixILjhrfkEyso1qPL9qEm56Z79/PMOgwrmjMNF8NJOqUyJBzaLPEXgeHG0zw+QQ/x9JOwVDgoDwvTNJ+TmBMDrgrNL+4sEJzcMJ7zKDt4e/KQ6c+gno8snnsYtTjEZG1IzQV1MQvGXi+/YBBw54nZcH91pQ0/A+BGHoW5rkJNWiOLMcJRnlKMk8ipLMcozNOOYP6km/5APoxl4S9TjO9v2w13wu/l5oDRw53vATReJYZF+zCT3bfgfriQ+hSBqHtHNfAkUzon20Y1fCFEbUVBjHih5TFA02cYxIBI3JqWkLec5SDGhVomQerUkDpdBBcAfac0Vrt+BD/nkzK6Z9h4twYUHxdmoCAMUokLz4SbR9vMo/RiuNUOcMz80ZuQT0UBKm3SVy8CqSxgOMEuAC72F9oqar85DU0R2h9JwwOOIiat5000246aabUFVVhdWrV+PTTz9FS0uLX+A8ceIEnnzySfzlL3/BkiVLsGrVKixduhQMw0Q5MoFAiIVYQ4J8yCWWR+Pfe6QXzNkJKnlRM7inZpjy89BSTUBejPIRHIgCAEvHpsAYdO5rpmbjN3KiZoi7LidBDTVLS0KBgjm3JE3iplsyNgVv7A6UaAhuGmu290LVk4QX15shVGQFREubCiXJaahr4tDdSQE2lXdbUILkU/+VO3P0PjvxQqkW4FJbAb3D/5GU7sFT147BY1sPoJHrBXROUIwAo1GN1Y+cK3ucbpsLW0JCaiak6/19J5eXpOGiCen4rDyQ/qlXULhzfmyNwfMSNaAocRl9aIm3fPm5t4x/Zm6iZP/x6Xqo2OivRxRFoSxDL/p7K2+zgOOFsK7oxhBRk6WpIetfOU7GqXms3SJJPi9I0iDb6P3+b5iZB5dHwN83VUOnZPDUxWX9Duw606EoCsUpOuxtCjil5Fzip2JIEBC+zJyUnxMIowO59GyPeWREzVgEHnfP8WFYSfxwhoQEUawWypSJMe8vl2Tt+x26XN6wnv37vSLm/v3ej76+0D3k20n1h5wcYPJkYNIkb+n4xIlADv4D55abI+7naNwYk6hp2vWkdN+syyEoAtZOWmlAypI/I2VJ+P6QurGXhg+RkSkHVyQWi0RN3tYO3tkXsecpF+LUpDUpsgnVFEWBNRbB3XnYPxbNmezDFeLwpVhNv543wwGjk2mfRDFgE6QO1XigHXMxUpY9D9PuvwAUg+Sznoq5V+1gYaOImpTSAOOMn4rHGAWUKRPhat/nH3N1HoLAc7Kl52oiasaNuL5zGTt2LO6//37cf//92LFjB9asWYO1a9fCavXe3fB4PFi/fj3Wr1+P5ORkrFy5EpdffjlKS0vjuSwC4bTA7PDgo8MtfmcVHSSi9CckCIju1EzUKEQl5ACwoVrafyZsUFBw+XkYp2ZoqSYAtEcQNUO5dKL47mJJmh4zc43Y0yguyZoUImrSNIXiVJ1fhPA7KB0Kv0OyyFCCp58GuruBri7vR1NrNoSKBP8ceBg88SzwBABvX0pxGcM+jA5oRkBWJoXMTCAzE8jO9jorfS5L30diInD3R9V4cVsdAG/p7Bc/nIfpOUqsdvJoOhYQpxtNDlidHlFZv48vj7VL+jleVCYusXrpyqk4+x9bUdlpBUsDj81PglGmN6scSpZGlkEtcsbWdovvjMo9jzIMXkHGoGaxrDgV31QGLmgvnBB7CVhZpkEkajo83gR0uZJkQFp+nmtUhxVA+0upjKj5WXkbum3iv935Ia7tW+fm49a5JNF8MBSnikVNuZCw9FPWqRmm/FxHys8JhNEAZ5M6NT0yffGGA3dQqnc4PH014D0O0Ky0R/hoh3f2wd1VLhpTZczsV8iPr/y8z25EedMUHG2aihPfTMXRBq+g6XZHOUA/0eu9wuXkycCUKd7PkycDcsWSvTvrEO3K29GwIeo5Xd3lsFZ+KB5kVHDk9j+tW5k+A4w+B9zJNGoftDpZtpRXrlTa2XEgYjsGPqSnJqMOH46pSBCLmrytHbzLAloZvsKHd1vhCnGbKtNnDCgcKp6wOmkJNmssAsUM3+t9wpTbkTDl9mE7nw9JT80QEqb9GIxG+rxQpk0ViZqCxw53byUcsiFB4ZPPCYNj2P6S5s6di7lz5+LRRx/F119/jTVr1mDLli3gOG85Znd3N9544w288cYbKCsrwxVXXIGLL74YCQnDo84TCKcSJrsbk/6yAU0mr5Dzgzn5eOWqKaAoCoIgSJya+YkaZMkEzPjIS9SApiARn3w8cm4JfvfVcVE5pdyb9hyjWlaMMsUQFNQpU34eyakZysqJXiGK5wGLBejtBc4yFGF3Y71XoHR6P3Ywadj9tne776O+ajYEE07Ok7qPXlwtd0YGQIRGQsNMQoJXpNQnu7G3px3QOQGd4+TnwNff/HQWlpaEv1gL4O3reUlZBlrMTlw+KRNJJ51ZJWk64Jh4dmWnFdNypD+P0IR6ALg4RDTMNqpx4KeL8OF3e5GjZ6BX9q+cakyKViRqVnZa4fLw/qTp0OecQcVCqwy8/D172STc+M4+HGzpw3ml6XjgbHE5UyRC2xkAwJFWs6yoKQiCpPx8qPppAt6bD+l6JdqDXM9H2yySefMLSduXoSaciB1M2inaU5MEBREIoxtZp6alEYLAy7rN4omcU5M1joXHVBUYEHh4ek9AmXrqZSw42/fAl0DtI1rpuSAAjY0B5+XeHbOwZ3sFGruH1v1GUxyK0ioxLuswps7UYe7KCzB5MlBYCNAxPg085ibJGKPPFbUzcHUeBGfvlA3S8WHa9WeE/pz0ZbegWxnL9acYiqKgHbsS5gP/EI3LuTQBQJk+XTLmaPouoqgZWv7PaMK34ZENC+qrgTJ1cth9XO37AUEcrtqflgXDhZxTczj6aY4GIjk1vS7N+2S3KcP01Qx1alLKBCiSJwxqjYTwDPvtAZVKhYsuuggXXXQRurq68Pnnn+Prr7/Gnj174PF4BZMjR47g6NGjePLJJ7F8+XJceeWVWLBgwXAvlUAYtTy/pcYvaALAP3fW4/JJmbioLAM13TaJQBip9BwAFAyNXKNGtt+fiqVx06w8fFfVhTVHZLpHB5GVoIaCoSX9I31OTQ/Hy/bOBIC2Xhe6uwGzOfBRuUcLoSULcDGAi4WSVwIuFi47DbhY74dTAS2vxuIPNOjtBUymYME17+RHgGe/lTv7yJV5R8Jg8KZHpqUFPmdmAllZ4s+ZmYDWb7ZV4AfvdcimqwPA5OzYS5YoisIFMq5FuTLn4x1SUdPN8fgyJDApSaPAgkKpa5hlaIxLHtid4ImZBmwO6tnp4QUc77Bg0skE87aQ1gaZIeXeEzIM2HXfWQM+dyhH2sz+0Kpgum1uSduEoRQ1Ae/vpt0iDQYKJtSpSRg8sYiap65TU168TJJpNUIgEIYfzipzbca5wNnawcqVk8YRj4xTU1t4HvoOvCAac/ccPzVFzZadkrFgcYrngaoqYM8e78fevV4hs1v0smzEYG+KpxpaMT7rEMZlH8bkSTzGqP6H4vSjUCu97w3UOWch69IL+n1cj0wvVv24q2Ha81fRmKPxO+hKVknmAoDl2DuwlL8tHqQVMMz4KVAd+fokHLqxl0pEzdDkcx/qXOn1nKPxO2Dur2Xn8x67qEcm4C0/D0e4sKBIoqYtpLco4HX4jjbk3IpniqhJq1NAMSoInNRQY5x2Nxi1vCFALizIXve1+EYOvGFiw32T6UxiRD3PKSkpuOGGG3DDDTfAbDZj48aNePvtt7F//34IggCn04kvvvgCX3zxBfLy8nD99dfjqquugk43OgUIAmG4WHdc2lD8wc+O4rxxabKhIHMilJ77KErWyoqaV0zOQrJWiaVjU7H6QAfgZrzp2m5G9LWWUuKTD1lYrQBzYAyEPsG/7eA2DW7aDnSZBPAH5nrFSDcTECZdLNZyDFLuCj37FNEjeTkUsAGojfodjjxqNZCRERApgwVLua/VA6zM+uOFE/DhoRZRcAngLSEfinAPuTLn451SR+DW2m5J24ILxqeDZYb2RT20pQDg7WnoEzVDnZpD1cMSkHdqfl7ehl8tlzZVl/v7ypMJOhoMJWl6SShTMBoFHVOyO6F/FKdGD+pKO416aiZqFEP+d0wgEAYGZ5O/4cyZG4dd1JRLgtYUnCsjap6aYUHB/TR5nkJtZzG2bFqK/S8FRExp/8uBQ9PA+HEcJuYdQbH2f5iQuQvjsw8h1eB9H0CxGuTcsB9ta96EuztwrePs2D8gp66kxFubDk3BComoaW/cKCtq2mq+RMdXt0rG9RO+fzLFemCipjpnMVhDATzmOv+YpkC+lzury4IiqUSUou1s2Q7B4wTFSq//5IKtIrlQWRlRM1IvWd5lgfnQK5Jxddb8sPuMFMqUSZKfczjx+nSDoigw+hx4TNXicWUCEsK4NAHIitnW49KgBDUpPY8ro6KRw7Fjx/D1119j/fr1KC8vB0UF+ov5woUaGhrw5JNP4h//+AceeughXH755SO1XAIhIjVdNnxxrB29DjdMdg9Mdjf67B6YHV7nIktRYCgaLEWDoSmUpOpx/bQcpOnV4HlvLx2PR/rZ97XF7sGWTTQETyrAUwBPAzyFIxUUfmTrQn0XIFTkARzt/zjKZeFXXwFOZ+DD4RA/PlY/BUKvC+AY734e776fKlQw/Aiw2YoAXv6uKOAVFq9/3/dovGhbJ4A3twLekm1p6uOpiEYDGJN4tLrNgMYFqN2A2gVofJ9dgNoFRufGnl/Pxdg8BXQ6b5J6vMkwqPDoilLc/7G4f0+ZjAA3EGRTttulouanR6UlcaH9NIeCyZlSke5Qax+uRQ6sTg8sTnHJT6hTczDkGNUoTtXhRGfgLv/W2h4cazdjfLr45x3aTxMA8oxD7dSMfNNvdl4iFESMGnKKU05np6bUkZkSpiSdQCAMP+FETY+lASoMb7pyqLjD6LKgTJ8mmeeKIQFdEASvww481LlLRtTlxPPA8eMCvvo4GwernsThhhk40jQNFsfQtSHSaoGpU4Hp04Fp04Cpk1zIx2twHvx92ET5xDm/gsJYBGX6NLi7A70+BVcfPKYaKBJjb6cDAB5Ls+gxq8+BKnu+JOFZrq+mo3kb2j+7BuDFN9QpVovEOQ/1ax2hUIwCaRe8ic51t8NjaYJ+/HXQj7s27Hx1zhKRqCl47HC27YY6Z6FkLtdvUVP6XsgdIoQFYz76L/DOXtGYpuA8sAmjr5c5RTNIv+S/6Pr2PvCOLiRMvQuqbOnP7HSF0WdLRE3j9J+AUYc3B9EqI1jjGNF+gkem8pGEBMWVERM1T5w4gU8++QSffvopmpvF/0B9QuaECRNw7rnnYt++fdi6dSs4joPJZMKvfvUrHDx4EI8++uhILJ1AAAB8+y2Fn/98HCoqtCfLnSlwvACOUwNCAYDY1avH+nVmFoD83b3XPvV9lSsa/+emWI4r3+A6EH0xDGrcCKDTAQajgFanGVB5ggRJN86flojLZqcgJQX+j+Rk72eNBhAECvmP7xS1AghlfmESpk4YfgHg7oVF+OeOBhxpC6QwXzklchPsWMlOUEtaDBzvsErmfVYufqPF0BTOGxe+T9FAmZQl39cSANpkAqiG0qlJURRumpWLR74Uv0F7fWcDnry4TDRW1SX9GeUPsVNzXHr4RvUA6acZLzIMKsnfRCinak/NBDULhva+vvkg/TQJhNGBIPDhRc2+4Q0LEgRBUn7OGovA6LJBKfQQ3IGbn9GcmoIgoP2TK2Gr/gQAoM5fjszLPxsWYdMrYAZKyPfsAfbtE2A2UwCeG5JzpBs7MCFrD8pyD6As+wAmj+vCogfXgmG8292marStXgl7hKR4Zdo0GGd605hVadNgPfaOaLurY3+/RE3e4wAf0luS1eeAZjVQZ86Do+k7/7i7uxwea6vfCezqPIy2NZdKxRyaRfpF70BhLPK3mRso6uz5yLnxoMj8FHZu7mKYD78qGrM3bpQVNUNDggCAjiRqJvje4wVeE8M5NQWeQ9/eZyXjxpn3hT3+SKNKn47sazaO9DJGBFXadDibNvsf00ojEqbfG3U/ZdoUiRgqOXbmnEGvjxCeYRU129ra8Nlnn+Hjjz9GRYX3xUwISRtJTk7GxRdfjFWrVmH8+IDbq6OjA++88w5effVVuFwuvPvuu5g+fTpWrlw5nN8CgQDAGy5z3XU0urrkBITTU/wbreh03qTugXwYjYBC4e3BafjVZtjcAUGCoSm8/vA5kDEB+qEoCkvGpOA/+6SN1X2sGDcyzlQFQ+OrO+bhB+/tR3mbBVdNzcatc/Oi7xgDFEWhNE2HfU2BGquKDgsEQfBfbFZ1WnEsxL25sDApbH++wZCsVSI7QZyA7kuzlwubGkpREwBunJWH36ytEIVnvbWnEX+4YLy/RJfnBbyyvV6yb1Fy9LLl/lAaxalJ+mnGB4qiUJyqw4Hm8HWHqado+TlFUZicacD+oO9tCmlhQCAMKbzHjr79L4CzNENXegXU2bFlCfCOHokzzodcf8R4wtnaJKIWm1AIiqKgSCqFq32vf9zdc1x0zRCKo3GDX9AEAEf9N7DXfgVt0flDumZBAE6cAHbuBHbv9gmY3sBJMQO7tqcooKQk4L6cPt3rxhQ2XScSCSmFzi9oAkD3pl/CHUHQ1BZfjtRz/gGK8b6uyLlhne37oSu5Iua1ctZmyRij95ok1HlLROsFgN4dT/iT37s3/0riRgSAtBWvQlvU/96e4YhF0ATC9NVsknd4hIYEAZBNufZBs+qTaeyBv69wgpatajU8fWLBU5k6Beq8ZWGPTxg5EqbfDVv1p97fGc0idcXLYNSJUfdTpk2F7cTqsNsVSeMiuj0JgyfuoqbFYsHatWvxySefYNeuXeB5b0hCsJjJsizOOussrFq1CkuXLgXLSpeVlpaGe+65B5MmTcJdd3kb7/3nP/8hoiZhROjsBLq6iHg5ICgeUHoAJXfyswdQeD+vmpmGrFQWBgPQ6rDgjQM13u0q75x7l+fjh2flwGDwhujo9V5RctBLoigsGZuCL44FyqVXlmUgM0JivI8lY6OImqVD70yMlawENb74YXzKHUrT9CJR0+TwoMPiQvpJwfCbE9JyngtlQoeGikmZBpGoWd1lg8XpkRU1h7L8HPCG/awoTcPaoFCkVrMTX1Z04OKT5farj7RKRN4xKVpMiOKs7C9jknUSV10wRNSMH8Up4UXNJI3ilC77f3TFOFz/7z2wu3nkGNW4d3H4ViQEAqH/dK69FdZKbw+fvoMvIuOSD2IS8Dhba9htHrP0Rlo8kXOr+UJVFMnjRKKm4DKDs7aAlQkmAby9GUNxNG8etKjZ0gLs2uUVMX1CZo+0Ff2AoChg/Hhg5szAx7Rp3uvVUNq14mtDwW0F77aCVui8ZfcNsqmWUOcuQfKiJyTJ2cq0aZK5ro4D/Vq/XPK5LxFanbsUwO9F28wHX4RZskeA5CV/hX789f1aw1DB6nPAJhbD03vCP+Zs3gqBc/mFYB+crFMz8rW7wlgkEjXdfbWSHqaCIMC05xnJvgkz74tZnCUMLwpjEXJu2AtXxyEokoojtiEIRi4sSLSdlJ7HnbiImh6PBxs3bsTHH3+MDRs2wOXy9uAIdWWOGzcOl19+OVauXInk5NhK4pYtW4aCggLU1dXhxIkT0XfoJ3//+9/xwgsvICcnB+vXrx/y4wPedPePPvoIe/fuRXNzMywWC7RaLdLT0zFjxgxcfPHFmDMnNovyl19+iXvvjW6LDmXjxo3IzBze5uGnE7m5wMSJAo4cOT1elJRKbygNq+DhEDxgFAIyElkk6BioVN5tOh3AMW58caIFYDlAcfLj5NfXzc7Eymlp0GqB1/ZW4+PjzYF5LIeDDy3E/+2sxks7a8L2lXzgJ4sw96To8taeHvyLqRVtnzcvHxMnxudn8ORFE1DRYUF1lw2Tswx49vLYUjmXjA1/NzdZq8CsvMQhWuHoQi4sqKLD4hc1v5URNeMp8E7KMuCrkACto21mtMmKmgNMYIrALbPzRaImALy+sx4Xl2VAEAQ88XWlZJ8Hzy4GTQ/t/xAlS6MoWSvq8emjOFWHtFO0r+OpwNgICeinaum5j0snZeLYg8tQ223D5KwEJJLkcwJhyODsnbBWfhAY4N3o/PpHyL3xAGhV5J6NnE3au9q/zTy8Ts1QRxoAsAknRc2kUsk2d09FWFHTUf+1ZMzZtqdf6+nr84qWO3cGhMzGIfqR0BSH0jFmzF6QKBIw9THep6S10ioeztYB2qgDZ2mUuB5Z41iknP03aApWyApijDoJbEKhqPzf1b4/9m8IEIl0/uMaToqamXNAMWoIXPh2S8Ekzv0VjNPv7tf5hxp17lmwBIma3r6ae6DOFrfw4h3966kJnAwLCnZ+ci5wlmawhkD7L2fLNlGwFAAw+hzoS6/uz7dBGGZohQ7q7P6JkEoiao44cRE1Fy5ciL6T0W++0gKfoJmYmOgvLy8rK4t0mLBkZWWhrq5OIpIOloMHD+KVV6TpZENFd3c3HnnkEXz9tfSF2mQywWQyobKyEu+99x7mz5+PP//5z0hLiywClJeXR9xOiA9qNbB6NYff/74TFRVaUJQAo9EAmqYhgEef0wOGBhQsBSVLQ8lQULAUaN8NPEpAc58DW+q6/Y9BAXoVg2tnZkGlpMCyAMt6nYi+zye6zXhrbwPACF7HIyNgfIYOxzr7To4JAMOf/CwADIf/3DQNpZlavzipUgU+1GqvoBm4PqIBhH/zLQgsCh6vQKNMD8krrk/BFSfDyncqXPjEIr71Lag86LDbIwbldFgDTchb++JfNhzMpKwEHH9wGbpsLqTqlDHfRS1J1SHToJJ1BJ5TkgZmiEWr0YJcmfPxDisWj0mBIAjYUCW+852sVWBKVvxKVifJhQW1mOXLz+Mg7K2cmIEkjQI9QWnvnxxtQ7vZiX3NJuxtMonmZyeoceOs3NDDDAnj0nSyouYC4tKMK5ES0E/VkKBg8hI1yEsc2h6wBAIBcHcfQ3B/PsBbCty96SGknvOPiPty1khOzeHtqSmXfO5LilYmjZPO7z4OTd7ZknHO2gZX5yHJuKttT9iSdacTOHgw4MDctQs4dgwYireKNMWhOOMYJuXuxaS8vZg1V43FN96JxKyBB70wMk5A3t4BGAtlv3fDxJuhLTwv4jGVaVNFoiZna4XH2gJWlxXTmjwWOaem9zqFYlXQFJwDW/WnkjmStU6+HYnzRj73QpN7FiyH/ykaczRulIianE1G1FSHNywA8gnoblONSNQMTYwHgIRpP5Y4RQmnPow+F7Q6GbyjW3Y7ST6PP3ERNU0mk0jIZBgGixYtwqpVq3D22WdDMch60a4u75vlkpKSQa/VR0NDA+666y643e7okwdAd3c3rrvuOtTW1vrHaJpGcXExkpOT/YKmr4nytm3bcNVVV+G9995DRkb4ks1gUbO0tBTp6bH171MqyT/UwVJYCNxzT+ACYOrUqWBZGtGEQS8UeF6DKU9X4mhboCTVCmDJddPx/ZnyYsfPPq4HxYr7tvz11jl4a08v3t0v7YWTqFHgmgs0ATF1kFAUhWXFqXhzj/RubnZQqbaci6fX7pYVmILpCAp1kQt4Geqy4VBomuq3k81Xuv6ezM//3BEsPY8348I4NQGgvM0icUguHZsy5K7EYCbLhAUdbu2D3c1LxjMThv55pFYwuH5GDv5vS61/zMML+Pe+Rqw5LH3Tef/SMVCxjGR8KChN0+Ozcql7Zx4RNeNKpAT0tFO0nyaBQIg/4ZLAzYdfg27c1bLCn4+ITk1rq2y5bX9w91bBY26AKmseaDZylYPHVCsZUxgLvZ+TZUTNMGFB9gb5Sjne2QuPqRpMwlhUVIgdmAcOAC6X7G79gqaBsjKgLPVrTEj6FJPy9mJC9kFoVTYw+hykLH0G2rGXDrp8mJF1anp/l64OqaipTJsc9ZjK9GmwVa0Rjbna94Mtik3U5GRFzRz/10kLH4ez4wC4CGK5fsL3kHL230dFebU6R6avZuMmICSJnZNxakYKCgICbRWC8ZhqgNzFAAB3TyVsVZ+ItlMKPQyTbou6bsKpB0VRUKZNlW0bQSkToEgZmJGPEDtx66kpCAJKSkqwatUqrFy5Eikpke949Ie77roLOTk5GDNmaHo6HT9+HLfddhs6OqSNgoeKBx54QCRoXn/99bj77rtFP5fe3l689NJLeP311yEIAlpaWvCTn/wE7733XtgXh2BR85FHHom5bJ0w8tA0hYeWleDGd/aJxv+0vhLXT8+RFYBCS3pZmsKiohSMTzfgw0OtcHFiAWdOXuKQC0lnxyRqSv+19DrcaOmLXLYS7NSUKxuOp1NzMCwZIy9qrohD0vdoQc6pWXlS1FwvU3q+dGxsfWkGyoR0PShK7Mo43GqGXikVDtPjVAr8gzn5IlETAJ74uhJdNvHNshStArfPLYjLGoDwYUELSPJ5XCmOWH4+Ov93EQiEkSdSEnjn13ci5/t7QCvk/79EcmoCAjyWJlkBJhb6Dr2KrvU/AQQOrKEA6Zf8DyqZQBofkp6ajBKMzlteziYWIzQx2h1GzLXXfyN63GVJxf66OdhfNxeH39Nj31FvaflQUFwMzJ4NzJnj/Tx9OqDVAvWv3CYKzmH0ud52AEqZBpkDgNFKrw99gTWursOSbcrU6KKmSrav5v6Yg3o8Mu0KmCBRU5lShrxbKuDuLgfv7APvsUFw2yB4bBA8DrCJxVDnLBoVgiYAsIZcsMax8Jiq/GOO5i0QODcoJmC+CE0/p1gtaEXkEEc2QapBePoCphPTvmcR6r42TPpBTKEzhFOTcKKmKnO2qNcqIT7ERdT83ve+h8svvxyTJsXWk66/XHDB0KWorVmzBo8++ijsdnv0yQNk27Zt2LQp0Hfjvvvuw5133imZl5iYiAcffBDZ2dl4/PHHAQAHDhzAF198gQsvvFAyv7u7G+3tgTu048ZJ74ISRjfXTsvGb748htqewPPvaJsFa4604vLJ4jurXVaXJIRidl4iDGoWBjWLHy8sxDPfiV2cc/ITh3zNZxfL36DIChY11VKnZo8tFqdmeFFTwVBIGqV93OT6ak5I15/WpZoJaoWk7L6iw1vyvKFKKmouK46vqKlVsihO0aEyqOz6cKsZhUni30GSRhE3h+T0HCOmZieI/k5DBU0AuPesMdCp4pfTJ+eiNahYTMwcmjdjBHmyE9RQszQcHqk7+FTvqUkgEOJHOHEP8KYq92x7DClnPSW7PZJTE/AKVQMRNQWPEz2bfw0I3Mnj1KH1gxXIvPxzqDJnye7jDip9BgDWkA+K9r7e0qzmZM/HgPApl+7tcgnYuakNu8t/hP21c7Gvbi7qOov7vX45MjK84qVPwJw1C5Dz3HCObkkSuCp9+pAJmgDAaCI4NUPKz2lVoj+FPBLhEtBjJbT8nFYnS8Q9imZjElhHC+rcxbAEiZqCx3ayr2agx2Fo+rlca4BQ5P6mfO0XOHsnLEf+Jd5IMUiYNrI9RgnxRZk2RXaclJ4PD3GRjR955JG4CZpDRVtbGx588EE88MADcRU0AWD16tX+r8eOHYsf/ehHEeffcMMNmBiUhvLpp/L9S4JdmtnZ2TAaIzcTJ4w+WIbGA2dLL9b++E2lpGesnFB0dpBQ9OtzSkRuSSVD46ZZeUO4Wi/5SVqJIynDoIKSDfw7kSs/r+uxy77ZDya4/DxUAM3Qq0bN3d9QxqfrMS7EHXflVPnm96cToY7Aqi4rXB5e0k8zw6DChIyhTfmWY1KIaNdmdkoSx+PdwuCW2ZH/5gwqFj9eUBjXNYyTSVSfm5942vZ3HS3QNBXWrXk69NQkEAjxIZJTEwD69j0LR8tO2W2crS3ivpxlYH01Xd1HwTvFvdF5Zy9aPjwPjuatkvkC55KUJSuMYjdbaAm6x1yHxjo7PvwQeOAB4KyzgMREARc//gl++8GzWL3newMWNA0G4Oyzvcd9/32gvt6bfP7xx8DDDwPnnScvaAKAu+uoZEyROrQplbJOTVsHBI9TInIrUyfHdP3L6LIlAUT9SUAPLT8PLj0/VVHnypSgN30nehzq1KQ10atLaW06qBD3tKe3GoIgoHvTLyWBSrqSVf5WDITTk3AJ6KpMEhI0HJyRXth//OMfOP/880Vi45gxY6KKjQNl+/bt/q8vvPDCmF6Yli1b5v/60CFpbxVALGoSl+apy82z85AV0uNvd6MJ60KSnNefEL/oAmL3W7JWie9+vADfm5GDC8an45Nb50RM4x0Mt88Tl85eEeIqlRM1ff0WIxGp/DzeYtRgoCgKr1w9FblGr6h83rg0/GLp2BFeVfwJTUB3cwI+OdqK7hB34tKxKcMiSMs5EU0Oj+hxvJ9H35uRCyUT/qX1zgWFSNLG17WXaVBhZq74JteZILKPBsKJmqSnJoEwcngszeDs0muo0QDvcUjLtkMReHSu+yEEj7TaJXL5OeDpG6Co2XFQfikuM1o/ugj2hg3i85jrEVpuyyYUih7zugnYVzsHr224Bz/517+x6HeVyCvU4IorgD//Gdi0CbDb+//WVKHwui7vugt44w3gyBGgpwdYvx548kngiiuAvDxEDKoMxtV5RDKmTBlaUZOWc2ra2+HqLve7Y/3njtEZSVGUpATdY6oG5+iNuq/AuSXPpVjcoaMdjWxfzYCoKQg8OLvYNBIt+Rzw/qxDw4Lcpmp0b/gpLEf/JZlvnPHTWJdMOEVRJI0HZPoXq7JIa8DhIH71byEIgoCenh64XC7wfGS3VijZ2UP7Zuy1116DzWbzP77qqqvw0EMP4auvvhrS8wCAw+GA1Roohxw7NjahIykpEOjQ09MjOydY1Bw/fvwAV0gYadQKBj87ayx+8an4zvAfvzmBFeMCFz2h/TRVLI35heLgjzEpOrx1/Yz4LfYk9ywqAscL+KqiHTNyE/G788WiupyoWd5mjnpcn1PTw/HotIk7vo/Wfpo+FhWloPpXy+Hw8NDHsbR4NBEqagLAS9vqJGNnx7n03MfkGNLV4/08StEpcenEDPzvYItkm5ql8dOzhqYXdCQoisI/r5mGO94/iBQTdjQAAQAASURBVOouK66dnoMfRHGQEoaGsWHCgohTk0AYGTq/uRvmQy8DoJA491dInPebUVX14ek9gVAxUFN0IRwNGyB4Au9V3N3lMO39GxLnPCiaG7X83CLtkxgLkRx+gtuKttUrkX7J//yJ3KHJ54IANNum4Jv3gG3bgO3bgX17n4DLPfj2L6XFTsxboPL3wpw6FVAN4b9YV5ecqDm0QR+0yugVQLjAtS5n65BNPlf0o9xbmTYV9jrx+1lXxwFo8pZE3I+ztkAiSp8GTk02IR9sQpGo7YGjeau/rybvNElE5GghQT4UCUVwdwb6n/L2DvQdeEEyT513dtiWDYTTB4pRQJU+A86WgJlNkTIRjJr0sx8O4vrO22q14pVXXsH69etRXV0NjuOi7xQCRVE4elRaBjAUTJo0CQ8++GBcw3XUajV2794Nq9WKtrY2pKbG9o+ysTFwERKurPzYsWP+r4moeWpzx/wC/HF9pcjhtrG6C58ebcPFZRloNjkkZbQLCpKgUcSnN2A0lCyNB5cV48Fl8mVBckFB/XFqdlhdCKm+R4YhcurmaIBlaOgjuPRON0JL7gHg60qZNgkyPUfjQWj5uRzDIY7fPDtPVtS8dW7+sInzk7MSsPUni4blXIQAxany4QKkpyaBMPzYGzacFDQBQEDvjj+A0WUjYcoPR3JZIuRKz7WF50OTtwzd3/1cNG4++i+RqCnwHDh7tJ6aA3VqRi5bFjgH2j65AhmXfAht4QpYO+qxt3Yu9tQswJ6a+dhXOxcd5tDU7f5fsxrUvZhWsBPTCnZiRuF2TM3fheLL/wJD2Q39PlasuENFTZqFImloK+IoigKjSQcXJDrztna4gkQyH8rU2Fu6yfXVdHXsjypqhvbTBADGcOqLmoC3BN1yNCBqCm4LnO37oM6aA94uvWaNxakJAKwx+k1qRp+D1HNein2xhFOaxNkPoO2Tq04K5d4baYThIW6iZlVVFX74wx+ipcX7xi60P+BIMmfOHKxatQrLly8ftru1Op0u5rR2nuexbt06/2O5/ZxOJ2pqAv+gx40bhz179mD16tXYvXs3WlpaQFEU0tLSMHPmTKxcuRLz588f/DdCiAt6FYt7Fo3Bb78SX9xe+9YefHXHPNR02yT7LB0m99tAMMoEBdndUoc2Q1Pg+MD/hvaTTk25QKEMAxEFRhtyTs1QcozqiKnQQ0lJqg5KhoaLC18NkDkM4viKcenIMarRZAr0VGJpCj9fcvq3JDjTIT01CYSB47E0wXZiDRhtOrQlqwadGGur+UIy1rXxp1BlzoIqffqgjj1UuGRCghTJ46DOOQuWo2/C1RkoA/f0VkHwOEGx3v8nvKMLECJXv4X2uYwFQRDgDBE1KVYrco52W1Kwt3Y+9nxSgUN9i7Fn341wum7t97lE56AElGYexvSCHZhWuAMzCndg3DgaXK/Y3OJq3wvESdQUBEHi1FQkloCSKSsdLIw2TSRqcrZ2Wadmf0rfwyWgR0PO0cueBuXnwMmwoJCScEfTd1BnzZGUngMAE0NPTUA+LEh0HG0msq5YS3ppnkFox1yM7Ou3w9m6C6qMmaPmdeZMIC6iptPpxL333ovm5mZQFDWqBE0AeOEFqTV8NPHhhx+ioSFwERLcX9NHRUWF3/lKURQee+wxbNu2TTKvrq4OdXV1+PDDD7Fo0SI89dRTSAnXGZswoty9qBBPb6yC2RnoAWhzc7jo1R2Yli1168Y7TXowKBgaOiUDqyuyO3tcmg5H2wIOTrubh9XpkfTTBIZHjCL0jzEpWrA0BQ8f/n/8suLUYbt5xDI0JmToRenjoQyHU5KhKTx8Tgnu/CDw5uTexWNQkCzv4iOcPhSHKT9P0Upv9BAIhADuvjo0/2eeV6gDoC+7EWkrXh3UMZ0ygTbgXGj/7DrkXL/DWwI8wsg5NRVJ40DRDFQ5C0WiJiDA3VcDZbK3OitaP01gYE5NT18tBFfgdVQQgGbVj7Cv83xs/KIWe2oWoKajtN/HDSVJ14npBTtw1iVTsOjcPBQLT4I//BvxnFkvoXP9jwE+cG3sbNsz6HOHg7O1gnd0i8aGup+mj9AEdM7eAaFT3MuUNY4FrYw9aJFNHAtKaYDgCrR8iiUBPTQkCDg9ys8BQB2ur+asn8uKmnQM6ecAJD01Q4+ReeVaKJIG/3dCOLVQpU0NGxpEiB9xETU///xznDhxwi9oTp06Fddccw0mTJgAvV4Pmj5zyjP7S0NDA5566in/48TERFx55ZWSecGl54Ig+AVNg8GA/Px86HQ6NDU1oakp8CK1efNmXHXVVXj77beHvE9pf/F4PNEnjXJC2ykMpL1CMAlKGv93+UTc+K747rjJ4cHGanGDe52SwfQs/aj+OSaq2aii5sQMg0jUBIAWkw3NvVJnaqqWHdXf75kIBaAoWYvKTmvYOWcVJcX0exuqv6eJUUTNtGF6Hv1gVg6UNIV1lR2Yk5eIu+YXkOfvGUCmXgElQ8HFBYT+ZK0CEHh4PP3rJz5Qhvq1iUAYDsxH3/YLmgBgOfoWDLMfBmsYmFuM99jhbN8ru81jqkb7Vz9Eyvn/jnrTLd5/T66uY6LHlMIAQZUGj8cDxiAVTZxdx0EneFv/uMzSNieh8M5euGw9oJXR27P46K7dj51VC0+Wki/A3tp56LUNzhDBMAKmTAGmZn+DKYlvY1rBDhSkVoGiADZ5AjIXbUX7R5/DFbKfMu9cKFImwh3kHHW174fbaQfFDP3NIkebNCCJSZ4Ql9dvSh1iThA48CE9UhUpE/t9bmXqFDibt/gfu7uPweUwg2Y1YfdxmWTEb03mkH7fI/XaROlywRgKwJkDPd8dTVvgdjngtsq0b1AmxvR9U/p82XFanYK0Sz8DnVBCrvsIcYNc64mJi6j56aef+r++7LLL8Mc//nFUNeUerZhMJtx5550wmUz+sXvuuQcGg/RCJDgkCADS0tLwwAMP4Pzzz4dSGSiROH78OP785z/ju++8SW9NTU2466678N///lc0bzjheR4HDkTu1XMqcviwtA9Of5lAAffPSMDTe8OLMgAwJYVF+RFpicpoQkVF/ufK0oCRl4YHbd1/BPvbpE5NS1sDDhyI3DuKMPxkKD2ojLA93dmGAwf6nzo70L+nZJnnVDCmljoccDQP6Nj9ZQoLTJlAATDh0CH5JFnC6Ue+nsEJU+CNTJoKI/qaNxSvTQRCvNHV7IbYRy+gcsd7cKWdM6DjsaZ9SODdYbfbq1aj4ouH4cy5ul/HHdK/J0FAUtcxBL9DcqtycfCg9/VC0U0h9B1AXfkmOPu8Djpl2y6Eevh4RTJot9hpeGT3N+B14V1lnZ0sDh7U48ABPQ4c0OHYsUvg8Vw+wG/KS1pCBybNZDFpkhVTplgxYYIVarUA2mGHcc+HoPhAexZPdzlOrLkDqtZdop+FRzsWh0+0QcsUQo3A/1CBc+DI9jXg9CWDWqMcqqZ1CPXbN/VpURuH/+Eai4DwMqOXbk8amvp5bi1yIKptEjgc3f4ROEN4x6mu6QhC61iO1nQDDfF77RrO1yadZiJUQaKm4DajfMNLYGw1CK2hqWnqhccSw/fNu5DIGkB7AtedPGuAacJf0dnEAU2n33tdwujlTL/Wi4uo6ev1qFAo8Ktf/YoImjHQ19eHW265BZWVAXlgxYoV+N73vic7v7a21v91QUEB3nnnHdmy8tLSUrz88sv49a9/jQ8++ACAVxB99913ceONNw7tN0EYEq4dp4fZJeDlw+HFmVnpo7+/pEER2ZGdomaQrJY2je9x8OhySB1NcnMJI09BAovNzVIRGgCydQyy9cObBF+cGNm5kaImlQKE+LKqRIendgduTl4yJtrbVgKBQLl7JWOM+SgwYFEzuqCgrXkOnoSJEcWeeEK5OkDxdtEYpy0IfK2RulQZe6ACi3ZLbxh6DGVQdm8W7+Nq84uaPA9UV6tPCpjej6amwbVloSgepZlHMLNoK2YVbcPMoq1ILymCdeITkrm8Ohu2wh9BV/030bi6+b+Sue4kb5Arp58AYI1oG2spj4uoyVqrJWOcLj79sAVlUtQ5Hp18IGfEffTSkmfWcjzi85x2ik0DPKMD2OHphz4cuBNnQNX+uWhMX/5r2d8tr4j+ewEA0ErY838AbfWzoCCAV6TAPPHP4GR+/gQCIb7E5d1mZ2cnKIrC+PHjkZCQEI9TnFZ0dHTg1ltvRUVFoK9OWVkZ/vjHP4bd5/XXX0dXVxcaGxuRnp4esU8mRVH47W9/i+3bt/vL0d98800iao5ibpukR5+Lx7vH5ct6Z2WM/tAJgzLyzYwUNY0klVRg6nHy6JYRNVOJGDUqyTeEfxkZiefpWGP49VAAEmWecwTCUHJlsRZJKhr7O1yYnKLAigIiahII0aDdJskYaz4iMzM22D5pNQuvTAXtCvTQowQP9OUPwzTj7RERcBhbrWSM0wRETV6dBQEUKATaWdCOQKAL5RI7MgHAY5ggEjVdHgUO7ldiR10G9u/3iphm8+De/mk0HCZP7MWctDcxK/9rTCvYgQSNuMLIrlkQdn9n9pVQdnwNhTmys8iTONv72TBeso0xlwOZKwew+sgwNrGoKdBK8Or4tOyKRTwbiKDK6aSiGmOR9m4NhnZ1iB7zqvQwM09N3IlzINBKUHygwQEluMBayiVzBTb2XrvOnGvhSZwF2tECd+JMgCG90wmEkSAuoqZOp0Nvby9UqtEvvIw0VVVVuP3229HYGLhIKS0txWuvvQa9PnJj6JSUlJhDf5RKJa699lo8/fTTALy9O+vr65GfL98PJJ7QNI3JkycP+3mHGo7jRFbvSZMmgWGGzk34xhQByg8O4c094ubdRjWLq5fOAkOPbgd0XvkBoDl8me+YjCTMKisEtuwUjWuSM+Ds6AAQcC+oWBoLZk0jru9RiMnQhT/u2im77fLZxZg6NbZG80P19zRFEJCw9mv0OaV9jNL0SsycPq3fxyQQ+su0aSN37ni/NhEI8aDloB2h/7WV1uOYMqms370TBYFH086jCI6wYwz5SD//bbR/sBwIKktnnK0YozgIw5QfyR4rnn9P5oPb0BsyljdhCbTFgZCJ5oO5ogRzLd+BsVO927vaBIR2IE8asxJfr63BrupF2F2zAPvr5sDhHpzQkp3agcXLUzBvnoAFC7y9MVnWCGfrXLR/+LDo5+nfp3gO9JPDh2W4899E67vzAD60i+ZJaCXGL7oBtEIHgStD48E7AC5QFWLg6lAydWjDOASBR9P2OtHzRplShqnTZgzpeXzY61rReTz8dorVYtLcC0FR/bsZK3BlaDygFP1s9Y6jYX9eAs+hcbM4MEefMhZFQ/zzHenXJrPy9+jd/GCUWRQmz1wMiu7PukgoDGH4Gem/p6Hm0KFD4PmB956Pi6hZUFCAnp4eUYI3Qcq2bdtwzz33oK8vcHdz0qRJePXVV5GUFKP1vR/MmCF+Ua6trR0RURMAWHZ4S1KHA4Zhhvz7evXqaehzclh9OJBweevcfKiUoz9JN0kbuUQ+y6hGplF6od1l96DdKr7IzTSooFCM/u/5TGRCZvg72ueUpg/4b2Iwf0+TsgzYWtsjGc8wqE7L/z0EQiTi8dpEIAw1vEwKscA5wPeWQ5XRP1HJ1XkYgrNXNKbOXgBdzjwkn/UUujf8VLTN3b475r+R4L8nQRAguMzg7O3gbB3g7B2AwEOVNQ+sLjPqsXjTCcmYOm2CaC0K41iRqOkx14GhAYpmwTs60GVJxa7qRdhVtRC7ahaj/OfTwXHnxfS9yEHTAsqy92Fm0VbMKNyOmUVbMeG87yN5we8kc9ncBUhZ+gy61t8t2aZMGhvxZ8qmT0LSvF+jZ+ujstvV2fOh1Jy8vmBZqNKmwtkauIHq7joMBhwotn8GGt7ZB+uJ1eCsLdCNuwoK45jAMU01ENziCilV6qS4/f9U6rMib0+dBIViAO2mWBbq7AVwNG7wD3l6KyFYG6CQSez2WNoBQdwHn03IjfvrxnC/NiXN+ikYpQ5d394DCPLiCa1OhkJJTFmEU48z/VovLt/5smXLsH//frS1tWH37t2YNWtWPE5zSvPf//4Xjz32mCgVbcGCBXj++eeh08WnBCbU1RkcSEQYnbAMjXe/PxPPfFeNjVWdmJ2fhAfPjk9vn6EmURNZhMwyqJGul16sdVicaDWLezRm6MkFxmgl06CCQcXCHOKMLE3TIcc4MmW3kzITZEXNTAN5HhEIBMJoQ+Dc4F3y16TO1p39FjUdzdskY+rshQCAhKl3oXvTgwAXuHnKWfoXHudo2oLurY/A1boLAiftKU2rkpB5xVqo0qdFPI6rJ6QkmKKhMIp7KCoSx/rFKUEAGjty8e3L3di2Jx3ffvYCqlrCBwDFQkICMH8+sHAhsGABMF71D7h23yeao0oL70QzTP4hnK07YTn6ZuDbYNRQZcyMem7jzJ/DevwDuDqlQXqa/GWix8qMmSJRE7wbrs5DUGXG9h5T4DmYj7yBnm2P+hPGTXufQc71O8EmeA0e7i5puwNFSvz6rTLatIjbFamTBnxsTeEKkagJAPa6dVBMuV0yl7M0ScZYfWxVNqcaCVNuB2vIQ/vn10sEbABgNLFVQI5m9nY24sbv/oNqSzeuKZqG5+ddDp2CXP8STm/i0lzsmmuugdHovbv2pz/9CS5XmNKCM5Snn34ajzzyiEjQvOyyy/Dyyy/HTdAEAKdTfOEVz3MRhg4lS+PBZcX4/Ifz8Nh546BVnhp3YaKKmgkqJGuVCK0ob+5zoNsmLmXKTCAvxqMViqJQmib9X7J0bOoIrMbLpMzQvFgvRBwnEAiE0QfnkAbe+HC27uj38RzNWyRj6uz5ALyvWaxO3CORs0pFnXDwjh60fXYNnE2bZQVNAOCdPTDtejLqsdzdYlGTNY4ROQ95HqjonIu3Nt+Be958Cwsfq8aSx4/j1jvT8eqrGJCgmZcHXH898MILwIEDQHc38OWXwCOPAMuXA0rrbsk+ygiiJkVRSFn2HHSlV3kHGCWSFj0BRhP9GoBiFEhd8QpASUsmNfnigCg5kdTZJl2rHPbG79D8zjx0fXOnX9AEAN7Rjd7df/Y/dnVKRU1lHEVNWhNZ1FSmDrxVl6bgXMmYvXat7FyPjKjJnKaiJgBoiy5A1lXrwWilbmpGF9k9eypw57b3UW5qh5Pz4M0Tu/Fm1Z6RXhKBEHfioo4YjUb89re/xc9+9jMcOXIEt99+Ox5//HHk5kpT/M4kBEHAo48+ivfee080fvfdd+MnP/lJzMc5duwY1qxZg66uLnR1deGpp56KqbdmcN9OAMjOjk/jawIBABI1kf+9ZBrUYGgKKVolOoPKzY+0WiRz04kYNaoZl6bHnkaxy2ZZ8SgUNQ3qYV4JgUAgEKIhV3ruQ+TOixFniFOTVhpFjjtGnw1PX63/scfSDEEQYurbbav+WCSMhcPRtDniMXmXGZxFfF0u6MuwbRuwaZP3Y8sWoKfnZgA3Rz1fOIozyjF77DZc8KNbcNZZFAoKIs93dYhT4ymFHmxQibYcNKtB2gVvI/msp0AxqpgETR+q9OkwzvwZTEHioiKpFMp0sTtXXtSMLNZ4zA3o2vhz2E58FHaOteI9JJ/1FGhWA5eMU1OZGkdRk1WDUiZAcPXJbh+MqKlMnQJGmwnOFmhfZW/4FgLnAsWIq6TkRM3T1anpQ5U+HdnXbkbrmpVwdx31j+tKVo3gqgaPxe3E7k7x/5X1zZW4c3z44C4C4XRgwKLm888/H3VOcXExKisrsWPHDpx33nkYP348JkyYAKPRCI0m9rLEu++W9mo5FXnsscdEgqZCocDjjz+Oyy67rF/HMZlM+Oc//+l/vHPnTlxwwQVR9/vuu+/8XxsMBpSWStPxCIShIlEd3akJAGk6sajZ3OeQzCVlw6ObuQVJ+M++wEWxiqVxdvHIlfBMypIXNcnziEAgEEYfXARR091TCc7RDUadHNOxPJZmePpqRGOqrHmi4A9Wl41gj6XgtkJw9YFSRU89tld/HNM6OFsbPH11UBgLZbe7eyrhdKuwr24udpw4CzurFmN/w0LY5c2fMcHQHGbMZDAz70tMS3wVs4q2IFnvdcHmX3FJ1HJnweOEq1ucBq1MmxJTUA1FUQMWwpIWPAaBc8JS8S5YfQ5Sl78gCWpRJI0HpdCJSoad7eFFTc7eieZ3FoCztUU8N+/she3EGujHXyspP6eUCWD08TXkMNp0eMKKmgMvP6coCprCFaK2AILbAkfLdmhyzxLN5cyNobuf9qImALAJ+ci+eiNMe/8GZ9teaArOCRsYdqrQ55a+h+p12WVmEginF4MSNWO5o+mbw3Ecjh49iqNHj0bZQ8rpIGq++eabeOedd/yPNRoNnnvuOSxevLjfx5o0aRK0Wi1sNm/m4f/+97+oomZrays+/jhwIXbRRReBpuPSfYBAABC9/NwnMKXrVShvl7ozg8kgYtSo5uZZeXhzdwP2NJpAU8Dvzx+PtBF016bqVMg0qKS9WcnziEAgjBCCIAAQ+p1kfCYQyakJAM7WXdAWxhZ+42zeKhlTnSw99yFXWuuxNEEZTdT0WOFoWC8aolVJ0E/4HtymathrPg9Z906RqGmzAVu3Ahs3Auu/yMXu/Z1wcQN/XVIrbJhesAOzxmzB7DGbseSKRcg/52F0b9kM0y6x+OoxN0QVNV3dRwFe3B87Uun5UEHRLFKW/AUpS/4SYQ4DZfp0OJs2+8fcXUfBu62gFdIWOOYj/4oqaPrnHn0TupIrJD1OlSkTY3qvOxgYTRo8vdLAKEafG7OQHw5NwbkiURPwlqCHipqy5eeGM6O6klYZkTRfPqzqVMTslt4V6XESUZNw+jOo8nPvBVr85gOI+4vJcHDs2DH8+c9BZRUKBV566SXMnTt3QMfT6XS48MIL8f777wMAtmzZgtWrV4d1fFosFtx3332w273/1FQqFW699dYBnZtAiJUkbWRR0ycwpcmEBYVCHHajG4OaxdafLMK+JhNStEqMTR35fr2TswwSUZM8jwgEwnDDexzo+vYeWI+9A8aQh7RzX4E6Z+FIL2tUwdnD99QEvOJgrKJmpJAgH6xe2n6JszQDKWURj63o2Q6E9NHUlV6FlKV/hb1xk0TU7Ko+gC21V2PjRq+QuWsX4Pa3DE+P/s2EYNR2Y1bRVsybdBznXD0fWdXnQMkGepAbUy/xfn+GfMm+HnND1MAlV4c0sCdSSNBwo0qfKRI1IfBwdRyAOltaWmuv+UIyRiuNSJz3a5j2PAPO2uIfd9R/A3vDt6LwKCC+/TR9hBOaB1N67sPbl5QCEHj/ba/7Clj0B9G80KAgitWAViUN+vyE4UdW1HTZRmAlBMLwMmBRc/bs2UO5jlOWZcuWoanJ+2KQk5OD9evXS+Y88cQTorCk3/zmNwMWNH3ce++9WLt2LcxmMwDg17/+NRobG3HLLbeIAoB27dqF3/3udzh+/Lh/7Gc/+xny86UXPATCUBKp/DxZq4CK9ZYWpeqii5rEYTf6UTA05uSPnovgSZkJWHdc7P7JMZKemgQCYXixVrwHy5E3AACe3hPoWHsLcm86AoqJfOPvTIKzd0Tc7mzdFfOxJCFBNAtVpvg9CyMjanpiSEBXdm2UjGmLLwUAqDJmwOxMxO6qedhR5S0nP9QwExwf89Il5OYCixcDk7V/xfSUt1CScRQ0LYBiVEgZ9xw668Whiqw2w/tZxmXnMTdEPV9oP01geJyasRKur2aoqMk5eiXPA9Y4BtnXbAKjTQNna4dpd7ArVEDP5l9Jjq2IYz9NH4xGXtweTOl54NgpUGXOFvWldXUcgMfaClYXCMkJdWoy+pzTwlR0JiIvahKnJuH0Z8Ci5ltvvTWU6zht2b9/P3bsCCQ3MgyDtWvXYu1a+QS6cLz22muix+np6Xj++edx++23w+l0wuPx4LnnnsMrr7yC8ePHQ6lUor6+Hq2traL9br31Vtx8880D/n4IhFiJVH6eFRTYEkuZciYJeCH0kxtm5uKZ76r9j8sy9Bifrh/BFREIhDMRe8O3oseevlo4W3cSt2YQfIT0c8Dr1IwlyId3WSTCnCptOmiFVjQm1y8wagI674aiW1zabvbk4dC+pdj4LLBxow779raAF6RJ3rEybpxXxFy8GDjrLKCgAKAooGPtEVjKA/0eBc4JZ/s+yf60X9TMk2wLDSWSw9mxXzxAMaKApZFGTtR0NHwL43Rx2Kq9fh0gcKIx7diVflekvuymEFETcHVKXaqnulMT8Jagh4Zt2evWwVB2AwBvFaUn5LnBxrmPKCF+yImaJpcDHM+DIW3nCKcxcUk/JwT48ssvRY85jsPmzZvDzO4f8+bNwzvvvINf/OIXqKqqAgA4HA7s379fMtdoNOL+++/HNddcMyTnJhCiYVSH//eSmRAQMtNjKD/PIOnnhH4yLceI1bfMxv9tqUGaToU/XjSBOA8IBMKww1lbJWP2uq+IqBlEpKAgAOAd3fD0noAiqSTiPGfrTomYpZIpTZbvqRnZqano3Q1Tnwo7q87BjqrF2Fl1Fsqbp0AQgoWC/gmaJRlHMbd4I+aO3YRFCx2YdvuHsvPYxLGSMbneoazOK2oyeqmoGc2pKZws5Q5GkTweNDt6biqzicWgtemi9Hlb3VfgHL1g1In+MbnSc21RIHtAmTwOqqz5cLZIWxUEMxyiJq0N49RMGypR8zz07hCXm9vrvvKLmry9U1J2zxpO/5Cg0xU5URMATG4HklVa2W0EwukAETXjTHV1dfRJg2DixIn45JNP8PXXX+Orr77CwYMH0dnZCY/Hg9TUVBQWFmLZsmW46KKLkJw8uIbTBEJ/YBkaehUDi5OTbMsKKidP00UWLLUKBnrVwJ0PhDOXlRMzsXJiZvSJBAKBECc4m1TUtNWtQ9KCx0ZgNaOTaKImcDJ0J4qo6ZAR+tQ5UlGT1cn11JQ6GdvbgW+/pfDhh3nYvy0VxxsGF1w6ZQqwZAmwcFYbxtZPR4o+8H3ri24Ju5/COEYy5uo8JBljtN7XO1plBKXQQ3AHQhijiZqevloILrNobDSVngPenAVd8SqYD74YGORcsFWthmHizQC84qytVlwNRykNkr6qhok3RRQ1aW161GCloYDRyJyDVkCRWDokx1dlzgKtSgLv7PGP2eu+hsBzoGhG4tIE5EV/wqmBWSb9HAB6nDYiahJOa0a9qOlyuaBURndyDQWrVq3CqlWr+rWPXA/NYF5++eXBLCkmGIbBeeedh/POi62JOoEwXCSqFbKiZoao/Dzy33eGQUUcdgQCgUA4JeGs0gRmV9secPZOMJrUEVhR/xEEHgLnBMWo4/J6HC39HPD21dRP+F7kOXIhQVlSUZNiVaA1qaLzeizNaGvzBvps2OD9KC8HvO7L/of6UBSPsuwDWDSnDRfcdD4WLwZ83gJbzV60rRF/z8rkcWGPpUgslg4K4madFKMGpTScPDcF1pAHd3d54PszRy4/l+unOZpCgnzox10jFjUBWI696xc1XW17wIf0aNXkLwfFiK81dSVXomvDzyB45ENUhsOlCQDMyZYBonMnTxiynrsUzUKTvwzWyg/8Y7yjC672fVBlzoKzbY9kH1J+fupiCePUJH01Cac7wyJqCoKAnp4eOBwOcJxU4AAAnufh8Xjgdrths9nQ0dGB3bt34/PPP8eWLVtk9yEQCKObRI0CjSbpXcOshGCnZmRRkyRWEwgEAuFUROBcYfpFCrDXr4d+3NXDvqb+4mjZgY7Pvw+PuQ6agvOQfuHboFXGIT1HaPq5IqkEblMtwAeCcBytOxAJgefgaN0uGmONY8HopKIR4HVrtnXy2H5iifejajkqW2SnxgTDADNmCJiW8H+YU/Q1Zo/ZggSNCWxiMfIuPV80191TIdlfkRRe1JQrP5ecX5cpEpxDRU3O2gyB94Ci5d/6jfaQIB+q7PlgDPngzPX+MUfDt/BYW8DqsmALSaAHAG3RhZIxWpUAXckqWMrflj3P8ImaUqfmUJWe+9AUnicSNQHAVrcWvNuC7g0/la6JODVPWcKVn/c4iahJOL2Jq6h58OBBvPDCC9i2bZso/ZtAIJwZhAsLChYqowUFkeRzAoFAIJyKcEG9/0Kx1607JUTNrvU/gcdcBwCw162Fad+zSJr3yJAdXxAEibOO0eeCUhrhatvtH3N1HATvcYTt8ejqPCQpnw5Nxe7tBb77Dvj2W2Dd6v/iSK20rDtWWJbHrFk0liwBli4FFi4EDAYKLR9+Bkf9N/55nt4T4OxdYDQp/jF3t4yoGcGpyaiTJCXEkjkhvRklYUECD87SDDYhX3Z/eVFzStjzjRQURUNfehVMe54OGhVgPf4+jNN/Alvtl5J9NIXylWz6spvCiprDFZCkSCoFo8sCZw0o6prCCyLs0X80BedKxixH34Zp99MQOLEIRrFaqLPmDen5CcNHWFHTJe9IJhBOF+IWg7Vu3Tpcd9112LhxI5xOJwRBGNAHgUA4dUlUy4uaWQmBNyUpWgUiVbMRUZNAIBAIpyJyIUE+7HXrRv11LufohiskEdsmE8IyGAS3VSKsMOoUqDPniCfybrjaxWsJRi44x2Vcgs8/B37xC2DWLCAlBbj0UuBvf0O/BU0F48Ksos348bl/xL/uvAhdLT3Ytg3405+A888HDN7Kb6gyZ0vX1rpLvK5QpyajBJtQGPH80dyaoWXMjEFaQhypr6azQ5z+zehzR217BN34ayVj1mPvwmNthSuknFqZPh2sLkv2OOrcxWBl+pUCw+fUpGgWqee+AkaXBVA0DJNvh67kiiE9B6vPkYi0HlOVqOfqydUgdcUrw9JLlBAfwoma3U4iahJOb+Li1LRYLHj44YfBcZxs7x3fWOjFXPBclUqF0tJSnH322fFYIoFAGAYSNfL/YoLLz1mGRrJGgS6bW3YuST4nEAgEwqmIXEiQf5u1Ge6uI1CmThrGFfUPd0+ldKzzEATOJelROFDkQoJobZpXHAwxDzpbd0CdLe8iczRtgs2pxZ6aBdh2Yim2n1iCQ41zEKbrVVRUKmDePGDBzFZMdNyI6QU7oFF6SzjVuUuRkJoiu586cy5MIWPO1p3QFgVK0EOdmgrj2LBl4f45iWNFztVQGJ04FE/i1ER4UdPdWwUuZNtodGn6UKZOgSJ5PNzdx/xjzrZd6DvwgmRucOp5KBRFQ192A3q3SUO7lCllQ7PYGNAWrkD+D+sgCDwoKj5+I23heTB1HYk4J2X5/0FfelVczk8YHsKJmr2kpybhNCcuoubq1athMplAURQEQcC5556L8847D6mpqVizZg0++ugjsCyLF198EQzDoLe3F8eOHcNHH32E9nZvqY5er8fzzz+P9PT+N+cmEAijA2PY8nNx+ViaXhVW1CQ9NQkEAoFwKuKRCQkKxl63bpSLmsclYwLnhKvrCFTp04fkHHI9Rxl1ClRZcyXjztadosd2O7BtG7B+PY+1796HA7X/gpsbmNiqZJyYPaMP51yYhrPPBubOBdRqoGvry+jbuUE0V1t8adjjqEIdpiHr5hzdknL7SKXn/jlRnZpRys8hFTV5jwN9e59B784nJXNHY0iQD4qioBt3LXq3/VY0btr9F8lcTaG0n2Ywhgk3oHfb7wAEjDaMIR+0KmEoltov4iVoAoCmYAVMe/4adnvSwj8gYfJtcTs/YXggPTUJZypxETW3bg2UgFx33XV49NFHRds/+ugjcBwHQRAwf/58AMAFF1yA2267DQ8++CDWr1+Prq4u/OY3v8GLL4oT7ggEwqmDXE9NNUvDqBb/60nTKXFMMtMLKT8nEAgEwmBwdRxE784/QQCPxFkPQJUxY1jOG8mpCQC2unUwzpQGdYwW5ERNAHC27R0yUZOzdUjGGE0qWONY0OoUkejZ17Afx072xPz2W2D7dsDpBLzdtKQiaCRYlsfU3O2YV7IR84o3YEbhduSc+ziM038immev/liyr27syrDHZbRpYBOK4Omr8Y85W3dBEARQFCVyF/qIFBLkX2+YMunAeaM7NS1H3wDv7PX/7rq3PAyPqVr2eMqMmVHXNJLox10tETXBe0QPaU0qVFG+DzYhH9oxF8NW/Yl/LJK781RFnb0QFKuVTXs3zvo5Emf/YgRWRRhqLJ7hSz/nBR4vlG/F65U7kaVNwDNzLkWJkbQuIIwMcRE1Kyq8ZRU0TeOuu+4SbZs8eTJomoYgCNi5cycWL17s32YwGPC3v/0NV155JY4fP46NGzfiwIEDmDp19N4tJBAI4ZHrqZlpUEnaUqRHKDEnTk0CgUAgDBTe2Yfm/y71949z1H+L3FvKwaiT437uSD01AcDZtAm82wZaoY37WgaCu1dafg4Arva9AG4dknNwDpnyc00qKIoCnToPuzZ1YfuJpdhWuQR7a+fDIV/UERWaBmbOBM4+2/sxZ9xRmNYsFa/F0iR67DbVwN0p7jWpSJ8hKxgGo8qaIxI1eWcPPL2VUCSVwrT7acl8RVJp1PUrEosjbmd0Yqcmo5f21HT3VMK0+8/Rz5U8HtrC86POG0kUicVQZcyGs21X2DnawvNA0UzUY6Usfx68xw5nyzaoc5cMaRDWaIFiVVDnLYU9JB3eMOk2JC38wwitijDUhHdqDn1PzbVNFbh3x2oAwP7uZrTZzdh5yX2yrQcJhHgTF1Gzr68PFEWhoKAAaWlixV6n0yE3NxcNDQ04dOiQZF+lUol77rkHd999NwDg888/J6ImgXCKIufUDA4J8pGqD18uRpyaBAKBcGbjNlWjd8cT4J0mJEy7G5q8JTHva69fJwrE4J09sFZ+hITJQyPKRSKaqClwTjiaNkNbuCLuaxkI4Z2ae2THBwJvDzgxPRyDI43TcfiNGdi8D9j83Xuw2gdWTk5RAqZNo/wi5uLFgNEY2M7ZsyS9Lz2WZtFjW/VnkuNqx4R3afpQZc6BteI90ZijdSfcvVUiR6B3oTQ0eUujHlNhjFZ+LnZq0qwarKHAn1wfGxT0E29G8qInhqxnajzRjbsmoqgZa4o4q8tC1qrPo088xUmc/RDsNV/AV2qvG3cNUpY9R0So04jh7Kn5Ud1h0eO9XU2os/Sg0BD/G4YEQihxETXtdu8fTrh+mGPGjEF9fT2OH5e/WFq6dCn0ej2sViuOHInc1JhAIIxe5IKC5JyXaboIoiYJCiIQCIQzFoFzo231pXCfTIy2VX2M3JuPRHWu+fBYWiRjzuatwHCImrbIPTUBb1/N0ShqCgIPT88J2W2uzkMQPE5Q7OBen3ke2H+QwVcb7sW2yqXYVb0IFkeQ8oj+CWvjsg5hfvEGLJ7djMt+/UckR3hvTauTQTFqCJzDP8aFiJqudql4qym6OOo6VJnSUnhH4yY4Gr+TjBsm3x7V+QkAtDYdlEIHwW2V3R7aUxMAEqb/GN3fPRD12IBXiE1Z+jeoMmfFNH80oBt3Fbq/+wWC+2H6oRhoCs4d9jWNZtTZ85DzvV2wVn8KZfI4aItXEUHzNMPsdsiOx6OnZr2lRzJWa+kmoiZhRIiLqGkwGNDb2ytJN/eRn58PAOjp6YHJZIIx+NYpAJZlkZeXh/LyctTW1sZjiQQCYRiQc2pmyjg108IIl3oVA50qLv+mCAQCgXAK4Gjc6Bc0vQiwVLyHpLm/jml/zt4uPWbzVpmZQw8XEhTE6HO8QmdQ7z973VcAopcEDzecuVEk+Ing3d6woH72JhUEoLISWL8e+OYbb1/Mrq67B7zGCROAhVPLMU31GOYWf4cUvbeUPXHeI0iK8r6aoigw+hx4TFX+MU9I+bmrU+xEEmgN2OTxUdelSpsKMEqAc/nHLEfeQKj4RmtSkbRAmrwdbr0K41i4QsrhfTDaDMlYwvR7oUgqheXo23B27IenVypS09p0JC98Avqy78c1qCYesLosqPOWwtHwrWSbKns+GHXSCKxqdKNMmzKqk+0JgyNs+blr6MvPG629krFaGaGTQBgO4qIWJCUloaenx59kHkpeXuCO5IkTJzBzprSJs16vBwCYzeZ4LJFAIAwDoSnnAJCfqJGMpYcpP5fbn0AgEAhnDvbGDZKxcGXRcvA2ac9Gj6kKnLUNjE4qBA0VgiBIgoIUicVgjUVwNm32j7m7y+ExN8Tk1htOov2MnW17YhI1m5oCIuY33wCNjQNfU2FaJeYXb8A5lxbhwpvOQWYm0PbZY7BVfiiaF2s/SFafLRI1OUuTP9BH4D2SUB9ONyYm4Y9iVVClTg0pjZYaPZIXPdEv4Y1NlBc1KYUetFIvHacoaIsuhLbImwDOOXrh6jgAV/teuHsqwRqLkDDldtAqo2TfUwX9uGtlRU1tjKXnBMLpgofn4OA8stviERTUaAtt4CHv3iQQhoO4iJoTJ05EdXU16urq0NbWhowM8UWjz6kJAIcOHZIVNVtbvReC4dyeBAJh9FOWocfkLAMOtXhvTrA0hWunZUvmpenknZoZEXptEggEAuH0x9GwUTLm7pEPsJFDzqkJAI6WrdAVXz7gdUVDcPVB8IjfSDLaDChTJ4pETQCw130Nw6Rb4raWgRAuJMiHNyxISnc3sGFDQMSsqJCdFhNFRcBZc9sxlXkAc4s3IivR66RUZcxGZuY5EDg3HHXfiPahNWkxJ3czevH1iMA5wDt7wKiT4e6thMCJXU8eXWwtDwBAlTU3Yr9HVeZc6MtujPl4AKAIk4Au59KUnadOhCZvSb960o52tMWXAevvBnhxgpS2aHQHHREIQ004lyYAmFwOcDwPhh4aN7bJZZc9X62le0iOTyD0l7jUGcybNw+AV5D805/+JNk+fnygdGPt2rWS7RUVFWhsbARFUZLSdAKBcOpAURS++dF83LO4CDfNysW2exahIFma8ppGnJoEAoFACIF3meFs2y0Z9/SeiPmmN2eXOjUBwNG8bVBri4ZHJiSI0WVCUyDtn+ktQR9dRBOOfWFBViuwdi3wwAPedPHUVOCKK4AXXui/oJmV2IBV81fjn/8EamqA6mrg9f+k4apzd/kFTe+5d8HVdRSOlu3gXWK3kKbg3JjLqFl9jmTMl4AeWnoOAJw2clhPMKrM2RG2UkhZ9my/y73ZMH1k4+k4Hu0w6iRox4j7nLKJxVCkTBqhFREII0MkURMATGH6bQ6EBpnScwCoI05NwggRF6fmBRdcgKeeegp9fX348ssv0dbWhjvuuAMLFy4Ey7LIyMhASUkJKisrsX//frz00ku44447AADt7e341a9+5S//KCsri8cSCQTCMJGqU+Fvl0a+uAwXFJROks8JBALhjMXRtAUQOMk47+wFb+8Eo02LegzOJu/UdMa5r6ZcSBCjzYAybRpodQp4RyD1216/HgLPgaKZuK6pP4QrP3d5FDhQPxtb156DvS/y2L6DhtstOzUqqanA3IKPsWDMF5hfsgEFqVVQZ85G9nWX+edQFAX9hBvRs/UR0b6Wo28BMqKgtvC8mM/P6KSVIx5LM5Spk+HqPCTZxun6I2rOCbvNMOUOqNKnx3wsH4pE+fPLhQSdSaQsfQbO1p3gLE2gFDqknvMiCcAhnHFEEzV7nDYkq6TGkoHQaJWWngPEqUkYOeIiamq1Wtx5553405/+BIqisHfvXvzoRz/CW2+9hVmzvKl6V199Nf7whz8AAP72t7/hnXfeQXJyMk6cOAF30NXReefFfnFCIBBOTVLDiJok+ZxAIBBOLcxH30TPtsdAUQySFv0B+tKrBnwsh0w/TR/u3hMxiZp8GKems30feI8dNCvt8zwUcGGcmhTNQJO/HNbj/w2s0dkDZ9seqLPCC2GxnbMNfQf/AY+lGfoJN0CTu3jAx/I5NXmeQnnzVGytPBtbj5+NXdWLYHNJ+zfGgsEALFkCLFsGLF8OTCzjUP/8VQjuN0lrUiX76Sd8Dz1bfyOaZyn/N2hNSshMStYJGw5WLxU1fQnobjmnZj9ETdY4BrQmVfL86084UCjhRc3MAR3vdIHVZyPvB5VwdRyEInk8aMXQCDcEwqlEVFFzCPtqhnNqNlhN8PAc2FF0g45wZhC3WOGbb74ZjY2NePvtt/1jwb00r732Wnz44YcoLy8HRVFobW1FW1ub36EJAOPGjcPKlSvjtUQCgTBKYBkayVoFum1iu0dmAhE1CQQC4VTB3XMcnevu8LsrO768GeqcRWB1WQM6nr3xuwjnqoQ6e37E/QXOBd7ZK7+Rd8PZuntQwl8kwomaAKApWCESNQHA1XFgUKKmIPBo//x7cDR5f2bWY+8i+/ptUKZM7OdxgIpyJ/73xQpsPX42tp9Ygl5bqHgYG0olsHBhQMScNQtQKALbOXsPQgN0GIlQCbCGXGjyz4G9fl1gX1urJIhJlTlHdv9wMDLl5x5/+fkR0TivTIWgiL0lFkVRUGXOgb3mc9F4f8OBgmH0OaAYlaTX55lcfu6DotmYgqsIhMHQausDAGRqE0Z4JVKiOzWHTtSUSz4HAE7g0WQzoUCfPGTnIhBiIS49NX08/PDDeOWVVzB79mxoNBqkpwfKIxQKBV5++WVMnTrV3xcp+HNJSQlefPFFsGzcdFcCgTCKkCtBJ05NAoFAOHWwVn4kLhfn3bDXfT2gY/FOU9gwGgBw90ZPQA/XT9NHPEvQQwU3AGBPBrooU6VCo8fSMKjzOZu3+QVNwBt6Y9r795j2bWoC3nwTuOkmID8fmDBRhd+8/xy+PLiqX4ImTQOzZwMPPQSsWwf09nqTzx9+GJg/XyxoAvK/H1oj777VT4weqqPpZzhMaFAQ4HVq8i4zPH01onFPP1yaPhKm3C56rM5d0u9woGAoigZrLJKMxxoURCAQBs7Pd36MnPd+h9z3fo+Hdn060suREN2paRuyc4VzagJALemrSRgB4q4YLl68GIsXL4bFYpFsS0tLw3/+8x+sW7cOGzduRHt7OxITE7F48WJcfPHFRNAkEM4g0vQqVHRYRWOZpKcmgUAgnDI4mrdIxjym6oEdq2kzIPBht7t7T0Q9BmfviHyOlviFBXFWmZ6aJ52arD5XOt/cOKjz2ao/kY5VfQxh2f+BYsRqYleXOKH8eHR9OCxlZV4X5vLl3tLyxMTY95VrDRDOaakduxK00igJBhLNKeyfqCnnIPZYm+HqOioZ709IkA9N4QVIO/9fsFS8B0VSKZLmP9rvcKBQFIlj4e4+JhojoiaBEF8OdjfjmSPem0YCBPz58AZ8v3gmJiUNrAohHpijBAENqVPTFv7/MAkLIowEw6Ya6vXy/XcYhsH555+P88/v34UIgUA4vZB1ahJRk0AgEE4JBJ6DQ8b56B6gqGlv3BhxuydKOjcA8LbIoqazeSsEgR+00CSHJCiIYvz9ImltmqSM2DMIUVMQBFirPpaM845u2Bs3gE85F5s3B0TM/fu9ZeYDISepFgtKv8WCkm+xoPQ7zPpl+YD7kso5NRmZnpoAQLMa6MZdDfOhV+S3a9Oh7Gf4DsUoQWvTwQeFSXGWJvnk8wE4NSmKgn78ddCPv67f+4aDNUrXQURNAiG+bG2vlYxtaasdVaKmJYpTs3cIe2qGKz8HgDoSFkQYAYgVkkAgjAomZSXgo8OBcr1krQLZCeoRXBGBQCAQYsXVeRCCq08y7ukdoFOzYUPE7e7eE1EFyWhOTd7ZC3d3eb/7TsZCaE9NRpvhXytF0WD0ufCYqvzbPeaBl5+7u8vhCXKuujwK7K+bg62Vy7DjtSLsrcCAE8pT9O2YX7IBF928HLNT/4Gktt8hOFja1XFowL1AOXuXZEwuKMiHvuzGsKKmtmDFgMRpVp8DV5Co6bE0wT3I5PN4oi26AH37nvU/pjWpUKVNHcEVEQinP00yad+RSrBHArMnevr5UCAIAik/J4w6hl3UbGtrQ1tbG0wmExISEjB1qveF2G63Q6lUgmFIWhaBcCbyw7n5eGt3A2p77KAo4JFzS6Fk49r2l0AgEAhDhKNps+z4QJyanKMbro4DEecIHjs4SzNYg7SU23+cKE5NAHA09z9MJxY8IT01Q8NcWEOeSNTkLI0Ddo2aj3+Kww3TsLVyGbZWehPK7S7dgNZtMABzS7ZiXv4HWFDyLUozj4BRKFFwtwmW8gJ0fiWe72ofeGq7fPl5eFFTlTkHiqRxcPdUSLZpCs8b0BpYfTZc7ftEa3K27RHNEcCA0xYO6PhDjTpvGRLn/BKmfc+BVicjdfkLoFhS1UIgxBM5EW+0lVkPV/p5r8sOmyf8XbI6M3FqEoafYRE16+vr8cYbb2DDhg1oaWnxjy9atAivvOK94/rNN9/g8ccfx9VXX40f/vCHMBgMw7E0AoEwSshN1ODA/UuxpbYbOUY1JmeNvmRBAoFAIMgTTtTk7R3gXWbQytiv67zHEtdHUwodBLe477K7tzKyqBnFqQmcDAuafFvMa4sFgfdISt8Zbabocei6Bc4J3tYRU5K1IHj7YPrKydev/RF6rQ8MaK0qFbBgQaAv5qxZQNNrV4oERzaxGBRFQ5UxU7J/qADYH2SDgtThg4koioK+7Eb0bPl1yAYamoJzB7QGRidNQHe27RI95jV5AD06hEOKopC04DEkLXhspJdCIJwxNMn0kGywnpmiZjSHKnFqEkaCuIqagiDg2Wefxcsvvwye5/3p5nI0Nzejt7cXr7zyCj755BM8++yzmDx5cjyXRyAQRhkGNYvzx6eP9DIIBAKB0A8EQZANCfLhNlX3q0TW0SDtp6krvRqWI6+Lj9tzApq8s8MeR1bUpBhRQrujeWBhQfb69ehcfzd4excSpt+NxLkPgzpZl+09r/iaN1SsZGTEWI+lMayo2dgYJGKu9yaWB4j9JiBNe4VLn4i5YAGgCWqJyTm6JQ5KRVLpyc/jJOKyM0JCfTR4h4xTUyuffu5DP+F69Gx9RBQipcqcC0adPKA1yCWghwZUDST5nEAgnD6cDk7N3iEKCoomajZYe+HhObA0qb4lDB9xre2877778OKLL4LjOImgSQU35AHQ2BhokN7S0oJbb70VVVVVIBAIBAKBQCCMXtw9x0VhK6H0NwHd0bhBPECzMJTdKD1vb+SwILmgIHXO4pC1VckmlUdC8DjR/sUN8PSeAO/sQe/238NR/41/e2g/TUAa5sIa8iVzPOZ6/9ddXcD77wN33gmUlgJ5ecDNNwNvvRUqaEanNLsCP/kJjzVrvMfdsQN44gmvqKkJyfhxywQwKZJKAAAUzUCZNk08v+soePfAerVJempSNGhVYsR9WH0ODFPuEI0lzv7FgM7vO140Rks/TQKBMPwIgoBGmZ6aTbY+eHhOZo+RIbpTc2h6akYTNT0Cj2abtL82gRBP4ubUfP7557F27Vq/eDl58mRcdtllmDhxIq699lrJ/EsuuQRVVVXYs2cPKIpCX18fHnroIfzvf/+L1xIJBAKBQCAQCIPEGcGlCQDufoQFcfZOuEKCWlQZs6GUcXq6e45HPVYwtNIIde5ZEtHU0bIVuuLLY16js2M/+BAXqLXqY2gKzvGeV0bUZHXilFxWL3ZqWp06fPElg+21XjfmgQMDTyjPS23E/LFfYUHpt5hfvAFpCW3IvPIbaHIXR91X7mfqc2oCgCpjpvj3LfBwdRyAOnt+v9cZ6qSl1Skx9RRNOevPUBiL4Oo4AO3YS6Edc3G/z+1D1qkZuk4iahIIZyw9LjvsnLSHJHdSvMvXJ43AqqREFTWHyKkpF5oUSq2le9T8XAhnBnERNVtbW/29MgHg/vvvxw9/+MOI+8yePRv//ve/8fbbb+MPf/gDAODw4cPYuHEjlixZEo9lEggEAoFAIBAGiaNpU8Tt/XFqOhq/k4yp85aAVurB6LLBWZsDxw1K/JZDIppp06DOXiA9Z/O2fomanKVRMhYcbMTZpM7P0LJyXp2PnVWLsOW4N9znQN0ceHhFzGsIJkXfhvklG7CwdD0WTT2GqZfehs6vfiSaYzvxYWyipoz7VZEYJGqmT5dsd7bvHZCoyYc4NSOFBAVDMUoYZ9zX7/PJwcYiamqJqEkgnKlEcibWW3tHjXhnGSU9NQGgzhJ9Tjja7Ga8X3MABqUalxdMgkGhHvCxCGcOcRE133//fTidTlAUhauuuiqqoBnM97//fTQ2NuKNN94AAHz++edE1CQQCAQCgUCIAc7WDk3N86CdHXClnw8g9l6WA8XRFMWp2Q9R094o7aepyV0KwFsGHSxquk3VEHgPKFr+clYS1qNJgypzjqSvpjPK+kPxmKX1367OgxB4DhTNyDo1ocrEnj2BvpibN0+Azba+X+f1YTAAS5cCiybvx2T3DzAu6zB8XZ0MU34E7ZhLAFoB8AF3kbXyIyQveTqqE1LeqVni/1opExZkr1sHw4QbQKv6F/AX6qSNVdQcSuSCgoKhFHrw6qyIcwgEwulLYwQRr87Sg0UZRcO3mAiY3Y6I200uB3iBBx3lNaDS1IH7d32MTocVd45fiBuKxf/zI/08fNRZBpaA3udyYPFnz6PK7L3h9XZVCT4/9zbSn5MQlbiImps3exMwKYrCPffc0+/9b7/9drz99tvgOA6HDh2KvgOBQCAQCATCGY6r4yDaVq+E5qTwp+r4Cs7x08HmLYzbOT3mBnj6aiPP6Uf5uSNU1GSUUJ10ASoSi8XbeQ88fbVQJBZLjiN4nOBd4jI5RpsGWqmHMm0KXO37/OPOjn3g3TbQCm1Ma/RYpKKm4LbCY6qCIqkUnK0NggBUt4/D1sql2Fq5DDsfm4ee3uA9KMkxwqFSAQsXAsuWBRLKWRZo//IZWI8dFs3VjV0JRp0ITf45sNd+4R/nrM1wtuyI6qj0hPTUpNUpYDSBRHJFUikohR6C2+Ifs9d8jvqXc6EZcyH0466BpvAC0Gxkdw3vcYiOAQC0JnzyebygVUZQrBaCR77fnCK5DIihJJ5AIJyeRHImjqYE9Gjl5wIEmFwOJKnCv84JgoCL1r3qFxV3dNSj1JiKuWkF/jmNIUnwWlYBm0dcnj/QBPR/HNvqPzcAfNNciY/rj2JVIQmPJkQmLqJmY2MjKIpCcXExUlP7f9c1OTkZ+fn5qK6uRltb/5q3EwgEAoFAIJxp2OrWof2zayG4zKJxa8W/oYujqOlo2hx1jsdcD4Fzg2Iil1dztna4u46KxtSZc0Gz3jSbYMegD3fPCVlRk5NL1tZ4k7XV2QtEoiZ4D5xtu6HJPSvq9wLIl58DQPXBCmyvLcVn/7ocm/bej1aTNOE8FmgamD07IGKGJpQDgMC5Ya/5QjRGKROgPvk96EpWiURNALBWfhhR1BQEHu6Qkv7QnzlF0VClz4CjSdwmQOAcsFV+CFvlh6DVKUg95x/QFV8W9lyhCetA4PcznFAUBUafHbaVgSJl4jCviEAgjCYi9ZAcTQno0URNwFuCHknULDe1iURFAHj7xB6/qCkIgkTknZGSix0d9XAHhSYN1Kn5n6q9krGXKraNSlGTF3h8WHcIbTYzVuZPQp4+caSXdEYTl1uPJpP3jz85OXnAx0hL817YuFyuIVkTgUAgEAgEwumI+fDraFu9UiJoAoCnuyKu55YrPZcIQQIHj7ku6rHs9dJybHVuoAURmygjaoZJQOdk0thprffaUpUlFfaczVujrs+Hz6nZY03GFwcuxyPvP4vlTxzG+KWX4Oabgf99e1a/Bc3SrMO4efHzWP2RG93dwPbt4RPKAcDRvBm8s1c0pi08HxSj9H499hIgpCzfeuJDCBHShzhzIwSPuO+aQuZnri/7fsTvhXd0oePLm8A7w4sBoaXnwMg4NYHICeiKlEnDuBICgTDaiNhTcxC9I4cSQRBiEzWjhAV1OKySsb1dgcqELqcNDs4j2p6vS0K+LlE0NhCn5sHuZhzulbZu+br5OE70SV8vRpo7t36Aa759C/fsWI1pa55GTYgYTBhe4uLUNBgM6Onp8YubA6Gry/vEMBqNQ7UsAoFAIBAIhNMGQRDQs+1RmHb+Kewcd2/khPDBEhoSRDEq6EqvQu+2IyHrqJZ1VAZjPvSKZCxY1FQkSfcPdRb6kBPNgp2aoTjbdkdcGwBYrcCmTcDqf34fmw8/g6PNUyEIA/MHFBUBC8ZvwezUFzG/5FukGbwibO7ZF0NhLIy6v63qY8mYduwl/q8ZdTI0ectgr/vKP8aZG2A78SG0Y1bKumZlQ4KCks996MtuBO+ywLT7L6Iep8EIHjsczdugLTpfdrusU1M9/D01AYCJKGpOBMh7VQLhjKXJFl7PqB8l5edOzgOPwEed1+OSb7Ph3y4jeu7vboKb56CgGVmBN0+XiDa7WeTwrLf0gON5MHTsr49yLk0fr1Rsx5OzL475WPGmxdaH147v9D/uddnxRuUuPDZD/vWOEH/iImpmZWWhu7sblZWVMJlM/RYmW1paUFVVBYqikJ0dPZWQQCAQCAQC4Uyja/3dskJgMLytDbzTBFo19DeJOXsX3N3lojFV5lwok8dL5kZLQHe27pIIpLQ2XVQurUgY4+1vGPTmzd0j79TkQ5LPgYCoyRpywWgzRCnlrg5pD3eXC9i5MxDus3074HYDwG0Rvxc50tMD5eTLlgFjxgC9OzehZ+t7onkec0NUUVMQBFirPhEP0gpoC8VvqHQlq0SiJgC0f3YdKFYLVdY8qHMWQlt4AVSZswDI/yzlSv4pioZx+t1ImHonHE2bYa14D9bKD8A7xW/weUd4NVBWdNaOjKgZKQHdK2rKtxsgEAinP9GcmoIggKJi75EcD8weqUtTQTOiknAgulNTTvR0cB4c7W3D1ORs2ZCgXJ0R7Q5xf2SPwKPZ1hdzSTYv8Hi3Zn/Y7a9X7sTvZpwPFRMX6arfbGuvgwBx1UO5SVodQhg+4lJ+vnCht3cTx3H45z//2e/9n332WX95zNy5c4d0bQQCgUAgEAinOvb69VEFTR9yidZDgaNZWnquzlkI1jhGuoYooqZpzzOSsYSpd/nLqQGAYlVgDQWiOaHBNj44m4yoqQ30bFSmThEfp68GHnsf9u0D/vIX4IILgORkYPFi4Le/9To03W7EjF7Vh+UTP8Ujl/0M3z7/C7S2Au+8A9x2m1fQBADGIC1R5ywNUY/t6jgAzlwvGtPkLpUI19qxK71J7yEIHhscDevRu/33aH53Ado+uRKctS1M8rnUqemDohlo8pYg9ZwXkH7RO9LvxR5B1JQRPOlR5tRkdNmikCQCgXBmIQgCGiP01LR4nOhxRRYKhwO50vNcrfRGZrS19jjlnZy7O72vS/KiZiIK9UmS8dp+9NXc3FYTUTzuctrwQe3BmI8Xb7Z31ErGYkmFJ8SPuMjdK1euxKuvvgpBEPDqq6+irKwM5513Xkz7vvTSS/joo4/8jy+66KJ4LJFAIBAIBALhlMV89F+SMVqVCM3YS2EN2ebqqYAqc/aQr0EuJEiVswiKxLGScU9vVdjjuE01sJ74UDRGsRokTLlDMleRVAJPX03guOZ68B6HJG2bk3Fq0pqAaKZMmwxb3TrUdJRgmy+h/HcadA2wmlDJOjCzcBuWn6fBdPbnmJy3ByzjdckklN0FOSMPq8+TjHn6ooua9vpvJGPBpec+GE0qtEUXwlb9iWRbMLaqj9HYtBm0KjFkCwVW5ncpB62W9tGXC2vyIR8UNLqcmspU0k+TQDiT6XbaYOci382qt/QgOUL4znAgJ2rm6xNREyIs9oYRLX2Ec3Lu6WzEraVz0SAj8ObpEmFyOSTjddYeLI54tgD/qdoXdc7LFdtw/dgZMR4xvuzoqJeMRRJlCfEnLqJmcXExLr/8cnzwwQfgOA4//elPsXLlSlx++eUYM0Z6995ms2Hnzp3417/+he3btwPwphGuWLEC48dLS5gIBAKBQCAQzlR4t1XSU5FS6JF1zUa4rV0SUTNuTs1QUZNioM6aB1ppAK1JE5WAR3Jq9u17TlRSDgD6iTfLuuQUSSUhJdUCPKYqKEPCieSdmulobvaWkn/54e34dsNdaOnNj/AdhoemOEzO24MFpd9iQcl6zCzcBrXSAU3h+bDX7hTNZXSZssdgE2REzTDJ6sE423ZJxjSF8uaBlKXPgLN3wtmyLeIxeUc3eIf4DTBryPcnz0dDTpDk7eGdOvI9T0fIqamTd2oSUZNAOLNpjNBP00edpQfTUsL35R0O5ETNPJ3UPRnVqRlm+54u7822cD01LTLnrzPHdofQxXnwfu0B0ZiKYZGi0qLZ1ucf29RWgyM9rZiYJP96Oly4ec7vXA2mxWaGi/NAOUpK5M804vZTf+SRR3Ds2DEcOXIEgiBgzZo1WLNmjWjOrl27MG/ePJjNZvC892LWV3ael5eH3/3ud/FaHoFAIBAIhNMUR/M2WMrfBmvIQ8L0n4BW6EZ6SUOKrfpTCG5xSqmu+HIokydAULRJ5rvjkIDOuyxwtYvdFcr0aaCVBgCAwjgGziBR02Oqke09xjm6YT7yesjRKRin3yN7XlYmbMjdUykRNX2CqsmWiO0nlmBr5dnY9VImjh3zzZDeZI9GWRmweOpBzNA8hrnF3yFBI33D62jcKBkLK2rKiGkecwzl5617RI9pTRrYhEL5cyTkI+vqDfD01cDRtBmOpi1wNG2CJ0zAUjCRSs9DkUsu769Tkx5lTk1FyHOKQDiVEQQBb1XtwYe1hzDOmIbfTDsXOoVqpJc1qonFfTcawoLMbqlTMjSRHIjeU7M7jJPzYHcLXJwHTbZe0bj6pPhYqJc69WMtP/+i8ZhETL04rwxTkrLw6L61ovFXKrbjb/Mui+m48eJgd4skAR4ABAhotvWh0CD9WRDiT9xETbVajddeew2/+MUvsGlTSDLmyQtap9MJh8MhGS8rK8Nzzz1Hks8JBAKBQCD0C1fnIbS8vxzgvRedjsZNyLj80xFv5D+UWCvelYzpxl8LAGA0KeBZI2hPQHCLh1PT2bIdEMQhBOrsRf6v2cQxcLbu8D8WPDZwtlawuizRPuaDr0gEWm3xZbIl7ACgSJQG1wQnoNtswObNwJpXr8B3+36NI03TB5xQXlDgDfbxhftkZgLdm9+DaXf4cm7BI33TyGgzZOdSrAqMNhOcrdU/xkURNTlbOzzmOtGYKmNWxOc3RVFQGMdAYRwDQ9mNAACPpRk9W38Dy9E3w+4nFxIUDprVgGK1EDyBN8WRnZrinpoUqwGtGJkSTkaXKQmgAgBl6uQRWQ+BEA/erz2IWzZ5Xzs+afCmer+95HsjvKrRTSx9Eust0efEG1mnpkyfy6jp52Gcmi6ew+GeVkn5ea420RvsrE0AS9GiBPY6S2xi73+qpann14+ZgTlpefjd/nXggo75ZtVuPDHrQmhZpWSf4WJ7e23YbQ3WXiJqjhBxCQrykZiYiFdeeQVPPvkkxo0b5x8XBMH/EUx6ejoefPBBvPvuu8jJGVkbN4FAIBAIhFMP096/+wVNALDXr4vaU/BUgrN3wVYrdi/Q2nRo8s4OzNGKS6o9vScghKSgDhZ74wbJmDonIGoqZMKCPL3iEnTB40Tf/v+TzDPO/FnY8yqSxE5NN8diy2YOv/89sHQpkJQEnHce8MIn38Phxpn9EjST9Z24+ioeL70EnDgB1NQAr70GXH+9V9AEAI+lKebj+Qjn1ASkYUEec+Tyc2fbbsmYL728P7D6bKSteBUZl64GowvjVOyHUxOQujUjOTVDe56OlEsTACialQrPFANl8oSRWRCBEAferhI7vD+oPQhPP14X3DyHx/evw3lrX8Yje76AU8atdrrRFCEkyEfdqHBqSkXNdLUeSlocFDfQoCAA2NlZLxF583ReAxpD08gLcYbG4tTscznwacNR0ViiUoMLcscjW2vEJXllom0mlwPvRUhJHw62y/TT9FHfj76arbY+3Lt9NX6w6V3s7YzedoYQmWEp+r/00ktx6aWXor6+Hnv37kVdXR36+vrgdrthNBqRkZGB6dOnY8KECaDpuOqsBAKBQCAQTlMEQZANUend/ji0Yy4J62aTK4serVgrPxSJtgCgL70KFB24pOM1BUDfIf9jgXPCY66Hwlg0JGsQPE5YjkiDitQ5C/1fyyegV4nmWCreEbkUAUCVvQDqrLlhz03rClDeMgNbKhZj6/Gzsat6MaxOw0C+Deg0Dswp+gYLSr7FgtJvMS7zMPJvORRRzOMGImqGcWoCAGvIgytIqOSdPeBdFtBKvex8Z6u0n6Yqo/+ipg9t0YXIuWEfur/7hdi1STHQjrm4X8di1Ckip2kkpyYf4tQcqX6aPhQpE8FZW/yPlWlTQbEqwHP6CzeEM4PKPvGNBBfPocNhRZY2Iab9nzr4rb8c+Ovm4+AEAU/MunDI1zmakCs/Zyha5B5siNGRGE/keloaFCokqbRos5v9Y71Rys8jlaevbaqAK0QEzwkSMgv1SaJgonprLzieBxNB2/mo7pCklPuKwilQnexLecf4+Vhdf1i0/eVj23BLyZyI30c82dFRF3ZbrAnovMDjrM//D1Vm7+vgB7WHcHTVA8jRkSrlgTKsnUzz8/ORnz+whuwEAoFAIBAIkXD3VMiKTq6O/bDXfCYRaVxdR9Dx5S1wdx+DtvgypJ37ilfIGMXIlp6Pu1b0mNMUSOa4uyuGTNT0ipHi3p2qnEUiYUo2AT0oLEgQeJj2/FUyxzjjp6LHggBUV3vDfb75Bli/nkFn5/YBrVupBBYs8JaSL18OlDKvwrxN7Ap1dRyMKGr236lJgdGmh93KGuTCghrCugSdrTJOzUGImgDAqJOQtuJV6EqvQt++5yHwbhhn3Q82oX/X7HJOTbkbBoIgSFycjHpkRc3EmT9DW9NmCJwDoFkkzv3ViK6HQBhKOJ5HjVl6k6HVbo5Z1AwNc/lf7YHTXtRsCgkKUtIMShPScLg3cDOubhSkXss5NQ0KFZKUGpGoGT0oKLxT86v/Z++8w+Moz/V9z/ailVZdspolWe7duGGDTQ89QEgh5CSEkJDGCcnJSTnpjZOchPSQBELILxAgQCihF2Mb27h3W7ZlyWpW79L2Mr8/1trd2ZktqpbN3Ne1l73ftG9XW2afed73OS3vzR3tziyzZUFbbfi+Lxig1TVAsUJvz2H+USdPPb+tYkn4/5dPq6LClk3dYOQi2M6uJvZ2NbM0p1i27UTT6R4KC5FKpJqAvqurSbKfIb+Hv9bs5FuLrxjrFN+zqPFMKioqKioqKucFSi7NYXq3/whz+bVhgSXgaKftmavDTkHH8SfQ22eQufo7kzLX0eAfbMJ9WtqnXJdRgbFA6lqILT+HM301y9835jmIokj/3l/JxjOWfkk2L9kcosrPXfWv4es5Jlmus8/AUnEdzc3w9tuh24YN0BDfGJEQQQgyv3gvF1a9zeVXmbjmC1/EEtW20dU0n8GYbTxdB7HO/IDi/kRRJBBTHh7bEzMWjSVX4qKNRVHUHFAWNUVRlJWf69Kno7Xkxt3/SLBMvwpLnBT1VNCaYsKCAl5EnwMhxnUa9PTL3MZKQUOTibnscopu34OnYy+G3EUYsmaf1fmoqIwnp539MpcdQJtrAEit5Vt0EvXwPs+lKofRECtSFVkyKLNlSkTNdtcgbr8Pk04/ybOLkEjUjCZReXlQDCYUPZXCcYqjnIXTFXp4Ngz1xhU125wDbGitke7PksHFBZFzB42g4dOzVvH13S9J1nup+ehZETW3dyQ+GUk1NKrVGXvmAW+3nlRFzTEwZUXNRx55hOPHjyMIAj/5yU/O9nRUVFRUVFRUpjjuxjfjLvN27MVV/wqW8msQgwE6Xv24TIwaPPII9lXfQhDk5VJiwIer8Q0EnRlT8TrFdcYL/2ATvr5ajAUrJOEpQ8f/KVs3bdaH5IniSk7NcQoLcjW8jq9b2gNrWIyMRmvJR9BbJSFA0U7N/n2/Df+/azCX7SfXs8/5P2z5iZYa6e+cETFnDqxb3cki8XOsmrGJDEsfAPYV35AImgCG3IWy7b2dB+PuO+juCTn5ojAVXxxKo/cr/1jUJSg9B9DZ5D/MAkPK/bX8A6cIuqUukbG6NMcTxQR0V5eslD6o0GtTax4fYXYs6DOrRhSOpKJyrhDPXdbmkosrSviDAbpjBDFPwE+/143daI6z1bmNKIo0x/TULLHaKbPKxbsmRx9VGWfvMyyeqBn7t+nzugmKQTQK5y+DPg/BmLyTZEicmooJ6L2syVeuEPnnqQOy4324YolsbrdOXyQTNWMF9sliR4J+moDs9RIPpZT5bR31OP3esxqCdC4zZUXNLVu2sGXLFlXUVFFRUVFRUUmKGPDhat6ccJ3e7T/CPP1q+nb+BHfTBtnywFAzntbtmKZdKBkP+t20PnUJ3vZQ0IK16gPkXfuP8Zt8FI6aZ+h89ROIAQ8aUza5V/0FS3moxM9x7HHZ+sOp55L5mooQBS1CVDr5eIma/Xt+KRvLWPKfMpFXEAR0GeX4uiL9sHxnRM2OU7W88JKFd2vu592aSzjRNm/U8ym0N3LhzLd53wdmcc1HVzFtGjjr99H+3POS9TQKopnWlIU2rVgiInq7DsnWG8avIDbq0ksx5CyQJL1LjmGJHxIEoLPJXbX+QeUfToql56MICZooZE5NQkIwGdMlY7HJ53D2nZoqKucz8UTN9hRFzS63AxG54NXmGjxvRc0ejxNXwCcZK7JmUKrgSGw8y6LmkD+eU1N6JU9EZMDrUfybJeqnGY/imJ6asTQkCAt6s1V+TnJb5VLZWJ5Z3l96NHMdDxL104TUy8+VHLPeYIBtHfVcPm1kAX0qIaasqKmioqKioqKikiqe9l2I3sQ/0Lztu+nd8k3FXo7DOI7/UyZqDh56KCxoAjhqnsbT+TWMuYvGNukYRFGk551vIAZCP1CC7m7an78J+6pvY53xfrxdUhdhqExWofeiRkfQVITWFRHHfL3yflgjxdOxXyYGa0zZpM39mOL6+owKfF2HGXKnsatuLe/WrGfvnwLs21+OKD49qjlkZ8PFKztZavkeF858m+k5JxEEsK/6DpnTVgEQcHXItotXom3IXYgrSqwMDDYRcPegNcldJ0r9WnVpxRhyF8UXNRMkn4M8/RziJ6ArJZ8b8pcn3P9kEs+pGUswJvkczn5QkIrK+UzdQBynpkIZrBLt7iHl7V0DzLbH7xl8LtPslLvuii0ZlCo4NRvOcliQklMzTWckU0m89DoVRU0l92AypE5N+fNSn+B5ie3xWmhOZ2FmoWw9s1aPQaOVtE/oS9IbdCIIBIPs7GxKuE6Px4nD58GqT9ybvSdO79INLSdVUXOUqKKmioqKioqKyjmPq0Feem7MX46nXZoW3b/nFwn346j5F1nrfoGg0QIhoXHw4J9k63nb94y7qBkYasY/UB8zKtK3/QcMHPyjbP3YgCDJvsylElEz4Ggl6BlAY0wtFEKJgX2/lo2lL/qMpEQewOmEbdvg5X9+jo3v/BcHmy4gEBzdKWdaGlx0USjY57LLYOFCCDp9ND30oGQ9X9/J8P+DCkJavPJmQ84CXKdelox5Ow9hLlknW9c/KBc1tWlFGLTxy8W01sTl51pLPmj0EIw4gvyDyj+cZKKmoMGYt0Rx3bOBslNTLqYoOTVVUVNFZeKoHZR/JgK0ulIr4+1wKYuarSk6Pc9FlFx3JVY7pWl2hXXPrqgZm35u0enRajSynpoQcjmW2+T7SBYiFItFp5fsv8iSIUuGr4/j1BRFkcahPslYuS1LsT+rIAjYDWY6ooT1syFqHulrU3TExtLk6E8q9McTkN9uHUPvnfc4qqipoqKioqKics6jFBKUe/X/o+XJixWdYfEIONtwn34Hc8l6ANzNmxRdjt6YkJvxwNOxP+6yoFPuPkyb9cG46wcsZdCzRTLm66vBmL9sVHPzDzYzdPxJyZigNZK+8LN4vbBjRyjUZ8MG2L4dvF6AS0d8HJMJ1qwJJZRfcglccAHoY/IXBGuhrF+nr/tI+P8BhecqkVMzFm/XQUVRU6nXpc5WjC4tftBGsvJzQdCgSyvGP3AqPKYkaopBP972vZIxfdYcWb/Ks4myU1NJ1JQLLBpV1FRRmTCUks8h9fLzdrfyeqlufy7SrCBqFlntio7EqebUtOlNAGQaLbJ144mXI3VqlljtEhFSp9FSYs2QuDMbBpWfl16vSyYQliRISc80SkXNs1F+vl2hn2ZVeg41A9LvsyZH36hFzd3dzfR7XWQoiNEqiZm4LvcqKioqKioqKpNA0NOPp22nZEyfMx+9vZKMZfcm3NZScb1szBEVyKPk0gTwdVePYqaJ8XbuT3ldU9FFisnZwwTMSgnooy9BH9j/+3BitT+gZX/Dch7a9/+4+qZ87Ha4+GL43vdg8+ZhQTM19Fova5Z3853vwMaN0NcHb74J3/wmrF4tFzQh5Nww5CyQjHm7DhP0h37oKItm8ZyaqYcF+RXKz7VpRehz5oGgVdwmmVMT5GFBgcFmxJgABV9PtSyMyFgwdUrPQdltqeTUVHbSqj01VVQmirEGBXXGcWq2naXAlslAKfSlxGqnwGxDr5F+3qfaS3GikImaulD5s13JqRmn9FlJ7Kywxf9cLrbYZWPTY8KCGhy9BKOcm8M0KojASmLxMLGPI55TMygG+enBDcx6+n+5+KXfsbdLuZXLaFDqp3nrdHm1TioJ6PFE2aAosqmtTnGZSmJUUVNFRUVFRUXlnMbVvBmiQnEAzKWXA5C+8G40CmWxAGnz7iD3fY8gaE2SccfJZxEDPvyOVhy1zytu6xuBUzPod9O98V7qf59J01/n4Gp6W3E9b8e+lPdpnf2RxMdUSkDvGZ2o6XcP8u7LO3ho439y54PPsvR/2rn5V1v58V9v4o03wDUC04RGCLC4bAd3X/Yz/nb31Rz8zTLe2W7n+9+HdevAmLgVVRhjbC9JMYD3jNN1JD0b9fYZCDrpD6bY3qXDyERNjQ6tJQ+Nzow+a5biNsmcmgDaGHFaDLhlwp9iSNAUSj4H0Cj1IU3RqTkV0s9VVM5HejzOuCJQqqJmPEdmqtufiyg5NYutGWgEjcxVON5OzR6Pkx2dDbj9vuQro+TUDH2Rxis/V6JPwT14WWFV3GMWWzNkY7HCpC8YoFWhb6vS81WawKkZK2r2el2yC38ArzYf55t7XubkYBdbO+r56KbH8AcDsvVGw/YOqahp1Rl4X/Fs2XpKr5tYErli3249GXeZSnzU8nMVFRUVFRWVcxq3Qum5ufQyADSGNDKWfonebd+WLNfnzCf7kl+h0Zkxl78P58nnwsuC7m5cTW+H+nGecSfG4h9sIOgdSlr+G/QO0f7vD4QDdvz9tXS+egfFdxxDo5OKqZ7OA5L7Wks+xoILcNa9JN2pRod1xk0Jj6vs1EwtAV0Uobo6Uk6+8S0dvQPytPhUEIQgc6cdYFXVRlbP2Mjyyi3YTJEfOZkXfD/cv3QkGAvkZfSetl2Ypq0m4JSKmhpTFoJG+ZRX0GgxZM+X9F71dR9FDPpl2wRiAnx01qJw6rshdxG+7qOy/ScLCgK5UxNCJejRJfNKIUHnhFNTKSjIreCkVRBEVVRUxk7tgHI/TQiJYakEm3TECQo6n3tqno4JCjJotOSarEBIgKuLcr82OfoIikE0wtj9YhtbT3Lzhkfo97rJNVnZdM3nmZWRuJw5rqipEAgUT+BWEtquKJrJgye2K66vVC4e69SEkIBZFCOAKrkZlVLlh4kVNQNiEIffS1rM6/a109ILtycGOtnbfZoVufLzoZHQ63FyrF/a1mZFToni421ScPjGEi8oCGBDi9pXczSoTk0VFRUVFRWVcxpXY0xIkNaAqWht+G764s+hz4w4DjRGO3nXPI7mjEPPOvNW2T4dxx9n8NBfEh43WTl3wN1D27+uliWGBxwteFqladkBVxeBmF6Khvxl5F3/DPZVUkHWvvJbSct1Rb2doE4aChRP1BRFOH4c/vQn+PCHobAQ5s2DL34Rnn0WegdG1t9p7lz4whfgmWdg/68v5N//tZL/ufFrXDrvFYmgiUZH2rw7RrTvYWROTQgLk7FOwGQuQH2utJRdDHhkf1tRFPHH9NTU2iK9NI25ixX3rUtJ1JT/4Irtq+lpkwZeCVojhuz5Sfc9mQg6C4JW+iMz4Jb38ot1b2qMmXFFZxUVlbERr/R8mHjJ5pJ14pSfn889NWNLyossGWHRMlaA8wYDcZ+jkfLtva/S73UD0Ol28LltzyRcXxRFWX/KtLBTU6GnZhynplL5+crcUtJ0yoJ3sYKoqSRMnlIIC4oNCYLE5eeKKe4Kj6PL45CNxTosR8POLnmf65V5ZRSYbehihOxUys8TOTUP97Wd1++riUI9g1BRUVFRUVE5Z/EPNsnEOlPhajR6a/i+xmCj4ObXGDj4Jwj6sC24C729MrzcUn6NLHhmqPofgLy8KRpvT3Xc4B2/o422Z6/B13VYcXkojCgSRuNVCAky5i1GEDRkrvo21qpbcNa+gCFnAebyqxPOCwBBIGAuRTMYOb6vtwZRDAIajh8P9bAcvrW3J99lPGbMiAT7rF8PBVE6Xuu/snDL++sDYK28MSXRTwmdfQYao52gpy88NlyiHRsUpIkTEjSMMWchsT9HvZ0HMWTPC98XvQOS1wcgCQgy5C2W7VfQmhAMydPm4zk1hwn6XXi7pa8jQ+5iBK1Cw9GziCAIaMw5BKLK9JWcmrK/j9pPU0VlwqhLImq2OgcS9k4E6IwjfLalmJ5+riGKoqynZnS5tZIA1+jopdCS/PM+Ef5ggJ0xgTQb22o52NPCwqxpits4/V6CMaXYiZyaI+mpmW20siynSLHPo1L5eblN7lysG5R/BzQoOTWtqTs1IeQ4LcEuGVMSC9/tbOAeLoq771TY3lEvG1uZW4ZWo6HImiEpp09Wfu4LBmTO2lg2ttbyoYrFo5jpexdV1FRRUVFRUVE5Z3E1ysuih0vPo9HZisla80PFfWj0Vizl1+I48c+o0cSCJsQPC/INNND2r6vx98XvjeRu2Sq571Hop2nIXRL5f/ZcDNlzk84pmqClDAYPI4pQ1zGL7Scv5uBGF5u3WsckYhZPc3PZFaawkFkSP68IfUYF7jjLbAs/Peo5CIKAMX85rsY3wmP+/lr8g82IPukP8Hj9NIdRTEDvPAhRfUtjXZoA2rSIGGnIlQcGaK0FknTYeCgFPkUnrXs7DsjaIBgLplY/zWG0piyJqBnr1BRFUbIcSJger6KiMjaSOTVT6YsZzznW5XbiCwZkwTnnOj0eJ66AtJ9ltDNRqfS6YaiXlbnyXtYjoWGoF79CsM7vq7fypzXyihKQl57D6Hpq9sYIgiatDrNOz9LsYkVRU+k5qEqXf9fGpoODPCjIbjCTbjDJ1htG8XEoiLOxjwGUBcmRopR8vupMSXuJ1S4RNZscfYiiGPe7X2mOsWxorVFFzRGiipoqKioqKioq5yyy0nMiIUEjwTrz1hhRU4rGmEnQIz0RVwoL8g+dpvWpS2Wl5LF4WrcjBnxht51S8rmS+y8VRBHq600c2PQR9u24jR21F9E1ODpHJECOrY3VVRu5cPZ2rrvrJuatW0cKWh0AenuF8nhmFabi9aOeE4SEvWhRE8BZ/5psPa05cT+y2CR1AG/XIcl9/6A8+TxajNOastBlVOLvr40st89IeNzwtmlyUTPaqanYT3OKhQQNo4kRkGOdmkF3N2JA+iNcm6bsQFJRURk7dQNJys+TiJqiKMbtqSki0uEakvVMPNdpdsr7IhZbkjg1xyEs6MSAPOQO4LHavdx3wbVkGeXl5IlETYvOgF6jxRcVlqPkyAS52Dlcur4sR/mqpZKoWWhOx6LT44wKODqpJGrGuBkThQQB2BUed59Xfrm0W0EwbHT0cdrRP+rXaFAMytyzFbZs8sw2QP48OP0+ejxOsk1WlOiJIypHo4YFjRxV1FRRUVFRUVE5JxHFoMypqTFmYshbEmeL+JinX4VgSEf0KpfT2RZ8iqHqRwk4WsNj3h65U7N367cUBU1Ba5SIOaLPgbdzfzjsJdapqTFlKfZaVGI42CdUSq7hrbcW0tOjB+Yl21QRu6WbVTM2sapqIxdWbaQy7xh6ewX5N/xrxG5RXYayqGlb8OmUXIyJUArKcZ16WTamtSR2amqMGejSp+MfqA+PeTulCeix7kIAnU3qMMy44L/ofuuzoTuChvRFn0143OjjCwYbojciLkhFzV2ybQxTVNTUmqRlrGLATdDnRKMP/SiVJcijOjVVVCaSsTo1+71uvAkSpNtcgyMSjIKiiGaMn/0TTWw/TZCKV0ql0rFC3WhQEgABXAEfD5/YwX8tuES2LJGoKQgCmQazRJTui1N+Hhtek3WmdP2CbHl7FJveSIaCe1IQBGbYcjjYGzlPin1Mbr9PJqQnCgkCsCu4OJUcj/F6Vb7bWc8HrPJqilQ43NsmC1daGRU8pCTuNjn6EoiayZ2atYPdNAz1UKYQRKSizKhFzeeee24cpyGnfSx1USoqKioqKirnPd6uQwRdUmeDqWT9qNK0NToT1sobGKp+VGGpgG3BXXja90hETX9/HUG/O5xiLgb9OE4+L9vaWnULptLLI4LXGdynt2AsWE7QMyArVTfkLo4r+klFTNi0CTrCbQo1jDQHMjsb1q2DVVVbmB+8h5kFR9BoIuX3puJ15F37RNJwIiX0CqKmoDWRNvdjI95XLErCnqvxLdlYMqcmhNya0aJmwNlGwNmB1hLaNln5OUD6gjvRZ1bh7diLadqalNPJBUFAl1aML0ok90clrceGBGkMGZLgq6mEUn/MoKsLjT70I1BJHNaqoqaKyoTg8vtkKd6xJBM147k0I9un1lezur+Dj554hVp3P2vTp/H0nFlk69JS2nayUeqLWJRC+flYUSrVHuaBY9u4d946tBrp9/ugP76oCaG+mtF/w/jl5zFOzTPuyMr0bDIMpnB4ESg//mEq06WiZrfHSa/HGd6fkmCczKmpFHgUKzQGgsG4ye7bOxr4wPSRi5qd7iE+slF+Trgqqs1APFFzcbby95pS8nmFLVvW+3ZD60nuqFoxwhm/dxm1qPn1r399zFfYVVRUVFRUVFRGi1tBwBpN6fkw1pm3Koqa5unvQ58xHUPWbGmSuRjE31cTLl/2dh6U9XM0l11F7tWP4h+UJ3C6T79DxrJ78XYdlC0zRpWeiyIcPRoRMDduhE7lKrWUyM4OBfqsWxf6d948EASR04/dIws2si24i+z1vxp1KI3OPkMWwmSdeSta09gdCDprAVpbKYHBSGmY6Jf/YIgtiVbCkLsQZ92/JWPerkPh/qypOgzNxRdjLr446fFk+7KVSETNgKMFMegn6B2UC975yxCEkQnXk4WS8B1wd6NLD4ma/qEW2XLVqamiMjGcGkrs0oTkomSy8vRUenJ2ux1c9+ZfaHaHBNbNA6f56eG3+dmK65NuezaIDQkCqXhl1unJM6VJxEIlsW6knOiP/8VeP9TLi01HubFsvmRcyamZpo84G2MFQaXyc38wwIBPWs49HM6jETR8qHwxfz6+PbzshtL4VSBKfTVPDnSx/Iy7USkkKFHyefRcookVMOMJmjC6BPR+r4trXn+QY/3SYDsBgcunzQzfjydqxkPJqXlL2QL+7/BGydiGFlXUHAlq+bmKioqKiorKOYliSFCZPCQoVcyllyn2zkw/E2ijz5oj28bbXR0WNd2nt8iWW2fegqDRoksvR2udRsAREXXcLdsQxSCemORzUYTavot5/PcRIXMsImaWtZMVle+wasYmLlx4jMu+/RoxZg/cLTtkgqY+azbZl/5uTBexNXoL9uX/Te+274bum3PJvPD7o95fLMaCC3AOxolXP8Ow2zIR8cKChkXNQKwYJ2jQjjK5XQlZWJAYJDDUgq/3hGzdqRoSBKAxKTk1I8JKQMHxqoqaKioTQ22SfpqQXLRM5tRMpSfnHVuekPWp/FfDoSksavbJxmLTvsvSMiXPzXg4NeOVnw/z++qtKYma0U7NWEGwz+siKAbRRF0YU+pPGd2/88fLrsET8LOzs5GLCir4xsL451kz4oQFhUVNhecpWfm5Yop7jLM0UVn3nu5mPAE/Rm1q0pfT7+WGNx9mb7f8YuZds1Yy2x45p0gmaooiBALg8YRu9ad9iD0ZENSEbqJAVcU80jrqGPT4IChAUMNrp11s1YkEgwKBAASDof2I4vA+BbRaHTk5ftnx34uMSdQUxeTJoCoqKioqKioq440oBnG3bpeM6dLLFcudU0XQGkibcxsD+38f2ad9Bubp7wNAny0XNaPdde4WuahpmrYmtG9BwFS0VhJGFHT34Oupxtl6gENNS9hZexG76tayu24NPY7cUT8Ou93HsmVDLF06yNVF/0dp4M+ScnL8g2CwSbYZPPSgbD+2BXeNS1WOfcU3MJdejm+gHkvZlWiM4xcqYcy/AGfNvxKukyz9HMCQoyBqRjloY8vPtZYCBM34eQO0NnnfMuepl3DUviAbn6ohQRDfqTmMklNTLT9XUZkYYktalWh1JhE1k4iWrc7ETs9fH32Hl5rk/adPDfXQONSbVNA6G8SKmnqNltyYHoklVju7uiK9j/u8Lga87oQp3onwBPyKLsZo3mqt4WhfG3PtkQtqyUTNWEEwKIoM+jySnphK/SmjE8ezjBYevujDyR8EyqJm7WBErFUuPx+7U1MpJGgYbzDAvu7TrMorQxTB5YKBARgcBKdTeusfDPDTPe9ypH0aeMsQPQbw6sFjoNSQR3d6JdffF9qH1wsOVwHB9nvBrwO/Fvw6fima+EMwtNzjCYmQEVafuUX4FAD3SMY6gbUJnxUtgrCQT32qlc98pjXhmu8FRn029tZb8pIvFRUVFRUVFZXJwNdbIwv1MRVdOOb9Zl74Q7xdh3E3b0JrKyHv2sfDPToNWbPl8ziTgC6KIu7TWyXLtJZ8SQL2sKjp8Rs42HgBu+rWsv9pG9v3/JIh9+h7i+XkhMrI16+HtWv9+HwHw+nkZYMmBvdLL0L7emsw5i8N3w+4e3CceEqyjqA1kTbn9lHPKRZjwfKUe0yOaL/5yfeZilNTl1GOoE+TtA+IDm8KxKSfj7e7UObUBLrf/k/FdSfieRwvkjo1Y1PkBS1aS/5ET0tF5T2JUkhQsSVD4ppsdw3KnHvRJO+pGV/03NnZyNd3vxR3+ca2Wv5jhvwizaa2Wn55eDN6jYb/WrCelVE9DCeDWFdpsSVD9vwoJqA7eplvKBzVMesGuwnGGMaMWh2egNSJ9/vqrfx+9S3h+0M+uctSImoqCIK9HpdU1FQo3VZKWk8FpfLz6F6hSk7NZOXnGfrhvuUCuI3gsHDKZeEND/T1hQTK7Y0mxANXILpMoXVcptDtzP+v+VYmnBEzA/FzrwAtsE5xSeOZm3x96fmA58xtohFFgYceKuSmmxI7fN8LjFrULCpSr6qqqKioqKgABH0Ogt5BtJZ8td/0JOHt2CMbM+QtG/N+NYY0Cj/wBgF3DxpjpuTvqTHnojFlE4xyng0noPt6T8hCi4xFaxAEAYcD3n0X3n71Jt56bg77G1fg8cl/aKRKbm5ExFy/HubMISxi+v1w4EBkXZ1CoIyv97hE1Bw6+ihiQPrDyDrrg2hNU89BE0vocQhAvOohQVFok60laDDkLsTTsi085us+irfrELqMCllLAq1t4kVNxfUyKqZ0ubaSK1bi1HRIRU2ttXBUwV4qKirJUSo/X5VXxtP1US50MUiPx0VOnLTmdtfoys/7PC4+svHv+BIkp29sPSkTNZuG+rjprb+Gg2m2tJ/i4E3/Ra5pckKFRFGUuQljS88hTgL6UB/zM0cnaiqFBH1xzlp+dWQzfjEYHvv7yT38ZNk1YVFS0ampi3ZqysXJXq+L6VH3lUq3lcTQVCg0p2PR6XH6feGx6Ndh01BvSJx0mmAwDb0jnR1vpNHXC7290NMTug3/P/SvBrHtB4gOE4ghcXkzcKXkyPnAVXHnNfbmAFMTURTw+9XfHWpPTRUVFRUVlTHgqPkXXW98hqC3H3PpFeRd9wSamNJelfHH0yYXNcezLFcpyEYQBPRZs/G0RByZvt4axKBfMtbvtLO7bg0H9/43O34Ae/eGxMbQSffIXWmJRMxk6OwzZWPRfRpFUWTw0J9l69gWfHrE8zwbaAw29Nlz8HUfVV5uykpZNLOUXyMRNQEGDz9M+qLPytbVpcnLxcdCSqKmRk/W2h+P63HHG43C+yaRU1OXNm3C56Si8l4lNiioyJJBeZr8PdrmGograo7GqSmKIndt/Sf1SfpMbmyrlY09cnKnJGm7wz3EE3X7+OLcixLua7zo8Thxx7gjixX6JiqVzScrH0/EyQF54+x1BZU0DPXyVH3kSqXD7+WRml3857xQIF3S8nNFp6ZUxFRyatpH4NQUxZD42NkJnZ0COYdX0dDmg4E0xEEre5wZXPbL0PKjTR9DHDBDMPS97AVuSukoo3OOnu9cd10X06Z5z/Y0zjqqqKmioqKiojJK3Ke30vHK7RAMnQC7Gt9g8MgjZCz54lme2fmPJ9apKWgVw17GG0PWHImASdBH47F63njcw+bNv2JX3VqOt85HFEefTp2f42TdpZawiDl7duoiZiz6TLmo6Y3uA9q8WRZGY8hdNKVLnGMx5i+PK2pqLan3Jk2b+7FQoJEYcRYNVT+GuewK+X7H2S2pTSsGrQEC8h8ngtaIdfZtZCz9TwzZc8f1uOONolPTFXIgBb1DBL3Ssk61n6aKysQQCAY5NdgjGau0ZVNgSZet2+YajOswTNpT0zWAKIqSqoYHjm3jXw2HZOvatHoGAxEHX8NQL/WDPUy3RYTW5xoOy7Z7ruHwpImasaXnECo/j0WpZLppqG/Uxz3RL3dqVqXn8IW5ayWiJoSe33vmXoQgCMmDgpRCdmJETKWemllGM14vtLVBa6vyraUltLyzc/jC7TA3SvblASKxjpPjuJ1IBAHMZjAawWCAIRw4RCfoA6Dzg87PqsJibGZdeB2jMXR7qfUQnb4BEIKgEbEadHx+3oVotfBuZx0bO04iaIKgCS0vT88ML9dqCYc8BoMB0tJqmDfPcXafjCnCqEXNv//973z0ox9FExufOUmIoshjjz3G7bePX78nFRUVFRWVVPEPtdDx0kfCguYw7tNbVFFzghGDfrxR/Q4BDNnz0Ogn/kq+LmsOTd3Tz4T6rGFn3UXU3zsDmJF023iUZNWxonILyyvfYUXFFlbf8zim/MXjMl+NOReN0U7Q0xcec9b8i75dPyPjgq/GdWmeS20UjAXLGTr6N8VlWnPqoqbOWoil4lqcUeE8QU8f/ft+J193nMU4jS7Uw3To8MORMUse6QvvJn3hp1PqCzoVEPRpoNFDMCJcBNwhYcU/JE+Sncql9Coq5zKnnf14Y0q/K9KzyTfLK0kS9cVM5tR0+n0M+T3YzvQ9HPC6+cbul2Xr3Vgyj1Kfnt+27ZeMv912kjtsKwCoH+xhf488TGxzex1dbkdcN+l4ohRko+jUVBg7NdQjG0uVWKemTtAw3ZbFjPQcFmdNkzwvNQNdnHb2U2y1p+DUlJ8XdbtctLRAUxM0N8PLO3MIHr4a+tOhLx36bdz21Xz6kudMTW00ATC7weQBs5tZ+elU5KWRng7p6ZCWBgZzgL83baPV3w1GLxh8YPRiMcNfLruJmbl2LBawWsFiCd2MRumF5u/v28IP9r8hOfQvr/0iq/LkvWCrnn6R7qhet9Mz8vjpzaF+8P3eQiqf+qtEdK4Hlr4vj/WF0nNMv1/kwAFV0Bxm1KLmj3/8Y55++mm++c1vsnLlyvGcU1J27drFfffdR3V1tSpqqqioqKhMOmLAS8dLHybgbJMt8w82KWyhMp74eqoR/VKngSF/7P00lQgG4ehR2LoVNm+GTW/fxenWsYnWVflHQwJm5RaWV2yh0B4l9mgNGHPGz40nCAKGnIW4T2+WjPdu/RbezoM4Tj4nXV+fRtrs1FJOpwqJXKWaETg1AWzz75SImgDuxjdl6+kU0srHSs4lv8GQPQ9/fz2GvMWkzfwgQlRvtHMBQRDQmnMIOCJprMEzTs2AQ00+V1GZLJRCgipt2RQoiZoJEsyT9dQMbT+ILSMkar7TXseQXyq0laVl8qfVt/Dq3u2ybTe11nJHVUjUfL5R7tKEUGL3i01H+UTVxFcQxCafg7KomWW0kK43MRAV1HMqhbT5eMT21Cy3ZaE/0zrllukLZWJvdV+HoqgpIDDUY+BYc0i0fPtIPsEt10KPHXozoMfOZ/vtfEZyPX7WmVuEvlE/kvFDp4PMTMjKgk5tBz26brA6weIEq4tfXHI5OVkaMjLgt6feZEPvITB7wOQOiZl6v0R8vGbuRdy/UuoivWvLM7TV7CT2Mu6jl36C95fZU5qn0uujydHHKuSiZmz/0uhApgyDmS/Nu5jv7ntNss4P9r8uEzVVpIxa1MzJyeH48eN84hOfYP369Xz5y1+mqkrejH482b9/P7/97W/Ztm0boiiSkyMvcVFRUVFRUZloujd+GU+r/OQcwD8oz0ZUGV887XtlY8ZxEjXdbti1C7ZsCQmZW7eG0jUjmEa0P40GliyBiy8O3das9uF46kJEv7zcC0KOU0FrGPX8lchYdi/u0+8QG6bjOPFP2bppsz9yzvWENWTPR9AaEQNyx8pInJoA5rIr0aYVExhqTrjeRIhxgtZwXri8NaYsiagZdmoOyp9TtaemisrEoCRqVsQTNeM4Nd1+n0S0i0eba5CqjNBn7dG+dtnyny2/jkyjhZnmTKwaPY4oJ/fGttpw+bpS6fkwzzUcniRRU6H8XCEoSBAEKm3Z7OuJXJRUes5Twen3ysreZ0SliM/OiPTiFv1a6Lbz/KseGkQ4+MZigk2LQ6JlTwb02imQBMfkApdI9h1k8tEZAmRkB+g2dIBt6MzNwS0LKrhqVglZWSHxcljEzMwMOSmHRck7t7zNIzW7JPv82EcuDAdI/en1UwinI38LjSAgoCEQFbK0vbNBsv3DJ3bycM1O2Vz/a/563l82P+XHphQa1aTQXzUQDNIXU/ofG+T0xblr+eWRzZL1NrXVsbH1pCpsJmDUouYLL7zA17/+dTZv3szGjRvZtGkTF198MR/60IdYv379uJUteTwe3njjDR599FEOnInzFEWR5cuXc//994/LMVRUVFRUVFJl8PBfFUt2hwk6Owj6XWh0o0+3VkmMp323bGy0IUFdXRHxcssW2LMHvGPouW7QelhYuotLri3j0mtLuPDCUJlTBD3+wlW4mzYob5+3ZPQHj4Ol4lryrn+azlf/A9GXuFzJtuBT4378iUbQ6jHkLVG80DBSUVPQaLHN+zh9OxIH8uisqhgXD605B1/U/bBTc0jJqTn+jlcVFRWoU0g+r7RlU2hW7qmphFLpuVmrxxXwScait1cSNZdlh97nOkHDEmsuWwYjnwVNjj5ODfVg0xvZ0nEqzqOBN1qO4/B5sOqTu9cfqN7KH4+9S7rBxM+WX8fqvOlJtxmmQSHcqETBiQchN2W0qNnjcdLncSn2sUzEySiXphjQQG8GZtds/toM9fWw//gMgvs+B51ZofJwUcPvw1tMTJVKMgQhFGJYWAgFBaH/5+ZCXh7oM5x89dgTYeES2xAfmTefBVkFfH33S5L9fPaqz3BZCl+nyoFHrrCoGdsXNNtoocRqZ2935O+zt/s0br8Pk07P3q5mvrj9X7J9XpxfwY+XXZ3KUxBG6fXRpCCOxwqaIHVqQsitea/q1hwxoxY1s7Ky+POf/8wTTzzB/fffz8DAAJs2bWLTpk3k5eVx2WWXsW7dOlatWoXROLLSmf7+frZu3crGjRt56623cDpDL1JRFDGbzdx777187GMfO6f6PamoqKionPt42nbR9XZyJ1VgsAmNQkCLyvjgaY8JCdIaMOQkv6ouinDyZETA3LIFjh8f21zMBgdLp7/LisotrKh4h0WluzCZg5R9tgtNnLMsU9GauKKmMXfx2CYUB2vl9ehufZv2F26O60I0FqzAOAGi6mRgzL9AWdQcYfk5QNq8T9C34yfEOluH0Vjyzrmy8MkkNgFd9DsJ+l3KPTVtavm5ispEUDsoD56pTM8hw2DCqNXhiUr4bh+BqLkgs4CdXdI2O22uSPl6dYyoadbqKUvLJBgIOeaWpeVJRE2At1tPIiAQFJU/cwHcAT+vnj7OLdMTBwI+23CIL2x/Nnz/9k2PcfTmr2HUpiZ7HO/vkNy36gzkxunlWWnLlo3VDnazzJj4Yk1fX+hcZPi24aCJ4KG7oSsr5LYMankaeDq8hRmoSGn+Y0YTQMhwsLQincJCmDYtJFwO34bv5+WBXq+8C1E0871Ha3D6I+J37WAX6Qb596ZSb1Il7AqiZrRI2OORCoZZRgurcsskoqYvGGBPdzN+MchNb/1VlnJfYLbx+Prb0Z0p+0+VEgUnr1Jv1tjS8+F5xqK6NUfOmNPPP/zhD3PFFVfw05/+lBdffJFgMEhHRwePP/44jz/+OFqtlrKyMmbOnElVVRXZ2dnYbDasVitarRa3201fXx8tLS00NDRw5MgRGhsbEc98qA3/KwgCN9xwA/feey+FhcrpbCoqKioqKhOF6PfQ/tJHFNOJY/EPNCqmTquMHTHgxdt1UDJmyFmoWLLt88G+fREBc+tW6OiQrTYi7HZYOXs/S/MeZ3nFFuYV70OvlZ4YG/PXoNHFL1M3Fa2Nu2winJrDGPMWM+0jW2l/4Wa8scIwoYCgcxVjgbJTd6ROTQB9ehnmsitxNbymuFwNt0mMUgJ60NVNQEHU1KqOVxWVCaEuphTabjCHBZQCs03iSIzn1FQSOxdkTVMQNUPriaIoc2rOseehETQEzxQ9L7PmE8umtlpFF1sszzceTihqBoJBvrP3VclY/VAvOzsbuagguSgYFIMcixE1Z2eE5q9ERbr8s652sIul2cV0d0uFy+hbt8xEm3XmNsEYvJDVR1aBlxsWF1NSAiUl8JOGZ2jQNYB9AGwOymwZ7P7gt0Z9GEEQmGHL4WBvpA1JzUAn2Sa5gBfPBRuLolMz6jXT7ZFWoWQbrazKm84fjm2TjP/owJtsbD0pC9HSChoeX387BRa5kzkZVr2RLKNFIloq9Wbt8SqImgpBTqHemhfxvX2vS8Z/uP8NVdSMw5hFTYDs7Gx+9rOfcdddd/HrX/+aDRs2EAyGPrj8fj91dXXU1dXx6quvJtlTCDHqKo1Wq+XKK6/kM5/5DLNnzx6P6aqoqKioqIwYR90LBGL7ZWp02BbcxeCBByTDaljQxOHtOiwTlof7afb3w7vvRgTMHTvAlfx3UkJKS2HtWlizJnRbsAAG9r5F75Zfxt3GNO3ChPs0FqwEjQ6CUjEUQYMhZ8HYJpwEnbWQwg+8Refrn8RZEym90qWXY535gQk99kRizFfutaYZhagJYFvwSVXUHCWxTk2AgLtb5tTUmHMSiv8qKiqjQxRFWX/HaFdhqqKmklNzUabcXDS8fZOjD4df+v08114guV9ltmPT6hmMKmF/s6VGJmoWmtNx+L2Snp4vNVXjCwbCATqxPF1/ULH8/XBfW0qiptL859jlIuwwOb5cxJNl0JaL2JEDHdl8+ecVfPp06HxkUtH5IKufzAIP1y0qCguWxcXw8cN/oNfaClYXggBVOSX89fr/DG/6wyePIkT19FRyD46UynSpqNntcXKwp1WyToHZhkkXx+4ZQ4ZCSX/fGXdmqFeltPdrptHMaoX08ddPK5fn3LfsGi4uqExpLkqUWO0SUbMxZaemcquCL865iF8deUfyvtjYVqu6NeMwLqLmMFVVVfzud7+jqamJf/zjH7z00kt0dHRIRMrhkvFoB2b0/WGKioq44YYbuOWWWyguVvvtqKioqKicXTytO2RjWWv/F2PhKgVRs0G27vmIKAbp23kfQ9WPoUsrJvuSX2HIHr/kbiWG+2mKIjR1l7O3YRVHd3yenffCoUOh8dEiCLBoUUi8HBYyS0rk6xmyEl9kTeTEBNDoLRjzluFpk76m9Jmz0OjH/mMiGRq9hbxr/sHgwT8zeOSv6NKKyFzzo0k59kShs89AY7QT9PRJxrWW0YVKWsqvQ2vJJ+CU/0BW+0AmJlWnptqXVEVlYujxOOmPEXkqokTN/JiwoB6PE0/ALyvR7lBIPp+bWYBGkJaKtzlDouaRvjb5+jGioFbQsMSax+aByOeBkiP0xrJ59HpcPHlqf3isz+tiY2stVxTJK2GCYpAfHXhDNg5wpFc+LyWq++SlHDPT8qmpgWPHQu1qjh2L/L+rqxKQtiSS+9HHB50xgD+rC7J7IbcHIaeH712xnO81PREasw0hCLCudB7/77I7JNvmeQbpG4iIY70xpdqxYpuSK3KkVCm4WGNLslMtPYd4Ts3QvPt9bsSYdjFZBgvlaVnkm21x2ysM853FV/Dl+etSnosSxdYMDkQl1Le7BmXvqdgSeZAHBQ1jNyq7NX926G1V1FRgXEXNYUpKSvja177G1772NQ4ePMi7777LgQMHqK2tpaWlBZ8vcmVGFEX0ej2lpaVUVlaydOlSVq1apboyVVRUVFSmFLJwGkGDbcGdBL0DsnX9A+8Np6az5l/0vft9APx9J+l85T+Y9tFdE9Lz2uWC3bvhjf+XzY4dT7G3fiVdgwXJN0yAxQIrV4YEzLVrYdWq2FAfZfTZcxIsFTAWrk66D1PRGpmoachbnPzg44QgaEhfdDfpi+6etGNOJIIgYMxfjqtR+qNWa84b3f60etLmfoz+3T+XLVOdmolRdGo6Wgk4pYKB1qaKwyoqE4FSCndlekTUVAoLancNUpomTXFWcmpOs6STZ0qTuDuHe2rG9tMEZafj0hhRU4n3ly6g1+uUiJoAzzUeUhQ147k0ITVRs7cXXtnkRNx6AWJrLrTmQVse3+vK5Vu+pJuPHa0fsvsgp4fMaS7+65JFlJfD9OlQXg6vD+7nji2PSzaxLbch6KTnmzaFIKXMGDdgdBm0J+CXBT/Zx8mpmYzY11siEvXUjNerUhAEVuWW8XzjYcV9agUNf7jwFj41c2XK84iHUgL6aWe/5GJCbJjR8DzjoeTW3NOl3BP9vc6EiJrRLFy4kIULI70vRFFkaGgIp9OJIAhYrVasVuXmuyoqKioqKlMBMejH27FPMmbInodGb0XQmUFrkJRE+2PL1KcIns4DuE69jCH/AixlV4x5f0MnnpLc93YdxN9fh94++hIeCLktGxtDpeTbtoX+3b8f/H6AW0a93/z8iIC5Zg0sXhy/0X0idLYyBK0JMeCWLTPkLEBrsifdh6noIvr33C8ZM+YtHflkVMJYZrxfImoachaiUXANpopt3h2KoqZWDbdJiJJT09t9hNjgJdWpqaIyMSiJmhUx5eextCmImkoOtzxTGgVmW4yoGfr/UQWnY6xTE+CCtPgl3QAZBhPrCytxB3yyUKPnG47w21U3SfpcBsUgP9qv7NKEUPl5qCpUoKMDjhyJ3KqrQ87LUL/tpWduEfwK+xstVivMmCG9FZZ5uf7gT8E+gKAJfUauL53PNy9bJNl2nk7+nMX2NgVlUbMgRsQOOXldZBjMIxbaUkXJqRmLkhAYj1hhFiLl57H9NCHUUxNgdZ6yqGnR6Xli/ce4tmR8qouUeoM2DvVK3nepBgUNYzea+dqCS/jGnpfDY0uy1fMPJSZc1IxFEARsNhs2m/zDVEVFRUVFZSri7T6C6JeWjRjyQ8EkgqBBl1aCv782vGwq9tR0NW+m7enLw/ezL/nNmF163va9sjFfT/WIRU23G/bsCYmXw7fW1uTbJWPOnIiAuXYtVFSESszHiqDRos+ahbfzgGxZstLzYcxlV6Czz8DfdzK0T52FtNkfGfvk3sPY5n0Cb+cBho79A31GOTlXPjgm17A+swpT8TrczZsk46pTMzEakzwR2Nt5SDamisMqKhND3YCCUzNB+Tko99WMdWrqNVrsBrNs+w73EIFgUObUNGl1lKfJndszTHYyDWZJ0Es01xbPRa/Rotdouaywipebq8PLWl0D7OpqYmVupF/iM/WHOBJzbHHQAi0FcLqArtP5rPljgJpqHV3yUPjxxexi6VwTVTMEmYCZny8/B9nT1YHQLG3AqSQIzs6Q94fe2SlvdWTTyUXNmQr7qxno4oKcEsXwmokqP4+lbIxOzd6ETs3Q+usU+mTmmqz8+/I7WZ5bmvLxk1GsIGo2OaR/15GKmgBfXXAJgz4PzzUepio9l5+vuH5M8zxfmXRRU0VFRUVF5VxDKSnamB9JW9all8pETVEMIsRJzDwb9G3/keR+z5ZvkjbndjSGtFHtL+DqUuwd6u0+iqXiuoTbNjVJBcy9e0NJ5WPBYIDlyyMC5oUXQrZcWxk39FlzFEVNY9GalLYXtAYKb3md/j33I/pdpC/5AlrL6EqlVUIIWj05l/2OnMt+N277TF/8OYmoKeitkve+ihytWUnUlL9XVHFYRWViqB2UK3eVtojIFM+pGUtsT808UxqCIMi2D4oine4hWfn37Iw8tBr5eZBGELgov5wXmo4qzv/9ZfMl/48WNQGeazgcFjW7e4J84/GjiMdXIZ7OPyNk5sOA1J34ruKRRofBAFVVMHs21KcdY69+L+R3QV4XpDn5xy3/zayM1L7PTwx0ysaqFARMq95IqdUuCaCpjwp7Gsaml4evKe3vRH8nF+SUyPprgrIrcqQUmtOx6PQ4/fFP7lJNPgfIVEgJj5Sfx+9VuTynhBtL54fdmjPTc/n3FXcyIwXRdSSUWDNkY7EJ6Kmmn0cjCAI/XHY1P1x29Zjmd76jipoqKioqKipJ8LTtlo0ZC6JETVtMmkzQR8DRhi5tapRXigGfrH+j6BvCUfMMtnkfH9U+PQouTQg5NaNxu2HfPti+PVJOfnocOunnpbewZPoOLrqqjPU3LmXZMjBNYpCyPk5YUKpOTQCdrZjs9fcnX1HlrGGpfD8ZF/wXA/t+h6C3knPZ79AY1GqjRCg5NQNOeU87rSpqqqhMCHUx5ecGjZYia0TkK7DIP8PaXfL+4LFOzXxz6CJooUXek3NPd7MkqRwSJ4dfnF+hKGqatDreVzQrfP/6krloBIGAT4C2PGgq5M/P57DPLXLokEBLiwaYmCoHY6aLlQvMzJ4Ns2YR/nf6dNCeCWD/5eF29u2Sng/VDnSnLGqeVBI14whus+35iqna0SiVn89Ml4uaNWeOq+SWVRIQR4ogCMywSRPQYxmJU9Os08taEQzPPVEJvSAIPH3pf/D66RO4A36uKZ6NQTv+EphSKX2jQyo6xzo1NYJAukH+91IZOaqoqaKioqKikoTYkCBBa8SQHXES6GzyEhb/QOOUETW9XQdl5fMAg0f+OmpR09shd68GgwLVh4Z4pR127ICdO+HAgbG7MHW6UP/LRdPeYGHG31g6fTvTMhsRBCj++GH0qZ8XjxsGhbAgXUYlOmvh5E9GZcIQBIGstT8hc/X3EbSjaMD6HkRjzABBC2Ig4XpT5fNRReV8o26wR3K/3JYl6UGp5NRsdUqdmoFgkM4YUTPXlBZ3+w2tJ2VjSv00h1mvUBYMcPm0mTj7jLx7IHT+cPCgDeM7X8PRaIdASLroAV6Lu+eRodOFXJdZZUNs1exAKOyEgg4o6OQba9by3SVXJdw+umfiMLGiciJqBuSu2nii5pyMPF4/fTzh/tKURE0lp+aZ4yqVRI+HUxNCYUHjJWpCqAQ9us9rf5KgoGE0gob3FU9sCHWRNQMBQZLCHpv2HuuKzTSYJe9LldGjipoqKioqKioJCPpdeLuk/eAMuYslAocuvSx2szNhQasmenop4W5RLrzytGzD23MMQxzXYSI87XvoGszlQONyDjSsYH/Dcg42XcCAa+wKY15eqHx89erQbdmyUFJ589++jK83ckIvGNLR2WeM+XijQZ8lFzVNKZaeq5x7qIJm6giCgMacTdApDw2JRpempp+rqIw3Qz4Pp53SXn6xwltscAzIy897vE6CojTca7iXplJPzrcVRc2CuPOcZ88nS5tGd0MaNBUiNk2D5kI2tVeQJzMvjkOpsCbI7Jka5s+HefMit6qqUGDgA9UHeHf7K5JNEjlNh4lOlR9mRKJmv/TBWnUGxXR6CDk1k6Hk1MwzpZGuN0mctCf6Q5/PfQql2+MRFASJ+2qm6YyKfTITkRkjavaGg4Lkomb2OD2GVNFrtBSYbbRGOZ6bhvok68SKr+P1PKuooqaKioqKikpCvB0HZI6j6NJzUCg/Z3IT0P2OVgj6FecB4GndHnfboSOPkHXR/yY9hssV6n057MDc+uYvae5WPt5I0Gph0aKIgLl6NZSXQ9DTh0ZvQdAaAAh6BvD1npBsa8xfdtb6luozZ2HIW4K3Y194zDbvjrMyFxWVqYbWlFjUFPRWBIPyD3cVlYlid1cTn9v2DF0eB5+fvYYvz183pjCxqcjxfnk58+yYUmijVicL6olNOo+XfA7KTs0DPS2ysWin5tAQ7N9v5dgxC8ePW2ho0NN99NuIfq1km/7YnYwQQSMyo1KgM/skfTmnEIraoagNS1EfR+74QVxnXGw/UIA5GclFRKUgJKX0eSVEUQw7JoepSs+J+5qck0JJu5KoKQgCszJy2RWVln6ivwtRFOMEBY2P2FaZQNQsS7OP+L0XK4L2pejUnCzK0jIlombdUDeiKIYfpypqThyqqKmi8h4l6B3E074bna0E/VlyOqmonAvElp4DGPKXSe7r0hXKzycpAb1741cY2P9bANIXf0GxR6M7gag5WP0omRf+UOJECwbh+HHY/m6Anbu07NgBhw6B3x+95egEzZwcqYC5fDlYrZHloijSvfFLDB78M4JGj3XObWSu/h6+nuOA1DVizFs6qjmMB4IgkH/90/Ru+w7+oVZs8z+pOjVVVM6gNeeQqOuELq3ovBOTVKY2Nf2dXPbKHxnyewD4790vsiynmPWF59c5cHW/XJxTcvgVmG0SUbMtpqdmbEgQRPXUjOMkHEZ0mtA1lfD8g9ns3xe6IHr8uBZRjK0K0SpunzI53VDcCkXtCNPayK0c4vjnP4k9Tc8n39nN305Gzt9cwKnBnrhC27F+6UUYjSAolm3HYtUbKTDbJE7XVJ2a3R5nWJgbJlGATSrOUSVRE6AqXSpqDvk9tLkGJywoKHTM+I+lRKEHZTLkoqY7JMzGiIVaQUO6QmDSRFOZns32qER6p99Hm2uQQks6QTEoE5DHSzxWUUVNFZX3JP6BRlqfuiyUXCxoyb70d6QvuPNsT0tFZUqiJGoa85dL7msVyij9A/Jk8PHG23kwLGgCDOz/HZYZN2Euvigyj6HTBBK4RgOODk5s28DRrqvYvTvkxNy1w8fAkJ6x/uDQ60O9MFesgJUrYdmcesoyD2OatgqtWflk13HiKQYPPACAGAgwdPhhHMf/iSF3kWxdY4y4PNnobCXkXvXXszoHFZWpiMYkdy9Fo4YEqUwm3oCfj256LCxoDvNSU/V5J2oe75M7pJUcfgVmG9VRQl6ba1DiKmt3y0XNXFPIoRkdNCQOWKGxCBqKERuKoKEIOkMXNf5bsvXoL2JYrbBggYhxegdDBfU4CuppzTrBoC7i6zRr9Tx5xZ3Y00IXaOdnykvfD/e2xRU1Y52albZsjCkGylTasmWiZlAMJu2XWKMQEqQU6jNMjslKjtFKl8cRd514oubMDPnjPjHQSe8oErlTZYYtkVNzFKJmjNgaEIMM+jyyx5BpMJ+Vi2ZKj7d2sJtCSzqDPo+snYPq1Bw/VFFTReU9yMCBP4QETQAxQO+Wb2CbczuCTk1gU1GJxdu+S3JfMKSjz6ySjGl0JrSWAknCb6rl556OffRu/TZB7wDpiz9P2qwPpTw3d9tO2Zij5mmJqBlbet7RX8ChpmUcbFrGoaalHGpaRvdQ7NX/0fUPLMs5yaLSXaxcEeTSj3+UxYsjieQDBx+ke8Pn6QC01kIKb92A3i4PChjY/3vZmOgbwtOyVTZuyL9ANqaionL2iXfRYhidKmqqTCLf2vsKe7qbZeOx6d7nA9X9clEztvwcID8mwdwd8DPgc5Nxxg3XqeDU1A1k8O9/w549RoQXPkmgfhr02sdn4meoqICFC0NtaYb/LS8HjUYA8s/cVoaqOjxOTg50MejzsDCrUNLrc16mPLTvSF8bN5bNl433eVyynqKpuCLDc7Zls7WjPnzfHfDT6hykyJqRcDulkKBETs3QvPJ4p/1U3OWJnJqxnOjvlLkcBcYvkXuaJR2LTo/TL/ftl6bZR7y/TIUenH1el+wxZJvOjlioJJifHOhibX75lCmRP19RRU0VlUnA72jFfXoLevsMjHlLzvZ08LRJnWdBTx+ejj2Ypl14lmakojI1Cbj78PXWSMbi9XHU2UokomZgIHn5edA7RPsLtxAYCv3Y6mzdDoKGtJm3pjQ/JeHUWfci4vpfIQgCnZ2w4dledmz8JofOiJjt/eMjJtgt3Swq3cWisl0sLtvJotJdZFpDiauGvCUUrfpoeF3R76F3yzfD9wOOVro33kvB+1+Q7NPTsR9Pq3KoUSwaU7ZiQJOKisrZJ7lTU00+V5kcXm0+xi8Ob1Jcdq6Jmm6/j03tdRSYbSzKUn4PHYtxHOaarGSbrLL14iWgD4uaDZ0uxCNVUF+CWFcC9SXcFhYwBWDuWB4KVqvIwoWCRLycPx/SU2y1KwhCyLmo8NgAFig4NQ/1timsqVyyn0o/zWGUwoJqB7skoqYoilT3t5OhN4fHY0OCQFl8jGZ2Rn4SUVO57FrJAVoz0CkLCso0jl8ityAIzLApJ6CXjkP5OUCv1yULChovp+lImaH0OginzCsFMo1Pmb+KKmqqqEw43u6jtD51GUF3qL9K1vpfkrH482d1Tr4+eUKhu/kdVdQ8S4iiiOP4E/Tv/gUBZwe2BXdiX/XtsxaAohLB27FXNhav5FmXXoonytUZ9PYT9PSjMca/Uu84+a+woDlM91ufx1S4Km7oTzSBwci2/U572Hl58rk+9h7KpKEB4FNJ95MMg9bDkmVaVq7SsWIFlNSvo9jyLvGqe3w9xxDFYPg17GnfTdArbf/vqn8VT8c+yYWewYN/SnlOxvwL1J58KipTlOROTTX5/L3A0b42ej0uVuWWodVM/jlNm3OAO955Iu5yJTfiVKXP42Llv3/NycGQSPL9JVfxrcVXSNbxBQOcjOnnGE+cK4wSNUWvDhqL+N1vBfqOw65dcOLEleM294wMWLIkSHFxB7NnO5k928l1183GaJw4KaLQnC4LQzqiIK5BnJCgETk1lcuOLy4IVaMEgkGuf/MvvHb6OAAX5k3nc3PWKB43WR/POfbEYUFxnZoK5efH+zslzw8ouyHHQmW6sqg5mvJzpbn1eJyyvqCZZ8kBWanwOhh+P6pOzYllQj5JXnnlFdrb27nuuuvIyUl8UqOicr4zcPBPYUEToHfrt7HN/yQa3dm5OhP0OQg45AmF7tPvAF+b/Am9x/H119H91hdxNb4RHuvb8WOM+Rdgqbj2LM5MBeL101QuedbalMKCGjEYF8Td/9Cxx2VjQU8fna/eQcEtryFolHta9vXB/v2w4bGV7Dv8Pg41LaWha/z6gpXnnmBR6RkHZtlOZk87RPF1fyZt9m34h1poeiixm1L0u/AP1KPPqADA1azskunb+b/kX/ckEHLFyp4PjR5j3lI8bTtk2xqnrRrFI1NRUZkMNCa5YyUa1al5/vPdva/yowNvArAip4S3r/4cJt3oWpuMhqAY5OPvPJHQjXkuOTUfOLYtLGgC/PjAm3x29oUSF2bdYDe+YECy3ayY0nO/H44cgeqXygm+9gGoL4HTBRDQIm/+MgpsQ1DWzF1XlHDlhVaWLg2VjwcCQQ4cOB1eTTvGjKBkCILA/MwCiavxeH8n3oAfQ0yvzGNKfUiTiIfRVNjkzvRTgz3h///t5O6woAmwraOebVHl6sPYDWaykwhdSqFPw+g12rh9QG16E9Ms6bQ4I4FQNQOdCoLg+P4+jRcWNBqnZobC3OqHehCZGr0qs40WMgwm+r3u8FjEqamQMq+KmuPGhIiazzzzDFu3buXnP/8599xzD5/+9Kcn4jAqKucEvu6jkvuibwh309tYyq85O/NRcGkCuFu2IQb9CBrVwD0ZiAEf/Xt/Rd+OHyH65SUJzvrXVFFzCuBp2yUbMxYsV1gzTgL6QCOGHGVR0z/Ugrtxg+Iy9+nN9O+5H/vyr9LWBvv2hW5794b+rasbXvMzKT2ORBRl1rOgZC8LSvawoGQP84v3Ybf2ytZz1DxL2uzbFN2rGnMOQZe0N5Sv+2hY1HQ3b1Y8tvPks3i7j2LInstQ9aOIfulJn7XqFnLf9zccNU/Tu+V/8A/Uh4+Xvuhzo3m4Kioqk4DWnFjUVJ2a5zcdrkF+eujt8P2dXU38o24fn5y5YtLmcP/hTbzZciLhOh3uIUk4zlTm7Vbp+bs3GGBHZyPXlMwJj1XHiHOiCPnOEp544kwI4K7QeYTLBTD9zG0MZPZB2WkoPY1Q1hz6f2Y/Bq2W33/sJ+jPcsHRvBhR0y8GOTHQyfyYfptKjkmlPqTxqLQplZ9HDC1P1x9IaT9V6TlJX4tKoU/DxHNpDjMzPVciatYOyFPaxzuRW6nPpFbQMM2SYp+BKJScmtHi8TBnS9QcLreP7t97crArlNA+gYFMKhMkap44cQJRFAkEAixdunQiDjGh/PrXv+YPf/gDRUVFbNig/INzrLS2tvLEE0+wZcsWGhoacLvd5ObmUlFRwTXXXMM111yD2TyyKyUHDx7kqaeeYteuXbS3tyOKIvn5+cybN48bb7yRiy+++Jz40j7fCDjklntn3ctnTdT0xxE1Rd8Q3s4DZz1N+L2Ap2MfXa9/Cm/Xobjr+Pvr4i5TmTw87Xsk97WWfMWkcwCdolMzfl9Nx/EnIerqsihCc890jpxezJHmJRx5cAHHu720thtGN3kFCjKaWXYBrFpfzNzsVynt/iTZafJG9Uq4Gl4n6HPInhOAtFkfkgX8eLursVRch+j3JOyT2bfrZ+Re9VcGD/5Rtix90d0IgkDazFuxVFyPu/Et/EOnsc68Fa1p5Ff5VVRUJgfVqfne5lBvm8wxuL2zYdJEzdOOfv5nzyuycY0gSBKIfcEA/V63LFV5PNjb1cwrzceYm5nP+0vnj+k3WCAYZEenvIf2nu4miah5uL0L8UQ51JYh1pZBbRk/6B+5eKSEzj7ENRensXw5XHABbNJv5meNLyiuOzM9B32cSpPJJFa8hFACeuz4sZiemqVWO2lJBMJock1ppOmMDPk94bG6Mw69QZ9bJkjHI1k/TYASqx2rzoDD75UtSyZqVqXnsrGtNnzfLwZl64y3e1DJqVlszRhVOwolUbN2UC7MJnO7TiSV6VJRs9/rPlMir5afTyQTImr29fWF/z937tiaCE82Bw8e5MEHH5zQYzzxxBP87//+Ly6X1J3V0tJCS0sLW7Zs4c9//jM/+9nPWLRoUdL9+Xw+fvjDH/Lkk0/KltXX11NfX89LL73E2rVrue+++8jLS/3Kk8rY8TvkTamdp14+a1eGfb3xv1jdzZtVUXOC8Q820/rUZYi+xCVPvikkaorBQNwy6PMZv6NN1u/SkL8s7vtWqQemf6BBcd1AAPa+uY39h27jyOlFHG1ezJHTixlwjZ9Ql5vlZFFFNXOzXw65MIv3kpfRRvEdJ9BnQNCzmsYHHYh++bamoovRpZcyVP1oeEz0u8J9MGNJm3O7TNT09YRc6p723Ypu5GEcx5/EVHQRvl6po8aQsxBj4erwfY3OpLqXVVTOERI6NTU6tBb1XPR8ptEhd/sfV0jlniieazgkE2xmZeRycX4lD57YLhnvcA+Nu6i5sfUkV7z2p7CA+t3FV/KdJaPvUXm4r00imEHoQujGQ31UHIHt2+Hdd2Hv/osRA+vHMnUAMjJEBotqCZY3IExvgvIm1s7J5vlrIhUSzSeMINdZgZH1o5xI5tvlYUGHY8KCHD4P9UPS12uiEm8lBEGgMj2bAz2R9l7DYttrp4/jjRH44zE3heMKgsDsjDyJcDaMTZfEqanQVzOW8Q6vmaHQZ7JsFKXnoBwUVKeQIH82xcIZCq7dk4Ndak/NCWZCRM28vDyam0NvtL6+PiyWc+MP1tTUxOc+9zl8Pt+EHeORRx7hvvvuC98XBIGqqirsdjv19fV0dIS+8Ovr6/n4xz/OY489xrx58+LuTxRFvvSlL/Hmm2+Gx4xGI7NmzUKr1VJTU8PQUEg82bJlCx//+Md58sknSU81Wk5lTAR9TkTvgGw8MNSMt3P/WUlCj1d+DqG+mhnL7p3E2bz3GKp+LKmgCeAfqEcM+BC0o+8/FXB2MnDwj3g7D2CdcRNpcz6afKMo3Ke30vn6pwg4WrHNv4OsdfePSIh31P6bnk3/heh3YSpag3X2bVimX4WgHT/n4UTiHUE/TUAxids/2ITTCYcPw4EDkTLyAweCuFxPjdtc7ZZuFpbulpSRT58/C3/PUUkiu9ZaGJ6nxpiBteoWiXAJoLPPIO/6f+Jp2yVb5qh5Fm+MU1NnK8OQtwRBb0X0OcLj3jOtN+L10wwjBuje8AXZsO2MS1NFReXcQ5NA1NRap6lBeOc5TUN9sjGlvoUTRYtLfu79+9W3sFPB7djhHkoazjJSfn54o8QR+rNDb/NfC9Zj0Y3u/OfdjnpEjwFOlUBtaciFWVfGhgEb0prCUbyv9D4oPQ3lTSxc5uOpT15KfpmHrH/8UbK3fPN0yWaFCunpw6Qizk0G8xQS0GNFzeMKCeSjmX+FTSpqdnuc9HtdvNB4RLbuNxdexraOeolr0qjV8fGq+OeY0cy2xxE1U3BqJmO8y8+nWdIpsdppcvSFx5bljK79iFK/TyWn5tnsVVmhkIB+cqBbFTUnmAkRNa+//noeeOABICTiffOb35yIw4wrJ06c4FOf+hSdnfIPtvFi//79/OxnPwvfX758OT/5yU8oLQ2VLIqiyBtvvMF3vvMdent7cblcfO5zn+PVV1+NW4r+8MMPSwTN2267jS9/+cvYbKEvGrfbzSOPPMJvf/tb/H4/dXV1fPOb3+R3v/vdhD1OlQhKpefDOOteOjuiZn9t3GXu01slicUq44+rSd7SwpC7CI0pC3dTpP8UQT/+wUb09spRHcfZ8AZdr90ZFrSctS8g6K1YZ7w/pe0Djnbanr8xLMoP7P89+qy5pC+8K7Xt3T10vvYJRO8gAI6aZ3DUPIPGlIW16hbSZt+GcdrqKf1aG0k/TQDBYKdlcBbVDTM41rqA6tMLOdaxglNtIUeFlNE/7txcWLoU5k8/Trn7eyws3U1RZoMsidzT3AIxzdONhSslQmH60v9k6PiTEAxdzNOYsii48Xm0pizMJZegMWRIUssdtc9BQFryZMhfgiBo0GfNkQjBwwnooRCyGAQNRLtoRKmLQTCkkzbrwyk8GyoqKlMRjdEuf5+fQZdWNPkTUplUGqMEjGG6PA663A5yooJtJoput1xAqErPUey/1zHOCej+YIAtUX0cAVwBH6+dPs5NZfGDA6MRxVDv7G3bQg7MJ9+cjVi7EoJjq5rRamH+fFi+PHT7Ts+DdGTXIOhC71NNZiEzZ15K7YD8Ockzp0nuF5jjG2TmKjgkzwZZRossHOdIn1TUrFZwEI+kn+YwSn01j/d38nJTtWQsXW/i24uvwKDVcainlX81HKTP6+bu2auZZslI6VjxEu2TlcynIt6Pd/q5IAj8ZNk13LnlSbzBAOVpWXxhztpR7UvJqdk9xcRCJWdq7UAXPR55xZLdYJqMKb0nmBBR87Of/SwHDx5k69at/P3vfwfg7rvvJitLngw2FXj++ef57ne/KysHH2/uu+8+AoHQD7d58+bx0EMPYTJFXsyCIHDllVdSWlrKbbfdhsPhoK2tjb/97W/cfffdsv319PTw+99Hyv0+8pGP8N3vfleyjslk4u677yY3NzcsLr/xxhvs3bv3nOx3eq4RUCg9H8Z56iUyV31rEmcTwp+g/Dzo6cXXdRhD7sJJnNF7h6Dfhadlm2RMl1HJtI+8S//eX0lFTUIl6CMVNcWAl95t36F/z/2yZf27f5GyqNmz7Tsyl/HAvl9jW/CplNxz7qa3w4JmNEF3D4OHHmTw0IOYiteRd80/0FrG1yExXij1jhxuzzDsvjx4MOTAPHgQDh4U6OuL3yd1NBRl1jOv+ACL5ju4+LbbWLIEpk0DQYD+va/Rs/mZBFvLlFRMUeXcAMbcReTf8C8G9v8BjTGDzNXfDb/mBK0BS+V1DFU/FtkgIO/hZMwLPSeG7LkSUVP0u/D1npC/5u0zMOZfgOP4E3Fnbpv7MTSGtLjLVVRUpjaCoEFjypIFiAHo1H6a5z1K5ecAx/o7WGsqn/DjK4VyZButMmEOoMMtP1cZCwd6Whn0eWTjzzYciitq+v2wfz9s2QJbt4b+bZP8hBjdb2hTlour15lZvRpWrYJlyyC6gPKhFxx0dkcuPLS5Qs9Fu4LQm2+SOjMLzgGnJoT6akaLmnWD3Th8HqxnBMBqhZCg0To1Y/n7yd30eqX6wvuKZ4fT1xdkFbIgS973Mxmz4ySzJ3NqVtiy0QoaAgoXm4aZCJfjbZVLWZM/nSZHP4uzpo2oX2k0GQYTAoIs7TyWs9lTc4ZCD9GTg130xnwmZRhM6N6Drb0migkRNRsbG/nqV7+K1Wrl9ddf5+9//zuPPvoolZWVzJ49m6ysLNLS0lIuK/vCF+RlaeNBe3s7999/P88999yE7D+aAwcOsH///vD9b3/72xJBM5rZs2fz+c9/Puzq/Nvf/sZdd92FVit94T/99NM4HKFSP7vdzn//93/HPf4tt9zC66+/zsaNGwH461//qoqak0B02Wcs3vY9+B2t6Kwj/zIbLUHvYMI5AbhPb5lSoqYoBnE1vgViEHPZFQmdfe6Wbbga3sSQuwhL5Q1TrnTV0/IuYkB6omsuvQxBowunREfj76uFsitS3r+v9wQdr3wMr0LPQwBP204Czo6kvcw8HfsYOvKI4v7dTRswl16WdC7ersNJ13E3b6J//2/JuvAHSdedbERRDPWCFKGlt5RjLQs43r2Ohm05HDgANTVK7svRIwhBZs3SsHQpLJrbT3HHJ5mTtyWcQq61lVB63W2SbfxD8tKjZBgLV8nGLNOvwjL9KsX1LTNuloqaSvs8I/Tqs+bIlg0d/busn6ap+GIylnwxsai58NMJj6miojL10ZqyFUXNeGFrKpPDH6q38o/avcy25/ODpVel7A4bCUrl53BG1MyfBFHT7ZDcN2v1mHV68kxyUbPTPb5OzXfalXuiv9RUjTfgx6DVMTgY6oM5LGJu3w4Oh+JmKaPTi/iLm6CyHqGyESob+J/LV/KtJZfH3SY/RpjsdDvwBwN0KDwnuTGCsJJADKFka6VwmLPFfHsBr58+Lhk72tfO8txQpaSSqDmanqBKouYjJ+UVPzeUxm8rlyrxnJrJRE29RkuFLYsahT6UwyiVeI8HZWlZlKWNzeCmETSkG4z0e90J1zubTs0Csw2LTo/TH2lnWDvQzYBPOmc1+Xx8mRBR87rrrguLCYIgIIoioihSU1PDyZOppX9FMxGi5gMPPMCf//xnnM6Ial5RUcGVV17JH/8oT2AdKy+//HL4/5WVlSxZkrjs+AMf+AD3338/fr+fnp4edu7cyerVUofNK69EUv2uvvrqpL1LP/ShD4VFzc2bN+N0Os+ZfqfnKkohQdG4Tr2Cbf4nJ2k2iftpDuM6vZn0xZ9Lut5kIIoi7c/dgKvhdQBMJZdScPMrimKls+4l2l+4KXzfOutD5F75cMo9KUUxiKflXXx9tZiK1yqKjGNFqfTcXHoJADoFR+ZIwoIcJ5+j87U7JD0N5Yg4T72Cbd7H468hinRv/DJKLj+AgQMPjJuoCSERfarQ0xNyXx45Agf3DrD37X9yrGXBuIb3AOh1fmbmH2Je8T7mFu9nfvE+1tz+WQouGBYtM2h7zo+rPuJ0CQw2EfQ50egjn9n+QXlvMMFgU3TIAqA1YBhhywtz2RUI+rSEfWAN+aELZIZseTDg4JG/yvdZfDGG7HlYKm/EWfu8bLmp5BIMCgKpiorKuYXGnA0Khj3VqXn2eKb+IF/c/iwA73Y2cGqwmzffN779i0VRjOvUPD5JfTV7YtxxwyKHkqg53uXnm9vk525ibzq9NeV8aMMgjfsz2b8fgvHNcqmR2QeVDVQtdvLIHavZad7GV/Y/K1llTmbii9ixbksRkU63g3aX/DwiP+a502u05BitdHmk551V6TlhJ+JUQKmv5qHetoioGZN8nm+2jUoUq1TopRgtbAHoBA1XF80e8b6VjqUTNLIwLJs+eTlzVXpuQlFzqvd5zDSYk4uaZ1EwFASBSlsOh3ojLehqB7vQxphypvrzfK4xYZ84YhwLS7zxeEyU0+ovf/mLRNC89dZb+frXv87rr78+Icd79913w/9fs2ZN0vUzMjKYP39+2N359ttvS0TNvr4+qqsjPTrWrk3em2LVqlVotVoCgQBut5tt27Zx+eXxr96pjJ1EPTUBnHUvTjlR0316y1lLZpfNpXlzWNAEcDdtwFX/Gpby98nW7d/7K8l9x/EnCXoGyLv2cYkQFEvA1c3Q0f/HwKEH8Q8/Pxo9BTe9iLnkknF5HMO4G9+OGREwFa8HiOPUTO0iUMDVRccrtyuWBsfirPt3QlHTUfM0npatCbZ/Ef9AI7r00oTH8XZLG6NrjJmYStbjrPs3BCNx20Gn/Ar5RDMwAEePRgTM4X9bJW/XDODiMR8r09rFokValqzMZOFCWDDPje3dcvTBSGNzQWcmb8F1ku309hnENkTx99diyImUrgUGpU5NjSEDc8W1OI79Q3EuxtwlaHQj69+j0ZmwlF+N44RyqJEuvRytKXTlXcmpqeTSMhWFnlf7im8oiprpCz8zojmqqKhMTbQm5bAgrdpT86zxu6PSC4kb22o50NPC4uzx+5t0eRy4A37FZbEC0kTRHePUHC5HzVXo56nkShwtoijyTuspxNP5UFOOWDMdasqhK/ReeG60O9b5oawZKhsQKhtC/2aF+l13GUysWr2Sf2xXchyOTNQEODHQqeheVXJmFlrSZaLmVCo9B5ivIGoO99X0BvycHJAGzcwZRT9NgFKrXVFojGZdQSX2cXBC6jVaqtJzZP1Akzk1IdRX8+Xm6rjLx7un5ngT6qupfNEEQCMIpBtGV94+XlTasiWiZqfbgSbmd/XZDDM6H5kQUXP58vhBClON+fPn87WvfY0VK1ZM2DF8Ph91dZGrdonSzKOZNWtWWNQ8dEjap+348eMSgTiVfVosFkpLSzl16lR4n6qoObEk6qkJ4Gp8i6DfhUY3OV8gSiKZxpJH0Bn5Ugw6O/D1HseQNfYriWPF07ZTNuZu3igTNcWAF0/rDtm6rvpXaHvuOgpueBaNMVJeNezKHDz8EI4TT8tKwgn66Ntx37iKmgF3H54OaY9GQ+4itGcSYjUGG1pLPoEokS9Vp6andbtyr8OCFfj6TxF0RQLQXA1vEvS7FcWtoN9FzzvfSHwwMcjAoT+TteZHcVcJ+hyh0vkoDPlLyb/uSVqeXIenNXKRx++YuB84LhdUV0vFy8OHoVFucBwzWi3Mng1zp9dTLvyZOdMOMnvaIfLSW8m96i/Y5n4MAMeJF+kISk+gLRXXozFKG+7rM6tkx/D11khETf9gk3QO6SVYK6+PL2pOW604ngzrjJviiprG/EgbE116qSwBPRadfQY6W3F4W3PZVbgaXgsv16YVYam4flTzVFFRmVrES0Af/gxQmVw63UNs6TglG//nqQPjKmo2xik9B+Wk6YkgNjxk2BVl1Rux6gw4/JFzprGWn/v9sG8fbN4ML77poeudr4FjbIJFXh6sXRu6Pcoz7LPuRNAHFNft97qpHejmWEwZtVbQKIaWRDPNIg/7ufOdJ7kgp0Q2HluqPjwWLd7A1BM159rzZX0YhxPQawa6ZP0lR1N6DqDTaClLy1RM4x7m+lJ5RctomW3PH5Womaw1wHinn483yUTXLIMFzVkOIVXqqxmMMfapTs3xZUJEzeFwoKnMihUruPnmm7nssssm3JHW3NyMzxexn5eVlaW0XXFx5KSvMeZXeH19ffj/BoOBwsLU+jIWFxeHRc3YfaqMP8lETdHvwt30NpbyayZlPj6FkCDbnNtloTLu01umhKjp6zkqG3O3vCsb83YeQAwolyJ4Tm+h9Zkryb/hWXzdR3HUPo+z9t8EHC0Jj+1p24EY9CNoxudj0n16sywF1lx6qeS+zl4pETX9fXUppdErCYO2hXeTve4XdG34vKQ/puh34m6SC8MA/XvuJxBT0qwx50pEUYDBww9jX/mtuK4/X/dRYsvXDdnzAWT9PEXvAEG/C0itTYASDgecOBESMIdFzMOHobZ2fPteDpOdDYsWhW4LF4b+nTMHTCZwt7TQ+s+fS9aPLhMfUhAc0+Z8VDamt8+QjUU7rcWAV/b5oksrwVx2JWgNiiK3SaGfZiqYp78PQWtSfI8ZzvTTBBQT0GVzKJa6X3Mu/wMt/7yEwGAjgs5C7vv+lnLLCBUVlalNXKemVS0/Pxu82HRU9sMa4Kn6A/x42dXj9nsoXuk5wKnBHtx+HybdxH3Ou/w+XAFp2W+0gJBnSuPUUCQFfaTl514v7N4NmzaFhMytW2EwXK09ujTjWbNCAuaaNaF/Z8wIBQL6gwG+89huBL+yoDnMrq4mjsUIxpW27KRl4NeWzOWeHc9JXhenhnokz88wSqX7Sk7P0YqCE4VFZ6DSls3JwUjlyJEzoqaSc3i0Tk0I9dVMKGqWjL2f5jBzMvJ4NmYsJadmeuJwzqwJ6qk5XmQkEzWngFhYmUJP2an+PJ9rTJ2GF5PMH/7wh0k7Vmen9EsmNze1pN/o9bq7uwkGg2g0Gtk+U91f7Lqx81IZf5KVn0OoF+SkiZoxTk1Ba8I660MKouY7pC/41KTMKRHebrmo6enYI3MaKgmdkv107KPpoekjOrbod+HrqZY448ZCbLI5hHqERqPPqJAkRYsBNwFHK7okpXoBhRLutNkfQdDqsZRfKwv9cZ56SSZq+odO07/r/2T7yV73cwaP/h1345vhsaCrC0fN09jm3K44H6V+moacM6KmVV4GFHC0I1iTO3e6uiLCZXU1HDsW+rehIemmo0Kr8VORe4LZRQdZvMTI6ltuYtEiKCwM/dhQQmeTuxv8AyFRM+Dqwln/qmSZxpyLuVTumNfFcWqG9zl0mljhWGcrQWOwYS6+ROJ+HEYpJCgVNIY0zNOvxFn7gnyfUaImgCGJqGmOETV1thJK7jiGt+sQ+syZaPTy0kAVFZVzk7hOTbWnZkq4/D7+Z8/LvN16kgtySvjp8uvG9IP9+YYjiuN1g93s6W5WdOeNhnghQRDq2Vgz0DWqxOdU6fEoJ58Pk2eOETWTODXdbtixIyRgbtoE27aFKkFGi0YbZMVyTVjAXLMG4v2UO9jTKuvLOCcjT+bQe6u1hlbXgGQsXkJ2NKVpmXxj4WX8+MCbCdez6PSKidXFVnnI1Dy7/DzvbDMvs0Aiara6Bni3o56dnXKDz1hE2cr0bN6I45lYmFnIdNvYgnKiUZpnKiXNsxKItnqNFovOMKZ5TTTJHuNUEDVnKIRGxaIGBY0v71lRczLp7++X3E9Pl1v9lbDZIle/RFFkYGAAu90OhHpqKq2XjLS0yFW22HlNJn6/cq+dc4lAIJDwPsiDgnSZswgMNEgcT866l/Bd/KtJ6WEZK2rqMirR2OciGO2Inr7wuLt5Mz6f76z21RTFIL6eY/IFAS+u1t0SgcYVJQSOJ86WnWjs4xNY4myMCQnS6NHlr5S8FzTp8kRQd/cJTKbEJ1iKJdzGbPx+P/qi9aA1QlSJvbPuRXwX3S/5+3a/801Ev/SHgKFgFcbKDyBqzRJRE2Bg/wOYqz6sOB9350HZmNY+G7/fj2CSX730DragM4V+4ASD0NZm4PRpkePHAxw/LnDsmMCxY9DdPTGvR0EQqayEWWWtTNf8jZkFR6gqOEp53gmMOi/6nIXk3fwmGkPob6XwVg8jGvNA0IIYWck30Ijf76d//wOSfqIAlqoPEBCFUP1aNOZC2d/N21sTfr14+uRKrsY6Db/fj6n8GpmoqbWVgilv1J+9poobFUVNbdYCyT61mYkd3rqCCxXnoM1aQBAIngffDWebVL6bVFQmBYM8ZE1jziMgauSfeVOUs/l++umBt/j10XcAONjbiigG+ePqD4xqX06/lzdbTsRd/mTtPhbbx0dorE/gVAM40tPKnCRusbHQ6ZSH3Nj1pvB3T45RevGs2+PE7fWg02iBUPXH9u0C77wjsHmzwM6d4PGM4fzD7IIZ9Qgz6mHmKcrmD7H5Q/dKzsHivR22KIQO3TVzJV/d/ZKkbPqZevl510xbTkrf+d9ecBkn+zt5sv5A3HVyjWmK+7qpZB7/ezByfrs0q4jZcY57Nt9L8zLyiO3gvfal3ymuW5WWPepzpTJL/GDJ64rnjOvv3/cVzsRuMNF3JjTHoNFyWX5l0mPkGSxYtHqcMW5mCJV2T/VzhowkblS7wXTWdYYyiz3pOhn6sc1TPdeTMumiZnt7O+3t7fT395Oens6iRYsAcLlcGAwGtFrtZE9pwvF4pP36TKbUShP0emlpRvR+vN5IaWGq+4NQqbrSPiaTYDDIgQPxvzjPVQ4fjnGnBf1kxZTtOsmGjGwMPRERLuBo4ci2pwikzZrQ+Qn+ITJj5uMQsjl46DBp1nkYPJFwmMDQaQ7vfJWg6ey5KTSuZux+5Uvh9XufwV18xrYvitgbNxNdoB3UZRBIm4m+b1fS44gaI97cK/ClLyCt5j7JstbqN3D6Fo/yEUQQvF1k9kibcvvS5nHoqFRkNvRpiS3uOXV4E96uxBdCrC0niP2KP1LbDtrQiX1a+jIMvVGvuaHTktecbuAg6ccfl+23s+Au2g4eBHEaGcYCtJ6ISO9t38XhLU8QsMlFX1v9dkkxuYhA9Wk/tB3A2OPDCjg8Vuo7qzjVWcWxfVDb7uDUqTk0NJjweCauF05BgYeKCjeVla4zNzfl5S6svmrSD34WISgtsQ4acuio+CHt1bVx9ignw5Area6cXTUc3Pkm9t0/J/Zn0WlhGY1xPg/TjUXonJEfNO6u6vBnp6Fjq+y1crpX5NSBAwiecmJPq52mWWP63BX8JdgFHYIYOQELmIo5dKwBiAis+n4T8S6zBUzFHKntBhL/4FUZX2TfTSoqk4S+e0D2eeDVZp7T54CT+X56/ITU9f6P2n3caarAoBn5b6WN/c2ykmzJsWr28CHttHG5mH2oJXH5xKYTh6jqn4DeMGfYMyS/0Ovp6Qu/7rQO6e8y0WXk578/Se3BLPbutXHkiJVAYAzPQ2YfzKxDqKpn2WIHFLWx1xWZU4MPntmxiSpzfAFsmFcb5e+Vaf0Byo3pnHT3hccGfR7ZepZ+d8rvtS+mzeKYpYUDTuUqPpuoUdyXAPy6fD3PdNdg1xr5dP4CDh6UC6xKTOZ7ydovf36UsGn1tJ+oo2OU7wNN/0DcZTNdunH/7PtV6cU82B56Hu/Mn0fTsRqakmwDUKy3ciLQJxu3xPk7TyVc3X0JlwsOT8qPQeioRtPXSKBoGViTl4ynSkAMohc0+BKERjnauzjgG7/n+r1+rjcpomZjYyOPPPIIGzdupDUqXnbt2rU8+OCDALz11lv86Ec/4oMf/CB33XXXiNyHU51YFX64hDwZOp30zxOtwEf36Ex1f7H7PNtXMc53BJ+8H03QkE3ANkciagLou7dMuKipccm/5gLmUKmRP2Mxhh5p4rWufx/esyhqap3yZvbD6AYiwVkaTxsarzRh2Z++kKE5PyLt2HcwdG+SbS8KenyZy/Flr8ObvR5Rnw5BH+LJnyOIkfeWbjB+OuBI0PfJy3F99gtkYwGzvARb626WjcWiiXmtiRojaCK9WnzZaySiJkS95oJ+LDU/k+3Tk3cNAduZhuaCFk/hzVjqpW07TK3P4LB9Sz7nM0Kcx2+gsauSuv5VVJ8qo7HRSHPtZ2hs+BwdAxP72srO9kUJlxHxMi1NfoIheDqwHf2qTNAUNSYG5/085L4cAcEYAVjjacNS/0eEoFSk96UviDzHSvsxF0OUqKnx9SL4hxB1aWg88h9tQUNonqIxF0/eNRg7Xg7dR8Az7dYRPYZYRJ0Nb+6V4X0CeHPlZfMBi9xtPIzPvjTuMhUVlfMPUScvTQ0aJs6hdz4hiiKnvdKyaI8Y4LCzm6VpI+/5t2kg8blEq8/BEVc38y1j/2Hf7pWXf0dT74kv/IwH/Qo9pdO1EVOHzZ+GeHgmYvUMODYD6ov5tjj6i6lFRR6WLBlEO+sUL+S+Abk94RY1FxUuRi8US0RNgLf7m1MSNQ85pee3Nq2e6cZ05pqzJKKmEuUm+fsvHgaNlv+bfhF3nnyDJq/c6ZqpjW+gWW0rZLVt4toJjAfzLKmVfVcYM8Yk7Bcb5H1HAXJ1ZuaYx6/0fJi5lmx+Wb5uxNuVGtM5ofD6sWmnduk5SN/LSmSkWD6vPfQM+rf/NxQhZUjD84EHEXPkrZ9Gg1bQUGRIS/hZl+xxqIyMCRU1RVHkN7/5DX/+858JBoOStO5YWlpa6Ovr48EHH+Tf//43v/nNb1iwYHx62Z1tYkXHYDC+ah9NrOgY7dyMdrSmur/YfcY6QVXGF41X7kYSDdl4s9YQ2zXO0LMVd9mdEzofrYKoGTSFRE1fxhLZMn3/Prz5107onBKhdcZP/tYNHAolwAiCROAcxp++EDQGhub8CHPDQ5hankIUDPgyl+PNXocvcxXoYv4KGj0B6wx0QxEhU+s4CUEfaMb2XlESNf0KombQJBc1Na7TSfev8UpFzaA+S9L00Zu1FivSfpmGni24y+7E1PJPdE6pC1HUWnBOv1sy5im4HnPDQwhi5MeCoeMNBku/SEtXLo2NJhobjTTVQ8uhv1PfOYPTvWUExYl13xcWeigvdzN9euhWXh4SL+321MswrLW/kgnjIgJDs78/qosNQVMBRJ3HCEGvRAwcxlnxn/GbcwIBc6lsTONqImCbg8atIGqaIn2sHFX/jT9tNlpPC96cS/Gnj/371FlxD6KgRTd4FL99Ga6S/5DPwZiPqDHLBFwAv8LnjIqKyvlLUG+Xj6miZkr0Bjy4gnLzwR5H+4hFTb8Y5J2B5OcSb/Y1jouo2eZzJFze4J5YUXPAH+PE9OnoPDSNPx0rZNcuGwcPL0b0j/7cpLTUzdKlgyxdOsTSpYMUFIQuhv+waRdCr/R8bIk1j2ydmZ+37JGMbxxo5tMFib+Xu3wuWrzS53K+JQeNIDDHksULvfHPkwHKjCMzCNl1Rn5Vvo47T75BX0D6HGbpRxeANFWYZkjj1uwqnuquSbje1ZnxL8ymQlEcUfOi9KKz2tIrltI4r41zQWhLJryma5OHJQHodv8V4UxvesE7hG7/4/gu/86Y5zdMcTJRU5faPFVSY0JFzS996Uu8/vrrimJm7Bu7uTlyBbG1tZU777yTxx9/nMrKyomc4qRgNkvTrTwej6QMPB6x5eFGY+TFH11yHlvenojodaP3N5loNJrzQrAOBAISq/f8+fMlYrPrVDNd+6XbFFYswrbgCtpOLcLXGbGc64aqmV+Zi3aEzfNTScYepn/nS8R+tE6fvx5T8SLEwFxOH/lPxKgTUau7mhln2kOcDbrb+4h3rV/j62Xu9DT09hn0bvobsS3epy+9CeO0M3NfvAx4IKVj9vSuxXE4ImoKoo85RVoMeaN/HkRRpHXfAaIlNkGfxtw1H5GlPIuiyOl90v6maUJ30r/D6Z2DRF/aMNuLmR6zTdupxfg694fv64aOMTvfQ+f2h4n9hM5c/V1KF0dceB4P1NfD9oEfUrO/nsbuchq6ZlDfOYPGnip8sh8HcjFuLOj1IjNnwuzZIrNmhf4d/r/FogWsZ25SPK3vMnT4YTTmbNKXfEkxpCjo6ef0ls2ycfuan1C65Iujmm+/ayEDHa8mXMcy6yOUrL0t4TpDutX0Nj8qGSvP02CduYjORhdSX6nA/AsuQ4g+2VuyYmQTT4ULLk66StuJOfg69srGq1Z9FJ0teSCUythI9t2kojJZiOICWk+UERiMlCMXL/so5vKzd24xUs7W+2lHZyPIsxI5JjrCrbtSZVNbLQOHpL8p1hdU8k77KUlfxnecbfxl4QI0KZ5XKuEJ+Ok+KG9nE02jb4gFYzxOIl7Z14e4qQyqZyAeq4ST5TzgG/3F6XnzRNauFbn4YpGLLhIpLNQBmWduEY6eel1y36ozcOvKdeg0WpZ37mVXd8RccNLdR1pFMZUJAkWebzwMMQVDV1TMY9HCRQS6s/np6fihfNPM6axZujzlxzjMIuC56SVc9caDeKJE9VvnrWDR9LG9b8/2d9PfFy7kKz0tHO5ro8vjoMfjpMvtpMfrICiKXF00mztmLB+z+Jhf+yrtMeFTH198EYuKJrYibySstQV4uEMeHFaWkz/iz5fJpuW0EZriB8TOKS1n0ezEjyHocXJyUJp7YXWepmwcH/sSbyNbjsVJjQJWzF0wplCqs/1+Gm8OHTo0IqNeLBMmav7ud7/jtddeC38wLFiwgPe///3MmzePD39YHi5x/fXXU1tby549exAEgYGBAb7+9a/z1FNPTdQUJ42MDKn9f2hoKKXy+qGhyAeiTqeTbDMcGBS7XjIcjohoFb2PySa2tP58QKvVSh6X6Jb3pTHYitDpdFgrrqOvU9pHw9f+Lkb7h1I6liiK9G75BgP7/4DGkkvOZX/AMv2qhNsEB+Xl3KacWaE563QYC1dLwmD8/XXgbk+avD1R+HsTl377O3ZizpmNt32HdIFGj3nacjSjeI2ZC5fjOPyg9Dhd+7FMG/mJ4TC+3hoCQ9KyL1PRReiNZsX19RkVeKMEoUD/KbRabdyTLDHgI+iROgN01nzZeyz0mtsvGet68RZEnwNRhH5nJg3dFbR619PjuIe6B7TU1UFtLTQ3h4yxcG9qD3qUWK0BystdlJe7Wb06k3nztMyZA+XlAqGHk/qJpuPks3S8+GGGE8J9bdsp/OAmhJheZI6GrZJQHwDrzA+SecGXR31iq89IfKVf0JnJXvvjpJ+Dxmx56E5woBadTkfAIX1Naa0F6KdA4iOAMXueTNTUZVRiypx+dib0Hif2u0lFZTLJu+ZRut76LAFHO+kL7yKt8lrZ5/C5xGS9nxqcfYrjO7oa8SFi1qUu0r10Wh66eOfMleg1Wt6ICg9qcvazu6eFC/Onj3S6YeLNOxpXwEerZ4iytPEpxw0E4MAB2LAB3n4b3ti4DtF52aj2JQiwaBFcfDGsWwcXXQS5uQLJzj9anP3UxgQkXZg3HZMhZCC5efoCiagJ8GJzNV9ZsD7uPnd2y1sGrCmoQKfTsTinGINGizeoXJUyxy4/D0yVi6ZV8uIVd/KZbU/T6hzgkzNXcEv5InTa8X3dn43vpuX5ZSzPL5vQY8zKyJOImmk6I1cUzxr3528szMlUTqjPMlmn/PlCtknZDTtMjjkt6WPwKYQl+3uaxvWxV2UkrkrItdjG9Xjv9XO9CXnkbW1t4V6ZAF/5yle46667Em6zfPlyHnvsMR599FF+/OMfA6GGp5s2bWLdupH3iphK5OdLVfiuri4KC5P3HunsjIhiWVlZkh/Y0fvs7k49dCF6nzk549cQV0VOwNEqG9NaQ393U8mlsOPHkmWe9r2kzUpN1HSc+Cf9e+4PHWewic7X7qDkzjo0uvjlIb5eaSiNoLOgtUacoebii2QJ166GN7DN+0RKcxpPxGAAX8/xhOt4Wt7FOuNmvDFJ28a8JWh0yoJhMox58p5/no49QOLPr0S4mt6WjZlLL427vt5eKRE1g95+gu5utGbl92vA1SEb01jkpWm6khtoeOkfNPeU0dhVQWN36NbUXU5DVwWDbnsKj2bs6PVQklVDec5xynNPMD33JFWzjaz61P/R0XEgXI29aJGd0X43u1u20/nKxyHKg+pp24mndTumojWSdV2Nb8m2T5v7sTFdqdfZShIuz1j25ZQci/rMGbIxX1/ofRwYlP7Y0aVNHQekPlveJ9RUnNzhqaKicv5hKlxJ8e1y53aqHOpp5Rt7XsLt9/G1hZdxRdHMcZzd1OXUoLwvO4A3GGBbRz2XTUut95soiiHHXxQ6QcM1xXNwBXwSURPgqfoDYxI1Gx19srEso4Uej7T25lh/56hFTVGEo0cjIubGjdDbG73GCE4ehCCUnmbFWh/f+lAFa9dCZvJWlzLeaZMbBy4uqAj///1lC/jGHmkbmucaDycUNbd3SgOXBARW5IQqYQxaHYuzprGzSzkWZlYSQSUZl06rouYD3xjTPt6r3DFzBZvbI60B7pm7FuMUEjQBqtKVf1NkxTFcTCUyk8wx2ySv3IolMCTXTgIDHQS9LjSG8XkOKuM8x8NkThEjwvnChLzDnn76aTweD4IgcOuttyYVNKO5/fbbaW5u5pFHHgHg5ZdfPudFzWnTpqHX68PhPk1NTSmVX0eX5E+fPl2yrKwscpXJ6XTS1dWVkkjZ1BT58isvH1vfEJXEBBxtsrHh8ldj3hJCV30joou3fY9s/XgMHnpIcj/o6sLbeQBT4cq42wyLIcPo7ZUS4cZUfAnwXck6jppnz4qo6e+vQwy4E67jbn0XT/sumcvOWLh61MfVZ89F0JkRo1LXR/J3UcLVtEE2Zi65JO76uowK2Zivrza+qOkMiZour5mW3lKae8roabmGrg2hkvGGhtCtpWURoih3a0wEghCkKLOB8twapufVs+yWTzFrloaqKigrg9ZHb8Qf9XrU2WdQOO3/6FQO3RwRvr6TtP/7ZsXXj7Pu3zJRM1bIR2vAVHTRmOagS49ffq+1TiPjgv9KaT9aSwGCPg3RF7ni7+utIegdJBjVogBAm55YSJ1MQp9vUswl6yd/IioqKuc03oCfy159gO4zgtjm9lPUfuCblKTZz+7EJoE6hR/dw7zdelImajYO9fLLI5vpdA/x8RnLw+Lvwd5W6ockih/rC2dgN5q5qWwBn9v2DP6oEvSn6w/wixXXJywNb3UO8E57HQszpzHbLr2I2qQgal5WWMVT9dLqpON9HVw1gnLcU6fgzTdDQuaGDdAhv56bMnPmBagu3IYw52QopdzqYkHVCq5fKz3/cvt97Os5Tb7ZRkWCMnGAd9rl/S0vyo/sb2ZGLvPs+Rzpi/TD3tZRT+1Al6L44Q342RUjWM7PLCDdEDEvXJBTElfUHEtZ61RFDPjp3fhnfN1NZKy+DVPJ1Gxl9h8zLsCs1fNWSw1Lc4q5o2r01V4TRabRQq7JSqdb2rM10zD1hTZ7EtExKwVR0h/n89XX04yxYHzCgmYkEDWtOsOUE7rPdSbk2dyyZQsQ6pt5zz33jHj7T3/60zz66KMEAgEOHZKHgJxr6PV6Zs6cyZEjod4V1dXVXHPNNUm3q66OlN/OmTNHsmzu3LkIghDuV1pdXc1FFyX+Ie5wOGhsbAzfnz1bXtqoMn4oOTV1lpCoqTGkoc+aja8n8jf2dOxFDAaSlmX5BxpxN8sTvf39tRBH1Ay4ewm6pR/gOrvUBWYsXIHWOo2AI9L/w9X4JkFPPxpj6gmK44G3W6GRVAy+7qM4T70iGzdNWzXq4woaHYbcxXhaI71avN1HCPpdo3J/imIQd5P0b6Ux56LPmR93G71d7s7z99cyYF1JQ4NUqKyvh1MnKqiva6Z7KFlwwPg3KM+1tVKeV8OM6UMsuvIaqmYESNuzmhJ7NUZ9qH+vIX8ZRR/5tGQ7rSVfImoqXQAYDQFXF23P3UDQ1aW43Fn3IlkX/W/4vm+gAV+vtGm8adoaNPqxndQlcmpmrvkBGn3yq8gQ+g7V22fgjWob4O+twT/YKFtXlzZ1RE1TyXqMBSvwtO0EQhcLrFUfOMuzUlFROdfY1lEfFjQBAmKQ5xoP8cW5Y7vwdC5wajC+qLmxVXqR2u33cd0bD4UFs8fr9nH37NX8fPkNPN9wWLb9jaXzgJCD8vJpM3k1qjy9xTnA1vZ6LiqQX2AF+PvJPdy97SncAT86QcPf193GB8sXh5c3DfXJtrmyaJZM1Kzul4fdRdPTExIv33wT3ngD6hJn4iREU9DJXTfmcumlsH49ZOWA8W/PS9bpcEsTv7vdDi595QEO97WhEQTuX3FDwtfdlnapU9Og0bI8R/q9/P6yBRJRE+C/d73IM5d9Qra//T0teALSoKjVedKy6Qty4n/vz84YWZjUuUDLQ3fQvy3UZ7z71V9Q8b3dmEoXnuVZKXNr+SJuneK9g2em58pFzXPAPZiZTNRM4TEoOTUBfN2N4yZqlqVlohU0kr7Fw6QyR5WRMSGiZnNzM4IgMGPGjFGVOGdlZVFaWkpdXR3t7Ym/9M4VVq5cGRY1t23bxle+8pWE6/f19XH0aETYWbVKKtSkpaUxd+5cyT6TiZrbt28PN2DVarWsWDEBIRIqYfwxQo3GmIkQlXRmzL9AImqKviF8fScwZEkF7FiGjj+hOO7ri3/G549xaYJcPBMEDZYZNzJ4ICpUJ+jDeeol0mYnDjQZb3w9clHTkLdUUpYNMHj4L7L1xuLUBDDmL5OImgT9eDsPYSoc+fvF23lAJiabS9ZLwp1EEfr7Q30rm5uh7tBqjr/1bVr7imnrK6Ktr5i2b1UwGDdMdOIEZ70epk+HigqorAz9W1EhYj18E9MMm7Aaz0xK0FL6mRaCri6aG/dL9mHIlgu4WqvUQSD6hggmSUtNRtDvov2FWxRf68P4ek/g6z2BPjPkYHErlJ6bS0fXhysajd6KxpwjE1cNeUtJm3P7iPalz6ySiJpBbz+ejn2y9ZKVvE8mgqCh8ANvMXTiSQgGsM76kCwUS0VFRSUZXR7598Jph7wX2vlIXZzyc4BdXU0M+tzYziRSP3Fqv0ws++Oxd9nSdgp3jDAGcH3JvPD/by1fJBE1IVSCHitqiqLI/x7cwLf2Ri4m+8Ug397zqkTUbHRIXaEA6wsr0QkaiSP0eL/UaunxwLZtIQHzzTdh9+7hXt4jR5/Tj2/WCYQ5NTC7lumlGv546/9EraEl22iRCOadLmk+wV9O7OBwX+g8PiiKfG33S9xWsVSxtLXH4+RQr9TIsDK3FFNM39PbK5dx38G3CEY9sOcaD7OhpYZLY5y32zukpecAq3Klouby3Pjf++ebUzPoHqJ/x5ORgYCPvq3/j4LSn5+9SZ3jVGXksrWjXjKWrLR7KmDS6TFqdTLRf5ixiJr+brlpYLToNVrK0jKpU7hApYqa48+EiJr9Z5qvZmWNvgF0bm4udXV1sgTwc5Urr7yShx9+GAj1Cj18+DDz58d3a/3zn//E7w+9WTMyMrjwwgtl61x11VVhUfOFF17gnnvukSWtR/P445E0wgsvvJD09PRRPRaV1Ih1n8UmLxvzlzFU/XfJmKdtd0JRUxRFhqofU1zm75f38xnG11cjG9Nnyq9EWWfcJBU1CZWgT7aoqeTUtM2/k+4NUlFT9EqvrOvSp6MbYYJ8LIZ8eV9Nb8eeUYmarsa36XVk0dZXTGtfEW39RfRX30XnU9DUFBEyHZLfbTOBb496/iMlw9LD9MJOZi2bSUWFEBYvKyuhuBjkQXoC3dkzGdgb1RtKDOCqf02avH0Gg4IrVWuRn2wHnaOvJRPFIJ2vfkIqRsfBWfcSGctCoqar4U3ZcnPp5bKx0aBLn443RtTMXvdziaCdCkrOXXejvE/rVEsVF3RGbHP/42xPQ0VF5RxmwOuRjbW6BhXWPL/wBPw0JxBv/WKQLe2nuLp4DqIo8vvqLYrrDYty0VyQUywp339/6Xzu1jyNLypw5sm6/VxfMo/Lp1UhCAL+YIAvbn+WPx/fLtvfycEuWpz9TLOELrDG9tTUChpKrXZmpOdwLErIrO7t5MCBiIi5eTO4XIyKggK45BK49NLQbe2OX9Ee5bzMMsoDL/NMaRJRsyMmrXp7p1Tc8AT8PN94hE/OlJ8Lxro0QVp6PszMjFw+M2s1DxzbJhn/8s4X2H3Dl9CdqdQKikFebJafB6/Omy65Pys9D6vOgMMv/a2crjdRYE4eSHsu4R/sgoBPOjaOAtR7kTkKbt5C87mhDWQazLQpfBdoBIEMQ/x8iWESOTXHk0pbtrKoOU59O1UiTIioabPZ6O3tDYubo2E4/CY2OfxcZcmSJcybNy8sQn7jG9/g8ccfJy1NnuBVXV3NAw9EhKUPfvCDmEzyN+gtt9zCAw88gMvloqurix/84Afcd999isd/6qmneOedd8L3/+M/1B+bE4koBgk4pVfNh0OChjHkXyDbztuxF+Z+LO5+vZ0HJO7OaHz98Z2asSFBoCyWmIrWyhxmrvrXCHqH0BgSp82NJ74YUVMwpGOtupnuDZ9PuJ2xcPSl5+F95C+TjXnadkNUFYnfH+rn1NoaubW1Se+3tkJbyxfx+r885jmNBas11MeyrCzkusxyPkYhL1KSXUdp9iky0oYo+uhuDNmpl6dbKq5jYO+vJGPOUy+ht8uF8lRFzVBv0OQnIkr07/oZzpPPysZNRRfjPr1ZOs+6F8lYdi+iGJSFOGlM2RjyFo9qDrGkzfkoPe27w/ets2/DVLR2xPvRKVx8UAqf0tni9/FUUVFRORcZ8Ml7I7c6B87CTCaXhqFeRBLbFDe21nJ18Rx2dDayt/t0yvu+oUT6nWw3mrmyaCYvNUXOLbs8Dt73+p9ZnDWNe+ev45+n9kuWx7Kjs5GbykL9DZti+ndOs6Sj02iZlZFH9SkPHJmJeLSKtqMzWTxKfTorKyRiDguZs2cTDhkURZGed6ShRFlGubsyz5xGdZTIGitqnuiXX2h9uv6Aoqj5TptCP8045fvfX3IVT9Tto9cbUXAP9bby0Ikd3D07ZGD55u6XeatFakbINlpk4S5ajYZl2cWSUBqAOfa8MYUdTkWCCq7tgFPuClZJnY9WLuM7+14LOx5npueyJHtsxpDJIp6omWkwJ+wHPEx8UVPukB4LM9JzZGFscG6U+Z9rTIioWVhYSE9PDzU1NfT3949YmGxtbaW2thZBEJg2beq/uS699FJOnw6dUBQVFbFhgzwYBOBrX/saH//4xxFFkRMnTvCxj32M++67L9zbUhRF3njjDb797W/jdIa+kHNzc/nMZz6juL+cnBw+9alP8dvf/haAf/3rX3i9Xr75zW+SnR1qaO12u3nkkUf4zW9+E97u4osv5uKL1STaiSTo7oGg9IpirFPTkLsQNDoIRuzzniShNEPH/hF3mT+RqKlQkhvbUxNCPSUtlTcwdPjh8JgYcOOqfxXrzMnpiScG/Xh7pcnnhuy5aM3ZZ/qQxg+7MU0bfel5MAh9fdDRPpODDZfT1Wejc6CAjoFCuv41m4FfRcTLjo5Uy6ImvuQ2I83BtPSTFGU1UpxZz7SsRhZ/6DtUzLRRVgbZ2ZGTfQBvzzJa/vF5RH/oMyZ73a8xKKRVJ8I07UI0xkyCnsgJpevUq4jFQ7J1FcvPFUXNNmD6iOYBITG/b8dPZOPGwtXk3/QiLY9dgK83ckLhbtlKwNWNf6BB3hqg9NIROynjkb7gLgj6cda/ijFvKZmrvzeq/SgJxYGhZtmYdoo5NVVUVFTGSr9Xbt1rdcUXNV9prua5hsPMTM/li3PXYjhHgxiUnD2xvH2mr+bvq7eOaN83ls2Tjd06fbGiaLm/p4WPb35cNh7Ljo4GbipbgCiKEqem6DRhqV3CFzbDpn9/ALFxdBfHTSa46CK44gq4/HJYtAg0cb6qHX6vxHUKyqWeuSbpXJx+Hw6fB6veiD8Y4KTC3+Ctlhp6PU6ZIBEbEqQVNLL+l8Nkm6x8d8mVfGmHtKfnd/a+yofKF/OP2r383+GNsu0+MH2RolB5QU6JTNQ8H/tpBj3y88vAUPwWDSrJKbSks+3aL/Kbo+9g05v4n0WXpSQITgXihQWlWtY9WU7NeGFBavn5+DMh3/Zr1qzhyJEjBAIBHn74Ye69994Rbf+b3/wGURQRBIGVK+OnOZ9rrFy5knvvvZf7778fgKNHj3LjjTcyY8YMsrKyaGhokPQQNZlM/OpXv8Jmi19CcPfdd3Po0CE2btwIwIsvvshrr73GrFmzMBgM1NTUMDgYuZJRXFzMT3/604l5gCphFEOCYkRNjc6EIXu+pF+et2M/YsCn2H9ODAZwHFPupzl8zKDPqRhyEitqCvo0RWEJQiXo0aImgOPks5Mmavr6aiEgLaXRnxHdjNMuTChqRjs1RREGBqCzMyRCdnRE/q801tUVcmCCFng53iEmFY0QID+jhUJ7M+VLL2B6uV7iuiwrA+dbt0oTvDU6pn/4p8S7SG/Imk3JJ2twNbyOPnuuYlJ1MgSNDnP5+3Aci/zYCXr7cZ56VTp/c66sfyaATmEs6OpgNKJmz6avyJLOdfYZ5N/wDBqdCUvFdfTvuT+yUAziqn8V/6BcGByv0nMAQWsgY+l/krH0P8e0H6U2ETK0BrSW8+9HjIqKynubAZ9C+Xkcp+YrzdVc90akz/aJgU7+tObWCZvbRKIUEiQgSNyb+3pOc7y/QxbAY9bq+dK8i/npoQ2S3o0QKoWcZ5eeiwJ8sHwRvzi8UdYXMlV2nCnV7nS6GKqehnh4FhytglMlVAe1hOTS1AVNQYClSyMi5po1IWEzFboVHH3ZCgJCnkk+nw73EOV6I/VDvTJhFEJl/y80HuHjUWnWNf2dspTypdlF4X6nStw9+0L+dOxdiVO02+Pk5rce4R2FUvbytCy+t+RKxX0phQWdj6KmqOTUdKii5lhZnF3Ewxd9+GxPY8TY4/T+TFnUdExe+bkSqqg5/kyIqHnDDTfw0EMPIYoiDz30EHPnzuWqq65Kads//elPPPtspIzw2muvnYgpnjU+85nPYLVa+cUvfhF2Y548KXfRFRQU8POf/5wLLpCXKEej0+n47W9/y/e//32eeeYZRFHE5/Nx+LA87XDJkiX8+te/HlOvU5XUiA0JAnn5OYRKnaNFTTHgxttzFGOuPDHP1bThjJstwXEHTmHIll6FF0VRFp6it1fGLU0xl1yCxmgn6OkLjzlPvULQ70ajG1158EhQCgkS0xbQ0gJNQ1dTX3uCXkc2fc5M+p1Z9Dqy6Xdm0ufOxf38Inp6oLs7JFZO5Za8Oh0UFYX6VhYXQ0lJ5P+2zt9ha/s5ObZ2dNrQifW023ZiVCiNHoptc2DOS+o21FpySZvz0THN31J+rUTUBECU/ghQKj0PHV/BqeloH3H1ubPuRZx1L0kHBQ151zyG1hy6OmqpuF4qap7ZLuCSn9CMR0jQeKM1ZaExZYXc33HQpRWPm8NURUVFZarQ75WXn/d6Xbj9PlkIyyM1uyT3/167h9+uuumcdGsqhQRdVTRLEugTFEU++c6TMvHto5VL+dGyq3lf8Wxu3/QYTVHOyS/PX6d47mfU6njn2s/zf4c28ofqrZLS6Fjm2vNx+r3UnykzF7sy2ba5gJsfEnnjLRPiwBdG+GhDlJdHRMxLLw1VmYyGbrdTNqYkIOSZ44iatmxZiFE0T9cflIiaf4jpjwlwxbSZCeeo12j5xcobueb1ByXjsY5LCAmyL195F3lxemReVTQLu8FM35m/mYDA+8+0AjifCLoVnJqqqPmeJZ5TM9MwRqdmT2PYWDceVKarouZkMSHf9DNmzOCmm27imWeeIRAIcO+993LDDTdw0003UVEh7zHidDrZuXMnf/vb39i+PdSEWhAErrzyynBp9vnE7bffzuWXX84///lPNm3aRHNzM0NDQ6SlpTFz5kwuv/xybrnlFsV+m0oYDAZ+/OMf86EPfYhnn32W7du3097ejtfrJSsri4ULF3Lddddx5ZVXoolXr6Eyrig5NWPLz+FMX82YBG9v+x5FUdORoPR8GF9fnUzUDLq7JQIlKPfTHEbQGrBUXMdQ9aPhMdE3hKvhDayV1yedQyye9r107XmI3q4hxJJP4U2/mP7+UOJ3Xx/h/w/fOk/NpqvpNfqcWfQ5M+lzZuPyDvdDuvHMbWpjt0OevYNs/WHy0ttCbsuMZuZcfQeVSxZRXAx5efHLpwYOGuje0CIZ8/fXKoqaAWen5P5kOfYs06+StU+IxZCjfGKtKGq6OkYkagb9Lro3fkU2nr7wbon71Fi4Co0pW1Jq7qx/DTEY4wbOrEKXPjX7UurtVXjadsRdPpWSz1VUVFTGC6Xyc4A21yDTbdIL9KdihEBPwE/DUC9VGbkTNr+JQqn8/JMzV8hSyrd3yvu/fW7OGgDW5pez98Yv87ujW9je2cA1xXP4zKz4LXpsehM/WPo+/nvBJfy1Zif3H94kC/1ZV1DB31d9gjv/spu61wQ4PAva8vACITvKCIQAq5PCpe1896PlXH55KJxwPOjxykVNJadmbPk5QMeZBPQT/Z2yZcO80XKCfq+LDIOZIZ9HJqZrBIFPzUpeZXhV0SyuKZ7Dy83xe5WatDqev/yTzEzwGrYbzTx1yX/w9d0v4Q74+PrCyxKuf66i1FMz6BpA9PsQdBPf6kllapEZR9TMNo1N1BR9HgKDnejSx+e3VEVatsxlD2pPzYlgwi5ffvvb3+bYsWMcOXIEURR5/vnnef55af+QXbt2sWrVKgYHBwkGg0DIVQZQUlLCD37wg4maXlxuvvlmbr755hFtE6+HZiIKCgq45557uOeee0a8bTwWLlzIwoULx21/KqMnNvkc4jk15UnbnvY92OZ/UjIW9DlwnHwu6XGV+moqhQQp9dMcRhRBU3ILvbtfxulJw+FJw+W1EHy6Gt2c6xkaCqV1Dw0h+//QUKjkOyRWivR1OegfnIPH94ekc48w58xtaqHRBMnL01BYSPhWUIDk/vCYyQRtz34SV8Prkn2Ufuy7aFMQ7vQZ8os/vj7531YUgwRcsaKmcluB8UZjzMBUvA5341tx14nn1NQoCK9BZztkpn78/l0/wz8gLdPSWPKwx/SuFDRaLOVXy0T6WEzjWHo+3ugzZyQRNdV+mioqKucfSuXnEOqrGStqNsUIcBBK5j4XRc1TMb0Cc01WriqahU7Q4BeDcbdbm1/OoqxIFkGW0cJ34pQtxyNNb+SLcy/i7tkX8tSpAzx8Yic1R3XMbFpL8LGZVG7R4PGMvC+/wQBC1Sm8s6thbg2UNZNuz+Yzt3x9xPtKhLJTUyEoyCR3Pg6HBR1PIGr6ggH+3XSU2yuX8feTu2VhVteXzKMsLbWKuJ+vuJ7XTx9X/JtqBIHH1t0uSzxX4tJpVey84UspHfNcRamnJkDA2Ycu/dx7j6uMjbg9NVN0avrjiJoQKkEfL1HTpNNTbM2QfT+lOk+V1JkwUdNkMvGXv/yFr371q5LUbSBs6fV4PLjdbtn43Llz+e1vf3veJJ+rvPdQEjVje2oC6LPmExTM+HwB/AE9/oCegRO1eGaDzxe59Z/YREftLPzB0Dq+gB4hfR6urlP4zox5/UaEpgK074DbDS5X6N/+0xn01/4et8+Mx2fC7TMjPrkErza0fHhdlwuczpAwGQhcCyQudU+OwEh6KJ0NDIaQYzI3N/ZfEe3hL5FtOUVeehu5tjYKSjMou+NQSvsVRVEW+qTLqEBrSk2109nllgVff61sLOjqlpV8ay2Td3JnKb82saipEBIEoX6ysS0OQunnqeHrO0n/7p/LxrPW3ofWZJfPM8Z5rMR49tMcb3QKYUHRaFWnpoqKynnIQBynZqtTmnrrCfhl6dUAdQPJA3emGqIoypyaFbZs0vRGVuaWsrWjPu62n5u9Zlzm0N0Nb76p5Y1Xl1L9+lJaWmBUneZKTvMfN2Rw2/VpXHQR3Lj5NTa0Ri601w324An4MY5jiwAlp2aWQv+9fIXy884zr6ETA4nPR56pP8hHK5YqhjR9YU7qf4NZGXl8ce5afnlks2zZr1e+n/eXKZ9DvRdRcmpCqARdFTXfe2SOoaemGAwQdPbFXe7rbsRcnrj930iYYcuWi5px5q8yeia00YzdbufBBx/k+eef5+GHH+b48VCisRgnNjgvL49PfOITfPSjH8VgMEzk1FRUxsz27fC1r83g+HFLyN2o0RIMhpyOAe8PCfq/h4hAUNQQFDWIXzMhiqGU7eH1QunY/fKdfy524Jozt9EwNZ2PE4HVCllZoVtubkSkVBIu8/LAZiNOoI5A6zPHcTdFXNjB/jaCnn40xuQXW/yDjbJkbWOe3JUbD52tRFba7VdwagZi+mnC5JWfA1gqrqVn05fjLBXCAU9KaC15MaKm/LEoIYoi3Ru/jBiQOniM09aQNud2xW3MZVeA1iALoIpMVYu5eF1Kxz8bJGoXAaBLU0VNFRWV849+n7ynJkCrU3re1OJUOI8CxQTrqU63x8lgjEO1/EzYxPrCGXFFzUJz+v9n76zD4zjvtX3PMkgrZlmSLTMzxI5jO5w4jIU0PW3Tnjbpab9yygynbdoU0iRtk1NukoYTBxyHzQwyk8hi1q60ON8fa2l3dmZJaNnvfV267H13dna0llc7zzy/5+GmAYpgPh9s3QqvvRb82r697zNqcpgzenBPPYg08whMP4qU1s2DH/wB6ebg/VPSchWipl8OcKKrmeka5UV9BOQAbr8fa4Ijxq0aTs0sTadm9PHzWE5NgNdqj/Bc1QFF0Q/AjPQ8VhfE/n0dyTfnXM6/T+6hridUgPWVWav7YwQEQbQyNUHkal6opA2i/dzvbIv5BjfUZUETHNm8Va80pojx86FnRNKzb7jhBm644QaqqqrYtWsXlZWVdHZ24vV6SUtLIy8vj3nz5jFt2jSR+SgYE3R2wm236amvjyZwqT9ACRLHanKSbmsl3dZKVq6FvPIpZGUFxcpU/Wn0J35Euq2tf5vs4mxm3PNGwu2YiWDOm68QNQHcjbuxjlsV97GeCJcmgClvQcLPLekMGBxlioInLadm5Og5jNz4OYAxbTzG7Jl4m9XFZIb0cnTG6L+09bZ8vG1H+28HXI3BDxlxwrldJ1+k57SyZR1JT/bqB6MGe+tMqViLV9NT+Zrm/eaCJejMjpjPO5rEa0AXmZoCgeB8RKsoCKCuR+nU1Bo9Bzje2TzUhwTA85UH+J8tz9Lt8/DVWav5yuw1Q7ZvrTzNCWfHmVcXTORHe9/QfNwnpyxNqhSpsjIkYm7YEMw0Txq9HyaeRpp5GGYeYfxML0e7Qp9LUo1m0kyhD2bTNFq5D7U3RhU1f13xLl/fuQ4dEt+Ycxn3z4lf5qfVfp5MUVCnp5f6iJ+vSNx+H5/c+JRq/TPTliddMJJutvL2NZ/hM5ufpt7VyaenXsSnpkbPPr1QierU7Bai5oVItEKgRMTCaHmafXib1VnFg2F1wUT+fDQUIZVptjFV471QMDhGtBKwpKSEkpJzs4hBIEiGxkaorx+aZrTzDZOhl1RLB6nWzuCfYX93WNtJtXSSP/ty8qYtIy0NxZeh5SXc79+J2RBy1GVe8gBp86b03w748ql69BlkT+hDp2PmZ4ZU0AQw56lHD9wNOxMSNSNHz4P7S1zUBDCmlStETX9XjaqB3u9Uuxt1Izh+DsER9A4NUTOysCqSSEep7HOB3wWG6BcE5ICf1ne/olp3zPkMppzYecK2CWujiprnYut5OHGdmiJTUyAQnIdE5hX2Ee5qA6hxaityJ7qii5o7m2uo6+nkkvwJpBoT/wDR5XVz93v/6ndT3r9zHWsKJ7Ewe2guLmmJmn1OzWU5pZj1Btx+ZUGfQdJxz5SlMffr8cB778Err8C6dXAoej9NTMrL4coroal8J/+xPINkDblKj0ZogSX2dIXINyVdfSIfrWn8iZN7+OK2F/pvf3PXK6wumMjS3NKYx9fqTqwoyGG0YNLp8YS1xzf2dmsez4KsYna21MR8njSThQ+XJ/c5r4+Jjmxev/JTA3rshYLsiT5+LrjwSDdpv2dr/V+PJK6o2Tq0Ts3bymbzcvVB/nVyN6lGMw8tu2VIIzcEQYblFf31r3/NmjVrRGmN4LylsBAmTpQ5fnzsCZuSFMBi0WG1Bgtt+v60WILj23Y7pKQEv3RN6zD2HMBu7sZm6sZm7qbw4s+TWTq9f5u+7T2778d39DeYDF7F89kn34bzqPKKtq18P3nXqa9yt7Xspt2gHBE2RYww6wwWMpZ+h9Z3vxS8bcvFseD/DcVLo3xeDRGya9+j9Fa/TcDdRsDdjs6SSfqir2KbcK1iO3fjLtVjwxu5E8GYXk6P4mKhjK/zFKbMUJSAVg7lSDo1AWwTrqNj+89U69FKgvrQa2TM6rytBGKImj2V61VlWHpbHhnLvp3AcV5Dy1uf1bzvXM7ThKDTVG8vwO+s07zfkCouFgoEgvMLb8CPy+fVvK/OpRQ1a6OMn5/sasUfCKCPmAL74Z71fGd38CJXWUoGm9b+D3lWdXGMFlubqlTj4a/XHhkyUTOyxR1gwtlSJIvByLKcUt6OGGW8uWw2BTb1tEF1dUjE3LAhmJmeLCkpsGZNUMi88spQS/mLVRae3qBd5NTHOLsyR1zLnbS1SS0gVHa38unN/1Gt/9+x7XFFzZYIsVFC0iwVkSSJXEsKNWE/O0093RzpVE/AfHzyEip3tdEcxS0I8F+TFpNiNMc8NsHAOV/Hz931R2l6+lv4na1kXnYfqfNvGO1DGhNEc2QmNH4eT9Qc4vFzg07P3y/5EL9fdjMWvVEImsPEsLyqDz/8MI888gjZ2dmsXr2aNWvWcNFFF4mcTMF5g80Gzz7r59vfbuPoURs6nYzdbkevl9BJPjx1G5EkGUkKoJMCGOy5WHJno9OBThecsO3/OzK9lc9jkHox6rwYDR5MtlQyZt5OoGUbvvq3Meq9GPReDDovZkcW2Uv+HyaThLdmHZ5TT2PQezEZ3FiMPRSs+T7ppXOxWEDfe5SOV67FbOjFbOzBbOwlc+Yd5F7154S+z+5DbTS99k3FmmNWOlkr/1e1bd2WbfSGC5qSnvyb12EpvoSemneC48Vn6al+C9nvRdIrM5K8LQdV+9XKZUyb/z9Yxl2Cr+M0luJLNMthBoshtQSdNZtAT8jp4es8pWrcbnj5Doo/vLt/RFiWZdX4uTFjUkJZnIrn12hA97WfVIqaPVqi5siONJjzF6K35akyMeOKmhrHqfO0ErBGPzHsqnhctZZx0fcTem0NqeMw5czF07RHsS6ZHJjzF8V9/GhjTJ+oKWpKJsc5PTovEAgEA6Ezyug5oBoPjjZ+7g34qXa2K5rSOzw9/GRfqODudHcbjx3dltBoM0BDr3o0uaFnAGphFDTHz886NQEuK5ysEjXvPZu/6PXCxo0hIfOAeogiIebPD4mYy5YFSxUjWZIT/2JaSUq64naRLY0Ug5luX0gMfan6IL+ueJfPzwg2qvsDAe5+91+a0QNPV+7jN0tvjDlm3xYhaqabLCpRu49cq1LUbOzt5qhGnub09DxuLJ3Jn8JGSMORkPjM1IuiHpNg8JyP4+eyz0v1A2vxNBwDwHlwA+O/txNraXImiAuRaE7Nc1HU7CNaDqhgaBhWqbipqYmnnnqKp556CovFwkUXXcSaNWtYvXo1mZmZ8XcgEJzDTJ0K3/hG6I1vzpw5GAwGvG0nqfnL5YptHXPvI2vVA1H2JFH31G/prX0vbElH8UcXUfuPqxVj1gA5V/2FlKlBh2j3kS6aXvmb4v7smTeSOnMuAF0H3qc5U5kNYilYnPD3aJuwFiQdyIH+Na28SFmW8TQrm8GNmVOwjlsd3E/p5XQf+kdoe08n7vptWIqUQeieVuU8lM6SGdV5aM6ZgzlnTsLfS7JIkoQ5d0HUkeV+/B66DvyZzIt/CoCv46SiAAfAlJv8SJJRqwG9XXkicy44NSVJh3X8NXRHCI6m7NhOfS2npuSN/uHU72rCdfIlxZrOlIZ96p0JH6ttwlqVqGkdtwpJd+5fNTVkTILw94i+dZGnKRAIzkOijZ6D2qkZbfwc4HhXs0LU3NN6ht6I8e09rbUJH1dknidAQ5wMxmQ4FSFqGnV6imyhC3f3TlvOw4c39Ytxt6Wv5PCLZfzqFXjjjWDme7Lk5sIVVwRFzMsvh7wEPkbkWlOZkJqlKcL2URLh1JQkietKpvOvk7sV61/c9gKFNge3j5/LT/e9yXsNyovHfbS6Xaw/c5Rrx0UvIYx0amqVBPWRE1EW1NTr5LDG+PmUtBxuLZsTVdS8ZtxUyh3ZUZ9HMHgCbu0LBwFX2wgfydDhOraxX9AEQJZpf/cxrHf9dvQOaowQLVNzKERNf2cjAU8POiFCjimGpZVn9erVWM4G3MmyjCzL9PT08Oabb/LNb36Tiy++mDvvvJNHH32UEyfU5RcCwVjG56xXrWkJOOGoRp3lAI0v36kSNM35i7FPCYk4xjQN4StsPLe3fpvqfnMSoqbOnIYxY4pizd20FzlM5ATwd9eohbzsWf1/t5YqRV6AnsrXFbdlvxdv2zHFmjFretKh60OJtTQx50b34X8jn81l0s7TTLz5vA9DutqpGVkWpBY1JfTWkf9gnTbvvmBb+1ksRSvjlttoOzWjf9DoPvwPCEREG0y9E50h8Q8dtvLrVWvWsqsTfvxoEi1XU4iaAoHgfCRaSRAExSdvWBZiTRSnJqjLgva3qh3vld2JCyNaAuZQiponI5xnZSkZCqehTWfhkZyvcNWWL1D2ix/yxM3Xc889Es88k7igqdfDypXw4x/Drl1QVwd/+xt8+MOJCZp9LI7j1hwX4dQE+MH8q8ixqIXGu9/9Fw8ceJvv7XlddV84/z65J+b9kVmXmebonxEiG9D9coAtjUojQLrJSo4lhVUF5VEFk/umrYh5TILBcz46NV1H31etOSvWj8KRjD0cJjMSyvPDYNRE/HxkXxxRE8DbWhN3G8G5xbCImn/4wx/Ytm0bjz32GHfffTfjx48HQgKn3+9n7969/OpXv2Lt2rVcccUV/PSnP2Xbtm0EAoE4excIzm20RkTjiZrmXLXo5WncrVrLXPlzhcinJXz52kOipjtC1JQMVkxZsceCIzHlzlXclj2d+DqUV9EjXZoQIWpqZBa6KpW/uL3tx1SilSkz+tX4kSB15iewRB67pAe9chbL7zxDb/VbAHg08jQH4tQ0OMZDxC/s8H9bQDXyrbNmjYrr0JQ9i4JbN5Ay82OkL76fvOufifsYvU0jU9Oj/eFUlmW6DqhHz1Nn/FdSx2nOnUvKzI/13zblziN12oeT2sdoYUzXFomFqCkQCMYisizTEyUzE6AjhlNTRlYIiTVRMjVBPc69r039Ge10EsKIpqipMZI+EDx+n2qUfnxqFnV18PjjcPvtkJ0NV19qZt2jhZw8mHjBUX4+fOxj8NRT0NwM77wD998P8+YFo5AGwtI4omaJPV21Nj41ixcu+zg2gzJ+yBPw8+XtL+GXY58HPl91AJfPo3lfQA7Q6okUNaM7NbUa0CPzWaek5SBJEkadnhtK1J+fp6TlcFlh7Iu4gsFzPmZquo5tVK156o7gbakehaMZW+gkHWkRAmaG2YpOiv9mFs+pCcM3gi4YPobt7NdoNHLRRRdx0UUXcf/991NTU8M777zDO++8w7Zt2+jtDX1Yqa6u5i9/+Qt/+ctfcDgcrFy5kjVr1rBy5Urs9ui/jASCcxG/llNTQ8AJx5yvbtqOxD7pFiyFy5T7tWSiM6crXJJ9Ts2Ap1uVUWnKna/KsYyHOWcuzsP/Uqx5mvYoxqM9TbFFTb0tF1PuPIVQ62nYib+nud9ZqJWnGVkSNNLoTCnk3/QyAVcjAX8venMGkikV55F/0fTqRxXbdh36O9bSy3A3RIqaEuYIYTih5zZY0KeOw98V+sXqbTui2MbvUmY/jXSeZjiWwmWqn89YaB1rtPFzd/02vBHRBKbs2ZiSLF8CyL70D6ROv5uApwvruNVJ/38YLYwZ0ZyaovlcIBCMLSq7W7njrb+xvbmaeZlFPLXmI/0N333EytSE4Ah6sT0dj98X0yl5vFN5Aru/9Yxqm6ZeJy6fB5shfvZ/ZJ5ntLWBUOVsJyDLyH4dnCxB3j+VHUcXUHg0+X3pdME8zGuugauvhrlzg3nuQ8mSnNilPZHj530szinhX6vu4qYNjxOQ5aiPN+sNLM4epxhHd/o8vFx9iNvGq+OHOjy9qv1lWaKPo0Y6NbWY7Mjp//utZbN5/JjSLHDv1OUJCSmCwRHVqTlGRU054Kfn+CbN+7or1pOx8mOa940F5ICf7r3rkH1uUuddj5TA++pAyDTbaPf0hG5HGUmPJBFR0ydEzTHHiL0LFxcX86EPfYhHH32UrVu38uijj/LhD3+YkpKSfgenLMt0dHTw0ksv8YUvfIGlS5fy8Y9/fKQOUSAYErScmoY4Tk1DWjk6c3r0DfQmMlb8KMpjxytu97ko3Q07FVmYEBxfT5ZIpyaAu3GP4nY8pyZojaDL9FS+0X+rt367ah9aJUEjjSRJ6O15GB2l6MwOJEnCVn4DklF5wcV1/DkC7k5V87kxcwo6U2KtqpGYMqcqbvs6TxPwBK9Wy7JMIMKpOdJ5moMhWlGQFloFQSkz/2tA0QSSJGEpXIat7IoxI2hC8D0i0rkLoBdOTYFAMMb44rYX2d4cdCPtbq3lu7vVI8exnJoQyraM1nzex4mw8XN/IMCBdvWFZ0h8BF1LwOzw9NIbw3WaCE1N8MjjXgIPfwj5899F/sl98NJlNB/VFga1yM2Fu++Gf/87uL/334evfz3oxhyOJJ+5mYVRm3wlJIrs0Uv81o6bzkPLbom5/58vXMvXZqtjgP59Uj3JBOrRc4gtdERmamoxJayx/cqiKVw3bkb/7RV54/nElKVx9yEYPNEyNcfq+Lm75gCBHu28COeBsTuCLssyVQ+spfrX11Pzu9s49YOLkCMyjIeKSIf0FUWTE3qccGqen4xKO4LZbGblypWsXBlsujt9+jTvvvsu77zzDtu3b8fjCY4VeL1eNm3SvoohEJyrRI4EA+jtBTEfI0kSprwF9FZt0Lw/be59GDXasAGMaRMUDsiAuw1/b5tq9BzAMoCWZ5NGGY+naa/ydoSoqTNnoE8pUqxZS6+gY7uyNb2ncj0pU+/E03qYrr0PqZ/7HBA1tdAZ7dgn3kz3oVBJk+xz0b7zF8ge5YcUc2ReahIYs2aoskc9LQexFCxG9nQi+92K+/TWHMYKkt6EzpJJoDf0gVTnVX/QCHi6cR55MuKxZlKmfmDYj/FcQmewYEgtwdelzPsypAhRUyAQjB26vL28VK2czHi/4aRqu0ScmhC7JAjgRFcLATmATtJxsqsFVxTx8XR3K9PS418YjDZq3tDbRWlK4iWosgz798NLLwW/tmwBWS4AYn9eDEeSYMmSoBvzmmsGN0o+EEx6A/Mzi9jcVKm6r9DmwKjTx3z8PVOWUuNs54d731Ddd03xND4zbTk+OUC22U5zmFPvldrDdHh6VG3CkSVBEMepqTF+HsnktNDnKkmSeHrN3bxVfxxfIMAl+eVRRV3B0HK+OTW1Rs/7cB7cgBwIII3kf+YhordyN879r4Zun95J57YnSVv2wSF/ru/MvYJqZzvbmqpYmlvKN+eq+xu0iBQ1JYMJOSLSwtuifk8TnNuM+jtxb28vZ86coaWlBafTSSAQ6HffyDFGEgSCcxVVUZDOgM6apb1xGObc+Zqips6aTdqir0V9nEFD7PR1nNQUNQfi1NRbMjGklirElHBRM+DrxdumnI0yZc9SuegsBUuRjCnI3tDV1p7K9cgBP83rP6US6CxFF4/qOHU8UqZ9SCFkPBnlAAEAAElEQVRqAnTu/LVqu4HkafY/NnuGas3bUoGlYLG2eD6GnJoQPN5wUVPScGo6j/1H8TMDYCu/Ab0l8ZPH8wVDxiS1qOkQoqZAIBg7bDhzXFHyA9piVKz2c4D6sy6nyAzKSHr8XupcXRTZ0zTzNPtIxKnZG/DRHkVsbejpjitq9vTAm2+GhMyaAXRRZGfDVVcFR8qvuCJ4ezRZkluqKWpq5Wlq8d15V1Lj6uD/joWmdfKsqfx5xe3BLEtJzy1ls3nkyOb++91+H89WHuCjk5QX6pN1auZa4k/RTElTXizW63RcVpiYI0wwdETP1GwbkwKgVklQH/6uJtzV+7CUzh25AxoiPPXqrIzu/a8Ni6iZb3Pw0uWfSPpxkaKmKX8K7rrD4A9d8BJOzbHHiIuaHo+HnTt3sm3bNrZu3cr+/fvx+ZS25HAx02pNvNlWIDgXiBw/19vykRLI24mWq5mx9FvoLelRH6clanrbT+COGOfW2/IHPKpqyp2jEFP8zjr8zgb09rxg1qGsPEEx5cyK3AWS3oR13GpcJ18M7cdVT/Ob9+Ku26zcWGcg85JfDuhYRwpL8SXoU4rwd9f2r8l+9cnOYJyaWqVOnpYKQJ2nCaObqTkQ9LY8RVamztMatK+ECeKaBUEzkysIOl+w5C+ityrkaNFZs4VTUyAQjCleqTmkWuvyuvEG/ApnX6z2c4A6V2Lj5wDHu5opsqexf5CiZqsv+jFFy/WsroaXXw6KmG++GRQ2k0GSZBYtkrj66qAbc8GCYHv5ucKSKGVB41ISG5uXJImHL7qVspQM/u/YdkrsGTyy/DZyrSHB8c4JcxWiJgRH0CNFTS1xPFOjab2PeJmaEhITU0dZNR6jyH4fHVv+RaC3m7RlH0Rvix5FEHdfPq9CcFLeGSDQ04k+QRH9XCGWqAnBXM2xKGr6ner3UefBDciyPKDIqKFGlmX8TqWoqXfkYHR3420KZfcKUXPsMeyipsfjYffu3f0i5r59+/B6Q29MkW5Mk8nEnDlzWLp0KUuXLmXOHPXoq0BwLhNZFBSv+bwPc55a1DRmTCF1ZuyrUEaNBvTe2vfxO5Vh+Ob8RQP+hWLKmYvrxAuKNXfTHmz2KxPK0+zDWnqFQtQE6D7wmGq7tIVfGlC5zkgi6fSkTP0AHTt+EWsjzfH9RDFmTSOYoxh6nwyJmlpOzTEmatqVzlJJ9iD5nciG4ImGp/WQSvA2OMqwjFs9Ysd4LpE657/pPvIkvo4TIOnJWPbdMZULKhAILmxkWeaVmsOa97W6XeSFCVlxRc2exMbPAY53NnNJfjn7W6OLmqcTEDWbY7hH+7I2/X7Yti0kZO7dG/Uh0bE7YeYRUued4vj3biH3HP7VvjRKWVCiTk0Ao07Pt+ZewbfmXqF5/4q88RTb0hQt92/WHaexp0shfrZqjChnmWNlasYuoy1LycBiEL9jB0LVr9bi3P8aAC0v/5TyH1eAwRLnUdpEGz3vw+9sHVOiprelCl9r7IZz54H1ZF/z5RE6oqHD71K/j/raavE0HMOcP/oOZ9njQvYqJwMN9iwI+JWiZmvVOSPEChJjWETN7du3s3Xr1n4Rsy8jE9Qipl6vZ8aMGSxdupRly5Yxf/58zGbzcByWQDDsyD63YpwW4pcE9W+XOg5b+Q24TjwfXNAZyVr9YFzRQsup6Tz2H9XaQEbP+9DM1Wzcg63sSjzNB9TbRxM1y+LnnRgzppCx+BvJH+QokDLtQzFFTWPmNHTGxNr4tNAZrBjSy/G1H+9f8559vf2uRtX2Y07U1BiXlzwt/aJmd8VfVPenTP9IQs7n8xGDvYCiu3bhrtuKIaUIY8ak+A8SCASCc4R9bXVRnZUtbqdC1Iw3ft6XqRlv/BzgZFfQmRPbqRk/m6/Fp22zlF0W3nzBxvsHYN06aG7W3Cwms2bJHC17F8/M/VBeiaSTmZ497pwWNAHG2dPJt6aqCpSSETXjoZN03D5+Lg9UvNO/5pcDPH16H5+etrx/TXP8PIaoaTEYcRgtUX/WJqeNnZzyc4ne6v39giYERbzO7f8hZdmHB7S/aCVBfQRzNbV7B85FXEej52mGtnmPgKcXnWlgQvBoEa24yVmx4ZwQNbVKgvSp2UhG5esse934u5owOM7xN2BBP8Miat51111RczElSWLy5Mn9TsxFixaRkhI/qFkgGAv4XOpWzXglQeHkXPFnOvcuwOeswz7xZqzjLon7GENKMeiMEAg5oAM96k/U5oKBi5parklP057gnyqnphS1tdyYNgFD+kSFSBf52OzL/4hkGBsXNkxZMzDlzO1/LSIZzOh5+HOEv15+VwN+V1MUUXPsZWpGovO2EqAU2e+l69DfI+6VSJ3+kZE5uHMUncGKddyq0T4MgUAgSBqt0fM+Wt1KwTBRp2atq12xbtEb6I1o2z3e2Uy3182Jruitt4mMn7eEjZ/L9dmwdzryvmlwdAL/9ic3E242w6WXwtq1cO21kJLXQ84/XyTcFzQ+NX4e+2gjSRJLckp5vkp5gTvR8fNEuXPCPIWoCfDvU3sUoqZmUVAMUROCI+jRRM3w5nNB4rhrK9RrdUcY6Nl+XKfmGGtA1yoJMhfPwl0TOp+Svb24jm0kZcalI3logyag4dSE4Ah65qWfHuGjUePTEjVTstDb1XnI3pYqIWqOIYZ1/LxP0LRardxyyy2sWbOG2bNnCxFTcN4SOXoOiY+fA+jMDtIXRy8F0kLS6TE4SmMIhQAS5kEU1uhTitFZsgj0hn4ZuM+WBUWKmob0cnTG6CM91tLL6YpyrI6592EpXDrg4xwNUqZ9mNbhFDWzZ4bcu2fxtBw8b52aOk/wZ6y3aj2BiO/RWnoFBod2fpdAIBAIzm3WVUcXNVt6lcJFPKdmQ083/kBANX4+JS2Xqu422jwhkfREZwsH2tSfz8Kp7+mix+fFGmXc2OuV2LcjncA718He6dCQvIuvqCgoYK5dC2vWgD3so9KOZvXJ9oTUsVGItyKvTCVqTh1iQXB+VhGTHNkc6wxdtH+/4RRV3W2UnBVQk3VqQrAB/XiXtrVWODUHhrf5tGrN11ar3jBBopUE9THWGtBdx5R5mpLBRPbar1H78IcU686K9WNO1NTK1ARwHXrrnCh00nRqpmSh0ygU87ZUYR2v3XchOPcY1p8sSZKQJIne3l7++c9/8tOf/pTf/OY3vPnmm3R1aQdqCwRjmciSIAgW9Aw3xrTy2PdnTUNndgx4/5IkYYpwa/raj+NtP64SnqKNnvdhK9UeQTc4yshY/v0BH+NokTLlDpC0HRqDaT7v30eWugHd03JAM1NTN9ZETbvW+HnwA1HPqZdV96XOuHvYj0kgEAgEQ0+r26XZkt1HpMuuM45T0y8HOOPqpKFHKXgU2dKY6FCWuxzvamZvqzJnXIuqiBPyxkb4618lvvrVCVx22RzWfeMqeP2ShAVNSYIlS+AHP4Ddu4OlQY88AtddpxQ0ITQiH85YcGoCfGzSEkV0wLXjpg25IChJEndOmKdaf+pUKLQ08mfIIOlwGGOP7+bEKAua4hCi5kDQEjW97YMQNRPI1Bwr+F0duKv3KdYsZQtJmX21oiQTgrmaY41ooqbf2Upv1Z6RPRit44giahqz1IYJURY0thgWp+b3v/99Nm3axNatW2lrC/5wy7LMsWPHOHbsGH/729/Q6XRMnTqVJUuWsHTpUhYuXIjNNvDsOYHgXMDv1ChvScKpOVAM6RMg+rnCoPI0+/eRM4feqg2Kte5D/1BtF0/UtBSvUo3LA2Rf9oeYDs9zFb09D2vpFfScfkV5h86g2QKfLMZstajpba5QOTUlkwPdAEPYRwstZ6nO2wJyQPV6SgYr1gnXjtShCQQCgWAIea32CIGISKpw2iIEqY44Tk2AnS01yCj3WWxPw2GysL05VMTR5XXzZt2xuPs73dWGtzqXF16AF1+ErVtBlvVA4qPUqalw5ZVBR+bVV0Negqkwp7rUwsyElLHh1Ew3Wzlw05f554ldpJmsfGDC3GF5njvGz+UHe5RCz5t1x/nirFWA+mco02yLW/QRqwFdjJ8PDI+mUzP+RYVoxM/UjB8dca7Qc2ILRLwP2iavQG/PwFK2kN5T2/vXe6t24+tqxpCaHbmbc5ZYArPz4AasZfNH8GjURBU1s9WFZ97mGCfWgnOOYRE1b7/9dm6//XYADh06xObNm9m0aRM7d+6kpyc4DuL3+zl48CAHDx7k8ccfR6/XM3PmzH6Rc8GCBZhMpuE4PIFg2PC71E5NQxKZmgPFmDY+5v1DIWqacuaq1rRFzZkx96MzpZAy5U66D/2tfy1l5sewloytEYtwUqZ9UCXCmbJmoDNYB71vY/ok0JvAHypc87RU4O9pUmw31kbPQVvwlzyt6LuPEojIp7WWrBmS11MgEAgEI0+sPE1Qu+ziZWoC7GhWNwiPs6fjjsjUDD6/duu67NfBsfHIu2fw4e+UorHL+OQ2YZ53lJe/vJyLL4ZETl88fh86ScKgC056aDk1J4wRpyYEBcT7pq8Y1ueYlp5HaUqGIv90T2vIARj5MxRv9ByC4+dapBjMFNoGPuF0ITPU4+fyeeTUdB19X7Vmmxz8f5My83KFqIks4zy4gbQld4zU4Q2aWAKz8+CGUW90jypqZo5TrXtbhVNzLDGsmZoA06ZNY9q0aXzsYx/D6/WyZ88eNm3axObNmzlw4AA+X/CDh8/nY+/evezdu5dHH30Uo9HInDlzWLp0Kffee+9wH6ZAMCT4BpmpOVC0GtDDMecvGvRzRI6fA/g6T6u3i+PUBMhc+b9IehPu+u1YSy8j46IfDPr4RhNb+fXoTGkEPKFsL0vRxUOyb0lnwJQxFU9zaFzF01IBEe6UsVYSBKC35gAS4d+LztuCqVX9oc86Xrg0BQKBYCziDwR4reZIzG1awoQLWZbjZmoCbGtWn3QW2dI03XlOX+jCoNxjRn9wGr5d02DfNHAGxa+ES8v1fph0CmnOQZhzECm/GS9w0SWLMUVkcjq9bt44c4wjHY2c6GrhRGczx7taqHF2oJMkpqblMDuzkG1Nyu/FIOkotqclekQXDPOzihWiZn1PF3WuTgpsDsXPEMQvCYLoTs3JadlxXZ4CNbIsazrcAr1dBHoGFj0XN1NzDBUFaYma1kkXAWCfcTnNL/5YcZ+z4o1zRtT093Thaz+DMbMYnVl7si5aURCA68h7yD4PkmH0TGtaoqYhJQudJQW9PVMhkIvx87HFsIua4RiNRhYtWsSiRYv43Oc+R3d3N9u3b2fbtm3s2LGDgwcP4vf7AfB4PGzfvp0dO3YIUVMwZlAXBUkjIjYZY4iaksGmmcuY9HOkT0Iy2JB96iD2/ucy2jHEcY0C6K1ZZF/2h0Ef07mCzmAla82DNL1+DwS8GBzjSZv/+SHbvzF7pkLUlD2dqm30trGX/STpDOis2QTCXKc6Txu6VnUzpG38NSN5aAKBQCAYIrY3V9Mcx20V7rJz+jyqUfUSezpVznbFWjSnpkWvLvuR2xywZwby7hlweCI+X3KnQOnpXjqn70OefRBmHkGyqUXXhp4uysLKfU53tbJy3e+pdXWotgXwyzIV7Q1UtKuji0pTMvpdnIIQ87OKeLZSWVC5q6WGKy1TVO7ejAREzWiZmpPF6PmA8Hc0IEe5IOHrGNgI+vmSqSn7vPSc3KpYMxVOw5ASdGRbJy5DMtmQPWHvhRXrkWV51AX2npPbqX7wBnztdRizyxj3/17EUqyczJN93pgCtOxx4TqxFfuUoTF9DIRoTk0AY1aJEDXHMCMqakaSkpLC6tWrWb16NW63m3feeYff//73HDlyBEmS+tvTBYKxQmRRkM6ajaTx4XqoieXUNOctQNIN/r+6pNNjyp6Fu35r1G1MWTORpNFtthstUqZ+EEvRSnxdVZiyZ6MzRc9pShZT1gxif6Qbm05NCI7Nh4ua+p5KJL9SODflzseQUjjShyYQCASCISDe6Dko8xC1Rs+npOWqRE2t7Yrt6aSbLMHYutp82D0DefdMOK0eL4zHrFlw7bUBJk8+StGUVq4+8gyxpIX6CFHzt4fejypoxmOslASNNPOyilRru1tqWZyjLvpIyKkZZfxclAQNDK08zT6CuZrJ58TGz9QcG6Jmb+VuZE+PYs02KRTZoDOasU+9hO59oTgrb3MlnobjmPMnjdhxatH49DfxtdedPabTNL/0E4r/WxlB5o/h0uzDeXDDuSVqSjp01qAj3pBVAmFlRv7ORgKeHnQmEX01FhhVUfPgwYNs3LiRTZs2sWvXLjye4GjIaF+NEAgGSqRT0zACo+cAOqMNvS0fv0s9/j4Uo+d9mHLnxhY1Exg9P58xpBZjSC0e8v2aNMqCIhmLmZoQjGfwtlT0344UNEG4NAUCgWAso5VnmWo00+V1998Od2pqjZ5PSctl/ZmjMZ9H9uk4vi2d114ywL++jtyUpICiC7BmlY4bboDrr4eyMvD5Auzd6+REb0/chzdEjNfubqlJ7vnDmCacgprMz1J/xtrZUkOrW/3ZISvKiGw40cfPhag5ELTyNPvwtZ8B20BEzdiX9QNjZPzcdUxjCmnycsVt+4zLFKImBN2aoylqyrKsGpvvPbldtV0ihU3Ogxvgpu8O1aEljS9C1NSnZCLpgmYczQb01ppRF5QFiTGiomZtbS2bNm1i06ZNbNmyhfb29v77Il2Z06ZNY9WqVaxevXokD1EgGBSSXtk+bXCUjdhzG9InRBE1B18S1IdWWZDy/gtb1BwuTFmxy5cA9NaxeQKUiBhrm7B2BI5EIBAIBENNnauTnRHi3sLsYnyBAHtaQ+Oo4XmIWg7MfGsqaSaL6j65xwz7pyLvmY60bzrXuvqmYxIUT6w9MOsw0tyDSLOOsO7T38asV58etSSQ8VkfIWoe79TIb5N0jE/NZEJqFi6fh72tdSoR16w38F+Th+6z2/lEnjWVQpuDM65QDM/ullpaetWi5mCKgkTz+cCIKWq2nQFb/M+zkZwv4+euYxolQZOU5Vr2GZertnEe3EDmpZ8ZtuOKh6+9TjESD+DrVicQJyJq9pzYQqC3G12UiwnDTaRTs2/0HKKImi1VUUVNORCga9fz+DrqSJ13PcbMoTe1CBJnWEXNrq4utmzZwsaNG9m8eTNVVaFsgkgR02KxsHTpUlavXs2qVavIyxubo5SCCxv7pJvo2PlA/+3UmR8bsec2pk3AfWaTan0oRU2zRllQOBe6U3O40KeOQzI5NLM0+7exj80P4HpbbDez3l6gWVIlEAgEgnOfV2vVLs2ri6exseGUYi3cadehISA6jGYKrQ46PL3IrWnBfMw90+HQRPAHT2cSDa3SZXbw33c6qJ60kZfsLyIZ/P33VTvbmejIVj2m2RffqdnYGxI1e3xe1ej55YWTeenyjyuyMmVZprK7jb2tZ9jfVkdAlrmpdBazMgsS/G4uPOZlFSlEzWpnO0c6G1XbJSJqZpps6CRJleE6SeNnQBCf2E7NWlCnB8QlblGQs/WcyJ2MhZbb0ZCWjzFXGR9mLp6JPjUHf1colslTH9uhrnquQIDOrU/gaTpJ6ty1WErmDPzAAU/DcdVawNmG7PMihRWjaYnLOksqgbD3Rfw+nEfeI3XO1YM6poGiEjXtsUVNX4xczfq/foa2tx4BguP5E763C1NO2dAcqCBphkXU/NWvfsXmzZupqKggEAj0r0cKmfn5+VxyySWsXr2aZcuWYTabh+NwBIIRI2PFjzE4xuNpPYi9/AasJWtG7Lm1Cnr09sIhHYc2Zs0ASQ+yP8r9yV+BFcRHkiRMWTNw122Ous1YztSMhW38NRdsTqtAIBCMddZVq/M0rymexqGIcpxevw+Xz4PNYKIjIndOlqH9RCY9z64m8F4+VCafj0lJLcytQJpXwSWLLfz+mk/z8/1eXt6h/DxzurtVU9RMxKnZ0BMSX052qV2aU9NyVeU/kiRRlppJWWomN5SKz1CJMD+rmJcjfq42nDmm2i4RUVOv05FtttMYJpwV2dJIMYpz0oEQM1OzvS7qfbEIeGI7NWWfB9njQkogbmC08DaewB8hvFsnLVcJsZIkYcwuVYiavg51kVgsGv79JVpf+xUAzS/8gLL738VaPnCDi6dRLWpCUMQ0pIXOPQIaTs3UedfTsVmZvek8uGFURE3Z7yPgalesxXNqeloqNfflba2l7e1H+28HnG20v/cYuTd/f2gOVpA0wyJqPvLII5pFP5IkMWvWLFatWsWaNWuYOnXqcDy9QDBqSJIOx5xPjcpzazWgD2WeJoDOYMGYNQ1v8wHVffrUEvSW9CF9PkGI+KLmGHVq2mOLsVaRpykQCARjEo/fxxsRYlOOxc7C7GLNvMOWXhe2FBOdXjeyTwdHJwTbyvfM4JstyWXx6Q0B/JOPI82rCIqZWe39983ODI58lqZkqB53ult7hLIlAadm+Pj58U71eKaWWCpIHq1cTS1RM5GiIIAVeeN5JqxR/dJCkaE3UGKPn9cOaJ/xnJoA/u5WdOewqOk68p5qzTZ5hcaWQQdnOP7uZmS/D0kjFiMSf08nrW/8tv+27HXT/t5jgxM169X/twB8XU0KUVNr/Dx1/g10bP03BEIXj1wHNwz4WAaDlpNUKWqWqu6P5tR0HnoreLUtDPeZ+IV4guFj2MbP+wRNm83GihUrWLVqFatWrSIzM/mAYIFAEB9j5jTVmrlg6ZA/jzlnrqaoacoWDoPhxBinLGjsZmpGFzUlvQVryaUjeDQCgUAgGCreqj+hyou8smgqOkmn6aKrbO5h08vpPPSXMuS3vwc9ybXOmlN83LTWwA03QOr8Sq7f+Kjmdn2j3WUp6nOSqiiiZrNP7dQ0SDp8cmgirTFM1NRyak4QjeZDwnyNBvRGDeEry5KYyPWD+VdzqL2BQx2NLMgq5ttz1bmGgvjIsoy3WdvZBmeLggay3ziZmhAUrIxZA3BwjxDdB15TrdkmLdfYEgyOiM/FsoyvqwljevxICtfR98HvU6x5mk5F2Toxojo1u5QXbrTaz41ZpVjHL6LnxJb+td6qPfi6mjGkjuxFHlXzOUpR05CWD3oj+L39a94ooqbr8FuqtWjbCkaGYRE1x40b1z9WvnjxYoxGY/wHCQSCQWHKnYc5bxHuhmAjnc6URuqMu4f+eXLmwqG/q9dFnuawEqssSNJbkEypI3g0Q4chhqhpKVmDzpiY00IgEAgE5xbPnN6nWruuZDoQctHJLemwZzrynhms/lQ+Pi9AEnEqWW1BJ+bcCn7/Xwv4+IyFANQ6o5soZmcExQFtp6Z26UiLV+nUNOsNlNjTORbmyFQ4NbuEU3O4KLKlkWOx09QbW+zKNCX2+WFqei57b/wSLr8Hm96EXicibwaCv6MBOUZMg6+jDuQAJBkpFHAn4NQ8h8uCZL+P7v1KUVNvz8RSNl9z+0inJoCvoz4xUfPw26q1yLH3ZPFqZGpC0EGqvK3lhMzEPn2NQtQEcB16C8fi2wZ1XMmiJWoawkRNSafDmFmMN0wEjiZUOg+9rVrzRhlVHyyB3m6aX/oJXbuex1w8i7w7fy5KiTQYFlFz/fr1w7FbgUAQA0mSyL/lNTr3PkTA00XqrE+gtw79B2hTjnbgtBA1hxdTDKem3pZ3TgekxyKWU9MmRs8FAoFgTOIL+HmuUjnVYdUbuapwKrt3w7uPTyTw/OehKnRy5iNBSmv6x8oZd4a+X39lGaEc8wJbKla9kZ4w1w2AhMSMjKBokGtJwaI30BvmbKqM4tRsjXBqFlhTybemKkTN8EzNExHN5zpJokxDRBUkjyRJzMsq5vXaIzG3y7IkflFUr9ORqrMM9tAuaGLlaQJBB2FPG9iScyzHaz+HxJq3RwvX8c2qLEf77KuQIvJ1+wgf6e7D114P6uloFc5DagehbxCipizLuBuijJ93Niluazk1dfYM7NMvpfnFHyvWu3a/cE6ImuFOTQjmaipFzUoCbhe6sMkCb0sV3qaT6v13NBDw9KIzDd37SM/pXdQ+dCees/8G7toK/N0tlH7l9SF7jvOFYW0/j6Szs5Ndu3bR2NhIe3s7Op0Ou91OUVER06dPJztbXMEUCAaDzpRC+qKvDOtzRBU1c4SoOZzordnobfn4XfXq+8ZoniaAzpodvGofNsLXhxA1BQKBYGzyXsMpms+KEbJPD0cmkHd8JdO/aaa6GpKqQdb7WL0a5lzaxoPGh5EyOzQ3G2dP7/+7TtJRnprFgXbl78xJjmxsBhNwtqQnJZPDHaGT/miiZmT7eb7VQa5VOSHR7XPj9LqxG82ciBg/L7GnY0ogE0+QGPOzimKKmma9AateTAqOJLHyNPuQupuQkxU1E8zUPFfp3rtOtZY659qo22s5Nf2d8cuC/K4Oek/vUq37uhoH3A7v72iIOv6vcmpqCMt6WzrWiRchmazIYQVwHVv/Te6tPx7RyABfAqKmuXA6rsPv9N+WfR6cFetJnX9D/5qWS7P/OdpqMOVNHPSxyoEAra//moYnv6YYhwforVFPQAhGSNR85513+OMf/8iuXbtU5UHhTJs2jbvvvpsbbrgh6jYCgWB00VvSMTjG4+sMXcmS9GaM6SJYfbgxZs/AX6UWNXW2nFE4mqFB0unRW3Pwu5Qf2IzZszGkivEKgUAgGIv8a/8h5C1zkffMgP1ToceK2tsSA5sLZh9GmlsBM4/w2qe/x6ku+M0z2oImQLE9TXF7gkMtavblafZRkpKhEDVrXR14/D6FAOkO+OmKOLHMO+vUjKSht5txeoNKHC0Xo+dDyjyNXM1wssy2MTvBMlZJSNR0NiGTXFFwYk7Nc1jU3BchakoS9llXRt1eH5mpSXD8PB6uo+9rGgQ42/qttyfvFI+WpwkoGtpB3X6uszqQdHokk560JXfS/t7jimNqee1X5H/wgaSPaaAk4tRMmbuWtjf/oFjr3PlchKipdsP24W2pGrSo6etooPaPd+Pcr85hBbBPF10DWgyrqNnb28s3vvEN1q0L/mfuEzTDm9HD/37w4EG+9rWv8dxzz/Hggw/icDiG8/AEAsEAsU1YS+eeULuetfQKJJ1wIAw3pqwZ9FapWwNjjXCPBfS2PJWoKVrPBQLBcHKwvZ7/3vgfTnW38oEJ8/jRgmswRhkHFCRGZSW88AI8/7zMhrevAX9yr6ejwMVHb7OxseBFdmW9h2QInqBb9UaMOj0FtujZ0ZlmW78Ds4+JGkUUfXmafUSOhAdkmRpXh6LUJ3L0HILj7XkWDVGzp4uALOOPEBfKRUnQkLJAowE9nKxzuAn7fCUxp2byo9CRmZqGtHyVyHeuiprelmrc1UpnnbV8qSLLMRJDulamZnynplaeZv/jOxsHJmpGaT4H8EUWBUX8G+jtoVzjrGu+rBQ1gba3HyXn+m+i1yhsGw4SETXt09ags6Qo3MHde15UtM/Hep0HWxbUW7WPyp9fHjUH1T7rSgo+8tCgnuN8ZdiSkH0+H/fccw/r1q1TuTP1ej2ZmZmkpaWhCwtj7hM4t2zZwsc//nHcbvdwHZ5AIBgE6Yu/hrXsaiS9GXPBUjJX/u9oH9IFQbSG+bE8fg7aoqyl7OpROBKBQHCh8LH3nmBj42nOuDr55YF3+McJ9dje+Yw/EGBrUyWVgxjblGXYuRO+8x2YOxfKyuB//gc2bJASFzTLqpFufBXpe7/k5n+/wIMPgn7GiX5BEyDtbEZZqtGCPUK47KPYlqZam5ymnmKYpRI11SfUkS7L5oiSIIB8ayq51hTVen1PF8c7NUqCRrjp93ynLCWTdJM16v2Z5uj3CYaHuJmagORU/9+IhRwIKMaWAQyZ6pHlc3X8vHvfK6q1lNmxL9pHKwqKhzOOqDkQknFqRo6fh4uo5sJpCrcjBFvtWzf8fkDHNRASETV1Jgsps5TnH/7uFlzHNgLgaTodU7z3Ng+uLKju/z6lLWjqjeR94AFKvrAOvcbvOsEwOjV/8YtfsH379n7rf0lJCXfddRfLly9n/Pjx/dsFAgFOnjzJ+++/z7/+9S8qKyuRZZkDBw7wwAMPcP/99w/XIQoEggGit+WQf+Pzo30YFxymLO2yoLEuapoLl9JTFSqY81uKMOUuGMUjEggE5zONPV1sb65WrD1fdYCPTlo0Skc0snR6erlk3e/Z11aHTpL4zZIb+fS05Zrbunwefr7/LY50NHFT6SyuL5zN229LvPBC0JVZU5Pcc5tMsGYNXLs2wP/0/kiRj9nqCZ4Ed3iUzkiHMVS8UGB1aDaLF9nVJ3o3l87iC9uexxWsVKfIlsZVxcrR15IEGtBbNJyaeVaH9vj5WadmJGL8fGiRJIn5WUW8WactumQKp+aIEynoSEYzsldpUErWqSl7XKo1Y9Y4ek9tV6ydq05N1eg5kDI3ep4mgM6SimS0KJrkfXEyNaPlafbfP1BRM0rzOYA/0qkZURSki3CGZl37Nbp2Kc8dW9f/hqyrvqgo4hkuEhE1AVIX3Ejn9qcUa107n8M+9ZKYLk0Ab+vAnZqy30dPxM81gCl/MkWf/hfWsvkD3veFwLA4NWtqavj73//eL2jecsstvPjii3z4wx9WCJoAOp2OiRMn8tGPfpQXX3yR224LNmHJssw//vEP6urqhuMQBQKBYMxhzJquuT7WRU3HnE9jKrgIgIAxE+ek+5GkYRskEAgEFzhaZTCH2wfeEDsQ2twufrhnPd/b/RqNPV0j+tw/3vsG+9qCn68Dssz9O9fh9GpPR927+Rm+t/F9/v1PidvvkMnIDnDVVfDQQ0kImnYXt33Ax5NPQlMTvPIK3Hevjox8j2KzVndQwOiMOJa0sDbZaCPo4SVBfWRZ7Gxe+z/cVb6Aj09ewtvXfAZzRFmPViO5yqnpUzs1C6yp5EURNbWcmmL8fOiJlauZOQIiiSCELMsqB5uldH6wCDIMyal098VDqyRIb89CinDpnouiZsDrprviDcWaIb0AS8ncmI+TJEnl1ozn1HQdfU87T7Pv8QMWNWONn4f+LQOeXpWjVm9TvrfaJi7FNmWlYs3f1Uz7u48N6NiSJVLU1FlS0BnNqu1SZl8DEb8nunY9hyzLMfM0YXDj576OBgj4FWu2qZcw4Xs7haCZAMPi1Hzuuefw+XxIksTKlSv50Y9+lNDjTCYTP/jBD2hqauLtt9/G7/fz9NNPc9999w3HYQoEAsGYQme0Y0ibgK9DWbcw5jM1rdnk3rye/TvfRdZbQaf+kCEQCARDRZWzXbV2oqtFVRAzXPgCfpa++Jt+x+Gfjm7l2C33YzEMf1uz2+/jsWPbFGtdXjf72upYllvWv3b6NPznGT9/+dMC5KO39Y+Tq+W9KGS3wLwKpHkVrFlp4Mlr71Ftkmm20R52ItwnanZEnBw7FKKm9uhdsS1dc31mRgH/t/IDUQ9Ta/z8dJdSIGn1qp2a+VFFzW5qXeoyowmpI5MbdyExL0auZpYQNUcUf2ejwlkIYMqdiLf5NL72kEEpaVFToyRIZ0lBb8/E56kNPf85KGq6jryrag5PmX11QgVWhrQ8hUgcT9SM1cgN8Z2eWsiyHNup2d3c36oe6dIEZaZmH1nXfhXXkXcVay2v/pKMNf/dn1k5XESKmlouTQC9PR371NU4K0ITZN7m07ir9g6vqNlWq1qzTV2FzqKOORGoGRYrzMaNG/v/PpDx8a997Wv9f9+8efOQHJNAIBCcD5g03Jpj3akJZzOVjelC0BQIBMNOlYZT0y8HNMeah4O36k4onuuMq5MXqw+OyHM/fXofLW71SOe+1np27IBvfQtmz4bx4+HLX9QjH5qUcD7mokWw8tNHkL7/C6Sf/QTdB15AmnqC28q186AjhacWtxOP30ev36dYV46fazs1I5vPEyXPmoIpoiCqKiIbrkXLqWlzkKtxslnf08WJCKdmgdWBXcMRJBgc84VT85xBK0/TmFOGIUP5b5Ts+HlkSRCAzmxXCWbnYqZm916N0fM4eZp9RDo1A842AlHc9BC7vAYGNn7u72oi0Bt9ikD2uvtF28jmc0CzmChl9tWYi2cp1rzNp+nc9mTSx5csKlHTHt09n7rgRtVay2u/wtdard44DG9LlapLJlG8berRB2NG9Pc4gZJhETWrq6uRJInS0lLKysqSfnxZWRnjx49HlmWOH49+hUAgEAguNCxFKxS3JZMDQ9r4KFsLBAKBIBItpybAoREaQT/Zpc72OjFCguqjR0JmAdmrR94/hcBfb+aLF89h0SL44Q9h//7E9mUywdVXw8MPQ20tbN0q03Dps0jF9fSZkSQkbizVFjUjhadWdw8dGq5I5fi5Q3NfxRrj54mgk3SURoygn1YVBamPKdeSgsVgVJXV1Pd0cjJCYJnoEKPnw8EkRzYpBm2xWIiaI4tWeYoxuwxDeqFiTertAJ9HtW00ojo1IxzW56JTU5WnqTdgn3l5Qo/VO9QTWNGESb+znd7K3TH3N5Dx81jN5/37PTuCHlkSBNqipiRJZF/7VdV688s/G7AYmAiyLONL0KkJkDrvetVax8a/qjeMiFeQvb2qAqVE0XJqRl4UEERnWETN9vZ2APLz1e1diZKbG3QeOZ3qNzOBQCC4UEmd+QmMfS3oko6MZd9BZxAtnwKBQJAoWpmaMHK5mvU9naq1Gqd6ZHmoqWir590T9cib5xN46C7k//ke8q/ugbcvwtmc4O8Ru5Nrbu/mP/+BlhZYtw4+9SkoLIQDbfUci3ApXpw3XnNMG9TCk18OUN3drtouLcypmW+NJmoOvBG2NEIgqXF24AvLNot0amaZbf0xBXkRDej7WutwRzhNRUnQ8KCTdMzLKtS8L0sUBY0oWqKmKbtM02mWzAi6VqamzqR2aspuZ0wn40jjaTiOp/6oYs02+WL0Ud6/ItFsQI8yQu469n7MPE3QFkRlWab5pZ9y5N5sjn2hlM6dzynuj9V83r/fsxfjtMfP1aImgGPJHRizSxVr7up9dO97Ne7zDZRAbzf4vcrjiyFqGjOLsYxfGHe/9plXqNYGOoLubdVyakaP2BAoGZbwArvdTmdnJ52d6g9tidLVFbQ7p6SIHAGBQCDoQ2d2UPTBbbjrt6O35WJMLx/tQxIIBIIxRbWGqwTgcMdIiZrqkb7hFDVPngw2lf/yb3rkPd+FQGLj5P3kNsPcYD4mE09z6yW3csukxarNnq7cp1q7uWyWaq0PLeHplMYYqSOBoqDiKFmbiRDp1PTLAWpdHf1iZ2T7eUGYMJFnSeVIR0ik6Yk4cQZREjSczMsq5r2GU6r1TLO42JsoflcHHRv/imQwk7b8I+jC/r8lirfptGrNmK0eP4egqCmnJeZAi5WpqdrW2YYufeCGqqGkaxCj5xBF1IySqxkvTxPA16X+3dZzYiuNTwVjAv3dLZx59CPYfn4cgyNoLIuVpxna71mnpsb7tta/EYCkN5B11Zeo//tnFeutrz1A6pyr4z7nQEi0+Tyc1Pk30ntqR9T7dbY0Uuddj3O/Uoz1tlRhTUAQDUeWobe5jl6fBb9swBsw4g8YSHEXI1eCzweBQHC7vj+9XvB4JEym4XO4jiWGRdTMz8+no6ODo0eP0tnZicOR2FWJPvoeK0lSv2NTIBAIBEEknQFL4bLRPgyBQCAYk0R1anYkX6YwEOpcalGz1tWe1D4CcoD9bfXY9EYmpeUo7wvAjh1BIfP55+HAgb57clT7icaSJTIHSt/ANWsPFDYQ3m1xsE37dXrmtFrUvKk0lqipHhE+pTGan6bI1FSfU2SYrIPKrNRqQD/d3UZpSiayLKtEzbwwYTWaCzWc8lTh1BwuojWgC6dmYgQ8PZz89jy8TUFhuP29xyj71uaEymzCUWVqSjqMmcUY09VOWqk7CadmtExNjYIvv6sNwzkiaqpGz4HUOcmImurxc1+U30+qPE2dHnPBVNy1FaHHajg1nQdeV9wO9HbRtesFMlZ9AojdfN5HLKemLopTEyB95cdoev57/Y8HcB5+G9nnQTKY4j5vsgxE1EyZdyPVT/yQbq8DpzcVlzcVpy+1/7Y/fwX+daup2/tten1W3H4rvX4rutqpBDKgpyf01durvO3xBIVKny8oTvr9AH89+xXGU7GO0IDdPofPfraGW28dmfiac5lhETUXLlzIkSNH8Pv9/PnPf+b//b//l9Tj//znP/e3py9atGg4DlEgEAgEAoFAcIHh9Lo1i3Ig6NQMyAF00rCkM/XTMMjx8y5vL7e8+Rc2nAmedH555iq+O2stb74ZFDFffBHq6uLsJBKDl8WXuPnEHSmsXQukdVH8xGtoSRsV7WrH0JGORiralSfdS3NKY2ZdauUexnNqFmpkao4bYJ5mH5Hj5xBsQL8kv5xWjwtfxGhnvjVJUVNkag4b0cqCRKZmYnRs+Ve/oAlB917PsY3YJq+I8Sg1kePnhowiJINJOxPQmbgjXsupKWkUBcG5UxYUcDtVQqMxuwxT4bSE95GoU1MrT9M6fiF6R55C1Aw421SCoVej9KZ778thomYi4+cxMjVt0UVNndmGY+EttL31SNjOfHgaT2BO4nWKh88H7e1QU9HD4abFdHgy6HBn0uHJJMBV9L4HbW3Q2hr8s60NOjuhqwu6uqbj96tL4tR8T3kzvhY8ZDiden7xi3GsWdM+ck96jjIsoub111/PP/7xDwD+9Kc/MXXqVK6+OjE78bp16/jTn/7UfzvRxwkEAoFAIBAIBLGIVhIE4PJ5qXF2UKLh3BtK6jTGzxt7u3H7fZj1sT+a+wMBPvj2P9hw5hhytw32TuNnvy/hN4cD9DiTFGNTnDDnINLcCphxlNtXXME9s1YB8FptdFX0YLvaMfRazRHV2s0xXJoQRdTsUgsT4UVB6SYr6SYr7Z7QyeaEQY53R46fQ6gBvaFH7RQLd4vmJ+TUFKLmcDE1LReL3kBvRI6plgtYoMZ1+B3Vmru2IilRU5ZllajZl5loyBikU1MrU9OsPX4+mmVBvq5m3LUHcZ85iOvIu8gR+Z4pc65Jyv1q0CgK0hI1XUffU+Vp2qau0nQm+rqaMYb9e2iKmhXrCXjdSAaTKlNTMtmQPcoLgr6zTstE28/DMRVOV625zxyKKWr6/cEs58ZGaGoK/hn5Fb7e0X+tcAWwVbmzbTEPDzQv6Z17+Hw6XK7hvRA7FhgWUXPOnDksX76cjRs34vf7+cIXvsDGjRv56Ec/ysSJEzUfc+zYMR5//HGeffZZZFlGkiSWLl3KwoXJZRIIBAKBQCAQCARaxBI1AQ51NA6rqCnLsmamJkCtqyOuQPeJZzfw8lM5yLtXwbHxIAdPZhLxkwCQ2wTzKnAsOk5X2REkXSiPa39bSMjc33om6i6qne10enoVDsotTZWq7a4dpz5pDSfLopGpqSFqOsLGzyVJ4r8mLeJXFe/2r31ssjrfMxmijZ8D1Gm4asOFzFxr7Oz/LLONDCGwDRsGnZ45mYVsbQqVc6SbrP1FToLYuI6+p1rzNJ5Mah/+zkZkrzKiwZRdBjDooiBZK1Mz2vj5KIiaruNbaPjn/6PnxJaY2yWTpwna4+d+jfFzZ+ToOWCfukrz39Xf2agQNX0talFTdjtxHXkXS8lcAi7l9IB1wiKVCO7vPjt+rvHaR8vU7CNcvPQGDLT05FH9dgc9NXDmjPqrvh6am4N5koIQK1a0U1TkGe3DGHWG7R3/xz/+MTfeeCPt7e3IsszTTz/N008/TU5ODhMnTuzP2ezs7OTYsWM0Nwf/U8hnf1KzsrL4yU9+MlyHJxAIBAKBQCA4x3js6DZ+e/A9ssw2HlhyA7MztduNB0q0PM0+jrQ3cmXRlCF9znBa3S68Yc3a4dQ421WiZiAA27YF8zH/70kXdScuT+r5JAlyZ7TQOGULzKuAgkYkCe5fcDU/3nsSpy90MnSgLeQE2tcWe369or2eZbll/be3RoiaGSYrU9JiZ3hmmtRlLqc1RkjTIopLfrZwLRMd2Rxub2RtyXQuK5wc83niUWB1YJB0ijHzyrPiqpZTM3zkPJ5TU7g0h5//mrRYIWrGynEVhPC21ipGz/vwNCUnaqryNAmOWwPobOlIJitymLM6KaemJ/GioJEeP+/e/xrVv7lJ8b1pIRkt2KetTmrfOksKktmuEHU1nZqRJUE6PdZJy3HXq53zkbma3jZ12zYER9B1FvXFGmv5UrWoGW38XJLQnXW0ezxQWwuVlVBVFfyzpgZqTq3g1M6dNLoKae3NRUYHT2se0phEksBqDX1ZLKG/m81gMAS/jEbQeTtxH3kdg86HQedFL/mwl07HMWVJ/3Y6XfBLkoJfshwgM/MUK1Z0kGQE7nnJsImaeXl5/OMf/+ATn/gEZ84Er/bKskxjYyNNTco3sz4hs8+WXVhYyEMPPUR+/rkR9isQCAQCgUAgGF62NFZyz8Yn+2+vXf9nTt32DfS6oRutqo4jah4a5rIgLedfH325mj09sGFDUMh88cWgQyVIYo4/iwUuvxxuuAFWXdnL/LceQPKFxiGNOj0fm7SYF6oqFGLQwY4GfAE/Bp1eIXBqUdHe0C9qNvR09Tsb+1iSUxp33FLLqenREHzTjErxU6/T8d9TL4q572TQ63SUpGRwMqykaGtzFS29Tk1XbUFYrme8TM1yhygJGm7+a9IiPH4fL1QfZHZGAd+bf+VoH9KYwHXsfc11b5JOzcjRcwiJmpIkYUgvxNt4ov++ZJya2uPnUTI1R9Cp2bnzOWofugPZF98hl77yY+gG4NY2pOUrXjdfp/J3k9/ZTm9VZJ7mIvTWVAyp6qLlcFHT39NJIMrvou69L2MpW6BaNxdOQ2dLUzg4vZ3NtLfDgROZnKpeS52zhDPOUurdE2lfoaOyMpjvrO2utALzNY9hNEhPh4wMcDggNTX45XCA/sy7GJp3YDd2nf3qpHDVTRQuv5rUVOh+4Qv4j7+KRd+D2dCDRd/D7EfrsaRYExYbu/ZupPqB2xRreR96kKwrlkR9jM8XYO/e9oF/w+cZw+rNnzBhAs8++yyPPPII//znP+ntDVrT5Si+YavVyq233sq9995LWlracB6aQCAQCAQCgeAc4p8ndylu17o62Nt6hvnZxUP2HJUa2V/hHG5PvMRiIEQbPZe7bDz/Lyv/2QWvvQYu7S6j6KR2M+6iM/z205O57DKwn9ULHzm8m26fMt/tptJZ5FpTmZlRoBA13X4fxztbKHdkaeZmhnMwTPQM30cfS3NL4h5yormHDtPAm80TZUlOiULUdPm8/O7Q+3S41S6sfOHUPKcw6PTcO30F905PrtzmQsd1VFvUTNapGUvUhOAIulLUbEx4hlirKEhnTlHlSMLIiZodm/9J7aMfgSiOewAkHabcCTgW307WtV8b0POoRM0Ip6br+GbV62ibugoAvUMtavq7Qr/bvBqj5314Go7TvTfU3u4L6KlzlnDy+AJ2n/gsp86kUt1VTk3XBGqcE+n+NqhauwHi9wwNCw4H5OYGv7KyIDMTjDXrsLZswmFqI83cSpqplVnffpqcwhQyMoKCpl6vvT/nIT+VP/1iaEGnZ+Lnv4rpbEJAXZWXtuZDisfonNVIqYlPEPjaalVrWtENgugMe+BIWloaX/nKV7jvvvvYtm0bO3bsoLGxsX8s3eFwUFBQwPz581m8eDEpKbGzaQQCgUAgEAgE5x+bG0+r1po0TmoHQ3V3e8z7D3cMr6hZ5wqJmnJDNuyegbxnBhwr40k5OUeqLr+JwNwDSPMqoLySer3Eksu/if2sk7DX5+UXB95WPe5TU5YCMCtDPRG1v60On+yPOiLfR3jTeeToOQSdmvFwGC3oJR1+DYEinDSjJeb9Q8F901bwr5NK19PvDm3kIo3vI7woKFdjTDMc4dQUnKto5S4CBFzt+J1tcYte+vA2nVatmcJEzcgGdMnnBrf2xR3Vsbi1nZro1ArUSIyft739R+r+71Oaomzm5Z/FOvEizIXTMeVPRmca3PtWZK5moKeTgKcH3dnYDs+Zg6rH2CYFHewGDVEz3KnpiygJcnltVHeX94uVVVsnUt35Uaq7y6nrLsUnG+FZgJmD+p4Ggl4P+fnBr7y8kGCZmws5OerbZo1rYJW/+A3O/a+F7dTAtIvtCTkp7dNWk3XtV2l55RdIegO5t/8MU155//3GLPUFPG9LFeb8xEVNrSgAQ+bQXcy9EBixFGWbzcaqVatYtWrVSD2lQCAQCAQCgWAM0O11s7dVnePY3Du0omY8p2ZjbzetbpdmM/dgCQRg6xYIPHUN7JkBdeoyiJhIASivRJpXwf/eM566tBP8Oqwwxy/L/P3ETr40K5jf9kDFOwr3IcCUtBwuyQ+ekM3MKFA9xYG2uriCJsDB9jCnZqNa1FycHd+pKUkSmWYrTTH+jfWSDpvBFHdfg2Vpbimr8st5uz7kjGp1u3i55rBiO7POoMj4NOkNZJistEXJ1ZuYKkRNwbmH39WBu3pf1Ps9jSewjk+srFeVqSlJGLPG9d80pGs0oCc4gh7p1JQMJiSDEZ3eAHoDhLXeD7dTs3XDH6j/62fUd0g6Cj/+Z9Iv/uiQPp8hTX3RydfRgCmnDAB33WHV/eazjeJaoqa3vYnTp+HIEdj9koO9W3/H6Y4pnO6cQr1rnGr7kSA7zUm27ii5tjPkWM+QazvD1BtvZcKiGRQWQmFhUKiM5qJMlMg2eL09M6k2+rzbf0rO9d8EnUElVhuz1Be+vC3q6YVYCKfm4BHVcAKBQCAQCASCUWV7c7WmY691CJ2a/kCgP7cyFofaG1ieN35InrOnB954A55/PpiP2dioziqLhc7kJTDjCNLcCphzCMnRzXfmXsGX5s1gX2uGQtQE+MvxHXxx5ipqnB38ZN8G1f6+MmtN/8ncLA1Rc39bvWauZa4lhcawfLszrk7a3C4cRgvbmpWun2lpuaSb1SVAWmSZ7TFFTYfRnNTJ52D46uw1ClETQEbpyMq3pqiOJ9+aGlXULHeI8XPBuYfr2KaYI+CexpMJi5qR4+eGjCKksAsRmg3oCZYFRWZqSuZgroYkSejtmfjDcyKHUdT0ttbS8O8vqu/QGyj61D9IW3L7kD+nwaG+6OXrqA+JmmeUI8+SwYQxp4zOTjh8KIs3T97FqY7JnO6cwumOKVT+cwrufg34orNfw0dKCpSWQklJ8Cv87yUlUFAAvftep+a3Nysel7c8nawrZgzpsahEzZTk35e1ypMgulMzGVSipqTTFLUF0RlSUbOtrY0TJ07Q2NiIzWajuLiYiRMnDuVTCAQCgUAgEAjOM7RGz2FonZpnXJ0q4TTFYFZlTh7uaIwrasqyzPozR6nsbiPLbCfPmkK+NZU8ayquNjMvvxwUMl9/PShsJkNuLlx3HVx3ncxHmn9Ety50Yj8zPZ9vzQ02oM/OLGR+VhG7WkInRAfbG9jeXM0DB97B5fMq9rs0p5SPTAyJqtkWO/nWVEXO54G2Otxh7qc+bimbzR8Ob1KsVbQ34DCaFQ3qAItz4rs0+4jniI1sPh9OLi+crHo9I8kPGz3vI8+ayiGN2IIUgznueLpAMBr0RCkJ6sObYK6mLMsqUTM8TxPU4+dwNlczkf1HXNTSmUP/n1Si5jCOn3ftfl7Vci4ZzRTf9x9S564dlufUErX8YWVBrZU1HGlayvH2GRxvn8HJnqWcLNZTVwdBiUcj53IISTO1MC71BJMXlpBW/TcK7FUUpFRSYK9i+lVrmPqZB+KOd8uF01RrngixdigYClEzGlqipi9JUdPbqhw/N6TlI+mF9zAZhuTV2rdvH7/97W/ZvHkzfr/y6m5ubi533XUXd911F2atkAOBQCAQCAQCQdK0uV08U7mfamc7vkAAvxzA4/dR39iATWdkSWo+sxMsZBhtNmuMMAO0uJNtzIlOlcbo+aqCcl6qVmaTJVIW9MmNT/HYsW39t+W6HNgzA3n3DDhRCknmY1LQgDS3gre/vpLlywzo9VDv6qL7CaVTaVZmgcIp+NGJi1Qi3Oe2PKtyT0pIPLj0RnSS8rhmZhQoRM2TXa10eHoV25SmZLAst0wtarbVa7ooE8nT7CO+qJmY43MokCSJr85ewx1v/S3qNnlWtUgZrQG93JE1Yi5TgSAZXEe08zT78CTYgO7vbET2Kt8vTBGipjFjMOPnyvc/3VmnJqBqQB9Op2Zv5R7VWvFnnhw2QRNCmZour40THdM53j6Dup+WcaILKg74qa45PWzPDaCT/OTbqilOPcmkGanMvGwROR3Pk7b/exSnnsRhCk495H/4t9T//SuKx2bmXpNQXqUpt1wVI6A1Vj8YZJ9X1fRuGEJR05CWD3oj+EMXET0t2p9nohHp1NS6ECCIzaBFzT/84Q/87ne/IxAIaLaaNzQ08Mtf/pLnn3+ehx56iHHjRiezQSAQCAQCgeB8weXzsOLl38UstnmssYLftx7kvukr+OCE+VgNxhE8wsQJyAG2aJTNwNA6NSu71aLmFYWT1aJmnLKgyu5W/nxkO5woC5b87J4B9eoMs5hIAZh4OljyM7cCKb8ZgNK5c9HrgyfrRzvVJ/6THTmK23dOmMeXtr+oGBmPFDQBPjZ5MQuz1Z/BZ2Xk88aZo/23ZWSaI9xRszIKmJGuHoU82N6gcrlCMJ8yUeI1oDuMI2uIuKlkFpMdOZqvPWgLmFFFTdF8LjgHCXjd9JzaFnObRJ2aqjxNEnRqJjp+rnJqhomaKUpRM9DTgRzwI2mUCA2W3ipliZhktJAy55ohfQ6/H44fh717Yc8e2LNlJfu3n6Cme4LG1kPzPeokP0UppyjPOkVJyhGKbYcpST3BuNQTFNpPY9IHhbrCTzxO+sWLaH+3lTNnlK+Fp+GY+ugSLJmSDEZMuRPxhAmZkWP1g0VL7B5Kp6ak02HMLMbbdKp/LRmnZsDTozpGoygJSppBiZpPPvkkDz74IEDUK5GSJCHLMseOHeMTn/gETz/9tGg4FwgEAoFAMKYIyAF2NNdg0RuYnal2now062oOJdTUva+tjk9ufIqv7XiZj09azL3TVjAuJX34DzAJjnY00xrFkRltfSBUO9tVa9Mz8im2pVHjCmVtRntdnU5Yvx5+80+QX/0OdCX3edZmA++0g/jm7IPZh5AcasG2xtlBaUqfqNmsun9SmlLUzLLYua5kBk+fjl76kW6y8qMFV2vep1UWFMnsjAKmpuWikyQCYQaGg+311LmUDhi7waQpgEYjnlPTMYLj5wB6nY4vzVrFJzc+pXl/gYaAmS9ETcEYovfUDmSv+mJEOJ4ERU1vs/pilErU1CoK6k5s/FwlalqU4+cKZJmAq0Mldg4W2efFXbNfsWYunjWo8eCuLti3Lyhg9omYBw6AS/HrLuPs1+BJM7UwPu0Ic65axJRpBlLe/ACltn2UpJ7ApPdgnbwCvT2T7t0vaD7elBeME9RHXFSDKKKmLfHjNhdOU4ia/s5G/N2tQ/bvGDl6DkMrakJwBD1c1PS2ViMHAki6+BMbWiVBwqmZPAP+39jd3c0vf/nLfjFTlmWWLl3KFVdcQVFRET6fjyNHjvDss89SXR28YlxVVcXvf/97vvrVrw7N0QsEAoFAIBAMM/5AgGvX/4n1Zx1t/z11Gb9fdsuoHtOh9ob4G4XR6nbx8wNv88iRLTx76UdZVTA8meeH2ht46NBGqp0dpJssZJhtZJisZJitFNvTubJoiqrNelOUPE1A5RocDFpOzRJ7OlPT8xSi5qmuVnp8XqwGI3V18NJLwXzMN94Atxsg8ZOtvDyZ66+XuP56uOgSLzn/eYxYU3nhRUbHOuI7NQHunrgwpqj5vXlXkhMl21GrLEi1TWYBFoORianZCgfjzpYa1aj6ouxxGJJwSmWFOa+0SDOO3Ph5Hx8uX8D3dr9ObdjPRB95FrWAmasxkg5Q7hDN54JzD5dWnqakg7C8YW9LFbLPixTH3e9tPqVaixQ1dUYz+pQshbgkOdUXbCKRZVlVFBRr/ByCrryhFjXd9UdUIrClZG5Cj5VlqKpSipd798KJE3EfmjSSJDNhgsT06TBtGuS3/pOcmt8z3nGEDEvwtZ/48xPobekcOfyE4rHGzHHYp62OLmrmnhU1U9Tvae76o6q1RJ2aEBQ1u3Y+q9xn3WFsk4amyMjXpf5ZG3pRUzmdIHvd+Lua+iMEYhGZpwnCqTkQBixqvvrqq3R0dCBJEmazmV/+8pdceumlim0uvfRSPvnJT/Ktb32LZ599FlmWeeaZZ/j85z8v8jUFAoFAIBCMCV6orugXNAEePryZj0xcmFR24FBzWkOgS4ROby/f3f0abw+DqFnd3c7qVx6K2WZdbEtj2/WfV4zsRhs9h6EdP4/M1JSQKLanMzUtt38EW5ZBrs3jK9/pYdsbRrbFntLUprAe5lUgza1g+1fvZlxqGgCnujrjPBBqXe39f9cagZ6kIZRdWTRFVfjTx6yMAv576rKozzc9PU/lwNTaR9+24ccUKWhCcnmakIhTc+TPF8x6A/9vxkq+tP1F1X1arkwtoRNgohA1BecgWnma9plX4Nz/amgh4MfbWo0pV2v0OYSn7ohqLTJTE4LOM6WoGd+pKXvdCqEVIoqCNMRLf3crRNGRuna9QN3f7iXQ00nWVV8k58Zvxz0GgN7K3ao1S+k89fGeFTB37ICdO0NfLWqj4KApzmhggm0HE9MPMDG9gonpFVz913dIyQy9Pk3Pn6TpGWUOsq+zkUCv+veEMXMcKbO1x+l1lhT0Z8U5Q6r6PS3codhHMsKyqUBdFuQ+c2jIRE139V7VmiF9aJ2Q0RrQExE1NZ2aQ3x8FwIDFjW3bt3a//cvf/nLKkGz/wkMBn7wgx9w4MABjh07RmdnJ3v27GHJkiUDfWqBQCAQCASCEePdevUo3hMn94yqqFnZFZHBpNOz+4YvIAVkDh8+zMauMzzVfJRqT7fqsdubqwnIAVVpzGD5+s51MQVNgBpXB9/a9SqPLr+tfy1a8zlAi9uJLMtDUrhSFSEE51tTMesNTLLnIR8qD5b87JkBzVn8LpkdSwFWXqzDuvAIr+c8g5QXOos95WzuFzW1RMdIqsOcmkcjnJr51lTNcWyDTs+HyxfwiwNvq+57cOmNMZ2TVg0HZjhmvaFfSJ2Rkc9zVQdiHv+SJJrPIYGioFFwagLcM2UpP963QRV/oCVqivFzwVhBDgRwHduoWDNmlWCftkopagKexhNxRc3e2grFbclowZhTptrOmFGEuzrMTe5qRfb7wBBdiogsCYLEnJpa+J3t1P7xIwTOuq+bnv0OtskrsE9fE/X5+9ASNc0l86isDAmXfULmUAuYeSn1THTsCQqXaRVMHd/GlQ8/S/33l+NtDNk9DZnjFIImgMGhznn2dzbi1xiJNmaOw5hZhKVkLr1VexT3mXIn9v/+1aeqJwUihWdIdvx8qmptKHM1XSe2qNasExYN2f4hmqhZmdDzeNuEU3MoGLCoefhwMPvAbrdz++23x34Sg4EPfOADfP/73wegoqJCiJoCgUAgEAjGBDs1ilf+c3ofv1h83ZALg4kS6dQstWcwLT0Pn8+H05zKneYp3J41mYYcK1/ftY6KsHH1Xr+PM65Oiu3pQ3Y8O5qr+efJXQlt+6+Tu/j5orWkmay0uV0cjDFK3+v34fJ5sA+yMEaWZSq720O3XRbshxfzoRfhhZcXI3dEdzNqYnbDzCNIcytYfZWXDbd+hH+ccLL+XeVZ7YmuFlbmlwNQ54ovataczf30Bfyc6FLuS2v0vI+PTlqkEjVvHz+XS84+dyxmZRZEFTVnpOf1i6LTE8jKTFbUjFcUlDbCmZp9pBjN3DdtOd/fs75/zSzpmZKmFgq0ioLMegPF9rRhPUaBIFnctRUEwtzgANbJKzDlqMXLeGVBciCAO0LUNBdO1yzqiczVlOQAvs4GjDmlyD4vPad3Ysouw5Ce379NZJ4mxMnUJLqo6Tz0Zr+g2UfnjmcSEjV7KvdQ5yymomXh2a8FHFm3hOb4E/QJYzLBzJkwZ07oa/Zs6Hz4DlxH3u3fTjLbsZt7Ve5Ic4FaGNRriJq+zkbksJbuPoxZwRK5lDnXqkRNY15oqkNndaiavrXQJTN+rnHsnrqhEzV7jitFTZ09A1PepCHbP0R3aiaCyNQcGgYsajY1NSFJEiUlJRiN8ds0FyxY0P/3qqrEG6EEAoFAIBAIRgt/IMDuVvWHzlpXB5saK1mRN37Ej8kX8KtKb0pT1ScROkniqqIp7G2r49u7lS6cY53NQyZqyrLMl7epR3Wj4fJ5+dvxndw3fUXM0fM+WtyuQYua7Z4euuptsHch8p7pcLico34DwaHzxDIgCwthyeWdPJf5BEw9gWT0AbCwdBWg7cw72RkSJht6Ehk/D554V3a34Q1rNAd1SVA409Lz+Nz0i3nwYHC0dEpaDr9afH3c54NgA3q0TM7wzM2ZGfma2/RRmpJBvs2R0HP2kWWJnak50kVB4Xx11hrerjvOuw2nkID7CuaQqvFzqJWpOT4lc9QueAgE0XAdVedp2iZfjFFD1PQ0xhY1vS1VyBHCo7lohua2WiKNr62Wrtr91D3+KXztZ0BvpOiTfyVt6Z0AqjxNAMkUvf0czo6fa+A6tkljTSNblGCJz44dsHUrbNkis3H9P2l2xX7vS4bc3KBoOXduSMCcMgW05BSXQ3khSXY7g6JjhDtSy+2o5dT0dTZoisWGzLOi5txraX7xR8p9h4mOkiRhSM3G114X7dsDksvU1FlSMGSOw9caunjsPnM4xiMSx9fZpBLnrRMWJ1TgkwyDETW9GqKmUYiaSTNgUdN1tp4rNVV75CKSoqLQP05XV/wr1QKBQCAQCASjzeGORlw+bVfCU6f2joqoecbViS/ipKYsRoaVVrbfsc5mVg9RruYLVRW826A8cbAZjGy77vMYdXq2NVVx17v/VNz/8OFN3DttOVsa44uazb1OSlKSb4GVZdi1C154AZ541oi8/xtJ72POHLjhBrj+epg/Hx49UsHzm5U5crMyg8JfuUMtaoa7Les0xs8j8yz7ioK0nJOT42Q0/nLx9dw2fg5NvU5W5k0g3ZzY6HasBvTZmSGH1WRHDgZJp/rZ62MgcQyZpjiZmsbREzUtBiOvX/5Jnt32Hul6E1lRRuGNOj1T03I53BHKCZyXJU5KBecerqPqPE3b5BUYM9TjrvEa0N216igKc/FMzW21RJrGf/wP7tM7Qwt+Lw1PfBnH4tuRdDqVYAoRTk2NEedoTs2e42pR0129D09XB0cr09iyJShibt0KFRUQ6H+Lk4CBC5rl5bBwIcybFxIx85PYXbhztQ/X4bdVayYNt2PU8XOnOo+7b9zZOmEJ1skr6OkTv/UG0pbfpdhWnxJH1NTp0UXJGY6GuXCaQtT0Np8i4OlBZxpc/EjPya2qNWv50kHtU4tBiZoRRUE6ewa6OBMMAjUDFjW93uAH/ERcmhAcU+/D6Ry60HeBQCAQCASC4WKHxuh5H/85vZcHFl+Pfoiv+sfjtIYbpSyG6KdVLnM8yrhxsngDfr6242XV+hdnrmLa2XHl8tQsfrbvTQ601/fff6ijkXfqT7A5AVGzJSLXMBZuN7z1VlDIfOEFqO03QST2eRW9H6YexzjvMIe/fx0Txiv/bfe3qU/mZp8VBbPNdhxGC53eUIHOyTBRUytTc0Z6vmKfdT2d+AJ+jnWoZxsnxRg/h6CLZlluWcxttIjVgB5+n+lsvuahDu2Sj6VJjp4DZFnOzfHzPiRJotwSf4z8/jmX8rH3nsAvB0gzWfjizFXDf3ACQZJEOjV19oyzI+M6dPYMAmGClzeOUzNy9BxiOTULVWsKQfMsvtaa/tbouJmaWk5NDVEz4Oml9+xzNfXksb9pCXubl7KveQkH8+10J/7rJSYTJgQFzAULgn/Onw/p6YPbpz5NLWo6NUTNZMbPfR31ijXJaO7PypR0OsZ97jlaX/s1/q5m0i/5BOb8ycr9apQFKe63ZySdgW0umIrzwOuhBVnGU38US8mcpPYTSeToOYBtGERNndmOPiVLUYY10PFz4dIcGAMWNftC2xP9oQ3fzu/3x9hSIBAIBAJBorxTf4Lv7w5+GPzGnMtYUzi0WUEXOjtb1CHufdT3dPF+46mEcguHEq3m89IBODWHgkcPb1a5CvOtqXwpTNSRJIn/nrqM+7Y8q9ju94c2srUp/gf/Zg3HTjgtLbBuHTz/PLz2GnSrz4Vjkp4OmYsqOVX+bjAn09aLHyB7BaB0X0aKmgZJx9SzOYuSJFGemqWIK1A4NV3K8XMJiXlZRYp9BmSZ+p4uTaemVp7jUDAhNRObwajpSJ4VMXI+PSM/qqg5EKemzWDCojfQ6/dp3p82ik7NZPhw+QLmZRZxtLOJZTmlSY/hCwTDjae5UuGGA7BNWt4/imvKmUCvMyQ0xnVq1iTu1EwmI9DbWnNW1NRwasYrCgq74Of3w4ED8NazZ3jjrcfY3bicM86yhI8jFhMmBMXLcAEzI/lhgrgYHOoc456IoifQdmrqLKlIRnOwRf4svq5GvBE/A4aMYoVOY0jJIveWH0Q/Jq2yoDCSKQnqw1So0YBed3jwoqZmSdDiQe0zGsaskghRM/4FW9nvU7leDRquaUF8BixqCgQCgUAgGF2ae52sXf+nfjFie3M1R2/5mjihHkJ2NkcXNSE4gj7SomZlkk5Nh8lCriWFxrCMsuNDIGq2u3v43p7XVevfm38VKRHZgx8qX8BXd7yM0+fpX3umcr/qsYU2B2cixL9WjUb148eDTsznn4f33w8fF0yQ7FY+eIuJj9+ewsUXw4OHT/LVHXsVmxxqb2BCWE6mLMvsa1WegExLz8OkD32cnuBQipqtbhdtbhcZZhsNEU7NbIuN8RpidI2zQyVq6iSJCanRhevBoJN0zEjPZ3uEKznPmkpuRAnOzPR8nkadv2nS6Qc8cp1ptqn+zfsYzUzNZJmRkc+MOLmjAsFII8syvad30vrar1X32Sav6P+7KWdCv6MRIOBqx+9si5qPGClq6iwpmmO4AMZ0tVMzGr62Ghi/QDNTU2cOjZ/rbGkgScGcEcDptbNn9ziOfx82boQtW6CzE2DC2a+BkWM9w5ycLczM2sbMrB1c98d/k1sW2604VBg0nJqRr4vOkoohXe22lyQJfWquQsj2dzQEX98wjGfzNBMlnlMzmZKgPsxaouYgG9DlgJ+ek9sUa6b8yZoO36HAmFVCb+Xu/tv+rmYCblfMUXJfR4MqH1U4NQeGEDUFAoFAIBijvFBVoXBXOX0enqncz2emLR/Fozp/8AX87NEoCQrn6dP7+PWSG/obokcCLadmrExNCI6gh4uaJ7paCMiBQZWZ/HTfBtVo+KyMAv5r4iLVtg6ThQ+Vz+fRI2rnRDjXFk/nj0eV2zS7nfj9sG1bUMR84QU4NJDznfFVSHMrYF4FFNXz+w/9gPSz2quWC/JIRyPXjpvef7vK2aYYLQf16LZWWdCJrhYWmm3URRQF5VsdFGk0ZNe42jnWoRQ1x6dkKsTToWZmRoFK1NQaS5+eod2APi+rCPMAjy/LbI8qao4Vp6ZAcK7haThO+3v/R8fWf+NtPKG5jW3yxf1/N+ZqlwVZxy9QrcsBP+6Ihmpz0YyoE5z61JyEWrMhlDEYz6l5pk7Pa2c+yq7qOexuWs7h1rn45cG9R1qtQffl0qWwZAnkvLqEbM82+r4tQ0bRiAmaAIY07ffbcEyF06K+7gaHUtT0NBxDDruwCAMRNeM4NTUctPHQEjU9gxQ13WcOE+hVXkgcjjzNPjRzNVurMRdMifoYb5v6orkhUzg1B4IQNQUCgUAgGKNo5fttajwtRM0h4mB7Q9Sx2D4ae7t5t/7kiI79V3YpnZpGnZ4CW+xg/omObDY2nu6/7fb7qHa2xxxbj8XprlZ+c0jdHvu/i9ZGzRj976kXxRU115aERE25xwwHJ/HE01N5aDs0ak89R8VshssuCxb9PGL+E7v9oUbVVKNZkdfYl/8ZzqF25RNGujRBPZ49QUvU7GxhXmYRDT1Kh02+NZVxGg30xzqaqYpot4+XpzlYIr8PCGWFhjNDo7gCYHF28nmafWTFcLKMdqamQDAW6dj6JGf++BHF6HEkksmGpSwkWJo0GtC9TdqipqfxhGrf5iLt0XMIZjXapq3GFZabKJlTyFj9KVpf/aXyOc+KcAFPSNSUZTjRMY31z09m+wNBd35lJcBjUZ8zESakHWLZpdksvyyHpUth5sxQC7mvu4WjL24LdgWdxVI6b1DPlyxaTs1ItPI0+x8fkasZKWgCGLOSEzUNKfEzNZNFn5qjynQdrFNTc/S8fMmg9hkLY5Y6fsXbUhVT1IzM0wTh1BwoQtQUCAQCgWCMsr/1jGptc5hwJQixseEU39z5Cr1+L1+dfSk3lkY/Aetjh8bo+cV543mv4ZRi7anTe0dU1Ix0apbY0+M6LrVEseOdLQMWNX9z8D3cEYLvFUVTuKIo+gf4OZmFLMspZXOTdtZUmslCae8E5A3LkfdMhyPl4DOQzKlNdjZcd12wrfzyy6Gvp/J7/z4DPaHtSiPKDMpSMjDp9HgCodz3wxHZkVoXEfqaz/vQcmqe7Gqhxe3EHzFmlm9NpVjDqfl2vdpVNTlteEXNRRqi5KIc9cnuREc2Rp0eb0CZj78kN/k8zT4yYoiaqRExBgKBID6NT90fU9AEyLr6S+jC/n9pOzW1HZ7umsRLgvrI+/DvOP7gbeiajxEoWcrETz6C0Z6uEjV9rTUEArD/sI31h+5je8Ml7GxcSWtvLrwQ8yli4jC1MTdnE7NztjA7eyuzsrfhMHWQd+cvyLr6i6rtw0eJ+xhxUVOj7CeSWKKmVlmQ6jmSdWrGucA2EFFTkiTMBdMULfWehqPIAT/S2SkYV10XPqcXe0kaelNwzdN4EnfNAazlS1Su1p4TI9N83kesBnRZlvE7W9EZLQq3sZaomUz+rCCEEDUFAoFAIBiDyLLMPg2R5XR3G2dcHRTa4jf2Xih0eXu5+vU/9uc53vn239h+3edVglQkO1vUzeffnXcl16z/k0LQe+b0fn679KYRGUH3BwJUR7j44o2eQ7SyoCYuHaAY+0rNYcVtnSTx80Vr4z7uU1MvUoiackCCkyXIe6fjrZjH7NMW4KakjmXq1KCIef31wbFBfcQ/g9vvU41+j0tJV9w26PRMduQoGtr3tNbi8nmwGUyAtlNzdkSrb7lDe/y8TqP5vMDmoNiWrlrfGCGaA0zW+PcbSpbllnJZ4WTeOHMUCI6e31Q6S7WdUadnalquSuAdSPN5H9GcmnaDaURjHQSC8wF/dyveaCU/Oj32GZeRcck9pC68WXGXllPTE6UB3V2beElQH8ac8Xhu+3PQdilJGLPL0Ov1SEYLPreHw21z2d5wCbu338zOr0Nb2z0x9xeP8nJYNOkkU9p/yvzcjUxIO4ROklXbuY6+H0XU3KNas5SMrKgpGUzo7Zmare59aJUE9ZGIKGpMctxZH8+pOYCiIAiOoIeLmrLXjbfpNKa8cs68cZK6DcHfi5ZcG0VLm+h477c4K944+6RGSr/yBvapK/sfH+nUlExWLMXq32lDhUFD1Oza/QI9xzfTfeB1fK3V6KwOCu7+A2nLPgiEohbCMYqioAExaFGzoaGB5557blgfc+ONNya1f4FAIBAIznfqe7pUeYZ9bGo8za1lg2uNPJ94u+6EoqDGG/Dzq4p3eOziO2M+bleEU9Oo07Mst4yri6byXFXopK7Z7eStuhNcXjR5aA9cgzOuTnwRjr/SGCVBfUzSEMUGWhZU2d2qKrJZmTeBmRrjypHcVjab//f2q7TuHoe8dxrsmwZdwfKHREvLdTpYvjwkZE6O87LXRIjAoP2aLc4pUYiaLp+XdTWH+v8vRQp5mWYbhRGlXMW2dJWT8WRXM/Uaoma+NRWHyUKq0UxXmKuqRyN3btIwOzUlSWLd5Z/guaoDeAJ+biqZiTGKoLg8r0zxWkxIzUpIWI9GVphzJRwxei4QJI+n4bhqzVw0g4zL7sOx8BYMUZx2xqwS0Okh7L0rmjjqrk3eqdmPJOHzBYt8Nm2SWPfWK+ysnke3d+AXYg2Sl2lZu5iXs5Els5u4+dc/IT8f6v76S9o2/DHi+XWKchbXsY3IsqzKpeyt0nJqzh3wMQ4UQ1p+TFHTXBjDqZmaiKiZ5Ph5nKKggTg1QVucddcdAksRdW+GLvT1Nrqo+tvjGJxvhDb0e6l77BOU//QQkk6Pv6dLJbxbyhYgGYwDOrZE0HJqdu9WWosDPZ2ceewe7DOvwJCare3UzBROzYEwaFHz2LFj3H///QlvL8ty0o8RoqZAIBAIBEq0XJp9bG6sFKJmGFqi1r9P7eHni64jy6ItqHj8PvZGvMazMwow6w3cNn6OQtSE4Aj6SIiapzWbzwfq1ByYqLn+zDHVWqyxc4BTp+DFF+Gll4y0vXU/si+5gqKUFLjiiqCIee21wTHzRKnUKFYq0TjxuqVsNo8dU7alPnlqL7eWzaHX51UJubMzClQnwnqdjgmpmRwJK/o50dlCnUYRTr41KIgW29I41BE7MHTyMGdqQvDYbymbHXe7L85cxWs1RzjV3YrNYOQXi66LWlSRCJlmq+a6Q5QECQRJ42lQvz9nXfVF0lf+V8zHSXoDxqxShZDpiSZqRjaf2zM0G7j78Plg61b45z/z2bkzlX377PT09F00WRXzuLRIT4dly2D5cpmyg3czlf9gNYTyRTL1nwTG03Nsk+JxksGEfeaVdO95sX/N39WEp+EY5nzl7+/I8XOdLR1jdlnSxzpY9Gl5cOag9p06Pabc8qiPTcypOfpFQRCtAf0wru6ZEGGwDRjUcSeehmN07XwOx6Jb6D21PegIDsM2jKPnAAZHXkJlWLLHRefWJ8i87F5VUZBktAz49bvQGdHx82Q/8GhdNREIBAKBQKCdp9mHyNVUUuPqUK25/T4eO7aNL89arfmYivYGVWbkguzgWNDacdOx6o0KR92zlfv5/bKbo7rbhgqt5vPS1PjOiBSjmXxrqsIxOFCn5vraI6q1ywuVJ4R+f9CJ8+KLwa+DinOyBAXNrFaYexDL/KM0/+BjmAcYrxhZugNQouHUvLRwEhkmK22e0MnxuupDdHvdHO1oIhBxkqTVDg5B52K4qFnr6qRSQ4zOP1vuVGRPjylqWvQGzezN0WJCahZ7b/wiB9sbGGdPJz/CrZosmcKpKRAMGVpOTWPexIQea8qdoBA1vS1VyD6vwuEm+zy465W/AyKbz2UZDhyAN9+EDRvgnXegs9MADMyFlmVpYEHeu6z9/A2sutTEjBlBxz5IND03kaZnexTbd257kow1n6G3ep9i3VK2EPuMSxWiJgRH0MNFzYDbhadO+T1aSuaOii4RqyzIlFuOdDYeRfOxcURNyWRDl6SzUp+ijlgJJ9n99aElajoPvEZ7exoQEY2gS9HcR/PLPyN14c0jnqcJwTIsY+a46NEPYbRv/CuZl92rcmoaMoqE9jVABiVqyrI6l0IgEAgEAsHwE8upuaullh6fF+swjtqMJWqdalET4OHDm/jCjEs027p3tqizjhZkBx0NKUYz14ybxtOnQydMrW4Xb5w5ytXF6g/mQ4mWOJbo6O8kR7ZC1DzZ1YI/EIjaVq6FPxBgQ4RTM9tsZ25WIR0d8PrrQRFz3TpoaUl4twBIUtB90zl9JxUlb0FRPZIEHiCg9wID+3mu0nRqpqvWjDo9N5XOUrg1e/xeXq4+pDkSHi2TtTxiPE9GZnOjuhypoM+pGUewnOTIiVsENdLYjWYWDSJHM5xomZrCqSm4UOitOYC/qwnbpOUxRapE8DRqjJ/nJZadbIzM1Qz48bZWYworEXLXH4OIC36WopmcPBkUMN98M/jVGNt8HpOCPA+LCjcxz/wvFua9w3jHESSdxLTP+YnUfBxL7qDp2e8o1jq3/BtL2ULFmDmAbdJF2CatUD1fz9H3yVj5sf7bvTX7VY+1lMwd+Dc0CAyOvKj3xcrThPhFQcascUmLaDqjGZ3VQaBHPX0AAx8/N2aXIhktyN7e/rXuQzvw5X1F0UAPIEupmvvoPbUd1+G3cWk2nw+vqAmQOnctret/E3e73pPbcJ85rMrUTDbfVBBiwKLmhg0bhvI4BAKBQCAQJMF+jdKSPrwBPzuaq7k4Xx38fyFSq+HUhKDrcV3NIa4rUWeB7WxWlwQtyAp94LytbI5C1AR4rebIsIuaWk7NsgQyNQEmOnIUze2egJ8qZxvjNRq7o7GrpUbhZJQbsyiuvowrHtPxzjvBMcOksPRin3uK++/K55O3ZZCTA5/edIqDR+oVm7W4nRQb0pPceRAtp2a0HNLbxs9RjaA/dXqv5vazozg1tRrQt2g0vudbgydmxXFKvYa7+Xy0yYwmagqnpuACoOnFH9P0n28AwbKdsm+8j34QRX+RTk3JbA+OMCeASasBvemkUtQ8m6fZ1JPH1ro1bK2/lB2v30ZVveqhCVNgr2RR3jssPPu1/Fu/ovW1X+I6/E7/NjpziqYAZy6YgqV0nmJcvLdqD+3vPaba1jpxGZaSOUhmO7Lb2b/uOvq+Yrtzofm8D0N6dKdmrOZziO/UTHb0vA99SnZ0UXOARUGSTo8pfzLuMHet37I8mIEaua01n8J7/oK3pYqmZ76luK/55Z+p/v0MGUUYRyCrMvuGb+FtP0PP0ffRp+WRMvMK7DOvxHX0PZqf+55i29bXH1QIuH3HKRgYAxY1i4rEiy4QCAQCwWjgDfjjZvBtbjwtRM2zRBM1AR46vCmKqKm8gm7WG5iRHjoxvKZ4KgZJpyjt2aohXA01kU5No07f7/iLh1ZZ0LHO5qREzVerjiEfHY+8dzrsmQ51eexK+NFBxo+H666DtWtlxi/oYXz6FIVbVKs4prnXSbGGuzIRIp2aBkkX9TVbXTCRLLNNUcL1Ss0hlYApITEjQ/tkc4JGA3p4ERCAzWAk1Ricp4/3fY1EnuZokmXRFjXThFNTcJ7jd3XQ/MIP+2+7aw7Q/v7/kXXF5wa8z0inpilvYsJuPK0GdG/jSZgB7e3w9tvw0h9LeHvjAU50JFgMpEFxcS+XXWZi1SodC7LWo3vqCsX9vrZqAmGiI4AuSkwFgGPJnSohq3PzP1XbWScuQ9IbsE1cFmrOJpjH6Ots7BcB3VV7VI8dNVEzhlMznqgZL//SMMCmbYMjJ+qYtX4QpXHmwmkRoubF2s+RMZH0Fcvx93TS8uovCIR9xnPuf021/Ui4NCFYojTuvqdU6+b8STQ//31FzqeW6G4UouaAGdFMTYFAIBAIBIPnSEejol1Zi40iVxMIRuXURBk/B3i99ghHO5oUbji336ca75+TUYBJH/rYZDeamZtVyI4w8XN36xl6fV4swzj2H+nULLGnJzw+rlUWdKKzGeKU/LS2wmuvwcsvwxMvLEfuujTxAyaYfXbRRbB2bVDMnDaNsyOEEqB2dWRrlDeFi4zJUuVUvmbF9rSor1nfCPqfjoYyuXr9PrZFOHcnObKxRRkT1XJqRpJvdfQLDfHHz5NoRRqDiPZzwUjRW3OAxie/iq+rmcxLP0P6irtH9XjcdYeRPco8yN5TOwe8P7+zHX+XMivZlJtYniYox899AT0HWhbx+EPj2fTNYNGP3w+QvEBUWAirVweYNKmShQu7yM/3MmfOHAwGHT2nszgVoQN5W2sI9HYr1nQW7RxFAMfi22l88qsxj8GYMx7j2TIj26QVClETwHV0I46FNwHQEyGQSkZzXAFxuIiZqamRQxmOzmhGZ0tTiH7hGLMG7tSMet8Ax88BzAWh70eWUgmY52pu53cFR0L0VgcZqz9Ny8s/jbnfkRI1o2HMKsE2bTWug2/2r8k+j2q7gYrMAiFqCgQCgUAw5tgXY/S8j82Np0XhHtDp7cWp8eExnIcPb+KBJTf03z7QVq8SjfvyNMNZklOqEDW9AT+7Wmq5KK9scAcdBX8goHIdJpqnCdGdmpHIMuzbFxQx162DzZsh0G9ITUxocjjgqquCQubVVyfXVq41jtzc69TYUklADvDNna/yr5O7SDdZuSS/nNUFE1Xj51rN5+HcPn6uQtTUIlqeJsD4lEwkJOTIytYwCqyhTLBiW3rM5zrfx88zTNrt50LUFAwlst9HzW9vwVN/FIAzJ7dhyp+MbeKyUTsmb7Pa3e9tGbjjXytP05RgSRDAmZ6JPHn0HjaduYKt9ZfS6RmYQJWZCatXw5o1cOmlMHky+P0B9u5VZ0JrjUD7WmtUTk0phlPTlFOGdeIyeo5vjrqNbeJF/X+3TlbnarqOvY9j4U3Ifp/CLQhgLpqpKEsaSWJFB5gLYl+QBDCk5uKJJmoOdPw8NcovdL0RyaTtvE8E+8zLaXruuwD4LUtB0paq/L0+5ICMpJPIuuJztL7+K+SIaYhwrOVLBnxMQ0X68o8oRE0thFNz4AhRUyAQCASCMcZ+jZKgEnu6Qrxpcbs41tl83gsi8Yjl0uzj/45v5wfzr8J+dhx4h0ae5vws9RX0JTml/P7QRsXa1qbKYRM1z7g6FePuoN3iHQ0tp2afqNndHSx56BMya2tVm8alvLxvrBwuvhhMA+y7yNY4eW11xxc1/3R0Gz/bHzxpqHK2s6+tjt8eel+1XbzX7JL8CeRY7DTFEFKj5WkCWAxGimwOamLEHuSFi5pxnJrn+/i5SW8g1WhWjeiLoiDBUNJzanu/oNlH59YnR1fU1BAwvc2nB7w/rebzWE7Nri54661gwdvrr8OxY2nAo0k/r90OK1eGRMw5c/rayeOjT81GMpgUzjVva7Ui8xKCmZqxcCy5M6aoaZ0UEjVt5UtAp4ewi5d9uZqe+qOqrMPRGj2H6E5NfVpeQq5IvSMXGo5p3jdQUdMQZaxdb88Y1IV068RlZN/4HVpe+QWB1Mtibuvv9WGwGTGk55O+4qO0vfWI9oY6PdayBQM+pqEidcHNSH/5DLIn+tSJQRQFDZhzq0pRIBAIBAJBXLScmh+frL4SvbHxlGrtQkMrT1MfETzf4enlHydD42ZazecLs9UfNpdqtD9vHsZczdOazeeJi5o2g4misAIKuSGLbf8q5YorICsLbrwR/vjHJARNKcCMxS7+93/h4EE4dgx+9avgSe1ABU3QHj9vTkTUPKJuPNVCq/k8HINOz82ls2NuMyuGqAlQrpGrGU6BLZTpmW6yYoviAso028jSeD3ON7Qa0EVRkGAo6Tm5TbXmiSL2jBSaTs22WmR/so1rQTRFzTCnpt8P27fDj34El1wSdFTecAP8/vfB9+9EMeg8LMx7h3vnfJvnvvlrWluDF8O+9CWYNy9xQRNAkiTV2K2vrYaAO2L8PIZTE8Cx+DZU1ehhhDs1dZYUlVDZW7kL5+F3aX7xx6rHjlbzOZwVEDULkhIbh49VFmQYYqem3j7wPE0I/izk3vRdJj3YSsCyMOa2Ppe3/+9ZV39Js1AIwDJuDrooZXSJ4jrTxal/H+D0fw7ibu2J/wAN9NZUHAtvjrmNcGoOHOHUFAgEAoFgjBHp1CxLyeCq4ql8Z7cyIH1zYyX/NWnxSB7aOYeWU/Ojkxbx54jx4ocObeSeyUuQJEnVfG7RG5ierh4Bm5CapXL0bW3UFjVlWeZoZxOZZhs5MbLBYqHVfF6axPi52w2ZJ+ZQ/XY67JsGDTk0AuuTOQhrD8w6jDTnIMY5x9j6yfuxD/FUnpbA1dwbO1PzZFeLphitRSLu1tvGz+GRI9FdP7HGzwHKU7N5p167SAFQFBVJkkSxLZ2jnU2q7c53l2YfmWab6uc7zag9li4QDIRzUtTUGjUP+PG21mDKKUt6f1rj5y3yFJ58PJiL/MYb0NIygAMFZs+GlTMOMrvp88zPfR+rISjuFKx5ZFAXsSCY7RhePONtqVJlDsbK1AQwphdgm7oK16G3VPdJZjvm4pmKNdukFfSe2hFa8Puo/MklmvseTaempDegT8nG36X8/TAUouaAMzVjODWHgs6jrci+6PEtAP6ekPBvypuIY+EtdG5Xl/QMdvTc5/Rw+OEdyN7A2WNrYeZXlqMzJO8NTFv+ETo2/V37TkkXMz9VEBshagoEAoFAMIZodbtU7sOZGQXMySzEqjfS4w9dvd4syoI4o+HU/MjEhbzfcJIjHaGThP1tdXzs/Se4Z/JSDrTVK7afm1mEQadX7UeSJJbklPJS9cH+tRpXBzXOdkWjda/Py9Wv/5F3G05i0un5zdKbuGdK8sH1kc3nEN+pWVsL69cHx8rfeAO6u69P+nlnzoSLL+/lYdNjMPE0kj744f7i/PL+kf2hRLsoKLZT8z+n9ia8/0vyy+NuszJvArmWFBojyioAUgzmuK97PKdm+Pg5BEfQtUTN870kqI9MDReWwzT0P1uCC5deLVGz6SSy34ekH51TYi2nJgTFzgGJmg3H8QX07Gtewnu1V/PembUc+mvsCzDRyLI0cFHh61xU8Dq3//JLTFgyh4Yn/0bLy8rLYJFi4UAwRjg1tUpUdKb4jvW0JXdqiprW8iWqf2Pb5BW0vv7r+AenN2IZF9u5P9wY0vJVoqYpQVFTH6U9XWdJRR92cS2p44lSFDRUombbAfXvwkh8PV7F7axrvxpF1BxcSVDbgcZ+QRPA2+Wh+2QbjsnxCwEjsU9fgyG9EF/7GdV9hrT8UXsfOh8Qr5xAIBAIBGMIrTzN2RkFGHV6FueMU7jDDrY30Op2aRavXChojZ+Ps6fxmanL+dzW5xTrfz2+g78e36HafoHG6HkfSyNETYCtTVUKUfN3h97n3Ybgv4sn4OdL217k9vFzSItSkBINLadmZFGQ3w9799rZuDGN999P4+jR5D/qWa3BEfJrrw2W/JSWwp+P7kXaqHQeXlY0Oel9J4LDaMEg6RT5ofGKgp46rRY1/7ziDg63N/Bm3XF2tdRi0On40fyrE8qZ1et03FI2mz8c3qS6b1ZGProoo259TIjTgF5gU4qa4bEA4Vwombha7tw0kakpGCL83a2ao9n4fXibKzHlxb/QMRx4W6u015tPA9quQS0aG+HVV+GJv36J9ytX0ulJfgzYZApmIV9cvpWZZz7FlIx96KSgWy5buh6Yg7v2gOpx5sLpST9XJIlkCcZzagKkLryZur/dCxHj++Gj5/1rk5YndGyZaz6d0HMPJ4a0PNw1+xVrg3VqDjRPE2KMn9sGL2oGPH46j6gLDCPxu5SipnX8AuzTL8V5cINyfeLgRE13i3rc3N3eq7FlfCSdnrSLPkzLuv9V3WcQo+eDQoiaAoFAIBCMIfZr5Gn2jcJelDteNfK6pbGSa8ZNG5FjOxfRGj8vsDr4yMSFfH3nurjN6AALNEqC+liikau5pbGSW8pCzo5/huV1AnT73GxtquKKovjNpeFENp8bJB2FNgetrcET2nXr4NVX9bS0JHayE8748UER89prg1lr1gi9dX3tUdVjLi9M7vgTRZIksix2Gnq6+tda3dHHz090NrOrRRkEOjezkI9OWtR/2xvwo5ekuGJkOLePn6MtasYZPYfg+Hks8iMcMuOi5HxOukDGzzVFzSRFf4EgGj2n1Ber+vA0HBsVUdPv6iAQpUwsmoOz/7FnszFfeSX4vr+j/9u7MaljmD4drrgCrrwyWPRjs0F3RRdV/6u8SNSx9QlSF9yEu7ZCsW7ILEYfJ6M4ESKdmlrEy9QEMKRmkzLjcrr3vaJYt2qImob0fMzjZquazgGQdNimrCT94v8ibfldcZ93uDGkqX/nJOrUjCZqGgY4eg4xxs+TiMOJRsexFgJeZSGiMc2Mt0NZJOfrUefO5t72E07/eGV/0VPK3Osw5w/u4qtWhqa3Y2CiJkDa8rs0RU2jKAkaFELUFAgEAoFgDLFP06lZCMCy3FLVfZsbT1/Qombk+HmeNRWT3oBJb+AnC67hfyLcmloszI7+4X9Rzjh0kkRADuU/bQ0rCzrS0cjeVvWo0Y7m6qRFzb6iIDkgQVUhKUfnc8mfdGzeDIH+c4AEm0f1fph0Cmn2IT58k5W/3HFZ1I4FfyDAhjpl9lyW2ca8rMKkjj8Zssw2hagZqyjoP6fVJ6W3jZ+juG3UiA+Ix/Lc8RRYHdT1dCrWYzWf91Eez6kZMX5eFKUBfcoF4tRcUziJh8IE5GJbWtzXUCBIFK08zT6CuZpXjdzBnCWWcKnVgN7cHMzFXLcu+OdAsjGzsuDyy4NC5uWXQ7GGjmLKVQu8XTuepupX1+FtUpYPmotmJH8QGiSS7SglIGoCpK/8uELU1NszsU1eoblt3gceoOZ3twTFZb0B+/RLcSy8hdT5N8TMohxpUmZfTcemv/XftpTMxZit/rynhX4YnJqGKBftdEPg1GzXGD3PXlBI3ZvKnz1/xPg5gHXCIkq/sp7ObU+iT8snc82nB308WqKmJ0JgTQZL8UwspfPorVRe7BZOzcFxwYuaJ06c4N///jdbt26lpqYGn89Hbm4ukydP5rrrruPyyy/HYBjcy1RTU8Oll1466GP961//ypIl6rDbV199lc997nNJ7++dd94hP18E0goEAsFYYn+EQGbRG5h4Nr9vWW6ZavtNF3iuZqRTsyisdfre6StYmDOO3x3cyH9O78UT8Kse7zBamJoW/eQm1WhhZnq+Qmze2VKDx+/DpDfwVJSsx+0RZUTxaGgMcOqNMgL7roADU6ArhVZgYxL7yMuDK64K8Hf732DGUSRr8IN5S+bUWKWx7G6tVTklLyucnJTrMVmyI05gW2IUBWm9xreWzdHYMjn6RtB/d+h9xfrszPhibrrZSqbZpukw1UmSqiyqOIrbaeIFkqm5dtx0PjttBQ8f2UyuJYU/X3wH+mQqlAWCGMQXNUcezZKgs3iaTxMIwK5dQRFz3TrYtg3k2N0pKiRJZtEiiauvhmuugQULQB/n+o4xuwxz8UzcNcpRc+f+V1XbmosGn6cJqNrPtdCZExsBT114M1nXfo3WN36LITWb/I/8AX3ERaQ+UmZcyqSfn8TbUoUxu3TIMiGHGseiW3HXHqBj098xZBRTcPcfkGL90g5jOMbPdbZ00Okh4jPTYF+/gC9Ax2Hl6LnOrCdjVq5K1PS51KImBLNSo4nYySLL8pCLmhAsDIoUNeM5NWVZTvjf/ELkghY1f/vb3/Lwww/j8ynty9XV1VRXV7NhwwZmzpzJz3/+cyZMmDBKRxmfQ4cOjfYhCAQCgWAE8AcCHGhXltjMSM/vL7HJNNuYlpbLoY7G/vu3NVfhDfgH5FQb6/T6vCqHX5EtXXF7SU4pSy4p5YEl1/OXY9t59MgWTnSFLDBfmbU6rriyJKdUIWr2+n3sa6tjYfa46KJmU2xRM3y88NVXYft2CVn+QMzHRBI8oYVrr5W49lqYNw90Oh3vPllNtTP0ofx4Z+z8Ks3R82HK0+wjMge22+fG7fdhjgjSP9bRxO5W5ej5vMyiIRMD7522nD8d3ULv2Yy2KWk5LM1JzCFTnpqlKWrmWlJUP1PFGpma4+zp2AyDrBUeIxh1en699EZ+vfTG0T4UwXmGLMv0nIouarrrR0nU1HBq9visbKm7lHd3f4j3fgN16sGMuKSZWlhe+Bori9dxx08+RdmKi5N6vCRJFH/2aSp/dhm+1ti/pyxD5dRMJFMzQaemJEnk3f4T8m7/SULb61Myh2RsejiRDEZyb/0Rubf+KOnHDodTU5Ik9KnZ+DsalM81SFGz60Qb/l6lLpM+LQdjqvr3YOR2w4G/x0fArb7Y7e0c+Pg5QNqyD9H0/PcJOEORQilzrtXcVvYHqHzuCG37GrDk2Bh/50ws2RduTn40LlhR84c//CF/+1vIxm0wGJgyZQpWq5UTJ07Q1hb8ITtw4AB33XUXTz75JEVFA7MFWywWVqxI7oqBx+Nh27bQL+C8vDwmTpyouW24qDl58mRycxOzy5tMF8YHZYFAIDhfONnVgsunvDo9M0PpuF+WW6YQNV0+L/ta62KW3UTi8ft4/Nh2Wt0u7pq4IKqLTJZl/nB4E389voOSlAx+seg6SuK0Qo8kZyLGhgGK7NptnzmWFL40azVfmHkJb9WdYF/rGaam53JVUfzcqiW5Jfzx6BbF2pbGSmwGo0qE7qOup5NaZ4di7Li+PjhW+Mor8Prr0KaI0EzsCn16usyiRW0sX97BRRd1snr1DNXEySRHNtXO9v7bp7pbYwrfr9ceUa1dXji8oma0BvTCCPEvkdHzwTA5LYfXr/wUfzi8iXSTla/PuTRhB+GE1CxNR26+hmtI6//Y5AskT1MgSJSA103n1idw1+wndeEt2BIoAfG1VqvEl3BG26nZ4CrknZq1vF2zli11l+H2J58lu2ABXFzwAov8P2FW1jb0umAeSdG0Hw/o2Mz5kxn/rU1U/fxK3GcORt9uCJrPIZjRKBlMmq3nfYx2Wc9YRW/L0HRVDiZTE8CQmqMhag5OHO4+pS5DTJ+Zg96ilqyiOTWHEneb2qUJg3dqGhw5jPvs0zQ88VVkj4usa76MJcr/paYttbTsCE5ouWq7OPVEBdPuXaS57YXMBSlqvvrqqwpB88orr+Tb3/422dnBq/per5dnnnmGn/zkJ/T09NDc3MxnP/tZnn766QHZfrOzs/nzn/+c1GO++c1v9ouaVquVhx9+mKws7WyhcFHzW9/6FosXL076GAUCgUBw7qOZpxkxCrsst4zHjildKZsbTyclat785v/xSs1hAP53/1scuvkr5NvUYuCL1Qf57JZngeA4da2zg41rP5vw8ww3tRolQcURTs1IdJKOSwsncWnhpISfR8u5t6WpkpYYOZAAm+qqyDszi1dfDQqZe/Yk/JQKZs4MFvxccw0sXuynouJUzO3LU7N5sy7UBOyXA5zuamWSRn7jofaG/ub2Pqal5UYVuocKLVGzuVdL1NQaPZ+tWhsMy/PGszxvfNKPi5YJGVkSBMEM0UiX9aqC0WlkFgjOVRqf/Bqtr/8agJbXf834b27COiH2CX6s0XMI5lfKPi+SwThUhxmTQAB274Z//HUxr23dwcHWBUnvIz09mIt5zTXBkp/8fDj9o1/gCru4JhnNCY11R8OYWUzZN96j6lfX0XNcXZgGYC4afPM5gKTTYcgoUmV2hpOoU1OgRNLpMKTm4OtQXmBNpJwpFvoU9TTEYJ2azmr1hejUCRlIeh06s17hmvRrFAUNNR6N0XOAgNuPv9enKbYmin3aaiZ8N/Z7E0DbAaVw7G6OHsVzIXPBhdV4vV5+9rOf9d9evXo1v/71r/sFTQCj0cgdd9zB7373u353Q0VFBS+99NKIHOMzzzzDU0891X/7m9/8JtOna//SaG1tpbEx9AF4ypThaSIVCAQCwehzQEPUnBVRWrI8r0y1zcYkcjUPtzf2C5oAnd5efndIO7nxz0e3Km5vaaqkJswBONrUaDTLFmqIs4NlSloO6RFNzVsaKzVHz+XWNOR3lhD4/Ue4a+5ULrkEfvKTJAVNaw8s2MeXf9FIdTXs3w8//WmwvTaRGPBJGqPZx6KMoP+q4l3V2g2lQ+POiYVWG3ZLxCj30Y4m9kRkzC7IKqb8HMmhjHYc+Ta1U1OSJB5cehO5Z91IlxZM4tNT1Y29AsGFiq+zkdb1D4YW/D6anvte3MfFEzUJ+PE0x74QNFhcLnjxRfjkJ2HcOFi4EH71ym1JCZpz58LXvw7vvQdNTfDEE3D33UFBE8DTeFyxvTFnAtIgc2n1KZmUfmW95misKW/ikAqN8US2RDM1BWq0RtATKWeKuU+NsqDBFAXJARlnjVLUtOTaMFiDFxsMNuVFB59GUdBQ426NPmbuGUQDeqLI/gDO2i7FmindMuzPOxa54Jya69ev58yZ4Adgg8HAt7/9bXRR3vBXrFjBHXfcwT/+8Q8AHn/8ca677rphPb6amhp++MMf9t++5ppruPXWW6NuH+7SLCwsJC1Nuz1TIBAIBGOffa1aTk2lqDnZkaMqKAlv446H1rav1x7hhwuuVqx5A37erjuh2vZkV8uwu/gS5YyWU3MYjk0n6VicU6IY0z7V11Tu1cOx8cgHpsL+qVAbigtIZoApa1IbLZN3Is06AhMqkQwB7rvtGxQP4DxPK29SK1ezoaeLv5/YqVgzSLoREduyNE6Wm3uVzteRcGkOhmhOzQINpybApYWTOHXbN+j2ecgy20QpgEAQRtfuF1VNOc6DbxDo7Y45mtxzcnvcfXvqj2HOH9pIjdpaePnloJj5xhvQm6QGYjX7uOwKA9ddF3TiF8boJwu4nfjalZ8PTLnasWXJojPbGPc/z3Lm8XvoeP8v/esZaz4zJPvvwxAnV1M4NQeOKWcC7upQVIsho2jQr6dKhJYkDGl5A95fb6OTgEc5Im8fF9I19FYjtIX+E/lHcfwcwNvhxpo3vEJ7T6MT2RtQrNmKh/7C/PnABSdqrlu3rv/vF110EYWxfkOAQtSsqKigurqaceMGd2UjFt/+9rdxOoMf2jMyMvjWt74Vc/twUVO4NAUCgeDcwOXz8PUd63ir7jjzs4v5+aLrNMdpk2V/hFMz35qqalGWJIklOSUKt2Vldxt1rk4KEnAp7m6pVa3taqmlqbdb8VxbGivp9qlluZNdrazMPzfGZrWcmkUahSxDwdKzoqYsA/U5UDEZuWIKHC4Htznp/WVmBscLr7oqOF74kT1PsqEulP1mkHQDdp1OStMQNbvUouYfDm/C7VeOeN0xYe6IiNZZWuPn7khRU52neesQ5mkOlnJHtPFz7SZeAIvBiGWExmAFgrFE167nVGuy1033/tdwLLpF8zFywE/v6R1x9z0UuZqyDPv2wfPPB7927Up+H3m2Gi4pfolVxS9y7X+vpOS2ryb0OE+D+gKjKW9oRE0IFtUUfuJxUuffiOvw21jLl+JYcseQ7R/iF9eITM2Bk7H6U3TtfgHkoECWefngY4LSln0w6Jw+e6HBPvNKDBruzUTprlJ/XrOPC33GMViVspVvFMfPATydg8vVTAStcfzw10QQ4oISNWVZZuvW0Kjc8uXL4z5mypQp5OTk0NT0/9k7yyg30jNtXyWGZmZwm5ntIY8HPIyZmQwkG4aFJJvNfuFsYLPJ7gY2yYY5mwwzMxrGOGZoQ9vNTOoWQ9X3o6yWSlVSq8Httl3XOTq2qkqlklpSvXW/9/PcPQC8+eabfPjDHz4jx/fCCy+wZUusxO+rX/0qeXmpG+7Gi5pz544eZqCjo6Ojc+b50YG3+fmRzQAjQTF/vuyeCe3THQooUrlBXXoe5aLCGoWoCbC1u4n31Swa9XkSk6QBJCRebz/OvTOWjSx7vV2diA1wKuEYo/jCIX544C2ODfVwV82SKSlhbtMSNZMEBU2E/n4Ibl+I+FA2HJoDfWMvwRIEWLVKFjGvv17+vzEut6fxtPMzSqUzZyT1fqzMyMhHQEAi5npKLD/3hUP8+oi6j9oXFlw+ruccKwUaLpJ+f8x9fNTVzb6E0vOVBRXMSOKOPBuU2rOwG834IkpHiVb5uY6OTnJEvxvPodc01w3vfiapqBlor0f0uxXL7HVr8DUoW6eMV9QMh2HLFnj6afnW2Dj2fSzI38n600LmvLw9RA3apuH0A2oTS89hckVNkCdMs1bcRtaK2yZ1v1FGS0DXchaG3EGanjjC8MkBHBWZ1Nw5H2vu2IOWzncyFl9HzTe24Dn8BraKRWQuv2XC+7TPWEX1V95mcNOfMeeWUXDTVwH5b9L9bguSKFG0tiLtcmlPi4aoWRWbhE4sP5fCImIogsE8vnFQOgRSiZpTUH7ubdUQNXWnpiYXlKjZ1tbG0FDsw7FwYXoXVHPmzBkRNQ8cOHBGji0QCPDDH/5w5P6yZcu49dZbR31cfX3solUXNXV0dHSmB08kOMgeObWXX190x4QcWAcH1CnayUTNtUVawTWNo4qaoiRqOjUBXms7qhA1X0siap4c7tdc/sktj/LQyT0APHRyDy9s+ATXVZzZ81Zi+XmW2UameeL9iEIh2LZNTih/9VXYuRMkqRxI/yIUgEw3l1wV4B/vymfDBihMEnYdEUWaE3qV1kwgZd5mMlOVkUOTO5Y0mlh+/reG91TOyCtLZ7I0f4yvcZxo9dSMP57HT2mkntdMH5cmyCLAjMw8Dg0qG/1rBQXp6Ogkx33gFaSQtjPKve8FpEgYwai+rPVr9NPMWn23XJIuxco6g53pi5puV4CXn3Xx3EtOXnjFTl//2PpW2u2wfk0Pa/xf4/KKFyhyqNvKgBxglC7BLi1RM/2wu+nAaKFGgoao2flOE656+dzlPjlI28sNzLj3zE+Ynos4Zq7FMXPtpO7TOXcdzrnrRu6LYZGjv9lFoE8WA/t2tbPwixdjtI4uOSW6Eg1mA/ai2N/caNdOQLdknxlRUxIlgoPJhcvQBBPQ0yHxPRHMBuzFehsGLS4oUbMxYfqsqqoqrcdVVMR+ZJubmyfzkEb461//SkeHfFITBIGvfe1roz4mEAhw6lSssfWcOXN47733ePrpp9m1axcdHR0IgkBhYSErVqzglltu4aKLLjojx6+jo6OjIxMRRY4N9SiWBSJhtvU0sb50/M4JreTzRXnaoubqwkqVE29b9+h9NY8P9eIJBzXXvdZ+DEmSEASBgYCXnb0tmttpOTW94SCPJoTm/Pzw5jMuaiaWn5ePs1xbkqChAV55RRYx33oLhodHf1wiBoOEOKMRYVE9LKqHqnZWLLiE+9belvJxHb4hQqKy11R1ZupKjtGYmVWgEDUb3f00DvdTk5mHKIn89NA7qsd8fsE61bIzhVa7hvg0+Seb1KLmHdOon2aUGZkFKlGzNEX5uY6Ojhqt0vMoEU8/3mObcc5br1qnFRLkmHMZ5vwqhWio5XSMp7cXnn8eHv3tCd7aWYY/og5eSUVZGdx8M9x0E1x1Ffh3PEvHn/6Q8jGhvvR7YWs5TSfbqXmmGd2pqS4/Hz6hnER11feOjFN0ph5Xfe+IoAkQ9oQY2N9FwarUk6ERfxh/t3IS1VGRhWCMTRhEA4MUj/OF4QzFiYSGAkgRKen6YBJR09flxtM6hLM8C3tJ6pYJkighRURNt2kkGMHXpXSZO8oyFe+JTowLStSMui0BDAaDIvE8FYVx1on4fUwWHo+HP/whdmK7+uqrWbx49IH50aNHiUTkixxBEPjOd77D1q1bVds1NTXR1NTEk08+yaWXXsoPfvAD8vOnT3mWjo6OzvlEo7ufYIIABfB2Z8OERE2t5PPFSZyamWYbC3NLFD04d/W1EoyEsWi4WaK819uadF27d4hDg50szC3lzY4TiJL2YO+kW+3UPObqISIpm51v7jpFSIxgHmcJ9WhERJEOr3KWu3wMvSAHB+HNN2NuzFPjDcfNHURYcIzffHohN11rpvaFXxOOey92JRGH42mMEx+jTMSpCXIC+hvtsQthUZK46Pn/5ZmrP0a3381Rl3K8Mze7iOvPsAgdT7bFhkEQFJ+zaFDQYMDHvoTQrJUFFdROo9LzKBcVVfNcy6GR+4U2J5XTJEhLR2c0gj2NhF0d2CoWpexpGPG68Na/jWBx4Fxw9aSKSlI4xPDe51NuM7z76bRETcFkwVa5GEvxLIWoGeptQgoHEUyWkWWnTsm9MZ9+Wk4cF0WA9M/hK1bIQubNN8OyZRD/lgz3qU0ygtWJFDdxE+prQhLFtBLMVU5No3nUHpXTjVF7amq490Nu5SSsGIwQGgpgydYTos8GwyfVYxVPy9CooqandQgShpTxIUEARoda1DyTCeipSs9BFj0TcdX30nD/flkMNQjMuHchuQu1J0B6d7XT8uxRuUz/kioqrlf+tnjbRn9PdGJcUKKmyxVzbDidzqSp54lkZMRO4vH7mCweeughBgcHAVmc/Oxn02veG196LknSiKCZmZlJVVUVTqeTtrY22tpipYSbN2/mrrvu4v777x81JOlMEg6f+ea+Z5qooJzsvo6OTvqcT9+ngxoJ5QBvth/nG4uuGvd+jyWITAICMzPykv6eri6oVIiagUiY3T0trCxIfuHw3igC20stR5ibWcirrUeTbtPlG8bl8+I0xy4Oj2iUzrvDAbZ1NnKRRqn8ZNDhHVKIhwBl9syk71c4DDt2wOuvG3jtNYEdO0AUx3FhbgnCnAaEBcdgwTEo6+Lyklo+ds1yABbmlrA3rhfknr42vAF/SrH5lEsd4lNpz9Z8Lel+l9bkV/EblBOh3X43V770ayqc6oHz5+ZdihgRERFV684U+RYHPXEX+X1+D+FwmHe7TilcyABXFM+clmOLj9at5JGTe9g30IHFYOQ/ll2HQTo/xkEXAufTuWmsuDb9ia6/fQYiISylcyn/wkuabrrIcC8tP7qGYKvcosu55EZK/+ERDOaxB6Rp4T38FqJ3MOU2Q7ufIf/9P1SIqWLQh79V6ei2Vi0lggFTUR3E9+iURLztxzjcNZdnnzXwzDMCBw6M7fffJIRYXfIW1yzdzYd/9f+IK/Qj8WMT7FHPktnrLsJ7+PXYIYUCBAbaMWWXjPrciaKmuaCWiIR8YpsmjPZdkhx5YDRBRH3MgsVORJRAjK2TRImwV11Z4ukcxuC8oCSOaYOWqOluGRr1fDfcqH6cvTxD8TjBotZtgu7AGTuX+no9KdcHXX7Vc3e83Rhzd4oSHW83kjlXXVUTcgdpfqYeKSxv27WxCUdNFlmzYtsONw+qHmcrc44854V8btLigvrGBwIxRd1mS38Gx2KJXZgFg9pleeMlFArxl7/8ZeT+lVdemXaKeXxIEMiO0i996Utcd911imM+duwYP/zhD9m4cSMg9xb9x3/8Rx599FHFdlOFKIrs27dv9A3PMQ4ePHi2D0FH57zhXP4+vd1zRHP59p5mtu95D5thfKfe+l5lKEqx2c7Rg4eTbl/uU1+QPblvK+YC7Z6XAJuakouVAE8d3c2VoWxeajqUcruX39vKTHvOyP13urT7UT+0dzOO4sGU+xovh73qMnjTsH/k/CNJ0NJiZceOTLZvz2LHjiw8nvG5RufM8bJ27RAVy9r4vv1RBLNycLnWmD/yvLXY2Ru3LiCGeWrHJuY6YoPZwXCAPZ5umgPDNAWG2OdRi5qhzn72uUc/lyb7Ls2RYH1WBW8PKd25vkhIFRqUa7SyyG2a8nN3Bkbipfz24QH27dvHM53qz1OxOzJtxxa/rljHifxBck02ij2WaXucOqNzLp+bxkQkhO3hLyOcDrkKdtRz4pcfInjLT1Sbmt/8HqbW2HfSs+8Fjv7oVoLXfR8mwYlvfvuPqgtWyWxHCMWVufY2cuDNJ5AKYn0kDR37sSYIZO7MWvbt24cx7MAChEUj73VfxpvNt/H6iio6e8d2fnaYhrms/CWurHyadRUvkmVxIQkG+tovoq8vubPV0nSY+HdGMphxOatJ9KId3vo6UukoAX9hP/YB5e+431447X9ntL5LVkchhmH1xLBosKpfT0BEa47t5L7j4J4cQV1nDARE6FILgf4uN/t27wVjikmCw27VosahFtgX1+O9W63BNB47CUHtPvATpj61UzPiC7Pvvb1gOv26JAlaleY3X/sw+/bsBUPCa28NQlg5MXvqrXrwxrXdOah+L5uHW2nep22cuGDOTUm4oETNUChmUU7XpQlgMsXepsmeDXjttdcUJe0f/ehH035sfI/Q6upqHnroIc2y8tmzZ/O73/2Or3/96zzxxBOALIg+/PDDfOhDHxr/wevo6OjoqGj0q9MKAcKSyD5PD2sytUvGUxGWRNqDygFOuSV1r55FDnWLlQOeXu4u0J44kySJoz71bHk8ez09NPgHaQuqB6DxtAXdClGzKaDdgHKXu4uPF5+Zpv7dIfWA1D6cy0t78tixI5MdO7Lo6hrfxF5BQZC1a4dYu3aI1auHycs7PXMuifz0kIAv7kLLgMAV2THLznxHPk/1Nyj2d9jXPyJqvuNq5evNWwhKqR2RZZaJNYs3CQb+s/oS/qd9N4/1pQ7JuLNgFtYz1CYgFVlG5YWp63S/1wNetci7yJleS6GzgUkwKERrHZ3pjjDYjOAfVCwzNm7C0LwdsWpNbLveExgPPaN6vPHEG5jf+RGh9V9S1l2PFUnCcFLZ31cymAiv/Bjmrb9UPmfD24TjRE2hSz3pJxYvIBQS2HrqMt5+dy5vttzGQCBJQlsS8m2dXFn5DFfUvMjKy23YBw9i6I49lyCJGDr2IdZcknQfwrCyekHKLEbKUlfQGYY7iIwiagoutagjZZ9bpedRpMxi0BA1JYu69JxAkn6Hwxe2Y+2s0ZNEI5GAwQjkJ5GdJAn6E/5mdgHsCVqNWeN3JJi85+WE8aRRleITIfP02MgnQeJHTzq9n8yE8dOwxr47QhCRYuJv4ntiEcCh99NMxgUlahqNsQ+UKKZfPhUvZJrN40+u1eKRRx4Z+f+8efNYtWpV2o/985//TF9fH62trRQVFaXskykIAt/+9rfZtm3bSDn6X//6V13U1NHR0ZlkGgPaoibIIt54RM3ukJdIQrntaKJmlTWTLKOFoUhsdvuAhnsxSlvQjVtM3Z8oIEX4rYZLTmtf8TQneU8OeHvxi+Fxu1dT0RPyIvmscLQO6fAsODKLn7eNXsanhdUqsnz5MGvWyEJmXZ1f8zrdKBi4KLOUN12xMv6LMkvJN9tH7s+3q8WtQ94+3pc/k56Ql2+3bBtV0LQKRgri9jlejIKB/1e2ggpLBj/t2JPYvmnkue7MPzspujkmpajpEUMExAgHE0TNSksmuSa9h5qOzmQh9Gs3ETZv+gmBex8YcWCaN/8UIcnvlenAY0jOfMKrPzH+4+ipx+BWBm2JlauJzL1eLWqefIfwmk+O3Dd0xSoKfGE7W9qv5ZU/f5iN28twu5eP6TiqKr1cnfVzrqp6msUF2zEIEpHyFQSv+y2hU5uwPvcviu0NbXuSi5piBMGdKGqWImWpxwbCULtqmWqbQXXbGDEndejOdEXKSBLApPX7nkzUHJq6FilnjI6QLAQWmqDgHJFrkomaAAMpRE2PqP5bam2rUX4+rUTNoSRi+lBELWpqbRsGusJQZga/CN6E588zTmyC6DznHPmWTA52e+wCIL4UfTTiS86t1smzs3d1dbFjR6yB9R133DHmfeTn56cd+mOxWLjnnnv48Y9/DEBLSwvNzc1pp8BPFgaDgUWLRimlOAeIRCIKq/fChQsVwrmOjo6a40O9/P3Wxzni6uaG8rn8ZPWtZJqt5833SZIkWuqfTrr+iORmyZIlY95vX8cJqFcuW1U9iyWLUu/r4v49vNwWKynvCHkomlVLqUYK+Imm/ZBQfX5JUQ1buhsVyxLLlbUIZNlGXqckSbQefkJzu6Ak4inJZs0EApQUzxuA7dvhjTcM/O25WqRD7wdxfJ+jxYslNmyQb5dcImGzOQEnkFqU/nltOXe/cz8HBztZmFPCH9Z/gBlxATYLxAiOk2/gjcQE5FOSlyVLlnD3O3/DM4qwDPCRWatYsXSZ5rrxfJeWspSLmhfw4c2P4Ison/+DM1ewfsWaJI88s8zwHuedhM/bUHEmnoPKi6fLK2aN63ulozMa58u5aaz0NT+P1hSYoe8E1UPvkXP5J/EceIW25m0p92Pe9hvKZy8m5/JPptwuGb1PP0Viw5TSdR8g59JraXpzOYGm3bFj66lnfmXeSODMgb928Mqpe3i9+X1sarsBX3hs7vZVqyRuvVXkllskKsVNtP/PVxTrCxZfSeGSJURmVdPw/Bdkx9lpMgfrqUrymxTqb+VUQphgbvV88lZfSeNTym0LLCGKR/lt6+94g0Tveu2y9ThHGR9MNel8l3qOLmTg2KuqxzpyCpib8D4MHuyhCbUb1xwwMv8cPh/0bmujbcvpHqkC1NyzgOz507cSIcrRjbvwo92mL5csqpZoBw0O7O+mGWXbptKFlRQtUbqNgy4/R17frliWn5VPxZIzM+l66JWthFXWSyWVBRXkLZEny3s8rbTToNqmxFlE8RJl7/ijm3fhRz3Wy/U4qVoyj6GjfZxCWU5ePK+ckiU1I/fPt3PTgQMHxmQ6TOSCEjWzs2ON7z0eD5IkpZXO53bHHCc5OTmTdjwvvfTSyB/PbDZz0003Tdq+k7F8uXJmsrGxccpFTVCW9J8vGI3G8/J16ehMJl/Y9RybT4tkfzu5m/m5JXxp8ZWq7c7V71OP381AMHkfnvf62vBJYTLNY3OVNWqEJMzMKRz1PbqoqEYhagLsGmjj9iy1W3CfRpjPvy5cz7a3/qpKLo+nwOqkN6AsjW/0DIwcW5vHhTucvB/1xu5TXFM5vlRtUYS9e+GNN+Tbxo3gG3n7x1buW1wM11wj366+GkpKBGDss+Jz80rYc9sXGAoGyLJYMQhKd4EJE8sLKtjcFXNCHXZ18UjTfp5u1u5VajOamJ1VyKzsQq4qncXHZ6/GlGY5eLrfpTtmLKUyM49bX/8T3X553FNoc/K1JVefte9ioT1TtezF9nrVsouLa8/J3wudc49z9dw0VkKdyfsr9z31LXLX3E3vo19SrxQEhbgH0P23z2DJLiFr5e1jPg7PnmdVy7JX3o7JZCJrxW30xImaAG2b32CT6xM88WiQV1/dRkhM34xiNgS5coOFW2+FW26B8nIBTne+7Hl2l2p758y1mEwmTFkF2CqX4G/eO7LO37gLQySomdgdHFSXi1sLa7EX1arev0h/86ift0jvSdUye9mcaf851fouWQq0r0kNtgzVtpJfW3AKuQIIETBap/frT0bvtrjPhwT9uzrIXzy+KpOpIuQO4u9OHqzja3cn/Tz629TtibKqc1XbCxnqcbPoD5+Rz7kYihAeVo5bjTYTEb9yQjXijj1/sE977B/s9SuOURIlAr3a27rq+zBgwN+ufi8zq3NSvtYL5dyUjAvqlRcXF4/8PxKJMDAwQF7e6Bc98T0vCwomb6bkjTfeGPn/xRdfTG5u7qTtOxmJrs4zkeauo6Ojo0UgEua1tmOKZS+2HtEUNc9V6ge7U66PSCKbOk9xQ+W8Me335JC6h2Bd5ujno7UayeLbupu4vVrtlt/dp3ZgXl5Sx9rCKpVbM55rK+bwdkcDbd7Y+eTUcMxbc9SV+j15q+NEyvXxSBI0NMgC5uuvw1tvQV/yivqUOJ2wfj1cdZV8W7Ro8ip7DIKBHGvy8vBVBZUKUVOUJD655VHVdvfNWM5/rLiOSmeOShw9E6wurGLfbf/K745uwxsO8YG65dRknr1ekPkagsDzLWpnzkUan3MdHZ3xE2zXDrwDiAz30Pj9dQTald9FY2YBFZ95gpaf3ozoi2s5Iom0/eY+7D9swJyr7hsJEHH3497/EgZnHs556zFY7AS7Ggi0Ktud2OvWYs6R3fKZy2+j58lv0uMr5s3m23it+Q523H8lEREgvX7JNqOXS8tfYkPVk1xe+QKr/tKJwaIWT3wN21XL7DNiDnbHnHUKUZNIGF/DNpzz1eObUF+zapm5oBrBZMGUU0Z4ICZqhXqbRn0NicnnGIyY88/N38SoyzYRg1XdbifkTj5ZGuj14ihXV6RMd8RQhEC/UvAKDPrP0tGkj7txMOV6f4+HSCCsKTS7mxPaExkEHOXqCU2DxYhgFGLp4shhPWeCwID6Pc+ozcF1RDkWD7li2/m7vZr7ShR7A/0+pLC2UUAMRBg+0Y+nVd2yyVlx7n2ep5ILStSsrlb+wLe0tKQlara2xi70amtrJ+VY3G43e/bsGbm/YcOGSdnvaCSW3TudEwsa0NHR0UmXk8N9SAld+5rcqYNpzjWOjCLggSzijVnUdKsTy2ekITatLqhCQFC879t61BdJkiSxp0/pHqnLzCfHauea8jkpRc2ry2bT4h5UiprufkRJxCAYRhU1d/a2MBT0k6VxIQnQ2gpvvy0LmG+8AU2jX+NpY4xw2cVGrrpKdmKuXg2T3CY7bVYWqC/cAgkpvUW2DH629jbyNIS9M0mRPZNvLJ2aMclo5NvUY5TE34xMs5UFOdPbxaKjcy4hiRECHWpHdDyBNrWrvPD2f8c5dx2Vn3+W5h9dixSKXXNIIT+DG/9E4a3fUD0u1N/KyX9bSsQtz1AJVieZS29CMKqFycwVtwHyeeDJJxfywBs72N22Aon0J30yM+Hmm+HK/D+wpPefcZhjYkSwuwFbxQLF9pIk4Tu1Q7HMlFuOOa985L5jzjr6X/tfxTaeoxuTiJrqk5i5QL5GNedXK0TNYG/jqJWFwW6lqGkuqEEwnaWT2wQx52r3AjVY1eeCsCe5qOnvOTdFzeCgn8Tm1hHf6C1pzjbDJ0cZy0vgbR8ms1Zp4BLDIr4OpVPTUZqBwayuRBEEAaPdTDhOzA57z8x7E+xXOykzqtWiZnAo9hvn79F2qvp7PEiihHA6AT3ZdlEGDnTjaVGazix5dkzO8QVbXihcUKJmeXk5OTk5DA4OAnICeDo9mOrrYyf2uXPHVyKXyM6dOxVp7OvWrRvT4+vr63nmmWfo6+ujr6+PH/zgB2n11owXaAHKyrRnTHV0dHQmm+MabsM27xBhMXXPmnOJ0QQ8gLc703cmRjk5pLQj5lrs5KYhdmVZbCzMLeHAQCxNdFdvC8FIGIsxNgRo8QyqSsiX58sXFxvKZ/OtPa8kfY4NZbN5u+MEG7tiJXCBSJgO7zDlzmyOunqSPhZk9+rGrpPcVDkfgI4OWcCMCpknxv52xahsg3knEOYf5+JLRTbe8akJ7GzyWF04etuXn66ZekFzupGvcSGbyJrCaowGPRFUR2eyCPU2IYXG5g6zlM0jd73cN9M593LKP/0Arb+4U7GNv3mP1kPpf/VnI4ImgBTwMLT9EdV2TUMzeXLLx3jm27BrF8jtQdILWM2x9nH73ZncebeFq64CqxX6XvXS9YDSXRXsOq4SNUN9zURcyrAie52yz7Bjjvo6zlv/jmoZaLsvo85Kc2ENvhPvjiyXgl4i7j5MSSozxFBA5fy0FE9Oj+qzgSlvLKJmckHL36PtmpvuBPrV37uwN5x2y7yzxaiiJuBtVYua3vZhhfMSwFmZTTJMdpNS1DxTTk0NUdNW6MCUYSbsjn3ugi5Z1Ax7gkk/j2JIJOjyY82Vq3dSlekD9O/rVL8nuktzVC4oURNgzZo1vPKKfHH27rvvcs8996Tcvr6+nt7e2IX42rVrJ+U4du+O9YApKSlRlMang8vl4k9/+tPI/R07dnD99deP+riNGzeO/D8zM5PZs2eP6Xl1dHR0xkuDhqgZkUTavC7KbefHCVur/HxhTgkHB2P9Kvf0tTMQ8KYlSoLsEmkYVoqadVnpBcQBrC2sVoia/kiYff3trIoT1nb3qXt8Lc+XXSgr8yvJtdg1e4UuzCmh1JGlCMKJcnK4TxY1h1KLmpIrg9/81cvzLbKQeTR5K7dRqayJcN0GI2vXBflE3/cRsmI9sSvzl45/x5NMbUYe+VYHfQHtC6/rK+by/tpzN+hgsihIQ9TUS891dCaXgEbpefalH8a15W+QpL9y8T0/RoibKMtadQfG7GKFGOhv3qf5WG9D8rChxqFZvNJ4F6803cXRgaXwdHqvAaDQ3s5VVU9x3dw3uPXb/0jO0qsV6y3F6oCRYNdx1TLt0vPVivumrEIsZfMUZfu+hm2IoQAGs7Kvp8qpKQiYT4t5WmXjod7GpKKmv2m3qoeppegcFjWzi8FogoTKhbGWn4/mhpuuBAc0ei2KEmIwckZ6hIrBCIP1vRjMRrLn5o9LOA25g/i7lO+3Jccmu07j0CqpTnQkAjgrk18PGB1KB/KZcrFqiZrWPDuWLJtC1IyWn/tGESr93Z4RUdPXlXrbREETUr8nOjIXnKh5zTXXjIiab731Fl1dXSkFxYceemjk/3V1dcyZM2dSjmPfvtiJfeHChWN+/MKFC3E4HHi98gXRY489Nqqo2dnZybPPxhpu33jjjRh0d4OOjs4UoeXUBLmc9HwRNROdmlXOHG6onKcQNSUkNnae5Nbq9H77+wJehhJcMzPS6KcZZW1RNb8/prxo3NbTpBA192j001x22qlpNBi4qmwWjzfuV22zoVyeGKtNImpeVjKDYwnvSUGwiL79pUSOzID6mdBRzAtpv5oEMtww/zjCvBMw7zgLlhXyu2s+yaGBfoSn3YpNKxzJZ/+nGkEQWFlQySttagXXYTLzy4veN61dGVNFgUb5eSIXFdWc+QPR0bmA0BI1s1bdicHiYODNX6vWORdsIGPxdarltorFeFyvjdwPdTcg+t0YbDGBShJFAglip0rIHANlzkY2VD/BhqonWFK0g/yr/4Gi9/0JozNHta21REPU7NQQNU+m7qcZxTlnnULUlEJ+/Kd24Zh9iWK7RKemKbsUwSSXlloKalT7DfU2Ya9dqVouBjy0/+FjiMZSwpkfAsGCyf0IlpJz17AiGIyYc8pU7tMLx6mpHSAT8Wn3o5wIkWCE+l/uGOkFmbu4iBn3qvutj4ZWP828ZSX0bGtV9Lz0tmmImon9NAFnVQqnpk35HkT8YUVp92QR1Oipacm1Yc62QnusXD7sCSGGIqN+3vzdXrLnRP8/dsFdFzVH54IUNYuKiuju7iYYDPKVr3yF3//+95ppUZs2beKxxx4buf93f/d3k3YcR+OsKIsWjf0HxOl0csMNN/D4448DsGXLFp5++mluu+02ze3dbjef//zn8Z2OhbVarXz84x8f+4Hr6OjojJMTSUXNQS4uOPfdVr5wiMaEfn9zc4pZXzqTHxx4S7H8rY4TaYuaJ4fVSTjp9NOMsrZQIyyop5nPxt3Xcmouy4/1C7umfI6mqHl12eykx3PK3S+/J51BpKMLkerroH4m3W2laR+7CmsAZp9EmH8c5h2Hik4EQ2xW+9W2fuoHu2n1qmf/y53TR9QEOSxIS9T87vLrqc44e+E80wmtoKBE1iRJy9XR0RkfwQ61qGktm499xhpc2x5EjP99FQwU3/tjzUkYa+ViPIdeUyzztx7EMTNW9RbqOYXoH56QkFlX2sVVBX/g6qonmZ+3G0EA+8yLKf3QLmzVyfdlLqhRuQI1nZonlf00EQyaIqNjzuUMvPVbxTLP0XcUoqYkSQQTnJrmuPGPWWMsFOpt1Dz+zr99lkDHcQLFD4BRnuiM2C7GPndyDDhnC1NuhVrUtKmdmil7avZ6JyR2eVpcDBzoxpJro3B1OYJx4iag7q0tdG1uwWgzUXnTLFUpNkBAy6mJ3DvSkqPdd3y8uA73KMJtBvZ347/ag61wbHkbWqXnmXW5eFqGGD4R6wcf6PMR9oUw2WNuy0SnptFuwpqfPGQx0amJBJFAWLHPySBRXDY5zRitJizZVtW2oeHUye8Qcw5LoqQSQG2FDgKDfqSQtgseg4CjTB2cpKPkghM1LRYLX/jCF/jKV74CyCXon/zkJ/n3f/93Kivlxv3hcJgnn3yS73//+0Qicq+32bNnc9ddd2nu88orr6StTb4gLC8v580330x5DL29vSN9PYGR5x0r//zP/8wrr7zC8LA8Y/D1r3+d1tZWPvrRjyoCgHbu3Mm///u/c+xYLHX4C1/4AlVV+oWAjo7O1HE8SRly83kSFnRsqEcVhDQ3u4hLi2owCQbCcWV7b3c2pL3fxNJzQLPcOxmzswtU5ePbEoJ/EkOCqpw5CpfcNWXqiySLwci6khmq45Hcdjg+g0dequbhIyAe+hZI47wgsARhZiPC3BMwtwFqWhBMSQZ+p/l1/bssyVP3iy6fRk5NQOGUjbKyoILPzrv0LBzN9CTHYscgCIiSuhwLYEFOccqUeR0dnbETaFOmmgtmm5zObTBSfPcP6fhzrDdx3rX/gq1S25xhq1ys3nfL/hFR89gx+NtPfDz23J4xC5lLlsAdd8i32TV2Wv/3DbxHdmMuqqPw1n8j++K/QxilGk0wmrAU1CqEzERRUwqH8De+p1hmLV+gKbI55lymWuY9uhFu/trIfdEzgJTQvzq+5Nys5dTUCBYa3HI/g5v+jGhZOiJoyi/KjKfDjOMcvsQz51WQKO0lOjUlUUoZEiOFRYKDfqx5Yz8/eJpd1P9m10hgj7d9mJo75o95P4n7bHk2dh1+8sEDLPrSJapAnKBGT02A8Bkos/b3qt2F3g73hEVNwSiQUZmNsyJLIWoCeNuGyZopT9qGhgMqR6SzMjtllYqWeBnxhiZV1JQkSSUuRz9H5my1sBx0+UcVNaPl6aGhAGJQmSPgqMjCVuxk8KD2NZK9RDs4SUfJBSdqAtx+++3s2bOHRx6Rm1C/++67XHPNNcyZM4eMjAwaGhro7499CXNycvjZz36m6eYcD1EBNEpm5vjU96KiIn7xi1/wqU99ikAgQDgc5uc//zm///3vmTt3LhaLhebmZjo7OxWP+/jHP85HPvKR8R6+jo6Ozpjxh0O0eNTuOYAmz/khamr105yTXYjTbGVNYZUiQfzAQAc9fjeFGhdGiSSGBIGcTJ4uBsHAmsJqXm6Lhd41ugfo9A5R4siiwztEh09ZAhQNCYpSmZHDkrwy9vW3jyy7onQmDpOFjg54550MjA/cQehoNbTKgmLq7FxtjJYIkRmnTouYJ6C2BcGcPEjKbDASFkWFmPzXE7v41Bx1/+vpJmpeUzabusz8EdHaYTLzm4vv0kNv4jAaDORa7El7j+ql5zo6k4skSQQSnJqW0jkIBvmiOnf9JzFmFOA5+Aq26uXkXP6JpPvSEjUP7ezknXfhscdA7sSVfguuFSvgrrvgzjuhri5+TRY1X3lTVdqeDpaSWQohMzzQhhjwYjjtEve3HURK6CedGBIUxZxXgblwBqGeWGie7/gWpEh4pN9ooksTEpya+Wo1MtjTqLgf6DxGx//9PQCSsUi1fSgukflcxJSnNvsk9tQMe0OqlPBE/D2ecYmavbvaFfvu291J5U2zJ1T+PXBYKViF3SHczS6y6pRVGUnLz89AynfErw7Z0Ur9ToVWP01nZTYGixFHhVrf8LQOjYianhaN0vNRyqyNdvXfIOwNY01/SDwqEW8YMaAcd1pO98O0ZCmdmqIInY0B9u+Hjo5cBn0W3H4T7qAJb9CIL2TEFzTiF01YXpQY7jMw0LwCf8hAMGIgEhEQbBZEBALuMKIoIEoQkQQkSf6/JBjgq/JzRed35X+N5Ocv5POfb+HKK7Wvry4kLkhRE+A73/kOubm5/PGPfyQUCiGKIkeOqMst6urq+NnPfsaMGTMm7bl7epQ/bFlZ4++TsHbtWh566CG++MUv0tAgO3/8fj979+5VbZudnc2//uu/cvfdd4/7+XR0dHTGw0l3n8rFGKXR3a+5/FxDK/l8brZ8wbG+dKZC1AR4p7OBO2tGD4NpGFaX7deNoacmyGEq8aImwNaeJm6vXsRujX6aiaImwA9X3cztr/8Fd6eTjJNzsbivZdY/RdPJBeCiMR0TAKYw1DXBnAZsCxoJ1JzEYNZOs3SYzCzIKWFBbgkr8ytYWVDJ4rwyPvDOAzzVdGBku6GQX9VDFKBimpWfW4wmXrrmk/z3gbcIiRH+ad4lipJ/HZkCmzOpqLlWDwnS0ZlUwq5OZXk5YC2dp7iftfJ2slbePuq+LGXzwGCkcXBGrLT8r0vHdDxRIfOuu2C0S7GxCpqQLCzoBLYqWZBNJyQoHsecdbjiRE3R78bfvHekXD1V8jmAwWJXBSzFOzXFoJ+2X9494vaUjGo1J1WAzrmAWSMBXUhwaobTeI3+nlgfw7GgcjCKEv5eL87y8V+vazn5/N0ehagZ9oU0hUZ53eSnfEcC6gnjZKJqMrT6aWbOyAHQfL+8cWFBnmaNkKAU/TQBTInl50wsLEgUobMTTp2C5mZoaYGmoyInti5g0GdmyGfGGzQSMloIfQ78vmKC/iLCooAonXaU/kAASkZ/soMAltM3LcYqywm0t1v56lfreOkldXuoC40LVtQUBIF/+Zd/4ZZbbuHxxx9n8+bNdHZ24vP5yM7OZt68eVx33XXccsstWCzJPnzjIxruE2W8Ts0oCxYs4LnnnuP111/n1VdfZf/+/fT29hIOhykoKKCmpoYrr7ySG2+8kbw8vU+Xjo7O1HPcpd1PE86f8vMjGqLmvBw5iO6K0pl8b9/rinVvdZxIS9Q8NawUfS0GI2WOsQ2utcSfbd2yqJlYeg6xfpqSBPX1sHEjbNw4i8x3vstwm4Fh4JkxHcFpjGFWrYZrrzLxovNZ9uS+i2CRB+tBZGk0nkpnDj9ZcyuLc0upzczDIKhdjP807xKFqAngCipLmgQESsf4nk0FdVkF/O4S7dY2OjL5ViegXZZ1se7U1NGZVIIaIUHWsnkaW6bm2DF47DErD7x4kCPdc8f02LEImRMlWQJ6VNT0J/bTRDskKIpz7uW4Nv9Fscxb/05M1NRyaia4M8351UpRs7cRSZIQBIGuR76Iv3nvyDotUTM+nflcRMsJm9gbNVU/zSjjDQtKTO0GCPRMUNTUOJb4fpagHU4T5UykfGsJqGMVNYcb1OP3jBlyr1BzthVThkUhQHvb5JZ5YU+Qnh3qsefoTk21qBlfmi+K0N4OR47A8eOyWNnSAh0d0NMDg4Pg8UAgAKGQvL0aK8lFyulXSROJCDQ02LjiirN9JGeXC1bUjFJXV8eXv/xlvvzlL497H6P10Ezklltu4ZZbbhn382lhNBq59tprufbaayd1vzo6OjqTgZbbMEqzZxBRSt0ncbogSRLHhnoQEJidXahYl+jUzLHYKTrtHLmosBqr0UQgLpDg4ZN7AVhXXMe6khlJRbfEnpq1mXljLlFeXVCFgKBwy/6qfguFNifbe2IN+SVRgJYydj1Uyx+3y2Jmr+JPN8YBnTECNS0w9wTC3Aacc9vZ/vFvIwjg2Odk7+7k7oNci52XrvnkiDCcjPUldczPKebwYFfSbYrtGZgNek+ic5F8jdRbgDyrg9lZhZrrdHR0xodW8rm1PL1+grKQGV9aDpCeoLkgfxfXVD/G+64f4NL/+F2aRztxkomaURKdmoLVibViQdL9OeasUy3zHN1I/vX/CiRxaiaEA1kKahRiqugbQvQO4tr6IAOv/0KxrWTQcGqmIfhNZ+x1a8m+9CMj4nDehs9hTUh0D6VIPo8SDWcZC5IoEXSpy/cnkqYuhkVNsTDx+FIJimHvGXBqaomafWMUNU9p99ME2UDmLM/EdTQ2hg0O+gm5g7S/2qBIRgdZ0EzVG7OzEzbtsLNpWxUtA3baXXZ63Fbcv7PjDYDfD5Hk3YrOWwwGidra5IL4hcIFL2rq6Ojo6Jx5jidJPgcIRMJ0+8c++JxqJEniw5se4oGG3QB8cvZafn3xHQiCgCiJKlFzbnbRSMNzm8nMRYXVioCgwaCP39Rv5Tf1WwGYl13EN5ddw/trl45s4wuHaEsoBRxLSFCULIuNBTnFHByM9Vj2hkN8aesrcKoSjl+BdGwGnKgBn51vjfkZTmMKQ22znFA+56Qc8mOLXWDNySsfeU+uKJ2ZdDd2o5lnr/74qIImyAPnf5x7MZ/Z9lTSbaZbP02d9Mm3aSegry2sThkooKOjM3a0RE1LaXKnZkMDPPIIPPpovJCZHsvmD7He9j2urX6MysxTABQs/+bYdjJBLCXJRc2Ib0jVX9Reu3Kkv6gW5sJaTLnlhAdiLjTvsU1IoohgMCRxaipFTa0E9O7Hv87Am79WLRecNZAwJxwePrdFTUEQKP/knym4+asIBhOWIrVdN93y87ESGg6AqG6VNB6BNEqgz6u9z+70Rc2pcmoGXX7EsIjBNPoEdqp+mlEcFVkKUROgZ1ur3Lc0DrffQLN9Dk/9Jxw6JJeCd3ZCfz+43bKzUib79O18RvlZEQQBQYDocCc27JHIywvx2c+2UlAw+aL3uYYuauro6OjonHFOpBA1QS5Bt6bc4uyztbtpRNAE+P2xbdxStYAbKufR5B7AH1EOKuYkODmvKpuVMvX8iKub+95+gJmZBSwvkHtKnXJrhQSNrZ9mlLtql3DgHTccr0E6USMLmI0VEBn/UMDphIsvhnXrwDK3ka/0/wYhSU9MgDk5sVCDlQUVZJqtDIeUrgiDIPDQ+g9ycXFN2sfxwZkr+Op7L6r2FaV8mvXT1EmfgiROTb30XEdn8gm0K5PPMRixJgh/LS2yiPnww7Br19j2vyB/F7ffNMRHv3klWfW/o/uRHyjW26qWjuOox485vwrBZEEKx0SyoV1PkHftvxAZ6o4lc5zGUnEZzc8eRYqIFF9aja1QOekiCAKOOesY2vbQyDLRM0Cg9SC2qsUqp6bBmYvRrmxDppWAriVoGpy5GJy1RIaV59xz3akZJdGdGY9W+bklx6YoHQ+7g4R9Y0vGDg5qjyG0ksLTJVkydmg4SMQfxmg7HSI1kMKpeSZEzYDGWE2S3ZS2Au3JxHjcp9Sl59F+mlGcFXIFkjdo4GB7Nkc6Mzn5vJ2WgRX0DFtx+c34Q8ZYf8ppjiCAQRAxChImo4TFKGI1i9hNEWzmCA6L/G/xolyCDd04zGHslggOS5jsPCPWkI8MS4gMW4QsW4jihTnMvmsODgfYbND96lEGdsb63Nfeu5C8xdqT++FwhH37DmiuuxDRRU0dHR0dnQnjD4fY1HWKYnsGi/PKVOtTOTVBLkFX+yWmF9t71A6Lnx7eyA2V86hP0U8zyqfnXMT/Ht5ETwpXqoTEX07sHBE1Tw6rQ5RmZKbXG1kU5X6YW7ZEb1cjndiQ1mOTkZMDl10mi5jr1sGyZWA+fb1QP+jgq0+lni2eE1cubDIYubJ0Fs80H1Rs8+uL7+TmquTlfVpkmm18aOZKfnlki+Z63al57lJg0xY19ZAgHZ3JJ7GnpqWoDsFkobMTHn9cFjK3aP/MJiVaWh51ZGatvpuKGVfS9upe1baJvRPPNILBiK16maLMXPS6aP7RdWQuU7YKkzDSc2odYZ8sOvTv62LxVy4dEaWiOOderhA1AbxHN8qiZl+zYrklX/07lujc1Dxui52KzzzBsQfV9bZiIIIYimAwn78tV0IafUMzanLo39upWObv8ZIxSvhMPEGXdhmvv9eLJEoIhrGLb4m9M+PxdXtGji/Qn6Kn5hkoPxeThBIF+nxpiZoDB5TjXrffwObGQvZ9Hfbvl13cHR35DLmuPG1UnS7CpYTJCBargN0uT85nZUFuLuTng7mjkxyTl8JMP8WZASrKJdb/23JycsBggON/2c/QUbXhIIrJaWbJN9Zx8MeNBEYRw0uXFlIW11LXcfNMnEV2fF0esufkk7uwKPmDdRTooqaOjo7ONMUV9PG1915kW3cTlxTX8p8rbsBpnn5+RlfQx8XP/3xE2PvW0mv45rJrRtb7wiFaPIMp99HkGWAWOWfwKCdOYm9LgDfaj3Ogv4OjLnWQyZxs5WAk3+bk4O1f4ldHtvB25wm29TQremxGeb392Mj/Tw6pnzNZ+bnPBzt3xkTMrVvl0p0YYx9QFhfHBMx162DhQnlQp0VNRu6o+0vsQ/rNpRt4vf0YnnAQgyDwnytu4BOzk4cwpOIf516ii5rnIXlW9cWVUTCwqqDyLByNjs75S8QzSNgVE4UG/Xlsavocr14Fb7+dLFRDm2jYz513SoR/fC0RT+xk5G+Rk3rjA28ADPYsTZfimSb/hi/T+vP3KZaFB9pU7kjRsoiwL3YCFAMRBg50U7BKOZGr1Vez75X/QQz5iAwrxwpapeajvQeC2Ubl55/DWnUJUmST5jYhdxBrrj3lfs5ltJyaGTXZKlEzMFZRM0lYjxQSCQ0FsOTYxnagpC5d98eLmlPt1EwmaqYog/f74Z13YNObIbY8XUxLfy09bguegImIJKAeZ06NkCkI8gS7wwGZmZCXB0VFUFYG+YKLzJ5WqnO91BR4ybKFyVtSTO09C1X7kUSJ3f92WNEuILMul/icZUt26uswW5Hz9L+OUUVNe5Fy0tZgNlJ8aVWSrXVSoYuaOjo6OtOUb+95daTf4t7+djJMVr6/8oazfFRq/nB0u8Kp+P39b/DpuRdRfLqk6qSGGJhIs2cQrDln6AgnBy1RE+Bnhzdh0kjlnputnmEtsDn55rJr+CbX4A+H2NHbzOe3P8O+/lh/oaOuHprdA1Rl5Go+Z12WLGp2dcW7MGH3bjnNcSIIBf28/9osNlxh4rLLYNas+P49qbGZzJQ7slU9QONJFHqX5pdz9I6v8E5nA/NzijVdvukyN6eIq8pm8Ub7cdU6vfz83EWr/HxxbikZ03CCR0fnXCbQcYThYBZvttzKS433sLV9A2Ep/dLd5cvh/e9PTC0XaKxcjLf+7ZHtgh1HiXgGCHTUKx5vq1p6VvrkZq28nYJbv0nvM/+ecjtDproPtL9XLVhZSudizCxUCJihnlN0P/Il1bZarkyLhtAZRTBbqfznZ8hYcBXejuGk24XdoQtK1DRYjdhLM1XbjbUXplbyefy+xiNq+lL09owenyRKo6SfT65TU4qIiCHtWYpAv4+hIXjjDTkscs8e2XXZ0xPf29IMTI2L0GgEux2ys2WhMsPdS1mWj5o8D3WFbpavNLLiX5YlffzxP51k6Liy6mngcA9VcaX/UYIuv6r/qTVP+T2yZKX+DNgK5TGLvdCJi9RVarYi7UoUnbGji5o6Ojo60xBJkngwrn8jwLPNB6elqLm5+5TifkiM8HZHA3fPWAqMXnoOck9NrDVn4Ogmj1NJRM0HT+6mLsE9aTYYRy0Tt5nMrCup4/21SxSiJsBr7cf4+Ow1I6nxUtgIzWXQUM13Xi1i53Y4dUprr+ljMMD8hRHCdQ2cLH4P57x2fnXTldwzI/ngcDRmZOalFDVnZ6n7gZY6sib0nPH809xLtEVN3al5zqJVfn6RXnquozNpeDzw/PPwt1+U8dq7XQTF9IWbhQvhnnvg7rthZpLsN1uCqIkkMrTjMRCVpdNT3U8znsLbv03Y1cng28mT102FC2BIuUwrLVoQBJwLrlaVoGthzle7sgy2DIwZ+UQSemoLJguVn3uajEVyJUxoSLv/I8hOzfOZxPJzc4ZF1d8UlGFBnmYXzc8eJeILU7yuisI1Fartk5WfR/eVNWtsQY2SKI3i1JSPL+QOIoWTW6HD3sl1akb88ndv0Gti26k89rbmcKw7k/ZBO64fmglNWYq4hNUqkJUFJSVQVQVz5si/K0uWyP9aLMpHHPjvowrx2SYkFwYjwQjDpwbVzxoSGTjYTcFK5UR6UMOlakmYHDCP6tR0nP53FMHSIGDNH73MXyc9dFFTR0dHZxrS5nXRG1AOhNp9Q0m2Prvs7WtTLXunMyZqNqQjanoGYeyh3lNGRBRpdKubooOc3n54sEuxbFZWAaYUCanxbCibw9ffe2nkviTBM3vayNwLW/+2BPHI1dBUDmHZMfPo+F4CGRmwdi1ccol8W7MGsrKMwGyCkRmYDcYJu2RqM/PZ1KWttlY6c854+4SbKudT5cyRP09xVOhOzXOWFfkVZFtsuIKxi5g7ahafxSPS0Tn38fvh5ZflHpnPPQdeL0B6kwWzZsWEzAVptD+2Vqq/r4Ob/0+17GyKmoIgUPqhXxIZ6mJ49zOa2xizZ6hEzWQBMgU3fw3PgVcUZfdaaJWfA9hqV+E58HLs+EwWKj73FBmLrxtZFhpKLlxqlWefTyS+PpPTgsluxpRhUSSjRwVFf6+Xo3/YjXTandj89FGcldk4ypTuztROzbGHBQVd/pHn1Nzn6RAhLTEtHjEYQYqICMbRU8k1Hy/C9u3w4otya6L6wya6uq4gLGqVjE8uJpOE0xwizxmkNMtPdZ6XWUVuLl5nYMMX5yZtaZQMo8MMcX+nVC7W4Yb+pGJx3+4OlagZ0HDLWvOUkzyjlZ/bC6Pl56lFTVuBPa2UeZ300EVNHR0dnWnIbg2h0BX04wuHsJvSLwc70/QHvCoBCWBjXMq3llOz0OZUBOY0e7QFw+lCi2eQkJj+1HVimXUqZtvKyDw5j6GjxUgN1dBQxXOubJ4DYNWYjzVKZWVMwLzkEli0CExJzvoW4+QMB1K5UxP7aZ4JjAYDn5l3KV/a9fzIslJ7lspJq3PuYDOZeWj93/GZrU8yGPTxhQWXs740iSVMR0cnKaEQvP66LGQ+/TQMjWGetLpaFjHvuQeWLk2/LQmArWqJapnvxLuqZdYpDglKRDCaKP+Hh2j64TX4jm1WrTc4y1XLAv0+zQAZW8VC6v7zMIMb/4Rr6wME2g6pn9BgxD5Du4d04W3fxH9qJxF3H8aMfMo++X9kLlFW6lyoTk0pIqqELFOGPC62FTpwx4uafT7EsEjj44dV4uLAgW61qJmiBHw8CeipQoJA7qMphiIp+1hGCfvCmDMso27X3y9PVLz5JuzdC01N8nddUlRVT6aYKWE0Qna2QFmZ7NhesgQuukgee9oMYfZ9V9n7VTAbWPCptWMWNAFMduV4NZWL1ZUi0Md9apBAv09RXq71d0hs42DOHqX8PNpTU8M5rNiuUC89n0x0UVNHR0dnGqLlfgTo8g1Tk2b69VSQ7DiPuLrp8g1TbM/kxJCyMb5JMHBp8QyeajowsmwoFGA4EiTTOPqA7WyQrJ9mMrT6aYI8qDxxArZtk2fLt22D/fsNRCIfn9DxGQzyIDJexKw8CzkqtSnEw/jk8zPJPy+4jD39bTx8ci95Vju/v/SutF2zOtOTa8vncPzOr57tw9A5z3EfegPv0Y3Y69aoBKRzlUhEDvZ4+GF44onE8LjUFDq7uO8Txdxzj+zsH6+R31o2HwQDSCmShowmebuzjMFip+rzz9L4vcsUQqTBngWWfEA5FpBCIqHhABYNocOUXUzBzV+l4Oav4m85gGvrgwxtf4hQbxMYjBTe9m3M+donasfMi6j776MEO49jLZ2L0Zmj2iY4nFzUDJ/HombYoxaxzE557GgrdOKOLzcWJVqeP4anSd0WJ7EfasQfThqeA2Pvz5nWYyRZLE0VEhQl4g2pRM3mZnj8cVnA3L9f7rUePEN/ekGADKdIvtVHVa6HWYUeFlcMsnZFmFVfWpni98FM9vwCXIdjBoeyq2rH3fPVaFcaO6SwiBiKYDArx3mSJOGqT10p1r+nk9KrauXtRUnVexPAkthTM4VT02AxjpSnG60mzNlWQi7t76neT3Ny0UVNHR0dnWnInn5tsbBzmomaib0g43mns4H31y5VOTVrM/M0nXMdQQ+Z9vND1Iw6Ndvb5UTynTth1y7537FcVCYjJ0cuJY+Wk69ZIyc+nm1SOSLH4l6dCCaDkfsv/wC/ufhOnCbLWQme0NHRObdwvfsAbb/94Mj9kg/9iryr/kFzWykSZmjn44h+N1lr3o/RnjVVh5kWoihPmj38MDz2mCx0pEuutYdrqh/n+pqHuewqJzO+9OKEj8dgdWApmUWw42jSbaxl8zFMk/AvozOXqv/3Mi0/vRV/024wmim++4f0NmlvH+jzaYqa8dgqF2Gr/E+K7vwe4YFWMJox55SmfIwpIx/TzOTn1FROzfNZ1AxplNabRkRNtTuud7v2eDqxnDxVP02AkCtAJBjBaEl/kjRaXp5ymx5vSodolKaTIV56UA7w2b8fOjomHg6phSBIZGVKVFUbmD9fHmdu2ADz5sHxP+xRisZA9VXzRh1nVd86lzbHSQK9HnLmF1I0gYTvRKcmyC5WS4Ko6e/yJBUUo/Tt6aDkyhoEQaB3VzveVqV93ZRpweRUiqhGqwmjzaQpgNsKHYr3wl7kTHoMicnnOhNDFzV1dHR0piHJHJAd06yvZjLxFWRR8+bKBbQmBMfMzCqgOiNXtX1n0MNsu3r5dEArJMhuNOOLxEaUktsOjZVwqpI/PjaPr+yTRc0JI4hQ2QEzmvj0DWX8yy01zJrFuMp2zjQzUoiaU1F+Ho+ejq2jo5MuvS/9UHG/7+Ufa4qakiTR8r+34d4ni329z32Puu8dwGDLmJLjTIYkySnFDz0EjzwCLS3pPzYnB269po9L+u9lTcmbmAxyqxVH+ecn7fhsFYtTippns5+mFua8Cmq/tR1/6wFMmYWY8yro+tVOzW0DfV4yZ6Q3dhEMBs1woPFwoZafawm28eXn6RLo9SpaB6Tqpxn/mMSS9VSk4+70d3tUZc+9bguvHSliZ1Mux7sz6XFbCf/X5A76BCQybGFKs3zMLPSwqNzF2to+KnP91Lx/PvnLlKK7t31YJWiaMszkLSke9bnMWVZq7pg3KcdtdKhbcEV8IchSjvlcRzVcmgIQV4Yf6PPhaXZhzXfQ9vIJ1eZFays0BVtztlVb1EwQKm1FTk33J4CtWBc1JxNd1NTR0dGZZvT5PZp9KkF2ak4nkomvAO90NIykd8czM7OAKg1RsyM09n5FU0WiU1PyW7jbcjt/frUTqbFCFjO7Y8ne70zkybKGoK4Joa4Z6pqguhXBJg/iP3rTZ5kztdrgmCiyZeAwmfGG1faBOVMsauro6OikQ8QzQKBlv2JZqLuB8FAPOJTnqkDTeyOCJkCotxHXjkfJXfexKTnWRI4fl4XMBx+Eo8k1QxUZGXDrrXKfzGuuAf/uV2j7zWuKbaxlkyNCwOmwoJ2PJV0/3URNkHts2quXjdwPJwkk8WskoE8FoeFUQUFnwMI3TRit/DxdpIhEcMA3kkCdjqjp7/GMUdRUjmtNGWbCCcnt7nYPr26x8fqeuexvz6F90EYwYmAyA3ysVjldfO5cuPhiuLiyg+z6w0knxwMan+muzc2qZYVrKlRl32cak10tamr11dTqp1l8WTVdG5WW677dnUhhdZ9Wa76d4nXaQV6WLCv+LrVgrSVqaiKArUBPPp9MdFFTR0fnrHDU1c2hgS5WF1ZSodEr6EJmb4qS7q5pJGr6wiHqXT1J1x9xdbNZIwl7VlYB1U5tp+Z0JBCAA++ZkPZdjHSqUhYw24v4kzTxWXOLBZYvl8t7juTv4FXra5A/kLQ3UV1mgfaKaYIgCMzIyOfgYKdiud1oplL/nuvo6ExDvCe2JqZoAOA7uQP7wmuVy45uUm0XaN53xo5Ni/Z22Y350ENyS5N0sdngpptkIfOGG8ARd03taj+i2t4yiaKmTSMBXbH+LIcEpUPEpy0UBvqmfkJWEiVCKXpqhtypy27PZbRcqKbTvSYtOTYEkyFp4nUi/h7vGEXN9P/WYU9QJcBm1ORweIePF/fks6Mxn4ZeJy6fmckSMAUBsrOhpgaWLYMrr5S/8zk5yu063grQfiz5fhKdo6GhAAP7lX0sBJOBwrUVk3LcY8GoUX6eKEiGfSHcCX1UbUUOStZX072lGSkS+73v29OhmVBfddvcpOnkycKC7AmierISc2uufcrF4PMdXdTU0dGZch5v3McH3n6AsCSSabby8jWfYm2R9mzYhcievtak6zq806f8/OBAB5FUjf+BPx/foVo2M7tQs/y8I3T2RU2vV+5VtHu3fNuzBw4ckAiF7puU/c+YAatWyamQa9fKKbLW0xUzzzU7ee2N5CnwWWYb+dbpP7Nbm6kWNWdnF2IQpmG9vI6OzgWP7/gW7eUnt6tFzYbtqu2C3eqyxclmYACefFJ2ZL71lqYGq4nZDNddJ6eW33xz8t7LAQ1Rc9KdmimwVaoT0qcTkiglTVnWcrWdacKeoKKMVr0+pJnKfj6g5dSM9j0UDAK2Age+TrdqG8FsUIlX/h4P2XPlyeLg4OhC8FgS0H3dHsIibDxWwBvHijnUnkWX204oPHkCZm4uzJoluy9vuw0uvTS91kSpApFALWp2b2tVCIEAeUuL00pjn2xMGuXn4YQJh6Hj/SAqjzd7TgEmu5nseYUMHuweWa4laOYuLiZrZvL8gmRhQbYi5Rg9mXNYLz2ffHRRU0dHZ1KQJIn/OfgO/3t4EzkWOz9dextXlM7U3Pbbu18hfFoMGw4F+OGBt3jiqo9M4dFOb/akcGpOp/LzVI7SKLt61QLtrKwCsiw2cix2BoOxgdNUOzVdLlm03LVb5ME3u2k4aGO4JRtJTBxwjm8AWloqC5jR28qVkJ+85STrS+swCYaR70YiMzLzzonQmxkaQVazpyj5XEdHR2eseI9t1lzuO6melPOf3KZaFuw8PunHBPIk2/PPy47MF19MP9XYaISrrpKFzNtuk4WP0QgmiJrGzAJMk1gZYC6oxmDPQtToC27Or8KYMX0CELUQg5GkImKgz4ckSVN6fk7VTxMASS7JPRui05kmrBEUFC0/B7mvpkrUFKDmffM49cghxeJ452WiU1MwGRCMAmIgMrIsMIpT0+2GBx6Ap5+GXduz6B24kslxYUpkZ4jMmW/k4ovl1hHr1o2/t/pYRE1Jkujf06napviSyekNO1a0goIiXuXr0Uo9z5ojD8Dzl5cqRM1EDFYjlTfOSnkMWqKmYBSwJiSlm5xmTE6zSojXk88nH13U1NHRmRT+5+A7fGnX8wC0el184J0HOH7HV3AmhHUMBLwccSlPJrtTOBMvRFL1qZxO5ed7U4QEJcMkGKg6XYZcnZHLYNzAqeMMiprd3bKAGXVf7t4NDQ3RtQagZGJP4PRCTQsZs7r48d3LuGldJmVlY9tFptnGRUXVbNIo2YfUITzTCa3j1Ptp6ujoTEfEUEBTvARZ1JTiLJHCcCfhAfV5L9h7CikSRjBO/LIqFJLTjR98EJ56ShZJ0uXii+G+++Cuu6CoKP3HSZEwgS6lMGstm5/+DtJAEASslYvxaQjI1mnYTzORRCdYPGIwQng4iDlr6sLpgkOjK9xhd/C8FDU1y8/jEqrtxRkMHFBeZ5SsqyZ3URGNjx9WOA5TiZqWHBtGm0mRiO3v9SoE7NZW+L//g5degoMH5cnyGOMtL5bIcEhUZLpZWjnIupm9rKwaoGB5CbV3LxjnPpVEAqlFzfBwEDEYwWAxEuj1qt6bjBk52EvOTjiaUaunZtz3UxIlho4p+2karEYyqnMAyJ6dpyk0Rim/pm7U77I5S11+bs13IBjVKrOtyKkKWNKTzycfXdTU0dGZMJs6T/LV915ULOvyDbOlu5Fryucolmu5+1o8LvzhEDaT+kR1oeEJBTiaok/ldHJq7utT/i3NBiMr8yvY2tOU5BGy4GUyyAO9Kmcu++I+DwORAH4xjM0gn5p6/G6ebjqI2WDkfdWLyLJo97CJRxTh1Cm5hHzfvpiI2TqZurk1wKxFAW5el3XagSnRl9VLk8fHFaXLKZxACu7VZbOTipp154iouSBXLRAvzhujwqujo6MzBfibdiOFtHvpiZ4BQnGl5YaOA9o7iYQJ9TZhKa4b1zFIEmzdKguZjz4KPcmHACoWLpSFzHvugdrasT1vsLeJ4V1PMrTjUYgoL/Ans/Q8ii2JqDkdQ4ISiSQpPY/i7/NOqaiZqp/myDaeIPZRtzr3SBSjjHaTQkzKX1lKx9uNI301HeWZlF5Vi2A0YM134O+OTaBH08mliEgwwf1qybFhzrAoRM1THRb+9rkwb24yc+wY+Cah84DRIFKcGWBeyRCXzezlyjndLP/CCup/tUtRQp2s/cF4GM2pCbJb016SoZnenTPv7E1Ua5Wfx/e79bYNqT4jWTPzRvpjCkYDeUtL6N7SotqPoywzrT6hWk7NxNLz2HK1qKk7NScfXdTU0dGZEF2+Ye59+37N3oq7+1pVouY+DVFTQqJhuE9TDLnQ2D/QgZSiUVKnb3jKy5y0iIgi+waUf8sFOcVsKJ+dUtScmRUrZ9Pqq9kZ9FJjy8ITCnL1y78Z6c34l+M7eOO6f8AYV2szPAwHDsQEzP375dtYnC2jYbNBwSwXrQWHEGpaoLYFyrr43Q2fZn1p1umtBGZSxRomXoqzoXw239rziua6GVnTOyQoyuUlM1iRX8F7px3Ys7MKuaVqctwFOjoXGpIkMbjpz7j3vYi1YiEFN34FQxoTPDrpkaz0PIr/1E6wy79fhs79SbcLdp9QiZpi0E/Xg5/HteNRLEV1lH38T9gqF42sP3BAFjIfegiakp82VVRXy0LmvffCokWjb5/I8L4X6Xnq2/JrS8JkhgRFSRYWdC6ImsmSz6ME+nxk1qZR5z9JjFp+juzUPB9JfF2mBDeqJdvG/M+toXdnGyaHmaKLK0dCWWyFSlEz7AkR9obk9gIJPRgtOTY6Axn89m0H754soLHPQTAy8XCXnGyJ6kwXq6r6uXZ+F7UF6pJ2a54dk92kEOe0gqrEsIjrSA+SBDnzC5MG2yQyUVEza9bZaxehFRQUjis/10o9j/ZNjZK/vFQtagpyOFA6fWit+XaMdpMioCizRvv7nzO/kN7tMYe/JceGo/TsuFzPZ3RRU0dHZ9xERJEPvH0/HRo9kgDe0+inuCdJafWxoR5d1CT5+xMlJEboD3jJt53dWb7jQ714w8oB1pK8Mi4vqQNeS/q4WQpRM0e1viPkocaWxR9P7BgRNCVRYOMBF19racHRWc2+fbKIefLkpLyUGDY/VLVBdRvfvnU+d64vYM4c+NTWl/i/E7sUm56pFPKV+ZWqXqNRtHpVTkcMgoF3bvgn7m94j7AY4e9mrsRs0FMedXTGg2vz/9Hxx48DMLzrCSJD3ZR++Fdn+ajOH5KFBEXxn9wBC06Lmsmcmpzuq7lIGSo0+M4fGHjrt/J+Tu2i/Y8fhw9t55FHBB58UC5XTZfCQnj/+2Ux86KL5JCQ8TDw1u/o+MunR93OMWfd+J4gBcnCgs6F5PPRXHJTHRaUjqipVaZ9PhBK6Klpdqqde7ZCBxU3qPsi2grVbjp/j3ckeavTZeHpfeVsbiig8ScZ+AMCE+mJaRAkijP9LK5wccPlPv7+p7WYTbDn23s0A2oAjDYTJrsZo00paiYK65IocfyPe3A3DgLgqMhi7t+v0CyBTiRdUVMMiwyfVAZYmrOtZ9VpaLAYwSAoROh4wVern2b2bGWlk700A2d1Np64hPTCNeU4K7MSH6p9DGYjFTfMovmZo0hhEWd1NvmrtCuSsmblUXZNHT3bWzE5LVTdOietv5HO2NBFTR0dnXHzrT2v8FZnQ9L1Wr0ytZyaACeG1CehC5HRRE2Q3ZpnW9TU6qe5LL+cNYXVWAxGgmJE41FKp2aVhlOzcSCI85STn2zvRzz6PmgtlW9+Gz+YvMPHmRvCU3YSqtoQqtuguhUK+xEM8iApf42BBfMvBeDksHLW12o0Ue5Mb+AzVowGA1eWzuTJJvXF87lSfg5gN5n55Jy1Z/swdHTOeVxbH0y4/wAlH/rlWXfrnw9IkpSeU3PBRyEcROg5mnS7YEJPSoDhPc8C0Ocr5OWm9/PiS/ex9zvp/90yMuB975MdmVddJSeZTwTv8Xfp+NtnRt0u75rPY69eNrEn08BavlC1zGDPwlxQM+nPNdloueTiCfSln4o9GaTn1Jy8cuXpghiKKIJ7AEzO9PuGJqZR97otPP5fAq9utnP46OX4Q0YmImJarTBjBly6MsBF0n4WV8RMH0WXVGKxAJxOaO/QLiuynA6bMTnMCrE88TPobhocETQBvK1D9O/rIn956ajHmShqaiXDB/p8eJpdsos1jqxZZze0UhAETA6T4vMdFXxDwwG8bco2XY6yTFVrCEEQqH3/Apqfrsfb6SZnXiEVN84e03EUrCwje04+YV8YW4EjqcNTEARKr6ih9IqaMe1fZ2zooqaOjs64eKHlMP+5/42U2zS6B+jze0YEOH84xOHBLs1tj49B1PSGg/zi8GbqXd28v3Yp11XMTf/AJwFJktjd10ZIjLC6sBKDMHkzbumE73T6hs+6q1UrzGhpXjl2k5m1hdVs7NK2UUZFTbcb3EeLkTatQmorgfZiaCvhxwM5p7ecvL9peTksXy7fli2DrLpebnzvRxjE5DPV23qa+AyyqNmQIGrWZuRN6t88kavLZqtETZNgoPJ0wJKOjs6FQ6i/WXFf9A0hegcxOqeu1PV8JdhxlIhbXaoYT6B5L0RCGHrqEcTkIlEwrvcmwNAQPPzaHJ47/AW2dVxNRErvkstigRtukB2ZN94IDu02bWMmNNBO68/vUPXOHHnesnlkrbqTrFV3KUrkJxOjPRNrxUICrTGLqr1u7Tkh0Ie9qZ1t/il2agaHE1yYCc41OD+dmlrhLonl56kwZDt47kAJLx0q4XBHFu6AiYmImBkZMHcuXHMNfOQjMOu0ObR/7wCnHlFWscW7G21FzqSipjVXbi+SGIgT9oaQRGlEPPN3qcM1Bw50pyVqJgrD9uIMvG1DxHe/CvT7GDqu/n3MmnX2J9iNdrNC1Iz2vNUqPY+mnidizbMz62MTm7wxZ1oxZ05dL12d5Oiipo6Ozphpdg/w4Y0PpbXt7r42NpTLs1+HBrs0e28CnBhKvzP+JzY/yiOn9gLw1xPv8cb1f3+67PnMI0kSf7fxQR46uQeA6yvm8tzVH5+UQXlIjHBwoHPU7ZKV+08lWoFPS06HwVxeWjciakoBM3QUQVspUlsx//lwLZ86Gu0fVgLcPWnHZDbDvHmwZAksXiz/u2SJMgU2JEa49IX7CaQQNAF29MhCgi8cot2rfL/PdAr5NeXq2eKajLyRgCUdHZ0Lh/Bgh2pZqL9VFzUnAS2XpmB1IgViYoEUDiL0HsPQkbyfJsjl536/nIL84IPw/PMSfv/P0zoOQYArrpCFzPe9D3In+U8rhgK0/uJOwq6E8YXRTOHNXydr9V1Yyyc37TwZhbd9i9Zf3wuRMILFTsHNX5+S550o6Tg1p7LfeaJT01boUIlcYc/4Rc3goJ+2VxsIDQcpWFFK3tLp0R5K6zVplZ/Hs2UL/Pa38NZb0NaWhSSNt8e3hNMSYU6Zh/s+k82HPwwFSToR+brVgmN86bu90MmAagsZa5xTM+HpEYMRjDZZvklMJAcYOt5H2BfCpJEQPrIbUVKln5udZsxZVkKu2Ocq0O9Tv98CZNWd/VZIJruZ+G9ANP28b4/6fJk959zoR68zMXRRU0dHZ8z86ODbDCT0/Ms0W/nGkqv58q4XFMt397WOiJp7UrgQ03Vq7u9vHxE0QQ4Z+u/9b06ZqPl2Z8OIoAnwUms9TzTt586aJRPe9+HBLlXZ9uysQo4lCL5d3rObgC5JkspRWmsp5uRhG4cOwbFtqxE3V0BbMfTmgRRzNb49ScdQXKwULxcvlmfLLaNM2P/X/jfYldDr1SgYqM3I48Rw7DPYMNxHj99Nj189k36mRc3azHwW5BRzKM7VvLKw8ow+p46OzvRDDHgRNSaxQv2tZ8xNdyHh1einmbvu4/S/9r+KZYbOQxg6tftpRkQDO7vW88LWD/LG7yRcrqioNbq4tWqVLGS+//1Qpt2OTRMx4MV94GWMzjwccy8fVUjreuCf8Z3Yqlpe+ne/IPeKT6X/xJNA1qo7qSubj79lP/a6NVgKxxjZfpYIjyJqioEIYU8I8xhcg+NFiogqscmaYyM0HFSktI83KEiSJE4+eABPi/zbM3yiH3OmhcxpIGaFNErqE8vPW1vhV7+C55+H+noIKR4yFtFZIiNDYGaxm0sqOrl1cRt5zjAIsOxz60fCh7SIpqrHY1c4NZNbsC25sqipGYjjC6UUNaWIxODhHgpWJP9BEYMREvNIjTYT1jy7StSM9hqN4ijPwjSKiDwVmBLem4g/jL/bg/vkoGK5Ocuadp9MnXMbXdTU0dEZM293nFAt++Old7O6oEolar4X11dzX4p+ke3eITyhAE5zahv/745uUy17s+MErqCPbIt9tEOfME9p9Dp8svHApIiaWv00r6uYy7HDSlGz03d2RE1Jgs5O2LzXQ/dLi5E6CqGzCDqKaOjLI1bEkXv6NgkYw1DaDZXtCJUdFMx0sf+zH6CkZOxuiP6Al//a/6Zq+deWXAXAd/cqA4529DQjSuok+qnobfnj1bdyx5t/wRMOUmLP5MuLrjjjz6mjozO90HJpAoQH1P2qz1fEgJehnY8hhQJkLr8VU3bxpO3bd1zp1DTYMsm5/BNqUbProCIkSJLgQN8qXjx1Ly813kOvb/RyzygzCpr48GeruffeWKnqWIj4hjj1rRUEu+RxWO4Vf0/pR36ddPuBt38/ElYUT87ln5xyQTOKtXz+lDlDJ4vIKOXnAIFe75SImiF3UCVKmbOsmDPMClFzvOXngR7viKAZZeBQz7QQNTXdpzYLf/4z/O1vsGsXDI97iCxhM4nMKHRz+fwBvvHXGsrKoOW5drrfbYnfDH+vF0dpZtI9+buVPVZNTrNCfE0VtGPNk8vPtdyWEW8IToueQZda1AQY2N+dUtTUCgky2ExYTQbcpwZjC0X1+Pdspp7Hk1iajwRdm5tV2xWsLEsrzVzn3EcXNXV0ziKiJCIgjDrL7guH2NPXxpK80lFFv6mg2TOouL+6oJI7ahYjSRKFNic9/tgM5e44V5xWyXI8J4b7RkqYtXCHAtzf8J5qeUiM8GJrPffOmPzG9vFIksRzzYdUy19qrScYCWMxTuwnNZmo+b+HNymWnYny8x/sf5P/2Pc6NqOJHyy7jdXScurr5Vnuo0cZ+f/QEEAGcMekHwMF/VDWCeVdCOUdUNkBpd0Ipph7tQ9oM62nhIox735L1yn8EeVgbnl+OV9fcjWvtx9Tbb+9p5l8q3o2fUbWmRc1N5TP5sSdX+X4UC/zc4rJ1TgOHR2d85uwS1vUDPVfGKKmJEk0//RmvIflyai+V35C7Te3YXRkT3jf4cHOEWEwir1uLdbyBRjsWQqHrLFxC4LfRcPgXF5svJcXTt1Hy/DMtJ+r2NHK9TUPc2PtgyyoOMncfxsYd5mya/NfFcc98PZvyb/hi1iKZqi29TXsoFMjGMhet4aSv0uvNF5HZjSnJsjBKhk1OePa//CpAcKeEFkz80aceMkIDWmUYGdZT4tmMTFtvE5NT5uGO3x49GCiqSAqajb123h4VxVbGvLp+G97oqEwbcxGkdp8D5fU9fK+JW2U5siv01mZRVlZDaCdmB5IIWpKEVEVHJUYUGTNd2j2QYVY+bnRoeXUjI1hg4Paf5OhE/2EPaGkjsrE0nOQnZpG6+gtjqaLqGnSeG/6diecLwUoSJJIrnP+oYuaOjpniV8d2cL39r2OxWDkeytu4L665ZrbHXV1c/HzP2cw6CPbYuPFDZ9kbVH1FB9tDFfQx3BIeSKtzpBPcoIgsDy/glfaYgmhp9z99Ae85FhsSZPPoxwf6kkpaj58aq/quaM83XTgjIua+wc6VIIuwFDIzzudJ0fK7MdLYkm3UTCwrniGKk28axKcmqIIbW1w/Di8uXeA771mgM4PMNxRxEd78kC79emkUFkJCxfCggWwy7KTd4zvQmkXgi29AfjTTQdYURATNSOiyPf2vc7GzgYuKqrhy4uvJEND/NcKqfrWsmsxG4ysLqhSrdve08yc7ELV8qlKIS+yZ1JkT+4E0NHROb+50J2a3vq3RwRNgGBHPf2v/4LCWybeh1Gr9Nwx+1IEgwF77So8h+UgxA5PBS8fupsXTt3HkX7tcZoW2TYX11TKQuaK4k0YBFm8kHwQHmjHnFc+ruP2ndqpXCBJeI9u1BQ1ux75IlJYeV41ZhdT8ZknMEyDCfJzibB3dFHTP84E9NaXjtO1UXaZWXJtzP2HlSnDR7QERtmpqXSJiiGRSCCM0Tq2y31vq3qMOV6BdLIIh+GRR+DXPyxkz5FyvMHxpZQLApQXhVle1MUdy9pYUKY9nrbk2Eb+b9UQNaNOTEmUcNX3Euj34azIwlmVTaDfjxRRipWJ5eYGkwFrnp1Ar/ozE31uTafmaXFdiogEh5IIzeLpEvQkgp6WU9NoM2GNe81aGCxGMqomPqE0GaicmqB6z7Nm5Sv+jjrnN7qoqaNzFtjZ08zntj2NdLp+5OObH2F5fgVzc4pU235y86MMnu5f6Qr6+eLO59h0o3rmfapodg+qllVl5Iz8f0WCqAlyX80qZy6ecOpB0YlR+mr+rl7dEyrKy61H8YdD2Ezj7/XS7RtmZ28LKwsqKdYQk7RcmlGeaT44IVFTlET29ilF33nZRdhNZkrsmQoxNd3yc1GUewudOCGLl/H/NjSAf6RyJRdYP+5jT0ruIJR1QXknQlkXX71+AV++bgFZce1t/nPfEBt3tyTdxR01i3my8cDIdwXk9/q7K64fuf/ZbU/x26PyZ+OtzgZCYoT/WnWTal9aIUxLcuVBX77NyaysAkVv1x09zRg03DQ1GdNjplpHR+f8JpRE1Az1Jf/NPJ/wHFa3Cxnc+CcKbvoqgsGg8Yj0SSZqAngLL+fRY3W8cOo+dnVdnvY+7dYAt95u5d67I1Q/U4FZ1E43DrQdGreoGWg/olrmPb6FnMs+olgW8QzgPaas8sBoovIzj4/7uS9kIr6EYJVsZagKyE7NsRL2hujeEvs+Bwf89O/rovhS9URrlMSQIABzpkUzBTzsCY1Z1NR0amr0sjzTNDfDz34Gzz0nj1lFEWDsVSu5ubBmDXzoQ3DXXeBpcHHiL/UpHxMvhtkKNETNXi/ejmGanqzH2xp7v8xZVuzF6tLyRKcmyEJnoqhpzrKO9OrUEu6i4npoOKjp8ozSv79rbKKm1YQ1P3ULr8y6XATjxH53J4tUQUhRClfrv3MXErqoqaNzFvj9se0KkSYoRvjt0a38ZM2tiu0ODXSypbtRsWxrdxNDQT9ZlrMz+9Si4VSsdOaM/H95gboseHdvK/2B0WewU4UF7eptUfTnTMQdDvB6x3Fuqhxfn6bX249x82t/JChGyDRbeeO6f1C4AQGea0kuaj7bfIifr7193CVlDUN9uMPKgerSfPmEXOrISipqRiKycHn/u0388p16vG3ZzPDNIdCRS0MDBM50xZAgYiwY5JqVucydKzB3ruzAnD9f4tZ37x/5/JY5svjq7beSkTAOqcpI3Xvzy4uupN3jYmtP08iyQ4NdHHf1MCu7kDfaj48ImlH+fHwn/7nyRtXf4tCgUtTMMtuocMZmndcUVis+g0MhP5s6TyoeU+7Ixj4B4VxHR0cnXZI5NUMXiFPTU/+2almo5yTeo+/gnDexPsOJyefeSCZP77qYh78ML7/0dcKR9C7eTUKIS8pe4YbaB7n5hgDzvvoEgfZjNDylLWiCLGpmLLpmzMcsSRLBDrUYoyXQeo9vUYV85F392RHhVmdsJDo1bQUOIv4wYiBWRZNYcpwO/h6PymGm5d6LR8uhp+XUBLmvZrScOR2kiIi3/ew4NUVRDvf59a9h61Zwuca3H5tNHofefjt8+tPqhPJUIT1RLNmxayxzlhWDxSgH7JzGVd9L//4ulbAYGgpois5aoqa90IkL5XVPtJ8maJdYR8vPtUKC4hk+OUDIHdT8TCR1ao7yOZkupeegXZofjznTQvbcqamq0pke6KKmjs4U4w+HeLxxn2r5307s4vsrblAIJn86vkO1nYTEjt5mri6bWKnzeGn2DKiWVTpjwtSKfLWo+V5fK65Q6hMwpHZq/jaFSzPK000Hxy1qfnnn8yMl3sOhAB/b9DB7b/vXEWGs3etSpWbH0+Z18V5fKysLRk+pfq+3lV8e2UyG2codNYtZVzxDMxl+WX45kgQ5/kKkBuQk8d48envyuOpPIk2NBpqa5LIcqD59gz2qPU0ch0NOF6+bHeZx/xtQ0i0H+BT3cHXNDF68NjFwQOCVaz/N/53YiT8S5u/qVmiWhFenEDUX5pSwPL+c26oXKkRNkN2a/zD3Yv7+3cdVj+sNeGjzuqiIE9vDYoQjCeXnC3NLFMLnmsIqVc9WX0R5ITNVpec6Ojo6yXpqhi+AnppiwIv/pHoMBDD4zh8nJGqKAQ/+pt0EI2be7biGF07ex1ttt+N7ICoojC5oXnYZXGX6ClcX/oFcWx8A5kF5XOZv0U5KjxJoOziu4w4PtCH61YJTsP0IEXc/xrgqAu/RjartnAs2jOt5L3TEUAQprOzJY3KYsRU48LbF/h6BPh+SJI1pcjs4oB4bR+KEUi20ys8tmVZtp+YYxUh/jxcppO4/FPGHEcMiBtPkOvX8fvjtb+WQn337ouPZsVNRAddeC5/5DCxdmnpbS7YNwWRQ/U0V2+TGxEVBELAVKv/WWsJgKrSEVK2woGjyOaQICmJ0UTNagq7lVtQWNY0YHWYMVqNCqI8na9b0Gf+O5tTMX1k2bVylOlODLmrq6EwxL7QewRVUn4wGgj6eaNrPB+tWABCIhPnbiV2a+9ja3XjWRM3RnJqVzhwKrE56A3FhQX1tmr0wyx3ZtHljU7HJnJquoI+HTymlOqvRhFEQ8IZjotNzzYcIixFMhtGbXcfT6/eoQowODnbyUms9N1TOA+D5FnXJVyLPNh8aVdRs87i48qVfj7gyf3lkC8uctVj6i5AOL4CePKTT4uX/+mfyjRbweO5V7UddlDdJ5A5CSQ+UdPNfN69i+UILc+dCeTkYDLCxs4knXlKmhC9N0gfVbjLz93MvTvl01c7kouaHZ61EEARurVrIl3e9oFj3TPMhOnzDnBzu03zsnr42hah5YqhP0ZcUYEFOieL+msLRe9VORUiQjo6ODiR3aor+YSK+IYz2LM315wO+hm2qfpBRhnY9Tonn5xhTnD+SIYrw2iNH+dO7v+CVxrtwBdP/TZ+bu4cbax/k7g9aWfUv/0Hjf27HWx87BwV7TiJFwgRa9qfcT6AtedVH6scdTrrOe2IrmUtvjN1PFDUFA45Zqc/HOtqEfRoikN2MNR+V0BXxhhQp16MR0BCntIJc4lEFBQlgyrBg1njesSage1qTB1GGPUGFg3G89PSYuP/+YrZsMdLUpDIUp4XFGGF2sZub1/TzjftrcYyhKl0wyCKlryO5mzqxF2OigD0WDGaD5vtm0yhTjy8BN9pTODWTJJ/HM7C/S1vU1BAtjTYTgiBgzbNrvi+WXNuo5elTiVZpfjwFK/WAoAsNXdTU0ZliHmjYnXTdH45uGxE1n2k+SF+Sku2t3U2ay6cCLVEzvqemIAgsL6jg1bi+mieH++iLEzkBajPyWJhbqhA1u3zDmqX1DzTsVoiXAHdUL8YXCfFUU8wR0RvwsKW7kctL6sb0mt5NKPGP8qODb42Imqn6aUZ5pukg/778OsWycBg6OqClRe4P9KdtXQwdvB76cqA/B/pzec+tHtgAnBrLixgDRUUwaxbMnAmVM0J8r+NhKO6Fol4Ee0x8Xrwhjw0V8xSPTez7CbEy+fFQ5sjCJBgIS8oZc6Ng4L4ZcijDrOxC5ucUK4J+tnY3pfwe7O1v4+aqBSP3D2qIAwtzlaLm4rxSbEaTKiE9Ht2pqaOjM1UkEzVBdmsay8dXmXAu4Kl/J+k6KRTAtfVB8q7+p7T2JUmwdy88+CA8/DC0ti4H0gv9qcxo4IbaB7mh9iFm5siTm2Wr/waApXgW3vgS+UiYUG8T/lFFzcNjdvQBBDqST676Trw7ImqKfje+RmXVga1q6aSkxl+IRDRCgkx2k2a6tL/PR8YYRM3ggLoP52guwMTyZnOmFcEgTIpT06vRT3Pked3jFzV37oQf/tDAq68uxuUyMZ6Qn9JSWFrQwfuXtrCoXBYYM2bk4HDUjnlftoJRRM2E16kVFhRFMAoUrqnA3+dl+ES/qp1AzsIiBIP69TrKMrGXZsSOQ4D8pbFxqZZwFw0K0nJqJpbID58cIDQcUIVOJSs/B1lU1Xpfsmblj7u91plAqzQ/StasvDG1XNA5P9BFTR2dKaQ/4OXF1uSD0k1dp6gf7GZuThF/PKZddgVyKrMoiRiEqbfWtyQEBdmMJgqsSlFuRb5S1ARU7tQleWXM0BCITgz1KvpySpKkWXr+6bkX0ejuV4iaIJegj1XU3JpE1Hyn8yTbe5pYmFPCGx3HFevKHdmUO7LZ3tgD/bnQn8OBvhw+/Y6X4W4Hzc2ykNnWJve9jDH79O3MYsn1snqBg5kzYwLmrFlQV4ciqOe93i6+/5y6HQLAtu4mrk8UNZOUyY8Xo8FAhTObRreyrcG1ZbMpccQO9NaqhQpRM74nrRaJ4ushjZCg+TnFivtmg5EV+RWqPrbx1Oqipo6OzhQRHlRPIkUJ9bdiPY9FTa9GP814Bjf+cVRR88QJeOghWcysT50LoqC4GG5ZvYsrw//EooIdJF7LO2ZeBICleKbqscHuEwRaU4uaon+YcH8L5vzkYTBaBDVCgqLE99X0ntgKCZNzjjnrxvRcOjHCPrWoaXSYNUXNQJ93TAnRmuXno4maw4mipixmmhObljMep2ZyN+JYBFJRhMceg9/8BrZvB58P5LYO6V+3WCywaBHcfbfcG9Npi7D3W0q3spY7NR20elxGMZgNqp6N9pIMzW2d1dlUv28e9tOl5GFfCNeRXgYOdhPo9+EozaTihlmajxUEgVkfXUrHW41EfGEKL6rAmh8TTw0mg0qojPZ2DbrU1W8FK0vpfjeuNYkEg4d6KFyrbAuWUtRMIgZOp36akNqpWaAHBF2Q6KKmjs4U8tipfYTE1L1y/nBsG/807xJebz+WdJvBoI96VzfzE8pnJ0pYjPBWRwMGQWB9SR1GjXTRRKdmpTNHNXu3XKOvZiJL88sosqkTxo8niJrvdjdyMCHgZUFOMZcU1bAgp1jl8nu66QD/s/qWMc0oajk1pYAFBrP40v1HWGk04N9yCdJgFpy+uTzFdPbZkfzKUvffpf2sE8NglKiuEqithd3CflxZbbLbsrgHivoozrex6e5/G3U/x4Z6kq7TckJu72lW3HeYzMzMLFBtNxaqM3JVouaHTjuWo9xWvZD/3P9G2vtMFF+1ks8TnZoAqwurUoqaulNTR0dnKpDCQSJu7fYacH6HBYlBH76GbSm38Tftwde4G3uN0nHZ0QGPPCKLmTuSzw2ryMqCO+6A++6D9eshcNxN03+pd2DMLMRcNAOQnZqJ+BrfI9Q7ejWNv/XgmEVNreTzkec9uQMpHEIwmTX7aTrmpp/irqMk4lWLQCa7GVu+2r0X6B1bArp2+Xny6wQxLBL2KEVWc5bsxNNOPx+DEBkW8XUmdy+OJpAGg3J/zD/9CQ4cSJzQT4+cHPn799nPwpVXKtcFBtTPP5ZS/3hsKZyXllyb6hoie3Y+llzbiAhtsBgpv7aOwrUVChemyW4mf3kp+ctL0zoOc6aVqlvmJF1vcpgJxomakSRBQaYMC3nLE0RN5BT0tERNawpR0yCQWTf2Vh9nEpNGaT6AKcNM9tyJXZPonJvooqaOzhTy4MnkpedR/npiF8Y0HJhbu5smVdTc1dvCRzY+xBFXNwDXlc/l+Q0fV5zYI6JIa1y5OECVRk+rFQWjz5ItzSvHaVIPRhLDghKTrQE+PeciBEEg1+pgfelMhQDc7BlkT1+bZgq7JMHwMHR1ybfOTmhujfDu6wsQ+9fAYPaIaIlPPrFvPH0DZa/M5AU6k0dxMcyYAZmlHl4NbkUo6IfCfijo5xtXrOI7qzYQjITJ+Nv9CAnl223eAJ5QAKdGOE88J1KImtt7mhU9So+6uqk//fmIsiK/QlP8HgurCqp4Jy5lPMdo5YYEh+iK/ApVD9Z4HCazokVBo3uAgYCXXKs8cE1MPi+0OSmyq0X10fpq6qKmjo7OVBB2qSdiFOvP47AgX8N2VT9NgyMH0TuoWDa48Y/Ya5YzOAhPPC7yt990sWl3MaKU3jnJYvBzecXz3HVDB3/3k89ii6s4NdSuBMEACedWW93akXGRllNz+L2nVMusZfMJtCsdZoG2Q2QuuSGt4xx5TApRUwr68DfvxT5jlbaoqaeejxttp6ZJs8fgWBLQJUnSdGqKKXpqaoUERUVNg8WIYDYogn7G4tT0d3tShueE3er3we2Gn/0M7r8fjh4dX3/Mykq4+Wb4f/8PalNUkms9v5ZbNh1SipoaJfYGs5G5/7iKvl2yez5vWcmk9BcdDaPdBIOx++Ek5eeWHBuOskwseXaC/TFh3d04SGgoMPIZAe2erUarPM7XEjWdlVmjBvNMNYLRoBlqlL+ibNLDrHTODXRRU0dnijg13MfmLmWXxLrMfOZkFylK0vsCXv7nUPJeUlG2dTfx8dlrJnxcITHC9/a9zvf3vUEkbvD+cls9m7tOcVnJjJFlXf5hldO0wqkus6ly5pJvdSTtCQqyqKnF8TiRrc/v4fFGZRmXw2TmgzNjLr5bKhfyWn0bDGXCcAa4MvjqoWFWWGLiZXd37P8B1XjQCKxPepxnlEw3ddVGcksDtDoa6MpohoJ+5s00sfFD95GfJQ8imt1Bah97WfHQnpAsqx4b6lH83eI5MdzHkiQhPlGShTMBuMMBDg50jvTMfKZJndh6c+UC1bKx8tn5l/J8y2HqXd1YBSNfq1iN1ag8PcmBQQv4Vf27qsevKazi8pI6fnDgLcXyvf3tXFE6E384xIkhpeNpYZIJgbUpRM1si4086xi60evo6OiMk1CKfpoAof6WKTqSqcejUXpedOf36Hzgn0fKqv1hG4/eP8zbT0Z48SUDwaABGN0dZTBIrC1+lRtnPMhVlU+TaRmi+JYfKQRNAIMtA2v5fAKtyvOevW7tyP8tRepWN/5T6oDHrIvuo+eJbyiWjTUsKOzuIzKcfBIS5BJ0a8UifCe3K5ZbyxdgmmBFxYVMWLOnphlThkVVHuzvS9+pGXYHNUXEiD+ctOeqKiQIOfkc5HGS2WlRCF5aQmAyUoUEQUwg7e+HH/1IdkSfOjV2IdNgkJgxw8dHP2rlc58zkqFd2a1Cy3Vq1nCnpoO1IIWomaMtVpozLJSsrxnX842XRDEx4g0RCYRHHJtRLDlWBEEgb3ERnW/HOcUlGDjYTdHFMWNGolPTYDGOJIXbSzLAIIAY+6Nmz56ek/kmu5lggqipBwRduOiipo7OFPHQyT2qZR+oW87y/ApVn00xYYRwaXEte/ra8MQ5F5L1gRwLhwc7+fDGh9jdp+6TCPBeX6tC1NQOCVI7NQVBYHl+Ba8lKaHPtzqocGYjISmCWSRR4Eirm2PHoLcXHtjXgn/XUnA7kTwOGHZSIFRw6x/t9PVBTw/09FyEJCoTPV89fTubOBxQVSXfKivlf3/V9TzdjlbIH4TcQWx2OHDfd7Gb7EjSck4MVdHj97C2qErRL7VYw1HY4ZMHn/F9JhM55uoZVdRMdMYmsrW7MSZqaoQl3Vq9MOXj06HCmcP2Gz/L8zu3UGR2kG3SdpfeWr1QJWqaDUZ+f8n7Nd+HvX1tXFE6k6Mawu+CXO2L3wpnNqX2rJH3N566zOnVKF1HR+f8JVVIEMg9Nc9XvBohQVmr7sR14C1ee36IF07dxxstt+MJpZ/+vnatXFp+ddEfkF78lGKdVhk5gH3GGpWoaYsTNQ1WB6bccsID2mOoKJlLb6b3ue8jBWMTvWMVNVP104ziO/4utpoVSCHl7K3eT3NiRDScmiaHWU6LTghWGYtTU8ulCSBFJKSwiGA2qtalcmqCXIasEDXHUH7uTSFq9gxb+Pkvcnnj76F1HD89DgesXi2yYcMpNmwYxGCAJUuWYBqDEhHSeC1aJffpYLSaMGdbCWn0pkwmap4NEnt7iiGRgIZwHnWN5i4qVoqagLvJlSBqKoXAaD9NkMvhC9eU07NV/iNbcmyKx04nnFVZis961qw8bCnEap3zG13U1NGZAiRJ0kw9v2/Gcmoz81KW1QJ8as5F/OnYdt7ubBhZdsTVrSivHSu/PrKFf935HIEUSc9HE0qNmxNCgkDuqRlPKAQuF9T6ZiOd8oLXLpdye23gtSN5bdiEUj78ssDAgADHP4s4aAG3A7x2dkgGYt1l5p6+xWg8fYsx9SKTxRahqsJIWRlY8ty8HtiJkDcgi5V5g9ywuITnbrtPES7QMNTLd554W3G0lxXPxm6SZ2EFQWBWdiGzsgtVz2c1msi12BkIxgYyXT65mXsqUXM0wRJSOzUB3u1u4h/mXUK718W2HuVAaWFOCTOzJsf9YTOamWVP3bPn8pI66jLzaRiOuS6/vuQqFuSWqJydAHtO99XU6qe5QKOfJsh/hzWFVTzdrHal6iFBOjo6U8Voomb4PO2pKQb9+BpibWckCQ5zD7/+ehGPPHg/Pf2pW6rEM2+2nw9+2MY998itXAA6/rqPgYTtLCXaombW6rsY3PjH2LFlFGOboayQsRTPSi1qGs1Yy+ZiLZ+vcHEG2g4jiSJCmu1bAm2HR93Ge3wL1srFquW6qDkxwj6Nct3TPf0SU7QjvjBhbwiTY/RyXa1+miP7CUQwaImaQ1qiZkzYS3Quhr0hpIg44sRLhadNGRLUMmDjL1tr2HSigH6vhbGOt/PzYcMG+MIXYNUqCIdF9u0bHNM+4pnM8nOQw4Kmu6ipVfbt7VCHOUWP2V6aoXIPh4aUn7NEp2a09DxK5c2zyV1YRNgTJHtOAQaL+nM4HSjbUIevw42/x4ut2En1++aN/iCd8xZd1NTRmQJ297WpehGuKawaEbA+Nns13937muZjcyx23le9iMODnQpRE+Seh9dVzNV8XCqeajrAZ7bJfZ8kCQiZwG+VbwErBCzgt7LpRAb/d1zuQ+l2wxsncxBP3Qp+i7yd38r//KqG//HC4KB8845MUq8nWVl3C/C3kXvTKKXOGMaY62ZhrYN9Yj3kuBByhiDXBTlDkDOEkDNMy8e+TJFdrpeJiA4qHnmHbn9sUPv2cA++SBBHXM9QLdfqNWXpp6CX2DMVomZnGqJmqhAggP6Al/4ULQKAESHz2TPk0hwLZoORB9d/kM9ufZJWr4sP1q3g60uuBmBGZh6ZZivDcQ6VvacdyFrJ5wsSks/jSSZq6v00dXR0poqw6+w4NSOeQSQxfNbKlX0ntyOFAhwfWMALp+7jxcZ7aXNHG+2NLmiWOpu4oeYhbpzxIFf+27fJXvU+xfpg13HlAwQD5sIZaOFceA0Fd3yP7ld/DvZcQpd/EUNCn2pL8cyUSe3WsnkIJgvW8oUKUVMKegn1NmIp0n7uRLT6aZoLqhWhROHBdlxbH1Bt55h9WVrPoaNNJEn5OZC0r6bJMXoCejKnJsjCk1ZpdTpOTQWSLGyaM1N/d8RQBF+nm7ZBG3/cUsPGE4UM+syMTciUKHAGuXr1MN/7fT4z6ibXdKBZfj7OoCCQ+2oOn+hXLZ9OoqZWyrevXR3mFD1mQRAwZ1kJ9MbG9olJ6SpR06Zu95Q5Y3oFA2lhK3Aw/1/WEvGGMTpMeiXVBY4uauronAFEUQIERBFEEf7vyB6koAkkA4jyj+7tBavo74dwGG5wruG7Pe8hRQwQMcq3sPzv5RVL2PSmGVP7QqTdXRA2wentftkQ5ngx+Hyxm9+vvK9eJtHQX4no/yaEzLKAKWrPwh0CPqJYUn36FmN078DZRRAk8vMFiouhqAjFv0LWMF9veOS0aOkCp4/bahfy+JUf5sZXd/ByW71qf5cU1YwImgBGg4Gbqxbwx2OxHla+SIjX249zS1Ws3+RrbWpRc0N5+qJmqSNrJMQJZFFTkiQOawh2UY67Uouax0cRPQFODvfR6R3iaY1+mrdVTa2oCbCyoJKtN/+zarlBMLA0r4xNcX1r6109+MIhDmo4nhakCNlaU6TdV3OGLmrq6OhMEaM5NUXvIKLfjcGWuiFdeKibvpd+jO/kDpxz11Nwy9cRNJztAD3PfZ+eJ78JYoS8DZ+l5IP/O+7jHw+NjfCH74V57Pl9HBtUOw6TkWvt4dqaR7mh5iGWFb2LQZBb+AQ71efwRFHTnF+lEiqjCIJA3g1foqX82qTPnax0PYrttHPSWq7uPx1oO5S+qNmRIGoKAtmXfoTep7+jWBzsUL5mc1Ed5iQ9zHXSI9GpKZgMCGbZ+WjVSkDv8+GsTEfUTN5/UyvMBbR7asYLluYMtQgWcgdTiprNzfCdr4Z56ulLGfCOXcgsyfJz1Zxu/m5NMwUZ8vGZDpQjzZgzqUKTVujReNPPIXlY0HQSNU0O9W91KqcmgCVB1AwNB0d6tEqSxccq+AABAABJREFUpAqiShQ1zyUEQZiQW1fn/OHc/RTr6Jxl3nxT4ItfnMPRow5EESRJQBQlubeylHgSv/n0LcaXTt9kcoCvaT7PU6dvUAV8VLHu+dO3sSGcfr5zF6dTLmvJz5fFyeJieMG1gz5LF2QPQ6YbsoYh281ldUX89Yq7qc7IU+3nryeOImxSXgBcUlQDwBcXrdcUNW+qnK9adkuCqAnwh2PbRkTNsBjhzY4TivXF9kwWJenrqEViX81AJEyP352yfHy00nKt9bUZeZxyK2euX2qr562E469y5rAsf3pdKC3NK1eImhFJ5OBAh8qpWeHIJseqdldEWZFfgUEQVL1tdaemjo7OVDGaqAkQGmjDWjpHc50kRhh48zd0P/GNkdRwb/3bSEgU3f5t1fbB3iZ6nvi3kbTv/td+Ttaae3DMuli17WTS3Q2PPQYPPgjvvgtwVVqPs5vcXF31FDfWPsja0tex2CyKnpUAwY6jivtSOKhwNsLoouRoaCWgx2MdRdTMXHazarkWiT01zfnVZCzYoBI1E3HqpecTJtGpabLHXGFaTk1/mn01U5Wfi35tUTOYWH5uEBSl7loiX1hDDGxvh+99D558Ejo7IR0XdBRBgJkz5R61N+buxdCpdjv2bG/DnGOjNI1gHU/bEK7DPVjzHeQtKU5aKh/2JDhmDcJIG4DxYCt0qhcKSufr2UbTqdmR3KkJ6uOXwiIRbxiT04wUFpEiyrHtuSxq6uhE0T/FOjrjYHAQ7rvPQF9fmpF9OpoIAmTmRBiy9EOGB5xeyPCypDKbA+ETSE4PZHjB6aGsyMT2ez9Bfr6gSikF+PWREJ/Zpg4X2Nw7zNKn/4f/XXs7H6xbrpg11gpbuui0qHl5SR2rCyrZ0atMmL25Sn1hclXpLDJMVtzh2GDzhZYjbOk6xSXFtezoaWEopBy8Xl02a0wz2CUaYUEbu04STpJ8DtAb8KTsu6rl5PzQzJV8Z68yZul7e19XPc+tVQunXanHUg2RdXPXKRrdyg5qyfppRskwW1mUW8q+/nbFct2pqaOjM1WkJWr2t2qKmt7j79L513/C37xXtW541xOaoqbv+LsjgmYUz5G3zoioOTQETz8tC5mvvw6RyKgPAcBshuuvh+uKfslq7xexm2Snm33mxZT//f00fG2hQtgMdipFzWD3SdVrTNZPM11GdWpWLDr9r4ao2aqugNBC9LsJ9TUrllnL5mGrWYFgsiCFk4fB6P00J044ISjIGCci2jScmv5uT1r7TVl+HtD+UiSWn5szLQiG2FhMs2T9dC/K7m5ZyHz8cVnUHAsGQaI238On/sXO575gHBmHH/ihj2SfvvZXGrBkWclfnnwCv293B42PH4bTOlvvznZmfGCR5utILD83Oc2K1z5WtJya5kwrBlN6fW6nApOGaJtYPi6YDAq3opYoGxoOYHKaVY8FXdTUOT/QP8U6OuOgtxf6+qaXoHNWMIjk5RjIyWHklp0d+/8uzzE2Dx8Ghx8cPnD4WFCWzXO3fICcHMjMhO6Ah4pH/lux2xNGM0RCigKYDyxcT3l58vf87+dejCcc5Bu7XyYkKgeDQyE/H9n0EPv72/nh6pgr4t2uRsV2NqOJ5aeFMUEQ+N6KG7ju1d+PJGffVDmfudlFque2m8x8cs4afnJoo2L51997kbeu/0deaz+qesyGMm13TTK0RM1E96QWx4d6WV1YlXRdIh+oW853972mcCkmOjdh6vtppoOWc/TBk+qAroWjiJoAV5bOVIiaJfZMVSiWjo6OzplitJ6aAOF+5aRbxOui84HP49r8l6SPCfU2jpQiKpb3N6u2TXQ6TgS/H156SRYyn39evp8OgiCyfr2Be++FO+6AvDwQAx+l94Uu/E17yVx6IznrPo5gNGEtma0QcgMd9YrXquqnySQ4NYvqUq6POjVNeZUYbJmI/ljpaGICerC3ifBAG/YZqxUtAgIafwdL2TwMFhu2mhX4TmxVrY8y3URNSZLo39uFt22IrJl5ZM3Jn3YTpImEVU7NOGdkpgWjzaQQi4YbBpBEKaXgJkmSIrk5ES3xCdRBQZYEASuxp+ag18S//bed57aMPbXcYJCYVTDM+5a1ceuSdkwGmP+JtdhsssNREiVCrtRf5MYnjmDOtJA1Sz0pPHioh6Y4QRPA3ThI/a92MvNDS7CXKI0jieXnE+mnCbL4Z7AaEeMEZEvu9Ck9B6WAngxLtlXxHYoPjooSdAWwl2Rofq4MVl0O0jn30T/FOjrjoKICFiyQOHRoeg/EQHZD2u3yzW/w4hE8YAmBOQzmEDMKM1hZXkxmJgwbhni0YweCLQDWANiC3D57Fp9eugKzLcxV7/wUrEF5nT3ATbWzeXbDx5I+9+ONPra8tVmx7JLZa6mpid0vsWeqXI6+iLop+121S0Z5nQL/b9EVXFU2mw9tfFAzQOd/Dr3DtRVzuLpsNoMBH4cStllVUIkl7kLiyrJZPHv1x3j45B5mZObzT/MuSTr4/sriq/jDse2KoJpNXad4ua2e19vVF1JXl43tQqrEkaVa9mb76KLmsaGepKJmYjp6ptnKjMx8FueWsrc/+TR+ntXBZcW1SdefLebnFGMxGAnGidq7+9SptKn6aUb514XrearpAI3uAcwGI99fcQPGNFNqdXR0dCaCJEYIu5Tnp0RBDJRhQZIk0fKTm/Ee25Ry36LfjegdxOhUBkEkOgFBFgUnQiQCb70FDz0ETzwBLlf6j12Qv5Mbah/io/+2jnm33KZYZ7A6KHrfv6seYymdoxA1Ra+LyFA3pmw5GC7Yqe5tPVFR02B1YMot10xAN2bkY8qRXWqCIGAtX4CvYdvI+kBHPZIYQTAY6Xv1Z3Q99K8gRrCUzKb2m9tG/kaBdnX3cmupnPRrn3lxUlHTlFeBuXB6natbXzhO9xZZjO/e0kLt3QvIWzr6OflsIUVEhegFKEqeBUEgc2YugwdjlS9hTwhv2zDOSvW4LUrEG1IkVKvWa4hPYihCJKG/Z6Irz5xhwR808H/bq3n+QCkdQzbG0iNTECRmFri57+p+PvEJ6HpNOc4Mu4NQJIuaYU9QVcqsPmiJE/+3j7INdeRfVBZb3hmieesRhaAZJTjgp/7Xu6i9ewE58wuJ+MP07ekgNKx2ak4EQRDIX1pCz/bYdzdvcfIQybOBVvp5Iok9QBOFbog5fCN+9WfOaJue6eY6OmNBFzV1dMaBzQZPPx3hu9/t5dgxOwYDZGdnIggCHX4XHX4X3kgATyRIhAgIEggSggCriiqYk1OIwSALjiaTXFJlNoPFov3/6P3OwADfPvASGCMjtw3VM/i31VeMCJd2u3x80f9bLPLz9Ae8VD/6XQzhmGBoFAy8fefXqDw9GToQMPH4gy8rXqtU5eeaq1ZwYmgQoUHZm7A6Iyfl+3RZ8QysRhOBSGwQdkWpsv+UIAjMzMpPKaLVZOSyIr8i5XNFWZZfzo6bP8/X3nuR/z2svrj7521Ps+fWL7CtpwkpYTR1cZF68H9dxdy0EuYLbE7+38L1fGvPK4rlX9zxHMcSxMPFuaWUaoiUqdByao6Wbg7Jw4IkSVI5NWdlFSAIAmuLqlP+PW6qnI/JMP0GQWaDkYW5JZpCZjyjlZ+DHMx06PYvsbO3hUpnDjWZ6p6sOjo6OmeCyFCPqkzaVrsS75G3FMvCAzFRM9B2eFRBM0qorzktUTOY4HRMB0mCnTtlR+Yjj0T79aXHjIIWri//AzfUPkRNljwZOPOy/5f24y2l6nN1oONoTNTUcmpOsPwc5L6aWqKmtXKx4r1LFDWlkJ9g90kCrQfoeuDzI8uDncfoefo7lHzgp/Jr0Eg+t5bL/b0dsy6h/+Ufax6XY866aeWC7N/XOSJoRuna3DytRU0tcdGU4J7LnlOgEDUBXMd6U4qaqfppgnb5eaKoB7GQoHAYfvc7+OUvHBw5sh5pjEJmbb6H25e0cceyViwmKLqkEnu2etwZ75YMDqqT2DNqc3A3uZADBmSkiETbyycYONwN8yXwS7DVg5Si7YQYjNBw/36y5xQw3NCPGFK3WppISFCU8utnYrCa8HUMkzUrj8K16V1rTBWJnzUtEkVNc5babRo6nYCuFUCll5/rnA/on2IdnXFSUwOf+1xsELtkyRJMJhNyCE8OIAtHXb5hTg730+UfZm52EfNyCsf9nBExm/958JDCDdiU1cOll14x6mP/cHQb3rDSAXlHzWIq44TJXKuDYnsmXb6YG+To6cTt5oS+hMCo5bjF9kz+e+WNfHHn84TECLdXL+LOGnWi6cysgpQi2l01S8Y0MLebzPxkza3cUDGPe97+G4PBWMJkvaubXxzZzGBQPaC8KEnqdbr884LL+MWRzfT4Y/2U4hPLo4wl9TyKlqiZiM1owh9RDliShQX1+N2qPp8zs+TP5kVFNfymPnk5261nIfU8XZbmlacUNQUE5mm0ENDCZjJzWUl6ybQ6Ojo6k0VIo/TcXrMCb/3bsmoY3S7Oqanl1jPYMrDNWI338JvK/fc1Y6taolqWiOgfJjzYgTm3TLUukSNHZCHzoYegoWHUzUcoL4d77oF73x/C/rs5EIqdry3Fs9J67ijWEnVbl2DnUZxz5RLsQKKoaTBiKZi4k9FSPAtvvbqnd7Sf5sjxaYQFDW1/hN4X/ku13LXlbxS9/78xmK2qkCCQe2oCKXueTqeQIH+Ph6Yn1c5fb4cbMRTBYJ5+E6UAYa+GCJTgnsuarS6tHjraR9lVyccPqfppgrb4lFh6DvD6vhx+/1/yRILcmza9ihIBiep8L7csbufjd7kJNSvbDDkrsjRDauJDh4Iaped5S0soWFlG42Nqd7G3eQjakI2j6fTRlcBVnzzw0l468VwDo9VExfWpw77OJukEIVmyE0VNjfLzoahTUxc1dc5P9E+xjs4ZRBAEShxZmqXD48FoMLC6sIo34sqZjw/10uv3UGDTSPE7TUiM8IsjW1TLP7/gMtWyOVmFClGzYbiPkBihxTOo2rYyI1e1LJHPzr+Me2YswxcOUZVk+1lZqYXeO0cpPU/GhvLZ/MeK6/nM1icVy/9972uaoS8Xnw4JGi+ZZhtfX3I1n9/+TOrjGmM/TYBS++ifoZUFlRwY6MAVJ9geT+Lm1BI7Z2UVAKnfB7vRzDXjEGWnimX55aA244wwIzMPp3n6JFvq6OhcuIhBPyBhsCgTlLVCgsz5VZiyigm7YtbHUJxT09egFjWrvvgakeEetaiZkAAO2qImyKJgMmGxuRkeflgWM/ft09xEk9xcuOsuOT35ssvAYADvsR00xgmaAI6569PfKXL5eSLxJfTBTuXJwVxQg2CaWAkrJE9Aj/bTHLlfoZ4Q7Hny3zQfG/H0M7z7GbLXvJ9Ah1LUNGYXjzhtTdnFmIvqCHWrleTp0k9TDEU4+eBB7XJrUcLX4cZZlT31B5YGiSFBACaH8vLZkmXFXpqhSKX2tA4R9gSTugmDAz7N5VG0xKdoCfG+1mz+sKWG95pzCUbGIgZLVOV6uXlxB/euaMFmkd2PIY2vvqM8CzGocQyjiJqWbCvZcwqI+MO0vHBc4diUX5j2kVXfMY/QcID2V0+m9UpshQ4KViQPIDpfMFiMYBDU72McKqdmZqrycw1RU++pqXMeoH+KdXTOMS4qrFaImgDbepq4qXJ+0sc80bifNq+ymdXawmrWFKqdiXOyi9jYFRtUhMQIp4b7NUXNqjSDUwptqWdTZ54W07SozchLu/Rci0/NXssfjm5TOEGHQwFVsvXc7CLyUwjDaT/fnIv4yaGNNGk4WwGsRhOXjqMfZa7VjtlgVIUgxTM/p5hAJMzOuMT2Y65ezfJBLVEz+neozchTOXajXFM+B4dp4iU/Z4qleeqwoHjSKT3X0dHROdP0vfRjuh//GpIkUnjzNyi8/Vsj67RETVNOKaa8CoWoGVY4NbcpthcsDuy1Kwm0qR1TiaFAEd8QondQ8zgD7fU458WqQXp75fTkBx+ETelVuwPgcMAtt8hC5rXXyq1x4vEe3ah6jHPu5ek/AWAtUU+4RcOOxKBPFaw00X6ao+3Hlihqajg1UzG46U9krbiNYJeyr2G0n2YUx6xLcCWImsbMAs1y/LNBy3PH8HW6k673tA6NSdSMBMJEfGE5+dt4ZntdR7waoqaGgzF7dr5C1ESCoeP9SUvrA6M4NcUE8enoUfjqFzJ4dePleIJjuXyXqMj1c+PiLj6w4hQOi7qMOxGD1Yg1365KWgdlArlW+XnUNVh0cSUZ1dmceuww/q7UafCVN8+mYKU8cWIrctL46OGk/UZtRU4K15STv6L0ghDjBEHA5DARdqs/h1EsOUoR03A6DT3siT1mpPxcd2rqnKfon2IdnXOMtRol0lu7G1OKmlq9JT83X+3SBJiboy7NrXd1azs1JykNelYKUfPOmsUT6gllNBj42drbufzFX6bc7qIJujSjWI0mvrX0Gj62+RHN9ZcVz8A+DmeIQTBQbMug1Zs8aWFBTgnDoYBC1HSHA3T5hlVuYS0H5+zTjllBELiosJqnmw+qtrltGqaex7M4rxQBQdUvNcrCNEKCdHR0dM4kgc7jdD3ypZG+mT1Pf5uMZTdjr1kOQHhQ3Y7FlF2KObcC/6ldI8si7j7EoA8pFFCFydhnrEIwmjDnq4PiEl2Zob4W1TZRgh31uN3wzDOykPnqq3L/vnQwmWQB8777ZEEzI8X8pr9Nfb5xzNEepyTDYMuQhd84sTfYKYuaQQ0no3US+mkCWIo0nJqng4HiMeWUYnDkJBWQE/EcfBXPkbcgYTIzWnoexTHrYlxb/qpcNk36afbt7qB3Z/L2QiCLmuniqu/l1KOHiPjCGKxGMutyyZqZT/bsPKz5jokergotp6ZWInXWnHw631E6oF1H+5KKmqmSz0HuqdndDd/9Ljz6KHR3A6Q78S5RkBHg2nldfOyiRrIdaX5hT+OsyEIwCJou03inplbyebxr0FGexbzPrKb9tZN0bWrSDAUqu6aOoosrR+7nLijC+vd2Gv66f+Q9EowCuYuKKVxTjrM6e1p8rqcSo908iqip7qFpzrIqRM1gKqemLmrqnAfon2IdnXOMtRruyi1dp5I283+9/Rjbe5QXMJXOHO6oWaTaFmBOtroU/Kirm+YEUdMgCJRNUll9KlHzrtqlE97/pcW13DdjOQ+e3J10m4mWnsfzwboV/Ojg25oJ7NeUjb90u8SRmVLUnJdTTH/Aq1p+bKhHQ9RMXn4Ocn/RRFHTKBhSiufTgQyzldnZBRxNEpCkOzV1dHTGimv7Iwy8/ksEq5OiO/4De+2KCe3Pc+h1VRCQe9+LcaKmhlMztwxTnrpqIdTfSqjnlGq5ve4iAAyObFVyulrU1AgJipjZ3H4dr/zodt74FPhSV8sqWLdOFjLvuAMKkp/elc932lEZRRYoK5NsnRxryRylqNl9EjEUUJWew2Q6NevUy4pmYrAqRTZBELBWLMR3bLPmfgz2LERfnMAnSXQ/9lXVdipRc566r7pz/tXpHPoZxdflpvlpdR/NRLxt6YmakijR/OzRkQRwMRDBdbgX1+FeWgBrnp385aUUr6uatB6dEY2emiYNESijKhujzaQQjYaO9yGJEoJBPTZP1lMzGIYHdlbzzO8raf3I2I41JwduvRU+uuwoGZ2pAxOLLqmke2urZlmzo1weLxpMBtVrihfXEoVZg9WoEsgMJgMV188kZ14Bpx47RLA/9pjCSyspWa++pnGUZrLgC2sZONiNIAhkzcqblFCgcxWT3YzaExsjsacmyKJmvHM47A4iRURd1NQ5bzmznn0dHZ1JJ9fqUAWdbOo6xeKnf8RPDr5Dt28YbzjI3068xxUv/oprX/mdah//NO+SpOnVczVCVOpd3bQmiJpl9qxJS8AutGWQZVaflGsz8lien7qcOF3+e9WNZJiS91K8pLhmUp4HZHfofyy/XnPdeEKCopSM0ldzQU4xszRE6cT0dYATCctyLXZF+b2Wc/XykhnkWSffCTHZpCpBX6A7NXV0dMaA58hbtP36PrzHNuE58DKtv7gDUWPyaCwEWtQNKH2ndo78X1PUzC7FrCFqhgdaFYnaURwz1wKykJbo1kwUMcOny9EjooHtnev55ru/4/LHOvnsW8/y/L71aQmay5bBD38o99l85x349KfTFzQlSRpxVEaxlMwZlyNLVXItiYS6G7STzydJ1DRYndiqlymWJesHaktSgm4tm0/1l99QLfc37VEtsySImtaS/8/eeYe3VZ5v+D7akuW9Z2LH2XsvCAl779kyOqCl0Am00NLSRReltEAH/Aqlix1W2QQSyA7Ze8eJ997a4/z+UCz76BzJcuLYifPd1+XL1ne+c853bEmWHj3v+4widdHXu28XTCDlzC/1suoTiyzLoTLiiNRqg92INUdp2XU3ODWDcSLxtrpjBux4ml1Uf3yIyvcPRJ3TV+J1akp6HYmlacp9Hb6ogq0noqfmp/syuO1fMzjjD2fzl89KqWyKr/e31Spz6aWhoKCWFvjnP6GkJPbbe2uOnYJLRlJ8w3i0QtJt+d3BlIZEpZio7KmplNq0HINd2IenMOruGTDRAkVGmG0j9/ziqI9xnVFP+tRc0qbknNaCJoAhRliQIcEY6rsZgSkp4v4jh/52Iv1cMFQR92KB4BRkTtZwVar2rtY67lv/Ng9seBebwaRKtu7CZjBy+6jZUY9dlJCKWW/A0yNFe29rPeWdrcp5cYQExYskSYxMymBjU6Vi/LrivqWexyLPlsyPp5zLAxveVW1LN9vCpdf9xeVF45mTOYy1Dd3lSIUJKUxMPfbG5rES0FNNVrKtiZqu1wMRrkVZllWiZuR+MzIKKbAlK5yhN484PnfSQDE1PZ+Xy7aoxg2STtOJLBAIBFrIXU65Hq5KX+MRHLs+IXHqZcd8XHf5FvXYoc/DFRf+iPRznS0FncmCMVXbqenUSD63jpgT/tmYXoSnamf4tr+1GtnvQzIYkWXY8HmA5zc8yvtlN1Lviv+DxBEjQo7Mm26CsWN7nx8Nf1stQbey56JJoz9mPJg1w4L2nlBREyDrhkeo/Mv1BB0tmLJHknGZ2mEJ2n01dbYUCr/7FqbsUqyl83AdWB3zXOY8dcVEzm1/I3neLQScrdgnnIc0yL2vnVUdOKsj+nJLUHzDBNr3NSl7bMqh+YklsV9XunrpzdhF44ZqCi8Z2S/9NgOaQUHaLYSSR6fTukP52rxtbxMJhcp+oX6Xj6AnwMEGG0+vKGH1oQzc/vhNAnpdkEl5bdx2RgXfeXGSanukEBlJ1vxCJEkibVI2ciAYSio/atg0JBhJHt0dpGlMMOFp6P4Qpyv9XA4EVT03tRyDinWb9DC6e87pVkZ+rGiJ6F1E+50bI0VNQn01tYOC+segIhAMJkLUFAhOQa4eNpHn9n+uuc0vB6MKmgB3jJpDagy3nV6nY1RSJttbut9UbW6uwh1Q/iPsr36aXYxMzlSJmtcOP7bU82h8Z9yZ/GPf5+yL6Cc5N2t4v7+4kiSJZ8+4gbM/+Bt1rg6MOj1/mn3lcZ0nlqg5PjUnLA5HEunUrHG14/B7FWOlEaKuWW/gXwtu4murXqXa2c7to2ZzS+mpIWpGc2qOSs7EpBf/9gQCQXx0bvsA18F1qnHH7mXHLGrKwQDuim2qcX9bLf6WKoxpBSqnpiEl9GGYZvl5UzmuQ8o1GjOLMSRnd9+O7Kspy+xYX8drHxbwwguwf/9dca8/JwduvDEkZs6YAT3/pbkrttO85Akko4X0C+/BlBlfKF5k6TmEysiPBZPGft6aPWpRU2/AmKEufT1W7OPPZeTvD+JrqcaUNQKdSVtssE+9HF68B7peU0kSBd94MZygnrLgKzFFTZ01KXx/6IkkSdhGzT/+C+knOg6pwxJzFg4nqTQNv0b4jqOyvVdR010XPWyoJ7IviKvOgS0v+msmxfygTOOGahwVbSQOTyVtWk74tZpfo/xcH8U5lzwqXTXWtreJvHNLwrdbW+Gn9wf573/PoNlpQtMqqYEkwahcB9dPPsJlE2vQ6cCUGkXQiuFsNNiNpE3ufm5In5qLKclM7fJyJL1E3rkligAeg10pqAW9AYLeAD6HV9UjMzKwRtA/xHJqRnPHaoma3nYPAbeyP6+kl/qtVYNAMJiId3cCwSnIRQVj+NnU8/nNtqUKR2UsJCSuL57ML6Zd2Ovc0clKUTNS0IT+FzWvHT6Jlw51l1nNyxreb6XnXZj0Bv44+wouWfKMYvyc3P5za/RkTEoWO6/6PhubKpmQkqPqa9lXYomaY4++gU02Wcmy2Knv4XqJDAXqrZ9mFwtzS9l3rbbb5GRmSnqe5rgoPRcIBF0EPQ6aPvgjvsbDJM25Eft4ZQ9CWZZpeOOnmvs6dy875vN66w4ge7XruV2H1mNIzVcknEO3qGnU6DHp2L2UoEMpIPV0aQIY00PiXVXnMN4/fAPvl93Inn+rBdJoJNm9XHeDiZtugoULQa/xHtjfVkfZL+Yge0Ours5t7zPil1vQWWKkAx0lsvQcwKThuIwHc5468dtTu1fVU9OUWYLUzx9y6RNS0SfEFuZMGcMouPMF6t/4KZJOT9Z1v8E+qft1WdKs66l9/jvIHm1Xojlv7CnhcOssa1WNdSVcJxSoXws54wgL0nJqln5pMq07G1RhRI6KtrhFzdrPjlD9UShIqmlDDQGvn6y5oceaqvxcImrqtjHJjDXXruhl6Kxqx9Pu5Z8vmnj8cdizB2Q5XvFPpqRE4vbb4Xvfg32PbcLX0f2BtFYKO6iFyJ5kzi5QiViJI9JIHJGmOd9o1wgLcng1g456c2oKjg19lL8zRBeSVeXngK9d7dQUpeeCoYK4JwsEpyCSJPGTKedz99gzePHgJv6x/3O2NGunSxYmpPDlkTP50siZDLNrv2iJRKuvZiRF/SxqXlk0gSdmX8nLZVsosqfy6+kXn5AX7hcWjOG+CQt5dMenQKgP5R2j58Te6ThINds49zjCgXoSSxQdn9r9yfuo5EyFqHmwo4lAMIheFyrF0hI1S2OENZ1qZFrs5NuSqYoIVZogQoIEAsFRqp+9nfZ1LwHQuvxZcr/8f6QuvCO8vXPre7h79LnsibtiK4HOZvRx/k9V7KtRet6Fq2w9tjELkCOc9Mbko07NFPUHNs7dn6rGbKVzwz/X1MC/l57HS++fxZaGeXGv06x3sajgf1xc/CJXfWMGBdf/OOb89s9fCQuaAL76g7Su/Bdp597d67k8Gk7NYxU1DakFSCarQjh2H96kSpTvz9LzvpI06zqSZl2nuU1vTSR51vW0rnhOc7sp9zjq/AcIOSjTebhVMWZMNoedhaZUC3qbkUAPx2Y8CeiuCKemzqQnaVQ6pmSLhqjZTmb0TksKGtZWRtyuCouagQhXqd5q1Az+6SJ5dHpY1NxUnszfV5Ww+fdG/HEHkMskWXycN6aeP7+TS05+SICUZRm/K0KQilKWrCVEAkgGHZlz4v8wA9DsZ+nv9OJrU0fXxOqpKTh2orU7gL45NX3tHlVPTSFqCoYK4p4sEJzCpJlt3D3uDO4edwabGit5dv86FpdtwxnwclHBWL46ajbn5o4Mi1nxMioOUbOgn0VNSZLC13Ki+d3MS7mxZCoN7k7Ozi3tt8CjE00sp+a4Hi7E0qQMVtZ1p+F6An4qHK0MTwy9Ad+vkQweK4H+VGRKep5K1BwnnJoCgQDwdzaFBc0uav59F6bsUhLGLgq5NN/8WfQDyDKOvctJmn5ln8/tLleHBIW3la3XDgk66tTUmSzoEzMJdPR4Do9IUQdwps1n8f/BSy/Bp5+CLM+Ia216yc/c3CVcUvwC5xS9SYLxqIjUaO11X62S+uaP/0zqOXf1+gGlt3afasx8jKKjpNNhzhmtEI89ldtV8wZT1OyNlAVfiSpqRiafHwuyLON3+NCb9Sek9NRV26lyhCUWp4bvB5IkkVCQRPu+pvB2b4sbX6c3qiAnB2XcDcqALmt2ApIkYclKQGfSE/R2l9Y6KtoiD6GJt82Nr10p0LkbHAQ8fvRmg0pIjFUKDNBuz+Cn79j4bH8mnZ7oYlQkRkOQmUXN3HnmIcblhnqRpidlAkdFTV8Q2R8RumTTXoshyu8wbUpO1N9v1HVp9Of0dXrxtmk5NUX5+YkgllPT2Ieeml4tp2YU17FAcKoh7skCwRBhWkYB0zIK+POcq5GR0UnH3iA9LqdmPwYFDQZT+7m0fSCILWr2cGpqhB7tb2/sFjU1y8+HVoDO7IxhvFuxWzE2NUpZukAgOL1wH9JwYAb8VDx5DcUPrcNbswd32YaYx3DuXnZMoqanF6emv0VdddGzh6IxrUApah6l05vI0ooreP/IF1j9wtQ+OMNgauZKLil+gQuGv0qaRf3/wVuzp9djeCp3aO7n2Pkx9gnnxdw3svzckJofV9l6NEy5o2M6YgFMOSevqGkdOR9T9kjNcKPjFTUDbj8Hn99Ox4FmDAlGhl83XhEM0x90lKn7adqLUxS3EwoSFaImhEq1k0drf8DqaXKpRD1Ldug+IukkbAWJdB5qDW9zNzgJuP29OtE0HaIyOKs7SCxOVQUFaQlMfj88/jj85S9QVpYMpMQ8ZxcSMiOzOrhldjlfvM1A84YqxfaAJ4Dx6Ms+rT6k0crPo/XUzJ6vbl/RG9pOTZ9m+Xk0gU1wfBxLT02DzYikl5AD3Y1PRfm5YCgj7skCwRBDkiSkOBuPRyOehOj+Lj8X9E6OVbv8PNVkVQieWgLl/vYGzssPlcEfiOixmWlJIMXcuxPnVOL20bN5bOdntB4tQbx2+CSKE/v3jZtAIDg1cR3SDtoLOlqo+NNlSMbe35w79nx6TOeOJbYFnW04961QjRuSu0VNQ2oBHAn1n3b7LXxWdQnvld3E8spL8AbjFxXG5x/g1m+XctmszcjPnRlzrqd2H3IwiBSl6kOWZTxValEToHnJEzFFTdnvxdtQphg71tLz8P5xhAydzE5NSZJIWfAV6l9V97Q+XlGz4fMqOg40A+B3+Cj/314m3Ds3Zkl1X9Hqp5lYrPwg3KbRV9NRGV3UjCw9h5BTs4uEwmSFqIkcOl5SaewWEdF6eTor27EPT1E7NXuUAq9aBT/+MaxcSY8PEXr/PWYne7lsfCVfmnMEiymIIcGIOVldFt5TgFL19iR6+bnOpMeUasHb0i08JpamYc3p+wcFmj01O714tcrPhVPzhBAz/TyKqCnpJIyJZoX47G11I/uUHwwIUVMwVBD3ZIFAoMJuNFNgS6bSqV2+Y9UbSYuRoC44MVgNRpJNFtq8yk/Ix6VkK8r7NBPQj5acB+UgBzuU7oih5tIEyLYmsvOq7/NS2RbSzQl8oWTqYC9JIBCcJLii9MoE7SRufVIWxtQC3Ec2hcc8FdvwdzRiSIy/dYe/vV6zvLwnHZveUo31dGrKScP4tPIS3i+7kaUVV+D0xxeGAlCSvJuLhr/IRcNfZsxYAyN+sJO2dfupipgnGUyKvp6y14m/pVKdon4UX1M5QbdadALo3Pou3rqDmLJHaG731h+EoDKR91iTz8P756rDgiI5mUVNgOT5t1K/+EFFewHJaMYYZ6J8NCIFR2+zC2+bG3Nq/3ywKQdlOiLOYUg0Yc5QHl87LKgj6nF7FzU1RNKKtl5FTUeFtqjpqOwg6AlAUBnx3RkwcdddodYOLWpDalQSrEGuuErHww9D23/WEOghlppSLJriUs/+h5G9PSG6UxMg75wSDr+2C2TQmfUUXXZsvd21Stn9neqgIIPdKFK0TxDR/s6SXorZTsCYpBQ1Pc3qgDohagqGCuKeLBAINBmdkhVV1Cyyp5wS6ZtDkRxrooaoqewVqRX601VyXuloU6XZD6WQoJ7k2JL47vgFg70MgUBwEiHLclSnZjQyLrmfgKNFIWoCOPd8RtLMa+I+Tqx+ml1o9X+UEnP55JOQkLL4pUdo7YxfgBo+HG68Ec5s/xLDOv5F179ub1MCsizjaypX7WMdOV+V8O6p3hNV1NQqPQ8jyzR/8hdyvvCY5matfpqmnOML1+vN6SkZTBjT+16KO5AYU/NInHYFHRvfCI/ZRi1AOs4e4FrChqfJ1W+iprveoRLgEoerXzMaE80Yk82KwBlHZTuyLGu+vnRrJJ9bs7udhwmFyart0QTLLuSgHDWgyFnVHnZHBoPwzo5c/rOuiLKmBM35WuilIJML2vjKvDIWzfMx9luzCHoCbIlwf5pStUXNoLtb7I90jELsAJn06bkkFCbhanCQWJIaUwCNRbzp5yL5/MShj1J+bkwyx3RYq/pqyuo5eosQogVDAyFqCgQCTUYnZfJJtbqfE/R/SJAgfnKsieyNCPrp2U8TQo7OwoQUKhyt4bH9R0vOtftpDk1RUyAQCCLxN1cQaK9XDkoSyBrv+AB9cjapi+7EeWAN/O9hxTbHnk/7XdTsIihLbG2Yw3tlN/HJ9JHUhZfcu/iUmwvXXw833QSzZoUur/JvXtrXds+RPQ6Cjhb8zWpR0z7hfLWoWbMH+8TzNc/nqdoZcz2tK/5B1tW/0OyTqZl8frxOzV5EUWPWiOMWBweCnJufxFu3H0/lDowZw8i+8ffHdTxZlqOImk7oxdEYL5EuTQB7sXYP9oSCJFp7vJ7pStXWKql1RYiaeqsBQ48QG1OShkha0RZVJAXwNDpDbkytbU0uNq/x8INXJ7H2cBq+QPz3l5Ej4dpJh7lixEEMRzs2uGqgfX8zJo0AF1OKFb1ZffyeTk2tnpr6KEFBXViyErBkxS/CaqEz65EMOkU/U2+zS+E0BZF8fiKJ1lOzt9+5Kan3UCidCAoSDBHEPVkgEGgSKyyoKOHUDgk6ldHqqzkuNVs1NiopUyFqlnU24w34w+JmT4aqU1MgEAgi0XJpZlz+Yzo2vYVHI8E745IH0Jlt2ErnqsqyI4W/3tAKCeqZZi7LsLt5Ku8dvpEPDt9AjWNY3MdONjVx4aj3ufPJmznzTNBHaCRaLktfU7mmUzNh/HkQ0c8xMsynJzGdmoR6hbau+g9p53xDtU3ruObj7Kmps9gxpBXgb67U3H6yl553YUzLp+ThbQTa6tAnZiDpj+9tm7/DqwrbgZCA1190aoQEJZakaM61FSTRulP5msRR2a4Sa4L+IO7GyORzu0qsTCiMFElDgTbRXKhaLk23V8czq4fz9vY8mn5rIp4emQBJSXDNNfDrX0NODtR+JlH1gXJO9ZJD5J49XLWvOdWimULds6dmX8vP+wtJkjAkGBVisbNG3QpA9NM8cUh6HTqzXiXA9yZqGpN6F5pF+blgqCDuyQKBQJPRKbFEzZSBW4hAQaQAqZMkJqbmquaNTM7gk5pup21Qlvnz7pX8fe869dwh2FNTIBAItHBpJJ8njF1E6lm3c+jnswi01YXHDSm5pC76OgA6sw1ryWxFkI+naif+9noMSdH/X/YkMiRIZ00icdoVbHxrJe8fvpH3D9/I4fb4Bb0EYzvnFL7BxcUvMSf3Y9JnX0XBwps158YrauoTM7AUTgSdXtHr0hMjAT1aSFBPmj9+ktSz71QJUZFOTclgwpgRv5gbDXPO6FNe1ISjolJEi5ljRculCf0nasqyRj/NBGNUt6B2X812UicoH0+eRqeqt2XPfprh4xUm07ojQiStaI8uavYoT/90XwbPrh7Ontok5DiFTJ0OZs+Gn/4ULrhAuS1zTj61y48oxEhnZTsNa9T3SVOKBV0vPTW1goJilZ/3J0a7SSFqagnjIvn8xGKwGfH2WdTs3akpRE3BUEHckwUCgSaxnJqi/HzwuK10Bk/sWkGHL/QC85YR08m2qoMitITK769/R/OYovxcIBCcLqicmpKEZfh09NYkir77NhWPX4G/tQbJaCbv9n+iM3ULIraxi1Tp5I7dn5I8+/pezxv0uhXCYHlHCUtrfsB7S65l56H0uNdvsciclf0qFw1/iQUF72HWd4sN1tI5UfeLV9Q0phUhGUyYMkvw1nV/MOat1hY15WAAT/UuxZh1xGwCrna81bt77L8bx65PsI8/VzE3sqemKau0X0rDTbmjcez6RHObOefUETX7k2iiprvJqTne5+M3OvF3ehVjdo1+ml3Y8tWvXbTck1ohQRZNUVMjLKi8jbRJ6moWgLIdTn7/zjiW7s3E5Yv3LbFMQYHEHXfAAw+AKYpupDcbyDlrGFXvH1CMt+9vVs01pVqQ9DrVeKBnT02nuqdmrFTs/kQrLCgSUX5+YtFbjdAS0ce01/Lz3t2zQtQUDBXEPVkgEGiSb0smwWDC4feqthXZUwZ+QQIARiRlsOWKe3nt8DaybYlRU73jFSpnZhRiN4qyIYFAMPSRgwHchzcoxky5Y9AfbethLZnJiN/sxlO5HXPeOPR2ZZ/BhLGLaHzrF4ox5574RE1P1U6q2gv48PB1fHDkBnY2zYh73UYjXHhhKPDnssskqu//BgGHWhyxls6Nfox0tfvRU7ObQGdTxLyQ+GnKHaMQNf2t1QRcHegjPkTz1h9E9nkUY+b8CViKZ1D7L2W5efOSJxWiZsDREi6976K3kJ94iZWAfio5NfsTT0sUp2azCzkoxwwdiQftfpopUecbrEbM6VaFU9RZ1aFaS2Q/TVCGBHVhy08CnaRwdUaKpMEgPPccPPKIzL59U4i3vNxsCDC/pJE/PG1lykK1eKpF1pwC6laUq4Re1bFTrQpXZhe9l58PzNv4WAnbXYigoBOL1t+6t995XOXnoqemYIgg7skCgUATSZIYnZzJpqYq1bZC4dQcVIYnpnHvxIUx58RTUl6YkMLf5l3bT6sSCASCk4Ogx4FksqkcYt6avQTdSteXtWSW4rbeloxt1Bmax7WOmINkNCtEPEcvfTXLy+HVV+GFZ4vYtPtw3NegkwLMzlnKtRc38qVHbiKth75qSCtQi5p6I5Yi7Q+5QNup6dy3Muo8c94YOre8rdjmrd2LtVgpxmr10zQXTCBl3s3Uv/oAQWdbeLxzy9t46w9hyioJ7XsCQoLiOc7pKmp6m92a47IviK/Dc9zCVOchjX6aUUKCukgoSFKImgG3H0+TC0umLTymnXyudmrqTXqs2Qm4evR8dFZ1IAeCHDqs4wc/gPfeA7cb4hEzJWRKMzu5bc5hLhwfSuoaMy66GzoSnUlPzsJhVL6jHboJIaec3mLQXE6s8nOdWa/p7jwRxOfUFB+On0i0Wg309jsX5eeC04mBeTYUCASnJKOjlKALUfPkpzgxDUuUUIE8WxKPz76S3Vffz9T0/AFemUAgEJwYZL+Xij9fx547kzlwX3EosbwHWiFB1uKZcR9fZ7JgHaF0Q3pr9uBrrVGMVVbCn/4E8+bBsGFw332waXd8vYunZq7kwVl3s+zaPJ4573xuvfKIQtAEMKYVqPazDJuKzhRdlNLbktFFBM15Krer5oWdmhqioEejBF0r+dxcMAGdxU7Kgq8qN8gyrcv/Eb55IkKCuojm+JSMFgypp+f/vWjl53D8fTW1+mnqLQasOWpHZU9sGn01I92VkeXnBrsJQ4K2YNOzBD0YhP+uzmP4cCgthddf7xI0YyGTYvXyhZlHWPbdT3nxq5+HBU3oe8l35qx8jDHKgE2poceszqhXCZtBd/T084HqpwlgjPK7DqOTMCYKUfNEYk5X9oWVjDpMUXrFdqE3G9CZY7fy0FuOv9WHQHAyIOR5gUAQFa2+mhnmBGyG3j/9EwwuRp2e20fN4c+7u504BbZkHph0Nl8eOQuLYeBeEAsEAsFA0PD2r+lYvxgAX+MRKp+8htLfHwqLfa4ydUhQpFOzNxLGLsK551PFmHPPZziKbuS11+Dll2HVqr6te1JxBeenPc4Fw14hz16h2GZIyVPNN6SqRU1bjNLzLozpRUpnpSxrzgHt8m2vRliQllPTkj8BgLRz7qb5wz8qztO+/lUyr/klkiSp+mkCmHJG9Xod8WBMK0QyWZG9SrHOlF2KpDs9PR29iZqJJbFdlbHwtrjxtSvbENiLU3otaY8WFpQ+NRSOFPQFVOvWcmmGj1eYzOq323jys1LWH07DH4zvb63XBZk/zcPt47czLrcj6ry+lnzrjHpyzx5O+ZtqAR+6RU1JJ6E3G5Ql5z2CYQIuZXn6QCSfh8/Vi1PTlGQ+7tYFgtikT8+jYV1V+H6QNbcQval3QdKUZMbdEL1nrnBqCoYK4p4sEAiiouXUFC7NU4dHZl5KaVI6e9rqmZlRxE0lUzFHcW8KBALBqUzQ66blk78oxvytNbSvf5WU+bcAGk5NvRFz4aQ+ncc2ZmH450ZXFkuOXMPHt01j3X5NjTAqY7P2cPN3xnDddZDVuJKqp/6gOc+Qkqsa03JqWkf0XharEjW1ztfl1MxTi5oeDWdl5PH09nT0yaFgFlNWCdaR83H1KHP31u7DU7kDS+FE7fLzfnJqSjodppxReMq3Ko8/REvPZVnGcaQNv8tH8qh0VWly0BdQiY498RxnWFCHZul5Sq/72fIS1X0wq7qdmu56B0Q8rrT6aXq98JvfwFN/y6G2Lpf4emXK5CS5uWlGBTfNr2bKfXPZ9pvogqbOdGwl3+nT86j97AjeFrVN1JzS7bbTmfVKUfPoz7Isq5yaAxUSBGC0xz6XKD0/8VgybIz7zmza9jZhSjKTNDq+cDmjEDUFpwniniwQCKKi5dQsFCFBpwxmvYFvjTtzsJchEAgEJ5z29a8S6GhUjbd88ldS5t9C0OfBHSFwWYqmoOtjUFpn0mxePvBNPjh0FRvqziIox1++NzJlOxcMf4ULhr3K1AtnkH/nfwHwJkUvgdcSNRMmnE/D6w+Fb+ssiSREpIprYUxT99VUzykMndeejj4xQ/E7jXRqBn0ePHVKt6W5YIKil2nSzGsVoiZA+/rFWAonqsrP9fZ0DPb4k+B7w5w75rQQNWVZpvyNPTSurwZCyeBjvzkLnaFbgNMS1HriPs7y807NkKDenZ+6KH0wA24/eotBMySoZ/L5qlXwox+FvgcCEE9nNbNZZv6weu5eeIBhaaHfS2JRKsYkM8ZkM742bfH3WEu+dQYduWcXc+S13aptXU5NCAlMPc/d1VNT9gWR/UHlWgYoJAh6d2oaRUjQgGBKtpA5q2+tM2K1PkAKPf4EgqHA6Vl/IRAI4mJUciapJmXPlmmiB6NAIBAITjKaP/6z5rjr4FpchzeFxK2A0u1kLYmvn2ZjI/z973DeeZBXaOYXq5/k89qz4xI0x4yBB+7Yw1uXj+PNyyfxjUkPU5K8F3PR5PAcY9YIdAnaApCWqGktmUXWtb9GZ0vBkJJH3u3PYUjM6HUtxgx1AroCvRFDck74ZmRfTW/tPuRgQHGbgLIs1pw/XnE7acY1qtN0rF+MHAwo0tW1zne8aB1vKIqazVtqw4ImhIJ1mjYp+7zGKj2PZ3tvdJQpnZo6sx5bbux+ml1ElqDL/iAN6yoB7eTzQIKde++FjAw44wxYvrxL0IyFzKhRocdx7bYWHrl6R1jQ7LmGhPzoyeb64xAS06fmqPoiQoSoGZFE3eXUjAwJggHuqdlb+bkQNU9aTDFETb3ZoArTEwhOVYSoKRAIomLWG3h4+kXopdBTxejkTO4YFX/yo0AgEAgEJxrXwc9xa4QAddHyyV/73E+zuRn+8Q+44ALIyYGvfQ0+/jgUPtIbo0bBT34C27fDrl3wvYteojRF6dKyFE0J/yxJkmZgkWQwoU9IU49LEhmX/ZAxf2th1ONVJM1UC4daaCWgK7anFSj6TUb21ZT9XnwNh8O3NZPPj/bT7HlMa0S/T0/1Ljq3faBIkYf+66fZhXXEbPVYnEL2qYLf6aPyXXW6dufhVsXtXkXNJidyX/on9MDb6lY5Qe3DUuIu1U6dnK0aq1tZTtAbUIQErTqYxq3/nEHexCQeewyamno/ttXo5+LxNexZ3szevXD77eCqalfNsx0NGNIKLurieIRESa8j95wS5ZhBh31YSvh2ZClwwBPQLD2HgS0/N9iMMav5Rfn5yUssp6YoPRcMJcS9WSAQxOTOMfM4N28UNc52ZmQUYhUBMwKBQCA4iWiO6KUZSdvaF/B3NKjGI4XE1lZ4661Q2M+SJeD3q3aJSmHiAS4a/grX32hg4T13o7d0l8hGlkADWHo4NbvW4tjxkWLMkJzTr06aXkXNiO0mjbAgT+1eTNkjQj9XaYiaBRNUY0kzr8MVkUTf+Pav1Pv2Uz/NLuwTLyRh/Lk4dn4MQPK8W1S/91Odqg8O4HeoRS9ntbI3pKeX8vOgJ4Df4evVladFpEsT4uunGZ5bkkpCYRKOim6x0d/po3F9Nc1HXDz+8Uje3p5Lpyfe158yIzM7+er8Ms4dE3rcJ3lLgFBrA0dlm2qPbqdmYtSj6o8znCdtSjbu+k7qVpQjGXQUXFSq+H3rI5OqgzKyL0hAQ9QcyKAgSa/DYDNq3s9AODVPZoSoKThdEPdmgUDQK6VJGZQm9V7aJhAIBALBQOJvb6B93Usx58heF52b/6cY01kSMeWOpqkpJGQuXhxyYvq037drUmA/xAXDXuGi4S8zJm0LkgTshUM/fpqcW/6MfeL5SDo97vItiv0MKbkYkpQ9q7UchFql58dD705N5XYtkdFbswcmXwyAp2qnarslovwcIGnmNdS9eI9iLFLkhP4vP5d0Ooru+xDn/lVIBlOfk+5PdjrKWhRl5z1xNzgJ+gLojCGhzBtHebmnyXlMoqazUh2uY++DqClJEjmLijn4727xf3N5Ml+5KYntFXOQ4wr9geRk+MIX4Kc/8FL5tNK57agICZmyLCvEUwgJP13CXEyn5nH2sZQkifwLSsk7twQ5IKv6GWqJTAGPH79L/emK3jawb+ENCaboomaKEDVPVmKWn1tEP03B0EGImgKBQCAQCAQCADzVu2l4/acEvQ7SLrgH+/hzBntJMWn97Blkv1cxZhk+HffhjVH3aXJlsqL9fj69UM/SpfH04+tm2DC4/nq4+oI6std9Bdfez1RzfA2HqHjsYgwpuSROvxpf42Hl+nqUnofHNAQ3Q0pe/AuLA0NKHkg6kLVr6ONxarrKNoR/dkeUnxtS8tDb1eXyxvQirCNm4zq4Lub6+tupCSFhM2H00AvMC/qDlL+pTo/vniDjqu0koTAZiK9npqfJpSiHjhdXbadyQDqaat4Hkseko8+08+fFWby+NZ8Wp5F4EswlCWbOhF/8ItQqIoSZuojAH0dlO0F/EL/Di79D+XzRs6enwWbElGbVFIH7q+Rb0uuQNPQknVlD1HQHNMvPB7KnJoDBboR67W3CqXnyEtOpqXF/EwhOVcS9WSAQCAQCgaAXvHUHaV7yBJLRQvpF92FIyhzsJfU7Qa+b8j9chK/xCACd2z6g9JH9mLJKNOd76w/Rue19jJkl2CddOOChA3LAT/PSv6nGc7/8f9T843bcRzaHxxqcOXxcfhUflV/b59TygoKQkHn99TBrVkhIgWzkRUtpWfo36l65H9mjDjTxt9bQolEaby5Ul0AbU3KxjTkL555ukTRxymVxrzEeJL0BQ2o+/uYKze0qUTOzGMlkRfZ2Czztn7+C9+pfYEjJxddwSDFfq/S8i8QZ18YWNSUdxqwRcVyFAEI9J9316vtcT5zVHSQUJiPLskrUlAw6VaK2p8nZ53XIsoyzRunUtGTYwg7ReNiyBe67T+LTZbMIBON7DsnMhC9/GX76U7DZ1NsTCpNpbetW4fwOH7v//Dmp47NUc7v6aYb3zU/UFDVPdMm3lnMu4PEPevk5RA8Lkoy6AXeNCuLHmGgKfTag0S5XlJ8LhhLi3iwQCAQCgUAQg4CjhUMPTSXoDr1579j4BiN+uxtJN7TKtxy7l4YFTQDkIO3rXibjsh+q5rrLt1H2y7nI3pAQknHFT8i6+hcDtVQAOja/rRLorKXzsA6fRurZd7H5zz/j4/Kr+ejItWyqPwO5D/mYeXlw3XUhIXPOHNBp7CrpdKSdezf2yRdT8487cOz6JK5jW4ZN0T7nV56l9oXv4q0/SNKMa0ied3Pc640XY8awuEVNSW8gaca1tK3+T/dgMEDDm78g7fxvQ0SwTGTyeU+SZl5D/cvfj7Gu4eiMInAkHjxNTmo+Ket1XldfTb/DR9CrtCPbh6fQcaBZMeZu6nsCuq/dQyCiPNqa03vqud8Pjz0GTzwBVVVdo7EFTZ0kM3dWgN//0cDcuTGnYi9KpnWH0lrornNQU6f+vUWmr9sKkmjZrrYlGk6weKflnAu4/Zrp5wMZFASh8nMtTMkWkaB9EiPpdaHWAZ1e1TYhagqGEuLeLBAIBAKBQBCD9vWvhQVNAG/dfpx7V5AwduHgLeoE4Dq4VjXmqd2nObf54z+HBU2Apvd+T8YlD6Aza9imThDNn/xZNdY5/gc89hgsfvXLrFl7e5+Ol58P11wD114L8+drC5lamDKLKfrBElo/e4a6l79P0KkOIumJRcOpCWDKHkHR997u05r7ijG9iGjSlVbPzYwrfkLb2hcg2C2Kta15XrPfZyynpimzGEvxDNw9ytcV+56A0vOTFXejk/pVFUg6iewzi/rUk1CWZcrf2qtyWdryEnHVOxTjzqrQc5aW6zChIAlHRRtBT/ff1XMMoqarplM1Zs2NXnq+fz/ccw98+GH8/WuTLF6unFzN184oY+6vF6CLo+1n2pRsaj49rOlyjCRS1Iy83cXxBgX1RtSemk51T82BLj83JkYRNUU/zZMeU5JZiJqCIY+4NwsEAoFAIBDEwBtRZgvgrd039ERNjfAWb91+zbmR4Teyz437yCZso844EUtT4anahXPXUgDKO0pYcuQallTexPZ/Tz06Iz4XbVFRSMS89lqYPTt+ITMSSZJIXXgHSbNvoGPjm7R//jKdOz6CgFKQMOeNw5Qz6thO0g9EhgH1xJBWqBoz54wk5Ywv0br82e5BOUjT+4+q5lryo4uaAEkzr40qavZ3SNDJit/lY+9TG8KhKy076plw39y4y7XbdjXSvl/psESCYVeP4cibe3FWdofguGo7kQNBzX6a5nQrlnSbIiU9svzc2+6heslBvM1uUidlkTErX+XKc0b20wRsuUqnZjAIf/87/O53UNa7wfToJcmMzW3nm2cdZNbwULq6Oc2qCteJhjHRzJg7p3P41V2qYKCeWDJtKnHHlpeoWbJ7ooVEVfo5EHQHCGg4NY83tKivRHdqCnf1yY4xyQzV6jAvnRA1BUMIcW8WCAQCgUAgiIG/uVI1piV0nsrIwYBmz0OvhlNTlmW8depx54E1AyZqrn/+VRZv/yEfHbmW3c3T+rRvUXoNN341l2uvhRkzunpk9g96axIpZ9xKyhm34u9somPDG7R//jLu8i0YUwvI/fL/IR2rctoPREtA1yWkordqO+wyrvgJrav+DYEe4opG2JA5f1zMcyfNuJb6Vx7Q3DaYQu9A0rylVpEi7Wv30LankdSJ2b3uKwdlqpYcVI1nzSvElp+ELS9RIWrKARlXvQNPi4aomWrBnG5ViJoBlx+/04fBZkSWZcpe2kFnWSsAHYdaMNhNqp6Urhq1WNJVfl5ZCffdB2+9BW53r5cHQFISXH1eJ7cWbiTJovxAwJKdEN9BuuZnJjD6zhnUrSyneskhlbsVtNPO9RYDlgwb7galyKs/wUKiplPT7VcFBenMeiT9wD6HROupKUKCTn6ihQWJoCDBUELcmwUCgUAgEAhi4GtRi5q++qElanqqdytK7LsIdDQQcLSiT0jpHmuv1yyx1nJ69ie7dsHixbD41SDbd/y0T/sOS9zHBcNf5fyixZz51avIuuqhE7TKbgz2dFIX3k7qwr6VwZ9Iooma0cYBTBnDSF14By2f/DX6cTOL0Vli91I0ZY/AMmyqIsCpi9Ol/FzlsgQclR1xiZot2+pw1ynDgYyJJvLOCwV52fLVorSzugNPs1pRNKVZMaerW0V4mpwYbMm4ajrDgmYXTRtrNERNpVNTbzWw+D0zv/wl7NnT6yWFmTgRfv5zuOoqCPpt7Pi9Hl97RK/O7N57dUYi6SRyFgwjeUwGRxarXZvJo9M197PlJ6lEzWhuxf5Cs6emRy1qDnRIEIAhmqgpys9PeoxJ2n87UX4uGEqIe7NAIBAIBAJBDPwtVaoxb2OcdZSnCLEESW/dfqwlM8O3PTV7ox5DluV+C46QZdi0Cd54A15/HXbv7toSn0tp3Di4bP5e5tRey8iUHWFHpn2COpH8dCGqqBmjLB0g47IHaV3+D2SftuUuVkhQT5JmXqcpap4O5edBf5COgy2qcWdV9PLoLuRAkOqP1R+k5J5dHBbDbBq9LJ1VHeqemjoJU3LIqRmJp8lFQmEyzdvqVNs6y1qRgzKSLvRACvoCuBtDwl+r08CTn5ayZG8OTk98j3+rNRTG9bvfQU5Oj+UZdGQvKKLyHWXrCy3RNl6sWd2uzbrlR/A7faRPyyV1gjoNHSB9ei7NW2q7z12QhCmK462/0CoHDnj8qiCmge6nCbGcmqL8/GTHlKQtPAtRUzCUEPdmgUAgEAgEgijIsoxPo/x8qDk1tUKCuogUNb212qKmv60WX1M5poxhx7yOQABWrQqJmG+8AeXlfdt/0qRQf8xrrgmJmrI8iprn5tL62Q4AUhZ8FdvIece8vlMdY5S/TSynJoAxNY/Uc+6i+YPHNLebe+mn2UXizGupX/wjxZjOYseQmhfX/qcyjvI2VQo5hNyUvX0Y0LSpVhXkY0q1kD6j+/dmzUkAnQTB7maQzuoOfG0exX7mVAuSTtIUNd1NTmRZpmWrWtQMuP246jrD4qmrzsGqA2n85bMR7KtPpLf08i5GjoQHH4Tbbos+J3NWPi3b63EcCTnCLdkJpIzNiOv40ehybWbPL0SWQ+JpNJJK0xh2zVgaN1RjSrZQcMnI4zp3PGj11NQqPx/o5HMQTs1Tmajl55b4+tMKBKcCQtQUCAQCgUAgiELQ2apI+e4i4Ggm4GxDb0sehFX1P85YTs1apWMqmlMTQm7NvoqaHg8sXRoSMd98Exoa+rQ747O28YXvTODaa3WMimjNKEkSuV9+mozLH0T2uU+bMudo6K1J6GzJqvYBvYmaABmX3E/LsqeRPQ7VNkuM5POemHNGqkrQLcNn9Ju792RGq/QcQr0svS1uzGlqkRFCDs+apWpneO45xQphTmfUY81KwNUjvMdV00nQpxRSu86jXX7uwlHejrdV25HbWdZKMDGRBx+Ef/7DTnvnVM15kZhMcNll8Ic/wLA4nh50Rj0jvzSF1t0NBH1B0qfk9FsfSUmvi0t+zZiRR8aMgRPbtZxzvg6vqhfoQIcEAehNenRGHUGfci1GIWqe9Ijyc8HpgLg3CwQCgUAgEERBy6UZ3tZQhn7YlIFbzAki4GjFW7076nZPRChQNKcmhETN5Dk39nrOzk744IOQI/Pdd6G99wpcBRMz1nF+0WLOG/YaU266kezrfh11riRJx+UeHWoY04rwOLcrx6KImr4ODxVv78Pd6CR1QhZp532Xpnd+pZpnjlPUBMj+wh8pf/QCZJ8HyZxA5hU/6dsFnKK072+Kus1Z1R5V1GxcX6USGc2ZNtKn5Kjm2vITFaKmljPUdPQ8xkQTklGH3EOo8jS5aNlWq9oHYFN5MnfclsaWg6HWEPG0gRg2DO69F+6+G/qaj6W3GEifmtu3nU5hdCa9KnXd26IWlwfDqQkht2bP9eitBvRxptELBg9Rfi44HRD3ZoFAIBAIBIIoxBI1vQ2HsAwBUdN1SJ163pNIp6ZWInoXsRyfzc3w9tshIfOjj+JPRIZQQvncuTJnmX7F2Wl/J8/eXZeecuaX4j+QAGN6EZ7K+ETNI6/voW1PIxBy/RVeehs665MEXT1UaJ2+Tz0xE8acRemjZbjLNmApmhyXS/RUx9fpVSSNR+Ko0g4LCnoD1Cw7rBrPO7dE07loy0ukaWNNzLV0iaeSJGFJtylEUHejU5GW7vXD31eV8MaWfFpdRuIpMTcY4Nxz4dFHYXx8rVYFhP4eerOBgLu7h6ZWcv1g9NQESChIUoiaCYVDo0phqKO3GZAMOpXjV4iagqHEaX9vPnjwIC+99BLr1q2jsrISv99PVlYWo0aN4rLLLuO8887DYOi/X9P27du59tpr+7zf888/z4wZM2LOGehrEQgEAoFgqKMVEtSFd4j01XQdiN5PE8Bbty/c80/2+/A2RL9ud/lmgl4XOlNIOKmuDpWUv/46fPppqGdmvBgMcPbZoUTkK66ApNbPOPJbpavPOnI+5pxRUY4g0MKUVaIaM2YWq8bkQJC2fUp3Yds+B5lXPETdS/eFx5LnfhGdqW9lqMaUXIxTL+vTPqcyHQeaFQ68SJxV2oJn/dpK/B1exZg1xx414MaW13uYjjm1+29lTrcqRM3A0f6Ne2rtPL5sJBvLUwnK8RRry2Qk+vju/Sbuvz/02BX0HZ1ZrxA1gx71E+ZgpJ9DKJTKURFqTWBMMpN3rvp5RHDyIUkSxkSTyvXbFTAmEAwFTut785NPPslTTz2F369MlauoqKCiooJPPvmECRMm8Pvf/56Skv554t69O3p51/EwGNciEAgEAsFQx9cSq/x8aIiazoPR3ZUAQWcbgY5GDEmZIUEz4I8+OeBn52e7+GDLdF5/HdbG1ktVWK1w4YVw9dVwySWQmtq9rert51TzU878ct9OICB5/q00L3kyfDth/LkYU9RlvgFvQBE6A+BpdpH2pXsA6NjyDpbCSWScJOXjfqcPZ2U75kwb5lTtUu7Bov2Adj/NLpxV7aqwoIDHT+1nR1Rz884rCSeQR2LNtatKmCPpWebeMyzIH4TnPy/ipQ2FNHSaiceVqZNkphS08p1F+znjQhslN8XfhkCgRm8xqIKdVHNsg/P23ZpjZ9z35uBrC4maQhQ7dTAlW5StAyyGqM8hAsGpyGn7bPTwww/zn//8J3zbYDAwevRorFYrBw8epKWlBYAdO3Zwyy238Morr5Cfn3/c5+0pag4bNozCwsK49ktOjm7xH6xrEQgEAoFgqOOPWX6uDu841ZCDQVwHY5efQygB3ZCUiVcjJEiWYU/zFD6puJJPyq9i378n9WkNycmhEJGrr4YLLgCbOr+EgKuD9vWLFWOSyUbSrOv7dC4BWItnMOz+T2hd/g8MqXlkXPag5ryejrEuvC0ukCH9ontJv+jeE73UuHE3ONn3zCZ87R6QYPi140ifdnL0Y5RlOWpIUBdaYUH1qyvDzskubAVJJMdIAdebDZgzbHga1OFmXZgUoqaNI80W/vjJKNaWpeMPxtf4Mi0lyKWjy/namWVYDKGyVluutntUED/xlAQPVvk5hAKD9JkJg3Z+wbGRMiGTzsOt4dvJY6I/hwgEpyKnpaj5wQcfKETACy64gIceeoiMjNAD3Ofz8frrr/Ob3/wGl8tFY2Mj3/rWt3jttdeOO52xp6j5jW98g6uuuuq4jjeY1yIQCAQCwVBnqDs1vbV7CTpbFWOSyaZKfPfW7sM2ch6eoyFBvqCBjXUL+KT8SpZVXk6No29BPNnZcOWVISFz4cJQOnIs2j9/RbWmpBnXoLf2Xm4rUJMw7mwSxp0dc46WqCkHZHwdHkzJJ1fqcf2aipCgCSBD+f/2kjohKxS+Msi46xzda+tCw03ZMyxIlmWaNlSrjpV/Xkmvr99teYlRRU291YDBaiQYhKefht/9OocjlXnE48qUkBmX2853Lynnki/Yqf5I+fxnzbX3egxBbOJxPw5W+bng1CVzdgF+h4/2fU1YshIovFS0bBEMLU47UdPn8/G73/0ufHvRokX86U9/Qtcjks9oNHLDDTeQn5/P17/+dfx+Pzt37uSdd97hssuOvf+PLMvs3dvtcBgzZswxHwsG91oEAoFAIDgdiNVT09d4GDkYROprrO9JhFY/zaTpV9G25nnFmLduP+3tsPh/ibyz4r+sqLqYdm+qat9YFBeH+mNefTXMmQP6PuhNrSv/qRpLWSBKz08kWqImhErQTzZR01XXqbgd9ARo2VF/Urg1tVLPU8Zn0bqjXjHm7BEW5KrtxNOsDIlJKEwicWRar+ez5SXSsrVOc1uLlMiNN8Jbb3UFdfX+ILRbA1w0ppq7zzqA3RJyZbbuVAfYWHOEqHm86M29/z0GK/1ccOqiM+jIP38E+eePGOylCAQnhNNO1FyyZAnV1aFPPg0GAw899JBCBOzJGWecwQ033MDzz4de2D/33HPHJQQeOXIEpzP0yanRaGTEiON7YhnMaxEIBAKB4HQgVvq57Pfib63GmFYwgCvqX7TSypPn3xoWNeuceSyruJzl669j9RfA57uzT8efMCEkYl51FUyeHEoxj0Xbmhdo/vgvSHoD1hFzsI1egCE5G9e+lYp5xozh2Eaf1ae1CPpGwK2d6uRtdoM6V2hQ8Xd6VWNNG2tOElFTXXqes3CYStR09AgLat3ZoNonbUpOXFVWWmFBH+zM4plVJRxu1ujtoIlMaZaDR/5qZW5mJVXvH1BsjQw20tuMGJPMcR5bEI24ys+tp93bd4FAIIjJafes+N5774V/njdvHnl5eTHn9xQCd+7cSUVFRdx9MCPpWXpeXFyMqbdaq14YzGsRCAQCgWCoE3R3qkqzI/HWHzqpRM2AowXj8segs57AuEtDSmIMXJEhQUYrZYFF/GPPwyw5eD47m2b2eQ2TMtZyzQ1WbvrOZEaOjH8/54G1VD31xe7be5fT9N4jmnNTzvjSKe2QPRWI5dQ82fB1qEXNjkMteJpdij6VA03QF6CjrFUxZkqzkpCfhDndiqep+3fZMyxIS9RMGZ8Z1zm7RM1Wp4EnlpWyZE82Ll98b/kshgDnjKnjO4v2U3pGBsXXjMdRkdL7OXPtoq1VP3Cy99QUCASCk5HTStSUZZl167qb4c+fP7/XfUaPHk1mZiYNDaEXF0uXLuW22247pvPv2bMn/PPxlp4P9rUIBAKBQDDU8cUoPQ/PaTgEYxYMwGrio/qvN2DYswwAw4GPcY2bQuJYbUdjwNWOp2on/qCezfXzWVpxBZ/W3kD5s0ZAOzxGC6MxyKzMjzi78C0WFf6PbFs1aXO/S87IP/Zp7a2fPRP33OQzxOuXE03Qc2qImkF/kIBLe61NG6vJO2/wSi47y1qR/UHFWNLREnJbfqJC1OwKC5KDMq5aZTl9QmFS3CX/Hyw1ct+/ZrO3JoF4emWCTFGqk6/MO8ylE2vDo2mTQ6XwtrxEdCY9Qa+2cxdE6Xl/oeul/Fxn1iPpxYc5AoFA0JPTStSsqqqivb09fHvChAlx7Td69OiwELh9+/ZjPn9Pp+bxipqDfS0CgUAgEAx1YpWed3EyJaD7mspxHRU0u2j5+M+aoqbDAW/+vYxXVjzH8qpLaPX0LQ010djKgoJ3ufwKuP5HV1L9g0sh2C16qBygvSAHg3RsfSeuubZxZ2PKHN6n4wv6TlSnZsvJJWr6HWqXZheNG2vIPacESRdb3JODMvWrK+g83EpCYRJZ84vQGY5fPGo/oC497xY1k2jZFtlXsx1Ps1u1T8r42MninZ3w4IPw739DaytA7yKj2QyXXgr3XFSG+YDyeUxvM5JUGlqnpNdhH5YcM8FdhAT1D70FBYmQIIFAIFBzWomahw8fVtwuKiqKa7+Cgu6ysvLy8mM+f09Rc/To0ezZs4fXXnuNdevWUVlZid/vJyMjg8mTJ3PRRRdx3nnnRS3lGOxrEQgEAoFgqBMrJKiLkykB3V2+VTXm2P4BQa8bnclCdTW8+y7873/w8cfgdk8GYpen9yQvrYmFmS9wduFbzMj5DKPOT95V/yAlM4Hmwsm4j2wKz3Ud3hQ+b1xrL9tAoE073CSS1IVfj3vNgmMnmqjpPcmcmlql5+FtbR46DjaTNDI95jHqVpaH+0a27mwg6A2Sd17Jca+tbV9ESJBOImlEt1MzEmdVBx2HWlTj0UrPly+H+++HdetAljWnRCAzbJjEfffBXXeBTgf1a0xUKFtmkjohS+EItBenxBQ1bbnqaxH0nd7Kz0VIkEAgEKg5rUTNLocigE6nIyMjPldCZmb3C4mex+gLzc3N1Nd3fxr7zDPPsGaN2sVQVVVFVVUV7733HhMmTOCPf/yjpmA5mNfSH/j92i+UTyUCgUDM2wKBIH7E40lwMuJp6v3DP0/9wX79n+ap3kXrJ3/BW7MX+9TLSTn3W3H3qnNGiJpBWWJX1Wj+9a0jLNkwik2b+t7zbkzqZs4ufIuzC99i/PBqgh1KZ5k+awR+vx/ziNkKUZOAD8ehz7GWzovrPG2b3lKNpZzzTSSTFde+FbgPb4BgkJSz78I27aoh8TriZMfn8mmPd3jxujzojH2Irz+BeNpii6wN66uwFSfHnNO0sVpxu3FDFVmLio7rf5Ov3YO7zqEYsxUkIhtCr4PNWerQntbdDbjrnYoxS3YChhRT+D7vdsOvfiXxzDM6GhshnhJzvS7I7OHNPPV6EmPHh8TKYDD0ZS1UuyxTJmcqHmPWwhiipQ4MaWbxmOwPjLH/lnqr/pT9PYvXeQJB/yEeT0pOK1Gzra0t/HNCQkLUpPBI7Pbuf/Y9j9EXero0gbCgabVaGTZsGElJSdTX1yscmDt27OC6667jueeeY9y4cYr9B/NajpdgMMjWrWo3yanOjh07BnsJAsGQQTyeBCcDxv1bVS+UZKMNydctOriq9/XL/zSptRzDur+j3/sBEiHLlWvvZ1Q1tBAYf2V8692xAq/Pxtqac/m08lKWV11Cgyt2iGAker3M9OkdnDVtL+fXX0uevVvYDXao5+9r9IFjK3pDLpHxh4dWvIHfkRDXec1rFxP5SqZm+KWQkAEjb4CAH5Bx6Y3UbNvWp2sSHCO1jqibtq/dCkknh6hJmSfm5tadDbSu3wymKK+VgzI0KIVEX7uXrZ9vBrNynz79bzqsXpfT7lU+XyTowNHdczNS0ARwp/nZunUre/ZYefzxAjZuTCQYjK9XZkaClxtmVHDL7CMY7Dq8/iQ0n65Gm2GvJ6SPjjJzoOUw9DSMBmTQAUGNfe06tu8ULa36hTrtDxK66PQ4hsx7KPE6TyDoP073x9NpJWp6PN0vLiyW+MqhAEVKudcbvcQlFpGipt1u55577uHKK68kIaH7BX9lZSVPPPEEb70Vciy0trZy11138cYbb5CamhqeN5jXIhAIBALB6YDUqS6HDuZMRF/RHdQnOZvA5wZj/P+LFedor8bw+TPod7+LJKs/aTdsebFXUbO21sjKlcmsfOmHfF4+B2+wb2uxGTo4M/99zpp5iDl3XUhSUgC8LqxPxXaqypZksKYAEMyZpNquq41P6JA6atE17lOMBbPHhwTNLvSn1UvWkwNfjHpmR/DkETXdvdRdB4FyH5Satbc7gqB1iLYAZB1HX80qDYEqO+J+nKpXiJqR+IPwn+VFvHJfDg0NRuJxZep0MlOndvDt6XsZn9bdf5/kGNcy0RoSNmVUQi4AegnS9NCo4QZKPknuB0MBQy9/X5NImBcIBIJITqtXiD5f94uLeJ2NAAZD96/pWC3/PR2YqampvPjiixQXF6vmFRQU8Mgjj1BUVMSTTz4JQE1NDU899RQ//OEPw/MG81oEAoFAIDgdkDqVpdayNQ05rRh6iJoQEibl9L7339NvW4xx+aNIwej/j3VNB5Fay5FTulvRBIOwc2cCK1Yks3JlMvv2dZWxDov73Jmp7Zyd+TyLCt9ids4yTHov3gX3Ekg6KlqYEpBt6SHRNgrBlO7zycn5yNZUJFe3vUtXE5+oqStboRoLFJ8Z55UIThi9iZonC5441nLEG13U7Iiyf1sQYufzRMcVhNqIx7XpqDDYk1Q9VKrFzyNNVv64dCRry9LxB+N7nZ+c7OOqqxq5/fZqLBagzAcbj27UASOjXH94fb2cJ9OgLWqmCFGz3+il/FyImgKBQKDmtBI19fruf7rBYPwvxnqKf0bjsTVofvjhh/n+979PRUUFCQkJmoJmT+6++25WrlzJ5s2bAXj55Ze59957w07LwbyW40Wn0zFx4sRBOXd/EggEFFbvCRMmKP4uAoEgfsTjSTDQ+Nvq6Nz8Fo4t7+Bvr8U+7SrSLvo+Ug9H4MF/ttDzLbwlaxhJY2fQsPUlxbFK0k3YJ8cfuAOhpPKyP/9ekRgejQLnXozTLuPjjyXeeUfigw8k6uv7/uZ22jSZSy8NcvHFQdLeORtf+UbF9hFnXoW1pPs6KvLH4tq/MurxUkdMIafHdVeNmo+jR4K55KgnY/nPSbvkAawls6Iep3Lpg0QW3ZZeeDvmwr79TgX9y96VG3CjXYKeYUsjf3LpAK9Im8N7dtGGsk+8McWMr7VH+XdLgFFZIzRTuus7KqhBHfiVZkgmb0LpMf1vql9eTo3crhjLmJ5H/hTl76zD3sKh7aF2CsEgvLYln/+sK6K6zUo8rkxJkpk5Ex5+OMCiRRKQefQLmAyOaW246xwkDEvGkhVfK4hodNhbOLRb3fqheOrIcKK74PjwtXvY9dHaqNvzhueTOblwAFfUf4jXeQJB/zHUHk/bt2/vk6YVyWklalqt1vDPPcu3e6NnmbbZ3MunnDFITk4mOTl2o/IuJEnilltuCYuaLpeLjRs3MnfuXGDwr+V46ekYHSro9foheV0CwWAgHk+CE4GvuYqOja/TvuE1nHtXgNz9AspzZDOmlFxSF94OQNDnIdCudGoaUwuwZI9UHTfYXN7n+2v7jg+0BU2dPjxe0VHM8spLWP69RawrN+CL3W5NhUXvZG7uEs4qeIdzp+5i3l9WIkl6Ord/QnmEoGlIycU+YrZC1DXnjo4palryxiquO2HkPIWoCeDY8jaOLW+TMP5cMi77EbYxCxXBR0F3J649y5RrSSvENnxa3AFJghND0BNdcPe1ek6a5+iAQ/nAkIw6suYUUvWBMtK7dUs9iYUpqv29TW7N47rrnKo3ifH8b5JlmebN6tYVWbMKVPsmFqVQ127ij0tHsXx/Bt5AfG9Kk5PhlltCgUFJSRDtLV1ySTrJJbGT3+MlqTgNdFKoB2kPEvOTT5r7wqmO1IvubLSbh8zvWrzOEwj6j9P98XRaXXlPQdHhcCDLclwvmDs7O8M/p6SknIilaTJt2jTF7cOHD4dFzVPtWgQCgUAgGEwa3/kt9a//5GjgjDZtq/4dFjX9rdWq7ca0AoxZ6jJzb73a5dUbjp0fq8bMM25lb/avWfyHT/h0zyzK2sf0+bg5tgrOKnibhQXvMCtnGRbDUcHGAd7q3Zjzx9H49q9U+6VfdJ9C0AQw5agFXOX20Yrb9imXUr/4R5pzHTs/xrHzYxKnXUH+1/+LzhJyzHXuWILsV/b4Tpx6mRA0TwIC7uiPFW+zthA4GPg7lfcfo91E+rQcqj46qBDgmrbUkn9RKTqDssza3aDtRnXVdSIHe+nXqYHjSBueRqX32FaQhDVH6RJ9/nl4+GEje/acQTyuTIBJk+AXv4Arrujzso4bvUlPQmESjiPdQaPGRBOGxMiIMMGxojPpQ3eFKHc7g3VwquwEAoHgZOa0EjWzs7PDPwcCAVpaWkhL671coqGhu6QlIyMjxsz+JT1d+clqz7TyU+1aBAKBQCAYLNzlW6l/9Ye9znMd3oDs9yEZjPiaK1XbDWkFmDLV7WO8DX0TNeVgAMfupQBUdxaxouoiVtRfxeevnY/DIQG3xn0sSYJZs+CM1H8zz/AHRqduI5oe2L7pTRIczTj3LleM6xPSSF34NdV8k4YrtSfmXKWoaSmcSPZNj1H/6gMqobKLjk1vUf3sV8m/6yUkSaJzy9uqOYlTLot5XsGJR5ZlAjGcmp5mV9wfqJ9ofB1qUdOYaCZ5dDptuxvD4wGnj87DrSSVKl8vuxvUieMAsi+It9nV5/U0blB/IJIxIze0rRF+8AN45RVwhLXU2L9Dmw2uvx5+9zvIOtYen/1EzoJhHPxPdwl61vyik+I+MFSQJAm92RD1AwWDTYiaAoFAEMlpJWoOG6ZsoF9RURGXEFhZ2f3GprdemP1JZDp5z5T0U+1aBAKBQCAYLFqWPhXXPNnrwl2xDWvxdPwtVartxtQCdOYE9ElZitJ0X0NZ3GvxeuGTV/bx6vIHWV51MQfbxse9bxcJCXD++XDZZXDxxZCdDfu+9yD+HkKsbEpA8iodaB0b3wyV3UeQdsF3w87JnphyRkVfhKTDmDVCNZx+4fdImnU9TR/8gZZlTyN71YJR++evYB05j7Rzv0XH1neVhzUnYBuzMPp5BQNC0BdUlRkrtnsD+B0+jPbBdekF/UGVANTlHEybkqMQNQGcVe0KUdPv8BJwRu/r4KrVdnFGI+Dx07JNWXouGXWsqcrhoSmwdWu8R5IpLQ7wk58ZuDX+zzhOOCnjMhn99em07WvClpdIyvjMwV7SkENviS5q6oWoKRAIBCpOK1EzPz+flJQUWltbAdi9ezeT42jsv2fPnvDPY8b0vRSsqqqKF154gebmZpqamrjnnnviOk5FRYXidm5ubvjnwboWgUAgEAhOJYLuTtrWPK8aN2aNwJQ1AseOjxTjrgNrsBZP13ZqpuYDYMoswdVD1PQ2HIrpWquqgvffh/fegyVLoLNzLDC2T9eRl3CYK2/O5oqrrZx1FvRsix1wtCgETYBg3jSkzjp0jfvCY+6y9arj6iyJpJ37Tc1zmjREyy6MmcXojNq9uY1p+eR84TEyLvsRzR89TvPHTxJ0tinm1L10HwQDqr6l9gnnozNZop5XMDDEKj3vwtvsGnRRM7L0HEJ9BwHsReo+9s6qDsXtaC7N8Pa6TuhDYVPLtrqQIAx0unX8bUUp7+3Oo8MZX69Moz7AgtJG7r34EBf+fjbSSZj7YB+egn14ymAvY8iiM0f/oxusp9Vbd4FAIIiL0+6Zcfbs2Xz44YcArF69mhtvvDHm/D179tDY2P0p75w5c/p8TlmWeeaZZ8K3Z82aFZeguGJFt5tCkiRVj83BuBaBQCAQCE4l2ta9TNCtFDISZ15Lwd2v4K3ezcEfKZ2SroNr4bxv4m9Ri5rGtILQ96yS0LyjyB4HgY4GDEmh2lCfD9asCYmY778P29SBwb1i0AeYmrGCM/PfY0H+e5Sm7CT/i8+RcuaXVHPdlTtUY8GMUsgeqxA1tUg95y70Cama23QmK8b0InxN5apt5lguzq5rSMwg65pfknbetyn7+Ux8jUe6Nwb81L14r2ofUXrev8iyTMvWOhwV7dhLUkgZlxlXuXAwDlHT0+IiQUM4HEgiS8+BsNBqTDZjSDDi7xEk1FdR01Xr6JOo2bi+mk3lyTz5aSk7qpOR4+qVKZOX7OaWWUe4ZmoVOh2kT89F0ut631Uw5NBbor8914uemgKBQKDitPtvef7554d/XrZsGXV16nTCnrz44ovhn0eMGMHo0aNjzNamoKCA/Pz88O3XX3+dQCB6nyIIBfr897//Dd8+44wzVOXlg3EtAoFAIBCcSrR8+n+qsbSzv4EkSZhyx6CzKUUZ54E1AJpOTWOXUzND3b7lyI4KnnsOrrsOMjPhrLNCPfD6Imjm5sJXvgKLF0P5uvX884JFfHXC7xmZuhNJgvaNb2ju56ncrhqT00cQKFkY83yS0UL6Bd+LOSdaX83IkKBYGJIyKfjmYiRDL64+ScI+5ZK4jyvonfqVFZS9vJP61RUc+u92mjT6PWoRj1PTE0dYkN/po+Ld/ZS9tIOOg81xnbsv+DScmoajoqYkSdjyEhXbPM0u/K5ukTNaSFB4e1185eduN3z/Ox7m3jeZr70wne3VKb0KmgZDqH3Erl0Sa/9TwXXTQ4Kmzqgjd9HwuM4rGHrozdqips6sV4VcCQQCgeA0FTWzjnbZ9nq9PPDAA/j92i/cVqxYwauvvhq+fcsttxzzea+99trwzwcPHuSpp6L39/L5fDzwwANhkVKSJO68807VvMG6FoFAIBAITgXcR7bgPvS5YsyUXRru2SjpdFhLZiu2+xoO4W+vVzk1dbaUcN9JY1YJnoCZNdXn8OiGR7jq7S2Uzp8eFiTblJXWUdFJAaZlreCBa99m8+ZQmfqzz8I110DO1FkYknMU8x07PiTo7lQdx1OhFjWDGaXIGSMxZAyPev6Us27HkJwddTvEEDVz+/bBqLV4Bjk3Pxl7TsnssNtV0D80rlf2hq1foxbrtYhP1IwdouPr9LLnL+upX1lO89Y69j2zGWd1R8x9+opm+XmPNO5IURPA1WMN7sbYTk1vixt80XuLbtgAixaB3Q6PPmGm1WWit+Cf3Fz4zW/A5YJ334WxY6Hg0pGMuGUShZeOYvy9czGn22IeQzB00Vu0y89F8rlAIBBoc9qJmiaTiXvuuSd8e/Xq1dxxxx2K/pV+v59XXnmFb33rW2FH5ahRo7juuus0j3n22WczevRoRo8ezdlnn60558tf/rLCrfnEE0/w8MMP09LSopi3e/duvvzlL7NkyZLw2M0338yMGTMG5FoEAoFAIBgqtHz2d9VYyll3IOm6X/5YS+eq5rgOrMUXERRkSC1g927405/ghgevYN5Lzdz+8cc8t+v77Gvpvad1FxlJHVwx4p/8YcH1rLw+g/9cuIAf/VBmyhQUqeWSTkfitCsV+8o+D53bP1Ad0x3h1JR1BuSU4SHn49TLtReiN5Bx8fd7XW+0sKDI5PN4SFl4B8nzo6ee2KeK0vP+RA7KuJuUwqOrzkHQH+x134Anjp6aLdFFzYDHz4F/blEJn1rJ4MeDr9OjGuvZ59OWrxY1ewqr7vo4nJhtyuoqvx9+9SvIy4OZM+HTT6GXAix0upD4uX49VFfDAw+EnJpdSJJEyrhMsuYXYkoWPWVPZ6I5NUVIkEAgEGhz2vXUBLjqqqvYvHkzL7/8MhASA88//3xGjx6N3W7n4MGDNDd3l8ikpKTw+OOPYzAc+6/LarXy9NNPc/PNN4fDff7zn//w0ksvMWrUKOx2OzU1NZSXK/tWXXrppfzwhz88qa5FIBAIBIKTnaDHQdvq/yoH9UZVT0qbhqjp3L8Sf2sNbZ4U1tacy6rq81nTeAXVv+makR73OiQpyJw5Oi66KFRqmvT6mfgqe0Qg6/TYxpyluW/i9KtoWaas7Gjf8DpJM7urP2RZVpWfy6nDQR/6P2+fegWtS55QHTtl/q0Y04t6Xb8p5/jLz7uQJInc2/6G+8hmzZJ50U+zf/F1eNQJ5kEZd71D08HYk4C7F5WO6E5NORDk0PPbVf0rAVw1/evU1OqpaVCImkmq7V3rCvqDeFoiSuglINKY2RaADAMHDlj40Y90LF0aEjZ7RyYjQ+KOO+Chh8AitEpBHETrqSlCggQCgUCb0/bZ8ec//zmpqak8++yz+Hw+gsEgu3fvVs0bMWIEjz/+OCUlJcd9zpEjR7J48WK+//3vs3nzZiBUar5z507VXIvFwp133snXvvY19PrY0YeDcS0CgUAgEJzMtK97haCrXTGWNO1KVXmztWRW+Gd/UM/2xlmsfbyIFftXsL1pFkG57/HDqeYGzsj/gDPy3md+3kdM+dliEsYuxN9Wx76egubR8+tt2mErCWMXorOlEHS2hsc6t7xD0OcJJ4/7mspV1xnMKO0+fuk89PZ0Ap1N3RMkHemX3B/XtWg5NXUWO4aU3Lj2V+1rtlHwrdco+9kMxbqNmSWYCyYc0zEF2nhbtXteumo64xA11aqdZNAh93B5elvdyIGgItBGlmWOvL6H9v3a/TOdNZ3IQRlJF0+ATu/0Vn5uSrWgtxgU1+M46tT0NDlVoq99WAqdh1vDt4NBePHVbF5YUUBdXe+l5QASMuPz2vn1LwNc9pW0XucLBD2J5tQ0CKemQCAQaHLaipqSJPG9732Pyy+/nMWLF7Ny5Upqa2txuVwkJyczduxYLrzwQi6//HJMpl4a2/eBwsJCXnrpJVatWsU777zDli1bqK+vx+PxkJaWRmFhIWeddRaXXXYZubnxvWEYrGsRCAQCgeBkRSsgKGXR11RjlY2pvF7/EMt3TWRd7Tm0e7WTwGOhkwJMyljH/LwPOSP/fcanbUSv6xZ/6l7+PsUPrcOxa6lq34Tx50U9rmQwkTjlMtpW/yc8FnR34Ni1lMTJFwHRQoK6RU1JbyD1nLtpfOsX4bGUM78cV3o5HA1F0ukh2O3cM+WMjitBOxrmnJHkf+NFKv9yPbLHAZKO7BsfPa5jCtR4I12IR3HWdJBO7NeYWuXn1uwEpftSBm+bB3OaNTxU/dEhmjbVRD1u0BPA2+Lqt56RkUFBOqNOIQpJkoQtP5GOg93tnjyNTgIev2Y/zZRxGTgq2ihvNPOnT0ay6lAG/mB83brsZh8Xja/l7gUHSEnXM/HWM47xqgSnM7ooPTVF+blAIBBoc9qKml2MGDGC+++/n/vvj8+xoMXSpeo3Kb0xf/585s+ff8zn1KI/rkUgEAgEglMdd/k2XAfXKsaMmSUkjD2btjb47DP4+GP46CPYuxfg530+R35KHXMz32J+3ofMyf2EJFP0dCB32Qba17+KY+cS1baE8efGPE/i9KsUoiZAx8bXu0VNrZCgHqImQOblD0IwgGPXx1hL55F9/W9jnrMnksGIfcL5dG57Pzxmn3xx3PtHI3HyxYz41XZchz7HMmwa5ihl7oJjJ6pTs1YdNhWJllPTlpeoKin3NLvComb9mkpqPz3c67GdNZ0nTNQ0JJpVcyJFTeRQX013g1LUDAbhxWXp/OGpbCqbzMTjygSZUVkdfOPMQ5w5stsNnTGrSCRVC46JqE5NERQkEAgEmpz2oqZAIBAIBIKhRc+AIG/AxNaGOWzz/Jo1Z+j4/PPeQz20sFn8LDrHwPnnwwUXQOLqn9L66dNx71//6o+QA0oBRjInYBsxO8oeIewTL0AyWZG93f0L29e/Svb1v0NvT1OFBAHIGUpRUzKYyLr2YeDhuNfbk+wvPk7A2Yqncgf2iReSfsE9ve8UB6bMYkyZxf1yLIEaTxRR01nTiSzLMZ2xWqKmNVddst7VV9NZ00HFO/tU2yWjDtmnDCZy1XSQOqF/Uu79ET01e4YEdaFVau+s7giHBNW2mXh82Ug+25+JNxBfuwmr0c8F42r55lkHSbH1+F3pJDKm55K7aHj8FyEQ9CBqT03h1BQIBAJNhKgpEAgEAoFgSBBwtNC+bQlr/7eF1WX3srbmHDbWL8DlTzim441J3cy8vI+Yn/ch1/z1CZJLu3s+Nh6I3p9aMlnRW5Pxt9WGx3wNh1TzEsYsRDLEbgujM9uwT7qIjg2vh8eCzjYa/vcwOV94TFV+rrMmI9uze722vmDOGUnxT1b36zEFJ55o5ecBpw9fhxdTktrVGJ6j6dS0q89xVNSsXXZY1Z9SbzVQeutk9j69UTHurOndKRoPQV9AtU5tUVM7LOjV9yz89e05HGm2Ea8rszTXxVdnHeS8sfWKLTqznsxZ+WTNK8SUIhKBBMdONFFTbxNv2wUCgUAL8ewoEAgEAsEQxFt3EG/9QWxjzgqHygxFvI1H2PbG2yx518GKrcNZW3M2LZ7rj+lYaZZ65uWGRMy5eUvItNaFt9lz8xVzTVnRRc28259D9nmo/vttMc/XW+l5eF3nfkshagI0f/xnUhfegadmj3Jd+eNxiN6UAsDbpi1qQsgtGVPU9CjtzJJBhyVT/eGAp9mFu8FJyw6lyCfpJUpvnYx9eArGZDO+Nk94m7O6fxLQ/Q6fasyQqBY1zelWdGY9QU+AZoeBx5eN4pM/ZOH2xefKNBsCnD2riW/fVUHmjlbFNr3FQO45xWTMyIsqRgkEfUFv1r5fivJzgUAg0Eb89xUIBAKBYIjR8ukz1Dx3BwCGtAJKfr5Rlfp9KtPYCEuXwgevVvDxhwEqOr55TMcxGuGMM+D882FizZ0Ma/k/dJKsmieZbOhsKcp9M7TLptMv/SHJs29ADgZo+vAxPOVbNedB/KJmwtiF2KdcSueWd7oHAz4q/3ojBJRONZEgLoBQCnk0pyaEEtCTR2dE3R7pgNRb9OitBlWSuKfZRe3ywxDxsMmYmY99eAoAttxE2nqImr42D36n77jLaX0dHtWYllNT0kmsqC3gidezOdhgJ15XZlGqky/NPcKlE2rQFRmhQf3ckL2giOwzio5h9QKBNiL9XCAQCPqGEDUFAoFAIBgggl4Xnds/RG9LwTbmrBOS9uxtOEzNv+8K3/Y3V9L47iPk3PRov59roOjshFWr4JNPQgE/mzd3bSns87GmTIFzz4VzzoEzz4SEo+az+tcyafyfWrQAMKbmq/5W5vxx6O3pBDq7w0HsUy4l65pQ30pJpyf7+kcof/QCzWMaknMw54+Pe93ZNzwSCuvpkULuqdimmmcumBj3MQVDl4DLT9AbvXlsbyXgKlHTbECSJExpVlw9nJbuBqc6eEgnkb2gW+iz5tpp29OomOKq6SBxRFpvlxGTyJAgUIqazc3wox/BCy9AR0epaq4WZjNceqnMV4atI9vk6N5Q64OIinydWU/mnIJjWrtAEI3o5edC1BQIBAIthKgpEAgEAsEA4Guq4Mjvz8NbsxeA1LO/Qe5tf+338zS8+XMIKMsynbuX9vt5TiROJ6xeDcuWwaefwuefg1/d4i8uhhf5Oe8CA+ecA2efDZmZ2vOspXOjHsOQphYudCYrObf8mZrnvkbQ3UHitCvI+9q/kXTdicf2ieeTMP68qKnnfRG1zXljSV34NVqW/i32vIIJ4Iw5RXAaEC35vAtXbewS8IAn0qkZestgTrUoRE0t4TRtcjbmVGv4tmZQT03n8YuaHWpR05Bo4v334cc/Dn34IWt/ThGBTF6ym+/e5eXeh5PR6ST2PWOi42APUVPj+SdrboEoCRb0O7poQUFW8bZdIBAItBDPjgKBQCAQnGCCHicVj18ZFjQBWpY9TcalP8SYHr/bsHXlv2lb8zymzGIyr/0VBnu6Yrunejdtq/6t2s9dsY2g14XOZFVtOxlwuWDNmpCAuWwZrFsHPnW7vLhIszs4a34nF1yRznkXGCgpie+ljjVGCrkxVduNlTznRuyTL0H2udAnZmqKlFk3/I6yh7REzfPiWldPMq/6GW2r/0vQHV2QMuVPgP1H+nxswdAiVuk5hByWQV8AnVG7f5+6/PyoqJnWy3OIBDkLhyuGbLnqgKH+6Kvp7+HU7HTreGrlCN7/awZt7fHtb9AFmVPcxPfO3s+wdBdjvzmLrs8krDl2Og62RN1XMurImi/KzgX9j86oC3VIiBDk9UJAFwgEAk2EqCkQCAQCwQlElmWqn/0K7iObIjYEcZdviVvU7NjyTjh4xgE49i6n+KG16K3dyb71rz8EclC9czCA+/AmbKPmx7fmgB/n3uUEOptImHiB4hz9gccDa9d2OzHXrg2NHQsWvZNpWSuYm/sx1z78NWZdMBKdru9p5wZ7OqacUXhr96m3aTg1u9BbE8GqdqJ1YR02leR5N9O2+r/dgzp93P00FetIyiLj0h9Sv/hH2tvTCtHbUgAhap7ueFpdsSfI4Kp3kJCvfmzLgSCyT/k80iVqmlJji5op4zKxZikff6ZUKzqTXuHqdPVDArqv08uqg2k8taKEPbVJyHH2ysyye7hhRgVfnFWOodtYjTnDFv7ZmqMWYnuSOTNPs3+nQHC8SJKE3qzsXasz6dH1vLMKBAKBIIwQNQUCgUAgOIE0vvMb2te9rLnNW7c/7uM0L3lSuW/1bqqevoXCb7+BpNPhKttIx/rFUfd3Hfq8V1Ez6HHSuuI5mt5/FF/jYQBM2aUM//FqDElR6rbjwOsNlZAvWxb6WrMG3LGNZFHR6WDm9ABTvI8wJ/tDpmSuwaT3YkwvovTCRzieNqXW0rmaoqYxNV9jdvxk3/B7XGUb8B5NKs+45AGMqXnHdKy0C75L89K/4m+uVG2zFIp+moIQ3tbePyVw1XRqipoBt7qkvCu8pDenZs5Zw1Vjkk7CmmvHcaSt+9z1DoL+4DEJNa2toV6Z//1nKR2u+BLM9XqYNbKNb87dzehsh2q7KcWC3tR9LKuGu7QLSS+RfeawPq9bIIiXyEAuERIkEAgE0RGipkAgEAgEJ4iOTW/RsPjBqNu9tfGJmgFnG47dy1TjnZv/R8NbvyDrqp9R/9qPYx7DdWhd9OM7Wmj++C80L3mCQEeDco11B2h4/SfkfumpuNYKIdfl+vWwfHlIxFy1KlRifqxMngwLF8KiRXDWWaA/9A4VjyvdivYplx538JJ1xBzaVv5LNW6M4dSMB0NKDsUPrcW5PyQOW4tnHPOxdCYrWdf+mur/u1W1TYQECbrw9ubUJBTWo0VkP00IpZ9DbFEzsTSNhEJtV7ctN1EhahKUcdc7NPttRuN//4Of/Qy2bOnqldm7oJmdDXfeGRJBaz+opWGNWtAEsGTaFLetWQmaJcAAaVNzMaVY4l63QNBXbPmJir64toL4HycCgUBwuiFETYFAIBAITgDuiu1UPX1zzDnxOjU7t3+oCv/povHNnyN7XTi2fxDzGK5Dn2uON330BA2vPUjQHb0ctOWzZ0i78F7MOSM1t3d0hNyXy5fDihWhnpjHWk4OMG6Uk9n5KzljUjkX3XUBuaOUJfrVW95R7WOffMmxn/AotihhQYYoPTX7gt6WTOLki477OADJc79I84d/UrU0sAhRU3CUyJ6aOpOeoC+gEOmiJaBH9tOEnuXnlqhiX+7C6O5FW55GX82ajl5FzcbGkCD50kuh55l40Olg/nz43e9gbo+HtC0/+rl6lp4D6Ix6LBk23A0RqVsS5JwlXJqCE0vuouE4KtrxtXswJpvJXVQ82EsSCASCkxYhagoEAoFA0M/4O5uoePyKmEIhxC9qdmx+K+b2pvceUQ9KkiL619dQhr+9QVFG7tiznLrnv9P7AoIBGl77MQV3h8rom5pg5cqQiLl8eShlOKCuWI2bsWNDLsxFi2DuuMN0PD4pFIbTAp1/H0HgF5vCfT1lWaZz67vKSzVZSRi76NgXcBRz/ngkcwKyR+nmOl6nZn8j6XRkf+Exjvx2UfhvrLMkkjDpwkFemeBkITL93JxuRQ4Ecdd3i3Su2k5kWVY5nLVETd3R8nOdQYcxyYyvTfmpRUJhEvaS1KjrseaqBUVXdSdM156/eDH84hewfXvUQ0Ygk2b38/VvGXnoIbBoGCm1Su27sGSq+/Bac+wqUTNlQiaWCAFUIOhvbPlJjL9nDr62kKjZ1f5BIBAIBGrEM6RAIBAIBP1M/cv342soU40bUnLxt9aEb/uaKwh63ehM0UsZZb+Pzq3v9en8OmsSKWfcpurD6Tr0OYlTuh2Nbav/E9fx6px5vPuyjv1r6lm9JYudO/u0HBWjR3eXky9cGCoR7aL2v39UpHv76g/S/NETZF4RKq93H9ms+B0CJIw7t1+S3SW9AWvJLJw9Sv0lkxV94rH3Ez1RJIw5i/w7X6Dx7V8DMlnX/RaDPR2/Xy1ICU4vgt4AfofS2W1KsaAz6hWiZsDlx9fmUZVSx3JqQqgEPVLUzFk4PGb7B2u2upzbGVH+Xl8P998Pr74KDu0qcRU6SWZKQSvfPOsACy4wM+LmSVHnWjJtSAYdsl8dpmbJUguV9uEptGyvV4xlLRCJ54KBQW82oM8Sb9UFAoGgN8QzpUAgEAgEEciyTPOHf6Rt7UuYc8eQfcMjGFJy4trX11JN66p/q8Yzr/4l/vY6Wj7+c88T4a0/iKVgfNTjOfetIOhsVYyZcseEQ2e0SL/o+1iGT9MQNdeFRU05GKRjy9uqfa0jz6R10i9Y9mY5y5cH2Vi3gMrOkqjniofS0pCAueAMH4sWQn6RduiB7PfRtvYF1XjTB4+Sdu7d6BNS6dQoPU+cculxra8naefcrRA1k+d+EUl3cqbOJs+5keQ5Nw72MgQnGZEuTQiJmsYkMy3b6hTjzprOPouaSSPT6SxrDd+25iWSPCYj5pp0Rj2WzATc9d1qpasm5BR96SWJhx+GXbtkiCvBHLKzZC4rLeNL845gMYRESqM9dqCXpNdhy7XjqGhXbdNyX2bMzKNhfRXu2qNrnmDpNRVdIBAIBALBwCJETYFAIBCcVjj3rUL2e7COmI3OrC45BGj97FnqXrwXAHfZerwNhxj+4Iq4gmialzyp6n+ZOO0KMi5/UCUyQqgEPZao2bFJXXqeedXP8NbspeGNn6q26RMzSTv/O8h+dVNL18HusCBX2XoCbXV4A0Z2N09jc8M8tnuvZctH86itjXmJvTJ+vMy8qY3MHLaV6VkryfB9jqdmL76lh2n7VE9w6mXk3/kCOqNZsV/n9g8IdDSqjhd0ttH0/h/IuvZhOiJKzwHsky8+vgX3IHHG1RTc/QrtG9/AnDeOjEt+0G/HFggGAi1R05xq0SyxdtV2kDJWKUhqBgX1KH/Nml+Iu8FB255GrNl2hl83DknX+3OjLdceFjUbOkw88XYpn/0OnOFMo9jH0OtDzu7f/hbGZrWz529KN7zBbup9DXmJKlFTZ9JjTDKr5uqMekZ9Yzrblm4CiwSJ8SWtCwQCgUAgGDiEqCkQCASC04bqf3yN1s/+DoC1dC5F930Q7tXYhez30fDWLxRjrv2rcO75tNe+jQFXBy3L1Cnhmdf8CkmSMGWrg3Zi9dWUZZmOzf9TDuqN2CdeiG7mdbjLt9Cx8Q3F5ozLfoTemggkYswswddwqPs6Dn1OQ4PMmjUSS/7hZvWa5exsmoEncOyl23o9TJsGZ54JCxbA/HlBPK/dStua56ECqABFZ9FAkI4Nr1P/yv3kfPFPimNpOVy7aProTyTNuRF3ROCRpWhKv/a8lCSJpFnXkTTrun47pkAwkHiiODWtuWqXoUsjLCjgVjfI7enU1Jv0FF8f/YOYaJhzEnn7vxL/XDOcI8024nVl5uXBN74BP/gBmI7qlq27vKp5xsQ4RE2NsCBLpi3qB1aSToJM8XZJIBAIBIKTFfFfWiAQCASnBd66A7QufyZ823VgDY1v/4bs63+jmNf++Sv4mytU+zd/9Hivombr8mdVpeL2SReFnZha6eHe2uiipqdiO77Gw4qxhDEL0duSAci741+Ut1aHHZjWkfNJXXRneK65eA579pvY0jCPzfXz2dwwn8NPdb15PyvmtUTDpHMzc3IHiy7J5MwzQ+nCiT10gtZVL1C/5vlej9Oy7CnSL7kfY0ouAAFHC52RAm4PZI+DisevVI3b+7H0XCAYCsQqP9fbjASc3U5yZ62WqKlVfn7sLsUjR0K9Mt96swi3Jz4hU68LsnC+n8f+bGKSRptMX6eGqGlXuy0jsWmEBWk5WAUCgUAgEJwaCFFTIBAIBKcFrsMbFWngAM1LHif9/O+E+2XKskzj+7/X3L9j8//wNpRhyizW3C4H/DR/+EfVePpF94V/NmYMB70BAt2iQSynpsqlCSROvTz8s96ayPAfLadjy7uAjK70YlassbB6NaxaBauXP0NLx/EF6NitHqakLmV69gqmZy1nYsZ67HnDGPHTnUgGZW/MoMdJ/eIfxnVc2eeh6b3fk/OFxwBoW/cysl8tVPTEV39QvT4hagoECrwt2qKmJEnYcu10HGwJj3sanQS9AXSmbtGyt56a8RAMwhNPhL7KwlXivQmaMtmJHq6fXsEXZ5Uz/LKRZE/SDubxd6ifK+IpP7dmJ2BKs+JtDte8kzw6vdf9BAKBQCAQnJwIUVMgEAgEpwXe2n2qMdnrovGdX5Nz8xMAOHZ+jKd8q/YBZJnmj/9Mzk1/0Nzcvn4xvqZyxZhl2FRsPdydkt6AKbNEsZbYoqa6n2bitMu7lsPBg7BunYl1665i7VrYvBmU4dd9FzSzsmD+/FAp+ZlnwsSxMocf/Br+5krFmpuX/o3087+t2Lfpgz8o5vXEkFaocsC2LHuKjEvux5CcTZtG6bkpZ5Tm360LfWIm1uKZfbk8gWDIE+nUlAy6sOBnzVGKmsjgquskoTA5PKTZUzNOUXPTJnjgAVi2LPK5KDoGXZDZxU18e+EBRmR2p7O7NFykXWg6NeMoP5f0OoqvG8eRN3bja/eSPj2X1IlZ8S1UIBAIBALBSYcQNQUCgUBwWhCtzLt56VOkXXgvpoxhNL2n7dLsonX5s2Rd9XN0FmVvOlmWNfdNv+g+Va82U/ZIhVDnb6ki6HGiMyvTd33NVbjLNoRvt3uT2SvdxGt/LWLtWli3DpqaYi63VySCjEzZwZSs1Vxw12WcdWk+JSWgXLKFzKt+Ts2zX1XsW/fSfVhLZmIrnRtab0s1je/8VnWO3C//H8lzv4jObKPi8avo2PRmeJvsddH0wR9IOesOXAfWKPYzZZdScNfLHHpoatT12ydffNImkwsEg0WkqNnl0gQ0+2o6ayJEzUinpoTCyana3wm//CX84x9QXx/vKmVyktzcNKOcm2ZUovUwji1qqoPQjHE4NQHsw1MY/7258S5UIBAIBALBSYwQNQUCgUBwWuCti+L4C/hofPPnpJ3/HRw7l8Q8RtDZRuuqf5N2zl2Kceeez3Af2aQYM6QVkjRTHTajHRZ0AEtRd+M4vx9WvbqaZXu/ztbGOWxvnM2htrEx1xYPVkMnkzPXMSVrDVMzVjApcx1JpjaMWSMo/fbXiRbunjL/VprefxRv9e7uwYCPyieupvjnGzGm5tHw2o+RvU7FftaR80k56/awoJJxxU8UoiZA88d/IejqUJ0zef6tWIZNIWnW9bR//ormuhJF6blAoEAOBPG2KwU/U4ol/LMtVx2UExkWFClq6s0GzSCd99+Hn/4UNm4MlZvHg9EgM294A99edIBh6a6Yc111DuSgrJms7o9waupM+pjCq0AgEAgEgqGJEDUFAoFAcFoQK5CndeW/8Gr0a7SNXoBz73LFWPOSJ0lddKfCIdj0/qOqfdMv+J6q5ySASSMsqGxbJbvWTwo7MDduBKfzOuD4EriLimBa3nrGBf/FtMxVjEzdjkGnTjZOnHp51PRfCJXN53357xz+7UJFP1B/Wy2VT15N9hf+ROvKf6r2y/nCHxXHtQ6fhn3KpXRueSc8JnudmonxyfNuBiDzqp/Rvn4xyBGqid5Awvjzoq5ZIDgd8XV4IajsHWxO7RY1LVkJoJMUcyIdkUGP8jmiZ+l5fX2ovHzxYuhQfxYRlZEj4Xvfg+vm1nPk5R1x7SP7g3ianJpBPr6InprxlJ4LBAKBQCAYeghRUyAQCARDHn9nEwFHc/QJclAlXkoGEwV3vcyRR87FU7UzPO6t2YNj5xLsEy8AwFO1i86t7yr21dmSSTnrds1TtZvGsaLqAnY2zWBn0wx2NM6k/t/5x3hl3RgMMGUKzJsX6ok5bx4UFEDryl1U//0vMfftGT4UDduo+eR88Qlq/610qboOruPI785WhTAlz7sZa4m632Xm5T9RiJqa5xq9IBzIZM4bS/LcL9K2+j+qOV0p8AKBIISnRe1+NCV3i5o6gw5Lpg13nSM85qrtRJbl8AcQkU5NyWTg2Wfh0Udhz57412K3w9VXw29+A3l5oTF3g7r8vYvksRm07W5UjLlqO7VFzQinZjwhQQKBQCAQCIYeQtQUCAQCwZAnlkszGsnzb8WQkkPaed+m5p9fV2xrXvIE9okX4CrbSO1/vqnaN3Xh19FbE2ltDQVnrF8PGzaEvg4fXggsPKbr6MmwYTB7NsyZE/o+dSpYNXKBrCWzYx5HZ0vBNnJ+XOdMPftO3Ec20frZM4px2asUUiSTlaxrf615DOuIWSRMvBDH9g+inid5/q2K25lX/pS2dS8qXKLJs66Pa80CwelEZD9NAFMPpyaALceuEDUDbj++Nk+4TL1L1DzSZOWJZaWsOZyBN87QH0kKPRc99BBccYV6uzndhs6oI+hTOq8zZuaRNjlbJWo6azpJnZitGAt6Ayo3abz9NAUCgUAgEAwthKgpEJyiuA6tp3X5s+gS0ki/4HsYkjIHe0kCwUmLVsK4ISUPf2t11H3SL7wXCDkO6159gKCjOzG4c+t7HHn0IoUw5/AlsKd5KjtaZlPu/CkbfwL7+66lamIzdDBjqo/556Yxe3ZIxMzJiW9fU84odLZkgs42ze32yRdrlslrIUkSObf8GU/VTlWwT0/SL7oPY3ph1O2ZVz4UVdSUjBaSZl6rGDNljyD/jn9T/cyXkP1eEqddGdUJKxCczmiKmilKUVPL+ehpcWFKseDxyPx9aT6LNxdQ32EGorel6ElGBtx6K/z85yGHZjQknYS9OJX2fd0pZ8ZkMwUXj0QOqBtzuurUYUHHmnwuEAgEAoFg6CFETYHgFMRTu4+yh+eFXUvOPZ8x/MEVIgVYIIhCz7TxLnJufpyqp29B9qlFAPvUyzHnjQFAZ7aRetYdNL33SHi7y29l69IWdjTdHS4jP9Q2lqB8NKji82NfqyTJlKbuZlLaaiZlrmVSxjpGZlcw9q916OLTHpXH0+mwFs/EsfNjze3xlJ73RGc0U/Ct1yj76XT8rTWq7YaUXDIu/kHMY9hK55Iw/lzNNSVOv0qzrDx57k0kzriaQEcjxrTjL9cXCIYi8Tg1TWkW1ZxPPgzy2AuwejUEAqVxnUuvhwUL4Fe/grl9CBPPP78EZ00H/g4vBruJEV+cFO7baUwy4+sRdBQZYgTaoqYoPxcIBAKB4PREiJoCwSlI25oXFGWYrgOrcR1ah620D+8qBILTCC2npm30AtLO+xZN7/1etS39ovvCPzc3w2bjPXyyM8ju5insbp7K4fbR3QLmcZJlrWJ8+gbOvv0C5p1pYVzKWpofn6eYkzT5OnRG8zGfw1oyW1vU1BuwT7ywz8czpuRS8O03OPLrBch+pcCQdc2v0FliWLWOknHFQ5prSokoPe+JzmhGJwRNgSAq3pYIUVMCU5LyucOcGupT0dBh4m/LS/hkbxYOr7F7h14oKoK774Z77gn18u0rtvwkJtw3D0+jE3OaVRFEZM1OUIia3hY3AY8fvbl7TmTyOYAx8difHwUCgUAgEJy6CFFTIDgF0RJoOrd9IERNgSAKkU5NnS0ZfWIm6ZfcT8vSpwi6O5BlqHUWcMh0I6+8eAZbtsDmzVBeDpANqMXPvpKRATNnwhjLEkpan2RC+gaybCG3Y/FtG7EOn0bdK2+p9rNPvey4zmstmaU5njBm4TGH7dhGzCb3tqeofvYr3ecpnUfyGbfFtX/C6DOxjVmIc8+n4TFDSh4J4889pvUIBAK1U9OYZEbSd1dx+P3w1IsJPP7UXCpbrcRbXm6xwMUXw29/G0oyP170Jj22vETVuDXXTvt+Zaibq9aBfVj385SvwxO5m+ipKRAIBALBaYoQNQWCUxBf4xHVWOe298m6+ueDsJqhQcDRSt3LP8B1aB0J484h65qH0Zltg70sQT8gy7LqgwB95mj27pXYvDmdtY61rF9axe7mqbR6MvrtvCkpMGNG99fMmVBYGArSaFl2iJp/vq2Y763bj3X4NDo3K8eRdNgnXXRca7GO0A4L6mvpeSQpC76M3p5O25rnMWYMI+OSB/rUBiPvK89w+Fdn4G+rRTKYyPvqs0h68dJEcPrSebgVd6OTpJFpitTyeJBlGU+EqNnVT3PlSvjJT0Lf/X4jEE8vC5niDAffvd3FN3+VyUB0uLHmqF3ertoOpagpys8FAoFAIBAcRbxzEAhOQXyNh1Vj7sMb8Lc3nBKBQbLfS9NHj+M+vJGECeeTcsaXBr0faP2rP6T1s78D4KnYhs6cQNY1vxzUNQmiIwcDSLr4yr+byutZf2QKe1smsb91IvtaJrGvfRrO8J933NGvY8duh+nTlSLmiBEhAVMLU7ba6uSt3Y+3/hCe6l2KcWvpXAyJxye2GpKzMWYMU30gYp9yfA5QgMRpl5M47djEUVP2CEp/fxD3kU2Y88ejT0g97vUIBKcqNZ8epvrDgwDozHpG3DyJpNK0uPf3O3zIPVLFmx0GHn21hA9+CK2t8a/DbvZx/tg67lpwkBSbn8LLRw2IoAnRRE2H4rZ2+bkQNQUCgUAgOB0RoqZAcIoh+73aic2yjGPHRyTP++LAL6qP1C9+kKb3HwWgfd3LEPCRuujrg7YeWZZp//wVxVjryn+SefUvkKKpUoJBwXlgDTXPfR1fYxnJ828j55Ynw38jnw/27YNt20Jf27eHvldUZAMr+m0NyckyU6fC1KkSU6eGBMxRo0KhGfGiKWrW7adz67uq8cTjLD3vwj7pYlqW/i182zpiDqbM4f1y7ONBZ7ZhG3XGYC9DIBhUAm4/NZ+UhW8HPQEO/mcbo746lYSi+FpEeFvdBIPw2uZ8XtxQSHmLjXjLy/VSkPlnStx7awv5BzYrt5kH7u2CJTMBdBIE5fCYq1YZFuTr0BA1hVNTIBAIBILTEiFqCgSnGL7mSpBlzW2d2z846UVNORik5bNnFGNNHzw2qKJmoKOBgEPZw8vfXImv/iCm7PhSYAUnnqDPQ9Vfb8TbWE6jK4fl/95Pzap1HHTNYds22L0bvOr3usdFbi5HBczQ17RpMHy4FNWBGS+G1Hwko0WRvO6t26+ZJm6ffOnxnewoGVf8BPeRzbgOrsWUPZLcLz3VL8cVCE52mrfUUnXUAZl3/gjSp+YM8orUtO1pRPYHFWNBb4D9/9zC6K9Px5odO3xr3Tq4/7tmVn2+CH8wXlulTH6yi+unV3LDjAomf38uHYdclB9QzuoZ5HOi0Rl0WDJtuOu63Zmu2k5kWe7+ACvCqakz69EZ+ye4TSAQCAQCwamFEDUFglMMrdLzLjq3f4gcDA56KXcsvLX7CDpbVWOe6j2Y88YMypo81Xs0xx27lgpRc5BpboZdu2DnTtjyWTWblj3HvpZJ3b0vP+m/c5WWKgXMqVMhO7v/jt8TSafDlF2Kp3JHeMxTvYugx6mYZ8wsxpx/fKXx4WOl5DL8x6sIehzoTFbRu1JwWuBt91D26q6w8+/w4l0kFqeEe02eLLTsqNccD7j87P9HSNg0p1kV25qbQ30yX3op9DPElwCelAQXzuvktpLNZCd1C4TeFhcBt181fyBFTQiVoPcUNQNuP742T/hv5o9wagqXpkAgEAgEpy/iHY1AcIqhFRLURaCjAfeRTViLZwzgivqG69A6zfGOzf8bNFHTWxNF1Ny9jNRFXxvg1ZyeNDXBpk12Dh2yUFZmpb5ex+7dUFvbc1bx0a/jw6jzMG68ganT9WHxcvLk0Bv9gcSUPVIhagadbao5iVMu7dcWCJJOh96qThwWCIYqHQeaFaXMBGXa9jWROSt/8BYVQcDjp21vU9TtvnYP+5/dzOg7pyNZzTz1FPzlL7BH+1+XJno9zJkDP/0pnHcetGx3cOgFpTjoaXGfFKKmLcdOy9Y6xZirthNTigW/y4e3XZl+LvppCgQCgUBw+iJETYFgkPC319O29iV0RgtJM69Fb48vDMAbw6kJoRT0k1rUPBhF1Nz0FhmX/GCAVxPCU71bc9yxZ5mi5E3Qd2RZRvZ70RlDDqLGxpDrsst92fW9vt4AjO738xcVwQjTZ5RaVjEqdRujUrdTktfChL9p9KUdYLT6akbSH0E+AsHpjFb/RXe9Q2Pm4NG+r0lVeh7JZxstfGmKh61HTPgD8f5Pkhk2DO68U+Kee8DUQ/szRbg+AbzNLoK+gGp8MJyakThrO0kek0Hj59Wq35U5I2GgliYQCAQCgeAkQ4iaAsEgEPQ4OPzrBXhr9gLQuuIfDPvhZ2HhJxa+puhOTYDObR+QecVP+mWdJ4Jooqbr4Br87fUYkrIGeEXgieLUDLTV4a3e3W/lv7FwHlhL0/u/x99STeqir5Ny5pdO+DlPFH4/HD4MG1/7iM1vLuNQSymVurM50FhMQ8OJOafdLjNxosSkSTBxIuHvyUlB9nztQkXvSmvevBOziD7Sm6ips9ixjV4wQKsRCIYmkf0XAdwNTo2Zg4dW6XnCsGT2bPHwt+UjWHEgA5cv/pfsNpOfs0Y28M3zj3DxY3M055hT1aKmp8WFzqDuTTmQQUEQLQG9k6A/SP3qCtW2jOm5A7EsgUAgEAgEJyFC1BQIBoHW5f8IC5oQEvra174Yl5AVq6dm6FhrCXQ2x+38HEiCXhfuym3aG2WZji3vkLrgKwO7KMBbo+3UhFAJ+okUNeVggMa3f0PDmz+DYMgh4zq4Fr09vd9Sr08Uzc2wd2/31549oe8HDoSSyOH8o1/9h04KMCxxP6NStzEydTujU7YxKnUbcx/+J4njzlLN9zVVKgRNAFPOqH5d07FiyoktaiZMuCCuDzoEAkF0/Jqi5olzanpaXLhqHdiLkjAk9F4WHfQFaNvTXXre6dbxzw0lfPivImpqIN70cp0kMz6vndvnHWL+iFDwnS0veqsJvdWAzqwn6Ol2Znqa3ZiS1M85esvAhvAYk83oLQZFKbyrtpOWbXX4IkrPEwqTSBgWXzq8QCAQCASCoYcQNQWCQaDt81dUYy3Lno5T1Izt1EQO0rnzY5JnX3+MqztxuI9shoC6X1cXnZv/N+CiZtDjjPk7dexeRtq5d5+Qc/uaK6l6+macez5Tbatf/CD2yZeckNAnX1M5zgNrCDhakD0Ogl1fXifG9CJSz7oDfUIKAB4PlJXBvn1q8bKxsd+XFkankxkxQmL8eBg7Nkja+rsptqyhOGkvFoNbNb9j7X81RU1P7T7VWG9i4kDRm1MzcUr/pJ4LBKczvg6Paszb6iboC/R7YnbbnkYOPr8d2R9EZ9RRdNXYXpPW2/c143cH+N+2XF7YUERZYwJynEImyGQnerhychW3zCnHYlCWZZtSo4chSZKEOc2Kq6YzPOZtcaE3K38nklGHpB/Y8EFJkrDm2Ok83Boeczc4qV2u/l+dfWaRaBEjEAgEAsFpjBA1BYIBxtdciWvfStW46+Ba3OVbsRRNjrqvHPDja1aWXumsSQRd7Yqxzm3vn5SiZrTS8y46d3xE0ONEZ7YN0IpCyeuxcO5edkIS5Ts2vUX1M18h4GjW3O6p3E7HpjdJmnF1v5zPU7uPjg2v077hNdxlGxTbXH4rlR0llHeUUt5hpjLwAfUp13CwzEh5OchylIP2A3p9KHV87Ngg6el1FBe7KClxc9llo7DbQ/+iHLuXc6TqqZjHaV//Kjk3P4nOpHwT763dr5prjqOX5UBgSMlFMicgezRcY5KEffLFA78ogWCIoVV+jgzuRie23P4Nzar66GC432PQF+TwKzvxNrvIOXu4pvC2fDk8cJeV9bsX4Q/G/z/GbvZx1shG7jzjILkpatG2i94S3s2pSlHT7/CpnJAD3U+zi0hRk6CsSESHkGibMi5zYBcmEAgEAoHgpEKImgLBANO+fnHUbS3Lnib3tr9G3e5vrQ6XKHeROO1KOja+TtDd/cbEsf2DQQm48TVX0bbmv+htqSTPvwWdSdmzK1ryeRey14Vj58ckTrv8RC5TQbSQoC4CjmY8ldtjis19QZZl6l66j+YPHut1bsNbvyBx+lXH/HcMet00f/wkbav+TdOhI1R0jDgqXJ579Hsp5e2l1LtOfAqwQeelKPEgo4e3MuPyuYwfD+PGwahRYDaD3x9k69bu8B5Lj/fiWo8ZvT2dQGd3yWbQ2Ubn1ndJmnmNYp63Ti1qnizl55IkYc4eibt8i2qbtWT2oPSXFQiGGlrl5xBy/vWnqOl3+BQCYRfVHx/C0+Ki6Mox6Aw6jhyBhx6CN9+E9nYAdf9ILYxGmdnjXXxp6j6mZEdPSu9JUmnsNjRaTk53o7Lf6ED30+zCmtv77yV7ftGAu0gFAoFAIBCcXAhRUyAYYNo1Ss+7aFv9X7JveASdRfvFvLfhsGrMlF1Kwrhz6Nj0VnjM31aLp3wrlmFTjne5ceNvr+fggxMIOlsBaN/wGkX3faAQ5HpzagJ0bP6fQtSUA346t76LLMskTrkUSd+/T1vRQoJ64ti9rN9EzfpXfxSXoAngKd9K5+a34xJ5vV4oLw+Vih8+DAd2d7BryWoqas+gsvNWmtzZx7ny+Ei31DE8aS/FyXsoTtrL8OS9FCftJd9ehkEXAEmi9O59mLJL4zqeHAzSsfF15aDeSM4XH6fq6ZsVw22r/6sWNbXKz+M890BgiiJq2k/yfqoCwamAHAjid/o0t/V3X01HRVvUbRVr6njkn6m8vTWHysr4P6SSJBg/Hr77XfjylyV0OhtB70SattRSv6oiaoq7MclM5twCkkanxzy+WSMBnQhn/qA5NbNji5p6i4H0GSIgSCAQCASC0x0hagoEA4ivqRzXgTVRtwfdHbStfYnUhbdH2V/dT8qYMRxDUpZC1IRQCfpAipotnz0TFjQBHDs+wrl3BQljQunN/vZ6VciRbewiXAfXIXu7nSEdW95GDgaQdHoCjlbK/3BhWAy1jpzP8B8t79dScG88ouaupaRf8N3jPlfzkidpeve3mttSz/4GxvQi6l/9oWK84a1fYJ96GYGARFVVSLTsEi57fq+qiiwTTwQuOO41a2HUexmWuI/hyfsZmd/AqNIAo8cZSNv5EIlSrWKuZDAh+3s4pWSZpg//RO6tf47rXK6Da/G31ijG7BPOJ2nW9dQ+/x2FW7Nj67uqkKxIp6YhNR+dOSHeSz3hROvvmThZ9NMUCI4Xv8OnEum66O8E9M5ypajpD8LiTQW8tjmfw01965OZmytx223w4INgj9D2dCY9mbPyyZiZh7fZhd/pR2/RozMb0Jv16Ix6JF185zJpJKBHMnjl57GfpzNn5w+ai1QgEAgEAsHJg3g1IBAMIO2fv9rrnJZlT0UXNTUCbYzpwzBmDFONd27/gIzLfqgaP1E49y5XjbWt+ndY1NRyaSaMPgu9LYWOjW+ExwLt9bgOfY5l2DQqnrhKsZ9r/yocOz7CPunCflt3ZPm5LiEVnTkBf3NleMy5b3lYaD1W2j9/ldrnv6Ma1yWkkvfVfyCNupIjh9ysbd1CdYOdGkcRtY5Caj4qou5ZF5V1NvzRM5b6Hb3kJ89+mGGp5Uw8byYjRkBW5V/Iqvk/8hKOoNcpAynYhSqkV5+UReG3XufwrxeA3D2/dcU/yLz65xjssV1EoF16njTjGiSDkaTZN9LyyV+6NwR8tK9/ldRFXwdCLl9vwyHFvr2F8ww0WusxphdhLpw4CKsRCIYWmv00j9LfoqbjqKj58Z5M/vv5MHbVJBKU4/8Azmbyc+bIJh5/JYPR43r/XyNJEuZ0G+ben0ajYk6L3XMTUAUHDRR6swFTmhVvs0u1TdJLZM4rHIRVCQQCgUAgONkQoqZAMIBopZ7rEzMIdHTHSLsPb8RVthFr8XTV3EinI4ApczjG9CJMeWPx9hDonPtXEXC0oE9I7Z/Fx0AOBnDtX60ab1//Kjm3PInOZMV16HPVduuI2RgzhilETYCOjW/Q/OGfcO75VLWP69Dn/SZqysEA3jplebI5dyymrBG0rf5PeCzobMN9ZDPW4hnHdJ7mbcvZ8PufUN2+gFpHIbXOwtB39wiaEhZQ+aKF1lYAC/DSMV9PXzGZoKQkFNRTWgrD0qtIWPUNCq07yU0ox6gLqaimzLH4y2tCTtx4W9BJOgruegnbqPkkzbiG9vXdgr7sddHyyd/IvOLHMQ8hyzIdG15TDuoNJE67AoDkeTcrRU2gdfV/w6Kmr/EwBJRK8MnST7MLrfXYp1wq0nwFgn4glqjpaXAgB+W4XY2xWLlS5vu/Gc6mI5PxBuIXAfVSkEn5bXx1fhlziltInZhFybiBaRUCJ7dTE0JuTS1RM21yDqYk8yCsSCAQCAQCwcmGEDUFggHC21CGO0LYMxdMIHn+bdS//H3FeMuyp7EW/5/qGKryc50eQ0oeAPZJF9Hc03UYDFD2y3nkf/2/mgJpf+Kp3EHQ3aEaD7ra6dj8Nsmzr9d0alpLZiEHAyDpFE6+pg8eUwUi9TxXf+FrPILsUya9mvPGYBt5hkLUhFAJeqSoKcvQ1ATV1aGvmprun6urQyXh5Yd91DUsAHovcz8RWA2dDMtuZcyMPEpH6sICZmkpFBSE0se7yadt9Q2qXpXeXsKUtMi65mESxi4CIO2iexWiJkDzx0+SftF9qrTynrjLNuBrKleMJYxZFC4vt46YjTFrBL76g+Htrn0r8TaUYcosxqPZT/PkcmpaS2ZhzBjW7cLW6Uk9647BXZRAMESIFhIEoXRyX7un14TwaOzdCz/7Gbz7LnR0SEDsUJ5uZIanOblueiXXTK3E0MPMmTpxYMPB9CY9BrsRf6d231EYXFHTlmOnbVejajzrDOHSFAgEAoFAEEKImgLBAKFVep4063pSzvwSDa89qOg72Lb2BbJvehS9NUkxP9KpaUwrDAfn2CdeqAqg8dbsoeyXc8i88mdkXPrAcZVPx8K5f1XUbW2r/0PSzGtxlSkFXVN2abc4NXIern0ruzdGETQB3FX9J2pqJZ+bcsdiHXs2bZ4UGly5NDjzqHfl0fqXDFwfKkXLmppQQE9sjP22Xi3MZhhW4CHLvZT8hMPk28sosJeRZz9MQeJhRt/2Q9Iv/F7czr/keV/EeWA1LZ/8NeY8vT0dU+4YPJXbCbraFduS5n6B9EvuD9+2jZiNbdSZOPetCI8F2utpW/1frKVz6dj8Fu0b38BSsR2MCQRzJ9JcfSG+6p2q8ybNvDb8syRJJM+7mcY3f66Y07by32Re9VPN5HNzlB6Wg4WkN1D0/Y+of/WHBBwtpJ337QHthSsQDGV8HbGfoN0Njj6JmvX18MtfwiuvhH6OH5lMu4cLx9Xy5XlHSLKoe4lIRh1Jo46jlvwYMadaT1pR05qjDgtKGpnWr6n1AoFAIBAITm2EqCkQDBDt615WjSXNuh5DYgaJM66hfe2L4XHZ46Bt9fOknfON7rFgUOVa69lLM2HsIlUJOgABPw2v/ZjOre+R95W/Y8ob2++lrbFEzc5t7+Pcv4qgUxmiYC2ZHf45ceoVSlEzBt7afQR9HnTGvpWe+f3Q0BB6I1pXF/p+6LMEjmz8LU3ubJrdWTS5smn7cBwNLVa83pY+Hf9EYZB85CaUk28vY9S8sYyalk9xMQwfDsXFkJ0NzR88Qf3LP1Dsp7Mkkv+NF0mcckmfz5l902OhNghR0uqT599K9k1/wJCYgSzL+JsrcVdux9d4GGN6EfbJl6juY+kX3acQNQFq/nWnQsCWAPwe9Ic+o/HQZ+oTSzoSp1+pXMvcL6pEzcZ3f0PC+HPx1qpFzZOt/BzAnDOKwm+91vtEgUDQJ2KVn0Oor2bSyNhCotMJjz4Kzz0XCmaLH5nUVIkrroCf/UwiQ+fh8OIa3PXazZGTR6UPSvCNKdWKo6I96vbBDONJLE1DbzEQcB/9nUmQs3D4oK1HIBAIBALByYcQNQWCAcBbdwD3kU2KMXPRZMy5owFIXfR1hagJ0PLp06SefWdYHPK31SpTpAkln3ch6Q0M+8HHVP3fLTh3LVWtwXVgNQd/NB5DWgG20QtIGL0A2+izMOWOPm6R0xVD1CQYoO7Fe1TD1hE9RM1pV6hK8GMdz1O9h0D6ZJqaoLExVAIe+dVTvKyrC42pWXj0a/DIyYHCQigqCn3v+ko68i/M635IuqUuHMpjn3QRRfe+pzqGc/cy1diw+z/BWjLzmNakM5opuPtVDv10mqLfqzGzhNwvPYV9wnnhMUmSMKYXYkyPXQ5on3IpppxReHuWhMdw5GphG70AQ5KyPNOcMxLriDm4Dq4Nj8k+DxWPX4EhJVd5AEmHMbOkT+cUCASnLrHKzyHk1NTczw9/+xs8/TTs2hVqNRIvFkOA2SUt/OH5dKYrOpYkM/abs6j5pIza5UdUqewDXXreRW9hQYPp1DRYjRTfMJ7K9w8gyzI5ZxaRWHLi+4QLBAKBQCA4dRCipkAwAGiVnifPuiH8s230Aky5Y/DWdPdd9JRvxXXoc2xHxT9VP01CyeeK26l5DPv+Epo/+hP1r/5QJYIC+JsraV/zAu1rXgDAnDeOnNv+Fk4p7yu+5irNVPaeuMs2qMasJbMJBqGjA1o9Izmkv5zm6hbavSm0edJp9aTT6s/BlTyLusMN3WOedNpezMYbvVrupCHJ1ExOQgW5tgpyEsopnpjLuCuupKhIoqgI8vNDYT1aBFxXc+DQPQQc3b1GHbuXEvx/9u47PKoybQP4Pb1n0nshJCR0pEhRRMGGvYvoWnYtq67dXbG7sq6uuu7qgq67ruWzi2LHigVFEaV3AgFCep/JzCTTz/fHmJM5mZJJSELK/buuXM45c9okHCe553nfx9UKuUYvrhN83pAKSFVyXo8DTfEYSTkYcdcq1Lx6EzyWKsQdeQGST1skOXd3yORyJM2/DdUvXdvja4qbdl7Y9akXPIKyR4+XzMvqszfCZ5cm2arkvG5X+BJR/3M2tEKpV0GpP7TpO2Kp1Gzn9wMvvAA88wyweXNgOVYKuR+Tsqy4fOYBHF3QBFNhIoqmJYdsJ1cpkDW/EPHjUnDgnZ1w1gVCVVNBAhIm9F+DoGBdNQtSaA9P9/N25tHJMI8O/V4SERERAQw1ifqF9edwQ88vEB/LZDIkzP09al+/VbJNy5rXOkLN+gMhx1AHVWqKx/o1PDKMOxGVz14CV8XWqNfmqtqBg4+fiKxrX5PMVxiNIAAuF2C3A1Xfb8T+5nFo9Rrh8Jhg85hhd5thc8ejxR0Puyfw2OY2w+bpWOf4IA8tLcEVMB/EdO6BwKSyIEVfhVRdFVL1VUgR/1strk/RV0OjCDQhkql1SD3/YSSeeFbMnXYVOhPiZixA89f/FtcJHhccu1bBNOkUcZ3zwAb4nXbJvvrRc3vhVQKarLHIW7SyV44FBIat1y2/Dz5bfdjn/UkFkDlbIHOEPi83JCBu5kVh9zOMOQ7ply5Bzct/iHr+gdYkiIikBL+A0pc3w7o78IFEzhlFSD2q501hPDZX1Odba1vxxhvAk08CGzYEKjRjJZMBEycCV1/Qguktv0Ae1PDHmGuOuq8hx4yxN02Ho7wFfq8fppEJvdKFvSc0CV1Uah7G4edEREREXeFvKkR9zFW9G66DmyXrtHlToE4rlKyLP/oy1L51B+DrKEG0b+8IlMJWaibnhawThMAfZm7zBOiv+wXN7/0dNV+/CpdHC6dPB5dPC5dPB6dPB7dPC6dXF1i+dh2U40bAmzwNdjskXzYbQtZ1/PF3+q9fg5tc5kOS0YaM/HikpgKpqYBuz/NIEraJIWWKLhBc6lWtXR/wV7pRRyPzqhd71KDGOOFkSagJAI5tn0tCTceu0KHnhjHHdftc/UGu1iHzd8+h4pkFga7zcgX0xXNgmnI29BNPxY5KKyAIkNlqMEJtgWvfWjjLNkKuNSLl7AegNEWu1kk8/nq46/ah6bMnIm4zEOfTJKIOjRuqxUATAMo/KoEhJw6GnOghYSSRhp9/W5KMV3/OxbYqM7zdqMgEgIIC4MorgVtvBbRaoPLzOtR8K93G0EWoCQAyhRzGEfHdO3kf6LpSk38qEBER0cDF31SIesjnA9avN2L3bj38fuCrrwJVFoIQGLbW/mXbUQPHjgfghxx+QQ5BkEPXOg/aRR3beL2Ax5OIpq3vwtncAK9fBY9fDa9fBc16J7zQwlF+Dlobj4HXrwp8CSpgdRG8fsDjCVROtrUFvjqGzWkA3PPrVww2dL3JYKLVBhrppKUFQsrg/8Z5d0H4/HokaeuQpKtFvKYRqWffi9RzF4v7V7+8ocsu4JHIVFqknv9XJJ50c4+7zuvHzAMUSsDXUT5k3/q5ZBvHzm9D9xt9XI/O1x9MU87CqH8chLt2L9QZxVAaA006vF4vULkZkMkgxGUgbtJ8KI/+TbeOnbbgMXgaDsC2LnzTHVZqEg1slp2hVdrlH5Wg+Lpp3Z77WfD54W3t+JDwp/0J+L+f8rCpIh4eX/f+n5yeDlx0EXDffUBiovQ5+0FryPaG3LhuHf9wUsdrA13aIswbylCTiIiIBjL+pkLUA4IAXHGFHG++WRzD1sf++hVkW6Rtw1Q8lrc/KP71K4glhtMPETqlHfGaRvEr5+jjkJyqQlISxK/k5I7HKSmA0RgYIhhO87ffo3qLtMpRkzFaspx44k2w/vByyPDuqGRyGMafiPRLnhIbQfWUQmeCftTRaN3V0QncXb0L7oYyqJPzIHg9aNsj7RqvSsmHOkwF70CijEsNafjTG2RyObJ+/wrKmivCdm5nqEm9zdXYiopP98LT4kLy9CwkT8s83Jc0aAk+P+z7LCHrHeUtaNpUi6TJ6d06nrfVg83lZjz/4wisP5gAl7d7QWZKCnDWWcC99wJ5Ef6XKvj8aO3UOVybqodSd2hzgfYnuVIOVZwGHmv4ofpyhppEREQ0gPE3FaIe2L8fePNNedcbkoRRZYVRZUVyXhoSkjUwm4H4+MBX+2OzOVAJExxWer++C/Yv/yY51oj71kBfOLPH1+Kq2hmyTp05RrKsySjGyMWbYNvwPvzuVsjVesg0BsjVesg1esjUBsg1+l+XDZCp9VAYE6HQ9V6VjnHCfEmoCQCOrZ9DPfcatB1YHxK4GgZwlWZ/kKt1yLnlQ+xfPBOe+v0dT8jk0OZMPHwXRkOO4Bew95UtcNYGmr04ylugitPAXJR0mK9scGqtssHnDD+pZeVnexE/LgUKddfB5Lp1wMMPA198oYbDMa3L7YMlJACnnx6oyBwVw2cgbTV2+D3S8euxDD0faDSJuoihJis1iYiIaCDjbypEPaDVAjKZAEE4PBP79yejsePLZJIuKxs3QlH1HfQqO/TKwFfOqZcjY/I0mHQOWP49DyZ5LUxqCwxKGxRyPxTGJBQtrY9YQRmOZcQYdK6VdFVsO6RQM7jTfDtNmDkX1WkFSDrl9h6f51AZJpwMvH2XZJ192+dImHsNWnd9G7L9QB563l+UcanIve0TlD12ArzNlQCA+DlXQpWYdZivjIYSZ51DDDTb1f1YzlCzh1r2Nkd8ztPiQu2qA8g8sSDs82vWAI8+Cnz9dWAO6IDY3mSMOh/mn6bAffcFGv90R7ih5101CRqINAk62PdbQp+QyyBX8QNcIiIiGrgYahL1QGYm8Oc/+/Hgg3L4/X0bbCpkXqjUMij8DihlHqgUbihlHqj1GuiS0qBSASoVoNEAOl3Hl1Ybebnzc/KWfbC+dyvUzrJAOKmyw6C0IfOU3yPz0n9EvLayx++EY9sXknVFt94LpRkADKgoLUDLTz9LnteNnN7tudE02eND1rkqI47hj4mrU6ipSsqFXGM4pGP2BW3OJCjiUuFrqRPXObavhOD1wLFz8DQJ6m+azNEoeGQHbBs+hNKUHAiHiXpRa5UtZF3LniZ47G6ojOrDcEWDm620KerzNd8dRNK0TGh+bWzz3XfAY48B334LOBxRdw2hVXkxPa8Jv511AEdO9mPcrT37gMxxsCVk3WCs1FRH6ICu0Ci6/X5NRERE1J8YahL10N13Czj66M3Yu1cHuRwYNaoAKpUScjnEr6aVS2H74QXIZH7IZX7I4UfmVc/DOGqGuI1MBigUgFodCCftPz6PxmU3QyX3QCn3QC4TYJ51CaxrXpOcP/mMu5F6/l976dWMhPvEJ7F3UZGkKY1j8/sQfvNE2D9qBL8PbXvXSNapUgugNKeJy+ajLkXLT29IttEVdP+PR03mmMA3SujoZOCs2Nrt47Tzu9vgaTggWdd56PlAIZPLYRx/Mqw/viKu87e1oHXParSWdJ5PcyRUSbn9fYkDlkIXh/huNhsiilW4UBN+Ac1bapF6VE7/X1AwnwB4BUAzOKrs/B4f7GWhVY/BBK8fyx6vxusbR+K774DW1u6dQ6P04eiZPlxx5D6M1VSK612NMgg+P2SK7n+vOldqKrRKaFMG3odjXdEkhu+AzqHnRERENNDxtxWiQxAf78O0aYGB0ZMmAcpOd1TZNx/CkbRRsq74hNFQ6CMf0zzzGDjfk5adtKx7J2Q7VVLvNoNRp+TDUHwsHDu+Etd56vfDVbkD2uxxIdu7KrbB75T+Ua8fdbRk2TjhJOgKZohNW2QqLeKP+W23r02u1kGdWgh37R7J+XvKXVMiCUiB0CZBA4lxgjTUBICGD/8KwS39q55VmkT9J2yoCaBpU81hDTWtOxqAj1sAjwBkKOEf54/4256jvAUNv1RCaVAjbU7uYWtwYy+zQvBK56Y05sfDfsCCNaUJeOXnPGyuiO92sx+Vwo+JWRZcNqMMRxc0YeytM1G3WkDDLx3bCD4BrmYntMmBN+a2Gjts+y2Qq+TQpRmhTTOEncvTY3fD3dQmWWfIiYNMPvgqGyNWajLUJCIiogGOv60Q9RFBEOA8sF6yTp1WCIU++tA0ddooKBNz4G0S255D8IRO4K9KHtEr1xnMOPlMSagJALaNH4QNNTtXCQKhoaZMrkDOrR+j+atn4Gu1IOHYq6BK6tkf+5qcCZJQ09dSB29LXcQu2n6XA7ZNK9Dy8zK07v4OCr0ZSafdifg5vwvfJGgAh5qG8SeFVKp2/jkBnE+TqL8IgoC26s4z/QY4ylvgbGgVQ7L+5Pf6UfFRSSDQBIBqLxrXVSNjduiHYM56B3Y9uw7wB7a17W9G8e+nHpbhxp2Hnn+3JxnvfjUav2xSweXpXgWlWg3MmAEsmHoQ09V7IA/aXWVUh62kdNYHfl6WHfXY98Y2acAqA9QJOujSDNBnmZA4IQ3aVAMcYebTHIxDz4EolZoa/plAREREAxt/WyHqI56GMvgc0j/UtCOmdrmfTCaDcfyJsHz3QtTtVMm9W6kJAKbJZ6L2tZsl6+wbP0TKGXeHbNu654eQdbpOoSYAKE3JSDn7/kO+Nk3WeNjWvStZ56rcLgk1/e422DZ+hJafl8G+5RMI7o4qGp+tHtUvXAXb+vegSgwNVjUDdPg5ACjjUqDNmxISknc23DufE/UXd7MzYqduIFCtmXnCyH68ooC2aju8do9kXcvOhrChZv1PlWKgCQCOMivaqu3QZ5r6/Do7s5Q04+tdyXhzfS62Vpnh8XUvyNRogFmzgFtuAc46K7Cu5PlG2PZ2bCNTyKDQKaFNCQ2bnfUOuNINOPD2jpCKUQiAu6kN7qY2WHc2oHrlfuiz48I20BmMTYIAQGXSQKaQQfBJRzCwUpOIiIgGOv62QtRHwgVQsYSaAGAYe0LXoWYfzJ2oThkBTc5EuMq3iOvaStfCa6mBMj5dsm1bp1BTro/v02BQG6ZZkLN8Kwxj5gIA3LWlKHt0HjyNB6Mex755Rdj1A3n4ORAYgh4t1FSlFvS4CpaIuifS0PN2TZtqkHF8fo+rHt1WJ9qq7TCOTAg79DnidVWHXpejvAV+rx9ypTSEs+0L7TZuL7P2W6jp9QIvvQT89z9+bNwwFV5/94JMrRY4+mjgttuAU08Nc3y7W7KsNKohk8mgTQ1TqVnrwIGd26MG1cFaK0IbBEE2eCs1ZXIZ1PFauBqlw+kZahIREdFANzhmkCcahNrCBFC6mEPNeVGfV5jTIFeHHy52qExTzgpZZ9v0kWTZ01QREh7qRx0Fmbzv/pcStgN60Lya1a/c0GWgGYnckABFhGHsA4Vhwvzoz7NKk6jfdBVquhrb0FoeJviKQfP2Omz92w/Y+3+bsfWR1XA1t3W9U5TrEjz+kBDOY3ejrSZ0+LyjzNLt6+2O1lbgb38Dxo8PVFdefTXwyzp5zIGmRunDrPwG/Pf3O9DWBqxcGT7QBACPXTptS3tHenW8FrJOAW/jphrYD0RvVNQVbaphUIeA4YagKzTdm8OUiIiIqL8x1CTqI2ErNfOmxLSv0pwGTc7EiM/3dpOgYKbJZ4ass238ULIc69Dz3qROLYRMqZasc1UGQk3nwc1wbP0s8s5dVEtpMkYflnnkukNfMBNybeQKqvaKVSLqe12FmkAgKOsuv9ePsuUdc/76nF5UflYa+3VVhr8u235pVaZ9f2iVJhDazbs31NUBd9wBjBwJGI3AXXcB27cDfn/X+wKAwQAcO96CZy9ehx/++C2WLNiMKQnV8DrcEfcRfH54HdJh+MpfQ02ZXAZNUqcAzy8ddg0A8eNTkXZMLuJGJUIVp+nyOgfr0PN26oQwoeYgDmmJiIhoeGCoSdQHwjUJUqWMhMIQH/MxDONOjPicug+aBLXT5k2BMj5Tss6xfSX8ro6O7K27VoXs17lJUG+TKVVQdxre7qrYBkEQ0PjJ4yHbK4xJiD/2KuT+6QsUL21A/JzfRTz2QB96DgRev2HcCRGf148+th+vhmh4a+sUaioNKsgU0g9GmrfUQvDFmNz9yrqzHr426RDolpJGCGFCt84Enz9s9SUA2PZZOi2HDzXdzU64W0Ib03VXaWmgCjMjA0hLAx5/HNi/X9LrLCqjUcBZZwGrVwN2O/DaE42YlisNXKNVVnpbPUCnc7VXagII2ywomC7diPwLxyL71FEY9bvJmHjXbExYdDQyTy4IOycnACSMH9jV/l3RJIZ2QGeoSURERAMdQ02iPuBtKofP3ihZF+vQ83bGKAFWXzQJaieTy0OqNQWPE/ZtXwIAnAe3oHnV/6Q7KVTQ5R/ZZ9fUTpslHYLud9rQuvt7WNe+KVkvU2lQ8NdtyPzdczCOPxEKYyIyr3weOTd/EHaYua5gRp9ed28xTjg57Hp1WiFUidn9fDVEA5ff44NtfzOc9a29fmyPzQWPTVolaMgzI64oSbLO6/CgZY+0WVxXGtdXh6zzOb3h53DsxNnQGtrk5leOMgv8Qc9FCjUBhO3qHYtffgEuuABITAQKC4H//Q+oiblYVYBR48HcUXVYdtdO2GwyvP9+YM5MADCNiA/Zw3bAEvFoHntoFafKFBxqRu5ML1PKkb9gHOQq6dBrdbwWGceNwNhbZ2L0H45EyqxsqOO1UOiUyDghP+TnP9iErdTUMdQkIiKigY2/rRD1gbb9YYae53cv1NQXHwOZUg3BG+aPsz6s1AQA4+Qz0fzNs5J19o0fwjjxFFT+5zeATzqszzB2HuSayH8k9pZw82pW/9+1gN8nWWc++vKQxkYAYJpyJgoKZ6H6/64VO6lr86fBPOuSvrngXmYYHz7U1HM+TSKRt9WD3f9ZD2edA5AB2acUIu2Y3vsgqLUqtBpSn2GCLs0A684GyfqmTTUwj06O6bieFhesEULQlr1NXTahiTYk3u/xo7WyBca8eHhsLjjrIoe99gOWmKoO/X7gk0+AJUuAH34AHI4udwmRnOjDrMxaXDazDPnJgWvKPD60a7whzwzIZZJh4vYooabXFvq+qYyxUjP7lELo0o0Rn5fJZDBkx8GQHQecWRxxu8EmriABMpUcgqcj/DYVJB7GKyIiIiLqGkNNoj5wKJ3P28k1BugKj0Lrrm9DnuvLOTWBX0NKrRF+Z8cf77ZNH0NhTIKrYqt0Y4UKaRf8rU+vp124UNNdtVO6QiZD0il/jHgMZVwKcm5cDlfVLvham6HNmwK5quv50gYCdcoIqDOK4a7eLVnP+TSJOjT8XBkINAFAACo/L0XSlAwoDeroO8YoXIdxfaYJcaMSIdco4Hd1fMjSvKMeuS4vFJquf91q3FQTdm5HIBBqZszLj35dYcLWYLb9Fhjz4qNWaQLRKzWdTuDZZ4FXXgG2bAl0MO+uvDzg3HOBP/4RcP+wG40bpNWppsLQIE2hUUKfYZTMGdpaZYMvwvc2bKVmcKiZGv5DOHNxElJmDc+qd6VBjfwLxqLik70QfH5knDAS2uS+/7CSiIiI6FAw1CTqA2E7n8fYJCiYYdwJ4UPNPq7UlKs0MIw/GbZ1y8V1Pls9Gj/9e8i2qec8CG3eEX16Pe00WaGhZmemqedCkz6q62NlDvx5NMMxTjgFTcGhpkzGSk2iIJ0r+ASfAOvuRiRNyeiV43eeTxMIhJpylQIJ41MlQ8gFjx+W7fVdnlsQhJBwL5jjoDVigBftuoLZ9zUDx43oMtRsrbLB7/GJw68PHgSeeAL44IPA41jnxWwnlwNFRcAllwA33QTExQXWC4KArXullalyjQKG7PAN0Ywj4qWNkPwCHOUtiAsTgnYZaibrIVPIIPg6XozSqEbe+WMHfNO4vpQwIQ0JE9IO92UQERERxYxzahL1svBNgvKhMHZ/GFekxjDqPpxTs124Luid6QpnIenUP/X5tbRTJedBro08LBAAkk9b1E9Xc3gknXI75PqOYagJc6+FKiEzyh5Ew0trmGY51l0NYbbs4fE7hYcKvQoqc6DaO/GI0GkvGjd2PbFka5UNztrI47cFnwD7fkvk5wWhy47s9jIrBJ8fttLooabgE/DFu6047zwgKSlQWfmvfwFlZbEHmkolMHUq8MwzQFsbsHMncO+9HYEmALgaWuHp1JTIlJ8AmSL8r6bG/PjQ1xShi7s3TKipNHVU5Cs0SiQf2fH/TZlSjvwLx0qCTyIiIiIa+FipSdTLvE0V8NnqJeu6O/S8nS5/GuR6M/ytHcMBFYbELoO93mA84jRAJgeE8I0nZGo9sq55GTJF//1vRCaTQZM1Hm2lP4V9Xj/6OOhG9n3DosNJlZiNwr/tRsu6d6FKyIJx8hmH+5KIBgxvqwcea2j3bmtJI/xeP+TKQ/ss1+fywtXYJlmnzzSJ1X2mkQlQxWkkYZ2ttAmu5jZowjRiaReuQVBnLXuaIs7P6bY44XNGHwvud/tg2dkQcv0yhQwej4AVWzPw4dZM7Kw2we1TRDhKZFotMHMm8Ic/BIaXy7v4VrfsDQ0kTQUJEbc35sWHrIvULKhzIycAIYFlzhnFMOSY4ba6YB6dBH1G+ApRIiIiIhq4GGoS9bKwQ897GGrK5ArEHXkhLKueE9cZxp/U42vrDqUxCfqi2Wjd/V3Y59MWPgF1WmG/XEswTXbkUHOoV2m2U5rTkHj8dYf7MogGnLYwVZoA4Hf5YD9gCTtUuVvHrw7TJCiz40MmmVyGxMnpqF1V1rGBADSuq0bmiaENcADA7/WjaVOnak75r0Ogg+bYbNkbuZO6ZFh2O7McsEo/lKr+ar/42NKqxGu/5GJVWSb2V6shCN0fdp2QABx3XGBY+XHHdW9fW2no64n281EZ1dCm6CUd7R0HW8KG1Z2Hn8sUspBO3jK5rNemJCAiIiKiw4OhJlEvC9skqAfzabZLPf8heJsr4NjxFXQjZyD1wv5pygMEhqCHCzUNE+YjYe7v++06goVrFgQAmpyJMEwI3x2ciIaHcE182ll3NhxyqBluiHfnCr/kaZnSUBNAw/oqZByfD5k8NDi07mqAr01aZRk/OhneVo9kflBnnQNuqxNqszam60KhBlgvrcr8aZ0Cb60fh1/KEtHcqgLQ/SAzLw8480zg9tsDj3si3DB4pVEFbVrkruRAYF7N4FBT8PrRWmmDMU/aGb7z8HOlQT2s58okIiIiGqoYahL1srChZn7PKjUBQBmXitzbP4EgCP3+R5lx8pmofVPaSVxuSEDmlc8ftj8QtdkTwq5PPvUO/tFKNMyFq6RsZ9nVgOzTRx3S/yfChpqZ0lBTm6yHcWQ87Pss4jqP1YWWksaww8fDNQhKmpqBtmp7SNMj295mJE0NrS4M2yQoUwXnFg+W/5COz3emY0+dEZ4eDCtXKoEJEwKNfq67DtD3QkNsR0VLyHD5uMKkLn82xhHxaPilSrLOfsASEmp67NIpCFQmzpVJRERENBQx1CTqRYIghAw/VyXnQWlMOuRjH47ATpM+Cqap58C2/r32i0Dmb/97WBvThKvUVCXnIW76hYfhaohoIIk0/BwA3E1tcNa3QpcavRowms6hplwlhyY5NOVLnpYlCTUBoGFdVUio6bG5YN3dKFmnNKgQV5QEpVENrNwnea5lb1PYULM1KMwtqTXgrU05WPNCCurqelKNKUCv9mHGVC9uXqTFGWdEnx/TWe+As74VrqY2uJra4G52wm1xQqFTIuP4fMQVhFbHtpSEGXo+qusq2rDNgg5YgGM7SkYFvwCvwyPZRskGQERERERDEkNNol7kba6Cr6VOsq6nTYIGisyrXkRT7hHwNJYhbvqFMB7mId7KuFQYJ50K++ZPxHUpZ/8ZMqXqMF4VER1ugs+PtigdxIHAEPSehpp+rx/OOunxdRmmsEPKE8anoPxDpaQa0bKzAR6bC6qgLtxNm2sl82YCQOKkdMiVchiyTFBopcdo2dsUUrXfZnHjne8TsWJbBnZUx8Hp7X41JiAg2eDGrPxGXDLjIApTHEg+MhN5Z42JuIfP7cPe/9sUEt4GK315C8bdNjNkyHzLnsaQbWMJNTUJOqjMGkkzKPsBCwS/IP4cvA430KlLO7uaExEREQ1NDDWJelHYoeeDPNRU6M1IOfv+w30ZEhlX/Af17/0Z7rq9iJt2PuKPueJwXxIRHWbOhlYIXn/Ubay76pF+bM8mgnTWOSD4pGlZcJOgYHKVAomT01G/pqJjpV9A44Ya8fyCIITtet5eiSlTyGEqSIBle734nNfuRluNHbVOE558Evj4Y2D/fhUEYWy3X49cJqCwwI+Flyhw4x8ElC35EYKn4/tnP2iNun/tqgNRA00g0HG9cUMNMuaO6HgNrR44Klok2+kyjJKwNxrTiPhAGPwrn9OLtlq7OLdp5yZBAENNIiIioqGKoSZRL+rNzucUmSoxG5lX/u9wXwYRDSDRhp63s5dZ4XV4oDR0v7I7lvk0gyUfmSkNNQE0/FKJtDm5AICKFXtCrlmXYZQcM64wEZbt9fD6gS92pAWqMZcYYJMUjMY6vFyAQe3DhCwrzp5UiRMmNGHKA3MgUwCAHA3ZcbDvt4hbO2sd8LZ5oNSF/141B4Wt0TRtqkH6cXlidamttCmkkjJuVOxTtBjzpaEmEKjWbA81vbbQUFPJOTWJiIiIhiSGmkS9aChWahIRDQbhmgQZcs1wBFccCoC1pAFJk0PnpexKuFBTFyXU1GeYoM+OQ2tQVaKrsQ32/RbY91tQ90N5yD5JUzqua9s24Ml/p+HTD5JQbdVC6EGncplMQFaKB0fn1OKiaQeRk+AUnzOPTIJM0TFZpjHPLAk1AcBx0ApzcWhzI4/NBWcXQ/3bOescaKvpqKS0hptPsyj2rvTGEfEh6+wHLEidlRO4NlZqEhEREQ0bDDWJepGrcptkWZWUC6Up9A9CIiLqXa1hQs3040ag9OXNknXWnb0Uaspl0KWFH37eLvnITBzsNNT6wDs74G52hmzr1erxyo9ZeOePwJYtQFsbAKh+/YqdVunDmPGtOO30Rpx6aiMKFGkof68kZDtTQYJk2ZAbD6BMss5eFj7UbNnbHLIueXomUo/OhXVnPSo/K5U817SpBvoMEwRBCJlPU66Sw5gXH9uLA6BNMUChU8LX1jHXqP2AVZxrlKEmERER0fDBUJOoF8l1ZsmyvuiYw3QlRETDS+eh3OoELcxFiSEBmLWkEX6vH3JllJbenQh+IaQSVJdq6PIYiZPSULFiD/xun7guOND8+UAC3t2UhY3lCWh09KRTOQAISDG6MHNEEy468iCmHqWCfXLHs8bc+LB7mTp1JTfmxoVs44gwr6atNLTaMmlKBnSpBii1SlR+XioZYt60uRZZJxfCWe+QNPkBANPIhG79LGRyGYwj4mHd2SCu87S44G52QpOogzdMqMnu50RERERDE0NNol6Ucua9qHhmASAIkOvNSB5gDXaIiIYir8MDT4s0LNOlGyFTyGEuTkbTphpxvd/lg73MgriC2Ic8uxpbJcEkEH0+zXYKjRIJE1PRuC7QEKjepsayDdlYtScFZU16+Pyxh3nBVEoBEyfJcN7JrZjtXAu9uqPBjy4jG3Z0BLDqBC3U8Vq4LR1hqkKnhC5dWmWqNKihSdHDVd8qrnOUt0Dw+SXD1AVBQMteaagpVytgyA6Eoqo4DUwFibAFbeOxumA/YAk7hL8782m26xxqAoB9vwWaRB08YebUjLUJERERERENLgw1iXpR3PQLUJg3Gc6KbTCMnQeFLrTyhYiIeldrTZgmPhmB0M48RhpqAoEh6LGGmp4WF/a/uT1kvS5C5/NgTifwSekIvPxmGrZXx8HuUuJQqjGPzGvGeZMrMW1MGwqvOAL2/RaUfyzt+K7LMAGCtKo0+chMVH25r2N5WiZk8tDrMOaaJaGm3+0LzIeZ1fFe5mpoC1ttGRx8Jh6RJgk1gcAQdHen/YDuzacpni8/PmRdy55GJE3NCBl+LlPIoNDx110iIiKioYi/5RH1MnVaIdRphYf7MoiIho1wTYLaKxHNRUmAXAb4O8ZDN2+rgz7LBG2yAZpkXcQO3221dux9abOkyrGdISv0Qyu/H/j8c+DFF4HVq4HqagDQ//rVPQYDMGUKsHAhMLPtF/jrO4Jbjw3Y9e910CTpQvbTZRiBKum6tDl5gCxQzajPjkPGcSPCntOYF4/G9dWSddaSRkmoGW7oeef5ORPGpeLg+7sheDsC1+atdfD7pAGsOl4LTXL3vzf6TBPkKjn8no7jNW2pRdqxeSHDz5UGtdh5nYiIiIiGFoaaREREw4R1dyOsuxugzzIhaUrGkAl7Os+nCfxasQhAoVXClB8PW2lHcxuP1YUDy3aIy0qjGobcOJjyE2AamQBduhH2/c0ofXUrfE5vyLENOXEw5AbmUN60CfjPf4AvvwQOHAB8vpDNYyKXAwUFwCmnADfcAIwa1fFczao0VH4mrUYVvP6QDuRylTwQdHYKNeVKOTLm5gNzo1+DMUwFZMMvVUg/doRY2dl56DkAxBVKqy0VWiXixySjeWuduC7c9zGuKLFH/wZlCjnix6VKK3AFoPzjEnjs0mpQNgkiIiIiGrqGfahZWlqKN998E2vXrkVFRQW8Xi9SU1NRVFSEM844AyeeeCKUyt7/Nm3fvh3vvfceNmzYgKqqKtjtduj1eqSmpmLKlCk4/fTTMX369JiO9dlnn+Hmm2/u9jWsWrUK6enp3d6PiIgGn+btddj36lZx2dXQhqyTCw7jFfWezp3P5So5NIkdVYzm0cmSULMzr90N644GWHcE5mlU6JTwu30QfELItq1JKXivfBxWTJVh507AFTqiOmaJicCsWcCVVwJnnRUINsNJm52D1qoWNG+pC7/Br3QZprDDymOlTdbDkBMHR3lHx3Z3sxO20ibEjUqC4BdCvo9KoxraNEPIsRKPSJeEmuH0ZD7NdpknjkTztjpJNah9nyVkO6WJoSYRERHRUDWsQ80lS5bg2WefhdcrrR4oLy9HeXk5vvrqK4wfPx6PP/44Ro4c2SvnbGpqwn333YeVK1eGPGe1WmG1WrFnzx689dZbmDVrFh5//HGkpKREPebOnTt75dqIiGjoqv5qv2S55rsyJE3NgLYHw3+74vf4YNleD7/Pj8SJaZCrFL1+jnaCzw9nbafO5OlGSbiXMCEVVV/uC2n2E0lwt/RWtxwfbc3EV7tSsbs+Dg6nHD2bFxNQqwWMHQucc44M118PJCfHtp9MIUf+ReOhzzqIys/2SjqLB9PHMM9nV5KnZ0lCTQCo/7kKcaOS0FplC6m4jCtICFttGVeUFNJ5XkIuCxm23h2aRB3SjslFzTcHom7HSk0iIiKioWvYhpoPPfQQXnnlFXFZqVSiuLgYOp0OpaWlaG4OVCJs27YNl156KZYtW4asrKxDOmdTUxMWLlyIAwcOiOvkcjkKCwuRmJgoBprtIeuaNWtwwQUX4K233kJaWlrE4waHmkVFRUhNTY3petRq/qJPRDQcuJrbQued9Auo/mo/8heM69Vz+d0+lLywEY4yKwCgbnU5xtxwpKSRTG9yNrSGVFTqMqThntqsRf6F41DxyR64mtqiH88rx+fb07Bydyp2VMfB2qZCT0NMuRzIywOOPx645hrgyCN7XkUpk8mQPicP+iwT9r+xDV6HJ2SbWDqydyVhYhrKPy6B39URAFt21MNjc4U0/wEAU2H4Rj9ypRwJE1LR8HNV2OcNOXER5zKNVfqxeWhcXw1PS+RyWYaaREREREPXsAw1P/vsM0mgefLJJ+P+++9H8q8lEx6PB++++y4eeeQRtLW1oaGhATfeeCOWL19+SPOP3XHHHZJA8+KLL8YNN9yApKSO4VcWiwX/+c9/8OKLL0IQBFRXV+PGG2/EW2+9FfHcwaHmfffdF/OwdSIiGh7ah1V31rS5BunH5olNdXpD1Vf7xEATCMx32bytDomT+ma6k/BNgkLDvfhxKTCPTYbX4YGroRXOhlY461thqXLgvU+1+HxTIrZXmWE5hBATANLSgKOPBi67DDjjjMhDynsqriARY26YjtJXt6C1MmieTbksYsDYHQq1AkmT01H/U2XHSr+Axg3VMc2nGSxxUnrEUDNuVC9cq0aJrPmFOLAstDt9OyVDTSIiIqIhq2/KJgYwj8eDRx99VFyeO3cunnzySTHQBACVSoUFCxZg6dKl4nya27dvx8cff9zj865Zswbff/+9uHzLLbfggQcekASaABAfH49FixbhnnvuEddt3rwZn376adjjNjU1oa6uY86q4uLiHl8jERENTZad9eGfEICqlft67TyOihbUfn8wZL1tX+T5LA9V5/k0AUCfET6klclkENRqvL86Hr99MBNTryjEhKsm4f7lxfihNAWWNjW6G2jGxQFz5wLPPgs4HEBNDbB8efQ5Mg+VOl6L4t9PRepR2ZAp5ZAp5cg5bRQ0CaHd0HsieXroyJT6tZWwB4XVAKBJ0kEdr414HOOIeKjMmrDPHcp8msESj0gTmzaFo+KcmkRERERD1rALNb/88ktUVQWqBpRKJe6//37II/zVMXv2bCxYsEBcfvHFF3t83vfff198XFBQgGuvvTbq9pdeeinGjesYEhgpUA2u0szMzITZHPkXeyIiGn68bR7Y9lsiPm/ZXg9HZUvE52Pl9/pRtnxn2Pke7VHOf6jCdj4Pqjz1eoE33gDOPhtITwc0GuDSS4GPPwbqovexCUurBaZOBR58EKiuBqxW4Ouvgd//HtD3/vSkEclVCuScUYwj7p+DyQ8eh9Sjcnrt2PoME/TZcZJ17manpCkPEL1KEwBkclnYCl2FTglDp+P3lEwmQ87pRRGf5/BzIiIioqFr2A0//+STT8THRx11FDIzM6Nuv2DBArz22msAAtWa5eXlyMnp/h8OP/30k/j41FNPjWkY+7x587B9e2BI1datW8NuExxqskqTiIg6s+5qBPwROsv8quqLfRj12yMO6Ty135WFDRgBwFnfCo/dHXPAVPt9GWq+OwifywuFVgmlVgnFr1/qBC0Sj0iHKT/QZKat2ibd2aTFm8uVWL4cWLMGqK0FhOgvPyqlEsjPB04+ORBcjh/f82P1hb5qwpQyPQtlFdHD7liGuycekYba78ok6+IKEw+pS3tnhpw4JE3NQOP66pDnOPyciIiIaOgaVqGmIAhYu3atuHz00Ud3uU9xcTFSUlJQXx8Yuvf111/j8ssv79Z5nU4nHA6HuFxQUBDTfgkJHV1B2xsXdRYcao4ePbpb10VEREOfNdzQcxkkFZUtJY2wH7DAOCK+R+doq3Og+uv9Ubexl1mQMK7rRna2/c2o+GSvuOz1uOG1uSXbNPxchcQj0pF+XB4a6/34dHs2vtuTjN21pl/nxOw5hSIQYh53HHDFFYH5MYejhImpKF8hbRgkIQNMI7vuXq7PMCF+XAos2+vF/dKOye3FKw3IOqkAzVvrQjrcq0zhh78TERER0eA3rELNyspKtLR0VB2Mj7Hcori4WAw1I1VMRqPVarFu3To4HA7U1tZK5u+MpqKiQnwcaVj5rl27xMcMNYmIKJjf64d1d6NknUKnRPK0zJC5Lyu/KEXR1VO63RBP8AsoW74zpAN5Z/b9sYWa4artgtW2qPHR1gz8+EoySuu1cLjn4FAa+ygUgQ7lxx4L/O53wOzZPT7UkKLQKJF4RDoa1laGfV6faYJSH1uAPOL8sajProCzoRWJR6TDkNP7U+Wo4jTIPCFfEoibRibEfI1ERERENPgMq1AzuPM4AOTmxlYpkJ2dLT4+eDC0AUKsDAYDRo4cGdO2fr8fX375pbgcbj+Xy4X9+zsqY4qLi7F+/Xq8//77WLduHaqrqyGTyZCSkoKpU6fizDPPxKxZs3p8/URENLjYSptCKtfMo5ORfuwI1P9cKanCs++3wFba3OU8iZ3V/1QBx0FpAxm0Dy0OGvZuP2Dp8lh+r7+jou9Xe+sN+GhLBn4pS0RZkx4urxyHEmLK5UBubiDEvOyyQEVmXzX0GexSpmdFDDW78+9EoVUi/bgRvXRVkaXOzoXgB5q31kJl1iDntMhzbRIRERHR4DesQs32aksAkMvlMVdMpqSkhD1GX3r33XdRXl4uLs+bNy9km927d8PnC/xBKpPJ8OCDD2LNmjUh25WVlaGsrAzvvvsuZs+ejcceeyyk6zoREQ09lh0NIevix6ZAaVAhbXYuqr+SDhmv+qIUpoKEmKs1Xc1tqPy8NGR9xnF5sJY0oTVoTsbWKltgjkxN5F89rCVNWFtiwGfb07HhYAKqrDp4/YeWOMrlQE4OMGdOoEHQ8cczxIyVPtMEfZYJrZW2kOdimU+zv8lkMqQfm4f0Y/MO96UQERERUT8YVqGm1dpRSWIwGCJ2Pe/MaOzoohp8jL5SXl6Oxx57TFyOj4/H+eefH7Jd8NBzQRDEQNNkMiE3NxcGgwGVlZWorOyosli9ejUuuOACvPrqq102SepLXq/3sJ27t7QHypGWiSh2vJ96n+AXYOk0n6ZMKYd+pBlerxdJMzNR92M5fG0d/z92lLegeVc94kbFFlhVrtwXUgmqSdEj+ZgceJ1eSagJAWjZ3yQJwywWYNkyYMUKOTZtkqGmOgl+IbYPHCNRKgTk5AJHHSXgoov8OOkkaYjp9we+hqrevpcSp2WEhJoypQzaLMOQeC8niobvTUS9g/cSUe/h/SQ1rEJNl8slPtZqtTHvp1Z3dM50u91Rtjx0VqsV1113nSQ8vemmm2AymUK2DW4SBAQqSu+44w7Mnz9fcs0lJSV4/PHH8d133wEIzC16/fXXY9myZZLt+ovf78fmzZv7/bx9bdu2bYf7EoiGDN5PvaDJC3RqsCOkyLFtZ9D3tkAJbJMGU/s/3gHMNQJdVWs6fMDG0Ao+1zg5tm7fCgih75efLqvAp3v8WL/ehLIyLVpbD20oOQCoFT5kJ7Rham4zTp9Th3G/kT7fg6mwh5RDv5eEwG+LQf9MhEQFtu7gPUrDD9+biHoH7yWi3jPc76dhFWp6PB7xcaxVmgCgVHZ8m/qyKqGlpQW//e1vsWfPHnHdSSedhEsuuSTs9sFzhObl5eGNN94IO6y8qKgI//3vf3HPPfdg+fLlAAKB6JtvvonLLrusd18EERENDFWe0HWZnZqmFGqAEhfgDmry0+QD6rxAWhcNVna7JB3UAQB5KiA58J7pNCrx7fZUfLsnFdur4lBn08AnHOq4bwE6nR/5+U7MONKK04urkNfy64eACgCzjRhmv9r0PZUMmKgDNrR1rBsf+wfDRERERER9ZVj95q9QKMTH/m6MPQsOMlWqvumiWV9fjyuvvBK7d+8W140dOxaPPPJIxH1efPFFNDY2oqKiAqmpqVHnyZTJZPjzn/+Mn376SRyO/vLLLzPUJCIaqsKFmhmd3sOUMqBIA2xzStfvdEYPNdv8wAFpJWZ5sxafVudh7bNm7Nung82mwKFWYQIC4uJ8GDWqFbNnW3HaaU1ITAz+cFEGtMYBzV4gQQnoOVlmnxipAUwKwOIF0lWBx0REREREh9mwCjV1Op34OHgoeleCh5xrNJpevSYAKC0txTXXXIOKigpxXVFREZ5//nnJfJ7hJCUlxdz0R61W46KLLsITTzwBIDB358GDB2PuAt9b5HI5JkyY0K/n7As+n09S6j1+/HhJcE5EseP91LtcjW3Y1fKzZJ0+Jw6jZkwO2dZX7MXO0rWSuTXR4EOBOQ/GEfFhj79r+T68vcmAH0qTsLPGhDqb9pAb+gCATCYgyeDC6DQbjh/bgFteGAljvAKA/tevjEM+x1DHe4mo9/B+IuodvJeIes9Qu5+2bt3araLDzoZVqGk2m8XHDocDgiDE1OHVbreLj+Pj43v1mtasWYObbroJLS0dzRTGjx+P//3vf0hISOjVcwHAlClTJMsHDhzo91ATkA7pHyoUCsWQfF1Eh8NQuJ9s+5phK22GPssE85jkmDuK94bGkqaQdQnjUsJ+T5VGJVKPzkH1Smkn9LpV5YgvTIbfD3z1FfDuu8CPPwKlpQIcjlE49CpMQKcDCgqAGRPaMEO2HUdkW8WmPgkTUxGf3PsfJA43Q+FeIhooeD8R9Q7eS0S9Z7jfT8PqlaelpYmPfT4fmpubkZjYdYfX+vqO7rHJyYfWlTXYsmXL8OCDD0qGtx911FFYunQpDAZDr50nWOeqzv7o5k5ENNw0b63Fvtc7PkHNPm0U0mb33wdIlh0NIevix6ZE3D71qBzUfn8QfpcP+xv0+GJnGta9moCDf/KjySKHIJk7s6dhpoB4nQejR7hw7m9NuOQSIDMz8MyBd/ajcb30/ShhQlqYYxAREREREQUMq1AzLy9PslxeXh5TqBk8LDw/P79XruWJJ57Af//7X8m6s88+Gw899FCfzdsJhA6776vwlIhoOKv7sVyyXPNdGVKPzulWtWbLnkY4Km0wFyVBn2mKeT+P3Q17mUWyTpOihzYl9P/3DQ3A8uXAp5+qsG7N0aipV/RCM58AtRrIywNGG+swd2Q1jipogFIOKLRKTLp9DmTywPfC7/XDsqNesq9cJYe5KLapVYiIiIiIaHgaVqFmVlYW4uPjYbFYAAQ6gE+aNKnL/Xbt2iU+Hj169CFdgyAIeOCBB/DWW29J1t9www248cYbYz7Orl278MEHH6CxsRGNjY147LHHYppbMzigBYDM9jIZIiLqUsO6KlSt3AeZTIaskwuQeER6yDaCX0BrlV2yzmtzw9XQBm2KPqbz1P1YjvKPSgAAVZ+XYtSVkxFX2PWHcABg2V4X0pU8fkyKGGB++SWwaRNQUQFIP+c6tA/UEhKA0aOBk04CLrkEGDUqsH7/W/Vo2tRROepzetFWYxeDWltpk3Q+TwDm0cmQqwfv3EBERERERNT3hlWoCQAzZszA559/DgD48ccfcdFFF0XdfteuXWho6PhjbObMmYd0/gcffFASaKpUKjz00EM4++yzu3Ucq9WKF154QVz++eefccopp3S533fffSc+NplMKCoq6tZ5iYiGq9ZqG8re2wX4A4nhgXd2wDgiHup4rWQ7d3Mb/G5fyP62/c0xhZqeFhcqPt0rWVf5eWnMoWbz1jpYWpX4ancq1u5PREmdCfX/0MHl7nrf2AjQKP3Iim/DhEwrLrnJjHMuNyLSVD7G/Hg0baqRrLMfsIihZvPWupB9Eiak9tbFEhERERHREDXsQs2TTjpJDDW/+eYb1NbWSuba7OyNN94QHxcUFKC4uLjH53755Zclx9PpdFiyZAmOOeaYbh9r/Pjx0Ov1aG1tBQC8/fbbXYaaNTU1+PDDD8Xl0047DXJ57wwzJCIa6up/qhQDTQAQfAKsuxuQMiNbsl1rjb3zrgAA+34LUqZndXmemlVlELzSDoCtFS3wtLigigttnBNcgblxgx8VByfB7ZOjNxr5AIBC7keKMdCRfNbIRpxQXAezPlBZacyPR/GV0V9TuA7q9gMWpB6VA8EXYeh5ce/NX01EREREREPTsAw1U1NTUVdXB7fbjTvvvBPPPfdc2G5R33//Pd5++21x+dJLL+3xeXft2oXHH39cXFapVPjPf/6DGTNm9Oh4BoMBp556Kt555x0AwA8//ID3338/YsWn3W7HLbfcgra2NgCARqPBlVde2aNzExH1JsEvoPabMmCDDTDKgYm6w31JIfxuH5o214Ssb62yhaxrq44Qah6wdHked4sL9T9Xhn3OursBjtQsvP8+sGoVsGVLuCHkh/ZBlUwGJJi8GGG2YVpeE04cXYf85NaI22fM63qeaW2KHkqDCl6HR1xnO2CB46AVDeurOPSciIiIiIh6ZNiFmmq1GrfddhvuvPNOAIEh6FdffTUWL16MnJwcAIDX68W7776Lhx9+GD5fYAhhUVERLrjggrDHnDdvHiorA3+EZmVl4euvvw7Z5uGHH4bb3TH27/777+9xoNnu5ptvxueffw6bLfBH9T333IOKigr89re/lTQA+uWXX7B48WKUlJSI62677Tbk5vZfJ14iokga1lWh5usDgQWLD3ALwKzuHcPn9sHV2ApNgg4Kbe+/tTVvq4PfFTqkvLUyTKgZoVLTbXHC1dwGTULk0Lbm2wMQvH74/cDWKjO+35uErVVmlDUa0PyYGj5/xF17JC4OKCgAZs4EzjsPmDsX8Nl92PbE5rBD6IMZcuJgKkjo8hwymQzGEfGwbO+oyPTa3Nj173Vht+fQcyIiIiIiisWwCzUB4JxzzsHGjRvFuS1//PFHnHTSSSguLobRaERpaSmamprE7ePj4/HUU0+FreaMxaZNm7B27VpxWaFQ4PPPPxeHwcfq+eeflyynpqZi6dKluOaaa+ByueD1erFkyRI899xzGD16NNRqNQ4ePIiaGml10ZVXXokrrriiR6+FiEgQBECA2L36UDV0rkys88Ld7IQyxRjT/rb9zdj/5nZ4WlxQGlQouGwSjLnmsNt62zyoW10On8uLlJnZ0CbH1rinYX1V2PVtNXb4vX7IlR0VkpEqNYHAEPTOoabdDqxYAXz2sRc/fpmJKstI2F1K9Nbw8XbBAebppwca+oR7W5PHaTDy4gk4+MEuuJudYY+lNKow4oJxMXdz7xxqRsKh50REREREFKthGWoCgYY9CQkJeP755+HxeOD3+7Fz586Q7QoKCvDUU09h5MiRPT7XZ599Jln2+XxYvXp1j48XbObMmXjjjTfwpz/9CaWlpQAAp9OJTZs2hWxrNptx++23Y8GCBb1ybiIaftwtLux7fSscZVaozBqYi5NhLk6CqTARih4MGXZbnWGrHVtKGqGPIdS0l1mw96WOqkKvw4PKz/ei+OqpIdsKfgElz20QQ8eGnysx6sopMOaFD0DbuRpbYd9nCfuc4BPgrHOITW98Li9cTW0Rj7XlRwc2fxcYPr51K1BZCTjF3FAJwBT1WmIjwKD2Iju+DUdO9WPhDfE44QRArY79CObiJIz/01HwtXnh9/jgdwe+fG4fZAo59JkmSZDblXDzaoaTdkwuh54TEREREVFMhm2oKZPJcOutt+LMM8/EO++8g9WrV6OmpgZtbW0wm80YM2YM5s+fjzPPPBPq7vwlGMa+fft66arDGzduHD766COsXLkSX3zxBbZs2YKGhgZ4vV4kJydjxIgRmDdvHk477TQkJsbWPZeIKJzyj3bDUWYFAHisLjT8XImGnyshU8hgGpmAhAmpSJqSAZkitsDLuqsh7PqW3Y1IPzov6r6O8hbseXFTyDBpR5k1pHoSABwHrZIqSr/Hj9JXNmP09UdCkxh5SHjD+uqo19FaaRNDzbZaBwDA0qrE6tJkbDgYj5I6E6qsWthdKviF3q2+BDoqMIvj6jEjuRIz8huh/vXdffR102Do4UwjMpkMSr0KgOqQr1GfYYTSqILX7gl9UgaYRiYgeVomEiZFbtxHREREREQUbNiGmu0KCgqwaNEiLFq0qMfHCDeHZrD//ve/PT52rBQKBU4++WScfPLJfX4uIup9gs+PhvXV8NrcSJycHjVkO1w8NhcsO8KHkIJPQMueJrTsaYK1pAkFl0yI6ZiRjmffZ4HP5YVCE/5tqrXKhj0vbAw7z2Xn6sl2joqWkG29Dg/2/t9mjL5uWti5OAW/gMYNkUNNp1eOjz/wYcsbwPr1wO4dRjQ2zYXXL0NvDx+XywSY9R6MnqjCjBkyzJ8fmANTrQa8Djc2P7xV0p1dHa+FPieuV6+hp2QKOXJOK8KB5TsDnd3lMsQVBEJw85gUqIyH9uEhERERERENP8M+1CQiGgj2vbFNnHOw5rsyjLt1JtTx2sN8VVJNm2sloVkklm11cJRbYciJPqzb5/LCVtoU9jnBJ8BW2oz4sSkhz7XV2FHy/Eb4nN4wewa0VtlCQs1wncoBwFnnQOlrWzHqikkhFaYte5rgsbrg9wM7a0z4cV8StlXH4UCDAQ0ODVxeOaThZW8MnRagUviRkSlDfqIN4+PrMaewHgUpgS7ko6+fFvK9teyoD/nZxI9PjXnOy/6QeEQ6jPnx8Fhd0CTrf60CJSIiIiIi6hmGmkREh5mrqU3SRMXv9qF29UHknF50GK8qVLSKxc7q1lQgv4tQs2VvEwRf5JDUuqshJNR01jlQ8vwG+FrDDGMOEi7AjBRqAoBtbxMOfliC9FOL8cMPMnz7LbBuHbBjgxF1TceizaNAb1detjPqfEgztKE4zYYjRzRhTkED8mclIf+i8Wj4xYGyd8sk21t2NoSEms1b60KOOxC7iKvNWqjNAyusJyIiIiKiwYmhJhHRrwRBgNfhgdKg6tcKt9bK0GHR1p0NyD5tVNjrCFQ4NkOdoIUu3dgv19pabQvp6q1NMyB7fiGsuxvRsK4qMKz4V81bapF96qiow4qtO8MPPRef39UAQRDE1yf4/Ch9bWv4eRk7X2+nANPv9sFZ5+h43i3HurJEbDhoxu66OJQ369D8dzVcIcWfmi7PFRsBCrmABJ0HeWkuzDkrDqedBkwf40DJ02ulVZYyIOP4fACAeXRSyJGsOxuQdVKBuOx1eNBS2izZRmXWwDBAhp4TERERERH1BYaaREQIVEuW/G8D3M1O6DNNKLh0Yr8N/27tFBa2X4+roRXaFINkvdfhwc6lP8NtCbTMjitKQt55Y6CO663wLbymjTUh65KnZsA8Ohnm0cnwe3xoDGqoI/gENK6rQvpxI8IeT/ALEZsEtfPY3GirskGfFQjnmrbUSoLJdmlz8tBS0oi2mo7vY1u1HYJfQG2dDN98A3zzqRc/fzMVVRYtLG1qeHy9P+dlO5lMgEnjQUacE+NHezEt34qpcQeRaOhITCfdewyUBjX2vLgnZNh44hHp4s9dZQqEk47yjuC7rcYOV3MbNAmBeVfDDT1PGGBDz4mIiIiIiHobQ02iw8R+wILa7w9CppIj47gR0KUbI24r+PxwNbZBk6SLuas0xU4QBJS+ugXu5kBQ2FplQ9XKfRhx/th+OX/nCsh21l0NIaFm9df7xUATAFpKGrHjyZ+Qd85oJEzom87Rgs+Pxk2dQk0ZkDgpXVxMnZUtCTUBoH5tJdKOyQ37b9Zx0Aqvo1PFpQJAp74/ll0N0GfFQfALqPnmQMhxUo/KQcKcAnz9gxKrv0/B7lojypv1aLBr4HgI8IvFoxr0XtVlOwE6lQ+pJhfGFPlw9DFyjG7eivzkVnGLrPkF8Ln8qPlGWgJqP2CFTClDS0mjZL1MIUPGvHzJOvOYZEmoCQSqNVOPygEANG+tDbmyvvq3QERERERENFAw1CQ6DNwtLux5aZPYubmlpBFjb54Rdq45Z70DJc9vhMfqgtKoQtGVU6IGoNR9LbsbQ4JF627p0Oe+1Fodfq5Hy64GpB2TJy4LPj+aNodWTPravNj3+jYkTm5A7pnFYbt4H4qW0mZ4bW7JurhRSVAFVYfqs+JgyDXDcdAqrnNbnLDuakT8uNBmP5ZwQ8/HaIFtTskq665GZB4/Eo1b6rB5mwzryrKxqzYOBxr1qLPr0PKECh6PDMCIQ3qN0QnQKP1IivNgzGQNph/pR37FJkzMtED5a15ryDPDXJyEqi9aJXvq0o2QyWWo+UZ6xJbSprBNklKPyoE2WS9ZFz8mBVVf7JOss+5qQMqsbDT8XMmh50RERERENCwx1CQ6DBo3VIuBJhAIpSo/L0X+heMk2wk+P/a9vg0eqwsA4LV7sP/tHRhzw5EcWtqLalaVhazz2j3wtLj6vKmJt9Uj/nw7sx+wwtvmgVIX6BLdsqcptLoxSNPGGtj3W5C/YByMI+J77RqbwjQISpqcHrIuZWa2JNQEgLqfKsKGmtad9dIVMsCfp8a+X1TYvMuEnTUmHGwyoMqqhfVPAtraUgH0dfVhoPIy2ehGXqIDY9JtODKvCROzrVDKgezTRyHt6FwACuz4lxdtQd+WtiobVKbQ+UN16cZAyCyXSYaI16+tDBkyrjSoQqo0gcDcpep4raRC17avGXv+txG2fc0h2yeMT4VMzv8/EBERERHR0MZQk+gwaNndGLKuaWMNUmflSCqs6tZUSOYJBALhSWt5Cwy50TtLt3NbnDj4/i60VtthLk5C1imFYkg2HNjLLKhfWwmFRon0uSNC5p60H7DAfsASdt/WSlvEULO1ygbBJ0CfbTqkgLnzz1fCL6BlTxMSJwbCvMYw81p25rY4UfL8RhRdOblXgk2f04vmHdIAUq5RhHQlBwLdtis+KZE08rHtbUJbnQO61MAweqcTWP25Ex9+lIySOhPKm3Sos2tgc6rheqTv5rkMJoMAo86HnHwlxowBpk8HjjvKjWx3FRp/qZSEh+I+ChmSjugIcvWZJkl1r9/jD7mvFTolVHEayGQy6DNNaK0IGkLuD+36nnniyLBVtjKZDOYxyahfUyGuE3xC2EATCMzJSURERERENNQx1CTqZ942D+ydqtnala8oQfHvp0Imk8Hd4kLVyn1ht6v/uTLmUPPgR7th/TVsafilCo7yFoz63RFQmfq2scxA0FplQ8n/NopduS076zHmhumSjtzhqjTF/StbwoZ3+5dtFxvnmMcko+DSiT0ONiMNPW9n3dmAxIlp8Dm9gYYwQeRqBeRqeUg3cMHrx96XN2P09UeGDGXuruZtdRA8fsm6hAmpkKsVIdvKlXIkH5mF3SsqsLEiHtur41Bab0DN6wo0OoCWFsDjAQAtgFGHdF1dE6CUC0hMliEzzYcMfz3GZ7Zg5ohG5CW1IWVmFnLPGh20vRrACGQcmwvrrkbU/VQB296O4eEZx4+E0tDx70afZQqZQ9Tf6fuky+joTG8aGS8NNTvRpRuRPC0z4vPxnULNSDKOz4chm0PPiYiIiIho6GOoSdTPbHubwlZpAYCjzIrmrXVInJiGik/2SIaoB2vaUovs00Z1WXHpd/tg3SWtHmursWP3s+sx6srJ0CTqevYiBgHBL6DsvV1ioAkAHqsL+9/YhlG/OwIyhRxtNfaoHbgdlaGBo73MKukEbt3ZEJg3ckxyj64zUpMg8fi7GyD4BTRvr5O8FiAQLmbNL0TZezth3SF9Hb42L/a+uAnF102ThLjd1bgxdOi5LD8Dn3wCbNgA7NgB7NsHVFUBTU1AW9tI+P0FPT5fd8nlQFwckJ4OZOmsyNc1YlK2BZOzrdCq/Zhw12y07G5A2bu7JPvpM8MHfzKFHPHjUhA/LgXOegcc5S3QJOlhyI2LaX/JNkFz3xpHJKD2u4MRt80+bVTUJmDG/ATINYqI/0/QJOqQd/4YmPITurwuIiIiIiKioYChJlE/s5aEDj0PVvnZXig0CjRvDu1o3E7w+APD1X/tfhxJa5UtbIDqamrD7mfXYdTvJg/ZpkMN66rCVsbZ9jWj6st9yJpfGLVKEwgMP+/cLKhlT+jPz7qrIWKo2by1FpadDTBkxyF5ehbkSmlw1VWo6WvzwnFQGqS2S5qcDpVRjYLfTETd6nJUfLJH8ryrqQ2lr2xB0VWTIVeFVlZG0tAA/PQT8MsPHvz0QRYqLYVocGjQ0qaE06uA8LdoVal9MXxcgFbpR6LBjUxzGyZNV2Lu2XGYOxfIDCpurP6mCVVf7Jfs2VZlQ2uYcFqfZeryrNoUQ0j3eXH/DGPgpYb/fAIAoEvvOIdxhDni9uYxyYgrTIx6LXKlHOaiJDRvrZM+IQs0F8o6qSBs9SwREREREdFQxVCTqB8JghB2Ps1g7mYnSl/Z0uWx6n+uRMqs7KjDnh3lkYe7emxu7P7vehRefgSMebENZR8svA43Kj/bG/H5mlVlUJrUaNoSOTgGAK/dHdIsyL7fErJd8DDlYM3b6rDv9W0AAnOmui1OZJ/aMexa8PnRVueQ7hQm+KpfWxkyf6LKrIHx16o8mUyGtGNy4bG7QqoBHQet2L9sB0YuHA+ZXAanE9i6Fdi4Edi5E9i7F6ioAOrqAKsVaG0FBPH8KgD9Mz+jTCZAq/UjPt6L9AQX8lQtKE61Y1K2BYUpDsh/zYKVRjUm3HEU5GGKlPUZoUFla5UtEO4Hn0shgzY1fFgZK7laAW2qAc5aR8RtdBkdHxgodSro0o2hIbZchuxTYhuKnzEvH5Yd9RB8gR+QJkmHEeeP7dWmUERERERERIMFQ02iftRWbYfH5pasUxpUIR2t20OLdgqtEkqDCq7GNnGds9YBx0ErjHnxEc/nKA8/d2c7X5sXe57fgBELxiFhXGqMr6J7HAetqFq5D36PDykzsvuliUnFZ6XwtXmjb/PxnpB1crUCfrd0eG9wsyC/1x92PlRXUxtcTW0hw/mrvzkgWa77sRwZx+dDoQn8r9dZ3xoypDx+bEpg7sygfwJNm0KrNBOPSA/pcJ12fCE2bQxUWO5v0KOiWY8amwZNDg3sV/nh9Mjh8x2urtgC5DIBBrVPrLjMTw50GD9vUTZGzTBi8+bNgU09AmQft4TcBwCQPicvYtWpPjM01HRUtKC1U5CoSzOGVMz2hD7TFDnUlEFsjtTOOCI+JNRMnZUNbUps857q0o0Y/Ycj0by1DtoUAxLGpbA6k4iIiIiIhi2GmkT9KNzQ88wTRqJhfXXUJiKZJxUAgoDyj0ok6+vXVnYRakY+Zju/x499r25FyqxsZJ86qlfCnnaWHfXY9/pWMZyyl1mh1KsQV5TUa+fozF5mReO6qpD1cpU8pJGLhAzIOrkg5Hsc3CyotaIlJIRs17K3CSnTs8Rlt8WJtk4VgoJPQMveJjFA7hy2AYCpIAEeuxuOso7w1O8H6mxqlDYYsa/BgIpmPRy/pKP27sBQ8fYKS69Xhr5vwBOdVgvExwNJRjfS5M0oSHFgfKYVk7IsMGpDv3dKgwqjZ42Dzx8UJqtkMIyIh720OWTb5BlZiEQVp4HSqIbX3vHBQcueppCfWSxDz2NhyIoLOy0AAGiS9SGBY/KRmaj/qUIMrFVxGmQcn9+tc+ozTGErUomIiIiIiIYbhppE/Sjc0HPz6GToMkzY/ey6sPvoM01ImZEFn8uLik/3SgKa5q11yDmjKGzDII/NBbfFKVkXV5QEfZYJNZ0qCAGgfk0F7GVWjLxofMyVY9E0bqzGgXd2Suf0FICKz/ZiTGFiSJVhbxB8fhz8YFfI+oQJqUg8Ij3qsP6E8alInJQWEmoGNwuyHbBE3L9ljzTU7NypvJ11V4MYarbV2FBvU6OkzogDjQZUNOtg+zkdleWpqKsV4HAp4PQo4PXL0DdzVXaXAK1Whvh4IC0NGDECKC4GjjgCmDkTyMuDOEzc55Jj55JSSXVxOPHjUgP/FjrlnXHFiSGhZtoxuVB0UZmozzShJejDg3AhdLiKzp6IFo7qw8xVq88wYeTFE1D3YzmUBhWy5xd22eyLiIiIiIiIwmOoSdRPvG2ekKHL2lQD1PFaqOO1SJiYhubOczzKgNyziiGTy6DUqZA4MQ2NGzq6UQtePxo3VCPt6NyQ8znCVH4acuKQecJIKPUqVKwIHX7dVmXDzqU/I/fsYiRNzujhKwXq1lSg/MPdYZ9rq7ajeWstEif1/jD0+rWVIcN75WoFsk8bBbVZi/Tj8lDzbfjmQOnH5kFpUEMdr5WEwcHNguyd5rUMZittguAXIECG/fuBr950omRHNqqsOtTZNGh0qGFpVcO2VAnXFQKcThm83kIc7spKKQFqhR8mrRdJBhcyzU6MSHJgVJoDx55hwMwrRkAR42hnhUaJUb+bjNrvD6K1sgUehwdeh1vSvVuXYURmhErFxMnpqP+hAh6rCwCgTTMgZWZ2l+fVZxgloWbYbXop1NRFaRYUqQFXwvhUJIzvm6keiIiIiIiIhhOGmkT9xLa3KaQTubm4Yxh21vyCQBOQoMqy5GmZMOR2NPFJnp4lCTUBoOHnSqQelRPSMCjc0HNDThwAIG12LjSJOhx4Z0fI3JN+tw8Hlu2AdVcDck4rgipO063XWf3tAVR9Xhp1m6ov9yFhfCpkip4Ndfe5faj7/iDsB63wOb3wubzwOb0h85UCQOYJ+eKcmJknjISjvAW2ThWAcaMSoc8KfG/0WSZJqOlucWPfdhcO1qqx6gMtqptGoMGuQb1Ng8ZWNVraVLC7lGjzKOB5MDBUPCCWsLI/qy8FqBR+6NU+mLUepJhcyIxzIjepFUWpNhSn2ZFs7Pj+aVL0iCtMRNyoJJhG5ojzgHaHJlGH3LOKJev8Hh+8Dg8EQYDarI1YsavQKlH8+6lo+KUKCrUCSVMzYroGXVeBpVwmaeBzKBQaJbQpejjrWkOvI0KoSURERERERL2DoSZRP7GGGXoePLekJkGH/AvHYv+yHRC8fhjz4yWdsgHAkBsX6KBc01GN6Kxrhf2ABaZfO2G3CxtqZncEpPFjUzD2phnY9+Y2yfyN7Zq31MG6uxFZJxYgZWZW2ADS5/LCWedAW40DbbV2tFbZwnYH78zV2IaG9dWS4dqxEgQB+9/YBuuuhi631aYZkHpUTse+Mjnks8Zj49rdOFipQE2LFvUODdzrUmF5HmhqAprrx8JhF+DyyuH1ywOdwB9rD97GdPt6+4tKBRiNQFISkJ4eGApeVASMHyegOMUCfXUVmrfXQYgwr6hcJYdpVDLMxcmIG5UITYIu7HaHSq5SQB0fW7mnJkGHrJMKunX8rqowtSn6iI2GekKfGRc+1Oyl4JSIiIiIiIjCY6hJ1A8EQQgZEitXK2AcES9ZlzAhDebiZHgcbqjjtSHVlzKZDMnTM1H+oXTex4afqyShpuAXQhoPaRJ1UBqk8/ep47UovnoKqlbuR82qAyHDaP0uH8o/LkHD+irknF4EyIDWChsclS1orbTB1RAa5nQmU8qRNDkdDb9Im/dUf7UfSZPTux0wVa9vwKbVrahpSUC9XYsGuxpNrWo0t6phbVPB5lTC4VKi1aOAR66G6x453G7A50MgoIQawIQoZxhI/1sUoJQL0Ch9MGp9iNe5kTtKjVETtSgoAMaMASZNAjIzox1DBiABQAJyncVo3lqHxg1VsB9sgTpOA/PoJJhHJ8M0MqFXw77DRZOog1yjkAxzD9ZbQ8/F42WZQrrTyzUKqOO1vXoeIiIiIiIikhpIf70TDVlt1faQodGmwoSwncblagU06shVckmTM1D56V5JJ+/mbb82DNIHQktXYyt8Tumw8vah553JFHJknVwAU0EC9r+1XdI5Ovj6S57bEPkFRiDXKFB4+SToc+JRscOGygM+NDo0aHKo0Nyqhn+3DS5DPCwWwGIBWloAux1wOALdvJ1OwOUCPB7A6wV8PgFAyq9fg5kAlRLQKLzQqwNhZbLRjeJpBoybrkNxMTBhrA8NL3wH+Dp+znKVHBPvOQaK7s0IIFJolUg+MhPJR2ZC8At90qzpcJPJZdBnGGE/EFp9DPRe53PxeGFCUl26MeQDCSIiIiIiIupdDDWJ+oE1TOMSc9DQ8+5QaJVImJSGxnXShkFNm2uQOisw1Drc0HN9hFDT7w8EiRZ1InDSDBz4ogI1Wy2wu5RocSphd6pgcylhdynR6lagza1Amyfw5fQo4PLK4fbK4fbJ4fHJ4fHJ4PPL4RNk8EMG/2LZrxWS03v0eqUGalAkQCYDVHI/9HpAL3cjTutBosGNFKMLGfFOZMa1IS+xFfnJDujVfsjVCvjd0mrC8X86CprE9iUFZEdmov6nCvH55OlZPZrbMpyhGGi202WYIoeavV2pmWmCTCmXzIVryA5/rxEREcuBwF8AAD0hSURBVBEREVHvYahJdAhqa5X46ac4+HwyrF0bWOf3dwx19vkCyzU/KuFqzoPPDwiCDH5BhhRfGvBhx3Zeb6Ai0e3u+Ape1/7Y6wWc9iLYq7Lg9cvg98vgFWTACwoo4gLbOG3JcDuPgc8vE7cR/iGHXwhcj9/fPhS7MzWAkf34HRyoBChkAlQKARqVD3qVD0aNF2adBwl6N5KMbowoUmHcdD2023YgJ7EVYtGtXBbSECr92DzUrJJ2tu8caMo1CqgTpEOWs04phCAIsO9vhmlkIrLmF/b6Kx2KogWXvR1qKrRKpM3ORc23B8Tl4HlciYiIiIiIqG8w1CTqoXPOkePjjyciturB7NBVPxzK2ZUAzKGr69ofqEKfG6bkckCpBNRqQKcD9HogIQFITARSUwNNdbKzA411RowACguBto0HUPXFvqjHzT27GImTDNj0lzYguPdOp0BTppQjfe4INKyvDju0v50+I3TIskKtQN7Zo7v7koe9SMGlJlnfa5Wuwdqnb3A3O2EenQSVqYfzAxAREREREVHMGGoS9cCmTcDHH8swcIdDDx0yGSCXC1DK/FAp/NAq/dCpfdCrvUjL1yI1W43kZCAtLfCVlQXk5ga+EhO7Pn7Yc2Z2PXzYlJ8AhVYJQ3YcHAfDD3UGgLjCRCg0SpiLk9C4vjridrr03q0gHM60qQbIFDIIPmnA3NtVmsHiCnv4j42IiIiIiIh6hKEmUQ9YLAADzcjkckChCHypVIBGA2i1gSpJncoLRYsNerUXJq0XcVov4rQexOs9iNe5kWR0IUnvQYrRiYxxZmSeOBL1ayvRtFHaYdpUmIhRvzsCfdGPpatmMkqDCpoUPYBAmBUt1IwfmwwAMI9Ojh5qZhh7cKUUjlwphzbNiLYqm2R9bzcJIiIiIiIiosOHoSZRD8yZA2RmCqiqGsjBZqBKTQZAJgfkcpkkbFQoAsOyVaqOL7VaGkIaDIEvkynwFRcHmM1AfHzgKykpMJQ7OTnwpdfHcl1KlL5WAcu2ui63tJU2Y3fp+tAnZED2qYV91mFaZVRDZdbAY3WFfd6YHy+eO25UIqq/3h/+QLJAmNm+XbjqwXZ6hpq9Sp8ZJtTsw0pNIiIiIiIi6l8MNYl6QC4Htm/34c47a7F5sxEyGWA2myCXyyGXQ/xqrbDA2+IKDKGWBTpk61L1MGbHQaFoH1otnfexPVRUq0P/q9V2BI5qNeCtbkLDN6VQK/3QKP1QK/3QqbzQawLDtNuNu20mtCmGw/gdkxpx/hhUGlSw7KiHxxZ5nslIkqZkQJ/RtwGVISsOFmt92OdM+Qkd2+XEhe1kDgCGXLM4v6JCo4QxPwG2vU2hB5QBujSGmr3JXJyMxnUdlbEKnRKGHHYlJyIiIiIiGioYahL1kNEIXH11x5DoSZMmQSm2wAZaq2zYuURaZShTyjHhT0dB1UvZit8bj61VbfA6PBG3UWiV0CTFVELZbxQaJXLPHo3cs0fDY3ejrcaO1iob2qrtsO5qgM/pjbivTCVH5ol936Fdn2WCZUf4UNOYH99xPQo5TCMTYN3VELJd/JgUybJ5dFLYUFObrIdcrTi0CyaJ+LEpSJ6ehYafK6HQq5B37ug+aRJEREREREREhwf/wiPqI+GGJKfMyIIqrvc6I8uVciQekY66H8ojbqPPjoNMPnCHyauMaqgKE8VGK942D+pWH0TtD+Xwu0KrH9OPyYXarO3z64o0/6JCqwypqowrTAwfao6Vhprxo5NR8fGekO04n2bvk8llyDtnNHLPLAJksgF9DxAREREREVH3ybvehIi6q7XKBst2aZWfTClH+py8Xj9X0tSMqM8PtiG3Sp0KmScWYMKfjkb6sXmSCkZdhhFpffA9DEefFf77ZsyPDwnITKNCO19rU/TQpkgrZDVJoesAQNfHQ+mHM5lCzkCTiIiIiIhoCGKlJlEf6I8qzXb6DBP0mSa0dmqK0m6whZrtlAYVsuYXInV2bqAKUhAQPz6134YQR2oWZAoaet5Om6KHLt2Ithq7uC5xSviw2Tw6Gc76g5J1+nRWahIRERERERF1Bys1iXpZf1ZptotWrWnIHpyhZjuVUY3kaZlIPjILSp2qX89tCFOtaRyRELJOJpNhxAVjoUs3QvbrlABps3PDHjNpWiZkio7KQaVJDVNB6DGJiIiIiIiIKDJWahL1sv6s0myXeEQ6Kj7ZA8EnSNar47Vi923qPvOYZEmzIHWiDvrM8FWV+kwTxt48o8tj6lINKPjNRNR+fxByjQKZJ46EXMUmQURERERERETdwVCTqBcdjipNAFDqVYgfm4LmrXWS9YN16PlAkTQ5Ha2VLWjcUAN1vAZ5546BTHHoBe7m0ckwj07uhSskIiIiIiIiGp4YahL1oprvykLW9XWVZrukqZmhoWauuc/PO5TJFHLknjUauWeNPtyXQkRERERERERBOKcmUS9qLW+RLPdHlWa7uFGJkrkZlUZ1l53RiYiIiIiIiIgGI1ZqEvUiXboRrqY2cTn1qJx+qdIEAJlchsLLJ6FpUw18Lh8Sj0jv98Y6RERERERERET9gaEmUS/KPn0UIANaq+0wFych6+SCfj2/XKVA8pFZ/XpOIiIiIiIiIqL+xlCTqBdpEnQo+M3Ew30ZRERERERERERDGufUJCIiIiIiIiIiokGFoSYRERERERERERENKgw1iYiIiIiIiIiIaFBhqElERERERERERESDCkNNIiIiIiIiIiIiGlQYahIREREREREREdGgwlCTiIiIiIiIiIiIBhWGmkRERERERERERDSoMNQkIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVBhqEhERERERERER0aDCUJOIiIiIiIiIiIgGFYaaRERERERERERENKgw1CQiIiIiIiIiIqJBhaEmERERERERERERDSoMNYmIiIiIiIiIiGhQYahJREREREREREREgwpDTSIiIiIiIiIiIhpUGGoSERERERERERHRoMJQk4iIiIiIiIiIiAYVhppEREREREREREQ0qDDUJCIiIiIiIiIiokGFoSYRERERERERERENKgw1iYiIiIiIiIiIaFBhqElERERERERERESDCkNNIiIiIiIiIiIiGlQYahIREREREREREdGgwlCTiIiIiIiIiIiIBhWGmkRERERERERERDSoMNQkIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVGSCIAiH+yJo6Fu/fr1kWS4fGnm63+8XHw+V10R0uPB+IuodvJeIeg/vJ6LewXuJqPcMpfsp+LUAwNSpU7u1v7I3L4YoVp3/4Q4FQ/E1ER0uvJ+IegfvJaLew/uJqHfwXiLqPcP9fhrckS4RERERERERERENO6zUpMNisJdIExERERERERFRzx1qpSnn1CQiIiIiIiIiIqJBheVyRERERERERERENKgw1CQiIiIiIiIiIqJBhaEmERERERERERERDSoMNYmIiIiIiIiIiGhQYahJREREREREREREgwpDTSIiIiIiIiIiIhpUGGoSERERERERERHRoMJQk4iIiIiIiIiIiAYVhppEREREREREREQ0qDDUJCIiIiIiIiIiokGFoSYRERERERERERENKgw1iYiIiIiIiIiIaFBhqElERERERERERESDCkNNIiIiIiIiIiIiGlQYahIREREREREREdGgwlCTiIiIiIiIiIiIBhWGmkRERERERERERDSoMNQkIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVBhqEhERERERERER0aDCUJOIiIiIiIiIiIgGFeXhvgCiwaa0tBRvvvkm1q5di4qKCni9XqSmpqKoqAhnnHEGTjzxRCiVvLVo+Fq7di1WrFiBjRs3oq6uDna7HUajERkZGZg2bRrOPfdcjB07NubjbdmyBW+//TZ++eUX1NbWQhAEpKWlYdy4cTjrrLMwZ84cyGSyPnxFRAPPXXfdhXfffRcA8Mgjj+Dcc8+NaT++h9Fw5fP58MUXX+DLL7/Etm3bUF9fD5/Ph+TkZIwfPx5nnHEGjj/+eMjlsdV88L2JhrMdO3bg7bffxrp161BTU4O2tjaYzWaMHDkSxxxzDBYsWACz2Rzz8Xg/0XDw1FNP4ZlnnkFWVha+/vrrbu27Zs0aLF++HJs2bUJdXR2USiXS09MxefJknHPOOZg2bVq3jud2u7FixQp8+umn2LFjBywWi/j32pw5c3DeeechNze3W8c8XGSCIAiH+yKIBoslS5bg2WefhdfrjbjN+PHj8fjjj2PkyJH9eGVEh19FRQUWLVqEdevWdbntaaedhsWLF8NoNEbcxuPx4C9/+QveeuutqMeaPXs2HnnkEaSmpnb7mokGo1WrVuGaa64Rl2MNNfkeRsPVli1bcN9992HXrl1RtzviiCPwj3/8A1lZWRG34XsTDWdOpxOLFy/G8uXLo25nMBiwePFinH766VG34/1Ew8WWLVtw8cUXw+PxdCvUtNvtWLRoEVauXBl1uzPPPBP3338/TCZTl8csLS3FzTffjD179kTcRqVS4aabbsLVV1894D9QYKhJFKOHHnoIr7zyirisVCpRXFwMnU6H0tJSNDc3i88lJydj2bJlUX8pJhpKDhw4gIULF6KpqUlcp1KpUFRUBJPJhMbGRuzduxfBbzmjR4/Ga6+9FjbYFAQBN9xwg+QNXKPRoLi4GAqFAnv27IHdbhefGzlyJN566y3ExcX10SskGhhsNhtOO+001NbWiutiCTX5HkbD1Zo1a3D99dejtbVVXJeSkoLc3Fx4PB7s3LkTHo9HfC4rKwtvvvlm2PCE7000nLndblxzzTVYs2aNuE6hUKCoqAhxcXGorKxERUWFZJ8///nPWLhwYdjj8X6i4aK8vBwLFy5EfX09AMQcarpcLlx66aXYvHmzuM5gMKCoqAg+nw8lJSVwOp3ic0ceeSReeOEFqNXqiMfcv38/Fi5cKPm9LyUlBfn5+bBYLNizZ4/k77Wrr74af/zjH7v1evsbQ02iGHz22We4+eabxeWTTz4Z999/P5KTkwEEPmV899138cgjj6CtrQ0AMG7cOCxfvnzAf7JBdKh8Ph/OPvtslJSUAAj8gnvdddfht7/9rSSwrK2txT/+8Q+8//774rr58+fjqaeeCjnm888/j8cee0xcvvjii3HbbbeJnz46nU689NJLWLJkiVh1duKJJ2Lp0qV98RKJBozgYeftugo1+R5Gw1VZWRnOPvtsMdDMzMzE/fffj+OOO078t93S0oIlS5bg5ZdfFvc76aSTsGTJkpDj8b2JhrOnn34a//rXv8TluXPn4oEHHkBGRoa47pdffsGiRYtQWVkJIPAB2vvvv49Ro0aFHI/3Ew0HJSUluOqqqyQfRscaai5evBivvfYaAEAmk+HGG2/ElVdeCa1WCyD8+9cVV1yBu+66K+zxfD4fzj33XHHUgtlsxuLFi3HyySeL74nl5eW499578dNPP4n7PfPMMzj++OO7+cr7DxsFEXXB4/Hg0UcfFZfnzp2LJ598UvxjEAhUpC1YsABLly4V5yLbvn07Pv74436/XqL+9u6774qBJgD87W9/w4033hhSgZmWloZHH30Uv/3tb8V1n332GTZt2iTZrqmpCU8//bS4vHDhQjzwwAOS4RRarRbXXnstFi9eLK778ssvsWHDht56WUQDzqpVq0ICza7wPYyGs8WLF4uB5ogRI/D6669j7ty5krA+Li4O99xzD37zm9+I67788kscOHBAciy+N9Fw5na78cILL4jLs2bNwtNPPy0JNIFApdjLL78s3hderxf//ve/Q47H+4mGgw8++AAXXnihJNCM1d69e/Hmm2+Ky7fffjv+8Ic/iIEm0PH+9Yc//EFc99prr4VUTLd7++23xUBTqVTi2Wefxfz58yXviTk5Ofjf//6HWbNmieueeOIJ+Hy+br+G/sJQk6gLX375JaqqqgAEbv77778/4iTys2fPxoIFC8TlF198sV+ukehw+uCDD8THs2fPxplnnhl1+9tuu00yrG/FihWS59955x04HA4AQHx8PO64446IxzrvvPNw3HHHicu852ioamlpwb333gsgEELqdLqY9uN7GA1XW7duxerVqwEAcrkcjz/+eEgAE+zmm28Wh+wJgoBvv/1W8jzfm2g427Rpk2Qo+M033wyFQhF22+zsbFx88cXi8rfffovOg0N5P9FQVltbi0WLFuGOO+4QR8B01yuvvCIGiSNHjsSVV14ZcdsbbrgBRUVFAAIfZr/66qthtwuu6DzvvPMwZcqUsNupVCo8+uijUKlUAAJzcK5atapHr6M/MNQk6sInn3wiPj7qqKOQmZkZdfvgPwi3b9+O8vLyPrs2osPN7XZLPjHvakJ4AFCr1Zg9e7a4vHXrVsnzn376qfj4lFNOgV6vj3q84Hvuu+++k8ybRjRUPPzww6irqwMAXHPNNUhMTIxpP76H0XAVXNV89tlnY+LEiVG3j4uLw+23345rrrkGf/rTnzBhwgTJ83xvouGspqZGsjxu3Lio20+aNEl87HA4JPP3AbyfaOj697//jfnz50um2xo5ciSuvfbamI/h9/vx+eefi8vnnntuxA+kgcAHdxdeeKG4HLxvu127dqG0tFRcPv/886NeQ1paGubOnSsuf/bZZzFd++HAUJMoCkEQsHbtWnH56KOP7nKf4uJipKSkiMuxdjYjGowqKyuh0WjE5YKCgpj2i4+PFx8H/6JrsViwc+dOcTk4/Ixk5syZYrWA0+nEjz/+GNM1EA0W3377Ld577z0AQFFRUcy/GPM9jIaz4ErL4D/2orniiitw++2346qrrsLUqVPF9XxvouGuc0fl9irLSNrnwGwX/Lsi7ycayp5//nlJ6H7BBRfg7bffRl5eXszH2LVrl+Tvo1jukeDf8aqqqsRh5u2C58g0m80hH9x1dcxwFdcDBUNNoigqKyvR0tIiLo8fPz6m/YqLi8XHnavQiIaS/Px8bNy4EevWrcOKFSvEoQ9daZ9AHgi8sbbbvXu35A2zq0oAANDr9cjNzRWXec/RUNLS0oL77rsPQGD4+COPPBK1q2UwvofRcFVTUyNOu6DT6bqs0uwK35touCssLJQsf//991G3/+GHH8THGRkZMBgM4jLvJxoOxo8fj1deeQUPPfRQSJ+BrgQHkiqVKmyjrc7y8/Ml8212vkeCjzlmzJiYGkGOHj1afGy1WnHw4MEu9zkcGGoSRdF5kvjgN9NosrOzxccD9eYn6k0mkwmFhYWSN9NI7Ha75Jfd4OrO4HtOrVZHnf8sGO85Gqoeeughcdj5lVdeGXMwCfA9jIav3bt3i49HjhwpVnhVVFRg6dKlOO+88zBz5kxMmjQJJ554Iu655x5s3Lgx4vH43kTDXU5OjmReyyeffBINDQ1ht123bp1k+ofg+TUB3k80tE2fPh1PP/003nnnHUyfPr1Hxwi+R7KyssQmjtHIZDLJFENlZWURjxlr1WjwPRfumANF198domGsvr5efCyXyyXdYqMJHroXfAwiCgzLCJ5sPni+luD7Jfg+6grvORqKvv76a7ERV0FBAW644YZu7c/3MBquggOP1NRU+P1+PP/881iyZAlcLlfItgcPHsQ777yDc845Bw8++KBkqCzA9yYiALj77ruxbds2NDQ0oLKyEueffz5uuukmzJkzB/Hx8aiursaKFSvw73//Gx6PBwAwduxY/OY3v5Ech/cTDWXPPPPMIR8j+N93cHPVriQnJ2Pfvn0hxwAgfkAOxH7fJSYmQqFQiA2LBup9x1CTKAqr1So+NhgMUSfoDRZcYh58DKLhbsuWLXjuuefE5REjRmDevHnissViER93nr8pGt5zNNRYrVbcf//9AAKBZHeGnQcfox3fw2g4Ca4g0+v1+Mtf/oLXX39dXFdYWIikpCQ0NDRIGie89957OHjwIF566SXJ/cb3JqJAddfy5cvx0EMPYeXKlaiursZdd90VdluZTIYzzzwT9913X0gTIN5PRNH19B4J3rbzPRK8HOsx5XI59Ho9bDYbAEimNBpIOPycKIrgT/NjGVbbLvgXYbfb3avXRDRYVVRU4Prrrxc/vQeAO++8UzKkIvh+4T1Hw9lDDz0kfiJ+xRVXSDrJxorvYTRcBf/h9f3334uB5gknnICVK1dixYoVePnll/HJJ59g5cqVOPbYY8Xt169fj4ceekhyPL43EQUkJiZizpw5XQ5fPfroo3H11VeHDU94PxFF1xf3SG/8Tth5pMNAwVCTKIrg8CXWChcAkpCmc/c/ouGouroal19+uWTYwhVXXCEZeg7wniMCgK+++goffvghgEA1880339yj4/B+ouEq+I+59oBzwYIFWLp0KXJyciTb5uTk4Nlnn8X8+fPFdcuWLUNJSYm4zHuJKNBo5PTTT8d9990nzs+n0WgwYcIEzJgxAyNGjBC3Xb16Nc466yw8+uijIf/2eT8RRdfTe6R9/mgg9B4JXg7e7lCOOVAw1CSKIvgm9vv9Me8XfMOrVKpevSaiwaa0tBQLFy5ERUWFuG727Nn44x//GLIt7zka7iwWCx544AEAgeF7f/3rX7v1iXow3k80XHXu6pqTk4N77703YrdXuVwu6VArCAJeffVV8XneSzTclZeX4/LLLxcbhWi1Wtx11134+eef8c477+Dll1/G559/jpUrV+LUU08FAPh8PrzwwgtYtGiR5Fi8n4ii6+k90j73JRB6jwQfM3i77hyzu9Mg9ReGmkRR6HQ68XF3yq2DKwQ6TzZPNJxs2LABl1xyCaqrq8V1M2fOxNKlS8P+Qhoc3nTnngvelvccDWbBw85/85vfYNq0aT0+Ft/DaLjqPIffRRdd1OUfYyaTSQxjAODHH38UH/O9iYa7xYsXi/P8aTQavPjii7jiiitCPnTLycnBP//5T1x77bXiuo8//hgff/yxuMz7iSi6vrhHeuOYDDWJBiGz2Sw+djgcEAQhpv2COzvHx8f39mURDQofffQRLr/8cjQ3N4vrjj32WPznP/+RhC3Bgu+X4PuoKw6HI+wxiAaTlStX4qOPPgIQ+MPwtttuO6Tj8T2MhiuDwSBZnjJlSkz7HXHEEeLj8vJyMeDnexMNZ+Xl5fjuu+/E5WuvvbbLe+rWW2+VzAX9v//9T3zM+4koup7eI9F+fwv+nTDWY/r9frS2tkY85kDBUJMoirS0NPGxz+eThDPRBM8bmJyc3OvXRTTQLVmyBH/84x8lFV9nnnkmnnnmmahDaYPvucbGxpjPx3uOBjuLxYI///nPAAJDZx966KGQarPu4nsYDVcJCQmS5cTExJj2S0pKkiy3V6bxvYmGs3Xr1kmWzz///Jj2u+iii8THO3fuFO8d3k9E0aWmpoqPu3OPNDQ0iI9TUlIkz/XkvmtqapIMf+98zIFC2fUmRMNX585+5eXlMf1iHDx3YH5+fq9fF9FA5fF4cM899+CDDz6QrP/973+PW2+9NeJ8Zu2C77nW1lY0NDTE9ItreXm5+Jj3HA1Gb731lvgHm06nw3PPPYfnnnsu4vbBv7i++OKLWLFihbj86KOPIjk5me9hNGyNGjVKshzcDT2azk0Q2huT8L2JhrO6ujrxsdlslgQu0YwePVqyXFlZiaSkJN5PRF0IbrpVUVEBQRC6/BtKEARUVlaGPUb78oYNGwAABw8ejOk6gu+5cMccKBhqEkWRlZWF+Ph48ZP6nTt3SoZSRLJr1y7xcec3dKKhyu1248Ybb8S3334rrlMqlfjzn/+MCy64IKZjjB07FjKZTBwmu3PnThxzzDFR93E4HJI3Z95zNBgFVzW3trZi9erVMe9bUlIi6dTsdDoB8D2Mhq/i4mLJ8oEDBzBx4sQu96upqREfa7Vacagd35toOAueRy+4K3NXOndtbg9leD8RRTdu3DjxcVtbG/bv34+RI0dG3Wffvn2S+S/HjBkTcsx3330XgPT3vGh27twpPjabzcjKyoppv/7G4edEXZgxY4b4OHjS+Eh27dolqaCZOXNmn1wX0UDi9Xpx0003SQJNg8GA//znPzEHmgBgNBoxduxYcTmWe+6nn34Sh0YoFApMnz499gsnGuL4HkbDUWJioiTYXLlyZUz7/fLLL+LjsWPHiqEM35toOEtPTxcft7a2Yv/+/THtV1paGvY4vJ+Iohs1apRkZM2aNWu63OeHH34QHyckJIR8uBd8z9TX12PPnj1dHjP43gz+fXKgYahJ1IWTTjpJfPzNN9+gtrY26vZvvPGG+LigoCDkfyhEQ9Hjjz+Ob775RlxOTEzEK6+8gtmzZ3f7WCeffLL4+MMPP0RbW1vU7YPvuaOOOgpxcXHdPifR4XbjjTdi9+7dMX8Ff1r+yCOPSJ7Lzs4Wn+N7GA1XZ511lvj466+/xt69e6NuX11dja+++kpcDr53AL430fA1Y8YMSdXlW2+9FdN+y5cvFx+PGjVKMh8f7yeiyGQyGU488URxedmyZZK5LTvz+/1YtmyZuHzyySeHDFcvKiqSTNvw5ptvRr2G6upqSbHKKaecEuvl9zuGmkRdOOmkk8S5Y9xuN+68886QOZfaff/993j77bfF5UsvvbRfrpHocFq1ahX+7//+T1w2m814+eWXJUMnuuO8884Tu6M3NDRg8eLFEbd9++238f3334vLl112WY/OSTRU8T2MhqtzzjlH7Pbq8Xhw5513wmazhd3W7XZj0aJF4tBao9GIc889V7IN35touEpMTJSEkC+//HKXlWOvvPKKpHJswYIFkud5PxFFd/HFF4vB5K5du/D0009H3Papp54SKy/lcnnE398uueQS8fGbb74ZsUra4/FI3hMzMzNxwgkn9Oh19AeGmkRdUKvVuO2228TlH3/8EVdffbVk4lyv14tly5bhxhtvhM/nAxD4NKQ7w26JBiOfz4e//vWv4rxIMpkMTzzxREiThu5ITk7GVVddJS6/++67uP322yWd+pxOJ5599lk88MAD4ro5c+Zgzpw5PT4v0VDE9zAarhITE3HXXXeJy1u3bsXFF1+Mn376SbLdvn378Lvf/Q5r164V191yyy1iINqO7000nP3xj38UqyN9Ph+uvvpqPP3002hqapJsV19fjwcffBAPPfSQuG7cuHFYuHChZDveT0TRjR49Guecc464vHTpUjz88MOSD+dsNhv++te/4tlnnxXXLViwAIWFhWGPuWDBArFa0+v14g9/+APefvttyYfd5eXluOqqqyTviX/6058kc+sONDKh/S9RIorq/vvvlwy3kMvlKC4uhtFoRGlpqeRNPT4+Hm+88UaXE/oSDXYrVqyQBCZ6vR5Tpkzp1jGSk5Px6KOPSta1v9EGD3tQqVQoLi6GWq3Gnj17JG/q2dnZePvtt2Pq7Ew0FMybN0/scvnII4+EVJV1xvcwGq7++c9/Sv7gAwJz++Xk5MBqtUqabAGBYeuPPfZY2GPxvYmGs7Vr1+Laa69Fa2uruE6lUiE/Px8JCQlobm7G3r17JcNk8/Ly8Oqrr4btmM77iYaTd999V/ygLSsrC19//XWX+9jtdlx++eXYtm2buE6n04lTA+3evVsydcOECRPw6quvQqvVRjxmSUkJLr30UrGJJBD4ELCgoAA2mw0lJSWSe/iSSy7B/fffH/PrPBwYahLFSBAEPPnkk3j++eejdv4rKCjAU089dUiVakSDxY033ogvvvjikI4R6Y3d7XbjwQcfxPLlyxHtrWry5Ml46qmnkJaWdkjXQTSYdDfU5HsYDWfLly/H448/jubm5ojbKJVKXHPNNbjxxhtDujYH43sTDWd79+7FHXfcge3bt0fdTiaTYf78+Vi8eHHU+S95P9Fw0ZNQEwhUY95xxx1dbj937lw8/vjjMJlMXR5z9+7duP3226M2C1IoFLj66qtxyy23hMzPOdAw1CTqptLSUrzzzjtYvXo1ampq0NbWBrPZjDFjxmD+/Pk488wzB3R5NlFvOu2007psvtCVrt7Yt2zZgvfeew8//fQTamtr4Xa7kZiYiIkTJ+L000/HSSedFPUPUKKhqLuhZju+h9FwZbVa8eGHH+Krr77Cvn370NTUBJVKhREjRmDWrFlYuHAhcnJyYj4e35toOFu1ahW+/PJLbNiwAfX19WhtbYXJZEJWVhamT5+Os88+u1uN5ng/0VDX01Cz3Zo1a/Dhhx9i3bp1aGhogM/nQ3JyMiZPnoxzzjmn281ZvV4vPvroI3z++efYuXMnGhsboVKpkJ2djRkzZuCiiy6KOIx9oGGoSURERERERERERIMKP+4gIiIiIiIiIiKiQYWhJhEREREREREREQ0qDDWJiIiIiIiIiIhoUGGoSURERERERERERIMKQ00iIiIiIiIiIiIaVBhqEhERERERERER0aDCUJOIiIiIiIiIiIgGFYaaRERERERERERENKgw1CQiIiIiIiIiIqJBhaEmERERERERERERDSoMNYmIiIiIiIiIiGhQYahJREREREREREREgwpDTSIiIiIiIiIiIhpUGGoSERERERERERHRoKI83BdARERENJzNmzcPlZWVh3ycl19+GTNmzOiFKyLqPy6XC+effz5KSkpw+eWX4+6775Y8f+mll+Lnn38GAEyfPh2vvPJKt8+xdu1aXHbZZeJyX98rr776Kv7yl78gKSkJH374IZKTk/vsXERERMMZKzWJiIiIiOiweOSRR1BSUoLk5GTcdNNNh/tyesXChQtRVFSExsZG3HnnnRAE4XBfEhER0ZDESk0iIiKiASI1NRVFRUU92tdsNvfy1RD1re+++w5vvPEGAOCWW26B0Wg8zFfUOxQKBe6++25cccUV+P777/H666/jkksuOdyXRURENOQw1CQiIiIaII4++mj87W9/O9yXQdTnnE4nFi9eDAAoKirCeeedd5ivqHfNmjULc+fOxTfffIN//vOfOPHEE5Gamnq4L4uIiGhI4fBzIiIiIiLqV//5z39QXl4OALj11lshlw+9P0tuueUWyGQy2Gw2PProo4f7coiIiIacoffbAxERERERDViNjY146aWXAACFhYWYN2/e4b2gPjJ69Ggcc8wxAIAVK1Zg165dh/mKiIiIhhaGmkRERERE1G/++9//orW1FQBw4YUXHuar6VsXXXQRAEAQBDz11FOH+WqIiIiGFs6pSURERDQE3XnnnXjvvfcAAM8++yyOPfZYvPzyy3jrrbdQUVGBuLg4jBw5EvPnzw/bxMThcOD999/HqlWrsGfPHjQ2NkKtViMlJQXTpk3DKaecgqOOOqpb17RmzRosX74cGzZsQF1dHQwGA3Jzc3HKKafgwgsvhNFoxKuvvoq//OUvAIAbbrgBN954o+QY7777Lu666y4AQFZWFr7++usuzztv3jxUVlYCCHTbPvfcc6NuX1lZiffeew+rV69GRUUFLBYLjEYjMjMzcdRRR+Gcc85BQUFB1GMsWbIES5cuBQDcd999+M1vfgO3240PPvgAn332GUpLS9HQ0ACTyYT8/HzMmzcPCxYsgMlk6vL1tPv555/x8ccfY8OGDaisrITH44HZbEZRURGOPfZYnHvuuYiLi5Pss3jxYrz22msAAs2lVq9eDbVa3eW5/u///g8PP/wwAGDEiBH4/PPPY77OYHa7HW+//TYAQKPR4Oyzz+7RcXrT2rVrcdlll/V4/3POOSfiXLjHHXcc0tLSUFtbi2+++QZlZWXIy8vr8bmIiIioA0NNIiIiomHg3nvvxfLly8XlhoYGNDQ0oLi4OGTbDz/8EH/729/Q2NgoWe9yuWCz2bBv3z4sW7YMM2fOxKOPPor09PSo525sbMSiRYvw/fffS9ZbLBZYLBZs2bIFr7/+Ov71r38dwis8dD6fD08++SReeukluN1uyXPNzc1obm7G9u3b8cILL+DCCy/E3XffHVMgCAC7du3C7bffjr1790rWNzU1oampCevXr8fzzz+Pv//97zj66KOjHuvgwYO455578PPPP4c81/5z/fHHH/Hss8/ioYcewgknnCA+f84554ihptVqxXfffSd5PpIPPvhAcoye+uCDD+BwOAAAM2bMgNls7vGxBgOFQoHjjz8er7/+OgRBwOuvvy6G8kRERHRoGGoSERERDXHvvfdexMq6M888U7K8dOlSLFmyRLIuMzMT2dnZcLlcKC0thd1uBwD89NNPuOCCC/DSSy9FrFxsbGzExRdfjAMHDojrVCoViouLodVqsXfvXlgsFpSXl+PKK688bJV7brcb119/vSR4lclkKCgoQHJyMlpaWlBSUgKv1wufz4c33ngDJSUl+N///ge9Xh/12AcOHMDSpUvR3NwMAEhKSsLIkSPhdDpRWloqDsVuamrCddddh/feey/i93PXrl24/PLLYbFYxHUqlQpFRUXQ6/U4cOAA6uvrAQSC2Jtuugn/+Mc/MH/+fADAhAkTUFRUhJKSEgCBALurULO0tBTbt28HAMjl8kP6GX344Yfi4+OOO67Hx+lNZrMZs2fPjnn7bdu2Sb7/RxxxRNTtjz32WLz++usAAnNrLlq0aEg2RiIiIupvDDWJiIiIhrj2QPPUU0/FDTfcgIyMDOzduxcrV67ExIkTxe1WrFghCTSnTp2Ku+66CxMmTBDXud1ufPzxx3j00UdhsVhQV1eHG264Ae+88w4MBkPIue+66y5JoHnBBRfg9ttvR0JCAgDA4/HgvffewyOPPIKmpiaxgUx/e+ihhySB5gUXXIAbbrhBUoVqtVrx/PPP47nnnoPf78f69etx//334+9//3vUY7/yyisAgNzcXNx7772YM2cOZDIZgMBw7CVLloiv2+VyYcmSJXjyySdDjtPa2oo//OEPYqCmUChw7bXX4re//a1k2PrKlSvx4IMPoq6uDj6fD/fccw+mTp2KlJQUAIFKy/Zu3N988w1sNlvUYe/vv/+++Pioo47qsjI3krq6OmzevFlyrIFg9OjReP7552Pa9rvvvsO1114rLp9//vnivJmRzJgxAwqFAj6fD/X19di0aROmTJlySNdMREREDDWJiIiIhoV58+bhH//4hximTZw4URJo2u12/PnPfxaXjz/+ePzrX/+CUin9dVGtVuPcc8/FpEmTsHDhQlitVuzbtw/PPfccbrnlFsm2P/74I1atWiUu/+53v8OiRYsk26hUKlx44YUoLCzE5ZdfHjLsuz+sW7cOb731lrh8xx134MorrwzZzmw247bbbkNxcTFuu+02AMBHH32E8847D7NmzYp6juzsbCxbtkwMc9sZjUbcddddqK+vx4oVKwAAq1atgtvtDhna/tJLL6GiokJc/vvf/45TTz015FwnnHACMjIycPHFF8PpdMJut+PVV1/FrbfeCiBQnfvEE0/A6/XC7Xbjs88+wwUXXBD2ugVBwEcffSQun3feeVFfZzRr166FIAgAAJ1O1+25JXfv3h3259IVq9Xa7X3C2bt3L2699Vb4fD4AwJQpU/DAAw90uZ9Op8OIESNQWloKIFDhzFCTiIjo0DHUJCIiIhog3nvvPbG5T6xefvllzJgxo8vtrrvuOjHQDOedd95BS0sLAMBkMuHhhx8OCTSDFRQU4Oabb8bixYsBAG+88QauvfZaaLVacZs33nhDfJyTkyOGauFMmTIFN9xwA/7xj390+Vp6W3CV3tSpU7sMzk477TR88cUX+OyzzwAAL7zwQpeh5k033RQSaAZbuHChGGq2traivLxcMgTd7/dLgtfTTjstbKDZbty4cTjjjDPEpjxffPGF+P1PTk7GMcccg2+++QZAIJiNFGquXbsW1dXVAAKhbizzb0YSXKVZWFjY7SHYVqsVq1ev7vH5D0VTUxN+//vfi1MvZGRkYOnSpTHPqVpUVCSGmsHfByIiIuo5TuZCRERENMQZDAaMHz8+6jbBc27OnTsX8fHxXR73jDPOgEKhABBo+rNp0ybxOY/HIwmgzj333C4DoIsvvhg6na7L8/Ymp9MpGXYeaxOc4Hkl16xZA5fLFXFbuVyO448/PurxCgsLJcs2m02yvGPHDtTU1IjLCxcu7PIaL7vsMvzpT3/CM888g6efflryXPDr/OWXXyTHDhbcIOi0006LOcQLpz3UA4BRo0b1+Dj9ze124w9/+INYJavT6fDMM88gKSkp5mMUFRWJjzs3iyIiIqKeYaUmERER0QCRmpoqCT9iEUv36KKioqhVcW63G9u2bROXIzWp6SwuLg65ubnYv38/AGDDhg2YOXMmAEga4ADAtGnTujyeyWTClClT8MMPP8R0/t6wZcsWeDwecTnW1x4cEns8HmzdujXia8zOzobRaIx6vLi4OMly8DW1X2c7lUqFSZMmdXmNRUVFEf89tQfXFosFfr8fH3/8Ma666irJNk6nUxJ2H0rXcwCSofPdCQTbTZ8+XZyftDvWrl2Lyy67rNv7tbv33nuxYcMGcfnhhx/G2LFju3WM4NdbU1MDn88nfiBAREREPcNQk4iIiGiAOProo/G3v/2t14+bmJgY9fmamhrJXJb//Oc/8c9//rPb56mtrRUfV1ZWSp4bMWJETMcoLi7u11CzrKxMshxLBWQ4dXV1EZ+Lpeq1c8Dl9/sly+Xl5eLjrKysQ6qYBAJzo55xxhliSPjhhx+GhJorV66Ew+EAEKisDJ6DtSfau78DiNqYaCB59tlnJdWq1113XdRh/5EEv16v14uWlpao0xEQERFR1zj8nIiIiGiI66pKsLcaqQQfp33uwXaxhlj9HfS0zyN6qNo7kocTPM9oTwV/P3srEAyuvNy9ezdKSkokzweHeeeee+4hn6+trU183NW/yYHg888/l3ShP+GEE3DzzTf36FidX2/w94KIiIh6hpWaRERERENcVw1ZvF6vZHnChAkxDWvvLHheSI1GI3muvet1Vw61ArG7Or/22bNn9+g4qampvXE5EUVr8tRT48aNQ3FxMXbv3g0g0DDo9ttvBwA0NDSIFbNKpRJnnnnmIZ8v+DV0t0lQf9u2bRsWLVok/rstKirCY4891uOfQ+dK3IH++omIiAYDhppEREREw1zn+Ryvv/56zJs375CO2TkUtdls0Ov1Xe7XucIzmliD0mhNfDq/9qeeempAVhEGX2fnJkKH4txzz8UjjzwCAFixYoUYan7yySfw+XwAgDlz5iA5OfmQz2UwGMSKVqfTecjH6yu1tbW47rrrxGrK+Ph4PPPMMzAYDD0+ZufKzEM5FhEREQXwI0IiIiKiYS4tLU1SgVZdXX3Ix8zLy5Msx9rx+eDBg1GfD77Ozs10wvH7/VGH16elpUmWe+O194Xg66ysrIzptQPAW2+9he+++w779+8Pu88ZZ5wBpVIpHnfnzp0AAvNptjvvvPMO5dJFwXOLRhuufzi1tbXhuuuuE+dIVSqVeOqpp5CTk3NIxw1+vSqViqEmERFRL2CoSURERDTMGY1GjBo1Slz+6aefYtrP4/Hg7rvvxj//+U+89dZbkuAyMzMTmZmZ4vKaNWu6PJ4gCFi/fn3UbYKHp7c3sYkmUpjX7ogjjpAEpbG+9r179+Luu+/G008/jf9v7+5ja77iOI5/iBrVpHqrHuJ6WqPXNEKkaQiGZS2GtUHWdeiKKhIPZdo/JDrpMk0pQcOW0m0hSj2WzLZkVq52jcfwB0ETqtWKkEvTSV3Vuvuj2S+9u9rr4bZ19f366/f73XPPOb/2D/HpOeebn5+vR48evdL33lTjauf/VVt35+7du0pNTdXChQs1efJk3bp1y6VNYGCgPv74Y+P+5MmTqq6uNn4PJpNJ48eP98AbSP379zeu792755E+PcnhcCg5OVnXrl0znq1Zs0ajRo16674bv2+/fv3Yfg4AgAfwrykAAAA0YcIE47qgoMCp2nZTjh07psOHD+vHH39UamqqS2g2efJk4/rIkSNut5YXFhaqoqKi2TaNV/vV1NS4DcdOnDjR7Ocmk8kpMNy7d+8rrYLMzs7W4cOHtW3bNq1Zs8alWrmnDR061GkL+MGDB91+p/G7m0wmhYSEvLRd45WYf/31l6xWq3HW6Oeffy4fH583nbaT4OBg4/r/VeffBZs3b9aff/5p3MfExGj27Nke6bvx+3744Yce6RMAgPaOUBMAAACaM2eOEV7V1dUpKSmp2RCyoqJCmZmZxn2fPn00ceJEpzZxcXFGnzabTampqU2GfzabTevWrXM7T4vF4rSycs+ePU22vXHjhnJyctz2OX/+fOO6tLRU3333XbPndRYUFOj48ePGfWRkpEfOnGxOp06dFBsba9wfPXpUZ86cabJ9ZWWl07vPmjWrydWB48ePl8lkkiRdv35de/fuNT5rXCH9bY0cOdK4vnnzpnFm57vg6NGjys7ONu5Hjx6ttWvXeqz/q1evGtdhYWEe6xcAgPaMUBMAAADq1auXkpKSjPurV6/qiy++UFFRkVPAV19fr+PHj+urr77S48ePjecpKSkulcv79Omj1atXG/cnTpzQ4sWLXVaBnjt3TrGxsaqsrHQ7zx49ejiFYz///LOys7NVW1trPLPb7dq3b59iY2Nlt9uNMyObEhkZ6bRSNS8vT4sWLXI5B/TJkyf64YcftHz5cuNn4uvrq1WrVrmdtyfEx8dr4MCBkhq2Si9dulS//PKLS9Gd4uJizZ07V9XV1ZKkoKAgJSQkNNmvj4+Ppk2bZtxfvnxZUkN19CFDhnhs/uHh4UYgbbfbdePGDY/1/TYuXrzoFGAOHjxYWVlZHluhWlVV5bRSc/To0R7pFwCA9o7q5wAAAJAkJSQkqLS0VIcOHZIk3bp1SwsWLFBgYKAGDRqk2tpalZWVuRTeSUxM1GefffbSPuPj43X79m3l5eVJkqxWq86cOaPBgwcrICBAFRUVRpjZuXNn+fv76+HDh83Oc9WqVYqLi1N9fb0cDoc2bdqknTt3Kjg4WM+fP1dpaalx3ubQoUM1YsQI5ebmNtlfhw4dtGHDBs2bN884T9Fqtcpqtap///7q3bu3qqqqVF5e7hQg+vj4KDMz0+msyJbk5+enbdu2ad68ebLZbHr27JnS09O1detWhYSE6IMPPlBZWZnu379vfKdr167asmWLSzX6/5s5c6Z2797t9GzGjBkenX/37t0VFhamCxcuSJKKiooUGhrq0THexNKlS52OHDCbzUpLS9PTp09VV1enurq6ZlfuSlJycnKTAXBxcbHx/X79+slisXhu8gAAtGOEmgAAADB8//33slgsysrKMlb62Ww22Ww2l7Z+fn5KTk7Wl19+2WyfaWlpMpvN2r59u+x2uxwOh0pKSpzadO/eXRkZGcrJyXEbaoaFhWnz5s1au3atMcfq6mpjheF/JkyYoPT0dP30009u39vf31+5ublav369Dh06ZGyNLi8vf2lF9gEDBmj9+vWtvpXYYrHowIEDSklJMYr51NTU6MqVKy5tBw4cqMzMTA0bNsxtv0OGDNFHH31kVD/v3Lmz0+pNT4mKijJCzdOnT2vRokUeH+N1NV5xLEmnTp167T4SExOb/MxqtRrX0dHRTscnAACAN0eoCQAAACdxcXGKjo5Wfn6+/v77b5WUlOjRo0d68eKF/P39ZbFYNG7cOEVFRSkgIOCV+kxMTNTUqVN14MABnT59WpWVlaqvr5fZbFZERIRmz56twMDAVzoDU2ooQhQeHq68vDydOnVKZWVlqqmpUVBQkIYNG6bo6GiXMz7d6dKli9LS0rRgwQIdO3ZMZ8+eVXl5uaqqqtSpUyf16NFDoaGhioiIUGRkpMt2+9ZiNpuVm5urwsJC/fHHH7p06ZIePnyoZ8+eKSAgQKGhoZo0aZKmTp36WnOMiIgwQs1PPvnEqSiTp0yZMkUZGRn6559/dPnyZVVWVqpv374eH+ddYbfbdfLkSUkN56J6evUrAADtWQeHu70UAAAAQCuZO3euzp8/L6lhW/CyZcvaeEbtR0JCggoLCyVJOTk5Gjt2bIuMs3HjRu3atUuSlJSUpCVLlrTIOO+CX3/9Vd98840kafr06U7FtQAAwNuhUBAAAADQzj148EDFxcWSGs59HDNmTIuNFR8fr65du0qS9u/fr7q6uhYbq63t2bNHktSxY8dmt6gDAIDXR6gJAAAAtHP79+83zhGNjY1t0XMfg4KCFB8fL0m6f/++fv/99xYbqy1duXLFOOs0OjpaISEhbTshAADeM4SaAAAAQDtWUFCgnTt3SmoomBQTE9PiYyYkJKhnz56SpB07dhiB6vskKytLkuTr66sVK1a08WwAAHj/EGoCAAAA7chvv/2m6dOn6+uvv9akSZO0ZMkS1dbWSpJSUlLk5+fX4nPw8/PTt99+K0m6ffu28vPzW3zM1nThwgUVFRVJklauXKnevXu38YwAAHj/EGoCAAAA7YjZbFZJSYnOnj2rO3fuGM9jYmI0a9asVpvHp59+qqioKEnSli1b9OTJk1YbuyW9ePFC6enpkqTw8HDNmTOnjWcEAMD7iVATAAAAaEcGDRqk4cOHy9fXV926ddPw4cOVkZGhtLS0Vp/LunXrFBwcrAcPHhjbtb3dvn37dO3aNZlMJmVmZqpjR/7LBQBAS+jgcDgcbT0JAAAAAAAAAHhV/NkQAAAAAAAAgFch1AQAAAAAAADgVQg1AQAAAAAAAHgVQk0AAAAAAAAAXoVQEwAAAAAAAIBXIdQEAAAAAAAA4FUINQEAAAAAAAB4FUJNAAAAAAAAAF6FUBMAAAAAAACAVyHUBAAAAAAAAOBVCDUBAAAAAAAAeBVCTQAAAAAAAABehVATAAAAAAAAgFf5F6BQcLNwXqc9AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "nevents = 200000\n", + "\n", + "rates = np.logspace(2, 3, 5)\n", + "deadtime = 2.5e-3\n", + "bintime = 2 * deadtime\n", + "\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 5 ms; dead time = 2.5 ms')\n", + "for r in tqdm.tqdm(rates):\n", + " label = f'{r} ct/s'\n", + " length = nevents / r\n", + "\n", + " events, events_dt = simulate_events(r, length)\n", + " events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lc(lc_dt, 2, norm='leahy', silent=True)\n", + " pds = AveragedPowerspectrum.from_events(events_dt, bintime, 2, norm='leahy', silent=True)\n", + " plt.plot(pds.freq, pds.power, label=label)\n", + "\n", + " zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + " plt.plot(zh_f, zh_p, color='b')\n", + "plt.plot(zh_f, zh_p, color='b', label='Zhang+95 prediction')\n", + "\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It will.\n", + "\n", + "## Reproduce Zhang+95 power spectrum? (extra check)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4000it [00:00, 6396.64it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAARHCAYAAAAMUaZ5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1gUV9sG8HtpSlGxiwW7aOy992hssSWaqLEmbzTGxMRujDUmajQaW9TYY++F2BvYwQJiA6QX6b2z7fuDjwnDLrDALsvC/buuXJk5O3PmWdxZ2GfPOY9EqVQqQURERERERERERKQjRvoOgIiIiIiIiIiIiEo2JiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinWISkoiIiIiIiIiIiHSKSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCKiEmHr1q2ws7ODnZ0dJk6cqJU+Fy1aJPS5aNEirfSpC+/evcOxY8dyfHzixInC89i6dWsRRkbasGDBAq2+rklzunhfMRT9+vUTnvvZs2e10uf79++xZ8+eHB83lPdcUm/z5s2ws7NDv379CnT+o0ePMG/ePHz44Ydo1aoV2rVrhyFDhmDJkiV4+vSplqMlIiJ9YBKSiIjIQKWkpGD9+vUYNWoUXrx4oe9wSAdu3ryJCxcu6DsMokKRyWTYs2cPhg4dCkdHR32HQzrg5uaG3bt3F+jcxMREfPvtt5gyZQrs7e0RGBiItLQ0JCUlwdvbG6dPn8aECRMwf/58JCQkaDlyIiIqSib6DoCIiIgK5rfffsPJkyf1HQbpiJubG+bPn6/vMIgKbc+ePdi0aZO+wyAdCQwMxMyZMyGVSvN9blpaGqZNmyb6Is3S0hJNmjSBXC6Hp6cnUlNTAQAXL15ESEgI9u3bBzMzM63FT0RERYcjIYmIiAxUQT7wkWFwdnbGtGnTkJycrO9QiAqN71Ull6enJyZMmICIiIgCnb9u3TohASmRSPD999/j4cOHOH78OE6dOoV79+5h0qRJwvFPnjzBH3/8oZXYiYio6HEkJBERUQ7Wrl2LtWvX6juMQjt06JC+Q6B82Lt3LzZu3AiZTKbvUIiKVEl5zy0tLly4gOXLlyMlJaVA53t5eeH48ePC/ty5c/G///1PdEz58uWxZMkSlCtXDtu3bwcAHDlyBBMnTkTt2rULHjwREekFR0ISERERFQN+fn74+uuv8fvvvzMBSUTFVlhYGBYuXIgFCxYUOAEJZHxBJpfLAQANGjTAl19+meOxs2bNQpMmTQBkjKw9fPhwga9LRET6wyQkERERkR7JZDKsXr0aw4YNExXtaNu2LcaNG6fHyIiIxHbs2IFBgwbh/PnzQluDBg0wY8aMfPWjUChw7do1YX/06NEwMsr5o6mRkRHGjh0r7Gc9l4iIDAenYxMRUYmVmJiIo0eP4tq1awgICIBMJkO1atXQsWNHDBs2DF26dMn1/EWLFuHcuXMAgFGjRqlMEzx79iwWL14MAJg2bRoWLlwIhUKBq1ev4tKlS3j79i0iIyNhbm6O2rVro0+fPvj8889RtWrVQj0vOzs7lbZz584JsQKAh4eHsD1x4kQ4OzsDyBhN8t1334nO3bp1K7Zt2wYAWLFiBcaNG4fk5GTY29vD3t4efn5+iI+PR5UqVdC0aVN89tln6N27t6gPX19fHD9+HPfv38f79+8BALVr10avXr0wZcoUjZ9zdHQ0zp49i3v37sHX1xcxMTGwsLBAtWrV0LlzZwwfPhytWrXSqC9DkZycLJoyb2Jigi+//BKzZs3Crl27dHbdvF7f2QUFBaF///7C/q1bt3KcDhkdHY0LFy7g3r178PT0RGxsLMzMzFCxYkXY2dmhW7duGD58OMqXL5/rNfv164fg4GAAQK1atXD79u38PMVceXt748SJE3j06BGCgoIAADY2NujTpw/Gjx9foKme6enpuHTpEu7cuYPXr18jKioKEokEVapUQevWrTFw4EAMGDAAEolE4z7d3Nxw69YtPH36FO/fv0dsbCxkMhnKly+P6tWro127dhg8eDDat2+vUX9KpRI3btyAvb09Xrx4gejoaJQrVw4NGzbE8OHDMWrUKJiamub7uauT9d8vk7Ozs+g9LOvrKD/vuf/73/8wb948SKVSXL16FefPn4eXlxeio6NRuXJlNGjQAJ988gkGDRoEY2NjoY+wsDCcOHECt27dQnBwMKRSKWrUqIFu3bph2rRpqFOnjkbPLSkpCefPn4ejoyPevXuHqKgomJmZoWrVqujQoQMGDx6Mbt265f+HVszt3btXtFbtmDFjsGjRIly/fj1f/bi7uyMmJkbY79GjR57ndO/eXdh+//493N3d0bRp03xdN1Nevxezc3JyEq1NmfV3bHbv37/H2bNn8fjxY3h5eSExMRHm5uaoWLEimjdvju7du+Pjjz9GmTJlChQ7EZEhYxKSiIhKJDc3N8yePVtIiGXy8/ODn58fTp06hd69e2Pt2rWoVKmSVq4ZFBSEefPmwcXFRdSelpaG2NhYvHr1Cvv27cPy5csxcuRIrVxTF9zc3DBv3jz4+/uL2oODgxEcHIxbt25h7NixWLFiBYyNjXHw4EGsX79epfiEp6cnPD09cfbsWezatSvP5OGBAwewZcsWJCUlidrT09MRGxsLT09PHDp0CIMGDcIvv/ySZwIrL1kTGoWxZs0ajB49utD9AEC3bt2wcOHCAn+wLg4uXryIlStXIjExUdQulUqRlJSEoKAg3Lp1C5s3b8aCBQswZsyYIo1PJpNh48aNOHDggDAVNJO3tze8vb1x7NgxLFu2LF/93r9/H8uXLxcSmlkFBAQgICAA9vb2aN68OdatW4fGjRvn2l9gYCCWLl2KR48eqX08MjISkZGReP36NQ4dOoS+fftiw4YNsLKyyrXPOXPmwM3NTdQeHR2N6OhoPHnyBEeOHMHWrVs1eMb65+fnhzlz5uD169ei9pCQEISEhODBgwewt7fHxo0bYWFhgcuXL2Pp0qUqr83M3wvnzp3Dn3/+iT59+uR63YsXL2Lt2rWIiooStaelpSEhIQE+Pj44efIkunTpgnXr1qFGjRqFep7ZE2AFpUmyTVMtWrTAwoUL0alTpwKd7+7uLmybmprmeT8AQP369VG2bFmhWvbLly+L3Xvlvn37sGnTJqSnp4vapVIp4uPj4e/vj8uXL2Pz5s1YuXIl+vXrp6dIiYj0g0lIIiIqcYKDg/Hll18iPj4eAFCxYkU0bNgQKSkp8PDwENbbc3R0xMSJE3Ho0KFCJyKjo6MxdepUBAQEAMhYTL9Ro0ZQKpXw9vYWYklOTsbixYtRvXp1dO3atUDXyhwx4unpifDwcABAtWrVhPWyCsPDwwMbNmwQPqTb2NigTp06iIuLg6enJ5RKJQDg5MmTaNy4MaRSKX7//XcAQJkyZdC0aVMYGxvD09NT6CM6Ohrfffcdrly5AgsLC5VrKpVKLFmyBGfOnBG1161bFzVq1EBycjI8PT2RlpYGALh69SrevXuHgwcPFnpUaXFgZGSEvn37YurUqejcubO+wymUa9euYcGCBcLrxMjICA0aNEDlypWRlpaGoKAgREZGAgDi4+Px888/w8TEBKNGjSqS+JRKJebNm4crV66I2hs1aoRKlSohJCQEgYGBwn3arFkzjfo9ffo0li1bJkpqVqlSBfXq1YNcLoevry9iY2MBAK9fv8bnn3+OXbt2oUOHDmr78/b2xsSJE0VJrnLlyqFBgwawtLREcnIyfHx8hPcVALhz5w7mzJmDv//+W22fAQEBGD9+vKiKsYWFBZo0aQIjIyO8e/cOCQkJcHd3x5QpU1S+DCiIjh07on79+kISFgAqVKiAli1bCseULVu2QH2HhoZi0qRJCAsLA/Dfzzs1NRXu7u7C+/ydO3ewefNmtGnTBnPmzIFSqYSpqSmaNGkCCwsLeHl5CSPyUlJSMGfOHFy+fDnHxOG2bdtUkrQ1a9ZE7dq1kZaWBm9vb+G97/HjxxgzZgwOHDiAhg0bFuh5FjedOnXC6NGj0b9//3yN6M3Oz89P2K5VqxZMTPL+WCqRSFCzZk34+PgAgMoXZfq2f/9+rFu3Ttg3NTVFw4YNUbFiRSQkJCAoKEh4HwgPD8d3332HPXv2FPhvASIiQ8QkJBERlTiZ0/8yq2p+/PHHwnS86OhorF+/HmfPngWQUZ1zxYoV2LJlS6Gumbk+VuXKlbF48WIMGTJEuGZaWhoOHjyITZs2QaFQQKFQYOPGjTh16lSBrrV3714A4qmL3bt310pV2WPHjgEA6tWrh1WrVomSYu7u7vjqq6+EJMamTZuQkpICiUSCGTNm4OuvvxaSjMnJyVi3bp1Q+TQ0NBT29vb47LPPVK65e/duUQKyf//+mDdvHho0aCC0paSk4Pjx4/jzzz+RmpoKb29vzJkzBwcOHBBNtcyP6tWrazQFUJN+CsPKygo7d+4sdBz6JpPJ8MsvvwgJyL59++KXX34RJYqVSiVu376NZcuWCcnIDRs2YPDgwQVORuXHP//8I0pAdurUCatWrUL9+vWFNjc3NyxduhTu7u548+ZNnn0+ffoUy5cvFxKQjRs3xpIlS0SJBblcjjt37uDXX3/F+/fvkZiYiO+//x7nzp1Tef1kJuUzE5Dly5fHqlWrMGDAAFGiRqFQwMHBAb/88osw4tvR0REvX74UJfkyr//DDz8I966RkRG+/fZbfPnllzA3NweQMeL41KlTWL9+vcoU6oLKTMhkXfLBzs5OeA8rDHt7ewAZycfMEWWZawoGBwfj66+/hpeXF4CMasrHjh2DUqnEZ599hh9//BEVK1YEkPG8d+/eLfwOSEpKwtGjRzFnzhyVa166dEmUgGzfvj0WL14s+nmnp6fj33//xbp16xAbG4vw8HDMmjULp0+fhqWlZYGea4UKFbTyXmVra1voPv76669C9wFAlAyvVq2axudVqVJFSEJm7UPfYmJisHHjRmF/7NixWLBgAcqVKye0yWQy2NvbY+XKlUhJSYFMJsOaNWtw8eJFfYRMRKQXTEISEVGJZGFhgX/++UdlJFOlSpWwZs0aWFpaCuvwXbt2Dc+ePdN4TbWcVKhQAcePH1f5oFemTBl8/fXXSEhIEEYpubm5ISwsrNAJLF2wsbHB8ePHhQ/pmZo2bYoFCxZg/vz5ACCsC7Zo0SJMnTpVdKyFhQVWrFgBV1dXYdrdw4cPVZKQgYGB2Lx5s7D/xRdfYOnSpSoxmZubY+rUqWjRogWmTp0KqVQKZ2dnnD17tsDTebt37y5aY4wKx8XFRUgKVKxYEVu2bIGZmZnoGIlEgv79+6Ny5crCayEyMhJPnz5Vm2TR5hqQiYmJ2L59u7DfuXNn7NmzRyXGVq1a4ciRI/jiiy/w9u3bXPtUKBRYsmSJMOquVatWOHjwoMqIX2NjY3z44Ydo1aoVxo0bh6CgIERFRWHDhg1Yv3696FhnZ2fRkg4bNmxQWYMVyEgk9uvXDzVr1sSIESOE9vv376skIe3t7UVTlletWqVy35iZmWHChAlo2LAhpk2bpjJVvTiysLDA8ePHVdZxrFWrFlatWoXx48cDgLBUxMSJE/Hzzz+LjjUzM8O3336Lly9f4s6dOwAy3quyJyETExOxYsUKYb9///7YsmWLygg+MzMzjB49Gq1bt8a4ceMQFxcHHx8f7N69Gz/88EOBnmfTpk21krgtTjJHBAIQJerykvXYuLg4bYZUKI6OjsIUbDs7O6xatUplpGjmqG8zMzPh9eXh4QFfX1/RFyFERCUZq2MTEVGJNHv27FynUi5YsAC1atUS9jNHABbGlClTch1pkr3ScW4L2+vT999/r5KAzJR9Cl6tWrUwefJktcdKJBLR2mqZ0zGzOnjwoJDAqVOnDhYtWpRrbB07dhStjbZ///5cj6eik7k0AABUrVpVJbmXVZs2bTBo0CB89NFH+PLLL1GhQgWdx3f79m0haWFsbIxff/01xxitrKywZs2aPPu8deuWMK3U2NgY69atU7vkQKZq1aqJ1pq8fPmyMJ04U9Y1IJs3b642AZlV06ZNUa9ePWE/NDRU5ZgLFy4I2507d841cd+lSxd88cUXuV6zuMitkEz79u1Fy2xYWFhg9uzZOfaVteiSuveq06dPC9Pfy5Urh99++y3XKcQNGzYUXe/YsWPCWoYE0ZqJ+RkFnfWezb7uoj5lff+rWbNmrlPVP/roI3Tp0gVDhgzB9OnTCzWtnYjI0DAJSUREJY6FhUWeo+MyR6tkunv3rjCNtKAGDhyY6+M1a9YUJSgSEhIKdT1dkEgkuT4PS0tL0Qf7Xr16CVMg1ck60lPd871x44awPWzYMI2q8mYt6uPt7Y3AwMA8zyHdy/pv7enpmWdif/PmzdiyZQsWLFigMnJPFxwdHYXtrl275lkFuVmzZmjXrl2ux1y7dk3YbtOmjWgJgZz07NlTSPLLZDLcv39f9PgPP/wAV1dX2Nvbq4ySzEmVKlWE7cy1UzMlJSXhyZMnwv7YsWPz7G/ChAkaXVffBg0alOvjWSucd+jQIdcRd1mnBKt7r8r6b923b19YW1vnGV/WpUBiY2Ph6uqa5zmlRdZCZrn9Dsku6/IbmV9gFQdZ3//u3buX6yhuExMTYYmWOXPmiL5EICIq6ZiEJCKiEqdt27Yarb2VtShEXFycsH5YQZiammqUgMha0Tl7NenioGbNmrlW1wXEo1bymkJWpkwZYVuhUIgeCw4OFo3a0rRwQ+PGjUUxPH/+XKPzSLfatGkjKuaxYsUKjBgxAlu3boWLi4veEwZZE3F5JRczdenSJdfHs772NH39GhkZoXnz5mr7yGRubo4mTZrk2aevry9OnTolSsRnn0b94sUL0XuNJstO1K1bFzY2Nnkep0/GxsZ5vv9o670qPT0dr169EvY1/bcuX768aHQ836v+kzWZmP3nnZusr29NvrQqKr179xbWV5XJZPjmm28wbtw4/P3333jz5k2hv+QkIiopuCYkERGVOJokAwHVD6UhISFo3Lhxga5Zvnx5jUZzFPSDV1GpXLlyvo7PK2GZ2zSz7FMe582bh3nz5uXr+gBUprOSfpiYmGDVqlX45ptvhESBu7s73N3dsW3bNlhZWaFjx47o2bMn+vTpI1oOQdeUSqVQCAeAxiOPGjVqlONjcrlcKAgDZFSMP3nyZL5jy+v1m56eDnd3d/j6+iIwMBCBgYHw9/fHu3fvhCrMWWVPdmSdJmpmZqZxcrFhw4YICQnR6Fh9sLa21qiicqbCvFeFhoaKpv5u2rQJmzZt0vjamfhe9Z+sCeLso3dzk/XYrIljfbO2tsbixYtFyy08f/4cz58/xx9//IGKFSuiS5cu6NmzJ3r37i0avUxEVJowCUlERCVO1tGGuck+Na8wi9wXRWXfopDfD3WFWctKW0UFCtrPgwcPsG/fvkJff9q0aSxw8/969+6Nffv2YcWKFfD19RU9lpiYiDt37uDOnTtYtWoVWrZsiS+++AIjRozQ+ZpoMTExohFUeSWkMuX2XhIXF6eV0U05vX49PT2xa9cu3Lp1CykpKbn2YWJikuNI08wq24DmzxtAkazTWRil6b3K3d1d46n5uRk+fLioiJE+ZZ3Ori6ZnpOsx2oyJb4offbZZ6hQoQJ+/fVXUfIfyHgPunLlCq5cuQIjIyN07NgRU6dORd++ffUULRGRfjAJSUREpVb2BEJJSSQWRlEukJ89adKxY8cCjWzJa22/nISFhamsx1cQQ4cOLXQfJUmXLl1w+fJlPHz4ENeuXYOjo6PaEWAvX77EwoULceHCBezYsUOn919Blz7IrbhO9tdvkyZNROsKakpdMasjR47g119/VVuh2tTUFLa2tsKalT169MDPP/8MZ2dntf3r4rkXB/p8r2rZsmWBkrS5jazNTVxcnFbeq9q0aVPoPrQl672SNVGel6wjmqtWrarVmLRh0KBB6NevHxwdHXHt2jXcv38fMTExomMUCgWcnJzg5OSEESNGYO3atflaF5OIyJAxCUlERCVOUlKSRsdlVjrNpOkIStKO7D/vpUuXws7OTk/RlG6ajOjLz5RJIyMj9OjRAz169AAAeHl5wcnJCY8fP8bDhw9Fo5kePnyIdevWYfny5fkPXEPZRz1nv/dzktsIrexJqLFjx2LixIn5Dy6bzJGimSwtLTFixAh06tQJdnZ2sLW1VZmGnNt6m1mfe0JCApRKpUYJvPyMTivpsr9XzZw5E/369dNTNCVD1iURgoKCNHpdKpVKBAcHq+2jMLT9/mdmZoYBAwZgwIABUCgUePv2LZycnPDo0SM4OzuLqqRfuHABTZo0wVdffVWg2ImIDA2TkEREVOIEBQVpdFz2QjR169bVRTiUg6zVRIGMNTmLMgk5evRoUYX00ibrB35NisZkH82TH40aNUKjRo0wYcIEpKen48aNG1i+fLlQhfj06dOYN2+eRgWlCsLCwgJVq1ZFREQEANV7PyfZ1y3NqkyZMrC2tkZsbCwAiNaHLIw//vhD2K5VqxaOHj0qKvijTm7TfLO+r0mlUgQEBGj0Xufv769BtKVD9erVIZFIhGRVUa+V2blzZ3h4eBTpNXUta3GmlJQU+Pr65rmes4+PjygZ2KxZM63Eosv3v8xCVM2bN8e0adOQnJyMc+fOYc2aNcIo5YMHDzIJSUSlBsd9ExFRifPixQuNRjY8fPhQ2Laxscnzgz5pV+PGjUWjtB4/fqzRedHR0Vi0aBG2bNmC06dPi0bGkOayVpbVZNTbu3fvcn386dOnOHnyJNatWwcnJ6ccjzMzM8PQoUNFIx/T09NzTfhpQ9aK2Jq+1p49e5br423bthW2c3vO2f32229Yv349jhw5Ajc3N6E9KChI9HP++uuv83xfSk5OFv3ssr/3tW7dWlQQ69GjR3nGFxsbCx8fnzyPKy2srKxERcs0ff1IpVL89NNP2LRpE06cOKFx8rs0aNy4MSpVqiTsa/K6fPDggbBdsWLFQn1plXW5gcK+/8nlcjx69AhHjhzB6tWr4enpmeOxFhYWmDBhAmbNmiW0hYeHazw6m4jI0DEJSUREJU5ERATu3LmT6zHx8fE4d+6csP/hhx/qOiytK8o10XTByMgIvXr1EvbPnTun0QexQ4cO4dy5c9i+fTuWLFlSqBF6pVnFihWFbW9v7zyPv3TpUq6P//bbb1i6dCn27dunUZXo7JXosyZFdeGjjz4Stl1dXfHixYtcjw8NDYWDg0Oux/Tp00fYfv36NZ48eZJnHI8ePcLBgwexZ88erFq1Ck+fPhUeyxypmUmTNe+OHj0qWvcx+6iucuXKoWvXrsL+kSNH8hz5derUKY1Gh2nK0N+rAPG/9e3btxEYGJjnORcuXMCZM2ewc+dOLFu2TKP7rLSQSCQYMGCAsH/y5EkoFIocj1coFKL3lY8++qhQr6usRW3ySg5LpVJcv349x8eNjIzw448/YtWqVTh06FCe75WAeH1QiUSSr0rvRESGjElIIiIqkVasWCFawD4ruVyOpUuXCskrY2NjTJo0qSjD04qsRVzys15VcTJt2jRhOzY2FgsWLEB6enqOx798+RJ79+4V9lu1aoUWLVroNMaSqmnTpsJ2YGBgrgm3EydO5Jlgy1rl9dq1a3Bxccn1+CtXrgjbFhYWagu0aNOAAQNQv359YX/x4sU5JrDT09OxePHiPIu6jBw5UjSaa+HChWqL8GSKi4sTjQC1sLAQVSvOXu03r2IkTk5O2Lx5s6hNXczTp08Xtj09PbFp06Yc+/Tw8MBff/2V63XzqyS8V33xxRdColwmk+GHH37IdQRdUFAQNmzYIOzb2NiwEnI248ePFxKJ7u7u2L59e47Hbt68WRiNaGRkVOj1V7NO5XZ2ds51uvvWrVtzXZ5AIpGIktTHjh3LczmDq1evCtt169aFhYWFBlETERk+JiGJiKhECgsLw9ixY1WmeAUGBmLGjBmiDwAzZ87UeQJEF7ImLFxdXXNdF664atGiBcaPHy/s37lzBxMnTlQZpZaeno4jR45g6tSpQhLD2NgYixcvLtJ4S5KePXuKPvjOnz8ft2/fFh0TERGBtWvXComz3EbrfP7550J/UqkUM2fOxNWrV1UqPCcnJ2Pnzp34+++/hbYJEyaorcbcr18/2NnZwc7OrtCFQMzMzLB69Woh6eHt7Y3x48eLRiICGevOffnll6LlGnJStmxZLF26VNgPDg7GmDFjcPnyZZWRhA4ODvj8889FyYmZM2eicuXKwn79+vVRq1YtYf/YsWPYu3evSmI+KCgI69evx9SpU1UeS05OVomzU6dOGDNmjLC/Z88eLF68WFSVWKFQ4PLly5g0aZLaPgoj+6gzTdftLU6qV6+OH374Qdh/9eoVxo4di/v374umwMvlcly8eBHjx48XJbkXLFhQ7CuOF7WmTZti1KhRwv62bdvw22+/CWvFAhnFlH799Vfs3LlTaPvss88KXGk804cffihUpFYqlZg+fbrKe0FgYCAWLFiAXbt2AYBoWYPspkyZIjweFxcnvIdkXx4hNjYWq1evhr29vehcIqLSguO+iYioxOnVqxeePHmC4OBgTJkyBTVr1kTt2rURFxcHT09P0YeCQYMGYebMmXqMtuCaNGkibL9//x5DhgxB48aNkZCQgH379qlU7y2uFi9ejMDAQNy7dw9ARkJ17NixqFGjBmxtbZGYmAg/Pz9RYkQikeDnn38WrfNH+WNlZYXp06cLo+Li4+PxzTffoEaNGqhTpw5iY2Ph5+cnjKwbO3YsPDw8cpzGXLVqVSxbtgyLFi0CkLF25+zZs1G+fHk0bNgQ5ubmiIuLg7e3t6g6bJs2bYrsHuzQoQMWLVqEtWvXQqlUwsfHBxMmTEDt2rVRq1YtREdHi9Z+++ijj3Dt2rVc+xwyZAh8fHywdetWABlfgPz444/C8wYyirxER0eLzhs2bJjaYhRz5szB3LlzAWQkR37//Xfs2LEDtra2MDc3R1hYmFBNOFPNmjWFwjjZp3RnWrRoEfz8/IQRrWfPnsXFixdhZ2cHS0tL+Pj4CKPHq1SpAltbWzx//jzX566prGv3JSUlYdSoUfjggw+QkpKC1atXi97LirOvvvoKvr6+OH36NICMRPaXX36JypUro379+khPT4e/v7/KF0Jff/01hgwZoo+Qi70lS5bA09MTr169ApBRpOXkyZPCa8bDwwMpKSnC8S1bthTeYwqjXr16+PTTT4Up3iEhIZgwYQLq1KkDGxsbREREwN/fX5gi/sMPP+Dw4cM5zrBo2rQpZs6cKbwPBAYGYurUqahUqRLq168PMzMzxMTEwNvbWzRa+cMPP8TYsWML/XyIiAwFk5BERFTifPDBB5g0aRLmzZuH2NhYvH//XqVyrampKaZNm4YffvhBGA1haAYMGIAPPvgAb968AQBERkYKH5Dc3d3RuXNnfYanMTMzM+zatQtbtmzB/v37hZGOoaGhCA0NVTm+atWqWL58uWg9MSqYGTNmIDk5GXv27BFGLGb/uRsZGWHatGmYM2cOxo0bl2t/o0aNgkQiwa+//iqs7xkfH692arZEIsHIkSPx008/FelUxClTpqB69epYsmQJkpKSAGSMLMw6Os/Y2Bjff/89PvjggzyTkAAwa9YsNGjQAL/99puQBMzpeZuZmWH69OmYOXOm2jXthg0bhvDwcPzxxx/CaMqEhAS8fv1a5dgKFSpgwYIFqFq1Kr7++msAGSM5o6OjRdPEgYyk8759+7B06VKcP38eQMa04uz92tjYYOvWrdi3b1+ez1tTrVq1Qt++fYW1euPj44XiLq9evTKYJCQA/Prrr7Czs8PWrVuF13hUVJRoVGkmKysrzJ8/H59//nlRh2kwrKyscODAASxYsEAYiZ2SkgJXV1eVY/v27Yv169ejbNmyWrn2smXLIJPJcPbsWaEtMDBQtN6nmZkZ5syZg6lTp+Lw4cO59jdr1iyULVsWW7ZsEX6PRUdHq3wBAWT8DfLFF19gzpw5uY6wJCIqaZiEJCKiEqlnz56wt7fH4cOHcfv2bQQHB0MikaBmzZro2bMnxo4dK1ofzhCZmpri0KFD2L59O27fvo2wsDDIZDJUrVrV4KZmGxsb48cff8SECRNw/vx5PHz4ED4+PoiNjQUAVKpUCc2aNUPfvn0xdOhQWFpa6jfgEmTOnDkYNmwYTp06hYcPHwoJ+xo1aqBr164YM2aMaP20vIwcORK9e/eGvb09Hjx4AE9PT8TGxkIqlcLa2ho2Njbo1q0bBg8eLFqXsigNHjwYnTt3xtGjR+Hg4AAfHx9IpVJUq1YNnTp1wvjx49GyZUvcvXtX4z6HDBmCfv36wd7eHvfu3cPr168RHR0NqVQqjIrs2rUrRo8enWfF62nTpqFXr144duwYnJ2dERwcjNTUVFhYWKBy5cqws7ND586dMWLECFhZWSElJQWWlpZISkqCQqHA2bNn1Y6yNDMzw7p16/D555/j5MmTePLkCUJDQ1G2bFnUqVMHAwcOxPjx43UyinrLli3YvXs3rly5guDgYEilUlSsWFHrU7+LwqRJkzBy5EicP39eeI1HR0dDoVCgQoUKsLOzQ8+ePTFixAhRAShSr1y5ctixYwcePXqEixcv4unTp4iMjIRcLkeVKlXQtm1bjBo1Cj169NDqdU1NTbFmzRqMHTsWZ8+ehZOTE8LDw2FiYgIbGxv07t0bY8aMQd26dTXu86uvvsKwYcNw4cIFPH78GF5eXoiPj4dcLkflypVRq1Yt9OzZE0OHDjXIZWCIiApLosy+UAURERERUTERGRmJ7t27o2nTprhw4YK+wyEiIiKiAjLM+WdEREREVCpkjsysVq2aniMhIiIiosJgEpKIiIiIiq3MKrLanopJREREREWLa0ISERERUbGjUCiwf/9+HDp0CNWrV8eIESP0HRIRERERFQJHQhIRERFRsWNkZISHDx+iZs2a2LFjB6ytrfUdEhEREREVAgvTEBEREVGxFBUVBXNzc1hYWOg7FCIiIiIqJCYhiYiIiIiIiIiISKc4HZuIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinTPQdABVPz549E+0bGTFfTURERERERERUGikUCtF++/bt890Hk5CkkewvNiIiIiIiIiIiIk1xeBsRERERERERERHpFEdCkkZKwnTsrKM5S8LzIdIn3k9E2sF7iUh7eD8RaQfvJSLtKGn3kjZmyDIJSWoZGRkJLzAjIyO0bdtWzxEVjkwmw4sXL4T9li1bwsSEL3+iguD9RKQdvJeItIf3E5F28F4i0o6SeC+5uLiI8kQFYfipWCIiIiIiIiIiIirWmIQkIiIiIiIiIiIinWISkoiIiIiIiIiIiHSKSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiIiIiIiIiIiIdIpJSCIiIiIiIiIiItIpJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikTfQdARERERERkKJRKJRQKhb7DINIJuVyusi+RSPQUDZHh0ve9ZGRkVCzvXSYhiYiIiIiIciGTyRAXF4e4uDikpaXpOxwinVEqlaJ9b2/vYpnIICruisO9ZGJiAisrK5QvXx4WFhbF4l5mEpKIiIiIiCgHsbGxCA0NVflASVRSmZgwTUCkDfq+l2QyGWJjYxEbGwtTU1PY2trCzMxMrzFxTUgiIiIiIiI1kpKSEBISwgQklRoSiQQmJibCf8Vh5BSRISpu95JUKkVAQADS09P1Gge/4iAiIiIiIspGJpMhKChI2Dc2Noa1tTXKly9fLD5QEumCUqlEcnKysF9cpnASGRp930tyuRzJycmIj49HUlISgP8SkQ0bNtTbfc0kJBERERERUTZJSUlCARqJRII6derA3Nxcz1ER6ZZSqYSxsbGwb2xszCQkUQHo+14yNjaGmZkZrK2tER0djbCwMAAZicjk5GRYWloWWSxZcTo2ERERERFRNomJicJ2hQoVmIAkIiKDVKlSJVHSMSEhQW+xMAlJRERERESUTeb0NQB6GzFCRESkDeXLlxe2mYQkIiIiIiIqJpRKJeRyubBftmxZPUZDRERUOBYWFsK2TCbTW8E1JiGJiIiIiIiyyFwLMlPWdb2IiIgMTfbfY9l/zxUVJiGJiIiIiIiIiIhIp5iEJCIiIiIiIiIiIp1iEpKIiIiIiIiIiIh0iklIIiIiIiIiIiIi0ikmIYmIiIiIiIiIiEinmIQkIiIiIiIiIiIinWISkoiIiIiIiIgMnlQq1XcIRJQLE30HQERERERERKRLPj4+OHXqFJ48eYLAwEAkJibC0tISNjY26NixI8aOHYsmTZpo1FdKSgpOnTqFGzduwNPTE0lJSahYsSIaNmyIIUOGYOTIkTAzMzP4vs6fPw8HBwe8e/euUH0VBYVCgRMnTuDhw4fYunWrRuds3rwZf/31F6pVq4Z79+7pOEIiApiEJCIiIiIiohJKKpVi/fr1+Oeff6BUKkWPxcXFIS4uDu7u7jh8+DDGjx+PRYsW5Zpc8/DwwLfffovAwEBRe3h4OMLDw/Ho0SMcPHgQGzduhJ2dXa6xFde+3r17h7lz5yIoKKjQfRWFsLAwfPPNN3j9+jU6deqk8Xl37twBAPTp00dHkRFRdkxCEhERERERUYm0YMECXL58Wdi3s7NDt27dULFiRURHR+Phw4fw9PSEUqnEkSNHEBkZiT///BNGRqorlwUGBmLSpEmIjY0FAFSpUgUDBw5EtWrVEBgYiBs3biA+Ph5eXl748ssvceLECdSqVUttXMW1r6CgIEyfPl0rfRUVPz8/vH79Ol/nhIWF4e3btwCYhCQqSkxCEhERERERUYlz4cIFIQFpamqK1atXY+TIkSrHnTp1CsuXL4dcLse1a9dw5swZjBkzRuW4xYsXC8m5nj174s8//4SVlZXw+Ny5c/Hdd9/h2bNniIiIwPLly7Fnzx61sRXXvhYtWiT01a1bN2zZsgXlypUrUF/FWeYoyDJlyqBbt256joao9GBhGiIiIiIiIipxsibH5s+frzYBCQBjxozBDz/8oPa8TPfv38eTJ08AAJUrV8bmzZtFib7M9l27dqFq1aoAgHv37uHp06cG1Vdme6VKlfD7778XuK/izsHBAQDQuXNnmJub6zcYolKESUgiIiIiIiIqUfz9/eHp6QkAsLKywrhx43I9fsKECTA1NQWQMb33/fv3osdPnz4tbE+ePBmWlpZq+ylXrhy+/PJLYf/cuXMqxxhCX+PHj4eFhUWB+yrO0tLS8PjxYwCcik1U1JiEJCIiIiIiohLF3d1d2G7WrFmelZwtLS1RpUoVYT88PFzYVigUePDggbCfV+Iq6+M3b94UFcQxlL569uxZ4L4K6smTJ/j5558xaNAgtG7dGi1atECvXr3wzTff4PLly1AoFKLjt27dCjs7O0yaNEloc3Z2hp2dHezs7DBx4kS113n06BFSUlJUnkdWDg4OmD9/PgYMGIDWrVujdevW6N27N7766ivs378fcXFxhX6+RKUR14QkIlLjyPMgXHgVinqVLDC/T0NUtSqj75CIiIiISEMffvghHB0dER4eDolEkufx6enpiI6OFvazjij09/dHfHy80J5XRej69evD2toasbGxiI2NhY+PDxo2bGhQfTVu3LjAfeVXREQEFi1ahPv376s8FhYWhrCwMNy+fRv79+/Htm3bUL169QJdJ9Pt27cBAE2aNFEpqhMfH4/Zs2fj4cOHKueFhoYiNDQU9+7dw7Zt2/DLL79gyJAhhYqFqLRhEpKIKJtDzwIx+ZirsO/oHQWn2bl/G0xERERExYexsTFq1KiBGjVqaHS8g4MD0tLSAADm5uaoU6eO8Jivr6+wXbt2bY36q1mzplDgxc/PT0jQGUJfNWvWLFRf+RETE4Px48cjICBAaOvYsSPatWsHU1NTeHp64tatW5DL5XBzc8OkSZNw5swZWFlZoXv37rCwsEBAQACOHz8OAKhTp44w9d7GxkbtNR0dHQGoHwU5d+5cIQFZoUIF9O3bF7a2tgCA4OBg3Lx5E3FxcUhMTMTcuXNRq1YttG7dOt/Pm6i0YhKSiCibvU4Bov0ngbEIjE1BHev8L1qdKpXjaVAsGla2hE35stoKkYiIiIoZqVyBVTc8cfltGJLT5foOp1ixMDPGkGbVsWxAE5gaF78VwdLT07F582Zhv3fv3ihb9r+/2yIiIoTtnBJb2VWvXh1v3rxROd8Q+tJ0pGFOfeXHihUrhARkpUqVsGXLFnTs2FF0jIeHB6ZOnYqoqCj4+flh+/btWLhwIdq1a4d27drByclJSELa2NiI1qvM7u3btwgNDQWgmoR0dXXF3bt3AWSM9Dx69CgqVaokOuann37CjBkz8OTJEygUCuzYsQM7d+4s0HMnKo2YhCQiyuauT7RKW0KqLN/9uIcnoO+ORwhLyPhW/c8RzfF9zwaFjo+IiIiKn5XXPfHbrXf6DqPYcgnOmOr7y6Cmeo5E1erVq+Hl5QUgYwTlrFmzRI8nJCQI25pWUs6axMx6fmnoS1N+fn64evUqgIyf+44dO9CmTRuV4+zs7PD7778LycWTJ09izpw5QiGh/Lhz5w4AwNraGm3bthU95urqKmx//vnnKglIIKPI0Zo1a/Dhhx8CAN68eQO5XA5jY+N8x0JUGhW/r6GIiEqI3+94CwlIAPjpsjvSZBwZQUREVBI5B8ToO4Riz8m/+P2MNm/ejBMnTgj733zzjcp6iOnp6cJ21sRbbrIel/X80tCXpm7cuCFs9+vXT20CMlOPHj3QqVMndO3aFUOHDi1wYRgHBwcAQK9evWBkJE6HZE0kPn/+PMc+6tSpgwsXLsDJyQl3795lApIoHzgSkohIRw48CRTtJ0vlCI5LRYPKljmcQURERIaqk21F3HwXqe8wirXOdSvqOwSBUqnE+vXrsXfvXqGtX79+KqMgAagkq/Ira2Gc0tCXpu7duyds9+vXL8/jDx06lO9rZBUVFYWXL18CUL8eZKdOnYTta9euYdKkSRgzZgy6d++uMiqyadPiN6KXyBAwCUlERERERFRIywc2gUQCrgmpRtY1IYuD9PR0LFmyBBcvXhTaevbsiT///FNtMs3CwkLYzixek5fU1FRhu0yZMqWqL02FhIQI202a6P614eDgAIVCARMTE/TsqVp00s7ODp9++ilOnz4NAHBycoKTkxMkEgmaNm2Krl27omfPnujQoQPMzMx0Hi9RScQkJBERERERUSGZGhvhl0FNi+Wah/SfqKgofPvtt3BxcRHaBg0ahPXr1+eYWMqaoEtJSdHoOlkTdOXLlzeovrIeU5C+NBUZ+d/I4QoVKuT7/PzKnIrdrl27HONdsWIFqlSpgn379glTzJVKJd6+fYu3b99i3759sLS0RP/+/TFt2jQ0a9ZM53ETlSRcE5KIiIiIiIhKvDdv3uDTTz8VJSAnTZqETZs25TqyLWu16PDwcI2uFRYWJmxXrVq1VPWlKZks/4UfCyo9PR0PHjwAoH4qdiZTU1P8+OOPcHR0xPLly9GrVy+VQj1JSUm4ePEiRo8ejT179ugybKIShyMhiYiIiIiIqES7desW5s6dK4wYNDY2xpIlSzBhwoQ8z806VTg4OFij62U9rn79+gbVV9Zp0gXpS1MVKlRAREQEACAuLg516tTJdx+aevLkCZKSkgDknoTMVKlSJYwfPx7jx49Heno63Nzc4OTkhHv37sHV1RVKpRIKhQLr169H27Zt0b59e53FTlSScCQkEVExc90jHC3W30HlpVfx7dmXkMkV+g6JiIiIyGCdOXMGs2bNEhKQVlZW2Llzp0YJSCBjlKC1tTUAIDY2Fn5+frke7+PjI1RvrlChAmxtbQ2qr7i4OAQEBBS4L01lTTp6eXnlefz58+exZMkS7Ny5E+7u7vm61p07dwAAtra2aNiwYb7ONTMzQ4cOHfDtt9/i+PHj+Pfff2FjYyM8fuHChXz1R1SaMQlJRFSMJKfLMOrAE7wJS0RMihQ7Hvph5yN/fYdFREREZJAyE1cKRcaXujVr1sSxY8fQq1evfPWTtXrz7du3cz02M+EFAD169FApdmMIfTk6OhaqL01kHT149+7dPI8/d+4cTp8+jU2bNsHf/7+/jzW5duZ6kL1791b7uFKpxJIlSzBmzBh06NAh19GgjRo1wuTJk4V9TUeOEhGTkERExcrz4DikSMUjH/966KefYIiIiIgM2OvXr7F06VIolUoAQMOGDXH8+PECVWIePny4sL1v3z7Ex8erPS4+Ph779+8X9j/99FOD7OvQoUNISEgocF+aGDFihJBAvH79Ojw9PXM81t3dHc7OzgAyiuh0795deMzI6L+0hlyuWpney8sLgYGBAIC+ffuq7V8ikcDHxwdubm5ISEjIc3RjVFSUsF2jRo1cjyWi/zAJSURUQAExyRj092NUX34NY/95itgUaaH7TJcpVdrcwxML3S8RERFRaSKTyTBnzhyhwnH16tWxf/9+UQGW/OjatSu6du0KAIiIiMD06dNFiSggIzE1Y8YMYZ3Djh07olu3bgbZV2RkJGbPnl3gvjTRuHFjDB48GAAglUoxY8YMtdOs/f39MXv2bGE06xdffAErKyvh8azboaGhKonIzFGblpaW6NixY47xfPbZZ8L2tm3bcO3aNbXHPX/+HIcPHxb2M58DEeWNhWmIiApo0jEX3PWJBgCcdguBuakxDo5rq+eoiIiIiOjChQuiNRJbt26Nf//9V+PzhwwZIlr3DwBWrVqFMWPGIDY2Fs+fP8egQYPw0UcfoVatWnj//j2uXr0qjES0trbGmjVrcuy/uPa1cuVKjBkzBnFxcXB1dcXgwYML3JcmVq1aBXd3d/j4+CA4OBijR49Gz5490aJFCxgbG8PDwwO3b98WksmtWrXCrFmzRH3UqlULEokESqUSwcHBmDlzJtq3bw9zc3NMnDhRmIrdvXv3XKugDx8+HKdPn8aTJ08glUrx/fffo3nz5mjdujVq1KiBlJQUvH79Gg8ePBASnYMHDy5wEpaoNGISkoioABQKpZCAzHToWRCTkERERETFwKlTp0T7169fx/Xr1zU+v0WLFipJSFtbWxw8eBCzZs1CYGAg4uPjVa4DALVr18b27dtzrfZcnPvatWsX5s2bh6CgoEL1pYly5crh2LFjmD9/Pu7evQu5XA4HBwchcZhV37598fvvv6NMmTIqfQwbNgz29vYAIJxvZWWF4cOHw8XFBUDeVbGNjIywY8cO/PDDD7h//z6AjCn9r1+/VjlWIpHg008/xbJlywrwrIlKLyYhiYgKQHXStGbu+0ajQWVLrcZCRERERGIeHh466bdp06a4dOkSTp06hevXr8PLywtxcXGwtLRE48aNMXDgQIwdOxbm5uYG21eTJk1w6tQpnDt3Do6OjoXqSxPW1tbYvXs3Hj16BHt7ezx79gzh4eGQyWSoUqUK2rZti08++US0DmR2v/32G+rVq4d///0XISEhUCqVsLa2xu3btyGXyyGRSHIsSpNVuXLlsHfvXty7dw+XLl3Cy5cvERISgtTUVJQvXx41atRA165dMXz4cDRr1kwrz5+oNJEoM1fpJcrCxcVFWHPDyMgIbdsa9ugumUyGFy9eCPutW7eGiQlz8KSe0Tx7te2Dm1bDnyOao3FVKzzwjUbP7Q9UjlFs+DjXfvo0rIzb3+Q8ZeP2u0h8uOtRrv3qG+8nIu3gvUSkPdq+n+RyuahIRpMmTWBsbFyoGIkMgVKpRHJysrBvYWFRoMrXRKVdcbuXtPF7TRt5IhamISLS0BX3cAzf5wylUol9TwIK1IeDd1TeBxERERERERGVMExCEhHlg0dEEkLi07DfOVDfoRAREREREREZDCYhiYjyKV2u0HcIRERERERERAaFSUgiIiIiIiIiIiLSKSYhiYiIiIiIiIiISKeYhCQiIiIiIiIiIiKdYhKSiCifvCKT9B0CERERERERkUFhEpKIKJ8G/v24UOd3/PMurnmEaykaIiIiIiIiouKPSUgioiL2LCgOg3c7ISopXd+hEBERERERERUJJiGJqNRKTpdh7e13mHzMBYefBUGpVBa6zzSZXONj59m/LvT1iIiIiIiIiAyBib4DICLSl0nHXHD2ZSgA4NCzIMSmSDGrR/1C9VlhyVWMbW2DPWPb5HlsurzwSU8iIiIiIiIiQ8CRkERUKiWny4QEZKY9TgGF7jddrsDh58HY+cgvz2PNTY0LfT0iIiIiIiIiQ8AkJBGVSslS1WnTbiHxWuv/hwucak1ERERERESUiUlIIiIiIiIiIiIi0qlSvSakk5MTLl26BBcXF4SHhyMxMRFWVlawsbFBhw4dMHr0aHzwwQdav66vry/OnDmDp0+fIiAgAPHx8ShTpgyqVKmCNm3aYODAgejXrx8kEonWr01ERERERERERFTUSmUSMigoCAsXLsTTp09VHouNjUVsbCzevn2LQ4cOYejQoVi1ahWsrKwKfd3k5GSsWbMGp06dUqnCK5VKkZiYCD8/P5w/fx4ffPABNm3ahHr16hX6ukRERERERERERPpU6pKQfn5+GDduHKKjo4U2U1NTNGnSBOXKlUNUVBS8vLyEJOGlS5fg7e2NI0eOFCoRmZqaimnTpsHFxUXU3qBBA1StWhXJycnw8PBAeno6AODNmzf49NNPceTIEdjZ2RX4ukRERERERERERPpWqpKQcrkc3333nZCANDY2xjfffIOpU6eKEoxhYWHYuHEjzp8/DwBwd3fHkiVLsHnz5gJfe82aNaIE5KBBgzB//nzUrl1baEtJScGhQ4ewZcsWSKVSJCQk4JtvvsHly5dRtmzZAl+biIo3/+hklDExQo3yvM+JiIiIiIioZCpVhWnOnj0LT09PYX/t2rX47rvvVEY4Vq9eHevWrcPUqVOFtqtXr8LV1bVA1/X19cWpU6eE/bFjx2Lz5s2iBCQAmJub4+uvvxYlO4ODg/HPP/8U6LpEVLylyeT4eK8T6v92CzVX3cCM025QZFuqITu5Qokjz4Ow6NJbXPcIL6JIiYiIiIiIiAqnVCUhL1y4IGz36NEDw4cPz/X4OXPmoFq1asL+pUuXCnRde3t7yOVyAIC1tTUWL16c6/H9+/fHwIEDC31dIirezr4MwaW3/yUS/37sj2dBcbmeM/v8K0w86oLf73hh0G4n7HUK0HWYRERERERERIVWapKQ6enpeP78ubA/bNiwPM8xMzNDjx49hP2XL18W6NqPHz8Wtvv16wcLC4s8z+nfv7+w7e7uLqwVSUQlR4pUodJm/yY0x+NlcgV2PfYXte146KftsIiIiIiIiIi0rtQkIYODg1GmTBlhv2HDhhqdZ21tLWzHxMQU6NpRUVGFui6QUbWbiEq+h345v8+kyhSQK8TTtZ8H5z5ykoiIiIiIiKg4KDWFaerXrw8XFxckJCQgLCxMZT3GnAQHBwvbFSpUKNC1r127hrS0NISFhcHS0lKjc4KCgkT7Bb02EREREREREREBUqkUpqam+g6j1Co1SchM5cqVQ7ly5TQ6NjExEQ8ePBD2NR3FqE6ZMmVga2ur8fHXrl0TtmvVqiUaxUlEupOcLtN3CERERESkBXZ2doXuY9SoUVi7dq2wP3HiRDg7OwMA/vnnH3Tu3LnQ16CCSU9Px4ULF3D9+nW8ffsWsbGxKFu2LBo0aIBevXrhs88+Q9WqVfPsx9vbG0OGDMnXtU+fPo2WLVsWNPRS5ezZs0JdjOz3EwAsWrQI586dAwCsWbMGo0eP1lksV65cwaFDh3D06FGVx4KCgoRl8WrVqoXbt2/rLI7SrNQlIfNj7969SExMFPb79u1bJNd99OiR8IsNyFhHkoiKhtVPV/QdAhERERER5eLVq1eYPXu2ygxCqVSKFy9e4MWLF9izZw9+/PFHTJ48Oc++qGRLSkrCrFmz8PDhQ9SqVUvf4ZRqTELmwM3NDbt37xb269WrVyTJwNjYWPz888/CvqmpaZ5vmkVBJjPs0WGZ1clz2qfSRyYzrNeATCbL8T4s6vuT9xORdvBeItIebd9PcrkcSmXGOswSiQRKpVLYJ8Mxf/78fJ9z//59PHr0SNi3sbER/dtn3y5pr4vsz6c4Pj8XFxdMmTIFaWlpADLu0W7duqF169YwMjLCixcvcP/+faSkpOC3335DcHCwMBJPndevXwvbo0eP1mgGZI0aNYrlz6Y4yuueKYp7Kjo6Gg8fPsz1GtqOo7jdS5nXz/y/TCbTS0xMQqoRFBSEmTNnQiqVCm2LFi2CiYluf1zp6en4/vvvRd/mTJw4EXXq1NHpdfOiUCjw4sULvcagbfy2i2LTDOvD/osXL5Csppp25mP6xPuJSDt4LxFpj7buJxMTE5iYmCA5ORnGxsZa6ZOKzrhx4/J1/LNnz7B582Zhv02bNpg8eTKSk5OFNoXiv7/H0tLSRI+VRCkpKfoOQSQpKQnfffedkICsVq0a1q9frzI1+uXLl5g7dy4iIyNx8OBBNG7cOMcp125ubsL2pEmTNF5GraT/22tLenq6sC2Xy1V+bsuWLcOyZcuEfV38XFNTU4VtpVKp9hqVKlXC8+fPdRaHvu8luVwOhUIhDG7R19+dpaY6tqZCQkIwefJkRERECG1TpkzR+VTs9PR0zJo1C05OTkJb69atMWfOHJ1el6i0Ck40rCQkEREREelOYGAg5s2bJyRMqlatit9//50FLHSoXbt2aNeuHYYOHarxOcePH0dkZCQAwMLCAjt27FC7NmPLli3x559/Cl8e/Pnnn6JEVCaFQgEPDw8AGfUj9D0AiKikYxIyC29vb4wbN040ErFHjx6YN2+eTq+bmJiIr7/+Go6OjkJbzZo1sXXrVv7SI9KBoAQZplyP1HcYRERERFQMJCcn48cff0RcXByAjCWx1q9fjypVqug5Msru1q1bwvaECRNQv379HI/94IMPhEIjkZGRcHBwUDnG399fGPHWrFkzSCQS7QZMRCKcjv3/nj9/jpkzZyImJkZo69KlC7Zt26bTRGB4eDhmzJghWoeiRo0aOHDgAKpXr66z6+aHkZGRwVf+ksvlouHGLVq04JSaUuzfW14AwvUdRr60bt0aiWky4HSo2seKEu8nIu3gvUSkPdq+n+RyOby9vQFkrDdnYWHB+7MEW7x4MXx8fIT9n3/+GV26dFF7rJHRf+N4ypQpAwsLC1y/fh0XL16Em5sbYmJiYG1tjbp162Lo0KEYOXIkzM3N84zh1atXuHr1Kp4+fYr3798jLi4OEokE5cqVQ/369dGlSxeMGTMmx2rPW7duxfbt2wEAp06dQsuWLfHixQucPn0azs7OCA8Ph7GxMWrXro2ePXviiy++UPt5U6lUiqaNJiQk4OjRo7h79y78/f0hl8tRo0YN9OjRA5MmTULdunWxfPlynDhxAgBw8ODBfFcMz7zH8iKVSoVRiwAwfPjwPM/r3bs3rl+/DgB4/PixSuXlrP/urVu31iiOwsj673TkyBG0b98ed+/exdGjR/H69WvExsaifPnyaN68OYYPH44hQ4aIXnNZnT17Fj/99BOAjJGeffv2xbZt23DhwgXEx8ejevXq6NixI77//ntUq1ZNdG5oaChOnjyJBw8eIDAwEAkJCShfvjzq16+Pnj174rPPPoO1tbVGz8nBwQFnz56Fq6srYmJiUL58eTRr1gxjx47FwIEDYWZmJhxrbGys8jNetGgRzp8/DwD47bffcq2O/fbtW5w9exZOTk4ICgqCVCpFhQoVYGdnh48++ggjR44UXS/rzyhTSEgI2rVrByBj8FdmFeygoCB8+OGHKu3qJCYm4ty5c3B0dISHhwdiY2Nhbm6O6tWro1OnThg5ciRatGghupfMzc2FJHf2f7tBgwbBy8tL+DcJDQ2FUqlEjRo10L17d4wbNw4NGjTIMR5NyOVyGBkZwdTUFKampmjYsGG+f6+9fPlStCRFQTAJCcDe3h4//fSTaK2C3r17Y8uWLShbtqzOruvu7o7p06cjNPS/pEKdOnWwf//+YjcMXNfrYRY1Y2PjEvecSHN7nAP1HUK+mZiYwCSHGeT6fi3zfiLSDt5LRNpT2PtJIpGIRkRl36eSY8+ePbh27ZqwP3bsWHz++ec5Hp/1dRAfH4/JkyeLltQCgIiICERERODp06c4cuQI/vrrL9StW1dtf/Hx8Vi4cGGOCY/U1FRERETA2dkZf//9N1avXo2PP/4417gAYO3atTh48KBK4Ql3d3e4u7vj8OHDWLt2LQYNGpTjc3V0dMSSJUtU1sbz9/eHv78/Tp8+jaVLl6rEkd97RdNz4uLiRM+nXr16eZ5Xo0YNYfvVq1cqx2cdDNSiRQtIJBIEBgbCzc0N0dHRsLS0RL169dC6dWutfBGR/forV67EsWPHRG1RUVG4e/cu7t69iyNHjmDHjh2oWLFirn1JJBLMmzcPN27cENr8/f0RERGBn3/+WXTsrl27sH37dmFdzazXjYqKwtOnT7F79278/PPPGDVqVI7PJSUlBXPmzFF57UZFReH+/fu4f/8++vfvj169eonizP4z0OS9NikpCStWrMDFixdVHouMjERkZCQePHiAffv2Ydu2bWjcuLFK3+pkvZ6m7/mXL1/GypUrERsbK2qXSqWIj4/Hu3fvcOTIEQwdOhSLFy8Wkq65XWvfvn3YtGmTqC4JkJEk9/HxwbFjx7Bw4UJMmjQp1+eT13PN+n8TExO9fLlW6v/S3bp1K7Zt2yZqGz58ONasWaPTDwK3b9/G3LlzRW/ozZo1w+7du3P8douItEOuYCU7IiIiotLu8ePH2Lhxo7Dfpk0blaRabhYtWoSkpCRIJBJ0794dLVq0gKmpKV68eIF79+5BqVTCy8sLP/zwA06ePKkyw04qlWLy5Ml48+YNAMDMzAw9e/ZEkyZNYGFhgYSEBLx69QqPHz+GQqFAamoqFi1ahKZNmwpJFnU2btwoVPhu27YtOnXqhDJlysDb2xs3b95EWloaUlJSMG/ePNjZ2amd0nz9+nUsWbJEqDRfvXp1DBgwAFWqVEFwcDBu3LiB2NhYLF26FDY2Nhr/zAqjIDMUsyba3r9/r/J41iRkVFQUxo4dq7boY8WKFfHVV19h8uTJWpspuXXrVjx+/BgA0KRJE/Tu3Rtly5bFy5cvcffuXSgUCri4uGDcuHE4efIkypcvn2Nf586dUzvdvF+/fqKRuMuWLRNGrQIZU9a7dOkCa2trREVF4cGDB/Dy8kJiYiIWLVqEmJgYTJs2TaXf9PR0TJo0SSjqk3kPtGnTBgqFAs+ePYOTkxNu3bqFZ8+eFfRHBCDj33DatGlwdXUV2po3b44uXbrA0tISvr6+uH79OtLS0uDn54eJEyfi/PnzqFGjBlq2bIkFCxYgPj4eO3fuBABUqFAB06dPB5CxDmh+HDt2DCtWrBD2K1asiL59+8LW1hZJSUl4+vQpXFxcAACXLl2Cl5cX9uzZA0tLyxz7PH78uHC/Nm3aFN26dUP58uUREBCA69evIzExETKZDL/++iuaNGmS4yhtQ1Fqk5BSqRRLlizBhQsXRO3Tp0/Hjz/+qNNvOo8cOYLVq1eLhrH26NEDmzdvhpWVlc6uS0SGq84vNxCfKtN3GERERJQTqRRYtQq4dAlg1VwxCwtg6FBg2TKgmKx5Hxoaijlz5ghJtqpVq2LLli2iqZx5SUpKQr169bB582Y0bdpU9JiDgwNmzpwJuVyON2/ewMHBAQMGDBAd888//wgJyBo1auDgwYOoV6+eynXevn2LadOmITo6GjKZDCdOnMDPP/+cY1yPHj1CxYoVsWnTJnTt2lX0mI+PD6ZMmYKwsDBIpVL8888/WL58ueiYmJgYrFmzRvjZfPLJJ1i2bJloluD8+fOxcOFC3LlzR21yTxcqVKgAc3NzYYqrt7c3mjVrlus5Xl5ewnZqaioSEhKExJNSqRR+/gCwatWqHPuJiYnB+vXr4ejoiG3btqFChQqFeSoAMpLgEokE8+fPx7Rp00Q5iOfPn+Obb75BbGwsfH19sWnTJpV/p6wcHBxgZGSE2bNnY8yYMTAxMcHjx49F07BPnTolJCDLlSuHtWvXCtOPMymVSpw+fRorV66EVCrFhg0b0Lp1a7Rv31503N69e4UEZIUKFbBt2zZ06tRJdMz9+/cxe/ZslRGD+bV582YhAWlhYYE1a9aojOB9//49pk6dCj8/P8TExOC3337Dli1b0LhxYzRu3BhBQUFCEtLKygpffvllvuNwdXUVvUZGjx6NJUuWqORwHB0dMW/ePMTHx8PDwwMrV67E77//nmO/jx49QpkyZbB27VqVCu4//vgjvvzyS3h6egIA9u3bxySkIUpPT8d3330n+qbAxMQEK1aswJgxY3R67R07duDPP/8UtY0ZMwYrVqzgFCwiylFwnGo1PyIiIipGVq4Efv1V31EUX/8/Ogi//KLfOJDxefD7779HVFQUgIwRdps3b873mvzm5ubYs2eP2qW0+vTpg48//lhY687Z2VklCXnmzBlhe8mSJWoTkEDGjLlp06Zhw4YNADLWZcvLunXrVBKQANCgQQN8//33WLJkCQDg4cOHKsfs2bNHKNLTvXt3/PrrryqDdCpUqICtW7fi888/F63Hmt3du3fx7t27XGNNTEzE3r171T7WuHFjYTqvRCJBx44dcffuXQDAiRMnRKPSslMoFCrTd1NTU4UkpK+vL5KSkoTHTE1NMX78eIwcORJ169aFUqmEu7s7Tpw4IfTj7OyM7777Dvv27dPK5/dZs2apTYi1a9cO27Ztw8SJE6FUKnH8+HFMmzYt12XbvvnmG8yYMUPY/+ijj4Tt9PR0bN68WdjfvHkzunfvrtKHRCLBmDFjkJCQgHXr1kEul2Pz5s34559/hGMSExOxa9cuYX/9+vUqCUggY6DVxo0b8fXXX+fyE8hdUlISDh8+LOyrS0ACGWs4/vXXXxg2bBgUCgVu3LiB8PBwlbUwC+OPP/4QBpINGDAAa9asUXtc7969sWPHDkyaNAlyuRw3b96Em5tbrsnDRYsWqSQgAaBatWr46aefMGXKFAAQRkXntE6oISh1WS+ZTIbvv/9elIC0tLTEli1b0KNHD51e+++//1ZJQP7444+iNwoiIiIiIjJA2dYFJDX+f+qpvq1evVo05fann35SGemlicGDB+eaFOrWrZuQhMw+WlAul+Orr75CcHAwIiIihCrOOck60jIhISHXY+vWrYvevXvn+HjWZEh4uLhYo1KpFK0rOHfu3BxnCZqammL+/PmYPHlyjte6fPkyzp07l2u8cXFxOY4UGzVqlGhNwc8//1yUhOzUqZPa5A0AbNiwQTQSEsjIB2TKOhXb0tIS+/fvVyn42KFDB3To0AHdunXDokWLAABOTk44ceIEJkyYkOvzykvVqlWFacHqdOzYEb169YKjoyMUCgVu3ryJqVOnqj1WIpHgiy++yLGvmzdvIiIiAkDGFH11CcisJk2ahB07diA+Ph5OTk4IDQ0V1te8d++eMBq1VatWub7WevfujY4dO+LJkye5Xi8njo6OwpT6Dz74INc1TBs2bIghQ4YgLCwMdevWRUJCgtaSkCEhIXB2dgaQUZwq87WQkw4dOmDIkCGwt7cHkFGIJqckpIWFBT799NMc+2rfvj1MTU0hlUqRlpaG2NhYVKpUqYDPRP9KXRJy/fr1uHPnjrBfqVIl7NmzB82bN9fpdW/evIk//vhD2Dc2Nsbq1atzrfxEREREREQGonNn4OZNfUdRvBWDaYRnz54VrYn3ySefYPz48QXqK7PCbk6yrvWfdcQdkPF5UNPPgunp6fDz8xP2sybS1MmeSMuucuXKwnZqqni2zatXrxAZGQkAsLGxwQcffJBrX126dEGlSpUQHR2d63Ha0r9/f/Tt2xd37tyBQqHAnDlz8PjxY4wdOxaNGjWCXC7H69evsW/fPty5cweVKlVCamqqUIsh63T7QYMGoXXr1ggKCoK1tXWuz3XUqFF4+vQpTp8+DSBjOnJhk5CDBw/Oc33JAQMGwNHREUDGqNKckpD169fPNTGVtXiSJrkPExMTtGrVCvfv3wcAPH36FMOGDQOQkYTM1KdPnzz7GjhwYIGTkFmv1a9fvzyPz5pz0abMNRuBjMRr7dq18zxn6NChQhLy6dOnOR7XrFmzXJeBMDMzQ7ly5YR7LHtBIUNTqpKQjo6OOHjwoLBfoUIF/PPPP7ku6qsNYWFhwnB3IONbinXr1qmtakZERERERAZo+XJAIuGakOpkXRNSj968eSOavtuqVatcp/PmJWsyT52slWcz11fMTWJiInx8fBAYGIjAwED4+/vD09MTHh4eoqq52SteZ1elSpVcH89aqCRrnQIgo6JypkaNGuUZM5AxSlPdtG4go0r32rVr1T5mZ2cHAKhVq1aO1cHV2bBhA7755hs4OztDqVTixIkTosRyJmtra+zatUtUWCXrupampqawtbWFra2tRtedOHGikIQMDg6Gt7c3GjZsqHHc2bVo0SLPY7LmKnJbezO3EbmAeG3Mw4cPi6Y4ayLrtYODg4VtTV4j2ddLzY+QkBBhu0mTJgXup7ACAgKEbU2fT9b1SkNCQiCXy9VO4c/rfgVyv2cNTalJQsrlcvz666/CG7ZEIsEff/xR6ATkxIkThWG5AODh4aFyzJ9//ilajHX69OlMQBIRERERlSSmphnrHRaDNQ9JVWxsLGbNmiWMIqpcuTK2bt2ar0I02eVW8VZTqampOH78OM6dOwcPD48cE4zGxsYaJTKBjOmdBZU5ZReAxsVXKlasWODrFYSVlRX27duHffv2Ye/evcL6lZnMzMwwaNAgLFy4EJUqVUJiYiKAjJ9LYf7N7OzsRIVxAgICCpWE1CT5lPXfIOu/TXa5Vc4GUOjiMDExMcJ25lqqmlwXKNzrI7/X0pWsPz9Nn0/W45RKJeLi4tR+cZHf+zWvLyGKu1KThLx69aroWx1zc3McOHAABw4c0LiPKlWqYN26dfm6bkhIiMpiuK6urvmuxrRu3TqN3qSIiIiIiIjoPwqFAnPnzhVGcJmYmGDz5s3CGnf6EhgYiK+++ko01RrIGDBTo0YNNGzYEM2bNxfWqyxMgQ9NZR1xqWnSUx9JEVNTU0yfPh1Tp07F8+fPERAQAJlMBhsbG7Rt2xbW1tYAMipoZ8ZX2H9viUSCcuXKCUnIzORmQWUdKZuTrKPeckuY51UkJ+sU/kGDBqFVq1YaRPifwixfV5hEf9bXoz4V5DWefcRiTmurljalKgmZVXJysrC+gaZq1aqV7+vevHlTZc2OxwVYkDn7Wh1ERERERESUt82bN4s++y1atAgdO3bUY0QZyZWZM2cKCchKlSph8uTJ6Nq1Kxo3bqwyOipzXUBdyzryLq8COJni4+N1FU6ezMzM0KVLlxyLfri5uQnbOU2jTUtLg7GxsUbVrrMmHgs7Mk+TJGbWEXhZ1xjNr6z/rm3atMlxbUlNVK1aVah4rskIy8K8PrLGrc/XWWZSGxCPCs1N1uOMjIxgZWWl7bAMkuHW9c4nHx+fUnVdIiIiIiKi0u7WrVvYtWuXsD9q1ChMnDhRjxFluHXrFjw9PQFkTMc8efIkZsyYgdatW6udnpl1WqouRx5mXa4se2XpnGQ+j6KgVCoRExMDLy8vjZKkt27dErY7dOggeuyTTz5B27Zt0apVKzg4OOTZV2BgoFDgBkChl3bT5Ofr7u4ubNetW7fA18q67qWm/15xcXFqR8NmLcqSNb6ceHt7a3Q9dbKudanJz+vevXtYtGgRtm3blmsxmPyqV6+esK3JcwYy1qDNVKNGjTyLEJUWpWYk5KVLl3TS76FDh3J9fPny5Vi+fLlOrk1ERERERETq+fv7Y+HChULSrnnz5li5cqWeo8rw/PlzYbt79+55FhbJWp1Xl4UpWrRoAUtLSyQlJSE0NBTu7u6iAhvZvXr1CuHh4TqLJ7tff/1V+Ay+bNmyXCtUh4aGCiNIjY2N8eGHH4oeL1eunJBUvH37tsrj2WVdZq1BgwaoWbNmgZ5DJgcHB8yYMSPXY27cuCFs9+/fv8DX6ty5s1Cp2dHREWlpaShTpkyOx6enp2Po0KGIiYlB9erVsXLlSvTs2RNARpXqkydPAgCuX7+OH3/8MddrF2YUb/v27YW47969i2+//TbX469cuYJz584ByEjuZyaeCzsVOmsC283NDUFBQXlWyL58+bKw3aZNm0JdvyQpNSMhiYiIiIiIqHRITk7GrFmzhNFylSpVwrZt23JNvBSlrGvdRUdH53qsi4uLKKGRfbkvbTIzM8OQIUOE/c2bN+d6fF6Pa1vm+pgAcObMmVxHhf72229IT08HAAwePBjVq1cXPT548GBh297ePtdZjP7+/ti7d6+wP2nSpHzHnp2Liwvu3r2b4+MPHz4UlnIzNzcvVBLyo48+EoryREVFYceOHbkev2/fPkREREAmkyE6Olq0hmT37t2Fois+Pj5CQlKdt2/fihKpBYk7s6K5q6trrkvqRURE4MqVKwAyko5Zf175rVSfXZ06ddCpUycAGV8C5FTxPdPz589FSwJmvadKOyYhiYiIiIiIqET5+eefhWmnZmZm2L59e6FHrmlT1vUJnz9/LkoyZlIqlbh06RL+97//iRKPuq4XMG3aNCFhdefOHaxcuVJI5mWNYenSpbkm0fLi4eEBDw8P3L59W+Nz+vfvL6yN+Pr1a/zxxx8qSdmUlBT89NNPuHbtGoCMKubz5s1T6WvkyJHCFOf09HRMnz5d7dThly9fYvLkyUhKSgIAtGrVCmPHjtU45tzMnTtXNMo106NHjzB79mwhyfrDDz8Uag3K8uXLiwob7dy5E9u2bVMp/KJQKHDixAls3bpVaJs2bZpobUYzMzMsXLhQ2F+1ahXOnz+vcs03b95g+vTphSouU6lSJdHyCXPnzlVbYyMyMhKzZs0SRrYOGTJENH0963qM0dHRomn1mvrhhx+EZOaNGzewePFitet63r9/H998842Q7Ozbty+6deuW7+uVVKVmOjYREQAoFEqEJqTpOwwiIiIi0pFbt26JluNq06YNXFxc4OLiUqD+PvvsM60XlRg6dCi2bt2KiIgIKJVK/Pjjjzh+/LgwHTosLAz3798XVfSWy+VQKpVISEiATCbTqJBKQVSvXh2LFi3CsmXLoFQqcfToUdy5c0dIAIaFheHmzZsIDw+HsbExjIyMhESTkZFuxzmZmZlh+fLl+O6776BUKrF7927cuHEDPXr0QOXKlfH+/XvcuHFDKJhiamqKTZs2wcbGRqWvMmXKYOPGjZg0aRKSkpIQEBCA4cOHo2/fvvjggw8gk8nw4sULPHz4UJgCb2triy1btmhU2TovpqamiI+Px5QpU9C9e3e0bdsWQEZS+uHDh8JxPXv21MrIy+nTp+Ply5e4efMmlEoltm7dijNnzqBPnz6oXr06IiIi8PjxY9Hai506dcLMmTNV+ho1ahTu37+Pf//9F1KpFAsXLsSRI0fQrVs3mJmZ4dWrV3B0dIRcLkf9+vXh6+tb4Lhnz54NV1dXPHnyBLGxsZg8eTI6deqEdu3awcLCAj4+Prh+/bqQWLS1tcXPP/8s6sPKygrW1taIjY1Feno6vvzyS/Tt2xcymUzt81Onffv2WLBgAdasWQMAOHv2LO7cuYN+/fqhTp06SElJwZMnT0RLLdSrVw8rVqwo8HMviZiEJKJS5XcHzRbYJiIiIiLDFBcXJ9p3dnaGs7Nzgfv76KOPtJ6EtLKywo4dOzBjxgxERkYCAJycnODk5KRyrK2tLdasWYOffvoJ/v7+UCgUePPmjWiKrLYNHToUUqkUGzZsQHJyMkJCQnD48GHRMRYWFli7di3WrFmDkJAQABlJQl0bMGAA1qxZg5UrVyIlJQV+fn5ClfGsatasid9//z3XSugtWrTA4cOHMWfOHPj6+kImk+HGjRtqpxD36NEDv/32m8q07oKaNGkS3r17h7t37+LBgwd48OCByjETJ07E4sWLtZLclUgk2LJlCzZu3IiDBw9CKpXi/fv3OHr0qNrjR4wYgVWrVuWY7N6wYQOqV68uTFN3c3MTVSMHMr4AWLBgAcaPH1/guE1NTbF3714sX75cWO8xp3u6bdu2+PPPP1GpUiWVxz7//HPs3LkTQEaiNzNZOG7cOGF6eV6mTJmCKlWqYNWqVYiLi0NMTAzOnDmj9tgRI0Zg/vz5agtNlWZMQhJRqbLHKUDfIRARERERoWXLlrC3t8fRo0fh4OAAPz8/JCcno2zZsqhatSrs7OzQp08fDBs2DGZmZujVq5dQlOX8+fM6TUICGdOV+/Tpg+PHj8PR0RHv379Heno6bGxs0KtXL3z55ZeoUaOGqNhPUSVcRo0ahU6dOuHIkSN48OABAgICkJ6eDmtrazRt2hQfffQRhg8fLqwnmJsPPvgA9vb2uHz5Mq5fv45Xr14hOjoaJiYmqFatGtq1a4chQ4YIhVm0xdzcHLt378bFixdx+vRpeHh4ICkpCTVq1ECnTp0wbtw4tGzZUqvXNDY2xvz58zFu3DicOnUKjx8/RkBAAOLj41GmTBnUqlUL7dq1wyeffJLn60sikWDBggUYPHgwjh07BicnJ4SFhcHCwgINGjTAxx9/jM8++yzXtTY1VaZMGaxduxZffPEFzp49CycnJ4SGhiItLQ0VK1ZEy5YtMXz4cAwcODDHhO0PP/yAypUr4/Tp0wgMDIRUKkWVKlUQGhqqcRISAIYNG4Y+ffrg1KlTuHv3Lt69e4fY2FiYmJigdu3a6NChA0aPHo2WLVsWaNp3SSdR5raSK5VaLi4uwpBzIyMjYWi4ococSp+pdevWOpu+QMWb0Tx7nfRrIpehcex7VEmJR4KpOd5VrIkkM3OdXCs7xYaPi+Q6mXg/EWkH7yUi7dH2/SSXy4X1BAGgSZMmWpl+SVTcKZVKUeLEwsIiz8rCLVu2FNaMfPz4cb4SOqXN1q1bsW3bNgDArFmz8N133+k5ItKVgtxLuqSN32vayBPxL10iokJoG+aNOU/P42MfZ5RPTxHapUbGuFu7OXa0HoJzjbtAKWEdMCIiIiIq/v755x9UqlQJderUQdeuXXM91sfHR0hAVqxYkQlIIsoVk5BERAVgIU3FBsd9mPHiqtrHTRVy9A9wQ/8ANzy0aYqvPvoO7pXrFHGURERERET5c/nyZWHE1OnTp3OdEnzgwAFhu1OnTroOjYgMHIfmEBHlU62ESNw/tjDHBGR23ULc4XxkLkZ7Psz74AJQKLiqBhERERFpR+fOnYXt1atXIyYmRuUYuVyOPXv24MSJEwAypmZqo4IzEZVsHAlJRJQPtRIi4XDiJzSMC83XeVbSVJy0X4evB36LfS0HajWm5dc98Mugplrtk4iIiIhKp4kTJ+LixYuIi4uDq6sr+vTpg379+sHW1hampqYICwvDgwcPEBwcLJzzv//9Dx06dNBj1ERkCJiEJCLSULm0ZFw5s0JtAjLFxAynmnTH68q2qJUYjU89H6BmUrToGCMo8ff17Qi3sMa/DbU3XeXvR/5MQhIRERGRVlSpUgW7du3CggULEBAQgNTUVFy+fFntsWZmZli0aBEmTJhQxFESkSFiEpKISBNKJfZd24wWUQEqD92ybYWpH81GUPmqQtvCXpPx8+OTWOx0Ckb4b7q0EZQ4emkDen6+Fi+qNdBKaBFJ6Vrph4iIiIgIyKice+rUKTg4OODGjRt4+/YtoqKioFQqUaVKFdSqVQv9+vXDsGHDULVq1bw7JCICk5BERBqZ8NYBn7x7pNJ+pGlvTB00GzJj8dtpmokZlvb4Ak9qNMLxf9ejrFwqPGYlTYX9uV/QZtJmRJuX13nsRERERET5ZWpqihEjRmDkyJH6DqXE+O677/Ddd9/pOwwivWFhGiKiPNRIjMbmO7tV2q/Wa4spg39QSUBmdbFRF3wxZK5Ke+3EKGy7tUurcRIREREREREVV0xCElGJk5Aqw18P/LDkyls8DYwtXGdKJXbc/AuVUhNFzYFWVTB+6HzIjYzz7OJsk25Y1HOySvvnHvfwqcf9wsVHREREREREZACYhCSiEkWpVGLYXifMOvcSa255odPme7jvG1Xg/j70d8UIb2eV9q8HfovYslYa9/N7x9E40aSHSvtfN3eganJsgeMjIiIiIiIiMgRMQhJRieIZkYR7vuKq1CP3PylYZ0olfr1/SKV5X4sPca1++/z1JZHg2w9nIMSyoqi5SmoCVt8/XLD4iIiIiIiIiAwEk5BEVKKEJ6aptEUnS9UcmbfR7x6hY5iXqC2qbDnM7T2tQP1Fm5fH9AHfqrRPe3UTrcJ9C9QnERERERERkSFgEpKIShRjI4l2+lHI8csD1RGKazp/irh8TMPO7t+GnXDcrqf4WkoF/nDcCyiVBe6XiIiIiIiIqDhjEpKISoVuW+9j+wPNRxuOfvcIzaKDRG1BVpXxV+shhY5lUa/JSDExE7X1D3DDMJ8CThsnIiIirTIyEn9MksvleoqEiIio8LL/Hsv+e66oMAlJRKXCY/8YfHfulcbHz352UaVtZddxSDUtU+hYAspXw6b2I1TaVzw8ytGQRERExYBEIoGxsbGwn5qaqsdoiIiICic5OVnYNjExgUSinRmE+cUkJBFRNp1CPNAtxF3UFmhVBQeb99PaNdZ2+gShFtaitnbhPhwNSUREVExYWloK20lJSXqMhIiIqHDi4+OF7XLlyuktDiYhiYiyUTcKcnvboZAZm2jtGolmFljb+VOV9qWPjnM0JBERUTFgZfXfGtBxcXFISUnRYzREREQFEx0dLfoyTZ9JSO19oiYiKgFqJURijOcDUVuyiRl2txyo9WvtbvkRFjmdRo3kWKGtY5gXBvk9x9X67bV+PSIiItKcpaUljIyMoFAooFQqERgYCGtra5QvX16vU9mIdEmpVIrWjpPL5XytExWAvu8luVyO5ORkxMfHixKQpqamsLCwKLI4smMSkogoiy9f3oCJUiFq+6d5P8SYa//bohTTMtjQcRQ2OO4XtS90Ps0kJBERkZ6ZmJigdu3aCAgIAJDxgS4qKgpRUVF6joxItxSK//4W1lfxCqKSoLjdS6amprC1tdXrFwv6/ykQERUTEqUCk97cVmnf0vZjnV1zZ+vBCDevIGrrHfQabcK8tX6t4LgUfHLgCRqvuYWvT71AcrpM69cgIiIqSSwtLWFjY8ORYFRqKJVKyGQy4T8llwkiKpDidi9lJiDNzMz0GgeTkERE/69H8Bs0iAsTtd2v2Qzulevo7JrJpmWxve1QlfbZz1XXpcyNJr/Uxh1+jnOvQuEdlYw9TgGY/+/bfF2DiIioNLK2tkajRo1QrVo1lClTRt/hEOlc1sQJERWcvu8lExMTVKxYEba2tmjYsKHeE5AAp2MTEQmmvLql0naweX+dX3dn60FY7HQKZeVSoW2c+z0s6jUFYZYVNepj7D/PMMCuKqZ0qAMzE9Xvl9Jkctz3jRZf95Efto9uWbjgiYiISgETExNUrlwZlStXhlKpFE2xIypJZDIZXr16Jew3bNgQJiZMGxDll77vJSMjo2I5ip/vJkREACykqfjU86GoLdnEDKfsuuv82hEW1jjarDemvboptJkpZJjpehnLu0/QqI8zL0Nw5mUIHvhG4+C4tiqPyxWqIyU5u4aIiCj/JBIJjI2N9R0GkU5kn11jbGzM1ztRAfBeUo/TsYmIAIx+9wjlpCmitrONuyK+jGWRXH9zO9V1J796eR0m8vwN3T/0LAgpUnneBxIREREREREVISYhiahEkcoLNj1qrMc9lbaimIqd6WXV+rhl20rUZpMUg2E+T/Ld1+gDT7DuthdSmYwkIiIiIiKiYoJJSCIqUXY98s/3OeXTkjDQz1XU9t6yEu7UKdr1Ene2HqzS9j+3a/nu55pHBBZffouvTr7QRlhERSpNJse/b8Kw3zkAIfGp+g6HiIiIiIi0hElIIipRjru+z/c5w3yewEwhnvZ8tnFXKIyKds2Oiw07IcyigqjtIz8X1M1WsVtTR12CCzwylEgflEolRh94iuH7nPHlyRdo84cjvCKT9B0WERERERFpAZOQRFTqfZKtIA0AnGnSrcjjkBqb4kDzD0VtRlDiq5c3Ct4nk5BkQF6FJuCKe7iwH5GUjv1PAoT96x7hmHnGDevveCE+VaquCyIiIiIiKqaYhCSiUs0yPQWD/J6L2sLNK+BerQ/0Es+elgNU2qa+ugkjBdd3pJLvdWiCStvvd7wBABdehWLwHifsfOSPhZfeYuT+/K+XSkRERERE+sMkJBGVakN8n8Fcli5qO6eHqdiZvCvWxE3b1qK2mknR6Bv4Ui/xEOnCI79o9N/xEM1/v4Nfb3pCqVTmeKxckfHY7sf+yHqYg3cUguNScjiLiIiIiIiKGyYhiahUG/XukUrbaT1Mxc7qYPN+Km1fvLlToL4ykzYyRc5JHqKilCKVY/AeJ9zxjsLb8EQsveqBw8+D8jzvcpZp2plikjklm4iIiIjIUDAJSUSllrFCjo+yTcWOLmsFx9ot9BRRhnONuyLRtKyobfS7x7CQ5r9S8FenXkCpVOK6R4S2wiMqlMf+MYhPFReC+rsAVe2JiIiIiMiwMAlJRKVW1/fuqJgmrrx7pV57yIxN9BRRhmTTsjjXqIuorZw0BSO8nPLd1wnX93APT8Qxl2BthUdUKEnpquubPvCL0UMkRERERERUlJiEJKJSa4jvU5W2yw066CESVYc/6KvSNuGtQ4H6uucbjWhOWyUiIiIiIiI9YhKSiEqtIT7iJKQCElyr11ZP0Yjdtm2FEMuKoraBfi6olpT/EWOuwXHaCouIiIiIiIioQJiEJKJSqXZ8BFpFitehe2xjh2jz8nqKSExuZIxjTXuJ2kyUCnzucS/ffe185A9HnyhthUZkcPyjkxGXwtHARERERET6xCQkEZVKg/2eqbQVl6nYmQ6pmZL9xRuHog+EyEDFp0rR568HqP/bLVRedhWrb3rqOyQiIiIiolKLSUgiKpUG+6hJQtZvr4dIcvaian28qmwrausQ5oXG0dorMqNUKrXWF1Fxs/ORP+76RAMAFEpg2VUPBMWm6DkqIiIiIqLSiUlIIioRIpPS8Do0QaNjjRVy9A18KWp7b1kJrtUa6CK0gpNIcKRZH5XmT9491NolbnhGaK0vosKQyhVa73PRpbcqbQ9ZiZuIiIiISC+YhCQig7f6pieqr7iOlhscNDq+Q+g7VEhPFrXdqNsakEh0EF3hnLTrodL2qecDrfV/6FmQ1voiKox59m+K5DpGxe82JyIiIiIqFZiEJCKDFpaQhmVXPZCfWcX9A9xU2m7bttZiVNrja10Dz6o1FLW1C/dBg9gQrfTvFZmklX6ICmuPk3+OjyWkyrR2HasyJlrri0jb5Aoll8kgIiKiEotJSCIyaG4h8fk+p1/AC5W2W8U0CQkAZ5p0U2n7xFN7U7KJioMUac7TsS+9DSvCSIiKnlyhxHfnXqLi0iuwXX0ThzlKnYiIiEogJiGJyKDld8RIWWkaur13F7W5V6yF9+UqazMsrTrTWE0SUovrQhIVd0ef578YU3AcC9CQ4Tj8LAjbH/ghMU2O4LhUTD7ugtD4VH2HRURERKRVTEISUanS/f1blJVLRW13bFvpKRrNvKtUCy+q1hO1dQp9B9v4cP0ERFTEpIr8Fa15HhSL5usddBMMkQ7szrYcgVIJ3HwXqadoiIiIiHSDSUgiKlX6qVkPsjhPxc50ukl3lTZtFqghMmRpMjluvYvApTdhSEqTYdt9P8RrcR1JIl17FhSn0paYxtcwERERlSxcnZ2ISpXsSUgFJLhTp6WeotHc6cbd8cuDI6K2TzwfYmOHUXqKiKh4SJPJMWS3E+54RwEAPqhuhTdhiXqOioiIiIiIsuNISCIqNSzTU9A+zEvU5lKtAWLMy+kpIs15VK6NV5VtRW1dQzxQOz5CTxERFQ/3faOFBCQAJiCJiIiIiIopJiGJqNTo+t4dJkrx2nKOdVroKZr8U1cle7i3sx4iISo+rrjrbm3U5HQZ/n0ThrMvQxCfKs37BCIiIiIiyhGTkERUavQMfqPSdq9Wcz1EUjBnG3dVaRvu7aSHSIiKD4VSN/2mSOX4cNdjDN/njE8PPkWXLfcRlZSum4sREREREZUCTEISUbGXJpPD/nUo9jkH4H1caoH76aEmCXm/1geFCa1IvaxSD77lq4na+gS+Qvm0JD1FRFRyOXhF4rF/jLDvHp6I869C9RgREREREZFhYxKSiIo1pVKJ0QeeYsT+J/jq5Au02eiIdxH5X/PNTCZFlxAPUdubSnUQZVFeW6HqnkSCi406i5rMFDIM8n2up4CISq5/36pO8z7wJEAPkRARERERlQxMQhJRsfY6NEG05ltkUjr2PwnMdz/tw7xgLhNPpbxX23CmYme62LCTStvHXBeSSOuUStV53ulyHc39JiIiIiIqBZiEJKJiTV2l23V3vNQcmTu160HWNpyp2Jnu1WqOmDKWorYhvk9hIpfpKSIiIiqOYpLTMWq/Myr+fAV9/noA70gu3UFERET6xSQkERkcNQOU8tQj+LVKmyEVpckkMzbB5fodRG0V05LQU83zIyKi0uvHC69x4XUY4lJluOsTjS+OcukOIiIi0i8mIYmoxJMoFege/FbU5l+uKgLLV9VTRIVjr2ZK9ggvTskmIqL//PMsSLTvFBALqVyhp2iIiIiImIQkolKgaXQQKmarIG2IU7EzXa3fDulGJqK2j72dCjZElIiISg0Ff08QERGRHjEJSUQlXpf3Hiptj2o200Mk2hFfxhIOdVqI2urHh6NlpJ9+AiIiIiIiIiLKA5OQRGTQ0mR5Ty3rGqKahHxsY6eLcIqMuinZw1klmwxAeGKavkMgIjU8IxKx0dEbx12CkSqV6zscIiIiKoGYhCQig3bLKzLPYzpnS0Imm5jBrWo9HUVUNC427KzSNsj3mR4iIdKMZ0Qi9joF4KuTL/QdChFl8ywoFu033cU8+zcYf+Q5Pjn4FEpO3SYiIiItM8n7ECKi4quyhVmuj5dLS0bzyABR25MajSE3MtZlWDoXWL4qXlapi5aR/kJblxBPVExJQIx5OT1GRqTq0pswjDrwBDJFwZIa1zwitBwREWW1xykASen/jX684h4O76hkNKpiqceoiAxfZFIaJh9zhaN3FFrXLI8Dn7dB46pW+g6LiEhvOBKSiAyaRJL7451CPWEEceLDycCnYme6Wq+daN9YqcBAfxc9RUOUs42O3gVOQBKR7u165K/SFhSboodIiEqWH86/xhX3cCRL5XjkH4NJx/h3GhGVbkxCElGJ1kXNepCPbJoW2fW/7lJXZ31fbtBBpW0wp2RTMXTHO0on/aZIFTjrFqKTvotKqkzBaa9ERCXUUZdg0b5TQCxk8rzXMyciKqmYhCSiEk1dZWwnmyZFdv22tcrrrO8HNZsh3sxc1DbI9zkkSv5xS6XDx/ucEKCj0VppOv6QmJAqw8gDT9H7dCiGXAjDveBUnV6PiIiKB37tRESlGZOQRFRyKZUqIyH9yldDqFUlPQWkXTJjE1yv21bUVi0lDu3DvPUUEVHhvAyNz9fx4YnpOooE2O8cqLO+AeB3By9cdo+AQglEpiiw5GEM0mX8AoGIqLRQKpV4HhSLE67BeB/HL6KIqHRgEpKISqyGsSGonJogantkAOtBXv+6C2qWL6vRsVfqt1dpG+LzVNshERWJNbe89B0CABTJVLlNjj6i/RSZEp6RSTq/LhERFQ8rr3uiw5/3MO7wc9itu43H/jH6DomISOeYhCSiEqtDmGpC40kRTsUuqLKmRghaNgBHJ7TL89ir9VWP4bqQRDlzD09EteXXYDTPHiP2OeNdRKLKMUVRRCdZKldpU3BtSCKiUiFVKsfvd/77OzUpXY5NjpzJQkQlH5OQRFRidQhVTUI+rd5I4/P3jG1d6Bgikgo+XTSvyt8AEGJVGS5V64vaOoa+Q5XkuAJfl6gkm3PxNSL//760fxMGu3V3sObWO8g1SDw+CYxFmkw1eahOqpokIxEREZDx92FqtiU4Thl4oTUiIk0wCUlEJVa7cPE3ygpI4FKtgcbnT+tkixUDCzd9O6UIEhFXslXJNoISH/k91/l1ibILik3Bt2dfYvheZxx4ots1FbVpyRV3rL7pqdGxy66qFrvK6rF/DJqsvQ3Lny6j346HiEhM00aIRAYjLkWKf9+E4cX7OFZ+JyIiIhEmIYmoRJIoFWiXrUCLe6XaSMpWTVqbypUx0VnfubmsZl1ITsmmoqZUKvHR34+x46Ef/n0bhmknXHHkeZC+w9LYHqcAjY5b7+CN8AT1iUWlUokJR57DKzIJSiXg4B2FxZfdtRkmUbHmEZ6Ipr/fwfB9zmi78S7m2r/Rd0hUigTEJGPhv2/w1ckXcPCK1Hc4RESkBpOQRFQiNYoJQYX0ZFHbs+oNdXpNEyMN5k/rgJONHWLKWIraPvJzgZGC00Gp6LyLTMLbcPH6ins1TOwVB8H5qEx64XWo2vaYFCl8o8XvO/ucDednQFRY2x/6ISxLkn7zPR9EJnE0MOleqlSOPn89xHoHb+xzDsDAvx/jkV+0vsMiIqJsmIQkohKpvZqiNM9qaL4epCGRGxnjWj1xgZrKqQnoFPpOTxFRaZSUrpr0dvCO0kMkuvc0KFZtOwvLUGl2zSMc2+77itqUSsA/JkVPEVFpcs83Gn5ZXmsyhRL7DWhZECKi0oJJSCIqkdRVxn5WLf9JyA51KmgjHJ27omZK9hDfp3qIhIiISpt7PlEYusdJ32FQKRagJtnNkehERMUPk5BEVCJlXw9SLjGCa7X6ORyds76NquCD6lbaCktnrtZvp9I20M9FD5EQEVFps/9JIDQoME9ERESlHJOQRFTiSJQKlcrY7pVqFagojbmpMRxmdsPWUS0wvm0tbYWodREW1nhaXTzSs0OoFyonx+spIiIiKi0OPuW0VyJdCIpNgdv7eCiY5SeiEoJJSCIqcRrHvEf5dPG0nGfVC74eZBXLMvi2e30s6Fu815S8UbeNaN8ISvQPeJHrOZFJ6Xn2q1QqceR5EP536gW23feFVK4oTJhExZ5nRJK+QyAqdiKT0rD7sT92Zis+Y2jSZQqkSFm4jYo3pVKJORdfw3b1TbTZ6IjOW+4hOjnvv9mIiIo7JiGJqMRRux5kPpOQdazL5vu6nWytVdoqmpvlu5+Cyl6cBgAG+uc+Jds7KhntNzkiOC7nwgF/OPpg4lEX7HUKwPfnX+H7C28KHSuVHjIDTFqfeBGs7xCIipW4FCl6bHuA6afdMPPsS3Tdcg8RiYaXiPzt1jtUXnYVFX++ipln3CDn6DIqpnyikvHnXR9h/1lQHA6w0A4RlQBMQhJRidM+23qQAPCsesN89bGoX+N8X/fLTraifWMjCQbZVc13PwX1qKYdEk3FydMBfq4Z5Ulz4RIcjyWX3XN8/O/H/qL9vc6B/OBGGrviHq7vEPLtaWCsvkMgKlauuIeLRgj7xaTg/KtQPUaUfy9D4vHzFXckpcuRLldg5yN/XHxtWM+BCk6uUCJKg9kf+uYXnQwAeOgfrfJY1qQkEZGhYhKSiEqcdtlGQmYUpWmQrz6+6VYv39f9pJUNfv6wMWzKl0GzalY4NqEdbMrnf0RlQUmNTXGnTktRW53ESDSNDsrz3H+eBeU4Ys0rUnVqKnOQpKlDz/J+/RFR8abuy4QTru/1EEnBXVCTcOTIstLh9Iv3qLr8Gqouv4Y+fz0o1tOaf7r8FgCg7k+yoLjUIo6GSDvSZQpsdPTG5GMZM6uUeQyQoJKNSUgiKlEkSgXahYm/KX5bqTaSTXWfDJRIJFg1qCmClw3E6wV98Wnrmjq/ZnY36rZVactrSnamntsfICFVpu2QqJQz5LXjiChnhvYhMjZFqtLmE5Wsh0ioKKXJ5Jhy3FX497/rE42lVz00ev0qFEp4RyYV6VrYxw0suU+kiRln3DDP/g0OPctYY37tbdWls6j0YBKSiEqUJtHvUU6avShN/qZiG7Lr9dqotA300ywJ6RQQi3OvQrQcERFRyRSXIkVQbM7r6eqaQqGES3AcHLwikcpCK0RqeUcmIznb/bHjoR8arbkNJ/+YHM/zjEhEozW30HjtbVRdfg3XPAxvaRGi4kChUKqMOt+dbaknKl2YhCSiEqVduLr1IPO/vqOh8qxYC/7lxOtQ9gl8CTOZ6ggQdfY6BegiLCrBFJybT6XQimseqLL8GmxX38Sgvx8jKa1oR5ErFEqMP/Ic7TfdRb+dj9Dxz3uITOKoY6LscvoN5RudjEnHcv6S9qfLb+EXk/ElQ3yqDN+cdjO40b9ExYFczX2TeW8ZiuR0GX/HahGTkERksBJSZSrfYreO8FU5ziWf60EaNIkE1+uJp2RbyNLR/b1mFa3ji/iDNBkumVyBb864oeLSq2i05hbOvTT8UbTu4QmYe/E1bnhG6jsUKsa8I5Ow6oanUKDrumcEDj4t2rVPX4TE4+SL/6Ztvg5LwNHnRV/VPUUqxw3PiLzqn+XZx/JrHhi53xkbHb1Z+IyKzLvIJCTm8HfP2ZfiNUT9YlKQmFb8RxyfcA3GsD1OmHzMBa9DE/QdDpHBW3/HC5WXXUO15dcxYp8zUjjzoNBM9B0AEVFBXH4bhk8OPkWaTLxOTys1SUi3qvWKKKri4Xq9tvjfy+uitoF+rrhj21pPEVFJtNc5ALseZUynSUiTYfXNd3qOqPB6bX+ISAOonkr65egTpdK2/YEvZnavV3QxeKvGsOW+L77vWXRfukUkpaPDprt4G55YqH6+OvkCx1wyEqgXX4chOlmK1YObaiNEojwpStDoxuse4Rh3+Lmwf9U9HL5L+sPCjB/5iQoiICYZCy+9Ffbt34Rhv3Ngkf6+L4k4EpKIDNJ8+zcqCUgAaB3hJ9r3qVAdCWUsiiiq4uF2nVaQS8Rv7wM0LE5DlBsHr0h8c8YNK697YNUNT32Ho3VMQJIm0tX87vGJLtoCJ+oSJzHJmi27oS2vQhMKnYBUKJRCAjLTHieuFUZUEPucxevuRSSl455vtJ6iITJ8Dmq+8PvroeqAF8offi1CRAZJ3QefqsmxsEkST89+UbV+UYVUbMSYl8OTGo3QJeS/JFG7cB9UTY5FhIW1/gIjg+bgFYkBfz/mVEkiAxebIsW3Z1/imEswLEyN8Wp+H73Foi6ZGp7ILwOICiLrEg2ZwhK4jh0VrYCYZPz10B8xKemY0LY2utarqO+QCixdrvqlo0dEkh4iKVmYhCSiEqN1uP6mYk/tVKdIrqOpG3XbipKQADDA3xVHm/XJ89ywhDTYvwmFuakxPv6guo4iJEOz/0kgE5BEJcBXJ12F9e6SpXI0+O2WniMiIqKSIFUqR5+/HgqFZw48CcTtGd30HBUVN5yOTUQlRvap2EDRJCH7NaqCdUObaa2/cmUK//3Q9bptVdoG+OU9Jft9XCo6bb6Lr0+5YeJRF/Tb8ajQsZDheRIQi50P/eD2Pl5oO/SsaAtvENF/5Aol/nrgh2knXLHXKaBQhWCyF9zIyf9OvUBCqv6KlSWny/D7HS9MO+GKk66qI7yItOHWu9JRiCxVKse3Z1+i2brb+PTgEwTHGVZ1YjIMd32iRJWvpXIlDjwNzOUMKo04EpKISoyWkX4qbUUxHfvmjK5a66teRXO0qFG+0P042TRBvJk5yqf/94fAQH9XQKkEJJIcz4vItibe8+C4QsdChmXrfV/MPv8KQMZL5dC4thjfrraeoyIq3X68+Brb7meM9j/wJBBWZYx1fk3vqGTMOvcSB8epfqlVFCYceY4Lr8MAZDznuFQp/telrl5ioZJr5XVPjGppo+8wdG7R5bfY8dAPQMZ00tCENNyf1UOjc5VKJfyik1HH2hzGRjn/DUmUNQGZaa9TgB4iAaRyBZZd88Cdd5FoblMO64Y2QxXLMnqJhcQ4EpKISozW2SpjJ5iaw7eCYUwnHty0Gr7qbItbM7pp5Q88mbEJbmWrhm2TFIMWkVzwn3K3/o6XsK1UAhscvPUYDZHhCYlPxd+P/XH0eZDWRhLufix+705Mk2ul37zoawR0YppMSEBm+vsxf3+R9rmFxOd9UAnw9yPx/fPQLwbJ6Xm/P/nESdF4nQMa/HYLNVZcwz0f1UIdRMXRz1fcse62F5wDY7HfORCfH3qe90lUJDgSkohKBFO5FM2ixB+W3KrWhVJiGN+1XPqqs9b7vFG3DUZ5PRa1DfR3wasiWieTDFNQXKpo3/V94T6gxelxOidRUQuMTUHXLffxPj7jPupQuwLuzeqOMiaFG7mYpqYid0mQ0wL/iWmq7xvPgjgyn6igUtW8h8g0WOd5s0s8AmIzittEJUsx88xLvNRjMStSJVco4fo+DjXLl4VN+bL6DkdjcoVSpyNrd2cbgXnbKxKpUjnKmup+JgHlzjA+nRMR5aFZVBDMFOIPLW4FnIr9VWdbbYSkd9frqVsX0rXoA6FSrbSMMiECgOMuwUICEgCeBsXhnk+0HiPSjjdhCVrv89SL92i5wUHr/RKR9jwMEVfXfh2WAAWL1BUbIfGpaLnBAR3/vIdaq25gxTUPlWNcg+Ow9Ko7tt73RWyKtNDXVCqVcPCKxB4nf/hEFbxSdNXl17D29rtCx5MTdc9VKudrtzjgSEgiKhGyT8UG8r8eZIWyJpjRrR6WD2iirbD0ysfaBt4VaqBh3H9FCHoHvUJZaRpSTbkmChGRtqmbMnzfNxofNqmqh2i0wy86WSejEHX54ZNIX4LjUrD7cQBiU6WY0JbrKRsSpVKJV6EJeBeZhB71KqFaueL/t/L2B35wD08U9lfd8MS33euhqlVG7E8CYtH7rwfCSNjDz4Lw6LseMCrECMS59m/w510fAEBZEyNc+7oLejaonO9+YlOk+OmyOwY0qYr2ta0LHA8ZHiYhiahEUJ+ErJevPu580w1talXQUkSFV6+iRaH7uFGvDRq+uCrsl5VL0SP4DW6qGSVJRESFo8n0RkNz6oVuKlO7BHOUNJUsKVI5+vz1EN5RyQBU12Gk4m31zXdY/v8jCcuVMcHN6V3R0dZav0Hl4fcs63hneh2agD6NMpKQ+58EiKbiPwmMhcv7uAIn/RLTZNh6/7/PXKkyBbbe9y1QEjLTqRchTEKWMpyOTUQlQssIP9G+AhK8qmLYVTQ71LFGu0ImRW/UbaPSNsDftVB9EhEgkysgL4EJJ6LsLr8N13cIRY73dumirenFjt5RQgISUL8OY3EjVyix6NJbNFl7Gx/ufATX4NK59mqqVI41t/4bnZ2QJsOmu8W/MF9eX3ztVJMI91dTwVpTEYnpKu+Pp91CCtwfAIQnpuV9EJUoTEISkeFTKtE6WxLS27oGkszM9ROPlhgbSXBjehdM71rwZOrtOq0gz1ac50MmIYkKZffjAFRedk3n6xkRUdG67xuFZutuw3LxZYza76y16uZUvIUkpOZ9kAY8IxLzPqiY2XLfB7/f8YJXZBJue0ViyB6nUpmED0tIU0kaH3fVzShwotKOSUgiMng1kmJQLUX8zW1+14MsripamOH7HgV/LnFlrfCkRiNRW9sIX1RNji1kZFSavI/Tzge0kiQhTSasZ/QkIFbf4VAJNPPsSzwNjNV3GHD0idJ3CEVCoVBizD/P4BGRhHS5Ahdeh2HVDU99h0VFoBTm3AQ7H4pHyoUmpMHDAJOpRGQ4mIQkIoOnbj1It3yuB6lPlmbGBTqvX6MqGh13U82U7P7+Lwp0TSqdOvx5V98hFGtz7V9DqSzFn2JJZzptvgcn/xit9XfJQKZWB8YW/RcfgbEpCEsQTwvcfM+nyOMoadzex2PaCVd8fugZbnhG6DscyuZdpGp143RWECYiHWISkogMXqtsU7EBwxoJuaBvo7wPUmP14KZwnt0zz+O4LiQVVmgC1+vJzX3faCy54q7vMKiEGvD3o3yfkyqVq21fr6aIQXHUecu9Ir+mXM0XCTKFEtsf+BaLEamGKDo5HX13PMSBJ4E4+eI9hu5xwrOgWH2HRaVEmkyO/516gRorrqHb1vt87REVE0xCEpHBax4VoNJmKCMhG1S2wLROdQp0bpe6FdG+dt6Fax7b2CHRtKyo7UP/FwBHbhFpzdrbXmix3kHfYVAJlJimPqGoTrpMgUlHn8Pqp8tqH3fi0gH59t25V+i0+R72Oqn+rUE5S5HKMfv8K8SkSIU2mUKJg0+D9BiVevH5WPtToVAiMY1rhRqCtbe9sNcpAOGJ6XjsH4MR+55orQgRGaaFl96UyjVPixsmIYnI4DWPFH8wSDA1R0D5qnqKRjNuc3vjxvQueDmvD2pVKHgBHYlEkucxUmNTONRpIWqrkxgJu+jgAl+XiFSFJ6brOwTSo+Lw4XaPUwAOPw8u1Wvc5Ud0SjqWXHmL8Yef5VmE4g/H4l8pt7iIT5Wi57YHOPJc9e+MS2/C9BBR7qaf/m+JGqVSiaBY9dWDz7wMgc3K67D++Qo+3uvEZGQx99cDP9H++/hU+MUkqz+YSoWdj/z5Xl4MmOg7ACKiwjBSyPFBdKCo7U3lOlBKivd3LC1syqNF3odpzc26bTDM56mobYC/Kzwq1y7CKIiISqY0mQJWP11Wqa5a1HY89NPr9Q1NSHwa1tz6/ynqeSQh3cNZrENT/74Jw/PguLwP1DGFEhi8+3Gexz30y1h3NSAmGUP3OON1WILa46adcBW2L70Nx4h9zmhQxRKVLczwbfd62ghZJ666G8ZasNoWkaT6xaC0FKx32W/nI0xoVwu7Pm2l71CKnFKpxL9vwuD6Pj7HY3Y98i/wUlikHUxCEpFBqx8XBnOZ+I+MN5ULNr25JFO3LuSH/q7Y1m5Y0QdDxVJcihSn3UL0GkNZaRp6B71ChzAvtAn3Qa3EKFROSYCpQo5E07KIKWsFj0q18aqKLRxrt8hY+1WD0cBERaEgCcijz4Ow/JoH0rSQvIxLlYqmvpL2vXgfh9Y1814GpbRTNwJSG5RKJU67heC+bzQ61KmACW1rw8go998BQXGaFzlafs0jxwSkOne8o3DHO6N6/KkX7zGja12Nz9WGcy9DcNotBDXLl8Wc3g3UHhOemI6vT7kVaVykf0eeB6O2dcFnWhmqpVc98Nutd7ke4xvN0bD6xiQkERk0detBvqpStH8EGoK3leog2KoSaiVGC219gl7CRC6DzJi/Ckor36hk/OHojdCEVJx9GaqfIJRKfOT3HFNe3cJQ36ewkub+gbFn8BthO9iqEs416opdrQfhNe97MjCBsSmYeMxFa8vzFucp2C/ex+GMWwiqWpXBxPa1YW1uqu+QCqT9prs4PbkDRraw0XcoxVq6XDcjgtc7eGPRpbfC/suQBPw+7AOt9V+Y9Sp9o5Px0C867wML6XVoAprXKIeLr0PxycH/ZrhccVc/zX3Bv2/UtlPJt/Wer75D0JmQ+FRcehuGCmVNMaRpNViWMYFCocTW+yX3OZck/ORJRAatRaRqEvJ1FVs9RFLMSSS4Xrctpr6+JTSVT09B5xBPPKitvT/gyXCkyxTos+MBAmM1HyWiTRKlAuPc72KR02m0UPNlgiZqJUZjluslzHK9BMfazbGy6zg42Ja+6UdkmC6/DSsV9cGeBcXhxwuvkCLNSEz98zQQj7/vqeeoCkahBDbf9WUSUouc/GNw2T0cDSpZ4PO2NVHGxDjHY3dmW25g5yM/rSYhCysgh7UktemYSzBWD26qUijpTRiXCyCxZKnmRc0MiV90MrptvY/QhDQAQI/6lXB7RlcoASQUYp3W0PhUOAXEonmNcmhUxVJL0ZI6TEISkUH7QE3y4nVl3SQha1Yoo9I2rVPu17I2N0UlC1NEJ/83RW5Uixpaj00TN+u2ESUhAWCgvwuTkKXUFfdwvSUgO4V4YPPt3egc6qm1PnsHvcbtUz/jpm1r/ND3f3hTjL6MUCqVGhWRopIpOD4VD/5/+mjWBEtpmTp98EmgkIAEMpKSz4P0v15gQTn6ROk7hGLv1rtIjY676h6Oj/c5C9VqL70Nw8lJHXI83i9GnOTLT+X4kuJVaMZad/bFsMBPaRYQk4zyZU0NdpR3ceP2Ph7z/30N/5gUjG5pg18GNYXx/y+9cOR5kJCABID7vtF4HBCDzrYVC3w9B69IDNnjJCyrsuOTlpjetV6hngPlrHhXbiAiykP26dixZSwRbFVZJ9eqYlkG/+vyX2KjfFmTPBciNzaSYO3QZsJ+hbIm+OnDxjqJLy8367ZWafvQ37XoAyG9C41PxagDT4r8umYyKdY57sfDows0SkBGl7WCR8VacKtSFz4VqiPVOO8/7j8MeAGXQ7Ox+v4hlJEVj2rVt700+0BOJdNepwD03P4Ajdbchldkkr7DKXKP/GNU2gqzJpdCocTtd5HY5xyAAFa6LXbyUyV+5yM/IQEJAKfdQhCZlJbLGcWbf4zuR0JS8XLXOwpG8+xR79dbqLT0KpZeddfZtdzex2PJlbfY4OCNiET93CdbH+h+unNgbArabHTEDc9IeEYkYe1tL9E06+3Zqp4DgHNAbKGuueb2O9G6zsuveeTrvYzyhyMhichgGSvkaBotXr/ndeU6Oi1UsWN0K0xoWxt+Mcno37gKalXIe9HnrzrXxdBm1fE2LBEd61ijXFn9vPVGWFjDtWp9tIn47xd5p9B3qJCaiLiyVnqJifIv+f/Yu+/wpuouDuDfrKZ77z3ooKUUaCml7L2RIXsIIogICgqKihNxIaLi60BQEATZe+9NCxRKgZZC9957Z7x/AIX0pjvJTdLzeR4f7C839x6gpMm553dOtQjVYmmr7rbviGx4CqwytCtIx85D38p8/9VVIDTA/nYhOOQRjDA7L2TUuaHAk4jhUZiBvin3MCL+BoYl3AJfyuw9JpCI8WHYLoyMC8fkke8hhuVhVf/dSccATytWYyDsSyuqxA8X4rCwhxvi88tlKuRJ083fcxcbnm5FNRTycHZ+KIKcTNkNitR6sUKpMQfvM6v58spqYGnA3HmiCejfdNtyPakAfX+7KrO26vQjzO7qBHcLxW7nvZtejNB1l2u3WG+6kYyIJX0Ueo3G7IvKwI8X45V6jZzSKrh8eZqx/se1RCzu/WT4kiIGub3oXkYxTsXK3izOLq3W2u3s6oCSkIQQjdWuIANCsWzvjwdK2or9DJfLQW8PC/RG86ot7Yx1YWesq6Somu60SyeZJBBPKkG/lCjs9+zOYlSkKaRSKT4/GYtvzj5GjUSCKZ0c8PfkThDwmr+poW5fLWUbkHQHOw5/B/NK+T2rEoytsbrrOGz2G4AKQf0fPsVcHmLNHRFr7oj1AUNhV5qHuXdP4u2IgzCrYlaYdcxNws2tS/DGwAXY4tdfYb+f5spuxodyot1+v5aE368lsR2Gxsorq65NQAJPtuP+ejURf03qxF5QRIYUVD3UWjHZJfjmrPwJvyWVIpRXt7zvnSKcfZyLAZ6Wbb7NyF/h8vtZn3ucp/Ak5JZbqTJJsQdZpbicoPxBSC/aENay/t3NceC+/CGJD3Ma3kUQmV7comrIs49yMWzD9WY/70JcLtZdToBUCrzZww39PS2bfY62jLZjE0I0Fk3Gbr5TLp0Ya4NoS7ZGuJ9Zgi9OxaJaLIFUCmy7nYZdLaxorFTwXeSGzLl7Esf2fCY3AVkq0MUHPWfCd/av+L3T8AYTkPJkGFrgi9ApcH/tT3wd/DKqucx7q/qiamw+/iO+u/A3uBJ27mofepCFvr9ewcR/biIqo5iVGAjRBunFzD62m26kMNZEEimkbWHqD8G8XZHo9+tVfHfuMduhNEtZA4nE4J8uIbaepMu5uDyYf3xCWWE1yeD11/HOwfv1Pn43vRjrLifg7KNcrf53WF9SrkYJ0+F/v5bIWIvJVu0womMx2Uq/xpEW9jrdcisVvf53pdnP+/VqAmrEzfseFUukGPZnGPZGZWLfvUwM3xCGhyr+u9B0VAlJCNFYHXKZ1STKGkqjLS45+KKSJ4Cu+PmWIeoLqRmOynnztzEsGVO7OLIQTdMsubkfay78Jfexq3Y+mDl8CeJNWz9ltkjXEB/1momtvn2x/uQv6JHO7Mm09OY+eBakYcqIZahsZrJTES7GP6lYuBCXh+SPB6r8+oS0BRKpFD9EFONgfDmMj+RhYicHuJnrw9fGsE1MIm+LVFGdpQyR6fXfkGps4E61EpJczfW/K4n4cqgPDISy6YQD9zIxfvMNPGunt2KgJ74Y6sNChNpFQi9gSrE3Sn7lZWNevJlfLZZg++00fDbEW1FhaT2qhCSEaCy5k7HVaCKuOqoUCHHZQXYatmdhBlyKaMqiuiutYlZN1J0Uqk4+vL6z3gTkd13Hoc/krxWSgHxRtIUz+kz6Gp91nwIxh/kW56W4cBze9wUMq9kbZpFTVo3rcgZ1ENKWKGvL7qmkCuyILUOFSIqs0mqsu5yAdw7ex9A/w7BWyb3MiGbz+fasSq/H0/CtzCKJFLllzOFvP16Mx4vzPH68FI9qkQQPMktQQT32FCour+0NOlOUY9FZuKLA7ew3UgoVdq62gJKQhBC1VtrAdpW627FzdY2QpW+q5Ig032nakt2mbItIRfCPF9Htp0vYeUc1A2neijiIL69sZaxX8gSYMWwJlveeBTGXp5RrS7g8fBE6BYNf/hz5cgYu9U+Jwsndn8CsokQp12+Kwgp2+3kRpkc5pfjjWqLWbx9UF1O2RijlvPvjaFq2uiuubHh4y+ID9xDy0yUs2hcl9+abstS3/Zk0z4X4PJmvS6vEsP7sBDp8fx4WHx/H3qgMliLTPnRjpeVGbAxv0fZtohiUhCSEqLUfLsTJXReIa+BVIJtQuW/prNTJ2NpCXl9I2pKtnW6nFWHG9tu4mVqEGymFmPrvLTzIVG7ybda90/jx3AbGeqlAFyPGfYJ/ffsp9frPnHMOQLep3yPanLldPSQjFmd3fQTzCnb6M3LpZUqtnHuci45rLuCNPVEY+Mc1vHvoAdshkWY68iAL15IK8LBAs6cTS6VSlKkw8dYcJZUizP7vNjy+OoPxm24gU05/zqbIK69psCLuxMMchKcU4n9XEvHGnrstDZeokeLKJ9/TlSIJFu6Nohs9REZJpXq+5hHloSQkIUStPciS3+jXqyAdgjpDJlo7Gbut5C/vWLshR89YZm1A8l3WhnYQ5dkWkSbTB00iBbbfSVPa9folR2L9yV8Y64VCAwx6+Quccw5Q2rXliTOzR6/J3yDc1pPxWEBOIo7s/QIG1arf0q6vo5wqUNIy6y4noOqF/k6/XE5gffosaZ5Rf4Wjz2/XUVKjucmNsKQCtPv6LIw+OobQdZeR0cIkn7IsPngPm2+mIiG/HPvuZWLG9tstPtfZR7lNOu7fCOX9vCKtV98k44ZkllQhv1yzbxYQxdrztDr25MNsHLhP7aHaAkpCEkI0kl+uYidj6/C48LQ0aE1IGkPK4eJMnWSQRWUJOmc3f1vHwfhyjNt8C0sO3EN2SZWiQiQK8iCLWfW46vQjJCmhl6RHQTp2HfoWfKlsw/wyvhAjxn6CMHt2GtPn6xlj0MsrccHRj/FYt8xY7DvwFXREmv2BqLxahLjcMqouaaH992Q/SNftdbbjTho6fn8eXt+cxU+XaPsbmx7lqseW2clbbuGbs49QJWrazbuM4kp8e/YxPjkeg2g5r8sAMHP7bSTkP9lOfj2pAO8fVn1Frkgsqfd15O9w2SnkZx7lQiJp2WvOqUc5LXqetvjvThr+dyWR7TBabfGB+xCpwZActria6bEdglbwsTZEWFIBRmwMZzsUoiKUhCSEaKS6/SCB5k3GNtHlI9jJFACgy+fit/H+0NfhN/wkLXLahVmR1ty+kAfjyrEyrBCHo7Px06UEjNwYpqDoiKYxqSzFwf1fwrxStnK5isfHmDEf4ZpDe5Yie6JEqI/h4z7DMdcujMcGJkdi25HV4GloJfBf4ckw//gEPL85i84/XGzxFkkiq1IkwR/XEjF+0w1M2RqBe5kleJxbhiUH7uPc46ZVcRHF23IzpfGDVGBnZDo+PBqDN3ZHNXpsWZUIvf93BR8cjcaXpx8hdN1lPMqRfa0srRIxEqxbI9IwZP01nFFBwk4ikWLxgXsw/+Q47D4/ifXXk5r0PCmA3LIqXIjLVWn/Rk33yvY7jN6Jmqot9NKkG3zKxeNw8PeNFIhbeFNDWRbsuYv7Sm5h1FZREpIQopHkTsZuRhLS0kAH19/uhaQVA5G/cihmB6vvVG1dPnPrZnvr5wM3Xm1B7KdcOjPWmtsXcn+87BvPm6lFSC2swMawZAz64xpe2X6b8UGLaB+uRIxtR75H+/xUxmPzBi3EGTk9SNlQIRBi/OgPcN6xA+OxcY+vY62cPpbqrqJGjDf3RqH6aSXK3YxirD4vv48uaZ7p/0bgjT1R2HePud1w110arMAWdduqt+lmSqPVgKcf5SIu7/nAnKJKEbbdlt1mLKknyXEqNhcjN4YjtVC5bSN23U3Hz5cSUFolRnZpNebvvouEvMaH/OyMTIfd56fQ77drcPjiFK4lKm7aLNEMIjVLHCmax1dnYPnJCSw9dL/Flb/qpkokQU6peu1eUseBRVsj0vDTpQS2w9BKlIQkhGik9nmyCY9sPRPk6RvXc3T9nEz1oCtQ7/5sruZ68LDQl1mb1/351vP/jeuAz4d4N+ucKcZWiDFzkFnrkR4N/ZqmV1FF5TK3sK44FoO5uyJx5lEuttxKxcA/rqndnU2iWMvD92BYInPS7Xddx2GLX38WIqpfpUCIl8aswC1rD8ZjC+8cwRt3jqokjtIqxVRdxuWWyfQyBGhapqLcTC1iOwSiIRr7CReRxvxe2nyj6RWdVSJJbe+9hLxybL6RgvDkAoVWZ/0VzryxezSm8YTve4cf1P6ML6kS4fOTsQqLiWgGiVSKj45Fw23VaYT8dKlV5yqpFKGygaFFL5JKpUjML1f6IKeE/HIUVNTghwvx+K8FPbUvJ+Rh/KYbGLUxDEejm3YTRSSWICa7BDVK2uo+7d8I2Hx2EkPXX0dOaRU+P/kQ4zfdwM+X4ludaI2gn52kCdrO3kNCiNbgi0VoVyh7xyzagjkBtyHWhkJFhqRUHA4Hx+aG4MOj0YjPK8cYf1ss6uFW+7iQz8PHg7wAAJ+eeNjk85526QSfgudvqIRiEXqn3sdxt8AWx/rPLdnkcEphJe6kFyHQ0bTF5yTqq3taND67uo2xfsi9Kz7sOYOFiBpXItTHsPGf4eJ/y2W+/wHgp7Pr8djUDqdcmZXCirTkwD2lnp8Qol0S8stx7nEuhm8Iq73x8OlgL3w6uHk3IOuqrBEjs6QKURnMLYf/u5KIN194ryFPWpHsjcuTsW2712Nb9PeNFKy7/KRarKX9pkViCV7fcxf/3EyFgMvB+/3b4ZNBXuDUMzEyr6wawzeE4UZKIQQ8Dn4Y7dfo9+qLriXm41JCPjrZG2OQl1W916nrz+vJmNql6Z83UgorMGT9dVTUPPk3e/xhDm4u7oUAe5N6n3MjuRAjNoYht6waZnoCHHi1K3q6WTT5ms1xMjYHNp+drP16371M5JXXNLuw4RmJRNrkVg4tlVJYgYIK9ezjnV/+5O+sqd9PbRlVQhJCNI57USZ0JLJ3PmPMnZp1jnkhLR9iw4Z2lgbYOTMIN5f0xoqBXuBymT/g3gh1QSf7pleDnpKzTba5fSGboqSS+kRpI5PKUmw78j1jEM0DcydMG/EuJFz1rTDO1TfB0Jc/R5a+7AcBvlSCnYe+hU+ecvvOJSphMBAhRLutvRAvU/n8/fk4VItaXin1b0QqLD45DvevziBTzmC5mGxqp6Ltxm262epzKCLptP9eJv4Of9ITsFIkwecnY3E3o7je43+8FI8bKYUAgBqxFIsP3EdRncRUfZXC/9xKQY9frmD5kWgM/TMMX55+1OQ4n12zqfZGZdQmIAFALJFiyy1m65oXLT10v3YwWkFFDd45cL9Z12ytDWGyf59iiRQ3UwqRlN94e4bEgsaPaa0RG9Sz//yxmGxYfnICOu8fweUE7ej3qkyUhCSEaBwfOb3nYswd5BwpXz8PC7zc0U6RIakFSwMhbi7ujailffHhAM9Gjz/v5A8RR/bHQHP7QpI2SirF+lO/wKVEtuqlgq+DSaPeQ6mOfj1PVB/JxtYY+9JHqOQJZNZNqsux98BXMKpS/ptpQghpqsN1tnKWVYtR2MKKoGqRBPN335VJkCjKw2zlDCppTcKVyHdWAUO26rYEaQl57QAOPah/6/L3dXofiyVSRtL8Vj3bgn+6KNvj78eL8S1ubSBu5HnRWcxE/pWEhvumXqrzuKpbg2QUP78hkVNahc4/XEDwT5fg9tWZRp9bI1Zu+6WKGjHuqfmgGLFEit7/u4pfLifQQKMGUBKSEKJx6vaDBIBoi8YrIU/OC0H0e/1wen53GAi1sxsFl8uBn60Ruj6d/N2QEqE+rtvJbrnwz02CbSk1licNe+X+WUyIvcpYf6fvHNy31Jwq4+v2PnhtyCLGuk9BGjae+BmgN5CEEC2UkF+OsurGe+89bEE15LrLyulLm1Hc9J7VRLPI28Zd3MAuGnmJz7o/rQ/eZw4VA4DyOj0nCypqWtS7/PCDLKQUNv97Miy5kFG1+cyfSt7K3FwbwpJVkvR7lNu0GxciJSc5Femt/ffwxzX1+vtUJ5SEJIRoHO8CeZWQjfdocTLVg7e1YZvo1dHN2bRJx52WsyV7YHKkYoMhSiOVSpFbVqXSu612pXn44TxzkvRuz1D80XGoyuJQlG3t++LLkImM9ZcfXcWSWwdYiIgQQtTDwD+uNXs4RlMnmG9qxnAeQp4pr25ai5/SJiTZn3nvSDQ+aUZPdbFEile2327y8XW5rDqNm3K2dm8IY1aEsmnNhbjGD1KAarGkdgu6NlG3v091QklIQojGqVsJWcYXIsXIkqVo1JOtsW6TjpPXF5K2ZGuOxIIKWH96Eu2/O9eiipVmk0rx6+nfYFYle9c62cgS8wYvBDQ0wf9p6FQccQtirH97cRN6pdIQGUJI81WJxLiamI90Da7gSyuqlJssaa3iChHm7qIbnqR57qYXw+XL0wo/748X4xvt1QgAlSIxHueWYc6OO60ajlJcKcI3Z5m9KJvbc1LZ8svVcwCMpohIo0nh9aEkJCFEs0iljJ6QD80dIOXQy1ldGycGNHpMuJ0Xiur07xuYFEnbUDVMbE4Z3tofpfTrTI65iJfiwhnrc4a8hUJdQ6VfX1mkHC5mDluCBGNrmXW+VILth7+HRXn9DfIVafuddDzKoWEQqiKWSBHVwPADQlrqcW4Z2n19Fj1/uYKNGl4NU6SE4XJRmcUt2gJLGmZpoMN2CE1SI5YgNqe02d8D35x9hDwWE2MSKeD1zVn804SEZWP2RsnfLk5IW0Cf2gkhGsWuLB8m1bIDI6KbORm7rRjlZ9PoMWIuD+ec/GXW7Mvy4Zen2R+a2qJTsa1vMN8Q67IC/Hx2PWP9T//BOCOnolbTFOgZ4eXRHzAG1diX5WPDSdX0h1xzIQHtvzuHXZHpSr9WW5dcUA6fb88iYM0FtkMhWuj783FIK9LcCkhlk9CNTqWwMRSyHUKT2H9xCj7fnoPLl6dxrxk3gv67U//Pxn6/XcXs/243aYqzskkBRKYX4XpSAduhtNi5FgwtyiqpavwgQkBJSEKIhpE3GfthMyZjtyWWBk17MyqvL+Qg2pKtsQ7dz8Ss7bfx0bFoZJcq7g3h9xf+gmWlbIPyVEMLLOszW2HXYNttGw8sHPA6Y/2luHC8EXlMJTFIpMDXZ5jbtIhifXcuDnF57H9YJdppvZoNmCBEHaUXV+KDo9GoUUBVbJVIgs03UzH0z+usTyV+c28UOv9wEXc1uNL+85NN75EJAH1/vYK+vzEHFrZ1n52MZTsEtURJSEKIRmnpZGxSP+oLqT0O3c/ES3/fwD+3UvH1mce4laqYfjS9U+5hejSzYmz+oAUoFhoo5Brq4q8Og7DNpzdj/fsLf8EvVzWJhTvpmvvBRVP8ejWR7RAIIUQtqbKi7Uh0Nh43cTpyUzzMKUM83WBqtYvx+Uo9vq34+lwcCquaPiSpraAkJCFEo7TPZ05TbMpkbFK/R2b2SDKyklnrk3IPOqL6++5siaG+depIGZP4+GIRfjnzO2N9a/s+OOreVeHXYx2HgwUD32D0h9QTVWPbke+hW6M+242uJNKbfkIIIYo16u+bGp04Ka/R3NiJdpFKgfgixffV1XSUhCSEaBTv/DSZr8UcLh6Z2rMUjZbgcBhbsg1EVeieEVPvU367W1LvY4Q9hx5kKfyci24fRoc6PUKLdPSxtM+rCr+WuigWGmDaiKUQ1Rl45Z+bhNUX/2YpqueqRRIceZCFN/YofxgRIYSQtudiqvrccCNEk51MqsDZlAqU10jYDkVtUBKSEKJR6lZCxpvYoJovqOdo0lQnXTsz1qgvJLErzcNnV7cz1j/uMR3ZBmYsRKQ61+198HnoFMb6m3eOYlDibRYieuJiXB5sPjuBUX8xp5QTIg9fLIJtaT5cirLglZ8K39xkOBdnw6iqXCUDl4hqxWSXYO6uSIzfdAMH7qnnBN70YkpwKcP9LMXdID6fVqGwcxHNUiOmZJki7XlcjvcvF2D+2TxUUJUuAIDPdgCEENJURlXlcCiV3X5Ik7EV44xzR0jAARfPP5AOTLqDFT1nsBgVeZGDia7Kr/ndhU0wqpH9IHLbyg2/dRqm8ljY8HXwyxiYdAd9Uu/LrG84sQ4dX/kZRbqGKo9p8YF7KKqkrT2EiSOVoH1eKkIyYtAtIxbe+alwLc6GQ2k+eFL5HypruDykGVog2twR0RZOiLJ0xUVHPySY2AAcjop/B6S1yqtF6PfbtdqefvvuZSLExQzn3wiFDl99ak9oii4hwNxdkZjRxRG9PSyw5279k79VbczfN9gOQStF59fgXFweRnegHXyUhCSEaAyajK08+XrGiLDxQFDW49q1oMzHMK8oRr6eMYuRkWcMdFT7I7trRiymxTCH0SwcMB9iLk+lsbBFwuVhxrB3cPeft2Ba9bxxvlNpLn44vxFzhr6t8phoaA15kUF1BYYk3sZLj69jRMJNmFc2r1+vQCKGa3E2XIuzMSwxonY92cgS5538cdCjG465BaJCIFR06FqjuLIG/91JR0ZxJcZ0sEUXR1PWYrkQl8dI8F1PKsAHR6OxZrQfS1ERoloT/rmJQV5WjR/Iso1hyfjnZgquLuqplJ7eLXUsJpvtELTW8ZgcSkKCkpCEEA0iLwlJk7EV57RLgEwSkgsp+iffxW7vnixGRVghlWLN+Y2M5b/9BuCaQ3sWAmJPqrEV3u43F5uP/yizPvv+Gez1DMURDy0czkPUm1SK0PRozI88hvGPrkFPVK3wSziX5GLmg3OY+eAcSgW6OOIWhC1+/XDctQskbeQmRFON2BiO60kFAIDV5+Nwdn73Rp8jBbA7Mh1XEvMR5GSKbs4ta2/x3fnH6GBrjAkd7WAg5COjngrDP8OSKAlJNEp5dcu3rcbmlGlMp4kasRQ/XozHiYc5DRwjQQX1E8SOyLTGD1JzGvJtqXSUhCSEaAx5k7GjaTJ2g+yMhchoYu+lUy6dsDx8j8zaoKQ7lIRsg8Y9uoae6dEya6UCXXzYayZLEbFri28/jHt0FS/FyfZhXH/qF3Sw/wUFekYsRUbaEoG4BjPvn8Nbtw/BPzdJZdc1rKnEpNjLmBR7GQnG1vgjYBg2dhiEPH2qkgdQm4AEgCqRBBvDme9V6koqqMDELbdafe0fLsQDADbdSMa5N0LrPa5UgycdE3aw3Rbw16uJ+GWcf4uf/yi3rPGD1MS/EQ0n13y+PaeiSNTbvF132Q6BKAglIQkhGqPuZGwAiKEkZIPe69cOSw7cb/xAAFfsfVHO14H+C1U1A5PuPBlcQL3B2gyBuAbfXNrEWP+u6zhkafkwmnpxOJg/6E30TIuGReXzxv92ZQX4+ex6zBjxrsIveTOlEEFOpgo/b1sllUrxZ1gy5u/WvA8xz5KPH4bthFtx07fJVfIESDS2RpKxNVKNLFEm0EUVjw8xlwvjqgqYVpXCqrwIXgXpcCmpvwrnRW7F2fjm0mZ8cm071nccitVdxyLD0KKlvzWt9Fe46rdVXozPR1SG4oaSECKmki21kZBfznYIhCgUJSEJIRqj7nbsDAMzVgZDaJK3e7mju4sZIlKLoCfgYfaOO/UeW80X4KKjH4a+MPnXrTgbHoUZiDOj/iWKUCUSQ8hX762Mb945inaFshNVUw0tsCZoLEsRqYcsAzO8OWA+/juyWmZ9WswF7PXqjn2e9VchtcTwDWFI/2QQ+Dz1GSYhj1giRVhyATJLqtDXwwLm+jpshyTX+utJeGNPFNthNI9UitFxYVhz/i94FDU+5bhIRx/H3AJxydEP1+28EWXpAhGvaW/1Daor4JeXjF6pD9A79R56p96HSXX9H3z1RdVYHHEQb0QexcYOg7Gy+6S2e5NCBZ5VPDYksYASFURxwjKrUCmiTCQhRPEoCUkI0Qg8iRgedRIjsZQYa5JgZzMEO5vhdlpRo8eedukkk4QEnmzJpiRk61yKz8PsHXeQmF+OQV5W2D49EKZ6ArbDYjCuKsOK6zsY6yt6TqfBFAB2+vTCuEdXMTH2isz6b6d+wyUHP+TqmyjsWrll1YjJLkUHO/Xe8vrqjjvYcuvJDSI7YyEuLugBD0sDlqNiUqem/03hnZeKtef/ZLwe11XO18EO717Y4dML55z8UcNr2etKmY4ewu28EW7njTVdx0IgrsHApEi8HHsFYx5fh1mV/K2NQrEICyKPYuaDs/iu6zj8EDQG5QLdFsVAiDy/XE6Ag4kuPCzU73VF2/XalcF2CIQQLaTet9cJIeQpl+Js6EhEMmuxZjQZW9FOuXRirA1MuqPyOLSJVCrFpC23EJ9XDokUOPEwB5+eeMh2WHK9e3M/Y7puhLU7tvj2Yymi52YFqccQqjcHvIGsOslG64oi/HjuT4Vfq/qFply5ZVXYczdd4ddojfi8stoEJABkFFdhAwtbUZviVmrjN2HUAV8swopr/yHyn7caTEA+NHPAW/3mweH1TZgz9G2cdO3S4gSkPDU8AY65B2HO0Lfh8PomzBr6Nq7bedV7vGFNJb64ug0P/5qPydEXoDFTIYjae2v/PYzffBNdf7rIdiiEEEIUgJKQhBC15mDypKLCq4D54ZuSkM3Da0JfxyhLV2Tqm8qs9U+JAk+inKb20VklOHAvEzmlTRueo4nSiiqRWWdi6brLCSxFUz/L8iIsvnWQsb6sz2xIOey/Xfhrcie2QwAA5OkbY/7ANxnrU2MuYnj8DaVcMyqjGN7fnMOEf1o/yEKRYrJLGWvfnn3MQiTawS83Cde2LcMXV7cxbro9E2PmgGnD34XfrF/wS5eRKmlJUikQ4h+/AQid+j2Cp63BvnYh9R7rUJqPbUfX4Niez+BeSFVU2uK/2+xPpa2hJoWEEKIV2P9UQQghDXAz1wcAeBUw3wDTduzm8bE2hJGwkS4cHA5OuwTILJlWlSEo81GLr7vs8APE5zG38n137jH8Vp/H2E030O7rswhPLpDzbM0naWJFUI1Ygp8vxT/d3poCqYoriZaH74ZRTYXM2mnnAJxzDqjnGW3XAc8QbG3fh7H+26nfYFSl+L5sP19OQEFFjcLPS9SEVIrFtw7g5tYlCMyOk3tIpr4pZg95Gx1m/YLt7ftAwmWnt+xNW0+Mf+lDdJz5M3Z69aj3uCFJtxG1eRE+CNsJgZi+d9VNSmFF4we9YKOaVjgT7Ra09iJupRayHQYhRMEoCUkI0Qhe+VQJ2Vo6fC52vxLU6HGn5WzJHtSKLdm3UovQ+39XUVL5vLKnRizBylOxtV+XVInw/Xn5H77bivl77mLxgfvYdCMFr2y/o9I/D4eSXCy4c5SxvqLndJXFoGmW9J2LHD3Zfo1Opbn4+tI/CruGWAKcf5yLjc3sZ/j1mUe1SWyxRArRC9u6iXoxrSzFvgOr8MP5jRCKmdWPNVwe1gSOgferv2NzhwGsJR/rumflismj3kfI1NW45OAr9xg9UTVWXd6K8H/fRYecRNUGSOp1+EEWBq+/3qznnHmUq6RoCKlfRFoRxv59Q+U3ZQkhykVJSEKIRvCsUwkp5nARb2rDUjSaa5CXFbo6mTZ4zGnnToy11vaFTC+uxKlHObVf55ZVo6xadov37rttd+ueWCLF3+EpMmvrryep7PofX98B3TrVSgc8ghFu562yGDRNnr4xFveby1hfEHkUPVIfKOQaA/64imEbwpr9vI+OxWDb7TSsPvcY1p+egMUnJ/Dh0Wj6IKdmgjIfIWLLYrwUFy738VvWHgicvhbL+r6KEqG+iqNrmnA7b/SZ9DXGj16OFENLuccE5CTixr/v4N0b+8BVUmsP0jRRGcUYu0k5bSMIUYbUokqkFVWyHQYhRIEoCUkI0Qh1e0ImmFgrtAk/eS7dyAL3LJxl1rpnPIRhdeu2mcrrH0eeEEmYlWpxeYrf1iuPR0E6Zt87LbMmAQef9Jimkutrsu0+vXHEjVld/OfJdRCKqlt9/tIqMapELatiXLAnCu8fiUZBRQ1KqkT45uxjnIzNYRxXVFGDexnFkEg0M0EpEkuwKzIdq07H4mZKIdvhNNm0B+dw8b/lcC3OZjxWw+Xhk9Cp6D51Ne5Zuao+uObicLDPMxR+s3/Bj11GQyynh6xQLMLqi3/jzK4VcCnKYiFIAgD/RqRBrKH/1knbdSOlEN+cbXlbIEKIeqEkJCFE7enWVMGlRPbDM23FVq66W7IFEjH6pNxnJxiiVJ9e2w5Bneqk/3x6IcrKjaWINAiHgwUD30CJQE9m2acgDSuu72QpqCdKqphbe7fcTJX5+veribD89AQ6rrmA9t+da3afOHUwb/ddTNpyCx8ff4ju6y7j8AP1TnBxJWJ8c3ETthxby6g+BoA4E1t0n7oaX3afDBGvkR6+aqZURx/v9HsNwdPW4KZNO7nH9Em9jzv/vI1xsVdVHB05HZuD03JuRBCi7sZvvokPj8awHQYhREEoCUkIURunYnMwdP119P/tKvZGPdmaezkhH+3kTNh8RENplOqUgvtCEvXUPi8ZU6MvyqyJOFx8FjqVpYg0T4qxFT7oNZOx/t6NPfDPUa8p6An5z6trK2rEWHLwfm1V1KPcMo3ry1pSKcKmG8/bGIglUiw5cE9tt53r11Ri74Gv8d6NvXIf3+0ZisAZaxFRTwJPU9y28UD3qavxcY9pqJHTw9Kkuhy7D32Dn86uh46IhtYoyu7IdESkFtX7+OD11xGRVv/jhBBCiCpQEpIQohYS8soxamM4Tsbm4HxcHib+cxOTt9wCwNyKDVAlpLJdcOqAaq5sFc6gpNssRUOU5aPrO8GFbMLm7w4D8VhFSf4OtkYquY6y/dZpGK7Y+8isCSRibDixDjw17YGXkFfO2Oq97rJ6JU0bU1DB3PIel1eO9t+dQ5VIvf7cLcqLcXrXCoyOZ/Z/FHG4WNzvNUwc9T6KhQYsRKd4Yi4Pq0ImofvU1Xhg7iT3mEW3D+PSf+/DrTBTxdFpp60Rafj1aiLbYRBCCCEN0qx9HoQQrbUnKgPVL0xwlUiBnZFPko9edYbSAEAsVUIqVblAF1ftfdA39V7tWvv8VDiU5CLNSP7wAaJcn598qNDzeeanYdLDyzJr1Vw+VoZMUuh1GjKnmzOWHND8bf5SDhdzBy/C7S1vy0w47pr1GG9HHMQPQWNZjO65a0kFGLUxDD7WRhjrb8t2OEoTm1OGlace4cthPo0frALOxdk4vvtT+Mj5WVYgNMDEUe/jjJzqc20QYdMOQdN/wFeXt2BxxEHG412zHuPW1iV4dchb2O/ZnYUICZHFkUpgX5oP16JsWFUUPfmvvBgWlSXQFVVDIBGDLxFBIBZDxOWiXKCLMoEuSgW6KBbqI93AHOmG5kgztECGgRkqBUK2f0uEEKJWKAlJCFELsTn1Dy3xlFMJ+ZAqIZXutEsnmSQk8GRL9qYOA5V2TYlECi6Xo7Tza6qC8mqFD6r5IHwXeFLZSrhNHQYg1dhKoddpyHh/O61IQgJAjIUTVnWbiC+ubpNZ/+LKv9jfLgTxpnYsRSbrSHQ2jkRnY8cdZkJMm3x15hFeCXKEp5Uhq3H45yTg2J7PYV+Wz3gsxswBo8d+rLLKY7ZUCoR4p99rOOMcgE3Hf4RFZYnM46ZVZdh78GusDhqLD3rNhETOFm5ClMGqvBBdMx8hOOMRfPOS4VmYDs+CdOgrYLDYM8lGlogxd0SMuROiLRxx19IVt63dKTlJCGmzKAlJCFF7dSshy/k6SDOyqPf4WUFO2HQzpd7HSdOccumEL69slVkbqOQkZFRmMQLsTZR2fk2l6ASkW2Empj84L7NWw+Xh6+CXFXqdhnwx1Bs6PO3qCvNt8HhMiL0C/9yk2jV9UTX+OPU/DHp5JcBRnwR7alGl0q9RViXCWwfu4dyjXHSwNcYv4zrA2Uxf6dd9pvevV/FgWV+Y6euo7Jov6p4WjSP7voBpVRnjsUsOvnhpzAoU6rKbJFWlIx5d0WXGj9h+eDVCM5hDJpbd3IeAnARMGbEMBXra0aqBqBeXoiwMTrqN/kl30S0zVu50ekVzLsmFc0kuBr/QV7uGy8M9C2fcsPPCdTtvnHPyR5KJjdJjIYQQdUBJSEKI2qvbE/KRmT2kHPnJCw4H+GtyJ0pCKsAtGw/k6xrCvPJ5leqgpDvgSCX1/vm3lryJvkTxlofvBr9OFeTW9n1V8iGIwwGGeltjcS93lFerV9++1qrhCfDa4EW4uv09mSrTAcl3Mev+GaUm8BXlWmI+uruaN3hMRY0YuyLT8ef1pAaPe+9INP4Of/JanFhQgdyt1bi6qKfCYm1MVkkVjsZkY1oXR5Vd85leqfdwZO8XMKxhJnv3tQvBtOHvtslKqBRjK/Sd9BW+urwFS2/uYzw+OOkOwv99F+Ne+gBRVm4sREi0CV8sQv+Uuxj9OByDkm7DU86gQzYIJGJ0zklA55wEzLt7AgAQZ2KLc84dcdbJH+ecOyLLwIzlKAkhRDkoCUkIUWtmFSWwqiiWWaN+kKoh4fJw2jkAE2Ov1K5ZVRQjKPMxbth5sRgZaQ2n4hy8cv+szJqYw8VX3SYo9bocDvDPlM4Y5WsDY10BAGhdEhIAbth54ecuo7Dk1gGZ9TXnN+KYW6Daf7D84UI8djWShBy/6QaOP8xp9Fy/X0uU+fp6UgEqa8TQFTS83ba0SoTrSQVwt9CHu0XrBrVEphdjWpdWnaLZ+idF4uD+lXK3dP7RcSjeHPB6m95yLOLx8V6f2bjo6IfNx9bCrE6lqEdRJq5uew+vDn0bu7xVl7Qm2kEgrsHApEi8HHsFL8WFydxIVWceRZnwiMrEa1EnAQA3bdrhkEcwDnh0w10rV7WqpCeEkNagJCQhRK15FjL7QT5qQj/IOd2csTEsufZrHR4XTqa6Co2tLTjuFiiThASA4Qk3W5SEXHEsBiPaW9N2a5a9d2MPdCSyFafbfXohroXJfU9LAzzKZW43rev+sr7wsW7dFstx/rbYGyV/ku5LfjY4cD+rVedXlI97TMNLj6/Dveh5PGZVZfj57B+YNGo5i5E1bk9Uw5VCifnlTUpAAoBUylwTSeQsviA6qwT9fruK7NInCbyVQ73x0cCW3/TIL69BebXqKqyHJNzC3oNfQ09OAvLz7pPxefcplEx46rBHMIKnrcHeg1/LtDAAAANRFXYc/g5dsuLwUc/pbTppy7ZPjjO3zqujDjmJePXeaUx/cA6WdfqONlWurhEemdnjkZk9HpvaId3QHDl6JsjVM0aOvgnK+ULU8Hio4fIh4nIhEIthUFMJg5oqGIgqYVFRAvvSfDiU5j0ZblOcBZ/8VLgWZYOLhl/76grKeoygrMf4/Oo2JBpb45BHMPZ6dsclB1/690AI0WhtPgkZFhaGI0eO4Pbt28jOzkZpaSkMDQ1hZ2eHoKAgjBs3Dr6+vgq/bn5+Pnbt2oXz588jPj4eZWVlMDc3h7OzM4YMGYLRo0fDxIQ+qBNSdys20LRKyHd6u+PgvUzklD35IPjxIE/o67T5l7xmO+7KLCEamhCBz0Ontuh8M7ffRuS7fVsZFWkpu9I8zIk6JbMmAQdfdZvY4nOeeyMUjitPNXpcaxOQAPDjSx3qTUL+NyMQesuPtvoailAu0MX8gQtwcs+nMusTYq9i26PrOOAZwlJkrSORSJFRrLxekpnFlfBbfV5mbeWpR1jcyx0GQj5OPszG9+fjUC2WYGEPNwQ7mzZ6zr/Ck7H1VqpyAq5jWPxN7D34lcyE9GeW9Z6NNV3VY0q6Ookzs0folO/w14mfMCH2KuPx92/sQUBOPKaOWNam+meqk5upRWyHUC+D6gpMjz6PV6NOoWvW42Y9N0/XCNftvHHTth3Cbb1w07YdcvRNmx1DU/qX6tZUwbMwHf65Seia+QhdMx6hS3YcdMU1TbqGa3E2Ft0+jEW3DyPdwBy7vHvgP+9eCLPzppsahBCN02Y/kaempuL999/HzZs3GY8VFhaisLAQ0dHR2LJlC0aMGIEvvvgChoaKefNz+vRpfPTRRygsLJRZz8rKQlZWFm7cuIE//vgDq1atQp8+fRRyTUI0Vd2hNAAQ24RKyPY2Roj7cIDCtvS1VZmG5oiwdkeX7Pjata6Zj2BZXoRc/ebfKInKKEGVSPu24GqKZTf2MT707PYKRYyFU4vPqcrPPxYG9Q8YEfLVqzLktGtnbPLrj1l1tr7/cvZ3nHP2R7FQs16T1l1OwJenYmtv7LTG+ce5+PbcY5RWiTCvuwtmBD75/pux/Tbj2GqxBClFFRDyeBj91w1Ui5/02ryUkI9dM4OadL1nz1Gm/kmR2HPwa7kJyLf7zcW6LqOUHoOmKtPRw6SR7+N2+G58eXkro2JsaOJthP37LsaM+QjRFs4sRUnUiUtRFhbePoI5907JHfwkTyVPgMsOvjjt0gknXToh0tpNaf2tGdcWCBFl5YYoKzdsa98XwJN+lZ1yEtAv+S76pdxFr9QHMBBVNXou+7J8vB1xCG9HHEKCsTV2evfCdp/euGtNPVQJIZqhTSYhExMTMWXKFOTn59euCQQCeHl5wcjICHl5eXj8+DGkT/cRHTlyBHFxcfj3339bnYg8fvw43nnnHYjFzz+Eu7m5wcrKCmlpaUhLe5JwycnJwRtvvIFff/0Vffv2bdU1CdFknvktq4QEAEMhHwO9rBQdUptzzC1IJgnJhRRDEiPwr2+/Fp2vkd2YREmsygsx7+5xxvqqkJZXQQKAgQ77yb/ODsZshyDXu33mYFjCLdiUP68kcijNx3cXN2H+oDdZjKx5HmSW4O399xRyrqySKozYGIaKmieJwSuJBXA21UMvNwuceZRb7/P2RmXIJBOlUqiswrExPVIf4MD+L+VWNb0x8A38ETCMhag0DIeDb7pNwB1rd/x75HtGn0jPwgxc27YM04e/i8MewSwFSdjWLT0Gy27sxUtx4TLDv+pTxhfisHtX7PEKxTG3QJTp6KkgyqYR8fi4aeuJm7aeWB08HgJxDbplxGJgUiRGxofLvO+qj1txNt6/sQfv39iDO1Zu2OzXH9va92lRRSchhKiKam7/qBGxWIxFixbVJiB5PB4WLlyI69evY+/evdi8eTMOHz6MCxcuYMyYMbXPi4mJwUcffdSqa6ekpOCDDz6oTUB6eXlh3759OH78OLZs2YKzZ89i8+bNcHBwqI31nXfeQVaWevS4IoQNdSsh83SNkK+nngkHbXXMjbkle1jCLRYiIa2x5NYBxqCM/R7dWj2B9tmQGTbxuer5dqZAzwhv9X+dsT7v7gn0TlFMUk8V9t+XvwW+JQ5HZ9UmIJ/ZdCOl0W5p8vqO7r+nuLhaKijzEY7s+5xRwSQBB68NXkgJyGY67haI4GlrcE9OxaNxdQX271+Fj67vkN9wlGgnqRT9kyJxatcKXNv+HsY9vt5gAlLE4eKgezBeHrUc1gu2Ysqo97Dbu6daJSDlqeEJcNnRD5/1mIqgGT/Cee5GvDlgPo67dkY1t/G6oU45CVh7fiNS/5iNvftXYcyjaxA0cbs3IYSoknq+a1eivXv3IjY2tvbrb775BosWLWJUONrY2ODbb7/F7Nmza9eOHz+OO3futPjaa9euRXl5OQDAwcEBmzdvZvSbDAkJwbZt22BtbQ0AKCsrwy+//NLiaxKiKQor5LxRkkoZPSFpMrbqhdl5I79OL64hibfBldC2ak1hVFWO+ZHMKsgvu09q1Xl7uKr3pGd1sMurBw66Myu31p/6Bbo1jW+9Uwd5CtiC/UxKYQVj7XxcXoPPUYdkozz+OQk4vudTGFczf09vDHoDf/kPZiEqzRdnZo/Qqd9hbztm71QupFh55V/sOPwtDOT8uRMtIpViZFw4rm5fhtO7P8aA5LsNHh5j5oD3e70C53l/YczYFdjrFYoKgVBFwSpeqrEVfus0HMPHfw6rBVsxY9gSHHYPQk0jQ2kEEjHGxIVh78Gvkfb7LPx49k90yoqjxD0hRG20uSTkgQMHav+/Z8+eGD16dIPHv/POO7UJQeDJ1uyWyMrKwokTJ2TOa25uLvdYW1tbmarLvXv3MvpHEqLpCsqr8ebeKPT79SoW7YvC7rvMiaz2pfmM6hJKQqqemMvDSZfOMmsWlSUIznzEUkSkuebdPcHom3XctTMibNq16rytrYLUlH76EzratfzJHA7eHDgfxXWqcLwK0vHJ9f9aGVnb8OHRGJyKbdpEblXxzkvFqV2fwLyylPHYkr5z8GfHoSxEpT1KdfQxYfRyfNZ9itzHJ8RexeX/3odrkXomqEkrSKUYknALN7a+g4P7v0RIRmy9h0rAwUH3YAx6+Qv4zv4Vq4PHI9NQ/ucrTVYi1Me/vv0weuwnsJu/GfMGvYkzzh0hQcM/RC0rS/DW7UOI2LoEt7e8jcW3DsCqvFA1QRNCSD3aVE/I6upqRERE1H49cuTIRp+jo6ODnj17Yu/evQCAqKioFl37xIkTEImeNCs3MjLCkCFDGjx+0KBBMDc3R35+PkQiEU6fPo2XX365RdcmRB1N2RqBk08/VF6Il18FI28ozaMmDKUhinfMLRCTH16SWRuecBPX7X1Yiog0lY6oBosjDjDWv+s6noVoZFka6MDBRBdpRQ1PXA6wZ7cFQ093C+ySc6OkqdKMLPF+71n47fRvMutLb+zDDu9eiLR2b22IWi8hv5ztEGo5Fefg1O6PYV3BnBr8Yc8Z+CnwJRai0j5SDhdfhE5BpJUb/jm2FkY1spWPATmJCN/6LiaNeg/nnANYipIoUmjaA3x16R/0TnvQ4HGlAl381WEQ1nUegbg2dnM6X88YGzoOwYaOQ2Bbmo/JDy9h1r3T6Jib1ODzAnIS8cP5jfj24iYcdQvEZr8BOOIehBoe+y1ViGbgSCUwqq6ASVU59ERV0BNVQ7/mya9P/qsCVyoFB1JwpFJwAJn/F3O4qOIJnv7HRxVfgGouH1U8ASr4QpTo6KFYqIcyga7KhkYRdrSpJGRaWhqEQmHtlmgPD48mPc/U1LT2/wsKClp07WvXrtX+f3BwMASChl/weTweunfvXlt5ee7cOUpCEq1RWSOuTUA2pO5WbIAqIdlywrUzY21oQgQ+6TGdhWjajsT8cria67fqHFNjLsChNF9mLdzWE+ed/Ft1XkXgcDjYPLkzpm2LQFZJ/VuTF/Vkd+rneH+7Vg9mWd9xCKZEX5D5cM2XSrDhxDqETPse4ka22GmSD49GY06wdk4xtigvxvE9n8KxlHnzbGXIJHzTbQILUWm3A54hCDX7Dvv3r4JHncpHy8oSnNj9Kd7p+xp+6TxCc8qriYyO2Qn48soWjIy/2eBxBUIDrOs8Cj93GUn9wQFkGprjx8CX8GOX0eiUHY9Z989iavR5WFaW1PscgUSMl+LC8VJcOHJ1jbCtfV9s8uuPOzZN+1xMtIt+TSXsS/NhV5b/9NcC2Jfmw7YsHxYVJTCvLIV5ZQnMKkthVlXWpIFQrSUB50lCUke/NjFZrKOPAqEh8vWMkKdnhDxdI+TpGSNXz/jp/z9ZKxIa0M8BDdCmkpBubm64ffs2SkpKkJWVBUdHxyY979nEagAwMTFp0bUfPnxY+/9+fn5Neo6Pj09tErKlFZiEqKMXJ5w2RF4lZOwLlZCdHYxxO61YYXGR+mUbmOGGTTt0zXpcuxaU9Rg2ZQXIMmheX8DuP1/GlqnMpGZbFJ9Xhr/CU1BWLZL7+IgNYQh7uxe+PF3/drSGcKQSLLuxl7G+uus4tXmT1t/TEmkfD8IHR6Ox+nwc4/GLb4aip5uFQq61bmwHLNrX/GSivYluq68t5XAxb/BC3PnnbZkpyoHZcVhy6wC+7zqu1ddQF9+cfYxNN1LYDkPh9GsqcWj/F2ifz5zKvSZwDD4NncpCVG3DfUsXBE9bg/8Of4dByZEyj/GlEvx8bj065cRjwYA3UM2nyi5N4VKUhVWXt2BqzMUGj8vSN8HawDH4LWAYSoStuzGnlTgc3LHxwGIbDyzrMwsj4m/ilftnMCL+JvgNJI2ebdd+6/Yhmq6tpXgSMZyLc+BWlAX3oky4F2XCtSgb7kWZcCvKglWF+n2O4kIKk+pymFQ3fweEiMN9mpA0rk1M5usZIV/X6Hmysu7Xusb0c0PF2lQS8hkjIyMYGRk16djS0lJcuXKl9uumVk++qLq6Gunpzyu6XFxcmvS8F5OkWVlZqKyshK5u6z8IEaIpPOVUQj42a0VvNtIqx90CZZKQADAkMQL/+A1o1nnuZhTju3OPGz9Qy+WWVaHnL1eQ2UAFYHR2KYw/Otbia4yMu8FImMSa2WOfnIEPbOJyObAw0GGsWxnoyCQgG0ub+lgbIiab2aPvmS4OJnAx00NSATsDLWLNHbGy+ySsurxVZv3zq9uwr12IVm0rbOj7WhPxxSLsPPSt3P50f/oPxrI+s9Umsa+tCvSMMHz8Z/ju4iYsucVsMfHqvdNon5eC8aM/0Mq+gNrEqKocH4TvwuJbB2VuytSVq2uEr7tNwO8BwzR6yIwq1fAE2O/ZHfs9u8O6rABTYy42abt2p5wEdDq/Ed9d3IQjbkHY7DcAR90Dabu2htCtqYJXQTra56fANy8FPk9/9SzIgI5E/o1ubcSXSmBTXgSbcma7lIaUCnSRr2tYW2GZp2uEAj1DlAj0UKqjh1KBLkp1dFEq0ENJ7ddPfq3kC1DD5UPE5aGGy0MNl48aLg+ip//RewOmNpmEbI6NGzeitPT5B5p+/fo1+xw5OTmQvjCRzMrKqknPs7S0ZJzHycmp2ddvrfJqMXy+Pdvi57uZ6eHQq13rfXzZ4Wgce9i6hvP9PSzw85j6K0zHbb6JqNTnW+mFpy40+wVhTlcnLOld/5bALj9ebnKFX32+HOKFMR1s5T6WVlSJIRvCW3V+ANg6pRM61dNf7XJCPubvbd2WQwC4+mb3egdW/HMrFd+cZVY7yVN3O3aKoSXKBc8T8fUN+vv4WHSr+rcBQFdHE/w9qf4eU7N3ROJGavN+wNU1oaMdPh3kWe/jfX+7jtzy1k2lfa+vO2YGylZ9S1s4IfGoWyA+vr5DZm1Y/K1mJyEB4N8IZpUrAEz7NwJ6Aua21BOvBcOhnmq0/fcyseJEyyoFn9HhcRGxuGe9j6+9mICNLazsEtXzunAgKkPpiZr3buxhrK0JGgOJgrb+SqVSiEQi+NoY4kFW/ck/AI3+HMkvl/9B9Fk/ZQDg1/OyfS+zGD7fnkVhRf0fZgFgytZbSC9u/p95a34G1rU6aBwmPryMgJzE2jU9UTV+P/0rBr28Ui3erL74++3hYgYTXcW9Xfw7nPnvKKmgAhcfq9fgmRdxpBJsPPEzhifcYjy2r10IFgx8Qy3+3toCMZeHd/vOwR0rN/xx6n+MBFb3jIe48e87GDf6Q9yw82IpSlIfnkSMOVGn8MWVf+X2VH2mWEcPa4LG4scuo6nysRWyDcxatF17TFwYxsSFIUfPGHu8QvGfd29cdmivsPcOpBWkUrgVZaFzdjw6Z8fDPycRvvnJcC/MAhc0Ab2lDGsqYVhTCeeSXIWfO1vPBFt8++G9PrMglUhk3te+qDWfNZ7xtjLAnpmB9T7+1v77OBsnfxZDU23qbwJBK1t2UhKyAXfv3sWff/5Z+7Wrqyv69+/f7PMUFcn+kDU2bloPk7rVmsXF7JRLS6RSxOaUNX5gPaoqqxAZGVnv4w+S8xGb0/BQgsbY6YgRGVn/XZ6HGQVIKnnh8ZLm3xG6n5CKSJP6/w5is0tQ3co2GfceJcBNnCX3sfRSUav+HmqvEf0QnBxmxREARKVXKuQad6PuwUhH/qvT/celeJzXeHk9XyyCe53eT7HmslVCFRVyqpmkQHRSOmJzWjfEwJBT0+D3bXRaLmJzWpcgjE5KR2Rk/XHGZBUhv7J131T3Hychki/7w+ZZX9zmumHriVxdI5k3r4OTboMnESusn11KofzXgrv37iPXUP6PrHvx5a3+vtXhosG/7/sJxQr5t/GiwxFNS8a3VI/UB+iRHiOzlqlvin98m/9zrD7FxcWIjIzEyq76GH+44SRkS/78dDhixt/LRE997Hwk+z1cUSNp0vmT6/n+aowi/+5FPD5eG7wI17ctk+mtNCD5LuZGnVCLqcov/n7NeSK4myju7WJBPYniAevDFHYNhZJKsfrC35gRfZ7x0AVHP0wdsVSr+nlqii1+/RFj7oi9B79i9Lx1KM3HhR0fYP6gBS26SUaUY2Dibay58Bf8G6jIq+Dr4H+dRuDbruORp089HxWmhdu1rSqKMT/yOOZHHke6gTl2e/XADu+euG7vTYNDVIAvFsEnP7U24dgpOx6dchJgWqXY96P1EXG4yNc1QoGuIfJ1DWt/LdYxQLlAiHK+EOUCISr4OijnC1HJF0DM4ULK4UAKztNfUfs1XyKGUFzD/E8kgp6oCkY1FTCqqoBxdfmT/6rKYVxd8WQYTnUZhGLNrOi0rijCu7f2I8bcEXmeY+r9vKGIzxrSmobzLtEprc+7SKTGaHxvUsMoCVmP1NRULFiwADU1z98sL1++HHx+8//Iqqpkqy6EwqZtJ9DRkU0U1T0PIdrMpTgbAolYZu2xqfZsVdREEi4PJ1y7YFrMhdo1s6oy9EiLxkWnDixGRuSR1wvy5y6jUMWXfxOiNZyN+Lg2yQ7nUivx4ZWWDXCTZ6KnAWNtbDsDRhJS09yy9cSPXUbj3Vv7Zda/P/83Trp0RpKJDTuBEYalN/fhHTlbfyOtXDHmpY+U8u+JNM0NOy90nfYDdh/8BqEZsjdcdMU12HT8J3TKTsCyPrMpUcwin7wUrL7wN0Yk1D90Rszh4u8OA/FZ9ylIN1JMD2AiX0u3a9uX5df2j0w2ssRO717Y69kd4baeVCGpAPo1leiYkyiTcOyQm9Rgu4LWKNbRQ7yJLRJMbJBmaIF0Q/Mn/xmYI+PprwW6hupT5S+VQl9UBYuKElhUFMOyohgWlSVPvn76q3llsczXFpUlKkvYNoVXQRrOi6haFaAkpFwZGRl45ZVXkJPzfGvQrFmzWrQVGwCj5JbHa9oLdd3jxGJxPUcSon3aFTK3Uz+ifpCsO+oeJJOEBIDRcWGUhFQzvrnJGB0v276hRKCH3wKGKfQ6Orznb075XA4GOespLAnpbMTDEBc9xjpfS4ovPukxDWMeX5eZ9mtUU4G/TvyMgRNWUpWJGph5/wy+u7iJsZ5gbI1h4z5Dka6hymMisjINzdF/4ir878zvmHPvFOPxxREH0SE3CZNHLqNpyipmUV6Mz65tw+uRxxustjvlHIB3+87BPStX1QVHADC3a8++fwZToy/AooHt2gDgXJKLpTf3YenNfcjWM8ER9yAc9uiKUy6dUKpD2+cbY15RLJNs7JwdD6+CdIVPns7VNUK0hRMemjsizsQW8aZPko7xJjbI1zVSnwRjU3A4KBfoolygixTjprW2A55Uk5pVlT5NXpbAorIY5pWltf//JHlZ8nTteWJT0clfCTg45haIxHzlJJU1DSUh64iLi8OcOXOQkfE8AdKzZ08sXbq0xefkcmU/SDQ1mVj3OIGAncbAXA4HXlbMapSmcjPTQ0BA/b31fFOikVTRul5Q7Z0sEBBQf09I7zs3US1+oSekUKfZL7x+bo4ICKi/J6TXuZJW94Ts4OmGgHp6QloWVcLreuvv5nRo742AenpClhjnw+tB63tCdvTvUG9PyEhRKtolxzW6JVteEvKxqWwSUk9PDyio82LOAdq72MOrqHU9Ids7mDT4fds+JhKl0tb1hGzvYoeAgPp7QvpcrWh1T0i/di4ICJDtCal/6SqQ37LYj7kFQsThynygGBUXjqV9XlXImxknU93nPSGlQJVYAj6Xg44d/OrtCZnAy4RXfOt7Qjb09+1XlACv3Jb3hIzPZ7YOMDc3B+KVU9H37s19jLX1HYcoPGkyr7cPAjrK/rv0OFmIODn/vpv0c0QKVIjEmBXoiCW93WAoZL5NMcorh1d4/RU1z8jb0uJsqov04iqIJE2/E21loAMzfYHCt+NXCIR4dehbOLfjI5k+Tv1SorDgzlH8r/NIhV6vOZ79XVWJJMip4eD6Q8X93g2FPJRWqf9N1RFxN7DhxDrGeraeCYa8/AUNPgHgaKKL1KLWbetShGq+AHMHL8QdazesPbeBkfAamByJiC2LMWXEMlxzaM9SlG2HjqgGC+8cxorrOxusQoo2d8SyPrNx1C1Is5Ih2ujpdu23bTywrPdsjEi4gRn3z2FY4q1Gt8BaVxRh9v0zmH3/DKp4fJx39Mcx90CccQ7AfQvnNv13y5FK4FqU/STZmBOPgOwEdMpOgFOpYvsOphma44G5E6ItnBFt4Yhocyc8sHBCrr6JQq+jiUQ8PnL0TZs38f1p1aVZZSkMnvaKNKyuhFF1BQxrKmBYXfnk15onazpiEQQSEQQSMQRiEfgSMQQS8dNfRSjQNcRO714479wRyzo7ISDAR+5lW/NZ4xlvK4OGP78m3EdGdet6QnIV8G+aI23phAItFBERgQULFqCg4HmyKiQkBL///vuTZEcLPXjwAGPHjq39+sCBA/Dxkf/N19Dz9u/fj/btVfPm6fbt25BInryJ43K56Ny5s0quqywikUimP0JAQECLttYTxSiurIHpiuMNHrP23J94O+KQzJr/K+tw3/L5dPnODsa4nSbbp5PDAcSrRykuWC3U7adLuJFS2OLnn975EfqnRMmstZ/1Kx5aONbzjKa7+GYoerpZIK2oAgN+v4bYnDJwOMA3w9tjWb92rT4/G5ILyuG66gxj/dVgZ/wVnqzw6zmU5CJuwzyZaYjVXD7cX/tTodvcQlzMcGpeCAzqJApzy6pg/elJxvGS71X775K79BBj7crCHpj6bwRjOra815Jnvhvpi6V9PeSeTxF+OLcBiyMOyqyV8YXoNPMn1qZli1ePRGFFDdp9fbbeHo7arHtaNE7t/hj6ItmbQCUCPfSbtAoRNpr5WqRoEUt6o8vai2yHIaNv8l3sPPSt3MEbIg4XH/Wcge+7jqVKY2WQSjH28TV8e3ET2hVm1ntYrq4RPgudivUdh0DEo/fi6sy4qgwvPQ7DxIeXMTjpNqNNUmOy9E1wzqkjzjn747yjPx6Z2WttUlJHVAO/vOTavo0B2fEIyEmESbXibjaLOVw8NHPAbWt33LF2f/qrG1V5a5CwRaHo6qLZLScUkSeiV/6nDh06hA8//BDV1c/fcPbp0wc///wzdHXlV980lYmJ7F2IF6dtN6Tucaampq2KgxBN4i7nDWy8ifwqUaJahz2CGUnIUfHhCklCPvPjxYTayjOpFPjwWAzmhbjARI+dinBNsuTWAZkEJAD8276PQhOQZ+d3R6irOXS0ZW80iz7qOQPDEm7Bu+D5xHgDURX+Pv4T+k76irVeWyce5rTJBKRvbjIO7V/JSEBWc/kY99IHlIBUc+edO6Lr9B+w/8AqmQn0AMCXSvDtpc3ok3oPs4YupiohBeqS9Rhrzm9En9T79R5TzeVjXeeRWBUyEYXUykAjFAsNsMWvP7b49Yd5RTHGPrqOiQ8voX9KVJO2DtuUF2Hyw0uY/PASACBP1wjhtp4It/NCmJ03wm09NS6BpldTBZ/8VLTPT4FvXgra5z351aMwo8G2A81VwddBlKVLbbLxtrU7oixdUSFo2mwJop44WpqEby5KQgJYt24dfvnlF5m10aNH4+uvv1ZItZyVlRW4XG5txjg3t2kl2C8ex+FwYGGh2VlzQpqj7nbsVEML+sGrIPqC1iU1DnoE44fzG2XWRsWF4/uu41p1XgDYF5UJbytDrLkgOzlaLJHicV4ZAh1NW30NdSGF4jcimFaWYu5dZhXiagX83byobztLhZ6vLasQCDF76Nu49N9ymQ91PdOjsTjiIH4IGtvAs5UnsUCzh/+0hGNxDo7t+QzmlbI3gSXgYOawJTjj0omdwNRUfS0y2JZkYoMeU77DhhPrapMfLxqecAu3t7yNacOXUj/jVrIvycOXV7Zg5v1zMm0l6trj2R3v956FeFPq7a2p8vWMsbHjYGzsOBiW5UUYEX8TI+PDMTjxDoxqmC1n5LGoLMGwxAgMS4yoXUszNMd9C2c8sHDGfQtn3Ld0xmNTO+TqGbNWNWlSWQr3oiy4F2XCvTAT7kVZcCvKRLvCDLgWZTf4vd4SBUID3HmhuvG2tTtizB1poBbRWm06CVlTU4OPPvoIBw7ITj18/fXXsWTJEoVlqnV0dGBnZ4e0tCdVDsnJTdt+l5LyvCeAvb09Y1o2IdqKKxHDvUi2ErJuP0jScrODnXAhvuX9QOJN7fDA3Am++c9fo0LTY2BRXow8/dbd0V57MV4pW5TV0d/hrev7Is8bkUcZHwYOeAQjxsJJYdd4rZuzws5Fnrhu74M1QWPwXp2J5l9e3oqjbkEK/fsj8plVlOD4ns/k9upa3G8udvr0YiEq9abLV98PyOUCXUwdsRQXnDpg7bkNjCEDDqX5OLvzI6wJGoOPe0xHNZ+q7JtDv6YSS2/sw7Ibe2Egqqr3uFvWHni37xxK9mqZXH0TbO4wAJs7DICOqAZ9Uu9hVFw4RsbfgGtxdrPO5VCaD4fSfAxOuiOzXs7XQbKRFZKMrZFsbIUMA3Pk6RkhT88I+bpGyNM1QqHQAFV8Aap4z/+r4fLAk0ogkIjAlzz5VSAWw6i6AsbV5TCpKoPJ01+tyothV1YA27J82JYVwO7pf4Y1yut1m2xkiTtW7oi0dqtNOCYZW2vtNnVC5GmzScjq6mosWrQI58+fr13j8/n47LPPMGHCBIVfr0OHDrVJyJiYmCY9Jzo6uvb/VdULkhB14Fiax2iEHUdJSIUZ08EWQY4muJna8sE6hzyCZZKQPKkEwxNuYotf/1bHV1TZcBN0Ip9QVI1FEYcZ6991Ha/Q6/w8RnM/TBrJGXSjLj4NnYoR8Tfgl/f835WuuAZbjv6A0KnfoYZHSRJl0aupwqF9K2Ve055Z1W0ifunC3pAg0gocDv4IGIbrdt7Ycfg7eBWkyzzMhRTLbu7D0MQIzBj2Du5a1z98kDzBkUow/cF5rLq8BY6l9d/MTDM0x0c9Z2CLbz/qv6nlqvkCnHLtjFOunfFW/3nwzk9D/5S76Jd8F/1SohqdtF0ffVE1fArS4PNCqxJNIuJwEW3hhDtWboi0dnuSeLRya/XNekK0gfq+G1cikUiEt956SyYBaWBggJ9//hk9e/ZUyjWDg4Nx4sQJAEBYWBgkEgljavaLxGIxwsLCar8OCQlRSlyEqKN2BY1PxiYtZ6wrwOWFPXEtKR9ZJdWYvPVWs89x0CMY79/YI7M2Ki5cIUlI0jIzHpyDbXmhzNpl+/YKnQY7toMtdBvZzm+owweH86SX5zM9XM0UFkNr+Firbx+yKr4OZg1djGvblsn0lQrMjsOXl7fi/T6zVRZLW+oFyZOI8d/h7xCawbxBvLHDIHzcYxoLUbHPzVwfCfnasSU/0todQdN/wG+nfsO0mAuMx/1zkxD+77v4LHQKvg8aS8NS5JFKMSL+JlZd/gcdc5PqPaycr4PVXcdhdddxKBeo53Z9okQcDh5aOOKhhSN+6zQcHKkEHXMS0S8lCsEZseiW8RBuzayU1AQZBmZ4YOGEaHMn3LF2wx1rd9y3cEYVn3YxEiJPm/wpu3r1apw7d672a3Nzc2zYsAF+fn5Ku+bAgQPx1VdfQSwWIzc3F6dOncKQIUPqPf7EiRPIz88H8KRCc/DgwUqLjRB1U7cfJAA8NqMkpCLp8Lno42GJ5Bb2fQuz80KOnjGsKp5PFB6SeBs6ohra1sYCjlSCd27uZ6wruhdkU+gKeHitmzP+vP58W/2CHupRYaTuDcFv2Xri624T8PH1HTLry27uwwnXLjjrEqCSOB49HQql9aRSrD/5C0bF32A8dMAjGPMHLWhzW+SeVTq/3NEO9l+cYjkaxSnV0ceM4e/gnLM/fjy3gbHdUkciwleXt2Diw8uYN3ghbtp6shSp+umR+gBfX9qMnunRDR632bcfVvScgTQj6hlMnpByuIi0dkektXvtmlV5IYIzHqFb5kN0zE6EX14y3IqyFN5nUdFEHC6Sja3wyNQeDyydEW3uWJt4LNAzYjs8QjRKm0tCXrhwAZs3b6792sTEBP/88w88PZX7ZsPW1hYDBgzAyZNPBgasWrUKnTp1go2NDePYjIwMfPXVV7VfDx48WO5xhGgreUnIOJqMrVYkXB4Ou3fF7PtnateMairQNzUKJ127sBiZ+skorr9flqKMigtnbFmKNnfEYY+uSr+2PL+O64g+7hZ4kFWKQV6W6ONBH0qbamXIJAxKuo2QjFiZ9c3H1yJg5s8qmSRaLZbgp0sJSr8O21Zd3iLzGvbMZfv2mDpiWZscCrCwp3rcMFAKDgd/+Q/GBccO2HT8R/RIZ1a/dspJwPV/l2Jdl5H4uMc0lOrosxCoevDPScCqy1swMv5mg8ddcvDFO33n4BYlbkkT5Oib4ohHVxx54f2JXk0V2uenwC83Gd4FaXAuzoZLcQ5cirPhUJrfpEncrVXGFyLD0AwZBubIMDBDookN4k1sEW9igzhTO6QYWVKVNCEK0qb+JYnFYqxatQrSp3vEOBwO1qxZ0+oE5IwZMxAeHl779cOHD+Uet2TJEly4cAFVVVXIysrC1KlT8fXXXyM4OLj2mLCwMHzwwQfIyckBAOjr6+Odd95pVXyEaBoPeUlI2o6tdg57dGV8gB8VF05JyKeqRRLoLj+ikmstvbGPsfZD4BiF9+Ia6du0G2I8LgdTuzgq9NpthYjHx/Th7+L2P4tlhgw5lOZj/clf8PLoD5RenTd/911klSg/ec6mRRGH8EH4bsb6PQtnvDRmBSoEQhaiIqoQZ2aPPpO+xns39uKzq9uhI5HtQ8yFFG9HHMK42GtY3vsVbPfp3aYqYgOy4/FB2C68HHu1weq0eBMbvN97FvZ4hrapPx+ieBUCISJs2iHCph3jMZ5EDIfSPFhWFMOiogQWFcUwryyFRWUJjKorIBTXQCiugY64BkJRDQQSMURcHkRcLmq4fIif/n+pQA/FOnooEhqgSKiPYh195OsaIcPADBmGZm36hgMhqtamkpDHjx9HUtLzPiZ6enrYtGkTNm3a1ORzWFpa4ttvv23R9d3d3fHll1/i/fffh0QiQWpqKmbMmAFnZ2fY2toiIyNDZiI2l8vFqlWr4OREUzFJ21K3EjJL3wQlQnpzoG5OunRGFY8vM0RoVFw4FvV/nT6QAFh5OrbxgxQgJD2GsU0uU98UW337KvQ6LmZ6GOWnOVX5w3yscSzmee8pXxtD8Lia8X0Zb2qHRQPmYdPxn2TWxz2+jrlRJ/Bnx6FKvX50dqlSz8+2iTGXsPbcBsZ6spElho3/TCO21hnr8lGs5CFeUzs7YNttzRwK0RgJl4dvuk3AMbdA/HX8J3TOYVb+OpXm4t+ja7Do9iG80/c1XLf3YSFS1QnOeIgPr+/C6PjwBo/L0jfBypDJ+LPjYBqYRZROzOUh2dgaycbWbIdCCFGQNpeEfFF5eTkuX77crHM4ODi0KobRo0dDR0cHn376KQoLCwEAycnJSE5OljnOxMQEK1eubLBvJCFaSSplVELSUBr1VKajhzPOARie8HywjXNJLjplx+OOjYfCr5daWInI9GQ4mOhiQDtL8HnqPXFz1elHKrnO0ht7GWvruoxUeEP0q4t6wtJAc6rDvhvpi3uZxUgprISZngD/G+ffovMY6rCzJfcf3/4YmhCByQ8vyaz/eG4Dwm29ZHpskabrnxSJf46tZVR45ekaYej4z6mf3QtWDPLEwQeZKK0S13uMvoCH8pr6H1d3kdbu6DZtDRZHHMRnV7dBX1TNOCYkIxZXt7+H7d698GmPaXhsZs9CpEoilaJfyl28H74Hg5PuNHhokY4+Vncdh5+6jEKZjp5q4iOEEKJ12lQSMj4+nu0QAABDhw5FSEgIdu3ahbNnzyIpKQlFRUXQ19eHh4cH+vTpg0mTJsHc3JztUAlRObuyfMaHAEpCqq/D7l1lkpAAMPbxdaUkIcduej48YkpnB/w7jbZ9e+anYczjMJm1UoEufu84TKHXcTHTg52xZk069bM1QsKHA5FUUAEnU90WJ62H+rBUfcHh4I2Bb6B7egxcSnJql/VE1dh16BsETV+LYqEBO7FpqG7pMdh/YBVj+205Xwejxn6MGIu2vfNkRqBsCwUfayPkfTEUdzOK0fXHS3Kf81qIM37W8P6hIh4f33cdh91eofjt1G8YknRb7nFTHl7CxNgr2ObTG191m4iHFprbckK3pgrToi/grduH4N/AtGsAqODr4H+dRuCb4PEq6UlLCCFEu7WpJOSRI8rpzbVly5ZmP8fU1BRz587F3LlzlRARIZpL7lAaSkKqrYMe3fDrmd9l1sY+uoZPe0xT6nW3307DtyPaw9G0bVdjLIk4wKjo+qvDII3YTqoKXC4HbhYtb+XQx90CrubstYIo0jXEjOHv4OzOj8B/oTF/u8JM/HX8J5X0h9QW/jkJOLr3c8ZUZBGHi0kj39f6rbbPvBLkiM03UxnrfdwtsHqkL2NdwOMi0NEUAz0tcfpRbu26hb4ABjo8fD/SV+OTkM8kmthi2PjPMPHhZXx7cZNM8v8ZnlSCGdHnMS36AnZ498T3XcfhthJuuimLV34qXr13Gq9GnYJlZUmDx1byBNjgPxjfBo+nCmFCCCEKo9572QghbU67AkpCapJ0IwtctZP98N4hLxle+cwPuYqWWlTZ+EFazKq8EK/cPyuzJuJwsTZwtMKv5WGhPRV38n4vhjry78m+Eeqq5Ggad9nRDx/1nMFYH/f4OpbcOsBCRJrHMz8NJ3d/ArOqMsZj8wYvlJnSqk7G+7f8Z18vN/m7aZb2ZQ5+AIBzC0JhbVR/u4X3+rWDkP/8Y8OHAz3B5XLA53GxQA3+nSgMh4OdPr3Qfvav+LDnDJQI5N/o4kKKKQ8v4dbWJbi0/T1Mjr4AgbhGxcE2jWF1OWZHncLF7e8j5u8FeO/G3gYTkKUCXawOGgu3uRvw1oDXKQFJCCFEoSgJSQhRK/IqIWk7tnrb59mdsTbu0TUWImlb3rx9FHp1Whfs8uqBJBPFD4+Z081Z4edky6vBzC23w9ur98Cd77uOxQGPYMb6txc3oUfqAxYi0hzOxdk4tftj2JQXMR5b1ns2NnUYyEJUTbPrlaAWPW9qZwf8MaGj3MdaWjc70MsKD9/vh3+ndcHdd/tgSe/n1X9zQ7Tn9eGZSoEQ33SbAK85v+NP/8EQcer/yNQjPQbbjq5B+u+z8L/TvyEkPQaQ1j9VWhVMKksx7cE57DnwFbJ+m4mNJ9cxBpjVVSg0wMqQSXCduwHv95mNLAMzFUVLCCGkLaEkJCFErdQdSgNQElLd7WU5CZmUX45NN1JwOSEPUpY/+KmKXk0VFtxhthj5vus4hV6HwwFmBjpiQkft+Tc4McAeMwMdweNyoCfg4sthPmhvY8h2WA2ScriYPXQx4uskmPlSCXYc/g72JXksRabebMoKcGrXx3AuyWU89kXIZKzpOpaFqJpmUqeWDT+Z1dUJW6d1gbmeYgdTAYCzmT6mdHZABzvZvoAB9iYKv5a6yDIww+uDF9YmI2u49Q+qsqgswRuRx3B1+3tI/HMOfjn9O4Yk3IJQzrAbReNKxAjMfISlN/bi2O5PkfXbTGw5thZjH19n3Kyq66GZAxb2fx1O8/7Cpz2maWXfx78ndWI7BEIIIU+1qZ6QhBD1V7cSMl/XsN7+djpyBk20t1bvZII2SjC1xW0rN3TOed4XLCjrMZyLs5FsrNyhHtcS8zHoj+u101mX9HbHmtF+Sr2mOph97zRjO90Z544K702W/8VQmOgJFHpOtvF5XGya0hnrxvpDh8+BkM/DwfuZbIfVqEJdQ0wYtRxXtr8H3Re2fdqX5WPfgVXoM+lrVAo0Z3q5slmWF+Hk7k/gKefG1o9dRuOz0CksRNU0Az0t8dNLHZRybj6PWQtp08A2bEX6c0IA5u6KVMm1FC3RxBavD16IVSETsTx8N2bdOyPz77Au55JcLIg8igWRR1HF4+OGjScuO/oizNYbUVYuSDCxgbSB6soGSaWwL81Hp5x4dMmKQ2DWY/RJvQ9TOe0G6iMBByddO+HnLqNxwrVzy2Mhrfb9KF8sPUQV7YSQtoOSkIQQ9SGVMpKQDVVB9na3QFhyoczamz3clBEZacRer1CZJCTwpBryx8CXlHrdN/ZE1SYgAWDd5QR8PsQbhkLt/fHGlYjl9gL8PkjxVV1GWvznaKSreb+32zYeeKv/PKw/9T+Z9a5Zj7HxxM+YNmIpDarBkwTk6V0r5E793dhhEN7pO0dt/5w+G+yNTwZ7Ke38HhYGsDbUQXbp8+q4hT1clXa9F83p5oxpXRyg/8FRlVxPGZKNrbFg4AJ8EjoNc6NOYP6d43AqZVbavkgoFqFnerTMduhSgS4emdohxcgKaUYWyNI3RamOLkoFeqjiCcCXiMGXiqErqoZFZQksK4phU1YIj8IMuBdlMQYsNVW8iQ02+Q3AZr8BSDG2atE5iOLkfjEEj3ObnjwmhBBtoHnvwAkhWsuyohjG1RUyaw0lIZ1M9bB6pC8+Ph6DSpEEo/1sMKsrs98bUb69nt2x8sq/MmtjlZyEvJtRjLsZxTJrIokUWSVVCk9CRqQW4t2DD5BcWIGx/rb4doQveFx2khjjHl2DR5Fs5V6UpQtOuHZhJR6iWhv8ByM48xFeizopsz7l4SXct3TBVyETWYpMPTxLQHaUk4Dc4dUTrw9aoLYJSADgKrkgjcfl4OCrwXhr3z0k5JdjjL8tltUzrIbUL1ffBF93m4jvuo7HyLgbmB59DqPibkBHImrS8w1rKtE5J4Fx804ZsvRNcKBdCP7z7oULTh2o6lGNmOvrAKAkJCGkbaEkJCFEbcgbStPYZOx3+3rgzR6uKKsWw8JA8T2wCBCxpDce5pRix5103EwplDuVOtrcCTFmDvApSKtd65EWDZuyAqU1t//nZorCzpVSWIGc0ioE2JswkotiiRQjNoYjq6QKAPDDhXjYGeni3b6K3frcJFIplt7cx1heEzRG4YmVEBczcFlKtJIGcDh4c8Dr8MpPRe802S18X17ZigQTG2xv34el4NhlWV6EM/VUQB52D8LM4UsgaaCnX1sR7GyG62/3YuXaQj4XtkZCZD59PdV0Yi4PBzxDcMAzBGYVJZgQewUvPb6O/il3IRQ3LSGpDAnG1jjk0Q17vLrjin17+r5XQwH22td7kxBCmoKSkIQQtSE/CWnb6PN0BTzoCugNtrLo8LiY1MkBkzo54HhMNoZvCGMexOFgr1coPgzbVbvEhRTjHl3Db52GKyWuq4kFCjnP0kP38cOFeABARztjnJ4fAkuD5z3SHmaX1iYgn/njehIjCSmWSLE3KgMx2aUY5KWcbW69U+8jOPORzFqqoQW2+/RWyPkHelriUkI+OtkbY/PkTgo5J1G8Gp4AL4/+AGH/vgu34myZx/4+/hOy9E1x1iWApejYYV1WgFO7P5GbgDziFoSXR32AGp529TdtiKmeALp8LipFktq1od7sb7/lcDhYPcoXM7bdZjsUhSvQM8L6gKFYHzAUBtUVGJR0BwOSI9Er9T465CaDC+UNTks1tMA5J3+cd/LHOWd/JJo0/t6JsEteX3NCCGkLKAlJCFEb7QpoMrYm2+vZXSYJCQATHl5WWhKytU7F5uDP60nYfff5993djGJsCEvG8v6etWs1EgnjuS/2cNp8IwVbI1Jx5tHzvmCfnXyolJiX3tzLWPu5yyiFJVdOvt4dUqkUHDXerkqeyNU3wUtjVuDK9vdhVPO8jYWORIS9B79Cn0lfI9LancUIVce1KBMnd3+CdoXMAUOH3Z8kIKv5bScBCQA6fC7e7u2Ob88+BgAIeBy83Vs9vh+mdXGEm7k+ev5yhe1QlKZMRw/7Pbtjv2d3AIBpZSm6Zj6Cf24iOuQmwS83Gc4lObApL2rWeXP0jBFnaos4EzvEWDgiwtoDt63dkWlorozfBiGEEKJwlIQkhKgNDzmVkJSEZJ+JXtN+VERYeyDOxFamX2Hv1PuwK81DhqGFssJrkX8jUuutxFlzPk4mCdmQg/czMXvHHca6VAkFL+3zkjEy/qbMWrGOHtZ3HKLQ61ACUnPcs3LFpFHv4eC+leBLnyfLjasrcHTv5+g96WvEmdmzGKHy+eUm4fieT+FQms947JB7V0wYtbzNJSCf+WqYD4Z4WSE6uxT92lnAx9qI7ZBq2Rnpyl2fF+KC9deZ1ayarlDXEKdcO+OUa2eZdR1RDRxK82BWVQrD6koY1lRAKK5BDZcPEZeHai4feXpGyNM1Qp6eMSoEqplkTlTHwUT+vwVCCNFWVAdOCFEbdbdjlwj0kK1vWu/xpnpt84OlKvVwNYODiV7TDuZwsMNHts8YF1JMiFW/apffribW+1heeU2Tz7MxLFkB0TTN0hvMXpDrOw5FsdBAZTEQWb3dzWHFci/a426BmDt4EWPdrqwAZ3atgGsRszpQW3RLj8GFHR9oVQLS2lBxSSYOh4O+7SzxRqirWiUgG/LbeH+2Q1Cpar4ACaa2iLBph4tOHXDUvSv2eYbisEcwjrsF4qxLACKt3ZFqbEUJyFZwt9BnO4R6OZjoYUpnB7bDIIQQlaEkJCFEbdRNQj42ta132Aafy8FgJfXdI8CMQEd8PMgLB18Nbtbzdnj3ZKxNirmkqLAURhH9JDOLK3HoQZYCommcXWkepkVfkFmr4fLwU5dRKrk+kW/79ECsHuXLdhjY3GEAVvSYzlh3LsnFmZ0r4FScw0JUyjU04RZO7/oY5pWljMf+8+6Fl0drXgKSz+VgRHtrtsNgFVViE0XzsjJAdxflDMhrjXaWz28gbp7cCcfmdsP6CR2R+NGAVt3cer8/TbsnhKg3SkISQtSCaWUpLCpLZNYem8nfit3B1gg7ZwbC2oiqApRl85TO+HyIN8z0m/dGOMrSFQ/MnWTWumc8hEuRapJ1qlRWLVbZtRbfOggdieyk1W0+vZFmZKmyGIh8MwIdMTPQke0w8FW3CfifnP6rbsXZOLvzI61KRL55+zAO7VsJAxFzwvLvAUMxffg7GjGEZqi3Fb4f5QtPSwN0cTDB7leCml55rmamUiUXUVNn54eCz/IQmEtv9mCszQx6/nODz+NiiLc1XuvmAmez1lVtDvKkG/SEEPVGSUhCiFqQ1w8yTk4/yE8GeeHu0r4Y04F6RSqCtaEQQr7sj4KJAa3oISdnSzYATHx4ueXnZNmt1PoHB5jrKz/RYVpZivmRxxnra4LGKvQ6s4OdGj+IMHA4ajLwg8PBW/3n4a8OAxkPeRRl4vL29+GTl8JCYIrDlYjx09n1WHd2PXhS5sCoVd0mYsGANyDh8liIrvlmBjnhnT4eeLi8P24u6Y3Rfq2faKwvYOf3bs5yWwJC6mP59HtzUU831mLo4WaOH1/yg7WhDkz1BFgx0FNpu3lCXdWv6pOQlrClYhOtRUlIQohaqLsVGwDiTCjRqGy6Ah6W9fWo/dpAh4fFrUyoyN2S/VB1W7JPxubgj2uJiM8ra/zgRlSJxHhtZ2S9j9sosH9bfRbcOSoz/RgAjrgF4Z6Va4vPuXNGINaN7QA+98nWRxczPXzYxGE8RH1JOVzMG/Qm/vHtx3jMqTQXl/5bjuAM5UxuVzaL8mIc3fs5Ft0+LPfxpX1m4+Oe0+tt4aGORvraKPyc4zvSz01C5FkQ6iqzzVlPwMXHg7xUdv23erkj/ZPByP18CL4Y6qO01gO6LN2IIETR3MzVt5craR2ajk0IUQvucoYnxJm2viqENO7zId4Y08EWsTll6O1uAftWTmqMNXfEbSs3dM5JqF3rkh0Pz/w0PDJX/pa9N/dGAXhSEXRmfnd0a0UvqJsp9VdBqoJeTRXejjjIWP8m+OVWnbe/pyXM9XUwM9AJiQXl8LUxAo+rOckbUj8Jl4dXh7wFnkSCaTGyfUQtKktwZucKTBm5DIc9mtfvlU1BmY+w6+A3cClhbimv5Akwa+hi7JRTga3Ozr8RCkOh4t+G93IzV/g5VW2gpyVOP8plOwyiZbytDRH9fj9ciMuDk6keujiYIDKjGCtPxbb4nIZCHgRcLgoqngy0e62bMzY0MLCOSz9nCSGEKiEJIerBvZDZMzCekpAqweFw0MXRFJM7O7Q6AfnMTm9mQmCyCqshAaC8RtzgFOymnoNNc6JOwaqiWGbtkoMvrjgqZhiKkS4f/nbGlIDUMhIuD68MW4wN/oMZjxmIqrB//yp8dH0HOHK2NKsVqRQLbh/Bpf/el5uAzNYzQf+JqzQuAQkAPtaGCj/nRwM9We99pwjzQ101qaCVaBBzfR2M9bdDkJOpQhKCAXbGePxBfxx8NRgP3uuLT1RYWUkIUQ49geb/HFV39CdMCFELbnUqIau5fKQaWrAUDamPRCpt0nE7fJhbsqdFnwea+HxF+edWqkqvp0h8sQjv3tzHWG9tFSRpGyRcHuYNehPfBI9nPMaFFCuv/Iudh76FYXU5C9E1zrY0H0f2fo5fzv4BoVjEePyehTNCpq3GdXsfFqJrnbd7uSllsJq25O3G+dvhwoJQfDjAE2tGsz99npCGmOnrYKSvDXysjdgOhRCiAEdf68Z2CFqPkpCEELXgUSibhEw0sdaY4QJtSRcHkyYdl2hii6t2sskBr4J0dNPQfnRsmBpzgVH9dcfKDcfcAlmKiGgcDgcf9noF7/Z5Ve7D4x9dw+1/FiMkPUbFgTVAKsXEmEu4u3kRhiVGyD1km09vdJ+6GokmmlctH7W0L34Y7cd2GGqvp5sFvhzmgyW9PRo/mBCWqOs0+1/G+rMdAiEaq4+HJfxs6KaCMlESkhDCOoG4Bk4lsv2f4k0U37CftJ6tsS56NnHy4hY/5nCMmQ/OKTokrcSRSvBe+F7G+rfB4zVq8IamUMWAITatDRqD8aOXo1TAbLfgUZSJS/8txxdXtkIgrmEhuhdiKUjH0b2f4b8jq2FZWcJ4vIbLw9v95mL68HdRpqOeH/4b42drpLSBFNrKhiakEjU1PdCR7RDkcjPXzNdHQp4Z59/4TUZ7Y8W0kCKqR0lIQgjrXIpzwIXsNt0EDaxwaStOzWvaNoWdXj1RxZMdvDDp4SXoiFSb6IhILVTp9RThpcdh8M1PkVl7bGqL3V49WIpIuwU6Nq3CV5Pt8wxF96mrESfntZUnlWDF9Z2488/bGFxP9aEymVSW4osrWxG1eRGGJt6We0yciS36TPoa67qMokQ8IYQV3lYG0OFxwedyMC/EBcN8rNkOSa7e7hYw1ROwHQZRIjM9gdZW6w30tMQvY/3hZ9vw7+/U6yEqiogoGiUhCSGskzcZO56SkBqvQM8Ih9xlJ/CaV5ZiRMINlcYxb9fd2v+/nlRQOz1bbUmlWB6+m7G8uus4iKlFgVJowzCPprhv6YLgaWtwzLWL3Mfb56fi+J7PsH/fl/DJS5F7jCIZVFdgedguxG2chxXXd0K3nkrMDf6D0Xnmjyrr//huHw+0V8LgGG3W0a7hD4udHYxVFAkhyvP1iPbIXzkEeV8Mxe8vd1TaULeZQU4tet6cbs4AAAMhnxI0Wi7IyQRRy/oi94shbIeicCdf7w5bY13MDGq40tjVXF9FERFFaxvvugkhaq1uP0gAiKPJ2Fphiy9zS/aM+6rdkh2RVgQAuJNWhH6/XW31xGxl6598F8GZj2TW0g3Msdl3AEsRtQ1tZUB4gZ4RRoz7FAv7v45yvo7cY0bHh+PepoXYcegbBGc8VPhAKffCDKw+/xeS/pyDry5vgXllqdzj0gzNMealDzFv8EKU6qj2w4axLr/xg0it0b62MGug8mpeiIsKoyFEefR1+DBS8uvDjEDHZk/o1eFx8WrX58nLQEdTBUdF1An36Y4APYH23pzu6WaBdWM7sB0GUQJ6h0UIYZ27nCQkVUJqh+NuXZCjZwyriuLatREJN2FRXow8fdVWxmy5lYoqkUSl12yJD8N2MtbWBr6Eaj5trVKm9/u3w9dnHsusNbYVqDlczPSQVFChsPO1CoeDXzuPwGmXAPxzbC0j6Q08maA9IfYqJsRexR0rN2z26499nt2RbNyy7Yd2pXkYHReOcbFXMSD5LqMFx4tEHC5+7jIKn4VOUXnyUd0I+VyNeN2yNhLi/IJQ/Ho1EVUiCTo7mODQ/UykFlViUid7zO1GSUhCmqqjvTEuLOiBrRGpMBby8eVp5mt0XecXhCLEpWk9u5Wtu4sZriUVMNbbWRogo7gSZdViFqIimujNHm7o52GJDt+fZzsUokCUhCSEqNyNlEKZr93kbMdOoME0WqGGJ8B/Pr2x6Pbh2jWBRIzJDy/if51HqiyOkkoR1l6MV9n1Wqpn6n30T5HdLp6va4g/ArRvu426md3VGRvDkpFdWg0AGNneBr42ituSu7CHG5YdfqCw8ylCrLkjQqd8h7lRJ7Hy8la5w2AAoFNOAjqd34i15zfinoUzLjn64aZNOzywcEKysRVy9Ewgetr/VSCugXllKVyLsuBVkI6umY/QPT0GgdlxTYrpjHNHvNtnDu5auyns96nJlvX1kJuA4Kth6a6/nTF+G9+x9utFPZX/d+hvZ4T/pgeCx+Ugr7QSPf53TenXJEQVgpxMEeRkCgCNJiHbWxvKTUByOC0vZL/wsi22xpTiz3vyK9UbUl8l+UhfG3wzvD10lx9pWVCkloGO9lZAEu1HSUhCiMocjc7CjxfjcfqR7CRs96Isma9z9IxRImzb1S/a5B/ffjJJSACYde+MSpOQM7erfthGS3xy7T/G2rrOIxVeDUZvXpnaWRog8t2+OBmbDSsDIfq3s2z1FOMDs7siPKUQ3V3MMLy9jdolIQFAwuXhj4Bh2OHdC59d3Y43Io9CIKm/SqVDXjI65CUz1mu4PEjBgY5E1KI4rtr54OOe03DOX5OlDAAAyP5JREFUOaBFz9dWi3q6MRIQvjaGqKiRIL+c3WnmbJsR6IjNUzrXfh1eVsViNISon0U93fDzpYQWPVdfwIWXmeJ3YOjwqRucIkzrop6T2TWdulQTazt6FSCEqMTD7FKM+fsGIwEJqZTRE5L6QWqXWzbt8MBctsl6YHYcumQ9rucZinfgflbjB71AKpXiqzOPMGT9dSVFxNQj9QEGJkfKrBXp6OOnLqMVep3ZwU4Q8ikJKY+NkRAzAp0w1MdaIR+URvnZYuVQHwxvr/6V3YW6hljcfy485/yB/3Uajop6+kXWRyARNzsBKQEHh92DMHT8Z+g55Vu1SkB2sFOPQSpWhkIUrBxaW5Ub7GSKHTOCWI5KPdDNFEIa9uVQ1Qzzaq65Ic5sh6DRBnhaYqiaTmbXRDpPhxPq8rlYOdRbIecc5GWpkPNoK6qEJISoxI476RBJmHtCLCuKYVQj2yeN+kGqNx6XA19zAR7kN7EKh8PBX/4D8f2Fv2WW5949iTcGtVNChK134H4mVhyLUek1P7m2nbH2U5fRKNRt/Zbg17o5w0jIh5+tEWYG0t1zdfJdTzPEFtYgp0KCSxk1rFe3JRtbY9GA+fg0dCpmPjiH1+6ehG++YidlJxlZYYdPL/weMBSJavp6PzPQERvDmBWfTTU72Al/hyvmz81ET4B7y5hDvgghymFjJERWieZX1hoK2fuo729nhKgM+S0+3uvbDsdjspFSWNmqLeNt1Ym5IeCqYUsOTZX52WDcTS9GJwdjGOs+qf6VNtC3uilOzOsO7tJDighPK1ElJCFEJe5nFstdd5fbD1I9P5SS5z7vbgofMwF4TXwPtNl3AKp4sm+Gp0ZfgEG1mgzqqOPP640nH747/xjR2c3vlSRP97RoDJJTBfljoGKqIIf6WGPNaD+8GuwMPo9+9KsTc10eXvc3xopgU7yiRgnifD1j/Bj4EjrM+gV+s37Bxz2m4bxjB1Tymr89r5rLR5itFz7vPhmdZ/wIt7kbsLz3LLVNQAJAL/fWTeX8alh7BUZDCFGl/6Z3YTsEreZhaYDHHwxA2Fu9kPXZYLbD0TgvJiDVqT/wl8PUs/K2MaZ6AvT2sKhNQALAgyzFvL8n8lElJCGEVfInY6v/1sW2ztVYgC1DrSCWSBGyI6PR4/P0jbG3XXdMeXipds2opgKTYy5hY0f1ewN6LCa70WOakqhsKrm9ILuMVEgVJNEcEzraYm0L+3cpDYeDaAtnrLJwxqqQSRCKquGfm4T2eSnwLkiDdXkRLMuLoCMRgSuVoJwvRIGuEbL1TRBr5oCH5g64Y+WGSoGQ7d9Js73Zww3vHLyPGnHzKyKsDJq3nZ20XitbuBINsSDUFb9eTVTqNfp40FZKZRPwuOjqbMp2GBpPwONilK8NDj1oXtshRfO0NMCHAzzx761Uhd2gbwxPiS/6I9pb40h0458FGtLH3QIX4vNk1gypjQgASkISQljmIacSMs7UjoVISEvwmnEHdkPHwTJJSACYG3VCLZOQqhSSHoMhSbdl1op19LC2y0vNPtfnQ7zx6YmHigqNqFiQkynWjPbF6nNxyFTTrYBVfB3ctPXETVtPtkMhRIanpQH4XEAkYTsSQghRnX+mdIbZx8dZjWHr1CfVwy91sEX02cZ7vgc6msDOSBeHo1uePNXhczHQ05I5b0ABrAxbf+P0tRBnmSSkhwkfHhY0eBWg7diEEJZRJWTbcd7JH4/qJJiDMx+hU1YcSxGpB3m9IH/pPBIFekbNPldzksJEPS3p7YG0TwZhzys0fIRoLxsjHQjq9POY3Mm+Wefo1062Ws1QyMcHQaYQNrVPCCGEKEGQown4XA6MdVVT72WiJ2BtK/SJeSEoWDm0tqp1ehdH6DYy2G9+dxfcWNwbv7/csdXX36bGrROmdXHExgkd0dtBF5O8DLCurwU4VLIPgJKQhBCWuRXJ3gGr4vGRbmjOUjREmaQcLjb4M6se50adZCEa9dA75R6GJspWQZYI9PBDYPOrIIn24HA4tLWUaDV9HT7e7eNR+7WhkIe3e7nLPdbbykDu+hBvK8baaA99nBmvvr1GCdEkRVVUVtwS4Yt7o+KbETj3RijboSjdIC8rmOg976Xoa2uEM/O7Y043Z7zZwxWGQuVuP7Y0EMLOWH3bvcwIdMCa3uZYGmgCK33aiv0MJSEJIayqO5gm0dgGEi69SGurTR0GoJore2d4+oPzMK4qYykiFkml+OrSP4zl/3Uejnw9YxYCIoRoCh0tqPZbNcwH4W/3wrZpXRDzXn90czGTe9xr3VwYa5cX9pAZIvAiIY8DPb7m//kQogizg51kvhbwONgxI5BRiSxPNeUgW0zVO1OU2R+xubq7muPPCQFYN9Yf7a3r39VDu3faLkpCEkJYoyOqgWOJbMNe2oqt3XL0TbG/XTeZNaOaCsy+d5qliNgzKi4coRkxMmuFQgOsDhrHUkSEkOao++FeleZ1Zybm+mrYMA0Oh4MgJ1NM7uwAexPdeo+b3Mkes7o6QcDjwEjIx/ejfBHq2vCOibc60Y0c0jrz5fwbczFjp5+bub78hHtTLOnlDosXnv9Bf09MCLBH7Pv9sX16F1x8U/ur9dqC/u006/UfAKwNdeBsqieztrCnG+M4vpyEuSUNf9NolIQkhLDGtTgLXMhOHY03pW1U2u5/nUcw1hbdPgyuRMxCNOzgSsT48spWxvp3Xce1qBckIUT1xC2Ymq0okwIcZD68dXcxQw83+ZWEmo7P4+KvSZ1QsHIocr8Ygnde2MZdHycjmr1JWmd2V2eZ3nbBTqYIsGMnuf1mD2Zipqk62Bnj0QcDcHhOMB681xefDvYCALiY62NSJwcEOZoyntPdhblGmibQ0YS1607o+Lzvekc7Y3wwoF2rzqnsQkUOh4NdM4PQwdYIQv6TKd8rh3gzjvOwMGAkHRe24t8EYR/9hCaEsMa9iDkRLd6EkpDa7pKDHyKs3dElO752zb0oCyPjb+BguxAWI1OdqTEX4Z+bJLOWqW+Kn7uMYiki0ho6POY9XT8bSiarm6ilfSGSSNBj3RWU17Tupgefy4GvLXt/x/Ymuri5pBeORmfDQIeHod7WEPK1u5WJvg59bCGq09XZFNfe6ok9dzNgYyTE9C6O4LK0ffTDAe2QUVyJA/cykVNWzXh8SheHBp9vqifA8PbydxrpCnh4NdgZf4Un1649qQLNaVXMbYWFvgB55TW1X78up4JWFbhcDrZPD8QHGcUoqRKhm7MZMksq8ce1JOS/EF9TWegLsGtmEPZEZeB/VxLlHtPYAJqm6OpsirtL+0Iikdb774vH5WD/7K5YuDcKCfnlGNvBDu/1a/xm1IuG+VgjLLmgRX8WRPHopzkhhDXyJ2NTElLrcTj4ucsobDr+k8zy2xGH2kQSUiCuwedX/mWsr+w+GeWC+rckEvXlY20IWyMhMkuqatfY+iBC6megw4OruRFOvh6C/11JhEQqxY476S0617qxHRDkZKrYAJvJ0kCImUHsbQknRNsF2JsgwJ6dyrYXCfk8rJ8QgN/HdwT/vcOMxyd3ajgJ2Zjfx/ujr4cFHmSVYJCXFXq5miIyMgcNpVy/Gu6DD4/GNHBE23B8Xgg+OhqDtKJKTOxkjznBzrWPqTpnzeVy0Mnh+fers5k+rizsiX9upeC/2+lIyC9v1vn6trNE33aWuJyQj8j0YsbjS/s2nghsat/HxhL8oa7miHinT5POJU+gown2zeoK3eVHWnwOoji0HZsQohK77mYw1jyK5CQhTaknZFvwn3dvZOnLvrHvlxKFgBeqI7XVvLsn4FacLbMWZ2KLDf6DWIqItBaPy8HxuSEY6m2F9taGWDHQEwtCXdkOi9Qj1NUc/07rgu3TA+U+nien0uhFa1/yw+vdXRv8gE7U25rRvmyHQBpxeWEP1ra2tpS1oZAxDXhK59YlCJuinaX8CfJNxedxMT3QEV8Nb49+L/QW7GhZf9+95f09GzynoZzKZb4CsnKjfNXrc0KgoymOzwtB1LK++HiQFzgvDIjxsTZkMbInvK0NsWpYe6X0/nyrV+NbomcGOjLWhvlYKzSOPu4WjR7Ty90COs2o3GztvynSMEpCEkJY40aVkG1WNV+A3wKGM9bfijjEQjSqY1hdjhXXdzDWP+0xFTW8ljeef9Hy/sweQLQ1uPV6uTEHYRgLn3/I6mhvjKNzQ3D/vX74YqgPa9v2nmmvBh9+NJWLuV6Dj+sJtHvbc1vQ07XxD62k9QZ5yR+WMTvYCV8O88Hncvq/PdOBxXYHLaXD52LlUJ/ar830BFjWhGoxddXOlA9BC7MFc7o5M9ZGtG998omtCvQh3lbNfo6Qz8PkTvZKiKb5HEz0sH5CR4UNdBHyubA0EDZ63Dh/O7hbPB/o1NnBWOFDdGYHM7/X6urt3vAws7pefqG/ZkP6etDPkpagJCQhhDXudSohs/RNUKbT8Ic/oj1+DxiKKp7snfKpMRdgV5pXzzM03/LwPbApL5JZi7RyxXaf3gq7xqvBzrAxev7GcLy/Hbys6I5ua71Rp7JxRqAjDITq29Um2NkUs2irbov4UtKetFAne82ayq3X0gxTE7wa7Ix1Y/3lPrZxYid8OMATRi18DVXnSvO3e7kj4cMBODEvBAkfDZDZHqtpuBwOVoW2bODVeH87dHnh9z7cx7rRqfbq7NdxHVv0vNF+6lNc8Vo3F2R+Olgh52pqyxlrIyHC3uqFTZM7Ydu0Ljj3RqjC3zsN8rKSe6P4Rc3tmexl1fCNXHcLfUzv4oC/JnVq1nnJE+r77pkQot2kUsZgGqqCbFuyDcywzacPZt8/U7smFIuw9OZ+vNt3DouRKYdLURbeubmfsb6ixwxIOYr7INjO0gBRS/vgdGwurA2F6O1uLrM9iLTM5M4OsDYU4sTDbPhYG2K6nC1GiqSIajtDXXqbR4gqadpLrZ2xLuLzmtcnTh18OcwHCfnlOBaT3fjBLHAx14eLuX7jB2oAbgu/qU30BLiyqAeuJxVAl89DkJNpk/sDqiMDHeVVwJvqCfDzmA6Yuf220q7xDBu7NCwMdJTev3huiAsuJeQr9RoverCsH3T4XBRX0qCblqBKSEIIK6zLC2FYUymzRknItmdt4EuMtdcjj8GyTrWgNvjm4mboimXfrJx2DsAR9yCFX8vSQIjJnR3Q39MSfDmTm0nL9Pe0xLcjfTE72BkCJf+5hrqYQ1inf9H6CR1lqlwb8zC7RNFhEUII60z1BDjyWjfkfTGE7VBIA4R8Hvp4WKKbi5naJyD1G7jx11iVXWst7OGK6YGOcDSh4YSaQt2/n9UdfTIhhLCibhUkAMSbNp6E7KnkNwJEte5ZuWK/RzeZNX1RNZbcOsBSRMrRI/UBJsVellkTc7h4t++rmlc6Q1TCSJePfbO6wt/OCNaGOninjzte7ercrGmb4/yb1tOorTDTU0zfVULqw6FxRSql7JtBRP0o+i1TTzdzDPexxvF53eo95uNBXoq9aD3e6/e8pzeHA3S006z2DppgaJ3entO6NH9w1Hh/O0pCthLt0yGEsKJuP0ig8UrIIEcT9GpmY2Gi/laFTMSYuDCZtTfvHMHqruNQqKv5wzU4UgnWnt/AWN/gPxhRVo1PFiRt11AfawxtxRRJQzXuWalqUzo7wISSkOQpAa/1HyBXDPTEl6cfyawNa2+NiDTtq+QnRF10d2lZj8r6XHyzR4OPH54TjIFeVsguqVLodeVZ2NMNIS5muJlSiFBXcxx/mI27R4qVfl15mjNJWpNsmtwZC/dF4WZKIXq6mdfbt7Y+kzvZY/2EACVF13Zo53cXIUTtucubjG1qU+/xW6d2xpn5oc1uLEzU3y1bTxxz7SKzZlxdoTWTsl+NOo2grMcya0U6+vikx1SWIiJtRVu+T394TjBWDfPBOH9b/D2pE/6m5vHkBX4KmLw8rs7QrxAXM/TzaNrUV9p2SVqCy+XA3072e3dk+/rfOytbsIImVddXVSav6tG7kYEhimZt2PQWKPJUiyXNOj7IyRTzQ13RkeUhV2/20M6b5NZGQuycGYT4jwbin6ldmn1z8psR7ekGrwJQEpIQwoqmVEL2b2eJxb3dUfjlUEzt4ggjGrKgtVaFTGSsvR1xEEZVmtcw/0WW5UX49tImxvqXIZOQo2+q8nhI2xLoaMp2CKwR8rn4YIAndr/SFa90ddLaqg7SMgIeFwM8m5YwrI+lgQ7C3uqFnTMCsX92V5x+PQS6jUybdrfQx7/TusBBTZKQDfXBay0BjyP3/Jo2QVzd/DkhoPb7x9vKAGtG+7IWywoFbVNe2teDsabL5+J/darUjr7WjTrYKImd8fNkq42REFM7N3+bMiFNRZ/oCSGsqFsJWckTIN3w+VbrCR3tsGOm4gd2EPV01cEX55z80S8lqnbNrKoMS2/uw6c9prEYWet8d/FvmFeWyqzFmtljXeeRLEVE2hLqWURI/bq7mOHMo9xWncNET4CXA+ybfPzjDwYAAH6+FN+q6ypCB1sjOJnq4V5m6wdYdbQzxt0M2W2jYzvYwtFUDwH2xohMf/7YnG7Otf+v10jStjH8NvgaF+xshuQVA5FTWg0rQx1wWMzKjfS1QU83c1xu5VRiZ1M9uevzQ13Rr50l7mYUo7uLGRxN9ZBWVNGqa6naMB9rGOjwUFYtZjuUBp2c1x33MotRVCnCyPY2sFeTGyVs8rIyQGxOmcyanhJv3LQldFuYEMKKuoNpEkxsIOXQS1Jbtqobsxpyya0DsCkrYCGa1uuTEoVZ988y1t8cMB/VfOpNR0hLGFNFPNFQC3uyv73xh9F+6OthgdnBTk+qyhR03lF+NujmbFr79WAvK/R9ujX98JxgzOnmjP7tLLH2JT8sCHWtPW6gpxVaQ1fAQw9XxfYI1AQcDgfWRkJWE5DPKLuq19vaEBMC7OFYT6JSVfR1mMmnDk1o62BlKMSJeSEY5WsDAznnYMOsICeZrw2FPHhZGWBSJwfMC3GhBORTc7u5yHzd1ckUVq3cnk+eoHdyhBClE9XphyIUVcOxNE9mrbGhNET7nXXuiLNO/uj/QjWkYU0lPr62AwsHzmcxsuYTiGvw6+nfGOvbfHrjjEsn1QdE2hxt3X78aHl/2Hx2stHjrAzogwKRr25PPVUY2d4GK4d4t+i5EwPssTMyXSFxLO7tjsW93RVyrhcZCfm4+GYPhCUXQMDlIsjJtLYS28FED3/WM8jBw9IAXw33wYdHY1p87f9mBGLx/vuIyixmVC2R1nMwZCbO3urFfkJd1QyFfAz3scbRmOzatddeqOptSKirOQ68GgwA8PjqDBLyW95qyMpAp8XPfWb5gHY4EZuNjOIqcDjAdyN8adK8HEt6u0MileJodDY8rQzwRQtfwwkTfbcRQpQuPKVQ5mvXomzGMQkm7DXWJmqCw8EHvV5hLM+NOoF2BYr5AKYqH13fhfb5qTJrhUIDvNt3DksREW3W0Y7ZY228vx0LkShfU6sQXhwYQsgz+gIevh/lp/LrHpwT3OLp7MN8rOWuK6IIbow/8wZwLzdzOUc2TsDjoqebBbq5mDWrFcTy/p4tut4zDiZ62PVKEGLe79+q8xD5PEz46OdhUfu1kZCPV7s+T76Zyvm+tmxmoszemFl593JH9fsZtn16ID4Z5IWJAfbYMDEAi9SgurklvKwMkfDhQFxb1BNZnw3G/Beqk8lzXC4Hy/q1w7kFoVg/IQC2cr5PSctQEpIQonTxebJ3/DyKMhjHxJlSJSQBbth5YbdnqMyaQCLGmvMbWYqo+bpkPcaHYTsZ6x/1nIEsg7a3bYwo30hfG5nEwTAf69qtkG3RYC8r6Daxb9NwOQkesxYmi4j6y/58MAZ5tW4LsLpQxMT3l/xs4WL2fJurm7k+RvrSTWHyHIfDwb5XArF1amesGe2LW0t6y0xuntCR2RO1uUNNBnhayiQuORzg1eCmVRm2hryBOA0x0uXjsyHe+G9GIF4NdlaL7fAtpcPnopuLGSy1ZNeAhT47P7d5Gvw9wCbajk0IUTn3wizGWt3t2EIt3UpIGrei53SMeXwdfOnzbfyj4m9gWPxNHHNX72FFQlE1Nh9bKxM7AITZeuGPjkNYiopoO30dHs6+EYqI1CLweRwE2BmD2wYHNgDAglBXrBza9C1Tc0NcZLbXWegL0LOFlWBE/enraN5HHxM9Zsz921liZpATZv13p1XntjIU4uqinthzNwMcDvByR3scfsB8j0baNn0dHqZ2cZT7WF8PC8wNccaGsGRIpU/6DQ72ll+9Wx9DIR9n53fHmgtxKKiowStBTujbTvk30tRlSj1pvd7uFjDTE6Cgokal1zUQ8hmDueY0cZt+W6Z5P4kJIRrPvSiTsRZfpxJyQjOmTRLtEmvuiF87jcBbtw/JrK89vwGnXQJQw1PfKqXPr26DX16KzFolT4BXh74FCVc9GpIT7cTjctD1hcEQbdUv4/ybdfxLHWyxfkJHbL2VCmtDIT4a6NnkKkpCFEmXz0WlSMJY7+thyXhsXogL47iWsjPWZX1oTjdnU4QlF9Z+rcPj0hRaDcHlcvDHywH4alh7SCFtcWVdBztj/D25c4vj0IQJ1ER5DIR8nJ7fHVO33sJDFfeG3T69C+bsjMS9zGIMaGeJ1SN9VXp9TUSlRoQQlXMtYt5lf7EnZF8PC63ZLkVa5tPQKcjRk+1z51WQjvfD97AUUeNC0x5g6Y19jPWPe0xHtAXdFSVEUbo6mSr0fK91c8H5BT2wc2YQAuxNFHpuQppqZpATPCz0ZdZ6u5vDVE+AQ3OCEepqBi8rA6wa5oMJAerXL6816iZB3wh1oUEZGsbCQIfVrb2HXg1GsIJ/NhDN0tnBBLtmqn7HVHsbI1xd1BPFq4Zj3+xguX1SiSx6dSeEqJxbsWwSMlvPBOWC51siTswLoUqUNq5I1xAf9pzJWP8obCfa5yWzEFHDLMqLsf3w9+BCKrN+2b491gaOZikqQrTLsy1O6jIMwMPCoFkDOAhpzKph7fHsW0qXz8Ung560FhjgaYXLC3si5v3++GCAp0b3opNnWhdHXFgQik8He2HXzECseTo8SF/Oe0H6N0fk6dvOEtff7oVutCOAELWnsu3YBQUFiIuLQ2pqKgoLC1FeXg4ulwsDAwOYmJjA1dUV7u7uMDQ0VFVIhBA2SKVwq1MJWXcyNt39JgDwd4cBmBt1AsGZj2rXhGIRNpxYh16Tv1Gb7c0cqQRbjq2BU2muzHoZX4jZQ99WmzgJ0VT+dkbo6WaB1SPbAwCmBzqirFqEN/ZEsRqXiZ4Aq4b5YPmRaFbjINpjYid79HY3R1RmCQIdTWCu37wpw5qsl7sFerlbyKzNDnbGpYR8mbVRNDiHaLAAe2Mk5MsO7GzuNHFCNJ3SkpAikQhXr17F6dOnERYWhuTkxitXOBwOPD090b17dwwcOBBBQeo9gIAQ0nzmlSUwrq6QWaubhCQEACRcHuYOXoibW9+BQPK8z0/3jId49+Z+rA4ez2J0z30YtgtDE28z1pf2fRVxZtTblJDW+HWcP+aHujLWQ13VY3jMe/3aURKSKJStsS5sjWlgBgCM7WCLdZeNcTvtydCHgZ6W6F0nUUmIJpnd1Qn77z3vjc/hAKN8bRt4BiHaR+FJyNzcXGzfvh07duxAXl5e7bpU+mSL2rPtA8++frYmlUohlUoRGxuL2NhYbN68GY6Ojpg4cSKmTJlCFZKEaIm6VZAAkGjSvCl6pO2IsnLDN8Ev4+PrO2TWv7yyFeecO+KmrSdLkT3RPykSn13dzljf7t0Lf3QcqvJ4hFRFTAghREuY6AlwZWFPXEnMhw6PixAXM9otQzTaSF8bfDrYC79fS4KBDg+fDvaCW51esIRoO4UlIQsKCrB+/Xps374dVVVVAGQTjc9IpVIIhUIYGRmBy+WioqICZWVltce++JzU1FT88MMP+P333zFt2jTMnTsXRkZGigqZEMIC1+JsxhpVQpKGrOo2EeMeXZWZOi2QiLHtyGp0mfEjSnXYefPmlZ+KnYe/BU8qO800xswBrw9+88ntbRUb4k0DnQhRtU72xriTXlz7taelAYvREKJddAU8DPBUzs82XT4zoRnkSMOpiPJwOBx8Otgbnw72ZjsUQlijkCTk9u3bsXbtWpSUlMgkES0sLBASEoL27dvDy8sL3t7eMDc3h0AgOzFIJBIhMzMTycnJuHfvHiIjIxEWFobS0lIAQFlZGf7880/s2LEDCxcuxPTp07WuITMhbYXcSkhjSkKS+lXzBZgx7B1c274MQrGodr1dYSb+Ov4zJo16D1KOaisjLMqLcXjfFzCvLJVZL+frYMLo5SpJjI7ytUGlSIxTsU96Ub7Vyw1+tnSjjhBV+2CAJ6ZsvQXJ07fAHw5gt0KbECdTXaQUVrIdhtrztjKEi5kekgqetwl6LcSFxYhIa03u7ICw5EK2wyCENKBVSciUlBQsW7YMkZGRtclHS0tLjB07FoMHD4a/v3/TguDz4ejoCEdHR4SGhgJ4kpi8desWDh8+jOPHj6OkpARFRUX46quvcPjwYXz11Vfw8PBoTfiEEBbIS0JSJSRpzB0bDyzv9QrWnt8os/7yo6v45Np/+Dx0qspiMawux8H9K9GuMJPx2BsDF+C+pfI/wIzytcHGSQGwNBAiIa8cBjo8WBsJlX5dQgjThAB7dHYwQXhyAQIdTeFtbQiJhLkbiBBVea2bCz498ZDtMNQel8vBiXkh+PTEQyQVVGC8vx3mdnNmOyzSCi93tMM3Zx8jq+TJzkxrQx1kl1azHBUh5EUtTkLu378fK1euRHl5OaRSKfz8/PDaa69h0KBB4PNbX2DJ5/PRrVs3dOvWDStWrMC+ffuwZcsWxMXFITIyEi+//DJWrFiB8ePVYzABIaRpXOskISXgINmItpCSxv3UZTQGJkViRMJNmfVPr/2Hh2YO+K99H6XHoFtThQP7V6F7BvPD3bddx2OLX3+lxwAA+2d3rd0RQL2EiDYLdjZlO4QmaWdpgHa0DVsrnJnfHQN+v8Z2GC02N8QZHw3wRFRGMXbfzahdnxXk1KTn55c3P2FjZ6y+N8G4jWye87IyxPbpgaoJhiidg4kewt7qiV2RGdDhczHU2wre355jOyyN5mqmh8gXWo4AgKmuoJ6jCWlci/evLV++HGVlZXBycsLPP/+MPXv2YNiwYQpJQNYlFAoxefJkHDlyBN9//z1cXFxQUVGBjz/+WOHXIoQoHu+Fd4B1KyHTDC1QzacfZKQJOBy8MmwxHpsypwhuPv4jRsaFK/XyBtUV2H9gFfqlRDEe2+UVig97zVDq9QlpizrZU3820nyuxszPI8v7t2v0eW7m+ujXzhL8xjJXamxxL3dwuRz8OSEAc0Oc0dnBGAtCXbFubIcmPT+tuHnbuPUEXAzzUY8Bg7O6yiZae7qZg0+DbNocZzN9vNvXA4t6usGGdom02itdmTcwxnSgid6k5Vr8qmxgYID33nsPR44cweDBgxUZU4NGjhyJo0ePYvny5dDXp+oPQjSBqe7TDwNSKVxKcmQeS6DJ2KQZ8vWM8dKYFSjW0ZNZF0jE2HnoWwxOjFDKdc0rinFq98cYnHSH8dhFB1/MGrpE5X0pCdF2e14JAleDk0GEPTb6PMzr9vyDs5OpLuapoNefnoDHWAt1NVP6deUx0RPgj5cDcGtJH/wyzh8GQsUXigDA0de6wdJAPRI9P77khymdHWBnLMQwH2tsndqZ7ZAI0XijfG3xencXCHgc6At4+HyINwLsjdkOi2iwFv80On78OKys2NlCyePxMGvWLIwYMYKV6xNCmk4qleL20xJ+27IC6Ilkt/kkUj9I0kzRFs6YMmIZDuz/EvwXJlPrimtwaN9KvDZ4kUK3RfvmJmPvwa/gVZDOeCzc1hOjxn6CCoF6fAAjRJvoUAUTaYV1Y/ywoIc70osr0dPNHIZKSsK9yN/WCHbGQmQUV9Wuze2m+YNOhHwuqkQSxvqkTvbo42HJQkTyGesK8O+0LmyHQZTIykAIfQEP5TXi2rUJHe1YjEj78bgc/Da+I9aM8gWPy4GQz7zZQkhztPjdHVsJSHWLgRDSsHcP/Z+9+46vsrz/P/4+2TshkAQIhAAJSdh7gxDqKoICgnvUWUfdFbSuto7y+7ZaRxXBgXW2qAgibgSqICAoU/YKBBIIGQTIOrl/fyBHTs4JWec+I+f1fDx89NzXfd33/YFyk/DONTbpoU83S2JnbLjOp53665rz71a17EdJBVdb9cZn/9QT//u3gk7bSbtRDEOX/rxE379zn9MA8seEjjp/4mM6GsqofADwNhaLRT3bxui8zESnAWTr6DCHtqauQRoUGKAvbxqiST3aaFBKnP4xvquu7t+uSff0BpmJUTo3g393wfNCggL08NldbMfRoUG6b1TdSy2g6SJCgggg4RLm/0gQgN8qOFahZ/+303bcsaTunbEn9eCnmaifd7POUkRluWZ9+YLDuQdWvq9ROet17Xl3aVt8coPv3aa0QC98/bImbP/e6fkl7bqdnBYeykYUQH1d0TdZc9YeUIXVcUQV4G4XdE3UnfMssp62k/nvnKx95kxceLDaxDiGmJLUtXW05lzT3yU1AnA0NTtNF3VvrS2HSjU0tYXXLAcAoH5Mmedy3nnnaebMmcrLcwwcAPiPnKITMn793t7pSMiaIeSITvFmlwUXOzvdc1OxXu15jq4+/25VBjj+ZHbIgS3a8MbteuabWUo6Vliv+yUcL9Lfls7WtldvrjWAnJs2WOdPfIwAEl4vLMi7pjP/cVSaFlw/0NNlAJJObl4x5+p+6pscq4yESD09vpvOyah7nerAAIueGd/NbtM9AO6VkRil8d1aN+sA0tkGWYlRzffXC/9hykjI3bt365lnntGzzz6roUOHatKkSRozZoyCg9kBF/BnqcX5Dm01Q0j4nusGttOX2w577PlvdR2tA5Et9MH8pxRTccLuXHC1VXeu+Vi3/rRQH3caoE86DdB3yVnKiU7QiaAQhVdVKLUkT0NyN2vcjpX67a7VCq62On1OtSx6bOhlemLwFDahgU9Ijg1TZmKUNueXeqyGpOhQBQdYNC07XT1ZyB5e5qLubXRR9/rPwLggK0lvXt5HseH8mwaAucY4+SH/bcNS3V8I4GKmTse2Wq369ttv9e233yomJkbjxo3TRRddpO7du5v5WABeKrXGdOzKgEDtj2Lko6+b1KON4iM26sjxSo/V8HWH3hpwxdN655O/q1/+DofzwdVWTdz+vSaeNrqxyhJgt7HNmeRGxuv6c/+gzzv2c1nNgNksFosWXD9Q0z75WTsKjumCrq315dZD+n5P/UYGu0LuI2fbagF8Xe/kGAJIAG7Rs02MrhuYotdW7pUkDWwfp8v6NHyJIcDbmDKU44EHHlDXrl0lndwZ1zAMFRcX6+2339bkyZM1btw4zZ49W0eOHDHj8QC8VM3p2HujE1TtZBotfM+tQ1M9XYK2xSdr6OX/T/9vwESn07Nrqm8A+Xq3Mep27QsEkPBJnVpG6r9X99fqu8/Sn8/NUKCbs0CLxUIACQDwen2TYx3aPLmsicVi0StTemn7A9lac/dILfvDcH4IgmbBlLfqmmuu0QcffKBPPvlEN954o9q0OTnN4VQguX37dk2fPl0jR47Ubbfdpq+//lpWq/PpbwCah8Bqq1JKDtm1MRUbrlYZGKxpI69Vj2ue17zOTVt77pOO/dX/yqd1/Xl3qjgsykUVAr6thZf8Ayg+wrGO8d34mgIAaJybhnSwO06ODVNWUrSHqvlVp5aR6p0cqwDWoUUzYWq037lzZ91777365ptv9MYbb2jixImKjIy0hZFVVVVatGiRbr/9do0cOVLTp0/X1q1bzSwJgIe0O3rYYeTZbkJImGRrfDtNuOgh9bz6OT3f5wIV1nMTmcNh0Xq+zwXqe+UzGjfxEa1JSjO50jO7cXCKR5+P5icpummL2t9zVieni+W7W3JsuH5z2npZFot046AOZ7iicbzh1woAMN+Ng1L05G8z1Tc5Vhd1b63PbxzMBlSACUxdE/J0gwYN0qBBg/Too4/qq6++0rx58/Tdd9/ZRkAeOXJEs2fP1uzZs9W1a1dNmjRJF1xwgWJiWMQc8CUbDpRoyc4CdUuKtpsykFribFOaunehBJpiQ0Kq7sy+SfeMul6983dqxP5NSi/MVasTxYopP6Gi0EgVhkdpQ8sOWt42U+sSUmX1kiUCWoQH6/ZhHTXr+72eLgXNyFX92uvD9Qcbff1vs5I0uVdbZU7/xoVVNc6H1w7Qayv3anfhCY3vmqRRaY6L+DfVHSM6afqi7XZt3bxgZAzgbjGhjv9sjAjxjq+XgCtYLCc3UZuWne7pUoBmzW0h5CmhoaEaO3asxo4dq4KCAi1cuFBfffWVVq9eraqqKknSxo0btWnTJk2fPl1jxozRxRdfrKFDh7q7VAAN9PHGg5r4xg+yVhuSpHFdfx3pWHM9SEnaHcNISLiHNSBQq1una3Vr7//GcsUdI7S78LjO6tRSiU0ctYbm5/I+7fSPJfabL2Ul1n+5gLFZibq6Xzv9e/W+RtfQJSFKceHBKjrhuc2oJCkqNEh3jOhk6jOu7tdOM5btVnHZye9RB7SP06CUOFOfCXijy/u205x1B+zaLunV1kPVAE2X2iLC0yXAxQKcrEEd6sF1PeGcR/8fadmypa666iq98cYbWr58uf7+97+rd+/ekk6uH1leXq5PP/1U119/vc455xzNnj1bx44d82TJAM7gn0t32gJISfp406/Bo7MQkjUhmw++wLvOgJQ4Te7V1hZAXl5jJ8SzOrVkow8fld7KcVmAhr46V/VrZ7dQfvu4MJ3dJaHe1wcFBmj2ZX2U+8jZuqZ/O6W3itQFWQ3/u/jGQf6xVEBWUrRW3TVS08dmadbkXvry5sEKCuTvO/if8zITNDbr1xksE7q31mgTRh8D7tA6OlRj0vnz29yktYpUVKj9CO27R5r7w0o0nFd8F7V582a98cYbeu2117R27VrbTooWi8W2fmROTo6mT5+u7OxszZ0719MlA3Dimx0FtZ5LJYRs1s7LdJxaX9s3d9FOpnShds9N6K6JPVorITJE53RJ0BuX9fZ0SWikW4el2h1HhQQqPa5hG730bBujxbcO1W3DUjUtO01Lbh2mqEa8U61jwvT6pX20ZVq25l8/sMEbzjz12yz9a2KPBj+3NneM6OjQ1qmld4xSSWsVqT+OTtP1g1IUE+YdG/PAXHydchQaFKj51w3Uz/eP1papo/X+Nf0VTCAPH7X41qGN+toJ7xYSFKB3ruin1tGhCrBI52cmalq2Z9d3hyOPvXnbt2/Xxx9/rAULFig3N9funGGcHEmVlZWls88+Wz/++KOWLVsmq9Wq4uJiPfjgg1q3bp0effRRT5QOoBFqjoQ8HhSivIg4zxQDl+vTNlY3DErRKytOrl84unNLXdyzjb7edtjDlfm++IgQvX/NAE+XARe4bWiqth06pv+uzVW72DD9v7GZCilt+LTogSktNDClhUtr69Y6Wt/uOlLv/gEBFt0yNFW3fbi+wc/qkxyjH/eX2I6zEqN0/cAUzV6Vo5Jfpj2fl5GgzAZMM/c2zgYrJ0SGuL8QNMo9Z3XSw59tcWhvExPmkvtnJUVrxd4iu7Z2ca65t5ksFosyfPi9BE7pksCf4+bqgq5J2v/I2TpeYVUkQbNXcuv/K3l5efrkk080f/58bdly8gv7qcDxlPj4eF1wwQWaOHGiMjMzbe2HDh3Su+++q1deeUUVFRV677331KdPH40fP96dvwQAjVRzY5rdMUlO/5XGT9V9U0CARTMn99LDZ3fR8QqruiRE6u01+z1dFuBVggID9MLEHnrhlxGEVVVVWru28WszutKNg1MaFEI2xSNnZ2jyv39QVbWhAIv06DkZ6tEmRj/efZYWbs5T6+hQjc1K8ullBywWi67sm6y3Tvt78AZ2u/cZV/dv7xBCBgVY7Na6bopr+rfT7FU5dm2TerRxyb0BwN9ZLBYCSC9m+v8zpaWl+vzzz/Xxxx9r1apVqq6ulmQfPgYFBWnkyJGaOHGiRo0apaAgx7ISEhJ0xx13qHv37rr11lslSe+88w4hJOADQqoq1bbU/h+3u2vZGXt0Wkt3lASTtI8L93QJABrhst7Juubdn9zyrAu7t9auP43Rqpwi9U2OVcovmwN0bBmh24Y5Tsv2VTMn91LnVpH6aX+xRnRqqTtN3kQHrtM+LlxH/nqeLn7jBy3aflj92sXqsXMy1M5FX+PO6txK/xjfVc//b5dCggL0QHa6srxk1/WB7eMc2i7uSUAKAHANU0LIqqoqLVmyRPPnz9fixYtVUVEhyXHUY0ZGhiZMmKDx48crPj6+XvfOzs5Whw4dtGfPHm3fvt3ltQNwvQ4l+QqQ/fvvbGfsO0Z0VAbTI5q94R3j9enm/Lo7AnAbd2+2khwbruTY5v1Di7DgQD16Toany0AjxYUH66vfDzHt/neP7Ky7R3Y27f6N9dusJLWLDdO+4jJJUmxYkC7tnVzHVYB3CgsKdGjr3to7An/AX5kSQg4bNkwlJSfX+jEMw7bBjCTFxcXZplt37dq1Ufdv06aN9uzZ4xBqAvBOHUvq3pTmnC4J+ueF3d1VEjzo+kEphJAAAHihuPBg/e+2YZr9Q47Kqqp1Zd926twq0tNlAY0SEhTgsDTGzUM6eLAiAKaEkMXFxXbBY2BgoIYPH66JEydq9OjRCg5u2s6CBQUnd+BNT09vcq0AzFdzUxrJMYRsExPqrnLgJhEhjj997t8uVhO6t/ZANQAAoD46xEcwihfNxitTeqt/+zhtOHhUY9Jb6RJG9gIeZdqakIZhKD09XRMnTtT48ePVsqXr1nm79dZblZycrE6dWFsH8AWpxY6j3mqGkGh+RnaKV2CARdbqX0et/35oqiwWi7omRWlTXqkHqwNgtpYRTfuhMwAATRUSFKA7WJMX8BqmhJBXXHGFJkyYoO7dzZlaef7555tyXwDmSK3HSEg0P60iQ/X25X019ZNNOnK8Ulf1a6dr+rf3dFkA3OQmprwBAADgNKaEkA8//LAZtwXgo2quCVkcEqGiUNYX8gdTerfV5F5tZBhSQIDF0+UAcJN7z+qsx5jOCQAAgNOYNh0bAE6puSbkrtgkyUIg5S8sFgv/dwN+5K3L++jyvu08XQYAAAC8jNtCSMMwVFhYqIqKClVXVzfo2rZt25pUFQCzRVacUMKJErs2pmIDAAAAAOBfTA0hjx07plmzZmnRokXauXOnrFZrg+9hsVi0adMmE6oD4ErLdx9x2p5a4rgpzW5CSL8XwNBIwOsEWKTT9pECAAAAXCrArBvv2LFD48aN08svv6xt27apqqpKhmE06j8A3u/tNfudttecii1Ju2IIIf3d7wayQQ3gbe49q7OnSwAAAEAzZkoIWV5erjvvvFO5ubmSRJAINGPHK6r03a4jWlbLSEhnIeTu2ESzy4KXm9KrrdrGhHm6DACnmZqdphEd4yVJsWEsGw4AAADXMuU7zIULF2r79u2yWCwyDEO9evXSJZdcoqysLEVFRSkgwLQBmADc6IecIp398nIVl1XV2sfpSEimY/u95NhwrbxzhNr99UtPlwLgF/ERIVpy2zAdPlauuLBghUz9xNMlAQAAoBkxJYRcsGCB7fNFF12kp556ShbW/wKancc+33LGAFKSUp2NhIxhJCSktrGMhAS8UavIUE+XAAAAgGbIlCGJu3btkiQFBwfrwQcfJIAEmqmFmx03namp5sY0+eGxOhYSblZJgFvdMCjF0yUAAAAAgE8wJYQ8fPiwLBaLMjMzFRMTY8YjAPgCw3CYjs1UbPizsVmJ2vfw2VpxxwhPlwIAAAAAbmXKdOzIyEgVFRUpNJTpPIA/a1FWqtiK43ZtTMWGv2sbG8ZUdAAAAAB+x5SRkB06dJBhGMrJyTHj9gB8RMcSZztjMxIS/isyhB2HAQAAAPgnU0LI7OxsSVJeXp5++OEHMx4BwAewMzZg77I+yWc8fz1rTAIAAABopkwJIS+55BLFxsZKkv72t7+poqLCjMcA8HKpxY4b1xBCwl+d3aWVzs1IOGOfu0Z0clM1AAAAAOBepoSQsbGxeuyxxyRJGzdu1E033aR9+/aZ8SgAXoyRkKhLXHhwref+NjbLjZW43p6HfqMTf/utfrrnLP10z1n69IbBCgsOPOM1bWNYSxkAAABA89ToxaleeOGFOvukpaVp27ZtWrFihc4991xlZmYqKytLsbGxCg8Pr/ezbr/99saWCcCDUmusCVkti/ZGn3kkGPzLvWd10sOfbXF67v7RaZr2yc913qN9XJhyispcXVqTtY87+XWuZ9sYD1cCAAAAAJ7XpBDSYrHU2e9UH6vVqk2bNmnTpk0NfhYhJOCbao6EzI2KV0VQ7SPf4H+uH5iiN1fv09ZDxxp9j8B6fC0CAAAAAHhWk6ZjG4ZR7/8a2v/06wD4IMNQaon9mpBMxUZNrWPCtPbeszxdBgAAAADAZI0eCTlgwABX1gGgmUk6XqTwKvtNqQgh4Uxo0JnXSfRmgzu00Csr9rrsfoEBjOqEb+nXLlar9xXbtUWE+O47DfiSLgmRDjMJQoNMWfIfAACXaHQI+eabb7qyDgDNjLNNaXbHEEKiYSb3bKM56w6csU/fdrHaXXjCTRXZG9e18X+mbxycolnf/xpgdk2KUkwYyxXAt9w8pINumrPOdhwYYNHITi09WBHgP24a3EH3ffzrUledWkaoY3yEBysCAODM+FEZAFM4DSFjEz1QCXzZ/dlpig379edld4zoqJqDBa8bmOLmqn6VEBWqvsmxjbp2+tiuGtc1SeHBAerfLlbvXdnPxdUB5vvdgBTdMjRV0aFBSm0Rrneu6Kv4iBBPlwX4hbtGdNIjZ3dRzzYxuqh7ay28YVC91uwHAMBTGj0SEgDOxFkIyXRsNFS/dnHa+eAYfb+nUBmJUerUMlJDOrTQX77YqmMVVt08pIPOz/RsuD1rSi/1e2Zpg6+LCw/WvOsGyjAM/tEInxUYYNG/JvbQ8xd1VwDLCQBuFRBg0WPnZuixczM8XQoAAPXi9SFkRUWFQkL4iTrgawgh0RDXDUzRayt/nZp8ae+2ts8tIkJ0ftavf3Yu6Z2sS3onu7W+M4ls4vp3BJBoDgggAQAAUBe3hJCGYaiwsFBlZWWyWq1O+1RXV6uqqkqVlZU6fvy4Dh06pB9++EELFy7Ud999544yAbhQhxo7Y1cGBGpfFOuEwbnnJ3RXbFiQlu8pVP/2cXry/EyX3bt32xj9lFvisvudcm5GgiQpOtTxS+mw1BYufx7gbmd3aaUvtx62a3P25x0AAACoD1O/k1y3bp1efPFFLV++XBUVFXVfAKDZqDkScm90gqoD2DEVzoUHB+of47uZcu9bhqbq5vfX1d2xDpf1Sda7P+6XJFksJ+8rSW1iwjSkQwst31No63vDoA5Nfh7gadcP7GAXQvZsE6POLdn0AgAAAI1jWgj55Zdf6q677lJ1dbUMw2j0fZimBviegGqrUo4esmtjUxp4woXdknRVv3YuCSFfv6S3zs1I0LbDx3R+ZqKGpsbbzs2/bqD+b/EO7So4pnHdWuvKfu2a/DzA06b0bitDhj5cd0ApLSJ071md+L4MAAAAjWZKCFlaWqqHHnpIVqvV6Terp9pqhpOn9w0NDVWXLl00evRoM0oEYKJ2pQUKrrZfemF3DOtBwr12PjhGqfGuGbV1XkaCQoICdHX/9k7Pt4wM0d/GZrnkWYA38bY1WAEAAOC7TAkhP/roIxUXF8tiscgwDJ199tk699xz1apVK82bN09z585VUFCQZsyYocDAQBUVFWnz5s2aO3eu8vNPriMXFRWlF154QYmJjJ4CfA2b0sDdhqW20He7f50OHRsWpJS4cJfd/4bBTK8GAAAAgKYIMOOmy5Yts32+7LLL9Pzzz+uCCy7Q4MGDdeGFF0qSrFarDMPQkCFDdP755+vuu+/WJ598ouzsbElSQUGBHnnkETPKA2Cy1OJ8hzZCSJjprpGddPrmvPeO6uzS3Xon9mjjsnsBAAAAgD8yJYTcsmXLyZsHBOjWW2+1O9ejRw8FBJx87MqVK+3ORUdH65///Ke6dOkiwzC0ZMkSrV271owSAZiIkZBwt0k922rN3WfpuYu665tbhuhPY9I9XRIAAAAA4DSmhJAlJSWyWCzq0KGDEhIS7M5FRkaqXbuTC/avX7/e4dqQkBDdcccdtuOFCxeaUSIAE6WWOIaQu2NYWgHm6tk2RrcP76izOrdi8wwAAAAA8DKmhJAnTpyQpFrXc+zUqZMMw9DWrVudnh81apSioqIkSRs3bjSjRAAmqjkS8kRQiA5GtvBQNQAAAAAAwNNMCSGjo6MlOe5+fUpKSookqbCwUMXFxQ7ng4KC1L59exmGod27d5tRIgAT1Qwhd8ckSoxMAwAAAADAb5kSQrZo0UKGYdh2uq6pffv2ts/bt2932ufUSMijR4+6vkAApgmpqlTb0iN2bawHCQAAAACAfzMlhOzWrZskac+ePcrLc1wb7tRISMn5upCSdPDgQUm1j6YE4J1Sjh5SgOzf290xhJDwrJuHdPB0CQAAAADg10wJIQcPHizpZID4t7/9zeF8Zmam7fPnn3/ucH7Lli3at2+fLBaLYmNjzSgRgEmc7Yy9O5ZNaeBZf/ttli7q3lqRIYGeLgUAAAAA/JIpIeT5559vCw8/++wzXX755VqyZImqqqokSUlJSUpPT5dhGPrpp5/08ssv267Nz8/Xgw8+aBsB2bVrVzNKBGASZyEk07HhabHhwfrw2gE6+uRvPV0KAAAAAPglU0LIiIgI3XLLLbYgcc2aNfr973+vn376ydZnypQpts///Oc/NWrUKE2cOFG/+c1vtGnTJtu5c88914wSAZiEEBIAAAAAANRkSggpSddee62uvPJKuzUdT18L8tJLL1VWVpbt/MGDB/Xzzz+roqLC1icjI0Pjx483q0QAJuhQ4rgh1S7WhAQAAAAAwK+ZFkJK0kMPPaRZs2ZpwIABCg8PV2Lir+vCBQcHa+bMmerVq5ctiDz9f9PT0zVjxgwFBQWZWSIAF6s5ErI4JEKFYVF1XpeeUHcfAAAAAADgm0xP+EaMGKERI0aotLTU4VxCQoLeeecdffnll1qyZIny8/MVFxenESNG6IILLiCABHxQzRByd2yiZLHYtY3rmqQFP+fp1EDpoACLJvds464SAQAAAACAm7kt5YuKcj7KKTAwUOedd57OO+88d5UCwCSRFSeUeKLYrq3mVOy48GD9fVxXXd43Wc/9b5eCAiy6b1RnRkICAAAAANCMMdQQgMukOlkPcvcvm9IEWKQ/n5uhyb3aKj0hSukJUbqkd7K7SwQAAAAAAB7g9hAyLy9PeXl5Ki4uVkxMjHr16iVJOnHihEJCQhQYGOjukgC4SGqxk01pfgkhbx/eUX/6TRd3lwQAAAAAALyAW0LIvXv3avbs2Vq8eLEOHDhgax8+fLhmzZolSfr666/1+OOPa8qUKbrxxhsVHR3tjtIAuFDN9SClX0NIAAAAAADgv0zdHdswDD377LM6//zz9e677yo3N1eGYdj+O11ubq6Kioo0a9YsjR8/XuvXrzezNAAm6FjiGELujkn0QCUAAAAAAMCbmBpC3nXXXZoxY4asVqtD6GipsVvuvn37bJ8PHDig66+/Xjt27DCzPAAulspISAAAAAAA4IRpIeQLL7ygzz//3Hbco0cPPfzww3rvvfec9h83bpz69esnwzBksVhUUlKiadOmmVUeABPUnI59KDxGx0LCPVQNAAAAAADwFqaEkAcPHrSt9ShJ9957r+bMmaMrrrhCvXv3dnrNgAED9Pbbb+uhhx6ytW3YsEFLliwxo0QAJqi5OzajIAEAAAAAgGRSCPn++++rvLxcFotFkydP1o033ljva6+88kpdc801tuOFCxeaUSIAF4srK1Vc+TG7tl0xhJAAAAAAAMCkEPLbb7+VdHLdxzvuuKPB1990000KCjq5cTcb1AC+wdnO2Hti2ZQGvqFdbFit51pGBLuxEgAAAABonkwJIfft2yeLxaK0tDS1atWqwdfHx8crJSVFhmEoL88x2ADgfZyFkEzHhq947NwMdW8d7fTcDYM7uLkaAAAAAGh+gsy4aXFxsaSTYWJjJSQkaOfOnaqoqHBVWQBMRAgJX9YuNkxr7z1L+4rLFBoYoEe/2KINB0o0Oq2VHjm7i6fLAwAAAACfZ0oIGR0drcLCQlsY2RgFBQWSpNjYWFeVBcBEqSVOQkjWhIQXCgsKUFlVtV2bxWKRxWJR+7iTu7m/NKmnJ0oDAAAAgGbLlOnYbdq0kWEY2rZtW6OCyAMHDmjHjh2yWCxq27atCRUCcLXU4nyHtj0xrAkJ73P/6DSHtp5tYjxQCQAAAAD4D1NCyGHDhkmSrFarXnvttQZf/9xzz8kwDEnSoEGDXFobAHPUnI69PypeFUFs6AHvc8vQVHVL+nX9x4d+k66k6FAPVgQAAAAAzZ8p07HHjx+vV155RYZh6JVXXlHXrl117rnn1uval19+WXPnzrUdjx071owSAbiSYThMx645FTsowOLOioBaJUWH6qd7z9K6AyVqEx2q1jG174wNAAAAAHANU0LItLQ0TZgwQR988IGsVqvuvvtujR8/XhMmTFCnTp0c+h8/flwrV67UG2+8oe+//17SyfW5zjnnHGVmZppRIgAXSjpepIgq+02kam5Kc0EW60PCewQGWNQnmTWHAQAAAMBdTAkhJenhhx/W5s2btXHjRhmGoXnz5mnevHl2fVatWqXBgwfr6NGjqq4+uUnAqWnY7du311/+8hezygPgQqlOdsbefVoI+dvMRA3rGO/OkgAAAAAAgBcxZU1ISQoLC9Orr76qESNGyDAMu/8slpPTMsvLy1VUVCSr1WoLHyWpa9euev3119kZG/BiJyqtts8114OUfh0JufwPwzXvuoEKDjTtrxsAAAAAAODlTE0F4uLiNGvWLE2fPl0ZGRm29tMDydMlJiZq6tSpeu+995ScnGxmaQCa6OklO2yfO5Y4GQn5y87Ygzq0UCDrQQIAAAAA4NdMm459ugsvvFAXXnih9u7dqzVr1mjPnj0qKSlRZWWlYmNjlZSUpD59+igrK0sBAYyWAnzB89/usn3uWJzvcL7mmpAAAAAAAMB/uSWEPCUlJUUpKSnufCQAk+SX/roRTYca07GrLAHaF93K3SUBAAAAAAAvxbBDAE1Wczr23pgEWQMCPVQNAAAAAADwNm4dCdkQs2fP1pYtW2SxWPTkk096uhwAtQiotiql5LBdG1OxAQAAAADA6bx2JOS3336ruXPnau7cuZ4uBcAZJJceUUh1lV3bnl82pQEAAAAAAJC8OIQE4Bs6FjvujM1ISAAAAAAAcDpCSABNklpCCAkAAAAAAM6MEBJAkzgdCRlDCAkAAAAAAH5FCAmgSVKZjg0AAAAAAOpACAmgSWqOhCwLDFZeZJwk6eYhHTxQEQAAAAAA8DaEkACapGNxvt3x7phEGZaTf7X8bkB7T5QEAAAAAAC8TJCnC/BGzz77rF588UUlJydr0aJFpjxjz549eu+997RixQrt379fx44dU1RUlFJTUzVkyBBdeumlSkpiSiu8k7XakCQFWyuVXFpgd+70qdgD2se5sywAAAAAAOClCCFrWLdunWbNmmXa/a1Wq5599lnNmjVL1dXVducKCwtVWFioH3/8UbNmzdJ9992na6+91rRagMaotFZrwuurJEkpJYcUIMPu/O7TQkiLxeLW2gAAAAAAgHcihDxNTk6Obr31VlVWVpr2jAcffFAfffSR7dhisahz585q1aqV8vPztXPnTklSZWWlnnrqKR0+fFj33XefafUADfXtriNauPnkFGynO2OzKQ0AAAAAAKiBEPIXW7du1Q033KBDhw6Z9oyPPvrILoDs06ePnnjiCXXu3NnWtnnzZk2dOlWbN2+WJM2aNUuDBg3SiBEjTKsLOBNrtaENB0vUJjpMidGh+njTr8FjxxLHEHJ3TKI7ywMAAAAAAD6AjWkkzZs3T1OmTFFenmOg4kovv/yy7XNaWppee+01uwBSkjIzM/Xvf/9bycnJtrYXXnjB1LqA2hwsKVPPvy9Wn6eXqvWfv9CTX29TVfWv068ZCQkAAAAAAOqj0SMhTx/RZwazA8FTz3j66adN/7VI0v79+21TrSXplltuUUREhNO+sbGxuvnmm/XII49IktauXasjR44oPj7e9DqB0z3/3S79nF9qO374s826vM+vAXmHGjtjS4SQAAAAAADAUaNDyGnTpvn0phMvvfSSZs6cqePHj9vaOnXqpHPOOUczZsxw+fMOHjxod9y1a9cz9u/Vq5fts2EY2r9/PyEk3O7/fbPD7tgwpE15R23HNadjl4SE60hYtFtqAwAAAAAAvsNvp2O/+uqrdgHk5MmTNWfOHHXo0MGU50VH2wczpz/bmaqqKrvjsLAwl9cE1MVabTi0lVX+uqt7zenYu2KTJB/+4QQAAAAAADBHkzamMQzHgMLXdO/eXVOnTtXAgQNNfU5KSopCQ0NVXl4uSfrf//6n7t2719r/u+++s30ODg5WSkqKqfUB9XVqenZEZZmSjhfbnWNTGgAAAAAA4EyjQ8ivv/7alXW43cCBAzVx4kSNGTPGLdPKw8LCdPHFF+vtt9+WJL322ms655xzHDamkaQdO3bolVdesR1PnDhRoaGhptcINESqk/Ugd7MeJAAAAAAAcKLRIeTpuzf7ohdffNHtz7z99tu1bNky7dq1SyUlJbrssst0++236+yzz1ZCQoIKCgr01Vdf6bnnnlNJSYkkqW3btvrDH/7g9lqBuqSWsDM2AAAAAAConyZNx0bDxMfH6z//+Y+mT5+uefPmqbi4WE888YSeeOIJp/3POuss/fWvf1VCQoKbK3VUc41KX2O1Ws94jIaruR6kJO2KsQ8hff3PDZzjfQJcg3cJcB3eJ8A1eJcA1+Bdco4Q0s2io6M1bNgwbdmyRRs2bKi1X/fu3XXrrbcqKcnzI8uqq6u1du1aT5fhUmf6vUf9OAshd8farwnZ3P7cwDneJ8A1eJcA1+F9AlyDdwlwDd6lkxq9O/abb76p6urqujuaxDAMvfXWWx57fmPs379fU6ZM0T333GP7AxgUFKSuXbtq8ODBSk9PV0DAyf9LNmzYoEsuuUR//OMfdeLECU+WDTiV6mwkJNOxAQAAAACAE40OIZ944glNmDBBK1ascGU99bJq1SpNmjSp1mnM3qioqEjXXHON1q9fL0kKDAzULbfcouXLl2vu3Ll64403tGDBAi1dulRXXnml7br58+frpptuUmVlpadKB5yqORLycFi0SkMiPFQNAAAAAADwZo2ejt2qVStt2bJF1157rUaNGqV77rlH6enprqzNwU8//aTnn39ey5Ytk2EYatWqlanPc6V//vOfysnJkSQFBATomWee0bnnnuvQLyEhQQ8//LAyMzP10EMPSZJWrlyp1157TTfffLNbaz4lICBAPXr08MizXcVqtdoNf+7evbsCAwM9WJGPeDe31lOpJfa7YzsbBdmrVy+XlwTP430CXIN3CXAd3ifANXiXANdoju/S+vXrmzwjutEh5Pz58zVt2jQtXbpUixcv1pIlSzRy5EhdcsklGjVqlCwWS5MKO6W8vFxffvml3nrrLdv6coZhaMCAAXr66add8gyzHT9+XHPnzrUdT5w40WkAebrJkydr2bJlWrhwoSRp9uzZuu666xQcHGxqrbUJCmpey4cGBgY2u1+TO8WWlapF+TG7NmchJL/H/oH3CXAN3iXAdXifANfgXQJcg3fppEb/DsTHx2vmzJl677339PTTT6ukpERLlizRkiVLlJiYqDFjxuiss87S4MGDFRoa2qB7FxcX67vvvtPixYv19ddf6/jx45JOho/h4eG6++67ddVVV7ks6DTbhg0bVFZWZjuePHlyva679NJLbSHkkSNH9PPPP6tnz56m1Ag0hLNNafbE2G9K06ttjLvKAQAAAAAAXq7JMeyll16qs88+W9OnT9eCBQtUXV2t/Px8vfvuu3r33XcVGBioDh06qEuXLkpPT1fLli0VHR2tyMhIBQYGqqysTEVFRcrNzdWePXu0ceNG7d27V4ZhSJLtfy0Wi8aPH6+7775bbdq0aWrZbpWfbz9tNS0trV7XZWZm2h3v27ePEBJeoWNJ3ZvS3Deqs7vKAQAAAAAAXs4lY0Fbtmyp//f//p9uvPFGPfvss1q0aJFtnnhVVZV27typnTt36rPPPqvX/U4Fj9LJIavnnHOObr75ZodQzleEhITYHVdUVNTruprrBZzaORvwNGcjIWuGkP3axbqrHAAAAAAA4OVcOiE9PT1dL7zwgnJycvTOO+/ok08+UX5+vl2oeGoK9ekjHE8/PiU5OVnjx4/XpEmT1K5dO1eW6XatW7e2O960aZOGDx9e53Xbt28/430AT0ktzndoc7YmJAAAAAAAgOTiEPKU9u3ba+rUqZo6darWrVun5cuXa+3atdqxY4dyc3NVWVlp62sYhoKDg5WSkqLOnTurb9++Gjx4sM+OenSmW7duiouLU1FRkSTpP//5T71CyA8++MD2OSYmRt27dzerRKBBUp1Mx665JiQAAAAAAMAppm/N07NnT7t1DA3DUGlpqY4fPy6LxaLIyEhFRkaaXYZHBQYG6uKLL9Yrr7wiSfriiy80d+5cTZgwodZrvvrqK73//vu240mTJrGTErxGzenYuZHxKg8KqaU3AAAAAADwd25fZNBisSg6OlpJSUlKTExsFgFkdna2MjIylJGRoezsbKd9fv/73ys5Odl2/MADD+iJJ57QgQMH7PqVlJToueee0x133GFbV7Nt27a69dZbzfsFAA1hGA7TsXfFMgoSAAAAAADUjqF1bhIdHa2ZM2fqqquu0pEjR2QYhv7973/rrbfeUmpqqhISEnT06FFt3bpVVVVVtuvi4+M1a9YsxcTEeLB64FeJx4sUWVVu18Z6kAAAAAAA4EzYbtmN0tLS9NFHH2nIkCG2turqau3cuVMrVqzQpk2b7ALIwYMH66OPPlJaWponygWcSi1x3JRmNyEkAAAAAAA4A0ZCullSUpJmz56t1atXa+HChfrhhx908OBBlZaWKioqSklJSerfv7/Gjh2rfv36ebpcwEHN9SAlaVcMISQAAAAAAKgdIWQNEydO1MSJExt0zaJFixr8nH79+hEywic5CyF3syYkAAAAAAA4A6ZjA2gQpyMhmY4NAAAAAADOgBASQIN0qLEmZJUlQDnRCR6qBgAAAAAA+AJCSAANUnMkZE50K1kDAj1UDQAAAAAA8AWEkADqLaDaqg4lh+zamIoNAAAAAADqQggJoN7alh5RSHWVXdueGDalAQAAAAAAZ0YICaDeOpawKQ0AAAAAAGg4U0LITz/9VLNnz9bhw4fNuD0AD0ktzndoI4QEAAAAAAB1MSWE/OCDDzR9+nSNGjVKM2fONOMRADyg5qY0EiEkAAAAAAComykh5NatW2UYhqxWq/r27WvGIwB4QKqT6di7YwghAQAAAADAmQWZcdOioiLb565du5rxCAAmslYbWrqzwKG95kjIssBgHYhq4a6yAAAAAACAjzIlhExMTNS+ffsknQwkIyIizHgMABdbm1usvy/eobfX7Hd6vmYIuScmUYaF/a0AAAAAAMCZmZIejBs3zvZ59uzZZjwCgIsVnahU9kvLaw0gg62VSi49Yte2KzbRHaUBAAAAAAAfZ0oIecstt2jYsGEyDENvvvmmnnzySR05cqTuCwF4zJdbD6nwRGWt59sfPaxAo9qubTeb0gAAAAAAgHowZTr23r179cc//lGRkZH64osv9Oabb+qtt95S586dlZmZqfj4eEVFRclisdTrfrfffrsZZQI4TU7RiTOed7YzNpvSAAAAAACA+jAlhLzgggtsAaPFYpFhGDIMQ9u2bdP27dsbfD9CSMDznIWQuxgJCQAAAAAA6sGUEFKSDMNoUHtt6jtaEoC5CCEBAAAAAEBjmRJCDhgwwIzbAvCgDiX5Dm27mI4NAAAAAADqwZQQ8s033zTjtgA8qOZIyKPB4SoIj/ZQNQAAAAAAwJeYsjs2gOanZgi5OzZRYrkEAAAAAABQD4SQAOoUXlmu1seL7NpOn4odGGAfRoYEBqh9bLg7SgMAAAAAAD7A7SFkXl6e1q1bp//9739au3atrf3EiROyWq3uLgdAPaSWOG5Ks/u0TWnuGdlJSdGhtuNHzumiyFDT9r0CAAAAAAA+xi0pwd69ezV79mwtXrxYBw4csLUPHz5cs2bNkiR9/fXXevzxxzVlyhTdeOONio5mrTnAW6QWO9mUJjbR9jkjMUrbp2Vrxd4idWoZodT4CHeWBwAAAAAAvJypIyENw9Czzz6r888/X++++65yc3NlGIbtv9Pl5uaqqKhIs2bN0vjx47V+/XozSwPQADXXg5SkXbH2O2NHhgYpO70VASQAAAAAAHBgagh51113acaMGbJarQ6ho6XGhhb79u2zfT5w4ICuv/567dixw8zyANSTsxByd0ySk54AAAAAAACOTAshX3jhBX3++ee24x49eujhhx/We++957T/uHHj1K9fPxmGIYvFopKSEk2bNs2s8gA0gLM1IWuOhAQAAAAAAKiNKSHkwYMHbWs9StK9996rOXPm6IorrlDv3r2dXjNgwAC9/fbbeuihh2xtGzZs0JIlS8woEUADdCo6aHd8OCxaR0OZdg0AAAAAAOrHlBDy/fffV3l5uSwWiyZPnqwbb7yx3tdeeeWVuuaaa2zHCxcuNKNEAPVlGOpUYzr2zrjWHioGAAAAAAD4IlNCyG+//VbSyXUf77jjjgZff9NNNyko6OTG3WxQA3hWi7JSxVYct2vbGUsICQAAAAAA6s+UEHLfvn2yWCxKS0tTq1atGnx9fHy8UlJSZBiG8vIc16ID4D6dig86tLEeJAAAAAAAaAhTQsji4mJJJ8PExkpISJAkVVRUuKQmAI1Tcyq2RAgJAAAAAAAaxpQQMjo6WtKvYWRjFBQUSJJiY2NdUhOAxqm5KY3EdGwAAAAAANAwpoSQbdq0kWEY2rZtW6OCyAMHDmjHjh2yWCxq27atCRUCqC9n07F3xjESEgAAAAAA1J8pIeSwYcMkSVarVa+99lqDr3/uuedkGIYkadCgQS6tDUDDdKwxHbvKEqCc6AQPVQMAAAAAAHyRKSHk+PHjFRBw8tavvPKKPv/883pf+/LLL2vu3Lm247Fjx7q8PgD1VzOE3BOTKGtAoIeqAQAAAAAAvsiUEDItLU0TJkyQYRiyWq26++67NW3aNK1YsUKHDh1y6H/8+HEtXrxYv/vd7/TPf/5TkmSxWHTOOecoMzPTjBIB1ENgtVUdSvLt2nY62ZQmIphQEgAAAAAA1C7IrBs//PDD2rx5szZu3CjDMDRv3jzNmzfPrs+qVas0ePBgHT16VNXV1ZJkm4bdvn17/eUvfzGrPAA1hAQ6/kyi/dFDCjKq7dp2xTluSjM6rZVpdQEAAAAAAN9nykhISQoLC9Orr76qESNGyDAMu/8sFoskqby8XEVFRbJarbbwUZK6du2q119/nZ2xATdKig51aOtUlOfQVnNn7BkX93R6LQAAAAAAwCmmhZCSFBcXp1mzZmn69OnKyMiwtZ8eSJ4uMTFRU6dO1Xvvvafk5GQzSwNQg8VJm7OdsXfVmI59Tf92JlUEAAAAAACaC9OmY5/uwgsv1IUXXqi9e/dqzZo12rNnj0pKSlRZWanY2FglJSWpT58+ysrKsm1oA8DznIWQztaEBAAAAAAAOBO3hJCnpKSkKCUlxZ2PBNAEHesxHRsAAAAAAKAupgw7/Oc//6l169aZcWsAblRzJGRRaKQKw6Ls2oIYvQwAAAAAAOpgykjIGTNm6OWXX1arVq00evRoZWdna+jQoQoJCTHjcQBM0rHYfiTkztgkyfLr6pGBARYFBjhbTRIAAAAAAOBXpk7HPnTokObMmaM5c+YoLCxMQ4cOVXZ2tkaPHq34+HgzHw2giWLKj6lV2VG7tppTsZ+7qLs7SwIAAAAAAD7KlBBy9OjR+v7773XixAnbDtgnTpzQokWLtGjRIgUEBKhHjx7Kzs7WmDFj1LlzZzPKANAENUdBSo47YwcxChIAAAAAANSDKSHkSy+9pMrKSq1atUpLlizR0qVLtWvXLlsgabVatXbtWq1du1bPPPOM2rdvr+zsbGVnZ6t///7skA14Aac7Y8exKQ0AAAAAAGg406ZjBwcHa+jQoRo6dKgeeOAB7du3T0uWLNGSJUu0cuVKlZWV2frm5OTojTfe0BtvvKGYmBiNHDlS2dnZGjlypCIjI80qEcAZdHKyM3bNkZAAAAAAAAD1YeqakKdr166drrjiCl1xxRUqLy/XihUrtHTpUi1dulR79+619SsuLtaCBQu0YMECBQUFaeDAgXr11VfdVSaAXzgdCRnLSEgAAAAAANBwbgshTxcaGqqRI0dq5MiRkqTdu3dr6dKlWrJkiVatWqWKigpJUmVlpZYtW+aJEoFm7+e8o5r5/R5VWA1dN7C9w/mONULIalm0JybBXeUBAAAAAIBmxCMh5OnKysqUm5urgoICHTt2TNXV1bJYTm52cWoNSQCudai0XGe9uEyHj50M/P/9Q44eHJNu16dTjY1pcqJbqTIw2G01AgAAAACA5sPtIWRFRYVWr16tlStXasWKFVq/fr2qqqrs+pwePoaHh7u7RKDZm7fxoC2AlKRjFVa999N+23FAtVUdSvLtrmFTGgAAAAAA0Fimh5AVFRX68ccfbaHjunXrVFlZaTtfc7RjSEiIevXqpcGDB2vw4MHq1auX2SUCfueHnGKHtvUHjto+ty09olCr/Q8H2JQGAAAAAAA0likh5KpVq7RixQpb6HhqjUfJMXQMDAxUt27dNHjwYA0ZMkR9+/ZVaGioGWUBqKeaU7ElNqUBAAAAAACNZ0oIedVVV9W6rqPFYlGXLl1sIx0HDBigqKgoM8oA0EjOd8ZmJCQAAAAAAGgcU6djnwogw8PDNWnSJGVnZ6tnz56EjoCXcxZCMh0bAAAAAAA0lqkh5KnRkGVlZXrnnXe0cuVKuxGQ0dHRZj4eQCN1LHIyHdvJxjRlVdXuKAcAAAAAAPg4U0LIv/zlL1q2bJlWrFihwsJCSSdHRW7btk3btm3Tm2++qYCAAGVmZmrQoEEaPHiw+vfvr4iICDPKAdBANUdClgaH6VB4rEO/hMgQd5UEAAAAAAB8mCkh5JQpUzRlyhRJ0s8//6zly5dr2bJlWr16tU6cOCFJslqt2rRpkzZt2qTXX39dgYGB6t69uy2U7Nevn0JCCDgAT6gZQu6MTZJ+Gdl8uq5JjGYGAAAAAAB1M3U6tiRlZWUpKytL1113nSorK/XTTz9p2bJlWr58uTZs2KCqqipJUlVVldauXau1a9dq5syZCg4OVq9evTR48GDddtttZpcJ4BcRlWVKOl5s18bO2AAAAAAAoClMDyFPFxwcrAEDBmjAgAG68847VVpaqlWrVmnlypX64YcftGnTJlmtVklSRUWFVq1apR9++IEQEnCjjsWO60HucrIeJAAAAAAAQH25NYSsKSoqSqNHj9bo0aNVXl6uJUuW6F//+pe2bNkii8Vi210bgPt0KnLcGXsnO2MDAAAAAIAm8GgIuWnTJn333XdatmyZ1qxZo4qKCkm/7qoNwP1qrgcpMR0bAAAAAAA0jVtDyP3792vZsmVatmyZvv/+exUVFdnO1Rz1mJWVpVGjRmn06NHuLBHwe52cTcdmJCQAAAAAAGgCU0PIo0eP6vvvv9d3332n5cuXa+/evbZzNUPHsLAwDR48WKNHj9aoUaOUlEToAXhCRycjIXfHJHqgEgAAAAAA0FyYEkI+88wzWr58uTZu3Kjq6mpbe83gsXXr1jrrrLM0evRoDRkyRKGhoWaUA6ABOhXZj4TcHxWvsmDeTQAAAAAA0HimhJAvv/yy041lLBaLevTooVGjRik7O1uZmZlmPB5AYxmGOpbYh5CsBwkAAAAAAJrKtOnYpwLIiIgIDR8+XKNGjdKoUaMUHx9v1iMBNFHrY4UKr6qwa2NnbAAAAAAA0FSmhJDt27e3TbMeOHCggoODzXgMABdztjP2LkZCAgAAAACAJjIlhPzyyy/NuC0AkznbGXtnHCEkAAAAAABoGlN3x66ppKREa9asUX5+voqKihQQEKDIyEglJyera9euatWqlTvLAVBDpyLHkZBMxwYAAAAAAE3llhByyZIlmjVrltasWeOwWc3psrKydM011+jCCy90R1kAaujodDo2ISQAAAAAAGiaADNvXlZWpnvvvVe///3vtXr1alVXV9tCSMMwHD5v2rRJ06ZN0+9+9zuVlJSYWRoAJ2pOxz4RFKKDkS08VA0AAAAAAGguTAshq6qqdOONN2rhwoUOox8DAwMVHx+v2NhYBQT8WoLFYpFhGPr+++91/fXXq7y83KzyADhRc2OaXTFJMiym/qwCAAAAAAD4AdOmY//973/XqlWrZLFYJEkpKSm66qqrNGzYMHXs2NHWr7q6Wjt37tS3336rd999V3v27JFhGNqwYYOefvppPfDAA2aVCOA0YZXlSi49YtfGVGwAAAAAAOAKpgxx2rdvn9566y1bADlp0iR9/PHHuvLKK+0CSEkKCAhQWlqarr32Wn388ceaPHmypJNTtN9++20dOHDAjBIB1NCxxHFn7B1xbTxQCQAAAAAAaG5MCSE/+ugjVVVVSZJGjhypJ554QiEhIXVeFxISor/+9a8aNWqUJMlqteqDDz4wo0QANaQVOgb+O+Jae6ASAAAAAADQ3JgSQn733Xe2z42ZTj1t2jTb5+XLl7ukJgBn1tnJztiEkAAAAAAAwBVMCSFzcnJksVjUoUMHpaamNvj61NRUdezYUYZhaPv27a4vEIADZyMhtzMdGwAAAAAAuIApIWRRUZEkqXXrxo+iSkxMlCQdO3bMFSUBqEOnYvsQsloW7Y5hYxoAAAAAANB0poSQkZGRkqSSkpJG3+Po0aOSpKioKJfUBODMOhfZT8fOiW6liqBgD1UDAAAAAACaE1NCyNatW8swDG3durVRQWRxcbG2bt0qi8ViGxEJwDyB1ValluTbtW1vwVRsAAAAAADgGqaEkP3795d0cnfrV199tcHXv/rqq7bdtQcMGODS2gA4Sik5pOBqq13bzlg2pQEAAAAAAK5hSgg5fvx42+dXXnlFn376ab2vXbhwoV555RXb8fnnn+/S2gA46lzEpjQAAAAAAMA8poSQvXr10rBhw2QYhqxWq+655x499NBDZ9zpetu2bXrwwQd17733qrq6WhaLRYMHD7aNqgRgnjQnIeQOQkgAAAAAAOAiQWbd+Mknn9RFF12koqIiGYahDz74QB988IESEhKUlpammJgYSSc3r9m2bZsOHz4sSTIMQ5LUsmVLPfXUU2aVB/ido2VVig5z/srX3JRGknbE1T0dOyjA0uS6AAAAAABA82daCJmUlKS3335bN9xwg3JzcyWdDBjz8/N16NAhu76ngkeL5WSg0bZtW7344otq3Zo16YCm2lVwXBPfWKW1uSVKaxWpOVf3c+jjbDp2XSFki/BgdUmIdFmdAAAAAACg+TJlOvYpnTp10ty5c3XdddcpNDTU1m4Yht1/p4SHh+vqq6/W3LlzlZmZaWZpgN+486MNWpt7cpf67YeP6Yb/rnXo07nYfiRkXkSsSkMiznjfudcOUFCgqX+FAAAAAACAZsK0kZCnxMbG6v7779ftt9+ulStX6ocfflB+fr5tmnZMTIzatGmjvn37auDAgYqKijK7JMCvLPg5z+549b5i9WsX92uDYTiMhKxrU5pbh6ZqZOeWrioRAAAAAAA0c6aHkKdERERo1KhRGjVqlLseCaAe2hw7ooiqCru2ujalubp/OzNLAgAAAAAAzYzbQkgA3snZpjQ7Y52vBzmwfZxuH95RA1NamF0WAAAAAABoRlwaQhYWFmrHjh3Kz89XRESE2rVrp7S0NFc+AkADVFqr6+yT5mRTmu0tHEdCpreK1Pd3jnBJXQAAAAAAwL+4JIRct26dnn/+eS1fvlxWq9XuXGJioq666ipdddVVdpvTADDfir2FdfZxNhJyRy0jIQEAAAAAABqjyVvbvvTSS7rsssv07bffqqqqymHn67y8PP3jH//QxRdfrJycHFfUDKCe1uwrrrNPJycjIetaExIAAAAAAKAhmhRC/ve//9Wzzz7rMPrxdBaLRYZhaNu2bbrhhhtUWlralEcCcIHC479uRFNzOnZxSIQOh8e4uyQAAAAAANCMNXo6dmlpqf7xj3/IYrFIkgzD0ODBg3XOOecoOTlZVVVV2rJli+bOnWsbAbl3717961//0tSpU11TPYBGmbPu1+Cxc7H9dOwdca2lX95rAAAAAAAAV2h0CPnZZ5+puLhYFotFoaGh+sc//qExY8bY9RkzZoxuuukmPfzww5o7d64Mw9CHH36ou+66i/UhAS/Q4sRRxZfZj07ezlRsAAAAAADgYo2ejr1ixQrb5z/+8Y8OAeQpQUFB+utf/6r09HRJUklJiX766afGPhaAC9UcBSlJO+PYlAYAAAAAALhWo0PIzZs3S5IiIyM1ZcqUM/YNCgrSZZddZjveuHFjYx8LwIU6O9uUJpaRkAAAAAAAwLUaHUIeOnRIFotFKSkpCg4OrrN/v379bJ/37t3b2McCcKGam9JI0vYWhJAAAAAAAMC1Gh1CHj9+XJIUHR1dr/7Jycm2z0ePHm3sYwG4UKcix+nYO2KZjg0AAAAAAFyr0SFkZWWlJNVrFKR0ctr2KceOHWvsYwG4UM3p2GWBwdof3dJD1QAAAAAAgOaq0SGkYRiSJIvFUq/+p/ezWq2NfSwAF0qrMRJyZ2xrGRbnfy0E1O9VBwAAAAAAcNDoEBKAbwuvLFfbY0fs2nacYWfs3w1MMbskAAAAAADQTBFCAn6qU7GT9SDjnG9KkxgVokt7tzW7JAAAAAAA0EwFeboAAJ6RVui4M3bNkZDDO8ZrQo/WmtSjjVJaRLirNAAAAAAA0MwQQgJ+qnOxsxDSfiTkTYM76Mp+7dxVEgAAAAAAaKaYjg34qbQixxByey3TsQEAAAAAAJqiySMh8/Ly9NFHH5l6zUUXXdSg+wOoW6caO2NbLQHaE5PgoWoAAAAAAEBz1uQQctu2bXrggQfq3d8wjAZfQwgJNNyR4xWa/s32Ws93rhFC7olJUGVgsF1bWZXVlNoAAAAAAIB/cet0bIvFIovFUu/+hmGYWA3QfBmGofNmfq8DJeVOzwdZq9ShJN+ubUdsa4d+aS0jTakPAAAAAAD4lyaNhCQkBLzT5vxS/bCvuNbzHUryFWRU27XtdLIeZNvYMJfXBgAAAAAA/E+jQ8ivv/7alXUAcKGC4xVnPM+mNAAAAAAAwJ0aHUImJye7sg4AbpRe6BhC7ohznI4NAAAAAADgCm5dExKAd0gvynVo29qCHywAAAAAAABzEEICfiit0D6ErJaFkZAAAAAAAMA0hJCAH6o5EjInupXKg0I8VA0AAAAAAGjuCCEBPxNkrVJqcb5d27YWbT1UDQAAAAAA8AeEkICf6VicpyCj2q5tewt2xgYAAAAAAOYhhAT8jLNNabbFMRISAAAAAACYhxAS8DPphU5CSCfTsSOCA5XaIsIdJQEAAAAAgGaOEBLwM+mFBxzaao6EDA606PkJ3RUSxF8RAAAAAACg6YI8XQAA90qrMR3bagnQzrgkSVKf5Bi9c0U/tYsNU2Qofz0AAAAAAADXIGUA/EzN6dh7YhJUGRgsSZrUs60yEqM8URYAAAAAAGjGmGsJ+JGQqkqlHD1s18amNAAAAAAAwGyEkIAf6VR8UIFGtV3b9hZtPFQNAAAAAADwF4SQgB+p787YAAAAAAAArkQICfiR9CInISTTsQEAAAAAgMkIIQE/kl54wKGNkZAAAAAAAMBshJCAH0mrMRKyyhKg3TGJtuPW0aHuLgkAAAAAAPgBQkjAj3Q5Yh9C7opNUlVgkO34t5mJNS8BAAAAAABoMkJIwE+EV5arfelhu7bTp2K/fUVftY4Jc3dZAAAAAADADxBCAs3QzXPWObR1LnJcD3L7aZvSXNgtydSaAAAAAACA/yKEBJqZ/cUn9HN+qUO7052xW7SxfY4ICXI4DwAAAAAA4AqEkEAz88RX25y2szM2AAAAAADwFEJIoBmprjY0Y/kep+fSC52MhIwjhAQAAAAAAOYjhASakX3FJ2o9l1ZjOnZFQJD2xiSYXRIAAAAAAAAhJNCcVBu1n6s5HXtnbJKsAYEmVwQAAAAAAEAICfiFyIoTanvsiF0b60ECAAAAAAB3IYQE/EBaEZvSAAAAAAAAzyGEBPyA001pCCEBAAAAAICbEEICzUhpeZXT9vQidsYGAAAAAACeQwgJNCM3vb/OaXuXI/sd2hgJCQAAAAAA3IUQEmhGvt9T6LS9S43p2MeDQrQvuqU7SgIAAAAAACCEBJo9w1BGof1IyK0tkmVYeP0BAAAAAIB7kEIAzVyrEyWKLyu1a9vSItlD1QAAAAAAAH9ECAk0cxlO1oPcGk8ICQAAAAAA3IcQEmjmMgr3ObRtZVMaAAAAAADgRkGeLgBA01RXG9pw8Khiwpy/zs5GQm6Jb2d3fHkfRkYCAAAAAADzEEICPqykrFLnzVpR667YktSl0EkIWWNNyL+P6+ry2gAAAAAAAE5hOjbgw95es/+MAaTkOBLyQGQLHQ2NsGtrHRPm8toAAAAAAABOIYQEfNiL3+0+4/nAaqs6Fx+0a2NnbAAAAAAA4G6EkIAPO3i07IznOxbnKbjaatfGztgAAAAAAMDdCCGBZszppjSMhAQAAAAAAG5GCAk0YxmF+xzatjASEgAAAAAAuBkhJNCMMRISAAAAAAB4A0JIoBnrUmgfQlYEBGl3bJKHqgEAAAAAAP6KEBJoxmqOhNwR11rWgEAPVQMAAAAAAPwVISTQTMWUH1Pr40V2bUzFBgAAAAAAnkAICTRTXQpzHdq2sikNAAAAAADwAEJIoJnKOOJkZ2xGQgIAAAAAAA8I8nQB3ujZZ5/Viy++qOTkZC1atMi05yxZskSff/65fvzxRx06dEjl5eVq0aKFunbtqnPPPVdjx45VSEiIac9H85ZR6GRnbEZCAgAAAAAADyCErGHdunWaNWuWqc/YvXu3Hn74Ya1cudLhXF5envLy8vTNN99o5syZeuaZZ5SZmWlqPWieuhxxEkK2aOeBSgAAAAAAgL9jOvZpcnJydOutt6qystK0Z2zZskWXX365XQAZFxenPn36qE+fPoqIiLC179y5U1dffbW2bdtmWj1ovmqOhCwIi1ZBRIyHqgEAAAAAAP6MkZC/2Lp1q2644QYdOnTItGcUFhbqhhtuUEFBgSQpNjZWDz30kMaOHavAwEBJUllZmV5//XU9//zzslqtKi4u1tSpU/XBBx/IYrGYVhuaF4tRrfQaG9OwHiQAAAAAAPAURkJKmjdvnqZMmaK8vDxTn/PMM88oPz9fktSyZUv9+9//1vjx420BpCSFhYXplltu0X333Wdr27hxo5YvX25qbWhe2h89rIiqCrs21oMEAAAAAACe4tchZF5enqZOnar7779fJ06cMPVZ+fn5+vDDD23Hjz766BnXerz22muVkJBgO/7mm29MrQ/NS4aT9SC31jISMik61OxyAAAAAACAn/Pb6dgvvfSSZs6cqePHj9vaOnXqpHPOOUczZsxw+fPmz59vW2ty4MCBOvfcc8/YPyAgQPfee6+2bdumuLg4ZWRkuLwmNF9dnOyMvTW+rdO+Nw5KMbscAAAAAADg5/w2hHz11VftAsjJkydr2rRp+uKLL0x53uLFi22fL7nkknpdM2HCBFNqQfPnbCRkbTtjP3x2F7PLAQAAAAAAfs5vQ8hTunfvrqlTp2rgwIGmPaOyslLr1q2zHZv5LEByHAlptQRoe1wbh34d4yMUHOjXqzIAAAAAAAA38NsQcuDAgZo4caLGjBlj+q7Te/bsUXl5uSQpLi5OiYmJkqSCggLNmzdPX3zxhXJyclRSUqJWrVqpb9++uvDCCzVy5EhT60LzlVWwz+54V2yiKoKCPVQNAAAAAADwd34bQr744otue9bevXttn08FkB9++KGeeuoplZSU2PXNzc1Vbm6uFixYoJEjR+rvf/+7YmNj3VZrbaqqqjxdQpNYrdYzHjcn0eXH1b70sF3bz/Hta+lt+Pz/t3A/f3qfADPxLgGuw/sEuAbvEuAavEvO+W0I6U4FBQW2zxEREZo1a5b+/ve/29pSUlLUpk0bFRcXa+vWraqurpYkLV26VJdeeqneeecdtWjRwu11n1JdXa21a9d67Plm2LBhg6dLcImqKse/yDKP7HNo2xzvfD3I8vKKZvf/LdyvubxPgKfxLgGuw/sEuAbvEuAavEsnEUK6QXFxse3zjh07bKFP//799fDDDyszM9N2/tChQ/rHP/6huXPnSpJ27typ++67T6+++qp7i4ZPOFZV7dCWdSTHoe3nlrWNhAQAAAAAADAfO1K4QUVFhe3z0aNHZRiGRo0apdmzZ9sFkJKUkJCgv/3tb7ruuutsbd9++63d7trA8cpq3b2kQE4ySIf1ICXp51pGQgIAAAAAALgDIyHdoObGN1FRUZo+fbqCg2vfKOTee+/VV199ZVtP8s0339SoUaPMLLNWAQEB6tGjh0ee7SpWq9Vu+HP37t0VGBjowYqa5smvt+vb3INOz2U2YCRkaGiIevXq5dLa0Pw1t/cJ8BTeJcB1eJ8A1+BdAlyjOb5L69evty0f2FiEkG4QERFhdzx+/HjFxcWd8ZqgoCBNmjRJzzzzjCTphx9+UEVFhUJCQswqs856mpPAwECf/jW9sGxPree6FtiHkPuj4lUSGllLb4tP/z7AO/j6+wR4C94lwHV4nwDX4F0CXIN36SSmY7tBZKR9ANS3b996Xde7d2/b57KyMuXm5rqyLPiww8cqnLaHVlWoU3GeXVvtO2MDAAAAAAC4ByGkG9Tc2To+Pr5e17Vs2dLuuLCw0GU1oXlKL8xVoGE/PLq2nbEBAAAAAADchRDSDdLT0+2OS0pK6nVdVVWV3bGvrx8A82UdcbIpDTtjAwAAAAAADyOEdIP27dvbrQu5e/fuel138KD9xiNt2rRxZVlohrIKnGxKw0hIAAAAAADgYYSQbmCxWDR48GDb8Zdfflmv61atWmX73Lp1ayUkJLi8NjQvzkLITYyEBAAAAAAAHkYI6SYXXnih7fPGjRv13XffnbH/sWPHNHfuXNvx2WefbVptaD6yjtiHkEfCopQfEeeZYgAAAAAAAH5BCOkm2dnZSklJsR0/+uijysvLc9rXMAw99thjOnLkiCQpKChIV1xxhVvqhO8KqLaqS6H9Duo/x7eTLBYPVQQAAAAAAHASIaQLZGdnKyMjQxkZGcrOznbaJyQkRI8//rgsvwRCOTk5uuSSS/TVV1/JMAxbv7y8PN1xxx2aP3++re2qq65Sx44dzf1FwOd1LM5TmLXSrm1zPFOxAQAAAACA5wV5ugB/MmjQIP35z3/WY489purqah04cEC33XabWrZsqdTUVJWVlWnz5s2yWq22a4YMGaJ77rnHg1XDVzjfGZtNaQAAAAAAgOcRQrrZJZdcosTERP3lL39Rbu7JqbMFBQUqKCiw62exWDRlyhT96U9/UkhIiCdKhY/p6nRnbEZCAgAAAAAAzyOE9IDRo0dryJAhWrBggb766itt2bJFBQUFslgsateunQYNGqQpU6YoMzPT06XCh2QeYWdsAAAAAADgnQgha5g4caImTpzYoGsWLVrU4OeEhYXp4osv1sUXX9zgawFnsgrsp2MfCwrV3piEM14THcpfAQAAAAAAwHxsTAM0B4ahrBojIbfEJ8uwnPkV//2QDmZWBQAAAAAAIImRkIDPqKiq1qwVe7Tx4FGHc21Ljyim4oRdW13rQXZvHa0pvdu6tEYAAAAAAABnCCEBH3HjnLV6c7XjDtiS1LVgr0Pb5lp2xv7u9mE6VmHVsI7xCg8OdGmNAAAAAAAAzhBCAj6gvMpaawApSVlHHM/VNhJySGq8y+oCAAAAAACoD9aEBHzAicrqM56vuR6kxM7YAAAAAADAexBCAs1AZo2dsSsDArU9ro2HqgEAAAAAALBHCAk0AzVHQm6Pa6OqQFZbAAAAAAAA3oEQEvBxrY4XK+l4sV3bz/HON6UBAAAAAADwBEJIwMd1c7Iz9sZWHTxQCQAAAAAAgHOEkICP6354j0PbBkJIAAAAAADgRQghAR/X/bDjSMgNrVI8UAkAAAAAAIBzhJCAj+tWYyRkRUCQtsW19VA1AAAAAAAAjgghAV9mGOpeY03IzfHJ7IwNAAAAAAC8CiEk4MOSSwsUV37Mro31IAEAAAAAgLchhAR8mLNNaTaeYT3IXm1jzCwHAAAAAADAKUJIwIc53ZSmZe0jIW8YxIY1AAAAAADA/QghAR/WrcBxJGRt07Gnj83SrUNTTa4IAAAAAADAEbtXAD6s5kjIY0Gh2h2b6LTvH0enuaMkAAAAAAAAB4yEBHyUxahW1xo7Y29slSLDwmsNAAAAAAC8C2kF4KM6FucpoqrCrm1jS9Z8BAAAAAAA3ocQEvABm/NLHdqc7Yxd23qQAAAAAAAAnkQICfiAd37c79DmdGdsQkgAAAAAAOCFCCEBH7Bkx2GHtm5OR0IyHRsAAAAAAHgfQkjAR3WvsSnNkbAoHYiM91A1AAAAAAAAtSOEBHxQsLVSmUf22bVtaJkiWSweqggAAAAAAKB2hJCAD0ovPKDgaqtd20bWgwQAAAAAAF6KEBLwQeyMDQAAAAAAfAkhJOCDuhc4hpAbW7IpDQAAAAAA8E6EkICXO3K8QusPHLVr63Z4r0M/QkgAAAAAAOCtCCEBL7Zyb6E6PvG1Q3vN6dgHIluoICLGXWUBAAAAAAA0CCEk4MWmL9quo+VVdm1hleXqXHTQrm0DoyABAAAAAIAXI4QEvNjcDQcd2roeyVGADLs2dsYGAAAAAADejBAS8FK5xWVO23vl73JoW08ICQAAAAAAvBghJOClLv73D07bex3a7dC2NrGjydUAAAAAAAA0HiEk4IVKyir1/Z5Cp+d6HrIfCWm1BGhTfHt3lAUAAAAAANAohJCAF6qwVjs/YRjqeXi3XdOWFskqCw41vygAAAAAAIBGIoQEfEi7o4cVX1Zq17Y2IdUzxQAAAAAAANQTISTgQ5ytB7kuoe71INNaRZpQDQAAAAAAQP0QQgI+pNchx52x67MpzfUDU8woBwAAAAAAoF6CPF0AgPqruSmNJK1rleq079TsNP2cd1S/SU/QbcOc9wEAAAAAAHAHQkjAh9Scjn04LFq5UfEO/SwW6anfZrmpKgAAAAAAgDNjOjbgI8Iry5VemGvXtjax48nEEQAAAAAAwIsRQgI+ovvhPQqQYddWn01pAAAAAAAAPI0QEvARTjelSUh1fyEAAAAAAAANRAgJ+AhnIWRtm9K0CA82uRoAAAAAAID6I4QEfETPGpvSVAYEalPLFKd97zmrsxsqAgAAAAAAqB9CSMAXGIZDCLk5vp0qghxHPHaMj9A1/du5qTAAAAAAAIC6BXm6AAB161CSr9iK43Ztta0H+dM9Zyk6jFcbAAAAAAB4D0ZCAj7A6XqQteyMTQAJAAAAAAC8DSEk4AP65O90aFvHztgAAAAAAMBHEEICPqBPnmMI+WNiJw9UAgAAAAAA0HCEkIAPqDkSMieqlQ5FxHmmGAAAAAAAgAYihAS8XMLxIrUvPWzXxihIAAAAAADgSwghAS/nbD3IH5MIIQEAAAAAgO8ghAS8nLP1INckdvZAJQAAAAAAAI1DCAl4uT75Oxza1iQRQgIAAAAAAN9BCAl4ub41QshD4THaH9XSQ9UAAAAAAAA0HCEk4GXeWr1P3f9vsSQppvyY0ooO2p1fk9hZslg8UBkAAAAAAEDjBHm6AAC/2px/VNe896MM4+Rx7/xdDn3YlAYAAAAAAPgaRkICXuT9dQdsAaTkOBVbkn5kUxoAAAAAAOBjCCEBL5JTdMLuuHe+s52xGQkJAAAAAAB8CyEk4MX65tmPhCwOidDOuNa19g8KYK1IAAAAAADgfQghAS8VXlmurCP77Np+Suwow1L7a3vj4A5mlwUAAAAAANBghJCAl+pxeLcCjWq7trrWgxzRMd7MkgAAAAAAABqFEBLwUjWnYkvSmqQzh5Bdk6LNKgcAAAAAAKDRCCEBL7Ilv9T2uZ+TEPLHOjal6dGGEBIAAAAAAHgfQkjAiyzdecT2ecDBrXbnjgWFanN8uzNeb7GwMQ0AAAAAAPA+hJCAlyirtNo+R1SWqVtBjt35NUmdZQ0IlCS9f01/t9YGAAAAAADQFISQgJeoNgzb5z55Ox02pfmhdbrtc1AAIx4BAAAAAIDvIIQEvNCAvG0ObauS0jxQCQAAAAAAQNMRQgJeqP9BJyHkaSMhAQAAAAAAfAkhJOCFBtQIIY+ERWlHXBsPVQMAAAAAANA0hJCAlyguq5IkxZWVKr3ogN25H5LSJHa+BgAAAAAAPooQEvASA/75P0nOp2L/wFRsAAAAAADgwwghAS+RW1ImqbZNaQghAQAAAACA7wrydAGAPzMMQzsKjiso4Nep1v0Pbnfox6Y0AAAAAADAlxFCAh5SXmXV5DdWa8HPeXbtNTelyY2MV250S3eWBgAAAAAA4FJMxwY8ZOHP+Q4BZOvSI2pXWmDXtqp1mjvLAgAAAAAAcDlCSMBD3lq9z6Gt5ihIyfmmNGktIx3a7h7ZyTWFAQAAAAAAuBghJOAhRScqHdqcbkrjJITMSorSeRkJtuO48GBdNzDFtQUCAAAAAAC4CGtCAl5kwAEnIyGTHKdjWywWfXjtAC3cnK+8o+X6bWaiOsRHuKNEAAAAAACABiOEBLyExajWoINb7dq2x7XWkfAYp/3DggM1sUcbd5QGAAAAAADQJEzHBrxEVsE+xZUfs2tb3ibTQ9UAAAAAAAC4DiEk4CWG5G52aPu+LSEkAAAAAADwfYSQgJcYcsAxhFzeJsMDlQAAAAAAALgWISTgJQbnbrE7Lg0O0/qEVM8UAwAAAAAA4EKEkIBJDMPQhgMlmr/xoAqOVZyxb1xZqboeybFrW9U6XdaAQDNLBAAAAAAAcAt2xwZM8tgXW/XXL0/udt0iPFiLbhmiXm1jZRiG8ksrVG382nfQgS0O13/PVGwAAAAAANBMEEICJjhWXqW/LdpmOy48Ualnl+7SQ2enK+2pRQ79h+Q6hpDL2ZQGAAAAAAA0E4SQgAlyS8pUaTXs2mb/kKNvdx9x2n+wk01pGAkJAAAAAACaC9aEBNxo++FjDm0Wo1qDDmy1a9sW10aHI2LdVRYAAAAAAICpCCEBD+takKPYiuN2bYyCBAAAAAAAzQkhJOBhQ3KdTMVmPUgAAAAAANCMEEICHuYshFzOSEgAAAAAANCMEEICHjb4gP3O2KXBYVqfkOqZYgAAAAAAAExACAl4UMLxImUd2WfXtqp1uqwBgbVekxIXbnZZAAAAAAAALkUICXjQ8P2bHNr+l9ztjNf86TfpZpUDAAAAAABgCkJIwING7HMMIZe2O3MIabGYVQ0AAAAAAIA5CCEBDxqxb6PdcWVAoL5vy6Y0AAAAAACgeSGEBDwkuvy4eh/aZde2OqmzjgeHeagiAAAAAAAAcxBCAh4yNPdnBRrVdm3f1rEeJAAAAAAAgC8ihAQ8ZGSNqdhS3etBAgAAAAAA+CJCSMBDnO2M/V3brDqvax8XbkY5AAAAAAAApiGEBDwgtKpCAw9utWtb16qDCsOj67z2rE4tzSoLAAAAAADAFISQgAcMPLhVodYqu7b6rAf5r4k9FBYcaFZZAAAAAAAApiCEBDygsetBdm4ZYUY5AAAAAAAApiKEBDxg+D7H9SD/166rByoBAAAAAAAwHyEk4GZB1ioNzd1s17Y9rrUORLHWIwAAAAAAaJ4IIQE3G3Bwm6IrT9i1/a8e60ECAAAAAAD4KkJIwM3G7F3r0PZNSk8PVAIAAAAAAOAehJCACSqsRq3nsveuc2j7mhASAAAAAAA0Y0GeLgBoDj5cf0DfbD+so2VVWrqzQLsLTzjtF15ZriEH7NeD3BTfnvUgAQAAAABAs0YICTTRi9/t1u1z19er7/D9mxRqrbJrW8QoSAAAAAAA0MwxHRtoohnLd9e7r7P1IL9O6eXCagAAAAAAALwPISTQRBsOHq133zF77ENIqyVAi9t3d+i3ZeroJtcFAAAAAADgLQghATdpceKo+uTvtGtbndRZxWFRDn3DggPdVRYAAAAAAIDpWBMSfqeovFoPfLpZewrLNK5bkq7q175B1+84fEzv/rRfoYEBuqJvu3pfNzpnvQJkv2s2U7EBAAAAAIA/IISE37lnSYHWF1RKkt5fd0DWaunaAfULIvccOa4hz3+rw8cqJEkzlu+p93NZDxIAAAAAAPgrpmPDrxw6brUFkKe8sqL+QeKcdQdsAaQk7TpyvN7XZu9dZ3dcFhisZW0z6309AAAAAACAryKEhF85XmU4tC3bXVjv6//z0/5GPbddySFlFNpf+11ylsqCQxt1PwAAAAAAAF9CCAm4wXm71zi0LUrp6YFKAAAAAAAA3I8QEnCD83atdmj7LLWfByoBAAAAAABwP0JIwGTB1kqdvcd+U5qDEXH6KbGjhyoCAAAAAABwL0JIwGTD929SdOUJu7ZPO/aTYeH1AwAAAAAA/oEUBHDCMBw3sGms3+50nIr9aUemYgMAAAAAAP8R5OkCAHeotFbrmTXFenfLsTP2O15Rpev/u1bzNx5Up/hIvTy5p4amxjfp2efttg8hqywB+rJD7ybdEwAAAAAAwJcwEhJ+Yfo3O/TOlmOqa3zj419t039+ytWJymptzDuqibNXqbq68aMiOxTnqVtBjl3bsraZKg6LavQ9AQAAAAAAfA0hJPzCf9cdqFe/57/dZXecX1qhXUeON/q55zvZFfvTjv0bfT8AAAAAAABfRAgJv7A5/8zTsE85VmF1aLM2YX1IZyHkwk6sBwkAAAAAAPwLIST8wgVZiW5/ZmhVhbL3rrNr2xfVUutbpbq9FgAAAAAAAE8ihIRfsFjc/8yz9m1QZFW5XdtnHft5phgAAAAAAAAPIoQETHLh9hUObZ927OuBSgAAAAAAADyLEBIwgcWo1vgd9iFkWWCwvujQp17XhwbyagIAAAAAgOaDpAMwwYCD25RcesSu7csOvXUsJLzOa3u2iVFidKiuH5TicK5tTJjLagQAAAAAAHAXQkjABBdt/96hbV7aoDqvm9SjjT763QBJ0vUDUxQa9OsrOjS1hbq1jnZdkQAAAAAAAG4S5OkCAF9wqLRcs1bs1ep9xfXqf9E2+xDSagnQ/M51h5Bzrulv+zy4Qwst/8Nwfbj+gNrGhOmKvu1kYVMbAAAAAADggwghgTpUG4bOfvl7rTtQUq/+mQU5yizcb9f2XdtMHY6IbfCzeyfHqndyw68DAAAAAADwJoSQQB0mvL5KWw4dq3f/iduWO7R9lD7ElSUBAAAAAAD4FNaEBOrQkABSkqZs+Z9D20f1WA8SAAAAAACguSKEBFwosyBHPQ/vsWtblZSm3bGtPVQRAAAAAACA5xFCApLW5dZvvce6XOJkFOR/M0a45N4AAAAAAAC+ihASkPTUom1Nv4lhaMqWbx2a/5sxvOn3BgAAAAAA8GGEkICk//yU2+R79Di8W1lH9tm1LWuTqZyYhCbfGwAAAAAAwJcRQgIuculmJ1OxMxkFCQAAAAAAQAgJ/OLTn/Mafa3FqNYVPy+2a6uWRe+nD2tiVQAAAAAAAL6PEBL4xZ3zNjb62rNyNijl6GG7tsXtuys3umVTywIAAAAAAPB5hJDAL7YfPtboa6/a9I1D27+7ZTelHAAAAAAAgGaDEBJooojKMl28dZld27GgUH2YPqRB9+mbHOvKsgAAAAAAALwGISTQRBO2LVd05Qm7tg/Th6g0JKLOa7smRUmSOrQI18zJPU2pDwAAAAAAwNOCPF0A4Ot+t+Erh7b6TsXe8MfROnK8Qi3Cg2WxWFxdGgAAAAAAgFcghASaoMuRfcrOWW/Xti+qpb5p36Pe94iPCHF1WQAAAAAAAF6F6dhAE9y07nOHtte7/0bVAYEeqAYAAAAAAMA7EUICjRRaVaFrNi6ya7NaAvRKj3M8VBEAAAAAAIB3IoQEGmnStmVqWXbUrm1hx37KiUnwUEUAAAAAAADeiRASaKRbf1zo0Daz53keqAQAAAAAAMC7EUICjTAod7OGHths17Y3upU+7djXQxUBAAAAAAB4L0JIoBHuWj3foe3lXufVuiFNjzbRZpcEAAAAAADgtQghgQbqUJyni7cts2s7FhSqGT3Pr/Way/okm10WAAAAAACA1yKErOHZZ59VRkaGsrOz3f7sF154QRkZGcrIyNDzzz/v9uejfu74cYECjWq7tje6jVFhOKMdAQAAAAAAnCGEPM26des0a9Ysjzx78+bNmjFjhkeejfprebxEN6773K6tWhY923echyoCAAAAAADwfoSQv8jJydGtt96qyspKtz+7srJS06ZN88iz0TD3rp6rqMoyu7YFnQZoWzzTrQEAAAAAAGpDCClp69atuuKKK3To0CGPPP/ll1/Wzz//7JFn+4tKq9Hke8SfKNFtPy50aH9q0MVNvjcAAAAAAEBz5vch5Lx58zRlyhTl5eV55PlMw3aP8qrqujvV4Z7V8xRdecKu7bPUPlrRNrNR9wsOtDS5JgAAAAAAAF8Q5OkCPCUvL09PP/20PvroI4/VUFlZqalTp9qmYUdHR+vo0aMeqwe1SzpWqD+sWeDQ/pchlzX6nvERIU0pCQAAAAAAwGf45UjIl156Seedd55dANmpUyf9/ve/d2sdM2bM0ObNmyVJF110kbKystz6fNTf49++5XQU5PeNHAUJAAAAAADgT/wyhHz11Vd1/Phx2/HkyZM1Z84cdejQwW01/Pzzz3r55ZclSQkJCXrwwQfd9mw0TK/8nfrdhq8c2h8dekW9rr8gK8nVJQEAAAAAAPgUv52OLUndu3fX1KlTNXDgQLc+t+Zu2I899phiY2PdWgPqyTD0j8WvKkD2G9u8nXmWVrXpUq9bPHJOF3297bBDe3SoX79+AAAAAADAj/hlCjJw4EBNnDhRY8aMkcXi/s1BXnzxRds07AsuuEC/+c1v3F4D6ufqTYuUnbPeru1EUIgeHHF1va7/02/S1b99nKzVjrtz3zYs1RUlAgAAAAAAeD2/DCFffPFFjz1748aNmjlzpiSpZcuW+tOf/uSxWnBmSccK9fTiVx3an+53kXJiEup1j5sGn5zi3799nC7IStKCn0/uwt4lIVKX9U52XbEAAAAAAABezC9DSE+pqKjQtGnTVFVVJUl65JFHFB8f7+Gq6udUzb7KMBxHItZxgV74eobiy0rtmvdEJ+hvAyfV6xaPnp2uNlHBtt+7/17ZWytzilVSXqURHVsoMiTQ539f4Z+sVusZjwHUD+8S4Dq8T4Br8C4BrsG75BwhpBu9+OKL2rp1qyTp3HPP1Xnnnefhiuqnurpaa9eu9XQZTVJ6rLTuTqe5ad3nmrRtuWP7ObfrWEh4ve5xojBfa9ces2uL/OW/7T/nNqgewJtt2LDB0yUAzQLvEuA6vE+Aa/AuAa7Bu3SSX+6O7QkbN27UrFmzJElxcXF69NFHPVwRatPv4DY9+81Mh/bXu43Rl6l9PFARAAAAAACAbyOEdIOa07AfeughtWzZ0sNVwZnWpUc05+PpCrXaT5PeHxWve0dd76GqAAAAAAAAfBvTsd3gX//6l20adnZ2tsaNG+fhihomICBAPXr08HQZTRK1YoWkI2fs0+LEUX3+waNKLcm3a68MCNSUC6aqKCyqQc9sl5ysXr06NLRUwOtZrVa76QTdu3dXYGCgBysCfBPvEuA6vE+Aa/AuAa7RHN+l9evXq7q6ukn3IIQ02YYNG/TKK69IkmJjY/XnP//ZwxU1TlCQb/9RsVgsZzzf6nixFsz9i3oc3uNw7v6R12p5claDnxkQEOjzv29AfQQG8mcdcAXeJcB1eJ8A1+BdAlyDd+kkfgdMVFFRoQceeMA2DfuBBx5QYmKih6tCTT0O7dK8j55wGAEpSW9nnqVn+473QFUAAAAAAADNByGkib744gvbNOzAwEAtWLBACxYsqLX/li1bbJ/nz5+vn376yXb8xz/+UZmZmabV6o/CKst1/6oPNXXVBwqvqnA4v6BTf/3uvDulOkZR1iY9IbKpJQIAAAAAADQLhJAmqqj4NdiyWq369ttv633t3r17tXfvXtvxTTfd5NLa/JHFqFbmkX1qd7RAo3LW6+pNi5Rc6nydyG/a99CUC6aqKrBxr0h6q0iN7BTflHIBAAAAAACaDUJI+IWsXRv0yisPq6OTKdc1vZM5Ujec8weVBYc26ll/PS9D1w9MUWiQby86CwAAAAAA4CqEkCaaOHGiJk6cWO/+V111lVauXClJuv322/WHP/zBrNL8zp3v/r3OANJqCdAjwy7XUwMnN3oKtiT96TddGn0tAAAAAABAc0QICb8QffzoGc9/2zZLd2TfpJ+SOrupIgAAAAAAAP9BCNlE2dnZ2r9/vyQpOTlZixYt8nBFcObjERfpxnkz7NqqZdHSdt30rz5j9UH60CaNfgQAAAAAAEDtCCHhF94750q9H9RGgw9sUVlgsLa2SNay5EwdiojzdGkAAAAAAADNHiEk/IPFoi9T++jL1D6ergQAAAAAAMDvBHi6AAAAAAAAAADNGyMhT9PQ3awluXQNyDfffNNl9wIAAAAAAAC8BSMhAQAAAAAAAJiKEBIAAAAAAACAqQghAQAAAAAAAJiKEBIAAAAAAACAqQghAQAAAAAAAJiKEBJwoUt7t/V0CQAAAAAAAF6HEBJwkav6tdOsyb08XQYAAAAAAIDXIYSEX8gpOmH6M/7vgq6KDA0y/TkAAAAAAAC+hhASfuHA0XJPlwAAAAAAAOC3CCHhF45VWD1dAgAAAAAAgN8ihIRf6JIQ6ekSAAAAAAAA/BYhJPxCu9gwT5cAAAAAAADgtwgh4Rd6tYlxyX2u7d9eqS3CXXIvAAAAAAAAf0EICb9wae82srjgPmO7JmrHg2NccCcAAAAAAAD/QQgJv9AnOVZPDmvRpHu0CA/Wb9ITZLG4Is4EAAAAAADwH4SQ8Bu/SanfNOrx3ZLsjod3jNelvdvq698PUWx4sBmlAQAAAAAANGtBni4A8DZPj++mGZN6qqS8SumtIhn5CAAAAAAA0ESEkIATrWPC1NrTRQAAAAAAADQTTMcGAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSKARLu7Zxu64RXiwWkaGeKgaAAAAAAAA70YICTTCA2PS1SI82Hb8t7FZCgxgF20AAAAAAABn2B0baIQ+ybHa89Bv9ENOkTISo9QmJszTJQEAAAAAAHgtQkigkaJCgzQqrZWnywAAAAAAAPB6TMcGAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSOA04cEBahsT5ukyAAAAAAAAmhVCSPi9VpEhts9/PjdTYcGBHqwGAAAAAACg+QnydAGAp+18cIxW7i1SWqsIpbSI8HQ5AAAAAAAAzQ4jIeFX+iaG2B1f0rutokKDlJ3eigASAAAAAADAJISQ8Ct/HhynAUkhahEerHFdk/T8hO6eLgkAAAAAAKDZYzo2/ErryCC9mN1KvXr1UlAQf/wBAAAAAADcgZGQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExFCAkAAAAAAADAVISQAAAAAAAAAExlMQzD8HQR8D6rV6+2Ow4I8P28urq62va5Ofx6AE/ifQJcg3cJcB3eJ8A1eJcA12hu79Lpvx5J6tevX4PvEeSqYtC81fzD5uua268H8CTeJ8A1eJcA1+F9AlyDdwlwDd6lk3w/igUAAAAAAADg1RgJiXppDkOHAQAAAAAA0HCuGM3JmpAAAAAAAAAATMXwNgAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYCpCSAAAAAAAAACmIoQEAAAAAAAAYKogTxcAmGnHjh167733tGLFCu3bt09VVVVKTExUly5dNG7cOJ199tkKCuI1gH949tln9eKLLyo5OVmLFi1q0LXLly/XBx98oJ9++kn5+fkKCgpS69at1adPH02YMEH9+/dv0P0qKir0ySef6NNPP9WmTZtUVFSkqKgotWnTRiNHjtSkSZOUkpLSoHsCZlixYoU++eQT/fjjj8rPz1dpaantz2r//v01ceJEde3atd73W7dunebMmaNVq1YpLy9PhmEoKSlJ3bp104UXXqiRI0fKYrHU+36GYeirr77S/PnztX79ehUUFCg8PFxJSUkaPHiwJk2apMzMzMb80gGXMgxDS5cu1fz587V27VodPnxYAQEBat26tbp166Zx48Zp+PDhCgio/xgJM77Pc/XXO8CdHnjgAX344YeSpKeeekoTJ06s13W8S/BHn332me68884GX7dkyRK1bt261vN8r3dmFsMwDE8XAZjh+eef14wZM1RVVVVrn+7du+v//u//1KlTJzdWBrjfunXrdPnll6uysrJBIWRpaammTp2qr7766oz9xo8fr0ceeUTR0dF13nPHjh268847tW3btlr7BAcH64477tCNN97YoC/SgKvs27dPU6dO1Q8//FBn37Fjx+ovf/mLoqKiau1TWVmpv/71r/rPf/5zxnsNHz5cTz31lBITE+t8bl5enu6++26tXr261j4Wi0XXXnut7rnnHoWEhNR5T8AMubm5uv/++7Vq1aoz9uvdu7eefPJJde7cuc57uvr7PDO+3gHutGTJEt1000224/qGkLxL8FfPPPOMZsyY0eDragsh+V6vfggh0Sw9/vjjevPNN23HQUFBysjIUHh4uHbs2KHCwkLbuVatWum///2vkpOTPVEqYLqcnBxddtllOnTokCTVO4QsLy/XVVddpbVr19raIiMj1aVLF1mtVm3dulVlZWW2cwMGDNBrr712xi9+u3bt0mWXXWb3DiYkJKhjx44qKirStm3bdPqXpRtvvFH33Xdfg369QFPt3r1bl112mY4cOWJrCw4OVpcuXRQdHa2CggJt377d7s9qZmam3n77badBpGEYuv322+3+QRYaGqqMjAwFBgZq27ZtKi0ttZ3r1KmT/vOf/ygmJqbWGo8cOaJLLrlEe/futbXFxcUpLS1NJ06c0JYtW+z+QTl27Fg9/fTTDf/NAJpo//79uvLKK5Wbm2tri4iIUEZGhoKDg7Vz504dPnzYdi4qKkrvvfee0tPTa72nq7/PM+PrHeBOR48e1dixY5WXl2drq08IybsEf3bTTTdpyZIlkqQuXbrUKxSUpP/7v/9TfHy8XRvf6zWAATQzn376qdGlSxfbf3/4wx+MQ4cO2c5XVFQY7733ntGrVy9bnwkTJhjV1dUerBowx5YtW4wRI0bYvROjR4+u17V//vOfbddkZGQYL7zwgnHixAnb+eLiYuPxxx+3u/eTTz5Z6/2qqqqM8ePH2/oOGDDA+PTTT+3evb179xpXX3213T2/+uqrxv8GAA1UVVVlXHDBBbY/f1lZWcZzzz1nHD161K7fwYMHjfvvv9/uz+odd9zh9J6vvPKKXb/HHnvMKCkpsZ0/ceKE8dJLLxldu3a19bntttvOWOdNN91k69ujRw/jnXfeMSorK23n8/PzjbvuusvuuW+88UYTfmeAhrNarcall15q+zPYrVs3Y9asWUZZWZmtT3V1tfHpp58aAwcOtPXLzs42ysvLnd7TjO/zXP31DnC3adOm2f357NKli/HBBx+c8RreJfi74cOH2/4crlixokn34nu9+iOERLNSUVFhjBo1yvYS3nzzzYbVanXa93//+5/dXwLz5893c7WAuT766CO7bxwbEkJu27bNyMrKsl0zc+bMWvs+++yzdv/AzMnJcdrv3XfftfXr2rWrsXr1aqf9KioqjGuuucbW9/zzzzeqqqrq94sGmui///2v3fsyb968M/Z/6qmn7Pr/+OOPducLCgqMPn362M4/+uijtd7r/ffft7tXbe/I0qVL7fp98skntd7z9KB00KBBDmEqYKYvvvjC7s/qhx9+WGvfH3/80cjMzLT1nTNnjkMfM77PM+PrHeBOixcvdvher64QkncJ/q6goMDufSkqKmrSvfher/7YHRvNypdffmmb7hMUFKRHHnmk1gXOhw8frksuucR2/Prrr7ulRsBseXl5mjp1qu6//36dOHGiUfd48803ZbVaJZ2cLnD99dfX2vf2229Xly5dJJ1cC+Wtt95y2u/f//637fOkSZPUt29fp/2Cg4M1ffp0BQcHSzq5huSpqRKA2ebNm2f7PHz4cI0fP/6M/e+55x676TuffPKJ3fn3339fx44dk3RyCs39999f670mTZqkUaNG2Y5r+7r0xhtv2NX429/+ttZ7Pvroo2rZsqUkqbCwUHPnzq39FwO42Jw5c2yfe/bsqQkTJtTat3fv3jrrrLNsx87WkzPj+zwzvt4B7lJSUqKHHnpI0snvn8LDw+t1He8S/N3PP/9s+9y2bVvFxsY2+l58r9cwhJBoVhYuXGj7PHToULVt2/aM/U//grpx40bl5OSYVhvgDi+99JLOO+88ffTRR7a2Tp066fe//32971FdXa3PP//cdjxx4sQz7lYaEBCgKVOm2I5Pv/aUzZs3a8eOHbbjiy+++Iw1JCUlafTo0bbjzz77rF61A01RUVGhNWvW2I4vuOCCOq8JCQnR8OHDbcfr16+3O//pp5/aPp9//vmKiIg44/1O/7q0dOlSHT9+3O58cXGxli1bZjueNGnSGe8XERFhF6TyLsFdDMPQwYMHbV8/xo4dW+c1p68DuWfPHofzrv4+z4yvd4A7Pfnkk8rPz5d0cn27muvU1YZ3Cf7u9BAyIyOjSffie72GIYREs2EYhlasWGE7HjZsWJ3XZGRkKCEhwXZc3x2DAW/16quv2n0hmzx5subMmaMOHTrU+x6bN2+2W4j89IClNqe/b7m5udq8ebPd+e+//972OTY2Vj169GjQPRcvXmy3CQhghv379ys0NNR2XJ8deqWTP/U+5fR3p6ioyO6b3Pq8S4MHD1ZgYKAkqayszO6bUElauXKlbaSJxWKp19e60/usWbNGxcXFdV4DNJXFYtH8+fO1Zs0avf/++xo3blyd15SUlNg+R0ZG2p0z4/s8M77eAe6yePFi24inLl261PsHzrxLgH0ImZmZ2ej78L1ewxFCotnYv3+/3Tev3bt3r9d1p//ko+YIFsBXde/eXW+++aYef/xxp7v1nsnp3wQG///27jysqmrvA/iXUWUQRNBUMhUFlExTr3rTtLjmxFULFVMLNIfMwBDTFBOUVLIcA80hzUvlACqC0U2vV1NRsdK8llcgcQKuiqAog3DgwPsHD+vdm+EMnHMYv5/n6Xn22mfttdfBs9rr/M4azMxU7lBarnPnzmjevLlIV2xL0jK7d+8OIyMjtWVKOwSPHz+W7QxHZAidO3fGb7/9hl9//RVxcXFiqpg66enp4lg6nScpKUkWPHdzc1NbloWFBTp27CjSqtqSo6OjRtOHpG2ppKQEV69eVXsNkb60aNECPXv2FFPFqqNQKHDmzBmR7tGjh+x1Q/TzDPG8I6oNT548wbJlywCUTacODQ3VeIdptiUi+WdWlyAk+3raYxCSGo1bt27J0tKGrYqjo6M4ZpCDGrr+/ftj8+bNOHDgAPr371+jMqRtqUOHDjA1NVV7jZGRkWwqT8VpdNIyNR2VKW2bVZVJZCjW1tbo2rWr7MtRdXJzc3H27FmRlo6elH7uzc3N0a5dO43ur+q5VJO25ODgIHsvbEtU3ygUCnz88ccioG9sbAwfHx9ZHkP08wzxvCOqDStXrhTTsGfMmKFxIBFgWyIqLCzEzZs3RdrFxQUXL17EsmXLMGrUKPTu3Rsvvvgihg8fjiVLluD8+fPVlsW+nvbU/9+BqIF48OCBODY2Noa9vb1G10mnFkjLIGqItmzZonMZ0nYg3XBDHXt7e9y4caNSGQBERxmQtzlV7OzsYGJiIqYjsH1SfbRz507k5uaKtHQtU+lnVtPPfcW8+mhLANC6dWsR4GFborpWUlKC4uJipKWlIT4+Ht98843sS1hwcHCl5RAM0c8zxPOOyNBOnDghNlFzcnKCr6+vVtezLVFTl5SUJJvuvGLFiioDjbdv38bt27dx6NAhDB48GJ999lmlUf3s62mPQUhqNKTrHlhaWqpcDFlKOlW1Pq+dQFRbsrOzxbG1tbXG10nzVmxL0rSmZRobG8PCwgI5OTkA5GuFEdUHV65cwY4dO0S6U6dOcHd3F+matiVVz6WatKWKedmWqK6FhoYiIiKi0vlnnnkGgYGBGDFiRKXXDNHPM8TzjsiQHj9+jKCgIABl/SRtpmFLyyjHtkRNkXS6c2lpqQhAWltbo2PHjrC0tER6erpsuZ34+HhMnDgR3377rWwEL/t62mMQkhqNwsJCcazJFLpy0ge3QqHQa52IGiJpO9BXW9JH+5SWQVTX0tLSMHfuXBQVFYlzixcvlk1BY1siqtr//ve/Ks+3atUKGRkZKCgoqPT5NkQ/zxBtlMiQVq5cKUY4TZs2Db169dK6DLYlauqkG8kAZaMNFy1ahJEjR8o+k8nJyfj8889x+vRpAGXrqc6dOxeRkZEiH/t62uOakNRoSL8IavqLHgDZF8bi4mK91omoIappWyrf5Q2o3JakaWk+Xcokqit3796Fj4+PbKrLtGnTZFOxAcM8l6RpfbVPotqWmZkJV1dXDBw4EM7OzuKzfO3aNaxcuRLjxo1DSkqK7BpDtCdDPO+IDOXf//43YmNjAZSNvP/ggw9qVA7bEjV1FddcjImJwdixYyuNKnZ2dsb27dsxfvx4ce7atWvYt2+fSLOvpz2OhKRGQ9roSkpKNL5O2kDNzMz0Wieihqimbal8bRWgclsyMTERbU2aT5sytZ1uRGQIKSkpmDFjBu7evSvODR48GB9++GGlvIZ4LhmifRLVtj179sg+yw8ePEB4eLj4Ynfr1i1Mnz4dMTExaNWqFQC2J2rasrOzERwcDKBsDbtVq1ZpNUJKim2Jmrqvv/4aWVlZSEtLQ5s2bSqt8yhlZGSE5cuXIyEhQUzPjoiIgLe3NwC2p5rgSEhqNFq0aCGOtRl+LB3+3KxZM73WiaghknZqtWlL0rwV25I+ymQQkurapUuXMHXqVFkAcuDAgQgPD6+ys1df2xKfdVTXKo6Id3BwwIoVK2TB/Pv372Pz5s0ibYh+HtsTNRTSadhvvfUW+vXrV+Oy2JaIyjZx6dWrl0a7WZubm+PNN98U6dTUVLGZGvt62mMQkhoNGxsbcZyXl4fS0lKNrpPuampra6vvahE1ONJ2IG0f6qhqS9L2qWmZJSUlyM/Pr7ZMotp05MgR+Pj44NGjR+Lc0KFDsW3bNtkXOqmatqW8vLwqywBq1pYq5mVbovpq1qxZeOGFF0T68OHDYhSIIfp5hnjeEenb8ePHceTIEQDAs88+i4CAAJ3KY1si0l6fPn1k6fIp3ezraY9BSGo02rZtK46VSqXsi6Iq0jW97O3t9V4vooamTZs24jgrK0vj6zIzM8Wxg4OD7DVp+9S0zIcPH8qmIFQsk6i2hIWF4cMPP5SNAhk7diy2bNmicjpcTT73gOrnUk3LlOZlW6L6bNy4ceI4JydHfNEzRD/PEM87In3Kzs7G8uXLAZRNC125ciUsLCx0KpNtiUh7Fadsl+9gzb6e9rgmJDUazz33nCydmpoKOzs7tdelpaWJ486dO+u9XkQNTadOncRxWloaSktLYWRkpPKa0tJSsU5KxTLK05cuXQIAMX1BndTU1GrrRVQbioqKsHTpUsTExMjOv/vuu5g/f77adiF9LuXn5yMzM1OjH7ukn/2KzyVpO9C0LZXvNlxVGUT1TceOHWXp7OxsAIbp5xnieUekT/v37xfBihYtWmDHjh3YsWNHtfmlQb2vv/4acXFxIr1mzRrY29uzLRHVQMVp0ZaWlgDY16sJBiGp0ejQoQNsbW1FZ/XatWvo1auX2usSExPFsaurq6GqR9RguLm5ieOnT5/i5s2b6NKli8prbty4IXs4d+/evVKZhw4dAiBvc6pcu3ZNHNvY2KBDhw4aXUekDwqFAn5+fvjpp5/EOVNTUyxfvhwTJ07UqIwePXrAyMhITHW7du0aXn75ZZXX5OXlyTqcFZ9L0vZ5+/ZtPH36tNrp4OWkbcnIyAguLi4a1Z9IFzdu3EBUVBTS0tJw9+5dfPPNN2o/q4B83TkAaNmyJQDD9PMM8bwj0idpe8jPz0d8fLzG1yYnJyM5OVmkywMUbEvUlCUmJiImJgZZWVnIysrCZ599pnJjmnLSIDwAtG/fHgD7ejXB6djUqAwYMEAcnzt3Tm3+xMRE2S+GAwcONEi9iBqSbt26yX4RP3/+vNprzp49K45btWpV6cHXv39/cfzgwQP8+eefasuUtmFp2yYytOLiYsybN08WgLS0tMS2bds0DkACgJWVFXr06CHSmjyXEhISxDIEJiYmsrYDAH379oWpadlvyEqlEhcuXFBbpvS+PXr0kK01RGQoeXl52LVrF44dO4bff/9do2cJAPz+++/i2MzMTLZpgL77eYZ43hE1BGxL1FQ9fvwYu3btQkxMDOLj4/Hzzz9rdN3p06fFsbW1NZydnQGwr1cTDEJSozJ8+HBxfPLkSdy/f19l/r1794pjJycnPvyIUPbr2WuvvSbSkZGRsrUZKyopKUFkZKRIjxgxotIUHGdnZ9lUg3379qmsw927d2UBoFGjRmlafSKdff755zh58qRI29nZ4ZtvvsHgwYO1LmvEiBHiODY2Fk+fPlWZX/pceumll8QosHItW7aUfflT15by8vIQGxsr0iNHjtSo3kS6cnV1lS2M/91336m9Jj8/HwcPHhTpAQMGiClvgP77eYZ43hHpk5+fH5KSkjT+TzprJDQ0VPaao6OjeI1tiZqq559/XraualRUlNpr7t27J+tLeXh4wNj4/0Np7Otph0FIalSGDx8uFkZWKBRYvHgxiouLq8x75swZ2f903n777VqpI1FDMGXKFNEZTExMxObNm6vNu2nTJjGy0djYuNq2NHXqVHG8b9++an8pLCoqwkcffYSioiIAZdMdhg0bVqP3QaStU6dO4R//+IdI29jYICIiQjY1Rhvjx48XU2gyMzMREhJSbd6oqCicOXNGpL29vavMJ21LJ0+eFEsdVGX58uV4+PAhAMDCwgITJkzQqv5ENWVmZobx48eLdHx8vNjhtyrFxcVYvHixbLH+WbNmyfIYop9niOcdUX3HtkRNlaWlJUaPHi3SZ8+exeHDh6vNn5ubC39/fxFYbNasGWbMmCHLw76edhiEpEbF3NwcAQEBIn3u3DnMmjVLtvBrcXExIiMj4efnB6VSCaBslJY2U+yIGjtXV1e88cYbIh0eHo7Vq1cjJydHnMvJycGqVauwdetWcW7SpEno2rVrlWVOmjRJjIYsLi7G+++/j6ioKFmnNzU1FTNnzpRNO1i4cCHMzc319t6IqqNUKrFq1Sqxro+RkRHWrVuHbt261bhMe3t7zJw5U6QPHTqEBQsWyHYwLCgowNatWxEcHCzODRkyBEOGDKmyTHd3d9lUumXLlmHbtm2ytbUyMzMxf/582S/jc+fO1WjzASJ9mTt3rmyXzyVLlmDbtm2VRon88ccf8PHxwdGjR8W5iRMnVpryaYh+niGed0T1HdsSNWUffPABrK2tRXrp0qUIDw9HXl6eLN8vv/yCyZMn47fffhPnAgICKm2gxr6edoxKy3vaRI1IUFAQ9u/fL9LGxsZwcXGBlZUVUlJSxC8FAGBra4u9e/eqXTyZqCE7dOgQlixZAqBsQfITJ06ovSY3Nxc+Pj74448/xLkWLVqIKThJSUmyL5I9e/bEt99+i+bNm1dbZnJyMt5++22xGDpQNtXVyckJOTk5SE5Olk3fmTp1KoKCgjR+n0S6iIuLk30ps7CwQJ8+fbQqw97eHmvWrJGdKw+6S5cYMDMzg4uLC8zNzfHnn3/KvqQ5OjoiKipKZSfy/v37mDp1quwLo7W1Nbp16waFQoGkpCQxmhgAXn31VWzZskU2fYioNiQmJsLb2xuPHz8W58qfJebm5khPT5ftkAsAw4YNw6ZNm8SaWBXpu59niOcdUV1wd3cX7Sk0NBSenp4q87MtUVOVkJCA2bNny4J6zZs3h6urK8zNzXHnzh3cu3dPds2MGTOwaNGiKstjX09zDEJSo1RaWoqNGzdi586dsoZZkZOTEzZt2qTTKBeihqAmQUig7BfrRYsWqc3/6quv4vPPP5f9qlidpKQkLFiwQOXmNCYmJpg1axb8/f25RhDVGj8/Pxw7dkynMqprXwqFAitWrMDBgwehquv14osvYtOmTbLRY9W5e/cuAgICcOnSJZX5JkyYgODgYI4opjpz584dLFy4EJcvX1aZz8LCAnPmzMHs2bNV/r/fEP08QzzviGqbtkFItiVqyq5evYqFCxciJSVFZT4bGxssWLAAkyZNUpmPfT3NMAhJjVpKSgoOHDiA+Ph43Lt3D0+fPoWNjQ26d++OkSNHYuzYsQ2ioRLpqqZByHLnz59HbGwsfv31V2RmZkKpVMLe3h4vvvgi3njjDa037CguLsaRI0dw9OhRXLt2DVlZWTAzM4OjoyMGDBiAN998k1NzqNZ5eHjg+vXrOpWhrn1duXIF0dHRSEhIwP3796FQKGBnZ4cXXngBf//73zF8+HCtfsEuLS3Fv/71L/zwww+4cuUKMjMzYWxsjLZt26Jv377w8vJC7969dXpPRPpy+vRpxMXF4fLly8jIyEBRURFsbW3RrVs3DBo0CJ6enlpNIzNEP0/fzzui2qRtELIc2xI1VUqlEsePH8exY8dEP6q4uBj29vbo1KkT3N3d4eHhodWziX091RiEJCIiIiIiIiIiIoOq35PFiYiIiIiIiIiIqMFjEJKIiIiIiIiIiIgMikFIIiIiIiIiIiIiMigGIYmIiIiIiIiIiMigGIQkIiIiIiIiIiIig2IQkoiIiIiIiIiIiAyKQUgiIiIiIiIiIiIyKAYhiYiIiIiIiIiIyKAYhCQiIiIiIiIiIiKDYhCSiIiIiIiIiIiIDIpBSCIiIiIiIiIiIjIoBiGJiIiIiIiIiIjIoBiEJCIiIiIiIiIiIoNiEJKIiIiIiIiIiIgMyrSuK0BERERUH7i7uyM9PV3nciIiIjBgwAA91Iio9hQWFmLChAlITk6Gj48PAgMDxWsXLlyAt7e3SCclJel0LxcXF3Hs6+sLPz8/rcsICwtDeHi43uqkzrx583D06FEMHDgQX3/9NYyNOZaDiIhIW3x6EhERERE1caGhoUhOToa9vT3mzZtX19Wpdz766CM0b94cCQkJ+Oqrr+q6OkRERA0SR0ISERERVdCmTRs4OzvX6FobGxs914bIsE6fPo29e/cCAPz9/WFlZVXHNap/OnTogOnTp+PLL7/Epk2bMGTIELi6utZ1tYiIiBoUBiGJiIiIKhg0aBA+/fTTuq4GkcEVFBQgJCQEAODs7Izx48fXcY3qr9mzZyMqKgqZmZkIDg7G3r17OS2biIhIC3xqEhERERE1Udu2bUNqaioAYP78+QyqqWBhYYE5c+YAAC5fvowDBw7UcY2IiIgaFvYyiIiIiIiaoKysLOzevRsA0LVrV7i7u9dthRoALy8v2NraAgDCw8NRWFhYtxUiIiJqQBiEJCIiIiJqgrZv3478/HwAZcE1Uq9Zs2Z4/fXXAQD3798Xa2kSERGRelwTkoiIiMiAFi9ejOjoaADA1q1bMXToUERERGD//v1IS0tDy5Yt0aVLF4wcORJTp06tdH1eXh4OHz6MU6dO4c8//0RWVhbMzc3h4OCAfv36YdSoUXjppZe0qtP58+dx8OBBXLp0CRkZGbC0tETHjh0xatQoeHl5wcrKCt9++y0++eQTAICvry/8/PxkZRw6dAhLliwBULZpx4kTJ9Te193dHenp6QDKdmP29PRUmT89PR3R0dGIj49HWloasrOzYWVlhfbt2+Oll17CG2+8AScnJ5VlhIWFITw8HACwbNkyvPXWW1AoFIiJicGPP/6IlJQUZGZmwtraGp07d4a7uzsmTZoEa2trte+n3M8//4zvv/8ely5dQnp6OoqKimBjYwNnZ2cMHToUnp6eaNmypeyakJAQfPfddwDKNjOKj4+Hubm52nv94x//wOrVqwEAnTp1wtGjRzWup1Rubi6ioqIAyANrulAqlZg/f76sTj4+PggMDNS5bG1J/91rQtXn08vLS4wgjYiIgLe3N6exExERaYBBSCIiIqJa9PHHH+PgwYMinZmZiczMTLi4uFTKGxsbi08//RRZWVmy84WFhcjJycGNGzcQGRmJgQMHYs2aNXjmmWdU3jsrKwsfffQRzpw5IzufnZ2N7OxsXLlyBXv27MEXX3yhwzvUnVKpxMaNG7F7924oFArZa48ePcKjR49w9epV7Nq1C15eXggMDNQogAcAiYmJWLBgAa5fvy47//DhQzx8+BAXL17Ezp07sXbtWgwaNEhlWXfu3MHSpUvx888/V3qt/N/13Llz2Lp1K1auXIlhw4aJ19944w0RhHz8+DFOnz4te706MTExsjJqKiYmBnl5eQCAAQMG6Lyre2lpKZYsWSILQE6bNk0EqhsTJycndO3aFdevX0d6ejpOnjyJv/3tb3VdLSIionqPQUgiIiKiWhIdHV3tyLWxY8fK0uHh4QgLC5Oda9++PRwdHVFYWIiUlBTk5uYCABISEjBx4kTs3r272pGBWVlZmDJlCm7duiXOmZmZwcXFBc2bN8f169eRnZ2N1NRUzJgxQy8j42pCoVBg7ty5skCpkZERnJycYG9vjydPniA5ORnFxcVQKpXYu3cvkpOT8dVXX8HCwkJl2bdu3UJ4eDgePXoEAGjdujW6dOmCgoICpKSkiKnJDx8+xHvvvYfo6Ohq/56JiYnw8fFBdna2OGdmZgZnZ2dYWFjg1q1bePDgAYCywOm8efOwfv16jBw5EgDQs2dPODs7Izk5GUBZwFldEDIlJQVXr14FABgbG+v0bxQbGyuOX3nllRqXUy44OFgWIJ0+fToWL16sc7k11bFjRwwePFjj/OfPn4dSqQRQNjK0R48eKvMPGTJEBLJjY2MZhCQiItIAg5BEREREtaQ8ADl69Gj4+vqiXbt2uH79Oo4fP44XXnhB5IuLi5MFIPv27YslS5agZ8+e4pxCocD333+PNWvWIDs7GxkZGfD19cWBAwdgaWlZ6d5LliyRBSAnTpyIBQsWoFWrVgCAoqIiREdHIzQ0FA8fPhTTTWvbypUrZQHIiRMnwtfXVzbK8/Hjx9i5cyd27NiBkpISXLx4EUFBQVi7dq3Ksr/55hsAZQGqjz/+GEOGDIGRkRGAsunJYWFh4n0XFhYiLCwMGzdurFROfn4+3n//fRGANDExwZw5czB9+nTZNO7jx49jxYoVyMjIgFKpxNKlS9G3b184ODgAKBvJuGbNGgDAyZMnkZOTo3Ia+OHDh8XxSy+9pHbka3UyMjLwn//8R1aWLkJDQ7F//36RrusAJACMGzcO48aN0yjvhg0bEB8fL9IhISFwdXVVec2gQYOwa9cuAMCZM2egUCg0Ho1LRETUVDEISURERFSL3N3dsX79ehH8euGFF2QByNzcXCxfvlyk//a3v+GLL76Aqam822Zubg5PT0/06tULkydPxuPHj3Hjxg3s2LED/v7+srznzp3DqVOnRPqdd97BRx99JMtjZmYGLy8vdO3aFT4+PpWmQdeGX3/9VRbMWrRoEWbMmFEpn42NDQICAuDi4oKAgAAAwJEjRzB+/Hj89a9/VXkPR0dHREZGiuBrOSsrKyxZsgQPHjxAXFwcAODUqVNVBpd2796NtLQ0kV67di1Gjx5d6V7Dhg1Du3btMGXKFBQUFCA3Nxfffvst5s+fD6Bs9Ou6detQXFwMhUKBH3/8ERMnTqyy3qWlpThy5IhIjx8/XuX7VOXChQsoLS0FALRo0QLPPfdcjcsqnzZfrqrPliqxsbG4fPmy1ve9c+eO1tdUJSYmBlu3bhXpd955R6MRpt27dxfHeXl5uHLlCvr166eXOhERETVWDEISERERVRAdHS02k9FUREQEBgwYoDbfe++9JwKQVTlw4ACePHkCALC2tsbq1asrBSClnJyc8MEHHyAkJAQAsHfvXsyZMwfNmzcXeaQ7+D777LMiCFaVPn36wNfXF+vXr1f7XvRt586d4rhv375VBiClPDw8cOzYMfz4448AgF27dqkNQs6bN69SAFJq8uTJIgiZn5+P1NRU2ZTskpISWaDUw8OjygBkOTc3N4wZM0ZsAnPs2DHx97e3t8fLL7+MkydPAigLpFYXhLxw4QLu3r0LoCwIq8n6kdWRjoLs2rVrjTdV2b59O7788kuR1jYACZQFE/UVUNTWxYsX8fHHH4v0kCFDsHDhQo2ubd26NVq3bi3Wa/3Pf/7DICQREZEa3MaNiIiIqJZYWlri+eefV5lHumbkq6++CltbW7XljhkzBiYmJgDKNpmRjiwrKiqSTTX19PRUO210ypQpaNGihdr76lNBQYFsGramm65IR62dP38ehYWF1eY1NjZWu3Zf165dZemcnBxZ+r///S/u3bsn0pMnT1ZbR29vbyxcuBBbtmzB5s2bZa9J3+cvv/wiK1tKut6ih4eHTlN/U1JSxHG3bt1qVEZERATWrVsn0jUJQNaltLQ0+Pr6ihG/Xbp0wfr167UKyDo7O4vjihsdERERUWUcCUlERERUQZs2bWQBBk1osruws7OzyiCHQqHAH3/8IdLVbYpSUcuWLdGxY0fcvHkTAHDp0iUMHDgQAGQbrgDQaLSWtbU1+vTpg7Nnz2p0f324cuUKioqKRFrT9y4N6hYVFeH333+v9j06OjrCyspKZXktW7aUpaV1Kq9nOTMzM/Tq1UttHZ2dnav9PJUHmrOzs1FSUoLvv/8eM2fOlOUpKCiQBad12RUbgGwqeevWrbW+PioqCqtXrxZpZ2fnGgcgfX194efnp/V1YWFhCA8Pr9E9c3NzMWfOHDx8+BBA2b/5l19+qXI9zqpI/3bSvykRERFVjUFIIiIiogoGDRqETz/9VO/l2tnZqXz93r17srUYN2zYgA0bNmh9n/v374vj9PR02WudOnXSqAwXF5daDULevn1bltZkhGFVMjIyqn1Nk1Gl5SNKy5WUlMjSqamp4rhDhw46b0Zibm6OMWPGiE1zYmNjKwUhjx8/jry8PABlIxela4jWRPnu4AC0DrwBQFBQkFhTEgCSk5Nx9OhRjBgxQqd61QalUgl/f3/8+eefAMr+vTds2KBxu5CSBrSlu6QTERFR1Tgdm4iIiKiWqBuF9/jxY73cR1pObm6u7DVNg06q1k00hPJ1MHWlKhgkXSezpqR/z5oE8KoiHdmYlJSE5ORk2evSqdienp463+/p06fiWN1nsirlgVnplP1PPvlEb59fQwoNDZVN+1+0aBEGDx5co7Kk//7S0cZERERUNY6EJCIiIqol6tabKy4ulqV79uyp0TTviqTrGjZr1kz2mnQEmyq6jvDTVsX3XtPAUJs2bfRRnWqp2lSoptzc3ODi4oKkpCQAZRvULFiwAACQmZkpRqSamppi7NixOt9P+h5quinNm2++ibFjx2Lq1KkoLS3FgwcPEBoaapARxPqyZ88eMeIUKAvoTps2rcblSUfN1vTvSERE1JQwCElERERUT1Rcj3Du3Llwd3fXqcyKQcycnBxYWFiova7iCEpVNA1sqto0puJ737RpU41G6RmatJ4VN63RhaenJ0JDQwEAcXFxIgj5ww8/QKlUAijbvdne3l7ne1laWooRowUFBVpfP3XqVCxbtgxGRkbw8vISu4VHR0fDw8MDL7/8ss511LezZ89i1apVIt27d2+sWLFCpzKlox8tLS11KouIiKgp4E92RERERPVE27ZtZaPU7t69q3OZzz33nCyt6S6+d+7cUfm6tJ4VN2+pSklJicrpum3btpWl9fHeDUFaz/T0dI3eOwDs378fp0+fxs2bN6u8ZsyYMTA1NRXlXrt2DUDZepDlxo8fr0vVBenamDVZyzAoKEj8+3/44YdwcHAQrwUHB4v1K+uLlJQU+Pv7i9G2zzzzDMLDw3Ue7Sv9PNdkxDIREVFTwyAkERERUT1hZWWFbt26iXRCQoJG1xUVFSEwMBAbNmzA/v37ZYHG9u3bo3379iJ9/vx5teWVlpbi4sWLKvNIAziaBJ2qC76V6927tyywqel7v379OgIDA7F582YcPnxY7HhsKNLdsMt341YnNTUVQUFBmDVrFkaOHImUlJRKeVq3bo0hQ4aI9PHjx/HkyRPx72BnZ4ehQ4fq4R0AHTt2FMf/+9//dCqrZcuWCAwMFOn09HSsW7dOpzL16dGjR5gzZ45Yc7R58+bYvHmzLHBaU9K/XU02tiEiImpqGIQkIiIiqkdeeeUVcXzixAnZbszViYmJwcGDB7F161YEBQVVCnKNHDlSHB86dEjtVOszZ84gLS1NZR7paLr8/Hy1way4uDiVr9vZ2ckCfN99951Gowy3b9+OgwcP4osvvkBgYGCl3az1rUePHrIp0VFRUWqvkb53Ozs7ODs7V5lPOtLx3//+N06dOiVG740dOxZmZmY1rbaMk5OTOK64K3lNjB49WhYg3bNnD3799Vedy9VVUVER/Pz8ZKN6V69ejeeff14v5Uv/dl26dNFLmURERI0Zg5BERERE9chbb70lgk3FxcXw9/dXGTRMS0vD2rVrRbpdu3Z49dVXZXm8vb1FmVlZWQgKCqo2WJeVlYXly5erraeLi4ts5KJ0w4+KEhMTsXPnTrVlvvPOO+L45s2b+OSTT1SuN3nixAnExsaK9PDhw/WyZqIqpqammDx5skhHR0fj9OnT1eZPT0+XvfcJEyZUu4nJ0KFDYWdnBwC4du0avvvuO/GadAdtXfXp00ccJyUliTUndREcHCzWGi0tLcXSpUtVrgFaG4KCgvDLL7+I9Pvvvw8PDw+9lJ2RkYGMjAyR7tevn17KJSIiaswYhCQiIiKqR9q2bQt/f3+R/uOPP+Dl5YX4+HhZQE6pVCI2NhZTpkzBo0ePxPlFixZVWuuuXbt2+PDDD0U6Li4Oc+bMqTTK8sKFC5g8eTLS09PV1tPe3l4WzPr666+xfft2KBQKca6goAB79+7F5MmTUVBQINY8rM7w4cNlI0H379+Pd999t9I6lrm5ufjyyy8xb9488TexsLBAQECA2nrrw7Rp08T029LSUvj6+mL37t2VNnk5d+4c3n77bTEV2MHBATNnzqy2XDMzM/z9738X6d9++w1A2e7Zrq6ueqt///79RQC5oKAAiYmJOpfZoUMH+Pn5ifStW7cQFhamc7k1tWPHDhw6dEikx40bh3nz5umt/CtXrohjW1tbdO/eXW9lExERNVbcHZuIiIionpk5cyZu3ryJAwcOACjbWGPGjBlo3bo1OnfuDIVCgdu3b1fa6GX27NkYPXp0lWVOmzYNN27cEDsZnzp1CqdPn0a3bt3QqlUrpKWlieCjubk5bGxs8ODBA5X1DAgIgLe3N5RKJUpLS7Fu3Trs2LEDTk5OKCoqws2bN8V6kT169EDv3r2xZ8+easszMjLCZ599hunTp+Pq1auinqdOnULHjh3xzDPPIDs7G3fu3JEF/MzMzLB27VrZWoeGZGVlhS+++ALTp09HVlYWCgsLERoaik2bNsHZ2RnNmjXD7du3ce/ePXFNixYtsHHjRrUbmIwfPx4RERGyc56ennqtv62tLfr16ydGCcbHx8PNzU3ncn18fHDkyBH897//BQDs2rULo0aN0kvZ2khKSsL69etF2tTUFCYmJggICEBBQQGKi4s1Gv2pavTumTNnxLG7u3u1o1uJiIjo/zEISURERFQPrVq1Ci4uLggLCxMj6bKyspCVlVUpr5WVFRYuXIg333xTZZkhISFwdHTE5s2bUVBQgNLSUiQnJ8vy2NraYs2aNdi5c6faIGS/fv2wfv16LFu2TNTxyZMnYgRfuVdeeQWhoaHYtWuX2vdtY2ODPXv2YPXq1Thw4IAIFt25c6fKHbufe+45rF69utanw7q4uCAyMhKLFi0Sm8fk5+fj8uXLlfJ26tQJa9euRc+ePdWW6+rqiu7du4vdsc3NzWWjI/Vl3LhxIgj5008/4d1339W5TBMTE4SEhMDLywslJSVQKpUIDAzEwYMH1Y6C1afs7GzZcgPFxcWyUZH6IA1C6nOqPBERUWPGICQRERFRPeXt7Y3XX38dhw8fxtmzZ5GcnIyHDx+ipKQENjY2cHFxwcsvv4xx48ahVatWGpU5e/ZseHh4IDIyEj/99BPS09OhVCrh6OiI1157DVOnTkXr1q01WsMRKNv0pn///ti/fz9OnjyJ27dvIz8/Hw4ODujZsydef/31SmtUqtO8eXOEhIRgxowZiImJQUJCAu7cuYPs7GyYmprC3t4ebm5ueO211zB8+PBK089ri6OjI/bs2YMzZ87gxx9/xMWLF/HgwQMUFhaiVatWcHNzw4gRI+Dh4aFVHV977TURhHR3d5dtAqQvo0aNwpo1a5CTk4PffvsN6enp6NChg87l9uzZE2+99ZYYzZmYmIjt27dj7ty5OpddX1y8eFGMGu7cuTP+8pe/1HGNiIiIGgajUlWrfRMRERFRk/T222/j559/BgD4+vrK1vsjw5o5c6YYabdz504MHjzYIPf5/PPP8dVXXwEA/P398d577xnkPo1NUFCQWNZg5cqVmDhxYh3XiIiIqGHg4iVERERERPVERkYGzp07BwB49tlnMWjQIIPda9q0aWjRogUAYN++fSguLjbYvRqL7OxssSN7u3btMG7cuDquERERUcPBICQRERERUT2xb98+sQ7m5MmTxS7WhuDg4IBp06YBAO7du4d//vOfBrtXYxEZGYmnT58CAD744IM6WwqAiIioIWIQkoiIiIioHjhx4gR27NgBoGyDnkmTJhn8njNnzkSbNm0AAFu2bNFo1+imKjc3V2yu5ObmxlGQREREWmIQkoiIiIioDvzwww8YM2YMfHx8MGLECLz33ntQKBQAgEWLFsHKysrgdbCyskJwcDAA4MaNGzh8+LDB79lQ7d69G48ePYKJiQk++eQTGBvzqxQREZE2+OQkIiIiIqoDjo6OSE5ORkJCAm7duiXOT5o0CRMmTKi1egwbNkyM6tu4cSNyc3Nr7d4Nxb1798SO8e+++y7c3NzquEZEREQND4OQRERERER1oHPnzujVqxcsLCxgaWmJXr16Yc2aNQgJCan1uixfvhxOTk7IyMhAWFhYrd+/vlu9ejXy8/PRv39/+Pr61nV1iIiIGiSj0tLS0rquBBERERERERERETVeHAlJREREREREREREBsUgJBERERERERERERkUg5BERERERERERERkUAxCEhERERERERERkUExCElEREREREREREQGxSAkERERERERERERGRSDkERERERERERERGRQDEISERERERERERGRQTEISURERERERERERAbFICQREREREREREREZFIOQREREREREREREZFAMQhIREREREREREZFBMQhJREREREREREREBvV/3JFhypInJw8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.powerspectrum import AveragedPowerspectrum\n", + "import tqdm\n", + "\n", + "bintime = 1e-6\n", + "deadtime = 1e-5\n", + "length = 40\n", + "fftlen = 0.01\n", + "\n", + "plt.figure()\n", + "plt.title(f'bin time = 1 us; dead time = 10 us')\n", + "\n", + "r = 20000\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ok." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An additional note on the Zhang model: it is a numerical model, with multiple nested summations that are prone to numerical errors. The assumptions made in the Zhang paper (along the line of \"in practice the number of terms needed is very small…\") are assuming the case of RXTE, where 1/dead time was low with respect to the incident rate. This is true in the simulation in figure 4 of Zhang+95: 20,000 ct/s incident rate, 1/dead time = 100,000. However, this is not true in NuSTAR, depicted in our simulation below where the incident rate (2,000) is much larger than 1/dead time (400). A thorough estimate of the needed level of detail (that implies increasing the number of summed terms) versus increase of numerical errors has to be done. This is a quite long procedure, and I did not go into so much detail. This is the reason of the “wiggles” that can be seen in the model in red in the plot below.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAARHCAYAAACGfj84AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZyN5f/H8feZDTOMIfsyKtlJJCVRVEgiKqJQ2ihCdgr5CqVk/VJCtrIrSonsO2UPk53BGMYYszDb+f0xv7m/555zZuacWQ9ez8fDw33f576v+zpnzrmXz/25rstitVqtAgAAAAAAAAAXeOR2BQAAAAAAAADcfggsAgAAAAAAAHAZgUUAAAAAAAAALiOwCAAAAAAAAMBlBBYBAAAAAAAAuIzAIgAAAAAAAACXEVgEAAAAAAAA4DICiwAAAAAAAABcRmARAAAAAAAAgMsILAIAAAAAAABwGYFFAAAAAAAAAC4jsAgAAAAAAADAZQQWAQAAAAAAALiMwCIAAAAAAAAAl3nldgUA3LkmTZqkyZMnS5Lq1q2ruXPnZrrMgQMHavny5ZKk1q1ba8yYMZkuMzv8+++/2rNnj9q3b+/w9Y4dO2rXrl2SpO7du6tHjx45WT244MCBA1q8eLF2796tkJAQWa1WFS9eXNWqVVOrVq3UsGFDWSyWbNn3iRMntGDBAu3cuVPnz59XfHy8ihUrpooVK+qFF17Qs88+Ky8v107l27dv19KlS7Vv3z5dvnxZXl5eKlGihGrVqqXWrVurTp06LpUXGxurX3/9Vb/99pv++ecfhYeHK3/+/CpZsqQaNmyol156SYGBgS6VeerUKS1dulR79uzR2bNnFRERoTx58qhIkSJ66KGH1KRJEzVu3DhLPvfJkydr0qRJkrLut5jVZS5ZskRDhgyRJB07dizT9ZMkq9WqN998U9u3b5ckzZkzR48++qjT22fH7+Ly5ctasWKFNmzYoLNnzyosLEx58+ZVmTJlVLduXbVr107ly5d3urzw8HAtW7ZM27dvV1BQkMLDwyVJhQoVUpUqVdSwYUO1bt1aefPmTbcsq9Wqhx9+WFFRUS69p549e+r99993aZs72d167jt//ryefvppY/7PP/9UmTJlMl3uX3/9pUuXLun55593+Hrjxo0VHBwsSRo9erTatGmT6X0ie2T1udkVWX08t1qtWrt2rVasWKGDBw/q6tWrypcvn4oXL67HHntML730kipXruxSHUNCQrR48WLt2rVLJ0+e1PXr1+Xl5aXChQurRo0aaty4sZo3b+7UNVFYWJjq1avn0v4l6YsvvlCrVq1c3g64GxBYBIAsFBMTo8mTJ2v27Nlq0aJFqoFFuL+4uDj95z//0cKFC+1eO336tE6fPq1ff/1VTzzxhEaPHq1ixYpl6f4nTZqkadOmKT4+3rT83LlzOnfunP78809Vr15dY8eO1f33359ueZGRkRowYIDWrl1rWn7r1i2dOHFCJ06c0JIlS9SyZUsNHTpUBQoUSLfMEydOqGfPnvr3339Ny69du6Zr167pn3/+0YwZM/Thhx/qnXfeSffGJDo6WqNHj9bixYtltVpNr8XFxSkyMlKnT5/WTz/9pKpVq+rrr7/Wvffem249U3P06FFNmzYtw9vnRJnnz5/X559/nmXlJfvxxx+NoKIrsut3MWvWLE2cOFHR0dF2+zty5IiOHDmiuXPn6u2331bv3r3l4ZF6oxur1ap58+bpq6++UkxMjN3rFy9e1MWLF7Vu3TpNmjRJo0aN0lNPPZVm/c6cOeNyUBHILteuXdOXX36ppUuX6oMPPsjt6iATsuPc7KzsOJ6HhISod+/e+uuvv0zLY2Njdf36dQUFBWnu3Ll644039NFHH8nHxyfN8uLj4zVp0iTNmDFDcXFxdmVGR0fr/Pnz+u233zRx4kSNGzdODz74YJplHjlyJN33AcA1BBYBIAuNGjVKixYtyu1qIJOsVqt69eplutDPkyePKlWqJE9PT/3777+KjIyUJG3ZskWdO3fWwoUL5e/vnyX7HzlypCnD18vLS5UqVVK+fPl04sQJXbt2TZJ06NAhdezYUYsWLVLp0qVTLe/WrVvq0qWL9u/fbyzz8/NTxYoVlZCQoKCgIN28eVOStGLFCl28eFEzZ85M84L/1KlTeu2114y6SFLRokV13333KTw8XP/++6+sVqvi4uL01VdfKSIiQn379k21vJs3b6pLly7au3evafn999+vokWLKjo6WseOHVNsbKwk6Z9//tHLL7+s+fPnq1KlSqmWm5q4uDgNHDjQ7kYlM7K6zLCwML377ruKiIjIkvKSnT9/XmPHjnV5u+z4XVitVo0YMUI//PCDsczT01OBgYEqWrSoQkJCdObMGUlSYmKivv32W12/fl0jRoxItczRo0dr9uzZpmXFixdXYGCgEhISdPLkSSN78erVq+ratatGjx6t1q1bp1qm7Y1oQECAqlevnuq6tlzN1gWc0adPH23dujW3q4FMyo5zs7Oy43geFham119/XWfPnjWWBQQE6IEHHlBMTIyOHTum+Ph4Wa1WzZo1S5cvX9a4ceNSLS8xMVG9e/fWH3/8YVpetmxZlSxZUrGxsQoKCjIeSJ07d04dOnTQt99+q8cffzzVcm2P58WLF1eFChVSXddWVj9ABu4kBBYBIAtlZZACuWfmzJmmi+0OHTroo48+MjIFbt68qe+//16TJk1SfHy8Tp48qcGDBxtN/zPj999/NwUVmzZtqqFDh6pIkSKSkr5jy5Yt0+jRoxUTE6MrV66oR48eWrp0aaoZgZ9//rlx42KxWNSjRw+99dZbRhPQiIgITZo0SXPmzJEk7d69W1999ZUGDRrksLyEhAT16tXLCCoWLFhQI0aMUNOmTY06nDt3Th9//LF27NghSZo+fbpq1aplag5oa/To0aagYrNmzdSvXz9Tc8GYmBjNnTtXEydOVFxcnG7cuKFu3bpp1apVTjVntfXNN99kedZCVpZ58eJFvfvuuzpx4kSWlJfMarVq8ODBdpmBzsiO38X06dNNQcWmTZuqX79+Klu2rLHsn3/+0ZAhQ/TPP/9IkhYuXKinnnpKjRs3titv1apVpqBi5cqVNXToUD388MPGssTERK1du1YjRoxQaGiorFarPvnkE1WpUiXV5nlHjx41phs3bqzRo0en+p6A7Ma1xp0hq8/NrsiO4/mgQYOMoGKePHk0aNAgvfLKK0bz5NDQUI0aNUqrVq2SJP3666966KGH1KlTJ4flfffdd6ag4qOPPqohQ4aYHibGxcVp+fLlGjNmjKKiohQXF6cPP/xQq1atSjUQaHuebtu2rbp3757mZwUgfQzeAuC2MmbMGB07dkzHjh1z2/4VnTF37lzjfdwtfUzdLsLCwjRlyhRjvn379ho2bJip+VHevHnVtWtXU9bUmjVr9Pfff2dq33FxcaZmr40aNdL48eONoKIkeXt7q127dpo8ebJxsX748GH98ssvDss8fvy4FixYYMz36dNHH3zwgSkQ5+/vryFDhpia1M2fP1/nz593WObixYuNQIuXl5emTZumZs2amQKbZcuW1XfffWfqx+irr75SQkKCXXmnTp3S4sWLjfm2bdtqwoQJdn2Q5cuXT++++64mTJhgLAsODjZuupzl7k2gt2zZotatWysoKChLyrP1ww8/aOfOnS5vlx2/i/Pnzxt9UUpJN7YTJkwwBRUlqWrVqpo9e7ZKlChhLJs+fbpdeYmJifryyy+N+SpVqujHH380BRUlycPDQ02aNNGPP/6oQoUKSUr67dlum5LtjWhGMmSB3LBu3TrjWoP+Fd1LdpybnZUdx/PNmzdrw4YNxvyYMWPUvn17U5+HRYsW1ddff60XX3zRWPbf//7XyIy0FRERYTqnNmjQQDNnzrQ7/np7e6tt27b6/vvvlSdPHknSjRs3TO8vJdsHRa729QjAMQKLAADYWLJkidGXWkBAgPr375/qui+99JKpb7ZZs2Zlat9r1qzRhQsXJCUF7IYOHZpqX3JPPPGE2rVrl+6+586dawTz7r//fr311lup7r979+6qWLGipKRAy7x58xyuZxvIe+mll1S7dm2H63l7e+vzzz+Xt7e3pKQ+GTdu3Gi33sqVK406BgQEpJuN8fTTT6tJkybG/K+//prm+rbi4uI0YMAAI+MnK/qryqoyIyIiNGbMGL3zzjumJuZZ5dy5c0bwzNVm+9nxu5g5c6bRtL1y5cr6+OOPU8269ff3V9euXY35vXv36vr166Z1du3aZQxUIUnDhw+Xr69vqvUsW7as6YZ969atqX7utoFFbkQBZFZ2nJudlR3Hc9tM8SeeeELNmzdPtcxhw4bpnnvukZTUX2jyoIy21qxZY9TR29tb//nPf9IcmOXBBx9Uhw4djPnff//d4YPMW7du6dSpU8Y8D4qArEFgEQAAG7/99psx/dxzz6UZmJBkCu5t2rQpQ01MkyU3D5Kkxx9/XKVKlXJ634cPH9a5c+dMrycmJmr16tXGfJs2bdIc9MLDw0Nt27Y15m23TXb06FFT89yXX345zToWL15cjRo1MuZ///13u3WSm0tLSc1M0/vMJZmaVB89etQIUKVn2rRpRrbCiy++qCpVqji1XXaXuXjxYj377LOaNWuWEhMTJSVld6TVL6UrrFarhgwZYnw/Bw4c6NL2Wf27iIuL08qVK435IUOGyNPTM80ymzVrptdff13du3fX4MGD7W4abb9HpUuX1kMPPZRmeZL5e5SYmGg0t7YVFhamy5cvG/MEFgFkRnacm12R1cfz69eva9u2bcb8Sy+9lGZ5vr6+atmypTGf3nVBrVq1VLJkyTTLlMzH8/DwcLtrIkk6duyYce7Inz9/lozODoA+FgHksMjISP3www9avXq1zp49q/j4eBUrVkyPPPKIWrRoocceeyzN7QcOHGg82WzdurVdc+hly5YZ2U5dunTRgAEDlJiYqN9//12//vqrjhw5oitXrihfvnwqU6aMnnrqKb366qsqWrRopt6Xoyeey5cvNz2FPXbsmDHdsWNH7dq1S1LSk+iUzaEnTZpk9GMzfPhwtW/fXtHR0Vq5cqVWrlyp06dPKyIiQkWKFFHlypXVrl07Pfnkk6YyTp06pQULFmjLli1GFlyZMmXUsGFDvfHGG06/57CwMC1btkybN2/WqVOndO3aNfn6+qpYsWJ69NFH1bJly3RH4LtdhIeHmzKTnnjiiXS3eeyxx+Tp6amEhATdvHlT27Zt0zPPPOPyvq1Wq6mJav369dPdplKlSipatKhCQ0MlJTV769y5s/H60aNHTRlYzrwf2/1euHBBR48eNQVSbC/2CxYsqBo1ajhVZnI/SRs2bJDVajVlpl29etWYLl++fLrlSUlZFrbCw8PT7Vj9yJEj+uabbyQlBe0GDx6c6b6VsqrMefPmGQOKSNIzzzyj4cOH6+TJk5mqXzLbJtBPPPGEXnrpJQ0ePNipbbPjd/HXX38Zg9Lce++9qlu3brplFipUSJ988kmqr4eGhsrDw0OJiYl64IEH0i1Psv8eOcpYtH3vJUqUsNsmJ5w4cULLly/X7t27dfr0aUVGRip//vwqXLiwatasqYYNG6pp06ZpBmfPnz9vuvF2dA7NjO3bt2vp0qX6+++/dfnyZfn5+SkwMFDNmzdX27Zt5efn53KZWX3+SUxM1Pr167V161bt3btXoaGhCg8Pl7e3t/z9/RUYGKhHHnlErVu3tmuSn5ro6GgtW7ZMf/zxh44dO6aoqCgVKVJE1atXV9u2bdWwYUOX37cjKf9+ySZPnmxcL5QuXVrr1q0zXmvcuLGRxTt69Gi75tC211TTp09Xw4YNFR4ermXLlun333/XuXPnFB0dreLFi6tGjRrq0KGDXdcChw4d0sKFC7Vr1y5dunRJXl5euvfee/XMM8/o9ddfdzqDOzg4WMuXL9eWLVt0/vx5hYeHK3/+/CpVqpQef/xxtW7d2unzg7vLjnOzs7LjeL5r1y4jWGexWJy6fqlfv76R/fj333/r+vXrKliwoPH6lStXZLFYZLVaM3U8v/fee03LbJtBV6pUKdUs+ex04MABrVixQn/99ZfOnz+vmJgYFShQQEWKFFHt2rXVuHFju2t6wN0RWASQYw4cOKCePXsaQa5kp0+f1unTp7V48WI9+eSTGjNmjAoXLpwl+zx//rz69u1rN9LsrVu3FB4erkOHDmnmzJkaNmyYqc8Xd3PgwAH17dvXGB01WXBwsIKDg/Xnn3+qbdu2Gj58uDw9PTV79myNHTvWroP3oKAgBQUFadmyZfrmm2/SvSH7/vvvNXHiRKM5SrLY2FiFh4crKChIc+fOVbNmzfSf//wn06Mi2waGM8PRDZQzjh07JqvVasxXq1Yt3W18fX0VGBhoNK05ePBghgKLwcHBptF/nR11tlKlSkZg8eDBg6bXbC+gvb29nRr58L777lPevHmNkSgPHjxounmxLbNKlSpOXZTbbn/9+nWdPXtW5cqVM5atXr1at27dUkhIiNPBh5R9TNnekDiScsTm4cOHp7tNerKjzHvvvVd9+/bVs88+K0lZEli0bQKdP39+jRw50qXts+N3YdtP16OPPupSfVLz2Wef6dNPP1VoaKji4+Od2ibl98jRMSw3m0EnJiZq7Nix+v77741M1mTh4eEKDw/XyZMntXz5ct177736/PPPncrUzEphYWEaMGCANm3a5LB+Bw4c0Lx58zR+/HiXys3q88+WLVs0cuRIUzPIZHFxcYqOjtalS5e0a9cuffPNN3r77bfVq1evNI9x27ZtU//+/Y1jcLKLFy/q4sWLWrNmjZo1a6YPP/zQhXeeezZu3KjBgwfrypUrpuVnzpzRmTNn9Msvv6hHjx7q3r27EhISNGHCBE2fPt3uu3no0CEdOnRIS5cu1axZs9IM0iYkJGj8+PH6/vvv7TLPr127pmvXrunw4cOaOXOm2rZtq8GDB2d6VGTbh7eZMWfOnAwdv7Lj3Oys7Die276fMmXKOHUetK17YmKiDh8+bBrJedasWYqNjdXly5fTbAJty92P57du3dKQIUNM2frJwsLCFBYWpqCgIC1YsEDVqlXTuHHj7AKjgLsisAggRwQHB+utt94yAieFChVS+fLlFRMTo2PHjhk3gRs3blTHjh01d+7cTAcXw8LC9Oabbxoj1Pn7++uBBx6Q1WrViRMnjLpER0dr0KBBKl68uGmgCVckP/ENCgoymswVK1bM6BMnM44dO6Yvv/zS6Ny6ZMmSKlu2rK5fv66goCDjAnHRokWqUKGC4uLi9MUXX0hKGpWvcuXK8vT0VFBQkFFGWFiYevTood9++81hE5jkZpNLly41LS9XrpxKlCih6OhoBQUF6datW5KSmrH8+++/mj17dqazP3PT6dOnjWkfHx+nmt5ISRfSyRfcyd+3zOxbkgIDA53ed7KU+7Yts3Tp0k5dnFssFpUqVcoIaKUMZtuWaRscdLaOyWWm3DZPnjxOv2fJ3BSsdOnSRqftqfnvf/9r3Py0aNEiQ8Hf7CyzatWqevPNN9WiRQunb6KckXIU6P79+zv9vU6WHb8L2wxu25vqbdu2acWKFdq7d69CQkKUJ08elS1bVo0aNVL79u3TPS94eXm59P5SNim8//777dZJOXDL5cuXtWzZMm3atEknTpxQVFSUAgICVLFiRTVu3FgvvfSS8uXL53Qd0jJq1CjTKPF58+ZV+fLl5e/vr/DwcJ09e9YIvJ0+fVpvvvmmcS7ICWFhYXrttddMAXBvb29VrlxZefPm1YkTJxQWFqbz58/r7bffVv78+dMtMzvOP6tWrVK/fv1MAedixYopMDBQ3t7eun79uo4fP24EtuLj4zVt2jQVKFBAb7/9tsMy165dq549e5rKvOeee3T//fcbdYyLizMy/zIrb968xrXGwYMHjT5GAwMDjWOn7UBfrtq2bZvmzp1rvJ/AwECVKFFCV65cMf19J02apCpVqmjr1q2aP3++pKQHFhUrVlRiYqKOHj1qBL/OnTunnj17aunSpQ4DtLGxsXr//fe1efNmY5nFYlH58uVVpEgRRUREKCgoSPHx8UpISNCPP/6ooKAgfffdd051meGusuPcnJF9Z9XxPCPXBUWLFjUFSs+cOWMKLCbXz5WmyrbH87x586p06dJ266Q8np89e1ZLly7V1q1bdfr0ad28eVP33HOPqlatqiZNmuiFF17IsnNyr169TBnF+fPn1/333y8/Pz9dvXpVZ8+eNT6Pw4cP6/XXX9fPP/9s9EcJuDMCiwByRHJTnOQR7l544QWjyVZYWJjGjh2rZcuWSUoaKW/48OGaOHFipvb5008/SUq60B80aJCaN29u7PPWrVuaPXu2vv76ayUmJioxMVHjxo0zjUzrihkzZkgyNyuqX79+ljQz+/HHHyUlZTKNGDHC9HT86NGjevvtt41sia+//loxMTGyWCzq2rWr3n33XePiOzo6Wp9//rkxCuGlS5e0cuVKU985yaZPn266qXv66afVt29f0013TEyMFixYoPHjx+vmzZs6ceKEPvroI33//ffp9pWWmuLFizvVLMeZcjLCNuvElQCp7bopM1cysm8PDw+nbxDT2rftfHrNhG0VKVLEuHlJWaZtX3POfkaFCxc2mlE5KtNV27dvN7oSkJKa+6Xl8OHD+vbbbyUlHQ+GDBmSqf1nR5mjR4/OdJ0cmTdvnvFZ1atXz+HvPT3Z8buwDbQUL15cISEh+uSTT+wG94mJiVF4eLgOHjyo77//XsOGDVOLFi1cfQsOhYWFmQZBqFixosObWNtsnN27d2v27NnGzV+y0NBQhYaGauvWrZo2bZo+++yzTDdlS87IS/bBBx/o3XffNY0ae+vWLf3www8aO3asEhISFB0drXHjxmnq1KmZ2rezPvnkE1PQqUOHDurVq5eRsZSQkKDVq1drxIgRunbtmqm5f2qy+vxz5coVDRs2zAiYVaxYUZ999pldxn5MTIwWLVqkr776yghafvvtt+rcubMxAFWyCxcuaMCAAUaZAQEBGjZsmJo1a2b0lRceHq6JEydq/vz5Onz4cLrvOz1FihQxrjVsu1Np2bKlXXcqGZHcLPWhhx7S0KFDTZls27dv1/vvv296QBEZGSkfHx/169dP7du3Nz6ja9eu6eOPP9batWslJR0rt27d6vDcPnLkSFNQ8ZVXXlH37t1NI8Bfv35dM2bMMDIj//rrLw0dOjTNUdzTExgYmCXXGhnNUM+Oc3NG9p1Vx/OMXBdISefO5PuDzF4XnDhxQr/88osxX69ePdOxUkp6aGH7UOuXX37Rp59+atdf76VLl3Tp0iWtW7dO06ZN09ixYzPd5c+GDRuMoKKHh4eGDh2ql19+2XRsuXHjhr755htNnz5dUtJnMnXqVH388ceZ2jeQEwgsAsgxvr6+mjNnjt3ABoULF9bo0aPl5+dn3EStXr1af/31l11fPq4qWLCgFixYYJcJlSdPHr377ru6ceOGERw4cOCAQkJCMhyUyk4lS5bUggULVKhQIdPyypUrq3///urXr58kmQZmePPNN03r+vr6avjw4dq3b59xo7xt2za7QMO5c+c0YcIEY/7111932K9Zvnz59Oabb6p69ep68803FRcXp127dmnZsmV65ZVXMvQ+69ev71TfPNnF9qbXlZF9bbNwUo5U6yzb7fz8/NLsyN3ZfWf0/dium7JM23lny/Tw8JCvr69u3LghSaYm364KDw83XWR7e3ub+pVMKTY2VgMHDjQCAEOHDs10NnR2lJkdzp49q6+++kpS0u/f1SbQybLjd2Hb1DI6OlodOnQwmrHly5dPFStWlI+Pj06ePGn0wRkREaG+ffsqPDxcr7/+ekbeisFqteqTTz4xvTdHo7KmHEE0uQm3p6enypUrp6JFiyoiIkLHjx83msSHhoaqW7duGjFiRLqDG6UluV9SSWrUqJHD5rR58uQxjr/Jf+vNmzcrOjraLqOrTJkyppvqzNqzZ48RPJKkrl27qnfv3qZ1PD091bx5c1WoUEHt2rWza9acUnacf3788UfjmFOgQAHNmDHDYTAnX7586ty5szw8PIzfyvXr13XgwAG7a5HJkycbLQDy5s2r2bNn2zWrDAgIMI4NkyZNSvN9u4tq1app9uzZdgGZevXq6d133zWasye/96+++kpNmjQxrVuoUCF9+eWXeuaZZ4zf+bZt2+wCeXv27NHChQuN+f79+zv8DRYsWFAfffSRKlWqpI8++kiStHLlSr300ksZbmXSqlUrtWrVKkPbZoXsODdn977TOp5n5Log5bqZuS5IPifbdv/jKNP4zJkzpoFnkoPz3t7euu+++1SoUCFdu3ZNx48fN5r3nz59Wh07dtSkSZMy1V+qbTbla6+9pvbt29utU6BAAfXt21cRERHGb2P16tUEFnFbYFRoADmmZ8+eaY6W2r9/f1OzheRMvcx444030mxemfLEnpU3XVnpww8/tAsqJnv66adNTYxKly6daqDFYrHoqaeeMuYdNdudPXu2ETApW7ZsuqPHPvLII+rUqZMxn5z1cDuy7d8p5Y1VWmz7e3J2dOKUkjNksnLf2fF+sqKetmW4IjY2Vh9++KGpH6WOHTum2X/Xf//7XwUFBUmSmjZtqmbNmmVo39ldZlZLbgIdExMjSerbt2+GR7/Mju+R7U3kZ599pvPnzytPnjwaNGiQdu7cqUWLFmnevHnasmWLpkyZYmTBWK1WjR49Wnv27MnQe0n29ddfm4JiDz74oGmU0mS2I4hKScfQzp07a926dfrtt980Z84c/fTTT9qxY4d69eplZJ8kJCRo+PDhmaqnbRZQen+7l19+WbVr19YLL7ygd955J1Oj0zsruVWAlJRRn1bWXIUKFdSzZ890y8yO84/tgFOvvPJKuhliKQNlISEhpvnY2FjTqLrvvPNOmn21vf/++071Y+cOBgwYkOpvPGVXDw8//LDdZ5UsX758pqCfo2uN5OzL5LIcBRVtPf/886Zj7cyZM9Nc353l5rXGnXZdkHyuO3DggLGsadOmqlOnjt26ts2gpaSAYs+ePbV582atXLlSc+bM0cqVK7Vlyxa98cYbxrX1zZs31bt3b7sua1xhezx31ETb1muvvaZHHnlEbdq0Ubt27ewy5AF3RGARQI7w9fVNN4vNx8fHNODGpk2bTB1MZ0RqF73JSpUqZcrqSM6ocicWiyXN9+Hn52fKlmrYsGGa2W62GZmO3u+aNWuM6RYtWtg1AXPEduCbEydOZEl/UrnB9mm3sxmDkkz97zg7aERO7DujZdo2JUxZpu28K03e0yrTGbGxserevbtp5OyaNWsaGSyOHD582GhSlNxUMbOyo8zsMHfuXO3evVtSUvClQ4cOGS4rO76btjemERER8vb21vTp0/XGG2+Y+sv08PDQM888owULFhgjfsbHx2eqm4n//ve/xkjeUlJG1Ndff+3wvdk28/Xw8ND48eM1ePBgU1NNKSmbp1u3bpo+fbrxvuPi4jRq1KgMn8ds97F8+XLt378/1XULFy6sH3/8UV9++aV69uyZqb72nGXbbL1Nmzbp9kP20ksvpRt0yI7zz/z587Vz504tXrzYLpPfkZRNOVPe1O/atcsI3FoslnSvbTw8PBxmJ7mbwoULpzkQScoHOI0aNUqzvLSuNW7evGlqAt26dWun6mj7t96+fXuGg1G5LTvOzdm977SO57bzOfl+rFarhg4dahoMpWzZsqlm59tmn+fJk0dz5szR+++/b/fgPrkLJdsuSiIjIzPV/N72eD579myHg0glq1SpkubNm6fRo0ere/fuLgVrgdxCYBFAjqhVq5ZTo73aPmFM7kw9o7y9vR12xJ+S7ahxKUdRdgelSpVKt8N724uO++67L811bW/aU47kGBwcrEuXLhnz5cuXd6qOFSpUMNXBdsTX24ntRW7KzyYtthfEztwI59S+M1qmbYZWWmWm7JfI2TJdHdEzMjJS7777rimQUapUKU2aNCnVzztlc+WPP/440x2gZ0eZ2eHs2bMaN26cpKRjw2effebU6N2pyY7vZsr6vP3222kGNcqUKaP+/fsb8wcPHtS+ffucrkuysWPHmpraent7a8KECalmBL744ovav3+/fvnlFy1cuDDd7NR69eqZMq8OHz6sv/76y+V6SklZN8mfU2RkpNq1a6e33npLc+bM0YkTJzJUZlY5c+aMKQPHmW5L8ufPn+Zo99l5/gkICNCDDz6YZrZiXFycDh48aMqkk+yPc8kBeynpe+lM9ymPPfZYuuvktgceeCDN11MGNzJzrXHgwAHT9Zazf2vb70/y3+t2lB3n5uzed05fa6QnLi5Offv21aJFi4xl/v7+mjJlSqojxL///vv666+/9PPPP2vRokWqXbt2mvto3bq1qU/fNWvW6MKFCy7VM1nTpk2N6YsXL+qFF17QBx98oEWLFtmNZg3cjuhjEUCOcCbAJ9lfqF68eDHDo1v6+/s79eQ0oxdEOcXVwEV6Qci0Agwpmyv17dtXffv2dWn/kn3TsdtFykERnGW7bnqjE6fGdhRZV/Ztm/mVct/Z8X7y5s1r9K+V0TJdCSxevnxZXbt2NQ1+UKJECX3//fdp3tBPmTLFaK7cuHFjvfDCC07vMyfLzGpWq1WDBg0ymkD37t3b6VE6U5Md3yNfX1+jObTFYnGqz8QXXnhBI0eONLLFtm7dqoceesipusTGxmro0KHG4FrS/4KK6fXTljdvXpfOQ6+//ropI3LLli0Om+Wlp3z58nrvvfc0bdo0SUl/2y1btmjLli2SkjLCHn/8cTVo0EANGjRI9WY6O9gGFSXnR4ItX758qs3Dc+r8ExERoX/++Udnz57V2bNnde7cOZ06dUonT5506uGi7Xt39n2XKVPGNAKuO8rJa42UIxpnNKMz5ffwdpGb1xrZdV2Q1WWmJTIyUj179jSOhVJS/4TfffedKlWqlOa2+fPnT7PrgpQ6duxoGhRm69atGepHvGHDhmrRooVRVlxcnNauXWt0yREYGGgcz+vXr2+6JgRuBwQWAeQIZ294Unb6nNHOqSXX+nlxZ65ePGYmMykzn3dWlLN169Ys6TepS5cuGRoEJrmppfS/zumdYTsggW0ZrrAdXTIqKkpWq9Wpv6VtPVPuO6PvJ60yCxYsaLzubJmJiYmmPt+c/YyOHj2q9957z5TFVLZsWc2aNSvNfhUPHTqk7777zqjvp59+6tT+0pIdZWaHOXPmGIGbWrVqmfqfy6js+F34+fkZgcVy5co51XTXx8dH1apVMzLGbJsppyU8PFw9evQwjSSeL18+TZgwIdMjNztSrFgxlS1b1miSmzKI4opevXqpWLFiGj9+vN3gBiEhIVq+fLmWL18ub29vPfHEE3rnnXcyPeiZM5IH1EmWXpApWVqj6Gb3+Wf9+vWaNWuWdu/eneZDRC8vrzSbZYaFhRnTzr5vi8WiAgUKuHVgMSevNTIzUIctZ0YZd+Tnn3/WihUrMr3/fv36uRSkSpYd5+bs3ndax3Pb33V2v5/g4GB17drVeMgnJQ0YNH36dNWoUcPpfTurevXq8vb2Nh46ZOZ4PmbMGN13332aPn263bEg+UHHggULlC9fPjVu3FjdunXLcHIFkNMILAJwKyn7orpTgoOZkZmLd1elvJl65JFHMvRUPK2gT1pCQkJMT6Az6vnnn8/QdrYZcClvnNMSGhpqTGe0bzPbfSckJOjatWtOjTSc1r5tm/258n5sR+xN2d9Y8eLFFRwc7FKZYWFhphv5lGU6sm7dOvXp08cUkKxSpYqmT5+e5vaxsbEaNGiQ8V0eNGhQuoM1pCc7yswOZ86c0ddffy0pKUgwatQol/q7Sk12/C4KFSqkixcvGtPOsv1NOBNUOHXqlLp27WrqdD8gIEBTp05NtxlcZhQpUsQILGYmYGaxWPTaa6+pdevWWrNmjdauXautW7faja4cFxen9evXa/369Q5HZ85qGe02JK1s5ew6/8TFxWnIkCH6+eefHa7v6+ur8uXLq1q1anr44YfVoEGDNJsuZ8d7dwe5ea2RcsRoZ2X0OHz27NksudZ49913M7RddpybnZUdx/OMlmm7rjPvZ//+/Xr//fdNn0Pp0qX13XffOd0yylVeXl4KCAgw3n9mjufe3t7q3r27OnbsqN9++01//vmndu7caZflGRMTo19//VW///67Pvnkk9uij1aAwCKAHJHyJig1KZ9i52TTLth/3p988km6zUruJLbN2qKjo3XlyhWnAoW2gwWk1++UM/tOLtOZwKJt3zwp933vvfea1nMmC9JqtRqBw5RlJM8n92HmaKRPR1IOppCyzJTmz5+vkSNHmoKRTzzxhCZMmJBuhtAff/xhZDJ4enrql19+MTVjSsl2JPgVK1aY+u1LzkbJjjKzw4wZM4wm0H5+fvrss8+c3nbs2LGmrBPbfuay43fxwAMP6J9//pHk2qBZrgwe9Pfff6tbt26mAGSZMmU0ffr0bLsJTWZ7o+hM/8Lp8fX1VatWrdSqVSvFx8frwIED2rlzp7Zt26a///7b9LlMmzZNlStX1nPPPZfp/aYm5bkiIiLCqaZ7aWUzZdf5Z9y4caagYunSpdWqVSs99NBDqlixokqUKGE6LqY3iIRtywpXvruuZHLd6VL+rZ05tt9JsuPc7KzsOJ7b1sXZ64LLly+bsvbSez9r167VRx99ZDq2VqtWTd98802Gg6zOsu1yJiuO5wULFtSrr76qV199Vbdu3dLff/9tHM8PHjxoXPskJCTo008/VdWqVVWzZs1M7xfITgQWAeQIZzsmTjlYS2b7BoNrUvZZd/HixRwNLLZp08Y0MnhOq1q1qiwWi5E5e+TIETVo0CDNbaKiokwX0hkNGpUuXVoBAQFGEOTIkSNOXUgePXo01X1Xq1bNmI6JidGpU6fSDaicPHnSdOFepUoVuzKXLVtmt++0HDlyxJguWLCgSpcuneq6U6dO1fjx403LXnnlFQ0fPjzdUWcl8w1AQkKCS1kpyU2RkiVno2RHmdnBtp5hYWEu1TOtQRCy43dhe1wJDg5WbGysUxldts3iU47MbGvr1q16//33TTeuDz74oKZOnep0VrHVatWECRN09epVXb16VU2aNDGNSpuaxMREUwCgZMmSTu3PWV5eXqpdu7Zq165tBE7nzZunyZMnG3+j2bNnZ2tgMTAw0DR/4sQJpwYxSasZYXacfy5fvqw5c+YY808++aQmT56c5nctvYwk2+sSZweYCw8Pz7Km3ncCR3/rnGzy2aNHD/Xo0SPH9pdSdpybnZUdx3Pb93PmzBnFxMSk+6DB9rrAYrGk+Vv/6aefNHjwYNNgL40aNdJXX33ldKDvxo0bmj59unE8f/31153KlA0PDzclPWT18TxPnjyqV6+e6tWrp169eikkJETTpk3TDz/8ICnpPDRnzhx99dVXWbpfIKsxKjSAHLF//367Zs6ObNu2zZguWbJkmjeOyHoVKlQwZWPs2LHDqe3CwsI0cOBATZw4UUuWLDHdVN9O8ufPr6pVqxrztt/H1OzYscN4uuzp6am6detmeP+2o+I6s++jR4+amgSlbL5XoUIFU9bj9u3b0y1z69atxnShQoXsLvZt319oaKj+/fffdMu0fS9pjfz77bff2gUVe/furZEjRzoVVET2yI7fxeOPP25Mx8TEmL53qblx44apX63U+tPatWuXunXrZgoqPvPMM5o7d65LXRVYLBatWLFCixYt0p9//qlVq1Y5td2BAwdMQaSMDNxy8+ZNbdq0SbNnz9bw4cNNv/OUAgIC1L17d9OAAs4GvDLq3nvvdfnYEh8fr/3796f6enacf7Zs2WLKQBw4cGC6AWzbgIdkP6hbrVq1jOmQkBCn+vrM6Mjgd6qHHnrIlKHn7N/6+PHjGjx4sKZMmaKffvrJ1N/l7SQ7zs3Oyo7j+cMPP2ycoxMSErRz5850y7Tdb9WqVVPtf/WXX37RoEGDTEHF9u3ba8qUKS5lD+bNm1czZ87UkiVLtH79ev35559Obbd161bT/UtGjucRERFav369ZsyYoaFDh6bZnULx4sU1bNgwUz/h2X08B7ICgUUAOSI0NFTr169Pc52IiAjTiJ3PPPNMdlcry+VkH0XZwcPDQw0bNjTmly9f7lQn63PnztXy5cs1ZcoUDRkyRNeuXcvOamarpk2bGtMrVqwwmpam5scffzSmH3/88Uw132/SpIkxvX79+nRHN7Xdd/ny5e1uNCwWi5599lljftGiRWkOWpCYmKhFixYZ802bNrX7TlesWNHUDGrBggVp1vHixYvasGGDMZ9aFtXatWtNT+Q9PT01evRode3aNc3yU2rTpo2OHTvm9D/bG6Tu3bubXksOgmZHmdlhzJgxLtXT1pw5c1J9Tcr630XVqlVNGUrTp09P9+HTggULjBsyb29vPfXUU3brBAcH64MPPjBl9rRr106TJk3KUJ+9tn/LrVu3OvXQJHkUZykp6JdeNpAjcXFxeu+99zRq1Cj9+OOPWrduXbrbPPDAA8a0t7e3y/t0Rcpjy7Jly9Jt6vvHH3+kGQjKjvOPbb9wknN98s2dO9c0n7JpdL169UzfZ9uMyNSkd5x01e1+rVG4cGFTRv78+fOd6rvy22+/1dKlSzVx4kQNHjw4zfOZO8uOc7Mrsvp47u/vb3qwmd73PSoqyjR4TrNmzRyud/DgQQ0cOND02fTs2VPDhw9PtyuMlLy9vU0PBVatWpXuMSs+Pt4YtE1KOsbaBmWddfHiRXXt2lVffPGFFi5caBpILDU5eTwHsgKBRQA5Jq2si4SEBH3yySfGDYGnp2eWjGaa02w7mk/ZGfPtokuXLsZ0eHi4+vfvb2pimdLBgwdN/bE9+OCDql69erbWMTu99NJLRhOeK1euaMSIEamuu3jxYm3evNmYz+x3tkmTJsaNb2xsrAYOHJhqf1+bN2/W4sWLjfmOHTs6XK9Dhw7GDcjRo0c1ZcqUVPc/YcIEIwPRw8Mj1TJfe+01Y3rBggWpZjzExcVpwIABxg1jqVKlHD4wCAkJ0ZAhQ4x5i8Wizz//PFebxcMsO34XnTt3Nqb/+usvffvtt6mWmfK727x5c7t+tRISEtS3b19TMKpdu3YaMWJEhgexefnll43p+Ph4DR06NM0++GbOnGl6iPbGG2841fdgSgUKFDBlxnzzzTdpBuWsVqv++OMPYz4jN7+uevPNN43svytXrmjo0KGpBkdCQkI0atSodMvM6vNPypFmbb+XjnzzzTemByGS/WAtefPmNX13FyxYkOaD06VLl2rTpk1p7tdVd9q1xqlTp/Sf//wnzYcL69atMwWjmjRpkuHB0txBdpybnZUdx3Pb64L169cbXaY4Mnz4cON45uvrazrOJouKilKfPn1Mv7+PPvpI77//fqrlpsd2P+Hh4ekek8aMGWP0BSxJ7733XoYCuhUrVjR1AfP111+n+bu9deuW6TiUE8dzILMILALIMSEhIWrbtq1dk49z586pa9eu+v33341l77//vl0fTrcD25uYffv23ZZ9KlWvXl0dOnQw5tevX6+OHTvaNWGLjY3V/Pnz9eabbxoXSJ6enho0aFCO1jerFSlSRG+//bYxv2zZMvXp08c0euHNmzc1bdo0DRs2zFjWsGFDU7ZNSpUqVTL+pXZT4OPjo48++siY37Ztm9555x1Tp+nx8fFatGiRevToYTQNqlixoqkZpK3KlSurdevWxvzkyZM1atQo06ADN27c0GeffWbKtGrXrp3pibmtdu3aGVmL8fHx+uCDD7R48WJTwOXcuXN6++23TU2i+vXr57AZ4vjx400DbLz33nt64YUXHO4buSM7fhcvv/yyKctl3LhxGjp0qClTNzExUatWrVKnTp2MrJoCBQo4HPV45cqVxsBCUtKowrZ1yYg6deqYsmy3bNmit956SydOnDCtFxoaqqFDh+rzzz83llWrVs30mbnKNvBy/vx5vf322zpw4IDdeiEhIerdu7f27NljLLMNfNmWYXscGjhwYIbrJiUN4GB7k//rr7+qW7dudn0qb9myRe3bt7fLHnQkq88/jz/+uCkQMHz4cIfZn/v371f37t01btw4u9dsR6ZP9u677xoZt1arVT169NDMmTNNwYKYmBhNnjxZH3/8cbrv21W21xrbt29PM/jqrpo0aWLKOl64cKHee+89u2afkZGRmjp1qj788EMj8Ojr62s6V96OsuPc7OxvPDuO540bNzZl5H/yySf65ptvTL+JK1euqHfv3qYA8fvvv+9woLpZs2aZ+mRt0aKF3nvvPYf7dtYLL7yghx56yJhfunSpevXqpYsXL5rWO3v2rLp3727KXm7cuLFatmyZof1aLBa99dZbxvzBgwfVrVs3u/OIJJ0+fVrvvPOO8d49PDxuy0QL3H3osAhAjmjYsKF2796t4OBgvfHGGypVqpTKlCmj69evKygoyPSUulmzZpl6IpmbKlasaExfuHBBzZs3V4UKFXTjxg3NnDkz1T5k3M2gQYN07tw54yn1vn371LZtW5UoUUKBgYGKjIzU6dOnTTdcFotFH3/8sWrXrp1b1c4yXbt21cGDB40nxr/88otWr16tSpUqycfHR//++6/p4r9MmTKmgEJmtG7dWnv37tXChQslJQUXmzRpokqVKil//vw6ceKEKXMpICBAEyZMSLMPwiFDhigoKEiHDh2SlDSww6JFi4ym08eOHTM1hapRo0aaQQcfHx9NnDhRHTt2VHh4uKKjo/Xxxx9r3LhxKl++vNEXnm320muvvabmzZvblXXx4kXTTYaU9H2zvQh3xueff35bZ6/cDrL6d2GxWPT111/rrbfeMrJCFi5cqKVLl+q+++5ToUKFdPLkSVOmu7e3t7766iuHHeh/8803pvnIyEiXB8vp0qWLqW8rSRo5cqTOnTtn/H527Nih5s2b6/7771exYsUUHh5u932vUKGCpk+fnqkmbI0aNVKbNm2MzJ/Dhw/rlVdeUfHixVWuXDl5enoqNDRUJ0+eNO379ddfT/MhR1Z65513dOTIEa1evVqStGHDBm3cuFEVK1ZUwYIFde7cOeOmPV++fKpTp066WYNZef4pW7as2rZtaxxPw8PD1a1bNxUtWlRlypRRYmKiLly4YAp6enl5qVChQsYyRwFRHx8f47sbEhKiuLg4ff7555oyZYoqVqwoq9Wqo0ePGsfVunXrKigoyPQAJTNsrzUOHTqkZs2aKTAwULdu3TI1W3VnFotFX3zxhd58800dPnxYkrRx40Zt3LhRgYGBKlGihMLDw3X27FlTf6ne3t768ssvb8uHzyll9bnZFdlxnTN27Fi99tprOnfunOLj4zVu3DhNnz5dFSpUUGxsrI4dO2bKQGzUqJHDc31MTIxdlwTBwcEuXxf069fPNNCMh4eHJk6cqA4dOhgPQH777TetXr1aFSpUMH73KQN+devWdfjQwRXt27fX2rVrjRYeW7duVfPmzVW2bFmVKlVKUtLgZCkHuOrXr1+qgWTAnRBYBJAjqlatqk6dOqlv374KDw/XhQsXdOHCBdM63t7e6tKli3r16pXhZmu57dlnn1XVqlWNm+QrV64YN8VHjx7N1v7VspKPj4+++eYbTZw4UbNmzTKeOF+6dMk0KmuyokWLatiwYaY+g25nXl5emjRpkj799FMtXbpUVqtVcXFxxsW/rVq1amnChAkOn7hn1KeffqpChQppxowZiouLU2Jiot2AAlJSv4oTJkxIdzTJ/Pnz6/vvv1f//v2NbJ2YmBjt27fPbt1GjRpp7Nix6fZHV7FiRc2ZM0d9+vQxmmiFhYXZNdf09PTUO++8o169ejksZ+3atXZNS53tyN+W7Y0nskd2/C4KFy6sOXPm6LPPPtNPP/0kq9Wq+Ph4h4MClSpVSl988YUeeeQRu9eOHTtmN4iGo99Mep5//nm7Zfnz59ecOXM0cuRILV++3HgQdvLkSYcDd7Rs2VKDBw9WoUKFXN5/SiNHjlTBggU1Z84cI0M5JCTEYf+rvr6+6tq1a7aOPJ6Sl5eXJkyYoC+//FIzZ85UYmKirFarXT+dBQsW1Jdffqldu3alG1jM6vPPxx9/rBs3bpgG3wkNDXUYMCxfvrxGjhypP//80+hbzTYT1FaFChW0aNEivf/++0ZgLDIy0pQ1KyUNbDFhwoQszcJu27at5s+fbwRtg4ODjf4/z58/rzJlymTZvrJTwYIF9cMPP2jUqFFasmSJ8R0/e/asaRTiZOXKldOoUaMyNICGO8qOc7OzsuN4Xrx4cc2dO1cfffSR8Tu4ceOG3W9CSspYHzZsmMPr/e3bt9sF4ffu3evCu0vi6FhYvHhxLV68WIMHDza6MEhMTHTYt7Cnp6def/119e7dO0NdWtjy8PDQ1KlT9cknn5gepp47d87UKiVZoUKF1KdPn1RbowDuhsAigBzToEEDrVy5UvPmzdO6desUHBwsi8WiUqVKqUGDBmrbtq1pUIjbkbe3t+bOnaspU6Zo3bp1CgkJUXx8vIoWLXrbNYv29PRU79699dprr+mnn37Stm3bdPLkSeNir3DhwqpSpYoaNWqk559/3qXR+W4HPj4++uyzz9SuXTstX75cO3bsUEhIiGJjY1W4cGE9+OCDatGihZo0aZLlgXCLxaLevXurZcuWWrJkibZs2aJLly4pJiZGBQsWVJUqVdSsWTO1bNky3RFOkxUoUEBTp07V9u3btWLFCu3Zs0dXrlxRQkKCihQpolq1aql169Z64oknnK5npUqV9NNPP2nlypVavXq1jhw5oqtXr8rb21tlypTRo48+qldffTXNp+3OjKgK95Edv4sCBQpozJgx6ty5s1asWKFt27bp0qVLioyMlL+/v6pWraomTZroxRdfNPUtZyu7v0d+fn4aPXq03n77bS1ZskS7du3S+fPnjToWL15c9erV0/PPP5+lfcx6enpq4MCBateunX7++Wft2bNHp06dUkREhCwWi4oUKaLAwEA99dRTat68uVODkyTLqgFALBaL+vXrp1atWmnBggXavn27goOD5enpqdKlS6tRo0Z6/fXXVbx4cacGLZCy9vyTnF340ksvafny5dq3b59x7PPz81OpUqVUuXJlPfXUU3rmmWfk6empxMREI7AYFBSkAwcO6MEHH7Qru0SJElqyZIl+//13rVixQocOHVJ4eLj8/f31wAMPqFWrVnrxxRddHmgiPQULFtSiRYs0efJkbdmyxXiAWaxYMV25cuW2CSxKSX1WjhgxQm+99ZZ+/vln7dixQ2fPnlV4eLi8vLxUpEgRVatWTc8++6yaNGni9DnvdpEd52ZnZcfxvGTJkvrhhx+0Zs0arVq1SgcOHNCVK1fk4eGh4sWL6+GHH1bbtm1NTZJTyu7jeeHChTVt2jTt379fP/30k/766y9dvHhRMTExCggIUMmSJdWgQQO1aNEi3Qe3rsibN6/Gjh2rN954QytXrtTevXt15swZRUZGysvLS/fcc48eeOAB43h+u7RyAiTJYk1vCD4AAAAAd4RVq1apd+/e6tSpk2nQJAAAgIy4PdsaAgAAAHBZcjckrmQ3AgAApIbAIgAAAHAXSEhIMPoabNCgQS7XBgAA3AkILAIAAAB3uBs3bqh///46fPiwGjRoYBotFQAAIKMILAIAAAB3uMTERO3cuVN169bVV199ldvVAQAAdwgGbwEAAADuAufPn1fp0qWzbERoAAAAAosAAAAAAAAAXEZTaAAAAAAAAAAuI7AIAAAAAAAAwGUEFgEAAAAAAAC4zCu3K4Cc89dff5nmPTyIKwMAAAAAANyNEhMTTfMPP/ywy2UQWLyLpfwCAQAAAAAAAM4iZQ0AAAAAAACAy8hYvIvdKU2hbTMv75T3BMA1HAcAcBwAwHEAAMcB12RFS1YCi3cRDw8P40vj4eGhWrVq5XKNMi8+Pl779+835mvUqCEvL77WwN2E4wAAjgMAOA4A4Djgur1795riRBlB+BYAAAAAAACAywgsAgAAAAAAAHAZgUUAAAAAAAAALiOwCAAAAAAAAMBlBBYBAAAAAAAAuIzAIgAAAAAAAACXEVgEAAAAAAAA4DICiwAAAAAAAABcRmARAAAAAAAAgMsILAIAAAAAAABwGYFFAAAAAAAAAC4jsAgAAAAAAADAZV65XQEAAAAAyG1Wq1WJiYm5XQ1kUEJCgt28xWLJpdoAyA13+nHAw8PDLd8PgUUAAAAAdx2r1aro6GhFREQoMjJS8fHxuV0lZILVajXNnzhxwi1vwAFkn7vhOODl5aX8+fPL399fvr6+bvH+CCwCAAAAuKvExsbq7NmziouLy+2qIAt5eXF7C9zt7vTjQHx8vMLDwxUeHi5vb28FBgbKx8cnV+tEH4sAAAAA7hoEFe9MFotFXl5exj93yOIBkLPutuNAXFyczp49q9jY2Fytx50dygUAAACA/2e1Wu2Cin5+fkaTMk9Pz1ysHTIjuWl7MndpIggg59zpx4GEhASjC4+oqChJ/wsuli9fPtfeK4FFAAAAAHeF6OhoU1CxePHiKly4cC7WCFnFarWaAsOenp53VEABQPru9OOAp6enfHx8FBAQoLCwMIWEhEhKCi5GR0fLz88vV+pFU2gAAAAAd4WIiAhj2s/Pj6AiAOC2VLhwYVMg8caNG7lWFwKLAAAAAO4KkZGRxrS/v38u1gQAgMyxPY8RWAQAAACAbGS1WhUfH2/M+/r65mJtAADIHNvzWHx8vKxWa67Ug8AiAAAAgDteYmKiaZ6BWgAAt7OU57GU57mcQmARAAAAAAAAgMsILAIAAAAAAABwGYFFAAAAAAAAAC4jsAgAAAAAAADAZQQWAQAAAAAAALiMwCIAAAAAAAAAlxFYBAAAAAAAWSYuLi63qwAgh3jldgUAAAAAAHDVyZMntXjxYu3evVvnzp1TZGSkfH19VaJECT366KNq27atKlas6FRZMTExWrx4sdasWaOgoCBFRUWpUKFCKl++vJo3b64XX3xRPj4+t3VZOSExMVELFy7Utm3bNGnSJKe2mTBhgv773/+qWLFi2rx5czbXEEBWI7AIAAAAALhtxMXFaezYsZozZ46sVqvptYiICEVERCgoKEjz5s1Thw4dNHDgwDSDb8eOHdMHH3ygc+fOmZZfvnxZly9f1vbt2zV79myNGzdOlSpVSrNu7lpWTggJCVG3bt10+PBh1a1b1+nt1q9fL0l66qmnsqlmALITgUUAAAAAwG2jf//+WrVqlTFfqVIl1atXT/nz59e1a9e0c+dOHT9+XFarVfPnz9eVK1c0fvx4eXjY9wR27tw5derUSeHh4ZKkIkWKqEmTJipWrJjOnTunNWvWKCIiQsePH9dbb72lhQsXqnTp0g7r5a5l5ZTTp0/r8OHDLm0TEhKiI0eOSCKwCNyuCCwCAAAAAG4LP//8sxFU9Pb21siRI/Xiiy/KarUqOjraWO/XX3/V8OHDlZCQoNWrV2vp0qV65ZVX7MobNGiQEbxr0KCBxo8fr/z58xuv9+nTRz169NBff/2l0NBQDRs2TN99953DurlrWe4sOVsxT548evzxx3O5NgAygsFbAAAAAAC3BdvgWb9+/fTiiy86XO+VV15Rr169HG6XbMuWLdq9e7ck6Z577tGECRNMwbvk5d98842KFi0qSdq8ebP27Nlz25Tl7jZs2CBJevTRR5UvX77crQyADCGwCAAAAABwe2fOnFFQUJAkKX/+/Grfvn2a67/22mvy9vaWlNRM98KFC6bXlyxZYkx37txZfn5+DsspUKCA3nrrLWN++fLlduu4a1nu7NatW9qxY4ckmkEDtzMCiwAAAAAAt3f06FFjukqVKumOhuzn56ciRYoY85cvXzamExMTtXXrVmM+vcCW7etr1641DRrjrmVl1O7du/Xxxx+rWbNmqlmzpqpXr66GDRuqW7duWrVqlRITE03rT5o0SZUqVVKnTp2MZbt27VKlSpVUqVIldezY0eF+tm/frpiYGLv3YWvDhg3q16+fnn32WdWsWVM1a9bUk08+qbfffluzZs3S9evXM/1+AWQOfSwCQC67GZegL9af0OFLEWpWuZjeeKSsLBZLblcLAADArTzzzDPauHGjLl++7NS1UmxsrMLCwox528y/M2fOKCIiwlie3qjK9913nwICAhQeHq7w8HCdPHlS5cuXd+uyXBUaGqqBAwdqy5Ytdq+FhIQoJCRE69at06xZszR58mQVL148Q/tJtm7dOklSxYoV7QaeiYiIUM+ePbVt2za77S5duqRLly5p8+bNmjx5sv7zn/+oefPmmaoLgIwjsAgAueydxfs1/+9gSdLiAxcVl2jVu4+Vy+VaAQAAuBdPT0+VKFFCJUqUcGr9DRs26NatW5KkfPnyqWzZssZrp06dMqbLlCnjVHmlSpUyBlQ5ffq0EcBz17Jcce3aNXXo0EFnz541lj3yyCOqXbu2vL29FRQUpD///FMJCQk6cOCAOnXqpKVLlyp//vyqX7++fH19dfbsWS1YsECSVLZsWaOpesmSJR3uc+PGjZIcZyv26dPHCCoWLFhQjRo1UmBgoCQpODhYa9eu1fXr1xUZGak+ffqodOnSqlmzpsvvG0DmEVgEgFyUmGg1gorJvttxhsAiAABuIi4hUSPWBGnVkRBFxybkdnXchq+Pp5pXKa6hz1aUt6f79bAVGxurCRMmGPNPPvmk8ubNa8yHhoYa06kFvlIqXry4/vnnH7vt3bUsVwwfPtwIKhYuXFgTJ07UI488Ylrn2LFjevPNN3X16lWdPn1aU6ZM0YABA1S7dm3Vrl1bO3fuNAKLJUuWNPX/mNKRI0d06dIlSfaBxX379mnTpk2SkjIyf/jhBxUuXNi0zuDBg9W1a1ft3r1biYmJmjp1qqZNm5ah9w4gcwgsAkAuSnDQD86e8/QVAwCAu/j0jyCN+vPf3K6GW9obnNRk9z/NKudyTeyNHDlSx48fl5SU6di9e3fT6zdu3DCmnR2N2DYwabu9u5blrNOnT+v333+XlPRZTZ06VQ899JDdepUqVdIXX3xhBAwXLVqkjz76yBggxxXr16+XJAUEBKhWrVqm1/bt22dMv/rqq3ZBRSlp8J7Ro0frmWeekST9888/SkhIkKenp8t1AZA5BBYBIBdlQf/aAAAgG+06ey23q+DWdp5xv89n6tSpWrRokTHfrVs3VahQwbRObGysMW0bmEuL7Xq227trWc5as2aNMd24cWOHQcVkTzzxhOrWrStPT08FBgbq+vXrpgFynLVhwwZJUsOGDeXhYc54tQ0O/v3333rjjTccllG2bFn9/PPPKlGihAICAlyuA4CsQWARAHLRwUsRuV0FAACQhrqBhbT23yu5XQ239Wi5QrldBYPVatWECRM0Z84cY1njxo3tshUl2QWzXGU7eIy7luWszZs3G9ONGzdOd/25c+e6vA9bV69e1cGDByU57l+xbt26xvTq1avVqVMnvfLKK6pfv75d9mLlyu6XLQvcbQgsAkAuGvDLkdyuAgAASMOwJhVlsYg+FlOw7WPRHcTGxuqTTz7RqlWrjGUNGjTQ+PHjHQbbfH19jenkAV7Sc/PmTWM6T548bl+Wsy5evGhMV6yY/X/PDRs2KDExUV5eXmrQoIHd65UqVdLLL7+sJUuWSJJ27typnTt3ymKxqHLlyqpXr54aNGigOnXqyMfHJ9vrCyBtBBYBIBetO04GBAAA7szb00P/aVbZLfsRRJKrV6/qgw8+0N69e41lzZo109ixY1MNPNkG8GJiYpzaj20Az9/f3+3LctaVK/+7Hi1YsKDL27squRl07dq1U63v8OHDVaRIEc2cOdNo3m21WnXkyBEdOXJEM2fOlJ+fn55++ml16dJFVapUyfZ6A3DM/YbvAgAAAADACf/8849efvllU1Cxffv2GjduXJrZbMWLFzemL1++7NS+QkJCjOmiRYu6fVnOio+Pd3mbjIqNjdXWrVslOW4Gnczb21u9e/fWxo0bNWzYMDVs2NBuMJuoqCitWLFCbdq00XfffZed1QaQBjIWAQAAAAC3nT///FN9+vQxMvs8PT3Vt29ftWvXLt2+Cm2b/AYHBzu1P9v17rvvPrcvy1kFCxZUaGioJOn69esqW7asy2U4a/fu3YqKipKUdmAxWeHChdWhQwd16NBBsbGxOnDggHbu3KnNmzdr3759slqtSkxM1NixY1WrVi09/PDD2VZ3AI6RsQgAAAAAuK0sXbpU3bt3N4KK+fPn1/jx49WuXTunti9evLgxknB4eLhOnz6d5vonT57U9evXJSUF4gIDA92+LGfZBhKPHz+e7vo//fSThgwZomnTpuno0aMu7Wv9+vWSpMDAQJUvX96lbX18fFSnTh198MEHWrBggX755ReVLFnSeP3nn392qTwAWYPAIgAAAADgtpEc2EpMTJQklSpVSj/88IPq16/vUjm2IyCvW7cuzXWTA2KS9MQTT9gNCOOuZTnDNstv06ZN6a6/fPlyLVmyRF9//bXOnDljLHdm38n9Kz755JMOX7darRoyZIheeeUV1alTxzSwTEoPPPCAOnfubMyntS6A7ENgEQAAAABwWzh8+LA++eQTWa1WSVL58uW1YMGCDI1m3LJlS2N65syZioiIcLheRESEZs2aZcy//PLLt01ZzmjVqpURFPzjjz8UFBSU6rpHjx7Vrl27JCUNNGMbzLVtfp6QYD+C+vHjx3Xu3DlJUqNGjRyWb7FYdPLkSR04cEA3btxINwvx6tWrxnSJEiXSXBdA9iCwCAAAAABwe/Hx8froo4+MUYKLFy+uWbNmmQY8cUW9evVUr149SVJoaKjee+89U6BKSgpcde3a1eiD8JFHHtHjjz9+25TljAoVKui5556TJMXFxalr164OmzifOXNGPXv2NDJFX3/9deXPn9943Xb60qVLdsHF5OxKPz8/PfLII6nWx7Y5++TJk7V69WqH6/3999+aN2+eMZ/8HgDkLAZvAQAAAAC4vZ9//tnU52DNmjX1yy+/SEpqQhsXF2e85u3tbdc0t3nz5qY++SRpxIgReuWVVxQeHq6///5bzZo1U9OmTVW6dGlduHBBv//+u5ExGBAQoNGjR6daP3ctyxkjRozQ0aNHdfLkSQUHB6tNmzZq0KCBqlevLk9PTx07dkzr1q0zgroPPvigunfvbiqjdOnSslgsslqtCg4O1vvvv6+HH35Y+fLlU8eOHY1m0PXr109zxO6WLVtqyZIl2r17t+Li4vThhx+qWrVqqlmzpkqUKKGYmBgdPnxYW7duNYKXzz33XIYDqwAyx2JNziHHHW/v3r3G0yUPDw/VqlUrl2uUefHx8dq/f78xX7NmTXl5ES/H7cOj70qHyxO/fCGHa3L74jgAgOMAnJGQkGBq4lmxYkV5enrmYo3gqldffVV79+7N8PZz5szRo48+arf86NGj6t69u9FM15EyZcpoypQpqly5cpr7cNeynBEeHq5+/fql289io0aN9MUXX8jf39/utb59+2rlSvP1bf78+bVu3TrVq1dPCQkJGjVqlF566aU093Hjxg316tVLW7ZsSXM9i8Wil19+WUOHDk0zWIm7g9VqVXR0tDHv6+uboX5HbxdZcV7LijgRV1wA4IasVusdfRIEAABw1bFjx7Kl3MqVK+vXX3/V4sWL9ccff+j48eO6fv26/Pz8VKFCBTVp0kRt27ZVvnz5btuynBEQEKDp06dr+/btWrlypf766y9dvnxZ8fHxKlKkiGrVqqWXXnopzUFyRo0apXvvvVe//PKLLl68KKvVqoCAAK1bt04JCQmyWCypDtxiq0CBApoxY4Y2b96sX3/9VQcPHtTFixd18+ZN+fv7q0SJEqpXr55atmypKlWqZMn7B5AxZCzeRchYBNzLxYibKj1ijcPXShfMq3Etq+mVmqVyuFa3H44DADgOwBlkLN7Z7rZMJQD27rbjgLtkLDJ4CwDkkuUHL6X6WvD1m3pt/t+6HhOX6joAAAAAAOQmAosAkEu+3XEmzdfjE61afSw0h2oDAAAAAIBrCCwCQC5JdKInivCbZCwCAAAAANwTgUUAyCX0cAsAAAAAuJ0RWASAXBL//53kAgAAAABwOyKwCAC55FhoVLrr3LljmAEAAAAAbncEFgEAAAAAAAC4jMAiALgxCymLAAAAAAA3RWARAAAAAAAAgMsILAIAAAAAAABwGYFFAHBjFoZvAQAAAAC4KQKLAAAAAAAAAFxGYBEAAAAAAACAywgsAoAbY1RoAAAAAIC7IrAIAAAAAAAAwGUEFgEAAAAAAAC4jMAiALgxWkIDAAAAANwVgUUAAAAAAAAALiOwCAAAAAAAAMBlBBYBwI1ZGBYaAAAAAOCmCCwCAAAAAAAAcBmBRQAAAAAAAAAuI7AIAG6MhtAAAAAAkLq4uLjcrsJdzSu3KwAAAAAAgDMqVaqU6TJat26tMWPGGPMdO3bUrl27JElz5szRo48+mul9IGNiY2P1888/648//tCRI0cUHh6uvHnz6v7771fDhg3Vrl07FS1aNN1yTpw4oebNm7u07yVLlqhGjRoZrfpdZdmyZRo0aJAk+9+TJA0cOFDLly+XJI0ePVpt2rTJtrr89ttvmjt3rn744Qe7186fP69nnnlGklS6dGmtW7cu2+pxNyOwmMKECRP03//+N0Nfuu3bt2vp0qXat2+fLl++LC8vL5UoUUK1atVS69atVadOnWyqNQAAAAAAt69Dhw6pZ8+eOn/+vGl5XFyc9u/fr/379+u7775T79691blz53TLwp0tKipK3bt317Zt21S6dOncrs5djcCijQMHDmj69OkubxcZGakBAwZo7dq1puW3bt3SiRMndOLECS1ZskQtW7bU0KFDVaBAgayqMoA7HINCAwAA/E///v0dLrdarabmkN7e3rL8/4XU5s2btX37duO1UqVKZW8l4bK9e/eqc+fOunXrliTJYrGofv36qlmzpjw8PLRv3z5t2bJFMTExGjVqlIKDgzV48OBUyzt8+LAx3aZNGz3wwAPp1qFkyZKZfyPIMdeuXdO2bdtyuxoQgUXDuXPn9P7777vcNv/WrVvq0qWL9u/fbyzz8/NTxYoVlZCQoKCgIN28eVOStGLFCl28eFEzZ86Uj49PltYfAAAAAO50b731lsPlVqtV0dHRxryvr68sFot27dql8ePHG8tr166tbt26ZXc14YLIyEj16NHDCCoWL15ckyZNUs2aNU3r7d+/Xx988IFCQ0M1e/ZsVa9eXS1btnRYpm1g8b333tO9996bbfWHvTFjxtg1j84NZcqU0bFjx3K7Gnc8Bm+RFBQUpNdee02hoaEub/v5558bQUWLxaIPP/xQ27Zt04IFC7R48WJt3rxZnTp1MtbfvXu3vvrqqyyrO4A7GxmLAAAAGXP27Fn16NFDsbGxkqRixYpp4sSJ8vb2zuWa3bkqVaqkSpUqqXHjxk5vM2/ePONe3NfXV7NmzbILKkpSzZo1NW3aNHl6ekqSvvjiCyOJx1ZiYqL++ecfSZK/v7/KlSuXkbcCwEl3fWDx559/Vtu2bRUSEuLytsePH9eCBQuM+T59+uiDDz5Q3rx5jWX+/v4aMmSIPvjgA2PZ/Pnz7fqNAAAAAABkjaioKHXr1k3h4eGSkppGT5o0yamBP5CzVq9ebUy/+eabKl++fKrrVq9eXU2bNpUkhYaG2nVHJkmnTp0yslerVatmNIkHkD3u2qbQISEhGjdunH766acMlzF37lwlJCRIku6///5U0/IlqXv37lqzZo2CgoIUFxenefPmaeDAgRneNwAAAADAscGDB+v48ePG/CeffKKHHnrI6e3/+OMP/fzzzzpw4ICuXbumgIAA3XvvvWrevLlat26tfPnypVvGoUOH9Ntvv+mvv/5ScHCwrl+/LovFogIFCui+++7TY489prZt26Ya7Jw0aZImT54s6X8jFu/fv1+LFy/Wrl27dPnyZXl6eqpMmTJq2LChXn/9dRUvXjzdel2+fFnz58/Xxo0bdebMGSUkJKhEiRJq0KCBOnXqpHLlymno0KFauHChpOwdKTsuLk5Hjhwx5p977rl0t6lfv75WrVolSdq4caNatGhhet22GXT16tWzqKaps/07zZ8/X3Xq1NHGjRv1448/6tChQwoPD5e/v7+qVaumVq1aqXnz5vLwcJzjZTva8oQJE9SoUSNNmjRJP//8syIiIlS8eHE98sgj6tmzp4oVK2ba9tKlS1q0aJG2bNmic+fO6caNG/L399d9991njKgdEBDg1HvasGGDli1bpr179+ratWvy9/dXlSpV1K5dOzVp0iTd7V0ZFfrIkSNaunSpdu7cqfPnzysuLk4FCxZU5cqV1bRpU7344oumruRsP6NkwcHBxojxJUuW1K+//irJtVGhIyMjtXz5cm3YsEHHjh1TeHi48uXLpxIlSqhu3bp68cUX0xw1POXfrlmzZjp+/LgWLlyorVu36tKlS7JarSpRooTq16+vDh066P7770/rY7xt3JWBxalTp+rbb7819cFx//33q0mTJpo2bZpTZSQmJpqerLRp0ybVg4MkeXh4qG3btho5cqSkpKcyBBYBpMcinrACAAC4Yvbs2aZ7tbZt26pdu3ZObXv9+nV16tRJO3fuNC0PDQ1VaGiodu/erfnz5+u///1vqk1sIyIiNGDAgFSDGDdv3lRoaKh27dqlb7/9ViNHjtQLL7yQZr2sVqtGjx6t2bNny2q1ml47evSojh49qrlz52rMmDFq1qxZquWsW7dOffr0Md0LS9KZM2d05swZLV68WJ988kmadclK4eHhpvfjTLPlEiVKGNOORn92FFg8d+6cDhw4oLCwMPn5+enee+9VzZo1jWbVWWn48OH68ccfTcuuXr2qTZs2adOmTZo3b56mTp2qQoUKpVtWnz59tGbNGmP+zJkzCg0N1ccff2xa75tvvtGUKVOMfipt93v16lXt2bNH3377rT7++GO1bt061f3FxMToo48+svvuXr16VVu2bNGWLVv09NNPq2HDhunWPT1RUVEaPny4VqxYYffalStXjP3NmDFDkydPVoUKFTK9z9SsWrVKn376qZHhnCwuLk4REREKCgrSvHnz1KJFC40YMUJ+fn7pljljxgx9/fXXduN4nDx5UidPntSPP/6oAQMGmLrOu13dlYHFGTNmmA6kr7zyigYOHKg//vjD6TKOHj2qa9euGfNPPPFEutvUr1/fmL5w4YKOHj2qypUrO71PAAAAAEDqdu/ebWSPSdJDDz3kUqBs4MCBioqKMkYlrl69ury9vbV//35t3rxZVqtVx48fV69evbRo0SK7/hrj4uLUuXNno48/Hx8fNWjQQBUrVpSvr69u3LihQ4cOaceOHUpMTNTNmzc1cOBAVa5cOc3Aybhx44yRrWvVqqW6desqT548OnHihNauXatbt24pJiZGffv2VaVKlXTffffZlbFq1Sr17dvXaHVXvHhxPfvssypSpIiCg4O1Zs0ahYeH65NPPsmxEZIz0t+lbfDswoULdq/bBhavXr2qtm3bmgZbTVaoUCG9/fbb6ty5c5b1uzlp0iTt2LFDklSxYkU9+eSTyps3rw4ePKhNmzYpMTFRe/fuVfv27bVo0SL5+/unWlZy9lxKjRs3NmXM2maXSlLVqlX12GOPKSAgQFevXtXWrVt1/PhxRUZGauDAgbp27Zq6dOliV25sbKw6deqkAwcOSPrfyNwPPfSQEhMT9ddff2nnzp36888/9ddff2X0I5L0v0Fw9+3bZyyrVq2aHnvsMfn5+enUqVP6448/dOvWLZ0+fVodO3bUTz/9pBIlSqhGjRrq37+/IiIijMSwggUL6r333pPValWePHlcqsuPP/6o4cOHG/OFChVSo0aNFBgYqKioKO3Zs0d79+6VJP3yyy86ceKE5s2bp/z586da5oIFC4zfa+XKlfX444/L399fZ8+e1R9//KHIyEjFx8frs88+U8WKFfXYY4+5VGd3c1cGFpNVr15dAwYMUN26dV3e9ujRo8a0t7e3U9Hz++67T3nz5jU6mD148CCBRQAAAMCdxcVJI0ZIv/4qpcjyuqv5+krPPy8NHSq5yWAoISEhGjRokBE4K1q0qCZOnGhqRpmeqKgo3XvvvZowYYLdvdqGDRv0/vvvKyEhQf/88482bNigZ5991rTOnDlzjKBiiRIlNHv2bIcjEh85ckRdunRRWFiY4uPjtXDhQrssNFvbt29XoUKF9PXXX6tevXqm106ePKk33nhDISEhiouL05w5czRs2DDTOmFhYfr000+Nz+all17S0KFDTeMD9OvXTwMGDND69esdBuyyQ8GCBZUvXz7FxMRIkk6cOKEqVaqkuY1tE/ebN2/qxo0bKlCggKSkzM7kz1+SRowYkWo5165d09ixY7Vx40ZNnjxZBQsWzMxbkSTt2LFDFotF/fr1U5cuXUz9O/79999Gv5+nTp3S119/bfd3srVhwwZ5eHioZ8+eeuWVV+Tl5aUdO3aYmkAvXrzYCCoWKFBAY8aMMZr+JrNarVqyZIk+/fRTxcXF6csvv1TNmjX18MMPm9abMWOGEVQsWLCgJk+ebBcr2bJli3r27GmX2eeqCRMmGEFFX19fjR492i7T9sKFC3rzzTd1+vRpXbt2TaNGjdLEiRNVoUIFVahQQefPnzcCi/nz59dbb71lNzp8evbt22f6jrRp00ZDhgyxCxpu3LhRffv2VUREhI4cOaLBgwdr4sSJqZa7fft25cmTR2PGjFHz5s1Nr/Xu3VtvvfWWgoKCJEkzZ84ksHg7qlu3rtq0aaOnn346wx25nj592pguXbq0vLzS/ygtFotKlSqlkydPSkpKYwaAtMQnWtNfCQAAZJ9PP5U++yy3a+Ge/j+LR//5T+7WQ0nZVv369VNYWJikpOSPCRMmONXnoK18+fLpu+++U9myZe1ee+qpp/TCCy8Y/fTv2rXLLrC4dOlSY3rIkCEOg4qSVKVKFXXp0kVffvmlpKSkk/R8/vnndkFFKalbrw8//FBDhgyRJG3bts1unalTpxrBoCeeeEKfffaZ3b1wwYIFNWnSJL366qsOmxgn27Rpk/7999806xoZGakZM2Y4fK1ChQpGU1qLxaJHHnlEmzZtkiQtXLjQlD2WUmJiol3T2Zs3bxqBxVOnTikqKsp4zdvbWx06dNCLL76ocuXKyWq16ujRo1q4cKFRzq5du9SjRw/NnDnTqfv69HTv3t3h+Au1a9fW5MmT1bFjR1mtVi1YsEBdunRx+F1L1q1bN3Xt2tWYTx64Rkr6zk+YMMGYnzBhgqmVZDKLxaJXXnlFN27c0Oeff66EhARNmDBBc+bMMdaJjIzUN998Y8yPHTvWYQLWE088oXHjxundd99N4xNIW1RUlObNm2fMOwoqSlKpUqX03//+Vy1atFBiYqLWrFmjy5cv2/UtmRlfffWVEhMTJUnPPvusRo8e7XC9J598UlOnTlWnTp2UkJCg1atXa9++fWn22zpw4EC7oKKUNDr94MGD9cYbb0iSkb2cVtd67u6uDCz+97//zXQZoaGhxrQrX+wiRYoYgUXbMgDAkVvxCbldBQAA7m4p+tpDCv/f7DO3ffbZZ6Zg2ODBg+0yspzx3HPPpRnoefzxx43AYsqsvoSEBL399tsKDg5WaGionn766TT3ZZsReePGjTTXLVeunJ588slUX7fNeLp8+bLpNavVqt9++82Y79OnT6oJNt7e3urXr586d+6c6r5WrVplDMyRmuvXr+uLL75w+Frr1q1NffS9+uqrpsBi3bp1HQZkJOnLL780ZSxKUnx8vDFt2wzaz89Ps2bNUs2aNU3r16lTR3Xq1NHjjz9ujHuwc+dOLVy4UK+99lqa7ys9RYsW1XvvvZfq64888ogaNmyojRs3KjExUWvXrtWbb77pcF2LxaLXX3891bLWrl1rxBRq1arlMKhoq1OnTpo6daoiIiK0c+dOXbp0yeivcvPmzUbW6IMPPpjmd+3JJ5/UI488ot27d6e5v9Rs3LjRaM5etWrVNPsELV++vJo3b66QkBCVK1dON27cyLLA4sWLF7Vr1y5JSWNipDcGRp06ddS8eXOtXLlSUtJ3NbXAoq+vr15++eVUy3r44Yfl7e2tuLg43bp1S+Hh4SpcuHDG3ogbuCsDi1nBNvU3+emIM2zXvX79elZWyWW2B+DbVXIqf2rzgLvadPKqU+slJibeEb/V7MRxAADHATgjISHBGCTCYrHIarXaDYLhUN26sqxdm821u31ZH31UcuZzzEbLli0z9THXqlUrvfrqq879fSXTerVr105zuyJFihjTUVFRpnU9PDzsBsZIrazY2FidOnXKmI+Pj7db13a+Zs2aadbLNihx8+ZN07oHDx40AlClSpVSlSpV0izr0UcfVeHChY3sz5S/FWc/19SkLK9x48Zq1KiR1q9fr8TERH300Ufavn272rZtqwceeEAJCQk6fPiwZs6cqQ0bNqhw4cK6efOm0eTV29vbKK9p06Z68MEHdf78eQUEBKhq1aqp1vfFF1/Unj17tGTJEknSd999pw4dOmTo/SR77rnn5OXlleZn9Mwzz2jjxo2SkrI/kzPXUpZ13333qVChQqmWZTvAUFrvM5mnp6cefPBBbdmyRVJSf6TJI2pv3rzZWO+pp55Kt6xnn33WCCw6Opam/L7Yztvuq1GjRunuKzmrN2XZjvaRVlkpX7fN7K1Ro4ZKly6dbl2ef/55I7C4c+fOVH8XVapUMX0vU/L29laBAgWM31jK36yzUn4Wjo4jOYHAYgbFxsYa07b9UqTHtn8P2zJyWmJiosMObG93aaXsA+5k7LZr6a8k6fz589qf17l1kYTjAACOA0iLl5eXvLy8FB0d7dyIsP36yTs+Xp6rV8tCH4sGq6+vEpo2VVzfvrna9+TRo0f16aefGvPVq1fXoEGDjOwrZyQ3hZSSstzS6qPN9oFvbGxsuv25RUZG6syZMzp//rzOnz+vs2fP6sSJE/r3339No8UmJCTYlWX7esGCBZ3uOy4xMdG0rm2z5fLlyztVToUKFYzA1a1bt0zbDB06VEOHDnW4Xe3atSVJJUuW1K+//ppq+SnrMGLECPXu3Vt79uyR1WrVokWLtGjRIrvtAgICNGHCBHXr1s1YlrJfvSJFihgB4PTe68svv2wEFi9cuKDDhw87HPgmLbZ/pwoVKqS7T9uM2PPnz5vWt40RlCpVKs2yjh07ZkzPnz9f8+fPd6neZ86cMco/e/asqX7pvQfbz8jRd9f2AV/K38n58+eN6XvvvdelPhFtJY9dIdl/B5xZJ7klqeTc300yv+8LFy7oxo0bxnnE9m9XqFChdMuzHWQmKioqQ59DQkKCkYgSHx+fa9c/BBYzyPbg4UpbeNuLF7KQgLvXvlDnHizciE1MfyUAAJB9vL0VN3So4lIJpCD3XL9+XX379jWaVRYuXFhjx451abCWlPz8/DJdr5s3b2rJkiX65Zdf9O+//6aaQeTp6el0hrXtKMCuunLlijHt7AAlAQEBGd5fRvj5+WnKlCmaO3eu5syZo4iICNPrPj4+euaZZ9S7d28VKlTI6EcxX7588vX1zfB+K1SoYBpg9dy5cy4HFm3dc8896a5j+ze4ejX1VkzptYzMbAtI21aYyZlzzuxXytz3w9V9ZRfbz8/Z92O7ntVqVUREhAoVKmS3XmZ+r7cjAosZZBsgtH3ClR7bE0dWDWkP4Pbj7LBRWy7cUuequXfCBQAAcEeJiYkaPHiw0c+hl5eXPv/8c5cHa8lq58+fV48ePewG6rRYLCpevLjuvfdeValSRbVq1ZLFYlGPHj2yvU4pMyOdkRvNKb29vdWlSxd17NhR+/bt07lz55SQkKDixYurZs2aRkDu5MmTRv0y+/e2WCwqUKCAEVi0HfglI5zJgnY2JpDeQDK25Tz77LOqVq2aEzX8n/RG305LZmIZ7pJglZHveMrfT0YHA77TEFjMINvmz8lPyJxhu65t6mtO8/DwUI0aNXJt/1klISHBlO5bvXp155q0ALnM57f1UnT6F3b7QmPtOpyGGccBABwH4IyEhASdOHFCUtLNoK+vL9+T29j48eO1fft2Y37AgAGmwVry5cvn9E2/bQu0PHnypJkBZ3sP5+HhYVo3Li5Offv2NYKKhQsXVqdOnVSvXj1VqFDBrtzkfvYclSWZgzfe3t4uZebZrmvbL2R0dLRT5dgG2NL7TBxJ/o1lVFqDh9g27a5atarD/dy6dUuenp5OjfJs+16LFi3qcr1t/05xcXHpbm/bZLZYsWKm9W2zbT09PdMsKyAgwPiu1a5dO9VBYJxRvHhx4/h48+bNdN+DbbDaUT1tj60+Pj6m120zNm/dupXh74ltTCb5+2a1Wk3dIDhaJ5ltdmlkZKRT9bDNcvTw8FDRokWNv78rf7vk+tjWMyOfQ0JCgjw8POTt7S1vb2+VL1/e5fPawYMHXUqWc4TAYgbZpsBGRkY6vZ3tujmdXp6SMwfZ242zJw8g9zn/dIvvtGs4DgDgOABHLBaL6UYu5TxuH3/++ae++eYbY75169bq2LGjqY8yV/6+rnwv0lp33bp1CgoKkpQU2Fu0aFGaI0zbNgm1Wq12+83M99V23QoVKhjT//77r1Pl2AbvMvJbcWUbq9Wq8PBwXb16VcWLF0+3eey6deuM6Tp16pj289JLL+nkyZOKjo7WlClT9Mwzz6RZ1rlz50zfmwoVKmTovSY7ceKEnn322TTXP3r0qDFdrlw5u7+z7XRadQkMDDTGTXD273r9+nXlz5/fLvhUpkwZU/2ee+65NMux7Z/QUT3Teh+29T5x4kS69d68ebN+/fVXlSlTRo899pjq1KmT7j4cSbmObZP3o0ePOvX5/fPPP8Z0yZIlTcHEjNTHlfXTKiP5fy8vr1x5YOZ854AwsR3iPK1+EVKy7d+iaNGiWVonAAAAALiTnTlzRgMGDDCaMVarVs00eEtu+vvvv43p+vXrpxlUlGTKuMxsxlBaatSoYfQdeeHCBVNgy5FDhw7p8uXL2VaflD777DM99thjev7557VixYo017106ZKR6enp6WkXOCxQoIARKLQNQKbGdn/333+/SpUq5Wr1TTZs2JDuOmvWrDGmn3766Qzv69FHHzWmN27cmG5LytjYWD3//PN68MEH1bhxY9PozI0bNzam//jjj3T3bZtt6yrbzOJNmzalu/5vv/2m5cuXa9KkSTpw4ICxPLMPhpIDlJJ04MAB06AyadUlme37uNsRWMyge++915g+f/68U+3zrVargoODHZYB4O5CggQAAIBroqOj1b17d924cUNSUlPjyZMn52oXU7Zsm4faZiM6snfvXq1atcqYz85+53x8fNSqVStjfvz48WmuP2HChGyriyO2AZqlS5emeW89atQooynxc889Z9fHom2m3cqVK02ZdSmdOXNGM2bMMOY7derkct1T2rt3b5rBsm3btmnHjh2SkprrZyaw2LRpUyNgfPXqVU2dOjXN9WfOnKnQ0FDFx8crLCxMDz74oPFa/fr1jUFITp486XBE7mRHjhwxBUczUu/kJsr79u3Tli1bUl03NDTUCOZZLBbT52Wbmeds36G2ypYtq7p160pKCuyPGTMmzfX//vtvU2CxZcuWLu/zTkVgMYNsO0aNiYnRqVOn0t3m5MmTpqcImeksFQAAAADuJh9//LHR1NjHx0dTpkzJdIZZVqpcubIx/ffff5sCh8msVqt+/fVXvfPOO6ZgYvLgIdnlvffeM4JQ69ev16effmrq6y+5Dp988olTWWSpOXbsmI4dO+ZUtmCyp59+2mjNd/jwYX311Vd2gdaYmBgNHjxYq1evlpQ0inTfvn3tynrxxRdVrlw5SUkZeu+9957Rd6CtgwcPqnPnzkb/ig8++KDatm3rdJ3T0qdPH1M2arLt27erZ8+eRuC0V69e8vf3z/B+/P399e677xrz06ZN0+TJk00BbikpaLZw4UJNmjTJWNalSxdTX4c+Pj4aMGCAMT9ixAj99NNPdvv8559/9N5779ntwxWFCxdWx44djfk+ffoYwVZbV65cUffu3Y0M1ObNmxt/W0nKnz+/MR0WFmZq0u6sXr16GQHKNWvWaNCgQQ67utuyZYu6detmBDCfeeYZNWjQwOX93anofCaDKlSooMKFCxtPorZv3677778/zW22bt1qTBcqVEiVKlXK1joCAAAAwJ3gzz//1K+//mrMP/TQQ9q7d6/27t0rKSlgZxvs8Pb2TrOpZLt27UyBiazw/PPPa9KkSQoNDZXValXv3r21YMECVa9eXX5+fgoJCdGWLVuMVmxeXl5KSEiQ1WrVjRs3FB8fn239w5YoUULDhg0zmpH/8MMPWr9+vRHUCwkJ0dq1a3X58mV5enrKw8PD+DxtB7fJDj4+Pho2bJh69Oghq9Wq6dOna82aNXriiSd0zz336MKFC1qzZo3Cw8MlJf1tv/76a5UsWdKurDx58mjcuHHq1KmToqKidPbsWbVs2VKNGjVS1apVFR8fr/3792vbtm1G8/PAwEBNnDgxS/qm8/b2VkREhN544w3Vr19ftWrVkpQUaN62bZuxXoMGDbIkQ/K9997TwYMHtXbtWlmtVk2aNElLly7VU089peLFiys0NFQ7duzQ8ePHjW3q1q2r999/366s1q1ba8uWLfrll18UFxenAQMGaP78+Xr88cfl4+OjQ4cOaePGjUpISNB9993nVHJVanr27Kl9+/Zp9+7dCg8PV+fOnVW3bl3Vrl1bvr6+OnnypP744w8jWBgYGKiPP/7YVEb+/PkVEBCg8PBwxcbG6q233tJTTz2lmzdv6u2333aqHg8//LD69++v0aNHS5KWLVum9evXq3HjxipbtqxiYmK0e/duUzcH9913n7E+khBYzCCLxaJnn31WCxculCQtWrRI7du3T/Wgm5iYaEonbtq0KZ1FA3exRCe6TwAAAEAS29FYJWnXrl3atWtXhstr2rRplgcW8+fPr6lTp6pr165G3/o7d+7Uzp077dYNDAzU6NGjNXjwYJ05c0aJiYn6559/TM1Ts1qrVq0UFxenzz77TNHR0bp48aLmzZtnWsfX11djxozR6NGjdfHiRUnm0W6zy7PPPqvRo0fr008/VUxMjE6fPq3Tp0/brVeqVCl98cUXeuSRR1Itq3r16po3b54++ugjnTp1SvHx8VqzZo3D5rtPPPGERo0aZdekOqM6deqkf//9V5s2bdLWrVtNyUXJOnbsqEGDBmVJwNZisWjixIkaN26cZs+erbi4OF24cEE//PCDw/VbtWqlESNGpBrA/vLLL1W8eHGjifiBAwdM/RpKSUH9/v37q0OHDhmut7e3t2bMmKFhw4Zp+fLlklL/TdeqVUvjx49X4cKF7V579dVXNW3aNElJwdvkAODLL7/s9GC5b7zxhooUKaIRI0bo+vXrunbtmpYuXepw3VatWmnYsGFG9i+SEFjMhA4dOmjRokWyWq06evSopkyZoh49ejhcd8KECcbIWh4eHqbUXwB3n3Ph2dvcBQAAADmvRo0aWrlypX744Qdt2LBBp0+fVnR0tPLmzauiRYuqUqVKeuqpp9SiRQv5+PioYcOGmjt3riTpp59+ytbAopQUcHn88cf1448/auPGjbpw4YJiY2NVsmRJNWzYUG+99ZZKlChhGhDH19c3W+uUrHXr1qpbt67mz5+vrVu36uzZs4qNjVVAQIAqV66spk2bqmXLlkb/fGmpWrWqVq5cqVWrVumPP/7QoUOHFBYWJi8vLxUrVky1a9dW8+bNs7w5a758+TR9+nStWLFCS5Ys0bFjxxQVFaUSJUqobt26at++vWrUqJGl+/T09FS/fv3Uvn17LV68WDt27NDZs2cVERGhPHnyqHTp0qpdu7ZeeumldL9fFotF/fv313PPPacff/xRO3fuVEhIiHx9fXX//ffrhRdeULt27dLsu9JZefLk0ZgxY/T6669r2bJl2rlzpy5duqRbt26pUKFCqlGjhlq2bKkmTZqkGoTt1auX7rnnHi1ZskTnzp1TXFyc7rnnHoWEhDgdWJSkFi1a6KmnntLixYu1adMm/fvvvwoPD5eXl5fKlCmjOnXqqE2bNtn++7xdWazOjDpyl1i2bJkGDRokSSpdurRT/UIMGjRIy5YtM+Y7d+6sHj16qECBApKkGzduaOLEiZozZ46xTvv27TV8+PCsrbwT9u7da6R7e3h4GGnZt7PkVPZkNWvWzLbmA0BWSUy0yqv/L86v/+UL2Vib2x/HAQAcB+CMhIQEo38+SapYsWKWNH2Ee7BaraY+1nx9fWkhlgk1atQw+mDcsWOHMbAH7E2aNEmTJ0+WJHXv3j3VZCNkv7vtOJAV57WsiBNxxZVJQ4YMUVBQkA4dOiRJmj17thYtWmT0n3js2DHFxMQY69eoUUMDBw7MlboCcA88zQEAAEBOmjFjhu655x4FBgaqdu3aaa578uRJI6hYqFAhgooA0kRgMZPy58+v77//Xv379zcyHGNiYrRv3z67dRs1aqSxY8c6lboN4M515z4zAwAAgDtasWKFjh49KklaunSpqlevnuq633//vTFdt27d7K4agNtc9g7vdJcoUKCApk6dqu+//15t2rRRYGCgfH19jf4MWrRooRkzZmjatGlGE2kAAAAAAHLC448/bkyPHDlS165ds1snISFB3333nTFAqYeHR5aMXAzgzkbGoo02bdqoTZs2Gd6+Xr16qlevXhbWCAAAAACAzOnSpYuWLVum8PBw7d27V0899ZQaN26swMBAeXt7KyQkRFu3blVwcLCxzTvvvKM6derkYq0B3A4ILAIAAAAAcAcrWrSoZs+erZ49e+r06dO6efOmVq1a5XBdHx8fDRw4UK+99loO1xLA7YjAIgAAAAAAd7jKlStr5cqVWrVqldasWaMjR47o6tWrslqtKlKkiEqXLq3GjRurRYsWKlq0aG5XF8BtgsAiAOSw+ETGhQYAAEDO8/Hx0YsvvqgXX3wxt6tyx+jRo4d69OiR29UAcg2DtwBADlt+6GJuVwEAAAAAgEwjsAgAOexixK3crgIAAAAAAJlGYBEAcpjFkts1AAAAAAAg8wgsAkAOI64IAAAAALgTEFgEgBxmIWURAAAAAHAHILAIADmMsCIAAAAA4E5AYBEAchgJiwAA5DwPD/OtT0JCQi7VBACAzEt5Hkt5nsspBBYBIIdZyFkEACDHWSwWeXl5GfPR0dG5WBsAADLH9jzm5eWVa11uEVgEgBxGxiIAALkjf/78xnREREQu1gQAgMyxPY8VKFAg1+pBYBEAchhxRQAAcoe/v78xHRUVpbCwsFysDQAAGRMWFqaoqChjPjcDi17prwIAyEpkLAIAkDt8fX3l7e2tuLg4SVJISIgiIyPl7+8vX19feXp65nINkVFWq9XU31hCQkKuNQsEkDvu9ONAQkKCoqOjFRERYQoqent7y9fXN9fqRWARAHLYnXRyAwDgdmKxWBQYGKizZ88awcWoqCjTDRpuX4mJicZ0bg1iACB33W3HAW9vbwUGBubqPead/ykDgJtx9ZAfeSs+W+oBAMDdyMfHR4GBgfL29s7tqiALWa1WxcfHG/+sVmtuVwlADrvbjgPJQUUfH59crQcZiwCQw1x9mHQkJFKPBAZkS10AALgb+fj4qHz58oqOjtaNGzd048YNxcfzIO92Z/s3JHAM3J3u9OOAl5eXChQooAIFCsjX19ctWsMRWASAHGZxMWdx5T+XCCwCAJDFLBaL/Pz85OfnpxIlSshqtZqa0OH2Eh8fr0OHDhnz5cuXl5cXt7vA3eROPw54eHi4RSAxpTvnEwaAO9TNeG5yAADIbhaLhcFbbmMpmzx6enry9wTuMhwHcgd9LAJADnP1IZP7PZMCAAAAAIDAIgDkOFcDhR4ehBYBAAAAAO6HwCIA5DBX+8UgrAgAAAAAcEcEFgEgh7kaKHTD/nkBAAAAACCwCAA5LTouwaX1XR1FGgAAAACAnEBgEQBy2Ofrjjtc/kLV4g6Xk7EIAAAAAHBHBBYBIIedDY9xuHxU8yoOl3sQWQQAAAAAuCECiwDgJvzzejlcTlgRAAAAAOCOCCwCgJtILYBIwiIAAAAAwB0RWAQAN8fgLQAAAAAAd0RgEQDcRGqZiR4cqQEAAAAAbojbVQBwc77enrldBQAAAAAA7BBYBAA3YZFFzSoVtVseGJAvF2oDAAAAAEDaCCwCgBt5uWYpu2XWXKgHAAAAAADpIbAIAG7CYpHyeHFYBgAAAADcHriDBQA3ZyVlEQAAAADghggsAoCbsPz/v5SsNIYGAAAAALghAosA4CY8PSyyWOxDi2QsAgAAAADcEYFFAHATRfx8HGYsAgAAAADgjggsAoAbeOvRQIfZihKjQgMAAAAA3BOBRQDIQZG34h0ufyywkKSkkaFTstIWGgAAAADghggsAkAOmrX7nMPlIZG3JEkWB42hCSsCAAAAANwRgUUAyEHXouMcLv/96GVJjjMWAQAAAABwRwQWASAH/R0c7nD5zbiEVLehJTQAAAAAwB0RWASAHLTicIjD5V6eSYdjRwmLVhpDAwAAAADcEIFFAHADnv8fUXQ8eEvO1gUAAAAAAGcQWAQAN+DpkRRRtNDJIgAAAADgNkFgEQDcgGcaAUUyFgEAAAAA7ojAIgC4AY/kjEUHrxFXBAAAAAC4IwKLAOAGkjMWHfexSGgRAAAAAOB+CCwCgBsw+lh0kLNIWBEAAAAA4I4ILAKAG/DySD1jEQAAAAAAd0RgEQDcQHLGoiMTN5/KwZoAAAAAAOAcAosA4AbKFconSboZl2j32oGLEUpMpEE0AAAAAMC9EFgEADfw9qPlJEn3+Hk7fP1CxM2crA4AAAAAAOkisAgAbsDX21OSVMTPx+HriYwMDQAAAABwMwQWAcANJDeF9khl9BbiigAAAAAAd0NgEQDcgMf/D96SWmARAAAAAAB3Q2ARANxIaoNDk7AIAAAAAHA3BBYBwI1E3kpwuJym0AAAAAAAd0NgEQDcyM34VAKL5CwCAAAAANwMgUUAcCOp9bG49XRYDtcEAAAAAIC0EVgEADeSWh+L/X85krMVAQAAAAAgHQQWAcCNpJaxGHLjVg7XBAAAAACAtBFYBAA3klpgEQAAAAAAd0NgEQDciAdHZQAAAADAbYJbWABwI4Xyeed2FQAAAAAAcAqBRQBwI/ff45fbVQAAAAAAwCkEFgEAAAAAAAC4jMAiAAAAAAAAAJcRWAQAAAAAAADgMgKLAJBDrFZrblcBAAAAAIAsQ2ARAAAAAAAAgMsILAIAAAAAAABwGYFFAMghzraEfqiUf/ZWBAAAAACALEBgEQDcjIfFkttVAAAAAAAgXQQWAcDNeBBXBAAAAADcBggsAkAOcXZMaDIWAQAAAAC3AwKLAOBmLt24ldtVAAAAAAAgXQQWAcDNnA2Pye0qAAAAAACQLgKLAJBDrM4OCw0AAAAAwG2AwCIAAAAAAAAAl3nldgUAAP8vNla6fFkeiQlK9PDM7doAAAAAAJAmMhYBwB3s2CGVKyeVLas98z5S6RtXcrtGAAAAAACkicAiAOSQ1HpYtFgTpY4dpUuXJEkPhZ7SgF1Lc65iAAAAAABkAIFFAMhlTU/vlY4fNy1rfPZALtUGAAAAAADnEFgEgFzWdd9vdsuqhp2TT3xcLtQGAAAAAADnEFgEgBwSG59ot6xsRKieP7XH4fpVws5ld5UAAAAAAMgwAosAkEP+On/dbtk7B1fL02ofcJSkB0NPZ3ONAAAAAADIOAKLAJBDYuITzAusVr1x6M9U169x5Uw21wgAAAAAgIwjsAgAOcSaYljoElHXVCbyaqrr10iRsbj1VFg21AoAAAAAgIwhsAgAOcSaIrJYIupamus/eOW0ab7nT4eyukoAAAAAAGQYgUUAyCUl0wksloy6piLR/+uX8e9g+z4aAQAAAADILQQWASCHpGgJrZJR6TdtrpEiaxEAAAAAAHdBYBEAckjKPhbTy1iUGBkaAAAAAOC+CCwCQA5JmbGYXh+LEiNDAwAAAADcF4FFAMghrg7eIknVCSwCAAAAANwUgUUAyCF2fSxGpggs+vtLNWuaFpWOvJq9lQIAAAAAIIMILAJADknZx2KJ6BSBxZIlpSJFTIvuiblhvyEAAAAAAG6AwCIA5Aar1X7wlpIlpXvuMS3KmxAn3/hbOVgxAAAAAACcQ2ARAHKI1aYxdMFbUcoXH2teoUQJu4xFSSoSE5HdVQMAAAAAwGUEFgEgh9i2aC4RFW6/goOMRen/m0MDAAAAAOBmvHK7AgBwt7DtKbFkVJj9CiVLSj4+dovvIWMRAAAAAOCGCCwCQA6x2qQs2vWvKCU1hfawTySnKTQAAAAAwB0RWASAHGJuCu0gsFiypBQfb7f4nps0hQYAAAAAuB8CiwCQQ8xNoVMJLEZH2y2mj0UAAAAAgDsisAgAOcScseigj8USJaQI+2bPNIUGAAAAALgjAosAkEOsNjmLdqNC+/hIhQtL3t522xWmKTQAAAAAwA3ZjxIAAMgWthmLdqNClyghWSxSgQKSl/mZD02hAQAAAADuiMAiAOQCuz4WS5RI+t9ikYoUMb1EU2gAAAAAgDsisAgAOSQ5YdEnPk6Fb0aaXyxZ8n/T99xjeolRoQEAAAAA7ojAIgDkEOv/t4UuEZ3KiNDJUgYWaQoNAAAAAHBDBBYBIIckZyw6bNpcrNj/plM0hS4QFyOf+LjsqxgAAAAAABlAYBEAckjEzXhJUsFbUfYvBgT8bzpFxqIk3XOTfhYBAAAAAO6FwCIA5JDpO85Ikvxvxdi/WLDg/6YdBRZpDg0AAAAAcDMEFgEgh+y7kJR1WDDWQcaiv///plM0hZYYGRoAAAAA4H4ILAJADstQxiIjQwMAAAAA3AyBRQDIYelmLNIUGgAAAABwGyCwCAA5zP9WtP1C24xFmkIDAAAAAG4DBBYBIIcVjHUQWEwvY5Gm0AAAAAAAN0NgEQByWIH0MhYdBBYLk7EIAAAAAHAzBBYBIIfZZSx6ekq+vv+bDwhQosViWqUIfSwCAAAAANwMgUUAyGF2fSz6+0u2gURPT8UUKGha5Z6bZCwCAAAAANwLgUUAyGF2GYu2/Sv+v5gCAaZ5RoUGAAAAALgbAosAkMPsMhYLFrRbJ9o/wDTPqNAAAAAAAHdDYBEAcphdxqKDwOLNFE2h/WNjJKs1O6sFAAAAAIBLCCwCQA6yWBMd97GYQmw+P9O8pzVRvvG3srNqAAAAAAC4hMAiAOQgv7ib8lCKzEMHGYtxvn52ywrExmRXtQAAAAAAcBmBRQDIQQVTZitKDjMWE/zy2y3LT2ARAAAAAOBGCCwCQA7yT9m/ouQwYzGWjEUAAAAAgJsjsAgAOcjZjMU4X/uMxQJxBBYBAAAAAO7DK7crcKf5559/tHjxYu3Zs0eXLl1STEyMChYsqPvvv18NGjRQu3btVNBBdhKAu4OzGYtx+XztlpGxCAAAAABwJwQWs8jNmzc1YsQILV261O61K1eu6MqVK9q1a5emTZumESNGqEWLFrlQSwC5zdmMRZpCAwAAAADcHYHFLBAbG6uuXbtq+/btxjJPT09VrFhR/v7+Cg4O1vnz5yVJUVFR6tOnj27cuKH27dvnVpUB5BJ/R4FFRxmLfvaBxfyxN7OjSgAAAAAAZAiBxSwwffp0U1CxUaNGGjZsmEqWLGks2717twYMGKDg4GBJ0siRI1WnTh1VqFAhx+sLIPcUjI2yX+goYzGfg4xF+lgEAAAAALgRBm/JpNjYWM2cOdOYr1evnqZMmWIKKkrSI488ojlz5qhAgQKSpPj4eE2dOjVH6wog9/nfchAcdJSx6GjwFppCAwAAAADcCIHFTNq3b58iIyON+Z49e8rT09PhumXKlFGHDh2M+Q0bNshqtWZ7HQG4D4cZiw6bQhNYBAAAAAC4NwKLmXTp0iXTfLVq1dJcv2bNmsZ0VFSUrl27li31AuCeHPax6KApNKNCAwAAAADcHYHFTEpu2pwsKspBNpKN+Ph403yePHmyvE4A3Jd/rHOBxXgHo0LnJ7AIAAAAAHAjBBYz6YEHHjDNb968Oc31t27dakyXLFlSfg5GfgVw50qZsZiQJ6/k42O3nqPBW/IzeAsAAAAAwI0QWMyksmXL6qmnnjLmx48frytXrjhcd8+ePVq2bJkxb9vfIoC7Q8EUGYtx+Qs4XM/i6alI77ymZTSFBgAAAAC4EwKLWWDw4MEqUqSIJCk4OFgvv/yyli1bpitXrig+Pl7nzp3TtGnT9NZbbykuLk6SVLVqVb3++uu5WW0AuSBlxmJ8KoFFSbrhk880T2ARAAAAAOBOvHK7AneCcuXKaenSpRo5cqTWrl2rixcvatCgQQ7XtVgsatmypT755BP5+toPzpCTUvb3eDtKSEhIcx5wNykzFvMUDnD4W7QmJuqGTz6VjPrfAE8FYmPuiN9tVuM4AIDjAACOAwA4DuQOAotZpHDhwmrYsKH+/fdfnT59OtX16tevr3feecdu0JeclpiYqP379+dqHbLDoUOHcrsKQJpSZizGeHnqXwe/xeDgKPum0HExd+TvNqtxHADAcQAAxwEAHAdyBoHFLHD06FF9+OGHOnPmjLEsT548qlixonx9fRUSEmIEG7ds2aJWrVqpc+fO6tOnj7y8+BMAdwuvhHj5xd8yLUvInz/V9VM2hc4fezNb6gUAAAAAQEYQ1cqkc+fOqXPnzgoPD5ck5c2bV71799arr76qvHnzmtYbN26cVq1apYSEBM2cOVOXL1/WV199lUs1B5DTHPWRmJDKyPAWi4PAYtxNyWpNehEAAAAAgFxGYDGTRowYYQQV8+TJo1mzZql27dp265UtW1Zff/21AgMDNW3aNEnSL7/8okaNGqlFixY5WWVJkoeHh2rUqJHj+81qCQkJpvTm6tWry9PTMxdrBKSuYOzfdssK33uvAmrWtFu+PfqMbnibA4ue1kTVrFBBSiUYebfiOACA4wAAjgMAOA647uDBg0pMTMxUGQQWM+HcuXPatGmTMd+1a1eHQUVbvXv31vbt241+0r777rtcCSxKuiObYXt6et6R7wt3hjKWOLtlHgEB8nDwnfX09FRkioxFSfKKiZEKFsyW+t0pOA4A4DgAgOMAAI4DOcMjtytwO9uzZ49p/uWXX3Zqu1dffdWYPnLkiK5evZql9QLgnorE2zeFTi1IaJF9U2hJ0o0bWVspAAAAAAAyiMBiJly+fNmYLliwoIoVK+bUdpUrVzbNBwcHZ2m9ALinuGvX7Rf6+6e6fqS3g8BiZGQW1ggAAAAAgIwjsJgJPj4+xnRcnH0Tx9R4eJg/dgsDMQB3vPCYOPnFORjVOZVRoR0N3iKJjEUAAAAAgNsgsJgJJUqUMKajo6N16tQpp7Y7ceJEquUAuDMt3BfsOLDo65vqNgQWAQAAAADujMBiJjz66KOm7MOFCxc6td3SpUuN6QoVKqho0aJZXjcA7iXRKvnF3bJ/IZURni0Wi8PA4vXLYVldNQAAAAAAMoTAYiYULlxYTZs2NebnzJmj7du3p7nN3LlztXXrVmO+Xbt22VY/AO7DwyL5xrsQWJTjjMV9x85ncc0AAAAAAMgYAouZ1LdvX/n//+ALCQkJeueddzRlyhSFhZmzikJDQ/Xpp59q5MiRxrJq1aqpffv2OVpfALnDYrE4bgqdSmBRchxYPHMuNCurBQAAAABAhnnldgVud2XKlNHkyZPVtWtXRUdHKy4uThMnTtTUqVN13333qVChQrp27ZqOHz+uxMREY7ty5cpp2rRp8vLiTwDcDTwscimwmNrgLfluRmd11QAAAAAAyBAyFrPAo48+qsWLF6tatWrGsri4OAUFBWnnzp0KCgoygooWi0XPPfeclixZomLFiuVWlQHkMIssjvtYTGPwlkjvvHbL8sYQWAQAAAAAuAfS5bLIAw88oGXLlmnjxo1as2aN/v77b4WGhio6OloFChRQ6dKlVbduXb344ouqVKlSblcXQA7zsEj5XOpj0fHgLXlvRmV11QAAAAAAyBACi1nsySef1JNPPpnb1QDgZlztY5Gm0AAAAAAAd0dTaADIAY76WLzl6SWl0c9qlKOm0GQsAgAAAADcBIFFAMgBFovs+liM9sqT+vqSrBYP3fA2Zy3mvRmTHdUDAAAAAMBlBBYBIAd4OGgK7SgjMaWUzaHJWAQAAAAAuAsCiwCQAyySfFNkLKYVWLRYLJKkSB/zOvkYFRoAAAAA4CYILAJADkjKWEwZWEy7KbQkB02hCSwCAAAAANwDgUUAyAEWi+QXb24KnVYfiyX9k15L2RSaUaEBAAAAAO6CwCIA5ICYuESX+lh8svw9khz0sXgrWrJas76CAAAAAAC4iMAiAOSAr/88pjwJ8aZlaTWFzuPlKck+sOhhtUrRZC0CAAAAAHIfgUUAyAGng6/aLXNmVGiH60RGZkWVAAAAAADIFAKLAJADUjaDlqRoJwKL0Y6yGslYBAAAAAC4AQKLAJADHAcWU28KncxhxiKBRQAAAACAGyCwCAA5wC/ult2y0iULp7udw5GjCSwCAAAAANwAgUUAyAG+8faBxfyFC6a7HU2hAQAAAADuisAiAOQAR02hfQv5p7sdGYsAAAAAAHdFYBEAcoCjwGJC3nzpbkfGIgAAAADAXRFYBIAc4KiPxfi8vuluR8YiAAAAAMBdEVgEgBzgKGMxPp8TgUVHGYtRUVlRJQAAAAAAMoXAIgDkAEeDtyT4krEIAAAAALh9EVgEgBzgMGORPhYBAAAAALcxAosAkAMc9bGYkM+JwCIZiwAAAADwf+zdd3xb5dn/8a+G7TheGbazF9khi0AGKyRhlL1ngbLKLIVSWlah9AHKaKFACy0QRigQdsMMM5BAyCAkxNl7ONN2Eu9t6Tx/OFZ8pGPHlnWO5OTzfr34PdYt6ZyLXxNhf33d94UYRbAIAA6wnAqdmLTf95XFxVssEiwCAAAAAKKPYBEAHNDWomMxx/A2+p5rxvZUaVybkPX8XYURqwsAAAAAgHARLAKAA6yCxenZJY2+56rRPSy3Qufk5kesLgAAAAAAwkWwCAAOsNoKvdvvafQ9R/XuoHJv6FZodzlboQEAAAAA0UewCAAOCA4Wy73xcnsb3wotSX63RxWeONOap7w8orUBAAAAABAOgkUAcEDwVOhSb4K8nqZ9BJfFmbdDeyroWAQAAAAARB/BIgA4oG1NULAY10Zet6tJ7w0+ZzHFVxWxugAAAAAACBfBIgA4IHgrdLOCxaCOxUSLQTAAAAAAADiNYBEAHBC8FbosLiHsjkU3ZywCAAAAAGIAwSIAOCC0Y5FgEQAAAADQuhEsAoADrM5YjAt7eAvBIgAAAAAg+ggWAcBuVVWK8/tMS6VxCTpxQEaT3h7csegpL5MMI2LlAQAAAAAQDoJFALBbaWnIUpk3QTce1btpbw/qWJQksR0aAAAAABBlBIsAYDerYDGujTxNPGOx3CpYLCtraVUAAAAAALQIwSIA2M0iWMzo1L7Jbw/eCl27SLAIAAAAAIgugkUAsJtFCFiZkNj0t9OxCAAAAACIQQSLAGA3i47Fqvg2TX47HYsAAAAAgFhEsAgAdrMIFkvjmhEs0rEIAAAAAIhBBIsAYLP8vPyQtYX5NU1+Px2LAAAAAIBYRLAIADabvWxLyFqpVRdiA+hYBAAAAADEIoJFALBZRVFJyJplWNgAOhYBAAAAALGIYBEAbDZv5baQNcuwsAGWIaTFuY0AAAAAADiJYBEAbNampjJkrdwb3+T307EIAAAAAIhFBIsAYLPEmqqQtfJmdCxansdIsAgAAAAAiDKCRQCwWWK1VbDYjI5FgkUAAAAAQAwiWAQAm1l3LLIVGgAAAADQuhEsAoDNEi3PWGzh8BaCRQAAAABAlBEsAoDN2lh1LMbRsQgAAAAAaN0IFgHAZi3eCk3HIgAAAAAgBhEsAoDNgoPFSo9XhqvpH7/Vbq9qgl9fWhqJ0gAAAAAACBvBIgDYLPiMxeacryhJcrlCuxbpWAQAAAAARBnBIgDYLLhjsTnboOsEn7PoLyVYBAAAAABEF8EiANgsIsFiUMdiWWFxi2oCAAAAAKClCBYBwGZ2dCwanLEIAAAAAIgygkUAsFlosNjMMxYllca1MT32VlS0qCYAAAAAAFqKYBEAbJbkC+1YPLZPh2ZdI3grtKeyvMV1AQAAAADQEgSLAGCzthbB4qWHd2/WNYK3QnsryiXDaHFtAAAAAACEi2ARAOzk9yuuOjRYHJSR3KzLlMWZz2V0+3xSVVUDrwYAAAAAwH4EiwBgJ4uzEMM5YzG4Y7F2sSycigAAAAAAiAiCRQCwU3noWYjl3nj5m7mNuTyOYBEAAAAAEFsIFgHAThbBYoU3Xm3jPc26DB2LAAAAAIBYQ7AIAHZqoGMxPSne4sUNC54KLUkqLQ23KgAAAAAAWoxgEQDsZBksJsglV/Mu47UIIi3ObwQAAAAAwCkEiwBgpwY6Fl3NyxWtB75YXBsAAAAAAKcQLAKAnRoKFpt7GauORYJFAAAAAEAUESwCgJ0i1rFIsAgAAAAAiC0EiwBgp4bOWGxmsljhIVgEAAAAAMQWgkUAsFMDHYvNvgzDWwAAAAAAMYZgEQDsxBmLAAAAAIADFMEiANiJqdAAAAAAgAMUwSIA2KmhMxab2bNYHkfHIgAAAAAgthAsAoCNduTkh6yVxzEVGgAAAADQ+hEsAoCNVm7OC1kL54xFpkIDAAAAAGINwSIA2CiuqjJkrfaMxWZuhWYqNAAAAAAgxhAsAoCN4qtCwz/LQSz7wVZoAAAAAECs8Tp1o/z8fK1fv15bt25VQUGBysrK5Ha7lZSUpLS0NPXu3VuHHHKIkpOTnSoJAGwXV9lAx2Izr8NUaAAAAABArLEtWKypqdGcOXP09ddfa/78+crOzt7ve1wul/r3768jjzxSJ5xwgo444gi7ygMAR8RVN7QVunnXqfJ45ZdLbhn1LkSwCAAAAACInogHi7t27dKbb76pt99+W7t37w6sG0btD8N154rVPa5bMwxDhmFozZo1WrNmjV599VV1795dF154oS655BI6GQG0SnGV5q3QPpdb1W5vs4NFuVwq98YrqaZeUEmwCAAAAACIoogFi/n5+XrhhRf05ptvqnLv1r/64WEdwzCUkJCglJQUud1ulZeXq7S0NPDa+u/ZunWr/vGPf+i5557TpZdeqmuvvVYpKSmRKhkAbBc8vKXcGy+5XHI1ezO0VBEcLDK8BQAAAAAQRREJFt988009+eSTKi4uNgWDHTt21Lhx4zR48GANGDBAAwcOVIcOHRQXF2d6f01NjXbu3Kns7GwtW7ZMWVlZmj9/vkpKSiRJpaWlmjx5st5++23dfPPNuuyyy5o9URUAoiEuaHhL3RCWcD7CQga40LEIAAAAAIiiFgWLW7Zs0R//+EdlZWUFAsX09HSdc845OumkkzRs2LCmFeH1qnv37urevbuOOuooSbVh48KFC/XJJ5/o888/V3FxsQoLC/Xwww/rk08+0cMPP6y+ffu2pHwAsF1DwWJTZSbHK7ekyvq9BIsAAAAAgChyh/vGDz74QGeffXYgVDz00EP15JNPaubMmbr99tubHCo2xOv1auzYsXrwwQc1e/Zs/eUvf1Hfvn1lGIaysrJ0/vnn6/3332/RPQDAbt7K4K3QtdOdm9qwePtx+36BQrAIAAAAAIglYQeLd911l0pLS9WjRw/985//1Pvvv69TTjlFXm/kB00nJCTo4osv1qeffqrHH39cvXr1Unl5ue67776I3wsAIsnyjEWpycc5nDW0c733JpifJFgEAAAAAERR2MFiUlKS7rjjDn366ac66aSTIllTo04//XRNnz5dd911l9q2bevYfQEgHMFToQPBYhPf3z89KeS9+xYIFgEAAAAA0RN2e+Hnn3+ujIyMSNbSZB6PR1deeaVOO+20qNwfAJrK22DHYtPeX7+zscJrHnzFVGgAAAAAQDSF3bEYrVAx1moAgAYZRsjwlrK4ujMWmz8WOmQrdHW15POFXR4AAAAAAC0RdrAIANiP6mq5/X7TUnOnQu/3vWyHBgAAAABEiS3B4sknn6wXXnhBOTk5dlweAFoHi9AvMBW6+Q2LqiBYBAAAAADEEFuCxU2bNunJJ5/UpEmTdO211+rzzz9XdXW1HbcCgNhlEfpVNHN4i+lyBIsAAAAAgBgS9vCWpvD5fJo9e7Zmz56t1NRUnXHGGTr77LM1dOhQO28LALHBsmOxecNbzO9NCF1kgAsAAAAAIEps6Vi8++67NWTIEEmSYRgyDEOFhYV64403dMEFF+iMM87QlClTtGfPHjtuDwCxodFgsenJ4qhuaZIspkI3cA8AAAAAAJxgS7B4xRVX6P3339enn36qa6+9Vl26dJG0L2Rct26dHnvsMY0fP16/+c1vNGPGDPmYbArgQNPIGYuJcZ4mX+aK0T32vpet0AAAAACA2GHrVOi+ffvq9ttv17fffqtXX31V5557rpKSkgIBY01Njb755hvdfPPNGj9+vB577DGtWbPGzpIAwDmNdCw2R7tE7973WmyFJlgEAAAAAESJrcFifWPHjtXDDz+sOXPm6IknntD48ePl8XgCIeOePXs0ZcoUnXXWWTrvvPM0depUFRUVOVUeAERehIJF195RL3QsAgAAAABiia3DW6wkJCTotNNO02mnnabdu3dr+vTp+vrrr7Vw4ULV1NRIkpYvX64VK1boscce0/HHH6/zzz9fRx11lNOlAkDLRCpYdDXyXoa3AAAAAACixLGORSsdO3bU5ZdfrldffVVz587V448/rpEjR0qqPY+xsrJSn332ma655hqddNJJmjJlikpLS6NZMgA0XQNnLF4wvEt4l2MrNAAAAAAghkQ1WKyzatUqvfrqq3r55ZeVlZUll8sV+Kduq/SWLVv02GOPadKkSZo2bVq0SwaA/WugY/GQ9KRmXaZufnSFh6nQAAAAAIDY4fhW6Drr1q3Txx9/rE8++UTbt283PWcYhiRp8ODBOvHEE/Xzzz9rzpw58vl8Kiws1D333KMlS5bo/vvvj0bpANA0DQSLUxdt1SOnDm7yZYx6723KPQAAAAAAcIKjwWJOTo4+/fRTffTRR1q9erWkfSFinQ4dOuj000/Xueeeq0GDBgXW8/Ly9Oabb+rFF19UVVWV3nrrLR122GE688wznfxXAICma2ArdF5JVbMu88PGPYH3NuUeAAAAAAA4wfZgsaSkRF988YU+/vhjLViwQH6/X5I5UPR6vRo/frzOPfdcTZgwQV5vaFkZGRm65ZZbNHToUN10002SpKlTpxIsAohdDXQsVtT4m3WZvh1rt06Xx9GxCAAAAACIHbYEizU1NZo1a5Y++ugjzZw5U1VVtd05wd2JAwcO1DnnnKMzzzxTHTp0aNK1J02apF69emnz5s1at25dxGsHgIhpIFj8/XGHNOsyo3u0C7w3BFOhAQAAAABRYkuwePTRR6uoqEhSbZhYN4RFktq1axfY6jxkyJCwrt+lSxdt3rw5JKgEgJhiEfqVe+N1w5G9m3UZr8cVeG/oBelYBAAAAABEhy3BYmFhoSlM9Hg8OuaYY3Tuuedq4sSJiouzmGzaDLt375Yk9e/fv8W1AoBtLILFCm+8+oU9FZpgEQAAAAAQO2w7Y9EwDPXv31/nnnuuzjzzTHXs2DFi177pppvUrVs3HXJI87YTAoCjLILFzI6pzb6M20XHIgAAAAAg9tgSLF566aU655xzNHToUDsur1NOOcWW6wJARFkEi1VxFpOd92NvrshUaAAAAABATLElWLzvvvvsuCwAtC6WwaJF1+F+1HUsVnm88sslt+qdL8vwFgAAAABAlLijXQAAHLCCQr8al1t+j6fZl3HXHbLocoVuh6ZjEQAAAAAQJbadsRjMMAzl5+erqqpKfr+/We/t2rWrTVUBgI2CgsUKb7xcdfuam6H+e8q98Uqqqdz3JMEiAAAAACBKbA0WS0tLNXnyZH3zzTfasGGDfD5fs6/hcrm0YsUKG6oDAJsFB4ueODU/VqzXsajacNKEYBEAAAAAECW2BYvr16/Xtddeqx07dkiq7VgEgIOKZcdi8y/jkrlj0YRgEQAAAAAQJbacsVhZWalbb71V27dvl0SoCOAgFRIshtexWF9IsMjwFgAAAABAlNjSsTh9+nStW7dOLpdLhmFoxIgRuuiiizR48GAlJyfL7WZmDICDQMhW6PDOWKyv3JsQtEDHIgAAAAAgOmwJFj/55JPA12effbYeeeSRFv8wDQCtjtVW6BZekq3QAAAAAIBYYUvr4MaNGyVJcXFxuueeewgVARycLIa3rMwtafZl6n+EEiwCAAAAAGKFLcHirl275HK5NGjQIKWmptpxCwCIeX6LjsWWCrlGdbXk87X4ugAAAAAANJctwWJSUpIkKSEhYT+vBIADl8tieEtLhXQsSnQtAgAAAACiwpZgsVevXjIMQ1u2bLHj8gAQ+2pq5ArqJKzwhNexODAjed81rIJFJkMDAAAAAKLAlmBx0qRJkqScnBz99NNPdtwCAGKbRdgXbsdivHffRzUdiwAAAACAWGFLsHjRRRcpLS1NkvToo4+qqqrKjtsAQOyyCPsqw+xYNF3Wa3HEBMEiAAAAACAKbAkW09LS9Je//EWStHz5cl133XXaunWrHbcCgNgUwY7F+uhYBAAAAADECm+4b3zmmWf2+5p+/fpp7dq1mj9/vn7xi19o0KBBGjx4sNLS0pSYmNjke918883hlgkA0WEVLEagY9EynCRYBAAAAABEQYuCRZfLtd/X1b3G5/NpxYoVWrFiRbPvRbAIoNWx7Fi0aSs0w1sAAAAAAFEQdrAoSYZh2Pp6SU0KLwEg5rAVGgAAAABwgAs7WBw9enQk6wCAA4tNW6EJFgEAAAAAsSLsYPG1116LZB0AcGBpoGPxguFdwrrcYd1S9fO2Iutwkq3QAAAAAIAosGUqNAAc9CzCvnJvvDokhde1eP2RvQPXCL0wHYsAAAAAAOcRLAKAHSI8vGVsz3YNX4OORQAAAABAFMR8sFhVVRXtEgCg+SJ8xqJ77yAry45FgkUAAAAAQBS0aCp0UxmGofz8fFVUVMjn81m+xu/3q6amRtXV1SorK1NeXp5++uknTZ8+XT/88IMTZQJA5ER4KnRdsGjZschWaAAAAABAFNgaLC5ZskT//ve/NXfuXDoPARxcIt6xWHcNi3CSjkUAAAAAQBTYFix+9dVX+t3vfie/3y/DMMK+jmtvl05r4fP59OWXX+qrr77SsmXLlJeXJ5/Pp/T0dA0dOlRnnHGGjj/+eLndMb8LHUBL2NSxyPAWAAAAAECssCVYLCkp0b333iufz2cZDNatBQeO9V+bkJCgAQMGaOLEiXaUaIslS5bovvvu06pVq0Ke27Ztm7Zt26YvvvhCI0eO1D/+8Q9169YtClUCcESEh7cEOhY5YxEAAAAAECNsCRY/+OADFRYWyuVyyTAMnXjiifrFL36h9PR0ffjhh5o2bZq8Xq+ee+45eTweFRQUaNWqVZo2bZpyc3MlScnJyXrmmWeUmZlpR4kRN3fuXN10000qKysLrGVkZKhnz56qrq7WypUrVV1dLUlavHixLr/8cr311lut5t8PQDNFeCu0i+EtAAAAAIAYY8t+3Dlz5gS+vuSSS/Svf/1Lp59+usaNG6ezzjpLUu2WYcMwdOSRR+qUU07Rbbfdpk8//VSTJk2SJO3evVt//vOf7Sgv4jZv3mwKFbt27arnnntO33//vaZOnap3331Xc+bM0a9+9avAe7Zt26YHH3wwWiUDsFvEt0LXXYOt0AAAAACA2GBLsLh69erai7vduummm0zPDRs2LHC+4I8//mh6LiUlRU899ZQGDBggwzA0a9YsZWVl2VFiRD3wwAOBULF3796aOnWqJk6caNranZqaqj/96U+67LLLAmtfffWVNm3a5HS5AJwQ8eEte6dCM7wFAAAAABAjbAkWi4qK5HK51KtXL2VkZJieS0pKUvfu3SVJS5cuDXlvfHy8brnllsDj6dOn21FixCxdulSzZ8+WVBuk/v3vf1eXLl0afP2tt96q+PjacMEwDM2cOdOJMgE4rYGOxXW7SsO6XF3Hot/tUZU76BQLOhYBAAAAAFFgyxmL5Xt/yG3o/MBDDjlE2dnZWrNmjeXzEyZMUHJyskpLS7V8+XI7SoyY//3vf4Gvzz77bA0fPrzR16empur222/X7t27lZaWpmHDhtldIoBoaGB4y4y1u8K6XFL8vo/rCm+c4qtqGr0XAAAAAAB2syVYTElJUUFBQcjU5zo9e/aUJOXn56uwsFBpaWnmorxe9ejRQytXroz5rcL1Ow4vvPDCJr3nyiuvtKcYALHDIuyrtNrG3EQdk/Ztoy73xiu1ql6XIsEiAAAAACAKbNkK3b59exmGEZjwHKxHjx6Br9etW2f5muTkZElScXFx5AuMkJ07d2r79u2SpMTExP12KwI4iASFfdVuj3xuT2QuHXxWI1uhAQAAAABRYEvH4qGHHqoNGzZo8+bNysnJUadOnUzP13UsSrVnFB5++OEh19i5c6ckNdj1GAvqhtRItdu7PZ7a0GDr1q364IMP9O2332rbtm0qLy9XZmamxowZo/PPP1+HHXZYtEoG4JSgYLElg1uClQdPhqZjEQAAAAAQBbZ0LI4bN05SbSj46KOPhjw/aNCgwNdffPFFyPOrV6/W1q1b5XK5QrZJx5Ls7OzA15mZmfL7/Zo8ebJOPfVU/etf/9KyZcuUn5+viooKZWdn67333tPFF1+su+66S5WVlVGsHIDtgoNFb/jboEMuHRws0rEIAAAAAIgCWzoWTznlFP3tb39TUVGRPv/8c+Xk5Oj666/X0UcfLa/Xq06dOql///5au3atFi9erOeff17XX3+9JCk3N1f33HOPDMOQy+XSkCFD7CgxInbt2jeEoW3btnrwwQc1derUwFq/fv3UsWNH7dq1S+vXrw+sT5s2TdnZ2ZoyZUpgQnQ01NTU7P9FMc7n8zX6GIgWT3m5XPUe1+9YbOnfveCQ0qiokO8A+PscLj4HAPA5AIDPAQB8DkSHLcFi27ZtdeONN+rRRx+Vy+XSokWLdMMNN+i1117TEUccIal20Mlf//pXSdJTTz2lN998Ux06dNC6detUXV0duNYvfvELO0qMiKKiosDX33//feDxCSecoLvuust0luSWLVv04IMPatasWZKkhQsX6qGHHtIDDzzgbNF7+f1+ZWVlReXedlq2bFm0SwAkSUMKCpRY73FdGDiuc0KL/+6VexNMj/2lpQfk3+dw8TkAgM8BAHwOAOBzwBm2bIWWaicfX3bZZaYzEuufrXjxxRdr8ODBged37typlStXqqqqKvCagQMH6swzz7SrxBarX2tdqHjRRRfpmWeeMYWKUu3Amueee04nn3xyYO2dd97RmjVrnCkWgKPc9T4fpH3bl0/rk2j18mapCJou7eJoBQAAAABAFNgWLErSvffeq8mTJ2v06NFKTExUZmZm4Lm4uDi98MILGjFiRCBcrP9/+/fvr+eee05ery1NlRHhcrlMj3v06KF77703ZL2O2+3WQw89FJh4bRiGXn/9ddvrBOC84LCvLgzsktTyydDBw1vcNTUSbf4AAAAAAIfZntode+yxOvbYY1VSUhLyXEZGhqZOnaqvvvpKs2bNUm5urtq1a6djjz1Wp59+ekyHilLtlu/6Lr744v2emZiSkqJTTz1V77zzjiRpzpw5ttXXGLfbrWHDhkXl3pHk8/lM7c1Dhw4NTOcGoskTFPTVdSz2799fI3q1D++ib243Xau+EQMHSklJ4V23leNzAACfAwD4HADA50DzLV26VH6/v0XXcCy5q+vSC+bxeHTyySebtgi3FklBP8SPGjWqSe8bOXJkIFjcsmWLqqqqojLEJdaD23B4PJ4D8t8LrVDwVOi9HYtxXm+L/4xWekInTHtraiT+7EvicwAAnwMA+BwAwOeAU2zdCn2ga9/e3HXUoUOHJr2vY8eOpscFBQWRKglALDCM0GBxb5eh9UEJzRM8vKV2sTwCVwYAAAAAoOkcj25zcnKUk5OjwsJCpaamasSIEZKk8vJyxcfHt6o21f79+5se158S3ZiamhrTYxJ04ABTXV0bLtZTNxXa3cAZrM1Rdy3zYkXoGgAAAAAANnIk0crOztaUKVM0c+ZM7dixI7B+zDHHaPLkyZKkGTNm6KGHHtKFF16oa6+9VikpKU6U1iIDBw40Pd60aZOGDx++3/ft3Lkz8HWbNm3Url27SJcGIJosQr4Kz96OxQi0LFp2LBIsAgAAAAAcZutWaMMw9PTTT+uUU07Rm2++qe3bt8swjMA/9W3fvl0FBQWaPHmyzjzzTC1dutTO0iKiQ4cOpnDx66+/btL7FixYEPh6yJAhcrvZkQ4cUKyCxb1bod0RCBYtOxbZCg0AAAAAcJitidbvfvc7Pffcc/L5fCFBoiuobWfr1q2Br3fs2KFrrrlG69evt7O8iDjrrLMCX3/zzTdat25do6/fsWOHZsyYEXh80kkn2VYbgChpJFgM/uwLR7nFVGg6FgEAAAAATrMtWHzmmWf0xRdfBB4PGzZM9913n9566y3L159xxhk6/PDDZRiGXC6XioqKdNddd9lVXsScc845SktLkyRVV1frrrvuUnFxseVrq6qqdOedd6q6ulpS7aTsc88917FaATjEcit03RmLEbi8xyJYpGMRAAAAAOAwW4LFnTt3Bs5OlKTbb79d7777ri699FKNHDnS8j2jR4/WG2+8oXvvvTewtmzZMs2aNcuOEiOmQ4cOuvvuuwOPly5dql/+8peaN2+e6XUbNmzQ1Vdfrfnz5wfWfve73wVCSQAHkMY6FiMwF5rhLQAAAACAWGDL8Jb33ntPlZWVcrlcuuCCC3Tttdc2+b2XXXaZtm7dqilTpkiSpk+fruOOO86OMiPmnHPO0aZNm/Tcc89JktasWaMrrrhCnTt3Vo8ePVRYWKg1a9aY3nPWWWfp8ssvj0a5AOxmGSzWhoG9OyS2+PKWw1voWAQAAAAAOMyWjsXZs2dLqj1L7JZbbmn2+6+77jp5vbWZZ2sY4iJJt912mx5++GG1b98+sLZz504tWLDAFCp6vV7ddNNNevTRR6NRJgAnNDIVOrWNRbdhcy9PxyIAAAAAIAbY0rG4detWuVwu9evXT+np6c1+f4cOHdSzZ09t2LBBOTk5NlRoj/POO08nnHCCPvroI82YMUMbNmzQnj17FBcXp969e+vII4/UJZdcoh49ekS7VAB2amArdM92LetWPOvQTvpweY51xyLBIgAAAADAYbYEi4WFhZJqA8JwZWRkaMOGDaqqqopUWY5IS0vT5ZdfzjZn4GDWwPCW7IKWbVdOivcGrhWCrdAAAAAAAIfZshU6JSVF0r6AMRy7d++WJIabAGh9Ghne0hJ1E6Utr0XHIgAAAADAYbYEi126dJFhGFq7dm1Y4eKOHTu0fv16uVwude3a1YYKAcBGjQxvaQnP3mSx3CpYpGMRAAAAAOAwW4LFo48+WpLk8/n08ssvN/v9//znP2UYhiRp7NixEa0NAGzXyPCWlnDJ1fC16FgEAAAAADjMlmDxzDPPlNtde+kXX3xRX3zxRZPf+/zzz2vatGmBx6eddlrE6wMAW9nUseja+4ldHkewCAAAAACIPluCxX79+umcc86RYRjy+Xy67bbbdNddd2n+/PnKy8sLeX1ZWZlmzpypq666Sk899ZQkyeVy6aSTTtKgQYPsKBEA7GNTx6LbVdexyPAWAAAAAED02TIVWpLuu+8+rVq1SsuXL5dhGPrwww/14Ycfml6zYMECjRs3TsXFxfL7/ZIU2ALdo0cPPfDAA3aVBwD2sWl4y6mDMvXS/GyVexOadE8AAAAAAOxkS8eiJLVp00YvvfSSjj32WBmGYfrHtbfrprKyUgUFBfL5fIFAUZKGDBmiV155hYnQAFonm7ZCD+uS2vC16FgEAAAAADjMtmBRktq1a6fJkyfrscce08CBAwPr9UPG+jIzM3XnnXfqrbfeUrdu3ewsDQDsY9tW6Nr/W+32yr93kEtj9wQAAAAAwE62bYWu76yzztJZZ52l7OxsLVq0SJs3b1ZRUZGqq6uVlpamTp066bDDDtPgwYMDQ18AoNWyqWMxwOVSuTdeSTWV+9boWAQAAAAAOMyRYLFOz5491bNnTydvCQDOswj5ItGx6KrXpVgRHCzSsQgAAAAAcBjtgQAQaTYNb3HV2/1cHnw9gkUAAAAAgMMc7VhsjilTpmj16tVyuVx6+OGHo10OADSdRchX6Wn5x239UxVDtlazFRoAAAAA4LCY7VicPXu2pk2bpmnTpkW7FABonqBgscrtld/tiewtgrdW07EIAAAAAHBYzAaLANBqBYV8kRrc0uhWaDoWAQAAAAAOI1gEgEgLDhYjMLhFklwu8/CWxu4JAAAAAIDdCBYBINLs6lis9zXDWwAAAAAA0UawCACRFhTylXsTInLZ+luhQ7ogy8slw4jIfQAAAAAAaAqCRQCINJs6FusL6ViUpKqqiN8HAAAAAICGECwCQKTZdcai6p+xaBFWMsAFAAAAAOAggkUAiDQHpkJXWnUscs4iAAAAAMBBBIsAEGkNdCz2bJfYoss2OrxFomMRAAAAAOAogkUAiCTDaLBjcXCn5BZd2lWvZdFyezUdiwAAAAAABxEsAkAkWQxQqQsBIzm02bJjkWARAAAAAOAggkUAiCSLcK+uY9FQy5LF+luhK9gKDQAAAACIMm+4b/zggw8iWEaonJwcW68PALawCBbrBq20tGOx/vAWy4EwdCwCAAAAABwUdrB41113mc77AgDIumOxbit0Cy9d/yOX4S0AAAAAgGhjKzQARFJjW6FbmCx2SNwXJjK8BQAAAAAQbWF3LEqSEclJBABwIGisY7GFn5lu976WRYa3AAAAAACiLexgccaMGZGsAwAODI10LHZvl9jiy2ckxSuvtIrhLQAAAACAqAs7WOzWrVsk6wCAA4NlsFgbAl48smuLL1/X80jHIgAAAAAg2jhjEQAiyXIrdG3HYr/0pBZfvltam73XpGMRAAAAABBdBIsAEEmNdCxGwg1H9tp7zbgm3RsAAAAAALuEHSy+9tpr8vv9kaylWQzD0Ouvvx61+wOApUY6FiPh5IGZkqRyb0KT7g0AAAAAgF3CDhb/+te/6pxzztH8+fMjWU+TLFiwQOedd57++te/On5vAGiUzR2L8V733mtahJVshQYAAAAAOCjsYDE9PV2rV6/WlVdeqRtvvFFr166NZF2WFi9erGuuuUa/+tWvtGLFCnXs2NH2ewJAs1iEe5EMFl11t2F4CwAAAAAgysIOFj/66CONHz9ehmFo5syZOuuss3TDDTfo22+/lWEY+79AE1VWVuqTTz7RxRdfrEsuuURz5syRYRgaPXq0pk2bFrH7AEBE2LwVet81Gd4CAAAAAIgub7hv7NChg1544QW99dZb+sc//qGioiLNmjVLs2bNUmZmpo4//ngdd9xxGjdunBISLM4Ca0RhYaF++OEHzZw5UzNmzFBZWZmk2nMVExMTddttt+nyyy+Xy+Xaz5UAwGE2b4Wu+9yzvCYdiwAAAAAAB4UdLNa5+OKLdeKJJ+qxxx7TJ598Ir/fr9zcXL355pt688035fF41KtXLw0YMED9+/dXx44dlZKSoqSkJHk8HlVUVKigoEDbt2/X5s2btXz5cmVnZwe6Huv+r8vl0plnnqnbbrtNXbp0aWnZAGCPRjoW3RH4ZUjdFThjEQAAAAAQbS0OFiWpY8eO+tvf/qZrr71WTz/9tL755pvAxOiamhpt2LBBGzZs0Oeff96k69XfSu3xeHTSSSfp+uuv16BBgyJRLgDYp5GOxS6pzevetlKXTRoutyo9XiX4ahq9NwAAAAAAdolIsFinf//+euaZZ7RlyxZNnTpVn376qXJzc01BYd02vvqdiPUf1+nWrZvOPPNMnXfeeerevXskywQA+1gGi7XdhR53BDoW612i3JtAsAgAAAAAiJqIBot1evTooTvvvFN33nmnlixZorlz5yorK0vr16/X9u3bVV1dHXitYRiKi4tTz5491bdvX40aNUrjxo2jOxFA62S5Fbq2YzEyW6H3XSNkKAxboQEAAAAADrIlWKxv+PDhGj58eOCxYRgqKSlRWVmZXC6XkpKSlJSUZHcZAOAMi2CxfO9WaE+EB06FDHChYxEAAAAA4CDbg8VgLpdLKSkpSklJcfrWAGC/Rs5YjESuaN4KHRQs0rEIAAAAAHCQO9oFAMABxSJYrNy7ZdkVwanQksVWaDoWAQAAAAAOIlgEgEgKCvcqPHGRaVXcq344We4NmjJNsAgAAAAAcBDBIgBEUnCwGLxduYVMHYtehrcAAAAAAKKHYBEAIsmqY9EmdCwCAAAAAKKJYBEAIsnujsV6LYshHYs1NbX/AAAAAADgAIJFAIgkmzsWXfU2Q1d4LEJLuhYBAAAAAA4hWASASHK0Y9Hi2pyzCAAAAABwCMEiAERSSLAY2Y7FpHhP49emYxEAAAAA4BCCRQCIpJCt0JHuWNzXshgyvMXi/gAAAAAA2IVgEQAiyeaOxf1em63QAAAAAACH2BIsfvbZZ5oyZYp27dplx+UBIDYZhlRZaVqKdMfifq9NxyIAAAAAwCG2BIvvv/++HnvsMU2YMEEvvPCCHbcAgNgTFCpKkR/eUl85w1sAAAAAAFFkS7C4Zs0aGYYhn8+nUaNG2XELAIg9Ft2C9m6FpmMRAAAAABA9tgSLBQUFga+HDBlixy0AIPZYhHqVNm6FtuxYJFgEAAAAADjElmAxMzMz8HX9kBEADmhOdyx6GN4CAAAAAIgeW4LFM844I/D1lClT7LgFAMQei1DPzuEt5d6E0EU6FgEAAAAADrElWLzxxht19NFHyzAMvfbaa3r44Ye1Z88eO24FALHD8TMW6VgEAAAAAESP146LZmdn649//KOSkpL05Zdf6rXXXtPrr7+uvn37atCgQerQoYOSk5PlcrmadL2bb77ZjjIBILKsgkUbOxYZ3gIAAAAAiCZbgsXTTz89EBq6XC4ZhiHDMLR27VqtW7eu2dcjWATQKjTSsXjDkb0ifjvL4S10LAIAAAAAHGJLsChJhmE0a70hTe1qBICoswwWa8O/84Z3idht2ifGKb+82robko5FAAAAAIBDbAkWR48ebcdlASC2NbIVOs4duSNtj+vbUR8s22ndsUiwCAAAAABwiC3B4muvvWbHZQEgtjWyFTqCuaL8ezu/Lc9YZCs0AAAAAMAhtkyFBoCDkkWwWNdVmJIQud/j1J0oYTkVmo5FAAAAAIBDCBYBIFIaOWNxeJfUiN2mrmOR4S0AAAAAgGiybXhLQ3JycpSTk6PCwkKlpqZqxIgRkqTy8nLFx8fL4/E4XRIAREYjZyxGchBVoGOR4S0AAAAAgChyJFjMzs7WlClTNHPmTO3YsSOwfswxx2jy5MmSpBkzZuihhx7ShRdeqGuvvVYpKSlOlAYAkdPAGYted2Sn29d1LNZ4vKpxueU1/I3WAAAAAACAHWzdCm0Yhp5++mmdcsopevPNN7V9+3YZhhH4p77t27eroKBAkydP1plnnqmlS5faWRoARF4DHYsRbFaUJNX/9AwZ4MJWaAAAAACAQ2wNFn/3u9/pueeek8/nCwkSg7cFbt26NfD1jh07dM0112j9+vV2lgcAkdVAx6JLkU0Wa/z7Pk9DzlmkYxEAAAAA4BDbgsVnnnlGX3zxReDxsGHDdN999+mtt96yfP0ZZ5yhww8/XIZhyOVyqaioSHfddZdd5QFA5DUwvCXSHYvVvn1bn0POWaRjEQAAAADgEFuCxZ07dwbOTpSk22+/Xe+++64uvfRSjRw50vI9o0eP1htvvKF77703sLZs2TLNmjXLjhIBIPIst0LHRbhfUar27etYrPDG7bcGAAAAAADsYEuw+N5776myslIul0sXXHCBrr322ia/97LLLtMVV1wReDx9+nQ7SgSAyGugY7Gixm/x4vDV71gM2QpNxyIAAAAAwCG2BIuzZ8+WVHuO4i233NLs91933XXyemsHVjPEBUCr0cDwlkirf8ZiyPAWOhYBAAAAAA6xJVjcunWrXC6X+vXrp/T09Ga/v0OHDurZs6cMw1BOTo4NFQKADSxCvSqP19ZbMrwFAAAAABAttgSLhYWFkmoDwnBlZGRIkqqqqiJSEwDYLijUK/fGK+KTWyT9cWK/fbdkeAsAAAAAIEpsCRZTUlIk7QsYw7F7925JUlpaWkRqAgDbBQWLFZ64Bl7YMod0aLvvHsHDWyorJcMQAAAAAAB2syVY7NKliwzD0Nq1a8MKF3fs2KH169fL5XKpa9euNlQIADYIDhaDtylHSGKcJ/B1uTdhv3UAAAAAAGAHW4LFo48+WpLk8/n08ssvN/v9//znP2Xs7bgZO3ZsRGsDANs41LE4rEvKvnsEdyxa1AEAAAAAgB1sCRbPPPNMud21l37xxRf1xRdfNPm9zz//vKZNmxZ4fNppp0W8PgCwhUMdi6565zZa3oNgEQAAAADgAFuCxX79+umcc86RYRjy+Xy67bbbdNddd2n+/PnKy8sLeX1ZWZlmzpypq666Sk899ZSk2h+cTzrpJA0aNMiOEgEg8hzqWDTfwyJYZIALAAAAAMABXrsufN9992nVqlVavny5DMPQhx9+qA8//ND0mgULFmjcuHEqLi6W3++XpMAW6B49euiBBx6wqzwAiDyHOhbN92ArNAAAAAAgOmzpWJSkNm3a6KWXXtKxxx4rwzBM/9Rt46usrFRBQYF8Pl8gUJSkIUOG6JVXXmEiNIDWJahT0Ilg0XJ4Cx2LAAAAAAAH2BYsSlK7du00efJkPfbYYxo4cGBgvX7IWF9mZqbuvPNOvfXWW+rWrZudpQFA5EVlKzQdiwAAAACA6LBtK3R9Z511ls466yxlZ2dr0aJF2rx5s4qKilRdXa20tDR16tRJhx12mAYPHhwY+gIArYrPJ1VXm5ai1rFIsAgAAAAAcIAjwWKdnj17qmfPnk7eEgCcUVkZsuRIx6LVGYtshQYAAAAAOMCW9sCnnnpKS5YssePSABCbLLoEnelYtLgHHYsAAAAAAAfY0rH43HPP6fnnn1d6eromTpyoSZMm6aijjlJ8vP0/ZANAVFiEeZVW3YSRvq1VsEjHIlqxyhqfErweSdKG3aXauKdMI7qmKj3JYts/AAAAgKiydSt0Xl6e3n33Xb377rtq06aNjjrqKE2aNEkTJ05Uhw4d7Lw1ADjLqmPRY/8vUyzvQcciWqGC8mpd/NpCfb02T/3Sk3ThiK56fOZ6VdT41TklQZ9fO07Du6ZGu0wAAAAA9dgSLE6cOFHz5s1TeXl5YPJzeXm5vvnmG33zzTdyu90aNmyYJk2apOOPP159+/a1owwAcI5FmGe5TTnCLO9BxyJaoQe+WqMv1+RJktbkleqhr9cGnttZXKmnZ2/QSxeOjFJ1AAAAAKzYEiz+5z//UXV1tRYsWKBZs2bpu+++08aNGwMho8/nU1ZWlrKysvTkk0+qR48emjRpkiZNmqQjjjiCydAAWp8onbFoObyFjkW0Qk99t6HR51/5cQvBIgAAABBjbNsKHRcXp6OOOkpHHXWU7r77bm3dulWzZs3SrFmz9OOPP6qi3g++W7Zs0auvvqpXX31VqampGj9+vCZNmqTx48crKSnJrhIBIHIst0LXhn692ydG/HZje7bT/OwClXstzp0jWAQAAAAAOMDWMxbr6969uy699FJdeumlqqys1Pz58/Xdd9/pu+++U3Z2duB1hYWF+uSTT/TJJ5/I6/VqzJgxeumll5wqEwDC00jH4gkDMiJ+u04pCXvvYdGxyFZoAAAAAIADHAsW60tISND48eM1fvx4SdKmTZv03XffadasWVqwYIGqqqokSdXV1ZozZ040SgSA5rEMFmtDv6N6R35YlavuHgxvAQAAAABESdQPM6yoqND27du1e/dulZaWyu/3y+VyyeVy7f/NABArGpkKbcenWZs4jySGtwAAAAAAosfxjsWqqiotXLhQP/74o+bPn6+lS5eqpqbG9Jq6IS+SlJgY+bPJACDiGtkKbcfvSa4c3UNvL95uPSCGjkUAAAAAgANsDxarqqr0888/B4LEJUuWqLq6OvB8/RBRkuLj4zVixAiNGzdO48aN04gRI+wuEQBarpHhLW4bksUJfTtKaqBjkWARAAAAAOAAW4LFBQsWaP78+YEgse7MRCk0SPR4PDr00EM1btw4HXnkkRo1apQSEiymnAJALGukY3FHUeSDvgSvR93T2mhrgRH6JFuhAQAAAAAOsCVYvPzyywNnJAYHiS6XSwMGDAh0JI4ePVrJycl2lAEAzmlkeEtBRXXIc5GQGOeRXC6Ve+OVWLPvFzh0LKK1qfb5o10CAAAAgDDYuhW6LlRMTEzUeeedp0mTJmn48OEEiQAOPI0MbzEsmgojwe2qu0+cOVikYxGtzG+nLYt2CQAAAADCYGuwWNe1WFFRoalTp+rHH380dSqmpKTYeXsAcE4jHYs25Yr7PmO98VJlaaO1ALFqZU6xXpi3OdplAAAAAAiDLcHiAw88oDlz5mj+/PnKz8+XVNu9uHbtWq1du1avvfaa3G63Bg0apLFjx2rcuHE64ogj1LZtWzvKAQD7NdKxaJe6jsWQAS50LKKVqPb5dcRT30W7DAAAAABhsiVYvPDCC3XhhRdKklauXKm5c+dqzpw5Wrhwocr3/sDr8/m0YsUKrVixQq+88oo8Ho+GDh0aCBoPP/xwxcfb+0M5AERMI8Nb7NoK7dLejsXgAJOORbQSf5+5XuXVTT9f8bhnf9DtE/rqzEM721gVAAAAgKaydSu0JA0ePFiDBw/W1Vdfrerqai1evFhz5szR3LlztWzZMtXU1EiSampqlJWVpaysLL3wwguKi4vTiBEjNG7cOP3mN7+xu0wAaJnGtkLblCwuzymWZNGxSLCIVuLez1Y16/Xfb9yjOZvztewPEzQwk/OaAQAAgGhzO3mzuLg4jR49WrfeeqveeustzZs3T//5z3901VVXadiwYXK73TIMQ4ZhqKqqSgsWLNAzzzzjZIkAEJ4obIUO3GdvgBnAVmgcwHx+Q28s2hrtMgAAAADIgY7FxiQnJ2vixImaOHGiKisrNWvWLD377LNavXq1XC6XbV0+ABBxURjesu8+dCzi4PLDxj3RLgEAAACAohwsrlixQj/88IPmzJmjRYsWqaqqStK+SacA0GoEdQn65VK1u/Yj1u7fkVgObzEMic9SxLDXF4bfdeh282cbAAAAiAWOBovbtm3TnDlzNGfOHM2bN08FBQWB54K7EwcPHqwJEyZo4sSJTpYIAOEJ6hKs8MYFgj3D5p7FkC3Xfr9UUyPFxVm/AYgyn9/QVW8vDvv9M9builwxAAAAAMJma7BYXFysefPm6YcfftDcuXOVnZ0deC44SGzTpo3GjRuniRMnasKECerUqZOdpQFAZIUEi/vCPsc7FuvqIVhEDDIMQ9e+myWfv2V/MT5YtkNnD+0SoaoAAAAAhMOWYPHJJ5/U3LlztXz5cvn9/sB6cJjYuXNnHXfccZo4caKOPPJIJSQk2FEOANgvOFis10XYNt5j660rrYLF8nIpJcXW+wLNZRiGfvfhck1ZsKXF13p5/haCRQAAACDKbAkWn3/+ecvhKy6XS8OGDdOECRM0adIkDRo0yI7bA4DzrLZC73XmkM623rrBjkUgxizaVqh/zd5o/aRhqFdRrgoTklTQJnm/1/pkZU6EqwMAAADQXLZtha4LFdu2batjjjlGEyZM0IQJE9ShQwe7bgkA0dNIx2LvDon23tpjseU5aJgMEAtu/2h5yJrL8OviVd/rgR/eUN/CnSqOS9RfjrpETx5+FgOIAAAAgBhnS7DYo0ePwBbnMWPGKI5zvgAc6BrpWLT91nQsopVYvL3I9DixulIffvCQTsjOCqylVJfriVkvq3Npvu4cfyXhIgAAABDDbAkWv/rqKzsuCwCxq5GORbtZboWmYxExKDgi/MfMl0yhYn1//GmaXJLuOO4q2+sCAAAAEB5bp0IHKyoq0qJFi5Sbm6uCggK53W4lJSWpW7duGjJkiNLT050sBwAiJyhYLI9zLlikYxGtRf1B0F2Ld+uqZV83+vo//DRNrw+eoCWZfSyfzyupVEYyg98AAACAaHEkWJw1a5YmT56sRYsWhQx0qW/w4MG64oordNZZZzlRFgBETqx1LBIsIgYVV9YEvv79wg8U769p5NW1blv4ga465TbL5z5ekaOrx/SMWH0AAAAAmsdt58UrKip0++2364YbbtDChQvl9/sDwaJhGCFfr1ixQnfddZeuuuoqFRUVNXZpAIgdNTW1/9RT/4zFtDb2nrdoGWKyFRoxrH15sa5b8kXI+mWn/l6VHvPvPC9Z9b26Fu+2vM6esmpb6gMAAADQNLYFizU1Nbr22ms1ffr0kC5Fj8ejDh06KC0tTW73vhJcLpcMw9C8efN0zTXXqLKy0q7yACByLD6r6od98V5bf4djPSiGjkXEsN8s/lTJ1eY/ox/2HaOpgydo6qDjTOvx/hr99udPLK+zp6zKthoBAAAA7J9tP+0+/vjjWrBgQeBxz549de+99+qzzz7TsmXLNGfOHM2fP19Lly7VJ598orvuuks9e9ZuZzIMQ8uWLdM//vEPu8oDgMixCPEq94Z95w3rYvvtGd6C1mDFzuLA179cOSvk+UfHnC9JeuKIc0Keu37J50qqCv0z/eg36yJYIQAAAIDmsiVY3Lp1q15//XW5XLXzH8877zx9/PHHuuyyy9Snj/kAdrfbrX79+unKK6/Uxx9/rAsuuEBSbbj4xhtvaMeOHXaUCACRYxEs1nUsrs4rsf/2nLGIVuC1RVslSd2L8jQof5vpuTldBml+10GSpBXpPfVZ71Gm59tVlurM9T9aXpeuRQAAACB6bAkWP/jgA9XsPW9s/Pjx+utf/6r4+P0PMoiPj9eDDz6oCRMmSJJ8Pp/ef/99O0oEgMixChb3diwuq9elFWmvXDRSEsNb0Dos3V57dvKJmxeHPPdJ39Gmx08dHjrE7YwGgsWyKl/LiwMAAAAQFluCxR9++CHw9d13393s9991112Br+fOnRuRmgDANpbBov1ToS87vHvtvRjeglag7rTl47OzQp77utdI0+Nveg7XnjbJprVTNi5UnI9hLQAAAEAssSVY3LJli1wul3r16qXevXs3+/29e/dWnz59ZBiG1q3j/CQAMc5yK7S9k6AlyeOuPW6C4S1oDQzDkMvw64TN5mBxT5tkLco8xLTmc3v0aZ8jTGtpVWUav3W57XUCAAAAaDpbgsWCggJJUufOncO+RmZmpiSptLQ0EiUBgH2i1LFYp9ybYLFIxyJiy6rcEg3P26TM8kLT+oyew+V3e0Je/3HfMSFrVucsfrwiJ3JFAgAAAGgWW4LFpKQkSVJRUVHY1ygurj2XLDk5eT+vBIAoa2R4iyO3t+qOpGMRMWZTfnlIt6IUug26zhe9R6nK7TWtnbH+R8kwTGt//XptxGoEAAAA0Dy2BIudO3eWYRhas2ZNWOFiYWGh1qxZI5fLFehcBICY1cjwFifQsYjW4gSLwS1f9xxp+drihLb6tscw01rvolwNz9tkWtteVKE3fzZPmQYAAADgDFuCxSOOqD0Xyefz6aWXXmr2+1966aXAVOnRo0fv59UAEGVR3grNGYuIddsLK+Qy/Dpq+yrT+vq0ztrYruFjU6y2Q5+8aVHI2mVTF2n9Lo5OAQAAAJxmS7B45plnBr5+8cUX9dlnnzX5vdOnT9eLL74YeHzKKadEtDYAiLhGhrdcO66n/be3CjEJFhFDnpu7Sf3ydyil2txJ+333IY2+79NDjghZO9ZigIthSFPpWgQAAAAcZ0uwOGLECB199NEyDEM+n0+///3vde+99zY64Xnt2rW65557dPvtt8vv98vlcmncuHGB7kcAiFmNdCy6XS7bb+9ze1QdPPyCrdCIIQ99vVaH5W4IWV8cNA062Oa0TtqckmFaO2bbCrn9vpDXrsotaVmRAAAAAJrNu/+XhOfhhx/W2WefrYKCAhmGoffff1/vv/++MjIy1K9fP6WmpkqqHfCydu1a7dq1S5Jk7D2UvWPHjnrkkUfsKs9xd999t/73v/9Jkh555BGde+65Ua4IQMQ00rE4ddE2/ee84faX4IlXnL9emEjHImLMyDyLYDGj8WBRkr7rfqguXzkz8Ditqkwj8jbp5059Ta9z25/hAwAAAAhiW7DYqVMnvfHGG/r1r3+t7du3S6oNDXNzc5WXl2d6bV2Y6Nrb2dO1a1f9+9//VufODZ+71JrMmjUrECoCOAA10rGY2sa2j1mTcm+8eZspHYuIMSMtOxb7hKwNyEjSmrx95yV+132oKViUpOO2LgsJFskVAQAAAOfZshW6ziGHHKJp06bp6quvVkLCvqmlhmGY/qmTmJioX/3qV5o2bZoGDRpkZ2mOKS4u1n333RftMgDYySLEqwsWh3RKdqSEkAEudCwilhhGyFbo9WmdVZSQFHh85RE9VPDQyVr6hwnKTN53buisHkNDLmd1zqITxw4AAAAAMLO9lSYtLU133HGHbr75Zv3444/66aeflJubG9ginZqaqi5dumjUqFEaM2aMkpOd+SHcKQ8//LBycnKiXQYAOzWyFdrrtvX3NwHl3gTzAsEiYkjn0nx1Kis0rQV3K/7tjMFKbVP79+aRUwfrmneyJEnr2nXRjqT26lKaH3jt+K3L5TL8Mlz7/n6RKwIAAADOc2aPnqS2bdtqwoQJmjBhglO3jDq2QAMHiUa2QnscSjtCOhbZCo0Y0pTBLelJ+8Lxq8b01OHd2+nz1bm669OVmtV9qC5e/X3g+Y4VxTp0V7aWZfQOrO0urY584QAAAAAa5UwrzUGoqKhI9957ryQpLi5OiYmJUa4IgG0a61j0OBQseuKDFuhYRGzw+0O3QUv7H9wyvGuq7pjYT1LtAJdgx21dZnr8ycocbdxd1oJKAQAAADRXRIPF/Px8/fTTT5o+fbpmzpypdevWRfLyrcrDDz+s3NxcSdJ1112nDh06RLkiALZppGOxqsbvSAnl3qBgkY5FxIiiyhrLwS0/Z+5/InSd77qHnrM4bvvqkLXjn5sjn98IWQcAAABgj4hshV6yZIn+9a9/ae7cufL5fKbnMjMzdfnll+vyyy83DXA5kM2cOVPTpk2TJA0YMEA33HCDPvjgg+gWBcA+lsFibceiUwMlGN6CWDVz/S6NzDMHi3mJqdqe3PRfuK3s2F0FCUlqV7lvWvSYnWtCXrcpv1xzNu3RsYd0DL9gAAAAAE3W4o7F//znP7rkkks0e/Zs1dTUhEx8zsnJ0RNPPKHzzz9fW7ZsiUTNMa2oqCgwBdrr9eqRRx5RfHz8ft4FoFWz3Apd+/fe7q3Q/dJrp+qGDG+pqpKCftEDRMPlL3yvfgU7TWs/Zx7S5Gkro7qlyXC59WPn/qb1/gU71KG8KOT1G9gODQAAADimRcHiO++8o6effjqkS7E+l8slwzC0du1a/frXv1ZJSUlLbhnzHnroocAW6GuuuUZDh4Zu3wJwgAkKFmtcbtV4ahvC7R7ecuXoHrUleOJCn6ystPXewP68s3i7BuRvD1lflt7L9PiSw7o1eI0/nzRAkvRjlwEhz43ZuTZkjenQAAAAgHPC3gpdUlKiJ554Qq6938EbhqFx48bppJNOUrdu3VRTU6PVq1dr2rRpgU7F7OxsPfvss7rzzjsjU32M+eabb/Thhx9Kkvr27aubb745yhUBcERQsFhR77xDuzsWe7VPDLmnqa62bW29P9CYF+dv1sA9W0PWV3cwB4lX7Q3IrZx5aGd9cs0Y/Wf9gpDnxu5Yrc/7HG5ac+r4AQAAAAAtCBY///xzFRYWyuVyKSEhQU888YSOP/5402uOP/54XXfddbrvvvs0bdo0GYah//3vf/rd7353wJ23WFhYqD//+c+SJLfb3Sq2QNfU1ES7hBYL7pZtrHsWsIunvFz1o4z63YNu2ft3ze+vHQ5jFSzWFBdLqam23TtW8DkQu75eu0t/tuhYXNN+X7B445E9NeGQ9o3+PTmpf0dd1aV/yPqYHaHnLPr9vgPiv29oHj4HAPA5AIDPgegIO1icP39+4Os//vGPIaFi4AZerx588EEtW7ZMa9euVVFRkRYvXqyxY8eGe+uY9NBDDykvL0+SdOWVV2rEiBFRrqhxfr9fWVlZ0S4j4pYtWxbtEnAQGpSfr6R6j+uHfEWF+bb+XduyuSzknnVWLl6sql27bLt3rOJzILYMyN8Wsra6XrDY21PcpL8jUy4ZqOw3O6lnQU5gbczOtZJhmPY/b8nOVpb74PtzDzM+BwDwOQCAzwFnhH3G4qpVqyRJSUlJuvDCCxt9rdfr1SWXXBJ4vHz58nBvG5NmzJihjz76SJLUu3dv3XrrrVGuCICT3EFnGdaf0Nw3zeLswwiqO46i3CJYdDMZGjFg4B5zsFgUn6idSe2bfZ3Mth75R5jPLe5YUax+BTtMa2yEBgAAAJwTdrCYl5cnl8ulnj17Ki5u/z84H374vjOQsrOzw71tzCkoKND9998vqfYH/L/+9a9q06ZNlKsC4CRXVZXpcWW9rdAn9kx0pAar4S3uoLoAxxlGyPCW1e27mToMMxI9Tb7cjgFDQtbG7DRvh3ZxxiIAAADgmLC3QpeV1W6/S0lJadLru3Xbt+2puLg43NvGnPpboC+77DIdccQRUa6oadxut4YNGxbtMlrM5/OZ2puHDh0qj6fpP6QCkeDZe85hnXLvvjNkJ40dqThP2L/D2a81rh3SnHzTPev079FDivFjGSKBz4HY1WXyUqVUl5vW6p+vKEmXTDxCHnfTwsCFE06UJv/LtDZ2xxpNHTwh8LhXr14aMaJLeAWj1eJzAACfAwD4HGi+pUuXBs7tD1fYwWJ1dbUkNalbUardMl2ntLQ03NvGlK+//loff/yxJKlHjx76/e9/H+WKmsfrDft//pjl8XgOyH8vxLhyc3BSf1tyYoK9Q5y8e/9DWX/7deC56mrpIPz7wOdA7AjeBi1Ja+pNhL7vxAFKiG/6cQEFg4ep2u1RnH/fQdyjctaZXuPlf3+IzwEAfA4A4HPAKWG30RiGIanpW47qv+5AmMxTUFCgv/zlL5Jq/90eeughtW3bNrpFAYiOoLMMrbYl216CxyLA5IxFRNnA/Qxu+cNxfZt1vcr4NlresadpbWTuRrnrBY3shAYAAACcQ3QbprfffjuwBToxMVGTJ0/W5MmTG3z9rnqTWV955RV9+umngcePPfaY0tPT7SsWgH0Mw6JjsXZb8mHdUm2//arcktp7xlkEi0F1AU4LPl9RklbX61hMadO8b0P8hqGfMw/RyLyNgbWkmkr1z9+h1R27S5KauKsaAAAAQAQQLIapqt5QhLKyMs2ePbvJ712zZo3WrNl32HwFXUVA6xU0EVratxX6521Ftt++V/va4TB0LCIWDbDYCr22fdewr3di/wzdndlXVy2fYVoflbs+ECwyvAUAAABwjn0TBQDgYGAR3lmdd2iXugyl/rmO+wohWER0Dczfanq8JTldZXFtJIW3ZTkpwatFnQ4JWR+Vsz7wNbEiAAAA4Bw6FsP029/+Vr/97W+b/PpJkyZp27bazo1HHnlE5557rl2lAXCSxXbjCosJzXbZe9ytdZjJVmhEkb+iUn0Kc01r9bdBXzaqe1jXzcroI79ccssIrB2Wuy9YfDdru84ZxlRoAAAAwAl0LAJAS1iEd5bdgzbxG3X3tAgz6VhEFD3+ylfyGH7T2pp6g1vC7SwsjU80BZSSdFjuhkDK/tbi0HMdAQAAANijxR2LOTk5+uCDD2x9z9lnn92s6wOAY6K8Fdq/N0yxnERNxyKi5INlOzTrqwW6I2h9Xft9nYTuFpyF+HPmIRq8Z9826/aVpepdlKNNaZ3DviYAAACA5mtxsLh27VrdfffdTX69YRjNfg/BIoCYZdmxGI2t0JyxiNhx0/tLdW5hTsj6xtROga9dYe6ZuGhkV/28oK9+ueo70/qonA0EiwAAAIDDHN0K7XK5mjWt0TCM/b8IAKIp6luhjYbvScciomRncaX6WASLG9rtCxa97vA6Fl+5aKT1AJd65yx+s3ZXWNcGAAAA0DwtChYNw7D1HwCIeVZboT21IV+fDm1tv31gKzQdi4gR+WVVkqQ+hTtDntuYti9YvHBE17Cu3ybOo58z+4asH1ZvMvQJz89VSWVNWNcHAAAA0HRhb4WeMWNGJOs44H3zzTfRLgGAHRrpWPzlqG4hz0XavuEtdCwiNizaVihJIR2Lu9qkqCS+Nmwf16u9junTIex7FLRJ1oa0Tjqk3j1G5a6vPRtg786If83eqLuP7x/2PQAAAADsX9jBYrdu9v/ADAAxzypYjKsN+Q7rlmb77dkKjVhjGLX/zyFBweKGdrXnH94xsZ/uO6G/EryeFt3n58xDTPfoVFaoLqV7tCO5oyTpT5+tIlgEAAAAbOboGYsAcMBpZCu032//kQ51p0ZUu73yBU/DIFhElLSvKFFaVZlprW5wy4UjuigpoWWz4248qrflduhRORtMj9kODQAAANiLYBEAWqKRrdA+B86KretYlMulsuBp1GVloW8AbOZySX2KLCZC7x3c4m7GELeGPHLqIC3qZBEs1hvgIknbizhnFAAAALATwSIAtERjwaIDHYv1b1EWF7QdmmARUWI1EbpucEskgsXUNnEae9akkPWRueaOxZbfCQAAAEBjCBYBoCWstkLvDRYHZCQ7WkpIxyJboRElhxRYTITeuxU6ArmiJGnM6IHalmweADMqx9yx6IrUzQAAAABYIlgEgJZopGNxlAPDWy47fN8grXK2QiNGWG2Frhve0i89KSL3+MXATP2ceYhprVdxnjqWFUXk+gAAAAD2j2ARAFqigWDR63bJ7ba/Wyo9aV+YWBZHsIjY0KfAHCz6XG5lp2RIkhLjWjYNuo7b7bIc4HJYvXMW6VcEAAAA7EWwCAAt0cBW6G5pbRwvpczLGYuIDcEdi1uTO6rG07JJ0FYWWQaL+85ZLKiojvg9AQAAAOxDsAgALdFAx6LHgW7F0PtyxiKiz+Xzq1dRrmmtbht0pFlNhq4fLL6zeLst9wUAAABQi2ARAFqioWDRwaERdSFmyFboykrJ53OsDkCSEnJ3KsFXY1rblJopSTqyV/uI3qvLkH7a3SbFtDaq3lbov89cH/wWAAAAABFEsAgALWG1FdoTLycbFn1+Q5LFVGiJrkU47sW3ZoasbUyrnQh98qDMiN7rF4M7aVHQAJd++TuUVMWfewAAAMAJBIsA0BJBwV2Ny60aj1er80qdLyW4Y1HinEU4asPuUtVs2hyyvmlvsNjGG9lvO9rGebQko49pzS1Dw3aF1gAAAAAg8ggWAaAlgoLFkHMOHVQePLxFomMRjnrs23XqWZwXsr45NcOW+/kNQ1mZfULWR+RttOV+AAAAAMwIFgGgJYK2Qld446JUSANboelYhIN2lVSpZ9GukPUtKemSJCPC9zMkZWX0DlknWAQAAACcQbAIAC0R0rFo0TXokJDhLZIK9xRGoRIcrNbtLlX3YnOw6JdL25I7SpKS470RvZ/fMLSqQ3dVeszXHZ67KfB1aWWNAAAAANiDYBEAWqKBrdAT+3Z0rISHTx0kybpjMScn37E6gDi3O2Qr9I7k9qr22NPJO7Zn7bVXdOhhWh++a5Nchl+S9MbP22y5NwAAAACCRQBomQa2QmckO3fW4h8n9JNk3S3pqQydWg3YJd7rVs8ic7CYnWLP+YqSdEL/2i3WwecsJldXqG/BTknS4zPX23Z/AAAA4GBHsAgALdHAVmiv2+VYCZ6997LaCu1heAsclFBSpLQq87medecrStKk/pHt5HW5XHrolEEhk6Glfecsrtvl/IR2AAAA4GBBsAgALdHAVmiPg8FiHaut0ASLcNLuVaHdgVv2diyeNjhTAzOSI37P68f12u8AF78/0mNjAAAAAEgEiwDQMsFbofeeJedxOR8sshUa0dajOHQidHZqbbD4/hWj5bLh70XHpHg9cd8vQ9ZH5O4LFh/9dl3E7wsAAACAYBEAwufzSdXVpqW6cK+kyvlJtFZbod3lZRavBCKvxucPGdwi1Z6xeMaQTor32vctR6++3bUlOd20Vr9j8eUfs227NwAAAHAwI1gEgHBZbDOu2BssbtjtfKBnuRW6gq3QcManK3NDBrdItR2LR/fpYOu927eNV1Zmb9Naz+Jdal9eLCk6fx8BAACAgwHBIgCEqyJ0m3FdsHj+iC5OV9NAxyLBIpxxzpQF6mHRsbglJV0Xjehq+/2tBrgM37XJ9vsCAAAABzOCRQAIl0VoV7cVOs7t7MfrwIwkyzMWXXQswkHBZyyWe+O1KzFVvTq0tf3eiy2CxZG5G2y/LwAAAHAwI1gEgHBZbYX21IZ7Xo+zw1u2FlZYboWmYxFOCt4KnZ2SodE92zty7yyrjsW8TY7cGwAAADhYESwCQLgstkKXx0WnY9EwrLdCuxjeAoe4/T51L9ltWstOSdctx4YGfnZY366zSoPC9foDXAAAAABEHsEiAISrka3Q5dU+R0sxZFh2LLroWIRDOpcWKM5v/nO/NSVdw7ukOnJ/v9ujpRm9TGuH7s6W1+f8hHYAAADgYEGwCADhamQrdILX+Y7FCoszFt2csQiH9LQY3JKdmiG/YThWQ1bGIabHCb4aDczf5tj9AQAAgIMNwSIAhMtqK/TecG9wp2RHSzl1cKbkcqksKFx0lREswn5FFdUhg1uk2jMW/c7lisrK6B2yxgAXAAAAwD4EiwAQLsut0LXbkcur/Y6WcvnhPSQpZDu0mzMW4YBfv5MVMrhFikbHYuh5jiMY4AIAAADYhmARAMJltRXaGydJ2pzvbKA3omvtOXblQcGiwRmLcMB7S3ZYboXekpIuv0MZ+/0nDQg5Y1GShjPABQAAALANwSIAhKuRrdBet8vRUuruFjwZuryw2NE6cPDqYdGxuCUlQz6HOhb/cFxflcS31dp2XUzrI3M3SoYhw8HOSQAAAOBgQbAIAOFqZCt0z3aJjpbi3htkBp+xWFNS6mgdOHgFn7GYl5iq8rgEtUv0OnL/pITa+wRvh84sL1Tn0nzd9tFyR+oAAAAADiYEiwAQrka2Qv9iYKajpTTUsdimqtLROnDwCt4KnZ2SIUkamOHcIKPpvx6rJRYDXEbkbdQ/v9+ogvJqx2oBAAAADgYEiwAQLsut0LXBntvprdAu8/3rxFcTLMJ+idWVyigvMq1lp2bovGFd5HI593dhSKfkRge4fLE617FaAKfsKavS4m2Fyi+rinYpAADgIOTM/iQAOBBZboWOt3ih/dyuuq3Q5mAxsapCMox9ySNggx4Wg1u2pqSrZ3tnjwRwuVzKygwNFusGuNCxiNbEMAxlba8N7Ed0TZVhSCVVNUptExd4zfzN+Tp7ygLlFFeqc0qCPrxqjEb3bBeligEAwMGIYBEAwmW1FdoTZ/FC+zW0FVpSbWdlorMBDw4e63eVqqfF4JbslAx1aOv834fslAzlJySpfeW+80VH5tYGi24CdrQShmHoijd/1uuLtkmS2iXGyeOS9pRX64whnTT10lEqr/brz1+sUk5xbWf6zuJKPTFrvd66/PBolg4AAA4ybIUGgHA1shXaaXXbTS07JsvKHK4GB5P3luwIGdwi1W6FvmBEV0drMfZ25wZvhx6Yv01tqisJFtFqLN1RHAgVpdpu291l1TIM6aPlOUq+5zNl3P+Fvlpj/rv3TtZ2p0sFAAAHOYJFAAhXDG2FrotLLINNizqBSNlVWhUyuEWSslPSNcDBwS2SVO0zJElLgoJFj+HXobuz5fDRp0DYHvxqTbRLAAAAaBKCRQAIl+VU6Hi18Tr/0eree0vLrdB0LMJG7y3ZbrkVesveqdBOqvHXBotZDUyGdnKQDNASPsOIdgkAAABNQrAIAOGy2Apd4Y3TRSOd3f4pSS5ZD2+pXSRYhH0255eHbIWudnu0M6md47XUBYuLMw8JeW5E3iY6FtEqVFT7tHBrQbTLAAAAaBKCRQAIV1DHYoUnTobLHQj5nFTXiMUZi4iG4GBxa3JH+d0ex+uo8fslSSs69lCNy/wtzojcDYEhF0CsmrNpjzr/35faUhD6iysAAIBYRLAIAOEKDhb3hnrrdpdavdpWdUMpLLdCc8Yi7GQYIWcsZqc6vw1aknx7OxYrvfFa1aG76bnhuzbrzk9WRKMsoMlueG+JiipqWnQN9x8+1q5SQnQAAOAMgkUACFfQVui6bsHZG/c4Xkqcm63QcN7LP2YrvbxIiTVVpvUtKelRqaduK7SkkMnQ7SpL1asoV6WVLQttADst21kcketk3v+lcunQBQAADiBYBIBwBXUCRmsitCQlJXglMbwFznr0m3WWE6GjMbhFklLbeANfZ2X2CXl+RN5GbcqngxexaWdRZLc//2LyvIheDwAAwArBIgCEK+SMxegFi5L030sOsww3C/OLolANDgbrdpVaToTOTs3QktuPc7yeQZkpga+DOxYlaWTuRhlM20WMmrs5P6LXy9rOZz8AALAfwSIAhKuBrdDRMjAj2bJj8YufN0ehGhwsgge3SFJ2SoaGdkmNQjX7ZGX0DlkbnrdRfnJFxKipi7Y1+bWZpfkauHurDinYIbffZ2NVAAAAjfPu/yUAAEsxtBVakvyGYXnGYk6O82c+4uBh1bF4xxUTo1BJrQSvW5U1fuUmtdfOtu3Uuawg8NyIvE0qpmMRMWpH8f63Qh+Ws17/mvG8jtqxKrC2s207PT76HD15+FkyXPQMAAAAZ/HdBwCEq4Gp0NHiNwzLjkV/CWcswj49LM5YHD7m0ChUUstfLzhcHHTOYt/Cnfrqp/VOlwQ0ia+RdlqX4de9c9/SvKl/MIWKktS5rECPz3pFn793vzqVRnY7NQAAwP4QLAJAOAwjBjsWrWvo2SYKxeCgETy8pTC+rZSWFqVqav9q1llicc7iR29+5WA1QNOVV/sbfO6R7/+rB+ZMVVwj255PzM7St2/fo5TKfb9M2lrAsCIAAGAvgkUACEdlZchSaVxtgndIx7ZOVyOp4a3QbWtCawUiJfiMxezUDLWN90SpGnPHotUAlxF5G5WdTxcvYs+SHdbDVs5eO1d3LPhfk64xKH+b/vnN84HHPR/6WrM37o5IfQAAAFYIFgEgHGWhwURdt+AxvTs4XY2khrdCd/E23AUDhMswDMX5qtWlxLz1MjslQwne6AWLAzOSA183GCzSxYUYUlpZo5LKGsvn+uZv1yufPx2y7nO5Nb/zABUkJIU8d8WKb3XxylmBx9e/uyRyxQIAAAQhWASAcFgGi6GhnpNGdE2z3Aq9dnPoGXhASxVV1KhbyW65ZT4XbmtKepQqqvXv84YFvl7doZsqPHGm54fnbWr0LDvAKaWVNTr7lR+Vdu9nSrv3s9AXGIYmf/mM0qrM/70pSEjSqMuf1JGXPq7u17+iL3odFvLW/3z9H2XuPW9xZW6Jbv7fUnV/4Cu5//Cxnp+7STU+fuEEAAAig2ARAMJhESzWdQu6XE4XU6tdYpz6dQ8NdVwV5TKYhIsIeydru3oW7QpZz06NbrB4bJ+Oga99bo+WpfcyPT9s1yZt31PqdFlAiH/O3qiPlufIb5jPBq1zxvofNWHrspD1K07+nZbu7cYti2ujX516m3a2bWd6TVpVmWn79L/nbNL2otqp0ze+v1RnvbKAcBEAAEQEwSIAhMMqWNzbsdgtLdHpagKePG+EKj1e01rbmko6tBBx17+3JGRwi1S7FTqa3G5zsr8ko7fpcduaKj3w7+navIdzFhFdj89seEK511ejx76bEvqeI87Rx/3Gmtby2rbTVSffGvLaG7I+a3BK9GercjV3MxOkAQBAyxEsAkA4ykPPaKvrWLx0VDenqwnwuF0hA1ySqiuVW1IVpYpwIOthFSymRjdYlKTzh3cJfN3QOYtPz97oZElAiPzy6gaf+/XSLzUof5tpbUdSe/3fkRdbvv6LPofrw75jTGtta6r0x0aGvryxaFuDzwEAADQVwSIAhKOR4S2DO6U4XU2A2+UKTKeu07a6Uk/MargzBmiu6r1bKK22Qm+J8hmLkvTnEwcEvrYKFofv2qSnvtvgZElAk8XXVOu+eW+HrN9/1C9VGt9wR/wDR14SstZY12JljS/8IgEAAPYiWASAcDSyFTqarILF5OoKbWUKLiJo7qbaoCK4Y9Evl44/bmQUKjIb2iVVM288SlLoVmhJGp5HtyJi16UrZ6pLUBi4rGNPvTL0hEbf93Onvvqgr3mbdNuaKt2QZTEYBgAAIEIIFgEgHI0Mb4kmt0sqCQoWk6orQs6dA1pid1nt1vqeReZgcUdye1UHnfEZLeP71g5xKWiTrM1B5z6OyN0UhYqA/XMZft3+0wch6/cf/Uv53J79vv8Bi63S1yz9Sh5/aHeiS/x3AQAAtBzBIgCEI6Y7Fs11JFdX8OMjImrZzmJJUo9i81bo7JQMDchMjkZJlhK8td/mBHct9ijZpfblxVGoCGjcKRsXasieLaa1Ne276sOgTsSGLO7UVzO7DzWtdS/ZrVM3/BSxGgEAAOojWASAcMRox6LLJZUEncGVXFWuT1fkRKkiHIimLNii1MpSpVWZ/x5kp2ToohFdo1RVqD+d0F+StKSBcxaBaNhSUK6kuz+1fM6qW/HJw8+SvwndinWeH3FyyNr1Sz5v8vsBAACag2ARAMJhMRW6bnhLNHVsGx/Sseg1/Kosq5BhGFGqCgeajXvKQrZBS9LWlHTFe2PnW4tLRtZOaLc+Z3GTs8UAez341RqVV/tD1g/dtVkTtyw1reUlpurVIZOadf1p/Y5UXmKqae3kjYvUqzDoF0y0sgMAgAiIne/+AaA1idGOxWqfXyVxoVNDk6vLA+fiAZHQszg0WMxOzVAsHefZNz1JE/t2VJZFsDiCAS6IkhfnZ1uuX58V2lX475GnqqKZ/22p8sZpyqHHm9bcMnT1sq9Na9+sDZ3qDgAA0FwEiwAQjhg9Y7HKZ1gGnEnVlfKHNsgAYbPqWMxOyZDHFUPJoqQxvdprXbsuKgvqKKZjEbEksbpSl62caVqrcbn1wvBfhHU9q/f9cuUsqV7nenZBOZ3sAACgxQgWASAcMdqxmOB1N9ix6OcHSERQ8OAWqa5jMbaCxfS28fK7PVqW3su0fujubKmmJkpV4WBVUF5tuX7h6tlqV1lqWvuo7xjtSO4Y1n3Wt++q77oNMa31LdypsTtWm9ZOfXF+WNcHAACoQ7AIAOGI0Y7Fvh3bqiS+Tch6UnWl/OSKiCCrjsUtKelyx9h3Fj3b1wbtwQNcEmuqpLVro1ESDmJVNdat49dZDFeZHGa3Yp2pgyeErF26cpbp8Rer87RsR1GL7gMAAA5uMfbtPwC0EjE6vMXlcqk0LjRYTK6iYxGR1aso1/S4zBuvXYmpahvX9Om1TjhlUKYkaUl679Anlyxxthgc9KwaeoflbdSRQZ2EG1Mz9WXvw1p0r/cGHKUqt9e0duHq2fL4faa1M1/+sUX3AQAABzeCRQAIh0XHYiwEi5JUYhEs1nYsEiwicnoFdSxuTs2UXC61jfc28I7oSE6orScrs3fok1lZzhaDg55VsHjdki9C1l4cfpIMV8u+Td+TmKrPe48yrWWWF+qEzYtNa5vyQ39RBgAA0FQEiwAQjqBgscITJ787Njq1LDsWq8vZCo2I8fpq1LV0j2ltc2qGplw8MjoFNYFVx2LJgoXOF4KD2uerzIF82+oKXbZipmmt2u3RK4ee0KTr3X/SAN19fL8Gn586+LiQtUtWfdekawMAADQFwSIAhCMoWIyFwS11xg/vGbKWVF1BxyIiYtb6Xepesksew3xWXHZqplISYqtbsb7CNsnanJJhWqv+mY5FOOvF+ZtNjy9cPVtpVeb/nnzUd4x2Jndo0vWuH9dLvx/fV4lx1t/Sf9x3jIqDBnqdtW6+4mush8gAAAA0F8EiAIQjOFiMgcEtdXp3zwhZS66uoGMRETHxP3NDtkFLtR2Lw7qkRqGipssKGuDSfneOtGdPA68GIq9zirmj3GpoywvDT2769VLbqGNSvH68dbwuP7y7kuLNnfPlcQn6qO8Y01paVZlO2vyzaa2hoTIAAAD7Q7AIAOEIGt4SSx2LvqSkkDU6FhFJwYNbJGlTaif1Sw/9sxdLlmb0Dl1kgAuiZHjuRo3bsca0tiGtk77uNcLy9e6g8xmP6t0+8PWhnVP06iWHqfjhU1Xzt9NNr3tvwNEh1zp/zQ+mx23u+lRLtjMdGgAANB/BIgCEI6hjsW5wy2WjukWjGhNfYtuQteQqgkW0nLH3z1DvwtBgcXNqaKdsrMmyCBZ9Py92vA4cfKpq/Hrquw16J2t7YM1yaMuwk7T2nhP05XXjTOsDM5L01mWHB8JFj9ulOyZan63oDkogv+h9WJO2Q9//xaom//sAAADUIVgEgHA0sBX6kI7R79iy7lislJ+dbmihNxZtk2Tdsbg5NdPpcprs0r2Bf/BWaEn69K0vA4EpYJfzX/1Jv/9oeeBx2+oKXbpypuk11W6PXhl6gg7pmKTj+6frn2cP1ZBOyTrukI7635Wjdf6Irlpxx0S99svDtPKOiTrz0M4N3u/0wZ0CX1c0sB36xKDp0B8uzwn/XxAAABy0CBYBIBwNDG+Jha5Ay47F6nLlllRGoRocSP770xZJUs9i8xmL1W6Pug7sHYWKmuZvpw+RJK1v11lle7uL63TdvFb/9+Uaq7cBLWIYhmZv3K1//7BJn6w0h3ZWQ1s+7DtW9152rCTJ5XLp5mP6aNkfJ+rbm47S4E4pkqQBGcm6dFT3/R478N9fHmZ6bL0denaz/50AAACCESwCQHMZRoMdi7EwIMXfNvQHzrbVlSqp8kWhGhxIvl67S1Jox+KWlHRdMCp0GnmsaBtXO9DC7/ZoaXpv03NDd23WC7PXR6EqHOiuf2+Jxj87RzdPWxry3LUW26AnD/+FrhvXKyL3bpcYp3m3HKOhnWsDScvt0Ot/DNkOPXmeeWo1AADA/hAsAkBzVVbWhov11AWLvhjoWPS3aSO/zGdsJVeXB60A4XEZfvUo3mVa25yaqfSk+AbeEVuCB7i08VWr3dZNUakFB67s/DK9OD/b8rlheRt15I7VprUNaZ107Z+uVpwnct+aj+nZXkv+MEGHdGyrirgEfdx3tOn5dpWlIduhr39viZ79YaN8sfBbMgAA0CoQLAJAcwVNhJak8rjaUMUfAz+MuVxulcS3Ma0lVVfGxDZttH6dS/OV4KsxrW1OzYjp4NpVrzirAS4j8jY6VwwOCv9duLXB565d8mXI2ovDTtJ5I+0Z/lX3x7+p26F/O22ZfvfhMltqAQAABx6CRQBorqBt0JJUHkNboQsqqlUaZw4Wk6vKY6I2tH69ivJC1rJTMuWO4e8oXPViT6sBLgSLiDS3yzpqT6yu1GUNDG1xNfCelkqK90qSPu89qknboSXp2R82MdQIAAA0SQz/GAAAMcoiWIylrdC5JZUqiaNjEfawmgi9KS3TFN7Fmvp5zdL00DPshuVtZusnIqqhvw0Xrp6tdpWlprWP+o5RTlJ7+2rZW0xD26FPyF5s+b4a/k4ghm3cXaYTnpur3g99rds+XKbKmtBzpF9ftE0jn5il0U99p4+W74xClQBwcCBYBIDmsgoW906FHtk11elqQpzQPyMkWEyuLidYRERYdSxuTs2QTc1WEVG/tMI2ydqUmml6fkTeRv3+o+XOFoUDWkMdiw0NbakbMGSHQZnJga+tt0P/YPk+wnbEsuvfy9I363Ypu6BcT3+/UVMWbDE9vya/Wle/s0RLdhRp4dZCnf/qT9paEHqUDQCg5QgWAaC5GulYPGNIJ6erCTG2Z7uQrdBJ1ZX6eVtRlCrCgaCoona7pFXH4ubUTI3taV/HVUsFZzxLgiZDdy/ZrXe+WeJcQTjgWeWKQ/M26agdq0xrG1Mz9VWvkXrm3GG21fLrsfsmtltthz573XzL7dB0LCJWVdX49fVa8xCxG983T1//dKP5e7Uav6F3l2y3vTYAOBgRLAJAczUyvKV92+hPxnW5XCHDW5Kry/XwjLVRqggHguLK2oEtPYM6Fv1yafjoQ9UvPSkaZTVJ8Nl1SzJ7h7xm8E7OWUTklFaFbsu8KWt6yNqLw0+S4XLrguFdbKtlUr/0wNcVcQn65JAjTM83tB2ajkXEquvezbJc/zG7QH//qVCTlxXr+20VIc+vyi2xuzQAOCh5o10AALQ6jXQsxorgjsUEX428QZN8geaoyxgOKTSfU7U9uYPe/vWRUaio6YKbxxjgArt9uMz896R9ebF+tfwb01qNy61XDj1B143rpaQE+74lDw7W3x14jC5Z/b1p7fw1P2j6IebzF+lYRCyqqPY1OHX9+Bfmq7LG3+B71++q/f6trKpGv/1gmXKKKnXiwAz99ug+crtj+DwPAIhxBIsA0FwNnLHYo10bixdHR/AZi5KUVB3623ugqXx+Qy7Drz6FOab19e06q7sntjdAeIN+YAzeCi1Jw/M2OVMMDgpLdpiPnrh26ZdqW1NlWnt3wNHamdxBNxwZOlDITnXboVOq93Xfn7VuvuJ81ar2xAXW6FhELLLqBq7TWKgoSd+s26WJ/56jWRt2B9amr8pVvMetG4/qHakSAeCgE9s/CQBALGqgY/H84V2jUIy1MotgMZlgES1wz/SV6lKSrzY+81lsG9I6R6mipvMGBZ/r23VWaVCXMcEiIsUIGpTl9dXoNz9/GvK6pw8/U8v/OEEju6U5VZok6+3Q7StLdcJm8/bSworQcxcBp1TW+LStsFxlVebdFi1tLKwfKtb5zf+W6snv1uu/P22Rn0AdAJqNYBEAmquBjsWGpoBGQ0MdixXVDf+mH2iI32/orcXb1bdwR8hzG9OiP7CoKb66flzga7/bo2Xp5i6xQ3dnSzUcF4CWW7qj2PT4vLVz1KPEPGhibpeB+ucj12hwpxQnSwt4b+D+p0NvLeSXUYiO9btKdcST36vHg19r8N++1YLsgsBzwVv7I+X2j1boyrcW67Kpi2y5PgAcyAgWAaC5rIa3eONV4298C46Tgs9YlGo7FrcUhNYO7E/R3sEthxTkhDy3oV3sdyxK0sS+6Tp98L4QdElGb9PzbXzV0po1DleFA9Gbi7eZHt+66KOQ1zx1+Fka1iXVqZJCfNb78JBfQJ2zbp5pOvSbP28LfhvgiCe/26DlObUB/ZaCCv3fl6uVX1allTnFys639/uYtxZv11a+VwKAZiFYBIDmamAr9LpdpVEoxtpxI0LP7EqqrhA7fBCO33+4XFLo4BapdWyFliS326X3r9y3/dNqgEvx/IVOloQD1GPfrAt8PXb7Ko3bYQ6ss1PS9b/+RyoxzuN0aQEVcQn6OGhYS7vKUp268afA4xfnZ4ds6wac8O85m0yPp6/KVcb9X+jQv8/UyH/Msv3+P24psP0eAHAgIVgEgOZqYCv0pytzo1CMtZ7d00PWkqsqtHh7YRSqQWs35actkqQ+FsHi+lbSsShJcfXOWgzuWJSkvLkLHKwGB6JNe8z/fbh10cchr3l25GnyuZ0NFS8Y3sX0+Mhe7fXWoPEhr7t05UzT4+4PfqXc4ko7SwOaxMlfjHLOIgA0D8EiADRXAx2LscRISg5ZS6qu0KsLtkShGhwogrdCl8S1UV6is4MnWip+b7hoFSymrF7hcDU40Bz5r9mBr7sX5YWcW1jqTdDk4b9wuiw9dMog9enQVpKUkRSvJ886VJ/3GaXdbcxnPJ6+YYHSKkoCj3cUVarz/32pVbnmcyOBA5mPTl0AaBaCRQBorgY6Fod0Cg3zosVomxSyllxdoc9X50WhGrRmvnqdG8HDWzakdZJiaGhRU9xybO0W6KKEJG1KzTQ912blsmiUhANEVY1fOfW6+25e/Km8hvns3VcPPV4FbZz/b0X/jGStu3uSNtxzvLbff5LG9GyvR84eoXeDhrgk+Gp0/po5Ie8/8+UFbIvGQYOGRQBoHoJFAGgui2Cx3BuvC0Z0jUIxDUgODRaTqpnwiea74f0lkqSkqnJ1KjNvpW8t5yvWN6nfvmMCsoK6FlPycqTdux2uCAeK+gO8UitLdX3W5yGv+eeo0yVJAzNCP6Pt5nK51LtDW3nctb8MOKRjW70+eELI64K3Q0vSul2ltg/NAGLFpW8s0nHP/qDJ8zYTqANAExAsAkBzWU6FTlB6UnwUirFmJFl0LFYRLKJ5DMPQS/OzJUl9CkMnQm9s11m/PKyb02W1SBtv/XMWQwe4KCvLwWpwIKmfP9y0eLrSqsy/hPq0zxFa06G7JGnFHROdLM2S35DmdB2sjUGduxO2LlNvi/NUK33+kDWgtYnzVatjWZF6FOUptbLhoXvfb9yj699boveW7GjwNQCAWt5oFwAArY2vtFT1j92v9Hjlc3vkjqEtoa5kizMWawgW0TzzswsCX1tNhM5u31n3nzTAwYparv4WN6tzFrVkiTRpkmP14MBRUFEtSWpTXalbF30U8vxjY84LfO2Kgf9eHNE9TXK59MaQCbp33jum565aNkP3H32pac0TAzUDzeUy/DpuyzKdtX6+jt62UiNzN5iOKFjZobu+736onh9+sn7u1Dfk/Re9tlDnD+8SE39nASBW0bEIAM1UuLvI9LhucEtGDHUsJrZLDVmjYxHNtTp33xCHQyw6Fm+58kT1z4ids0Wbom38vl8LZNGxiAh5f8l29Xjwa0nSVctnhBwb8EPXQZrdbYgk6Yojujten5We7WuHubw6JDRIv2rZ13L7faa1q99erDFPfad7P1ularoXYZNITSHvl79dD85+XRsmX6tv3r1Xty76WEfkrAs593Twnq26bskXWvj6bfrv9CfUvSj0LOrj/j1HFdW+kHUAQC2CRQBoprJC83TMsrjaYHFsr/bRKMdSt27pIWucsYjmctf7LqFvQeh2sD5HDHWwmsgY06Nd4OsNaZ1UGjTRvWzhzw5XhNauvNqnC/67UJLk8fv0hwX/C3nNo2MuCAw6euacYY7W15iMpHitb99V3/Qw19S9ZLd+scn8d+H7jXv009ZCPTxjrZ79YZODVeJg8cPGPTr079+G/f5Opfn67aKP9cPUP2rNyzfoT/PfUa/ipg+tu2zlLGX99xYdvXWFaX32xj268q3FkmoHmhVVVBOuA0A9BIsA0EzxleaArq5jsUe7xGiUY8mVkhKyRrCI5qq/vT/4jEXD5ZJ69XK6pBZzu1369JoxkiS/26OlGeZ/B/eKFfJVVUejNLRSbyzaGvj6otXfq09Rrun5pem9NP2QwwOPkxJi5ySiiXuHGb007KSQ565Z+mWD7/v9R8ttqwkHrydmrdfusmZ8/hqG+uZv17VLPtcX796nrc9fpae/nawjd6wOu4b2laX68v0/64x1803r72Rt1+Y9ZRr3z+/V7t7PNfzxmVq+s7iBqwDAwSV2vrMBgFYiLmhLcbk3drZABySGhpwEi2iuwvKawNd9C8xnLBZ08LuA3gAA3alJREFUyFT7Nm2cLikiThncKfD1kow+GrdjTeBxG1+1/j3lC9103enRKA2t0HXv1k5Ol2Hozh/fD3n+sTHnyXDV/i4/wRtbv9P/9dieeidru/7X/0jtaZOsDhX7jj84Y8MCdSrNV05S7HTj48D2wbLQs3xNDEN9C3ZowpZlOm7rUk3YskzdS3Y3+frVbo8WZfbVio49VOGN14D8bTp620q18ZnDzMSaKr3/0SM6/dw/68veowLrd09fqYVba485WJ1Xqv/7crXe+dURTf8XBIADFMEiADSTO2gqdN1W6Jjidqs0ro0pTEze+/XWgnJ1j6HuSsSum6ctlSR5fTUhw1v2dO2l1hw3JHjdqqzxa0l675DnZn84k2ARTdY5JUE7iyt12oafNGzXZtNzG1Mz9fbAYwOPH/jFQKfLa9TEfum6akwPvfLjFr0xeIJ++/Mngefi/D5dt+QLPXjkxVGsEAc7t9+nCVuW6by1c3TG+h+bFSTW+bbHMP13yCT9r/+RKk5oa3quS8luPTT7dV21fIZp3Wv4NfXTxzX60n9oY7vOkqS3Fm83vYaJ0QBQK7Z+bQoArUBIsOiNwWBRUnm8uZusLmT864y10SgHrcxPWwoCX/ct2Km4oEEOu3pYDD5pReI8tdu8rQa4jMjb5HA1aM1Kqmo7e+/88b2Q5x4ffa587tqBQT3bJerXY3s6Wtv+eNwuvXThSO28/yRNttgOfUPWZ4rzcTQA7LezyLyrok11pa7P+kyrX75RX793n27M+qxZoeLKDt3156N+qT6/nqzjL/yrXh16fEioKEk7kjvqmpNv1W+Ov0F+mSc/d6go0f8+elht2fEBAI2iYxEAmsMw1LbGPLEwJjsWJcWlpUqlBYHHdVOhn5+7Wf85b3iUqkJr8cOmPYGvB+ZvDXl+V/fWHSx63W5JvpAzFiVp2K5NjteD1mn9rlKVVPo0bvsqHbN9pem5nLZpeuXQ4wOPF99+nNolxjldYpNkpiRoWUZvfdtjmCZuWRpY71Kar/PXzNGbg4+LYnU4UM3dtEc3vL9ES3eYzyqctDlLL375L/UOOq90f7JT0vX2wGM1dfBxtb80crn2/6a9/jPyVBXHJ+q/nz1pWh+Rt0mPfTdFvz3+hmbVAgAHE4JFAGiOqip5DPMkwDJvgq4a0yNKBTUsqX2qVG/XTjK/cUcz1P9xbOCebSHPdzlihHPF2OAXAzP09uLtKkpI0sbUTNPAjRF5G6NYGVqTyfOzJUm//+mDkOf+OeoMVez9xVNmcnzMhor1/euw003BoiT99uePCRYREX6/IbfbpV2llXrlxy2681NzGB9fU60nZr2k3yye3qTr5Sck6bvuh2pWj2Ga1X2oFmf2CZxnGo7Xh0zUiNyNun3hB6b1Gxd/pjcGT9C8roPCvjYAHMgIFgGgOcrKQpbKvfE669DOUSimcd52aabHqVWhtQMNqT8RemB+aLB42KTRTpYTcecO66K3956XlZXRxxQsdivZI+3aJaWnR6s8tAKGYehv365Tn4KdOmfdPNNzpd4EPTf8lMDjf549zOnywvJx3zHalJpp6hQbt2ONxm5fpfmEKghTXkmlLn1jkb7bsEf90ttqRU5JyGvaVlfo/Q8f0S82/9zgdSo9Xn3dc6Rm9Bqhmd2HaklGb/n3HjXQVPee0F+5JVV6Yd5my+fvGn+FDstdr0n1Ana3DD3/1bM6/LInVePhx2cACMYZiwDQHFbBYlyCKYSJGWlBwWJlmWQYUSoGrc3czfmBrwcEdSwaCQly9e7tcEWRdXTvDoGvl2b0Dn3BkiXOFYNWp8bn10WvLZQk/W7RRyGd7C8PO1H5iSmSpO9/c7QuHNnV8Rqbq0PbOPncHv1nxCkhz92x4H9RqAgHij98vEJfr92lKp/fMlRMqyjRl+/+ucFQcXnHHrr6F7co88bXdca5f9ZTh5+lxZ36NilUHJSZrNMGZ2reLcfI//gZeuDkQXru/OG68ajelq/3uT26+uRbVRp0fvawXZv1+4Uf7v9fFoiC1bklGvf090r/8+f69TtZKq2siXZJOMgQLAJAc5SEfkNcEpcodwzmikpNNT30Gv6Q8yEBK8/+sFFv/rwvTAzuWHT16yd5mtclEmu6pu0bbmQ1wKVy4SIny0Er88OmPXpvyQ61Ly/W1Uu/Mj3nc7n11KgzA4+P7tMh+O0x6foja88bfXHYSSqJMw//OmfdPA3avSUaZeEA8NrC0HN663h9NXr/o0d01I5VIc8VxrfVNSf9VsOv+JemDD3BcvhKY7qlJmjFHRP18TVjNaZne9Nznka+cctOzdSfj740ZP2e+e8ovaywWTUATrjp/SX6cUuB9pRV6+Ufs/XyAj6v4SyCRQBoDstgsY1q/DHYCRjUsShJaZWlUSgErcmu0kr97sPlgccdyouUUV5kftHAgQ5XZa8lFh2LU1/9XFsLykNfDEh6+cfaH9quX/K5koJ+YTOt3zhtbFd7PMYxrSRUlKQHfzFIr14yUpefNFyTh/8i5Pk7FrwfhapwoHv628mmbcd1fs7oo+FX/EuvDDsx7HMTrxzd8PnXnv38Qvifo87Qwsy+prXUqnLdO+8d09pHy3eGVRsQSd+uN09Mv/WDZXrgyzW67cNlWpVbOxypotqnimpfNMrDQYBgEQCaozQ0mCuJb6PdpVVRKGY/gjoWJSmtknMW0bh/zd4kX72g3GpwiwYdGGet9elQ2/2yvl3nkA6tEXkbdeyzP0SjLLQCu0qrFF9TrZt//jTkuX8ccXbg67+dPsTBqlrG7Xbp8sN76Kmzhuofh5+lKrf5LLlLV85Sj6K8KFWHA9G1Sz7XjVmfhax/322IJl70sLakZoR13bR4l24cnqJ7j+/X8GvaND5Myef26JZJ14Ws35D1mfoU7AsTz35lgY579gd1/b8vNe7p77V8Z3HIe4Bo+MuXq/X09xt1+JPf6dp3s5R8z3Sl/ukzPTFzfZPen1NcqTNemq/Of/lCl7y+UEUV1TZXjNaMYBEAmqF0d0HIWklcoo7qHYNdKRYdi3UDXPyx2GGJmFAY9I2j1eCWA6Vj8bfH1G6BNlxuLU3vZXru0N3Z2rarWPllMfhLA0Sdz2/oklXfqWvpHtP6D10HmSbHpia0zkEPQ48YrNeHTDCtxfl9uuvH96JTEA44/fds05Pfvhiy/nNGH51y3l9UlJC032uUPXKqHj/DHN639br02dmddfWhKY1ud75wxP7PPZ3bbbCm9RtnWov31+jBH143rX2/cY92Flfqxy0FOvPlH1VQTgAD+20rLNdlbyzSkf/8vtHXlVf79dL8bPkNqcZv6I+frGjSjozr3s3SpytzlVtSpbcXb9e4f85WWRVnN8IawSIANMPPq0NDltK4BA3I2P83wI6z3ApdGyzuLOasRVgLHkRk2bF4gASLF4zoEvg6eIBLgq9GA/K3q7zaLyBYjc+v2xZ+ELJev1tRklrrr3DOOrSz/jb6XPll/jy4ZulX6rl3YnTd9jqgudx+n17+4mm1rTH/4mZn23Y6++x7VRbUQW6l4KGT1SbOo+vH9dKpgzIl1Qb5fx7bTnH72+csaXCn5MD7GnPPMb9STdBW7ItXfa/Bu7MtX79xT5k63Pe5/v3Dpv1eG5CkPWVV+mpNnnKb+b35uVN+0tSft2l+dkGz79nzoa+1aGvt+4oqqi27ET9ekWN6vCq3RAMf+1brd3GsEkK1zl+jAkCUrNucq2OC1kriEuWKxanQFluh6zoWyzljBQ0I/pM84ADuWExPig98bTXAZUTeRuWUVJoGvQCS1HbO9xq+a7NpbV27zvqw71jTmt9ondGi2+3Smg7d9fbAY3TJ6n3dMPH+Gv1p3ju6/qSb9cSsDZp8wYgoVonW6raFH+no7eZhLT6XWxeccVeTtj+vvWuSUvduZU5K8OqTX4/VnrIqtfVIy5eFntdoxeVy6cOrx2je5nwVVVRrXnaBHvxqTcjrVnfsrpeHnajrlnwRWHPL0J/mvaPLTvtDg9f/w8fL9asjuiu5lXYtwxmzN+7WKZPnq7TKpziPS69efJgS4zxKT4rXuF7tG+y63V1apQVbClp07yOeMnc6njuss64a3VNfr83T1EUW3/tJ2lZYoX/9sFFPnTW0RffGgYeORQBohrjy0DMKS+JjNHRgeAvCsN+OxcxMqV075wqyUYLXo1+P7SlJWpLeO+T54XmbWm0wBHtd+uMnIWtPjzpTfrd5WnqX1ASnSoqoBE/tjwgPHHmJfEHdWlcun6E+BTv10nzrji2gjs9vaOoi80ToHkV5+r85b4S89u+jz9EP3fd/JmnJw6eob3roLpEObePl9TTvR1uP26Wj+3TQKYM76bfH9G7wdQ+NvTDkzNGLV32vgbsbnnZdUePXG4safh6QpL9+vValVbW/7K/2GfrlG4t0zpQFOvbZH3TUv2bL/YeP5f7Dx3pi5noZ9b4fKamM/Jbk/y3dqTNe/lFPf79ReY2cHf/P7zdG/N5o/QgWAaAZ4issgsUmbNmJCoa3IAz1c8U4X7X6Fewwv+AA6Vas85/zhkuyngw9PG+jyBURrHrbdp27bq5prTguUa8eOsm0duGIrkpPap3B4okDarvGVnfsrqmDxpuei/P7dO+8tyVJ7j98rA73fa4Plu0IuQZw7pQFumzqz6a1x76bErIFelnHnvrLkb/c7/XiPW61jbenA7Cxv6tbUzP0ytATTGtuGbpn/jsNvKNWZQ1HaaBxX6xueCBW/Y7EP36yQo9+s06/+3CZ3H/4WH0enuFAdQ379w+b1P2BrzTg0W/0xercqNaC2ECwCADNEG/RsVgaq8FiI8Nbthbu/9BmHJzqdywO3r1V8f6g34oPPbC2v3jcLp06KFPFCW21Ia2T6bkReZu0jrOEUE+Nz6/XfvOA4vzm4yReHzJBJfFtTWv/veQwJ0uLqPrb/x8ad1FI1+LlK75V3/ztkqSC8mpd83aWqn2EKNhndW5JyBlt47cs08Wrzdsv/XLp6pNvVZW38SnNkvTW5aMiWmOwK47o3uBzj4w9X9VBHcm/XPWd+ludQ7xXTB6Tg5jg8xt6+vsNzXrPnz5b1Wi3oMfv06TNWfrbrFf0w9Q/avkrN2nVyzfoh6l/1OMzX9Jp6xcoviYyg4VunrZU24sqtG5XqS7870JVcMTSQY9gEQCawbJjMVa3QjfSsbgyp8TpatBK1P85aPiuTaEvGHHgnalWs3dKevB26K6le/TypwujUBFi1dwNuzTp22kh688PP9n0eOFt4xXvPTC+zV7boZteC5oQ7TX8ga5FScovr9anK3MESFK1z6+7p680rbn9Pj317eSQ17487ET91Ll/k64bfFRHpN134oAGn8tOzdSrhx5vWvMY/ka7FokV0ZB7pq/UbR8uj8i13H6fLl/+jda8dL2+fu8+/eGnaTpyx2oN3rNVA/K368gdq/X7hR/q4w8e1LqXrtNtP32gpKrINRgUV9bo1Z+2ROx6aJ0OjO94AMAh/pLQQK4kLjEKlTRBIx2LczfnO10NWon654SPyLX4zfjw4c4V45DhXWtD+CUWA1z8WUucLgcx7JG7/q3eReZtX3O6DNKSzH1/dtp43TqsW+jnb2tz01G9A18/NO6ikMm4l62cpQF79p0hV3dOGA5uK3YWK+HOT/XBsp2m9YtWz9bIPPN/UwoSkvSnYy5r8rWHdk6JSI0NOaRjklbeMbHB5x+26Fq8dOWsQPduMBoW0ZAX5m3e/4ua4NBdm/XT67/Xq58/pT5F+9+S3L1kt56Y9bJWvXKjzl47d7+vb6rtRc2baI0DD8EiADSDqyR0W2RrOmMxdW/H4msLOVAc1nKK9519NTzoh0C/yyUNG+Z0SbarC0Qsz1m06trEQamoolpXLAs91+r5EeZuxe33n+RUSbZ69LTB6t2+9hdnG9p1sezWum/uvq7Fv3691tH6EJuOemZ2yJrH79Nf5kwNWX/gyIuV17Zdk6570oAMHdIxdGhLpA3MTNbi3x9n+dymtM56bYg5ePQaft0z/13L19vdYYnW6bWFW1RY0cLhK4ahGxdP14LXfx8S2DdFt5I9+t9Hj+i9Dx9Wellhy2qR9OBXa9gOfZAjWASAZujmMX8j4HO51SWzXXSK2Z+EhNp/6mEqNPbn5R/3TXoNDtVKu/eSkpMdrsh+a/JqO5GzGhjgsp5zFiFp4dJNOnv9PNNaYXxbvTfg6MDjoZ1T1C5x/2fFtQbJCV6tv2dfmPjQuAtDurUuWfWdBu+u/cxYlVuiPWUNTxLFwaHIIjC5YvkM9Q8aBLYxNVPPjjw15LV3Tupned0PrhodmQKbYFiXFJ20d4BRsIfHXhDSvXv5im/Vp2BnyGuJFVGnpLJGz/6wUQMe/UZXvLm4Rdfy+H164atn9eyM59TGZ31mos/l1rp2nbWmfdeQP6/1nbtunrL+e4tO2PRzg69pqj9/sbrF10DrRbAIAM2QIfMPTaVxCfq/kwdFqZomCNoOnRrBM1VwYOtUmq9OQb/FThlt78H50dI/vbYLZkO7ziEdyCNyN2rsP79XTjHbfA5mVTV+vXf3P5TgM4cmbw86VuVx+36BM/3XY50uzVYul0u3Hlu7zXtzWie9PPRE0/NuGfrznLcCjz9ezjmLMIuvqTZ1ttZ54MhLVO0JDeEHpFt3JbaJ81iu28HlcjUYZG5o10WvW5w5eveP74W8dsbaXSooj8ywDLReD89Yq9Q/fabfTlvW4oFwSVXl+vCDh/TrpV9aPr8+rbOu+sWtyrjpdQ245gUNuvo5dbh5qi46/Q791Mk6tO9Smq8v379ff5v1iuIaCCqb4vGZ68N+L1o/gkUAaAZvuTmYK4lLVHpSfJSqaYKg7dD1OxarapjgiYYNz9sUungADm6RpN8eUxucGC63lqb3Mj03ZM8WFRWX66Plod0oOHhMnr9ZVywP3QY9JWh7cPd2MXrmbgv0T9/Xpfzw2AtU5faanr9ozWwN3ft5sWYXg8Fg9uulX6pXcZ5pbVX7biHhnCRV/+10y6FH0egCbizIfHjshSGT0q9YPkO9Cs3B+vtLd6jDfZ/r7cUNT47GgWdnUYX++9MWzVibp+z8Mt372aqIXLdTab5mvn2PTt0YOlSuxuXWvUdfpsFX/VuvDj1eBW32fW6XxLfVuwOP0ZhLn9BFp9+hnQ0cP/CHn6ZpztQ7TGfnNtek/8wJ+71o3QgWAaAZ4srNv2ksiW9jGnYRc4I6FtOq9k21fvSbdU5Xg1ZkhNWZPQdosDi4076BAMEDXBJ8NRqYv01v/swPhgezT9/7VmN2ms8QXNW+m+Z1GRilipzTp8O+sHRLaoZeHBZ6huT9c9+UJOWWsBUa+yRWV+pPFlOT/3LUL+VzhwZ3HrdL5wztrLZBod5/LznMthrDsa59V00dNN60Fuf3WXYtStIlry/Sje8zCOxgsDavRCOemKUr31qsE5+fp95/Df2FVDgG7t6qOVP/qMNzQ7sCtyV30PiLH9XD4y5Ujcdr8e69XC69O/AYDbnq33p9sPU5oofnrtfC127T1Uu/lAyj2XXOXL9bR/9rtnz+5r8XrRvBIgA0g7e8zPS4JK6NXLF8OHdQx2Ld8BZJ+suXnIWChg2z6lg8ACdCB7Mc4JK3STPX79aG3Zy1eLAaP2d6yNqrhx5/UIx9ndQ/3dSZ/8jY81URtIX1vLVzNSJ3g16anx38dhwk1u0q1S9fN3dS3bR4urqU5pvWsjJ6692BRytYvKf2x9K28V79/YwhivPU/t26cERXnTgg3aaqGzf+kA4NPvfXcRfKH3SK4pXLZqhHUZ7l65+fu1nLdxZHtD5EV1WNX3kllaqsqR1asm5XqQY+9q3ySiP7C5ajt67QD2/dYTn1eWl6Lx15yd81r2vTj2UqaJOsX516uy4/5TYVxYd22SfVVOrFL5/R1+/eqyG7mv+ZPndzvuLu+ESrc+lgP5gQLAJAM8SVmYOF0rjW1bGYVFMpr6+Fk+hwwHp+7qbA18EdixWJSVLv3s4WFAVWA1zq/v/i/75c43A1iCbDMPTZyhw9O3uDLl71vek5v1whWzmP6t3eweqck+D1aMYNRwYeb0tJ1wvDTw553f1zarsWxzz1nV6Yt1lGGN0uaJ38fkPj/vm93lq8PbCWXFWmOy06+P581KUyLIZJXD2mR+DrG4/qrW1/PlHZ956gNy8bpQSvc+cr1nfvCQMC27B7t0/Usj9MCDy3pkN3vTXoWNPr4/01uquBrkVJ+u9PW2ypE85bm1eiw5/8Tp3+8qWGPz5LD329RgMe/Sbi97l45Sx99d596lARGtJ902OYxl/0iLamWg8a2p83hkzUYZc/rXldBlg+P2nLUi3+7y167dMnNCJ3Q7OvP/hv3/LfgYMIwSIANIPHqmMxluf+BQWLkpTCABdY8PsN3fj+Ukm1h+0PDjpjZ2efgQd0d1bG3o6spem9Q54bvjdYfG1h+OcOofW5/r0lOu2lHzX12ffUO6hTZGaPodqWYu6ievyMQ50sz1HDupi73x8dc57Kvebzhc9eP1+jctbpp62FuuG9JXryu+b/IIrWx+83NOm5OdpTZh76cNvCj5ReYe7Qm995gD7uO8byOn86ob/pcXpSgrq3S4zqrpATBmRo1R0Ttei28cq6fYKGdE4xPW/VtXj1sq/UrXiX5fX+NXujChnmckB47Nv1Wp5T++d77a5S/fnzyO4CivNV66lvJmvq9CcsJz+/Pvg4nXLeX1RY7yzFcGxs11njL3pUD1n8WZZqBxNdumqWfn7td/r5v7fovrlvaWJ2llIrm7aDI+P+LwIdnS/Nz9agx77RsL/P1HtZ2/fzTrQ2BIsA0FRVVYoL6vYriW8jfyz/Ni5oK7QkpVWxnROhvl2/7wehUbnrFef3mZ7f2TeGp59HwIdX1/6wW5zQVhvSOpmeG2G1LRwHtPyyKr24d1vvL1fNCnn+zUHm86k+unqMxvU6MDsW62TU2w69M7mD/jPilJDX1HUtStIfPl7hSF2Irh827dF3G/aY1jqUF+n3P30Q8tr7jr7U8hdUy/84Qd3SYnPwUWZKgkZ2S1NKm9qz6y4/vHvguZUde+rdAeZt3Qm+Gt354/uW16qo8Sv9/i84MuAA8PKP9v1vOG77Ks1/4w+65eePLZ9/ZMz5+tUpv7ecqh6OGo9Xfz76Mk286K/anNJw9+OIvE36vzlTNePd+1TwzCVa/spNmvLZk7pl0Uc6eusKxdeEBqB7yqr19Zpd+nlboa59N0tr8kq1PKdYF7++UNn5ZRZ3QWtFsAgATZS7Y3fIWklcokqqYnhrsUXHYlol/yGHWXm1Tyc+Py/w+MjtoRMMu5xofdD3gaJ+KJQVNMClS2m+OgWdE4YD209bCyVJHr9PF6z+wfRcldur9wccZVo7oX90zoBz0t9OH2J+PPpclQV1LZ6xYYEO3bXZybIQRZv3lOm4f4dOgb1jwf9Mw+IkaVb3Q/V1r5Ehr/3wqtGmAVqx7uoxPeStdwbOQ0deFPKaXy/9ssGuRZ/f0I3vL1FVjd+2GmEvvx2DSQxDx25dprc/flRz3rxDIy0G6Plcbt1wwk3607G/smUHyffdh2rolc/okTHnq7KxITB7Dd6zVb9a8a2e+vZFff/2Xdr97C/10bQHdMWyGUqo2XfO5Bkv/6jDn/zO9F6/Ib2TtSPi/w6Inv3/iQEASJL+O2ul/hC0VhaXoJjuUbHoWEytIljEPj6/odNfnG9aG7cjNFjscPz4kLUDzR8n9NXfZ67Xz5mH6Jx180zPHZ6zTtMPGR2lyuC0utzg+OwsZf4/e3cdHsXVxQH4t7txdxLiCRFIiABBg7sWl+LQQosWSrGW9oNCsUIpVtxrQHF3dwgBYkDciLuvfH8sJJmd2bhtct7n6VP23JnZG0iyO2fvPScnjTF20bYFUottPxvQtBHUlGunBlxNGuTCXMkbr6mP7R79seDZSUZ8wdMTmNx3Xk1OjdSCmLRc2P7C7nhrmpmMWT7nWPHvvcdzJkMs9OrmSkV5Otsb4cbX7dBpmzSh6mdkjWOO7THibVGCVU1UgJX3Dsv9ORCKJXibkAlXM/Z7NFL3Fd/hwUUgFqFNbBBckiJgkxYPw9wMFPAFKOArIV+ghAK+EoR86foug9xMWKXHo31MIIxz0uVeM0lNG2P7f4srNi2q9GuRlaWiju87TsDe5j2x8OkJTPC7wbkVm4umMA8DQp5hQMgzrLuzH3+498O61kORrazGefzbBGruUp9QYpEQQsrINyiaFctUVkdHW8NamE0ZlbJiMT23ADpqVbOVgiim51GpuBlcbDWuRIL2MisW4zR0odOkSQ3PrOb9r7cT1t8KxjNTB9ZYqw+UWGxI+B8TIKNkmrYAzG3QXpZ6ODLWs8bmVZv0NVTQ28kYl4OKut7+1nIQZvuchWqxMiGfB97Bsg7jKtxQgCiG46+4a6R9//goNITMrrjnbVvhgXkz1rHOJlrwaKx4yTVvmfd9K9uOYiQWAWCi/01s9+iPp3IaYzyJTKXEooIqvsOjOLf4UMx9cQYDg5+w6otWxhNTB4wcuAgROiZVds3ShOiZ4aueM/FT+88xwe8Ghr+9D6+492U+3zgnHT8++gcT/G9gZvevcNGuFesYsQTwjUlDZp4Ira30oCygzbSKjP71CCGkjAoy2LUJM1XUYKipwnF0HVHKisV/X1Lx5IbujF8c47FlRiLMM5n1sh6aOUNdpf5/FqmuLMD6Ac3wvJE9a6xFXHAtzIjUloiUHCiJhPgsmLmaN0tJldF84vHcjg3qw5nlvZ0Yj2O1DHGkaVdGTFkswjcvztTktEgNk0gk+Oa0HytunRaHL19dYcWXdRjLeZ2r09vWanOWqvLa2BaHmnVlxX+7uQeQU4f75GvaBqpo3idm4bx/HCtunRaHI+d/xcvDczHZ73qVJRUzldXwbecp6DBmXbUlFWVXosuK09TH+tbD0GbcRlhO24dhgxZjrdcw3LBsjnSV0lcb26TH4/zJFdhway/4MrW79z2JgOfGO+i47T66bH+AzLw6XFqKlIoSi4QQUkaiDPYWhUw5y/vrjFJWLOaLqMZPQycB86anfUwA65hOYwfU1HRq3bdd7JGgoYcImY6/rT5+Ui+kn5kGYfK/L9E18jUMcplbtc7ZeSFHWRUAMKW1VW1MrVZx5Uh+bTWEFfvy1RVoUz3feuvNB+7EyY8P/4GKmJkcOOrYAS85PqwBUGcbtpSFbBfrpd4TkKWkyoi1jw3EJD/2dnEASKHu0HVeREo2+AvOFv7nuOYGBu57wjhm6NsH8D00B58H3pFzlfLLUFbHNo9+aDp5O35rNRgiPnepjT5Oxshb2x93Z3aAuS7zfsTBSBN2hhqFj+d1suO8xslJXvhfLyfOMVnR2kY46dAeSzpNRI+Rq6A/6284T96Osf2+xZ7mvRClJX8H17znp3H8zBpoFORyjj8MT8E5jqQtURz1f/lBDXv8+DHOnz8PHx8fxMfHIzMzE1paWjAzM0OrVq0wdOhQNGvG3gpACKn7+Fnsm6QshUwsFq28FFVHAWqiUHhgrhZpFxPEOsagR/1u3MLlWaMmsCpWfL9xVjLMMpPwIjoNra3qdGVVUkkZudLEyPC391ljxZu2iOWsRKrPHIw1WbEgQwucsm+DwcVWd2oX5GCC/w1cCuyK2PRcdG1iBBsDDda5RHHkFIgQlZoDYy1VDD3wlDXunBSJCf43GTERj4+f2nOvVuxkZ1At86wpS7s7YNv9MKR+TBDGaBtiTZvh+Pn+n4zjNt7aiyvWnojRZiZdHoSlIDtfCI0GsBtAUTVdd1PuGF8swvo7BzDv+ekqea5YTX3cMXfBTSs3/OPcEemq7N+1ss5/0QY8Hg8dbA0Q9n0PiMQSKAt4EEsAAZ+H9NwCXH+XCBMtVXhZ6uG3OyGsa/B4PCzt3gQ8HvAwLBleVvow1VbFzBOvS31+CY+PtwYWeGtggb+bdgZfLELf0Bf47ul/6BTtzzp+cPBjXPjvf+gzbDlylVVZ47/fDcFoT/NSn5fUTfSbrIpERUVh0aJFePbsGWssNTUVqampCAgIwOHDh9G/f3+sWLECWlpaHFcihNRVgix2keE6v2KxlK3QogZ4Y0yYZHehyTZuKeALoNyKXRunvnvRqAmGyjRwafXhPdpuvoeCdQMg4Cv+9j3CLVcogkAswmCZf/9sJRVcKFYnStIAf38aaKhgfEsLHH4exYhvavkZI7EIADNeXoDL7v4AjwcNZQGuTm+LdjaKnUxqqIITszBw3xMExstptiCR4Nfb+yCQMFd0H2rWFUGGFqzDPc11sHuEe3VMtcaoKwuQuLw31t8KxpIL0pX+G1oOxpTXV2GbHl94nF5eFnZc24ZBg5exXnAXnQ/AliHNa3TepGzuBCchp4B7h4JALML+S5swLuA253iuQBln7FvjvJ0X/Iys8EFDH3yJGMpiEZTFQiiLRVD6+F+KmhYS1HWRoVq+D14meVkyyggI+LzC9yWCj2EdNWUMaW5WeEyzRlrwjyv6GZ7R3gYAoCTgY1lPZi3QsiQWZYn5Apy398J5u1YY738TG2/thaHMtvBO0f7459x6DPtsCWslZkIWszYrUSy0FboKhIWFYcSIEYykorKyMlxcXNC2bVs4ODgwfvDPnz+PsWPHIjOTOiERokg0C/JYsY5udXwrXClboXUbUG0wUjq1gjx4xjM/0Q40bwKoK+52tYp6ZspuVtPyY53FZ5GpNTwbUpMeR6Sic+QbVofOC7atGN0ttVQb5ufze0ayE0J3LFzw2siaEWuaHIVuEa8AANkFImy7H1YT0yPVYMv9UPlJRQADQp6iX+hzRiyfr4QV7Uazjt02tDmez+sMB2PFX2DB5/Mwt6MtnE2kX0uusiqm95zJOm5AyDN8+foyK77tfhgehadU+zxJ2eQWiNB/z2PwF5xFlz8ecB6jJBLiz/O/yk0q7mneC02m7sLogYtw2KUbXjRqghhtQ0TpGCNUzxRvDSzgZ2QNXxM7PDd1QIieGWdSsat9yY0hf+zJ3RSoJLtGuMNUW7pSsLWlXonXGCOzctBAoxz3CzweDrt0Q5uxvyJQn70CcVDIE+y6spVVW6PgY6mZ17Hp6LTtPixWXMX8M360u0pBUGKxkkQiEWbPno3kZGmhe4FAgFmzZuHRo0c4ceIEDh48iHPnzuH27dsYPHhw4XmBgYH4/vvva2nWhJCK0CrIYcVaN7WshZmUA8eKRe1iKxZla7KQhqf4+gnvaH8oyxTXzm/drmYnVEc8N+FKLErrLJ72+1DT0yE1aNfDcAx/V/I2aAAY14K9EqshUBbwMa0tM4kIHg/bPfqxjp3x8nzhn//yia7uqZFqsvluqNwxVWE+Nt3czYpv9+iHcF1mYwh9dWVMrWe1SdWUBbj1dXs4GEm3rl6z8cTu5r1Yx22+sQtesW9Z8fZb7lX7HEnpJBIJNJZcwMXA+JIOwo5r2zGSo0xGspoWBgxZhmm9ZrG2vVfE9a/b493ibpxjP/RwqFBpifY2Boj+sSfil/fCo7kdYaLN3o78yTcd7aBd7MOzn/s4Q125fKmjED0ztP98PR5xdEaf7HcdM15eYMQiU3MhkUgw5MBT3AtNRkx6LjbdCcEfD8LK9bykdlBisZJOnDiBt2+LXiTWrFmD2bNns7Y5N2rUCGvXrsXkyZMLY5cuXcLLly9raqqEkErS4ig4bGJW+TcP1UpbmxUqvmIxlYqHk2L6hL1gxVqMaTiNW4pL0tBBmEwXxlZx7wCJpMSbbKL4LvjFYMi7h4xYrkAZ54ttgx7Xwhxelno1PLO6Y9tQ9vbNI027IE2FebP7WfATWKYn1NS0SC1Y+vgY7NKYTRfiNHTxv/ZjCh+baKngM5dGuDuzA1SU6t/tp4m2KgIWdsUkL+mHzQs6T2E1AFMVCXH8zBqYZLFXKE7626dG5km4SSQStNpUevOVnx7+jSlvrrHiIbqN4DV2Iy7YeVXpvOwMNdDEiFlr8X+9nLCij3OFr8nj8WCkKT+h+ImXlR7eLu6G4xNbIWBhV3zd3gYz2tsyjvm2sz2if+xZ4nVS1bTQf8hP8DNkL8TYeGsv2sQwy+/EpOciJIlZ0347JRYVQv37zV7DTp8uKtjq7e2NQYMGlXj8/PnzYWJSdKNy/vz5Eo4mhNQljflCVsyicR1PLPL5rORi8eYtY46wE0mkYSleqqO3TGKxgC8Ar0ePmp5SnfGsEXPVYqPsNFhmJCK7QCTnDFIfeEcHoFF2GiN2yaYFMj8mzca2MMfBMZ7gN+A6m1w1RrNU1HHQpTvzOIkY019dqqlpkWogLmEbolfsWyx5fIwVX9RpUmHzCVUlPj78rzdOTm6NZqbsDzvrCz6fh32jPDC+pQUyVDUwtt8CFMjUkLPMTMSl//4HPZlu84eeR0Eo4q7nR6pXZp4Q3Xc8hE90eonHjfe7gZ8e/sOKv9VvjM6jViNUz7TCc5D9dbpzuBsA6fuzU5O80MXeENb66ljQxZ7Vjbw6NdJWxdDmZnD6uNV/bf+mODq+JX7s6Yh7szpg/cBmMNMpfedTiro2eg9bgUgtZrJdRSzEsbNroZ9TVIcxX8j+fVNSGQZSd1BisRLy8/Px4kXRTdiAAaWv6lBRUYG3t3fh49evy18YlRBSO6xU2G/6eBwrAuscmTqLOvnMLd0l3TSQ+u/fl9LtiZbpCXBJimSMPWjszFmns77r6yz9APCZKfsNfNtYdtdsUj+IxBIsOOtXajfow5+3YCTkG6qpbdhbWrd79GXFvnh1BSpCWh2vqF7GpHHG1QvycOjib1CSadjywMwZh5t1BQCM9miMmFJWNNU3B0Z7AADuWzTDt52nssY9EkJx4cT/oJ3HXJWl8/3Fmpheg5YnFLGabu1/GolbwUklntcmJhC7rm5lxSO1jNB9xEpEy6xOLa//9XYq7OvT0kIXw9yKNVwx1caNr9sj9PseWDegWa02juPzeRju3hj/6+2E9sUacQ1s1qiEs6RitA0xYtAi5POZtYktMpOw+cauwsf2q69X3YRJjaLEYiVER0dDVbVoKbG9vX2ZztPT0yv8c0oKFewlRFGo5Wazg4rQ3V0mMVR8xSIAXCipngyp994mSL8f+oQ9Z40FeHao6enUCct6OkJNiY9HZk6sMUos1l97n0Tgt1vvMVRmG3Q+Xwln7VsDAJqbKcCHSTVk0yAXjPZozIi9NbDAFWsPRswkJw0j3lIdOUV1NzSZHZRIsOXGTjilMOtm5gqU8WXvWZDw+Ij4oQf+GtcS+hoqNTTTuoHH4xU2xdjq2R8HPyZZi2sb+xa3/l0Cs8yihFauUIx7oUnUqKIaCEViTDvmC70fLsFs+RUcfRmD3++GoNVvdzD31JsSz22ckYQTZ1ZDVcTctZSqqol+w36qdFIRAH7o4Qi/77rgzsz2uD/LGwYK9jOzpLsDtFQFpR73xMwJ33T9ghUfG3gbwzg+0COKhRKLlWBrawsfHx88e/YM58+fh6Nj2bozRUcXvQjrNsCVIIQoKrU8dvMWhUgsyjRwkV2xuPdxeE3OhtRRvUPZ2+ItRw2phZnUvrbW+ng8tyOemTaBkMd8q9T2Yz2g+Ax2l3iiuApEYnx1/BXaRweicRYzkXLFxqNwW2cnuzpe/qIGaaoqYf/H1VnFbfPoz4rNfEmlfxTJjgdh4C84C/6Cs1h4zp81/u2zU5y15pZ0nIAAQ+lKVgs99WqfZ131Uy9H6KkrAzwepvechYs2LVjHeCaE4uFf36F5QlHN3k7bHkB54TnwF5zFnFNvEJnK8b6TlNu/vjHY8zgCeUIx4jPzMfrIc8w77YcX0dyrcT9RK8jDydOrYCZTF1PI42PYoMXwM7KWc2bZjfi4OtHZRBvetoYKWYO0rbU+fOZ1xv5RHqUeu8O9L446sj+0/uPqds76o58c941BbHoutt4Lxa5H4UjJzq/MlEk1ULzv3DpIW1sbTZo0gZpa6TUGMjMzcf9+UUa+rKscCSG1Lz0xlfG4gC8AVBTgU0WuFYvFtoLkCamuT0OnJBKiR4QvI/ZBQw99RzWsLWzFNTfTgZeTOV4Z2zDiLeKDoSIsgOnyK8jMY9ddJYppyP6nAMDdDdqh6Cbo++41V99KEagqsVepnLdrxWp81Db2LTzjgmtqWqQS/n0ZjRkniko1FYiYK+iGB93D2jsHWOddt3LD5hYDAQCd7AxY4w0Jj8dD1DJpfeJ8JWUMH7QEtyxcWcdZZSTi4V/fYaz/TdbY1nuhaPnbHeRQTd9K23qvAg3XJBLsvbwZXnHvWUPfdP0SN63cy31JI032PcPSGqyZWJ3sjTQx0csSmiqlrFzk8TCz+9f4oKHHCBvlZmDn1W2M+5PiRh5+DvMVVzHn1Bt8dfwVuvzxgH426hhKLNawvXv3IjOzqABp167s5fGEkLonODELmjJdoTOVS/8woU4wYL7BV5KIGduhH0ek1vCESF3TMdqPtZL1so0n+BxJg4bkl37OeGTG7L6oKhLCM16aIPls3xNWvSaieF5Gp+FCYDx4EjGGvX3AGCvgC3C6SRsAwNkprWFahkL1Dc3FL9swHov5AuxwZ9danP7qEq30VQAlNXWb9OYa/j7/K/hg/t6L1jLAxD7zIPm4wnuYW2Ou0xsUDRUleJpLd4zkKKti0JAfWGUCAEBDmI/DF3/D1ms7oCxi1iJNzMrH3scRNTHdeq0i73OXPj6GMUF3WfHdzXthu0e/Cs1jQRd7qCsXpV862OjDvXH92r04v3Ppi6aSNHQwvedMVvyz4CeY4H+jTM/zOjYDd0JKro1JapZS6YeQqvLq1Svs3r278LGNjQ26detWK3PJzhfBeW3ZfnC52Oqr4+wUL7nj350LwMWghApfHwC62Rti82AXuePDDj1HUHwm8vKKlkKrXr0NlKOg+lQvS8zrZCt3vMWme8ivZJe2lb0dMdiVu1NYdFoueu95UqnrA8CRMR7waKzDOXYvNBlfnSi5fkhZPJjZDjpqypxjh55HYd2tkEpd30hDBbe+bit3fPnVdzj2KrZSz+FloYv9o+R/wjj5X188jeLeFvEhPQ83WIlFdbST+Tka4WaGn3rK//Sxyx+PkFjJ5fsLu9hhQksLzrH03AK038asD7YkPBcTZY4zyklHmpp0G3dKTgHr98GOoa7wtuVecfAyJh3j/n5ZobkXd/mL1jDX5b5JP/XmA364/LZsF5JIOH8PqAj4ePGNt9zTfrsTir1PI+WOl4WTsSb+m9BS7vicU364UUpR8NL0dTLG+gFN5Y4P3PcUoSkV2y5V8HG16phA9pvnZhOGQSiUrshz3XCnQtcvbl1/Z/RzNuEcC0nKxqADzyr9HMfGt0BTE+7yBNffJWLuGfaWvhJJgNaNnTDD9wIj3C42CI8bO+NmcBL8YtPg/PE59zyOwKZ7YRWZeiFzHTVc/rK13PHvLwXhtF9cpZ6jg7U+dg5vLnf887988Co2Q+54WYxrYY7FXeXfYLTb+gAZlVzxuaxHE4xylyYwRCLmyoUP6TnosftpqdfIE4oR/vHnp21MECwymT+v163ckPrxd2VvR8PCnwkAeBqZislHX1XqawCAm9PbwFhLlXPsX98Y/HyNvWKmPLRVlfBwVnu542tuBuPIi2i54xWxz7UHlj/4k1GXbEzAHZh/fwqNzY0rdM3PXBphVR923dNPeu9+guj0XLnjZfGNtw2+4GhKA0gbP7T8vfJ1wH4f1AzdHbjrsgXEZ2LEYfmJvbI6M6kV7Aw1OMcuBMZj4flAzjF5q7AFYhF+fPgPlj36lzWWpaSKQYOXIUZbWiZAVYmPvAJhpe4zgArea8h5PyBPme41ErLkjpem+IqqTBUNDBjyI3Zd3YpJfuy/mxm+F9Ai/j1GDFzMqNu35HwAtt4vecUd3WtUrcHvHmLl/SOs+B3zZpjVfXq57jWLM9dRQfcmRrgflgw+j4f4zLwK/ZzUxXuNTwqEYvAAlPaR69kmbbDfpTsm+zGbtfx+YzduWrohUqf014nRh5+jkTbHa2ex3wPbuxmy3h98Uq57DTnqy73GgW66UK7kkkNKLNaQqKgozJgxAwUFRZ9ELV68GEpKtfNPIJZICgv2V0Rebh58fX3ljvtHJONtQuXe3JmpiODrK/+mIzAmGe9SZcYzyneT4hcaBV/ddLnjb+MzkF/JXaJv3oXCVsR9ExiTKazUv0PhcwQEgZfAvSX3dUxulTzHq9dvoK3C/RvH731mpZ8jUS2nxO+pgPBUvE3gaJ5SDlq8gpKfIzoRbxPkvxBrySYWVdRYX3dAeAx8feXPMzAuDcm5lfum8nsfDl8l7heQjHwxa07vwa5zZJSTjmD9ohUFsue8DnwH7XTupN+bxPyq+Z5644dELe7fgW9Csiv+HB9/D6jwUeK/t19oeqW/DklByb8LAyIr/7vQWl0EX1/535eBsakIL+fvvuJUhAWsotk5Sip408QR/I9fW1X8e/u9DYF5HveHA2HpBVXyHK/9A5Efy31T8iYqp0LPIeJo4NImJgj4+B7v4pM3yLOU/oz5hWRU+uvIyM4t+fU1PAVvEypXd8tAICzxOQKjk/A2qXJdfP1Do+FrkCl3PCguHZkFlVvt6fcuDL7g/hDTzz+g3P8WIzkajBxzlN4wNDNQZv2dvY7Lq7LfhUbq3KuD/d5lVfo5tJR5JX9PhaZV+jm0lXnIKPbvmaihixNN2jFW/GgX5ODzgDvYpdKnQs/hHx4LX1/5v08DP6QiNqtyW+P8QiLgq8Zd5ytPVLn3zp+8efseRtncidyglKr6XeiPDB3u34V+4eX7XeicFIk9l7egfSw7GSni8TGu37fwaST9EEFNwMN//Y1xKjiq0l9HldxrlPLaWKF7jXIa76yJQfYaGHE+AUKBEqb0nosgfQusvH8EApmO2m1j3+L54XkYM2BB4VbbrAJRqX+XdK9RdZonhOLQxd9Y8VAdEwwftAQFAu6fq7IICwtHTFI2UnKk31NJ2RV7na2L9xoVMa/rF+ge4QurjMTCmG5+NvZe3ozew5cXroCWJy1XiLTckn8+hWIJ3rzhTnpX6l7jo/pyryGW6ACoXMdx2gpdA2JjYzFx4kQkJBS9+Z00aRJtgyZEwWjlM39pZynIVuhEdfYnzEY5lVuNROqPPmHPoS/TKfyMXWsItBWgMVENCNYzQ4LMz1C7YjfY1MCzfuBJxBguk2Av4Atwqol0Jf1XbtQNuiSNNNmJ0V3u7ATil68u18R0SBWwSo/H3ku/4/XB2ZxJxTyBEkYNWIjTDm2xuJUudnU3xN2RZjDRaNglNGTxeDzY6Chjlrv2pwDWthmO3sOWs15bAGkX9SvHf8K3T0/KrTdHqoddaiwunFjOWkiQoayOzwb/gESNym1bdtSveFKyPkpX1cTU3nNY8R4RvpjlQw2/FA0lFqtZcHAwxowZg6ioqMKYt7c3FixYUIuzIoRUhKLWWOROLMpfqUsaljEB7G3O55p3hhO9AZbi8fBIZtWiVUYiGmdIP8m/EFa5ldSkbmgXEwjzTGY36KvWHkhRlyYD2pkpxu/72qIm4GFjJ2b5jNsWrgjSN2fEWsYHo+WHdzU5NVJOJlkp+P3GLrzd+xUm+11nraoDpO9/Bg5ehhOO0i32wxw04WnCvZ2fSH1mrwELraKk6w1rd7Qc9xsemTmyjhVIxFh/Zz823N4HHsffP6l6FukJuHZsGet1QAwexvWbjzcyjdzk+ZRcsdIWQFVQtAKspYkKbHVos6is69Ye2MZRs3LN3YNwTqrcFmJSs+i7uxq9ePECM2bMQEpK0ZaKtm3bYuvWrVBWrt0bNj6PB0djzQqfb6uvDnd3+bXqmkUGIDyncjUWm1oawt1dft0TZ9/n4CnJ1FhUVSlX3QsXWwu4u8uvseh4M6PSNRZdHWzhLqfuiVFaLhwfVX4puWtTJ7jLqXuSoZMMR//K1z1xa+4qt+6JrzAKjlGVr7FY0vdU0/h3cEyrXI3Fpua6JT9HoC8yJdw1Ft/GZ3JuhZb9OWpqbQZ3d/l1T5wf5FS67olLE2u4u8uve+J4h7kaUT2dXddONrForqMKTdWil4Tmzg5wl1NjURKTDseXlduKCQBuri5yayyGCj7AMaSCNRY//h5QEfBL/Pd2SQuFY2Ll656U+D0V6ofY/MrVPWlmZQx3d/k1Fp2fP4WqWsX+PWKjEzAohFl7KVVVE93mjEdLz6L6eI7XuH8uysPF0Q7ucmosaidlw/FJ5WssNm/mLLfGYqJGIhwDy1ljEYBILMGjxk4YGMKs1+cd7Y+jzh1xNzqv8HvAJTcCjjFh5X6O4sx11Ep+fY0NwrvMytVYbGqhD3d3+TUWnf18kM+v3KrmZrbmcHeXX2PR6W5WpWssujjYwL1YjcXi251cmjWF4335W7EBICkrv3Ar2sggdu28447SbtAujbQ4/03yI1Ph+LryNRbdXF3k1lgMRAwcwytfY7HE76nkYDimVK7GorOZNmb184R/7hvsefLx9yqPh91uvfDr7f2MY6e/uoxppkWvkwYaypzdUlnztG4Ed3f5NRadnzyBdiVrLLrYWcHdXX6NRceblf9QztWxCdzl1FhUic+E4/PKf1jRvFkzuTUWg/mxUHqUCqHMcmvd3Ex89+wk5j4/A02h/CY7L41tMbb/twgwLPp7kv3+cskKh2NceCW+ggrea8h5PyBPme41lCv3Pr34vcZLtwKcDYjH5H+lvzeidIzRZeRqbLy1l1XLFwDmPT8Nw5x0TOk9B2K+AAIeYG+oydqxSPcaRT5k5CG9lO2xspyTInH+xHLYpMezxn7wHoezTdpwnMVkqKEMQ00VRj33d4lZOPH6A4w1VTDKwwyaKkpoGiT/XqOs6uK9RllxbQte1GkSeoa/hGNKTGFMXZiPQxd/Q/sx6yAUcKes+DzAUk8dqgJpOjc1twAFIjG0VJTAF0u/B5T4PLi6ukIgYK+kLte9hhz15V6DX8G6ocXxJNTOsFqcPXsWS5cuRX5+0Q91586dsXnzZqip1c6n3j4+PhCLpUkyPp8PT0/PWplHVRIKmXWi3N3da61uJanfNOYeR/bmEYzYP04dMTqw8k0tqt2bN0BzZhJhnddQLO40qfDxliGumNlBfpK9LqPfAxX3Re/Z2HNlKyO217Unpr6+Ukszqps6jV6DO/8uYcR2uvXB1z1nAADEvw6sjWmRYirye2DdzfdYfD4APIkYEbumMFaq5POVYPr1IaSqaSHihx6w0GPXqiVsTyJS0HZzUa1Kw+x0RO2axGjikqmsBvPpB5ChWpT4op+hmnPidSyGHyz2QY5EgnEBt/DrrX0wyZGf8MjnK+H3FgOxrMM45CsVJX8+9zTHkbEtqnPKZaYo7wf4C86yYuP8b2LH1W3QELITQvtce+DLXrMg4fHRSFsV56e2RgsLvRqYqeLh+rstSbdwXxw7u4ZVEgYAdrj3wYzuX5e6aGVlX2cs7S4/0UeKyPv3aR0bhHt/L4KSzArd5e1GY3n7z0u8pomWCow0VeAfJ/0wkc8DtnQxRGtT6Qd2dfX3QF1SFXki2gpdDbZs2YIFCxYwkoqDBg3C9u3bay2pSAipHNnVitJgxVf91igj9soI2RWLs09W/pNmolhex6Rhts85Vvxv5061MJu6zaSbN3KUmCuqOke+rqXZkKoSmixdGdY+mnsb9Kdu0JRULLvWVvrwstQrfJykoYPjDh0Yx2gV5OLzwNs1PDPyydW3Rav8TDOTceX4jzh08Te5SUURj48DLt3gPGU7FnWezEgqAsCCLvJXJpOyO9KsKzqNXoN4dXYdvylvrmHjrb2ARIK4jDwsOFv+1ff1nVAkxpxTZX8vq5mfg83Xd+La8WWcScVDzbpiZvevyrQTromhgtwP1AEDmjbijD8xc8LqNiNY8e8fHUXr2KASrxmfmV+YVASkta83vqj8ThtSPpRYrEIFBQVYuHAhtm5lrv6YPn061q1bR5lyQhSYbH1FADBvzL2Vqc4xNGSHqMZigyYSSzB73na4J4Qx4u/0zHDTSv4W2YZq+xgvPGjszIg5p0TD9GMy6n1i9XeqJFXrrN8H7Hwo3arJ1Q360zboP4bRz0N53ZnZHs7FShLsduvNOmaa7yVGY4rcgsp1cyZlJ/74994uOgDPjsxHjwj53Ub/c2gHt4mbMaXPNwjTlW615RfLs+wf5QEP88o1tCBFXjRqAu8xaxGqwy4bMvfFWcx9cQYAcCu4ctse6yPrVdew9V5oqceZZSZh2cN/ELLnS8x6yd0g5EjTzpjae06pXYkBwEhTBUObc29DJ2xT23CXmgCAn9uOwrNGTRgxJYkYx86shUlWipyzuAWnVa7UCik/SixWkfz8fMyaNQunT58ujCkpKWHlypWYP38+eFWwb50QUjuEIjHnikVF6QoNZWVAT48RouYtDdvIQ88w24e9HWWr54AyvZFuaEy0VXHbwpUV7xwlXR3huOYGPlSythupOdfeJuCz/dKamTyJGMPePmCM5/OVcLpJG0xubYnp7WxqYYaKTVVJAP+FXQsf37FwQYABs1aXZ0IovIo1cfHceBt5Qkou1oS8AjFGBN3DzaPfo3FWMucxV6w90HrsBowYtIRRS/Ha9HZIX9UXd2d2QOKK3pjoZVlT024w3us3RtdRvyBCm/3h9a+396NX2ItamFXdlp5bgNh0dl1QZVEBmieEYrzfDWy4tReP/vwW0TsnY/mDv2As533wyrYjMaHvfIj43N3Nw3/ogf2jPNDURAtelno4O6U1lAT0vqmsBrk0wvoBzTjHhAIlTOg7j7VDxDIzEcfOroWyqKAmpkgqiH4KqoBQKMScOXNw69atwpimpiZ27tyJESPYS3oJIYrll+vvoZ3Pbo4h1lSgrQ8y26GNcirXmIEorpi0XDx/8AqD3z9mxDOU1XHApTtW9nWWc2bD9sDGjRXrElm07Wr344ianA6phAl/+xT+uUN0ACu5csVGug1670iPGp5Z/RLwKbnI43GuWpz+6lLhn4MSstB/zxPWMaRqPQpPQf6RP/HX+V+hImav6AnTMcHAwcvQZ/gKPDNl14yz1leHhooSOtgawECj9IY7hNvhz0uuXxahY4Kew39GnAZzNahAIsY/59bDITkaq669RY8dD7HonD9yGtiK30uB8Rhz5Dn0friIQXuf4Muj0lW3ppnJ+OLVZey99DueH5qL9C2j4HtoLg5e2oR5z0+jdQkd6dNV1DGxzzf4scO4Erc/m2mrYqKXJfwWdsXjuR3Rxlq/yr+++ozH4+HbLvZIXNEbWqrs5G2goSW+6zSZFe8Y7Y+9lzeDL25Y3+uKhBKLVWD9+vW4efNm4WMDAwMcPnwY3t7etTgrQkhVWXPjHXQ56q/omSrIVmiAI7FIKxYbqqO+MZjpcx4CmQLZB1y7I0NVA7MVtIlPddvyy1TWp+hditVZ/OlyyTWASN3xIaNoZcvIIPnboEnlOBXbDn2oWVfkCpi1+UYF3oVOsdfWG+8TkVLJTqaESSSW1uTLyBXil+vvsGH2Why++Bvr9z8A7HfpDtdJW3He3kvu9eR1miblM6iZKbrYs8vUFPfOwBwDhvzIet3Ry8vCX+d/xc/n3uDG+0SsvxWMmSfqf83f028+YPD+J3BdfxP99jzGvy9jkJ4rxAW/GIiPH8edvxchZuck7Lq6DZP9rsMzIZTRNKokV6w90HziVhx26QYA8LLUw8ExHpzH0urEqmGgoYLn33DX9N7u0Q8HPv5bFDcu4DZ2X9kKHsfvr5I8DE/Bny+iEJNGO0uqExX9q6Tbt2/j4MGDhY91dXVx6NAhODhQZyhC6otcoRi6edmsuFFj41qYTQXJJBb1czMhEIsYWz0ycoXQVqOXhfouIioByzi6Pm/xHAAAUBZQ6Q4uTa2NEOjsAec3RauqnFKiYZaZhFitkm8QSd0gkUiw5EJg4WO+WIRh7zi2Qdu3gXtjnZqeXr2WrK6D447tMS6gqGmLpjAPYwNu4w+PfoWx+2EpGNCMu7g/KZ9z/nEYtK/o95VX7Fvc4kgqCnl8zO4+HTvd+pS4Ustnficq7VRFtNWUcHV6O9wJSUL3HQ/lHvfc1AFTe83GXxc2MOIt44Ox6t5hfNdlCgDgwNNIfNXOGik5BZh76g1yCkRY1tMRX7Sxrtavo6bMOfWGs35i/+CnWH97H5xToit03VsWrljXehgu2bRgfO/P8rZBb0d2ncsDoz0q9DyEm4OxFpT4PAjFEuYAj4eve8xAs6RI1irTyX7XoVmQi6m95yBLpeTGameCs3H8fRYCkmMKY68XdIGLqXaVfQ2kCKXcK0EkEmHVqlWQfCyCzOPxsGHDBkoqElIP6XGsWHSwb1wLM6kgmcQiHxLo52YyYro/XERAHG2Rru9a3jnP6oB43rYV3utLv5/VlLnrChFAuQf7E/TuEa8K/+wbQ10I67Lr7xKx7ub7wsc9w1/CTKYg/GUbT6SpaWFeJ7uanl69tK5YLa1dbn1Y49NeMZu4nA+IK3xfTcrvTWw6frgYiLmn3jCSihbpCTh1ehXUhcwVoQV8AcYM+A473fuW2v3WvTE1aalKAj4PXZsYldjMAgD+adoZa72GseLfPj/FqLfYdvM99N39GG8TshCZmotpx14hKD6TdZ6iyCkQ4U5wEvY/iWAlFfVzMnDwwkacPfVzuZKKIh4fPsa2WNF2NDzHb0K3Ub/gkm3Lwu/9VX2dcWdme4xvaQkTbVWs7d8Ugo/divo3NcFIdwV6368g4pczy2SoCPi4O7MD8pRUMHTQUoTosj9oGvn2Ph7/uQAt4t6zxor7+UkqApKZdRmb/3qL6vlWE1qaUgmXLl1CeHh44WN1dXUcOHAABw4cKPM1jIyMsHbt2mqYHSGkKnFthebJNESp04zY27aNctKRKFO/57c7Idg1wr2mZkVqmkSCLhf+YoW3tBhQC5NRPOo9ewCb1jBifUOe4UgzaS05z413IP51YG1MjZTBjodhjMcT/G6wjvnHWbo16zMX6vJZFb7tbIeF5/wBAPfMm8HfwBLNkiMLx90TwtAmNgiPP3Zd3/kwHFoqSlg/kLu4P5HP/0MG2m+9h8w85k2zQCzC0XNrWUl0EY+P0QO+w0mH9jU5TSJjxzA3DHU1RWRaLuwNNdBz5yPWMcs6jEXnqNdoG/uWET9wcRPcJ25GgoYe57UXnffHqcmtq2Pa1SosORtdtj9ARCq7vnmzxAicPbkCtunxJV4jS0kVvsa28DWxxUsTW7w0tsMbI2vkKKtyHm+hq4Yl3ZmLg77r2gTT21kjI08Ic92SV8eRitFTV8abBV2w8pr0e3tZT0foqknLZsRoG6L7iJW49e9SWGckMM5rlhyJZ0fm42+njtjm2R8PGzuXufng5aAEDKLX+CpHicVKuHTpEuNxdnY27t1j1+opibm5eVVOiRBSTXTz2VuhoatAn94bs7dtG+ekIRDMjo57HkdQYrE+u3kT5pHBjFCgvjmuWnvUznwUjGE3bySracGg2GrfPmEvoCQSQiigt1R13YWAohtR3dxMDHnPvIFPU9HAqSZtYWeoAV11ZdnTSQXweDx0tDXA3dBkgMfDLvfe2HRzD+OYmS/PFyYWAeC3O8FY1dcZKkq0sao8/vSJYiUVAWDRk/9YCSkAmN9lapmTikOb0014dRHweejbtGhV1qExnowGU4C0W+7Yfgvgc3gudIo1EzTNTsW+S5sxcMgyzhWnfh8UbxdKZGoO7H65zjnWI8wHx86u5X5PDiBaywAHXHrgVJM28DGxg1hOZ2curxZ04YzrqClDR41eD6pTM1Nt/DWuZeHjD+lFtRDDdRuh28hVuHbsB85k8piguxgTdBfRWgZ4aOaMV8Y2CNVthEhtY0ToGCFayxAFMvV9B+9/yvkhcE6BCHdDkqCtqoTWVvqFq1VJ2dArdiWEhITU9hQIITWEa8WiQiUW5axYJA3M77+zQltaDCz8lHdya0vWOCmiqqaKizYtGTH9vCy0jwmUcwapKyQSCXKFRbXlRgXdg5qIuUXqmJM3cpRVoaNKSeKqdGRsi8I/H27aldWMYlTQPTTOSCp8LJYAaovPIySJ43WXsLyJTccZvw9YfZ29LdAjLhg/PfybFd/p1qewrm5Z0AeONWdcSwvOeKieKb7uMYMV7x/6DHN8znKeE5yUjfP+cax4UlY+4os1saorrr5NgPXKa5xjPcN8cO7kz5xJxQR1HUzrORP2U3djmfc4PDd1KFdS8adejtCjD5PqDG2Z1+BQPVN4jduISzbyu6mbZyZj+LsHWPHgLxy++BtuHV2KkD3TkLNpOAL2fY1/zq7FrBfnYJP2AQCgsvAc0nIKkJgl/TlIyymA8Y+X0Wf3Y3TYeh/KC8+hQCS/SUx2vhCJWXlUuqMYeudUCefPn6/tKRBCaogOR/MWSiwShRISApxl3nykqWjg0MdtvADwbSf7mp6Vwrlg1wpjA28zYv1DnuKOpSsAIDQpG7bUObVOkUgk6LD1PiPGtQ36UxdKuk2oWpZ66ng0xxttN99Diro2/mzaBV8UayClLBZhts85LOk0kXHerBOvceHLtjU9XYVy6Fkkvjjqy25+AEBFWICDlzZBWcxcxfjS2BZzun1Zak3F4gw0VEo/iFQZV1NtvOFYbfh3087oFfYCE/1vMuJr7xzATcvmeG1syzpn4L4neLOgC5p9bFix+vo7LLsUCLEEmNHeBluGuNaJpjzLrwRh+RX2yloAaB0bhP/OrIaKmN3l+USTtvi65wy528HL4qdeThU+l1Q9TVUlDG1uihOvPxTGktV1MGDIj1j09D8sfXQMmsKyJcb5kMApJRpOKdEY+fY+Nt/chRcmdvi9xSCYLM1nrWYsTnXReeSs6QdVJWaS+kJAHMb/5YOUnAL0czbBn2Nb0C4H0IpFQggpE66u0NBWoK5ilFgk27YxmiQAwL7mPQu76n3Xxb7wxoPI13nmWIhk6vj0D3lW+Gf71dcRVwdXgjRk35z2w6PwovpyLonhaB/LXGX6Ts8MDxo3BcD6MSFVoLWVPsx0pLXNfms5iDU+7dUlaOYz66ldCkqARCJBem4BFduX44eLgZxJRQBY8eBPNE8MZ8TyBEqY2PebEm+mSe07OEb+yqzZ3afjnZ4ZI6YqEuLP8xugVsD92vPdxzqnH9Jz8cPHpCIAbH8QBp/omms6FpyYhXP+cUjOLmoilJknxLdn/OQmFZ2TInH+xApoFeSyxn5q/zmGD1pSpqTiZy6NELCwKyvu3lin7F8AqTGHP2/Bion5AqxuMxKOU3dgd/NeyOdXbI1ci/gQHLy0CcF7pmGc/80SX/QvBjK3X0skEow+8hwpOdIdDxcC4/G3T8W6ktc3lFgkhJASZOdLPx3VzWduycpR1wQECtQ9lzOxyF1759PXTOqRzExg715GSAwetnn0K3xcWmdKIvVlXw/cL1YPDpAWEbdNLfpk3Wz5FURxFJ0nNSsxKw9rb7zHFpmOorN9zrGOPdysa+EKroEu7C6UpPJcGkk/uAgwtMIFW3ZJgSlv2FsgBd+dg94Pl2D18zVce5vAGm/ootLYyRYAaB/tjwVPT7LiP7Ufy7mqzctSDy/mdcL1r9pV+RxJ+Xk01sHvg105xzJVNDC2/wIUyGz1dU2KwNq7BznPuRgYj2nHfNFh631WDmX+Gb8qmXNpdjwIg8OaGxi07wkc19zAq5h0PIlIgc73F/HbHe7yYhbpCbh8/CcY5rLfr07tNRs/txtd5pW3Jye3hpOJFo6Ob4lPpfN4PODbzrRToy5SVxaguwP73gUAYrUMMb3XLJh+fQhTe83GObtWiFcv/y4yi8wkHLr4G27/uwROSVGcxww98AxpOQUIis9EfEYerr9LZNWynXHidbmfuz6irdCEEFKCTy8esisWczW0oFD94TgSi4ZyViwGxmeihYVeNU+I1KjDh4E05qqEc3ZeCCm26sHWgLbvlgWPx8O9pu3QKdqfER/8/hF+azW48PGyS4HYP1r+qhNSvXILROiy/QH84zIZcb3cTIz1v8WIFfAF2Nu8JwBAWcDD2BbUWK86iIqtrPut5WfoF/qcMf7d0xPY5dYbeUrsbbcJWfmYc+oN/L7rUie2bdYFL6JSOeOa+Tk4cGkT+DKb+u83dsavxX5HFbd9WHN4mOsiOJHqWtYFPB4Ps71tMffUG87xZ6YO+Kn95/jl3mFGfLbPOVyyaYGLdq1Y5+x5HMF5rU8rr7i8jk3H3z7RMNRQwZTWltAvx5Z4sViCOyFJePMhAz0djRnJl+TsAnhsvF3C2YBhdjou//cTLDMTWWPfdp6C/R9/Z5dFyNLuhX8e7t4YPiZaeBCWjDZW+vAwV6CyRg3Mgi72uBOShAKRBDwe8HMfZzgYacLRWBOeG+8gVU0L+5v3lH4vSCRonJmMJqmxsMxIgFVGAqzSE+GQEg23hDAYcSSnP+kY7Y/nR77B3K7TpO8FZF5j9JddknMmKY4Si4QQUoL8j4V7ZZu3qBjo18Z0Kk5PT7rCUlT0KZu8rdB8ummrXyQSYMcOVnhzC2ZHPGUBbWIoK6vxw4FrzBWgnwfcZiQWDz6LosRiLbodksxKKgLAlDdXWbWZjju0R6yWIQDg3NQ2cDahkgDVofiO3etW7nhpbAuPhKLVpBaZSZj26jK2tGB36wSkH3pFp+XCQk+hPtarEvdDk/EyJg3trPXRwkIPQpEYC876cx677s4BNCm2ghoAspRUManPN5wNLVpa6KLFx+SKpZ46tFQFjBU5i7s1qcKvhJTH6wVd0PzXW5xj67yGoleYD7pEMZOP+y7/DvcJmxGvWbb3qUKR9AczNj0X2fki2BlqgMfjISAuAx223iv8XjjqG4NHc7zLnNgf99cL/PMypkzHytLMz8G5kyvQNJm9imxN62GM19rS5K7pz+ow39xMB83NaAt0XdfbyQSBC7vhQXgyWpjrommjEl6beTzEaBsiRtuQPSaRoFlSJAYFP8YXr6/ALo3d0EhDmI/dV7eiW4QvpvWaVVgmiJQd3UUQQkgJQpKkKxVlu9CpGxnUxnQqjs8HDJkvtvISi1RerJ7x8QFevWKE/A0sccPKrZYmpPi6f9YZb4ysGbGW8cFomsS9IoTUrBuRORi4/xkrzheLMOPlBVZ8q+cAaKsqIW9tf/R0NK6JKTZI4uJ7MHk8rGw7inXMksfHoC6nThwAuG+4jXyh/E6d9dGhZ5HotP0+Zp98g7ab72HQ3idQWXQet4KTWMf2CnuBr30vsuILO09GsH5jVnyWty0uT2tbmCxSUeJjdb+mheN2hhqY0d6m6r4YUi4uJdQ9FvMFmNB3HlJUNRnxRtlp0hWr4rLVJQ2IzwR/wVmYr7gKhzU3MOrwcwhFYhx5EcVIMD+NTMXLGPm1uaNSc3DW7wM+pOciNj23wklFZVEBjp9ZgzYf2DUX97r2xFLvCWW+1tQ2VqykIlEstoYaGNvCgpVUVCvPvyuPB38jK6xpMwKOU3Zg1ICFCNUx4Tx0TNBdPPprARw5ktqkZPSTRgghJZh96jUgkbC6QvP1FHDrhMx2aHmJRZGcQvBEQe3bxwrtcetVro6ghMlMVx1mM75gxcfLdOrMyqN6pTUtJlOIRfdSOMdGBt1jrVR41qgJ+k8djITlvWnVbjUTyRR3O+nQFj4y9f5Ms1Mx8+V5uddIySnAwvPcK/Xqq/ln/Arr4gnFEpwLYK+2AaTb/Pde3syKX7H2wB/ufTnPWdTVntXxeWYHW0T/2BMPZnvD/7uuDXKFaF3ycn5nuWNROsb4qudMVrxPmA9rm3RZHX8Vi/MB8Vhz4z1r7FWxxOLbhEwsvxKErfdCcfJ1LOx+uY7P9j+F7S/XYb7iaoWemycR4+DFTegd7sMaO9mkLb7qOaPM711amOtiCa22rbfWDWhWofPEfAGOOXnDZdI2/NJmBKsZHwC4JEXiyZ/fYsi7B5WdZoNC76AIIaQEr2MzoFmQCyWJzAoJXcVPLBpncycWcwqo+2a9kZsL/PknI1TAF+BI0y6M2JkprWtwUvWD4ZeTIAbzBufzgNvgFftdof39RUou1rDdb7jrKAnEIvz08B9W3G3VUizt4UirWmqA7GdWEh4f/2v/Oeu4Hx79C7NM9mq8TzbfDcV3Z/0haSDtu5Oz5dfAK27zjZ0wz0xmxFJVNTG19xy5yRiBnLiZjhraWuvTz0Ud4NZYBwXrBsBKToL3mJM39rt0Z8UXPj0h7XhbAUMOPOVslHvzfSK23Q8Ff8FZOK+9ieVX3mLOqTcYdvBZYXfyvIquKJZIsPnGLowOussaumXhis/7L4CIYys/l/RVffF4bkfYGWqWfjBRSF+0scIIN7PSD5QjV1kVP3iPR7eRKxGpxa5Dr5Ofg//OrMGaOwcgKOPq34aOXi0IIaQUso1bpEHFTyxqF+RAVZjPOuyLo741NSNS3U6dAlJTGaEz9q2RqMH8/u3tRNs/y83CApGebRkhq4xEdIpidtg8HxBfk7Nq0ApEEpwL5e7GPTbgFpxSohmxMB0TqIwfWxNTIwB0VNml3c/at8bTRsxVRTr5Odhwi73SurgNt4Nx87385KMik0gk8PuQgVvvE3HzPbtxBZehbx9gXAC7GcbsbtMQrc3dWRWgmsqKQsDnIeyHHvD7rgtaWrDff87t9iX8DC1Z8b2XN+Ozd4+qbB6Hnkdh9knuhjKVIpHgl3uHMJOjVIWPsS0GD/6es6mTPFqqShDw6Xu7PlNTFuDfCa2QvqovbnzVDnM62uLrCpRtuGvhihbjN+GyNXdN7IVPT+Dy8R9hnJ1auQk3AJRYJISQUujmc3RJrAeJRQAwyU5jxd5RV8j6Y/9+dsi1B+OxaP0A2gJaQWH9h7JiX8vcGK26zq4TRarHxXDupKKSSIhlD/9lxVe2HQmolP1mlVTOL/2c2UEeD992mcoKjw66i55h7O2QxfXY+RDhyRwf/Cm46cdfofmvt9Btx0N03/Gw1ONNM5Ox4+o2Vvw/h3b4U2Z1uiw+/epXKE0baePpN53w9JuOjHimigYGf/Y9ktW0GHFlsQhHz62t8JZOp6QofPP8NHZf3oJb/yyGz6E58Dk0B/f+Woh9lzZhwdMTaPnhHWOlfrlJJPjt1h4sfvIfa+i9nin6Dvsf0lVp5SHhpqWqhC5NjLDpM1dsG9oc/4xrWe5rJGnooP/QH6XvCTh0i3wN34NzMN7vRuW+1+s5ejkhhBA5Pm1hrDcrFi0sWCHrdO7VVKk5Zdt6ReqwxETg+nVGKEbTAJdtWjBiZe3wSNiiu/VDtswqimHvHsI+paho/evYDPztEy17KqliOQUi/Pw4lXNswbOTsE9jdsl9r2eKAau/q4GZkU88zXUx21taU5HPA+Z1sgMA3LNw4dzKuffyZjTK4q6X+YnHxts47x+Hhef8MffUG7yOld9cQhHEZeRhz+OyN4ESiEX488IGGOUySwDEaeji6x4l16Mz1VaFoQYl1hVRSws9iNYPwNYhzQtjwfqNMXLAIghlasYpi0WFWzqVRCWX5uBJxGgTE4jVdw7Cf9/XCDgwAxtv7cXUN1fRKdof7glhcE8IQ/vYQEzyu4F1dw7g6Z/fImrnZGy9tgOtY4PAuYdaDs38HPx5/lfMfXGWNRarqY/ew1aUubv1J+NamJfreFK/jPRojFfzO+L71rrY1LnsjTbFfAF+7DAOgwb/gFSORLZpdioOXtqEZ4fn4euXF6Cbm1mV064XKLFICCFynHwjvRHVzasnKxZtbFgheYnFpRcCqnkypNqdPAmImHVh/nHuWOYaRaR0nTxtWStABRIxvn1+ihEb++cLaopUzcb+9ZIz7pAcjR85aisGfvUtBrewquZZkeJ4PB5+H+yKuP/1Qvzy3tgwyAVx/+sFAFjUaRKS1JhdPy0yk/Dv2bUlJkPScoUYuO8Jfr0VjC33QtF5+wNEpnKvXFUEZd36/MlPD/9G18jXrPi0nrNYJS8AwFxXDYC0o+q2oc3pgyUFxuPxMKODDbYMcS2M3bB2x8S+8zgbUix8egKvDs7GF68uSxP2HxOAJlkpGPLuAf64uh1ROyfj4d8Lsejpf3BOKfsHYmZZKZjhewGP/voO/vtnYMnjo7BMTyjxnHbRAXjy57cYw1FTMUlNG32G/Q+heqaMuIDPw8Uv2yDzl76Y18kOnewM8F0Xe3zd3gae5joY28Icmwa7sq5HGhZnEy0MttdEh8ZqmOUuv7M6l3P2rdFq3Ea8lGks9olnQii2Xd8B30Nz4BYfWhXTrTfYxU4IIYQAKOqOXG9WLFpbs0Ny3vjteBiO7cPcqntGpDodP84KHXPsUAsTqb8s9NSxodVgTPe9xGjwNOnNdfyv3RjGSou/faIxriV71TCpvITMPJzjqGXJk4ix6+pWqImYK7BfmNjBeiZ7+y2pGcZaqqw/J2ro4rvOk7FPpqtxp2h/7Lq6FV/2ml2mD0VScwpw4nUs5na0q9pJ15Bz/twdn7kMev8ISx8dY8X3NO+Fs03asOLiXwdCIpEgOCkb5rpqUFemD5nqg3EtLBh1D/9u2hk8SHDw4iYIZLZtOqdEY9fVbcDVbUhT0YCqqID1+7GynFOisereEfx870/csnTFcccOeN6oCT5o6kNNmI82H95iVOBd9A99xnl+nIYueoxYCT8j5nvWt4u7wVBDGfofV9luGORSpfMm9dMgOw1s9eVu6iZPiJ4ZOoxZh+3XtmOinAZIVhmJWPr4KEYPXFQV06wXaMUiIYTI8akbYr2psciRWLSRs2IRAIQiqiOisJKSWNugI7SN8NjMqZYmVH+F6ZriqJM3I6YmKsCipycYsQl/+yAuI68mp9YgvEvIRKP/XeEc+/n+n+gs00xHyOPji16zoaRMn63XNQdcunNuiZ7kdwMnTv8CjYLcMl3n7xeKV3rgfWIW+AvO4q8ylk1oH+2Pv8//Cj6YK6FfGVljTtcvWccHLeoKQLrKrYmRJiUV6xFddWX8rxfztf2vpl0wcuBCpKtwd5IGAN387HIlFfMESgjXNka4tjGrBAgXPiToFvka26/vwOO/FiB891QE7f8ahy7+JjepGKFthC4jV7OSigDQxEizMKlISFnpqwnw5+ce5T4vR1kVk/t8gyGDliJUx4TzGKMcxS69UdUosUgIIXKoCKRbhOrNikVzc0DAvJloLWE3b/kku0Akd4zUcadOsbZBn3Boz6q3ZaihXIOTqr9+bTWEFZv94iyaJzC3yXTcdr+mptRg9N/7hDM+6c01LH3MXs21odUQhFg7oYkRNQOoKyZ5fexmy+NhRo+v8UymSzQADAx5ilcHZ2Po2wel1nBTxG6wjmtulPnYlh/e4cyplVAX5jPiGcrqGDlwEXKVVRnx2d62cDBmNvUg9ctsbxsoyXzfn3Roj5bjfuP8eSoLEY+P2xYumN9lKpwnb4fmnGOwnbYXttP2QnvOUdhP3YUve87CGbvWyOdX/oOaSzaeaDluE4IM2Sv7F3Wr2NdACACMcDOD+NeBEK0fgG8725f9RB4Ppx3awmXSNizoPBlB+kX1O/MEStjcYiAA0PuJj+jjWkIIkcPvg7Qwb71JLCopSRu4hIcXhqzT5K9YXHohEFuHNpc7TuqwY+yECtc26H/Gl797HmF72cge521bMVZhKEnE+OPqH+g4Zg0kH+tdvaeO61WO6+90gt917OTokhuob47l7UZj99Dm1Am9DlnSrQmeRqTCLy4DeUoqGDZoCe79vQiWmcx6g3ZpcTh+dg3CtY1x0qEdnpo64I2RFd7rNUZOsWTaw/AUDNjzGD/3dYZHY506WUfwTnASFp7zh29sOvKEZd8dMPjdQxy5sAEaMklFMXiY2PcbvDVgJmW2DmmOr9uzV3+R+kVfQwWHxnji8z9fMOLB+o3Rfsw6TPK7jvnPTpVaNzFHSQVXrD1wuklbnLPz4qzTCQASHh+heqbYq2eKvW69YJCTjlFB9zDB7wbafHhbrrmnq6hjVZuR+NVrSOFrZXHmumpYUJ5kECFy8Hg8fNXOGhtuB5frvFxlVWxsNQQbWw5G6w9vYZMWD19j28Ik+J0Z7atjugqHEouEECLH/64EAahHzVsAaQOXYolFnfgY8CRizjdzfzwMo8SiIkpPB24wV79EaRniUWP2NujuDsY1Nat6q6u9IW4GJ2Fe1y/QPcKXsbWsfWwgZvpcwNYWAwpj5/3j0L9Zo9qYar3zKJzZMVhJJMSKB39i8ZP/WMcmq2kh+9h/SOzYEhoq9Pa3LnEw1sKL+Z2QkSeElooS1BafR4cxa3HxxP/gkhTJOt46IwHfvDjDiEVpGeK9nhne6zfGQzMnXMpsgZaB0g/O1vZvirkd7QrLm9SW1JwCXAlKgIaKAKMOP0NOQdkTimaZSfjl7iG59b5md5+OUw7tAEi/3pHujWGlr14nk6qkeoz2NIe+hjL67n7MiAsFStjj1ht7m/dEt4hX6BAdANfEcJhlJSNLWQ2pqprwM7LG/cZN8aixE7KV1cr93MnqOvjDox/+8OgHp6QoTPC/gXH+t1gfDhSXqqqJPc17Ya3XMCRp6DDGprS2QtcmhkjLEWK0Z2MY0BZoUkXsjTQxsZUFDj6LAgB0sNHH/bCUUs76iMfDEzMnPClWVihnTT+oKlFpCYASi4QQwim/2AoCnfx6smIRYNVZ5OXl4e6IJvA+HsI6tJTdZqSuun4dKGDWTTrVpC1n8phU3txOdrgTmoz3+o2xpvVw/O/h34zxDbf3ws/IEjet3AEAA/c9wdNvOqKlhV4tzLb+0PvhItJzi7oFt4kJxI5r2+GeEMY6Np+vhGGDluBmd3ZDC1I3KAv4jORBlI4xOo1ag2Nn16AbR9djWRaZSbDITEKXqDf44rW05uYjM0dsavEZlopFeByRguMTvQqPj0nLRUaeEA5GmuBzbJ3OLRDhv9exUObzMbS5KZQqucL1Q3oumv96CwUpqegQHYAFce9hnJ0GvbxMiHh8ZKhoIE1VE+kq6khX1UCaigYEEjEsMpLQOeo1ukW8hoqYuzv2yrYj8YdHP6zp3xQtLXTpA6MGrKu9EXo4GOHaO3ZCT8Lj47q1B65be1TrHIIMLfB9xwn4wXscmieEwzM+BK6J4VAVFaBAoIR4dV3ctnTFU1MHuQ2ZejgYYbSnOecYIZW1b5QHvmhjjTyhGJ3tDRGeko0mq8tejuKTrvaGlFQshhKLhBDCITS5KJnIuWJRR4cdUwQcDVxaClNrfh6k+ly4wAqds/dixdpY6dXAZOq/QS6meDGvE+6GJONbYT4+D7wNx5SYwnFlsQjHzq5Fh9HrCrfNeG26C/GvA2trygrv0LPIwqRi06QILL//F4a/e8B5bAFfgEl95uK2Ja2+VjQp6troOeJnjA24jTV3DqJxVnK5zm8b+xb/nF+PkHuNML/LVLzo7oDV19/jv9exhcf0djLG8QmtoKladEuULxRDY0nR79Gu9oa49lU7uav/AuIycD8sGV6WenBvLP3Q0TcmDUHxWehkZ4B3CZn4ZeFWHHl+Bj0ifFmdeitKDB6+7TIFv7cYBABY2JXq0DV0Kkp8XPqyLTbfC8X8M36ln1CNJDw+XpnY4pWJbbnOM9NRRb+m3M0yCKkKPB4PHWwNCh/bGWoy3pPxF5wt03WmtrGq8rkpMkosEkIIB0mxTousGotaWqwmKArDxoYVEkRGAOAu7J4vFNf69jFSDhIJK7GYpaSK2xaurEOntKY3RFWluZkOmpvpoLeTMcbHf4ObR5dCVVS0usggNxO3/12CfsN+wouPhfRDkrJgZ0gFv8vrjN8HTPrnJWzSPuCnB39jXMBtuYmaFFVNDB+0uHC1KFEMk1tbYv8T6RZoCY+PI8264mSTthgTeAfD395Ht4hXUCpHcs4uLQ6nTv+C4/63cKfHV4CGXuHY5aAEnAuIwyiPotVRXr/fYZx/MzgJD8NT0N7GALIOPo3E5H9fFj4+MNoDWfkizDwhXWXZNiYQ26/9gYsyjZwqK11FHRP6zsOZJm2r9LpE8fH5PHzTyQ7T2lpB+/uLCrH75NbX7XHsVQxUlfj4up0NdNSosRypmxyNNdHJzhD9mzbCZ66mtT2dOoUSi4QQUgrWikVF3QYNcK5Y5IeHA3DhPHzjnWAs7uZQzZMiVcbXF4iJYYSuW7kjT4lZn6iHgxG+bEsF/auaqbYqHjV2xvSeM3Hg0u+MMZOcNNz893uMHvAdLtq1QpPVN3Djq3bo0sSolmareB6GJWPk7gdY8fhfLHxyQu7WUADwMbbFmAHfFTaz0FenG1VF8euAZoWJxU+yVNSxx6039rj1hnZeNtwSwtA8MQxOKdGwT42FQ0os7NI+QFksknvd4e8eoE3sWwz7bAmemRa9ro058gLrbr5HboEYC7rY43VsButc7633kb+2P7LyRSgQi6GhLMCq6++w+vp75txvBePNhwyoF+Rh9d1DmOVzDnxUbWbnYLOuWNpxAmK1DAtjv/RzrtLnIIpPQ0UJSSv64MDTSCRk5WGMhznMddVw1j8O5/3jcOxVbOkXqWLvFneDA0cHdA9zHXSyN+Q4g5CaN66FOY68KGp0ZKqtismtLdHR1hB9nGk1rTyUWCSEEA5hyTmFf9aVrbGoyIlFjhWLvPBwQJM7sbjtfhglFhUJxzboC3atWLHTU1rXxGwanE/bKQ+5dEfTpCgsespsIqJdkIPzJ1dgZduR+F+7MVh+5S0lFsto58Mw7N5+Ej4XNqJpcpTc4zKV1fBT+8+xucVARv2u01PY5QBI3aRfSqOGDFUN3LdohvsWzRhxgVgEz/gQ9At5hilvrsIqg11nzjIzEXf+WYxpvWbhSLOuhXGf6HQAwNSjvnKfV2XReQj4PIjE8hOFbz5kwCo9HidO/4IW8ezaxRUVoW2Ekw7tcKhZN/g0YnbIndHeBnM72lXZc5H6Q09dGd90Yn5vTGhliQmtLHFEJMbSC4EITsrCqTcfamQ+5rrcjWGUOOqcElJbtgxpDj6Ph4fhKfC2M8Dvn7lCS5XSZqWhvyFCCOHwt0/RJ1WsrdCKnFi0tAR4PEZnFl5EBNCU+/DotNwamhipEhyJxYu2LVkxdWUF3cqvQJZ2HA81UT7mvmDX6vnh0VG0iQnC2P4LALSv+ckpkAKRGD9dDkLwHwdw99ImqAvzOY/L5ythl1tv/NJmBD5oMbeszmhvA29bWg2jSD5zaYTTfnHlOkfEF+CZqQOemTrglzYjMDbgNtbeOQCTnDTGcWqiAhy6+BtMs1Lwq9fQ8j1HCUlFAOgQ5Y8TZ36BcU4653iimjYOu3TDDUs3+BlZIllNG3yJBDr52dDNy4JOXg5087Ogk5cNPiSI0TRAhI4xQnRNpa/dH9noq6ObgzFW9nGCqU75u/gSoizgY/3AouR8cnY+NJQFEEskMPzxMvKE3OUGpraxQntr/RKT8O6NdeAbw/wZ0FNXhoqAj/UDmuG7c/6F8ZYWutBQoZQEqTt01ZVxYIxnbU9D4dBPMSGEcDj8/OOKGImkfm2FVlEBzMyY22XDwuQmFokCSU0FHj5khF4bWSNShzqE1gYJj495Xb5ArKYB1tw9yBrvGeGLF4e/wfW2Oug+YVAtzFAxLDofAOVf1+Nfjr9DABDx+DjUrCtWtBuNcN1GrPG+zibYOpQatyiaxd0cWIlFNzMd7B3lDq9Nd0s9XyhQwkHX7jhj3xqbb+zC2MDbrGPW3TkAk+w0LOw0iZG0q6gh7x7gz/MboCYqYI19Wkm7w70vcpRVWeOpatx1jmW1stDFDz0dMciFanuRqlW8K/vB0Z4YfeQ565hf+jljcTcHZOcLsfdJBB6EpQCQ/vgELOyKuyHJcDDSREc7A5z2+4ChB54Vnjvb2xZ8Pg9TWlvi+rsEXApKgLmuGn77jHvHDCFEsVBikRBCSqAhzGMXiVfkxCIg3Q5dPLEYHo5dw5tj2vHXJZ8XHw88fy5NTLq5AXxq6lKn3L4NiJnfq1yrFd0bK2hHc0XE42Fd62EI0W2EvZe3QLsghzFskZkEw6kjkKp0GHqfj6ylSdZdEokEwk2bsVFOUvGBmTOm95oJPyNmvdCmBsoISC6AR2MdbKKbVoXUxlofsT/1wqB9T/AiOg1elnrYO9IdTRtp49zU1hiw90mZrpOiro3x/ebjiZkjNtzay3o9X/DsJIxy0jCt5ywIBRW/Lfrq5QVsvb6Ts57ibQsXTOrzDWfiuzz+HteC0WSGkOoy0qMxhruZoc3mu3geJV3x20hbFV+3swEgrd94/at2uBuSDCW+tMOusoAPR+OiBPlgVzO8XtAF194loFkjbfRwkJb90NdQwfkv2iA7XwQVJT6UBfRekpD6gBKLhBBSAtZqRUDxE4vW1sCDB0WPs7LQ30T+1thLgfHoE/QQGD8eyPhY1L5RI2D4cGDFCsCA3SmT1IIb7ILo1zm64Y5tYVETs2mw+jc1wfmAeEbsuJM3Xhnb4PiZNXBNimCMqQvzoTpuNGLCI2G2eD54VbByqj7w/5CBX6b+D0du7mKNiXh8LO44ERtbfQYJj3lT2t5MFZs6G8CluRtUlZXBp9pdCquRtioez+3Iivdr2ggbBjXDt2f8Oc7iwONhS4uBCDCwwIkzq6FVwCzxMcnvBgxzMjB6wELO1YQlkkiw/MFfWPboX87hLZ4D8G3nKZVKWn7iYERd5EnN4fN5uDerA/Y8jkBWvgiTvSyhW6wJlqqSAD0cS94R4WKqDRdTbVacx+MV1iQmhNQP9BEBIYSUgFVfEagfiUUZJrGRHAdK7Vj8uzSJmFGsU2ZcHLBtGzB6NKNeI6lFN28yHubzlXDfnL3HvbQaYaRyprax4oy/NbBA27G/4nDTLqwxvkSCxksXYOmIRcjMk9/puKHIF4rxzZI92C/TWRsAMpTVMWjwD9jgNYSVVASAEQ6a4PF4UBbwKalYj83rZI+bX7cr1znXbDzRbeQqJKizV20PDHmKy8d/hF5uZpmvpyIswJ4rWziTiiIeHzO6f4W53aZVSVLRzUwHnuYK/t6DKBxVJQFmdrDFwq5NYKxVzqQ7IaRBocQiIYSUoF6uWGzKTjYJHj3kOBDoHv4SR8+uA4Rykh1XrwJn2c0pSA1LSABeM7eyPzZzRLYyu6i/iBLB1WqwqxlOT/bC5NaWWNXXmTGWrayGiX3nYXa3aRBxJMVWntiAR5sP1NBM666bT4Kw579foCwWMeLZSiroM+x/uMjR6fyTDo3p5reh6GxvBN9vO0O7HCufnpk6oOPoNQjXZq+08o4JwN1/FsE5Sf4HbZ80ykrB9WPfY8qba6yxXIEyRgxchB0e/co8L1mP5njj7swOmN7OGj/0cMCVaW1pNTMhhJA6ixKLhBBSAt38erhi0dubHbt7F13smV1T1QvysPfyZqiIS1lBtXAhUMAuVk9q0K1brNBNSzfOQz2oxmK1G+hiir0jPbCkuwMezpb5eePxsM1zAIYPXIwcJRXGkEAihveSGdJapg1MWHI2Jv/jg+7b7qFg/ARYZSQyxgv4AgwftAQPOVbhfuKgp0TJlwamuZkO0lb1hUY5Ot2/NbBAhzHr8MaQvbrYJSkST4/Mx3TfixDIJLYBABIJPg+4hVcHZ6NDTCBrOEVVE72Gr8Aph/KtpvxksKspkn/ug9ZW+uhga4A/hrlhRR9nmGhTwpwQQkjdRYlFQgiRISm2okufa1uUnl7NTaY62NpKG7AUd+8eXGXq4Mx/fop1c88pKAjYvbsKJ0jKjaO+4k0rdidcC101dGtiVBMzIh95Wepxxk87tMXAwcuQJ7NNUk1UAPGIkdIu3w2EWCxBz50PcfBZFJxP/okBIc9Yx3zT9Utc4mhGVNy3LRX8Qx9SYYJybnuP0TZE51Grcb+xM2tMU5iHP679gTcHZmHOizPoEOWPtjGB+OrlBTz+81scubARxjnprPOitAzRafQa3LMof8Og77rYQ7huAE5M8oJesTp2hBBCiCKgxCIhhMgoXoLOOJt98wAjBU/M8HhAR5mC+ElJGK9ZtO3bNDMZi578xz53xw5gzx52fPlyID+/iidKykoik1jMUVLBIzMnRmxYczPcmtEeauVY2UMqj8/nQbR+AOfYDWt3jOv3LcRgJkX4oSHAlCkNpn6pX1wGgpOyYZ0Wh7V3DrDG/3HqiD/c+5Z4jUez2qOlCa3qaqg+dZwtjxR1bfQa/jPOydla75QSjU039+Duv4vx4O+F2H59B7zi3nMe+8jMEW3G/srqUF4aL0s95K/tj7UDmlFNUEIIIQqLEouEECJjy73Qwj8b56SxDzAuuQueQuDYDu0Z6lv455X3j7A6Z6J9e2DaNGDSJMDVlTkWHw/cvl0NEyWlio4G7+1bRuh+46bIK7bNNmdNPxyb2Ap2htRVtDaUtD33P8cOWNh5Envg5ElgF7sjcn2Ukl0ASCTYeXUb6/fOOz0zTO85U/qBSAlaWNBqxYZseW+n0g/ikKOsisGffY+f2n/OWfe0LPa59kDXkb8gVsuw9IM/+n2wK/4c2wI3vmoHJQHdjhFCCFFs9EpGCCEy5p/xK/yzEcd2p3qRWJRdsQhA6cEDpK7sA4+4YEx6c501nrN2vfTmXiAAfviBfU1q4lI7ZLpBA8AtS+Y2aGU+vdzXZRtbDsYp+zasuOS77yCJiEBQfCbuBCchT8hR802B+cakodO2++jyxwNM9LuBXuEvGeNi8DC5z1xkqGqUeJ0Tk+Q3cyENg6uZDk5N9kInOwP0b2qCWd62ZT5XzBfg53aj0W3kSrzTMyv9hI8itI0wcPAyfNF7DuODnJIYaijj6PiWmO1tizGe5tAsR+MZQgghpK6iVzNCCCmBEdeKRUXfCg0AzZsDOjpAerHE6d270FFVwobb+8AHcwvmkaadES9qhPmfAn37AsrKzKYtZ84Av/9e6soiUrVSLlyBvkzshhWzcQttsat9v/RzxtIL7GYPAACeNIHmdmQe7NLiisIZGQgcPgHNOs4HeDw4m2jh1tft60UjB7FYgl47HyEhKx/6ORlYd2c/65itngPwwLxZiddpbamH3k4mABrGtnEi3yAXUwxyMS18PL+THd4nZqGNlT5+vByIzfdCIZEAn3uao7GuGn69Fcw4/66FK1wmbcO4gFtY+vgomqR+4Hyet/qNsc+1J7Z59EOWinqZ5zfE1RTHJ7aiBkOEEELqHUosEkJICVg1FjU0pP8pOoFAurX50qWiWGgosHEjuka+Zhyao6SC770nIPKsP+Z3tpcGdXSArl2BK1eKDgwPB16/Bty4uxGT6pF6/jIjsZiprIZnjZoUPq7oFkFStWa0t8GrmHT88zKGczxNTQtTes/FraNLGXHnp7cxxrgV/m7aGYHxmTj0PAoLutjXxJSrTWx6LsxXXC18vOr+YVYzjFAdE3zvPU7uNaa2scJoj8boaGsIFSU+hMJSuteTBsfGQAM2BtLX698+c8UPPRwhFEvQ6GNift2AoqR160138CwqDUKBEg649sABl+5wSo5Gu9hAOCVHI0tZFQkauvAxscMTU0fOD9B6Oxljkpclxhx5wTmfL9taU1KREEJIvUR7owghpJjA+AzGY9ZW6PqwDfoTjjqLWLCAFdrQajAidaRfd1ZesZv3QYPY59N26Br15/G7sE2PZ8TuWLhAWKzT8LKejjU9LcJBR00Zf41rCaUSVo/esXTFDvc+rPj62/uhlZ8NAPjl+rtqm2NNyBeKGUnFVh/eYZrvZdZxs7p/JXc1mKaKANuGNEd3B2OoKNFbWVI2hpoqhUlFWftGecBYs9h2Zh4PQYYWOODaA0s6TcTKdqOx070vnpg5yV2VP8bTHKM8zNHR1oA1tqZ/U/R2qkfvHwghhJBi6N0YIYQU88NF5lZFVvOW+pRYHDiw1ENiNA2w1mtY4eM1N4t1xOQ6/8yZqpgZKaMbu4+xYrL1FUndIi6l0/OijpMQqcUst9A4KxnLHv4LAEjNKeA6rU6RSCQoEIkhFjO/1tex6VBbfL7wMV8swvZrf7BKL5xs0hYX5XTqBYBfBzajhCKpUq5mOgj7oQf+HNuCc9ylkTZ+H+zKOQYAptqqGNCsEQDg+lft0M/ZBACgrsxH+qq+WNi1Ca1WJIQQUm/RuzJCCClGUOyNP08ihmEOcwVjvaiv+ImbG/DVVyUesrTjeMaqoVXXiq2WsrICPDyYJzx5AnzgrktFqlZSVj66Rr5ixYvXV5zaxqomp0TKQFBKvcsMVQ3M7fYlKz73xVk4JkcBAAyWXUKr3+7AJ5qjBmwtS8rKR789j6G66Dyc1t7Ai6hUAEB2vhAdtt5jHDvt1WW0invPiGUpqWJe1y84r/3X2BZIXNEb09vZVMfUSQOnrixAH45VhcOam+H1d10w29sW8zvbMcZcTbWxoIs97szsAAMN6YpHJQEf575oA/GvA5G1uj+0qEELIYSQeo4Si4QQUsyxV7GFf9bPzYSSRMw8oD6tWASkzVa6dOEcWtN6GA4168aKR6RkFz3g2g59924VTY6U5OerQax6mCmqmnhpXNQNdW45OqOSmvFdlyalHnOqSVtcsfZgxFTEQmy6uRuQSJCaU4AX0Wno9scDSEpZAVmTsvOF+ONhGC4HJQAAgpOy4b31Pn6/G4KfLr9FZl5RV2vj7FSsuneYdY2VbUchQseEFY/5sSdGe5oXJm8IqQ76Giro61z0/cfjAZNbWxY+Xj+gGfaMdMeibk1wZ2Z7vFrQBesGNEMTI83amC4hhBBSJ1BikRBC5GDVVwTqX2JRRQU4fhxwKmrwIVFTw9h+32Jpx4mctaRsVl0v2uLYtSv7mg8fVtdsSTGXztyDeWYyI3bbwhVivqDwsauZTk1Pi5Tic09zaKoISj6Ix8PcrtNQwGce1yfMB4OCHxc+TssVosnqG0jIzKuOqZZZRq4QPXY8hNbSi/jxUhBjLFcoxrzTfthwm9mBd/3t/dDPy2LEAgwssLHVZ6zrp63sC1MdtaqfOCEc/h3fEj/3ccLk1pY4O6U1+jVtVDjG4/EwpbUVVvdrCm9bw1qcJSGEEFJ3UGKREEI+KhAxVyeyOkID9S+xCACGhtItzKtXA99/D96bN7jcskeJp5wLiJP+wctL2mG6OEos1gjZ1YoAcLPYNugjn3vW5HRIGTUz1cbdmR2woIs9VvdrisGuppzHBRlaYLMnu47pxlt7oVZQlEgMTc6G6fIrEIsl2H4/DHNPvcG1twnVNn8uG24H48b7xDIf3zv0OSb432TFZ3WfjgKBMiM2vqUFtNVoKympOVqqSvi+hyP2jvRgJBUJIYQQwo0Si4QQ8hErsSjbuAWoXzUWi9PRARYvBlauBOztEfFDyYnFRef8pVswNTWltRqLe/ECyKvdFVT13eLzAegawa6veLNY45ZhbmY1OSVSDh7mulg3oBkWdWuClX2c5R63ot1oxGrqM2J2aXFY8OwkIyaRAParr2PWydfYci8UvXY9wnn/uCqbr0hc8nbrtTfflzhenFZ+NnZc3c6K/+3UETet3BmxcS3MsX0oNSMihBBCCKnLKLFICCEfCWVunjkTi/VxxSIHDZWSVwgFJWThVnCS9EG7dszB/HxpcpFUi4TMPKy/8Za1YjFeXRd+RkXNWlSVStluS+qEZqbaGOXRmHMsQ1UDiztOZMUXPzkOq/R4Riw8JYfxeOC+J5h+3BdRqcx4eWTnCzHq0DNoLb0A1/U38fxjIxYASM7Oxx8PwrD8ShDyhGL5F5Gx5s4hWGcwV1Qmq2mxGrYMbW6KQ5+3gCY1viCEEEIIqdMosUgIIR8ViJiJxQZRY7ESvv7v44o52cQiQNuhq9H+p5FwSYyAscz35y1LV0h49LKuiFb0dpI7dqRZFzwwY65q1BDmY/3tfaVed/ejCLTdfA9CUdkTf8jJAe7fB37/HY+nzoPpgV0Y5HcHSSGRGHPkBaLTcuC05gaMfryMmSdeY/mVt2W+9JB3DzDD9wIrPr/LVMTLrMzsYl9PV4cTQgghhNQz9DEwIYR8FJSQyXjcYGosVtDbhI+NFyixWKMWnw/AnEiObdDF6isK+OymO6TucjDWQkdbA9wNTWaNSXh8zO4+HU+PzAcfRR9+jHj7ADvDfXHD2p11TnEx6blQWXS+8PGeke7o52yCif/44GF4Clpb6uPgGA+YJ8YAa9dCcvgweLm5AICuH/8DADF4eNjYCcf8hyDMsBUgUwuxNLapH7D38hZW/LK1J2f3edrKTwghhBCiGGhpAyGEfNRjBzMZZtSQaixyODjGo2wH2tmxE66UWKwWLz5uRe0SwdG4pVh9xT0jSk42kbrnv0mt5G6J9mlkjz1uvVjxLTd2Mhq5lMUXR33ReMVVXH2biMw8ER77R+LtyEmQODkBu3cXJhVl8SFBh5hAfHN4Nd7tnY7pvhehJBKW6TkNs9Nx+tRK6Ml0gU5W08K0XrNY3ecNNZRhRl2gCSGEEEIUAiUWCSHko1xhKV2hlZQAPb2am1AtG9/SsmwH8njsVYvR0UBkZNVPqoFrteku+GIRukS9YcSjtQzwVt8cAOBproPhtNpL4RhpquLvcS3xbnE3mGipsMa/7zAeyWpajFjT5Cj8fP/PCj9nm5hA+Byei65XjoInEpX5PKuMRPxx7Q/4HZiJEUH3pN1j5NDPycCV48vgmhTBGpvU5xtE6hR9KGGjr44hrqZ4811X1rGEEEIIIaRuosQiIYQAyMxjr7xh1Vg0MmKtrCEfcW2Hfvy45udRj71PlK728kgIZa38umnZHODxcOGLNng4uyM1vFBg9kaaeDm/Mw6M9oCGclEDniQNHSzrMI51/Lznp+Ed5Ve+J5FIMNPnHO78uwRNUj9UeK4OqbH499w6PP7zW/QM8wFPwvxwpkvEKzz9cz48E0JZ5/7aagjO2bcGAGwZ4oqcNf0Q8n0P/DfJC420VSs8J0IIIYQQUrPozoMQQgBk57NX67C6QjegbdBlJZFIwOPxgDZt2IM+PsDw4TU/qXrqjwdhAIAe4b6ssZuWbrg/qwPa2RjU8KxIdTDVUcOEVpaY0MoSXpvu4HmU9HfRDvc+GBl0F52LJRL5kODwhY1oM/ZXVgMULqrCfGy/9gcm+13nHBfy+PjXqSMu2LVCsJ4p9PKy0CnKDyOC7sEhNZbzHK+497j830+I0jLEDSs35AuU4REfglZx7zmPP2fXCku9x+P5vE7wNNctdc6EEEIIIaTuosQiIYQACE3OZgYkElbXXWrcwvYyJl2aGPDwYA/6+NT4fOozPXVps4ye4ey/1xtWbthtVXpSiSiex3M6os3mu3gelQYJj48pvefC99AcaBUU1UK0zkjA6VOr0G3kKuQoy1/tZ56RiONn1qDNB+5OzpetPTGr+3QE6zNrPV6xaYEf23+O4W8fYNmjf+CSxF3mwCIzCRP8b5b49Vyy8cSIgYvRx9WckoqEEEIIIfUAbYUmhBAUrQb7RLMgF+rCfOZBDTCxeHdmhxLHW/52B0KRGNDXB2xsmIMvX1bbvBqa8ORs/HQ5CBoFufCO9meMBembQ9neDnzqBF0v8fk8PP2mE1JX9kEvR2OE6pliQecprOPafHiLf8+thVZ+NsdVgIHvH+PpkfmcScU8gRJmdZuOvsP+x0oqfiLmC3DUuSPcJ2zG5N5zEalV/hXcZ+28MHnkj/h9dCv8O6Fluc8nhBBCCCF1DyUWCSEEwIto5rZnVn1FoEEmFttZ68PLUq/EY2af+thIRHbVYmwsEBdXLfNqSC4ExMH2F+m21U5RflCV6cR71doDM9rb1MLMSE3SUVPG8Ymt8EUbKxzw7IsjTTuzjhkQ8gxPjnyLrhG+hQ1VPOOC8de59Th9ehVMs1NZ50RpGaLTqDXY7tm/TDVkxXwBDrp2h9OUP/Bdp8mshjJc0lQ08GXPWfhw5Chi1w7GtLbWUC9WP5IQQgghhCgu2gpNCCEA3nzIYDxmbYMGGmSNRT6fh+3DmsNr0125x+x8GI4/hrkBnp7AqVPMQR8foE+f6p1kPSWRSDDjxGvsfBheGOsVxt4GfcXGEz83MazJqZFaoqWqhF0j3LFrhDuaaQtgvTMBHWVWsDqnROP6sWXIUFZHvkAJhrkZcq4G3GvcFCMGLUZcGWozyspVVsUGryHY5dYbw949wMigu+ga+ZqR+H5uYo+Ldi3RZ9OP+KNVUygJ6PNsQgghhJD6hhKLhBDCwTg7jSPY8FYsAkALc124NNKGX5z8BEVYcjZsPD3ZA5RYrDDfmHRGUhFg11cs4AsQ6dEGbmY6NTk1Ugf8OMANQz4sxd1/FqNpchRrXLsgByiQf/4O9z6Y2/VLFAiUKzWPDFUNHHDtgQOuPSAQi6CblwW9vCwkq2lDqKuL77s7olWbJpV6DkIIIYQQUndRYpEQQjiwOkIDDTaxyOPxcHqKF5qsviH3GLtfruP2QEt0lB2gOovldjkoHgP2PoFILGHEzTMSWU0znjR2xt3FfaSduUmDMsqjMd4MaIkOvHU4fGEj+oc+K9N5Ceo6mNX9Kxxz8q7yOYn4AiSr6yBZXQf5a/sDAK1SJIQQQgip5+jdHiGEcDDNSmUHG2hiEQDsDDVxYLRHicd0PhMBGMpsyaXO0OUSnJiFQfvYSUUA6Bn+khVrP20UtFTpM8KGiMfjYWVfZ8T9PgqX1+/B+u6TkKesIvf4fL4S9rt0h8ukbdWSVCyurbU+lAR8SioSQgghhDQAdDdCCGnw3idmsWI26RxNR6yta2A2ddeEVpaY9M9L+QfweJB4eIJ3/VpR7N07ICMD0Nau9vnVB3++iEaBiJ1UBICBwU9YMV7v3tU9JVLHKQv42DzMHRi2H0jeABw/Dvz3HxAeDqG6Bq6nANet3XHQpRuGdXfH/qaNMHAf+3sJAPo6m+BiYHypz+lta4BBLqZ4EpECZxMtWOtr4MtjvgAAPg+Y18muSr9GQgghhBBSd1FikRDS4LXdzG5MYp0mc3PN5wMWFjU0o7rrwhdt0G/PY7njh8VGmCAb9PUFvKt3hVR9ser6W864RkEu+oS9YMTyDY2h0rJlTUyLKAoDA2DaNOl/kL7J6yGWwDA6DdPUlWFvqAEej4ekFb3hvuE2otJyC08d39ICB8d44k1sOm4FJ2HOp27vxWwY1AzzOtlzPnVLC108jkhBexsDNKean4QQQgghDQYlFgkhDV5yNrvDgU26TGLR3BxQkb/NsKFobaVX4vhldXN2YvHlS0osloFYLJG7WrF32AuoC/MZMZWhgwGBoAZmRhSZgM9DK0s9RkxfQwX+C7vih0uBCEnMxpDmppjkZQkAcDXTgauZDsa3tID+skuF5+iqKWFYczO5z+NhrgsPc91q+RoIIYQQQkjdRYlFQkiDlpCZxw5KJOzEoo1NjcynrjPQKDm56mPCsQWS6iyWye7H4XLHhrx7yA4OHVqNsyH1nZaqEjZ95ip3XFddGcFLumPHwzDkCsX4oo0VrPQ1anCGhBBCCCFEEVBikRDSoAXGZ7JiJtmprNVhlFgsMqGlBQ49j+Ice6vfGNlKKtAo/vdHicUSicQSfHnMFweeRnKOK4sKMCBEpuOvjg7QrVsNzI40ZLaGGlg7oFltT4MQQgghhNRh1K6PENKghSZns2Ks1YoAJRaLaW2lL3dMzBfglbENM+jnB+Tncx5PgP9excpNKgJA18jX0MuTaTA0YABtzSeEEEIIIYTUOkosEkIaND6Px4rZyDZuASixWMwId/l11gDgpex26Px8ICCgGmdUB8XFATt3Al98AaxcCQQFyT109JHnJV5qVCC7uRBtgyaEEEIIIYTUBZRYJIQ0aBP+Zm/TtU2LYx9IicVCxlqqODZBfjfiBl1nMSkJ+PxzwMwM+OorYO9eYNkywNkZaNMGePIEABCVmoO/XkRh+nHfEi+nn5OB0UEyiUU1NaBPn+r6CgghhBBCCCGkzKjGIiGkwcoXijnjE41F7CAlFhmGuTXGs2800GoTezXdS2M5icVJk6p/YrUpPR3o3Rt4LmcF4pMnQKdOOD7nZ4wUO5fpkpP8rrPrfY4cCWhqVnKyhBBCCCGEEFJ5tGKRENJg/XiZe3uqQXwMM8DnAxYWNTAjxdLCQg+d7AxY8ddG1hDymC8vQVfvIbeAI2FbX+TmAp99Jj+p+EleHoavX4gfHv5T6iV5EjG+8r3IHpgxo4KTJIQQQgghhJCqRYlFQkiDte7me864Xlw0M2BuTo0y5JjtbcuK5SqrItCAmYg1DQ7EL1fl1xlUePPmAbdulfnwFQ/+wpLHR0s8pke4LxxSY5nBFi2A1q0rMEFCCCGEEEIIqXqUWCSEkOIkEihHRTBjtA1armFujdHSQpcVl62zqJufjX9P3q+padWsV6+kjVpkuboCf/8NfPcdIBCwhlfdO4Jvnp/mvCRPIsYyrlWNM2YAHA2HCCGEEEIIIaQ2UGKRENIgFYi46ys2yk4FLzeXGaTEYokez+nIivmasFcyNo8LqZbn5928CfPNm2F87BiU4zga71QniQRYsED6/+K8vIAHD4DRo4F165B0/DRSVdl1ETfe2ouvXl5gxb98dQXeMTKdtHV1gTFjqnL2hBBCCCGEEFIplFgkhDRIB59FcsZtqCN0ufH5PDQ302bEuDpDe8ZXcWIxIwOYOBGCXr1geugQrNauhVv//uD37w9ERJR+flW4fBm4epUZU1MDjh8HtKV/J/NOv4HxPTF6DV+BNBUN1iW2X9+BL19dKnxslpmEtXcOsJ9r7lxAg30+IYQQQgghhNQWSiwSQhqkacdeccYv9zJlBymxWKrLX7ZlPObqDO0RH4KcqmrgEhEhrTd46BBriH/lCuDtDSQmVs1zySORAIsXs+Pz5gFWVgCAVzHp+P1uKADgmakD+g/9EZnKaqxTdl7djsvHlmHL9R14/8986OZnMw9wcACWLKnyL4EQQgghhBBCKoMSi4QQUoxObBQ7aMve1kuYTHXUoKOmVPg4RV0b4drGjGM840OgueQCdjwIq9yTicXAyJHAe+7mOwCAyEhg3DhAVI2dqG/fBnx9mTFj48JkY4FIDI+NtxnDD8ybYdDgH5CjxG4G1DPCFzNfXoB6Wgr7uXbtkq6EJIQQQgghhJA6hBKLhJAGJ1fOqjkLXTXAx4c9QInFMjk92YvxWHY7dOOsZJhkpWDGideYeeI1svOFFXuigweBx49LP+7yZWDVqoo9R1ls3cqOff89oKODm+8TobroPOdpt6zcMHTQEuQJlDjHWaZOBbp0qfg8CSGEEEIIIaSaUGKRENLgrL3JvdKtlYUucF+mc7GxMWBtXQOzUnyd7Y0wtY1V4eOXHHUWPRKk24L/eBAGraUXsfZGCasOuaSkAIsWscL5JiYQ6rK7U+Pnn4HQ0PI9R1lERQGnTjFj2tqIGTYGdquuofuOhyWeftm2JQYOXoYPGnolP8+IEdwJTEIIIYQQQgipAyixSAip/zIzGfX2ll95y3mYTVocEBPDDLZvD/B41Tm7emX3CHccGO0BAHjJ0RnaU6Yz9JILAYhIyWYdJ9fy5UBCAiMksbfHm5Mn8frsWeTIri4VCoF168p+/bLauZO1zTp91FgMOxGEsJScMl3imo0nXCZtwwGXbuxBdXVg927g339pCzQhhBBCCCGkzqLEIiGkfsrMBLZsATp1AnR0ABMTYMgQIDZW7imTCzg6RXt7V+Mk66cJrSwxrLkZfEzsWWMeHJ2hv/7vNbbfD8Oic/54FM5RX/CT5GRpQk+GeONGSFRVIdbQQMjq1ZDwZV7a9u0DoqPL/XXIlZ8vrXkoo43QDY8jUst1qS1TO2Hi62vSFZAnT0q3eR84IK0f+cUXlNQmhBBCCCGE1GllLPBECCEKJCsL6NABeCXT+fnUKUhu38ZQ7+k44diedVqzd76sGDp0qKZJ1m/jWlrgv1cxSFLThmFuRmH801bo4i4GxuNiYDwAYNPdEFyb3g4d7QzZF92/H8jNZcYGDICkX7/CJiq5TZpAMnIkeP/8U3RMfj6wfj2waVOlvy6xWIIbvx9Cj/h4RvyqlTuCDC3Kda2CdQMg4H9MHJqbS/8jhBBCCCGEEAVCKxYJIfXP0qXspOJHvJQUHD+7BsOD7jHiw93MIHj4gHmwqirQokV1zbJe69/UBODxWA1cHFJioJkvf6twgUiCztsfYNShZ/CNSSsaEIuBP/5gn7BsGSsk5qjBiJ07WVuoK2La8VdI3b2ffXn3vuW6zndd7IuSioQQQgghhBCioCixSAipX+7elW6BLsX+S7+jebHVc1s6mwN+fsyDWreWJhdJuSkJ+Ej+uQ98jZk1D/mQwJ1j1aKsY69i4bnxDlKy86WBK1eA4GDmQS1bAl5e7JNdXaXb3ovLzZVuMa6gCwFxGHHwGU7c8cfAkCeMsWQ1LZyz45iHHLYGGpjlTZ3GCSGEEEIIIYqPEouEkPojJweYMgWQSEo9VFOYh5Onf4F+jnSbbiM/H/Z5tA26UvTUlTFiUn9W3CO+7F2aDX+8DIlEAmzbxh6cOVN+DcIlS9ixXbukKx/L6bhvDAbsfYL/XsdiZNA9qIqEjPGjTt7IV1Iu07UEfB5eL+gMSz31cs+DEEIIIYQQQuoaSiwSQuqPQ4ekTS+KU1cHQkOBo0chlklC2aXF4e/z6yEQi4Bz59jXo8RipVl1Y9eybBEfzHGkfJZfHYTkwgVGTKKvD4waJf8kLy+gVStm7P174MaNMj1nToEIi88HgL/gLEYefl4YH+/PPv9QM46uznK8WdAFGipU3pgQQgghhBBSP9DdDSGk/ti3jx3bsAGwsUGySWNs6DAWq+4dYQz3Cn+J2GPzgSiOVXTt2UkxUk6OjtLkbk5RXcV2MYHlusTngbfBk1lpGDJoJOw1NEo+cfp04NkzZmznTqBHD87D/3oRhf1PIxGbngv/uEzWuF1qLDrIzP2dnhkemTmV+jV838MBK3o7gUddngkhhBBCCCH1CK1YJITUD/7+wBNm7Ts4OEiTSwDO+sVhdesROMbRDdqIK6nYvz9gYFAdM21YlJSANm0YoabJUTDKTpNzggyJBOP9b7LCg+GK/10OgkQiQXpuAYRi9vZ3yahREGpqMYOnTqEgOgbij8cnZ+djy71Q8Becxbi/fHD9XSJnUhEA5zyONOsqfzv2R3+ObYGf+zhTUpEQQgghhBBS79CKRUJI/cDVmGPyZIAv/fzknH8cwONhSu+5cE6ORvPEcPnX0tAAfv+9eubZEHXsCNy6xQgNTXuPXRotSz3VPSGU9W/1wsQOfkbW8Lv6FiuuvmWd0/dFAf4Z3wpzzr9H6yYd8bXvxaJBoRA/jV6MNW1GlO9rkEgwzv8WK3ykaRfOw4c1N8Nf41pAic+jhCIhhBBCCCGk3qIVi4QQxScUAocPM2N8PjB+fOHD/17HAgCyVNQx5LOlSFHVlH+9X34B7O2rY6YNU8eOrNBq7USoK5f+EiR3lWAJLgYlQPeHizj4LAo73fqwxr98dRk8SfmauLSPCYB92gdG7K55M4TqmbKOzVjVF8cmtoKygE9JRUIIIYQQQki9RolFQojiu3wZ+MBM+qBnT8DCgvPwED0zfDb4B8Rocmx19vYGZs+uhkk2YO3aAQIBI6T//DGCFnVDext9uacJxCKMCbzDiAl5fPzt3KnMT/3KxBYPZWog2qbHo1eYT5mvAQDjuVYrNuvCeGyhq4bEFb2hqUqbAQghhBBCCCENAyUWCSGK78QJdmzSpMI/3g9NZg3fs3BBs8nbkL9nHzBwIGBrCwwfDpw8Wbh9mlQRLS3A05MZ8/GBhZII92Z5I2BhVxyf2Ip1Wo/wlzDLSmHErth4Ik5TfjKSyy6OVYvTXl0u8/mqwnyMDLrLiOUKlHHM0bvw8dgW5ohY1hMGGirlmhshhBBCCCGEKDK6eyaEKDaJBLh0iRnT1AQGD/44LEHHbfc5T1U10IfK1MnAmTNASAhw7BhgZFTNE26gZLdDi0TAw4cAACcTLQxtbobNg10Zh3DVNDxcyjZoLkedvJEqs/V9YPATmGUmlen8QcFPoJ+XxYidtfdCqpq0McwQV1PsHO5W7nkRQgghhBBCiKKjxCIhRLG9fg3ExDBj3bsDamoAAL8PGXJPffNdl2qcGGHgqLOIu8xVgDPa22BN/6bo4WCEha1MMOT9I8Z4uoo6TtszO0yXRY6yKishqSQRY+rrq2U6f3rx5i8ftVk6B6L1A5C1uh/+m+QFDRXa/kwIIYQQQghpeCixSAhRbLKrFQGgT9HWV7cNt+WeaqylWh0zIly8vdmxGzcYD/l8HhZ2bYIr09thTW4ANIR5jPH/HNojV7li/2ZcTVy+eH0FfLGoxPMck6PQLfI1M2hmBqvPh4LH40FdWcB9IiGEEEIIIYQ0AJRYJIQoNq7EYu/eAIALAXFyT/u+h0N1zYhwMTYGmjZlxh48YK82/US2yzeAQy7dKvz0/kZWuGvejBGzykhE39AXJZ63PJwjMf3FF4CycoXnQgghhBBCCCH1BSUWCSGKKyMDuHePGXN0BOzsAABjjshPGo10b1ydMyNcPta9LCSRAMePs48LDwdu3mSEhBaWuPn3Yoh/HYiTk7xgoFH+xN4ut96s2LRXHInpjx580QIjX8psl+bzpYlFQgghhBBCCCGgolCEEMV18yZQUMCMfdwGHZOWi4w8odxTddXo11+NGzUKWL2aGTt6FJgzhxn7/Xdp0rEYpQnjC7t1f+Zqis9c+0AikYDH4yEyORN9d9xDYq4IWQUSZBUUndvOWh8CPg9aKgJoe46G8NEBKKUUdZruF/ocFukJiNIxxunJXtBTV0bTRlow0lQFdu8GkmU6ivfrB1hZVf7vghBCCCGEEELqAbqzJoQorhLqKx71lbPF9iMrfY3qmBEpiZubdEXp27dFsfv3gagowMJC+jglBdi1i3kejwdMmsS6HI/HAwCY6ajhYG/jwnhTl+ZQVlaCsoBjUf7zScBvvxU+FEjE2B9zE56b9sJAQ6XouJwcYPly9vlffVXaV0kIIYQQQgghDQZthSaEKK7bMvXvVFWBzp0BAPPP+Mk9LfanXtU5KyIPjyddtSjr2LGiP//xB5CVxRz/7DPAoew1MVWU+NxJRQCYPp0V6n75HxiEBzOD27YB0dHMmLMzozEQIYQQQgghhDR0lFgkhCimhATA358Za9sW0NBAnlB+p98JLS3QSJu6QdeakSPZsV27gLw8IDtbug1a1sKFVff8Tk7AgAHMmFAIfPNN0fbrlBTgl1/Y565cCQioCzQhhBBCCCGEfEKJRUKIYpJt2gIAnTpBLJbA8udrck/7qZdTNU6KlMrVFWjG7M6MwEBp0u7LL4H4eOaYtzfQrl3VzmHDBnZX5ytXpKsUc3KAIUOkycXiWrUChg6t2nkQQgghhBBCiIKjxCIhRDHducOOdeyIHy4FIjErn/OUy9PawtaQaivWupkz2bGVK4G//mLHq3K14ieOjtIVirJmzwY0NNhb7AFgzRrpVm5CCCGEEEIIIYUosUgIUUx37zIfCwRAu3ZYc+O93FPaWulX86RImUyfXrZViF26AP37V88cfvgBMDUt27GDBgHdu1fPPAghhBBCCCFEgVFikRCieNLTAR8fZqxlS0SLSq5/p6VK9fHqBIEA2LdP2mxHHisr4N9/AX41vUzp6AAHDwIqKiUf5+UFHD5cPXMghBBCCCGEEAVHiUVCiOJ58AAQi5mxTp1gu+q63FPaWeuDR1tZ6w5nZ+Dnn7nHNDWBM2cAE5PqnUOvXsD164ChIfe4qytw8aI0CUkIIYQQQgghhIUSi4QQxSO7DRrABWMnCMUSuafcm9WhOmdEKmLBAmD9esDdXZpEVFcH3NyAS5eksZrg7Q08fCj9P48HqKkB9vbAlCnAjRvyk46EEEIIIYQQQqBU2xMghJBy42jcMj5cA1DnPnyMpzmtVqyLeDxpcnHBgtqdh4ODNFktFEq3adP3CiGEEEIIIYSUCSUWCSGKJScHePKEEUpu4owUdW25p2wd4lrdsyL1gRK9JBJCCCGEEEJIedBWaEKIYnnyBMjPZ4T+1rKTe/iCLvbQ1yilQQchhBBCCCGEEELKjZZnEEIUC0d9xTsW3CsSNw5ywdyOttU9I0IIIYQQQgghpEGixCIhRLFw1Fe8a96M89BvOslfyUgIIYQQQgghhJDKoa3QhBDFUVAAPHjACL3TM8MHLQPWoduHNq+pWRFCCCGEEEIIIQ0SJRYJIYrDxwfIymKE7lq4cB462NW0JmZECCGEEEIIIYQ0WJRYJIQoDs76iuzE4pLuTWCqo1YTMyKEEEIIIYQQQhosSiwSQhQHR31FrsTiqr5Na2I2hBBCCCGEEEJIg0aJRUKIYhCJkHvzNiMUqWWEMJ1GjFj0jz1rclaEEEIIIYQQQkiDRYlFQohCCLn+AGoZaYzYHQsXgMcrfJyxqi/MaAs0IYQQQgghhBBSIyixSAip85ZdCsQfq/az4jetijo/n5nSGpqqSjU5LUIIIYQQQgghpEGju3BCSJ0lkUgg+O4cAOBc5CvW+A0rt8I/D2jWiDVOCCGEEEIIIYSQ6kMrFgkhddZfPtEAACWREJ2i/BhjoTomCNM1BQDc/Lpdjc+NEEIIIYQQQghp6GjFIiGkzhGJJWj+6y0ExmcCALw+vINWQS7jmJtWbmhipIm7MzugkbZqbUyTEEIIIYQQQghp0CixSAipGlFRwOnTQHQ0YG0NNG8OtGvHaK5SVsoLzzEed+PYBs3r1g1vF3er8HQJIYQQQgghhBBSOZRYJIRUTkICsHw5sHs3kJ/PHHN3B/7+G2jatEyXkkgkUFt8nhXvGsFOLE5eNLFC0yWEEEIIIYQQQkjVoBqLhJCKCw0FWrQAtm1jJxUBwNcX8PIC/vmn1Et9fuQ5BN+dQ4FIwohr5uegfUwgI5Zj7wA0blypqRNCCCGEEEIIIaRyaMUiIaRiYmOBHj2kW6BLkpUFjBkDSCTS/8t4FpmK1r/flXt67zAfqIkKGDH13j0rNGVCCCGEEEIIIYRUHUosEkLKLzMT6NMHCAkp+zlTpwLNmgHu7ghNysbCc/7473VsqacNCn7MERxUjskSQgghhBBCCCGkOtBWaEJI+S1aBLxi1z1E167AoUPA9Onspi05OZAMGQJxYhLsV18vU1JRSSTEgJCnzKCOjvR5CCGEEEIIIYQQUqsosUgIKZ+bN4Ht29nxMWOAa9eA8eOBHTuAU6cAPvNXDC80FP96DynzU3lH+8MgN5MZ7NsXUFGpwMQJIYQQQgghhBBSlSixSAgpu8xMYMoUdrxbN+DAAWYicdAgYNUq1qFjgu5iQPCTUp9q3ygP3DCLZw8MHlz2+RJCCCGEEEIIIaTaUGKREFJ2P/8MhIUxYzo60qSizCrCxKw8qCW74j+HdqzLbL/2B3TysuQ+TcQPPTCplQVw+jRzQFlZumKREEIIIYQQQgghtY4Si4SQsnn3DvjtN3Z840bA0rLw4evYdPAXnIXJT1eQL5bgqx4zkaCuwzjFIjMJa+8cZF0q7PvuEP86EBZ66sD160B4OPOArl0BXd0q+XIIIYQQQgghhBBSOZRYJISUzbffAgUFzFj37pBMnow9j8PBX3AW/AVn4b7hNuOQJA0dzOk2jXW56a8uoXPkawCAs4kWxL8OhJW+RtEBv//OnsOwYZX+MgghhBBCCCGEEFI1lGp7AoQQBXD5MnD2LCMk5PPhbjkEAQvPl3r6v04dMSbgDgaFMGsr7rqyFTnPnsPN3ox5wrt3wLlzzJiuLvD55xWaPiGEEEIIIYQQQqoerVgkRBFlZQH79gHdu0u3IWtpSWsd9uoFbNkCxMVV3XMVFADz5rHC2zz6I8DQqmzX4PEws8dXSFPRYIQdUmPhtnkN+/gtW9ixL76Qfp2EEEIIIYQQQgipEyixSIgiEYmA9esBc3Ng6lTgxg0gKkqaaMzIAK5eBebMAezspMfJbl0uh39fRoO/4Czm9p4JBAQwxhLVtLG83ZhyXS9a2wiqG39lD2zeDBw5UvQ4JATYv595DJ8PzJpVrucjhBBCCCGEEEJI9aKt0NUgODgY//zzDx4/foyoqCgIhUKYmJjA0dERAwcORM+ePaGkRH/1pJzevQMmTgQePiz92OxsYOFC4M8/gePHgSZNSjw8KSsf35x+gz9fRDPihtnp+N+Dv1jHL/Meh1S1sq8ejFrWE4111QCxGDh+FLh1i3nAF18AFhZA69bAkCFAZiZzfMgQwMamzM9HCCGEEEIIIYSQ6kfZrSq2ZcsW7NixA0KhkBGPjIxEZGQkrl+/DldXV6xfvx52dna1NEuicK5fB4YOBdLTy3eery/Qti2yjx7HTdOmcGusg7mn3uDUmw9lOv2Xe4egn5fFvKSxDXY371XiefrqyjgxqRVcTLVhpKlaNMDnS7dwt2wJpKQUxfPypB2f5fn22zLNlxBCCCGEEEIIITWHEotVaOXKlTh8+HDhYyUlJTg5OUFdXR3BwcFI+ZhIefPmDcaPH4+jR4/C3Ny8tqZLKkskAnJypKvwtLUBHq96nufgQemKPplkdSFTU+Ta2IEXEQ7VmGj2eFISBL164lDf+Tjm5F3mp+0a4YsvX19hxed1+QJivoAVn9jKAps+c4WuunLJF7a1BY4eBfr0kf4dlmb+fKBdu7JOmxBCCCGEEEIIITWEEotV5NKlS4ykYu/evfHjjz/CyMgIAFBQUIATJ05g9erVyMnJQWJiImbPno3//vsPvOpKSJGqFRsr3VZ85w7w+DEQGVk0ZmAANGsGdOwIjBkDNG9e+eeTSIAVK4D//Y9z+I2RNb7tPAXXrN0h4fGB9hK0iwnEtus74JEQyjhWVSTE3+fWQz83E7vc+5T61BoFudh9ZSsrftyhPW5ZuTFit75uj072hmX/ugCgRw9gwwbgm29KPq5bN2Dt2vJdmxBCCCGEEEIIITWCEotVoKCgAGuLJT+6du2KTZs2gc8v6o2jrKyMUaNGwdzcHNOnT4dQKISfnx/OnTuHgQMH1sa064fEROhduwZBdjaEOjrSFXDu7oCqaunnloVIBJw7B2zfDly7Jl2dyCU5Gbh3T/rf6tWAhwfw/ffS7ct8Zo8ksViC8JQcJGXnIyotB9ffJeLI8yik5RatSFQWFWDH1e2Y7Hed8+nWtxqCZR3GIV+p2OpAHg8PzZvCa9xGrL57CAuenWScw4cEO65th0FuBta0Hi5/haVEgt9u7oFdGrOzdJqKBr7p+iWOjm+JgS6NoKrEXrVYLnPnAsrK0lqQWVnscVtb4J9/AKpHSgghhBBCCCGE1El0x14Frl69ipiYGADS7c8//vgjI6lYnLe3N0aNGoU///wTALB//35KLFZUVBQEXl6w/yBTL1BZGRI3N6B7d/B69YKkfXvw1NXlXiY1pwCZeUI00lZFboEYuUIRMhOTIdyzDxaH9kA9Mqz8c3v5EhgxAr7GNljebgxONWlb5q3Sxtmp+O/0anjHBLDGCvgCfNlrFg65dJd7vogvwMLOk/FO3wzbru2AkoSZDP3l3mEY5mTgu86TOec0//kpzi3Quts3I2rqpDJ9DWU2YwYwcCCwYAHw33/SJGzr1tIVjTNmAMbGVft8hBBCCCGEEEIIqTKUWKwCFy5cKPxz+/bt0bhx4xKPL55Y9PPzQ2RkJCwtLat1jvXSvn3gySYVAaCgALznz4Hnz4F165CjpII7Fi64au2JKzae8DO04k7ySSRoGxuEiX43MCbwNnTycyo9RfeEMJw4sxo+xrZY0W4MzjRpLd22LEePMB/subIFVhmJrLE0FQ0MG7QEN6zdy/Tcu9364IOGPv49tw5qogLG2LfPT8E+NRZf9ZyBeE19DHE1xbIeDrA6fgQGGw9wTKwHMGVKmZ633CwtgX//la5aVFYGVFSq53kIIYQQQgghhBBSpSixWEkSiQSPHz8ufNyhQ4dSz3FycoKxsTESEhIAADdu3MDEiROrbY711YdcMUzLcJyGMB99wnzQJ8wHuA3EaBrgupUbwnQbIUtZDYY56bBPjUXHaH8Y55St63K8ui6eN7JHspo2VMQFaJoUhWZJkeBDwnm8Z0IoTp75Bb7GNtjh3hdHHb2Roq4tHZRI0CruPb55fhqfB97hPD9C2wj9h/4EPyPrMs3vk7NN2qDPsOU4c+pnVqJ0cPBjDE4MBMaPB+IsgDHzpVu5ZZmaSjs5V3ctUE3N6r0+IYQQQgghhBBCqhQlFispOjoa6elFyShXV9cynefk5FSYWHz9+nW1zK2+29/mM/Q2OYwW8SHlOq9xVjLGB9wq9/PFaejicLNuONK0C14Z27ASbY0zkjA66A7mPj8Ly0z2ikNAuoLxj2t/YMv1nQjRM0WSmjasMhJgnpks93kfmzpi6GdLEKtVcoOUDjb6mOhlCTczHbSy0AOf/2l+A4EXvaVdmD9+zxVKSwO2spu0FNLQAM6ela4qJIQQQgghhBBCCCmGEouVFBYWxnhsZWVVpvMsLCwK/xwREVGVU2owHG0bodW439AiPhhW6QkwyU5D88QweH14h5ZxwRBI5DRaKScfY1v83nIQ/nHqxGyWIiNG2xAbWw3BNo/++OL1FSx+clxuwlBJIoZjSkypz/23azfc/O4XXOvdDE7GWuDxULEu4i1aAHfvSpOLMt+zcgkEwF9/Aa1alf/5CCGEEEIIIYQQUu9RYrGSEoqtAOPz+TAyMirTecbFmlIkyK4iI2UyzK0xTHXU8ILXBC8aNWGM6eVmolvEK/QK90HPMB/YpseX69p5AiWctm+DbZ79cdfcpcRtwLYGGghNzi46V0kF2zwHIHnMeHS/cRJjrx2BakL5nh/6+sCGDRgzaRLGVNUWZCcnwMcHmDcPOHCg5GP/3969x/dc//8fv88ODhtjzPk8NkI6+OATpZZTZMoxZ0o5NELlVFFySDlPKJSU81npQ/mRSPgkEmGZHLYPxhiGnd57//7Yxev7fm+2vU87mNv1r9fz/X69no/ne5un5x57HipVSr0nONg1sQEAAAAAQL5DYtFJ169fN669vb0zPA06LR8fn3vWkZOSk5NzJa4r/TO6mY78+aduJaXubdjokXpKlptMKWYV9OioFLNZtxNMSr5wTvH/2aoiP+2U208/ye1G+r0UzaVLy/zUUzI/+6zcO3ZUhxIl1MHZBvZtLN15X6bFi1UgLExupzNftm328pL5pZeUMnmyVKaMZDI52wJrPj7SwoVy69RJbtOmyW33brlZxDAXKiRz796p8X19pXzwM4L8z5Tm30naMoD8j34AAP0AAPqB3OFmNpvvfdoEbPLZZ59pxowZklJnIe651+EX97B8+XJ98MEHkiRPT08dPXo029p416FDh5SS4prlwfe15GR5Xbok95s35X77tpJ9fZVUsqRMvr7Ze0CJ2SzvP/9Uie3bVfjvv1Xo3DkVuHVLSf7+SixXTjcaN1ZMmzYyFS+efW1Iw/3mTfkcPqwCd+4ovkoVxVetKnPBgjkWHwAAAAAA5L4CBQro0Ucftfs5Ziw6KSkpybi2dbaiJHl4/N+XPj/MHLyveHgosUKFnI/r5qZbDz+sWw8/nPOxM2AqWlTXn3wyt5sBAAAAAADuQ7ZnwnBP7u7uxrU9swEtk4menhkfCAIAAAAAAADkRcxYdFLhwoWN64SEBJufS0xMNK4L5sLS0wIFCqhevXo5HtfVTCaT1TLyunXrWiV7AeR/9AMA6AcA0A8AoB+w359//un0lnkkFp3k6+trXN+6dUtms1luNuzTFxcXZ1wXz8E99SxZLsfOL9zd3fPl5wJgO/oBAPQDAOgHANAP5AyWQjupTJkyxrXJZNK1a9dseu7y5cvGdalSpVzeLgAAAAAAACA7kVh0UpUqVazK58+ft+m5yMhI47patWoubRMAAAAAAACQ3UgsOqlChQpWS5mPHz9u03MnTpwwrmvVquXqZgEAAAAAAADZisSiCzRq1Mi43rt3b5b3nzhxQleuXDHKjRs3zpZ2AQAAAAAAANmFxKILtGzZ0rjeuXOnLl26lOn9K1asMK4DAgIUFBSUbW0DAAAAAAAAsgOJRRdo2bKlSpcuLUlKTEzU6NGjlZycfM97d+/erTVr1hjlXr165UgbAQAAAAAAAFcisegCXl5eGjFihFHeu3evXn31VauDXJKTk7V69WoNGTJEJpNJkhQYGKjOnTvneHsBAAAAAAAAZ3nkdgPyixdffFGHDh3SqlWrJKUmF1u2bKmgoCD5+PgoIiJCV69eNe4vXry4Zs+eLQ8PvgUAAAAAAAC4/5DVcqEPPvhAJUqU0OLFi5WUlKSUlJR7nhIdEBCg2bNnq3r16rnQSgAAAAAAAMB5JBZdyM3NTcOHD1dISIjWrl2rPXv26OLFi7pz5458fX1Vu3ZttW7dWiEhIfLy8srt5gIAAAAAAAAOI7GYDQICAjRq1CiNGjUqt5sCAAAAAAAAZAsObwEAAAAAAABgNxKLAAAAAAAAAOxGYhEAAAAAAACA3UgsAgAAAAAAALAbiUUAAAAAAAAAdiOxCAAAAAAAAMBuJBYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7EZiEQAAAAAAAIDdSCwCAAAAAAAAsBuJRQAAAAAAAAB2I7EIAAAAAAAAwG4kFgEAAAAAAADYzc1sNptzuxHIGQcPHrQqFyiQP/LKKSkpxnV++UwA7EM/AIB+AAD9AAD6AftYfr0k6fHHH7e7Dg9XNQb3n7Q/QPlBfvxMAOxDPwCAfgAA/QAA+oGcQfoWAAAAAAAAgN2YsfgAY1owAAAAAADAg8kVszrZYxEAAAAAAACA3ZiyBgAAAAAAAMBuJBYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7EZiEQAAAAAAAIDdSCwCAAAAAAAAsBuJRQAAAAAAAAB2I7EIAAAAAAAAwG4kFgEAAAAAAADYjcQiAAAAAAAAALuRWAQAAAAAAABgNxKLAAAAAAAAAOxGYhEAAAAAAACA3UgsAgAAAAAAALAbiUUAAAAAAAAAdvPI7QbgwRQREaGVK1dq//79ioyMVHJyskqXLq3AwEC1a9dOLVq0kIeH6388L1y4oJUrV2rPnj06e/as4uPj5e/vr+rVq6tNmzZq06aNChcu7PK4ANLL6X7gzz//VKdOnex+btmyZWrQoIHL2gEgc7Nnz9a8efNUoUIF7dixI1tiMB4A8rbs7AcYDwB5z/79+7VlyxYdOnRI0dHRiouLk4+Pj8qVK6cGDRqoQ4cOeuihh1we9+rVq1qzZo1++uknnT59Wrdu3ZKfn58qV66sVq1aKSQkRL6+vi6Pm9+4mc1mc243Ag+WsLAwLViwQMnJyRneU7duXX3yySeqXr26y+KuXLlSH330ke7cuZPhPVWrVtXHH3+s+vXruywugPRyox9YvXq13nvvPbuf4xcJIOccOXJE3bt3V1JSUrYlFhkPAHlbdvcDjAeAvCMyMlKjRo3Sb7/9luW9bdu21YQJE+Tj4+OS2Nu3b9c777yj2NjYDO/x9/fXpEmT1KxZM5fEzK+YsYgcNXHiRH399ddG2cPDQ0FBQSpcuLAiIiJ07do1SdLRo0fVq1cvrV69WhUqVHA67pIlSzRlyhSj7Obmppo1a6p48eI6c+aMoqOjJUlnzpxRnz59tGzZMtWpU8fpuADSy61+4Pjx48Z1lSpVVKlSJZue46+UQM44f/68Bg8erKSkpGyLwXgAyNtyoh9gPADkDWfOnFG3bt109epV4zVPT08FBgaqaNGiiomJ0alTp3R3LtyWLVsUERGhZcuWOZ1c3Lp1q0aMGCGTyWS8Vq1aNfn7+ysqKkpRUVGSpMuXL2vQoEGaN2+enn76aadi5mfMWESO2bp1q9544w2j3KpVK40bN06lSpWSJCUlJWn9+vWaMmWKMYugTp06Wrdundzc3ByOe/jwYXXv3t3oNP71r39p8uTJqly5siTJbDbrxx9/1Lhx44yERtmyZbV161aWQQEullv9gCS99NJLOnTokCTpo48+0osvvuhUfQBcJzw8XP3799elS5eM11w9U4nxAJC35UQ/IDEeAPICk8mkF154QeHh4ZIkd3d3DRo0SP369bNKGl66dEkzZszQxo0bjddat26t2bNnOxz7/PnzCgkJ0e3btyVJgYGBmjp1qtVS63379mns2LFGgtHb21v/+c9/VKZMGYfj5mcc3oIckZSUpKlTpxrlZ555RrNmzTKSCVLqXye6du2quXPnGvuqHTt2TN99951TsadMmWL8ElGnTh0tWrTI+CVCSp2t0LJlSy1ZskTe3t6SpIsXL+qrr75yKi4Aa7nZD5jNZp08edIo16pVy6n6ALjOpk2b1KVLF6tkQnZgPADkXTnVDzAeAPKG9evXG0lFKTXJP2TIkHQzEcuUKaOpU6eqX79+xmtbt27V4cOHHY49c+ZMI6lYoUIFffXVV+n2b2zcuLGWL1+u0qVLS5Ju3bqluXPnOhwzvyOxiBzx448/6n//+5+k1GWP48aNU4EC9/7xa9q0qbp27WqUv/zyS4fj/vHHH1adznvvvadChQrd895atWrp9ddfN8pfffWV1dRoAM7JrX5Aks6ePWsMIDw9PRUQEOBUfQCcd+nSJY0aNUojR47MdL9DV2A8AORNOdkPSIwHgLxi06ZNxnXTpk0VEhKS6f0jRowwknxS6rJoR1y6dEnbtm2zqtfPz++e95YtW1bvvPOOUV6/fn2m+zE+yEgsIkd8//33xvUTTzyh8uXLZ3q/ZULh2LFjOn/+vNNxAwIC9Oijj2Z6f6dOnYxZUlevXtWBAwccigsgvdzqByTr/ZSqVasmLy8vh+sC4Lz58+erdevWVkubqlevroEDB2ZLPMYDQN6T0/2AxHgAyAsSExP1+++/G+Xnn38+y2e8vLzUtGlTo/znn386FHvbtm3G4ZFFixZVq1atMr2/RYsWRuIxOTlZ27dvdyhufkdiEdnObDZr//79RrlJkyZZPhMUFCR/f3+j7OjeKr/++qtdcX19fVW3bl2jvHPnTofiArCWm/2AJJ04ccK4ZtkTkPsWL15szBqSpM6dO2vNmjWqUqVKtsRjPADkPTndD0iMB4C8ICoqSgULFjTKts4cLl68uHF9dy9ke1mOBxo2bChPT89M73d3d9e///1vo8x44N5ILCLbRUVF6caNG0bZcqCemaCgIOPakb9IJCUl6fTp00bZ1lMdnY0LIL3c6gfuspyhwC8SQN5Rt25dff3115o4caLTJzxmhPEAkLflRD9wF+MBIPdVq1ZNhw4d0m+//aYtW7YoMDDQpufuHqQiOX5Ku+Ueq7aOByz7CsYD9+aR2w1A/nfmzBmrsuVG6ZmpWLGicX3u3Dm740ZGRiopKcko2/rXT2fjAkgvt/qBuyx/kQgKCtKJEye0bt067d+/X5GRkUpOTlapUqVUv359Pffcc2rRooXTp1ADyFjDhg3VoUMHPfvss9n+b43xAJA35WQ/cBfjASDvKFq0qIoWLWrTvXFxcfrll1+MsiP7oyYmJhr7vUuOjQcuXbqk+Pj4DPdpflCRWES2u3z5snFdoEABqxNgM2O5BNKyDkfipq3P1rgxMTFKSUnJ8IAJALbJrX5ASt0fLTo62igvWrTIahnEXVFRUYqKitL333+vunXraubMmTYnQAHYZ968eTkWi/EAkDflZD8gMR4A7meLFy9WXFycUX7mmWfsruPy5csym81G2dbxQNrfWy5fvqxKlSrZHT8/Y3SEbHf9+nXj2tvb2+ZBueVSCMs6HIkrScWKFbPpOcu/mpjNZqvlmwAck1v9gGQ9O0H6v71VChcurFq1aqlhw4aqWrWq1T1Hjx5V586d9ddffzkUE0DewXgAgMR4ALhfHTlyRAsXLjTKVatWVXBwsN31uGI8IInxwD0wYxHZLiEhwbi2Z8qw5SltiYmJTsW1J3baDVzT1gPAfrnVD0jpf5Hw8fHRiBEj9MILL8jb29t4PTIyUnPmzNGmTZskSbGxsRo8eLA2bNigEiVKOBQbQO5jPABAYjwA3I8iIyM1ePBgqy1NRo8eLQ8P+1NZaf8ftzxAJjNpT49nPJAeMxaR7Sw7AXuWEFl2FnePhLdH2mdsjZ22kzKZTHbHBmAtt/oByXp/xxIlSmjt2rXq0aOH1S8RUur+KR9//LGGDBlivHbhwgUtWLDAobgA8gbGAwAkxgPA/ebChQvq06eP1ZYmffv2dWgZtJR+PODu7m7Tc2nvYzyQHolFZDvLf4gpKSk2P2f5Dz+rY+DvJe0vDrbGTtvhOBIbgLXc6gckaeLEiTpw4IDWrVunFStWqFq1apne//rrr+vRRx81yqtWrXJ4tiSA3Md4AIDEeAC4n0RERKhbt26KjIw0XmvatKneeusth+tMOx6wNUGY9j7GA+mRWES2K1y4sHFtz7Rhy/+4bZ2mnFFce2KnHTA4EhuAtdzqB+7y9fVV3bp1s/wlQpLc3NzUq1cvo3znzh0dPHjQ4dgAchfjAQB3MR4A8r7ff/9dPXr00IULF4zXGjdurLlz5zqV1Es7HrD1DwWOLqF+kJBYRLbz9fU1rm/dumV1ElNmLE99Kl68uFNx09Zna1wPD490m7UCsF9u9QOOeuyxx6zKlsunANxfGA8AcBTjASBnffvtt+rTp4+uXbtmvNasWTN99tln6RKD9nLFeEDK2d9J7hckFpHtypQpY1ybTCarTiIzlnsppD3i3d64knTlyhW74/r5+cnNzc3u2ACs5VY/4KiSJUtalR09kRpA7mM8AMBRjAeAnBMWFqa33nrLaiZhSEiI5s2bZ9fhjxnx9/e3Wg5t63jA8j43N7d0/QJILCIHVKlSxap8/vx5m56z3E/BluUKaZUvX95qqrQjcatWrWp3XADp5VY/4Ki0SyPSbuwO4P7BeACAoxgPANkvKSlJI0eO1Ny5c61eHzBggD7++GOHToC+Fy8vL5UrV84onzt3zqbnLMcN5cuXT3dKNEgsIgdUqFDBarrw8ePHbXruxIkTxnWtWrXsjuvp6anAwEC741reV7t2bbvjAkgvt/qBqKgoffLJJxozZoxee+01q/oykzbxYDkIAXB/YTwAgPEAkDclJiYqNDRUmzZtMl7z8PDQxIkTNWLECJevFqhbt65xbWs/wHggayQWkSMaNWpkXO/duzfL+0+cOGE15bhx48Y5Ejc2NlZ//fWX03EBpJcb/YDZbNaiRYu0fv167dq1S3v27LHpud27dxvXbm5u6fZYAnB/YTwAPNgYDwB5T3JysoYOHaqffvrJeM3b21ufffaZOnfunC0xGzZsaFzv379fKSkpmd5vMpm0f/9+o8x44N5ILCJHtGzZ0rjeuXOnLl26lOn9K1asMK4DAgIUFBTkdNyjR4/q6NGjmd6/evVqJScnS0rd3PWJJ55wKC6A9HKjH6hYsaIqVKhglNevXy+TyZTpM3Fxcfrmm2+MctOmTeXn52d3bAB5B+MB4MHGeADIez755BPt3LnTKPv5+enrr79W06ZNsy1m8+bN5e7uLil178Qff/wx0/u3bdumq1evSkqdSWk5nsD/IbGIHNGyZUuVLl1aUup059GjRxsD9rR2796tNWvWGOVevXo5HPfRRx9VnTp1jPKYMWMyPP3p+PHjmj9/vlHu0qWLSzaJBZAqt/qBTp06GdcRERFasGBBhvcmJSVp9OjRRtLTzc1NAwcOdDg2gLyB8QAAxgNA3rFr1y599dVXRtnX11dLly61+r86O5QtW1bPPvusUZ40aVKGkx0uXLigyZMnG+WWLVumOxAOqUgsIkd4eXlpxIgRRnnv3r169dVXrfYtSU5O1urVqzVkyBDjL4iBgYEZToMODg5WUFCQgoKCFBwcnGHsUaNGGXszhIeHq1evXlb7KZjNZv3www/q27evbt++LSn1xKgBAwY4/oEBpJNb/UC/fv2sZinMmTNHEydOTHcy9fHjx9WvXz+rv1z27NlTDRo0sP/DAsgxjAcAMB4A7h8mk0mTJk2S2WyWlJq4nz59umrWrOlUvb169TL6gcxWOg0fPlwFCxaUJF26dEndu3fXgQMHrO7Zv3+/evToocuXL0uSihQpYvV7DKy55ngdwAYvvviiDh06pFWrVklKTSq0bNlSQUFB8vHxUUREhDHNWJKKFy+u2bNnO30KVKNGjTR8+HDNmDFDkvTXX3+pffv2qlGjhvz8/HT27Fmrv1IUKlRIs2bNUtGiRZ2KCyC93OgHChcurM8++0w9e/ZUbGysJOnrr7/WypUrFRgYKB8fH124cCHdyXDPP/+8xowZ43BcAHkL4wHgwcZ4AMgbtm7dqrNnzxrlwoULa8mSJVqyZInNdZQqVUpTp051KH716tU1ceJEjRo1SikpKYqMjFSvXr1UuXJllS1bVhcuXLCa+FCgQAFNmjRJlSpVcijeg4DEInLUBx98oBIlSmjx4sVKSkpSSkrKPU9nDAgI0OzZs1W9enWXxB0wYIC8vb01ffp0YxbCqVOn0t1XtmxZTZs2jb9IAtkoN/qBmjVrau3atXr77bd16NAhSanLnI4dO5bu3kKFCmngwIF67bXXjD1YAOQPjAeABxvjASD3bd261ap8+/Ztmw9Uusty9rEjQkJC5OXlpfHjxxt/aDh37ly6Pyz4+vrqww8/VKtWrZyKl9+RWESOcnNz0/DhwxUSEqK1a9dqz549unjxou7cuSNfX1/Vrl1brVu3Nv6hu1LPnj3VvHlzrV69Wrt27VJkZKTi4uLk4+OjwMBANW/eXB07dpSPj49L4wKwllv9QKVKlbRy5Ur98ssv+u6773T48GFFR0crISFBfn5+qlSpkpo1a6Z27dqpXLlyLosLIG9hPAA82BgPALnr9OnTud0ESVLr1q3VuHFjrVmzRjt27NDZs2d1/fp1FSlSRAEBAWrWrJm6du3KoU02cDPfXdgOAAAAAAAAADbi8BYAAAAAAAAAdiOxCAAAAAAAAMBuJBYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7OaR2w0AAADITsHBwYqKinK6nqVLl6pRo0YuaBGQcxISEtSpUyeFh4erT58+Gjt2rPHe/v371bt3b6N88uRJp2IFBQUZ16GhoRoyZIjddYSFhWnu3Lkua1NWhg4dqm3btqlx48b68ssvVaAA8y4AALAH/3MCAAAA+dSUKVMUHh6uUqVKaejQobndnDxn1KhRKlSokPbt26dFixbldnMAALjvMGMRAAA8MEqXLq3AwECHnvX19XVxa4Ds9fPPP2vFihWSpGHDhsnHxyeXW5T3VKhQQf369dP8+fM1e/ZsPfXUU6pVq1ZuNwsAgPsGiUUAAPDAaNKkiT766KPcbgaQ7eLj4zVhwgRJUmBgoDp27JjLLcq7XnvtNa1Zs0ZXrlzR+PHjtWLFCpZEAwBgI/7HBAAAAPKZzz77TOfPn5ckDR8+nERZJooUKaKBAwdKkg4fPqy1a9fmcosAALh/MMIAAAAA8pGYmBgtWbJEklSjRg0FBwfnboPuA126dFHx4sUlSXPnzlVCQkLuNggAgPsEiUUAAAAgH/n88891+/ZtSakJM2StYMGCeuGFFyRJly5dMvamBAAAmWOPRQAAAAeMHj1aGzZskCQtWLBAzZo109KlS7Vq1SpFRkaqWLFiql69ulq3bq0ePXqke/7WrVvauHGjdu3apb///lsxMTHy8vKSv7+/GjRooOeee05PPPGEXW369ddftW7dOv3++++Kjo6Wt7e3KleurOeee05dunSRj4+PvvnmG3344YeSpNDQUA0ZMsSqjvXr12vMmDGSUg+22LFjR5Zxg4ODFRUVJSn1FOIOHTpken9UVJQ2bNigPXv2KDIyUrGxsfLx8VH58uX1xBNP6MUXX1RAQECmdYSFhWnu3LmSpPfee089e/ZUYmKiNm3apK1btyoiIkJXrlxR0aJFVa1aNQUHB6tr164qWrRolp/nrgMHDui7777T77//rqioKCUlJcnX11eBgYFq1qyZOnTooGLFilk9M2HCBC1btkxS6oE/e/bskZeXV5axvvrqK02ePFmSVLVqVW3bts3mdlqKi4vTmjVrJFkny5xhMpk0fPhwqzb16dNHY8eOdbpue1l+3x2R2c9nly5djJmeS5cuVe/evVlCDgBAFkgsAgAAuMC7776rdevWGeUrV67oypUrCgoKSnfv5s2b9dFHHykmJsbq9YSEBN28eVOnT5/W6tWr1bhxY02dOlVly5bNNHZMTIxGjRql3bt3W70eGxur2NhYHTlyRMuXL9ecOXOc+ITOM5lMmjVrlpYsWaLExESr965du6Zr167p2LFj+uKLL9SlSxeNHTvWpqScJJ04cUJvvvmmTp06ZfX61atXdfXqVR08eFCLFy/WtGnT1KRJk0zrOnfunN555x0dOHAg3Xt3v6979+7VggULNHHiRDVv3tx4/8UXXzQSi9evX9fPP/9s9X5GNm3aZFWHozZt2qRbt25Jkho1auT0aeZms1ljxoyxSir27dvXSD7nJwEBAapRo4ZOnTqlqKgo7dy5U88++2xuNwsAgDyNxCIAAICTNmzYkOEMs5CQEKvy3LlzFRYWZvVa+fLlVbFiRSUkJCgiIkJxcXGSpH379qlz585asmRJhjP4YmJi1L17d505c8Z4zdPTU0FBQSpUqJBOnTql2NhYnT9/Xq+88opLZrA5IjExUYMHD7ZKfrq5uSkgIEClSpXSjRs3FB4eruTkZJlMJq1YsULh4eFatGiRihQpkmndZ86c0dy5c3Xt2jVJUsmSJVW9enXFx8crIiLCWBZ89epVDRo0SBs2bMjw63nixAn16dNHsbGxxmuenp4KDAxUkSJFdObMGV2+fFlSajJ06NChmjFjhlq3bi1JqlevngIDAxUeHi4pNYmcVWIxIiJCx44dkyQVKFDAqe/R5s2bjeunn37a4XruGj9+vFXSs1+/fho9erTT9TqqcuXKatq0qc33//rrrzKZTJJSZ3A+9NBDmd7/1FNPGcnpzZs3k1gEACALJBYBAACcdDep2KZNG4WGhqpcuXI6deqUtm/frocffti4b8uWLVZJxccff1xjxoxRvXr1jNcSExP13XffaerUqYqNjVV0dLRCQ0O1du1aeXt7p4s9ZswYq6Ri586d9eabb6pEiRKSpKSkJG3YsEFTpkzR1atXjaWeOW3ixIlWScXOnTsrNDTUajbm9evXtXjxYi1cuFApKSk6ePCgxo0bp2nTpmVa99dffy0pNen07rvv6qmnnpKbm5uk1KXBYWFhxudOSEhQWFiYZs2ala6e27dv6/XXXzeSiu7u7ho4cKD69etntYR6+/bt+uCDDxQdHS2TyaR33nlHjz/+uPz9/SWlzjicOnWqJGnnzp26efNmpkuwN27caFw/8cQTWc5QzUh0dLT++OMPq7qcMWXKFK1atcoo53ZSUZLat2+v9u3b23TvzJkztWfPHqM8YcIE1apVK9NnmjRpoi+++EKStHv3biUmJto8axYAgAcRiUUAAAAXCA4O1owZM4yE1sMPP2yVVIyLi9P7779vlJ999lnNmTNHHh7WwzEvLy916NBB9evXV7du3XT9+nWdPn1aCxcu1LBhw6zu3bt3r3bt2mWUX375ZY0aNcrqHk9PT3Xp0kU1atRQnz590i1Bzgm//fabVYJq5MiReuWVV9Ld5+vrqxEjRigoKEgjRoyQJH377bfq2LGj/v3vf2cao2LFilq9erWRUL3Lx8dHY8aM0eXLl7VlyxZJ0q5du+6ZMFqyZIkiIyON8rRp09SmTZt0sZo3b65y5cqpe/fuio+PV1xcnL755hsNHz5cUuos1enTpys5OVmJiYnaunWrOnfufM92m81mffvtt0a5Y8eOmX7OzOzfv19ms1mSVLhwYVWpUsXhuu4uWb/rXj9bmdm8ebMOHz5sd9xz587Z/cy9bNq0SQsWLDDKL7/8sk0zQWvXrm1c37p1S0eOHFGDBg1c0iYAAPIjEosAAOCBsWHDBuPAFVstXbpUjRo1yvK+QYMGGUnFe1m7dq1u3LghSSpatKgmT56cLqloKSAgQG+88YYmTJggSVqxYoUGDhyoQoUKGfdYnlxbqVIlI7F1L4899phCQ0M1Y8aMLD+Lqy1evNi4fvzxx++ZVLTUtm1b/fDDD9q6dask6YsvvsgysTh06NB0SUVL3bp1MxKLt2/f1vnz562WQ6ekpFglP9u2bXvPpOJdderUUbt27YyDUn744Qfj61+qVCk9+eST2rlzp6TU5GhGicX9+/frwoULklITq7bsx5gRy9mKNWrUcPjgkc8//1zz5883yvYmFaXUBKGrkoT2OnjwoN59912j/NRTT+ntt9+26dmSJUuqZMmSxv6nf/zxB4lFAAAywTFnAAAATvL29lbdunUzvcdyD8ZnnnlGxYsXz7Ledu3ayd3dXVLqQSyWM8CSkpKslnl26NAhyyWb3bt3V+HChbOM60rx8fFWS6BtPZjEcnbZr7/+qoSEhAzvLVCgQJZ74dWoUcOqfPPmTavyX3/9pYsXLxrlbt26ZdnG3r176+2339a8efP06aefWr1n+Tn/+9//WtVtyXL/wrZt2zq17DYiIsK4rlmzpkN1LF26VNOnTzfKjiQVc1NkZKRCQ0ONmbnVq1fXjBkz7EqyBgYGGtdpDwMCAADWmLEIAAAeGKVLl7ZKGtjCllN1AwMDM01cJCYm6ujRo0Y5o4ND0ipWrJgqV66sf/75R5L0+++/q3HjxpJkdSiJJJtmVRUtWlSPPfaYfvnlF5viu8KRI0eUlJRklG397JaJ2qSkJP35558ZfsaKFSvKx8cn0/qKFStmVbZs09123uXp6an69etn2cbAwMAMf57uJo9jY2OVkpKi7777Tv3797e6Jz4+3irh7Mxp0JKslnGXLFnS7ufXrFmjyZMnG+XAwECHk4qhoaEaMmSI3c+FhYVp7ty5DsWMi4vTwIEDdfXqVUmp3/P58+dnur/lvVh+7Sy/pgAAID0SiwAA4IHRpEkTffTRRy6v18/PL9P3L168aLW34cyZMzVz5ky741y6dMm4joqKsnqvatWqNtURFBSUo4nFs2fPWpVtmQl4L9HR0Rm+Z8vsz7szP+9KSUmxKp8/f964rlChgtMHdnh5ealdu3bGwTKbN29Ol1jcvn27bt26JSl1hqHlnpyOuHsqtiS7k2mSNG7cOGOPRkkKDw/Xtm3b1KpVK6falRNMJpOGDRumv//+W1Lq93vmzJk2/7uwZJmktjwdHAAApMdSaAAAACdlNVvu+vXrLoljWU9cXJzVe7YmkjLbhzA73N1X0lmZJXgs9510lOXX05Gk3L1YzkA8efKkwsPDrd63XAbdoUMHp+PduXPHuM7qZ/Je7iZbLZfLf/jhhy77+c1OU6ZMsVpyP3LkSDVt2tShuiy//5azggEAQHrMWAQAAHBSVvu3JScnW5Xr1atn0xLrtCz3CSxYsKDVe5YzzTLj7Ew8e6X97I4me0qXLu2K5mQos4N3HFWnTh0FBQXp5MmTklIPcXnzzTclSVeuXDFmjnp4eCgkJMTpeJafwdGDW1566SWFhISoR48eMpvNunz5sqZMmZItM31dZfny5cbMUCk1Sdu3b1+H67Oc3ero1xEAgAcFiUUAAIBslnZ/v8GDBys4ONipOtMmJm/evKkiRYpk+VzamY6ZsTVZmdnBKmk/++zZsx2aTZfdLNuZ9mAXZ3To0EFTpkyRJG3ZssVILH7//fcymUySUk8tLlWqlNOxvL29jZmd8fHxdj/fo0cPvffee3Jzc1OXLl2MU7I3bNigtm3b6sknn3S6ja72yy+/aNKkSUb5kUce0QcffOBUnZazFL29vZ2qCwCA/I4/wQEAAGSzMmXKWM0mu3DhgtN1VqlSxaps6+m1586dy/R9y3amPeDkXlJSUjJdKlumTBmrsis+e3awbGdUVJRNn12SVq1apZ9//ln//PPPPZ9p166dPDw8jHqPHz8uKXV/xbs6duzoTNMNlntNOrI34Lhx44zv/1tvvSV/f3/jvfHjxxv7QeYVERERGjZsmDErtmzZspo7d67Ts3Itf54dmVkMAMCDhMQiAABANvPx8VHNmjWN8r59+2x6LikpSWPHjtXMmTO1atUqq+Rh+fLlVb58eaP866+/Zlmf2WzWwYMHM73HMiljSyIpo4TaXY888ohVstLWz37q1CmNHTtWn376qTZu3Gic9JtdLE+BvnsKdVbOnz+vcePG6dVXX1Xr1q0VERGR7p6SJUvqqaeeMsrbt2/XjRs3jO+Dn5+fmjVr5oJPIFWuXNm4/t///udUXcWKFdPYsWONclRUlKZPn+5Una507do1DRw40NjDs1ChQvr000+tkqGOsvzaOXL4CwAADxISiwAAADng6aefNq537NhhdQpxRjZt2qR169ZpwYIFGjduXLrEVevWrY3r9evXZ7nMeffu3YqMjMz0HstZb7dv384yQbVly5ZM3/fz87NK2i1btsym2YCff/651q1bpzlz5mjs2LHpTnF2tYceeshqOfKaNWuyfMbys/v5+SkwMPCe91nOSPx//+//adeuXcYsu5CQEHl6ejrabCsBAQHGddrTuB3Rpk0bq6Tn8uXL9dtvvzldr7OSkpI0ZMgQq9m3kydPVt26dV1Sv+XXrnr16i6pEwCA/IrEIgAAQA7o2bOnkUBKTk7WsGHDMk0ERkZGatq0aUa5XLlyeuaZZ6zu6d27t1FnTEyMxo0bl2ECLiYmRu+//36W7QwKCrKaYWh5KEZaJ06c0OLFi7Os8+WXXzau//nnH3344YeZ7t+4Y8cObd682Si3bNnSJXsQZsbDw0PdunUzyhs2bNDPP/+c4f1RUVFWn71Tp04ZHvTRrFkz+fn5SZKOHz+uZcuWGe9ZnhztrMcee8y4PnnypLGHozPGjx9v7N1pNpv1zjvvZLqnZk4YN26c/vvf/xrl119/XW3btnVJ3dHR0YqOjjbKDRo0cEm9AADkVyQWAQAAckCZMmU0bNgwo3z06FF16dJFe/bssUqymUwmbd68Wd27d9e1a9eM10eOHJlu77hy5crprbfeMspbtmzRwIED082G3L9/v7p166aoqKgs21mqVCmrBNWXX36pzz//XImJicZr8fHxWrFihbp166b4+HhjD8GMtGzZ0mrG5qpVqzRgwIB0+0LGxcVp/vz5Gjp0qPE1KVKkiEaMGJFlu12hb9++xtJXs9ms0NBQLVmyJN1BKHv37lWvXr2MZbj+/v7q379/hvV6enrq+eefN8qHDh2SlHpqdK1atVzW/oYNGxpJ4fj4eJ04ccLpOitUqKAhQ4YY5TNnzigsLMzpeh21cOFCrV+/3ii3b99eQ4cOdVn9R44cMa6LFy+u2rVru6xuAADyI06FBgAAyCH9+/fXP//8o7Vr10pKPXzilVdeUcmSJVWtWjUlJibq7Nmz6Q5Dee2119SmTZt71tm3b1+dPn3aOMF3165d+vnnn1WzZk2VKFFCkZGRRkLRy8tLvr6+unz5cqbtHDFihHr37i2TySSz2azp06dr4cKFCggIUFJSkv755x9j/8WHHnpIjzzyiJYvX55hfW5ubvr444/Vr18/HTt2zGjnrl27VLlyZZUtW1axsbE6d+6cVRLP09NT06ZNs9o7MDv5+Phozpw56tevn2JiYpSQkKApU6Zo9uzZCgwMVMGCBXX27FldvHjReKZw4cKaNWtWlod8dOzYUUuXLrV6rUOHDi5tf/HixdWgQQNjNt+ePXtUp04dp+vt06ePvv32W/3111+SpC+++ELPPfecS+q2x8mTJzVjxgyj7OHhIXd3d40YMULx8fFKTk62aZZmZrNsd+/ebVwHBwdnOAsVAACkIrEIAACQgyZNmqSgoCCFhYUZM95iYmIUExOT7l4fHx+9/fbbeumllzKtc8KECapYsaI+/fRTxcfHy2w2Kzw83Oqe4sWLa+rUqVq8eHGWicUGDRpoxowZeu+994w23rhxw5hpd9fTTz+tKVOm6Isvvsjyc/v6+mr58uWaPHmy1q5daySAzp07d8+TqqtUqaLJkyfn+FLUoKAgrV69WiNHjjQOWLl9+7YOHz6c7t6qVatq2rRpqlevXpb11qpVS7Vr1zZOhfby8rKaxegq7du3NxKLP/30kwYMGOB0ne7u7powYYK6dOmilJQUmUwmjR07VuvWrctytqorxcbGWi31T05Otpq96AqWiUVXLlMHACC/IrEIAACQw3r37q0XXnhBGzdu1C+//KLw8HBdvXpVKSkp8vX1VVBQkJ588km1b99eJUqUsKnO1157TW3bttXq1av1008/KSoqSiaTSRUrVlSLFi3Uo0cPlSxZ0qY9EaXUg2EaNmyoVatWaefOnTp79qxu374tf39/1atXTy+88EK6PR+zUqhQIU2YMEGvvPKKNm3apH379uncuXOKjY2Vh4eHSpUqpTp16qhFixZq2bJluqXfOaVixYpavny5du/era1bt+rgwYO6fPmyEhISVKJECdWpU0etWrVS27Zt7WpjixYtjMRicHCw1UE5rvLcc89p6tSpunnzpg4dOqSoqChVqFDB6Xrr1aunnj17GrMuT5w4oc8//1yDBw92uu684uDBg8bs3mrVqulf//pXLrcIAIC8z82c2c7ZAAAAyFd69eqlAwcOSJJCQ0Ot9s9D9urfv78xI27x4sVq2rRptsT55JNPtGjRIknSsGHDNGjQoGyJk9+MGzfO2FJg4sSJ6ty5cy63CACAvI9NQwAAAIBsFh0drb1790qSKlWqpCZNmmRbrL59+6pw4cKSpJUrVyo5OTnbYuUXsbGxxknk5cqVU/v27XO5RQAA3B9ILAIAAADZbOXKlca+kt26dTNOb84O/v7+6tu3ryTp4sWL+s9//pNtsfKL1atX686dO5KkN954I9eW4QMAcL8hsQgAAABkox07dmjhwoWSUg+x6dq1a7bH7N+/v0qXLi1Jmjdvnk2nJT+o4uLijAOI6tSpw2xFAADsQGIRAAAAcKHvv/9e7dq1U58+fdSqVSsNGjRIiYmJkqSRI0fKx8cn29vg4+Oj8ePHS5JOnz6tjRs3ZnvM+9WSJUt07do1ubu768MPP1SBAvyKBACArfhfEwAAAHChihUrKjw8XPv27dOZM2eM17t27apOnTrlWDuaN29uzL6bNWuW4uLiciz2/eLixYvGSekDBgxQnTp1crlFAADcX0gsAgAAAC5UrVo11a9fX0WKFJG3t7fq16+vqVOnasKECTnelvfff18BAQGKjo5WWFhYjsfP6yZPnqzbt2+rYcOGCg0Nze3mAABw33Ezm83m3G4EAAAAAAAAgPsLMxYBAAAAAAAA2I3EIgAAAAAAAAC7kVgEAAAAAAAAYDcSiwAAAAAAAADsRmIRAAAAAAAAgN1ILAIAAAAAAACwG4lFAAAAAAAAAHYjsQgAAAAAAADAbiQWAQAAAAAAANiNxCIAAAAAAAAAu5FYBAAAAAAAAGA3EosAAAAAAAAA7EZiEQAAAAAAAIDd/j/ZltyAm4hOnQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum.from_lightcurve(lc_dt, fftlen, norm='leahy', silent=True)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy', silent=True)\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(1000, r, deadtime, bintime)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The script `check_A` checks visually the number of `k`s to calculate before going to the approximate value `r0**2*tb**2`. The default is 60, but in this case the presence of additional modulation for k=60 tells us that we need to increase the limit of calculated `A_k` to at least 150.\n", + "The script `check_B` does this for another important quantity in the model.\n", + "\n", + "Somewhat counter-intuitively, there might be cases where too _high_ values of k could produce numerical errors. Always run `check_A` and `check_B` to test it." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABWkAAAQ5CAYAAACwFI2cAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeXhU5dk/8O9kg7AjEJagQCIJSDCiFCiirRu4FFR+Iq+vUveKKK0iCmrFam0rtaIoIkIpWkE2RVBEKspqUUQEQtgJCSRAQgIJISH7zO8P3owzc56ZOefM2ef7uS6ua+bMeZ5zz8Jkzj333I/L4/F4QERERERERERERESmiDE7ACIiIiIiIiIiIqJoxiQtERERERERERERkYmYpCUiIiIiIiIiIiIyEZO0RERERERERERERCZikpaIiIiIiIiIiIjIREzSEhEREREREREREZmISVoiIiIiIiIiIiIiEzFJS0RERERERERERGQiJmmJiIiIiIiIiIiITBRndgBEcq1Zswbz58/H7t27UVtbi86dO+P666/HQw89hLZt25odHhERERERERERkSouj8fjMTsIonDeeOMNzJo1CwAQHx+PhIQEVFZWAgCSkpLw4Ycfonv37iZGSEREREREREREpA7bHZDlrVq1CrNmzYLL5cLEiRPx448/4qeffsLSpUuRkpKCkydP4vHHH0dDQ4PZoRIRERERERERESnGJC1ZmtvtxltvvQUA+O1vf4uHH34YTZs2BQBceumlmDdvHpo1a4aDBw9i+fLlJkZKRERERERERESkDpO0ZGnff/89cnNzAQD333+/5PZOnTrh1ltvBQAmaYmIiIiIiIiIyJaYpCVL27JlCwCgR48e6Ny5s3CfwYMHAwC2bduGc+fOGRYbERERERERERGRFpikJUs7ePAgACA1NTXoPt26dQMANDQ04PDhw4bERUREREREREREpBUmacnSioqKAJxvaxBMx44dvZeLi4t1j4mIiIiIiIiIiEhLTNKSpVVUVAAAEhMTg+7TuJCY7/5ERERERERERER2wSQtWVp9fT0AID4+Pug+CQkJ3ssNDQ26x0RERERERERERKQlJmnJ0hqrZOvq6oLuU1tb670cKplLRERERERERERkRUzSkqU1b94cAFBdXR10n6qqKu/lFi1a6B4TERERERERERGRluLMDoAolE6dOmHnzp04efJk0H0aFxcD/BcR09O2bdv8rsfE8PsOIiIiIiIiIqJo5Ha7/a5fccUViudgkpYsLS0tDf/5z3+Qm5sbdJ8jR44AAOLi4tC9e3eDIvMX+J+RiIiIiIiIiIhILpb/kaUNHDgQAHDw4EGUlJQI99m8eTMAIDMz09vDloiIiIiIiIiIyC5YSUuWdsUVV6BTp04oLCzE7Nmz8dxzz/ndfuLECXz22WcAgLvuusuMEAE4p92Bb0WwU+4TEZEd8P2XiMgcfP8lIjKPk96DtfiFNZO0ZGkxMTGYMGECnnnmGXzwwQdo2bIlHnzwQTRr1gxZWVl45plncO7cOaSlpeHmm282NK7G/4AxMTHo16+fYcfWS319PXbu3Om93rdvX8TF8S2CiEhvfP8lIjIH33+JiMzjtPfg7du3++WJ1LDvvaeoceuttyIrKwvz58/HjBkzMGvWLDRt2hQVFRUAgKSkJLz33nuIjY01OVIiIiIiIiIiIiLl7F1LTFHjhRdewDvvvIPBgwejefPmqKmpQdeuXTFmzBgsX74cXbp0MTtEIiIiIiIiIiIiVVhJSyFNnz4dM2fORHJyMtauXatobE5ODhYtWoQtW7agoKAA9fX1SEpKQlpaGoYPH44bbrhBUSn79ddfj+uvv17pXSAiIiIiIiIiIrI0JmkpqKysLMyZM0fV2LfffhuzZs1CfX293/b8/Hzk5+fjm2++QUZGBl577TWkpKRoES4REREREREREZEtsd0BCeXn52PcuHGoq6tTPPaVV17BjBkzvAnauLg49OnTB/3790fbtm29+2VnZ2PMmDE4duyYZnETERERERERERHZDZO0JHHgwAHcfffdKC4uVjx29erV+PDDD73Xhw0bhg0bNmDZsmVYsGABNm3ahJdffhmJiYkAgJKSEowfPx4ej0ez+ImIiIiIiIiIiOyESVrys2LFCtx5550oKipSPLaurg5Tp071Xr/mmmvw5ptvon379t5t8fHxGD16NGbMmOHtR7t7926sXLky8uCJiIiIiIiIiIhsiD1pCQBQVFSEadOmYfny5arnWLNmDY4fPw7gfIuDKVOmICZG/D3AkCFDMHr0aCxYsAAAMG/ePAwfPlz1sc0W2HvXjhoaGkJeJyIiffD9l4jIHHz/JSIyD9+DpZikJbz77ruYPXs2zp07592WkpKCoUOHYtasWbLnWbVqlffy4MGD0aVLl5D7+yZpd+/ejfz8fFx44YUKozef2+3Gzp07zQ5Dc9nZ2WaHQEQUlfj+S0RkDr7/EhGZh+/BbHdAAObOneuXoB01ahSWLl2Kbt26yZ7D4/Fgy5Yt3utXXnll2DHp6eno0KGD9/ratWtlH4+IiIiIiIiIiMgpWElLXhkZGZg0aRIGDBigeOyxY8dQXl7uN5cc6enp3gXKdu3apfi4REREREREREREdsckLWHAgAEYOXIkrrvuOrhcLlVz5OXl+V2/6KKLZI3r2rWr9/LRo0dVHdtsMTEx6Nu3r9lhRKyhocHv5wUZGRmIjY01MSIioujA918iInPw/ZeIyDxOew/etWsX3G53RHMwSUuYOXNmxHM0VsMC55OW7du3lzXOt92B7xx2ExfnvP9KsbGxjrxfRERWx/dfIiJz8P2XiMg8fA9mT1rSyJkzZ7yXmzdvjpgYeS+tFi1aCOcgIiIiIiIiIiKKFkzSkiZqamq8l5s2bSp7XEJCgvdybW2tpjERERERERERERHZAZO0pIm6ujrvZblVtIB/m4D6+npNYyIiIiIiIiIiIrIDJmlJE77NnZU0SvZNzMbHx2saExERERERERERkR0wSUuaSExM9F72bX0Qjm+LgyZNmmgaExERERERERERkR0wSUuaaN26tfdyZWUlPB6PrHEVFRXey23atNE6LCIiIiIiIiIiIstjkpY00bFjR+/lhoYGlJaWyhpXXFzsvdy+fXvN4yIiIiIiIiIiIrI6JmlJE926dfO7np+fL2tcQUGB93KPHj00jYmIiIiIiIiIiMgOmKQlTSQnJ/u1K9i7d6+scfv27fNe7tWrl9ZhERERERERERERWR6TtKSZgQMHei9v3rw57P779u1DSUmJ9/qgQYN0iYuIiIiIiIiIiMjKmKQlzQwdOtR7ed26dSgqKgq5/8KFC72XU1NTkZ6erltsREREREREREREVsUkLWlm6NChSEpKAgDU1tZi8uTJqK+vF+67adMmLF261Ht9zJgxhsRIRERERERERERkNUzSkmYSEhIwYcIE7/XNmzfj4Ycf9ltErL6+HkuWLMH48ePR0NAAAEhLS8OoUaMMj5eIiIiIiIiIiMgK4swOgJzl9ttvx/bt27F48WIA5xO1Q4cORXp6Olq0aIGcnBycPn3au3+bNm0wffp0xMXxpUhERERERERERNGJmTHS3EsvvYS2bdti7ty5qKurg9vtxt69eyX7paamYvr06UhJSTEhSiIiIiIiIiIiImtgkpY053K58OSTT2LEiBH4+OOP8e2336KwsBBVVVVo3bo1evfujRtvvBEjRoxAQkKC2eESERERERERERGZiklaCmrkyJEYOXKk6vGpqamYNGkSJk2apGFUREREREREREREzsKFw4iIiIiIiIiIiIhMxCQtERERERERERERkYmYpCUiIiIiIiIiIiIyEZO0RERERERERERERCZikpaIiIiIiIiIiIjIREzSEhEREREREREREZmISVoiIiIiIiIiIiIiEzFJS0RERERERERERGSiOLMDIJKjoqICCxYswJo1a5Cbm4uamhq0a9cOV1xxBe69915kZmaaHSIREREREREREZEqTNKS5R05cgQPPPAACgoKAAAJCQmIj49HYWEhvvjiC3z55Zd4+umn8cADD5gcKRERERERERERkXJsd0CWVl9fj3HjxqGgoAAdO3bE7NmzsWPHDvz0009YvXo1rrnmGrjdbkydOhXr1683O1wiIiIiIiIiIiLFmKQlS/vqq69w6NAhuFwuTJ8+Hb/61a8QGxsLl8uFHj164J133kG/fv0AADNmzDA5WiIiIiIiIiIiIuWYpCVL27BhAwDg8ssv9yZjfcXGxuKOO+4AAGRnZ6OqqsrQ+IiIiIiIiIiIiCLFnrRkaZdccgmqqqqQkZERdJ8OHToAADweDyoqKpCYmGhUeERERERERERERBFjkpYs7d5778W9994bcp9t27YBAJo0aYK2bdsaERYREREREREREZFm2O6AbO306dNYvHgxAOCqq65CXBy/dyAiIiIiIiIiInthRot0V1paivLyctn7x8XFITk5Oex+9fX1ePrpp1FWVoaYmBg8+uijkYRJRERERERERERkCiZpSXdz587FnDlzZO+fnJyMtWvXhtynoaEBkyZNwrfffgsAeOyxx0L2rSUiIiIiIiIiIrIqJmnJdmpqajBhwgR8/fXXAIARI0bgscceMzkqIiIiIiIiIiIidZikJd1NnDgREydO1GSu06dPY9y4cdi+fTsA4NZbb8Xf/vY3uFwuTeYnIiIiIiIiIiIyGpO0ZBt5eXl4+OGHcfToUQDAb3/7Wzz33HNM0BIRERERERERka0xSUu2kJ2djYceegilpaVwuVx4+umn8eCDD5odFhERERERERERUcSYpCXLO3jwIB588EGUlZUhPj4er776Kn7zm9+YHRYREZHpduzYgU2bNqF///4YNGgQf11CRERERGRTTNKSpZ07dw6PP/44ysrKkJCQgHfeeQdXX3212WERERGZbvHixbj77rvR0NAAABg6dCjeeOMNXHLJJSZHRkRERERESsWYHQBRKLNmzUJeXh4A4LnnnmOCloiICMChQ4fw4IMPehO0APDVV1/h0ksvxfjx43H69GkToyMiIiIiIqVYSUuWVVtbi48++sh7fcaMGZgxY0bIMR9//DE6d+6sd2hERESmqaurw913343KykrJbQ0NDZgxYwYWLFiAl19+GWPHjkVcHD/uERERERFZHStpybIOHDiAs2fPeq+XlJSE/edbUUREROREL730En744YeQ+5SWlmL8+PHIzMzEV199ZVBkRERERESkFksrosD06dMxc+ZMJCcnY+3atYrG5uTkYNGiRdiyZQsKCgpQX1+PpKQkpKWlYfjw4bjhhht0q9DJyMjA/v37dZmbiIjIjjZu3Ii//vWvsvffs2cPhg0bht/85jd4/fXXkZaWpmN0RERERESkFitpHS4rKwtz5sxRNfbtt9/GiBEj8O9//xv79+9HZWUlampqkJ+fj2+++QZPPPEERo8ejcOHD2scNREREQUqKyvDmDFj4PF4/LZffvnl2L17N2699dagY1euXImMjAw89dRTKCsr0zlSIiIiIiJSiklaB8vPz8e4ceNQV1eneOwrr7yCGTNmoL6+HgAQFxeHPn36oH///mjbtq13v+zsbIwZMwbHjh3TLG4iIiLy5/F48Oijj+Lo0aN+25s1a4aPPvoIl1xyCZYvX46vv/4aGRkZwjnq6uowbdo09OzZE++99x5bBBERERERWQiTtA514MAB3H333SguLlY8dvXq1fjwww+914cNG4YNGzZg2bJlWLBgATZt2oSXX34ZiYmJAM73ih0/fryksoeIiIi0MX/+fCxatEiy/c0330R6err3+nXXXYft27fjnXfeQbt27YRzlZSUYOzYsbj88suxfft23WImIiIiIiL52JPWgVasWIEXX3wRVVVVisfW1dVh6tSp3uvXXHMN3nzzTcTE/JzPj4+Px+jRo5GcnIxHHnkE9fX12L17N1auXInhw4drch/sprHi2M4CK6pYYUVEZIxw77+HDx/GY489Jhl366234r777hP+Dfrd736HUaNG4c9//jPeffdd4T5ZWVm4+uqr8dlnn+Gqq66K8F4QEdkPP/8SEZmH78FSLg/LHx2jqKgI06ZNw/Lly4W3y1k4bNWqVXjyyScBnG9xsGbNGnTp0iXo/i+//DIWLFgAAOjTpw+WLVumLnib2b59O9xut9lhEBGRw9XX1+N3v/sdsrKy/La3b98eixYtQps2bcLOkZeXh2nTpmHz5s3C25s0aYJ//OMf+OUvf6lFyEREREREUS0mJgb9+vVTPk6HWMgE7777Lm688Ua/BG1KSgrGjh2raJ5Vq1Z5Lw8ePDhkghYARo8e7b28e/du5OfnKzoeERERBTd37lxJghYAXnrpJVkJWgDo3r073nrrLUyfPh3dunWT3F5TU4MJEyZg/fr1EUZLRERERERqsd2BQ8ydOxfnzp3zXh81ahQmT56Mr776SvYcHo8HW7Zs8V6/8sorw45JT09Hhw4dvL1v165di3vvvVdB5ERERCSyY8cOzJ07V7L9nnvuwcCBAxXPd+WVV2LgwIH417/+hdmzZ/vdVldXh0mTJuGll17CjTfeqDpmCq6wsBDHjx9HYWGh5B8AXHbZZbj33nuRnJxscqREREREZAYmaR0mIyMDkyZNwoABAxSPPXbsGMrLy/3mkiM9Pd2bpN21a5fi49pdTEwM+vbta3YYEWtoaEB2drb3ekZGBmJjY02MiIgoOojefysqKnDHHXdIWutkZmZi1qxZaNKkierjXXHFFejTpw/+8Ic/SOJ44YUXkJSUhPvvv1/1/OTv9OnTGDVqFDZu3Bhyv8OHD+Pzzz/HI488gmeffRZJSUkGRUgUvfj5l4jIPE57D961a1fEbTGZpHWIAQMGYOTIkbjuuuvgcrlUzZGXl+d3/aKLLpI1rmvXrt7LR48eVXVsu4uLc95/pdjYWEfeLyIiq4uNjcUTTzwh+bvctGlTLFy4EM2bN4/4GL///e/RsmVLPPTQQ34fJj0eD373u9+huroa48ePj/g4dL41RbgEbaO6ujrMmDED77//Pp566ik89dRTaNmypc4RElEjfv4lIjIP34PZk9YxZs6cieuvv151ghaAtxoWOF8d2r59e1njOnToIJyDiIiIlFu4cCHmz58v2T5t2jT07t1bs+Pcf//9+Oijj4Qfhn//+9/j1Vdf1exY0crtdmPp0qWKx1VUVOCll15Camoq3nrrLdTV1ekQHRERERFZCZO05HXmzBnv5ebNmyMmRt7Lo0WLFsI5iIiISJnjx4/j8ccfl2wfPny44sVA5Rg9ejQ++eQTJCQkSG579tln8cc//hEej0fz40aLXbt2hfwC2+VyoUuXLkE/cxUXF+MPf/gDbr75ZtTU1OgVJhERERFZAJO05OX74b9p06ayx/me2NXW1moaExERUbSor6/HCy+84NcfHgA6duyIuXPnRvRrmVBGjBiBlStXIjExUXLbX/7yF0yYMIGJWpW+/vprybbHH38cGzZsQG5uLmpqanDs2DFkZWXhtttuCznPfffdF3GfMyIiIiKyLiZpycv3p3Ryq2gB/36s9fX1msZEREQULd5//33s3LlTsv2DDz7way2khxtuuAH/+c9/hP1P33zzTYwdO5YJQhVESdonn3wSV199Nbp37474+HgAQJ8+ffDpp59i8+bNuPrqq4VzLVq0CM8//7yu8ZrB7Xbj5MmTaGhoMDsUIiIiIlMxSUtevqvoKTkR803MNp5sEBERkXy7du3CnDlzJNufeOIJDBs2zJAYrrrqKnzzzTdo27at5LbZs2fj3nvv5ZexCtTU1EgWDOvRowdSUlKCjvnlL3+J9evXY9WqVejVq5fk9ldffRXvvfee5rEayePxYM+ePZg5cyZGjRqFjh07omPHjkhOTsa0adNQXV1tdohEREREpmCSlrx8f+aopO+Zb4uDJk2aaBoTERGR05WXl+OPf/yjpJLw0ksvxd/+9jdDY/nFL36B9evXIykpSXLb/Pnzcc8997D1gUzff/89zp0757ft+uuvDzvO5XLhpptuwvr169GjRw/J7ePGjcOqVas0i9NI33zzDS6++GL06dMHjz32GD7++GOUlJQAAIqKivDUU0+hZ8+e+Oc//8kvBIiIiCjqMElLXq1bt/ZerqyslH0SVlFR4b3cpk0brcMiIiJytCeeeALHjh3z29a0aVN89NFHinrEa+XSSy/Fhg0bkJycLLlt8eLF+OqrrwyPyY7WrFkj2SYnSduoY8eO+PLLL3HBBRf4bXe73bjzzjuxbdu2iGM0UnFxMUaOHInDhw+H3K+goAAPP/wwLrnkEmzZssWg6IiIiIjMxyQteXXs2NF7uaGhAaWlpbLG+a5a3L59e83jIiIicqrDhw/jww8/lGx/7bXX0KdPHxMiOq9Xr17YtGmTsJJzz549JkRkP6J+tNdee62iOdLT07FixQrJL5UqKyvxm9/8Bnl5eZGEaKi//vWvkkXxQjl48CCuvfZa7Nu3T8eoiIiIiKyDSVry6tatm9/1/Px8WeMKCgq8l0Unc0RERCS2fv16ybabbroJjz32mPHBBOjRo4ewTy5/hh5eWVkZtm7d6retX79+qr7MHjJkCD744APJ9sLCQtxyyy226OF69OhRzJw5U3hbhw4dhP13AeDcuXMYPXo0qqqq9AyPiIiIyBKYpCWv5ORkv3YFe/fulTXOt8Ih2IdsIiIikhIl2B577DG4XC4TopFq3ry5ZFtg71ySWr9+vWQRViWtDgKNHj0af//73yXb9+zZg3/961+q5zXKSy+95LeGAQBcd911yM7ORlFREfbs2YOlS5ciPT1dMjYrKwtPPfWUUaGG1dDQgJUrV+Lpp5/GO++8o6g6mIiIiCgUJmnJz8CBA72XN2/eHHb/ffv2eRd8AIBBgwbpEhcREZET1dXVSbYlJCSYEIlYXFycZBsracMTtTqIJEkLABMnTsS4ceMk2xctWhTRvHrbu3cv3n//fb9tLpcLb775Jvr06QOXywWXy4U77rgD2dnZmDhxomSOd999F5988olBEYsVFxfj1VdfRWpqKoYPH45//OMfePzxx3HxxRfjnXfeEf5fJiIiIlKCSVryM3ToUO/ldevWoaioKOT+Cxcu9F5OTU0VVkAQERGRmCixEx8fb0IkYkzSqhOYpE1ISMCQIUMimtPlcuGtt97CxRdf7Lf922+/xYkTJyKaW08vvPCCpKr4nnvuQUZGhmTfuLg4/O1vf8PVV18tue3BBx80rQfvunXrcPHFF+PZZ5/FkSNH/G4rLi7G448/jj59+uDHH380JT4iIiJyBiZpyc/QoUORlJQEAKitrcXkyZODnoxt2rQJS5cu9V4fM2aMITESERE5ReBPwAEmae0uPz8f+/fv99t25ZVXolmzZhHPHRsbizvvvNNvm8fjMb3KNJgff/xRElt8fDxeeumloGPi4uKwYMECtGvXzm/7mTNn8D//8z+Gv/7q6+vx0EMPhW1rcPDgQVx33XU4evSoQZERERGR0zBJS34SEhIwYcIE7/XNmzfj4Ycf9ltErL6+HkuWLMH48eO9fenS0tIwatQow+MlIiKyM1bSOs8333wj2RZpqwNfos9bvl+aW8lzzz0n2fbII4+EXWi2a9eukhYJALBlyxZ8+umnWoUny5IlS3D48GFZ+5aXl+PJJ5/UOSIiIiJyKiZpSeL222/H6NGjvdc3b96MoUOH4rbbbsM999yDq666Ci+88IJ3pd02bdpg+vTpwhM5IiIiCs7qSdrY2FjJNiZpQ9OjH62vzMxMScuDTZs2Wa7lwbp167BmzRq/bc2aNcMf//hHWeN/85vfCBOeK1as0CQ+OTweD1599VXJ9gEDBuAf//iHsGXDsmXLsHr1aiPCQ11dHT766CP84Q9/wKJFi7ioHxERkc0xSUtCL730EsaOHes9UXS73di7dy+2bt2K06dPe/dLTU3F/PnzkZKSYlaoREREtmX1JK3oC1gmgoLzeDySJG3r1q1xxRVXaHYMl8slqab1eDxYtmyZZsfQwvz58yXbnnjiCXTs2FH2HK+++iratGnjt+2rr76S9LjVyxdffIFdu3b5bevWrRu+/fZbPPXUU9ixYwfuu+8+ybjHH38c1dXVusXl8XiwYsUKZGRk4O6778Zbb72Fu+66C4MGDcKOHTt0Oy4RERHpi0laEnK5XHjyySexYsUKPPDAA0hLS0OrVq0QHx+P9u3b46qrrsJf/vIXLF++HD179jQ7XCIiIluyY5KWlbTB7d69W7Lo6rXXXiusSI6EHVoeBC7yFRcXh6efflrRHAkJCZIq5OLiYmzfvj3S8GQRVdE+/fTT3v+jsbGx+Mc//iHpn5uTk4PXXntNl5gaGhpwxx134LbbbsOBAwf8bvvxxx/Rv39/vPXWW7ocm4iIiPTFJK3DjRw5Evv378f+/fuxdu1axeNTU1MxadIkfP7559i6dSuys7Px3//+F//85z9xxx13ICEhQYeoiYiIogOTtM4ianVwww03aH6cyy67DKmpqX7bNm7ciMLCQs2PpZbH4/G7npiYKKmKlWPYsGGSbf/5z3/UhiXbpk2b8N///tdvW1JSEh544AG/be3atcPUqVMl4//617/i2LFjmsf10UcfhayabmhowB/+8AesW7dO82MTERGRvpikJSIiIjIJk7TOonc/2kZ2aHkQ2JLA5XKpmsesJO3f/vY3ybYnnngCiYmJku33338/Bg0a5Leturpal+rmd955R9Z+r7zyiubHJiIiIn0xSUtERERkktraWsk2KyVpuXCYfHV1dVi/fr3ftosuukiyyJdWrN7yILCSNiZG3WnHhRdeiN69e/tt27x5M8rLy1XHFk5+fj6+/PJLv20tW7bEo48+Ktw/JiYGb775pmT71q1bNY1r+/bt2LJli9+2tm3bYuzYsZJft61duxY//vijpsevra3FtGnTcNVVV2HkyJGa3z8iIqJoxyQtERERkUlElbRWaiXEhcPk+/7771FZWem37frrr1ddQRpOv379JAu3bty4UdIT1yxaVdICwI033uh3vb6+XlUbL7n27t0r2fa73/0uZLuGAQMGoHXr1n7btE5izpo1S7LtmWeewbvvvotJkyZJbhO1YVDrv//9L/r164ennnoK3377LT799FMMGTIECxYs0OwYRERE0Y5JWiIiIiKTsN2BcxjV6qCRqOWB2+22TMsDrSppAeNbHoi+iAi3UK7L5UL//v39th08eBBlZWWaxFReXi5JiMbHx3t75I4fP17SiuGTTz6RLC6mxoYNG/DrX/8ae/bs8dteW1uLe+65B2+88UbExyAiIiImaYmIiIhMwyStc4iStNdee62ux7RyywMtK2mvvvpqNG3a1G/b6tWrJYlgrQTGDsiL/xe/+IVk27Zt2zSJaf78+ZJK7f/3//4fkpKSAAAdOnTAgw8+6He7x+PB66+/HvGx//rXv4b8f//MM88Iq4+JiIhIGSZpiYiIiEwiStKK+sCahUlaecrLyyW9Qi+99FJ07NhR1+Nefvnl6NGjh9+2DRs24OTJk7oeVw4tK2kTExNx9dVX+23Ly8vDwYMHVc8Ziij5KydJG1hJC0CzvrDvvfeeZNvYsWP9rj/11FOS949PPvkkouMeP35c+AWEr/r6esyfPz+i4/g6efIk32eIiCgqMUlLREREZJLAJG1cXJxuPUzVECXWmDyR2rBhg+Qn8nq2OmgUrOXBp59+qvuxwwmsRo0kSQtI+9IC+rU8UJukFVXSatGX9tSpU8jKyvLb1rt3b0niunv37rj55pslYyNpufDRRx9JnssLL7xQst+SJUsirmzetGkTBg4ciI4dO6J9+/b4/PPPI5qPiIjIbpikJdtasGAB0tPTdf8pIRERkV5ESVqrCYyJC4dJGd2P1pdVWx4EJuwi/fLByL60omSjnCTzhRdeiA4dOvht06KStqKiQrLt2muvFT6mvXr1kmzLzc1VfewPP/xQsm3VqlW46qqr/LYdOnQIO3fuVHUMt9uNcePG4eqrr8YPP/wAADhz5gxGjRqlWSUyERGRHTBJS7aUk5ODv//972aHQUREFBE7JmlZSSu1ceNGv+vx8fGSJJZerrjiCnTv3t1v27p161BcXGzI8YPRupK2d+/e6Nq1q9+2devWoaamJqJ5RdRW0rpcLkk17ZEjRyJ+LpQkjQPbXwDqk7Q7d+6UVPBedtllyMjIwJ133inZf8mSJaqOs3z5crz77ruS7TU1NRg5cqQl2ncQEREZgUlasp3a2lpMnDgR1dXVZodCREQUkdraWr/rVlo0rBGTtOGVlJT4Xe/duzdatGhhyLGDtTxYtWqVIccPRsuFwxrHB1bTnjt3Dt9++21E84qoTdIC+vSlVRJPYMIeON+/Vw1RFe2YMWMAnF+0LDAGtS0PPvjgg6C35efnY/LkyYrnJCIisiMmacl23njjDezZs0eyyi8REZHdsJLWGQITkgkJCYYe/5ZbbpFsO3r0qKExBNJy4bBGor60VkvS6tGXVkk8WlbSBraTiImJwf/+7/8CADp37iypFs/JycH27dsVHaOsrAxffvllyH2WLFkS0ftOUVERtmzZokvVNRERkZaYpCVb+e677zBv3jx07doVd911l9nhEBERRYRJWmcI7NMbGxtr6PFbtmwp2RbpIk6R0rqSFgAuvfRSybazZ89GPG+gwNgBcytpRYLF061bN8k2tZW0gQuO9e3bF506dfJeF7U8+P777xUdY/ny5ZL3wUCVlZWKk78AsHnzZgwbNgydO3fGoEGDkJqaisOHDyueh4iIyChM0pJtnDlzBpMnT4bL5cLUqVPRvHlzs0MiIiKKiB2StIEJRyZppbTuv6qU6HiiRKOR9KikFc2hRzI6kkraTp06SXrnbt26NaI4lcSTmJjol0gF1FfSBh438P3piiuukIwpLS1VdIxFixZJtt1///2SbZs2bVI077Zt23DVVVfhq6++8t6PY8eO4aGHHjL9CwwiIqJgmKQl25gyZQoKCwvx4IMPCqsUiIiI7MYOSdrAmAKrRkn6mDBJq08lrWgOqyVpAWk1bWFhIY4fP25YPIEtD/Ly8lQ9ToFjAo/ZunVryZjy8nLZ85eUlODrr7/225acnCzsQas0Sfv6668L/w+sW7fO9H7NREREwTBJS7awbNkyrF69Gr1798bvf/97s8MhIiLShB2TtKyklQpMBhnd7sCKSVqjKmn1uJ+ihKaS+LXuS6s0SRu4eFhlZaVkcTs1xw08ZqtWrSRjzpw5I3v+jRs3Sr7guPPOO9GzZ09JNfC3334rO9FcVVWFzz77LOjtzzzzDL9sIiIiS7LemQA5TmlpqaJv1ePi4pCcnOy9np+fj1deeQUJCQl47bXXDF+Mg4iISC9M0joDK2mlWEnrLysrC7fddpsh8YgWD8vLy0OHDh0iOq7WlbRFRUWSbddeey1cLheuuuoqLF261Lu9pKQE+/btQ+/evcPOu2rVKlRWVga9fc+ePdi0aRN+/etfy461pqYGhw4dQk1NDTIyMng+QkREurDemQA5zty5czFnzhzZ+ycnJ2Pt2rUAzp/0PP3006isrMSzzz6Lnj176hUmERGR4ZikdQZW0krpUUlrlyRtYE9aADh37pxh8YiStLm5ucIK30g0b94cMTExfq81JZW0ov617dq1AwBJkhY43/JATpJ28eLFYffZunWr7CTtwoULMX78eJw6dQrA+YX61q9fj8svv1zWeCIiIrnY7oAs7d1338X27dsxaNAg3HvvvWaHQ0REpKna2lq/6/Hx8SZFEhwXDguPC4dJ6fGYGHU/RXMqSdJqvcBZpO0OAHWLh4WrpHW5XJKWB0oqaUVJ2rZt2wIArr76asltmzdvDjvnuXPnsHLlyrD77dq1S0aEwIkTJ/DQQw95E7QAcPbsWdx5552m/x8jIiLnsV65BjnOxIkTMXHiRMXjduzYgXfffRetWrXCq6++qsnP5IiIiKzEjpW07OUoFfiYsJI2fIJPDbtU0modp1btDiI9ruiYrVq1QllZmfd6pJW0bdq0AQBkZGQgNjbW7//WyZMnw86ZlZWFqqoqv233338/lixZ4tcCQW6SdvHixcIq6JycHKxZswbDhg2TNQ8REZEc1jsTIPo/ixcvRn19Paqrq3HHHXdIbm/8wHTixAlceeWVAIDnn38eN998s6FxEhERqWXHJC0raaVYSSulx2PCJK28eC688EK4XC6/cXpU0gLSxcO0qqSNjY1FTEyMX5JWzmMo6nM7aNAg7N27F99//7132969e2W9l3300UdBb3vvvfeYpCUiIk2x3QFZVuMHsdraWpSUlEj+NSZp3W63d1t1dbWZIRMREcnm8XgkSVqjKzDlYJI2PFbSSumxcJhR91OUDFSSZDY7SZuQkCDpi6tXJW3g4mGRVNImJiaiSZMmIY8XTnFxsWRbhw4d0LdvX79tNTU1OHjwYMi5Dh48iK1btwa9/bPPPsOJEydkxZWdnY0ZM2bg008/VfQYERFRdLFeuQbR/3n11Vfx6quvBr397bffxowZM/wWGiMiIrILUdsAVtLaj8fj0WWRLCWsmKSN5oXDjEjShtOjRw/k5+d7r+fl5cHtdit6HuQcV1RJ6/F4ZD1egUnaxiraSOKRm6QFzrc8CLUo8ZIlS0Ieq6GhAevXr8ddd90Vcr/Vq1fj5ptv9sbfsmVLvPPOOxgzZkzIcUREFH1YSUtERERkgsAqWsCaSVouHBaaKBlqhSStHslLJfSopGWSVn48gYuH1dTUCFsBKCGnktbtdgt7uIr49rIFpEnawOPJeQxFfWuDJWmzsrJCzvXTTz+FPV5OTk7I2z0eD55++mm/2M+ePYuxY8cKE8pERBTdmKQlIiIiMoFdkrSspA1NlKRluwN9KmmNup+iOe2WpBUtHqa0L62anrSA/JYHSitp5RAlPpOSkoJW0oYip5XB4cOHQ97+008/ITs7W7L93Llz+Oyzz8LOT0RE0YVJWiIiIiIT1NbWSrbZIUkratMQzUSPh9GVtKLkmdlJWlbShp9Tz3gCK2kBfZK0gZW0gLzFwxoaGiTJXC0qaQOTtHFxcWjTpg3atWuHzp07+922e/fukHMVFhb6Xb/44ouRkJDgty1ckvb9998PetuKFStCjiUioujDJC0RERGRCUSVtPHx8SZEEhoraUNjJa2YUT1pjVo4zG5J2sCFwwBxlamS42pZSSvaR48kbfv27b3zdOvWze+2UMlkj8cjSdImJydLkt+hkrQNDQ1YuHBh0NvXrFmDysrKoLcDQFVVFV588UXcdtttmD17Nt9/iYgcjknaKDB9+nSkp6fj2muvVTw2JycHf/nLXzBixAhcfvnluPTSS3H99ddj3Lhx+PLLL039oDB+/Hjs37+fi4YREZEtsd2BM1i1J63ZSVo9KmmN6r0rmlPJc2qFJK3ovURpDHL2V1tJG9jqANCn3UGHDh28l5UkfcvLy1FVVeW3rXPnzkhJSfHbVlBQgJqaGuEcR48exalTp4Ieo7q6Gl9//XXQ2wFg7NixePnll7FixQo88sgjGDJkiLDvLhEROQOTtA6XlZWFOXPmqBr79ttvY8SIEfj3v/+N/fv3o7KyEjU1NcjPz8c333yDJ554AqNHjw77Mx8iIiKSsmuS1uPxmJ4AtBJRuwNW0hpXSRsN7Q7kHkPvGLSspBUladu0aRPyeOHi93g8ipK0oQRW0QJAp06dJElaj8eDI0eOCOcoKCgIe5wdO3YEve3gwYP497//7bdty5YteOyxx8LOS0RE9sQkrYPl5+dj3LhxwpPAcF555RXMmDHDWy0TFxeHPn36oH///n7fcmdnZ2PMmDE4duyYZnETERFFA7skaUUJR1bT/oyVtGJG9aRluwP9YtCzJ62cSlqlr5mKigpJVatvkjZQqMdDbpIWCN7yQM75UajFyWbNmiXc/sUXXwh7mhMRkf0xSetQBw4cwN1336249xQArF69Gh9++KH3+rBhw7BhwwYsW7YMCxYswKZNm/Dyyy8jMTERAFBSUoLx48frUslARETkVHZJ0opi4uJhP7PCwmFWTNLqUUlrZrsDJyRpIz2u3pW04dodhHsMRec9aitpRclTI5O0dXV1mDdvnvC2qqoqbNu2LezcRERkP9Y7E6CIrVixAi+++KKkj5IcdXV1mDp1qvf6NddcgzfffNPvQ3F8fDxGjx6N5ORkPPLII6ivr8fu3buxcuVKDB8+XJP7YDdOqCgKPMnkCTgRkb5Ef6fj4uIs9/4rSoxVV1dbcpEzM4gq2lwul6GfDUQJ2fr6elM/n4gqaSONR/R/o6GhQfP7KfoCxe12yz6O1nGK4vF4PCHn0yIGUVI0cHyzZs0k+5SVlYU9TklJiWRbq1at/MYFJlXDPQeihGe7du28YwLvj8fjCfr5V5RgTUpKQlJSkmT7oUOHhHHl5+cHjbXRsWPHhGOzsrKEiexG69evxy9+8Yugt7/11lt488030apVK7z++uu47rrrwsZCRGQ05iCkmKR1kKKiIkybNg3Lly9XPceaNWtw/PhxAOdPFKdMmRK08mHIkCEYPXo0FixYAACYN29eVCZp3W43du7caXYYmsvOzjY7BCIiR9u7d69kW1xcnOXef8+ePSvZtmPHDmEFXTQSJZtKS0sN/WwgSvifPn3a1M8ngYnFc+fORRyPUfdT1Es0NzdX9nFEFZ0lJSWq4zxw4IBkW2FhYcj5cnJyJNuOHTumKIbAk+WKigrJeFFi9NChQ2GPI3r/O3XqlN+4wKSq6Pi+tm7dKtlWU1PjHXPu3Dm/2xoaGiTvt43Xd+3aJZnrzJkzwqT09u3bhXHt2bNHsq1Lly7ecy3g/OJiorEbN26UbPO1cuVKDB06VHjbf//7Xzz11FPe67/5zW8wc+ZMXH755SHnJCIym9U+A5uB7Q4c4t1338WNN97ol6BNSUnB2LFjFc2zatUq7+XBgwejS5cuIfcfPXq09/Lu3btlfWNMRERE4uo4K1aninrSstLhZ6IqVqMXDjOqV6sScn4qr1S0LhwWaTxaxBDsmM2bN5dsq6ysDDuX6Mufli1bhhwTLn45i5HJnU/05Uu7du3QokULyX0O1t6hqKjI73qzZs3QrVs3v22nT58Wvp+KeuL62rlzp/D/uMfjkSwaXV9fj+eff559bImIbIBJWoeYO3eu37fDo0aNwtKlSyUfBELxeDzYsmWL9/qVV14Zdkx6erpfr6e1a9fKPh4REVE0E/3E1Yo9aUW/qGGS9meiRIkWCUkljOrVqoRRSVo9aJUUDTdnJMxYOEykRYsWkm1ykrSixcXCVeerSdL69rkNfExCzXfq1Cm/67Gxsd6Er9wvYQIrqjt06ID27dv7bWtoaBDGHS5JW1lZKUwOb9++XViJVlxcjM2bN8sJm4iITGS9MwGKSEZGBiZNmoQBAwYoHnvs2DG/D0wZGRmyxqWnp3s/hIh+GuR0MTEx6Nu3r9lhRCzwJ18ZGRmGVwIREUWTwCor4HyS1mrvvx07dpRsS09PR9euXU2IxnpEq9t37NgRmZmZhsUgqspu1aqVoTEECkyIaRFPTU2NZJse93PTpk2SbRdffLHs44j+b19wwQWq4xS1eejSpUvI+QJ/2g8AnTt3VhSDnOfQ4/EgPj7e7zXocrnCHkf0HnfllVd6FyYW7dOiRYuQ84p+iTBo0CBccsklAKRVv7GxscjIyBB+/g1MNHfs2BH9+vUTxtWsWTNJXG63W1KNm5KSgj59+uDzzz/32962bVvJeNFrPVCnTp3Qq1cvv20LFy4Mun9ZWVnIx8/tduPs2bPC9zQiIj04LQexa9euiH/JxCStQwwYMAAjR47Eddddp/qb/ry8PL/rF110kaxxvidpR48eVXVsu7Ni5VOkYmNjHXm/iIisQvQhLi4uznLvvwkJCcLtVorRTKIq1ri4OEMfn2BVk2Y+R4Gv75iYmIjjCVb5qPX9jPQ5FSULXS6X6jhFJ6zh3ie0iCHw8Q72HLZu3dovIXn27NmwxykrK/O73qRJE0m7A9HrOtS8ohYFnTt39o4JfF49Ho/ksW18XAMrWTt16uSdJzAu0eN68uRJyZcnXbt2FX65dfLkScl4OS3kzpw5Ixl3+PDhoPvv2LEj6OO3YcMG3HnnnTh58iSGDx+ORYsWCfvvEhHpyWqfgc3AdgcOMXPmTFx//fUR/RTL9yc5MTExkp/jBOPb7kC0UAIRERFJiaofrfjBVBST2lXqnUjU+sHoKhBRUtFqPWmDLUSrhFE9aSNtYWFET1ojyD1uYJuCYD1afQX+xF/UO1ZJewJAeh4SExODCy64IOh8wdTV1UkSvp07dw66vyiuY8eOSbZ17dpVuN6HaPE1OYUvgS0ZAGnRja+ffvop6Dy33XYbTp48CQD4/PPP8fTTT4c9PhERaY9JWvLy/UDVvHlz2R+mfXtRyflQRkREREzSOoUooadFQlIJo5KXSgQ+Lnr1pNUjGe2EhcP0eE0EO2bgz+NF/WYDBSZpfXvHqhWYpG3Xrl3IL0yCPR4lJSWS23zbvsh5LRQUFEi2JScnC5O0x48f97teV1cn2SYiStLm5uYG3f/48ePCXrd//vOfJZXNs2bNwu7du8PGQERE2mKSlrx8ex81bdpU9jjfn0Fy1VAiIiJ57JKkFSU5mKT9maiS1ugkLSBNHDmxktaoBdKYpBXvH+yYWlTSipK0SitpT58+7Xc98FeBSippAwX2sw0XlygZ2qVLF2FFbmBC9vjx45L/vz179pSMC0zSlpWVSZKtgbZv3+53vba2Fv/6178k+7ndbuF2IiLSF5O05OX7gUTJB2nfE0qetBEREckj+mLTiklaVtKGJkqGmrHoReBnN7OTtEZV0hqVpFXy2TjakrSBlbQVFRXCLy8aud1uSTJRiyRt4DGD9dMON1+448h5LYveI5s1a4ZOnTpJtgcmaUWtDhoXLfMV2JIhVKuDRoGtFfLy8nD27Fnhvjt27Ag6T0NDA3JyciTJdiIiigyTtOTle0Kh5IO974cQ0SIFREREJCWq1rLi31FRkjZUAibaWKWS1mpJWj0qaUXY7kC/GNRW0gIImvgDzrdDCJxbi3YHWiRX1YwVHTdYLAkJCZIFuaqqqvyui3rUXnbZZZJtgZW0oVodNApsRXHo0KGg++7du1e4vbS0FNdeey0uvvhidOnSBR9++GHY4xIRkTxM0pJXYmKi97Jv64NwfCuBmjRpomlMRERETmWXdgespA2NlbRigcfXKkkbOA/bHegXg9z9AytpgdB9aUU/ydeiklZuUjncfHolexvHhRsven/t2rWrZFtgklZOJW1g8jwnJyfovidOnJC0rvB4PHjooYewceNGAEB1dTV+97vfcfFoIiKNMElLXr4fsCorK2V/MKuoqPBeFq3MSkRERFJM0jqDFRYOEx3TzCRtpEnOUJQm7tQQPXaRJmm1fj60ejy1OKaokjZUklb0E3k5SdpIRfLa0aqSVs540dgmTZr4LdYM6F9JCwD79+/3u75+/XosW7bMb1t1dTXmzp0b9thERBQek7Tk5btqaUNDg+weQ77fnAY26CciIiIxJmmdQdTuINoraSPt6RqKEQuksZJWvL+SJG2oxcNEt4mqccPFE+52tUlesytpg41t166d37bAJG3gwmkiSippAWDfvn1+17/44gvhfrNnz9blCxMiomjDJC15devWze96fn6+rHEFBQXeyz169NA0JiIiIqeyS5JWlHBkkvZnrKSVirQSNRS2O5AXj5kLhwGhK2lFX2yI+nFHWjUdON4ulbTBhEvSyhH4vIRL0gb2pT1w4IBwv9zc3KBJ4tLSUmzbtg2VlZUKIiUiik5M0pJXcnKyX7uCYM3iA/l+w9qrVy+twyIiInIkuyRpuXBYaFw4TMrISlqjkrRK4o+2JK3SSlq5lCb2taqA1XMBMjnjgx1flKT13VfO8+ubpHW73Th8+HDI/YuKivyuB7Y/8CVqt/DJJ58gJSUF/fv3R8+ePWWfXxIRRSsmacnPwIEDvZc3b94cdv99+/ahpKTEe33QoEG6xEVEROQ0dk7SspL2Z1w4TMrISlq2OzAmhlDHVFpJq/bxNWrhMBEtKmmDzSEnDlG7g7q6Or+1QUQC34t82x2cPXvWbwFokaqqKr/jhUrqBi5c9vXXX+POO+/0LhR34sQJPP300yGPR0QU7ZikJT9Dhw71Xl63bp3k29NACxcu9F5OTU1Fenq6brERERE5iejkmEla+2ElrZQTK2mjLUmrZF+llbRy74/Wz7XTKmkB+BXLiAQ+N6GS5yLV1dXey3l5eSHf+wMrad944w3J+9B//vMf2eueEBFFIyZpyc/QoUORlJQE4PzJ4+TJk4P+Md60aROWLl3qvT5mzBhDYiQiInICVtI6AytppfSspLVDklaUkLZbklbunADQsmVLybZwFZ56sFIlrZI51FbSAvBLeIrmCZWklXNc30raUK0OAGmSdseOHZJ96uvrsXLlyrDHJSKKVkzSkp+EhARMmDDBe33z5s14+OGH/RYRq6+vx5IlSzB+/Hhv9UhaWhpGjRpleLxERER2ZZckLRcOC40Lh0npWUlrxP2MNMlshUraSCk5pug9ItTzYlQlrdqFw7SopA01h9rksWhxtXCv/8AkrW+7Azl8K2mPHDkScl/fdgdlZWU4fvy4cL+1a9cKt589exZZWVnCv41ERNHCemcCZLrbb78d27dvx+LFiwGcT9QOHToU6enpaNGiBXJycvxW72zTpg2mT59uyRNLIiIiq7JLkpaVtKGJ2h2wkja6K2mtkKTVo91BsGNqscCXFklarV4LSh9voyppw41VWkkrh28lbbj3fd9K2lALhPkW/wDn/xZOnjwZb7/9Nurq6tCtWzesXbsWKSkpimIlInICVtKS0EsvvYSxY8d6v7F1u93Yu3cvtm7d6pegTU1Nxfz58/lHlIiISCE7J2lFicloZdVKWj2Sl3KxJ210JWnljg9FiyR+uHYHWr12zKqkVSMwSVtTU+Pthy7nOL6VtOGcOHHCezlUkjawwvatt97CtGnTvH8Tjxw5gueff172cYmInMR6ZwJkCS6XC08++SRGjBiBjz/+GN9++y0KCwtRVVWF1q1bo3fv3rjxxhsxYsQIJCQkmB0uERGR7dg5SctK2p+xklZKz8S1Efcz0iSzEUlavWOItF9rqPFqK0/NXDjM7EracDEEm0e0qNvZs2eF/W1FfCtplVQy79mzJ+h+x44d87v+ySefSPb58ssv0dDQYMp7KRGRmax3JkCaGjlyJEaOHKl6fGpqKiZNmoRJkyZpGBURERExSesMVqmkDUzgWK0nLdsd2KuSVu6cao6ltt1BOEYtHBZpJa0aahO8oiRteXk52rVrp3klra/CwsKgt5WXl6OiogItWrSA2+3Grl27JPucOXMGO3bswBVXXKHq+EREdsV2B0REREQmaPzJqS8mae1HVElrhXYHTq2kZZJWXjxW7kmrdg6tFw7T6jhKK2HVJo/VPM7BKmnl8k3SKqmkDZfcbWx5kJeXh4qKCuE+69evl2w7dOgQ/vvf/6KysjLk/EREdsUkLREREZEJAitpXS6XJX/aKYqJSdqfiRKSbHeg38JhRtzPSOO3QpI2Unr2pNWr3YFeydXAWOTEpXVrCa0WDgOULR7m2+5AiXDjGpO0WVlZQffZv3+/3/Vx48ahZ8+eGDJkCC688EIsWrRIVWxERFbGJC0RERGRCQKTtHFxcbonXtTgwmGhsZJWiguHmZ+kNbuS1ortDvSqpJXLKpW0jUlardsdKKmkbexLm52dHXSf4uJi7+Xt27fj3Xff9V4vLS3F448/HrQKl4jIrpikJSIiIjKBKElrRWx3EBoraaX0rKS1Q5JW7pyRMCNJq9exgs0R6ZxazuekSlol7Q7q6+u97/dK7lO4StrGJK1vIjbQyZMnvZdFrQ9OnTqFH374QXZMRER2wCQtERERkQmYpHUGqywcZqUkrZ6VtEbcTy3i1zKZbPWFw5Qyqt1BuEraYPNZtZJWjdatW0u2KWl3AKhbPCzcmHPnzgFAyN6yvgncbdu2CfcJtp2IyK6seTZARERE5HBM0jqDqN0BK2lZSetyucJWOeoZjxPaHURKyzmtUEmr5v40adJEsq1x0Uq5MVZVVaFFixZh9/OdT24v21DtCnyTtD/99JNwnx9//NHv+rFjx/D++++jWbNmuPfee3HBBRfIioOIyCqseTZARERE5HB2SdJy4bDQWEkrFe09aUX7M0mrfG6tFw5zYiVtuC8CtEhUN1bFKokrXCVt41yhKmnLyspQW1uLhoYG7Nu3T7jP9u3bvZdLS0tx2WWXoaSkBADw2muvYfXq1bj00ktlx01EZDZrng0QCRw+fBjz5s3D5s2bcfLkSTRp0gS9e/fGqFGjMGLECLPDIyIiUsQuSVouHBYaFw6T0rOS1oj7qUX80Z6k1YLe7Q7UxmJGJa3ouGrHNB5PSSWtUlpU0gJASUkJ3G530FiLioq8lz/88ENvghYATpw4gYceeoh9a4nIVqx5NkAUYMWKFXj++ee9J7TNmzfH2bNn8cMPP+CHH37A+vXr8Y9//MOUkyIiIiI1Gn9y2ig+Pt6kSEJju4PQuHCYFCtpzU/SRirSx9UK7Q7CsWolbaixgaxUSet7u9w+tqEqaYHzLQ8SEhKC3l5eXo6GhgbExsbi22+/ldy+detWVFZWonnz5rLiISIyGzNaZHk//fQTJk+ejLq6Otx8881Yv349fvrpJ2zZsgUPPPAAAOCLL77AwoULTY6UiIhIPjtX0jJJ+zNW0krp2QKCSVp58Ri5cJhV2x3YtZI22FitK2nl0qOStjGGcJW0J0+eDLvQWVlZGQDgu+++E94erFUCEZEVMUlLlvenP/0Jbrcbt9xyC6ZNm4bOnTsDANq0aYNJkybhpptuAgAmaYmIyFaYpHUGVtJK6VkpacT9ZJJW3560ckX6mlE7XmlvW7nMqKQNRe7+cqtiG7ndbskvRYKRU0kbLklbWlqKEydOoKCgQHj7nj17vJePHz+Ohx56CNdddx1mz56tW9U0EZFa1jwbIPo/WVlZ2L9/PxITE/H8888LP6CMGzcOl112Gdq0aWN8gERERCrZJUnLhcNC48JhUk6spFUaf7QnabWaO9w4JbfLfUyUxmdUJa0aWnw50lgVK/fxV5LUDVdJW1dXFzZJe/r0aZw5cybo7b5J2vvuuw9r1qwBAKxduxYVFRWYMGGC7HiJiPRmzbMBov/z9ddfAwCuvPJKtGvXTrhPWloa0tLSjAyLiIgoYnZJ0rKSNjRRuwMrVNKaWSGm58JhbHcgLx4jk7RyxyudW+t2B1qJtJJW7VgjFg6Lj4+X/G1SWkkrZ//GY4erpAUgq5I21N/PgwcPAgByc3O9CdpGzz33HO677z5ccMEFYeMgIjKCNc8GiP5PYw+h3r17AwBWr16N5cuX4/Dhw4iJiUFmZibuv/9+9OrVy8wwiYiIFLNzklaUmIxWVqmkDUzGWK3dgVaPCdsdqDu+0nmU7KtFuwM5SdpIWaWSNtz9Uvs8afG6TUxMlPxtktuTtvH4cvevr69HTU1N2DnlJGlDLbzZWGW7du1ayW01NTX4+uuvceedd8qImIhIf9Y8GyD6P4cPHwYAtGrVCuPGjcM333zjd3tubi4+//xz/OlPf+IfVyIishU7J2lZSfszq1bSWq3dgZ0qabWI3+xKWj3ouXCYHFZdOEzNHL7kPB56VNKKNG3aVJIUbayM1bqHrZwqWkBeJW1CQkLY8evXrxfenpOTI9nm8XhM+T9GRGTNswFylNLS0rB/XH3FxcUhOTkZAHD27FkAwOzZs1FcXIxRo0bh4YcfRufOnXHgwAFMnToVP/zwA1588UVcdNFFGDRokC73gYiISGuBC6swSWtPVqmktVKSVs9KWrY7kBePE3rSRvoYqu1zq8UCXFappFV6nMTERMk2uZWxSvb3eDxh+9E2kpOkbdKkSdDbG88nc3Nzhbf7Jmm///57jBs3DkeOHMG9996L119/nclaIjKUNc8GyFHmzp2LOXPmyN4/OTnZ+3OUxm9Yi4uLcc899+CFF17w7peRkYG5c+di9OjR2LNnD/7+979j2bJl2gZPRESkA4/HI0l0MklrT6JK2mhP0upZSct2B/LisXJPWhEtXh9qFg6Ty+xKWrXHVdPuIJDcSlqlC4fJqaSV2+4gVJK2cfypU6eEtzf+crO2thb/+7//603mvvHGG0hJScHjjz8eNk4iIq0Y/wmSSIWEhAT84Q9/EG5/9NFHAQC7d+9Gfn6+0aEREREpJkpyWjVJK/rpPpO0PxMlCaO93YETK2mVxh9NSVq92h0YsXCYFStplYxRk5gOtXCYUZW0gHbtDk6fPo2ysrKgtzdW0p4+fVp4e2Ml7YYNGyTVtn//+9/5946IDGXNswFylIkTJ2LixImqxjZv3hxlZWVIT09Hq1athPv079/fe/nAgQO48MILVR2LiIjIKIH9aAHrJmm5cFhorKSVsntPWlbS6rtwmFHtDuQcQ81YvStptezZq2UlrVxy9tey3UFVVVXIBcjOnj0Lt9sdNElbUFAAj8eDzz77THJbfn4+duzY4Xe+SUSkJ1bSkqW1b98eANCsWbOg+/gmb5V+iCAiIjKDnZK0ooQjK4t+xkpaKT0raaOx3YGc+eXcbmaS04i5nV5Ja8TCYaEqaeVWMhtdSQsgZCWtx+NBYWFh0L9bbrcbNTU12LFjh/D2vLw8v+unTp2S9JQnItIKk7RkaWlpaQCAwsLCoPucOXPGe7kxqUtERGRldkrSulwuSWxM0v6MC4dJ6fmYGFFJq0UlsBMraa3e7iDc+EgeEy0qaYOJpJJW64XDmjZtKtmmRyUtAFmVtHJ60gKhk7SANNEaqLKyEsXFxcLbGtvpNTQ04M4770SHDh3QqVMnfPzxx2HjIiJSiklasrSBAwcCAI4cOeJt6h5o27ZtAID4+Hikp6cbFhsREZFadkrSAtLYmKT9majdAStpI69EDcau7Q4ieT70fDy1OKZV2h1o9VrQq5K28f6YXUkbiui9S+njIaeS1uPxhGxR4Ctc1arH40FpaWnIfcIlac+dOxc2SfvOO+9g6dKl3uM9+OCDYY9LRKQUk7RkaTfddJP3ZzdvvPGG5PaGhgbMmTMHAHDVVVehTZs2RoZHRESkit2StIEn7kzS/oyVtFJ6PibR2O7AjpW0SumRdI62Slo9x8gZ13i7Ge3nwlXlhkvSlpeXh+1Z+/rrr0vGiPrYEhFFgklasrTWrVvjiSeeAAB89dVXeOaZZ1BUVAQAKCoqwvjx45GVlYWEhATVi5MREREZTVQZFB8fb0Ik8gQmkLlw2M+4cJiUExcOU/qcOjFJq4QZ7Q7C3S73NahFJW2o4+tVSav0dSJ3fz0qaeWSe+xw+4VL0jZWywa7LS8vD0ePHpXc9vnnn8uKj4hILuuWbBD9n/vuuw/FxcX45z//iRUrVmDFihVo2bIlKioq4PF40KRJE0ydOhWpqalmh0pERCSL3Spp2e4gOKsuHObxeODxeHT/WbyInguHadlGIBhW0lqz3UE4Wi0cJqK0kjaSx1qrZHqwONUuaqZlJW3j+5McWrS5ECVYfYVK4hYWFgZN4vq24/N4PCgqKkJNTQ26desWNiYiIhFW0pItPP3001iwYAGGDRuGDh06oLq6Gl26dMHIkSPxySef4KabbjI7RCIiItmYpHUOq1bSAvpUmcqhZyWtKBmtNSZp5c+p5lhqH189Fg7T4jhGVNJqGUeo/bV43ZjR7iBcjOF6x4ZK4lZXV3t/yRmocXFrj8eD3//+9+jcuTN69OiB3//+92EiJiISs+7ZAGlm+vTpmDlzJpKTk7F27VpFY3NycrBo0SJs2bIFBQUFqK+vR1JSEtLS0jB8+HDccMMNhp1U9u/fH/379zfkWERERHpiktY5rFpJC5iXpDWyklaP+6hFklnLZLIdK2m1YMTCYUoX/RLFpVUsoahZOEztmEhped+1mivcImVHjhwJOTZYkvbkyZNoaGjAxx9/jBkzZgA4H/Pbb7+Nu+66C7/85S/VB01EUcm6ZwOkiaysLO/CWkq9/fbbmDVrluRELD8/H/n5+fjmm2+QkZGB1157DSkpKVqES0REFBXslqTlwmHBWXXhMOB8bGYkjI3sSct2B/qI9JhmtDsIN97sCla57QfUJtO1ah+gdpzSuI1sdxBOQUFB0NtCJWkbGhpw6tQpvPDCC5LbvvjiCyZpiUgxtjtwsPz8fIwbN054IhjOK6+8ghkzZnhPwuLi4tCnTx/0798fbdu29e6XnZ2NMWPG4NixY5rFTURE5HR2S9KykjY4UbsDMxKjogSQWYuH6VlJy3YH8uIxu5LWjHYHdqmk1WvhMKXH0qvdgVkV/KGEi6mysjLobaHaHQDAiRMncPDgQcn2devWyQ+QiOj/MEnrUAcOHMDdd9+N4uJixWNXr16NDz/80Ht92LBh2LBhA5YtW4YFCxZg06ZNePnll5GYmAgAKCkpwfjx4y35B5mIiMiK7J6kFSUmo5XVK2nNYGQlbbQmaZUeX+k8SvbVIrEnp5JWaZJWTiVtpFWwWszhlIXD9GBUte25c+eC3uZ2u0MWJO3Zs0e4fffu3X7H3717N3Jzc0PGQUTEJK0DrVixAnfeeWfIb/yCqaurw9SpU73Xr7nmGrz55pto3769d1t8fDxGjx6NGTNmeE/adu/ejZUrV0YePBERURSora2VbLNTkpaVtD+zSiWtlZK0RvakNardgdL47V5JK3dOObFoHYdcei0cZtVKWrMrXs1qd6CFUJW0AEImaXfs2CHcfubMGdTV1aG8vBw33XQTMjIykJqaipdffjmSUInI4ax7NkCKFRUVYdq0aVi+fLnqOdasWYPjx48DOH9CNmXKlKAfSocMGYLRo0djwYIFAIB58+Zh+PDhqo9tZ044WQ08yWSVFBGRfkSrX8fHxwOw5vuvqCetE/72aUH0OLjdbks8PrW1tWjSpInhxxVVins8Hk0eE1HyU+vHWpT4bWhoUHQcUTJZbZxqXmOi9xEl90HJcyjaFupYav/PhHuuRRWpvvuLntfA+YLFHerYotuUvIYC73uwxzPccyqqJBaNaTye3NdC4zHkfCFSX18v62+Y2+2WtZ/cuSLdJ1ySNtTtoapji4qK8Oc//xn/+c9/AJx/jl5++WWMGTMGF154YchjEkUD5iCkmKR1iHfffRezZ8/2+6lGSkoKhg4dilmzZsmeZ9WqVd7LgwcPRpcuXULu75uk3b17N/Lz86PuD47b7cbOnTvNDkNz2dnZZodARORYov51jdWqVnz/DUzYVFVVOfJvnxolJSWSbXv27EHr1q0NjePMmTOSbVlZWWjRooWhcQDAoUOHJNuOHz+uyWsm8GfJ9fX1mr8WS0tLJdt27dqFhIQE2XNo+X9GtKhRbm5uyPlESaXS0lLZMTQWbfg6deqUcHxZWZnsfYHz62YEOnLkiGT/wC+zampqFD2GZ8+e9dtf9H9kz549aNasmfd6dna28P35xIkT3rnkxHXixAnJHAcOHEBMTIzktVFdXe03XvTYHz58WFjNeejQIbRr1054/zwej/D/4rFjx7Bz504UFhZKbhM9Ro3Ppeg+Bdq5c6esX3OePHlS1ntTfn4+ampqQu5TVlYm/HWKr6qqqpC3V1RUhLz97NmzQW/bv39/0Ns2bNiA2bNn+21raGjARx99hBtvvDHkMYmikRU/AxuN7Q4cYu7cuX4fWkeNGoWlS5eiW7dusufweDzYsmWL9/qVV14Zdkx6ejo6dOjgvb527VrZxyMiIopWogomK7c7CPxVjRWqRK1CVKHFdgf6tTuQc6xIadFT1+7tDiLtSavV3HrPq0VPWrki7Umr5jVoZI9ZvV5fRrQ7CJcIDpUEFiW7Gx04cEC4fd++ffICI6KoY92zAVIlIyMDkyZNwoABAxSPPXbsGMrLy/3mkiM9Pd27QNmuXbsUH5eIiCja2C1JGxibWck/K9JzkSwlRMd04sJhgcneaFg4TM78WtMzMSb38Y00+av2MdKiJ62e431pnZjWIjajFxgz4nihkrSi6uNGwapsfZO3lZWVKC4uRpcuXRRV6xORM1n3bIAUGTBgAEaOHInrrrtO9R/XvLw8v+sXXXSRrHFdu3b1Xj569KiqY9tZTEwM+vbta3YYEWtoaPD7eUFGRoYplUBERNFg+/btkm2NiVArvv+2atVKsi0zM9OESKxH1Nbgsssu8/sJtRF8F3ltdMkll/j94skoop9FX3jhhZq8Zlq2bOl33eVyaf5aFD2nmZmZir5ICewF3KRJE9Vx/ve//5VsS01NDTmfqN1BmzZtZMcQ+DgDQFJSknC8qD1EqGOJ3v969Ogh2T/w/1B8fLyix7B169Z++7dt21ayT+/evf3OXzIyMiQtNQCgS5cu3rmaNm0aNq6OHTtK5khPT0dmZqYkERf42tiwYYNk7MUXXyxMFPq+DkT/Ny6++OKg90X0Ohc9RhdccAEyMzOF98mXx+ORtR9w/rUkp0VecnJy2L7abdq0Cft/M/A5U0rUo1nObaJWJcD5/5+ZmZmYNm0aXnjhBdTW1iIlJQUrVqxAr169IoqVyE6cloPYtWtXxF+QM0nrEDNnzox4jsZqWOB84lH0YV/E98O/7xzRxMrVT2rFxsY68n4REVmB6ANc43uuFd9/Gxc1a1RfX2+5GM0iquJKSEgw/PERHS8mJsaU50lUMBAXF6dJLIGVtG6325D7mJCQoKhlQ7DHQA3RccM9noH/Z5XGIDpJDvbeJDqWy+UKeizR/RHNLapGDhW/qJLWd3/RfQqMJTY2Nuh+jXMFez5Cxd64T1xcnOS2wDiDPT7h4hLNK3puGscEe88I1BifnNe/3P1cLpes/eQka+QUKEVabRuqkjZUQmbHjh3C7WfOnMHOnTsxadIk77bDhw/jr3/9Kz766CPVcRLZnRU/AxuNPWnJy/enGs2bN5f9QdS36Xuon3sQERHReaLKGyt/KA2MjT1pfyZaiZg9afXrSRuN7Q6s0pM22DG16Ekrp92B0sdQy7YCWvR2lduTNtjYcPdHbhxq2x1oMb8a4eYzur2CEqKKduD8Ymdr1qyRbF+5cqXeIRGRxTFJS16+DdOV/CTE9yc74VbWJCIiIvHfSysnaQOTjkzS/kyUCNVrkaxQrJSk1bMnrd69XoPNySStssdAi4Sq1n135T4mWvSkjaTvq1avaa0WDjMzCarVsa2WyK2oqMDBgwcl28+ePeu3RgwRRR8macnLt6pHycmF70klT9qIiIjCYyWtc4gqaaM9SatnJW1g0kmP+6jFnE5M0mp1LLWPhdI5RT//V8sKlbSRHFvuGKMWDvN4PJomTu1YbRusFcK+ffsAAFlZWVizZk3UthMkilZM0pKXb5WMkg+nvidqwfpfERER0c/snqT1eDymJQCtJvBxkPOzZD1YKUmrZyWtGe0O1MRudpJWD0raHUSaUBVt06PdgRmVtGrHGlGBq0UyWmtWTLBqIViSNjc3F6+99hoyMzMxdOhQdO/eHZ9++qmxwRGRaZikJa/ExETvZd/WB+H4/mQz3OqbREREZP8kLSCuII1GgY+DGVW0wY5rpaSKXpW0TNLKO77SGPTsSavHHJFUo8qZS8tKWi1eT3KOrabdgZEV2FrNZ9ckbrAv0U6cOIE///nP3uvnzp3DI488wraCRFGCSVryat26tfdyZWWl7D94FRUV3stt2rTROiwiIiLHcUKSli0Pzgs80TZj0TBAnFyxUiWtndodMEmrb09ate0BjKqkNXreSNslKJ2H7Q6s7ccff8TZs2f9thUXF+PAgQMmRURERmKSlrw6duzovdzQ0IDS0lJZ43z75LRv317zuIiIiJzGbklaUeKRSdrzApOEVqqktVJPWju3O1DznEZTktYK7Q6cVEmrVYJXq4XDlOxv1EJ+ZsxhlG3btgm3Hz582OBIiMgMTNKSV7du3fyu5+fnyxpXUFDgvdyjRw9NYyIiInIiuyVpWUkbXGC7A7Mqaa2UpDWykhbQ/yfWVqykVXp8pfMYvXCYHu0OtKx49Z3LjEpaOb2u9aqktXqC0+rxKdW4cFig3Nxc1NbW4o033sBjjz2Gr776yuDIiMgITNKSV3Jysl+7gr1798oa5/uHpFevXlqHRURE5DhOSNKyJ+15rKSVMnLhMED7JI1oMTil7F5JK3dOObFodbxI2x3IfUz0qDD1Pb4RC4CppUXlrZbtDrQ6phMSubm5uRg/fjwmTJiAmTNn4sYbb8QHH3xgdlhEpDEmacnPwIEDvZc3b94cdv99+/ahpKTEe33QoEG6xEVEROQkogVA4uPjTYhEHlbSBsdKWikjFw4LdrxI2KGS1krtDuSOVzq3VsfTghUqaZWOdcLCYVrN6YQkbX5+PubNm+e97vF48Mwzz3BBMSKHYZKW/AwdOtR7ed26dSgqKgq5/8KFC72XU1NTkZ6erltsRERETuGESlomac9jJa2UnpW0TNKqj0mvYxrV7iDaK2ntsnCY0ZyQgJXjp59+knx2OHnyJLKyskyKiIj0wCQt+Rk6dCiSkpIAnK/ymTx5ctCTsE2bNmHp0qXe62PGjDEkRiIiIrtjktY5AitpmaTVt5LWiPvphCStlRcOkzuHWQuHhRvr5EraUKzc7sCoecyUl5cn3O67PgwR2R+TtOQnISEBEyZM8F7fvHkzHn74Yb9FxOrr67FkyRKMHz/ee2KSlpaGUaNGGR4vERGRHdktSSv6CT+TtOcFJgjZ7sB5lbRqEsxaJmnlzC+H2T9bVzp3pO0O1CZT9UpeNjK7kjYUu7Y7iIaetMEcO3YMO3bswC233IJBgwZh7ty5ZodERBGw7tkAmeb222/H9u3bsXjxYgDnE7VDhw5Feno6WrRogZycHJw+fdq7f5s2bTB9+nRLn1wSERFZid2StFw4LDi2O5BiT1rzK2kb9/Eda5VKWqPaHag5hpyxamNVUw0byVgtx5B15eXlYcaMGd7FvLds2YLk5GTceOONJkdGRGqwkpaEXnrpJYwdO9a7iInb7cbevXuxdetWvwRtamoq5s+fj5SUFLNCJSIisp3AJK3L5TKtAlMOtjsIjguHSelZSct2B/Jj0rqa127tDuxaSavluGhod+DkKlk5Pv30U2+CttELL7xgUjREFCnrlmyQqVwuF5588kmMGDECH3/8Mb799lsUFhaiqqoKrVu3Ru/evXHjjTdixIgRSEhIMDtcIiIiWwlM0lq5ihZgkjYUVtJK2b2SNvBxi8YkbaSVtErn1oPahcPCzaV1kjUwBrWPj14Lh5nd7kCL4zo5kZuTkyPZ9uOPP6K+vt7yny2ISIr/ax1u5MiRGDlypOrxqampmDRpEiZNmqRhVERERNGttrbW77rVT6SYpA2OlbRSouPaKUnrlEraSER6TC2qXrVeOEwuLSpMjepBrPXCYVpW3mpFi+M6OUkbTHFxMTp37ux9PzbrC0QiUob/U4mIiIgMFlhJ29heyKq4cFhwrKSV0jOpaNd2B5HEaJVKWrnHUTo+2BxatzuwSiWt0xcOY7sDazhx4gTGjh2L2NhYdOnSBZ999pnZIRGRDEzSEhERERmM7Q6cI7CSlkla51XSqondCpW0ZrY7MKrqVQm5yVWjK2m5cFjkorndQTBvv/023nvvPQBAUVER7rvvPpSXl5scFRGFwyQtERERkcGckKQNTE5Gq8CEpJXaHZiVmNBz4TC2O5Afk5kLh4ViVLsDLRcOs0MlrdIxei+QphW2O1Dn/fff97teWlqKL7/80pxgiEg2JmmJiIiIDOaEJC0rac+zSiWtKBljpXYHWj0udm13YLckrZ49aUXkJGmVktPuQAtWqaS1ysJhbHdgXZs2bTI7BCIKg0laIiIiIoMxSescVq6ktVK7AztV0gbGryb2wOfDyUlao9odGDWnUyppwy0cpsUxyF4KCwsBAGVlZThy5AgT3EQWxCQtERERkcHslqTlwmHBceEwKT0radnuQH5MVq2kNavdQSQJSKVtA4yqpFV7TCX7N+6nRaWuGlpU0zIZeV5JSQkWLVqECy+8EN27d8d1112HyspKs8MiIh9M0hIREREZzG5JWlbSBhfY7oCVtPpW0rLdgTG0aFegZG492h2ojSXcfde7klYJqy0cpiSRa2S7AyZpzzty5AjGjh2LiooKAMC6deu8i4sRkTUwSUtERERksNraWr/rdkzScuGw81hJK8VKWvtX0sqZLxQ9kmJ6VNLKjdPISlq17Q6Uvk602J/sJS8vD2fOnPHbNn/+fJOiISIRa58REP0fj8eDZcuW4dNPP8W+fftQXV2Ndu3aoX///rjvvvvQt29fs0MkIiKSjZW0zsFKWim796QNnE9NgtnuSVqlx3S5XLIXsdKj3UGwmNSwYiWtmqrYYPRcOExtTJHOx3YH6m3fvh0ej4f9iIksgpW0ZHl1dXV49NFH8dxzz2Hr1q2oqKhAfHw8CgsLsXLlSowePRoLFiwwO0wiIiLZmKR1DlbSSulZSct2B/JjMjpJK/dYerQ7UNvX1UmVtKL9jV44zIx2B3KPR8GVl5ejpqYGO3fuRE1NjdnhEEU1JmnJ8t555x2sW7cOcXFxePbZZ7F9+3Zs374d//nPfzBkyBA0NDTglVdeQVZWltmhEhERycIkrXMEVtIySSs+rp3aHQTGzySt/GOqFenCWFouHGbXSlq9K16tmui0alx2snnzZnTp0gWXXXYZLr74YuzatcvskIiiFpO0ZGlutxsLFy4EADz00EO47777kJiYCADo3r07ZsyYgc6dO8PtduPjjz82M1QiIiLZ7JakFf2En0na8wITemx3oG+CLxp70sqZX+sYIm0toDShGumcatmpklYprRYOU3pfrNjugEK7+eabcfr0aQBAQUEBXnjhBZMjIopeTNKSpZ06dQplZWUAgMzMTMntiYmJyMjIAAAcP37cyNCIiIhU8Xg8kgSn1ZO0XDgsOLY7kNKzkpbtDtTHFCmj2x0oYadKWrVjzV44TEt6JHPDHY/kW7t2LR8zIpMwSUuW1qpVK++HhZ9++klye21tLfbt2wcA6Natm6GxERERqSGqQLVjkpaVtOdx4TApVtJaI0lrZk9apcxaOMyMSlo1yVY1+2pdSWtG0k6rKlomHJU5e/Ysjh07ZnYYRFGJSVqytCZNmmDQoEEAgHnz5mH+/Pmorq4GABw7dgxPPPEE8vPz0bJlS9x7771mhkpERCRLbW2tZBuTtPbFSlopu/ekDZxPTezRlqSVM15pHFq3UJD72jG6klZu7Fr2stVq/0BGV8iSfg4ePIiKigpkZWWhtLTU7HCIogaTtGR5L730Ejp37oz6+nr8+c9/xmWXXYbLL78c1157Lb755hsMGjQIH330ES666CKzQyUiIgorsB8tAMTHx5sQiXxM0gbHSlop0XG1qqRluwP5MZlZSWvFdgeRMLKSVgm7LhymJJmrRaUsE8fKffPNN8jIyEBmZibS0tKwceNGs0MiigrWLtsgRygtLUV5ebns/ePi4pCcnOy93q1bNyxfvhxjx47F9u3b4fF4UFlZ6b3d7XajqqpK05iJiIj0IkrSWr2SlguHBWflSlqzEhOi49q5kpZJ2vD0aE2g9cJhdqmkDXZ8rapi9Vw4TGtsd2Cev/zlL97LJSUleP7557Fp0yYTIyKKDtY+IyBHmDt3LubMmSN7/+TkZKxdu9Z7PTs7G+PHj0dJSQkmTZqE4cOHo3Xr1ti7dy/eeOMNfPfdd/jtb3+LOXPmYMCAAXrcBSIiIs3YMUnLStrgAitpzUrSipIrTqykNSKJFBh/NCZp5cynNB6lcUQ6p5YLh5ldSSsn4WqFhcPY7sC5vvvuOzQ0NJj2axGiaMF2B2RpRUVF+O1vf4vjx4/jjTfewAMPPIAOHTogISEBmZmZmDt3LoYMGYLq6mo899xzXGmaiIgszylJWv7NFSck2O5A30patjuQH5OdetJquciXnnPKnVfJOLmVtHodTy47tzugyDU0NKCgoMDsMIgcz9pnBOQIEydOxMSJE1WNnTdvHiorK9GvXz9cf/31kttjY2MxadIkfPvtt8jPz8d3332HIUOGRBoyERGRbpySpGUlrb4LZCllpSSt3StpnZKkjYSePWnljFc6p9qFw+TOZYVK2nDjtHid2LHdgZHzRLtDhw6hZcuWOHnyJHr06IEmTZqYHRKR47CSlixt586dAIB+/foF3SctLQ2tW7cGAOTm5hoSFxERkVpM0jqHKBnJSlrn9aRVE7sVkrR2WjhMzpyh6F2d6zuXlSppjXxdya1oNTohykpb4zzxxBPo2LEjevfujfT0dOzZs8fskIgch0lasrTS0lIA4f+wNp481tbW6h4TERFRJJikdQ5W0orpWUnLdgfGxKBHa4FQc+vVmkDpMdQcxyqVtHKPY4WFw4xKRJO2srOzvX/7jxw5gpdfftnkiIich0lasrROnToBALZv3x50n8LCQpw6dQoA0K1bN0PiIiIiUkv0hWJ8fLwJkcgnqg5lklbcl5eVtM6rpLViktZqlbRyxoeiR7uDaKuk1avdgRJaJ1+16lvLRK8+Fi9ebHYIRI7DJC1Z2jXXXAMA2LFjBzZu3CjcZ8aMGQCA1q1b45e//KVhsREREanhlEpaLhzGStpg9HxcREkkre9n4HzRmKSVM5/aYxmVMAuMSW6CP1oqabW4n5HspxW2OzCXWX9niJyKSVqytNGjR6N79+4AgD/84Q9YsmQJqqurAQAnT57ElClTsHTpUgDne+Q0b97crFCJiIhkcUqSlpW0rKQNRs+FrkT3k5W02sdgdE9aIxYOi4QWlbTBaPXasNPCYWx34Bx79uzBe++9h6VLlzJhS6QBa58RUNRr2rQp5syZg9/97nfIzc3FCy+8gBdffBEtW7ZEeXm594/22LFj8b//+78mR0tERBQek7TOwUpaMaMrae2QpI2EnklvM46pNkkb6ZxGVtKK6NUTV+3x9HiOrdrugPTTt29f7+Vf//rXWL16NZo0aWJiRET2xkpasryLLroIn376KSZPnox+/fqhefPmOHfuHJKSknDLLbdg4cKFePLJJ80Ok4iISBYmaZ1DVEnLJK2+C4cZ0e5AryStlokkMypp9TqWaLweIjmG0kpaK7Q7CEZtbFZNmLLdgXWsX78e//rXv8wOg8jWrH1GQJqYPn06Zs6cieTkZKxdu1bR2JycHCxatAhbtmxBQUEB6uvrkZSUhLS0NAwfPhw33HCDISeWiYmJuP/++3H//ffrfiwiIiI92TFJy4XDxETJQbY70HfhMDPaHaiJPViSVk2iLRraHciZs3Gs3AS42mSq0ZW0Vlo4LNwxtGLFRC5p44svvsCjjz5qdhhEtmXtMwKKWFZWFubMmaNq7Ntvv41Zs2ZJTsLy8/ORn5+Pb775BhkZGXjttdeQkpKiRbhERESOZ8ckLStpxdjuQMzoSlq7tDtQG6cdFw4LRY92B3JiirZKWjULh0VaSevxeDStuJU7H5Ow1sFFRYkiw3YHDpafn49x48YJTwbDeeWVVzBjxgzvCVhcXBz69OmD/v37o23btt79srOzMWbMGBw7dkyzuImIiJystrZWss2OSVqeiHHhsGD0rKSNxnYHdqiklTM+lEj7tWr52EZzJa0VFw7TYi4mcY1z4sQJvPzyy7j55pvxj3/8g4uJESlk7TMCUu3AgQN46KGHUFxcrHjs6tWr8eGHH3qvDxs2DFOmTEH79u0BnK8AWrZsGf72t7+hqqoKJSUlGD9+PD755BND+kkRERHZGStpnYOVtGJ6VtIa0e4gMH4macMf08h2B3LnZCWt8QuHWRWTtMbZuXMndu7cCQD48ssvUV1djT/+8Y8mR0VkH9Y+IyBVVqxYgRdffBFVVVWKx9bV1WHq1Kne69dccw3efPNNvw/E8fHxGD16NJKTk/HII4+gvr4eu3fvxsqVKzF8+HBN7oPdOOFENbAaiBVSRET6qK6ulmzzTYLa5f23rq7OEX//IlFTUyPZ5nK5THlcRInRhoYGU2IRvYbdbrcmsYiSLVq/FkXH0GL+uro6VUkw0eMp57kNPJaS50C0X6hjKjmW2vvTGJfc5ycwhmD/R+TE4btdVPkaOCbU/8dw40WPT319fdDtweJqvD1YHKLbglUWBzt+oLq6Oln7yX0tNjQ0hE2wMgFrbVOmTMGTTz6JJk2amB0KWRBzEFJM0jpIUVERpk2bhuXLl6ueY82aNTh+/DiA8yeMU6ZMCVoRMmTIEIwePRoLFiwAAMybNy8qk7Rut9v7baGTZGdnmx0CEZEj5ebmSrb5Jmmt+P4rOgk+deqUI//+KVFQUCDZZtbjkpOTI9lWUFBgSiyiX3Lt3btX1S+8AhUWFkq2HThwAE2bNo147kaB1e5VVVWKH8czZ85Itu3cuRMJCQmK4zl16pRk2549e4SPha/A1irV1dWy78fhw4cl244dOxZ0fOCJdWVlZdB9i4qKJNsOHDggSWyWlZVJ9tuxY4ewsl/0WAT+XxS9/g4cOIDU1FTv9ezsbOTl5Un2y8/P985VUVHhd5vH45HcV9Fztnv3bhQWFkoKaerr6/3Gnzx5UjJ2//79OHLkiGT70aNHvWPPnTvnd1tdXR32798vGVNcXIydO3fi4MGDkttEj2NZWRl27tyJkpISyW2BsrOzhfc90KlTp7znnKEcP348bDL37NmzYRM7/Mm9eTweD5YvX45evXqZHQrZgBU/AxuNPWkd4t1338WNN97ol6BNSUnB2LFjFc2zatUq7+XBgwejS5cuIfcfPXq09/Lu3buRn5+v6HhERETRRnTCafV2By6XS9JrldUO1m93YFaFmZ4/ozZj4TA1z6mWvXPtsHCYEpH2cJXLqJ/ua92TNthYsxcOk8OM9xz2pLU+0RcuRCTGJK1DzJ071+/b01GjRmHp0qXo1q2b7Dk8Hg+2bNnivX7llVeGHZOeno4OHTp4r69du1b28YiIiKKRHZO0gHRBLFYmWStJa8SCWnIZvXCY3klas/t0WqUnrV7HEo03ityFw7TsSavlWCMXDpMbl1n76T0Hqffvf/8bI0aMwMiRI7Fu3TqzwyGyNOufEZAiGRkZmDRpEgYMGKB47LFjx1BeXu43lxzp6enenw/t2rVL8XHtLiYmBn379jU7jIg1NDT4/bwgIyPDtBWqiYicbM2aNZJtvklaq77/xsfH+/18OjExEZmZmSZGZL74+HjJtk6dOpnyuIiS/x07djQllrZt20q2ZWRkeBehjURycrJkW2pqqqb3M/D/X/PmzRXP365dO8m2jIwMNG/eXHE8wR5P0TF8BfaAbNq0qez7cfToUcm2iy66KOj4wP8Lod4fkpKSJNt69eqFSy65xG+b6H737dtX2DKiTZs2km0dOnTwi6FTp06SfXr27OmXwMvIyMCBAwck+3Xr1s07V8uWLSW3B97XCy64QLJPRkYGOnToIHkNxMbG+o0P9viIvnTxfU4SExP9bktISBD+xLzxcQlshwGIH6PWrVsjMzNT1v9fOa9L4PxzG+4XmwDQuXPnsF9itmzZMmwy2qwvz+i8H374wXv5xRdfxKhRo4Tv5RR9nJaD2LVrV8RfkDNJ6xADBgzAyJEjcd1116n+Jjqw/9JFF10ka1zXrl29l0Uf6KKBHSqglIqNjXXk/SIiMpuoTYDv+61V338DY2poaLBknEYSnfjHx8eb8rgE63VqlecoISFBk1hEc8TExGh6PwNPsNTML3ptqP2/LfpsL+d1JqpulXt8UfxxcXFBxwcey+Vyyd432NxKHkM5rwvRfC6Xyy9JGxsbG/a4wR6bwHlF+8TFxYUdH2ysKHER7rUpuq3xuRHdJjpG4/5yzjGDPX6BYmJiZCVitEquspLWOs6dO4cPPvgAU6ZMMTsUsiCrfgY2Er9ScoiZM2fi+uuvj+inQr7N9GNiYmRXO/i2O9BiQQgiIiInE1UviSoyrSbwQ7MWq93bnZXaHYiOa1a7A9Fx7dyTVk3sWsapdpyR7Q6UjDeqF6oocaxWqHYHVu1JG+qYSvZX+lpguwMKx3cdHCLyxyQtefmuQtu8eXPZJxktWrQQzkFERERSgSvHA9apdgwlsOqJSVpxVbRZP9OzUpLW6J60Wt9POyRpzejhGuqYevSkjfQxVNs7Vu+kYLi4tEqmm7FwmFxWTOSScVq2bIna2lqUl5fzuSMKwCQtedXU1HgvN23aVPY435/XiaqDiIiI6Gd2TdKK2h1EO1bSiulZSSu6n9FYSWvGwmFaJWkjrTxVO2ckz4melbRajdVr4bBQ86vZR2tM8tnP119/jR49eqB169a46aab/NbFIYp2TNKSl+9Jo5ITDN+TNlbVEBERheaUJC3/5rOSNhijK2n1TtKqiT3akrRKRDK31pW0kR5DizkC9w02VsuEqxJsd0B6OH78OADgP//5D95++22ToyGyDiZpycv3pELJh3rfkzQ79NQjIiIyE5O0zsFKWjGje9I6vd2B3PnD7WOVSlo544NtCzavnSpptWwp4HtspUlPPRKXVkzQajkP6eNvf/ub2SEQWQaTtOSVmJjovezb+iAc3xYHTZo00TQmIiIip2GS1jlElbRM0upbSWtEu4PAx83sJK1VKmm1Opbc+xNpuwO1C4eZXUkrombhMLVjAumZ1NWKlWOj8CorK/kcEv0fJmnJq3Xr1t7LSt4oKyoqvJfbtGmjdVhERESOYtckLRcOkxIlQdnuwPhKWvaklRdDpI+TkkraUCKJw4iFw8LNpXclrZ7JdN8xWrVVUBuTkVWyTABaX2lpKfbu3YuzZ8+aHQqRqZikJa+OHTt6Lzc0NKC0tFTWuOLiYu/l9u3bax4XERGRk4gW2bRDkpaVtFJsdyBmdCWt09sdWKWSVqtEbCSVtFq3O1A7l5ZzaFVJa6eFw5Tsx5600aFz58645JJL0LNnT3z//fdmh0NkGiZpyatbt25+1/Pz82WNKygo8F7u0aOHpjERERE5jaiS1g493QOTtKKf+kcbqy8cZlZiQs/kNStp1cek5zGN6kkb6ZyB7F5JK+d4kbJDgtMOMVJojV9gFxUVYfLkySZHQ2QeJmnJKzk52a9dwd69e2WN27dvn/dyr169tA6LiIjIUeza7oCVtFJWqqQ1YkEtufRMKpqRpFXznFohSWvVhcP0aHcQDZW04cZqtXCYE9sdkL1s2LCBnzEoajFJS34GDhzovbx58+aw++/btw8lJSXe64MGDdIlLiIiIqcITNLGxMSYlthTgklaKatX0lqpJy3bHdg/SavkWErn1qPdgdpK2nBzqU1iRlpJa9bCYeHiUrqP0v3Y7iA65ebmmh0CkSmsf0ZAhho6dKj38rp161BUVBRy/4ULF3ovp6amIj09XbfYiIiInCAwSWuHVgcAFw4TsVIlrdWTtHaupI3GJK2c+ULRM8mrdk4jXjtq5tWqklbp8YyueNVTuBjtcB/IX15eHrZu3YqTJ0+aHQqRoZikJT9Dhw5FUlISgPN9YSZPnhz0JGzTpk1YunSp9/qYMWMMiZGIiMjO7JqkZSWtlKiSlklabZKcwRiRaAt83KIxSWuFdgdaLxwml5pKWiWJVr0qabVaOIztDsgKhg4digEDBuCiiy7yyzkQOR2TtOQnISEBEyZM8F7fvHkzHn74Yb9FxOrr67FkyRKMHz/ee3KSlpaGUaNGGR4vERGR3TglScuFw8RJULY70CbJGQzbHciPyU5J2kjbHciJKZL5lL4G9GwtIXes1guHsd0BmaGmpgZPPfWUaX/PiIxm/VUqyHC33347tm/fjsWLFwM4n6gdOnQo0tPT0aJFC+Tk5OD06dPe/du0aYPp06fbYtETIiIiszklSctKWlbSBqPFwlvBsN2B+pj0PGak8RhRvanVwmHBnlu586t9PamtwA22n9kLhxnJijGRfPn5+Th58iQ6depkdihEumNWjYReeukltG3bFnPnzkVdXR3cbjf27t0r2S81NRXTp09HSkqKCVESERHZT21trd91Jmnti5W0YnpW0pqRpFWTZNY7SasmBqOqO8ONN6rdgdqFw+TGEmoeJfHIGauGlRcOU7qvkXORNeXl5TFJS1GBSVoScrlcePLJJzFixAh8/PHH+Pbbb1FYWIiqqiq0bt0avXv3xo033ogRI0YgISHB7HCJiIhsI7CS1i5/RwOTtG63G26327TKUSvgwmFielbSmnE/7VpJ68R2B0rIaXcgoqaSVm9yErxaVdKGOoZWtGx3wARtdDh8+DCaN2+OTp06oUOHDmaHQ6QbJmkdbuTIkRg5cqTq8ampqZg0aRImTZqkYVRERETRy67tDkQVog0NDVGdpBW1O2Alrb0rabVqLWD3JK2c+bQ8VqQJVL2rlLVoNaD3wmFmjvFlxaSpFWMiZe6++24AQGJiIv7973/jjjvuMDkiIn1E76dqIiIiIhPYNUkr6j0f7S0PWEkrZueetKLHLBqTtHr2wdWj3YGc8XLn06KSVuuf/cttlSBnjNLj6LFwmNJ9jZyLrK2qqooLiZGjMUlLREREZKDAJK1dFt4UxSmqJI0mrKQVCzyundodsJJW3THNbnegd5LODpW0erU70IOWrRaYoI0+R48excmTJ80Og0gXTNISERERGYiVtM7BSlqxwKQJ2x0En9tIelY5WrHdAStp1S0cpuZYavaTy+z/N2RNx48fNzsEIl3Yo3SDiIiIyCGYpHUOUSUtk7T6VtJGY5JWbdI7kuR4pJW0SueWO6fW7Q7UzhXIjpW0cumV3GfylSLxww8/wOVy4eKLL0bLli3NDodIM6ykJSIiIjKQXZO0op/xR3uSVpQEZbsDfRcOM6PdgZoksxWTtHouHBZIi3YHSmjZSsKKlbRqhKuk1XKBMqW0bnfAhG/0efTRR3H55ZcjPT0d3333ndnhEGmGSVoiIiIiA9XW1vpdT0hIMCkSZVhJK2X1dgdmJS7svHCYkytpndCTNhoqaZUcX+v/42qSumr3k4sJWArlxIkTmDhxotlhEGmGSVoiIiIiA9m1kpYLh0lZaeEwUXLFiZW0eidpRY8Zk7Thj6tHT1olj6GTKmmttnAY2x2Q1W3evNm0v3dEWmNPWjJNaWkpbrnlFjRt2hRr164Nu/+aNWswf/587N69G7W1tejcuTOuv/56PPTQQ2jbtq0BERMREUXG4/FIEnt2TtKyktY6lbRWStLqWUlrRrsDJmmVH0vLudXOqbaSVs1rwIqVtFovHKYlravfmfCl0tJStGvXzuwwiCLGSloyRV1dHZ555hmcOnVK1v5vvPEGHn/8cXz//feorq5GXFwc8vLy8M9//hMjRoxAXl6evgETERFpILCKFmCS1s6sVEkLSBOYrKRVjkna4Psa3ZNW63YHcmMxel6zKmnlUlJ5q3XClAlYkuvZZ5/Fq6++iiNHjpgdClFEmKQlw1VVVeGJJ57Axo0bZe2/atUqzJo1Cy6XCxMnTsSPP/6In376CUuXLkVKSgpOnjyJxx9/POp/cklERNZn5yQtFw6TslIlrejYTqykZZLWmIWdRKzQ7iAYJZWsauZyYiWtmQuHhTo+kRpz5szBs88+i8GDB7OAi2yNSVoy1P79+zFq1Ch8/fXXsvZ3u9146623AAC//e1v8fDDD6Np06YAgEsvvRTz5s1Ds2bNcPDgQSxfvlyvsImIiDQhStKKKlStiJW0UqIviJmk1beS1ox2B2qeUyskaa3akzaS5JzWlbRq5rJqJa0WtFg4TA4uLkZ6OX78OP7xj3+YHQaRakzSkiGqq6sxZcoU3H777Th48CDat2+Pa665Juy477//Hrm5uQCA+++/X3J7p06dcOuttwIAk7RERGR5dq6k5cJhUqLkINsdsJI22Bi1z4cdk7RazK31wmFy51PzetKyklftWKssHGZ0uwMmaCnQO++8Y3YIRKoxSUuGKCkpweLFi9HQ0IBhw4bhs88+Q58+fcKO27JlCwCgR48e6Ny5s3CfwYMHAwC2bduGc+fOaRc0ERGRxmprayXb7JykZSUtK2lFAo8bjUla0X12ciWtnPGh6NHuQO3CYSJaVtJq1VtWznGsunAYwOQqEZEIk7RkCJfLhcGDB2P+/Pl46623ZK+8ePDgQQBAampq0H26desG4PyJ0uHDhyMPloiISCeiStqEhAQTIlGOSVopVtKK6dlDVe92B6K5rNaTVm0MWiX/Ij2WUe0O1M5ndCWt3OOZtXBYpOP0notI5Fe/+hVuu+02ZGdnmx0KkSL2aIJGtpecnIx58+YpHldUVATgfFuDYDp27Oi9XFxcrDw4IiIigzit3QGTtFw4TISVtPbvSStnPrXHMqrdgV0raZWM0WPhMLX7Ne7LdgdkBY2LlGdnZyM7O9u7rg2R1TFJS7KUlpaivLxc9v5xcXFITk6O+LgVFRUAgMTExKD7+L7hNu5PRERkRXZO0ooqRKM9SStqd8BKWn0XDmOS1pgFpLR6HOTSY261yVSzK2nVLhymxf8Dtjsgp8nJycFnn32GO++80+xQiGRhkpZkmTt3LubMmSN7/+TkZKxduzbi4zae/IU6gfX9mWi0L2BCRETWZuckLStppVhJK6bnwmF6tztwUpLWzIXDtGh3YMTCYXLZsZI2GLULh7HdAdnVxo0bmaQl22BPWrK0xipZ0UltI99FWOxyoktERNHJaUnaaP9ylAuHiTmtklbNc6pnnE5M0hrR7kDuOLtW0or21zIhLIce7Q602Ieim5m/cCFSipW0JMvEiRMxceJEw4/bvHlzAEB1dXXQfaqqqryXW7RooXtMREREajktSctKWi4cJqJnJS3bHZiXpNXrWKLxeojkObFqJa3cY8rdT4setnJp1ROXSVoK56233sLs2bNx1VVX4YMPPkDnzp3NDokoKFbSkqU1Lhh28uTJoPs0Li4G+C8iRkREZDVM0joLK2nF9Kyk1bvdgWiuaEzSyplPLaPaHaiN16qVtEqPa+WFw5hYJaNVV1djzZo1eOGFF8wOhSgkJmnJ0tLS0gAAubm5Qfc5cuQIgPMnj927dzciLCIiIlV8W/Q0skuSlguHSVmtklbrpJxarKS1f5LWqu0OlAgcb/dKWqctHCYHE76ktblz5/I1Q5bGJC1Z2sCBAwEABw8eRElJiXCfzZs3AwAyMzO9PWyJiIisiJW0zsKFw8SM7knLhcPkxWCVJK2c8Uriknu8SI8R6RgzKmmVjgm1P9sdkFMcP37c7BCIgmKSliztiiuuQKdOneDxeDB79mzJ7SdOnMBnn30GALjrrruMDo+IiEgRpyVpuXCY9P6zJ62+lbSiuVhJq71Ik7RazG2lhcPMrqRVO87IHrONc7L6lazu8OHDOH36tNlhEAkxSUuWFhMTgwkTJgAAPvjgA7z99ts4d+4cACArKwv3338/zp07h7S0NNx8881mhkpERBSW05K0rKRlJa1I4HHt3u5ATfxWSNIauXCYkvGR9KSNhJ7JbS0reZWM9T2uVguH2a3dAZFSV199Ndq1a4cnn3zS7FCIJJikJcu79dZbcc899wAAZsyYgV/84he44oorMGrUKOTm5iIpKQnvvfeeqZUrREREcjBJ6yyspBXTs/KT7Q7s3+4gksfYCZW0eo71pfXCYVbpca30dqJg3nzzTXz//fdmh0Hkh0lasoUXXngB77zzDgYPHozmzZujpqYGXbt2xZgxY7B8+XJ06dLF7BCJiIjCYpLWWVhJK6ZnJa3e7Q5Ej1k0JmnlzKflsSJtdyBnTq0WDhOJJC65Y+ywcJiSdgda/b9lkpYiMW/ePLNDIPIj/bRNljR9+nTMnDkTycnJWLt2raKxOTk5WLRoEbZs2YKCggLU19cjKSkJaWlpGD58OG644QbhiZfexo8fj/Hjx8ve//rrr8f111+vY0RERET6snOSVlQhGu1JWlElLZO0xi8cxp608mIwspJW6dxGzanFXHpU0no8Hu+8Vls4LNJxkWAClvS2bds2s0Mg8sMkrQ1kZWVhzpw5qsa+/fbbmDVrluQkKj8/H/n5+fjmm2+QkZGB1157DSkpKVqES0REREHU1tZKttklScuFw6RESVC2O9B34TC2O7BmklbOeC3mjqTdQTRW0mrZ7sAsbHdAesvKykL37t3RqlUrs0MhYrsDq8vPz8e4ceOElTfhvPLKK5gxY4Y3QRsXF4c+ffqgf//+aNu2rXe/7OxsjBkzBseOHdMsbiIiIpIS/T1PSEgwIRLl2O5Aiu0OxPSspNW73YEdkrRGiLRdgRXaHciZT0SLSlqlY9QsAKZ0Xzlj2O6Aos22bduQmZmJtLQ0/PDDD2aHQ8QkrZUdOHAAd999N4qLixWPXb16NT788EPv9WHDhmHDhg1YtmwZFixYgE2bNuHll19GYmIiAKCkpATjx4/nHzkiIiId2bndAZO0Ulw4TMzoSlq9k7Rq4o+2StpIFw6LlJYLh4korWJV04Yg3PGVjnPCwmE8NyWjFBUV4cUXXzQ7DCK2O7CqFStW4MUXX0RVVZXisXV1dZg6dar3+jXXXIM333zT7wNmfHw8Ro8ejeTkZDzyyCOor6/H7t27sXLlSgwfPlyT+xBNnHCSGniiGe0/YSUi0kNNTY1kW2ACyE7vv7W1tY74G6iW6L673W7THpPAhIxZsYiSw1rFIfr/UV9fr9n8oi9SPB6P4vlFySW1cYoqk9XMo+R+iJ7DhoaGoOOD3d9I5hbNWVdXJ5xXtC3w/oqOG7gt2H303S7nuRUl1kONr6ur837BE+z/T7jXvihRHOo9SjSf2+0WJtzr6+tlfelTV1cnu5JWznxutzvsfGZ9GUXOs3r16qj+TGMG5iCkmKS1mKKiIkybNg3Lly9XPceaNWtw/PhxAOerXqZMmRK0AmDIkCEYPXo0FixYAOD86oZM0irjdruxc+dOs8PQXHZ2ttkhEBE5ztGjR4Xb+vTp471u1fffw4cPS7YVFBQ48m+gXKdOnZJs27NnD5o2bWpCNNKex9XV1aY8P4GJzqqqKs3iOHTokGRbYWGhZvMfOXJEsq24uFjx/I2fxX0dPHhQVc/Dc+fO+V2vr6+XFU95ebnfdY/HI/t+iNqg5eTkoHnz5hHHWFZWJtm2a9cuSesX0a8J9+7dKyxiEb0ujh8/7hdDQUGBZJ/c3Fx06dLFez07O1v43OXk5KBNmzYAgNOnT0tuz87O9t4OAGfOnJHs0xhLsNsak7Si95Xs7Gzk5ORItvveR9H/f9Hfk9OnT2Pnzp1B39MDkySVlZXYuXOn8HkLtG/fPpSWlobdr6ysDIWFhWH3O3nyZNh91BQ1EQWzefPmoO9zpD+rfgY2EtsdWMi7776LG2+80S9Bm5KSgrFjxyqaZ9WqVd7LgwcP9vvgITJ69Gjv5d27dyM/P1/R8YiIiEgeUYWAqI2AFYl+xh/tFQ+iCi4t+68qJaqkNYPan+fLYUa7A6v1pFXb7iBSdm93YJeetMHGa31cO7Q7IDLa999/L/xCh8goTNJayNy5c/2+hR41ahSWLl2Kbt26yZ7D4/Fgy5Yt3utXXnll2DHp6eno0KGD9/ratWtlH4+IiIjkE/2Mzs5J2mj/manVFw4zK6lidE9aLV+HeiZpjRZJoljPhcPkPsZGPIZ26UmrRrDj6L1wmJaYGCajTZo0CbfddhveeOMNs0OhKGWPs4Iok5GRgUmTJmHAgAGKxx47dszvp00ZGRmyxqWnp3t/UrRr1y7Fx41mMTEx6Nu3r9lhRKyhocHv5wUZGRmmLn5CROREbdu2lWy75JJL/HrVWvX9t3GxUV8XXHABMjMzTYjGGkQ/Xe/Xr59pz1+zZs38rsfFxZny/AQmeVq2bKlZHKLHNikpSbP5RQv5dezYUfH8GzZskGxLSUlRFWdg+4wmTZrImsf35/eNLr30UllJ806dOkm29ezZM+hxA38eHBsbG3RfUVyZmZmSx75jx46S/dLT09GrVy/JdlELgS5duvjFIFq5PbAYJiMjQ/grxIsvvtg7V7t27SS39+nTx6/oJfC9weVyeccHe14a77/o70Tfvn2Fz5vvfQx8/BITE4XnKG3btkVmZqawrUPXrl0l/8eaN2+OzMxMYdyBevXqhdatW4fdr1WrVkhKSgq7X1JSUthEbZMmTcLOQ6TUggUL8OKLL6JHjx5mh+JoTstB7Nq1K+IvjpmktZABAwZg5MiRuO6661R/g5mXl+d3/aKLLpI1rmvXrt7Lon55FJpdqqCUiI2NdeT9IiIyk6iStmnTpn5JWqu+/4r6rLrdbkvGahTRB/GEhATTqigDT2zMen5ElbRaxSFKorpcLs3mF50cqvk/Kdpfq8dB7v0VvQ7j4uJkJWlF+8THxwc9rqiKW8l9jYuLk+wviiHYcyF63gLnFO0TeIzY2FjhcX3nUhJX4BzBxvvOH+x5E8Xv+1oQtcUI9ToM9loPFruc9zW5+7lcLtWvQyKjZGdno2fPnmaHEVWs+hnYSNF97y1m5syZEc/h22A/JiYG7du3lzXO95tfUZN+IiIiipxo5XhR0smKRCfv0b4KcmCSNtKfCkcqMKFhVjuKwOPavd2Bmvit2pM2knYHevakldvuINi8cu6X3Pmc0pOW7Q6IIiOqNifSG7+achjfn/o0b95c9ofKFi1aCOcgIiIi7dg5SSuqbGCSVr9kpBpWSdLquXCY6DHmwmHaxxBpklapSHvS6r1wmJE9aZW8Tnz3VRq3XguHydnP4/FoNh8TuaSXffv2Yc+ePVHff5+MxSStw/j+XFL0s8RgEhISvJdra2s1jYmIiIjOc1qStqGhwYRIrCPw/pvdR80qSVqjK2m1TNKIHjMmaZXTopJW6bxqqJnPjIXktDymnpW0ZmCSlvQyY8YM9OnTB7/85S9RWlpqdjgUJZikdRjfkz8lH4h9T7yivSqGiIhIL05L0kb7ZwZW0oqJ2kBoxYx2B0zShj9upO0O5MwZaqydKmnlHlNpDErH6JHcVFIhK3c+IrP98MMPeP/9980Og6IEk7QO41vBoeQDq+9Jll1OFomIiOyGSVpnYSWtmGjhMK2w3YExSVq58wW7Telx9KjelDOnmoRxpK8HI9sdaEFpuwO5c7LdAdnJ6tWrzQ6BogSTtA6TmJjovezb+iAc3xYHTZo00TQmIiIiOo9JWmdhJa2Y0ZW0TNJqT8+etHZfOEzO8bWupI3WhcOsekyKPv/973/NDoGiBJO0DtO6dWvv5crKStl/tCoqKryX27Rpo3VYREREBGnf95iYGNMTe3KJqkSjPUkbWElr9nNplSStnpW0ZrQ7UBO/FZK0RrY7UHIcs9odRMKulbRatjswqp+xXnMRRaKyshIff/yxX96ESA/2OCsg2Tp27Oi93NDQILvBdXFxsfdy+/btNY+LiIiIpJW0vgt3Wh0raaUCk4NsdyA+rpbJMru0O9AyTrXj7N6TVmuspA1/LL0r1X3nZAKW7GbUqFFIS0vDnj17zA6FHIxJWofp1q2b3/X8/HxZ4woKCryXe/TooWlMREREdF5gktYurQ4AcQIysJI02rDdgZjRlbRaJntEj5lW7Q7UPh9WqaRVciwl44PdH7MWDgsXi1MqaYNhuwOi4E6cOIHJkyebHQY5GJO0DpOcnOzXrmDv3r2yxu3bt897uVevXlqHRURERLB3ktblckkStdFeScuFw6S0ahcQjGguvdsd2LUnrZELhykRSbsDJdQuHGbVSlqtKU3YW7XdAZO0ZLTPP//c7BDIwZikdaCBAwd6L2/evDns/vv27UNJSYn3+qBBg3SJi4iIKNrZOUkLSFseRHuSlpW0Ukb2Bg11TLWYpA2+n17tDrTodat24TC5rFBJa4eFw+RiuwMiIjEmaR1o6NCh3svr1q1DUVFRyP0XLlzovZyamor09HTdYiMiIopmdk/SspLWHytppUTHtFO7AyZpg++nVZJW7rxGLBxm90paqy0cpnXilZW0ZFX33HMPPvroI77+SHNM0jrQ0KFDkZSUBOD8KtKTJ08OehK1adMmLF261Ht9zJgxhsRIREQUjeyepGUlrT+rV9ICxicw9K6kNaPdgZrnVc9kslGVjkqOq8fCYVrfT7tU0sqZI5L99V44jO0OKBosWLAAd999N/71r3+ZHQo5DJO0DpSQkIAJEyZ4r2/evBkPP/yw3yJi9fX1WLJkCcaPH++tAklLS8OoUaMMj5eIiChaOC1JG+0LhwXef7OTtEatzB4KK2mDj7F7Ja1WjGp3YNdKWicuHCZK4jO5Sk4wceJEs0Mgh4kLvwvZ0e23347t27dj8eLFAM4naocOHYr09HS0aNECOTk5OH36tHf/Nm3aYPr06ZKTLyIiItJObW2t3/WEhASTIlGHlbT+AhOSVmt3AJyP0cjksShJy560wedWExPbHaibN5L5zK6kVdMrVm3v22D7RbronBbJb7X7EOmlrKwMFRUVaNGihdmhkEMwI+dgL730Etq2bYu5c+eirq4Obrcbe/fuleyXmpqK6dOnIyUlxYQoiYiIoofTKmmjPUlrtUpavVsByKFVu4Bg9L6PWiWZ7Z6klTtfsNu0aHeghNE/sQ83xoxKWi3GaPGFipaJVSZpyQ7OnDnDJC1phu0OHMzlcuHJJ5/EihUr8MADDyAtLQ2tWrVCfHw82rdvj6uuugp/+ctfsHz5cvTs2dPscImIiBzP7klaLhzmzy6VtEZiJW3wMXZK0kZaSatkbqMWDpM7X7i5jG4hIHe8VguHGdHuINS+RHbTtWtX3HnnnWEXbCeSg5W0NjBy5EiMHDlS9fjU1FRMmjQJkyZN0jAqIiIiUsruSVpW0vqzw8JhTqukZZLWmklatccJNa+RlcCRUlJJq7YNgdkLh5nx2DORS3axdOlSNG3aFP/+97/NDoVsjpW0RERERAZxWpKWC4f5339W0upfSav3fXRSkjYSSmO1YrsDLRcOi7SSVk0cwY4fbJwVFg4LFoeafbSei0hvH374oeRzHpFSTNISERERGcRpSVpW0rKSNpATK2nVxG+FJK1VFw7To92BnPGRJB+VVr+Guo9mV9KGO04k++vdT1fPeYi0kJuba3YIZHNM0hIREREZhElaZ2ElrZToeHZP0tq1ktbMhcO0mFev9grhxqmtao2ElvFHMkav/19sd0DRoqyszPC/u+QsTNISERERGcDtdkuSekzS2hsraaW0SnIGo/d91Kpdg92TtHo+j5G0b7BLJW2o8WpfT2piMHrhsFDzKt1Hy+MRGWXgwIHo06cPduzYYXYoZFNM0hIREREZQNSnLCEhwYRI1AusFI32JG1g0p1JWlbShhrj5CStkmPJjUGPOeWM06KSNpJWAlq9ntUsHBZqf7XJ10jiYE9asqN9+/bhD3/4g9lhkE0xSUtERERkAFGSlpW09haYkGS7A/0raZmkNSaGSBcOCzVHJD1pg5HzvEXyeFihkjbccbV47cqp2FWD7Q4o2mzcuBHnzp0zOwyyISZpiYiIiAzgxCRtYCVptGG7Aym9K2n1vo92SNJasZI2Eka1O9DqGGZV0pq9cJgcHo+H7Q6I/s/BgwfNDoFsKC78LkT6KC0txS233IKmTZti7dq1IfetqKjAggULsGbNGuTm5qKmpgbt2rXDFVdcgXvvvReZmZkGRU1ERKSOE5O00V5Jy4XDpLTq6RqMGZW0apLMVkjSas3u7Q6isZI23Bg5x1HS7kDunHLnY7sDsrPdu3cjLS0NiYmJZodCNsJKWjJFXV0dnnnmGZw6dSrsvkeOHMGtt96KadOmYdeuXaitrUV8fDwKCwvxxRdf4H/+53/wr3/9y4CoiYiI1GOS1nlYSSulVZIzGLY7sGYlrdntDuSMlzufUyppjRzjy8gqbCIru/vuu9GjRw9s2rTJ7FDIRpikJcNVVVXhiSeewMaNG8PuW19fj3HjxqGgoAAdO3bE7NmzsWPHDvz0009YvXo1rrnmGrjdbkydOhXr16/XP3giIiKVnJCk5cJh/qxWSat3AlMOvStp9U5EaxW/ns+F3ZO0SuaVO6fe/X7DVcJaoZJW6ZhIEsmR7KPHfkRWVVRUhAkTJpgdBtkIk7RkqP3792PUqFH4+uuvZe3/1Vdf4dChQ3C5XJg+fTp+9atfITY2Fi6XCz169MA777yDfv36AQBmzJihZ+hEREQRcUKSlpW0/lhJK8VK2uBj7F5JqxWj2h3oVUmrxxxaVNJqtXCYnHmVzql2XrY7ICf48ccfUVVVZXYYZBNM0pIhqqurMWXKFNx+++04ePAg2rdvj2uuuSbsuA0bNgAALr/8cm8y1ldsbCzuuOMOAEB2djbf/IiIyLJqa2sl2+yepHW73VF9ghxYScskrTN70jJJG/64erQ7iJSWbQm0rKQ1ito+unq0O9BTNP8NIvs4cuSI2SGQTTBJS4YoKSnB4sWL0dDQgGHDhuGzzz5Dnz59wo675JJLMGzYMPz6178Ouk+HDh0AnP8DXVFRoVXIREREmhJV0iYkJJgQiXqBSVpAmqiMJoEJSbPbHVghSat3Ja3e95FJWmXzaXEsJT1pjVg4TO9KWicvHCb3/48VKrqJjPTll1+iuLjY7DDIBqSftIl04HK5MHjwYIwbNw6/+MUvZI+79957ce+994bcZ9u2bQCAJk2aoG3bthHFSUREpBcntjsAzrc8EG2PBqyklWIlbfAxRidpI6FFJa2SueXOqeQxVPs4hbvvelTS6rFwWLA2A3LGaY3tDijaTZgwAX/605+wbNkyXHfddWaHQxbGSloyRHJyMubNm6coQSvH6dOnsXjxYgDAVVddFbUniUREZH1OSNKKKkWjtS+tx+ORJAdYSat/Ja3cY2o5l5r4rZCkNbLdgdw5RNu1SApqWUmrBTMqaeVSu3CY0vmNwiQt2UV5eTleeOEFs8Mgi2NGi2QpLS1FeXm57P3j4uKQnJysY0TnTwqffvpplJWVISYmBo8++qiuxyMiIoqEE5K0wSppo5EZychwrJCkFR1P68clJibG7zhsd6B9DEpjtWK7Ay0XDrNDJa3eC4ex3QFR5L777jt4PB5T+lSTPTBJS7LMnTsXc+bMkb1/cnIy1q5dq1s8DQ0NmDRpEr799lsAwGOPPYaMjAzdjkdERBQppyZpo7Unreh+s5JWuyRnKIHzaZnI0apdgxOTtHotHKZkTiX0WjhMDitU0pq1cJjcOdnugKJVeXk5WrdubXYYZFFsd0C2U1NTg9///vdYuXIlAGDEiBF47LHHTI6KiIgoNKcmaaO1ktaIilGlrJCkNeJx0TNJy0paZfMpjUkUgxb9bNW2O1Azl50qaZXup0UlLdsdEIX23Xffoba21uwwyKJYSUuyTJw4ERMnTjQ7DJw+fRrjxo3D9u3bAQC33nor/va3v/HnAkREZHmiD+RM0toXK2nF9F44DJDeT7Y70D4GPXvSyp3XiIXD7F5Jq/UYPbDdAZG/m266Cenp6Vi+fDl69epldjhkMaykJdvIy8vD6NGjvQna3/72t5g6darpJ0RERERyiCppExISTIhEPSZpf8ZKWjEjevWyktZ6SdpI2h0oSdIGEw2VtOHGKR3DdgdE5tm/fz+mTp1qdhhkQaykJVvIzs7GQw89hNLSUrhcLjz99NN48MEHzQ6LiIhINie0OxB9MRqtSVpRJS2TtMZU0gbOp3clrZrnVc8krRGs0JNWyVi1yXW7VNLKGRcq6RrJ/WS7AyJ9bNy40ewQyIKYpCXLO3jwIB588EGUlZUhPj4er776Kn7zm9+YHRYREZEiTkjSspL2Z6LEoNm/7rFCktaIStrA+axYSSu6z3avpNWLUe0O5M5ndiWtEnZYOEzr3shETnH48GGzQyALYrsDsrRz587h8ccfR1lZGRISEjBz5kwmaImIyJacmqQVVZRGA7Y7EDOjklbLhI9W8bPdQeTtDpTQO+lnZCWtmQuH6UXPdgdEdrZx40ZUVVWZHQZZCJO0ZGmzZs1CXl4eAOC5557D1VdfbW5AREREKjk1SRutlbRcOEzMjJ60dlk4TG2cZiRp5c6n5lha/PRezXi7VtKGGitnnJLXr9XaHTCRS073q1/9Cv369cOxY8fMDoUsgu0OyLJqa2vx0Ucfea/PmDEDM2bMCDnm448/RufOnfUOjYiISDEmaZ3FipW0VvhZsRGVtHZod8BKWn0WDosk8RvJ61DLSlq1Y7WupHVKuwMmacnu9u/fjzlz5uBPf/qT2aGQBTBJS5Z14MABnD171nu9pKQk7Jho/cklERFZnxOStFw47GespBUzo5LW6UlaOXNrHYNWj4McerU7ULtwmN6VtErvb6SPj5GVtGrmDYUJWIoW3333ndkhkEUwSWsT06dPx8yZM5GcnIy1a9cqGpuTk4NFixZhy5YtKCgoQH19PZKSkpCWlobhw4fjhhtuEFbG6G38+PEYP3580NszMjKwf/9+AyMiIiLST21trWSb3ZK0rKT9mRUraa2QpDXicTG63YGa+K1QSRsJpbHatd2B2rnCUfr4+e6vZGwkvW+1Hgew3QGRWl999ZXZIZBFMElrA1lZWZgzZ46qsW+//TZmzZolOYHKz89Hfn4+vvnmG2RkZOC1115DSkqKFuESERGRgKiSNiEhwYRI1OPCYT8T3W8maY2pwGS7A+tV0hrV7iAYrR5bOXOZVUlrVLsDrbHdAZE8y5Ytw29+8xvbfTYkbXHhMIvLz8/HuHHjhCd24bzyyiuYMWOGN0EbFxeHPn36oH///mjbtq13v+zsbIwZM4bNqomIiHTkhHYHrKT9mSj5yXYH5lTSapmk0aqnrt2TtHLnUxpTpGPNWjjMzpW0Ri8cpnReNfMROdH/+3//D3fffTdf91GOSVoLO3DgAO6++24UFxcrHrt69Wp8+OGH3uvDhg3Dhg0bsGzZMixYsACbNm3Cyy+/jMTERADn+72OHz+ebwhEREQ6YZLWWVhJK2bEwmFGtzuIxiStnolKPdodGHkOo3UbBq3GWWXhMLY7IFLv448/xubNm80Og0zEJK1FrVixAnfeeSeKiooUj62rq8PUqVO916+55hq8+eabaN++vXdbfHw8Ro8ejRkzZnhPuHbv3o2VK1dGHjwRERFJOCFJy4XDfsZKWjEjFg5juwPrJWmt2O7AzEpapePV9pY1opJWzrGUzsl2B0TBzZ8/3+wQyETsSWsxRUVFmDZtGpYvX656jjVr1uD48eMAzle8TJkyJeiH4yFDhmD06NFYsGABAGDevHkYPny46mNHKyecoAZWBEVrj0EiIr3U1NRItrlcLlu9/4pOtmtqahzxd1Ap0UJwgLmfCUTJirq6OkNjEn0Z4Xa7NY1BVEmr1fyiedTML/p/3NDQoGucgSJ5PYjir6+vDzpWybFESVrRfkpikPN4i76wCNzW0NAg3M93Ljn3VTRHqPG+9yvYWNF9DPXa9Hg8QR//YPOJtjXuLycZWldXJ6ua3uPxyPoCyegvmYisIlo+V9npM7BRmKS1kHfffRezZ8/GuXPnvNtSUlIwdOhQzJo1S/Y8q1at8l4ePHgwunTpEnJ/3yTt7t27kZ+fjwsvvFBh9NHL7XZj586dZoehuezsbLNDICJylMLCQsm2gwcP4syZM37brPz+e+LECcm2Q4cOOfLvYDiHDh2SbCspKTH1sWj8kt7XoUOH0KlTJ8NiOHjwoGRbYWGhpo9L4MlrZWWlZvPn5+dLtuXl5SmePycnR7Lt+PHjiucRJcbKy8tlzXPy5EnJtv3798tKfJWWlkq2ZWdno3nz5rL33717t986GI18z3WA8194iO6PaL2MnJwc4b5HjhwRbvPd9/Dhw2GPkZ2dLXzc9u7di7NnzwKA8JeOBw4c8LteVVXld72urs4bS0lJiWT87t27cerUKQDnn99AO3fuRF5enmT7yZMnvfMGPq9nz57Fzp07Ja+hxteP6DHLy8uTfKFYXV2NnTt3eu9/KIcOHUJFRYXfNo/HI0m8VFRUyGrpd/r06bD7MKlDTrNw4UIMGTIEvXr1MjsUw1n5M7BR2O7AQubOnev3oWXUqFFYunQpunXrJnsOj8eDLVu2eK9feeWVYcekp6ejQ4cO3utr166VfTwiIiKSR1QVIerxamWin/NH6wmyET/rV0p0fKN/CqzHT8UDRVO7AyMeT7n0WjxLr/sjp92B2rkCBd5Xte0LlLLawmFmsGpcRGqdOXMGv/3tb/Hxxx+bHQqZgElaC8rIyMCHH36IV155BS1atFA09tixY37fvmZkZMgal56e7r28a9cuRcckIiKi8JzakzZak7RWXDhMlGCxQk9avRcOY5JW+xj07Ekrd16zktF60CJBrPXCYeGOp4bH49H0PYAJWIpWbrcb77zzjvCzIzmbvco3HG7AgAEYOXIkrrvuOtV/yAJ/BnPRRRfJGte1a1fv5aNHj6o6drSKiYlB3759zQ4jYg0NDX4/L8jIyDB9ARQiIidp2bKlZFu/fv3QtGlT27z/in7in5ycjMzMTBOiMZeoMrpLly6mPhY7duyQbOvWrZuhMYl+wty1a1dNY0hISPC73qRJE83mF62qnZqaqnh+UQ/qTp06KZ5H9Dpr06aNrHlEbS569uwpa2ybNm0k2y699FI0a9ZMuH+7du0k2y655BJhDE2aNJFcF8W0detWybbu3bsL9xW99nv06OG3r6hNQWBbuIyMDL/Flhtdcskl6N69OwCgc+fOktsDH9emTZv63Z6QkOC93fcXjI169+7tPW8LLNJxuVzIzMxEYmKiZFyHDh288waeP7Zq1QqZmZmSL49atmyJzMxMYduIHj16SGJv2rQpMjMzhX/DAl188cWS+GNjYyV/05o3by58zQQSvQ4Dmf3lGJFezp49i4SEBFx66aVmh6Ibp+Ugdu3aFfGX40zSWsjMmTMjnsP3g3FMTIzwQ4aI74cFOf2ByJ/dfq4qR2xsrCPvFxGRWUTJlsTERMkJppXffwOTY8D5Sierxqsn0RfqcXFxpj4Wospsl8tlaEyihEl8fLymMYiOodX8weZWOr9Wz0WwqkQ584hOdCN5fwn1OET6uIn2UxK/nH3lnPjHxsaG/b8t576KWi2EGu8ba7CxotdUTEyMd5xoQTbRY9W4PdhjFkjJe3xcXJzsYiM5yVU5c7Halpzso48+Qvfu3XHBBReYHYohrPwZ2Cj82slhfBcfad68uexvFn2/8QxcwISIiIgi54R2B6IPztGyAnEgUaWE2dUfos99Rrc7EB1P60o3tjuI3nYHweaUE69WMcqZJ5LXpJKxkbymgo21UrsDucckcqrXX38dffr0QW5urtmhkEGYpHUY359WBf5UJRTfypja2lpNYyIiIiJpkjZYxZaViZK00dqT1ohkpFLR2pNWy/vIJK2y+dQcS1TxqfR4clipD2q4JK/SOZTsb/bCYcGOL2c+JmCJgMLCQsyePdvsMMggTNI6jO8JoJITBd+TrmitiCEiItJTYJLWblW0ACtpfYmS01aspDU6yWFE8jpwPr0radXEb4UkbST0rKTVo8pUzpxWrqQNtb/c51tplbQe7w1aLV6mZD8mcikavPrqq2aHQAZhktZhfE8OlFQV+J5g2fGkkYiIyOqYpHUWK1bSWrXdgd6VtE5udyB3bq1jMDI5bGa7A7lzRUpJJa1W7Q7UVNKq2V9OTGx3QEQkD5O0DuO76qdoVdlgfFscBK64SkRERJELbCdkxyStqFI0WpO0dqmktUK7A7170mp5H7VKMluhklbrJK1WxzKq3YEcdqqk1TK5G+5YonnZ7oCISH9M0jpM69atvZcrKytl/2GrqKjwXm7Tpo3WYREREUW9wEpa337wdsFK2p+xklbMiEpao9sdMEkb/rhWbHfAStrQyVG9Fg4zej8mcila3Hbbbdi+fbvZYZDOmKR1mI4dO3ovNzQ0oLS0VNa44uJi7+X27dtrHhcREVG0c2q7g2hdOEx0v5mkNaeSlklafWOQc1wlj1EklbRK4pcTk2i+cI+5VStpw43Xet9gzOqjTOR0K1aswE033YTy8nKzQyEdMUnrMN26dfO7np+fL2tcQUGB93KPHj00jYmIiIicm6RlJe3P2O7AnEpaLe8jk7SRH1fpsbRod6B24TCjGFFJq1crC6u3O2AlLUWToqIiLFu2zOwwSEdM0jpMcnKyX7uCvXv3yhq3b98+7+VevXppHRYREVHUY5LWWVhJK+bESlo18UdbktYO7Q7kjrNqJa1S4SpwndLugCjarFmzxuwQSEdM0jrQwIEDvZc3b94cdv99+/ahpKTEe33QoEG6xEVERBTNmKR1FlbSihlRSct2B9ZZUKuRUQuHad2uIdJqXzXHVltJa5eFw4x+zTKRS9Fm9+7dfu0qyVmYpHWgoUOHei+vW7cORUVFIfdfuHCh93JqairS09N1i42IiChaOSFJK0pCMkn7M1bSGlNJq2e7A62SzFZI0ppdSSuXUX1QtVo4zOhKWrXjrLJwGNsdEGlr586dSE1Nxfr1680OhXTAJK0DDR06FElJSQCA2tpaTJ48OegJ1KZNm7B06VLv9TFjxhgSIxERUbRxQpKWlbQ/E7U7YCWtMclrVtJab+EwkUjbHZi1cJjaueSOVzqX3RYOk4PtDogic/bsWUyePNnsMEgHTNI6UEJCAiZMmOC9vnnzZjz88MN+i4jV19djyZIlGD9+vPckIy0tDaNGjTI8XiIiomhQW1vrdz0hIcGkSNQTJWlFycpowEpaMSN+6swkrTmVtFodK5J2B8FouXCY2ZW0ahcO02sM2x0QWdOWLVtQWVlpdhikMeknbXKE22+/Hdu3b8fixYsBnE/UDh06FOnp6WjRogVycnJw+vRp7/5t2rTB9OnThSdfREREFDlW0joLK2nFjEhe69nugEla8X7hjmlUv1cjFg4TibQfrBmVtFZZOIztDoj0c+bMGTRv3tzsMEhDrKR1sJdeegljx471ngS63W7s3bsXW7du9UvQpqamYv78+UhJSTErVCIiIsdjktZZWEkrxoXDgo8xoupRqxj0THxZaeEwETWVtErn0Gqs0irXcPTqD6xmHyX7EUWruXPn4ujRo2aHQRpiktbBXC4XnnzySaxYsQIPPPAA0tLS0KpVK8THx6N9+/a46qqr8Je//AXLly9Hz549zQ6XiIjI0ZyQpOXCYT8TVdIySWvMwmFGJ2nVxG+FStpI6FlJa1SFrZaPk5aVtErHa92LVm37AiP7GSvBRC5FsylTpqBfv37Ys2eP2aGQRvjbdhsYOXIkRo4cqXp8amoqJk2ahEmTJmkYFREREcnldrslyTI7JmlZSfszUfLT7HYHWlceqmFEJa0d2h2IErtsdyB/rNy4lMwrN0a9K2nVJmxDjdMqyetyuSzV7oCIwjt9+jQ++OADTJ061exQSAOspCUiIiLSWWAVLeCcJC0XDvsZK2ntX0mrVZLZCpW0Wibt9ayk1aLdgd4JP6tW0tpl4TC1MbAnLZE8f//7380OgTTCJC0RERGRzpycpI3WSlouHCbGnrTBx2j1XFixklYJs9odOLmSNtT+Ri4cFmw+tXMyAUtE0YZJWiIiIiKd1dbWSrYxSWtvrKQVM6KS1g7tDuxeSeuEdgeRHEfp2EiTiWrHW23hMDWLnkWKiVwiY5WWluKuu+5CSkoK7rrrLpSWlsoaV1VVhUceeQQulwvx8fE4cuSIzpHaE5O0RERERDoTVdImJCSYEElkuHDYz1hJK8ZK2uBj7Jyk1fJYRrU7UFvxqkclre8YrStiw40LFpteC4cZ3e6AiM7761//Kvy8qbU//elPWLRoEXJzc7Fo0SL86U9/kjVuxowZmD17NoDznx27d++uX5A2xiQtERERkc6c0u7A5XJJEoHRmqRlJa2Y3XvSahW/FZK0cueTs5+aStpIY4iUnHYHImoecy0radVUo2q1cJia/UXxBM7HdgdE+nv++ecxYcIE3Y/z1ltvhbzuy+PxwO12w+Px4JlnnpHcPm7cOP4/D8AkLREREZHOnJKkBaQtD6J14TDR/WaS1pjkNdsdqK+kVUvNXGZX0sqhZlykrwejkqZKe9FGciw1mJgh0t6MGTMAAOfOnUNubi4qKytNiyU3NxcDBgxAbGwsBg0aJNxnzpw52LZtm8GRWRuTtEREREQ6c3KSlpW0P2O7A+0rP0X0rKTVql2DVZO0dupJq3W7AyMraZU+13IqaY1M1or2Y7sDInvYsWMH+vbti5SUFFxyySXYsWOHcD+Px4OGhgbd/p+9/PLL+PHHHwEAP/zwQ9D9/vrXv+pyfLtikpaIiIhIZ0zSOg/bHYgZ8biwJ629k7RWSrypSSRbqZJWj4XD2O6AyN6effZZHD58GABw9OhRYRI0Ly8PAwcORFxcHH7xi18gNzc3omOWl5d7/7/u2LEDX331Fd5//31ZY48ePRrRsZ2GSVoyTWlpKQYPHoxrr71W1fgFCxYgPT1d9XgiIiKjMEnrPFw4TMyISlq2O7DHwmFy5zazklbNwmFyjm+FStpIK2gD99c6YcoELJE+Vq9e7Xd96dKlkn3+/Oc/Y+vWrQCAbdu24c9//nPYedesWYOnn35aeFvr1q3xP//zP5gyZQr69euHYcOGqYicACAu/C5E2qurq8MzzzyDU6dOITk5WfH4nJwc/P3vf9chMiIiIu05KUkbmIiM1iQtK2nFWEkbfIydk7Ra9qQNpCRJq4RePXntVkmrNFkb6ePGdgdE1tbQ0IB//etfftvmzZsn2eZr0aJFuOuuu0LOu2TJEk3ii3aspCXDVVVV4YknnsDGjRtVja+trcXEiRNRXV2tcWRERET6qK2tlWxLSEgwIZLIsZL2PFbSimnV0zUUJmn1T9IqPaZR7Q4imdMulbTBGFFJq0eClu0OiMz3/vvv4+TJkygrK8O3334re1xubi5uuummsAla0g4raclQ+/fvx1NPPYWDBw+qnuONN97Anj170LRpUyZqiYjIFpxUSRuYpBUlK6MBK2nFREkVrR8Xo9sdqInfCknaSBjZk9ZqC4eFi0WrpH0wSl4nkSR39Vo4TC4mYImMc///Z+/Ow6Mqz/6BfyckEwKBJBDCEhYhkrAEUy0CRWxFFKgWqvhS6oJalF8VGwWLQqti9aVVtFURRBQpWkRFlIKvr8UN61IUqyKQEPYtYQkEwpqEbPP7I2+mszxn5uzr93NdXs6cOc8yZ4bJOffccz+/+hWApgQBUeKAlPHjx+Pbb781alokwExaMkVNTQ1mzZqFa6+9Fjt27EBmZiaGDx+uuJ8vv/wSS5YsQdeuXfltDhEROYabg7TMpP0PZtIykzZWGydl0upR7kAuo8odyGFFJq2e5Q7kjKd0LJY7IHIvJQHavXv3MkBrAQZpyRQVFRVYvnw5GhoaMGrUKLzzzjvo37+/oj5OnjyJmTNnwufzYc6cOWjdurVBsyUiItIXg7TuY8dMWlFwxY2ZtEYGafUKMhsZpDVjDnosHGZ1uQMnZdI6YeEwtfuy3AGRs9TW1uK+++5Dz549rZ6KJ7HcAZnC5/Nh6NChmDJlCi6++GJVfcyaNQuHDx/G5MmTMXDgQHz55Zc6z5KIiMgYbgrScuGwJqJMWquDtKLxzQ5ymJFJa3a5A7sFae2YSWt1uQO57eX056RMWiMWDos3ll4YgCWyp7fffht//vOfrZ6GZzFIS6bIzs7GkiVLVLdfuXIl1qxZg759++Luu+/WcWZERETGc1OQlpm0TUSBQZY7cH4mLYO08vvSayw9gvh6LhwWr62bM2m1ljsIBAIsd0DkUEeOHEFWVhZuuOEGq6fiaQzSkiyVlZU4deqU7P0TExORnZ2ty9ilpaWYPXs2/H4/nnzySceuhk1ERN7l5iAtFw77Dztm0tqhJi2DtNJ9Gzkfu9aktWrhMLmYSat8jFhY7oDIGXJzc7FixQqrp+F5DNKSLIsXL8aiRYtk75+dnY21a9dqHrehoQH33Xcfzp49i9/97nfo3bu35j6JiIjMJlqowS1BWq9m0nLhMDE9g2VSzC53oCbIrGcWq5y+5bJjuQM9+jS6Pydm0qqhx8JhcjEAS2QvJ0+exOzZs62ehudx4TCyteeffx4bNmzAkCFDcMstt1g9HSIiIlVEmbRO/WUIg7RNmEkrZkUmLaBfwMftmbRaxlU6ltXlDtQuHObETFol7YwMjrLcAZGzffbZZ1ZPwfOYSUuyTJ8+HdOnTzd1zO+//x7PP/882rZti8cff9y0b3WJiIj05qZyB1w4rAkzacXMyKSVCgjqMY5eC5/ZNUhrZiat1r7ttHCYmZm0arDcARGROzBIS7a1fPly1NfXo6amBv/1X/8V9XhVVRUA4NChQ7jkkksAAA888ACuuuoqU+dJREQUj5uCtMykbcJMWjEzjouoP2bSGjcHJWPKGcuIDFu1C4fpRc9MWicvHBavfzX7EZH7NTY2Wn4OZRc8CmRbzX+4a2trUVFREfVfc5C2sbExuK2mpsbKKRMREQkxSOs+okxaqy8w7BqkNSuTVg8M0or307MmrZy2cueltV8nZNI6aeEwvQO0DOQSecMf//hHq6dgG8ykJdt6/PHH8fjjj0s+Pm/ePMyfP1+3RcqIiIiM4uYgrShY6QWiYCTLHei38FYsoqCTXs+TQVrxfkYuHKZHuQOjM2mVBlntnElrVLtY/bHcARHFsnr1atx7771WT8MWmElLREREZDA3B2m9mknLcgdiZmTSml3uQM3r6rYgrZqxtPattU89M2nVzktuG62ZtErouaiZ0v5D92EAlohC7dixw+op2AKDtEREREQGc3OQtqGhwZMX21w4TMyqTFqWO9CX0kxaOX3o0beWcgdGlmRQkkkbj5pMWjuXO+Diz0Qkx9/+9jerp2ALDNISERERGay2tjZqm1ODtKJApBdLHjCTVsyqmrR6PU+95m+HIK1dyx3Iaau0Tz2/KDI6k9bqsgVGLxymZC7xePELQCKv2rx5s9VTsAUGaYmIiIgMJsqk9fv9FsxEu8hMWsCbJQ+YSStmRiat2eUOvBikVTqmEQFVrcFCJ2XShu6vpK2WhcOMILeMgZL9iIi8RLeFw6qrq/Haa6/hs88+w5EjR5CamoqCggJMmDABvXv3jtm2qqoKF110ERISErBlyxa9puQqc+fOxYIFC1QtkrVr1y688cYbWL9+PcrKylBfX4+srCzk5uZizJgxuPLKK4UXXEYrLCxEYWGhZe2JiIjM4uZyBwAzaZsxk9ac48JyB/bLpFXCiHIHei4cZtdMWr0zcI0od6BmHkREAL+UaaZLZG7fvn247bbbcODAAQBNB9fn86GoqAivvfYabrjhBtx///1xM0bUviilpaUoKSnBmTNnkJ6eji5duqBPnz6q+rKjTZs2YdGiRarazps3DwsXLozKcCktLUVpaSk+/vhj5Ofn48knn0SvXr30mC4RERFFcHuQlpm0TazOpDUyeCmXGTUpjSx34IQgrRlz0GPhMKvLHahdOEzuXGL1oyWTVk07Ndm3Iix3QERW4b/3JpqDtOfOncOdd96JsrIyAEB6ejrOO+88VFRUoKysDIFAAMuWLcM333yDF154AR07dtQ86WZ79+7FQw89hG+++SbqsYyMDIwYMQKTJ09G9+7ddRvTbKWlpZgyZYrw4i6e2bNnY+nSpcH7iYmJyMvLQ0pKCnbt2oXKykoAQFFRESZOnIg333wT2dnZus2diIiImjBI6z7MpBUz47iw3IH9Mmmtqh8bi5xyByJWZ9KqWThM7thyxpHaT+8yBix3QEQUTfMZ09tvv43du3cjISEBv/3tb/Gvf/0Lb7zxBj766COsXLkSQ4YMQSAQwLZt23D99ddj7969OkwbOHDgAK6//np88803wQ/50P+OHz+Ot956C1dddRUef/xxR148bN++HTfeeCOOHj2quO2aNWvCArSjRo3Cp59+ipUrV2LZsmX4/PPP8eijjyIlJQUAUFFRgcLCQv4hJCIiMoCbgrSibFEnnmdpJcqkZZDWukxaI4O0al5XvQLJeh9POwZprVw4zAmZtLHGVtPO7ExaljsgIjkYi2qiOZP2gw8+gM/nwy9/+UtMnjw57LF+/frh5ZdfxksvvYSnn34aBw8exE033YSXXnpJczmCefPmBTNBx4wZg5tvvhk9e/aEz+dDaWkpvvzyS6xcuRI7duzAK6+8gu+//x4vvvgi2rZtq2lcs6xevRoPP/wwqqurFbetq6vDnDlzgveHDx+OZ555JuxkMSkpCRMmTEB2djZ+/etfo76+HsXFxXj33XcxZswYXZ6Dl7jh4jTyYtOL9QWJiIxSW1sbtc3n86G+vt5xn7+i4FNNTY0r/hYqIXqdAoGApcdBdIHT0NBg6pxEYzU2Nuo6B9HzrK2t1WUM0euq5hiKguNqjoPoCx657zPRHOQ+F1EgNVY70Vj19fWyn6/U+yaS1Pzl7Cv12kbel3ouzZ99ao5r6Gsmev+GHiup8UXzb35Pid4nzY9FBkmb5yJ1PKTmJyeAItVeNAc5XyCZ/SUTEVnL7ufAZtAcpN22bRsAYMKECZL73H777cjLy8PUqVNRUVGBm2++GS+88AIuvPBC1eN+8cUX8Pl8mDRpEu67776wx/r06YM+ffrgV7/6Ff7nf/4Hs2fPxsaNG/Gb3/wGf/vb31SPaYby8nI89dRTWLVqleo+PvzwQxw8eBBA008SZ82aJZkBMGzYMEyYMAHLli0DACxZsoRBWoUaGxuxceNGq6ehu6KiIqunQETkGkeOHInaVlJSIsymtfvn74kTJ6K2FRUVoaKiwvzJWKg5WSDU5s2bLc8a8/l8YUGSyspKU89TpN7rouOllug9uHnzZqSnp2vu+/jx41HbioqK0KpVK0X9iAJVJ06cUPxa7NixI2pbeXm5rH72798ftW3fvn2y2lZVVYXdr6uri9nu0KFDUdt27tyJNm3aRG2PvAg/e/assO9du3ZFbSsrKxPuKxp/x44dYeVZRP1Ffm4VFRVJvr+a+2ou8xdq9+7dYfOKDJpWV1cHHxfNdfv27cH1WyKTdJqP/enTp6PaNf/7PnPmTNRjze83qbk0Xy+G2rlzJ86ePSscP/I9IbJ79+6o/Wpra6OCrdXV1bI+EyLnQkTuFQgEbH8ObAbNv8lq/mPRpUuXmPtdeumleOWVV9CuXTucOnUKkyZNwr/+9S/V4546dQoA8Mtf/jLmfmPGjMGrr76KVq1a4d///jf+53/+R/WYRnv++ecxevTosABtr169cMcddyjq57333gveHjp0aNzXJjTAXlxcjNLSUkXjERERUWyiDCtRbVcnYLmDJpGBJqMW3FEq8ot5O/x8UO8yEEYeZ9akld+X2rG0lBjQsnCY3P6MqEmrpL2aRcDsvHCYHT4Xicj+mDnfRPMZU3NN05MnT8bdNz8/H8uWLUOXLl1QXV2NO++8Ex988IGqcTt16gQAaN26ddx9e/fujbvuuguBQAArV65UNZ4ZFi9eHPbN4/jx47FixQr06NFDdh+BQADr168P3r/kkkvitsnLy0OHDh2C99euXSt7PCIiIoovMojZokULx164ioK0Xvx5WmSgw+p6tM0i31d2WDjMjKCPXs/TyJq6auaod5BdbU1aK1gVLNQrmK5m7FhtlfYRr50dXuN4nDBHItIH/7030ZzC0a1bN5SUlGDz5s3o2rVr3P179uyJZcuW4Ve/+hX27t2LadOmYcaMGYrHveyyy7B06VJs2bIFw4YNi7v/qFGj8MQTT2DLli2KxzJbfn4+ZsyYgUGDBilue+DAgWCWcXNfcuTl5QUXKNu8ebPicb0sISEBAwYMsHoamjU0NIT9vCA/P194IU5ERMo1f6ndzO/3o6CgAIDzPn87d+4cte38889Hv379LJiNdSITBVq0aBF8Ta3UokWLsC8FUlNTTZ1Xu3btorbl5+cHEyz0kJmZGbWtX79+6Nixo+a+RSUTLrjggqh/w3JElp5o27at4tfi3LlzUdu6dOkiqx/Rz/u7desmq21ycnLU/VjtREkeOTk5wjaRQUOp43Ls2LGobVLPXfTa5+bmhu3bXE4gVOR7KT8/X/geKCgoCP764Ztvvol6vGfPnmFjRX6Gt2rVKvi46FeO559/fvDxli1bhj3W/PdClBSVnp6OgoICYYmGjIwMFBQURJXVadmyJQoKCvDxxx8L5yH12RY5L5HzzjtPOP/IX460bNkSGRkZcftT8++OiJypoaHB9ufA8WzevFnzl8aag7QDBgzAli1bsHbtWvz0pz+V1aZz58547bXXcNttt6GkpASPPfZYzP2PHz8edcJ3yy234K233sKLL74oK0iblpYGQLxwh10MGjQI48aNw4gRI1R/27p3796w+927d5fVLjTALqpfRbE59SersbRo0cKVz4uIyAqRmbRJSUmSn7F2//wVBToAd/4tjEWUSWuHYyAqd2D1vGK939UQXcAZ+e9GFGSSIzJICyj/d6LluYr2kfs+FZUKiNVOyViiRclE+ynpU5TJHvm+E9UAj3yeUsGBpKSk4GNqjmvo46K5hr6mouvAxMRE4fyb+xXNu/kxqddSNI9Y2+Vcn4p+JaKlhIJTf3FCRMo1Njba/hzYDJp/l3XppZcCAD744ANhoX0p7dq1w9KlSzFw4MC4ac2XXHIJLr/8chQWFmLhwoX4/PPPkZKSgsceewzfffcdZs2aFfdnds0ZKjk5ObLnaLYFCxbgiiuu0PTHqDkbFmj6wyzKNBAJLXcQ2gcRERFpF7lwi+hi2ylEJ8+sSWufcgeR8zC73IHovN6MmrR2LHcgWtHeyvloGVfPmrRy2soZU81YatspPeZ6/mw31tjx6svGorT0hZz9rSrPQUTOx5q0TTSHqC+99FK0atUKVVVVWLBgAR588EHZbVNTU/HXv/4V99xzDz755BPJ/QKBAA4ePIiDBw/io48+Cm7v3LkzMjIysGLFCmzYsAHTpk3D8OHDo/4gVVRUYPbs2fD5fLjpppuUP0kHCf0ZTOvWrWWfFKempgr7ICIiIu3cHqT1Yk3ayIsJu/w8z+ogrWg8vYO0ov70CuboWVPX6iCtlsCpHkFavfqO1TbWdjkLhykZI1Y/StqoDZ6qDdYq2VePhcP0DOYySEvkHV48lxTRHKRNTk7Gd999p7q93+/Hc889h0OHDknu89e//hXFxcUoKSlBcXEx9u/fHwzcNtu5cyfuuusutGvXDj/84Q/RvXt3JCYmorS0FGvXrkVtbS3uuOMOXHPNNarn6gShdavk1A1qFvrTRTuXhCAiInIitwdpvZhJGxnMYyZtEzMyP7UEH+NxUyatnkFaNZQEVEW0vs5yjpNdMmm1ZMTGa2f1wmFSgV8GYImIotmi2ENCQgKys7MlHx86dCiGDh0avH/27FmUlJRgy5YtwcDt7t27UV9fj2PHjuGDDz4I+0MQCATQtWtX1NTU4K233sJ//dd/Gfp8rBR6EajkYiH0gsuLF1pERERGivwClEFa54vM+GAmrfR4LHcg3beR87E6k9aoAKiInLHkztGumbRa91XbhuUOiIjMY4sgrVKtW7fGwIEDMXDgwOC22tpabNu2DVu2bAn+t3379mBmaVlZGV5++WX4fD5XB2lDLxCUnKyGXlw5+cKRiIjIjiIzaaUW33ICUTDSi0FaZtKKmZFJa2S5AwZp5feldiy5AWAzMmmN6suITFqjatNG7muncgdERF7jyCCtiN/vx4ABAzBgwIDgtoaGBuzatSsYtC0uLsa2bdssnKXxUlJSgrdDSx/EE5rhk5ycrOuciIiIvI7lDtzHrpm0kQEWr2TSMkgbf3wlc9BSN1Zp31K0BH619OeWTFq9Fw5TS0u5AwZzichrLAnS3njjjcjLy8OFF16IMWPGGDZOixYtkJubi9zcXNfXom2WlpYWvH327FkEAgFZJ1VnzpwJ3k5PTzdiakRERJ7l9iCtFxd7cEomrdlBDj0X3pLCcgfqj6cdyh0YEQDWc+EwPdgpk1bpWFpq2AYCAV0/cxikJSKvseRs8ttvv8Xrr7+O+fPnWzG8q3Xs2DF4u6GhAZWVlbLaHT16NHg7MzNT93kRERF5mduDtMyktU8mrR3LHegdwDay3EHk8dIS2DMqSKt2fCPHNaImrRmLTXkhk9bM4LRcDL4SEYnZ4yt/0k2PHj3C7peWlspqV1ZWFrzds2dPXedERETkdQzSuo9TMmntUO7AjExao8od2DFIa8dyB3qXJpAzZrw+9cqkVdNOz0xaOfNQE9hV+l5QW56A5Q6IiOSzx9mkSkuXLsWHH36IAwcOWD0V28jOzg4rV1BSUiKr3datW4O3+/Tpo/e0iIiIPM1NQVouHNYkMpOWQdomVmXSGlXuwKtBWrVjyqHlGOu9cJgdM2nljGdUe7MWDrOiLyIiJ7DH2aRKS5cuxd13340rr7zS6qnYyuDBg4O3161bF3f/rVu3oqKiInh/yJAhhsyLiIjIq9wUpGUmbZPIoCDLHUiPx0xacd9q5qNkTnbNpJXTVmmfWjNR9W6nJZPWbguHaWVG2QoiIrcwNEh7/Phx1NTUGDmE7sXJ3WDkyJHB25988gnKy8tj7v/6668Hb+fk5CAvL8+wuREREXlRbW1t2H2/32/RTLRjkLYJyx2ImZFJ66UgrZx+lexnhyCt3L71Lncgt51dM2nNWjhMan8t5QlY7oCISB5DzyZfe+01DBw4EGPGjMHvfvc7LFu2DBs3bjRySEJTkDYrKwtA00XhzJkzJS+ePv/8c6xYsSJ4f+LEiabMkYiIyCsaGhqiLjTdlkkb+dN/L+DCYWKi8Zxc7kDL3N2USatmLCPovZCanCCt0zNpzS6vwMAqEZF6hn/lX19fj507d2LVqlWYPXs2fvnLX8Ln8yEQCODYsWOYP3++rGxPkZMnTwKwz0mxXfj9ftx7773B++vWrcPkyZPDFhGrr6/Hm2++icLCwuBFRm5uLsaPH2/6fImIiNwsstQB4L4gLTNpmUnbTEtQUS4vZdKacTzljGtkoNKocgdGHSe3ZNIaFbCPZOaXBUREThd9lm2A5g/X5uBss7Nnz+K5554L3k9PT0e/fv3Qr18/9O3bF/369cN5550n7HPv3r3BIG3btm2Nm7xDXXvttdiwYQOWL18OoClQO3LkSOTl5SE1NRW7du3C8ePHg/unp6dj7ty5wgsvIiIiUs9tQVouHNaEmbRiTq9JGzl/Jwdp7VjuwMpgqp0zadW21VKTVqqNVDuWOyAiMp6hEbkbbrgB559/PjZv3ozNmzejuLgYZ8+eDQZrI4O3lZWVWLduXdhiVykpKejTpw/69euHvLw8dOvWDZWVlVi4cGGwbU5OjpFPw7EeeeQRZGRkYPHixairq0NjYyNKSkqi9svJycHcuXPRq1cvC2ZJRETkbm4L0jKTtgkzacX0zESVYma5A68GaZWOqSVIq7VPuf3qtXCY1kxaESPKFsQb26gAKAOrRETqGRqkbdeuHUaPHo3Ro0cDaPrA3r17N66++mr4fD4kJyejXbt2OHjwYLBNZOC2qqoKGzZswIYNGyTHGTFihJFPw7F8Ph+mTZuGsWPH4q233sIXX3yBw4cPo7q6Gmlpaejbty9Gjx6NsWPHOnoBEyIiIjtjkNadIjNpGaQVj2fEcWG5A2dk0splZbkDrYFkJf020xKw1aONkQuHKe0zHgZ8ichrTP1te2TWa8eOHfH+++/j1KlT2LJlC0pKSlBcXIySkhLs2bMn6g9Cc+A29IO+R48euP766818GqYbN24cxo0bp7p9Tk4OZsyYgRkzZug4KyIiIpLDC0FaLy4cFhmMZLkD8XhGZNIySGu/hcPk9mFVjV0t41idSau2nRULh7HcARGRNpYVIA39wG3bti2GDBmCIUOGBLfV1NRg27Zt2LJlS/C/nTt34ty5cwgEAvD7/RgxYgR+97vfITk52YqnQERERBRXbW1t1Da3BWm9mEnLcgdikUEVI46LmeUOtMzfTUFaJ5Y7cGomrdT+Tlk4jIFVIiL1LAnSvvfee9i6dSuOHDkiuU/Lli1RUFCAgoKC4LZAIICjR4+isbER7dq140/0iYiIyPZEmbROPodhkLYJFw4TYyatdFuzg7Ry+5Ozn15BWrlt5YyptF+1czQ7k9bqhcPUjBVrH6szuomInMSSIG2vXr1ULVLl8/mQlZVlwIyIiIiIjOG2cgeiYKQXg7R2zaSNDIi4MZPWyCCtnkFmq4O0egbI9epLa9BZy8JhWsfQqw8jMmnltI+kpDSBVkb+myUichN7nE0SERERuZTbgrTMpG3ilExaswMhZmTSmlnuwG1BWqszaa0sd+DmTFq9sm/1GMNuAXMiIidhkJaIiIjIQF4I0nLhMPtk0lpd7sDpmbROCNKqHV9Jf0rH1RKkNarcgdr+7JpJq5SaDFyfz6d7OQ2WOyAiks8eZ5NERERELuWFIC0zae2bScuatMo4IUjr5ExauW3lzivWdrULh8Xrx4j3n5xMWqsWDtOD3GNmxOcFEZGTMEhLREREZCAGad2JmbRiZmTSstyB/YK0chlV7kBOeyszaUPH1jOT1oyFw8wsd6DHvxkiIifTbeGw6upqvPbaa/jss89w5MgRpKamoqCgABMmTEDv3r1jtq2qqsJFF12EhIQEbNmyRa8pkc1VVlbi6quvRsuWLbF27dq4++/evRtLlizBunXrcOTIESQnJ6Nv374YP348xo4da8KMiYiIlHNbkJYLhzWJzKRlkFY8ntPLHWiZvx71ga0K0iod0+pyB2qflxcyac0qryA1D5Y7ICKST5cg7b59+3DbbbfhwIEDAJo+TH0+H4qKivDaa6/hhhtuwP333w+/3x+zH7kfwiUlJfj4449RXFyMPXv24MSJE6iqqgIAtGrVCunp6ejZsyf69++PESNGoG/fvtqeIOmurq4O999/P44dO4bs7Oy4+69evRoPPPBA8EK3devWOH36NL7++mt8/fXX+Oc//4k///nPtrlAIiIialZbWxu1Ld45kZ0xk7ZJZDCS5Q6aGJWBGa9PvYI5epZrMCor0IyfhLux3IGZmbSx5qLn66cl8G9moJTlDoiI5NEcpD137hzuvPNOlJWVAQDS09Nx3nnnoaKiAmVlZQgEAli2bBm++eYbvPDCC+jYsaPqsTZs2IA5c+Zg48aNwW2RH+61tbU4ceIE9u3bh3/+85947rnnUFBQgJkzZ+IHP/iB6rFJP9XV1Zg+fTo+++wzWft/9913mDlzJhobG3HVVVfh/vvvR+fOnXHixAm88MIL+Otf/4r//d//xQ9/+EPceOONBs+eiIhIGbdl0jJI24TlDsTMOC4sd2C/cgdGBECNDMbH6i/ec5czL6XzlJMJqzYjVq+Fw1jugIjIeJqDtG+//TZ2796NhIQETJs2DZMmTQpmEmzZsgVPPPEEvvrqK2zbtg3XX389/vrXv+K8885TPM6qVavw4IMPoqGhIfhh3bFjR3Tt2hXt27dHcnIygKag8bFjx1BWVoby8nIAwPfff4+bbroJf/rTn/izeItt27YNv/3tb7Fjxw7Zbf7whz+gsbERV199Nf7yl78E/3inp6djxowZOHToEP7xj3/g9ddfZ5CWiIhsxwtB2sif/rtdIBBgJq0ELhwm3dbJQVo1tJY70DqWGWUK5DKqdIOaRcCMXDiM5Q6IiLTRHKT94IMP4PP58Mtf/hKTJ08Oe6xfv354+eWX8dJLL+Hpp5/GwYMHcdNNN+Gll15Cnz59ZI+xfft2zJo1C/X19cjMzMTtt9+On/70p3GzcsvLy/GPf/wDL730EioqKvDggw+ib9++cWvkkv5qamrwpz/9CW+99RYaGhqQmZmJAQMG4JNPPonZbtOmTdi2bRtSUlLwwAMPCP/IT5kyBT/4wQ+Qnp5u0OyJiIjU80KQ1muZtKLAATNpm5ixcBiDtM7IpNVa7kDvhcPkMjqT1qwasXZaOIzlDoiI5NF81rRt2zYAwIQJEyT3uf3227Fw4UK0bt0aFRUVuPnmm7FhwwbZY7zyyiuora1Fbm4u3n33Xdx6662yyiZ07NgRt956K95991307t0bdXV1eOWVV2SPS/qpqKjA8uXL0dDQgFGjRuGdd95B//7947b76KOPAACXXHIJ2rdvL9wnNzcXt956K6655ho9p0xERKQLBmndR5Q5zExa8XhGBF2cWu5AzRy5cJg8ahYA09JOqXh9eG3hMC39ERG5meYg7enTpwEAXbp0ibnfpZdeildeeQXt2rXDqVOnMGnSJPzrX/+SNcaXX34Jn8+HmTNnqsqWTE9Px8yZMxEIBLBu3TrF7Uk7n8+HoUOH4tVXX8Wzzz4rGXCNtHXrVgAILv62Zs0a3HHHHRg5ciRGjx6NGTNmBPchIiKyI7cFaUXBSK8FaUXBNmbSNnFbJq2W+Xs9k1ZOv0rZYeEwO2XSqhnHyHIHcrHcARGRmOazppSUFADAyZMn4+6bn5+PZcuWoUuXLqiursadd96JDz74IG67iooKAP8J1KnRr1+/sL7IXNnZ2ViyZAkuvvhiRe12794NAGjbti2mTJmCe+65B5988gn27duHPXv2YNWqVRg3bhzefPNNI6ZNRESkmduCtMykFWfSMkgrHo81aaX7VjMfrXMyKkirZSyjyh3I4ZZMWi1jx9vXzHIHRERep7kmbbdu3VBSUoLNmzeja9eucffv2bMnli1bhl/96lfYu3cvpk2bhhkzZsRs07ZtWxw7dgyHDx9GRkaGqnk2LyLWtm1bVe29rrKyEqdOnZK9f2JiIrKzszWP25yp/eKLL+Lo0aMYP348Jk+ejM6dO2P79u2YM2cOvv76azz88MPo3r07hgwZonlMIiIiPdXW1kZtc3KQVpRJ67WFw0SBT5Y7aGJGJq2R5Q70DDJbHaQ182fmdix34KVMWj0XDrOq3IHP52NNWiLyPM1B2gEDBmDLli1Yu3YtfvrTn8pq07lzZ7z22mu47bbbUFJSgsceeyzm/vn5+fj000/x/PPP49lnn1U1zwULFsDn8yE/P19Ve69bvHgxFi1aJHv/7OxsrF27VvO4Z8+eBQAcPXoUN910Ex566KHgY/n5+Vi8eDEmTJiALVu24IknnsDKlSs1j0lERKQnUSat3++3YCb6SEhIQEJCQlgwy2uZtHYud6BHHVQtmEkr3dYOQVqrFw4zqtyB3Dmp6c8umbR6jym3jREZryx3QEQkpvls8tJLLwUAfPDBBzh+/Ljsdu3atcPSpUsxcODAuB++EyZMQCAQwIcffojJkycrqkG6detW/L//9/+CZRWuv/562W3JPvx+P+655x7h9jvvvBMAUFxcjNLSUrOnRkREFJPbyh0A0SUPvBakddLCYWYHOayqSeuEhcOcFKRVO6aefSuZv54Lh9ktkzYWOZm0emXuWlHugEFaIvIazZm0l156KVq1aoWqqiosWLAADz74oOy2qamp+Otf/xqsMypl+PDhmDBhApYvX44vvvgCX3zxBbp3746CggJ069YN7dq1Q3JyMgDg3LlzOH78OEpLS7Fx40bs378/2M8vf/lL/OQnP1H/ZD1s+vTpmD59uunjtm7dGidOnEBeXp5kqYqBAwcGb2/fvh3dunUza3pERERxuTFIGxmQ9FqQ1s6ZtKJ5BAIB035GHHlszCp3wEza+OMrmYOZmbRmlTtQy+xMWr3Gt2LhMJY7ICLSRnOQNjk5Gd99953q9n6/H8899xwOHToUc79HHnkEXbt2xfPPP4+qqirs27cvLAAr0vxHolWrVpgyZQpuv/121fMka2RmZuLEiRNo1aqV5D6hwduamhozpkVERCSbG4O0zKR1TiYt0BQ4NWt+egY5pZhZ7kBLkJlBWmvLHURySiZtvLZ61AtWsq8RQV2WOyAiEtMcpNVDQkKCrEWmJk+ejOuuuw6rVq3CJ598guLiYlRVVQn3bdWqFfr374/hw4fjmmuuQbt27fSeNpkgNzcXO3fuxOHDhyX3OXnyZPB2ZmamGdMiIiKSzQtBWi4cZu9MWjODtGZk0nq93IHa8ZX0Z9TCYXLbKu1Tz4XD5MxD7z7UBnXttnCYVL8sd0BEJI/pQdrjx4/jwIED6NOnj6oLlHbt2mHSpEmYNGkSAKC8vByVlZWorq4GAKSkpCAjIwMdO3bUdd5kjcGDB+O9997Dvn37sHv3bvTq1Stqn2+//RZA0wVvXl6e2VMkIiKKyQtBWmbS2j+T1ixmLBxmZLkDPedvdSatFkZlRJv5fNQuHOaWTForSgew3AERkTamf+W/du1a/OIXv8BFF12EqVOnau6vY8eO6NOnDy688EJceOGF6NOnDwO0LvLTn/4UKSkpAICnn3466vGGhgYsWrQIQFN95PT0dDOnR0REFBeDtO7jxExas1i1cBhr0sYfX8kc7FDuwIyFw9TOQ+8+jMykZbkDIiLnMP1s8tixYwgEAqivr+cCTxRXWlpaMJj/wQcf4P7770d5eTmApizqwsJCbNq0CX6/35KFzYiIiOKpra2N2ub3+y2YiX68vnCYKJOWQVrxWGbVpHVruQM5/SrZT+0c7LJwmJZyB3LbGZ1Jq2ZOscZWuq+R5Q4CgQDLHRARaWB6uYM2bdoEbzNIS3LceuutOHr0KF566SWsXr0aq1evRps2bXDmzBkEAgEkJydjzpw5yMnJsXqqREREUZhJ6z6igCDLHTQxI5PWyHIHdgvSOjmTVi6zfuIudxwjSj2E9qG0P7tk0qrFcgdERPKZHqTt3Llz8LboooVI5L777sPw4cPxt7/9Dd999x1OnDiBLl26YPDgwZg0aRJ69+5t9RSJiIiEGKR1H5Y7kGZVJi2DtPHHVzIHPY6n1eUO1GbS6jkvuULbG509qiZTWE47PedgxJhERE5gepD24osvRnJyMmpra7Ft2zazh3esuXPnYsGCBcjOzsbatWsVtd21axfeeOMNrF+/HmVlZaivr0dWVhZyc3MxZswYXHnllVEXW2YoLCxEYWGh7P0HDhyIgQMHGjgjIiIi/XkhSCv6+b+bceEwaVbVpDWq3IGW+bspSGuXcgdKRLZXO0erM2nVzkVLHVy1WO6AiEgb07/yT01NxeWXX45AIIAPP/wQVVVVZk/BcTZt2hRcHEupefPmYezYsfjb3/6Gbdu24ezZszh37hxKS0vx8ccfY+rUqZgwYQJ2796t86yJiIgI8EaQlpm0zKSVGsuITFojyx3oOX+rg7RaGBWkldtW7ryUjqWG0mCvXq9zrPEi29l54TCWOyAiks+Ss8lp06ahZcuWOHHiBJ555hkrpuAYpaWlmDJliqrSELNnz8b8+fODF06JiYno378/Bg4ciIyMjOB+RUVFmDhxIg4cOKDbvImIiKiJ6G+4Fb9g0ZPXg7TMpJVmVSYtyx3EH1/tHOSMqbbea6y2epc70JLtq5WSTFonLxwmF8sdEBGJWRKk7d69O2bMmIFAIIClS5filVdesWIatrd9+3bceOONOHr0qOK2a9aswdKlS4P3R40ahU8//RQrV67EsmXL8Pnnn+PRRx9FSkoKAKCiogKFhYX8Q0hERKSzyCBtYmKi47OFIgOSXgvSMpNWWuRYTi934NUgrR7HwYiatFqo7c/rmbRKsNwBEZE2lpxN/uEPf0BycjImTJiAQCCAxx9/HL///e9x4sQJK6ZjS6tXr8YvfvELlJeXK25bV1eHOXPmBO8PHz4czzzzDDIzM4PbkpKSMGHCBMyfPz+YDVNcXIx3331X++SJiIgoqLa2Nuy+00sdAMykFWXSMkjbxIh6npGMLHfAIK2y/fQYy6hyB2oXDvNKJq1SLHdARGQ8S35r98Ybb2D58uUAmj6MA4EA/v73v+Ojjz7CL37xC/z85z9H7969rZia5crLy/HUU09h1apVqvv48MMPcfDgQQBNF1GzZs2SvHAYNmwYJkyYgGXLlgEAlixZgjFjxqge26vccHEaecHptUVgiIiMEhmk9fv9YX83nPj5G5lJ29DQ4Iq/hXJFvqZA0zmtHY6BKJBSW1tr2txENV31HlsUdK6vr9dlHNHx02v+gUBAcV+i/RsbG2X1I/oskftvVelxkPuaiMq/SB0XJfMXjR+5r6i/yOfZ0NAgDNSH9hPvuUqNE+vxeO9fqcea3wux3idSr6XUPJSMH0l0/ETZtVIZt0TkbU44BzaaLQqiNQdqT506hcWLF2Px4sVo3749LrroIvTp0wf9+vVD37590bFjR6unaqjnn38eL774Ythiar169cLIkSOxcOFC2f289957wdtDhw5Fly5dYu4fGqQtLi5GaWkpunXrpnD23tXY2IiNGzdaPQ3dFRUVWT0FIiJXOHnyZNh9n88X8++GEz5/a2pqwu6fO3fOlX8LpWzbti1qW3l5uS2OwfHjx6O2FRcXo6KiwpTxI4Nw1dXVuh+X/fv3R23bu3evLuNEBuC1vLerq6vD7tfV1Snuq7S0NGrbnj17ZPWzd+/eqG1y36eRAbTTp0/HbLdnz56obWVlZVFtRGXcjh07Juy7rKwsatvRo0eF+4re90VFRUhLSwveFy1YHflLzqKiIpw9ezZsW319fdiYogWXQ5+rKMhw8uTJ4OOi5xX6mka+B6uqqoKPSb0u+/bti+qz+VhFfl7X1tZi48aNOHLkSFSb7du3R/3NAoDvv/9e1hop+/fvj5p/dXV11K8v6urqcOrUqbBtgUAgKgCuZl0WInIuJ5wDG82SIO2FF16Ibdu2Rf2hbP55QyAQQEVFBT788EN8+OGHwcczMjLQt2/fsP969epl6tyNtHjx4rBjMn78eMycORMffPCB7D4CgQDWr18fvH/JJZfEbZOXl4cOHToET5rWrl2LW265RcHMiYiISEpkBpLTFw0Dop+D1zIfRJl0dl44zMyMNatq0rLcQfzxtVCzcJjWcgda5y+nlqwe/QLaa9LKHU/P11TpwmFWlDtgti0ReY0lVwmvv/46gKZvd7ds2YKSkpLg/0O/BW3+UG7OtD1+/DjWrVuHdevWBfdp2bIl8vLy8MYbb5j7JAyUn5+PGTNmYNCgQYrbHjhwIOxbyfz8fFnt8vLygkHazZs3Kx6XiIiIxNwYpI0MvDFIa86K6HJYXZPWjLGMPNZ6zt+ogJMZ7zUzFw5TEqRVUpNWDrNq0oYyItCqVx1brYyqeUxE5BWWXiWcd955OO+883DVVVcFt5WXl4cFbbds2YIDBw4EH48M3BrxEyqrDBo0COPGjcOIESNU/zGN/FlT9+7dZbXr2rVr8LboJ2QkLSEhAQMGDLB6Gpo1NDSE/bwgPz/fNllBREROFhmUbd26NQoKCoL3nfj5m5GREXa/oaEh7Dm53enTp6O2devWzRbHICsrK2pbXl6eab8+i3zvtmnTRvfjIvppfXZ2ti7jxPv3qkTr1q3D7rdo0UJxX6HJKc169eolq59WrVpFbcvMzJTVNjKI1rZt25jtDh06FLVN9JqIfurfvn17Yd+hpQqaSc0/PT09atuAAQPCtovKHbRt2zbsfn5+ftRx8/v9YWMePnw4qp/Q5yr6iX5GRkbw8e+//z7q8R49egQfj3wPtmrVKvhY5Jcwzf++WrZsGdVnx44dUVBQgJSUlLDtiYmJKCgoEH5W9OnTR3jcL7jgAllfMHbr1i1qccxWrVpFfS4kJSUhNTU1bJvP54t6fnb/W0hE+nLCOXAsmzdv1vxlr+1SOTp27IiOHTvisssuC247deoUSkpKwoK3u3fvdl3WxoIFCzT3EVrnKSEhAZmZmbLadejQQdgHyeOGrKhILVq0cOXzIiIyW+QFe1JSUszPVyd8/kZehDc0NKBFixa2ySY1muh5JiYm2uJ1E80hISHBtLmJyh3oPXbk+0/PcSKDk1r6jQw4BQIBxX2JMqPlvtdEx8nn88lqq/Q4iC6qRZ9loj6kPvOUzF90nCI/a+W0kwoOhLaN91ylsoWbH5d7rELnGOvYJyYmCvtsbif1eSW1Xeo9J4doHqIyBs3b421jxi2RtzjhHNhojnj2bdu2xeDBgzF48ODgtnPnzmHbtm3BwC01CS303rp1a9l1wEK/yRQViyciIiJ1REFapxOdQDc2Njo6+0EJUaKAXZ671eUORME9vbEmrfqatEbVFZU7ltZyB1LkPC+1x0NObdt4/SipK6t36QIlbbTWow0EArL21fK+JiJyM0cEaUWSk5NxwQUX4IILLrB6KrZy7ty54G3Rz16k+P3+4O3IFTmJiIhIvci/q24N0tbX19smUGk0UdDTiGCkGlYHaSPHMiLwIupTr+fIIK38vtSMpTWYrqS92oXDzJyjnDZq34PxAq5mLhym9r3ITFoi8hp7nE2SbkKzdZRcLIRebEUucEJERETqRWbShn4x6lSiYKyXzh8YpJVmRiatqE+jMmm1zF9U7kAPRgdp1QSG9Qxmx9puxcJhdsqkldrXLguH6Y1BWiLyGnucTZJuQi+alJyQh15YuSHDh4iIyC68Uu7AS0FaljuQJqpJqzcjyx3omQlsdSatWnqNaXW5A7WZtFoZmUlrdOkCq8sdODmgTESkBwZpXSZ09c7Q0gfxhP4UMzk5Wdc5EREReRmDtO7DTFppepYLkMJyB+Zn0uo1lpXlDuT257ZMWqXjmFXuQA5m0hKR19jjbJJ0k5aWFrx99uxZ2X/Yzpw5E7ydnp6u97SIiIg8yytBWlF2qVsxk1aaGZm0ZpY7YJBW3phmLRympdyBXguHxWO3TFo9sm/lUhNg1qs/IiI3YJDWZTp27Bi83dDQgMrKSlntjh49GrydmZmp+7yIiIi8yitBWmbS2uO02uogrVWZtAzSxh9f7RzkjGlWTVo9+o1HSVasmjZ6/pvQOyAcq42Skgdq9mG5AyIiBmldp0ePHmH3S0tLZbUrKysL3u7Zs6eucyIiIvKqhoaGqItRBmmdj5m00qzKpGW5g/jjy52DXWrSyu0z1vZ449gxk1bvmrFK2+gdKGW5AyIi+RikdZns7OywcgUlJSWy2m3dujV4u0+fPnpPi4iIyJNCa743c0OQVhSQ9FKQ1s6ZtEbWa5VDz4W3pJiZSavldY2cp5rXwSlBWiNq0motd6B24TC7ZdKq/Tdk1cJhcrHcARFRNHucTZKuBg8eHLy9bt26uPtv3boVFRUVwftDhgwxZF5EREReE1nqAAD8fr8FM9EXM2mjM2ntEqQ1sl6rHHoGOaUYGaTVM8jspkxao8aSaqsHtQuHae3HyExaqXZ2WjiM5Q6IiNSzx9kk6WrkyJHB25988gnKy8tj7v/6668Hb+fk5CAvL8+wuREREXmJKEjrhkxary8cJsqIZLmDJmbUpGW5A2MDWUaOabeFw9T0peZY6JVJa/eFw6T6ZPCViEgeBmldaOTIkcjKygLQ9DPLmTNnSma3fP7551ixYkXw/sSJE02ZIxERkRd4KUjrpUxaO5c7sDJIKwpuOS2T1k1BWqsXDjOi3IESXsqkVTuWkjZ6ZmHr3R8RkVvY42wyxMmTJ7Fo0aLgf6Sc3+/HvffeG7y/bt06TJ48OWwRsfr6erz55psoLCwMZr7k5uZi/Pjxps+XiIjIrRikdScuHCYmGsfpNWm9GKQ1siat3LZS3JBJq6WtExYO0/JFgB7/ZoiInCz6DNtix44dw1/+8pfgB/TkyZMtnpEzXXvttdiwYQOWL18OoClQO3LkSOTl5SE1NRW7du3C8ePHg/unp6dj7ty5wosuK+3atQtvvPEG1q9fj7KyMtTX1yMrKwu5ubkYM2YMrrzyStvNmYiIqJlbg7RcOIyZtCJmZdKy3IFzg7RmljuwayZtvP70yqS1YuEwqT5Z7oCISB7bRrcCgQA/zDV65JFHkJGRgcWLF6Ourg6NjY0oKSmJ2i8nJwdz585Fr169LJiltHnz5mHhwoVRF32lpaUoLS3Fxx9/jPz8fDz55JO2mzsRERHg3iAtM2mZSStiVvDazExaLfM3Kkirdny5/RmZvWhluQO9SjIYkUkrN3CqZxBVaRuWOyAiMp5tg7Sknc/nw7Rp0zB27Fi89dZb+OKLL3D48GFUV1cjLS0Nffv2xejRozF27FjbrTQ9e/ZsLF26NHg/MTEReXl5SElJwa5du1BZWQkAKCoqwsSJE/Hmm28iOzvbqukSEREJMUjrTsykFTNrkSuWO3BuJq3ctlK0lDtQy+xMWr2oXTiM5Q6IiKzDIK0DjBs3DuPGjVPdPicnBzNmzMCMGTN0nJVx1qxZExagHTVqFGbNmoXMzEwATRe8K1euxGOPPYbq6mpUVFSgsLAQb7/9NrOviYjIVmpra6O2uTVIK8oudStm0oqZFbw28jlG9uPkIK1aTix3IKe9UzJp1ZQ7sMtiY1KvL6/RiIjkscdX/kT/p66uDnPmzAneHz58OJ555plggBZouridMGEC5s+fH7xILC4uxrvvvmv6fImIiGIRZdLa7dcrajCTlpm0IsykDWdUVqDRmbRqxtRrUS41fSrtV2lfVmfSyil3oGY8pQuHaQnUivZhuQMiomj2OJsk+j8ffvghDh48CKDpAnDWrFmSFz3Dhg3DhAkTgveXLFliyhyJiIjkcmu5Ay4cxiCtiBtr0uoZpFXDKeUO5PYjYlS5A70WDlPTr9I2WjNplYyppo0ZWO6AiIhBWrKZ9957L3h76NCh6NKlS8z9Q4O0xcXFKC0tNWxuRERESrk1SOv1TFqWOxATjWNE0MfM56h3kFaPxZqsCNLqNZaV5Q5ijRVrDCdk0hq9cJiWzFeWOyAiko9BWrKNQCCA9evXB+9fcsklcdvk5eWhQ4cOwftr1641ZG5ERERqMEjrTsykFRMFaJyUSat3uQY3BWmNrEmrB7X9ymknp7at0j5izUPvTFotQWE1WO6AiEg9e5xNEgE4cOAATp06Fbyfn58vq11eXl7w9ubNm3WfFxERkVpeCtJy4TBm0pqVSWtmkFZLkNnrQVqtfZuRSatXINlJmbR6l0iIR24mLcsdEBExSEs2snfv3rD73bt3l9Wua9euwdv79+/Xc0pERESaeClIy0xae5xWi4IhbsukNSoQrXeQ2eogrdz+5LCiJq2S42dkMM/OmbRyxjRz4TAGVYmItLHH2SQRgKNHjwZvJyQkIDMzU1a70HIHoX0QERFZjUFad2ImrZgbM2mdHKRVO3ezyx2YucCa0zNpY40rl9ELh7HcARGRetFn2EQWOXnyZPB269atZWdepKamCvswS1VVFfr06aO6/XnnnYd3331X8vHp06djzZo1qvsHgOHDh2PevHmSj1933XXYunUrzp07F9yWnJys6ETttttuw7Rp0yQfv/DCC4XBCiVmz56Na665RvjYgQMHMGrUKE39A8Crr76KH/zgB8LHvvjiC9xxxx2ax1i3bh3atm0rfOxvf/sbnnjiCU39t2/fHp9++qnk44888ghWrFihaYyBAwfi5Zdflnz81ltvxTfffKNpjPHjx+Phhx+WfPwnP/kJjh07pmmM+++/HzfffLPwsVOnTmHo0KGa+geAhQsXYtiwYcLHvv/+e9x0002ax3j//feRnZ0tfGzVqlV48MEHNfWflJSEDRs2SD7+9NNPY/HixZrGyMvLw9tvvy35eGFhIT755BNNY4wePRp//vOfJR//2c9+FvWrDqXuvPNO3HXXXcH71dXVUfvcf//9mD17dvB+IBBQ9Pn7xBNP4KqrrhI+tnv3bowdO1bN1MOsWLECffv2FT728ccfY+rUqVHbp0+fjv/+7/+WPca3336L5ORk4WOLFi3C3LlzZfcl0qVLF3zwwQeSjz/wwANYvXq1qr5Fnz2NjY1RgeobbrgBmzZtUjVGs5tuugkzZ86UfHzIkCE4c+ZM8L7oXOjuu+/GAw88INnHQw89FLYYa6ijR49i+PDhsuYqCtS//fbb+Ne//oW//vWvGDRokLDd119/jUmTJskaAwBqamqitj333HO48847w768D7V8+fK4709RQOj9998Pnuelpqbiq6++kmz/+OOP49VXXw3eP3DgQNQ++fn5Mf99X3DBBXjttdeC90VfCFxzzTVo2bKlZB+x2q5atQozZszAH//4R8l2P//5z6O2vf3221i3bp1kG9FnXUNDQ9R7QnQuuGDBAuF5idT8m1+PuXPnYsSIEQDEr12fPn2ijnVkn5999hmuu+664P3k5OSovwM+ny/seYjm9eSTTwb/Dooe//vf/x5875w+fTrq8fr6eskvur766qvgcz5x4kTYY9999x369Okj/Dcxb948vP766ygvLxeOJ/pS5bLLLhMmvVx44YWyrrOkyt5s2bIl7P6pU6fw73//O2zb6dOno14vs75gIiJ7kPoMccq1xssvv6w5GYNBWrKN0AtUOSeezfx+f/B2bW2trnOSo7GxEdu2bVPdvqamBhs3bpR8fMuWLZr6B4BOnTrFHGPr1q3Yvn27pjGKi4tjjrF9+3bNr09RURF69uwpfOzgwYOaj1PzGFIXT5s3b9ZljE2bNqFNmzbCx4qLizWP0b59e8PfU61bt445RklJieYxtmzZEnOMbdu2aQ7Sxnrfnj59WpfXe/PmzZKvd1FRkW7vqYqKCsPG8Pv9MV8LPd63gUDA8PdU9+7d434W7tu3T9MYke+p3bt3R+1z6NAhHDp0SPUYRUVFkkH5vXv36va+lfrMLioqwsGDB6O2Hz58GIcPH5Y9xsaNGyWDtHp8Tp06dcrwz8JQu3btijoxN+uzMDRIKyJ6vUIVFRVJfuFcUVGh6TmcPHkSJ0+exObNmyVfbz3+vh4/fhybNm2S/CWW2s/CM2fOBNulpqZqfk/FO99KSkoKG0P0b0rL59SpU6fivqd27NghbBe6doQchw4dihpH1Pfx48dx/PhxWX2GzqOoqCj4ekcGL4H4xxoAzp49i7Nnz8bcJ/JcfdeuXVH7HD16NOYv+uIdv/379wfHiAxSVFVVSb6vqqurJR87duwYjh07FvXvrqGhARs3bhTOV/Q3CxC/biJlZWVRweazZ8+iqqoqbFtjY2NUYJ8BWSIqKioSbnfKtYYen2Msd0C2EfrNupL6ZaE/ufTSTy2JiMj++HfJO+xSk5bcxck/99arlIDVjCjZYSUnvgZERF7Bs0myjdBabkq+gQi9AHZDnT8iInIPBmm9g0FaMoLbAmpGPR8zj5MRQVsjFg6zglE1h4mIvILlDsg2UlJSgrdDSx/EE/pzTKmf0RkpISEBeXl5qtufd955KCgokHy8X79+2L9/v+r+AaBv374xx2j+iaOWmrT9+/ePOUZubq7mmrT5+fmSY2RmZmp6HeSMcfr0aV3GuOCCCyRr0m7cuFHzGO3bt4/7niouLtY0Rrz3VN++feP+fDCefv36xRwjLy9Pc7mDWO/bU6dO6fJ6DxgwQHKMQCCg23tK6ufve/bs0TxGUlJSzNeif//+msfIy8uL+55S8lN6kXjvqT59+igqtyMS+Z4S1Yfu2rUrWrduHbyvtCZtrM+pNm3a6Pa+lapJW1FRga5du6KsrCxse1ZWFjIyMmSPUVBQIPl3u1+/fpqfR5cuXeJ+Fsr9CW+ko0ePRv08u2/fvujXr1/UNq1/++R8FoaWOzh9+nRUeYNOnTohLS1Nso9Y76mjR4/Kfi3q6uqifi6dnp6Ojh07xvwsPHfunKLX+9y5c1F1Q9u1a4cLLrhAsibt1q1b447R2NgY9Z5o06YNunTpAqCp3EG891ToGAcPHoyqP9q7d++YAf3Iv69ZWVlR+5x33nmyznmlnk+899T5558fVcc0LS0NnTp1kmxTU1MTVYahY8eOUeOIgnjt27cXlqmI93qEvm9F51Wi1zvyp6ytWrUKe88kJydjz549Yf9uU1JSwp5H5E/3gabz0Pbt2wNoKiewc+fOsMfbtm2Lzp07AxD/G+3evXtwjMj3R6tWrdCtWzcAwM6dO8PKIbRs2RI9evQQHv/m43rkyJGwvzEJCQkoKCgIzjdUr169UFFREVWaoXfv3ti1a1fcRJrs7OyoRRRbt26NVq1ahZU3SEhIQHJyctQ2n88nWZOSiNwvPz9fuBCrU641dPnCPmAzu3btCuTl5QXy8vICffr0sXo6ZKKVK1cGcnNzA7m5uYG+ffsGGhsbZbWbN29esN2IESMMnmWT7777LvDNN98Evvnmm8B3331nyphGq6urCz6nb775JlBXV2f1lIiIHO/JJ58MAAj777PPPgvbx4mfv//85z+jntdf/vIXq6dlmhkzZkQ9/5KSEqunFQgEAoG33347am6vvPKKKWPv378/auzf/OY3uo+zdevWqHHuu+8+zf2ePn06qt8bbrhBdX/XX399VH9nzpxR1MfMmTOj+igqKpLV9syZM1Ftr7/++rjtDh8+HNVu8uTJMdt88803UW0eeeSRqP2+++67qP3+8Ic/CPtU8nr87Gc/C9vP5/MJ9/P7/WH7jRw5Murz9/zzzw/bp2/fvmF9fPnll1Hzeuyxx4KPV1RURD0+adKk4OOif6Mvv/xy8PGUlJSwx6644orgYx06dAh77Ec/+lEgEAgE/v3vf0f1+eijjwYCgUDgxz/+cdj2tLS0QCAQCEyZMiWqTVlZWeCmm26K2n7y5MlAWlpa1PbI/5599tlARkZG2LZhw4YFfvKTn4Rta9u2bWDYsGFh2zIyMgJZWVlxx+B//I//ufc/J5wDx6JHnIiZtGSZyspKXH311WjZsiXWrl2Ljh07Bh9raGhAZWUl2rVrF9y2e/duLFmyBOvWrcORI0eQnJyMvn37hn1bIbVYBBERkRVEWZRuKM0TWg++mZdKO4gyvUSZH1YQZXGYtSCPaBwjfuos6jOgw0/ERX1omb8e89QyJ7XjqxlT7lhKnr+S+Udul5pv5HY581H6HojXp9L+Yu0fa6zmdlLtpdoq3T/ePj6fT9ZzZlkEIiKWOyCL1NXV4f7778exY8eCP9Ht0aNH2D6lpaXBIO3q1avxwAMPBC92W7dujdOnT+Prr78Oa9OzZ08TZk9ERCRPaEmeZgzSOp8oGGmXmrRWBmlFARojjotRz5FBWvVjanmuZgXy5VITZNUamA1tLyfwqnR8uftaHSi1enwiIqvZ42ySPKW6uhpTp07FZ599FrY9Ozsb6enpwfslJSUAgO+++w4zZ85EXV0drrrqKvzzn//Ed999h/Xr12PSpElhfTTXViUiIrIDUSat3++3YCb6EgVpvVRHUPRcGaRlJq2ctnrM0+ggrZox5c5JyTHWkkkrRU4mrdysXCl6Z9KqHUttJq0Z+wYCAUcvkEZEZBR7nE2SZ2zbtg3jx4/HRx99JHx88ODBwdvr1q0DAPzhD39AY2Mjrr76ajz11FPBovvp6en4+c9/HtZ+yJAhBs2ciIhIOZY7cCdRMJLlDszLpBUFneyYSSt67m7NpJXbj93KHahhdCZtrLZmZNKy3AERkXVsG6Tlh7S71NTUYNasWbj22muxY8cOZGZmYvjw4VH7jRw5Mnj7k08+wT//+U9s27YNKSkpeOCBB6LeF6+//nrwdlZWli4rWhMREemFQVp3YrkDMbMyafUIforoHWRmuQPryh3IZcdMWqMyXLUwaxzGAIjI6+xxNinAnz+4S0VFBZYvX46GhgaMGjUK77zzDvr37x+138iRI5GVlQWgqY7fo48+CgC45JJL0L59+7B9P//8c6xYsSJ4f8qUKQY+AyIiIuXcGqQVZY16KUjLhcPErMyk1ePaQe8gs9VBWrn9qdknkpaFw4wod6BnJm1kGyszaZXQs9yBaH+tGbe83iciima7hcN69eqFrVu3Wj0N0pnP58PQoUMxZcoUXHzxxZL7+f1+3HvvvZg5cyYA4MCBAwCALl26AADWrFmDlStXYvPmzaisrAz+cc/NzcX48eMNfhZERETKuDVIy0xaZtKKmHVcnFLuwOogrdq565VJK7dvrX1qaau1JIPcPkMZEbA1o9yBaN/IvljugIhIG9sFacmdsrOzsWTJEln7XnvttdiwYQOWL18e3LZ06VKsXLkSZ86cEbYZPXq08IKRiIjISl4K0np94TC7ZNIaFcCUQ+8gpxQzyx24LUhr1MJhIkaUO9B74TA1beyUSWvHhcO0YKCWiLyOUS2SpbKyEqdOnZK9f2JiIrKzs1WP98gjjyAjIwMLFy4E0HRiIArQtmzZEjU1NZg/fz5++MMfcuEwIiKyFS8FaZlJy0xaKzNpGaTVb3wja9JaXe5ATn/MpJU3htTrw3IHRETqMUhLsixevBiLFi2SvX92djbWrl2rejyfz4dp06bhpZdeCl70+f1+BAIBpKWloW/fvhg9ejRGjx6NiRMnYsuWLXjiiSewcuVK1WMSERHprba2Nmqb3++3YCb68nqQ1s6ZtEZlmcphViYtyx24K0irpE+tIvuUMx+nZ9IaRcn7kOUOiIjkYZCWbK35j7Xf78e//vUvtG3bNmqfO++8E4WFhSguLkZpaSm6detm9jSJiIiE3JpJ6/WFw5hJK2bWcTGz3IGW+bspSKsXrYFwvTNplYxhh/Z6lGuQM45Z+0ZioJaIvI5BWpJl+vTpmD59uunjtm7dGidOnEBeXp4wQAsAAwcODN7evn07g7RERGQboiCtXTIutWAmbXQmLYO04nHMyqTVI7Co9/z1yPi1S5BWr0xauW3N6tOKTFo9/000j2uncgdy58ByB0RE0exxNkkkITMzEwDQqlUryX1Cg7c1NTWGz4mIiEiuyCBtUlKSKzKFvB6kFQXa7BJ8tzJIq3cmqhSWOzD2M8TONWml6LlwmBWZtEaULTB64TCWOyAi0h+DtGRrubm5AIDDhw9L7nPy5Mng7eagLhERkR2IgrRuIArSirJL3YrlDsTMyqQ1s9yB24K0ao+TFTVpRcxYOCyS2Zm0Ri8cppbcY8xyB0RE6tnjbJJIwuDBgwEA+/btw+7du4X7fPvttwCaLnzz8vJMmxsREVE8XgrSeimT1mkLh3khk5ZBWnlzMKrcgRZGlDtQOpaeY5iZSat3QFdu1qtU/3LfOyx3QEQkxiAt2dpPf/pTpKSkAACefvrpqMcbGhqwaNEiAMCll16K9PR0M6dHREQUk1uDtFw4jJm0IlbWpPVSuQMtczBq4TAjyh0o4fVMWrljyx1Hy75K5qB0HyIit7PH2SSRhLS0NEydOhUA8MEHH+D+++9HeXk5AKC8vByFhYXYtGkT/H6/JQubERERxVJbWxt23y1B2oSEhKgLai8FaSMzaZVknxnNC5m0ZpY70DJ/L2XSGlHuwKqFw5yYSWuXhcOUzkU0PhGRl0X/Vo3IZm699VYcPXoUL730ElavXo3Vq1ejTZs2OHPmDAKBAJKTkzFnzhzk5ORYPVUiIqIwkZm0fr/fopnoLzExMez5eSlIGxn0tEsWLWC/TFqWO4g/hpFzsjJIK5eZC4ep6cupmbTxFg7TiuUOiIj0Z58zyjhefvllq6dAFrrvvvuwbNkyjBo1Ch06dEBNTQ26dOmCcePG4e2338ZPf/pTq6dIREQUxa3lDoDourReWjgs8rkySNvErFqmRpU70Ltcg1HBZDsuHCZ3LK3vEa0Lh6kJWitl90xaOWOK9jU6Q5ZZtEREDsqk/fOf/4z+/fvj4osvtnoqpps7dy4WLFiA7OxsrF27VnH7Xbt24Y033sD69etRVlaG+vp6ZGVlITc3F2PGjMGVV14pXADEaIWFhSgsLJS9/8CBAzFw4EADZ0RERKQvLwVpvZxJa5dFwwBvZNKaWe7A6iCt3pm0Ro1pRLkDESsWDrNTJq0SVi0cxnIHRETq2edr/zjq6+sxbdq0YD1SuTZs2GDQjMyxadOm4MJYasybNw9jx47F3/72N2zbtg1nz57FuXPnUFpaio8//hhTp07FhAkTsHv3bh1nTURERACDtG7FcgdiVmbSMkgrbw5WLxwmt62cx2KNZeTCYXr0qbaN2sCrljGl9rUymEtE5Fb2OaOM47rrrkNFRQUKCwujFuGQ8s477+DWW281dmIGKi0txZQpU6Iu8OSaPXs25s+fH7xoSkxMRP/+/TFw4EBkZGQE9ysqKsLEiRNx4MABXeZNRERETdwcpI3MHvVSkDay3IGdMmmNKgUgh5U1afV4jgzSqh9TS1DUiNqzWurcKsmKVdNG6XtKTrkDJYxeOEyqXz32ISJyO8cEaR9++GH069cPmzdvxiOPPBJ3/7lz52LGjBmyA7p2s337dtx44404evSoqvZr1qzB0qVLg/dHjRqFTz/9FCtXrsSyZcvw+eef49FHH0VKSgoABAPg/EaTiIhIP24O0jKT9j+YSSs9jhGBF5Y7sF+QVm4/Sp+/3Pmrff3dkkkba1+zFw7j9SQRkXr2OaOMw+/349lnn0Xbtm2xcuVKvP7668L9amtrMXXqVCxcuBCBQABXX321yTPVbvXq1fjFL36huLRDs7q6OsyZMyd4f/jw4XjmmWeQmZkZ3JaUlIQJEyZg/vz5wYus4uJivPvuu9omT0REREFeCtJ6eeEwO2XSGhXAlEM0jlmZtEYFabXM36lBWjn9yHncjuUOrMqk1cIuC4eppSSYy2xaIvI6xywcBgBdu3bFn//8Z/z617/Gn/70J/Tt2xc/+MEPgo9XVFTgzjvvRFFREQDgnnvuwZ133mnRbJUrLy/HU089hVWrVmnq58MPP8TBgwcBNF1AzZo1S/IEc9iwYZgwYQKWLVsGAFiyZAnGjBmjaXwvckP2UOQFp5cutomIjBL5i56kpKSovxlO/fyNDNLW1dW54u+hHJGvUUJCgm2euyibtb6+3pT5iUp0NTY26j626N9IQ0OD5nFEv8ALBAKq+xUFoZT+O9H6XCODXnJeD9HrGO84yJ2nqA8l7xGpfUXHWk6fke2kPn9D+4r3HOIdP9G/0eZjJZV93NxWFHSvr68Xzrt5TpF9NreRmofUsZQTCBf1KTf7mQFaInLKObCRHBWkBYBLL70Ud911F+bNm4e7774bK1euRGZmJrZu3Yo777wThw4dQkpKCh5//HGMGjXK6unK9vzzz+PFF19EVVVVcFuvXr0wcuRILFy4UFFf7733XvD20KFD0aVLl5j7hwZpi4uLUVpaim7duika08saGxuxceNGq6ehu+YvO4iISL3IoE9NTU3cvxlO+fyNPJE+e/asK/8eipw+fTrsfiAQsM1zb/6iPtSRI0dMmd/OnTujth06dEj3sUVBssrKSs3jiBbSPXr0qOp+KyoqoraVlJSEne/Hc/z48ahtxcXFSEtLk9U+Mmh25syZuM9H9DqWl5fHbCd631VUVES1EfV98OBB2cf45MmTwn3PnDkTdl/q/Fz0uRWqqKgoKshaVVUV1teuXbui+j18+HBwn3jHQvQ+Kysrw8aNG4UBzVOnTgXbRv5Nqa6uxsaNG7Fjx46ods3HVerzSvTeKioqwrFjx6K2FxcXR81NFJA9cOBA1PbTp09H/dogEAiguro6bFtdXZ1ppVmIyJ6ccg5sJFuWOzh16lTMx++66y785Cc/wZEjR3D33XdjzZo1uOGGG3Do0CF07NgRr776qqMCtACwePHisBO28ePHY8WKFejRo4eifgKBANavXx+8f8kll8Rtk5eXhw4dOgTvr127VtGYREREFE2UeWann8VrFfkrHbtkkpohMpBgpwwwK2vSmvXzZaOOtxnzZ7kDc+j5uunRl5aF1fQeM97CYVJt9HzvsNwB3UFYJwAA2JRJREFUEZGYLTNpBw8ejG7duqFfv37o378/8vPz0b9/f7Rt2za4z5///Gdce+212LBhAzZs2IBAIID8/HwsWLAAWVlZFs5em/z8fMyYMQODBg1S1f7AgQNhQe78/HxZ7fLy8oKLlG3evFnV2ERERPQfop9sRZYIcLLIgLOXfqJm54XD5P4E2QhWBmn1eI56BxX1eO5OWThMbpBWad96BzflHA81NWnVzEVum9Dx1LynlLaRuz8DqkRE+rPllUIgEMD+/fuxf/9+vP/++8HtXbt2DQvazp49G3fccQfOnTuHn/70p3j88ceRnJxs4czVGzRoEMaNG4cRI0Zo+oO3d+/esPvdu3eX1a5r167B2/v371c9vhclJCRgwIABVk9Ds4aGhrCfF+Tn57sq44uIyGyRP+UEgA4dOqCgoCBsm1M/f1NTU8Put2jRIuq5uVXk+WbLli1t89xFP7Vu166dKfMTjd29e3fdxxYFtNq2bat5HFGwvVOnTqr77dixY9S23Nxc9O3bV3Yf6enpUdsGDBggu9xB5GdJ69at4z4f0bVIvOPQrl27qG3t27ePatOcFBKqa9eukn1HviapqanCfVu1ahV2PzExUbhf5OKNke3y8/OjvkyLPGaiBSCzsrKC+4QmFjUL/ewXlcHIzs5GQUGB8MuutLS0YFu/3x/2WHJyMgoKCnDixImodl26dEFBQUHUfHw+HwoKCoTvrfz8fLRv3z5qe79+/aLeF6IvHTt37hy1rU2bNlHvQ5/Ph5SUlLBtfr/fVV9kEpFyTjkHlrJ582bNXxrb8lPwxRdfxJYtW7BlyxYUFxfjwIEDAIDS0lKUlpaGBW5btGiB1NRU5Obm4quvvkKfPn2EJ0R2t2DBAl36CT3xSUhIQGZmpqx2oeUORCdPFJsbTyhatGjhyudFRGQWUSBJzkWoUz5/IwMVDQ0Njpi3HiJf24SEBNs898ggTjMz5icKciYmJpp2bLSOI7ow1DJ/UX9K/32LAqZJSUmy+xC1l/MZJNoWq53oMdG/C9F7RMkx8fl8wn3VPE8g+t9yixYthAtahfYlCtKG7iM6fqHHItbjoucR2nfk482PxXrvirKHExMTha9FUlKSZF9yFvoS9ZmQkCA7o5vZuUTe5pRzYCPZ8tn/+Mc/xo9//OPg/VOnToUFbbds2YJ9+/YFV6w8ffo0nn322eD+aWlp6NOnD/r27Yu8vDxcc801FjwLa5w8eTJ4u3Xr1rJ/fheaDRPaBxEREakjWuFbdHHvVJEn0V6qSRuZ7WanrA8ra9KKxjGqFITP5wsL9OjxHEV9aAka6VGnVWsJBr3KHSgdR0k/SsodSPUpJ4AYbyy5c1BDS8mCWPs3P2+1dWa1UPKaM/hKRCSPLYO0kdq2bYshQ4ZgyJAhwW3V1dUoKSkJC9zu2rUL9fX1OHHiBL766it89dVXSEhI0C1Ie/nllwezetXq2bMn1qxZo8t8RM6dOxe83bJlS9ntQrMuIlcNJSIiIuVEf0/dFKSNDEx6KUhr55q0Xlg4DGh6nqHBcj3qyeo9f6OCtFrm5NaatGrb6VWTNrSNlpq0WuvhytlX75q5evQPMJBLRAQ4JEgrkpKSgosuuggXXXRRcFttbS22b98eDNwWFxdjx44dFs7SfKFZO0ouGEKzYbx0kUVERGQUUSat1E/RnYiZtP/BTFrpcYzMpA3FIK38ORgxpt4LfCltb+TCYW7NpJXaV25wV8sCY8y4JSISc2yQVsTv9yM/Px/5+fnBbV5aaRgIv0hQckIeemHlpiwfIiIiq7DcgXsxk1ZM73IBsUQ+Tz2eox2DtHL7lbuvmVmOdix3oAcrM2n1pDU7Vuo4KNmXiIjCuSpIK6JnZsPy5cs1B32NLoIcukpmaOmDeEJ/khm5YjEREREp57UgrZe+GI98rgzSNhEFXZhJG38MI+ekV01ap5U7kNuf0zJpjS53ICdrVyktGbdERF7jiiBtY2OjKSfHHTp0MHwMrdLS0oK3z549i0AgIOsP3pkzZ4K309PTjZgaERGRp3gtSOvlTFqWO5Aex6jAi1lBWi3XGKK2Tg3SKh1Hqh+zyh0YuXCYnTJp9S53oGR/I2ojM1BLRF7nuCBtdXU1tm7dipKSkuD/d+7ciQ0bNlg9NVvo2LFj8HZDQwMqKyvRrl27uO2OHj0avJ2ZmWnI3IiIiLzEi0FauV8OO52dyx2Ijr8bM2m9Uu7ALkFavWrSKm2rNhhv5MJhauh1fPTMpGW5AyIi+7F1kPbo0aNhwdiSkhLs378/6ptKL1wMyNWjR4+w+6WlpbKCtGVlZcHbPXv21H1eREREXuP2IK0oe7SxsdFWWaVG4cJhYk7PpNV7/l4K0srtR+9AeKx+ReyQSatnSQGnLhymZT8iIjezTZB29+7dwWDsli1bsG3bNhw7dixsHzMLwjtVdnY20tPTceLECQBASUkJCgoK4rbbunVr8HafPn2Mmh4REZFnuD1IK6qzX19fb6uApVHsnEmrx0/s1WJN2vhtzQ7SqmF2TVol/bo1k9aIILNeYyrpX26fLHdARCRmepD23Llz2LZtG7Zs2RLMkt2+fTtqamrC9pP7La/P50OXLl2Mmq4jDR48GO+//z4AYN26dfjlL38Zc/+tW7eioqIieH/IkCGGzo+IiMgLQhflbOaFIK0XFiBlJq2YmZm0LHegbg5GLf6k5bnqUe7ALZm0euyvhZrFxuTsy3IHRETyGBqkPXbsWLBMQXOW7L59+6JOokI/oKX+CLZo0QK9evUK/peTk4NevXqhZ8+eaNmypZFPw3FGjhwZDNJ+8sknKC8vD6tVG+n1118P3s7JyUFeXp7hcyQiInI7USat3++3YCbGEAVpI4OXbuW0TFo31qRlJq26OZhZ7sDMvtX+4tJumbRWlztQsj/LHRAR6c/QIO0ll1wS9mErCsZG/kEJBAJo27Ytevfujdzc3GAAMTs7G++8846R03WNkSNHIisrC0eOHEFtbS1mzpyJRYsWCS+mPv/8c6xYsSJ4f+LEiWZOlYiIyLW8Wu7AC5hJKyYah0Ha+GMYOSe9grRKx5Hqx+pyB2r6s1MmrV7lDqQW+Iq1v5z+We6AiEgbU8odSP2BTk5ORk5ODnJzc4NB2dzc3LCsz9dff50f1gr5/X7ce++9mDlzJoCmkgeTJ0/Go48+im7dugFouohauXIl/vSnPwUvNHJzczF+/HjL5k1EROQmbg/SigKTXgnS2jmTVnTebGUmrdPLHWh5bd0UpLVLuQMpema/ejmTVmrhMJY7ICIyhylBWp/Ph8zMTFx44YXBQGxubi569OjBAKxBrr32WmzYsAHLly8H0BSoHTlyJPLy8pCamopdu3bh+PHjwf3T09Mxd+5cYVYMERERKef2IC0zaf/DTkFaoGk+oUFLZtLKo3dNXQZp5WXSKnk+zKS198JhZuxHRORmpkXkTp8+jV69euG2225DSkqKWcN62iOPPIKMjAwsXrwYdXV1aGxsRElJSdR+OTk5mDt3Lnr16mXBLImIiNyJQVr3igzm2ancAWBdkNbMTFqnljtQ+lroPSejFg7TMr7dFg5zYiatUkrLDZiVHctALRF5naFf+99zzz1o2bIlAoEAzp07hxdeeAFXXnkl3n77bSOHpf/j8/kwbdo0rF69GpMmTUJubi7atm2LpKQkZGZm4tJLL8Uf//hHrFq1Cr1797Z6ukRERK7ixSAtFw6zByNKAchhZiatWeUO7JhJq3UOasY0MpNWab8iei4cFm8OdsykNXrhMJY7ICIyh6GZtHfeeSfGjRuHOXPm4L333gMAVFRU4MEHH8Srr76KmTNnYvDgwUZOwfHGjRuHcePGaeojJycHM2bMwIwZM3SaFREREcVTW1sbtc3tQVqvZNLaeeEwwF5BWmbSxh9D6Zy0zMHqhcPktpWid7kDLWMoYVQmrdoxlS4cprR/I/cjInIzw7/279ixI5566im8+uqr6NOnT3B7SUkJbr31VkyZMgV79+41ehpEREREphJl0vr9fgtmYgwuHPYfzKRtovfCW7F4NUirNSvSzJq0evStd7kDOe3iHXOzM2ljMWLhsFjjxNtXa8YtEZHXmXZGOXDgQPz973/HrFmzkJaWBqDpg/mTTz7Bz372M/zpT3/CqVOnzJoOERERkaG8WO7AC0HaQCDgiJq0odyYSWtWuQMtQWYvBWnl9mNUuQO57azK1tSyiJfZC4fJfd8aEdBlNi0ReZ2pX/v7fD7ccMMNeP/993H99dejRYsWCAQCqK+vx9KlS3HllVfib3/7m2fqmREREZF7MUjrTmZmi6rFTFp19A4y22FhJb2Ok141adX0LadPPbMyrcykVRvEN7qMhhmBVwZoiYhMDtI2S0tLw8MPP4y3334bF198cXD7yZMn8dhjj+Hqq6/G2rVrrZgaERERkS68GKT1whftoudotyBtZLDDjZm0LHegbg5mljuQm0lrRLkDuZm0ahYOU0Ov95GafpRm35q1yBfLHRARRbP0jLJPnz5YunQpnnrqKXTq1Cm4fe/evbjrrrtwyy23AOAHOBERETmPF4O0XsikFQUiWe6giZmZtGaVO3B6kFYNvRYO06tvNbQcJzWZsEoyaWONqWdGrF0WDpPal+UOiIii2eJr/6uuugr/+Mc/cMcddwQX1AgEAvj666/5QU1ERESOxCCtO4mCgXbLpLVTTVonlTtwY5DWbjVpRcxcOMyqTFot/cnJpLXzwmEsd0BEJJ9tzihbtmyJqVOn4r333sMVV1wR9fiRI0fw+uuve+JndEREROR8bg/SirJHvRCkFZ2L2j2T1qzsRTMz4xikVTcHp5c7kEvLwmFGZNLKXcRLz3+reh47ufNSMn/+WpaIKJptgrTNsrOzMX/+fPz1r39Fr169EAgE4PP5UFNTg0cffRRXXXUV3n//faunSURERBRTbW1t1DY3BWmZSfsfzKSVHoflDuKPoWROTl84TGtgTu+Fw5yWSRtJS5kErQFVq8odMOOWiNzMXmeUIYYOHYp33nkHM2fORGpqavBDfN++fZg6dSp+8Ytf4N///rfFsyQtKisrMXToUFx++eWq2i9btgx5eXmq2xMRERlJlEnbXNbJDbwapHViJq2VNWmdnkmrJcjs1CCt2bVCrVw4TE5fcvpQ00bUXms/on31KHcgd1+WOyAi0sa2QVqg6YT31ltvxfvvv4/rrrsuuNpkIBDApk2bcPPNN+PXv/41tm/fbvVUSaG6ujrcf//9OHbsmKr2u3btwhNPPKHzrIiIiPTj9nIHoiCtF8pSMZNWmpU1afV4jqI+vJhJq9fCYXYsdyBnPlrnoGegVetYsdpJtbV7uQMGc4nIzex1RimhXbt2+OMf/4jly5ejoKAAAILB2k8//RTjxo2zeIakRHV1NaZOnYrPPvtMVfva2lpMnz4dNTU1Os+MiIhIP14M0jKT1h7sFKQ1KqBiRN1dN5Y7UDO+2TVplTBj4TArM2njtbX7wmFSfbLcARGRPI4I0jYbMGAA3njjDTz++OPIzMwMbvdC1oZbbNu2DePHj8dHH32kuo+nn34aW7ZsQcuWLXWcGRERkb7cHqT16sJhzKSVpne5gFi4cJj6OSgdU04/Wp6rHuUOlPSplJmZtFrfH3LHiUVLQFVLJi2Dr0REDgvSNrvmmmuwZs0aTJo0yVUXO25WU1ODWbNm4dprr8WOHTuQmZmJ4cOHK+7nyy+/xJIlS9C1a1dcf/31BsyUiIhIH24P0no1k5ZBWmlmZtIaUe7AC0Faq39iblS5A2bSGrtwWLx5qZ2HXuMSEbmFvc4oFWjdujXuv/9+vPPOO/jxj39s9XQojoqKCixfvhwNDQ0YNWoU3nnnHfTv319RHydPnsTMmTPh8/kwZ84ctG7d2qDZEhERaccgrTux3IE0MzNpWe5A3Ry8Uu5Ay8JhWtuYmUkrZxwzyx1I7cdyB0RE8kSfXTtMz5498cILL1g9DYrD5/Nh6NChmDJlCi6++GJVfcyaNQuHDx/G5MmTMXDgQHz55Zc6z5KIiEg/tbW1UdvsFszTgguH/QczaaXHMSuT1qggrZbX1oggrdY5WL1wmNy2Uo/pXe7AaZm0SseN1c6IhcOUziHeuEREXuP4IC05Q3Z2NpYsWaK6/cqVK7FmzRr07dsXd999t44zIyIiMkZkJq3f73fVRSgzaf/DbsF3L2TSGlHuQO8gMzNp5QVA9fhc1DN4q/WYG5lJa/eFw1jugIhIGwZpSZbKykqcOnVK9v6JiYnIzs7WZezS0lLMnj0bfr8fTz75JPx+vy79EhERGSkySOumUgcAFw4LxUxa6XFY7iD+GErmZNcgrVxaa9KakUmrpm87ZtLaZeEwvcsdEBG5GYO0JMvixYuxaNEi2ftnZ2dj7dq1msdtaGjAfffdh7Nnz+J3v/sdevfurblPIiIiM7g9SMtM2v9gJm0TM4MuZpU7sDpIK6dPvdmpJq3RC4fJ6UvvTFot7LRwmFZqjzMDuUTkZvb62p8owvPPP48NGzZgyJAhuOWWW6yeDhERkWwM0rqTEzJpjSgFIIeZx8aI52jHIK0VmbRy+pHzuN5Zr7H6VHuc5Mwxsi+tmbR61piVk0nLcgdERM7BTFqSZfr06Zg+fbqpY37//fd4/vnn0bZtWzz++OP8g0xERI7ixSCtFxYOEz1HuwVpvZBJy3IH6uZg5sJhcvs2otyBlv60jqGmvdyyBWZk0rLcARGRdRikJdtavnw56uvrUVNTg//6r/+KeryqqgoAcOjQIVxyySUAgAceeABXXXWVqfMkIiIS8WKQ1quZtHYvd2DWz5qtzKQ1KkirZf6itk4N0qoJnllZ7kDPYJ+dM2nlMKvkiFIsd0BEFI1BWrKt5j/ctbW1qKiokNyvsbEx+HhNTY0pcyMiIoqHQVp3ckK5AzstHGZWgEiP56j3/N2USWv3cgdy+zQiuB/JyExavdopbSP3OSnJziUiomgM0pJtPf7443j88cclH583bx7mz5+v2yJlREREeqqtrQ2777YgrSh71AtBWi4cJk3vTNRYWO5A3RzsmEmrR7kDIwLCUm2szKR1arkDqTnI3VfpPkRETmWvr/2JiIiIXCIyk9bv91s0E2Mwk/Y/mEkrPY5ZmbQM0qrrTy69Xke7lTuIbGfU+0hLG62ZtHq8dkbUj2W5AyKiaPY6oyQiIiJyCZY7cCdm0kozM5PWiHIHbgzS6pUBqybD0cpyB3qMJdXGLZm0SsbQkkkrtS8REUVjkJaIiIjIAF4M0ooCmG7DTFppZmbSstyBujmoLXeg11hmlTtgJm38TFojAt5ayx2oHZeIyC3sdUZJRERE5BJeDNIyk9YevJhJyyCtvDkYWZNWbZDWCHouHGZmJq3SuehJS4avGqL3NmvSEpHXceEwB5g7dy4WLFigeoGsXbt24Y033sD69etRVlaG+vp6ZGVlITc3F2PGjMGVV14pvNAyWmFhIQoLCy1rT0REZCS3B2m9unAYM2mlmXlszCp3oGX+XgvSqmXmwmHxWJ1Jq3Z8Oy8cJrUvERFFY5DW5jZt2oRFixapbj9v3jwsXLgw6qKptLQUpaWl+Pjjj5Gfn48nn3wSvXr10jpdIiIi+j9uD9J6NZOWQVppZgb3jCh3oHe5BqcGaeX0o3Ysq8sdODGT1qyFw5SOw3IHRET6s9cZJYUpLS3FlClToi7y5Jo9ezbmz58fvGBKTExE//79MXDgQGRkZAT3KyoqwsSJE3HgwAFd5k1EROR1gUCAQVqXYrkDaVZm0rLcgbw5eKXcgZR4z0NN0FZNH1Jt7LBwmBZK+mW5AyKiaAzS2tT27dtx44034ujRo6rar1mzBkuXLg3eHzVqFD799FOsXLkSy5Ytw+eff45HH30UKSkpAICKigoUFhZafuJERETkBqJgpd/vt2AmxuHCYf/BTNomZmbSmlXuQO8grdJ5WnFubuTCYXLaqenTyIXD5PSlNrgqh9kLh7HcARGRdVjuwIZWr16Nhx9+GNXV1ara19XVYc6cOcH7w4cPxzPPPBN2wp6UlIQJEyYgOzsbv/71r1FfX4/i4mK8++67GDNmjObn4DVuyByKvLD2woU2EZFRRH/DExMThX8v3PT5W1tb64q/ibHU1tYKt9vpeYsCmGbMTzSGUWOLgndax9F7/qKAbH19vaL+Ivvw+Xyanqec46TXcRCNpbRvUXBP7jzUHCfR52/k8xDtE/ocRL+CDH08Vvt4bUWk3lMNDQ2or6+XfB+KAttS+8v9ZafUlxCi7XbMtCYi61xzzTWOPgfWC4O0NlJeXo6nnnoKq1at0tTPhx9+iIMHDwJouiCcNWuWZIbHsGHDMGHCBCxbtgwAsGTJEgZpFWpsbMTGjRutnobuioqKrJ4CEZFjnTlzJmrb6dOnZf29cMrn79mzZ6O2HT161JV/E0Pt2rUratvBgwdt9bwj338NDQ2mzE/0C7AtW7bgyJEjuo8V+f7T4zmWlpZGbduzZ4/qfvft2yfcpqS/mpqasPt1dXWK2kd+YSSn/d69e6O27d+/X/FxOHXqVFQbpcc48vlXV1cL94388kRqv8jjEdlO9Pl78uTJsL5Onz4dtc/x48eD++zcuTPq8UOHDsV8/PDhw9i4cSMqKipi9l1VVRX2WPPrKXqvNb9mlZWVUY9t3rwZJ0+ejNq+ceNG4b/XHTt2RG0TfRkp+gyorKwUXotGBn5rampklY4x65cBRGSurl27OuYc2Ej2+m2Whz3//PMYPXp0WIC2V69euOOOOxT39d577wVvDx06FF26dIm5/4QJE4K3i4uLhSdPREREJJ8oq0lUHsDJRBfTXsiAED1Hu5U7MKIUgFpmHRujMvC0zF+Pn3i7beEwrePqvXCYmjkYUZNWj7aRlC4cprZ/OfvpOQeWTiAiN7PXGaWHLV68OOyb0fHjx2PFihXo0aOHon4CgQDWr18fvH/JJZfEbZOXl4cOHToE769du1bRmERERBSOQVr3EgVR7BakjZyPWT8hFgWDjQqoGPEc9Z6/HRYOUzO+mbWF4/VtdEBOTk1aNf3o2T70GNh94TCnzYGIyG7cdbXgAvn5+ZgxYwYGDRqkqv2BAwdw6tSpsP7kyMvLC/48ZfPmzarG9qqEhAQMGDDA6mlo1tDQEPbzgvz8fNutVk1E5BT79++P2tapUycUFBREbXfq568ooJWamip8jm4iKnfQo0cPWz3v9PT0sPuBQMCU+WVkZERtGzBgANq3b6/7WG3bto3apvU5fvHFF1HbcnJyVPcrKhvQtWtXRf21bNky7H5ycrKi9qmpqWH3W7RoEbf9li1borbJeY9HBs5Fnwfr1q2LahfrGMt9/pFfgrVq1Uq4X6tWrWK269+/f1SbjIyMsL5Cr7VE+4jKIWRnZwcfF31h17FjRxQUFARL1oVq3759sG3k/Jtfz+3bt0e1a37N2rVrF/VYfn4+2rRpE7bN5/OhoKAAnTp1ito/Jycnalvr1q2jtonGysjIEAaXI//OpaSkyPoy021feBLRfzjlHFjK5s2bNf96iZ9wNjFo0CCMGzcOI0aM0PSNceTJYPfu3WW169q1a/C26MKSYnPjyUKLFi1c+byIiMwgyhBKTk6W9bnqpM9fn88X9lwbGxsdM3e1ROdpfr/fVs878gInEAigRYsWlvxMOCkpyZBjExkQ1OO9J8qITkxMVN2vqF1CQoKi/kSZtErai8oFxGuv9jiI3l+RbUR9x/rMUzP/5nFE+8X7NyCaX+Qxl+q3eXu81z1We1FwIrSt1GsT67hKtRGVcZDaX+420fFNSEiQ9WsDuWURWO6AyL2cdA5sFG8/extZsGCBLv2EFmtPSEhAZmamrHah5Q5EBd+JiIhIvsjFaICmYJXbJCYmhi3+omXVeacQZUjYvdwB0BTcMvun41Jz0YMR5Q70/pm/HcodqJm/2uOgtiatHuUO1I4lp52cmrTx+pFTskDu+HLHjdfO6nIDVo9PRGRH9jqjJM1CV+ls3bq17BPj0J9CiVb6JCIiIvkiV60GmrIt3SYy68sLQVpR3V27/TRPdP5nxuJhZgawjVikygtBWiMXDpND6zE2euEwo95HctsoCfbKpUdQWO7rpuS56/VlABGRmzCTVoHLL78cBw4c0NRHz549sWbNGp1mFO3cuXPB25E1nGIJvXAUZf8QERGRfKIgrVszaUN5IUjr1ExaM4K0Zi44JSp3oBWDtNL76JVJq/T5GxGMV9qfEzJp9Vg4TGnGrpJgrp7BVwZpicjN7HVGSZqFXhQquWAIvcjywgUWERGRkRikdS9m0kqzMpNWD3rP301BWqPGErVTwyuZtEo0P1ep5yw1lpZMWiVY7oCIQnXu3NnqKdgCg7QuE3qRoORkPPSiyo0XkURERGbyapBWFMB0G2bSSjMzk1aPAKic9syklT+u2kxaJTVp9Q78Oi2TVmnAVe04avdnuQMiUmvEiBFWT8EWWO5AgeXLl2u++DB6pbqUlJTg7dDSB/GEljhITk7WdU5ERERe49UgLTNp7cELmbRSz1HLa8EgrfQ+RtakjcXshcOclkmrZeEwvcaJtx/LHRCRHEbHypyCR0GBDh06WD2FuNLS0oK3z549K3sl3zNnzgRvp6enGzE1IiIiz/BKkNaLC4cxk1aaaAxm0sYfQ8mcrApQ6ZVJq7bveH0aeZz0zqTVcy5a2hhR7kBrJi0RkdfZ64ySNOvYsWPwdkNDAyorK2W1O3r0aPB2Zmam7vMiIiLyEq8Eab2YScsgrTRR0MXMmrQM0safg1fKHajtz4xMWq8tHKbXHJTsQ0TkVPY6oyTNevToEXa/tLRUVruysrLg7Z49e+o6JyIiIq8JLSPUjEFad2C5A2lmZtIa8RydEKTVOgerFw4zq9yBnguHmZFJKzfYquT9qOfCYVqw3AERkXwM0rpMdnZ2WLmCkpISWe22bt0avN2nTx+9p0VEROQpokxav99vwUyMxYXDmjCTtokbM2m1zN9rmbRq6VHuQG2fRvzk3gmZtGrHibc/SxgQEWljrzNK0sXgwYODt9etWxd3/61bt6KioiJ4f8iQIYbMi4iIyCtY7sC9nJBJKwqeuC2T1ogAkd7z91qQ1spyB3oFb+2eSauE0QuHWVXugIjIzRikdaGRI0cGb3/yyScoLy+Puf/rr78evJ2Tk4O8vDzD5kZEROQFDNK6FzNppZkZdPFKuQM5fSrZ3+lBWilqg9lyjofSY25kJq3S0gVq2mhZOEyqPzl9stwBERGDtK40cuRIZGVlAWiqiTdz5kzJi6bPP/8cK1asCN6fOHGiKXMkIiJyM68EaSMzSL0QpHVCJq0ogGnGz5Ajg6RGBq+5cJg6etWbVbuPVkYHudUGba3KpFV7PPR4r1tV7oBBWiJyMwZpXcjv9+Pee+8N3l+3bh0mT54ctohYfX093nzzTRQWFgYvNnJzczF+/HjT50tEROQ2XgnSMpO2CTNpm+gdUIyFQVr1c1A6plpWljvwWiZtrHZqsm/V7mtEn0RkvPT0dDz77LPYtm0bzj//fKun42mJ8XchJ7r22muxYcMGLF++HEBToHbkyJHIy8tDamoqdu3ahePHjwf3T09Px9y5c6MutoiIiEg5BmndS5RJyyCteAwjj4sTyh3okdHs9Zq0akn1GW+OTs2k1XPhMCvLHdglY5vIa0pLS5GammrZ+BdddJFlY9sNI3Iu9sgjjyAjIwOLFy9GXV0dGhsbUVJSErVfTk4O5s6di169elkwSyIiIvepra2N2uaFIK0ogOk2okCgE8odMJM2PlF7LYFmO2bS2jFIq7VPNf1qmUM8emfSqm1r94XD1GKQlkh/VgZoAeDXv/61pePbCYO0Lubz+TBt2jSMHTsWb731Fr744gscPnwY1dXVSEtLQ9++fTF69GiMHTsWfr/f6ukSERG5hiiT1o1/a72YSctyB9KcXpNWdIzcVu7AyCCtWmYuHGb3TFqlbeVk0hq1cJiSPrXuS0Tu9sMf/tDqKdgGg7Q2N27cOIwbN05THzk5OZgxYwZmzJih06yIiIgoFq+UO+DCYU2YSSsew8jAnhPKHTg1SCunH7VjaT3GRi8cpkcbLQFbPQOXSscxauEwljsgso9Ro0bh/fff173f/fv347e//W3YovSkjr2+9iciIiJyAa8EaZlJ24SZtE0igy5Oy6RlkFZ6H6eVO1CbgWv3TFo9g8xas15Z7oDIWZYuXYp3330Xc+bMCdt+9913h90fNmyY4r67deuGZcuW4amnnsL999+P9evXy277hz/8QfF4bsZMWiIiIiKdMUjrXsyklWZmJi2DtMbRK9tWbj96lDuQ284OmbR6ttVz4bBmRiwcJsJyB0TmuummmwAAv/3tb3Hu3Dl8+umnuPDCC/Hoo4+G7feHP/wBL7/8suL+k5KSMG3aNADAuXPnZLUZO3Ysrr76asVjuZm9vvYnIiIicgGvBmkBc4KBVmImrTQzM2lZ7kDdHKyuSWtUuQO1AT8rMmm1vIZGLhymx/5a6tyy3AGROVq0aIGHHnoIH330EZ588kmkpKSEPd6jRw+8//77+PGPf2z4XAoLC/lvOoK9ziiJiIiIXMDLQVq3Z9Myk1YaM2njt7U6SKtmTLn9OKHcgV0zadVmxBqxcJgWLHdA5A4jR47Ep59+in//+9/o1q2b4vZ2+/LaSXjkiIiIiHTmlSCtKDjp9iAtM2mlOb0mrd6vrV2DtGqOk15BWqV9Gx2QYyZt9P4sd0DkfKmpqWH3L774YlX9DBw4ENu2bcO3336L0aNHyw7YJiUl4bLLLlM1ptfZ64ySiIiIyAVqa2ujtrkxSOvFTFoGaaVFjsFyB/oHac2Yg9mZtEaUO5CbSSsnSOuETNpY9Ah0s9wBkbOsWrUKrVu3BgCkpKTgkUceUd1XSkoKLrroIvzjH//Azp07Zbd78cUXMXToUHTq1Al33XWX6vG9hguHEREREelMlEnr9/stmImxvBikdUK5A1EQw4pMWpY7cGYmrZEZjkaVO4jXTk9mZ9LKoSUwHEnL+5blDois9+CDD2LEiBHYvHkzNm/ejH79+uH888/XpW+/349Ro0bh/fffD25bsmSJcN/evXvjX//6V/D+c889p8sc3I5BWrJMZWUlrr76arRs2RJr166Nue+ZM2ewbNkyfPjhh9izZw/OnTuH9u3b44c//CFuueUWFBQUmDRrIiKi+LxS7kAUpBUFMd2EmbTSzMykNSIQ7cYgrZw+5TxuVbkDudSOZbdMWhE7LBymtH85+7HcAZH+3nzzTfzXf/0XAKBnz57o2bOn7mMsWbIEU6ZMwe7du3Hddddh4sSJuo/hZQzSkiXq6upw//3349ixY8jOzo657759+zBp0iSUlZUBaPr2JikpCYcPH8b//u//4h//+Afuu+8+TJo0yYypExERxeXlIC0zaa1nl5q0Rma8iZ6jEzJptb4Oblw4TElNWq2BXz0WDtMafFcaPI3FrIXD7FTugIikjR8/3vAxOnfujL///e+K2z377LO4++67g/cTExMxePBgbN++Xc/pOZ69vvYnT6iursbUqVPx2Wefxd23vr4eU6ZMQVlZGTp27IgXX3wR33//Pb777jusWbMGw4cPR2NjI+bMmYN//vOfxk+eiIhIhsggrc/ns10gTw9eDNI6NZPWjKw1qzNpnRCkdUK5A7n9qNnHqCCt2tdezcJhSvsE4h8bO2XSstwBkTNNnz7d6inEdP311yM/Pz94/5FHHkFKSoqFM7Ine51Rkutt27YN48ePx0cffSRr/w8++AA7d+6Ez+fD3Llz8ZOf/AQtWrSAz+dDz5498dxzz+HCCy8EAMyfP9/IqRMREckWGaR1YxYtIM4gdXuQlpm00iLHMLsuqBHlDrQEmp0apNUrWG3mz9nVLhwmh9rgs5r+zMykVTNOvH6VvHfUvj8YpCWK1q9fPxQWFlo9jZgyMzPx9ddf46OPPsL333+P3//+91ZPyZYYpCVT1NTUYNasWbj22muxY8cOZGZmYvjw4XHbffrppwCAiy66KBiMDdWiRYtgzZWioiJUV1frO3EiIiIVvBKkZSZtEydk0lpR7sDI42JEtrDoGHkxk1av4Jkdyx3Em49RgWUrMmnjUVKaQMt+Uvuy3AGRPh5++GF8++236N69u9VTiSslJQUjRozgmkIx2OuMklyroqICy5cvR0NDA0aNGoV33nkH/fv3j9uuX79+GDVqFC677DLJfTp06ACg6Q/9mTNn9JoyERGRarW1tWH3GaR1D1EmLYO04jHMzqRluQN95mDnmrRS9Fo4TO4cYvUTr089M2n1HEeP/VnugMh8Q4cORcuWLa2eBumEC4eRKXw+H4YOHYopU6bg4osvlt3ulltuwS233BJzn2+//RYAkJycjIyMDE3zJCIi0kNkJq3f77doJsYSBWlFQUw3EQU7We6giZmZtGaVO3B6kFZOn3Iet0tgTO9MWrX9K6VXJq1UOzsvHKb3e8cu70Uiu2CA1l0YpCVTZGdnY8mSJbr3e/z4cSxfvhwAcOmllwovFomIiMzGcgfuxXIH0szMpDWi3IEbg7R6vQZ2yaTVunCYnpm0UtmzRmbS2n3hMDVzCd2HAVgiZdq0aYOBAwdaPQ3SESNaJEtlZSVOnTole//ExERkZ2cbOKOmi8D77rsPJ06cQEJCAu68805DxyMiIpLLK0FaLhzWhJm0TazOpGWQVp85uKHcgdqFw+yYSSunndELh8ntl+UOiMzj9/vx1FNPoVWrVlZPhXTEIC3JsnjxYixatEj2/tnZ2Vi7dq1h82loaMCMGTPwxRdfAADuuusu5OfnGzYeERGREl4J0jKTtgkzacVjuKHcgZbn4KYgrZqx5AZplTB64TC5fWmpSauU2oXD9AwMs9wBkf0cOnQI7dq1s3oapDMGaclxzp07h3vvvRcfffQRAGDs2LG46667LJ4VERHRfzBI617MpJVmRP1UKUaUOxAdI2bSqhtXCSvLHajtRym5gVat7w8t7fQodyC1H8sdEOmPAVp3YpCWZJk+fTqmT59u9TRw/PhxTJkyBRs2bAAA/PznP8djjz3GP+hERGQrXg7SenHhMGbSisdguQNvBWmNKHegltMyaeWWK1CzCJiZC4eZgdd9RGCSmosxSEuOsXfvXkyePBn79+8HANx88834/e9/zz/URERkO14O0notk9aO2V9eyKQ1q9wBg7TyxzWi3AEzafUZU8k4ct9jLHdAZI2EhARMmjTJ6mmQQez1tT+RhKKiIvzyl7/E/v374fP5cP/99+OBBx7gH2kiIrKl2trasPtuDdJ6ceEwM7NF1fJCJq0R5Q7cGKTVi15BWqV9qw3Sqs2klfsesCqTVqqdUUHXyHHi0VrugIhi+8EPfoDPP/8cF110kdVTIYMwk5Zsb8eOHbjttttw4sQJJCUl4fHHH8fPfvYzq6dFREQkKTKT1u/3WzQTY3kxk9YJQVojskzlsDqT1gtBWjPmYFQ2qVTfZpY7UBtI1kqvTFq3LxzGQC1RbIsXL2aA1uUYpCVbq6qqwm9+8xucOHECfr8fzz33HH784x9bPS0iIqKYWO7AvSLLHdht0TDAG5m0LHdg3BzcXO4gHqdm0uoxntKFw+yc1U3kVm3atLF6CmQw+331TxRi4cKF2Lt3LwDg97//PQO0RETkCAzSupcTMmntEqQ1MphiRLkDvReFMyLb1+lBWjntlI6rpJ2aOerxPjY6k1aPcgexaMmklTsHPcoyELld586drZ4CGYyZtGRbtbW1eO2114L358+fj/nz58ds89Zbb/GDi4iILBUIBKIClV4K0kZmmrqNUzNpzfhZd+QYZmfSeqHcgZOCtHr2Hat9rO1Kx1Lbj5GZtGrbxQsGm1VKg+UOiPSRnJyM1NRUq6dBBmOQlmxr+/btOH36dPB+RUVF3DZuvzAkIiL7E2WSeilIy0xa63khk5blDsybg5pxpcYxqtxBvHZamJlJq7atnguHGfEFiJ4YyCWvevDBB62eApmAQVoHmDt3LhYsWIDs7GysXbtWcftdu3bhjTfewPr161FWVob6+npkZWUhNzcXY8aMwZVXXim8yDJaYWEhCgsLJR/Pz8/Htm3bTJwRERGRdpGlDgD3BmlFWaRuD9I6NZPWioXDjAxgG5Et7MYgrZw+lT4uxYnlDiJZnUmrZzDULguHyZmL3H2U7EfkJm+99RbGjRtn9TTIBAzS2tymTZuwaNEi1e3nzZuHhQsXRl0wlZaWorS0FB9//DHy8/Px5JNPolevXlqnS0RE5Hm1tbVR29wapGUmLTNpY43Bcgf2rEkbj9kLh2ktd6DH625EoFiqDz1fQ7XBXaULh8mdF8sdEOnv7rvvxnXXXWf1NMgk9jurpKDS0lJMmTJFmJEjx+zZszF//vzgxVJiYiL69++PgQMHIiMjI7hfUVERJk6ciAMHDugybyIiIi8T/d32+/0WzMR4XgzSRmbSMkj7H0ZkfUpxQrkDrdm+eszHzJq0cijtW+/s3HjHw+6ZtGpeBzOyr83EQC55zZgxY6yeApnIfmeVBKCpHuuNN96Io0ePqmq/Zs0aLF26NHh/1KhR+PTTT7Fy5UosW7YMn3/+OR599FGkpKQAaKr3WlhYaKs/wERERE7kpXIHXlw4LDIQyHIH0mO4odyBluegNZPWaUFatQFVJX2KGH39oncmrZ5tzVo4jOUOiMyXkJCAmTNnYvjw4VZPhUzEcgc2tHr1ajz88MOorq5W1b6urg5z5swJ3h8+fDieeeaZsJPMpKQkTJgwAdnZ2fj1r3+N+vp6FBcX49133+U3NURERBp4PUjr9kxaljuQZnUmrdZgnegYWVnuwKogrdx+4u1jZbkDO2fSqg26xmprxcJhLHdAZKwzZ84Ek+rIOxiktZHy8nI89dRTWLVqlaZ+PvzwQxw8eBBA08XTrFmzJC8ghg0bhgkTJmDZsmUAgCVLljBIq4IbLkgjM5/cnglFRGQU0ZesLVq0kPxb4bbP33Pnzrni76KUyOcW67W1iihQUldXZ/g8I4OcPp/PsDGNeI6iIG1DQ4PqPkX/lpX0J7WfkvmoOU5a5x06dmQbrX3L7RNQd34u6ks0Zqx9RH00NjYGHxf11XwMRI+F9i16Pevr62OOKXpfx9ou6ktqXnK2NTY2ys6IlhMk5y8/ySuSkpJsd36hN7edA+uBQVqbeP755/Hiiy+iqqoquK1Xr14YOXIkFi5cqKiv9957L3h76NCh6NKlS8z9Q4O0xcXFKC0tRbdu3RSN6WWNjY3YuHGj1dPQXVFRkdVTICJypD179kRtq6yslP23wkmfv3v37o3aVlpa6sq/i81Cz9WApuCF3Z7vvn37hNuMnmfkxWRVVZVhYx46dChq244dO9C2bVvVfR4/fjxq2+bNm9GyZUtV/YnKllVUVMg+JqKL85MnTyo6pqLnVFxcjPLycsk2hw8fjtq2ffv2uNnYNTU1Yfdra2uj5io6Jlu3bsWZM2eEfZ46dSrsfiAQiOpTdJxOnDghPE4nTpyI2hYa9Nu+fXvU40ePHo3qKzJQePr06eA+os/F/fv3Bx8XzeH48ePYuHGjcPzDhw8H20YeDwDYuHEjysrKorbv2rULHTp0EB7zkpISyc8y0b8tUf+VlZVR20Tzq6iokPWLg6qqKln7Rb7PiNzKbucWZnDSObBR7Pf7LI9avHhx2B/K8ePHY8WKFejRo4eifgKBANavXx+8f8kll8Rtk5eXhw4dOgTvr127VtGYRERE9B+igIGoLIAbiOqxuj0LwqkLh5mRfWZmKQgjyh3IHUdLW7PLHaih13GUm2kZi9rnq6TcgVFzUNKH3d67kbTMT+9yByyJQF5w7bXXWj0Fsog7rxgcLD8/HzNmzMCgQYNUtT9w4EDYN5j5+fmy2uXl5QW/Zd28ebOqsYmIiIhBWrcHaSODFXYM0oqCGFYsHGYkI4K0ZgRFvVSTVkTpczI7IGd1TVo1+6t5PZW2seoLAyIvysjIwG233Wb1NMgi7rxicKBBgwZh3LhxGDFihKY/eJE/r+nevbusdl27dg3e3r9/v+rxvSghIQEDBgywehqaNTQ0hP28ID8/35YrVhMR2V3kT0gBoFu3bigoKBDu7+TPX9GFe4cOHSSfqxtELgLXqlUr2z1f0c/Vu3TpYvg8IwPWbdu2NWzMzz77LGpbr169NI2XlpYWta2goAB+v19Vf6KSAu3atZM9R9HPujMyMhQ9x8zMzKhtffv2RXZ2tmSbrKysqG19+vRBv379Yo7VqlWrsPuJiYlRc5WaT8+ePYV9RpavCAQCUX3W1tZGtZM6ThkZGeLJ/5/evXtHbcvKyorqK/K9npqaGtxHVLKge/fuwcdFJSia5yv6kq9Tp07Btunp6VGPFxQU4IsvvojanpOTg4KCAnTs2DHqsT59+kQtSOT3+1FQUCD8txV6rdisffv2Udtat24dtS0zM1PWl1mpqamy/vZFvs+I3OSee+7BjBkzwn7p7GZOPgcW2bx5s+YvrBmktYkFCxbo0k9ozaGEhAThiZBI6IeAqG4RxebGDKkWLVq48nkRERlNFLhs2bKl7M9UJ33+JicnR21rbGx0zPzVEP2k327PNzKQDDRlvRk9TzOPjahfreOJ/u36/X7VfWp9HUQXqkpfR1Ef8T5jRAkjSUlJcccVtYtsIwrWxeo7cv9AIBC1r+iCWOo4xcssFs1P9L6K9VxFfSQmJgYfF70vmscQzTn09RKN26JFC+Hr3Nyf1HxEEhMThX1JHRc5WrRoITsTW06fdvz1ApFe7r33XnTu3NnqaVjGSefARuEnnMucPHkyeLt169ay/4ilpqYK+yAiIiJl6urqoraJLsrdQHQi7faViM2su6qWaE5mlCIwsxSEEc9R759026EmrZo5qC0bEasEQKxtWssdKOkz3vGwug6w2lIJepQvULo/yx0Q6U/0iw7yFm+HqBW6/PLLceDAAU199OzZE2vWrNFpRtHOnTsXvK1kJdrQn3GJfjJERERE8jBI6+4gbWTNXTv+LM8uC4cZGcRxQk1aNwVp1dSk1WPhMLXt9XzvifqS81yl9jerJm1zO7njxdpf7nsi3lzkjK/XfkROc9FFFzFIS8ykdZvQC0Ml2QuhF1luv7giIiIyEoO07j6PYCatNDMzab0QpJXbp1JmBWnlMiKTVkl/Shb9kkPLQl5mZtIa8YWB1n9DRr7PiOzs/PPPx4svvmj1NMgG7HdWSZqEZnMoORkPvaBy64UkERGRGbwepI3MNHUbp2bSmhGkNTOAzXIH6ueghpp+nFLuIB67Z9Lq1V5p5q2IGRn7RG7zl7/8Bdu2bcMPf/hDq6dCNsByBwosX75c84WH0UWQQ1fpDC19EE9oiQPRIiBEREQkj9eDtMyktZ5dMmndUO5AC9EclbwOLHcgFggEdH1vOSmTVsl4Rh2jWP2bUe6AyG26du1qy3MJsgaDtAp06NDB6inEFVrD5OzZs7JPYs6cORO8nZ6ebsTUiIiIPMFLQVpRFqnbg7TMpJVmZgDbjCCt1vnbNZPWyoXD5LSL91jk9Y3TMmm1sHu5AxGWOyCKrX379lZPgWyE4XqX6dixY/B2Q0MDKisrZbU7evRo8HZmZqbu8yIiIvIK0QKcoQt0ugkzaZlJG8rMTFojnqPeC5+5KUir12tpZN969GlGJq1bFg5TMhc9MUhLbtKmTRsMGjTI6mmQjdjvrJI06dGjR9j90tJSWe3KysqCt3v27KnrnIiIiLzES5m0DNIySNtMlJnn9ExaBmmVjau23IGaTNp4fSrpT00bvTNp3b5wGAOrRNHat2+PF154AW3atLF6KmQj9jurJE2ys7PDyhWUlJTIard169bg7T59+ug9LSIiIs/wepCWC4dZz6ogbSSn16RlkFbZuGrLHSjpU9Sv1uNkdk1au2fS6jUvpYyaJ5Ed3XLLLTh06BCuv/56q6dCNsMgrQsNHjw4eHvdunVx99+6dSsqKiqC94cMGWLIvIiIiLzA60FaZtJazy5BWiOPjRHP0Y1BWr1YlUmrNzWviZ0yac2gJENWzn5S+6rdj0FacoOEhATXnhuSNvY7qyTNRo4cGbz9ySefoLy8POb+r7/+evB2Tk4O8vLyDJsbERGR23kpSMuFw5hJG6t/ZtJaH6Q1c+EwOcwqd+DWmrROLXdAROFCE+uIQjFI60IjR45EVlYWgKbFS2bOnCl5wfT5559jxYoVwfsTJ040ZY5ERERu5aUgrSgY6PYgLTNpxczOpDUjSKt1/m4K0tqp3IGWdm7MpDVj4TAzsNwBecmPfvQjq6dANmW/s0rSzO/349577w3eX7duHSZPnhy2iFh9fT3efPNNFBYWBjNCcnNzMX78eNPnS0RE5CZeCtL6fL6okgduD9I6IZNWFMRwWyatEYHoyPbMpFU2rlnlDoxcOIyZtNL7x5pXvHmw3AFRE5/PhwceeAAXXHCB1VMhm4ouJEaucO2112LDhg1Yvnw5gKZA7ciRI5GXl4fU1FTs2rULx48fD+6fnp6OuXPnCmvLERERkXy1tbVR29wapAWa6tKGBmbdvnAYM2nF3JhJyyCtsnGNCNLaYeEwr2XSyh2D5Q6IlOnUqRP27NmDli1bWj0VsjFG5FzskUceQUZGBhYvXoy6ujo0NjaipKQkar+cnBzMnTsXvXr1smCWRERE7iLKpPX7/RbMxBxeyqQNBAJRwU47ZtLapSYtg7TODNLK7UcNpWPrHeAzI2CodyatXm21jKE1k1btuFr2I7Kbdu3aMUBLcTFI62I+nw/Tpk3D2LFj8dZbb+GLL77A4cOHUV1djbS0NPTt2xejR4/G2LFjXX3xSEREZCYvlTsAvBekjcRM2iZmZ9AZ8RydEKTVg1ELh6mtSWtEuQM9Fw4zM5NWbVuWOyCyPy4WRnIwSGtz48aNw7hx4zT1kZOTgxkzZmDGjBk6zYqIiIikeC1IG5lJ6uYgrdnZomqJ5mRUwK8ZM2mj2TWT1qhxrSp3ILed2v60BpGV9Kfnv1M9yx3oMQ8ir7vpppusngI5gP3OKomIiIgczGtBWi9l0orq7bLcQROzM2m9EKSV26fec9ArSCu3b6307FNt9q9ZmbRmLBzGcgdE+psyZQqGDx9u9TTIAZhJS0RERKQjBmndG6R1ciat22rSGvEc9V4Uzq6ZtEYFaZWOI6dvvRcO0yuT1qhsWCsXDlM6hlXlDoicxOfz4dSpU0hNTbV6KuQQ9jurJCIiInIwrwdpRdmmbsFMWmmi/plJ68wgrdx+4u1jZbkDJf3p0beSQK+W11CvTNpY49h9sTYGcslJ/H4/A7SkCIO0RERERDryepCWmbTWs0u5A9akdWaQ1siFw8wqd6DkONkhk7a5jZ6ZtPHamLlwmBwMvpIbjRo1yuopkMPY76ySiIiIyMFqa2ujtrk5SOulhcOYSSvN7ExaI54jg7T6jauE1QuHKe1bTTujM2ljtdOj1ICdyh0wmEtOMnXqVKunQA7DmrREREREOorMpE1ISLBlIE8vzKS1X84DM2nV0TtIK2cMpfuaEaDSa+Ewo8odyOlTCTtl0qqhNCs23nhaFg6T258WDNKSEyQlJeG3v/0tLrvsMqunQg7DIC0RERGRjiKDtG7OogUYpGWQVrp/s7Mv7ZZJCzS9FqHzcnMmrRFBWhG9Fw6L15eaOcUa16hFx6TG1KOOLcsdEMmXlpaGEydOWD0NcigGackylZWVuPrqq9GyZUusXbs27v4ffvghXn31VRQXF6O2thadO3fGFVdcgdtvvx0ZGRkmzJiIiCg+rwdpuXCY9byQSSvqW++MSj3mLydwKXc+ov6Ujq90DkrG1fJclYxrRF1bpXMwM5PWSQuHsdwBEXDmzBmrp0AOZr+v/skT6urqcP/99+PYsWOy9n/66afxm9/8Bl999RVqamqQmJiIvXv34qWXXsLYsWOxd+9eYydMREQkk9eDtMyktZ5dMmmdVu4g8jnoEQxyYpDWyDILZpU7UJJJG9reiZm0agKjZi4cxnIH5DW33Xab1VMgB7PfWSW5XnV1NaZOnYrPPvtM1v7vvfceFi5cCJ/Ph+nTp+Obb77Bd999hxUrVqBXr144cuQIfvOb37g6c4eIiJzDa0FaLhzGTFrAHotN2bHcgVuCtGrGMqvcgZy5aOGETNpY7LBwmNbxiZwiISEB06ZNs3oa5GAM0pKptm3bhvHjx+Ojjz6StX9jYyOeffZZAMDNN9+MyZMno2XLlgCACy64AEuWLEGrVq2wY8cOrFq1yqhpExERyea1IC0zae13Om1EADMes4+NGeUOGKRVNq5V5Q6UjGNVJm28OWgZ34yFw7RiuQPygosvvhhvvPEG+vTpY/VUyMHsd1ZJrlRTU4NZs2bh2muvxY4dO5CZmYnhw4fHbffVV19hz549AIBf/epXUY936tQJP//5zwGAQVoiIrKF2trasPsM0roHM2ml2SGTlkFa9f3qMa4RmbRmlDtQ05ceWafx2ojaKnn97bJwGIOq5AX5+fn4+uuvMX78eKunQg7HIC2ZoqKiAsuXL0dDQwNGjRqFd955B/3794/bbv369QCAnj17onPnzsJ9hg4dCgD49ttvUVVVpd+kiYiIVIjMpPX7/RbNxBxeCtI6JZPWqzVpWe4g/vhqWVWTVm4fWujRn9MyaUWcUu6A2bZkR9XV1VZPgVwiMf4uRNr5fD4MHToUU6ZMwcUXXyy73Y4dOwAAOTk5kvv06NEDQFN2y+7du5Gfn69tskRERBp4vdyBm2vEOzmTVu/AViRRgNTIQIlXyx1oHV9Ov24od2BlJq1e46odS067WIFdvTNkfT4fA7DkeoWFhVZPgVyCQVoyRXZ2NpYsWaK4XXl5OYCmsgZSOnbsGLx99OhR5ZMjIiLSkdeDtMyktZ5dyh2YnUmrNSgYeYz0mL8dM2mdvnCYmrnEoncmbbz+tDxfNy8cpiefz2ebuZD7denSRViakUgNBmlJlsrKSpw6dUr2/omJicjOztY87pkzZwAAKSkpkvs0LyQWuj8REZFVvBakjcwkDQQCaGxstGXwUisGaaWZnUnrhXIHcvpTs79ZmbR69G3GwmHx+jIjkzbW+HLa2GXhMJY7IK+ZMmUKpk2bhrZt21o9FXIJBmlJlsWLF2PRokWy98/OzsbatWs1j9ucjRPrAje01p+bf2JJRETO4LUgbWQmLdD099uNtXidXO7AbZm0Xi13YOcgrZx+lL5GRgR+lVI6B7WBVjnj233hMKl5mP16EJnhrrvuwvz5862eBrmM/b76JwrRnCUbecEbKnQVbbdfCBMRkf0xSOvekgfMpJVmh0xaBmnjjy9nDmbXpDVz4bB4x8OoOcsNtHp54bB4cyAi8gJm0pIs06dPx/Tp000ft3Xr1gCAmpoayX1CV1JMTU01fE5ERESxMEjr3l+2OCWT1ohSAPHYoSat28odmFW/VQ69grRmlTtQu3CY2jZ2zqSVGk/JwmFysdwBeckNN9xg9RTIhez31T9RiOYFw44cOSK5T/PiYkD4ImJERERWCP2FB+DNIC0zaa0l+nmxFZm0LHdgfZDWzIXD5DCi3IHWdm7PpNXjfawlk1bvcgdyMEhLRrvpppvwox/9yOppkAvZ76ySKERubi4AYM+ePZL77Nu3D0DTReJ5551nxrSIiIiEAoFAVLalG2uzhhJlkro1SOuUTFogOohpRSat08odRB4jPYLMWoLldgrSGpm9qLXcgZ4Lh6ltY1YmrV6UvsZm/ftmlizZ3Y9//GP84x//wJIlS/heJEMwSEu2NnjwYADAjh07UFFRIdxn3bp1AICCgoJgDVsiIiIriGqoM5PWPZySSQuYH6Q1+9iw3IG68eXMQc8grZbSBEb1Gas/MzJp5c5F67hqFw7T8gWIGeUOzO6LKNTdd9+N0aNHC899iPRgz7NKov/zwx/+EJ06dUIgEMCLL74Y9fihQ4fwzjvvAACuv/56s6dHREQUhkHaJgzSWs/tmbQsd6BufDlzMDtIq7RPLZyYSSunrZ0XDtO73AGzbclK7du3t3oK5HL2PKsk+j8JCQm49957AQCvvPIK5s2bh6qqKgDApk2b8Ktf/QpVVVXIzc3FVVddZeVUiYiIGKT9P1w4zHpezKRlkDb++ErnoHZcI/t2Qyat2gXA9Fw4TE07NfspwQAs2VliYiJ+8IMfWD0NcjnmaJPt/fznP8emTZvw6quvYv78+Vi4cCFatmyJM2fOAACysrLwwgsv2PYiiYiIvINB2ibMpLWeHRYOMzuwx3IH6vtV8rgUq8odyG0XbyylfUnNSUsmrZkLhxnxXmS5A3KrjIwMPPvss0hPT7d6KuRyDNKSIzz00EP40Y9+hGXLlqG4uBhVVVXo2rUrhg8fjjvvvJM/OyAiIlvwYpCWC4fZ80tiO5Q7MDKAzXIH6sY3clwz6seK6PFTf6V96ZFJq2YsIzNpWe6ASGzDhg3o27cvkpOTrZ4KeQCDtA4wd+5cLFiwANnZ2Vi7dq3i9rt27cIbb7yB9evXo6ysDPX19cjKykJubi7GjBmDK6+80pLC14WFhSgsLJS9/xVXXIErrrjCwBkRERFpU1tbG7XN7UFaZtLaM5PWDuUOzM6k1TtIq8dra8cgrZU1aZUyI5NWj8W6rMykjcfMhcO0YgCW7Khnz54M0JJpGKS1uU2bNmHRokWq28+bNw8LFy6MulgqLS1FaWkpPv74Y+Tn5+PJJ59Er169tE6XiIjI00SZtH6/34KZmMdLQVpm0kozO5PWiHIHke3dmklrVJBWDiPKHSg5pno9D6tq0opYtXCYlv2Ujk9klRYtWqBt27ZWT4M8xJ5f/ROApkDqlClThBd8csyePRvz588PXiglJiaif//+GDhwIDIyMoL7FRUVYeLEiThw4IAu8yYiIvIqL5Y78FKQ1smZtEZnwpmdSctyB+rGVzoHJePaqdyBnguH2SmT1u4Lh7HcAbnN8OHD+X4iU9nzrJKwfft23HjjjTh69Kiq9mvWrMHSpUuD90eNGoVPP/0UK1euxLJly/D555/j0UcfRUpKCgCgoqIChYWFpv2UhYiIyI0YpG0iyjh1A2bSSrNDJq0XgrRax5fTr5ELh5nVp54Lh+nRj5ZxtWbSGrVwmBH0CsAyqEZ66N27N5544gmrp0EewyCtDa1evRq/+MUvUF5erqp9XV0d5syZE7w/fPhwPPPMM8jMzAxuS0pKwoQJEzB//vzgxVVxcTHeffddbZMnIiLyMAZpmzCT1np2qEnrtHIHTgjSurHcQSxKs1jVsCKTVm3g1IkLh8nFwCrZydmzZ1FcXIwLL7zQ6qmQx7AmrY2Ul5fjqaeewqpVqzT18+GHH+LgwYMAmi6cZs2aJXmSPGzYMEyYMAHLli0DACxZsgRjxozRNL4XueFiNDI7yK1ZUERERqquro7a1qJFi5h/J9z4+Xvu3DlX/G2MJArCBwIBWz7XyHO/hoYGQ+cp6ruxsdGwMUUBWa3PURRg0jr/yMCTkmMi2k/p+030eRLvOEkdWzUBuLq6urBsc1HdX6VzqaurC2uj5DjFew6i4yV6zUQBxeZ95PYhejze6yV1PETb6+vrUV9fL/m+FpWiqK+vF/Yltc3n88UNUCupZ6tXxi4DvqRV83oCdvz77iZuPAfWikFam3j++efx4osvoqqqKritV69eGDlyJBYuXKior/feey94e+jQoejSpUvM/UODtMXFxSgtLUW3bt0UjelljY2N2Lhxo9XT0F1RUZHVUyAicpytW7dGbTt69KiivxNO+/w9cuRI1LZt27YhLS3NgtkYa/fu3VHbDhw4YMvzgMgLnbNnzxo6zx07dkRtO3z4sGFjil6L8vJyTePV1taG3a+pqdE8/8gL/KqqKtl96nFMmxM3Qu3atQsdOnSQbHPixImobZs2bYob+BK127hxI1q2bBm8f/LkSeE+Uo4dOxa1bcuWLTh+/HjwfmlpadQ+Up+7olJyoYFB0fvq4MGDUX3V1NSE3a+urg7uI1rnY9euXWjXrl3U9manTp3Cxo0b437GhD7vZsXFxTh8+HDU9u3btwfnH2nnzp1R7/dz585h48aN2L9/f9T+os/5Q4cORW07d+5c1Da5vw49efKkrPIxovdQJJbwIy1GjBhhy7/rXuC0c2Aj2PP3WR60ePHisADt+PHjsWLFCvTo0UNRP4FAAOvXrw/ev+SSS+K2ycvLCztRW7t2raIxiYiIqIko40JUDsBNRBfVbs2EMHtxLC3sUJPWyGPjlHIH8cZQuq/TFg7T2kZtuQM9a9KK2hhVk1bP4KKe718z/n3b9bOUvOdHP/qR1VMgD3P3VYMD5efnY8aMGRg0aJCq9gcOHMCpU6fC+pMjLy8v+M3y5s2bVY1NRETkdaKfwzNI6x6iIKBdFw4T/czeSGYHsJ26cJgSdqpJqxc9jrGWmq9G0asmrZp99V44TMl7JrLcgdI5ENnNZZddhtGjR1s9DfIwd181OMigQYMwbtw4jBgxQtMfsb1794bd7969u6x2Xbt2Dd4W/cSFpCUkJGDAgAFWT0OzhoaGsJ8X5Ofn2/bCk4jIrkR/Q3v27ImCggLJNk7//P3uu++itnXv3j3mc3Yq0c/w4r2+Vgn9iTkAJCcnGzpP0c/Iu3btatiYKSkpUds6dOigabzIf3etW7fWPP/k5OSo+3L7PHv2bNS2Ll26KJrTV199FbUt3nu2bdu2UdvkjCn6OX9+fj5at24dvN+mTRtFfYvKMvTp0wfnnXde8L6S90JWVlbUttAgY2i/zbKzs6P6ihwz9HX95z//GdXH+eefH9ZH5PVeamoqCgoKhKUSQv8dhS4E3ax///747LPPorbn5eVhwIAB+Pjjj6Mey8nJCdbcDH1OBQUF2LJlS9T+onFFJfVEX0p26tRJ1vVtWlqarC81MzIy4u7j9i9HSX9//OMfcccddwg//8g4Tj8HjrR582bNX4rz08smFixYoEs/oSfICQkJwj+oIqEnQKKTbIrNjScCLVq0cOXzIiIykujErGXLloo+T532+Rt5oQ80BT2c9By08Pv9tnyukeUOjH5NREGYpKQkw8ZMSkoSbtcyXmRGYEJCgub5i46L3D5FF6pKPx9E+yp9Xj6fT9b+ooWKI+cbeTzi9S3qMzExMayNqL3UcYp38S/nOUhp3kfLcRDNL/T5SvUt9T6T6rNFixbCrObIY9tMNG5CQkLUuKKsWrkBF1F/UvsR6a13794x60aTOZx2DmwEfsK5TGgh9datW8v+I5aamirsg4iIiOQTlTuQCia5hehk2q2rIYuC8HYNGJhdk9bscgei427HcgeiYLna+eg1J6XlDuSOKedn8kr7VtOnUvHay6lJq6YPUXut/WgRq2+tx5jlDsjulK4FRGQUb4eoFbr88suFP0FRomfPnlizZo1OM4oWuqJm5M/cYgnNgolc6ZOIiIjkYZC2CYO01rPDwmFGHhun1qS1w8JhShm9AJXSseUEadUuHKZHPV4ratIqbaf0eco9xmYEc41axI68q2PHjrYsW0TeZM+zSlIt9OJQyYlx6AWWWy+siIiIjMYgbRO3nkuIFkSza+00ty8cJjrP1focI9vrEWS2Y5DWqIXD1Ixl1HtESb9mZNLKnYPa42X0wmFy+9byntVzPwZpSa7MzEwsXrw4qn44kVWYSesyoRcKSk5UQy+m3H4xSUREZBQGaZuIgpluwExaacykFXNDkNZN5Q7i9WdUJq2oBq3RlGbSstwBec25c+eQlJTE9yfZCoO0CixfvlzzRYfRRZBDVxoNLX0QT2iJA36LREREpI6oZJDbg7SiTFJm0lrPDjVpGaRlkNaIIK3aucgh95gblUkrIqfcgZb2cphV7kAOZtKSXkQLnxJZjUFaBTp06GD1FOJKS0sL3j579iwCgYCsP1JnzpwJ3k5PTzdiakRERK4nyqR1+0WAl8odMJNWmlGLXEkxotwBg7Tix+0W8NI7k9YMcsfVszyEnrVs5e6rtdwBa9KSWfr06WP1FIiE7HlWSap17NgxeLuhoQGVlZWy2h09ejR4OzMzU/d5EREReQHLHTRxa5DWyZm0Rme4MZNWzIlBWrVj2qncgZ4LhynNpLXLwmFK2+hZHkHLvkRmmDlzptVTIBJiJq3L9OjRI+x+aWkp2rVrF7ddWVlZ8HbPnj11nxcREZEXMEjbxK1BWmbSSjM7k9arQVozeK3cgR1+ou/UhcOUzEMvzKQlLbKysjBx4kTccMMNVk+FSMieZ5WkWnZ2dli5gpKSElnttm7dGrzN1H8iIiJ1GKRt4taFw0TPi0Fa6f6NPDZmlDvQY/5OzKS1Kjgsl5HlDtyUSWvGwmEsd0BO8vLLL6O8vBx//vOfXX9uRs5lz7NK0mTw4MHB2+vWrYu7/9atW1FRURG8P2TIEEPmRURE5HYM0jbxUiatU8odMJM2vshjZHUmrZz+1Ozv9IXD9A6C6lkHVm0fVmTSKsFyB+QG7du3t3oKRHExSOtCI0eODN7+5JNPUF5eHnP/119/PXg7JycHeXl5hs2NiIjIzbwYpBUFKb0UpGUmrXT/rEnrjkxauwVp442hpT+5fdkpk1ZtOz3KHej9JYSaMYnkGjhwoNVTIIrLnmeVpMnIkSORlZUFAKitrcXMmTMlL5Y+//xzrFixInh/4sSJpsyRiIjIjbwYpPVSJq2TFw6zIkhrZDDFjHIHDNIqG9OIwLmIloXD5PSnpS+1fcjNpJVqq7SdXuUOtParZl+WOyA1rr76anTq1MnqaRDFxSCtC/n9ftx7773B++vWrcPkyZNRWloa3FZfX48333wThYWFwQuO3NxcjB8/3vT5EhERuUVtbW3UNgZp3YOZtNJEwRlm0jozSKt1zFisLncQrz87ZtJqbafHwmFy34tasnP1fJ8xSEvNLrvsMtx+++146aWXrJ4KkSzRZ9XkCtdeey02bNiA5cuXA2gK1I4cORJ5eXlITU3Frl27cPz48eD+6enpmDt3rvBCi4iIiOQRZdL6/X4LZmIery8cxkxa6f6dVpPWjUFauf0qeVyKEeUO5DD6J/ZmZtLq2dYuC4cRWaVnz5745JNPrJ4GkSKMyLnYI488goyMDCxevBh1dXVobGxESUlJ1H45OTmYO3cuevXqZcEsiYiI3IPlDpowk9Z6bs+kZbkDdeOrGdfImrR69Cm3XaztSvoW9aNXJq0bFw5juQOySnV1tdVTIFKMQVoX8/l8mDZtGsaOHYu33noLX3zxBQ4fPozq6mqkpaWhb9++GD16NMaOHev6LB8iIiIzeDFI66WFw5hJK80NC4dFPgc95m/HIK2datLabeEwvdoo7cPsTFot7YzqU8+gL4O0BAAPPfSQ1VMgUoxBWpsbN24cxo0bp6mPnJwczJgxAzNmzNBpVkRERCTixSAtM2ntmUkbGaSwIpOW5Q60vQ5OC9LKoUffRi4c5sZMWrn7s9wBuUlubi5uvvlmq6dBpBiDtEREREQ6YZC2CYO01nN7Jq0R5Q4iubXcgVELh9mp3IGS/oxoo7QPI8oVNLfTI7DrtHIH5F333XcfUlNTcfvttyM1NdXq6RApxiAtERERkU4ig7QJCQm2DeLpxUtBWpY7kOb0TFqj5u/EIK2RC4fJaaPkcakx7J5JK2cuZreJF9TVMheWOyCzzJkzh68/OZq7rxqIiIiITBQZpHV7Fi0gDtKKgpluwExaaU6vScsgrfTjRmbS6lHuQO5cpLbHC7Aa8T5Qm11qp4XDRH2b/WWNFAbpvIuvPTmdPc8qiYiIiByotrY27L4XFuZkJq0zMmmNrhVpdnBG73IHbg3SqmGnmrRGlFDQg96ZtM1t9Myk1XPhMLPei8ySJS2uu+46q6dApBmDtEREREQ68WImrShI6dYgLTNppTk9k9ao+VsdpLVbJq1Sepc7cGImrZx2dl84jOUOyGj9+vXDU089ZfU0iDRjTVoiIiIinXgxSMtMWmdk0loRpDW7Ji0zaeOPr3QOSsa0U7kDKXq9J43KpJUzlty2etSYjTWGlRm38TBI6x0vvfQSzj//fAwdOtQT51zkfgzSEhEREemEQdombg3SOjmTFmgKoBgVvBAFZ4w8NlLPTy2nBGm1ji+nXyPLB5hV7kDta2d1Jq3WhdbkCgQCmrJeY/WrBbNkSanLLrsMOTk5Vk+DSDf2PKskIiIiciAvBmlFwTK3Lhwmel5OCtIamU1rh0xaLwRpvVbuQC0l5Q7U9GWnTFo92sfbj+UOyK46duxo9RSIdMVMWnKEQCCAlStX4u9//zu2bt2KmpoatG/fHgMHDsStt96KAQMGWD1FIiIiTwZpfT4fEhMTw7JnvZRJ65RyB0DT/I2ar9mZtF4odyCnPzX7WxmktePCYVoDrHLolUmrpI3aMgly99UzqKo3Bmm9YdCgQUhNTbV6GkS6sudX/0Qh6urqcOedd+L3v/89/v3vf+PMmTNISkrC4cOH8e6772LChAlYtmyZ1dMkIiLyZJAWiA5UeilIy0xa6b6dtHCYHYO0Rs3JC0Fat2bSmrFwGMsdkBPk5ORg3rx5Vk+DSHf2PKskCvHcc8/hk08+QWJiIn73u99hw4YN2LBhA95//30MGzYMDQ0NmD17NjZt2mT1VImIyONqa2vD7nslSBtZl9atQVonLxwGGBukNXvBIAZp1Y2vhtuDYm7PpDUysG/XcgfkXitXrkRDQwO2b9+OQYMGWT0dIt0xSEu21tjYiNdffx0AcPvtt+PWW29FSkoKAOC8887D/Pnz0blzZzQ2NuKtt96ycqpERERRmbR+v9+imZjLK0FaZtJKs+LYRAZrtDw/o+ZvxyCtUQuHOTWTVs1iXW7IpFUSUGW5A7KLbt26ISEhwbZ/e4m04jubbO3YsWM4ceIEAKCgoCDq8ZSUFOTn5wMADh48aObUiIiIoni13EFkkNZLC4cxk7aJ2Zm0QPRzZCZt/PHlzMHu5Q7UzkUON2XSKqVm4TCj5qIVg7Tu1a1bN6unQGQoBmnJ1tq2bRv8I/vdd99FPV5bW4utW7cCAHr06GHq3IiIiCIxSNuEmbTW82ImLYO08ceXMwcjg7R60LJwmBMzadWKV+5Aj/ei3uUOWJOWYunXrx+ysrKsngaRoex5Vkn0f5KTkzFkyBAAwJIlS/Dqq6+ipqYGAHDgwAFMnToVpaWlaNOmDW655RYrp0pEROTZIK1XFg5zUiatKJDhtkxaPcsdMEgr/bier6Mdyx3E68tqTlo4TMSK/hjIdZ+uXbti3rx5fG3J9RikJdt75JFH0LlzZ9TX1+O///u/8YMf/AAXXXQRLr/8cnz88ccYMmQIXnvtNXTv3t3qqRIRkcd5NUjLTFr78UImrRPKHWiZo1FzUnqcnFjuQE96ZNJ6feEws9nhfUP6eOedd3D27Fns3LkTl19+udXTITJcYvxdiLSprKzEqVOnZO+fmJiI7Ozs4P0ePXpg1apVuOOOO7BhwwYEAgGcPXs2+HhjYyOqq6t1nTMREZFSgUAgKtOSQVp3EQUi7RoMsEOQ1uxMWjsGae2YSatmXLVjaSlNIMWNmbR2WjhMbv9KsrRZ7oDUOu+889CqVSurp0FkGgZpyXCLFy/GokWLZO+fnZ2NtWvXBu8XFRWhsLAQFRUVmDFjBsaMGYO0tDSUlJTg6aefxpdffombb74ZixYtwqBBg4x4CkRERHFFZtECDNK6TWQQ3q6lDgB7LBxmdk1aLc/PqExgOwZp7VSTVo9yB2r6lepP7jFX+rpamUkrV6zMWy0Lh9m9fALZW69evayeApGp7Pn7LKL/U15ejptvvhkHDx7E008/jUmTJqFDhw7w+/0oKCjA4sWLMWzYMNTU1OD3v/+9a1eTJiIi+6utrY3a5tUgrVv/HkcG8uxa6gAQz83ILEErMmmdUO7AS0FaOYzoW+vCYXrTe+EwOZm0sRi1cJiS+ZgdWGUg1x0GDRqE1q1bWz0NIlMxk5YMN336dEyfPl1V2yVLluDs2bO48MILccUVV0Q93qJFC8yYMQNffPEFSktL8eWXX2LYsGFap0xERKSYKJPW7/dbMBPzMZPWfryYScsgbfzx5czByExaqxcOE3FDJq0VC4dpybiV6k+vcgcM0jpXUlIS6urqkJ2djWeffdbq6RCZzr5f/xMB2LhxIwDgwgsvlNwnNzcXaWlpAIA9e/aYMi8iIqJIXi53EBmsdGuQ1umZtG5bOEzPcgcM0ko/blXQzog+jZijHv3JzaRVwoyFw5TMQy8MwLrbxo0bcezYMezfvx+DBw+2ejpEpmMmLdlaZWUlgPgnBs0ZPKKfmhIREZnBy0FaZtLajx0yaVnuQP8grdbx1fTrxHIHavu1eyat3RYOY7kD0lvXrl3Rpk0bq6dBZBn7fv1PBKBTp04AgA0bNkjuc/jwYRw7dgwA0KNHD1PmRUREFIlB2v9wa5CWmbTS7JBJ64UgrRlZkWqPo1XlDuS2U9uf0mOudyat2rZ6LhxmBiVBXzl9kTMxQEteZ98zSyIAw4cPBwB8//33+Oyzz4T7zJ8/HwCQlpaGH/3oR6bNjYiIKBSDtP/BhcOs54VMWj3LHRgVZNYzkCzqT+/9AfuXO9AyRrz+5PZlVCZtvLZ2WzhMy/h26Y/s46677rJ6CkSWs++ZJRGACRMm4LzzzgMA3HPPPXjzzTdRU1MDADhy5AhmzZqFFStWAACmTp3K1R+JiMgyDNL+h1szaVnuQJoVmbReLHfg9Jq0epQ70HvhsHjMzKS1cuGwZnLfM1aVO2CQ1l0GDRqEhIQEXHHFFXjooYesng6R5ViTlmytZcuWWLRoEf7f//t/2LNnDx566CE8/PDDaNOmDU6dOhU8Ybjjjjtwww03WDxbIiLyMlFddK8EablwmP14MZOWQdr448uZgxF1Y9X2bcbCYWr6dkImrdLyBbH2MyOTluUOvOmrr77i60UUgkFasr3u3bvj73//O9544w28//772LlzJ6qqqpCVlYWBAwfipptuwkUXXWT1NImIyONEmbR+v9+CmZiPmbT244VMWj3LHTBIq6wPo8ZSM7bW42SnmrRmZtKauXCYnuSMyaCfc/C1IgrHIK3LzZ07FwsWLEB2djbWrl2ruP2uXbvwxhtvYP369SgrK0N9fT2ysrKQm5uLMWPG4Morr4y6MDNCSkoKfvWrX+FXv/qV4WMRERGpwXIH/+HWIC0zaaWJ+jb64tuJ5Q6UsEsmrZ5jGVHuQO5cpLaH9mf3TFol7LRwGMsdkMgvfvELq6dAZDsM0rrYpk2bsGjRItXt582bh4ULF0ZdaJWWlqK0tBQff/wx8vPz8eSTT6JXr15ap0tERORoDNL+RyAQQGNjo62DmGo4KZNWFMgwu9yB2Zm0TgnSBgIBUzJElfQb63Era9Kq6VNvojnoXRpAbiatmkXAzHjPxMJyByTl7rvvtnoKRLbDIK1LlZaWYsqUKcILRjlmz56NpUuXBu8nJiYiLy8PKSkp2LVrFyorKwEARUVFmDhxIt58801kZ2frMnciIiInYpA2XENDg+uCtMyklWZFJq0Tyx00j2VWkFaPTFUrA156Hye9MmnlzEHOfOTQq45uZBuWOyCzXXjhhfD7/aisrMQ999yDSy65xOopEdkOg7QutH37dtx+++04evSoqvZr1qwJC9COGjUKs2bNQmZmJoCmi9CVK1fiscceQ3V1NSoqKlBYWIi3336bfxCJiMizvBykFWWU1tfXu+75OymT1g4LhxkdxNaz3IFRNXW11Gm1S7kDKzNpRczI6ozXRmsmrZqM2HjjSu2r9PVjuQMyys9+9jM8+uijVk+DyNYYpHWZ1atX4+GHH0Z1dbWq9nV1dZgzZ07w/vDhw/HMM8+EnaQmJSVhwoQJyM7Oxq9//WvU19ejuLgY7777LsaMGaP5OTiRG2rvRV54Rt4nIqLYampqorYlJCTE/Rvhhs9fUTCrpqbGdUFaUSatk84BamtrDZuvqN+GhgZDj48ok1bteKIvWQKBgCHzr6urkxXIE42t9DmKgs9KXxefzydrf9FzqqurC2srCtLG6ls0//r6+rA2So6T6PM1dE6ix0XHSxR8bt5HzTFvnm+88UV919XVCds1Hyepx6Seg2h/qeckh9wvh+Rm9xr5ZRMZq127do76m0nGc8M5sN4YpHWJ8vJyPPXUU1i1apWmfj788EMcPHgQQNNPF2fNmiWZRTBs2DBMmDABy5YtAwAsWbLEk0HaxsZGbNy40epp6K6oqMjqKRAROcqOHTuith06dEjx3wgnfv6ePn06atv333+Ptm3bWjAb41RVVYXdr62tte05wJEjR6K2bd++3bDsX9EvuLZu3RoskWWEyMBqVVWV6tdj//79UdsqKio0v74nT56M2vb999/L+gKjrKwsatuePXsUzWnXrl1R2w4cOBCzj8gvnGpqamSNWV5eHrVt27ZtYcF0pX03X5eE2rlzJ9LT04P3Rc/x4MGDwn4PHTokORbQVDIu0r59+6L6Onv2bNj90OsBqeNw7ty54P3I9251dTU2btwoHH/v3r3/v717D4+iPvs//tmQhAQCSSCEQziFQwISRNECYj2AcmgRUBSxVcRatWqLVi4s9rG1xdpWqtWiiFZL7U+LCliqVH14PIBUHyy2iuUgJ0EwoGAQEAmBHH9/5Ml2D7O7s7uzO7Oz79d1ebn73Znv3LsJk9l7772/3rlD/bv+4osvgsY//PBDff755yHnDEx2VldX69///rc+/vjjoO2Nfo/37dtnKqFi9DM0cujQIVPnJzPfFvV9reEcnTt3duzfTDhDKl4DW825jbRg2qOPPqrx48f7JWj79OmjG2+8Meq5XnnlFe/tkSNHqlu3bmG3nzZtmvf25s2bDS8CAABIB0aVeEa9Wt3I6I21G6shApMaTm53kA4Lh1nZ7iDZPWmTFVMy2x2YYcXCYZHmtINVMSSiv6zb2gO47fmki7POOkv9+/e3OwzA8UjSusCiRYv8KjumTp2qZcuWqVevXlHN09TUpHXr1nnvm2nkXV5erk6dOnnvr1q1KqpjAgDgFkZf4XPb1/1DSdckrZOTBUYJ0kQmsxKV5AwncH6rk7RWsDpJa4Vok7RmxZJQtSJJG81+sSzClcyetPFua3Y/KxYOs5pdC5Ehce644w6NGjVK3/72t3X33Xfz8wVMSI/yjjRRUVGhOXPmaNiwYTHtv2/fPh09etRvPjPKy8u9XzvZuHFjTMdOZRkZGRo8eLDdYcStoaHB7+sFFRUVjq4QAgCnee+994LG+vfvryFDhoTdzw3n386dOweNlZeXq3v37jZEkziBldFt27aN+PO1S0lJSdBYnz59EhZvYWFh0FhFRYXh74ZVWrduHXQ/1ucXOJfU/Hsd7+tl9LoMHjxYubm5Efd96623gsb69esXVUzHjh0LGuvatWvYObKzs/3u5+bmmjpm165dg8YC4w18nXNycsLOvWbNmqCxwN9joxYAJSUlhvMazeebgDQ6Z/Xu3Ttorry8PL/7Ho/Hu01xcXHQHAMHDlRZWZn3fuBr3PK7a/R3pLS01Dt3ly5dgh4vKytTx44dg8YHDRqkzp07a8OGDYbPKfCDnHbt2mnIkCGG7QTatWsXNNajRw9TH0QanYuMdOjQwdTfPqPXN5CZf19IvLlz5yb8GxVIbW64Bva1cePGuL+1RJLWBYYNG6YpU6boggsuiOvTqd27d/vd79mzp6n9fC9mjPp5pQM3fp21VatWrnxeAJAoRhdlOTk5UZ9LU/H8G+qNeqo9j0iM2h049TkaxZWRkZGweI2uQbOyshL6+hi1O4j1eEaJhMzMzLjjN5rX7O+NFTEZ/duM9vfA7PaxxOvxeMI+bub3OJrjGo35JmmNfo+N5gp1TLNzBG7T8joYJSd89w31+xTumEZzZmRkGFY1h9reSDTbmXmPmpGRYSqhZ+a4JAadIfDDCCASJ19XJUt6P3uXWLhwoSXz+H5qmpGRoaKiIlP7+bY7MNPIHQAANzLqSZsu7Q6MLqjduIJzYAsHJ1d7GCUpEtmT1mjuRCdKEt3uwIk9aZNxfCvbHQTOZXe7g0TNFek1M9tmId55Yt020vah/n2YOYbZOKzeDva68sor7Q4BSEl8xAQv31U727Zta/rC2vfrPkYrfwIAkA5I0vpzY5I2MBHp5GotJyRpE51MCXyO8Tw/JyZpzc5n9fFjXTgsEUlaI5HmDCdSjGbnclJPWqsXDrMzCWrVsUnk2qt79+66++677Q4DSElU0ibJ6NGjtW/fvrjmKC0t1cqVKy2KKNjJkye9t3Nyckzv5/s1htraWktjAgAgVZCk9ZcOC4eRpP0PoyQRlbTWV9KmepI2WrEkfkPtF2482hgixRTtHFYkh6PZNtkLhyW7spkkbfLdd9996t69u7766itddNFFhj2qAURGkhZevm8uo7mo9n1j5saqGQAAzDD6oDKdk7RuvCag3UFodlTSkqRNzPGtqHa1au5kJNucVElrRYsLs8cKtZ3Z3xnaHcBX9+7ddcUVV9gdBpDynPvxP5LO941GNBfxvm/C0uXNKAAAgYwqadNl0QyjZKUbk7RU0oZmRyWt29sdJCqmaBOBqdjuwE2VtPG2O7Bin0Qkj42QgE1dVM4C1qCSNkmWLFkS99f+Er3KXW5urve2b+uDSHwrh1q3bm1pTAAApAraHfhzY5KWStrQUr2SNlELn9mdpLUiCRrPsZLR7sDsfmYkq5I21n0TuXBYOPH+LtLuwN3atWunM8880+4wAFcgSZsknTp1sjuEiPLz8723q6ur1dTUZOoP3LFjx7y3CwoKEhEaAACOR5LWnxuTtKlUSWt0Dee2SlraHSTm+E5fOCzSMcKJ5fWwopI2ljnNbmvVwmHh2h3EM7cd7Q5I0iZWdna2SkpK9PHHHys/P19PPfWU2rZta3dYgCuQpIVX586dvbcbGhp0+PBhdejQIeJ+VVVV3ttFRUUJiQ0AAKcjSevPjUlaKmlDS1Qlaji0O0jM8Z3ek9bplbSxbN9y3GRV0tLuAPGYMGGCnnnmGX3++efq0qVL2rR2ApLBuR//I+l69erld7+ystLUfnv37vXeLi0ttTQmAABSBUlaf/G2eXKiVKqkdUJP2lRqd0CSNvTjVlbSRsvqKtZkVNJanUR2QiWtk9odOPF46aZ3797KyclRz549SdACFnPulSWSrqSkxK9dwZYtW0ztt3XrVu/tAQMGWB0WAAApIZ2TtOmycBiVtKHZUUlLkjYxx3d6u4NELhzmpkpaM8eLF+0O0lNgcRcA65CkhZ/hw4d7b69duzbi9lu3btXBgwe990eMGJGQuAAAcLp0TtKmS7uDVK+kTeRXlu2opE2Fdgfx/BzsStLGKhFJ2mS0O4hUBev0StpY90vVdgckYO13zjnn2B0C4FrOvbKELcaOHeu9vXr1ah04cCDs9s8++6z3dt++fVVeXp6w2AAAcLLa2tqgMZK07pLqSVoqaUNzayWt2XnDPW5nUiwZ7Q5ikahK2ljY2e7AbFKVxGrqKisr06xZs5Sbm6tWrVrpxz/+sYYOHWp3WIBrOffKErYYO3asiouLJTW/2bzjjjtCvsl66623tGzZMu/96dOnJyVGAACcyKiSNl16taVDktYoCUm7g/Bzp1JP2kQlme1O0lrRTsDp7Q7MxmJmPrsradN54TDaHThTp06d9Nvf/lYHDx5UdXW1fvWrX9kdEuBqJGnhJzs7W7NmzfLeX7t2ra6//nq/RcTq6+u1dOlSzZw509ubraysTFOnTk16vAAAOAXtDvy5beEwOypF45EOC4elQrsDJyZpU6knbSxzRjtfLJJZSZvshcNCHSPWeaNhVQKWJK11+vfvL0lq06aNWrdubXM0gPsFX1Ej7V1yySVav369lixZIqk5UTt27FiVl5crLy9PO3fu1KFDh7zbFxQUaP78+YZv0AAASBeBSdpWrVqlzRvFdKikNUo6U0kbfu5UqqQlSRv6cSt/jtH+jGJtdxBrzOlUSZvoY8QyH5yHhcGB5CKrBkNz585VYWGhFi1apLq6OjU2NmrLli1B2/Xt21fz589Xnz59bIgSAADnCEzSpksVrWScrHRbkpZK2vACkz7JeG3SMUmbzOOHm8OqYyW73YFVMTqtkjYWtDuAGWPGjLE7BCCtkKSFIY/Ho9tuu02TJk3S888/r7ffflv79+9XTU2N8vPzNXDgQI0fP16TJk1Km357AACEk85JWippncfuStpkJElod5CY48eakEuFdgeRWJHwtKOS1q6Fw6xGuwN7XXjhhZo0aZJuu+02ZWRk6Ec/+hGLhAFJRpLWxaZMmaIpU6bENUffvn01Z84czZkzx6KoAABwJ5K0/tyWpKWSNjwqaY1ZUckaab5opVJP2lilUyVtLPtZtXAYCVN3KSgo0MyZM3XTTTepurpa+fn5docEpB3nXlkCAACkkNraWr/76Z6kZeEwe9ldSZtqSdpE/XydWEkb7XHtTLIle+GwZFXSWnl8uxYOswuJ4cTp27evpOa/6SRoAXs498oSAAAghQRW0qZTO6B0qKSl3UF4diT2aHeQmOM7qZI21iRtNK+THZW0iaiOjWbbRCd1Y+HxeCybkyRtbM4880y7QwDSHklaAAAAC6RzuwMWDnMeoyQFlbShkaSNbo5Yj+XEdge+7KqkjXfhMKuPaXZbs1WtVv6cScBaY+DAgX73c3JydO6559oUDYAWzr2yBAAASCHpnKSlktZ50qGSNvAYVNJac/xELhyWiDnjPYaTKmljXTjMin2irbwlWZrarr32Wt16663KzMxUbm6uFi5cqOLiYrvDAtIeSVoAAAALkKT157YkbapV0qZDT9rAY1BJa83xE5lwt6LdgRnJrqSNd454K2mj3S9c9a1VLRWiZWWbBRLIkXXs2FG/+93vdOTIEX311Vf6zne+Y3dIACQFX1EDAAAgaiRp/bktSUslbXhOqKQlSWvN8Z3Uk9aI1ZW0kaRCJa0VPWbDiec1tjrpS5LWGr169ZIktW3b1uZIAPhy7sf/AAAAKYQkrT+jpGYqo5I2PCf0pKXdgTl2JmmjZfXCYZHmsyLRn+xK2lj2C/eamf05kghNbSNGjLA7BAAGnHtlCQTYtWuXfvrTn+qCCy7Q4MGDdeaZZ2r69OlasWKF3aEBAJDWSdp0WDjMDZW0iaw4DEyQJiOBY2W7g0Ql4e1O0iYq0Wx2u3graZ3Q7sBJlbSh9kl0NbEVrREiod1B4nzrW9/yu3/xxRerTZs2NkUDIBzaHSAlvPjii7rzzju9b4Dbtm2rr776Su+++67effddvfnmm7r//vsdXdECAHC32tpav/vplKRNh3YHVNKGF5jEsaOSlnYH1hw/kQk/J7Y7sOr5NjU1yePxJLSSNpbWAXYvHEa7A3tlZmbqoYce0rFjx7Rq1SqdeeaZevDBB+0OC0AIzr2yBP7P+++/rzvuuEN1dXX65je/qTfffFPvv/++1q1bp2uvvVaS9PLLL+vZZ5+1OVIAQDoLrKTNzs62KZLkI0nrPHa3O7CjJ22qtDswG6dTkrROb3dgdr9w4+HmToVKWiv3IcHpLoWFhSoqKtKKFSt07Ngxvfnmm+rdu7fdYQEIwblXlsD/+fnPf67GxkZNmDBBDzzwgLp27SpJKigo0Jw5c/SNb3xDkkjSAgBslc7tDtIhSeuGdgduq6S1st0BlbShH3d6uwMnVdLGOp/ZfaxaOCzaGGl3kLoOHTpkdwgAokC7Azjahg0btG3bNuXm5urOO+80/IN7880367TTTlNBQUHyAwQAQM3Jr8AEWLonaVk4zF52V9LS7iD0HG5N0pqRrHYHqVpJa2bfQLEkUJO5cJgd7Q7SVZcuXbR//36/sdmzZ9sUDYBYkKSFo73++uuSpLPPPlsdO3Y03KasrExlZWXJDAsAAD+BVbQSSVoqae1ldyUt7Q5Cz5HMJK3ZecNJxXYH0Yg0n9nnb0UlbayxWFUZ6xZmKrTd+BrceOONuu+++1RdXS1Jys3N1Q033GBzVACiQZIWjrZ161ZJ0sCBAyVJK1eu1AsvvKBdu3YpIyNDQ4YM0Xe+8x0NGDDAzjABAGku3ZO0RslKtyVpqaQNz45KWiuPkaifr9VJWiuOn6jjJqLdgRmJrqSNZZ54t7di30QvHBbN3PEeP1HHdJtTTz1VK1as0M9+9jM1NDTopz/9qfr06WN3WACiQJIWjrZr1y5JUvv27XXzzTfrjTfe8Hv8448/1t/+9jf9/Oc/1+WXX25HiAAApH2Slkpa50nHStqWOKxKTNpdSWt2PquP7/SetPEsHBaLRFTSptrCYU5qd2DFPG6tpO3WrZuGDx+u0aNH2x0KgBiRpEXCHT58WEePHjW9fWZmpkpKSiRJX331lSTp8ccfV1VVlaZOnarrr79eXbt21fbt2zVv3jy9++67+tnPfqaePXtqxIgRCXkOAACEU1tbGzRGktZdSVoqacNzQk/aljhiSZ47MUlLT1rrFw6L9HokqpI2ErNJUzcvHGaWFX1rU70aNzc3VzU1NUHjLe+hAaQukrRIuEWLFumJJ54wvX1JSYlWrVolSd5+OlVVVbrqqqv005/+1LtdRUWFFi1apGnTpunDDz/Ub37zGy1fvtza4AEAMMGokjY7O9uGSOxBktZ50qGS1ug5xlodR5I29ON29qQ1ksiFw+LZJ1wlrdmFw6ysio114TArtg/czsrq51RPsFrhrLPO0urVq/1e10GDBql79+42RgXACs69sgR8ZGdn69ZbbzUcv+mmmyRJmzdvVmVlZbJDAwCAdgcGSVqj9gCpLNXaHYSqMk0Up1TSkqS17vjRHtNJ7Q6i4fZK2niOZ5VkJ2Ddnsg99dRTddVVV3nvZ2Vl6YEHHrAxIgBWoZIWCTd79mzNnj07pn3btm2rI0eOqLy8XO3btzfc5swzz/Te3r59u3r06BHTsQAAiFW6J2lZOMx57G53YFdP2lifI0la84/Hc6xktTuws5LWzBzJrKRNlYXDzErUv8tU0qtXL/3yl7/Uaaedpj179ujiiy/WqFGj7A4LgAVI0sLRioqKdOTIEbVp0ybkNr7J2xMnTiQjLAAA/JCkdX+SNtUqae1ud5CMBLaV7Q4SlYS3O0lrdt5wjzstoWX1wmGx/M7EktC0Iga7Kmmd1O7A7DGTdaxEKigo0JEjR4LGe/bsqTZt2mjWrFnJDwpAQjn3439AUllZmSRp//79Ibf58ssvvbeLiooSHhMAAIHSPUnr8XiCEpZuS9JSSRueUyppaXcQ3/ZGx3V6u4N4Fw6zah8rKmnjOX40+yeiV3C0McS6nVXbpALfb4z66tmzZ5IjAZAszr2yBCQNHz5ckrRnzx7t2rXLcJv33ntPUvOb4fLy8qTFBgBAi3RP0krBfWndlqR1QyVtIhMzdlTS0u4gMcd3epI20jHM7me0vxU9aeOppE2lhcMi7ZMo6dTuoKKiQh06dPAb69ChgwYPHmxTRAASjSQtHO0b3/iGcnNzJUkPPvhg0OMNDQ164oknJEnnnHOOCgoKkhkeAACSSNJKwUlaty0cRiVteHYsHGZlIpokbXRzJOpYZsQzZ6TnEs9rnoxK2lRtd2DldlbMlSpJ2k6dOumuu+7y3m/fvr2ee+45tW7d2saoACSSc68sAUn5+fn64Q9/KEl69dVX9aMf/UgHDhyQJB04cEAzZ87Uhg0blJ2dHfPiZAAAxKu2tjZoLN2TtFTS2svunrS0O2gWTyLZKUlaKyWr3UGif/9SqZI2GX2MI0l2u4NU061bN8Pxfv366dZbb9U///lPPfvss/r44481ZsyYJEcHIJlYOAyOd80116iqqkp/+MMf9OKLL+rFF19Uu3btdOzYMTU1Nal169aaN2+e+vbta3eoAIA0ZVRJm52dbUMk9qEnrbOkQyUt7Q6sP77VFZPxtjuIVah5I8WYzpW0sbRHcGrC1KlxhTJ06FB9+umnQeP9+/eX1NybNlR/WgDu4twrS8DH7bffrsWLF2vcuHHq1KmTTpw4oW7dumnKlCn6y1/+om984xt2hwgASGO0O3B/JS1J2vDsqKSl3UFs7EzSRssJC4dFO08qVNJG2+4gHna0RUi1dgenn3664Xi/fv2SHAkAu1FJ63Lz58/XwoULVVJSolWrVkW9/86dO/Xcc89p3bp12rt3r+rr61VcXKyysjJNnDhRY8aMCXpTlih8gggAcCqStO5P0tLuIDynVNLGmhRMVBLe7iRttNsnunVAKi4c5qRKWqtE+zxDnTucmIC16jjJNHbsWP3mN7/RyZMnvWNDhw5Vu3btbIwKgB2c+/E/4rZhwwbvolqxePjhhzVp0iQ99dRT2rZtm6qrq3Xy5ElVVlbqjTfe0A9/+ENNmzZNu3btsjBqAABSD0laFg5zmnSopKXdgfXHT4V2B4lcOMzsPlZX0prd16p2B9Eew6jvupNb+jgtCStJZWVlIR/r3bu3nnjiCbVv315ScwVtPO/jAaQu515ZIi6VlZW6+eabDd80mnHPPfdowYIF3iqYzMxMDRo0SGeeeaYKCwu9223atEnTp0/Xvn37LIkbAIBURJKWSlqnSYdK2nRsd5DM44ebI1HHimXORFfSxjJPtPEk4rixtjswEs/fODuqbRM5R6z79urVy+99dIvs7Gx16dJF06dP16FDh1RVVaXt27dr6NChMccIIHWRpHWh7du368orr1RVVVVM+69cuVJPP/209/64ceO0Zs0aLV++XIsXL9Zbb72lu+++W7m5uZKkgwcPaubMmbauFAsAgJ1I0rJwmNPYnaS1q5LWTUlas/NZeXyrY4u3kjbWn0GsC4eZ3SfeStpUWzgsVCVtMhOr0cyVyJ60sVYQd+jQQT169AgaHzhwoPdDzlatWqmoqMiRlcAAksO5V5aIyYsvvqjLL79cBw4ciGn/uro6zZs3z3t/1KhR+t3vfqeioiLvWFZWlqZNm6YFCxZ4/6Bs3rxZL730UnzBAwCQokjSUknrNHa3O7CrJy3tDuI7vtN60pqZw8pCEbsraZ26cJhRkjYRf+OckpwMF0fr1q1DPpaZmakOHToYPtahQwd17949aHzw4MHRBwjAtVg4zCUOHDigBx54QC+88EJc87z22mv69NNPJTX/kbnrrrtCXmR//etf17Rp07R48WJJ0pNPPqmJEyfGdfxU5YY3ooFvPt3WSxAAEqmmpiZoLCMjw9TfB7ecf40qad3w97GFUSK+qanJsc/R6PcokT8To+SoHa9NXV1dTMc12qexsTHu52CUDDP7czD6GTY0NEQVU7RzhGqVZuaYoX4Hwu0b6d+QmTmj+dlFSuIbPW70ehn9XFt+92L9t1dfXx/x+KEeD/V7lpGRETKeUDEYPWaUpPV4PKY+jGlsbDSVfG5qajL1IUsiP2xqkZubq+PHjxs+Fik53a1bNx06dChovKCgQOecc45eeeUVv/FRo0Y59u8IkGhuuQa2EklaF3j00Uf1+OOP+/0h6dOnj8aOHavHHnssqrl8/2iMHDlS3bp1C7u9b5J28+bNqqysNPwah5s1Njbq3//+t91hWG7Tpk12hwAAKWPPnj1BY5WVlTH9fUjV829gcqempsZVfx93794dNPbJJ5849jkeOXIkaOzgwYMJizfw53/ixImEvzZGiZDNmzfH9I2yTz75JGhsz549cT+HluIHXzt27DC1avsXX3wRNPbhhx+qoKDA9PGPHTsWNHb48OGQz8t3dfkWX375panXweg13L17t9++gcm6r776KuzcRv/uAs+te/fuDdrm448/NpzX6Fzta//+/UFjH330kXJycvzGDh8+HLTdxo0blZeXZ/jYpk2b1LZtW+/9wARgXV2d/v3vfxv+vvge32gdkJ07dxr+e//3v/+tjIwMw0WejY7T8nuxY8eOoMeMkrS7d+82lVw0+r0wUlVVZaqS1sxaKEePHg37eKSkcXZ2dsgkbbgY27Vr5138K1BNTY3Kyso0e/ZsPf744zp69KguvPBCnXLKKY79OwIkW6peA1uJdgcusGjRIr8/IlOnTtWyZcvUq1evqOZpamrSunXrvPfPPvvsiPuUl5erU6dO3vurVq2K6pgAALiB0RvVwK//u11gJa3bqiHc0JM2kesHOKUnrdvbHVghUfOaeb0ScWwrFw4zK97fjWT++0jEgm5S8984q1seJKvdQaTjhGtpkJeXF/KxwsJCFRcXh3xMkq644gq98sorWrNmje699960a40EILz0evfgchUVFZozZ46GDRsW0/779u3z+9SxoqLC1H7l5eXeRco2btwY07EBAEhlJGlJ0jqN3T1pk5FssTIRnczEpd0Lh4WT6IWArVg4LJGvn10JbLM9ae1aOMxIVlaWqUW0PB6P5YupJXqucEnaDh06aO/evYZ/9zt06OBXwORr4MCB3tuBldkA0CK93j241LBhwzRlyhRdcMEFcf1BCvw6Uc+ePU3t59sA3ezXWdwkIyPDFQ3fGxoa/L5eUFFR4egFUQDASXwX2GwxcOBADRkyJOK+bjn/Gn3F08zzTxXvvvtu0Fi/fv0c+xy/+uqroLH8/PyExRuYMG3Xrl3CX5tQ/+5iab31j3/8I2isb9++cT+HNWvWxDyvUVuDwYMHeyvyzDBqdxDu98DoK94dOnQwFe/27duDxnr06BF230i/k0atDLp37+63j+83AVv06dPHcF6j9gm+CcTOnTsHPV5WVhY0l9HiUIMGDVJBQYHy8/ODHhs8eLBfBaZv6wOp+UO9IUOGqGvXrmGPv3bt2qDHS0tLDY952mmnSTJu4WDU0q6wsFBDhgwxnfA1+7to9j1lp06dTH3wZebft9Hr4Ss3N1fV1dUx7V9UVKQuXboY/m726dNH48eP1xNPPBE03+TJkx39wR5gB7dcA7fYuHFj3B+Ik6R1gYULF1oyT0s1rNR8oW104WvE99NC3znSiRurpVq1auXK5wUAiWBUNZqbmxvTeTRVz7+BX9msr69PyecRitEH4VlZWY59jkYVbh6PJ2HxBiZ2MjIyEv7aGL2Ri/W4RsmTzMzMuJ+D0f5mY7Tid87oq9Thfg/ieU1jea6RHjczZzQ/u0jPw+g1N5or3DGNHgv8uQUep6mpSZmZmRGPbxR/qIRGy7ZGjxsdp+V1Nfv7lZubG7bi1DcOM4nfjIwMU8kZM/FFSobm5eXp4MGDIR8P1VdWaq6y7dq1q2GStnPnzrrooos0YMAAbd261Ts+YcIEU1XHQLpL1WtgK/FRDry+/PJL7+22bdua/qTP91Nh3zkAAEgXRiuip1ufucCLaretVm2UiHdytUey2x0Ezp2MirFEtztwYk9aK9odhDt+PMeMdKxY5k5UP9VQ85mNMVxcyf5qf6JbVISSnZ1tKklrVjLbHYTrKyv5f1M0UFZWlrp06WL4WKdOnZSdna0VK1aovLxckjR06FD98pe/jBAxADRL7xR1Eo0ePdrUSpThlJaWauXKlRZFFMx3Nddo+uT4fipotPInAABuZ/T3L92TtPSktVc69KS1MoFn9Nq4IUlrdt5wkrWYU6yieZ2SkfQ1e1yzMfjuG8vPItrnbPYYZnvSRjNnsuaKlKQN16IhPz8/ZKVfy6Jh/fv315YtW3TkyBEVFBQ4/t8QAOcgSQsv3yqgaN50+P6RclvVDAAAZhhV0qbbVxuppHWWdK2kjfU5GiWtrHgOdidpk7lwmJMqaWNNitldSRvL69/U1OSKhcPMxmDFNpF61oZL0paUlIRM0vouvO3xeKLqHw0AEu0O4MP3jUY0F7i+b8LSrWoIAACJdgdScMKysbExoUnBZKOSNrzAuVOtkpZ2B/EfM1lJ2nDHiMSuikarKmljOV6iKmmzs7MtraRN5s8m0uJjvXr1CvlYSUmJxowZEzSen5+v4cOHxx0bgPRGJW2SLFmyJO6v/SW6gXJubq73tm/rg0h8v+JpZV8iAABSBUla4+uUhoYGRycyo0GSNjyjhcMSjSSt9cdP1OtgpcAY4213EMtc8VbSRnP8SMeN5ZhWtHjIysqy5b2fFQnfcEnYSI9369ZNZ511lkaMGKF//OMf3vHLL7887Rc8AhA/ziJJ0qlTJ7tDiMj3ax/V1dVqamoy9Ufw2LFj3tsFBQWJCA0AAEcjSWucpK2vr3fN65Bq7Q6MruHcVkmb6HYHiUrSmo0x1ZK0Tmp3EI1YE6PRCJwjmjmtSizHexxfmZmZ8ng8jm13EGl9ld69e4d9PFKS1uPxaOnSpZo8ebI++OADjRo1Svfee2/EuAAgEpK08OrcubP3dkNDgw4fPqwOHTpE3K+qqsp7u6ioKCGxAQDgZCRpQydp3SLVKmml5vh846aSNjQqaaObI5ZjJbPdgZWVtGbniaeS1uy+Tlk4rOXvm9l2B2aTuVaJ9J40UiVt+/bt1b59ex09ejTosW7duklqbpnw/vvv68SJE1Etug0A4Tj7yhJJFfjHqrKy0tR+e/fu9d4uLS21NCYAAFIBSdrQ7Q7cItUqaaXgRKnbFg5LxyRtoo+fyIXDrGL1wmHJqKSNZ04zieVkLxwWbZK2TZs2prYzE4OZuSIlYbt06RIy9sLCQnk8HvXr18/wcd/CJily1S4ARIMkLbxKSkr82hVs2bLF1H5bt2713h4wYIDVYQEA4HgkaY0TllTS2isw4ZHMStpUa3eQqJ+v1YnLRL+uiexJm6h2B/EuHBap2jfaeWJ5nlZX0kZaOCxeLQlOMz1pPR6P6SStme18W/QZyc3NDUqkBmrXrl3IatuWBO+0adOCHrv66qsd/+EcgNTm7CtLJJ3vipRr166NuP3WrVt18OBB7/0RI0YkJC4AAJzMdxFNqTlh6bTFdhLN7e0OqKQNj0paY6nW7iAVetKGO0Y0+5lldyVtJFZV0rZIRLsDM8lXj8ejdu3aRdwuUpK2oKBAhYWFYbfJy8tTx44dDR9r6Vd75ZVX+sWTkZGh73//+xHjA4B4kKSFn7Fjx3pvr169WgcOHAi7/bPPPuu93bdvX5WXlycsNgAAnCqwktbsG1c3cXuSNhUraZOVpE10kiwUkrTWHz+RSVqrJLIlgxWVtGa3t2pfq44XzXFa/sZZ3e7ATJI20kLV+fn5EZO0bdq0iVhJW1JSomeffVannXaaysrK9MQTT2jYsGER4wOAeDj7yhJJN3bsWBUXF0tqrgq64447Qr7Beuutt7Rs2TLv/enTpyclRgAAnCYwSZturQ4kkrROZGeSNhmvjZXtDkjSxn/MZFXSmml3EOvCYVbsE0/P3FjbHUSb5LWqktbqdgd5eXkRt4lUSZufnx928es2bdooIyNDJSUlho+3VNJK0oQJE7R+/Xpt27ZN1157bcTYACBezr6yRNJlZ2dr1qxZ3vtr167V9ddf77eIWH19vZYuXaqZM2d6v/pXVlamqVOnJj1eAACcgCQtC4c5EZW05pGkTbxk/p7EOm8qVtLG8vN04sJhZtsdtG7dOuxiXZEqadu2bStJOu+88wwf79u3b8QYACBRgq+mkfYuueQSrV+/XkuWLJHUnKgdO3asysvLlZeXp507d+rQoUPe7QsKCjR//nzDN2cAAKQDkrQsHOZEgfElKjln12tDkjY26VBJG818Vu9jRyVtuO0SuXCYHe0OpOZE7IkTJwwfi9STtkuXLpKkcePGBT3WoUMHjR492lQMAJAIzr6yhG3mzp2rG2+80fsms7GxUVu2bNE///lPvwRt37599ec//1l9+vSxK1QAAGxHktb97Q6opA3NaN5kVNJa2e4gUYlmkrTxfTCQjIXDUr0nrdMXDoum3YGZJG1OTk7Ylgf5+fnKysoK2TqhrKxMktSjRw9NnjzZ77Ff//rX3kpbALADpY8w5PF4dNttt2nSpEl6/vnn9fbbb2v//v2qqalRfn6+Bg4cqPHjx2vSpElpuTgKAAC+SNK6P0nrhkpat/WkpZLWfAzJOGYiKmmNWL1wWKS5U72S1uxxYlk4zExPWqn5fJCTkxOy+rXl+JF60rZu3Vpt27aNmKSVpKKiIh07dizocd+Frh9//HH16tVLW7du1aWXXqobbrgh0lMBgIQiSetiU6ZM0ZQpU+Kao2/fvpozZ47mzJljUVQAALhPbW2t332StM3clKSlkjY0uyppSdKaj8FstWgi+8Y6YeEws3FF4qRK2lj2j7fCOdqetFJzy4NwSVopciVtx44d5fF4TCVphw4dqt27dwc93lJJK0nFxcWaP39+2GMCQDI5++N/AACAFBBYSZuO3zJx+8JhVNKGZlclrZXtDlIlSWtFDInqTWxXu4No9rOq2jdcXPE852QtAmaULG2pik1EuwPJXF9aM0laSWGTtAUFBZKkc845x/Bx3yQtADiNs68sAQAAUgDtDtxfSWuU/KOSNvS8tDtoZvQ6xJqktSphmUoLhxmJZ+GwRIqmmtXq5HO0+xi1AYimF2u07Q6kyElaj8ej1q1bhz2vtiRpWxKxRloSuOedd17QY/3799ewYcNMRAsA9iBJCwAAECeStMYJSzclaY2qgqmkbZbIr8iHY3QMN1fSOj1JG4kT2h04tZI22QuHVVdXB421JGmtrqRtYaaS1uPxhK2mLSoqkiQVFhaG3Ka0tFSSdNppp+nCCy/0O/6iRYsc/+EagPRGT1oAAIA4kaRNz0pakrSh57Wr3UGsVZWJ6qubTklaJ7U7sHI+s/tYUUmbrIXDwiVpzWhJzlrd7kBqbnlw5MgRw8daKmlPOeWUkPufeuqp3uOuWLFCTzzxhA4dOqRrrrlGvXv3NhUDANiFJC0AAECcSNK6P0nLwmGhOamS1sp2B1Ykmp2QpI2GW9odxPpamf3ZpFIlbSLaHSSikjY3N1dS+L60LUnar33ta4aPl5aWqn379n5z3nLLLaZjBAC7OfvjfwAAgBRAktb9SVoqaUNzUk9aN7c7sCqGaOe1M0kb6+sXTbuDWOcK5JZK2mjaHZjpSWu2krZr166SpLy8vJDbtCRpBw4caJhUbqmiBYBU5ewrSwAAgBRAktY4SWtUfZqqUrGSNjDZ4rZKWivbHTgxSWtmrlj2i7bdgdPFG3OkRLIRJ1XSRpLIhcOsrKTt3LmzpP8s/GWkJUnbqlUrjRo1KujxCRMmmI4HAJyIJC1S1uLFi1VeXq7Ro0fbHQoAII01NDQEJb/SMUnr9oXDqKQNzUmVtG5K0trRkzaeBfKopDX/uxdrJW2ofaLdzyhJ21LBatfCYV26dJEklZeXh9ymuLjYe/sXv/iFOnXqJKk55ptvvlkzZswwHQ8AOBE9aZGSdu7cqd/85jd2hwEAQFAVrRTdG1e3cHu7g1SspLUzSWtXT1o3tztIRpLW6Gvw4b5+Hu44gceyKkkb7hixSKVKWjcvHNaSpD3ttNNCbuP72GmnnaadO3dq48aN6tOnj3d/AEhlJGmRcmprazV79mydOHHC7lAAADBM0qZjJa3bk7RU0oaWqEW3InF7uwM7krThKiyjPU6kY8UqnoXDYokx3kpao/2TWUmbyIXDzPSkbREpSdtSJRsqSdu7d29v39oW7dq108iRI03HAABO5+wrS8DAgw8+qA8//FA5OTl2hwIAAEna/0OS1nnSsZI21qRgon6+TkjSRnP8eJN30R432e0OInFiJa3Z40aznVULh0XzrZH27duHfKyoqMg756BBgwy3IRkLIB04+8oSCPDOO+/oySefVPfu3fWtb33L7nAAACBJ+39YOMx5ApOMiVoUyq5KWtodxB5DKImspHVCuwOnV9LGcvxYKmmNzmextDsw87euqKhIklRWVhZym5ZFwyQpJydHl156adA2F110ken4ACBVkaRFyvjyyy91xx13yOPxaN68eZZ9qg8AQDxI0jZLx4XDklEtGg+3LxxGu4PYYnBSu4NYnlMiFw6zu5I21terpqbG734sfdFjaXfg8XgiHqtnz56SpIqKipDbBPaTffDBB3XxxRd7/41/5zvf0eWXX246PgBIVfSkRcq46667tH//fl1//fU688wz9c4779gdEgAAJGn/j9vbHQRWnjm9ilaytydtqrU7IEnbLNmVtPHOGeu8ocTzexBNJW00zOx/5MgRv/uFhYVRHyeadge+idns7GzV1tYabpeRkaFu3bpJkvr16xdy2379+vnd79Gjh/7617/qxIkTysjISMvFOAGkJyppkRKWL1+ulStXauDAgbrlllvsDgcAAC+jN5wkaZu5KUkbmOB0ej9ayf2VtLQ7iC2GRCVpI0lmu4NYK2nNireS1uqFww4fPuw35pukNfOcMzIyoloEzPdvXLiEcNeuXb1/G7KysjRgwADD7caMGWM4npOTQ4IWQFqhkhYJd/jwYR09etT09pmZmSopKfHer6ys1D333KPs7Gzdd999/KEGADiKUSVtOv6tcnuSlkra0OyqpKXdQWwxhDu+0YJSdvakNWL1wmFWxRhPJa3ZnrKh5gqspC0oKIh4TF9t27b1zh3NwmGSVF5ersrKSsPtWlodtDjttNO0YcMGv7FWrVrpwgsvjCpeAHArkrRIuEWLFumJJ54wvX1JSYlWrVolqfkN0e23367q6mr9+Mc/Vv/+/RMVJgAAMaHdQTO3LxxGJW1oTqqkjTVJm6jn4IQkbTTHT3ZPWivmTPTCYWbniWY+KytpT5w4oRMnTviN+SZpzfzeRFst7ftB5IABA/T6668bbtejRw+/+zfccIOeeeYZvw/wvvGNbyg/Pz+q4wOAWzn/6hJp7dFHH9X69es1YsQIzZgxw+5wAAAIQpK2mdsraQOTeFTS/oeTetLS7sBcDKE4rd1BrGKdNxUraQNbHUjR96T1XTTMzLmtXbt23tuhWhhIwZW0Z599tv7nf/5HgwcPltS8mNiCBQuiihUA3IxKWiTc7NmzNXv27Kj3++CDD/Too4+qffv2uvfeex2/gjIAID2RpG1m9MbeTUnawKpgKmnDz5uM14d2B7HF4KSFw2LpSZvsSlqjfRJVSRsLoyRtLO0OWnTt2lUZGRlhzxe+C32FS9L26tUraGz06NHasGGDvvjiC3Xs2DGqOAHA7UjSwrGWLFmi+vp6nThxQpdddlnQ48ePH5ckffbZZzr77LMlSXfeeae++c1vJjVOAEB6I0nbLN0qaUnShp/XrkpakrSRY4g2SeubwIvmOJGOZdWcVi4cFk+8VuwbS8I4UiWtmd8b359x69at1bNnT+3evTvk9n379vXeDpekHTVqVMjHSNACQDCStHCslouU2tpaHTx4MOR2jY2N3scD+zEBAJBoJGmbuT1Jm4oLhwUmZ5LZ7sCunrS0O4gcQzRJ2pycHNO/68laOCzWWEJJdCVttPtHu23gomFS9D1pAxPx/fv3D5mkLSoq8pu/W7duqqio0KZNm/y2O/300zVo0KCIxwYA/IfzSwCQtu69915t27Yt5H8/+MEPJDUvNNYyNmXKFJujBgCkG5K0zdyepKWSNjS7KmlTtd2B2Z9DvFWooWKIJklrVT/aUMd1QruDWOdKxL4nT54MeixSkjxSu4Pi4uKIxzdK0obi2+pAan5N77///qB/j9ddd13E4wIA/Dn/6hIAAMDBamtrg8ZI0jYLrD5NZalYSWvnwmF2VdLGmihLVKLZyhjtqKSNJkmbrHYHidzP7FzxVsKG2v/zzz8PGisqKgq7X6R2Bz169Ih4voonSStJ48aN0+LFi70Lin3729/W9773vbDHBAAEI0kLAAAQB6NK2uzsbBsisZfbFw6jkjY0J/WktbLdgRU/Yye0O4jm+IlM0sZSSWv0gVdgezOnVdLGMkfLPoFJ2tzcXL+fgdHvpFFi17eSNisrSz179gx7/Pz8fL/70SZpJemKK67QoUOHdOTIES1evDglPsgCAKdx/tUlAACAg9HuoJnb2x1QSRuaXZW0qdruwO6etOFUV1f73bc7SetbEdoisHI03p+d1T1p49n/wIEDfveLi4v9tu3cuXPQPtu2bQsa803SSlKfPn3Cxhi4+Fe4XrLDhg0L+VhmZmZQwhcAYB5JWgAAgDiQpG3m9iQtlbShGc2bau0O0ilJa1dP2lgYJWkPHToUcb9Qr1UsiWSz4q2kbWpqCqqKDUzK9urVy9R8ga9bpCTt4MGD/e737t1b559/ftB25eXlGjt2rKkYAADRC76ahqvMnz9fCxcuVElJiVatWhX1/jt37tRzzz2ndevWae/evaqvr1dxcbHKyso0ceJEjRkzxvBNWTLMnDlTM2fOtOXYAAC0IEnbjCSt8wTGaNVCVIESleCMJNHtDtItSdvQ0KCamhq/MbsraXNzc9W6dWu/BbXMVNJaKRGVtEav68GDB/XFF1/4jQUu+tW9e3e1atUqYr/vaCtpA5O0kvTII4/otNNO8/sbd9ddd6XEtwgAIFWRpHWxDRs26Iknnoh5/4cffliPPfZY0BusyspKVVZW6o033lBFRYXuu+++iH/4AQBwK5K0zVg4zHncXklLu4PYYgh1/MBWB5L9SVqPx6PCwkLt37/fO2Z1Ja3v76/Zn43RPC3vmczM0b1796Cx999/P2gssJI2MzNTJSUl+uSTT0LOnZOTo5ycHL+xcO/Vunbtqo4dOwaNn3LKKXr++ed100036ejRo7r11lv1rW99K+Q8AID4Ob8EADGprKzUzTffbPjG0Yx77rlHCxYs8F5sZGZmatCgQTrzzDP9vj6zadMmTZ8+Xfv27bMkbgAAUg1J2mYsHOY8dvaktauSliRt5BhCHT+w1YFkbZLW7D6BOnTo4Hc/nkpao36pX375Zdi5jGI0SmoaLeAVav8ePXoEjb333ntBY4GVtFJzK4JwAqtopfBJ2oqKipCPTZo0Sfv27dPhw4d1zz33JOXfNQCkM+dfXSJq27dv15VXXqmqqqqY9l+5cqWefvpp7/1x48ZpzZo1Wr58uRYvXqy33npLd999t3JzcyU1fzVn5syZCf+qEQAATlRbWxs0lo5JWre3O3BDJW1L30urOaknbayJ6EQ9Byckac0e3yhJ27ZtW0uOGe64kQT2Vw2spI0mwW608JaZytxA3bp1CxprKVoJbBlhdK4wStL+61//ChozijdSX1qjBPKQIUMMxyXpzDPPDDufZHx+BwBYjySty7z44ou6/PLLg1YGNauurk7z5s3z3h81apR+97vfqaioyDuWlZWladOmacGCBd4/2Js3b9ZLL70UX/AAAKQgo0ra7OxsGyKxl9uTtG6opJUS07/Trkpa2h3EHoORRFfSxvoaB1bSfvnllzG3UsnPzw86P/tW5pqN0ShJ++mnn0qS9u7d6zdeUlIStK1RuwOrKmmHDh0aNJaVlaXZs2cHjefk5Oi6664LOx8AIHn4SMwlDhw4oAceeEAvvPBCXPO89tpr3guMzMxM3XXXXSHfhHz961/XtGnTtHjxYknSk08+qYkTJ8Z1/FTlhjehgRe7buojCACJ5LugTQuPx2P6b4Obz791dXWu+BspBf9cMjIyHP/cjJJLtbW1llfFGVWTS4m/PjKqfq2vr4/puEb/7hoaGuJ+DvHMG/j8ojmvBO4XOK/RPL5f+2/Rpk2bmM9lLWMt+xvN09TUFHF+oxYFBw8e9FaGRvsaFxcX+yVSfRfrMkrSGv1OGSVP9+7dq5MnTwYlaXv06BG0f9euXYP2N+ozW1RUFLSvUYLX19e+9jXD537jjTdqwYIFfm3qfv3rX6tnz56OP5cBcCc3XwPHiiStCzz66KN6/PHHdfz4ce9Ynz59NHbsWD322GNRzfXKK694b48cOdLwU2JfvknazZs3q7Ky0vDrO27W2Niof//733aHYblNmzbZHQIApITAN+SS9PHHH8ecCEvV869RcuOLL75wzd/IEydO+N0/efKk45/b0aNHg8Y++OADy9tx7NixI2jss88+S/jrs2fPHsOxWI5r9JX3TZs2RVVJamTnzp1BY/v27TMVY+DX5uvq6mJ6boHV/jU1NYbzbNiwIWjs8OHDpo+5ffv2oLH9+/d79zc6V1ZVVUWc3+hN+zvvvON9z2H0DcLt27eHfLPfrl07v/u+P3vfhG2LLVu26ODBg35jRousbdmyRW+88UbQcdu2bRv0HBsbG5WVlRVx/ZBDhw4F7RspidGhQ4eQr+n999+vBx98UFVVVZo8ebK+/vWvO/48BiB9pOo1sJWc/z0tRLRo0SK/BO3UqVO1bNmyiP2KAjU1NWndunXe+2effXbEfcrLy9WpUyfv/VWrVkV1TAAAUp1RBVI69u/zeDxBvRcTtVCVHQKT0KnQk9bKnq3huGHhMLPzRyuelgzJXjgsMCksNVfSxnocq/aJtNhXtALbJxw5ciRsJalRjG3btg3q1/v5559r//79Qdt26dIlaCwjI8OwGjeQUR/Zfv36hXzdWrdurX79+oWcr3///lq4cKGWLVumq666ioXAAMBhSNK6SEVFhZ5++mndc889MX3qv2/fPr+Ki3ArffoqLy/33t64cWPUxwUAIJWRpP2PwISUm762FvhcUiG5kayetEaJX7uStLFKZk9as9yQpLWiJ21g5askffXVVzHPG5ikbWpq0pEjR0LOFYrvmh1ScwsGs0layXhRMF8ZGRlq37590HiHDh107rnnGu5zyimnpO3fHwBwA87gLjBs2DBNmTJFF1xwQVwXgrt37/a737NnT1P7+fZFMuql5HYZGRkaPHiw3WHEraGhwe/rBRUVFSlRJQQAdisoKAgaGzx4sOlvtLjp/Bv49d3c3FwNGTLExoisE/gzycvLc/xzKywsDBobNGhQ3F/hD+S78FKL7t27J/z1Mfr6fLdu3WI6rlG15qmnnhpULRmtwDYZUnPSzkyMrVu3Drofy3MzO89bb70VNFZRUWH6mEbvQ4qLi737G72WnTp1ijj/hx9+GDRWUFDg3c+oIrW8vFynnHKK4XwDBw7U3/72N7+xQ4cOqaioKCiBKzX/mzFKtJaWlvq13Dh48KDhazBy5EjD5zhgwAC9//77hjFKzb/LRouASdJdd92lCy64IGj8v/7rvxx/XgKAFm66Bpaaixbj/cYSSVoXWLhwoSXzVFVVeW9nZGQEfTocim+7A9850okbP7Fu1aqVK58XAFjNqFo0Nzc35nNoKp9/A+NuaGhI2ecSKPDnnJmZ6fjnZhRfRkaG5XEbJaaysrIS/voY9da18vllZ2fHPZdRjB6Px9S8gT2F4zmvBDKax6iSNj8/3/QxI/2+Gb3xNnO+M3pP8uWXX3r3i/b3z2jRrpa+tEY9YkPNVVJS4nf/5MmTht8qLC0tNdw/0gd55557bsjnMGrUKE2YMEEvv/yyd+yOO+7QpZdemhJV/gBgJJWvga2S3s8efnx7O7Vt29bwK3JGfKsx4ukPBQBAKjJa2d7qhZlSReCFtZtWDA+sjDB7nWQnoxjpSWssme0OzMTY2Niozz77zG8sMCkYTwxGjh07FjQWTdV1otodGFW3GlVvm53XqPK2JUm7a9cuv/GsrCzDvrCSDBdYfuedd4LGfL916KusrCxkjJI0bty4kI95PB4999xzuu+++/TRRx/p6quvDrs9ACA1kKRNktGjR2vfvn1xzVFaWqqVK1daFFGwkydPem/n5OSY3i87O9t72+iNKgAAbmZUeeX7tzGd5Obm+t1vWWE9lb+61iKwkjYVnlOykrRGcyYjiW3l83NakraqqiroQw6jpGAsMYQ6vlGSNpp2D4layM2obUdLUjWWYxj1gm2Zb/v27X7jffv2DVnVZfTzCGwf17lz55DvqyZOnKjs7OyQ75/GjBljON4iLy9Pc+fODbsNACC1OL8EAEnj+yYzmgtr3wsXN1XMAABgRqivx6ajYcOG+d2vqqrS//7v/9oUjbWopA2NStrQYo3x008/DRqzI0mbCpW00c5rlKT94osvdOzYMR04cMBv3HeB5EBmKpvDrfHRsWNHXXbZZYaPnXrqqYZtGQAA7ub8q0skjW9FSDQX8L6J2XR9UwoASF8kaf/jkksuCRr761//akMk1nNLJa0VlY2B7KqkdXOS1ugbeFa1O0hUkjaSWF9jo8UZfStpoxWqkjawClYKn6Q1kzSPtBDzDTfcYDh+1VVXRZwbAOA+tDtIkiVLlhguLBKNRDdQ9v2Kom/rg0h8v6ITuHosAABuZ5SkTddFDy666CJlZmb6fYD717/+VQ888EDKL2ZDJW1odlXSWvn8jPZL90rajIyMqFqgJardQWZmptq3b++3kFo8lbQdO3ZURkaG38/80KFD2rNnT9C24ZK0vXv3jhS6Bg0aFPbxc889V5dddpmef/55Sc0f8M2cOVO33nprxLkBAO6Tnu8gbNCpUye7Q4goPz/fe7u6ulpNTU2mLk59L+iMPukGAMDNApO0mZmZKZ+QjFVhYaHOP/98vf76696xPXv2aP369Ro6dKiNkcWPJG1obq2kteI5OCFJa/b4gUnavLy8qM5liWp3IDWfW3yTtJEqacPNm5GRoU6dOvm1NoglSVtSUqLTTjtNH3zwQchtQrUz8I3zmWee0ZVXXqmjR49q9OjRIRcaAwC4n/OvLpE0vl/9aWhoiLhqaouqqirv7aKiIsvjAgDAyQKTtOna6qDFlClTgsbc0PLALe0OkpWkpSdt6DnsbncQilGSNt7jWJWkDexL6/s+xShhG+nbDIEtD2JJ0krSjBkzQj5WUVGhwYMHh91fav6bcfHFF+vqq68mQQsAaY4kLbx69erld7+ystLUfnv37vXeLi0ttTQmAACcjiStv8mTJweNLV++3IZIrEUlbWiJqkKNxMrn57QkbWAlrcfjMeylGksMoY5fXV3td9/KfrTxKiws9Lvvm5h9//33/R7Lzc1Vjx49ws5nlKTduXOn31iHDh0iFqB8+9vfDpkQ/va3vx12XwAAAjn/6hJJU1JS4teuYMuWLab227p1q/f2gAEDrA4LAABH8+3NLpGk7datm8466yy/sQ8//FDbt2+3KaL4GSX+qKQNP6cbKmmtYFWStri4OOZzS6w9aZ1cSXvixAnV1NTo5MmT2rRpk99jp512WsRK2sAFvRoaGoIWDotURSs1/1wmTpwYNN6mTRsW/wIARI0kLfwMHz7ce3vt2rURt9+6dasOHjzovT9ixIiExAUAgFMFVtJmZ2fbFIlzXHLJJUFjqdzywK6eq/FyeyVtIpO0ViWZrWp3EGurA6MY3JCklZpbHmzcuNFvoUJJpvpfjx8/PuI2ZotPfvvb36p///7e+7169dJTTz0VsZoXAIBAzr+6RFKNHTvWe3v16tV+DfWNPPvss97bffv2NfWJMwAAbkK7g2BGSdpUbnkQ2I9WopI20pyp3u7AziRtbW2t35oPUnyLhplJ0jY1NcWdpDUS6blGs3BYoMOHDwe1OpCkM844I+J8EyZMULt27cJuM27cOFOxlZaWavPmzdqxY4c+++wzffzxx7r00ktN7QsAgC+StPAzduxYFRcXS2q+QLzjjjuCPp1u8dZbb2nZsmXe+9OnT09KjAAAOAlJ2mD9+vULWjDn3XffNVwMKRVQSRteovq5RmJlJW2ieg7HEuP+/fuDxhKdpD158mTQhxFt27aN6ziB4mkpYVRJ++mnn+q9994LGjdTSZubmxs2kdqjRw/DRRBDycrKUr9+/dSlS5ek/O4DANzJ+VeXSKrs7GzNmjXLe3/t2rW6/vrr/RYRq6+v19KlSzVz5kzvxVxZWZmmTp2a9HgBALAbSVpjRtW0L7zwQvIDsUCq9qQ1Sha5qZLWre0OjD7MiKfdgZnjB1bRSta3Ozhx4oSpfYwE9pCVpJdffjmokrZ169Y65ZRTTM0ZbmGvH/7wh5zLAQBJR5IWQS655BJNmzbNe3/t2rUaO3asLr74Yl111VU655xz9NOf/lQ1NTWSpIKCAs2fPz9ig34AANyIJK0xN7U8MGp3QCXtf9hVSWvl8zt58mTEuWMRS5I2cNEwydpKWiPJSNL+4x//CHrcbPJ57NixQe81nnnmGX3wwQd+Y6eeeqrpc/Do0aNVUVERNF5YWKjrrrvO1BwAAFjJ+VeXsMXcuXN14403ei9yGhsbtWXLFv3zn//UoUOHvNv17dtXf/7zn9WnTx+7QgUAwFYkaY0NGTJEpaWlfmNr1qzRF198YVNEsaPdQXhuqKTdunWr3/14kqK+nJikTVQlbSSrV68OGjv33HNN7duhQweNGTPGb6yqqiqoLZuZfrQtWrVqpaVLl2rUqFHe1g6dOnXSM888o/bt25ueBwAAqzj/6hK28Hg8uu222/Tiiy/q2muvVVlZmdq3b6+srCwVFRXpnHPO0S9/+Uu98MILfquZAgCQbmpra/3uk6Rt5vF4gqppGxoa9Le//c2miGLHwmHhpXpP2qqqKn322Wd+Y0OGDIk5Ll9OaHeQrCRt69atg8Y++ugjSc2/d2vWrPF7rEuXLhowYIDp+X2/6RfKyJEjTc8nSf3799d9992nN998U2+++aYqKys1fvz4qOYAAMAqfD/dxaZMmRJVw3sjffv21Zw5czRnzhyLogIAwF0CK2mzs7NtisR5pkyZogceeMBv7K9//auuueYaewKKEZW04dn1+lj1/DZu3Bg0duqpp8YUU6BUqaStrq4OGos2SdutWzd16dLFb+GzV199VceOHdNHH33k9208STr//POjSuZPnjxZ2dnZQR+MtejRo0fYxcDC8Xg8ysvLS4kPXwAA7uX8q0sAAAAHo91BaGeddZY6d+7sN9aStEklVNKGZzRnKlXS/vvf/w4aS2SSNtLPIDBJm5WVpY4dO1oWQ+A5S7KmkjYjI0MXX3yx39jJkyf13//934atDkaNGhXV/AUFBRo3blzIxx944AG1adMmqjkBAHASkrQAAABxIEkbWkZGhiZPnuw3duLECa1cudKmiGLjpkraWHu2hmM0p109aWNJQm/YsCFozEntDrp16xbX61lUVOR3f//+/dq1a5ff2NGjR4P2i6UnrdG3+JYvX65Vq1YFjUebpJWkO++80/Ace8EFF8RcRQsAgFM4/+oSAADAwUjShmeUtPnrX/9qQySxo5I2PLsqaa1KQgcmadu0aWPZorgtC1L52rJlS9h9Aitp413E7IILLggae/nll/3uB/aLlRRT9e7555+vgoICv7HnnntOr776qt9YSUmJ+vXrF/X8w4cP1/vvv68ZM2Z4q2YHDhyoP/3pT0n5nQMAIJFI0gIAAMSooaEhKClEktbfqFGjlJ+f7zf20ksvhewr6URuqqRN1sJhqVJJW19fr82bN/uNDR482LL4O3furF69evmNvfnmm6qpqTHc/tixY0FVrfEmaS+66KKgMd8kbV1dXdAHJ7m5uRoxYkTUx8rKytKkSZOCxgP/vY8aNSrmpGpFRYX+9Kc/6YsvvtCuXbu0efNmde/ePaa5AABwEudfXQIAADiUUW9HkrT+srOzg5JER48eNfz6s1ORpA3PrtcnNzc3aMyov2w4O3bs0MmTJ/3GrOpHKzUnksePH+83duLECcPKVcl40bCSkpK4YjjllFOCEsWrV6/29qFdvXp10KJeEyZMMKwCNsPMwsVXXXVVTHP7ysnJUWlpKRW0AADXcP7VJQAAgEORpDXnkksuCRpLpZYHtDsIz6iSNhmJsz59+qi4uNhvbOXKlTp48KDpORK5aFiLb3zjG0FjofoyGyVp462k9Xg8QR+U1NbW6vXXX5ckLVu2LGifqVOnxny8sWPHqkOHDiEfv/baazV27NiY5wcAwK1I0gIAAMTI6Cv7JGmDjR8/Xjk5OX5jL7zwgmHy04mopA3PrtenVatWmjZtmt9YfX29YdIxFKNFw6xO0o4ePTrovPDf//3fhtsmIkkrGbc8eOmll0K2OpgwYULMx8rNzdUf//hHb89YX8OHD9cjjzxC9SsAAAacf3UJAADgUEaVtNnZ2TZE4mxt27bVuHHj/MY+//xzvfPOOzZFFB0qacOzq5JWkq688sqgscWLF5vePxlJ2nbt2unrX/+639j27du1a9euoG337dsXNBZvuwOpeUGvwKTpyy+/rL/97W/64osv/Ma/+c1vxtzqoMXkyZO1bds2ffvb3/aODR48WH/5y1+CPrABAADNSNIiJRw7dky///3vddlll+mMM85QRUWFzjvvPM2aNSvq3mMAAFiFdgfmpXLLAzdV0iZiwTY7X59hw4apb9++fmP/+7//q927d5vaPzBJ27NnTxUUFFgU3X8E9qWVjFsevPvuu0FjVlTS5uTkaMyYMX5j+/fv16WXXhq0bTytDnx1795dixcv1ieffKJ33nlH7777riUJZwAA3Mr5V5dIe3v27NHkyZP1wAMPaOPGjaqtrVVWVpb279+vl19+WVdccYX++Mc/2h0mACANkaQ1b+LEiUHVp8uXLzeswnSaVK2kNaqGfPjhhy0/jp2VtB6Px7Ca9tlnn4247+HDh1VZWek3ZnUVbQujvrSBLQ927dql5cuX+421adNGpaWllsQwceLEiNvE2+rASI8ePTRixAgqaAEAiIAkLRytvr5eN998s/bu3avOnTvr8ccf1wcffKD3339fK1eu1KhRo9TY2Kh58+bpzTfftDtcAECaIUlrXocOHXT++ef7je3evTslvhGTqpW0F154YVCydMWKFVqxYoWlx7H79QnV8iDSBwAbN24MGktUkraioiKoinTVqlU6efKk9/6DDz4Y9FrOmDFDrVu3tiSG6dOna/DgwWG3mTt3rvLy8iw5HgAAiI7zry6R1l599VV99NFH8ng8mj9/vs477zy1atVKHo9HpaWleuSRR3T66adLkhYsWGBztACAdEOSNjpGLQ8CKwedyCgJmQqVtKWlpbrpppuCxm+55RZVV1dbdpyampqgsWQuDFVWVqYzzzzTb2zz5s2G/WZ9GX1AkKgkrcfjCWp5cPz4cW817RdffBH0zTCPx6NZs2ZZFkN2drb+53/+R8OHDzd8/Be/+IVmz55t2fEAAEB0SNLC0dasWSNJGjp0qDcZ66tVq1a67LLLJEmbNm0yfJMAAECikKSNzsUXXxw0lgp9aY3aHaRCJa0k/fKXv1RxcbHf2J49e3TPPfdYdgyjRHunTp0sm98M3wWqWkRaQCwZi4b5MupL+93vflfbtm3TwoULdfz4cb/HpkyZon79+lkaQ9euXfXmm2/qmmuu8Y61adNGy5Yt009+8pOkJtcBAIC/1Li6RNo65ZRTNG7cuKCvR/pqeRPQ1NSkY8eOJSkyAACMF2EiSRtaSUlJUBXfpk2btGPHDpsiMsfur/PHo6CgQL/97W+Dxu+//359+OGHcc//wQcfBC121bdvX51yyilxzx2NK664Iuhn8uyzzxr+7FoEJmlzcnLUv3//hMQnSWPGjFH79u39xg4dOqTzzz9f9957b9D2t99+e0LiyMnJ0ZNPPql33nlHTz31lHbt2uUtegAAAPZJjatLpK0ZM2booYce0g033BBym/fee0+S1Lp1axUWFiYrNAAADCtps7OzbYgkdRi1PHB6NW2qLhzW4sorr9SoUaP8xlr6/se7cNsTTzwRNHb99dcnPYndtWtXjR492m9s7969evTRRw23b2ho0KZNm/zGBg0apMzMzITFmJ+fr/vvvz9ofP/+/UFVtOecc07ItgRWGTFihKZPn67OnTsn9DgAAMAckrRIaYcOHdKSJUskNV/MJvLCGgCAQLQ7iF4qJmlTuZJWau5tunDhwqDfzTVr1ujpp5+Oed7q6mr9+c9/9hvLzMz0+yp9MhktIPbDH/5Qf//734PGX3jhhaDEaCJbHbS4/vrrNWfOnIjbJaqKFgAAOFfqXF0iZR0+fFh79uwx/d++fftMzVtfX6/bb79dR44cUUZGhuHCGAAAJBJJ2uiVlZVp0KBBfmP/+Mc/NGnSJEu+fp8IqV5JK0kDBgwwTPzNnj1bhw4dimnOpUuX6ujRo35jF198sW2VmZdffrm6d+/uN1ZfX6/LLrtMn3zyiXdsx44duvbaa4P2Hzp0aMJjlKRf/epXhj10W0ybNk0XXXRRUmIBAADOQdkhEm7RokWGX4ULpaSkRKtWrQq7TUNDg+bMmaO3335bkvT9739fFRUVccUJAEC0SNLG5pJLLtHmzZv9xv72t7/p5Zdf1rXXXqu5c+eqW7duNkUXLNUraVvceeedeuaZZ7R7927vWFVVlc466ywtWbJEp512WlTzPf7440Fj4VpUJVqbNm20dOlSnX/++X79oquqqnTxxRdr9erVysrK0mWXXRaUXM7Pzw+bOLVSRkaG/vjHP+rYsWNasWKFpObzxsUXX6xrr71W48aNYwEvAADSUOpdXSLtnTx5UrfccoteeuklSdKkSZP0/e9/3+aoAADpiCRtbK666irDJGdjY6P+8Ic/qF+/frrzzjv15Zdf2hBdMDdU0krNScwFCxYEjW/fvl3Dhw/XggULTPeo3bhxo/7xj3/4jZWWluqCCy6wJNZYnXXWWVq4cGHQ+Pr169WxY0cNGDAgaMEwSXrqqafUoUOHZIQoqXkthRdeeEFvvPGGXnrpJX366adaunSpxo8fT4IWAIA0RZIWCTd79mxt27bN9H/hqmgPHTqkGTNm6PXXX5ckTZ48Wffeey8XswAAW5CkjU15ebn+9Kc/Ba1036Kmpka/+tWv1K9fPz300EN+VZF2cEslrSRNmDBBl156adB4bW2tZs6cqUsuucRU+wOnLBhm5Lvf/a7hB/gNDQ2qrKwMGp8zZ44mTZqUjND8eDwejR49WhMmTFBRUVHSjw8AAJzF/qsowKTdu3dr2rRpWr9+vSTp6quv1rx581KykgUA4A4kaWM3ffp07dq1S7fddlvI1+zgwYO69dZbNXDgQD3zzDOqrq5OcpTN3JSklaQnn3xS48aNM3zsxRdf1JAhQ/SnP/1JNTU1htscP348aMGxVq1a2bZgmJEHH3xQ5513XsTtzj//fN1zzz1JiAgAACC81L26RFrZtGmTrrjiCn3yySfyeDz60Y9+pDvvvJMKWgCArYwqPEnSmtexY0c98MAD2rZtW9h+oLt27dKVV16pwsJCnXvuufrZz36mNWvW6OTJk0mJ0y3tDlq0a9dOr7zyin7zm98oMzN4iYq9e/fqO9/5jnr06KE77rhDe/bs8Xv8+eef15EjR/zGJk2apK5duyYy7KhkZWVp2bJlQYvU+erataueffZZw9cAAAAg2UjSwvF27Nih7373uzp8+LCysrJ0//3367vf/a7dYQEAYFhJm52dbUMkqa20tFSLFy/Wv/71r7A9Tevq6vTWW2/p7rvv1vnnn6/CwkKNGTNGv/71r7Vu3TrV19cnJD63VdJKzfHffvvtevvtt9W7d2/Dbb744gvNmzdPffr00ciRIzV06FD16tVL119/fdC2di4YFkqnTp30/vvva8WKFZo1a5bOOOMM78+tZ8+eWrFihbp06WJzlAAAAM342BiOdvz4cf3gBz/QkSNHlJ2drUceeUTnnnuu3WEBACCJdgdWO+OMM/Taa6/p1Vdf1Y9+9CPDBZ581dTU6PXXX/f2qm/btq3KysrUv3//oP+Kiopi/gaO2yppfQ0fPlzr16/XDTfcoGXLlhlu09jYqHfeeSfkHL169dKYMWMSFWJcsrOzNXHiRE2cOFGS9OWXX+rQoUPq0qWLcnNzbY4OAADgP0jSwtEee+wx7d69W5L0X//1XyRoAQCOQpLWeh6PR+PGjdOFF16oxYsX6yc/+YnhYk9GqqurtX79em//el/5+fnq16+fevfureLi4pD/tW3bVtXV1Tp27Jj3/xs3bgyaL9UraX0VFBRoyZIlmjBhgubOnauPP/44qv2vu+66lEla5+fnKz8/3+4wAAAAgpCkhWPV1tbqmWee8d5fsGCBFixYEHaf559/Pun90JqamvTFF19Ian5j2VKl4/t/q8bCPQ4ASD6StInTqlUrXX311Zo2bZpWrlypVatWadWqVdq0aVNM83355Zd677339N5771kWn5t4PB7NmDFDV111lVauXKkFCxZo5cqVEffr0aOHbrrppiRECAAA4G4kaeFY27dv11dffeW9f/DgwYj7GH0dMdGqq6tVVFSU9OOGEk9SuKmpyXvbTRVCAJAoLByWeK1bt9bkyZM1efJkSdKBAwf05ptvepO2H330kS1xufXvZKtWrTRhwgRNmDBBO3bs0MKFC/WXv/xFBw4cUIcOHdSxY0fvf6eccoquu+46dezY0e6wAQAAUh5JWpebP3++Fi5cqJKSEq1atSrq/Xfu3KnnnntO69at0969e1VfX6/i4mKVlZVp4sSJGjNmTMJWxK2oqNC2bdsSMrebNTU1qampye4wACBtkaRNrM6dO2vatGmaNm2aJOmTTz7R6tWrtXr1am3atEk7duzQ0aNHEx5H3759E34Mu/Xv318PPvigHnzwQbtDAQAAcD2StC62YcMGPfHEEzHv//DDD+uxxx4LWim5srJSlZWVeuONN1RRUaH77rtPffr0iTdcAABcoaCgwO4Q0krPnj01Y8YMzZgxQ1Lzh5UHDx7Ujh07tGPHDn300Ud+t61I4E6ZMkVnnHFG3PMAAAAALUjSulRlZaVuvvlmw155Ztxzzz16+umnvfczMzNVXl6u3Nxc7dy5U4cPH5Ykbdq0SdOnT9fSpUtVUlJiSewAAKSqU089lQ8ubebxeNSpUyd16tRJI0eODHr8+PHjqqqq0ueff274X01NjfLy8oL+a9u2rfLy8lRWVqahQ4fSEx4AAACWIknrQtu3b9d1112nqqqqmPZfuXKlX4J23Lhxuuuuu7x9V+vq6rR8+XL9+te/Vk1NjQ4ePKiZM2fqL3/5S1q+YcnKytK1117r12bA9/9WjSVybklqbGz06wGcl5eXlj9PAIjV4MGDNWfOHM6dDtemTRv16tVLvXr1sjsUAAAAwIskrcu8+OKL+tnPfqaampqY9q+rq9O8efO890eNGqXf/e53fotjZGVladq0aSopKdH3vvc91dfXa/PmzXrppZc0ceLEuJ9DqmndurV+//vf2x1G3BoaGvxWzK6oqHDdytUAkAyBbYIiCVz00o5FMAEgHXH+BQD7cA4O5mlihSFXOHDggB544AG98MILho+bXTjslVde0W233SapucXBa6+9pm7duoXc/u6779bixYslSYMGDdLy5cujDz4FrV+/Xo2NjXaHAQAAAAAAAAfJyMjQ6aefHv1+CYgFSfboo49q/PjxfgnaPn366MYbb4x6rldeecV7e+TIkWETtJK8KytL0ubNm1VZWRn1MQEAAAAAAIB0RpLWBRYtWqTjx49770+dOlXLli2LutdaU1OT1q1b571/9tlnR9ynvLxcnTp18t43U60LAAAAAAAA4D/oSesiFRUVmjNnjoYNGxbT/vv27dPRo0f95jOjvLzcu0jZxo0bYzp2KsvIyNDgwYPtDiNu9KQFAHtw/gUAe3D+BQD7uO0cvHHjxrjbYpKkdYFhw4ZpypQpuuCCC+JaUXr37t1+93v27Glqv+7du3tvf/LJJzEfP5VlZrrvn1KrVq1c+bwAwOk4/wKAPTj/AoB9OAeTpHWFhQsXWjJPSzWs1FwdWlRUZGo/33YHvnMAAAAAAAAAiIyetPD68ssvvbfbtm2rjAxzvx55eXmGcwAAAAAAAACIjEraJBk9erT27dsX1xylpaVauXKlRREFO3nypPd2Tk6O6f2ys7O9t2tray2NCQAAAAAAAHA7KmnhVVdX571ttopW8u/HWl9fb2lMAAAAAAAAgNuRpIWX7yp60axI55uYzcrKsjQmAAAAAAAAwO1od5AkS5YsUUNDQ1xzJHqVu9zcXO9t39YHkfi2OGjdurWlMQEAAAAAAABuR5I2STp16mR3CBHl5+d7b1dXV6upqUkejyfifseOHfPeLigoSERoAAAAAAAAgGvR7gBenTt39t5uaGjQ4cOHTe1XVVXlvV1UVGR5XAAAAAAAAICbkaSFV69evfzuV1ZWmtpv79693tulpaWWxgQAAAAAAAC4HUlaeJWUlPi1K9iyZYup/bZu3eq9PWDAAKvDAgAAAAAAAFyNJC38DB8+3Ht77dq1EbffunWrDh486L0/YsSIhMQFAAAAAAAAuBVJWvgZO3as9/bq1at14MCBsNs/++yz3tt9+/ZVeXl5wmIDAAAAAAAA3IgkLfyMHTtWxcXFkqTa2lrdcccdqq+vN9z2rbfe0rJly7z3p0+fnpQYAQAAAAAAADchSQs/2dnZmjVrlvf+2rVrdf311/stIlZfX6+lS5dq5syZamhokCSVlZVp6tSpSY8XAAAAAAAASHWZdgcA57nkkku0fv16LVmyRFJzonbs2LEqLy9XXl6edu7cqUOHDnm3Lygo0Pz585WZya8TAAAAAAAAEC2yajA0d+5cFRYWatGiRaqrq1NjY6O2bNkStF3fvn01f/589enTx4YoAQAAAAAAgNRHkhaGPB6PbrvtNk2aNEnPP/+83n77be3fv181NTXKz8/XwIEDNX78eE2aNEnZ2dl2hwsAAAAAAACkLJK0LjZlyhRNmTIlrjn69u2rOXPmaM6cORZFBQAAAAAAAMAXC4cBAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI1I0gIAAAAAAACAjUjSAgAAAAAAAICNSNICAAAAAAAAgI08TU1NTXYHAaSa9957z+9+RoY7Pu9obGz03nbLcwKAVMD5FwDswfkXAOzjpnOw73ORpDPOOCPqOTKtCgZIZ4H/GN3Ajc8JAFIB518AsAfnXwCwD+dg2h0AAAAAAAAAgK2opAUskOpl+QAAAAAAAIiNFZXA9KQFAAAAAAAAABtR/gcAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANiJJCwAAAAAAAAA2IkkLAAAAAAAAADYiSQsAAAAAAAAANsq0OwAA7vTaa6/pz3/+szZv3qza2lp17dpVF154oa677joVFhbaHR4ApJXDhw9rwoQJysnJ0apVq+wOBwBc59ixY1q8eLFee+01ffzxxzp58qQ6duyoM844QzNmzNCQIUPsDhEAXKumpkZPPfWUXnnlFe3evVuZmZkqLS3VRRddpG9961tq3bq13SGa4mlqamqyOwgA7vLggw/qsccekyRlZWUpOztb1dXVkqTi4mI9/fTT6t27t40RAkD6qKur080336y///3vKikpIUkLABbbs2ePrr32Wu3du1eSlJ2drczMTB0/flySlJGRodtvv13XXnutnWECgCtVVVXpmmuu0UcffSSpOQfh8XhUW1srSerbt6+efPJJde7c2c4wTaHdAQBLvfLKK3rsscfk8Xg0e/Zs/etf/9L777+vZcuWqU+fPvr888/1gx/8QA0NDXaHCgCuV1NTox/+8If6+9//bncoAOBK9fX1uvnmm7V371517txZjz/+uD744AO9//77WrlypUaNGqXGxkbNmzdPb775pt3hAoDrzJo1Sx999JEKCwv10EMPaf369frggw/0hz/8QV26dNHOnTt166232h2mKSRpAVimsbFRDz30kCTp6quv1vXXX6+cnBxJ0qmnnqonn3xSbdq00Y4dO/TCCy/YGCkAuN+2bds0depUvf7663aHAgCu9eqrr+qjjz6Sx+PR/Pnzdd5556lVq1byeDwqLS3VI488otNPP12StGDBApujBQB3Wbdund59911J0r333qtx48YpKytLrVq10jnnnKP77rtPkrR+/Xr961//sjNUU0jSArDMP/7xD3388ceSpO985ztBj3fp0kWTJ0+WJJK0AJAgJ06c0F133aVLLrlEO3bsUFFRkUaNGmV3WADgSmvWrJEkDR061JuM9dWqVStddtllkqRNmzappqYmqfEBgJutXbtWklRSUqLzzz8/6PFhw4YpLy9PUvM52OlI0gKwzLp16yRJpaWl6tq1q+E2I0eOlCS999573j5dAADrHDx4UEuWLFFDQ4PGjRunFStWaNCgQXaHBQCudMopp2jcuHGGyYEWnTp1kiQ1NTXp2LFjSYoMANzvtttu09tvv63f//73ho83NjaqZSmurKysZIYWk0y7AwDgHjt27JDU3Jg7lF69ekmSGhoatGvXLlVUVCQlNgBIFx6PRyNHjtTNN9+sr33ta3aHAwCuNmPGDM2YMSPsNu+9954kqXXr1iosLExGWACQNjp16uT9MCzQihUrVF1dLY/HoxEjRiQ5suiRpAVgmQMHDkhqbmsQiu+KilVVVQmPCQDSTUlJiZ588km7wwAASDp06JCWLFkiSTrnnHOUmclbcABIpBMnTmjPnj16/vnn9cwzz0hqbscYrpjMKfgLAcAyLV/fys3NDblNy0JivtsDAAAAblNfX6/bb79dR44cUUZGhm666Sa7QwIAV9uzZ4/Gjh3rve/xePSjH/1I1157rY1RmUdPWgCWqa+vlxS+10t2drb3dkNDQ8JjAgAAAJKtoaFBc+bM0dtvvy1J+v73v0+bLwBIsM8++0xZWVlq06aNpOZe4AsXLtQjjzxic2TmkKQFYJmWKtm6urqQ29TW1npvp0LjbgAAACAaJ0+e1C233KKXXnpJkjRp0iR9//vftzkqAHC/IUOG6IMPPtD69eu1evVqTZ06VceOHdPDDz+s+fPn2x1eRCRpAVimbdu2kpp7wIRSU1PjvZ2Xl5fwmAAAAIBkOXTokGbMmKHXX39dkjR58mTde++98ng8NkcGAO6Xm5vr7f3drVs33XPPPZo+fbok6Y9//KMOHTpkZ3gRkaQFYJmWBcM+//zzkNu0LC4m+S8iBgAAAKSy3bt3a9q0aVq/fr0k6eqrr9a8efPUqlUrmyMDgPR1zTXXSGouJtu2bZu9wURAkhaAZcrKyiRJH3/8ccht9uzZI0nKzMxU7969kxEWAAAAkFCbNm3SFVdcoU8++cS7UM2dd95JBS0AJNDu3bu1Zs0abd26NeQ2xcXF3tuHDx9ORlgxI0kLwDLDhw+XJO3YsUMHDx403Gbt2rWSmnvFtPSwBQAAAFLVjh079N3vfleHDx9WVlaW7r//fn33u9+1OywAcL077rhDN9xwgx5++OGQ2+zcudN7u6SkJBlhxYwkLQDLnHHGGerSpYuampr0+OOPBz3+2WefacWKFZKkb33rW8kODwAAALDU8ePH9YMf/EBHjhxRdna2Fi5cqIsuusjusAAgLZx33nmSpDfffFPbt28PerypqUkPPfSQpOYE7eDBg5MaX7RI0gKwTEZGhmbNmiVJ+n//7//p4Ycf1vHjxyVJGzZs0He+8x0dP35cZWVl+uY3v2lnqAAAAEDcHnvsMe3evVuS9F//9V8699xz7Q0IANLIVVddpc6dO6u+vl7XX3+9Xn/9ddXV1UmSdu3apR/84AdatWqVPB6PfvKTnygjw9lpUE9TU1OT3UEAcJdf/OIX+vOf/yypufdsTk6Ojh07Jqm5H8ySJUvUrVs3O0MEgLTy8MMPa8GCBSopKdGqVavsDgcAXKG2tlYjR47UV199JUkqKiqKuM/zzz+vrl27Jjo0AEgb27Zt0w033KD9+/dLCs5BZGdn6+c//7kuvfRSO8M0JdPuAAC4z09/+lOdddZZWrx4sTZv3qzjx4+re/fuGjVqlG666SZ17NjR7hABAACAuGzfvt2boJUUck0GXw0NDYkMCQDSTnl5uVasWKGnn35ar732mvbs2aO6ujr17t1bI0eO1DXXXKNevXrZHaYpVNICLjJ//nwtXLgwpkqpnTt36rnnntO6deu0d+9e1dfXq7i4WGVlZZo4caLGjBmjzEw+1wGAcDgPA0Bycd4FAPtwDrYWSVrAJTZs2KBvf/vbqquri/oE+fDDD+uxxx5TfX19yG0qKip03333qU+fPlaECwCuw3kYAJKL8y4A2IdzsPWc3TEXgCmVlZW6+eabvQ2yo3HPPfdowYIF3pNjZmamBg0apDPPPFOFhYXe7TZt2qTp06dr3759lsUNAG7BeRgAkovzLgDYh3NwYpCkBVLc9u3bdeWVV6qqqirqfVeuXKmnn37ae3/cuHFas2aNli9frsWLF+utt97S3XffrdzcXEnNfbZmzpwpCvAB4D84DwNAcnHeBQD7cA5OHJK0QAp78cUXdfnll+vAgQNR71tXV6d58+Z5748aNUq/+93v/FalzcrK0rRp07RgwQJvL5jNmzfrpZdeij94AHABzsMAkFycdwHAPpyDE4skLZCCDhw4oDlz5uhHP/qRampqYprjtdde06effiqp+esFd911lzIyjE8JX//61zVt2jTv/SeffDKmYwKAW3AeBoDk4rwLAPbhHJwcJGmBFPPoo49q/PjxeuGFF7xjffr00Y033hjVPK+88or39siRI9WtW7ew2/ueIDdv3qzKysqojgcAbsF5GACSi/MuANiHc3DykKQFUsyiRYt0/Phx7/2pU6dq2bJl6tWrl+k5mpqatG7dOu/9s88+O+I+5eXl6tSpk/d+NCs3AoCbcB4GgOTivAsA9uEcnDyZdgcAIDYVFRWaM2eOhg0bFvW++/bt09GjR/3mMqO8vNzbHHzjxo1RHxcA3ITzMAAkF+ddALAP5+DEI0kLpJhhw4ZpypQpuuCCC+TxeGKaY/fu3X73e/bsaWq/7t27e29/8sknMR0bAFId52EASC7OuwBgH87ByUOSFkgxCxcujHuOlk+iJCkjI8NvNcVwfL9q4DsHAKQTzsMAkFycdwHAPpyDk4eetEAa+vLLL72327ZtG3JFxUB5eXmGcwAAosN5GACSi/MuANiHc7A5JGmBNHTy5Env7ZycHNP7ZWdne2/X1tZaGhMApBPOwwCQXJx3AcA+nIPNIUkLpKG6ujrvbbOfYElSZuZ/OqTU19dbGhMApBPOwwCQXJx3AcA+nIPNIUkLpKFWrVp5bzc2Nprez/ekmJWVZWlMAJBOOA8DQHJx3gUA+3AONockLZCGcnNzvbd9v3YQie/XC1q3bm1pTACQTjgPA0Bycd4FAPtwDjaHJC2QhvLz8723q6ur1dTUZGq/Y8eOeW8XFBRYHRYApA3OwwCQXJx3AcA+nIPNIUkLpKHOnTt7bzc0NOjw4cOm9quqqvLeLioqsjwuAEgXnIcBILk47wKAfTgHm0OSFkhDvXr18rtfWVlpar+9e/d6b5eWlloaEwCkE87DAJBcnHcBwD6cg80hSQukoZKSEr+vCmzZssXUflu3bvXeHjBggNVhAUDa4DwMAMnFeRcA7MM52ByStECaGj58uPf22rVrI26/detWHTx40Ht/xIgRCYkLANIF52EASC7OuwBgH87BkZGkBdLU2LFjvbdXr16tAwcOhN3+2Wef9d7u27evysvLExYbAKQDzsMAkFycdwHAPpyDIyNJC6SpsWPHqri4WJJUW1urO+64Q/X19YbbvvXWW1q2bJn3/vTp05MSIwC4GedhAEguzrsAYB/OwZGRpAXSVHZ2tmbNmuW9v3btWl1//fV+Dbzr6+u1dOlSzZw5Uw0NDZKksrIyTZ06NenxAoDbcB4GgOTivAsA9uEcHFmm3QEAsM8ll1yi9evXa8mSJZKaT5Jjx45VeXm58vLytHPnTh06dMi7fUFBgebPn6/MTE4dAGAFzsMAkFycdwHAPpyDw0uPZwkgpLlz56qwsFCLFi1SXV2dGhsbDVda7Nu3r+bPn68+ffrYECUAuBfnYQBILs67AGAfzsGhkaQF0pzH49Ftt92mSZMm6fnnn9fbb7+t/fv3q6amRvn5+Ro4cKDGjx+vSZMmKTs72+5wAcB1OA8DQHJx3gUA+3AODs3T1NTUZHcQAAAAAAAAAJCuWDgMAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAIBp69evV3l5ufe/yspKu0MCAABIeSRpAQAAAJi2efNm7+2CggL16NHDxmgAAADcgSQtAAAAANN8k7QVFRU2RgIAAOAeJGkBAAAAmLZp0ybvbZK0AAAA1iBJCwAAAMCUEydOaOfOnd77JGkBAACsQZIWAAAAgClbt25VQ0OD9z5JWgAAAGuQpAUAAABgim8/2qKiInXt2tXGaAAAANyDJC0AAAAAU3yTtIMGDYq4/YYNGzR69GiVl5ervLxcp59+ul555ZVEhggAAJCSMu0OAAAAAEBq8E3SRmp18Oc//1n33nuv6urqJEmlpaVasGCB+vXrl9AYAQAAUhFJWgAAAAARnTx5Uh999JH3fqgkbXV1tX7yk5/4VcyOGzdOv/rVr5SXl5fwOAEAAFIRSVoAAAAAEW3btk319fXe+0ZJ2u3bt+uWW27Rxx9/LElq1aqVZs2apeuuuy5pcQIAAKQikrQAAAAAItq0aZP3dnFxsYqLi/0ef+GFF/Tzn/9cNTU1kqSOHTvqwQcf1PDhw5MaJwAAQCoiSQsAAAAgolD9aE+ePKl77rlHS5cu9Y6dfvrpmj9/vjp37pzUGAEAAFIVSVoAAAAAERklaSsrK3XLLbfoww8/9D521VVX6Y477lBWVlbSYwQAAEhVJGkBAAAAhFVbWxu0aNjrr7+uH//4xzp69KgkKTc3V3fffbcmTZpkV5gAAAApiyQtAAAAgLC2bdumuro67/2VK1dq+fLl3vu9e/fWQw89pPLycjvCAwAASHkZdgcAAAAAwNl8Wx1I8kvQXnDBBXr++edJ0AIAAMSBJC0AAACAsHyTtK1bt/Z7bPjw4WrXrl2yQwIAAHAVkrQAAAAAwvJN0t5www36+te/7r1/77336o033rAjLAAAANcgSQsAAAAgpNraWm3fvt17v6KiQvPnz1dZWZkkqbGxUbNnzw5qiQAAAADzSNICAAAACGn79u1+i4YNHDhQeXl5euyxx1RUVCRJOn78uL73ve/ps88+sytMAACAlEaSFgAAAEBIH374ofd2x44d1blzZ0lSSUmJHn30UeXk5EiSqqqq9L3vfU/Hjh2zJU4AAIBURpIWAAAAQEibNm3y3h44cKDfY6eeeqrmzZsnj8cjSdq2bZt++MMfqqGhIakxAgAApDqStAAAAABC8u01O2DAgKDHx48fr1mzZnnvv/XWW5o7d25SYgMAAHALkrQAAAAADNXV1fktGhZYSdvihhtu0KWXXuq9v2TJEv3hD39IeHwAAABuQZIWAAAAgKEdO3aotrbWez9UklaS5s6dqxEjRnjv33///Xr11VcTGh8AAIBbkKQFAAAAYMi31UFubq5KS0tDbpuVlaWHH35Yffr0kSQ1NTXp9ttv14YNGxIeJwAAQKojSQsAAADAkO+iYWVlZcrICP/2oX379nr88cdVWFgoSTpx4oRuuukm7d27N6FxAgAApDpPU1NTk91BAAAAAAAAAEC6opIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABsRJIWAAAAAAAAAGxEkhYAAAAAAAAAbESSFgAAAAAAAABs9P8BdOE6Xluf0BsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def safe_A(k, r0, td, tb, tau, limit=60):\n", + " if k > limit:\n", + " return r0 ** 2 * tb**2\n", + " return A(k, r0, td, tb, tau)\n", + "\n", + "\n", + "check_A(r, deadtime, bintime, max_k=1000, linthresh=1e-16);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So, we had better repeat the procedure by using `limit_k=500` this time." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABXoAAAQvCAYAAACpAlbxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeXxU1fnH8e9kgxAg7FtYSgIJYDAsFhC0dcWtYKUiWooLQlUUt6JgrbihlupPpVBEKMWqKBZEUEQUgbqAgEIMJBACYTEsCQRCgCwkM5nfHynjDHOTzCR3ZjLJ5/168WLuueee80wyS/LkzHMsdrvdLgAAAAAAAABA0AoJdAAAAAAAAAAAgJoh0QsAAAAAAAAAQY5ELwAAAAAAAAAEORK9AAAAAAAAABDkSPQCAAAAAAAAQJAj0QsAAAAAAAAAQY5ELwAAAAAAAAAEORK9AAAAAAAAABDkSPQCAAAAAAAAQJAj0QsAAAAAAAAAQY5ELwAAAAAAAAAEubBABwDUBlu2bHE5DgnhbyAAAAAAAAD1VVlZmctx//79AxSJ50j0AgbOfzIDAAAAAAAAtRnLFgEAAAAAAAAgyLGiFzBQk9INzquBKQEBAHUbr/kAUL/wug8A9UcwftqbRC+g8h/Szj2BQ0JC1Ldv32qNY7ValZKS4jju3bu3wsJ4mgFAXcRrPgDUL7zuA0D9kpyc7JIrCgbBESUAAAAAAAAAoEIkegEAAAAAAAAgyJHoBQAAAAAAAIAgR6IXAAAAAAAAAIIciV4AAAAAAAAACHIkegEAAAAAAAAgyJHoBQAAAAAAAIAgR6IXAAAAAAAAAIIciV4AAAAAAAAACHIkegEAAAAAAAAgyJHoBQAAAAAAAIAgR6IXAAAAAAAAAIIciV4AAAAAAAAACHIkegEAAAAAAAAgyIUFOgDUX6tXr9a7776rtLQ0lZSUqH379rrqqqs0btw4NW/ePNDhAQAAAAAAAEGDFb0IiNdee00PPPCANm7cqOLiYoWFhWn//v365z//qeHDh2v//v2BDhEAAAAAAAAIGiR64XcrV67UnDlzZLFYNGnSJP3www/aunWrFi9erNjYWB09elQPPPCAbDZboEMFAAAAAAAAggKJXvhVWVmZ/v73v0uSbr/9do0fP14NGzaUJF144YVasGCBGjVqpN27d2vZsmUBjBQAAAAAAAAIHiR64VcbN27Uvn37JEl33XWX2/l27drpxhtvlCQSvQAAAAAAAICHSPTCrzZt2iRJ6tq1q9q3b2/YZ/DgwZKkLVu2qLCw0G+xAQAAAAAAAMGKRC/8avfu3ZKkuLi4Cvt06dJFkmSz2bR3716/xAUAAAAAAAAEMxK98KucnBxJ5SUaKtK2bVvH7WPHjvk8JgAAAAAAACDYkeiFX505c0aSFBkZWWGfc5uzOfcHAAAAAAAAUDESvfArq9UqSQoPD6+wT0REhOO2zWbzeUwAAAAAAABAsCPRC786t1q3tLS0wj4lJSWO25UlhAEAAAAAAACUI9ELv4qKipIkFRcXV9inqKjIcbtx48Y+jwkAAAAAAAAIdiR64VfnNmE7evRohX3ObdgmuW7MBgAAAAAAAMAYiV74VXx8vCRp3759FfY5cOCAJCksLEy/+MUv/BEWAAAAAAAAENRI9MKvBg4cKEnavXu3cnNzDfts2LBBkpSUlOSo6QsAAAAAAACgYiR64Vf9+/dXu3btZLfbNXfuXLfzR44c0ccffyxJuu222/wdHgAAAAAAABCUSPTCr0JCQvToo49Kkv79739r5syZKiwslCRt27ZNd911lwoLCxUfH6/rr78+kKECAAAAAAAAQSMs0AGg/rnxxhu1bds2vfvuu5o1a5bmzJmjhg0b6syZM5KkNm3a6M0331RoaGiAIwUAAAAAAACCAyt6ERBPPfWU/vGPf2jw4MGKiorS2bNn1bFjR40ZM0bLli1Thw4dAh0iAAAAAAAAEDRY0VvPzJgxQ7Nnz1ZMTIzWrl3r1bWZmZlatGiRNm3apIMHD8pqtapNmzaKj4/XsGHDdPXVVysszPOH1FVXXaWrrrrK27sAAAAAAAAA4DwkeuuRbdu2ad68edW6dubMmZozZ46sVqtLe1ZWlrKysrRmzRolJibq5ZdfVmxsrBnhAgAAAAAAAPAQpRvqiaysLE2YMEGlpaVeXztt2jTNmjXLkeQNCwvTBRdcoIsuukjNmzd39EtNTdWYMWN06NAh0+IGAAAAAAAAUDUSvfVARkaGRo8erWPHjnl97apVq/TOO+84jq+55hp99dVXWrp0qRYuXKhvvvlGzz33nCIjIyVJubm5mjhxoux2u2nxAwAAAAAAAKgcpRvquOXLl+vpp59WUVGR19eWlpZq+vTpjuPLL79cr7/+ukJCfv77QHh4uEaNGqWYmBjdc889slqtSktL04oVKzRs2DBT7kMgnF+iwlM2m63SYwBA3VHVa35+fr7uvfderV27VmfPnq3WHBEREbrssss0Z84ctWjRotqxAgBqjp/1AQC1ncXO0ss6KScnR6+++qqWLVtmeN6TzdhWrlypRx55RFJ5uYbVq1erQ4cOFfZ/7rnntHDhQknSBRdcoKVLl1Yv+ABITk5WWVlZoMMAANQhzz77rD755BNTxrruuuv0/PPPmzIWAAAAAO+EhISob9++gQ6jSpRuqIPeeOMNXXvttS5J3tjYWN17771ejbNy5UrH7cGDB1ea5JWkUaNGOW6npaUpKyvLq/kAAKhLUlJSTBsrOTnZtLEAAAAA1E0keuug+fPnq7Cw0HE8cuRILV68WF26dPF4DLvdrk2bNjmOhwwZUuU1CQkJat26teO4qhXDAADUZdUtA+TrsQAAAADUTdTorcMSExM1efJkDRgwwOtrDx06pFOnTrmM5YmEhATHpm/bt2/3et7aICQkRL17967WtTabTampqY7jxMREhYaGmhUaAKAWqeo1PyIiwqV/VFSUBg4c6NHY33//vU6fPu04Dg8PV1JSUg0jBgDUBD/rA0D9sn379qAr80mitw4aMGCARowYoSuvvFIWi6VaY+zfv9/luHPnzh5d17FjR8ftn376qVpz1wZhYeY8NUJDQ00bCwBQu1X1mh8XF6c1a9Z4NNaAAQP0/fffu7TxfgIAtQs/6wMAahveleqg2bNn13iMc6typfIVrq1atfLoOufSDc5jAAAAAAAAAPAdEr0wlJ+f77gdFRWlkBDPyjk3btzYcAwAAFB9R44cUXR0tMf9mzRpohEjRujVV19ltRkAAABQT/CTPwydPXvWcbthw4YeX+dcj7CkpMTUmAAAqM+ca+d70nfmzJnq1KmTHnvsMR9GBQAAAKC28GyZJuqd0tJSx21PV/NKrvUD2SEcAIDqiYqKMmWcr7/+2pRxAAAAANR+rOiFIefdY73ZYdA5uRseHm5qTAAA1Be//e1v9d///rfG4zj/4Rb+U1RUpPXr11e6X8EvfvEL/fKXv6S0BgAAAEzDT5YwFBkZ6bjtXMahKs7lGho0aGBqTAAA1BcPPvigIiIitGLFChUWFnp83VdffSW73e7DyCCV/7wzf/58bdmyxe0P4idOnNDy5cs9GmfYsGFaunQpyV4AAACYgp8qYch5w5eCggLZ7XZZLJYqrztz5ozjdrNmzXwRGgAAdZ7FYtF9992n++67z6vrGjZs6NUfaFE948aN0zvvvFPjcT755BNt3rxZgwcPNiEqAAAA1HckemGobdu2jts2m015eXlq0aJFldc5f0SxVatWPokNAAAgUIqLi7Vo0SLTxvv000/VvHlzl7YuXbqoUaNGps0BAACA+oHN2GCoS5cuLsdZWVkeXXfw4EHH7a5du5oaEwAAQKAVFBSYWvv4xRdfVK9evVz+tWjRQq+//rppcwAAAKB+INELQzExMS6lF3bu3OnRdenp6Y7bPXr0MDssAACAoDJ27FgtWrRIixYt0s033+zRNWfPntUjjzyinJwcH0cHAACAuoTSDajQwIED9fnnn0uSNmzYoFtvvbXS/unp6crNzXUcDxo0yKfxAQAA1AajR4/W3//+d5c2i8WiZs2auexx0L59ey1ZssTjcVNTU13KadUVubm5On36tEtb48aN1bp16wBFBAAAUDeQ6EWFhg4d6kj0rlu3Tjk5OZX+svH+++87bsfFxSkhIcHnMQIAgIqdPHlSGzdu9Khv+/bt3Uo3wTMNGjTwaC+DQYMGqW/fvkpOTvZoXLvdXtPQAq6wsFD5+fmSpFOnTul3v/ud0tLSDPsOGTJEy5cvV8uWLf0ZIgAAQJ1BohcVGjp0qNq0aaOjR4+qpKREU6ZM0bx58xQW5v6w+eabb7R48WLH8ZgxY/wZKgAAPpGdna0jR44YnrNarcrIyHAcl5WVubxHnj171ufxVWXTpk26+OKLPe4/YsQIvf/++4qIiPBhVPVXRESE1q5dqw8//FB79uxxOffDDz/oyy+/DFBk5rNarRo/frzeffddWa1Wj65Zv369nnzySb3yyiuSpEaNGikkhEpzAAAAniLRiwpFRETo0Ucf1ZQpUySVl28YP368nnvuOXXq1ElS+Q/xS5cu1YsvviibzSZJio+P18iRIwMWNwAANWW1WnXnnXdq4cKFgQ7Fr5YuXarPPvtMN954Y6BDqbOaNWumu+++26191qxZdSrRu2jRIr311lteX/fmm2/qzTfflCS1adNGzz33nO655x6TowMAAKibSPSiUjfddJOSk5P1wQcfSCpP9g4dOlQJCQlq3LixMjMzdeLECUf/Zs2aacaMGYarfgEACBZffPFFUCZ527dvr/3799dojLS0NBK9tcQrr7ziUhorIiJCl19+uUaOHOlS+7c22rp1a43HOHr0qO69914NHTpUXbt2NSEqAACAuo1sHKr07LPPqnnz5po/f75KS0tVVlamnTt3uvWLi4vTjBkzFBsbG4AoAQAwT2pqquljtmvXzvQxz/foo4/qwQcf9Pk88I9zeyU4mzNnjn766SdNmjQpABF5zsz6wj/88EOtS/Ta7Xbl5eU5jkNDQxUdHR3AiAAAAEj0wgMWi0WPPPKIhg8friVLlujbb79Vdna2ioqKFB0drZ49e+raa6/V8OHDqekHAICBkJAQ3X///T6fZ+LEibrooou0fv16j+qiZmVlafbs2T6PC1XzphbtW2+9VesTvUZ+//vfq2nTpgoLC9OgQYN022236S9/+YteeumlSq87Vx6stvjoo480YcIEZWdnu7T36NFDH3zwgS688MIARQYAAOo7Er31yIgRIzRixIhqXx8XF6fJkydr8uTJJkYFAEBwGDt2rDp37uw4Lisrc0n0tGvXzjBZFxkZqaFDh6pPnz7+CFMXX3yxxxuwbd68mURvLdG/f3+P+zqXzQom06ZNc1uZO23aNHXr1k3ffPONSktLtX//fq1fvz5AERqz2Wx64YUXtHLlSp04cUK7d+827Jeenq6kpCS9/PLL6tChg66//no1a9bMv8ECAIB6jUQvAACAB+6++24NHjzYcWy1WpWSkuI4TkpKokY9qm3AgAF67rnn9PLLL+v06dOBDsdvQkJCNHbsWI0dO1ZS+SZu5yd6J02apOeff16RkZG65ppr9Oyzz/r1ufbCCy/o6aef9rj/Y489Jql8he+GDRvUvHlzX4UGAADggt9GAAAAgACzWCx66qmnNGXKFJ06dcrl3FVXXaUff/wxMIF54fDhwzp+/LgkKTc317RxDx06pEOHDkmStmzZIovFomnTppk2flVWrVpVrevS09O1cuVKjR492uSIAAAAjJHoBQAAAGqJ8PBwtWzZ0q2tNissLNTNN9+szz77rMZjNWzYsMo+n3/+uV8TvUVFRdW+9lyC2h+sVquWL1+ubdu2OTbD69q1q0aMGMFGcQAA1BMkehEQZ86c0cKFC7V69Wrt27dPZ8+eVcuWLdW/f3/dcccdSkpKCnSIAAAA8MDbb79tSpJXkgYPHqzIyMhKk6vFxcWmzFVdISEh6ty5s9q3b69Ro0Zp3rx5SktLC1g8paWlysjI0OjRo13KyZwzY8YMbdiwQY0aNQpAdAAAwJ88394XMMmBAwd044036tVXX9X27dtVUlKi8PBwZWdn69NPP9Wtt96qf/3rX4EOEwAAAB7Yvn17lX1CQ0PdViobadOmjVatWqVrrrlG3bp1U7du3Wpd7euOHTtq37592rBhgx566CFt27ZN27ZtM9zY8N1339Udd9yhhQsXOlbZmum///2v2rRpo8TERMMkrySlpKQoKipKSUlJ+uGHH0yPAQAA1B6166cm1HlWq1UTJkzQwYMH1bZtWz3//PO65JJLFBISov3792v69Olat26dpk+frtjYWF122WWBDhkAAAA1dMcdd6hp06Ye9f3Vr36lX/3qV47juLg47d2711ehGSorK1Nqaqqys7PdaiafLyQkRL179zbcRG/79u3avn273n77beXm5uqhhx4yNc77779fJ0+e9Kjvtm3bdPPNN2vfvn2yWCymxgEAAGoHEr3wqy+++EJ79uyRxWLRjBkz1LdvX8e5rl276h//+IdGjx6t5ORkzZo1i0QvAABAEHrwwQfVtGlTWSwW9enTRzfeeGOgQ/JYYWGhfvOb32jdunVeXRcaGlrp+ffff9/URG9ZWZl27Njh1TUHDhxQdna22rdvb1oc5xQXF2vfvn2SpEaNGqlz584klAEA8DMSvfCrr776SpLUr18/lyTvOaGhobr55puVnJys1NRUFRUVKTIy0t9hAgAAoAYef/xxxcTEBDqMavn444+9TvJKUu/evdWwYcMKawh7uvLW12w2m+ljzpkzR4888ojLfe/Vq5dWrVqlTp06mT4fAAAwRo1e+FWvXr10zTXXVLpSt3Xr1pIku92uM2fO+CkyAAAAQMrIyKj0fOfOnQ3bGzVqpCVLliguLs4XYXls5syZ+vrrr/XYY48Zni8pKTFlHrvdrpdfflkdOnTQfffd55bg3rFjhzp37qwVK1aorKzMlDkBAEDlSPTCr+644w79/e9/1x//+McK+2zZskWS1KBBAzVv3txfoQEAAACVCg0NrTCBKkk33HCD9uzZo+LiYnXv3t1ncVitVsNN8G666SY98MADuvTSS/W3v/1N999/v1ufuLg4DR06VMePH69RDB999JEef/xxHTlypNJ+w4YNM702MQAAMEaiF7XKiRMn9MEHH0iSLr300lq3yzIAAADqn8mTJ+uf//yn0tPTNXz48Cr7N2jQQCEhvvlVa8uWLerQoYP69OlT7TFWr16tKVOm1CiOcyXZPDF37lwVFRXVaD4AAFA1smjwWl5eXpW7DzsLCwvzqEab1WrVY489ppMnTyokJET33XdfTcIEAACokby8PFmtVpe2EydOBCgaBNItt9yifv36BToMSdKkSZN07Ngxj/o2a9aswnObN2+uURzelIAoKSlRXl5ejffe2L9/v/7yl79o+/btstvtatu2rSZMmKCbbrqpRuMCAFBXkOiF1+bPn6958+Z53D8mJkZr166ttI/NZtPkyZP17bffSpLuv/9+JSYm1ihOAACA6tixY4duvvlm7dy5M9ChGCorK1NBQYFLW6NGjWSxWAIUEfwpNTW1wnPt27d3OR4xYoReeeUVnT171q2vLzZla9KkiU6fPm36uLt379aTTz6pxYsXu7Rv375da9as0caNGzVgwADT5wUAINhQugEBd/bsWT344INasWKFJGn48OGG9cQAAAD84Z577qm1SV5JysnJUePGjV3+derUyVH+qq47fvy43nzzTb355ptav349G339T+PGjXX33Xe7tPXr109fffWVJk6caOpcu3bt0r///W/DdqvVql/96lemzVVWVqarr77aLcl7jt1u18CBA7Vx40bT5gQAIFixohdemzRpkiZNmmTKWCdOnNCECROUnJwsSbrxxhv10ksvsSIFAAAEzLmNYT3VokULH0XiuUOHDmn06NG6+uqra0U8vnTkyBHde++9juP77rtPs2fPDmBEgTdjxgxdf/316tatm9u5gQMHauDAgVq5cqUyMzNrPNf8+fM1bty4Cs+Hhobqggsu0Ndff+3Sfu+99+qll17SBRdc4NV8GRkZOnDgQJX9rrjiCv3444+Kj4/3anwAAOoSVvQiYPbv369Ro0Y5kry33367pk+frtDQ0ABHBgAA6jNvVog2bNhQo0aN8mE0lddZdWaz2Rw/V9Unc+bMUW5ubqDDCJjBgwfrwQcfNEzy+sK0adOqdd0nn3yiX//61zp+/LhX1xUXF3vUr6ioSCtXrqxOaJKk06dPa+XKlXr//fe1fPlyr+MEAKA2YEUvAiI1NVXjxo1TXl6eLBaLHnvsMbePmgEAANQGMTExuu6669zaW7RooVtuuUX9+/f36fyjR4/W6tWrPerri7qrgRYfH6+9e/dWeN5ut+vgwYNq1aqVH6OqvypaXRsdHa3WrVtLKt+M2cjx48f11VdfacSIET6JzZsNo89Zv369HnnkEX3//fcu7dHR0Vq3bp369u1rVngAAPgciV743e7du3X33Xfr5MmTCg8P11//+lf95je/CXRYAAAAhhITE73aiNZsd9xxh6Kjo/Xpp5+qsLDQ0Z6RkaEffvghYHH5yzPPPKP169f7ZJMvmOell15yJHiHDBmimTNnGvbz5vuYnp6u0aNHu7VfffXVHv/xozIHDhzQ1VdfraKiIrdz+fn5euWVV7Rw4cIazwMAgL9QugF+VVhYqAceeEAnT55URESEZs+eTZIXAACgCr/97W81b948LVy40PHvrrvuCnRYfjFw4EAdPnxYa9as0cqVK/X73/8+0CFVS2ZmpuLj4/W73/1Oe/bsCXQ4pgkJCdHBgwd13333OdpuueUWPfXUUzUat7S0VFdeeaV27Njhdm7w4MFe19I2snbtWsMk7znvvfee20pfAABqMxK98Ks5c+Zo//79kqQ///nPpu7ICwAAgLqpcePGuuKKK3Tdddepe/fugQ6nWqxWq3bv3q2lS5fq2muvld1uD3RIprjhhhsUExPj0maxWPTcc89p6dKl1R5327ZtOnz4sOG5Bg0aVHtcZwUFBVX2ueyyy7Rr1y5T5gMAwNco3QC/KSkp0Xvvvec4njVrlmbNmlXpNUuWLFH79u19HRoAAABgqoYNG1Z4LjMzU/v371fXrl39GFFwqWyl7eWXX27Y/vTTT+vKK6/UkCFDqhzfbrcrLS2tyn6FhYX69NNPlZCQUGVfSdq7d6/+9a9/6YUXXlCPHj3Url07de7cWQ8++KDP63kDAECiF36TkZHhUpPLk92R6+KGIgAAAKj7rr32WqWkpFR4vri42I/R1B1vv/22Bg0apK1btxqev/rqq5WamqrY2NhKx3n88cc1Z84cj+bMz8/3qN/x48d1ySWX6MiRI5LKawynp6dLkpYtW6b09HQWsQAAfIpEbxCaMWOGZs+erZiYGK1du9arazMzM7Vo0SJt2rRJBw8elNVqVZs2bRQfH69hw4bp6quvrnCX3JpKTEzkY08AAACoF55//nlZLBZ98cUXOnDggI4fPx7okILeyy+/rDFjxkiSwsPDDfsUFRXpyy+/1B//+McKx8nNzdX//d//mR7fl19+6Ujynu/UqVP673//q9tuu830eQEAOIcavUFm27Zt1d71eebMmRo+fLjefvtt7dq1SwUFBTp79qyysrK0Zs0aPfzwwxo1apT27t1rctQAAABA/RIeHq6XXnpJW7Zs0fjx4wMdTp3Ts2dPtWrVyvBcVbV39+/fX2GN5A8//LDaMeXl5VV6/uOPP6722AAAeIJEbxDJysrShAkTVFpa6vW106ZN06xZs2S1WiVJYWFhuuCCC3TRRRepefPmjn6pqakaM2aMDh06ZFrcAAAAAGCmsLAwrVy50tQx77zzTsXFxVXr2lOnTum+++6rtM+iRYs0c+ZMj8Y7c+aMVqxYoQULFuiDDz7Q0aNHqxUXAKB+IdEbJDIyMjR69GgdO3bM62tXrVqld955x3F8zTXX6KuvvtLSpUu1cOFCffPNN3ruuecUGRkpqfyjTBMnTqwzOwEDAAAAqHt++ctf6r///a8pY910002aP39+ta8fO3asR/3+8Y9/VNnn6NGj6t+/v4YNG6axY8fq1ltvVdu2bfWLX/yCT18CACpFjd4gsHz5cj399NOV7jxbkdLSUk2fPt1xfPnll+v1119XSMjPOf7w8HCNGjVKMTExuueee2S1WpWWlqYVK1Zo2LBhptyHYHNu5bO3zt88js3kACA4lZWVubVZrVaX94e68Jpv9H5XVlZW7ffBusput9fKr4nRY85ms/k9Vk+eL8E0ny/G92XM1X187t69W7m5uWrWrJnP5q/JY9TT16fqzGF0rk+fPhW+/q1evVpPPPGELBZLhXOvWrWqwvmcHT16tMr7/9577ykjI8Ot/cCBA7r33ntNX8kMAKg7SPTWYjk5OXr11Ve1bNmyao+xevVqHT58WFL5x5umTp3qkuR1dskll2jUqFFauHChJGnBggX1MtFbVlZW6Q7J3khNTTVlHACAf51773S2Z88eRUVFVXhNML7m7969263tyJEjpr0PBqvzP9V0+vTpWvk1MSq1tXfvXr/HarTJ2I4dO5Sbm+uT+bKzs93aMjIy3JJwZo6/e/duhYaGVntMo4/d79q1SyUlJV6PdX6SsKCgwKPv+dmzZ12OS0pK1LZtW91www168sknq70hc35+foXz79+/360tKyvLo3gzMzPd2g4fPux27Z49ezzq56yy1z6jBOt3332nESNG6Pnnn3dpd37dLy4urnA+Zzabrcr7v2nTpkrP1cbXIwBA7UDphlrqjTfe0LXXXuuS5I2NjdW9997r1TjOf+0dPHiwOnToUGn/UaNGOW6npaUpKyvLq/kAAAAABIeysjJ98skn+vbbbwMdSq332WefeV1G76233lKPHj28uubHH3/UokWLKjx/6tQpj8ey2WwqKCiolZ9IAAD4BoneWmr+/PkqLCx0HI8cOVKLFy9Wly5dPB7Dbre7/DV4yJAhVV6TkJCg1q1bO47Xrl3r8XwAAAAAaifnDZjPZ7SKtb6KiYmpcPV2Tk6Ox+NccsklSkxMdOyD4qlXX321yj4vvPBClfupvPXWW7r66qv161//WoMGDdKtt96qM2fOeBULACD4ULqhlktMTNTkyZM1YMAAr689dOiQy198ExMTPbouISHB8dfq7du3ez1vsAsJCVHv3r2rda3NZnP5CFdiYmKNPuYHAAgMo0/AdOvWTUlJSY7juvCaf/5HuSWpffv2LvezPjq/BECTJk1q5ddkw4YNbm2xsbF+j7Vly5Zubb169VJMTIxP5mvXrp1bW3x8vGn322j87t2712j8Nm3auLUlJCSoZ8+eXo91fomFqKgoj2J76KGHNG7cOMNzbdu2rfb9i46OrvDaffv2ubV16tTJo7lOnz7t1tahQwe3a/Pz8z3q56y0tNStzfm178UXX9TkyZPd+sTFxbkcV/a637RpUyUlJbmV/AkNDa00Nk82W/voo4/09NNP64ILLjA8v3nzZs2aNculbc+ePbrsssv0/fffq0+fPlXOAQAoz4kZ1dmvzUj01lIDBgzQiBEjdOWVV1a73tj5NbE6d+7s0XUdO3Z03P7pp5+qNXewq26NsvOFhoaaNhYAwH+M6tmHhYVV+poejK/5RvGGhIQE3f3wNYvFUiu/JkYJpkA8DqvzfKnN8/lifF/G7Onj8+6771ZcXJz+7//+TytWrHCLr7qxVDZ/TR6jnr4+VWeOqsZ+/PHHdfjwYc2YMcOtj6fznPu6GP0uZ8b3PTMzs8KE8fLlyyu87pVXXqm0NAQAILjVvp9YIUmaPXt2jcdwriEVEhKiVq1aeXSdc+kGb+tQAQAAAKidLrvsMjVr1swt0Qt3Rquwg8HWrVv1t7/9rcLzRhvRAQDqDmr01mHOH2OKiooyXElgpHHjxoZjAAAAAACqLy8vz6t9UIYOHaoXXnjB4/5vvPFGdcJy8cknn+juu+/WrbfequnTp6ugoKDGYwIA/IMVvXWYc929hg0benxdRESE43ZJSYmpMQEAAABAfXbdddcpNTVV3bt396i/c2m9qhw8eLDS81u3btW+ffvUtWtXw/OLFy/WLbfc4jj+4IMPNGXKFBUUFKhRo0YexwEACAxW9NZhzpsMeLqaV3KtGWW1Wk2NCQAAAADqC+dFNOeUlJRo9erVAYimnHMi93y33367YfvgwYODbkMiAKiPSPTWYc4bE3jzpuyc3A0PDzc1JgAAAACoLy6//HLD9sLCQj9H8rMffvjBcP7XX39dxcXFhtekpKQoNTXV16EBAGqIRG8dFhkZ6bjtXMahKs7lGho0aGBqTAAAAABQX0yePFkDBw4MdBhujD65OXfu3Eqvyc7OrvT8iRMntGnTJu3fv78moQEAaoBEbx0WHR3tuF1QUCC73e7RdWfOnHHcbtasmdlhAQAAAECdsXbtWtlsNsNzYWFheuWVV/wc0c+8KeGXm5tb7XlefPFFtWrVSoMGDVLXrl11ww03VLg6GADgOyR667C2bds6bttsNuXl5Xl03bFjxxy3W7VqZXpcAAAAABAIhw4d0g033GDaeJs2bdI111xjyliffvqp6cnRsLAwjRkzxpSxTpw4YdiempqqJ5980mVh0cqVKzVlyhRT5gUAeI5Ebx3WpUsXl+OsrCyPrnPeqbWi3VgBAAAAINj84Q9/0NGjR00bb/ny5YZlEJw3uPbEvn379Nvf/tbj/itWrDBs9/RTnNVx2223KT8/36WtuLhYvXv3Nuw/Y8YMbd261WfxAADckeitw2JiYlxKL+zcudOj69LT0x23e/ToYXZYAAAAAOB3drtd3377reG5xo0bV2vMU6dOGbYPHjzYq3G++eYbw4Sx874rzhYsWOCW7P3hhx/0+eefezWvt1avXu1y/N1331Xaf8mSJb4MBwBwHhK9dZxz4f8NGzZU2T89Pd2lNtOgQYN8EhcAAAAA+JtRMrVBgwamlV+QpOuuu04PP/ywV9dUtHn2ddddp9DQUMNzixcvdjkeN26cV3NWx5EjR1yOjx8/Xmn/kydPGrbb7XYtWLBAI0aM0LBhw/TKK68Yfm8AAN7x7vMkCDpDhw51/FV33bp1ysnJcande77333/fcTsuLk4JCQk+jxEAAAAAziktLdW6dev8Nt/nn3+unj17mjbe3LlzFRERUeNxrrrqKv3xj39UZmam4XnnMgplZWVKSUlx6+PpnisnT5502avF18aNG6d//etfjuMVK1YoJydHL7/8st9iAIC6iBW9ddzQoUPVpk0bSVJJSYmmTJlS4V9Kv/nmG5e/CptVtB8AAAAAPFFWVqbf/e53mjp1ql/m++1vf6tf//rXfpnLWw8//LAsFou6deum+fPnV2uMu+++26N+I0eOrNb41bFixQqXJO85r7zyimw2m9/iAIC6iERvHRcREaFHH33UcbxhwwaNHz/eZWM2q9Wq//znP5o4caLjjTU+Pt6vb/YAAAAAkJKSok8++STQYdQ6Y8eOrdZ1zz77bJV98vPz9eWXX1Zr/Kq88cYbbhvEzZs3r8L+TzzxhE/iAID6gkRvPXDTTTdp1KhRjuMNGzZo6NCh+u1vf6s//OEPuvTSS/XUU0+pqKhIktSsWTPNmDHD651iAQAAAKAmfvrppwrPxcfH+zGS4HfTTTfJYrFU2a+wsNCw3Xm/l4q88847Vfb597//7XJcWYmIpUuXVniuqKhI27dv92uJCQAINiR664lnn31W9957r8LDwyWVfyRq586d+v7773XixAlHv7i4OL377ruKjY0NVKgAAAAA4OLqq6/W0KFDAx1GvfLUU09Vej4tLU0ff/xxleP897//9XjO06dPu7XZ7Xb98Y9/VKNGjXThhReqTZs2uuuuuyjzAAAGSPTWExaLRY888oiWL1+usWPHKj4+Xk2bNlV4eLhatWqlSy+9VC+88IKWLVum7t27BzpcAAAAAHXQnXfeqZdfftnt4/yVefDBB7Vq1So1bNjQh5HVL6mpqZWev/fee6v8eq9fv96juUpKSjyOy8ikSZPcyj289dZbWrNmTY3GBYC6iM/mB5kRI0ZoxIgR1b4+Li5OkydP1uTJk02MCgAAAAA88/jjj6tLly665ZZbPOrfp08fhYSwRslMl19+uU6cOKGoqKhqj1FaWur1NVarVd99953H/YuLi/Xqq68annv33XdZ5Q0A5+HdEgAAAABgukaNGlV4bt26dX6MpH6LiIhwayspKdGmTZtMn+u5556r9PxLL71U6fnzV3o7lxk83zvvvEO9XgA4D4leAAAAAIDpLr74YjVv3tzwXE0/zg/PXXbZZYbtBQUFps914YUXVnp+9erVlZ4/duyYdu7c6fF8RvV/09LSdPPNN2vChAmaOXOm8vPzPR4PAIIdiV4AAAAAgOmaNm2qtWvX8vH6ABs9enSt2Wz77NmzVfb505/+5LhdVlZWad8zZ864HD/33HNKTEzUhx9+qDfeeEMPPvigrr32Wq9qQgNAMCPRi1pj4cKFSkhI0BVXXBHoUAAAAACYoE+fPnrvvfcCHUa9ZrFY9Oc//znQYXhs27ZtjtsPP/ywx9fl5+fr6aefdmvfuHGjV6uEASCYkehFrZCZmam//e1vgQ4DAAAAABBA51bfWq1Wffjhhx5ft2fPngrP/fTTTzWOCwCCAYleBFxJSYkmTZqk4uLiQIcCAAAAAPCTdu3aVXjOkzIPnrrtttsM2ynpAKCuIdGLgHvttde0Y8cONWzYMNChAAAAAAD86KKLLjJlnK+++qrCcydPntSpU6ccx/v379cll1yiiIgINWzYUBdeeKFXq4cBoLYi0YuA+u6777RgwQJ17Nixwr+yAgAAAAACr6rN0fxt2rRpkspX5jpv4mbk9OnTjtvjxo3T+vXrZbVadfbsWW3fvl2jRo3S/v37fRkuAPgciV4ETH5+vqZMmSKLxaLp06crKioq0CEBAAAAACrw8MMPu6yMDbS9e/fqwIEDOn78uFfXfffdd25tNptNGzduNCs0AAgIEr0ImKlTpyo7O1t33323aR/XAQAAAAD4zsKFCwMdgovt27d7XWu3sLDQsL2goMCMkAAgYEj0IiCWLl2qVatWqWfPnnrwwQcDHQ4AAAAAwEnHjh0N23fu3OnnSCrnbZJ35cqVFZ4bN26cy/GuXbs0YcIEXXnllbr88st15MiRasUIAP4SFugAEHzy8vK8+rhOWFiYYmJiHMdZWVmaNm2aIiIi9PLLLysiIsIXYQIAAAAAqik+Pl59+/ZVcnJyoEMx1ezZsys9n52drXbt2unUqVP69a9/rZycHMe5Dh066LvvvtOgQYN8HSYAVAuJXnht/vz5mjdvnsf9Y2JitHbtWknldY8ee+wxFRQU6IknnlD37t19FSYAAAAAoJosFosWL16sbt26BToUU2VnZ1d6/ujRo2rXrp02bNjgkuQ9Z/z48dq+fbuvwgOAGqF0A/zqjTfeUHJysgYNGqQ77rgj0OEAAAAAACoQHh4e6BBM4+2GbZmZmYbtRslfAKgtWNELr02aNEmTJk3y+roff/xRb7zxhpo2baq//vWvslgsPogOAAAAAABXY8eO1Q8//OBx/wceeMCwvayszO1469at2rlzpy644AL17duX33UBBAyJXvjNBx98IKvVquLiYt18881u58/tfHrkyBENGTJEkvTkk0/q+uuv92ucAAAAAIC65ccff/S4b25uboXnjh8/rsOHD6tDhw6SpPvuu09z5851nB8wYIA2bdpU7TgBoCYo3QC/ObcbaklJiXJzc93+nUv0lpWVOdqKi4sDGTIAAAAAoA4IC/N8ndu5300rMmvWLEnSoUOHXJK8krR582a99NJL3gcIACZgRS/85q9//av++te/Vnh+5syZmjVrlsvmbQAAAAAA1Cbp6emSpI0bNxqenzp1qp544gl/hgQAkljRCwAAAAAA4LW7777bsL1JkyZ+jgQAypHoBQAAAAAA8FJ+fn6Vfex2u5566il17NhRLVu21B133FFlaQgAqC4SvQAAAAAAAJK+/PJLj/s2aNDAsD0vL8+xR82iRYs0bdo0HTp0SCdOnNDbb7+t3/72t2aECgBuSPQCAAAAAABI+tOf/mTKOAsWLJAkTZgwwe3c6tWrtXfvXlPmAQBnJHqD0IwZM5SQkKArrrjC62szMzP1wgsvaPjw4erXr58uvPBCXXXVVZowYYI+++wzWa1WH0TsmYkTJ2rXrl1sxAYAAAAAdcT777+v0tLSQIfhsGXLFr/Ms27dOuXk5OjkyZOG51esWOGXOADUL2GBDgDe2bZtm+bNm1eta2fOnKk5c+a4JXOzsrKUlZWlNWvWKDExUS+//LJiY2PNCBcAAAAAUM/NmDFDkyZN8tn4c+fO9ajfpk2bquxjsVhqGo4kqaSkRFu3bq3wvHN93xMnTmjp0qU6fPiwLrnkkmot6gIAiRW9QSUrK0sTJkyo1l9Dp02bplmzZjmSvGFhYbrgggt00UUXqXnz5o5+qampGjNmjA4dOmRa3AAAAACAui88PFwRERFu7d9++61P533llVc86rdo0SKP+q1Zs6Ym4TjYbLYq+5w5c0aXXnqpxo8fr6efflpXXnmlXn31VVPmB1D/kOgNEhkZGRo9erSOHTvm9bWrVq3SO++84zi+5ppr9NVXX2np0qVauHChvvnmGz333HOKjIyUJOXm5mrixImO4vEAAAAAAFQlPDxcw4YNc2v3demGoqIij/qdOHHCo37PPvusR/08SeRWpKysTJL02muvaceOHS7nzKoTDKD+oXRDEFi+fLmefvppj9+8nJWWlmr69OmO48svv1yvv/66QkJ+zvGHh4dr1KhRiomJ0T333COr1aq0tDStWLHC8E26PqhureLz3+hr8sYPAAicc798ObNarS7vD3XhNd/o/a6srCygNftrI7vdXiu/JkaPOZvN5vdYPXm+BNN8vhjflzF7+/g0+3nvyfzezOnt49qb/kYLWSqK3+h7dn6bzWbz6Hvryf2vzvPZOXajOJzPVzZ+ZfFVdq6iMefPn68PP/zQMJaKvgfn8+b5UdH770UXXaQffvjBLfbzdenSRQcOHHBpKy4urnROu92u/fv3V/n9qexng2eeeUZPPvmkpk6danj+k08+0XXXXVdpHABwPhK9tVhOTo5effVVLVu2rNpjrF69WocPH5ZUXq5h6tSpLkleZ5dccolGjRqlhQsXSirfJbQ+JnrLysqUkpJiylipqammjAMA8K9z753O9uzZo6ioqAqvCcbX/N27d7u1HTlyxLT3wWB1ftLh9OnTtfJrYlRqa+/evX6P9fjx425tO3bsUG5urk/my87OdmvLyMgwra6m0fi7d+9WaGhotcc8evSoW9uuXbtUUlLi9VjnJ5YKCgq8+p5nZGS4tWVnZ1f7cZOfn1/ltUabUZ04ccLwun379rm1ZWVlVTjHnj173NoOHz5s2N8ooVhR/EeOHHFry8zMVGJiouM4NTXV8HG+Y8cOl+dFZmZmlTEePHjQrc++ffsq/do6x26UwHQ+n5WVVeH4Rvfh+PHjSklJMXw+5ObmKiUlxfA1KDMzU61bt1ZoaKhLkvPUqVNKSUlRYWGhS//S0lK3BU2lpaVKSUnxuMzCvn373L63AwcOdPu91263Ky8vz+36li1buiV6q0oyL1u2rNKfCaTyx73R49nZqlWrKjz39ttvq0OHDpVeDwDno3RDLfXGG2/o2muvdUnyxsbG6t577/VqnJUrVzpuDx48uMo3ilGjRjlup6WlGf5AAAAAAACAL82fP7/a11a0uMlMX3zxRZV9qkoYGyXSzzm3qrisrEwzZ87UlVdeqUsvvVRPPfVUlSuOAdRfJHprqfnz57v8tXPkyJFavHixunTp4vEYdrvdZVfRIUOGVHlNQkKCWrdu7Theu3atx/MBAAAAAGAGo5Xgbdu29X8gFfBk/5y//e1vNZ7n5Zdf1r///W/l5+erqKhIn332mRYsWFDjcQHUTZRuqOUSExM1efJkDRgwwOtrDx06pFOnTrmM5YmEhATHm9b27du9njfYhYSEqHfv3tW61mazuXx0NzExsUYf8wMABIbRJ2C6deumpKQkx3FdeM0/e/asW1v79u1d7md9dH4JgCZNmtTKr8mGDRvc2mJjY/0ea8uWLd3aevXqpZiYGJ/M165dO7e2+Ph40+630fjdu3ev0fht2rRxa0tISFDPnj29HisszPVXuKioKK9iMypf0K5du2rfv+jo6CqvNSrv0aJFC8Przv8IvSR16tSpwjny8/Pd2jp06GDY3+i+VxR/+/bt3dri4uJcjhMTE9WqVSu3fr169VLHjh0dx6dPn64yxu+//96tT9euXSv92jrHblS6wfn8li1bKhzfqExFy5YtlZSUpObNm7uda9WqlZKSkrR+/Xq3c3FxcUpKSnJ7HW3atKmSkpLUqFEjl/bw8HDHpuDObRXd7wkTJujpp592ux9Gr9vns1gshvfHqARDeHi44fzeiI6OrjIZ3K1btwrPNW/eXD169NDixYvdzs2fP19z5sypcYwAKrd9+3bD19fajERvLTVgwACNGDFCV155ZbXrje3fv9/luHPnzh5d5/xDyU8//VStuYPd+T9AV1doaKhpYwEA/MfoI59hYWGVvqYH42u+UbwhISFBdz98zWKx1MqvidEfFgLxOKzO86U2z+eL8X0Zs7ePT7Of957M782c3j6uvelvlOitKH6j79n5baGhoR59bz25/9V5PjvHbpSIcD5f2fiVxVfZOW9iPheL0e+2Rm1GY1xzzTWGf0AyiqOi36GNvl9m1feuzriVlZjYtWuXdu3aVeH5nJwcn/1BDUDwqn0/sUKSNHv27BqP4fzXw5CQEMO/NhtxLt3gycdRAAAAAADwpYiIiECHYLrKSjBs3rzZcDX4OV9//bVuu+022e12ffPNN/rxxx/Vq1cvXX755UH3CSMA5iHRW4c5f4wpKirK44L0jRs3NhwDAAAAAACY4/PPP6/0vFFJj3OKi4tlt9vdfs8fO3ZsjTayAxDc2IytDnOuu9ewYUOPr3P+S2lJSYmpMQEAAAAAgPJ6/5UpKCio9Pxrr73m1vavf/2LT+YC9RiJ3jqstLTUcdvT1bySaz0kq9VqakwAAAAAANR1hw8frvEYb775ZqXnP/30U8P2gwcP1nhuAMGJRG8d5lyXx5tdAp2Tu2bsNgoAAAAAQH2yfv36Go9x5MiRSs9X9Pv69OnTazw3gOBEorcOi4yMdNx2LuNQFedyDQ0aNDA1JgAAAAAAUDOVrdrdvn27pPIN2ywWi7p06aKbbrpJP/zwg7/CAxAgbMZWh0VHRztuFxQUyG63y2KxVHndmTNnHLebNWvmi9AAAAAAAEA1TZ06tcJzUVFRSktL069//WtJ0k8//aSffvpJ69atU1ZWlpo0aeKvMAH4GSt667C2bds6bttsNuXl5Xl0nXPh9latWpkeFwAAAAAA8J2lS5e6teXn52vjxo0BiAaAv5DorcO6dOnicpyVleXRdc4fAenataupMQEAAAAAAN86efKkYXtBQYF/AwHgVyR667CYmBiX0gs7d+706Lr09HTH7R49epgdFgAAAAAA8KETJ04Ytj/99NOO8x9++KHmzJlTYV8AwYdEbx03cOBAx+0NGzZU2T89PV25ubmO40GDBvkkLgAAAAAA4BtvvfWWYfvOnTuVkZGhnj176uabb9Z9992nli1bavbs2f4NEIBPkOit44YOHeq4vW7dOuXk5FTa//3333fcjouLU0JCgs9iAwAAAAAA5vr+++8rPNeuXTu98cYbOnr0qEv7/fffL5vN5uvQAPgYid46bujQoWrTpo0kqaSkRFOmTJHVajXs+80332jx4sWO4zFjxvglRgAAAAAA4B9paWmG7Z7u6wOg9iLRW8dFRETo0UcfdRxv2LBB48ePd3kBt1qt+s9//qOJEyc6/oIXHx+vkSNH+j1eAAAAAADgO6tXrzZst9vtjtunT592OQYQHMICHQB876abblJycrI++OADSeXJ3qFDhyohIUGNGzdWZmamS/H1Zs2aacaMGQoL4+EBAAAAAIAvBGITtFOnTlV4bsOGDcrJydGYMWO0Z88eSeW1fu+44w5/hQeghsjk1RPPPvusmjdvrvnz56u0tFRlZWXauXOnW7+4uDjNmDFDsbGxAYgSAAAAAID6oaKyir6Un59f4bkPPvhAqamp2rdvn6PtzjvvVJ8+fZSUlOSP8ADUEIneesJiseiRRx7R8OHDtWTJEn377bfKzs5WUVGRoqOj1bNnT1177bUaPny4IiIiAh0uAAAAAADwo/z8fJck7znPPPOMPvroowBEBMBbJHqDzIgRIzRixIhqXx8XF6fJkydr8uTJJkYFAAAAAACC2eHDhwMdAoAaYjM2AAAAAACAeu5cXd6KLFmyRKNHj9a9996rLVu2+CkqAN5gRS8AAAAAAAAMLVu2TIsWLdJtt93maHvzzTeVkZGh7t27BzAyAOdjRS8AAAAAAAAq9OKLL7q1JSQkBCASAJVhRS8CZu/evVqwYIE2bNigo0ePqkGDBurZs6dGjhyp4cOHBzo8AAAAAAAgafv27W5tdrs9AJEAqAyJXgTE8uXL9eSTT6q0tFSSFBUVpdOnT2vz5s3avHmz/vvf/+qVV15RSAiLzgEAAAAAqG3O/b5us9mUnJys0NBQJSUl8Xs8EEA8++B3W7du1ZQpU1RaWqrrr79e//3vf7V161Zt2rRJY8eOlSR9+umnev/99wMcKQAAAAAAqMixY8fUp08f/fKXv1S/fv00aNAg5efnBzosoN4i0Qu/e+aZZ1RWVqYbbrhBr776qtq3by9JatasmSZPnqzrrrtOkkj0AgAAAABQS5WVlWnu3LlKTU11tH3//ff6+9//HsCogPqN0g3wq23btmnXrl2KjIzUk08+KYvF4tZnwoQJ6tOnj5o1a+b/AAEAAAAAgEf+8pe/uLVNnTpVTz31VACiAUCiF3715ZdfSpKGDBmili1bGvaJj49XfHy8P8MCAAAAAAAmKSwsVKNGjQIdBlDvkOiFX6Wnp0uSevbsKUlatWqVli1bpr179yokJERJSUm666671KNHj0CGCQAAAAAAquns2bOaP3++PvzwQ0VHR+uhhx7SFVdcEeiwgDqPRC/8au/evZKkpk2basKECVqzZo3L+X379umTTz7RM888o1tuuSUQIQIAAAAAgBr4xz/+4VK+YdWqVUpLS1O3bt0CGBVQ95Hohdfy8vJ06tQpj/uHhYUpJiZGknT69GlJ0ty5c3Xs2DGNHDlS48ePV/v27ZWRkaHp06dr8+bNevrpp9W5c2cNGjTIJ/cBAAAAAAD4xvk1ektKSvThhx9q8uTJAYoIqB9I9MJr8+fP17x58zzuHxMTo7Vr10qSCgoKJEnHjh3TH/7wB5cX/8TERM2fP1+jRo3Sjh079Le//U1Lly41N3gAAAAAAOB3U6ZMIdEL+FhIoANA/RQREaGHHnrIsP2+++6TJKWlpSkrK8vfoQEAAAAAAJOFhJSnoPLy8rRu3TodO3YswBEBdQ8reuG1SZMmadKkSdW6NioqSidPnlRCQoKaNm1q2Oeiiy5y3M7IyFCnTp2qNRcAAAAAAKgdmjdvrgULFmjs2LGSJIvFotmzZ+vee+8NcGRA3cGKXvhVq1atJEmNGjWqsI9zAri4uNjnMQEAAAAAAN86ceKEI8krSXa7XY8//rhKS0sDGBVQt5DohV/Fx8dLkrKzsyvsk5+f77h9LjEMAAAAAACCl91ud2s7ffq0Dh8+HIBogLqJRC/8auDAgZKkAwcOaO/evYZ9tmzZIkkKDw9XQkKC32IDAAAAAAD+9eGHHwY6BKDOINELv7ruuusUGRkpSXrttdfczttsNs2bN0+SdOmll6pZs2b+DA8AAAAAAPhRenq61qxZo8suu0xjx47VmjVrAh0SELRI9MKvoqOj9fDDD0uSvvjiCz3++OPKycmRJOXk5GjixInatm2bIiIiqr3hGwAAAAAACA7z5s3TVVddpa+++koLFizQNddco/Xr1wc6LCAohQU6ANQ/d955p44dO6Z//vOfWr58uZYvX64mTZrozJkzstvtatCggaZPn664uLhAhwoAAAAAAPzIZrPp3Xff1ZAhQwIdChB0SPQiIB577DFdfvnlevvtt7V161adPHlSHTp00MCBAzV27Fh179490CECAAAAAIAA+PHHHwMdAhCUSPQGoRkzZmj27NmKiYnR2rVrvbo2MzNTixYt0qZNm3Tw4EFZrVa1adNG8fHxGjZsmK6++mqFhfnnYXHRRRfpoosu8stcAAAAAAAgOGzcuFFS+epeq9WqBg0aBDgiIDhQozfIbNu2zbFZmbdmzpyp4cOH6+2339auXbtUUFCgs2fPKisrS2vWrNHDDz+sUaNGae/evSZHDQAAAAAA4Lnbb79dTZs2VWRkpAYOHKgDBw4EOiSg1iPRG0SysrI0YcIElZaWen3ttGnTNGvWLFmtVklSWFiYLrjgAl100UVq3ry5o19qaqrGjBmjQ4cOmRY3AAAAAACAN9555x0VFhbKbrdr8+bNmjhxYqBDAmo9Er1BIiMjQ6NHj9axY8e8vnbVqlV65513HMfXXHONvvrqKy1dulQLFy7UN998o+eee06RkZGSpNzcXE2cOFF2u920+AEAAAAAAKrr66+/DnQIqC/y86WvvpJKSgIdideo0RsEli9frqefflpFRUVeX1taWqrp06c7ji+//HK9/vrrCgn5OccfHh6uUaNGKSYmRvfcc4+sVqvS0tK0YsUKDRs2zJT7EGzOrXz2ls1mq/QYABAcysrK3NqsVqvL+0NdeM03er8rKyur9vtgXWW322vl18ToMXeulqE/efJ8Cab5fDG+L2P29vFp9vPek/m9mdPbx7U3/Y0WslQUv9H37Pw2m83m0ffWk/tfneezc+xGcTifr2z8yuKr7Jy3X3ur1Vrh9+B8FY1R0ZyejHkudk/7ovbJz8+vle/HCHLHj8vy449ScrIsycmybN0qy5495ee+/lry0z5WZgmuaOuZnJwcvfrqq1q2bFm1x1i9erUOHz4sqbxcw9SpU12SvM4uueQSjRo1SgsXLpQkLViwoF4mesvKypSSkmLKWKmpqaaMAwDwr3Pvnc727NmjqKioCq8Jxtf83bt3u7UdOXLEtPfBYHX+L/2nT5+ulV8To1Jbe/fu9Xusx48fd2vbsWOHcnNzfTJfdna2W1tGRoYsFovPxt+9e7dCQ0OrPebRo0fd2nbt2qWSaqwUOj/JUVBQ4NX3PCMjw60tOzu72o+b/Pz8Kq89efKkW9uJEycMr9u3b59bW1ZWVoVz7Dn3y7iTw4cPG/Y3SuhVFP+RI0fc2jIzM5WYmOg4Tk1NNXyc79ixw+V5kZmZWWWMBw8edOuzb9++Sr+2zrEbJTCdz2dlZVU4vtF9OH78uFJSUgyfD7m5uUpJSTF8DcrMzFTr1q3dvtanTp1SSkqKCgsLXdpLS0vdFjSVlpYa3u/8/PwK74fR6/b57Ha78vLy3NoLCgrc2qpTLhH+MXPmTK1evVppaWn6zW9+o7FjxwY6JASRsNxcNUpPL/+3a5capaergcHrfTAj0VtLvfHGG5o7d67LG2FsbKyGDh2qOXPmeDzOypUrHbcHDx6sDh06VNrfOdGblpamrKwsderUycvoAQAAAAAAzPXoo486bs+ePVvJycmaOXNmACNCrWS3KzwnxyWh22jnTkX46I/QtQmJ3lpq/vz5LknekSNHasqUKfriiy88HsNut2vTpk2O4yFDhlR5TUJCglq3bu2oBbx27VrdcccdXkQOAAAAAADge999951sNluNPnWBIGe3K+LQoZ9X6v7vX7jBp0nqAxK9tVxiYqImT56sAQMGeH3toUOHdOrUKZexPJGQkOBI9G7fvt3reYNdSEiIevfuXa1rbTaby0d3ExMTecMBgCBk9AmYbt26KSkpyXFcF17zz54969bWvn17l/tZH51fAqBJkya18muyYcMGt7bY2Fi/x9qyZUu3tl69eikmJsYn87Vr186tLT4+3rT7bTR+9+7dazR+mzZt3NoSEhLUs2dPr8cKO69WYFRUlFexGZUvaNeuXbXvX3R0dJXXGpX3aNGiheF1Bw4ccGvr1KlThXPk5+e7tXXo0MGwv9F9ryj+9u3bu7XFxcW5HCcmJqpVq1Zu/Xr16qWOHTs6jo3KCJwf4/fff+/Wp2vXrpV+bZ1jNyrd4Hx+y5YtFY5vVKaiZcuWSkpKUvPmzd3OtWrVSklJSVq/fr3bubi4OCUlJbm9jjZt2lRJSUlq1KiRS3t4eLhjU3DnNqP7HR0dbfhp065duxq+bp/PYrEY3h+jskzh4eFubai9YmNj1axZs0CHAX+w2aTdu8tr6SYn/1xX1+C9oLrsLVvK3rev1Lev1LChaeP6C4neWmrAgAEaMWKErrzyymrXG9u/f7/LcefOnT26zvmHkp9++qlacwe783+Arq7Q0FDTxgIA+I9RPfuwsLBKX9OD8TXfKN6QkJCgux++ZrFYauXXxOgPC4F4HFbn+VKb5/PF+L6M2dvHp9nPe0/m92ZObx/X3vQ3SvRWFL/R9+z8ttDQUI++t57c/+o8n51jN0r0Op+vbPzK4qvsnDcxn4vF6Hdbo7aKxqhoTk/GPBe7p30RPEpKSrRq1SoVFhbqiiuuMPwDDIKQ1Srt3Clt3Spt2VL+/48/SgZ1tautXTupf3+pXz/HP0unTj+/LiQnSwavr7VZ7fuJFZLKa83U1LlVuVL5G5qnL3atW7c2HAMAAAAAAKA26datm8umfjt27KjWJyYQQGfPSqmp5cncc/+2bZOKi82bo3Nnl4Su+vWTDD69EexI9NZhzh9jioqKMvzrpZHGjRsbjgEAAAAAAFCbOCd5pfLyKUYr+FFLFBaWJ3GdV+qmppav4DVLXJzrSt2+faV6stKbRG8d5lx3r6EXdUUiIiIct0tKSkyNCQAAAAAAwJdKSkpcchsIkFOnysstOK/U3bnTvHIIFovUo4frKt0+faR6XLOZRG8dVlpa6rjt6WpeybUektXMv6gAAAAAAAD4WHFxsWNTPeow+8mJE+U1bc8ldLdskXbvNm/80FDpggtcV+peeKHk9Kl0kOit05yL0hsV56+Ic3KX3UYBAAAAAEAwmTRpkhYvXqywsDA9+OCD+stf/kLC10w5Oa6rdLdulfbvN2/8iIjyJK7zSt3evSUvPq1eX5HorcMiIyMdt53LOFTFuVxDgwYNTI0JAAAAAADAl+bNm+e4PXXqVPXp00fDhg0LYERBym6XDh1yT+oeOmTeHJGR5eUWnJO6vXqVJ3vhNRK9dVh0dLTjdkFBgex2u0d/wTpz5ozjdrN6XNcEAAAAAAAEv+HDh7NBW1Xs9vJVuec2SDv379gx8+Zo0sQ1oduvn5SQUF6WAaYg0VuHtW3b1nHbZrMpLy9PLVq0qPK6Y05P4lb1ZFdCAAAAAACAeqGsrLx+7vkrdU+eNG+OFi3ck7pxcZIXe0jBeyR667AuXbq4HGdlZXmU6D148KDjdteuXU2PCwAAAAAAwF8aNmyo1atXa/Xq1YqNjdUf/vAHNa4vm3hZrVJ6+s8bpG3dKv34o+T0ae4aa9vWdZO0fv2kzp0l6iL7HYneOiwmJkbNmjXTyf/9RWbnzp1KSkqq8rr09HTH7R49evgqPAAAAAAAAJ8rLi7W0KFDHceLFi3SunXr6t4GbWfPSmlprqt0U1Kk4mLz5ujUyX2lbocO5o2PGiHRW8cNHDhQn3/+uSRpw4YNuvXWWyvtn56ertzcXMfxoEGDfBofAAAAAACAP3311VfavXu34uPjAx1K9RUVSdu2ua7UTU2VSkvNmyM21nWlbt++UuvW5o0P05HoreOGDh3qSPSuW7dOOTk5LrV7z/f+++87bsfFxSkhIcHnMQIAAAAAAPjT66+/rtmzZwc6DM+cPl1ebsF5pe7OnZLNZs74Fkv5pmjOq3T79JGaNzdnfPgNid46bujQoWrTpo2OHj2qkpISTZkyRfPmzVNYmPu3/ptvvtHixYsdx2PGjPFnqAAAAAAAAH6Rl5ensrIyFRYW1q56vXl5UnLyzwndLVvKN06z280ZPzRU6tXr54Ru//5SUpJUm74GqDYSvXVcRESEHn30UU2ZMkVSefmG8ePH67nnnlOnTp0kSVarVUuXLtWLL74o2//+GhQfH6+RI0cGLG4AAAAAAABfWbZsmdq1a6fc3FxdeumlWrJkiVr7uyzB0aOuq3S3bpX27TNv/IgIqXdv15W6vXtLkZHmzYFahURvPXDTTTcpOTlZH3zwgaTyZO/QoUOVkJCgxo0bKzMzUydOnHD0b9asmWbMmGG46hcAAAAAACDYFRcXq/h/m5R9/fXXevLJJzV37lzfTGa3S4cPuyd1Dx40b47IyPKVuc4rdXv1Kk/2ot4gk1dPPPvss2revLnmz5+v0tJSlZWVaefOnW794uLiNGPGDMXGxgYgSgAAAAAAAP+bN2+eOYleu106cODnDdLO/Tt6tOZjn9OkSfnGaM4rdRMSJBbs1Xs8AuoJi8WiRx55RMOHD9eSJUv07bffKjs7W0VFRYqOjlbPnj117bXXavjw4Yrgrz0AAAAAAKCeKSkp8S4nUlYm7dnjvlI3L8+8oJo3d03o9usndesmhYSYNwfqDBK9QWbEiBEaMWJEta+Pi4vT5MmTNXnyZBOjAgAAAAAACG4LFy7UwYMHFRMTo5EjR6pJkyY/n7RapV27XFfqJidLZ86YF0CbNuUlF5yTul26SBaLeXOgTiPRCwAAAAAAgHpv7Nixjtvz//53fXP//Qr58cfypG5KilRUZN5kHTu6r9Tt0IGkLmqERC8AAAAAAADgZENKirb98Y/qY8ZgXbv+vEFav37l9XXbtDFjZMAFiV4EhN1u19KlS/XRRx8pPT1dxcXFatmypS666CLdeeed6t27d6BDBAAAAAAA9ViW5F2i12KR4uNdV+n27VteZxfwAxK98LvS0lJNnDhR69atk1S+UVxkZKSys7O1YsUKffbZZ3ryySc1evToAEcKAAAAAADqqzclDavoZEiI1KvXzwnd/v2lpCTJua4v4GckeuF3//jHP7Ru3TqFhYXpscce06hRoxQZGan9+/fr+eef17fffqtp06apd+/euvDCCwMdLgAAAAAAqIc+lWSR1FXSHe3ba+r118tyrvxC795So0YBjhBwFRLoAFC/lJWV6f3335ckjRs3TnfeeaciIyMlSb/4xS80a9YstW/fXmVlZVqyZEkgQwUAAAAAANA+Sc8cOaJ3f/1r6b77pIEDSfKiViLRC786fvy4Tp48KUlKSkpyOx8ZGanExERJ0uHDh/0ZGgAAAAAAQIXee++9QIcAVIpEL/yqadOmslgskqStW7e6nS8pKVF6erokqUuXLn6NDQAAAAAAoCJHjx4NdAhApUj0wq8aNGigQYMGSZIWLFigd999V8XFxZKkQ4cO6eGHH1ZWVpaaNGmiO+64I5ChAgAAAAAAOGzdulWrV6/Wxx9/rNOnTwc6HMANiV743bPPPqv27dvLarXq+eefV58+fdSvXz9dccUVWrNmjQYNGqT33ntPnTt3DnSoAAAAAAAADkOHDtWNN96omJgYbdy4MdDhAC7CAh0Agk9eXp5OnTrlcf+wsDDFxMQ4jrt06aJly5bp3nvvVXJysux2uwoKChzny8rKVFRUZGrMAAAAAAAAZjl9+rSmTp2qL774ItChAA4keuG1+fPna968eR73j4mJ0dq1ax3HqampmjhxonJzczV58mQNGzZM0dHR2rlzp1577TV99913uv322zVv3jwNGDDAF3cBAAAAAACgRlavXh3oEAAXlG6AX+Xk5Oj222/X4cOH9dprr2ns2LFq3bq1IiIilJSUpPnz5+uSSy5RcXGx/vznP8tmswU6ZAAAAAAAAEOlpaUun1IGAokVvfDapEmTNGnSpGpdu2DBAhUUFKhv37666qqr3M6HhoZq8uTJ+vbbb5WVlaXvvvtOl1xySU1DBgAAAAAAMF3z5s0did7CwkJFRkYGOCLUZ6zohV+lpKRIkvr27Vthn/j4eEVHR0uS9u3b55e4AAAAAAAAvOW8mrdZs2aBCwQQiV74WV5eniTJbrdX2i8srHyxeUlJic9jAgAAAAAAqClyGAg0Er3wq3bt2kmSkpOTK+yTnZ2t48ePS5K6dOnil7gAAAAAAACAYEaiF351+eWXS5J+/PFHff3114Z9Zs2aJUmKjo7WxRdf7LfYAAAAAAAAauLee+/V7373Oy1atCjQoaAeItELvxo1apR+8YtfSJIeeugh/ec//1FxcbEk6ejRo5o6daoWL14sSXr44YcVFRUVqFABAAAAAAC88uabb2rp0qW67bbbNH/+/ECHg3qGRC/8qmHDhpo3b566du2qwsJCPfXUU+rbt68GDBigX/3qV/rggw8klf8F7Pe//32AowUAAAAAAKiecePGBToE1DNhgQ4A9U/nzp310UcfadGiRfr888+1Z88eFRYWqk2bNrrooov0hz/8Qf369Qt0mAAAAAAAADVitVodG84DvsYjLQjNmDFDs2fPVkxMjNauXevVtZmZmVq0aJE2bdqkgwcPymq1qk2bNoqPj9ewYcN09dVX++UFKDIyUnfddZfuuusun88FAAAAAAAQCJs3b1ZRUZEGDx6syMjIQIeDOo5Eb5DZtm2b5s2bV61rZ86cqTlz5shqtbq0Z2VlKSsrS2vWrFFiYqJefvllxcbGmhEuAAAAAABAvTVkyBBJUmxsrL7++mvFxMQEOCLUZdToDSJZWVmaMGGCSktLvb522rRpmjVrliPJGxYWpgsuuEAXXXSRmjdv7uiXmpqqMWPG6NChQ6bFDQAAAAAAUJ/t3btXzzzzTKDDQB1HojdIZGRkaPTo0Tp27JjX165atUrvvPOO4/iaa67RV199paVLl2rhwoX65ptv9Nxzzzk+QpCbm6uJEyfKbrebFj8AAAAAAEB99s9//jPQIaCOI9EbBJYvX65bbrlFOTk5Xl9bWlqq6dOnO44vv/xyvf7662rVqpWjLTw8XKNGjdKsWbMc9XnT0tK0YsWKmgcPAAAAAAAAwOeo0VuL5eTk6NVXX9WyZcuqPcbq1at1+PBhSeXlGqZOnaqQEOP8/iWXXKJRo0Zp4cKFkqQFCxZo2LBh1Z47mJ1fx9hTNput0mMAQHAoKytza7NarS7vD3XhNd/o/a6srKza74N1ld1ur5VfE6PHnM1m83usnjxfgmk+X4zvy5i9fXya/bz3ZH5v5vT2ce1Nf6NPLFYUv9H37Pw2m83m0ffWk/tfneezc+xGcTifr2z8yuKr7Jy3X3ur1Vrh9+B8FY1R0ZyejHku9ir72u3SiROG1wNmuPjiixUSEqIHHnhAI0eODHQ4qGNI9NZSb7zxhubOnavCwkJHW2xsrIYOHao5c+Z4PM7KlSsdtwcPHqwOHTpU2t850ZuWlqasrCx16tTJy+iDW1lZmVJSUkwZKzU11ZRxAAD+de6PpM727NmjqKioCq8Jxtf83bt3u7UdOXLEtPfBYHX+L/2nT5+ulV8Toz0V9u7d6/dYjx8/7ta2Y8cO5ebm+mS+7Oxst7aMjAxZLBafjb97926FhoZWe8yjR4+6te3atUslJSVej3V+AqygoMCr73lGRoZbW3Z2drUfN/n5+VVee/LkSbe2EydOGF63b98+t7asrKwK59izZ49b2+HDhw37GyX/Kor/yJEjbm2ZmZlKTEx0HKempho+znfs2OHyvMjMzKwyxoMHD7r12bdvX6VfW+fYjRKYzuezsrIqHN/oPhw/flwpKSmGz4fc3FylpKQYvgZlZmaqdevWbl/rU6dOKSUlxeX3W6n8E6hFRUVubUb3Oz8/v8L7YfS6fT673a68vDy39rKtW93aVI3nJuCpjRs3SpK+++472Ww29ezZM8ARoS6hdEMtNX/+fJc3wZEjR2rx4sXq0qWLx2PY7XZt2rTJcXxup8fKJCQkqHXr1o7jtWvXejwfAAAAAAC1kcVqVfS337q1hxYUBCAaoDxn85///CfQYaCOIdFbyyUmJuqdd97RtGnT1LhxY6+uPXTokE6dOuUylicSEhIct7dv3+7VnAAAAAAABFLDPXsUdf6q4LIyheXnByYgoAKffPJJoENAHUPphlpqwIABGjFihK688spqfwxt//79LsedO3f26LqOHTs6bv/000/VmjuYhYSEqHfv3tW61mazuXx0NzExsUYf8wMABIZRqaNu3bopKSnJcVwXXvPPnj3r1ta+fXuX+1kfnf+zV5MmTWrl12TDhg1ubbGxsX6PtWXLlm5tvXr1UkxMjE/ma9eunVtbfHy8affbaPzu3bvXaPw2bdq4tSUkJFTr47rnNk8+JyoqyqvYjMoXtGvXrtr3Lzo6usprjcp7tGjRwvC6AwcOuLV16tSpwjnyDRJ3HTp0MOxvdN8rir99+/ZubXFxcS7HiYmJLptcn9OrVy+X36mMygicH+P333/v1qdr166Vfm2dYzcq3eB8fsuWLRWOb1SmomXLlkpKSlLz5s3dzrVq1UpJSUlav36927m4uDglJSW5vY42bdpUSUlJatSokUt7eHi4IiMj3dqM7nd0dLRhWcHY5ctlKS11aYs4dsytH1AbNW/eXFlZWYqJiVFSUlKFeyohMLZv3274+lqbkeitpWbPnl3jMY45vbmFhIQY/hBixLl0w7F6+gZ5/g/Q1RUaGmraWAAA/zH6ITssLKzS1/RgfM03ijckJCTo7oevWSyWWvk1MfrDQiAeh9V5vtTm+Xwxvi9j9vbxafbz3pP5vZnT28e1N/2NEr0VxW/0PTu/LTQ01KPvrSf3vzrPZ+fYjRIRzucrG7+y+Co7503M52IxWsRk1GY4RmamQv/5T/d4vvrKra1GLBapTRspJ8fccQEDeXl5uummmyRJ48aN07x58wIcEYIdfyqow5z/uh0VFeXxX4acS0QY/YUcAAAAAACfOHtWeuEF6fzE/M6dksHKZ68Y/U58ySXubSZt7gh445///KfhpxoAb5DorcOcP47ZsGFDj6+LiIhw3K7OTsAAAAAAAFTp7Fnp8GHXtuPHpb/8peZjn5/UjYiQfv/7qvsBAZSenh7oEBDkeEWrw0qd6hR5U+fF+WMyVqvV1JgAAAAAAPVMYaG0ZImUleXanpfnnug1w5Ah0lVXubZZLCR1Ueu9//77gQ4BQY5XuTrMuWaSN8WjnZO74eHhpsYEAAAAAKijysqkXbvcyy7897/SyJGSwcZvNTZnjtSggWtb48aUX0BQ+ve//61f/vKX+vOf/2y4aS5Qldq3qwRM47x7qTcvEM7lGhqc/4YJAAAAAIDN5t72299KxcW+me+ii8qTxZMnu7Z36OCb+YAA+eGHH/TDDz/oxIkTmjNnTqDDQZBhRW8dFh0d7bhdUFBguMuskTNnzjhuN2vWzOywAAAAAADB6r//lQYNkv70J/dzZiR5mzSRVqxwX5Hbvr3UsmXNxweCxLx58wIdAoIQK3rrsLZt2zpu22w25eXlqUWLFlVed+zYMcftVq1a+SQ2AAAAAEAtlZMjzZ4tff21+7nt282bp0mT8gRuRoZr2w03mDcHEKS8KcEJnMOK3jqsS5cuLsdZ5xe+r8DBgwcdt7t27WpqTAAAAACAWuL0aWnjRvf2jz6S7r9f+uADc+bp0EF65RWpRw/X9qgoqWlTc+YA6qDMzEwdPXo00GEgiJDorcNiYmJcSi/s3LnTo+vS09Mdt3uc/0YMAAAAAAh+994rRUdLI0aYN2bXrtKdd0oh56Ua+vQpL/VAUhfwSrdu3dS2bVuNHDnSZT8loCIkeuu4gQMHOm5v2LChyv7p6enKzc11HA8aNMgncQEAAAAAfCgnR3rxRenmm6UpU9zPHz4sebiPi5uICKlTJ/f2N9+UFixwT/QCqJElS5boww8/DHQYCAK8+tZxQ4cOddxet26dcnJyKu3//vvvO27HxcUpISHBZ7EBAAAAAGrAbpcOHZI++cT93IYN0pNPSh9+KDkt5qmxW28tL/kwebJ5YwKo0meffRboEBAESPTWcUOHDlWbNm0kSSUlJZoyZYqsVqth32+++UaLFy92HI8ZM8YvMQIAAAAAvPTdd1K7dlLHjtJvf2vu2L17S2+/La1e7X6udevyFb0A/CqC5x08QKK3jouIiNCjjz7qON6wYYPGjx/vsjGb1WrVf/7zH02cOFE2m02SFB8fr5EjR/o9XgAAAACAylfqLlokPf64dNVV7uePHi3/V11RUeXjTpjgfm7IEGnMGCk+vvrjAzDV/Pnz1b17d40YMUL26pZdQZ0XFugA4Hs33XSTkpOT9cH/dkzdsGGDhg4dqoSEBDVu3FiZmZk6ceKEo3+zZs00Y8YMhYXx8AAAAAAAn7Jay5O657vnHvPmaNKkvNyCs/fek4YPl44ckWbPNm8uAD6zZ88e7dmzRy1btnTJ4wDnkMmrJ5599lk1b95c8+fPV2lpqcrKyrRz5063fnFxcZoxY4ZiY2MDECUAAAAA1AObN0v33y9t3SqlpEhFRebP0bOn9Le/Sf36SStXSuPHu563WMyfE4Bf5OXlyWq1skAPbnhE1BMWi0WPPPKIhg8friVLlujbb79Vdna2ioqKFB0drZ49e+raa6/V8OHDqfsCAAAAADVVVCRt2yZ99JH7Oae9UWokNrY8kdunj/SXv7ie69FD+s1vym+T1AXqnMLCQjVt2jTQYaCWIdEbZEaMGKERI0ZU+/q4uDhNnjxZk9khFQAAAADM98gj0q5d0o4d0v/2QKkxi0U6vybn9ddLn35afruszD3RC6BOe+utt5SYmKhf//rXCg0NDXQ4qCVI9AIAAAAA4KHQ06fVKD1dljVrpC++cO+wZIk5E115ZXkN3X79pKQk6fyVe+Hh5swDICg99NBDkqTWrVvraE02ZkSdQqIXAAAAAIAqhPzlL0rMyFADo43Tqis8XOrdW2rUSPr2W9dzjzwi3XCDeXMBqJOOHTumTz/9VDfwegFJIYEOAAAAAACAgLLbpcOHpRUrpOeek955x61LyLp15iV5R44s34jtzBlpyxbp9tvNGRdAvbR69epAh4BaghW9MFVeXp5uuOEGNWzYUGvXrq2y/+rVq/Xuu+8qLS1NJSUlat++va666iqNGzdOzZs390PEAAAAAOqtHTvKa91u3Srl5Jg3buPGUt++5WUXGjeWXnjB9fyAAeXnAcAEjRs3VnFxsRo2bBjoUBBgrOiFaUpLS/X444/r+PHjHvV/7bXX9MADD2jjxo0qLi5WWFiY9u/fr3/+858aPny49u/f79uAAQAAANRtZWXS7t3SBx9IRhtSZ2RIn31mbpL3q6+k/Hzp66+l11+Xrr3WvLEBwMALL7yg6Oho3XnnnSotLQ10OAggEr0wRVFRkR5++GF9/fXXHvVfuXKl5syZI4vFokmTJumHH37Q1q1btXjxYsXGxuro0aN64IEHZDNrl1oAAAAA9cMPP5TXt/31r6VmzaT4eOnWW6WXX67x0KXNmyt/8GAduesu2T74QBozxr1TbKwUwq/aAPyrpKRE//73v/V///d/gQ4FAUTpBtTYrl279Kc//Um7d+/2qH9ZWZn+/ve/S5Juv/12jR8/3nHuwgsv1IIFC3Tddddp9+7dWrZsmX73u9/5JG4AAAAAQaqkpLzswsqV7ufee88nU1qXLdO2mBjJYpEktU5KKl+1CwC1yBNPPKEpU6YEOgwECIleVFtxcbFefPFFLVmyRDabTa1atVLv3r21bt26Sq/buHGj9u3bJ0m666673M63a9dON954o95//30SvQAAAEB9V1oqbd5cXkf33L/t28uTvWbp2rW8nu65f19/Lb30kmuf1q0dSV4AAGojEr2ottzcXH3wwQeSpGuuuUZPP/203nvvvSoTvZs2bZIkde3aVe3btzfsM3jwYL3//vvasmWLCgsL1ahRI3ODBwAAAFD7FBW5t917r2S3+2a+IUOkjz+WWrRwbd+61TfzAYAf3HfffRoyZIhGjx4tC3+gqldI9KLaLBaLBg8erAkTJuiXv/ylx9edK/EQFxdXYZ8uXbpIkmw2m/bu3avExMSaBQsAAACgdjl5Uvrxx/Kk6pYt5f+np7v3q26SNyRE6tXr51W6ffuW1+111rq1e5IXAILcnDlzNGfOHO3bt09PPfVUoMOBH5HoRbXFxMRowYIFXl+X878dbdu1a1dhn7Zt2zpuHzt2zPvgAAAAANReixdL//qXb8b+3e+kSZOkCy+UnD8Z6KtVwQBQS02dOpVEbz1Dorcey8vL06lTpzzuHxYWppiYmBrPe+bMGUlSZGRkhX0aNmzo1h8AAABAEDhy5Odaulu2SN9/797n9Onqj9+woZSUVL5KNypKeuUV1/NDhkiDBlV/fACoQwoKChQVFRXoMOAnJHrrsfnz52vevHke94+JidHatWtrPK/VapUkhYeHV9gnIiLCcdtms9V4TgAAAAA+UFQkffSR60Zp2dnmztG9u3TddT+XYOjZUwr736+yX33lnugFADisX79eV155pUJDQwMdCvyARC/87txq3dLS0gr7lDjtoFtZQhgAAACAH5SVSXv3urd/+WX5PzNER0udOkmpqa7tTzwh3XWXOXMAQD1zzTXXqFmzZpo7d65GjhwZ6HDgYyR667FJkyZp0qRJfp/33EcGiouLK+xT5LTbbuPGjX0eEwAAAID/sdmkXbtcV+kmJ0telH2rUoMG0mWX/bxKt18/qWtX6eOPpd/+1rx5AAA6efKkbr/9dg0fPlwNGjQIdDjwIRK98Lt27dopJSVFR48erbDPuQ3bJNeN2QAAAACYLDtbWrDg56Tujz9KhYXmjd+unXs5h9//3nebsQEA3BQXFys1NVX9+/cPdCjwIRK98Lv4+Hh9/vnn2rdvX4V9Dhw4IKl8A7hf/OIXfooMAAAAqMOKi6W0NPf2N98s/2eGX/zCdZVu375SeLjUqpVrP4vFnPkAAB5bvXo1id46jkQv/G7gwIGaOXOmdu/erdzcXLU6/4c+SRs2bJAkJSUlOWr6AgAAAPBQQYGUkuJafiEtTfrfxsim6dBBeughqX//8qRuixbufY4fN3dOAEC1PPHEEyooKNC4cePUpUuXQIcDHyDRC7/r37+/2rVrp+zsbM2dO1d//vOfXc4fOXJEH3/8sSTptttuC0SIAAAAQPDIzy8vt7B1q7RlS/n/u3aVb6BmhpAQqWfP8hW6774r2e0/n+vfX3r8cXPmAQD43LRp0/TWW28pNTVV0dHRgQ4HJiPRC78LCQnRo48+qscff1z//ve/1aRJE919991q1KiRtm3bpscff1yFhYWKj4/X9ddfH+hwAQAAgNrDOckqlSd1mzUzb/ywMCkx0bX8QlKS1KhR+fl33zVvLgBAQBw8eFCrV6/WzTffHOhQYDISvQiIG2+8Udu2bdO7776rWbNmac6cOWrYsKHOnDkjSWrTpo3efPNNhYaGBjhSAAAAIECys38uu3Bupe75ZRCKi2s+T//+0j33lCd1ExMldmQHgDrvhx9+INFbB5HoRcA89dRTuvjii7Vw4UKlpaWpsLBQHTt21OWXX6777rtPLVu2DHSIAAAAgO/Z7VJWlms93a1bpSNHzJsjKkrq00fq1ElatMj13G9+I40fb95cAIBab/Xq1frrX/8a6DBgMhK9ATRjxgzNnj1bMTExWrt2rVfXZmZmatGiRdq0aZMOHjwoq9WqNm3aKD4+XsOGDdPVV1+tsDD/f3snTpyoiRMnetz/qquu0lVXXeXDiAAAAIBaaNUq6e23K16pWxNNm5avzu3f/+fyC927S6Gh5bV8z0/0AgDqna1bt6p9+/Z66KGHNHnyZFkslkCHBBOQ6A2Qbdu2ad68edW6dubMmZozZ46s5+2Ym5WVpaysLK1Zs0aJiYl6+eWXFRsba0a4AAAAALxls0kZGVJamvu5Rx81Z46wMOmKK1xr6nbtWr6BGgAAlcjOztYTTzyhX/7yl7ryyisDHQ5MQKI3ALKysjRhwgSVlpZ6fe20adP0zjvvOI7DwsKUkJCgyMhIZWZmKi8vT5KUmpqqMWPG6D//+Y9iYmJMix0AAACAgdJSaedO19ILP/4oFRSYN0f79uUrf0tKfm4bMED6/HPz5gAA1Dv/+c9/SPTWESR6/SwjI0Pjxo3TsWPHvL521apVLknea665RlOnTlWrVq0kSaWlpVq6dKleeuklFRUVKTc3VxMnTtSHH37IEnwAAADALGfPSqmpP5dd2LpV2ratvN0sXbq4rtLt27c80du6tZSba948AIB6Lzs7O9AhwCQkev1o+fLlevrpp1VUVOT1taWlpZo+fbrj+PLLL9frr7+uEKePZIWHh2vUqFGKiYnRPffcI6vVqrS0NK1YsULDhg0z5T7UF+eXxfCUzWar9BgAEBzKysrc2qxWq8v7Q114zTd6vysrK6v2+2BdZbfba+XXxOgxZ7PZ/B6rJ8+XYJrPcPytW2X79ltZkpNlSU6W0tJkMfH+2bt1k71vX9n79pX69ZO9Tx/JaGNigzm9fXya/bz3ZH5v5vT2ce1Nf7vdbthWUXxVtdlsNo8ej57c/+o8n51jN4rD+Xxl41cWX2XnvP3aW63WCr8H56tojIrm9GTMc7F72heoTz7++GPNmDFDw4YNU+fOnQMdDmqARK8f5OTk6NVXX9WyZcuqPcbq1at1+PBhSeXlGqZOneqS5HV2ySWXaNSoUVq4cKEkacGCBSR6vVBWVqaUlBRTxkpNTTVlHACAf517z3W2Z88eRUVFVXhNML7m7969263tyJEjpr0PBqvzf+k/ffp0rfyaHDp0yK1t7969fo/1uMEmYjt27FCuj1adGq06ysjIMOUTbCFnzuhEcrJbe9j48Qqt8eiujtx+u0KGDFFhQoLKGjd2PXnwYPk/A+cnwAoKCrz6nmdkZLi1ZWdnV/txk5+fX+W1J0+edGs7ceKE4XX79u1za8vKyqpwjj179ri1HT582LC/UUKvoviPHDni1paZmanExETHcWpqquHjfMeOHS7Pi8zMzCpjPGjw/d63b1+lX1vn2I0SmM7ns7KyKhzf6D4cP35cKSkphs+33NxcpaSkGL4GZWZmqnXr1m5f61OnTiklJUWFhYUu7aWlpW4LoUpLSw3vd35+foX3w+h1+3x2u91R6tBZgUF5leqUWQSC3cMPP6xnn31WCxYsUMeOHQMdDqqJRK+PvfHGG5o7d67LG1psbKyGDh2qOXPmeDzOypUrHbcHDx6sDh06VNrfOdGblpamrKwsderUycvoAQAAgLop9ORJNdq1S43S08v/7dqlhj/9pE9MGt8eGqqiuDgVJiTo1NGj0qZNLudPDBum6K5dTZoNAICay8vL06pVqzRu3LhAh4JqItHrY/Pnz3dJ8o4cOVJTpkzRF1984fEYdrtdm5x+MBwyZEiV1yQkJKh169aOWsBr167VHXfc4UXkAAAAQN0Qdvz4zwnd//1rYLBis7rKwsNV1L27Cnv0cPwriouTvUEDSVLhrFluiV4AAGqjL774gkRvECPR6yeJiYmaPHmyBgwY4PW1hw4d0qlTp1zG8kRCQoIj0bt9+3av562vQkJC1Lt372pda7PZXD66m5iYqNBQsz/oBwDwNaNPznTr1k1JSUmO47rwmn/WYOOo9u3bu9zP+uj8EgBNmjSplV+TDRs2uLXFxsb6PdaWBrVke/XqpZiYGJ/M165dO7e2+Pj48vttt0sHD/5cS/d//1sMyrFUl71RIykpyVFT1963r9SrlxqEh6uBpOYG17Rp08atLSEhQT179vR6/rAw11/hoqKivPqeG5UvaNeuXbUfN9HR0VVea1Teo0WLFobXHThwwK2tU6dOFc6Rn5/v1tahQwfD/kb3vaL427dv79YWFxfncpyYmOjYGNtZr169XD72bFRG4PwYv//+e7c+Xbt2rfRr6xy7UekG5/NbtmypcHyjMhUtW7ZUUlKSmjd3f0S3atVKSUlJWr9+vdu5uLg4JSUlub2ONm3aVElJSWrUqJFLe3h4uCIjI93ajO53dHS04adUu3btavi6fT6LxWJ4f4zKMoWHh7u1AfVFVFSUevfuXWG50Ppk+/bthq+vtRmJXh8bMGCARowYoSuvvLLadcP279/vcuxpYWznHy5++umnas1dX53/A3R1hYaGmjYWAMB/jH6wDQsLq/Q1PRhf843iDQkJCbr74WsWi6VWfk2M/rAQiMdhdZ4vps/3xhsKO3RI2rpV+t9CB1ONHi1dd53Ur58s8fFSaKi8+cnel18jbx+fZj/vPZnfmzm9fVx7098o0VtR/Ebfs/PbQkNDPfreenL/q/N8do7dKBHhfL6y8SuLr7Jz3sR8Lhaj34mN2ioao6I5PRnzXOye9gXqq+3bt6tBgwb64x//qDfffDPQ4cBLte8n1jpm9uzZNR7jmNMPqyEhIYZ/NTbSunVrwzEAAACAoFJWJu3eLW3ZIhmVQPvXv2o+R4sWUv/+UlGR9O23rucefVTq16/mcwAAECTmzp2r66+/XjfeeGOgQ4EXSPQGAeePI0VFRXm8fL6x0+69Rh9pAgAAAGodq1XaubN8de65fz/+KJ05Y94cbduWJ3X79y9P4PbrJ3XqJFks0nPPuSd6AQCoh1599VUSvUGGRG8QcK6f17BhQ4+vi4iIcNwuKSkxNSYAAACgxs6eldLSylfqnkvqbtsmFRebN0fnzj8nc8/9M6i/CgAAXDl/UhzBgURvECgtLXXc9qYYtnNdI6vVampMAAAAgFcKC8uTuM4rdVNTJaefdWssLu7nZG7//lLfvpKHZc8AAICrDz/8UG+99ZZuvfVWrxYeInBI9AYB5+Ly3uz255zcZddQAAAA+M2ZM9I337iu1N25s7zWri/MmyfdfLPUrJlvxgcAoJ666667dNddd6moqIhkbxAg0RsEIiMjHbedyzhUxblcQ4MGDUyNCQAAAJBkXGahRw/zxg8NlS644OeVusnJ0oIFrn0uuogkLwAAPvTEE0/otddeC3QYqAKJ3iAQHR3tuF1QUCC73S6LxVLldWecNqxoxg++AAAAqKmjR11LL2zdKu3bZ974ERHShRe61tPt3VtyXkH0zDPmzQcAADxy8uTJQIcAD5DoDQJt27Z13LbZbMrLy1OLFi2qvO7YsWOO262oTQYAAABP2e3SoUPuSd1Dh8ybIzJS6tPHNanbq1d5shcAANQqb731lho2bKgpU6aoS5cugQ4HFSDRGwTOfwJlZWV5lOg9ePCg43bXrl1NjwsAAAB1gN0u7d/vntQ9etS8OZo0Kd8YrX//n5O6CQnlZRkAAEBQmDNnjr788kvt2rVLISEhgQ4HBkj0BoGYmBg1a9bMsUx+586dSkpKqvK69PR0x+0eZtZJAwAAQHAqK5N273ZP6pr9ccxLLpEGD/45qRsXJ/ELIQAAQW/Pnj3asWOHEhMTAx0KDJDoDRIDBw7U559/LknasGGDbr311kr7p6enKzc313E8aNAgn8YHAACAWsZqldLTXRO6ycmS0z4ONdamTXn93J9+cm1ftEiKiTFvHgAAUGvs3LmTRG8tRaI3SAwdOtSR6F23bp1ycnJcavee7/3333fcjouLU0JCgs9jBAAAQIB99pm0bFl5UjclRSouNm/sTp1c6+n26ye1by898IA0e7Z58wAAgFotOTlZI0eODHQYMECiN0gMHTpUbdq00dGjR1VSUqIpU6Zo3rx5Cgtz/xZ+8803Wrx4seN4zJgx/gwVAAAAvlRUJG3bJn39tfu51183Z47YWPekbuvW5owNAACC2ksvvaQOHTpo/PjxatCgQaDDgRMSvUEiIiJCjz76qKZMmSKpvHzD+PHj9dxzz6lTp06SJKvVqqVLl+rFF1+UzWaTJMXHx/NXFgAAgGB1+nT5ytxzpRe2bJF27pT+97NejVks5ZuiOSd0+/SRmjc3Z3wAAFAnTZw4UX/961918ODBQIcCJyR6g8hNN92k5ORkffDBB5LKk71Dhw5VQkKCGjdurMzMTJ04ccLRv1mzZpoxY4bhql8AAADUMnl55TV0nWvqZmRIdrs544eGSr16uSZ1k5KkJk3MGR8AANQrhw4d0qFDhxRDXf5agwxgkHn22WfVvHlzzZ8/X6WlpSorK9POnTvd+sXFxWnGjBmKjY0NQJQAAACo1LFjrgndLVukffvMGz8iQurd2zWp27u3FBlp3hwAAKDe++6773TzzTcHOgz8D4neIGOxWPTII49o+PDhWrJkib799ltlZ2erqKhI0dHR6tmzp6699loNHz5cERERgQ4XAACgfrPbpcOHXZO6W7dKvvqY4yOPSGPGSBdcUJ7sBQAA8KGXX35ZHTp00ODBgwMdCkSiN2BGjBihESNGVPv6uLg4TZ48WZMnTzYxKgAAAFSb3S4dOOCe1M3JMW+Oxo2lvn2l/v2lEyekt992PX/tteXnAQAA/GDz5s0aMmSI/vGPf2jChAmBDqfeI9ELAAAAeKusTNqzxz2pm5dn3hzNm7uWXujXT+rWTQoJKT8/e7Z7ohcAACAA7r//fhK9tQCJXgAAAKAydruUluaa0E1Olk6fNm+O1q3LV+meS+j27y916SJZLObNAQAA4EMnTpxQixYtAh1GvUaiFwAAADinpKQ8sevsyy+lxETz5ujY0X2lbocOJHUBAEBQy8nJIdEbYCR6Yaq8vDzdcMMNatiwodauXVtp3zNnzmjhwoVavXq19u3bp7Nnz6ply5bq37+/7rjjDiUlJfkpagAAUC8VFUnbt7uu1N2+vTzZ66ysrPpzdO3qntRt06ZmcQMAANRCvXr10oABA7RkyRJ16tQp0OHUSyR6YZrS0lI9/vjjOn78uGJiYirte+DAAY0dO1YH/7fjdEREhMLDw5Wdna1PP/1Un332mR577DGNHTvWH6EDAIC67swZKSXl54Tuli3Sjh2SzWbO+BaLFB/vmtDt27e8zi4AAEA9sXnzZj344IP66KOPAh1KvUSiF6YoKirSpEmT9PXXX1fZ12q1asKECTp48KDatm2r559/XpdccolCQkK0f/9+TZ8+XevWrdP06dMVGxuryy67zPd3AAAA1B0nT5bX0HVeqbtrl3tJhuoKCZF69XJN6vbpIzVpYs74AAAAQWzZsmWBDqHeItGLGtu1a5f+9Kc/affu3R71/+KLL7Rnzx5ZLBbNmDFDffv2dZzr2rWr/vGPf2j06NFKTk7WrFmzSPQCAICKHTvmmtTdskXau9fcOZo2lW655eekbu/eUqNG5s4BAAAA1BCJXlRbcXGxXnzxRS1ZskQ2m02tWrVS7969tW7dukqv++qrryRJ/fr1c0nynhMaGqqbb75ZycnJSk1NVVFRkSIjI31yHwAAQBA5fNh1le7WrVJWlnnjN2woJSVJP/zgWtLh4oulefPMmwcAAACm27x5sx599FEdPHhQo0aN0ksvvaSQkBCPrj158qRGjRqlL774Qg0aNFBGRoaPo/UNEr2ottzcXH3wwQeSpGuuuUZPP/203nvvvSoTvb169VJRUZESK9m9unXr1pIku92uM2fOkOgFAKA+sduln35yT+pmZ5s3R1RUeQ3dfv2k/v3L/+/RQwoLK0/4mlW7FwAAoB4aMWKE/vSnP2nIkCF+mc9qter666/X8ePHJUl/+9vf1KVLF02YMMGj62+99VZ98cUXkqSzZ8+qS5cu2rp1q8/i9RUSvag2i8WiwYMHa8KECfrlL3/p8XV33HGH7rjjjkr7bNmyRZLUoEEDNWcTEwAA6q6ysvJSC+fKLpxL6p44Yd4czZq51tPt10/q3r281i4AAABM99FHH+nzzz9XRkaGYmJifD5famqqI8l7zuzZsytM9JaVlWnbtm0qLi7WRRddpM8//9ytT0FBQdAtPCTRi2qLiYnRggULTB/3xIkTjpXCl156qcLCeJgCAFAn2Gzlm6I5r9JNTpZOnTJvjlatfl6he2617i9+IVks5s0BAACAKhUWFmr58uW6++67tXz5cmVlZen6669Xz549TZ+rpKTErS0tLc2wr81m08iRI/XRRx9Jki6++GLDfnazNvL1IzJo9VheXp5OefGLVVhYmM//CmO1WvXYY4/p5MmTCgkJ0X333efT+QAAgI+Ulko7driu1E1JkQoLzZsjJsZ9pW5MDEldAACAWuLgwYO67bbbHEnVv/zlL1q7dq1hcvX48eNavny5LBaLhg8frpYtW/okpk2bNjnikaTvvvvOJ/MEAoneemz+/Pma58XGIjExMVq7dq3P4rHZbJo8ebK+/fZbSdL9999faR1fAABQSxQXS9u3u67U3bZNMlhZUW2/+IV7UrdtW/PGBwAAgOleeukll+Pi4mLNnTvXLdF74sQJXXzxxdq9e7ckKSEhQRs3blSzZs2qnOPs2bMqKCgwPPfYY4/plltu0YUXXqhnnnlG3377rSPvVBeR6EWtcPbsWT366KP68ssvJUnDhw/X/fffH+CoAACAm4KC8pW55xK6W7aUr9y1Ws2bIz7eNaHbt6/UooV54wMAACBg3nrrLbdSoP/85z8dSV5J2rVrl1auXKnf//73FY5jt9v1zDPPaPr06Tp79qxhn1deeUWvvPKKBgwYoM2bN5tzB2oxEr312KRJkzRp0qRAh6ETJ05owoQJSk5OliTdeOONeumll2ThY5cAAARWfn55DV3nlbrp6ZJZ9cpCQqSePV2Tun36SE2bmjM+AAAAaqWTJ0+6rNadPHmyW5+lS5dWmOj94osv9Prrr+uzzz7zaL76kOSVSPQiwPbv36/x48frp59+kiTdfvvt+vOf/0ySFwCAQPn66/IVu1u2SJmZ5o0bHi4lJromdS+8UGrUyLw5AAAAEBSaN28uSRo0aFCF+zNVtBnanDlz2NOpAiR6ETCpqakaN26c8vLyZLFY9Nhjj+nuu+8OdFgAANR92dnlidyPP3Y/9/nnNR+/QQMpKck1qZuYWN4OAAAA/M/GjRu1ceNGr66ZOXOmj6IJfiR6ERC7d+/W3XffrZMnTyo8PFx//etf9Zvf/CbQYQEAULfY7VJWlmvpha1bpSNHzJsjKqq83EK/flL//uX/9+hRvoIXAAAAMIHdbtf//d//6d///rd27NgR6HBqLRK98LvCwkI98MADOnnypCIiIvSPf/xDv/rVrwIdFgAAwc1ul/bu/XmDtHNJ3ePHzZsjOtp1lW6/flL37lJoqHlzAAAAAOdZsmSJHnvssUCHUeuR6IXfzZkzR/v375ck/fnPfybJCwCAt2w2KSPDdZVucnL55mlmadXq52TuuZW6XbtK1NEHAACAHyxdulRHjx5VmzZt9OabbwY6nKBAohd+VVJSovfee89xPGvWLM2aNavSa5YsWaL27dv7OjQAAGqn0lJp507Xlbo//igVFvpmvtGjpZdekjp2JKkLAACAgOrVq5e+/vprrVmzJtChBAUSvfCrjIwMnT592nGcm5tb5TU2m82XIQEAUHsUF0upqa4rdbdtk86eNW+OLl1+XqkbFSU9+qjr+V69pE6dzJsPAAAAqKbjx4/rjTfeCHQYQYNEbwDNmDFDs2fPVkxMjNauXevVtZmZmVq0aJE2bdqkgwcPymq1qk2bNoqPj9ewYcN09dVXKyzM/9/eiRMnauLEiRWeT0xM1K5du/wYEQAAtVRBQXkS91xCd8sWKS1NslrNm6N7d9d6un37Si1b/nx+82bz5gIAAAB8oKpPguNnJHoDZNu2bZo3b161rp05c6bmzJkj63m/CGZlZSkrK0tr1qxRYmKiXn75ZcXGxpoRLgAAqIlTp8pr6Dqv1E1Pl8rKzBk/JETq0cM1qdunT/nmaQAAAADqBRK9AZCVlaUJEyaotLTU62unTZumd955x3EcFhamhIQERUZGKjMzU3l5eZKk1NRUjRkzRv/5z38UExNjWuwAAKAKx4+7J3V37zZv/LAw6YILft4grV8/6cILy8swAAAAAKi3SPT6WUZGhsaNG6djx455fe2qVatckrzXXHONpk6dqlatWkmSSktLtXTpUr300ksqKipSbm6uJk6cqA8//FAWNlMBAMB0YcePq9HOnWqUnq6Q7OzyBO+BA+ZN0KBBeRLXeaVuYqLUsKF5cwAAAACoE0j0+tHy5cv19NNPq6ioyOtrS0tLNX36dMfx5Zdfrtdff10hISGOtvDwcI0aNUoxMTG65557ZLValZaWphUrVmjYsGGm3If64vyyGJ46f+M4NpIDgOBUZlBSwXr4sGxLl8qSnCwlJys0OVlJhw+bNqe9USMpKUn2vn1l79dP9r59pZ49pfBw984m1fE1er8rKyur9vtgXWW322vl18To5wybzeb3WA2fL1arz+Lw9Xy+GN+XMXv7+DT7ee/J/N7M6e3j2pv+drvdsK2i+Kpqs9lsHn1vPbn/1Xk+O8duFIfz+crGryy+ys55+7W3Wq0Vfg/OV9EYFc3pyZjnYve0LwAEIxK9fpCTk6NXX31Vy5Ytq/YYq1ev1uH//TIZFhamqVOnuiR5nV1yySUaNWqUFi5cKElasGABiV4vlJWVKSUlxZSxUlNTTRkHAOBHdrtydu50aw4bOVKhJk1hi4pSYY8eLv+KO3eWQp1msNulHTtMmtHYboOSEkeOHDHtfTBYnf9L/+nTp2vl1+TQoUNubXv37vV7rMePH3dr27Fjh3Jzc30yX3Z2tltbRkaGaZ9gMxp/9+7dCg2t/ivA0aNH3dp27dqlkpISr8c6PwFWUFDg1fc8IyPDrS07O7vaj5v8/Pwqrz158qRb24kTJwyv27dvn1tbVlZWhXPs2bPHre3w4cOG/Y0SehXFf+TIEbe2zMxMJSYmOo5TU1MNH+c7duxweV5kZmZWGePBgwfd+uzbt6/Sr61z7EYJTOfzWVlZFY5vdB+OHz+ulJQUw+dDbm6uUlJSDF+DMjMz1bp1a7ev9alTp5SSkqLCwkKX9tLSUreFUKWlpYb3Oz8/v8L7YfS6fT673e4odeisoKDAra06ZRYBoDYg0etjb7zxhubOnevyhhYbG6uhQ4dqzpw5Ho+zcuVKx+3BgwerQ4cOlfZ3TvSmpaUpKytLnTp18jJ6AADqOJtNDbKy1Cg93eXfmjNnTJvCGh3tSOYW9Oypwh49VNKhQ/kGagAAAABgEhK9PjZ//nyXJO/IkSM1ZcoUffHFFx6PYbfbtWnTJsfxkCFDqrwmISFBrVu3dtQCXrt2re644w4vIgcAoI6xWtVw/341Sk9X1P/q6kZmZCi0GiWVKlLSqpXbSt3Stm0lauUDAAAA8DESvX6SmJioyZMna8CAAV5fe+jQIZ06dcplLE8kJCQ4Er3bt2/3et76KiQkRL17967WtTabzaVcQ2JiYo0+5gcAqKazZ6XUVFmSkx3/tH27LMXFpk1h79RJJ+PiHAndzjfeqNCOHdVYUmPTZvGts2fPurW1b99eSUlJAYim9ji/BECTJk1q5ddkw4YNbm2xsbF+j7Vly5Zubb169VJMTIxP5mvXrp1bW3x8vGn322j87t2712j8Nm3auLUlJCSoZ8+eXo8VFub6K1xUVJRXsRmVL2jXrl217190dHSV1xqV92jRooXhdQcMNrTs1KlThXPk5+e7tXXo0MGwv9F9ryj+9u3bu7XFxcW5HCcmJjo2xnbWq1cvdezY0XFsVEbg/Bi///57tz5du3at9GvrHLtR6Qbn81u2bKlwfKMyFS1btlRSUpKaN2/udq5Vq1ZKSkrS+vXr3c7FxcUpKSnJ7XW0adOmSkpKUqNGjVzaw8PDFRkZ6dZmdL+jo6MNP6XatWtXw9ft81ksFsP7ExUV5dYWblQfHwCCAIleHxswYIBGjBihK6+8stp1w/bv3+9y3LlzZ4+uc/7h4qeffqrW3PXV+T9AV1doaKhpYwEAKlBYKG3bJm3d+vO/1FTJ7Pp6V1whDR0q9esn9e0rW7Nm2utUQzC0Y8ege803ijckJCTo7oevWSyWWvk1MfpjciB+9jDaNyIsLMxncfh6Pl+M78uYvX18mv2892R+b+b09nHtTX+jRG9F8Rt9z85vCw0N9eh768n9r87z2Tl2o0Sv8/nKxq8svsrOeRPzuViMfic2aqtojIrm9GTMc7F72hcAglHt+4m1jpk9e3aNxzi3Klcqf2My+quxkdatWxuOAQBA0Dp1SvrxR9ek7s6dksEvuNVisUg9ekgNGpTP4+z556XBg38+ruYO9QAAAADgCyR6g4Dzx5GioqIM/wpppHHjnz84avSRJgAAarUTJ6TkZNekrsFu8dUWGipdcIHUv3/5Kt1+/aQLL5QaN5b+9jf3RC8AAAAA1GIkeoOAc/28hg0benxdRESE43ZJSYmpMQEAYKqcHNeE7tat0nmli2okIqI8iXsuoduvn9S7t+TF+yoAAAAA1GYkeoNAqVONQU9X80qudY2sfLwUAFAb2O3SoUPuSd1Dh8ybIzJS6tOnPJl7brVur14SG6sAAAAAqMNI9AYB5+LyRkX2K+Kc3GXXUACA39nt5atyt26Vtmz5OalrZt34Jk1cV+n26yclJJSXZQAAAACAeoREbxCIjIx03HYu41AV53INDRo0MDUmAABclJVJu3e7r9Q9edK8OVq0+DmZe26lbmys5MWnXQAAAACgriLRGwSio6MdtwsKCmS322WxWKq87syZM47bzZo180VoAID6yGqV0tN/TuZu2VK+cZnT+06NtW3ruklav35S586SB+9/AAAAAFAfkegNAm3btnXcttlsysvLU4sWLaq87pjTR2NbtWrlk9gAAHXc2bNSWprrKt2UFKm42Lw5OnVyL7/QoYN54wMAAABAPUCiNwh06dLF5TgrK8ujRO/Bgwcdt7t27Wp6XACAOqaoSNq2zTWpu3275LQpaI3Fxrqu1O3bV2rd2rzxAQAAAKCeItEbBGJiYtSsWTOd/F+dw507dyopKanK69LT0x23e/To4avwAADB6PTp8nILzkndnTslm82c8S2W8k3RnFfp9ukjNW9uzvgAAAAAABckeoPEwIED9fnnn0uSNmzYoFtvvbXS/unp6crNzXUcDxo0yKfxAQBqsbw8KTnZNambkSHZ7eaMHxoq9erlulI3KUlq3Nic8QEAAAAAVSLRGySGDh3qSPSuW7dOOTk5LrV7z/f+++87bsfFxSkhIcHnMQIAaoGjR8uTulu2/JzU3bfPvPEjIqTevV1X6vbuLUVGmjcHAAAAAMBrJHqDxNChQ9WmTRsdPXpUJSUlmjJliubNm6ewsP9n787jm6ry/oF/ku77QhcglKWFlpZCoayCGzoCwoCCMjjOMDrjjg+OKAijI4gyCG4jg4Mog8yjoiLID3xEEQcQ2QSk+05blkL3fW+z/f64k0tuc5MmabrRz/v1uq8m5957zrnJTdJ8c+73mD6Fx48fx+7du8X7ixcv7squEhFRV9DrgcJC6SjdhATAKD97h3l4CCNzjUfqxsQIwV4iIiIiIiLqURjo7SVcXV3x3HPPYdWqVQCE9A2PPfYYXn31VYSFhQEANBoN9u7di/Xr10P73xyLkZGRWLhwYbf1m4iIHECvBy5fvh7MNYzWLS11XBs+PsLEaMYjdaOiAJkfFImIiIiIiKjn4be3XmT+/PlITEzErl27AAjB3hkzZiAqKgre3t7Iy8tDZWWluL2/vz82bdokO+qXiIh6KJ0OyM01HalbVeW4NgICpAHd8eOBiAhAqXRcG0RERERERNSlGAHsZdauXYuAgABs374darUaOp0OmZmZJttFRERg06ZNCA8P74ZeEhGRVTQaIDtbOlI3KQmoq3NcGyEh0tQL8fHAkCGAQuG4NoiIiIiIiKjbMdDbyygUCixbtgzz5s3Dnj17cOLECRQXF6OpqQl+fn6Ijo7GrFmzMG/ePLgyhyIRUc/R2gqkp0tH6SYnA01Njmtj0CBpQDc+Hhg4kEFdIiIiIiKiPoCB3m6yYMECLFiwwO79IyIisHLlSqxcudKBvSIiIodoagJSU6VB3dRUIdjrKOHh0oDuuHHC6F0iIiIiIiLqkxjoJSIi6oj6eiHdgnFQNyMD+O+kmB2mUACRkaZB3YAAx9RPRERERERENwQGeomIiKxVXQ0kJkqDutnZgF7vmPqVSiAmRppTNy4O8PFxTP1ERERERER0w2Kgl4iISE5ZmRDUPX/+elA3P99x9bu4AKNHS0fqjh4NeHo6rg0iIiIiIiLqMxjoJYeqqqrCnDlz4O7ujiNHjti8/86dO/Hqq69CpVLZtT8Rkc30eqCoSDpKNyEBKChwXBvu7sLIXOORuqNGAZw0k4iIiIiIiByEgV5yGLVajRdeeAEVFRVQqVQ275+Xl4c33nijE3pGRPRfej1w5cr1YK5htG5JiePa8PYWcugaj9QdORJw5kcuERERERERdR5+6ySHaGpqwvLly/HTTz/ZtX9rayuWL1+O5uZmB/eMiPosnQ7IyzMdqVtZ6bg2/P2lAd34eGDECCHXLhEREREREVEXYqCXOiw7OxvPP/88Lly4YHcdf//735GRkQF3d3cGe4nIdlqtMCma8UjdxESgrs5xbQQHS1MvxMcDQ4cCCoXj2iAiIiIiIiKyEwO9ZLfm5masX78ee/bsgVarRVBQEEaPHo2jR4/aVM/p06exY8cODBo0CHfddRd27NjRST0mohtCayuQkSEdpZucDDQ2Oq4Nlcp0pK5KxaAuERERERER9VgM9JLdysvLsWvXLgDAzJkzsWbNGnz22Wc2BXpramqwatUqKBQKbNy4EadPn+6s7hJRb9TcDKSmSoO6KSlCsNdRhg2TBnTHjQNCQx1XPxEREREREVEXYKCX7KZQKDB16lQsWbIEEydOtKuO1atXo7i4GI899hgmTJjAQC9RX9bQIIzMNUyQlpAApKcLaRkcJTLSNKgbGOi4+omIiIiIiIi6CQO9ZDeVStWhNAt79+7FwYMHER0djWeeecaBPSOiHq+mRsihazxSNysL0OsdU79SCURHS3PqxsUBvr6OqZ+IiIiIiIioh2Ggtw+rqqpCbW2t1ds7OztDpVI5pO2CggKsW7cOrq6uePPNN+Hq6uqQeomoByovF4K6xiN18/IcV7+LCxAbKx2pO2YM4OnpuDaIiIiIiIiIejgGevuw7du3Y9u2bVZvr1KpcOTIkQ63q9VqsWLFCjQ0NOAvf/kLRowY0eE6iaiHKCqSjtJNSACuXHFc/W5uwshcQ0B3/Hhg1CihnIiIiIiIiKgPY6CXutz777+PxMRETJkyBQ899FB3d4eI7KHXAwUFQiDXeKRucbHj2vDyEnLoGo/UHTlSGMFLRERERERERBIM9PZhy5cvx/Lly7u0zaSkJLz//vvw9fXFhg0boFAourR9IrKDTgfk55uO1K2ocFwbfn7SgO748cDw4YCTk+PaICIiIiIiIrqBMdBLXWrXrl3QaDRobm7G/fffb7K+sbERAFBUVIRp06YBAF566SXMnj27S/tJ1GdptUBOzvVg7vnzQn5dG/J5tysoSDpJWnw8MGwYwB9+iIiIiIiIiOzGQC91Kb1eDwBobW1FeXm52e10Op24vrm5uUv6RtTnqNVARoZ0lG5SEvDfH1wcYuBAaUA3Ph4YNIhBXSIiIiIiIiIHY6CXutSGDRuwYcMGs+s3b96M9957z2ETvxHRfzU3A2lp0qBuSgrQ0uK4NoYOlQZ0x40D+vd3XP1EREREREREZBYDvUREN5qGBiA5WRrUTU8HNBrHtTFihGlQt18/x9VPRERERERERDZhoJeIqDerqRHSLRgHdbOyhAnUHEGpBEaOvD5BWnw8MHYs4OvrmPqJiIiIiIiIyCEY6CUi6i0qKoSJ0c6fvx7Uzc11XP3OzkBsrHSk7pgxgJeX49ogIiIiIiIiok7BQC8RUU9UXCwdpZuQAFy+7Lj63dyEIK4hoDt+vBDkdXNzXBtERERERERE1GUY6O1GmzZtwpYtW+yaeCwvLw9ffPEFzpw5g6tXr0Kj0SAkJASRkZGYO3cu7rrrLjg7d/3Tu3TpUixdurTb9ifqdfR64OrV68Fcw2jdoiLHteHpKeTQNR6pGx0NuLg4rg0iIiIiIiIi6lYM9HaTlJQUbNu2za59N2/ejK1bt0LTZmKlgoICFBQU4PDhw4iNjcWbb76J8PBwR3SXiBxBrwfy801H6paXO64NX19pQHf8eGHiNCcnx7VBRERERERERD0OA73doKCgAEuWLIFarbZ533Xr1uGTTz4R7zs7OyMqKgoeHh7Iy8tDVVUVACAtLQ2LFy/Gl19+CZVK5bC+E5GVtFrgwgXToG5NjePa6Nfv+gRphmXYMGECNSIiIiIiIiLqUxjo7WI5OTl49NFHUVZWZvO+Bw8elAR5Z86cidWrVyMoKAgAoFarsXfvXrz++utoampCeXk5li5diq+++goKhcJhx0BEbWg0QEaGNKCblAQ0NDiujQEDTEfqDhoE8LVNRERERERERGCgt0vt378fa9asQVNTk837qtVqbNy4Ubw/ffp0vPvuu1AajdxzcXHBokWLoFKp8MQTT0Cj0SA9PR3ffPMN5s6d65Bj6CvapsWwllartXifbgAtLUBaGhSJieKC1FQompsd1oR+8GDo4+OhHzcOGDcO+rFjhUBvWzy/iDqNTqczKdNoNJLPhxvhPV/u806n09n9OXij0uv1PfIxkTvntFptl/fVmtdLb2qvM+rvzD7ben46+nVvTfu2tGnreW3L9nq9XrbMXP/aK9NqtVY9t9Ycvz2vZ+O+y/XDeL2l+i31z9I6Wx97jUZj9jloy1wd5tq0pk5D363dloioN2KgtwuUlJTgnXfewb59++yu44cffkBhYSEAIV3D6tWrJUFeYzfffDMWLVqEnTt3AgB27NjBQK8NdDodkpOTHVJXWlqaQ+qh7qFoboZnTg48s7LExSMvDwoHBnOaw8LQOHIkGqOihL8jR0Lr7y/dqLRUWIioyxg+c43l5ubCy8vL7D698T3/woULJmVFRUUO+xzsrdp+6a+rq+uRj8m1a9dMyvLz87u8rxUVFSZlGRkZKHdkDnojxcXFJmU5OTkOu4JNrv4LFy7AqQP57ktlPsezs7PR2tpqc11tA2ANDQ02Pec5OTkmZcXFxXafNzU1Ne3uW11dbVJWWVkpu9/FixdNygoKCsy2kZuba1JWWFgou71cQM9c/4tkJsbNy8tDbGyseD8tLU32PM/IyJC8LvLy8trt49WrV022uXjxosXH1rjvcgFM4/UFBQVm65c7hoqKCiQnJ8u+HsrLy5GcnCz7HpSXl4fg4GCTx7q2thbJyclobGyUlKvVapOBUGq1Wva4a2pqzB6H3Pt2W3q9Xkx1aKxB5io8e9IsEhH1BAz0drL3338fH374oeQDLTw8HDNmzMDWrVutrufbb78Vb0+dOhUDBw60uL1xoDc9PR0FBQUICwuzsfdEfYeyvt4kqOt+6RIUMv8020OvUKB56FAxmGsI7uq8vR1SPxERERERERH1bQz0drLt27dLgrwLFy7EqlWrcOjQIavr0Ov1OHPmjHh/2rRp7e4TFRWF4OBgMRfwkSNH8NBDD9nQc6Ibl1NNDTyzs+GZmSkEdbOz4X7lisPq1zs5oSkiQjJKtykyEjoPD4e1QURERERERERkjIHeLhIbG4uVK1di0qRJNu977do11NbWSuqyRlRUlBjoTU1NtbndvkqpVGL06NF27avVaiWX7sbGxnboMj9ygJISIY+uUU5dxaVLDqte7+oKjB4N/bhxwhIfD8TGwtXdHa4A/B3WEhF1JbkrZ4YPH464uDjx/o3wnt/S0mJSNmDAAMlx9kVtUwD4+Pj0yMfk1KlTJmXh4eFd3td+/fqZlMXExEClUnVKe/379zcpi4yMdNhxy9U/YsSIDtUfEhJiUhYVFYXo6Gib63J2ln6F8/LysqlvcukL+vfvb/fx+fn5tbuvXHqPwMBA2f0uX75sUhYWFma2jZqaGpOygQMHym4vd+zm+j9AZn6EiIgIyf3Y2FhxYmxjMTExGDRokHhfLo1A2z6eO3fOZJthw4ZZfGyN+y6XusF4/fnz583WL5emol+/foiLi0NAQIDJuqCgIMTFxeHkyZMm6yIiIhAXF2fyPurr64u4uDh4enpKyl1cXODRZjCEi4uL7HH7+fnJXqU6bNgw2fftthQKhezxyKVlcnFxMSkjIuoNGOjtZJMmTcKCBQtw55132p037FKboNTgwYOt2s/4n4srDhyt2Be0/QfaXk5OTg6ri9qh1wPXrgEJCdeX8+cBmTybdvP0BMaOBeLjxUUREwO4uMAxWQGJqKeQy4Pv7Oxs8T29N77ny/VXqVT2uuPobAqFokc+JnI/LHTHeWjP66Unt9cZ9Xdmn209Px39uremfVvatPW8tmV7uUCvuf7LPWdty5ycnKx6bq05fntez8Z9lwv0Gq+3VL+l/llaZ0ufDX2R+04sV2auDnNtWlOnoe/WbktE1Bv1vP9YbzBbtmzpcB2GUbmA8MEk96uxnODgYNk6iHo9vR64eFEa1E1IABx5nvv6AuPGXQ/qjh8PREYCvWy0HhERERERERH1DQz09gLGlyN5eXnJ/gopx9tokie5S5qIegWdDrhwwTSoKzN7s90CA4VArtFIXYSHA1a+1oiIiIiIiIiIuhsDvb2Acf48d3d3q/dzdXUVb7e2tjq0T0SdQqMBMjOlAd2kJKC+3nFthIaaBnUHDwZ4yRYRERERERER9WIM9PYCarVavG3taF5AmtdIo9E4tE9EHdbSAqSnS4O6yclAc7Pj2ggLu552wRDUlZlYg4iIiIiIiIiot2OgtxcwTi4vl2TfHOPgLmcNpW7V1ASkpAiToxmCumlpgNGPGB0WESEdpTtuHGCUp5qIiIiIiIiI6EbGQG8v4OHhId42TuPQHuN0DW5ubg7tE5FZdXVCugXjkbqZmYBW65j6FQogKko6UnfsWMDf3zH1ExERERERERH1Qgz09gJ+fn7i7YaGBuj1eiisyCdab5TX1J9BMOoMVVVAYqIQzDWM1r1wAdDrHVO/kxMwapR0pG5cHGA00SARERERERERETHQ2yuEhoaKt7VaLaqqqhAYGNjufmVlZeLtoKCgTukb9SGlpdJRugkJwMWLjqvf1RUYPVo6Ujc2FjAa0U5ERERERERERPIY6O0FhgwZIrlfUFBgVaD36tWr4u1hw4Y5vF90g9LrgcJCaUD3/Hng2jXHteHhIaRbMB6pGxMjBHuJiIiIiIiIiMhmDPT2AiqVCv7+/qiurgYAZGZmIi4urt39srKyxNsjR47srO5Rb6bXA5cumY7ULS11XBs+PsLEaIaA7vjxQGQk4My3HyIiIiIiIiIiR2GkpZeYPHkyvv/+ewDAqVOn8MADD1jcPisrC+Xl5eL9KVOmdGr/qBfQ6YDcXNOgblWV49oICLiedsGwREQASqXj2iAiIiIiIiIiIhMM9PYSM2bMEAO9R48eRUlJiSR3b1uff/65eDsiIgJRUVGd3kfqQTQaIDv7+gRpCQnCpGlGE/R1WEiIaVB3yBDAiokCiYiIiIiIiIjIsRjo7SVmzJiBkJAQlJaWorW1FatWrcK2bdvgLHP5+/Hjx7F7927x/uLFi7uyq9TVWluB9HTpKN3kZKCpyXFtDBpkGtQdMIBBXSIiIiIiIiKiHoKB3l7C1dUVzz33HFatWgVASN/w2GOP4dVXX0VYWBgAQKPRYO/evVi/fj20Wi0AIDIyEgsXLuy2fpODNTUBqanXJ0hLSBDuq9WOayM8XBrQHTdOGL1LREREREREREQ9FgO9vcj8+fORmJiIXbt2ARCCvTNmzEBUVBS8vb2Rl5eHyspKcXt/f39s2rRJdtQv9QL19UBSknSkbkYG8N8gfocpFMKkaIYJ0uLjgbFjhTy7RERERERERETUqzAC2MusXbsWAQEB2L59O9RqNXQ6HTIzM022i4iIwKZNmxAeHt4NvSSbVVcLOXSNR+rm5AB6vWPqd3ICYmKkI3Xj4gAfH8fUT0RERERERERE3YqB3l5GoVBg2bJlmDdvHvbs2YMTJ06guLgYTU1N8PPzQ3R0NGbNmoV58+bB1dW1u7tLcsrKpKN0ExKA/HzH1e/iAoweLR2pO3o04OHhuDaIiIiIiIiIiKhHYaC3myxYsAALFiywe/+IiAisXLkSK1eudGCvyKH0eqCwEEhJkY7UvXrVcW24uwvpFoxH6o4aBTDIT0RERERERETUpzDQS+RIRUUY8MEH8EpPh2d2NpwrKhxXt7e3MDGacVB35EiAOZiJiIiIiIiIiPo8RoiIHOXCBTiNG4eBDQ0drysgQBrQjY8Hhg8HlMqO101ERERERERERDccBnqJHOVf/4LCniBvcPD1XLqGZehQQKFweBeJiIiIiIiIiOjGxEAvOVRVVRXmzJkDd3d3HDlypN3t8/PzsWPHDpw6dQqlpaVwc3NDdHQ0Fi5ciHnz5nVBjx1owID2t1GpTIO6AwcyqEtERERERERERB3CQC85jFqtxgsvvICKigqoVKp2t9+/fz9eeuklqNVqAICXlxfq6upw9uxZnD17Fj/++CPeeustKHtLuoJHH4XuwAEo//MfAECLSgWXyZOhNAR2x40DQkO7uZNERERERERERHQjYqCXHKKpqQnLly/HTz/9ZNX2CQkJWLVqFXQ6HWbPno0XXngBAwYMQHV1NT744AN89NFHOHDgAMaPH4/f/e53ndx7B/H2hu6775B88iQUOh20vr6Ii4uDkpOlERERERERERFRJ+slQyWpJ8vOzsbChQvxn/+OZLXGK6+8Ap1Ohzlz5uCdd97BgP+mPfD398fKlStx9913AwA+//zzTulzZ9J5e0Pr69vd3SAiIiIiIiIioj6EQw3Jbs3NzVi/fj327NkDrVaLoKAgjB49GkePHrW4X0pKCrKzs+Hh4YGXXnoJCpn8tEuWLMHYsWPh7+/fSb0nIiIiIiIiIiK6cXBEL9mtvLwcu3btglarxcyZM/H1119j1KhR7e5nGPk7bdo09OvXT3abyMhIPPzww7j33nsd2WUiIiIiIiIiIqIbEkf0kt0UCgWmTp2KJUuWYOLEiVbvl5WVBQCIjo4GABw8eBD79u1Dfn4+lEol4uLi8Mc//hEjR47slH4TERERERERERHdaBjoJbupVCrs2LHD5v3y8/MBAL6+vliyZAkOHz4sWX/x4kX83//9H1555RX85je/cUhfiYiIiIiIiIiIbmQM9PZhVVVVqK2ttXp7Z2dnqFSqDrdbV1cHAPjwww9RVlaGhQsX4rHHHsOAAQOQk5ODjRs34uzZs1izZg0GDx6MKVOmdLhNIiIiIiIiIiKiGxkDvX3Y9u3bsW3bNqu3V6lUOHLkSIfbbWhoAACUlZXh97//PV5++WVxXWxsLLZv345FixYhIyMDb7zxBvbu3dvhNomIiIiIiIiIiG5knIyNuo2rqyv+/Oc/y5Y/9dRTAID09HQUFBR0ddeIiIiIiIiIiIh6FY7o7cOWL1+O5cuXd3m7Xl5eqK6uRlRUFHx9fWW3mTBhgng7JycHYWFhXdU9IiIiIiIiIiKiXocjeqnLBQUFAQA8PT3NbmMcAG5ubu70PhEREREREREREfVmDPRSl4uMjAQAFBcXm92mpqZGvG0IDBMREREREREREZE8Bnqpy02ePBkAcPnyZeTn58tuc/78eQCAi4sLoqKiuqxvREREREREREREvRFz9FKXu/vuu7FhwwY0NTXh73//OzZv3ixZr9VqsW3bNgDALbfcAn9//27oJREREVHvpdfrodPpuqQtZ2dnk5RcOp0OWq22U9pzcnIyaU+v1zusvc6oX+4xsrdODw8PSV1ubm421aPX60364uTkZHUdnp6e0Ov14n1XV9d299XpdCZturi4yO6nUChMtlUqlRbbsPZ45I7dXP/lzoO2tFqt1ed/e31UKpUm2ygUCsk2lvou9xgbr7dUv6XnR26ds7MztFqtbJ2A8Lh4enpCo9GY9MXNzU2yj4eHh2yZoY6255q54/D09ISTk5Nk27aPmZubG1xcXEz2b9u+QqEweZ0RUc+m1+vR3Nwsec/oqxR6PgrkQJs3b8Z7770HlUqFI0eOmN3u3//+N15//XUAwD333IPnn38eoaGhKCkpwdq1a3H48GG4urpi3759iIiI6PR+JyYmil+GlEolxo0bZ1c9Go0GycnJ4v24uDg4O/P3FCKi3uaNN97AypUrJWUnT57E1KlTxfs3wnv+2bNnxSttDP72t7/hxRdf7KYe9Qzu7u5oaWkR78+cORMHDx7sxh7J27JlC55++mkAQmBi5MiR2Lp1KwYMGCAJsHS2K1euoLS0VFI2ZswYMdDiaIWFhSgsLJSUxcTEOCwo0xn1X7161SRtWWxsLNzd3W2uKykpSfL8ent7Y+TIkVbv39jYiIyMDEnZwIEDMXDgQKv2/+WXXyT3/f39MXz4cIv7aDQaJCUlScqCgoIwdOhQk22rq6uRm5srKRs6dKjZdG51dXXIzs6WlIWFhSE0NLRD/S8qKsK1a9ckZSNHjoRSef2iWA8PDxQUFLR7/tfX1yMrK0uyzaBBg9C/f3/xfllZGS5fvizZZsSIEfDz87Oq73q9Xrwq0iAgIED8LlVeXo5Lly5J1g8fPhz+/v5Qq9WSzzMACA4OxpAhQ9Da2oqUlBTJupCQEAwePBilpaW4cuWKZF1kZCR8fX1x/vx5ScDFz88PI0aMQGZmJhoaGsRyFxcXuLq6mpTFxcXJHq+/v7/sceTn50t+3DI8bsYpAZVKJQICAlBRUSHZ38fHB3V1dZIyFxcXqNVqEFHvodfrUV1djcTERJw5cwZZWVkdDvz+9NNP4ud/R2JFXal3fRuhG8bDDz+MsrIy/Otf/8L+/fuxf/9++Pj4oL6+Hnq9Hm5ubti4cWOXBHmJiIiIerOgoCCsWrUKISEhcHNz69IgLyAEGtt+kTIOhjmap6cngoODJWWO/JGlM+r38vIyqdN49KEt+vXrJwloubm52bS/s7OzSV9sCWK33dfDw6PdfRQKhcl+3t7estu6urqabGspIO7i4mJTn6zdVu48cHFxgUKhkJRZc/5b85i7u7ubbNP2x5L2+m6pDUv1K5VKs8+PpXUeHh6yjxFgOs+Koa/+/v6Sfjk5OZmMnja8NuSO19xxBAUFSZ4Hwzlj/BgaRv62fX7c3NxMzjFbRrkTUfczXMnk7e2NwMBA3HHHHSgtLcWGDRtQXl7e3d3rUgz0UrdZsWIFpk+fjo8//hgJCQmorq7GwIEDMXnyZPzpT3/CiBEjuruLRERERD1aUFAQXnzxRYSEhCAkJKRbLjX29vY2CTbaG8S0hpeXlxhMMnBkoLcz6vfy8jIJ2nUk0Gsc0LK1HmdnZ5MgnC2jr9vua037SqXSZD9zj6mbm5vJtpaC2S4uLjYdj7X98PT0NFnn7OwsCfQqFAqrzn9r+ujh4dHuNpb6rlAoLK53d3c3+7jKPT+G14CldXJ1GvocHBwse54GBARIAqgKhQIKhULy44XhMZY71+TOX8M5I9ee8Q8KCoUCTk5OJgFyuaCuQqHgJeBEvZRWq0VtbS2USiVefPFFrF+/vk8Fexno7UabNm3Cli1b2k1zICcvLw9ffPEFzpw5g6tXr0Kj0SAkJASRkZGYO3cu7rrrrm65fHTp0qVYunSp1dtPmDABEyZM6MQeEREREd24DCN5w8LC4OnpKQaL2uar7ExXrlwxuRR62LBhnZa6oaioyCQNwuDBgx0W5JarPywsDF5eXnbXee3aNZPL+4cMGWLVaNi2UlJSJEEpd3d3REZGWr1/Y2OjSaqDwMBADBgwwKr9ExMTJfe9vLzavQpPo9EgNTVVUubn54fBgwebbFtTU2MyYXNoaCj69esnW3d9fT0uXLggKQsODkZISIjJtnq93iSFhJeXF8LDw022LS4uRlFRkaSsbX89PT1x9epVkwBC2/Nfro9BQUGS9BLl5eUoKCiQbDNw4EBJ6ga5x97Q9/aOzVL9ra2tSE9Pl6zz9fXF4MGD0dLSYpLqw8/PD2FhYSgrK8PVq1cl6wYNGgQfHx/ZvkRERCA7OxuNjY1iuZOTE1xcXNDU1CQpi4yMlD1ePz8/2eO4ePGipMzwftA2JYOvry8qKyslZe7u7pLUEYY+dPXVEUTkGE5OTggICBB/zFq1ahVWrFjRZ368YaC3m6SkpIgTjtlq8+bN2Lp1q8kHT0FBAQoKCnD48GHExsbizTfflP2nhYiIiIh6Py8vL/j4+EhG8gYHB0sCQ11BLk2D4XLs3theZ9TvyDrbpg4wjFK0lty2SqXS7uOzpn25L9fm9pN7rCz1z5btHdEP48ffycnJqufWmj7aetxt+97esVmq39I5YWmdLX029EXu/LX2nFYoFGbblNtWjly5tWVE1Lt4enoiJCQEOp0OI0eORGZmZnd3qUt0XvIsMqugoABLliyxK7n7unXr8N5774lBXmdnZ4waNQoTJkxAQECAuF1aWhoWL15sMoEAEREREd0Y/Pz8oFAo4Ovr291dISIiIupxfH19oVAoMGnSpO7uSpdhoLeL5eTk4He/+x3Kysps3vfgwYP45JNPxPszZ87EsWPHsHfvXuzcuRPHjx/Hq6++Kl4CVl5ejqVLl/aZ4elEREREfYmPj0+XpmggIiIi6k0Mkz3Gx8d3d1e6DFM3dKH9+/djzZo1kvxD1lKr1di4caN4f/r06Xj33Xcll6m4uLhg0aJFUKlUeOKJJ6DRaJCeno5vvvkGc+fOdcgx9BX25mNqm8SfM7USEfVOxpPCGGg0Gsnnw43wni/3eafT6ZiXsA29Xt/jHhO9Xg9nZ2fZSap6wo/8er2+0/ohV29ntmep3Y7W54g6ba2nMx6/9va1pU1b+9fRui3VIVdmfEm/pXaseTyNt7Glb3Lr7dm/vX7as6+tz5U9bXfVtkR0Y3Bzc4O/v3+fmWSRgd4uUFJSgnfeeQf79u2zu44ffvgBhYWFAIR0DatXr5bNRQQAN998MxYtWoSdO3cCAHbs2MFArw10Oh2Sk5MdUldaWppD6iEioq5l+Mw1lpuba3Eypt74nt92ciBAmIjKUZ+DvVXbLwF1dXU98jFpbW01+X+wpaVFMtFRV5ALgjc3N3dacFwu/Vlzc3OPrt9cnfZ84Wy7j06ns+k5lzsWtVpt93mj1Wrb3VfuhzBz+7W0tJiUtba2mm1DbntbjsdcP+Ses5aWFskEek1NTVad/3KPedtjMteepeNo77E3Xt/a2mq2D3LHoNFo0NjYKNsvw+Nrqc9tz1NDX9r+kKrX62XL5I5Lq9WaPQ65beXIlcv9uNsXgkFEfYUhv7q7u7tdAy97G6Zu6GTvv/8+Zs2aJQnyhoeH48knn7Spnm+//Va8PXXqVAwcONDi9osWLRJvp6enm8xMSkRERES9HycMIiIiIjLP8L9SX/mfiYHeTrZ9+3bJr5ELFy7E7t27MWTIEKvr0Ov1OHPmjHh/2rRp7e4TFRWF4OBg8f6RI0esbo+IiIiIiIiIiIh6F6Zu6CKxsbFYuXKlXTP9Xbt2DbW1tZK6rBEVFSVO+paammpzu32VUqnE6NGj7dpXq9VKLt2NjY3lBClERL2Q3JUzw4cPR1xcnHj/RnjPl7vkecCAAZLj7Ivajvjw8fHpcY+JVqvFzz//bHIJopubGzw9Pbu0L87Opl8p3N3d4erq2intubi4yLbnqOPujPrN1WmcBsBabc9PpVLZ4WN3cXGxuw7DRDeWyKUGMLef3GX4rq6uZtuQuxTf3PHIXY5vrh9yz1nbnNgeHh5Wnf9yqQHaHlNDQ4Nse5YeW+O+t3dscqkQDH2QS8Hg7OwMT09P2efD8PjW19eb7XPbXJiGvrRNN6NQKGTL5I7byclJ9n1Frszc57FcuVxKxL4y8o+Ibjw9ItD773//Gw8//HB3d6NTTJo0CQsWLMCdd95p94fFpUuXJPcHDx5s1X6DBg0Sb1+5csWutvsquX/Y7OHk5OSwuoiIqOvIfelzdna2+J7eG9/z5fqrVCp73XF0NoVC0eMeE0v/V/aEAIVCoei0fsjV25ntWWq3o/U5ok5b6+mMx6+9fW1p09b+OeJ4bOmHNe1Y277xNrYcn6PWt9dPe/a19bmyp+2u2paIqDfqEf+xvvXWWxg1ahQmTpzY3V1xuC1btnS4DsOoXED48hUUFGTVfsapG4zrICIiIiIiIiIiohtLj8jRq9FosGzZMpSUlNi0X2JiYif1qGepqakRb3t5ecmOMpLj7e0tWwcRERERERERERHdWHpEoPe+++5DeXk5li5dKpsDSM7XX399w6Z7aMs4f567u7vV+xnnKrL2cSUiIiIiImpLLo8rUWeQy+lM1BV47tGNoEekblizZg0yMzORmpqKtWvX4m9/+5vF7Tdt2oStW7d2Ue+6n/E/VdaO5gWkeff4hkVERERE1LOcOXMGf/jDHzpczx/+8Ae89NJLDuiRvNOnT2PdunU4cOBAp7VBBADp6en4+OOPcfjwYdn1N998s3h7586dXdWtXquhoQEHDhzA+fPnUVlZiZaWFnh4eGDAgAF45ZVXbKqrtbUVBw8exNmzZ1FWVoampia4ubmhX79+ePnll/H3v/8dmZmZAICXXnoJMTExnXBEnUOn0+HIkSNIS0vDs88+293dIeqQHhHodXV1xT/+8Q/cd9992Lt3L2JjY/Hb3/7WZLvW1la88MIL+P7776HX6/HrX/+6G3rb9YxnBpWbsdUc4+Cu3KyxRERERERElixbtgzffvttd3eD+oDNmzfj559/7u5u3DAaGhrw17/+FaWlpZLy+vp6aLVam+rSaDRYt24d8vLyJOWNjY1wdnaGl5dXh/vbXSorK/HOO+/g4sWLiI6O7u7uEHVYjwj0AsCgQYPw1ltv4YknnsD69esRHR2NsWPHiuvLy8vx1FNPIS0tDQDw5z//GU899VQ39bZreXh4iLeN0zi0xzhdg5ubm0P7REREREREjvXCCy+0u01hYaFk8IerqyumT5/eaX1ikJe6CoO8jvXdd9+JQV5nZ2dMnjwZAwYMgEajQf/+/W2q68SJE2KQV6FQYPz48RgyZAj0en2vDvICQHFxMS5evNjd3SBymB4T6AWAW265BU8//TQ2b96MZ555Bnv37kVQUBCysrLw1FNPoaioCB4eHtiwYQNmzpzZ3d3tMn5+fuLthoYG6PV6KBSKdverr68Xb/v7+3dG14iIiIiIyEEeeeSRdrdJSkqSXLnn7e2NkSNHdma3iHqMEydO4PLly93djV7B+HG69957MX/+fLvrunLlinj71ltvxeOPP96hvhFR5+nyydhqa2strn/66adx2223obS0FM888wwOHjyIBx98EEVFRQgNDcWnn37ap4K8ABAaGire1mq1qKqqsmq/srIy8XZQUJDD+0VEREREREREPU9zc7N4OyIiosfURUSdq8tH9E6ePBlhYWGIiYnBqFGjEBsbi1GjRsHX11fc5q233sL8+fORmJiIxMRE6PV6xMbGYsuWLQgJCenqLne7IUOGSO4XFBQgMDCw3f2uXr0q3h42bJjD+0VEREREREREPY9erxdvG0/Ubg/jdDEdrYuIOleXv0L1ej2uXLmCK1eu4PvvvxfLBw0aJAn8rlu3Dk8++SRaWlpw9913Y8OGDX02z6xKpYK/vz+qq6sBAJmZmYiLi2t3v6ysLPE2L+ciIiIiIup7fvzxRxw4cABJSUlivk5PT08MGjQIo0ePxm233Wayz5kzZ/CHP/zBpDwqKkq8vXPnzk7p77333itezfnOO++gpaUFn376KY4dO4YrV65ArVZjwIABmDx5Mh588EGoVCqzdS1evBhnz56Fp6cnEhMTkZOTgzfeeAPZ2dlwcnJC//79MX36dKxYsUKyn1arxbFjx/Ddd98hLy8PNTU1UCgUCAoKwpgxY3DnnXdazIt87do1zJo1CwBw//33Y9WqVSgrK8PBgweRlJSEyspKODk5ITw8HLfffjt+97vfWfXYaDQanDlzBqmpqcjLy0N9fT0aGxvh4eEBf39/qFQqxMfH46abboJS2f7Fu8eOHcOhQ4eQkpKCiooKeHl5ISwsDNOmTcOCBQtQVlaGm2++GQAQHR2Nv/71r2brSk9Px/nz53HlyhWUlZWhuroaTk5O8PLywqBBgzBx4kTZOXbS09Oxdu1ak3Jz55qhP23L21Kr1Th27BhOnDiBixcvoq6uDs7OzggMDMSIESNw0003ITY21uLxGPr14IMPYs6cOSgvL8fhw4eRlJSE8vJyaDQaBAQEIDo6GnfccYdDR7rW1tbi6NGjSE1NxbVr19DQ0AAPDw8EBQVh1KhRuP322zFw4ECT/Y4dO4YPP/zQpPxvf/ubeLu959IgIyNDsp/Bhx9+KLYRFBSETZs22XJoAIDU1FScPHkSFy5cQHV1NbRaLXx9fTFs2DCMHz8e06ZNk0xKb07b10RtbS2amprg5uYGb29vhIeHm31NfPXVV9i7d6+kLDMzU3w9Wvs4mVNfX4+jR48iOTkZhYWFqK+vh6enJ0JCQhAbG4s777wT/fr1M7v/1q1bcfz4cfF2a2srPvvsM6SkpECv1yM4OBhjx47FokWLUFZWhmeffRYAcNddd+Hhhx8W3/vLysrg7e2NiIgI/PrXv8aIESMk7dh7rhkYP46vvfYaQkND8cUXX+DcuXNobW1Fv379EBsbi0WLFsHd3R2AMJ/UyZMn8csvv+Dy5cuoq6uDi4sLfHx8EBERgXHjxmHKlClWnQNkqssDvR9++CEyMjKQkZGB9PR0XLt2DYAwSrWgoEAS/HVycoK3tzciIyPx888/Y+TIkZI0Bn3J5MmTxcfm1KlTeOCBByxun5WVhfLycvH+lClTOrV/RERERETUc9TW1uLPf/4zTp06ZbKuubkZlZWVSElJwd69e7FixQqrg41dqbS0FG+++SYKCwsl5ZcuXcKlS5ewe/duPPnkk5g2bVq7dRUUFGDx4sWoqakRy/Ly8hAeHi7ZLjMzEy+88AJycnJM6rh27RquXbuG7777DiNHjsSmTZusCqiePn0aL774IhobGyXl6enpSE9Px//+7/9i7dq1FifIOnPmDJ577jlUVFSYrKurq0NdXR0KCgrw888/4//+7/+wfPlys/O0NDc34x//+AeSk5Ml5bW1tWKfTpw4gQ0bNrR7bBUVFXjvvfdkHy+NRoOWlhbxXNuzZw+ef/75Tr/0Pz09Hdu2bZOkMgSE4K/hOfzxxx8RGxuLJUuWwNvbu906T548iY8++kiSwgAASkpKUFJSgmPHjmH27Nl48MEHO9z/77//Hrt27TKZiL2+vh719fW4dOkSvvvuO8yYMQMPPvhgrwqGlZaWYuvWrcjOzjZZV1FRgYqKCvzyyy/Yt28fnn76aYvnSkZGBrZu3Sr7mmhsbERjYyNKS0slr4muSml57NgxfPrppyavecNrNS8vD99++y3uu+8+zJ07t936GhoasHHjRvHHOkDIm2zu3D148CA++eQT8X5VVRV++eUX8QcoA0efaxqNBhs3bhQn7gOECUQ1Gg0eeughAMJ78dtvv23y+tRoNGhqakJpaSlOnz6Nr776Cs899xwGDRpksU0y1eWB3ltvvRW33nqreL+2tlYS+M3IyMDly5eh0+mg0WhQV1eHf/zjH+L2fn5+GDlyJKKjoxEVFYV77723qw+hW8yYMUMM9B49ehQlJSUWg96ff/65eDsiIkLyi2h3ysvLwxdffIEzZ87g6tWr0Gg0CAkJQWRkJObOnYu77rqLl4IQEREREXXQ888/LwZ5/fz8MH36dAwePBhqtRoZGRn45Zdf0NDQgKamJqxbtw6xsbHiVYODBw/GCy+8AAB44403xDpfeOEFSXq4ztTS0iIGeZ2cnHDHHXcgOjoa9fX1OHLkCC5dugSdToctW7bgypUr+O1vf2uxvhdffFES5DUw/m6akpKChx56SAzOuLi4IC4uDoMHD4Zer0dlZSVOnjwJjUaDrKws/OY3v8Ebb7xhMVB44cIFHDhwAE1NTfD09MSkSZMQHByM5uZmHD9+HNXV1aivr8fKlSvxzDPPYPz48SZ1nD9/Ho888gjUajUAIDAwEHFxcRg0aBCCgoJQUlKCkydPipNvFRQU4L333sO7775rUldrayv+9re/IT8/HwCgUCgwbdo0hISEQKfTITMzE9nZ2cjIyJAdgWusrq4Oa9euFQNt7u7uuOWWWxAVFYXy8nLU1dUhJycHFy5cAADU1NRg48aNePPNN8UJx0NDQ/HQQw9BrVbjs88+E+u291xLSEjAu+++C61WK/Zp3LhxUKlU0Gg0uHz5MpKSkqDX65GWloaXX34Zb775psWrhxMTE5GVlQW9Xo/Q0FCMHTsWfn5+qKysxNmzZ1FbWwu9Xo8DBw5ApVLJjpK31ueff45vvvlGvB8YGIhx48ahX79+qK+vR2pqKgoKCqDT6XDw4EEUFhZi+fLlYgAuIiJCDDb/5z//EQODd955pxg/sCYNJCA8N4a6fv75Z/GcmTJlivgDiYeHh9XHVlpairVr14pXKisUCsTGxiIiIgJOTk64du0aEhMT0dLSgpKSErz22mt4/vnnMXr0aJO6srOzsXHjRnFiSsNrIigoCAqFApWVlUhLS0NxcTGA66+JV155Raxj9OjRcHd3R0lJCQ4fPgwACAkJwa9+9SubHqe29u/fjy+//FK8P2DAAIwePRr+/v5oaGhAZmYm8vPzoVar8cUXX6CyslIMgprzySefSIK8BjfddJNJWVFREY4ePWpSHhAQILnSu6PnmrljNw7yGhgGHhoC1oZ5p0JDQzFmzBgEBASgpaUFhYWFSEhIgFarRUlJCV5//XW89dZbNp1n1A2B3rZ8fX0xZcoUyYjTpqYmZGZmSoK/eXl50Gg0qK6uxs8//4yff/4ZSqWyTwV6Q0JCUFpaitbWVqxatQrbtm2TDYoeP34cu3fvFu8vXry4K7tq1ubNm7F161bJLMHA9dHchw8fRmxsLN58802TX9aJiIiIyAHUauDVV4EDB4A2I43sNVCtRsh/gyoGLm5ugELhkPrbCtZoENDm/0m3jrbn6QnMmQOsXt3B3vUMSUlJ+OmnnwAIc3V89tlnYtCisbERGRkZWLx4Md566y1kZWVBp9Ph/fffx9atWwEIgYlHHnkEgDTQ+8gjj+CXX37pkmOorq5GdXU1AgMD8fbbb2Pq1KniuuXLl2Pz5s14//33AQAHDhzApEmTzI7+a2xsxNmzZxEWFoYHH3wQkZGRqK2txZkzZ8Tgdn19PZ566ikxyBsVFYUnn3xSMkfMyJEjceXKFaxYsQK5ubmoqanBmjVr8Le//U28JLktw6jZmJgYLF26VJybZtCgQXj55ZexYsUKHDt2DBqNBh999BGio6Ph6ekpqeOVV14Rg7zTpk3D448/DmdnZ/j7+2P48OEAhByqa9asEQNMFy5cQG5urrje4OuvvxYDdv7+/tiyZQtGjx6NlJQUcZtffvkF77//vnj1rTn/+te/xCDv4MGDsWrVKkycOBG+vr44f/68mCM2LS1NTMPR0NCAkydPYvbs2QCES//vvfdeNDY2SgK99pxrZWVl2Lx5sxjkHT9+PB555BExqKxQKBAYGIizZ8/i3XffRWVlJSoqKrBhwwa8/PLLZkdnZ2ZmQqFQYPHixZgxY4ZkuwceeADvvPMOMjIyAAjnor2B3p9//lkSeJs3bx7uu+8+k+/8P/30Ez766COo1WqkpKRg165dYkB20KBB4gjIxMREMTg4ZcoUxMTE2NSffv36Yc6cOQCE7+yG82bMmDE2H6NOp8Pbb78tBnlDQkLw7LPPmsxHVFVVhS1btiAjIwNqtRqbN2/G66+/bpLi4KOPPhLjCsavCWN6vR5ff/215DVx8eJFcf6iyMhIREZGIiMjQwz0Gh+zPVJTU8VYjLOzMx5++GHcfvvtULT5fEpISMD777+PxsZGHDp0CJGRkbJBW4OkpCT4+Pjgj3/8I8aMGYPGxkacO3cOEydONNk2LS0NgBAEvv/+++Hv74/Lly+joqJC7IcjzjVz/XR1dcXixYsxefJkaDQaJCUliekiDh8+LAZ5J0+ejKefftokcFxYWIh169ahpqYG1dXVOHr0qPh+Qdbp9kCvHA8PD8THxyM+Pl4sa21tRU5Ojhj8TU9PF38Z7AtcXV3x3HPPYdWqVQCE9A2PPfYYXn31VYSFhQEQhrrv3bsX69evFz/cIiMjsXDhwm7rt8G6desklw44OzsjKioKHh4eyMvLE1/saWlpWLx4Mb788kuL+baIiIiIyA5r1wIyORc7wuW/S1fptPYSE4W/7Yxi7Ez2XIV3xx13iAFPg6SkJPH2Aw88IDsyzcPDA0888QSWLVsGQLgMWqvV9qjLwF1dXbFq1SpERkZKyp2cnPDss8+irKwMe/bsgV6vx+eff24xn6azszO2bdsmGX06d+5c8Xh37Nghpr5TqVR4++23ZUcADxkyBB988AEeeOABlJWVobi4GIcOHcK8efPMtj1s2DCsWLECrq6uknI/Pz+89957WLBggZir9LvvvsN9990nbpOSkiKmRfDz88Ojjz4qO9hHoVDgnnvuwYkTJ8RUFxcuXJBcql1dXS0GdxQKBTZs2IDx48ejtbVVUteECROwcuVK2dy5Bq2trTh06JB4//HHHxcDqm0Z8pF+++23ACAGDB3tq6++Eo9lxIgR+Otf/2py6TwgjHp96aWX8NJLL6G5uRk5OTk4c+aMxUDbnDlzTC57B4TX0WOPPSa+jq5du4aqqioEBATY1HetVisZBTpr1iwsWrRIdttbb70Vzs7O+Oc//wlAuPx+5syZFvO9drfjx4+LI7Q9PT3x4osvIjg42GS7gIAArFixAmvWrMGVK1fQ0NCAffv2iT88AcJVwoa6bH1N5Ofnd+pE9V988YX4A8dDDz1kNpd3fHw8HnvsMTG/8Z49ezB58mSLqWCWLl2KUaNGARDOO7nz0SA6OhpPP/20GNg1/mzp7HPt4YcflvwQYHzbOIY3b9482c+bgQMHYtGiRWIeaLkRwmRZ+wmFeghXV1fExsbiN7/5DdauXYs9e/YgISGhu7vVpebPny95AZ46dQozZszAvffei9///ve45ZZb8PLLL6OpqQmA8Avtpk2buj0VQtv8MDNnzsSxY8ewd+9e7Ny5E8ePH8err74qDscvLy/H0qVLJbOEEhEREZEDnDnT3T3o2X7+ubt74BDGX54tfWcKCQnB66+/jv379+Onn37qUUFeQJhUyNLgjz//+c9in7OyslBbW2t221tuuQVDhw41u37//v3i7WeeecZiOoaAgAA8+eST4v0jR46Y3dbQz7ZBXgNXV1c8/fTT4v1z585J1vv7++Pll1/Gn/70JyxcuNBsPQbGIyQbGhok63755RdxZPC4ceMwbtw4s/VMmzZNdrSgQWtrK5YsWYJ77rkHc+bMaTd4ZrxeLvjaUWq1GmeM3t8eeeQRi9+D+/fvj5kzZ4r323sOjbdtKyQkRJL71TCIyRYXLlxASUkJACGI195gralTp4o/gGg0Ghw7dszmNrvSyZMnxduzZ8+WDfIauLq6SnKGnzhxQjxvAcDb2xsPPfQQZs+ebfNrojPOPYPc3FxcunQJgPAeYWnCRgCYNGmSOPq6uLjY4kDGQYMGiUFea8yYMcNkFLFBZ55rnp6euOWWW8yuN/6MkcvrbTBlyhRs3LgRO3bswNKlSy32j0z1yBG91upp/4h0hbVr1yIgIADbt2+HWq0W8yi1FRERgU2bNnV7CgS1Wo2NGzeK96dPn453331X8kuVi4sLFi1aBJVKhSeeeAIajQbp6en45ptvrEpMTkRERERWmjwZ+M9/ursXPVc3T2BsyItrSWFhIXQ6nXi/7QzqgBBAMPj+++/xhz/8AQsXLsS0adNMUgwMHjxYTCfQ0xina5BjmL0+OTkZer0eqampZidmM75atK2rV6+ioKAAgPAdc8aMGbKjeY3ddddd+Nvf/gadToeysjKUlZXJBq/8/PwwdepUi0GcO+64A05OTtBqtSgoKEBlZaU4Cnvw4MH4/e9/DwDtpjKoqqpCXV2deL9tyrxEw6h1CKN223P33XebBJ4NvL29MXfuXDH1hSXNzc1iYAmAePWpI124cEEczevv729VUGzq1KligP/ChQtQq9VwcTG9XiAwMLDdfK2+vr7iiPC2I6StkZ6eLt4eO3as2VQgxm666SYxWJaRkYEFCxbY3G5XMFydbTB58uR294mNjYWPjw/q6urQ2tqK3NxcREdHAxDyus6YMcOqttu+Jjrj3DMwjssMHTrUbKDVWGRkpDg6OSsry+xVHbZe7WFp+84814YPH25xVHJ0dLT4nvLxxx/j4sWLmDJlCqKjoyUBezc3N07C1gEOC/RWVlbil19+QWVlJXx8fDB69GgMHjzYUdXTfykUCixbtgzz5s3Dnj17cOLECRQXF6OpqQl+fn6Ijo7GrFmzMG/evHZ/2eoKP/zwg3iZhLOzM1avXm32hX/zzTdj0aJF2LlzJwDh8ikGeomIiIgcaM0aIZetA3P0qtVqaNp8eXZ3c7PqS65d7Wk0JgEsNzc3KB2Vo7fNTOBdyfjyZHOSkpIkxy838jQqKgr3338/9uzZAwA4c+YMzpw5A4VCgcjISAwfPhxjxoxBVFSUbGCrJ3BxcbHq+2RERISYB9cQaJNjSHcnxxDkBYTRf56enu0Ger29vREWFiZOgFZaWiob6I2JibEY+ACE81elUuHKlSvicVgKLJaXl6OkpAT19fX4+uuvkZeXh6ysrHYnLzMOtlrz2BpP3GSNuro6pKSkoKKiAmfPnkVRUREKCgpw9epVyY8TnXHlpq3HBgiXiLu4uECtVkOtVqOqqkqSk9nA39+/3bqMJ3Oz5/iM+982b605xiPU5Sbq6imqqqrEEblubm4YMGCAVfsNGTJEzDdbUlIiBnrlGF4TpaWlKC0tRWFhIS5fvoyyNu/nnXnVsPHrLzExUTIq2RqW3r/kzktz3NzczKZRATr3XGuvn7fffjt+/PFHXLlyBXq9Hj/99BN++uknuLi4YMSIEYiNjcWYMWOsDpSTvA4HevV6PTZs2ICdO3ea/DoyYcIE/PWvf7X4a4LhhdbXnsQFCxZ06Be3iIgIrFy5EitXrnRgrxzPkIcJEH4xHThwoMXtjQO96enpKCgosPhPGRERERHZwMUFeO01YXGQQpkv02PGjOm0QQdlhYXiQAKDmJgYkwms+rpXXnkFQUFB+Oijj8QRhnq9HtnZ2cjOzsaBAwfg7u6O8ePH4+GHH273//Su5u3t3W6AFIAkoGGY6Km97doyvtTeltyqAQEBYqC3vr5edhtr86Yaj6qWCzJfunQJ27dvxy+//GIxRYVSqZQEVY0ZH6eXl1e7fbLmsWhoaMDBgwdx+vRpFBUV2dUvRzB+/H18fKzaR6lUwsvLSzxv6urqZANVxkFca9gTTLSn/8bbmTv/egLjvnl5eVkd+2nv+IqLi3HgwIEOvSYcqaPPgaX9rXm9GrT3WdiZ51p7/XRzc8OqVavw73//G2fPnhXL1Wo1MjIykJGRgS+//BKBgYG46aabMGfOHIvv3SSvw4He1157DZ9//rnsm9m5c+fwm9/8Bv/4xz8kCZgLCwvxwQcf4Pjx4yguLhZnv4yNjcXs2bMxZ84cqz7UqWfT6/WSPEnmLqMyFhUVheDgYPHLwpEjR/DQQw91Wh+JiIiIiG5ELi4uWLZsGR566CEcPHgQR48exblz58T5PADhkvqTJ0/i9OnTeP755/Hoo492Y4+lrP0+aDzYyNLo5M5I+2ccPDIXvLJ2vhTj42i7z549e/DKK69I8pQCwvEOHToUkZGRGD16NHx9ffHdd9/h+PHj7bZhTeCrvYBlVlYWVqxYYRKYViqVCAoKgkqlwrBhwzBy5EjU1dVh8+bN7bZpL3tHaho/Dt0Zg7Cn/9acfz2BI56btsf3448/4qOPPjIZbOji4oLQ0FCEhYUhIiICMTExFl8TjmTcl1GjRlmV1sRYaGio2XW2nJvtvdd15rlmzfusn58f/vznP6OwsBBnzpxBYmIiLl68KGmjsrISBw4cwOHDh/Hcc8/ZlJ+YOhjovXDhAj7//HMA159s45NGoVCgpaUFzz77LL7++muEhYXhl19+wRNPPIHGxkbJtmVlZfjxxx/x448/YseOHdi4caNsvinqPa5duyb5ZS02Ntaq/aKiosRAb2pqaqf0jYiIiIioLwgMDMSDDz6IBx98EK2trTh37hy+/fZbJCcnIzc3F3q9HjqdDm+++SbGjRuH8ePHd3eXAUASkLbE+PuGNZfYyzEeMWbLRFrG25obRWecH9QS4+2MjyMhIQGrV68Wg0hRUVGYPn06RowYgcjISHGSJL1ej/Pnz1vMD2s8erXtRG1yLI2SrKmpwapVq8Qgb3BwMGbNmoWZM2dizJgxSEtLk3zfP3HiRLvtdYRxChNrH3OdTieZnKs7rwqwp//G2/XkKxqMj62hoQF6vd6qwHTbkcAGOTk52L59uxgYNH5NhISEmARF7cmZbA/jPqpUKsyZM6dL2rVVTznXBg4ciPnz52P+/PlobGxEVlYW0tPTkZSUhOLiYgDCj5GbNm3Cpk2b4OHh4ZB2+4IOBXr/7//+T3yR6vV6jBgxAjNmzICXlxcuXryIQ4cOoaamBs3NzXj33Xfx6quv4tlnn0VDQwMUCoXsi1uv1yMjIwOLFy/G//7v/9qcdJp6DsOMkwbW5koyTrptyFNFREREREQd4+rqinHjxsHNzQ3z58/H1atX8cYbb6CiogIAsH///h4T6G1sbERVVVW76QOMJ3myNCLOEuP8k5cvX5YE/8ypq6uT5OQ013ZeXl67dTU0NIjpSJRKpSR9wAcffCAGeceOHYvly5eL36PlRvkZB2fbjtwbNGiQGOhtL58vAIsTyO3Zs0c8bwIDA7Fu3Tp4e3sjMjJSNtWBpbQajmCc99Xa75AFBQVivmsnJyer02x0hv79+4u3DelA2mP8fdvec78r9OvXT8yF3NLSgqKionZTxej1esnjYHx8+/fvF4O8bV8Tciz9YOFIxn205vUFCO9zrq6uVo/8d4SeeK55enoiPj4e8fHxWLx4Mc6dO4f33nsPGo0GDQ0NSExMbHdyTrquQ2eT8aydU6dOxbZt2yRDtZctW4YlS5YgKSkJhw4dQlRUFMrLy8XAsKurK4YMGQKlUomSkhLxzV+hUKC6uhpPP/00vvnmG6tmAaSexzhXm+HyHWsYT2LQNt9bV2hsbLR54gEDvV6PoKAg/OMf/wAgP6vn8uXLcfDgwQ71cfr06RYvfbrvvvuQnZ3doTYeeeQRLFu2zOz6cePGmVw+Zqt169bh3nvvlV137do1zJw5s0P1A8Cnn36KsWPHyq47ceIEnnzyyQ63cerUKbOzVX/88cd44403OlR/v379cOzYMbPr165di927d3eojQkTJuDf//632fUPP/xwuzM9t2fhwoVYs2aN2fW33Xab+IXBXi+88AL+8Ic/yK6rra11yD8IW7duxc033yy7LikpSZwZuyO+//57qFQq2XX79u3DX//61w7V7+LiIvkMb+vvf/87tm/f3qE2oqKi8NVXX5ldv3TpUhw9erRDbcyaNQtvvfWW2fW//vWvTX50tFZlZaVJmabNBFBarRb33XefeN/Nzsmn3njjDcyePVt2XX5+PubNm2dznW3t3r1bdhKTthNaAcLz//HHH9vcxvnz583mMdy2bRs2bdpkc53GBg4ciEOHDpld/9JLL4mzp9tr6tSp+PDDD03K9Xo9NBoNHnzwQaSkpHSojd///vdYtWqV2fVTpkyxKs+fu7s7Vq1aZTKC8fLly1CpVGYnclKr1ZLAmL2GDh1qMRdfdnZ2hy8ljoyMlL0UX+6y09zcXJsvu1YqlRYn9zGWl5dn12XdHh4eCA8Pl12n1+vFUUsGhomHLGn7um1paZE8Jnq9Hi+//DJycnJw8eJFvPvuu5LzxPjy2EGDBmHWrFniHBk5OTkW+2Dukt/2+i23X1VVleRcDwsLg6+vr2TbxMRE3HHHHWhtbZVto6ysTJzp3s3NTbyCsKioCGVlZZJRqxcvXjR7KfXAgQPRv39/FBcXQ6vV4qOPPpL9rM/Pzxdv//DDD2JfAwMDJd9hjI/h0qVLssGU4uJicfKlY8eOSUYnGl5bly9fFmeoB4A77rjD5HVlaEuv16O5uRm5ubniuqamJvFx02q1iImJEe8nJCTgV7/6Fa5evWr2eT18+LBseU1NDX788Ufx/uTJk8VRgpcuXYJSqTSpMyEhQbxtTdqI9PR0kzJzow8vX76M8PBwMZhYXV2Nc+fOyX4HMO7Xzz//LN4ePny4JNgm9/nYmYy/fyYlJaG5ubndOIhx/3vyADkXFxdEREQgKysLgNDv9uYrSk1NFd8fnJ2dJe+jxp9hcq8JY21fE3LnnqPSXsTExIj/h+Tk5KC6urrdqwz+9re/4fLlywgICMD9998vSXnaWbrrXCstLcXnn38u/qi1ceNGs9tOnDgRY8aMEd83Ovodsa/pUKD34sWL4u1nn33WJB9HYGAgtmzZgrvvvhu1tbXil0alUolnnnkGDz/8sOQLQUpKCt577z389NNPUCgUuHbtGv75z3/i+eef70g3qZsY52ry8vKy+p9j40sJ2pvttjPodLoOBUlbWlrE23L/kGZkZHQ4CNu/f39xdmE5WVlZHf4Sl56ebrGNnJycDl8Gk5aWhmHDhsmuKyws7PDjZGjD3Id3amqqQ9pISUkxm8g+PT29w23069fP4nPhiHPKy8vLYhuZmZkdbiMjI8NiG9nZ2R3+ELd03tbV1Tnk+U5NTTX7fKelpTnsnDI3864j2nB1dbX4XDjivNXr9Z1+Tg0ePLjd90JrRypYIzc31ySw5Yj609LSzAb2L1265LDzVu49W260Vnl5ucWZn81JTk42G+h1xPtUbW1tp78XBgYGIjk52SRAUVdXh+Tk5C57L7Qm0Ovp6Sn7g2trayuamprMjkjUaDRobm62vsNmNDU1iZ+vcgER4/+HOtKG3DGaO25bKZVK2cfJUfUDQgChsbFRts7m5maTx8me56bt5eeA8H5l+FHihx9+wNy5c83u3zb1Qds+GE9kJBdo02q1dvVbq9VKBkU0NTWZjGr75ptvMHXqVKjVatk2PvnkE/H1Gh8fL74HGX6YMw7qtLa2yj7fWq0WjY2NmDVrlvij9xdffIExY8aYXKJsOA/q6+slP7K3nYuk7fO6ZcsW/OlPf5KUGfrY0tIiqcv4R2m1Wi15fbV9/A19N/j8888l51rb1/utt96Kr776ClqtFgkJCcjKykJERITJYwIInxs//fST7DqNRiN5TRifQ3KvlTNnzkjeO42fd0PqEEB6rjU2Npr8D28uQKxWq+Hq6oqbbrpJ7POnn36KmJgYk20NbZeUlEh+PLRmPpnOFB0djdDQUJSUlKCpqQm7d+/G4sWLzW7/888/i5/hCoWi2/vfnttuu00M9H733Xe45ZZbJD+OGFOr1fjiiy/E+xMnTpT8f2F8/rSXeqDta0JuIJZxnKIjk7bFxMSI8w1pNBp89tlnWLJkidntT548KQ5IqKqq6rLUpd11rvn6+iIhIUF8T8vJyRFTz8gxjgWZ+/Ga5HUo27jhn1BXV1eMHj1adpvAwEA88MAD0Ov1qKmpgUKhwOLFi/HEE0+YfBkYM2YMPvzwQ/z+97+HXq+HXq/Hrl27uiynCjmW8T84tozKNp6hmc89EREREZFtjEfL7d69WzK7ubGcnBxJsGvKlCkm2xjnRTSMxOoqJSUleOedd0wGf2g0GuzcuRMnT54EIHzXeOCBBzrU1oIFC8TRd2VlZXj99ddRWlpqsl1xcTHWr18v5ucNDg62GEgHhJGxO3fuNPlRpLa2Fm+//TaKiooACCPlb7/9dsk2xunv9u/fL5sCoa6uDq+99hr+85//SMrbfpcKCAjAjBkzAAgBrXfeeUc2tUROTg5ee+01i0Ev436dPXtWDOIZ02q1+P777/H+++9b7JeB8blmz5Wd99xzjxhjyM/Px8aNG2UHDl28eBHr168Xg+Dh4eFdMpLSEqVSiYULF4r3Dx48iF27dsn+kHby5Els3bpVvD9z5sx2UyF0t6lTp4opGhsbG/H666/L/lheXV2Nt956S1zn6emJRYsWSbax5jXR2NiIbdu2tfuaAKTnXUVFhd3B3rbP4cmTJ/HRRx/J/kj1yy+/4KOPPhLv33zzzV32HHbXuebu7i4JEr/33ntmU1wcPHhQfG9yd3e3eWK7vq5DI3qbm5uhUCgQGBhocbj7bbfdhg8++EC8/9vf/tZivX/5y19w7tw5ZGdno66uDv/5z3/MXtJIPZfxL2e2XOrWnZfMEBERERF1lwMHDti8j0KhQHBwMBYsWCBeGTd79mzs27cPCQkJ0Gq12LRpE4YOHYrhw4cjMDAQra2tuHjxIlJTU8WgxuTJk2UnTw4ODhZTIDz//POIj49HS0sL5s+fL6bWKCsrw7PPPivu8/jjjzskcObs7Iz09HT88Y9/xPjx4xEaGora2lqcP39eDAQqlUo8/PDDVqeJM8fX1xfPPPMMNm7ciJaWFuTn5+OFF15AXFycGFi6cuUKkpKSxO8o7u7uWLp0qcU0Js7OztBqtfj2229x7tw5TJgwAT4+PigpKcG5c+fEEbne3t544oknTL43zZ49W0x9U1paiueeew6TJk1CcHAwlEolqqqqcPLkSTGY5OTkJI5alLs64P7770dGRgYuX76M6upqrFmzBnFxceKl8bm5uUhNTYVer4e7u7tYb9vv+3feeSe+//57tLS0QK1WY926dRg7dizCwsLg7OyMiooKJCUliYFW436ZG4VpfK698847uOmmm0zONUv69++PJ554Au+99x50Oh0SExPx3HPPIT4+HgMHDoRGo8Hly5eRlJQkjgT39/fH0qVLuzRHqjk33XQTcnNzxTR/X3/9NU6cOIH4+HgEBgaioaEBqampkhzEUVFR7cZXegJnZ2csW7YMr7zyCurq6lBSUoKXXnoJo0ePRkREBJycnHDt2jUkJiZKzuUnn3zSZOSvpdeERqNBUVERkpOTxaBue6+JoKAgMb1oeXk53n77bURFRcHNzc3mVILTpk1Dfn6++BwePnwY586dQ3x8PIKDg1FXV4ecnBxJGhiVSmU29Vxn6a5z7Te/+Q0SEhJQV1eHiooKrFq1CqNHj4ZKpYKvry/q6uqQmZkpyR7w29/+VnLVN7XPIe9mxiMw5RhfDuLp6YkhQ4ZY3N7JyQkPPfQQXnzxRQBCzjcGensf41QetvwqZhzcteYD3dGUSqXdeWcMOXoNYmNjTVKaxMTEdHiSuejoaIu/ao0cObLDuYZGjRplsY3IyMgO5+iNjY0120ZQUJBDck1ZaqOurs4hbYwZM8Zsjt7k5OQOt9GvXz+Lz0VMTIxsHjNbtHdORUdHWzU7syUxMTEW24iKiupw6gZL521tba1Dnu/Ro0ebbUOv1zvsnDJ3Kf/Fixc73IaLi4vF52LUqFEdbiMqKqrdc6ptbkpbtXdOjRw50u48/5WVlSajiYYPHy5pT6vVSv6nsTdHr6X3KR8fH4edt3K5SOUurw8KCrJrQpq4uDizqRtiYmI6fBwDBw5s973Q0sRB1hg5ciTi4uJMnkcfHx/ExcUhOjq6w5991rwXWpujV+7/JFdXV3h4eJidFVutVjtk/gvjNuQCJPa+Htq2IXeM5o7bnhy9co+To+oHhOfJ09NTtk53d3eT18xnn31mcxsGv/71ryXH88EHH+DZZ58VR71eunRJNm+5QqHA9OnT8fjjj8v28+677xZHZObm5or5LidOnIhhw4bBycnJ5DhcXFwk55lerzd5v3FycpK0J3fePvnkk/j4449RW1srO1+Bt7c3/vznP5tcou/s7AxnZ2fJc+bq6ir7fDs5OYmpUOLi4rB+/Xq88847uHbtGtRqNX755RfZeQoiIiKwbNkyBAUFmVwObvx4hISE4OGHH8Ybb7yBsrIyfPfddyZ1DR48GCtWrDC5PNnFxQW33noriouL8eWXX4qP4/Hjx03qAIRg/c0334y3334bgDCq1fA8aLVa8fX/l7/8BX//+9+RnZ0NvV6PpKQkJCUlSeoaP348Zs6cifXr14uPqfHjO2jQICxbtgzvvvsumpubodfrkZiYKDsHwNChQ/Hkk09i9erVaG1tRWVlJWpqauDn5weFQiE+T7/61a/wr3/9C4AwUVpBQQGA6+eaudegITev4THw8vLCBx98gMrKSjQ3N+PUqVOy+40ZMwZPPvkkAgICOnTJviMtXrwYQUFB2L17N1paWlBZWWkyKhUQXrezZ8/Gb37zmx4RpLZG//798dprr+G9995Dbm4u9Ho9UlJSZHPfh4aG4n/+539kc5xPmjQJ9913H/bu3WvXa6ItT09PTJ06VXyvNLwePDw8MGPGDJs/yxYvXox+/fphz549aGlpQW1trSSntbExY8ZgyZIlZj+zO1N3nGv+/v548cUX8e6776KkpMTiOeDu7o5FixbhV7/6VYfa7Iu65B3BkMtQoVC0m4za4JZbbhFvdzSAQV2nqqoKc+bMgbu7u+RXKXN52vLz87Fjxw6cOnUKpaWlcHNzk8ysa+4LY2fy9PSUvfTIGhqNRpJ3z8nJyeTN8N133+1I96zS0clorJGamtqp9Q8ZMsTu58Fat99+e6e38ac//ckkJ5ujvfbaa3jttdc6tY1PP/20U+sHIP5z1VkCAwM7/fmeMGFCp7dx//334/777+/UNlasWIEVK1Z0ahttL+PsDB2Z+PKNN97AypUrJWWGwIEx4wnn4uLiHP5lKzIyslPPKbn+Llu2TPyx3VGeeuopPPXUUw6ts62NGzdanNijIxQKBZydnfHll192Sv3GrJ34UqvV4sSJE2hqapKUDxkyBH5+fmb3c3V1lR216WhRUVHtDgaxl9yX7uHDh3fqF+WIiAiLozbtoVAoJLOfO6I+48fG19cXH330EY4fP44DBw4gNTUVRUVFaG5uhqenJwIDAzFq1ChMmzYNU6dONXs5bmxsLMLDw/HJJ58gPz8fTU1N8PHxkVwu3TbP4qBBgyTnmUajMQkkBgQEYOjQobLHYTB8+HC88cYbOHXqFE6cOIHCwkIolUpERETgV7/6FR544AE4OTmZ5M4eMGAAQkNDJc/ZsGHDzH63MHxP9ff3R2xsLO6++258/vnnOHToEPLy8lBbWwudToeQkBDExsZixowZuP322+Ht7Y2CggKTFA/Gx6BQKLBgwQL4+fnh22+/RVpaGqqrq+Ht7Y3Ro0djzpw5mDt3Lqqrq00uZR8yZIjYp/vuuw+bN29GTk4OKisrodPp4OXlhaFDhyI2Nhb33HOPmPfXx8cHdXV1uHbtGvR6PUaPHo2ysjKxfh8fH7z88su4fPkyjhw5gtTUVFRWVsLd3R1Dhw7FbbfdhnvuuUfyv5lx4N7Pzw+DBw9GSEgIBgwYgEOHDiE1NRWlpaVQq9Xw9PQUt5k4cSImTJiAgIAA3HzzzThy5Aj0ej1OnDiBOXPmSI53+vTpcHV1xaFDh1BcXGxyrpmbI2HIkCHIy8sTR+nGxsZi27ZtOHLkCE6fPo1Lly6Jo4hDQkIQERGBadOmieeop6enyQ9s3Rk8vfvuuzF16lTxuSkqKkJDQwNcXFzQv39/xMTEYPr06T0+XYOc4OBgrF27FgkJCTh79ixycnJQU1MDtVoNX19fDBs2DJMmTcJNN91k8TlYsGABxowZg//85z+S14SHhwdCQ0MxbNgw3HLLLRg+fLjJayI/P98kgPz4448jNDQUp0+fRkVFBfR6Pby9vVFbW2vxM9Wc2bNnY9q0afjxxx+RmpqKwsJC1NfXw9nZGYGBgRg+fDhuvvnmLvk8tqQ7zrXBgwdj48aNOHXqFM6fP48rV66gtrZWfJ5CQ0MxduxY3HLLLZLYEFmvS969jH95s/YNMzg4WHwxdnTED3UNtVqNF154ARUVFVCpVJI3xIaGBuj1esk/Pfv378dLL70k/vrq5eWFuro6yaU81v4wQERERETU20yePNnmCf6MUwcAwqhW41nU27rlllskg2gaGxuRkZFhU5vz5s3DvHnzAMj/GDFo0CCHTBwpx8fHB0888QReeukl2fWWJmP65JNPJPfbTrRojpOTE+68806Tx7UjV80NGjQIjz/+uOS+LYH+uLg4PPnkk5Iyf39/DB8+HIBwbOfPn4ezs7OYU9N4fVsKhQK/+tWvcP/996O1tVV2RJ0138uCgoLw4IMPivcjIyPh6+uL8+fPmzze77//PjIzMy1eJTZt2jTcfvvtiIuLkz3XTpw4YdVEqK6urpg1a5ZkcjtD2klrriAbNWoUdu7c2e52Bn/961+t3tYafn5+mD9/PubPn293HY7s05NPPmly/nWkvfj4eMTHx3eoT8OHDzd7fhszfk1Y2ua+++7Dfffd16E+GfPz88M999yDe+65x679rXnMDYKDg206X4119Fyz53FzcXHBbbfd1u25sW9UHZqMrbMZfrFrbyZF6n5NTU149tlnJTOzhoaGire1Wq04YQEAJCQkYNWqVVCr1Zg9ezZ+/PFHJCQk4MyZM5J/qKz9Z4yIiIiIiIjMy83NxXfffYeEhATJdzNzjIP3AwYM6MyuERGRg/ToZC6G0b+GBPXUM2VnZ+P55583yYvXNhdzQUGBmHfqlVdegU6nw5w5c/D222+Lv4z7+/tLctzKzZJKREREREREtqmurhbTcY0bNw4TJ040u21paSkOHTok3pfL805ERD2PQ0b01tfX49SpU5I8TXTja25uxurVqzF//nxcuHABQUFBmD59urhepVJJLvHJzMwEAKSkpCA7OxseHh546aWXTC5/Ms5FePvtt3fqMRAREREREfUFI0eOFCeKTkpKkp0YDhCCvC+++KKYYi82NhZhYWFd1k8iIrKfQ0b0VlZW4pFHHgEgXNIxatQojBo1CjExMYiNjTWZPZRuDOXl5di1axcAYObMmVizZg0+++wzHD16VNxm8uTJ+P777wEAp06dwgMPPCDO5Dht2jSTWb2zsrJQXl4u3n/sscc6+zCIiIiIiIhueN7e3pgzZw6+/vpr6PV6vPLKK/jiiy8wduxYaLVaNDQ0oLCwECkpKdDpdACESfOeeOKJbu45ERFZy2GpGwy5VAsLC1FUVCQG8wBhZkvDNq2trSgtLRXLqPdSKBSYOnUqlixZYvaynxkzZoiB3qNHj6KkpEQcsWu4/OfgwYPYt28f8vPzUVlZKe4bERGBqKioTj4KIiIiIiKivmHhwoXQarX47rvvoNPpkJWVJbmi0ti4ceOwYcMGyUAcIiLq2ToU6J0wYYLFWTMNwd+SkhLx8vzi4mLcdtttCAgIwMiRIzFy5EhER0cjJiYG4eHhds9iSl1PpVJhx44dFreZMWMGQkJCUFpaitbWVqxatQpXrlwBAPj6+mLJkiU4fPiw7L4xMTEO7zMREREREVFfpVQq8eCDD+K2225DSkoKUlJScOnSJTQ0NMDT0xP+/v4YNmwY5syZg3nz5kGtVjPQS0TUi3Qo0GtI5H7x4kVkZGQgLS0NGRkZyMzMRG1trdn99Ho9Kisrcfr0aZw+fVosd3Nzw4gRIxAdHY3o6GhOwtbJqqqqLD5PbTk7O0OlUtnUhqurK5577jmsWrUKgJC+wTDJ3ocffoiysjLcd999CAsLwwcffICmpiZx32+++Qb3338/pkyZYlObRERERETUO+3btw+5ubnd3Y0OUalUyM7OFu/X1dV1Y2/kqVQq3HbbbfD390draytSUlIk64ODg6FUOmRKHyIi6kIOSd0wbNgw8Vc/g4KCAjHwm56ejvT0dNTU1Mjubxj529zcjLS0NKSlpTmiW9SO7du3Y9u2bVZvr1KpcOTIEZvbmT9/PhITE8V8vhqNBgBQVlaGkJAQHD16VJKywd/fH/369UNeXh7eeOMN7N271+Y2iYiIiIiIiIiI+hKH5ehtKywsDGFhYbj77rvFsmvXrklG/mZkZKCioqKzukA9yNq1axEQEIDt27eLs7cCwoyuxiIiIrBp0yZcvHgRS5cuRXp6OgoKCjjLKxERERERERERkQWdFuiVo1KpoFKpcNddd4llJSUlJiN/y8rKurJbfdby5cuxfPnyLmlLoVBg2bJlmDdvHubPn4+WlhYolUo4OTnBz88P0dHRmDVrFubNmwdXV1f069dP3DcnJ4eBXiIiIiIiIiIiIgu6NNArJzQ0FKGhobjzzjvFsrKyMsnI3/T09G7sITlSREQEwsLCkJubi4kTJ+Ljjz+W3c7X11e83dzc3FXdIyIiIiIiIiIi6pW6PdArJzg4GLfddhtuu+227u4KdYLIyEjk5uaiuLjY7DbG+ZyDgoK6oltERERERERERES9FqfRpC43efJkAMDly5eRn58vu8358+cBAC4uLoiKiuqyvhERERH1JoZJjYmIiIjIlOF/pb7yPxMDvdTl7r77bnh4eAAA/v73v5us12q12LZtGwDglltugb+/f1d2j4iIiKjHUyqFf+N1Ol0394SIiIio59LpdNDr9X0mLSgDvdTl/Pz88OyzzwIADh06hBdeeAElJSUAhMn5li5dipSUFLi6unbZZHFEREREvYlCoYBGo0FLS0t3d4WIiIiox2ppaUF1dXWfGdHbI3P00o3v4YcfRllZGf71r39h//792L9/P3x8fFBfXw+9Xg83Nzds3LgRERER3d1VIiIioh6prq4OjY2N0Gq1cHJy6u7uEBEREfUoWq0WDQ0NSEhI6O6udBmO6KVus2LFCuzcuRMzZ85EcHAwmpubMXDgQCxYsABfffUV7r777u7uIhEREVGPVVNTA71ej9ra2u7uChEREVGPY/gf6ezZs93ck67DEb3dZNOmTdiyZQtUKhWOHDli8/55eXn44osvcObMGVy9ehUajQYhISGIjIzE3Llzcdddd8HZueuf3qVLl2Lp0qVWbz9hwgRMmDChE3tEREREdGNqaGhAU1MTlEol3Nzc4OnpibKyMuj1enh6enbZKF+5PMFarRZarbZXttcZ9TuyzraXnur1epvqkdtWp9PZfXzWtC+33tx+co+Vpf7Zsr3cZbu29sOYVqu16rm1po+2Hnfbvrd3bJbqt3ROWFpn62Ov1Wplz19rz2m9Xm/V82LYVo65x8na/Ymo92hsbERpaSlKS0uRlZXV3d3pMgz0doOUlBRxsjF7bN68GVu3boVGo5GUFxQUoKCgAIcPH0ZsbCzefPNNhIeHd7S7RERERNRDbdiwAS+++CIAICQkBG5ubigqKurSPrS2tpqUXbx4EQqFolPaU6vVJmVXrlwRJ6jrjPoLCgo6VL/cY3T58mW76mwb1GpubkZOTo7d+wNAZWUl6urqbO4LIPzg0F77ckGzmpoa2f3kAnwlJSWoqKiQrVtu+7KyMlRXV1vsk4G5/ps7z4zPa6VSadX5L9fH8vJy1NTUiPfbfrcDgMLCQnEuE1v6LrfeUv1yz09tbS1ycnJkz5eamho0NTXJPkZXr16V/ZHJ0Je2ecXlAsZarVb2uBoaGmTzkhcWFpqUNTY2mpQBkL0CQm6Cps76oYqIOp9Wq0Vtba0Y5N2wYUOf+vGGgd4uVlBQgCVLlsh+KFpj3bp1+OSTT8T7zs7OiIqKgoeHB/Ly8lBVVQUASEtLw+LFi/Hll19CpVI5pO9ERERE1LOUl5dj/fr1WLVqFXQ6HXx9feHr69ulfaivrzcJEqpUqk67uqyhoUESIAOAAQMGwNXVtcfW39DQYBJgGjhwoF2B3oqKCklgzM3NDf3797d6f41Gg/LyckmZn58f/P39rdq/7b4eHh5wd3e3uI9OpzPZz9vbG25ubibbtrS0mGzbr18/eHt7y9atVqtNtg8ICICLi4vV/Q8JCTHZrrGx0SRY3L9/f0kA18XFxarz35o+NjU1obKyUrJNSEgIPDw8rOq7Xq83We/p6Yng4GAAQjCzbbA8ODgYnp6eZp+ffv36ya7z8fFBYGAgmpubzfa5rKzMpK/u7u6oqqqSBMednJzg5ORkUubp6Sl7vJ6enrLHUV5eLgnkGM5J4yCuQqGAp6cnGhoaJPu7ubmZBJCdnJwY7CXqRQwj/ltaWtDY2Ai9Xi8Gedu+l9zoGOjtQjk5OXj00UdNPvSsdfDgQUmQd+bMmVi9ejWCgoIACP9A7N27F6+//jqamppQXl6OpUuX4quvvuq0ERVERERE1L3Ky8uxYsUKjBw5Elu3boWzs7Ps6L3OUl9fb/L/7YABAzqtvcbGRpP2goODHRbo7Yz6GxoaTOoMDQ01G4y0pKKiQvL8ent72xzobdsXFxcXqwO9bff19/eXDZQa0+v1Jvvp9Xr069fPZNvW1laTbb28vCwGettu7+7ubvYHD2v7L3ce9OvXTxKcNwR62zv/5R5zNzc3SR+bm5tl+2Yc6G2v723XBwQESAK9bdf7+fmJgV6576iGQG/bdQqFAoGBgWhqapJt08PDwyTw6ufnh5CQEFRXV0sCrS4uLnB1dTUpGzRokOzxKpVK2eMoLy+X/ADi5+cHAJIfbZRKJQICAkwCxT4+PibBehcXF7sHZxFR99Dr9aiurkZCQgLOnj2LrKysPjWS14CB3i6yf/9+rFmzBk1NTXbtr1arsXHjRvH+9OnT8e6775r8o7Fo0SKoVCo88cQT0Gg0SE9PxzfffIO5c+d2+Bj6Enu/HLX91Ze/AhMR9U5yl6pqNBrJ58ON8J4v93mn0+m6NEjYG+j1+h75mBifc3q9HpmZmWhoaMCwYcPM5rLsDO+//z62b98uKUtLS8PAgQM7pb3du3dL/i8GgGPHjjksZdmePXuwYcMGSdnRo0c7VP+nn36Kd999V1J2+vRpu+qcOXOmJFA1adIkHDx40Or9U1NT8eSTT0rKVq5ciZUrV1q1/8SJEyVfnGfNmoXPPvvM4j6VlZUmbf7ud7/D5s2bTbb99ttvTbbdvHkzJk2aJFv3yZMnTbZft24dlixZYrKtXq83mR9kzpw5ksE0Bvv27cO6deskZd9//70k8Dp06FB88MEH+Ne//iXZru35f/r0aZM+vvrqq/if//kf8f7x48exbNkyyTZffPEFxo0bJ95v2/fZs2fj008/BSC8d0+cOFGy/te//jU+/vhjAMLj9Oc//1my/rPPPkN8fDyKi4tN+vfHP/4Rb7/9Nq5evWqy7rHHHsPGjRtx5MgRvPDCC5J1e/fuxdixYzFlyhTJ++Zdd92FXbt24fHHH0dCQoJYHhoaigEDBiApKUksGzBgANLT02XPtbvvvlv2OJYuXSoZlXvHHXcAgGQ+HDc3N9x7773YtWuXZP+pU6fi1KlT4n2FQoGQkBCLaTOIqGfR6/Vobm7uk4Hdthjo7WQlJSV45513sG/fvg7V88MPP4i5h5ydnbF69Wqzl3rdfPPNWLRoEXbu3AkA2LFjBwO9NtDpdEhOTnZIXWlpaQ6ph4iIupZcvr/c3Fx4eXmZ3ac3vudfuHDBpKyoqMhhn4O9VdsvCXV1dT3yMbl27ZpJWX5+fpf3tbi42CQfZlZWlskl3Y5y9epVk/ZycnIcdgXbtWvXTOq/cOFChya3KywslO2zPSMG6+rqJHVVVlba9P6Tk5Nj0perV69aXYfhkliDsrKydvetrq42abOkpER2v/z8fJNtL1++bLaN3Nxck+0LCgpkt9fr9Sbbmuu/3HmWl5eH2NhY8X5mZiaKiopMtsvMzJSc/3l5ee328cqVKybb5OfnS7ax1HedTmdx/eXLl83WX15ebrKuuLgYaWlpsq9vwzq5Pufm5iIoKAgNDQ2SH6PKy8uRlpaGqqoqyT61tbXw8PAwKUtLS5M918wdR0NDgyT9g+HHEONtNRoNSktLTfavrKyUlCkUCtTW1prN80tE1JM5ZsYCkvX+++9j1qxZkiBveHi4yS+i1vj222/F21OnTm13hMSiRYvE2+np6SgoKLC5TSIiIiIiIiIiIuodGOjtRNu3b5f8Crhw4ULs3r0bQ4YMsakevV6PM2fOiPenTZvW7j5RUVFiPiZAeskKERERERERERER3ViYuqELxMbGYuXKlWbzSrXn2rVrkll6jS8XsiQqKkpMVJ+ammpX232RUqnE6NGj7dpXq9VKLq+KjY3t0GV+RETUPeSunBk+fDji4uLE+zfCe37bWcYBITei8XH2RW1TAPj4+PTIx8Q4p6RBeHh4l/dVbkKtmJgYqFSqTmlPbuKxyMhIhx23XP0jRozoUP1yk31FRUUhOjra5rqcnaVf4by8vGzqm1z+wv79+9t9fH5+fu3u23byKwAIDAyU3e/y5csmZWFhYWbbMJ5sy2DgwIGy28sdu7n+y00oGBERIbkfGxsrToxtLCYmBoMGDRLvt53oS66P586dM9lm2LBhFh9b477L5eQ2Xn/+/Hmz9RcVFZms69evH+Li4hAQEGCyLigoCHFxcTh58qTJuoiICMTFxZm8j/r6+iIuLg6enp6SchcXF0neY0OZ3HH7+fkhLCxM9jjk3rfbUigUsscjl5bJnokSiYh6AgZ6O9GkSZOwYMEC3HnnnR3KGXbp0iXJ/cGDB1u1n/E/F1euXLG7/b6o7T/Q9nJycnJYXURE1HXk8uA7OztbfE/vje/5cv1VKpW97jg6m0Kh6JGPidwPC91xHtrzeunJ7XVG/Z3ZZ1vPT0e/7q1p35Y2bT2vbdleLtBrrv9yz1nbMicnJ6ueW2uO357Xs3Hf5QK9xust1W+pf5bW2dJnQ1/kvhfLlZmrw1yb1tRp6Lu12xIR9UY97z/WG8iWLVscUo9hVC4gfDDJ/Wosxzh1g3EdREREREREREREdGNhjt5ewPhyJC8vL9lfIeV4e3vL1kFEREREREREREQ3lj4/oveOO+7AtWvXOlTHsGHDcPDgQQf1yJRx/jx3d3er93N1dRVvt7a2OrRPRERERERERERE1HNwRG8voFarxdvWjuYFpHmNNBqNQ/tEREREREREREREPQcDvb2AcXJ5uST75hgHdzlrKBERERERERER0Y2rz6du2LVrF7RabYfq6OyZjT08PMTbxmkc2mOcrsHNzc2hfSIiIiIiIiIiIqKeo88HeoODg7u7C+3y8/MTbzc0NECv10OhULS7X319vXjb39+/M7pGREREREREREREPQBTN/QCoaGh4m2tVouqqiqr9isrKxNvBwUFObxfRERERERERERE1DMw0NsLDBkyRHK/oKDAqv2uXr0q3h42bJhD+0REREREREREREQ9BwO9vYBKpZKkXsjMzLRqv6ysLPH2yJEjHd0tIiIiIiIiIiIi6iEY6O0lJk+eLN4+depUu9tnZWWhvLxcvD9lypRO6RcRERERERERERF1PwZ6e4kZM2aIt48ePYqSkhKL23/++efi7YiICERFRXVa34iIiIiIiIiIiKh7MdDbS8yYMQMhISEAgNbWVqxatQoajUZ22+PHj2P37t3i/cWLF3dJH4mIiIiIiIiIiKh7MNDbS7i6uuK5554T7586dQqPPfaYZGI2jUaDL7/8EkuXLoVWqwUAREZGYuHChV3eXyIiIiIiIiIiIuo6zt3dAbLe/PnzkZiYiF27dgEQgr0zZsxAVFQUvL29kZeXh8rKSnF7f39/bNq0Cc7OfJqJiIiIiIiIiIhuZIwA9jJr165FQEAAtm/fDrVaDZ1Oh8zMTJPtIiIisGnTJoSHh3dDL4mIiIiIiIiIiKgrMdDbyygUCixbtgzz5s3Dnj17cOLECRQXF6OpqQl+fn6Ijo7GrFmzMG/ePLi6unZ3d4mIiIiIiIiIiKgLMNDbDRYsWIAFCxZ0qI6IiAisXLkSK1eudFCviIiIiIiIiIiIqLdioJfIkWpq4J2QAOh0aIqK6u7eEBERERERERFRH8FAL5GjFBTA6Y47EJWbKxbpw8OB+HjpEhzcjZ0kIiIiIiIiIqIbEQO9RI7y6adQGAV5AUCRnw/k5wN79lwvDAszDf4OGAAoFF3cYSIiIiIiIiIiulEw0EsOVVVVhTlz5sDd3R1Hjhyxef+dO3fi1VdfhUqlsmv/bqXRWLddQYGw7N9/vSw0VBr4HT8eGDyYwV8iIiIiIiIiIrIKA73kMGq1Gi+88AIqKiqgUqls3j8vLw9vvPFGJ/SsizzxBPQ7d0KRnW37viUlwHffCYtBYKDpyN+ICECpdFyfiYiIiIiIiIjohsBALzlEU1MTli9fjp9++smu/VtbW7F8+XI0Nzc7uGddKCQE2sREXP7nP+GZkQHPrCz4XrgARXm5ffVVVgL/+Y+wGPj4AOPGSUf+RkUBTk6OOQYiIiIiIiIiIuqVGOilDsvOzsbzzz+PCxcu2F3H3//+d2RkZMDd3b13B3tdXFA9fTqqp08HAMSNGQPnkhIgIUFYzp8X/hYW2ld/XR3w00/CYuDhAYwdKx35GxMDuLp2/HiIiIiIiIiIiKhXYKCX7Nbc3Iz169djz5490Gq1CAoKwujRo3H06FGb6jl9+jR27NiBQYMG4a677sKOHTs6qcfdQKEABg0SlnnzrpcXFwOJidcDwAkJwKVL9rXR1AScPi0sBq6uwOjR10f9xscL993dO3Q4RERERERERETUMzHQS3YrLy/Hrl27AAAzZ87EmjVr8Nlnn9kU6K2pqcGqVaugUCiwceNGnDYOVt7I+vcH7r5bWAwqK4Xgr2HUb0ICYO8o6dZWoZ7z54Ft24QyJydg1CjpyN+4OMDbu+PHQ0RERERERERE3YqBXrKbQqHA1KlTsWTJEkycONGuOlavXo3i4mI89thjmDBhQt8J9MoJDATuvFNYDGprgaQk6cjfzExAp7O9fq0WSEkRln//WyhTKICRI6XB37FjAX//jh8PERERERERERF1GQZ6yW4qlapDaRb27t2LgwcPIjo6Gs8884wDe3YD8fUFbr1VWAwaG4HkZGnwNy0N0Ghsr1+vFwLHmZnAzp3XyyMipMHf+HggKKjjx0NERERERERERJ2Cgd4+rKqqCrW1tVZv7+zsDJVK5ZC2CwoKsG7dOri6uuLNN9+EKycOs56nJ3DTTcJi0NIiBHuNg7/JyUK5PfLyhGX37utlgwebBn8HDOjYsRARERERERERkUMw0NuHbd++HdsM+VutoFKpcOTIkQ63q9VqsWLFCjQ0NOAvf/kLRowY0eE6+zw3N2HStfHjr5ep1cJIXePgb1IS0NBgXxtXrgjLvn3Xy/r3lwZ+x48HwsKElBBERERERERERNRlGOilLvf+++8jMTERU6ZMwUMPPdTd3blxubgAY8YIy8MPC2VarTDBmyHwa5j4zYaR3RLFxcC33wqLQb9+piN/w8MBpbLDh0RERERERERERPIY6O3Dli9fjuXLl3dpm0lJSXj//ffh6+uLDRs2QMGRn13LyUmYfG3kSODBB4UynQ64eFE68vf8eaCiwr42KiqAH34QFgNf2UqUkgAAtwJJREFUX2DcOOnI38hIoT9ERERERERERNRhDPRSl9q1axc0Gg2am5tx//33m6xvbGwEABQVFWHatGkAgJdeegmzZ8/u0n72KUqlMPlaRASwcKFQptcDV69KR/0mJABFRfa1UVsLHDsmLAaensDYsdKRvzExwkhkIiIiIiIiIiKyCQO91KX0ej0AoLW1FeXl5Wa30+l04vrm5uYu6RsZUSiEXLthYcA991wvLyoCEhOlo38vX7avjcZG4NQpYTFwcwNGjxZG/BqCv7GxgLt7x46HiIiIiIiIiOgGx0AvdakNGzZgw4YNZtdv3rwZ7733nsMmfiMHGzBAWIxHWFdUCMFf45G/ubn21d/SAvzyi7AYODsDo0ZJR/7GxQFeXh07FiIiIiIiIiKiGwgDvUTUMf36Ab/6lbAY1NQASUnSkb9ZWUI+YFtpNEBysrDs2CGUKZVCnmHj4O/YsYCfnyOOiIiIiIiIiIio12Ggl4gcz88PuO02YTFoaABSUqQjf9PThUCurXQ6ICNDWD799Hr58OHS4G98vBCIJiIiIiIiIiK6wTHQS0Rdw8sLuOkmYTFobgbS0qQjf1NShBQO9sjNFZYvv7xeNmSIafC3f/+OHQsRERERERERUQ/DQC8RdR93d2DCBGExUKuFkbrGwd+kJGHyNntcviws/+//XS8bMMA0+BsWJkxCR0RERERERETUCzHQ2002bdqELVu22D3pWF5eHr744gucOXMGV69ehUajQUhICCIjIzF37lzcddddcHbu+qd36dKlWLp0abftTzcAFxdhsrW4OOCPfxTKtFogJ+d64Pf8eWECuNpa+9ooKgIOHBAWg6Ag0+BveDiDv0RERERERETUKzDQ2w1SUlKwbds2u/ffvHkztm7dCk2b3KYFBQUoKCjA4cOHERsbizfffBPh4eEd7S5R93NyAqKjheV3vxPKdDogP1868vf8eaCy0r42ysuBQ4eExcDPDxg3Tgj6jh8v/B0xQugPEREREREREVEPwkBvFysoKMCSJUugVqvt2n/dunX45JNPxPvOzs6IioqCh4cH8vLyUFVVBQBIS0vD4sWL8eWXX0KlUjmk70Q9ilIpTL42fDjwm98IZXo9UFAgDfyePw+UlNjXRk0N8OOPwmLg5QWMHSsd+RsdLYxEJiIiIiIiIiLqJgz0dqGcnBw8+uijKCsrs2v/gwcPSoK8M2fOxOrVqxEUFAQAUKvV2Lt3L15//XU0NTWhvLwcS5cuxVdffQUFLz+nvkChAAYPFpZ7771eXlQkHfmbkABcuWJfGw0NwMmTwmLg5gaMGXN91G98PBAbK5QTEREREREREXUBBnq7yP79+7FmzRo0NTXZtb9arcbGjRvF+9OnT8e7774LpVIplrm4uGDRokVQqVR44oknoNFokJ6ejm+++QZz587t8DH0JW3TYlhLq9VavE/dJDgYmDlTWAzKy6FISgISEqBITBSWvDz76m9pAc6dE5b/0js7A6NGQT9unLggLg7w9OzYsRBRl9DpdCZlGo1G8vlwI7zny33e6XQ6uz8Hb1R6vb5HPiZy55xWq+3yvlrzeulN7XVG/Z3ZZ1vPT0e/7q1p35Y2bT2vbdler9fLlpnrX3tlWq3WqufWmuO35/Vs3He5fhivt1S/pf5ZWmfrY6/RaMw+B22Zq8Ncm9bUaei7tdsSEfVGDPR2spKSErzzzjvYt29fh+r54YcfUFhYCEBI17B69WpJkNfYzTffjEWLFmHnzp0AgB07djDQawOdTofk5GSH1JWWluaQeqiTtAkAO9XVwSM7G55ZWfD871/3S5egsOOfP4VGAyQnQ5GcDPz73wAAvVKJ5qFD0Thy5PUlMhI6b29HHhUROYDhM9dYbm4uvLy8zO7TG9/zL1y4YFJWVFTksM/B3qrtl/66uroe+Zhcu3bNpCw/P7/L+1pRUWFSlpGRgfLy8k5pr7i42KQsJyfHYVewydV/4cIFOHUgR39paalJWXZ2NlpbW22uq20ArKGhwabnPCcnx6SsuLjY7vOmpqam3X2rq6tNyiorK2X3u3jxoklZQUGB2TZyc3NNygoLC2W3lwvomet/UVGRSVleXh5iY2PF+2lpabLneUZGhuR1kSczmKBtH69evWqyzcWLFy0+tsZ9lwtgGq8vKCgwW7/cMVRUVCA5OVn29VBeXo7k5GTZ96C8vDwEBwebPNa1tbVITk5GY2OjpFytVpsMhlKr1bLHXVNTY/Y45N6329Lr9WKqQ2MNDQ0mZfamWiQi6m4M9Hai999/Hx9++KHkwyw8PBwzZszA1q1bbarr22+/FW9PnToVAwcOtLi9caA3PT0dBQUFCAsLs6lNor5G6+OD+gkTUD9hglimbGyER06OJPjrkZ8PhR0j9xQ6HTzy8+GRn49+Rq/p5sGD0RgVdT34GxUFrb+/Iw6JiIiIiIiIiPoIBno70fbt2yVB3oULF2LVqlU4dOiQTfXo9XqcOXNGvD9t2rR294mKikJwcLCYD/jIkSN46KGHbGqXiACdpycaxo5Fw9ixYpmipQUeublC8Pe/AWCPCxegtPOXf/crV+B+5QoCf/hBLGsZOFAa/B05Epp+/Tp6OERERERERER0g2KgtwvExsZi5cqVmDRpkl37X7t2DbW1tZL6rBEVFSUGelNTU+1quy9SKpUYPXq0XftqtVrJpbuxsbEdusyPerA2r2ddayt0GRnX8/0mJgqpG+zMy+1WWAi3wkIEHD0qlukHDhRy/Rry/sbHAyqVMAkdETmU3JUzw4cPR1xcnHj/RnjPb2lpMSkbMGCA5Dj7orYpAHx8fHrkY3Lq1CmTsvDw8C7vaz+ZHyJjYmKgUqk6pb3+/fublEVGRjrsuOXqHzFiRIfqDwkJMSmLiopCdHS0zXU5O0u/wnl5ednUN7n0Bf3797f7+Pz8/NrdVy69R2BgoOx+ly9fNikLCwsz20ZNTY1J2cCBA2W3lzt2c/0fMGCASVlERITkfmxsrDgxtrGYmBgMGjRIvC+XRqBtH88ZzfVgMGzYMIuPrXHf5VI3GK8/f/682frl0lT069cPcXFxCAgIMFkXFBSEuLg4nDSenPi/IiIiEBcXZ/I+6uvri7i4OHi2ma/CxcUFHh4eJmVyx+3n5yd7leqwYcNk37fbUigUsscjl5bJxcXFpIyIqDdgoLcTTZo0CQsWLMCdd97ZoZxhly5dktwfPHiwVfsZ/3Nx5coVu9vvi9r+A20vJycnh9VFPZyzMzBhgrAYaLVAdjaQkCAs588DiYmAzD/71lAUFkJRWAgcOHC9MDgYiI+XLsOGMfhL1EFyefCdnZ0tvqf3xvd8uf4qlcpedxydTaFQ9MjHRO6Hhe44D+15vfTk9jqj/s7ss63np6Nf99a0b0ubtp7XtmwvF+g113+556xtmZOTk1XPrTXHb8/r2bjvcoFe4/WW6rfUP0vrbOmzoS9y34vlyszVYa5Na+o09N3abYmIeqOe9x/rDWTLli0OqccwKhcQPpjkfjWWExwcLFsHEXURJycgJkZYfv97oUynA/Lyrgd/DUtlpX1tlJUB338vLAb+/sC4cULQd/x44e+IEYCZCRyJiIiIiIiIqPdjoLcXML4cycvLS/ZXSDne3t6ydRBRN1IqhaDriBHAokVCmV4PXLkiHfl7/jwgM0O3VaqrgaNHhcXA2xsYO1Y68jc6WhiJTERERERERES9Xp//hn/HHXfg2rVrHapj2LBhOHjwoIN6ZMo4f567u7vV+7m6uoq3W1tbHdonInIghQIYMkRY5s8XyvR6oKjIdORvQYF9bdTXAydOCIuBuzswZsz1Ub/x8cCoUYCbW8ePiYiIiIiIiIi6VJ8P9PYGarVavG3taF5AmtdIo9E4tE9E1MkUCmDgQGH59a+vl5eVmQZ/8/Pta6O5GTh7VlgMXFyA2FjpyN8xY4A2E2cQERERERERUc/CQG8vYJxcXi7JvjnGwV3OGkp0gwgOBmbOFBaDqiogKUka/M3OFkYF20qtFiaMS0wEtm8XypRKIc2D8cjfsWMBmdmMiYiIiIiIiKh79PlA765du6DVajtUR2fPbOzh4SHeNk7j0B7jdA1uvBSb6MYVEABMny4sBnV1QHKyNPibkQHY836n0wHp6cLy8cdCmUIh5Bk2Hvk7bhwQGOiYYyIiIiIiIiIim/T5QG9wcHB3d6Fdfn5+4u2Ghgbo9XooFIp296uvrxdv+/v7d0bXiKin8vEBbr5ZWAyamoDUVGnwNzUVsCeHt14P5OQIyxdfXC8fNkwa/I2PB0JCOn48RERERERERGRRnw/09gahoaHiba1Wi6qqKgRaMWqurKxMvB0UFNQpfSOiXsTDA5g0SVgMWluFkbrGwd/kZCEobI+LF4Xlq6+ul6lU14O+hvQPAwcKo4KJiIiIiIiIyCEY6O0FhgwZIrlfUFBgVaD36tWr4u1hw4Y5vF9EdANwdRVSLowbBzzyiFCm0Qg5fg2B3/PnhZy9RlcJ2OTaNWH5v/+7XhYSYjryd+hQBn+JiIiIiIiI7MRAby+gUqng7++P6upqAEBmZibi4uLa3S8rK0u8PXLkyM7qHhHdaJydgVGjhGXxYqFMpwNyc6UjfxMShIng7FFaChw8KCwG/v6mI3+HDxcmgyMiIiIiIiIiixjo7SUmT56M77//HgBw6tQpPPDAAxa3z8rKQnl5uXh/ypQpndo/IrrBKZVAZKSwGN5/9Hrg8mVhxK/x6F+jtDE2qa4GjhwRFgNvb2G0sfHI35EjhWA0EREREREREYn4TbmXmDFjhhjoPXr0KEpKSiS5e9v6/PPPxdsRERGIiorq9D4SUR+jUAjpFoYOBe67TyjT64HCQtORv0apZGxSXw8cPy4sBu7uQFzc9VG/8fHC6GNX144eEREREREREVGvxUBvLzFjxgyEhISgtLQUra2tWLVqFbZt2wZnmVFtx48fx+7du8X7iw2XXhMRdTaFQph8TaUC5s69Xl5aahr8vXjRvjaam4EzZ4TFwMUFGD1aOvJ3zBhhAjoiIiIiIiKiPoCB3l7C1dUVzz33HFatWgVASN/w2GOP4dVXX0VYWBgAQKPRYO/evVi/fj20Wi0AIDIyEgsXLuy2fhMRARAmX5s1S1gMqqqESd6Mg785OcKoYFup1dfrMHByAqKjpSN/4+IAH5+OHw8RERERERFRD8NAby8yf/58JCYmYteuXQCEYO+MGTMQFRUFb29v5OXlobKyUtze398fmzZtkh31S0TU7QICgDvuEBaDujogKUka/M3IECaDs5VWC6SlCcv//q9QplAIeYaNR/7GxwsTwRERERERERH1YowA9jJr165FQEAAtm/fDrVaDZ1Oh8zMTJPtIiIisGnTJoSHh3dDL4mI7OTjA9xyi7AYNDYCqanS4G9qqjCK11Z6PZCdLSxGucwRHm4a/A0O7vjxEBEREREREXURBnp7GYVCgWXLlmHevHnYs2cPTpw4geLiYjQ1NcHPzw/R0dGYNWsW5s2bB1dOTERENwJPT2DyZGExaGkB0tOlwd/kZCF/rz3y84Vlz57rZYMGXQ/6GtI/DBggjAomIiIiIiIi6mEY6O0GCxYswIIFCzpUR0REBFauXImVK1c6qFdERL2Im9v1IKyBRgNkZQlB3/Pnhb+JiUBDg31tXL0qLF9/fb0sNNR05O+QIQz+EhERERERUbdjoJeIiG4Mzs5AbKyw/OEPQplOB1y4IB35m5AAVFfb10ZJCfDdd8JiEBBgOvI3IgJQKjt8SERERERERETWYqCXiIhuXEolEBUlLL/9rVCm1wOXLl0f9WsYAVxebl8bVVXA4cPCYuDjA4wbJx35GxUlBKOJiIiIiIiIOgG/cRIRUd+iUADDhgnL/fcLZXo9cO2a6cjfa9fsa6OuDvjpJ2Ex8PAA4uKkI39jYgDmUyciIiIiIiIHYKCXHKqqqgpz5syBu7s7jhw5YnHb+vp67Ny5Ez/88AMuXryIlpYW9OvXD+PHj8dDDz2EuLi4Luo1EfV5CoUw+dqgQcC8edfLS0pMg7+XLtnXRlMT8PPPwmLg6gqMHi0d+Tt6tBAUJiIiIiIiIrIBA73kMGq1Gi+88AIqKiqgUqksbnv58mX86U9/wtWrVwEArq6ucHFxQXFxMQ4cOIDvvvsOK1aswJ/+9Keu6DoRkbzQUODuu4XFoLJSmOTNOPibk2Nf/a2tQtqI8+evlzk5AaNGSYO/cXGAt3fHjoWIiIiIiIhuaAz0kkM0NTVh+fLl+Mn4MmUzNBoNlixZgqtXryI0NBSvvfYabr75ZiiVSly6dAkbN27E0aNHsXHjRoSHh+P222/v/AMgIrJWYCBw553CYlBbCyQlSYO/mZnCZHC20mqBlBRh+fe/hTKFQsjxaxz8HTcO8Pd3wAERERERERHRjYCBXuqw7OxsPP/887hw4YJV2x86dAi5ublQKBTYtGkTxo0bJ64bNmwY/vnPf+J3v/sdEhMT8d577zHQS0Q9n68vcOutwmLQ2CgEaw2TvSUkAGlpgEZje/16PZCVJSyffXa9PCJCGvyNjweCgjp+PERERERERNTrMNBLdmtubsb69euxZ88eaLVaBAUFYfTo0Th69KjF/Y4dOwYAiI+PlwR5DZycnHD//fcjMTERaWlpaGpqggfzVRJRb+PpCUyZIiwGLS1CsNd45G9yslBuj7w8Ydm9+3pZWJg08Dt+PDBgQMeOhYiIiIiIiHo8BnrJbuXl5di1axcAYObMmVizZg0+++yzdgO9MTExaGpqQmxsrNltgoODAQB6vR719fUM9BLRjcHNTQi8jh9/vUytFkbqGo/8TUoCGhrsa6OgQFj2779e1r+/6cjfwYOFlBBERERERER0Q2Cgl+ymUCgwdepULFmyBBMnTrR6v4ceeggPPfSQxW3O/3diIjc3NwQEBHSon0REPZqLCzB6tLAY3hu1WuDCBenI34QEoKbGvjaKi4FvvxUWg8BA6ajf+HggPBxQKjt+TERERERERNTlGOglu6lUKuzYscPh9VZWVoojhW+55RY4O/M0JaI+xskJGDlSWB58UCjT64GLF6UjfxMSgPJy+9qorAT+8x9hMfD1FSZ5Mx75GxUl9IeIiIiIiIh6NEbQ+rCqqirU1tZavb2zszNUKlUn9gjQaDRYsWIFqquroVQq8dRTT3Vqe0REvYZCIYy4DQ8H7r9fKNPrgatXTUf+Fhba10ZtLXDsmLAYeHoCcXHXR/3GxwMxMcJIZCIiIiIiIuoxGOjtw7Zv345t27ZZvb1KpcKRI0c6rT9arRYrV67EiRMnAABPP/20xTy+RER9nkIhTL4WFgbcc8/18uJi0+Dv5cv2tdHYCJw+LSwGrq7AmDHSkb+jRwPu7h07HiIiIiIiIrIbA73UI7S0tOC5557Df/57CfG8efPw9NNPd3OviIh6qf79gdmzhcWgogJITLwe+D1/HsjNta/+1lbgl1+ExcDZGRg1Shr8jYsDvLw6dixERERERERkFQZ6+7Dly5dj+fLl3d0NVFZWYsmSJUhMTAQA3HPPPXj99deh4GzwRESO068f8KtfCYtBTQ2QlCQd+ZuVBeh0ttev0QDJycJiyN+uUAh5ho2Dv+PGAX5+DjkkIiIiIiIiuo6BXupWly5dwmOPPYYrV64AAP7whz/gxRdfZJCXiKgr+PkBt90mLAYNDUBKinTkb3q6EMi1lV4PZGYKy86d18uHDzcN/gYFdfx4iIiIiIiI+jAGeqnbpKWl4dFHH0VVVRUUCgVWrFiBRx55pLu7RUTUt3l5ATfdJCwGzc1AWpp05G9KCtDSYl8bubnC8uWX18sGD5YGf8ePF1JQEBERERERkVUY6KVuceHCBTzyyCOorq6Gi4sLNmzYgF//+tfd3S0iIpLj7g5MmCAsBmq1MFLXMOo3IUFIA9HYaF8bV64Iy75918sGDJAGf+PjhYnneNUHERERERGRCQZ6qcs1Njbif/7nf1BdXQ1XV1f885//xK233trd3SIiIlu4uABjxgjLww8LZVotkJMjHfmbkADU1trXRlERcOCAsBj06ycd9RsfD4SHM/hLRERERER9HgO91OW2bt2KS5cuAQBefPFFBnmJiG4UTk5AdLSw/O53QplOB1y8eH3Ur2GpqLCvjYoK4IcfhMXAz0/I82s88jcyUugPERERERFRH8FAL3Wp1tZWfPbZZ+L99957D++9957Fffbs2YMBAwZ0dteIiKgzKJVARISw/OY3QpleDxQUSAO/588DxcX2tVFTA/z4o7AYeHkBY8dKg7/R0cJIZCIiIiIiohsQA73UpXJyclBXVyfeLy8vb3cfrVbbmV0iIqKuplAIk68NHgzce+/18qIi07QPV67Y10ZDA3DypLAYuLkJqSaMg7+xsUIOYiIiIiIiol6Ogd5usmnTJmzZsgUqlQpHjhyxef+8vDx88cUXOHPmDK5evQqNRoOQkBBERkZi7ty5uOuuu+Ds3PVP79KlS7F06VKz62NjY5Gdnd2FPSIiol5jwABgzhxhMSgvBxITpSN/8/Lsq7+lBTh3TlgMnJ2FYK9x8HfMmI4dBxERERERUTdgoLcbpKSkYNu2bXbvv3nzZmzduhUajUZSXlBQgIKCAhw+fBixsbF48803ER4e3tHuEhERdZ+gIOCuu4TFoLoaSEqSjvzNyhJSQthKoxHqSkoCPvpIKFMqhXaJiIiIiIh6EQZ6u1hBQQGWLFkCtVpt1/7r1q3DJ598It53dnZGVFQUPDw8kJeXh6qqKgBAWloaFi9ejC+//BIqlcohfSciIuoR/P2B228XFoP6eiAlRTryNz0dsCf9j04HlJaali9aBEybdn3k7+jRdh4AERERERGR4zHQ24VycnLw6KOPoqyszK79Dx48KAnyzpw5E6tXr0bQf0cdqdVq7N27F6+//jqamppQXl6OpUuX4quvvoJCoXDIMRAREfVI3t7A1KnCYtDcDKSmSkf+pqQAra32tXH1KrBrl7BA+CcqdsAANI4cicaoKChmzwYmTQJCQzt+PERERERERDZioLeL7N+/H2vWrEFTU5Nd+6vVamzcuFG8P336dLz77rtQKpVimYuLCxYtWgSVSoUnnngCGo0G6enp+OabbzB37twOH0Nf0jYthrXaThzHieSIiLqRszMwbpywPPKIUKZWAxkZUCQmQpGQAEViIpCcDIWdn89uRUVwKypCwNGjwNatAAD9wIHQ/7dd/X8XDBokTELXw8h93ul0Ors/B29Uer2+Rz4mcv9naLXaLu+rTqczKdNoNJ3Wj85urzPq78w+23p+Ovp1b037trRp63lty/Z6mRQ/5vov95y1LdNqtVY9t9Ycvz2vZ+O+y/XDeL2l+i31z9I6Wx97jUZj9jloy1wd5tq0pk5D363dloioN2Kgt5OVlJTgnXfewb59+zpUzw8//IDCwkIAQrqG1atXS4K8xm6++WYsWrQIO3fuBADs2LGDgV4b6HQ6JCcnO6SutLQ0h9RDREQOZggAA4BWC/fLl+GZlSUuutRUIShsB0VhIRSFhcCBA2KZ2t9fGPkbHY3GqCg0jhyJVpWq24O/Fy5cMCkrKipy2Odgb9X2S39dXV2PfEyuXbtmUpafn9/lfa2oqDApy8jIQHl5eae0V1xcbFKWk5PjsCvY5Oq/cOECnJyc7K6zVCYdTHZ2NlrtuMKgbQCsoaHBpuc8JyfHpKy4uNju86ampqbdfaurq03KKisrZfe7ePGiSVlBQYHZNnJzc03KCgsLZbeXC+iZ6///Z+/O46Oqzj+OfycbZIGwJBAIWxJIWAJhExBxATHgBgVL0VrEDVEUt6LwU4tarUutC4qAUkpbpYggglVEUVChKCpLIEBYwhaQLRD2QJLJ/P64ZshkZpLJZJZM8nm/XvfFveeee84zYTJJnjnz3IMHD9q1ZWdnKzU11XqcmZnp8Hm+ZcsWm++LbAc3ES0b4/79++367N69u9yvbenYHSUwS5/PyclxOr6jx3Ds2DFlZGQ4/H7Izc1VRkaGw9eg7OxsxcbG2n2tT506pYyMDJ07d86mvbCw0G4xVGFhocPHffLkSaePw9HrdlkWi8Va6rC0s2fP2rW5W2oRAPyNRK8XTZ8+Xe+++67ND7PExESlp6drxq+rfly1ZMkS637fvn3VvHnzcvuXTvRu3rxZOTk5atmyZaXmBACgVggO1vnERJ1PTNTx666TJP3yz39KU6fadCuKjJQc/DHoitATJxT9ww+K/uGHi+NFRRnJ31LbhZYtpSokkwAAAADUXiR6vWjWrFk2Sd4RI0Zo0qRJ+vLLLys1jsVi0Zo1a6zHl112WYXXpKSkKDY21loPePny5Ro9enSl5gUAoNZysDJw55Qpati0qc3K34isLIU6WM3oipAzZ1T/559V/+efrW3m8HDrit+S7XybNkYZCgAAAAAoB381+EBqaqomTpyoXr16uXX9gQMHdOrUKZvxXJGSkmJN9G7atMmtuWujoKAgdXbzTupms9mmXENqamqVPuYHAPAPR5+caduunTr07SsNHizJeM3fmJmp0KNHFZGVpTbHjysoI8Oo/+vgo6WuCM7PV70NG1RvwwZrm6VuXalzZ2u9X0u3blJqqlSnjltzlHbhwgW7tmbNmiktLa3KYweysiUA6tWrVy2/JqtXr7ZrS0xM9HmsjRs3tmvr2LGj4uPjvTJfXFycXVtycrLHHrej8du1a1el8Zs0aWLXlpKSog4dOlR6rJAyb/xERkZWKjZH5Qvi4uLcfnzR0dEVXuuovEejRo0cXrd37167tpYtWzqd4+TJk3ZtzZs3d9jf0WN3Fn+zZs3s2pKSkmyOU1NTrTfGLq1jx45q0aKF9dhRGYGyMf700092fRISEsr92paO3VHphtLn165d63R8R2UqGjdurLS0NDVs2NDuXExMjNLS0vS///3P7lxSUpLS0tLsXkfr16+vtLQ0RURE2LSHhoYqPDzcrs3R446Ojnb4KdWEhASHr9tlmUwmh48nMjLSri00NNSuDQACAYleL+rVq5eGDx+uq6++uko1w/bs2WNz3KpVK5euK/3Lxb59+9yevzYq+wu0u4KDgz02FgDAdxzVwQ8JCXH4ml4YG6uTsbFSWpqCSs4fPSqtXy+tW2dsa9dKu3a5FYvp/Hnpp59kKp0ECA01kr3du1/cunSRyvwBXRFHjycoKIifXWWYTKZq+TVx9GayP373qMz3SyDM543xvRlzZZ+fnv6+d2X+ysxZ2ed1Zfo7SvQ6i9/R/1nZtuDgYJf+b115/O58P5eO3VGit/T58sYvL77yzlUm5pJYHP1d7KjN2RjO5nRlzJLYXe0LAIGo+v3GWoNMmzbNI+OUrMqVjB9Mjt41diQ2NtbhGAAAwMtiY6X0dGMrkZcnbdhwMfm7bp20bZvkzt2+CwuNRPL69dKsWUZbUJDUoYNt8rdrV6l+fU88IgAAAADVHIneAFD640iRkZEO34V0JCoqyuEYAADADxo2lPr3N7YSZ85IGRm2K3+3bJHM5sqPX1wsbd5sbO+9d7E9Odk2+dutm9SoUdUfDwAAAIBqpdYnegcMGKADBw5UaYyEhAQtXbrUQxHZK10/r27dui5fFxYWZt0vKCjwaEwAAMADoqKkyy4zthL5+dKmTbYrfzdtktz9Wb59u7F98MHFtjZtjKSvg7qhAAAAAAJTrU/0BoLCwkLrvqureSXbukZFRUUejQkAAHhJeLjUq5exlSgoMFb6rl17MfmbkWEkhd2xZ4+xOfL11xfr/8bHS9QuBAAAgB89+uijOnjwoObOnevvUKo9Er0BoHRxeUdF9p0pndzlrqEAAASwsDCj3m7XrtJddxltRUVGjd/SK3/Xr5cc3N29UpYvNzbJqDXcvbvUo8fF0g9t2pD8BQAAgNcVFBSouLhYderU0a233urvcAJCrU/0zps3T2Z36uCV4u07G4eHh1v3S5dxqEjpcg116tTxaEwAAMDPQkKkTp2MbdQoo624WNq50zb5u26dcSM4dxw9Kn3xhbGVaNDAtuZv9+5Su3bGzeAAAAAAD/j973/PokU31PpEb2xsrL9DqFB0dLR1/+zZs7JYLDK5sJLmzJkz1v0GDRp4IzQAAFCdBAUZN19LTpZuvtlos1ikvXttE79r10pHjrg3x4kTtqt+JaPWcNeutit/27c3ktEAAABAJVXmHlW4iN++A0DTpk2t+2azWXl5eWrkwt2yjx49at2PiYnxSmwAAKCaM5mMcgtt2kjDhxttFov0yy/GDdomTKj6HGfOSKtWGVuJunWltDTblb+dOkl8yggAAAC/at68udLT0/XPf/7Tpj05Odkj469atUrvvvuu/v3vf3tkvOqORG8AaN26tc1xTk6OS4ne/fv3W/cTEhI8HhcAAAhQJpNxo7XLL7c/d/vtxorgktW/u3a5N8f589KaNcZWIjRU6tzZNvnbpYtxAzoAAADUKpMmTdKYMWOUl5enf/3rX7JYLJKMEqkjRoyw6dulSxf95z//qdT4TZo00WWXXabu3burRYsW+vnnn3X55ZfrjTfe0LFjxzz2OKoTEr0BID4+Xg0aNNCJEyckSVu3blVaWlqF12VlZVn327dv763wAABATdKunfR//3fxOC/PuMlb6dIP27cbq4Irq7Dw4hglgoOlDh1sk79du0r16lX5oQAAAKD6evHFF637c+fO1VtvvaWQkBA99thjSkxMtOk7YsQIPf3005W6d1VERIQk495Xf/nLX6ztU6dOden64OBgl+eqLkj0BojevXvri19vhLJ69WrdXFJ3z4msrCzl5uZaj/v06ePV+AAAQA3VsKE0YICxlTh9WsrIMGr9liRut2wxbgZXWWazlJlpbCUfqTOZjFXFpZO/3boZsQAAAKDGGTlypEaOHOn0fGJiopYsWaLXX39dn376qUtjVrWMaZ0ALDlGojdApKenWxO9K1as0OHDh21q95Y1d+5c635SUpJSUlK8HiMAAKgl6tWT+vUzthLnzkmbNtmu/N20yVjFW1kWi7Rtm7GV+p1GCQkXE789ehjJ3yZNqv54AAAAUO0NGDBAAwYM0Pnz5zVmzBi9//77bo1z22236ZVXXvFwdNVDkL8DgGvS09PV5Nc/ZAoKCjRp0iQVFRU57Lty5UrNnz/fejxq1CifxAgAAGqxiAipd2/pvvukmTON1b5nzhgJ35kzjfbevY2btLlr927po4+kJ5+UBg+WmjaVWraUhg6Vnn1W+u9/pQMH3CsrAQAAAK9p1qyZzfEDDzzg9lh169bVe++9p6KiIi1dulS///3vHfYLDQ112P6HP/whIFfruoIVvQEiLCxMjz76qCZNmiTJKN8wZswY/fnPf1bLli0lSUVFRVq4cKFeeOEFmc1mScZdCssWsAYAAPCJsDBj1W23bhfbioqkrCzblb/r1xtJYXfs329sn3xysa1Jk4urfktWALdubZSEAAAAgE999NFHio2N1e233669e/fq6quv1p///OcqjxscHKxBgwZp0KBBGjVqlK699lqb83fddZfD67p06aLly5frX//6l+rXr69x48bZ1QQOVCR6A8iwYcO0fv16zZs3T5KR7E1PT1dKSoqioqKUnZ2t48ePW/s3aNBAU6ZMUUgI/80AAKCaCAmRUlON7bbbjLbiYmnHDtvk77p10q83oq20I0ekpUuNrUTDhrY1f7t3l9q2lYL4gBsAAIC33HnnnRo6dKiCg4OVnZ2tCxcueGU17ZVXXqlevXrpxx9/lGQsfPzNb37jtH/fvn3Vt29fj8fhb2QAA8yzzz6rhg0batasWSosLFRxcbG2bt1q1y8pKUlTpkypMe9IAACAGiwoSEpJMbZbbjHaLBZpzx7bxO/atdLRo+7NkZcnff21sZWoV0/q2tV25S/3NQAAAPCIgwcPKi4uzqbNWyUTwsPDtXz5cn355Ze6cOGCBg8erAYNGrh8/bXXXqvPP//cps1kMskSYCXBSPQGGJPJpEceeURDhgzRggULtGrVKh06dEj5+fmKjo5Whw4dNHjwYA0ZMkRhYWH+DhcAAMA9JpNx87WEBOmmm4w2i8WowVt25e+BA+7Ncfq0tHKlsZUID5cKCmz7FRe7Nz4AAEAtZTKZrPea8pXIyEgNGzbMrWvvvvtum0TvVVddRaIXrhk+fLiGDx9epTGSkpI0ceJETZw40UNRAQAAVHMmk9SihbENGXKx/fBho85vyarfdeuM1cDuyM+3b/vqK6lnT9uyD507G0lhAAAA2HnqqacUFEAlsoYPH67Fixfr448/Vps2bfTwww9r165d/g6r0kj0AgAAILA1bSoNHmxsJY4fv5j8Ldm2b3dvfIvFSCCvXXuxLThY6tjxYuK3Rw8pLU2KiqraYwEAAAhwS5cuVXp6ur/DqLQhQ4ZoSOnFBAGIRC8AAABqnkaNpKuvNrYSp05JGRkXV/2uWydt3epeaQazWdq0ydj+9S+jzWQyavyWXvnbrZtUifpwAAAAgWz27NkaNGiQv8OotUj0wqPy8vJ0/fXXq27dulq+fHmF/ZctW6b3339fmzdvVkFBgZo1a6aBAwfq7rvvVsOGDX0QMQAAqDXq15cuv9zYSpw7J23caLvyd/1698a3WKSsLGP7z38uticm2q787dZNio2t2mMBAACohqKjo/0dQq1GohceU1hYqMcff1zHjh1TfHx8hf1ff/11zZgxQ5IUGhqqsLAw7dmzR3//+9/1ySef6L333lObNm28HDUAAKjVIiKkPn2MrUTdutKFCxePo6Ol8+dt2ypj1y5jW7DgYlvLlrYrf7t3l5o1M1YFAwAABKCgoCBdXvoNdfgciV54RH5+viZMmKDvvvvOpf5LlizRjBkzZDKZ9Mc//lGjRo1S3bp1tXHjRk2cOFG7du3SAw88oMWLFys4ONjL0QMAAJSjTx/pv/81VuqWXfl79qx7Y+bkGNvixRfbmja9uOq3JPnbqhXJXwAAUO3Fx8frr3/9q2JiYvwdSq1GohdVtm3bNv3xj3/Ujh07XOpfXFysN998U5J02223acyYMdZzXbp00ezZs3Xttddqx44dWrRokW666SavxA0AAOCy0FCpc2djGz3aaDObpR07bJO/69ZJJ0+6N8fhw9LnnxtbiUaN7Ff+JiVJAXQXawAAULNFRUUpJydHJt6c9jsSvXDb+fPn9cILL2jBggUym82KiYlR586dtWLFinKv++GHH7R7925J0h133GF3Pi4uTkOHDtXcuXNJ9AIAgOorOFhq397Yfv97o81ikXbvvpj0LbnxW26ue3McPy599ZWxlahXz6jzG8Kv8gAAwP/OnDlDkreaYCkA3Jabm6t58+bJbDZr0KBB+uSTT9SpU6cKr1uzZo0kKSEhQc2aNXPYp2/fvpKktWvX6ty5c54LGgAAwJtMJuPma7/9rfTCC9IXX0hHjkj79kmLFkmTJ0s33CA1b+7+HKdPS999Jzm68e3UqdI//iFt2CAVFro/BwAAgIsWLlzo7xDwK5YBwG0mk0l9+/bVuHHjdMkll7h8XUmJh6SkJKd9WrduLUkym83atWuXUlNTqxYsAACAv5hMxs3XWraUhg692H7okFHnt/TK3717qzbXf/9rbJIUFiZ16WJb9qFzZ+NmcwAAAFUUHBysO+64Q0OGDPF3KPgViV64LT4+XrNnz670dYcPH5ZklGhwpmnTptb9o0ePVj44AACA6i4uTrr2WmMrcezYxeRvyebifRDsFBRIP/9sbCWCg6VOnS4mfnv0kNLSpMjIqj0WAABQ6+Tl5alevXr+DgOlkOitxfLy8nTq1CmX+4eEhCg+Pr7K8545c0aSFB4e7rRP3VIrTUr6AwAA1HiNG0sDBxpbiVOnjFIMpVf+ZmVJxcWVH99sljZuNLZ//tNoM5mMOsOlV/526yZFR3viEQEAgBqKJG/1Q6K3Fps1a5Zmzpzpcv/4+Hgtd1QLrpKKiookSaGhoU77hIWFWffNZnOV5wQAAAhY9etLV1xhbCXOnpWeflp69dWqj2+xSFu3GtucORfbk5JsV/526ybFxFR9PgAAAHgFiV74XMlq3cJybhBSUFBg3S8vIQwAAFArRUYaN30ra+pUKTT0YtmHjRulCxfcmyM729jmz7/Y1qqV7crf7t3dGxsAAAS0sWPH+jsEOECitxabMGGCJkyY4PN5I3+tAXf+/HmnffLz8637UVFRXo8JAACgRmjXTkpPv3hcWGis1C1d83f9euncOffG37fP2BYtutgWEWHfz2Jxb3wAAFDthYeH66677vJ3GHCARC98Li4uThkZGTpy5IjTPiU3bJNsb8wGAACASggNlbp0MbbbbzfazGZp+3bb5O+6dUYtYHc4Shp37ixdcontyt+kJKMeMAAACFjPPvusbrrpJnXq1MnfocABEr3wueTkZH3xxRfavXu30z579+6VZNwArk2bNj6KDAAAoBYIDpY6dDC2W2812oqLpd27bRO/a9dKx465N8eJE9KyZcZWIjraqPNbOvmbnGzEAwAAAsJTTz2loKAgf4cBJ0j0wud69+6tt956Szt27FBubq5iHNzUY/Xq1ZKktLQ0a01fAAAAeElQkLHiNilJGjHCaLNYpJwc+5W/Bw+6N8fJk9I33xhbiYgIqWtX2+Rvx47GSmQAAFCt3HzzzSR5qzkSvfC5Hj16KC4uTocOHdK7776rJ554wub8wYMH9cknn0iSbrnlFn+ECAAAAJPJuPlaq1bSb35zsf3gQaPOb8mq36++ks6ccW+Oc+ek1auNrUSdOkapidLJ39RUiTf/AQDwi86dO2vo0KGaOHGiv0NBBUj0wueCgoL06KOP6vHHH9e//vUv1atXT3fddZciIiK0ceNGPf744zp37pySk5N13XXX+TtcAAAAlNasmbGV/J52//3StGm2fdq0kfbscW/8Cxekn34ythIhIVKnTkbS99Ah98YFAABuWbFihRo3buzvMOACEr3wi6FDh2rjxo16//33NXXqVM2YMUN169bVmV9XgzRp0kTvvPOOgqnZBgAAEHhWrZKioqQNG4xVvyVlH7KyjJIQlVVUJGVkGJsj779vlIbo2tWoBQwAAFALkeiF3/zpT3/SpZdeqjlz5mjz5s06d+6cWrRoof79++u+++7j3SIAAIBAFh0tXXmlsZU4c0bauNG25u/mzUYitypefdXYJKlt24slH3r0MG4Ax++VAAC4rVGjRv4OAS4i0esnU6ZM0bRp0xQfH6/ly5dX+vrs7Gx98MEHWrNmjfbv36+ioiI1adJEycnJuvHGG3XNNdcoJMT3/73jx4/X+PHjXe4/cOBADRw40IsRAQAAoNqIipL69jW2EufPS5s22SZ/N26UCgrcm2PnTmP78MOLba1b29b87d5diour2mMBAKAWuPrqq2UymfwdBlxEotcPNm7cqJkzZ7p9/VtvvaUZM2aoqMzKh5ycHOXk5Ojrr79WamqqXnnlFSUmJlY1XAAAAMB76taVLrnE2EoUFkpbttgmfzdsMG7e5o69e43t448vtjVrZqz4LZ38bdGiSg8FAICaomfPnho7dqzuuusuf4eCSiDR62M5OTkaN26cCgsL3br++eef13vvvWc9DgkJUUpKisLDw5Wdna28vDxJUmZmpkaNGqUPP/xQ8fHxHokdAAAA8InQUCktzdjuuMNoM5ulbdukp56yTdi66+BB6dNPja1ETAw1fgEAkPTZZ5+pSZMm/g4DlUSi14e2b9+uu+++W0ePHnXr+qVLl9okeQcNGqTJkycrJiZGklRYWKiFCxfqxRdfVH5+vnJzczV+/Hh99NFHLLMHAABAYAsOljp2lLp0sU/0vvyydPy4sfJ37Vpj3x25ucZW1tixRq3hkpW/7doZ8QAAUEOFhYX5OwS4gUSvjyxevFhPP/208vPz3bq+sLBQL7/8svW4f//+euONNxQUFGRtCw0N1ciRIxUfH6+xY8eqqKhImzdv1qeffqobb7yxyo+hNilbFsNVZrO53GMAQGAoLi62aysqKrL5+VATXvMd/bwrLi52++dgTWWxWKrl18TRc85sNvs8Vle+X7w+34ABKura1TiwWKR9+2Rav16m9eul9etlWrdOpsOH3Z/055+N7VeWyEgpLU2Wbt2smzp2lJzcI8ObX6PKPj89/X3vyvyVmbOyz+vK9LdYLA7bnMVXUZvZbHbp/9aVx+/O93Pp2B3FUfp8eeOXF1955yr7tS8qKnL6f1CWszGczenKmCWxu9oXqM26dOmiqKioavn7D8pHotfLDh8+rNdee02LFi2q0jjLli3TL7/8Isko1zB58mSbJG9p/fr108iRIzVnzhxJ0uzZs0n0VkJxcbEyMjI8MlZmZqZHxgEA+FbJz9zSdu7cqcjISKfXBOJr/o4dO+zaDh486LGfg4Gq7B/9p0+frpZfkwMHDti17dq1y+exHjt2zK5ty5YtynW0MtYDDh06ZNe2fft2+0+wJSQY2/DhkqSQ3FxFZGUpcutWRWRlKSIrS2FuJn9NZ89Kq1fLtHq1ta24Th3lt22rc+3bW7f8pCRZwsJ05MgRuzG2bdumAjduOFf2j+6zZ89W6v98+/btdm2HDh1y+3lz8uTJCq89ceKEXdvx48cdXrd79267tpycHKdz7Ny5067tl19+cdjfUULPWfwHDx60a8vOzlZqaqr1ODMz0+HzfMuWLTbfF9nZ2RXGuH//frs+u3fvLvdrWzp2RwnM0udzcnKcju/oMRw7dkwZGRkOv99yc3OVkZHh8DUoOztbsbGxdl/rU6dOKSMjQ+fK1NkuLCy0WwxVWFjo8HGfPHnS6eNw9LpdlsVisZY6LO3s2bN2be6WWgRqgssvv1yPPvpotfzdBxUj0etF06dP17vvvmvzwywxMVHp6emaMWNGpcZasmSJdb9v375q3rx5uf1LJ3o3b96snJwctWzZslJzAgAAADVFUUyMTvXrp1P9+lnbQvLyFL5tmzXxG5GVJTlIuLki6MIFRW7erMjNm61tluBg5Sclqb6DJBwAANXN119/rWhq1Qc0x0tC4RGzZs2ySfKOGDFC8+fPV+vWrSs1jsVi0Zo1a6zHl112WYXXpKSkKDY21nq8fPnySs0JAAAA1HRFDRvqdJ8+Onz77dr90kvavGiRDt5+u10/dz/YbTKbFbF9uyIcrDqNf+stNfnPfxS1bp2CzpxxcwYAADynTp06/g4BVcSKXh9ITU3VxIkT1atXL7euP3DggE6dOmUznitSUlKsN37btGmTW3PXRkFBQercubNb15rNZpuP7qampiqYG3UAQMBx9MmZtm3bKi0tzXpcE17zL1y4YNfWrFkzm8dZG5UtAVCvXr1q+TVZXapsQInExESfx9q4cWO7to4dOyo+Pt4r88XFxdm1JScne+xxN3WwKMP8zTcqkqx1f03r10tbtshUhdrcDb77Ti2/+856bGnX7mK93+7dZenaVWrUyO66kDJ1gCMjIyv12B2VL4iLi3P76xcdHV3htY7KezRq1MjhdXv37rVra9mypdM5Tp48adfWvHlzh/0dPXZn8Tdr1syuLSkpyeY4NTXVemPs0jp27KgWLVpYjx2VESgb408//WTXJyEhodyvbenYHZVuKH1+7dq1Tsd3VKaicePGSktLU8OGDe3OxcTEKC0tTf/73//sziUlJSktLc3udbR+/fpKS0tTRESETXtoaKjCw8Pt2hw97ujoaIefUk1ISHD4ul2WyWRy+HgclWUKDQ21awNqusjISPXs2TPgfp/1pk2bNjl8fa3OSPR6Ua9evTR8+HBdffXV9jXDKmHPnj02x61atXLputK/XOzbt8/t+Wujsr9Auys4ONhjYwEAfMdRHfyQkJByX9MD8TXfUbxBQUEB9zi8zWQyVcuviaM/xPzxPHTn+6U6z+dw/Hr1FNK9u3TllRcb8/OlTZukdesubps2SW7U3ZUk044dMu3YIX344cXGNm2k7t1tt7LXVfL56enve1fmr8yclX1eV6a/o0Svs/gdPQ/KtgUHB7v0fHTl8bvz/Vw6dkeJiNLnyxu/vPjKO1eZmEticfR3saM2Z2M4m9OVMUtid7UvUNuMHz+eFb01QPX7jbUGmTZtmkfGKVmVKxk/mBy9a+xI6dINpccAAAAAUEXh4VKvXsZWoqBA2rLFNvm7YYORFHbHnj3GtnDhxbayiaqCAslikUhWAQDcMGrUKP3ud7/T9ddf7+9Q4AEkegNA6Y8jRUZGOnwX0pGoqCiHYwAAAADwgrAwqWtXY7vzTqOtqEi6915p1izPzFF25ebPP0tNm9qv/E1IIPkLAKjQv//9b3+HAA+q9YneAQMG6MCBA1UaIyEhQUuXLvVQRPZK18+rW7euy9eFhYVZ9wvc/AgZAAAAgCoICZFKfdLOaskS6dQpY9Xv2rXGv3l57s1x9Kj0xRfGVqJBA/vkb7t27o0PAAACQq1P9AaCwsJC676rq3kl27pGRUVFHo0JAAAAQBW0aSN16CCNHGkcWyzS3r22ZR/WrpWOHHFv/BMnpOXLja1EVJTUtm1VIwcA1BBXlq49jxqBRG8AKF1cvjJ3+yud3OWuoQAAAEA1ZjIZyd82baThw402i0U6eNB21e+nn9qXb3DVmTNGzeCy/v53I6FcsvK3UyeJG/IAQI3WqlUrvfnmm/4OAx5W6xO98+bNk9lsrtIY3r6zcXh4uHW/dBmHipQu18CdEwEAAIAAYzJJzZsb2w03GG2xsVJu7sU+jRtL0dHSrl3uz3PggDR9+sXj0FApNdW27ENamnEDOgBAwNu7d69atmwpE7Xca5xan+iNdVQvq5qJjo627p89e1YWi8Wlb8YzZ85Y9xs0aOCN0AAAAAD4U0qK9L//GfV916+3Lf2wfbuxKriyCguNsdavv3gTueBgo9SEO+MBAKqVVq1a+TsEeEmtT/QGgqZNm1r3zWaz8vLy1KhRowqvO3r0qHU/JibGK7EBAAAAqAYaNpQGDDC2EqdPSxkZtsnfzZvdK/1gNkuZmfbty5dLt9wi9ehhrPzt1s2IBQBQLaWlpfk7BHgRid4A0Lp1a5vjnJwclxK9+/fvt+4nJCR4PC4AAAAA1Vi9elK/fsZW4ocfpEsvte0XFOR+3d+zZ6UPPjC2EgkJtmUf2rRxb2wAgMeNHTvW3yHAi0j0BoD4+Hg1aNBAJ06ckCRt3brVpXdgsrKyrPvt27f3VngAAAAAAkXduvZtTzxh3ACuZNXv2rXGSuDz592bY/duY/voI+d9zp41ykBQHxIAfGLYsGG6/vrrdeedd/o7FHgRid4A0bt3b33xxReSpNWrV+vmm28ut39WVpZyS92koU+fPl6NDwAAAECACg42Si506ybddZfRVlQkZWXZln1Yv14qdR+QKpk3T1qxwnblb/fu1AAGAC9ZuHChv0OAD5DoDRDp6enWRO+KFSt0+PBhm9q9Zc2dO9e6n5SUpJSUFK/HCAAAAKCGCAmRUlON7bbbjLbiYqO9dDI2JMRICrvjyBFp6VJjKxEZad/P3bISAADUMkH+DgCuSU9PV5MmTSRJBQUFmjRpkoqc/EK1cuVKzZ8/33o8atQon8QIAAAAoAYLcvDn47XXSrt2SQsWGCUgBg+WYmPdn+PsWfu2+++XrrhCevhh6d//Nm4K525yGQBqoXfeecffIcBHWNEbIMLCwvToo49q0qRJkozyDWPGjNGf//xntWzZUpJUVFSkhQsX6oUXXpDZbJYkJScna8SIEX6LGwAAAEANl5BgbDfdZBxbLNIvv1ys9/vDD9Kvn050y4UL0sqVxlYiPFxKS5PK+ZQjAEDq16+fbrnlFn+HAR8h0RtAhg0bpvXr12vevHmSjGRvenq6UlJSFBUVpezsbB0/ftzav0GDBpoyZYpCQvhvBgAAAOAjJpMUH29sN94oHTsmxcTY9mnTxui3e7d7c+TnGwlkR+bNMxLB3btLnTsb+wBQywwfPlzPP/+82rdvLxM3vqw1yAAGmGeffVYNGzbUrFmzVFhYqOLiYm3dutWuX1JSkqZMmaLExEQ/RAkAAAAA5RgwQJo1Szp+XNqwwVj5u26d9N13xmrgqlizxtgk40ZzHTsaSd9u3aocNgAEirCwMHXo0MHfYcDHSPQGGJPJpEceeURDhgzRggULtGrVKh06dEj5+fmKjo5Whw4dNHjwYA0ZMkRhYWH+DhcAAAAAnGvUyEj6DhhgHC9eLP3mN7Z9mjeXDh1y76ZsZrO0aZOx/etf9ud37pRWrDCSwA0aVH58AKimbr31Vn+HAD8g0esHw4cP1/Dhw6s0RlJSkiZOnKiJEyd6KCoAAAAAqIaef14aOVLauNFY9VuyZWZKhYVVGzsz82KSOTHRWPnbvbu0Y0fV4wYAP2nevLkGDx7s7zDgByR6AQAAAADVW0SE1KePsZW4cEH697+le+7xzBy7dhnbggUOT5v+9z+Fdu6swpgYo74wAFQz3bp104033qh7772X+zXVUvyvAwAAAAACT506UnKyfftjj0mdOl1c+bt+vXT2bJWnC378cXWRVNi4sc6lpCjoyiul7OwqjwsAnvLuu++qZ8+e/g4DfkSiFwAAAABQczRrJo0ebWySUad3507jhm8eqFkZeuyYolevllavdtzhk0+ka66RkpKkoKAqzwcArkpJSfF3CPAzEr3wC4vFooULF+rjjz9WVlaWzp8/r8aNG6tnz566/fbb1blzZ3+HCAAAAKAmCA6WUlKM1b9lE72XXCINHGis/F27VsrNrfp8999v/FuvnnGTt6ZNqz4mALigXr16/g4BfkaiFz5XWFio8ePHa8WKFZIkk8mk8PBwHTp0SJ9++qk+//xzPfnkk9whEgAAAIB3xcdLL7xg7Fss0oEDRtL3jTekX/9ecdvp09J33zk+9/HHUqNGxo3fOnas2jwAar327dvr888/93cYqAZI9MLn3n77ba1YsUIhISF67LHHNHLkSIWHh2vPnj167rnntGrVKj3//PPq3LmzunTp4u9wAQAAANQGJpPUooWxZWbaJXrN99yjvB07FLFtm+r88kvV5ipd+iEsTIqLq9p4AGqtc+fOKTw83N9hoJog0QufKi4u1ty5cyVJd999t26//XbruTZt2mjq1Km69tprdfDgQS1YsIBELwAAAIBqwTJ6tHbVqSNJCj55Up0LC6Vnn5W+/75qAxcUSPv22bc/8IC0YIGx6rd796rNAaDGIsmL0qgMD586duyYTpw4IUlKS0uzOx8eHq7U1FRJ0i9VfZccAAAAALzAHB0ty9VXO07APv20NGqU1KlT1W7GtmeP9M9/Sg8+KPXrZ38+N1f69W8rALVTbGysv0NANUOiFz5Vv359mUwmSdK6devszhcUFCgrK0uS1Lp1a5/GBgAAAABVdvfd0r//bZR/OHVKmj7dO/P8739Sw4ZS27bSyJHemQNAtbZ+/Xp/h4BqhkQvfKpOnTrq06ePJGn27Nl6//33df78eUnSgQMH9PDDDysnJ0f16tXT6NGj/RkqAAAAAFRNZKT06ycWbTz0kPTuu9K990qXXCKFVKGqYna2UeKhrB9+kJ57TvrsM1b+AjXIsGHD9NFHH+nkyZOKj4/3dzioZqjRC5979tlnNXr0aB08eFDPPfecnn/+eUVEROjs2bOSpD59+ujJJ59Uq1at/BwpAAAAAHhBixbSmDEXj2fMkO67z7ZPnTrShQvuz3HwoDR5svPzR45IFov74wPwizvuuEM33nijv8NANUWiF5WWl5enU6dOudw/JCTE5l2m1q1ba9GiRbr33nu1fv16WSwWa5JXMm7Ylp+f79GYAQAAAKDaCg62b/vwQyk5WVq3zthefdWzc959tzRxolFLGEDAiI6O9ncIqMZI9KLSZs2apZkzZ7rcPz4+XsuXL7ceZ2Zmavz48crNzdXEiRN14403Kjo6Wlu3btXrr7+u77//XrfddptmzpypXr16eeMhAAAAAED1FhwstW9vbL//vX2it107KSFBWrtWOnbMvTmOHZO++86+ffFiKTxc4lOWQLWSlJREngTlItELnzp8+LBuu+02nT17Vm+//bYGDhxoPZeWlqZZs2bpnnvu0apVq/TEE0/oiy++ULCjd7cBAAAAoDbr2FFatMgov7Bvn9SmjefGPnhQev11x+e2bJEyMiSz2XPzASjX7373OyUlJWncuHGqW7euv8NBNUaiF5U2YcIETZgwwa1rZ8+erbNnz6pbt242Sd4SwcHBmjhxolatWqWcnBx9//336tevX1VDBgAAAICayWSSWra0b7/2WumBB4yyDwsXSuvXe2a+r7+WunZ1fAO5ggLPzAHAxrx58/wdAgJEkL8DQO2SkZEhSerWrZvTPsnJydaaM7t37/ZJXAAAAABQo9StK113nfTUU9L999uf79dPatvW/fGLiuzbhgwxksCs9gUAvyDRC5/Ky8uTJFkquLtryK/vDhfwjjAAAAAAeN7jj0s7dkhZWZ4bs7jYKOtQ9u+9b7+V/vAH6dAhz80F1BJjx471dwgIICR64VNxcXGSpPXlfGzo0KFDOvbrzQRat27tk7gAAAAAoFaqX9++7a67pP/9T3r2Wc/McfasNGeOUUu4tBMnSP4C5YiLi9Ojjz7q7zAQQEj0wqf69+8vSdqwYYO+c3R3V0lTp06VJEVHR+vSSy/1WWwAAAAAAEmhoVLfvtLtt9uf699fGjtWatWq6vOcPy/t32/bdvy49PzzVR8bCGCTJk3S8uXLtWvXLiUnJ/s7HAQQEr3wqZEjR6rNr3eDfeihh/Thhx/q/PnzkqQjR45o8uTJmj9/viTp4YcfVmRkpL9CBQAAAACUlZoqzZhhlH4oq2NHKSKiauOfPy/96U/25R+ysjx3QzmgmrvjjjvUv39/hYeH+zsUBBgHt8kEvKdu3bqaOXOm7rnnHu3evVt/+tOf9PTTT6tevXo6deqUtXbvvffeq9///vd+jhYAAAAA4LI33pAGDDBuBFf6Zm0hIY5v3lYZO3YYW1mrVtknhYEA17hxY3+HgADFil74XKtWrfTxxx9r0qRJ6tatmyIjI3Xu3Dk1adJE119/vebOnatHHnnE32ECAAAAACorONi+7ZprjCRt27aen++vf5XK3sT7l1+MusBAAOrSpQuJXriNFb0BZsqUKZo2bZri4+O1fPnySl+fnZ2tDz74QGvWrNH+/ftVVFSkJk2aKDk5WTfeeKOuueYahYR4/2kRHh6uO+64Q3fccYfX5wIAAAAA+JHJZCR5GzWybY+NNW4Gl53t2fk2bbJvM5ulvDzPzgN4UPPmzdWzZ0+98cYb/g4FAYxEbwDZuHGjZs6c6fb1b731lmbMmKGiMh+ZycnJUU5Ojr7++mulpqbqlVdeUWJiYlXDBQAAAADAueBgqWFD27a4OOnvf5duvNGzJRmKiqT//te+/cwZz80BuCkhIUG7du3ydxioASjdECBycnI0btw4FRYWunX9888/r6lTp1qTvCEhIerUqZN69uyphqV+sGZmZmrUqFE6cOCAR+IGAAAAAMBlQUHS9dfbt/fpIw0f7vn51q2zb3Pz727AXZdddpm/Q0ANQaI3AGzfvl233nqrjh496tb1S5cu1XvvvWc9HjRokL799lstXLhQc+bM0cqVK/XnP//ZejfH3NxcjR8/3npjNAAAAAAA/Co2VrruOvv2O+80ksOeYrFIx455bjzABbfddpu/Q0ANQemGam7x4sV6+umnlZ+f79b1hYWFevnll63H/fv31xtvvKGgUj8IQ0NDNXLkSMXHx2vs2LEqKirS5s2b9emnn+rGG2+s8mMIRGXLW7jKbDaXewwACAzFxcV2bUVFRTY/H2rCa76jn3fFxcVu/xysqSwWS7X8mjh6zpnNZp/H6sr3SyDN543xvRlzZZ+fnv6+d2X+ysxZ2ed1Zfo7WsjiLH5H/2dl28xms0v/t648fne+n0vH7iiO0ufLG7+8+Mo7V9mvfVFRkdP/g7KcjeFwzhtvlObMkS5cuNi3fXvp1CnjpmxANXfppZfq0ksvrZa/ayDwkOitpg4fPqzXXntNixYtqtI4y5Yt0y+//nALCQnR5MmTbZK8pfXr108jR47UnDlzJEmzZ8+ulYne4uJiZWRkeGSszMxMj4wDAPCtXxz8Ybhz505FRkY6vSYQX/N37Nhh13bw4EGP/RwMVGWTDqdPn66WXxNHpbZ27drl81iPOVj5tmXLFuXm5nplvkOHDtm1bd++XSaTyWvj79ixQ8HBwW6PeeTIEbu2bdu2qaCgoNJjlU0EnD17tlL/59u3b7drO3TokNvPm5MnT1Z47YkTJ+zajh8/7vC63bt327Xl5OQ4nWPnzp12bb/88ovD/o4Sis7iP3jwoF1bdna2UlNTrceZmZkOn+dbtmyx+b7IdnCjsbIx7t+/367P7t27y/3alo7dUaK39PmcnByn4zt6DMeOHVNGRobD74fc3FxlZGQ4fA3Kzs5WbGys3df61KlTysjI0Llz52zaCwsL7RY1FRYWOnzcJ0+edPo47F63GzY0av+W+nluCQ7W+ebNJQdjAP7w3HPPKSIiQr1799a2bdv8HQ5qCEo3VEPTp0/X4MGDbZK8iYmJuvfeeys91pIlS6z7ffv2VfPmzcvtP3LkSOv+5s2bHf4gBQAAAAAgoAQH62yXLnbNhTExfggGkK699lpdeeWVqlu3rr9DQQ1CorcamjVrls07nSNGjND8+fPVunXrSo1jsVi0Zs0a67Erxb1TUlIUGxtrPV6+fHml5gQAAAAAIFBcaNXKtsFkUjGJN3hZeZ8SA6qC0g3VWGpqqiZOnKhevXq5df2BAwd06tQpm/FckZKSYr3x26ZNm9yaO5AFBQWpc+fObl1rNpttPrqbmppapY/5AQD8w9EnYNq2bau0tDTrcU14zb9Qqp5hiWbNmtk8ztqobAmAevXqVcuvyerVq+3aEhMTfR5r48aN7do6duyo+Ph4r8wXFxdn15acnOyxx+1o/Hbt2lVp/CZNmti1paSkqEOHDpUeKyTE9k+4yMjISsXmqHxBXFyc248vOjq6wmsdlfdo1KiRw+v27t1r19ayZUunc5w8edKurXnz5g77O3rszuJv1qyZXVtSUpLNcWpqqmIcrAbt2LGjWrRoYT0+ffp0hTH+9NNPdn0SEhLK/dqWjt1R6YbS59euXet0fEdlKho3bqy0tDQ1bNjQ7lxMTIzS0tL0v//9z+5cUlKS0tLS7F5H69evr7S0NEVERNi0h4aGWm8KXrrN0eOOjo5Wy5YtHT4OR6/bZZlMJoePx1HCLahBA8lB2QrAU95///1q+bsFbG3atMnh62t1RqK3GurVq5eGDx+uq6++ukq1xvbs2WNz3KrsO5VOlP6lZN++fW7PH8jK/gLtruDgYI+NBQDwHUf17ENCQsp9TQ/E13xH8QYFBQXc4/A2k8lULb8mjt5Y8Mfz0J3vl+o8nzfG92bMlX1+evr73pX5KzNnZZ/XlenvKNHrLH5H/2dl24KDg136v3Xl8bvz/Vw6dkeJiNLnyxu/vPjKO1eZmEticfT3raM2Z2M4m9OVMUtid7Uv4Gldu3bVhQsXdPfdd+s3v/mNv8NBDVX9fmOFpk2b5pFxSlblSsYPNEfvNjtSunRD6TEAAAAAAABQeevWreONBXgdNXprsNIfY4qMjHT47qUjUVFRDscAAAAAAABA5ZHkhS+wotdNAwYM0IEDB6o0RkJCgpYuXeqhiOyVrrtXmbs4hoWFWfcLCgo8GhMAAAAAAEBt0qVLF3+HgFqCFb01WGFhoXXf1dW8km09pKKiIo/GBAAAAAAAUFs0atRIH3/8sb/DQC3Bit4arHRR+srcJbB0cjc0NNSjMQEAAAAAANR0q1at0smTJ9WvXz/Vr1/f3+GgliDR66Z58+bJbDZXaQxv3xE5PDzcul+6jENFSpdrqFOnjkdjAgAAAAAAqOl69+7t9bwPUBbPODfFxsb6O4QKRUdHW/fPnj0ri8XiUvHvM2fOWPcbNGjgjdAAAAAAAABqLJK88Adq9NZgTZs2te6bzWbl5eW5dN3Ro0et+zExMR6PCwAAAAAAoKZ68cUX/R0CaineXqjBWrdubXOck5OjRo0aVXjd/v37rfsJCQkejwsAAAAAAKAmGTt2rI4cOaKbb75Zv/vd7/wdDmopEr01WHx8vBo0aKATJ05IkrZu3aq0tLQKr8vKyrLut2/f3lvhAQAAAAAA1AgzZszwdwgApRtqut69e1v3V69eXWH/rKws5ebmWo/79OnjlbgAAAAAAAAAeA6J3houPT3dur9ixQodPny43P5z58617iclJSklJcVrsQEAAAAAAAS68PBwf4cASCLRW+Olp6erSZMmkqSCggJNmjRJRUVFDvuuXLlS8+fPtx6PGjXKJzECAAAAAAAEkqioKOv+sWPH/BgJcBGJ3houLCxMjz76qPV49erVGjNmjHJycqxtRUVF+vDDDzV+/HiZzWZJUnJyskaMGOHzeAEAAAAAAKq7vLw8XbhwQRaLhRW9qDa4GVstMGzYMK1fv17z5s2TZCR709PTlZKSoqioKGVnZ+v48ePW/g0aNNCUKVMUEsLTAwAAAAAAoLSuXbuSM0G1xLOylnj22WfVsGFDzZo1S4WFhSouLtbWrVvt+iUlJWnKlClKTEz0Q5QAAAAAAADVW2pqqr9DABwi0VtLmEwmPfLIIxoyZIgWLFigVatW6dChQ8rPz1d0dLQ6dOigwYMHa8iQIQoLC/N3uAAAAAAAANVOvXr1dP/99/s7DMAhEr0BZPjw4Ro+fHiVxkhKStLEiRM1ceJED0UFAAAAAABQsy1atEjnzp3TpZdeqjZt2vg7HMAhEr0AAAAAAACAE0OvukpDr71W4hPQqOZI9AIAAAAAAABOpH7zjVSvntS5s9S9+8Wtc2cpPNzf4QFWJHoBAAAAAAAAJwZKUkGBtHatsZUIDpY6dpR69LiY/E1Lk6Ki/BUqajkSvfCbXbt2afbs2Vq9erWOHDmiOnXqqEOHDhoxYoSGDBni7/AAAAAAAEAtVl/SI5KudNbBbJY2bTK2f/7TaDOZpJQU25W/3bpJDRr4ImTUciR64ReLFy/Wk08+qcLCQklSZGSkTp8+rR9//FE//vijvvnmG/3tb39TUFCQnyMFAAAAAAC1yXutWmnkgQMymc2VT5xZLFJWlrH95z8X2xMTbVf+dusmxcZ6MmyARC98b926dZo0aZKKi4t13XXX6fHHH1ezZs104sQJvfPOO/rHP/6hzz77TD169NCtt97q73ABAAAAAEAtMnDNGoU2bChlZkrr1l3cMjKkCxfcG3TXLmObP/9iW8uWtit/u3eXmjf3zINArUSiFz73zDPPqLi4WNdff71effVVmUwmSVKDBg00ceJEHTx4UJ9//rnmzp1LohcAAAAAAPhUo0aNpLAwYwVujx4XTxQWSlu32iZ/N2yQzp51b6KcHGNbvPhiW1ycffK3VSujJARQARK98KmNGzdq27ZtCg8P15NPPmlN8pY2btw4de3aVQ2oXwMAAAAAAHxo9OjRCgsLc3wyNFTq0sXYbr/daDObpR07bJO/69ZJJ0+6F8ChQ9KSJcZWolGji0nfkvIPiYkS5S5RBole+NRXX30lSbrsssvUuHFjh32Sk5OVnJzsy7AAAAAAAEAt1LBhQ/31r3/Vjz/+qG7duumuu+6q3ADBwVL79sb2+98bbRaLUaahdOJ37Vrp2DH3gjx+XPrqK2MrUb++Uee39MrflBQjHtRaJHrhU1lZWZKkDh06SJKWLl2qRYsWadeuXQoKClJaWpruuOMOtW/f3p9hAgAAAACAWiAvL09333237r77bs8NajJJSUnGNmKE0WaxSPv32yd/Dx50b45Tp6RvvzW2EhERUlqa7crfjh2NlcioFUj0wqd27dolSapfv77GjRunr7/+2ub87t279d///lfPPPOMfve73/kjRAAAAAAAUEvExsb6ZiKTybj5WsuW0tChF9sPHpTWr7dNAO/d694c585J339vbCXCwoxSE6VX/nbuLNWtW7XHg2qJRC8qLS8vT6dOnXK5f0hIiOLj4yVJp0+fliS9++67Onr0qEaMGKExY8aoWbNm2r59u15++WX9+OOPevrpp9WqVSv16dPHK48BAAAAAABgypQp/g2gWTNju+66i23Hjtkmf9eulXbudG/8ggLp55+NrURIiLHSt2TVb/fuxkrgyMiqPRb4HYleVNqsWbM0c+ZMl/vHx8dr+fLlkqSzv96J8ujRo/rDH/6gP/3pT9Z+qampmjVrlkaOHKktW7bor3/9qxYuXOjZ4AEAAAAAQK3VqFEj5eXlSZJuueUW/fa3v/VzRA40biwNHGhsJU6elDZssF35m5UlFRdXfvyiImnjRmObPdtoM5mMOsOlV/526yZFR3vkIcE3SPTCL8LCwvTQQw85bL/vvvs0fvx4bd68WTk5OWrZsqUfIgQAAAAAADXN3Llz1bNnT5lMJjVs2NDf4bguOlq68kpjK3H2rJGsXbv2YvJ382YjkVtZFou0dauxzZlzsT0pyXblb7duUkxM1R8PvIJELyptwoQJmjBhglvXRkZG6sSJE0pJSVH9+vUd9unZs6d1f/v27SR6AQAAAACAR3Tq1EmNGjXydxieERkpXXqpsZU4f17KzLRd+btxo3ThgntzZGcb24cfXmxr1cp25W+PHlJcXNUeCzyCRC98KiYmRidOnFBERITTPqUTwOfPn/dFWAAAAAAAoBYouYdQjVW3rtSzp7GVKCyUtmyxTf5u2GDcvM0d+/YZ26JFF9uaNbNN/nbvbtx4zmSqyqNBJZHohU8lJydr586dOnTokNM+J0+etO7H8HEAAAAAAADgAa+//rq/Q/CP0FDjZmtpadIddxhtZrO0fbtt8nfdOunUKffmOHhQ+uwzYyvRuLHtqt/u3aXERJK/XkSiFz7Vu3dvLVmyRHv37tWuXbuUmJho12ft2rWSpNDQUKWkpPg6RAAAAAAAUAM8+uijatGihXbu3Kmrr75aw4YN83dI1UdwsNShg7HdeqvRVlws7dpln/w9dsy9OY4dk5YtM7YS0dFGnd/SK3+Tk414UGUkeuFT1157rV566SXl5+fr9ddf11tvvWVz3mw2a+bMmZKkyy+/XA0aNPBDlAAAAAAAINBFRkbqkUce8XcYgSMoSGrb1th+9zujzWKRcnJsE79r10rlfFK7XCdPSt98Y2wlIiKkrl1tV/526GCsREalkOiFT0VHR+vhhx/Wiy++qC+//FKPP/64/vjHP6pp06Y6fPiwnn32WW3cuFFhYWFu3/ANAAAAAACgXbt2/g4h8JlMxs3XWrWSfvObi+0HD9qv/N23z705zp2TVq82thJ16khdutiu/E1NNWoQwykSvfC522+/XUePHtXf//53LV68WIsXL1a9evV05swZWSwW1alTRy+//LKSkpL8HSoAAAAAAAhQf/jDH/wdQs3VrJl0/fXGViI3V1q/3ljxW5L8zc52b/wLF6SffjK2EiEhUqdOtit/u3SRIiOr9lhqEBK98IvHHntM/fv317///W+tW7dOJ06cUPPmzdW7d2/deeedvOsGAAAAAABcdsUVV+jcuXP6+eef1aFDB/373/+WiZt++VZMjHTNNcZW4sQJacMG25W/WVlGSYjKKiqSMjKMbfZsoy0oSGrf3nblb9euRi3gWohEb4CZMmWKpk2bpvj4eC1fvrzS12dnZ+uDDz7QmjVrtH//fhUVFalJkyZKTk7WjTfeqGuuuUYhIb55WvTs2VM9e/b0yVwAAAAAAKDm6ty5s6ZOnaqioiKf5TXgggYNpKuuMrYSZ85IGzfarvzdvFkymys/fnGxtGWLsb3//sX2du1sk7/dukmNG1fxwVR/PPMDyMaNG603KnPHW2+9pRkzZqioqMimPScnRzk5Ofr666+VmpqqV155RYmJiVUNFwAAAAAAwCfOnTsnSSR5A0FUlNS3r7GVOH9e2rTJduXvxo1SQYF7c+zYYWzz5l1sa93aNvnbo4fUtGnVHks1w7M/QOTk5GjcuHEqLCx06/rnn39e7733nvU4JCREKSkpCg8PV3Z2tvLy8iRJmZmZGjVqlD788EPFx8d7JHYAAAAAAABvur50rVgEnrp1pUsuMbYSBQXGSt3Syd8NG6T8fPfm2LvX2D7++GJb8+a2yd/u3aUWLYyb0AUgEr0BYPv27br77rt19OhRt65funSpTZJ30KBBmjx5smJiYiRJhYWFWrhwoV588UXl5+crNzdX48eP10cffUQ9GwAAAAAAUO2YTCZZfq3z2qRJE910001+jggeFxZm1Nvt2lW6806jzWyWtm2zTf6uWyedPu3eHL/8YmyffnqxLSbGSPg++6wUGlrVR+FTJHqrucWLF+vpp59WvpvvVhQWFurll1+2Hvfv319vvPGGgoKCrG2hoaEaOXKk4uPjNXbsWBUVFWnz5s369NNPdeONN1b5MQSisuUtXGUuU0+m7DEAIDAUFxfbtRUVFdn8fKgJr/mOft4VFxe7/XOwprJYLNXya+LoOWc2m30eqyvfL4E0nzfG92bMlX1+evr73pX5KzNnZZ/XlelvcXDjH2fxO/o/K9tmNptd+r915fG78/1cOnZHcZQ+X9745cVX3rnKfu2Lioqc/h+U5WwMZ3O6MmZJ7K72RfV2xx136PHHH9f333+v9u3bq2fPntXyZzW8JDnZ2G6+2TguLpays2Vav16m9eulX/81HT/u3vi5udKXX0pPPUWiF55x+PBhvfbaa1q0aFGVxlm2bJl++eUXSUa5hsmTJ9skeUvr16+fRo4cqTlz5kiSZs+eXSsTvcXFxcrIyPDIWJmZmR4ZBwDgWyU/O0vbuXOnIiMjnV4TiK/5O3bssGs7ePCgx34OBqqyf/SfPn26Wn5NDhw4YNe2a9cun8d67Ngxu7YtW7YoNzfXK/MdOnTIrm379u0e+ySao/F37Nih4OBgt8c8cuSIXdu2bdtU4EbdwbKJjLNnz1bq/3z79u12bYcOHXL7eXPy5MkKrz1x4oRd2/Hjxx1et3v3bru2nJwcp3Ps3LnTru2XX35x2N9RQs9Z/AcPHrRry87OVmpqqvU4MzPT4fN8y5YtNt8X2dnZFca4f/9+uz67d+8u92tbOnZHCczS53NycpyO7+gxHDt2TBkZGQ6/H3Jzc5WRkeHwNSg7O1uxsbF2X+tTp04pIyPDWkO1RGFhod2ipsLCQoeP++TJk04fh6PX7bIsFou1ZGFpZ8+etWtzt2QifCcoKEhnz55Vly5dJBn3NAKUkmJsN98sWSwKO3RIEVlZxrZ1qyKyshTqbvI3QJDorYamT5+ud9991+aHYGJiotLT0zVjxoxKjbVkyRLrft++fdW8efNy+5dO9G7evFk5OTlq2bJlpeYEAAAAAADwlnr16vk7BFR3JpMKmjVTQbNmOtG/v9FmsSg0N/di8vfXLezwYf/G6kEkequhWbNm2SR5R4wYoUmTJunLL7+s1DgWi0Vr1qyxHl922WUVXpOSkqLY2FhrPeDly5dr9OjRlZoXAAAAAADAW6655hp/h4BAZDKpMDZWJ2NjdfLyy63NIXl5Ct+2TZG/rvqNyMpSHQefWggEJHqrsdTUVE2cOFG9evVy6/oDBw7o1KlTNuO5IiUlxZro3bRpk1tzB7KgoCB17tzZrWvNZrPNR3dTU1Or9DE/AIB/OPoETNu2bZWWlmY9rgmv+RcuXLBra9asmc3jrI3KlgCoV69etfyarF692q4tMTHR57E2btzYrq1jx46Kj4/3ynxxcXF2bcnJyR573I7Gb9euXZXGb9KkiV1bSkqKOnToUOmxQkJs/4SLjIysVGyOyhfExcW5/fiio6MrvNZReY9GjRo5vG7v3r12bS1btnQ6x8mTJ+3amjdv7rC/o8fuLP5mzZrZtSUlJdkcp6amWm9wXVrHjh3VokUL67GjMgJlY/zpp5/s+iQkJJT7tS0du6PSDaXPr1271un4jspUNG7cWGlpaWrYsKHduZiYGKWlpel///uf3bmkpCSlpaXZvY7Wr19faWlpioiIsGkPDQ1VeHi4XZujxx0dHe3w06YJCQkOX7fLMplMDh+Po7JMoQFWk7OmS05O1m233aZVq1Zp48aNWrp0qVuvn0C5rrrK5rAoL09y8DOpuiPRWw316tVLw4cP19VXX12lWmN79uyxOW7VqpVL15X+pWTfvn1uzx/Iyv4C7a7g4GCPjQUA8B1H9exDQkLKfU0PxNd8R/EGBQUF3OPwNpPJVC2/Jo7eWPDH89Cd75fqPJ83xvdmzJV9fnr6+96V+SszZ2Wf15Xp7yjR6yx+R/9nZduCg4Nd+r915fG78/1cOnZHid7S58sbv7z4yjtXmZhLYnH0962jNmdjOJvTlTFLYne1L6qPp556SqNGjfJ3GKhtYmOl/fuNG70FkOr3Gys0bdo0j4xTsipXMn6gOXq32ZHY2FiHYwAAAAAAAPhS6RwFgPLZv52FGqP0x5giIyMdvnvpSFRUlMMxAAAAAAAAfMnVMpQAWNHrtgEDBuhAFQszJyQkaOnSpR6KyF7punt169Z1+bqwsDDrfkFBgUdjAgAAAAAAcOTSSy/V999/L8n4ZPIzzzxjU14SQPlI9NZghYWF1n1XV/NKtvWQioqKPBoTAAAAAACAIzNmzFBqaqqysrLUvHlzNWjQwN8hAQGFRG8NVroovaPi/M6UTu5yt1EAAAAAAOALnTt3lslkUseOHf0dChCQSPS6ad68eTKbzVUaw9t3RA4PD7fuly7jUJHS5Rrq1Knj0ZgAAAAAAADKioqKkslk8ncYQEAj0eumQLjrY3R0tHX/7NmzslgsLr1onjlzxrrPxyQAAAAAAIAntW7dWnv37rVpGzNmjJ+iAWoOEr01WNOmTa37ZrNZeXl5atSoUYXXHT161LofExPjldgAAAAAAEDtFBcXp88++0wPP/ywzpw5o6uvvlqTJ0/2d1hAwCPRW4O1bt3a5jgnJ8elRO/+/fut+wkJCR6PCwAAAAAA1F779u1Tp06dtGzZMn+HAtQoQf4OAN4THx9vU3ph69atLl2XlZVl3W/fvr2nwwIAAAAAALXYo48+6u8QgBqJRG8N17t3b+v+6tWrK+yflZWl3Nxc63GfPn28EhcAAAAAAKidBg8e7O8QgBqJRG8Nl56ebt1fsWKFDh8+XG7/uXPnWveTkpKUkpLitdgAAAAAAEDN9sUXX9gc/+53v1OnTp38FA1Qs5HoreHS09PVpEkTSVJBQYEmTZqkoqIih31Xrlyp+fPnW49HjRrlkxgBAAAAAEDN1L9/fx08eFALFizQmjVr9J///Ecmk8nfYQE1EoneGi4sLMym9s3q1as1ZswY5eTkWNuKior04Ycfavz48TKbzZKk5ORkjRgxwufxAgAAAACAmiM0NFRxcXG66aab1KtXLwUHB/s7JKDGCvF3APC+YcOGaf369Zo3b54kI9mbnp6ulJQURUVFKTs7W8ePH7f2b9CggaZMmaKQEJ4eAAAAAADAPaXvGwTA+1jRW0s8++yzuvfeexUaGipJKi4u1tatW/XTTz/ZJHmTkpL0/vvvKzEx0V+hAgAAAACAADN9+nS7tr/97W9+iASovViyWUuYTCY98sgjGjJkiBYsWKBVq1bp0KFDys/PV3R0tDp06KDBgwdryJAhCgsL83e4AAAAAAAggNxyyy26cOGC5syZo7CwMN13333q16+fv8MCahUSvQFk+PDhGj58eJXGSEpK0sSJEzVx4kQPRQUAAAAAAGq74OBgPfTQQ3rooYf8HQpQa1G6AQAAAAAAAFUSFRXl7xCAWo9ELwAAAAAAAFzy+OOP27WNGTPGD5EAKItELwAAAAAAACoUHx+vBx98UElJSda27t27669//asfowJQgkQvqo05c+YoJSVFAwYM8HcoAAAAAACgjLCwMMXHx2vz5s367rvv9P3332vNmjVq0KCBv0MDIG7GhmoiOzubdwABAAAAAKjGjh07JkmqU6eOLr/8cj9HA6AsVvTC7woKCjRhwgSdP3/e36EAAAAAAABJLVu2tGtr0qSJHyIB4CoSvfC7119/XVu2bFHdunX9HQoAAAAAAJDjG6ytXr3aD5EAcBWlG+BX33//vWbPnq0WLVrommuu0ezZs/0dEgAAAAAAtdpLL72kxx57TDExMfr666/VokUL3X///YqNjfV3aADKQaIXfnPy5ElNmjRJJpNJL7/8sr7//nt/hwQAAAAAQK1x+eWXa+XKlXbtderUUVBQkO677z7dd999fogMgDso3QC/mTx5sg4dOqS77rpLPXv29Hc4AAAAAADUKvHx8Q7bGzVq5ONIAHgCiV74xcKFC7V06VJ16NBBDz74oL/DAQAAAACg1rn00ksdtqenp/s4EgCeQOkGVFpeXp5OnTrlcv+QkBCbdwlzcnL0/PPPKywsTK+88orCwsK8ESYAAAAAALXegAEDtHz5cofnbr75ZtWpU0eTJ0/WkSNHJEnffvut4uLifBkiAA8h0YtKmzVrlmbOnOly//j4eOsPFbPZrMcee0xnz57V//3f/6ldu3beChMAAAAAUE1YLBb9+OOP/g6jVrr22mudJnqbNGmisWPH6p577lFBQYHq1Knj4+gAeBKlG+BT06dP1/r169WnTx+NHj3a3+EAAAAAAHzgzTff9HcIKOPKK6+07ptMJpK8QA3Ail5U2oQJEzRhwoRKX7dhwwZNnz5d9evX10svvSSTyeSF6AAAAAAA1c3ChQvt2kJDQ/0QSe3TsGFDNWzYUHl5eTbtbdu29VNEALyFFb3wmXnz5qmoqEjnz5/Xb3/7W1122WU22z/+8Q9J0sGDB61tS5Ys8XPUAAAAAICqOnPmjF3bZZdd5odI/KdLly5eG/s///mP03OhoaF67rnnbNpiYmL0xz/+0WvxAPAPVvTCZywWiySpoKBAubm5TvsVFxdbz58/f94nsQEAAAAAfOvtt9/WoEGDbNoOHz7sp2i8y9urlxMSEpye6969u1JTU3X99ddr/fr1ioyMVN++fRUVFeXVmAD4Hole+MxLL72kl156yen5t956S1OnTrW5eRsAAAAAoOZp0aKFGjVqZNduNpv19ddf+yGimis1NVWS1KZNG7Vp08a/wQDwKko3AAAAAACAauMvf/mLv0MIOPXr13fY3q5dOx9HAsCfSPQCAAAAAAC/SExMtGvLzs72QyTV31133eX0XEREhJKSkuzab7rpJm+GBKCaIdELAAAAAAD84rHHHvN3CAEjLS3N6TmTyaSsrCz16tVLkhQbG6s777xTTz/9tK/CA1ANUKMXAAAAAAD4Rc+ePdWyZUvl5OT4OxS/i4+P14EDBxyeu+2222QymZxe26JFCwUHB2vNmjXeCg9AAGBFb4CZMmWKUlJSNGDAALeuz87O1l/+8hcNGTJE3bt3V5cuXTRw4ECNGzdOn3/+uYqKijwcsevGjx+vbdu2cSM2AAAAAKhFGjdu7O8QqoUnnnjC6bnY2FhFRUU5PJeamqrg4GBvhQUggLCiN4Bs3LhRM2fOdPv6t956SzNmzLBL5ubk5CgnJ0dff/21UlNT9corrziskwQAAAAAANxTWFhY7vnIyMhyzw8cONBh+9ixY92OCUDNworeAJGTk6Nx48ZV+IPBmeeff15Tp061JnlDQkLUqVMn9ezZUw0bNrT2y8zM1KhRo5x+XAQAAAAAANh66KGHKuzTrFmzKs3RokULPfnkkzZtTZs21W9+85sqjQug5mBFbwDYvn277r77bh09etSt65cuXar33nvPejxo0CBNnjxZMTExkox3FRcuXKgXX3xR+fn5ys3N1fjx4/XRRx+VWwMIAAAAAABIdevWrbDPiy++qN69ezs936JFC6fnSv42f/7553X99ddr6dKlql+/vkaMGFHudQBqFxK91dzixYv19NNPKz8/363rCwsL9fLLL1uP+/fvrzfeeENBQRcXc4eGhmrkyJGKj4/X2LFjVVRUpM2bN+vTTz/VjTfeWOXHEIjcrVVsNpvLPQYABIbi4mK7tqKiIpufDzXhNd/Rz7vi4mK/1uyvjiwWS7X8mjh6zpnNZp/H6sr3SyDN543xvRlzZZ+fnv6+d2X+ysxZ2ed1ZfpbLBaHbc7iq6jNbDa79H/ryuN35/u5dOyO4ih9vrzxy4uvvHOV/do7+vqX9HV0ztEYzuZ01NcRZ18nT6hTp06FfUp/mtaRtLQ0p+dSU1OtX69LLrlEl1xyifVcdfwZBcA/SPRWU4cPH9Zrr72mRYsWVWmcZcuW6ZdffpFklGuYPHmyTZK3tH79+mnkyJGaM2eOJGn27Nm1MtFbXFysjIwMj4yVmZnpkXEAAL5V8rOztJ07d5ZbOy8QX/N37Nhh13bw4EGP/RwMVGX/6D99+nS1/Jo4KrW1a9cun8d67Ngxu7YtW7YoNzfXK/MdOnTIrm379u0e+ySao/F37NhRpRsdHTlyxK5t27ZtKigoqPRYZRM6Z8+erdT/+fbt2+3aDh065Pbz5uTJkxVee+LECbu248ePO7xu9+7ddm05OTlO59i5c6dd2y+//OKwv6OEnrP4Dx48aNeWnZ2t1NRU63FmZqbD5/mWLVtsvi+ys7MrjHH//v12fXbv3l3u17Z07I4SmKXP5+TkOB3f0WM4duyYMjIyHH4/5ObmKiMjw+FrUHZ2tmJjY+2+1qdOnbJbvFRYWGiNr+w5R98bJ0+edPg4MjIyHL5ul2WxWJSXl2fXfvbsWbs2d0omlnxi1hmLxaKtW7c6PX/99ddr7969Ts+npKRUy59FAKoXavRWQ9OnT9fgwYNtkryJiYm69957Kz3WkiVLrPt9+/ZV8+bNy+0/cuRI6/7mzZsd/iAFAAAAAKA6eOaZZzy2KlcyErKO3sCqSEREhLp06eL2vKGhoZKkl156ye7cFVdcYT0PAOUh0VsNzZo1S+fOnbMejxgxQvPnz1fr1q0rNY7FYtGaNWusx5dddlmF16SkpCg2NtZ6vHz58krNCQAAAACANzhbWe/KCtyCggK3P2ngag3clJQUt8Yv7eqrr9aYMWMUEREhSerQoYMee+yxKo8LoHagdEM1lpqaqokTJ6pXr15uXX/gwAGdOnXKZjxXpKSkWG/8tmnTJrfmDmRBQUHq3LmzW9eazWabj+6mpqZW6WN+AAD/cPQJmLZt29rUzqsJr/kXLlywa2vWrFm5NQJrg7IlAOrVq1ctvyarV6+2a0tMTPR5rI0bN7Zr69ixo+Lj470yX1xcnF1bcnKyxx63o/HbtWtXpfGbNGli15aSkqIOHTpUeqyQENs/4SIjIysVm6OVj3FxcW4/vujo6AqvdbQ6slGjRg6vc/TR9ZYtWzqd4+TJk3ZtzZs3d9jf0WN3Fn+zZs3s2pKSkmyOU1NTHX5cv2PHjjaJQUdlBMrG+NNPP9n1SUhIKPdrWzp2R6UbSp9fu3at0/Edlalo3Lix0tLSHNaUjYmJUVpamv73v//ZnUtKSlJaWprd62j9+vVtFjNJxgrWkvjCw8NtzoWFhTl8PL/5zW/07LPP2p0rq169eg7bSy+EKlFR3VxJ6t69u4qKihyWsijRtm1bh1/nEkVFReratavT8yVfV0maNm2apkyZovz8fNWvX7/C+AB4x6ZNmxy+vlZnJHqroV69emn48OG6+uqrq1RrbM+ePTbHrVq1cum60r+U7Nu3z+35A1nZX6DdFRwc7LGxAAC+46iefUhISLmv6YH4mu8o3qCgoIB7HN5mMpmq5dfE0RsL/ngeuvP9Up3n88b43oy5ss9PT3/fuzJ/Zeas7PO6Mv0dJXqdxe/o/6xsW3BwsEv/t648fne+n0vH7igRUfp8eeOXF1955yoTs8lkcvi3bUlfV/7uNZlM6tq1q+Li4spNuJb0dfQmlCMDBgzQ119/XW6f+++/X71799aTTz7ptE9ISIjT++GUKO9v8t69e9s9b8omwAGgIpRuqIamTZumgQMHVvmGEiWrciXjh3FFxeFLlC7dUHoMAAAAAAD86cEHH3Sp32233eZSv/vuu6/CPunp6S6NVZ5Zs2ZJktMVybfffnuV5wAAEr01WOmPMUVGRlb47mKJqKgoh2MAAAAAABAIBg0a5FK/oKAgl2vwVkXJat777rtPLVu2tDn36quvVstPjgAIPLySuGnAgAE6cOBAlcZISEjQ0qVLPRSRvdJ19+rWrevydaXrIRUUFHg0JgAAAAAAfCEpKUnZ2dk+m8+VUguxsbH6/vvv9cEHH+jIkSO68sordd111/kgOgC1AYneGqz0nUddXc0r2daQKioq8mhMAAAAAADURIMHD9bf/vY3h+fq1Klj3Y+Pj9cf//hHX4UFoBYh0VuDlS6OX5m7BJZO7oaGhno0JgAAAAAAappWrVrZlWQorUePHj6MBkBtRaLXTfPmzZPZbK7SGN6uwVP6YyOlyzhUpHS5htLvOgIAAAAAIElbtmzxdwgeUfoeNVVRkuS94447NHv2bJtzEydOVEREhEfmAYDykOh1U2xsrL9DqFB0dLR1/+zZs7JYLDKZTBVed+bMGet+gwYNvBEaAAAAACBAZWdna9q0af4Oo8puuOEGm0/Clqd+/fpOzz377LPW/VdffVXHjx/XsmXLVK9ePY0dO1bPPPNMVUMFAJeQ6K3BmjZtat03m83Ky8tTo0aNKrzu6NGj1v2YmBivxAYAAAAACEyLFy922F6Ze8NUB0888YTLfa+99lqn50onixs2bKhFixZVJSwAcFtgvQqjUlq3bm1znJOT49J1+/fvt+4nJCR4NCYAAAAAQGA7fvy4w/auXbv6NpAqcuUTryWSkpKcLoQq/WlaAPAnEr01WHx8vE3pha1bt7p0XVZWlnW/ffv2ng4LAAAAAFDDTJgwQY0bN/Z3GF510003OWy/7rrrfBwJADhGoreG6927t3V/9erVFfbPyspSbm6u9bhPnz5eiQsAAAAAUHOMHj3a3yG4rW7duk7PpaamWvfHjx9vl8z+17/+pcTERK/FBgCVQaK3hktPT7fur1ixQocPHy63/9y5c637SUlJSklJ8VpsAAAAAAB4WlhYWKX6P/jgg07PzZgxw7rfqVMnbd++XQsXLtTChQuVm5ur2267ze04AcDTSPTWcOnp6WrSpIkkqaCgQJMmTVJRUZHDvitXrtT8+fOtx6NGjfJJjAAAAACqt8zMTD300EOyWCz+DgWo0IABAyrV/+abb3Z6rk6dOjbHjRo10rBhwzRs2LAaX6oCQOAh0VvDhYWF6dFHH7Uer169WmPGjLG5MVtRUZE+/PBDjR8/XmazWZKUnJysESNG+DxeAAAAANXLL7/8oiuuuEJvvvmmv0MBXDJ+/HhJrt9sLSIiwum5Fi1aeCQmAPCFEH8HAO8bNmyY1q9fr3nz5kkykr3p6elKSUlRVFSUsrOzbe6a2qBBA02ZMkUhITw9AAAAgNpu2bJlysvLc3guODjYx9EA5evUqZP1edmlSxft3LnTad+SEg+RkZEaOnSoFi9ebHP+hhtuUFxcnPeCBQAPY0VvLfHss8/q3nvvVWhoqCSpuLhYW7du1U8//WST5E1KStL7779PMXkAAAAAkqSTJ086PcfNm+ENZrPZI2VCXnnllXLPd+7c2bo/Z84cPffccxo2bJjatGmj6dOna9GiRVWOAQB8iSWbtYTJZNIjjzyiIUOGaMGCBVq1apUOHTqk/Px8RUdHq0OHDho8eLCGDBlS6cL1AAAAAGqf22+/XQ8//LC/w0AVnT9/3t8h2Dlw4IBHxklISHB67r777rMuhJKMVb1PPfWUR+YFAH8h0RtAhg8fruHDh1dpjKSkJE2cOFETJ070UFQAAAAAaptly5Zp4MCB/g4DVVRcXKyhQ4f6OwyXlJRjiI6O9sh4vXv39sg4AFCdULoBAAAAAFApQUH8KVkTbNy4UZs2bfJ3GC4pKRNy3XXXuXyNyWRS3759HZ7r0aOHR+ICgOqEn84AAAAAANRCzkokdOzY0ceRVKykTEibNm3Uv39/p/3K3iDwgw8+sDmuV6+eXnrpJaWmpno8RgDwN0o3AAAAAAAAq9tuu82n81W0Qrx///6qU6eO9bhLly5asWKFw75lSzK0bNlSFotFFotFubm5atCggU1tXgCoSUj0wi/OnDmjOXPmaNmyZdq9e7cuXLigxo0bq0ePHho9erTS0tL8HSIAAAAA1DrvvPOOx+rgltixY4d27Njh9Pwll1yidevWuTyeyWRyeu6ll15yek1sbKzLcwBAIKJ0A3xu7969Gjp0qF577TVt2rRJBQUFCg0N1aFDh/TZZ5/p5ptv1j/+8Q9/hwkAAAAAtU55SVR3lZfklaQXXnihUuN17tzZYXt8fLwaNWpUqbEAoCYh0QufKioq0rhx47R//341bdpU7777rjZs2KB169Zp6dKl6t+/v4qLi/Xyyy/rm2++8Xe4AAAAAAAvKF2KoVGjRurQoYPL1/7+979XeHi4XfvIkSM9EhsABCoSvfCpL7/8Ujt37pTJZNKUKVN05ZVXKjg4WCaTSQkJCXr77bfVrVs3SdLUqVP9HC0AAAAAoLRt27ZV2MeVpO3VV1/t8pxla/jWrVtX586d09///nddddVVGjp0qF599VW9/PLLLo8JADURNXrhU99++60kqXv37taEbmnBwcH67W9/q/Xr1yszM1P5+fkO36kFAAAAABic3ZjMG7788ksVFxeX2+fVV19Venp6uX1ee+01l+e85JJLHLbfdddduuuuu1weBwBqOhK98KmOHTsqPz9fqampTvuUFMi3WCw6c+YMiV4AAAAALjt8+LC/Q/Cp48eP6/rrr/fpnF999VW556+55hqFhYWpoKDA4fnExERFRkbatLVt21Zbt2512P+JJ55wL1AAqGUo3QCfGj16tN58803dc889TvusXbtWklGzqWHDhr4KDQAAAEAN8PLLL+uBBx6QxWLxdyg+8cMPP+jChQt27REREeVe9/7771c4dnx8vKKjo92Kq6L5y3rqqaccto8aNUr16tVzKwYAqG1I9KJaOX78uObNmydJuvzyyxUSwqJzAAAAAJXz9ttva/369f4OwyecrZqtaJXvhx9+qO+++67cPsHBwZoxY4bbsVVGr169tGzZMpu2Jk2aaNKkST6ZHwBqArJoqLS8vDydOnXK5f4hISGKj4+vsF9RUZEee+wxnThxQkFBQbrvvvuqEiYAAACAGq5Zs2ZOz2VmZqp79+4+jMa3Fi9e7DTJe+mll+qWW26xHtetW9dhv4pKMEjSzTffbDOWMzExMRX2KREcHOywfeDAgTpz5ox++uknBQcH65JLLnEaOwDAHoleVNqsWbM0c+ZMl/vHx8dr+fLl5fYxm82aOHGiVq1aJUm6//77y63jCwAAAADt2rXTddddpyVLlvg7lErxVFmJsWPHaujQoXbtZUvlXXHFFQ6vP3/+vEvzBAcHy2w2Oz1/5ZVXKi4uzqatdevWOnHihMP+ffr0cTpWZGSkrrrqKpfiAgDYonQD/O7ChQt68MEH9emnn0qShgwZovvvv9/PUQEAAACo7kwmkxYuXKg//OEPXp/ryiuv9NiN3h5//HFlZGRU6hqTyWTX9sEHH6iwsLDCa1u2bKlp06ZVar7KmDt3rl2bs5q7kvTaa695LRYAqM1I9KLSJkyYoG3btrm8lbea9/jx4xo9erT1I0NDhw7VSy+95PCXGAAAAAAoq06dOho2bJjX5ykqKtIrr7zisfHGjRtn3f/hhx8q7N+rVy+7tvPnzzu8EZsjV199tV3bli1bXLq2Io7KK/z2t791uNr46aefrlSZBwCA6yjdAL/Zs2ePxowZo3379kmSbrvtNj3xxBMkeQEAAAD4VYMGDRy2u5MYdZbULFnRO3/+fP3jH/+ocJzZs2erY8eOlZ7fn+bPn6/nnntOK1askMlk0qBBg7i5GgB4ESt64ReZmZm6+eabtW/fPplMJj3++ON68sknSfICAAAA8Lvrr7/eYbK3vDq1zqSkpDiskVtSp9dZSYWyfxt16NBBt956a6Xnr6ygIPs0QevWrcu9JjQ01Gn7n//8Z61cuVLfffednnzySac3YgMAVB2JXvjcjh07dNdddykvL0+hoaH629/+prvuusvfYQEAAACAJCOxWXKj6KoymUz67LPPnJ53VvfXXzen7tmzp13bn/70J6f9e/XqpaioKG+GBABwEYle+NS5c+f0wAMP6MSJEwoLC9O0adN0ww03+DssAAAAALDRqVMnh3Vx3REVFaWBAwe63P8vf/mLWrVq5ZG5K+OWW25RWlqaXfvtt9+udu3aObxm/vz53g4LAOAiEr3wqRkzZmjPnj2SpCeeeMLhR5gAAAAAoLZq1qyZnnjiCZf7u1NOwpkJEyY4PTdv3jw1atTIehwREaHly5f7JSENAHCMm7HBZwoKCvSf//zHejx16lRNnTq13GsWLFigZs2aeTs0AAAAoFrbtGmTvv32W+Xm5vo7FHhZZcsg3H777S71a9GihcLCwlRQUOBGVFK3bt30yy+/aP369TKbzeratasiIyPdGgsA4B0keuEz27dv1+nTp63HrvyS6sl3pwEAAIBAtGDBAo0cOVLFxcX+DgWlbNmyRW+//ba/w3BZRESEnnnmmXJXC9erV6/cMerUqaM+ffp4OjQAgIeQ6A0wU6ZM0bRp0xQfH6/ly5dX+vrs7Gx98MEHWrNmjfbv36+ioiI1adJEycnJuvHGG3XNNdcoJMQ7T4vU1FRt27bNK2MDAADP2Llzp7766qsK+yUlJSkhIcEHEQF47bXXSPJWM8XFxdX6XiMtW7Z02P5///d/euqppxw+n7p06aK2bdt6OzQAgBeR6A0gGzdu1MyZM92+/q233tKMGTNUVFRk056Tk6OcnBx9/fXXSk1N1SuvvKLExMSqhgsAAALQ7NmzNXv2bJf6jh07VtOnT5fJZPJyVEDtduDAAafnOnbs6MNIUGLv3r3KyclxeK5u3bpem9eV19vOnTurX79+Ts8/+eSTeu655+zav/jiC17PASDAcTO2AJGTk6Nx48apsLDQreuff/55TZ061ZrkDQkJUadOndSzZ081bNjQ2i8zM1OjRo0q95dJAAAASXrnnXe0detWf4cB1FqtWrXSpEmT/B1GreSszm3Pnj0VExNTqbEsFovLfTt37lxhny+//FJ16tRxev6ZZ57RzJkzNWrUKN166616++23VVhYqLi4OJfjAABUT6zoDQDbt2/X3XffraNHj7p1/dKlS/Xee+9ZjwcNGqTJkydbfwEpLCzUwoUL9eKLLyo/P1+5ubkaP368PvroI97RBQCgBmvRokWVx8jKymJFIeAHa9euVZcuXbxWdg3uWbx4sct9z507pwcffFBZWVkuX3Pvvfdq4sSJ5fYJDw8v93xQUJDuvvtu3X333S7PCwAIDPxWUM0tXrxYTz/9tPLz8926vrCwUC+//LL1uH///nrjjTcUFHRxMXdoaKhGjhyp+Ph4jR07VkVFRdq8ebM+/fRT3XjjjVV+DIGobHkLV5W9eRw3kwOAwOSodmFRUZHNz4ea8JrfpEkT/eEPf9D777/v9hhms9ntn5uBwmKxVMvH6Og554//D1e+XwJpPm+M7+kx09LS1KVLF+s4leGof3FxcbnjVPW5Vpk53Z3LlescrZyt6Pu7Mqtt//SnP6lJkyZOx3M01ltvveWwr7MxIiIi9OmnnzqtD1yvXj3VqVOnWr5mAQC8j0RvNXX48GG99tprWrRoUZXGWbZsmX755RdJRrmGyZMn2yR5S+vXr59GjhypOXPmSDJq9NXGRG9xcbEyMjI8MlZmZqZHxgEA+FbJz87Sdu7cqcjISKfXBOpr/vjx49WvXz9lZ2dX2DczM1Off/65TduePXs89nOzuiibjDl9+nS1fIyOSm3t2rXL57EeO3bMrm3Lli3Kzc31ynyHDh2ya9u+fbvHPonmaPwdO3YoODjY7TGPHDli17Zt2zanH/8vq2y//Px8t/+ft2/fbtd26NChcsdz9JqYnZ2tRo0auTTniRMn7NqOHz/ucM7du3fbteXk5FT4ePfs2WPXtm/fPut1FotFn3zyiV2fkydPljv2uXPnyp23tIq+jq4u3gkNDS13nLp16yo4ONhhcvt3v/udNm/e7NI8AICah0RvNTR9+nS9++67Nr9UJCYmKj09XTNmzKjUWEuWLLHu9+3bV82bNy+3f+lE7+bNm5WTk+P0jq0AACDwBQcHq2fPnurZs2eFfSMjI+0SvQAQCD744AO9+uqrVR7H3XumSFK3bt20evXqCvsNHjy43PMNGjTQX/7yF7311ls2b/i88cYbuuyyy9yODwAQ+LgZWzU0a9YsmyTviBEjNH/+fLVu3bpS41gsFq1Zs8Z67MoP/ZSUFMXGxlqPly9fXqk5AQAAAKC6WbZsmcP2yq7UPnXqlP7yl7+4Va5n1KhRSk5OLrdP9+7ddcstt1Q41sCBA7V48WKtWbNGP/74o37++Wf169ePe6wAQC3Hit5qLDU1VRMnTlSvXr3cuv7AgQM6deqUzXiuSElJsd74bdOmTW7NHciCgoJcuputI2az2eaju6mpqVX6mB8AwD8cfQKmbdu2SktLsx7Xxtf8jRs32rW1adPG5utSE5RNlNSrV69aPkZHKwMTExN9Hmvjxo3t2jp27Kj4+HivzBcXF2fXlpyc7LHH7Wj8du3aVWn8Jk2a2LWlpKSoQ4cOLl0fFhZmcxweHu52PI7qxMbFxZU73nfffWfXlpSU5HIMjsp7NGrUyOH1e/futWtr2bJlhXPt2rXLrq1Vq1bW65wlZgcNGlTu2BEREXZtH3/8sT7++GO79oq+jpL0zjvvqH///k7PjxkzRl27di13DACAb2zatMlhnf3qjERvNdSrVy8NHz5cV199dZXekS1bp6pVq1YuXVf6Dtz79u1ze/5A5qm7FwcHB3MnZAAIQI7q2YeEhJT7ml4bXvMdJbJrw+M2mUzV8jFWl/8Pd75fqvN83hjf02NW5Tnp6LqgoKAKX98ctbkaQ2XmdHeuiq5z9HfVPffco4cffrjcsV2tQyxV/HWUVOGK3q5du1bL1xsAQGCgdEM1NG3aNA0cOLDKH7spWZUrGb90xMTEuHRd6dINpccAAAAAgEAxY8YMnTx50uG5xMREvfPOOwoNDS13jNtuu83l+Ryt/i2refPmGj9+vMNzDz30kHr37u3yfAAAlMVbhTVY6V9qIiMjHa4kcCQqKsrhGAAAAADgLStXrtRNN93ksfG+//57paen6/vvv3d7jN///vc6c+aMxo4dW26/kJAQDRo0yKUxp0yZonvvvVdbtmxRfn6+4uPj1b17dzVo0MDtOAEAkEj0um3AgAE2dzh1R0JCgpYuXeqhiOxduHDBul+3bl2XrytdA6ygoMCjMQEAAADVzaeffqoJEyZo27Zt/g6l1srJydGgQYPcusmZ5Lg0gyT9+OOPysjIqEpouu666yrs89///tflmsUmk0kdO3ZUx44dqxQXAABlUbqhBissLLTuu7qaV7KtoVVUVOTRmAAAAIDq5NSpU7rppptI8vrY+++/b3M/kBUrVig/P99h37I3o3OkvCTrU089ZXPzzMqqX79+uX9PtW/fXoMHD3Z7fAAAPIVEbw1W+oYElblLYOnkbkU1qwAAAIBAtn79+go/xRYdHe2jaGqPgoICpaSk6JtvvpEknTt3zmG/kJAQ9evXr8LxEhMT9dJLLzk8t2TJErfjlIxE77Bhw5yed7VkAwAA3kbpBjfNmzfP7Y8VlfD23VTDw8Ot+6XLOFSk9C+6derU8WhMAAAAQHVS0SfYunfvrsTERB9F4x/nz5/327x/+9vfdNVVVznts2jRIrVu3dql8SZOnKjQ0FD98Y9/rLBvZUrbScYK5CuuuELPPfeccnNzlZiYqOjoaA0cOFDPPfdcpcYCAMBbSPS6KTY21t8hVKj0yoOzZ8/KYrE4rV1V2pkzZ6z73BAAAAAAtU1qaqoSExPVuXNnPfTQQy79Dh3IXn75ZX388ceaNWuWS6tnK6thw4Zq1KiRjh8/bndu7969Tq/7/PPPK10SwdUEbnp6eqXHHTdunC677DJrW1pamtcX7wAAUBmUbqjBmjZtat03m83Ky8tz6bqjR49a92NiYjweFwAAAFCd3XPPPVq8eLGef/55ry3w6Nixo3r37q2FCxd6ZfzK2r59u37729/alHw7fvy4brrpJj300ENVGjsoKEh//etfqxqiS1z5ROL48eOdlnkAACCQkeitwcp+xCknJ8el6/bv32/dT0hI8GhMAAAAAAw//vijRowYoe3bt/tszvI+sXf48GGbvxkeeOABjyWi77rrLh08eNDhuc8//1z33XefR+a5/PLLbe5VUlZMTIymTJlCiToAQI1EorcGi4+Pt/lFbuvWrS5dl5WVZd1v3769p8MCAAAAPOqyyy5T/fr11aFDB82ePdvf4diJiIhweq64uFgrV670WSytW7fWpZde6vR86fuQlBdXVFRUpeeOi4uzq3ecmZmp6667rtJjOZOcnKyPPvpIbdq0cXi+NpTiAADUXiR6a7jevXtb91evXl1h/6ysLOXm5lqP+/Tp45W4AAAAAE85d+6cTp8+raysLN15553KyMjwd0g2Bg8erKAg5396lb4ZsreZTCYtWbJEf/nLXyrsW1hY6LC9devW6tatm6dDsxMWFubWdUOHDtXu3bt18OBBvfPOO3ruuef0wgsv6Ouvv9aTTz7p4SgBAKg+SPTWcKVvMrBixQodPny43P5z58617iclJSklJcVrsQEAAACV5cpK0lWrVvkgEtddcsklWrx4sW644QZ/hyLJKN/wxBNP6JFHHqn0tePGjdOKFSsUGhrq1tzlJbxLCw8PV8+ePd2ao0RcXJzuuecePfXUU/q///s/DRgwgNW8AIAajURvDZeenq4mTZpIMlYKTJo0SUVFRQ77rly5UvPnz7cejxo1yicxAgAAAK669tprK1zp6Wwlqj/dcMMN+u9//6ulS5f6OxS39e7dW2+//XaV7uPhykrgmJgYffbZZ6pfv77b8wAAUBuF+DsAeFdYWJgeffRRTZo0SZJRvmHMmDH685//rJYtW0qSioqKtHDhQr3wwgvWmlzJyckaMWKE3+IGAABA5a1evVr5+fnW45YtW6pr164ur6IMBJ06ddKXX36pd955R4cOHVJeXp42bNjg77A87ty5c/rjH/+o5cuXa9++fT6b97HHHtPw4cO1e/fuCj8N6I5XX31Vu3bt0tq1ax2ej4iI0IEDB9wu2wAAQG1GorcWGDZsmNavX6958+ZJMv4ASE9PV0pKiqKiopSdna3jx49b+zdo0EBTpkxRSAhPDwAAgEDy7LPP2rVdd911+vjjj2tU4uzKK6/UlVdeKUn65ptv1L9/fz9H5HkPP/ywZs6c6fN5Fy5cqIULF3pt/JYtW+rnn3/Wrl27NHDgQO3evdt6Ljw8XO+++26Neq4CAOBLZPJqiWeffVYNGzbUrFmzVFhYqOLiYm3dutWuX1JSkqZMmWJ3N1wAAAAEpiVLlujbb7/VNddc4+9QUAlff/2103Ph4eEemaOyK709uTI8MTFRu3btUk5Ojk6dOiWTyaSkpCTVqVPHY3MAAFDbkOitJUwmkx555BENGTJECxYs0KpVq3To0CHl5+crOjpaHTp00ODBgzVkyBDeQQcAAAgArVu3drnvjh07PJLoLSws1OOPP67Fixfr7NmzkqRTp05Vedza7osvvlDPnj3VrVs366fqLly44LT/4MGDPTKvK/VyS+vevbtH5i2tpJwcAACoOhK9AWT48OEaPnx4lcZISkrSxIkTNXHiRA9FBQAAAH8YMGCA+vXrp1WrVvlszhdffFFvvPGGz+arLRYvXqzFixerS5cuWr58uRo3buywX+/evXXdddfpySef9Mi8I0eO1PLly/Xee+9VeAO7K6+80mFpEAAAUH2Q6AUAAAACUHh4uL766iutXLlSOTk51vbMzEy99tprXpnz22+/dalfRESEV+av6TZu3Kjp06drwIABOnDggM25Hj166IcffvDofCEhIZo1a5beeustXXPNNVq9erXDfgcPHlRcXJxH5wYAAJ5Xc26/CwAAANQyderU0cCBA3XHHXdYt0GDBnltvoKCggr79OvXTw0bNvRaDK54/PHHFRUVpdatW+u5556TxWKx62M2m7V3714dOnTIp7FVVKrgT3/6ky677DIfRWOIiIjQp59+qtGjRyspKUmtW7dW69atNWjQIP3www8keQEACBCs6IVfLVu2TO+//742b96sgoICNWvWTAMHDtTdd9/t9z8QAAAAUL7g4GBdcsklkowbdXXr1k3PPPOMf4OSUUu4sLBQZ8+e1eTJk9WhQwf99re/tZ5fsmSJRo0apePHj/s8tg4dOmjYsGH6+OOPfT53eRo2bKh//vOf/g4DAABUAYle+M3rr7+uGTNmSJJCQ0MVFhamPXv26O9//7s++eQTvffee2rTpo1/gwQAAOV68MEH9dRTT5Xbp3Xr1po4caKuuuoq3wQFn4mOjtb333/v1xiioqIq7LNq1Sprore4uFijR4/2S5JXMm6SPG/ePK1cuVLfffedy3VvW7Ro4eXIAABAoKN0A/xiyZIlmjFjhkwmkyZMmKCff/5Z69at0/z585WYmKgjR47ogQcekNls9neoAACgHAcOHNDWrVvL3ZYuXaprr73WruYofOf+++9XcHCwdWvXrp0++OADf4flEV27dq1wcUDpG40dOHBAubm55faPjY31RGhOhYaGasCAAfq///s/l+oZh4WF6cEHH/RqTAAAIPCR6IXPFRcX680335Qk3XbbbRozZozq1q0rSerSpYtmz56tiIgI7dixQ4sWLfJjpAAAoLSSn9fuOH/+vFauXOnBaFBZxcXF1m3nzp269dZba0TyPSQkRCtWrNADDzygq6++2mF926VLl2rEiBG65557tHz58nLHa926tdLT070Vro06derooYcecnp+5MiRmj59ujIzMzVgwACfxAQAAAIXpRvgcz/88IN2794tSbrjjjvszsfFxWno0KGaO3euFi1apJtuusnXIQIAAAf69eununXr6vz5825d7+51qJz69eu71K+4uFhr1qzR8OHDvRyR97Vp00ZvvfWWJGPFbtkyB7t27dKuXbskSTNnzrS7Pi0tTVdddZVatmypW265RY0aNfJ+0L/6y1/+osGDB2vdunUqLi6WJNWrV0/XXHMNZcwAAEClkOiFz61Zs0aSlJCQoGbNmjns07dvX82dO1dr167VuXPnXPpIGwAA8K7mzZvrs88+00svvaQ9e/aU2/fMmTM6ePCgbwKDjR49eighIcH6xnp5vvrqK506dUqScTO1Sy65RB06dPB2iF4VHBxc6WuuuOIKvfHGG54PxgUmk0lXXHGFrrjiCr/MDwAAag4SvfC5HTt2SJKSkpKc9mndurUkyWw2a9euXUpNTfVJbAAAoHwDBgxw6SPkixYt0rBhw2zaHnzwQU2cONHpNVFRURo2bJheeuklhYTwa6q7QkND9c033+jNN9/Utm3brO379+/Xhg0bbPpOnz5d06dPt2mbMmVKQNeDbdq0qVq1aqV9+/a5fE1VypIAAABUF/wGDZ87fPiwJKNEgzNNmza17h89etTrMQEAAO87ffq0Tp8+7fT8kSNH9Oqrryo2NrbchDAq1qpVK/3tb3+zafvPf/6jW2+9tcJrH3roIdWrV0+nT5/W3/72N7Vr105hYWGSpMzMTK/E60kmk0kLFizQXXfdpU2bNrl0zTXXXOPlqAAAALyPRC987syZM5Kk8PBwp31Kr6oo6Q8AAAJHVcouTZo0SStWrHB6Pi4uTvfcc4/69u3r9hy1Udu2bV3ue+edd1r3c3JyvBGOV11yySXauHGjioqKZLFYdOjQIU2YMEEbNmyQxWKx9ouJidHdd99NohcAANQIJHrhc0VFRZKMjxU6U7JqRDLKNwAAgMBy6aWXqlGjRjp+/Lhb13/xxRflnv/Xv/6l9PR0tW/f3uH5+vXra+jQoerZs6fD8wcPHtT27dsdniu5IVZN06NHD40YMULz58/32JjVvcRGSXwtW7bUvHnz/BwNAACAd1Xv38xQI5Ws1i0sLHTap6CgwLpfXkIYAABUT/Xq1dOKFSv0t7/9zVqf35kffvjBrTm+/PJLffnll07PP//885Kk2NhYm/baWhYqODhYH3zwgZ588kmbG7U988wzysjIcGvMfv36eSo8AAAAVBGJXvhcZGSkJOn8+fNO++Tn51v3o6KivB6TJ1gsFj399NOaPXu2Tpw4Icm4ezUAIPCUfsMR7uvSpYv+/e9/V9jvhhtu0Geffea1OGprYteRoKAgpaWlKS0tzdp2ySWX6Morr1R2dnaF15d86iosLExXXHGF3Y3cAAAA4D8keuFzcXFxysjI0JEjR5z2Kblhm2R7Y7bq7L333tMLL7zg7zAAAAg4M2fO1J133qlVq1Y5/cTPhQsXfBzVRfHx8X6b2xfi4+OVmZmpH374QXl5eXbnY2Ji1Lt3b5vSWgAAAKh+SPTC55KTk/XFF1/YfGSwrL1790oy6qq1adPGR5FVTVZWlr9DAAB4UaB8wiQQNWvWTJ9//nmF/ebOnav77rtPJ0+e9EFUhqioKN13330+m89f6tatq6uuusrfYQAAAKAKSPTC53r37q233npLO3bsUG5urmJiYuz6rF69WpKUlpZmrelb3aWnp+ull16yuZMzAKBmaNu2rVJTU/0dRq13yy23aMSIETpw4IDTPufOndOf//xn7dy5s8I6/+vWrdP111/vtM5svXr1lJ6erlatWlUpbgAAAMAXSPTC53r06KG4uDgdOnRI7777rp544gmb8wcPHtQnn3wiyfiDLlBcddVV+vjjj/X2229bVxpFRUXJZDL5OTIAQFV06tRJEyZMoO56NRESEqLWrVuX22fu3Lk+igYAAACoPkj0wueCgoL06KOP6vHHH9e//vUv1atXT3fddZciIiK0ceNGPf744zp37pySk5N13XXX+TvcSrn++uvVokUL63FaWppCQvg2AwAAAAAAgHeRgYJfDB06VBs3btT777+vqVOnasaMGapbt67OnDkjSWrSpIneeecdBQcH+zlSAAAAAAAAoPrjM4jwmz/96U96++231bdvX0VGRurChQtq0aKFRo0apUWLFql58+b+DhEAAAAAAAAICKzorWWmTJmiadOmKT4+XsuXL6/09dnZ2frggw+0Zs0a7d+/X0VFRWrSpImSk5N144036pprrqlUqYKBAwdq4MCBlY4DAAAAAAAAwEUkemuRjRs3aubMmW5f/9Zbb2nGjBkqKiqyac/JyVFOTo6+/vprpaam6pVXXlFiYmJVwwUAAAAAAADgIko31BI5OTkaN26cCgsL3br++eef19SpU61J3pCQEHXq1Ek9e/ZUw4YNrf0yMzM1atQoHThwwCNxAwAAAAAAAKgYid5aYPv27br11lt19OhRt65funSp3nvvPevxoEGD9O2332rhwoWaM2eOVq5cqT//+c8KDw+XJOXm5mr8+PGyWCweiR8AAAAAAABA+Uj01nCLFy/W7373Ox0+fNit6wsLC/Xyyy9bj/v376833nhDMTEx1rbQ0FCNHDlSU6dOtdbn3bx5sz799NOqBQ8AAAAAAADAJdToraEOHz6s1157TYsWLarSOMuWLdMvv/wiySjXMHnyZAUFOX5/oF+/fho5cqTmzJkjSZo9e7ZuvPHGKs3vL2XrELvKbDaXewwAqDl4zQeA2oXXfQBAdUeitwaaPn263n33XZ07d87alpiYqPT0dM2YMaNSYy1ZssS637dvXzVv3rzc/qUTvZs3b1ZOTo5atmxZqTn9rbi4WBkZGR4ZKzMz0yPjAACqP17zAaB24XUfAFDdULqhBpo1a5ZNknfEiBGaP3++WrduXalxLBaL1qxZYz2+7LLLKrwmJSVFsbGx1uPly5dXak4AAAAAAAAAlceK3hosNTVVEydOVK9evdy6/sCBAzp16pTNeK5ISUmx3vht06ZNbs0NAAAAAAAAwHUkemugXr16afjw4br66qtlMpncHmfPnj02x61atXLpuhYtWlj39+3b5/b8/hIUFKTOnTu7da3ZbLb5CFdqaqqCg4M9FRoAoBrhNR8Aahde9wGgdtm0aZOKi4v9HUalkOitgaZNm+aRcUpW5UpG8jMmJsal60qXbig9RiAJCfHMt0ZwcLDHxgIAVG+85gNA7cLrPgCguqFGL5w6efKkdT8yMlJBQa49XaKiohyOAQAAAAAAAMA7ePvRTwYMGKADBw5UaYyEhAQtXbrUQxHZu3DhgnW/bt26Ll8XFhZm3S8oKPBoTAAAAAAAAADssaIXThUWFlr3XV3NK9mWPSgqKvJoTAAAAAAAAADskeiFU6VvLFCZ4tOlk7uhoaEejQkAAAAAAACAPUo3+Mm8efNkNpurNIa3C/+Hh4db90uXcahI6XINderU8WhMAAAAAAAAAOyR6PWT2NhYf4dQoejoaOv+2bNnZbFYZDKZKrzuzJkz1v0GDRp4IzQAAAAAAAAApVC6AU41bdrUum82m5WXl+fSdUePHrXux8TEeDwuAAAAAAAAALZI9MKp1q1b2xzn5OS4dN3+/fut+wkJCR6NCQAAAAAAAIA9Er1wKj4+3qb0wtatW126Lisry7rfvn17T4cFAAAAAAAAoAwSvShX7969rfurV6+usH9WVpZyc3Otx3369PFKXAAAAAAAAAAuItGLcqWnp1v3V6xYocOHD5fbf+7cudb9pKQkpaSkeC02AAAAAAAAAAYSvShXenq6mjRpIkkqKCjQpEmTVFRU5LDvypUrNX/+fOvxqFGjfBIjAAAAAAAAUNuR6EW5wsLC9Oijj1qPV69erTFjxtjcmK2oqEgffvihxo8fL7PZLElKTk7WiBEjfB4vAAAAAAAAUBuF+DsAVH/Dhg3T+vXrNW/ePElGsjc9PV0pKSmKiopSdna2jh8/bu3foEEDTZkyRSEhPL0AAAAAAAAAXyATB5c8++yzatiwoWbNmqXCwkIVFxdr69atdv2SkpI0ZcoUJSYm+iFKAAAAAAAAoHYi0QuXmEwmPfLIIxoyZIgWLFigVatW6dChQ8rPz1d0dLQ6dOigwYMHa8iQIQoLC/N3uAAAAAAAAECtQqK3Fhk+fLiGDx9epTGSkpI0ceJETZw40UNRAQAAAAAAAKgqbsYGAAAAAAAAAAGORC8AAAAAAAAABDgSvQAAAAAAAAAQ4Ej0AgAAAAAAAECAI9ELAAAAAAAAAAGORC8AAAAAAAAABDiTxWKx+DsIwN/Wrl1rcxwU5P57IMXFxR4ZBwBQ/fGaDwC1C6/7AFB7lH7Nl6QePXr4KRLXhfg7AKA6KvvN7O9xAADVH6/5AFC78LoPAKhueAsSAAAAAAAAAAIcK3oBB/gYFgAAAAAAQO0ViJ/coEYvAAAAAAAAAAQ4li0CAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEOBK9AAAAAAAAABDgSPQCAAAAAAAAQIAj0QsAAAAAAAAAAY5ELwAAAAAAAAAEuBB/BwDAuWXLlun999/X5s2bVVBQoGbNmmngwIG6++671bBhQ3+HBwDwsry8PF1//fWqW7euli9f7u9wAAAecubMGc2ZM0fLli3T7t27deHCBTVu3Fg9evTQ6NGjlZaW5u8QAQAelJ+fr3//+99asmSJ9uzZo5CQECUkJOiGG27QLbfcojp16nhkHpPFYrF4ZCQAHvX6669rxowZkqTQ0FCFhYXp7NmzkqQmTZrovffeU5s2bfwYIQDAmwoLCzVu3Dh99913io+PJ9ELADXE3r17deedd2r//v2SpLCwMIWEhOjcuXOSpKCgID322GO68847/RkmAMBDjh49qttvv107d+6UZOR4TCaTCgoKJElJSUmaPXu2mjZtWuW5KN0AVENLlizRjBkzZDKZNGHCBP38889at26d5s+fr8TERB05ckQPPPCAzGazv0MFAHhBfn6+Hn74YX333Xf+DgUA4EFFRUUaN26c9u/fr6ZNm+rdd9/Vhg0btG7dOi1dulT9+/dXcXGxXn75ZX3zzTf+DhcA4AGPPvqodu7cqYYNG+rNN9/U+vXrtWHDBv39739XXFycsrOz9dBDD3lkLhK9QDVTXFysN998U5J02223acyYMapbt64kqUuXLpo9e7YiIiK0Y8cOLVq0yI+RAgC8Ydu2bRoxYoS++uorf4cCAPCwL7/8Ujt37pTJZNKUKVN05ZVXKjg4WCaTSQkJCXr77bfVrVs3SdLUqVP9HC0AoKrWrFmjH3/8UZL00ksvadCgQQoNDVVwcLAuv/xyvfLKK5Kk9evX6+eff67yfCR6gWrmhx9+0O7duyVJd9xxh935uLg4DR06VJJI9AJADXL+/HlNnjxZw4YN044dOxQTE6P+/fv7OywAgAd9++23kqTu3btbE7qlBQcH67e//a0kKTMzU/n5+T6NDwDgWatXr5YkxcfH66qrrrI736tXL0VFRUkyXverikQvUM2sWbNGkpSQkKBmzZo57NO3b19J0tq1a621vAAAgS03N1fz5s2T2WzWoEGD9Mknn6hTp07+DgsA4EEdO3bUoEGDHP6xXyI2NlaSZLFYdObMGR9FBgDwhkceeUSrVq3SO++84/B8cXGxSm6fFhoaWuX5Qqo8AgCP2rFjhySjGLczrVu3liSZzWbt2rVLqampPokNAOA9JpNJffv21bhx43TJJZf4OxwAgBeMHj1ao0ePLrfP2rVrJUl16tRRw4YNfREWAMCLYmNjrW/ilfXJJ5/o7NmzMplM6tOnT5XnItELVDOHDx+WZJRocKb0nRiPHj3q9ZgAAN4XHx+v2bNn+zsMAIAfHT9+XPPmzZMkXX755QoJ4U92AKhpzp8/r71792rBggX6z3/+I8ko3Vnegj9X8VMDqGZKPp4VHh7utE/JzdlK9wcAAAAQuIqKivTYY4/pxIkTCgoK0n333efvkAAAHrZ3716lp6dbj00mkx5//HHdeeedHhmfGr1ANVNUVCSp/NosYWFh1n2z2ez1mAD8f3v3H2t1Xf8B/Hnh3is3KWHQJcHih+1emVRzNTFyNXMha0UrR/RDymZiprJiFVTWxFiD5VbXS8hc1pq6Qpkz55xL0hyOzb9oBMaFSPRiSDgow4vcH9zvH3w9XhL0/joczv08Hpvb+835nM95/cNz88ln7w8AQPn09PRk2bJleeqpp5IkN9xwg+PZAEagffv2pa6uLm9729uSHD+Pfe3atfnlL385LPdX9MIZ5rWndbu6uk55TWdnZ2k9HId1AwAAlXH06NEsWbIkDz/8cJJk/vz5ueGGGyo8FQDl8IEPfCB/+ctfsmXLljzxxBNZsGBBDh8+nNbW1rS0tAz5/opeOMOcffbZSY6f2XIqR44cKa3Hjh1b9pkAAIDhd/DgwXz1q1/Nxo0bkySf+cxnsmrVqtTU1FR4MgDKoaGhoXT++uTJk7Ny5cosWrQoSfLrX/86Bw8eHNL9Fb1whnntJWz/+te/TnnNay9sS058MRsAAFAd9uzZk4ULF2bLli1Jkq985StZvXp1Ro8eXeHJADidrr766iTHH/hra2sb0r0UvXCGaWpqSpI8++yzp7zmueeeS5LU1tZm2rRpp2MsAABgmGzbti1f+MIX8vzzz5dexPPDH/7Qk7wAI8yePXvy5JNPZseOHae8prGxsbQ+dOjQkH5P0QtnmNmzZydJdu3alZdeeumk12zevDnJ8bNdXjvTFwAAOPPt2rUr11xzTQ4dOpS6urrcdtttueaaayo9FgBlsHz58ixevDitra2nvGb37t2l9ZQpU4b0e4peOMN88IMfzLve9a709vbmzjvvfMPn+/bty0MPPZQk+eIXv3i6xwMAAAapo6MjN954Y/7973+nvr4+a9euzac+9alKjwVAmXzsYx9Lkvz5z3/Ozp073/B5b29vbr/99iTHS973ve99Q/o9RS+cYUaNGpWlS5cmSX7729+mtbU1HR0dSZKtW7fma1/7Wjo6OtLU1JRPfvKTlRwVAAAYgHXr1mXPnj1Jkh/84Af56Ec/WtmBACirq666KpMmTUp3d3euvfbabNy4MV1dXUmSf/zjH7nxxhvz+OOPp6amJjfffHNGjRpaVVvT29vbOxyDA8PrJz/5Se65554kx8/iHTNmTA4fPpzk+Pkt69evz+TJkys5IgBl1tramjVr1mTKlCl5/PHHKz0OAEPQ2dmZOXPm5L///W+SZOLEiW/5nQ0bNuTcc88t92gAlFFbW1sWL16cF198MckbO576+vrccsstufLKK4f8W7VDvgNQFj/60Y/y4Q9/OPfee2+2b9+ejo6OnHfeebnsssty/fXXZ8KECZUeEQAA6KedO3eWSt4kp3wfR189PT3lHAmA06C5uTkPPfRQ7r777jz22GN57rnn0tXVlWnTpmXOnDm5+uqrM3Xq1GH5LU/0wv9oaWnJ2rVrB/X01O7du/P73/8+Tz/9dPbu3Zvu7u40Njamqakpn/70p/OJT3witbX+fQXgTCP7AYpB3gMUS9FyX9ELfWzdujVf+tKX0tXVNeAQaG1tzbp169Ld3X3Ka2bNmpWf/exnmTFjxnCMC8AwkP0AxSDvAYqliLnvZWzw/9rb2/PNb36zdCj2QKxcuTJr1qwpBUBtbW0uvPDCfOhDH8r48eNL123bti2LFi3KCy+8MGxzAzB4sh+gGOQ9QLEUNfcVvZDj52V9+ctfzoEDBwb83UcffTR33313aX/FFVfkySefzAMPPJB77703mzZtyq233pqGhoYkx8/iuummm+JheoDKkv0AxSDvAYqlyLmv6KXw/vCHP+Tzn/989u/fP+DvdnV1ZfXq1aX9ZZddll/84hcnvEG3rq4uCxcuzJo1a0pnt2zfvj0PP/zw0IcHYFBkP0AxyHuAYil67it6Kaz9+/dn2bJl+d73vpcjR44M6h6PPfZY/vnPfyY5/ij/j3/844wadfK/VpdeemkWLlxY2v/mN78Z1G8CMHiyH6AY5D1Ascj94xS9FNIdd9yRefPm5cEHHyz92YwZM/KNb3xjQPd55JFHSus5c+Zk8uTJb3p93xDYvn172tvbB/R7AAye7AcoBnkPUCxy/3WKXgrprrvuSkdHR2m/YMGC3H///Zk6dWq/79Hb25unn366tP/IRz7ylt9pbm7OO9/5ztJ+IG98BGBoZD9AMch7gGKR+6+rrfQAUEmzZs3KsmXLcvHFFw/4uy+88EJefvnlE+7VH83NzaUDwf/6178O+HcBGBrZD1AM8h6gWOS+opeCuvjii/O5z30ul19+eWpqagZ1jz179pywf8973tOv75133nml9fPPPz+o3wZg4GQ/QDHIe4BikfuvU/RSSGvXrh3yPV77F5skGTVq1AlvYXwzfR/r73sPAMpL9gMUg7wHKBa5/zpn9MIg/ec//ymtzz777FO+ifF/jR079qT3AODMJ/sBikHeAxTLSMl9RS8M0tGjR0vrMWPG9Pt79fX1pXVnZ+ewzgRAecl+gGKQ9wDFMlJyX9ELg9TV1VVa9/dfepKktvb1E1O6u7uHdSYAykv2AxSDvAcolpGS+4peGKTRo0eX1seOHev39/r+xa+rqxvWmQAoL9kPUAzyHqBYRkruK3phkBoaGkrrvo/4v5W+j/KfddZZwzoTAOUl+wGKQd4DFMtIyX1FLwzSOeecU1q/8sor6e3t7df3Dh8+XFqPGzduuMcCoIxkP0AxyHuAYhkpua/ohUGaNGlSad3T05NDhw7163sHDhworSdOnDjscwFQPrIfoBjkPUCxjJTcV/TCIE2dOvWEfXt7e7++t3fv3tJ6+vTpwzoTAOUl+wGKQd4DFMtIyX1FLwzSlClTTngs/29/+1u/vrdjx47S+oILLhjusQAoI9kPUAzyHqBYRkruK3phCGbPnl1ab968+S2v37FjR1566aXS/pJLLinLXACUj+wHKAZ5D1AsIyH3Fb0wBHPnzi2tn3jiiezfv/9Nr//d735XWp9//vlpbm4u22wAlIfsBygGeQ9QLCMh9xW9MARz585NY2NjkqSzszPLly9Pd3f3Sa/dtGlT7r///tJ+0aJFp2VGAIaX7AcoBnkPUCwjIfcVvTAE9fX1Wbp0aWm/efPmXHvttScc2t3d3Z377rsvN910U3p6epIkTU1NWbBgwWmfF4Chk/0AxSDvAYplJOR+baUHgGr32c9+Nlu2bMn69euTHA+CuXPnprm5OWPHjs3u3btz8ODB0vXjxo1LS0tLamv99QOoVrIfoBjkPUCxVHvunxlTQJVbsWJFxo8fn7vuuitdXV05duzYSd/QeP7556elpSUzZsyowJQADCfZD1AM8h6gWKo59xW9MAxqamry7W9/O/Pnz8+GDRvy1FNP5cUXX8yRI0dyzjnnZObMmZk3b17mz5+f+vr6So8LwDCQ/QDFIO8BiqWac7+mt7e3t9JDAAAAAAAweF7GBgAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAFBgW7ZsSXNzc+m/9vb2So8EAMAgKHoBAKDAtm/fXlqPGzcu7373uys4DQAAg6XoBQCAAutb9M6aNauCkwAAMBSKXgAAKLBt27aV1opeAIDqpegFAICCevXVV7N79+7SXtELAFC9FL0AAFBQO3bsSE9PT2mv6AUAqF6KXgAAKKi+5/NOnDgx5557bgWnAQBgKBS9AABQUH2L3gsvvPAtr9+6dWs+/vGPp7m5Oc3NzbnooovyyCOPlHNEAAD6qbbSAwAAAJXRt+h9q2Mb7rnnnqxatSpdXV1JkunTp2fNmjV573vfW9YZAQDoH0UvAAAU0NGjR/P3v/+9tD9V0fvKK6/k5ptvPuHJ3SuuuCI//elPM3bs2LLPCQBA/yh6AQCggNra2tLd3V3an6zo3blzZ5YsWZJnn302STJ69OgsXbo0X//610/bnAAA9I+iFwAACmjbtm2ldWNjYxobG0/4/MEHH8wtt9ySI0eOJEkmTJiQn//855k9e/ZpnRMAgP5R9AIAQAGd6nzeo0ePZuXKlbnvvvtKf3bRRRelpaUlkyZNOq0zAgDQf4peAAAooJMVve3t7VmyZEmeeeaZ0mdXXXVVli9fnrq6utM+IwAA/afoBQCAguns7HzDi9g2btyY73//+3n55ZeTJA0NDbn11lszf/78So0JAMAAKHoBAKBg2tra0tXVVdo/+uijeeCBB0r7adOm5fbbb09zc3MlxgMAYBBGVXoAAADg9Op7bEOSE0reyy+/PBs2bFDyAgBUGUUvAAAUTN+i96yzzjrhs9mzZ+ftb3/76R4JAIAhUvQCAEDB9C16Fy9enEsvvbS0X7VqVf70pz9VYiwAAIZA0QsAAAXS2dmZnTt3lvazZs1KS0tLmpqakiTHjh3Ld77znTcc7wAAwJlN0QsAAAWyc+fOE17ENnPmzIwdOzbr1q3LxIkTkyQdHR257rrrsm/fvkqNCQDAACl6AQCgQJ555pnSesKECZk0aVKSZMqUKbnjjjsyZsyYJMmBAwdy3XXX5fDhwxWZEwCAgVH0AgBAgWzbtq20njlz5gmfvf/978/q1atTU1OTJGlra8u3vvWt9PT0nNYZAQAYOEUvAAAUSN+zdy+44II3fD5v3rwsXbq0tN+0aVNWrFhxWmYDAGDwFL0AAFAQXV1dJ7yI7X+f6H3N4sWLc+WVV5b269evz69+9auyzwcAwOApegEAoCB27dqVzs7O0v5URW+SrFixIpdccklpf9ttt+WPf/xjWecDAGDwFL0AAFAQfY9taGhoyPTp0095bV1dXVpbWzNjxowkSW9vb7773e9m69atZZ8TAICBU/QCAEBB9H0RW1NTU0aNevP/HXjHO96RO++8M+PHj0+SvPrqq7n++uuzd+/ess4JAMDA1fT29vZWeggAAAAAAAbPE70AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOUUvQAAAAAAVU7RCwAAAABQ5RS9AAAAAABVTtELAAAAAFDlFL0AAAAAAFVO0QsAAAAAUOX+D7Ny4nMtKEUMAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "check_B(r, deadtime, bintime, max_k=1000, linthresh=1e-16);" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 3036.28it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRYAAARHCAYAAACGfj84AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT59sH8G8SAgiISFVwUSe4Z9U6q9aqtdZdrdZR67Za9561Vq3WiVatq646cWvrXuCeOKFOEBVR9s56/+Dl/HJICAmQgX4/19WrOSfnPOcJJifn3Lmf55ZoNBoNiIiIiIiIiIiIiEwgtXYHiIiIiIiIiIiIKO9hYJGIiIiIiIiIiIhMxsAiERERERERERERmYyBRSIiIiIiIiIiIjIZA4tERERERERERERkMgYWiYiIiIiIiIiIyGQMLBIREREREREREZHJGFgkIiIiIiIiIiIikzGwSERERERERERERCZjYJGIiIiIiIiIiIhMxsAiERERERERERERmYyBRSIiIiIiIiIiIjIZA4tERERERERERERkMgYWiYiIiIiIiIiIyGR21u4AEb2/fH19sXz5cgBA3bp1sXnz5hy3OXHiROzduxcA0LFjR8ybNy/HbZrDf//9h2vXrqF79+56n+/VqxeuXLkCABg2bBiGDx9uye6RCQIDA7Fr1y5cvXoV4eHh0Gg08PDwQOXKldG+fXs0adIEEonELMd+/Pgxtm/fjsuXL+PFixdQKpUoUqQIvL298fXXX+OLL76AnZ1pX+UXL16En58fbt26hTdv3sDOzg6enp6oWbMmOnbsiE8++cSk9lJTU3H48GH8888/uH//PqKjo+Hi4oKiRYuiSZMm6Ny5M7y8vExq8+nTp/Dz88O1a9cQEhKC2NhYODg4oFChQqhRowZatmyJ5s2b58rfffny5fD19QWQe5/F3G5z9+7dmDJlCgAgKCgox/0DAI1Gg759++LixYsAgE2bNqFevXpG72+Oz8WbN29w4MABnDlzBiEhIYiMjISjoyNKlCiBunXrolu3bihbtqzR7UVHR2PPnj24ePEigoODER0dDQAoWLAgKlasiCZNmqBjx45wdHTMsi2NRoPatWsjISHBpNc0YsQIDB061KR93mcf6nffixcv8PnnnwvLJ0+eRIkSJXLc7vXr1/H69Wt89dVXep9v3rw5wsLCAABz585Fp06dcnxMMo/c/m42RW6fzzUaDU6cOIEDBw7gzp07ePfuHfLlywcPDw98+umn6Ny5MypUqGBSH8PDw7Fr1y5cuXIFT548QUxMDOzs7ODu7o6qVauiefPmaNOmjVHXRJGRkahfv75JxweA+fPno3379ibvR/QhYGCRiCgXJSUlYfny5di4cSPatm2baWCRbJ9CocAvv/yCHTt26Dz37NkzPHv2DIcPH0ajRo0wd+5cFClSJFeP7+vri1WrVkGpVIrWh4aGIjQ0FCdPnkSVKlWwYMEClClTJsv24uPjMWHCBJw4cUK0PiUlBY8fP8bjx4+xe/dutGvXDtOnT0f+/PmzbPPx48cYMWIE/vvvP9H6qKgoREVF4f79+1i3bh1++uknDBgwIMsbk8TERMydOxe7du2CRqMRPadQKBAfH49nz55h3759qFSpEhYvXoxSpUpl2c/MPHz4EKtWrcr2/pZo88WLF/jtt99yrb1027ZtE4KKpjDX52LDhg1YtmwZEhMTdY734MEDPHjwAJs3b0b//v0xatQoSKWZD7rRaDTYsmULFi5ciKSkJJ3nX716hVevXuHUqVPw9fXFnDlz0LRpU4P9e/78uclBRSJziYqKwu+//w4/Pz/8+OOP1u4O5YA5vpuNZY7zeXh4OEaNGoXr16+L1qempiImJgbBwcHYvHkzvv/+e4wePRr29vYG21MqlfD19cW6deugUCh02kxMTMSLFy/wzz//YNmyZVi0aBGqVatmsM0HDx5k+TqIyDQMLBIR5aI5c+Zg586d1u4G5ZBGo8HIkSNFF/oODg7w8fGBTCbDf//9h/j4eACAv78/+vTpgx07dsDV1TVXjj979mxRhq+dnR18fHyQL18+PH78GFFRUQCAu3fvolevXti5cyeKFy+eaXspKSn44YcfcPv2bWGds7MzvL29oVKpEBwcjOTkZADAgQMH8OrVK6xfv97gBf/Tp0/x3XffCX0BgMKFC6N06dKIjo7Gf//9B41GA4VCgYULFyI2NhZjx47NtL3k5GT88MMPuHnzpmh9mTJlULhwYSQmJiIoKAipqakAgPv376NLly7YunUrfHx8Mm03MwqFAhMnTtS5UcmJ3G4zMjISAwcORGxsbK60l+7FixdYsGCByfuZ43Oh0Wgwa9Ys/P3338I6mUwGLy8vFC5cGOHh4Xj+/DkAQK1W488//0RMTAxmzZqVaZtz587Fxo0bRes8PDzg5eUFlUqFJ0+eCNmL7969w+DBgzF37lx07Ngx0za1b0Td3NxQpUqVTLfVZmq2LpExxowZg4CAAGt3g3LIHN/NxjLH+TwyMhI9e/ZESEiIsM7NzQ3lypVDUlISgoKCoFQqodFosGHDBrx58waLFi3KtD21Wo1Ro0bh2LFjovUlS5ZE0aJFkZqaiuDgYOEHqdDQUPTo0QN//vknGjRokGm72udzDw8PlC9fPtNtteX2D8hE7xMGFomIclFuBinIetavXy+62O7RowdGjx4tZAokJyfjr7/+gq+vL5RKJZ48eYLJkycLQ/9z4t9//xUFFVu1aoXp06ejUKFCANLeY3v27MHcuXORlJSEt2/fYvjw4fDz88s0I/C3334TblwkEgmGDx+Ofv36CUNAY2Nj4evri02bNgEArl69ioULF2LSpEl621OpVBg5cqQQVCxQoABmzZqFVq1aCX0IDQ3F1KlTcenSJQDAmjVrULNmTdFwQG1z584VBRVbt26NcePGiYYLJiUlYfPmzVi2bBkUCgXi4uIwZMgQHDlyxKjhrNpWr16d61kLudnmq1evMHDgQDx+/DhX2kun0WgwefJkncxAY5jjc7FmzRpRULFVq1YYN24cSpYsKay7f/8+pkyZgvv37wMAduzYgaZNm6J58+Y67R05ckQUVKxQoQKmT5+O2rVrC+vUajVOnDiBWbNmISIiAhqNBtOmTUPFihUzHZ738OFD4XHz5s0xd+7cTF8TkbnxWuP9kNvfzaYwx/l80qRJQlDRwcEBkyZNwjfffCMMT46IiMCcOXNw5MgRAMDhw4dRo0YN9O7dW297a9euFQUV69WrhylTpoh+TFQoFNi7dy/mzZuHhIQEKBQK/PTTTzhy5EimgUDt7+muXbti2LBhBv9WRJQ1Fm8hojxl3rx5CAoKQlBQkM3Or2iMzZs3C6/jQ5ljKq+IjIzEihUrhOXu3btjxowZouFHjo6OGDx4sChr6vjx47hx40aOjq1QKETDXps1a4YlS5YIQUUAkMvl6NatG5YvXy5crN+7dw+HDh3S2+ajR4+wfft2YXnMmDH48ccfRYE4V1dXTJkyRTSkbuvWrXjx4oXeNnft2iUEWuzs7LBq1Sq0bt1aFNgsWbIk1q5dK5rHaOHChVCpVDrtPX36FLt27RKWu3btiqVLl+rMQZYvXz4MHDgQS5cuFdaFhYUJN13GsvUh0P7+/ujYsSOCg4NzpT1tf//9Ny5fvmzyfub4XLx48UKYixJIu7FdunSpKKgIAJUqVcLGjRvh6ekprFuzZo1Oe2q1Gr///ruwXLFiRWzbtk0UVAQAqVSKli1bYtu2bShYsCCAtM+e9r4Zad+IZidDlsgaTp06JVxrcH5F22KO72ZjmeN8fv78eZw5c0ZYnjdvHrp37y6a87Bw4cJYvHgxOnToIKz7448/hMxIbbGxsaLv1MaNG2P9+vU651+5XI6uXbvir7/+goODAwAgLi5O9Poy0v6hyNS5HolIPwYWiYiItOzevVuYS83NzQ3jx4/PdNvOnTuL5mbbsGFDjo59/PhxvHz5EkBawG769OmZziXXqFEjdOvWLctjb968WQjmlSlTBv369cv0+MOGDYO3tzeAtEDLli1b9G6nHcjr3LkzatWqpXc7uVyO3377DXK5HEDanIxnz57V2e7gwYNCH93c3LLMxvj888/RsmVLYfnw4cMGt9emUCgwYcIEIeMnN+aryq02Y2NjMW/ePAwYMEA0xDy3hIaGCsEzU4ftm+NzsX79emFoe4UKFTB16tRMs25dXV0xePBgYfnmzZuIiYkRbXPlyhWhUAUAzJw5E05OTpn2s2TJkqIb9oCAgEz/7tqBRd6IElFOmeO72VjmOJ9rZ4o3atQIbdq0ybTNGTNm4KOPPgKQNl9oelFGbcePHxf6KJfL8csvvxgszFKtWjX06NFDWP7333/1/pCZkpKCp0+fCsv8oYgodzCwSEREpOWff/4RHn/55ZcGAxMARMG9c+fOZWuIabr04UEA0KBBAxQrVszoY9+7dw+hoaGi59VqNY4ePSosd+rUyWDRC6lUiq5duwrL2vume/jwoWh4bpcuXQz20cPDA82aNROW//33X51t0odLA2nDTLP6mwMQDal++PChEKDKyqpVq4RshQ4dOqBixYpG7WfuNnft2oUvvvgCGzZsgFqtBpCW3WFoXkpTaDQaTJkyRXh/Tpw40aT9c/tzoVAocPDgQWF5ypQpkMlkBtts3bo1evbsiWHDhmHy5Mk6N43a76PixYujRo0aBtsDxO8jtVotDLfWFhkZiTdv3gjLDCwSUU6Y47vZFLl9Po+JicGFCxeE5c6dOxtsz8nJCe3atROWs7ouqFmzJooWLWqwTUB8Po+Ojta5JgKAoKAg4bvDxcUlV6qzExHnWCQiC4uPj8fff/+No0ePIiQkBEqlEkWKFEGdOnXQtm1bfPrppwb3nzhxovDLZseOHXWGQ+/Zs0fIdvrhhx8wYcIEqNVq/Pvvvzh8+DAePHiAt2/fIl++fChRogSaNm2Kb7/9FoULF87R69L3i+fevXtFv8IGBQUJj3v16oUrV64ASPslOuNwaF9fX2Eem5kzZ6J79+5ITEzEwYMHcfDgQTx79gyxsbEoVKgQKlSogG7duuGzzz4TtfH06VNs374d/v7+QhZciRIl0KRJE3z//fdGv+bIyEjs2bMH58+fx9OnTxEVFQUnJycUKVIE9erVQ7t27bKswJdXREdHizKTGjVqlOU+n376KWQyGVQqFZKTk3HhwgW0aNHC5GNrNBrRENWGDRtmuY+Pjw8KFy6MiIgIAGnD3vr06SM8//DhQ1EGljGvR/u4L1++xMOHD0WBFO2L/QIFCqBq1apGtZk+T9KZM2eg0WhEmWnv3r0THpctWzbL9oC0LAtt0dHRWU6s/uDBA6xevRpAWtBu8uTJOZ5bKbfa3LJli1BQBABatGiBmTNn4smTJznqXzrtIdCNGjVC586dMXnyZKP2Ncfn4vr160JRmlKlSqFu3bpZtlmwYEFMmzYt0+cjIiIglUqhVqtRrly5LNsDdN9H+jIWtV+7p6enzj6W8PjxY+zduxdXr17Fs2fPEB8fDxcXF7i7u6N69epo0qQJWrVqZTA4++LFC9GNt77v0Jy4ePEi/Pz8cOPGDbx58wbOzs7w8vJCmzZt0LVrVzg7O5vcZm5//6jVapw+fRoBAQG4efMmIiIiEB0dDblcDldXV3h5eaFOnTro2LGjzpD8zCQmJmLPnj04duwYgoKCkJCQgEKFCqFKlSro2rUrmjRpYvLr1ifjv1+65cuXC9cLxYsXx6lTp4TnmjdvLmTxzp07V2c4tPY11Zo1a9CkSRNER0djz549+PfffxEaGorExER4eHigatWq6NGjh87UAnfv3sWOHTtw5coVvH79GnZ2dihVqhRatGiBnj17Gp3BHRYWhr1798Lf3x8vXrxAdHQ0XFxcUKxYMTRo0AAdO3Y0+vvB1pnju9lY5jifX7lyRQjWSSQSo65fGjZsKGQ/3rhxAzExMShQoIDw/Nu3byGRSKDRaHJ0Pi9VqpRonfYwaB8fn0yz5M0pMDAQBw4cwPXr1/HixQskJSUhf/78KFSoEGrVqoXmzZvrXNMT2ToGFonIYgIDAzFixAghyJXu2bNnePbsGXbt2oXPPvsM8+bNg7u7e64c88WLFxg7dqxOpdmUlBRER0fj7t27WL9+PWbMmCGa88XWBAYGYuzYsUJ11HRhYWEICwvDyZMn0bVrV8ycORMymQwbN27EggULdCZ4Dw4ORnBwMPbs2YPVq1dneUP2119/YdmyZcJwlHSpqamIjo5GcHAwNm/ejNatW+OXX37JcVVk7cBwTui7gTJGUFAQNBqNsFy5cuUs93FycoKXl5cwtObOnTvZCiyGhYWJqv8aW3XWx8dHCCzeuXNH9Jz2BbRcLjeq8mHp0qXh6OgoVKK8c+eO6OZFu82KFSsadVGuvX9MTAxCQkLw8ccfC+uOHj2KlJQUhIeHGx18yDjHlPYNiT4ZKzbPnDkzy32yYo42S5UqhbFjx+KLL74AgFwJLGoPgXZxccHs2bNN2t8cnwvtebrq1atnUn8y8+uvv+Lnn39GREQElEqlUftkfB/pO4dZcxi0Wq3GggUL8NdffwmZrOmio6MRHR2NJ0+eYO/evShVqhR+++03ozI1c1NkZCQmTJiAc+fO6e1fYGAgtmzZgiVLlpjUbm5///j7+2P27NmiYZDpFAoFEhMT8fr1a1y5cgWrV69G//79MXLkSIPnuAsXLmD8+PHCOTjdq1ev8OrVKxw/fhytW7fGTz/9ZMIrt56zZ89i8uTJePv2rWj98+fP8fz5cxw6dAjDhw/HsGHDoFKpsHTpUqxZs0bnvXn37l3cvXsXfn5+2LBhg8EgrUqlwpIlS/DXX3/pZJ5HRUUhKioK9+7dw/r169G1a1dMnjw5x1WRtX+8zYlNmzZl6/xlju9mY5njfK79ekqUKGHU96B239VqNe7duyeq5LxhwwakpqbizZs3BodAa7P183lKSgqmTJkiytZPFxkZicjISAQHB2P79u2oXLkyFi1apBMYJbJVDCwSkUWEhYWhX79+QuCkYMGCKFu2LJKSkhAUFCTcBJ49exa9evXC5s2bcxxcjIyMRN++fYUKda6urihXrhw0Gg0eP34s9CUxMRGTJk2Ch4eHqNCEKdJ/8Q0ODhaGzBUpUkSYEycngoKC8PvvvwuTWxctWhQlS5ZETEwMgoODhQvEnTt3onz58lAoFJg/fz6AtKp8FSpUgEwmQ3BwsNBGZGQkhg8fjn/++UfvEJj0YZN+fn6i9R9//DE8PT2RmJiI4OBgpKSkAEgbxvLff/9h48aNOc7+tKZnz54Jj+3t7Y0aegOkXUinX3Cnv99ycmwA8PLyMvrY6TIeW7vN4sWLG3VxLpFIUKxYMSGglTGYrd2mdnDQ2D6mt5lxXwcHB6NfMyAeCla8eHFh0vbM/PHHH8LNT9u2bbMV/DVnm5UqVULfvn3Rtm1bo2+ijJGxCvT48eONfl+nM8fnQjuDW/um+sKFCzhw4ABu3ryJ8PBwODg4oGTJkmjWrBm6d++e5feCnZ2dSa8v45DCMmXK6GyTsXDLmzdvsGfPHpw7dw6PHz9GQkIC3Nzc4O3tjebNm6Nz587Ily+f0X0wZM6cOaIq8Y6OjihbtixcXV0RHR2NkJAQIfD27Nkz9O3bV/gusITIyEh89913ogC4XC5HhQoV4OjoiMePHyMyMhIvXrxA//794eLikmWb5vj+OXLkCMaNGycKOBcpUgReXl6Qy+WIiYnBo0ePhMCWUqnEqlWrkD9/fvTv319vmydOnMCIESNEbX700UcoU6aM0EeFQiFk/uWUo6OjcK1x584dYY5RLy8v4dypXejLVBcuXMDmzZuF1+Pl5QVPT0+8fftW9O/r6+uLihUrIiAgAFu3bgWQ9oOFt7c31Go1Hj58KAS/QkNDMWLECPj5+ekN0KampmLo0KE4f/68sE4ikaBs2bIoVKgQYmNjERwcDKVSCZVKhW3btiE4OBhr1641asoMW2WO7+bsHDu3zufZuS4oXLiwKFD6/PlzUWAxvX+mDFXWPp87OjqiePHiOttkPJ+HhITAz88PAQEBePbsGZKTk/HRRx+hUqVKaNmyJb7++utc+04eOXKkKKPYxcUFZcqUgbOzM969e4eQkBDh73Hv3j307NkT+/fvF+ajJLJlDCwSkUWkD8VJr3D39ddfC0O2IiMjsWDBAuzZswdAWqW8mTNnYtmyZTk65r59+wCkXehPmjQJbdq0EY6ZkpKCjRs3YvHixVCr1VCr1Vi0aJGoMq0p1q1bB0A8rKhhw4a5Msxs27ZtANIymWbNmiX6dfzhw4fo37+/kC2xePFiJCUlQSKRYPDgwRg4cKBw8Z2YmIjffvtNqEL4+vVrHDx4UDR3Tro1a9aIbuo+//xzjB07VnTTnZSUhO3bt2PJkiVITk7G48ePMXr0aPz1119ZzpWWGQ8PD6OG5RjTTnZoZ52YEiDV3jZj5kp2ji2VSo2+QTR0bO3lrIYJaytUqJBw85KxTe255oz9G7m7uwvDqPS1aaqLFy8KUwkAacP9DLl37x7+/PNPAGnngylTpuTo+OZoc+7cuTnukz5btmwR/lb169fX+3nPijk+F9qBFg8PD4SHh2PatGk6xX2SkpIQHR2NO3fu4K+//sKMGTPQtm1bU1+CXpGRkaIiCN7e3npvYrWzca5evYqNGzcKN3/pIiIiEBERgYCAAKxatQq//vprjoeypWfkpfvxxx8xcOBAUdXYlJQU/P3331iwYAFUKhUSExOxaNEirFy5MkfHNta0adNEQacePXpg5MiRQsaSSqXC0aNHMWvWLERFRYmG+2cmt79/3r59ixkzZggBM29vb/z66686GftJSUnYuXMnFi5cKAQt//zzT/Tp00coQJXu5cuXmDBhgtCmm5sbZsyYgdatWwtz5UVHR2PZsmXYunUr7t27l+XrzkqhQoWEaw3t6VTatWunM51KdqQPS61RowamT58uymS7ePEihg4dKvqBIj4+Hvb29hg3bhy6d+8u/I2ioqIwdepUnDhxAkDauTIgIEDvd/vs2bNFQcVvvvkGw4YNE1WAj4mJwbp164TMyOvXr2P69OkGq7hnxcvLK1euNbKboW6O7+bsHDu3zufZuS4A0r470+8Pcnpd8PjxYxw6dEhYrl+/vuhcCaT9aKH9o9ahQ4fw888/68zX+/r1a7x+/RqnTp3CqlWrsGDBghxP+XPmzBkhqCiVSjF9+nR06dJFdG6Ji4vD6tWrsWbNGgBpf5OVK1di6tSpOTo2kSUwsEhEFuPk5IRNmzbpFDZwd3fH3Llz4ezsLNxEHT16FNevX9eZy8dUBQoUwPbt23UyoRwcHDBw4EDExcUJwYHAwECEh4dnOyhlTkWLFsX27dtRsGBB0foKFSpg/PjxGDduHACICjP07dtXtK2TkxNmzpyJW7duCTfKFy5c0Ak0hIaGYunSpcJyz5499c5rli9fPvTt2xdVqlRB3759oVAocOXKFezZswfffPNNtl5nw4YNjZqbx1y0b3pNqeyrnYWTsVKtsbT3c3Z2NjiRu7HHzu7r0d42Y5vay8a2KZVK4eTkhLi4OAAQDfk2VXR0tOgiWy6Xi+aVzCg1NRUTJ04UAgDTp0/PcTa0Odo0h5CQECxcuBBA2uff1CHQ6czxudAeapmYmIgePXoIw9jy5csHb29v2Nvb48mTJ8IcnLGxsRg7diyio6PRs2fP7LwUgUajwbRp00SvTV9V1owVRNOHcMtkMnz88ccoXLgwYmNj8ejRI2FIfEREBIYMGYJZs2ZlWdzIkPR5SQGgWbNmeofTOjg4COff9H/r8+fPIzExUSejq0SJEqKb6py6du2aEDwCgMGDB2PUqFGibWQyGdq0aYPy5cujW7duOsOaMzLH98+2bduEc07+/Pmxbt06vcGcfPnyoU+fPpBKpcJnJSYmBoGBgTrXIsuXLxdGADg6OmLjxo06wyrd3NyEc4Ovr6/B120rKleujI0bN+oEZOrXr4+BAwcKw9nTX/vChQvRsmVL0bYFCxbE77//jhYtWgif8wsXLugE8q5du4YdO3YIy+PHj9f7GSxQoABGjx4NHx8fjB49GgBw8OBBdO7cOdujTNq3b4/27dtna9/cYI7vZnMf29D5PDvXBRm3zcl1Qfp3svb0P/oyjZ8/fy4qPJMenJfL5ShdujQKFiyIqKgoPHr0SBje/+zZM/Tq1Qu+vr45mi9VO5vyu+++Q/fu3XW2yZ8/P8aOHYvY2Fjhs3H06FEGFilPYFVoIrKYESNGGKyWOn78eNGwhfRMvZz4/vvvDQ6vzPjFnps3Xbnpp59+0gkqpvv8889FQ4yKFy+eaaBFIpGgadOmwrK+YbsbN24UAiYlS5bMsnpsnTp10Lt3b2E5PeshL9Ke3ynjjZUh2vM9GVudOKP0DJncPLY5Xk9u9FO7DVOkpqbip59+Es2j1KtXL4Pzd/3xxx8IDg4GALRq1QqtW7fO1rHN3WZuSx8CnZSUBAAYO3ZstqtfmuN9pH0T+euvv+LFixdwcHDApEmTcPnyZezcuRNbtmyBv78/VqxYIWTBaDQazJ07F9euXcvWa0m3ePFiUVCsWrVqoiql6bQriAJp59A+ffrg1KlT+Oeff7Bp0ybs27cPly5dwsiRI4XsE5VKhZkzZ+aon9pZQFn923Xp0gW1atXC119/jQEDBuSoOr2x0kcFAGkZ9Yay5sqXL48RI0Zk2aY5vn+0C0598803WWaIZQyUhYeHi5ZTU1NFVXUHDBhgcK62oUOHGjWPnS2YMGFCpp/xjFM91K5dW+dvlS5fvnyioJ++a4307Mv0tvQFFbV99dVXonPt+vXrDW5vy6x5rfG+XRekf9cFBgYK61q1aoVPPvlEZ1vtYdBAWkBxxIgROH/+PA4ePIhNmzbh4MGD8Pf3x/fffy9cWycnJ2PUqFE6U9aYQvt8rm+ItrbvvvsOderUQadOndCtWzedDHkiW8TAIhFZhJOTU5ZZbPb29qKCG+fOnRNNMJ0dmV30pitWrJgoqyM9o8qWSCQSg6/D2dlZlC3VpEkTg9lu2hmZ+l7v8ePHhcdt27bVGQKmj3bhm8ePH+fKfFLWoP1rt7EZgwBE8+8YWzTCEsfObpvaQwkztqm9bMqQd0NtGiM1NRXDhg0TVc6uXr26kMGiz71794QhRelDFXPKHG2aw+bNm3H16lUAacGXHj16ZLstc7w3tW9MY2NjIZfLsWbNGnz//fei+TKlUilatGiB7du3CxU/lUpljqaZ+OOPP4RK3kBaRtTixYv1vjbtYb5SqRRLlizB5MmTRUM1gbRsniFDhmDNmjXC61YoFJgzZ062v8e0j7F3717cvn07023d3d2xbds2/P777xgxYkSO5tozlvaw9U6dOmU5D1nnzp2zDDqY4/tn69atuHz5Mnbt2qWTya9PxqGcGW/qr1y5IgRuJRJJltc2UqlUb3aSrXF3dzdYiCTjDzjNmjUz2J6ha43k5GTREOiOHTsa1Uftf+uLFy9mOxhlbeb4bjb3sQ2dz7WXLfl6NBoNpk+fLiqGUrJkyUyz87Wzzx0cHLBp0yYMHTpU54f79CmUtKcoiY+Pz9Hwe+3z+caNG/UWkUrn4+ODLVu2YO7cuRg2bJhJwVoia2FgkYgsombNmkZVe9X+hTF9MvXsksvleifiz0i7alzGKsq2oFixYllOeK990VG6dGmD22rftGes5BgWFobXr18Ly2XLljWqj+XLlxf1Qbvia16ifZGb8W9jiPYFsTE3wpY6dnbb1M7QMtRmxnmJjG3T1Iqe8fHxGDhwoCiQUaxYMfj6+mb69844XHnq1Kk5ngDdHG2aQ0hICBYtWgQg7dzw66+/GlW9OzPmeG9m7E///v0NBjVKlCiB8ePHC8t37tzBrVu3jO5LugULFoiG2srlcixdujTTjMAOHTrg9u3bOHToEHbs2JFldmr9+vVFmVf37t3D9evXTe4nkJZ1k/53io+PR7du3dCvXz9s2rQJjx8/zlabueX58+eiDBxjpi1xcXExWO3enN8/bm5uqFatmsFsRYVCgTt37ogy6QDd81x6wB5Ie18aM33Kp59+muU21lauXDmDz2cMbuTkWiMwMFB0vWXsv7X2+yf93ysvMsd3s7mPbelrjawoFAqMHTsWO3fuFNa5urpixYoVmVaIHzp0KK5fv479+/dj586dqFWrlsFjdOzYUTSn7/Hjx/Hy5UuT+pmuVatWwuNXr17h66+/xo8//oidO3fqVLMmyos4xyIRWYQxAT5A90L11atX2a5u6erqatQvp9m9ILIUUwMXWQUhDQUYMg5XGjt2LMaOHWvS8QHdoWN5RcaiCMbS3jar6sSZ0a4ia8qxtTO/Mh7bHK/H0dFRmF8ru22aElh88+YNBg8eLCp+4Onpib/++svgDf2KFSuE4crNmzfH119/bfQxLdlmbtNoNJg0aZIwBHrUqFFGV+nMjDneR05OTsJwaIlEYtSciV9//TVmz54tZIsFBASgRo0aRvUlNTUV06dPF4prAf8LKmY1T5ujo6NJ30M9e/YUZUT6+/vrHZaXlbJly2LQoEFYtWoVgLR/W39/f/j7+wNIywhr0KABGjdujMaNG2d6M20O2kFFwPhKsGXLls10eLilvn9iY2Nx//59hISEICQkBKGhoXj69CmePHli1I+L2q/d2NddokQJUQVcW2TJa42MFY2zm9GZ8X2YV1jzWsNc1wW53aYh8fHxGDFihHAuBNLmJ1y7di18fHwM7uvi4mJw6oKMevXqJSoKExAQkK15xJs0aYK2bdsKbSkUCpw4cUKYksPLy0s4nzds2FB0TUiUFzCwSEQWYewNT8ZJn7M7OTVg2jwvtszUi8ecZCbl5O+dG+0EBATkyrxJP/zwQ7aKwKQPtQT+Nzm9MbQLEmi3YQrt6pIJCQnQaDRG/Vtq9zPjsbP7egy1WaBAAeF5Y9tUq9WiOd+M/Rs9fPgQgwYNEmUxlSxZEhs2bDA4r+Ldu3exdu1aob8///yzUcczxBxtmsOmTZuEwE3NmjVF889llzk+F87OzkJg8eOPPzZq6K69vT0qV64sZIxpD1M2JDo6GsOHDxdVEs+XLx+WLl2a48rN+hQpUgQlS5YUhuRmDKKYYuTIkShSpAiWLFmiU9wgPDwce/fuxd69eyGXy9GoUSMMGDAgx0XPjJFeUCddVkGmdIaq6Jr7++f06dPYsGEDrl69avBHRDs7O4PDMiMjI4XHxr5uiUSC/Pnz23Rg0ZLXGjkp1KHNmCrj+uzfvx8HDhzI8fHHjRtnUpAqnTm+m819bEPnc+3PtblfT1hYGAYPHiz8yAekFQxas2YNqlatavSxjVWlShXI5XLhR4ecnM/nzZuH0qVLY82aNTrngvQfOrZv3458+fKhefPmGDJkSLaTK4gsjYFFIrIpGeeiel+CgzmRk4t3U2W8mapTp062fhU3FPQxJDw8XPQLdHZ99dVX2dpPOwMu442zIREREcLj7M5tpn1slUqFqKgooyoNGzq29rA/U16PdsXejPONeXh4ICwszKQ2IyMjRTfyGdvU59SpUxgzZowoIFmxYkWsWbPG4P6pqamYNGmS8F6eNGlSlsUasmKONs3h+fPnWLx4MYC0IMGcOXNMmu8qM+b4XBQsWBCvXr0SHhtL+zNhTFDh6dOnGDx4sGjSfTc3N6xcuTLLYXA5UahQISGwmJOAmUQiwXfffYeOHTvi+PHjOHHiBAICAnSqKysUCpw+fRqnT5/WW505t2V32hBD2crm+v5RKBSYMmUK9u/fr3d7JycnlC1bFpUrV0bt2rXRuHFjg0OXzfHabYE1rzUyVow2VnbPwyEhIblyrTFw4MBs7WeO72ZjmeN8nt02tbc15vXcvn0bQ4cOFf0dihcvjrVr1xo9MspUdnZ2cHNzE15/Ts7ncrkcw4YNQ69evfDPP//g5MmTuHz5sk6WZ1JSEg4fPox///0X06ZNyxNztBIxsEhEFpHxJigzGX/FtuTQLtL9e0+bNi3LYSXvE+1hbYmJiXj79q1RgULtYgFZzTtlzLHT2zQmsKg9N0/GY5cqVUq0nTFZkBqNRggcZmwjfTl9DjN9lT71yVhMIWObGW3duhWzZ88WBSMbNWqEpUuXZpkhdOzYMSGTQSaT4dChQ6JhTBlpV4I/cOCAaN6+9GwUc7RpDuvWrROGQDs7O+PXX381et8FCxaIsk6055kzx+eiXLlyuH//PgDTimaZUjzoxo0bGDJkiCgAWaJECaxZs8ZsN6HptG8UjZlfOCtOTk5o37492rdvD6VSicDAQFy+fBkXLlzAjRs3RH+XVatWoUKFCvjyyy9zfNzMZPyuiI2NNWronqFsJnN9/yxatEgUVCxevDjat2+PGjVqwNvbG56enqLzYlZFJLRHVpjy3jUlk+t9l/Hf2phz+/vEHN/NxjLH+Vy7L8ZeF7x580aUtZfV6zlx4gRGjx4tOrdWrlwZq1evznaQ1VjaU87kxvm8QIEC+Pbbb/Htt98iJSUFN27cEM7nd+7cEa59VCoVfv75Z1SqVAnVq1fP8XGJzImBRSKyCGMnJs5YrCWnc4ORaTLOWffq1SuLBhY7deokqgxuaZUqVYJEIhEyZx88eIDGjRsb3CchIUF0IZ3doFHx4sXh5uYmBEEePHhg1IXkw4cPMz125cqVhcdJSUl4+vRplgGVJ0+eiC7cK1asqNPmnj17dI5tyIMHD4THBQoUQPHixTPdduXKlViyZIlo3TfffIOZM2dmWXUWEN8AqFQqk7JS0ocipUvPRjFHm+ag3c/IyEiT+mmoCII5Phfa55WwsDCkpqYaldGlPSw+Y2VmbQEBARg6dKjoxrVatWpYuXKl0VnFGo0GS5cuxbt37/Du3Tu0bNlSVJU2M2q1WhQAKFq0qFHHM5adnR1q1aqFWrVqCYHTLVu2YPny5cK/0caNG80aWPTy8hItP3782KgiJoaGEZrj++fNmzfYtGmTsPzZZ59h+fLlBt9rWWUkaV+XGFtgLjo6OteGer8P9P1bW3LI5/DhwzF8+HCLHS8jc3w3G8sc53Pt1/P8+XMkJSVl+UOD9nWBRCIx+Fnft28fJk+eLCr20qxZMyxcuNDoQF9cXBzWrFkjnM979uxpVKZsdHS0KOkht8/nDg4OqF+/PurXr4+RI0ciPDwcq1atwt9//w0g7Xto06ZNWLhwYa4elyi3sSo0EVnE7du3dYY563PhwgXhcdGiRQ3eOFLuK1++vCgb49KlS0btFxkZiYkTJ2LZsmXYvXu36KY6L3FxcUGlSpWEZe33Y2YuXbok/Losk8lQt27dbB9fuyquMcd++PChaEhQxuF75cuXF2U9Xrx4Mcs2AwIChMcFCxbUudjXfn0RERH477//smxT+7UYqvz7559/6gQVR40ahdmzZxsVVCTzMMfnokGDBsLjpKQk0fsuM3FxcaJ5tTKbT+vKlSsYMmSIKKjYokULbN682aSpCiQSCQ4cOICdO3fi5MmTOHLkiFH7BQYGioJI2SnckpycjHPnzmHjxo2YOXOm6HOekZubG4YNGyYqKGBswCu7SpUqZfK5RalU4vbt25k+b47vH39/f1EG4sSJE7MMYGsHPADdom41a9YUHoeHhxs112d2K4O/r2rUqCHK0DP23/rRo0eYPHkyVqxYgX379onmu8xLzPHdbCxznM9r164tfEerVCpcvnw5yza1j1upUqVM5189dOgQJk2aJAoqdu/eHStWrDApe9DR0RHr16/H7t27cfr0aZw8edKo/QICAkT3L9k5n8fGxuL06dNYt24dpk+fbnA6BQ8PD8yYMUM0T7i5z+dEuYGBRSKyiIiICJw+fdrgNrGxsaKKnS1atDB3t3KdJecoMgepVIomTZoIy3v37jVqkvXNmzdj7969WLFiBaZMmYKoqChzdtOsWrVqJTw+cOCAMLQ0M9u2bRMeN2jQIEfD91u2bCk8Pn36dJbVTbWPXbZsWZ0bDYlEgi+++EJY3rlzp8GiBWq1Gjt37hSWW7VqpfOe9vb2Fg2D2r59u8E+vnr1CmfOnBGWM8uiOnHihOgXeZlMhrlz52Lw4MEG28+oU6dOCAoKMvo/7RukYcOGiZ5LD4Kao01zmDdvnkn91LZp06ZMnwNy/3NRqVIlUYbSmjVrsvzxafv27cINmVwuR9OmTXW2CQsLw48//ijK7OnWrRt8fX2zNWev9r9lQECAUT+apFdxBtKCflllA+mjUCgwaNAgzJkzB9u2bcOpU6ey3KdcuXLCY7lcbvIxTZHx3LJnz54sh/oeO3bMYCDIHN8/2vPCAcbNybd582bRcsah0fXr1xe9n7UzIjOT1XnSVHn9WsPd3V2Ukb9161aj5q78888/4efnh2XLlmHy5MkGv89smTm+m02R2+dzV1dX0Q+bWb3fExISRMVzWrdurXe7O3fuYOLEiaK/zYgRIzBz5swsp8LISC6Xi34UOHLkSJbnLKVSKRRtA9LOsdpBWWO9evUKgwcPxvz587Fjxw5RIbHMWPJ8TpQbGFgkIosxlHWhUqkwbdo04YZAJpPlSjVTS9OeaD7jZMx5xQ8//CA8jo6Oxvjx40VDLDO6c+eOaD62atWqoUqVKmbtozl17txZGMLz9u1bzJo1K9Ntd+3ahfPnzwvLOX3PtmzZUrjxTU1NxcSJEzOd7+v8+fPYtWuXsNyrVy+92/Xo0UO4AXn48CFWrFiR6fGXLl0qZCBKpdJM2/zuu++Ex9u3b88040GhUGDChAnCDWOxYsX0/mAQHh6OKVOmCMsSiQS//fabVYfFk5g5Phd9+vQRHl+/fh1//vlnpm1mfO+2adNGZ14tlUqFsWPHioJR3bp1w6xZs7JdxKZLly7CY6VSienTpxucg2/9+vWiH9G+//57o+YezCh//vyizJjVq1cbDMppNBocO3ZMWM7Oza+p+vbtK2T/vX37FtOnT880OBIeHo45c+Zk2WZuf/9krDSr/b7UZ/Xq1aIfQgDdYi2Ojo6i9+727dsN/nDq5+eHc+fOGTyuqd63a42nT5/il19+MfjjwqlTp0TBqJYtW2a7WJotMMd3s7HMcT7Xvi44ffq0MGWKPjNnzhTOZ05OTqLzbLqEhASMGTNG9PkbPXo0hg4dmmm7WdE+TnR0dJbnpHnz5glzAQPAoEGDshXQ9fb2Fk0Bs3jxYoOf25SUFNF5yBLnc6KcYmCRiCwmPDwcXbt21RnyERoaisGDB+Pff/8V1g0dOlRnDqe8QPsm5tatW3lyTqUqVaqgR48ewvLp06fRq1cvnSFsqamp2Lp1K/r27StcIMlkMkyaNMmi/c1thQoVQv/+/YXlPXv2YMyYMaLqhcnJyVi1ahVmzJghrGvSpIko2yYjHx8f4b/Mbgrs7e0xevRoYfnChQsYMGCAaNJ0pVKJnTt3Yvjw4cLQIG9vb9EwSG0VKlRAx44dheXly5djzpw5oqIDcXFx+PXXX0WZVt26dRP9Yq6tW7duQtaiUqnEjz/+iF27dokCLqGhoejfv79oSNS4ceP0DkNcsmSJqMDGoEGD8PXXX+s9NlmHOT4XXbp0EWW5LFq0CNOnTxdl6qrVahw5cgS9e/cWsmry58+vt+rxwYMHhcJCQFpVYe2+ZMcnn3wiyrL19/dHv3798PjxY9F2ERERmD59On777TdhXeXKlUV/M1NpB15evHiB/v37IzAwUGe78PBwjBo1CteuXRPWaQe+tNvQPg9NnDgx230D0go4aN/kHz58GEOGDNGZU9nf3x/du3fXyR7UJ7e/fxo0aCAKBMycOVNv9uft27cxbNgwLFq0SOc57cr06QYOHChk3Go0GgwfPhzr168XBQuSkpKwfPlyTJ06NcvXbSrta42LFy8aDL7aqpYtW4qyjnfs2IFBgwbpDPuMj4/HypUr8dNPPwmBRycnJ9F3ZV5kju9mYz/j5jifN2/eXJSRP23aNKxevVr0mXj79i1GjRolChAPHTpUb6G6DRs2iOZkbdu2LQYNGqT32Mb6+uuvUaNGDWHZz88PI0eOxKtXr0TbhYSEYNiwYaLs5ebNm6Ndu3bZOq5EIkG/fv2E5Tt37mDIkCE63yMA8OzZMwwYMEB47VKpNE8mWtCHhxMWEZFFNGnSBFevXkVYWBi+//57FCtWDCVKlEBMTAyCg4NFv1K3bt06R79IWpO3t7fw+OXLl2jTpg3Kly+PuLg4rF+/PtM5ZGzNpEmTEBoaKvxKfevWLXTt2hWenp7w8vJCfHw8nj17JrrhkkgkmDp1KmrVqmWtbueawYMH486dO8IvxocOHcLRo0fh4+MDe3t7/Pfff6KL/xIlSogCCjnRsWNH3Lx5Ezt27ACQFlxs2bIlfHx84OLigsePH4syl9zc3LB06VKDcxBOmTIFwcHBuHv3LoC0wg47d+4Uhk4HBQWJhkJVrVrVYNDB3t4ey5YtQ69evRAdHY3ExERMnToVixYtQtmyZYW58LSzl7777ju0adNGp61Xr16JbjKAtPeb9kW4MX777bc8nb2SF+T250IikWDx4sXo16+fkBWyY8cO+Pn5oXTp0ihYsCCePHkiynSXy+VYuHCh3gn0V69eLVqOj483uVjODz/8IJrbCgBmz56N0NBQ4fNz6dIltGnTBmXKlEGRIkUQHR2t834vX7481qxZk6MhbM2aNUOnTp2EzJ979+7hm2++gYeHBz7++GPIZDJERETgyZMnomP37NnT4I8cuWnAgAF48OABjh49CgA4c+YMzp49C29vbxQoUAChoaHCTXu+fPnwySefZJk1mJvfPyVLlkTXrl2F82l0dDSGDBmCwoULo0SJElCr1Xj58qUo6GlnZ4eCBQsK6/QFRO3t7YX3bnh4OBQKBX777TesWLEC3t7e0Gg0ePjwoXBerVu3LoKDg0U/oOSE9rXG3bt30bp1a3h5eSElJUU0bNWWSSQSzJ8/H3379sW9e/cAAGfPnsXZs2fh5eUFT09PREdHIyQkRDRfqlwux++//54nf3zOKLe/m01hjuucBQsW4LvvvkNoaCiUSiUWLVqENWvWoHz58khNTUVQUJAoA7FZs2Z6v+uTkpJ0piQICwsz+bpg3LhxokIzUqkUy5YtQ48ePYQfQP755x8cPXoU5cuXFz73GQN+devW1fujgym6d++OEydOCCM8AgIC0KZNG5QsWRLFihUDkFacLGOBq3HjxmUaSCayJQwsEpFFVKpUCb1798bYsWMRHR2Nly9f4uXLl6Jt5HI5fvjhB4wcOTLbw9as7YsvvkClSpWEm+S3b98KN8UPHz406/xqucne3h6rV6/GsmXLsGHDBuEX59evX4uqsqYrXLgwZsyYIZozKC+zs7ODr68vfv75Z/j5+UGj0UChUAgX/9pq1qyJpUuX6v3FPbt+/vlnFCxYEOvWrYNCoYBardYpKACkzau4dOnSLKtJuri44K+//sL48eOFbJ2kpCTcunVLZ9tmzZphwYIFWc5H5+3tjU2bNmHMmDHCEK3IyEid4ZoymQwDBgzAyJEj9bZz4sQJnaGlxk7kr037xpPMwxyfC3d3d2zatAm//vor9u3bB41GA6VSqbcoULFixTB//nzUqVNH57mgoCCdIhr6PjNZ+eqrr3TWubi4YNOmTZg9ezb27t0r/BD25MkTvYU72rVrh8mTJ6NgwYImHz+j2bNno0CBAti0aZOQoRweHq53/lUnJycMHjzYrJXHM7Kzs8PSpUvx+++/Y/369VCr1dBoNDrzdBYoUAC///47rly5kmVgMbe/f6ZOnYq4uDhR8Z2IiAi9AcOyZcti9uzZOHnypDC3mnYmqLby5ctj586dGDp0qBAYi4+PF2XNAmmFLZYuXZqrWdhdu3bF1q1bhaBtWFiYMP/nixcvUKJEiVw7ljkVKFAAf//9N+bMmYPdu3cL7/GQkBBRFeJ0H3/8MebMmZOtAhq2yBzfzcYyx/ncw8MDmzdvxujRo4XPQVxcnM5nAkjLWJ8xY4be6/2LFy/qBOFv3rxpwqtLo+9c6OHhgV27dmHy5MnCFAZqtVrv3MIymQw9e/bEqFGjsjWlhTapVIqVK1di2rRpoh9TQ0NDRaNS0hUsWBBjxozJdDQKka1hYJGILKZx48Y4ePAgtmzZglOnTiEsLAwSiQTFihVD48aN0bVrV1FRiLxILpdj8+bNWLFiBU6dOoXw8HAolUoULlw4zw2LlslkGDVqFL777jvs27cPFy5cwJMnT4SLPXd3d1SsWBHNmjXDV199ZVJ1vrzA3t4ev/76K7p164a9e/fi0qVLCA8PR2pqKtzd3VGtWjW0bdsWLVu2zPVAuEQiwahRo9CuXTvs3r0b/v7+eP36NZKSklCgQAFUrFgRrVu3Rrt27bKscJouf/78WLlyJS5evIgDBw7g2rVrePv2LVQqFQoVKoSaNWuiY8eOaNSokdH99PHxwb59+3Dw4EEcPXoUDx48wLt37yCXy1GiRAnUq1cP3377rcFf242pqEq2wxyfi/z582PevHno06cPDhw4gAsXLuD169eIj4+Hq6srKlWqhJYtW6JDhw6iueW0mft95OzsjLlz56J///7YvXs3rly5ghcvXgh99PDwQP369fHVV1/l6hyzMpkMEydORLdu3bB//35cu3YNT58+RWxsLCQSCQoVKgQvLy80bdoUbdq0Mao4SbrcKgAikUgwbtw4tG/fHtu3b8fFixcRFhYGmUyG4sWLo1mzZujZsyc8PDyMKloA5O73T3p2YefOnbF3717cunVLOPc5OzujWLFiqFChApo2bYoWLVpAJpNBrVYLgcXg4GAEBgaiWrVqOm17enpi9+7d+Pfff3HgwAHcvXsX0dHRcHV1Rbly5dC+fXt06NDB5EITWSlQoAB27tyJ5cuXw9/fX/gBs0iRInj79m2eCSwCaXNWzpo1C/369cP+/ftx6dIlhISEIDo6GnZ2dihUqBAqV66ML774Ai1btjT6Oy+vMMd3s7HMcT4vWrQo/v77bxw/fhxHjhxBYGAg3r59C6lUCg8PD9SuXRtdu3YVDUnOyNznc3d3d6xatQq3b9/Gvn37cP36dbx69QpJSUlwc3ND0aJF0bhxY7Rt2zbLH25N4ejoiAULFuD777/HwYMHcfPmTTx//hzx8fGws7PDRx99hHLlygnn87wyyokIACSarErwERERERHRe+HIkSMYNWoUevfuLSqaRERERJQdeXOsIRERERERmSx9GhJTshuJiIiIMsPAIhERERHRB0ClUglzDTZu3NjKvSEiIqL3AQOLRERERETvubi4OIwfPx737t1D48aNRdVSiYiIiLKLgUUiIiIiovecWq3G5cuXUbduXSxcuNDa3SEiIqL3BIu3EBERERF9AF68eIHixYvnWkVoIiIiIgYWiYiIiIiIiIiIyGQcCk1EREREREREREQmY2CRiIiIiIiIiIiITMbAIhEREREREREREZnMztodIMu5fv26aFkqZVyZiIiIiIiIiOhDpFarRcu1a9c2uQ0GFj9gGd9ARERERERERERExmLKGhEREREREREREZmMGYsfsPdlKLR25uX78pqIyDQ8DxARzwNExPMAEfE8YJrcGMnKwOIHRCqVCm8aqVSKmjVrWrlHOadUKnH79m1huWrVqrCz49ua6EPC8wAR8TxARDwPEBHPA6a7efOmKE6UHQzfEhERERERERERkckYWCQiIiIiIiIiIiKTMbBIREREREREREREJmNgkYiIiIiIiIiIiEzGwCIRERERERERERGZjIFFIiIiIiIiIiIiMhkDi0RERERERERERGQyBhaJiIiIiIiIiIjIZAwsEhERERERERERkckYWCQiIiIiIiIiIiKTMbBIREREREREREREJmNgkYiIiIiIiIiIiExmZ+0OEBERERERWZtGo4FarbZ2NyibVCqVzrJEIrFSb4jIGt7384BUKrXJ18PAIhERERERfXA0Gg0SExMRGxuL+Ph4KJVKa3eJckCj0YiWHz9+bJM34ERkPh/CecDOzg4uLi5wdXWFk5OTTbw+BhaJiIiIiOiDkpqaipCQECgUCmt3hXKRnR1vb4k+dO/7eUCpVCI6OhrR0dGQy+Xw8vKCvb29VfvEORaJiIiIiOiDwaDi+0kikcDOzk74zxayeIjIsj6084BCoUBISAhSU1Ot2o/3O5RLRERERET0/zQajU5Q0dnZWRhSJpPJrNg7yon0oe3pbGWIIBFZzvt+HlCpVMIUHgkJCQD+F1wsW7as1V4rA4tERERERPRBSExMFAUVPTw84O7ubsUeUW7RaDSiwLBMJnuvAgpElLX3/Twgk8lgb28PNzc3REZGIjw8HEBacDExMRHOzs5W6ReHQhMRERER0QchNjZWeOzs7MygIhER5Unu7u6iQGJcXJzV+sLAIhERERERfRDi4+OFx66urlbsCRERUc5of48xsEhERERERGRGGo0GSqVSWHZycrJib4iIiHJG+3tMqVRCo9FYpR8MLBIRERER0XtPrVaLllmohYiI8rKM32MZv+cshYFFIiIiIiIiIiIiMhkDi0RERERERERERGQyBhaJiIiIiIiIiIjIZAwsEhERERERERERkckYWCQiIiIiIiIiIiKTMbBIREREREREREREJmNgkYiIiIiIiIhyjUKhsHYXiMhC7KzdASIiIiIiIiJTPXnyBLt27cLVq1cRGhqK+Ph4ODk5wdPTE/Xq1UPXrl3h7e1tVFtJSUnYtWsXjh8/juDgYCQkJKBgwYIoW7Ys2rRpgw4dOsDe3j5Pt2UJarUaO3bswIULF+Dr62vUPkuXLsUff/yBIkWK4Pz582buIRHlNgYWiYiIiIiIKM9QKBRYsGABNm3aBI1GI3ouNjYWsbGxCA4OxpYtW9CjRw9MnDjRYPAtKCgIP/74I0JDQ0Xr37x5gzdv3uDixYvYuHEjFi1aBB8fH4N9s9W2LCE8PBxDhgzBvXv3ULduXaP3O336NACgadOmZuoZEZkTA4tERERERESUZ4wfPx5HjhwRln18fFC/fn24uLggKioKly9fxqNHj6DRaLB161a8ffsWS5YsgVSqOxNYaGgoevfujejoaABAoUKF0LJlSxQpUgShoaE4fvw4YmNj8ejRI/Tr1w87duxA8eLF9fbLVtuylGfPnuHevXsm7RMeHo4HDx4AYGCRKK9iYJGIiIiIiIjyhP379wtBRblcjtmzZ6NDhw7QaDRITEwUtjt8+DBmzpwJlUqFo0ePws/PD998841Oe5MmTRKCd40bN8aSJUvg4uIiPD9mzBgMHz4c169fR0REBGbMmIG1a9fq7ZuttmXL0rMVHRwc0KBBAyv3hoiyg8VbiIiIiIiIKE/QDp6NGzcOHTp00LvdN998g5EjR+rdL52/vz+uXr0KAPjoo4+wdOlSUfAuff3q1atRuHBhAMD58+dx7dq1PNOWrTtz5gwAoF69esiXL591O0NE2cLAIhEREREREdm858+fIzg4GADg4uKC7t27G9z+u+++g1wuB5A2TPfly5ei53fv3i087tOnD5ydnfW2kz9/fvTr109Y3rt3r842ttqWLUtJScGlS5cAcBg0UV7GwCIRERERERHZvIcPHwqPK1asmGU1ZGdnZxQqVEhYfvPmjfBYrVYjICBAWM4qsKX9/IkTJ0RFY2y1rey6evUqpk6ditatW6N69eqoUqUKmjRpgiFDhuDIkSNQq9Wi7X19feHj44PevXsL665cuQIfHx/4+PigV69eeo9z8eJFJCUl6bwObWfOnMG4cePwxRdfoHr16qhevTo+++wz9O/fHxs2bEBMTEyOXy8R5QznWCQisjK1WoMVF57h9stYfF6+ELrXtO7E20RERES2qEWLFjh79izevHkDiUSS5fapqamIjIwUlrUz/54/f47Y2FhhfVZVlUuXLg03NzdER0cjOjoaT548QdmyZW26LVNFRERg4sSJ8Pf313kuPDwc4eHhOHXqFDZs2IDly5fDw8MjW8dJd+rUKQCAt7e3TuGZ2NhYjBgxAhcuXNDZ7/Xr13j9+jXOnz+P5cuX45dffkGbNm1y1Bciyj4GFomIrGz60SDMOfkfAGD9lRAkKVT4oa6XlXtFREREZFtkMhk8PT3h6elp1PZnzpxBSkoKACBfvnwoWbKk8NzTp0+FxyVKlDCqvWLFigkFVZ49eyYE8Gy1LVNERUWhR48eCAkJEdbVqVMHtWrVglwuR3BwME6ePAmVSoXAwED07t0bfn5+cHFxQcOGDeHk5ISQkBBs374dAFCyZElhqHrRokX1HvPs2bMA9GcrjhkzRggqFihQAM2aNYOXV9r1cVhYGE6cOIGYmBjEx8djzJgxKF68OKpXr27y6yainGNgkYjIytKDiun677zNwCIREZGNUKjUmHU8GEcehCMxVWXt7tgMJ3sZ2lT0wPQvvCGX2d4MW6mpqVi6dKmw/Nlnn8HR0VFYjoiIEB5nFvjKyMPDA/fv39fZ31bbMsXMmTOFoKK7uzuWLVuGOnXqiLYJCgpC37598e7dOzx79gwrVqzAhAkTUKtWLdSqVQuXL18WAotFixYVzf+Y0YMHD/D69WsAuoHFW7du4dy5cwDSMjL//vtvuLu7i7aZPHkyBg8ejKtXr0KtVmPlypVYtWpVtl47EeUMA4tERERERESZ+PlYsM6PgJTmZljakN1fWlewck90zZ49G48ePQKQluk4bNgw0fNxcXHCY2OrEWsHJrX3t9W2jPXs2TP8+++/ANL+VitXrkSNGjV0tvPx8cH8+fOFgOHOnTsxevRooUCOKU6fPg0AcHNzQ82aNUXP3bp1S3j87bff6gQVgbTiPXPnzkWLFi0AAPfv34dKpYJMJjO5L0SUMwwsEhERERERZeJKSJS1u2DTLj+3vb/PypUrsXPnTmF5yJAhKF++vGib1NRU4bF2YM4Q7e2097fVtox1/Phx4XHz5s31BhXTNWrUCHXr1oVMJoOXlxdiYmJEBXKMdebMGQBAkyZNIJWKM161g4M3btzA999/r7eNkiVLYv/+/fD09ISbm5vJfSCi3MHAIhERERERUSbqehXEif/eWrsbNqvexwWt3QWBRqPB0qVLsWnTJmFd8+bNdbIVAegEs0ylXTzGVtsy1vnz54XHzZs3z3L7zZs3m3wMbe/evcOdO3cA6J9fsW7dusLjo0ePonfv3vjmm2/QsGFDnezFChVsL1uW6EPDwCIREREREVEmZrT0hkQCzrGYgfYci7YgNTUV06ZNw5EjR4R1jRs3xpIlS/QG25ycnITH6QVespKcnCw8dnBwsPm2jPXq1Svhsbe3+f89z5w5A7VaDTs7OzRu3FjneR8fH3Tp0gW7d+8GAFy+fBmXL1+GRCJBhQoVUL9+fTRu3BiffPIJ7O3tzd5fIjKMgUUiIiIiIqJMyGVS/NK6gk3OI0hp3r17hx9//BE3b94U1rVu3RoLFizINPCkHcBLSkoy6jjaATxXV1ebb8tYb9/+LyO3QIECJu9vqvRh0LVq1cq0vzNnzkShQoWwfv16YXi3RqPBgwcP8ODBA6xfvx7Ozs74/PPP8cMPP6BixYpm7zcR6Wd75buIiIiIiIiIjHD//n106dJFFFTs3r07Fi1aZDCbzcPDQ3j85s0bo44VHh4uPC5cuLDNt2UspVJp8j7ZlZqaioCAAAD6h0Gnk8vlGDVqFM6ePYsZM2agSZMmOsVsEhIScODAAXTq1Alr1641Z7eJyABmLBIREREREVGec/LkSYwZM0bI7JPJZBg7diy6deuW5VyF2kN+w8LCjDqe9nalS5e2+baMVaBAAURERAAAYmJiULJkSZPbMNbVq1eRkJAAwHBgMZ27uzt69OiBHj16IDU1FYGBgbh8+TLOnz+PW7duQaPRQK1WY8GCBahZsyZq165ttr4TkX7MWCQiIiIiIqI8xc/PD8OGDROCii4uLliyZAm6detm1P4eHh5CJeHo6Gg8e/bM4PZPnjxBTEwMgLRAnJeXl823ZSztQOKjR4+y3H7fvn2YMmUKVq1ahYcPH5p0rNOnTwMAvLy8ULZsWZP2tbe3xyeffIIff/wR27dvx6FDh1C0aFHh+f3795vUHhHlDgYWiYhsUEySwtpdICIiIrJJ6YEttVoNAChWrBj+/vtvNGzY0KR2tCsgnzp1yuC26QExAGjUqJFOQRhbbcsY2ll+586dy3L7vXv3Yvfu3Vi8eDGeP38urDfm2OnzK3722Wd6n9doNJgyZQq++eYbfPLJJ6LCMhmVK1cOffr0EZYNbUtE5sPAIhGRDVp6/qm1u0BERERkc+7du4dp06ZBo9EAAMqWLYvt27dnq5pxu3bthMfr169HbGys3u1iY2OxYcMGYblLly55pi1jtG/fXggKHjt2DMHBwZlu+/DhQ1y5cgVAWqEZ7WCu9vBzlUq3gvqjR48QGhoKAGjWrJne9iUSCZ48eYLAwEDExcVlmYX47t074bGnp6fBbYnIPBhYJCKyoqA38XrXzzwWZOGeEBEREdk2pVKJ0aNHC1WCPTw8sGHDBlHBE1PUr18f9evXBwBERERg0KBBokAVkBa4Gjx4sDAHYZ06ddCgQYM805Yxypcvjy+//BIAoFAoMHjwYL1DnJ8/f44RI0YImaI9e/aEi4uL8Lz249evX+sEF9OzK52dnVGnTp1M+6M9nH358uU4evSo3u1u3LiBLVu2CMvpr4GILIvFW4iIrOiPC88yfU6t1kAqNX04CxEREdH7aP/+/aI5B6tXr45Dhw4BSBtCq1D8byoZuVyuMzS3TZs2ojn5AGDWrFn45ptvEB0djRs3bqB169Zo1aoVihcvjpcvX+Lff/8VMgbd3Nwwd+7cTPtnq20ZY9asWXj48CGePHmCsLAwdOrUCY0bN0aVKlUgk8kQFBSEU6dOCUHdatWqYdiwYaI2ihcvDolEAo1Gg7CwMAwdOhS1a9dGvnz50KtXL2EYdMOGDQ1W7G7Xrh12796Nq1evQqFQ4KeffkLlypVRvXp1eHp6IikpCffu3UNAQIAQvPzyyy+zHVglopyRaNJzyOm9d/PmTeHXJalUipo1a1q5RzmnVCpx+/ZtYbl69eqws2O8nPIO6diDmT6X8ttXkMuYWJ4VngeIiOcBMoZKpRIN8fT29oZMJrNij8hU3377LW7evJnt/Tdt2oR69erprH/48CGGDRsmDNPVp0SJElixYgUqVKhg8Bi22pYxoqOjMW7cuCznWWzWrBnmz58PV1dXnefGjh2LgwfF17cuLi44deoU6tevD5VKhTlz5qBz584GjxEXF4eRI0fC39/f4HYSiQRdunTB9OnTDQYr6cOg0WiQmJgoLDs5OWVr3tG8Ije+13IjTsQrLiIiIiIiIrJ5QUHmmSqmQoUKOHz4MHbt2oVjx47h0aNHiImJgbOzM8qXL4+WLVuia9euyJcvX55tyxhubm5Ys2YNLl68iIMHD+L69et48+YNlEolChUqhJo1a6Jz584Gi+TMmTMHpUqVwqFDh/Dq1StoNBq4ubnh1KlTUKlUkEgkmRZu0ZY/f36sW7cO58+fx+HDh3Hnzh28evUKycnJcHV1haenJ+rXr4927dqhYsWKufL6iSh7mLH4AWHGIpHtMZSxmDzvK9jbMWMxKzwPEBHPA2QMZiy+3z60TCUi0vWhnQdsJWORd6xERDZKA/7uQ0RERERERLaLgUUiIhvFfHIiIiIiIiKyZQwsEhHZKMYViYiIiIiIyJYxsEhEZKM4BS4RERERERHZMgYWiYhsFOOKREREREREZMsYWCQislGMKxIREREREZEtY2CRiIiIiIiIiIiITMbAIhGRjTr8INzaXSAiIiIiIiLKFAOLREQ2av2VEGt3gYiIiIiIiChTDCwSEdmo48Fvrd0FIiIiIiIiokwxsEhEREREREREREQmY2CRiIiIiIiIiIiITMbAIhEREREREREREZmMgUUiIiIiIiIiIiIyGQOLREREREREREREZDIGFomIiIiIiIiIiMhkDCwSERERERERERGRyRhYJCIiIiIiIiIiIpMxsEhEZCU7boVZuwtERERERERE2cbAIhGRlUz7N8jaXSAiIiIiIiLKNgYWiYis5NHbBGt3gYiIiIiIiCjb7KzdAVuzdOlS/PHHHyhevDhOnTpl0r4XL16En58fbt26hTdv3sDOzg6enp6oWbMmOnbsiE8++cRMvSYiIiIiIiIiIrIsBha1BAYGYs2aNSbvFx8fjwkTJuDEiROi9SkpKXj8+DEeP36M3bt3o127dpg+fTry58+fW10mIiIiIiIiIvpgKRQKyOVya3fjg8XA4v8LDQ3F0KFDoVAoTNovJSUFP/zwA27fvi2sc3Z2hre3N1QqFYKDg5GcnAwAOHDgAF69eoX169fD3t4+V/tPRERERET0vvPx8clxGx07dsS8efOE5V69euHKlSsAgE2bNqFevXo5PgZlT2pqKvbv349jx47hwYMHiI6OhqOjI8qUKYMmTZqgW7duKFy4cJbtPH78GG3atDHp2Lt370bVqlWz2/UPyp49ezBp0iQAup8nAJg4cSL27t0LAJg7dy46depktr78888/2Lx5M/7++2+d5168eIEWLVoAQLZGpZJxGFgEEBwcjP79+yMiIsLkfX/77TchqCiRSDB8+HD069cPjo6OAIDY2Fj4+vpi06ZNAICrV69i4cKFwoeQiIiIiIiI6EN39+5djBgxAi9evBCtVygUuH37Nm7fvo21a9di1KhR6NOnT5Zt0fstISEBw4YNw4ULF1C8eHFrd+eD9sEHFvfv348ZM2YgKSnJ5H0fPXqE7du3C8tjxozBgAEDRNu4urpiypQpyJ8/P1asWAEA2Lp1K3r16oUSJUrkrPNEREREREQfkPHjx+tdr9FoRKPP5HI5JBIJAOD8+fO4ePGi8FyxYsXM20ky2c2bN9GnTx+kpKQASEvaadiwIapXrw6pVIpbt27B398fSUlJmDNnDsLCwjB58uRM27t3757wuFOnTihXrlyWfShatGjOXwhZTFRUFC5cuGDtbhA+4MBieHg4Fi1ahH379mW7jc2bN0OlUgEAypQpg379+mW67bBhw3D8+HEEBwdDoVBgy5YtmDhxYraPTURERERE9KHJ7J5Lo9EgMTFRWHZycoJEIsGVK1ewZMkSYX2tWrUwZMgQc3eTTBAfH4/hw4cLQUUPDw/4+vqievXqou1u376NH3/8EREREdi4cSOqVKmCdu3a6W1TO7A4aNAglCpVymz9J13z5s3TGR5tDSVKlEBQUJC1u/Hek1q7A9awcuVKtG7dWhRULFOmDAYPHmx0G2q1GkePHhWWO3XqBKk08z+nVCpF165dhWXtfYnow3MtNNraXSAiIiJ6r4WEhGD48OFITU0FABQpUgTLli1jkQcz8vHxgY+PD5o3b270Plu2bBGmJXNycsKGDRt0gooAUL16daxatQoymQwAMH/+fKGegTa1Wo379+8DSBtB+PHHH2fnpRCRkT7IwOK6detEv2Z988032LVrl0knnIcPHyIqKkpYbtSoUZb7NGzYUHj88uVLPHz40OjjEdH7ZcPVUGt3gYiIiOi9lZCQgCFDhiA6OhpA2tBoX19fowp/kGVpJ9307dsXZcuWzXTbKlWqoFWrVgCAiIgInDhxQmebp0+fCvf7lStXFobEE5F5fLBDoYG0k9KECRNQt25dk/fVDgrK5XKUL18+y31Kly4NR0dH4VeVO3fuoEKFCiYfm4jyvt23X4qWK7wLRZmY1wgoVhExji5W6hURERHR+2Hy5Ml49OiRsDxt2jTUqFHD6P2PHTuG/fv3IzAwEFFRUXBzc0OpUqXQpk0bdOzYEfny5cuyjbt37+Kff/7B9evXERYWhpiYGEgkEuTPnx+lS5fGp59+iq5du2Ya7PT19cXy5csB/K9i8e3bt7Fr1y5cuXIFb968gUwmQ4kSJdCkSRP07NkTHh4eWfbrzZs32Lp1K86ePYvnz59DpVLB09MTjRs3Ru/evfHxxx9j+vTp2LFjBwDzVspWKBR48OCBsPzll19muU/Dhg1x5MgRAMDZs2fRtm1b0fPaw6CrVKmSSz3NnPa/09atW/HJJ5/g7Nmz2LZtG+7evYvo6Gi4urqicuXKaN++Pdq0aZPpaEftastLly5Fs2bN4Ovri/379yM2NhYeHh6oU6cORowYgSJFioj2ff36NXbu3Al/f3+EhoYiLi4Orq6uKF26tFBR283NzajXdObMGezZswc3b95EVFQUXF1dUbFiRXTr1g0tW7bMcn9TqkI/ePAAfn5+uHz5Ml68eAGFQoECBQqgQoUKaNWqFTp06AB7e3u9f6N0YWFhQsX4okWL4vDhwwBMqwodHx+PvXv34syZMwgKCkJ0dDTy5csHT09P1K1bFx06dDBYNTzjv13r1q3x6NEj7NixAwEBAXj9+jU0Gg08PT3RsGFD9OjRA2XKlDH0Z8wzPsjAYt26ddGpUyd8/vnn2f714tmzZ8Lj4sWLw84u6z+lRCJBsWLF8OTJEwDA8+fPs3VsIsr7IhJShcf9Ao9h5Yk/YKdR47WTGxp2n4+nbp5W7B0RERFR3rVx40ZRFlzXrl3RrVs3o/aNiYlB7969cfnyZdH6iIgIRERE4OrVq9i6dSv++OOPTEe8xcbGYsKECZkGMZKTkxEREYErV67gzz//xOzZs/H1118b7JdGo8HcuXOxceNGaDQa0XMPHz7Ew4cPsXnzZsybNw+tW7fOtJ1Tp05hzJgxohF8QNq96fPnz7Fr1y5MmzbNYF9yU3R0tOj1GDOK0NPzf9fJ+qo/6wsshoaGIjAwEJGRkXB2dkapUqVQvXp1YVh1bpo5cya2bdsmWvfu3TucO3cO586dw5YtW7By5UoULFgwy7bGjBmD48ePC8vPnz9HREQEpk6dKtpu9erVWLFihTBPpfZx3717h2vXruHPP//E1KlT0bFjx0yPl5SUhNGjR+u8d9+9ewd/f3/4+/vj888/R5MmTbLse1YSEhIwc+ZMHDhwQOe5t2/fCsdbt24dli9fblQyV3YdOXIEP//8s5DhnE6hUCA2NhbBwcHYsmUL2rZti1mzZsHZ2TnLNtetW4fFixeLikoBwJMnT/DkyRNs27YNEyZMQO/evXPzpVjFBxlY/OOPP3LcRvocEAB0fikwpFChQkJgUbsNa1AqlVY9fm5IL56T2TKRrZNo1PglYAvsNGoAgGdiNMZe24sfW6RNKv4+fE7NjecBIuJ5gIyhUqmEAIZEIoFGo9EJ0FDelf5vefXqVSF7DEibl2/q1KkG/621n5s4cSISEhKEqsRVqlSBnZ0dAgMDcf78eWg0Gjx69AgjR47Ejh07dOZrVCgU6NOnjzDHn729PRo3bgxvb284OTkhNjYW9+7dw6VLl6BWq5GcnIyJEyfCx8dHJ3Ci3a9FixYJla1r1qyJOnXqwNHREY8ePcLJkyeRkpKCpKQkjB07Ft7e3ihdurTO6/znn38wduxY4Rzp4eGBFi1aoHDhwggLC8Px48cRHR2NadOmiSokZ+ezYuw+GRN0jNlPO3j28uVLne21g43v3r1D165dcfv2bZ12ChYsiP79+6N37945mndT+/i+vr64dOkSAMDb2xufffYZHBwccOfOHZw/fx5qtRo3b95E9+7dsWPHDri6umba1p49e3D27Fmd4zVr1gyOjo7CttOnT8fOnTuF5ytVqoR69erBzc0NkZGRCAgIwKNHjxAfH4+JEyciMjISP/zwg067qamp6N27NwIDAwGknScbNGiAGjVqQKPR4Pr167h8+TJOnjyJ69evi/qc8d9Ae1nf8ykpKejbt6/o36Vy5cr49NNP4ezsjKdPn+LYsWNISUnBs2fP0KtXL+zduxeenp6oUqUKxo0bh9jYWKxevRoAUKBAAQwcOBAA4ODgoPPaMusHAGzfvh0zZ84UlgsWLIhmzZrBy8sLCQkJuHr1Km7dugUAOHToEB4/fozNmzfDxUU8yky77e3btwuf1woVKqB+/fooUKAAQkJCcOzYMcTHx0OpVOLXX39F+fLl8emnn+rtc1bSj5n+f6VSaZXvtQ8ysJgbtCPZ+fPnN3o/7W1jYmJys0smUavVek+ueZ2+X6yIbJlXbAQ8E6NF64bc/kcILL6Pn1Nz43mAiHgeIEPs7OxgZ2eHxMRE47KVFArI586F7OhRSDJkeX3INE5OULVqBcWkSYCNFEMJDw/HpEmThMBZoUKFMH/+fCiVSoM/1qrVauFxQkICvLy8MH/+fHh7e4u2O3/+PEaPHg2VSoX79+/j6NGjOkVKNm3aJAQVPTw8sHr1anh5eekcMygoCEOHDkVUVBSUSiW2bt2K8ePHi7bRznS6ePEi3NzcMHfuXJ1hyf3798fgwYPx5s0bKBQKrF+/XmeoaFRUFGbOnCn8bdq3b48JEybA0dFR2ObHH3/E9OnTce7cObx8+b9pe1JSUnQyHLOSsUp3ZuRyuWi6sHv37glDWjOT/vcF0rI/w8PDhftsjUYjGlo9a9asTNuJiorCggULcOrUKSxcuFAnyGcs7X+nS5cuQSKRYMSIEejVq5dohOTt27cxatQoREdH4+nTp1iwYIHOv1N6oSEgbZi3VCrFkCFD0LFjR9jZ2eHq1asoVKiQ8Lfdt2+fEFR0cXHBrFmz0LRpU1GbP/30E/bv34+5c+dCoVBg4cKFqFChgs7UAGvXrhWCiq6urli4cCFq164tPN+/f39cvHgREyZMEMVDVCqVzr+19g98qampOs8vWbJEuM/Jly8ffv75Z2HIcrrBgwdj6NCheP78OaKiojB79mzMnz8fxYsXR/fu3fHy5UshsOjk5ITu3bsjI+3iPvrek4GBgaL3yNdff43x48eLMhKHDBmCgIAATJ48GXFxcXjw4AEmTpyI+fPni9rS/re7ePEiHBwcMHPmTGFO0HSDBg3Cjz/+KEzVsHbtWlSrVk2n78ZQqVRQq9XCOc5a1z8MLGaT9ptG+2ScFe25AbTbIKIPU4XIF3rXOyhTkWJnr/c5IiIishz5nDmwX7DA2t2wSbL/Dwwopk+3ck/Sgjvjxo1DZGQkgLQA8vz5800u1uLo6IgVK1agePHiOs81btwYX375JQ4dOgQAuH79uk5gcf/+/cLjsWPH6g0qAmnVk3v16oVly5YBEA/fzcwvv/yid67DUqVKYfDgwUKAJOMwbiAteJGe2PLpp59i+vTpOtOCubq6YsGCBejbt68oeJdRQEAAHj9+bLCvCQkJ2LRpk97nypYtKxQ2lUgkqF27NgICAgDonz9Pm1qtFuZXTJeSkiIEFp8/f46EhAThOTs7O3Tt2hVt27aFl5cXNBoNgoOD4efnJ7Rz/fp1jB07Fn/88YdRU5xlZeDAgXqHt1avXh0LFizAwIEDodFo4Ofnh169eqFEiRKZttWvXz/069dPWP7888+Fx6mpqaLRmPPnz9eb+SaRSNChQwfExcVh8eLFUKlU+OOPP/Dnn38K28THx2P9+vXC8q+//ioKKqarX78+5syZg59++snAX8CwxMREYf5OAHqDikDaXImLFi3CN998A7VajVOnTiEiIiJXCzD5+voKPyw0a9YMP//8s97tGjZsiCVLlmDgwIFQqVQ4ceIEAgMDDQYER48erRNUBIDChQtj7NixGDx4MIC0LGu1Wp3pvJt5AQOL2aT9q4QpbwDtX0U5xJGIMgssVn4Xghse5SzcGyIiIspIdu2atbtg02RXr0KR9WZmN3/+fFG2zrhx40wq1pLuiy++0BtUTFevXj0hsPj69WvRcyqVCn369MHLly/x9u1bncyxjLQzIuPj4w1uW7JkSSEYp492QdKMU25pNBrRPH0//fRTprUG5HI5RowYgUGDBmV6rGPHjuHgwYMG+xsbG4slS5bofe7rr78WvZYuXboIgUU/Pz/Url070wIhy5YtE6YWS6d9X62drejs7Iw//vhDp+BGzZo1UbNmTdSrVw8zZswAAFy7dg1+fn5Gz8WZmUKFCukdZpyudu3aaNiwIfz9/aFWq3HmzBn07NlT77YSiQTffvttpm2dPn0ab9++BQBUq1Yty+G03bt3x9q1axEXF4dr164hPDxcKPZz8eJFIbuvSpUqBt9rjRo1Qq1atXDjxg2Dx8uMv7+/MJy9QoUKeoOK6UqXLo2WLVvizZs38PLyQnx8fK4FFl+/fi0M6ZZKpRgzZozB7WvWrImWLVvin3/+AZAWBM8ssOjk5IT27dsbbMvOzg5KpRIpKSmIiYkxas5NW8XAYjZpBwi1U+ezop0SnJN5HHJKKpUarGiUV6hUKtEFRJUqVcwyAS9RrtuWNrykQmSY3qdrvHmCGx7lUL16dUv2Kk/ieYCIeB4gY6hUKiHLSiKRwMnJybj3Sf36wOnTZu5d3iVt0ABOTk5W7cOePXvg5+cnLLdv3x69e/c2ulCndqJIvXr1DL4e7aBjcnKyzraGAkHaUlNT8erVK2FZrVbrtKV9v1izZk2j+5WSkiLa9s6dO0IAqlixYqhVq5bBvn322Wdwd3cXsj8dHBxE7eX0/CqTyUTtffnllzhw4ABOnz4NtVqNSZMm4caNG+jatSvKlSsHlUqFe/fuYf369Thz5gzc3d2RnJwsDGstUKCA0F67du1Qp04dvHjxAm5ubqhUqVKm/ejWrRvu3LmD3bt3AwA2b96Mvn37mvx6tP+d2rRpgwIFChjcvlWrVvD39weQNnQ6fW5AQDzCsXTp0gaD3NpTJlWtWtWoz2H16tWFY9+7d0+Yi/PKlSvCNs2bN8+yrdatWwuBxYz/nunr0tnb24ue1z7W559/nuWxMgtQa48cTT+nazQaJCUlGdwmXfq8iUDa369cuayTOtq3by8EFq9fvy5qT/vfrmLFillW4HZ1dRU+Y1KpNFvnUZVKBalUCrlcDrlcjrJly5r8+bxz545JMS19GFjMJu03aMbKS4Zob5vZpKKWkhtp3rZGJpO9l6+L3l8VIkP1rq/5Ju2XWL6fTcfzABHxPED6SCQSUaAp43KmZs4EpFLg8GGAcyz+j5MT8NVXkEyfDhgZwDOH+/fvi4YvVqlSBZMmTTL+3xcQbffRRx8Z3E/73KJSqbI8Rnx8PJ48eYLQ0FCEhobi+fPnCA4ORlBQkGgUnEaj0WlLe7lQoUIGj6UdlFCr1aJtQ0JChMc+Pj5G/V0qVKiACxcuCP3Q3ue3337Db7/9pne/9PkRixcvnmlVbH1+//13DBkyBFeuXIFGo8HOnTtFBUnSubm5YfXq1aKswHz58gn9s7e3x8cff2xUdWkA6NWrlxBYfPnyJZ48eYKyZcsa3W9A/O9UpUqVLP++2pmqL1++1DkvpStZsqTBttLn6AOArVu3YuvWrSb1+9WrV0L7YWH/S3YoV65clq+hYsWKoj4beu9mfF47oG7s+1EfU8/nGbcJDf3ffVjFihWN6od2oPrly5dQq9VCIM+UzyuQ9r5Np+/zb4z0fdL/b2dnZ5UfVnnFlU3a0ees0ta1aW+bVQSbiN5/mQ2F9s4kk5GIiIgsTC4Hfvkl7T+yKdHR0Rg2bJiQvOHu7o4FCxaIModMpV20IbuSk5Oxfft27N27F0FBQZlWaZXJZEZXsc9JVqj20OissunSWXpYpouLC9avX4/169dj3bp1OoVO7e3t0bp1a0yYMAHu7u7CfbWTk1OO/s18fHyQL18+IcstJCTE5MCitkKFCmW5jfa/QcZh69qyKiajXUAlO6KiooTH7969M/q4QM7eH6Yey1y0/37Gvh7t7TQaDWJiYuDu7q6znamfV2tUcs5NDCxmU5EiRYTH2h+MrKSnoAPI1UlHiSjvcUlNhEei/urwBVMS9K4nIiIiorSsvDFjxgiZVnZ2dvjtt9+EOeOsJTQ0FP3798ezZ89E6yUSCTw9PVG2bFlUrlxZKIyhPQzWXLQzI40NZFoj0CGXyzFo0CD07dsXN27cQEhICJRKJYoWLYqaNWsKiTmPHz8W+ufp6ZmjY0okEuTPn18ILJqSNKSPMdli2sNODQXBs8q8155bsnXr1iZXFq5cubJJ22vLSfBe+/1oTdl5j2ccMpzdbMv3DQOL2VSqVCnh8YsXL4xKXdVoNKIUY+02iOjD456c+YWLW0rOLmqIiIiI3mdLly4V5ooDgAkTJuitYmtJCoUCQ4cOFYKK7u7u6NOnD+rXr4/y5cvrZDGdPXvWIv3SzpCLjY01ah9jtzMHe3t7fPrpp5kWIwkMDBQeV6hQQe82KSkpRk+LoR1MzGkGnTGBSe1MuZwkG2n/u9aoUSNb80Nq9+O///7T6V9mcvL+yM770Ry0R5BqZ28aor2dVCqFi4tLbncrT8q79aytTDu6n5SUhKdPn2a5z5MnT0RzLGrPS0BEHx7XlMznaXJLZsYiERERkT4nT57E6tWrheWOHTuiV69eVuxRmpMnTyI4OBhA2lDInTt3YvDgwahevbreoZHaI9/MmSGoXZQiPXiUlfTXYQkajQZRUVF49OgR4uListz+5MmTwuNPPvlE9Fznzp1Rs2ZNVKtWDWfOnMmyrdDQUKEIDACUL1/e+I7roT3vYWYePnwoPDZ2Lkh9vLy8hMfG/nvFxMTozVotUaKE3v5lJr0QVnaULFlSeGzM3+v8+fOYOHEili9fjmvXrmX7uBlpJ3oZ85qBtII36YoWLWrVgry2hIHFbCpfvrxoLP3Fixez3CcgIEB4XLBgQWFiWyL6MLmmZh5YLJCaCOTxuTaIiIiIctvz588xYcIEIRBXuXJlUfEWa0qvkgsADRs2FAVQ9NG+h8xpVVZDqlatKsxD+PLlyyyDKHfv3sWbN2/M1p+Mfv31V3z66af46quvcODAAYPbvn79Wsj0lMlkaNGihej5/PnzC4FCY4rHaB+vTJkyKFasmKndFzEmmHn8+HHh8eeff57tY9WrV094fPbs2SyLyqampuKrr75CtWrV0Lx5c5w/f154rnnz5sLjY8eOZXnsnGTbamcWnzt3Lsvt//nnH+zduxe+vr6ibNWcDkPWDkoHBgbixQv9c99n7Es6a2dI2xIGFrNJIpHgiy++EJZ37txp8MtArVaLqlq1atWK4/GJPnAFDGQsytUqOCmNrzhPRERE9L5LTEzEsGHDhKw2d3d3LF++HA4ODlbuWRrtueMiIyMNbnvz5k0cOXJEWNaeLy+32dvbo3379sLykiVLDG6/dOlSs/VFH+0AjZ+fn8HszTlz5iA1NRUA8OWXX+rMqfnll18Kjw8ePIgnT55k2tbz58+xbt06Ybl3794m9z2jmzdvGgyWXbhwAZcuXQKQVhU4J4HFVq1aCQHjd+/eYeXKlQa3X79+PSIiIqBUKhEZGSmak7Fhw4ZCYZInT57orcid7sGDB6LgaHb67ejoCAC4deuWaEqDjCIiIoRgnkQiEf29tOezNHbuUG0lS5ZE3bp1AaTFa+bNm2dw+xs3bogCi+3atTP5mO8rBhZzoEePHkJw8OHDh1ixYkWm2y5dulRIO5dKpTaRqk9E1mUoYxHgcGgiIiIibVOnThWGfNrb22PFihU5zjDLTdrz/d24cUMUOEyn0Whw+PBhDBgwQBRMTE5ONmvfBg0aJAShTp8+jZ9//lkI0Gn3Ydq0aUZlkWUmKCgIQUFBRmULpvv888+FuQbv3buHhQsX6gRak5KSMHnyZBw9ehRAWvXusWPH6rTVoUMHYXhxamoqBg0apHfY7p07d9CnTx8kJKRdb1erVg1du3Y1us+GjBkzRu+IxosXL2LEiBFC4HTkyJE5mtPR1dVVVPxn1apVWL58uU5xFLVajR07dsDX11dY98MPP4jmOrS3t8eECROE5VmzZmHfvn06x7x//z4GDRqUowIs7u7uonjImDFjhGCrtrdv32LYsGFCBmqbNm1EQ8e15zeMjIwUDWk31siRI4UA5fHjxzFp0iS982T6+/tjyJAhQgCzRYsWaNy4scnHe1+xeEsOVKhQAR07dsSePXsAAMuXL0dcXByGDx+O/PnzAwDi4uKwbNkybNq0SdivW7duonkuiOjDZChjEQDcWBmaiIiICEDavHqHDx8WlmvUqIGbN2/i5s2bANICdtrBDrlcbnCEWLdu3XK98MJXX30FX19fREREQKPRYNSoUdi+fTuqVKkCZ2dnhIeHw9/fX1TJWqVSQaPRIC4uDkql0qhiI9nh6emJGTNmCMPI//77b5w+fVoI6oWHh+PEiRN48+YNZDIZpFKp8PeUSs2bj2Rvb48ZM2Zg+PDh0Gg0WLNmDY4fP45GjRrho48+wsuXL3H8+HGhqIhcLsfixYtRtGhRnbYcHBywaNEi9O7dGwkJCQgJCUG7du3QrFkzVKpUCUqlErdv38aFCxeEEYdeXl5YtmyZURWdsyKXyxEbG4vvv/8eDRs2RM2aNQGkBZovXLggbNe4ceNcyZAcNGgQ7ty5gxMnTkCj0cDX1xd+fn5o2rQpPDw8EBERgUuXLonmMqxbty6GDh2q01bHjh3h7++PQ4cOQaFQYMKECdi6dSsaNGgAe3t73L17F2fPnoVKpULp0qWNqjORmREjRuDWrVu4evUqoqOj0adPH9StWxe1atWCk5MTnjx5gmPHjgnBQi8vL0ydOlXUhouLC9zc3BAdHY3U1FT069cPTZs2RXJyMvr3729UP2rXro3x48dj7ty5AIA9e/bg9OnTaN68OUqWLImkpCRcvXpVNM1B6dKlhe0pDQOLOTRlyhQEBwfj7t27AICNGzdi586dwvyJQUFBQul6IG1+i4kTJ1qlr0RkW7LMWGRlaCIiIiIAaUUntF25cgVXrlzJdnutWrXK9cCii4sLVq5cicGDB+Pt27cAgMuXL+Py5cs623p5eWHu3LmYPHkynj9/DrVajfv374uGp+a29u3bQ6FQ4Ndff0ViYiJevXqFLVu2iLZxcnLCvHnzMHfuXLx69QpAWuDP3L744gvMnTsXP//8M5KSkvDs2TOhura2YsWKYf78+ahTp06mbVWpUgVbtmzB6NGj8fTpUyiVShw/flzv8N1GjRphzpw5OkOqs6t3797477//cO7cOQQEBIjqLKTr1asXJk2alCsBW4lEgmXLlmHRokXYuHEjFAoFXr58ib///lvv9u3bt8esWbMyDWD//vvv8PDwEIaIBwYGiuY1BNKC+uPHj0ePHj2y3W+5XI5169ZhxowZ2Lt3L4DMP9M1a9bEkiVLRDUu0n377bdYtWoVgLTgbXoAsEuXLqKqz4Z8//33KFSoEGbNmoWYmBhERUXBz89P77bt27fHjBkzhOxfSsPAYg65uLjgr7/+wvjx44V076SkJNy6dUtn22bNmmHBggXCfAJE9GFjxiIRERHR+6Vq1ao4ePAg/v77b5w5cwbPnj1DYmIiHB0dUbhwYfj4+KBp06Zo27Yt7O3t0aRJE2zevBkAsG/fPrMGFoG0gEuDBg2wbds2nD17Fi9fvkRqaiqKFi2KJk2aoF+/fvD09BQVxNFX0docOnbsiLp162Lr1q0ICAhASEgIUlNT4ebmhgoVKqBVq1Zo166dUffTlSpVwsGDB3HkyBEcO3YMd+/eRWRkJOzs7FCkSBHUqlULbdq0yfXhrPny5cOaNWtw4MAB7N69G0FBQUhISICnpyfq1q2L7t27o2rVqrl6TJlMhnHjxqF79+7YtWsXLl26hJCQEMTGxsLBwQHFixdHrVq10Llz5yzfXxKJBOPHj8eXX36Jbdu24fLlywgPD4eTkxPKlCmDr7/+Gt26dTM4d6WxHBwcMG/ePPTs2RN79uzB5cuX8fr1a6SkpKBgwYKoWrUq2rVrh5YtW2YahB05ciQ++ugj7N69G6GhoVAoFPjoo48QHh5udGARANq2bYumTZti165dOHfuHP777z9ER0fDzs4OJUqUwCeffIJOnTqZ/fOZV0k05qxrn8fs2bMHkyZNAgAUL17cpHkhgLQ5Ew4cOIBr167h7du3UKlUKFSoEGrWrImOHTuiUaNG5ui20W7evCmke0ulUiEtOy9LT2VPV716dbMNHyDKTdKxB7H01J8YfvNQptt812YMth7+3YK9ypt4HiAingfIGCqVSpifDwC8vb1zZegj2QaNRiOaY83JyYnFMnOgatWqwhyMly5dEgp7kC5fX18sX74cADBs2DAMHz7cyj36cH1o54Hc+F7LjTgRr7i0dOrUCZ06dcr2/vXr10f9+vVzsUdE9D5zzSIjkRmLRERERJQb1q1bh48++gheXl6oVauWwW2fPHkiBBULFizIoCIRGcTAIhGRhSlVab8IuaYmGdzOLSUeKUoVHOyYTUFERERE2XfgwAE8fPgQAODn54cqVapkuu1ff/0lPK5bt665u0ZEeZx5yzsREZGOl7HJAIACWWUsJicgNDrZEl0iIiIiovdYgwYNhMezZ89GVFSUzjYqlQpr167Fjh07AKQNi8yNysVE9H5jxiIRkYWlz2ybdcZiAv59+AbDGpW2QK+IiIiI6H31ww8/YM+ePYiOjsbNmzfRtGlTNG/eHF5eXpDL5QgPD0dAQADCwsKEfQYMGIBPPvnEir0moryAgUUiIivJKmOxQEoCnitUFuoNEREREb2vChcujI0bN2LEiBF49uwZkpOTceTIEb3b2tvbY+LEifjuu+8s3EsiyosYWCQishLX1ESDzxdISURMstJCvSEiIiKi91mFChVw8OBBHDlyBMePH8eDBw/w7t07aDQaFCpUCMWLF0fz5s3Rtm1bFC5c2NrdJaI8goFFIiIrKZBiOLDolpKAdVdCMPvLChbqERERERG9z+zt7dGhQwd06NDB2l15bwwfPhzDhw+3djeIrIbFW4iILEwDwF6pgKNKYXA7J2UKwuNSLNMpIiIiIiIiIhMxsEhEZGEaDZA/i8ItAOCsYEVoIiIiIiIisl0MLBIRWUF+heFh0ADgpGC2IhEREREREdkuBhaJiCxMAw2cFKlZbuekZGCRiIiIiIiIbBcDi0REVpDPiKChkyIlbdw0ERERERERkQ1iYJGIyMI0GuOyEe00asjVSgv0iIiIiIiIiMh0DCwSEVmYBkA+ZdZDoYG0rEWVmlmLREREOSWVim99VCqVlXpCRESUcxm/xzJ+z1kKA4tERFaQT88ci8kyuc46J2UKdge+tESXiIiI3msSiQR2dnbCcmJi1oXUiIiIbJX295idnR0kEolV+sHAIhGRhWk0Gr1zLL7Ll19nnZMiBQHPoizRLSIioveei4uL8Dg2NtaKPSEiIsoZ7e+x/Pl17yUthYFFIiIr0DcU+m0+V511TsoUaFjAhYiIKFe4uv7vuzYhIQGRkZFW7A0REVH2REZGIiEhQVi2ZmDRLutNiIgoN2mgv3jLO0f9GYuMKxIREeUOJycnyOVyKBQKAEB4eDji4+Ph6uoKJycnyGQyK/eQskuj0YjmG1OpVFYbFkhE1vG+nwdUKhUSExMRGxsrCirK5XI4OTlZrV8MLBIRWZhGoz9jUe9QaCOqRxMREZFxJBIJvLy8EBISIgQXExISRDdolHep1WrhsbWKGBCRdX1o5wG5XA4vLy+rBlDf/78yEZEN0hdYjHTUMxRakQomLBIREeUee3t7eHl5QS7XLZpGeZdGo4FSqRT+41QyRB+eD+08kB5UtLe3t2o/mLFIRGRhGugv3qJvjkVnRfJ7/4VIRERkafb29ihbtiwSExMRFxeHuLg4KJVKa3eLckj735CBY6IP0/t+HrCzs0P+/PmRP39+ODk52cRQbwYWiYgsjEOhiYiIrE8ikcDZ2RnOzs7w9PSERqMRDaGjvEWpVOLu3bvCctmyZWFnx9tdog/J+34ekEqlNhFIzOj9+QsTEeURD9/Ew0lhfPEWlc5aIiIiym0SiYTFW/KwjCM8ZDIZ/z2JPjA8D1gH51gkIrKwSUcewNGEjEWOhCYiIiIiIiJbxMAiEZGFBUck6B8KnUnGIhEREREREZEtYmCRiMgKMgYWlRIpYhycdbZzUqZAzZRFIiIiIiIiskEMLBIRWUHGqtBJdg5IkDvqbOekSMGmay8s1S0iIiIiIiIiozGwSERkBRmrPSfZ2SPRzkHvdqkqVqgkIiIiIiIi28PAIhGRFWQcCp1kZ48EuW5gMR/nWCQiIiIiIiIbxcAiEZEVZAwsJsodkGxnr7NdxsxGIiIiIiIiIlvBwCIRkYVJJEA+hW7GIiQSJGQYDs2q0ERERERERGSrGFgkIrIC3eItadmKiRmGQzszsEhEREREREQ2ioFFIiILk0Bf8Za0gGLGAi4cCk1ERERERES2ioFFIiILSwss6hkKDd2MRQYWiYiIiIiIyFYxsEhEZGEOKoXOuvRMxWSZXLytUndbIiIiIiIiIlvAwCIRkYVlzFYEgCR5WsZixsrQjirdbYmIiIiIiIhsAQOLREQWlrFwC/C/gKJOYJEZi0RERERERGSjGFgkIrIwJz2VnpMyGQrNjEUiIiIiIiKyVQwsEhFZmKOeORbTi7ekZJxjUaWERKO2SL+IiIiIiIiITMHAIhGRheXTM7w5PVMx41BogAVciIiIiIiIyDYxsEhEZGGOat1AYYoQWJTrPKcvw5GIiIiIiIjI2hhYJCKyMAc9VaGThaHQuhmLjnq2JyIiIiIiIrI2BhaJiCzMQU8GYopMjublCmWSscjAIhEREREREdkeBhaJiCxM39DmFJkcC76uhGQ9GYsOSqUlukVERERERERkEgYWiYgszF5PMZYUmR1qFi/AjEUiIiIiIiLKMxhYJCKyMEe1bgZiyv8HFPVlLHKORSIiIiIiIrJFDCwSEVlYQalaZ51S7gDgfwFGbawKTURERERERLaIgUUiIgur55FPZ12raiUAAMkyPYFFZiwSERERERGRDWJgkYjIwvJDpbOuVlkPAECynb6h0MxYJCIiIiIiItvDwCIRkYWdf/BSZ53UIW0otN6MRRZvISIiIiIiIhvEwCIRkYXZ65kzUW2flqnIjEUiIiIiIiLKKxhYJCKyMAc9gUK1gyOATAKLzFgkIiIiIiIiG8TAIhGRhTmolDrrhIxFFm8hIiIiIiKiPIKBRSIiC9OXgZgeUNSXsagvEElERERERERkbQwsEhFZkFqt0TvHYrxEBgBIySRj8W1Citn7RkRERERERGQKBhaJiCwoKkmhd45FpV168Rb9VaHnnXpk9r4RERERERERmYKBRSIiC7KTSuCgJ2NRKU+fY1F/VehFZ5+YvW9EREREREREpmBgkYjIgmRSic6ciQqpDCpp2uk4s4xFIiIiIiIiIlvDwCIRkQVJJbqBwhSZHGqNBoD+jEV9Q6eJiIiIiIiIrI2BRSIiC1JrdAOFKTI51Oq0x/qqQjsqmbFIREREREREtoeBRSIiC3oZm6wzx6J2xmKKzE5nH0c9czISERERERERWRsDi0REFqTRQE9g0Q7qtLgi1FIZUqXi4CIzFomIiIiIiMgWMbBIRGRBGmh0irck29kLGYtpy+ICLsxYJCIiIiIiIlvEwCIRkQXpz1iUQ6XWiJa1sXgLERERERER2SIGFomILCzj0Oa0ORb/t5yxMnTGKtJEREREREREtoCBRSIiC8p8jkUDQ6GZsUhEREREREQ2iIFFIiIL0kD/UGjvws7CcrIdMxaJiIiIiIjI9jGwSERkQRqNbvGWFDs5mpYtJCwnZ5hjMR+rQhMREREREZENYmCRiMiCNEolZBq1aF3hj1xhb/e/03HG4i32GQKRRERERERERLaAgUUiIguSJCfrrHN0dhItp8rsRMsZh04TERERERER2QIGFomILEiSojusWSkXz6mYMWORgUUiIiIiIiKyRQwsEhFZUqpuxqJKLg4kZgwsytUqSDIMnyYiIiIiIiKyNgYWiYgsSJKSorNOZe8gWs44FBrgPItERERERERkexhYJCKyIFWSbmAxSStDcW6bijoZiwCHQxMREREREZHtYWCRiMiC7jyP0FkXHPu/oOG4pmWRqiewyIxFIiIiIiIisjUMLBIRWdDJOy901oUm/W/+RKlUoncoNDMWiYiIiIiIyNYwsEhEZEmpulWhMw595lBoIiIiIiIiygsYWCQisiBpNgOLHApNREREREREtoaBRSIiC5IpdQOLGYc+cyg0ERERERER5QUMLBIRWZBUoRsgTJUyY5GIiIiIiIjyHgYWiYgsyE6pJ7CYIUORcywSERERERFRXsDAIhGRBcmMCCxyKDQRERERERHlBQwsEhFZkJ2CxVuIiIiIiIjo/cDAIhGRBRmTscih0ERERERERJQXMLBIRGRByYnJOutSpRwKTURERERERHkPA4tERBakb0izMRmLHApNREREREREtoaBRSIiC9KXeZhqxByLzFgkIiIiIiIiW8PAIhGRBenLPExhVWgiIiIiIiLKgxhYJCKyIL1DoaWsCk1ERERERER5DwOLREQWZK/WDRAq7TLOsciMRSIiIiIiIrJ9DCwSEVmQvZ4AoUZuL1rOOOciwMAiERERERER2R4GFomILMhBz5Bmz0L5RcscCk1ERERERER5AQOLREQWJNeTebiwSy3RModCExERERERUV7AwCIRkQXpyzysW66IaJlDoYmIiIiIiCgvYGCRiMiCPBwkOuskDg6iZX0ZixwKTURERERERLaGgUUiIguSK8WZhyqJFJDJROv0z7GogEajMWvfiIiIiIiIiEzBwCIRkQUlJySJllP1ZCfqCyw6qJRQqRlYJCIiIiIiItvBwCIRkQXJMwxp1hdE1BdstFcpsCvwldn6RURERERERGQqBhaJiCzkZUyyzlyJqVLdIKJaKoNSIj49O6iU8PV/atb+EREREREREZmCgUUiIgtJValhr84QWNSTnQjoZjI6qBS49DzKbH0jIiIiIiIiMhUDi0REFiKTSuCgEhdvySywmHG9fYb9iIiIiIiIiKyNgUUiIguxk0qMGgoN6MtYVOrdjoiIiIiIiMhaGFgkIrKQdwmpOpmHKXa6xVsA/UOhiYiIiIiIiGwJA4tERBai0mh051jMJGNRdyg0MxaJiIiIiIjItjCwSERkQTpDofXMsSiTSpixSERERERERDaPgUUiIgvRaHQDhKky3aHQZdydGFgkIiIiIiIim8fAIhGRBRlbvIVDoYmIiIiIiMjWMbBIRGQhB+6+1gkQZsxMBIDqxVyZsUhEREREREQ2j4FFIiIL+eXoA0ihEa3TN8fiwE8/ZmCRiIiIiIiIbB4Di0REFqIvOKgvsPh5+UL6h0JrNDrbEhEREREREVkLA4tERBaib55EfYFFiUQCR+d8onVSaGCnVpmtb0RERERERESmYmCRiMhC7PVkLHq659e7rcLOXmcdh0MTERERERGRLWFgkYjIQvRlLLoXdNG7rUqum8nIytBERERERERkSxhYJCKyEHu1bmBQZadbFRoA4jQynXXMWCQiIiIiIiJbwsAiEZGF6AsMquT6A4saBwej9iciIiIiIiKyFgYWiYgsRN9QZmUmGYv58zsZtT8RERERERGRtTCwSERkIfoCgyo9RVoAQMniLURERERERGTjGFgkIrIQ/YFF/RmLSjkDi0RERERERGTbGFgkIrIQfYFBZSZzLCpZFZqIiIiIiIhsHAOLREQWorcqtJ7MxLT1LN5CREREREREto2BRSIiC7HXExhUy3QzEwH9RV30BSaJiIiIiIiIrIWBRSIiC5GrVTrrFJkMhVbpWe+gZMYiERERERER2Q4GFomILETfHImZZSzqGyLNodBERERERERkSxhYJCKykJxWheZQaCIiIiIiIrIlDCwSEVmIvdr4qtD6Ao4cCk1ERERERES2hIFFIiILkat051hUyYzPWORQaCIiIiIiIrIlDCwSEVnAy5hkvUOZ9RVpATgUmoiIiIiIiGwfA4tERBawO/Cl3jkWlZlkLKo5FJqIiIiIiIhsHAOLREQWcPhBOOR6Mg4VdplUhbbnUGgiIiIiIiKybQwsEhFZgEajvyr0mecxerfnUGgiIiIiIiKydQwsEhFZiL7A4osktd5tNfqKt3AoNBEREREREdkQBhaJiCxAA/0Zh8lS/UOhlXqKujjoCUwSERERERERWYv+O1rKtvv372PXrl24du0aXr9+jaSkJBQoUABlypRB48aN0a1bNxQoUMDa3SQiC9NoALmewGCqRP/vOyp7B5119mpmLBIREREREZHtYGAxlyQnJ2PWrFnw8/PTee7t27d4+/Ytrly5glWrVmHWrFlo27atFXpJRNai0Wj0ZyxK9J+GWRWaiIiIiIiIbB0Di7kgNTUVgwcPxsWLF4V1MpkM3t7ecHV1RVhYGF68eAEASEhIwJgxYxAXF4fu3btbq8tEZGEa6M9YVMh0A4hAJhmLHApNRERERERENoSBxVywZs0aUVCxWbNmmDFjBooWLSqsu3r1KiZMmICwsDAAwOzZs/HJJ5+gfPnyFu8vEVmeWqOBXE/GYo1SH+ndXqVnjkV7tQIajQYSiSTX+0dERERERERkKhZvyaHU1FSsX79eWK5fvz5WrFghCioCQJ06dbBp0ybkz58fAKBUKrFy5UqL9pWIrEej0Z9xmM85n/4d7HR/93FQMmORiIiIiIiIbAcDizl069YtxMfHC8sjRoyATCbTu22JEiXQo0cPYfnMmTPQaDRm7yMRWZ8G+gOLCqn+84VEKkVyhmHSDioFeMogIiIiIiIiW8HAYg69fv1atFy5cmWD21evXl14nJCQgKioKLP0i4hsi77iLQqpDOpMqkJLJUBKhsCivuIvRERERERERNbCwGIOpQ9tTpeQkGBwe2WGoYwODroFGojo/aPW6BZvUUhlmWYgSiBBqkw8HNpBqQATFomIiIiIiMhWMLCYQ+XKlRMtnz9/3uD2AQEBwuOiRYvC2dnZLP0iItuigW7GYapMDnUmkUWJnozFtKHQDC0SERERERGRbWBgMYdKliyJpk2bCstLlizB27dv9W577do17NmzR1jWnm+RiN5varVGZ47FVKkdPinppnd7CTgUmoiIiIiIiGybbtlRMtnkyZNx9+5dvH37FmFhYejSpQt++uknNGnSBG5ubnj16hUOHz6MlStXQqFQAAAqVaqEnj17WrXfGYdl50UqlcrgMpGtUGs0kKvF70+FTIZu1T0z+SxqdIdCqxRQKJWAhr8JaeN5gIh4HiAingeIiOcB65BoOK4uV7x+/RqzZ8/GiRMnDA5VlEgkaNeuHaZNm6YzP6O53bx5E2q12qLHJKI0vY9GYNviwaj29rmw7qlrEUSeOqJ3+2PPk/Dl4N6oEfFUWPc8f2G8PnkEdlKJ2ftLREREREREHw6pVIqaNWuavp8Z+vJBcnd3R5MmTfDxxx8b3K5hw4YYMGCAxYOKRGR9OkOhMwx11tagqIPeodD8KYiIiIiIiIhsBYdC54KHDx/ip59+wvPn/8tEcnBwgLe3N5ycnBAeHo5nz54BAPz9/dG+fXv06dMHY8aMgZ0d/wmIPgQajb7iLZl//iUS3ecdVAqz9I2IiIiIiIgoOxjVyqHQ0FD06dMH0dHRAABHR0eMGjUK3377LRwdHUXbLVq0CEeOHIFKpcL69evx5s0bLFy40Cr9lkqlqFq1qlWOnZtUKhXu3r0rLFepUgUymcyKPSLSz+GMP+QZ5vhQSGWoXr263u3jU5S4lrEqtFKBqtWqwsGO73FtPA8QEc8DRMTzABHxPGC6O3fu5HjKPAYWc2jWrFlCUNHBwQEbNmxArVq1dLYrWbIkFi9eDC8vL6xatQoAcOjQITRr1gxt27a1ZJcF72O2pEwmey9fF70HJBLYq8UZh6kyu0zfr3Yq/VWh1XZ2sGNg0SCeB4iI5wEi4nmAiHgesAzOsZgDoaGhOHfunLA8ePBgvUFFbaNGjRJlKK1du9Zs/SMi26HWaHTnWJQaGAoN3aHQcrUKGhULMBEREREREZFtYGAxB65duyZa7tKli1H7ffvtt8LjBw8e4N27d7naLyKyPRpNWmBQm8LAHIuAbsYiADx+GZWr/SIiIiIiIiLKLgYWc+DNmzfC4wIFCqBIkSJG7VehQgXRclhYWK72i4hsj0ajpyq0oYxFCZCiJ/D4MiIm1/tGRERERERElB0MLOaAvb298FihML5aq1Qq/rNLJJJc6xMR2SaNRm1SVWgAUOjJWJQqUnO1X0RERERERETZxcBiDnh6egqPExMT8fTpU6P2e/z4cabtENH7SZqhIjRgOLAokUj0ZixKUhlYJCIiIiIiItvAwGIO1KtXT5R9uGPHDqP28/PzEx6XL18ehQsXzvW+EZFtsVPqBgQVBoZCA0CqnoxFiQnZ0URERERERETmxMBiDri7u6NVq1bC8qZNm3Dx4kWD+2zevBkBAQHCcrdu3czWPyKyHTKlUmedwYxF6J9j8V1kXG52i4iIiIiIiCjbGFjMobFjx8LV1RUAoFKpMGDAAKxYsQKRkZGi7SIiIvDzzz9j9uzZwrrKlSuje/fuFu0vEVmHnVI309BQxqJUIkGqVDdj8cjt0FztFxEREREREVF2GR6HR1kqUaIEli9fjsGDByMxMREKhQLLli3DypUrUbp0aRQsWBBRUVF49OgR1Gq1sN/HH3+MVatWwc6O/wREHwJ9Q5gNBRbt7aR6MxrvhbzL1X4RERERERERZRczFnNBvXr1sGvXLlSuXFlYp1AoEBwcjMuXLyM4OFgIKkokEnz55ZfYvXs3ihQpYq0uE5GFhUfG66zLqip0ip45Fu1VukOqiYiIiIiIiKyB6XK5pFy5ctizZw/Onj2L48eP48aNG4iIiEBiYiLy58+P4sWLo27duujQoQN8fHys3V0isjB9AcGsAov6nndQsXgLERERERER2QYGFnPZZ599hs8++8za3SAiGyNXmx5Y1JuxqKcdIiIiIiIiImvgUGgiIgvQFxA0NMcikEnGop4iMERERERERETWwMAiEZEF6B0KnUVgkRmLREREREREZMsYWCQisgDOsUhERERERETvGwYWiYgsQN8ci1kNhdZfFZqBRSIiIiIiIrINDCwSEVlA7mUscig0ERERERER2QYGFomILCA7gUVmLBIREREREZEtY2CRiMgC9A2Fhr1u4FCbvuIuzFgkIiIiIiIiW8HAIhGRBeir5tysYjGD+6TYMWORiIiIiIiIbBcDi0REFqBvKHTdskUM7sOMRSIiIiIiIrJlDCwSEVmAvsCizNHe4D6cY5GIiIiIiIhsGQOLREQWoG+ORbWeoc7aWBWaiIiIiIiIbBkDi0REFqAvY/H/2LvvOKnqs+/j36nbWVh6RzoIdhQbAvbYu0aNJkbvxJhEH1M00dyJ3TvWaBIVC/YWxYKoURGUKoj03lkWll22t6nn+WNhYPachd2ZOTOz8Hm/Xr6end/MnPPL/cCw+93r+l2GZ98Vi66sTPN1wlQsAgAAAADSA8EiACSBVbAY9sQwFTpIsAgAAAAASA8EiwCQBJat0PupWKy3CBatrgMAAAAAQCoQLAJAEngtz1g0B4d781mesRiQYRgJ2xcAAAAAALEiWASAJLA+Y3E/rdAOc7DoDQUVJlcEAAAAAKQBgkUASALrMxb33QodlrlqMSMUUJiKRQAAAABAGiBYBIAksDob0dhPK7QhyeeKrmr0hoIiVwQAAAAApAOCRQBIglgqFg3DME2GpmIRAAAAAJAuCBYBIAmsKhZD+zljMWxIfouKRYJFAAAAAEA6IFgEgCTwhEKmtf1NhZbMZyx6wwxvAQAAAACkB4JFAEgCbzhgWjP20wotmSsWM4K0QgMAAAAA0gPBIgAkgeUZi+59t0JL1hWL5IoAAAAAgHRAsAgASdA0WPQ73TIc+3+fqWKR4S0AAAAAgDRBsAgASeAJR5+xGHC6NKhT7n7fZ6pYDHHGIgAAAAAgPRAsAkAS5Dmig0W/y62ueRn7fE9BtoeKRQAAAABA2iJYBIAkaOeMDgObBoZWXrriCCoWAQAAAABpi2ARAJLA3eSMxaDTtd/3nDmki/zO6AAyMxRQaY0voXsDAAAAACAWBIsAkATuYCDqsb9JJaIVr9spn9v8uj98sDhh+wIAAAAAIFYEiwCQBE0rFlvSCi3JVLEoSd+sKErIngAAAAAAiAfBIgAkQaAhun3Z14JWaMm6stHbJKQEAAAAACAVCBYBwGZfri4xhYEB5/5boSXrysaMUMDilQAAAAAAJBfBIgDY7M+frjQFiy05Y1GSfBbBojdMxSIAAAAAIPUIFgHAZnkZblMY2NJg0ep1GUEqFgEAAAAAqUewCAA2G9w5R54YW6GpWAQAAAAApCuCRQBIgoRWLHLGIgAAAAAgDRAsAoDdDEOecChqyR9PxSJToQEAAAAAaYBgEQBs5gyag0AqFgEAAAAAbR3BIgDYzG0xbCWuMxapWAQAAAAApAGCRQCwmcsiWGxxxaJFAEnFIgAAAAAgHRAsAoDNLCsWWxgs+txULAIAAAAA0hPBIgDYzGURBAacrha9l4pFAAAAAEC6IlgEAJs5A1at0OZKRCtWLdNULAIAAAAA0gHBIgDYzKoV2qoS0YrV8BYqFgEAAAAA6YBgEQBsZtUK3eLhLVQsAgAAAADSFMEiANjMaip0S89YpGIRAAAAAJCuCBYBwGaWrdDxnLEYJlgEAAAAAKQewSIA2Mw6WIzjjMUgrdAAAAAAgNQjWAQAm20trTattbQVmopFAAAAAEC6IlgEAJut2lpmWourYpHhLQAAAACANECwCAA2s5ri7He28IxFp9VUaCoWAQAAAACpR7AIADbzhEOmtRZXLLqpWAQAAAAApCeCRQCwmVWFYYvPWLSoWPRQsQgAAAAASAMEiwBgM8tWaM5YBAAAAAC0cQSLAGAzb9gcBAYsKhGtWE6FpmIRAAAAAJAGCBYBwGaekPmMRatKRCthp0tBR/RHNRWLAAAAAIB0QLAIADbzhi3OWHS17IzFcQM6mqoWqVgEAAAAAKQDgkUAsJnlGYstbIV2OBym6sYMgkUAAAAAQBogWAQAm1kPb2lZK3Tja5tULFqc2QgAAAAAQLIRLAKAzayCwJZOhZbM5zFaBZUAAAAAACQbwSIA2CyeVmjJHELSCg0AAAAASAcEiwBgs0PyzCFiSysWLxjRjYpFAAAAAEBaIlgEAJt5LM9YbFmweOaQzqbqRioWAQAAAADpgGARAGxmFSwGWtgKnZfhls9NxSIAAAAAIP0QLAKAzdxBc4VhSysWDcN8HiMViwAAAACAdECwCAA2s5oKfe7hvVr8fs5YBAAAAACkI4JFALCZx6Ji8aYxg1v0XkOG/E2CRSoWAQAAAADpgGARAGzmDkZXGIYcTo0Z3KVF7zUMc9u02whLoVDC9gcAAAAAQCwIFgHAZu4mFYYtPV9RkgyZW6EbL+KPc1cAAAAAAMSHYBEAbOZqUrHYdBjLvhiGYRlEfrhgU9z7AgAAAAAgHgSLAGCzmpq6qMetqlg0ZDpjUZI+Wbgl7n0BAAAAABAPgkUAsFEwFDZNcQ60pmJR1hWOhs8X79YAAAAAAIgLwSIA2OiL1SXyhpu0QreiYlGSfG5zxaLbYtI0AAAAAADJRLAIADaqD5orFlvdCm1RsUiwCAAAAABINYJFALCRy+EwB4utaoU2LKdCewgWAQAAAAApRrAIADZyOS2CxVZULOZneixfT8UiAAAAACDVCBYBwEZup0OeOM5Y7JjjbaZi0R/33gAAAAAAiEfrJgjEoby8XOvWrVNhYaEqKipUV1cnp9OpnJwc5efnq1+/furfv79yc3OTtSUAsJ3L6TAPb2lFK7RkHUQG6pkKDQAAAABILduCxWAwqFmzZunLL7/U3LlztXnz5v2+x+FwaNCgQTr++ON12mmn6ZhjjrFrewCQNE1boQOtnQptUbHYyRWOa08AAAAAAMQr4cFiaWmp3nzzTb399tvauXNnZN0wDEmN4eHej3evGYYhwzC0evVqrV69Wi+//LJ69eqlyy+/XFdddRWVjADapMKK+riGt0jWFYu5ToJFAAAAAEBqJSxYLC8v13PPPac333xTPl9ji97e4eFuhmEoIyNDeXl5cjqdqq+vV21tbeS1e7+nsLBQjz32mJ555hldffXVuvHGG5WXl5eoLQOA7Xq0yzC3QiegYtHL8BYAAAAAQIolJFh888039fjjj6u6ujoqGOzYsaNGjx6tYcOGafDgwRoyZIgKCgrk8UT/kBwMBrV9+3Zt3rxZS5cu1aJFizR37lzV1NRIkmprazVhwgS9/fbbuuWWW3TNNddEKh8BIK35zQFga4NFq9d7gkGLVwIAAAAAkDxxBYtbtmzR73//ey1atCgSKHbq1EkXXXSRzjjjDI0cObJlm3C71atXL/Xq1UsnnHCCpMaw8fvvv9fkyZP12Wefqbq6WpWVlXrggQc0efJkPfDAAxowYEA82wcA+/nN05v9TnMF4r5YViyGqFgEAAAAAKSWM9Y3fvDBB7rwwgsjoeKhhx6qxx9/XNOmTdPtt9/e4lCxOW63W8cdd5zuvfdezZgxQ3/96181YMAAGYahRYsW6dJLL9V7770X1z0AwG4Oq2AxARWL9bX1Me8JAAAAAIBEiDlYvOOOO1RbW6vevXvrH//4h9577z2dffbZcrsTP2g6IyNDV155pT755BM98sgj6tu3r+rr63X33Xcn/F4AkFAWLcuJmAq9dFNpzFsCAAAAACARYg4Wc3Jy9Ic//EGffPKJzjjjjETuaZ/OPfdcTZkyRXfccYeys7OTdl8AiInfZ1rKycls3SUspkh7Q0HV+jhnEQAAAACQOjGXF3722Wfq3LlzIvfSYi6XS9dff73OOeeclNwfAFrKETCfhXh4v06tuobPba5YzAgF5AuFlRPzzgAAAAAAiE/MFYupChXTbQ8AsC9WZywaHm+rrtFcxSIAAAAAAKkUc7AIANg/R8AcLIZbGSxanbGYEQrIMGLeFgAAAAAAcbMlWDzrrLP03HPPqbi42I7LA0CbYV2xaA4K9+W8I3qb1ryhoAyRLAIAAAAAUseWYHHjxo16/PHHNX78eN1444367LPPFLA4ZwwADnh+82ef4W1dxeL5R/YxrVGxCAAAAABItZiHt7REKBTSjBkzNGPGDLVr107nnXeeLrzwQo0YMcLO2wJA2nAEzcFiuJUVi+4s8xRpL8EiAAAAACDFbKlYvPPOOzV8+HBJkmEYMgxDlZWVev3113XZZZfpvPPO08SJE1VWVmbH7QEgbVi1Qrf2jEWr1mmGtwAAAAAAUs2WYPG6667Te++9p08++UQ33nijunfvLmlPyLh27Vo9/PDDGjNmjH71q1/pq6++UigUsmMrAJBSDqtjIDytKxYPezNMa95wgBMWAQAAAAApZetU6AEDBuj222/X119/rZdfflkXX3yxcnJyIgFjMBjU1KlTdcstt2jMmDF6+OGHtXr1aju3BABJZTkV2h1/xWJGMCiDXmgAAAAAQArZGizu7bjjjtMDDzygWbNm6dFHH9WYMWPkcrkiIWNZWZkmTpyoCy64QJdcconeeOMNVVVVJWt7AGALy6nQrRzeIodDPld0lSMViwAAAACAVLN1eIuVjIwMnXPOOTrnnHO0c+dOTZkyRV9++aW+//57BYONZ4YtW7ZMy5cv18MPP6xTTz1Vl156qU444YRkbxUA4ua0qFg0vK0b3iJJfqdHGXudq8gZiwAAAACAVEtaxaKVjh076tprr9XLL7+s2bNn65FHHtERRxwhqfE8Rp/Pp08//VQ33HCDzjjjDE2cOFG1tbWp3DIAtI7ffMai0crhLZJMFYsZTIUGAAAAAKRYSoPF3VauXKmXX35ZL774ohYtWiSHwxH5b3er9JYtW/Twww9r/PjxmjRpUqq3DAAtsrqo3LQWS7Dod0VXOXpDQRk0QwMAAAAAUijprdC7rV27Vh9//LEmT56soqKiqOd2DyQYNmyYTj/9dP3www+aNWuWQqGQKisr9ac//UmLFy/W//7v/6Zi6wDQYl0zHKa1eoerVdcoqmpQbyoWAQAAAABpJqnBYnFxsT755BN99NFHWrVqlSSZppoWFBTo3HPP1cUXX6yhQ4dG1ktKSvTmm2/q+eefl9/v11tvvaUjjzxS559/fjL/JwBAqziD5lboXp3zWnWNHTU+y4pFAAAAAABSyfZgsaamRp9//rk+/vhjzZs3T+FwWFJ0oOh2uzVmzBhdfPHFGjt2rNxu87Y6d+6s3/zmNxoxYoRuvvlmSdIbb7xBsAggvfnMw1syszNbdYlg2LA+YzGujQEAAAAAEB9bgsVgMKjp06fro48+0rRp0+T3N/5g3bQ6cciQIbrooot0/vnnq6CgoEXXHj9+vPr27atNmzZp7dq1Cd87ACTSWoszFt2ZrQ8WTRWL4aBC9EIDAAAAAFLIlmDxxBNPVFVVlaTGMHH3EBZJat++faTVefjw4TFdv3v37tq0aZMpqASAdJOtkGnNm9W6YDFkVbEYDKiWj0AAAAAAQArZEixWVlZGhYkul0snnXSSLr74Yo0bN04ej2c/V9i3nTt3SpIGDRoU914BwE4dLT5lOxfktuoazVUs1sSzMQAAAAAA4mTbGYuGYWjQoEG6+OKLdf7556tjx44Ju/bNN9+snj17qn///gm7JgDYYVtplWnNkZHRqms0d8YiAAAAAACpZEuwePXVV+uiiy7SiBEj7Li8zj77bFuuCwCJtLWyXo6gxfRmr7dV18nPdMvvjK5YzAgFZYTphQYAAAAApI4tweLdd99tx2UBoE25/8s1GmVVWdjK4yCuPbqXprnNH9dGwC8pJ8bdAQAAAAAQH2eqNwAAB6rZm8rlCcdfsZibYa5YlCT5/DHuDAAAAACA+Nl2xmJThmGovLxcfr9f4XC4Ve/t0aOHTbsCAPs4JHlD8QeLkuR3mT+uHX5fDLsCAAAAACAxbA0Wa2trNWHCBE2dOlXr169XKBRq9TUcDoeWL19uw+4AwH6WwWIrW6ENwzwVWpLkZ4ALAAAAACB1bAsW161bpxtvvFHbtm2T1PiDMQAcTBwOydukFTrgdMnjbN0pFIYh+ayCRV9DPNsDAAAAACAutpyx6PP59Nvf/lZFRUWSCBUBHJwccpgqFv3O1v8+x5B1K/SOsppYtwYAAAAAQNxsqVicMmWK1q5dK4fDIcMwdPjhh+uKK67QsGHDlJubK2crq3UAoC1yOGQa3uJ3uVs9x9kwrIPFl2eu1XGnHxfHDgEAAAAAiJ0tweLkyZMjX1944YV68MEH5XA47LgVAKQ1U8WiRUC4P4YMy1boeWuLY94XAAAAAADxsqV0cMOGDZIkj8ejP/3pT4SKAA5KVlOhA7G0QhtSg0WwmBFieAsAAAAAIHVsCRZLS0vlcDg0dOhQtWvXzo5bAEDaczgcpuEtsVQshg1DPjfBIgAAAAAgvdgSLObkNJ4glpGRYcflAaDNSNTwFqtW6MwgwSIAAAAAIHVsCRb79u0rwzC0ZcsWOy4PAG1CYyt0dPgXS8VilselBpfXtE7FIgAAAAAglWwJFsePHy9JKi4u1vz58+24BQCkPYdDFq3Q5srD/cnyuOSzCCQzg/6Y9wYAAAAAQLxsCRavuOIK5efnS5Ieeugh+f388Avg4ONwOOQJhaLWYmmFliR3dpZpLaNJmzUAAAAAAMlkS7CYn5+vv/71r5KkZcuW6aabblJhYaEdtwKAtLWoqDIhw1skqVNBnmmNVmgAAAAAQCrF9hOupKeffnq/rxk4cKDWrFmjuXPn6swzz9TQoUM1bNgw5efnKyvLXH3TnFtuuSXWbQJAyviCYdMZiwGnK6ZrhbzmMxYzQ1SDAwAAAABSJ65g0eFw7Pd1u18TCoW0fPlyLV++vNX3IlgE0Bb1ys8yT4WO4YxFSQp6MkxrGUyFBgAAAACkUMzBoiQZhmHr6yW1KLwEgHTkCAflNsJRa7G2QltVLNIKDQAAAABIpZiDxVGjRiVyHwBwwGk6uEWKfXhLyKJiMZNgEQAAAACQQjEHi6+++moi9wEABxyPRfAXa8Vi0KpikVZoAAAAAEAK2TIVGgAguYNB01og1lZoD8NbAAAAAADphWARAGxSXlVnWov9jEWL4S0hc3AJAAAAAECypH2w6PdTkQOgbXJatCoHYjxjMWwRLHo5YxEAAAAAkEJxTYVuKcMwVF5eroaGBoUshhlIUjgcVjAYVCAQUF1dnUpKSjR//nxNmTJFM2fOTMY2ASChvBYVhTEPb/F6TGuZQX7xAgAAAABIHVuDxcWLF+tf//qXZs+efdBUHoZCIf33v//VF198oaVLl6qkpEShUEidOnXSiBEjdN555+nUU0+V05n2xaIA4mQZLMbYCj2ibxfTWgYViwAAAACAFLItWPziiy906623KhwOyzCMmK/jcDgSuCt7LV68WHfffbdWrlxpem7r1q3aunWrPv/8cx1xxBF67LHH1LNnzxTsEkCyWLUqxxosnnNoV/lc7qhzFQkWAQAAAACpZEuwWFNTo7vuukuhUMgyGNy91jRw3Pu1GRkZGjx4sMaNG2fHFhNu9uzZuvnmm1VXt2dYQ+fOndWnTx8FAgGtWLFCgUBjCLBw4UJde+21euutt9Sli7kKCcCBwRtOXMViXoZbPpcnKljMtDjDEQAAAACAZLElWPzggw9UWVkph8MhwzB0+umn68wzz1SnTp304YcfatKkSXK73XrmmWfkcrlUUVGhlStXatKkSdqxY4ckKTc3V08//XSbCN42bdoUFSr26NFDf/nLXzR27NhIWFpVVaWnnnpKr7zyiqTGCsZ7771XTz31VMr2DcBe1mcsms9KbAmHpAaXV+1UH1mjYhEAAAAAkEq2HPQ3a9asyNdXXXWVnnrqKZ177rkaPXq0LrjgAkmNZxEahqHjjz9eZ599tm677TZ98sknGj9+vCRp586d+stf/mLH9hLunnvuiYSK/fr10xtvvKFx48ZFVWC2a9dOf/7zn3XNNddE1r744gtt3Lgx2dsFkCSeBFYsSpLPFR1KMrwFAAAAAJBKtgSLq1atary406mbb7456rmRI0dGBpd89913Uc/l5eXpiSee0ODBg2UYhqZPn65FixbZscWEWbJkiWbMmCGp8X/v3//+d3Xv3r3Z1//2t7+V1+uV1NgKPm3atGRsE0AKJHJ4i8PhUIM7OljMsLg+AAAAAADJYkuwWFVVJYfDob59+6pz585Rz+Xk5KhXr16SGkO5prxer37zm99EHk+ZMsWOLSbM+++/H/n6wgsv1GGHHbbP17dr10633367brrpJv3+97/XyJEj7d4igBSxChYDTldM13LIXLGYEQqoxke4CAAAAABIDVvOWKyvbzwDrLnzEfv376/Nmzdr9erVls+PHTtWubm5qq2t1bJly+zYYsLsXXF4+eWXt+g9119/vT2bAZBWrIe3xHjGosOiFTrk16crd+iyw3vEdE0AAAAAAOJhS8ViXl6eJPPU59369OkjSSovL1dlZaXpebfbrd69e8swjLQ+g3D79u0qKiqSJGVlZe23WhHAwcV6eEuMrdCyaIUOBrR0e3VM1wMAAAAAIF62VCx26NBB5eXlkQnPTfXu3Tvy9dq1a3X00UebXpObmytJqq5O3x+ad58lKTVWYbpcjS2OhYWF+uCDD/T1119r69atqq+vV5cuXXTsscfq0ksv1ZFHHpmqLQNIokSesShZtULTBg0AAAAASB1bgsVDDz1U69ev16ZNm1RcXKyuXbtGPb+7YlFqPGfRKljcvn27pOarHtPB5s2bI1936dJF4XBYL7zwgp566in5fD7Tazdv3qz//Oc/uuiii/S3v/1NGRkZyd5ylGCw7YcSoVBon4+BVPKGA6Y1v8sd09+9UCioBrc3ai0z5FcoFDog/i7Hg88BAHwOAOBzAACfA6lhS7A4evRoffzxxzIMQw899JAef/zxqOeHDh0a+frzzz83nTm4atUqFRYWyuFwKD8/344tJkRpaWnk6+zsbN1777164403ImsDBw5Ux44dVVpaqnXr1kXWJ02apM2bN2vixImRCdHJFg6H037idiyWLl2a6i0AER6Lf8j8TndMf/e21QYVaFKx6AmHVLytSIsW1ce8xwMRnwMA+BwAwOcAAD4HksOWMxbPPvvsSCD42Wef6cc//rGmT58eqarp2rWrBg0aJMMwtHDhQj377LOR9+7YsUN/+tOfIpWKw4cPt2OLCVFVVRX5+ttvv42Eiqeddpq+/PJLffLJJ3rllVc0ZcoUffnllzrllFMir//+++913333JX3PAJInocNbZG6FliRPwFwVCQAAAABAMtgSLGZnZ+uXv/xlJBxcsGCBfvGLX2jhwoWR1+w9QfmJJ57Q2LFjdfHFF+u0007T8uXLI8+deeaZdmwxIfx+f+Tr3SHjFVdcoaeffjrqHEmp8VzJZ555RmeddVZk7Z133ml2MjaAts/qjMWA0xXj1czDWyTJHSRYBAAAAACkhi2t0JJ0/fXXq7CwUK+99lpkbe+zFa+88kq9//77WrFihRwOh7Zv367i4mIZhiGHwyFJGjJkiM4//3y7thi33fvcrXfv3rrrrrtM67s5nU7dd999mjFjhmpqamQYhl577TXdc889ydiuaS8jR45M+n0TLRQKRZU3jxgxIjJEB0i1D0PWZywefvjhrb5WQUW9vrCoWOzWPj+m6x1I+BwAwOcAAD4HAPA50HpLlixROByO6xq2BYuSdNddd+mUU07Rc889p2XLlqlLly6R5zwej5577jndcsstkfPGdlc4GoahQYMG6ZlnnpHbbesW45KdnR31+Morr9zvmYl5eXn60Y9+pHfeeUeSNGvWLNv2tz/p/H/bWLlcrgPyfxfaJutWaHdMf0bzsrxqcJk/XzzBAH/mm+BzAACfAwD4HADA50By2P5/4ZNPPlknn3yyampqTM917txZb7zxhr744gtNnz5dO3bsUPv27XXyySfr3HPPTfs/ADk5OVGPjzrqqBa974gjjogEi1u2bJHf70/ZEBcA9jAMQxkWbcp+Z2xnLHbKyZDPZf5MDNQxuAUAAAAAkBpJS+5yc3Mt110ul84666yoswfbig4dOkQ9LigoaNH7OnbsGPW4oqIiqpoTQNtXHwhZViz64viFic/ijMX66rqYrwcAAAAAQDxsGd5ysBg0aFDU472nRO/L7unYu6V7ZSaA1nM5HcqwOGPx9EN7xnxNy1bogN/ilQAAAAAA2C/piVZxcbGKi4tVWVmpdu3aRYYO1NfXy+v1tqmDNYcMGRL1eOPGjTrssMP2+77t27dHvs7MzFT79u0TvTUAacBqKvTfzt//Z0RzfBbDW9xBgkUAAAAAQGokpWJx8+bNuueeezR+/HiNHTtWV1xxhW666SY9/fTTkdd89dVXOvHEE/XYY4+puro6GduKW0FBQVS4+OWXX7boffPmzYt8PXz4cDmdFI4CByKvRcVit875MV/PKlj0+AkWAQAAAACpYWuiZRiGnnzySZ199tl68803VVRUJMMwIv/traioSBUVFZowYYLOP/98LVmyxM6tJcwFF1wQ+Xrq1Klau3btPl+/bds2ffXVV5HHZ5xxhm17A5BaVq3QimNQU4PFGYtuWqEBAAAAAClia7B466236plnnlEoFDIFiQ6HI+pxYWFh5Ott27bphhtu0Lp16+zcXkJcdNFFys9vrEAKBAK64447mq249Pv9+uMf/6hAoDFsyM3N1cUXX5y0vQJILqtW6HiCRetWaIvwEgAAAACAJLAtWHz66af1+eefRx6PHDlSd999t9566y3L15933nk6+uijZRiGHA6HqqqqdMcdd9i1vYQpKCjQnXfeGXm8ZMkS/fjHP9acOXOiXrd+/Xr97Gc/09y5cyNrt956aySUBHDgaVqx6HO5pSa/VGmNBrc5lHT7G2K+HgAAAAAA8bBleMv27ds1YcKEyOPbb79dN9544z7fM2rUKL3++ut67bXXdP/990uSli5dqunTp+uUU06xY5sJc9FFF2njxo165plnJEmrV6/Wddddp27duql3796qrKzU6tWro95zwQUX6Nprr03FdgEkSUaTikW/06OMOK7nc5k/sreXtmwaPQAAAAAAiWZLxeJ//vMf+Xw+ORwOXXbZZfsNFfd2zTXX6Lrrros8njJlih1bTLjbbrtNDzzwgDp06BBZ2759u+bNmxcVKrrdbt1888166KGHUrFNAEnUdHhLKI42aMm6FVoNvriuCQAAAABArGypWJwxY4akxnMUf/Ob37T6/TfddJNee+01hUKhNjPERZIuueQSnXbaafroo4/01Vdfaf369SorK5PH41G/fv10/PHH66qrrlLv3r1TvVUASdC0YjEcZ7Bo1QrdyW1YvBIAAAAAAPvZEiwWFhbK4XBo4MCB6tSpU6vfX1BQoD59+mj9+vUqLi62YYf2yc/P17XXXkubMwDTGYtBq4rDVrAc3sJUaAAAAABAitjSCl1ZWSmpMSCMVefOnSU1TlIGgLao6VTogCe+YLHBKlj00woNAAAAAEgNW4LFvLw8SXsCxljs3LlTkpiaDKDNMlUsWrQyt4bPbQ4Wd5ZXx3VNAAAAAABiZUuw2L17dxmGoTVr1sQULm7btk3r1q2Tw+FQjx49bNghANjPHCwmvhW66TmOAAAAAAAkiy3B4oknnihJCoVCevHFF1v9/n/84x8yjMaBBMcdd1xC9wYAyWJqhY4zWGxwmSse8wyCRQAAAABAatgSLJ5//vlyOhsv/fzzz+vzzz9v8XufffZZTZo0KfL4nHPOSfj+ACAZTBWLnjhboS0rFgMWrwQAAAAAwH62BIsDBw7URRddJMMwFAqFdNttt+mOO+7Q3LlzVVJSYnp9XV2dpk2bpp/+9Kd64oknJEkOh0NnnHGGhg4dascWAcB2iW6FbrB4vzfIgCsAAAAAQGq47brw3XffrZUrV2rZsmUyDEMffvihPvzww6jXzJs3T6NHj1Z1dbXC4bAkRVqge/furXvuuceu7QGArRp8QeWHQ1Fr8bZCW1YsBqlYBAAAAACkhi0Vi5KUmZmpF154QSeffLIMw4j6z+FwSJJ8Pp8qKioUCoUigaIkDR8+XC+99BIToQG0WaXlNaa17XEWFwadLoXliFqjYhEAAAAAkCq2BYuS1L59e02YMEEPP/ywhgwZElnfO2TcW5cuXfTHP/5Rb731lnr27Gnn1gDAViFfg2mtXV52fBd1OEzt0FQsAgAAAABSxbZW6L1dcMEFuuCCC7R582YtWLBAmzZtUlVVlQKBgPLz89W1a1cdeeSRGjZsWGToCwC0ZaF6n2ktJ95gUY3t0Nl7VSl6Gd4CAAAAAEiRpASLu/Xp00d9+vRJ5i0BICVC9eaKxbA3I65rntCvg+mcxVwF47omAAAAAACxojwQAGwQ8pkrFg1vfMNb/n7ucDW4vVFrOWGCRQAAAABAaiS1YrE1Jk6cqFWrVsnhcOiBBx5I9XYAoFXWbi3T4U3WjDgrFo/vV6BVTSoWwxaVkQAAAAAAJEPaVizOmDFDkyZN0qRJk1K9FQBotVyFTGulCSguDDUJJzM5YxEAAAAAkCJpGywCQFvm8PtNa50L8uK+bo3DFfU4K0ywCAAAAABIDYJFALBBaVm1aS0jJyvu6wY90WcseoMEiwAAAACA1CBYBAAbfLV0q2kt3CQUjIUnOzqczAiaKyMBAAAAAEgGgkUAsMH2neaKxapw/B+5xU0KFDNCTIUGAAAAAKQGwSIA2CDDYqhKyBt/xWKDK/oaLiOsZYXlcV8XAAAAAIDWIlgEABtYBYtNz0eMhc/lMa3936dL474uAAAAAACtRbAIADbwWrQoh93mULC1/C63aW1LMRWLAAAAAIDkI1gEABtYtkInoGKxwW2+hjvAABcAAAAAQPIRLAKADew6Y9GqFdoTMN8LAAAAAAC7ESwCgA2sWqFDFtWGrdVg0U7tCVKxCAAAAABIPoJFALBBUisW/QSLAAAAAIDkM08BaKEPPvgggdswKy4utvX6AGCnZE6FpmIRAAAAAJAKMQeLd9xxhxwORyL3AgAHDMup0J74p0JbDm8JcsYiAAAAACD5aIUGABtYVixanI/YWlYVi96AL+7rAgAAAADQWjFXLEqSYRiJ2gcAHFAsh7ckoBW6wTJYpBUaAAAAAJB8MQeLX331VSL3AQAHFKuKxXAChrdYtUJ7OWMRAAAAAJACMQeLPXv2TOQ+AOCA4rVshY4/WKy3uEaGn1ZoAAAAAEDyccYiANggmcNbqFgEAAAAAKQCwSIA2MCqFToRZyxaVSz6q2vjvi4AAAAAAK0Vc7D46quvKhwOJ3IvrWIYhl577bWU3R8A9iWjScVi0OFU2OWK+7pWwaLb3xD3dQEAAAAAaK2Yg8X7779fF110kebOnZvI/bTIvHnzdMkll+j+++9P+r0BoCWanrHod8V8pG2UBpc5WMwMmqsjAQAAAACwW8zBYqdOnbRq1Spdf/31+uUvf6k1a9Ykcl+WFi5cqBtuuEE/+clPtHz5cnXs2NH2ewJAaxmGYWqF9rk8cjoccV/bqmIxizMWAQAAAAApEHOw+NFHH2nMmDEyDEPTpk3TBRdcoF/84hf6+uuvZRhGwjbo8/k0efJkXXnllbrqqqs0a9YsGYahUaNGadKkSQm7DwAkyrqddaZWaJ/Lo1MHdor72tbBIlOhAQAAAADJF3NvXkFBgZ577jm99dZbeuyxx1RVVaXp06dr+vTp6tKli0499VSdcsopGj16tDIyMlp17crKSs2cOVPTpk3TV199pbq6OkmNVUBZWVm67bbbdO2118qRgOofAEi0khqfMi1aoft2yIr72lZToWmFBgAAAACkQtyHfl155ZU6/fTT9fDDD2vy5MkKh8PasWOH3nzzTb355ptyuVzq27evBg8erEGDBqljx47Ky8tTTk6OXC6XGhoaVFFRoaKiIm3atEnLli3T5s2bI1WPu/9fh8Oh888/X7fddpu6d+8e77YBwFZWFYuJYFWxmEkrNAAAAAAgBRIyTaBjx476v//7P91444168sknNXXq1MjE6GAwqPXr12v9+vX67LPPWnS9vVupXS6XzjjjDP3P//yPhg4dmojtAoCtHA6H5RmLiUArNAAAAAAgXSRmTOkugwYN0tNPP60tW7bojTfe0CeffKIdO3ZEBYW725f3rkTc+/FuPXv21Pnnn69LLrlEvXr1SuQ2AcB23iYVi4maCv30pUfI/6Rb3vCe6zO8BQAAAACQCgkNFnfr3bu3/vjHP+qPf/yjFi9erNmzZ2vRokVat26dioqKFAjsqeQxDEMej0d9+vTRgAEDdNRRR2n06NFUJwJo0+yqWLxgRDc1uD3y+vcEi03PcwQAAAAAIBlsCRb3dthhh+mwww6LPDYMQzU1Naqrq5PD4VBOTo5ycnLs3gYAJI1D9gWLGW6n6t1etfPXR9aygj4ZhsFAKwAAAABAUtkeLDblcDiUl5envLy8ZN8aAJJm71ZlKXGt0C6HQ1XujKi1rKBf63bWaWAnfkkDAAAAAEgeZ6o3AAAHHMNQRtCeikWnw6GGJtfKDAZUWss5iwAAAACA5CJYBIAEcwSDcip6IFWigsVsr8s0GTor6BNN0AAAAACAZCNYBIBEC5irB/0utzI9rrgv7XI6VG/RCs3xigAAAACAZCNYBIAEK95ZZVrzuTxyOROT/jW4za3QTpJFAAAAAECSESwCQIJNWbjFtOZPUCu0JIuKRR8ViwAAAACApCNYBIAEW7Kx1LSWqKnQkkxnLLqNsByBQDOvBgAAAADAHgSLAJBgLoszFhM1vEUyt0JLksvvS9j1AQAAAABoCYJFAEgwV9BcPZjYYDHDtOZqaEjY9QEAAAAAaAmCRQBIMJffeip0ojRthZYkp68+YdcHAAAAAKAlCBYBIMHcQXtboa2CRV91bcKuDwAAAABAS9gSLH766aeaOHGiSkvNAwwA4EBn3QqduIrFBpc5WPx+bXHCrg8AAAAAQEvYEiy+9957evjhhzV27Fg999xzdtwCANLWCd2yTWv9u7dP2PWtKha/W7UtYdcHAAAAAKAlbAkWV69eLcMwFAqFdNRRR9lxCwBIW4d1zDStnTC4e8KuX+8xB4t5YXOVJAAAAAAAdrIlWKyoqIh8PXz4cDtuAQBpyxkwn7GYmZuVsOtbtULnGsGEXR8AAAAAgJawJVjs0qVL5Ou9Q0YAOBg4LaZCGxZVhrGyaoUe3TkjYdcHAAAAAKAlbAkWzzvvvMjXEydOtOMWAJC2LIPFjMQFf1bBYpbFJGoAAAAAAOxkS7D4y1/+UieeeKIMw9Crr76qBx54QGVlZXbcCgDSjlUrtOFNXMVig0Ww6PL7EnZ9AAAAAABawm3HRTdv3qzf//73ysnJ0X//+1+9+uqreu211zRgwAANHTpUBQUFys3NlcPhaNH1brnlFju2CQC2sKpYVAKDRauKRaevIWHXBwAAAACgJWwJFs8999xIaOhwOGQYhgzD0Jo1a7R27dpWX49gEUBb4gpYVA9mmCdFx8oqWHQ11Cfs+gAAAAAAtIQtwaIkGYbRqvXmtLSqEQDShSMQMK0ZGTa3Qvs4YxEAAAAAkFy2BIujRo2y47IA0CasKSzTmCZrDq+9w1tctEIDAAAAAJLMlmDx1VdfteOyANAmdLPIEMM2n7E4d1WRjkrYHQAAAAAA2D9bpkIDwMHMGwqa1np2yU/Y9RtcVCwCAAAAAFKPYBEAEmxdUZlpLSMrccNb/n6ZuTYxI8gZiwAAAACA5LJteEtziouLVVxcrMrKSrVr106HH364JKm+vl5er1culyvZWwKAhAmHDcuKRW9OVsLu0b1bB9NaFsEiAAAAACDJkhIsbt68WRMnTtS0adO0bdu2yPpJJ52kCRMmSJK++uor3Xfffbr88st14403Ki8vLxlbA4CEWl1aI2/IPBXam8CKRXkyFJZDThmRpaygX4ZhyOFwJO4+AAAAAADsg62t0IZh6Mknn9TZZ5+tN998U0VFRTIMI/Lf3oqKilRRUaEJEybo/PPP15IlS+zcGgDYwulwKDNoDhadOdkJu4fhkBrcnqi1zKBfYaOZNwAAAAAAYANbg8Vbb71VzzzzjEKhkClIbFpVU1hYGPl627ZtuuGGG7Ru3To7twcACed1OZUZim5LDjqckjtxBeKhsKF6d/To6aygX2GDZBEAAAAAkDy2BYtPP/20Pv/888jjkSNH6u6779Zbb71l+frzzjtPRx99dKSVr6qqSnfccYdd2wMAW2S4naaKxQa3eYpzPMKGVN/kmo2t0Am9DQAAAAAA+2RLsLh9+/bI2YmSdPvtt+vdd9/V1VdfrSOOOMLyPaNGjdLrr7+uu+66K7K2dOlSTZ8+3Y4tAoAtGluhoysWG1yeZl4dm1DYMLdCh6hYBAAAAAAkly3B4n/+8x/5fD45HA5ddtlluvHGG1v83muuuUbXXXdd5PGUKVPs2CIA2CYzZHfFIq3QAAAAAIDUsyVYnDFjhqTGcxR/85vftPr9N910k9y7ziNjiAuAtsZUsehObMUirdAAAAAAgHRgS7BYWFgoh8OhgQMHqlOnTq1+f0FBgfr06SPDMFRcXGzDDgHAPk2HtzS4EluxaMgwtVczFRoAAAAAkGy2BIuVlZWSGgPCWHXu3FmS5Pf79/NKAEgvdg9vYSo0AAAAACAd2BIs5uXlSdoTMMZi586dkqT8/PyE7AkAksXu4S2dcrymVujMUEBGOJzQ+wAAAAAAsC+2BIvdu3eXYRhas2ZNTOHitm3btG7dOjkcDvXo0cOGHQKAfewe3nJCvwLLa4br6xN6HwAAAAAA9sWWYPHEE0+UJIVCIb344outfv8//vEPGbta+o477riE7g0A7Na0YrGgQ25Cr+9xOU0Vi5Kk+oaE3gcAAAAAgH2xJVg8//zz5XQ2Xvr555/X559/3uL3Pvvss5o0aVLk8TnnnJPw/QGAXbaV1chtRLckVxquhN/HqmIxWFub8PsAAAAAANAcW4LFgQMH6qKLLpJhGAqFQrrtttt0xx13aO7cuSopKTG9vq6uTtOmTdNPf/pTPfHEE5Ikh8OhM844Q0OHDrVjiwBgi+emrzKtFfkdCb9P987m82e374j9XFsAAAAAAFrLbdeF7777bq1cuVLLli2TYRj68MMP9eGHH0a9Zt68eRo9erSqq6sV3jV0YHcLdO/evXXPPffYtT0AsEWw1nzOoc+d2OEtklRtMRDmuzXbdNiYhN8KAAAAAABLtlQsSlJmZqZeeOEFnXzyyTIMI+o/h6Oxesfn86miokKhUCgSKErS8OHD9dJLLzERGkCbk2uETGsNrsQOb5Gk3t0LTGvvzl6X8PsAAAAAANAc24JFSWrfvr0mTJighx9+WEOGDIms7x0y7q1Lly764x//qLfeeks9e/a0c2sAYIt2CprWGmyoWAxmZJrvU8MZiwAAAACA5LGtFXpvF1xwgS644AJt3rxZCxYs0KZNm1RVVaVAIKD8/Hx17dpVRx55pIYNGxYZ+gIAbdERBebqxLz2iZ0KLUkBT4ZpLTMYSPh9AAAAAABoTlKCxd369OmjPn36JPOWAJBUhcUVprXhfTsn/D6Lyv06u8laVtCX8PsAAAAAANAcW8oDn3jiCS1evNiOSwNAWutlLiRUnTPxrdAlIZdpLSvoT/h9AAAAAABoji0Vi88884yeffZZderUSePGjdP48eN1wgknyOtN/AADAEgnDp+5arBHl8QPompwmz9PaYUGAAAAACSTra3QJSUlevfdd/Xuu+8qMzNTJ5xwgsaPH69x48apoMA80RQA2jqnr8G05sjKSvh96i0GwmTTCo0DQH0gpC0V9eqc41WHbH4hCQAAAKQzW4LFcePGac6cOaqvr49Mfq6vr9fUqVM1depUOZ1OjRw5UuPHj9epp56qAQMG2LENAEg6p0XFojLNE5zjVe8xX5MzFtHWbdhZp/NenKvlxTXqmO3R29ceo/GDOqV6WwAAAACaYUuw+O9//1uBQEDz5s3T9OnT9c0332jDhg2RkDEUCmnRokVatGiRHn/8cfXu3Vvjx4/X+PHjdcwxxzAZGkCbVVVZY1ozMiwOXoxTVn6eaS0nQLCItu2fszZoeXHj36GddQH95fOVGj/opBTvCgAAAEBzbGuF9ng8OuGEE3TCCSfozjvvVGFhoaZPn67p06fru+++U0PDnnbBLVu26OWXX9bLL7+sdu3aacyYMRo/frzGjBmjnJwcu7YIAAk3Z9U2XdVkrdaZ+HbOOrc5rMwmWEQb99j09VGPZ20s16Uvz5M/aOinx/bWRSO7p2hnAAAAAKzYesbi3nr16qWrr75aV199tXw+n+bOnatvvvlG33zzjTZv3hx5XWVlpSZPnqzJkyfL7Xbr2GOP1QsvvJCsbQJAXEJ19aa1NTVBHZvg+9R5zMFiTsB8viPQ1r2/ZLskafKKYn30s2N17vCuKd4RAAAAgN2SFizuLSMjQ2PGjNGYMWMkSRs3btQ333yj6dOna968efL7/ZKkQCCgWbNmpWKLABCTzJDftBa2oRW61uKMRYa3oC0LhML7fc0v/rNYhX85PQm7AQAAANASKT/MsKGhQUVFRdq5c6dqa2sVDoflcDjkcDhSvTUAaLXMYMC8mJH44S1WFYu0QqMte/LbDft9TVEVVbkAAABAOkl6xaLf79f333+v7777TnPnztWSJUsUDAajXrN7yIskZWVlJXuLABAzq4pFw4ap0LUu87mNBItoi6oaAsr2uPSHyctTvRUAAAAArWR7sOj3+/XDDz9EgsTFixcrENhT0bN3iChJXq9Xhx9+uEaPHq3Ro0fr8MMPt3uLAJAwlhWLNgSLYUm17gzl7NX+nBOkmgtthy8Y0vVvLdS7i4qUl5GSk1kAAAAAxMmW7+TnzZunuXPnRoLE3WcmSuYg0eVy6dBDD9Xo0aN1/PHH66ijjlKGDeeRAUAyZAbNFYtjD+2V8PtkuJ2q9WRGBYvZAZ+CobDcrpSfcgHs16vfF+rthUWSpMqG4H5eDQAAACAd2RIsXnvttZEzEpsGiQ6HQ4MHD45UJI4aNUq5ubl2bAMAkm5Qnsu01rEgL+H3uXP8oMZzFvcaQp0TaFDIMFIzlQtopcenr0/1FgAAAADEydafP3eHillZWbrkkks0fvx4HXbYYQSJAA5Y2WFzK7QjK/Gt0Ocd2lVrmwxwyQ76FDaaeQOQZlbsqEn1FgAAAADEydZgcXfVYkNDg9544w199913UZWKeXmJr+IBgFTy+M2t0E4bhlBluF2qc0cHizkBn8IkiwAAAACAJLElWLznnns0a9YszZ07V+Xl5ZIaqxfXrFmjNWvW6NVXX5XT6dTQoUN13HHHafTo0TrmmGOUnZ1tx3YAIGk8TSYzh+WQw2PP73BqPdGVkNkBKhZx4NtW1aDu7RJfBQwAAACg9Wz5affyyy/X5ZdfLklasWKFZs+erVmzZun7779XfX3jgWChUEjLly/X8uXL9dJLL8nlcmnEiBGRoPHoo4+W1+u1Y3sAYBujIXoyc4PbI4/TnmEqdZ6mFYsNqg2HbbkXkC563vOFwo+cl+ptAAAAAJDNrdCSNGzYMA0bNkw/+9nPFAgEtHDhQs2aNUuzZ8/W0qVLFQw2ToIMBoNatGiRFi1apOeee04ej0eHH364Ro8erV/96ld2bxMAEqK+ui7qcYPbK7t+RVLbJFh0G2GF/X4pm1/K4MC2pqRGgzpzXjMAAACQakkdHurxeDRq1CiNGjVKv/3tb1VTU6N58+bpu+++0/z587V8+XKFQiFJkt/v17x58zR//nyCRQBtRmYw+ozFBpdX7XedN5toTc9YlCSjplZqT+CC9LamJL7BLduqfASLAAAAQBpIarDYVG5ursaNG6dx48bJ5/Np+vTp+uc//6lVq1bJ4XBEpkoDQFuRGYqeCt3g9simXFF1HvM5c0ZdrT03AxLork9XxvX+MN8fAAAAAGkhpcHi8uXLNXPmTM2aNUsLFiyQf9c0VYddP4UDgM0ymgaLLq9tn2nWFYt1Fq8E0su7i7fF9f4QwSIAAACQFpIaLG7dulWzZs3SrFmzNGfOHFVUVESea1qdOGzYMI0dO1bjxo1L5hYBIC6mVmi3x7Z7NZ0KLVGxiPQXDMU/YIjp5wAAAEB6sDVYrK6u1pw5czRz5kzNnj1bmzdvjjzXNEjMzMzU6NGjNW7cOI0dO1Zdu3a1c2sAYIvMoLli0S5Np0JLUriGYBHpbera0mafO2fdPP1s6RcqaKjWpnZd9NCxl2plx96m19EKDQAAAKQHW4LFxx9/XLNnz9ayZcsUDu+pTGgaJnbr1k2nnHKKxo0bp+OPP14ZGeYfkgGgLckMJbNi0fyZ+eq3q/W7s8bbdk8gXs/O3mReNAw9+O0r+uO89/ZaXKZLV8/U9Wfdqv8MOSnq5SFKFgEAAIC0YEuw+Oyzz1oOX3E4HBo5cqTGjh2r8ePHa+jQoXbcHgBSxlSx6LaxYtHijMWZS7fod7bdEYjf2p3mqtpfLPq0SajYKDvo1+tTHtWaDj20qEv/yDq5IgAAAJAebGuF3h0qZmdn66STTtLYsWM1duxYFRQU2HVLAEitUEjecDBqqcGV3DMWs4M+2+4HJMKSbdVRj3tU79RD377c7Os94ZBe+uxJjbrmMYWcLkm0QgMAAADpwpZgsXfv3pEW52OPPVYej30/WANAuqipqlVukzVbKxYtWqFzAg223Q+ww5/mvqt2/vp9vuaIkg26bNUMvTXsFElSaa1/n68HAAAAkBy2BItffPGFHZcFgLS2ZMMOHd9kzWdjxaJVKzQVi2hL8htq9JPlU03rX/U5TKduXhy19v++/1BvDR0jORz6+TuLVFLj1x/HD0zWVgEAAABYsHUqdFNVVVVasGCBduzYoYqKCjmdTuXk5Khnz54aPny4OnXqlMztAEBCuf3mUM/OikWr4S3ZAYJFtB3XL/tKuU2qbN8dfIKu/tHvtOaF/1Hf6pLI+jHFa3VC0QrN6jlcknTnlBW6flRvdc1j8BsAAACQKkkJFqdPn64JEyZowYIFpoEuexs2bJiuu+46XXDBBcnYFgAklDtgbs9Mfis0wSLajqtXTDetPXnU+Qq63PrHUefp0ekvRj334xXfRIJFSXr8m/V66Jxhtu8TAAAAgDWnnRdvaGjQ7bffrl/84hf6/vvvFQ6HI8GiYRimr5cvX6477rhDP/3pT1VVVWXn1gAg4dw+i4pFhrcAlvpVbtcxxWuj1hZ36qtZPRqDwhdHnCafK/r3n5eunilXOBR5XOOLHpYEAAAAILlsCxaDwaBuvPFGTZkyxVSl6HK5VFBQoPz8fDmde7bgcDhkGIbmzJmjG264QT6LH9IBIF25LKoFba1YtDhjkeEtaCsuXjPbtPbOkJMlh0OSVJmZq0/7HR31fJf6So3dsiTymOnQAAAAQGrZFiw+8sgjmjdvXuRxnz59dNddd+nTTz/V0qVLNWvWLM2dO1dLlizR5MmTdccdd6hPnz6SGisYly5dqscee8yu7QFAwlmesZjkisUsWqHRRpy/dq5p7b1BJ0Q9fmfISabXnLN+fuTrMLkiAAAAkFK2BIuFhYV67bXX5NhVdXDJJZfo448/1jXXXKNDDjkkegNOpwYOHKjrr79eH3/8sS677DJJjeHi66+/rm3bttmxRQBIOJdVK3TSz1ikYhHpL8dfr+O3rYpaW1HQS6s69opamzxglAJOV9TamRsXRL6mYhEAAABILVuCxQ8++EDBYOO5R2PGjNH9998vr3f/P1x7vV7de++9Gjt2rCQpFArpvffes2OLAJB4DeZQr8FtX8Vi9w45pjPoOGMRbcEphUvl2eusREn6b78jTa+r8WZrxl7DWiRpWFmh+lYWS6JiEQAAAEg1W4LFmTNnRr6+8847W/3+O+64I/L17NnmM5gAIB0tWFdsWmtw2Vex+MIVR5jOWWwXNE+mBtLFrI1lkqTTNi0yPfdF3yMs3/N5v6NMa2du/EGS9OJ3m03nOAMAAABIHluCxS1btsjhcKhv377q169fq9/fr18/HXLIITIMQ2vXrt3/GwAgDSzbWGJas7MVeuyAjqZzFnNDVCwifV356veSFDWARZICTpe+6XWo5Xs+t6hkHFO4NPL1K/MLE7hDAAAAAK1hS7BYUVEhSerWrVvM1+jSpYskqba2NhFbAgDb5StoWrNzeIvH5VQoKytqLZszFpGmPlq2XYWVDcrz1emwko1Rz83rOkg13mzL9y3u3E9lmblRa2MKl0m7KhV/+vZCO7YLAAAAoAVsCRZzcnIkSVVVVTFfo7q6WpKUm5u7n1cCQHpo7wiZ1nw2nrEoSQ3e6IpFpkIjXT0/Z7MkafS2VXIqun15Zs9hzb7PcDj1bZNzFnvV7FS/KvPRAwAAAACSy5ZgsVu3bjIMQ6tXr44pXKysrNTq1avlcDgilYsAkO42bSs3rR01oKut96xwRLdaZ/qoWER6mryiMQg8oWiF6bl9BYuSNKOnuU16TOGyxGwMAAAAQMxsCRaPOeYYSY1TnV944YVWv/+FF16ITJUeNWpUQvcGAHYJ1NWZ1k4a1sPWe1Y2GQ6THfQpEArbek8gHidsNQeLs3sM3ed7rM5fPKFoZcL2BAAAACA2tgSL559/fuTr559/Xp9++mmL3ztlyhQ9//zzkcdnn312QvcGAHbJDAZMa+GMTItXJk7TqdBZQb92VJoDTiAdOIywRhVHD2Vb0767SrLb7/N9P3Tpbzqv9OjtDHcDAAAAUs2WYPHwww/XiSeeKMMwFAqF9P/+3//TXXfdtc8Jz2vWrNGf/vQn3X777QqHw3I4HBo9enSk+hEA0l1m0G9aC3szLF6ZOE2nQkuS6uptvScQqwEV29XeFz2UbW73wft9X9Dl1sIuh0StjSzdpAyLv3MAAAAAksdt14UfeOABXXjhhaqoqJBhGHrvvff03nvvqXPnzho4cKDatWsnqXHAy5o1a1RaWipJMnZNeezYsaMefPBBu7aXdHfeeafef/99SdKDDz6oiy++OMU7ApBomSFzxWIow95gsd5jcf26Wkmdbb0vEItjtq8xrX3fdWCL3vt914EavW115LE3HNRhJRs1r/tgvfTdZv302D4J2ycAAACAlrEtWOzatatef/11/fznP1dRUZGkxtBwx44dKikpiXrt7jDR4XBIknr06KF//etf6tatm13bS6rp06dHQkUAB64Mq2DR9opFq2CRVmikp6OL15nW5ncd1KL3Wr3umOK1mtd9sF4gWAQAAABSwpZW6N369++vSZMm6Wc/+5ky9qraMQwj6r/dsrKy9JOf/ESTJk3S0KH7Psi9raiurtbdd9+d6m0ASAKrtky7KxabnrEoSZsKS229JxCro5ucrxiWw9TiLEnvX3+MTujXIWptXjeLYHFXBeSsjeaJ7AAAAADsZ1vF4m75+fn6wx/+oFtuuUXfffed5s+frx07dkRapNu1a6fu3bvrqKOO0rHHHqvc3Fy7t5RUDzzwgIqLi1O9DQBJYDW8xf6KRfMZi89+uUInnDvG1vsCrWYYOnLH+qilFR17qdabZXrphSO666GvokPIlQU9VevOUE7QF1lrGlQCAAAASC7bg8XdsrOzNXbsWI0dOzZZt0w5WqCBg0tmyGJ4i8dr6z3rLFqhtxRRsYj08umKYvWpLlG+P7pNf2Hn/s2+J7RXR4MkhZ0uLeg6QCdvXR5ZO3TnFmUHGlTnyZRhGJEjVQAAAAAkh62t0Aezqqoq3XXXXZIkj8ejrCxzRQaAA0vTisV6t1eyOeiwOmMxe6+KLiAd3PflGo0s2WRaX9qpr2ltSOccSVIwbJiem9+kHdplhHXErirIV+YXJmKrAAAAAFohocFieXm55s+frylTpmjatGlau/bgbVF64IEHtGPHDknSTTfdpIKCghTvCIDdspoEeg0uj8rrze3RiWR1xmJOgGAR6WX2pnKNLN1oWl/S2Rws3ji6cS0YsggWLSZIH7OrHfqnby+Mb5MAAAAAWi0hrdCLFy/WU089pdmzZysUCkU916VLF1177bW69tprowa4HMimTZumSZMmSZIGDx6sX/ziF/rggw9SuykAtstqMryl3p2hPu3trVa2OmMxm2ARaWTmhjJJ0ohSc8Xikk79JEnPXXaYvttcoVMGdNSPj+wpSQqGw6bXWw1wOXp7Y7CY6aYJAwAAAEi2uIPFf//733r66acVDoejJjzvVlxcrEcffVQffvih/vWvf6l3797x3jKtVVVVRaZAu91uPfjgg/J67T1jDUB6aNqCXO/2qmOOx9Z7Wp2xmBNosPWeQEvV+oIa/8wsSdLIJsFiRUaOtuR1kiT9/Li++vlx0dWL7bPMf3fWte+mKm+W2vnrI2tNrwsAAAAgeeL69f4777yjJ5980lSluDeHwyHDMLRmzRr9/Oc/V01NTTy3THv33XdfpAX6hhtu0IgRI1K8IwDJ0rRisc6TIYdsPmPRbVGxyBmLSBMvfLdZgZAhTyigoWXRZyAu7dhnn2eQPnr+oaY1w+HU0o7RAeSwsi1yh4KJ2TAAAACAVok5WKypqdGjjz4qh8MRCQ9Hjx6tv/zlL3r22Wf1z3/+U7/5zW/Uq1evyHs2b96sf/7znwnZeDqaOnWqPvzwQ0nSgAEDdMstt6R4RwCSydwK7ZXT5iG1VCwina0uqZUkDSnbKk84+peQSy3OV9zb6D4d9D/Hm1/T9H0ZoaAGVRSpIWhunQYAAABgr5hboT/77DNVVlbK4XAoIyNDjz76qE499dSo15x66qm66aabdPfdd2vSpEkyDEPvv/++br311gPuvMXKykr95S9/kSQ5nc420QIdDLb9Co+m1bL7qp4F7GYVLHrCYVv/rllNhc4J+A6Iv98txedA+nKo8YiUfZ2vKDX/79FTFwzX/542UD3u/Wqv95nDxpElm7SiYx9NWrxV5w3vGueu0RbxOQCAzwEAfA6kRszB4ty5cyNf//73vzeFipEbuN269957tXTpUq1Zs0ZVVVVauHChjjvuuFhvnZbuu+8+lZSUSJKuv/56HX744Sne0b6Fw2EtWrQo1dtIuKVLl6Z6CzhIldSFNL7J0JQ6d4ZK1q5RRrl9v2So8ZiHw+T56w/Iv98txedA+ijbWSnJ+hzEvQPC1vx53TuQ3G1k6Sa9o5N1ySsLNO+qHq3fKA44fA4A4HMAAJ8DyRFzK/TKlSslSTk5Obr88sv3+Vq3262rrroq8njZsmWx3jYtffXVV/roo48kSf369dNvf/vbFO8IQLLNKaqTNxxddVXv9tp8wqJU7TUHi7l7DbYAUmn3n3+risWlu4LFq4fmtOqaVhWLI0o3tnZrAAAAABIg5mCxpKREDodDffr0kcez/6mnRx99dOTrzZs3x3rbtFNRUaH//d//ldQ4qOb+++9XZqZ5mAKAA1y9+VzDeneG2mfENSNrv2q85s+b3ADBItKDa1ey2LRicUtuJ1Vk5kqSrh2au9/r9MhxRb4uz8rT1tyCqOeZDA0AAACkRsyt0HV1dZKkvLy8Fr2+Z8+eka+rq6tjvW3a2bsF+pprrtExxxyT4h21jNPp1MiRI1O9jbiFQqGo8uYRI0bI5XLt4x2APZZsW2Baq/dk6IoTj7Z4deIYbxapxpOp3L0GtuT569P+OIZE4nMgfXUtWqXcxUvVr2pH1PqSXQNY7jtrsMaPHrDf69xSsV5/+nTVnvd36queNWWRx/0ri5Xrr1ONN/ug+rOPPfgcAMDnAAA+B1pvyZIlCofjG4IYc7AYCAQkqUXVilJjy/RutbW1sd42rXz55Zf6+OOPJUm9e/fW//t//y/FO2odtzvm/+9PWy6X64D834X0lxkMmNbq3d6k/Hm0ChYP5r8HfA6kD4/bqcHlRab1FQW9JUn5WS37O/L7cYNU5QvpoalrJUlLO/XTWRt/iHrNoaWbNbfHUP7/HpL4HADA5wAAPgeSJeYePcNonPTocLTsBLG9X3cgTOapqKjQX//6V0mN/9vuu+8+ZWdnp3ZTAFLG4/eZ1urdyZkM3/ScxTx/vVYUHziV4Wi71pXWaWhZoWl9RcdekqQLDu3Wouu4nA498KNh+v62MZKamQxNOzQAAACQdES3MXr77bcjLdBZWVmaMGGCJkyY0OzrS0tLI1+/9NJL+uSTTyKPH374YXXq1Mm+zQKwncdndcZiaoLF3ECD/r2gUPefPSwp9wea886iIt1jESyu6tAYLPZqbx4+tC9H9sxX3YM/0gk/W2d6bnewaBhGi3/pCQAAACA+BIsx8vv9ka/r6uo0Y8aMFr939erVWr16deRxQ4M5kADQtnj95r/Hde6MpNzbqmLx5XkEi0it3Z0Ng8u2mp5bWdBLi24/JabrZnpcWtGxt4IOp9zGnvNgdk+eXlhUpSN75sd0bQAAAACtY++4UgA4SFi3QtsfLHbM9lhWLAYPgCMn0Lb95M3GMxCbtkLvzMzTzux2GtGtZcPfrPjcXq1t3z1qbfd9FhdVxXxdAAAAAK1DxWKMfv3rX+vXv/51i18/fvx4bd3aWLXx4IMP6uKLL7ZrawBSIFWt0H86bZBq3okOFl1GWDUVnLGI1Hp9wVY5wyHT8JaVBT0ltfyM5uas6NhbQ8v3VEN2ry1XfkNNXNcEAAAA0DpULAJAAmQF/aa1Oo/9FYtXH9lLNV7zOXV5/nrb7w3sT5/qEmWGoiemryropXOGdYn72qt2BZR7G1pWqGDYiPvaAAAAAFom7orF4uJiffDBB7a+58ILL2zV9QEg2Wav2KpRTdZGDW7ZxNt4dMnLMLVCS1IuwSLSwFCL8xVXdegpZwKGq6wo6G1aG1ZWqCe+Wa8bjusT9/UBAAAA7F/cweKaNWt05513tvj1hmG0+j0EiwDS3apNJaa1zp3aJ+Xe1R4qFpGemp6vKDUObnEmYGjzyoJeprVhO7doYnG1wmFDzkTcBAAAAMA+JbUV2uFwtOpMpd0TJQEg3WUFzcNbapPQCi2Zp0JLUl6AYBGpN6SZidDxnq+4+zrN3e+pmRv4HgIAAABIgriCRcMwbP0PANoKqzMWA97kBIs13kzTGhWLSKXS2sagfUiTisWA06UN+V0TUrFYnZGtrbkFUWvDyrZIkm77cJne/MEcagIAAABIrJhbob/66qtE7uOAN3Xq1FRvAYCNrILFYIY58LOD9RmL5inVQLLc9uEySdKQ8uhwb2377gq63Ak5Y1FqPGexZ01Z5HH/ymJ5gwH53R799O2F+vFR5qpGAAAAAIkTc7DYs6d5GiMAHKyyA+ZW6GCGOfCzA2csIt28vmCr8htq1L22PGp9d/tyooLFVQU9ddrmRZHHLiOsQRVFWtaprwIhOh8AAAAAuyX1jEUAOFBZtkJncMYiDl6DKraZ1lZ3aPylZLy54hmDO0uyngxtNTAGAAAAgD0IFgEgATIthrf4Uzm8hYpFpNjA8iLT2poO3SVJ9YFQXNe+6fi+kqQVHa0nQwMAAABIDoJFAEiAbItgMZCkMxZraIVGGhpoUbG4tn0PSdKDPxoW17UvHtkYUO5rMjQAAAAA+xEsAkACNG2FDjmcCro9Sbm35fCWQL2CoXBS7g9Y6V+53bS2tn1jIDisa15C7rEtp0CV3uyotd2ToQEAAADYj2ARABKgabBY7/bGf5BcC1lPha6XI0n3B6wMLI+uWKxze7Utt0Nib+JwmKoWh5YVymEQqgMAAADJQLAIAAnQdCp0vdubtHvXWpzlSCs0UqXWF5RkboVe1767DEfiv+1oes5idtCv3tWlkiTDYDI0AAAAYCeCRQCIk2EYlhWLyco0wk6Xat3R4SLBIlKlxh9Srr9O3eoqotbX5XeTJP3kaPO5iPFY1aH5AS6byvl7AAAAANiJYBEA4jRvS4VpeEutJzOp1VJN26EJFpEqobChARXm8xXX7Tpf8aUrj0jo/awmQw8tK5Qk7azzm54DAAAAkDgEiwAQpzs+WaGcQEPUWp3b3J5sp6bBYm6T/QDJsnhblfVE6A7dNen6UQk7+/PhcxonS1tNhh62K1icsmJHQu4FAAAAwBrBIgDEqSEYNp2xWOvJUDJPd6NiEeni/SXbTINbpMaJ0OcN75qw+/z8uD6SpPX53eR3uqOeG7IrWPy+sCJh9wMAAABgRrAIAHFyOWRqha6zGKhiJ4JFpIsaX9C6YrF9dzmdiZtU3iHbq1vH9FfQ5dbaXW3Wuw3b2RgsMrsFAAAAsBfBIgDEyWuElBEKRq0luxW6xmPRCk2qghSYvKJYA5oEi36nW1vyOiX8Xn8/d7gGd87RyoKeUetd6ivVob464fcDAAAAEI1gEQDilB0wD4hoHN6SvD00rVh0GWH5qmuStwFgly65GabhLevzuyrsdCX8Xi6nQ3eMH6RVFucsDinfmvD7AQAAAIhGsAgAcWraBi1J9Z4MGUk8ZbGmSbAoSd8u2pS0+wO7FW0vV++a0qi1tR26N/Pq+IUNQ6uaVCxK0pAygkUAAADAbgSLABAnd32daS2ZrdAXjuhmqliUpNenr0zaHoDd+lcWm9bWtbcvWDQMaVUHi2CxvFANwZBt9wUAAABAsAgAcWuoMrcc13oydUr/jkm5//+eMVjVHnOwuHQNFVtIroZASAMrikzr6/LtCxYlWbdCl23VF6tLLV4NAAAAIFEIFgEgTs568wTmOo9Xpw3unJT7H94jXx26dDCt5wWYDI3k+nTlDuuJ0Da2QhsyVJGZq+Ls/Kh1WqEBAAAA+xEsAkCcRnf2mtbq3BnK8iR+WEVz8i2CxVx/Q9LuD0jS3Z+ttA4W23fX9cf0tuWe4V1HmTZthx5YsU2ucEihMNPRAQAAALsQLAJAnIblmj9Kaz2ZSd2DLzPHtJbnp2IRyWUY0oDy6GAx6HBqU7vO+vXJh9h0z8bgsGk7tDcc1CGVxXp7IZWLAAAAgF0IFgEgThk+c2VgnSd5w1skqSGLYBGpt2JHjalicVO7LnrzZ8fryJ75zbwrPsbuisVmJkM/PXOjLfcFAAAAQLAIAHGbv8o8rCKZU6ElqcGqYpEzFpFknlBAfaqjB6asbd9dR9sUKkrS7kbnVR3MA1yGlhVqzqZy2+4NAAAAHOwIFgEgTluKdprWkt8KbZ4KTcUikq1f5Q65jHDU2rr23eV0Omy7Z3hXyeJKq4rFctqgAQAAADsRLAJAnLKDPtNasisWfdnmisVcgkUk0QdLtzU7EdrGXDHSCr0xv6v8TnfUc4PLCu27MQAAAACCRQCIV04gHc5YzDat5QXqFQiFLV4NJFY4bOjiifObnQjtdNiXLI7p31GSFHK6tKZD96jnhpY1VizuHvACAAAAILEIFgEgTtkBc8VibZKDxXKnufU611+vTeVULcJ+i7ZVSZJlsLiufTd1zbXv78NhPdrplF3h4qoO0e3QXeor1b6hRk/N2GDb/QEAAICDGcEiAMTJqhX6ltMPTeoeyl0ZCiu6KizfV6dQmEot2G/GhjJJ0oAmwWJYDq3P72brGYuS9NlNx0mSVltOhi7UrR8us/X+AAAAwMGKYBEA4mRVsXjp8QOSuofRh3RUVUZ0O3R7X60MESzCfs/M2ijJXLFYmNdRy+4+y/b7Z7hdWnvneK0ssJoMzQAXAAAAwC4EiwAQJ6tg0Z2Xm9Q95HjdqsiIHuCS76sVR8shGVbsqJErHNIhlcVR62vbd5fXlZxvNfp3zDG1QkvSkHIGuAAAAAB2IVgEgDg1bYUOyyFHhvnMQzv9aFgXVVpVLBIsIkl6V5fIEw5Fra1r310um9ug97bKomJx8K6KRX+QQUYAAABAohEsAkCcmk6FrvNkyJHEMEWS+hVkW1Qs1tEIjaQZWJ78idBNVWTmqjg7P2ptdyv0e0vM+wMAAAAQH4JFAIhT04rFWk9GUsOU3UzBor9ORjCY9H3g4GQ1EXpth+5KcsZuaoceWLFNrnBIv/94eXI3AgAAABwECBYBIE5Nz1isc2co+bGiVNkkWJQkR3VVCnaCg4mxq9/eMlhMcsWiJK1u0g7tDQd1SGWxiqoamnkHAAAAgFgRLAJAnHKaBoueDKWgYNEyWNyxdUfyN4KDyoKtlZKkARbB4vr8bkmvWFxZYDHAhcnQAAAAgC0IFgEgDoUV9aYzFms8WXKkoGax6fAWSXr5y6VJ3wcOLhPnbZFkrljcltNBtd4s5Wa4k7qfVR3MA1yYDA0AAADYg2ARAOJQXONTbpNgsTZFFYtNz1iUpI0btid/IzioZHtcchhhDaiI/rO2tn13SZLHldxvNawqFodSsYiDRI0vqPlbKuQLhvb/YgAAgARIbhkBABxgspwO0xmLjRWLyWcVLLb31aRgJziY9O2QrZ7VO5UZCkSt7w4Wk21jflf5nW55w3sGFw0uo2IRB74vV5fogpe+U30grE45Xn35P8frsB7tUr0tAABwgKNiEQDikBPyyykjai1VFYtWZyzm++qSvxEcVJwO68Et61IULIacLlOoOaScikUcOMJhQw9NXaMTn5qhn729UKW1Ps3aWKYznpuj+kBYklRa69e9X6xO8U4BAMDBgIpFAIiDq85cEVjrzZIjBcmidcVibdL3gYOLwyFTG7SUuopFqbEdenjZlsjjrnWVat9A9S4ODE/P3KA/TVkpSZq9qTxyzmlT7y0xB/4AAACJRsUiAMTBUWeuCKz1ZKSkFdqqYpFgEXZzOhzNVCx2S8FuGq22nAxNOzQODC98t7nFr11RXG3jTgAAAAgWASAuzlpzFVSNJytthrfkEyzCZvWBkAZYBIuprFi0ngxNOzTappIan+7572o98NUaVTUEtGRby8PCR6avs3FnAAAAtEIDQFwcteaKxRpPphwpqFns2buLaY2KRdjtto+W6fsmwWJpZp4qM3OTvpeO2R7trAs0MxmaikW0PXX+oI587BsVVTVIkl6Y2/JqRUl66bsteuHyI2zYGQAAQCMqFgEgDvXllaa1Wk9mSioWtzkyTGvtGN4Cmxlhw9QKvbZDY7Vi5xxvUvfy0pVHSpJWFZgrFgeXbdWOap9pHUhnr8wvjISKkrShjM90AACQXggWASAOi1YXmdZqvJkpOWOxOOBQnTs6yKFiEXbrWleh3EBD1NruNujbxw5I6l7OHNJZlx3WXRWZudqRlR/13NCyrepz35dJ3Q8Qi+nrSnXZy/N147uL9Pg36+O+nj8YTsCuAAAArBEsAkAcvl1qnsbZWLGY/GgxZBimAS4Ei7CTYRiW5yuu2xUs/uqEfkndj8fl1Ns/OUaSTO3QAyu2KRQIqKSGqkWkj0AorLs/W6kznp2tv3y2UouKKnXqM7P13pJtemHuZq0pjf8z/MKXvlM4bCRgtwAAAGYEiwAQh4yG5s5YTL5gyDANcGF4C+y0bHu15UTo3RWLORmpO8p5dZN2aG84qH6VxfpkxY4U7Qgw+9t/V+v+L9foyzWluu/LNTrysW+U6Azws1Ul+qHIfGwHAABAIhAsAkAc/FXm6ZypOmMxGDZUmZEdtUbFIuw0d3OFZbC4LoUToXezHuCyVWV1/hTsBrD2wFdrknKfj5cVJ+U+AADg4EOwCABxyPU3mNZqvKlphXY4ZFGxWCcZtMDBHiHD0IDy5isWU+XHR/bUqg7mAS5DygvlcfGtDw4+Yf4dAAAANuG7awCIQ07AIlj0ZKZgJ9KxvdurIiM3as0bDsqoY4ooEi8cNlRYUW+qWKz0Zqs0q12KdtXo7tMHa5VFxeKQsq3yMcgCAAAASBiCRQCIQ9NpuFJjK3QqOB0OVTVphZak75ZuTP5mcECrqA/orAlzdN8XqzWoSbC4tn13yeFQt7yMFO1O6pjj0Yb8rvI7o894HFJWqP4dzX9HgANdgOEtAADAJqk7VR0ADgDpVLEYNszDWyRp++Zi6bhDU7AjHKjeWLBVX64pVUFDtekcz91t0Ef2zE/F1iQ1dv+HnC6tbd9dw8v2TG4fUr5VJbSEoo06dtsqXb/sK51UuFzda8tVmZGtRZ0P0TtDTtJ/Bp+okNPV7Hu/XF2iB380LIm7BQAABwuCRQCIQ7ugz7SWqorFUwZ0Mg1vkSR3VVUKdoMD2S2TlkiSBlRsNz23rkPqB7fsLs5aVdAzKljsWlepG5+brnMev1yZnuZDGCCddKqr1L++/LcuXTMrar1jQ7X6VxbrorVzdNect3XjGb/WnB5DLa/xfSFToQEAgD1ohQaAOAxtkuP5XG4N7tE+JXu55uiepjMWJcldQ7AIe1hOhM7vloKdRDN2VSVan7NYqPeXmPcNpKORJRv0/au3mULFpg7duUXT375TP1/8eZJ2BgAA0IhgEQDi4KiLbgOt9WTqtR8flZK9DO2SZ1mx6K0mWIQ9rILFtelUsWg5GXqrrnnjhyTvCGi9w3Zs0NR37lLvmtIWvd4TDum5L/6pX/0w2eadAQAA7EGwCABxqC+PDu1qPJnyulL30Wp1xuLWLcUp2AkOBgOsgsVdZywO62qunk2WDtkeSdYVi0PLCpO9HaDVutfs1CeT/qaODdWm5xpcHn3XbZB2ZFmfY/rk1Am6cM1s0/rUNaUqqjSfCwwAABAPzlgEgBg1BELKDdRHrdV6MpWbkbqz26yCxaUrtigUNuRyOlKwIxzIBpZHB4t1bq+25RRIkn5ydO9UbEmSlOVx6fpRvfXhN+ZQZnDZ1hTsCGg5Zziktyb/XT1rykzPvTF0jG4dd6NKs/PlCof0q4Wf6OFvJiojFNzzfhl6dcpjOvrax7W6YE/V7mnP7gkbN/75VPXpwIR0AAAQPyoWASBGgZChnED08JYaT6a65GakaEdSpUWw2N5Xo4+Xm4dsAPFq2gq9tn13ydEYYB/Wo10qthQx4bLDVZ6VZ6rqGlLeGCx+X1iRgl0B+/fbBR/r5K3LTesPHnuprvnR7SrNbvwzHXK69I+jztfZF/9Vte7of3dygj698ckj8oQClvcY8OBUBULhhO8dAAAcfAgWASBGYcNQnj+6YrHGmyV3CisDrSoW83112lReb/FqIHZ5vjp1qY+eNLuuferPV9xtd4Vu03boQeXb5AqHNHHeFqu3ASk1ZGeh7pv5mmn9xRGn6c8nXRsJ7vc2rc9h+vE5v1NY0c8dtWO9bvv+I8v7hMKGvl1vrogEAABoLYJFAIhROBRSbiD6vKpqT1ZKW46thrfk+2oV3jUlF0gUq/MV0ylY3G1VQfQAF284qH6VxZq1kVAFqfXF6pLoBcPQ8//9h7KC/qjlZR1761en/sIyVNzt44HH6YHRl5nW7579lnpVlVi8Q1qxw3xUAAAAQGsRLAJAjIzaWtNatTdLjn388Ge3Gk+WQo7oj/Z8X53IFZFolhOh0zFY7GAe4LK7HRpIlWXbq3Xmc3Oi1i5dPVMnFq2MWgs6nPrpWbfK5/bu95r3jL5S33cZELWWE/TpsWkvxL9hAACAZhAsAkCsqqtMSzXerBRsZC8Oh6kdukNDjcIEi0iwthAsntCvg1Y2qViUGidDE7YjFVYUV+vM52Zr5CPTotbdoaDun/Gq6fUPH3up5ncb1KJrB11u3XzaL00t0ZeumaVTNy2MdcsAAAD7RLAIALGqqjEtVac6WJRUlpkb9bhjQ7UMUhQkmGWw2CG9gsWnLxppOmNRkoYwGRopYBiGTn92jr5YXWp67qbFn2tQk79TW3I76f7jzO3N+zKv+2C9MPJ00/o9M19X0zS9vN56sAsAAEBrECwCQIz8lZWmtVQHizef0E87s/Ki1jrWV1GxiIRresai3+lWYW5HSdKtY/qnYksmR/TM14b8rvI73VHrg8u37uu4OsAW7y3epqKqBtN6dqBBd895y7T+lxOvVoMnw7S+P3ee/BPtzIz+d+D4bat05sYF0df/bJWmrzOHnAAAAK1BsAgAMZr2w0bTWo0nM/kb2cvJ/Qu0M7Nd1FoHX61CoVCKdoQD1YCK7VGP1+d3Vdjp0smHFOh3pwxo5l3JF3K6TC3aQ8sK9cPWKip5kVSPTl9nuX7Dki/UtS76F1WLO/XVq8PHxnSfsqx2euSYi0zrf5v1hqlq8Z7/ro7pHgAAALsRLAJAjP4z0/wDWaorFt1Oh6li0WWE5aqsSM2GcEDKCvjUq2Zn1NraDt115pDOmnbzCeqRn9qAvamm7dBd6yrVvqHGPJUXsNHczRWmNXcoqP83/wPT+p9P+onCTlfM93r6yHNUkhX9S6Zjt6/RjzbMj1r7el3032MAAIDWIlgEgBhlNlhPhU4ll9OhsiYtcJLkqShLwW5woOpfud20tq59d+VnelI6Fb05q60mQ5cV6tXvC1OwG2CPK1d9q77V0QH3D50P0Sf9j2nVdfq0j/63p9abpb+Putj0ut/Pe7/1mwQAANgHgkUAiFFPh/ng+1QHi06HuWJRkjzlFcnfDA5YA8utJ0I70y9TlKRmJkNv1ZxN5SnYDbCLYVgGfX8fdbGaHgI6/eYT9nmpu08fbFr71xE/UnF2ftTaKYXLdPT2NU22wZEAAAAgdgSLABCjHF+daS3VwWKm22k6tF+SvJUEKEiMhkDIeiJ0++5ypmG1oiSttJgMPXznZq3bWaf1O82Vx0AynLHpB40s3RS1tj6/q94dclLU2uE92umkQwr2ea0bjutjWqvzZOqfR5xjWr/1+4+iHk+ct6WlWwYAADAhWASAGGX7zdM9qz2pDRZP6FegnU3O1ZKkDIJFJMgbP2y1DBbXpXHF4vKO5tDl0J2bJUmPf7M+2dsBJEk3/zDFtPboMRcp1ORsxa9+cXzMRww8c/jZqnd7o9YuXz1Dvar2tF/f8M4ivbOwKKbrAwAAECwCQIxy07BiMTfDbVmx2Cdk3isQi5+/s0gDK6JDiKDDqU3tOqdtxWJ1RrY25XWOWju0tDFY/OfMjSnYEQ52fSuLde76eVFr5Rk5mnjoqVFr/ofPUUF2dDDYGqXZ+Xp1+LioNU84pFsWfhK1duVr38d8DwAAcHAjWASAGOX4601rqQ4WJWnsseaztjr5qlOwExxoVpfUSJIGl0UHixvyuyrg8uiCEd1Ssa0WWdqpb9TjvtUlyrP45QCQDDct/lxORZ9tOHHEaar3ZEStuV17vlV/9tLDLK919VHmVv+9PXHU+aa1ny79Ut5g9DnB5XX+fV4HAADACsEiAMTIumIxOwU7ibbRaQ43V67YZPFKoHVe/b5Q2YEG9a4pjVpftesMw/MPTd9gcXnH3qa14bvaoYFk8gYDumHJF6b1fx9+9j7f97Nj++jes4ZErTkc0vWjzH+297ayY2992u+oqLXO9VW6YN3cqLUnv92wz+sAAABYIVgEgBh1NqKrO0IOp44a2DVFu9njq7KweXHnzuRvBAecLI9Lg8rNZ7Gt6dAYLLrS9ZBFmSsWJWlEKcEikmNHtS/y9cVrZqlLfWXU85/3PVJrO/TY5zVcTof+fNpgld5zpv506iD95OhemvyzY3XqoM77fJ8kPXfYWaa1Gxd/HvV4a5X53GAAAID9IVgEgBhl1EdPk632Zumnx5nDi2QLZmabDuvv2FCtjWW0fSI+gVBYgy2CxdX7CURS6cwhjaHLsk7ND3AB7Pbw12sjX/906Zem5/91xI9Ma4M751heqyDbq/vOHqqJVx2ps4ft+WXWQ+cMa/b+n/Q/RkU50ZOlT9u8SAP2+vscDFn8UgoAAGA/CBYBIEbu2pqox9WeLI3p3zFFu9nj4pHdTQNcOtZX6+X5W1K0Ixwo5m2u0JCyQtP6qg491b1dhsU7Uu/pi0bq5EMKtKKgt8KKrqg8tJQjApAcu6eP964q0ambF0c9tzW3QFP6H2N6z60n92/VPa47preO69Pe8rmgy62XRpxmWv/5Xi3Z5fUB0/MAAAD7Q7AIADFoCISUF4ge3lLtzVI6dIKeO7yrdmaZg8Ww0cwbgBaasnKHZSv06g499fM0qNa1MqBTjqb/6kTde/GRWt8++qiCQ3c2hu0NgVAqtoaDRNleQ1F+snyqaWjLq8PHKeR0Ra19+6sT9YsT+rXqPl3zMvTNr07UmjvGq+RvZ2rFH8bpD+MGRp5/YeRppnD9+mVfyhNqDBSnr+PIDAAA0HoEiwAQg7cWFimvyVToGm+mcrzuFO1ojw5ZHnPFYkOVwgbJIuLXtBW6xpOpotwC/e/p5mnk6eTyw3toacfo8LNHbZk61FcrEOLvBuzz3JxdlbGGoeuWfWV6fuKhp5rWTjykwLTWEh6XUwM65ahjjldDuuTqoXOGqVNO49EYG/O76b/9joh6fde6Sp2/7jtJ0pDOuTHdE2hLDMPQ8u3VWrqtSgbfFwFAQhAsAkAMXpi7yRQsVnuz1CXX28w7ksfpkKliMTvoV11lTTPvAFrIMDSkfGvU0uoOPfTCFUfImQ7luvvgdDi0vJlzFl18NwQb/WPXtOWTti7XwIrtUc/N6j5Uqwt6Ra395uRDEnr/R84bHvl6wmFnmp7fPcTluy0VqmqgHRoHrlDY0JWvfq8Rj0zTYY9O18UT5ynA2aIAEDe+lQaAGHiNsLKD0VOhq7zZcjhSH66EwlJZZjvT+qTpS1OwGxxIOtdXqr0vemjR6g491RZqPvIz3Vra0TpYXLytOgU7wsFi+66J0FZDWyaOMFcrPnD20ITef+9KxI/7H6ttOR2inj9t0yL1rC6VJHX963+p4sIBa/amMr27eFvk8YfLivXt+rIU7ggADgwEiwAQg/wm5ytKUmVGdgp2Ypaf5TZVLEpSu5qqFOwGB4qiygYNLjOfr7imQw+1hRwiJ8NtORl6ROkmPT59XQp2hINJjr9el62eGbVW5/bqnSEnRR7/buwANTx0jrITfKSGa69q4qDLrZcPHR/1vFOGrl4xXZLkC4b1zGyGGqFtKqnx6dklVXryh0qtLg/IF4w+P/eV+ebhYy98tzlZ2wOAAxbBIgDEIK+hzrRW7U2PYLF3+yzTGYtS4zmLQKyemrlBQ8otJkIX9JTXnfpK3ZZY1aGXgo7ob32G79wSVcECJEJZnV/nvTBXzt99LEm6ZM0s5QYaol7z/qDjVZWRE3n8f+cOl9ed+G/NmxbSvzp8nOk11y6fqt2/IfjV+0toD0Wb4wuGdOw/Zur5pTV6bWWtrv6sRMc8OVPrSvdU2Vc1BE3vK6/zm9YAAK1DsAgAMcisN59XWJUmwWKWx2VZsdixnnZPxG7WhjLT4BapsRX69EGdU7Cj1vv1qUO1pkOPqLURpVRnIfFu/2iZPlmxI/L46uXTTK+ZeOhpSdmLu8n5pys69tH8rgOj1g7duUVH7lgfefyHycuTsjcgUS59eb62Vvmi1laV1OqJb9c3845GbaDgHgDSHsEiAMSistK8lCat0JK00+KMxY4NBIuIncfl1CDLYLGHurXLTMGOWq9HfoaWNmmH7lxfpc51FanZEA5YL+/Vctm1tlzjtyyJen5zXid93WdkUvYyrEuecjNcUWtWVYs/WT418vWTuwbOAG3B94UVUUH+3v45c6NqfI2VimlwDDYAHJAIFgEgBjkWrdDpUrEomadCS1QsIj4el0NDyqInQm/Pbh/VypnuOmR5tdxigMuI0k36ak1JCnaEg8Hlq2bIZUS3Fr895GQZe7Xl/79T+tt2f6/bqWcvPTxq7a2hJyvgjA4br1rxjdwhc6sokO5e/G7LPp9v9+dPVR8I7fM1AIDYESwCQAwyas0hXZU3KwU7sWZ1xmKnes5YROy8CmtgRfRZhKubtBWnu3OHd9HSTn1N64eWbtHpz86RP8i5cki8K1d+Y1p7c+iYyNedcrx65LxDbd3DVUf21EtXHBF5XJLdXp/1OyrqNV3qK3XGph8ij5/4Zj0TotEmvLvIXE3f1IvNDGnhjzgAxI9gEQBi0NPhM61VplHlllXFYgGt0IjD0rnL5A1HVzOt6dAzRbuJTaecDPmHDTetH1a6UZI0e1NZkneEA90hFdt1/LZVUWsrCnppYZfGCsUfDe2ior+cnpS9uJqctWg5xGXZ15Gv/99Hy/TmD1tNrwHSyTfrdqq0dv8DWH49aakmLy9Owo4A4OBDsAgAMdiyxXyWTzq1Qv/o+MEKK/qHSFqhEY8h5eaAYVVB2woWJenFP12qBpcnau2wksbz5CrqaQNFYl25ylyt+NbQMZLDoSN7ttPknx8ntys5346HwtGlWR8POFYVTX4hdsG6ucpv2DOc7IW51lVeQKrV+oL6/cfLNfbfs1r+Hr+5HdqQoeJqn/45c4Oenb1RZUyJBoBWI1gEgBiMyDS3TKbT8JYHzh2h8szcqLWufoJFxKa01qfBFsHi6g49NLBT+lTqtoTT49aSJu3QI0s3yRUOyWA+KBJgU9meM3ivXPmt6fndbdAnHdIxaXuSpHOGd4l67HN79e7gE6PWMkMBXbp6T1Dz9bqdSdkb0BK+YEjfbS7XFa/MV96fP9Wj09fFfc3yuoAGPviVfj1pqX753hKN/dcs1fn5JRMAtAbBIgDEYFCGOVj800VHWbwyNXq1zzK1Q+fXcsYiYnPze0s0uMxqInRP/fw48zCUdOZ0OLSoS/SgjKygX4PLtypMrog4vb6gUEMebmwnHlGyUSNLN0U9P6/rQK3ddTap25ncEbWdcjL065MOiVp7Zfh40+uu3Ws6NJAulmyrUp97v9Tof8zQu4u37f8NLTS/sDKqknHp9mpNI1AHgFYhWASAGDirzSHdYUN6pWAnzSvJahf1uEtdJcMpEJP/LN5mqlgMOZxa176bfj92QIp2FRuX06GFnQ8xrR++YwODKhAXwzD0v5+vkj/U+Dl7lcXQlrf2GtrS9MzDZHjywhHq3T4z8nhmz2Fan981+JQTKAAA4PlJREFU6jVjti5Xv8rtkccNTNNFGrj3i9UqacFZionwnwQGlwBwMCBYBIAYFFmcsejIz0/BTppXnN0+6nG+v05fL92Sms2gzRtaVhj1eEN+FwVcHjkcyQ9H4uF0SAu7mIPFI0o26LNVJSnYEQ4U1b6g1u/c1QZtGLpiVXQbdFgOvT3k5MjjM4d0Tub2Imb9+iSN6t2+8YHDodeGmYe4/HjFnlD05fn8u4HUS2bYN3HeFl3+ynzV+miJBoCWIFgEgFaqqA+onb8uaq3GkymXx52iHVnbkdPetDZjzsrkbwRtXp6vTr1qolvDVhT0TtFu4pPlcWlx536m9cN3bGBQBeLi2Gtg1nHbVql/ZfQE2um9R6gor/FcxSN6tNP4gZ2Sur/deuZnae5v9wScrw0fa3rN1SumSbsqeH/53pIk7QywVlkfSPo9/7N4mx6cujbp9wWAtohgEQBaqaohoHxfdLBYmZGd9POy9qdpxaIk/ffbpcnfCNq8YWXmiqUVHdtmsOhwOFTjzdba9t2i1o/csT4SpACx2PufgB9btkE3hnknH1Kgb351YsqrfY/dVbW4tkMPzek+OOq5YWWFOmpH/IMxgNaqbgjqlflb9OzsjdpR7ZMk3fphbN+7OIz4jn95ZvbGuN4PAAeL9CqvAYA2IGzIVLFY5c1Wdpq1hFoFi13rKpK+D7Rt9YGQhu80B4vL22iwuNvCzv01sGLPOXJd6ivVrbY8hTtCW7f7nwBXOKTLVs2Iei7gdOm9QSdIkj782bHKzUj9t+APnztM4/49W5L0+rCxGr1tddTzV6+YrgVdB6ZiazhIBUJhnfbsbM3bUiGpsVr26YtG6uX5hft+o6TuNTv1o/Xf6/RNP+iwko3qVleh9r5aVXqztS2ng5Z07qvP+h2tKf2PUXFOhxbtp6xuT6Xkjmqf/jVro3bW+XXt0b10bJ+WXQMADgap/64GANqYsGGYKharvNnKS7eKRYtW6K61FUnfB9quUNhQzp1T9H+WwWIfdcvLSMGuEmNRl0N06ZpZUWtHlGxI0W5wIHDuShbHblmibk1+ifN5vyNVtmuglitNfgl1yoBOuu/sobrr05V6Z8hJevzr5+Xeq8LrypXf6A9jrlfI6ZI/GJbXTaMT7DVzQ1kkVNztlkn7bsUftW21bp8/SZesmS2XRYVivr9O+f46DS3fqstWz1LQ4dTbQ07Ww8deoqUWx2JYCYcNnfbsbC3dXi1JevG7zZrzm5M1snu7/bwTAA4OfIcAAK1kWFQstpVWaCoW0RqzNpZJkoZZBIsrC3rqL6cPNq23BReO6KaFnfub1g/fsUF/nLxcoTAt0Wi5V+Zv0eCHpuqIx6ZLkn68YrrpNW8OPSXydTr9U3H7KY1/D0qy2+vzfkdFPde9tlzjNy+WJL3yPQNcYL8Pl23f/4t26VG9U299/LDmvvE7Xb56pmWoaMVthHX1yula/Mpv9Pzn/1D7hpp9vn7upnLN21IRCRUlqT4Q1usLtrZ4rwBwoCNYBIBWMhoalBmKPki8yputrmlWvUWwiHj9YfJySdLwndFDTTbndVKNN1vZXlcqthW39647RousBriUbNDfp63jXC202Mod1br+rYVaW1qr1SW18gYDumjtnKjX1Lm9+mjAsZHHzjRKFjPce/4Ovz7sFNPzV6+YJkmatZFjAmC/Fv1OxzB0w+L/asVLN+vy1TPjut/Pln6ppRNv0dnr5zf7muOfmqHjn5phWn9sOmeQAsBuBIsA0FqVVealjJyUH8TflFUrdBdaodEKDodD2YEGHVK1I2p99/mKF4/snoptxc3hcKgwr5N2ZuZFrR+xY70k6bk5m1KxLbRBd326MurxmRsXqL2vNmrtowHHqdabFXmcRrlilA8Hjla1Jytq7eI1s5UdaFB1QzBFu8LBJLyfAVrZgQZN/OwJTfjiaeUF6pt9XWlmnmb2GKqP+4/SzB5DVdrks35vPWrL9PGke3XH3HdbNcCLunYA2IMzFgGglRwV5sqNioycFOxk32o8Wapze5Ud9EfWqFhEazgd0pAyc7vXio591D7LkxYDKGLmcGhhl0N06q5WT0kaXF6k7ECDlmxL4b7QpizeVh31+IpV35pes3sa9G4OpWeyWO/J0PuDRuu65V9H1nIDDbpg7Vz1Ov3QFO4MBwN/MKypa0qbfb5bTZmmvP+3Zs/CrXN7NfHQ0/TSiFO1oOsAGY499TMOI6xjtq/VDUu/0HXLvlJGKDood8rQAzNe1aGlm/XTs36roGv//7al6y8IACAVqFgEgFZyVFaY1ioy0y9YlMNhaocmWERruBwOUxu0JC0v6K3nLz88BTtKrEWdD4l67JShkSUbU7MZtEmuvcKF7F0h3N4qMnL0Wb+jo9bSOZB4fdhY09qPV0zX0zM3KMzZo7CJPxjW2RPmaMUO6/MOB5cVauabf2g2VHxxxGnqd+MLuuW0X+j7boOiQkVJMhxOzes+WL84/VcacMMEvT9wtOV1rl45Xe98/LC8wYDl83tL118QAEAqECwCQCttWl9kWnMXdEjBTvavaTs0wSJa49sNZRpuORG6d1qHIy3x59MGaWEX8wAXJkOjNYJ7hW3nrpunnKAv6vlJA0fL7/ZErTnT7NiMvU3tc5i25UT/e3bmxgXKrSzT1+uaryYDYjFvc4V+PWmJMu/4RF+v22n5mmE7N+ubt+40HckhSVtzCzT28gf08zN/o9Ls/Bbdsyivoy49/05ddc7vVOPJND1/4bq5eu+jB/cbLrb1fwMBIJEIFgGglRYsM1dwrQ16LF6ZWp1yvKaKxYKGGsnvt34DsJeSmsaAxGoi9IqOveV1te1vIcYO6Gg5wOWIHQSLaJlaX1DrdtZFHlu1Qb/dpA1aktI4V1TY6dJbQ8dErbmNsK5YOUOnPztHhRXNn2sHtMa0taU66Z8z9M+ZG5t9zcDyIn357t3qUl9pem5q75E66ton9E3vEa2/ucOht4eO0YlXPayN7bqYnj5nw3y99NkTcuxj0nRDMKwQVbwAIIlgEQBazV1t/ga3IiM3BTvZt1tOPEQ7LCZDr1m2PvmbQZvz/q6DBoeXRQeLRTkFqsjM1WmDOqdiWwnjdDi0oqC3fE3O0jpyR+OkT3+w+R8oAUn6YNn2yNftfLX60YboybIlWe30VR/zkQHpNujr2N7tox6/ZtEOvXs6dJ/7vtSaEut2VaA1np65QYFQ88Fcn6od+vLdu9S91nyu9avDxursS/6qEovvcVpjSedDdMJV/6dluwaS7e2qVd/q0Wkv7nOgy+sLCuO6P5AqDYGQjFYMKwL2h2ARAFopu7batFaehmcs/n7cAMvJ0J9OX5L8zaDN+XJ1qTKCfg2o2B61vqJjL0mS1922v4U4okc7BV1uLenUL2r98JIN8oQCKqujshf7du0bP0S+vnDtHNNAiP8MPlEhpytq7e7TBydlb63xyxP6RT3+oUt/LS+IDlqO275ag3YNcvrdx8uTtTUcgFbuqNbIv0/T+0u2N/uarrXl+vLdu9Sn2tx+//jRF+j6s29VwGXuFHntqiNavZ/tuQUaf/n9lhXsty74SL9a+Emz773+rYWtvh9gp/2dhVvnD+qSifOU9+dP1e/+LzVtLUdcIDHa9k8FAJACObVVprV0rFjM8rhU0a6jaf3zb5amYDdoS3ZU+/Tekm0aXL5VriatYCsKeuvxC9r+hNgO2V5J0vxuA6PWM0JBjSg1H3cA7G359ibToFc2Pw36yQtH6KFzhuk/1x2jv56RfsHidaN665MbjtXNuwNGh0OvDz/F9LqrV0yXJH28vFi/+3iZNpXVmV4D7Mu0taUa/n/TtKzY/Ava3TIDPn3wwf0aWGEOHp8+4hzdfsrPTMNZRvVury13n6bLD+8e075KstvrzEv+prXtu5mee2zaCzqpcFlM1wUSbXtVg258d5Euf2W+Zm4oi6w3BEL6yRsLlPfnKRrx9681b3OF5fuf/HaDJi3drlDY0JaKBv349QVULiIhCBYBoJWqi80HjFdkpF/FoiTtzDUPlWGAC/Zn4ENfSZKG7TS3eS3v2FvnDuua7C3ZZn7Xgaa1UdvXaHu1z+LVQKOX5+85IqBTXaVO37Qw6vnC3I6a0XO4JOmWE/vpD+MG6uKR3dOuDXq3s4d11SPnDY88fmOoOVj88cppkbbQx6av19h/z5IvGErWFtHGVTcE9aPn5+7zNQ4jrImfPaHjtq82PffSoafqt+NvtDykdM5vTlLP/Ky49rcjp4POvviv2pEVPQTGEw7pnY8fVo9q6+EygF3K6vyauaFMWysbz7Y1DEOnPTtbL8zdrP8s3qZT/jVTq3cdTfHktxv02oKtqg+Etby4Rpe/Ol+rS2r0yvwtmr+lInLNv09bF3WP7dU+/XvWJq3fWZu0/104MBEsAkAr5fvM//hWpGErtCQVZZqnJHatrUj+RtCm1PgawwLridB95DpAxmH+z/F9Na/bINP6McVrNWEuVYto3t4/nF2yZpbcTSp73xlyUqSqKl3DxKb2rlnZlN9V3/YcHvX8wIrtOm7bqj2vKa/X1DW00aFlnpm9UQ37Obv2nplv6PLVM03rbw05WTeecYupUnG3vf+OueL467auQw+df9FdprN3u9VV6N2PH7KcFP1Ik6AGSITFRVUa+cg0nfzPmRr2f1/r0xXFmr2pXMuL95xxGzakOz5ZIUl6/JvoP4ebyus19OGvdf1bCzX6H9/qlV2/DKuoN/8ZvmXSEg16aKpenmf+ng9oKYJFAGil9r7og+sDTpc6djIHeOlgU0aeaY2KRbTUsDJzuLa8Y29ltvHzFXe7aXRfLe/YR/Vub9T6MdvXaMKcTSnaFdoa6zboMRavTG9Nz+Z63WKIyzW7hrjstmCreZgZYGV16b4roq5cMV1/nvuOaf3bnsN1/Vm3KtzkvNLm3HuCuVPjzCEtHzb2Xfch+vX4/zGtH79tlR6Z/qJp/Q+Tl2v4/32tB75ao2CIoV9IjKdmbtC2qsbOiRpfSA9NXatVO8yDsz5Y2nhkwI6a5s+FDhuN54E6f/dxs68xDOmv/11FWzRidmD8ZAAASdS+ScViRUaOurWLrwXHLsccM8S01oVgES3UtGKxJKudSrPz1a1dZop2lFiDO+Uo5HTph879o9ZHlG6S29eQol2hLelRvVNjmpy/ti6/m2WLfbpr+uPku4NPlN8ZXbl1xcpv5W4ypAZoiX0Vug8uK9RzX/zTtL4uv5suPv9P8rvNg1p22/a/Z0Q9PqlHho7u0vjLIodDuu/soXrj6qM0qsn0c0m6+qieltd8/rAz9dxhZ5rWb1n4ic5ZN8+0vnJHje76dKX+uKt6DIjXC026Jr7dUGZ79fum8nrTEHRfMKTPVu7QpCXbVN3AZz+a597/SwAAe2vfYA4WM9K0gsuXnSefyx01rZSKRbSEJxTQ4PKiqLXlHXs38+q2KbTrO+j53QbphG0rI+tuI6zDSzaozh9UtpdvldC8y1bPkLNJJPf20JMj58BNuOzwVGwrJuEmP1GWZ+Xpk/7H6KK1cyJrnRqqdebGH/TJgFHJ3h7aOGczoUhmwKe3J/+fcgPRv8ypyMjRuRf9RTuz21m+7/pjeuu+s4eqa15G1HqW26l/juuoNRUBHT1yuIZ2a+wo+fZXJ2rB1koFQmGt21mnbnkZOm1QJ72+YKvl9X8z7iaNLNmo4/dq/5ekFz9/Uodd95SKc8yVkY9/s16Pnt/2h5shtZqrGkzGKTQhw5BTDhVW1OtvX6yOCjhHds/TNzefqPys5oN+HLzS8ydhAEhjVhWLnjQ9cy4/26vi7PZRa11rKyzPWAH2NqRsqzzh6MEMKzr21m9PPiRFO0o8hxr/3jadDC1Jo7av1b9m0Q6NfbvSqg16yMmRr284rk8ytxMXq59lrdqhr27SDg20RHPB4mPTX9DhJRuj1sJy6Ipz/6BVHXtZvueNq4/Si1ceoR751tXzLqdDQwu8Gthpz/nXXrdTo/t20Mn9O+r6Ub111tAucrua/1HY7/boinP/oLLM3Kj1zvVVmvjpE3IYtD3DHte88YPlenMFi/tqcW6tAQ98pYZASKP/McNUNblkW7UmryhO2L1wYCFYBIDWMAx1aHLGYkVGjrxpWrH4k6N7mYPFugrV+mlnwL4dVrrRtLa4Uz/99uT+5he3UXmZbo3u28GybfXo4jX6w+TlpnPncHDbXF6nSyY2tkIeUrHdNL12acc+Wtq5Xwp2Fr9Mj/nfsU/6H6OKjOjhZBesm6s8X50kaV1pnQKcK4cWWFlcbVq7bNUM/WLRZ6b1B0Zfpi/6HWl5nVtOOkRXHmndwpxohe06639O/5Vp/cxNP+i3C6zDHNpFEY+NZXV68wfrKtpf/meJ7fcvrGzQmH/OVFGV9XEw177xg/z7GcKEg1N6/iQMAGkqVFcf1VYsSeWZuWk7zOKEfh20vUm7Tuf6Ks1ezW8csW8jS8zVeos791O/guwU7MY+z192uFYV9FS1J/qc1GO3r5EkPT1zQyq2hTR16cvzNWnXYflXrDJXK7499GTTWluR4XaZzpzzub16b9AJUWtZQb8uWjtbkjRx/hZ1++t/NWPDzqTtE23T1+ui/4wMKC/ShP8+ZXrd9F6H6m/HXxV5HPr7udrwp1P17KWH6ZMbjtUTSW41fm/wiXpxxGmm9Qe+fUVDdhaa1k97dnYytoUD1Cf7qAisC4SafS6R5hfueyjXGc/NJkCHSXr+JAwAaeqL79aY1qoyctQ3TcMWt8upotyOpvWJH32Xgt2gLRlpUbH4o8tOTf5GbDa8W54Mh9PUDj2srFDtG2p064fLmnknDjaV9YGoH7gsg8UhbTdYlKQXLj9CfztziH527J4W7teGjzW97url0yJfl9cHdOsH/D1B837/8fKox95gQG9N/rva+euj1kuy2unqH/1Oob0mQDscDvUtyNaNo/vq7GFd5UzB0TO/HXejVnfoEbWWGQroxc+flLPJkSHztlRohUV1JtASu49oSWffrC9Tv/u/pFodUQgWAaAVJkwxn3tSlpkrl82T2uJRmGcOFivWUoUFaztr/ZKkw5qcebWhXRd169UlBTtKjjndzRPUj2tyaD8Obl+vK418PWznZtO5cPO7DtTaJuFDW+N1O3X36YP1/OV7hs580+tQbcntFPW6UzcvVveaPRVoC7buu8IFB5el26q0uKgqMoTi0enrop7/+zcv6egd60zv+8nZt6lor+9ZfpMmZ/rWerN09Y9uV9AR/aPz8dtW6bbvPzK9fuQj07S9mVZSYG+hsKH/rtqhF7/brK2V9UkZ0JII5fUBnfHsnP2/EAcNgkUAaIXsGvMPT2WZec0eSp4OtlpULPaqpm0N1srrAyqor1Kvmug/I0s69VPoAD5v0CpYPL6IYBF77F11de3yr03Pt/VqxeYYDqfeGHZK1JpThn684psU7Qjp7OfvLNJhj07XEY9N17Vv/KA3FkS3C1+0ZpZ+/cNk0/seHnWJPj/k6Ki14/qYJy+nyvfdBunhYy81rd878zVTS3TYkK5903oAB7BbKGzI84fJOmvCXP38nUXqfe+XeuV7c3t9upq+fqc+XVF8QH9viJZzp3oDANCWOMrLTWtlmbk6vU/75G+mhQotgsWeNQSLsFbZENDIUvP5iks691PHA/ibxzk9qFjEvq3b2TiwxGGE9eMV06OeC8uht9rw+Yr789rwsfrjvPei1q5f9qUePebC5keV4qCzorhaL363Z5LsGz9s1Rt7DaLoV7ldL3xuPldxZo+huvvEq03ryfiTdctJh+jpGdFdHIcUZGtDWZ3ptfeOvkLnr5sb9W/k7pbok698SOG9Wri/WlOqUNiQq62UoCHpHplmrtqds8n8c0ZreUIBDS0rVO/qUvWs2akeNWXKCfjk2FVBHHC5VJKVr+05HbSqoKdWFPRWvScjpnud88J3OumQAn3xP6OV4Xbt/w04YBEsAkAruCusgsU8XTyyewp20zKFeZ1Ma02r0QBJemNBoa554wfd0szglrM9B+43jSXZ7bW2fTcNrNgeWTtu+2o5DM4QQrRTtixVn+rSqLWpfQ7T1iaftTneA+fvy7JOffVD50N0ZMmeAObQnVt03LZVmttjqCTpujd/0D8uHKH8LE+qtokUe3jq2maf84QCenPyI2rvq41aL8vM1Y/P+b2CLvOPpVaTyhPtNycdov8sKtL2ap8k6cEfDdMfxw9Uaa1PXf73v1Gv9bs9+ulZv9Wc138n917/NuxuiX501EVRr29sBSdYhLU7p6xIyHX6VO3QqZsW6eSty3TEjg0avnOLvOGWD1cJy6Elnfvqm14j9N++R+qLvkfI72755/iMDWWasmKHLkrjn4VgP1qhAaAVChrMB3Ife0T/tP6NtFUrdM8mPxQDhmHoD5Mbv8k9zGJwy+JO/XTmkM5J3lVyvPbjIyVJs7sPjVpv76vVsJ2F+mJ1SSq2hTRl1QZtNeDkptF9k7Ab+3TNi65geXHk6abX/HzJF5GvX/2+UPd8sdr2fSF9hY3mq9of/PYVHbfd/Ofj+rNu1ZZ25n9bXE6Hxg4w/2I00QZ2ytGi20/R29cerVm/Pkl/HN84yKtTToZ+N3aA6fULug5stiV6cFnbaWNF2+UwwjqxcLmemDpBq174H22c8HO98N+ndP2yqTqiZEOrQkWp8WiLw0s26tc/TNbHH9yrHf++RhM/fVwnFi6X9vF3em+XvDw/lv8pOIAQLAJAKxQ01JjWBg/unYKdtNzlY4aqypsVtUYrNJqq84dUtOuw+ZFNhlI0uDxa26G7urfLTMHO7Pfjo3rpVyf205weQ03PHV+0Umc+N0dT1/x/9u47KqpriwPwbwq9996kSEdUEMXeUewx1sSWosb2jDFGEzWxJLZo1BiT2DVGY++9oGJD6SiIUqRL723K+wMBL3cGUZCh7G+t9xZzzp1hG2Dm3n3P2ZuS8QRQKi/FqOi7jLEivjyO23YGULEr2F5fFdM7W2CVD/v3qTkJ/ZpZV/Efh54o4TFXsYyJug3VsuotoxtvxTRKbKTpEYvFCE+V3A3Z98VDzH98ijX+a4dhOGvtKfE5m4Y5QbORVr/qqSpgtJsxvCyYNR3XDHaA/yxvfNbJnDG+wmsMwnSZNw4UheX4+/JWWuVOJBKLxRCKxFUNjcR1TNi98QLwSo7Exht/I/6vabh9eBHmBJ2BbU5Kg8eqXlaMT5/cwO3DixC8bw7GP70JXo3u55JsuhWDIyHJ7/5vIy0CJRYJIeQdSFqxqGrUtDvlzuhsgcQaHT2peQupqbJ8IkcsgnONGosROuYQclvOtk5J3IzVJTZw8XpdZ7Hvn/eQnEtdPluryuL0Q188gHpZMWPupI0XCuSVK45bNwRPFvbCtlGuUGzmpQP0VBUQs7gPlvdvCz6XgxxFVRyz7cI4RrW8BB9H3ZFRhKSpEInEGLP/MYKT81hzZnnp2HNxE2v8gaEdvuv2KWvczVgdBat98JW37DtCczgcdLbUxsduzG7vlVuia3aJ7pb0BDODz1c9DkjIaYwwSROXmleC3n/cg9zCs3Bd74enafnose3u258IQKs4H3MCTyNs7yzc/Xch5gaeadRyRq4Z8Thw/ldE7PkKo57517qCcf7pCIzZ/xiTDwU3Wnyk6aAai4QQ8g60itkrFju1Y2+VaUr0VRXwVFUbjlkJVWPGhVkoKi6FstL7FWsmLU/lFjab7BSoCEoZc6F6lnDQV5VFWI1GJK74dxbyFRj/fq+UyKqvf7ryDNs/cpVFeETGLkW9AgBMeHqTNXfAsRcAYEYXy0aMqHFYaitjaX875JaUY+OtGOx06YcJkczGNdPCrmCXS38ZRUiagrvxWTgayl45xRcK8O/ZdazdHjkKKhjr+w3KeewViUHze7DGZE3SFu9AAxus8xiJ7x4eZYz/fHsfzrbxQLyGAby3+iPxh34w1miZq/1J3Wzwi4FfTEUyMCItH07rbr71OR4pzzA76Aw+enYXisLyOn+vAjlFhOhZIli/DSK1TZGkqoMkVR3kKKhAzOFADEBZUAr9olxY5abBMTMBHVOj4ZkaXesWarvsZBw5swY3zFwwt9fnCNezlHrs/seJEInF2DWmHeR4tI6ttaDEIiGEvIOaKxZLeXyoaavLKJq60VOVx5UaTQXkREKsO/YAiyd2l1FUpKmpvGxyf8XeyhiqZwkt5ZbdkKGblTaEXB4CDG3RMzG8atwpMwHaxXnIUlLHX/fjKbHYCqXmlcB350PoFeVgYGwgc05ZE1cs2gEAHA1abvLd01wTAOBn5owXGoawzq1uctQ5JQqOGS/xRNdcyrNJS3YyPAUj90iur7bC/x90eePmTKWpA+YgXsOANX5jRucGj68hdLbQljj+U+exGP78PhzeqK2oWl6Cvy5vxYCPfgI4HJiuuALR+iGNFSppgjb4sbs/S8IRizDkxUPMf3QS3ZOe1Ok5ZVw+bpk64apFO1y1cEOwnhWjO3ldKZWXom98MD565o+R0fdYN5gr9UoIQ9D+efit/RB87z0RJVK6Sf8TmAQLLWWsbOYlQUjdUQqZEELeQc277lmKahVFtZowBT4PSWrsBi4nLj6iOiikSuWKDEmJxSB9azgYqDV2SI3KXl8V/e304G/iyJrzTmqYzo2k+bkXl4U2q68BAMZG3mZ0ggWAQ/bdq8oEtOSVGZVbQcUcLnY792XNTwuvbuJCnyutR7lQJHXb48DYx/g24BhrfIu7L07ashOIKwa2RTcr9rlKU6CmyK9q6vKmUr48Pus/G6IanZ/7vQzB1Df+JiJfSa49SZqnUoEQT9Pyq0pkSHPhaRq8t7y9VIRieSm+DLmAp7tn4uSp1W9NKpZzeThv1QFTBsyF4Yx96D96BdZ6jkKggc17JRUBoFhOAWdsOmHSoPkw/XI35vT6ArHqkks98cQizH98Co8OzEf7NOmd4Fdfi4boLf+NSMvRcs+ACCHkA6i5YjFLsXmsUKlZYxGoqLOYXlAmg2hIU1SdWGTfWQ/Wt8IUj6bdpKi+OBwOTk31wC1TJ9Zc98QIGUREmoJf/WJQIqhIJk6U0A16/+tt0ABg3EKbGwEVfx+qChUXrHuc+kBYo7bcxCc3IC+o2K6ntvgCBEJqYNEaRL0qQF4Je/ukcX4m9l7YyBp/ZGCDb7pPYY0X/TwIS/ragcttujdqfx7kIHH8nokDtrT3ZY2v99sN49f1rMfuD2TNk+bpxvMM6C+7DKd1N2Gw/BL6br8Hz023sOBMBEoF1Q1OknNLMHxPAO7FZ0t9LeXyEsx/dAIxOz7HH1f/gF12cq3fO0TPErN6fwnD6fvgO3IZ9jr3Qc4HuA7JVVTF1va+aDt1O6b1n41EVckJf8esBNw7+A0W3/9PatMi/sKzKKfPg1aBEouEEFJHYrFY8orFZiBJwkmBaUEGSgRv7/JGWgexuOL/aq5YfK5pCAdbE3Su0S2zJVLg83DfpC0radK1jluSSMtzLKyiblzbzER41FiZEaFjhiD9NgAAQzUF+Ng37UZe9XVisgcAIFlNBxes2jPm9IrzMPTFAwBAUbkQvf6oW2MC0nxFvsrHpah01jhPJMTBc+ugV8xs5JIrr4yxvt+gjN98y2oo8iVfOi/p+gliamzt1iwtxLarfwBiMUJT8hAqobENaX4++y8E+aUVyfSsonJcf56BR4m5+NUvBmuuv0B0egE23YpB7+13US6UvFpPubwEXwecwIsdn2O9324YFuVI/X5FfHnsdO6HTuPXw/2T37DNfTCylRrn2kPA42O3Sz84TNmG1Z1Go5THrqInJxJipf8BnD6xElrFklfmKnx7DgceJ0qcIy0HJRYJIaSOykvKoFFWxBhrNisWJWyFNinIxN046XdSSesiElf8TtS8GAzUt8bm4S7gNPEt/w1FWVsLga+TRZU6pD2HSo1OwKR1mRxxjTV2wKFXVSmM45M9wGvCq60aQh9bvaqvdzqzm7VMC6ve+ulPny0t1pPUfFisvALHtTfxzVn2TZdl9/6VuJXzi/6zEKNpxBpX4HObTRmBvm/8DbypSE4Rn/efxRofGvMQYyNvAQDa/eqHrlvv4HFizocMkXxgsVlFUueWX45C2zU3MP90BJ6lF7LmFctL8XXACcT8/TnW3doNg6Jcqa+VqqyJH7wnwPyLXfh8wGwEGNnJrPRSobwSvu/6CZwm/w4/Cbs6AGBw7CME/DMf7dIk15P89N8g7HuUIHGOtAzN412cEEKagFeJqayx5rJicaSPB2vMJD8Tt153qSMkt6Qc7SWcEAbrt0FxeetZ2VouFOF2jRNnvliEzsnsBgSkdeCJhPj0yXXGmAgc/ONQ0b22YLUPvFrBit43nWvTEanKmoyxAfFBsHnLVj7SvEWk5sNry20k5JRInO8TH4zF94+wxre7DcSRtl0lPufLzhbNJin/82DJ26EB4Ia5G/5yHcAa33z9L+i9XpF2Ny4bQ3Y+fGttPtKycEVCTAm7gme7pmPdrd3QL5aeUHyibYbP+s+C1ec7sMprDLKUmk6DyBhNI/QZvRLfdJ8icfVim9w0+B/6FiOfSV6x/sPFSHx3/ilWXHmGfAklFEjzRolFQgipo3tB7KRLdjNZsWjb1hwlPOb2I9OCzGazSoB8eFvuxEps3BJoYN3U+xM1qHKhGLdN2Hfku9F26FYn/vXKlEExj2BUyFyBd8WiHRLV9XB2mieU5dkXWC1VZZ05AY+PPc59WPMzg89XfX3i9TZy0nLse5SAglLJN5oMC7Jw4PwGcMFMmgXrWeF/PT9jHT/UyQAHxrvj1yGSV0A1RU6Gajg1hX2jttLC7pNZ9eh0S/Lx2/W/qx6n5pfidAT7RjVpOgRCEQpKBazGI+/cmEoshu+LhwjZNwc7L2+BaYH0m/mPDGwwbNgSuEzegl0u/VHKl3+f0GulrshHR1ONer2GiMvDBo8R8JjwKyK1TFjzSoIy/HdmDeY/OvG6xk61hJwSrLn+HMsuRaH7Nn9q9NXC0BUlIYTUVUYGa0isy26K0hSlF5Wz6iya5mcgt7hcRhGRpuZ3/zi0k9gRug08zDQbPyAZKReKcEdCZ+hu1MClVbkWnQ6r192g3+zuWqmyM3J7k/pdpDU383tUlwn403Ugqx7p5IhrUC6vWM328f7HSC8obdT4yIe17qbkbY4VdRXXs7Z25sspYYzvQolJkn3j3DG+vWmTbtgiyRAnQ9yZ5S2x3mKeggqm95vJGh8bdRvDou9XPR619xFuPmefUxLZC0nOhcPaG1BfcgE9tvkjObd6dW5mUd0bHnZMjYbf4e9w+uRKOGVK3wIcYGAD3xE/wHPCBpyx6QQx5+3pmZszutQ6L1o/BFe/ZHZedzFSQ85KHzyc173W59b1zzFczxKdJmzAUVt2LFyIsd5vN7Ze+xM8keQbESHJedj1MIGSiy0IJRYJIaSO1PJzWGPWbc0bP5D3kJBTzKqzaFKQSfVOCABUdXBtX6MjdJKqNtKVNaEox5NFWDIhEgOZyuoI12H+bXdKfVbV9Za0fL9cr2jUYliQhcExjxhzmYpqOGnjBQDQUGq+jSjehxyPCwstJQBAvIYBzrbpyJjXLC3EhKc3AQBCkRgGyy+zVv2Qlucn/3/QMzGcNT6930xEa7NXNU31NIe6YvP92+liqY3gr3tg6wgXXP2yM4Y6VTduOd/GA/sderKes+3aH9B8owFg7+33KKnSBC0+H4kXmRWr1f3jsrH5TmzV3IR/3t7dW78wGzsubcb9fxbUutMhwMAGg0csRacJG3C+jcc71U/sbq2D30e6SJxzMqgo0dTLRgd/j3ZDR1MNDHbQr2q+Jc1aX0cU/TwIt77yxkof+zqtbMxXUMbHQ77Fwu6TWTeZAGBmyHmcOLVKao3qz4+EYNCOB62q3E5LRonFBvbgwQMsXboUQ4YMQadOneDk5IROnTph+PDhWLlyJZ48oa1UhDRXctlZrDEru+aRWOxmpc1asagsKIN2ieQObqR12eofB+3iPJjnM1dQBOpbyygi2dkzth0A4I4pc9WikqAMnVOozmJrIBaLcS264m/hkyc3wBeLGPP/OPREGV8OHA6g1IqS7pUc9KtLgPzebjBrfmbwecYWuCOhVHexJRsUE4DvHh5lje907od/X9chremvj1w/dFgfnJ2eKmZ6W6K3rS4UapSV+V+vz5CmzEzMGBVmY8PNnYyxC5GvPnic5N3U/JmsvVFxk0koEuPKM+mrTOWE5Zj/6ASids3A1PCrrJIAlZ5pGWP0kG/RacIGXGjT8b0bsszoYonA/7FXHx76pAMAgMPhYFonczyc1x1npnVCGx2VWl9vQU9rKMrx0MVSG4v72MJ/dlfM696m1ue8/kZY7zESI4YtRiFfgTXtG/MIl48uldox+lJUOi1yaCEosdhAEhMTMWHCBHz66ac4fPgwnj17hpycHAgEAuTk5ODp06fYv38/RowYgfnz56OgoODtL0oIaVIkJRbFOuxuy03RIAcDJKixuxla5tFJLQG2+seig5TGLa2Nr2PFypPrZuwL3z4vQxo7HNLI8ksE6LntdeF5sRhTw6+yjtnpUrENOurb3o0ZWpPx5kqzaxZuiKpRZ8stPQ5d31ips80/rrFCIx+QpG3t5nmvsO/CRtZ4sJ4VZvf+QuLrvPiuT7Pb/vw2kzzMGI+zlNQxq8901nFTIq6hf1z1qrcfLtLNqubg69MRUFp0Tup837gghOydg/V+u6FRJrlrdKqyJmb0nQHnSVtxzM77vROKi/vYVn3dzkQDRT8PQuS3vRDydQ8U/jwIToZvbyq5tJ8d4/FwZ0PWMXI8Ln4d6oSZXSzrFNdZa0/0GPszUlTYjcw6p0Thxn+LYVCjVnGlGcfCqnbOkOaLEosNIC4uDqNHj8ajR9VbZeTk5ODk5AQvLy/Y2tqC88abx7lz5zBhwgRKLhLSzMRHS7ij1kxqLPK4HMRqGLDGrXLTZBANaWpiMovgkRrNGn9s0PpWLKoqVDTiuCEpsRgfgjkn2dv9SMsx6VAQbsdW3ETyTnqKttlJjPkAAxuE6VkBAGx0a18B0lINtNev+lrM4WJbu0GsY95s4lL535M0byfCmQ1H5ITlOHxmLbRLmNczefJK+HjItyiRY65e2jzcGWnL+8NKR/mDx9rYetnowrNGLeJjdt4S68/9efl3qL5OPgUl5TVGeKSeNt6KgUBCSQe9ohzsO78Bl48tg32Nz4pKhXwFLOsyHrbT/sSfbj4QSOimXBfG6oo4OKE9VgxsyxhXlOPBTk8VLkbqdV5BP7ebFUa6GEJNgQ8vCy2s82XXla60qLcNuliyk4WSBBrYoPP4dYjQMWPNuWbE49ahRTCXsqDheBg1NGruKLFYT0KhELNnz0ZWVsVJE4/Hw6xZs3D//n0cP34ce/fuxdmzZ+Hn54fhw4dXPS8yMhJLliyRUdSEkPcheJXOGhPrsFcBNlWUWCS18Uh9xhp7aGgn4ciWz0BNAZnK6gh6nUCq5JEajb3XIvDzNXYSljR/pQIhTr6RPPks7BLrmF0u/QAA7ibqjRZXUzPe3QTG6opVj/c69UaBnCLjmFHRd2GaV/2Z6U/JxWZJLBbj5vMMbL0Ti+lHQxlz6/12o5OEz42pA+biuZYxa3xWVyvoqbK3SrYESnI8XJ/RmTU+u8+XyFJUZYxZ5Kfjl1v7qh4rfnsOcVmSV7mRxhOXVVT39ymxGFPCruDJ7q8w8amf1MMO2neH/dQ/sKLzWBTKK71XXB1NNbCsvx3ilvTBWHcTxmKl96WlLI+jkzyQu8oHd2d3hXUtN8lMNZVw+ytvHJvUUeoxb3qpro+uY9fgloQmeLY5Kbj97yK0zUxkzdF26OaPEov1dPz4cTx7Vv2h+ssvv2D27NlQVWV+iBgYGGDNmjWYMmVK1djFixcRHBzcWKESQuqhpFwI3WLmnWURODBrYySjiN7dKz32iT4lFklBqQAQi+FZY8VigqouUlW1ZRSVbH3X2wYAcN3cjTHOF4vQIzEcSy5EIi2fut22NAJh9YoU7eI8jIm6w5gv5svjUNtuAFpnbcVK8nwuHs3rVvU4T0EFBxx7Mo6REwkxN/BM1eN9j+misTnq9Ntt9N5+j7VSe3TUHcwOOss6/rf2Q3Dcjr1Kb6pn86hHXR/K8nz8M6E9YyxNRQvzen3OOnZmyHl0T6j4b1omFKHb7/6NEiOR7MDjRNivuVGnn4NdViKuHfkeOy9vgY6UOuVBelboPuZnTBy8AElq9dvZ9HBedyzr3xZ8nuzSNhwOByNcjDCwbd0WU+QqqsJn1I84b9WBNWdWkAG/w9+hXY3yO+cjX+Hr0xGIzaQke3NFicV6OnXqVNXXXbt2xdChQ2s9fv78+dDXr95Ccu6c9HoNhJCm43lGISuxmK2oCgWF5nP3fe6EHhCBeafTkhKLrdqN5xlQX3IBJgWZMKpR+ybA0EZGUcnehPamACrqx9VUWWfxeFhKo8ZEPjzeG3XfpoRfg6KQ2QX8UNtuyH29+mi8u2mjxtbUGKor4unCXjBSr/gM3Ow+hHXM52GXoF5aCAD4+/7LRo2P1F9wUi4eJeayxl3SY7Hr4m+s8XtGbbGw+2SJr8VvYTUVpfnYzRirfOyrOqcDwAGHnhITLDsub4ZSecUNqqTckkaLkTCJxWJ8+m8Qyt5S448rEmL+oxMI3jcXvRLCJB6TpaiK6X1nwmPir7hj6vQhwpWps9M64c4s77d2mAaAYjkFjBi2GIfturLm9Itzcf3I9/BKZtYY3XgrBs7rbyCjkG7cNkeUWKyHsrIyBAZWF+D19fV963Pk5eXRtWv1H1hYmOQ3JkJI06KhJMdKLGYoqUOe33xOlid527A6Q9OKxdarqEyAITsfAgA8JWxnC3i9DbpOXQFbGB0VeQDAbRNHlHOZK9N6v6zYDhiczL7gJs1b5XpFjliE6SEXWPN/vFFLUFKx+9amrb4qYhdXNLKJ1DHD6TaejHn1smJ8EcreTk6aPoFQhPYbb7HGtYvzcOLUaqgImBf+mYpqGOu7EOU8OdZzAKCtfuuoR8rjcvBdH1vELulbPcjhYHrfmcirsRXWJicVq+7sr3r87dknyC1m3swgH8716Ay4/+oH3jfslbc1tclJwfX/lmC9327WDadKBxx6wGHKNvzlNhAibsOsaO9r27TquHO5HHSx1MYwZ0OMdzdhzSvXWMlfzpPDhMFfY4dLf9axmqWFuHx0KXrUSNIWl4ugv+wyBv19H0m5xQ37DyAfFCUW6yEpKYmxWsnaum5F7jU1Nau+zs6W3B2JENK08DgcCYlFNchxm8/bKIfDQayGPmPMMu8VNvs9l1FERJb2BCSiqFwIABIbtwQY2sJATQFzu1qx5loDLSU5FMor4b4Rs1C6S0a81M6GpHn7LzgZANA/LgjWucxC8gEGNnhkWN2N01iDWVOwtZLnV38GbvAYzpqfE3gGcq8vxNtt8ENgYk4jRUbqwz+OXWuOJxLi0Nl1aFPjhqQIHEwcNB8J6tK3SX7pZdHgMTZ1E9tXJ14S1fWwsPsU1jHzAk+jX1wQAGDdzRdwWX8ThaWCRouxtSouF2L4nocISX5L8xyxGF+GXEDwvrno/kan+zfFaBhg4Kjl+HTQ10hX1pT6Uot6v9suEB6Xgzndmu6N3R8HMM+NlOV4SFvOTiCKuDx80e8rbOgwnDWnWl6C88d/xIDYx6y5i1Hp+Op4GEpen6eSpq/5XBE3QVZWVggKCsKjR49w7tw52NnVrch9UlJ11ygNDY0PFR4hpCGVl0Pr9ZauShlK6uA2s+09MZrMVTaKwnKs+feOlKNJS/Yyp/pOsKTE4iNDG4TM7wEL7ZbXwbMuto1yAQBcM2dvhx4QF8gaI83f50cqtrm/bbViR1M6d3vTV96WAIDbJk54UKPhk2lBZlWtytCUPEw5HNzI0ZF3cTg4CRP/CUSvP+6x5tbe2oO+r0tBvGlJ109wScJW30pTPM2gLP9+nXCbsyV9mX8Lf7v2x3UzF9Zxey9shF5RDgAgMbcEdmuuQ/CWbbmkfm4+z0BBae0JK9O8dFw8tgx/XP0DquXsreoCDhdrPEbBZdJWXLZsL+EVqrmbqGNOVyt0s3p73eo7s7yxZYQzAv/XHb6O7KaLTYW1rgr2jXOHtY4yHA1UcXxyR6go8HFtOruJETgcfNNjCpZ1Gc+aUhKU4dTJVRgezX7POR2RBr1ll/BPYCJKBUKcCEvB7ocv8YpqXDdJlFhsAGpqarCxsYGi4tvvXhcUFMDfv7owbF1XORJCZIubzb57n6nU/LqCxqmzT1La5NB26NaoMifOEYvQMZW5ajVSywR5CirQV2s+NUQb2iiXisZMlyzdWXM+MY9xJ4a63LY0ApEYZnnp8I15xBjPVlDB4bbVzUr2j6/9IrK1+XmQQ8UXHA42dBzOml8QcBwQV2w0D0vJx7P0gkaMjtTVnoAEjDsQiINBSay5iU9u4H+PT7HGD9t1xRrPURJfz9tSC1e+9MLOj9s1dKjNQlt9ZiNPMYeLzwbMRq4882adYVEOdl7aXPU3kpJXiu8vRjVanK2BWCzGjgfx8Nx0C747HuBefO27Dj6OvI3QfXPQPz5Y4nyEjhm8JqzHd90noViu9vMkLSU5rPJxgKG6Im7M6IL8VT6IWdwHVhJu2trrq6KLpTa+8raCi1HTv8aY2MEU0d/1Qfg3vdC/bcWOKKnJUw4HKzqPxYIe7JW78iIB/juzBuMkdNguLBNi5rEw+Pz9AKP2PsK0/0Lg+dttpORRXdKmhhKLjWznzp0oKKg+oerVq5cMoyGE1NXL5+yOlhnNMLEYq8FOLFrlUWKxNapsVGGXlQyNMmYXvodGdVuB35JVdmAMMLRFhqIaY65/fBCepVKNxZak4PX2wy9CL4EnZq4W2uPcF8VyCvhjlAsSfujLShi0dqoKfAyyr7ioPG7bGTE1PmdcM+Ix+I1kbWZhWaPGR+pm54N4ieMdUqPx1+WtrPEQPUtMGzgH4FTv3Pi0gymOTeqI2MV9cHtWV/SxrVsX2Zbq95HMFYpxGoaY2XcG6zjfmEf4Kri6oefm2zEfPLbWIiGnGIN2PMAXR0LxKDEX5yNfYeVV9i4NAFAqL8Vfl7fi0Ll10KyxSwmo2Pa/ruMIdJy4EYEGb9/aHL2oN55/1xsDX78/crkcqCjwYamtjKhv2TmAzzo1/+7pHE7tO7l+7TgCM/tMZ43zxSLsP/8rpoZdZs3llwpw80Vm1eOXOcU4EpJc/2BJg2p969JlKDQ0FH///XfVY0tLS/Tu3VsmsRSVCWG/5vp7P99KSwlnpkrvCPXN2ae4EJX+3q8PAL2tdbB5uPSOWqP2PUbUqwKUllafoCpc8WOc4LzNNA8z/K+79Pph7TfdeWuXsLdZOcBOapH3pNwSDNjxsF6vDwAHxrVDO2PJSa47sVmYfjy83t/j7ledoa4ouSj3vseJWHuzfidBusryuDnDS+r8j1eicSS0fl1YPUw1sHsMe1tjpSmHQxAgoQMiABgF3seNGmMZSuqsv6PRrkZY1s8W0vT84z4yiup3UbWwZxt82kFyR9K8knJ0+Z29naCSvqTEYm4ajH+8DHXF6o+E7SOd0VXKXcfg5DxM/Df43YKW4NJnnjCRUqfsZHgqvr/EbigikVgs8X1AnsdF4Dx2N7pKG2/FYmcAO2H8LtrqqeDYp9K3gM05GYHrb5wMvQ+ftnpY5+sgdX7IrgDEZr97gevKi/tOqeyVEQGva8kJBBXJFucN7CL+72rtYPuq5ENNMZlFGLrnkcS5d3Hkk/ZwkJL0uRadgbmnJddIksZAVR5pBWW4bOmO8ZHV/w20SgvhlRyFrbdfYHrn6tphOx68xKY7ce8VeyUTdUVc+txT6vySi1E4FVG/mwHeFlr48yP2lrxK4w8GITQlv17fY2J7EyzqJX1XRuetd5Ffz1piP/S1wRg3YwCAUMjc1paaV4y+fwfU+bUSc4qhWF6KL0Ivsua2uw4EAEzzqHjfrfy7CEjIwZT/Qt8r9jfd+LIT9FQlr3o5HJKMFVfrVwdXTYGPe7O6SJ3/5cYLHAhkr1J7F0qvay2KuDxs7DAMW67/xZhfdu9fnGvTEeBwMHrfI6gqvPslyDAnA6wa2Fbq/IC/HyKpnqtY5nW1lHpxXyoQosNv/hLn3sVvQx3RR0pThqevCjB6f/1LLZye3BFtdCSXsTgf+QoLz1V3Yy0tF0EoFiNRQmdi4/xMnDi1mtWwIkNRDSOGLUaRHPMzfLa3BdyM1bHtbjy23ZOcqKyr97rWkHI+IE2drjXS2QmmuhKKxKyxfx16YEBcID59wjyrXOe3G36mzgjXs0SJQASTHy9DTbFufyd0rcGWU1yO/BIBigV1u45zyojHobNr4ZQp+bzwuaYhJg+ch7smjnWOwUKz4n298jMDYF5r2OoqI7OwHKVCEVTkePjrfjz+uv/2v5umfq3xNtvbDUKRnAJ2XtrCuJHHhRg7Lm+FcnkZtravvSnu12eeYNvdOMmTb7wPbOutwzo/qPRO1xpStJRrjT29NSBXzyWHlFhsJImJiZg5cybKy6s/mBctWgQ+XzY/ApFYjGf1+KAsLSlFSAi7zkqlJy+z8Cy9fid3RvJChIRIv+iITM5CdE6N+fx3u0iJiE1EiIb0wr3PXuWjrJ5lTsKjY2EllHwRmFwgqNfPoep7PI0CJ11e4lxYckmDfI/QsHCoyUt+x4l4XlDv75GhWFzr79TT+Bw8Sy+SOl8Xqpzy2r9HUgaepUv+IG5XmMMaS1PWZP27n8YnIyREepyRabnIKqnfL1XE83iE8CV/gOSXiWr9WRRKSCxa5qYhNb8UqW/ULAmLjIZanuSkX3hGWcP8ToVHIENV8ntgeEzR+3+P1+8D8lzU+vOOiM2r979DXF77e+HThPq/F1ooCRESIv0EMTIlB/Hv+N73pi7Jkayxh6/rpFX+2xri5x3xLAYmpZJvDsTllTfI9wh7EomyFMkXJeGJxe/9PS5YdWAkFgHAJ+4x5pxyhHx+GjoYVFw8RMTk1/vfkV9UUvvna3w2nqXXr1OiNk9Q6/eITMrEs8z6dSd9EpuEEG3pW16j0vJQUM6+6H4XEdFxCIHkm5gRT56+88/is6c3oVejSdcVczdEa1c0Yaj53ywsrbTB3gt1lSR3EY2ILqz391CV49T+OxWbW+/v4aBd/Xe3y7kfltz/D4av68YBQMe05xgU+wjn23ggOa8UwLvXyHoSn4KQEOnvp5GpOUgprF+h/4iYlwhRlLxNslRYv3PnSuHPnkO3SHIiNyq7od4LnyBfXfJ7YUR83d4LVcqKcebETzAtYJ5vCDhcjBmyEHEa7ESW+FUMQtI5iIip/+drg1xrvOWz8b2uNd7RAHNFXHrJjHN27y/hnfSU0SRKUViOf8+tg9f49SiUV0JKfilS6lhLjq416kEsxmdhl/Hbjb+hJJB8rvV7u0H4tvtkViL9bST9/kq71igsE+JVHVdzN/VrjbrY59QHxXwFHDi/AXIi5vv25ht/QVlQirVSyiwAFUn7usQgEIkRHi456V2va43XWsq1hkisDqB+fQNoK3QjSElJwaRJk5CeXn3yO3nyZNoGTUgzol/EXsn4Srn5FfBPVtVGKY+ZzLPKpa3QrVmXpKeMx0V8eQTpt8EI69bZtEWSS5btIapxwjXwdRfD6dfrd5eYNA0csQjzHp9mjW/qMEwG0TQ/vDf+PIrlFLDeYwTrmKX3DlXVkSNNG1ckxL/n1sE9PZY1t6DnVNyQ0NTq9146b90G2RoZqPAx2EqJMZavoIyJg+ZDwGFeijtlJuDPK7/T30kjUS8txMFz6/HXld8lJhVfKWlg4KjlmN1n+jsnFcnbHWnbFaOGfse6LgGAX27vxY/+/9DfQjNCicUP7MWLFxg3bhwSExOrxrp27YoFCxbIMCpCyLvSL85hjb1S1mz0OOpLzOEiXp25HZUSi62XRkkBnDNfMsYCDG0h4PEx2lZFRlE1PRnKGlXbwyu1fxUDo9creaKy6re6j8jegLggOGYxtytFapngohU1aqmrHzppVn293c0Hr5SYN988U6MxkDqqNwsbb+5kNTECgJ3O/bDZfQhrfEEHdXgatt5mX2/zpYsaa+yBsT2WS+iSOz7yFmYGn2+MsFq1jqnReLz/fxgbdVvi/FVzN7T79Le3dnwm9XPW2hNDhv+AIj57NewP9w9jvd8uSi42E7QV+gMKDAzEzJkzkZ1dvaXCy8sLW7duhZyc5O0JjYXL4cBO7/0vGq20lODmJr1WnWPCU8QX16/GooOZDtzcpNc9sQ95DA6/Ro1FBfl3qrHoZGUKNzfpNRbtbuTXu8ais60V3KTUPdHNLYHd/fov63d2aAs3KXVP8tWzYPek/nVPXF2cpdY9CREkwi6x/jUWa/udcngVDbvc+tVYdDDRqP17RIagQCy5xqKBhK3QRVo6rL8jBwsjuLlJr3tif7e43nVPnGws4OYmve6J3S3ptdGepRciRsMAdtnVRY9NCzLBFwrQxrD6ItDF3hZuUmosipPzYBdcv62YAODq7CS1xmIsLxV2Me9ZY/H1+4A8j1vrz9spNxZ2GfWve1Lr71RsBFLK6reizdFcD25u0mss2j8OgILiu/88nqUXwiuFXV/xrrEDOppq4KOeHavG7K7Wv1GJk10buEmpsaiWWQS7h/WvsejiaC+1xmKGcgbsIt+txiJQUZM4MbcEF63ao1Mq83dycMwj7HAdADUjc7jZ68Op5CXskuPeJ/QqJuqKtX++pkQhuqB+NwMcTLXg5ia9xqJ9RBDKuPWrsehoZQI3N+k1FtveLqx3jUUnW0u4vVFj8c3tTk6ODrDzr737cEJOMYrLKz7j50noeLupwzCIX68oGthWj/VzKUvIgV1Y/Wssujo7Sa2xGIlk2MXXv8Zirb9TWS9gl12/Gov2Rmr4YYQ7NPRiseBsJIrkFLHeYwTW3trDOG7pvX9x0bI9wOGAA8D2Hc5FHS0M4OYmvcai/cOHUKtnjUWnNuZwc5NeY9HuhvTyOXXlbGcDNyk1FuVfFcDucf3KvgCAi6Oj1BqLSQqvoP44BHlS/v5mB57B7KCzrPGr5m6Y0XcG6zxbR1kOswZ0gLF69ee5U2E87NLqX2Pxna81pJwPSFOnaw25+p2nO1mZYmAXK+D0BdbcL56j0CMhDP1eMrc5/npzJx4bWOOBsX3VmImGIlTkJZdMoGuNCiKRGLHZxRJrW1biiEX43+NT+Pn2PtYWXKBiq//yLuPxi+coiLiS/3vXha+DvsTf39quNeqqqV9r1PS2rcBXLd3hM2o5zh5fAbVy5vns/MenoCwoxVd9pld9HkvC53JgoaVU0ZjwjfcBPpcDZ2dn8Hjsn+U7XWtI0VKuNbgNsNqcIxZTCvhDOHPmDBYvXoyysuo/6h49emDz5s1QVJTNUuqgoCCIRBUn0FwuF+7u7jKJoyEJBMw6UW5ubjKrW0latpM2Xhj+4gFjLDjmFdpZNa+Oh67rb2LmgTWYHsJsUGA7dTui/v4CXG7z28ZE7wPvh7vgDH7yP4Dv7//HGB8y/Acs/W0+PMw1ZRNYE1MuFEHh23PomBqNh/98zZg7Z9URQ0YuxempnvB1ZNcvJY3nXd8HFp59gvU3XwAAnNPjELpvDmM+U1EN5l/sQrFcRcLv4dxu6Gim2fCBt0DcBWcAAMrlJYj9+zNW3UrfET/gfJuKphzCdb60fbaRJOYUw3zl1VqPGfXMH4fPrAUXzMvDCB0zdB27BrmK1TdufB0M4GCgiimeZrDXZ6/Ik4WmfD5Q+XdRk25RLh7v/x/MCjIY44mqOvCcsAGpqhU3eRX5XKT/OAAq79H4qKWLTi/A7oAE/HK99pswOkV52HNxEwbHSr6R+VJNFxMGLYC/ad0atIx2NcIKH3tcjkrHnJPMxOrJKR4Y6iQ52dvaKHx7FuXCt6ecPFKe4eKxZdCS0JH7UNtumDxwHsr4tS/OKv5lEHgQN9n3gaaqIfJEtBX6A9iyZQsWLFjASCoOHToU27Ztk1lSkRBSPzVrLGYrqMDVQvKKg6ZsemdLxEgouG6TkwIR3WdqdTpLaNwSZe1MScU3yPG46GOri8cG1khU1WHM9X0ZDNWyolpXR5CmJy6rqCqpCAD/k7BacbubT1VSsUcbHUoqvoNdY9oBAIrkFLGhI7vW4i+39oL3eqVQUm4JHr7MRnk9d4eQ2pULRW9NKvaOD8GB8xtYScU0ZQ34jljKSCoCwAqftljj69hkkopN3f7xki/UM5Q18PGQhSjjMhMfpgWZOH56NRTLKxq4lAhE2HyHXfOyNRGLxdgbkIB2G/zQc5s/QpPzkJpXAu+t/m9NKnZPCEfw/jlSk4qnrD3h/slvdU4qdjDVwLohjrDTU8WsrlbIW+WD5f3b4tMOppRUrGFO1zaMx50ttGClzV5RHWBkh94fr0K6Entl7Nio27hwfDk0SmrfiXAstH6728j7o8RiAyovL8fChQuxdetWxviXX36JtWvXUqackGasZo3FNGXNZrm6b2IHEzzTMmaNt81OAuVGWheeSIhOKcwtIE+1TeHu2kbKM1qvS597Qczh4pRNJ8a4glAAn9hABCfXf6s4aTxHQqpLQZjkZ2DCUz/GfBmXj9/bDap6PMSJVqO+i8keZlVf/95uENJqNDpzznyJSRHXAADmK6/Ca/Md2K+5gZfZ9d8CTNjisorQ6TfJdeQqtU97jhOnVkNByNweXcyXx9DhPyBeg/4G6utjN2N83cMaRurssgcPjO0xv+c01rhXyjPsuLylqsbckguR4C44g5PhrTN58jgxF1MOByM0JQ+3YrIweOcDHAtLQUYt3ZS5IiGW3T2Ia0e+h0lBFmu+lMfH3F6fY8SwJchWqj1J7mmmickeZohb0gf3ZneFuVZ1ckxVgY+l/e2wZ5w7JRVrWN7fDmPbGUNDkY+uVtrYN84dW0c4Szw2RL8Neoz5Gckq7HJMvRLCcOvwdzDNk15ubfW16AaLm7wbSiw2kLKyMsyaNQunTlXf9ebz+Vi5ciXmz59P2zwIacaKygQwKGQmDppjR2gAUJbjIUqLXTPFPisRYan1rx1Fmg/X9DioljPrkd0ztkdPm+a3EvdD43I5uD69M07aeLHmhj2/j0236ldjljSutILSqq8XPDoBeREzmXLIvlvV9kMA8JFSG5S8XaG8En7qPI41/uPdg1B+4/0nNqsIW+7ENWJkrccGvxcITpb++W6blYTzx35k1TYTcrgYN3gBAozsJD5PQ0otPCKZHI+LdUMckbS0P/77pANrflu7Qdjj1Js1Pj7yFpY8YJYsGbnnEe7FsZNkLZ1njQR5Um4JZp+QXtvROD8TV4/8gGX3DoEnZq+KjtY0Qpdx67Cl/ZC31ugf084Y9+d2w64x7WCupQw+j9IodaWiwMfBiR2QvdIHt77yhrWuCnwcpN+siNQxQ/exP+OFhB1WLhnxuPvvQrhI6FgPAAJaJSEz9BfRAAQCAebMmYObN29WjamoqODPP//E6NGjZRcYIaRB/HMnmnXC3Rw7QgMAn8fFC01DlNcoSG2XlYS9jxKlPIu0RN5JT1lj/sYOUgv+t3Y9bXThZ+qMbAVms4nBMY9QVFj/ZkakcYhEYux//V6nV5SDz0MvsY5Z5zGy6uuPXI1gL6UhEKmbv136I0rLhDFmUpCFeY9PM8Y2+L0AaXi/+8dJnTPOz8SlY8ugX8xedf1Fv69wWsLNFABwNVKHpYStjKRuPnJj7xwBh4Ppfb/CHWN2s7YV/v/gk4jrjDHvrf5IyqXPHmkGxQQgaP9c9EyUnHg84NADHT7ZiCAD6U3GKo10Mawq8UAazhdeFlLnYjSN4D1uDQIMbFhzpgWZ8P/3WwyPvseae1ujGPLhUGKxAaxbtw43btyoeqytrY39+/eja9euMoyKENJQ7gawO+emN9MViwAg4PFZdRbts5IQkUIrFluLTbdi0F3CyfZdYwf0sqYVi9IIeHycfd10opJGWRF6JYSBeuE1D4svRCL99ba5eY9PQ1nA3EJ3wsYLmh3b4fRUT9z6qgsOTmhPu07qScDj47tun7LGFwYcg15RDmNs8+0YDN35EIvPP0WpgN2xlbwb/1jpq9oMC7Jw7cj3sMx7xZpb1G0Sdrv0k/g8Uw1FnPvMs8FiJNXK+HIYOWwxYtXZq6R3XtqMwS8CGGNmK67idkz9usE2F2veUkOxkrygHBtv/I2zJ1awGkcBQCFfAVMHzMGnPvNRIP/25PisrlY4OskDSnLv3yGaSDbZwwz8WspKvVLRQu+PV+GcVUfWnGp5CY6f/hlL7/4LTo3VqPKLLuDki0IIRGKUCcUoLBOwnk8aHiUW68nPzw979+6teqyhoYF9+/bByclJhlERQhrSkzD2Nse0ZrpisVKkNnP1iHFhFhSL6C5fazH/VDh61EgspiprQmhnB3k+nRrU5pSEFTwfR93BT1eeSTiaNDVrb1RcnGqUFGBm8HnW/OpOo+FtpQNfRwN0tdKh7W4N5KSNF/yN7Rlj6mXF+Pn2PsbYvFMROPs0Db9cf475p580ZogtTm5xObr97i9xTrcoF1eO/oC22UmsuV87DMPaN1btvql7G21Ef9cbJhpKDRorqZahrIGhI35AnjzzvzFfLMJ/Z9fAO5H5d/HL9edIyCnG3/fjcTHyVYtsJhaTWYjvzrN3WdRkm5WEu/9+g7mBkjtwh+pawGPir9jj3PetW58BYPtHrtg0lK7pPxQvCy1c+kLyquhKhfJKGD58CXY6S77Rsfzev/jvzBqolDFX7656mIvOh1PQ93gqtJZewdTDwXSz6gOjs6V6EAqFWLVqVdUqBQ6Hgw0bNsDW1lbGkRFCGpJBYTZrrLnWWAQAEw1FPKuxLQ0AjNNeyiAaIguOmQmsO/l+ps5wMqTunm9z0ao9CvnM4vsjou/h5/MRMoqI1NWf9+Kqvp4VfA4aZcxmIZcs3PHY0BbtjNkdKcm76V2zViuHg4Xdp7COmxp+FZ0llGUAgD/uxn2AyFqP009SJY5rF+fhytEf4JSZwJrb59gL3/SYIjXpcukLLyjwaeVWQ5jZxVLqXISuBUYPWcTqFK0kKMPpkyvgnlZdNuBC5CtYrLyKL4+GYtCOBxiz/xHispp/I6SiMgEOBSXhz3txmFNLHUUAgFiMSeHX8PjA/9D+leSax9vdBsJr/HpE6pix5lYMbIvx7szz4qtfdsYXXhbNslFjc9LLRhfPFrFri75JyOXh8/6zsKTrRIjA/nmMir6H+wcXwDGDfR1TLKjI0+wJSMDFSOlNX0j9UZvierh48SLi4+OrHispKWHPnj3Ys2dPnV9DV1cXa9as+QDREUIailEheytRioRuZc3F9lGuOHGHnVhUiqEVV62BSCRGz4Qw1rifmTOE7Nrm5A3WOsp4kQmctvbEuKjqIvJapYXoHx8EsXgEbZttosRiMVZeregWqVpWhLk16vsBwGqvirrYDgZUU7G+pne2wPXnGYyxeyYOOGzXFWOe3WGMb7v2BzpO3AghlxJWDSWzsAzzT7FvdmiUFODiseVwS49jzR2x64JpA+ZAzJG+7oSSig1n/RBHKMpx8auf5ETYFUt3TPKZh3/ObQAX1asQtUoLcfXI9+j/0U94bMhezHI8LBXHwyqSyoK1vs0yMSYSieG78yFuvnj7Nm+10iJsu/oHJkT6SZzPVlDBF/1n4Zidt8T5blbaWNK3okHRlhHOeJFZBHNNJeirsbt3kw/DRlcFS/ra4udr0ZC64JbDwc+dPkaYriUOnN8A9RorFJ0yE/Dwn/mY0/sL7HLuJ/HmyIg9ARCu86XztA+EVizWw8WLFxmPi4qKcOfOnXf6X0BAgJRXJ4Q0BSXlQhgVsFcspqpoNn4wDcRcSwmR2uzO0PpJcbhR40KQtDxLLkaiR6LkxKKI6gTWqrLQ+GH7bqy5sZG3YPPzdYRRrdImSSgSIym3ogvxvMenoVuSz5i/ZeKI26bOAAA34+a7Ir2p+MjNGJe+8IKtbkWzo/HuJtBQ5OPrntOQL8fc4umWHodZQWdlEWaLdDg4CXrLLiGzqJwxrl2ch6tHfkDHNHatulPWnpgwaEGtyV0TDcUGj7U1U5TjYf0QJ2T+NABqCpLX+hy27465vT9njWuVFuLK0aXwSKn9hvCaG3WrS9jUhKTk1Smp2PNlKEL2zZGaVPQ3tof7p79JTSpqKclhWf+21Y+V5dHRTJOSijKwYqA9Mn4aiOff9Ya7ifRdA2etPdF5/Do812R3jFYWlGHH5a04eG49tCXU1wSA1deikVlYhqmHgqH5/QV4/XYbIcns5lXk3VFisR5iYiTfYSKEtBxXozNgWMROLKaoNt8Vi86GaojSYicW22YlYtrh4MYPiDSq7f6x6JHAXMnySkkDT7XNIKTEYq0me1Rsobpo2QE5NbpDD3v+AGlpWfjqODtpS2Tv6asCABXJla8fnWTNr/IaAwC4M0vyBSh5d/3s9BC1qDdE64fgwIT2mOppjmQ1HSzvMo517I93D8KooHU0ofiQyoUijDsQyBrXL8zGjf+WoMMrduft81YdMMb3Wwh4tW9km95ZegdX8v60lOVx9cvOGOnCTpQAwO/uvvix81jWuGZpIS4fXYquidLLcCy5ENlgcX4IKXklOPckDWn5pVVjIpEYg3Y8qPV5iuWl2Hjjb1yX0nxIBA5Wen2MnmN+xksJjXAqRX7bC71tqWFdU6GpJIc2Oirwm+mNw590kHrcUx1zdBq/AZcs3CXOj426jfA9szD0+X3W3A8Xo6C37BL2PEpAXokADxNy4P7rLRwLTW6wf0drRVuh6+HcuXOyDoEQ8oFFZxTASsKKRUNbcxlE0zA4HA54+rrIUFRjrNppm5WEuOziWp5JWgLj5FjoFzPvzvqZOQEcDhSocUut1BUrTpvK+HI4YeOFKRHXquZUBKXwfRGA/+TYqxmJbD18mQ2vzRXbbxcGHGfVVvQzdcIVi3YAgC6WzfemUVP3sZsxNt6KwRZ3X0yKuAbXjOpyQuplxfj96naMHLaYsYVNJBI3y62csiKpC7RJfgauHpHcqOWKuRs+GrIIZXy5Wl93RhdLfNPTpsHiJEwe5po4OskDux++xLT/QljzP3YeB44YWHr/EGNco6wIl48uxac+/8PRtl0lvnZiTjFMNZtes53zT9MwYk8AyoViKPK56GimiTu1dDGv5JHyDHsvbIS9hN9nAEhS1cYnPvNx09z1ra+lp0orE5siVQU+RrsZ40VmIRafl5wcz1ZSw+CRS/Hdw6NYfvdf8Gp0hjYsysHJU6vxj30PfNNjClLfsiBk0bmnuBuXjfSCUvg6GmK0mxFEYkAgEkGex0VGYRl0VeTB4XAgFIkRm1UEDUU+/Q69ga4gCCGkFmIxYFSjeUumohp+HS39TlpzsOPjdoiq0RnaNicFXBF1TGvJIl/lo0cCuwi6n6kLAGCqZ/NNmDcGBT4PA9vqAZC8HfqTJzcaOyTyFpmFZVVJRaOCTIlbbr/3/gTgcBAwj5LCH5KOijwAQMDj46s+M1jzw188YP0N6S27VNUkkdQuu6iMtWLaIjcNfoe/k5hUvGruhhHDl6BErvrCuOaqRD6Xg6wVA/H7SBfI042nD26ok+RVi+BwsNx7PJZ3Zq/2VRSW49DZdZj3+JTEp5qvvIqHL7ORlNu0bhz/dPkZyoUVf9slAtFbk4qK5aVYdXsf/P9dKDWpeLqNJ9p9srlOScX+dnrvHjRpVG+7mSHi8rDKawx6f7wSiao6Eo+ZEOmHyN0zMO/xKfCFAqmv9SKzCBtvxeBAYBLGHngM3jdnIbfwLJQWnQfvm7MwWH4ZFiuv4sbzDPT78x7sfrkOi5VXceBxYr3+jS0JfUIQQshb1GzekqqiCU8zTdkE00D62uqyOkMrCcpgnk8d01qyntvuos9L9mqIm2Yu8DTTRF/aEvRWZ6Z1wo6P3XDdzBVpNbrDD4wLhGHB21dckMaz6XZ12Zol949AWVDGmD9v1QH+po4AgA6mmo0ZWqtj/saqKX9TR+xy7ss6ZvP1v2CaV/05lF1cjsAkqn/1piep+TgTkYqCUgHEYjF+vBwF7oIz0Fl6qWrLPwA4p8fhzqFv0SY3jfUaZ9t0xJARP6BIrrpuoiKfi60jXPB1D2uoKfBhqqGIA+PbQ1Op9tWMpOHoqMjjwuedpM7/1GUcvveeyBrnQoxfb+7E9iu/Q6HGexwAeG2+A7MVV7HmumxqLgqEItyLy0JEaj7CU/Kw9GIkHibk1Pn5feOCELpvNr57eBR8MbvLXJ68Eqb1n43hw5cgU1l6fb5KinwuFvWmFbhNHY/LQfEvg9563G1TZ7h/8hsOtZV8c1C9rBi/3tyJoP1zMTz6XsWqkfeQmFuCPtvvVdX/LBGI8Om/QSgpp0UZAG2FJoSQWolFYhgW5jDGUlS04cRr3vdl+FyOxAYu9lmS7wKTliEzrxi9X4YyxtKUNfBUxxT5MzpDWZ5OC96Gx+Vgqqc5PvsvBP849MT8N1aJ8MQiTHx6Ewk5H8OsCW49a43uxFQketvkpOCzsMus+R9eX6QfndSxUeNqjeT5XHzb26YqufF1j6noFxcMs4LqpmEaZUXYeWkzBnz0U9WW6H8Ckyjp+5r7r34ISa5uSrB3XDv8eJndwKN7QjhOnloFzdJC1txR2y6YMPhrlPOYCcPgr3uAy+Vg3RBH/DLYAVwOqHuqDBi+pXHIaq+Pkamkhq3X/mRt//wi9BLc015g9NBFEmsLfnf+Kb7ytoSqlGYx9SUWiyEUicHlcKpKGBSWCjBoxwPcrsM255r0inKw4eZOTHwquTkLANwwc8HUAXMQr2FQ62sJ1/kiIacYwcl58DDThJE6NSNqDhT4PKz0scf3b6kXmqmsjvG+3+C4bWf8fm079CQ0b3HKTMDx0z/jkYENlnUZjwtWHSR2j35X04+GYs84yfUeW5PmfWVMCCEfmDgrE/Ii5tL5FBUtGUXTcHhcDp7qmLHGXdLjUFgqfasAab7+uBuHjqnR0KpxoXnFoh3EHC4lFd/DXqferLHJ4ddgseIKEnKa1raz1sovpmJlwVq/3az38v/svBFkYA0AcDV6+yoXUn8/D3LAd30qVgrlKqpi6sA5rGP6vQzBV8HVdcw33YrBhpsvIBK17i3RcVlFjKQiAEz6N5h13Khn/rh0bKnEpOI/9j0wzvcbVlKxYLUP7PRUqx7zuBxKKsqIvb4q3lZW9E83H4wYthiFfHYS0iPtOR7v/x8GvwiQ+NzV16IZj8ViMV7llyK/pH7nfjnF5Ri+OwDy356D3Ldn0WbVVegtvQi1JRfeOakoLyjH1wEnELVrhtSkYjFfHvN6fYa+o1e8NakIVCTJzbWUMdTJkJKKzcy8blYY7mwIHpfz1u70R9t2hfPkrdjv0FPqMR3TnuPciZ8QtncWPg+9CKXyUqnH1sU+2g4NgBKLhBBSq2eh0ayxtBaQWORwOAjVs2SNu2TE4frzDPYTSLOWWVhRe6tffDBr7urrphXk3YXpWeGxvjVjzDErAR6p0bBYeVVGUZFKRWUVF8o9X4ZiZI3ukAIOF8u6TKh6LEcNQhrNKh8HrPSxBwBcs2iHbW7srW7r/XahQ2r15+83Z5+g3a9+SMkrabQ4m5ojIW/vWvpV0FkcPrMWChJqif3lOgCTfOZByOUxxmMX96EbS02IAp+HnwbaVz220lbGxmFOrOPOWnui15jVrJIcAKBTko8zJ1dg18VN0CgpYMz9cv05uAvOYPvdOLzIKMSovY9g+ONlaHx/AcsuReHPe3Fot8EP/f68h6dp+azXlmbng5c486Ri271YDMRlFyOzqLzOz6984qhn/niyZybW3dotMTkOALdNHNF+4iZsbj8UYg6lM1o6ZXk+jk/2QO7KgXj5fV987lV7PfB0ZU1MGjQf3cf8jBAJ1zqVnDIT8OeVbUj4awr+uLIN3RLDwZGw1Z7UDf0lEkJILdpxi1hjLWHFIgAkqushR0GFMeaWHocTYakyioh8KKter1CQlFi8QonFetnj3Ic1JmnLLWk85UIx2m28DdXFF8AVCfHrzZ2sY/50G4gonYpyEEbqCk2ya2pLtriPbVXtvoU9JuO5JrNphYJQgCNn1kCruDqxEZ6aD9MVV3DuCbtmYEsnEonx7bmnUud5IiG2XNuOLdf/AhfslZ3LO4/D9L4zIaqRVNw20gUW2soNHi+pn8V9bPFgTjecmuKBoPndMbdbG4jWD8Fvw50Zxz0ytEWHiZtw18he4utMjriOsL2zMSz6Pquu3MzjYbD95TpOhlef86248gwzjoUhNCUP16Iz4LTuJsoEIvjHZmHtjee48qyi/mlJuRCpeSUoFVTUlhOLxfjm7JP3/weLxegdH4Lbh77FkTNrJNYFBYAsRVV81n8Weo5ZXfX+XdNQJwPY6THPbX8dyk7MkuZHWZ4PDoeDSR3ZO64kuWPqhI4TN2JG3xlIqqUrtHZJAb4MvQi/w4sR99dn+OvyVoyOugOdIvZ2aiId3Z4ihJBaJDyJYY2V6r19y0VzcP5zL4QeskD3pOqTQfusRBy8H4NdY9vJLjDS4DbdioFaaRG8UqIY4+E65kiR0kmP1M2/9t2x3m8XY4XQ+Kd++KbHFAQm5qA91YZrdIeeFeJJWsUqnSnh19AuPZYxn62gguWdx1c9Xt6/LXi0YrHR+c/yhtO6myiSU8QnPvNx6/B3kBNVF8G3zHuFvRc3Ytjw76tWJYnFFcmPwY4t43NYmpJyIf64F4fo9EIMdzZERiG7IUcljZICHD67Fv0l3DgScriY2Xc6/nYdyJqb0N4E07tYNmDUpCF5mGuyxmZ2sURKXgl+eaMJS7KaDnqNWYV1fnswJ+gM6zmmBZk4cXo1rpm7Yn7PaQjTs3qnOBQXnWM8VlPgo6BMUJWntNZRxotM9k34OhGL0Tc+GEvvHULXZOmJcwA44NADX/echnRlTanHZP40AFrK8ghLycP4A4F4kVmIES5GmOZZ+wo30rx0sdTGKh97bPB7AXkeF9rKclWf+TUJuTz86eaDvY69MT30IhY9OAr9YukNwcwKMvBZ2OWqG8QxGgYI0bNCmK4l4tX1kKyqjRQVbWQqqSFJjRoevokSi4QQIkWpQAhuMruZiZe3s4Sjmx9jdUX46VkyEotyIiEcshJkGBX5UHomhDEu2gHgimVFsem7s7vKIqQWIUtJHcdsu2B85K2qMRVBKT6NuIGOm1SQvWIgNKiraqMpFYqxObhilYFaaRFW+u9nHfNT57FVnUO7WWnjcy+LRo2RVHAwUIOFlhLis4vxwNgeC7tPxsYaq0t9Yx5h8YMjWOU1pmrsYUIOOv12G7+PdEFHM81GjrpxTPo3CEdCUwAAf96Pl9rE1Do7GWdOrIB9NvtcpZgvj3GDF+C0jZfE5xpTnblmh8flYPUgB6we5IBjockYve8xAKCcJ4d5vT/HbVNH/HFlG3RL2FuY+7wMReD+/+GAQw+s8fwIkRLqbNdFfo063O+TVFQQlGH8Uz/MCToDt/S4Wo99rG+Nr3tOwy0z6efeGop8JPzQr6opjYuROsK+6fnOcZHm47s+tvi2lw04HCA5rwRmK2ovP1Mip4BNHYbhL9cB+OTJDcwJPAOHrLfXRmyTm4Y2uWkYUaOcCgCE6FlijO9CPJPQDLM1oq3QhBAixanwNJjmZ7LGPTu3jMSiuiIfIRLuXLu+5SSPNE/944NYY1cs2iF4fg94WbSM7f2y8oeEGnEzQs4DYjFsf7kug4hap9xSET65mF71eIX/PzAoYq5MiNIywbZ2FT8vHpeDv0a7NWqMhClmcXUpgd/aD8V/dt6sY1b4/4MxbyTuASAgIQfDdwe0yIYuhaWCqqQiwNrBWsUn5hEeHFwgMamYpqyBPqNXSk0qAsBYd5N6x0pkZ5SrMWZ1ZZ7DHbPzhvPkrTgh5efOE4sw6ckNPNnzFY6dWo2uiRHSf8EamliMdmkv8OuNHXj511TsvLyl1qRioqoOPvX5Hzwnbqg1qQgAycv6f7BO16Tp4r5uMmWioYTdY9rV6WZJkZwi/nTzgfPkrfAZuQxHbbughPd+N3/d0uOw6cbf7/XclogSi4QQIkVBmQDGBezEotjISAbRNDxleZ7EBi5u6bF4lV+/Dmmk6QhNzgPEYvjEPmaMl3H5uGXqBFdj6ob7Pi583qnqa38TB4TqMle9OWQlomdCGDIKy6qaiJAP68rLYsTmVfy3bp/2nNFZuNKCHlOrOuLGLO6DtvqqrGNI42F0HuZw8Hn/2YjSYie89lzchG6J4Yyx5LwSXIp69aFDbHTr/V7UOs8VCbHizgGcO/ETtEvY2/9C9CzRacIG3DeWXHcPAD7rZA436oTe7G0ezk64vVLRwqih32HCoK9rrQk+4vl93Dr8HZ7t+hLf3zsE6+y3Nwd6VxyxCB1So7Hs7kGE7JuDwAP/w7zA09Arll67LktRFT94T0DbqdtxwLGXxOYsawY7AADGtDNG3iofKMnxWMeQ1mWShxkSfuiLM1M963S8mMPFJasO+HjoIhjO2IcpA+bivFUHFPHl3+n76lEdxiqU2ieEECnkeBzWisV0JXVwlVpGkX+BUIxwXQuIwGEUe3dJj8O2u3FYPqCtDKMjDeWjfY/gkJXAKoZ+08wZPVyo7tD7GtBWH/qq8nhVUAZwOPij3SD8cfUPxjGzg87iprkrVBdfwKN53aje4gf2W1DFCT5PJMSfl38Hr0Z3xwuW7XGuTceqx2bUsKVJSFveHwbLK+pZ5Sso46Ohi3D34EKolRdXHaMgFODkyVXwHreWsYXz+fvWdmuibjzPwI+Xn0md1y3KxcFz69H3ZYjE+VPWnpg46GsUykv/3X66sBcl1FuQIY4GVd2Yq3A4+NehB85Ye2DRw2OY/+gkFIWSOzTb5KTip7sH8dPdg3iuaYjLFu1xw9wFQfptEKth8E5dlxXLS+GU+RKdk6PQOfkpeiRGwLgwq07PzVRUw8YOw7DF3Rf5CrU3FFrQ0xrf9LKpc1ykdeBwOBjkoI+VA+3w/UXp76M15SmoYK9zH+x17gN5QTm6JD9F35chaJ/2HG7pcTAqzJb63F0u/Roi9BaBEouEECIFn8uFSY0Vi4mqOtBoIUX+dVTkUSSniOdaRrB74061a0YcBlx5RonFFuJ5RiG+eRHAGj/XxgM/DaSfcX0kLe2Pv+/HY+bxMPzj0ANrbu2Bell1MmTY8wewyU7Gcy1jfHIwCBELe8kw2pavRFhxg+Sr4HPo8Iq56quYL49ZfaYDnJbx/t2S6Kkq4H/d22DjrYpmaRG6FhgzZCFOn1gB/hvJYa3SQlw8tgy9Pl6N2NddpOeeDMfck+EI+boHnA3VmCsgmwGhSIw1N57jdkwmnqTlIyGnROqxPRLCsP/8rzCVsJMCANZ6jMTirp+wOj9XGudugkW9bSip2MJ82dmCnVh8rUBeGd93/QR/u/TH0nuHMPHpTVat5TfZ5KTCJuc8ZoacBwDkySshUtsUySraSFHVRpaiGgRcLgRcHvgiIbRKCqFVkg+jwmzYZifDLD9DYlfy2kRrGmGL+xDsce6NAvm6dShvbn/npPFwOBws7Gn9TonFN5Xx5XDT3BU3zV2rxvSKcmCbnQyjwmwYF2TBoCgHHLEYN81ccMWiXQNF3vxRYpEQQqSQE5bDsCiHMZakpgNNtIwTGjkeF+2M1RGqa8lILBoU5cKglrtzpPl4mlZRwH1wjKTEYkdsMtFo7JBaFB6Xg+ldLLH8chReFQC7nftibmB1V04uxJj/+CRm9p2Jp68KUFQmgLI8nXp9CJW19kzyM7Dizj+s+Z+8xlYlo0jTs2GoExb1tsHzjEJ4b/XHRasOmNl3Bv668jvjOPP8DNz4bzEjuQgAbhv84G2phbW+jlh/8wUyi8rwuZcFJrRvekX1i8oESM4rhb6qPNbeeIHV16JrPV5eUI4V/gfw9aOTEpM2efJKmDZgDo5JqE9Z6f6crvA0p1q6LVEfW10MaKuHS1EV9WVHuxohPrsYDxNyqo6J1zDAtIFzsazLeMx/fAqfh16CiuDtJW/Uy4rhmVr77+f7EHC4uGjVHn+6+uB8mw7vtCrSUE2hweMhLc+cdupVjdzqK11Zs9Zu5KQCnd0SQogUJS/Z3cKSVHXRjtcyEosA8Ghedyw/ZomPou8yxqmBS8uw/3EitIrz4Z0cyRh/om2GGE0juuvfQNxNNHApKh2b2g/FV0HnGKusJkVcx9IuE5ChrIEW2GdCJgpKBTgWmgJVBR5GOBvhQGAiJh8KBsRi/HV5K2MLLQCE65hjQ8fhMomV1J2eqgL0VKuTBjtcB8Ay7xUWPzjCOK4yudj741WI0ayueewflw3vrf5Vj2/FZMFMQwndrXU+fPB1FPWqAEN3PUR0RmGdjnfIfIkD5zbAPT1W4ny4jjk+Grqo1q6kHmaalFRswRT4PJyb1gkhKXmQ43LgZKiGojIh1JZcYB2bqK6H+b0+w/Iu4/Bx1B1MirjGOj/4kAIMbHDQoQcOOvR470TN/B7WDRsUaZHGtVVBcHoZbiVVrwLnczl4sbgPLFbW3kGavB9KLBJCiBR/HbuHiTXGklS1YdqC6nJxuRyJDVzap9VePJ40D4eDkzEwLpBVa+7NOnOk/r7ytsKlqHTEaxjgiJ03xkXdrppTEpThq+Bz+LHL+EZrvtnSiMVibLkTi/NPX8FMSwlnIlIralsCMNFQRFJuxYXD52GX4BMXyHr+9H4zIeAxT3k7mWt+8LjJ+7nweSf4/P0AAPC990QYFmZjajjzQtA8PwN+h7/D4BHLEKpvJellAAC7A142qcTir7de1CmpyBcKMC/wNH68exBKgjKJx+x36IkZ/WaiSI7ZCdVWVwV7x7lj76MEaCrJYRHVomvxuFwO3N/YgaCiwEfM4j5os/qaxOPzFFSww3UAdrgOgG1WEoa+eIj+cYHonhQBBWHDNRvLVFTDbRNHnGvjgfNtOiBF9d3/FvvZ6eKXwY7wj82Cm7E6urVpOn/PpOnicznY0F0bd5JKcDmNB11VBfwy2AFG6ooImNcNHptuv/1FyDuhxCIhhEhhlJfBGktU05VBJB9WoD777q9H6vvVJiFNS2xWEVa+eMgaP2vtARMNRQnPIO9jkL1+1dcbPEYwEotARROXjR2GYb3fC3zeybxF3ZxoDNvuxmHeqQiJc5VJRaucVGy4uYs1/6frQNw1cWSNT+tEjYuaqgFtq/+eKjpFzwIAVnLRpCALtw8twljfb3BBys2SA4FJ2D3WXer3uhT1CsfDUtBGWwWzu1o2WKmCC0/TEJych57WOlBV4OPhyxy4Gavj7/sv3/rcjqnR+OvyVrSTskoxX04J83p9ht3OfVk1Q69+2Rm9bSvOU7wsaJVia2aprYxZXa2w9Y7k36NK0dom2KA9Ahs8RkC5vASdUqLQ7lUs3NIr/meanwmdkvxaX0PI4SJWQx/PtEzwXNMYQfptcM+4LZ5pmdSrru3PgxywsJc1OBxm4pSQuupqooivBrmBz69+b+9gqgnR+iGwX3Mdz9LrtnocAHpZ6+DGC3aNWxtdlQaJtbmjxCIhhEhhlp/OGkt6j7utTV2imi6SVbQZnfs6pT7Dq/xS6FMtm2ZNXlCOQbGPGWPZCiq4a+yAGxPbyyiqlofL5WCdryO+OfsEgQY2uG7mgt4JYVXz2iUFmB10FisUVLDiyjNsGeGMr7ylr7IiTDsf1J6M4YqE2H1xE1TLmY0vYjQM8E2PyVWPu1lpQ0dFHoMdDDDV0wykeRBzuPi8/yyIwcG08CuMObXyYpw+uRLzen2G39sNZiUxhCIxbr3IlLhq8cLTNPjueli1kvhuXBZOTfWsd7xb78Rizsnwd36ealkRfvI/iNlBZ1mrzCvdNbLHp4P+x9gC/qbKpCIhALB5uDNScktwLCylTscXySnihrkbbpi7McYVBGUwLMyGWlkx+CIh+GIRxACyFNWQraiKXAXld6qT+DYcDnB2qid8HAwa7DUJqWnFQHuMPfC46jPA1UgdoSnMuowXPu8ELSU5mGkqwUhdEfNOhWPzbWayfkkf28YKuUmjxCIhhEhhkcdOLMar68kgkg+Mw8FDQ1sMf/GgasikIAu/nnmA+eO7yzAwUh8peSXo+zIYGmVFjPGzbTwg5PLQ1arlJcll6X/d2+Cbs08AAKu8PmYkFgFg/qOT2OLuizwFFSy5EInPOplDgS+5eythCk6uvQD7/Men0D3pCWNMBA6mDJxb1WV0z9h2+KSDKdUVbabEHC6+6P8VBFwevgy9yJjjiUXYcv0veCc9xfR+M5GnwFw90vOP6hrCqgo8tDfRQLc2OghLyWOUJzjzJA25xeXQUJKrV6xfn5G8ulYankiIqeFX8KP/QVbDuEoCDhc/dR6LnzuNhlBK1+fYxX3eNVTSCvwzoT2sLkbidEQqlOR4CHnL+6kkpXx5xGt8+CSfp5kmpnUyRydzLbgaq3/w70dat9FuxtBTkceduCy4G2ugr50uFp17imOhKbDSVsaOj91gq6fKeM40T3P87h8H4eui2RqKfIxwocZwACUWCSFEKjMJicWXai0wsQggwIiZWAQA/8MX8L9x3ehCvJnaHZCAUc/ussaP23aRQTQtH5fLwacdTLHvcSJumLnilokjI9mlVVqIuYFnsKLzWOSVCHA9OoNWYzQAr+RIrLqznzW+qcNQ3DZ1BgAs6GmNTzvSCsXmhMflVF24VRJzuJjRdwbi1PXx8519rOeMjboNz9RnGD94AR4atZX4ugWlQtyKycKtmCyJ83mlgvdOLF6PzsDt2EyUC+tYTFUsxsC4QKz12w3nTOmrcoP0rPBF/1l4bCh9Vcy/E9vDQlv5XUMmrYA8n4u1vo5Y61tREqJcKMLR0BRM+Iddj/ZDmuxhhpDkXAQlSU5smmooYu84d7TVV5U4T8iH0NNGFz1tqld6bxzmjI3DnKUe72KkjpOTPfC7fyxUFfj4trcN1BXrdzOqpaDEIiGESFBUJoBF3ivG2CslDfRxbZkXpw8M2RdhninRCE3Jg5sx1bVpjpafDUdKjfqKBXKKuGTpjiV9advGh7BlhAsU5Xj46348lncZj+tHvmfMz390EtvcBiFTWR0bb8VQYrGetIrz8e/ZdZATCRnjT7TNsKTrJ1WPR7lI3jZKmq7/dW+D9TclNBHjcLCm00eI0TTE3gsboSgsZ0y3yU3DnX+/xVZ3XyzrMh75Cu+WbPv27BP0ttXFVA9zcLlvv6kmEIrw8/XnWHYpqu7fRCxGr4RQfH//P/SqsbL5TUV8eSzrMgGbOgyVukpRTYGPzzqZY7Srcd2/P2nV5HhcjHM3wRg3Y/AXnm2U72muqYRdY9oBqGjGte9RIoKTc/FlZwvwuVy8zC6Gu4k6tJTlGyUeQupjsKMBBjvS+VtNDVcMgRBCWpA/78fDPJ/ZvOWluh7GtDORUUQfzowulnhkaAMRmBdRnqnPcDS0bnV5SNPy1fEw9EgMZxVcP2/VASVyCvicGld8EGqKfGz/yBUAcNPMBX6mTox5jbIiLL1/CABwNToDBssuISK19qL4RAqxGLsv/gaLGrVwS3l8TBw0H6X86gtUPo9WXTc3S/vZ4SNXIyjLSU6oHWnbFb0+XoUEVXZNQb5YhHmBp/F090yMfeoHjpR6hZIcCk7GF0dCseBs9WrjMoEIqXkl+NXvBdr+ch16Sy/iYGAiAODHK8/qnFTkiEUY/CIAtw99i2tHfqg1qXjR0h3Ok7dig8cIqUlF4TpfZK0YiA1DneqUBCXkTVwuB597Nc65wOYR1SvAOBwOJnmYYeMwZ9jrq8FGVwW9bXUpqUhIM0crFgkhRIKomFRWUualmm59mts1Wcv72+GPu3GI1DaFY1ZC1XjH1Oc4nFtUyzNJUxSSnIs/7sZhW7TkbdAdTTVgrkVb5j44Dgffe3+C24cXMYanh1zAFndfPNcyRnphGTpuuoVbM73hYa4pmzibqfmPT2JoDLvj+f96foZgA2anez4lXZodVQU+/vu0I8RiMTgcDh4n5mDAX/eRVVS9QvGBsT3cP92EHZe2sEp5AIBxYRYOnt+AbwOOYaXXGBy37VznBhObbsVAVZ6Ho6EpiHxVwJqfeDAI9+Kz8bt/3FtfS6OkAFMirmFm8DnY5KTWeuxTbVMs7D4F59p0rLWb7lRPc3A4HFDOnNTHD33t4B+bhSdp7N/xgW31cDGKXRJIms86mSOrqAzHw1KhyOeivakGisqE2DvOHS5GVC+RkJaOEouEECKBdWEma+yluj606lo7qRnRU1VAwLxueHjRlpFYVCsvRuK9IGAMdQ9uTvY/TgRPJMSI6HuM8RKeHM636YA91L2u0fibOuKEjRdGPL9fNSYnEuLn23sxeuh3AIBSgQg/XIzExS+8ZBVmkxWRmo8FEhph9IsLwppbe1nj/9l5Y7ubD2ucz6UNOs1VZY3fDqaayPhpIPjfnMGbpRezlNQxcthizAw+j/V+u1hbowHALT0OR86sQYSOGba7+eAfh57IUXx7HbeVV6Nrna8tqSgnLMfA2EBMeHoTQ188lBjXm14paWB5l3HY4dIfAl7tl2eD7PWx1teh1mMIqQtTTSWELeiJl9nFMNFQBJfDQW5JObSU5SEWi5GSVwo5HgfF5UJYrrrGev7cblYY6WKEbm2oGRwhrR0lFgkhRAKdTPaqgpfqevBqoUWlLbWUsdPQDpMjrjPGDZ8GV60YIc3Dr34xGBAfDIOiXMb4JUt3FMgrYyjVhfngfh/pgq+OV2xzXNRtEnxjAhh1AEdF30O/uCBcsXQHAFx+VvdVIa1BVlEZ5p4Mxz+BSaw526wkHDq7Frwa21ufaxrii/6zJK7yMlRT+GCxksZ18XMv9P/rPnOQw8E298G4aNUeW679CZ84yU0pnDITsOX6X1jntxsnbLxwysYLly3d65RkrAu9ohwMjA2ET+xjDIgLhFZp4Vufk62ggs3th2Bjh2GsbtZvGuliiKOTPOjzmDQ4DofDaPxTuSWZw+HAWEOxanz7R66YfjS06rGjgSp+HepEv4+EEACUWCSEEIms8iV3hFbgt8yVL0pyXDw0smONeyc9xbTDIdg1tl3jB0Xe2V/34wEA45/6seb+te8BAODzWubvcFMyo4sllOV4mHI4GNHaJvjLdQC+Cj7POGbrte1wnbSFUQuQVJhyKBhnnqSxxjVKCnD65EpWwqaYL48xvt9KTMwMdTKAjgr9N24pelrrYJC9Ps5HvmLNxWgaYfDIZRjx/B423tjBqpNcSVFYjnFRtzEu6jaEHC7uG9khwNAOQfptEKxvhXh1feTJK0vdiswTCWGR9wq22clom52EjqnR8EqJeus25zelK6ljU4eh2NrOt04NZg6Mr9g5QEkcIitfeFnAUE0Bv/vHQltZHmt9Hen3kRBShRKLhBAigU5qImssXl0PCi00KaMsz0eoriUK5BShWl5SNd49MQLTHiVg4zAnaCjJyTBCUhfTj4ZCubyEsfUWAPLllHDG2hPayvQzbCy+b6wMXd55PMZG3mbUbbXNScE3AcexsvNYWYTXpElKKsoJy3Ho7Dq0zWavYpzWfzaCXtdV/LOPDsqEYjzIU4KpphK+pw7oLQqfx8XJKR54mJADgVCMnn/UqCXL4eCEbRect+qIaWFXsOjhUZgWsEubVOKJRfBOjoR3ciRjvJCvgFQVLZTw5SDg8iACB+plxdAqLYBGaRFrxWxdBeq3wVZ3Xxxq2w0lcnVbSbvSxx6KUprYENKYhjoZYqiToazDIIQ0QZRYJIQQCRIDw+FaY+yFphGsdVtw0ws5OfgbO2BAfFDVkHVuKkzz0hGemg9vK20ZBkfqaujzB4zkMAAct/VCsZwCvu3aRkZRtT5vrpLLVFbHom6T8PeVrYxjFj84giN2XRGlY4pzT9IwmLapQyRi17HliEXYeWkz472p0upOo3HIoUfV4/b6FcmaLwe6gs+n09yWiM/jootlxefRJx1Msf8x+0ZgKV8e29wHY4dLf0wNv4Kvgs/BKTOBdZw0KoJSWOfWfQVibXIUVHDEzht7nPrgnrF9rU1ZahriaIC5Xa0aJA5CCCHkQ2mZS28IIaQeCkoFMEpnrorJVFSDm6MFFPgtd9XAKh97+Jk5s8Z7JIajXPh+qzNI48ksLAMAjI9kb4M+6NATALC4j01jhkTesMulL+4ZtWWMKQrLsefiJvBEQgzZ9RAXnqbhd/9YhKfkyShK2Sur+V4jFmO9325MlLC9/5S1J37wnlD1WEOeTmtbm+0fueJ/3aXfMCnjy2F7u0FwmbQVXcatxU7nfsiTV/rgcWUqquEf+x74aMgiGE3fiy/7z8I9E4c6JxUN1RRw+QsvnJrqCRUFSpATQghp2uiTihBCaohMy4ddjZUKLzQN8UVnCxlF1Dg0lORw0pSdWOyZEA6BhFVEpGk5HZEKg8JsDIhjrupKVdbEdXNXfNrBlOorNrKRLoY4HlbxXiLmcDGz7wwEHJgP/hvbKDulPsOCgBNY0+kjDN75EADA53JwcooHBjm0rhWMpQIh2v3KTCAueHQC/3t8inVssJ4VPhk0H2JO9e90Gb1PtTpKcjxsGOqEDUOdkF8iQGJuMdw2+LE/szgc3De2x31je8zsOx3eSU+rmqw4ZSa899bmSjkKKrhvZIcHRm1x2cIdD4zsIOK+/UZkbxtdmGsp4Z/ARPC5HCzt1xafdTKHtrIc1a8jhBDSbFBikRBCalDIyYJ6WTFj7IWGIcw1P/wqB1nicoBHhjYo5CtARVBaNd49MRzPacVik7fo3FNMjrjO6D4MAP+17QYhl4cpnmYyiqz1muZpjpPhqajMcYTot8HPnUbjh/uHGcf9ePcgrli2Q6BBxYpSgUiMLXdiW11isc/2e3iWXt2YZXbgGay9tYd1XIyGAQaNXIYCeWZpijIhJRZbMzVFPhwU1eA3swu+PfcUd2KzJB5XzpPDTXNX3DR3xbc9pkC5vASu6XFwfxUDm5wUGBZkwbgwC/pFueCLhJATCcEXCZEvr4RsBVVkKakiRUUb0VrGiNY0RqS2KZ5pGzOS3HWxe0w7TPKoeF/eOsIZPC6nRe+KIIQQ0nJRYpEQQmqQi33BGovRNMJoc83GD6YRcTkclPPkcNfYHv1ehlSN2+ak4NfLgfBx8JFhdKQ2iTnFSC8oxdTwq6y5Xc59AQA9rHUbO6xWz8fBAFe/7Ize2+9Vja30+hhDXjxEu/TYqjF5kQCHzq5Fh4mbqjrEXopid6ZvScRiMU5FpCI1rxTDnQ2xOyABd+Oyq+ZnB57Bbzf+Zj3vlZIGBo76Eamq7JqvnzurfdCYSfPQ2VIbt77yrnp8IiwFo/Y+knp8kZxi1WrGxjDSxRArfexhr1/9+6osT5dkhBBCmi/aE0UIITX8vu8aa+yFpmGL30bKfb3tys/MhTWXd5n934Q0DQKhCOYrr8I76SmrY26AgQ1C9a1wbXpnGUVHetrowkCtuvtrOU8OkwfOQxmXmUiwyUnFX5e3AuLqVXe5xeWNFmdjm30iHCP3PMLM42Ew/ukKllyo7sorLalYIKeIwSOX4rmWMWtOX1Uew6xbcHMt8t5GuBgh5Osebz+wEVhoKeHwJx0ZSUVCCCGkuWvZV8mEEPKOEnKKoZPC7hxZatHyuzJW5k39JNRZ7P0yFEVlgkaOiNTF0dAUAMC08MusuV0u/QAAvWxotaIsfdPTmvE4VN8Ki7pPYh035tkdLHh0oupxrz/uQtACyxDkFpdj29049oRYjB/uHZKYVCzkK2DIiB/w2NCWMb6kry3W+ToiYI43dJVoGymRzMVIHWt9HRv9+450Maz6erKHGR7M6QYel2onEkIIaVkosUgIIW/YeCsGbWo0bgGAEKWWn5jp/Tr5FGBoiyK+PGNuQFwgdj14KYuwyFtMORwMjZICjI7yZ4wX8eXxr3137BrTTjaBkSozuliyxja1H4rTbTxZ47/c2otBMQEAgODkPPjseADx61WMd+OyYPPzNah8dw5zToajTNA8k45fHg1ljXFFQvx+bTt+vHuQNVfIV4DvyKWs1dSeZppYMdAeX/e0hpG64geLl7QM0ztbMBJ9H9rxyR1xdJIHROuHQLR+CHaNaQf9N1YvE0IIIS0FJRYJIeQNZQIRrHNSGGPFfHm8UmPX82ppTDSU8GVnC5Tx5XDd3JUxZ1qQib93nJVRZKQ2pQIRJkdcYzTcAYCjdt7IU1BBfzs9GUVGKinJ8VC+1hcLe9mgm9Xr9xIOB1MGzkW8GvPnw4UYB8+th9urGADAtegMeGy6DbFYjMmHghGTWYTichG23onFqQj2TZCmLiwlD/+FJDPGFMtLcejsOswIucA6XlpSEQCOTOr4weIkLY+qAh9HPu2IvFU+KP5lUK03XXzs9ZGyrD8Ea31R+PMgFP08CMv7t0VPa506fa+dH7thuLNRA0VOCCGENG1UKZgQQt7A53FgncO8WI/RMMC8nrZSntGybBvpgoFt9XEhuCN8Y5jF7n1iA/EyuwjmWlTHrCnhiEWYGXyeNf63ywB4W2rBWINWcjUFPC4Hvwx2AAAcDk7CuAOByFZSw4hhi3H70CJGYli9rBgXjy1Dt7Fr8FzLGIFJufjzXjyeZxQyXnPM/scY7cauN9jUlJQLoSjHQ6lAiJnHmKsVTfPSceLUanR4xW6alSuvjKEjvsftGuUZ2hmrI2Bed9pSSt4Zh8OBqkLF5c9kDzNM9jBDXFYRojMK0clcEyryfBSWCaCuKFf1HCVuxRb7pf3tsBR2OBmegpF7mJ+Pi3rb4GLkK2gqyWHFQHt4W7X8m5GEEEJIJUosEkLIG5RLi2FYlMMYe65phC+8zGUTUCPjcDjoaKaB/1m1Z835xD7CfyEpWFCjXhyRnXtxWRgQFwTbGqtsg/Ss4G/igLTJHjKKjNRmiKMBzDWV8DKnGMEG1pjsMw9HzqxhHGNQlItLR5eix5ifkaiuh5nHw2QU7ftLyy/FR3sD4B+XDR1lOeSXClH2Rs3ILklPcOz0zzAoymU9N1lFGz6jliFMj1nf9rs+Nljevy0lFUmDsdRWhqV29Q2zN5OKkgxsqw9PM008TMgBAEzuaIbVgxywepDDhwyTEEIIabJoKzQhhLxBK5XduCVG0wi6Kq2nLhKfy0WchiGeapsyxr2TnmLV0YcyiorU9Cy9AN5b/TEriL1Ffau7L8DhQE+19fzeNifK8nzELO5T9fiYnTe+957IOs4q7xX8Dn8HSwl1XyvFZBZi18OXeBCf/UFifV/XotNh9ONl+MdVxJVZVF6dVBSLMffxKVz/73uJScUoLRN4j1tTlVS01FJC4g/9IFo/BKt8HCDHo9NXIjuKcjzcnuWNc9M8cWNGZ+wc4ybrkAghhBCZohWLhBDyhpBbQayxFxqNV+y9KeC/Xgl0waoDHLISq8fFIvR9GYIXGUNhrasiq/AIgLisItivuQG7rEQMin3MmMtUVMO/9t3xWafWscq2ueLWWHG3utNo6BflYk7QGca4Vd4r3Dy8GANG/YQoHWayHwCc191EyesmLmt9HWW2otg/Ngtb/WOhrsjHj/3bYuJB9nspAOgV5WDXxc0YHPtI4ryfqRNGD1mEDGUNABVbyCMW9oKSHHV8Jk2HHI8LHwcDWYdBCCGENAl0y5cQQt5glJ7EGnuh2boSixqKFfeczluxGyMMinmEiLT8xg6J1PD3g3gAwIJHJ1lzO136oUROAZuHO7PmSNNi8mb9Sw4H/+s1Dfsce7GOM8/PwN1/v0GPBPZ26JI3OkOvu/G8qoM0AJQLRXiUkIOc4vKGDfwNafml8Nx0C91+98fh4GT8ff8ljH+6grT8Utaxg18EIHjfXKlJxW1ug9DvoxVVSUUA6G6lTUlFQgghhJAmjBKLhBDyhrbZkhKLrauzI5/HxZK+trhj4oh8OSXG3NAXD/HRjnsyioxUWnfjBQwLsvDJk+uMcQGHi23tBgGo2K5HmrbPO1kwHos5XEwbMEdiclGrtBCXji7D9ODzwBvJwzelF5ah1x93IRKJ8SKjEDY/X4Pnb7ehv+wS/gtOlvic+hq04z4eJbK3M79JrygH/5xdhzMnV8CokL1lu4zLx5f9ZmJW3+kQ8JibaWjbMyGEEEJI00Zna4QQ8ppQJIZD5kvGWCmPD1M3exlFJDsrBtqjjC+Hi1bujHGdknz0SgjDixrdaUnjEojEmBt4BgpCAWP8X/vueKmuj50fU82v5uD7vrbYPNwZllrVCXwhl4epA+Zgp3M/1vHyIgG2XduOfRd+hUpZscTXvBWTBf7Cs7D95ToSckoAVPy+fH0mAkKR5ISkNNlFZfgnMBGXol4xVkICQJlAhHNP0hCUlCf1+TyREJ+HXsST3V9hXNRticdEaxrBe9wa/O06UOL8MOfWtWKcEEIIIaS5ocQiIYS8dvN5Opwymc1bIrVNMdiVXdesNXAzVsdRu66s8dHP/GH7y3UJzyCN4XZMJtRKizA95AJrbr3HCADAIKr91SxwuRzM6mqFF4v7oIulVtW4iMvDF/2/wqpOH0t83sSnfgjdO1vi1mhpknJLILfwLD7aG4CzT9Kw/3GCxO3KlVLySuD+6y18cjAIPn8/wJyT4VVzq64+g+KicxiyS3ozp35xQQjcPw9/XtkGnRLJ5RP2OvZCh0824rGhrcR5OR4HUzzM6vgvJIQQQgghskDNWwgh5LXV+2/hWilzJd4TbbNWW9+rs4UW9rXpiCK+PJQFZVXjw6PvYWaf6Xj4Mhue5lq1vAJpaMXlQvTYdhdLgs5Ao6yIMXfeqgPC9KzA43KgoywnowjJ++BwOLg2vTMOPE5CemEpFp+PhJjDxQ9dJyJGwwDbr26DnEjIeI5V3ivc+G8Jdjn3xeKun+CVSt3+Fo+HpeJ4WEWXaQM1Bdz5yltiM6Z9jxLxMqd6VeTv/nH4yNUI+x4nYvfDBNbxAACxGD0TwrDkwX/o8zJUagzpSuqY0/sLHLbvzhh3NlTDUCdD5JcKIMfjYH53a9rSTwghhBDSxFFikRBCXuM9fcIae6pjBnM+R8LRLZ8cj4siOUWct+qIj6LvVo3rluSjZ0IY9j+2ocRiI9NdehEaJQWYL6FpyzqPkQCAZf3twKe6dM2OAp+Haa87eQcm5uJoaAoAYLdLP0Rqm+Lw2bUwLchkPW9q+FWMenYXGzoOxxZ3X+Qqqtb5e6bll2LPowT4Ohhgz6ME7HjwEl0stDDAXh/fX4hkHd/rD8n1VXkiIQbHBOCbgOPwTmY/7037HXpifs/PkKmszpoL+boHOJzW+X5LCCGEENJc0ZUHIYS85pjFXoUToWsOB301GUQje//r3gYAcNTOmzX38TN/3HzOTnKQD+dEWAqKy0WYG3gGWjVW1t4ycYSfqTO+7mGNJX0kbyslzcfGYU6w169OEN4zcUD7TzbhvFUHicdrlBXhp7sHEff3Z1hx5wAMC7Lq/L1WXY1G5y138Oe9eAhFYtyOzZKYVJTELC8dP9w7hJi/P8fJU6trTSpGapnAZ+QyTBo0X2JScaWPPSUVCSGEEEKaIVqxSAghrzlmshOLT7TNGbXPWhNLbWXM6WaFnWXFrO3Qo575Y3YSJRYby/XoDIza+wiaJQX43+NTrPnlXcbDXEsZ64Y4yiA60tBMNJQQvqAn+AvPVo1lKGvAd8RSTA2/gl9v7oS6hOYtGmVFWPLgPyx6eBSXLdphn1NvnGvTEQXyyg0TmFgMm5wUDH3xAB8984dXyrO3PiVDUQ0/dhmHP10Hsjo+V/Ky0MJiSogTQgghhDRLlFgkhJDXHDOYHaHLuHw81zJq1atoNg1zRnBSLs616YjRz6q3Q2uVFmL48/sITe4HV2P26iPSsH64WLESbNHDo6zaijfMXHDT3BUli3rLIjTygXC5HGwa5oR5pyKqBzkc7HLpj0uW7bHm1h6Mj7wl8bk8sQg+cYHwiQtEOZeHe0Ztcc2iHR4Y2SFCxxxJqjpAHd7XNEsK4JTxEi4ZceicHIleCWESt2NLkqOggs3uQ7Cpw1DkvGV79p6x7er0moQQQgghpOmhxCIhhACIyShgbYWO0jbBzO42Moqo6bg50xu+V/swEosAMDXsCtr92h2i9UNkFFnrIBaLcS8+G+Z5rzAn8AxrfnmXcQAAeT5VN2lp5nRrgy6W2niWXoCJB4OqxpPUdDFx8AJsd/PBCv8D6JEYIfU15ERCdE96gu5J1TVkcxRUkKCmiwwldWQoqaGMKweuWASeWATN0kIYFmbDsDAH+sW57xzzKyUNbOowFNvaDUKeArspTKUFPa0xwtkQ7iYa1KCFEEIIIaQZo8QiIYQAuH33CSaVFDDGnmibYeNQJxlF1LRcsmyPZBVtGBdW127r8zIUFrlpSMsvhYGaggyja7nySsox+VAwAGDlnf1QFJYz5i9auuO2qbMMIiONpaOZJjqaaUJTSQ6+Ox8y5u6YOqHXmJ/RLTEcS+7/h/7xwXV6Tc3SQmjWqNNZX36mTvjTdSCO23ZBGb/2ruS9rHXw44C2UKKEIiGEEEJIs0eJRUIIAZB8L5A19kTXHFxu690G/SYhl4d9Tr2w6OGxqjEuxJgUcR2Hgntjbrc2MoyuZXqZXYQ+2+/hRWYR2qc9x8Snfox5IYeLhd2nAADW+VJtxZaut40uulpp404suzHLbVNnDPzIGU4Z8ZgUcR0Tnt6EUWH2B48pXMccx+y64HDbbojUMXvr8X4zu0CBz0UHU03w6L2VEEIIIaRFoMQiIYQASHkQxBp7UocL5dZiywhnbM7qy0gsAsCU8KuwOfExJRY/gP2PE/EiswgcsQhbrv3Jmt/r1BvhepboY6uLed3pv39LpyjHw5UvvXA7Jgv9/7ov8ZgIXQss7DEF33X7FH1ehsAn9jH6xIfAOfOlxOPfVY6CCm6ZOOGmuQsuWravUzJxsIM+vu5hjR7WOq26Xi0hhBBCSEtFiUVCCAHgJOHCO0LHXAaRNE2DHQwwW9sEt00c0e2NWm0W+ekY9vwBCkt9oaJAHykNpaBUgB8uRgEAJodfQ+eUKMZ8IV8BS7tMAABc+bJzo8dHZEOBz0NfOz2s83XEN2efSD1OyOXhsmV7XLZsDwAwKsiER2o0nDJfwinjJdpmJUGvOBd6xXlQeqPbOwCUc3lIU9ZEqooWklS18UTHHOG6FgjTtcATHTOIuO+2ffmfCe2hrlj71mhCCCGEENJ80VUgIaTVi8ksRLtXMYyxMi4fzzWNZBRR06OvKg8A+Mt1ACOxCABzA0/D47f+eLKwlyxCa3FeZBTC9pfrAACt4nz8cnsv65g1nqOQrKYDLwutxg6PNAFfeVtiT0ACItLy63R8iqoOTtvo4LSNF2tOqbwUXLEIQg4XIg4X5TwexJyGaQR0fHJHSioSQgghhLRw1EKSENLqnQxKgFt6LGMsVM8SAh7de6mkLM9HL2sd/Ne2K1JUmMmsbklPoBIahDXXn8soupZlq3/17+Ka23uhV5zHmI/WNMI6j5EAgE3DqLlQa6Qox8P+8e6s8c4WWpjY3uSdXqtYTgGF8kookVNAGV/uvZOKKvI8eJppokcbHewf7w7BWl8Md6abM4QQQgghLR1dNRNCWr0rJ/wwv0a33SD9NhjiaCCjiJqmK192Bn/hWWxrNwgr/P9hzM0NPI1PDW3xsZsxrHSUZRRhy/Db7YrEYt+4IHwWdpk1P6f3Fyjly+MLLwt4mtOKxdbK1Ugd5ppKeJlTXDW2oKc1PMw0cSAwqU6v0c5YHcHJeW8/EMBoVyMUl4tw9mla1ZiWkhySlvaDInV3JoQQQghptWjFIiGk1TN+HsEae2xgg9ldrWQQTdPF5XKwZ2w7/Ok6EMV8ecbcmKg7sMhNw66AhmkS0dqplBXjryu/s8aP23jhklUHAMBUT2ou1JpxuRxc/KIThjsbwsNME1tGOGOEixFMNZWwysf+rc//yNUIgfN74K/RrrUel7NyIETrh+Dwpx2x42M3DGirB1UFHga01cPThb0oqUgIIYQQ0srRikVCSKvXIe0Fa+yxgTV+a6Mtg2iatgntTTH5kAb+cejJWE0nJxJiyYMj+ELDAL4OBuhEtf/eWXhKHuaeDAcArPfbDcu8V4z5bAUVzO7zZdVjJwO1Ro2PND32+mo4PtmDNf5dH1t0b6ODM0/SYKGlBDNNJSjwuehrq8vqzPxZJwsYqCrg/sts/HYrFkXlwqq5LSOcGTUS9dUUcOFzdp1GQgghhBDSelFikRDS6rV/xawNWMblI0zXEgp8WolTE49bkZRY33E4poRfBU8sqpqbFHENqzt9hOWXoyj58I4yCkvRY9tdZBeXY+Szu/gy9CLrmK97TkOKqg4A4OdBDtSFm9TK20ob3lZ1uzkyxMkQQ5wMsWKAPfY8SkBYSh6meZrD2Uj9A0dJCCGEEEKaO7oqIYS0bgIB3NLjGEPhuuYo41MnU2kme5hhTwDwr303THzqVzUuJxJi8YOj+ELDEKUCISVm60gkEqPLFn9kF5fDPO8V/r68hXXMJQt37HHqg7uzu8JUQxGmmkoyiJS0dFwuB1M9zWUdBiGEEEIIaUaoxiIhpFV7cfsRlARljLFAAxsZRdM8bB3hDABY6TUGwhodZCdFXINdViL+qWPzCAJ03HQLzzMKwRMJceDcBmiVFjLmMxTVMG3AHPRrqwcvCy1KKhJCCCGEEEKaDEosEkJatZVrDrHGHhtYyyCS5kNZno8jn3bAM21THLTvzpiTEwmxzm83PvsvBEVlAhlF2HyEp+RVdeX98e5BdE1+yjpm6sC5SFbTwSofh8YOjxBCCCGEEEJqRYlFQkir1iHtOWvssYEN1BWpUkRtRrkaAwBWdB6Lci5zy/OQmAD0iwvCpH+DZRBZ85GaVwLXDRVbyT+OvI3FD46wjtnsPgRnrT0BAB3NNBszPEIIIYQQQgh5K0osEkJatY5p0YzH5VwewnQtcHNGFxlF1HykLuuP51rG2Oruy5r79eYOnApOQP8/78kgsubhy6OhAID2ac+x+9JvrPlgPSt8230SgIpmLYQQQgghhBDS1FBikRDSav10MhAd0l4wxkJ1LVHKl0c7Ew0ZRdV86KspAABWeI1BhqIaY84pMwELHp3A1egMFJTSlmhJzjxJg2FBFk6eXMWq85krr4yxvt+glC8POR4Ho92MZBQlIYQQQgghhEhHiUVCSKt18+AFyImEjLE7po60DfodjHc3QY6iKpZ6T2DNLb13CG0zEzFqbwBG732Ev+/HQywWyyDKpkMoEuOny8/AXXAGaqVFOHVyJUwLMpnHcLgY5/sNnmmbAgCC5/dAGx0VWYRLCCGEEEIIIbWixCIhpNXqlvSENXbHxBG7x7Rr/GCaKXlexcfI364DEKjfhjGnKCzHjsubcS0yDcfCUvDl0VD87h8ngyibjqWXIrH8chQUy0tx6uRKeEio8bmw+2RctOoAALj4eSc4GKixjiGEEEIIIYSQpoASi4SQVqtrYgRr7I6JI4Y5Gcogmubpm14VHbSFXB6mDZgDAYf5seKdHIlvA45VPd4d8LJR42tK7sVl4edrz8EXCnD47Fr0TAxnHbPbqQ82dhgGAFjU2wb97PQaO0xCCCGEEEIIqTNKLBJCWieBAJ1TohhD0ZpGyNPUAZfLkVFQzY+DgRqmepoDAEL022Ct5yjWMT/5H4R3YsXq0KCkvEaNrykoKBVgx4N4eG/1B18owL4LGzEkJoB13A0zF8zoOxPgVPz+rfKxB4dDv4uEEEIIIYSQposSi4SQVqns0WOolpcwxu6YOGLfOHcZRdR87fjYDQt6VqxcXOE1BhE6Zox5nliEg+fWQ6eoIqn4y/XoVlNrUSQSw22DH744EgoFQRmOnv4FY6Nus457YGiHYcOXoIwvBwCY7GFGSUVCCCGEEEJIk0eJRUJIq3Rl90nW2G1TJ/jY6zd+MC3AN68Ti6V8eYz1XYhivjxj3qwgA8dOr4a8oByLz0fiQGCiLMJsdA9eZiM2qwiqZUU4d/xHDI15yDomTNcCg0YuQ4G8Msa7m+DnQQ7YPspVBtESQgghhBBCyLuhxCIhpFUqueHHGrtj4ghleeoI/T40leSgwK/4SInQtcC8Xp+xjume9ATbr/4OiMXY/TChsUOUibU3nsOwIAvX/vsevRPCWPPPNQ0xYNSPyFZSQ+jXPXBgQnt829sG8nz6eCaEEEIIIYQ0fXQFTQhpdcQCAXokMBtnpCpr4rmmkYwiav7keFxM72yB327HAgD+dhmAHgnhGB95i3Hc5IjrSFLVxQ+ciRAIReDzWl4C7WR4CkbueQQA6JAajYBTq2BSkMU6LlzHHAM++hGpqtroZa0DZyP1xg6VEEIIIYQQQuqFEouEkFbn8qFLGFCSzxjzM3XG6sEOMoqoZdgwxAkPXubgfnw2wOHgs/6zYZ2Tik6pzxjHLXnwHwrlFCD/bcXj0a5G2DzCBQZqCjKIumHNPRmOLXcqkqtjn/ph5+UtUBKUsY57aGiLQSOXIUupIpm4wse+UeMkhBBCCCGEkIbQ8paKEEJILcRiMfz/OMgav2TVHjM6WzZ+QC0Il8vByckeMNNUBACUyClgxLDFSFDVZR27+s5+LL7/HyAW40hoCmYcC23scBvcyD0B2HInFkrlpfjjyjYcPL9BYlLxhpkL+o5eUZVUBIBO5lqNGSohhBBCCCGENAhKLBJCWpXbMVnoHxfEGr9s4Q4NJTkZRNSy6KspIGh+D8zoYgkASFXVxuCRS5GlqMo6dqX/AWy8uQMcsQgnw1NxODgJcVlFjRzx+xOLxdjxIB5fHAmB56ZbOBmeCtdXsQg4MB9fhl6U+Jxdzn3hM3I5CuSVq8Zeft8XPC51gCaEEEIIIYQ0P7QVmhDSqgRGxGNWShRjLFTXAslqOjKKqOXRVpbH7yNd4GmmiSmHgxGuZ4mBo37E1SPfQ72smHHs3MAzsMh9hUk+/8O4A4EAgM3DnTGrq5UsQn8nnX67jUeJuQAAeUE5fgg4hsUP/oOCUMA6VsjhYkGPKfit/VCAU5FEnNvNCr8OdQKHQ0lFQgghhBBCSPNEKxYJIa1K8cXL4ItFjLHLlu3x61AnGUXUck3yMEPBah8AwKPXNQXz5JVYxw1/8QD3Dn4D+8yKTtFzTobjWGgywlPyIBaLGzVmacRiMQpKBRCJKuL5Lzi5KqnYLTEcQfvn4se7ByUmFTMV1TB45FL81mFYVVLx3uyu2DjMmZKKhBBCCCGEkGaNViwSQlqNA48ToXfnBmv8omV7HPUwk0FELZ+yPB8eZpoISMjBXRNH9Px4NS4cXw6DolzGcY5ZCXh84H/4tttkbHUfjNH7HgMAxrmb4MB4d5km4M49ScOQXQ+rHjsbqiE8NR822clYeWc/Pn7mL/W5181c8KnPfMaK2BOTPdDJgmoqEkIIIYQQQpo/WrFICGkVCksF+PRgIPrHBTLH+Qq4Y+IITaqv+MGcnupZ9XWwgTW6jV2DaE0j1nFKgjJsvvEXbh7+Dk4Z8QCAf4OS8MnBIDxJre7inVFYir0BCbjwNO2Dr2gsE4gYSUUAyI6Oxdar2xGx5yupScVyLg/fdf0U/T/6iZFU3DrCBcOcDT9ozIQQQgghhBDSWGjFIiGkVbgbn42Oac9hnp/BGL9p5oIyPiUVPyR9VXmYayrhZU5FfcXnWsbwnLAB/5zfgEGxj1nHd096gqB9c7HTpT9WdxqNg0HAwaAk/DXaFd3b6MB+TfWq0zndrLB+sH2DxisQijDvVAS23Y1jjDtlxOPrRycw4akf5ERCqc9/YGiHL/t9hVB9Zp3IOd2sMNWTVsYSQgghhBBCWg5KLBJCWoVn6QX4SMLqslM2nbB+iKMMImo9OBwOlg9oiy+PhqBcWLHCMFdRFUOHf4/v7/+H7+8fZtW95ItF+DL0IqaEX8VOl37Y0HE4vjjCfu3Nt2Ox+XYsbDT4GGmrgo9slCEWixGUlIvHiTkY724CZXn2R11Ici4uRL6CmaYSRrsaQ57PxY3nGTgRnoqtd2KrjlMsL8Wo6LuYGn4VvRLCav135skrYXHXT7HdbSBEXB4AYJiTAca0M8FYd5N3/c9GCCGEEEIIIU0eJRYJIa3CX/ficPzZXcaYkMPFSRsvxHhZyCiq1mOyhxm6t9HG5ah0zDxekaATcXn4qcs4XLJ0x/4Lv8ImJ5X1PHmRADNCLmBGyAVcM3fFTud+OGXjhWI5BcZxz3MFWPsoF2djivDk0MWq8S+OhOLnQQ6Y190KCnweisoEcNvghxeZRVXHfHIwiPFaSuWl6B8XhGEv7mP48wfQLC2s9d8m4HCxw7U/fuw8Dmkq1bUTb3/lDW8r7br/RyKEEEIIIYSQZoYSi4SQVoEXEgLrXGbiys/UCRnKGlBVoLfCxtBGRwXTu6hgYgdTPErIQe/t9wAAD4zt4fbpFnz38Ai+CTgusbMyAPR5GYo+L0NRzJfHDTMXnLfqiJtmLojUNqlaIfgkq5z1vO/OP8V3559KjUupvBTt016ge1I4uiVGoHtiBJQFZXX6Nx217YIlXT9BtHb1isQ/RrlgsocZFPi8Or0GIYQQQgghhDRXdDVNCGkVPoq+yxo7ZueNpwt7ySCa1k1VgY+eNrq4P6crvDbfAQAUyylgqfdE7HPsjeV3D2Js5G1wIbkxi5KgDINiH1fVZyzkKyDQwBpR2qaIV9fDSzU9ZCipo1BOEUVyChADUBSUQ1FYBu2SApgUZMK4IAvWOSlwzoiHdU6q1O8lSRmXjwOOPbGh43A81TGvGnczVsfWES60SpEQQgghhBDSalBikRDS8onFGFVjG7QIHJyw8cLv+qoyCop4mmuh8OdBGLzjAW6+yARQ0dhl4uAFWN3pY3x//zA+jrrz1qSfiqAU3ZKeoFvSkw8ab4KqLvY698Z2Vx9Gp+cNQx0xs4slrVAkhBBCCCGEtDqUWCSEtHihp6/BNTuJMXbHxAFabcylPIM0FiU5Hg5/0gGDdzzAo8TcqvEnuuYY7/sNFnf7BFPDr2JK+FWYFGQ1enz5cko4b9UBe5z74IpFu6ot15XCFvSEk6Fao8dFCCGEEEIIIU0BJRYJIS1aYakAd5dtgGuN8aN2XbFxmJNMYiJMeqoKeDC3GxJzS1BUJoTD2htVc3EahljqPRE/dh6HfvHBGPriAQbFPIJ5fsYHi+e5piFumLnipI0Xrpu7opQvL/m473qjjY7KB4uDEEIIIYQQQpo6SiwSQlq09RfDMTfyNmOslMfHQYfu2GirJ6OoSE0cDgdmmkoAgJRl/eHz930EJ+dVzQu5PFy06oCLVh0AsRjOGfHomvQEHdOeo0PaczhlvARfLHrn75uiooVwHXNE6FrggZEdbps4MbY5V9JUksO5aZ7wstBCqUAERTna9kwIIYQQQgghlFgkhLRoz/46AM3SQsbYaWtPZCmpg8flyCgqUhsDNQUEzu+Bk+EpGLnnEfsADgfhepYI17OsGuKJhDAuyIJF3iuY5WdAvawIyuWlUCkvAQCU8OVRwpNHgbwiklR1kKyqjSRVHeQo1l5jk8/lIHZJH5hoKFWNUVKREEIIIYQQQipQYpEQ0mKJxWJMCb/KGt/t3A/353SVQUTkXQx3NsK87m2w6VZM1VhHUw180dkCewIS8CghF2XCilWKQi4PCep6SFBvmFWoi3rb4LvetlBTpI9JQgghhBBCCJGGrpgIIS3WvsM38cnLUMZYoqoOLlu0w3lzLRlFRd7FhiGO+MzTHGkFpehsoVW1WvCzThYAAP/YLHT73b9e3+Pql53R01oHHA6QUVgGRT6PEoqEEEIIIYQQUgd05UQIaZHisoqQu3YjuBAzxvc79oKKkoKMoiLvisPhwNFQDY6Q3HnZ20obEQu64/fLQdBR4mGwpRKcXFxwIyYHewMSYKmtjHHuxmhvqln1nJS8Emy6FQMOh4Ove7SBnmr178ObXxNCCCGEEEIIqR0lFgkhLZL70lNICL/CGBNyuNjh0h8zuljKJijyQdjqqmCKU3XiUYHPg6+jAXwdDSQeb6SuiDW+jo0VHiGEEEIIIYS0WFxZB0AIIQ3twONEfBZ2BaqvG3dUOmnTCbGahljtYy+jyAghhBBCCCGEkJaDViwSQlqcdVcicSboDGt8U/thuDGjM7jUDZoQQgghhBBCCKk3WrFICGlRxGIx3P3Owjw/gzEeYGADfxMH9LDWlVFkhBBCCCGEEEJIy0KJRUJIizL938f44d5h1vimDsOg8LqjMCGEEEIIIYQQQuqPtkITQlqM5NwSiPbshXVuKmP8uaYhjth5I35xHxlFRgghhBBCCCGEtDyUWCSEtBizDz/Gr/fZqxV/6jwOvR2MYKSuKIOoCCGEEEIIIYSQlokSi4SQFiG/RACLf3fDIj+dMR6pZYKD9t3hP6CtjCIjhBBCCCGEEEJaJkosEkJahG933cTPd/9ljf/YZRxEXB46WWjJICpCCCGEEEIIIaTlouYthJBmTyAUof32ddAoK2KMB+lZ4YidN4582kFGkRFCCCGEEEIIIS0XrVgkhDR7XSZtwv2wK6zxub2/QDszbYxyNZZBVIQQQgghhBBCSMtGiUVCSLO25kIEdl7aDC7EjPFDbbvhjqkTSud0lVFkhBBCCCGEEEJIy0ZboQkhzdbL7CKU//QTXDLiGeNFfHks7D4Z8d/3hRyP3uYIIYQQQgghhJAPgVYsEkKarVGzt+Peg6Os8eVdxiNRXQ9mmkoyiIoQQgghhBBCCGkdaCkPIaRZmrv3Dg6dXQe+WMQYv2fUFr92GIbFfWxlFBkhhBBCCCGEENI6UGKRENLsCIUidF+1ENa5qYzxEp4cpg6YCxGXh3HuJjKKjhBCCCGEEEIIaR0osUgIaVbEYjEW9f4Mo6LvseYWd/sUUTqm2P6RK5wM1WQQHSGEEEIIIYQQ0npQjUVCSLPxJDUfi6f/guO39rDmTlp3wqb2Q3FoYgd83M648YMjhBBCCCGEEEJaGUosEkKajU++2Ylb5zaACzFjPE5d///t3X18zfXj//Hn7MKu2Mzmaq7HRvj4VEL4UMpFhJKLkFB9IiFURDUlkchFhJKSPq6vIvpQPiSSKVERLRO25WLGsM2uzs7vj/28v+eYbefsnO0Mj/vt1q3365z3+/V6nZmX1557vd8vPdXxBX07tKVah5V3Ue8AAAAAALi9cCs0gJvCgkVfacvaCfLLSrd6PdXDSz27jNVD90YQKgIAAAAAUIxYsQigxJvy4X814MX+Crl6Odd7/TuN1v5KdfVjv7tc0DMAAAAAAG5fBIsASrRGA+fq6zWRqpxyMdd7Y/81QOvrttCp1x50Qc8AAAAAALi9cSs0gBJpz4kLurfvNO1cOe6GoeK0Jo9q2j3d9ecrbVU10McFPQQAAAAA4PbGikUAJYrZbNaojYd1duFn2r71fflkZeQ6Z17jThrbeqASJnZUeT8vF/QSAAAAAAAQLAIoUV7bdEgVprylWVGrb/j+vMadNPyBZ/X3hPaEigAAAAAAuBDBIoASY+7y7/TQS0PU6u8jN3x/crOeeq3lEzrwYhtVKutdzL0DAAAAAACWCBYBuFxapkmD+76hmZtmKSgtOdf7JrdSGn3f05pzVxdFv9JWdYL9XNBLAAAAAABgiWARgMukZ5n0wGtrNHrtLH12bO8Nz7nk5avHH35ZW2vdrStvPyS/0gxbAAAAAACUBPyEDsAlXlx7QJkfLNDm7/+jgIzUG55zIKSW+jz8sjzr11f2y/cVbwcBAAAAAEC+CBYBFKvVB+O1YsJcTdm1ROEX/87zvDl3PqwxrQcqLDRIO4beW4w9BAAAAAAAtiBYBFAsTiSm6Pl/v6tX967S2tNH8zzvjG+ghrQbqo11mmtRr8Ya1LR6MfYSAAAAAADYimARQJHJyMrWvJ3R2jvzE43dt0abE/7K9/yFjdprbOuBSvL2l2naw3JzcyumngIAAAAAAHsRLAJwqrRMkxJSMjR3+XfyX/Kpnvnta41MuZjvNYfKV9ewB4bou2oNVbOcjxLHP0CoCAAAAABACUewCMApUjOy1GPBbvlt26Inft+hycd/krs5O99r4v2DFNminz5r0FbRr7ZT7fJ+xdRbAAAAAADgKIJFAIVmNpv17e9/a1rkQj1+9DutOLZXZTOuFnjdOZ8Azby7m+bc9bBSPb11ekJ7VSxTuhh6DAAAAAAAnIVgEYBdzGazThz5S2+Nnq3Ox39U+xMH9VVmwWGiJMX6B2v6PY/q40bt1eKOUCU+3VSlPdyLuMcAAAAAAKAoECwCyFOWKVtRp5J0If6Mfl25Wf57dqlN7CH9I+GEPpHZ5nr+V/0fWtD4IW0Ia6Ysdw9lT+9ShL0GAAAAAADFgWARgMFsNut4QrJO7D2oJfPX6Z4zf6pl/O+6N+GEutgRJErSee8yWnrHfZrf+CFFB1XV/McaadGdoSrr7VlEvQcAAAAAAMWJYLEIxMTEaMWKFYqKilJcXJyysrJUoUIFhYeHq0uXLmrXrp08PPjSw7WyTNk6cfqips7fpLQDv6jR+ZO662yM7jnzp8IyUvVAIeq84umjL+o00/L6bbStemMNallbR3s0dnrfAQAAAACA65FuOdmcOXO0YMECZWVlWb0eGxur2NhY/e9//1PDhg01bdo01a5d20W9xO0mMe6Morb/pM9X7VT4xb/V4PxJNTx/SuEX47WwgJ2bC3LWN0Bf1WqizbXv0X9r3S35+ihlSmcn9RwAAAAAAJRUBItONGnSJH3++edG2cPDQxEREfLx8VFMTIwuXrwoSTp06JD69++vVatWKTQ01FXdxS3EfOmSTv32p56d9ZWqXjmvGpcTFJZ0WnX+/3/l066ok6ROTmgrs5S79lWqqx3V/6FNte/Rj5XqyuxWSkPuraGL3RrKy6OUE1oBAAAAAAAlHcGik2zZssUqVOzQoYMiIyMVHBwsScrMzNS6des0ZcoUXb16VefPn9fw4cO1du1aubm5uarbKMGyMzJ18lisdkb9oX0//aGLJ+MVknpZFa4mqUryBYVeSVTV5POqduW8ymZcVQ1JW4ugH5ml3PVjxbraWa2hvq3WSN+H1leqp7fahQdr8SMNFRHiz/cwAAAAAAC3IYJFJ8jMzNTUqVON8v33369Zs2apVKn/W7nl6emp3r17KzQ0VIMHD1ZWVpYOHz6sTZs2qUsXdsi92ZmyzboWraWbsuXtUUpukpIvp2jL/r+UeOa8Lp89L7+UZP15LE5JZxIVmJ6swPQUBaanKCA9RQHpqQpKu5ITHqYmKSgtWbVkVi1JA4vxsxwtF6p9lcP1U8W62le5rn4JqaV0Dy91qldB73Wur4aVyxZjbwAAAAAAQElFsOgE33zzjf7++29JObc/R0ZGWoWKllq1aqXevXtr6dKlkqRPP/2UYNFB2ReS5H75stIyTLqYXUoXUjKVbTIpJS1DV9OyVN7XQ77uboq7kKLYiymq7O+lfScu6KtDp3VHUGmlplxV88p+Kp2dJW+TSdsOx8srO0tepv//X3bm/x2bsuRtypBvZrp8M9Pll5WW8//MdPlmpcsvM01+mWnKysyQb1a6/M3Z6uHqL1AeznuX0W8hNXW4fHX9FlJDh8rX0KHgGrpS2lfxke30qJeHyngzRAAAAAAAgBsjNXCCr776yjhu0aKFqlSpku/5lsHi4cOHFRsbq2rVqhVpH29F5owMbWzQRt1i9sndYgOSkDzOr2lxfJ+kMXmc18cpvSsZrnj66M9ylRUTWEkxgZV1LLCyjgVWUXS5KjrjV05Bfl768YXWGlbe19VdBQAAAAAANxmCRQeZzWZFRUUZ5ZYtWxZ4TUREhEJCQpSQkCBJ2r59uwYMGFBkfbxVHX5jmrof2+vqbrhMllsp/e0fpDj/YMWVKa+4MsE5//nnHMcEVlKCT4Dk5qZHG1bS6+3CVa+Cv7w93V3ddQAAAAAAcAsgWHRQfHy8Ll++bJQbNmxo03URERFGsPjbb78VSd9udUmn4l3dBadL9vRWgk9ZnfMNVIJvWSX4BCjBN0DnfAOU4PP//+8boDO+5XTGL1DPt66je6oFqkY5H3WrHqjSHoSGAAAAAACgeBAsOujEiRNW5erVq9t0XdWqVY3jU6dOObNLtw3/pwYqedWn8s9Mc1kfsuWmVM/SSvEsrRRPb6V65Pw/xbN0zuse3kr1LK0rXr5KKu2nJG8/XfLyVZK3X065tL8ulc5577K3n/5RNUh3VQ1Qm7DyurdGOVUL9JG7m5tKlWLXZQAAAAAAULIQLDro2qpDSSpVqpSCg4Ntui4k5P+eBGhZB2z3z7ZNtWX1Vu2cvkjBVy8r281N2W6lrvv/dceyfj+zlIcy3C3+M8qeFsfXXvc0yikeOeGhvL3V+85Qda5fUXdXDVQFL3eV9/NShilbV9KyFOTrKfdSbnJzIxgEAAAAAAC3FoJFB126dMk49vPzy3M36Ov5+/vfsI7ilJWV5ZJ2nen+js0UUtXPKDds2FDu7q69HdicbZKnmxTk4y6Zs2UyubQ7wC3PdN1fsuvLAG59jAMAGAcAMA64BsGig9LT041jb29vm6/z8vIyjjMyMpzaJ1tkZ2frl19+KfZ2i9qhQ4dc3QUALsY4AIBxAADjAADGgeJh2/I65CkzM9M4tnW1oiR5ePxfpnsrrBwEAAAAAADA7YVg0UGWt91mZ2fbfJ1lmOjp6enUPgEAAAAAAABFjVuhHeTj42McW94WXRDL259Lly7t1D7ZolSpUmrUqFGxt+tsJpPJanlzSXjGIoDixTgAgHEAAOMAAMYB+/322292LZK7EYJFBwUEBBjHKSkpMpvNNu0AnJycbBwHBgYWRdcKZHk79q3C3d39lvxcAGzHOACAcQAA4wAAxoHiwa3QDqpYsaJxbDKZdPHiRZuuS0hIMI6Dg4Od3i8AAAAAAACgKBEsOqhGjRpW5djYWJuui4uLM45r1arl1D4BAAAAAAAARY1g0UGhoaFWtzIfOXLEpuuOHj1qHNerV8/Z3QIAAAAAAACKFMGiEzRr1sw43rNnT4HnHz16VOfPnzfKzZs3L5J+AQAAAAAAAEWFYNEJ2rdvbxzv2LFDZ8+ezff85cuXG8dhYWGKiIgosr4BAAAAAAAARYFg0Qnat2+vChUqSJIyMjL0yiuvKCsr64bn7tq1S6tXrzbK/fv3L5Y+AgAAAAAAAM5EsOgEXl5eGj16tFHes2eP/v3vf1tt5JKVlaVVq1Zp+PDhMplMkqTw8HD17Nmz2PsLAAAAAAAAOMrD1R24VTz66KM6cOCAVq5cKSknXGzfvr0iIiLk7++vmJgYXbhwwTg/MDBQs2fPlocHfwQAAAAAAAC4+ZBqOdGbb76pcuXKadGiRcrMzFR2dvYNd4kOCwvT7NmzVbt2bRf0EgAAAAAAAHAcwaITubm5adSoUeratavWrFmj3bt368yZM7p69aoCAgJUv359dezYUV27dpWXl5eruwsAAAAAAAAUGsFiEQgLC9PYsWM1duxYV3cFAAAAAAAAKBJs3gIAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbgSLAAAAAAAAAOxGsAgAAAAAAADAbm5ms9ns6k6geOzfv9+qXKrUrZErZ2dnG8e3ymcCYB/GAQCMAwAYBwAwDtjH8uslSXfffbfddXg4qzO4+Vz/DXQruBU/EwD7MA4AYBwAwDgAgHGgeBDfAgAAAAAAALAbKxZvYywLBgAAAAAAuD05Y1Unz1gEAAAAAAAAYDeWrAEAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALsRLAIAAAAAAACwG8EiAAAAAAAAALt5uLoDuD3FxMRoxYoVioqKUlxcnLKyslShQgWFh4erS5cuateunTw8nP/tefr0aa1YsUK7d+/WyZMnlZaWppCQENWuXVudOnVSp06d5OPj4/R2AeRW3OPAb7/9ph49eth93dKlS9WkSROn9QNA/mbPnq158+YpNDRU27dvL5I2mA8AJVtRjgPMB4CSJyoqSps3b9aBAwd07tw5JScny9/fX5UrV1aTJk3UvXt33XHHHU5v98KFC1q9erW+/fZbHT9+XCkpKQoKClL16tXVoUMHde3aVQEBAU5v91bjZjabza7uBG4vc+bM0YIFC5SVlZXnOQ0bNtS0adNUu3Ztp7W7YsUKvfPOO7p69Wqe59SsWVPvvvuuGjdu7LR2AeTminFg1apVev311+2+jh8kgOLz66+/qm/fvsrMzCyyYJH5AFCyFfU4wHwAKDni4uI0duxY/fTTTwWe27lzZ02cOFH+/v5OaXvbtm169dVXlZSUlOc5ISEhevvtt9WmTRuntHmrYsUiitWkSZP0+eefG2UPDw9FRETIx8dHMTExunjxoiTp0KFD6t+/v1atWqXQ0FCH2128eLGmTJlilN3c3FS3bl0FBgbqxIkTOnfunCTpxIkTGjBggJYuXaoGDRo43C6A3Fw1Dhw5csQ4rlGjhqpVq2bTdfyWEigesbGxGjp0qDIzM4usDeYDQMlWHOMA8wGgZDhx4oT69OmjCxcuGK95enoqPDxcZcqUUWJioo4dO6Zra+E2b96smJgYLV261OFwccuWLRo9erRMJpPxWq1atRQSEqL4+HjFx8dLkhISEvTcc89p3rx5uu+++xxq81bGikUUmy1btuiFF14wyh06dFBkZKSCg4MlSZmZmVq3bp2mTJlirCJo0KCB1q5dKzc3t0K3e/DgQfXt29cYNO655x5NnjxZ1atXlySZzWZ98803ioyMNAKNSpUqacuWLdwGBTiZq8YBSXr88cd14MABSdI777yjRx991KH6ADhPdHS0nnnmGZ09e9Z4zdkrlZgPACVbcYwDEvMBoCQwmUx65JFHFB0dLUlyd3fXc889p0GDBlmFhmfPntWMGTP0xRdfGK917NhRs2fPLnTbsbGx6tq1q1JTUyVJ4eHhmjp1qtWt1nv37tX48eONgNHPz0///e9/VbFixUK3eytj8xYUi8zMTE2dOtUo33///Zo1a5YRJkg5v53o3bu35s6dazxX7fDhw9q0aZNDbU+ZMsX4IaJBgwb6+OOPjR8ipJzVCu3bt9fixYvl5+cnSTpz5ow+++wzh9oFYM2V44DZbNYff/xhlOvVq+dQfQCcZ8OGDerVq5dVmFAUmA8AJVdxjQPMB4CSYd26dUaoKOWE/MOHD8+1ErFixYqaOnWqBg0aZLy2ZcsWHTx4sNBtz5w50wgVQ0ND9dlnn+V6fmPz5s21bNkyVahQQZKUkpKiuXPnFrrNWx3BIorFN998o7///ltSzm2PkZGRKlXqxt9+rVq1Uu/evY3yp59+Wuh2f/nlF6tB5/XXX5e3t/cNz61Xr56ef/55o/zZZ59ZLY0G4BhXjQOSdPLkSWMC4enpqbCwMIfqA+C4s2fPauzYsRozZky+zzt0BuYDQMlUnOOAxHwAKCk2bNhgHLdq1Updu3bN9/zRo0cbIZ+Uc1t0YZw9e1Zbt261qjcoKOiG51aqVEmvvvqqUV63bl2+z2O8nREsolh89dVXxnGLFi1UpUqVfM+3DBQOHz6s2NhYh9sNCwvTnXfeme/5PXr0MFZJXbhwQfv27StUuwByc9U4IFk/T6lWrVry8vIqdF0AHDd//nx17NjR6tam2rVra8iQIUXSHvMBoOQp7nFAYj4AlAQZGRn6+eefjfLDDz9c4DVeXl5q1aqVUf7tt98K1fbWrVuNzSPLlCmjDh065Ht+u3btjOAxKytL27ZtK1S7tzqCRRQ5s9msqKgoo9yyZcsCr4mIiFBISIhRLuyzVX744Qe72g0ICFDDhg2N8o4dOwrVLgBrrhwHJOno0aPGMbc9Aa63aNEiY9WQJPXs2VOrV69WjRo1iqQ95gNAyVPc44DEfAAoCeLj41W6dGmjbOvK4cDAQOP42rOQ7WU5H2jatKk8PT3zPd/d3V333nuvUWY+cGMEiyhy8fHxunz5slG2nKjnJyIiwjguzG8kMjMzdfz4caNs666OjrYLIDdXjQPXWK5Q4AcJoORo2LChPv/8c02aNMnhHR7zwnwAKNmKYxy4hvkA4Hq1atXSgQMH9NNPP2nz5s0KDw+36bprG6lIhd+l3fIZq7bOByzHCuYDN+bh6g7g1nfixAmrsuWD0vNTtWpV4/jUqVN2txsXF6fMzEyjbOtvPx1tF0BurhoHrrH8QSIiIkJHjx7V2rVrFRUVpbi4OGVlZSk4OFiNGzfWQw89pHbt2jm8CzWAvDVt2lTdu3fXAw88UOR/15gPACVTcY4D1zAfAEqOMmXKqEyZMjadm5ycrO+//94oF+b5qBkZGcbz3qXCzQfOnj2rtLS0PJ/TfLsiWESRS0hIMI5LlSpltQNsfixvgbSsozDtXl+fre0mJiYqOzs7zw0mANjGVeOAlPN8tHPnzhnljz/+2Oo2iGvi4+MVHx+vr776Sg0bNtTMmTNtDkAB2GfevHnF1hbzAaBkKs5xQGI+ANzMFi1apOTkZKN8//33211HQkKCzGazUbZ1PnD9zy0JCQmqVq2a3e3fypgdochdunTJOPbz87N5Um55K4RlHYVpV5LKli1r03WWvzUxm81Wt28CKBxXjQOS9eoE6f+ereLj46N69eqpadOmqlmzptU5hw4dUs+ePfX7778Xqk0AJQfzAQAS8wHgZvXrr79q4cKFRrlmzZpq27at3fU4Yz4gifnADbBiEUUuPT3dOLZnybDlLm0ZGRkOtWtP29c/wPX6egDYz1XjgJT7Bwl/f3+NHj1ajzzyiPz8/IzX4+Li9P7772vDhg2SpKSkJA0dOlTr169XuXLlCtU2ANdjPgBAYj4A3Izi4uI0dOhQq0eavPLKK/LwsD/Kuv7fccsNZPJz/e7xzAdyY8UiipzlIGDPLUSWg8W1LeHtcf01trZ9/SBlMpnsbhuANVeNA5L18x3LlSunNWvWqF+/flY/REg5z0959913NXz4cOO106dPa8GCBYVqF0DJwHwAgMR8ALjZnD59WgMGDLB6pMnAgQMLdRu0lHs+4O7ubtN115/HfCA3gkUUOcu/iNnZ2TZfZ/kXv6Bt4G/k+h8cbG37+gGnMG0DsOaqcUCSJk2apH379mnt2rVavny5atWqle/5zz//vO68806jvHLlykKvlgTgeswHAEjMB4CbSUxMjPr06aO4uDjjtVatWumll14qdJ3XzwdsDQivP4/5QG4EiyhyPj4+xrE9y4Yt/+G2dZlyXu3a0/b1E4bCtA3AmqvGgWsCAgLUsGHDAn+IkCQ3Nzf179/fKF+9elX79+8vdNsAXIv5AIBrmA8AJd/PP/+sfv366fTp08ZrzZs319y5cx0K9a6fD9j6i4LC3kJ9OyFYRJELCAgwjlNSUqx2YsqP5a5PgYGBDrV7fX22tuvh4ZHrYa0A7OeqcaCw7rrrLquy5e1TAG4uzAcAFBbzAaB4ffnllxowYIAuXrxovNamTRt9+OGHuYJBezljPiAV788kNwuCRRS5ihUrGscmk8lqkMiP5bMUrt/i3d52Jen8+fN2txsUFCQ3Nze72wZgzVXjQGGVL1/eqlzYHakBuB7zAQCFxXwAKD5z5szRSy+9ZLWSsGvXrpo3b55dmz/mJSQkxOp2aFvnA5bnubm55RoXQLCIYlCjRg2rcmxsrE3XWT5PwZbbFa5XpUoVq6XShWm3Zs2adrcLIDdXjQOFdf2tEdc/2B3AzYP5AIDCYj4AFL3MzEyNGTNGc+fOtXp98ODBevfddwu1A/SNeHl5qXLlykb51KlTNl1nOW+oUqVKrl2iQbCIYhAaGmq1XPjIkSM2XXf06FHjuF69ena36+npqfDwcLvbtTyvfv36drcLIDdXjQPx8fGaNm2axo0bp2effdaqvvxcHzxYTkIA3FyYDwBgPgCUTBkZGRo2bJg2bNhgvObh4aFJkyZp9OjRTr9boGHDhsaxreMA84GCESyiWDRr1sw43rNnT4HnHz161GrJcfPmzYul3aSkJP3+++8OtwsgN1eMA2azWR9//LHWrVunnTt3avfu3TZdt2vXLuPYzc0t1zOWANxcmA8AtzfmA0DJk5WVpREjRujbb781XvPz89OHH36onj17FkmbTZs2NY6joqKUnZ2d7/kmk0lRUVFGmfnAjREsoli0b9/eON6xY4fOnj2b7/nLly83jsPCwhQREeFwu4cOHdKhQ4fyPX/VqlXKysqSlPNw1xYtWhSqXQC5uWIcqFq1qkJDQ43yunXrZDKZ8r0mOTlZ//nPf4xyq1atFBQUZHfbAEoO5gPA7Y35AFDyTJs2TTt27DDKQUFB+vzzz9WqVasia/PBBx+Uu7u7pJxnJ37zzTf5nr9161ZduHBBUs5KSsv5BP4PwSKKRfv27VWhQgVJOcudX3nlFWPCfr1du3Zp9erVRrl///6FbvfOO+9UgwYNjPK4cePy3P3pyJEjmj9/vlHu1auXUx4SCyCHq8aBHj16GMcxMTFasGBBnudmZmbqlVdeMUJPNzc3DRkypNBtAygZmA8AYD4AlBw7d+7UZ599ZpQDAgK0ZMkSq3+ri0KlSpX0wAMPGOW33347z8UOp0+f1uTJk41y+/btc20IhxwEiygWXl5eGj16tFHes2eP/v3vf1s9tyQrK0urVq3S8OHDjd8ghoeH57kMum3btoqIiFBERITatm2bZ9tjx441ns0QHR2t/v37Wz1PwWw26+uvv9bAgQOVmpoqKWfHqMGDBxf+AwPIxVXjwKBBg6xWKbz//vuaNGlSrp2pjxw5okGDBln95vKJJ55QkyZN7P+wAIoN8wEAzAeAm4fJZNLbb78ts9ksKSe4f++991S3bl2H6u3fv78xDuR3p9OoUaNUunRpSdLZs2fVt29f7du3z+qcqKgo9evXTwkJCZIkX19fq59jYM052+sANnj00Ud14MABrVy5UlJOqNC+fXtFRETI399fMTExxjJjSQoMDNTs2bMd3gWqWbNmGjVqlGbMmCFJ+v3339WtWzfVqVNHQUFBOnnypNVvKby9vTVr1iyVKVPGoXYB5OaKccDHx0cffvihnnjiCSUlJUmSPv/8c61YsULh4eHy9/fX6dOnc+0M9/DDD2vcuHGFbhdAycJ8ALi9MR8ASoYtW7bo5MmTRtnHx0eLFy/W4sWLba4jODhYU6dOLVT7tWvX1qRJkzR27FhlZ2crLi5O/fv3V/Xq1VWpUiWdPn3aauFDqVKl9Pbbb6tatWqFau92QLCIYvXmm2+qXLlyWrRokTIzM5WdnX3D3RnDwsI0e/Zs1a5d2yntDh48WH5+fnrvvfeMVQjHjh3LdV6lSpU0ffp0fiMJFCFXjAN169bVmjVr9PLLL+vAgQOScm5zOnz4cK5zvb29NWTIED377LPGM1gA3BqYDwC3N+YDgOtt2bLFqpyammrzhkrXWK4+LoyuXbvKy8tLEyZMMH7RcOrUqVy/WAgICNBbb72lDh06ONTerY5gEcXKzc1No0aNUteuXbVmzRrt3r1bZ86c0dWrVxUQEKD69eurY8eOxl90Z3riiSf04IMPatWqVdq5c6fi4uKUnJwsf39/hYeH68EHH9Rjjz0mf39/p7YLwJqrxoFq1appxYoV+v7777Vp0yYdPHhQ586dU3p6uoKCglStWjW1adNGXbp0UeXKlZ3WLoCShfkAcHtjPgC41vHjx13dBUlSx44d1bx5c61evVrbt2/XyZMndenSJfn6+iosLExt2rRR79692bTJBm7maze2AwAAAAAAAICN2LwFAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYjWARAAAAAAAAgN0IFgEAAAAAAADYzcPVHQAAAChKbdu2VXx8vMP1LFmyRM2aNXNCj4Dik56erh49eig6OloDBgzQ+PHjjfeioqL05JNPGuU//vjDobYiIiKM42HDhmn48OF21zFnzhzNnTvXaX0qyIgRI7R161Y1b95cn376qUqVYt0FAAD24F9OAAAA4BY1ZcoURUdHKzg4WCNGjHB1d0qcsWPHytvbW3v37tXHH3/s6u4AAHDTYcUiAAC4bVSoUEHh4eGFujYgIMDJvQGK1nfffafly5dLkkaOHCl/f38X96jkCQ0N1aBBgzR//nzNnj1brVu3Vr169VzdLQAAbhoEiwAA4LbRsmVLvfPOO67uBlDk0tLSNHHiRElSeHi4HnvsMRf3qOR69tlntXr1ap0/f14TJkzQ8uXLuSUaAAAb8S8mAAAAcIv58MMPFRsbK0kaNWoUQVk+fH19NWTIEEnSwYMHtWbNGhf3CACAmwczDAAAAOAWkpiYqMWLF0uS6tSpo7Zt27q2QzeBXr16KTAwUJI0d+5cpaenu7ZDAADcJAgWAQAAgFvIRx99pNTUVEk5gRkKVrp0aT3yyCOSpLNnzxrPpgQAAPnjGYsAAACF8Morr2j9+vWSpAULFqhNmzZasmSJVq5cqbi4OJUtW1a1a9dWx44d1a9fv1zXp6Sk6IsvvtDOnTv1559/KjExUV5eXgoJCVGTJk300EMPqUWLFnb16YcfftDatWv1888/69y5c/Lz81P16tX10EMPqVevXvL399d//vMfvfXWW5KkYcOGafjw4VZ1rFu3TuPGjZOUs7HF9u3bC2y3bdu2io+Pl5SzC3H37t3zPT8+Pl7r16/X7t27FRcXp6SkJPn7+6tKlSpq0aKFHn30UYWFheVbx5w5czR37lxJ0uuvv64nnnhCGRkZ2rBhg7Zs2aKYmBidP39eZcqUUa1atdS2bVv17t1bZcqUKfDzXLNv3z5t2rRJP//8s+Lj45WZmamAgACFh4erTZs26t69u8qWLWt1zcSJE7V06VJJORv+7N69W15eXgW29dlnn2ny5MmSpJo1a2rr1q0299NScnKyVq9eLck6LHOEyWTSqFGjrPo0YMAAjR8/3uG67WX5514Y+X1/9urVy1jpuWTJEj355JPcQg4AQAEIFgEAAJzgtdde09q1a43y+fPndf78eUVEROQ6d+PGjXrnnXeUmJho9Xp6erquXLmi48ePa9WqVWrevLmmTp2qSpUq5dt2YmKixo4dq127dlm9npSUpKSkJP36669atmyZ3n//fQc+oeNMJpNmzZqlxYsXKyMjw+q9ixcv6uLFizp8+LA++eQT9erVS+PHj7cplJOko0eP6sUXX9SxY8esXr9w4YIuXLig/fv3a9GiRZo+fbpatmyZb12nTp3Sq6++qn379uV679qf6549e7RgwQJNmjRJDz74oPH+o48+agSLly5d0nfffWf1fl42bNhgVUdhbdiwQSkpKZKkZs2aObybudls1rhx46xCxYEDBxrh860kLCxMderU0bFjxxQfH68dO3bogQcecHW3AAAo0QgWAQAAHLR+/fo8V5h17drVqjx37lzNmTPH6rUqVaqoatWqSk9PV0xMjJKTkyVJe/fuVc+ePbV48eI8V/AlJiaqb9++OnHihPGap6enIiIi5O3trWPHjikpKUmxsbF6+umnnbKCrTAyMjI0dOhQq/DTzc1NYWFhCg4O1uXLlxUdHa2srCyZTCYtX75c0dHR+vjjj+Xr65tv3SdOnNDcuXN18eJFSVL58uVVu3ZtpaWlKSYmxrgt+MKFC3ruuee0fv36PL+eR48e1YABA5SUlGS85unpqfDwcPn6+urEiRNKSEiQlBOGjhgxQjNmzFDHjh0lSY0aNVJ4eLiio6Ml5YTIBQWLMTExOnz4sCSpVKlSDv0Zbdy40Ti+7777Cl3PNRMmTLAKPQcNGqRXXnnF4XoLq3r16mrVqpXN5//www8ymUySclZw3nHHHfme37p1ayOc3rhxI8EiAAAFIFgEAABw0LVQsVOnTho2bJgqV66sY8eOadu2bfrHP/5hnLd582arUPHuu+/WuHHj1KhRI+O1jIwMbdq0SVOnTlVSUpLOnTunYcOGac2aNfLz88vV9rhx46xCxZ49e+rFF19UuXLlJEmZmZlav369pkyZogsXLhi3eha3SZMmWYWKPXv21LBhw6xWY166dEmLFi3SwoULlZ2drf379ysyMlLTp0/Pt+7PP/9cUk7o9Nprr6l169Zyc3OTlHNr8Jw5c4zPnZ6erjlz5mjWrFm56klNTdXzzz9vhIru7u4aMmSIBg0aZHUL9bZt2/Tmm2/q3LlzMplMevXVV3X33XcrJCREUs6Kw6lTp0qSduzYoStXruR7C/YXX3xhHLdo0aLAFap5OXfunH755ReruhwxZcoUrVy50ii7OlSUpG7duqlbt242nTtz5kzt3r3bKE+cOFH16tXL95qWLVvqk08+kSTt2rVLGRkZNq+aBQDgdkSwCAAA4ARt27bVjBkzjEDrH//4h1WomJycrDfeeMMoP/DAA3r//ffl4WE9HfPy8lL37t3VuHFj9enTR5cuXdLx48e1cOFCjRw50urcPXv2aOfOnUb5qaee0tixY63O8fT0VK9evVSnTh0NGDAg1y3IxeGnn36yCqjGjBmjp59+Otd5AQEBGj16tCIiIjR69GhJ0pdffqnHHntM9957b75tVK1aVatWrTIC1Wv8/f01btw4JSQkaPPmzZKknTt33jAwWrx4seLi4ozy9OnT1alTp1xtPfjgg6pcubL69u2rtLQ0JScn6z//+Y9GjRolKWeV6nvvvaesrCxlZGRoy5Yt6tmz5w37bTab9eWXXxrlxx57LN/PmZ+oqCiZzWZJko+Pj2rUqFHouq7dsn7Njb638rNx40YdPHjQ7nZPnTpl9zU3smHDBi1YsMAoP/XUUzatBK1fv75xnJKSol9//VVNmjRxSp8AALgVESwCAIDbxvr1640NV2y1ZMkSNWvWrMDznnvuOSNUvJE1a9bo8uXLkqQyZcpo8uTJuUJFS2FhYXrhhRc0ceJESdLy5cs1ZMgQeXt7G+dY7lxbrVo1I9i6kbvuukvDhg3TjBkzCvwszrZo0SLj+O67775hqGipc+fO+vrrr7VlyxZJ0ieffFJgsDhixIhcoaKlPn36GMFiamqqYmNjrW6Hzs7Otgo/O3fufMNQ8ZoGDRqoS5cuxkYpX3/9tfH1Dw4O1r/+9S/t2LFDUk44mlewGBUVpdOnT0vKCVZteR5jXixXK9apU6fQG4989NFHmj9/vlG2N1SUcgJCZ4WE9tq/f79ee+01o9y6dWu9/PLLNl1bvnx5lS9f3nj+6S+//EKwCABAPtjmDAAAwEF+fn5q2LBhvudYPoPx/vvvV2BgYIH1dunSRe7u7pJyNmKxXAGWmZlpdZtn9+7dC7xls2/fvvLx8SmwXWdKS0uzugXa1o1JLFeX/fDDD0pPT8/z3FKlShX4LLw6depYla9cuWJV/v3333XmzBmj3KdPnwL7+OSTT+rll1/WvHnz9MEHH1i9Z/k5f/zxR6u6LVk+v7Bz584O3XYbExNjHNetW7dQdSxZskTvvfeeUS5MqOhKcXFxGjZsmLEyt3bt2poxY4ZdIWt4eLhxfP1mQAAAwBorFgEAwG2jQoUKVqGBLWzZVTc8PDzf4CIjI0OHDh0yynltHHK9smXLqnr16vrrr78kST///LOaN28uSVabkkiyaVVVmTJldNddd+n777+3qX1n+PXXX5WZmWmUbf3slkFtZmamfvvttzw/Y9WqVeXv759vfWXLlrUqW/bpWj+v8fT0VOPGjQvsY3h4eJ7fT9fC46SkJGVnZ2vTpk165plnrM5JS0uzCpwd2Q1aktVt3OXLl7f7+tWrV2vy5MlGOTw8vNCh4rBhwzR8+HC7r5szZ47mzp1bqDaTk5M1ZMgQXbhwQVLOn/n8+fPzfb7ljVh+7Sy/pgAAIDeCRQAAcNto2bKl3nnnHafXGxQUlO/7Z86csXq24cyZMzVz5ky72zl79qxxHB8fb/VezZo1baojIiKiWIPFkydPWpVtWQl4I+fOncvzPVtWf15b+XlNdna2VTk2NtY4Dg0NdXjDDi8vL3Xp0sXYWGbjxo25gsVt27YpJSVFUs4KQ8tnchbGtV2xJdkdpklSZGSk8YxGSYqOjtbWrVvVoUMHh/pVHEwmk0aOHKk///xTUs6f98yZM23+e2HJMqS23B0cAADkxq3QAAAADipotdylS5ec0o5lPcnJyVbv2Rok5fccwqJw7bmSjsov4LF87mRhWX49CxPK3YjlCsQ//vhD0dHRVu9b3gbdvXt3h9u7evWqcVzQ9+SNXAtbLW+Xf+utt5z2/VuUpkyZYnXL/ZgxY9SqVatC1WX552+5KhgAAOTGikUAAAAHFfT8tqysLKtyo0aNbLrF+nqWzwksXbq01XuWK83y4+hKPHtd/9kLG/ZUqFDBGd3JU34b7xRWgwYNFBERoT/++ENSziYuL774oiTp/PnzxspRDw8Pde3a1eH2LD9DYTduefzxx9W1a1f169dPZrNZCQkJmjJlSpGs9HWWZcuWGStDpZyQduDAgYWuz3J1a2G/jgAA3C4IFgEAAIrY9c/3Gzp0qNq2betQndcHk1euXJGvr2+B112/0jE/toaV+W2scv1nnz17dqFW0xU1y35ev7GLI7p3764pU6ZIkjZv3mwEi1999ZVMJpOknF2Lg4ODHW7Lz8/PWNmZlpZm9/X9+vXT66+/Ljc3N/Xq1cvYJXv9+vXq3Lmz/vWvfzncR2f7/vvv9fbbbxvlf/7zn3rzzTcdqtNylaKfn59DdQEAcKvjV3AAAABFrGLFilaryU6fPu1wnTVq1LAq27p77alTp/J937Kf129wciPZ2dn53ipbsWJFq7IzPntRsOxnfHy8TZ9dklauXKnvvvtOf/311w2v6dKlizw8PIx6jxw5Iinn+YrXPPbYY4503WD5rMnCPBswMjLS+PN/6aWXFBISYrw3YcIE43mQJUVMTIxGjhxprIqtVKmS5s6d6/CqXMvv58KsLAYA4HZCsAgAAFDE/P39VbduXaO8d+9em67LzMzU+PHjNXPmTK1cudIqPKxSpYqqVKlilH/44YcC6zObzdq/f3++51iGMrYESXkFatf885//tAorbf3sx44d0/jx4/XBBx/oiy++MHb6LSqWu0Bf24W6ILGxsYqMjNS///1vdezYUTExMbnOKV++vFq3bm2Ut23bpsuXLxt/DkFBQWrTpo0TPoFUvXp14/jvv/92qK6yZctq/PjxRjk+Pl7vvfeeQ3U608WLFzVkyBDjGZ7e3t764IMPrMLQwrL82hVm8xcAAG4nBIsAAADF4L777jOOt2/fbrULcV42bNigtWvXasGCBYqMjMwVXHXs2NE4XrduXYG3Oe/atUtxcXH5nmO56i01NbXAgGrz5s35vh8UFGQV2i1dutSm1YAfffSR1q5dq/fff1/jx4/PtYuzs91xxx1WtyOvXr26wGssP3tQUJDCw8NveJ7lisT//e9/2rlzp7HKrmvXrvL09Cxst62EhYUZx9fvxl0YnTp1sgo9ly1bpp9++snheh2VmZmp4cOHW62+nTx5sho2bOiU+i2/drVr13ZKnQAA3KoIFgEAAIrBE088YQRIWVlZGjlyZL5BYFxcnKZPn26UK1eurPvvv9/qnCeffNKoMzExUZGRkXkGcImJiXrjjTcK7GdERITVCkPLTTGud/ToUS1atKjAOp966inj+K+//tJbb72V7/Mbt2/fro0bNxrl9u3bO+UZhPnx8PBQnz59jPL69ev13Xff5Xl+fHy81Wfv0aNHnht9tGnTRkFBQZKkI0eOaOnSpcZ7ljtHO+quu+4yjv/44w/jGY6OmDBhgvHsTrPZrFdffTXfZ2oWh8jISP34449G+fnnn1fnzp2dUve5c+d07tw5o9ykSROn1AsAwK2KYBEAAKAYVKxYUSNHjjTKhw4dUq9evbR7926rkM1kMmnjxo3q27evLl68aLw+ZsyYXM+Oq1y5sl566SWjvHnzZg0ZMiTXasioqCj16dNH8fHxBfYzODjYKqD69NNP9dFHHykjI8N4LS0tTcuXL1efPn2UlpZmPEMwL+3bt7dasbly5UoNHjw413Mhk5OTNX/+fI0YMcL4mvj6+mr06NEF9tsZBg4caNz6ajabNWzYMC1evDjXRih79uxR//79jdtwQ0JC9Mwzz+RZr6enpx5++GGjfODAAUk5u0bXq1fPaf1v2rSpEQqnpaXp6NGjDtcZGhqq4cOHG+UTJ05ozpw5DtdbWAsXLtS6deuMcrdu3TRixAin1f/rr78ax4GBgapfv77T6gYA4FbErtAAAADF5JlnntFff/2lNWvWSMrZfOLpp59W+fLlVatWLWVkZOjkyZO5NkN59tln1alTpxvWOXDgQB0/ftzYwXfnzp367rvvVLduXZUrV05xcXFGoOjl5aWAgAAlJCTk28/Ro0frySeflMlkktls1nvvvaeFCxcqLCxMmZmZ+uuvv4znL95xxx365z//qWXLluVZn5ubm959910NGjRIhw8fNvq5c+dOVa9eXZUqVVJSUpJOnTplFeJ5enpq+vTpVs8OLEr+/v56//33NWjQICUmJio9PV1TpkzR7NmzFR4ertKlS+vkyZM6c+aMcY2Pj49mzZpV4CYfjz32mJYsWWL1Wvfu3Z3a/8DAQDVp0sRYzbd79241aNDA4XoHDBigL7/8Ur///rsk6ZNPPtFDDz3klLrt8ccff2jGjBlG2cPDQ+7u7ho9erTS0tKUlZVl0yrN/FbZ7tq1yzhu27ZtnqtQAQBADoJFAACAYvT2228rIiJCc+bMMVa8JSYmKjExMde5/v7+evnll/X444/nW+fEiRNVtWpVffDBB0pLS5PZbFZ0dLTVOYGBgZo6daoWLVpUYLDYpEkTzZgxQ6+//rrRx8uXLxsr7a657777NGXKFH3yyScFfu6AgAAtW7ZMkydP1po1a4wA6NSpUzfcqbpGjRqaPHlysd+KGhERoVWrVmnMmDHGBiupqak6ePBgrnNr1qyp6dOnq1GjRgXWW69ePdWvX9/YFdrLy8tqFaOzdOvWzQgWv/32Ww0ePNjhOt3d3TVx4kT16tVL2dnZMplMGj9+vNauXVvgalVnSkpKsrrVPysry2r1ojNYBovOvE0dAIBbFcEiAABAMXvyySf1yCOP6IsvvtD333+v6OhoXbhwQdnZ2QoICFBERIT+9a9/qVu3bipXrpxNdT777LPq3LmzVq1apW+//Vbx8fEymUyqWrWq2rVrp379+ql8+fI2PRNRytkYpmnTplq5cqV27NihkydPKjU1VSEhIWrUqJEeeeSRXM98LIi3t7cmTpyop59+Whs2bNDevXt16tQpJSUlycPDQ8HBwWrQoIHatWun9u3b57r1u7hUrVpVy5Yt065du7Rlyxbt379fCQkJSk9PV7ly5dSgQQN16NBBnTt3tquP7dq1M4LFtm3bWm2U4ywPPfSQpk6dqitXrujAgQOKj49XaGiow/U2atRITzzxhLHq8ujRo/roo480dOhQh+suKfbv32+s7q1Vq5buueceF/cIAICSz82c35OzAQAAcEvp37+/9u3bJ0kaNmyY1fPzULSeeeYZY0XcokWL1KpVqyJpZ9q0afr4448lSSNHjtRzzz1XJO3caiIjI41HCkyaNEk9e/Z0cY8AACj5eGgIAAAAUMTOnTunPXv2SJKqVaumli1bFllbAwcOlI+PjyRpxYoVysrKKrK2bhVJSUnGTuSVK1dWt27dXNwjAABuDgSLAAAAQBFbsWKF8VzJPn36GLs3F4WQkBANHDhQknTmzBn997//LbK2bhWrVq3S1atXJUkvvPCCy27DBwDgZkOwCAAAABSh7du3a+HChZJyNrHp3bt3kbf5zDPPqEKFCpKkefPm2bRb8u0qOTnZ2ICoQYMGrFYEAMAOBIsAAACAE3311Vfq0qWLBgwYoA4dOui5555TRkaGJGnMmDHy9/cv8j74+/trwoQJkqTjx4/riy++KPI2b1aLFy/WxYsX5e7urrfeekulSvEjEgAAtuJfTQAAAMCJqlatqujoaO3du1cnTpwwXu/du7d69OhRbP148MEHjdV3s2bNUnJycrG1fbM4c+aMsVP64MGD1aBBAxf3CACAmwvBIgAAAOBEtWrVUuPGjeXr6ys/Pz81btxYU6dO1cSJE4u9L2+88YbCwsJ07tw5zZkzp9jbL+kmT56s1NRUNW3aVMOGDXN1dwAAuOm4mc1ms6s7AQAAAAAAAODmwopFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHYjWAQAAAAAAABgN4JFAAAAAAAAAHb7f9YcbXhhj/QbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 2000\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime, limit_k=500)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQsAAAP2CAYAAABAH8s+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAADxPklEQVR4nOzdd5QUxdrH8d8GkCQiglkxAiqCGMCrXF5FxZwwcM3hGjBnMaJiIJjwqhhRTIBiFiOgomBARQmC5CiS4y4LbJj3j96d3dmdmZ3Q3dXh+zmHw/TsdPUzHaufqa7KiUQiEQEAAAAAAAAIvVzTAQAAAAAAAADwBpKFAAAAAAAAACSRLAQAAAAAAABQjmQhAAAAAAAAAEkkCwEAAAAAAACUI1kIAAAAAAAAQBLJQgAAAAAAAADlSBYCAAAAAAAAkESyEAAAAAAAAEA5koUAAAAAAAAAJJEsBAAAAAAAAFCOZCEAAAAAAAAASVK+6QCQnd9++y1mOjeX/C8AAAAAAEAYlZWVxUwfdNBBaZdBsjBgqu8UAAAAAAAAQKpohgYAAAAAAABAEi0LAycojyFXbSEZlO8EID2cBwBwHgDAeQAA54H02PHEKclCn8vNzY3uCLm5uWrfvr3hiLJXUlKiiRMnRqf3339/5eezqwJhwnkAAOcBAJwHAHAeSN/vv/8ekyfKBClZAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAAAAAAAAoBzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAciQLAQAAAAAAAEgiWQgAAAAAAACgHMlCAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAID7Fi6URo60/gcAAIBnkCwEAACAu775RmrTRura1fr/229NRwQAAIByJAsBAADgrocfltats16vW2dNAwAAwBNIFgIAAMBdo0fHTo8aZSYOAAAA1ECyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAcq4lC5966im1atVKXbp0cWuRkqR3331XrVq1UqtWrTKaf9KkSbr33nt13HHHqX379jrggAN07LHH6uabb9aYMWMUiURsjhgAAAAAAAAwI9+NhUyaNEkvvfSSG4uKsWjRIvXr1y+jeYuLi/Xggw/q7bffrvG3efPmad68efr000/VqVMn9enTR9tuu2224QIAAAAAAABGOd6ycOHChbr66qtVXFzs9KJirFq1SldccYXWrVuX9ryRSEQ33nhjTKJwiy22UNu2bdW+fXs1atQo+v7YsWN10UUXZbQcAAAAAAAAwEscTRbOmDFD5513npYvX+7kYmr4559/dNFFF2n27NkZzf/KK69o1KhR0elzzz1X48aN0/DhwzVs2DCNGzdON910k/LzrYaZc+bM0V133WVL7AAAAAAAAIApjiULP/roI5199tlaunSpU4uIa+zYsTr99NM1Y8aMjOZftWqVnn322ej0Oeeco/vuu09bbrll9L169eqpR48e6t27d/S9kSNHasKECZkHDgAAAAAAABhme7Jw6dKl6tmzp26//XYVFRXZXXxC69atU9++fXX55Zdr9erVGZfz7rvvqrCwUJLUpEkT3X777Qk/e8YZZ+iII46ITr/66qsZLxcAAAAAAAAwzdZk4XPPPafjjjtOH374YfS9PfbYQz169LBzMTUMHz5cxxxzjF599VWVlZVJkpo3b65bb7017bI+//zz6Ovjjz9eDRo0SPr57t27R19/99132rBhQ9rLBAAAAAAAALzA1mThoEGDYpJlZ511loYPH64WLVrYuZga3nzzTa1ZsyY6ffTRR+uDDz5Q27Zt0ypnzZo1mjZtWnS6U6dOtc5z6KGHKi8vT5K0ceNG/fDDD2ktEwAAAAAAAPAKR/osbNOmjd544w099NBDMSMHO2233XbTM888o2effVbNmzdPe/7p06crEolEp/fbb79a52nQoIF23XXX6PTkyZPTXi4AAAAAAADgBfl2FtahQwd169ZNRx11lHJycuwsOql9991Xl1xyiU466aToCMWZmDdvXvR13bp1tcMOO6Q0384776y5c+dKkhYsWJDx8gEAAAAAAACTbE0WDhw40M7iUtanTx9bylm+fHn0dTotE6t+tmoZAAAAAAAAgJ848hiyX1Xt93DLLbdMeb6qj1qvXbvWzpAAAAAAAAAA19jastDvNm/eHH1dr169lOerW7du3DJMKCkpMbp8O5SWliadBhB8nAeAYItXAa1eh+E8AIDzAADOA2aQLKyiuLg4+jo3N/VGl1X7STSZrCsrK9PEiRONLd8pU6ZMMR0CAMM4DwDBclCc92qrw3AeAMB5AADnAXfwGHIVeXl50ddlZWUpz1c1QVinTh1bYwIAAAAAAADcQrKwiqqPHm/atCnl+ap+dosttrA1JgAAAAAAAMAtPIZcRZMmTaKvCwoKUp6vsLAwbhluy83N1f77729s+XYpLS2NaVrcpk2bmFafAIKP8wAQPu3atYuZ5jwAgPMAAM4D6Zs8eXJaT8vGQ7Kwiu222y76euXKlSnPt3z58ujrZs2a2RpTuqr2nxgUeXl5gfxeAFLHeQAIvtqOcc4DADgPAOA84A4eQ66iRYsW0dcbNmzQihUrUppv4cKF0de777677XEBAAAAAAAAbiBZWMW+++6rnJyc6PS0adNqnaewsFALFiyITrdu3dqR2AAAAAAAAACnkSysolGjRtp3332j0z/88EOt8/z000/RZ8Hz8vLUoUMHx+IDAAAAAAAAnESysJpjjz02+vrjjz9WUVFR0s8PHTo0+vqwww5T48aNHYsNAAAAAAAAcBLJwmrOOOMM1a9fX5K0YsUK9e7dO+Fnhw8fru+//z46feGFFzoeHwAAAAAAAOAUzyYLu3TpolatWqlVq1bq0qWLa8tt1qyZLrvssuj0+++/r1tuuSVmdOSNGzfq+eef13333Rd9r3PnzurcubNrcQIAAAAAAAB2Y7zpOHr06KHJkyfr22+/lSSNGDFCX375pVq1aqW6detq5syZWr9+ffTzO++8s/r162coWgAAAAAAAMAenm1ZaFJ+fr6efvppnXnmmdHRkYuLizVlyhRNmDAhJlHYvn17DRkyRE2bNjUVLgAAAAAAAGALWhYmULduXT388MPq3r27PvjgA/30009aunSpNm/erKZNm6pt27Y66aST1LVrV+XmknMFAAAAAACA/7mSLOzWrZu6deuW1jxff/111svt2LGjpk+fnlUZbdu2Vdu2bbOOBQAAAAAAAPA6msQBAAAAAAAAkESyEAAAAAAAAEA5koUAAAAAAAAAJJEsBAAAAAAAAFCOZCEAAAAAAAAASSQLAQAAAAAAAJQjWQgAAAAAAABAEslCAAAAAAAAAOVIFgIAAAAAAACQRLIQAAAAAAAAQDmShQAAAAAAAAAkkSwEAAAAAAAAUI5kIQAAAAAAAABJJAsBAAAAAAAAlCNZCAAAAAAAAEASyUIAAAAAAAAA5UgWAgAAAAAAAJBEshAAAAAAAABAOZKFAAAAAAAAACSRLAQAAAAAAABQjmQhAAAAAAAAAEkkCwEAAAAAAACUI1kIAAAAAAAAQBLJQgAAAAAAAADlSBYCAAAAAAAAkESyEAAAAAAAAEA5koUAAAAAAAAAJJEsBAAAAAAAAFCOZCEAAIBJf/8tTZ8uRSKmIwEAAABIFgIAABjzxBNSixZS69bSySdLGzeajggAAAAhR7IQAADAhIIC6e67pdJSa/rTT6UvvzQbEwD4zcSJ0oUXSj16SP/8YzoaAAiEfNMBAAAAhNJ779VsSXjeeVYSEQBQu3/+kTp2lDZtsqa/+kqaNUvKpU0MAGSDsygAAIAJJSU13ysqcj8OAPCrfv0qE4WSNHeu9Nln5uIBgIAgWQgAAAAA8J8PPqj53m+/uR8HAAQMjyEDAAAAAMJlzRrpqaek4mLp2mul7bc3HREAeAbJQgAAAABAeJSWSh06SDNnWtMvvyzNni01bGg2LgDwCB5DBgAAAACExyefVCYKJWnpUmnQIHPxAIDHkCwEAAAA7LJ5s9Srl9StmzRwoBSJmI4IQHWff17zvaFD3Y8DADyKx5ABAAAAu9xyi/TMM9brDz6QcnOlHj3MxgQAAJAGWhYCAAB4Ba3Q/K8iUVjhqqvMxAGEFedReNWsWdLw4dLUqaYjAWpFshAAAMCEnBzTEQCAv3EehV+MHi21ayedfbbUvr3V8hzwMJKFAAAAAAAATrnvPmnDBuv15s3SnXeajQeoBclCAAAAAID/8Mgx/GLcuNjp6dPNxAGkiGQhAAAAACAYeDQZALJGshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAABAP9GAJA1kgWAgAAAAD8J9P+CUkoAkBSJAsBAAAAAOHGwCgAEEWyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAcvmmAwAAADYqLZVGj5by8qQuXeiwHQAAAEBaaFkIAEBQlJVJXbtKxx4rHX201K2bFImYjgoAAACAj5AsBAAgKMaMkb7+unL6ww+lP/4wFQ0AAAAAHyJZCABAUPTuXfO9AQNcDwNZoCUoAAAADCNZCAAAYAL9SQIAAMCDSBYCAAAAAAC4LRKRvvhCeu89aeNG09EAUYyGDAAAAAAA4LYLLpDeest6vf/+0o8/Sg0bmo0JEC0LAQAAAABBQd+v8IvZsysThZI0ebLVwhDwAJKFAAAAAAD/oe9X+Nk779R8r2dP9+MA4iBZCAAAAAAAAEASyUIAAAAAgB/xyDEAOIJkIQAAAAAgGHg0GQCyRrIQAAAAAAAAgCSShQAAAAAAAO7iMXp4GMlCAACCjIooAFPWrpXOP1/ac0/pnHOk1atNR4Qw4LoHP+MxenhEvukAAACATahgAvCS3r2lt96yXs+ZIzVvLv3vf2ZjQrBket0joQgASdGyEAAAAID9nngidvrpp83EAaSCH9wAIIpkIQAAgB/8/bfUpYtUv750xBHSokWmIwIAAEAAkSwEAADwgwcflL75Rtq4URozxnrEEwAA+BOPw8PDSBYCAAD4wQsvxE6/9JKZOOCuUaOkQYOkBQtMRwIAcBqPw8MjGOAEAAAA8KLevaX77rNeN2kiff+91KaN0ZAAAEDw0bIQAADABFoPIJmSkspEoSStWSP162csHAAAEB4kCwEACAr6vgGCY/Xqmu+9+ab7cfjNkiXSl19Ks2aZjgQA0kddDh5BshAAgCCj9RqAsJgwQdp/f+m446zHtd97z3REAAD4EslCAAAAAP73+OPSihXW602bpF69zMYDAOniR154BMlCAACCjMdZAITFkCGx01OnmokDAACfI1kIAEBQ8Gs0/OyMM6SbbpIKCkxHAgAAEGr5pgMAAAAA9P771v/z5kkffGA0FAAAgDCjZSEAAAC848MPpcJC01EA8Cu63wCArJEsBAAAgLds2GA6AvPoVgCoHccJ/IzENjyMZCEAAAAAAIBpJMDhESQLAQAAAAD+Q8ssAHAEyUIAAAAAQDDQMgsAskayEAAAAAAAwI8WLZKGD5cmTDAdCQKEZCEAALDMmSO99po0bpzpSBB2PFoIAAg6O651EyZIbdtKZ58tHXKINGhQ9mUCIlkIAAAkafx46YADpIsvljp1kp55xnREQLiRMAUyw7EDP0v3Mfq+faXVq63XZWXSLbfYHxNCiWQhAACQHnxQWr++cvr6683FAgBAKjLtn5CEIoJi+PDY6bVrzcSBwCFZCABAkKV6QzRiRGbzAU5ggALWAeA2jjl4AfUveATJQgAAgoIbHX9hewEAEF7UA+Bh+aYDAAAAAGLQsgIAYIdIxBr0Y8YM6fjjpSOPNB1RJa518DBaFgIAEBYLFkg//EB/NgAAwBsKCqSPPrLqJ064/Xbp8sulRx+VjjpK+vxzZ5ZjF1obwiNIFgIAEAbvvy+1bi0dfrjUrp31CzsAAH5Gyyx/W75cOugg6bTTrPrJnXfav4zHHqt8HYkwgBuQIpKFAAAERbKbpt69paIi6/X8+dILL7gTEwB7LV1qOgIAsMfrr8f+eNm3r7RunbPLnDXL2fLtVFgoTZokLVtmOhKEEMlCAACCrOJxlokTY99/4gn3YwGQvTfeMB0B4B08sulvt95a871x49yPw4tmzpQOOMB6GqRlS+mLL0xHhJAhWQgAAAB4TaIkyG23uRsHAMB9AwdWtoJcu1Z64AGz8SB0SBYCABBkI0dKO+xgOgoAAABUlaz7mAEDYqd/+snRUIDq8k0HAAAAHLRkiekIAAAAkAoerYdH0LIQAAAAAAAAgCSShQAAAAAAAADKkSwEACAoeHQlGBYssPqaXLTIdCQwKVlfVgAS49gBgKzRZyEAAICXtGkjrV8vbbWV9PHHUufOpiNyHzf7AFLBj2TwM6518DBaFgIAAHjJ+vXW/2vXSn36mI0F5pAEAYDw4dwPjyBZCAAA4FVffGE6AgDwLlpmIWjYp+ERJAsBAAAAAMFAyyz4Rbx9deFC9+MA4iBZCAAAAG/hZh8AAMAYkoUAgPTMmSOdcIJ00EHS88/b87jEF19IV14p9e0rFRdnXx7gByTEAAAILx45hocxGjIAID3dukkTJ1qvr7pK2mMPqWvXzMv74gvp+OMrp2fOlF54IbsYAfgbN1AAMsX5AwCyRstCAEDqpk+vTBRWuPLK7Mq85prY6VdekUpLsysTAAAEHy20ka3iYql/f+nqq6XRo01HA3gGLQsBAKlbsaLme/PmZVfmnDk13ysry65MAPA7kiCAc2h96F1un/uuuEIaPNh6/fzz0siR0lFH2buMxYvtLQ9wAS0LAQAA4KxJk6SDD5Z22EHq2dN0NABQEwn68Nm8uTJRKFlJ5BtusHcZZWXSYYfZWybgAloWAkC6Vq6UPvhA2mYb6bTTqFwCQG0uukj64w/rdf/+RkMBAHiYm60+i4pqvvfnn/Yu45NPpPnz7S0TcAHJQgBIx5IlVuuYv/+2pi+5xOpjD/ACEtfwooULKxOFAACEya+/Jv4bj8PDw3gMGQDS8cILlYlCSXr1VSuBCHgBlU540YYNpiNw1vjxUqdO0iGHSB9/bDoaIFhmztQu/fpp5yefVP7q1TX/znUPABxBy0IASMf999d8b9w46YwzXA8FAGDYpk3SMcdI69ZZ06eeal/ZJEEQditXKq9DB21bUCBJ2mrMGGn2bMNBAUA40LIQAAAgLD79VDr/fOnOO4Pf4s8Nb75ZmSgEwuiLL6zuWTp2lMaMsbfsAQOUU54olKR6ixYp5/PPYz9D9xuAP739trTjjlLz5tYo1PAcWhYCAFJHpRzwr9GjpZNOqpz+6y9rsCZkbtYs58rmfAuvW7ZMOvFEa7RXSeraVVq+XGrc2J7y33mnxls5P/xgbwteAO5bvdr64bKkxJq+6irr/LHHHmbjQgxaFgJAkMyeLb33npUE8DMevwuudeukW26RzjtP+vpr09GEy3XXxU5/+CGt4gBkrk+fykShJG3eLD39tLl4AL8Ja313wIDKRGGFe+81EgoSI1kIAEExerTUtq105pnSAQdIn3xiOiKgptNOk554QhoyRDr6aGtwCDcNHSrtsIO07bbSoEHuLtu0adNqvrd2rftxpCKsN1CAn0yaVPM9v/9YCdiN61lNixfXfG/ePNfDQHIkCwEgKO6/v7IPsk2bpLvvNhoOUMOCBdI331RORyLSrbe6t/zly6ULLrBGMF++XLrsMmnhQveWH1Y8TgskNny4tPfeUuvW/MgHhA3XR3gYyUIAyJZXLvRjx8ZOT55sJg4gkXiJue+/d2/5jz8ulZbGvvfAA+4tHwCqWrxY6t7d6vty+nTpjDOsvrwAADCMZCEAAAiHeMlKHnvxJq/8CAM46aGHYh9RLC6WnnzSXDxBwWOfAJA1koUAkK3//Ee65hpp1SrTkQQHiQI4gf2qJm6qs/Ptt6YjgJ9Nn17zvepPCSA5zuvwM67B8DCShQCQreJiaeBA6bjjTEeCsOOmKX0mK+psL//76Sfnymb/CL6qIwlXqNqvq1eUlVlxjR3rveSG1+JB9jj3AZ5AshAA7PLLL9KUKaajcBYVuGApLjYdgbvi7b/caHqTye1SWirdc4+05ZbSrrtKo0aZiwXB5ocBlkpLpWOPlbp0kf79b+ncc01HVDvqKkhVGOsA//uf1LChdY176SXT0cDDSBYCgJ1mzzYdgbPCWKkKsh9+cHd5pm/gTC8f/vDNN9LDD0sFBVYy57zzag6MA2Ri1izrh8WSkuzL+v136ZVXpD/+yL6sZMaMiU2YDxsmTZ3q7DIBOGPePOmGG6QNG6xr3JVXSkuXmo4KHkWyEADgPSQl3RHvETgg7P7739jpZcukr74yEwuC4/HHpVatpA4dpP/7P2nt2szLev99q5z//lc65BDpww9tC7OGu++u+d5TTzm3vFrkvPwydQQgU/fdFzsdiUh9+5qJBZ5HshAAAACosGBBzffWrXM/DgRHUZF0//2VP9D88IP00UeZJ71uv72ydWJJiXTbbbaE6TlxWoPnrFolvfmmgWCAAFi8uOZ7y5a5Hwd8gWQhAAAIr7C3UAn79/cytk1wjB5tPfJX1UUXZd41QvUuT2bNyqwcr0t0DFx4YWbzwR/CtP3C9F3hOyQLAQBAODDACQATEp1nvNKP6pdfSpddJvXuLW3alF1Zbp9TvbIO4U/sP95Bfcxz8k0HAAAAQsJ0pdz08sOK9Q541+jR0nHHVU7/9Zc0ZIi5eNxCYgIAkqJlIQAAcIcXb868GJNXfPWVdM450k030WefCcmSrP37uxcHpH/+kU47Tdp3X6u/wM2bTUdU0z//ZDbf9dfHTg8davWxmCk//zjg59jhXdQzUsPx5zm0LAQApI4LebhEIsHa5jyGXFOi7fvjj9Kxx1ZOT5kijRzpTkxe5LX95IEHrCRPvXqmIwmHq66yBiSRpGnTpF12ka67zmxM1e24ozRihHTiienNN3VqzfcKCqT69TOLI94ACgUF0ltvSXXqSOedJ22xRWZlAwBcQ8tCIBMrV0pr15qOAgCCLRKRhg+XBgyQ5swxHU0wJUqC3XRT7PSoUfGTADBjwwbp559NRxEeFYnCCtVb43nFSSeZjkD6+mvpzz8rpzdtkg4+WOrRQ/rvf6Ujj/Re8h3+MHeulRCfO9d0JN53++3Su++ajgI+R7IQSEdpqXTllVKzZtK220oDB5qOCAgmbiQgWQmrs8+2/j/ggNgbUFgefNCZG6d4iahMH3PkeAbC5fHHK1+/+640fXrl9I8/SmPG2Lcszi/esWiRdPzx0u67S9dck93j7NWNGiXtv7908snW/2Fu6Z6KRx+VzjpLeuYZ05HAx0gWAukYO1Z68UXr9ebN9OOEmqi0Aoml80jzhg3SU09VTq9fLz3yiP3L9/sx26uXlUidN890JPby+3bxk3/+kZ5/XvrgA2+u97/+krp3l848U5o0yXQ0SMWrr1a+jpesGDrUvVjgnmuvlb74wroeDRwoPfecfWU/+KBUWGi9Liy0umJA7bzWXQJ8hWQhkI4ePWKnN2+WBg82EgoQaEHqJw+Z+fvvmu9lO0JnUPerdeu8PeBFUNd7EMydK7Vta/XJ162bdbPvJUVF0qGHSu+8I733nvV6zRrTUdmHYyN7rEPvqP64/i232Ff2d9/FTo8bZ1/ZTmMfhU+RLATSsWpVzffsbGKP9EUi0m+/Sb/+6o0WEVQIECReOKacFpTvaGcLDoTHk09KK1ZUTg8c6K1k3CuvxPYRXVQU2+IYALIRlDoA4ACShQD8KxKRLrzQ6jj7kEOsvs246AOpC1tyO4iPIWcrne/v5v7itX3TxH5S2zqwI6ann6753oUXSt9/n33Zdvjpp5rvVW9h5AdhP89kymvngTAqKpJmzJBWr3ZvmUHb7smOf7fPDZyLkAaShQD8a9o06c03K6fffVeaMMFcPGEQtAocAPts2CD16SPdcYc0e7bpaPyttDR+Is8Nn3wi/d//MZKmG/xw4+6HGONZtMjq5+5//7NGZEb65s61fpBv1Uraay9p9GjTEQFwEclCAP714IM137vzTvfjiGfqVKlDB2vU7GuukTZuNB0RUJNfbwKDwqvJ98WLM5vv2GOlu+6S+vWT2reP3+8kUnPDDdbgNbV5803pmGOkiy6Sli+3b/mRiDWSZtVRbJE5rx7rifgt3uqWLJHatbOOoRtukE48seZnuP7VbuBAqz4rWV0x3Xef2XiQPb8f23AVyUIAweKVi+Dll0u//GLdvA0cGNsC0s+oXCMbpo/PoD+G3LCh1Ldvdt+prEzq1Cn9+f74Qxo7tnJ6/XrpsccyjyNI2yVdkYj07LO1f+6rr6QLLpBGjZJef91K7tmtfXtpzBj7y4V/mD5vZ2LQoNh+xkePlqZMSX3+wkKrdXRBgf2x+Un1c7ifBhUJqp9/tvpt9WN3DLUJ83Xfo0gWAoDdCgulH36Ife/yy83EAqCS0ze9c+daXSEUFzu7nEQ2bLBaV0+enHkZX3xhfY90/fxzzfcGDrT+92OyoTovfoc+fWKnx4yxWlTZqajIe62JvHZDuWaNdPHF1kjNDzwglZSkPq8X9ysp9XXsdPx2tmytnuhKFPvkyVKbNtZjt/vuS/c28JbDD5duvNHqKmLwYNPRZM6r5z7EIFkIAHZL50YB8XntZjCs7N4OXtyudsX0zDPS3ntLBx1kVeJNjih7yy2pf7b69//9d3tjgbucGITAZMtCP9xQXn219NprVsL8/vul559PfV4/fL9knDynV22pnIzd67B/f2nePOv1woU1k/KASaWlla+vucZcHAgFkoVAOrx4owvv8XvlHwgqp47NzZule+6prMT/+KP03nvOLCsVCxaYW3Y8Qbh2BuE7wBlDh8ZOX3edmTicku2+n+n8117rbPmJVO82hoF+kC2nRkPesMHeWNzklTiQFMlCIFskhgAg3MaOldaujX3vssvMxAIAXpdK3XniROfjgDeRSAon7qk9h2QhgGAxXcGIRJJf7L79VvrgA6tfQ8BuXq9opROfW9/FjnOG6fNONry4TcLOz/sTgseJ4559HDCD6zjSQLIQgH959YKXKK7rrpOOPFLq1k06+ODYkfr8wqvrHEiFU/svN77Jcd6AnTjenGfnMcvxDy9j/wQSIlkIAG555pnK13/9Jb31lrlYAKeUlEiLFknr15uOJDVBTDwE8TsBfub2MVlWFjsQggn//W/N7hmAMCIhCZ8iWQgAdkqnQnD99c7FAdgh3RvcJUukf/9b2mUXaffdpZEjY//+7LPOLTsV8Y7PsD+G7OfYUVMYtic33sm9+abUuLFUp450111W4jAbme5Tr7wi3XBDdsu2E/sNAKSFZCGQrTBUzJEeKqTwC7v31UGDpJ9+sl6vXCn17Bn79+qjTLrN7WNz8WLpzDOlQw+1EqV+uF4kW0dhPrf5YdvBf5w4pi6/3OoXORKR+vSRfvnF/mWk6rXXnF9GmM9LQLq4liEN+aYDAHyFCgkAJHbPPbHTv/9uPZac7+HqhpMV5+7drZGSJennn6Wdd5ZOPdW55dmBGwnAfm7WHzdujJ2+9trsEoZBrftyrvOPGTOcK9uN/YB9DT5Fy0IgHZzsvc8L2yioFWs3eWE7wh5eOh7cjqUiUVjh0kvdXb7d3Dwuw3wOCPN3Dxs3tvXixc4vIyi8dL0Ks+rb4Y03zMQRROzjSAPJQiBbnHTN8eq692pcCD6SDN7m1gjoJvaDZMvknAg7cZ5zF+sbgBs413gOyUIAQOq46Q+XMFTcGOAk9c9y/Htf0LZR0L5PUKSzXfx8fkRiv/0m9ehhdT9SUGA6Gv8K6/HBud0XPNyJEAD4VFgv/IDXOTUasteYqIQnW2Ym65gbCYSBX/fzimM60/jt/N5BPId73bRp0r/+JRUXW9PjxknffGM2JgC2o2UhAP+iggi/iESkp5+WzjpLeuQRa9APL/DyMeTETbRTN+ZeXo8IF/ZF2M3uHwLgf716VSYKJenbb50dhAT24ZhFGmhZCCBYTP9Kz0UY8Tz1lHTTTdbrd9+V1q+X+vSxfzmm938/4pj1pjBvFz9/9zFjpMsuk1aulG64wXQ08Co79/FUr3tXXik1ayZ162bfssPq3Xdrvjd9uvtx+IXXz+nUHZEALQsBBIvXL8h+x/rNTEWisELfvmbiMCEnR/r9d+nll01H4lyF2AuP4lWVzXGaLCZuKJBMaan0n/9Is2ZJq1dL999vOiLv8PO1M9vYvXTeOOMM6fvvTUeBdPn5+PEDrw2KBs8gWQjAv7xUAQUQ34cfSh06SJdfbjoS51DpTY5zdTiMHi0tWWI6ClTnpy4d3HDddYn/5taI9bDHnDmmI/AfLx+7Xo4tpEgWAoCduNDZg+SLN9ixHW6/3Tt9NMbDvhaL9YFMrV5tOgL/8WqdYfLk5H/383li4sTEf5syxb04kL2WLaVnnzUdRe283u/nmDGmI4BHkSwE0uGFEzq8j/0EqDR7tukIKnnxsV8gKDgOgqNLl8qEoVcTmkBpqXTvvbGDrSC5WbNqvvf337SqRVwkC4FsUYlCmBja33NGjpTatZPatLEea4U9OH8BqXEzEZbNskjYobpM94levbKbH+GSSX1i/fr471ff55KVvXq1NH584r+z/1a69lpp3rz4f3vsMVdDgT+QLAQAeFpuQYFyTztNmjRJ+vNPayTDf/4xHVb2Nm82HYG3UcHPHOsuc7RQ8T4/7N8lJdKGDVJZmTXtxx9mkv0w58fvA2/ZuFE66CB7yvrlF3vKCbIZM5I/sp3s8XyEFslCAMHih5sIpGXbYcOUUzWxFolIDz1kLiC7tGxJBddtnB9qymSd/Pab9MYb1s1HkPzzj9Spk+ko/MuJ48uvSal99pEaNpQ6d5YWL078OTe+3+LFUs+e0nvvOb+seJw+7/p1H0lVaamVuH333WD9mDFsmDRzpj1l3XST9MILmc3rxv6T7Bhwa//1W715yhQrgUm9zSiShUB1JSXSnXdKzZtbjzzWdjPPScycoFcQw2z1atX95x+ptFT1Fi6s+fepU92PyW7z51vnGi8Lw/nND+eRsjJp1Ch3llXb+njzTaljR+nCC6UDDpC++Sb7Mr3i5ZeTP84GpKqiX7Bx46SnnjIbiyT17y+deWb6g0Gce278enC21wY7zwlBvk5FItKxx0qnny6ddZaVfC4tNRtTjx6Zz7t8uVXv6dlTuuOO1OdLZRvfeGNmMZnef9xavh8SzRXr4sorpf33t+oY55xjfhuFGMlCoLpPPpH69pVWrLAeeTzvvMqTlF9ueACfy9tzT+1/8slqedVVylu71nQ4zhk92nQE3uWn863TFdnTT5eOOSb1zzu17nJypFtuqbxZLSpKrV8zv1T0K76Ln/npuAmL/v0T/83tY+Paa9P7/NChlY9Sw30//xxbT/jpJ+mLL8zFIyVuwVfbuae42HrsuG9f65hYujTxZzM5j23cmP48yeTmWona5cvtLReWRNt4xgzpxRcrp99+23qaAUaQLASqO//82OmZM62m0ABck1NSIknacsIENRk71nA0gGEff2w6gkrLlsVOc3ymZuBA6ZBDpFNOsVoVJ+OX5Gp1fo0bmSM57aznnqv5nlcHoqjt+B82TIr3pIhXRSLSV195o2VwmPTpU/O9nj3djwOSSBYCNW3YUPO9ggL344A/RSLcMPlBcbH1OOUrr0iFhaajgd957Zg3MZqul5MGixZZj/D9+9/Sa69l9h0jEWndOumKK6x+DXv3Tu9xwGuukX791Xp64cwz018+KnnteEtFopi9fNwk49e4/SY/v+Z75T+m+s5nn5mOIDMPP5z+PKWlVr++zz4rrVplf0xO+Owz6xpnWryWzLRuNibOGQhAQn6soAJ2CsINQiRiPdI5Zow1/dhj0u+/S1tsYTYuOwRh+wCSvdfb00+3EnWS1RJy552lo45Kv5zrr7eSjZLVF12TJpnF8+uvVuvCFi0ymz8Zk/UU6kjp8/s6yzR+v39vtwQpWRgm3bpVPhHQt690/PFm40lVhw5WF1x5eeZieP11M8tdt856zH+HHaz+EiGJloVA9rg59xYqoLEWLTIdgff8+GNlolCSpk2zRhkEMuXn60DQz5mzZ1cmCitcdVVmZVUkCivccENm5UjSmjWZzxt2fj7egiKd8wbbK3MkC/1nxozYrkMWLZJeeinx5710DZ4+3Wr9HjYLF0rt21t9VLZrJw0YYDoiz3CtZeFTTz2lgQMHaqeddtLXX3/tyDL++ecfDRs2TGPHjtX8+fO1ceNGNW/eXHvssYdOOOEEnXDCCapfv35KZQ0aNEj9k3VIHEdeXp6mBmGETsAvqIDWrm1baeRIq1NpWN56q+Z7AwZYgxmFTW2VVC9VYu3g1PcJ2nqym8lzdfU+FiWrL2LYj2ty+lhn2QvyOoyXLPTqqLZObgc/beORI01HkJ0PPpBOO8355Xip3jRokDRnjvU6EpHuussaDCre8RcyrrQsnDRpkl5KllG3wbBhw3T88cfr+eef15QpU7R+/XoVFxdr8eLFGjt2rO666y6ddtppmjhxYkrlkfQDyk2fLl1yiXTZZbV3yu42L11oKnitQrN6tfUIBID4vHbM2oGkaHqKiqSHHjIdhT1efNHcdgrq/oFg8sP+SstCix+2FbL3449mlvvAA7HTRUXeu+c1xPF06cKFC3X11Ver2MFfQQYPHqw+VUbOycnJ0d57760mTZpo3rx5Wlb+q/K8efN00UUX6a233tJ+++2XtMy//vor+rpt27Zq3LhxrXHkmXy+H84K60Vq3Trp4IMrB3j5+GOrOX3dumbjSiaIN/7ZCuIjtmE9JmvDejEjSOs92Tn00kvdi8NNJ58sjR6d/DNuXls2bcp83v/9T9p1V+mWW+yLx2u8crzNnCntuGN2Zfi1zpJO3F7ZXn4U794ynYGVwP4XBH49TwaAo8nCGTNm6LLLLtPy5csdW8Yff/wR87jwIYccokceeUS77rqrJCkSiWjkyJHq1auXVq9eraKiIl199dX64osvEj6SvGnTJs2dOzc6PWDAAO20006OfQfYoKzMerRw8WKrU9m99zYdUTA880zsSNDLl1uje/33v+ZiAqTYPgeROSpg3Eiksw9MmOBcHNW5tV1mzKg9USjZH0/19b55s3TffdaPO7NmZVf2rbcGJ1no5XNUy5bS7run9lkvf49MZHs8BG19OIX1lJ5IxGqdtmmT1Lmz2YE6vIZ9CRlw7DHkjz76SGeffbaWLl3q1CIkSX369FFp+S8s++23n15++eVoolCyWhl27dpVgwcPVsOGDSVJS5Ys0WvVO6muYvr06dEyGzduTKLQD3r0kC68ULrjDunAA62RnJC9L7+s+d7Yse7H4TdBTj4E+bsh+LxWWfZCPGE/pidPNh2B5ZFHrC4jsk0UmhTGfalK44KMhHGd2Y11WLtffpFuvFHq18/6YSKoLr1UOvxwqUsX6eijzfTvSFdmCBDbk4VLly5Vz549dfvtt6uoqMju4mNMnDhRf/zxR3T63nvvVb169eJ+tnXr1rrmmmui06+99lo0IVhd1UeQW7VqZU+wcM66dbGjTBUU2N/3kBdu6ADAbW7dhPXuXfM9zrvBwbasqfqxVb3PJIQDxwac9ttv0mGHSU89ZTWqOPdcZ5ZT276czr5eWirdeadUp47UrJn04YepzTd4cOXrb79NrdW43Z57Lr3PJ6pnpZro/Pvv9JYHpMHWZOFzzz2n4447Th9WOaD32GMP9ejRw87FRH322WfR13vuuafat2+f9PNnnnmm8ss7il21apXGjx8f93PTpk2Lvm7durUNkcJR8TogHTbMmWXx66X3sY2cxY0NnHDffVZ3ElWleyzPnm3dFCXr/J3zQ+2cWEesdyA+v15T/Rp3GN11V+x18b33pBUrzMWTirFjrZbWJSXSypWZPzF2/PHW93WTXde7b75J7XM775za57gOIwO2JgsHDRqkDRs2RKfPOussDR8+XC1atLBzMVE/Vhkx5/DDD6/181tttZXatGkTnf4mwUFYNVlIy0LUyi8VpjVrrF8Td9pJOukkackS0xFlzy/rHkDtshnU4bHHrP7DDj5YOvJIaf361Oe14zxCJdy/64DriH3c2gf8uK8lijmT897GjdnFEjQcw8l99VXN97zeGq1vX/vKOvvs5H83fT5JtP8GdUCxCl4/br0en0sc6bOwTZs2euONN/TQQw+pUaNGTixCxcXFmjNnTnS6ttGNK1RN/k2O009NJBLR9OnTo9O0LERg9OsnDR1qDQLz6adW834A8LsNG2JbJo4da43cDvPcrmw/9pjUqJHUtKn05pvuLjtdbq6bSMTqg3j4cOt4gXek20fl5s3Sv/7lTCzpqEiwcEONCsOHJ/+76aSc36xcaToCwN7RkDt06KBu3brpqKOOUo7DF49FixapuMqz/Km2Xty5SlPdBQsW1Pj7/Pnzo60j8/LytNdee+m7777TJ598ot9//13Lli1TnTp1tN1226ljx446/fTT1bZt2yy/DTwv2QXOLxe/6r/SDR4svfqqkVACzS/7g1PWr5cWLZJ23FHaaivT0YRPGG/cvviiZgLk/POl885zLwY/H/fVY/fKPpTuOp06VbrtNut1YaHVKuOkk8zF4yWXXCJVDOy3777WaKGNG9u/HLfWUfV9dONGa5s3aeLO8k366COpSn/tvlWxryxdKv33v9Lvv0v//rf0/POpb8fCQql88Ep4QNX+AuFfXqkDwBNsbVk4cOBAHX300Y4nCiVp+fLlMdPNmzdPab6qn1u5cqXKqvWRVPUR5AYNGuiCCy7Q5Zdfro8//lgLFy7Upk2bVFBQoNmzZ2vIkCE666yzdOutt8Y8fo0A4wTq7xsmt4R1HU2aJLVpY92Mtm4tJegXFrBVWI83P3Bz2/TsGTtdXCwNHFj7fEG/ri9YUJkolKykqlP9Opvw/ffS7rtbgyAceaTpaBLLppuFqvr3t6ccu6RyjCc7xu6803raZfFi6e2303v89PzzU/9skHDNCxa2JzzM1paFblq7dm3MdOMUfyHdcssto68jkYjWrVunJlV+wao6EvL69eujjypvvfXW2nXXXVWnTh0tWLBAy5Yti37uk08+0axZs/TGG2/ElG9CSbKO3X2i+ijViUatjiopibsjZ7ouEpZVUqI8SdWrPKVlZYr4YL1nso7ifd+ysjKVeeT75paV1fjFoywScTS+2k6apaWliiTYJ+Ox85hNtkzblpPkeMvt31+5FS22lyxR2SOPqOzdd2stMtMLUcx3KixU7s03K2fUKEX22UdlL7xg9c8ZR7z9JlJWplJD+42d+0BuJJLer4BHHqnSUaMU+b//i79di4ut0QhTlE2losayUjy355SWKi+Fz0kJtn0kkvG2z/niC+W8/bZyJk2qca5MpGpciWLPVqLvlOz6Fo2prCztmEpKSuLOF5GsOEpL0943SkpK0qoP5M2fX/N6tXSpymrZj1LdBqU2b6vq693uCnn0+73/fs3tcsstKi3vD8vOa1Wq+04657zajtm8225TTkUfzN9/n/XyEsl6+9TWb1o1iWLOi0RSPtekWnYm362irpXKNScSJ+aKumR+9Sdc+vVTyUMPpRbXhx+qZPXquHXV2pSUlMTdt5J93oR46zd6Xk1RKuf9dOZNV8W6S7t+4rDoNk3h+pTO9k93nZUl2A8jSn+/TqQkxWO1Ih437vPSOf7KIpH08wNpyOYYCTrfJgs3VfuFrl69einNV6faTU/1cqq2LJSk3XbbTXfccYc6d+6svLzKKtCECRPUt29fTZw4MTrfzTffrJdeeinl72C3srKyaDxBMmXKlKR/rzdrluL1WJnpujgoznuzZs1SYcOGaltSouq3zf8sXqylPljv8b5XbeuoZUGBqqe/V61erfke+b67rV6tbaq9V7B+vWY6GF+89VjV3HnztH7yZCUfm72SncdsstjsWk6DmTO1T4LyD3rrrZj3cj/6SL+nsNza1mkiVb/T9q++qp1eeUWSlLNggdZcdpnmJmihsMvKldq22nubli/Xn4b2Gzv3gVbLlindnoLLzjxTk778Mm6MkyZPViTF66uU+baMt6wtFi5Umzifq76+msybpz1T+Jwk7bJiRY1tv6GoSH9lsA22/OUXtbzqqrTnqxrX1gsWaI+0S6jd5s2bNSXOd4q3ff766y9tqvJ0xPb//KP4afbEJk6cqGaLFql6hzCRSEQTJ05U3b//1v5pljl16lQVr1oV816y+sA+GzeqQbX3li9frtWzZyte79MV2yHR/lPdggULtHsKn0vVjBkzVFSlRUk2x048K/77Xy255BI1/ftv7Vrtb1Xri6kud+Jvv6npyJHKKS7Wqq5d454Xms6fn9I6Suec12L1ajWr9l5BQYFmVMT/88+2Li8Ru7dPbRLF3LqoSNk+eFu97Ey+28qVK7Vg4kTtXVCg2pprFBYW1rguVcyfrG6aSlzTR47Unps2KfWrVOUy4u1byT7vqkhETT/9VLs/+miNP23auDGt+kq89ThjxgwVZThvuirW3e5r1qipDeXZpSKuvPXrdUCKn01Fuuts2bJl2j7O+/GS7JmaOHFiyuvfrfu8XVetUmrPhUoFhYWaWe36X1t+IB3xttm0adO0OZ3B8gLKSwn+tFTP8OfmpvZV8vNj86PVs9Lz5s2Lvm7fvr3ef/99HXnkkTGJQkk68MAD9eabb6pTp07R97777juNHj06pTjgM0F/TMmvPLhdmn30kfY/9VTTYTjHg+tcknZ69tmY6aajRqU1f72FC+0Mx5hGkyalPU+dNWu01dixDkTjjLx167TFvHnKyWREUBsf99nFa48DIr6QPuK1/euvq+WVV9pW3t7XXqvd771Xu/XurX0uuEA5mzfbVna9OXO047PPqvmwYbTk8Itsjyub6hLN33vPlnK8ZutRo7T7/fc7t4CQnhcBSaqzZIlaXXqpDuzQQa0SjTrt0fsdt/m2ZWH15GD1vgcTqZ5krN7S8Msvv9SyZcu0aNEi7b777mqYpOPcunXr6tFHH9XRRx+twsJCSdLrr7+uo446KqVYAARPkwSPQcEHSkqkfN9eFrOSX61rDy9rc/rpyl+7VhtbtNCsAQOyLzDDCmH9uXOzX3bA5VYZiA7uazBjhhqVd6eTrca//hp9XX/uXG09erRWHX981uXWmzNH+1xwgXLLn/RpNHGi5vbpk3W5CIdcl/qM3+rbb7Vxzz21aZddXFlei969E/+RRB8clOPW/mVwP97xpZeiP65n8iN7mPj2rqh+/fox05s2bVLdunVrnW9ztV9Ct9hii5jpnJwcbbfddtpuu+1SiqNp06Y66aST9Pbbb0uSfvvtNxUVFdWIzw25ubnaf/90H/TxntLS0pimxW3atKnRsjNGglal7dq1sy2mvfbaS2rXLm4cO+y4o7a3cVluqm0d5TWq+UBj0623VhOPfN/crbeu8V6jRo1qfq9IRDn9+yv3wQelevVU9tRTirg5UmoSdu6nriwnQWuSROU7+f1qKzvR33O3qf7wevnn991XMnDudmsfSGaXBDdAbfffX2pQ/eFOZ7Rt2zZ2/cc5/0iVic168+dr32++UeTww+N+Lt56zW1W86GzBvXru7oNqi4rZ+pUR5ZRt27dlL9T61atpJYtK2PaPt4DUcm1a9dOOQkeB23Xrl1GI+/uu88+Kt1pp5TrA3nV6nOSNajdNnvtlTguSTkpJn13tTlJ0LJlS6ltW1vLjGfrKk/MVMjNzc16n9/t/fe1yx13xLyXk+Kja1WXnduvXzRRKElNR45U48GDpW2tDgNym9Z8cK5Rw4Zpxe+Fc2y6EsWcZ8M1yo71sU2zZtq6XTvlJjhPV9UwzjVkm2220dY21Buabr21cuIc+7Vp165d3DpkInvdeqsi9eur7J13FDnuuLSXl668osQPCW9Rr17W27Bly5aSy/XPdNa3G6LrcM2a1D/rgG0TDNJq54Cx6ezv23z6qbb68EPblp1IvHN7Io0aNVKbNm3Syw8kkf/RR7V+Zp999rEGz/KxyZMnp9ygLhHfJgu32mqrmOmCgoKUBhcpKCiIvs7Pz7dlQJIDDzwwmiwsLi7W4sWLteeeqfSAY7/qj1kHQV5eXvLvleBvdq6L/Ly8hMvJS/I3r8tkHeXm5irXK983TqI4NyenZnyTJ0v33GO93rRJeVdcIZ12mlTtPGKCW8esbctJ83hz8vvVVnbCvyf4gSE/P9/IseyF83aiCpeb66TGeTaF5eb+739S586Jy/v6a2ndOum446xEZJxtn5OT4+o2iFlWhhXd2uREIil/pxrbOMVuXWqUYfM+FK/MpPWBODdWya5X0XJSjC3P5pak+XXquHJsxbvdzFH25524ZaS4P+fn50vr10u33SYNH17z7/PnSzvuaE3YcMx64RybrnT2c9vKTkP02EohnnhJj5SOzRTjyER+fn7a57qcoiLl9e4tnXRSRsu0ix3Hr6vX9orleOyxznSuAU6eQxLtw3a28MtP8ViNfn7lSinFhlMZS+P4y83JqVFPrTU/kKVk9/5h4ts+C6u3/FuxYkVK8y1fvjz6umnTprZk7ZtVa6lQfaRmAA5J9UJ6222x05s3S889Z388QNCkU1k19UhJouVeeaV09NFSt25Shw5W0jCd+cOiej3IYzd0Kcs07i++SO1zDz6YWfmmubl/p7Osa6+VXnjBuViCyo7jMxKRRoyQXnxR+vvv7Mszye3z1S+/uLs8p/j1PB9EVRoyecaECaYjgEf4Nlm44447xvQ3uDDFzukXLVoUfb3bbrvZEkv1EZWT9XMI+EpQKhPxzg8rV7ofBxBURUXSOeeYjiLWSy9Vvp4yRXr77eCc02oTlu9pBxJWmfn9d6vF7lVXJU7EJ/P665kvO8wJfju++223SSefbP2gkunjlWHeBoCdBg6M/75fruOrVlkNMN58U6o2cCz8z7dtK+vUqaOWLVvqzz//lGQNb33CCSfUOt+0adOir/fZZ5+Yv40fP16jRo3SypUrtX79ej3//PMpNW+vmqjMycnR9hn09wMgA365kMIfuPnJ3KefWsk4E1I9D1x/vfTf/zobS5h59fjhOuGcL7+0/l+6VHr/fbOxIHWPP1752u8/nHr1vIOaOBeblc6xcsIJ0pAhtf8IvGqVdMABlY0yhg+XUugPUJL39wevx+cS37YslKSOHTtGX//www+1fn7NmjWaWqUz8UMPPTTm74sWLdJrr72mESNGaMyYMTGdaCbzfZXRT/fee+8a/SkiANavNx0BAHjXWWdlX0b1iplbN4EVy33nHeuR5RtvDNc53671bPfIx+nGlejzJBOc98EH1mjydq3r2m7SuIkzr2IbZLot3NpXEtljD+m11+yJwY84L6I2554rzZmT/DODBsU+vfXxx9L06c7GBVf5OlnYtWvX6OspU6bUmtx75513VFJSIskaIOWwww6L+fshhxwS04fh8DidLlc3ZcoUjRs3Ljp98sknpxQ7fOa446QnnjAdBew0cKDUrJnVifo775iOBl7ADahZJm9ePv1U6t7dSno89ZR0wQXuLNepfc7Euhw50v1lwju8/PjZxRdLjz3m7RiDzMlra05OZuXbPGARUuDVBKVX47JbJsfJ3Xcn/3vv3jXf++qr9JcDz/J1srB9+/bab7/9otN33nlnzGjHVU2bNk3PVRnQ4Oyzz1a9evViPrPLLrvEtDZ877339NNPPyVc/vLly3XLLbcoUn6Sadq0qf7zn/9k9F3gA7fd5v/HNVBpwwZre/7zj3TeedLq1WbiSOfmZeNGadw4acYM5+JBOCWqRIalEn3llbHTH30kFRaaicWvPvnE7PJJ9scX7xgO27p67TWrDnfHHaYjCack91LIQFiuy2G3caPpCKz+nr0gbNcsD/FssrBLly5q1aqVWrVqpS5duiT8XM+ePaOtAWfMmKELLrhAf/31V/TvkUhEX331lS6++GJt2LBBktS8eXNdWf3GoNwdd9wRHYa7tLRUPXr00FtvvaXNmzdHP1NWVqbRo0ere/fumjdvXvT9Bx54QI0bN874O8PjyspMR+ANpiopK1darX0OO0zq39/e7VFSYq6/tRS6UJAkLVtmjejaqZO0zz7S0087G1eQUemoKew3H/FGBC2vM8AGHHPBZ2LU5XSX+dhj9scSVplugwqcEwDvC3vdEP4d4KRCx44dddNNN+mJ8kdEp06dqlNPPVV77bWXmjZtqvnz52vp0qXRz9erV08DBgzQlltuGbe81q1bq0+fPurZs6fKyspUVFSk3r176/HHH1erVq2Um5uruXPnamW1Fma9evWKeSwaLqLC4RwvrdtLL7X6wpCkH3+Uttsu/ucyvbAtWZLZfNm6+mpp8uTaPzdsWOXnysqkBx6wRqHMT+M0Pn26NGqUtNde0rHHZhZvkFEpCj67+9UDvM6P57WqdQ8v1UNgnxdekJ591nQUAOx2/fXWPdrZZ5uOpKayMumNN0xH4Su+TxZK0pVXXqmGDRvq8ccfj7YenDVrVo3Pbb/99nrsscd08MEHJy3vlFNOUbNmzXTHHXdEE42FhYWaMGFCjc9ut912uvfee3XMMcfY8E2QET9WhJGesrLKRGGFiy+WLrwwtflT2UdSGPncEevWpfa5G26InV65Upo0STrwwNTm/+kn6aijKltLPfKIdOedqceJzCxaJL36quko/MnuJEFZmfTii9mVUVwsPfRQsB6rC8o1NNH38GqyyatxZcOufSko+6QTvLLf2BFHjx7ZlyGxv2Rq8WKrW5tWraQddjAdDYKke3frSbCddzYdSaxLLpFefz21z3rlXGtYIJKFknT++efr6KOP1jvvvKMxY8Zo0aJFKigoUKNGjdSyZUsdffTROuOMM9SoUaOUyjvssMM0atQojRgxQt98842mTJmiVatWKScnR9tss4323ntvHX300Tr++OPVsGFDh78dEHJUBONL50J2//2xj1XedRfJQqctXSq1ayetWmU6kmBL9fxQpTuRGOkcRw89FL9Db68JwjnTju+QkxOMdeEHrGek6+WXTUfgT3Yca2PGSPfdJ61dKzVpYv0g/+9/Z19uMiRf/Cebfe3++711jK9YkXqiEFGuJAu7deumbt26pTXP119/nfZytt9+e11//fW6/vrr0543nrp162YUOwB4zpdfmo7A++yuyP7vf6klChcssEbmbtDA3uWng0p8avyQKDQh1RbSbvNyAsut2Px4bKcas5e3r1PC+J2TYX1kpl8/K1EoSWvWWNNOJwsRLtOnm44g1rRppiPwJc8OcAIArqLCGR5ubevyvnRr1aKF1KZNan1XOiXROnHzuPjmG45Dv/rwQ9MRpJ8UKyy0EvVB59YxFYm4uyyggh8T4qb980/s9KefmokD3lbbuTabc7FT5/FJk6QPPog/cB3SRrIQQGJBqZBTkbRPonU5Z467cTjBzv09EpE2bkz983PnSn372rd8u3zzjdVf5rPPOj8i/EknSddea70uLraSOang+K7J7XVy0UXuLi+edI/fffaxEvWmmNxvg3JtRzD9+Wfqnw3j+T+M39lJrE9nmLjODB5s9eXerZvUtq0UZ7wJpIdkIYBg8dtNUFAqKQccYDoCb+nXL/15hgyxP45snXqq9Tj1tdfWHNlu82b7RxceOFD67DOpZUurv0eTgnJshlmybbhwoXtxmOTWfuzm8eLWskpKrK4HTjnFneXB0qaN9MADqX02jOfpVOq5S5da11IevUSFgBwrORs3avtBg5R7xx3SzJmxf7z9dqm01Hq9apX06KPuBxgwgRngBIADvH5h8Xp8YbJ+ffK/r1ghffuttNNO0r/+5UpIRvlt8JhUjqX33rP+j0SsG7kHH5Ty81N/3DpVJ55ob3lhlM2PJl45r9r1w49Xvo8pfnwM2St9Ft53n/TII84uA/H16WM6Av+aOFE65hhp+XKpTh3T0SDI0rm+lpRIPXtKTz8tbbONtMUWGS1y7+uu05a//25NPP+8lRDfZRdrevny2A8PGyYNHZrRckJfdyhHy0L4Hwcz7OC3Fol+MmeO1UrsrLOkww7jJsDvpk61koVlZVbrQpsGFfOcsJ4Twvq93bZmjXWj8+ablS0hnBBve1JvSo0XE4Vh2XabNpmOwL+efLIyaWJ36/9MnHOO9QNqUZHpSMLN7Wt79eV99ZX143JxsbRkiTR/fupllZ/36s+cWZkolKzuavr3t14vXZpePLWhLiSJloVA9sJScfMzTvhmPfOMtHhx5fRdd0m33CLVrWtP+Zs321NOxbG8YoXV3+BOO4Xn+E7nGLnjjthpp/syhLPmzpVatTIdhTOefFI6/XTTUcRXdeTRt992bjlePIdle87mmu4dXty/wu6110xHEGvYMNMRIFN2nmsvvDDrIhrE68904ECrtWK3blmXj5poWQjAv7hh8L6yMuuGvTo7Rymz6zHYSMQayGPHHa1HGs45x75EZJAsW2Y6AqRj9WrrF/xErdeOP75yP//tN+m55+yPwWRC4ZZbzC07VSNGOFe2F0cofuut1D9LMgqI5dQxHYlY1wnq1rBD9XP3ypXOLWvBAumHH5wrP8RIFsL/uKihqkxvLNiPnJGX5/wy0u0fMNE+Ulgo3XZb5WM7b78tjRqVXWx2mD9fOuIIqXlz6dxzpbVrK//29tvS/vtLhxwijRuX+TL8fEPOsZvY++9Lu+4q7babdNRRiT83ZIj04YdSx47SokVuReeOX34xHQGqq63rAq/0WQiEyX77Wf0Qd+liPSYaFpxHMpds3bm5Xqv3VQjbkCwEECxc9J3l56RSbd59t2afOhdckH45q1bZE0+FW26RxoyxHo8eOtQanViyRoH7z3+kKVOkX3+VTjjB3uWGnZ/39YrBJm6+WSoosN4bMybx53/+Wbr1Vmf7zkPwpXr9rdgnsy0njLy2bkzH4+fztNdUjJz87bfSgAEmI4FXmD6+TeLcIolkIYB0hfnCgWBv/3iPHK9bl345FaMG26V6eb16Wf/fc0/s+5nEiuAaOTK9DsRnz3YulkwE+VwTRGwvmMB+54x+/UxHAC+YPl06/3zrh8eqT7WEAT+eSiJZCGQvyBUVr/+q4vX4vC7I+24m7Nqfrrgi83nfe0867TTpmmus0VKTmTAh8+Vk6qSTpPHj3V9uMn4+DzgV+4IF0rHHOlN2JjjXmBNv3a9f7+8boYrvxH6FMGK/h5veesvqe/yUU9Kbz83+cp2oS736qv1l+hDJQgCQqHzBG/vAmWdKH31kje529tmJP1dcLM2a5V5cFT791P1lOs3PyUZYVq+WJk82HYW/fPSR/WXadQ6tekyaOj5Xrzaz3NpwvorF+oApkYg0aJB06aXW4HheqEMmk+2x8t130pw59sTipg8/tPpl3rAhvfkeesiRcPwm33QAAFCrIFcG58+XHn5Y6tBBOuYY09GEW7yKnsl9b+TIxJ02X3ihu7Eg2Jy+yXH6ODrnHGfL97NE6/6CC6Ru3dyNJRPJ9k2nWkd++631w42XlJVJTzzBgD0Idp3YT55+WrrhBuv1q69aPzBU7x4maObPl/bYo3I61X3RyYHTaovh9NOdW3YI0LIQ/mf6oml6+fC/e+6RunaVBg82HYl7vP4LrFckGixl2DB34wC8avVq6csvTUfhXYnOtem2sshmWXbLyZH++Uf6v/9zpvwHHpBWrnSm7FRNmWKNGn3//VJhodUFxG23mY0JQKWKRGGFe+81E4dXVfQDPm6c1KaN2ViQMVoWAkgsTAkdL3zXHj2kiy92b3lO9fORDi891uqFfQCAJdXjkYF9knOz3yg3Pf20c/2nfvutM+Wm45BDpI0brdeffGKmj1q/MF2PcRt1FaRr+nRnyk22L/72m/X3vn2zHxwlbMe4h9CyEEB6TJyw06kY+bkStWmT6Qjcd+ed7i8znX0k0f5eUiJ9/rk0alRseWVl2cVWnZ/3Z8AOJSXaceBAtTnlFOUdcYRzNz1B5ceBTFautAaKOv30+K1GIxGpTx97lvXGG1L37larIC9dgysShRKJwmRIIgC1O+igxE+qOOnbb6URI9xfLmxDy0IA6fFS8iLslUQT39+uZVaU46VBCVLdt0tKpC5dpO+/t6a7dbNGMZakW291JjYklu05iT7APG3rUaO0wyuvWBOLF0sXXST99FPlB8J+HajNggXuLOfhh+1b1okn2v/DSzxDh8b2/7p4sTVgAQAESWGh9MUX2Zfz8svSEUekft19/fXsl1kbL92XBhAtC+F/nCScE6absIceqtmqoKTEuimdNs1MTKkoLbVaWJxwgulIwmPUqMpEoSS9/740aZL1+sknzcQEZOPXX01HkNAe1TuM//lnadmyyumhQ90NCPH162fftnAjUShJl1wSO12RlEbqvFBPLC42HQEQDkOGSO+8Y275ic43XjgPBRTJQgCoUPVGZ/16qXNn6V//kvbd10omek0kIvXvL911l/VIbCbzI3333VfzvXbtnOlsn20EN/z2m7Pl212RLyqy/i8rk+64w96yER5eeuwYmYlEpDlzTEfhLuoF9iLRlJ6LLjIdQU0cE44hWQgAFaq2MvjkE+nHHyunH35YKihwP6ba3HWX6Qj8x6mK4XffOVMugPj+/NN0BABMCms3Eps2WU+9LF/u3DLCum6RXDo/stidxCMp6DqShQCCL5OLy3nnxU5v3Ch9/LE98cCbvFgJOeAAd5bj51/W/Rw7EqvtePztt5rnaQDhUtEFSJj8/bd06KHWUy977CF99JEzyznqKGfKBeyUk0M90EEkC4FscYKq3caN0k03SR07StddJ23Y4NyynEz4uLGtS0ulF1+UHnjAbF+J69ZZ2+qUU6zRIu3mxcRcvJhMH9+bN7uzHC9uD9NMb/sgsXv/WrDA6iLCSwMkwT2cr7yDbeG+zZulP/6wXhcUSHff7cxy1q93plyvYR8GEmI0ZPgfN3Te17u3NGCA9Xr8eKluXenxx42G5FmXXlo5eli/ftb6atPGmWUlqyBdeGHlr9WffCJtuaV02mnOxAFk47LLTEcAtz34IIMahFlJiekIAO/480/rR/l69UxHAsRy4x6dZK+jaFkIID2ZnJT79ImdfuIJe2KJx8kLkxsXpIpEoWR14t+7t/PLrG7jxpqPtVQkZIKcnKfC4U9r1piOIHPsc5kZOdJ0BDCJvtSAWEGumzmNUdCdY3cdh9GQXUeyEEBinHzNGz5c6tLF3WXG67x45Up3Y/CKsBwDYfmeXvP776YjcMc335iOAACAWGVlUq9epqNAbWqro/LDq2NIFgLZ4gTlfX5PhATxRtvP28TPsSdCZbkmN87tjz7q/DJMmzw5dqR5AAC8YOFCZ/tRB3yOZCEApMpriWE7klaffmoNFNClS2qtnLy2DuyU6ncL4jpYsMB0BAiqO+7IbL4gHmcAAPjd8uXSrFnWoIxuSlQvCOKP+B7BACfwP24onOPHdWtHzPEeww2iOXOkk06qnO7SRVq61Fw8AILns89MRwAAAOzSooXVr7oXkCh0FC0LAaTHSyflVGNJN4G4cWN2y/OLe++NnV6zRho61EgovlBSwgisYRK04x0AACBbXkkUwnEkCwGkx4+tDYMq223x448135s1K7syU2WqBejo0bEjTqeisFA6+2ypbl1pr72k8ePTXy4AAEET5h9VioulH36Q/vrLdCTUzRFekUi4z0MOI1kI/zN9gjC9fCcF+btlIiyVsbFjTUeQmq5d0/v8vfdKRx8trV8f/++Jtu+bb1qjUkci9O0HAEDYrVkjdeokHX64tO++Ut++piMCvMfu+6ZE96VhuT8zgGQhAIRVvIvrb7/F9mNYnZcSyN99J/36a2qf3bhReuih5J+Jtz5ycqSnn04/NgDZofIPJ40YYToC+NmHH1Y+ZRCJWPULk6PqeqluBiAwSBYCQFjFuxn//HP348jG6NGpfW7+/MzKLyqS/vwzs3kBAN4zcKB08snx/3b33e7GAn+65JLY6cLC2n+QBMLGrSQ2yXLHkCwEwuymm/wxYEM6LUycbI1CS5dgY/sCQPBdc03ivz3yiHtxIFj69JEGDzYdBeAdr71mb3nU011HshAIswEDpC+/NB1F5pz6JSnRxWjpUmeWF0b8CggAgL9x8x7rhhtMRwAET7J7Bu4nHEWyEAi78883HYF/pNo/nlu4QHKjAv8ZOdJ0BAAAJ6xbZzoCIFy4D3AUyUIg7NauTe/zYT4pDxtmOgJ7hXlbxsP6gBtuv910BAAAAP5CIwnX5ZsOAMgaN/jO4aQMp9h13LKPwm/++MN0BP7AtR1A0K1ZIz39tNV/eMuW0vLlUufO6ZfD+TIzrDcgKZKFQLZIVpjDRd597O8AAIQbdYHslZZKHTtKM2bEvp/P7TkAb+AxZPgfFRYgM0FIttr5HYKwPuAPb71lOgJA2n130xHAr7heZm/EiJqJQkkqKXE/FsDPyAU4hmQhkK0gV5i8/t3cHg3Za7KN0y/fEwia226TyspMR4GwmzfPdARAeH32mX1lkSzJDOvNX7hvcR3JQgDp4cIaXoWF/v3Fu6DAdATwGyfPdf/8I915p3PlA4AbqBNmjnUHwONIFgIAUtOokdShgz1l3XKLlTDJVqqV7Zdfrv0z/GKJqvbf39q/jjlGWrbM/vL797e/zCDheAQQZCQLgfRwzLiOZCGA9PjtBq6oSPrrL9NReJPJbfnhh9KBB2ZfTqrf4fnn7SsL4bB4sfX/qFHSgAFGQwEAT+GmPXusQwAeR7IQQGJer8isXVv7Z849N70y//xTuuGGzOJxm9e3T22WLDEdAZCaPn1MRwAA3sGPa9nzex0OcAvHijGMzQ7Av957L/nf16yxWrCl4+CDpY0bM40IfsbNDwAAcIOdCRDqLwgzkomOoWUh/M/0BZITlLcsXVr5euXK9OcPU6LQ9LFjB44/AADgN9RfzGrXTtptN9NRAJ5GshBAsJSWmo7APWFKbCaSSsLz88+djwMA4H2vvmo6gmDIyZGmT5dGjzYdibdNnCi9/35lH7hVkSw0a9Ik0xHADkFo+OBhJAvhf1xskUjQ940zzjAdgT9cdZXpCBAEf/9tOoJwWbtW2rTJdBQImksvNR1BcFxxhekIvOmtt6z/e/eWDjjAqqvtv7/0+++xnwt6HRVwC8eSY+izEEBwBf3iEe+XatQ0f35qn+PXSSTTtq3pCMLl0EOVt912pqMAEM/GjdJ335mOwpsuucRqtda/f+V7q1ZJjz4qDRliDe72+efSl1/at8yg13eBRHJyqL87iGQh4BfjxllJjyOPlHbYwVwcfjohU3lKzk/b0g2sDySzapXpCEInp2oftAC8o6TEdATeVVwcmyisMHSo9OCD0r/+JS1f7n5cQBBRd3cUjyEDftC/v9Spk3TeeVbrlmnT3FmuV5JtXAicwXoFAABwx5NPkigE4BskCwGvKy2VevasnF6xQnriCXPxeB0JMGSKfQcAgNp55cdkv3n2WWfKpf7innnzpOuvNx1FKOWUlSX4A+cjp5AsBLxuzZqa7738sjvL9krlI9MRjrl4JOeV7euU6p2J1ybo6wMAADtQv0IYrVsntW8vPf206UhCqcXDD5sOIXRIFgJIjxMVxO+/l15/XVq4sObfVqyQjj46s3KpzIbbxRebjgAAgODhxzWE0cCB8RtxwFk5Oe51wYUYDHACwKxHH5Vuv916vfXW0rffxo46+tpr1uAuqcrJkUaPlmbNkvbe29ZQ4TOTJtk72iAAAADC6b33TEcQWjlffJH4j249cRdCJAsBmFNWVpkolKTVq6V+/aS33qp879Zb0ytzzpzMWyIieI47znQEAAAEC09uAHDL4sXKffTRxH9/6in3YgkZHkMGkB47Hz3ZtKnme0OG2Fc+kuMxolisDwAAalf1R10gLKgnmjFxonIYRdwIWhYCXmfy19t0l/3339KwYVKzZtL550t5ec7EBTiBSiAAALXLdOA5AIBvkCxEuEUiVku2BQukU0+V9t3XdET+tWCBNULYqlXW9Jdf0krQ60iOxWJ9AAAAIBOjR5uOALAVjyEj3G66yWoBd9dd0sEHSxMmmI7Iv554ojJRKElDh0qLF5uLB+Fw552mIwAAADBnyRLTEYRDbT8qn3uuO3EALiFZiPDatCm2Q9SiIqlXL3Px+F28zmV//939OIBM0bIQAAD4Tb9+1v8bN5qNI6jGjo1tEJHIsmXOxwK4iGQhwiveSf/TT92PA4A3kCwEAAB+88kn1v8jRpiNI6j+/W+pbVtpyhTTkQCuIlkIZMvkACRVTZ4sjRwpFRQ4uxwSKsHBtgQAAAiGs84yHUFw/f23tHmz6SgAV5EsBLwulWTkE09I7dpJXbtKBx1kX1+B2SZCkyWjNm3Krmxkb80a0xF4C8lTAADgN6Wl0i23mI4CQMCQLIT/eaVlnynFxdI991QmOmbMkAYPTq+MdH4pGzrUWue77y6NH5/ecqr617/o2wMAAADIxpIlVsMBALARyUL4X9hbA/31lzU4S1V3351eGVtsIV1xRc2k4ciRieeZN0+69tr0llPV779Lb72V+fyA3cL+wwMAAAAAiGQhwswvSUa34nzpJenzzyunv/669nl++UUqLMx8mekmNQEnlZWZjgAAAAAAjCNZCKDSeedVvk611SAJFgRFaanpCAAAAADAOJKFQLYiEauvkG7dpP33l+66y+pH0I5yH31U2mab7MtKVdVWgtOmubdcwAsef9x0BAAAAABgXL7pAIBAuPJK6eOPrddTpki77CJddVV2ZU6dKt1+e/axAQAAAAAApIiWhYAdKhKFFa6+OvsySRQCAAAAAACX0bIQyJZTI6guWOBMubXp08e+QVX8MogMAAAAUJvnnjMdAQC4gmQhgFh33WU6AgAAAMB77Hh6CAB8gMeQ4X9Otezzi7B/fwAAAAAAYBuShQCyw6PGAAAAAAAEBslC+B/JKgAAAAAAAFuQLAQAAAAAAAAgiWQh4H+0rAQAAAAAADYhWYjwIslmnyVLTEcAAAAAAABsQLIQyJaXRyNes0Y691xpxx2dW8agQVKLFvH/RkIWAAAAAABfyTcdAAAHPfqoNHSos8u44w5p82ZnlwEAAAAAAFxBy0L4n5db9rkh2fd/5BHnl0+iEAAAAACAwCBZCAAAAAAAAEASyUIge071yxf2FpMAAAAAAMB1JAsRXsXFpiNIjsFBAAAAAACAy0gWwv8yTaq9/ba9cQAAAAAAAPgcyUKE1x13mI4AAAAAAADAU0gWAnAOj1IDAAAAAOArJAsBv2MgFAAAAAAAYBOShYBXpZoEpPUeAAAAAACwCclC+B8t64Jr5kzTEQAAAAAAECokC4FsOdWyLwgtBrP9Do8+ak8cAAAAAAAgJSQLATine/fs5n/pJXviAAAAAAAAKck3HQCAANu8Wfrzz/Tnu/9+6fffbQ8HAAAAAAAkR7IQgLNefDH9eR54wP44AAAAAABArUgWwv+83rffu+9Kf/whde4sde2a+nwM3AIAAAAAAFxGn4VAth55JPHfnnxSOuss6eGHpWOPlYYOtX/5iZKKPXvavywAAAAAABBoJAuBbK1YkfhvN98cO92jh7OxVNW/v3vLAgAAAAAAgUCyEP7np8d1161L/bNef7w6VfPmmY4AAAAAAACkiGQhAGd9/LHpCAAAAAAAQIpIFgJe5acWkwAAAAAAIBBIFgJ+F5THlQEAAAAAgHEkCwEAAAAAAABIIlkIAAAAAAAAoBzJQsDvSkpMRwAAAAAAAAKCZCH8L+x99l1xhekIAAAAAABAQJAsBPyspET65RfTUQAAAAAAgIAgWQj/y8kxHYE5xcWmIwAAAAAAAAFCshDwgsJC6x8AAAAAAIBBJAsB0/r1k7baSmrcWHrgAdPRAAAAAACAECNZCJi0cKF0xx1SaalUVibdf780c6bpqAAAAAAAQEiRLARMeuSRmu/de6/7cQAAAAAAAIhkIWDWmjU131u92vUwAAAAAAAAJJKFCLIPPjAdAQAAAAAAgK+QLIQ/jBwpHXyw9W/kyNTm6dZNeuutmu+vXi2ddpqt4aWlXj3pX/+S5s41FwMAAAAAAEAcJAvhfStXSiecIP32m/XvhBOkVatSm/e//6353jPPSB99ZG+M6di0SfrpJ+mee+L/PRJxNx4AAAAAAIByJAvheblPPimVlFS+UVIiPfZYajNv2lTzvV697AksW0OGmI4AAAAAAAAgRr7pAIBaTZ1a871p09yPwy0jR0rNmlktKmtDK0QAAAAAAGAjWhYCXpRKohAAAAAAAMBmJAvhT7Sos+TkmI4AAAAAAAAECMlCeB8JMQAAAAAAAFeQLAQAAAAAAAAgiWQhgmDZMtMRAAAAAAAABALJQvhT1T4L+/UzFwcAAAAAAECAkCyE99XWZ+H337sThxcVFpqOAAAAAAAABAjJQvifn0dGzmbwlr/+ktq1sy8WAAAAAAAQeiQLAZOySXQ+9ZS0eLF9sQAAAAAAgNAjWQiYtHZt5vM+/7x9cQAAAAAAAIhkIWDW55+bjgAAAAAAACCKZCEAAAAAAAAASSQL4VdV+/rLZpAQAAAAAAAARJEshPeRDAQAAAAAAHAFyUIAAAAAAAAAkkgWwq94DBkAAAAAAMB2JAvhfbUlA6smDgEAAAAAAJAxkoXwP5KFAAAAAAAAtiBZCO+rLRnIY8gAAAAAAAC2IFkIAAAAAAAAQBLJQvgBLQcBAAAAAABcQbIQ/jRihOkIAAAAAAAAAodkIfyroMB0BAAAAAAAAIFCshDel+gx5BdeSP53AAAAAAAApIVkIfxryRLrf5KFAAAAAAAAtiBZCAAAAAAAAEASyUL42bvvShs20HchAAAAAACATfJNBwDUKtFjxvPmSR07plbGmjXS7bdL8+fbFRUAAAAAAEDgkCyE90Uiif82ZUpqZVxwgTRihD3xAAAAAAAABBSPISP4NmwgUQgAAAAAAJACkoXwvmxHOy4qsicOAAAAAACAgCNZCAAAAAAAAEASyUIAAAAAAAAA5UgWAgAAAAAAAJBEshB+kG2fhQAAAAAAAEgJyUIAAAAAAAAAkkgWAgAAAAAAAChHshDex2PIAAAAAAAAriBZCO+LRLKb/9tvbQkDAAAAAAAg6EgWIvgWLjQdAQAAAAAAgC+QLAQAAAAAAAAgiWQh/IA+CwEAAAAAAFxBshAAAAAAAACAJJKFAAAAAAAAAMqRLIT3ZfsYMo8xAwAAAAAApIRkIQAAAAAAAABJJAsRBqZaFi5fbma5AAAAAAAAGSJZCDhlwQLTEQAAAAAAAKSFZCGCb+ZM0xEAAAAAAAD4AslCBN9LL5mOAAAAAAAAwBdIFiL4Nm0yHQEAAAAAAIAvkCwEAAAAAAAAIIlkIfzA1GjGAAAAAAAAIZPv1oKeeuopDRw4UDvttJO+/vprR5bxzz//aNiwYRo7dqzmz5+vjRs3qnnz5tpjjz10wgkn6IQTTlD9+vXTKnPSpEkaPny4fvnlFy1dulSRSETbbbed9ttvP5166qnq3LmzckhmIR72CwAAAAAA4DOuJAsnTZqklxweZGLYsGHq27evioqKYt5fvHixFi9erLFjx+rFF19U//791a5du1rLKy4u1oMPPqi33367xt/mzZunefPm6dNPP1WnTp3Up08fbbvttrZ9FwAAAAAAAMAExx9DXrhwoa6++moVFxc7tozBgwfrvvvuiyYKc3Jy1LJlS3Xo0CEmiTdv3jxddNFF+vPPP5OWF4lEdOONN8YkCrfYYgu1bdtW7du3V6NGjaLvjx07VhdddJHWrVtn87dCFC30AAAAAAAAXOFosnDGjBk677zztHz5cseW8ccff6h///7R6UMOOURfffWVPvnkE73xxhv67rvv9PTTT2vrrbeWJBUVFenqq6+u0QKxqldeeUWjRo2KTp977rkaN26chg8frmHDhmncuHG66aablJ9vNcycM2eO7rrrLoe+IQAAAAAAAOAOx5KFH330kc4++2wtXbrUqUVIkvr06aPS0lJJ0n777aeXX35Zu+66a/TvOTk56tq1qwYPHqyGDRtKkpYsWaLXXnstbnmrVq3Ss88+G50+55xzdN9992nLLbeMvlevXj316NFDvXv3jr43cuRITZgwwdbvBp+LRExHAAAAAAAAkBbbk4VLly5Vz549dfvttydtvWeHiRMn6o8//ohO33vvvapXr17cz7Zu3VrXXHNNdPq1116LJhmrevfdd1VYWChJatKkiW6//faEyz/jjDN0xBFHRKdfffXVNL8BAAAAAAAA4B22Jgufe+45HXfccfrwww+j7+2xxx7q0aOHnYuJ+uyzz6Kv99xzT7Vv3z7p588888zoo8OrVq3S+PHja3zm888/j74+/vjj1aBBg6Rldu/ePfr6u+++04YNG1KKHQAAAAAAAPAaW5OFgwYNikmWnXXWWRo+fLhatGhh52Kifvzxx+jrww8/vNbPb7XVVmrTpk10+ptvvon5+5o1azRt2rTodKdOnWot89BDD1VeXp4kaePGjfrhhx9qnQchwcAsAAAAAADAZxzps7BNmzZ644039NBDD8WMHGyn4uJizZkzJzq93377pTRfq1atoq8nT54c87fp06crUqWfuVTKbNCgQUwfidXLBAAAAAAAAPwi387COnTooG7duumoo45SjsOtqhYtWqTi4uLodKqtF3feeefo6wULFsT8bd68edHXdevW1Q477JBymXPnzo1bJrKTW1Cg3GHDTIcBAAAAAAAQCrYmCwcOHGhncUktX748Zrp58+YpzVf1cytXrlRZWZlyc3NrlJlqedU/Wz0uZGfPJAPMeN6UKaYjAAAAAAAASIsjjyG7Ye3atTHTjRs3Tmm+LbfcMvo6Eolo3bp10ek1a9bE/Vxtqj5qXT0uZC5/xQo1jjMIjW9cdJHpCAAAAAAAANJia8tCN23atClmul69einNV6dOnYTlbN68Oe3yJOuR5XhlmFBSUmJ0+XYoLS2VJNWllSYAAAAAAHBREPIq2fJtsrD6xqt4lLg2+fmxX7kiMSUppg/EVMurXqbJnaqsrEwTJ040tnwAAAAAAAA/I6/i48eQqyfzysrKUpqvejKvakvDvLy8tMurXmb1losAAAAAAACAX/g2WVi/fv2Y6eqPJSdS/THhLbbYIvq66qPHqZZX/bNVywMAAAAAAAD8xLePIW+11VYx0wUFBSkNSlJQUBB9nZ+fHzNPkyZN4n6uNoWFhXHLcFtubq72339/Y8u3S2lpqWZ89ZX2uv5606EAAAAAAIAQadeunekQsjJ58uS0npaNx7fJwu222y5mesWKFdphhx1qnW95lUEzmjZtqpycnLhlrly5MuVYqpbZrFmzlOdzQvU+Gf1q93vvVZ3Vq02HAQAAAAAAQiQoeZVs+PYx5B133DGmf8CFCxemNN+iRYuir3fbbbeYv7Vo0SL6esOGDVqxYkVKZVZd9u67757SPEhixQo1okNRAAAAAAAA1/k2WVinTh21bNkyOj1t2rSU5qv6uX322Sfmb/vuu29MS8NUyiwsLNSCBQui061bt04pDiRR5bFuAAAAAAAAuMe3yUJJ6tixY/T1Dz/8UOvn16xZo6lTp0anDz300Ji/N2rUSPvuu29aZf7000/RZ8Hz8vLUoUOHWucBAAAAAAAAvMjXycKuXbtGX0+ZMkVTpkxJ+vl33nlHJSUlkqwBUg477LAanzn22GOjrz/++GMVFRUlLXPo0KHR14cddpgaN26cUuwAAAAAAACA1/g6Wdi+fXvtt99+0ek777wz4SjG06ZN03PPPRedPvvss1WvXr0anzvjjDNUv359SdagKb179064/OHDh+v777+PTl944YVpfwcAAAAAAADAKzybLOzSpYtatWqlVq1aqUuXLgk/17Nnz2g/gzNmzNAFF1ygv/76K/r3SCSir776ShdffLE2bNggSWrevLmuvPLKuOU1a9ZMl112WXT6/fff1y233BIzOvLGjRv1/PPP67777ou+17lzZ3Xu3DmzLwsAAAAAAAB4gO/Hg+7YsaNuuukmPfHEE5KkqVOn6tRTT9Vee+2lpk2bav78+Vq6dGn08/Xq1dOAAQO05ZZbJiyzR48emjx5sr799ltJ0ogRI/Tll1+qVatWqlu3rmbOnKn169dHP7/zzjurX79+znxBAAAAAAAAwCWebVmYjiuvvFL33nuvGjRoEH1v1qxZGj9+fEyicPvtt9fLL7+sgw8+OGl5+fn5evrpp3XmmWdGWy0WFxdrypQpmjBhQkyisH379hoyZIiaNm1q87cCAAAAAAAA3OX7loUVzj//fB199NF65513NGbMGC1atEgFBQVq1KiRWrZsqaOPPlpnnHGGGjVqlFJ5devW1cMPP6zu3bvrgw8+0E8//aSlS5dq8+bNatq0qdq2bauTTjpJXbt2VW5uIHKuAAAAAAAACLmcSCQSMR0EMvf777+rrKxMkpSbm6v27dsbjih7JbNnK3+vvUyHAQAAAAAAwsbnaTI78kQ0iQMAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkILyofgRoAAAAAAADuIlkI7/F5Z6IAAAAAAAB+RbIQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIbyIAU4AAAAAAACMIFkI72GAEwAAAAAAACNIFgIAAAAAAACQRLIQXsRjyAAAAAAAAEaQLAQAAAAAAAAgiWQhAAAAAAAAgHIkC+E9DHACAAAAAABgBMlCAAAAAAAAAJJIFsKLGOAEAAAAAADACJKFAAAAAAAAACSRLAQAAAAAAABQjmQhAAAAAAAAAEkkCwEAAAAAAACUI1kIAAAAAAAAQBLJQgAAAAAAAADlSBYCAAAAAAAAkESyEB6UM3Om6RAAAAAAAABCiWQhvGX1auUdd5zpKAAAAAAAAEKJZCG85amnTEcAAAAAAAAQWiQL4S0ffWQ6AgAAAAAAgNAiWQgAAAAAAABAEslCAAAAAAAAAOVIFgIAAAAAAACQRLIQAAAAAAAAQDmShfCWSMR0BAAAAAAAAKFFshAAAAAAAACAJJKF8JqcHNMRAAAAAAAAhBbJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoXwGkZDBgAAAAAAMIZkIQAAAAAAAABJJAvhNYyGDAAAAAAAYAzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEN6yaZPpCAAAAAAAAEKLZCG8Zdo00xEAAAAAAACEFslCAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAAAAAAAAoBzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAAACAciQLAQAAAAAAAEgiWQgAAAAAAACgHMlCAAAAAAAAAJJIFgIAAAAAAAAoR7IQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAAAAAAAAoBzJQgAAAAAAAACSSBYCAAAAAAAAKEeyEAAAAAAAAIAkkoUAAAAAAAAAypEsBAAAAAAAACCJZCEAAAAAwGt22cV0BAAQWiQLAQAAAADecdll0pgxihx+uOlIACCU8k0HAAAAAABA1EsvSZJKR49Wfr16hoMBgPChZSEAAAAAwHvy8kxHAAChRLIQAAAAAAAAgCSShQAAAAAAAADKkSwEAAAAAAAAIIlkIQAAAAAAAIByJAsBAAAAAAAASCJZCAAAAAAAAKAcyUIAAAAAAAAAkkgWAgAAAAAAAChHshAAAAAAAACAJJKFAAAAAAAAAMqRLAQAAAAAAAAgiWQhAAAAAAAAgHIkCwEAAAAAAABIIlkIAACAINp2W+nQQ01HAQAA4DskCwEAABA8ixZJP/5oOgoAVd16q+kIAAApIFkIAHY64gjTEQAAAHhTnTqmIwAApIBkIQAAAAAAAABJJAsBwF6RiOkIAAAAvKljR9MRAABSQLIQAAAAAOC8nXYyHQEAIAUkCwEAABA8OTmmIwAAAPAlkoUAAAAAAOfRXQsA+ALJQgCwEy1ZAAAAAAA+RrIQAAAAAOA8flQFAF8gWQgAAAAAAABAEslCAAAABBEtmAAAADJCshAAAAAAAMCE/HzTEQA1kCwEAAAAAAAAIIlkIQAAAADADXQPANTEcQEPIlkIAAAAAAAAQBLJQgCwVyRiOgIAgERLDcCLqCcBgC+QLAQAAAAAAAAgiWQhAAAIgg4dTEcAAKgNLX4BwBdIFgIAAP8bOFDae2/TUQAAAAC+R7IQAOzEL+aAGQcdJM2YIY0ebToSAE5r1sx0BMgU9SSgJo4LeBDJQgAAAAQPN1/m/Pe/zpZ/0knOlg8AQMiRLAQAAABgn3r1TEcAryKJDwC+QLIQAIAweucd0xE4IxIxHQEAAJk57DBpiy1MRwEAJAsBAAils84yHQEAIGxoWZjYjTdKn35qOorUMagYEGgkCwEAAADYh4QQkL4nn5SaNDEdRep22sl0BAAcRLIQAAAEB0kKVGBfCC62LQAAjiJZCAAAgoM+CwHAcu21piNAJuIlw6++2v04AIQayUIAsBOJCgB+0aiR6QiQSLNm0g47mI4ic15u+XfaadKKFaajcF7XrtLdd5uOoiYv7xte1qaN6QhqYlsCgUayEAAAIIwmTDAdARLJzZV69zYdhXdlk6R4/32pXj37YvGizz6TvvxS2n5705EgE/zwDMADSBYCAACE0W67mVlu8+Zmlus3l11mOoLg2WUXK9EY9BZRXk42BX3dO4X1BsBlJAsBwE5U5gCzvHyTDISF09dCrrUImpNPNh0BAMQgWQgAAAD3hD3Rc9xxpiNwXti3sWleXv9ejs2khx4yHQEAxCBZCAAAgoMbUXgdrV+B5Lp0MR2B+9q2Tf53zhuA/U480XQEnkayEAAAAEB4BP1HBb8nlho2NB2BWYn2z7w8d+OAe4J+TvKic8+VBg82HYWnkSwEAADB4febZLf8+9+mI0CQceOLbIT9PJ7o+w8d6m4cgCQ1amQ6Avudc4701ltSs2amI/E0koUAAPjBCSeYjgBB8txzJHRMCUMipHVr0xGEm5ePbS/H5mU5OdQDYMZTT5mOAIaQLAQAAAiT0aOl/fYzt3ySBcF2xBHSRRdJW27p3DLYhxBGYX88O8w++MDMcq+6Sjr9dDPLhnEkCwEgHZ06mY4AqOnJJ01HAD8xPXgAiZ5ge/xxqV496euvrcThYYdJX3xhOipLxb4X9H3QyUQtAPeddpqZ5XIuCbV80wEAgK+ccYY0dmziv4fh8TJ4T8uWpiMAYCc/XUuGDpU+/lhauVK67jrpwAOt9w8+WPrmG2eWGfRkXzZ22UU6/HDTUSTGtgP8g+M11EgWAgDgB9deK332mekogOz5KRHmhBtukL76ynQU9tlpJ2nIENNRoMKbb3KD7zfnn286Am/KzZXKykxHAYQWjyEDQDrCfpMLc7p2Tfw3bgwB/zj2WKlDh+Sf4ZhGJl5/Xerc2XQUyeXkSE2bJv/MAQe4Eoon7L23dOedpqPwnm23lX78UXr+eX4oBQwhWQgAgB/k5VkDUyA5Evrwurw86fvvpWHDTEfiXzk51iPP6ao4P5CMNeuFFxL/rU4d6eab3YvFpMWLpUmTpH33zb6s//u/7Mvwkpwc60eVK6+s7NoAgKtIFgJAOmq7weAGxD+aNDEdQfrq1jUdAZA9zpPWsdy9u+ko/C0srbH22MN0BPY780xpxAgr4fvcc9K4cVayq3Nnq5/Lrbc2HaE7dtjBGgzIDiZ+KONcHnxB3cb8sJwS+iwEAITTvfdKt9xiOgr/ycuTSktNR4FE9t9fmjzZdBQIExM3k8cdZyVawuD116VOnUxHYb8TT7T+Vfj2W2OhwINI5gDG0bIQAAC/SHRT7ubNelhu0P0qiEkFYNttK1/vtZd0yinmYnGbl0c2zkRQWyqFkVcTerX1CYvURSLBPGaD+J0cQLIQABBOiSoKPXu6G4cfefkR7oYNTUdgVl5e6p/1c2V5yy1NRwA3/fGH9dhxr17S+PHp7efx+HnfB8KgTp3M5mvQQHrgAXtjiYcRrIONH8YlkSwEgPR49VdU2Of2201HkJhX9r/hw2On99lHGjDAerR7/HgjIUUdeqi0005mY0BydiRqBg3KvgxYrrkmu/ndSLztsIP0yCNWEiAs/dkFFYna2mVyrc80ueZVu+2W2XyTJlndFDjl0EOlSy+VnnnG3nK9elx4Na5s1XaMeflewEUkCwEACKvOnTOb76ijrNEsDzzQqpR/8ol0ww1S797mO+PPzZVefTX1z2e6DmBWUG9gTOjYUdpuO9NRuKNivykrMxsHYLd+/dxfppPn4UzL3nNPe+Oo7scfrR+rttrK2eXArG22MR2BJ5AsBIB0cIPqHXvvnd38iX5V9OM2zjTm/v0zX94VV0i//SZ9/nls5dwL6++YY1L/7HXXORcH4BfZtNbzwjGfLq+00q5NgwamI7CfH/cXt2Wyjg48UDrvPPtjMaXqMco+k9hzz0nPPms6iuBhn5NEshAA4Fe5WV7CqAhYLYqGDUtvHr/cZKfi9NODtx8Eafv4yWGHmY4gc4k6sL/ggtTn95v69aV27UxHUTset0d1J50U//2cHOmNN9yNBeYddlhqLcMbN858GX48x9cmaHU/h5AsBAA7BfGC6lXZXuipKFj8nOTIFjfiZthx7HntXDtunOkI7Bf0c+QTT0jNm5uOIrn//Md0BPYL+n7ltLvvTvw3t9etk+dh9pPUnXpq8r//73/S2rXSrbemX3ZQt4PX6hAeRbIQAOBPYbzQO1FpS/dm2c8Vxy22qHx9223+GSghnVa0ftg+fojRND+d3/y6Pbt0kebPl5YvNx1JfJ06mY4AXnTooaYjgNfk56f2uTvvlM44w9lYECgkCwEgHX66gQu6vDxnym3SxPkOsr2kXj3p5ptNR+GOX36R+vSRhg410xk8LHacR/2aoLLD9tszUqNd6teXmjWzr7yTT7avrExQRwkGv2zHMJ+H7fbCC5nNl842aNpUevfd9JeR6v64++7plw1PI1kIAHai4uSeunWlI4+0v9ycHOnhh60kml9ku9899lhmFUi/2X9/6Y47rEf7OFbhZcn2z333lXbayb1YasOxZGnSROrZ03QUCKqwHWdNmpiOwF3dulmD1DjBreRzmLu1CSiShQCQjrBV1rzu5ZcznzdZ5al7d2nWrMzL9pucHB5Ngb+E+Vy81172lxmW9enUTfMJJ0hTpkiHH+5M+anyw3b0Q4wwr29f0xG4q1Ej6ccf05/P6URgOsfrgw86FweMIFkIAPCvPfawWhg6wUstd/yEG0HUhn0kO716mY4A1R17LNeMMJgxw9yy/fJocqb69q3sXqZnT6sFddg4VZ91S5AeQ6aeIolkIQB4w+GHSxdfbDoKf3FjNORrrsluGYCXURn2p5128lbigP0omOugY0dnyvXTuqqasDr7bGnvvaWttnJ+uX5aR3bp2VNatUpavdpKHIZxHQAeQ7IQALxg7Fjp1VdNR+EvbtwsP/SQdMEFsaPomrTttjXfa9mSSjUqOdXnkdewz9sr3vk0iOs4iN/JKYy6aw2KNXSo9PHH0rBhpqPxnmuvtbe8xo3j91XIcZudbAYEZN2HGslCAIC/OVmRadJEev11aepU55aRjr33lg46KPa9554zE4vX7bNP7PQxx5iJw03bbCOdd57pKGrnpVZxMOuxx6SddzYdBdzkp+RDgwbWgFgnn+yvuN1ievRvpLZf5pLyQWbYcwAgHdzkwrQPP7QGIzn8cOm116QuXUxH5E0PP1zZInTLLaV77zUbjxt+/NH/fR5Vs/KEE0yHEA7xbjjdSI7cckswbmSpG8BOftmf8vPprsUPsjmX+2VfhCPyTQcAAPCQpk2tX9IXLTIdifPy07gEullZys2VysoS/33nnaV333UvHr86/XTpjz+kv/6S2reXWrQwHZGz/vMfq+WpH6Rx41LmlS4AwmibbaxBpObMMR0JgsTvLfRMxe/V9VavnukIUJtsf5AhYRhaAfgpDwBc5NXKmp2C8B1vvDH53+vXtzor9yKTLQUbNza3bCe0bi2ddlrwE4V+E4RzjGl23rwlKisnR3rkEet8mQzbE/G89JLpCJLLND4SJ/CbbM7RQT2/X3dd8r9znEsiWQgA9vL7xcVPj4Mlq8C0apV83j59pEaN7I3HLo89lv48dlXmHnss+30gqBVLeAv7mTu6d5dmz5YmTjQdCdyW7TF22WX2xAGLV+uXnIu9z091ezd07Sr961+mo/AF9hwAQKXBg01HkLpkFefaKtU33GBvLHZ55x2pXTtzy7/8cum336QXXzQXA2riZix8vJAYqIhhhx2ktm0Tf479E2Hixv7up2PKC+cqJMdjyLE++6z2Y8xPx6CDSBYCgJ38fHE59ljp6KPNVQquu0566CEzy/aK00/PbD4797sDDrAe3QX87PDDTUfgLDvP0zk5/r52wV/Y1wB30bIwVl6e6Qh8w5EBTmbPnq1hw4bp559/1qJFi1RSUqJtt91WLVu21Mknn6xjjjlG+el0LJ+icePGacSIEZowYYKWLVum0tJSNW/eXAcccIBOOeUU/d///V/KZQ0aNEj9+/dPa/l5eXmaOnVqumED8JOg/bomSaeeKvXqZSWJTFYo+vSRGjaU7rkn+7JSuRlJZ1u6td2duInaaSfp77/tLxfecuqppiNwV7JjcvvtrfOJn7mZUAnidQ1wSr9+0pVXOrsMPx2TJH+9jz4LkSHbM3ZPP/20nn/+eZWUlMS8v3DhQi1cuFCjR49WmzZt9Oijj2qPPfawZZlLly7VrbfeqvHjx9f426JFi7Ro0SKNGDFCBxxwgPr27avdd9+91jJJ+gEIjVatpAMPNB0FgGyceWb68wRxVM8lS6Qtt7RGdQ+yZMmE3XeX5s51LxY/3UwecIDpCPzj8MOlAQPsL9dP+0s855xjrZdp09xdrlfXm1fjQiVaFiJDtiYLH3roIb3xxhuVhefnq1WrVqpfv75mz56t1atXS5KmTJmiCy64QO+884522mmnrJY5f/58nXfeeVq+fHnM+3vuuaeaNWumpUuXat68eZKkP/74Q2eccYZeeuklHXTQQUnL/euvv6Kv27Ztq8YpjBCZR5NWIPiCWCkK4nfyK69sC6/EAUttrUwefVRy4IkNT0u0j263nbtxeBH10cT69XOmXD+1BEvFrrtm3i1G0G25pfTrr9aTEHBn36dOkh36LESGbKtZfvHFFzGJwmOPPVa9evVSs2bNJEnFxcV6//331adPHxUVFWnFihW67rrr9N577yknwxNAUVGRevToEZMoPOKII3TXXXepRYsW0fdmzpyp+++/X7/++qsKCwt11VVX6eOPP9b2228ft9xNmzZpbpVfZAcMGJB1UhMpatFCmj/fdBSAv9x0k/Tkk5XTp50mffihqWjck+zakaxic+ONtofiaVSyg2/rrU1HAMnq9/XLL01HYZ8g3iC2bm06Am+7/HJpiy2ku+8m6ZxM0Fsuwz9SqeNRD0SGbGmTWlxcrH5Vfqk78sgjNWDAgGiiUJLq1Kmj7t2765lnnon2V/jnn39qxIgRGS/3rbfe0pw5c6LTZ599tp5//vmYRKEk7b333nr11Vd1eHln12vXrtWDDz6YsNzp06ertLRUktS4cWMShW7q1Ml0BID/3HyzdOih1utWraQk5zdPS7cyU3Ejm858++0nXX99+vP5uc9CtyuJfquUduxY+2cOOcT5OMLEjn3Eif0s21aJd99ttTqCvbbYwnQE4fHCC9LTT1v9fjrFK9eIICbD7bbXXqYjgB2yaVnIAFihZkuycOTIkVq8eLEk69HjXr16KTfBTtmpUyd17949Ov3qq69mvNwhQ4ZEX++xxx7q1atXwlaKdevWVd++fVW3bl1J0qhRozRz5sy4n636CHKrVq0yjg8Z4GQEpG/nnaVx46TCQmnKFKlNG9MRedcvv1j9eQEVdt5ZqlIviWv8eOn4492JB+YMGhQ7nW7y8N//liZPlj74wL6YTPJKnez11+0p59ln7SkHqbvjjtjpunWtQbeC4JRT3F2eieTmDz9IN9zg/nJhryoNuIB02JIs/Oyzz6KvDzvsMO24445JP181Wfjnn39q4cKFaS9z3rx5+rvK6I4XX3yx6tSpk3SebbfdVkceeWR0OlGrxmlVOqxtzeMKAKry6i/RubnWYzF29FvmlRtEJ3i9hUqm6z7TR7JhGTJEeuaZ5J95+mlavwfd8cdLjz8u7bOPdMQR0vDh6ZfRooXVFYTTvHRcO3XN6NRJ+t//pLPOyr6s/fazBqZwSlCum5l8j2TdIFx5pdX/YUXZffsGp3/VRx4xHYHzmjVzZpCbdHnpfOeE/ffPfN7a1s1OO0lV8h+OLCOIgnJOz1LWycJIJKKff/45Ol3xqG8yrVq1UvPmzaPTX3/9ddrLnV+tX7uOqTxGJKlNlRY3v/zyS9zPVE0W0rIQAODrilImsYetkpSbK11wQfLP7Lmn9P337sSD2tm9j771lrUf3HyzNHWq9M03VrcOfhSE4/f++63j7brr7Pk+48c727enn68Rmdp3Xyv5N3Fi4s/stpv19xEjpN9+s/pYDor99nN3eVWPA6//8InU1atnne+c0K6d9N57jIaMjGW95/z9999at25ddLpNio+/VU3CTZ48Oe3lVl2mJG2X4qMiTZo0ib6eFmfI+0gkounTp0enaVnosiBUcBFsYdhHw3jT47attrK3vGT7ZRj2WTt4eT3VFpuXY/eqyy+vbOF09NHuP1LoJdme8/2w/zEghf0uvVTq2VPaZZfkn2vSRDrxRKl9e1fCCoVXXomdNpmE9erxn0VXZ67680+pWzdnyv7jj9T6ZU7Gq9sXrsi6Hfi8efNipnetaGpei5133jn6esGCBWkvt379+jHTmzdvrvFePIWFhdHXGzZs0Jo1a2ISiPPnz9eGDRskSXl5edprr7303Xff6ZNPPtHvv/+uZcuWqU6dOtpuu+3UsWNHnX766Wrbtm3a8QMIKBJt3uDV7XDiiVaC4uGHk/ctefPN0hNPVE736JG8XAZVANJzzTXSffdJ69ZZLQj91vLCjXOcV8+jYXHssaYj8Kf//EcaNsx0FM4691xrtOqvvrJaeN54o/3LuO8+fyeKLr5YuuQS01HUbo89spvf6W3EdSDUsk4WLl++PPo6Nzc3ZgTkZKo+hly1jFTtsMMOMdPTpk3ToRWjgSZRvTXh8uXLE7Y2bNCggS644IIaLR83bdqkgoICzZ49W0OGDNHJJ5+s3r17qwG/WgKA+5zo588pCfrKreGee6S//7YGrjnkkNpHuD7oIGvglrlza/7Nz5V9ZKZbN+n9901H4X077ZR8sIWw3CQx2qX3NGxoPYKN9HTvLg0eHPxkoWR919oG58rURx+Fu7U1YoXlWogasv4Zde3atdHXDRs2TDgKcnWNGjWKW0aqWrdurcaNG0enh6fQCfX69es1evTomPeKiopipquOhLx+/fpoonDrrbdWu3btdPDBB2vbbbeNmeeTTz7Rueeeq/Xr16f9PQB4wNCh9pUV74bL7kdOYY90Kj9uV5S23tq62Vm40Er61PZDXE6O1edaor+5KZvl1ZYUdVKQkiWPPSYddljtnzP1nYO0rp0Sppuzxx+v+d6FF7ofRzbs2l6XXWa1iPrtN+oOmejVi/78avPdd9ao7ckG1UgnUdiwYfYxAfCkrFsWbtq0Kfq6Xr16Kc9Xt27d6OvNmzenvdy8vDyddtppev311yVZIxsfccQROvnkk+N+PhKJ6L777lNBQUHM+9WXXb3l4W677aY77rhDnTt3Vl5eXvT9CRMmqG/fvppY3qnvtGnTdPPNN+ull15K+7vYqaSkxOjys5VbWmrPEN1AGkpOPDHlk2Fpaanykvy9LBKpsQ+XnXCCcmtJSFYcu5mclOMd9+mUUxaJqKxKGXmSTNzKl5SUSCUlKcceiURUWlKivEikRryJtlNJSUnl44YJlhX3PJpGXMlULTvlZafqkEOU16CBcsq70qgQUfztmXRZSb5v2X/+E7O/1FBcnPG6KrnpJuWuXq3cqo9gpzpvtte/JN+5tu3mtETbsEJpaakiVb//LrtIY8ZI33+v/C5danze9Pcp+7//U255/S1TpWVliY/xahIea7XtM6WlKa+f6stNNl8q6z8iqTTJOSonybWotv2lutKSEuXGOY+WlZXFHOtJj48Ujr+E2+G445R3yCHKKR94sOyii1S2yy4Zl5kwRhvKSaTqMZhNWSXPPVdlIv3jtMa5IM140tmPS8vKkn5nu+5JStM9DlO8XtdWn4uWl0S2+02i8vO22ko51Z68K83Lq7FtM4mp5F//spYR55iXpLJzzqlxjU967J9/vvJtGKAj0zpJsnKcuL7ZXX6qx1xJsjprOvXZJMuIp+IeIZV5EsXoNams89KSkpSOt6DLensWFxdHX6faqlCS8vMrF53pxeSKK67Qxx9/rDVr1kiSbr/9ds2YMUOXXXaZtqrya9z8+fP1yCOP6Ntvv1WDBg2ifRLGi7lqH4zt27fXoEGD1DDOLyYHHnig3nzzTV111VUaO3asJOm7777T6NGjddRRR2X0fbJVVlYWTV761W6rV2sb00EgdCb+9ZcOSvGzixcvVrKuvAsLClS997jVa9bUul9XHLupxhFv3qrSKWfZ0qX6u0oZ+xcXq26Szztl0uTJitSrl3LsRUVFmjZxotrHqfAuWrxYLeLMM3HSpGirppyNG3VgvM/EWZ91Fy1Skt/gU1a17HjfM9tz+AFxEiibN29WvHYWyZaVt3atDkjwt8ldu6okyby5BQXKtBv7iX/9JZ17rlrMnKlmn3yS3rxZrrvcoqKEcde23VK1rkMHNR4/PosS4lu4cKFWxvn+jWbNUrzxfLP9PpM/+kh7X3ut6i1cmPRzib7v8s2bVXbxxdph8OAMlm6ZO3eu9orzfqrnwxkzZqgozvtV5a9apXYpxlN9uS1OOUXNPv641s8mWv8lpaWaNHFiwvPEdosXa+c4f5OsH/JT//ne2n+227hR1Xv+Xr58uRalEOuMWbNUlF/7LUXSc97TT6vx+PEq22ILFRx4YPIRdmspM57azg/ZHNeSVTdYlsV1vEKiOFMtc8GCBVpVrYx04qm+/GTz1vad7bwnSfU7TJ8xQxuLi1P6/KJFi+LWE6pyer9JVH7je+7R3jfcEJ0u22ILTWrdWmUprNPaYqpY5j4bNypeB1qzOnXS+hT3g4kTJypv3bqE9YV0JFvX+atXZ3Quznb7uFF+qsfcxATXg+nTp2tjaWlax+AuZ52lbVN4KlOSlixdquVTpqS0/hPF6DWprPN459IwyroRV9XWdmVlZSnPVzVBWKdOnYyW3bx5cw0YMEBblDc3Lysr04svvqjDDjtM3bp100UXXaTjjz9eXbt21bfffqv8/Hw9+uijMWVsUa2p+pdffqnvvvtOQ4YM0cCBA+MmCivUrVtXjz76/+3deZxO9f//8ec1m7GM0WTs6wxGiFCSpFS2DylLiT5Ki9KiQqHlQykkP5UPaftWH6nPp1JUH0rRHlGhxMcWLRQiEaIxy++PY85cZ2auubZzXedaHvfbzc11zpzrfV7Xct7nnNf1XqZbtnkhyF/KATiALnExx2VzF77cunV1zNuMjxHK7vciLyPD1vLiSW6tWtp38cX2F+xEl1Uf9vnzTTd5/Nsvt9yiH8ePt2U/kWjnbbdpf7duISu/ICUMP+mE871PStIfnTrpcPv20XlOjsaYY1GU1hclHerQQfu7d5ckFSQlaeftt6vAh4k87VDg4xj8vwwfHuJIIt+h005zOoSA6p5fbrhBv3ftGoJgnPP9fffpj9NPt628Qup0STYkC91nIHbvkuyNe/ffkgk7f5x11lmaN2+e6roNUJ2Xl6cNGzZo5cqV2r59uySpbt26ev7559W2rbXdQMlkoMvlUs2aNdW+fXtl+HBDlJGRoT59+pjLq1evLjUOIgAgyrlc+mncOKejcNxxtwnB4L/dw4bpx3vv1ZYnntB3/+//hX6HDt84/1XPU9s3w76BAwMvPMKTAvnp6fp+6tSQlf9bnz4qCPDH9pIKXS5ujFCmWE4IFUTw2IaFycn6fvJkrVu8WOuWLNHeSy91OqRS9gwdajyI47rjlxEjnP8eBXAuzK9WTdtLNKCKdnnVqmnrnDlOhxFzgu6G7N7d98iRIyosLJTLh0rDfezAakHefLRp00ZLlizRwoUL9d5772nTpk06ePCgMjIylJWVpT59+qh3796qWLGivvvuO8tz3WdlDlS7du30yiuvSDK6Zf/yyy/Kzs4Oulx/JSQk6NTyBquNAgm0WIED2rTxtXODVKdOHY9/K7j1VlUuo8n6ST7Ucf7EYOdzJalGjRqq7lZGYjharJShdevWkh+/nFesWFFt2rSRq4whMOp6mOG0TZs2xRe2Jcb2s2xT9h+Un5OjxCBaC3n7rIL9LMsaDiTZw4Vsufvav7/M1Yk33+w9xgAmLSsZU8JJJwX83IB5+D7YUrakgquvVvOicZWLWiPccYfX5xVmZnr8PIrUb9BA9cqK0cNnEezrOeWUU5Toww1SqxYtylyfWb26Tg4yhsaNG5e53tfX1qxZM8nbtr/+6nM8nvZb2KmTXCtWmMsFN97oU4xJSUketytaX/jQQ9KYMaX+XsGPMcQlqUG9ekoo4zmZmZk+fU4+vZce2HFsRcJ+6tSurdo27CPYOBs0aKD6dl5PPP648jt0UGIZScM6deqU+5rtes/z8/N93jYnJ0fyUO+4K2zUSPVvv12F06bJdeSIx+1C/b0J1/e/rH0merjeatKkiU/H86mtWxuTm5wYDsyuuMpUYvzGgMtxU9CjhxLefdfncsssv00bFZxzjhJatvS7HEnKf/ppn+P1tF1OTo7UqpVfzylSWLWqXH/8Ue42tWrVUg0fX58T3+ciWY0bq7BEozBPfImzYYMGauDg67HDt99+61fP37IEnSysWbOm+Tg/P1+///67Ty3y9rod9NW9zfLog5SUFA0aNEiDvEwhv2XLFvNxenp6ud2MfVUy/kBmd7ZLkg9jxkQ0P8a9BOziz3HjPvSCRUaGEsaMka66qtSffBnPNZhjN9jjPiExUQkRUHckJSVJfsThcrk8vnZPn1NSUlJxstBDq5xy388guwF5+6yCrsObNi011pcrI0P66Sf/9uXhbwk1a3r/rtjxXQ7gXBD0e1fO84Mue+1aJZx2WkDdOVw+JH4SExPLjr+84yAIluPI23ZlsKPOSfTw/DL3eckl0htvWLfLyvL+XfUjRo/v6cSJ0mWXGYnbRo2UMHKkT6/dVU6Z5vrRo6X//U969lnrc/1s6eOpvkxISPApVn/r7lLPDYNQ78fjMeinYOMMNo4y93/ddVIZycLEhITQ1psB8PW76HrySSWlpUmzZknXXFN+eSHk2HskeazDfX0Pk1JSjO1seg3lvheerr39LcdNwj33SCtX+v0DZ6nyfUhOl9KihTRwoBKvvtrn96/c84E/50N3I0ZIDz9c7ia+ngd82t+AAdLrr/tUlr8S/fgu+vIdsatOj3ZBZ2YaNrQODbvDy2DXRXbu3Gk+9vTrcCisX7/efJyTU9aw3/4r2f3ajgQkgCizbp3UoEHw5UycGHwZwYrw7n0oR8kuGOnpUjBdPeNJKLtSBTOuUSR28fI1pkiJ/f77Jfek6xVXSAG0Xg1I9+7S5s3SmjXGeeKUU+wtv6wf3O2qw6PtcwbK+y4OGyZ16ya9+KLUo4ex7uqrwxJW1Js1y7rcsWPQP5467pxzpG+/dWbfGzYY5yWSUfbh3iUkgk4W1q1b19KNeOPGjT49b9OmTebj5s2bB7z/w4cPa/v27T635vvkk0/MxyWboH7xxReaMmWKxowZo+uvv97nZpvuCVKXy6VatWr59DyUgQMdTvDnRsfTd9RDt1dJ/rWSuu8+acEC37e3A8dd7OjYUXrwQSktzfhO/vvfUiDdyp2++b/sMmf3Hy6hmOzEXSiPbafrDX++o61bS19+Kd1zjzR7thTELMwBqVlTatvWOC7tFspj1enPOBIVDSUQCtGefIl0zz8vvfee8WMB/Du+hw2Thgwxridycqw/TDp9vRCMKJ24ziKa339EPFv6fJ555pnm4xVu47J4smnTJu3bt89c7tixY0D7HTJkiNq3b69evXppgQ8311u2bNHWrVvN5a4lZgHauXOn5s6dq0WLFunjjz+2tEIsz6effmo+btq0qWUcRwCQyyWNGuX79v36hS6WeBGvN7kJCUZC5I8/pJ07pb/9zd7yw3VR2qNHcK3xosWUKVzoh0urVkYi/eabY6s1R7hbEca7xESjxXZJgXwOJX8sCHcSG/BVlSrSSy9Jf/0lbdpk/PiB+GD3uYE8SVSxJVnY/cTU7pL04Ycfas+ePeVu/5///Md8nJ2dHXB34CZNmpiPly1b5nX7J554wvLcdu3aWf5+xhlnWMZ5mT9/vtcy169fr+XLl5vLF4XyF8d4wMUqIl2g39EZM4xxpe680954QL3hjZ1jwYYrCZuQIC1fXrrrUyg58T1q0UJ6//3QtTAM1ecVr8n4aEGdGB3mzpWuv97oGvvUU1IEznhbLvd6oFcv69/OOSe8sSB6/OMf/j+HOs1Zdp7zJ0+2r6xQ4jsnycZkYY0aNSRJubm5Gj9+vPLy8src9tNPP7Uk4YYWTbsegF5uJ6avvvrKkrQr6bXXXtPbb79tLo8YMaLUAND169e3tHJ8/fXXtXLlSo9l7t27V2PGjFHhiQMoIyNDl19+ud+vA0AccLmMQbQj8SQZrydEPwbMjmrh/nztuqisVEm65RZ7yopkXbuWmnwjZnj6LsRrnYPo5+m7G8h3Oj3dSBK+956RNIzm4+Kuu4pbDFWpElhCCNHJ37H6J00KTRyIDmVMluTRLbeUOXEkwseWZGFKSopGjx5tLq9YsULDhw+3jOWXl5enV199VSNHjlR+fr4kqVmzZrrUw69o559/vnJycpSTk6Pzzz+/zG06duxoGXdw1KhRpVoY/v7775o+fbruvfdec12XLl08tgAcP368OUNOfn6+RowYoZdeekm5ubnmNgUFBXr//fc1aNAg/fDDD+b6+++/X1WrVi2zXAAICRtmk48Y4b5RSkkxEjXunn46vDE4JVyTO0STaL5Rj7bY7UgoR9trDpVIaOXJZ4FzzpHWr5fefdf4v1u30O+zrEnlYmEMunCx67hNSjKGPwmlSKjnIlW0vTcpKUZPK180acLwDA6zbdCWfv36ae3atXrllVckGQnD7t27KycnR1WqVNG2bdu0f/9+c/tq1app5syZQU0Z73K5NGXKFA0ePFh//PGHDh48qJtvvlm1atVSw4YNdfDgQW3fvt2S6GvZsqUeeeQRj2U2b95cU6dO1bhx41RQUKCjR49q0qRJmjFjhnJycpSQkKDvv/9ev/32m+V5EyZMsHTHBhCj7OzSGayEBOmf/3Q6iuhS8uL4mWeMFp/btxuzBl95pTNxhZu3i0s7W88U+eMPiR/U4CdXtN0IRQJ/j1NP73E0vPe33SbNnFm8XLGidPSodZtp00IfRzS8V3Yr+T2rV8/4Fy533SWNHSsdOmQs33yz0aoR4ffgg1KHDkaiONSJw3j26KPWMdBr1JBOOSX0+7W7frvmGunaa71vV1TH1K4t7dplbwzwia13vffff79GjBih5ORkSUYLvI0bN+rLL7+0JAqzs7P14osvKisrK+h9NmnSRHPnzlUDt1+Xdu/erVWrVmnTpk1motDlcql///568cUXleZlNrq+ffvq2WefVc2aNc11R44c0Zo1a/TVV19ZEoU1a9bU7NmzdQUzawHx4fTTpZNPtq4Ld2u0++83bo4+/VQaPDj48gK5CJgyJfj9RoLsbOnjj6UdO4yLsAoVnI7IfuFu9eNpf6GYCRaAPYKpJ5xsWXjTTcUJqsREY5zTu+4q/nvTpvZ2YysspCVlpGjRQvr6a2NM6JdfDu8Ytyitb1/p1ludjiL6XX21578NHiy1bm08TkoyunRH05A6gdadvrZEhO1snQ7O5XJp1KhR6tu3r1577TV99tln2r17t44ePar09HSdcsop6tmzp/r27auUlBTb9tuiRQstWrRICxcu1NKlS7Vx40YdPHhQqampql+/vs444wwNHDjQr4lUOnXqpGXLlmnRokX68MMPtX79eu3fv18ul0snn3yymjZtqgsvvFC9evVSZX/HagAQvZKSjFYKN90k5eZKnTsbLdLCqWNHKZQtmX05mdONFbEmkhMA3mILd6umSH6v4L9o/jybNZO++Ub68kujC2qLFsb6Pn2kvXulCy6gtVksy8qS3IbCghddujgdAbyZOlV6/vmy/1azprRqlZEkz8w0fvCOBz16KH/aNCWOG+d0JHHH1mRhkezsbI0bN07jgvhAP/jgA7+2r1Chgi6//HJbJxhJSUlR//791b9/f9vKBBDlXC6j6XzPntKBA1JOjpFA9FVZ24ZqJlRflbxRjMfuVLAP3x94E83JqUjTu7f08MPWdTfcYO2qFusyMqQePazrOnUKzb747hajro8+M2Y4HQG8cevZWKbUVKPRQDTyt84oqm8TElQ4erRUXm6paIIl2CqCBt8CJF14odMRAL6pW1dq2dK/RKFknPjcZ0ROS2PWQCASxGISIJQ3804nCmLx8wrEOedIZ5xRvFy7tm9jQbkL9rPkswAiW+/e0uLFxlA6sHIfY5G6rDSXKzpaZ599duDPbdmy9LpYmkAyCCFpWQgErH9/pkhH7Lv7buPmbvt2I0HubzcCLmYARINYHAM00rhcxrirTz0lHTsmXXdd+McHjbfP+f/9P+N9dtevnzOxAL5YtKj0ulBcS0bj9ekDDxiz7m7aZLRQPv98pyOKPJE+5vQLLwT33XviCWsX/Tp1jCEsQMtCRJggZscGokq3bkZXsXgZbwSRJdDZkJ3wxBNOR+Aslyvwll+hbP3ny3eE2a/Do2JF6fbbpfHjA28NUbIrsyTdeKP35zVtavyLJ4MGWVuiXHml1KhR8fJDD4U9JCAiON3i3FfuE7G4XNKwYcZx27WrYyFZXHSRdfmmm0Kzn8aNfd+25OSOkSTYbtmdOxuTHDZsKJ12mrRggZRAmkwiWQgA0cfui7FQTpbilHBfsN5yS3j3549ISvwFYsgQY5ZFyRjQ+9FHQ7OfaH6fIjn2UE0CFy03pdHigguk884rXh461Jg8xJunn47s718oVKliTKgyf770zjvSv/5l/fs111iThwAixz/+IU2f7nQU5bvvPiNxJUmtWoVuEp9hw3zvYhzLYwK6XMYPbj/8IK1dK515ptMRRQyShQAQTdLS7J3Nrm1b6w2iryLhRr1OHeP/SLhRvfVWqVat4uVIvxCNJlWrSm+8If3xh7Rjh9EqF9EjK6v0OvdjtmSiBc5ISpKWLZPef1/69FNp7lzfnhfI+SOaFX13K1aUBg40JjsreQ7KzDRmK33hhbCHF5T27Z2OANEuEq4NvZk0SUpJcTqK8rVrJ23cKP3yi7R6deh6IaWmGj94nH66kZQsi5PX2JFwfR/n6POJyEKlgGh3773SRx9Z17l3dwiGy2X8IpqaGlw5nTsbYyWmphot4iLluCsnjsIKFeTKz5fy8opXRlJCrmlTad06Y+yw+vWNXyXvvNPpqAzRcPHujcsV+jFzIuU4iBZ2fa+GDpV275Zef91oreXrfvi87JeYyHhddklPN77bV15pT3l16hiJA28CvT5IS5Puvz+w5zolFs5tgCcVKxr/Qq1z5+Jzb/360s6dodtXqM7bXA+EDC0LAcBOXbtaxzy56CLjF0I7/O9/9iSgatWSJk6Uxo0LXRdBu510kvR//2d0l0hJkaZOlVq0cDoqq8xMo6VJLHdf4IIsugR6M92pk71xlCchwaiLvvjCuGnxFd9FxJNnn7UuN29uzG7rLj29eMgGf3z9tbR1qzFjLuIHyVYAXpAsBAA7JSRIS5cazfrfe8/oPmnXTW3z5vaU402k3oRfdZV06JD011/GQP7eDBoU+piiQSCfZ6R+B+JVuD+Pjz+WTj01vPuMRBwHiBTduxut6bOzjWT+/PnGkAxFszJXrizNmRPYzNRt2kg1a9obL6JXMEnEUCUgSWyGR6S9z76egyMt7hhCshCRhQtzxILERGMco27dInM2LW8n1Vg46RYWGgnFk04qXvfYY46FgygQqecfJ+JKSjKGKihPKC7iI63ucTKecO6bRFHkS0iQ7rhD+u47aflyY3yx5GTpmWeM8Vz37jUmgwJ8FannPDtdc411eehQZ+KIZvHwPYFHEXgXCwBACdWre/6bpwuZ006TvvlGevFFacUK6bbbQhJawB5+2Lp86aXh23coExGhTnJEWkIpEvg6m6Gdgvkc/Ln54EYl9Hr2dDqC6BGJ4/qlpYVnbLNIE0grSsSXu+82Ws5KRmv5e+91Np5oFs7hSRAxSBYCiB+0nrBPmBM2+bNne/5jebHUry9dcYV01ln2B+VNyVl7r7rKujxypJHAzMmRLrlEmjUrNHGQbPFNpL5P3o619HTp4osDe240iNcJTsL5+iKxBXwkatJEatnS6Sji0vapU60r6tSROnRwJphYF0zdE2nnnOxsYzbhw4eltWulZs2cjih6PfCAb9tNmOD5b5H2/YBXXB0gssT6xT+cFU8nqZKt1qKdv8m+SKhL7rpLqlbNeFynjnT77da/p6YaXaM3bZIWLoydZHYkvPfxIj3dmPggJcXpSPwTrwlARLcXXuA76pADXbpo30UXSZIKMzKkp58myR1PgjnuEhONMT0TE+2LJx41amSMx3722eUPU3LddVJWVtjCQmglOR0AACAExowxuuhEWtfbQEXjTUHXrkYi8McfjRYpGRlOR4RYs39/5B8bJFcQK/guW4XxB9jCChX048SJ+umuu9S6bVslpaaGbd8ATujZs3jYCk/1Yf36RivOk0+W8vLCFxtCIsKvMAEAAUlIkG69Vfrb30JTfqTfNEVKK9KaNY2uUtGWKIz0zzcUovE1hzJRaNcxFCnHIhCsaKwjYkxhSooxARPiC+eR6FK1qjGDe0n+1qHUuY4jWYjIQqUQv0aOdDqC+BGpx1mgcUXq64lXXNTbKxLHj3K5pOHDg3s+AMA51MOIFf5c65wYzgC+IVkIIDI88og0dap05ZVORxL7SOYgmsXjDU5ystMRlDZihJSZGfr9ML4hYlHr1k5HAG+aN3c6gujj7fqyvMnq4LxYvT+45x6pVSupXz9jvFP4jGQhgMiQlCSNHy/NnRt4Gbfeasx8e+aZ9sUV7bihRlkCvSAM5fepUaPQlR3tXnrJ6QhKq1ZN+uYb6b77yu5uFAjqK8SLOXOcjiB4sX68Tp7sdATOCEXC6IILpGnTpBtvtL9shJaTx7ld+37wQenbb6UFC6RatewpM04w6AMiS6xfeCC0Zs40/t+9W6pd29lYopkvx2Gs/voYi6KhXk1Kkv7f/3M6ishVNKB4pCg6/mvXliZOlN5/X3rvPWdjAqLFzJlSp05OR4HyPPKI1L+/01HEjmXLQlNu+/bS6tXFyxMmhGY/3sycGTsTCgJuaFkIwDc33xy6stu2tbc8fjUKDolAeEow+vLd8Dc5ed550sqV0oAB/j0vnlSs6HQEgfOnPgnVtoGKhkR7sIp+ZENoDBtmXb7iCqMXRDx8t6IZXZADE+7rxylTjFbuknEvEcxYusEYMcKZ/dot0q7/fe21EGlxxxCShQB8M2ZMaMpNTDR+wQXsxIWDc/x974cPN1oHwH7BHAf+tGbMySm97tJLPW/vT6KEpEpopKZKQ4ZIV1/tdCTRI5Dv4l13SS1aGI+bNzfGzooVnGcRLp6+a927S9u3S999J33+uVSvXnjjKpKS4sx+wyGc5+CGDYsfDxwoZWf79jzqopChGzIiCzcF9srIkPbvD76cm26SGjcOvpySxo2T+valOw4MkTiOHkKPz698Tr0//oxDWK+e1KePtGiRsVyhgjGWoR2cnOAklm9Ajh51OoL40KyZtHatdOiQlJYW20mFWBIP56XmzaWvv3Y6iuCddJLxD5GlrAnQTj65/Od8/bU0f76Unm4kC+E4WhYCsc6OLrlTpwZfRkmVKkkPPUSiEIgmkXADFcsJnEhS3mdd1t9ee82o00ePlr74org1lV37DGZbwEkpKcZNMonC+HTJJaG5jg6WpwlcgqlbQ3V+Dmd9P3p0+PYVy8r6wfDee8t/TrVqRm+Tyy6TEvxIU3FdGDIkCwF4V7Wq0xEAnnGR4D/eM9/FUrfBUKpQwWgtPmOG1Lq109EA9iNBHT/sPEcuXCi1bGlfed6UHFpg8OCyt8vKCn0s0eimm6SmTf1/XixM0mbn975RI+M9SUqSkpOlRx8NXTdxrmlDhmQhIgsXYvbi/URZ4uGkyne/WKS/F5Ee3403Oh1B4AI51u3uzhUP9Q0ARIq77ipOTubkeG/NZSdf6/uSkyaOHGl/LIHKzjaGDpg2zb/nXXddaOJxWjDXaGPGSMeOGcNe3H67bSEhfEgWAt74M8h7JIqkE7DTQjHuYqSLpETMTTeFb18kKIITzPemSpXS6y68MPDynBbrs6uXvMF55pnix48+Gpp9RlK9BACxpGlTI9m1b5+0bl1gQ0KE2n33Sf36SXXqSP37SxMnlr99uK/pKlf2v4V8enpoYol2iYnGv1Dimj9kSBYC3kT7Tc2NN0o1ajgdRfhdfHHpdf6MfwH7XXRRaMqN9mM0mvjyXicnS6NGFS9XqCA9+GDoYgq1WP9+Pf64NGmSNHSoMbD4gAHFf7vqKufi8ibWPxcACFRycuDjZIYj8VK9urRggfTzz9Lrr3uf+AKAI5gNGZGFi3/7nXSS8ctirLeOKSkeE6RliaZf26Ip1mjSo0fpdRMmBFaWr5/RjBlS+/bSDz8YSeLyfqH3t97nPGGvlBTpH/8o+2/hnmGSzxaIHpdd5nQEiDRM4hPdateWdu+2rktLcyYWRASa2QDxoGZNqWJFp6NApAj1Dfk114S2fPinWTNrS9v69aVrrw3tPl0u6YorjMlBmOzCOZGagPcUV6TGC6C0hg2djgCRJi1NOucc67p//cuRUIIWj+ejxx+3LqemSsOGORKKX+LxswoTkoVAvKAiRTg0aSLdcYfTUaCk11+X5s2T5syRvvlGyshwOiJEM1qPRL7+/Z2OAEA8ev556dxzjdlwx42ThgxxOiL46swzpTvvNB5XqiQ98UTZ41DboeRwUaEe1xABIVkIALDPN99Ip5xS9t98TVj362dZ3N+9e5BBQYmJ0t//boxh6kvXUrqDBqZ9e6cjsCqrRXmSnyPQPPecdblNG6OrUjCi5fsVLXGWZdIkYyZU2Ceavw/BuuEG6/LYsc7EgciXnS199JH0/ffSQw8Z4yciOiQkSA8/LP31l3TgQGhbFd5zj1S1qvHY5ZL++c/Ay6JBTMiQLAQA2KdSpcCfW3SyHz9ehSfG2MzNzNTuK68MvCzYK55vln0xdap0+unWde6TvZQnkO+5N+ecU3r81lde8a+Myy83ZkxOTTVm2Xz6afviCwbfxfK1bCmtXy8tW+Z0JIgFDz4oDRxotBb7+9+lu+92OqLIEEyCA5Etns8xKSmhT/KecYbRwOCFF6Tly6Wbbgrt/hAQJjgBvInmk0U0x47QsSORFspkXIcOyv/2W21+/33l1qqlAm9dIPieR7dI//z8ia9bN+MX+cGDpcOHpawsacQI3557553GRbOdEhON5N6wYcWtBHr39q+MihWlZ54x/oVapH8Xok1SklS5stNRIBZUr27Mlg6ra66R1qwxZvbNypK+/trpiIJHPYxwadTI+BcsGgiEDC0LAW+ogIqVNasqIluoLvoCOS78eU61ajrWpIn3RCEQafr0kbZskb76yrhxbNbMt+e1alV2K8Rgj+GLL5Z+/VU6csQYS6pCheDKA+IVSRSUVLmyUa8ePCitXet0NEB84l49ZEgWAvDdvfcaXdGAUIiGJEZZY4BddVX440Bkq13bGL8wLc2/54WqFVhycnBDBAQjmi/inYw9mt83INrFc2KYugfACSQLgVhmd6uszp2ldevsLTNUuNiJLlOmGAMrR7rq1aWhQ4uX09Lia+ymrCz7y/T3poxjO/rF8404olfNmk5HgFCYO9e6XLWq1LWrM7EA8B/XhSETBXdmiDeFTJ1un//7P/vLtGNsCadwgxq57ror8OeecUbpdXXrBl6eN88/Lz37rDR5stHtyNduptHE07HCzNQIt3i9CSg6BmOxfolG550n1avndBQIhUsukc4913icmGic26OhpwNCK17PPYAbJjhBxCl45BEl3nab02HEhqKLH8BudiZeg/2ePvKI1KZN8XL16sbFf6gkJhqDmsejeEy4FxbG5+uOdPHymTz2mDEOZkGBsTxxoqPhxJXLLzcmLKpd25gNGLGpalXp/felDRukatWkBg2cjgglkbgDHEHLQkScwkibOj1ab0hmzDBmQkR0mj7dutynjzNxRIPWrY1ZZFu0kDp0kN5+m+9+NPG3jg1lnfzYY9blLl3C2z2eG6LSovUcbJdevaSPP5b+8Q/ppZf8TxbynQpcnz7GLLePPy6ddJLT0SCUEhONawkShUD04TwXMtxNISLl1qyplD17nA4DcM6NN0qbNkmLFxuTasya5XRE/rn/futN7dixnk/mdiQDhg61jiUIBOLaa6XVq40EQXa2kSRwWrQny7iID17nzsY/AADgWcWK0tGjTkcRM0gWAuX5+9+l/fudjgJ2iaab1sqVQzPmZLjcdZeUny+tWGGMKXjffdLSpWVvG02fC2JblSpGK9UXXnA6ktgW7QlQAED4cM5AedzvI556SrryyuLlZ54JfzwxhGQhUJ777pNuvdXpKAITzSfWDh2kL74Iroxofv2xIDnZaF0IIDjxnkx38vVzHgEAILK5XycMHWrMXL9ypdFYoVcv5+KKAYxZCHiSlmZ0Q4sVdt1whWO26vvuC/0+EH6M+RQ9SJI4I97fd39ef7y/V9Hoiiusy4MHOxOHr/iOIR7xvUe0695dmjCBRKENSBYCnhQNah/vrTpKCsdg/5Fcudet63QE0euss5yOAJGIGxMgPowfX/wjbFaWMVxFJOP6D/EoEr/3kRgTIgffj5AhWQjEqnivOEPx+nv0kOrUsb/ceOFyGZO1AChbLNbbZR3ztWuHPw44r1Ur6dtvpZ9+ktavl0491emIAACAByQLAW9o9RI7gv0sX3/dnjhiQaBJjTPPtDcOINYV1Vtz5ljXR8t4utOmWZcrVpSGD3cmlngUadcwFStK9esb/wMAEKxY/KE1QjDBCRCrSt4gRNoNQzSqXNnpCGIT3834xufvmxEjjAviZcuMFln33ON0RL7JyTFmJ7zvPik1VZo1i7oUAADYg2RhyNCyEBHp9wsvdDoEbmARu7ydVJ95JjxxIHJR/0Uel0u66SZpwQJjpvGUFKcj8t3110u//CJt3y717m1PmeH4jnIDAgAA4hTJQkSk3Vde6XQI3CwjNgTyPT7/fOmCC8rfhpto2MXf7+jJJ5de17SpPbEAQBGuAwEAcYxkISJS3skna+8llzgdRmwhuQNfpaRI770XPd0cEV9q1ZK6drWuKzmeHwAEK1aum265xekIgOBkZJRe169f+OMA4gzJQkSsY40aORtAtP+i3K6d0xEgmiUkMBkJ7FfWEBOB1PWvvSZdd53Uq5f08stllxtu558ffBmxkpywkcvTe8J75RveJ4waJWVmOh0FELgKFaQ77iherlxZmjDBuXjgiMLERA9/4DwXKiQLAU+KkoXRmjTs0sXpCBDtQnHy5YQe36ZPty63aSO1bet/ORkZxtiab78tDRpkT2y+evbZ0uvq1ZOmTAnN/qL1HBQIf15rPL0vQDCysqR166SrrnI6EiBwDz8szZ8vzZghrVkjnXaa0xEhzH68996y/8C9RcgwGzIQq7iRgsQJFJHltNOkJUuk2bONsQcfesjpiPx3zTVStWrSp58ayc6//U1KS5MqVnQ6svjCOQ7wXa1a0rXXSnPnOh0JIsmQIdK//21d16SJM7F443JJAweGb39cP0ec3y66SI3uv9/pMOIKyUJErki5EeBkEZ343Dxz8tiKlOMa5Qvl59Sjh/EvmvXvb/xDbKO+AuCP3r2lxYuLl6dNcy4WX9x7r/Tmm9KRI8bykCF0WUf04Z4vZEgWAp5wkxB7+EwNvp5UOfkCAAD45p//lA4elDZtMlqd33ST0xGV75RTpNWrjbF/a9UyxgIGgBNIFiJyRXNi5667pLp1I2sGumh+P+0Sj8kvPncA0aJKlVKrCipUcCAQAAhAVpYxREU0ycmRJk50OgogcPF4fxcmTHAChMLf/27MJhtJ4q0iJUkWvPK+M7y/AOxWxiQxu665xoFAAABAVIi3e9wwirBsBuDG6WREsLMhR1qyEIbnnrMuDx/uTBzxihM6AE9atZJuvdV47HKp4O67dbxWrbK3dfoaAQAAIIaRzQBC5fLLnY4AZRk2THr6aalfP+nuu6VZs5yOKHKFK7HHTX/k4TOBE1wuaeZMadcuafduFTDrYWRJKjF6ET+KAohVXAeVr1o1R3a7v1u30isjdQbvGMBZHhGrMNor6fR0pyOIL77OOOdyGa0JFyyQJk+WGA/Ls/KShbQQBBAqtWpJNWo4HQVKevrp8pcBAPFhzhzr8lNPhWW3u4YPt45lPHCgVLNmWPYdj5jgBPDEjmRlhQrSX38FX060+vvfpRUrpO3bQ1P+qadKW7ZIF10k3XBDaPYBAIhP4fhRZM6cyJ8xtcjVV0u1a0urVkkdOki9ejkdEQCEBj+Kl2/wYOOHvRUrpPbtpZ49w7LbY1lZ2jhvnk5ZvVoJtWtHz/kzSpEsBMItM9OYJXnRIunLL52OJrTmzTP+f/zx0MwMvW6d/WUCABAuI0ZIjzwiffed05H4pmfPsN0UhlW3btLSpdZ1jRo5EgoARIWuXY1/YXYsK0sF/fopoeTQGLAd3ZABT+xoWVjWr1KTJkkTJjg21kPc4BdBz3hvgMjEsem7aB+qpIjLJV13XejKr1gxdGXHkocfti43ayZ16uRMLAAARACShYAnsXIjgmLx+JkG85rLS1wkJgZeLgDfxWO9Bfu0aVO6hdwrrzgSSkQ77TTpv/+VLrxQuvRSo5VhrB17mZml12VlhT8OAPa78krr8gUXOBMHYgrJQiCUYu1Cs8hLL1mXc3KciQPeBdNSydNzc3Kk+vXDHw/CJ1brLsAfsXAcuFzSc88ZYw26XNL110sXX+x0VJGpTx8jSfjqq1KDBk5HY7/mzY3ksbsnn3QmlniTllZ63cknhz8OOC9UE0PddpsxhqAkVa0qjR8fmv0grpAsROSKhYv0WNW/v3TjjcYELo0aSc8+63RE8Eewx9asWfbEAQCBcrJ18+TJ1uWrr3YmDl917Sr98otUUGDMWOk+kyTiy8KFUu/e0umnG0mLCy90OqL40KWLkbB398ILzsSC8OvRQ2rSRBo7VrrqqtDso107af16aflyaeNGjm3YglEhEbmiOVlYXuupor9F8+tLTTVmcJwzp3jd7bdLjz1WvNylS7ijgt08fY+7dTO6awUimr/3ACJHx45Gy5zffite99xz4dn36NHS3r3SBx9IrVsbE5QA0aBxY2OCPYRXQoIx6d+wYdK+fdLIkVL37k5HhXBZsiQ8+zn5ZMZaha1IFgKe2JHUiKfEyC23SO++a/yaVb26dP/9od1f+/ahLR90GQYQuZKSjEkpbrxRys01Ws/17x+efaemSo8+Gp59AYgNF1wg7djhdBQA4DOShYhcsZ5oi7VETHa2tHq1tHOnMYh2qGd7njkztOUDQLjF2nkh1K65Rvrb36SDB40uXky8BACwA+djgDELAY+KkpWBJC0jMdEZjpNexYpS06alE4WVKpXetqxZ+bw56STpkkuMLrBnn+3/8znxG3gf4E0k1mHxis+ifLVqGZMukSgEADjpnHOcjgCwFclCRKzCWLhBat689LqMjPDH4bRBg0onDAOZFOWJJ4zBufv08b5tLHx/7BBp7wOJSgAAAMSaceOcjgCwFclCRKzj1as7G4AdswW6TwAiGS3jwjGm0j//Gfp9+KNSJenxx42Wh5I0YoR07rmh3SdJqeCF6z2MtIQmEEmoywAACK9Ark3POsv+OAAHMWYhItZBp5ty25HAOPNM6aGHpGnTpKpVpaeflpKT7Svf3WOPSWvWGLMQX3ONvWXbYdgw6bLLpLw8471wAkkp//gyqzcA+1BHxacqVUqvC2SoDgAAAJuQLETkipTxh4JJiiQkGE3Sw9Es/bbbyv97JNyEljV2oT9C+Rrq1pV+/jl05QMAoku4fhS58kppzBjpr7+K1z35ZHj2DQAAUAa6IQOAJD33nNMRRB5aDwLhxTEXn9LSjKE6UlON5dtukzp1cjYmAIB/IqFhBmAjkoWAJ8FU+NzwRZ8LLpAeeECqWVNq2dLpaCIfF0Sxjc83cvBZOCec7/2110q//y4dPmwMK5LAJToAAHAOVyKAJ0UJv1i5UYuFBGYoX0NionTvvdLu3dL69aHbTzTp2bP0uieeCK7MWPgeAkAopKZKlSs7HQUAgOtVgGQh4sikSU5HAIRfr16l15WVBCzLSSdJd9xRvNyqlTRokD1xAYCPdl17rXXFaac5EgcAAB6RYESMIVmI+DF2rHTnnVKHDlLFik5HA4THsGHWWTVr1DDW+Wr6dGnFCmnxYumLL4wEYjBipaUugLDZ26+fjmZnGwtVq0oPPuhsQAAAADGO2ZARPypUkB5+2Hg8d673hEmokxokTRAOqanSmjVG0s/lMhLmFSr4V8ZZZ5Vex6+nAMLkeK1a2vjCC2qdlqak2rWl6tWdDgkAACCmkSwEQsGXRCDJltDi/S1Wr540c6bTUSCa8GOGM6i3PCqsUEE65RQpiUtXAACAUKMbMoD4QQIEQLSh3gIAAECYkSwE4gU3nAAAAAAAwAuShYAnsZZco3sbIgHfQwAAAACIaCQLEZ9iLREYL4JNNJGoikwcjwAAAIgUrVqVXnfVVeU/h/sMxBiShUAocLJwHgkoAEAwEhOdjgAA4ISGDaU+fYqXK1WS7rnHuXgABzClHOAUklmIZiTEYxv1EyBlZEinnip9+23xun/+07l4AADh8/rr0uzZ0t69RqvCpk2djggIK1oWIj6R6IhO4UxgXH65dfmBB8K3bwBAZJg1S6pVy3jcp480dKiz8QAAwiMlRRo9Wpo6VWre3Pv2/NCKGEPLQsAbTxV/mzbSN9+ENxaEz4wZ0sGDRouSCy+Ubr/d6YgAAOF27rnSTz9JublGNzRuBgEAQBwgWQgE6pVXfPuVCc4ItvVonTrS22/bEwsAIHolJxv/AAAA4gTdkIFA9Osn5eQ4HYV/nn7a6QicR4sQAAAAAADKRbIQ8CSYxFIkJqX695fatnU6CgDR4tRTrcv/+IczcQAA4I8RI6zLl1ziSBiIM4yJjxhDshDwJlYq/rQ06fPPpXfecTqSwMXKZwFEg8mTjXpDklq1kq67ztl44gF1HAAE7447in/watxYmjjR2XgAIAoxZiEQTypUkHr2LPtv6enGhB6ALy68UEpKkvLyitc984xz8cB+F10kffedtHevlJ0tpaY6HVF8isSW6gAQybKzpdWrpQMHjB+9OH8BgN9oWQh4U96NWiy1tFm6VKpSxekoEC0qV5YmTChebtdOGjjQuXgQGjVqSC1bcqMFAIguyclSZibnLwAIEMlCxKezz/a+jS+tOcaMKXt9NHYlO+MM6ZNPnI4C0eQf/5C++Ub68ENpxQqpWjXvz4nGYwMAAAAA4gjJQsSnJk2kPn2CL6d58+DLAKJZ69bSeecZXdwDRTdLAAAAAIgYjFmI+LVggfTcc8Z4Jhs2SPPmOR0RAAAAAACAo0gWIn4lJ0s33GA8/vLL0snC0aPDH9NZZxkzFhepVElKTJQOHQp/LNGuaBZXd1Wrhj8OAPAV3fQBAIhOlSqVXle7dvjjAGxCN2RAMsbr69q1eLlxY+nvf/e8vR03dGV1vaxfX1q40Ojaefrp0pIlZZ944N2dd5ZeN21a+OMAgGDQTR8AgMhXsaJ0ySXWdU895UgogB1oWQgUefdd6aWXpKNHpSuuMGZ7lcJ/o3bJJaVPNOES6a1a/Imvbl1p8mRjEo6CAiN52LJl6GIDAAAAEL/mzZPuvVf68Ufpssukiy5yOiIgYCQLgSLJydKwYU5HURqtSgJ3993SzTcbycKTTnI6GgDwX6T/iAMAAAxVqkiPPeZ0FIAt6IYMeBPIjRoJvtAI5H1NTydRGEnuvrv0ugcfDH8cQCTi3AEAAIAIQLIQCAQ3dEBgWraUhgwpXr7kEqlDB8fCAQAAAABY0Q0ZABBeL74o3Xab0T38zDNJvgNF6HIMAACACEDLQiAUfLnhGzmy9LobbrA/FiDSuFxGa8KOHUkUAt5wjAAAACDMSBYCgbCj9UePHtIZZxQvn322dN55wZcbDG5KAQAAAACIa3RDBrwJVQItMVH67DPp9deNfQwYICUEmL93HwMOAAAAAAAgQCQLASelpEiDBwdXRnKyNGqUf8+55BLpjTeKlzt1Ci6GcGE8LwAAAAAAQopuyEC027BBOv10/55z553SSScZjytXlv7xD/vjAgAAAAAAUYeWhUC0q1HD/+d06iStXy/9739S06ZSw4b2xwUA8A+tpwEAABABSBYCkS5UYybWqWP8AwBELiaeAgAAQJjRDRnw5sILS6+74ILwxwEAAAAAABBiJAsBb667TsrIKF7OyJCuvda5eEKJLnAAAAAAAMQ1uiED3lSsKH31lTR1qrF8993GOgAAAAAAgBhDshDwRePG0tNPOx0FAAAAAABASNENGUBk6tCh9LratcMfBwCEy3nnlV43aFDYwwAAAEB8I1kIIDL985/W5YYNpXPPdSYWAAiHXr2kZs2Kl9PTpZEjnYsHAAAAcYlkIYBiLpfTERQ780zphRektm2l88+X3nknsuIDALslJEiffy6NHy/dfrv09dfSSSc5HRUAAADiDGMWAohcQ4ca/wAgXmRkFE+oBQAAADiAloUAAAAAAAAAJJEsBCKft663dM0FAAAAAAA2IVkIRLvCQqcjAAAAAAAAMYJkIQAAAAAAAABJJAuB4LVrV3pdZmb44wAAAAAAAAgSyUIgWDNnWpd79ZJq1LCv/Ouus68sAAAAAACAcpAsBILVubO0ZIk0eLA0Zoz06qv2lj9ypHTSSZ7/bucEJ4x/CAAAAABAXEtyOgAgJvToYfwLherVpW++kZ58UpoyJTT7AAAAAAAAEC0LgehQv740ebLTUQAAAAAAgBhHshAAAAAAAACAJJKFANzZOf4hAAAAAACIOiQLAQAAAAAAAEgiWYhYk5kptW7tdBQAAAAAAABRiWQhYktKirRqldNRAAAAAAAARCWShYg9qalORwAAAAAAABCVSBYCAAAAAAAAkESyEIh+zGAMAAAAAABsQrIQAAAAAAAAgCSShUD0KyyMzLIAAAAAAEDUIVkIAAAAAAAAQBLJQgAAAAAAAAAnkCwEAAAAAAAAIIlkIaJRcrJUubLUoEHpv8XjzMB2vuZ4fP8AAAAAAICJZCGiz19/SYcPS9dd53QkAAAAAAAAMYVkIQAAAAAAAABJJAsBAAAAAAAAnECyEIh2SUlORwAAAAAAAGIEyUIgmsybZ13u1k2qWNGZWAAAAAAAQMyhSRKiV2Gh0xGE3+DB0s6d0vz5UqNG0uzZTkcEAAAAAABiCMlCxBaXy+kIQisxURo/3vgHAAAAAABgM7ohAwAAAAAAAJBEshCAu3js2g0AAAAAAEwkCwEAAAAAAABIIlmIWEPLOAAAAAAAgICRLARQLNYniAEAAAAAAOUiWYjYQrILAAAAAAAgYCQLAQAAAAAAAEgiWYgIt79bN6dDAAAAAAAAiBskCxHRdg8bpsJq1YpXPPIIXY0BAAAAAABCJMnpAIDyHM3JUf5XXylp+XIpK0vq3NnpkAAAAAAAAGIWyUJEvoYNpezs0usLC8MfCwAAAAAAQAyjGzJiC12UAQAAAAAAAkayEAAAAAAAAIAkkoUAAAAAAAAATiBZCKAY40ACAAAAABDXSBYCAAAAAAAAkESyEIA7JogBAAAAACCukSxE9KLLLAAAAAAAgK1IFiK20DIOAAAAAAAgYCQLAQAAAAAAAEgiWYhYQ9dkAAAAAACAgJEsRPSiyzEAAAAAAICtSBYCAAAAAAAAkESyENGMLscAAAAAAAC2SgpVwdu2bdPLL7+sVatWaefOncrLy1ONGjXUrFkzXXTRRerWrZuSkuzf/fLly7Vo0SKtWbNGv/76q/Lz85WZmanTTjtNffv21bnnnut3mevWrdP8+fP15Zdfas+ePSosLFTNmjXVsmVLXXzxxerSpYtcdImNDHwOAAAAAAAAAQtJsnDWrFl68sknlZeXZ1m/Y8cO7dixQ++//75atWql6dOnKysry5Z97tmzR3fccYe++OKLUn/buXOndu7cqUWLFum0007TQw89pMaNG3st8/jx43rggQf0yiuvlPrbDz/8oB9++EGLFy9W586dNXXqVNWoUcOW1wIAAAAAAAA4wfZuyA8++KBmz55tJgqTkpLUsmVLnX766TrppJPM7davX6+hQ4fq559/DnqfP/74owYMGFAqUZidna0zzzxTjRo1Mtd9/fXXGjBggFavXl1umYWFhbr99tsticIKFSqodevWatu2rapUqWKu/+yzz3TVVVfpjz/+CPq1AAAAAAAAAE6xNVm4ZMkSzZs3z1zu0aOHPv74Yy1YsEAvvfSSPv30U02aNEkVK1aUJO3bt08jR45UYRBjzx09elQjRozQ3r17zXXnnXee3nvvPb399tt64YUX9O6772rRokU6/fTTJUlHjhzRjTfeqN27d3ss97nnntOyZcvM5SFDhmj58uWaP3++Xn75ZS1fvlyjRo0yu1Jv375dd999d8CvA4gIzZqVXnfrreGPAwAAAAAAOMK2ZOHx48c1bdo0c7lr16567LHHVL16dXNdcnKyBg0apNmzZ5tJtg0bNmjRokUB7/ell17S9u3bzeXLLrtMTz75pBo2bGjZrmnTpnr++ed19tlnS5IOHjyoBx54oMwy9+/fr8cff9xcHjx4sCZOnKi0tDRzXWpqqkaMGKFJkyaZ65YuXao1a9YE/FoAx1WuLN1xR/FyjRrSbbc5Fw8AAAAAAAgr25KFS5cu1S+//CLJ6Ho8YcIEJSSUXXznzp01aNAgc/n5558PeL///ve/zcdZWVmaMGGCx8lGUlJS9NBDDyklJUWStGzZMm3durXUdq+99pqOHDkiSapWrZrGjh3rcf8DBgzQeeedZy4H81qAiDB9uvT229Kzz0rffCPZNK4oAAAAAACIfLYlC99++23zcadOnVSnTp1yt3dPFm7YsEE7duzwe58//PCDZczDYcOGKTk5udzn1KhRQ127djWXy2rV+M4775iPe/XqpUqVKpVbpvtr+eSTT/Tnn396jR02CKL7Orzo1Uu65hqpVi2nIwEAAAAAAGFkS7KwsLBQq1atMpeLuvqWJycnR5mZmebyBx984Pd+f/zxR8vymWee6dPzWrVqZT7+8ssvLX87cOCANm7caC537tzZa3kdO3ZUYmKiJOnYsWNasWKFT3EgBDy0KgUAAAAAAIB3tiQLf/75Z8tMwO7JuPLk5OSYj7/99lu/91ty9uGaNWv69Lxq1aqZj90Tg5K0efNmy4QrLVu29FpepUqV1KBBA3M5kNcCmw0caF1+5BFn4gAAAAAAAIgiSXYU8sMPP1iW3RNn5alXr575+KeffvJ7v0WzKhfJzc0tta4sReMRStKff/6pAwcOmAlE99eSkpKi2rVr+xRLvXr19P3330sK7LXAZo8/bnRT3rjR6FJ7881ORwQAAAAAABDxbEkW7t2713yckJBgmQG5PO7dkN3L8FXJRN7GjRvVsWNHr88r2Zpw7969ZrLQPQ73+LwJ9rXAZjVqSK+95nQUAAAAAAAAUcWWZOHBgwfNx5UrV/Y4C3JJVapUKbMMXzVv3lxVq1Y1uyPPnz/fa7Lw0KFDev/99y3rjh49aj4+cOCA+TgtLc3nWIJ9LXbJy8tzbN92yc/PL3e5SEJBQal+9IWS8mPgPQDina/1AIDYRT0AgHoAAPWAM2xJFv7111/m49TUVJ+fl5KSYj7Ozc31e7+JiYm65JJL9MILL0gyZjY+77zzdNFFF5W5fWFhoSZOnKjDhw9b1rvv2/1xOF+LHQoKCvTNN984su9QWr9+fZnra+/erZJzbufm5mp9DL4HQLzzVA8AiB/UAwCoBwBQD4SHLROcHD9+vLhAH1sVSlJSUnGuMtAWcddff71lwpKxY8dqxowZpVr3/fjjjxoxYoQWL16sSpUqWf7mHrOTrwU2YDZkAAAAAACAgNnSsjAxMdF8XFBQ4PPz3JNqycnJAe07MzNTjz32mG644Qb99ddfKigo0NNPP63nnntOOTk5SktL06+//qrt27dLMpJ606dP181uE15UqFAhIl4LbOA2kzUAAAAAAAD8Y0uy0H0GYvcuyd64d9d1T9j566yzztK8efM0atQo/fzzz5KM5N2GDRss29WtW1cPPfSQsrOzLesrV65sPnbveuzPa3HfNpjXEoyEhASdeuqpjuzbTvn5+Zamxa1atbIkcYsk1KpVal1KSoratGkT0vgAhJ6v9QCA2EU9AIB6AAD1gP++/fZbvxq/lcWWZGF6err5+MiRIyosLJTLh+6g7mMHunclDkSbNm20ZMkSLVy4UO+99542bdqkgwcPKiMjQ1lZWerTp4969+6tihUr6rvvvrM8130mY/c4So5tWJ4jR46UWUa4uXeHjhWJiYllv64yuom7FJvvARDvPNYDAOIG9QAA6gEA1APhYcs7XLNmTfNxfn6+fv/9d2VkZHh93t69e83H1atXDzqOlJQUDRo0SIMGDSp3uy1btpiP09PTLS0L3V/Lb7/95vO+7X4tAAAAAAAAQLjZMsFJw4YNLcs7duzw6Xk7d+40Hzdu3NiOUHzi3oQ1JyfH8jf31/Lnn39q3759PpXp/prD+VoAAAAAAAAAu9iSLKxbt66l6+3GjRt9et6mTZvMx82bNw94/4cPH9b27dtLzYDsySeffGI+Ljm+XYsWLSxdqH15LUeOHNFPP/1kLgfzWuAHJjMBAAAAAACwlS3JQkk688wzzccrVqzwuv2mTZssrfY6duwY0H6HDBmi9u3bq1evXlqwYIHX7bds2aKtW7eay127drX8vUqVKmrRooW57MtrWblypTl4ZGJiojp06OBr+LCbD2NlAgAAAAAAoGy2JQu7d+9uPv7www+1Z8+ecrf/z3/+Yz7Ozs4u1R3YV02aNDEfL1u2zOv2TzzxhOW57dq1K7VNjx49zMdvvfWWjh49Wm6Z7q+lU6dOqlq1qtc4AAAAAAAAgEhja7KwRo0akqTc3FyNHz9eeXl5ZW776aefav78+eby0KFDA95vr169zMdfffWVli9f7nHb1157TW+//ba5PGLEiDJnbR4wYIAqVqwoSdq3b58mTZrkscz58+fr008/NZevvPJKv+IHAAAAAAAAIoVtycKUlBSNHj3aXF6xYoWGDx9umfgjLy9Pr776qkaOHKn8/HxJUrNmzXTppZeWWeb555+vnJwc5eTk6Pzzzy9zm44dO1rGHRw1alSpFoa///67pk+frnvvvddc16VLF1100UVlllm9enVdd9115vKCBQs0ZswYy+zIx44d05NPPqmJEydayuzSpUuZZQIAAAAAAACRLsnOwvr166e1a9fqlVdekWQkDLt3766cnBxVqVJF27Zt0/79+83tq1WrppkzZyopKfAwXC6XpkyZosGDB+uPP/7QwYMHdfPNN6tWrVpq2LChDh48qO3btys3N9d8TsuWLfXII4+UW+6IESP07bff6qOPPpIkLVq0SO+++65ycnKUkpKirVu36tChQ+b29erV07Rp0wJ+HQAAAAAAAIDTbGtZWOT+++/XiBEjlJycLEkqKCjQxo0b9eWXX1oShdnZ2XrxxReVlZUV9D6bNGmiuXPnqkGDBua63bt3a9WqVdq0aZOZKHS5XOrfv79efPFFpaWllVtmUlKSZs2apYEDB5pdlY8fP67169drzZo1lkRh27Zt9e9//1sZGRlBvxb4gdmQAQAAAAAAbGVry0LJSMiNGjVKffv21WuvvabPPvtMu3fv1tGjR5Wenq5TTjlFPXv2VN++fZWSkmLbflu0aKFFixZp4cKFWrp0qTZu3KiDBw8qNTVV9evX1xlnnKGBAwf6NZFKSkqKJk+erEGDBmnhwoVauXKl9uzZo9zcXGVkZKh169bq06ePunfvroQE2/OuCASzIQMAAAAAAATM9mRhkezsbI0bN07jxo0LuIwPPvjAr+0rVKigyy+/XJdffnnA+yxL69at1bp1a1vLBAAAAAAAACINzeEAAAAAAAAASCJZCAAAAAAAAOAEkoUAAAAAAAAAJJEsRDRLTCy9Lilkw3ACAAAAAADEPJKFiF4jRpSe/fiJJ5yJBQAAAAAAIAaQLET0qlVLcp9t++KLpS5dnIsHAAAAAAAgytFnE9Ft6lTpmmukY8ekVq1KtzQEAAAAAACAz0gWIvo1bep0BAAAAAAAADGBbsgAAAAAAAAAJJEsBAAAAAAAAHACyUIAAAAAAAAAkkgWAgAAAAAAADiBZCEAAAAAAAAASSQLAQAAAAAAAJxAshAAAAAAAACAJJKFAAAAAAAAAE4gWQgAAAAAAABAEslCAAAAAAAAACeQLAQAAAAAAAAgiWQhAAAAAAAAgBNIFgIAAAAAAACQRLIQAAAAAAAAwAkkCwEAAAAAAABIIlkIAAAAAAAA4ASShQAAAAAAAAAkkSwEAAAAAAAAcALJQgAAAAAAAACSSBYCAAAAAAAAOIFkIQAAAAAAAABJJAsBAAAAAAAAnECyEAAAAAAAAIAkkoUAAAAAAAAATiBZCAAAAAAAAEASyUIAAAAAAAAAJ5AsBAAAAAAAACCJZCEAAAAAAACAE0gWAgAAAAAAAJBEshAAAAAAAADACSQLAQAAAAAAAEgiWQgAAAAAAADgBJKFAAAAAAAAACSRLAQAAAAAAABwAslCAAAAAAAAAJJIFgIAAAAAAAA4wVVYWFjodBAI3OrVqy3LCQmxkf8tKCgwH8fKawLgH+oBANQDAKgHAFAP+Mf9/ZKk9u3b+11Gkl3BIDKU/FLEglh8TQD8Qz0AgHoAAPUAAOqB8CAlCwAAAAAAAEASLQtjDk1yAQAAAAAA4pMdrS8ZsxAAAAAAAACAJLohAwAAAAAAADiBZCEAAAAAAAAASSQLAQAAAAAAAJxAshAAAAAAAACAJJKFAAAAAAAAAE4gWQgAAAAAAABAEslCAAAAAAAAACeQLAQAAAAAAAAgiWQhAAAAAAAAgBNIFgIAAAAAAACQRLIQAAAAAAAAwAkkCwEAAAAAAABIIlkIAAAAAAAA4ASShQAAAAAAAAAkkSwEAAAAAAAAcALJQgAAAAAAAACSSBYCAAAAAAAAOIFkIQAAAAAAAABJJAsBAAAAAAAAnECyEAAAAAAAAIAkkoUAAAAAAAAATiBZCAAAAAAAAEASyUIAAAAAAAAAJyQ5HQBQZNu2bXr55Ze1atUq7dy5U3l5eapRo4aaNWumiy66SN26dVNSEl9ZwGlLlizRbbfd5vfzPv74Y9WqVcvj39etW6f58+fryy+/1J49e1RYWKiaNWuqZcuWuvjii9WlSxe5XC6f91dYWKhly5bprbfe0rfffqvffvtNFStWVM2aNdWxY0cNGDBAzZs39/t1APFo5syZmjNnjurWrasPPvjAr+d+/vnnev311/X111/r119/VVJSkmrVqqW2bduqX79+Ov300/0qLzc3V4sXL9Y777yj//3vfzpw4ICqVKmi2rVrq0uXLhowYIAaNGjgV5n79+/X/Pnz9dFHH2n79u06cuSIMjIy1KBBA/Xo0UN9+/ZVenq6X2UCsSaQemDSpEl66aWX/NpPgwYNtHTp0nK3CcU5/siRI1q4cKGWLVumzZs369ChQ6pWrZrq1KmjCy64QP369VONGjX8KhOIZqtWrdLixYu1du1a/frrrzp8+LB5vj399NPVv39/tWjRwufyouFan3qgmKuwsLDQ6SCAWbNm6cknn1ReXp7HbVq1aqXp06crKysrjJEBKOnRRx/Vk08+6ffzPCULjx8/rgceeECvvPJKuc/v3Lmzpk6d6tMJes+ePRo1apRWr17tcRuXy6Vhw4Zp9OjRSklJ8f4CgDi1bt06DRkyRMePH/crSXD48GGNGzdOy5YtK3e7vn37asKECUpLS/Na5rZt23Tbbbdp69atHrdJTk7WrbfequHDh/t007Fs2TLdc889OnDggMdtMjMzNXnyZJ177rleywNiUaD1wOWXX661a9f6tS9vycJQnONXr16tMWPGaNeuXR63qVy5su69917179/fa3lANNu5c6fGjRunr776yuu2vXv31qRJk1SlShWP20TLtT71gBXJQjjuwQcf1Lx588zlpKQk5eTkqGLFitq2bZt+//1382/Vq1fXq6++qrp16zoRKgBJ119/vT7++GNJUrNmzXz+dW369OnKyMiwrCssLNQtt9xiSSZUqFBBOTk5SkxM1NatW3X48GHzb1lZWXrllVdUtWpVj/vZv3+/Bg0apJ9++slcV61aNTVp0kRHjx7V5s2bLT9M9O7dW4888ohPrwGINzt27NDgwYO1d+9eSfI5SfDXX39p6NCh+uabb8x1lStXVrNmzZSfn68tW7bo2LFj5t/OOOMMPffcc+VezH///fcaPHiw5bogMzNTjRs31oEDB7R161a5X9YOHz5cd9xxR7lxLlmyRKNHj1Z+fr65rnHjxsrMzNTPP/+sn3/+2VyfmJioOXPm6LzzzvP6+oFYEmg9UFhYqHbt2unPP/+UJHXo0MGnG/YaNWpo6tSpZf4tFOf41atX65prrrHUSXXr1lXdunW1d+9eff/995bt77vvPg0ePNjr6wCi0Q8//KDBgwdr//795rrk5GQ1a9ZMaWlp+u233/Tdd99ZzrfNmzfXSy+9VGbCMFqu9akHSiNZCEeV7M7Yo0cPTZgwQdWrV5dk/AqxYMECTZ06VUePHpUktWzZUq+//rpfTZQB2Oecc87Rr7/+KkmaN2+eOnToEHBZzz77rB5++GFzeciQIRo9erTZwujYsWP617/+pVmzZpkn/W7dumn27Nkey7zhhhv00UcfSTIuRu666y5deuml5jAGe/fu1ZQpU/T222+bz7nnnnt05ZVXBvw6gFi0ZcsWXXfdddqzZ4+5ztckgXvXQ5fLpZEjR+raa69VamqqJOmPP/7QrFmz9MILL5jPGTZsmO66664yy8vPz1f//v21adMmSVJ6eromTZqkHj16mNcDO3bs0L333quVK1eaz5szZ44uuOCCMsvcsWOH+vbtayYymjVrpmnTplm6VK1cuVJ33323mTSsXLmy3nnnHdWsWdPrewDEgmDqgR9++EE9evSQZCQb1q5dq+Tk5KDisfscf/jwYfXq1cu8rqldu7amTp2qs846y9xm48aNuuuuu7Rx40ZJRsOGV199VS1btgzqtQCRJj8/X5dccom2bNkiyfiR7MYbb9TVV19tSQTu2bNHjzzyiN544w1zXc+ePTVz5sxSZUbDtT71QNmY4ASOOX78uKZNm2Yud+3aVY899piZKJSMC4tBgwZp9uzZ5sG/YcMGLVq0KOzxAjB+ySs6kUpSTk5OUGU9/vjj5vLgwYM1ceJES1fE1NRUjRgxQpMmTTLXLV26VGvWrCmzzE8//dS8eJCkhx56SIMHD7aMd5qZmalHH31Ul1xyibluzpw5ll81gXj35ptv6rLLLrMkCHz13Xff6eWXXzaXx4wZo5tvvtlMFEpS1apVdc899+jmm28217300kvauXNnmWXOnz/fTBQmJSXpySefVM+ePS0/HNavX1//93//Z7m4nzFjhqXVoLtHH33UTBTWrVtXc+fOLTX2UseOHfXvf//bbEF95MiRcm9ggFgSTD0gybyplqTs7OygE4WhOMc/9dRT5nVNWlqa/vWvf1nqEEk65ZRT9OKLL6pZs2aSpLy8PM2YMSOo1wJEogULFpiJQsk4xkaOHFmqxWDNmjU1bdo0XX311ea6JUuW6Ouvv7ZsFy3X+tQDZSNZCMcsXbpUv/zyiyTjwn/ChAlKSCj7K9m5c2cNGjTIXH7++efDEiMAK/cL/zp16gQ14P9rr72mI0eOSDK6DowdO9bjtgMGDLB0/fNUB8ydO9d83LlzZ/3tb3/zWObEiRN18sknS5J+//13LVy40J/wgZi0Z88ejRs3TmPHjjVb9Ptr3rx5ZoIuKytL1157rcdtb7nlFvPC+/jx43rxxRfL3M69BeKAAQPUrl27MrdLTk7WtGnTzKTEtm3bzGET3O3Zs0fvvvuuuTx69OhSwyQUqVWrlu655x5zecGCBeWObwhEOzvqAUlmgl+SLROK2X2O/+uvvyxjqA0fPlyNGjUqs7wqVapo8uTJ5vLy5cu1efNmf18CENHefPNN83Hnzp3Vt2/fcrcfPXq0ZTiixYsXW/4eDdf61AOekSyEY9ybBXfq1El16tQpd3v3ZOGGDRu0Y8eOkMUGoGzuycJgWhVK0jvvvGM+7tWrlypVqlTu9u51wCeffGK2CCpy8OBBrVixwlweMGBAueVVqlTJchG0ZMkSn+IGYtUTTzyhnj17WroVZWVlacSIET6XUVBQYEnC9e/f3+MPgZKUkJCgyy67zFx2f26RTZs2adu2bebywIEDy42hZs2a6tq1q7lc1rH97rvvmt2d0tLSzK6SnnTr1s1MJubl5XmdtAWIVnbUA0XcrxmCTRaG4hz/2Wef6eDBg5KMusjbhAWtW7e2dDnkugGxJDc319Kar0+fPl6fk5KSos6dO5vL3377reXv0XCtTz3gGclCOKKwsFCrVq0yl88++2yvz8nJyVFmZqa57OssbADsY9eF/4EDByxluV9oeNKxY0clJiZKMsY3cb9YkKQvvvjCbM3kcrl8qlfct1mzZo15sQDEo2effdZyYX7ppZdq/vz5atiwoc9lbNq0yTIBiS/Htvtx+Msvv1haI0myjEGYnp6uU0891a8yP/roI5Ucovvzzz83H3fo0MFr98jExERLl6QPP/zQawxANLKjHihiZ7IwFOd493qgWbNmlvsMX8qkHkAs+fnnn1WhQgVzOTs726fnVatWzXzsfv6Plmt96gHPSBbCET///LP++OMPc7lVq1Y+Pc+9JVPJXy4AhJ5dXYo2b95suXn3ZXDgSpUqqUGDBuZyyTrAPbZ69er51EXa/TUUFBRow4YNXp8DxLpWrVpp3rx5evDBB8uc2bA87sdhcnKymjZt6vU5jRs3toxnWN6xfcopp/g0wZn7sX3w4EHLjImSLN2GfB2c3L1MrkEQ64KpByR7xziWQnOOD7Ye2Lp1q/766y+fngdEusaNG2vt2rX66quvtHjxYnOIEG+KJgCTZDkuo+Van3rAsyTvmwD2++GHHyzL7pVCeerVq2c+LnnhDyC0/vrrL33//ffmck5OjlavXq033nhDX331lXbt2iWXy6XMzEy1b99effv2LTU4cBH3OiAlJUW1a9f2KYZ69eqZMZSsA9zL9LUFRGZmplJTU3Xs2DFJ0o8//qhOnTr59Fwg1nTo0EH9+/fXBRdc4FNCrizux2HdunUtA4574nK5VKdOHW3fvl2ScRx6KtPXY9v9eqGozKLn5ubmmmMmB1rmnj17dOzYMUuSE4gFdtQDkrVVYWZmptLS0vTOO+/onXfe0bp167Rv3z5VqlRJtWvXVqdOnXTppZcqKyvLY3mhOMe7X9MEUg/k5eVp586dPrfAAqJBWlqaZQKS8hw+fFjLly83l92PhWi51qce8IxkIRyxd+9e83FCQoJlBuTyuDcLdi8DQOht3rzZ0vT//vvvtzTdL/Ljjz/qxx9/1IIFC9S5c2c9/PDD5uDCRdyPX1+a+5e1bck6wL0Fgz9lnnzyyeavotQriGdz5swJugz3Y8h90HNvqlevbiYL7Ti2MzIylJiYaNZZ7mXu3bvX0trB1zJLXqvs3btX9evX9+m5QLSwox6QrMnCpKQk9enTp1RjgYMHD+rgwYPatGmT5s6dq6FDh+rOO+8s80cGu8/xBQUF2r9/v99lllUPxGKSAPDFs88+a5lh2H284Gi41qceKB/dkOEI97ECKleuXO7g5+7cu0EwthgQXu5N/wsLC81EYVpamlq2bKkOHTqobt26lud89tlnuvTSSy2teCRZZhL19ddLqfw6wH3ZnzLdt3UfHgGA/wI9tt23tePYTkhIsAyk7n5slyy/atWqfsdYskwAVu7Jwl27dpmJwszMTLVr105t27a1jHWWn5+vf/3rX7rhhht0/PjxUuXZfY4/dOiQ+WOCRD0A+GvdunV65plnzOVGjRrp/PPPN5ej4VqfeqB8tCyEI9z79fvThSclJcV8nJuba2tMAMrnfuEvGRf8Y8eOVc+ePS3H5pYtWzR9+nR98sknkoyxTG666Sa9+uqr5nbux69ddYAd9UqsjjkChEs0HNslj3P3Ad19La+scgAUKzlR0amnnqpx48bpjDPOMNcVFBTos88+05QpU8yugJ999pkmT56s++67z/J86gEgcuzcuVM33XSTJbE/fvx4S6tgrgeiHy0L4Qj3isXXVoWSLBVQXl6erTEBKF/JcULefPNN9e3bt9QJs1mzZnr66ac1YMAAc93GjRv18ssvm8uhqAPcl/0ps2jWtbLKBOCfQI/t8o5D92X37QIts2T5vpZZcjv31ggAiuXm5mrnzp3mco8ePfSf//zHkiiUjDqiS5cumj9/vk455RRz/csvv1wq2Wj3OZ56AAjMrl27dNVVV1m68w4bNszSBVmKjmt96oHykSyEI9wPsIKCAp+f535AJycn2xoTgPI9//zzWrFihV599VXNnTu31DiE7lwul+677z5Lt+QXXnjBfByKOiDQMt1P8NQrQHBCcRy6l+nPBbn7tu4/apS8wfC1zJLbUV8AZUtJSdHatWv14Ycfat68eZo2bVq5x0taWppmzJhhHpuFhYWWawbJ/rol0Jt96gHEs23btmnw4MGWHwM6d+6sO+64o9S20XCtTz1QPpKFcETFihXNx/4023VviuxrM2EA9jn55JPVpk0bn2Y0S0lJ0eWXX24u79ixw5zVzL3rgD91gPu2JeuAUJQJwD+Remy7Jwvdr0Ek34c1CbS7EhCPEhISVKdOHXXo0KHUMVeW7Oxsywyl7jOsSvbXLSW7MPpaJvUA4tWaNWt0xRVXaNeuXea6jh07avbs2WUmyyL1eoB6wHckC+GI9PR08/GRI0cssxKWx322JfdBkQFEpnbt2lmWi7oyux+/7se1N0eOHDEfl6wD3OsVf8qkXgHsE+ixXd5xGMixXVBQoD///LPMMt3L86fMkttRXwD2cr9m2L17t+WG3O5zfFpamqWVMfUA4Nl///tfXXXVVfr999/Ndeeee66eeuopjz8GRMO1PvVA+UgWwhE1a9Y0H+fn51sqnvK4j41QcspyAJGnZFflolnM3OuA3377zefyyqsDAi3TfdvMzEyfnwegtBo1apiP/TkO9+3bZz4ueRwGcmzv37/f0kXJvczMzEzLzYH7vn2N0eVylTsUAwD/lTyvu8+mavc5PiEhwbLsa5kl6wvuRxDrZs2apTvuuMPSCr9v376aM2dOuZOMRMO1PvVA+UgWwhENGza0LO/YscOn57mPj9C4cWNbYwJgv5LN9CtXrizJWgf8+eefPt+su9cVJeuARo0amY+Lujt78+uvv+rYsWNllgHAf+7H0M6dO33qOVBYWKiff/65zDJKLvt6bJe8rnAvIyUlxTKUQiBl1qlTp9TkTgCC4+maQQrNOd79WiSQeiA5OdkyNjMQS44fP66xY8dq9uzZlvU33HCDHn74YctEJGWJlmt96gHPSBbCEXXr1rU01924caNPz3OfGa158+Z2hwXAg02bNmnatGkaO3asrr32Wp9/eXNP8EvGDbYktWjRQi6Xy1zvSx1w5MgRy0m8ZB3QsmVL8/GPP/6oo0ePei3Tfb8ul0s5OTlenwPAM/fj8OjRo/r++++9Pmf79u2WJIH7rKglyyw5Q6on7sd2enp6qQv5Vq1aBVVmyRgBFFu2bJkefPBBjR49WmPHjvX5ee434FWrVlWVKlXM5VCc44OtB5o0aRKzExsgvuXm5uqWW27Rm2++aa5LSkoyj2v3a3hPouVan3rAM5KFcMyZZ55pPl6xYoXX7Tdt2mT5RaJjx44hiQtAaQcPHtRzzz2nN998U5999pm++OILn573ySefmI/T0tLUrFkzSVKVKlXUokUL82++1AErV640uxUmJiaqQ4cOlr+3b9/e/JUzPz9fq1at8lqm+35btGhRaiwzAP5p2rSpMjIyzOXPP//c63PcJzI46aSTSl3Iux/re/fu1datW72W6X5su19vlFXmqlWrvM6qWLJO4RoE8Gzjxo2aN2+eFi9erLfeesvnFkWfffaZ+bh9+/aWv4XiHO9eD2zYsEF//PGHX2VSDyAW5eXl6dZbb9VHH31krqtcubKeeuopXXrppT6XEy3X+tQDnpEshGO6d+9uPv7www+1Z8+ecrf/z3/+Yz7Ozs6mBRAQRq1atVKlSpXM5fnz53t9zu7du/XWW2+Zy71797aME9ajRw/z8VtvveX110H3OqBTp06qWrWq5e9Vq1a1nLBffvnlcss7cuSIJb6ePXuWuz0A71wul7p162Yuv/rqq+Um4goKCvTqq6+ayz169CjVYqFZs2aWrkjeju1du3ZZbnJ69epVapsLL7xQiYmJkoyxh5YuXVpume+++672798vyWhd4X4NA8DK/ea7sLBQr732mtfnvPfee9q+fbu53LdvX8vfQ3GOP+uss5SWlibJ6HLpLc5vvvlG//vf/8zlsuoWINpNnz5dH374obmckZGhefPmqXPnzn6XFQ3X+tQDnpEshGO6d+9uDoSem5ur8ePHKy8vr8xtP/30U0tyYujQoWGJEYChcuXK+tvf/mYuL1++XG+88YbH7Q8fPqzbb7/dvCioUKGCrr32Wss2AwYMMGdQ27dvnyZNmuSxvPnz5+vTTz81l6+88soyt7viiivMxx9++KEWLFjgscz77rvPvPmvVKmSBg4c6HFbAL4bMmSImfDbtGmTHn/8cY/bzpw502wpmJCQ4PH87n5sv/zyyx5bKBw/flzjxo3T8ePHJRlDH1x44YWltqtVq5YuuOACc3ny5Mkef7TctWuXpkyZYi53797dMsg6AKsOHTpYxgV7+umn9d1333ncfvv27ZowYYK5nJWVVWZC3u5zfGpqqmX97NmztXnz5jLLO3TokO655x5z+bTTTlObNm087h+IRh9//LHmzp1rLqenp+uFF16wdP/1RzRc61MPeEayEI5JSUnR6NGjzeUVK1Zo+PDhlvFK8vLy9Oqrr2rkyJHKz8+XZLQw8KcJNAB73HbbbeYvb5J0zz33aPbs2Tpy5Ihluy+//FKDBw/W2rVrzXWjR49WgwYNLNtVr15d1113nbm8YMECjRkzxjIe4rFjx/Tkk09q4sSJ5rouXbqoS5cuZcZ4/vnnW7oc/uMf/9BTTz1lGQ9t3759GjVqlOWXxptuusnSdRJA4Jo3b65+/fqZy7Nnz9aUKVN06NAhc92hQ4c0efJkPfnkk+a6QYMGqUmTJmWWOWjQILN1YV5enm6++WbNnz/f8iPjjh07dN1111m6Jd15550eJyIZNWqUKlSoIEnas2ePhgwZUmqIhVWrVumKK64wZ2esVKmS5doFQGkul0t33323uXzkyBH9/e9/1+LFiy0tjY8fP66FCxdq8ODB+v333yUZkwVMmzatzMkTQnGOv/76682/HTlyRMOGDdPSpUstkzNt2rRJQ4cONX/YSExM1Pjx4/16T4BIl5+fr8mTJ5vffZfLpRkzZqhp06YBlxkt1/rUA2VzFfoyTR0QQhMmTNArr7xiLickJCgnJ0dVqlTRtm3bzF8DJKlatWr6z3/+o6ysLCdCBeLeypUrdf3111tOyKmpqWrevLlSUlL0008/affu3ZbnXHvttR4HOC+66XfvMpicnKycnBylpKRo69atlgRDvXr1NH/+/HITe3v27NEVV1xh+eEhLS1NTZs2VW5urjZv3my2OpKkrl27as6cOZYu0gCKLViwQHfddZckY4KyDz74wOtzDh8+rKuuukrr168311WsWNEcQmTz5s2W7kinnnqqXnzxRaWmpnosc8uWLRo6dKgOHDhgrsvIyFB2drYOHTqkLVu2WBIRV1xxhaW1UlneeustjRs3zvK8Bg0aqFatWtq1a5elHklISNCMGTMsrayBeBFIPfD0009rxowZlnXVqlVT06ZNlZeXp23btlnGB0tOTtZjjz1WZmvgIqE4x3/++ecaMWKEZcbUWrVqqUGDBvrtt9+0bds2y/ZFk70BsWTx4sWWH8MqVaqkdu3a+VVG9erVNW3aNMu6aLnWpx4ojWQhHFdYWKjHHntMzz77rOWgLik7O1szZ84M6tcNAMHbsGGD7rzzzlInzZLS09M1ZswYDRo0qNztcnNzdf/99+v1119Xeaektm3baubMmT51/9u1a5dGjx6tNWvWlLvdwIEDNXHiRI8tjwAEliSQjNaDY8eO9bp9165dNX36dEvLZU82b96sMWPGlDvJSWJiooYPH67bb7/dpxkblyxZookTJ1qSkCWlp6frgQcesIy/BMSTQOuBRYsWadKkSTp48GC522VnZ+v+++/XGWec4bXMUJzjv/jiC40bN06//PKLx21SU1M1duxYSzdIIFaMHDlS7733XlBleKobouVan3rAimQhIsa2bdv02muv6bPPPtPu3bt19OhRpaen65RTTlHPnj3Vt29fbuiBCJGfn69ly5bpvffe07p167Rv3z7l5eWpevXqatSokc4//3z17t3br66969at08KFC7Vy5Urt2bNHubm5ysjIUOvWrdWnTx91797dr9Z/hYWFWrp0qd5++20zxoSEBNWsWVPt27fXZZddptNOOy2AVw/El0CTBEU+//xzvfXWW/rqq6+0b98+5efnq3r16mrbtq369evn96DpeXl5+u9//6t3331XGzdu1G+//abk5GTVq1dPZ555pi6//HKP3Zk9OXDggObPn68PPvhAP/74ow4ePKhKlSopOztb5557rgYNGsRQBYhrwdQDhw8f1htvvKFPPvlEmzZt0oEDB5SYmKjMzEy1aNFC3bt314UXXujXdX4ozvFHjx7VggULtHTpUn333Xc6cOCAKlSooIYNG+rss8/W5Zdfrrp16/pVJhAtevfuXe7Yor7wVjdEw7U+9UAxkoUAAAAAAAAAJDHBCQAAAAAAAIATSBYCAAAAAAAAkESyEAAAAAAAAMAJJAsBAAAAAAAASCJZCAAAAAAAAOAEkoUAAAAAAAAAJJEsBAAAAAAAAHACyUIAAAAAAAAAkkgWAgAAAAAAADiBZCEAAAAAAAAASSQLAQAAAAAAAJxAshAAAAAAAACAJJKFAAAAAAAAAE4gWQgAAAAAAABAEslCAAAAAAAAACeQLAQAAAAAAAAgiWQhAAAAAAAAgBNIFgIAAAAAAACQRLIQAAAAAAAAwAkkCwEAAAAAAABIIlkIAAAAAAAA4IT/D6Q+Qjf553HDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Still imperfect, but this is a _very_ high count rate case. In more typical cases, the correction is more than adequate:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "1600it [00:00, 2957.61it/s]\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSEAAARHCAYAAAAMUaZ5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd1hT1/8H8HeYypAhCi4cKLi31l21Vq11VG217rrqqNa9Z62rdbSuqrVqXXXv0boXOHDjQFCQKQICYSOB5PcHP+43l4SQhERQ3q/n6dN7b+495wSTOz4553wkCoVCASIiIiIiIiIiIiIjMSnoBhAREREREREREdHHjUFIIiIiIiIiIiIiMioGIYmIiIiIiIiIiMioGIQkIiIiIiIiIiIio2IQkoiIiIiIiIiIiIyKQUgiIiIiIiIiIiIyKgYhiYiIiIiIiIiIyKgYhCQiIiIiIiIiIiKjYhCSiIiIiIiIiIiIjIpBSCIiIiIiIiIiIjIqBiGJiIiIiIiIiIjIqBiEJCIiIiIiIiIiIqNiEJKIiIiIiIiIiIiMikFIIiIiIiIiIiIiMiqzgm4AEREArFu3DuvXrwcANG3aFLt27cp3mTNnzsTRo0cBAD179sTy5cvzXaYxvHjxAnfv3kW/fv3Uvj5o0CB4e3sDAMaNG4fx48e/z+aRDnx8fHDw4EHcuXMHkZGRUCgUcHZ2Rq1atdCjRw+0adMGEonEKHUHBARg3759uH37NsLCwpCRkYHSpUvD3d0d3bp1w+effw4zM90u+zdv3sThw4fx8OFDREVFwczMDC4uLmjQoAF69uyJxo0b61Reeno6Tp8+jX///RfPnj2DVCqFjY0NypQpgzZt2qB3795wdXXVqcxXr17h8OHDuHv3LkJCQpCQkABLS0s4OTmhfv366NixI9q3b2+Qv/v69euxbt06AIb7Lhq6zEOHDmHOnDkAAD8/v3y3DwAUCgWGDh2KmzdvAgB27tyJTz75ROvjjfG9iIqKwokTJ3DlyhWEhIQgNjYWxYoVQ/ny5dG0aVP07dsXbm5uWpcnlUpx5MgR3Lx5E/7+/pBKpQAABwcH1KhRA23atEHPnj1RrFixPMtSKBRo1KgRkpOTdXpPEyZMwNixY3U65mNWVK99YWFh+Oyzz4T1ixcvonz58vku9969e3jz5g2+/PJLta+3b98e4eHhAIBly5ahV69e+a6TjMPQ12ZdGPp8rlAocOHCBZw4cQKPHz9GTEwMihcvDmdnZzRr1gy9e/dG9erVdWpjZGQkDh48CG9vbwQGBiI+Ph5mZmZwdHREnTp10L59e3Tp0kWre6LY2Fg0b95cp/oB4Ndff0WPHj10Po6oKGAQkoiogKSmpmL9+vXYsWMHunbtmmsQkgo/mUyGn3/+Gfv371d5LSgoCEFBQTh9+jRatWqFZcuWoXTp0gatf926ddi0aRMyMjJE20NDQxEaGoqLFy+idu3aWLFiBapUqZJneUlJSZgxYwYuXLgg2v7u3TsEBAQgICAAhw4dQvfu3TF//nzY2trmWWZAQAAmTJiAFy9eiLbHxcUhLi4Oz549w9atW/Hjjz9i5MiReT7EpKSkYNmyZTh48CAUCoXoNZlMhqSkJAQFBeHYsWOoWbMmfvvtN1SqVCnPdubm+fPn2LRpk97Hv48yw8LC8MsvvxisvGx79+4VApC6MNb3Yvv27Vi7di1SUlJU6vP19YWvry927dqFESNGYNKkSTAxyX3gj0KhwO7du7Fq1SqkpqaqvB4REYGIiAhcunQJ69atw9KlS9G2bVuN7QsODtY5AElkLHFxcVi5ciUOHz6MH374oaCbQ/lgjGuztoxxPo+MjMSkSZNw79490fb09HTEx8fD398fu3btwnfffYfJkyfDwsJCY3kZGRlYt24dtm7dCplMplJmSkoKwsLC8O+//2Lt2rVYvXo16tatq7FMX1/fPN8HEemGQUgiogKydOlSHDhwoKCbQfmkUCgwceJE0UOBpaUlPDw8YGpqihcvXiApKQkA4OnpiSFDhmD//v0oUaKEQepfvHixqOewmZkZPDw8ULx4cQQEBCAuLg4A8OTJEwwaNAgHDhxAuXLlci3v3bt3GDZsGB49eiRss7a2hru7OzIzM+Hv74+0tDQAwIkTJxAREYFt27ZpfDh49eoVBgwYILQFAEqVKoXKlStDKpXixYsXUCgUkMlkWLVqFRISEjB16tRcy0tLS8OwYcPw4MED0fYqVaqgVKlSSElJgZ+fH9LT0wEAz549w9dff409e/bAw8Mj13JzI5PJMHPmTJWHmvwwdJmxsbH4/vvvkZCQYJDysoWFhWHFihU6H2eM74VCocCiRYvwzz//CNtMTU3h6uqKUqVKITIyEsHBwQAAuVyOP//8E/Hx8Vi0aFGuZS5btgw7duwQbXN2doarqysyMzMRGBgo9IqMiYnB6NGjsWzZMvTs2TPXMpUfWu3t7VG7du1c91Wmay9gIm1MmTIFXl5eBd0MyidjXJu1ZYzzeWxsLAYOHIiQkBBhm729PapWrYrU1FT4+fkhIyMDCoUC27dvR1RUFFavXp1reXK5HJMmTcK5c+dE2ytUqIAyZcogPT0d/v7+wo9XoaGh6N+/P/7880+0aNEi13KVz+fOzs6oVq1arvsqM/SPzUQfEwYhiYgKiCEDGlRwtm3bJrox79+/PyZPniz0QEhLS8Pff/+NdevWISMjA4GBgZg9e7Yw/UB+/Pfff6IAZKdOnTB//nw4OTkByPqMHTlyBMuWLUNqairevn2L8ePH4/Dhw7n2NPzll1+EhxyJRILx48dj+PDhwjDUhIQErFu3Djt37gQA3LlzB6tWrcKsWbPUlpeZmYmJEycKAUg7OzssWrQInTp1EtoQGhqKuXPn4tatWwCALVu2oEGDBqIhicqWLVsmCkB27twZ06ZNEw1ZTE1Nxa5du7B27VrIZDIkJiZizJgxOHPmjFZDapVt3rzZ4L0hDFlmREQEvv/+ewQEBBikvGwKhQKzZ89W6XGoDWN8L7Zs2SIKQHbq1AnTpk1DhQoVhG3Pnj3DnDlz8OzZMwDA/v370bZtW7Rv316lvDNnzogCkNWrV8f8+fPRqFEjYZtcLseFCxewaNEiREdHQ6FQYN68eahRo0auQwSfP38uLLdv3x7Lli3L9T0RGRvvNT4Ohr4268IY5/NZs2YJAUhLS0vMmjUL33zzjTBEOjo6GkuXLsWZM2cAAKdPn0b9+vUxePBgteX99ddfogDkJ598gjlz5oh+eJTJZDh69CiWL1+O5ORkyGQy/Pjjjzhz5kyuQUPl63SfPn0wbtw4jX8rIsobE9MQ0Udr+fLl8PPzg5+fX6GdD1Ibu3btEt5HUZkT60MRGxuLDRs2COv9+vXDggULREOgihUrhtGjR4t6Y50/fx7379/PV90ymUw09LZdu3b4/fffhQAkAJibm6Nv375Yv369cGP/9OlTnDp1Sm2ZL1++xL59+4T1KVOm4IcffhAF7UqUKIE5c+aIhvXt2bMHYWFhass8ePCgEJQxMzPDpk2b0LlzZ1EQtEKFCvjrr79E8y6tWrUKmZmZKuW9evUKBw8eFNb79OmDNWvWqMyZVrx4cXz//fdYs2aNsC08PFx4QNNWYR+G7enpiZ49e8Lf398g5Sn7559/cPv2bZ2PM8b3IiwsTJg7E8h6CF6zZo0oAAkANWvWxI4dO+Di4iJs27Jli0p5crkcK1euFNZr1KiBvXv3igKQAGBiYoKOHTti7969cHBwAJD13VM+Niflh1Z9et4SFYRLly4J9xqcD7JwMca1WVvGOJ9fv34dV65cEdaXL1+Ofv36ieZoLFWqFH777Td89dVXwrY//vhD6HGpLCEhQXRNbd26NbZt26Zy/jU3N0efPn3w999/w9LSEgCQmJgoen85Kf+opOvclESkHoOQREREejp06JAw95u9vT2mT5+e6769e/cWzSW3ffv2fNV9/vx5vH79GkBWcG/+/Pm5zn3XqlUr9O3bN8+6d+3aJQT+qlSpguHDh+da/7hx4+Du7g4gKyize/dutfspB/169+6Nhg0bqt3P3Nwcv/zyC8zNzQFkzSF59epVlf1OnjwptNHe3j7PXh6fffYZOnbsKKyfPn1a4/7KZDIZZsyYIfQkMsT8WoYqMyEhAcuXL8fIkSNFw9wNJTQ0VAi06Tp1gDG+F9u2bROG11evXh1z587NtTdviRIlMHr0aGH9wYMHiI+PF+3j7e0tJOEAgIULF8LKyirXdlaoUEH0cO/l5ZXr3105CMmHViLKL2Ncm7VljPO5cg/0Vq1aoUuXLrmWuWDBApQsWRJA1vym2QknlZ0/f15oo7m5OX7++WeNSWfq1q2L/v37C+v//fef2h893717h1evXgnr/FGJyDAYhCQiItLTv//+Kyx/8cUXGoMYAESBwGvXruk1zDVb9hAlAGjRogXKli2rdd1Pnz5FaGio6HW5XI6zZ88K67169dKY0MPExAR9+vQR1pWPzfb8+XPREOGvv/5aYxudnZ3Rrl07Yf2///5T2Sd7yDaQNdQ1r785ANGw7ufPnwvBrLxs2rRJ6AXx1VdfoUaNGlodZ+wyDx48iM8//xzbt2+HXC4HkNVrRNM8mrpQKBSYM2eO8PmcOXOmTscb+nshk8lw8uRJYX3OnDkwNTXVWGbnzp0xcOBAjBs3DrNnz1Z5wFT+HJUrVw7169fXWB4g/hzJ5XJhyLey2NhYREVFCesMQhJRfhjj2qwLQ5/P4+PjcePGDWG9d+/eGsuzsrJC9+7dhfW87gsaNGiAMmXKaCwTEJ/PpVKpyj0RAPj5+QnXDhsbG4NkqScizglJRIVYUlIS/vnnH5w9exYhISHIyMhA6dKl0aRJE3Tt2hXNmjXTePzMmTOFX0x79uypMiT7yJEjQi+qYcOGYcaMGZDL5fjvv/9w+vRp+Pr64u3btyhevDjKly+Ptm3b4ttvv0WpUqXy9b7U/ZJ69OhR0a+7fn5+wvKgQYPg7e0NIOsX7pxDstetWyfMu7Nw4UL069cPKSkpOHnyJE6ePImgoCAkJCTAyckJ1atXR9++ffHpp5+Kynj16hX27dsHT09PoXdd+fLl0aZNG3z33Xdav+fY2FgcOXIE169fx6tXrxAXFwcrKyuULl0an3zyCbp3755nJsIPhVQqFfV4atWqVZ7HNGvWDKampsjMzERaWhpu3LiBDh066Fy3QqEQDZNt2bJlnsd4eHigVKlSiI6OBpA19G7IkCHC68+fPxf17NLm/SjX+/r1azx//lwUdFF+MLCzs0OdOnW0KjN7XqcrV65AoVCIerzFxMQIy25ubnmWB2T13lAmlUrznDTe19cXmzdvBpAV4Js9e3a+54IyVJm7d+8WkqUAQIcOHbBw4UIEBgbmq33ZlIdht2rVCr1798bs2bO1OtYY34t79+4JCXcqVaqEpk2b5lmmg4MD5s2bl+vr0dHRMDExgVwuR9WqVfMsD1D9HKnrCan83l1cXFSOeR8CAgJw9OhR3LlzB0FBQUhKSoKNjQ0cHR1Rr149tGnTBp06ddIYyA0LCxM9pKu7hubHzZs3cfjwYdy/fx9RUVGwtraGq6srunTpgj59+sDa2lrnMg19/ZHL5bh8+TK8vLzw4MEDREdHQyqVwtzcHCVKlICrqyuaNGmCnj17qkwLkJuUlBQcOXIE586dg5+fH5KTk+Hk5ITatWujT58+aNOmjc7vW52c/37Z1q9fL9wvlCtXDpcuXRJea9++vdA7eNmyZSpDspXvqbZs2YI2bdpAKpXiyJEj+O+//xAaGoqUlBQ4OzujTp066N+/v8r0Bk+ePMH+/fvh7e2NN2/ewMzMDJUqVUKHDh0wcOBArXuGh4eH4+jRo/D09ERYWBikUilsbGxQtmxZtGjRAj179tT6+lDYGeParC1jnM+9vb2FwJ5EItHq/qVly5ZCr8r79+8jPj4ednZ2wutv376FRCKBQqHI1/m8UqVKom3KQ7E9PDxy7X1vTD4+Pjhx4gTu3buHsLAwpKamwtbWFk5OTmjYsCHat2+vck9PVNgxCElEhZKPjw8mTJggBMSyBQUFISgoCAcPHsSnn36K5cuXw9HR0SB1hoWFYerUqSoZd9+9ewepVIonT55g27ZtWLBggWiOmsLGx8cHU6dOFbLEZgsPD0d4eDguXryIPn36YOHChTA1NcWOHTuwYsUKlcnr/f394e/vjyNHjmDz5s15Prz9/fffWLt2rTAkJlt6ejqkUin8/f2xa9cudO7cGT///HO+s0MrB5HzQ93Dljb8/PygUCiE9Vq1auV5jJWVFVxdXYXhPY8fP9YrCBkeHi7Kgqxt9l0PDw8hCPn48WPRa8o32+bm5lplgKxcuTKKFSsmZOR8/Pix6EFHucwaNWpodQOvfHx8fDxCQkJQsWJFYdvZs2fx7t07REZGah2oyDknlvLDizo5M1cvXLgwz2PyYowyK1WqhKlTp+Lzzz8HAIMEIZWHYdvY2GDx4sU6HW+M74XyvGKffPKJTu3JzZIlS/DTTz8hOjoaGRkZWh2T83Ok7hxWkEOx5XI5VqxYgb///lvoIZtNKpVCKpUiMDAQR48eRaVKlfDLL79o1QPUkGJjYzFjxgxcu3ZNbft8fHywe/du/P777zqVa+jrj6enJxYvXiwaiplNJpMhJSUFb968gbe3NzZv3owRI0Zg4sSJGs9xN27cwPTp04VzcLaIiAhERETg/Pnz6Ny5M3788Ucd3nnBuXr1KmbPno23b9+KtgcHByM4OBinTp3C+PHjMW7cOGRmZmLNmjXYsmWLymfzyZMnePLkCQ4fPozt27drDOhmZmbi999/x99//63Soz0uLg5xcXF4+vQptm3bhj59+mD27Nn5zg6t/ENvfuzcuVOv85cxrs3aMsb5XPn9lC9fXqvroHLb5XI5nj59KspovX37dqSnpyMqKkrjMGxlhf18/u7dO8yZM0c0CiBbbGwsYmNj4e/vj3379qFWrVpYvXq1ShCVqLBiEJKICp3w8HAMHz5cCLI4ODjAzc0Nqamp8PPzEx4Yr169ikGDBmHXrl35DkTGxsZi6NChQqa+EiVKoGrVqlAoFAgICBDakpKSglmzZsHZ2VmUREMX2b8k+/v7C8P2SpcuLczhkx9+fn5YuXKlMHF3mTJlUKFCBcTHx8Pf31+4mTxw4ACqVasGmUyGX3/9FUBWdsLq1avD1NQU/v7+QhmxsbEYP348/v33X7XDcLKHbh4+fFi0vWLFinBxcUFKSgr8/f3x7t07AFlDaV68eIEdO3bku1dpQQoKChKWLSwstBr+A2TddGffnGd/3vJTNwC4urpqXXe2nHUrl1muXDmtbuQlEgnKli0rBL9yBr6Vy1QOJGrbxuwycx5raWmp9XsGxMPRypUrJ0xIn5s//vhDeFDq2rWrXoFiY5ZZs2ZNDB06FF27dtX6gUsbObNhT58+XevPdTZjfC+Ue4YrP4DfuHEDJ06cwIMHDxAZGQlLS0tUqFAB7dq1Q79+/fK8LpiZmen0/nIOa6xSpYrKPjmT0kRFReHIkSO4du0aAgICkJycDHt7e7i7u6N9+/bo3bs3ihcvrnUbNFm6dCl27dolrBcrVgxubm4oUaIEpFIpQkJChCBdUFAQhg4dKlwL3ofY2FgMGDBAFCw3NzdH9erVUaxYMQQEBCA2NhZhYWEYMWIEbGxs8izTGNefM2fOYNq0aaLgdOnSpeHq6gpzc3PEx8fj5cuXQhAsIyMDmzZtgq2tLUaMGKG2zAsXLmDChAmiMkuWLIkqVaoIbZTJZEKPwvwqVqyYcK/x+PFjYU5UV1dX4dypnMRMVzdu3MCuXbuE9+Pq6goXFxe8fftW9O+7bt061KhRA15eXtizZw+ArB833N3dIZfL8fz5cyFQFhoaigkTJuDw4cNqg7np6ekYO3Ysrl+/LmyTSCRwc3ODk5MTEhIS4O/vj4yMDGRmZmLv3r3w9/fHX3/9pdW0HYWVMa7N+tRtqPO5PvcFpUqVEgVVg4ODRUHI7PbpMlxa+XxerFgxlCtXTmWfnOfzkJAQHD58GF5eXggKCkJaWhpKliyJmjVromPHjujWrZvBrskTJ04U9VS2sbFBlSpVYG1tjZiYGISEhAh/j6dPn2LgwIE4fvy4MH8mUWHGICQRFTrZw4GyM/1169ZNGDYWGxuLFStW4MiRIwCyMgYuXLgQa9euzVedx44dA5D1UDBr1ix06dJFqPPdu3fYsWMHfvvtN8jlcsjlcqxevVqUoVcXW7duBSAe2tSyZUuDDHXbu3cvgKweUosWLRL96v78+XOMGDFC6IXx22+/ITU1FRKJBKNHj8b3338v3KinpKTgl19+EbIxvnnzBidPnhTN9ZNty5YtogfAzz77DFOnThU9oKempmLfvn34/fffkZaWhoCAAEyePBl///13nnO75cbZ2VmroUHalKMP5d4sugRTlffN2SNGn7pNTEy0fpjUVLfyel5DlZU5OTkJDzo5y1SeG0/bv5Gjo6MwlEtdmbq6efOmMJ0BkDXkUJOnT5/izz//BJB1PpgzZ06+6jdGmcuWLct3m9TZvXu38Ldq3ry52u97XozxvVAOyjg7OyMyMhLz5s1TSVyUmpoKqVSKx48f4++//8aCBQvQtWtXXd+CWrGxsaIED+7u7mofeJV7+dy5cwc7duwQHhSzRUdHIzo6Gl5eXti0aROWLFmS7+F02T39sv3www/4/vvvRdlz3717h3/++QcrVqxAZmYmUlJSsHr1amzcuDFfdWtr3rx5ogBV//79MXHiRKEnVGZmJs6ePYtFixYhLi5ONOVAbgx9/Xn79i0WLFggBNfc3d2xZMkSlZEAqampOHDgAFatWiUEOP/8808MGTJESK6V7fXr15gxY4ZQpr29PRYsWIDOnTsLc/tJpVKsXbsWe/bswdOnT/N833lxcnIS7jWUp3Tp3r27ypQu+sgeGlu/fn3Mnz9f1EPu5s2bGDt2rOjHjKSkJFhYWGDatGno16+f8DeKi4vD3LlzceHCBQBZ50ovLy+11/bFixeLApDffPMNxo0bBxcXF2FbfHw8tm7dKvS4vHfvHubPn68xm31eXF1dDXKvoW/Pd2Ncm/Wp21Dnc33uC4Csa2f280F+7wsCAgJw6tQpYb158+aicyWQ9QOH8g9gp06dwk8//aQyv/CbN2/w5s0bXLp0CZs2bcKKFSvyPe3QlStXhACkiYkJ5s+fj6+//lp0bklMTMTmzZuxZcsWAFl/k40bN2Lu3Ln5qpvofWAQkogKJSsrK+zcuVMlaYOjoyOWLVsGa2tr4YHr7NmzuHfvnsrcQ7qys7PDvn37VHpYWVpa4vvvv0diYqIQSPDx8UFkZKTeASxjKlOmDPbt2wcHBwfR9urVq2P69OmYNm0aAIiSTgwdOlS0r5WVFRYuXIiHDx8KD9U3btxQCUqEhoZizZo1wvrAgQPVzsNWvHhxDB06FLVr18bQoUMhk8ng7e2NI0eO4JtvvtHrfbZs2VKruYSMRfkBWZcMx8q9e3Jm7NWW8nHW1tYaJ6nXtm5934/yvjnLVF7XtkwTExNYWVkhMTERAETDznUllUpFN+Tm5uaieTBzSk9Px8yZM4Vgwfz58/Pdy9oYZRpDSEgIVq1aBSDr+6/rMOxsxvheKA/3TElJQf/+/YWhdMWLF4e7uzssLCwQGBgozBmakJCAqVOnQiqVYuDAgfq8FYFCocC8efNE701ddtqcmVSzh5GbmpqiYsWKKFWqFBISEvDy5UthWH50dDTGjBmDRYsW5Zm4SZPseVQBoF27dmqH9FpaWgrn3+x/6+vXryMlJUWlp1j58uVFD+D5dffuXSHQBACjR4/GpEmTRPuYmpqiS5cuqFatGvr27asytDonY1x/9u7dK5xzbG1tsXXrVrWBn+LFi2PIkCEwMTERvivx8fHw8fFRuRdZv369MLKgWLFi2LFjh8rQTnt7e+HcsG7dOo3vu7CoVasWduzYoRK8ad68Ob7//nthSH32e1+1ahU6duwo2tfBwQErV65Ehw4dhO/5jRs3VIJ+d+/exf79+4X16dOnq/0O2tnZYfLkyfDw8MDkyZMBACdPnkTv3r31Hr3So0cP9OjRQ69jDcEY12Zj163pfK7PfUHOffNzX5B9TVaegkhdD+bg4GBRUp3sQL65uTkqV64MBwcHxMXF4eXLl8IUA0FBQRg0aBDWrVuXr/ldlXtpDhgwAP369VPZx9bWFlOnTkVCQoLw3Th79iyDkPRBYHZsIiqUJkyYoDFr7PTp00VDJ7J7AObHd999p3GIZ86bAEM+oBnSjz/+qBKAzPbZZ5+JhjmVK1cu16CMRCJB27ZthXV1Q4d37NghBFcqVKiQZxbdJk2aYPDgwcJ6dm+KD5HyfFQ5H8I0UZ6fStsszTll97wxZN3GeD+GaKdyGbpIT0/Hjz/+KJr3adCgQRrnG/vjjz/g7+8PAOjUqRM6d+6sV93GLtPQsodhp6amAgCmTp2qdxZQY3yOlB84lyxZgrCwMFhaWmLWrFm4ffs2Dhw4gN27d8PT0xMbNmwQetcoFAosW7YMd+/e1eu9ZPvtt99EAbS6deuKsrVmU86kCmSdQ4cMGYJLly7h33//xc6dO3Hs2DHcunULEydOFHq1ZGZmYuHChflqp3Lvorz+7b7++ms0bNgQ3bp1w8iRI1Wy1xpD9mgDIKunvqbeeNWqVcOECRPyLNMY1x/lZFrffPNNnj3PcgbVIiMjRevp6emi7MIjR47UOLfc2LFjtZp3rzCYMWNGrt/xnNNNNGrUSOVvla148eKiAKG6e43sXp3ZZakLQCr78ssvRefabdu2ady/MCvIe42P7b4g+1rn4+MjbOvUqRMaN26ssq/yUGwgK/g4YcIEXL9+HSdPnsTOnTtx8uRJeHp64rvvvhPurdPS0jBp0iSVaXN0oXw+VzdMXNmAAQPQpEkT9OrVC3379lXpeU9UGDEISUSFjpWVVZ694ywsLETJRK5duyaaPFsfud0gZytbtqyot0h2T63CRCKRaHwf1tbWol5Ybdq00diLTrmnp7r3e/78eWG5a9euKsPQ1FFO6hMQEGCQ+a8KgvKv6Nr2RAQgmi9I24QY76NufctUHs6Ys0zldV2G3WsqUxvp6ekYN26cKIN4vXr1hJ4x6jx9+lQY1pQ9XDK/jFGmMezatQt37twBkBWo6d+/v95lGeOzqfwQm5CQAHNzc2zZsgXfffedaH5PExMTdOjQAfv27RMyn2ZkZORrqos//vhDyGgOZPW0+u2339S+N+WhxiYmJvj9998xe/Zs0XBRIKuX0JgxY7BlyxbhfctkMixdulTv65hyHUePHsWjR49y3dfR0RF79+7FypUrMWHChHzNDagt5aHzvXr1ynPetN69e+cZoDDG9WfPnj24ffs2Dh48qDJCQJ2cw0lzBgC8vb2FIK9EIsnz3sbExERtr6fCxtHRUWOSlZw/9rRr105jeZruNdLS0kTDsHv27KlVG5X/rW/evKl34KqgGePabOy6NZ3Pldff5/tRKBSYP3++KNFLhQoVcu31r9yr3dLSEjt37sTYsWNVfuTPnsZJeZqUpKSkfE0BoHw+37Fjh9oEWdk8PDywe/duLFu2DOPGjdMpsEtUUBiEJKJCp0GDBlplvVX+5TJ7onh9mZubq00ykJNy9ryc2aQLg7Jly+Y5mb/yDUrlypU17qv8gJ8zo2V4eDjevHkjrLu5uWnVxmrVqonaoJz59kOifEOc82+jifLNszYPze+rbn3LVO75panMnPMoaVumrplNk5KS8P3334uCHmXLlsW6dety/XvnHDI9d+7cfE/ubowyjSEkJASrV68GkHVuWLJkiVZZzHNjjM9mzvaMGDFCYwCkfPnymD59urD++PFjPHz4UOu2ZFuxYoVouK+5uTnWrFmTa0/Dr776Co8ePcKpU6ewf//+PHu9Nm/eXNSj6+nTp7h3757O7QSyevNk/52SkpLQt29fDB8+HDt37kRAQIBeZRpKcHCwqGePNlOn2NjYoHbt2rm+bszrj729PerWrauxF6RMJsPjx49FPfQA1fNcdnAfyPpcajOFS7NmzfLcp6BVrVpV4+s5AyH5udfw8fER3W9p+2+t/PnJ/vf6EBnj2mzsut/3vUZeZDIZpk6digMHDgjbSpQogQ0bNqjNig1k9Uq+d+8ejh8/jgMHDqBhw4Ya6+jZs6doDuLz58/j9evXOrUzW6dOnYTliIgIdOvWDT/88AMOHDigktWb6EPEOSGJqNDRJhgIqN7URkRE6J3ls0SJElr9IqvvzdP7omuQI6+ApaZgRM4hU1OnTsXUqVN1qh9QHb72ociZ8EFbyvvmlaU5N8rZdHWpW7lHWc66jfF+ihUrJswHpm+ZugQho6KiMHr0aFFiBxcXF/z9998aH/43bNggDJlu3749unXrpnWd77NMQ1MoFJg1a5YwDHvSpElaZyvNjTE+R1ZWVsKQbIlEotUcj926dcPixYuFXmheXl6oX7++Vm1JT0/H/PnzhcRhwP8CkHnNK1esWDGdrkMDBw4U9bT09PRUOzQwL25ubhg1ahQ2bdoEIOvf1tPTE56engCyepq1aNECrVu3RuvWrXN98DYG5QAkoH1GXDc3t1yHqL+v609CQgKePXuGkJAQhISEIDQ0FK9evUJgYKBWP0Qqv3dt33f58uVFmYALo/d5r5Ezs7O+PUVzfg4/FAV5r2Gs+wJDl6lJUlISJkyYIJwLgaz5FP/66y94eHhoPNbGxkbj9Ak5DRo0SJTwxsvLS695z9u0aYOuXbsKZclkMly4cEGYFsTV1VU4n7ds2VJ0T0j0IWAQkogKHW0fjnJOaK3vxNuAbvPSFGa63mjmp8dTfv7ehijHy8vLIPM8DRs2TK8EN9nDPYH/TbyvDeVkC8pl6EI5y2ZycjIUCoVW/5bK7cxZt77vR1OZdnZ2wuvalimXy0Vz1Gn7N3r+/DlGjRol6h1VoUIFbN++XeM8kE+ePMFff/0ltPenn37Sqj5NjFGmMezcuVMI8jRo0EA0X56+jPG9sLa2FoKQFStW1Gr4sIWFBWrVqiX0RFMeKq2JVCrF+PHjRRnVixcvjjVr1uQ7g7U6pUuXRoUKFYRhwTkDLrqYOHEiSpcujd9//10lcUNkZCSOHj2Ko0ePwtzcHK1atcLIkSPzndBNG9nJgrLlFZDKpimbsLGvP5cvX8b27dtx584djT84mpmZaRwaGhsbKyxr+74lEglsbW0LdRDyfd5r5CcJiTJtsq2rc/z4cZw4cSLf9U+bNk2ngFY2Y1ybjV23pvO58vfa2O8nPDwco0ePFn4QBLKSIW3ZsgV16tTRum5t1a5dG+bm5sIPFPk5ny9fvhyVK1fGli1bVM4F2T+K7Nu3D8WLF0f79u0xZswYvTtiEL1vDEIS0Qcr59xZH0sgMT/yc6Ovq5wPXk2aNNHr13ZNASJNIiMjRb9s6+vLL7/U6zjlnnU5H7I1iY6OFpb1nYtNue7MzEzExcVplXFZU93KQw91eT/KmYtzzo/m7OyM8PBwncqMjY0VPfTnLFOdS5cuYcqUKaLgZY0aNbBlyxaNx6enp2PWrFnCZ3nWrFl5JqLIizHKNIbg4GD89ttvALICCkuXLtVpfq7cGON74eDggIiICGFZW8rfCW0CEK9evcLo0aNFCQXs7e2xcePGPIfi5YeTk5MQhMxPcE0ikWDAgAHo2bMnzp8/jwsXLsDLy0sly7RMJsPly5dx+fJltVmqDU3fqUs09YI21vVHJpNhzpw5OH78uNr9rays4Obmhlq1aqFRo0Zo3bq1xuHTxnjvhUFB3mvkzJytLX3PwyEhIQa51/j+++/1Os4Y12ZtGeN8rm+Zyvtq834ePXqEsWPHiv4O5cqVw19//aX1iCtdmZmZwd7eXnj/+Tmfm5ubY9y4cRg0aBD+/fdfXLx4Ebdv31bpPZqamorTp0/jv//+w7x58z6IOWWJGIQkokIn5wNTbnL+Ov4+h5eR6t973rx5eQ5t+ZgoD61LSUnB27dvtQoqKidCyGueLG3qzi5TmyCk8lxCOeuuVKmSaD9telcqFAohyJizjOz17DnX1GU8VSdnooicZea0Z88eLF68WBS4bNWqFdasWZNnz6Nz584JPSRMTU1x6tQp0VCqnPz8/ITlEydOiOYZzO7lYowyjWHr1q3CMGxra2ssWbJE62NXrFgh6s2iPC+eMb4XVatWxbNnzwDolhBMl8RI9+/fx5gxY0TByvLly2PLli1Ge2DNpvxQqc18yHmxsrJCjx490KNHD2RkZMDHxwe3b9/GjRs3cP/+fdHfZdOmTahevTq++OKLfNebm5zXioSEBK2GD2rqJWWs68/q1atFAchy5cqhR48eqF+/Ptzd3eHi4iI6L+aVIEN5xIYun11deoh97HL+W2tzbv+YGOParC1jnM+V26LtfUFUVJSoN2Be7+fChQuYPHmy6Nxaq1YtbN68We+ArLaUp70xxPnczs4O3377Lb799lu8e/cO9+/fF87njx8/Fu59MjMz8dNPP6FmzZqoV69evuslMiYGIYmo0NF20uWciWjyO5cZ6SbnHHsRERHvNQjZq1cvUYb0961mzZqQSCRCj1xfX1+0bt1a4zHJycmim259A0zlypWDvb29EDDx9fXV6qbz+fPnudZdq1YtYTk1NRWvXr3KM/gSGBgousmvUaOGSplHjhxRqVsTX19fYdnOzg7lypXLdd+NGzfi999/F2375ptvsHDhwjyz7wLih4XMzEydertkD4fKlt3LxRhlGoNyO2NjY3Vqp6YED8b4XiifV8LDw5Genq5VTzHlofk5M1Qr8/LywtixY0UPuXXr1sXGjRu17q2sUCiwZs0axMTEICYmBh07dhRl582NXC4XBQvKlCmjVX3aMjMzQ8OGDdGwYUMhyLp7926sX79e+DfasWOHUYOQrq6uovWAgACtErRoGspojOtPVFQUdu7cKax/+umnWL9+vcbPWl49nZTvS7RNnieVSg023PxjoO7f+n0OOx0/fjzGjx//3urLyRjXZm0Z43yu/H6Cg4ORmpqa548SyvcFEolE43f92LFjmD17tiiRTbt27bBq1Sqtg4KJiYnYsmWLcD4fOHCgVj1wpVKpqIOEoc/nlpaWaN68OZo3b46JEyciMjISmzZtwj///AMg6zq0c+dOrFq1yqD1Ehkas2MTUaHz6NEjlaHW6ty4cUNYLlOmjMaHTDK8atWqiXp53Lp1S6vjYmNjMXPmTKxduxaHDh0SPYB/SGxsbFCzZk1hXfnzmJtbt24Jv1qbmpqiadOmetevnB1Ym7qfP38uGpaUcwhhtWrVRL0pb968mWeZXl5ewrKDg4PKg4Hy+4uOjsaLFy/yLFP5vWjKgPznn3+qBCAnTZqExYsXaxWAJOMwxveiRYsWwnJqaqroc5ebxMRE0Txguc3/5e3tjTFjxogCkB06dMCuXbt0mi5BIpHgxIkTOHDgAC5evIgzZ85odZyPj48o4KRPUpq0tDRcu3YNO3bswMKFC0Xf85zs7e0xbtw4UbIEbYNj+qpUqZLO55aMjAw8evQo19eNcf3x9PQU9WycOXNmnsFu5eAIoJqwrkGDBsJyZGSkVnOT6psh/WNVv359Uc8/bf+tX758idmzZ2PDhg04duyYaH7OD4kxrs3aMsb5vFGjRsI1OjMzE7dv386zTOV6a9asmet8sadOncKsWbNEAch+/fphw4YNOvVKLFasGLZt24ZDhw7h8uXLuHjxolbHeXl5iZ5f9DmfJyQk4PLly9i6dSvmz5+vcUoHZ2dnLFiwQDSvubHP50SGwCAkERU60dHRuHz5ssZ9EhISRJlLO3ToYOxmGdz7nFPJGExMTNCmTRth/ejRo1pNIL9r1y4cPXoUGzZswJw5cxAXF2fMZhpVp06dhOUTJ04Iw1tzs3fvXmG5RYsW+ZpCoGPHjsLy5cuX88zyqly3m5ubykOJRCLB559/LqwfOHBAY0IGuVyOAwcOCOudOnVS+Uy7u7uLhmLt27dPYxsjIiJw5coVYT233lkXLlwQ/dJvamqKZcuWYfTo0RrLz6lXr17w8/PT+j/lh6lx48aJXssOmBqjTGNYvny5Tu1UtnPnzlxfAwz/vahZs6ao59OWLVvy/KFq3759wsObubk52rZtq7JPeHg4fvjhB1GPob59+2LdunV6zTGs/G/p5eWl1Q8s2dmsgawAYV69jNSRyWQYNWoUli5dir179+LSpUt5HlO1alVh2dzcXOc6dZHz3HLkyJE8hxufO3dOY9DIGNcf5XnsAO3mENy1a5doPefw7ObNm4s+z8o9LXOT13lSVx/6vYajo6Oop/+ePXu0mmvzzz//xOHDh7F27VrMnj1b4/WsMDPGtVkXhj6flyhRQvQjaF6f9+TkZFFioM6dO6vd7/Hjx5g5c6bobzNhwgQsXLgwz+k4cjI3Nxf9gHDmzJk8z1kZGRlCQjog6xyrHMDVVkREBEaPHo1ff/0V+/fvFyVJy837PJ8TGQKDkERUKGnqzZGZmYl58+YJDw+mpqYGyer6vilPop9zoukPxbBhw4RlqVSK6dOni4Z55vT48WPR/HF169ZF7dq1jdpGY+rdu7cwjOjt27dYtGhRrvsePHgQ169fF9bz+5nt2LGj8JCcnp6OmTNn5jo/2fXr13Hw4EFhfdCgQWr369+/v/Cw8vz5c2zYsCHX+tesWSP0bDQxMcm1zAEDBgjL+/bty7UnhUwmw4wZM4SHy7Jly6r9cSEyMhJz5swR1iUSCX755ZcCHZpPYsb4XgwZMkRYvnfvHv78889cy8z52e3SpYvKPGCZmZmYOnWqKHDVt29fLFq0SO8EPV9//bWwnJGRgfnz52ucM3Dbtm2iH9y+++47reZKzMnW1lbU42bz5s0aA3gKhQLnzp0T1vV5UNbV0KFDhV6Fb9++xfz583MNpERGRmLp0qV5lmno60/OjLvKn0t1Nm/eLPrRBFBNRFOsWDHRZ3ffvn0af2Q9fPgwrl27prFeXX1s9xqvXr3Czz//rPGHiEuXLokCVx07dtQ7EVxhYIxrs7aMcT5Xvi+4fPmyMG2LOgsXLhTOZ1ZWVqLzbLbk5GRMmTJF9P2bPHkyxo4dm2u5eVGuRyqV5nlOWr58uTB3MQCMGjVKr+Cvu7u7aBqa3377TeP39t27d6Lz0Ps4nxPlF4OQRFQoRUZGok+fPirDTkJDQzF69Gj8999/wraxY8eqzDn1IVB+4Hn48OEHOQdU7dq10b9/f2H98uXLGDRokMowuvT0dOzZswdDhw4VbqZMTU0xa9as99peQ3NycsKIESOE9SNHjmDKlCmiLI5paWnYtGkTFixYIGxr06aNqBdPTh4eHsJ/uT1AWFhYYPLkycL6jRs3MHLkSNGE8BkZGThw4ADGjx8vDE9yd3cXDcVUVr16dfTs2VNYX79+PZYuXSpKqJCYmIglS5aIenD17dtX9Eu8sr59+wq9ITMyMvDDDz/g4MGDouBMaGgoRowYIRqWNW3aNLVDIX///XdR8pBRo0ahW7duauumgmGM78XXX38t6j2zevVqzJ8/X9QDWC6X48yZMxg8eLDQW8fW1lZt9ueTJ08KSZOArOzKym3RR+PGjUW9dz09PTF8+HAEBASI9ouOjsb8+fPxyy+/CNtq1aol+pvpSjlIExYWhhEjRsDHx0dlv8jISEyaNAl3794VtikHyZTLUD4PzZw5U++2AVnJKZQDAqdPn8aYMWNU5oD29PREv379VHolqmPo60+LFi1EQYOFCxeq7VX66NEjjBs3DqtXr1Z5LSUlRWXb999/L/TkVSgUGD9+PLZt2yYKLKSmpmL9+vWYO3dunu9bV8r3Gjdv3tQYqC2sOnbsKOrNvH//fowaNUpl6GlSUhI2btyIH3/8UQhSWllZia6VHyJjXJu1/Y4b43zevn17UU//efPmYfPmzaLvxNu3bzFp0iRRMHns2LFqk/Bt375dNIds165dMWrUKLV1a6tbt26oX7++sH748GFMnDgRERERov1CQkIwbtw4Ua/o9u3bo3v37nrVK5FIMHz4cGH98ePHGDNmjMp1BACCgoIwcuRI4b2bmJh8kJ0yqOjhpElEVOi0adMGd+7cQXh4OL777juULVsW5cuXR3x8PPz9/UW/fnfu3Dlfv3QWJHd3d2H59evX6NKlC6pVq4bExERs27Yt1zlvCptZs2YhNDRU+PX74cOH6NOnD1xcXODq6oqkpCQEBQWJHs4kEgnmzp2Lhg0bFlSzDWb06NF4/Pix8Ev0qVOncPbsWXh4eMDCwgIvXrwQPSiUL19eFHzIj549e+LBgwfYv38/gKxAZMeOHeHh4QEbGxsEBASIekTZ29tjzZo1GudMnDNnDvz9/fHkyRMAWUkrDhw4IAzf9vPzEw3HqlOnjsYAhYWFBdauXYtBgwZBKpUiJSUFc+fOxerVq+Hm5ibM3afcK2rAgAHo0qWLSlkRERGiBxIg6/OmfMOujV9++eWD7hXzITD090IikeC3337D8OHDhd4m+/fvx+HDh1G5cmU4ODggMDBQ1IPe3Nwcq1atUpscYPPmzaL1pKQknRMBDRs2TDQXFwAsXrwYoaGhwvfn1q1b6NKlC6pUqYLSpUtDKpWqfN6rVauGLVu25GsYXbt27dCrVy+hR9HTp0/xzTffwNnZGRUrVoSpqSmio6MRGBgoqnvgwIEafxAxpJEjR8LX1xdnz54FAFy5cgVXr16Fu7s77OzsEBoaKjzgFy9eHI0bN86zN6Ihrz8VKlRAnz59hPOpVCrFmDFjUKpUKZQvXx5yuRyvX78WBUjNzMzg4OAgbFMXPLWwsBA+u5GRkZDJZPjll1+wYcMGuLu7Q6FQ4Pnz58J5tWnTpvD39xf92JIfyvcaT548QefOneHq6op3796Jhs4WZhKJBL/++iuGDh2Kp0+fAgCuXr2Kq1evwtXVFS4uLpBKpQgJCRHN72pubo6VK1d+kD9U52Toa7MujHGfs2LFCgwYMAChoaHIyMjA6tWrsWXLFlSrVg3p6enw8/MT9Wxs166d2mt9amqqyrQI4eHhOt8XTJs2TZREx8TEBGvXrkX//v2FH0v+/fdfnD17FtWqVRO+9zmDg02bNlX7A4Uu+vXrhwsXLggjR7y8vNClSxdUqFABZcuWBZCVeC1n8q5p06blGnQmKkwYhCSiQqdmzZoYPHgwpk6dCqlUitevX+P169eifczNzTFs2DBMnDhR76FzBe3zzz9HzZo1hQfqt2/fCg/Qz58/N+p8cIZkYWGBzZs3Y+3atdi+fbvwS/abN29E2WmzlSpVCgsWLBDNcfQhMzMzw7p16/DTTz/h8OHDUCgUkMlkwoOCsgYNGmDNmjVqf8nX108//QQHBwds3boVMpkMcrlcJVkCkDUP5Jo1a/LMqmljY4O///4b06dPF3oBpaam4uHDhyr7tmvXDitWrMhz/jx3d3fs3LkTU6ZMEYaJxcbGqgwZNTU1xciRIzFx4kS15Vy4cEFleKu2SQqUKT+kknEY43vh6OiInTt3YsmSJTh27BgUCgUyMjLUJjwqW7Ysfv31VzRp0kTlNT8/P5UEIeq+M3n58ssvVbbZ2Nhg586dWLx4MY4ePSr8aBYYGKg2KUn37t0xe/ZsODg46Fx/TosXL4adnR127twp9HyOjIxUO1+slZUVRo8ebdQM7DmZmZlhzZo1WLlyJbZt2wa5XA6FQqEyr6idnR1WrlwJb2/vPIOQhr7+zJ07F4mJiaLEQtHR0WqDi25ubli8eDEuXrwozAWn3MNUWbVq1XDgwAGMHTtWCKIlJSWJeuMCWUk71qxZY9De3X369MGePXuEAG94eLgwX2lYWBjKly9vsLqMyc7ODv/88w+WLl2KQ4cOCZ/xkJAQUTbmbBUrVsTSpUv1Sg5SGBnj2qwtY5zPnZ2dsWvXLkyePFn4HiQmJqp8J4CsnvALFixQe79/8+ZNlYD9gwcPdHh3WdSdC52dnXHw4EHMnj1bmEZBLpernQvZ1NQUAwcOxKRJk/SaVkOZiYkJNm7ciHnz5ol+eA0NDRWNdsnm4OCAKVOm5DrKhaiwYRCSiAql1q1b4+TJk9i9ezcuXbqE8PBwSCQSlC1bFq1bt0afPn1ECS8+RObm5ti1axc2bNiAS5cuITIyEhkZGShVqtQHNzTb1NQUkyZNwoABA3Ds2DHcuHEDgYGBwo2ho6MjatSogXbt2uHLL7/UKUvhh8DCwgJLlixB3759cfToUdy6dQuRkZFIT0+Ho6Mj6tati65du6Jjx44GD5pLJBJMmjQJ3bt3x6FDh+Dp6Yk3b94gNTUVdnZ2qFGjBjp37ozu3bvnmek1m62tLTZu3IibN2/ixIkTuHv3Lt6+fYvMzEw4OTmhQYMG6NmzJ1q1aqV1Oz08PHDs2DGcPHkSZ8+eha+vL2JiYmBubo7y5cvjk08+wbfffqvxV3xtMstS4WGM74WtrS2WL1+OIUOG4MSJE7hx4wbevHmDpKQklChRAjVr1kTHjh3x1VdfiebCU2bsz5G1tTWWLVuGESNG4NChQ/D29kZYWJjQRmdnZzRv3hxffvmlQefENTU1xcyZM9G3b18cP34cd+/exatXr5CQkACJRAInJye4urqibdu26NKli1aJV7IZKrmJRCLBtGnT0KNHD+zbtw83b95EeHg4TE1NUa5cObRr1w4DBw6Es7OzVgkZAMNef7J7Lfbu3RtHjx7Fw4cPhXOftbU1ypYti+rVq6Nt27bo0KEDTE1NIZfLhSCkv78/fHx8ULduXZWyXVxccOjQIfz33384ceIEnjx5AqlUihIlSqBq1aro0aMHvvrqK52TaOTFzs4OBw4cwPr16+Hp6Sn82Fm6dGm8ffv2gwlCAllzbC5atAjDhw/H8ePHcevWLYSEhEAqlcLMzAxOTk6oVasWPv/8c3Ts2FHra96HwhjXZm0Z43xepkwZ/PPPPzh//jzOnDkDHx8fvH37FiYmJnB2dkajRo3Qp08f0bDonIx9Pnd0dMSmTZvw6NEjHDt2DPfu3UNERARSU1Nhb2+PMmXKoHXr1ujatWueP/LqolixYlixYgW+++47nDx5Eg8ePEBwcDCSkpJgZmaGkiVLomrVqsL5/EMZPUUEABJFXukFiYiIiIioyDlz5gwmTZqEwYMHixJCEREREenjwxzDSERERERERpU9FYouvSaJiIiIcsMgJBERERERiWRmZgpzI7Zu3bqAW0NEREQfAwYhiYiIiIhIkJiYiOnTp+Pp06do3bq1KGssERERkb4YhCQiIiIiIoFcLsft27fRtGlTrFq1qqCbQ0RERB8JJqYhIiIiIiKRsLAwlCtXzmCZsYmIiIgYhCQiIiIiIiIiIiKj4nBsIiIiIiIiIiIiMioGIYmIiIiIiIiIiMioGIQkIiIiIiIiIiIiozIr6AZQ4XTv3j3RuokJ49VEREREREREREWRXC4XrTdq1EjnMop0EFKhUODatWs4ceIEHj16hLdv38LExAQuLi6oVasWunXrhlatWhklAJecnIyjR4/iwoUL8PPzQ2JiIuzt7VG2bFl89tln6NmzJ0qXLm3wevWV88NGRERERERERESkrSKbHfv169eYPn067ty5o3G/+vXrY+nSpXBzczNY3ffu3cOUKVMQERGR6z7W1taYO3cuevXqZbB6dZGzJyQRERERERERERGgX0/IIhmEDA8Px8CBA/H69Wthm5WVFTw8PGBubo7AwEC8fftWeM3Gxgb79u1DtWrV8l33vXv3MGzYMKSlpQnbypUrh3LlyiE6OhqvXr0S7b9w4UL069cv3/Xq6mMcjq3cm/NjeD9EpDueB4iI5wEi4nmAiHge0J0hhmMXuSCkXC7HgAEDcP/+fQCAubk5Jk6ciEGDBsHS0hJA1jDts2fPYsGCBZBKpQCA8uXL499//4WFhYXedSclJeGLL75AVFQUAKBMmTJYtmwZmjdvLuzj6+uLWbNmwdfXFwBgZmaGAwcOoFatWnrXq48HDx4IHzATExM0aNDgvdZvaBkZGXj06JGwXq9ePZiZFenZCIiKHJ4HiIjnASLieYCIeB7QjyHiREUu3Hvx4kUhAAkAP//8M0aMGCEEIAFAIpGgc+fO2Lx5sxARDwsLw4kTJ/JV9+bNm4UApK2tLf7++29RABIAatSogd27d8Pd3R1A1pdj1apV+aqXiIiIiIiIiIioIBW5IOTBgweF5bp166Jnz5657lu/fn18+umnwvqFCxf0rvfdu3fYv3+/sD5y5EhUqlRJ7b42NjZYsmSJsO7l5QU/Pz+96yYiIiIiIiIiIipIRSoIqVAo8ObNG6F345dffpnnMcrzQAYHB+tdt6enJ+Lj4wFkdVvNK+FM3bp1RUOw//vvP73rJiIiIiIiIiIiKkhFKggpkUhw4sQJ3L9/H4cOHUK3bt3yPCYhIUFYtra21rvumzdvCsvu7u4oVapUnse0bNlSWL58+bLedRMRERERERERERWkIjnzZvHixVGnTp0890tPT8f169eF9Zo1a+pdp/Jwam2TzFSvXl1YfvHiBd69eyeau5KIiIiIiIiIiOhDUKR6QuoiPT0dc+fORXh4OICsIdRDhgzRu7xXr14JyxUrVtTqmPLlywvLGRkZCAsL07t+IiIiIiIiIiKiglIke0KqI5fLhUCfp6cndu3ahZCQEOH1BQsWwM3NTe+yY2NjhXVthmIDgJOTk2g9Ojpa7zbkV0ZGRoHUayiZmZka14no48fzABHxPEBEPA8QEc8DBYdByP+3bNky7Ny5U2W7i4sLZs+ejU6dOulddmJiouhDXaJECa2Os7W1Fa0rz0/5Psnlcjx69KhA6jaWJ0+eFHQTiKiA8TxARDwPEBHPA0TE88D7w+HY/+/169dqtzs4OCAqKgppaWl6l/3u3TvRurbzOlpYWGgsh4iIiIiIiIiI6EPAIOT/e/v2LapXr45mzZrB3d0dJiZZfxpfX18sXrwYPXr0QEBAgF5l5xzKbGpqqtVxOfdjF2EiIiIiIiIiIvoQcTj2//vnn39EQb/o6GisX78e+/btAwAEBQVh6NChOH78OBwcHHQqW99gYs79zM3NdarXUExMTLTKJl6YZWZmirpY165dW+tgMBF9HHgeICKeB4iI5wEi4nlAP48fP4ZcLs9XGQxC/r+cH7hSpUrhp59+Qvny5bFy5UoAQGRkJDZs2IC5c+fqVHaxYsVE69oOq9Z3GLcxmJl9XB8VU1PTj+49EZFueB4gIp4HiIjnASLieeD94V85DyNHjsS5c+fg4+MDADh27Bhmz54tDNfWhq2tLUxMTISIcVJSklbH5dzP3t5e6zqJiIiIiMjwFApFvnuCUMFRlxVXIpEUUGuIqCAUhfOAiYlJoXxPDEJqoUePHkIQMjExEUFBQahSpYrWx5uYmKBUqVKIjIwEAMTExGh13Nu3b0XrTk5OWtdJRERERESGkZGRgfj4eMTHxzNZ5AdOoVCI1gMCAgrlgzoRGU9ROQ+YmZnBxsYGJUqUgJWVVaF4jwxCasHV1VW0LpVKdS6jYsWKQhAyJCREq2NCQ0OFZXNzc5QrV07neomIiIiISH9SqRRv3rxReWilDxeHXRJRUTgPZGRkQCqVQiqVwtzcHK6urrCwsCjQNn38f3UlgYGBOHjwIMLCwhAREYFdu3ahePHieR6Xnp4uWi9RooTOddeuXRve3t4AgOfPn2t1jK+vr7BctWrVAktMQ0RERERUFCUnJyMiIqKgm0EGJJFIRMGHwtAziIjer6J4HpDJZAgJCSnwQGSRCkImJydj27ZtwvrNmzfRvn37PI97/PixsGxubo4yZcroXHfTpk2Fup8+fYqEhIQ8g5k3btwQlps1a6ZznUREREREpJ+MjAyEhYUJ66amprC3t0eJEiVgZmZWJB5aP0YKhQIpKSnCemEZokhE709ROA9kZmYiJSUFCQkJSE5OBvC/QKSbm1uBvd8iFYSsXr067O3theHUe/bsyTMImZKSgsOHDwvrn3zyCaytrXWuu3nz5rC1tUViYiJkMhkOHTqEYcOG5br/o0eP8OzZM2H9iy++0LlOIiIiIiLST3JyspCARiKRoEKFClqNoqLCTaFQwNTUVFg3NTX96IIPRKRZUTgPmJqawsLCAvb29oiNjRWmB5TJZEhJSdErrmUI2qd4/giYm5ujd+/ewrqnpydOnjyZ6/4ZGRmYOXMmoqOjhW0jR47Uq+5ixYrh66+/FtbXr18PPz8/tfsmJiZizpw5wnr9+vVRr149veolIiIiIiLdJSUlCct2dnYMQBIR0QfJ0dFRFHRMTEwssLYUqSAkAIwdOxbOzs7C+qxZs7B582akpqaK9nvy5AmGDBmCs2fPCtu++eYbtcOiZ86cCQ8PD+E/5WEbyr7//ns4OjoCyPpl9bvvvsP58+dFk1w/f/4cgwYNwosXLwBkRa9nzpyp/xsmIiIiIiKdZQ9fA1BgPUaIiIgMQXk6wIIMQhap4dgAYGNjgz///BODBw9GfHw8ZDIZVq9ejY0bN8LDwwMWFhYIDw9HeHi46LgOHTpg4cKF+arb0dERq1evxujRo5GWlobY2FiMGzcOLi4ucHV1RUxMDAICAkTHTJkyBQ0aNMhXvUREREREpD2FQoHMzExhvVixYgXYGiIiovyxsrISljMyMqBQKApkCHqR6wkJZM0NeejQIdSvX1/YlpqaiocPH8Lb21sUgLSyssLkyZOxfv16g6Rwb968ObZs2YKyZcsK2968eQNvb29RALJYsWKYP38+hg8fnu86iYiIiIhIe9lzQWZTnjuMiIjoQ5PzOpbzOve+FLmekNlcXV2xf/9+XLt2DadPn8bDhw8RFRUFmUwGe3t7VKtWDS1btkSvXr2EIdSG0rRpU5w5cwZHjhzB+fPn8fLlS0ilUlhaWqJixYpo2bIlvv32W5QrV86g9RIRERERERERERWEIhuEzNamTRu0adMmX2UsX74cy5cv1+mY4sWLY8CAARgwYEC+6iYiIiIiIiIiIirsiuRwbCIiIiIiIiIiInp/GIQkIiIiIiIiIiIio2IQkoiIiIiIiIiIiIyKQUgiIiIiIiIiIiIyKgYhiYiIiIiIiEhrMpmsoJtARB+gIp8dm4iIiIiIiD5uT548wYEDB3D37l28fv0aCoUCTk5OqFOnDrp06YIOHTrAxES7Pjqpqak4ePAgzp8/D39/fyQnJ8PBwQFubm7o0qULvvrqK1hYWLz3st4HuVyO/fv348aNG1i3bp1Wx6xZswZ//PEHSpcujevXrxu5hURUmDEISURERERERB8lmUyGxYsXY//+/VAoFKLXwsLCEBYWhn///Rd169bF8uXL4ebmprE8Pz8//PDDDwgNDRVtj4qKQlRUFG7evIkdO3Zg9erV8PDweG9lvQ+RkZEYM2YMnj59iqZNm2p93OXLlwEAbdu2NVLLiOhDwSAkERERERERfZSmTp2K//77T1ivXbs26tSpAxsbG4SEhODq1atIS0uDj48PhgwZgv3796NcuXJqywoNDcXgwYMhlUoBAE5OTujYsSNKly6N0NBQnD9/HgkJCXj58iWGDx/+3sp6X4KCgvD06VOdjomMjISvry8ABiGJiEFIIiIiIiIi+ggdP35cCECamppi+fLl6NatG1JSUoR9pFIppkyZggcPHiA6Oho///wzNm3apLa8WbNmCUHD1q1b4/fff4eNjY3w+pQpUzB+/Hjcu3cP0dHRWLBgAf766y+jl1WYZfeCtLS0RIsWLQq4NURU0JiYhoiIiIiIiD46ykG7cePGoXv37ir7lC1bFmvWrIG5uTkA4MqVK3j9+rXKfp6enrhz5w4AoGTJklizZo0oaJi9ffPmzShVqhQA4Pr167h7965Ryyrsrly5AgD45JNPULx48YJtDBEVOAYhiYiIiIiI6KPy+vVrvHjxAkBWL8h+/frluq+zs7Mw56JCoYC/v7/KPocOHRKWhwwZAmtra7Vl2draYvjw4cL60aNHjVpWYfbu3TvcunULAIdiE1EWDscmIiIiIiKij0rZsmVx7949BAYGIiYmBg4ODhr3T09PF5aze0Vmk8vl8PLyEtbzCqi1bdsWy5cvBwBcuHABixcvhkQiMXhZ+rpz5w6OHz+Ou3fvIiIiApmZmXB0dEStWrXQrVs3dO7cWZQpfN26dVi/fr2oDG9vbyFw27RpU+zatUulnps3byI1NVV4H+pcuXIFp0+fxsOHDxEVFQUAsLe3R7Vq1dCyZUv06tULdnZ2+Xq/RFR4MAhJRGRAvpGJ+P16IKzMTTGnQzU4WVsWdJOIiIiIiiRra2vUqVMnz/2eP38u9Jq0tLREjRo1RK8HBwcjISFBKDOvTNWVK1eGvb09pFIppFIpAgMDhazbhixLV9HR0Zg5cyY8PT1VXouMjERkZCQuXbqE7du3Y/369XB2dtarnmyXLl0CALi7u6sk1UlISMCECRNw48YNlePevHmDN2/e4Pr161i/fj1+/vlndOnSJV9tIaLCgUFIIiIDiUx8hya/X0eKLBMAcMY3Cs9ntMv3r9VEREREZHgKhQKenp6YP38+FAoFAGDQoEFwdHQU7ffq1SthuXz58lqVXbZsWSHxTFBQkBA4NGRZuoiLi0P//v0REhIibGvSpAkaNmwIc3Nz+Pv74+LFi8jMzISPjw8GDx6Mw4cPw8bGBi1btoSVlRVCQkKwb98+AECFChWEIe5lypRRW+fVq1cBqO8FOWXKFCEAaWdnh3bt2sHV1RUAEB4ejgsXLiA+Ph5JSUmYMmUKypUrh3r16un8vomocGEQkojIQFZdDRACkADw4m0yzvpFo3P10gXYKiIiInofZJlyLDrvjzO+kUhJz8z7gCLEysIUXWo4Y/7n7jA3Ldi0BKGhoThy5AjevHmD+/fvIzg4WHitd+/emDJlisox0dHRwnJuAbecnJ2d8ezZM5XjDVmWLhYuXCgEIB0dHbF27Vo0adJEtI+fnx+GDh2KmJgYBAUFYcOGDZgxYwYaNmyIhg0b4vbt20IQskyZMqL5KnPy9fXFmzdvAKgGIR8+fIhr164ByOrp+c8//6gEfmfPno3Ro0fjzp07kMvl2LhxY65Zy4now8EgJBGRgRx8pJpJ8VZwHIOQRERERcBP5/yx9OKLgm5GofUgPGsI8s+dqxdoO+7evYuNGzeqbB85ciQmTpwomgsxW2JiorCsbYbnYsWKqT3ekGVpKygoCP/99x+ArCQ9GzduRP369VX28/DwwK+//ioEFw8cOIDJkyerzJGpjcuXLwPImt+xQYMGotcePnwoLH/77bcqAUgAsLGxwbJly9ChQwcAwLNnz5CZmQlTU1Od20JEhQezYxMREREREeWTd0hcQTeh0LsdXPB/o9evVX80BoAtW7agc+fOuHnzpspryklrlAOCmijvp3y8IcvS1vnz54Xl9u3bqw1AZmvVqhWaNm2K5s2b48svv0R8fLzO9QFZCWcAoE2bNiqBXeVA4v3793Mto0KFCjh+/Dhu376Na9euMQBJ9BFgT0giIiNS/P//bwfHYdudEJSytsSs9lVhbcnTLxER0cekqasDLrx4W9DNKNQ+qag5Q/X78MUXX6BLly5wdHREfHw8Hjx4gI0bNyIoKAihoaEYMWIENm7ciDZt2gjHqOsdqQvl+cENWZa2rl+/Liy3b98+z/3VZbrWRUxMDB4/fgxA/XyQTZs2FZbPnj2LwYMH45tvvkHLli1VekVWr16wPWeJyLD4FExEZCC53RL6vE5A6w1eyJBnhSRvh8Th/Kjm769hREREZHQLOrpDIgHnhFRDeU7IglalShWkpKQAAJycnNCjRw906NABw4cPx8OHD5GRkYHZs2fj4sWLsLS0BABYWVkJx797906retLS0oTl7HIMXZa2IiIihGV3d+P/G1y5cgVyuRxmZmZo3bq1yuseHh74+uuvcejQIQDA7du3cfv2bUgkElSvXh3NmzdH69at0bhxY1hYWBi9vUT0/jAISURkZPP+ey4EIAHg4ou3eBWTgsolrTQcRURERB8Sc1MT/Ny5eoHPeUi6s7GxwcqVK9G5c2dkZGQgOjoaFy9eRJcuXQCIA4epqalalakcOCxRooSwbMiytPX27f966NrZ2el8vK6yh2I3bNgw1/YuXLgQTk5O2LZtmzDEXKFQwNfXF76+vti2bRusra3x2WefYdiwYahRo4bR201Exsc5IYmIjEihUODks0iV7QExyQXQGiIiIiJSp0KFCqhXr56wnj2cGMjKTp0tKipKq/IiI/93/1eqVCmjlKWtjIwMnY/RV3p6Ory8vACoH4qdzdzcHJMmTcLVq1exYMECtGnTRiVRT3JyMk6cOIFevXrhr7/+Mmazieg9YRCSiMhA9Jmjh4iIiIiMRy6Xi3oSalKmTBlhOSkpSVhWHsIcHh6uVVnK+1WuXNkoZWlLufejvolmtHXnzh0kJ2f92K4pCJnN0dER/fv3x5YtW+Dt7Y09e/bgxx9/RIMGDYR7a7lcjhUrVuDevXvGbDoRvQcMQhIRGZFCx+1ERERElH/Hjh1Dp06dULduXSxYsECrY6RSqbDs4PC/JDrOzs6wt7cX9gkKCtJYTmBgoBDss7Ozg6urq1HK0laFChWE5ZcvX+a5/7FjxzBnzhxs2rQJz58/16muy5cvAwBcXV3h5uam07EWFhZo3LgxfvjhB+zbtw+nTp0SBYaPHz+uU3lEVPgwCElEZCDsCElERERUONjY2CAoKAgymQyXL1/OszdkUlIS7t+/L6zXrVtX9LpyVulLly5pLCs7EAcArVq1UhktY8iytNGoUSNh+dq1a3nuf/ToURw6dAi//fYbgoODhe3a1J09H+Snn36q9nWFQoE5c+bgm2++QePGjUVJc3KqWrUqhgwZIqxr2peIPgwMQhIRFQCFgn0hiYiIiIylVatWsLW1BZA1BPnvv//WuP+qVatEWbNbtWoler179+7C8rZt25CQkKC2nISEBGzfvl1Y//rrr1X2MWRZ2ujRo4cQQDx37hz8/f1z3ff58+fw9vYGkJVEp2XLlsJrJib/Cx9kZqpmgH/58iVCQ0MBAO3atVNbvkQiQWBgIHx8fJCYmJhn78aYmBhh2cXFReO+RFT4MQhJRGREjDUSERERvX/FihXD999/L6yvXbsWR44cUdnv3bt3WL58Of755x9h27Rp01CsWDHRfs2bN0fz5s0BANHR0Rg1apQoQAZkBcxGjx6N6OhoAECTJk3QokULlToNWZY2qlWrhi+++AIAIJPJMHr0aLXDrIODgzFhwgTI5XIAwMCBA2FjYyO8rrz85s0blUBkdq9Na2trNGnSJNf29O3bV1hev349zp49q3a/+/fvY/fu3cJ69nsgog+XWUE3gIjoY6HL4BjGJomIiIiMa9iwYbh//z4uX76MzMxMzJo1C7t27cInn3wCKysrRERE4Pr160KgDwBGjBiBr776Sm15ixYtwjfffAOpVIr79++jc+fO6NSpE8qVK4fXr1/jv//+E3o12tvbY9myZbm2zZBlaWPRokV4/vw5AgMDER4ejl69eqF169aoXbs2TE1N4efnh0uXLiE9PR1A1nD0cePGicooV64cJBIJFAoFwsPDMXbsWDRq1AjFixfHoEGDhKHYLVu2hIWFRa5t6d69Ow4dOoQ7d+5AJpPhxx9/RK1atVCvXj24uLggNTUVT58+hZeXlxDo/OKLL/QOwhJR4cEgJBEREREREX10zMzMsHbtWvzyyy/Ys2cPFAoFnj17hmfPnqnsa21tjZkzZ6JPnz65lufq6oodO3Zg3LhxCA0NRUJCAg4ePKiyX/ny5bFhwwZRQhhjlqUNW1tb7N27F9OmTcO1a9eQmZmJK1euCIFDZe3atcOvv/4KS0tLlTK6du2KkydPAoBwvI2NDbp3744HDx4AyDsrtomJCTZu3IiJEyfC09MTAPD06VM8ffpUZV+JRIKvv/4a8+fP1+NdE1FhwyAkEZERKdjnkYiIiKjAWFhYYN68efj222+xf/9+3L59G69fv0ZaWhrs7OxQrVo1tG7dGt988w3s7OzyLK969eo4ffo0Dh48iHPnzuHly5eIj4+HtbU1qlWrho4dO6JPnz4oXrz4ey1LG/b29tiyZQtu3ryJkydP4t69e4iKikJGRgacnJzQoEED9O7dWzQPZE5Lly5FpUqVcOrUKUREREChUMDe3h6XLl1CZmYmJBJJrklplNna2mLr1q24fv06Tp8+jcePHyMiIgJpaWkoUaIEXFxc0Lx5c3Tv3h01atQwyPsnooInUTA7Aqnx4MEDYS4QExMTNGjQoIBblD8ZGRl49OiRsF6vXj2YmTEGT4blvvwSXr5NFm2b9VlVLLv4UmXfMyM+Qefqpd9X0wg8DxARzwOkvczMTFHyDnd3d5iamhZgi8hQFAqFkIAGyEq+ok/GaSL6cBXF84AhrmuGiBPxrouIKJ8u+EfjvH+0SgBSk9lnfHEvTIoJravAxpKnYiIiIiIiIvq48cmXiCgfjj2JQK+/7+b6em59zR++TsDD1wk48TQSt35s9dH/8kZERERERERFm0lBN4CI6EM2/uiTfB1/J1SKW8FxBmoNERERERERUeHEICQRUT6Ex6flu4zrr2IN0BIiIiIiIiKiwotBSCIiI2LmLyIiIiIiIiIGIYmIiIiIiIiIiMjIGIQkIjKi3BLT6LoPERERERER0YeMQUgiIiIiIiIiIiIyKgYhiYiIiIiIiIiIyKgYhCQiMiKFFmOtFUxfQ0RERERERB85BiGJiIxoxZWAgm4CERERERERUYFjEJKIiIiIiIiIiIiMikFIIqICxuzYRERERERE9LFjEJKIiIiIiIiIiIiMikFIIiIiIiIiIiIiMiqzgm4AEdGHSKFQ4NiTNwXdDCIiIiIiIqIPAoOQRER6mH/WD0suvDBIWZwSkoiIiIiIiD52HI5NRKQjuVxhsAAkERERERERUVHAICQRkY4y5Oy7SERERERERKQLBiGJiHQkkRi2PIWCQU0iIiIiIiL6uDEISUREREREREREREbFICQRkY4O+0QUdBOIiIiIiIiIPigMQhIR6eDk0zfov+d+QTeDiIiIiIiIdCSTyQq6CUWaWUE3gIjoQzL2yGODl8kZIYmIiIgMz8PDI99l9OzZE8uXLxfWBw0aBG9vbwDAzp078cknn+S7DtJPeno6jh8/jnPnzsHX1xdSqRTFihVDlSpV0KZNG/Tt2xelSpXKs5yAgAB06dJFp7oPHTqEOnXq6Nv0IuXIkSOYNWsWANXvEwDMnDkTR48eBQAsW7YMvXr1Mlpb/v33X+zatQt79uxReS0sLAyfffYZAKBcuXK4dOmS0dpRlDEISUSkg/D4tIJuAhERERFRkfbkyRNMmDABYWFhou0ymQyPHj3Co0eP8Ndff2HSpEkYMmRInmXRxy05ORnjxo3DjRs3UK5cuYJuTpHGICQRERERERF9dKZPn66yTaFQiIZjmpubQyKRCOvXr1/HzZs3hfWyZcsat5GkswcPHmDIkCF49+4dAEAikaBly5aoV68eTExM8PDhQ3h6eiI1NRVLly5FeHg4Zs+enWt5T58+FZZ79eqFqlWr5tmGMmXK5P+N0HsTFxeHGzduFHQzCAxCEhEVOAXHYxMREREZ3PDhw1W2KRQKpKSkCOtWVlZCENLb2xu///678FrDhg0xZswYo7eTtJeUlITx48cLAUhnZ2esW7cO9erVE+336NEj/PDDD4iOjsaOHTtQu3ZtdO/eXW2ZykHIUaNGoVKlSkZrP6lavny5yhDtglC+fHn4+fkVdDM+ekxMQ0REREREREVaSEgIxo8fj/T0dABA6dKlsXbtWpibmxdwyz5eHh4e8PDwQPv27bU+Zvfu3YiOjgaQFUDevn27SgASAOrVq4dNmzbB1NQUAPDrr78iLU11WiW5XI5nz54BAEqUKIGKFSvq81aISEsMQhIRFQJyObtDEhERERWE5ORkjBkzBlKpFEDWEO1169ZpldSE3q+zZ88Ky0OHDoWbm1uu+9auXRudOnUCAERHR+PChQsq+7x69UroGVurVi3R0HwiMjwOxyYiKmALzvph+aUX8Chlg539GqB2mRIF3SQiIiKiImPWrFl4+fKlsD5v3jzUr19f6+PPnTuH48ePw8fHB3FxcbC3t0elSpXQpUsX9OzZE8WLF8+zjCdPnuDff//FvXv3EB4ejvj4eEgkEtja2qJy5cpo1qwZ+vTpk2tgdN26dVi/fj2A/2VufvToEQ4ePAhvb29ERUXB1NQU5cuXR5s2bTBw4EA4Ozvn2a6oqCjs2bMHV69eRXBwMDIzM+Hi4oLWrVtj8ODBqFixIubPn4/9+/cDMG7GcJlMBl9fX2H9iy++yPOYli1b4syZMwCAq1evomvXrqLXlYdi165d20AtzZ3yv9OePXvQuHFjXL16FXv37sWTJ08glUpRokQJ1KpVCz169ECXLl1gYqK+75hy1uk1a9agXbt2WLduHY4fP46EhAQ4OzujSZMmmDBhAkqXLi069s2bNzhw4AA8PT0RGhqKxMRElChRApUrVxYyi9vb22v1nq5cuYIjR47gwYMHiIuLQ4kSJVCjRg307dsXHTt2zPN4XbJj+/r64vDhw7h9+zbCwsIgk8lgZ2eH6tWro1OnTvjqq69gYWGh9m+ULTw8HNWrVweQNbfn6dOnAeiWHTspKQlHjx7FlStX4OfnB6lUiuLFi8PFxQVNmzbFV199pTF7es5/u86dO+Ply5fYv38/vLy88ObNGygUCri4uKBly5bo378/qlSpounP+MFgEJKISAvvMjJxLyzeaOWnyuR4+DoBA/65j0dT2hqtHiIiIiL6n61bt4p61/Xp0wd9+/bV6tj4+HgMHjwYt2/fFm2Pjo5GdHQ07ty5gz179uCPP/7IdZhvQkICZsyYkWvAIy0tDdHR0fD29saff/6JxYsXo1u3bhrbpVAosGzZMuzYsQOKHJOPP3/+HM+fP8euXbuwfPlydO7cOddyLl26hClTpojm0ASA4OBgBAcH4+DBg5g3b57GthiSVCoVvR9thk67uLgIy+qyYKsLQoaGhsLHxwexsbGwtrZGpUqVUK9ePWFotyEtXLgQe/fuFW2LiYnBtWvXcO3aNezevRsbN26Eg4NDnmVNmTIF58+fF9aDg4MRHR2NuXPnivbbvHkzNmzYIMyrqVxvTEwM7t69iz///BNz585Fz549c60vNTUVkydPVvnsxsTEwNPTE56envjss8/Qpk2bPNuel+TkZCxcuBAnTpxQee3t27dCfVu3bsX69etRrVq1fNeZmzNnzuCnn34Sek5nk8lkSEhIgL+/P3bv3o2uXbti0aJFsLa2zrPMrVu34rfffhMlzQKAwMBABAYGYu/evZgxYwYGDx5syLdSIBiEJCLKQ3h8Ktr+cQMBMSl575xPjyMSkZKeASsLnp6JiIiIjOnOnTtYvXq1sF6/fn2dgmozZ85EcnKykJ25du3aMDc3x6NHj3D9+nUoFAq8fPkSEydOxIEDB1Tml5TJZBgyZIgwJ6GFhQVat24Nd3d3WFlZITExEU+ePMGtW7cgl8uRlpaGmTNnonr16hqDLKtXrxYyfDdo0ABNmzaFpaUlAgICcOHCBbx79w6pqamYOnUqPDw8ULlyZZUyzpw5g6lTpyIzMxNAVgKYzz//HE5OTggPD8f58+chlUoxb96895YpWp/5OZUDba9fv1Z5XTkIGRMTgz59+uDRo0cq+zk4OGDEiBEYMmSIweYJXbduHW7dugUAcHd3x6effopixYrh8ePHuHbtGuRyOR48eIB+/frhwIEDKFEi99FS2b3ycmrfvr2oJ65yr1UAqFmzJpo1awZ7e3vExMTAy8sLL1++RFJSEmbOnIm4uDgMGzZMpdz09HQMHjwYPj4+AP6Xobx+/fqQy+W4d+8ebt++jYsXL+LevXv6/okAZP0bDhs2DA8fPhS21apVC82aNYO1tTVevXqFc+fO4d27dwgKCsKgQYNw7NgxuLi4oE6dOpg+fToSEhKwadMmAICdnR2+//57yGQy2NjY6NSWvXv3YuHChcK6g4MD2rVrB1dXVyQnJ+Pu3bt48OABAODUqVMICAjA7t27Ndazb98+4ftavXp1tGjRAiVKlEBISAjOnTuHpKQkZGRkYMmSJXB3d0ezZs10anNhw6dcIqI8bLoZ/F4CkNk4PSQREdEHSCYDFi0CTp8GUt7ffcMHwcoK+PJLYP58oJAkeomMjMSsWbOEIFupUqWwdu1a0VDOvCQnJ6NSpUpYs2aNMLwz25UrVzB27FhkZmbi2bNnuHLlCj7//HPRPjt37hQCkC4uLtixY4fazMy+vr4YNmwYYmNjkZGRgf3796v0blN28+ZNODg44LfffkPz5s1FrwUGBuK7775DZGQkZDIZdu7ciQULFoj2iY2NxU8//ST8bXr37o358+ejWLFiwj7Tpk3DjBkzcPnyZbXBPWOws7ND8eLFkZqaCgAICAhAjRo1NB6jPMw+LS0NiYmJsLW1BZDVYzT77w8AixYtyrWcuLg4rFixAlevXsX69ethZ2eXn7cCALh16xYkEgmmTZuGYcOGieajvH//vjBP6atXr/Dbb7+p/Dspu3LlCkxMTDBhwgR88803MDMzw61bt0TDsA8ePCgEIG1tbbF8+XJ06NBBVI5CocChQ4fw008/QSaTYeXKlahXrx4aNWok2m/r1q1CANLOzg7r169H06ZNRft4enpiwoQJKj0GdbVmzRohAGllZYVly5ap9OB9/fo1hg4diqCgIMTFxWHp0qVYu3YtqlWrhmrVqiEsLEwIQtrY2GD48OEqPXzz8vDhQ9FnpFevXpgzZ45KgPHq1auYOnUqEhIS4Ovri9mzZ2Pt2rW5lnvz5k1YWlpi+fLl6NKli+i1SZMmYfjw4fD39wcAbNu2jUFIIqKP3ZILLwq6CURERFTY/fQTsGRJQbei8Pr/3kH4+eeCbQeyeiBOmzYNsbGxALJ62K1Zs0arORKVFS9eHH/99RcqVKig8lrbtm3RrVs3HDt2DADg7e2tEoQ8fPiwsDxnzhy1AUgAqFGjBoYNG4aVK1cCAB4/fpxn23755ReVACQAVKlSBT/++CPmzJkDALhx44bKPhs3bhQCR61atcKSJUtUErbY2dlh3bp1+Pbbb9UOc8527do1vHih+V46KSkJW7duVftatWrVhOG8EokETZo0wbVr1wAA+/fvF/VKy0kul6sM301LSxOCkK9evUJycrLwmrm5Ofr374+vvvoKFStWhEKhwPPnz7F//36hHG9vb4wfPx7btm2DmVn+wynjxo3D8OHDVbY3bNgQ69evx6BBg6BQKLBv3z4MGzZM7Wct25gxYzB69GhhPTspD5DVc3HNmjXC+po1a9CyZUuVMiQSCb755hskJibil19+QWZmJtasWYOdO3cK+yQlJWHz5s3C+ooVK1QCkEDWZ2f16tX4/vvvNfwFNEtOTsbu3buFdXUBSAAoW7Ys/vjjD3Tt2hVyuRznz59HVFSUylyY+bFq1SrI5XIAwOeff45ly5ap3e/TTz/Fxo0bMXjwYGRmZuLs2bN4+PChxnlmZ86cqRKABIDSpUtj9uzZ+O677wBA6BWd2zyhHwIGIYmIiIiIiPIrx7yApMb/Dz0taL/++qsocDZ79myVnl7a+OKLLzQGhVq0aCEEIXP2FszMzMSIESMQHh6O6OhoISFGbpR7WiYmJmrct2LFivj0009zfV25J1VUVJToNYVCgX///VdYnzJlSq4Zo83NzTFt2jQMGTIk17rOnDkjJB3JTXx8PH799Ve1r/Xs2VM0p+C3334rCkI2bdpUbfAGAFauXCnqCQkAGRkZwrLyUGxra2ts374d9erVE+3fuHFjNG7cGC1atMDMmTMBALdv38b+/fsxYMAAje8rL6VKlcKoUaNyfb1JkyZo06YNrl69CrlcjgsXLmDo0KFq95VIJBg4cGCuZV24cAHR0dEAsoboqwtAKhs8eDA2btyIhIQE3L59G2/evBHm17x+/brQG7Vu3boaP2uffvopmjRpgjt37misLzdXr14VhtTXrFlT4xymbm5u6NKlCyIjI1GxYkUkJiYaLAgZEREBb29vAICJiYnwWchN48aN0aVLF5w8eRJA1mc1tyCklZUVvv7661zLatSoEczNzSGTyfDu3TtIpVI4Ojrq90YKgQ83fEpERERERFRYGCkj8EelEAwjPHLkiKgHYu/evdG/f3+9ymrYsKHG15UzWSv3uAMAU1NT9OrVC+PHj8eiRYs0Jj1JT09HUFCQsK4cSFMnZyAtp5IlSwrLaWlpoteePHkiBKvKlSuHmjVraiyrWbNm7zUg8tlnn6Fdu3YAsno6Tp48GfPnz8eTJ0+QlpaG5ORkeHt7Y/To0di6dSscHR1hZWUlHK883L5z5844f/48tm/fjt27d2v8u/Xs2VMUKMqt56Yuvvjiizznl1TuPZsdfFWncuXKGv8dlJMn1apVK8+2mZmZoW7dusL63bt3heXr168Ly23bts2zLG0yZOdGua727dvnuf+qVauwe/duLFmyBG5ubnrXm1P2nI1AVuC1fPnyeR6jnIk9Z/IqZTVq1NA4DYSFhYXQexeASkKhDw17QhIREREREeXXggWARMI5IdVRnhOyAD179gw//fSTsF67dm2N8+zlRTmYp45yYDF7fkVNkpKSEBgYiNDQUISGhiI4OBj+/v7w8/MTZc3NmfE6JycnJ42vKycqyR5emi04OFhYdnd3z7PNQFYvTXXDugFg+fLlWL58udrXPDw8AGQFO3PLDq7OypUrMWbMGHh7e0OhUGD//v2iZCvZ7O3tsXnzZlFiFeV5Lc3NzeHq6gpXV1et6h00aBAOHToEAAgPD0dAQEC+Al3Z2bg1UU5ApGnuTU09cgHx3Ji7d+8WDXHWhnLd4eHhwnLVqlXzPDbnfKm6iIiIEJa1/TwaQ0hIiLCs7ftRnq/09evXyMzMVPtjQ17fV0Dzd/ZDwyAkERERERFRfpmbZ813WAjmPCRVUqkU48aNE3oROTo6YsWKFTolosnJ2to63+1KS0vDvn37cPToUfj5+eUaYDQ1NdUqkAlA1PNPV9m9IAFonXzFwcFB7/r0YWNjg23btmHbtm3YunUr4uPjRa9bWFigc+fOmDFjBhwdHZGUlAQg6++Sn38zDw8PUWKckJCQfAUhtQk+Kf8bKP/b5KQpczaAfCeHiYuLE5ZjYmK0rhfI3+dD17qMRfnvp+37Ud5PoVAgPj5ebW9VXb+vef0IUdgxCElEREREREQfLblcjilTpgg9uMzMzPDLL7/onIjG0EJDQzFixAjRUGsga34/FxcXuLm5oVatWsJ8lflJ8KEt5R6X2gY9CyIoYm5ujlGjRmHo0KG4f/8+QkJCkJGRgTJlyqBBgwawt7cHkJVBO7t92XMa6ksikcDW1lYIQmYHN/WlaQh+NuVeb5oC5nklyVEewt+5c2fRUGttaDOEOzf5CfQrfx4Lkj6f8Zw9FnObW7WoYRCSiIiIiIiIPlpr1qyBp6ensD558mS9EtEYkkwmw9ixY4UApKOjI4YMGYLmzZujWrVqKr2jrl69+l7apdzzLiEhQatjtN3PGCwsLNCsWTNRsh1lPj4+wnJuw2jfvXsHU1NTrbJdKwce89szT5sgpnIPPOU5RnWl/O9av379XBPcaKNUqVJCxnNteljm5/Ohz+fRGLKD2oC4V6gmyvuZmJjAxsbG0M36IDExDREREREREX2ULl68iM2bNwvrX331Fb799tsCbFGWixcvwt/fH0DWcMwDBw5g9OjRqFevntrhmcrDUo3Z81B5jr/sQFNest/H+6BQKBAXF4eXL1/mmSUcyPo7Z2vcuLHotd69e6NBgwaoW7curly5kmdZoaGhSFGa71V5vkZ95Mzcrc7z58+F5YoVK+pdl/K8l9r+e8XHx6vtDauclEW5fbkJCAjQqj51lOe61Obvdf36dcycORPr168XJdPJr0qVKgnL2rxnQJx9vUyZMnkmISoqGIQkIiIiIiKij05wcDBmzJghBO1q1aolSkxTkO7fvy8st2zZMs/EIsrZeY2ZmKJOnTrCvImvX7/OM+Dy5MkTREVFGa09OS1ZsgTNmjXDl19+iRMnTmjc982bN0IPUlNTU3To0EH0uq2trRBU1CYxjnJ9VapUQdmyZXVtvog2gc/z588Ly5999pnedX3yySfC8tWrV/PMsJyeno4vv/wSdevWRfv27XPNUn3u3Lk8685PL17lHsuasoNn+/fff3H06FGsW7dO1As2v0OhlQPYPj4+CAsL06ot2Qq653VhwiAkERERERERfVRSUlIwbtw4obeco6Mj1q9fD0tLywJuWRblue5iY2M17vvgwQOcOXNGWFee38/QLCws0KNHD2H9999/17j/mjVrjNYWdZSDOYcPH9bYK3Tp0qVIT08HAHzxxRcqc4B+8cUXwvLJkycRGBiYa1nBwcHYunWrsD548GCd257TgwcPNAbWbty4gVu3bgHIyo6cnyBkp06dhOByTEwMNm7cqHH/bdu2ITo6GhkZGYiNjRXNIdmyZUsh6UpgYCAOHDiQazm+vr6iQKo+7c7OaP7w4UPRtAo5RUdHC4E/iUQi+nvpmqk+pwoVKqBp06YAsn4EyC3je7b79++LgpDdu3fXuc6PFYOQRERERERE9FGZO3euMOzUwsICGzZsyHfPNUNSnp/w/v37oiBjNoVCgdOnT2PkyJGiwGNaWppR2zZq1CghYHX58mX89NNPQjBPuQ3z5s3Tqndabvz8/ODn56dVL8Rsn332mTA34tOnT7Fq1SqVoGxqaipmz56Ns2fPAsjKYj516lSVsr766ithiHN6ejpGjRqldujw48ePMWTIECQnJwMA6tatiz59+mjdZk2mTJki6uWa7ebNm5gwYYIQZJ04cWK+5qAsUaKEKLHRpk2bsH79epXEL3K5HPv378e6deuEbcOGDRPNzWhhYYEZM2YI64sWLcKxY8dU6nz27BlGjRqVr+Qyjo6OGDRokLA+ZcoUITCr7O3btxg3bpzQs7VLly6i4evK8zHGxsaKhtVra+LEiUIw8/z585g1a5baeT09PT0xZswYIdjZoUMHtG7dWuf6PlZMTENEREREREQfjYsXL+L06dPCev369fHgwQM8ePAACoVCFBQxNzfPc6hm3759DZ5U4ssvv8S6desQHR0NhUKBSZMmYd++fahduzasra0RGRkJT09PUUbvzMxMKBQKJCYmIiMjQ6tEKvpwcXHBggULhKHs//zzDy5fviwEACMjI3HhwgVERUXB1NQUJiYmwt/UxMS4/ZwsLCywYMECjB8/HgqFAlu2bMH58+fRqlUrlCxZEq9fv8b58+eFhCnm5ub47bffUKZMGZWyLC0tsXr1agwePBjJyckICQlB9+7d0a5dO9SsWRMZGRl49OgRbty4IQyBd3V1xdq1a7XKbJ0Xc3NzJCQk4LvvvkPLli3RoEEDAFlB6Rs3bgj7tW7d2iA9L0eNGoXHjx/jwoULUCgUWLduHQ4fPoy2bdvC2dkZ0dHRuHXrlmjuxaZNm2Ls2LEqZfXs2ROenp44deoUZDIZZsyYgT179qBFixawsLDAkydPcPXqVWRmZqJy5cp49eqV3u2eMGECHj58iDt37kAqlWLIkCFo2rQpGjZsCCsrKwQGBuLcuXNCYNHV1RVz584VlWFjYwN7e3tIpVKkp6djxIgRaNmyJTIzMzFixAit2tGoUSNMnz4dy5YtAwAcOXIEly9fRvv27VGhQgWkpqbizp07oqkWKleuLOxPWRiEJCIiIiIioo9GfHy8aN3b2xve3t56l9epUyeDByFtbGywceNGjB49Gm/fvgUA3L59G7dv31bZ19XVFcuWLcPs2bMRHBwMuVyOZ8+eiYbIGlqPHj0gk8mwZMkSpKSkICIiArt37xbtY2VlheXLl2PZsmWIiIgAkBUkNLbPP/8cy5Ytw08//YTU1FQEBQUJWcaVlS1bFr/++iuaNGmSa1m1a9fG7t27MXnyZLx69QoZGRk4f/682iHErVq1wtKlS1WGdetr8ODBePHiBa5duwYvLy94eXmp7DNo0CDMmjXLIMFdiUSCtWvXYvXq1dixYwdkMhlev36Nf/75R+3+PXr0wKJFi3INdq9cuRLOzs7CMHUfHx/RPIxA1g8A06dPR//+/fVut7m5ObZu3YoFCxbg6NGjAHL/Tjdo0AC///47HB0dVV779ttvsWnTJgBZgd7sYOHXX3+tNhmUOt999x2cnJywaNEixMfHIy4uDocPH1a7b48ePbBgwQKhVzFlYRCSiIiIiIiI6D2rU6cOTp48iX/++QdXrlxBUFAQUlJSUKxYMZQqVQoeHh5o27YtunbtCgsLC7Rp0wa7du0CABw7dsyoQUggKzjTokUL7N27F1evXsXr16+Rnp6OMmXKoE2bNhg+fDhcXFxEyX60DebkV8+ePdG0aVPs2bMHXl5eCAkJQXp6Ouzt7VG9enV06tQJ3bt3F+YT1KRmzZo4efIkzpw5g3PnzuHJkyeIjY2FmZkZSpcujYYNG6JLly4GH1JbvHhxbNmyBSdOnMChQ4fg5+eH5ORkuLi4oGnTpujXrx/q1Klj0DpNTU0xbdo09OvXDwcPHsStW7cQEhKChIQEWFpaoly5cmjYsCF69+6d5+dLIpFg+vTp+OKLL7B3717cvn0bkZGRsLKyQpUqVdCtWzf07dtX41yb2rK0tMTy5csxcOBAHDlyBLdv38abN2/w7t07ODg4oE6dOujevTs6duyYa8B24sSJKFmyJA4dOoTQ0FDIZDKULFkSkZGROk3V0LVrV7Rt2xYHDx7EtWvX8OLFC0ilUpiZmaF8+fJo3LgxevXqZfTv54dKotA0kysVWQ8ePBC6nJuYmAhdwz9U2V3ps9WrV89owxfo42My9eR7rS9hyRewseTn09B4HiAingdIW5mZmcJ8ggDg7u5ukOGXVPAUCoVoPjgrK6t8Z84t6urUqSPMGXnr1i0haQmpWrduHdavXw8AGDduHMaPH1/ALSqaiuJ5wBDXNUPEiXjXRUSkwX/Powq6CURERERE783WrVtRsmRJuLq6omHDhhr3DQwMFAKQDg4ODEASkUYMQhIR5eLR63h0+Ut1Xh4iIiIioo/ViRMn8Pz5cwDA4cOHUbt27Vz3/fvvv4Xlpk2bGrtpRPSBM27qKiKiD9j0U88KuglERERERO9VixYthOXFixcjLi5OZZ/MzEz89ddf2L9/P4CsoZmGyOBMRB839oQkIsrFef+3Bd0EIiIiIqL3atiwYThy5AikUikePHiAtm3bon379nB1dYW5uTkiIyPh5eWF8PBw4ZiRI0eicePGBdhqIvoQMAhJRERERERERACAUqVKYceOHZgwYQKCgoKQlpaGM2fOqN3XwsICM2fOxIABA95zK4noQ8QgJBEREREREREJqlevjpMnT+LMmTM4f/48fH19ERMTA4VCAScnJ5QrVw7t27dH165dUapUqYJuLhF9IBiEJCIiIiIiIiIRCwsLfPXVV/jqq68KuikfjfHjx2P8+PEF3QyiAsPENERERERERERERGRU7AlJRGRgrglRKJcYgzBbJ4SW4PAUIiIiIiIiIgYhiYjUkKbKdD6mddgTrLqyDY0jXwrb7jhXxaR2I3CjXE1DNo+IiIiIiIjog8Lh2EREOZzxjYTjvP90OmbY43O4vH+OKAAJAE0iX+LK/tkY6aNbeUREREREREQfEwYhiYiUBMemoOtWb52O6fbyNv48twEmUKh93Uwhx8bzG9Ht5W2tyvv7TqhO9RMREREREREVdgxCEhEpWX75Zd47KXFKiceWc+tzDUBmM4ECu/5djbKJMXmWOf3UM8jlmssjIiIiIiIi+pAwCElEpGTzzWCd9v/12naUTo0XbXtnaoZ/KzVEmqm5aHuJ9FSsufxnnmWmZcgRm5quUzuIiIjIcExMxI9JmZmZBdQSIiKi/Mt5Hct5nXtfGIQkItKTR0wYBj27orJ90BeT8WXvhRjw5RSV13q/uIlWYU/fQ+uIiIhIXxKJBKampsJ6WlpaAbaGiIgof1JSUoRlMzMzSCSSAmkHg5BERHqac3s/TBVy0ba9Hq1xyKMVAOBotRbYWvtzlePm39yXZ9kKjsYmIiIqUNbW1sJycnJyAbaEiIgofxISEoRlW1vbAmsHg5BERHpwTo5DXz9P0TaZiSlmtx4s2jajzRDEW1iJtnUIeYSmEX4ay6+14gqevkk0TGOJiIhIZzY2NsJyfHw8UlNTC7A1RERE+omNjRX9mFaQQUizAquZiOgDNvzxeZjLxfNq7KzZHsF2zqJtscVLYG3Dbph3a79o+w8PTsO7jEeu5b9NTses0744Mbyp4RpNREREWrO2toaJiQnkcjkUCgVCQ0Nhb2+PEiVKFOhQNsofhUIhmhstMzOT/5ZERUxROA9kZmYiJSUFCQkJogCkubk5rKysNBxpXAxCEhHpSqHA8MfnVDava9BV7e6/N+yOKXePwirjf8lm+vh7YmrbYYi2ss+1mlO+kfluKhEREenHzMwM5cuXR0hICICsB7qYmBjExMQUcMsov+Ty/02nU1DJGYioYBXF84C5uTlcXV0LNOBaNP7SREQG1CzCD5UTokTbbpSpDp/SldXuH1fcFnurfyraZpmZgYFqktoQERFR4WFtbY0yZcp8dD1kijKFQoGMjAzhPwUn4iYqcorieSA7AGlhYVGg7WAQkohIR98+v66y7e/an2k85o/6XVS2DfC9YqgmERERkZHY29ujatWqKF26NCwtLQu6OWQAysEHIiqaisJ5wMzMDA4ODnB1dYWbm1uBByABDscmItKJRCHH1/5eom0yE1McrtZC43EPnN3g41QRdd8GC9saRgWi1ttgPHWqaJS2EhERkWGYmZmhZMmSKFmyJBQKhWgYH31YMjIy8OTJE2Hdzc0NZmZ8LCYqSorCecDExKRQ9uL/uP7KRERG1igyAGWTY0XbzlVsgLjieWcY212zHX699rdoW2//GxqDkK9iUlC5ZMFNHExERERiEokEpqamBd0M0lPOYZempqb89yQqYngeKDgcjk1EpIOuAXdUth2p1lyrY/dWb6OyrVuAt8Zj1noGatcwIiIiIiIiokKMQUgiIh18GagahDxTpbFWx4bbOuGOc1XRtkZRASiX+DbXY9Zcf6VbA4mIiIiIiIgKIQYhiYi0VCpFikZRAaJt3i7VEGntoHUZp9yaqmzLqzckERERERER0YeOQUgiIi19GvpEZdt/lRrpVMYJBiGJiIiIiIioCGIQkohIS5+GqQYhr1SorVMZj0pVRoitk2hb+1Af2KSn5KttRERERERERIUZg5BERFpqE/ZUtP7O1Ay3ynjoVohEgpM5ekNaZmagU9CD/DaPiIiIiIiIqNBiEJKISAslUxJQ522waNttF3ekmVvqXNYJt09UtnV+dV/vthEREREREREVdgxCEhEpkUjUb28TrjoU+5qOQ7GzXS1fG8lm4uBl29DHepVFRERERERE9CFgEJKISAufhj5V2Xa1vH5ByHQzc3iVqyHa5hb/BhUSovUqj4iIiIiIiKiwYxCSiEgLbXIkpZGZmOJm2ep6l3elQh2Vbe1CffQuj4iIiIiIiKgwYxCSiEiJutHY9mlJqBsdJNp2x7kaUsyL6V3PZTVBSA7JJiIiIiIioo8Vg5BERHlo+sYfJlCItl2rUCtfZd51qYYEi+Kibe1CHgMKhdr9X8WkIFSamq86iYiIiIiIiAoKg5BERHlo/OalyrabZfQfig0AmSamuF5OHMismBiNyvGRKvuOPPgIbssuouLiC5h52jdf9RIREREREREVBAYhiYiUSNSkx24UqRqEvOtSNd91aTsv5NbbIcLyr5dfIjg2Jd91ExEREREREb1PDEISEf0/uVyBTLnqcOicQcjX1o6IsCmZ7/ouu6oGIT8NfaJmT7FfLqsGRYmIiIiIiIgKMwYhiYj+3ww1Q51LJ8fBNfGtaNtd5/z3ggSAh6UqQ2ppLdrWPOJ5nselZ6qfN5KIiIiIiIiosGIQkojo/626GqCyrVGk6rZ7BhiKDQByE1PcdnEXbasqfYNSKVKNxynAICQRERERERF9WBiEJCLSoLGa+SDvObsZrPxbZT1UtjV77Wew8omIiIiIiIgKAwYhiYg0aKg2CGmYnpAAcLOsapZtbYZkExEREREREX1IGIQkItIgZ0/IUBsnRFo7GKz8nMOxgbx7Qio4GpuIiIiIiIg+MAxCEhHlokxSDMolxYq23TXQfJDZ4ovZ4GnJCqJtTd68gKk806D1EBERERERERUkBiGJqMjKlCtwIygW/z2PQkp6hsrrDSMDVbYZcih2tltlxEOyrTPeoW50kMHrISIiIiIiIiooZgXdACKigqBQKDBgz30cePQaAFC3TAmVfWq/DVbZ9qB0FYO35WZZDwx/cl60rfnr53iQWwIcDscmIiIiIiKiDwx7QhJRkfQsMkkIQAKAT0SCyj61YlSDkI+dKhq8LTl7QgJAMyanISIiIiIioo8Ig5BEVCSdehaZ5z51cvSEjLewQpitk8Hb4luyPKSW1qJtTd6oZuXOpmBXSCIiIiIiIvrAMAhJREVSZh4pps0yM1A9Nky07YmTKyCRGLwtCokJ7uaYa9IjLhy271IMXhcRERERERFRQWAQkohIjarSCFhmipPVPDXCUOxs99XM/9gwKsBo9RERERERERG9TwxCEhGpkXMoNmCY+SD//ra+2u05e0ICQKNI9UOyd9wNQ6osM99tISIiIiIiInpfGIQkIlJDXWbsJ/kMQo5uXhF11GThBoB7aoKQDSNz7wnZd+e9fLWFiIiIiIiI6H1iEJKISI1aaoKQT0u6qmzr7FFKq/LuTGyNP3rXRU1nG7Wvv7JzRmwx8WuNNAQhT/lG4nV8mlZ1ExERERERERU0BiGJqEjKK71M7ZgQ0fobK3u8tbJT2e/A4MYayzE1keDod03QqLw9AMDSzBTDP1ENZkIiwf3S4nkh80pOEyJN1Vg3ERERERERUWHBICQRFUmacmMXl71D1bgI0TZ9h2J7/tASPWq7iLZt+aYe3i7qhBPDmoq2q0tO0yAqMNeyFXlk+CYiIiIiIiIqLBiEJCLKoUZsKExyhCmfOqnpvaiFTyo6qN3uaGWBrjWdRdvUJadpHPlCr3qJiIiIiIiIChMGIYmoSNI0HFtdUhpDZMZWR3mOSF2T0xARERERERF9KBiEJKIiSdNA5uqxYSrbnqlJSjPiE1eNwcyvcgzDVsfW0kxY1jU5DQdjExERERER0YeCQUgiohzcY8NVtj13LK+ybVKbKhrLmfKp6hyPOdUobfu/FTXJaarFvYaVjFmwiYiIiIiI6MPGICQRFUmaejB6xImDkFHF7SDN0UMRAGo426psU9aysmOe7ejboKxo3adUJdG6CRSo9VacqZuIiIiIiIjoQ8MgJBGREhN5JqpKxZmx/RzLqezXPJeEM7oqW6KYaD1nEBIA6kW/MkhdRERERERERAWFQUgiIiWVEqJgmZkh2ubvIA5ClrcrhvW96gAAJJq6VGrBNEcBj0pVVtmnbnSQ2mMVnBSSiIiIiIiIPhBmee9CRFR0eKiZDzJnT8jguR0gyW/08f+Z5PgpyNexAjIkJjBTyIVtdd4GqT02PD4NL98mw62klcHaQ0RERERERGQM7AlJRKQk53yQAOCXoyekIQN+ZjmikOlm5ipJcOpFB6nt9vjt7ntwX34JfXbegyxTrvI6ERERERERUWHBICQRkRJtekIaUmVHK5VtOYdk279LRoXEt7mWcfhxBC6/zP11IiIiIiIiooLGICQRkRL3HD0hZSamCLRzyXX//PaKNDVRPf6xHslphh94lK92EBERERERERkTg5BEREpy9oQMtHNBhqlxp88tU8JStP5ITRAyt+Q02VLSMw3YIiIiIiIiIiLDYhCSiIokdR0Ybd+loGxyrGhbzvkg3wcftUFIzT0hmSibiIiIiIiICjMGIYmoSFKT50VlKDYA+OcxH6QhUtTkbEuEtSOii5cQbcurJyQRERERERFRYcYgJBEVSU/fJKps0yYz9nshkaj0hqwmjUBx2bv33xYiIiIiIiIiA2AQkoiKHIVCgX8eqAYc3WNfq2zTNzP2980q6nVcNp8cGbJNFXLUignJdX+Fuq6dRERERERERIUEg5BEVOS8TkhTu91NGqGy7YVDWb3qmNbWTa/jsvk4VVLZVi9K87yQRERERERERIUVg5BEVOSkZ6jvNegWLw5CJpkXQ6SVvcay1CW4AQA3J2t9miZQm5zmbVC+yiQiIiIiIiIqKAxCEhH9PzfpG9F6gL1L7lFGA1IXEn1WsgIyJOJTtKYM2RyMTURERERERIUZg5BERABs36WgVGqCaFuAnUsBtQZ4Z2ahMh9l3egg9Wm9iYiIiIiIiAo5BiGJiKB+PshA+zIF0JL/eZQjOY3Du2SUS4pRu29CWsb7aBIRERERERGRXswKugEF6fbt2zh9+jQePHiAqKgoJCUlwcbGBmXKlEHjxo3Rq1cv1KxZ02D1xcbGonnz5jof9+uvv6JHjx4GawcRqXKLf6OyLcA+756QEhhvuPZTJ1eVbbViQhBu66R2/3cZmbA0MzVae4iIiIiIiIj0VSSDkGFhYZgxYwbu3r2r8ppUKoVUKoWvry927dqFL7/8EosWLYKNjU2+6/X19c13GURkHDnngwQKdjg2ADwtqSYI+TYE5yo1VLv/xRdv0aWGs7GbRURERERERKSzIheEDAoKQr9+/RAbGytsMzc3h7u7O2xtbRETE4OXL19C8f/zrp0+fRoBAQHYs2dPvgORykFIZ2dnVKtWTavjSpcuna96iShv6oZjBxTwcOxn6oKQMSG57v8gPJ5BSCIiIiIiIiqUilQQMjMzE+PHjxcCkKamphgzZgyGDh0qCjBGRkZi9erVOHbsGADg+fPnmDNnDtasWZOv+pWDkH369MG4cePyVR4RGU6VHMOxZSamCClRKs/jTE1Uh2NXdrQySJsC7ZyRamaB4hnpwrYaMaEGKZuIiIiIiIjofSpSiWmOHDkCf39/YX358uUYP368Sg9HZ2dn/PLLLxg6dKiw7b///sPDhw/zVf/z58+F5erVq+erLCIyrJzDsYNLlEKmSd7zK5qaSNDZQxysHNlMtQejPuQmpnjuIM6QXTMmlBmyiYiIiIiI6INTpIKQx48fF5ZbtWqF7t27a9x/8uTJoqHQp0+f1rvud+/e4dWrV8K6h4eH3mURUf4oIA7iWWTIUCHxrWhbgJ32Q7F39W+I75pUQJMK9pj3uTumta2qW3s0BBVzJqexS09B+RxtzbbqaiDiU2U61U1ERERERET0PhSZIGR6ejru378vrHft2jXPYywsLNCqVSth/fHjx3rX7+fnh8zMTACAjY0Nypcvr3dZRGRYlRIiYaqQi7YFapEZO1tJawts61sftye0xk+dPNQO0daXb8kKKttymxdSmipDkzXXIcuUq32diIiIiIiIqKAUmSBkeHg4LC0thXU3NzetjrO3txeW4+Li9K5feSi2h4cHJBLDBSmIKH/UZsbWIQhpTOoyZNfUMC/ky7fJOPjotTGbRERERERERKSzIpOYpnLlynjw4AESExMRGRmpdU/E8PBwYdnOzk7v+pWT0nA+SKKClXP0s9ogpA7DsfOrmFnuc0+qC0JqypANAHvuh6N/Q/a2JiIiIiIiosKjyAQhs9na2sLW1larfZOSkuDl5SWsa9t7Uh3lIKSHhwdCQkJw+PBheHl5ISgoCGlpaShZsiRq1qyJjh07olu3bjAzK3L/PEQFwi0+QmXb++wJOa2dG8YffaL2tVdqMmTXzCMISURERERERFTYFJnh2PrYunUrkpKShPV27drpVY5CoYCfn5+wfurUKXTu3BmbNm3C48ePkZiYCJlMhjdv3uDSpUuYOXMmvvzyS/j4+OT7PRCRqpxpYCrFR6rso8uckPnVu04ZuNoXV/uaPhmyNSW6ISIiIiIiIioI7GqXCx8fH2zZskVYr1SpEtq3b69XWcHBwUhJSRHWvb29AQDm5uaoXLkyHBwcEBcXh5cvX0Iuz0ooERQUhEGDBmHdunVo06ZNPt6JYWRkZBR0E/IlOylQbutUtOT8PFdKiBKtR1rZIcW8mNpj+9YrY/Dvg5OVGbx+aI4KSy6pff2pkysaRL8S1kukp6JC4luEliildv+opHcf/HfWGHgeICKeB4iI5wEi4nmg4DAIqUZYWBjGjh0LmUwmbJs5c6bew6OVh2IDWcHHsWPHol+/fnBwcBC2x8TE4M8//8SOHTugUCiQlpaGSZMm4fDhw6hUqZJedRuCXC7Ho0ePCqx+Y3jyRP3QVyoaQhOVAnQKBSrFi4OQr+yc1R5nKgHaOKYb7fvQ080KRwNSVLY/U5ucJiTXIGQ5C9lH9501Bp4HiIjnASLieYCIeB54fzgcO4eIiAgMGTIE0dHRwrbvvvtO76HYAPDq1f96MFlaWmLnzp0YO3asKAAJACVLlsSsWbOwbNkyYVtSUhJWrlypd91EpEp5sLJDWhLs0sWBv6AS4iDkjMZ2GFjdGps/K4mmLpZGa1f3KlZqtz8rWUFlm6bkNCYSicHaRERERERERGQI7AmpJCAgAMOHD0dExP+SVLRq1QpTp07NV7ljx47F4MGDERYWBiDv7Ng9e/aEp6cnTp06BQA4f/48Xr9+jbJly+arHUSkKudQbAAILlFatP51Nev30pbaThZqt6vNkP2WyWmIiIiIiIjow8Eg5P+7f/8+xo4di7i4OGFbs2bNsH79epibm+e7fBsbmzyDj8oGDRokBCEBwMvLC998802+26EPExMT1KlTp0DqNpTMzExRF+vatWvD1NS0AFtEBal4dDJwKiv4WClBNSlNkJ04CFmvXr330i4AwN7XKpvUZ8gOzbUIR0dH1Kv3YX9njYHnASLieYCIeB4gIp4H9PP48WMhj4m+GIQEcPLkScyePRvp6f97wP/000+xdu1aFCumPjmFsdWuXRvm5ubCvJTBwcEF0o5s+s6HWViZmpp+dO+JtGdm9r8LTM75IAEgKEdPyIL+rMhNTOHrWB4NowKFbUKGbDVDryUmJgXe5g8BzwNExPMAEfE8QEQ8D7w/RX5OyHXr1mHq1KmiAGT37t3xxx9/FFgAEsgKetjb2wvr8fHxBdYWoo+ZuuHYOeeELAxyzgtpK8vKkE1ERERERET0ISiyoV6ZTIY5c+bg+PHjou2jRo3CpEmTICkEiR2UA6PW1u9nTjqij5lCoUCqLBMKpcw0FdX0hAzOJet0QdI1QzYRERERERFRYVIkg5Dp6ekYP348rly5ImwzMzPDwoULDT7v4v+xd9fRUZxdHIB/u3EngiTBJTjBnSLFXUtL8RbaUoXSlkIp7Ye0QIFCKe5aoLgluENIIAlEiLu7y9r3R5qQ2ZlNdrO+uc85PYe8MzvzFnY3M3fue29eXh727t2LjIwMZGRkYObMmejfv3+1r8vOzkZubm7Fz87OziqdFyG1jU9cNqYffYHorEK42r7Ncm4mVRMyycoexSbq64BdnWYOlojKLGSNBzuwO2S3yYyHZ7NumpgWIYQQQgghhBCilFoXhBQKhfjqq68YAUgrKyts27ZNruCgoszNzXHgwIGK2o7Ozs5ynefx48eQVErX6t69u8rnRkhtMvcf34rgXnxOcdmgRMKqCSldD1LTmjvKCEI6NmSNtclM0MSUCCGEEEIIIYQQpdW6mpAbN27E3bt3K352cHDA0aNH1RKABAATExN06dKl4udr164hPz+/ytcIhULs27ev4ueWLVuiXbt2apkfIbVBsUCEoBT2586hOA82giLGmLaDkLJE2jWAgM/s2NYmk7tDtg5UkyCEEEIIIYQQQhhqVRDy/v37OHz4cMXPdnZ2OHLkCNq3b6/W806dOrXiz9nZ2Vi3bl2V+//+++8ICgqq+PmTTz7RiRqVhOgrceUikJVwNaWJsdNuEFLWJ11oZIywOi6MsTaZ8Zz77veKVfGsCCGEEEIIIYQQ5dSaIKRIJMLatWsrljjzeDxs2rQJrVq1Uuq4s2bNQuvWrSv+4zJu3Dh07ty54uezZ8/im2++QVJSEmO/2NhYfPHFFzh69GjF2JAhQzB+/Hil5kgI4Sa9FBtgd8Z+p7mDpqZTrTcOroyf6xfmwL4oj3PfwlKhJqZECCGEEEIIIYTIpdbUhPTw8EBMTEzFzxYWFjh06BAOHTok9zGcnJywfv16hc/N5/Oxbds2zJgxA/HxZZlL169fh6enJ1q1agV7e3ukpaUhIiKC8bqePXti8+bNCp+PEMIkIxESTaWa0gBAtFQm5Me9mqhjSjJVlfQc4sBVFzIeT13bssZfxOdgQHNHVU6NEEIIIYQQQgipsVoVhKyssLAQjx49UugYrq6u1e8kQ/369XHmzBksX768oialWCxGSEgIa18jIyPMnDkTixcvhoWFRY3PSQipWrMcjiCkVE3Imd3YgT9tCXbk7pDNFYQUimVEXgkhhBBCCCGEEC2oNUHIyMhIbU8BDg4O2LVrF/z9/XHhwgW8ePECSUlJKCoqQp06deDs7IwBAwZg7NixaN68ubanS4jBkBWOa8JVE1LLjWl4MqtCAm9kZEISQgghhBBCCCG6rtYEIa9evaqW41au3ygvd3d3uLu7q2E2hBBFNMlNY/ycZGWPEmNTLc2meiH27GxsCkISQgghhBBCCNEHtaYxDSGESGuUl874OdamrpZm8lZVNSHzzCwRb82s80hBSEIIIYQQQggh+oCCkIQQg8fVmMampBB1SgoYY7G2ThqaUc1JL8lunpMCU6FAS7MhhBBCCCGEEELkQ0FIQkitJJ0FCQDxupAJWc126SCkkUSMVtmJ6psQIYQQQgghhBCiAhSEJITUSo3z0lhjsTbaz4Qc2KLqOcjbnIYr+5MQQgghhBBCCNEWCkISQgyehKM/diOOIGScDmRCvt/ZBebGsr+aqUM2IYQQQgghhBB9REFIQkit1DiXvRw71lb7QcgmDpbwWNAbEzs0wOSODVjbgx05gpAZFIQkhBBCCCGEEKLbjLU9AUII0YaGnJmQ2l+ODQDvtHDEOy3KumDzl15mbEuyckCuqQVsS4sqxigTkhBCCCGEEEKIrqNMSEKIweOqj9hYqjFNiZExUi3tNDQjJfB4rCXZbTLjwZOItTQhQgghhBBCCCGkehSEJITUStI1IeNsnCDh6cdXYrBUENJKWIKGeRlamg0hhBBCCCGEEFI9/bjjJoQQFeJJxGgklQmpC01p5BUiR3MaCSSQUItsQgghhBBCCCE6goKQhBCDJx2Kq1eYAzORkDEWqyP1IKV1cbVljQU7NGKNSQchh+1+hmZrb+OMf6La5kaIopJyi3EpMBkBSbnangohhBBCCCFEwygISQipdaSzIAEgniMTcmonZ01Mp0oLejVhjUnXhASAtplxrLHY7CLMOP4SmYWlapkbIYrwT8yB+6b7mHjQG123PMBhb/Z7lhBCCCGEEGK4KAhJCKl1GueyO2PH2r7NhGzpZIX3O7tg99ROmpwWp0/6NMGvI1ozxiLqNICAb8QYa52ZwPl6kViCK0EpapsfIfLadC8C6QVlAXGhWIIfrgZpeUaEEEIIIYQQTaIgJCHE4EnXRpRuSgMwa0KGLhuCEzO7wd7SVO1zqw6Px8PKYW6MMaGRMcLrMLM0pZdjV5aWT5mQRPuOvWQGylPpfUkIIYQQQkitQkFIQojBexKdxfi5Mcdy7Fg9akwDsJdkOxdkwa44n3Pf3BIh5zghhBBCCCGEEKIpFIQkhBi0ry4EYNyB54yxhpyZkLrZmEaWEAdX1pisbMg/H0SqezqEEEIIIYQQQkiVKAhJCDFYKXkl2P4oijXeOJeZCZltZoU8M0tNTUsluDpkt5URhMyjTEhCCCGEEEIIIVpGQUhCiME6/zqJc1y6O7a+ZUEC3B2yZTWnIYQQQgghhBBCtI2CkISQWsVEJECDAmaNSH2oB9nJ2ZbxM9dy7NZVNKchhBBCCCGEEEK0iYKQhBCDxeOxx1zzM8AHs1t2nK3uZ0J+0qcJ4+dcMyskWjkwxqrqkE2INhSUCHHaLxGHveO0PRVCCCGEEEKIlhlrewKEEKIuPI4opHQ9SEA/lmN/1rcpnKxMcTc8HbuexgAoy4Z0Kcis2KdFTjKMRUIIjeirnWifQCTGiL3PWN3pCSGEEEIIIbUTZUISQgwWRyIkGnF0xtaH5dgAMM3dBTumdKr4WXpJtolYhOY5yZqeFiGcnsVkqTwAKRJLqt+JEEIIIYQQopMoCEkIMVhcy7EbcwQh4/QkCCmNqzkNLckmuuJ8gOoC4pEZBei19SEsf7yK4bufIr2gRGXHJoQQQgghhGgGBSEJIQaLx5ELybUcO1YPakJy4Q5CcnfIHrrrKTbeDYeYMsmIhoglir3XfOKyMWD7I7T87Tb+dyMUkkqvX3jmFbzjsiEQSXArLB0/XA1W9XQJIYQQQgghakZBSEJIrdIwjxmEFIOHBGtHLc1GOSH28nfIvhNeFrjZ/CBS3dMiBACgSAxSJJZgzD4vPI7OQmRGIX65EYJ//BIrtt8JZ35uDz6nRjeEEEIIIYToGwpCEkIMljzLsZOt7CEwMtHQjFQr1rYuioxNGWOtZWRCltvnFaPOKRFSIy/jc5BWUMoY2/UkWjuTIYQQQgghhKgFBSEJIQaLuzENM6NKujN2ZxdbNc5ItSQ8Pisbsk1WfJUpaKFpBeqeFiEAAEUWY+cUC1hjD6MyOfYkhBBCCCGE6CsKQhJCDBZPKhXSqrQIdUqYQTjpIOTPw93UPi9Vkg5COhTno25RjpZmQwghhBBCCCGEcKMgJCHEYElnQrrmZ7D2SaxUD3JR36aY2MFZzbNSrRCO5jTVLckmRBMkCjamIYQQQgghhBg2CkISQgyWdE1IriBkvM3bIGQTewt1T0nl3jiwm9O0kdGchhBNUncMMr2gRL0nIIQQQgghhKgUBSEJIbVGwzx2ELJyZ2yxHiZuveHIhKQgJNEFArFYrcevt+oGphzypoxLQgghhBBC9AQFIQkhBkvRTEiJQq00dEMoRyakWxYtxybat/dZrNrPcT4gGfufq/88hBBCCCGEEOVREJIQYrB4UlUhuYKQlTMh9TGhqtDEHLFSzXUoE5Jo2sPIDAzf/RT9tz/Cab9EFJYK5XqdKrIY93tREJIQQgghhBB9YKztCRBCiLqwMiE5lmMnWjlU/FkPY5AAypZkN85Lr/i5WU4qzISlKDE21eKsSG2RWViKUXu9UCgQAQCexrzAlfk9NXZ+r9hsjZ2LEEIIIYQQUnOUCUkIMVjVdcdON7dBsYlZxc/6Wlsu1J65JNtIIkbL7CQtzYbUNhcDkisCkEBZRvHRF/Jl4+rpR44QQgghhBBSAxSEJIQYLJ5UKmRDqSBkQqV6kABgZ26i9jmpA1dzmtaZVBeSaMab1HzW2K2wdI49ZaNYJCGEEEIIIYaPgpCEEINVOQRpLBKifkE2Y3u8NbOW4sQODdQ/KTWgDtlE1xjxpfOQuQlV1JI+MadYJcchhBBCCCGEqA8FIQkhtUKDgizwpfKtEq3L6kGaGfOxYWw7NKxjoY2pKY07E5KCkER75IxBYtG511Vuzywsles4Tdbewub7EfKdlBBCCCGEEKIVFIQkhBisyquxpZdiA0D8f12lM1ePxNJBLTQ1LZVLtHZAngkzgNo6i5ZjE+2R7kwvy4HnsVXWYv3w+Eu5jiMSS/DT9TfIL5GvKzchhBBCCCFE8ygISQgxWJUDIdJNaQAg4b9MSAsTI43NSS14PIQ4MJvTtMmMp64fRC9UtSLbMyQN2UUCuY5TLBTjtH+iimZFCCGEEEIIUTUKQhJCDBYjEzKP3SgjwdqRNaav3kgFIW1Li+BckKml2RAiP4lEgoj0Apnb8xTIbhSIxKqYEiGEEEIIIUQNKAhJCDFYlReEuuazA3Lly7ENQai9K2uMOmQTfSAUS6qsDTn+wHO5j0XJv4QQQgghhOguCkISQgxW5UxIF87l2IaUCUkdsol+8orNqnK7f2Ku3McKTs3HweexeF7NMQkhhBBCCCGaZ6ztCRBCiCZIL8cuMDZDtpmVlmajetxBSMqEJLovNrtIZcf661EUgLLu3Pvf64w5PRqp7NiEEEIIIYQQ5VAmJCHEYPF4lRvTMJdjJ9g4MlMl9YizrRlrLMzeBWKpjsStKROSqJlEIkE4Rz3HxNxiuY8RlJKvyikBKGt2s/hSoMqPSwghhBBCCKk5CkISQgxWRUhOImF1x47X46XYkzo4s8ZKjE0RbVePMdY6izIhifrkFgvwzt+PcT4gWanjrL8TrqIZMcnbVZsQQgghhBCiGRSEJIQYrPJER8eiPJiLmAEJfa4HacTnzuCUXpLdNDcVFoISTUyJ1EJHfOLxOJpqLxJCCCGEEELkQ0FIQojB4v8XhZTOggSARD0OQsoSwlEX0o0jG5KadhBV+F1NGYyEEEIIIYQQw0RBSEKIwWpgU1Y7sWF+OmtbvI3+BiFllbIMsXdljbXmaE7zw5VgVU+J1EKK1H3UlkdR7AcQhBBCCCGEEO2gICQhxGBVlQlZvhz778kdNTondeLukM1uTnM/kgIzpHYYtOMJXsZna3sahBBCCCGEEFAQkhBiwO5HlAXbGuaxg27xNk4AgA+6sLMHdZ2snt5vHLgyIalDNqm9xBJg2VXK/CWEEEIIIUQXUBCSEGKwvrsSBEBWJqQDAKCOhYlG56ROqZZ1kGVmxRjjyoQkRFkSiUTbU5DbrTB2OQZCCCGEEEKI5hlrewKEEKIOGQWlFX92kQpCCnl8pFjW0fCMNIDHQ4iDK3onhVYMuWUlgicRQ8KjZ05EOQKRGId94uCbkIuTvuxao4QQQgghhBBSFQpCEkIM0kHvuIo/Sy/HTrJygJhvpOkpqQxPVmcalNWFrByEtBKWoGFeBuJs62piasSAjd3vhZuhlFVICCGEEEIIqRlKjSGEGCShWFzxZ+nl2PrcGbs6IfbyNachRBH+iTkUgCSEEEIIIYQohYKQhBCDxPuvfYuloBj2JQWMbeWdsfWV7DxIIISzOQ0tnSXK8QxJ0/YUCCGEEEIIIXqOgpCEEIMUll4WeHTJz2RtS9TzIOSA5g4yt71xoExIQgghhBBCCCG6h4KQhBCD4x2bjQPPYwEAzgVcQUjZQTx9MNytLmzMuEv6RtRpAKFUE5rWWRSEJMqpKvuWEEIIIYQQQuRBQUhCiMH5/U5YxZ+5MiGTrOw1OR2VszQ1xuulA/HdoBasbQIjE0TUcWaMUSYkUVZVzZAIIYQQQgghRB4UhCSEGJzzAckVf3YuyGJt1/cgJAA0trfE+rHtOLeF2DPrQrrmZ8K6tFAT0yKEEEIIIYQQQjhREJIQYtCcuTIh9Xw5dnWoOQ1RpZfx2djyIELb0yCEEEIIIYToOQpCEkIMGmdNSCvDDkJScxqiKhcDktFz60Mk5ZZoeypKWXY1GBKJRNvTIIQQQgghpFbj7mxACCEGQno5drGRCbLMrbU0G83gzITMokxIorjtj6MgNoDY3Ya74bAzN8aP77bS9lQIUZmCEiHC0gtQx8IEIrEETlamsLMw0fa0CCGEEEJkoiAkIcSgOeczg5DJVvbAf002jn/YVRtTUjuuTMjWlAlJauB2WLq2p6AyK66/oSAkMRgR6QUYvc8LYekFFWOWJka4vqAXBjR31OLMCCGEEEJko+XYhBCDJr0cu3JTmg+6sDMGDUGmhS3SLGwZY22kakIGJOXi78dRuGNAQSaiGgUlQtwNT0dCTpG2p0IIkWHX0xhGABIACgUi/OIZoqUZEUIIIYRUjzIhCSEGy1xQAvsS5k1aooE3pSn3xqEh6iYEVfzcKisRfLEIYr4RAKDH1ocoEYoBAH9OaI+vBjTXyjyJbglJzcegnU+QkqffNSBlWeUZAjNjPj7r0wT2lqbang4hNbbpPnezqLsRGRqeCSGEEEKI/CgTkhBisKTrQQL/Lcc2IJ/1bco5HmrPzPI0FwnQJDet4ufyACQAfHMxUC1zI/pny4NIgw1AAsDqm6H46fobdP/zIQQicfUvIETDJBIJ/nwQiZ5/PsDkQ96UkUwIIYQQg0JBSEKIweLqjJ1kYJ2xN4xpi9nd2DUgqUM2qYk9z2K0PQWNiMosxCm/RG1PgxCW8wHJWHIpED7xObgQkIwZx15qe0qEEEIIISpDQUhCiMHiyoQ0tOXYVmbGOPRBF9Y4BSEJqdppCkISLUnKLcZ7R3zQZ9tDbHsYCYnkbQv6j075MfZ9GJWJtHzNZycXlgpx2i8Re5/FGHR2NCGEEEI0i2pCEkIMlks+VyakYS3HliXEgd10p3VWAseehGhHk5wUTIjwQp+EN2iRkwwrQTEKTMwRZVcPXs6tcalFL4Tbu6jt/FeCU9R2bEKq8uHxl7j3X+1Gr9hsuNqZY0qnsvd6TrGQtX9usRB1rc3kPn5EegFaOFnVeH5isQRj9z+vmOPaW2F49lV/NLA1r/ExCSGEEEIACkISQgxYbViOLUuUXX2U8o1hKn57Q9uaMiGJDuieHIZfnpzA6KgX3NtTwjEt9An+uH8Q15p1w5re0/HMpY2GZ0mIemQVllYE98rN/cevIgipCmFKBiF9E3MYc4zNLsLZ10n4vF8zVUyPEEIIIbUYLccmhBisBhzLsZOsa0cmpIhvhDB7Z8YYLccm2mQuKMGWu3vx/Pi3MgOQ0kZHvcCTk9/j1OXf4VCUq/I5JeYUq/yYhFSloFQk11hlkiq3qt7N0DTW2B/3uLtxE0IIIYQogoKQhBCD5ZzPDEIK+EZIt7DV0mw0T7ouZP3CHNQpztfSbEht1jYjFi+OLcbXLy/X6PXTQp/A/8hXGBzrr9J5NVx9E/HZ1H2Y6LbIjAIc9o6Df2KOXPtXrjGpKsVC6iZPCCGEEOVREJIQYrBcpJZjJ1vaQ8KrPV97ofYcdSEpG5JoWM+kEDz450e0reK9l2VmhVB7F2SY28jcxzU/E57/rsKswDsqnd+B53EqPR4xbCVCEX7xDMGHx1/iH1/F6+zyeLK3pRdwN4AZudcL8075ocvmB9j9NLracwjFEryIz8bfj6PwMj5b4TkSQgghhKgL1YQkhBgsZ6nGNLVlKXY57g7ZCfCi+npEQwbH+uPihbWwFrCXPRcYm2FH59E41OFdBDs0KovOSCRomZ2Ej17fxCK/a7ARMLMUjSViHPb4Ew7FedjabYJK5vjLjRD8PNxNJccihu/zcwE48DwWAHDSNwF8Hg/vdZa/niMP3FHI/BIhBv79pNrX/3Y7HJ/0aVrlPrNO+iL3vwY3PB5wbEZXfNCF/VCKEEIIIUTTak9KECGkVjERCeBUnMcYqy2dsctxByEpE5JoRqfUKFy4sI4zAHmvYQd0mLsdPwych2DHxm/Tw3g8hNu74Md35qDZgr34p/UAzmNvubcfn/pdU+f0CeFUHoAs9/EZP5Uc91ZYGoJTqy+XEStH+YDcSh22JRJg7a1QueYQlpaPp9GZKOFYeq2OJd6EEEIIqX0oE5IQYlDKG000KMhmbUuyrh2dscuFOLAzX9yyFF8+SIiiXPIycOX8/1iZjADwW8+p+Kn/zGpLI2Ra2GLGmKW40bQLdt3cwej0DgB/3dmDRGsHXGrZWyVzlkgkOOmbgBfxOejfzAGTOjpX/yJS6+WXiJCcW4xSkRiN7S2r3V/WcuzJh3xUPLO3glLyUSIUwczYSOY+fz2KwuKLARBTrJEQQgghakSZkIQQg/KPX1mQzSU/g7Utyap2BSFzzaxY2Z+UCUnUzVQowMULa9CQ4zP47cD5WDFgtvy1WXk8HOowFOMn/YQCYzPGJiOJGCev/oHuyWFKz/nHa8GYcfwlZp7wxZYHkZhy2IeV8UaILK6rb6Lp2tuY/48fxNVE8aooCalWZ18lASjLdgyRyrgUiMT49UZIlQFIXlXFLAkhhBBC5ERBSEKIQfEMSQUAOBdksbbVtuXYAHtJdsvsJBiLhDL2JkR5vz88jG6pEazx5f1nYUv3iTU65o2mXTFyyq8oMjZljFsIS3H68nrYF+XJeKV81t8Jxym/RMbYx6dV24mbGK7ylcqHfOLwLJb9u0cXzDzhi9knXqL1+rtou+EuPjrtV7HE2j8xF5mFgipfT8uxCSGEEKIKFIQkhBgUv4RcALKCkLUrExJgL8k2EYvQLCdFS7Mhhm5k1At88/ISa3x/h2H4vedUpY79uGE7fDj6W4ilcsma5qbisMcW8CTsOnaEaNpX5wOQkleC9474oM36O/j6QgBKK9VY1GZG4bGXb8txHHweh9dJygXvCSGEEEIURUFIQohBSSsoBQA4F2SytiXWspqQABBiz64LSUuyiTo4FubioMefrPHHLm3w2dDPZBfDU8CFVn3w7aD5rPGxkT5Y4nNR6eMToqyCUiFmn3yJf18lITStAH89isLqSo1hVBGCFIhUE3D/6foblRyHEEIIIUReFIQkhBgkl3x2EJKWY5ehICRRhw0PDqJ+YQ5jLNvMCjNHfwuhker64G3tOh6n3fqxxlc/PoY2GXEqOw8hNSEBcDM0nTG2+2mMSs/x6w35ul1Xp1RFwUxCCCGEEHlREJIQYjDyS97WOmwgtRxbxOMj1dKu4ufhbnU1Ni9toiAkkYdILEFQcs2XZr4TF4B5gbdZ458OXYQYu/rKTI2Nx8OC4V8i1N6FMWwuEuCgx1YYiUUqO1VmYanKjkVqB67SiekFb99HqliNvfeZaoKaEpRNlnrOEEIIIURTKAhJCDEIYrEEY/Z5VfzsLJUJmWppBzHfqOLnlcPcNDY3TZjcsQHneKxtXVYzD7esBM59Se30JjUPTdfeQoc/7tXo9aZCAXbe2sEaP+3WD6fbDFBydtzyzCzxwZjvIJTqst0rORRLfC6o7DyqyjgjRJXSClQTHM8pEuJ1Ui6yqmlKQwghhBCiKhSEJIQYBP+kXDyMeht4dJGqCZko1ZSmXzPDqg9pZmzEOS7h8VkZY20z47nTdUittMojBAk5xTV+/ed+V8veU5XkmFpi8eCPlZ1alXzrt8DvvdjNblY9PYlGuWkqOcdfj6JUchxSe1T3zapLWYfP47Lhvuk+hu95pu2pEEIIIaSWoCAkIcQgPK4UgDQSi1C3MJexPcnasOtBVnVf+8aeuSTboTgfTkW5MvYmtc2ZV0k1fm2d4nys8DrNGl/RfxaSrB2VmZZcVveejldOTRhjlsJSbL63T+3nJoSLpJoHPIWlqisXoEmp+aWISC/Q9jQIIYQQoucoCEkIMTj1C7LBl8pHSbYyrMxHRYQ6sDtkt85kLsn2isli7UNIdVY8Ow2H4nzG2Mt6zbHLfaRGzi8wMsHHI76CWCoMPyXsKYZHv9TIHAiRxz6vGBz2jsNKjxBtT6XGPvn3lbanQEiNlQj18wEAIYQYGgpCEkIMjnMBdcauTJ7mNB+eoIANUUyTnBR84XeFNf7dwHmM+qvq5tOgFfZ2GsEa33pnL4xFQo5XEKI+svIgF555hXmn/HD0hf42BrsTnl79ToTomICkXHTYeBdWP17DsN1PqeEYIYRoGQUhCSEGxyWfHYRMtDbsTMiq6ozJE4SMzChU9ZSIgVv57BTMpIJ8V5t1x93G7hqfy4r+M5FubsMYa52VgI8Cbmp8LqR2M/Ryu0d84rQ9BUIU8tFpfwSl5EMsAW6Hpet1NjIhhBgCCkISQgyOcwF7abGhZ0I2d7SSuU26MQ0AtM7S32wcon3NspMxO/AOY0zE4+OHd+ZqZT6ZFrZYPmA2a3zVk5OwKi3SwoxIbVVdTUh9t/omdYwn+kMikcA7LpsxtvNJtFLHFIjESr2eEF2TVyzER6f90GHjXcz/xw+5xQJtT4kYOApCEkIMQuVMQO7l2IadCflhV3bdx3IFphaIs3ZijEnXhCREEcu9zsBYwrwRO9Z2IIKcGmtpRsDBDkMR6NiIMdagMBuLX1zU0oxIbWTYIUgggrLmSS2VmleCwTuewGLZVXTdfB9hafnVv4gQPfDrzRAcfB6HoJR8HPKJw8+elC1M1IuCkIQQg1NdJuToNvU0OR2NcKtrjV1TO8HF1pxz+xup5jTNc1JgKqQnnURxTXJSMDuInQW5tvd0Lc3ovznwjfDjgDms8e+8z8OpMEcLMyLEMBUJqMEH0Q+qTExedjUY9yMzIJYAfom5+JQaNREDsfl+JOPnbQ+jtDQTUltQEJIQYhAqX2g6c9SETK4UhPy4t/aytdRpYe8miFs5lHNbiFRdSCOJGC2zkzQxLWJgvvc+BxMxMwhxvO1AhHMs+9e0K8174KFrO8aYjaAIPz07raUZkdrGwFdjAwA6/nEPCTlU5oDULoek6qHejcjQ0kwIIUS/URCSEGJwpDMhUy3sIDQyBgBc/agnJnZw1sa0NIIno0NNiAN7uTbVhSSKcijKxZzA24wxEY+Ptb3e09KMpPB4nHUpP/W/jsa5qTU65Ki9z/A4iv1ggxAuEoNfkF3WyGyfV6y2p0FItQz/00gIIfqHgpCEEINQVU3IJOu3WZCj2tbX1JR0ijwdsgmpzievPGApLGWMnXHrhzCOILe2PHNpg3MtezPGTMVC/PD8bI2O5xmShpF7nyGzsLT6nUmtVxsyIQHg1xvUoIbolmvBKVhyKRBHX8RBLK4lH0RCCNFDFIQkhBgUvliE+gXZjDFD74wtD64gJDWnIYowFQrwhe9V1viWbhO0MJuq/dR/FsRgZgXPD7gJl7yaLZ8rKBXhUmCKKqZGDByFPgjRvCM+cRi7/zn+fBCJOSf9sPz6G21PiZAaCUrOw+AdT9Bh413sfBINSW15skVqFQpCEkIMSt2iXFbXXkPvjC2PBGtH5Jswm9ZQJiRRxPshD1ilDh66toO3s5uWZiTbG8dGON26P2PMTCTEdz7nanzM4JQ8ZadFiEG6GZqGhWf8sfZWKEqF4upfQIiKbbwbwfh519NoAJAZwJl4yAc5JfReJbpFIpFg4iFv3I/MQFBKPj4/9xr3qfYoMUAUhCSEGATef1lPXE1pkqwpCAkeDyH2zCWzrTMTas/aQaIciQSLX1xkDetiFmS5db2mscYWvvJEfalAqrxk1VslpLLa9pV6OywNI/Y8wz6vWKz0CMHHp/20PSVSyzyIyECg1EOi3GJhla+59iYNf/rmqHNahCjseWw2wtMLGGOLzr3W0mx0h1Akxj++CVhzKxR+CfS5NQQUhCSEGITyZgDSmVoALccuJ70k2660EA0q/X3NP+WHsLR8TU+L6IEhsa/gnhbNGIuwa4BLLXpqZ0JyCKjbFGdb9WGMWQhL8a3PBe1MiNQKtaExTWVfXwhg/HzsZQKKBSItzYbURj97yl56XdWn8UoUdXgnuiWtgF17+k0qXZd/du41Zhx/iZ89QtB72yM8iqLsUH1HQUhCiEGRbkoD0HLsclwdsisvyT7kHYchu55CIKIlSoTp65eXWGNbu46HmG+khdnIj6tr92d+1+BYmKvwsSgRkhC2oBT2DXIhBSGJGmUXCbD2Vig+P/caDyMz8CCSfd0HAB5vUhGfXazh2RFCVKmwVIj9XrEVP5eKxNj3LLaKVxB9QEFIQohBceFYjp1Iy7EBACFczWmymM1pEnKK8VDGBT2pnRrlpmF01AvGWJaZFQ52eFdLM5KfX/0WuNy8B2PMSliCz/3YDXaqQzFIIo/athybC/0dEHUat98LKz1CsPNJNIbufipzv9H7vNDit9s1OsfeZzGw/vEazH+4io13w2s6VZkKS4UITcunpiOEga4z2LKL2KUVjrygmvb6joKQhBCDUFETkpZjy/SmmkzIchEZBQhLy8fDyAyUCCmjpbb76PVNGEk1ezrQYRgKTC20NCPFrOk9nTX2ud9VmAtKtDAbYuhqU0ih6+b7KjlOTpEAX18IwIg9T7H1YSQFZohM4ekFeBz99jpPIFL9eyUtvwSfnX2FQoEIpSIxfrgarNJSNWdfJcLxZ0+0WX8X7pvuIzmXsjUJIbWLsbYnQAghqtSAIwiZTEFIAEBYHReIwQO/0m1ya44g5EqPN0jNL6tL066+Ne4t6gsnKzONzZPoDiOxCB8F3GCN7+k0QguzqRlvZzfcadQRQ+LeFnevW5SL2UF3scd9pNzHoeXYRB61KYDml8hd1kDRupizTvjiSnAKAOBmaDqM+Tx83q+Z0vMjhicmq1Dt59jyIBJiqbdw6/V3VXJssViCz8+9Rsl/XeQDkvOw+UEkNoxtp5LjE6KPBCIxCktFsDI1grERM0euttVZri0oE5IQYhAyi8qCZtLLsTPNrVFibKqNKemcYhMzRNvVY4y1yUxg7VcegATK6n0d8aFlD7XVmEhvuEp9pu426ogwjqxaXbap+yTW2JIXF8CTyF//lEcLpYgcalEMUiUEInFFALJc5fpfRP+JxRIcexGP7y4H4WZomlLH0sTnK52jOYiqZBSWMq6xAOCPexFqOx/RL5p82CkQibHjcTQ+13L37eCUPLhvug/7lR7osfUhIqS6gxPDREFIQohBuBxYdhMj3ZgmkZrSMITYM4NHjXPTYFHNstTVN0PVOSWiBZ4hqfjqQgB2PYmucr8Fr/Q7C7KcR7OuCHRsxBhzy0rEuIjnWpoRMVQUg1QMVyM0WRmWRD/9cDUYs0/6YtP9CIzY8wwnfdkPP+V1xCdOhTPjZsRXXySIHlIQXfHZ2df44vxr7KzmOlDdVt8MregA7p+Yiw33FK/BGpSch5F7nqH9hrtYcyu0Vq1I0FcUhCSEGATvuGxAIkGDgmzGONWDZJJuTsOHBG5ZVd8Q5BSzi0IT/XX2VSJG7fXC9kdRWFTFE/DGuakYJdWQJs3CFudb9lH3FFVOwuNjc7eJrPFvfS7IfYx1t8Pg/OsN+CbkMMYvByajyZqbqLfKk+rZGTCxWIILAUnV7qfOLCp9cS88A0KO4CKpnaSDHHuexsjc9+yrRPCXXobb73fgx/Fde+xlzQOYXObdSENSwdtrnCfRmdhdxfykjdr7DIk5xcgtFuB+RDoyC6v+/NNvB1IVVYa/xdI1BSoRisQ48FzxjPN74ek4+yoR+SWquy/4xy+R8fNeBTtfSyQSjN3vhRuhaQhOzcfPHiE4So1rdB4FIQkheq/8pt+xKA+mYuYvxiTqjM3whqNDdrsM9WcWEN2x55l8N1gfv77BqB8KAIfbv4tSYxN1TEvtjrcdhGTLOoyxAQlB6JX4Ru5jpOSVYOCOxxD9d3FfWCrEB8deIi67GOkFpVh8MRCByXmqnDbRAfklQlgtv4bJh3y0PRW98N7RF5h2xAdisQR3w9MxZOcT9Nn2EP/8lwEnkUiw5UEE3t35BF+cC9DybIk63QpNQ6GA2eDufmQG6q3yRN+/HuF10tus10uByZh2pOzBV3h6AbpueYB3/n6M7CIBAGDCQW+Vzy8gQ4ANPmXBzuwiAfpvf6zQ6z1D0jBwx2M0XnMLg3c+hcuvN+HxJlXm/rIeUs096Ys8euBLVOBBRAbarL8D2xXXseCMP2e2eakcD4mWXQ3G91eCkPRf46RvLgZgyK6nmHbkBbr/+QAZGnrgVt1z3dC0AkRnFTHGFHmQQLSDgpCEEL2X8d+TZ5eCDNa2pErLsbdMaK+xOemqQMfGrLH2GVR/qza5GZpe7T58sQjzAm6xxvd2HK7SuXw1oBm6utqhmYMl6lioN7hZamyCv7qOZc/h5WWFjpNfIoLJ91dwKzQNB73jWDfYSy8HKTVPolsSc4phu+J6RSMJIp+LgSm4G5GOMfu8cC8iA16x2fjwxEv4JuTg78fR+PZSEO5GZOCQBpbXEu24E5aOkXufcW5LLyjFs5gsTDn8NrA/kSPI+CgqE7/eCFHbHAHgUWJZSZpFZ1/V6PURGYXI/S+AWCoSY6UH94MtkViC94+94Nx25EU8Nj+g2pC1HU9GUcghO5+g2dpb+PZSIEqEIs59gLL32NQjPghNK0ChQIT9XrGcD57lWbCx4W44/rgXgS6b7yMhpwjbHkZVbAtNK8CRF7rx3Z1fyg7eP41hNykluoWCkIQQvScUlf02debojJ1k/XY59tcDmmtsTroq0IkdhGyXTkFIwjQ01p/VkOaOGhrSTOrQAD6L30HE8nfxRb+mKj02l12dRqHAmNnpfWrYEzjnsx9gVGf+KT8k57HrqYZRUXWDois3Wvpo3j9+KK4UvJVIgEPecdhHjWdqhYPesawu09LC0wuQll+CFI7v0nJbH0ZppMyF9LLQmnoRn8M5/jgqEw8iMzm3AcCvN6j+NuF2LyIDMVlF2PIgssqlxsEpeaySIJWDhzWRml+K2Sd8WePfXqIHrqTmKAhJCNF75ZemzvkcQUhqTMOQbW7NatZDmZC1R4GcdXxmBd5ljR3oOEzV08E7zR0r/uxsa67y40vLsrDBsXaDGWMmYhE+8fdU+FjxOcWc9VKpJqThSMgpwvJr8i/XJ0zxOcWssbvh6XiVRI1naoPjctZvDErJg/ume1Xu47DSQwUz0jyxWILnsVm4HpyCj077aXs6REedf50E519vYPQ+r2r3XXimLGNXIpHgpG8CvrkYgHOvy+oVF3Nk7HM9GFX0KuVuhOIPalWlurnSJZd+oiAkIcRgSHfGBqgxDZcgqS7BzXNSYF5Nh2xiGH6RI9PCpqQQk8KfMsZyTS3U0pCm8tKjuT0aVbGn6mzvMoY1tvCVB0xEAo2cn+iPMfuoezoh6rbtYRRS86uuL6fuBnnRmYVqOe6Cf/3Re9sjjNn/HBEZ6jkH0W+FpULMOuFbZTYwlzW3wvDh8ZfY9jAKUw/74O/HymU81kSJUISX8dmIzaL3NlEMBSEJIXqv/CmYSz47CJlIjWlYgqTqQhpJxGhdTYdsYhj+elT9RerU0MewFDJvCP9164ciEzMZr1ANCxMjtR6/XKBTE9xu3Ikx1qAwG9NCFWtIQAzb66RcytgjRAPOByRrewoYvV/1TW9iswpx8DmVcyBVO+ITz6otLY9dT6OZPz+JkTsrUFXZg322PUL3Px/C7fe7OOStnfc6ZULqJwpCEkL0XtR/T7AbcNWEpOXYLIFO7IwzWpJdO8jTEXF20B3W2JF2Q9QxHa3Z3pndoObLl1dUcmy6HjYMCRxLiQkh8rkZmqbtKSgkXMVZiv6JObgdVn0TOELSCxXvMv0qMRdJuczMycCUPIg0HJHzSyx7UFcqEuNnjzcQV1cEtgaoxI1hMtb2BAghRFnltVCkl2PnmFqqPXtLFy1+pzm2PIiUuZ2zQzY1pyEAmuYkY2B8IGMsyrYeHjZsp6UZqcflFj0QbVsPTXNTK8Z6JYeiR1IovJ3d5D4Odx9LYghkNCnVHokEzXJS4J4WBeeCLNQtzAEPEpQaGSPNwg7hdZwR5NgIqVSChOiAA89r9zVFty0P0K1hHW1Pgxioz89xd3IfvPOJXK+XqOFxaXxOMaKzCtHc0UrlxyaGh4KQhBC95/GmLJAg3R27ttaD/LxfU5z2T5SZySO9HBsA2lEmJAEwM+gea+xYu8GQ8Axr4YSYb4Sd7qOw/uFhxvgXvlcwx3mJlmZFdIkuxCAtBCUYHeWDKaFP8G6sP+oWVb88/I29K+40dsfp1v3xsGE7nfvs6lxwl6jFKRV1mtZXYgngHZet7WkQHVQqFOMnjze4H5EBdxdbOFiaKnyMx9HslV8AUMLRmIaLut6b7x15gV1TO6F7ozoVY0d84nDSNwEN61jgl+FucLWzUOk51RFQJepHQUhCiN4LTs0HJBJWTcjaWg+yuaMVgr8fjGcxWRi+5xlre3mHbJdKmaPtMqhuUa0nkWBWELsr9hGpbtKGYn/HYfjl6UlYVKp/OT3kEb4bOE+pbDJaOWQYeFqMljXMTcNXvlew4JUn7EoVWybaJisBbbISsMj/GqJs62Fn59HY5T4S+aaWapqtYl4n5Wl7CkTN/BJytD0FQnTWxnvh+ONeBADNBaovByZjXPsGFT8fUFOt0pcJORi6+ymilr8Le0tTXAhIwtx//Cq2e8dmw+/bgQodk66pDJNuPR4lhJAaqlNSAHOp7ra1uR6ktZkxhrrVlbk9UKpDdovsZOqQbcBKhWIUVVP4vFdSCFplJzHGHru0QYS9izqnxjCne0ONnSvTwhYn2jAvhk3FQix85Sn3MSiry3Bp45+2TnE+Nt/dh/D9n2Cpz3mFA5DSmuWmYsODQ4je+zGWPztN3/FEIzbdj9D2FAjRWSs9QjR+zv1S5RGex3JnUqpCbrEQm+6XlYTa78U876ukXERRl3gCCkISQvRcecFi6XqQAJBcS5djyyPIibkkmw8J2mTGa2k2RJUKS4X45mIAhux8gv/dCMWxF/FwWuUBqx+vVfm690MessaOarghzZf9m8HWXHOLNP7qwm5Qs+DVDRiJFe9UWY6WBhGFSSSYE3AbYfs/wTcvL8FULFTp4R2K87Hm8TEEHvoc48PZ2fG66Ek0+3c60Q/HXyZoewp6a/aJl0jNo4cF2iKRSHA1KAV7nsUgPrtIrteIxRLs94rF5+deV9So1zWXAlMYP6v7KmXd7TAAwNXgVNa2E76qvdegTEn9RMuxCSF6y+NNKj47W1ac2TmfozO29dsgZIcGNhqblz7gbE6TEQu/+i20MBuiSt9dCcbOJ9EAgHsRGXK9hi8WYVrIY8aYgG+Ef936qmROZsZ8uWoVdW1YB8HfD4br/26q5LzVeVWvGR64tsM7CUEVY43y0zE60geXW/aq9vW5xaoNFhHdoaks1/oFWdh942+Mj3xe5X6Z5ta41dgdz53dEGLfEClWdSDk8WEhLEWjvHS0zYzDgPhA9E18w1oVUK5ZbiouXFyH420G4st3P0G2ubU6/pdU4sDzOPRtWntXM+ibIz5x+PtxNPJK6DtRGcdeJiA+pxh3PlPN716imGVXg7Hxv6XSDpYmePxFf7SuV/X35LJrwRXLq3c+icauqZ2wsHcTtc9VGUKR9iJ3Kz1CsGKo/A0AKcZomCgISQjRS6VCMaYffVFxwevCkQmZWGk59se92EG32kxWEJLov/IApCLeiQ9kfYZuNOmCTAtblczJ0sRI7oLpzrbmKjmnvHa5j2IEIQHgk1cecgUhD3lTLVVDIBZLsOFeOLY+jIK9hQl2T+0EngYWZPeLD8LpK+tZTdUqu9K8O3Z0HoPbjTtBYGTCuc/TSn+2KSnEtNBHWPDqBnolh3Lu/+Gb+xgYH4APxnyHxw3bKfO/oDYHnsdi33vu2p4G+Y9EIoFEAvD57M/Fk+hMRt03opx7ERkoFohgbmKk7anUKkUCUUUAEgAyCwX4434E9k6r+ntoz7MYxs+7n0brZBBSIpFU1DqOlTPLUxkHnsu+p9j7LAZ25iYY176+2udBdBMtxyaE6CWf+GzGE3fnfHYQMum/xjRHPuiCL/s309jc9EGQVE1IAGiXTgGV2oprKfY/bQao7PgfdtNcrUdFnWvVF2lSwdaRUS/RNCe5RsejpUH652FUBpZfe4OUvBK8Sc3H9KMv1L6s/lO/a7hzZoXMAOTl5j3QYc52jJ/0MzyadZMZgJSWZ2aJAx2Ho8+MjRg6dTWeOrfm3K9hfgbunFmBL19epjctqdJJ3wQ0W3sb9X/xxJpboRVlcMp9fSFASzMzXEIxfSY1jWv5tXRNQy7SKyJ8E3LLHmzdDcew3U/x3eUgFJQI8TQ6E0d8tHed3XnzfSTlFkMgku+BsLI+Pu0vc9sn/77C+8deYNx+7hUA//gmoLBUvqxq+qToJwpCEkL0UmEps2Yb141c0n81IWd2a6jVTqe6KMfcGglS3cPbZVImZG1kIhJgSugTxliRsSkuypEJKEubSsuX2tSzxtBWTjU+lrqVGpvgUPt3GWN8SLDg1Q0tzYho2qKzrxk/J+eV4EZImnpOJpHgtweHseP2Lphw1B6NtXHCyCm/YMKklazavQrh8XCniTv6f7Aes0ctRoqlHWsXE7EIW+/uxZ6bfytVB5UYruTcYsw68RKx2UXIKBTgZ48Q3A1nlvl4EU/dsFWNngvot433IrDsajBuh6Vj0/0I2Ky4jn7bH2s1Y/h1Uh423A2Hp7p+t9XAnfB0zvEZx19i9D4viMUS+iwYKApCEkIMQgPOICTVk6qK9JLs5tkpsKDuqbXO0Bh/OBbnMcauNO+OfFPLGh/z4ef9sGtqJ+yc0hEPP+8Ha1Pdrv6yp9MI1tj8gJswkVFbryp0vax/glPzWWOZRYr/21fHSCzCQY8/8YP3Wc7th9sNRqc5f+FG064qO6eEx8exdoPRYc7f+LcVd525j1/fwLmL62ApKFbZeYlhOB+QDOmkPOnlp4QYAlUmK+z10s3PyNaHUawkDl31IDKzygccniFlTW+kM7OJfqAgJCHEILjkM5/M55uYI8/UQkuz0Q9BjtQhmwDvv3nAGjvV+h2ljuloZYqFvZvgkz5N4WhlqtSxyq0cJn8hc0VF2LvgRpPOjLH6hTmYGO6ltnOS2oX/XwByTtBd1rYSI2MsHPY55o1ajFwzK7WcP8PSFu+N+wELh32OEiP2Q4Fxkd64deYnOBbmquX8RD8l5rID06f9E8Ffehn8pZdhseyqFmZFiOqpcr1UZEahCo+mWvq0MOzjM34QiLmXj4/d/xzesdmanRBRGQpCEkL0kvRzL+nl2ElW9vr1m1YLuOpCUnOa2sVcUMIKtOWaWuBas24qPY+JkfKfxV9HtMaVj3pi+6SO+G10WxXMimm3+0jW2Cf+11V+HqIfRCqsycaTiLH3xnbMDL7P2pZhboMh09ZiH0c2rsrxeNjXaQQGvL8e8daOrM29k0Jx7/SPqFuYrf65EJ2RXSTAiuvBWHIpEFEKBk/kbThGFKPumrSEjW4ZdM/rpDyZS9hFYgkOabHGJlEOBSEJIfpPIuEOQpIqcXbITqcgZG0yKvoFbATMYuwXWvZGsYmZSs/Tt6kD6kplRB7/UPElp6Pb1seifk3RwrHmS8Vludy8JxKlSjgMiXsNNwWzg2llkGFQVedznkSMXTd3YF7gbda2aNt66P/+ejx1VX1QvSo+DVqh7wcbEMj5ICoON8+spIzIWkIikaD/9kf47XY4/nwQiS5b7iOjoFTb0yJE43gqzYXUXdOPvtD2FBTyLIa7eRsA7HwSTeF6PUVBSEKI3rMpLYK1VC0rqgdZPc4O2ZQJWatIN6QBgFOtVdcVu5wRn4dtkzrA2swIADC5YwNMaF9f5edRhtDIGPs7DmONL3zlqdBxEnOLcTUoRVXTInpu9ePjWPCa3eQoyrYeBk7/DSGO2ukcH29bFwPeX48Hru1Y2zqlx+DmvythX5TH8UpiSG6HpSMo5W1N1NxiIbY8iNTijAhAD7O0oSaZkDdDdafJCyH6hIKQhBC951yQyRpLsqYgZHVyzK1ZS/LaZdDShtrCTFiKcRHejLFsMyvcauKulvNN7+yKxJ+HI+WX4TgzuzsslWhWo65lU/s6DoeIx7w0mhN4B+YKNmyafNgbWYWUTaSL/BNz8fmddEy/loqjwflqLWo/7/VNLPc6wxqPsamLIe+tRZxtXbWdWx7Z5tYYMfV/uNy8B2tb57QoeJ5dBetS3a1tRpRzLzwdw/c8Y40ff/k2+5uCYdonFktw2DsO31wMwO6n0RCrsFQEUc5+L3pwT0hNUBCSEKKXKscgpJdiA7QcW17SS7Kb5XB3yKaAiuEZFuPHWop9sUVPCIxM1HZOazNj1LU2U7oLZT1r9nJxt7rKN/SIs62Lq826M8Yci/MwNYydMVoVgUiCS4GUDalrRGIJxh30wfOUUkTmCLHNLxfnA9Tz7zQkxh+7bu1gjcdbO+Ld99Ygxk43MoFLjE0xbdwy1vseALqnhOPMpfU16hJP1EMslqikXmmJUIQJB705t1HgUfsq/xMsvRKEeaf8sO1hFD47+xrG319BRHqB1uZmqGpyVXLaP1Hl8yDy4/Ho+0pfURCSEKL3nPMpE1KW2d2qXuoXLLUkmw8J2maysyH7/vVIpfMi2jcl9DFr7KxbPy3MRHF9mtijnjWzxuSmce0xrp3ygR2uBjWf+ineoOZ1MtXU0zUv43OQnMd8yLJHDZksbTLi8O/l32EiFjHGs8ysMGzqakTWcVb5OZVRamyCqeOXwaNpF9a2ETG+2HtjO93p6YBrwSmo94snTL6/goVn/FEiFFX/IhkeR2Uhr0SowtkRVXrn78e4G54OiUSCXU+iWdt/uREC79hseLxJRZGg5u8D8hY1pjEshaX0/abLKAhJCNF7LlzLsSkTEgCwcpgbmtpbyNwub3OakLQCpOUrtiSV6C4TkQATIp4zxvJMLHCzSWftTKgazRyYjWiMjfjwXNgbo9rUQxdXW/w1qQPGtKuPM7O74/L8nmhcR/Z7vjqeTbsg2rYeY6xv0ht0SItW6Dib70ciIIkCkbokq4id0X0nPEOlN582JYU4f3Ed6pQwM5VK+caYPGG51mpAVqfE2BSTxy/H7cadWNtmB93FukdHND4nv4QcBCZTXUqgLANywRl/ZBaWZaXu84rF1eDUGh+P67NQjjoza19Ach7e3fUUlwJTUMzRgfz4ywT02vYQo/d5odfWh8ik1SrVKhGKsOleBJZfC0ZoWj5re3UrNO5HpOOj03748VowknOLq9yXaN+ovV6ssdxiAe6GpyMklf3vTzSLgpCEEL1U+RLZOZ+9HDuRMiEBAC2crBD+47sI+n4QHC3Zy2wDndhByA7pMZzHuhWWrvL5Ee0YEvuKFSS53KIHSoxNZbxCs77s34zx81+TOrD2cXexw9WPe+HF4oH4vF/Z/qbGfIxpVx9eXw+AvUXNlpWL+UbY13E4a/yTVx4KH+vPh1E1mgNRLYlEgvOvk3BQRsdrlcUgJRLsu7ENrbMSWJsWDv8c9xt1VNWZ1KLYxAyTxy+HX91mrG3Lnp/F3IBbGp1P1y0P0PGPe/j83GuNnlcXPY3JQlIu80GgMl1u5SmJIRZLEEAZ3Vq15FJgtfsEJOfhpC/7O4cwTT7kg++uBOH3O+HotuUBIjOY10BVfSKuBadg8M6nOPg8DuvvhKPn1odUm1MH8CD7ocnDqEy8Snz7/RWVUYgumx/g3V1P0fGPe9jnxX2vQzSDgpCEEL3XgLMmJAUhy/H5PLSpZwMzYyPWtgCOIGTH9GjO4whE7KfxRPNS8kpwLThFqSfxUzm6Yp9166vMtFRqy/j22DaxA77s3wyeC3tjdFvFllnXtzGD37cDa3z+Ax2GQsBnfl5mBt2DpUCxv/MDz6lovS6Y948fphz2wSk/9dbvWvziIqZxfLbW9H4PR9q/q9Zzq0qemSXGTP6ZlQ0MADtv7UDvxDcan9POJ9GIyqjdDXK4ltyqojYkF4kEyCkSoN/2R1TbVsuiMuV73395PkDNM9G8EqEIN0JS4RmSimIll5xHZhTg+pu3mcMFpSKsux0u9+vH7meuHInPKYZvYo5ScyKq8SpRdra8d1x2xZ/3P4+t+DwJxRL87BHCakwnFImx6V4EPv33Fa4G0XefOtW8NaWCsrKyEBERgfj4eGRnZ6OwsBB8Ph9WVlaws7ND06ZN0bx5c1hbW2tqSoQQAyHdHbvYyATZZso3qTA07i62SJQKXOWbWiLSrj6a57z9ZdtRRiYk0b5boWkYd+A5SoRimBrxcXF+D4xo/TZYIJQjUGwkFmFCOLMjaoGxGTyadlP5fGuKz+fhi/7sbCxFNFJiSXaytQMuteiJKWFPK8bsSgsx/c1DHOw4TKl5Ec1KyCnCkRfxVe6jilhO//hArH9wiDV+tVl3rOo7Q/kTaFCStSNGTf4Fj/75AY7Fb2/wzERCnLu4Dj1mbkaCjZNG57TxXjh2TGEvFSc1U10e5P7nsfCKzdbEVIgKnX2ViJ+uvwGfx8PGce1YD/ASc4qRUyxA67rW4PN1twhiiVCEEXue4UFk2fV9v6b2uPlJH5ibsB+my+MVR2mUA89jse8994qfFS3L8SyGnQBBNEssAb44LztTvnKW5LrbYYxtyXklyCpiNl1bcjkYu56VPTze8ywGF+b1wPj2DVQ4Y1JObUFIoVCIJ0+e4NatW/Dy8kJsbPXZADweD61atUKfPn0wdOhQdO/O7tRHCCHSXKQa0yRZ2VOFaQ6f9W3KeBJc7rVTE0YQ0jU/Ew5Fuci0sNXk9Igc1twKRcl/9aFKRWKsvhnKCELeDE2r9hgD4wLgVMx8cnyteTcUmbA7TlfHzJhfMR9dNKtbQxytJgAly55OIxlBSABY+MqTgpB65m54htrP4VCUixNX/4CxhPlZiLKth9mjFkPC07+FRyGODTFl/I+4+e9KRoOdBoXZOH9xHd6Z/huKa/CdUVO7nsZg28QOMDbSv79LfZOSX4Kll4O0PY0asSkpRPOcZDgV5cKxKA91Sgog4vFRbGyCYmNTpFraIdKuARKtHfTyc1mVhJwiTDvydon+pEPeSP1lBOz+K02y43E0vrkYAKFYgqGtnHBubg9Ym2ksH0khDyIzKwKQAPA4Ogt3wtMVXhWhCJ6ChTkMMfvU0FTXT016e3kAstyis68pCKkmKv/mSU9Px8mTJ3Hq1ClkZLy98CtPdy2vQVI5/ZXH40EikUAikSA0NBShoaE4fPgwGjZsiPfeew8ffPABZUgSQmRyllqOTfUguY1uw15eBwABTk1ZTUo6psew6pdRXFf7Kl+UA8CTaOZ7f/5p/2qPMTWMoyt2q5p1xT4zuzvGH2C+d+Z2byRjb837YXDLGgchbzVxR4RdA7TISa4Y65UcCvfUSPjXa66qKRJ9J5Fg180daJjPDHYWG5lg6vgfkWVho6WJKe9Bow74ashC7Ly1kzHePSUc+278hZmjv9XoL4ZbYekYKeP3GADklwhRKhLDwVI3atuqkqr/mvlVHFAg0o9adzyJGF1TIjAi2hfdk8PQKT2a8UC1KiVGxgir44KnLm3wyLUdHjZsh2g7/Q42rLnFzPQSiCTY+jAKPw93Q4lQhOXXgyH8L+37Vlg6LgUmY0ZX3WyUdZijfu/B53E1CkKm5Zfgw+Mvq92PrnENj7LfZNKrx4jqqOwRUFZWFtavX4+hQ4dix44dyMjIqAgsVg44SiQSmJqawsnJCfXq1YONjQ2jOHLl18THx2Pz5s0YOHAgNm/ejLw86pBHCClTXh/GQlACu1JmzRyqB8lN1tKbV3WbssY6ptGSbH2Ukld1B3O+WIRJUtl9xUYmuNZc8aXY2yd1xJi29TCydd2KMWM+D/N66k4Qsl0DGyx+p2YBQwmPr5IGNUUCEfKKhTWaA1Geum8s5wfcxNQwdh3IL4d8At/6LdR7cg3Y7T4Ku9xHssZnvHmAJS8uaHQuc//xlbltn1cM6q7yhNPPnvj4tL9cpSlqM30NuPAkYgyN9sWh61uQvHM2vI9/izWPj2FihJfcAUigrLRAh4xYLHh9A4c9/kTkvoV4degL/PzkJNpm6Gct391P2ddt5c1XboelI1fq99DME7I/T9rGtcKCqy6qPOaf8kORoPrvAz39SJAqnHgZX2XtXP143GKYVJIJefLkSWzZsgV5eXmMgKOjoyN69+6Ntm3bws3NDa1bt4aDgwNMTJgdK4VCIZKTkxEbG4uAgAD4+/vDy8sL+fll7dMLCgqwd+9enDp1Cl988QVmzpwpV1c3QojhmnDQGwC7HiQAJFvZa3o6eu21UxPWmKzmNES/9UsMRv1CZjF1j6ZdkW9qKfcxejexx+Mv+lX8Hj4zuzt2P4tBXHYRpnRyRv9mjiqds7KaO8r//ybtYId38b8nxxnLUWcE38d378xDgal8NSetfrxW8eczs7thSieXGs+HKE6dV4utMhOw9c5e1vgpt/7Yb0DL9r8evABtM+IwMJ7Zqff3B4fxzLk1nri208g8UvNLOccLSoT4+kJAReDiwPNYfNDFBe+2qsu5vz5SdKmooXHOz8An/p6YE3gbTfKqLztSEx0yYtHhaSx+eXoSPvVb4u/OY/BPmwEoMdbfzNq0grLPTG1o5CyRSBCTVQQXW3OYGpflWQlFYlwNZpch4kKxBcPzIDIT31wMwF+TOla/M9EopYKQcXFx+O677+Dv718RfHRycsKkSZMwfPhwdOwo3z+4sbExGjZsiIYNG6Jv37LunEKhEC9evMCVK1fg4eGBvLw85OTkYN26dbhy5QrWrVuHFi30/wkzIURxZ/zfdjiVrgcJAEnWb4OQm8Zr5uZIn4XZu6DYyATmorcFmrmCkJmFAhx8HgtHK1OMa1efLtj00JTQp6wxRbpibxjbDh/3asz4t7cyM8aSgYb5+zjVyh7nW/bGe6Fvl7DblhbhgzcPsK/TCIWPN+3IC7xYbIUurnaqnCbRAiOxCEevb4aVkJl9HGvjhM+GLdLfVDMOAiMTTBu3DM+Pf4umuW9v6I0lYvxzZSO6zvoT6Zbae0//45fIynT6+LQ/olYM1dKMdJ++vDubZSfje+9zmBt4C2YizWWUd08Jx0HPrdjw4CB2u4/Elq4T9LK0QmhavranoBEpeSUYufcZ/BNzYW1mhBMfdsPYdvVVkun2b6V7DqJ/dj+NwZbx7Tm3SXfHJppT4yDkhQsXsHr1ahQWFkIikaB9+/b4+OOPMWzYMBgbK59gaWxsjF69eqFXr1746aefcP78eRw9ehQRERHw9/fH1KlT8dNPP2HKlClKn4sQol+mH31beFu6HiQAJFqVZWKtGdUGX/Wn2m3VEfGNEOTYCF1TIyvGOqTHgicRMwq3L774Ngtmfs/GjK6CRA9IJKyu2KV8Y1xp3kPuQywdpH/BRmWvMfd0GskIQgJlDWpqEoQEgEPecYwgZF6xEE9iMtHE3gJt6unfTa6uU9fDku+8z6FnMrMGmxg8zB61BNnmhlfHPN3SDpPH/4gnJ79nPLBqmJ+BY9c2YfTkVRDza9a5VllcyzTTZGRNEv3gnJ+BNY+OYVbQXVbDJ1kSrB3wyqkpAp2aIMHaARkWtsgyswYPEpgLS2EpLEGjvHQ0z05Gy+wkdE8Jh4Ww6vdJ3aJc/PTsNL56eRl/dp2ALd3GI0ePPt/lGZD6EnSuSk6xANseRiKrSID3O7uidb23/w4b74XDP7GsA3Z+iQifnX2FMW2HVvv//eHxl4jJKsT0zq5IzecuZ/NepXsOon+EYgmKdbiBYm1V42jhsmXLAACNGzfG0qVLMXw4u26SqpiZmeH999/H+++/jytXruCvv/5CTEwMVq5cSUFIQmo5ruXY5ZmQy99tpenp6K3XTk0YQUhrQTGa5qQiqg53ofYDz2OxdlQb1LfRXHdUohz3tCjWMra7jTrq1Q2VNtxt3BFhdZzRKjupYqx7Sji6poTjZf2WCh/vanAKtk7sAACIyijEwB2PEZ9TVvx87ag2+JG+t1RKHTffbTNiserpSdb4772m4kGjDmo4o27wq98CXw9ZgN03dzDGh8f44adnp/G/vh9oZV5ccWaJgVX7khVLvxSYjCfRWejX1B7jKnVx3fYwEtsfR8PGzAjrRrfFiNbMhj66upLBXFCCJS8uYtnzf2EtqLopRJ6JBTybdoFHs67wbNoVCTZOCp3LRCRAl9RIDIoLwKSwp+iVHCpzX9vSIvz87B986XsZv/SdgR2dR0OkpaC7Iqqqh6dtEolEoffh4+gsPP6vGd/Wh1Hw/noAWjhZAQA2349k7JuQU4ysIgHszE1Yx6nspG8CAHaTP2JYglK4+4ro7qfD8NW4MY2VlRW+//57XL16Va0BSGljx47FtWvXsGzZMlha1rzOEyHEMDjnsy8ckqgmpMICnJqyxqqrC/koKqPK7US3TJTKggSAiy17aWEm+kXC42MvR9bjJ/6KNajhsutpdEUAEgDW3AqtaLpFVEPlXYXFIuz33MZaGupbtxl+6aOdIJwm7e04AkfbDmKN//z0HwyN1k6jC656ibVlld3Eg97YcDccEw56469HUQCAe+Hp+OZiIMLTC+CbkIuJB72RVcjM+CtvWKJLhkb7IvDQ51jz+FiVAch7DTtgzshv4PzZYbw3fhkOdByucAASKCsz8Ny5NTb0nII+H/6Bpgv24YcBcxBpJ7sDs31JAbbe3YuXR7/B4Fh/hc+paWIVfRDuhKVj/ik/rLgejDQZGYPyEojEWHjGH/YrPdBl8334xGWz9qnuezu7SICTfglKzYPUHr23PeIcH7jzGT69nQ7vZOXe00RxNQ5Cenh4YP78+awmM5pgZGSEuXPn4vr16xo/NyFEt3BmQlJ3bIVxdcjulBZd5Wtqy02evrgeXHVn0PHhXqyxSy3kD0L+Mry1wnPSBap4mx5q/y5KjJiLRz548wA2JYUKH6vyvdXGexGMbUUCMeKyi2oyRaIh37y8hN5JzIwpAd8I80d+DaGRSvo96jYeD58NW4RAx0aMYT4kOHJ9C+oWZmtsKoHJeVh9MxSHfeJY22rjr6edT6IBAHu9mN2dS4RiXKn0++FxVCa+uchsMqRNdsX52Oe5DTfOrkKzXO4mIiIeH8fbDESn2dswZPo6HG0/BIUm5iqdR6xtPWzsOQVu83dh7KSVuNlYdsmZjukxuH1mJQ5f2wz7Iu4sK10g+u9CTVZQz+33OzjC8fmp7El0JkbsfYZD3nH47XY4Ru59plQtve2Po7DPKxa5xUL4J+Zi6mGfGh1v492IKrdfC07F4ku68z4nuicioxAvUkux+EEGMovpAbAm1TgIWbeu9jvO6cIcCCHa5SzVmKaUb4wMPSwerm1cHbI7pMdU+ZraeJOnq46/jMeY/c9lbm+Sk4IuaVGMsecNWiHRRr5O1o3qmGNh78ZKzVGfpVva4VzLPowxa0ExZry5r6UZEXmpsqtwq8wErH58nDX+e8+p8K9Xe+oPF5qYY9q4ZciXCgI1KMzGoet/gidnDT9l+CXkoPe2h1jlGQJvjkyqEqEY04/4IDZL8QcFukied/Gb1LImJHfC01nbEiplXK++KXvZsaaVZT9+gfkBt2Tuc6ztQLSZtwOzxnyLAI4Hpqom5hvhWvMeGDFtNfq//ztuVRGMnBV8D4GHPsfEMHbTN11Q3XLs8PQCzP3Hr8oGNoe84xjH8U3IRVBKzRvebHvIvBaJzS6C0XdX0H7DXfgn5sh9HKG46u+Z2Sd9sf1RVJX7EAIAJSLgbhx39rVAJMbxl/FYdzsMAUm5Gp6Z4apxEJIQQnSBdGOaZKs6jGYqRD7JVvZIN2cGbztWE4T87XZYlduJ5iw6+7rK7RMi2FmQ8i7F/qxvU/gtGYgGtqrNOtE3e9xHssYW+ntQSrCOU9VybJ5EjH03/mI1snjl1ARrer+nmpPokTeOjfDpsEWs8VHRL/H1y8tqP/8hnzgUlFaduXLmVRJG72N/9+mjEpHqArs3QtOq30nNjEVCrHt4GB5nf4ELx4oWAHjq3Bq9Z2zE7NHfIsLeRcMzLPPEtR2GT1uNd6etxiuOh7VAWfD93KXfcOTaphplx6tTan4p+m9/hEmHvKvcb9nVYMbP8dlFOOITh2cxWdgnlVkLQKmM/Zgs7tcGp+bjq/MBSM4txr+vkjj3ITVjKhTAtqQAtiUFsCkphIWghK5dpETlCjnH55/yw6wTvvjp+hv02vYQ3rHZmp2YgVLLupGRI0di8uTJmDBhAurXl11XgxBClCUdhKSl2DXE4+FV3aYYEvc2mOWWlQhzQQmKTbibz/gl5iK3WADbagp/E/XLK+G+eCrHtRT7Yove1R63e0M7/DWxA/h83WxioEn3G3bAG3tXtMl6W4eqS1oUeiSHwdvZTe7jVFeIn24LVMszRDUBl4WvPDEgIYgxJuTxMX/k1xAY1c7vwBNtB2FojB/mBt5hjP/+4DDuNewAv/ot1HZu6WwqWYJS8uETl43ujeqwtmUXCZCQU4y29ax1+jtOIpFgyiEfbU9DZRrnpuLklY3okxTCuT3LzApLBn2Mw+2HqL6oaw3dbeyObrP+xGd+1/Hrk+OwL2HX1JwZfB99EkPwwdjv4NNAdxqMydN05VWlDK8X8dkYsvNpldcV6vpneRiVicmH5Xuvl5cvaVTHQj2T0SMmIgE6psegS0okWmUnonl2MlpkJ6FuUS4civNgydEFvtjIBBkWNki3sEW0bT2E13FBmL0LXjs1gW+95jKv/Wub4y/fXvMVCcTY9zwGPRrX0d6EDIRagpDR0dHYsmULtm7dir59+2LKlCl49913tVI/khBiuMyEpXAsZtbioaY0VVsxtBXW3uLOYAxwYgYhjSRitM2Mh28VN5JesdkY5kalMXSZfVEe3oln1kUKq+OMIKmabtLmdG+ILRP0PwCpTO0qBh4PezuNwKb7BxjDn7zyUCgIWc4zhLv2GVGdJZcCceA5O4tHUfUKsvDbwyOs8Y09JteoQ7oh+WrIQvRLCGZ0jzcVC3Hi6h/oPmuLyuv29fjzAaIyFcs2i80uYgUh93nF4NN/X0EsATo52+LmJ71R11o3b7oDk/NQKGfDKv5S9WehKuOduACcufw76hZxL2s837I3Pn/3UyRb694DZRHfCNu7jsXp1v2w7c4evBf6mLVPi5xkPD75PVb0n4VN3SfqzcqcyIy3n6m/H0dX+2BTnVcFz2Lk71TdedN9PPuqvxpno5vMBSUYkBCE4dG+GJAQCPe0KFaztGqPIRLANT8TrvmZcJeqAS/k8fHaqQmeurTFjaadcbdRJ+SZUUNgANj7LBa7p8ou0UDko9ZvRpFIhEePHmHx4sXo378/1qxZg4CAAHWekhBSizQoYF+oJOnghasu+bxvU7StZ825jasuZHUdslXVeZGoz5goHxhL1Wi72LJ3lakMOWtG4eD7XVDHgh4eVna4/RAUS2W9TX/zELYcWTGy8AC8jM/GOBk1PMPTda9rrS57EZ+N2Sde4rOzr5CSx+xw+eeDSJWcY+P9g6gj9W/8xt4V/+vzvkqOr8/yTS0xY8xSlPKZeQ1tshKw9c5elZ/vRXwOMgsFCr1G+kFEqVCMxRcDUV7m7lVSLnY+qbr8iDbdCmPXeFSURAIUC0RYell7jTo+9buGm/+u5AxA5plYYPaoxZgy/kedDEBWlmplj/fH/YCp45YhxdKOtd1ELMKGB4dw5dz/4CAj2KqLypvbHfKuulENUH1Gv6ZkFQmw4V7VDWoMRZ3ifMwNuIWrZ39B5t8z4Hl2Fb59cQE9k8MUDkBWx1giRpe0KCzyv4YLF9chfceHuHvqR3zx8goa5HOXT9B3uvGOrj3UEoT88ccf0a5dOwBlv/glEglycnJw/PhxTJs2DePGjcOhQ4eQmWmYb2JCiGZIL8UGKBOyOg1szfFq6SD4LnmHta0mHbKJ7psQ/ow1drGartg25rWgy28NZFrY4l+3vowxK2EJZgbdU+g4h33iIZTRMECXmkboupjMQvT96xGOvUzA7qcxGLTjcUXAKS2/pJpXy2dwrD9mBd9jjS8a+hlKjE1Vcg5lLerbVKvnf9GgFX7qP5M1/lHATUwNeaSFGVUtPL2AVU/ylxvcS4N1gURFRRq+vhiAzfdVE5hXhIlIgJ03d2DH7V0wEbMzOn3qt0S3WVtwrN1gnVl+LY9zbn3RYc7fuNy8B+f2UdEv4X1sCdxTNf93XhOLzr3GH3IG9GT9K0kkEoSllZVAqNzMJrtIgM33I7Dtoer/LvZz1Kw0FMYiISaEPcPF86uRvHM2Dnhuw6jolzAXKfYgRlkmYhEGxgdi2909iN89D3dOLcecgNtltSUJqQG13GXMmTMHc+bMQUREBC5cuIArV64gKSmp4sIwPDwc69evxx9//IGBAwdi8uTJGDRoEIyMjNQxHUKIgXLheBpHNSGrZ8Tnwd2F/fQ+0KkxxOCBX+mGh4KQ+s1cUIKRUS8ZY6kWdnjq0lpLM9I8Vefq7uk0EjODmV2xF77ywI7Oo+W6gQ5LL0BYFR07vajoudxW3wqDQPT2XzgkrQD3IjIwuKUTZzMFRZkKBdhxaxdr/Ei7wbjXuJPSx1eVQS0cseNJtFbnsKn7RAyN8cPwGD/G+J6bf+O5sxtibetpZ2Jg91/Qt/x9VS04UMVnQlF1ivNx7uI6DIrnXgm3vfMYfDtovt7WVc2wtMWEiT/hS98r2PDgICsjrVluKh6f/B4Lh3+BE20HaWeScorJKsL3V4Kq3xGyf9V9eT6g4ruoTxN7eCzoDWMjHrpuvo9oGQ1pCJtrXjo+87+OeQG3OBMu5JFhboN4G0dkmNsg09wGhZVqPJoLS+FQnA/Holy4FGSifqH8Xcn5kGBQfAAGxQdg8719ONJ+CHZ3Gok31ZT4MVRRGYUwNeahnrUZ+DwejPS8hJGmqDXVoUWLFvj222/x7bffwsvLCxcvXoSnpycKCsqWtAiFQty5cwd37tyBg4MDxo8fj0mTJsHNTfHaSoSQ2seZo6Ni4n/LeCZ2aKDp6ei9QhNzhNm7oHWlxhudUyPL7oD0KDuhtskoYBccL/du7CtYCZlPqi+36Akxnx761dQj13YIcmiEdplvl6x1So9B76QQPHNpo8WZ1Q6lQjG8YrNgY2aMM/6JrO3+ibkY3NIJIhVEbr73Psv4PgTKmmZ8N3Ce0sc2NBIeH3NGLYb/4a9Qr+jtDW2dkgIcv/oHBk3/DSL63tEqTVdPaZibhmvnfkWHDHbws5RvjM+GfoaDHYdpdlLqwOPhr67j8NC1HU5e/YP1nWEpLMWxa5vRIzkMSwfON4jPAY8jFzIqo5DxMORpTBbOByRBIJJQAFJO7dJjsdTnHD4Mvs+ZNcxFyOPDr15z+DRoCe/6rfCqblOE13FGjjl36SUu1qWFaJmVhHaZceiRHIYeSWHolhpe7TJv+5ICfP3yMr5+eRm3Grtjfc8puN3YXS/vGW7FKfYeFYslmPuPL45Valxjb2GC1SPbYFG/pox9BSIxTIz0oz6spmhsvVWvXr3Qq1cvrFq1Crdu3cLFixfx+PFjiERlH7DMzEwcOnQIhw4dQrt27TBlyhSMHTsWtra2mpoiIUTPVLUce/VICgbUhG+95owLaKfiPLjmZyDBxkmLsyJVCauihuBErqXYLateil0bfT2gGZYMbIEma25VvzOPhz3uI/Dn3X2M4QWvPCkIqWZ5xUIM2/0Uz+OyZe6jqqWrLbISsdzrDGv8xwFzkGZZRyXnUIXRberpzP1eipU95o38GlfP/48x3i/xDVY8O43/9f1AK/PSt8zHYoEIIrEEVmZlt2n6WHq5fXoMrp/9BQ3zM1jbki3rYMr4H/HUta0WZqY+fvVboPvMzdjvuY2zac3XLy+jdWY83h/7PXLNrLQwQ9Xh+s658l9Nyco23Y/A66Q89s6EoVfiGyz3OoNxkd5y7Z9g7YDLLXrCs0lX3G3cUen3U76pJfzqt4Bf/RYVGbsWghK8Ex+AEdG+GBPpzWg+xmVorD+GxvrjeYNW+L3nVFxs2UtvGjMBQHqRuPqdKnkSk8kIQAJlNUq/OP8ao9vWQ1MHSyTnFmP60Rd4HJ2JLq52ODWrG5o76vdnX1U0/s4wMzPDmDFjsGfPHjx48AArVqxAr169YGRkVFE/MjAwEKtXr8aAAQOwZMkSPHnyRNPTJIToAWeu5dj/ZUK2b2Cj6enonZ5S3UIBwL9uM9ZY51TZS0eJ9snq/swXizAugtn8pMDYDLca166ufvLcwJsZG6FRHQu5j3mk3RAUSdUDnB7yEHbF+YpOjyjgYmBylQHIypSKy0kk2H57N6vu1lPn1tjbabgyR66WtVn1WVIfdnWFs60ZZnZ1xYV5PXSmSQQAXG/eHVu7jmONr3x2Cn0T5FvqWZvtehIN+5UesFlxHUsvB8r8ftdl78QF4OE/yzgDkD71W6LHzM0GF4AsV2BqgffHfo/v35kLEUcAZmS0Lx6f/B5Nc5K1MDvV4frGKRWygzgByRSArEqHtGhcOL8GT09+X20AMs3CFn91GYv+7/+OxgsPYNHQRbjYqrfaAtpFJmbwbNYNSwZ/jNbzd6HLrD/xW8+piK6mtEbP5DCcu/QbXh3+EhPDnurnU5RqJOcW452/Zcen5v3jB4lEgqWXg/AwKhNiSVlTtUVnX2twlrpNq+FpR0dHzJo1C4cPH8bTp0/xxx9/oHPnzgDKbqpKSkpw/fp1fPTRRxg+fDgOHTpUsZSbEEKkl2OLeHykWVD2tLz2TGMHo/zqcQQh02QXEjfAawu9I+ufoHdSCGNZJAB4NOuK4kp1gWoDeeIzisZwss2tcdqtH2PMUliKWQo2qJFlwPZHuByo3zep6rDlgWa6oE4LfYwRMb6MMSGPj8+GLlJrZkdzR0uE/DCk2v2OzuiKhJ+H48iMrjDWwSVePwyYCz+pB1pGEjGOXdusUCd5VdGX31PZRQJ8fTEAJf8Fczbfj4R3XLZeZXKOjXgOz7M/s7rJA8CV5t0xaPo6w19ZwePhjx6TMWryKmSYsx+It8+Iw7Pj36F34hstTE415P2dqS+fPU1rnp2Eo1c3we/I1xgf+bzKfW82dsd7Y79Hw08O4ushC/HEtZ3mMwx5PPjXa44VA2ajxcd7MGryKlxo0Ysz0F6ufUYczl36DU9OfoeBcYYVfGv1+50qt9+PzECj1bdwwpeZKXkjNE2d09IrOnHl8ubNGxw+fBgHDhyAv78/eDxexX/l2ZFxcXFYv349hgwZgvPnz2t7yoQQHSC9HDvZqg7VulNAJxdb7HuPGYj0q9ectZ87ZULqpYnhXqyxS9V0xTZEw93qVrtPxxpkTu/pNJI1tvCVh0ruuh5HZ2HyYR+EplFmZWVp+bLrn5Y74hMPiURS4+xAS0Ex/rh3gDX+V9dxeMXxkEaV/prYAc625gq/TnfyIMuUGpvgwzHfsrKFm+am4m+ORj/67lFUBgZsf4R2G+5iqxzdf0uFYrxOymVlju15FsNotAQAX18I0JtsyKkhj3D20m+cdeT2dRyOSRNWoNBE8fe3vrrVtAu6z9yMV05NWNvqFeXgzukV+ECqyZm+4KoJSapnXVqI3x8cQtDBz/Hhm/uMRpCVlfKNcbD9u2g/dztGTFuNf1v315nmTRIeH57NumHyxBVoumAf1vR+D1lVZGP2TgrF3dMrcO3sKrRPj9HgTNWnoLT6ep2JucUamIn+0lhNSGnh4eG4fPkyrly5gsREZmHx8l+2bdu2xbBhw+Dr64snT55AJBIhJycHy5cvx6tXr7Bq1Sql5+Hl5YWrV6/C19cXqampyM/Ph7W1NZydndG9e3dMnjwZ7dq1U/o80jIzM3HmzBncu3cPkZGRKCgogIODAxo3bowRI0Zg/PjxsLNjd68lhLzlnM8MQlJnbMVNd3fBx6f9K35OsbJHsmUdNCjMrhirKhNSh1YB1lqc96cSCSZI1YMU8vi42ry7ZialQ9rUs8akDg1wPkB2ZuG4doo3snrq0gavnZqgY6WL6g4ZseibGIwnrspfN4jEEhx9EU/1bRXkn5hb5b91dX54fhaN8tMZY/HWjlil5nqGn/VtilFt66v8uC0cLTGklRP2PtNsZ+Rgx8ZYMugj7Ly1kzH+4Zv78GjWFcfbDdbYXGpSJzSzsBR1zE3Ar6bTaZFAhDH7niOvpCzwtvhiINrUs8aI1txLFn3isjFy7zNkFgrgYGkCjwW90f2/0ijlx6gsrYrGY7pkVuAdHPDcBiMJe0nuL30+wP/6vF8rLxhi7OpjwPvrceLqHxgT5cPYZi4S4Pi1TWiZnYTVvafr1d+PHk1VJ/AkYswKuovfHh6pstt1nokFdrmPxNau45Fo46jBGdZMgo0Tfu43Ext6TMYn/p5Y/OIiXDiahgJlpQiGxnyNnZ1HY1XfGchWoHEOMTwazYRMSUnBgQMHMHHiRIwbNw579uxBQkJCRbajRCKBvb09Zs+ejQsXLuD8+fNYtGgR9u7di3v37mHRokUwNTWFRCLBP//8g0uXLtV4LvHx8fjwww8xe/ZsnDp1CqGhocjOzoZQKER2djaCg4Nx9OhRTJo0CUuWLEF+vuqyEW7duoVRo0Zh8+bNePnyJbKzsyEQCJCSkgJvb2+sWbMGY8aMwf37+vl0jBBNMBYJWUtNy5vSEPlZmRnjr0kdGGPSS7JbZifLXEKXnFvCOU40Z5VnCGusbWYcq4j4w4btkVkLyxXweDz8M6sbbn3SB2dmd+Pcp5o4g6wDY0+nEazhha88a3Awbo8iuS/mSdU+OuVXozydpjnJ+M77HGt86cD5yDe1VH5iMpgb87F+TM1r5FUVEAj4bhA6OWvnc7+700hc4Mi+/vv2LjTL1s1yA5mFpRj492M4/ewJ19U38SCCXdewsluhaazg4d5nsrN9frwWjMxCwX/nEmD5teCKbbISHlWRB6nOXMqF/h447PEnKwApBg+fDFtU1pCoFket8swsMWHiCs5aqQDw65MTOOC5FSZSNWh1WS3+51SYe2okHp/8Hoc8tsoMQBYbmWBztwlo/vFe/DBwnl4EICvLN7XEph6T0OLjPfhs6GdIsOZOCjGWiPGl7xWE7v8EC155gC9nB3BieNQehMzPz8fZs2cxd+5cDBkyBBs3bkRISEhF0BEAjI2NMWTIEGzfvh0PHjzA8uXL0aYN88l/3bp18dVXX+HPP/+sGDtx4kSN5hQdHY1p06bBx+ftEykTExO0b98evXv3RqtWrRjLeK5evYoPP/xQJYFIDw8PfPXVV8jOzq4Ya9asGXr27AlXV9eKsbS0NHz22We4d++e0uckxBA14PhFnkxByBqxNmUmxfvXZS/J7pQWzfnak1L1Tojm3QlPZ41RV2wmEyM+hrRywpROLlXu92kf9rK5qhxrOwiFUktO3wt5BPsi1RTjVySD601qHgbveIKG/7uJry4EQChSrNOjIckpFmLFdcXrrW28f5DVjOZ+w/Y43bq/qqbG6fy8HrA2q/nipKqWRpoZa7FECY+HBcO/RKLUKgXb0iIcu7YJxhzLdtVB3tXM8dlFWHc7DA+jyoL/KXklmH/ar8rXJOexH8RdCmR3CS53O4z5fX0rjP39XRkPqqmr9/udMOUPwuGbFxex69YO1riQx8es0Uuwl6NsRW0k5hth8eAFWPTupxBy1NGbG3gH18/+ojfNzfj/3ScXlAix9WEkNt2LQHax/gRRNcFCUILfHxyC97El6J0UyrmPkMfHvo7D4TZ/F5YO+ggZlvr9oLjE2BS73UfBbf5uLBswR+YybafiPOy+uQPPj3+LPgnBnPsQw6aW5dhCoRD379/HpUuXcO/ePZSWli0lkK5p0rp1a0yaNAnjx4+Hg4N8yyiHDBmCJk2aICYmBuHh4QrPTSQS4csvv0RmZtkFhpGRET777DPMmzcP1tZv04JTUlKwefNmXLhwAUBZ3coVK1Zg69atCp+zXFxcHH788UeIRGVRfzc3N6xfv56x3PvZs2dYvnw5EhISIBKJsGTJEly/fh3166t+iQ4h+ozraWLif0/ezI11otyt3pC+v+FsTpMahUcN27PGqciybhofzi50frEW1oNU1NcDmmPXU/lrFuWYW+NU6wGYF3i7YsxcJMDsoDvY2m2COqYo05RDPghOLbuB3f4oCk3qWODbQS00OgdVEIrEeBCZifSCUgxzc4K9pWn1L1KBITH+mBL2lDEm4vHx9eCFak37mdC+vsylu/JqWEd36+xlWNpizqhvcPPfnxnjfZJCsPLZKazq96GWZsbWc+tDVlAxMqMQdX66ju8GtcDyd1uxao2qMsOQ66FDcl4Jfrym/E16fonqM46Wep/DhgeHWOOlfGN8MHYpzrfqq/Jz6rtdnUcjoo4zTl9eD7vSQsa2IXGv8fjkDxgz+WfE2On+fd/T6Ez02/5Y29PQScOifbHz1g40z5H9QOJmY3csHrwAQU6NNTgzzSgyMcOGnlOwp9MILHv+L75+eYmzVmzX1Eg8/ucH7HIfiR/7z0YOLdGuNdRyp96vXz988cUXuHHjBkpKyn6Zlwcg69Spg5kzZ+LcuXO4ePEi5s6dK3cAspyzszPjmIo4d+4cQkPfPo34/fff8eWXXzICkABQv359rF+/HvPmzasY8/DwgJ+fn8LnLLdlyxYUFpb9wnF1dcXhw4dZ9SZ79+6NEydOoF69sgvSgoICbN++vcbnJMRQSXfGBt7WhFw7mmqoKcOPIxOy6g7Z+lE0v7Zwzs9Ar2TmU3e/us304qZGW8rjCq3rKX4BvNudq0GNp0rSl+Q9REZBaUUAstyOJ9FKn18b5v7jh6G7n+L9Yy/QbcsDJGmguLuRWIQ/7+5lje/pNELtzWhUoYuLHVo5yW4MoG23m3TGH90nscaXe51B//hAtZ9f3k8iV1YjAOQWC7HSIwTX36TKdRyumPW510mYfeKlnDN5S54GCNrwzYuLnAHIImNTTJqwnAKQVbjZtAv6f7AeMTbspmntMuPw7MRS9JCROacr7oanUwCSg2NhLg5f2wzPs6tkBiAj7epj0vjlGDH1fwYZgKws29way96Ziw5ztuNii54y9/vU3wNBhz7H1JBH1FK9llBLEDInp6xOW/mNqZGREQYNGoRt27bh4cOH+Omnn5Rq9pKRUVafpVWrVgq/9uLFixV/7t+/P8aPH1/l/kuWLKkICAJlS7NrIiUlBZ6eb+tELVmyRGbwtUGDBlixYkXFz+fOnWMs3yaEcGdClteEtLfQTOaMoZAOIobZO7OWmFbVIfuPexFqmRepmfERHFmQtXgptro9b+AGv7rMQFXbzHgMSFA+uCLvpbiAY+l1VGYhx566LTqzECcqlXiIzipilHxQV0LiZ37X0SGD2bgl09waK2uYpWdnrtm+j3w+Dzc/6S1zu5kOrA5Y0X8mXtZjPuAykohx9NpmvVmCupsjS1qeh3CXApMx9bAPjr2sunyJvtx7f+57BZvv7WeN55uYY+yklbheCxugKSrQqQn6zNgIn/otWdvqF+bg7unlmBDGLquiK1Z6sGtR13bjwr0QcPhzzAq+x7m92MgEP/edgfZz/8bFVr1rVWHNCHsXTJr4E0ZNXoU39q6c+zgXZOH0lQ24dGE1GufK98CH6C+1XZVIJBK0atUKP/zwA+7fv49du3Zh+PDhMDFRvr38okWLcPr0aezbt0+h15WWluLly7dPIceOHVvta0xNTdG//9taQK9fv1bonOU8PT0hFJalIdvY2GDECHYx+8qGDRtWEaQUCoW4detWjc5LiKHJKSqrOeOSz5EJKaMQMqma9H2PmG+EV3WbMsY6ZMTIrN+1z0uzXVdJ1aS7YgPAhZayAxQErCWWCr6Ys0HNp37XlZiRYvQkdlGt+xxNQNbcUk8tu3JOhTn49clx1viqvjNq3MjJ3UXzdb0a28tunDNSyeXeqiAwMsGMMUtRYGzGGG+Sl4ZdN3doLAIX91/dx5qQrucor8/OvqrR63TRQn8P/HVnD2s8z8QCI6f8gruN3bUwK/2UbO2AQdPX4VJzdoaYpbAUZy/9hq9fXNSf6HQtZVtSgP0eW3Hx4lrUL8zh3Oduo45wn70Na/q8jxLj2pso4dmsG9znbMN378xDvgl3GZGxkT4IPPg5FvtcgBE1rjFYaglCfvjhh/j3339x+fJlzJs3D46Oqu3wNGrUKHTq1Im1hLo6CQkJMDN7e/HTooV8tZLq1KlT8eesLO6uVtV5+vRtnaGePXtWG4w1MjJCnz59Kn6+e/dujc5LxGZ9BgAA/fpJREFUiKHZ+rAsI4+zJuR/y7FpebDypJvTmImEaJMZz7lvWDp352yiOgKRWK66YDYlhRgSy3xYFm1bD/51dX9Jqa6Y3LGBwq853nYQ64J6atgTNOB4WEJk4/rmzi5Sb7OD1Y+Pw76E+R322qkJdrmPqvEx/5zQQdlp1cjWiczz7p1WFhBqWMcC3w7Ufn3QUIeGWDz4Y9b49NBHmBN4R23nPflfBmJ8dhE6b7pf44ZqXM8quC43BCIJ4zokKZd7mTfrWDWalebMf32DswlNvok5Rk9ehSeuNV/lVlsVmphj8oQfsa0Lu3M2HxJsubcf2+7soS7COmpQ7Cv4H/6KURe6skxza8wf8RXenbYGYQ7cGYC1jcDIBJt6TEK7uX/LXKJtJSzBpvsH8PTEd3BPlV0OSh8la6DEjD5QSxBy5cqV6NBBOxdgVWnWrBl8fX3h4+ODq1evws3NTa7XJSS8vVixs7Or0blDQt6mrbdvz27uwKVyh/CaZmASYmi848qCjw2kakKKwUOKVR0tzEj/cd1EcTanSZO9JJuo10nfBKy/U30ztpHRL2EqZmasXm7Rs1Yt+1HW35M7KfyaPDNLnGg7kDFmIhbhk1ceSs1F3gcq9NylZjqnRGDBK0/W+NeDF0DEr3lXaWUzIT/r27RGr/uyfzOcmtUN3w1qgfNze+CjXm/rjW0c1w7RK97Fy8XvQLih+pVA6rKv43CcbdWHNf7Xnd1okZWolnNeCS6rzfbnw0hkqTmoXe5ZjPxJC/cj0hGalq/Tn+PZgbex58bfrPFCY1OMnfQzHjekAGRNiflG+GbIAnwz+GOIOTrdf+F3FecvroNVaZEWZke4WAhK8Oedvbhz5ic0yeNu0Hiy9QC0nbcDhzoMpWswDvG2dTFpwgpMGb+sIolEWveUcHgfW4J1Dw/DXCDfwxxdd/Z1kranoBO0XyRGC2xsbNCyZUuYm1ffTTA/Px+PH78tvCtv9mRlpaWlSEx8e2HVpEkTuV7XsGHDij+npKSguJgi54SUX6Q75zMv8NMsbStuGnX4Ol4ncXXklK5xBwCdDexppD6Z+4+fXPuND/dijVFX7OpVvj2ob2OGYW5OCh9je+cxrLGFrzxhItJM0IMoSCLB1rt7wZf6/jvj1hf3GiseiK5MqeX9ANaNagNrs5oFQae5u2D92HaY0IGd0dvY3hKdXe3A52vxhpjHw8JhXyDemrlKylpQjOPXNsks+6EKm+8r9zuMMxNSxr4rrr+R+7iDdz5Fm/V3seFu9Q+atOGD4Ps44LGN9VkpMjbF+Ikr8aCR7iWe6KNtXcdjyvgfWTW5AWBcpDfunVpO2fU6oEdSKF4c/QZf+V7m3J5uboOp45bhw7HfIc2yjmYnp294PJxv1Rft5v2NHe6jOYPwxhIxlj0/C/8jX2FQrP6XtrgaJLtjem2iscrZEokEWVlZKC0thVjMLqBeFRcXFzXNqnr79+9Hfv7bgtmDBw9W+BhpaWmMbIa6ddnd0Lg4OTFvgtLS0tCoUSOFz6+swlIR2qyv+TKZZvYWuDy/h8zt310JxvUQ7qdI8hrSwhHbJsrOMJ182Aev498Grcxu3lf4qdRHPRph8TuylzR2/fMRSjmaAyhizQg3TOS4cQCAhJxijNjHbjihqGMfdEZnGVkaj6Iy8em5AKXP8eTzPrA15y45cORFPDbcq/mNQGha2bI5F6lMyKRKT9EuvE5U+mK+R0M7HJwuu7bRvFP+8I7nrv0ir2mdnLFqmOwGW4N2PkN6YalS5/h+UHPM7taQc1tusQB9/35aUWezstd1m0IMHuOmo6ogZGFxKUw5mh/4JeZi5kk/xScuxfPjnnC1435wdCEgGT95ytFJUiJBScnbv8/K3wOmRny8/Ka/rFdiy4Mo7PeOU2zSUlrXtcLZ2d1kbv/qQiDucNTEk5exSIjRUT6MsSwzKzxoKF/2fWVVfecv6tMEi/rKfpjWYdMDhc8nbcOYNhjdhruOXWRGIcYf8uHcVlNCoRBC3tv3enq+4k/cA+o2xd1GHTE47u3KBeeCLEwNfYKTUlmS8noRn1Plv4WrrTk8F/SEUEbg5ocrgbgYqNwFb78m9tg9taPM7TNO+OJVUp5S55jZ1RXLBreAWMS95ND5F0+YGfPlXtYqj/ffPMCAhCDGWJGxKb4bOF/pY5fXAJfHrbB0zn9jJ0tTFJYWQcwR5ZJ1/FP+iVh9S77ffWbGfJQIlbtmqaksCxvMHrUYt86sZPyO6Zkchl+fnMCKAbNVfs6efyr/vVRQwrwe/qZ/U9wO5/7OLhUqd+2sK6aFPMKR61tYAcgSI2NMmrAcd5pQDUhVutiqNwZN/w2Xz/+PVV+wW2oEnp1YirGTfkaAVN1uon4mIgF+enYaP3qdgbGE+7vzUvOeWDj8c6T+1yiTyCfXzApfDP0Ux9oNwu6bf6NjOrsJWKvsJNw58xP2dxiG7wbOQ7a5YmX5dMXgFo4yf4frw70GABwaYgcTJVMZ1RqELCgowN69e3Hnzh1ERkZCJOPisio8Hg9BQUHV76gGr169wt69eyt+btq0KYYMGaLwccq7hZeztZVvmY6NjQ3j59zcXIXPrQpiiaQi8FMTJcUl8Pf3l7k9KDYToWnKZXk6m4rg7y/7oj8kKQsxeZW25yn+pD0wKh7+drL/DUJT81Cq5PV8QFgUmom4bxgT84VK/TtUnCM4BLw07qLIrxOLVXKOV68DYGPK/e0UGJ6v9Dn4YhHqSV2cJVZqSpOYnoPQNOWCd9Y8QZXv2+CEdKXPERyTCH9/2R1s36TkILNYuTdVYHgM/I25f9nklYpl/lsUmpgjxMEVbSvVgeyaGlmWisoRwD9wyxt9nNlBwoD0UtW8pwICkW7N/SsrILKwZueo9D1gykeV/96BUblK/39IBFV/FwbHKfddOCAhkFXb7lqz7hAaKf6rvqr/18DIWPhbZdfotfIKDI2Eawn3kpXoXIFKzlGungUfbwJfM7LX8gpqtuxte5cxjCAkAHzhe6XGQchioezPKADkFRbD398fqYXc11dBMUkITVNuCZ+DkbDK9+2bhAyEZiiX7RkUlQB/h3zExnF/H6bkK/ddK81SUIwNDw6xxjd2n4xYW+WbuFT19yWtoFSk8PtZ1vEDwwpU+tlQp3uNO2FDz8lY9vwsY/yH52dxo2kX3G8kO/BdEz5KPjQEyrIeK//9BkbG4txr7gB8bn4+QjPUl9WpCZPCnuD41T9gJBVwKeUbY/L45bjRtKuWZmbYfBq0Qu8Zf+Dquf+hXSYzINE4Lx0P/1mGaeN+wK2mXbQ0w9qnfXoMDl/fUnYdzCHX1ALfDF6AQ+3fpaXXSnjm0gbdZ27Gd97nsfLZPzDjeMD6UcBNjIn0xpfvfoKzrfrq3d93UlIi/P254wn6cK8BAGKJLcCRtaoItS3HjoiIwLhx47B7926EhYVBKBRCIpHU6D9tiI+Px6JFiyAQvL2wXrZsGYyNFb+ZKylhPrmv3BynKqamzECR9HEIqa3qFeawLoqT6amjyr2ozyw/UaekAC2yuQND/koGZInyJoSzM6Uvyyj6TcrwAHzWyZa1fLam17SXWvRCrA1zFUOfpBB0S1Zvh2eimB+9/kXDfObDmVgbJ6zvOUVLM6qdVvWdAe/6LRljfEhw/Oom1ONoPqdPuDJY9cm4cC/8c2UjK+NLwDfCtHE/4Hrz7lqaWe0QY1cf/T5Yj9scpSHsSgtx9fz/MP/1DS3MrHbhi0X41vs8fI4tlhmAvNuoIzrN+YtqP6qIwMgE63q/h86ztuGBjGZXDQqzcebyepy/uBaueekanqFy6B1SRi1ByJKSEnz99dcVdRD1rVNtUlIS5syZg7S0t0uE586dW6Ol2AB72YyRkXx1fqT3q0kmKSGGiKszdpKMosak5l5K3RwCZUWiudyNp5q1WiWRYHwEsx5kKd8Y15vJXpJR2y3rbofLE+pjbHNL1rZRTS1qdEwR3wg73Uezxr/wvVKj48lLv66ytKtZdjK+9TnPGv9u4HwUmcj3kJiohsDIBB+OWcrqLO9SkIlj1zbrdUdgkR5/KEdF+uDM5fUwkfr7F/L4+GDMd7jckuoMa0KOuTVGT16FQ+3Zq/BMxCLsu7Edax4dBU/G0mCinGbZybhzegU2PjjImZFXZGyKbwZ/jKHTVqskg54whTg2xODp6/Dp0EXIMWVfpwHAhIjnCDz0OT71u0afAz2jluXY165dQ3h4OHg8HiQSCdzd3TF9+nS0bdsW1tbW4PN1tx9OREQEPvroIyQlvc326d+/P5YuXVrjY0r//8obTJTez8SEu8aeuvF5PLjVtarx65vZW8DdXXbNmHZxwYgpUq4mZNtGjnB3l133rLWfD0pFlWpCmpkq/LSqfbOGcHeXXRPS7W6e0jUhO7RqBncZNSGdcorh9kz5ZVYd2raW2bkzzzYTbkHK14Ts1LGDzJqQ/sJ4uMXXrCZkdpEAqfmlcOEozJ1UKRPS2dEObpC9zFkebV3tqnzftn3jj3yJcsu72jZxhru77JqQbZ4UKV0Tsn3LJnB3l10T0u1BHoQiCSIz2X9f0pmQANAtJQKn2rzDGo/MEaJjx06shgeSxFy4+Snf0bFTh/Yya0JGGSXDLbIGNSErfQ+YGvGr/PdunxMFt3Tl67RU+Z6KCkRSKTM7K6dIINdS1I7p0Wiam8oYu9uoI/LMuC/cqlPVd3775o3h7i67JqTbLeWXPbZ3aw53GTUhbTIK4fZc+ZqQH7zTCW3rcdcUSrNMwza/mp1jX8fhWPX0JMwrNaR5P+Qhvhs4H+mWdjU6JsD9b+Jqaw53d3fE5xQBF9mlPNo1cUZYvnI1Ids2tIe7u+ylsW0CfVHKV64mZLtmrnB3bwE/QTzgla3Usaqz8f4Bxr8NANxr2AFn3Pqp7Bzu7u7ASXanZ2M+D0KpFDkXWzNYm3FfjueVCDnrYMr6HnmDRLjFKFYPOSarSGu1IQEg3N4FXw1ZiAOe2xjjQ2P98fPTU/il3wwtzaxqTlYmaN+8MeAfyLk9JEs/l2IPjfbF2Uu/wVTMnL+Ix8fM0d/inFtfLc2sdhIYmWD+iK8RadcA/3tygrV9udcZNMtOxvyRX6OEo6ENqQGJBAtee2LTvQOwFnA/YH/eoBXmjFyMEEfu62ttc6trhejMIqXvS7VNwuNjj/tIXGneA3/d2Y1J4c9Y+9iWFmHH7V2YEXwfC4d/gTeOmu+foQhXVxeZ8QRt3Wsoiq+CjF+eRA1pih999BEeP34MHo+HCRMm4LffflO6U6AmvHz5EosWLUJW1ttgVe/evbFr1y5YWNQsKwIAgoKCMGnSpIqfL168iDZt2ij8ugsXLqBt27Y1nocifH19KxoI8fl8dOmi33VHhEJmTSt3d/caLa0n2tVx4z0EpuTh41ee2HPzb8a2yeN/xIVWfQAAe6Z1wse95OtCT8p8fNofB57HMsasSwuR/dcHjIL0dxp1xND31nIeY26PRjgwvbM6p6kUffweOPA8Fh+frr6+3E9P/2HdoHz+7qfY2ZmdlScP8R/javQ6Q8Jfyt35Uh77PbZiXuBtxtiK/jPxW6/3anzMqv5N4rKL0GTNLYVeo4sOPo/FR3K832vq3Rg/3Pz3Z8aYiMdH11lb8Lqu7IeMihL/MY7z/ZO7dhT6/vUIAcllQduOzjZ48kV/WMkIQp7xT8T0oy84j68qPf98oJJ6iUqRSHDAcyvmBjIbuYjBw6gpv+CmDta+c7Y1Q8LPw5X6ntA1A+Ne4+q5X2EpZD74EoOH2aMX40TbQdqZGAEAfBh0F/s9/2IFiAHgoWs7TJqwHJkW8vUdINxc89Kx98ZfGBnty7ldwDfC6t7T8VuvaRDx5VvZqA3iP8bBfdM9vFayaZyumRT2BNtv7+ZcEQeUNcxa2+s9rO85BQIj7SRvVWfz+Pb45p3m2p6GUlQRJ1JLSmJUVBSAssy95cuX60UA8vLly5gzZw4jADlw4EDs3r1bqQAkANjZMTMfKnfbror0fnXq1FFqHoTou8CUsl+m3Mux32ZC6lkFCJ2wdxq77lC+qSVCHFwZY91SImQueTjkHYeMAqoNqUry/vYcH8FRD7J5jxqdc7GeXxzpgr+6jGWNfeZ3HSYi5Rq4kJozFgnx5929rPHdnUaqNABZFWszYzz4vB8OTu+Mg9M74/6ifjIDkLKPoZkb3/T/jdDIeQAAPB6+ePdTBDg2ZgzzIcGxa5t0suaXKju164J+8UG4fH41ZwBy/sivKACpA463G4zhU/+HTI6uwAMSgvDk5PdolZmghZkZAIkEM4Pu4vXhL2UGIAMdG6H3jD+wps/7Oh2ALGeI90LnW/VFu7l/Y2/H4ZzbzURC/O/JCbw4uhh9EoI1PDv56EFYTCPUEoRMT08Hj8dDmzZt5O4ErU1//fUXli5ditLSt794x48fjx07dsDcnHv5nyLq1q3LWJKdni7fxVTl/Xg8HhwdHZWeCyGGgHM5tjXVhFQGj8dDnybs5j7SS7LtSgvRIjtZ5nHepMr3kIXIR56HeK556axanS/qtUC8bd0anXNuD91eyqIP/Oq3wCMX5sqFhvkZeC/kkZZmRBb5X0P7DOYyp0xza/yspuW+vaW+T2d3K1u2V8fCBHN6NMKcHo1Qx6LqTI3+zdi/11YNa626SYL7O+bTPk3gYKnZpZ2FJuaYNm4Zqz5k3aJcnLyyEcYcNdmIavRMCsHV879yLj39dNgiHGn/rhZmpTq7p7IfsuqrB406oN/7GxBpV5+1zS0rEc+Pf4vxHEtWiWz1CrJw9tJvOHJ9C+qUsMteicHDpm4T0X3mFvhylCkimpVjbo1Phn+Bwe+tRai9C+c+HTJi8fifH3Dw+hY04Lhn1CaKQZZRSxDSyqqsbpG8XaC1RSAQ4Pvvv8f27dsZ45988gk2bNigsmV6pqamcHZ2rvg5Nja2ir3fiot7e7Hs4uLC6pZNSG3VoID9CyXZslImpCYnY0C4/t5ecDSn6SajOQ0AiA3x0auOG8eRBXmJGgdo3bau7CWzS3wuKJWeEJich0PecVh7KxSHvOOQV1wWmNG3BoCa5lSYg1+enGSNr+w3U23LF3dO6Ygm9mUrabq62mHt6OrL8EhztjXHgt5vswNbOFriw66uVbxCcbr03glxbIiFwz5njfdPDMa6R0e1MKOq5Zfof2C0a0o4PM7+AttSdu3mL4Z8gn2dNJgRqwZOVqZY0NuwyvOEODZEnxkb8czZjbXNrrQQFy6uw5pHR/W6sZOmTAl9jNeHv+SsNQgAEXYNMGj6Onw3aL7e1dzUoa92tbjfqCM6z9qKdb2mQSAjM3VO0F2EHPgM3z8/C1MhrUTRJWoJQjZp0gQSiYQRRNM1paWl+OKLL3Dx4sWKMWNjY6xZswZLlixR+RLyDh06VPz5zZs3cr0mOPhtGrGmakESog+kl2Onm9ug1Fg3a3/oO64gZPdk2UFIQ7/o0TR5fhNJd8UGgEsteqp+MrVMfRvlHqSeb9UHUVIdM7ukRWFI7KsaHW/Xk2h0/OMe5p/yw0qPEMw/5Yfhe55CqOeF5zVh7aOjrAyXV05NsEeNARZ3FztELn8XGf8bAZ/F78DVrmalfXZO7oRnX/XHxXk98HLxQDSwVX6Fji77p+1A7HQfxRpf6nMe7wff18KMZGuz/q62p6CUTqlRuPHvz5zZX0sGfYQdXcZoYVaqw+MB2yaW3X8l/jxMY6UMNCHNsg7enbYWZ/+rhS5tudcZXDv3KxwLczU8M/1QryALJ65sxJnL61G3iPvvaKf7KHSevRWPGspufKrLMpRsbKkPik3M8FP/Weg+czOeN+Bu9GkjKMLvDw/j9eEvMDbiudZvVPShTKEmqCUIOWTIEABASkoKfHyU72CpakKhEF999RXu3btXMWZlZYXdu3dj2rRpajlnz55vbwi9vLwqinnKIhKJ4OX19sayd+/eapkXIfrIOZ8ZhKSl2OrjW685xFKhsK6pETL3p0xI1boTXnX5DpuSQgyJfc0Yi7atB38latzR5VGZpQOZy67qWJhg1XB25oksIr4R/uw2gTW+5MWFGs3nJw/2A0yv2Gx4xWZr+5paZf58GKnyY3ZJicBHr2+yxr8eslAldb3aSHVYb1/fpuLPPB4P9koua+bzeejZ2B7j2jeAjbnqG2np4g3RkkEf4UU99rLHfTf+QucU2b9/NC0xl7tzrj5olx6Lm/+uhEMxu4TKsgFzOL+7NCF6xbs48oHyjYg2jW+H+4v64v0uZZnDDWzNkbtWsUZt3w7U7aW3RSZmeG/cD/it51TO7cNj/OB79GsMquGDL4MkkWBuwC0EHfoc74c85NwlztoJI6b8is+HfoYCU+X6QmjT1Y9rz4qY13Wboe8HG7B40Eeskh7lWmUn4dKFNbh36kf0TQjS8Azf0r3fuNqhliDk9OnTK5qx/P7774xai7pg48aNuHv37dNLBwcHHD16FP3791fbOYcOHQojo7KL3fT0dNy8yb4grszT0xOZmWVLTo2NjTF8OHcBVkJqG55EjAaFUkFIK2btLV1aXqbvCkwt8MahIWOsaxXNacT0V69SR1/EV7l9ZPRLVqfMyy16UuVrFVjUrykmdmgAPg+oa2WKIx90wXeDWmBShwZyH+NAh6HIMrNijI2OeoF26fKVZakss5B7KdHN0DSZrykRilAk0N6SPIlEgrjsImTKkZERkV6g+k6eEgm23tkDvlSxidNu/XC/UUeVnGLd6DYwMSr7vJka8fHbGMNZuWJqxH2b0NLJinNcVUqMTfHeuB9Ynx1LYSnOX1yHuoXZaj2/oWuTEYdbZ37izAD7ue8MbOg5RQuzKtPQzgIfdnVFV9e3TT2bO1oqdIx3Wzlh8Tst0L9ZzWvpLxvSEutGt8HA5rpdj1/C42PFgNmYNH45ckzZf08N8zNw68xKrHl0tNbXVW2RlYgb//6MA57bOIPvAHCo/RB0mrMNN5sqHwjXti6udvjxXfZqJkMl5htha7cJaDNvJ45W0UjrnYQgPPpnGS6cX4MOadEamx9hUksQ0s7ODr/88gsAIDAwEAsXLkR8fNU3Uppy//59HD58uOJnOzs7HDlyBO3bqzfVukGDBnj33beFndeuXYuUlBTOfZOSkrBu3bqKn4cPH4769dkFiAmpjZyKcmEiVedGOghJakZW8JarOU3LrCTuY1BFTo0ax7EU+2KL2vP0W50sTIxwbm4PZK0ehaRVwzG2XX1Ymhrj7Fz5u44XmFpgT6eRrPGaZkNykUB2HVy7FR6wXn4Ny64Ga/zhTEGJEBMPeqPJmltotPomjr6oukTPLzdCVD6HD948QP9EZofMQmNTfD9wnkqOv3KYGyZ2cIb31+/g8Aed4fPNAIxtZzjXaz0a2bHGTI34CF02BOI/xuHyfPWVfYiq0wAfjP0OIh7zVqVJXhrOXPqdOs3XUPv0GNw9vRwNOAK5a3q/hzV93tf8pKTweDw8/KIftk/qiC0T2uPFN+8o9PqPezWufqdKHMzZt8NdXe1gYsTHtQW98H5n7uYXuuRiq97o+eEmVod5oKzL/HKvM3hwahmaVdFY0FCZiAT4wetfvDryFYbG+nPuk2Jph4kTlmP+yG+Qw9F9XF+tHdUWb34YrO1paFSijSPmjF6Cvh9sgDdHSaly4yOfw+/I1zhz6Td0Sw7T2PwoR6BMjdd1SDdz4dKyZUuEhYXBy8sLI0aMQJs2bdC2bVvY2dnBwkL+9OYvvviiptNkEIlEWLt2bcWFOI/Hw6ZNm9CqFXcNAXnNmjULz5+/bQwQEsJ9Ib148WLcv38fJSUlSElJwYwZM/Dbb7+xlmr/+OOPSEsry2ywtLTEkiVLlJofIYZEeik2wF6OTYmQqvWyfgvMCr7HGOuWEo4wB3aDBMqE1BxjkRBjIpklT7LNrPBAyfpFurg8U5uUXQL7V5exWPLiAuPhyYfB97Ci/yykqPkBSul/9SI33A3H9M4u6OLKDiqpy8XAZFwOKnvYWiQQY8nFQHzQ2RXGMrLrknJLVHp+q9IibHhwkDW+occUxErV6qyJLq62+HVEWafqTi626OSingY36uZqZw5vqfiw3X9du/kc3wUTK2UCj2lXH/N6NsLB5+qpAX+jaVcsGzAHG6X+Hd9JCMKfd/fh86GfqeW8hqpTahRu/ruSMwNyY/dJ+Lnvh1qYFVP5W87CxAiL+jWtct/vB7fEhrvMGtVn53THpI7OMl4BjG1bH1eCmUkgn7vbYrVXdsXPpkZ8jGhdr2Iev41ui3/8EuX/n9CSMAdX9JmxEbtv/o0Zbx6wtvdOCoX/ka+wvP9s/N1lNCQ8teQi6ZQRUS/w5919aJ2VIHOfI+0G49uBHyHDUj+/w6vD9T1eGzxzaYPeH/6BuQG3se7REdQvzGHtw4cEU8KeYkrYU9xs7I7fe03F3Uad1BopFNGNEgAlg5Dy3KiU7yMSiRAUFISgIMXX4KsqCOnh4YGYmJiKny0sLHDo0CEcOnRI7mM4OTlh/fr1NTp/8+bNsWbNGvzwww8Qi8WIj4/HrFmz0LhxYzRo0ABJSUmMZj58Ph9r165Fo0aNanQ+QgyRM0dn7CQrqgmpTj712Q9quqVE4J+2A1njVBNScwYkBMJeqqHAtWbdIDRSfd04UnOJNo440eYdzAl6WwbGTCTE535X8XO/mSo5hzwfu8UXA3BvUT+VnE8eM0/4Mn7OKBTgQWQmhrRy4txf1df8Pz7/F675zN8X0bb1sKHHZKWP3dnFFi8Ws7//9NEnfZrgQgAzO2rGf3X02jewwcMo5t9hu0o1LwGAp+YKV5u6T4R7WiRmSjWl+cz/OkLtXbBVS7UL9U2XlAjc+PdnOBazSx5s7ToOP7wzV+9SdL4d2By3QtPwMiEHFiZ8HJvRtcoAJAD8b2Rr3AhNq3hAM6yxOcY1s4DQyhF7veLgYGmCjWPbMR4+NXFQbDm4NhWYWmDm6G9xq0lnbLuzB9YCZt1Sa0Extt3dg+khD7Bg+Jd442iY95jNspOx+d4+TIh4LnOfKNt6+HTY5wax9LoqqlgF0cTeAjFZRSqYjWZJeHwc7DgMZ1r3wzcvLmGpz3nYlnL/fwyL9cewWH+8cmqCXe6jcKzdIORzlDhQ1ot4djC0NlLqTkXRN3VNPgSqzMjw8PBg/FxYWIhHjx4pdAxXV3bmjyLGjx8PU1NTrFq1CtnZ2QCA2NhYxMYy60PZ2dlh9erVGDFCfZ0bCdFHLvlcQUipmpCamkwt4VevGcTgMeqqdUvh7pAtpid8GjOe4+L6Ei3F1klbuk1kBCEB4DO/6/i951QUyiiirmpp+dqvzy0Qi1EsEMHchN0Qhq/C+Efz7CR863OeNf7dwHkoNlGu6zlQVrfOULzb0gkzurjihG9ZptBXA5qhQ4OyQOP8no2x62kMY/8Pumh4aSqPh4XDvkCbzAR0l/q9s+neAcTZ1MU5t76anZOe6Z4cBs9/f2Y9tAKAP7uOx5JBH+lMAFKR+7661mbw/mYAYrKK4GxrBjPj6htNdXa1w7Ov+uPYizhI8jLwnpsVeDwefh3uhjWj2so8f5t61niTyqwj+HGvxujTxB6FAhG+PB8g97zVjsfDoQ5D8dilLU5c/QPdOJoJ9kt8A9+jX2N17/fxR/dJKDU20cJEVc+xMBfLn5/BIr+rMJNRA1PE4+PPruOxqt8Mjf3+1SZlL8vndm+EA+93Bn/pZdVMSAvyTS2xps/72Ok+Gj8+P4NFftdgLqOkR6f0GOy4vQvrHxzGibYDcaDDUHg3aKWy78hTfok4rILmW/quxkHIHj3kr4mkKyIjVd91sSZGjhyJ3r1748yZM7hz5w5iYmKQk5MDS0tLtGjRAgMHDsT06dPh4EDZXYRIcy7gWI5NmZBqVd6cpl3m20ztrqkR4ItFEEt1l7U1N4wLWZ0nkWB8OLMeZCnfGB7Nuip9aN24FTUsr+o1w83G7hhWqR6VY3EeFr7y1FgX2uBU7kL8mjRmX9l7tqmDJX4a6obE3GI0tDPH9M4uKs2o++PeAdYN6J1GHXG2FQWrpBkb8XHsw65YP7YtTPh81LN5G6Tt3qgONoxth413w2HE52HVcDe0qsusl6aJ2FWxiRkmTVgO72NLGLUM+ZDg2LVNeNfKHk9dDachkCr1TnyD62d/gV1pIWvbxu6T9DIDsjIej4emCmYqdna1Q4f6VvD3Z9YHrCoAasSxzdbcGPN6ltVg1Kkg5H/CHFzRd8YGrH10DEt8LrAadJmJhFjz+BjmBt7C0oHzyx5i6ul7wVJQjMUvLmKp93nO93q5F/Va4NNhi/CigXKl2HRZAxvmgzZlVyjN6KpcApYuybC0xdJBH+HPruOx1OcCPn7tCUsh9wNaG0ERPnnlgU9eeSDCrgFOtRmAs636wq9eM6VKGQjE3I09a5saByGPHj2qynloxNWrV9Vy3Jr8XdSpUwcLFizAggUL1DAjQgwX13LsRKmakOWdSoliqrpO8W7QkhGEtC0tQpvMBAQ5MYugW5pWn4lAlNcxPRrNclMZY/cadUCumXq71pKa29RjEiMICQDf+pzHDvfRSmehyNsQ6pN//bF7qjsKS8sCdJamml26X56REZlRiPmn/CrGrwSlqOzed1i0LyZKNWwS8fj4ZvACld1gK1snVBe5ysjuXDqoBZa80xw8nnbrxSbYOGHCxJ9w9/Ryxk2juUiAixfWoN8HGzjrFNdmw6J9ce7iOlgJ2fVW1/Wahp/6zdTboBORj8DIBN8PnIcLLXth743taJvJbhTbMjsZFy6uw83G7lg+YLZeBeisSwvxib8nlry4wJmkUC7d3AbLB8zGgQ5DWQ/PDc3C3k0YP1OVJLZ427r4ZsgCrOn9Hr7yvYwvfK+iDkemeLkWOclY7nUGy73OINmyDq4364bbTdzxxKUNom3rK/Q9WltrdEoz/Iq0hBCD0oAzE5K5HHtka+WbDhCm586tWWO9k96wxjTdgddQSCQSxGcXQSCS7wnphHB2V2xaiq3bbjTpghf1mJ3mXfMzMSfotsbmsPdZLGafeAmbFddhv9IDm++zl+kpqyYlGf59lQTPkDSlz20mLMX227tY4zvdRyGgblOlj19ufk/DrKMmC5/PkxmA1OTtlLezGz4Yw+6Y7VSch2vnfkX9KoIQtc20kEe4fH41ZwDy1z7vUwBSBSpf7nzzTnPtTUQOT1zboeusP7G213sQysjiGhbrD+/j3+LchbXomBal4RkqxqkwB78+Po7ovR9j44ODMgOQIh4f2zuPgdtHu7Gv0wi9DEDyecBwt7qwlePhV0dnG6wa7sYYUzYT0pC/JtIt7fBzv5losmA/vh68AMEODat9TYPCbMwLvI1j1zYjct9CJOyeiwvn1+D3B4cwO/A2+iQEo0lOCsxkZFiqsvSMPjO8R7mEEIMmXRMy28yKUeNr8TvN0bCO4dTr0qSqLlO8nN1YY72SQnGg43DGWEYhd40VIltqXgnG7PfCi/gc2Job45+Z3TCyTT1kFsqu4TeOsx5kT3VOkyiLx8Nvvabh38u/M4a/f34OBzoMg0iJmyNF7jGOvSyr/ScQSfD9lSDM6OKKBrbK18XKLRZgzklfeIakVdQU1LTvvM+hVXYSYyzD3Aar+s5Q2TlGtamHAc0cVXY8Q+RkZYr0AvXUIL3cshe+GrIQf0sFm1vkJOPGvz9j8HtrkWlhmF1u5bXQ3wM7bu1kLb8FgJX9PsTa3tO1MCv9Vl0gZvE7zXHweSxyirnrEOqCEmNTrOw/E/+69cXum3+jZ3IY534TI7wwMcILV5t1x5ZuE3CnsXq7BSuic0oEPn3lgQ+D7nEG2Cu71LwnVgyYhUCnJlXup8vufNoHnV3tUMfCBEKRGL22PYRvAru7fbnZ3RqxHhhpu1T7tE7OOPMqqfodtSjPzBJ/dR2Hv7qMxTvxgfjU/zomhz2Fqbj6z7NzQRbGRz7H+Ej2dXmOqSUKTMwRbVsPOzuPwvF2g9XezE1f6HwQsrS0FKamptqeBiFER0g/7aycBbljckd82rephmdUO7xyaooiY1NYVHqy1zM5lLXfwjP+iFoxVJNT03sb70VUdMvLLRZi9D4vZPxvBLpsvs+5v0teBnpINWh4Wa854m3rqmQ+FhxNQ4hqnG/VG0EOjRilDVrkJGN6yEOcaDtI4/MRS8ref5vGt1f6WL/cCMXFwBQAgI8Wuj82z07Ccq8zrPFlA+Ygy0K5oOhHvRrj0z5NIJEAXVztYESpDFVSd0b8zs6j0SQ3Fd97n2OMd0yPgcfZXzB02v/Zu+/wqKqtDeDvmZLee28kpBNaQiihS5MmTVG4gopiVyxgwd676KcIFhQUroiIeFFUkN5Beu+BhISS3jNzvj9ChkxJMpnMmZkk7+957nNn9mnLkExZZ+29Xm2bS1OIIp7dvhSvbV5kcPMTfe7Ch11HWzamVqzub3mohyP+ndEHC3ZmokKlxttrDTfvswX7/KLQ/fZ38Z9D/+DNjd9qrbNa181nduHmM7uwzzcCXyYPwuK43lZJ8HuVFWLc8S2YcuhvpGfrf+7UtTkoDrMypmBzSIIFopNWe18XeDjWLNeikMtqfs8aSEIaEuNr3dfCJZO74PHz+RBFESO+3oFrtlysIAjYEJqEDaFJ8C4txNgTW3DrsY3ok3nQ4E2dxrhXlsK9shRBJdeQnn0MZ9z9sSc8SYLAWx6LJCFFUUReXh7Ky8uhUqkM7qNWq1FdXY2qqiqUlpbi8uXL2LVrF1atWoXNmzdbIkwislEFZVV4/o+jgCjqrQlZdz3IlKC2Xf0gpWq5Arv92qFX1hHNWNKV83CuLEOJ3Y3K03N5ZdYIr0VafSwXa05cwfsGpsS+s+4UMvPLDR438pT5pmLX7YoLAJFeTojwYiWxVERBhre6jcN3v3+oNf7M9qVYHNfb5MXOLzej6qxuxe2i3Rfw8cbTcFLK8eKgWPSP8THqHKIo4qMNVmz+J4r4eO18vW6XWwNj8XVy82+KyAUBXUI8mn2e1shQgZQlCm+eyfgPQgsvY+KxjVrjXXNO4refX8GQcS+3ic63tRSqasz9+zPcdfBvvW3Vggz3DH4Y3yUOsEJkrYMxhYARXk54aXDN0jW2nIQEat6Lvk0agJ9jumPWjp/wyJ6V9VYWplw+i0/WzsP7677GynapWBbTA39EdkG+g4vB/c0hsPgqhpzZg1tObsXgs/9CqTacP6hrp380Xku/FSvbpdlM5WatATE+WHPiSrPPMzU1DL9ev9lniKH/bEelHFNSQ7FgZ6b+RiPUVu49mhGJjzc2fZq+IAhID/dsfEcbc9XJDfNShmBeyhAEFl/FsNO7MfTMLgw8vw9ulU3/riODiNRLJ/BvBJOQgMRJyP379+Ozzz7D1q1bUVkpzbQMImr9xn+3C3+fuALP8mK9jqd1KyFTQz0sHFnrkhzohp2Z+fVu3xHYXisJKRfV6JpzEutDky0QXeuycHcm7ly8t97tDX2BMTQVe0W0aUnIqWmhiPBywpK9FxHu4Yg5tyRbtflEW7AkNgMvb/5eq7FQ4tVMjDmxFcva9zTpnFOW/GtyPFWqmpTR7gv5+M/iG+cZ/tV2ZM6+Cd7Ojc9GmbZ0v8nXN4fRJ7fh5jO7tMZUggwPDLy/WV0sa/FPomkssTSwKMgwZehjcK0qw/DT2v/2vbKO4PdlL2H4LS+gyL5pnZNbIvfyYvy08i0MOK//d1guV+LW4U9jpYnvEZYU6tG6k8bq90ZA9uRKa4ehpcjeCc9l/Acfdx6BWTuWYfq+3/Vu5tSyU1dj7ImtGHtiK6oFGTaGJGJ9SBK2BMVhe2Cs6X9rooiQoitIzz6G9Oxj6H9+Pzo2YU3Kv8JS8HbaOJuaNq7rnm5hJiUhdf9zBsb4oGOQG/ZmNa0a8pXBsQaTkF/f2lGrSVxD7ukWjm93XUB+mQ1XMkok28UbX3UYhK86DIJSVYUuOafQI+sIumcdRbfs4wgpvtroOVSCDDsC2rMxzXWSJSH/+usvPPbYY1Cr1c2alsEvQ0Rt26ebzuDv62/cQQY6Y19yvlEJqZCz11Zz3J0Wiq93nK93+3YDzWm6ZR9nEtIEn285Z9JxLpWl6J+p/UXznKsv9vlGmnS+eD9XDIjxxWtD40w6npquWq7AO2lj8fnfn2uNv7hlMZZHpzd54fzMvDIcv1x/V8dG47m+YNQ3O7S/oJRXq7H8YDbu6dbwelpXSioafN2QmnNlGT76Z77e+KedbsY+P9tuFtEaGFrfqr5P/e19neHjbIeyKhUOZBdpfvdMVSVXYvyIWfht+St6CbiMi4fx99LnMWTsy82ejm/LIgou4befX9Va4qFWoZ0jRo6ejQ2hlq+8eSQjEp6OSrz8Z8PTZ+3kMlReb8j2dL9oS4RmNq2pEV+usydm9LsH73W9BQ//+xvu3f8HPBvoFqwQ1eiXeQD9Mg8AANQQcNbdD8c8g3HCMxhZLl646uCKa44uqJArIYiAABEulWXwKSuCT1khwopy0f5aFtrnXYRPeVGT4q2UKbAspjs+7Doau2y8m7edXIZbOwajtFKFjzaexoFs4/9bdV9dne0VWPdAD6w6kovbv9+jv389aZP6flMndwkxOgmZGOCKvTN6449jlxHm4YhbF+5GUYXtroEqlSq5EtuC4rAt6MbnZreKEsRfzUT8tQsIKbqCwJI8BJTkwbO8GC5V5bjs6Iavk2/C1uB4uDC1BUCiJGRxcTGef/55qFQqg0nE2jHdF++6+9rb26N9+/bo16+fFCESUQtQUlGNR345qHkeWKyfhKw7HZuap3uEF94YFodnV+l3vQaAbQaSkGnZx6QOq1Xads60Lq5DzuzRqwY2derR+A6BCHJv3ZUntmpB4gA8u20pQotvVEYkXT2PCcc2YUl8n6ada5dpU6xq1VY1rDmh3536hBHJzYNN+EIlhdnb/ouwIu0KkyxnL7zQ4w6zXYPfGZqmvuTM0Zn9tZ6boyqsQmGH0aOewx/LXkTPLO33rtSck1i79DkMHvsycp1b3nTAxvQ7vw+Lf3sPfmX6a7BecPHG8FtewH4/025QNdfjGVFYe7Lhyq+PRydhSKwvNpy+hpQgN3S14dksTW0mMTUtVOvGzpBY86zZLLUsV2880/tOvJY+AVMOrcEDe1ch/tqFRo+TQURUQQ6iCnIw9Kx+csxcTrkHYH6HwfgmaQAuO3lIdh1zmpYeBgCYmhaGqWlh+HzLWTyz6ggqqtW4Nz0cn2wyXPUZ6GYPf1d7vXE3ByVu6xSMhbsv4PejuVrbvJ3M30ej7sfLME8n3Jtec2OSSyPfUGjvjO1Bcdge1PgNfVZC1pAkCfnLL7+goKAAgiBAFEXcdNNNGDx4MHx8fLBixQosX74cCoUCc+fOhVwuR35+Po4ePYrly5cjN7fmj8nFxQWffvop/Pz8pAiRiFqAzWe1k466TWkA7enY1Hyz+sfglT+Po7xarbct09UH2c6eWv8O6dnHa+be1XlTlT25EpM6B+OL8Smwl8vw5toT+GD9abg5KDBvfApuat8yPozbotEnt+mNmTIV+8fJXTAyMcAcIbVJ/q72yClquDNnQyoUdngjfbx+NeTWJVga26tZnbKb6s/jlzH8y+04ZmQ15Zaz1/DqX8ehkAl4fWi8xNE1LOHKeTy+e4Xe+BN972oT03BtQXPWhBwa56f3JdoUJXaOuHnMi/jfzy/rJSJTLp/FlsVP4+ZbXsQx75BmX8smiCKe3vkzXt+0EHJR/716j18URo6ejSxX63RxfyQjEuFeDf/9jUz0x3+6hMDdUYkYX+nWFrSWxzOisPbEFZzLK4Ovsx2eHWjb1Xq6Suwc8X+dhuP/Ot6M1EsncOehtbjt2AZ4lRdbPJZLTh74MTYDP8T3xo6A9jY75bo+D+g0zLy/RwSmdQtDlVqEo1JuMAnp5qDAdxM7NTgj9P4eEVqvn3KZgOEJ/k2KzdI/yZb1LycN/gxqSJKE3LJli+bxxIkT8eKLL2ptX758OVQqFURRRPfu3QEAQ4cOxT333IOZM2di7dq1uHr1Kl544QXMnTtXihCJqAXQTYQZTkKyEtLc6v3MIwjYHtAeo+s0RgkquYaQoit6nZkX7bkIEcB93cMx+4+aasm8sircvmg3sl8cxKnzJrCrrsLw0zu1xvLsnbE+pGlT7d4YFodxKUHmDK3N+XhUEm7/fjeaM5v066SBmLljGSLqrA0Zm3cRtx9Zj4WJ/Rs40vxWGZkIulxcgb6fbdFMo9145hr+O7mLlKHVSxDV+Pzvz/QaFvwdloL/xmaY91ot7Euvtdkb+freI8LTLElIoKYSZcjYl7Hil9fQ//oU0VpRBTnYvORpjBn5rFWmJpuTW0UJvv7jY4wxcEMKAFZGpeL2m5/UahhnaYrrJVL1/d2UvjkM9gpZs/6u4vysn7hs6OU/KdAN+5/oi/P5ZQh0s4eXBBVqFiEI2BnYHjsD2+OxfvegZ9YRjDi1Azef3oXYvIuNH28ClSDDzoBo/BHRBb9HdsFu/3ZNXqbE1inkMiga+E/KeuEmONk1nKa5Od4PT/Vth7lbz8HVXoF3RyTU+3tmK0sH2EYU1sXPEzUkSUIeO1bzhVMmk+GBBx7Q2pacnAyZTAZRFLFjxw5kZNz4oOjq6oqPPvoI48aNw/Hjx7F+/Xrs27cPKSkpUoRJRDZO9z0zyMB0bFZCWtb2wFitJCQAdLt0XC8JCQDf77mIfTqLZ18trYLTM6vwwchEPNAjAjLO5zDaAAMd+Va2S0O13Pi3cnuFTO+uPDXdhI5BCPFwwM7MfLjZK3D3j/uafI4quRKvpU/Al39+qjX+wtYlWBzXu0n/rlLR/bD81tqTWuv4FZZXY+h8/W7tljB93x/IuHhYa6xSpsBDA+4ze6UMX6XqZ+hnE+HlBB9nOxzJvVE19d3ETvrHmvnfqcTOEcNveQE/rXwLw87s1trmVV6MP396AdNvegALkprfMd0aOuecxA//ew/t87IMbp/TaQRm9L3L5hM2Dsqmx/f8wBi89vcJADXTQD8clWjusBpkyq+qq4MCiQGtZz3SarkC60OTsT40GU/2vRv+JXlIzzqGHllH0DH3NGLysxFWeBmyJqSaShV2OOEZhOOeQdjtH4NtgbHY7d/Oqkl0czPld8eYKbuCIODt4Ql4Y1g8ZIJ0yS2+/5kXv/bUkOQTbmFhIQRBQHh4OHx9tb+YOjs7IyQkBJmZmThw4IDesXZ2dnjkkUfw0EMPAQBWrVrFJCQRAQACDDSmyXZhEtKStge21xtLzzpWb1ffg5f014urVot45JeDuFJSiZcG668zSYbdYqDyZXl0d6OODXZ3gFIm4MNRSXBzUJo7tDapR4QXekR44cRl06enfZfQH7N2/ITo/EuasXYFl3DXwb8xL2WIOcI0q60mrmVqbiGFl/HWhm/1xt9NHYPjXq1kym0LEe3jrDfWNdQDk7uEYPIPe3ChoBx3dg3FuA6BevtJ8V2sXGmPMSOfxderP8btRzdobbNTV+Pr1XPQI+soHu5/LyoULaM6TaZWYebOZXhpy2K9yl+gJpEz/aYHsSjBcuvo73m8N05fK8W4b3fVu485/31fHhyLOD8XHLtcgkHtfdEz0vqzYGykuMxqcpw9sSImHSti0jVjDlUViCjMhXdZEbzLC+FVXgzF9d9ZEQLKlHa44uiGK45uyHV0x0VXb4gCZ8Y0h9yIrJazgapKJ6W8pc1sbxX4I68hSRKyrKymUqO+9RyjoqJw/vx5HD9uuGNa37594eLigpKSEhw6dEiKEImoBRB17qbqTscuUjqi2I7rfpnbvPEpmPzDvwa37QqIhhqC1p3utEsNd7+sz1c7zjMJaSSZWoWRJ7UrzkoVdvgzQr+6yJDM2TdJERahedUH1XIFXuk+Ed/9/qHW+EtbfsD38X1srhrEJqZ0iSI+W/M5XKu0q4KPeQbjtfQJklySX9TqNyElCDP/dwSqOhWyd6WFokuIB048M6DBY6X6uVYqlJg8bAbOuAfgue0/6m2/58Cf6JxzEhNGzMRpD/3kqC2JuXYRX62eg15ZRwxuP+UegLEjn7F4A5qUIDfENjIlOsZXP0H9YM8Ik64nCAJu72y9Gwx8CTBOudIeR71DrR0G6fB2tkOvSC9sOnOjmGPBbR2NOtZQApNMx8Y0NSS59eDqWlN6Xt+H1bCwmi5ReXl5KCjQ7+imUCgQGhoKURRx9uxZKUIkohZIdzo2qyClMaqBhiXFdk446BOmNdYl5yQUOh2bjXGxoLzJx7RVPbOO6HVA/T2yC8qU+p0TybKa+3Hyh7jeOOyl/aUtoDQfT+z6pZlnbr53/jmJxf9Ks+6XqW47ugHDT+tXX9076EHJKtu4hlP9QjwcsfiOzkj0d0W0jzM+H5uMLiEeRh3b1I7DTSEKMszuNQn3DHoI1QYqrTrnnsbe7x7FA//+D4KB5i7WZlddhdlbl2D/dw/Xm4BcGZWK1EkfWKUDtiAIcFTKDU4trP361y3MEzF1KmUVMgF3dm2ZCSq+BFBL98MdnTEq0R+dg93x3ogEjElu/AZMhKcjuoa6G9wWa0JDKf4Z8bWkliRJSE9PT4iiqOl0rSs09MYb0MmTJw3u4+JS84tdVKQ/lY+I2gat+xiiiECd6dhZbEojCRd7Bf7Tpf6Kgx2B2tWLTtWVSLms392PzGfMia16Y79EpxvYkyzNQdm8j1JqmRzPZPxHb/zJXcvhb6AZl6VN+mEPTl6p6Zxt7UJI79JCfPzPfL3xuSlDsLGJDZrIfMalBOHAU31xfFZ/3Nc9wujjLPFl7OvkQbhp/Ku45OSht82lqhyfrv0Cfy+djaj8bOmDMYYoYvCZ3fh34aN4ecsPsDdwg69CrsCTfaZi9OjnkO9g3QYt8X71r3kolwlYM707HusdhcldQvDHtHR0DfWwXHBmdHdauN7YTe3118Imaqr7ddbpjvFxNmnd1MaEeDhi+dQ07Hq8N2b0aQeZTKj3BpuznRyRXk74toEO3Y/2jmpyDDYwl8LqeFOzhiRJyMTEmsWCz507h5ycHL3ttZWQAAyuCwkAly7VrI9kE1N/iMjq3CtK4FRdqTXGpjTSUSrqf3vYEhSnN9ZLp0EE1e/01ZKmHSCKGH1Cez3IKpkcv0WlmjEqMlWQm4PBdfGaYmW7NKwP0W604FJVjpe3/NCs85qDKALf77lg7TAAAB+umw/fMu1mV5kuPpiZMUXS6/IrgzQs9XNdH5qMzpM/wobgBIPb+2UewMEFD+HNDd/CraKJr89m1DnnJP76aTZ+//llxF8z/De33yccaXe8jw+63mK1tfRGJfobvW+IhyM+GJmIbyd2Qv8YHwmjktYtyQHwc7lRaR3j44wBEv33ZNjAepdkOc8NiEFyYE0y38NRic/GJls5IqDojWE49ewAZER517vPmOQAjE6qf+aUIb7OLWMdXimxMU0NSd690tNrqjNEUcRbb72ltz0u7sYX2NWrV+ttP3bsGC5cuABBEODubrgEmIhav7q3IHTXgwSAbBd+UJNKQ++Rmwx8ket50fB0MdJ3Pq+s8Z3q6Jx7CuFFl7XG1oZ2QIGVK2CohiAI+GVKKvq180aEp4lrOAoCnupzl97w3Qf+QvzV882MsPkOG2gwZWljjm/BpCPr9cYfGHg/iuy5NnBLZMmKkEsuXhgw4XW8nToWagPvcA6qKszcuQzHv5qOh/b8BseqCovF1v3iEfz8y+vYtWgGBpzfb3CfakGGd1LHoNsd7+OAr+WnX9d1V9qNYpK2UtQT6OaAzQ/1wouD2uPNYfFY/0APOJq5Wi3axxkLbuuIaANraVLL1diyE0HuDtg7ow/OPT8QuS8NwoCYllFha6+Q4+cpqcicPRB5rw7BxE7BjR7TUCV0fCNrzLYWXBOyhiRJyKFDh2qSh3/88Qduv/12rF+/HtXVNVMK/P39ERMTA1EUsXfvXnzxxReaY3Nzc/Hss89qKiATEgzftSSitkV3PUgAyGIS0ipOegQix0n7BlGvi4etP1ezhTCmk2FdhqZiL48xris2WUZCgCvW3N8Dp58baPKX8l0BMVgcm6E1JhfV+OCfr6z+t7V0fzYKy6usNpUqoPga5v71f3rji2Mz8L92TasIDnV3wCMd3dBAsbcefmeQRrC7g0Wvp5LJ8UzvO9H7tjdx3DPI4D5+ZQWY8888nJt3F17e/D18S/MlicWxqgITj6zHhsUzsXnJTIw+tb3efbcFtkfXSR9iVu8pVunoPTY5EK8OicWU1FD8elcaRjSwbjTQeqdctvNxxouDYjGzfzQC3Mz7uzuzfzSOz+qP/3QNtfbLPTXRj5O7NPscgiAg1MMRCnnL6xQe7O4Id0clFt2u3yjxjs7aiclXBuvPpKrl69I2qiQDXbmWOyBREtLJyQn333+/JpG4Z88eTJ8+HXv37tXsM2HCjQ6GH330Efr27YsxY8Zg4MCBOHz4xrS+wYMHSxEiEbUwQSX6SchsrglpHYKgVw0ZUJqPqIJLVgqoZWlqEvIWnSSkGgJWRHczZ0hkRs35AvlcxmRUyLU7UQ4+9y9uOamfiLa0V/86YZ0LiyLm//kpfMq1qzFzHd3xWP9pTT7dqWf6YXK8C+6M1666CPNwrPdvkzlIadwc7wf7pmSDzWRLcAI6Tf4YH3YZBVU9U5p9yoswe9t/ceGLqfjt55cx6fA/cK0obdZ1narKMez0Tny5eg6y5/4H3696v96mMwBw2dENDwyYjl63vW2V5jO1nO3keG5ge3x9a0cMTzB+KjYZj4nHlkvZSOIwzNQZEi2MIAhYO707XO1rPsOEejhg9k3ttfaJ9HbCuA6GG+KY8jcwNS0U39zaEevu79H0g63E14VJSACQrOf6lClTcOHCBSxatEgzVnctyNtuuw0///wzjhw5AkEQcOnSJeTk5EAURc30jNjYWIwcOVKqEInIxtVdEzawkUrIV4bE6m0n0zVW+bM5OAFjdZJjvS4exmmPxrvttXWKJiQh465m6q0NtiUoDjlcD7VVOusegDmdRuCpXcu1xj/850usjuiMUqVlK8fqen/9KXQNsfwSOdMOrMbNZ/S7YU8b9BAuG2g2YqzJ8S44cq0KWy9VINjNAd9N7IT/HcnBu+tONSNaago3ByVWTE3FkPn1VwFKpUxpjyf63o1vEgfgvfVfY9C5vQb3U6pVGHZmN4ad2Y1qQYbd/tHYFJyA7YHtcdIjEKc9AlBorzN9VhThUlWGsMIrSL5yFslXziE96yh6XTwCO7V+oxldpQo7fNhlNN5JHWMTSw2wElh6dT/vPtQzAgt2ZloxGmqKxv4+zD1t35b1jfbB5ZcH4/S1EsT4uBi8sTeuQxB+2q/fCMyYHKSHoxL5ZVUAAHcHBT4ZnQQnOwUKro+1BHw5rSFZEhIAnn/+efTp0wfz5s3DoUOH4Ofnp9mmVCoxb948PPTQQ9i3bx+AGy/AoigiJiYGc+fOhUIhaYhE1EIYqoSs2x37yT7tLBlOm2doXcheF4/gu8QBVoimZWlKJaShCjhOxW7dXu1+K24/uh7BdW68hBVdwbPbl+L5XpOtGJnlReVn4/11X+uNf500ECubWQ3srJTh477eiI5PhJujPQRBQKdgd4NJSHazlM6gWD/seiwDXT/aaJXrH/SNwJCxL2PI2T14a8MCdLhyrt59FaIa3S4dR7dLx7XGi5UOKJcrUaFQQiaK8CovMtjVujHFSgfM7zAY73cZjSzX+htCWFpDa9qlhnngoM6asWEebaPyy5zqJmA6BbvD3UGBgvKm/w6R5bk7MFdRl51Chjg/13q3i/WkG9VGlELufDQDr685AYjAswNj4GRX87PnW3TLI/lfTUZGBjIyMlBcXKy3zdfXFz/88AP++usvrF+/Hrm5ufDw8EBGRgaGDx/OBCRRG1f3/chQJWS2S001mJuDAg5t6E6jLdjrG4kShT2cq28s3t+THbKNIm/Cp6VbdLpiA8DymHRzhkM2ptjOCU/2uQuL//ee1viTO5fj24T+OOHV+OLvUrHkjEG5WoVvf/8QLlXlWuNn3PzweN97zHYdZzuFJsno6qBAUoCrXlKFWjlBwB+RXfBHRGcMPrsHT+5aXm+DGENcqsr1fk+b4qKLF/6v482YmzIU+bbYcKyBt6y708LwzY4bVXsyARifwhkRTVX3864gCPh5SioGzLX+MhzUOHuFHDP7R+PttSetHUqL1lgOsp23E9r5OOPrWztaJB6pMGFaw2JZPhcXw2+qcrkcQ4YMwZAhQywVChG1QLrdsYuUjii2q5mmxLV0zK+xbn7VcgW2B7ZH/8wDmrH4axfgU1qAK06Wn7LZkhhbCRlaeBldc7Q/1P7rG4mz7g03BaCW77+xGZi2f7XW35eduhqfrfkcN417tU18in1py2L0zDqqNaaGgDuHPi7pFFVD7yet/6dtXTbzFi4IWB3ZBasjuyAl9zT+c/gf3Hp0o8GZGM1VqrDD8ujuWJjYD3+HpUAts90bqT7O9TeM6BHhhQ9GJuL99afgqJTjlcGxCHZnJWRT6VaHNXHpaLKAT29JxkPLD+iNCwDeGBqHdt5OuHep8Tcv2qr6vrM19j7wy9Q0s8diDY19v2orWGpIRDar7huSbnfs2ipIsp7NwQlaSRIA6JF1BL9Gs1KvITIjE0icit2GCQIe6X8f/l34KJRqlWZ4wPn9mHZgNeZ3sM6N290XCixynYFn/8Uz25fqjb/fdTQ2hSSafN4eEaa9b7SBnC/p2OcXhSf8ovBU7ynoc+EgRpzaiV4XD6NT7mnIRbVJ5zzuGYQ/wzthdURnrAtNQoldy0jW6Xa41fVY7yg81jvKQtG0TryZbvtu7xxsMAkpEwQIgoDRSQFMQjaDfwPdsVfd0w2JAfVP8WZir+WxeBIyJycHOTk5KCgogJubG1JSUgAAZWVlsLOzg1xuu3cCichKRBGBOpUIddeDrG99ETLdLckBmLet/rWxgPrXhWQSsmE5RRWN7wRgzPEtemNMQrYdh33CMKfTCDyx+xet8XfXf4M/Irog083XOoFJLLD4Khat+gAyndf1vb6RmN1zUrPOPa1beKP7jEsJxKE/tadj946ynfX5yLLUMjn+CUvBP2E131dcK0qReukEYvKz0C7/EiILLsGzvBj2qio4VNc0R7jq6IqrDq646uiGo14hOOAbjoPe4chzrP9LtK16ok87dAh0s3YYrV6kl3HV3f6u9kZ/hiDzmdI1FB6OSoPbam9SeTnawc/FDrnFlZptTM7r8zPQHTo50BWvD43HikM5etsOP923wTUmTfVwr0h8sumM2c/bGE8nw79HbY1FkpDnz5/HggULsG7dOmRn3+iG1KtXL8yfPx8AsGbNGrz22muYMGECpk2bBlfXlvdGTUTmVXtn2L2iBE7VlVrb6nbGJvPrE+WNlCA37MsqrHefbYGxUAkyraoQrgvZODtF43dsg4quotfFI1pjxz2DcMg7zOD+96aH477u4ejy4QazxEi24cWet2P0yW1oV3BJM+ZWWYYv/voUw8a81OpK9GRqFRat+gB+ZdoVl0VKR9w6/GlUKpr34d2YpRAe6RWJDzecRuH1phBR3k4YHu/frOtSw1pSFViRvRPWhqdgbXiKtUMxq3u6hWHbuTwcvFQEuUzA8wNj8EivSHg61V+dRE236PZOmPTDv1pjcpmAsR2MW0fz5Kz+2JGZz/UiLeSVIbEIdHXA1NTQevepfVuRyQR8NCoJ/1n8L6rVIqJ9nPE4k5B6+rbzRrC7Ay4W3FhH97MxHZAQ4IrHe0fhww2nNeMfjUo0KgFpykehaB9nVLw5BD4vrEZRleXehF4c1N5i17JlkiYhRVHEnDlzMG/ePKjVak33a0OysrKQn5+P+fPnY+XKlZgzZw6Sk5OlDI+IWghD6zFdcr4xra4lfYFpKRyUcqyd3h1dPtyAs3llBvcpsnfCPt8IdM698YGhS84pOFZVoEypf6eTjDf2xBa9SrCf2vds8JNWp2B3uNjLUVyhqncfkl6HQDfsz64/ed8UpUoH3DP4Yfzz43Na40PO/osph9ZgQdJAs1zHVry18Tv0y9Sf7jb9pgfM0pDHmHXWPJ3ssOfx3vhww2nYK2SY1T8aMi7QRq3cI70i8fHoJOy+kA8/F3u097XBBjmtwJjkQNzX/Rq+2HpjpsmPk7sg0M3BqOOd7RXoF+0jVXhUx6tDYvHcwMYTRkKdz2W3dQrGsHg/nL1WhsQAV6PXAG9LZDIBv0xNxQPLDiCvrAqP9IrULJXy/shEvD40Dv9eLICfiz3a+ThLFkeQmz0EQcDSm/2w8Ggxvj9aItm16orylu6/qSWRSXnyxx57DHPnzoVKpdJLQAo6X6QuXLigeZydnY27774bp06dkjI8IrJxtdOsA4vz9LaxElJ6nk52ODarP54fGFPvPpt1pmTbqavRLfuY0ddo6OZUWzbu+Ga9sR/b92r0uLljO0gRDjXBp2OSzHq+9aHJ+CxlmN74R//MR7u8LLNey5puP7IOT+5arjc+P3kQFsf3Mcs1BsQYN4U9ytsZn9ySjPdGJMLHmTdUpMa3Aevq184biQGucFTK0SvSmwlICTko5fh8bAeo3xuh+d8tyewmbovuSjM880SXbp7RzUGJDkFuTEA2oEuIB7Y/moHjs/rjoV6RWnkhB6Uc3SO8mpSANOUnPSqxpsmjt6Mcj3WyTEPN0UlsLFlLsiTkp59+itWrV2ueJycnY/bs2ViyZInB/UeMGIEuXbpAFEUIgoDCwkLMmjVLqvCIqAUxVAlZd01Iko5SLsMrQ+Kw+/HeBrcbWheyb+ZBo8+/aM+FxndqY4KKriJDZ1r7Mc9g7PeNaPTYcR2CJIqKjNUzwgsfjkpEmIf5mk7M7H0nzrr5aY25VZZh8f/eg931dehass45JzH/z0/1xvf7hOPRftPMdh1/VyYUierqGeGJv+7rrlccQtSWRXg6Gl2dyqYoLc+88R2gkEtai0eNkOSnf+nSJc1ajwDwxBNPYOnSpbjjjjvQsWNHg8ekpqbi+++/x/PPP68ZO3jwINavXy9FiETUguh2xgaA7DqVkKyikF59FYvrDXSq7ZdpfHfAOxfvNTWkVmvcCf0qyMamYtfi90jrEwQBj2ZE4ezz5psqXWLniHsGPaw33jXnJN7a+K3ZrmMNfiV5+HnFG3DUWff3moMLxox6FuVc2oFIEgNjfPDP/T243ACRjhcGxRq9L/98bNf/jUlG9ouD8OaweLg7KODpqMR7IxJwjxFN6qTAX5UbJElC/vTTT6ioqIAgCBg/fjymTTP+LvakSZNw5513ap6vWrVKihCJqAWozXvpdsYGWAlpK3KdPXHAR/vNvFv2cThVlddzBDVm/LFNemM/xva0QiRkS9aGp+Dt1LF644/t+RUjTm63QkTN51xZht+Wv4qwoita4ypBhluHP43THpym2BaI4J1Ea+gZ6cVqIBtlr5DrjUV4mq+6nrS9PjROM316aJwfbu1o/KwSVhFbX33/BPf3iIC/qz1m9o/GlVeGIPflwZjRp51Zrz01rf6mRVQ/Sd55Nm2q+QIlCAIeeeSRJh9/7733QqGo6Zlz4ID+AuVE1LYEGqyErNOYhl9gJNfQT3hdqHYTMTt1NXrqdHYm4wQXXUHPrKNaY0c9g3HAJ8Ko4/lRuHWb3fMObAmM0xtf8MdHiLl20QoRmU6hqsaPK99G15yTetue7j0Fa8I7Wj4oIiIb0CnYDc522olIcydP6IYn+7bD1VcG49zzA/G/e7rBUamfBK4PKyFbBrlMkGSdzkHtjVtrGuBspbokSUJeuHABgiAgOjoaPj5N7+Dl5eWFsLAwiKKInJwcCSIkopagNvGlOx27SOmIYjsnywfUhjU05X1tqH4zlKZMyaYbDDWkWRrbi59cWqhYX/N2QayWK3D78CeRZ699Xs+KEqz85VV4lhWZ9XqSEUV88df/YejZPXqbvkvohw+7jLJCUGQt3k52emMRno4oeG0o9j9hnqZEpI9r2dkue4UcC27rCC8nJWQCMCY5APd0a7hRSnKga5OuUfzGUPSKbD2zitJCPRrdp6EclJuDEqGNrOXcPdxTb4xrDVuf1NWooR71rw86JNav3m1UP0mSkAUFBQBqkomm8vWtySpXVlY2sicRtTY7z+fjp31ZOH65GAAQWKLdHZudsW3L+tAkqHW+zPQ7zyr2uvJKK5FX2vj72fhjBpKQ7Y2fiq2Qy9DOWztBf2fXEKOPJ/Oa3iPC7Oc87+aHuwY/qjfePi8LS1e+BYWq2uzXNCtRxDsbFmDqoTV6m9aGJuPemx5i0r2NaefjjC4h2t1JvxifAlcHBac6Sog/Wts2tkMQcl4ajGuvDsFPd6bCoZHqvLeGxUMpN/4f1clOgQ0P9kS3MI9mRmp90T7O2PZoRqP7/XdyF4Pjxv7U3h2RoPV3MzopAF4GbqJQ6+GolOGv+7rXu93dUWn0uXjj5wZJkpCurjV3YmqTkaa4evUqAMDd3TIt04nINszZeBrpn2zEhIW78fKfxwFR1OuOne2sfSeSjWmk19DPON/BBf/6RWmNdc05CbeKEomjsn2iKOLRXw7C98XV8H1xNR5bcbDen2VI4WX0yNaein3EKwQHfZq2gPa7IxI0X0QCrq+FQ9bxcM9IPDcwBon+TatQacyKmHS8mTZOb7x/5gF8tmau7b4oiiLe3rAAT+5arrdpv084xox6FpUK4z/QU+vx85RUjE4KQLcwD8wfn4KBMTUzqeprikbGs1dw3ceWSi4T4OZg3Gvi0Hh/bHskA3Y663wOj/dv8LikQDe9MVd7hfFB2oBAI6sRx3Ywfq1HQ3pEeOHv+7rjrrQwzL6pPb6/o3OzzkfmYY7UXoBT/Un+9r4uBsebkvQnbZK8KwUGBkIURZw4ccKkRGR2djZOnToFQRAQFNS8FwsiajnUahEzfj2k9f3Zo6JEr2sqKyEtr7F1N3XXhZSLamRcOCxlSC3C9vP5+GTTGahFQC0CczaewdqTVwzuO+7EFr2xpe2bPhV7dFIgcl8ajG2P9MKZ5wYgzs+8CTAynkwm4NUhcTjwVF9M6Wrexcuf7zUJy2L0787fc+BPvL5poVmvZRaiiLc2founDCQgz7v6YNiYl1Bob97p69RyhHo44ucpqdj6SAbu7hbGCkgzen9EosHxsEamnlLL0ynYHddeHYypaaEI93TELUkB+HJCSoPH3J2mP827KY1ZbMGHowz/jhurKa83/aJ98OWEFLw8OLZJa0eSbZvQvumfP2q/r3YONq5ojm9rN0iShOzZs2bqmEqlwtdff93k4+fMmaO589mtWzezxkZEtqu8WgW1Tq7LUGfsbJ3O2KyTsL61YVwX0pAFOzP1xl7+87jBfQ11xV5qYldsd0cl0sI8DXbYpNZBFGS4c+jj2O2n36zgmR0/4dltP1ohKsNkahU++udLPL3zZ71tlx3dMGzMS8hy9bZ8YGTzIr24/nNz2MlleKBnBFbdo/19yt1BgYmdgq0UFUnJyU6BryZ0xJnnBmLZlFT4NVIlmB7uibdvjoePsx2C3Bwwf3wK2nmb94aQlOsmDo71RScjk0DUOpkjuTcx1vTf+Y9HJxm1H3OQN0iShBw5ciRksppTf/nll1i9erXRx37xxRdYvvzGXfKbb77Z7PERUcuh25QG0O6MTZbR2Iy4jSEJqBa031L6nWcSMruw3Kj9ovKz0T37mNbYYa9QHPJueCF6ajkaqyY2RanSAaNGP4+LBqrDX9u8CC9u+cHqU7Mdqirw39/ewSP/rtTbdtnRDQPGv4bDPvw9J8Oc7RV4rHdU4zuSQS8Nbg8AGBLnh4W3d0K8nwu6hLjjf/d0gx2nabcZ741I0Hp+b7r2Mi9P9YvGpRcHIXP2QNzdSAMcU5x5doDZlyWp9dvd3ZpdOc3kEClkAj4eldD4jgb0iOD30qaS5N0nOjoat9xyC0RRhEqlwuOPP45Zs2Zh+/btuHz5st7+paWlWLduHaZOnYqPPvoIQE1Z9KBBgxAXFydFiETUQug2pQGALGdOx7a0xtIYxXZO2BkQozWWcvksvMoKpQvKxoiiiHnbziHy9b+R+M4/+OfkFaw8nGPUsbcfWa839iO7YrcqCRJ9Acty9caQsS/jqoP++V/cugQf/fMlBFEtybUb41NagDVLn8fYE1v1ttUmIA/6Rlg+MGpR3h+RgBVTU60dRotUtxHCHZ1DcOjpftj5WG/0iODnqLbk0YwovDIkFn3beeOhXpF4f4R+skUmEzTJPHN/9HBQyuHpJM16v/KGWl4bMKi9r9ZzV3sFP2rVkeBveP1D0lf73UgQBLx1c3yj+3OZkRskuwU2e/ZsJCbWrM8giiJWrFiBKVOmoHfv3pp9du7cifT0dKSmpuL+++/Htm3bNNOwQ0ND8corr0gVHhHZIEMvzoYqIbNctKftcd1626C7LqQMIvpcONjocWevlaKsSiVVWBZzILsI03/aj3N5ZTiSW4wxC3Yad6AoGkxCfh/fx8wRkjXd3yMCjkppPnYd8gnH4HEvo8BOf+rqI/+uxM8r3oBLZakk165PWvYx7Fw0Q6/CFwBynNwtnoCc3IVd4lsqQRAwIjHA2mEQ2Yy547SXwLmnkepFuUzA8wPbY+39PTBndBKcG2k8E+Tm0OwYbdX9PSK0ko4P9Ixo08mh5wbeKCCQCcAHI5u3vqY1mKvrtKHvk8ae29zrfrd2kiUhHRwc8NVXXyEjIwOiKGr9r/YPvaKiAvn5+VCpVFrd7xISEvDNN9+wMzYRGZ6O7cyyd0szpkOpoXUhB53d2+hxUW+sQcf31+NobpEpodkElVpE1482aI0VlFcbdWzn3FOIy7uoNbYtsD1OebasheGpYS72Cvx9X3dkREpTgbTHPxpDxr6EPAPNXUad2oEtPzyN+KvnJbl2XTK1CjN2LceGJc8gvEh/9ssxz2D0mPiuRRKQtRUyPs52eJxTeomolZjWLQxzRifh5ng/PNm3HeYYuSadsYYnNNxRWyojmnhdUzq/j0oKwMYHe+KFm9pj6X+64I2hbXvW5SuDY7Hw9k54fmAM1j/QE4Ni/awdUotR97uRn6s9/rlfv1lgXW04161H0sVAPDw8MH/+fLz99tuIjY3VjNdNSNbl5+eHmTNnYsmSJQgO5mLJRG2NodfmAEONaXTWhJRirTXSZsxPeHNQPMoUdlpjg8/uMapU9cSVEry//rSJ0VnftKX7UK3bVclIdxiogvwhrm8zIyJb1D3CC+sf7IkYH2m6QG8PikO/CW8gx0n/Jm7S1fPYtWgGpu9dJdn07JhrF/HPj8/hvfXfwE6tn4TfGJyAnhPfxhmP5le1/XRn10b32fN4byyfkop9T/RBRzYuaDN+vSvN2iHYDH7pbZ0EQcBDvSKx8u5ueGd4AhzM3KXZw1GJnmZe566hX0W5TID6vRFYMrkL3BwartKs68VB7U2KpUeEF14aHIuxHYLadBUkUPO7dEfnELwyJA49JbpJKjVb+Se0k3OdXWNZ5Cc1atQorFixAn/++Sfeeust3H///bjjjjswYcIETJs2Dc8//zyWLVuGf/75B1OnToWdnV3jJyWiNkG3ErLQzhHFBqYckvWVK+2xLkT7bnxEYS5ir12s5whtX22XvkpLClkF5Qa7YBtDplbh1qMbtcaqBRn+G9fLHKGRjXpneAIUTVzHylj7/SKRcdvbOOapfzPXsboSn62Ziw1LZiEl13xJf/fyYryz/hsc+PZhZFw8bHCfH+J6Y9C4V3DN0c0s1xyTHIhNDzXcPT450A2jkgIQ2IqnFrYl88enGLVf76iW+UWayJb8d3LjN3qM8VCvSAA1zZHq82TfdgAAR6Ucq+7pZvSMgdvZ4Z0sRHctUVPYSK7UJhh/q8EMwsLCEBbGDohEZLwgnUrIbANNabgmpPSSA4xLHKyO7IyhZ/dojQ05uxvHvI1bj624ohoujaxVZGt2ZOo3TzJWv8wDer/jf4V3xGUnj2ZGRbZsVFIAdjyagSd+PYR/Tl01+/lPegah++3vYvFv72LwuX/1tvfMOordCx/Hj7G98Ea38SZPjfYrycPD//4PD+79HzwqSgzuUylTYEbfu/FZx2FmK1e4OZ7Txdqiu7uFwdtZiTELdjW4n7nWB7N16+7vgZvmbUWVSoRSLsBOLkNJZctfX5lsQ1MqEhvy3ICaNQcndgrGa38fR1lVw5X4Pa7PGJA9uVJvW7inI87llQEA9s7ogzBPFiWQZZJ741OC8Odx7SVm+PXTdKwZJSKboff9VBT1umNnubDCwRpcHRRaa6oFutkb3O/3iC56Y0PO7DGwp2FdPtyAIiPXUrQVzUmCG2pI8wMb0rQJHYPd8fOUVCRK1DU738EFw8e8gJe73waVoP9xTwYRtx3biP3fPYKNi5/Gfft+R1hhbqPn9SktwMQj6/HzL68jc95deG77j/UmIA97haLnxLfxWaebzZaAtJPLMKNPTdVM20g1UV2jkwIxNjnQ2mHYhN7tvFH+1s0ofXMYKt4eDkcDU3L5N0LWlDl7IPxdaz4vRng54c97G14zrzEnnxmAsreGQfXucHQIalpV/atDYhvfiUiHs13N66oxH2Eam9rf1qf+12Wz5SYLFizAsWPHIAgC3njjDWuHQ0RW4FFRAsfqSq0xNqWxnvdHJmJQrC8uFVbg5gQ/+L34p94+JzyDcNrdH1EFOZqxPhcOwrGqAmVKw4lLreOvlOD7PRcwvUeEOUO3SQ5VFRh7YovWWInCHr9Ep1spIrI0d0clNj/cE/87kos7vjc+WW8slUyOl3vcjr/CO+Lb3z9Cu4JLBvfrmXUUPbOOAgDOuPnhsHcYzrr7odDOCSqZDO4VpQgpuoLEq+fRPi+r0etWCzK83/UWvNRjIioU5lli5/2RCfB1tkdGpBfCvWqqX2T8QE8GtKVfC0EQzL4eIJFUekZ6ob2vM45fNnzjqjFymQC5rGm/73KZgBduao+Z/aJNuibZPrlMQKiHAzLzyzVjpkzVzzCwlMfM/vX/3rg7KJt8Daphs0nITZs2YdOmTUxCErUhulOoDHfG1n+DmJoWKllMpG1wY13zBAGrIzrj/n2/a4YcVFXoc+Eg/ojUr5I05OW/jlslCalWi9ifXQhnOzmifZwN3rHML6vC8gPZ8HBUYnRSQLPuag4/vRNulWVaYyuiu6HEztHkc1LL4+agxMROwZIkIWttCU5A8p2f4OmdP2PWjp/goKqqd9/IwlxEGlERWZ/fIzrjib5346i3eV+XH+/dTm8sOdAV9goZKqqlabRDtonN6Aw3QNBt+EnUHJbM5Uv5q/v7Pd0w0Azr+ZHtEgQBrwyOw10/7oUo1jRWeqKv/meGxiT5u+Cm9j746/gVAECwuwNu7RgEAOgd5a23//MDY5oWZ5Mjar1sNglJRBRooDO27nRsmQBMTeVas7bkD50kJFAzJdvYJKQ1vkiVVlZjxFc7NOvz3d0tDPPGddBKMl4pqUDqRxs16xFN7hKCbyd2MvmahqZifx/f1+TzETWkXGmPV3pMxIKkAZi5YxnuOvgX7FXmW/pgdXgnvNVtHNaHJpvtnI1xslPg7Zvj8diKQxa7Jtk+c33Ra+fthFNXS810NvNaPKmzUftx+h+ZSmkg0d0lxB27LxQ067xS/ka+OzwBT/2m3RwtPZwzqNqCO1ND0bedNw7nFCE93BOeTk2fhSEIAn6ZmobfDufgWmklRibeaGwX7eOMscmBWHYgGwAQ5uGI2zqyMZKpuCYkEdksw5WQNz5MDI/3x89TUvkBw0p6RBj+uf8TloxKmfY9rsFnja/yskYxx2+Hc7UahHy1/TyO5hZr7fPV9kxNAhIAFu6+gAv5ZSbV5HiVFWLYmd1aY5cd3fBXeEcTzkZkvPNufnhw4P2Iumc+XuhxO065B5h8risOrpjTaQQ6Tf4IQ8e9bNEEZK1HMqKw67EMi1+XWj9brisc2kCnYSJzsFPIMCLBX2vs7jTbvuk/uUsIYn2dNc+fHxjT4podkunCvZwwNN7fpARkLUelHONTgnBf9whNArLWD5M64/dp3bDw9k7Y9XgGgtwd6jmLYbwndAP/KonIZui+OBtKQma53CiH//XuNKlDogY81TcatyzYqTdebOeEjSEJGHB+v2YsNu8iIvMv4YxH4wmPyyWVEEXRohUcczad1hv7+UA2nqvTNOSZVUf09llz4gpcTeggefuRDbBTa1eh/RjbC9Vyvi2TZWS7eOO17rfhtfRb0Tn3FAae24c+mQeQePU8woquGDzmkpMHDvmEYVtgHFZHdMK2wFib+J31dWl8vVlqPRq7UWWOt45xHQKRV1aF0zZYCRnm4WhwHUhbTppSy7Tw9k54+c/jOJpbjOEJ/rivezge+PmA0cdbet1eP1d77HysN9adugpfZzt0Y5ECmZFSLmtwWapon4a7tTMHeYP1PzkSEdVDtzM2wO7YtmRUUv0JxdURnbWSkAAw9Mzumi65Rkh+bx3+vLd7k+8ymupSUYXeWLmE68xNOfS33tjChH6SXY+oXoKAPf7R2OMfjXfSxgIAnKrK4VtaAOeqCijUKhTYOyHPwQWF9s6NnIyodXi8dxQclXJ0/nCDtUPRI2vCN1l+6aXmcHNQ4v2RiY3ud3RmPyzdl4XZfxzTjAW5OSDA1bgbROZchsfFXoHhOhWcRJbg42yPO7uG4NtdF6wdis3jdGwishm6n0ECS67q7cPu2C3DHxH661XdfFq/arI+h3OK8d76U+YMqUGmfv415bCU3NPonKtdeXnIOxQ7AtqbFgSRmZUqHXDO3R+HfcKw3y8S59z9bToByURL22Jorbq6zFFFL5cJSAlyw1s3xzf7XE01PL7hBMoUroNNVmSoKZKdXIbHe0fhlqQAyGUCwj0d8cMdnQ3+LXKdUmrN5o9PwYqpqQa38Xf/BiYhichm7M3SXuw6sFi7ErLQzpGdg1uIgz7hOO/qozU24Px+uFYYP7Xtow36U6QtyZiPCqbcvZ96cI3e2ILEgVwspo3zdFRaOwSiFuHFQY3fsLmza4jJ53dSypES5AZBEPB0v2iTzzM2OVDzWCk3/vX9m9s64ok+7TA41hdv3RyPUI8bMwKc7eSY2CnI4HFsjk2W8OwA7Y7AXk5KhHo4wslOgWVTUlH0+lCcfnYAerfT7yZM1Nop5DKMSAzA3d30bxaFevA7bC0mIYnIZjy5UrujXZBOd+wsZ07FbjEEAb+266Y1ZKeuxlCdZizmcvJKCQZ9sRXJ767DhxtONTk5aOpUIBHAd7syjd5fqarC7UfWaY1VCzIsSuhr0vWp9Zh9EythTcX8fdsS7++K6d3D690uAHhtaJzJ5587rgPsFfprLhrDSSmHQibg9aFxWHpnV+x6LAN/3puOrQ/3Mrj/PTpfVNt5O8Hb2Q7vjkjA79PS8XS/aKx/oCdm9InCvenh+Of+HojxdTE6Hv5tkLk9khGJXpE1n8dd7OWYNz4F8jprBDgo5U2u+GL+nFqbF3Q+0ylkAmb0ibJSNLaHSUgishnn8upUyYmiXmOabK4H2aIsj0nXGxt9cpsk15rw3S78feIKDuUU4YlfD2PVkdxmn7Puh+jyKpXBfUQR+PVQjtHnHHFqJ3zKi7TG/hfVFTlcZqDNu6NzsLVDIGoxPhvbAcdn9UeHQDetcXcHBezkMgS7O+Kd4QkGj3VroJnYMwOiMamLaVWUPSM8UfzmMFS+MxzPXK8W6xzigYHtfeFQT1Lzmf4xiPSqaWbgoJDho1FJevtEeDnhvRGJmDuuA7qGepgUG5G5eDgqseHBnrj4wk248vIQjKlT8WsM5sWpLQj1cMS3EzsixN0B4Z6OWDypM7ya0bW7tWESkohshlDno4lHRQkcVFVa21kJ2bJsDE7ENQftio1hZ3bBrrqqniNMc/JKCfZmFWqN3f3j3iado7G78OtP669PWnNc0+7fTz2o35BmQeLAJp2DWidfF3uUvDkMEzsFI87P+Eon0n7voLYj2scZH4xM1Fqj7pGMKMiuV2XVVmvVlRHpBVf7+pOQ9nLTKiAB4OPR+gnExkR6O+H4rP448GRfXHllMG5uRkON6T30q0MzIjkllqQR6OYAOwVTCUT1mdwlFOdn34Qzzw3E2A6Gl9Foq/jKQUQ2o+7sDd0qSAC4xGqxFqVarsBvUdqLM7tVlqF/5v56jjBNfpl+UjO3uLLZ562b1rhSYvh8TZnFHVh8FUPO7tEay3V0x/+iuhp9jif6tEO3MA/jL0otiqNSju/v6IzDT/fDz1O6ItrHdpvBENmC/jE+2P14b3w4KhGr703HS3XWi+wW5oHUOpWD7g4KLP1PVzw/MMbAmWo09cZSrbnjOqBTsHu920M9HLWmrALAoxmRAGqa4CQGuMLJrv7kqDEe7RWltbZs93BPpPL9glqoh3tFaj1/roG/WyJqWZr3bkdEZEZ1P54HFetXnmVxOrbNcVDIUF6trnf7L9Hp+M/hf7TGRp/chj8iu0gdWpNYojv2XQf/hlzU/lktSuiLarnxb8Vc36vtGJ0UiNFJgZA9udLaodg8/l20bYkBrkgMcNUbFwQBa6Z3x0cbT6O4QoXp3cPh52qPOzqH4NlVR5Fn4AaWKeL8XHBvev1rVAKAq4MCD/SIwCebzgCoaUQ1rVvDxzSVn6s9/p3RG/O3n4eLnQIP94ow6/mJzGF4gj+O5BZrjekuqwAAbwyNQ6VKjd2Z+egZ6YXnBjAJSdRamJyE/OWXX8wYhr6cHOPX2CKi1qHuGnyBJXl625mEtD1vD0/Ao78crHf7nxGdUKawg2P1jUrCkSe34/6B90MUGi/Gf2/dKTzZt12D+0iVgKh73vqSlMY2tJGpVZi2f7Xe+DdJTZ+K3d7XBdvP52uNBbrZN/k8RC1FfCPT090NrPE3iWtsEgAXewWeH9heb+zscwPh/vzvevubckPK2LegD0cmYlRiAM7mlWJwrC+C3c3fKTXM0wmvDjG9KQ+R1P7TNRQfbjiNanXNH5u7gwIjDCxD4GyvwOdjO1g6PCKyAJOTkLNmzWpy5ysiooacuXajMY2h6djZXBPS5iQZqD6pq1TpgD/DO2LUqR2asYDSfKRnHcPW4PhGz//S6mN4oEd4s6epNaaxKXj1bTf2C+vQM3sQVnRFa2xTUDwO+TS9EubutDAs3H1Ba2xiJyZcqPV6rHfDHSWd7BSYmhaKb3bUdKpXygXcY+YqM2pdXB0UCPd0xLm8MotdUyYT0D/Gx2LXI7JFiQGu+PWuNPzf5jNwUsrxdP9ouNdZRoCIWj9OxyYim3AkR7tjcFCJfhKSlZC2x5gk3C/R3bWSkABwy8ltRiUhS6tU+N+RXIxPsfyCznWbXdRbCWnkue7br19xM7fjUBNiAjKivDCzfzTmbDwNhUyGF25qj/a+bGRCrY8gAOOSA/Gfro13K/5ibAf0j/bBySslGJHgj84hHtIHSK2OiStzEFETDInzw5A4P2uHQURW0qwkpLHT0IiIGvP9notazwMMJCGz2ZjG5rjYN95J9LeoVKgEmdZ6iGNObMHTvacYNZe6rErV4HZz1OSbvCakEceFFeZi2OndWmNXHFyxLKaHSdcUBAFvDovHS4PaQyYIUMrZY64183e1R05RhbXDsLh/Z/RGuKcTPIyskFHIZbijc+PJSqJa5prPxYlhRERExjM5CblmzRpzxkFEbdyFfO0pUbrTsQvtHFFiZ/71k6h56nYerc9VJzdsCElEv8wDmrGoghykXTqOHYGxjR4/ZcleqNQiJnUJsWjCzZg1IY1x7/7VkOnU1yxIGogKhZ0JMd0Iyl7ReAKYWr5708Px6l/HrR2GxSllMqMTkETmYqjAYnRSAH45eMkK0RAREbU+Jichg4O5/hQRmY/ux37dJGQW14O0SYIgYGCMD/4+caXB/f4bm6GVhASAiUc3GJWEBIC7f9yH73ZdwNr7u+utR2yO9YkbyzHWt72xtSSVqircdeAvvfF5HQYbFxi1ec8PjMHl4grM3XrO2qGY3ZTUUDzYMwKpH23U28bqMpKas4G1hg29n3wwMhFnr5Vib1ahwfMIZqupJCIiav04h4uIbI8o6nXH1l0P8pUhxiWvSHqr703HtxM7NtjF+qf2PVAl067cm3BsE2Tqhqda17X+9FVsOZsHURSRX1ZlcrzG0q6ENK0xzeiT2xFQmq819ldYCk56mrbGJRMzbY9SLsNnYzug6PWh+HZiR/x0Z1drh2Q2X9/aEZ2D3Q1uC3RzsHA01NY83ke/4ZGhLr0RXk7YM6NPveeZmhZq1riIiIhaMyYhicgm1E3yeJYXw0GlnWSq2xn7zq4heLRXw91SyXIEQcDkLqF4Z3hCvftcc3TDn+GdtMYCS/LQ+8KhJl1rxNc70O6NNfCa/Qe6fbwR2YXlJsWsy+Q1IRvZ/ujuX/XGTGlIQ+Rsr8DkLqEYkxwIN4fW01dQEARse6QXFLIbGfbbOgZxKjZJbnRSAGJ9nTXPb2rvU29SvD7+rvaYxk7sRERERjM5Cblw4UKo1erGd5SIKIpYtGiR1a5PROZVN5ljqDP2petNaYrfGIpvbusE11b0Jbyt+G9cht7YxKMbmnSO/LIqnM2rWT90Z2Y+nv/jqGQT4eqet75k48/7s+s9Pi37GHpkH9Uau+jihZVRaWaJidqueeNSrB2CWaWFeWLTQz3xaEYk3hmegG8ndmr8IKJm8nKyw9ZHMrB4UmesvCsNv96VBpmsaa+ye2f04ecRIiKiJjD5XfP111/HTz/9hGeffRbdunUzZ0yN2rlzJ958800cOXIEkyZNsui1iUgadSvRgouv6m2/6OoNAHAysIYTtQwr2nVDmcIOjtWVmrFxxzfjkf73mtSkBQC+2ZEJTzNUTNW3tmNJRTWWHcjGgz8fMLh9/Wn939Vahqog/6/jzaiW83eYmmdCxyAo5AL+OJqLeH8XFJZX4+U/W3bzmrQwT6SFeVo7DGpjPByVuLWj6evc+7vamzEaIiKi1s/kb0I+Pj44duwYpkyZgr59+2LGjBmIiYkxZ2x69u7di08++QRbtmyBKIrw8fGR9HpEZB3BRQaSkC7eVoiEzKnI3gm/RXXF+ONbNGOeFSUYeWoHlsb2Mvm8H6w/bY7w9JRXq5H28UYcyS1u8rHBRVcw/vhmrbFShR2+6DCkWTFxTUiqNSY5EGOSAwEAZVUqHMstxpK9WVaOioiIiIiofiZPx/7111/Ru3dviKKIdevWYdSoUZg+fTr++eefehfwN0VFRQV+++033HbbbZg4caImAZmamorly5eb7TpEZF11XzUMVkK6sDt2a/BdwgC9sTsPrZH8umq1iG92ZuLNnfn481wZRFHE0dxiFFxvcGPobeunfVkmJSAB4KF//weFqL1kyXeJ/ZHn6GrS+Yga4qiU44dJXbBmendrh0JEREREVC+TKyG9vLwwb948LFmyBB988AEKCwuxfv16rF+/Hn5+fhgwYAD69OmD9PR02Ns3bapCQUEBNm/ejHXr1mHNmjUoLS0FULMOpKOjIx5//HFMnjwZAktCiFqNujcvgov114RkJWTrsDqiEy45eWh1jB589l8EFl9FtoT/xs/9cRRvrz0JAPj5ZCme2wIA2ZDLBHw+NtngMccul5h0Laeqckw7sFpv/ONOI006X10CV4WkBrSk347Xh8ZZOwSiJhkY44O/T1zRPH+4V6QVoyEiImqZmr0w1W233YabbroJb7/9Nn777Teo1Wrk5uZi8eLFWLx4MeRyOcLDw9G+fXvExMTA29sbrq6ucHZ2hlwuR3l5OfLz85GVlYVz587h0KFDOH/+vCYhUfv/giBg5MiRePzxxxEYGNjcsInIxmg1pjFQCZnFSshWoVquwPfxffHE7l80Y3JRjUmH1+HdtLGSXXf+tnMGx1VqEY/9cgj2CpMnBui589BaeJVrV1CuiuyCY94hDR7XOdgdp6+VYkC0D6J9nTVJUyJj2XpHaQeFDOXVanQIdMOdXUOtHQ5Rk7w0OBYHLxXhUlEFEvxd8AiTkERERE1mltXxvb298c4772DatGn4+OOPsXbtWk3n7Orqapw+fRqnT5/GH3/8YdT56lZEyeVyDBo0CPfddx/i4njXnKgtCNKphMx1dEeV3La/XJPxFiQN0EpCAsCUQ2vwbuoYyRY9vFZaVe+20ioVSqtUZrmOQlWNJ3f+rDf+cefGqyB3Pd5b63n/aB8MnrdNa+z+HuHNC5BatZQgN2uHUC9/V3vsfDQDl0sqEe/nAgel3NohETVJjwgvHJ3ZD1dLqhDoZs/fYSIiIhOYr/QDQExMDD799FOsXr0aU6dOhZ+fH4CapGLt/2rV97x2LDg4GPfffz9Wr16NDz/8kAlIolauoe7YXA+ydTnkE46d/tFaY/HXLqD3hUNWish8Jh7dgMjCXK2xg95h+Cu8Y5PP1bedN25qf6MB28O9IhHs7tjcEKkVEwQBAc3s1vvpLYaXJ2guURQR4uGITsHuTN5Qi+XmoESktxN/h4mIiExklkpIXaGhoZg5cyZmzpyJ/fv3Y+vWrdi3bx9OnTqFrKwsVFXdqEgRRRFKpRJhYWFo164dOnfujPT0dCYdidqY2hsQClU1/EoLtLZddOV6kC3F2und0X/u1kb3+yZpIFJztKcbT9/3OzaEJkkVmuRkahWe2b5Ub/ytbuNMqvBUymX4/Z507MjMh6NShpQgd3OESa1cSpAbLh27bPLx/aKleb01Y89CIiIiImqhJElC1tWhQwd06NBB81wURRQXF6O0tBSCIMDZ2RnOzs5Sh0FELURgSR5k0P62mu3MSsiWIiPKuATG9/F98faGb+FaVaYZG3tiC/xL8pDj7ClVeJIac2Ir4vIuao2d9AjAf2MzTD6nTCYgPbxl/jzIOqzZnGbVPd0w7MvtBrcxB0lEREREZp2ObQxBEODq6gp/f3/4+fkxAUlEAG58QdWdig2wM3ZLIpcJePvm+Eb3K7J3wvcJfbTGlGoV7j7wl9liGf/tLnR4bx2eWXXEbOeslyjiWQNVkG+njoNK1vi0Pf9mTqElMhdTKxYf7x3VYMGvyFJIIiIiojbP4klIIiJDar+fMgnZdnyeMlRv7N79f0CuNk+TmGUHsnHwUpFFukzffHoXOl4+ozWW6eKD7xL7GXW8XKKGPNT2CFb4XeoR4YkZfaIarMJkCpKIiIiImIQkIpsgXv+KajAJeX1NyB/u6GzRmMg0fdv5NL4TgAO+kdgUpF01GVZ0BWNONL6mpE0RRbywdbHe8LupY4zu6u7tzO7vZB7jU4KadXxTkoU9IjxR+uYwbHigJ4LdHa2SACUiIiKiloNJSCKyKcFFhioha9aEvLVj875ck2V0CXFHzwjj1jH8vOMwvbEndi1vUV0sxh3frNdkJ8fJHV8m32T0OaTqSExtz4gEfwS5OZh07PgOgU3af3r3CDgo5ZDJapKPTEESERERUUOYhCQim1Cbcwoqvqa37aKLN/5vTDKrbFoImUzA79PS8c2tHRvdd2n7nsh00a6cTLt0AhkXD0kUnXkpVNV4fdNCvfF3U8egXGn8Oo89Ith8iczD29kOmx7qiRcHtW/ScV5OSjw7MKbBtRtTgtw0j2N8nDFBp+oyNdSj3mMf6BHRpHiIiIiIqPVhEpKIbMKqo7kAgKAS7SRkuVyJaw6uGJ/StAodsi4XewXuTA1tdL9quQIfdxmhN/7Ezl8kiMr87j74F2Lys7XGzrv64P863tyk88hlTLCT+UR4OeHFQbHoHOxe7z6ejjeWAHhuYAzOPz8QKUH17w8Amx/qiU9vScbHo5Ow67HesFNof4x0d1TiiT7t9I5zUspxe+fgJv5XEBEREVFro7B2AEREAFBRrQagvybkRRdvQBDg48zuwa3V/OTBmL31v3CvLNWMjTy9A4lXzuGQT7gVI2uYU1U5Xti6RG/8pR63o0JhZ4WIiLQ9f1MMxn+3Gyq1fnXjvzN6I6+sCoGuDvCr0529vjrI14bGwclOgQd6RjR4zXdHJGBYvB/2Zxfi1NVSqNUipqSGIs7PtRn/JURERETUGrASkohshyjqrQmZ5cJpqq1dkb0T5ncYrDduqNmLLXls968ILMnTGjvoHYbvEurviO2klEsdFpHG6KRAnHqmv8FtLvYKpAS5ayUgG3Jn1xCjr9sv2gePZkRhzugkfDomGV0bmKZNRERERG0Hk5BEZDPcK0rgXF2hNXbRxdtK0ZAlfdx5BCrk2sX5449vQfLlM1aKqGGBxVcxc8cyvfHnek2GWlZ/ojHI3bSGIUSmCvN0atL+9S0JGezuaIZoiIiIiKgtYxKSiKyuthFCsIGmNKyEbBsuuvrgy+RBeuOGpjvbgrc3LIBrVZnW2KageKxsl9bgcQ01/SCyJK5CSkRERESWxiQkEVndvxcLAOivBwmwErIteTNtPMrlSq2xsSe2onPOSStFZFjGhYOYdGS93vjTfaYCjXRwt5Prv+2mcaoq2RCx3lUhiYiIiIiaR5Ik5O+//44FCxbgypUrUpyeiFqZBbsuAGASsq3LcvU2uDbk++u+qn+OqIUpVVX4ZM0XeuMLEvtjW1Bco8eHeDhgUHtfrbG7u4WZLT4iYwmNJMyJiIiIiMxNkiTksmXL8Pbbb6Nv376YN2+eFJcgolbk3LWarshMQtJbaWNRqtNZus+FQ7jl5FYrRaRt5o5l6HDlnNZYgZ0Tnsm406jjJ3YKweJJnfFQr0jc1N4Hn9yShHuYhCSJJfrrd6Z2VBr+CGgj+X4iIiIiaoUkSUIeP34coihCpVKhc+fOUlyCiFqR2i+9QQbWhLzoyjUhW7K3b45v0v7ZLt54v+steuPvrF8Au+oqc4VlkoQr5/H8th/1xl/qMRE5zp5GnSMpwBWeTnaYMzoJq+/tjgd7RrIijST30ehErZUC/tMlBPYKdmonIiIiIsuSJAmZn5+veZyQkCDFJYioFaldgyzIQCVkljMrIVuyaenhuCUpoEnHvJM6BlnO2snndgWX8PRO/W7UliJXq/DV6jmwU1drje/yj8annYYbfx4ZE45keQNifLF6Wjru6x6ON4fFY/6ElHr3ZSEkEREREUlFkiSkn5+f5nHdhCQRkSG1lZC63bEvO7qhUqE0cAS1FB6OSiybktqkY0rsHPFcr8l6489t/xFxVzPNFVqTvLh1MbpdOq41ViWT4+7BD0MlM76iLClAf1oskSUMbO+Lz8d2wMz+0VAaaJBERERERCQ1ST6FjhgxQvN4wYIFUlyCiFqRHZn5APTXhMxy4VTstuq7xH7YHtBea8xeVY35f34CQVRbNJY+mQfw7LaleuNvpo3HAd/IJp2LyR+ydSIXhSQiIiIiiUjybej+++9Hz549IYoiFi5ciDfeeAPXrumv9UZEBABXSiqhUFXDvyRfa5xNadouUZDh3kEPokqnyrBn1lE8sesXi8XhV5KHhas+gExnkuq/vpF4o9t4o88zISUIea8OMXd4RERERERELYZCipOeP38eTz31FJydnfHnn39i4cKFWLRoEdq1a4e4uDh4eXnBxcXF6MX4H3roISnCJCIbElCSp5foyWISstWwk8tQqWpaBeMB30i8kzoWz23Xbgbz+qaF2BicgO1BceYMUY9ddRWW/fomQnQqdEsU9pg4/CmjlwqY0ScK741IlCJEIiIiIiKiFkOSJOTw4cM1CUZBECCKIkRRxIkTJ3Dy5Mkmn49JSKLWT3cqNgBc5HTsVkMuA6Bq+nGvpU/AmBNbEH/tgmZMqVZh8f/eQ5dJHyLPUaI1FkURn635HD2zjuptenjAfTjuFWL0qQSwGQ21HEkBbnBUylBWdeOmwVtN7HJPRERERGSIZItT1SYeddcWqjtuzP+IqG3QbUoDcDp2azI6KdCk4yoUdrhj2BOokGvfM4sozMWyX9+EXXWVOcLT88qW73HXwb/1xr9N6IcFiQMkuSaRLbBTyPDK4DjUTlaJ83PBf7oYn3QnIiIiIqqPJJWQqalN64RKRG3XD3tqKtyCmIRs1aZ1C8Pify+adOxe/3aY0fce/N+auVrjfS8cxNerP8bkYTMgCua7p/bEzuV4ftuPeuPbA9pj+k0PAkYuJVLL25kd3qlleaJvOwyK9UVOUQW6h3vC2V6Sj4tERERE1MZI8qly4cKFUpyWiFoZURTx1G+HAdQ3HZtJyNaib7QP5o9PwbSl+0w6/vOUoeibuR/jj2/RGr/96AYU2znigQHTodZpYtNkoojZ2/6Ll7f8oLcpy9kLY0Y9gwqFXZNPe3/3iObFRWQFyYFuSDatgJmIiIiIyCDJpmMTETWmuEKF7MIKAEAQk5Ct3t3dwkw/WBAwdchj2Okfrbfp3v2rsXDVB1CqTJ+arVRVYe7fnxlMQF5zcMHQsS8i28TfR3dHVkISERERERExCUlEViPW6YatWwlZIVfgqlRNR6hFKlU6YMQts3HGzU9v28RjG7H+v88gouBSk8/bLi8LmxbPxL37V+ttK1Y6YNiYF3HAN9KkmB/rHWXScURERERERK2NxZOQOTk52L9/PzZu3Ih9+25MyysrK4NKZULrVCJqser2ntJtTJPl7KVZe89RyfslVCPX2RNDxr5ssHN6evZx7Fn4OB7es9KoqkinqnLM3roE/y58DKk5J/W2F9g54eYxL2BHYKxJsTooZJjZT79yk4iIiIiIqC2yyDf78+fP45VXXkH//v3Rt29f3Hrrrbj33nvx6aefavZZs2YNevbsiQ8++ABFRUWWCIuIbIUo6lVC1p2KfU+3cEtHRBJ5ok+7Zp/jhFcwMm57Cyc9AvS2eVSU4ON/5uPINw/gme0/IjovSyvbrVBVo3POSbyz/huc+nIaXt7yA1yqyvXOc9HFC71vexMbQ5JMirFbmAd2PtYb/q72Jh1PRERERETU2kja7lAURcyZMwfz5s2DWq2GWLfsSUdWVhby8/Mxf/58rFy5EnPmzEFycrKU4RGRleUW16wH6VZZqpcIqpuEfHd4gkXjIunc3yMc768/1ezznHUPQO9b38IvK15H2qUTetujCnLw+qZFeH3TIhQpHZHl4gWFWoXg4qtwaKRKcntAe0wYMROZbr4mxzd/fAoSA7icABERERERUS1JKyEfe+wxzJ07FyqVSi8BKVyfZlnrwoULmsfZ2dm4++67cepU87+oEpHtWn6wZv0+Q52xs1xrkpBKuQA7BadjtxZR3s5mO9clFy9k3PYWPugyqsH9XKvKEJt3Ee0KLjWYgFRDwFtpY5Fx21vNSkASERERERGRPsm+2X/66adYvfrGIv/JycmYPXs2lixZYnD/ESNGoEuXLhBFEYIgoLCwELNmzZIqPCKyAZ9vOQsACNJZDxKAwTX/iHRVyZV4su/duGncK9jnG2HyeTYGJ6D77e/i2Yw7US2XdJIAERERERFRmyTJN61Lly5h/vz5mudPPPEEpk2b1uAxqamp+P7777Fo0SK8/vrrAICDBw9i/fr16NOnjxRhEpGVVatrKqQNVULWTscWIOhtI9K1Jrwjukz6EHccWY+H/v3NYKMZXSpBhj/DO+LzjsPwW1SqphGSOSjk/L0lIiIiIiKqS5Ik5E8//YSKigoIgoDx48c3moCsa9KkSbhw4QIWLFgAAFi1ahWTkEStVO0qDaFFV/S2XXDxsXA01NKpZXIsTOyPhYn9EZ2XhdEntyHpyjkkXM2EW2UpqmRyFNo5Yb9vJHb5R+P3yC6aaf/mFuPjIsl5iYiIiIiIWipJkpCbNm0CULPu4yOPPNLk4++9914sWrQIKpUKBw4cMHd4RGRjQor0KyEvXE8OmbE4jdqQk55BeC91jNWuL5fxF5eIiIiIiKguSdaEvHDhAgRBQHR0NHx8ml7N5OXlhbCwMIiiiJycHAkiJCJbkFVY0xE7RKcSUg0BWVwTstX6eHSStUOQlJ2cjZSIiIiIiIh0SVIJWVBQAKAmmWgqX19fnD59GpWVleYKi4hsVEixdhIyx9kDVXIlAHBFyFbo4V6RSApwxdHcYvSO8kbye+usHZJZiRCtHQIREREREZHNkSQJ6erqiry8PE0y0hRXr9ZMz3R3dzdXWERko3TXhMx0vVFBzenYrVO/aB/0i26d636KzEESERERERHpkWTOWGBgIERRxIkTJ0xKRGZnZ+PUqVMQBAFBQUESREhEtsKpqhxe5cVaYxdcpGkWQmQJzEESERERERHpkyQJ2bNnTwCASqXC119/3eTj58yZA/F6KUm3bt3MGhsR2ZZgg01pfDWPBU7IphZGZCkkERERERGRHkmSkCNHjoRMVnPqL7/8EqtXrzb62C+++ALLly/XPL/55pvNHh8R2Q7dqdjAjc7YRC0RU5BERERERET6JElCRkdH45ZbboEoilCpVHj88ccxa9YsbN++HZcvX9bbv7S0FOvWrcPUqVPx0UcfAQAEQcCgQYMQFxcnRYhEZCN0m9IA2tOxuSYktTQshCQiIiIiItInSWMaAJg9ezaOHj2KQ4cOQRRFrFixAitWrNDaZ+fOnUhPT0dRURHUajWAG9PYQkND8corr0gVHhHZCEOVkJl1pmNT6+dqr0BRRbW1wzDJR6MS8diKQ1pjN8f7WSkaIiIiIiIi2yVJJSQAODg44KuvvkJGRgZEUdT6n3C9tKmiogL5+flQqVRaa2glJCTgm2++YWdsojYgxOCakKyEbEta8r/xtPRwONvJtcbu6x5hnWCIiIiIiIhsmGRJSADw8PDA/Pnz8fbbbyM2NlYzXjchWZefnx9mzpyJJUuWIDg4WMrQiMhGhOhUQqohIMvFS/OcjWlav5b8L+yolGPlXWnoGuKOCE9HvD40jpWQREREREREBkg2HbuuUaNGYdSoUTh//jz27NmDc+fOobCwEFVVVXB3d4e/vz86deqE+Ph4TUMbImobdNeEzHH2QJVcaaVoiJqub7QPdjzW29phEBERERER2TSLJCFrhYWFISwszJKXJCIbp7smZN2mNEDLnqpLxhH4j0xERERERNTqSVJ2+NFHH2H//v1SnJqIWhGnqnJ4lRdrjWW6+lgpGiIiIiIiIiKSiiSVkHPnzsUXX3wBHx8f9OvXD/3790ePHj1gZ2cnxeWIqAU6mluEYANNaS7qJCFZI9f68d+YiIiIiIio9ZN0Ovbly5exdOlSLF26FA4ODujRowf69++Pfv36wcvLq/ETEFGrdCy3GAnvrEN/nanYACsh2yJDs7HfHZ6A/jE+OJpbjE7Bbkh4Z53F4yIiIiIiIiLzkSQJ2a9fP2zbtg1lZWWaDthlZWVYu3Yt1q5dC5lMhuTkZPTv3x8DBgxAu3btpAiDiGzUgz8fAKDflAYwtCYk6+TaIhFAp2B3dAp2t3YoREREREREZAaSJCE///xzVFVVYefOnVi/fj02bNiAM2fOaBKSKpUK+/btw759+/Dhhx8iNDQU/fv3R//+/dG1a1d2yCZq5daerEk+6jalAYBMV1+t50xBtn7uDkpcK63SGtP9d4/ydsLpq6WWC6oOO7kMlSq1Va5NRERERETUWkiW7VMqlejRoweeeeYZ/P777/j7778xe/Zs9O7dGw4ODhBFUfO/zMxMfPvtt7jzzjvRvXt3PPXUU/j9999RUlIiVXhEZANCDKwJecHV28Ce1Jo93U+/Gn5InJ/W87ljO1gqHD1L/9PFatcmIiIiIiJqLSxWchgSEoI77rgD8+bNw/bt2zFv3jxMmjQJYWFhWgnJgoIC/Pbbb5gxYwbS09Nx9913WypEIrKAimqV5nGITiWkGgKyXLTXi+Vs7NZvbIdAtPd11jwfleiPBH8XrX36R/vgzWHxlg4NQM3UcCIiIiIiImoeSRvT1Mfe3h69e/dG7969AQBnz57Fhg0bsH79euzcuROVlZUAgKqqKmzZssUaIRKRRP48dlnzWHdNyBxnD1TJlZYOiazMx9keOx7NwF/HL8PDUYneUd56a4HKZAJm9o/GoUuFWLTnopUiJSIiIiIiIlNZJQlZV3l5ObKysnD16lWUlJRArVZrvnzWriFJRK3HvT/t1zzWXRNStykNwDUh2wo3ByXGdghqdD9rNCoKcXew+DWJiIiIiIhaG4snISsrK7F7927s2LED27dvx4EDB1BdXa21T93ko6Ojo6VDJCIJ1aaQnKrK4VVerLUt09VHb/9541MsEBW1FAn+rs0+R6iLHJnFqsZ3BDAgxgedQzyafU0iIiIiIqK2TvIkZGVlJf79919N0nH//v2oqrrRBVW32tHOzg4pKSlIT09Heno6UlKYgCBqTWoL2YINNKW5qJOE7BXphaE6DUqobbutYxCe/+MoVOqa9w5BAPbN6INYPxf8eewyRny9o9FzfNLPG6NX5hp1vWndwgEASyZ1wW2LdpseOBERERERURsnSRJy586d2L59uybpWLvGI6CfdJTL5UhMTER6ejq6d++Ozp07w97eXoqwiMgGCNdrIXWnYgPalZB/39cdvaO8oJBbrH8WtQDhXk747+QueO2v46hWi3i6XzSSAt0AADcn+Dd6/NhoJwS7GPfW9+tdaRh+/ZwhHpySTURERERE1BySJCEnT55c77qOgiCgffv2mkrH1NRUuLi4GDoNEbVCsuuVkLpNaQDtNSH7x+hPzSYCgDHJgRiTHGjSsbNSPQAA/UMdsDazvN79Hs2I1CQgAYBLFBMRERERETWPpNOxaxOQjo6OGDt2LPr3748OHTow6UjUhtVOxzZUCXnBwJqQROaikN1oajM92RXrLpRDXU9y8eFekVrPRTALSURERERE1BySJiFrqyHLy8vxww8/YMeOHVoVkK6uzW8wQEQtS+107BADa0LWTseekhpq0Zio7Yl0V2LNfd0wd1smXOwV2JWZj31ZhQCAu9LCEOXtbOUIiYiIiIiIWhdJkpCvvPIKtmzZgu3btyMvLw9ATVXkiRMncOLECSxcuBAymQxxcXHo1q0b0tPT0bVrVzg5OUkRDhHZkNpKyBCdSkg1BGS5eAEAZvWPtnRY1Ab1jPBCn+iaxkdqtYjNZ6/BXiFDWpin3r6cjk1ERERERNQ8kiQhJ0yYgAkTJgAAjhw5gq1bt2LLli3YvXs3ysrKAAAqlQqHDx/G4cOH8c0330AulyMpKUmTlOzSpQvs7OykCI+IrKh2QqzumpA5zh6okivx5rB4tPflkg1kWTKZgIwo73q3MwlJRERERETUPJJOxwaA+Ph4xMfH46677kJVVRX27t2LLVu2YOvWrTh48CCqq6sBANXV1di3bx/27duHefPmQalUIiUlBenp6XjwwQelDpOILKBKpcbZvJobEbprQtY2pZnUJdjicRE1Jshdvzt21xB3K0RCRERERETUMkmehKxLqVQiNTUVqampePTRR1FcXIydO3dix44d2LVrFw4fPgyVSgUAqKysxM6dO7Fr1y4mIYlaiYW7LwAAnKrK4VVerLWtdj3IYHdHi8dF1JhoH2d0C/PA9vP5mrGPRydZLyAiIiIiIqIWxqJJSF0uLi7o168f+vXrh4qKCqxfvx7/93//h2PHjkEQBE13bSJqHT7eeBoAEGygKc1FdsYmM5AJqLfjdXP9elcaZq06gpzCCtzbPRzdI7ykuRAREREREVErZNUk5OHDh7F582Zs2bIFe/bsQWVlJYAbXbWJqHU5kF0EQH8qNnBjOjZRc9zdLQzzt52X5Ny+Lvb4akJHSc5NRERERETU2lk0CXnx4kVs2bIFW7ZswbZt25Cfn6/Zplv1GB8fj759+6Jfv36WDJGILEC3KQ1wYzo2UXPMGZ0EPxd7vP73CWuHQkRERERERHVImoQsKirCtm3bsHnzZmzduhXnz9+oTtFNOjo4OCA9PR39+vVD37594e/vL2VoRGRhheVVmscGKyGZhCQzsFfI8eqQOIR6OGL6T/utHQ4RERERERFdJ0kS8sMPP8TWrVtx6NAhqNVqzbhu4jEgIAB9+vRBv3790L17d9jb20sRDhHZgOOXSzSPDSchOR2bpMWVPoiIiIiIiKxHkiTkF198YbCxjCAISE5ORt++fdG/f3/ExcVJcXkiskF1E0AhOklINQRc5JqQRERERERERK2WZNOxaxOQTk5O6NWrF/r27Yu+ffvCy4vdRInaorpFaOGFuVrbsl08USVXWjYgIiIiIiIiIrIYSZKQoaGhmmnWaWlpUCqZXCBq6zRd70URYYXalZDnXP0AAB+OSrR0WERERERERERkAZIkIf/66y8pTktErYBHRQlcq8q0xs67+QIA7ugcbI2QiIiIiIiIiEhiknbH1lVYWIg9e/YgNzcX+fn5kMlkcHZ2RnBwMBISEuDjw+64RK1V7XTssMLLetsyr3fG9nFmcyoyD6VMvwtNmIejFSIhIiIiIiIiwEJJyPXr12P+/PnYs2ePXrOauuLj43HnnXdi1KhRlgiLiCyodjZ2WJF+ErK2EpLIXAbF6v9OPdknCsA1ywdDREREREREkEl58vLycjzxxBOYPn06du/eDbVarUlCiqKo9/jw4cOYNWsWpk6disLCQilDIyILE67XQhqqhDzvyiQkmVewuyMe7x2leZ4W6oHxHQKsGBEREREREVHbJlklZHV1NaZNm4Zdu3ZBFMUbTSkAyOVyuLm5QaVSobi4GCqVCkBN4wpRFLFt2zbcfffdWLRoEeztOT2TqDVgJSRZ2vsjE/FgzwhcK61Cp2B3iGqVtUMiIiIiIiJqsyRLQr733nvYuXOnJvkYFhaGyZMno2fPnoiMjNTsp1arcfr0aWzatAmLFy/GuXPnIIoiDh48iA8++ADPPPOMVCESkQU1tCYkKyFJKlHezojyrnlcrbZuLERERERERG2ZJNOxL1y4gEWLFmkSkGPHjsXKlSsxadIkrQQkAMhkMkRHR2PKlClYuXIlxo8fD6Bmivb333+P7OxsKUIkIgtTX18OVjcJWaR0RJ6DC+7sGmKFqIiIiIiIiIjIEiSphPzll19QXV0NQRDQu3dvvP7660YdZ2dnh1dffRWXL1/GunXroFKpsGzZMjz00ENShFmvjz/+GJ999hmCg4Oxdu1as577wIEDGDduXJOP+/7779G1a1ezxkJkKaIoouMH6wHoT8c+7+YDCAIyasvViIiIiIiIiKjVkaQScvPmzZrHpkynnjVrlubx1q1bzRKTsfbv34/58+dLdv4jR45Idm4iW7XxdE1HYoWqGkHF2t2Ja6diX+9TRUREREREREStkCSVkJmZmRAEAeHh4YiIiGjy8REREYiMjMSZM2dw8uRJ8wdYj8zMTDzwwAOoqqqS7Bp1k5Dh4eEIDQ016jh3d3epQiKS3IcbTgEAgouvQgbtbGMmm9IQERERERERtXqSJCHz8/MBAAEBASafw8/PD2fOnEFJSYmZomrY8ePHcc899+DyZf2mGeZUNwl5//3345ZbbpH0ekS2xGBn7NpKSLAUkoiIiIiIiKi1kmQ6trOzMwCgsLDQ5HMUFRUBAFxcXMwSU0NWrFiBCRMmICcnR9LriKKIY8eOaZ7HxcVJej0iW1HbpMpgZ2xWQhIRERERERG1epJUQgYEBKCgoADHjx9HYWEh3NzcmnR87bGCIMDPz0+KEAEAOTk5+OCDD/DLL79Ido26zp07h9LSUgCAUqlEu3btLHJdImtbcegSACDcUBKSa0ISERERERERtXqSVELWdnFWqVT46quvmnz8V199herqagBAamqqWWOr9fnnn2PIkCFaCcioqChMnz5dkusB2lOxIyMjYWdnJ9m1iGxJbYLR0HTsc6yEJCIiIiIiImr1JElCjhw5UvP4yy+/xO+//270satWrcKXX36peT506FCzxlbrq6++0lQlAsD48eOxdOlShIeHS3I9ADh69KjmMadiU1sUqlMJqYaAiy7eAMAVIYmIiIiIiIhaMUmmY6ekpKBnz57YvHkzVCoVZsyYgc2bN2PKlCmIjo42eMyJEyfwzTffYPny5RBFEYIgID09XVNVKZWkpCTMnDkTaWlpkl4H0K6EZBKS2iLdSsgsFy9UyyV5GSIiIiIiIiIiGyLZt/833ngDo0ePRn5+PkRRxLJly7Bs2TL4+voiOjpas05kYWEhTpw4gStXrgCoad4CAN7e3njzzTelCg9paWkYM2YMBgwYoGmaIbW6ScjY2FgcPXoUy5Ytw/bt23HhwgVUV1fDx8cHKSkpGDp0KG666SaLxUYkOVFEWOEVraHa9SCJiIiIiIiIqHWTLAnp7++P77//Hvfccw+ysrIA1CQYc3NzcfmydjVUbeKxNuEWFBSEzz77DAEBAVKFh88++0yycxty7do15Obmap5/+eWX2Lp1q95+Fy9exMWLF7Fq1SokJSXhww8/RFhYmCVDJTKrKpUaAOBRUQLXqjKtbXU7Y4vsTENERERERETUakk6DzIqKgrLly/HF198gR9++AHl5eUA6k82ODo6Yty4cXjwwQfh7u4uZWgWV7cKEoAmAeno6Ijw8HC4ubkhNzcXZ8+e1exz8OBBjB8/Ht988w0SEhIsGa6e2kZBLZVKpWrwOUnnWkklACDMQGfsTFcfzWO1Wt3if8/ItvF1gIj4OkBEfB0gIr4OWI/ki7G5u7vj6aefxkMPPYQdO3Zg165dyM3N1UzTdnNzQ2BgIDp37oy0tDS4uLhIHZJV6CYhXVxcMGPGDIwePRrOzs6a8QsXLmDOnDlYsWIFACA/Px8PPPAAli9fDk9PT4vGXEutVmPfvn1WubZUDh48aO0Q2oz8ipoX9PDCXL1tdSshMzMvYJ9DnsXiIuLrABHxdYCI+DpARHwdsByLdYRwcnJC37590bdvX0td0qbUrXD09PTE4sWLERkZqbdfSEgI3nnnHYSFheGTTz4BAGRnZ2Pu3Ll45plnLBUukdnUFj7rNqUBgHNufhaOhoiIiIiIiIisQWbtANqK1157DTt27MCyZcvqTUDW9eCDD6JTp06a5//9739RWVkpdZhEZle7+IKh6dh1G9NwRUgiIiIiIiKi1suslZB5eXk4deoUcnNz4eTkhJCQEERHR5vzEi2au7u70WtdCoKAyZMn499//wUAlJWVYffu3ejevbuUIRokk8mQnJxs8euak0ql0iqxTkpKglwut2JEbUdOUQWwPAehRVf0ttWdjh0SEoyUlHBLhkZtDF8HiIivA0TE1wEi4uuAaQ4cOAC1Wt2sc5glCbl//3588skn2Lp1q96Cnn5+fpg8eTImT54Me3t7c1yuzejcubPW87Nnz1olCQkACoXFZu5bhFwub3X/TbZKLq9pNqO7JmSx0gH59jfWQxUE/puQZfF1gIj4OkBEfB0gIr4OWE6zp2N//vnnmDhxIjZt2oTq6mqIoqj1v5ycHLz//vsYN24cMjMzzRFzm+Ht7a31vKCgwEqREJmudpp1uM507LNufoAgWD4gIiIiIiIiIrK4ZiUhf/zxR3z88ccNtjMXBAGiKOLEiRO45557UFxc3JxLtim6a0DW7aJN1FIsP3AJ9tWVCCq5pjV+1l27KY3IVSGJiIiIiIiIWi2T602Li4vx/vvvQ7heySSKItLT0zFo0CAEBwejuroax44dw/LlyzUVkOfPn8f//d//YebMmeaJvoW4ePEifvjhB1y7dg1Xr17FjBkzEBcX1+hxupWjgYGBUoVIJJkXVx812JSGnbGJiIiIiIiI2g6Tk5B//PEHCgoKIAgC7O3t8f7772PAgAFa+wwYMAD33nsvZs+ejeXLl0MURfz888947LHH2tT6kKIo4ssvv9Q8T0tLMyoJuXHjRs1jQRD01ogksnVvrDmBq6VV6KyzHiQAnHXz13oushCSiIiIiIiIqNUyeTr29u3bNY+feuopvQRkLYVCgVdffRUxMTEAgMLCQuzdu9fUy7ZIISEhCA4O1jz/+eefG5zCDtRUmi5atEjzvFevXvDy8pIsRiJzyyutxEurjwEAIgpz9LbrTscmIiIiIiIiotbL5CTk0aNHAdSsUzhhwoQG91UoFJg4caLm+aFDh0y9bIs1btw4zeNTp05h7ty59e5bVVWFWbNmISenJnEjCAKmT58ueYxE5vTNzkxUq2vKGyMKDFVC6q4JSUREREREREStlclJyMuXL0MQBISFhUGpVDa6f5cuXTSPz58/b+plbVL//v0RGxuL2NhY9O/f3+A+U6dO1aqGnDNnDl577TXk5eVp7XfkyBFMnToVf/31l2Zs0qRJ6Nq1qzTBE0mkNgEJAOFGTMcmIiIiIiIiotbL5DUhS0tLAQCurq5G7V83AVdUVGTqZVssR0dHfPHFF5g0aRLy8/MBAAsXLsSSJUvQvn17uLi4IDs7Wy9BO3z4cDzzzDNWiJioeYQ6j3WTkMVKB1x11H7tELkoJBEREREREVGrZXIlZFVVFQAYVQUJ1EzbrlVSUmLqZVu0mJgY/PTTT+jUqZNmrKqqCocOHcL27du1EpAODg547LHH8M4770Aul1sjXKJmEYQbacgInSTkWTc/QBB0DyEiIiIiIiKiVsrkSkhRFCEIglaioSF192usKUtrFhoaiiVLlmDz5s347bffsHfvXuTm5qKiogJeXl4IDQ1Fnz59MGLECAQGBlo7XCKT1f7F21VXIbj4mta2c276TWmc7Ux+OSIiIiIiIiIiG8dv/TrGjBmDMWPGNOmYtWvXNvk6PXv2RM+ePZt8HFFLUXvfIazost42Q0nIm+PZLZuIiIiIiIiotTJ5OjYRUUNqk5ARBTl62866ayccXxkSiwA3B0uERURERERERERWwCQkEUniXF4ZAP31IIHra0LW8VTfdhaJiYiIiIiIiIisg0lIIjK7ovJqzNl4BkA9SUh3f0uHRERERERERERWxCQkEZndH8duJB7DCxquhLRXyKCQ8aWIiIiIiIiIqDVrdmOanJwc/PLLL5IeM3r06Cadn4is69dDlzSPw3UqIUsU9rji6KZ5fl/3cMhlAoiIiIiIiIio9Wp2EvLEiRN45plnjN5fFMUmH8MkJFHLIoo3HutOxz7r7nejaw2AD0YkWiosIiIiIiIiIrISi86BFAQBgmB8xZNYN5NBRC1G7V+uXXUVgoqvaW0763ZjPchekV6QsQqSiIiIiIiIqNVrViUkk4REZEjta0No0WXIoP06ca7OepBTUkMtGhcRERERERERWYfJScg1a9aYMw4iakVq046GOmOfc/PVPL6jc7CFIiIiIiIiIiIiazI5CRkczOQBERlWWyQdYagztvuN6dj2CrmlQiIiIiIiIiIiK7LompBE1DbUTsc2VAl5ts50bCIiIiIiIiJqG5iEJCKzW7o/GwAQZigJ6c4kJBEREREREVFbwyQkEUlGtxKyVGGHy47uAICn+0VbIyQiIiIiIiIisgImIYlIMrprQp518wcEAQAwiU1piIiIiIiIiNoMJiGJSBJ21VUILr6qNVY7FXvnYxlICnSzRlhEREREREREZAVMQhKRJMILcyGDqDV25npn7C4hHlaIiIiIiIiIiIishUlIIpJEVMElvbHT7gFWiISIiIiIiIiIrI1JSCKSRFRBjt4Yk5BEREREREREbROTkEQkiah8/UrIM+7+SPB3sUI0RERERERERGRNTEISkSQiDUzHrl0TkoiIiIiIiIjaFiYhiUgSutOxLzu6ocjeCaJYzwFERERERERE1GoxCUlE5ieKiNRJQnI9SCIiIiIiIqK2i0lIIjI7r/IiuFeWao2d5lRsIiIiIiIiojaLSUgiMqsnVx4y2Bn7jEdNJSRnYxMRERERERG1PUxCEpHZ5BRV4IP1pw13xnarqYQUuSgkERERERERUZvDJCQRmc2G01cBAFEGOmOf9uB0bCIiIiIiIqK2iklIIjKbkkoVAP3O2MCNxjSsgyQiIiIiIiJqe5iEJCKzmbftHAAgQicJWSWT44KrDwCAs7GJiIiIiIiI2h4mIYnIbLadywOgPx37nJsvVDK5NUIiIiIiIiIiIhvAJCQRmZVCVY2wwstaY7VTsYmIiIiIiIiobWISkojMKrToChSiWmvsrPuNpjScjU1ERERERETU9jAJSURmZbAzdp1KSJGLQhIRERERERG1OUxCEpFZGU5C+hvYk4iIiIiIiIjaCiYhicisInU6YwPAaY86lZCWDIaIiIiIiIiIbAKTkERkVpH5BpKQWtOxLRkNEREREREREdkCJiGJyKx0p2Pn2Tsj38FF8/yWZHbKJiIiIiIiImprmIQkomarrFZD9uRKAECUznTsMzrrQf6nS6jF4iIiIiIiIiIi28AkJBE127AvtwMA3CpK4F1epLWt7lTsscmB6BDkZtHYiIiIiIiIiMj6mIQkomZbe/IKAKBdvn5n7LqVkEPi/CwWExERERERERHZDiYhichsovOz9cZOegZaIRIiIiIiIiIisiVMQhKR2UTnZ+mNnfAIskIkRERERERERGRLmIQkIrOJzjNQCelxoxJShGjJcIiIiIiIiIjIRjAJSURmozsdu1yuxEVXb83zjEhv3UOIiIiIiIiIqA1gEpKIzEY3CXnKIwCiUPMyMyLBH+19na0RFhERERERERFZmcLaARBRy1atUgMAnCvLEFiSp7Wtdir2K0Ni8XTfaAiCYPH4iIiIiIiIiMj6WAlJRM3y6+EcAEC7/Et6205dT0KOSPCHnYIvN0RERERERERtFbMCRNQsmfllAPSnYgPaTWmIiIiIiIiIqO1iEpKImkV2fYo1k5BEREREREREVB8mIYmoWWpXeTSYhPSsSULacyo2ERERERERUZvGzAARNUttJWQ7nSRkpUyBTFdfAEC4p5PF4yIiIiIiIiIi28EkJBE1i+x6KWR0nnYS8oy7P1QyOQDAgZWQRERERERERG0aMwNE1CwP/HwADlUVCC2+ojVedz1IQRB0DyMiIiIiIiKiNoRJSCIy2cHsQgBAVEGO3rZTbEpDRERERERERNcxCUlEJuvw/noAQHR+lt62E9eb0swfn2LRmIiIiIiIiIjI9jAJSUTNZrAz9vVKyEldgi0dDhERERERERHZGCYhiajZ6ktC7ng0A/YKuRUiIiIiIiIiIiJbwiQkETVbO53O2NWCDOfc/NA11MM6ARERERERERGRTWESkoiaTbcS8qy7H6rlCitFQ0RERERERES2hklIImoWu+oqhBVd0Ro7yc7YRERERERERFQHk5BE1CwRhTmQi2qtsVNMQhIRERERERFRHUxCElGzxOTpN6VhEpKIiIiIiIiI6mISkoiaJTbvgt7Ycc8gK0RCRERERERERLaKSUgiapbYaxf1xo55BlshEiIiIiIiIiKyVUxCEpFJdl/IBwDE5GVpjVfKFDjr7m+FiIiIiIiIiIjIVjEJSUQmeXn1cQBAbJ52JeQpjwCoZHJrhERERERERERENopJSCIyyW9HcuBaUYrAkjytca4HSURERERERES6mIQkIpO1z9NfD/I414MkIiIiIiIiIh1MQhKRydrrrAcJMAlJRERERERERPqYhCSiJimvUuHBnw8AqKcztheTkERERERERESkjUlIImqS73ZfwOdbzgIAYgxOx+aakERERERERESkjUlIImqS6T/t1zzW7Yydb++MXCcPAIC9gi8vRERERERERFSDWQIiMo0o6q0JecwzGBAEAICPs501oiIiIiIiIiIiG8QkJBGZJKj4GlyqyrXG6k7FFkVLR0REREREREREtopJSCIySWzeBb2x43Wa0ng7Ky0ZDhERERERERHZMCYhicgkulOxAeC4540k5Ize7SwZDhERERERERHZMCYhicgksdf0O2Mfu56E7BTshtFJAZYOiYiIiIiIiIhslMLaARBRyxRjoBLypGcgAGDzQ73goJRbOiQiIiIiIiIislGshCQik+iuCXne1QelSgcAYAKSiIiIiIiIiLQwCUlETaZUVSGyIFdrrHY9yCmpodYIiYiIiIiIiIhsGJOQRNRk7fIvQS6qtcZqk5B9orytERIRERERERER2TAmIYnIaIt210zBbp+n35TmuFcQAMDFnlOxiYiIiIiIiEgbk5BEZBRRFPHCH0cBAHEGOmPXVkL2i/axaFxEREREREREZPuYhCQio4gicDavDAAQdy1Tb/tRr5okpIudwqJxEREREREREZHtYxKSiIwi1nkcf1W7M3apwg7n3PwsGxARERERERERtRhMQhKRUURRrH2AeJ1KyKNeIRAFvpwQERERERERkWHMGhCRUdTXc5DBxVfhVlmmte2IV6jmsSBYMioiIiIiIiIiagmYhCQio4jXJ2THX9VfD/KI940kpFLOlxUiIiIiIiIi0sZsAREZpXY2dvy1C3rbjniHWDgaIiIiIiIiImpJmIQkIqOor2chEwxVQtaZjk1EREREREREpItJSCIyytHcYgBAnE5TmiqZHCc9Aq0REhERERERERG1EExCElGjRFHEqG92AgDir2pPxz7hEYRqucIaYRERERERERFRC8EkJBE1al9WIS4WlMO7tBB+ZQVa27geJBERERERERE1hklIImpUTnEFACD+mv56kEe5HiQRERERERERNYJJSCJq1EM/HwBgOAl52JtJSCIiIiIiIiJqGJOQRNSgimoVTl0tBaC/HiQAHPG6MR07wtPRYnERERERERERUcvBJCQRNaikUqV5rNsZWw0Bx+okIe9MZVUkEREREREREeljEpKIGnTqSqnmccJV7STkWXc/lCntNc97RXpZLC4iIiIiIiIiajmYhCSiBv3wb80UbOfKMoQVXdHadkSnKY0oWiwsIiIiIiIiImpBmIQkogZ9teM8ACDumv56kEfrTMUGAOYgiYiIiIiIiMgQJiGJqEEqdU1qMd5AEpKdsYmIiIiIiIjIGExCElGDqq8nIROuntfbdsRbdzo2ayGJiIiIiIiISB+TkETUoCrV9STklUy9bUc4HZuIiIiIiIiIjMAkJBHVq0ql1jxOunpOa9sFF28UOLhojbEQkoiIiIiIiIgMYRKSiOq16cw1ADWdsaMKcrS2HfAJ19uf07GJiIiIiIiIyBAmIYmoXutOXQUAJBpYD/KQgSQkEREREREREZEhTEISUaOSrpzTGzvoE6Y3xjpIIiIiIiIiIjKESUgialSygSTkAZ8IvbFoH2cLRENERERERERELQ2TkETUqMQr2tOx1RD0OmNnRHqhva92oxoiIiIiIiIiIgBQWDsAIrJd2YXlAPSnY5/0DES50l7z/P2RCbg7TX96NhERERERERERwCQkETXgy+3n4VNagIDSfK3xup2xxyQH4PHe7SwcGRERERERERG1JExCEpGeNScuY9u5PACGm9Ic8r6RhBTZjYaIiIiIiIiIGsEkJBFp+XzLWTz48wHN8ySd9SAB7c7YzEESERERERERUWPYmIaItNRNQAJA8pWzevvU7YwtshSSiIiIiIiIiBrBJCQRNUi3M3a5XImTnoGa50xBEhEREREREVFjmIQkovqJIpKuaq8JecQrBCqZvO4uREREREREREQNYhKSiOoVVnQZbpVlWmMH63TGBpiEJCIiIiIiIqLGMQlJRPUy2BlbJwlJRERERERERNQYJiGJqF7Jl/WTkAd0KyG5KiQRERERERERNYJJSCKqV+JV/SQkp2MTERERERERUVMxCUlE9epw+azW80I7R2S6+miNMQdJRERERERERI1hEpKIDLKrrkL8tQtaY/t9IgBB0BpTyLSfExERERERERHpYhKSiAxKuHoeSrVKa2yfX6TeflPTQi0VEhERERERERG1UExCEpHG1ZJKzeOOl8/obd/rG6U3NjDGV9KYiIiIiIiIiKjlYxKSiDSO5hZrHnfMNZCE1KmEPDqzH1zsFZLHRUREREREREQtG5OQRKShlN9Y37GDTiWkSpDhkHeY5vldaWFo7+tisdiIiIiIiIiIqOViCRMRaSjl1+9LiKLedOyjXsEoV9ojytsJH4xMxIgEfytESEREREREREQtEZOQRKTx78UCAEB4YS48Kkq0ttWuB/nP/T0Q6uFo8diIiIiIiIiIqOXidGwi0rjnx30AgBQDTWn2+0YAAAS9LUREREREREREDWMSkogA6HTGNtiUpqYSUmAWkoiIiIiIiIiaiElIIgIA/H40V/PYUCXkPk0lJLOQRERERERERNQ0TEISEQCgsLxa87hj7mmtbVnOXsh19gTASkgiIiIiIiIiajomIYkIACBCBAC4lxcjsjBXa1ttFSTANSGJiIiIiIiIqOmYhCQiAIBYk4NEhytn9bbt84vUPBZYCklERERERERETcQkJBFpMdiUxjdK85gpSCIiIiIiIiJqKiYhiQgA8MH6UwAMN6XZq1UJabGQiIiIiIiIiKiVYBKSiHAhvwxn88oAACk6lZClCjuc9AjUPGcSkoiIiIiIiIiaiklIIsKvh3IAAEpVFZKuntPatt83AmqZXPPc28nOorERERERERERUcvHJCQRIb+8CgCQdOU87FXVWtv2+kVpPWdjGiIiIiIiIiJqKiYhiQgqdU1r7C45J/W27fKPtnQ4RERERERERNTKMAlJRPhow2kAQFcDScjddZKQU7qGWiwmIiIiIiIiImo9mIQkauMqq9XIK6uZjt0555TWtnK5Eoe8wzTP7+rGJCQRERERERERNR2TkERt3J/HLwMA7Kqr0OHyWa1t+3wjUS1XaJ73ivS2ZGhERERERERE1EowCUnUxj218hAAIOnqOdiptZvS7OZ6kERERERERERkBkxCErVxBeU1iceulwytB9lO89jH2c5iMRERERERERFR68IkJFEbJooiLhVVAKinM3bAjUrIe9PDLRYXEREREREREbUuTEIStWHrT13VPNZtSlOmsMPhOk1pAt3sLRYXEREREREREbUuTEIStWFbz+UBqGlKk3zlnNa2vb6RUMnkmueTu4RYNDYiIiIiIiIiaj2YhCRqw9SiCABIvnJWrynNnjrrQX4wMhFuDkqLxkZERERERERErYfC2gEQkfWsPnYZANDV0HqQ/jEAgP/dnYah8f4WjYuIiIiIiIiIWhdWQhK1YZvOXAMAdNFZDxK40Rnbz5VrQRIRERERERFR8zAJSUTocumE1vNShR2OeIdaKRoiIiIiIiIiam2YhCRq4+yrK5F09bzW2F7fKK2mNEREREREREREzcEkJFEb1zH3NJRqldZY3aY0RERERERERETNxcY0RG1MTlEFnv7tMNafugoASM8+prfP9sD2lg6LiIiIiIiIiFoxJiGJ2pjx3+3SNKQBgLTs43r7bA+MtWRIRERERERERNTKMQlpwMcff4zPPvsMwcHBWLt2rSTXyM7OxpIlS7Bp0yacO3cO5eXl8PX1RVRUFIYNG4Zhw4bB0dFRkmtT21VSUa2VgAT0KyGvOrjipEegJcMiIiIiIiIiolaOSUgd+/fvx/z58yW9xpIlS/DWW2+hrKxMazwrKwtZWVnYtGkT5s2bh3feeQcpKSmSxkJtS3m1Wuu5X0keIgtztca2BcYCgmDJsIiIiIiIiIiolWNjmjoyMzPxwAMPoKqqSrJrLFiwAC+++KImASkIAtq3b4+0tDT4+flp9jt79izuvPNOHDp0SLJYqO1Ri6LW824GpmLv4HqQRERERERERGRmTEJed/z4cdxxxx24fPmyZNfYu3cv3nnnHc3z1NRU/Pnnn1i5ciUWLlyIDRs24JNPPoGnpycAoKysDA888IBexSSRqXRykAab0mzjepBEREREREREZGZMQgJYsWIFJkyYgJycHEmv8+abb0KlUgEAEhMT8eWXXyIsLEyzXRAEDBo0CAsWLICzszMA4NKlS/j2228ljYvaDt1KyLRLBiohA2IsFQ4RERERERERtRFtOgmZk5ODmTNn4umnn5a82nDfvn3Yu3ev5vns2bPh4OBgcN+4uDg8+OCDmufffvutJnlJ1Bx/nbhR6StTq5CWfUJr+xGvEBQ4uFg6LCIiIiIiIiJq5dpsEvLzzz/HkCFD8Msvv2jGoqKiMH36dEmut2rVKs3jdu3aoVOnTg3uP27cOCgUNX2Drl27hh07dkgSF7UtL/95o/Ix4WomXKu0k+/buR4kEREREREREUmgzSYhv/rqK5SWlmqejx8/HkuXLkV4eLgk19u6davmcc+ePRvd393dHUlJSZrn//zzjyRxUdty+uqN33lDTWm2cz1IIiIiIiIiIpKAwtoBWFtSUhJmzpyJtLQ0ya5RVVWF06dPa54nJiYadVxsbKxmCveBAwekCI3aMENNabYHsBKSiIiIiIiIiMyvzSYh09LSMGbMGAwYMACCIEh6rQsXLqCqqkrz3Nhqy5CQEM3j8+fPmz0uatu66SQhSxV2OOAbYZ1giIiIiIiIiKhVa7NJyM8++8xi17p8+bLWc19fX6OOq7vf1atXoVarIZO12Rn01Ew/7LmgeexaUYqEq5la23f5R0Mlk1s6LCIiIiIiIiJqA9psEtKSCgoKtJ67ubkZdZyrq6vmsSiKKCwshIeHhzlDM1p1dbVVrmsuut3F21q38SqVGpN++FfzPO3Sccggau1jaD1IhUxAlKdDi//3JwL4OkBEfB0gIr4OEBFfB6yJSUgLqKio0Hru4OBg1HFKpbLB81iKWq3Gvn37rHJtqRw8eNDaIVjUmYIqrec9Lx7R22dbkH4S8vZYZ5w+ekiyuIisqa29DhCRPr4O0P+3d++BPZaP/8dfO9psjNmc5nzYaKQQPii1nEoooo9TqL5RIXQQlT5JpOQQpUJJ5XyIUpRIDqEckuNytuU4hpmd378/9nO3e++dt/dh2/Px131d7+u+r2vM7d5r131dAPcBANwH7IcQ0g7SzyLL6SvV7u7mvx7SeeRVsnnSo1pFHrRqs7Vy/X8/r1xCzzQsreCy3CIAAAAAAED+kTDYQfrQMSUlJUfnpQ8v08+MBPLCLSVZ/0m3KU142cq64FPWKLeu7KUQf77fAAAAAABAwSCEtANvb29TOT4+Xp6entmel5CQYCqXKFGiQMeVU66urmrYsKFD+i4oycnJpinWDRo0kJtb8dmE5e99ZyWlbpDU6OIJ+SbGmT5POwtSkoKCgtSoUc52cQcKi+J+HwDAfQAA9wEA3Afy6q+//srxpLrMEELagZ+fn6kcExNj2nQmMzExMcaxu7t7js6xlfSvhhd2bm5uRe5rysriP88ax60zeBV7S9BtprKLq2ux+vNB8VTc7gMArHEfAMB9AAD3AfvJ2eKEyJcKFSqYypcuXcrReRcvXjSO/f395eLiUqDjQvGx6sB54zij9SDTh5AAAAAAAAAFiRDSDipXrmxaz/HMmTM5Oi8iIsI4rlGjRkEPC8XEtbg0O2NbLLo7whxCXvD2099lK5vqLOk2sgEAAAAAAMgPQkg78PDwUHBwsFE+dOhQjs5L265+/fpZtAQyt3jvP8Zx7eizqhgbbfp8S1B9Kd0s27A6AfYYGgAAAAAAKCYIIe2kefPmxvG2bduybR8dHa2DB/+dsdaiRQubjAtF34vf/vt91DrSOgDfmu5V7AfrlVf9Cr42HxcAAAAAACg+CCHtpH379sbx/v37TTsxZWTJkiVKSkqSlLqxTcuWLW06PhQ9B89d16s/HNL1+CSjLqNNaTZXCTWVlw9oyvqjAAAAAACgQBFC2smdd96p0NB/w57Ro0ebdr9O69ChQ5o1a5ZR7tmzp7y8vGw+RhQdB89d113Tf9XEn4+a6tNvSnPDvYT2BtY0yq+E1VEJdze7jBEAAAAAABQfhJAFICwsTCEhIQoJCVFYWFim7UaNGmXMMAsPD1e/fv10+PBh43OLxaIff/xRAwYMUGxsrCQpMDBQgwYNsu0XgCJn/Ppw3UxMMdUFxF5VvSuRprrtlUOU5OZulB9vWsUu4wMAAAAAAMWLe/ZNUFCaN2+uESNGaMqUKZKkgwcPqmvXrqpTp478/f116tQpnT9/3mjv5eWladOmqVSpUo4aMgqpRWk2o7mlVUbrQVb+dz1IL3dX1SvP9xoAAAAAACh4hJB2NmjQIPn4+Oj99983ZjsePXrUql3FihU1efJkNW3a1N5DRBF1b8RfVnVbgv7ddf2nQf+x53AAAAAAAEAxQgjpAH379lXbtm21ZMkSbdq0SREREYqJiZGvr6+Cg4PVtm1bde/eXb6+7FCMgnPvGXMImejqpt8q1zPKrWr623tIAAAAAACgmCCETKdbt27q1q1brs7ZsGFDrvupWLGihg0bpmHDhuX6XCC3ysVeU6OLJ011v1eoqxue3pKkamW8HTAqAAAAAABQXLAxDVAMtInYb1W3sdrtxrGbq4s9hwMAAAAAAIoZQkigGLjvzD6ruo1VGxrHJT3c7DkcAAAAAABQzBBCAsVA+vUg493ctS3NepDjOobYe0gAAAAAAKAYIYQEirjyN64oNOqMqW57pRDFeZQwysGBbIIEAAAAAABshxASKOLuPWO9HuQvaV7FliRvD24FAAAAAADAdkgegCIuLMP1IP/dlKZGWW/V9C9pzyEBAAAAAIBihhASKOLSrwd5091T2yv9uwbk6ieaycWF3bEBAAAAAIDtEEICRVjl61EKvvKPqW5r5fpKcPcwyg0qlbb3sAAAAAAAQDFDCAkUYfdl8Cp2+vUgAQAAAAAAbI0QEijCwk5ntB4kISQAAAAAALAvQkigqLJY1P7UHlNVjIeXfq9Y10EDAgAAAAAAxRUhJFBE3RZ1RkExl011G6reriQ3d6PcvWElew8LAAAAAAAUQ4SQQBFz4Nx1SVKHk7utPvuxxp2m8v86hFi1AQAAAAAAKGju2TcB4MwSklI067eTunQjQf2aVFGrmVskSe1P7rFqmz6EDK1Yyi5jBAAAAAAAxRshJFDI9fzyD60+cF6S9Pb6vyVJXonxuifygKndcb8KOlqG168BAAAAAID98To2UIidib5pBJBp3R15UN5JCaa6H2vcKbm4GOXX2rJBDQAAAAAAsA9CSKAQ23/2Wob1Ga4HWd38KvYTzarZZEwAAAAAAADpEUIChdjvZ65mWN/u1F5TOcnFVRuq3W6UA3w8VcO/pC2HBgAAAAAAYCCEBAqxdzcetaqrfD1KDS+dMtX9VrmerpXwMcqlSrAcLAAAAAAAsB9CSKAQc3dzsaprf8p6V+yfqt9hKrtanwYAAAAAAGAzhJBAIeaRQZrY/qR1CLmuRmNT2cWFFBIAAAAAANgPISRQiHm4mf8JuycnWW1KE+VVSrsq1DbVEUECAAAAAAB7IoQECjGPdK9jt/rnkMrG3zDVratxp1Jc3Ux1TIQEAAAAAAD2RAgJFFInomJ1JjrOVPfQsd+t2n1X6y6rOldSSAAAAAAAYEeEkEAhdODcdd05dZNV/UPHzSFkkour1tZsYtWuSRU/m40NAAAAAAAgPUJIoBCatOFvXYtLMtXVvRypkCuRprrNVUIV7eVrdf64DvVsOj4AAAAAAIC0CCGBQuir3ZFWdZ2P77SqW1OraYbn1yxXssDHBAAAAAAAkBlCSKCIyGg9yG9rNXPASAAAAAAAAMwIIYEioExcjFpHHjTVHSkbpL/9gxw0IgAAAAAAgH8RQgJFwAMndsndkmKqy2hXbAAAAAAAAEcghASKgE7HM3gVuzavYgMAAAAAAOdACAkUch7JiXrgxC5T3WUvX20Nqu+gEQEAAAAAAJgRQgKFzKnLsaZy2Ol9Kht/w1T3Q40mSnZ1s+ewAAAAAAAAMkUICRQyNSf8bCo/Gr7Nqs3Kuv+x13AAAAAAAACyRQgJFCK7I6JNZbeUZHU9ut1Ud8O9hH6o2cSOowIAAAAAAMgaISRQiDSdttlUbnNmvwLirpvqfqjZRDc9SmR6jeplvW0yNgAAAAAAgMwQQgKF2KN/b7WqWx7cMstzXrq3jq2GAwAAAAAAkCFCSKCQck1J1iN//2aqi3Pz0JpaTa3alnBP/afeISRQ/ZtWscv4AAAAAAAAbnF39AAA5E2rfw6pQuxVU926GncqxrOkUa5drqS+7N1YjSqX1pXYRFX287L3MAEAAAAAAAghgcIqo12xlwe3Mo5HtqmlyZ1DjbK3n5tdxgUAAAAAAJAer2MDhcSN+CTj2MWSom5/m0PIBFd3fVvrLqP8ZLNqdhsbAAAAAABAVgghgUJixtYTxnHryIMKirls+nx99Ua66uVrlOtXKGW3sQEAAAAAAGSFEBIoBBKSUjTm+8NGuc+hTVZtltfNeldsAAAAAAAARyGEBAqBhXsijWPPpET1OLLF9Hmcm4eWB/8bQk7qVN9uYwMAAAAAAMgOISRQCCzb949x/MCJXSobf8P0+be179K1Ej5G2dXFxW5jAwAAAAAAyA4hJODkEpNT9PPfl4xy78O/WLVZUO9e+w0IAAAAAAAglwghASdmsVjUfd4fiktKkSSVjr+hzsd+N7W57OWrH2o2MdVVL+tttzECAAAAAABkhxAScGJ//nNN3x06b5S7h2+TV3Kiqc2y4FZKcPcw1XW6rYJdxgcAAAAAAJAThJCAkzp9JVaNp/5qqut92HpX7K/q32sqT+58m7w93Gw5NAAAAAAAgFxxd/QAAJglp1g07qdwvfVTuKm+8vUo3Xf6L1PdqVKB2hr0707Yx0bfr5rlStplnAAAAAAAADnFTEjAyYxfbx1ASlL/gz/LVRZT3YL6bWRxSf1nvKx/UwJIAAAAAADglAghASczZ8dpqzoXS4qe+Gu9Vf1Xt91rHD8cWtGWwwIAAAAAAMgzQkjAyURejbOqu/fMX6p99ZypblulejpUrppRdnV1sfnYAAAAAAAA8oIQEigEnvzrJ6u6uQ3bOWAkAAAAAAAAuUcICTiR+KRkqzr/m9fU/e9tprrrHt5aEtLaXsMCAAAAAADIF0JIwIlM/fW4VV2fQ5tUIjnJVLeo3t264eltr2EBAAAAAADkCyEk4ETGfH/YXGGx6Km/frRqN6dhezuNCAAAAAAAIP8IIQEn1uxcuBpeOmWq2xdQXb9XrOugEQEAAAAAAOSeu6MHAEBKTrHoenySVf0ze7+3qpvbsL3kYt4J27+kh83GBgAAAAAAkF+EkICDrdp/Tk8s3qsrNxNN9eVvXNF/j2w21cW5eejr+m2srjH94QY2HSMAAAAAAEB+EEICDpSUnKIBi/boapz1LMin962z2pBmYb17dNm7tKnu1bZ11adxFZuOEwAAAAAAID9YExJwoCMXb2QYQLonJ2nwn2ut6mfc+ZBV3X+ql7XJ2AAAAAAAAAoKISTgQEkpKRnWd/97myrfuGyq+zXoNu2tUNuqrcVik6EBAAAAAAAUGEJIwIEyCxCH7v7Oqm5G484ZX6MgBwQAAAAAAGADhJCAk2ly7m+1PHvYVHfGN0Df1GmRYXsLUyEBAAAAAICTY2MawE5SUiz6MfyiTl2JVceQ8qruXzLDdiN2rbKqm3XHA0p2dcuwPREkAAAAAABwdoSQgJ0M/Wa/Zm07KUny83LXpmdbWbWpGX1Ojx3ZYqqLc/PQ7IYdMr0uEyEBAAAAAICz43VswA6uxSXq0+2njPLVuCTN3Xnaqt1Lf6yQm8W8Wc380DBFlSxt8zECAAAAAADYCjMhATuIvBqn5BTzlMUZW05oxpYTRrnCjSsasP9nU5tkF1e9e1e3LK9d3tez4AYKAAAAAABgA8yEBJzE8F2r5ZWcaKpbEtxKx8tUyvScyqW91KxaWVsPDQAAAAAAIF+YCQnYgYtL1p/7xcXomT+/t6qf1OxRUzn8lTBtOhalz38/rYqlSmhch3pyc83m4gAAAAAAAA5GCAk4gWf//F6lE26a6tbUbKp95Wua6qr4eenJ5tX0ZPNq9hweAAAAAABAvvA6NmBjFotFeyOvZfp56fgbeuGPb6zq30k3C1KSvDzcCnJoAAAAAAAAdsFMSMDGRq4+oOmbT2T++R+r5B8XY6rbHHSbtla5zVT3aY/bbTI+AAAAAAAAW2MmJGBDUTcS9MGWzAPIgNirGrFrlVX9/1r2sqqrWMqrQMcGAAAAAABgL4SQgA3tPH1FFkvmn7+yc5lKJZrXgvy52u3aWK2RVVtLVhcCAAAAAABwYoSQgIMEXb+kZ/da74j9Wqu+GbYnggQAAAAAAIUVISRgQ1kFh69tXyKv5ERT3epazbSjcr2Mr0UKCQAAAAAACilCSMABGlw8qaf++tGq/vXWfTI9x8JcSAAAAAAAUEixOzZQwOb9fkZPLN4rSfLxdLNuYLFo2sbZcrOkmKoXhtytvwJrZnpdZkICAAAAAIDCipmQQAFatf+cEUBK0o2EZKs2jxz9TWFn/jLVxbl56LXW/bK8NhkkAAAAAAAorAghgQL0yLzfs/zcKzFek3/5zKp+StOHdaJMxSzPTUkhhgQAAAAAAIUTISRQQCb8/He2bV7Y9Y1qXrtgqov09dfEZo9mey4RJAAAAAAAKKwIIYECcC0uUW+sO5Jlm5rR5zR6x1Kr+lfu7q8bnt7Z9sGakAAAAAAAoLAihAQKwE/hF5Wc1evSFos+/WmmSiYlmKq3Vaqnr+vfm6M+SnuxjxQAAAAAACicCCGBfLJYLOoxf1eWbZ7Y/5PuP73PVJfs4qrnw/5PcnHJtg9vD1e1qV0uX+MEAAAAAABwFKZWAfm0/9z1LD+vFBOlyZs+t6qf3rizdlWsm+W5fl7uCvQtoWldQ+Xt4ZavcQIAAAAAADgKISSQR0v//Edvr/9b+85ey7yRxaIP13+sMvE3TNXH/CpqbKs+WV7/58H/UZta5eTqmv1MSQAAAAAAAGdGCAnkwdFLN/TYl1m/gi2lvob98LEdVvVPt39OsR5emZ7n5uqi++oE5GuMAAAAAAAAzoIQEsjE7ohoTd98Qr4l3PVGu2CVL1XC+KzP17uzPb9+1Gl9sOFTq/o5DdtrY7VGWZ67flCL3A8YAAAAAADASRFCAhk4fSVWLWdsVUJyiiRp1raTWta/qTqGBGpP5DX9fiY6y/O9EuO18Lv3rHbDjvAtp5fuGZDpeR1CAvVmhxA1q1Y2v18CAAAAAACA0yCEBDIwccNRI4C85dEv/lD98r5qULFUtue/v+kz3X7plKku2cVVfTq9oKtevhme06dxkL7s3TjvgwYAAAAAAHBShJBABpbvO5th/aELMTp0ISbLc3sd2qRn/vzBqv6tFo9pc5UGmZ5XNyDjcBIAAAAAAKCwc3X0AABnlNcNqZuc+1tzfpxhVf9LlQYa36Jnpue5uEi9GwflrVMAAAAAAAAnRwgJZMDVJfcpZKWYKK1cNUHe6daBjPIqpX4PjlSKq1um537+2B2qE+CT6z4BAAAAAAAKA0JIIAO5DSFLx9/QmhXjVCUmylSf7OKqXp1eVGSpgEzPfbNDiB5vWjVP4wQAAAAAACgMCCFRrGw4c1Pdvj2vam9v0KQNRzNtl5vXsT2TErV89UTdcfGE1Wcvthmo9TXuzPJ8iyXnfQEAAAAAABRGbEyDYuNKXLLGbL2iZIskJWv094fUrFoZ+Xm567kVf+l09E39944gvfvQbTmeCemRnKgl307S/af3WX32eej9mt64S7bXSCGFBAAAAAAARRwhJIqNjRFx/z+A/Nfs7ae0aO8/Rnnqr8cVHOij09E3s72eR3KiFn33nroc32n12brqd2pQu+dSd5zJBiEkAAAAAAAo6gghUWzM2X/dqi5tAHnL+PV/Z3stn4SbWvLtJD1wcrfVZ39UqKMeXUYpyS1n/7yIIAEAAAAAQFFHCIli4dSVm7p4MyVHbSOvxmX5eUDsVX278i01Pxdu9dmBclXVqdtYxXiWzPHYmAkJAAAAAACKOkJIFAtL950tkOvccf6YVqyeqBrXLlh9dtC/qu7vMV4XS5bJ1TXvrZ35ztkAAAAAAABFASEkioUzOVjjMUsWi/of2KAPf56lkkkJVh//GVhDHbu/qQs+ZXN12XrlfXVPLf/8jQ0AAAAAAMDJEUKiWNh/zno9yJzyv3lNs9Z/pB7h2zL8fFOVUD3c9VVd9fLN1XUndaqv/k2rqoS7W57HBgAAAAAAUBgQQqJY2HziSq7PcbGkaOD+9Xrn1y8UEJdxiLmg3j16ssMwxbt75uraz7WqoZfuq5PrMQEAAAAAABRGhJBAehaLOh/bqTe3LdAdF09k2CTZxVWj7umvKU0ellxccnV5bw9XDbiragEMFAAAAAAAoHAghAT+P7+4GPU+/Kue2fu9GkSdzrTdGd8A9X9guH6pdnuu+2gXHKB3H7pNjSr75WeoAAAAAAAAhQohJIqtkolxCr10Wq3+OaR2J/fo/tP75JmSlOU5C+rdoyH3D1Z0Dtd/LOHuqvc7h6qUl5va1CqnamVLFsTQAQAAAAAAChVCSBQLpeNvaPiu1epwcrdKJ8Sq3M3rqhgbnePz/y5TSUPvH6QfazTOUfv5ve7Uicux6hJagVmPAAAAAACg2COERLEwbeNsDTiwIdfnnStZRhOb99Cnt3fI1eYzfZtUyXVfAAAAAAAARRUhJIqFdqf25qr9gXJVNavRg/q8QVvd9CiRq3OX9GuSq/YAAAAAAABFHSEkioU/A2sqKOZylm3O+AZoZd3/aGlwK20Nqp/rXa9v6dawUp7OAwAAAAAAKKoIIVEsDOz4vKZunKOW/xxWkqurYjy8dbpUoI6Xqai95Wtqa+X6OlamUp6Dx7RcXfN/DQAAAAAAgKKEEBLFwsWSZdS304s27+fOoNI27wMAAAAAAKCwcXX0AICiZGy7EEcPAQAAAAAAwOkwExIoAGF1AjS7RyPVLFfS0UMBAAAAAABwOoSQQAH44f+ay8ONicUAAAAAAAAZITUBCgABJAAAAAAAQOZIToB88i/p4eghAAAAAAAAODVCSCAXXm1bV480qGiqe7ZlDccMBgAAAAAAoJBgTUggF97qWE834pP0+roj2h0RrfvqBOi1tsGOHhYAAAAAAIBTI4QEcijQx1OS5FPCXVO6hDp4NAAAAAAAAIUHr2MDmfBwczGVv32ymYNGAgAAAAAAULgRQqJY6FS/fK7Pmd61gUq4p/4TGXFPLd1VtUwBjwoAAAAAAKB44HVsFAtPN6+qHw5fUIol5+cMbllD/e+qqpQUi3xK8E8FAAAAAAAgr0hWUCw8UK+8ZrcN0LZ/4lSztLte7NxCbu7uqvzmj7p4I8GqfZ/GQZIkbw83ew8VAAAAAACgyCGERLFxe4Cnbg9I3VzG1dVFbq4uWv1EMw37Zr/+OntNcUkpCvTx1N21/PXBww0cPFoAAAAAAICigxASxVrz6mW14/m7HT0MAAAAAACAIo2NaQAAAAAAAADYFCEkAAAAAAAAAJsihAQAAAAAAABgU4SQAAAAAAAAAGyKEBIAAAAAAACATRFCAgAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE0RQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANgUISQAAAAAAAAAmyKEBAAAAAAAAGBThJAAAAAAAAAAbIoQEgAAAAAAAIBNEUICAAAAAAAAsClCSAAAAAAAAAA2RQgJAAAAAAAAwKYIIQEAAAAAAADYFCEkAAAAAAAAAJsihAQAAAAAAABgU4SQAAAAAAAAAGyKEBIAAAAAAACATRFCAgAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE25WCwWi6MHAeeza9cuU9nVtfDn1SkpKcZxUfh6AOQe9wEA3AcAcB8AwH0g99L+mUlSkyZNcn0N94IaDIq29N9shV1R+3oA5B73AQDcBwBwHwDAfcB+iHsBAAAAAAAA2BQzIZEjTE8GAAAAAAAongpixihrQgIAAAAAAACwKaa3AQAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE0RQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANgUISQAAAAAAAAAmyKEBAAAAAAAAGBThJAAAAAAAAAAbIoQEgAAAAAAAIBNEUICAAAAAAAAsClCSAAAAAAAAAA2RQgJAAAAAAAAwKYIIQEAAAAAAADYFCEkAAAAAAAAAJsihAQAAAAAAABgU4SQAAAAAAAAAGyKEBIAAAAAAACATbk7egBAdo4dO6ZFixZpx44dioiIUFJSksqXL6/g4GB17txZ7dq1k7t7wX8rnz17VosWLdKWLVt06tQpxcXFKTAwULVq1dKDDz6oBx98UN7e3gXeLwBr9r4P/PXXX3r00Udzfd7XX3+tpk2bFtg4AGRt+vTp+uijjxQUFKQNGzbYpA+eBwDnZsv7AM8DgPPZsWOH1qxZoz179ujChQuKiYmRr6+vKlWqpKZNm6pbt2667bbbCrzfy5cva+nSpfrll190/Phx3bhxQ/7+/qpWrZo6dOigLl26yM/Pr8D7LWpcLBaLxdGDADIzY8YMffzxx0pKSsq0TYMGDfTee++pVq1aBdbvokWL9M477+jmzZuZtqlRo4beffddNWrUqMD6BWDNEfeBJUuW6PXXX8/1efzQAdjPvn371Lt3byUmJtoshOR5AHButr4P8DwAOI+IiAiNGjVKf/zxR7ZtO3XqpHHjxsnX17dA+l6/fr1effVVRUdHZ9omMDBQb7/9ttq0aVMgfRZVzISE0xo/fry+/PJLo+zu7q6QkBB5e3vr2LFjunLliiRp//796tevn5YsWaKgoKB89ztv3jxNnDjRKLu4uKhu3boqU6aMTp48qQsXLkiSTp48qf79++vrr79WaGhovvsFYM1R94FDhw4Zx9WrV1fVqlVzdB6//QTs48yZM3r22WeVmJhosz54HgCcmz3uAzwPAM7h5MmT6tWrly5fvmzUeXh4KDg4WKVKlVJUVJSOHj2qW3Ps1qxZo2PHjunrr7/OdxC5du1ajRw5UsnJyUZdzZo1FRgYqMjISEVGRkqSLl68qGeeeUYfffSR7r333nz1WZQxExJOae3atXr++eeNcocOHTR27FgFBARIkhITE7VixQpNnDjRmJ0QGhqq5cuXy8XFJc/97t27V7179zZuMHfddZcmTJigatWqSZIsFot++uknjR071gg/KlasqLVr1/IqFlDAHHUfkKT//ve/2rNnjyTpnXfe0SOPPJKv6wEoOOHh4Xrqqad0/vx5o66gZ0DxPAA4N3vcBySeBwBnkJycrIcffljh4eGSJDc3Nz3zzDMaOHCgKWA8f/68pkyZom+++cao69ixo6ZPn57nvs+cOaMuXbooNjZWkhQcHKxJkyaZXvfevn27xowZY4SRPj4++uGHH1ShQoU891uUsTENnE5iYqImTZpklO+77z5NmzbNCB6k1N96PPbYY5o5c6axDtyBAwf03Xff5avviRMnGj9whIaGas6cOcYPHFLqLIj27dtr3rx58vHxkSSdO3dOX3zxRb76BWDmyPuAxWLRkSNHjHK9evXydT0ABWfVqlXq2bOnKXiwBZ4HAOdlr/sAzwOAc1ixYoURQEqpvxAYOnSo1QzHChUqaNKkSRo4cKBRt3btWu3duzfPfU+dOtUIIIOCgvTFF19YrTfZokULLViwQOXLl5ck3bhxQzNnzsxzn0UdISSczk8//aR//vlHUuqrl2PHjpWra8bfqq1bt9Zjjz1mlD///PM89/vnn3+ablCvv/66vLy8Mmxbr149Pffcc0b5iy++ME3PBpA/jroPSNKpU6eMhw0PDw/Vrl07X9cDkH/nz5/XqFGj9PLLL2e5PmNB4HkAcE72vA9IPA8AzmLVqlXGcevWrdWlS5cs248cOdIIBKXUV7Pz4vz581q3bp3puv7+/hm2rVixol599VWjvGLFiizXjyzOCCHhdL7//nvjuGXLlqpcuXKW7dOGDwcOHNCZM2fy3W/t2rV15513Ztn+0UcfNWZfXb58WTt37sxTvwCsOeo+IJnXf6pZs6Y8PT3zfC0A+Tdr1ix17NjR9HpVrVq1NHjwYJv0x/MA4HzsfR+QeB4AnEFCQoJ2795tlB966KFsz/H09FTr1q2N8l9//ZWnvtetW2dsjFmqVCl16NAhy/bt2rUzQsqkpCStX78+T/0WdYSQcCoWi0U7duwwyq1atcr2nJCQEAUGBhrlvK4F89tvv+WqXz8/PzVo0MAob9y4MU/9AjBz5H1Akg4fPmwc8+oV4Hhz5841ZiNJUo8ePbR06VJVr17dJv3xPAA4H3vfBySeBwBnEBkZqRIlShjlnM5ILlOmjHF8a+3m3Er7PNCsWTN5eHhk2d7NzU3/+c9/jDLPAxkjhIRTiYyM1LVr14xy2of6rISEhBjHeflNR2Jioo4fP26Uc7q7ZX77BWDNUfeBW9LOfOCHDsB5NGjQQF9++aXGjx+f750uM8PzAODc7HEfuIXnAcDxatasqT179uiPP/7QmjVrFBwcnKPzbm0SI+V9t/q0a8Lm9Hkg7b2C54GMuTt6AEBaJ0+eNJXTLgKflSpVqhjHp0+fznW/ERERSkxMNMo5/a1qfvsFYM1R94Fb0v7QERISosOHD2v58uXasWOHIiIilJSUpICAADVq1EgPPPCA2rVrl+/duAFkrlmzZurWrZvuv/9+m/9b43kAcE72vA/cwvMA4DxKlSqlUqVK5ahtTEyMtm7dapTzsp5rQkKCsT69lLfngfPnzysuLi7TdaWLK0JIOJWLFy8ax66urqadcLOS9jXMtNfIS7/pr5fTfqOiopSSkpLp5hkAcsZR9wEpdT23CxcuGOU5c+aYXsW4JTIyUpGRkfr+++/VoEEDTZ06NcdhKYDc+eijj+zWF88DgHOy531A4nkAKMzmzp2rmJgYo3zffffl+hoXL16UxWIxyjl9Hkj/c8vFixdVtWrVXPdflPF0BKdy9epV49jHxyfHD/BpX8dIe4289CtJpUuXztF5aX8bY7FYTK+QAsgbR90HJPOsB+nftWC8vb1Vr149NWvWTDVq1DC12b9/v3r06KGDBw/mqU8AzoPnAQASzwNAYbVv3z7Nnj3bKNeoUUNhYWG5vk5BPA9I4nkgA8yEhFOJj483jnMzbTntbnUJCQn56jc3fadfnDb9dQDknqPuA5L1Dx2+vr4aOXKkHn74Yfn4+Bj1ERER+uCDD7Rq1SpJUnR0tJ599lmtXLlSZcuWzVPfAByP5wEAEs8DQGEUERGhZ5991rSsyiuvvCJ399zHXun/H0+7OU5W0v48ktF1wExIOJm0N4zcvMaU9saSlJSU637Tn5PTvtPf0JKTk3PdNwAzR90HJPN6lGXLltWyZcvUp08f0w8cUup6L++++66GDh1q1J09e1Yff/xxnvoF4Bx4HgAg8TwAFDZnz55V//79TcuqDBgwIE+vYkvWzwNubm45Oi99O54HrBFCwqmk/UebkpKS4/PS3iTSz0bIifQ/ZOS07/Q3p7z0DcDMUfcBSRo/frx27typ5cuXa+HChapZs2aW7Z977jndeeedRnnx4sV5noUJwPF4HgAg8TwAFCbHjh1Tr169FBERYdS1bt1aL774Yp6vmf55IKdhYvp2PA9YI4SEU/H29jaOczN1Oe1/8jmdKp1Zv7npO/3DRV76BmDmqPvALX5+fmrQoEG2P3BIkouLi/r162eUb968qV27duW5bwCOxfMAgFt4HgCc3+7du9WnTx+dPXvWqGvRooVmzpyZrwAw/fNATn+pkNfXuIsTQkg4FT8/P+P4xo0bph2pspJ296syZcrkq9/018tpv+7u7lYL0QLIPUfdB/KqcePGpnLaV7gAFC48DwDIK54HAPv69ttv1b9/f125csWoa9OmjT755BOrEDG3CuJ5QLLvzySFBSEknEqFChWM4+TkZNMNJStp134ICAjIV7+SdOnSpVz36+/vLxcXl1z3DcDMUfeBvCpXrpypnNeduQE4Hs8DAPKK5wHAfmbMmKEXX3zRNEOxS5cu+uijj3K1sWVmAgMDTa9k5/R5IG07FxcXq/sCCCHhZKpXr24qnzlzJkfnpV3/ISevTKRXuXJl03TtvPRbo0aNXPcLwJqj7gN5lf71jPSL1gMoPHgeAJBXPA8AtpeYmKiXX35ZM2fONNUPGjRI7777bp52ws6Ip6enKlWqZJRPnz6do/PSPjdUrlzZardsEELCyQQFBZmmLB86dChH5x0+fNg4rlevXq779fDwUHBwcK77Tduufv36ue4XgDVH3QciIyP13nvvafTo0Xr66adN18tK+pAi7QMLgMKF5wEAPA8AzikhIUFDhgzRqlWrjDp3d3eNHz9eI0eOLPC3EBo0aGAc5/Q+wPNA9ggh4XSaN29uHG/bti3b9ocPHzZNe27RooVd+o2OjtbBgwfz3S8Aa464D1gsFs2ZM0crVqzQpk2btGXLlhydt3nzZuPYxcXFak0oAIULzwNA8cbzAOB8kpKSNGzYMP3yyy9GnY+Pjz755BP16NHDJn02a9bMON6xY4dSUlKybJ+cnKwdO3YYZZ4HMkYICafTvn1743jjxo06f/58lu0XLlxoHNeuXVshISH57nf//v3av39/lu2XLFmipKQkSakL17Zs2TJP/QKw5oj7QJUqVRQUFGSUV6xYoeTk5CzPiYmJ0VdffWWUW7duLX9//1z3DcB58DwAFG88DwDO57333tPGjRuNsr+/v7788ku1bt3aZn22bdtWbm5uklLXevzpp5+ybL9u3TpdvnxZUuoMzbTPE/gXISScTvv27VW+fHlJqVOuX3nlFePhPr3Nmzdr6dKlRrlfv3557vfOO+9UaGioUR49enSmu2AdOnRIs2bNMso9e/YskAVwAaRy1H3g0UcfNY6PHTumjz/+ONO2iYmJeuWVV4yA1MXFRYMHD85z3wCcA88DAHgeAJzHpk2b9MUXXxhlPz8/zZ8/3/R/tS1UrFhR999/v1F+++23M50YcfbsWU2YMMEot2/f3mqzO6QihITT8fT01MiRI43ytm3b9H//93+mdVaSkpK0ZMkSDR061PjNZHBwcKZTscPCwhQSEqKQkBCFhYVl2veoUaOMtSTCw8PVr18/0/oPFotFP/74owYMGKDY2FhJqTtnDRo0KO9fMAArjroPDBw40DT74YMPPtD48eOtdug+dOiQBg4caPqNaN++fdW0adPcf7EA7IbnAQA8DwCFR3Jyst5++21ZLBZJqSH/+++/r7p16+bruv369TPuA1m9QTVixAiVKFFCknT+/Hn17t1bO3fuNLXZsWOH+vTpo4sXL0qSSpYsafo5BmYFs3UQUMAeeeQR7dmzR4sXL5aUGkC0b99eISEh8vX11bFjx4ypzpJUpkwZTZ8+Pd+7YTVv3lwjRozQlClTJEkHDx5U165dVadOHfn7++vUqVOm3354eXlp2rRpKlWqVL76BWDNEfcBb29vffLJJ+rbt6+io6MlSV9++aUWLVqk4OBg+fr66uzZs1Y75D300EMaPXp0nvsF4Fx4HgCKN54HAOewdu1anTp1yih7e3tr3rx5mjdvXo6vERAQoEmTJuWp/1q1amn8+PEaNWqUUlJSFBERoX79+qlatWqqWLGizp49a5ok4erqqrfffltVq1bNU3/FASEknNabb76psmXLau7cuUpMTFRKSkqGu1TWrl1b06dPV61atQqk30GDBsnHx0fvv/++Mbvh6NGjVu0qVqyoyZMn85tOwIYccR+oW7euli1bppdeekl79uyRlPqq1YEDB6zaenl5afDgwXr66aeNNWMAFA08DwDFG88DgOOtXbvWVI6Njc3xZlG3pJ3VnBddunSRp6en3njjDeOXEqdPn7b6JYSfn5/eeustdejQIV/9FXWEkHBaLi4uGjFihLp06aJly5Zpy5YtOnfunG7evCk/Pz/Vr19fHTt2NG4KBalv375q27atlixZok2bNikiIkIxMTHy9fVVcHCw2rZtq+7du8vX17dA+wVg5qj7QNWqVbVo0SJt3bpV3333nfbu3asLFy4oPj5e/v7+qlq1qtq0aaPOnTurUqVKBdYvAOfC8wBQvPE8ADjW8ePHHT0ESVLHjh3VokULLV26VBs2bNCpU6d09epVlSxZUrVr11abNm302GOPsSFVDrhYbr1cDwAAAAAAAAA2wMY0AAAAAAAAAGyKEBIAAAAAAACATRFCAgAAAAAAALApQkgAAAAAAAAANkUICQAAAAAAAMCmCCEBAAAAAAAA2BQhJAAAAAAAAACbIoQEAAAAAAAAYFOEkAAAAAAAAABsihASAAAAAAAAgE0RQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANiUu6MHAAAA4AzCwsIUGRmZ7+vMnz9fzZs3L4ARAfYTHx+vRx99VOHh4erfv7/GjBljfLZjxw49/vjjRvnIkSP56iskJMQ4HjJkiIYOHZrra8yYMUMzZ84ssDFlZ9iwYVq3bp1atGihzz//XK6uzOUAACC3+N8TAAAAKOYmTpyo8PBwBQQEaNiwYY4ejtMZNWqUvLy8tH37ds2ZM8fRwwEAoFBiJiQAAEA65cuXV3BwcJ7O9fPzK+DRALb166+/auHChZKk4cOHy9fX18Ejcj5BQUEaOHCgZs2apenTp+uee+5RvXr1HD0sAAAKFUJIAACAdFq1aqV33nnH0cMAbC4uLk7jxo2TJAUHB6t79+4OHpHzevrpp7V06VJdunRJb7zxhhYuXMhr2QAA5AL/awIAAADF1CeffKIzZ85IkkaMGEGoloWSJUtq8ODBkqS9e/dq2bJlDh4RAACFC08ZAAAAQDEUFRWlefPmSZLq1KmjsLAwxw6oEOjZs6fKlCkjSZo5c6bi4+MdOyAAAAoRQkgAAACgGPr0008VGxsrKTVcQ/ZKlCihhx9+WJJ0/vx5Yy1NAACQPdaEBAAAsKFXXnlFK1eulCR9/PHHatOmjebPn6/FixcrIiJCpUuXVq1atdSxY0f16dPH6vwbN27om2++0aZNm/T3338rKipKnp6eCgwMVNOmTfXAAw+oZcuWuRrTb7/9puXLl2v37t26cOGCfHx8VK1aNT3wwAPq2bOnfH199dVXX+mtt96SJA0ZMkRDhw41XWPFihUaPXq0pNRNOzZs2JBtv2FhYYqMjJSUuhtzt27dsmwfGRmplStXasuWLYqIiFB0dLR8fX1VuXJltWzZUo888ohq166d5TVmzJihmTNnSpJef/119e3bVwkJCVq1apXWrl2rY8eO6dKlSypVqpRq1qypsLAwPfbYYypVqlS2X88tO3fu1Hfffafdu3crMjJSiYmJ8vPzU3BwsNq0aaNu3bqpdOnSpnPGjRunr7/+WlLqZkZbtmyRp6dntn198cUXmjBhgiSpRo0aWrduXY7HmVZMTIyWLl0qyRys5UdycrJGjBhhGlP//v01ZsyYfF87t9L+vedFVt+fPXv2NGaQzp8/X48//jivsQMAkAOEkAAAAHb02muvafny5Ub50qVLunTpkkJCQqzarl69Wu+8846ioqJM9fHx8bp+/bqOHz+uJUuWqEWLFpo0aZIqVqyYZd9RUVEaNWqUNm/ebKqPjo5WdHS09u3bpwULFuiDDz7Ix1eYf8nJyZo2bZrmzZunhIQE02dXrlzRlStXdODAAX322Wfq2bOnxowZk6MAT5IOHz6sF154QUePHjXVX758WZcvX9auXbs0d+5cTZ48Wa1atcryWqdPn9arr76qnTt3Wn126+9127Zt+vjjjzV+/Hi1bdvW+PyRRx4xQsirV6/q119/NX2emVWrVpmukVerVq3SjRs3JEnNmzfP967uFotFo0ePNgWQAwYMMILqoqR27dqqU6eOjh49qsjISG3cuFH333+/o4cFAIDTI4QEAACwk5UrV2Y6c61Lly6m8syZMzVjxgxTXeXKlVWlShXFx8fr2LFjiomJkSRt375dPXr00Lx58zKdGRgVFaXevXvr5MmTRp2Hh4dCQkLk5eWlo0ePKjo6WmfOnNGTTz5ZIDPj8iIhIUHPPvusKSh1cXFR7dq1FRAQoGvXrik8PFxJSUlKTk7WwoULFR4erjlz5qhkyZJZXvvkyZOaOXOmrly5IkkqV66catWqpbi4OB07dsx4Nfny5ct65plntHLlykz/PA8fPqz+/fsrOjraqPPw8FBwcLBKliypkydP6uLFi5JSg9Nhw4ZpypQp6tixoySpYcOGCg4OVnh4uKTUwDm7EPLYsWM6cOCAJMnV1TVff0erV682ju+99948X+eWN954wxSQDhw4UK+88kq+r5tX1apVU+vWrXPc/rffflNycrKk1Jmht912W5bt77nnHiPIXr16NSEkAAA5QAgJAABgJ7cCyAcffFBDhgxRpUqVdPToUa1fv16333670W7NmjWmALJJkyYaPXq0GjZsaNQlJCTou+++06RJkxQdHa0LFy5oyJAhWrZsmXx8fKz6Hj16tCmA7NGjh1544QWVLVtWkpSYmKiVK1dq4sSJunz5svG6qb2NHz/eFED26NFDQ4YMMc3yvHr1qubOnavZs2crJSVFu3bt0tixYzV58uQsr/3ll19KSg2oXnvtNd1zzz1ycXGRlPp68owZM4yvOz4+XjNmzNC0adOsrhMbG6vnnnvOCCDd3Nw0ePBgDRw40PQa9/r16/Xmm2/qwoULSk5O1quvvqomTZooMDBQUupMxkmTJkmSNm7cqOvXr2f5Gvg333xjHLds2TLbma+ZuXDhgv7880/TtfJj4sSJWrx4sVF2dAApSV27dlXXrl1z1Hbq1KnasmWLUR43bpzq1auX5TmtWrXSZ599JknavHmzEhIScjwbFwCA4ooQEgAAwI7CwsI0ZcoUI/y6/fbbTQFkTEyM/ve//xnl+++/Xx988IHc3c2PbZ6enurWrZsaNWqkXr166erVqzp+/Lhmz56t4cOHm9pu27ZNmzZtMspPPPGERo0aZWrj4eGhnj17qk6dOurfv7/Va9D28Mcff5jCrJdffllPPvmkVTs/Pz+NHDlSISEhGjlypCTp22+/Vffu3fWf//wnyz6qVKmiJUuWGOHrLb6+vho9erQuXryoNWvWSJI2bdqUYbg0b948RUREGOXJkyfrwQcftOqrbdu2qlSpknr37q24uDjFxMToq6++0ogRIySlzn59//33lZSUpISEBK1du1Y9evTIcNwWi0XffvutUe7evXuWX2dWduzYIYvFIkny9vZW9erV83ytW6/N35LR91ZWVq9erb179+a639OnT+f6nIysWrVKH3/8sVF+4okncjTDtH79+sbxjRs3tG/fPjVt2rRAxgQAQFFFCAkAAJDOypUrjc1kcmr+/Plq3rx5tu2eeeYZI4DMyLJly3Tt2jVJUqlSpTRhwgSrADKt2rVr6/nnn9e4ceMkSQsXLtTgwYPl5eVltEm7g2/VqlWNECwjjRs31pAhQzRlypRsv5aCNnfuXOO4SZMmGQaQaXXq1Ek//vij1q5dK0n67LPPsg0hhw0bZhVAptWrVy8jhIyNjdWZM2dMr2SnpKSYgtJOnTplGEDeEhoaqs6dOxubwPz444/Gn39AQIDuvvtubdy4UVJqkJpZCLljxw6dPXtWUmoIm5P1IzOTdhZknTp18rypyqeffqpZs2YZ5dwGkFJqmFhQgWJu7dq1S6+99ppRvueee/TSSy/l6Nxy5cqpXLlyxnqtf/75JyEkAADZYBs3AAAAO/Hx8VGDBg2ybJN2zcj77rtPZcqUyfa6nTt3lpubm6TUTWbSzixLTEw0vWrarVu3bF8b7d27t7y9vbPttyDFxcWZXsPO6aYraWet/fbbb4qPj8+0raura7Zr99WpU8dUvn79uql88OBBnTt3zij36tUr2zE+/vjjeumll/TRRx/pww8/NH2W9uv8/fffTddOK+16i506dcrXq7/Hjh0zjuvWrZuna8yfP1/vv/++Uc5LAOlIERERGjJkiDHjt1atWpoyZUquAtng4GDjOP1GRwAAwBozIQEAANIpX768KWDIiZzsLhwcHJxlyJGQkKD9+/cb5cw2RUmvdOnSqlatmk6cOCFJ2r17t1q0aCFJpg1XJOVotlapUqXUuHFjbd26NUf9F4R9+/YpMTHRKOf0a08b6iYmJuqvv/7K9GusUqWKfH19s7xe6dKlTeW0Y7o1zls8PDzUqFGjbMcYHByc6ffTraA5OjpaKSkp+u677/TUU0+Z2sTFxZnC6fzsii3J9Cp5uXLlcn3+0qVLNWHCBKMcHByc5wByyJAhGjp0aK7PmzFjhmbOnJmnPmNiYjR48GBdvnxZUurf+axZs7JcjzMjaf/s0v6ZAgCAjBFCAgAApNOqVSu98847BX5df3//LD8/d+6caS3GqVOnaurUqbnu5/z588ZxZGSk6bMaNWrk6BohISF2DSFPnTplKudkhmFGLly4kOlnOZlVemtG6S0pKSmm8pkzZ4zjoKCgfG9G4unpqc6dOxub5qxevdoqhFy/fr1u3LghKXXmYto1RPPi1u7gknIdvEnS2LFjjTUlJSk8PFzr1q1Thw4d8jUue0hOTtbw4cP1999/S0r9+546dWqO/12klTbQTrtLOgAAyBivYwMAANhJdrPwrl69WiD9pL1OTEyM6bOchk5ZrZtoC7fWwcyvrMKgtOtk5lXaP8+8BHgZSTuz8ciRIwoPDzd9nvZV7G7duuW7v5s3bxrH2X1PZuRWMJv2lf233nqrwL5/bWnixImm1/5ffvlltW7dOk/XSvv3n3a2MQAAyBgzIQEAAOwku/XmkpKSTOWGDRvm6DXv9NKua1iiRAnTZ2lnsGUlvzP8civ9157XYKh8+fIFMZxMZbWpUF6FhoYqJCRER44ckZS6Qc0LL7wgSbp06ZIxI9Xd3V1dunTJd39pv4a8bkrz3//+V126dFGfPn1ksVh08eJFTZw40SYziAvKggULjBmnUmqgO2DAgDxfL+2s2bz+OQIAUJwQQgIAADiJ9OsRPvvsswoLC8vXNdOHmNevX1fJkiWzPS/9DMqs5DTYzGrTmPRf+/Tp0/M0S8/W0o4z/aY1+dGtWzdNnDhRkrRmzRojhPz++++VnJwsKXX35oCAgHz35ePjY8wYjYuLy/X5ffr00euvvy4XFxf17NnT2C185cqV6tSpk+6+++58j7Ggbd26VW+//bZRvuOOO/Tmm2/m65ppZz/6+Pjk61oAABQH/MoOAADASVSoUME0S+3s2bP5vmb16tVN5Zzu4nv69OksP087zvSbt2QkJSUly9d1K1SoYCoXxNduC2nHGRkZmaOvXZIWL16sX3/9VSdOnMjwnM6dO8vd3d247qFDhySlrgd5S/fu3fMzdEPatTHzspbh2LFjjb//F198UYGBgcZnb7zxhrF+pbM4duyYhg8fbsy2rVixombOnJnv2b5pv5/zMmMZAIDihhASAADASfj6+qpu3bpGefv27Tk6LzExUWPGjNHUqVO1ePFiU9BYuXJlVa5c2Sj/9ttv2V7PYrFo165dWbZJG+DkJHTKLHy75Y477jAFmzn92o8ePaoxY8boww8/1DfffGPseGwraXfDvrUbd3bOnDmjsWPH6v/+7//UsWNHHTt2zKpNuXLldM899xjl9evX69q1a8bfg7+/v9q0aVMAX4FUrVo14/iff/7J17VKly6tMWPGGOXIyEi9//77+bpmQbpy5YoGDx5srDnq5eWlDz/80BSc5lXaP7u8bGwDAEBxQwgJAADgRO69917jeMOGDabdmDOzatUqLV++XB9//LHGjh1rFXJ17NjROF6xYkW2r1pv3rxZERERWbZJO5suNjY22zBrzZo1WX7u7+9vCvi+/vrrHM0y/PTTT7V8+XJ98MEHGjNmjNVu1gXttttuM70SvXTp0mzPSfu1+/v7Kzg4OMN2aWc6/vzzz9q0aZMxe69Lly7y8PDI67BNateubRyn35U8Lx588EFTQLpgwQL98ccf+b5ufiUmJmro0KGmWb0TJkxQgwYNCuT6af/satWqVSDXBACgKCOEBAAAcCJ9+/Y1wqakpCQNHz48y9AwIiJCkydPNsqVKlXSfffdZ2rz+OOPG9eMiorS2LFjMw3roqKi9L///S/bcYaEhJhmLqbd8CO9w4cPa+7cudle84knnjCOT5w4obfeeivL9SY3bNig1atXG+X27dsXyJqJWXF3d1evXr2M8sqVK/Xrr79m2j4yMtL0tT/66KOZbmLSpk0b+fv7S5IOHTqkr7/+2vgs7Q7a+dW4cWPj+MiRI8aak/nxxhtvGGuNWiwWvfrqq1muAWoPY8eO1e+//26Un3vuOXXq1KlArn3hwgVduHDBKDdt2rRArgsAQFFGCAkAAOBEKlSooOHDhxvl/fv3q2fPntqyZYspkEtOTtbq1avVu3dvXblyxah/+eWXrda6q1Spkl588UWjvGbNGg0ePNhqluWOHTvUq1cvRUZGZjvOgIAAU5j1+eef69NPP1VCQoJRFxcXp4ULF6pXr16Ki4sz1jzMTPv27U0zQRcvXqxBgwZZrWMZExOjWbNmadiwYcafScmSJTVy5Mhsx10QBgwYYLx+a7FYNGTIEM2bN89qk5dt27apX79+xqvAgYGBeuqppzK9roeHhx566CGjvGfPHkmpu2fXq1evwMbfrFkzI0COi4vT4cOH833NoKAgDR061CifPHlSM2bMyPd182r27NlasWKFUe7atauGDRtWYNfft2+fcVymTBnVr1+/wK4NAEBRxe7YAAAATuapp57SiRMntGzZMkmpG2s8+eSTKleunGrWrKmEhASdOnXKaqOXp59+Wg8++GCG1xwwYICOHz9u7GS8adMm/frrr6pbt67Kli2riIgII3z09PSUn5+fLl68mOU4R44cqccff1zJycmyWCx6//33NXv2bNWuXVuJiYk6ceKEsV7kbbfdpjvuuEMLFizI9HouLi569913NXDgQB04cMAY56ZNm1StWjVVrFhR0dHROn36tCnw8/Dw0OTJk01rHdqSr6+vPvjgAw0cOFBRUVGKj4/XxIkTNX36dAUHB6tEiRI6deqUzp07Z5zj7e2tadOmZbuBSffu3TV//nxTXbdu3Qp0/GXKlFHTpk2NWYJbtmxRaGhovq/bv39/ffvttzp48KAk6bPPPtMDDzxQINfOjSNHjmjKlClG2d3dXW5ubho5cqTi4uKUlJSUo9mfWc3e3bx5s3EcFhaW6exWAADwL0JIAAAAJ/T2228rJCREM2bMMGbSRUVFKSoqyqqtr6+vXnrpJf33v//N8prjxo1TlSpV9OGHHyouLk4Wi0Xh4eGmNmXKlNGkSZM0d+7cbEPIpk2basqUKXr99deNMV67ds2YwXfLvffeq4kTJ+qzzz7L9uv28/PTggULNGHCBC1btswIi06fPp3hjt3Vq1fXhAkT7P46bEhIiJYsWaKXX37Z2DwmNjZWe/futWpbo0YNTZ48WQ0bNsz2uvXq1VP9+vWN3bE9PT1NsyMLSteuXY0Q8pdfftGgQYPyfU03NzeNGzdOPXv2VEpKipKTkzVmzBgtX74821mwBSk6Otq03EBSUpJpVmRBSBtCFuSr8gAAFGWEkAAAAE7q8ccf18MPP6xvvvlGW7duVXh4uC5fvqyUlBT5+fkpJCREd999t7p27aqyZcvm6JpPP/20OnXqpCVLluiXX35RZGSkkpOTVaVKFbVr1059+vRRuXLlcrSGo5S66U2zZs20ePFibdy4UadOnVJsbKwCAwPVsGFDPfzww1ZrVGbHy8tL48aN05NPPqlVq1Zp+/btOn36tKKjo+Xu7q6AgACFhoaqXbt2at++vdXr5/ZSpUoVLViwQJs3b9batWu1a9cuXbx4UfHx8SpbtqxCQ0PVoUMHderUKVdjbNeunRFChoWFmTYBKigPPPCAJk2apOvXr2vPnj2KjIxUUFBQvq/bsGFD9e3b15jNefjwYX366ad69tln831tZ7Fr1y5j1nDNmjV11113OXhEAAAUDi6WrFb7BgAAQLHUr18/7dy5U5I0ZMgQ03p/sK2nnnrKmGk3d+5ctW7d2ib9vPfee5ozZ44kafjw4XrmmWds0k9RM3bsWGNZg/Hjx6tHjx4OHhEAAIUDi5cAAAAATuLChQvatm2bJKlq1apq1aqVzfoaMGCAvL29JUmLFi1SUlKSzfoqKqKjo40d2StVqqSuXbs6eEQAABQehJAAAACAk1i0aJGxDmavXr2MXaxtITAwUAMGDJAknTt3Tj/88IPN+ioqlixZops3b0qSnn/+eYctBQAAQGFECAkAAAA4gQ0bNmj27NmSUjfoeeyxx2ze51NPPaXy5ctLkj766KMc7RpdXMXExBibK4WGhjILEgCAXCKEBAAAABzg+++/V+fOndW/f3916NBBzzzzjBISEiRJL7/8snx9fW0+Bl9fX73xxhuSpOPHj+ubb76xeZ+F1bx583TlyhW5ubnprbfekqsrP0oBAJAb/M8JAAAAOECVKlUUHh6u7du36+TJk0b9Y489pkcffdRu42jbtq0xq2/atGmKiYmxW9+Fxblz54wd4wcNGqTQ0FAHjwgAgMKHEBIAAABwgJo1a6pRo0YqWbKkfHx81KhRI02aNEnjxo2z+1j+97//qXbt2rpw4YJmzJhh9/6d3YQJExQbG6tmzZppyJAhjh4OAACFkovFYrE4ehAAAAAAAAAAii5mQgIAAAAAAACwKUJIAAAAAAAAADZFCAkAAAAAAADApgghAQAAAAAAANgUISQAAAAAAAAAmyKEBAAAAAAAAGBThJAAAAAAAAAAbIoQEgAAAAAAAIBNEUICAAAAAAAAsClCSAAAAAAAAAA2RQgJAAAAAAAAwKYIIQEAAAAAAADYFCEkAAAAAAAAAJv6f98wUzxB3G13AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "bintime = 1/4096\n", + "deadtime = 2.5e-3\n", + "length = 8000\n", + "fftlen = 5\n", + "r = 300\n", + "\n", + "plt.figure()\n", + "\n", + "plt.title(f'bin time = {bintime} s; dead time = {deadtime} s')\n", + "\n", + "label = f'{r} ct/s'\n", + "\n", + "events, events_dt = simulate_events(r, length, deadtime=deadtime)\n", + "events_dt = EventList(events_dt, gti=[[0, length]])\n", + "# lc = Lightcurve.make_lightcurve(events, 1/4096, tstart=0, tseg=length)\n", + "# lc_dt = Lightcurve.make_lightcurve(events_dt, bintime, tstart=0, tseg=length)\n", + "# pds = AveragedPowerspectrum(lc_dt, fftlen, norm='leahy')\n", + "pds = AveragedPowerspectrum.from_events(events_dt, bintime, fftlen, norm='leahy')\n", + "plt.plot(pds.freq / 1000, pds.power, label=label, drawstyle='steps-mid')\n", + "\n", + "zh_f, zh_p = dz.pds_model_zhang(2000, r, deadtime, bintime, limit_k=250)\n", + "plt.plot(zh_f / 1000, zh_p, color='r', label='Zhang+95 prediction', zorder=10)\n", + "plt.axhline(2, ls='--')\n", + "plt.xlabel('Frequency (kHz)')\n", + "plt.ylabel('Power (Leahy)')\n", + "plt.legend();" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSAAAAP6CAYAAACAYPNiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdeZzTdP7H8XeH4ZBTUUTxBgXkFA9g1XVXRVTWYwXEn4r3fa7KCqILKh6ICuuxIooHiCCKgqAIgoIiKIJyyw1yCQwDAwMDzDAz7e+POKWd6UzTNmmS9vV8PHjQZJJvPk2Tb9JPv/l+fYFAICAAAAAAAAAAsEGG0wEAAAAAAAAASF0kIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG0yk7WhV199VYMHD9YxxxyjadOmJWuz+vTTT/XEE09IklasWBHz+osWLdKYMWM0d+5cZWVlKRAIqH79+mrevLmuvPJKnXfeefL5fKbLCwQC+uabbzRhwgQtXrxYO3bs0CGHHKL69eurffv26tKli5o2bRpznAAAAAAAAIAb+QKBQMDujSxatEjXXXedCgsLk5qA3LRpk6666irt3r1bUmwJyMLCQj3zzDP6+OOPK1zu3HPPVf/+/XXkkUdGLTMrK0sPP/ywfv3113KX8fl8uvnmm/XII4+oSpUqpuMFAAAAAAAA3Mj2BOTGjRt17bXXKjs7W5KSloDMyclR9+7dtWbNmuA8swnIQCCg+++/X998801wXtWqVdWkSRNVqlRJq1atUl5eXvBvDRs21Mcff6zatWtXGM8111yjDRs2BOcdeuihOvnkk7V//36tWLFCRUVFwb/94x//0KBBg0zFa7XSCdKMDJ7UBwAAAAAASEd+vz9s+owzzoi5DFsfwV65cqVuv/32YPIxWbZs2aI777wzLPkYi/feey8s+XjdddfpkUceUa1atSRJ+fn5GjZsmF5//XUVFRVp7dq1evzxx/W///2v3DJ79+4dTD5WrVpVvXv31tVXX63MTOMjyM7O1vPPP6+vvvpKkjRx4kSddtppuvHGG+N6D1YqfaABAAAAAAAAZtnWtG38+PHq1q2bsrKy7NpERDNnztRVV12llStXxrV+Tk6O3njjjeD0tddeqyeffDKYfJSkatWq6e6771a/fv2C86ZOnap58+ZFLPOHH37Qd999F5x+4YUXdO211waTj5JUr149/fe//9U///nP4LzBgweHtbQEAAAAAAAAvMbyFpBZWVkaNGiQPv/8c6uLrtDu3bs1ePBgDR8+PKEWe59++qn27t0ryXhEumfPnuUu26VLF02ZMiWYXHz//fd1+umnl1lu+PDhwdfnnnuuOnXqVG6ZTz75pH744Qft2LFDO3fu1Lhx43TDDTfE+W6skQqPYIceE6nwfgDEjnoAgERdAIB6AAD1QKyseDLW0gTkm2++qbffflv79u0LzmvYsKE6duyoIUOGWLmpMGPGjNHLL7+sXbt2BefVq1dPN910k15++eWYypo0aVLw9aWXXqrq1atXuPw111wTTEDOmDFD+/btC1snNzdXP/74Y3C6S5cuFZZXvXp1XXHFFXr//fclSZMnT056AjIjIyN4cGVkZKhNmzZJ3b7VioqKtHDhwuB0y5Ytw1qfAkh91AMAJOoCANQDAKgH4jF//vywPFE8LE3zvvvuu2HJx6uvvlpjxozRCSecYOVmyvjwww/Dko8dOnTQuHHj1KpVq5jK2bVrl5YtWxacPvfcc6Ou0759e1WqVEmS0TdkaLJRkubMmaPi4mJJxgjX55xzTtQyQ5eZN2+ecnNzTcUPAAAAAAAAuI0t7UxbtGihESNG6Nlnn1XNmjXt2EREJ554ov73v//pjTfeUL169WJef8WKFQodFLx58+ZR16levbqOP/744PTixYvD/r58+fLg62OPPVZ16tSJWmbTpk2Dr/1+v3777beo6wAAAAAAAABuZGkb07Zt26pz58668MIL5fP5rCy6Qs2aNdMtt9yiyy67LKFms+vWrQu+rlKlio4++mhT6x177LH6/fffJSk40nWkMs22BK1Xr56qVaum/Px8SdL69et19tlnm1oXAAAAAAAAcBNLE5CDBw+2sjjT+vfvb0k52dnZwdextKAMXTa0DEnatm1bXGUefvjh+uOPPyKWCQAAAAAAAHgFvWyGCO1HslatWqbXC33MvHR/jaHTsZQZuuzu3btNr2eHoqIiR7efqJI+OMubBpD6qAcASNQFAKgHAFAPOIUEZIgDBw4EX1erVs30elWqVIlYhiQVFBQkXGZoGcnm9/vDRodKBUuWLHE6BAAOox4AIFEXAKAeAEA9kCy2DELjVYWFhcHXsQwrHtrvZOnWgqHTsZRZMrJ2pDIBAAAAAAAAryABGSI06ef3+02vF5ogrFy5siVlhjYBLl0mAAAAAAAA4BU8gh0i9BHpWB57Dl22atWqtpeZTBkZGWrZsqVj27dCcXFxWJPqFi1ahCWGAaQ+6gEAEnUBAOoBANQD8Vi8eHFMjeoiIQEZ4tBDDw2+zsvLM73e3r17I5YhSXXq1ImrzNBlS5eZbKGPmKeCSpUqpdx7AhAb6gEAEnUBAOoBANQDycIj2CHq168ffL1jxw7T62VnZwdfH3HEEZaUGbpsvXr1TK8HAAAAAAAAuAkJyBAnnHBC8PW+ffu0fft2U+tt3Lgx+Pqkk04K+9uJJ54YfL1hwwZT5W3btk35+fkRywAAAAAAAAC8hARkiGbNmsnn8wWnly1bFnWdvXv3hiUWmzZtGvb35s2bB1+vX79e+/fvj1pm6HZ9Pp+aNGkSdR0AAAAAAADAjUhAhqhZs6aaNWsWnP7xxx+jrjN79uxgR5yVKlVS27Ztw/5+xhlnBPsSKC4u1s8//xy1zNDtNmvWLKwfSQAAAAAAAMBLSECWcvHFFwdfT5gwIWqLxY8++ij4+uyzz1bt2rXD/l67dm21b98+OD169OgKy9u7d68mTJgQnL7kkktMxQ0AAAAAAAC4EQnIUrp06aJDDjlEkrR9+3b169ev3GXHjBmjH374ITh94403Rlzu+uuvD76ePn26xo4dW26ZTz31lHJyciRJ1atXV9euXWOKHwAAAAAAAHAT1yYgL7jgAjVp0kRNmjTRBRdckLTtHnHEEbr99tuD02PHjlWPHj3CRqXOz8/XkCFD9OSTTwbnnXfeeTrvvPMilnnBBReoXbt2wek+ffrorbfeUkFBQXDe9u3b9fDDD4e1frz33ntVt25dS94XAAAAAAAA4IRMpwNwo7vvvluLFy/Wd999J0n68ssv9fXXX6tJkyaqUqWKVq1apT179gSXP/bYYzVgwIAKy3zppZd0/fXXa+PGjSoqKtKgQYM0dOhQnXLKKTpw4IBWrFihwsLC4PLnn3++brvtNlveHwAAAAAAAJAsrm0B6aTMzEy9/vrr6tq1a3BU7MLCQi1ZskTz5s0LSz62adNGo0aNitpSsX79+hoxYoROP/304Lw9e/Zo3rx5WrJkSVjysWvXrnrttdeUkcHHAwAAAAAAAG+jBWQ5qlSpoueee07XXHONxo0bp9mzZysrK0sHDhxQ3bp11apVK1122WXq2LGj6UTh0UcfrVGjRmnq1Kn66quvtGjRIm3fvl0ZGRmqX7++zjjjDHXr1k2nnXaavW8OAAAAAAAASJKkJCA7d+6szp07x7TOtGnTEt5uu3bttGLFioTKaNWqlVq1apVwLCV8Pp86duyojh07WlYmAAAAAAAA4FY84wsAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAC4y/r10tSp0ubNTkcCC5CABAAAAAAAgHtMniw1by517Ci1aCH9+KPTESFBJCABAAAAAADgHv36SXv3Gq937pQGDHA2HiSMBCQAAAAAAADc46efwqcnTHAmDliGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAN5RXCy9/LJ0yy3SRx85HQ1MyHQ6AAAAAAAAAMC0Xr2kgQON18OGSYWF0o03OhoSKkYLSAAAAMCM/fulDRukvXudjgQAgPRWknwsccstzsQB00hAAgAAANEsWya1bi2dcILUrJk0f77TEQEAgBJ+v9MRIAoSkAAAAEA0L70krVplvN6wQXr2WWfjAQAA8BASkAAAAEA0778fPj12rDNxID3t3CmtXGl0AwAAgAeRgAQAAAAAt5o2TTr5ZKlJE+mMM6S1a52OCACAmJGABAAAAAC36ttXyskxXi9bJg0e7Gw8AADEgQQkAAAAALjVrFnh06VHfgUAwANIQAIAAAAAAACwTabTAQAAACBBP/wgLV0qnXuu1Ly509EAAAAAYUhAAgAAeNlbb0l33228rlpVmjRJOv98Z2MCAAAAQvAINgAAgJfdf//B1wUF0uOPOxcLAAAAEAEJSAAAAC8rKgqfnj3bmTiAePz2mzR6tLR8udORAAAAG/EINgAAAIDkGz9e6tZNOnBAqlZNGjdOuuQSp6MCAAA2oAUkAAAAgOR77DEj+ShJ+fnSE084Gw8AALANCUgAAAAAyVf6set585yJAwAA2I4EJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGCbTKcDAADAcUVF0oQJUiAgXXmllMnlEQAAAACswjcsAEB68/ulCy6QfvjBmP7rX6XvvpMyeEgAAAAAAKzAtysAQHr77ruDyUfJeD19umPhAAAAAECqIQEJAEhvr79edt5rryU/DgAAAABIUSQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgDSWyDgdAQAAAAAkNJIQAIAAAAAAACwDQlIAEB68/mcjgAAAAAAUhoJSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAybF/v7RmjbR7t9ORAAAAAACSiAQkAMB+q1ZJbdpIJ58sNW4s/fij0xF5T16edMst0tFHSxdeKG3Y4HREAAAAAGAKCUgAgP1eeUVascJ4nZUl9evnaDie9Npr0rBh0tat0rRp0sMPOx0RAAAAAJhCAhIAYL/Bg8Onv/7amTi87IknwqfHjnUmDgAAAACIEQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQDeVlwsDRok3XmnNG6c09EAgLfNnSu1aCHVqyf17i0VFjodEQAASAEkIAEA3tajh/Fv6FCpc2fp00+djggAvCkQkK67TvrtN2n7dumFF6SJE52OCgAApAASkAAAb3v11fDpO+5wJg4A8LrFi6XVq8PnXX+9M7EAAICUkul0AAAAWGrXLqcjAJAuXn9d2rJFuvZaqWVLp6NJ3J49Zeft25f8OAAAQMohAQkASG+BgNMRAPCqBx80/h80yOg7MRWSkAAAADbgEWwAAErz+ZyOAICXFBRIffs6HQUAAIBrJa0F5KuvvqrBgwfrmGOO0bRp02zZxpYtWzR69GjNnDlT69evV35+vurVq6eGDRuqU6dO6tSpkw455JBy1x87dqx69+6dcBwrVqyIOL9fv34aOXJkTGUdf/zxmjp1asIxAQBiQKtIALH6/HOnIwAAAHCtpCQgFy1apKFDh9q6jdGjR+uFF17Q/v37w+Zv3rxZmzdv1syZM/X222/rxRdfVOvWrW2NpTxLly51ZLsAgArQ2hEAAAAAbGV7AnLjxo269957VVhYaNs2hg0bpv79+wenfT6fTjnlFB166KFat26dtm3bJklat26dbrrpJo0cOVLNmzcvU079+vV17rnnxrTt7OzssBaP55xzTsTlAoFA2HJt27ZVlSpVopZ/5JFHxhQPAAAAAACAq/34ozR2rHTiidI990iVKjkdEWxmawJy5cqVuv3225WdnW3bNhYsWKAXX3wxOH3WWWfp+eef1/HHHy/JSPxNnTpVffv21c6dO7V//37de++9mjx5cpnHsc8555xyE4iR7N+/X9dcc01wulGjRnr11VcjLrt+/Xrt+3MUwcqVK+u9995T5cqVTW8LAAAAAADA82bMkM4/X/L7jelFi6S333Y2JtjOtkFoxo8fr27duikrK8uuTUiS+vfvr+LiYklS8+bN9c477wSTj5LRGrJjx44aNmyYatSoIUnaunWrhg8fnvC2n3766WCrxmrVqunVV19VrVq1Ii67bNmy4OtGjRqRfATSydatUr9+0osvSnv3Oh0NAACR0SUFACAZevQ4mHyUpKFDpQMHnIsHSWF5AjIrK0u9evVSz549y/THaLWFCxdqwYIFwek+ffqoWrVqEZdt2rSp7rvvvuD08OHDg4nLeHz99dcaN25ccPqxxx7TKaecUu7yy5cvD4sFQDkKC6U9e6QEzk9Xyc2VWreWnnxS6tVL+utfGeAEAAAAQPr65Zey82zOH8F5liYg33zzTV1yySX6PGQUwIYNG+ruu++2cjNBX331VfB1o0aN1KZNmwqX79q1qzIzjafOc3JyNGfOnLi2m5ubq6effjo43bZtW/3f//1fheuEtoAkAQmU47ffpJYtpdq1pfbtpfXrnY4ocW+9Jf3ZD60kaf586fvvnYsHAAAAAIAkszQB+e677wb7OZSkq6++WmPGjNEJJ5xg5WaCfvrpp+BrM3031qlTRy1atAhOT58+Pa7tDhw4UDt27JAkValSRc8++6x8UR5ZIQEJmNC3r1QyWNMvv0gDBzobjxWGDi07b+rU5McBAAAAAIBDbOkDskWLFhoxYoSeffZZ1axZ045NqLCwUGvXrg1ORxrVOpImTZoEXy9evDjm7a5YsUJjxowJTt98881RE6w5OTnBkbhLxwAgxNix4dOvv+5MHAAAAACS74cfpObNpQYNpJdeCu8nEICnWToKdtu2bdW5c2ddeOGFUVsEJmrTpk0qLCwMTpttZXnssccGX2/YsCHm7b788svy/1kJ1qtXz9Tj5aGtH+vVq6datWpp0qRJmjRpkhYtWqTt27erevXqOvroo3X22Wfr6quvVsOGDWOODYAL5OYafTweeqjTkQAAAADeUVwsde16sPuinj2lv/xFOvdcZ+NKVfn50kMPSR9+KB17rPH/mWc6HRVSmKUJyMGDB1tZXIWys7PDpuvVq2dqvdDlduzYIb/fr4wMcw1B582bpxkzZgSn77zzzuDI2hUJTUBmZmbqsssu07p168KWyc3NVW5urpYvX67hw4frhhtu0KOPPhrssxKAB/TvL/3nP8Yvtb16SS+84HREAAAAgDdMnhzed7ok3XOPFMeTizBh9Gijv3rJ6Abr9tulkEF+k46BOlOeZ7Nbubm5YdO1a9c2tV6tWrWCrwOBgHbv3q1DTbZUGjJkSPD1UUcdFXXgmRKhCcgtW7YEX9erV0/HHXecAoGAfv/9d+3atUuSVFxcrGHDhmn16tUaMmSIKleubGo7dikqKnJ0+4kqPdp5IqOfw16RKiTPHH9//KHMxx8/OD1ggIquu06VJJVuD+73++X3yvuyiJ2frZmyK6oHMgKBMv2R+AMB131Gnj4/YCuODfMSuScwc9Ps+f1eXJzU44lj1xz2k7X4buBevqwsVSo9c8kSjnebZN5yS/iMhQtVtHGjdPTR9m87wryioiIp5LOOVvclUjdSDzjDswnIgoKCsOlq1aqZWq90Mq90OeVZuXKlvg8ZufaWW25RlSpVTK27fPnysOmWLVuqV69eOuuss4Lz/H6/Zs6cqeeff16///67JGnmzJl67rnn9NRTT5najh38fr8WLlzo2PbtsGTJEqdDQDnOiDDPK8ffcS+9pCNLzcu7/35VKyhQ6dopKytLmz3yvqxi52cbT9mh9UDD3FwdVurvu3NztcZln5GXzw/Yi2MjfrHcE0Taz6V5fb/XWL1akYZKtOt9ceyaw36yF98N3KPuxo06KcJ8jnd7RKpbli1cqAOlW6EmadtLlixRcUiDsWh1n5V1I/VActgyCE0ylM5sm32MuvQjzWYz3aNGjQq+rlmzprp27WpqvQMHDmjTpk3B6YsvvlgfffRRWPJRMuI/77zzNGbMGJ166qnB+aNHjy6TwATgPhn79pWZV2nvXgciQax8PO4BAAbqQwAAYBPPJiBLJxz9JkfHKp24NPN48/79+zVhwoTgdJcuXUyP7l2lShXNnz9f06dP14gRIzRgwIAKt1mrVi0NHDgw+P4CgYA++OADU9sC4EI2D8gFm/C5AQAAAEkT4P475Xn2EexDDjkkbLqgoMDUI9EHDhwIm65atWrUdb799lvtDWnJ1KVLF5NRGjIyMtSgQQM1aNDA1PKNGjXS2WefrZkzZ0qSZs2aFdP2rJSRkaGWLVs6tn0rFBcXhzWpbtGihSpVKtO7CFyqdevWTodgSsZhpR/ilWrWqCHt2VNmfv0jj1Q9j7wvO9n52ZYuu6J6IKNOnTLr165TxxPHnhdihDM4NiKz+57A8/u9nJb7yXxfnt+HScJ+ih/fDdzLV87jsxzvyXPqqadKJ5zgyLZbtmghRbgvDxXtWDB7rFAPxG7x4sWmG/6Vx7MJyDqlDsy8vLywAWbKk5eXF3ydmZlpap2JEycGXzdv3lxNmjSJIdL4nH766cEE5NatW1VQUGAqWWqHVBuJu1KlSin3nlKZZz6rCN1A+Mr5FS8jI0MZXnlfNrLzs41Wdlg9EOFzypA88Rl55vxA0nFsmGP1PYHn93s58Vv6vr77Tnr/fal+ffu3lcLYT9bhu4GLJKMOQoUyMzPL/RzcsO1ox0K8xwr1QHJ4dg/XL3XTsn37dh1tYrSm7Ozs4Ou6deuWmyAokZ+frx9//DE43alTpxgjjc8RRxwRNr1r164y7xkAYAEe9wCA5Jg7V7rgAvqaBACUxbUh5Xm2D8gGDRqE9aW4ceNGU+uFDghz4oknRl3+559/Vn5+fnD6oosuMh9kAkqPzl2jRo2kbBcAAMsFAtJrr0ktWkgXXiitXOl0RAAisfsHmUcf5QsmAESyZYt0+eVSo0bSPfdIEQa4BLzOsy0gK1eurMaNG+u3336TJC1btsxU68Rly5YFX4eONl2e2bNnB1+feOKJOiHG/hC++eYbzZ49Wzk5OcrMzNSLL75oar3QhGrt2rVND3oDAIDrTJki/etfxuvffpM6d5ZC+t0BkCa+/97pCADAnf71L+nLL43XQ4ZIJ54o9erlaEiA1TzbAlKS2rVrF3wd+ph0eXbt2qWlS5cGp9u3bx91nXnz5gVft2rVKsYIjYTniBEjNHHiRE2YMEHbt283tV5J/4+SdMYZZ8S8XQAuUF4rD1p/IN3ccUf49G+/Gf8AAAAgjRkTPv3YY87EAdjI0wnIjh07Bl8vWbIkbBSjSD755BMVFRVJMgaxOfvssytcvrCwMNjCUjJGRopV27Ztg68DgYA+/fTTqOtMmTJFa9euDU5fccUVMW8XQJKV99ga/QsCUqRuUnJykh8HAABAadu3S126GK0Or79e2rXL6YiAlOTpBGSbNm3UvHnz4HTv3r3DRrkOtWzZMr355pvB6W7duqlatWoVlr927VoVFhYGp1u2bBlzjG3btg3ra/Ltt9/W6tWrK9xm3759g9MNGzYMS7QC8BhaOwIAAADROfXD/X/+I40dK61fL40aJT33nDNxpDsabqQ81yYgL7jgAjVp0kRNmjTRBRdcUO5yvXr1Co5kvXLlSt1www1avnx58O+BQEBTpkzRzTffrH1/duRar1493XXXXVFjWLNmTdj0cccdF/P78Pl8evzxx4PTe/fuVffu3TVx4kT5/f7g/MLCQo0bN07XXnutdu7cKcno53LAgAEMBw+kmhdekJo0MW50AAAAkPo2bJDOO0+qVUv6xz+k7GynI0KJt94Kn375ZWficAMnG0/QcCPleT6z1a5dOz388MMaNGiQJGnp0qW68sordfLJJ6tu3bpav369srKygstXq1ZNr7zyimrVqhW17NARsyVjMJh4/O1vf1OPHj00cOBASdLOnTv1yCOPqF+/fjrllFNUVFSkNWvWaPfu3cF1KleurFdeeSWuficBOCDWC+bKlVLXrsaId/Xr2xMTAAAA3OGJJ6QffjBef/WVNGBAeie6AKQd17aAjMVdd92lPn36qHr16sF5q1ev1pw5c8KSj0cddZTeeecdnXnmmabKDR0wpkqVKqpatWrcMd55550aOHCg6tSpE5y3a9cuzZ07V/Pnzw9LPjZq1Ejvv/++OnToEPf2ALhAtMcIAgEe8QAAuEe6PP7288/SiBFSSJ/rgO0+/DB8+s/GKQhBCzggpXm+BWSJ7t27q0OHDvrkk0/0/fffa9OmTcrLy1PNmjXVuHFjdejQQV26dFHNmjVNl1nyyLYUf+vHUJdddpn+/ve/6/PPP9eMGTO0fPly7dq1S5UqVVK9evXUrFkzdezYUR06dFCVKlUS3h4AD1i1yukIAABIH2+/Ld19t5HoqFVLmjJFat/e6agAAEh5SUlAdu7cWZ07d45pnWnTpsW8naOOOkoPPvigHnzwwZjXjeTZZ5/Vs88+a0lZJWrWrKnu3bure/fulpYLAAAAIIp//etgK6s9e6RnnpEmTnQ2JgCGdGmFDaSplHgEGwBcixsp9+NxHwBIH/n54dNffeVMHAAApBkSkABgFxJb3kXiGEA64roFAABsQgISAKxAwiqyWbOk8893Ogq4EYkOAFbZvVvatEkqKnI6EgAAUA4SkAAAe+zcaSQfv/vO6UgAAKnqq6+kE06QjjvOuOZkZzsdEQAAiIAEJADAHgMHSoWFTkcRH1rnIRn27pU++0yaNo1jDu7gxdb8//63tGuX8XrmTGn4cEfDAQBP8+J1AJ5BAhIAYI9ff3U6AnO40YITcnKkM86QunaVLrxQeuABpyMCvGfnTmnZsvB5jz7qTCwAEsc9GZDSSEACgJ24kQIiS/dzY8QIacWKg9NvvMGjo0Cs/H6nIwCA1MITGbARCUgAsEK8F+t0T8IA6eqhh8rO++abpIfhKgsXSqefLtWvbzxWe+CA0xEBAIBkIfmZ8khAAoBdSC4CgHk33yzNny9t22b0IfvZZ05HBFQsO1u68Ubpgguk99/nyzMAABUgAQkAAABn/fGHtGBB+LzrrnMkFDhs+3anIzDvmmuM7hSmT5duvdUYkRsAAEREAhIA7BII0BoCAMzYt8/pCOAWH3zgdATmbN9uJB5D3X679dvZssX6MgG34ukhIKWRgAQAK3DDBMSG5DzgPm64lvXo4XQE5uTmlp23dav127n66sjzt283+o1dtcr6bQKAE9xwDYKtSEACgJNIwgAAgEj++EOaNSvy31q1ki66SGrRQho9OrlxAXbhvhhIaSQgAcBO/JIHAADikZNT/t9KHs0+cEDq2zc58QAAkAASkAAAAAC8hx/5DDyG7V2dO0tZWU5HAbgDLWBTHglIIBk2bJAuvVRq0kTq3VsqLHQ6IgAluNkBkCw5OcbIyY0bS7fdJuXlOR0RADPy86X586VNm6wtd9w46Z57rC3Ty/hRAUhpJCCBZLj9dmnyZGnlSumFF6Thw52OCG6RyjdaXn5vXo4d3kUyPPU99pj0ySdGi7X33jPuCQC42+bNUtu20umnSyefLI0caW3548ZZWx4AuBQJSMBuhYXS1Knh8+64w5lYcFBBgTRwoPT44zy6FCo3V3rgAemqq6TPPnM6GgBILUOHhk8/95wzcQAwb/hwafFi43VBgfSf//CDEQDEIdPpAICU5/c7HQEi+ec/jVapkvTaa8aN5UknORqSK1xzjfT118brzz83kucdOjgakmsUFRn7xueTLrlEyuA3PMAytDoG4FaPPx4+vW6d0W/jUUc5Eo6nrVkjvfWWVLu29PDDUo0aTkeE0kiuw0YkIAGknzVrDiYfJWnvXql/f+ntt52LyQ127DiYfCxx333SihXxlZdKNzB+v5GI/f57Y/rii6VJk0iaJCJV9l1enrRvn1SvXuq8JwBAxajvY7dli9SmjbRnjzE9caL000/OxgR34bxKeTTfAJB+FiwoO6/0Y3FW8dKFNCen7LyVK5MfhxuUTp5+993B5KNkJGpnz05qSJ6Tny+9+GLZliOpZNw46ZhjpPr1pcsvP/ilCrFLpR8sAABlvfxy+HVy9mzpl1+ciwfuw71AyiMBCQBIb2aSxAMGlJ332mvxb/OLL6Rbb5WefVY6cCD+ctzsH/+QevUyWhdH4vWbTL9fevBBafduY3riROnTT52NCUBq8Xo9CYQaMqTsvJ9/Dp/20g/3SCm+sWONJ7+GDKHutRGPYAMAkEwTJ0pXXHFwevVqadgwx8KxxbJl0rRpTkdhryVLpE2bwufdeqt0yy3xl8kXLyA2Tp4zqfAF9ccfpeuuM+qyG26Q3nhDql7d6agAIKnqfvWVKvXte3DGH39IzzzjXEApjBaQAAAk0z33hE8PHy4VFzsTi13S4ZGqwkKnIwCAxNx5p7R+vXENGjZM+vhjpyMC4LQ0/DH0hNLJxmefdSaQNEACErBbGlbiACqwcWPZeX5/8uMAAMTP6/d3mzZJv/0WPu/WW52JBQAclMGPyklDAhJA+knml4Zoj2i56QuMm2LxglR4/A5wC+ofxMNr9XBxsTHgW0GBs3EEAtLbbzsbAwAg7ZCABADYg4QCEBsrkylnny01amQMApRqj/i7XVaWNGuWtHWrvdspLjY+35NPls49V1q6NPEyqbfts3Wr9Pe/S4cfbpybP/7oXCwPPUT/ZnAn6qD05rUflRAzEpAAYJdAIPqNFBda7+ImGW7200/S2rXS449LkyYlf/t//CH17Ck98YS0Y0fyt++UH3+UmjUzEoLNmkk//GDPdn7+WTrmGOPzXbPGSHj+3//Zsy1YY8gQaeZM4/Uff0i9ejkTR2Gh9NprzmwbiIb7YiClMQo2AFiBZBQAt7r5Zmn79uRtLy9POu20g9scPVpauVKqVCl5MThl0CDjEVtJ2rlTevll6a9/tXYbS5YYCc6iovD5ixdLK1ZITZpYuz1Y4+mnw6dLkpHJtm+fM9sFgGj4PpXyaAEJADBw0Y8Nv9LDK5LdAnHo0PCE59q10uefJzcGp3z2Wfj0hAnWb+M//ymbfCyxe7f12wMAALAACUjAbiR1AHczk0jkPAbM++STsvOmTEl+HKlq/HinI3CPVKqbd++WHntMuusuacECp6NBNPwIGTv2mTfwOcFGJCABpB87vrBwsU4tqfSl1glmzgfOGYQyczxMmiS1bCm1aGFPy0KkjptuklatcjqK2HTsKA0YYIxO3a6dtHo19SRSH/dbQFohAQlEUlAgDR8uffCB8RqIBzdVAGCNnBzpiiuM/g9/+0266ipp2zano0od69dL332X3L5C7fTBB9JZZ0n79zsdiTkLFxoDC5U4cKBsn5FAKiqdZC/v3nnpUunbb6U9e+LbzrJl0sSJxmj0cC9+dEl5JCCB0oqLpXPOMTrtv+kmo6N3vz/+8qhI05vTSUi/3+grjOMwMey/2Jg57p0+N+Au0Y6HgQPD+z30+6UXXrA3pnQxfrx06qnS+edL//iH09FYJzdXeucdp6MwZ8mSsvM+/JB60s34bGIXaZ999pk0dWr0+6yWLaUOHaQ2baQNG2Lb7qhRUuvW0mWXGeXMnx/b+gAsQwISKG3yZOnXXw9O//KL9/quys2VhgyRRowov6N6uIOdN7CrV0tnnCFVriz95S+x37AliqQdAKusXFl23ooVyY/Dbr//LvXsKT31VPwtfWL17LPeaSkYqxkznI7AfUicIRaBgNE6166k3fTpRvcDd95Z8XIljUHWrJHeey+2bTzxhFRYaLzevl0aNCj2OAFYggQkUNqQIWXnDR2a/DjitXu3dNpp0j33SDfeaDyyhvT01FMHO7L/+WdaC8XC7CNBAGCVbduM6/dLLxmP3/7tb8n5IeeXX+zfRiriRzakuuJi6fLLpfbtpdNPj54kTMQ770ibNplbNtbuCdatC5/+8MPY1gdgGRKQgN2SnbgYPjz8QjtpkrR4cXJjgMHpLycjR4ZPv/mmM3G4HclFxMPp8xup57//NX5ELDF/vjRrlnPxAEgNGzZIF14oNWgg3XqrlJdnbr1Zs4x+E0sMHSqtXWtPjJL0xRf2lQ1v4J485ZGABLxszx7pX/+Srrzy4K95zz9fdrkvv0xuXOmIC2ZZ7BPzSGZVLDfXGKRhxw6nI/G2wkLp3XelV19lX7pRpMcKSUC6F9c4b5g61XgiJJ2TW//6lzRtmrRli/T++9Ibb5hb76GHys575RUrIyuL8wp22bdPys93Ooq0RwIS8LKbb5Zee02aMEG64QZp3DinI4KXcdMXG5KGybFggdSihfFoatOm7knIePF8uewy6fbbjS+VrVpJO3c6HVFiOAfdbfZsY8CHo4+WnnvOeJzT7TZskF5+2RhFO5EBCOEOI0ca/Qs+/bTRJZHZxJsdBgxwbtuffx4+/dhj5taLdA5kkD6Ax/j9Uo8eUo0a0mGHeatrtRREDQJ4VUGBNHZs+Lzbb3cmFgCJ8WIyqyJWJoYGDTrYL9T27VL//taVnU4WLw4fUG3zZm7CYZ9AQOrWzRjdeetW6T//MVpgWc3KunPtWmOk3EcflW66yfiRNxWl2vWmIvfcEz59//3OxLFzp3EOeA0JSCSbHT8szp17cOCh/HyjHgjt7gRJRQ0CeNWBA2Xn5eQkPw5ULJ1u9NMNn21yjBgRPh3aH1Wq2b7dvrInTy4776WX7NteMnAOutesWdLGjeHzbrvNmVjMeukladeug9MjRhgDAzmJVr6JSdZI8tEMGyYVFTkdReysTkByPMMJDzwQPn3gAD/AOogEJFAaF8fUl8wvrdGOJ443uMmcOdKDDxqtDAsKzK/Tpo10/PHSwIHmH1vk2C8rnhviRPajmz4DkompJdLj/aUTkm4zZEjZeb/9lpxtu+m+BNaL1GjACyJdz6mrU1+q1RFZWWXnmR2ICZbLdDoAwBO42AJIdfPmSeecc7CVxpw50fuV9fulzp2lP/4wpv/9b+mss6gz47VkiX1lR/pMQr9k7NtnDIJSXCzdcotUu7Z9sUQSzxeeVPuSFEk6vEcA7hSp/rHzEWzqOyDl0QISQHqYONFo1WXXABbx3jS5KVHjpli8INVulB9/PPwRsc8/j/744fTpB5OPJe66y/LQYIGKzm+/30g+P/CAMUDNGWeYbwGbLOlQP6XDewRSRardA0RCH5DpiWsRbEQNAqSadLghitVrrxmjvz7+uHTeedL48cnZLhfw1JEOn+XXX5edF+2RyUh9Fi5fbk08sF/J9WLKFGO08RKrV0sff+xISPCQQEB6912pSROj5fPPPzsdEQArWZ2ATId7KQAVIgEJmOHGpF4sF/F0v+D/618HX/v9RmfgyeDG4wZlmfmc+CzhdRU9gh0p2fjuu/bGA++bP1+6/XZp5Urpl1+kyy83HuGXkldn2r2dzz5LvQH+0v2eEObRAhLJxv12yqMGAUrjxgzx4LhJLWY+Tz7zxLD/ksvr+5svJe7z0EPh09nZ0hdfOBKKbd54Q2rdWlq/3t7tWHl879tnxP3aa+4ZBRre5IVBaPx+6fnnpfr1pWbNpJkznY4IXsA9hWNIQAKlUSHBSm67UUumVH/v1BXlY9/Ez66RGSONAsnnhETMnVt23pYtxv/Jqv+TsZ1Nm6TBg8vOd+P54/dLZ58t3X+/8fTHmWd6dwRmt0v1exwp+YPQxOP776UnnjD6rF62TLrmmsiJU6SOTZtiWz4dzlUPcVkNArgUFRci8fulgQOl004zRo9FODd+OYsXdQCSpVYt6d57wwcEqojZ82zAgPjXdYN0PQe99BmlshdfjH/dwkLpu+8qXsaq43vSJGnhwoPTK1dKn36aWJmrVkmzZ8efyCwqknbvNvYDvMWJR7A//DC25e+4I3x682Zp2jTr4oH7tG4tLVnidBSIEwlIwG58eUhd48dL//53+M0+ACTqzTelGTOcjsJa0a6F6ZpgDMU+SD179kjnniudf35868d6DzlqVNl5778f37Yl6ZVXpKZNpb/8xWhZuWNHbOv//rsxQFGdOlKrVtLSpfHHguSz+hHsaMfzhx9KEyfGVuaaNWXn7dwZWxnwlpwc6aWXnI4CcSIBCQDxuukmpyMAnGXnFxG3szv+226zt3zJ+58B3Csdji0z9d/48dKcOfbHEguz9faBA9JTTx1MQv36a+ytKQcMkBYsMF4vXy716xfb+nBWsh/B/ukn+8pGavngA6cjQJxIQAJAvOjcPXWVvum2+8u0W7+sxxsXLbkSt22b/dtI5nFnxzHh90tTpxqPnZp9ZN3N3FoPSNLkyU5H4E033OB0BPH7+WcpNzd83t13x1bGW2+FT3/8cWIxwXlurqeSLTtbuuQSKTPT6I5pxQqnI/I+jq+URwISQOqaNUs68USno6iYmxI1boolmdL1fVuBG0VYJZ5j6euvpY4dpU6dpAsvlIqLrY/LabHWT3adkz172lMurPP5505HgFTD/VHFXnnFuA4VFxvdMfXq5XREgOuRgASQuu64Q1q/3ukokArS9SY8Xd93uqgoWeW15PKMGdK33zodhfVi/Rx+/dWeOBYvlvbvt6dslC+WOvimm6SCAvtiARDu+efDp8ePdyYOq3nt+g9PIQEJlOaVSpfEQMXWrZOWLXM2hkAgdT6nxYula6+VbrzR6FQe1kqV4ySd8JkdVFAgPfSQdMQRxuiU8+c7E8czzzizXatYcUy98UbiZViB8yP5du+WPvus7Hyv3NcCdhgzxukIAITIdDoAAC4zb57044/GaIXnned0NPGjFYB1cnKktm2l/HxjevJkadMmqUoVZ+OCe/GFN3ns2texJJA++UR69VXjdayj5CI1JasOINEJp6TDdc7q95js83XoUOnOO5O7TQAVogUkUFo638x++aXUrp30wAPS3/4mvfee0xF5m5ljyU03sOXFO2jQweSjZHS6PWpUcmJyMzd9dk5J5/rSbsk4vqzaxo03WlOOHTZskC69VGraVHriCamw0OmIgLLcWJdyjYPXkXwEXIcEJICDHn00fCTR++93LpZUEe0GPitLGjFCmjYtOfHEY+rUsvN+/jnxcp1+RD4WP/zgdATm/fqr9N//SlOmOB0J3M5NCQa7EjC33Wa02l6xQnr+eflGjLBnO0CJZIxg7wWLFzsdgXu4McFshlfjhne56b4EtiABCeCg5cvDp+lw3n6//mq0HrrwQqlvX6ejMW/IkOjLRLtx7d/fmljsFghIe/eWnR/6/lauNJKUkZZLpsmTpfbtpUcekS6+WHr9dWfjAUok+qUini/CBw5I33wTNqvSXXclFgcq5rYvj07EM2xY8rfpNps2SWed5XQU7uG28wIAHEICEgDc4plnwh91NiMQkL76SvroIykvz564ypPo9rzSEmnt2or//tZbUrNmRp+pZ54p/fFHcuKKpHQr5gcfdC6WaGhZ4TwvfSmOJ9biYuvjSDY3fUaffx4+ne7ncHmfTa9e1pVlxefvxDHUvz99caMsN9VnSF1WPKUF25CABLzK7488P9LF3ctfEu66S7rsMmOQAy+Kdd9v3Bjb8rfeKv3jH9J110mnny7t2hXb+on48MPkbctO0W6IK0oK+/1Gy9WSRMfy5dIHH1gXW6yWLLG2PDu/LPBFpGLJqLdT7TPw8rVOcn/8jz7qvWPG7fvUzRLZd6NHWxcHAMTi3HONLq4q4rVrWQohAQmU5pUK6YsvnI7AWuU9uvr229LEidI110TuizCdbdwY/qjXqlX2JAXL+xKSyo/omx1AaP36sv19Pf64PTG5UXn7iS/9yZPINauidb04+qlXrt9e9ccf0pYtB6fZ395Q+tyjfrYG+9G9+GzSW1FReDdPHA+uQgISMMONFVfp/hq9LBCQzj8/+nL33GO+TDd+Zlb76quy83r0SH4cSF3RziMSEPZJ5r5Nh/oyxGFTpypz+3anw/CmaMdlmh1LKY36HVYpKjL65AWS5fvvnY4A5SABCcB5P/0kzZ0bfbk1a8yX6YYbZzfE4KR0f//wlnXrpJEjpTlznI4kebx0jlqY2GrYu7eaXXutqkXr3xXuZ9Vx8dNPzm3b6rIAN/nkE6luXalq1eQ9OeOla5skzZjhrm6NqI9gIxKQgFel0sVh+nSnI0A8vHaDZzUrz8Hrr5f+/W9pzx7rynSS3cfGk09aW2/MmSO1bi11726MIv7229HXSYXjv+Q9pMJ7iVHlnTtVf+RIp8NAea64wngyIlJLfzv89a/J2U66SKV7VMSvoEC6447UubexwwsvSH/7m3TDDU5HUr78fKl3b+mf/zQGXqR/cCSABCRgNypSWK2wUHr11fhG2qwI/fnFxspze8wYaeBAqXNn68pMZf36SRdeKI0da015zz0n7d5tvA4EpIcesqZcLzN73i9bZm8cJcycbzHWVUeMHx9nMIgq0frxiy+k774zBlmrqMsZq+rhVBgxvTzchzovGfdR27dL991n/KD544/xlxMISJs2STk55f+9PLt2Gf2Tl5xPn39+8NqKsoqLjcSe25T+jB980EiUjh8v3X239P77zsQVC+o91yIBCZhBJQY3ufFGI0GSm+tsHCQmyxfvl9lvvjEGekB0gYB0//3WlDVhQvh0Kg+wFMqKa9vDDydehl2oo6znxP2QG7+gexnnRWq66CJp8GBp1CjpvPPi6yt+/36pSxfpuOOkBg1iux8ZO9ZY7/jjpY4dpZ07pby82GNIJ7t2OR2BOUOHhk/fdpszcSAlkIAEUk2kLwfcbDrH6n2fkyONHm1tmdGkYwI+0fd80UXxJyE3b05s28lk1fFdUCA9/bR0663SpEnm1wsdkTfVJOO8s2IbX3+deBlmcB0zxy37yco4pk2zriyYP+/T8dpvF7v35a+/SgsWHJwuLpb+85/Yy5k4URo3znhdUBB5mUjndiAgPfLIwYTjtGnJv1cF4AkkIAEz3HJDHy9uIp0Rz3ET7bPauDG+WEJt327cGM6YkXhZFfHKeWPHSM/TpxuPD9pt4UJ7y09W3XHrrdJTTxmP9XTqJE2ZkpztpgKv1O9eiRMVc0O9HghI77wjnXii1KyZ09HYi/PGvaz+bBLpBiBSa8fPPou9nG7d4tv+mjXS+vXh8+69N76ykBw//ij9979OR4E0RAIS8JpAwGgK369f5L+74cuBG6Trfoj2vn//XWrVSrr2WqPT66eeir9MvhhVvL/LO0etZFUfiE4qKDAeGQtl1aPVdkr1OsaL53fpmL34HhKVDu956VJjYIv162NvMZ4O+8cqqV7Huc2RRyZv0KXyxHt+pHIfqqlozBhj4K1HHnE6EvtQf7kWCUjAa+bMke680+ko4FX/+1/4Y6tPP22Mbiel9sX6t990+Bdf6JB4+kSqCF9mIzNzLJXsu337yv5t1Spr43EbMyOCJuN8LPkMUvnc95JIXQq4rY654gqjb7fyJGNk9X//276yAafk5Ei33y75/U5HUjG31UmI3YMPuvc4s+r44jh1LRKQgNc8+KDTEcAsN178Bg0qO+/33+MryytJi8mTValtW5349NM69aabdFiy+qxLBaGf8ZQp0rBh0tatB+e58Rh3uwMHpDPPdDqK5Iu3voiUoLZ6G24wYIDTEZgzb5701lvGa6f295Il5pf1Sh3l5WMX1tmyRZo1y+korMNxnbh164yB8qz8YTb0Ps5tHn647OP8SCkkIAGvmTPH6Qi8wS1fOtwSRzrr3Vu+AwckSb7iYh37yivOxuNFjz0mXXyxdMstUuvWRn9PFTFz3KfrF5NPP5VWrnQ6CoOb6qfyjodEHsf3yjG2e7fUt6/TUZjHqNQGN50/SB0lT6XEIpnHolfq1VTRsqV05ZVG90lfful0NPb76CPptNOk3FynI4FNSEACgJu48cbO631Aho4MKalKdrYzcdghGZ/B/v3hrbO2bTvYcbkVx6sbj3k7vfuuueXceH4VFxt9lE2cmLw+v95/PznbcdJHHxktYxFZIueCV+qX8t6jk/Gnw35PllTfH6n+/pxUMrJ4fr705JPOxpIsu3ZJb7xh7zbceI+VJkhAAqVRIcFK3JS5X7znvF11hduOmbVry86LdmMYTwsOxCfR4/C118wl+QIBY4Tyf/xDuuwy6aKLrO1Dym3X3t27pXvukS680Ei429lfVlGRfWU7xcp6bM8eaft268qzituOWbjX3r3WleX3G/1533//wRZxbrtvcFqq7o9585yOIHnGjEls/dD6OVWPB48iAQmY4aWKK9INsZfid9rAgVLVqlKNGsZo40hPtOxLTM+eTkfgXm47Lv71r8jzS8c5e7bRD2iJ6dOl77+3Ly6n3XWXNGSING2aMVJopUpOR+QtVifnSvqddJNffnE6AjgpWl1eVGT0u/3ww1K/ftZt99FHpQceMH4IvPxyaezY+Mr57DNpx47Y14t0bpOMB2ASCUjADC6s3hPPl/xVq4zRNQ8cMAY+uPtuKdmP63rpWHNbIiXZfL6K94GXPsvyxPse6LunfF49byL1nfrii0kPwxaffy41bWr8+/xzY97o0U5GdFAq1CNW+M9/rCnHyv3plUEBOYaccfvtUo8ekevORJQeTPCuu+Irp2tXo1/BSE85eMHs2U5HgGg2bpQef1x65hmjJXsyefVeKw2QgARKo8JKX088ET7t90svv+xMLF6QLl9qkv0+02W/Wi03V5o8WVq40OlIUoPVx2EgYPygU9KfVazsujZnZ0tdukgrVhj/unZN/g9PXpXudZUbHwuHO+zfLw0fnpxtbd8e/7m4ebPxOHeiyqufS/XBbalzzz34gxGsZUXdvnOnMZhM//7GIGvnnhtbuXwfT1kkIAGgxJYtZefxBQNulgoJACtuMjdskNq0kS691PjfzSOdp+tN9dCh0pFHSg0aGCOBx8qmYz3jpZfC+3csLk5+y04r31txsfT001L79tLNNxud+SdTuh7fiXLjYG+JfJbpfhwk+7xLRMmgcmbF8tm+/npsZceiuNh4vD0Sr9wbuTXOjz4y7qM2boy/jDfekHJyDk4vWmR03YK0RwISsNMvv0jNmjkdBWBOun9hiJVdN45btzofQ4mCAmnx4vL/nsgxY2Xs77wj/f77wXJ797Z/YI9440/382zPHqP/slgGdXnmmfhG3Tazr1evNjfPTu+9V/7fAgGjNVVhobmyli+XnnpK+vlnowXWffdZEiLSUCJ1dDITK4GAkexo395owbx5c/K27Rbpel1Zt87pCGK3erX0/PNGvW/n4GaJ6NPHSO62bi2tWRNfGZEGt0tmAjK0Doq3PsrONuqUxo2Nbrn27bMmtjSX6XQAgOtYedN0yy3e7VsFB82ZY3SAf/jhRj9UtWs7HVFypeCNrW/MGOPzvOiixAqqqL6Id7+9+KLRsbwbnHtuxX93w6/3Z58t/fRT+Lz8fOOX+5NOciamdBHv5791qzR3rtSu3cF5FZ0vffvGtx03HJ9mzJ9f/t/69jX+1a9vtEo5//zYyh41Sho5MrH4YvH++0bLSyBZxo83RoSWjMR7dnZyBsjySv1itXR931ZYsUI688yDXZH84x/OxhPNzp3SSy85s203fPfo0cMYrEkyxgk45hgjOYuE0AISMCOeSnDDBmnJEutjSUV2XGSsukFatkw65xzjl8qXXpI6dYptfavfmx37Kt4yrYqlsNBo4ZPEm9pK110nXXyx8Yum28Ty6JYbbtCcVjr5aJWPP7anXKs/s2SdN1bHbUcL1VQ+H7KyjJajbleSWDbbYhPJl4w6o6LRlbt2NQZoycqyZlu33BI+PWMG/bjCnZ57Lrwf5IkTnYvFrLfecma78+ZZV1fFe28wYkT4dLw/hiIMCUjALvv3Ox3BQSUV765dRsuEtm2NStTuRxTNcvOvqT/9FL6fZs2Sli51Lh47xLv/rfjcJk+Wjj5aql5duu46ae/exMuMxdtvx/bIc6hUTnZA6tfPnnITOW62bDF+kX/kEemPP6yLCd7w22/x11eBgDRunNFdQUXJISssXmy0SnMjN99v2CXZ7zk7u+JtfvaZ9O67UocO1mwv0o928Q525VWpdl+aqkontNJNrHXRjTfaEwcclbRHsF999VUNHjxYxxxzjKZNm2bLNrZs2aLRo0dr5syZWr9+vfLz81WvXj01bNhQnTp1UqdOnXTIIYeYKuvdd9/VizF2Ql6pUiUtNXEB+Omnn/TZZ59pwYIF2rZtmzIzM3XUUUepTZs2uuqqq3TmmWfGtF0kwZgx0quvSg8+6P6kQ0WV+/33H3wUa+5c4xHUf/0rOXGlkhUr3Nu3p9uPz9Luvvvgl+HRo41BRMzecEyeLN17b+Ix/Pxz2Xmh51GyBweIpdxU+DLt1mPWbV/oDhyQzjjj4GBZH34orV8vZfBbclqJpy9MyWhxVtLX5JNPGn1UH320dXGV9uGH9pUdS52RCnWk17z9trnlliwxurhp29beeJyQ7OPu+eeTty23XrNhmDXLeHrr3HOlpk3t287evcZ9e7Vq0jXXSJml0kpWHCd2XkfgmKTctS5atEhDhw61dRujR4/WpZdeqiFDhmjJkiXas2ePCgsLtXnzZs2cOVOPP/64/vnPf2rhwoWmyjOTSIxVXl6e7rvvPt1888364osvtHHjRhUUFGjv3r1as2aNPv30U11//fV69NFHtWfPHsu3jwQ99JC1v+iXd3Pi90u5ucbgD1Zvq3Q/UA89ZN023IYbpNiVt8/s3Jfr14dP33STufUKCqRu3Q4OPOIUjjPEKt5jZtSog8lHyWhlFKmT93RGsimyrKzwgW42b5aGDEm8XKfqPz7n2MT7OcW7n2N5THHVqvi2EU2yjpG8PKl7d6lKFemUU4zEfqJKf16BgDGadOfOxgBTTuP8c6+33jISj3fcIZ1+utEdgV3OOMP4Yat7d6NLo9LHBccJymF7C8iNGzfq3nvvVaGNfcEMGzZM/fv3D077fD6dcsopOvTQQ7Vu3Tpt27ZNkrRu3TrddNNNGjlypJo3b15hmcuXLw++btWqlWqbGHSiUqVK5f6toKBAt956a1gCtEaNGmrcuLGKi4u1cuVK5efnS5ImTJigLVu26L333lOVKlWibhdJdMst0j//Wf7fc3KMQWdOOCF6WcuXS6eeGj5v+3bjV6Rp06QGDYw+yKINAlEaCRGkg1GjjNF04axE6huv11V2951a+uZ90qSyy3zxhXTbbfHFYQUrv2DwZcU+P/5Ydl6/ftLTTyc/FiCVfPDBwR/3V682nsqYMyexMkvXhW+8YTyBJRndKADlKRmMSTK6AuvTx74BmVasOPh62jTjybporZm9ft8HS9iagFy5cqVuv/12ZdvYEfCCBQvCHpU+66yz9Pzzz+v444+XJAUCAU2dOlV9+/bVzp07tX//ft17772aPHlyuY9jFxQU6PeQVjWvvPKKjjnmmITiHDBgQDD56PP59MADD+i2225TtWrVJEm7d+/W66+/rg8++ECSNHfuXA0cOFC9e/dOaLuwWEWDQ8yda4xcm5VlPNoc7RH+SP0vDh1qVOKS0ULh3/+WZs+OO1ykIL6kG/78YSntOXk87N8vffKJc9tHcnnxi0OyW37Bfbx43MI77rsvfHruXOv7n/TC4FNuO8/cFk+ylP5uaWcLyNI+/jg1u1OA5Wx7BHv8+PHq1q2bsqwa4awc/fv3V/Gf/eE0b95c77zzTjD5KBnJvo4dO2rYsGGqUaOGJGnr1q0aPnx4uWWuWLEiWGbt2rUTTj6uXr1ao0ePDk736NFD9913XzD5WLKdJ554QveFXMhGjhypTZs2JbRtJNHAgQdH9NuxwxgxOVaPPx4+HalvOgDJRTIisnbtjP5x4SyvHp92fEGMp8x0/aIKb9i4MfEy4q0jODfiE28/rUCqi3cQtXhEq/e8eu+UAixPQGZlZalXr17q2bOn9ts8CvDChQu1YMGC4HSfPn3CknqhmjZtGpbcGz58eDDJWFro49dNmjRJOM4RI0YEt9WwYUPdVsHjUvfff78aN24sSSosLNSHdL7qHR9/HD4dchxVaNMm6ddfpX37rI8J9kjVm3IvvS8vxRorrwxCs3ixNeWk8mcZSbq9X7PYL/bx+52OwFrpdKxceaXTEXiTk9dGn8+67XvlRz63JXO2b5c++sjpKNJbpHr6nXeSH4eUXtcMD7A0Afnmm2/qkksu0eeffx6c17BhQ919991Wbiboq6++Cr5u1KiR2rRpU+HyXbt2VeafIzTl5ORoTjl9dCxbtiz4ummCo0f5/X59/fXXwenOnTsro4IRKzMyMtStW7fgdOi6SEGjRxudVp95pnTWWU5HA6u57YYslbBvvS9dP0OzN8LcMMMqkfqATFfpWu/goL/+1d4B7Kysu0v6fkRs7rlHuu4657a/Z4/Rb/P8+c7FkA7mzXM6AsTB0gTku+++q30hrbiuvvpqjRkzRieYGZAjDj/99FPw9TnnnBN1+Tp16qhFixbB6enTp0dcLjQBmWgLyOXLl2vnzp3B6XNNDCgS+l42b94c1iITCfD7dei338r33ntSyGfimEDA6Bz4z8GHZMPI60Fu/yLr9vi8JJFHEK3+YmbH57pkidHhu53ni2RN7BzXzkqHREM6vEckbtAgpyOAF6Vq/TJzpjJ69ky8nIqu8VZd/5P5yGoiuN856I8/pDZtpE6djJGoo40JkKqSUX+cf375f+OYdC1b+oBs0aKFRowYoWeffVY1a9a0YxMqLCzU2rVrg9PRRrUuEZpQXBzh8bFAIKAVIaM6JdoCMjR5WLlyZZ1yyilR1znppJPCHiWPFCdid+KTT6pRr16qdNdd0mmnGc3znbRnjzFintW8eMPolphT4WIVCEi//Wa+CwA3KhlRsrQJE6QzzpC6dzdGnkTi/H7p5ZclEz/iwSLxjoLtxvppyhSnI6iYmWuLW64/ZrnxOED8nn3WSFBYPXCJnUaONB4NdnNfh1HO64yQp/UAS733nrRmzcHpxx+XDhxwLp5Utnu30xEgDpaOgt22bVt17txZF154oXw23yBt2rRJhYWFwWmzrSyPPfbY4OsNGzaU+fv69euDrTgrVaqkk08+WTNmzNAXX3yh+fPna9u2bapcubLq16+vdu3a6aqrrlKrVq3K3d66deuCr4855pjgI+AV8fl8atCgQTDBun79elPvDeWrvHWrDp806eCMDRuMEacZZRzxMnMz4cQXxfx8KaSltyWS/T66dzdG8rvppvD5vXu76yYuFTq4HjFCevRRp6OwR58+0rBhUuXKTkcSjgSS+/EZmeNUHeeFutWsPn2cjiB23bsb/3fsKE2eXPZ8Seb5Y8ePratWSffeawwseccd0v33x7a+V+sPOx9LTyd9+4ZPFxdLK1ZILVs6E49TnD4PQq8Tka4Zzz6rSoMHq/4NNyirpE5DUljaAnLw4MHq0KGD7clHScrOzg6brlevnqn1QpfbsWOH/KU65g59/Lp69eq64YYbdMcdd2jChAnauHGjCgoKlJeXpzVr1mjUqFG6+uqr9e9//zvs0fPy4jzyyCNNxShJRxxxRMQyEJ9av/xSdmbpEadLpNKNbSrLy5N69JC6dZPGjUvutpcssT7JV8KJ469km1bX3Ym8l5tvLjvP7seu01Gk/ZwqRo2S3nrLvvK5VgDwArvqqilTpF9+kTZvlh55xLgn27zZnm2V5/XXrS+zSxfpm2+MgdYefFAqrz/+8varlYPQJEthodS+vdNRIB20a2c8zTRxotORyJeTo2NffVWHhDz9CvtZ2gIymXJzc8Oma9eubWq9WrVqBV8HAgHt3r1bhx56aHBe6CPTe/bsCT7+fNhhh+n4449X5cqVtWHDBm3bti243BdffKHVq1drxIgRYeVL0q5duyJuO5Y4S7/XZCsqKnJ0+4kqb7RzKfJ7ywgEKszMR9wf27fHfDIVFRWZWqf09qKtE5BUOo1U7PcrUM72QsuP9ne7+Px+VTK5bEk8Gddeq4wvvzRmjhmj4q++UuCii0IXjPkzCfj9ZfZdxOWeflo+E/sl8OcNaCxpvaKiIqP13598o0Yp4777pP37FXj8cfmvvNLyiju4zXL2WSAQiPgeiouLFahgP0Q7l0zFFSKW9x3tuI7GHwjIX1JGOfvFL8lfwXEWCARUHGH/mDmHza7nLy4+GGc5y1R0Djt5ExA8fqLUTQnF+MADKjIxEF5526iw/jNRp0aSIXO//pY+DiKdT/5AQP7CQls+x4DfH3X7iShd18VTZ5dW5pwzUWYgQqLA7/db+143b5YKCqRjj034PZq9dzBblhTfOVZUVKRKiu36lqiSeCv5fKa3G1aXG4XEvf9iuSZZUn9ZpMx5EaXOKIndV1wc9d7M//bb8n3xhXxZWca2Ro2SL4ZHs0vuT+OVOXhwxPlFFVxbIsZREvPy5cos1fVV4PbbIx5v5Z2LRcXFCR1nofdWVtQXZsopHjVKlUK+21a4bKTPrLjYFcd6LMycz9Gu52bfc6zHY9SyYogn0vJ2fFZ+vz+sri33+vDnIMCByy+39foRWu9Fu2YcF0M/yV7Pi7iB1+qKoIKCgrDp0D4TK1K51KNYpcsJbQEpSSeeeKIee+wxnXfeeapU6eBleN68eXrhhRe0cOHC4HqPPPKIhg4dGrb+gZDHBc3GKElVqlSJWEay+f3+4Hv0srrlzI/03k7es0d1Kigr0jqn3HOPzKXAD1q9erXM9DC6cMGCsJZpZ0RZvqioSKUfONyyebOyFi6MuG7o+4n491Lbt8NRW7boGJPLLly4UBl5eWpTknz8U+Fdd+m3kJaQVdevV6xtFPP27pWZnwnMJB8lae/evcrIz1f1GGJYvny5Cv4cmChj7161vuMO+f6sA3zPPKMNPp9OjKE8M1asWKH8AwdUOTtbkTqUKG+/bN68WdsqqB9O3r27wnMpmtLnWrRjv7x1Y1mvxO7cXK35s4xqq1crUi/Dubt2adOyZSrvoZq8vDytjLB/osWTn5+vpSbXy9q2TZujncMVfEbx7BurrF69WnmHHqqMvXvVJsLfS+JONEYz17DytlHRutVXrdKpUdapNXeuTnzqKWXu2qVt3brpj/vuU8Pdu3VY1IiMm+fQsk7aubPMtWzP7t1as2iRTjdRXqzy9u4NO35P2rWr3GtpPFavXq29NWoEp6ts2lTuuWRW6Zh9BQVR982ePXt0aKl5u3Nzy8xLRKXjj5evuFg5F1+c8D5cunRpxHo6HomcYwsXLlSbcn6csktJvC0PHFCVKMuWyN21S2tDz+OiorjrlFiuSVbVX1YofV6UV+eWKIm95urVijYUp+/dd+ULSeL7Yhw0Zf2GDdqZwPeM8vbv8uXLVbB3r+n9v2TJEklSjQULytyb+/74I+I6v/32m1pHmL9o8WJl7t4d93m6Zs0a7fnziT2rrn/Rytk+ebLqmyxz69at2lrqM6u6YUPM99xOM3M+R7t/MPv5rFi5Uvl+vyX1Qaz3dJGWt6Neys7O1qaQbTUvKFBFmQ+fza2ED+zcqSV/xtOioEBVK1i26saNpstNhbyI02wZhCYZSmefMzLMvZXSfTCWbh0X2mdjmzZtNHbsWJ1//vlhyUdJOv300/Xhhx+GjWo9Y8YMffvtt2HLhfZTaTZGSWHbI9PubpV27VLtuXOdDsM2h6xa5XQIZVSK0Fl7tRguHl5xxPjxyij1A8RxAwcmPxCn+3FxWNw3SWm+30zz2qNqZvn9OrFPH1XJylJGQYGOGjFCtWfPdjoq8zh+LVPSIqxueY9ywj6pWr+4RKJJBLuTEHaqnJPjdAhwkC/kOz7cp+off6juV185HQYi8GwCsnQyr3RfjuUpncwr3SLy66+/1owZMzRq1CgNHjxYNUJ+nS+tSpUqeumll8KW+aDUyKyhiUSzMUrhidHSMcJdKu3d63QI0SXwRfLYV16xLg7EpNKePWXn2Xi8BUg4xMbDX5xgv5rz5qnK9u1h80568klrE3ucswDgiGbXXWdPwQ7U62af7MFBh06f7uj26371lU564gkd/fbbJEPLcdzLL4d39QJX8Owj2IccckjYdEFBQdhjy+Up/Thz1arhDXJ9Pp/q16+v+vXNNUSvW7euLrvsMn388ceSpF9//VX79+8Pxhf62HXpx70rErps6RiTKSMjQy09PmpXcXGxNpd6XLdE69ZlH57IiNKfaJl1TPY/WtrJjRqZWq5169Yx3YxEGmn96AYNdFSE9xosvwK19u+PukyifA0amF62devWUt3ID7GFxVk9lgefDTVr1ox5nYrUqF5diuGHB0lq2rSp1MR46CnDZD2UqCZNmkinnipt2RLx7zXL2ZcNGjTQ0RUcG9HOpWgSOe4SPWZr16lzsIxyzr86hx6qWqdGegjXUKNmzbjiqFa1qun16terp3pRlrX7/I3XySefrEDr1tLu3RH/blXcCR1HrVqVX/+Wc8Nfsj1fhFbZmbm5qlPHXMcEPp/vYOw7dihz6tQyy9SqVUutWln1QG64mjVqhO27jMPMPDhu3sknnyyFfjYx9JNdnpqlz7k/u7OoSK0I9VRtk5+RE5pVUOfEKtE61hfDkz1WKIm3kon7/RJ1Djss/H0m8EU9lv3lpnq3zLUowo+boYJ1WEg/9nY5/vjjdZwN+6ppkybSKaeYXr5FixZGoxELfuRt1bKltHNn3Os3atjQuDZawOxxeOSnn5ou86ijjlL90uXGcc/tNDP7pqJlKv3rX6a31aRpU6l5pM58Yte6dWv5PvpIlUJG2z4qEJC/nP5Qk1UX1R85Uoc/8UTwvKvkYP6iRObu3TotK0sZFsbiprrdCYsXL46pUV0knk1Alr6Bz8vLMzXIS17Io5uZmZkxDQxTntNPPz2YgCwsLNTmzZvV6M/kUugAN3kRHhs1E2doGU6IlNBKFRHfW5RkX5l14tw/ZvdrZmZmTAnISI+zVMrIKDfOaHH4fD77j4EYvsRk7t1b7si9YXGW6jbBDJ/Fvzr7fL6Yf8nOrFz54GeVpC93wW2W8zmXt18qVapU8fGf4P5M5LhL9JjNkJRRUkY5ZWX4fMqooIV6hs93sIwY+AIB0/FnZGRE3YZb6/Dg8RNn3WRWwsdRecdxtLjLqYMyTJ4XvtCy+vQpt6x4jjFT2y9d91tcP4bVdVLc19JQYfvMZJmR6jezn5ETrDyfEzo3nn1W2r/fslhMbTOOeMucIwm0XI9l+26qd8OuZ1LU8yJaHWalqPcRccqs4NpSXhyxrlPhthPYd1buEzuOw4jfKTz4tJ6ZfVPhMrE2DrHyM73jjrB5GUOHKuPtt8tfPkky27aV1qyRjjwyaduMplIMg2KZ4aa63as8+wh26RaK20s95lSe7Ozs4Ou6detaknA44ogjwqZDR60+MuQE3LFjh+kyQ99PvT87IkaSpOJjlan0np5/Xpoxw+ko0kt59WS048rFX+It4fPFfm6l0rmY7uI9vuNZr9QAd2HsOqZ++EEKHQ021c9nr7Dyc/jLX6Rrrolv3aefti4OwKz166WLLpJOOkl66CHry7fi/OI6n3q2b5f69ZOee05KQsvgqGJ4qjKp8vIkJ/qqTxTnbFJ5NgHZoEGDsL4RN5ocgGLTpk3B1yeeeKIlsZR+tDq0T8jQbWzatEkBEwd4IBDQHyEjrlkVJ9KEF78kxlLxv/iifXHYIdbPw0sXwZEjpaZNpdNPN5IV6cauz8qL53AivHTMW8HKz9fufXfWWVKMo9rCQ2bPlj75xOkokivd6ptEuHFf3X239M030rp10quvlr+c07Gn23U8leXnS23aSE8+Kf3nP8Z1sbiYz7g8o0YZ/7tp/7gpFng3AVm5cmU1btw4OL1s2TJT64Uud2qpfnTmzJmj559/Xj169NCdd95p+vn20OSnz+fTUUcdFZxuHtLfw/79+/X7779HLW/t2rVhSc3ScQLwiF27Yu4D0lGxXqDnz5dWrDD+v+wy9/4im8qc/pKF1FZQIL3wgj1l5+aG97dmR6Iz3vOD8wqJWr9emjDB6ShSz+TJTkeAdPPhh1JIAyatXi2NG+dcPF7BdRTl8GwCUpLatWsXfP3jjz9GXX7Xrl1aunRpcLp9+/Zhf9+0aZOGDx+uL7/8Ut9//72WLFliKo4fQlr+nHLKKWH9U55yyimqGzJgxk8//RS1vFmzZgVfH3bYYcYAEQDsZ/XFcunS8EcYU9nu3UaLSFhrzRrpwgtj6kwfLmc20e+Wm3e7vmhdeql0xBHSe+8Z7/X88xMvM55WDrSMgFndu0tDhpg7N1u2lK680v6YYC3qg+jccm1KVHa2tHBh1EGZgi36Qo0fH9uxwnEFBHk6AdmxY8fg6yVLlkRNGH7yyScq+nMo9jp16ujss88O+/tZZ50V1ifkmDFjosawZMmSsITh5ZdfHvZ3n8+niy66KCyGilpW+v1+fRLyOMzFF19s+cAY8BinL/RObx/2K/mMy/uszdZBJrvCQAxuukmaNs34xR2pgWv6Qfn50gMPSJMmSQcOOBMD1ziYNXKkdM890muvRV82WlIjmUof42ZHek5GXZWq9WEi9Uqq7hO3adxYOu00qXVrqaInKadPT1pIsIGZ84lzLqk8nYBs06ZN2CPOvXv3Lnek6WXLlunNN98MTnfr1k3VqlULW+a4444LaxX52Wefafbs2eVuPzs7Wz169Aj261i3bl393//9X5nlrrvuumAScfny5XrjjTfKLfPVV1/VqlWrJBmjm95www3lLguPS+aXnnSsWFOhJYzXvhh7Ld6KOHkslOzH3Fwp5AcupJkDB6QYBq/zrH37pCeecDqKcG67FsBd7Bj8JFm2bpXOOCP6crNmSSENPTzHyfuRRLft9nupVKkfSwaT+f136fXXY1vX4pGVU1KqHCdm+P0cEzFwbQLyggsuUJMmTdSkSRNdcMEF5S7Xq1evYHJv5cqVuuGGG7R8+fLg3wOBgKZMmaKbb75Z+/btk2SMKn3XXXdFLO+xxx4LDq9eXFysu+++WyNHjtSBkF/m/X6/vv32W11zzTVat25dcP7TTz+t2rVrlymzadOmuuqqq4LT//vf//T8889rT8ivo3v27NFzzz2nIUOGBOddc801Ovnkk8t977BJsi78dm3H7TcuQCqp6AYr0Zuv/PzE1kfiEqlPy3vaIZbjolkzY6CQVLd/v9MRAOlhxAhp8+aKl9m2Tfr736XCwqSE5CrplDTBQSGNlEzx+2M7Vp5+Wrriiti24VVu+x4aCESPKZGYP/hAqlVLqlxZevxx971/F8p0OoBEtWvXTg8//LAGDRokSVq6dKmuvPJKnXzyyapbt67Wr1+vrKys4PLVqlXTK6+8olq1akUsr2nTpurfv7969eolv9+v/fv3q1+/fho4cKCaNGmijIwM/f7779pRqlVC3759wx4JL+2JJ57QypUrg4+JDx8+XJ988kmwf8cVK1Zof8gNeMuWLfXYY4/Ft1Ngv4kTpUceMVqo3HprfGVwk3MQ+yI1cNFFPLx63ESL++67I8+Ppb7btk168cWKY/Dq/gOSraBAGj7c6SiSL7TO6dkz+vIvvCD92WVV0uXmGj++HXkk94ZewmdVsZDu1VLeH384HUFyTJ4sXXvtwZa0ktS/v/TPf0pt2zoVlSe4tgVkLO666y716dNH1atXD85bvXq15syZE5Z8POqoo/TOO+/ozDPPrLC8K664Qu+++67q168fnLd3717NmzdPv/zyS1jysX79+vrf//6n66+/vsIya9asqWHDhoW15ty/f78WLFigBQsWhCUfzz//fL3//vtlHhGHS+zeLXXuLK1cKa1bJ/XtG185XKztxZdy68R7rKb7ZxDp/Vu9T9J9H7vVnj3lj+oc6/nEaJvAQZs2xdbfcEkd6fdLf/2rVM4TUAiRzK4/Qq9hDz0kHXqodNRRUrduRsLYinJhLfYtonHbMWL1d+4DB8omH0s88MDB1zt2GPdwc+dau32P83wLyBLdu3dXhw4d9Mknn+j777/Xpk2blJeXp5o1a6px48bq0KGDunTpopo1a5oq7+yzz9Y333yjL7/8UtOnT9eSJUuUk5Mjn8+nww8/XKeccoo6dOigSy+9VDVq1DBVZq1atfTmm2/qp59+0oQJE/TLL79o+/btKi4u1hFHHKE2bdroqquu0rnnnpvIrkCiolVSb77pXGf5SC/JSlJH247bbiTcxI59E0uZXv5svBB7u3bS889LIYPJmbJpkz3xlJbMH7LS6UczNx+b6fQ5lDZ6tHTLLfGtO2UKXwLdbO5c6dVXD05/+ql0ww3efGw1HVum834RKtVbQY4bFzn5KB3s4mLNGum88w5Ov/yy1KNHUsJzu6QkIDt37qzOnTvHtM60adNi3s5RRx2lBx98UA8++GDM60ZSpUqVuGKP5i9/+Yv+8pe/WFomkmjDBqcjSK5kfNnhQn4Q+8I7+KxS3y+/SJdcIm3ZYjwSaIV0TiCVx6p9snKlc9uG/fr2jb9v3HfftTYWL4n1WjVnjj1xVCTSI4tXXpnYdXbbtvjXdRJ1kjfwOZXPTQOy2PE55eREX+Z//wvvb/fRR6V//UvKTJn2f3FLiUewgaTKsOi08UrywitxwnmljxVuzpAK/H6jXx+435Yt0tdfx7YO1zjvWLUq9nW4DqWOWM7VrVul226LfRscL9Gxj5zdB1995dy2Yd4rr4RPBwJSdrYjobgNCUggVslOQFrx5YibBe9w42flxpjcINp+Yb9VrGT/OJUACgSMASlOPz36sosW2R9PPFIleWbl+4ixX+aMCROs2zYAdzj/fOnLL52OIj5erNe530mehx92OoLovHgMI2loAwqUFq3StCoBCXtxM5R83HBYy8z+ZJ/Hb84c6eabnY4CVgt9fJTzA3C3VL1XS9X3JVGvlnDqM46nqxEnuOUcKCpyOoKD3LJPHEYmBYiV2ysPbgxSB5+lc0L3fUWfg9vrA5TvX/9yOgJrJKuesPNY5zwyj+sC0lUyjn0r6qKlSxMvA4A1rr7a6J4FrkELSCBWtIC0Hl8+ncUX2vjYtd84H5Lj55+djgAA7Mc1Prnat5duvdXpKAwff8w9hV3Yr+Xz+dxV7+zbl7xtbdpU/t84ZiSRgARi58UE5Ny5UsOGTkcBr+KCaR2rH6s289kUFEhVq5ovE5HNmCG9955Uv77Up0/F+z7evwEAvO+99+Jf18prxP/9n3VlleAahmjclHx0E/aLJBKQQOzcnoCMdGPw8cfJj8NpVPLJxz63lpmbfDP7fNIk6Z//TDgc23jhuPn1V2NQA7//4PSAAc7GBPt44ZgE0kFWlvGjj+SdR7ABAOVyeSYFcKFKlZyOILn4IpZcTuxvp0cjLk9+vjRkiPTaa1JurtPRlOWGLypmPjO39nXotuOtIrm5B5OPkvTtt9KGDc7FU8JL+7AiqfI+ksEN9Q68xe3HTEXn/9NPJy8OmEN9bXD7eeU09k9Z7BNJJCCBsqJVDlZVHlRCB7nlZobPJDKz+8Xqz/Hvf5fuucdIoJ12mrVlWyEQiP6ely2TrrhCuugiado08+XCWqtWSZdfLv31r9K4cdaUuX595PlXXSV9+KE12zAjkUf9YpFO9WM6vVfASYWFUufO5f/9zTeTF4vkjnOfewD3c8NxAsv4OOeSikewgdKiVUJWPYJttrKjUoxPPDcH7OvInNovoYOErFsX27qLFhmPycabuLTi5rKoSPrb36TsbGP622+l1aujr8dxaK1AQOrY8eAxNHOmtGCBfdv7/HPjX7Ikq4UrxyUAq02fntz6EvYgIYdQjAQfGeeJJBKQQOzc3gck4BZOXmjPPNNoWZFp82Wuovf4ww/h04GA9OST5ssm4WON6dPLJrB79Ei83Hg/HyvPi1S5mU2V9wH3oR519z4YPtz8sm5+H0gvHIsV+8c/nI4ALkYmBYiVVV+U7Lp4WV0uXwyd4/V97+QNWmGh8X9RkXMxRPL999GX8frn7jaRHpX+9tvkx4HyccwDgDdQXxv3t27bD6H9VCMmAas/yxdesLa8FEMLSMArAgFpxAino0A6cqoPSESXCvs8Fd5DLKx8v+m272L1xRdORwAAsXFbYqu0SNcdrkXOu/RSpyNAid69nY7A1UhAArFy6iL78stSz57ObNtubr/ZSqbQfeGWG7pVq5yOwFlu+RwAJ3mtnp48Wfq//3M6Cutt2uR0BN7iteMW5eNa7C4FBdJ//ytt3Sr95S9OR4MpU5yOANFwPZJEAhJwTqyVkFPJR274wBde9/Ly+cmNGErY8SPHHXfEv66bz6s+fZyOAF61a5fTESTmk0/s3wbXJfOuvVYaN854/eqrzsbiBI6VlMEo2MlFH5BAadEqoWnTkhMHko+bCbgBN0LeEG994bV6ZsMG+7dhR1+tqfrDyddfOx0BJKm42OkIYrN0qdSqldNRxG/fPumWW5yOIjm8cA+wbdvB5CMAc7x2/2cTEpBArEqPbBsvL9xgIPm8fFx4Ofby7Nsn5eVZV14q7iO3Y58n7oMPnI4AcJevvnI6AvMCAemNN6SNG52OJH4jRhwcXM4ue/dKDz9s7zbM+P5747FmN4s0uFs68fm8m0zyektoeB4JSOC776Rhw5J/Y5bqX4oXLZLatZNOOEF65hnvtRYAXnlFOvRQ6a9/jfx3u89hr97cmlWy/1K9LkwFffp463jkmILdvNbCdvBgpyNITDKSJvfcI82YYf92onnuOal5c+mnn5yOBKnovfecjsDbvvxSuvdep6PwNPqARHobMEB67DHj9WGHGb86uu1Lltu+SG3bJo0dKx1+uNS1a/n76//+T1q2zHjdt6902mnS5ZdHXtYt79EtcXhVKu2/7GypRw/J70/+tkvOqVTan7BHso6RZDyGbaXVq52OAICVdu60fxsjRti/DbNycozBJ91q0SKnI0C89u93OgJvK++7LEwjAYn0VpJ8lIybmwEDkrdtuxKddn4h3bxZOuOMg4+G3Hyz9P77ZZdbuvRg8rHEjTcm5wYSsMKPP0ZfJp5z2Mw6JB6BxNjRpyS8zep7Lrf9WF0RL8VantdeczqC5Bs71ukIyvf4405HAFim8o4dydlQKtTFFuARbCDUyJFOR+Bu//tfeL80w4ZJWVlll8vNLTuPPkcAc6xOQG7YYDxy47VHBt0uXQahAVIBP+x4165dtNpym23bnI4AgEeRgER68PIXvvx8Z7cfetPev3/Zv8+Zk/g2rPp8unaV/vY3afRoZ+PwKqu/oKX7/nST224zRkBdutTpSA6yakAvwGrUXYjGS8eI15OvyRgEa+VK+7eB1LFrF33bA3EiAQmU5rYbtTPPlNauNb+8G26K5893ZruffWZ0IH7ttdKsWc7EYCW3HYvR5OdLU6ZIc+ca05MnOxuP3QIB6eefnY/BrJ07pRdftC+WWD35pNHHpt3HudfOo1gks753w7UlWVL5mEk3fJbe16eP7ZvI6NvX9m0ghXz9tfTtt05HER/qRDiMBCTSgxsrW7MxrVwpvf66vbFYqbBQuu8+p6OQHnjA6QjSz6uvShdfLLVtK/XunR79sMX6pcXquijW8oYPt3b7iZo50+kIYJYbr6N2Saf3CkC+zZudDgGwh5sGV0p36fRDbgVIQAJe8Morzm071spyzBh74ohVXp7TEcQn9Iuvly9UL7zgdATJsWKF0xF4W6T+Yr3CDUkqN8QAAADc6fbbnY4ACEMCEoC11qxxOgLEysuJTifZtd/4PKxl1/4s6WoAQPqhngbgBQcOOB0BSnDdkCRlOh0AkLbsarni9hYxfr/0zTdGnB06SJUqOR2RuzhxcXL7MeNWdp/DfC7uNmqU0xEAiKbkmsoXPwCAk7ivl0QCEkCiYqlMAwHpiiukiRON6Q4djI6cqZCRLvglGlbauTN52yKBAy+z+j7DS+cD91gASlAfwGE8go304KUbRbex8kI1efLB5KNktIT84QfrygfcLpaBedKl3mIU7PjNm+d0BKnpyy+djgCAzRo9/LAqb9vmdBhws/37nY4ASDkkIAGnpEtyIVSnTmXnpctgJYDk/CjY6YgO2NMP5wXsduedTkeABB36ww864ZlnnA4DbvbvfzsdAZBySEACSEzpRGo8X/zSMRmL9GTm/Ig3ebJqVXzruVWfPk5HYA+v1nck9QBv8mqdU8LG+Ov89JNUXGxb+fC4wYOdjgBIOSQgkR744gQv4rhNT/F+7v/5j7VxOO3ZZ5PbxyEAAKgY96be5vUfJOB5JCABp3ABRyQcF6nNzI1fyTITJkRfNvR42bw5vpjc7OOPnY4AJbz0pcVLscJev/3mdATO474iOuoM855+2ukIkAjqA+ew7yUxCjbSRLWNG50OAQBi+5Lz0EP2xDB6tDR8uHTMMfaUH6uKbsj4UgggEcuWGf9Tl6AiJAbMY18BSAAJSKQ+v19Hv/uu01Ekj9M3BrHe5E+eLP31r/bEAniZXaMvXnutPeUitTl9bQHilZ3N8QsAgAvwCDZSnm/SpNhW4CY1Nqm0v9K1hUTJ+06lzzIZ2F+IR7rWM4BT8vOdjgAAAIgEJNJBqo0Mm4rckshxSxwlkpWouP126d57U7MPQbdx2zGG5PvgA6cjiA+JUwBOyM21t3yuywCQNCQgAaek6g1PPO8r1Ubv9ZqZM6U335TatXM6EsQqVesRuA/HGgAA3sa13Dnse0kkIJEO3Hqy2xWXE61UDhyQfvlF+v335G8bcIobWoR9+KHTESSuorrQrfV3OuKzALyJcxcA4BIMQgOU5oakgpfk5EjnnGMkIDMzpcMPdzoib+P4Qyxyc6V586Q6dYyWrAAAAADgQrSABJCYTz4xko+SVFQkZWU5G4/XvfOOMTK4RKsFt4vn8zGTYI613PPPl047LfZYgFRF3YlQb79t3J8AAABH0QISKI0vLrGJdZRxVGzgQONf795SpUpORwOrmalfYq2Ddu+OLxYASAfPPut0BAAAQLSABFKP1QnUdErIuum99u8v5ec7HQXgrHvucToCAPA2unYBUMJN33WQlkhAAkCJH35wOoJwf/zhdASoSDwJYr4Iwqv40gJ4E+cuADiPulgSCUgAAOJT0ldnLMwkINMtSckNGQDASVyHACApSEAi9bn1psKtcQGwz44d0ZdZu1Z64w37YwFSVbol8QEkhntypAu6d4LDSEACgFtxQ5y+7r/f6QiAcF5K6k2Y4HQEAAC4D9dHOIwEJFKfW780kVwCAHiFl65Zjz3mdAQAvMRL9RuQiKVLnY4AaY4EJFBasm5COnZMznYS5dYEbjr4+munIwAAAAAAJIIfOiSRgEQ64GQ3Z9GiyPPZf87ZudPpCAD7bdjgdAQAkLq4jwMAuESm0wEAruP1Fn/x3GgGAlKXLuX/fedO6bvv4g4JAMp17bVORwAASGckaQEgKUhAApDmz5dWr478t6VLpVNOMTd6LwDEYts26fffnY4CAAAAgM14BBupj181o4uWXCT5CMAOe/Y4HQEAIN15/eknAPAIEpBAusvN5cYLAFAxfswDvMnvdzoCAAAkkYAEyvL6l6xYk4n79pGABABULCfH6QgAxOPnn52OwNWqbN3q/Xt/AO5HPSOJBCQAAHAKP354x6RJTkcAAJY7Yvx4p0MAgLRBAhKpj18boiMJAAAAgDRz9Pvv810Bqe3yy41B/wAXIAEJpDufjwQkAAAA0hMJSKSyL7+U+vVzOgpAEglIpIN0S65xEwUAAAAAkKQ33nA6AkASCUikAxJyAAAAAADACeQkJJGABMpKtxaTPIINAACAdEViAACSggQkUFo63oSQgATgBOoeAAAAIC2QgARAEgCAM8aPdzoCAEC64z4YAJKCBCRSXzq2aIwFN10AnDJtmtMRAADSnO/XX50OAUCq27LF6QhcgQQkAAAAAAAAYIf33nM6AlcgAQmkmnhafNIKEgAAAAAA682f73QErpDpdACA7XgEu2KnnUaTcAAAAAAA7ECDH0m0gARA8hEAAAAAANiIBCRQGi0mAQAAAAAALEMCEqmP5s4AAAAAAACOIQGJ1JduLRpJuAIAAAAA4A7plpMoBwlIoDQSeAAAAAAAAJYhAQkAAAAAAADANiQgkfrSrblzur1fAAAAAADgaiQggdJI4AEAAAAAAFiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpBIfTxSDQAAAAAA4BgSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIINXQ5yUAAAAAAO7Ad3RJJCABAAAAAAAA2CgzWRt69dVXNXjwYB1zzDGaNm2aLdvYsmWLRo8erZkzZ2r9+vXKz89XvXr11LBhQ3Xq1EmdOnXSIYccYro8v9+v6dOna+rUqVq4cKGys7OVn5+vWrVq6bjjjlPbtm119dVX64QTTjBVXr9+/TRy5MiY3tPxxx+vqVOnxrQOAAAAAAAA4BZJSUAuWrRIQ4cOtXUbo0eP1gsvvKD9+/eHzd+8ebM2b96smTNn6u2339aLL76o1q1bRy1v2bJl6tmzp1auXFnmbzk5OcrJydHChQv13nvv6brrrlOvXr1UuXLlCstcunRpbG8K1qC5MwAAAAAAgGNsT0Bu3LhR9957rwoLC23bxrBhw9S/f//gtM/n0ymnnKJDDz1U69at07Zt2yRJ69at00033aSRI0eqefPm5ZY3f/583XzzzcrPzw/Oq1atmho3bqxDDjlEWVlZWrdunSSpuLhYI0aM0O+//6633npLmZmRd2kgENCKFSuC023btlWVKlWivrcjjzwy6jIAAAAAAACAW9magFy5cqVuv/12ZWdn27aNBQsW6MUXXwxOn3XWWXr++ed1/PHHSzISf1OnTlXfvn21c+dO7d+/X/fee68mT54c8XHsvLw83XfffcHkY7Vq1fTvf/9b3bp1U9WqVYPL/f7773r++ec1Y8YMSdLMmTM1aNAg9ezZM2Kc69ev1759+yRJlStX1nvvvRe1xSQQlz17nI4AAAAAAOAWS5Y4HQFg3yA048ePV7du3ZSVlWXXJiRJ/fv3V3FxsSSpefPmeuedd4LJR8loDdmxY0cNGzZMNWrUkCRt3bpVw4cPj1jeO++8ox07dkiSMjMzNXToUN1www1hyUdJOumkk/T222/r4osvDs774IMPtHnz5ojlLlu2LPi6UaNGJB+TKdZHsHlkGwAAAACQKh56yOkIAOsTkFlZWerVq5d69uxZpj9Gqy1cuFALFiwITvfp00fVqlWLuGzTpk113333BaeHDx8eTFyGmjBhQvB1ly5d1LZt23K37/P59NRTTwWTk4WFhZoyZUrEZZcvXx4WCwAAAAAAgO2+/dbpCABrE5BvvvmmLrnkEn3++efBeQ0bNtTdd99t5WaCvvrqq+DrRo0aqU2bNhUu37Vr12AfjTk5OZozZ07Y3zds2KA//vgjOH3ZZZdFjaFu3bo67bTTgtOLFy+OuFxoC0gSkC5n0yjtAAAAAAAA6cjSBOS7774b7OdQkq6++mqNGTNGJ5xwgpWbCfrpp5+Cr88555yoy9epU0ctWrQITk+fPj3s73/88UfYo9Ynn3yyqTgOPfTQ4Otdu3ZFXIYEpIN8PqcjAAAAAAAASFu2DELTokUL9erVq8LHlxNVWFiotWvXBqcrGtU6VJMmTYKPbZdurfiXv/xFixYt0s6dO5WVlRWWWKzIpk2bgq9r165d5u85OTnBkbhLYkAS0acjAAAAAABwAjkJSRYnINu2bavOnTvrwgsvlM/mVmebNm1SYWFhcNpsK8tjjz02+HrDhg0RlznssMN02GGHmSpv48aNWrp0aXC6UaNGZZYJbf1Yr1491apVS5MmTdKkSZO0aNEibd++XdWrV9fRRx+ts88+W1dffbUaNmxoavsAAAAAAACAm1magBw8eLCVxVUoOzs7bLpevXqm1gtdbseOHfL7/crIiP9J9Ndff12BkGz2+eefX2aZ0ARkZmamLrvsMq1bty5smdzcXOXm5mr58uUaPny4brjhBj366KPBPisBAAAAAAAAL/Jsdis3NzdsOtKjz5HUqlUr+DoQCGj37t2mH7UuberUqRo/fnxwun379hEfBQ9NQG7ZsiX4ul69ejruuOMUCAT0+++/B/uPLC4u1rBhw7R69WoNGTJElStXjis+qxQVFTm6/YRFGO0cAAAAAADAboFAQMVez6tYwLMJyIKCgrDpatWqmVqvdDKvdDlm/fbbb+rZs2dYub169Yq47PLly8OmW7ZsqV69eumss84KzvP7/Zo5c6aef/55/f7775KkmTNn6rnnntNTTz0VV4xW8Pv9WrhwoWPbt8JR27bpGKeDAAAAAAAAaWfvvn1a4fG8ihUsHQU7mUq3yjP7GHXpR5qL42gdt3z5ct16661hI3737NlTzZo1K7PsgQMHwgapufjii/XRRx+FJR8lI/7zzjtPY8aM0amnnhqcP3r06DIJTAAAAAAAAMArPJuALJ1w9Pv9ptYrnbiM9fHmX3/9VTfeeGPwcWlJ6tq1q2688caIy1epUkXz58/X9OnTNWLECA0YMKDCbdaqVUsDBw4Mvr9AIKAPPvggphgBAAAAAAAAt/DsI9iHHHJI2HRBQYGqVKkSdb0DBw6ETVetWtX0Nr/55hv16NFD+fn5wXmXX365+vXrV+F6GRkZatCggRo0aGBqO40aNdLZZ5+tmTNnSpJmzZplOkarZWRkqGXLlo5t3xImBygCAAAAAACwUo3q1dW6dWunw0jI4sWLTTf8K49nE5B16tQJm87LywsbYKY8eXl5wdeZmZmm1pGkd955RwMHDgzb4V27dtUzzzyT0Cja5Tn99NODCcitW7eqoKAgpmSplbw+Ere/VNIZAAAAAAAgGXw+n+fzKlbw7CPY9evXD5vevn27qfWys7ODr+vWrSufz1fh8oWFhfrPf/6jl156KSz5eOedd+q5556zJfkoSUcccUTYdOgj34iNb9Ikp0MAAAAAAABIW55NQDZo0CCsL8WNGzeaWi90QJgTTzyxwmX37t2rO++8U2PGjAnOq1Spkp588kn16NEjtoBjVHp07ho1ati6vVTmW7TI6RAAAAAAAADSlmfbgFauXFmNGzfWb7/9JklatmyZOnXqFHW9ZcuWBV+HjjZd2u7du3Xrrbdq8eLFwXnVq1fXoEGDdP7555uO85tvvtHs2bOVk5OjzMxMvfjii6bWC02o1q5dWzVr1jS9TQAAAAAAALhAIOB0BK7g2RaQktSuXbvg6x9//DHq8rt27dLSpUuD0+3bt4+43N69e8skH+vVq6cPP/wwpuSjZCQ8R4wYoYkTJ2rChAmmHxUv6f9Rks4444yYtgkAAAAAAAC4hacTkB07dgy+XrJkiZYsWVLh8p988omKiookGYPYnH322RGXe+yxx8KSjyeccII++ugjNW/ePOYY27ZtG3wdCAT06aefRl1nypQpWrt2bXD6iiuuiHm7AAAAAAAAgBt4OgHZpk2bsKRg7969w0a5DrVs2TK9+eabwelu3bqpWrVqZZb76KOPNGXKlOD0McccoxEjRui4446LK8a2bduG9TX59ttva/Xq1eUuv3btWvXt2zc43bBhw7BEKwAAAAAAAOAlrk1AXnDBBWrSpImaNGmiCy64oNzlevXqFRzJeuXKlbrhhhu0fPny4N8DgYCmTJmim2++Wfv27ZNkPE591113lSkrLy9PgwYNCk5XqVJFb775ZpkRt2Ph8/n0+OOPB6f37t2r7t27a+LEiWGjahcWFmrcuHG69tprtXPnTklGP5cDBgxguHYAAAAAAAB4luczW+3atdPDDz8cTBwuXbpUV155pU4++WTVrVtX69evV1ZWVnD5atWq6ZVXXlGtWrXKlDVq1Cjt3r07OF2zZk3Tg8aUaNKkiXr27Bk2729/+5t69OihgQMHSpJ27typRx55RP369dMpp5yioqIirVmzJmzblStX1iuvvKJWrVrFtH0AAAAAAAC4xJ+N5tKd5xOQknTXXXepRo0aGjhwYLCVY6THnI866ii9/PLLOvPMMyOWM3ny5LDpnJycsMFgzDhw4EDE+XfeeacaNGigfv36KTc3V5IxKM7cuXPLLNuoUSM9/fTTOuuss2LaNgAAAAAAAFyEUbAlpUgCUpK6d++uDh066JNPPtH333+vTZs2KS8vTzVr1lTjxo3VoUMHdenSRTVr1iy3jNCBX+xw2WWX6e9//7s+//xzzZgxQ8uXL9euXbtUqVIl1atXT82aNVPHjh3VoUMHValSxdZYAAAAAAAAgGTwBQKkYhFu/vz5wf4pMzIy1KZNG4cjShDNnQEAAAAAgBPat5d++snpKBJiRZ7ItYPQAAAAAAAAAPA+EpAAAAAAAAAAbEMCEgAAAAAAALADPR9KIgEJAAAAAAAAwEYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAADs4PM5HYErkIAEAAAAAAAA7MAgNJJIQAIAAAAAAACwEQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAOzAKNiSSEACAAAAAAAAsBEJSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAAA7+HxOR+AKJCABAAAAAAAAOzAIjSQSkAAAAAAAAABsRAISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAADswCrYkEpAAAAAAAAAAbEQCEgAAAAAAAIBtSEACAAAAAAAAdvD5nI7AFUhAAgAAAAAAALANCUgAAAAAAADADgxCI4kEJAAAAAAAAAAbkYAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAAB2YBAaSSQgAQAAAAAAANiIBCQAAAAAAAAA25CABAAAAAAAAOzg8zkdgSuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACwA6NgSyIBCQAAAAAAAMBGJCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAIAdGIRGEglIAAAAAAAAADYiAQkAAAAAAADANiQgAQAAAAAAADv4fE5H4AokIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAADswCjYkkhAAgAAAAAAALARCUgAAAAAAADADrSAlEQCEgAAAAAAALDH/PlOR+AKJCABAAAAAAAAO9ACUhIJSAAAAAAAAAA2IgEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYJjNZG3r11Vc1ePBgHXPMMZo2bZot29iyZYtGjx6tmTNnav369crPz1e9evXUsGFDderUSZ06ddIhhxwSU5mLFi3SmDFjNHfuXGVlZSkQCKh+/fpq3ry5rrzySp133nny+XymywsEAvrmm280YcIELV68WDt27NAhhxyi+vXrq3379urSpYuaNm0a61sHAAAAAAAAXMkXCAQCdm9k0aJFuu6661RYWGhbAnL06NF64YUXtH///nKXOfHEE/Xiiy+qdevWUcsrLCzUM888o48//rjC5c4991z1799fRx55ZNQys7Ky9PDDD+vXX38tdxmfz6ebb75ZjzzyiKpUqRK1TDvMnz9ffr9fkpSRkaE2bdo4EodlYkgQAwAAAAAAWMr+1JutrMgT2f4I9saNG3XvvfeqsLDQtm0MGzZMTz75ZDD56PP51LhxY7Vt2zYsMbhu3TrddNNN+u233yosLxAI6KGHHgpLPlatWlWtWrVSmzZtVLNmzeD8mTNn6qabbtLu3bsrLDMnJ0fdu3cPSz4eeuihOvPMM9W8eXNlZmYGt/3+++/rscceM78DAAAAAAAAAJeyNQG5cuVKXX/99crOzrZtGwsWLNCLL74YnD7rrLM0ZcoUffHFFxoxYoRmzJih119/XYcddpgkaf/+/br33nsrbCn53nvv6ZtvvglOX3fddZo1a5bGjBmj0aNHa9asWXr44YeDScO1a9fq8ccfrzDO3r17a8OGDZKMZOZTTz2lWbNmaeTIkRo7dqy+++47derUKbj8xIkT9cEHH8S+QwAAAAAAAAAXsS0BOX78eHXr1k1ZWVl2bUKS1L9/fxUXF0uSmjdvrnfeeUfHH3988O8+n08dO3bUsGHDVKNGDUnS1q1bNXz48Ijl5eTk6I033ghOX3vttXryySdVq1at4Lxq1arp7rvvVr9+/YLzpk6dqnnz5kUs84cfftB3330XnH7hhRd07bXXBhOYklSvXj3997//1T//+c/gvMGDBysvL8/EXgAAAAAAAADcyfIEZFZWlnr16qWePXtW2MrQCgsXLtSCBQuC03369FG1atUiLtu0aVPdd999wenhw4cHE5ehPv30U+3du1eS8Yh0z549y91+ly5d9Pe//z04/f7770dcLjTZee6554a1dCztySef1OGHHy5J2rlzp8aNG1fusgAAAAAAAIDbWZqAfPPNN3XJJZfo888/D85r2LCh7r77bis3E/TVV18FXzdq1ChqJ5hdu3YNtjrMycnRnDlzyiwzadKk4OtLL71U1atXr7DMa665Jvh6xowZ2rdvX9jfc3Nz9eOPPwanu3TpUmF51atX1xVXXBGcnjx5coXLAwAAAAAAAG5maQLy3XffDUvAXX311RozZoxOOOEEKzcT9NNPPwVfn3POOVGXr1Onjlq0aBGcnj59etjfd+3apWXLlgWnzz333Khltm/fXpUqVZIk5efnhyUbJWnOnDnBlpY+n89UnKHLzJs3T7m5uVHXAQAAAAAAANzIlj4gW7RooREjRujZZ58NGzHaSoWFhVq7dm1wunnz5qbWa9KkSfD14sWLw/62YsUKBUKGRjdTZvXq1cP6nCxd5vLly4Ovjz32WNWpUydqmU2bNg2+9vv9UUftBgAAAAAAANzK0gRk27Zt9cYbb+jTTz9V27ZtrSy6jE2bNqmwsDA4bbaV5bHHHht8XTIqdYl169YFX1epUkVHH320pWWajbFevXphfVmuX7/e1HoAAAAAAACA22RGX8S8wYMHW1lchbKzs8Om69WrZ2q90OV27Nghv9+vjIyMMmWaLa/0sqXj2rZtW1xlHn744frjjz8ilgkAAAAAAAB4haUJyGQq3S9i7dq1Ta1Xq1at4OtAIKDdu3fr0EMPlWT0ARlpuWhCHzMvHVfodCxlhi67e/du0+vZoaioyNHtJ8qzBzkAAAAAAPA8r+dVrODZ3ExBQUHYdOgjyxWpXLlyueUcOHAg5vIk43HtSGWULj/eMku/12Ty+/1auHChY9u3whlOBwAAAAAAANKW1/MqVrBlEJpkKJ09LnmMOprMzPCca8kI1ZLC+pQ0W17pMkvHFTodS5klI2tHKhMAAAAAAADwCs8mIEsn8/x+v6n1SifzQltEhib9zJZXuszSLSzjLTM0MVq6TAAAAAAAAMArPPsI9iGHHBI2XVBQEPbYcnlKPyJdtWrV4OvQR6Rjeew5dNnQ8uwqM5kyMjLUsmVLx7YPAAAAAADgZa1bt3Y6hIQsXrw4pkZ1kXg2AVmnTp2w6by8PFODvOTl5QVfZ2Zmhq1TMhhN6eWi2bt3b8QySscZS5mhy5YuM9lKP7YOAAAAAAAAc8irePgR7Pr164dNb9++3dR62dnZwdd169aVz+eLWOaOHTtMxxJa5hFHHFFunLGUGbpsvXr1TK8HAAAAAAAAuIlnE5ANGjQI6xtx48aNptbbtGlT8PWJJ54Y9rcTTjgh+Hrfvn2mk5qh2z7ppJPC/ha6jQ0bNpgqb9u2bcrPzy83TgAAAAAAAMArPJuArFy5sho3bhycXrZsman1Qpc79dRTw/7WrFmzsBaRZsrcu3dvWGKxadOmYX9v3rx58PX69eu1f//+mGL0+Xxq0qRJ1HUAAAAAAAAAN/JsAlKS2rVrF3z9448/Rl1+165dWrp0aXC6ffv2YX+vWbOmmjVrFlOZs2fPDnbEWalSJbVt2zbs72eccUbwWf/i4mL9/PPPUcsM3W6zZs3K9HcJAAAAAAAAeIWnE5AdO3YMvl6yZImWLFlS4fKffPKJioqKJBmDw5x99tlllrn44ouDrydMmBC1xeJHH30UfH322Werdu3aYX+vXbt2WKJz9OjRFZa3d+9eTZgwITh9ySWXVLg8AAAAAAAA4GaeTkC2adMm7BHn3r17lzvS9LJly/Tmm28Gp7t166Zq1aqVWa5Lly465JBDJBkD2/Tr16/c7Y8ZM0Y//PBDcPrGG2+MuNz1118ffD19+nSNHTu23DKfeuop5eTkSJKqV6+url27lrssAAAAAAAA4HauTUBecMEFatKkiZo0aaILLrig3OV69eoV7Ldx5cqVuuGGG7R8+fLg3wOBgKZMmaKbb75Z+/btk2SMKn3XXXdFLO+II47Q7bffHpweO3asevToETYqdX5+voYMGaInn3wyOO+8887TeeedV+57CX1cvE+fPnrrrbdUUFAQnLd9+3Y9/PDDYa0f7733XtWtW7fc9w4AAAAAAAC4XabTASSqXbt2evjhhzVo0CBJ0tKlS3XllVfq5JNPVt26dbV+/XplZWUFl69WrZpeeeUV1apVq9wy7777bi1evFjfffedJOnLL7/U119/rSZNmqhKlSpatWqV9uzZE1z+2GOP1YABAyqM86WXXtL111+vjRs3qqioSIMGDdLQoUN1yimn6MCBA1qxYoUKCwuDy59//vm67bbb4tklAAAAAAAAgGu4tgVkLO666y716dNH1atXD85bvXq15syZE5Z8POqoo/TOO+/ozDPPrLC8zMxMvf766+ratWuwdWVhYaGWLFmiefPmhSUf27Rpo1GjRkVtqVi/fn2NGDFCp59+enDenj17NG/ePC1ZsiQs+di1a1e99tpryshIiY8HAAAAAAAAaczzLSBLdO/eXR06dNAnn3yi77//Xps2bVJeXp5q1qypxo0bq0OHDurSpYtq1qxpqrwqVaroueee0zXXXKNx48Zp9uzZysrK0oEDB1S3bl21atVKl112mTp27Gg6UXj00Udr1KhRmjp1qr766istWrRI27dvV0ZGhurXr68zzjhD3bp102mnnZbAngAAAAAAAADcwxcIBAJOBwF3mT9/vvx+vyQpIyNDbdq0cTiiBP3ZihUAAAAAACDpPJ56syJPxDO+AAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwDQlIAAAAAAAAALYhAQkAAAAAAADANiQgAQAAAAAAANiGBCQAAAAAAAAA25CABAAAAAAAAGAbEpAAAAAAAAAAbEMCEgAAAAAAAIBtSEACAAAAAAAAsA0JSAAAAAAAAAC2IQEJAAAAAAAAwDYkIAEAAAAAAADYhgQkAAAAAAAAANuQgAQAAAAAAABgGxKQAAAAAAAAAGxDAhIAAAAAAACAbUhAAgAAAAAAALANCUgAAAAAAAAAtiEBCQAAAAAAAMA2JCABAAAAAAAA2IYEJAAAAAAAAADbkIAEAAAAAAAAYBsSkAAAAAAAAABsQwISAAAAAAAAgG1IQAIAAAAAAACwTaYdha5Zs0ajR4/Wzz//rE2bNqmoqEhHHnmkGjdurMsvv1wXXXSRMjOt3/SsWbP05Zdf6v/Zu+8oKaq0j+O/nkSOMuQ4hCGDIIiICAYQBVYBQVQUE4uBdcEAhgVERZDFsCbWuIoYAGH1RUXBsAgqBhBRGaIgoCSBIUia8P7RTtE907mruqq7v59zOHT1VN16urrqVtXTt+5dsWKFdu3apfz8fGVmZqp9+/bq37+/zj777IDLz5s3T3fddVfUcaxdu9bn+5MmTdKsWbPCKqt+/fpatGhR1DEBAAAAAAAAdjA9C/jEE09oxowZysvL83p/69at2rp1qz766CO1bt1a06ZNU1ZWlinr3Llzp26//XZ99dVXJf62bds2bdu2TQsWLFD79u01ZcoUNWrUyJT1huunn36yZb0AAAAAAACAXUxNQD7wwAOaOXPmycLT0pSdna0yZcpo48aN2rdvnyTphx9+0LBhwzR79mzVqVMnqnVu2bJFV1xxhXbv3u31fuPGjVWtWjXt3LlTmzdvliR99913GjhwoJ577jl17NixRFk1atRQt27dwlr/7t27vVo8nnnmmT7nKyws9Jqvc+fOysjICFp+9erVw4oHAAAAAAAAcBJXYWFhoRkFLVy4ULfeeqsx3bt3b40fP17VqlWTJJ04cULz5s3TQw89pCNHjkiSWrVqpbfeeksulyuidR45ckQDBgzQpk2bjPd69Oihu+++Ww0aNDDeW79+vSZOnKhvvvlGklSpUiW98847qlmzZkTr9Vz/kCFDjMRi48aN9eabb6pChQol5t28ebN69+4tSUpPT9fKlSuVnp4e1fqtsnLlShUUFEiSUlJSdOqpp9ocUZQi3L8AAAAAAACiZk7qzTZm5IlMGYTmxIkTmjp1qjHds2dPPfbYY0byUXIn3YYMGaInn3zS6P/xxx9/1IIFCyJe76xZs7ySj4MHD9aMGTO8ko+S1LRpU7300ktG68Tc3Fzdf//9Ea+3yH333WckH0uXLq3HH3/cZ/JRktasWWO8bty4sWOTjwAAAAAAAICZTElALlq0SL/++qsk92PX48ePV0qK76K7deumIUOGGNMvvfRSxOt97bXXjNdZWVkaP36839aUGRkZmjJlivHY8+LFi7V+/fqI1/3BBx9o/vz5xvS4cePUtGlTv/Pn5OQYr5s3bx7xegEAAAAAAIB4YkoC8r333jNed+3aVbVr1w44v2cC8scff9TWrVvDXufmzZu1fft2Y3r48OFBWxVWr15dPXv2NKYjbX2Zm5ur++67z5ju3LmzLrvssoDLeLaAJAEJAAAAAACAZBF1ArKwsFDLly83pv0NwuIpOztbmZmZxvTHH38c9nq3bNniNX366aeHtFzr1q2N119//XXY65Wk6dOn6/fff5fkbln5wAMPBO3HkgQkAAAAAAAAklHUCcjt27frwIEDxrRngi+Q7Oxs4/Xq1avDXq/nOiX3CNahqFy5svHaMykYqrVr12rOnDnG9PDhw0v0OVnc3r17tWvXLmPa87MDAAAAAAAAiSwt2gI2b97sNV2/fv2Qlqtbt67x+pdffgl7vWXKlPGaPn78eIn3fDl8+LDx+o8//tD+/fu9kpLB/POf/zRG/snMzNTIkSODLuOZ6MzMzFSFChX0/vvv6/3339f333+vPXv2qGzZsqpVq5a6du2qSy+9VFlZWSHHBAAAAAAAADhV1AnI3bt3G69TUlK8Rr4OxPMRbM8yQlWrVi2v6TVr1qhLly5Blyve6nH37t0hJyBXrFihJUuWGNMjRoxQuXLlwlpnWlqa+vbtWyJxm5ubq9zcXOXk5Ojll1/WsGHDdMcddxgjhgMAAAAAAPj0/PPS9dfbHQXgV9TZrdzcXON1uXLl/I5+XVz58uV9lhGq5s2bq2LFisaj2HPmzAmagDx48KA++ugjr/eOHDkS8jpnzJhhvK5Zs2bQgWeKeCYgf/vtN+N1Zmam6tWrp8LCQv3888/av3+/JCk/P1//+c9/tGHDBs2YMSPo4DpWy8vLs3X90SKFCwAAAABIZHnnn8+9r4PFe17FDFHvn8eOHTNely5dOuTlMjIyjNfHjx8Pe72pqam6+OKL9corr0hyj2jdo0cP9evXz+f8hYWFmjBhgg4dOuT1fqjrXrdunf73v/8Z09dcc43XZwgkJyfHa7pNmzYaO3asOnXqZLxXUFCgpUuXavLkyfr5558lSUuXLtWDDz6oiRMnhrQeKxQUFGjVqlW2rd8MHe0OAAAAAAAAC/30009qVa6cUj26nYNzxHtexQxRD0Jz4sSJk4WF2PpRktejxZFmgkeMGOH1+PSdd96p6dOnl2hRuWXLFo0cOVLvvvuuypYt6/W3UGN+7bXXjNfly5fXoEGDQlru+PHj2rZtmzHdu3dvvf76617Jx6I4unfvrjlz5qhFixbG+2+88UaJBCYAAAAAAECRQpdLuwYPtjsMwK+oW0CmpqYar4sGZwmFZ9Ix0keMMzMz9dhjj+mvf/2rjh07poKCAj377LN68cUXlZ2drQoVKmjXrl3atGmTJHfSc9q0abr55puNMkqVKhV0PUeOHNE777xjTA8cONDrEfJAMjIytHLlSu3YsUPbtm1TmzZtAn7eChUqaPr06erbt68KCgpUWFioV155RZMnTw5pfQAAAAAAIPn8kZ1tdwiAX1EnID1HnvZ8HDsYz0efQ0kC+nPGGWdo5syZGj16tLZv3y7Jndz88ccfvearU6eOpkyZosaNG3u9H8ogMh999JHX6NkDBw4MK8aUlBTVrl1btWvXDmn+xo0bq2vXrlq6dKkkadmyZWGtz0wpKSlq06aNbesHAAAAAACBtWrZUq4/x5WA87Rr187uEKKyevXqsBod+hJ1ArJSpUrG68OHD6uwsFAulyvocp59MYY6CrU/7dq108KFCzV//nx9+OGHysnJUW5urqpWraqsrCz17dtXF110kcqUKaMNGzZ4Les5Grc/7777rvG6VatWyo7BrwodOnQwEpA7duzQsWPHokrURoORuAEAAAAAcK60tDQpjG7xEFvkVUxIQNaoUcN4nZ+fr3379qlq1apBl9u9e7fxulq1atGGoYyMDA0ZMkRDhgwJON+6deuM15UqVQraAvLo0aP6/PPPjekLL7wwukBDVHyb7N+/32tbAwAAAAAAAPEg6vR4gwYNvKa3bt0a0nKeA7M0atQo2jBC9sMPPxivQ2nJuHz5ch09etSYPv/88y2Jq7jij7OH8qg4AAAAAABIQi6X+x/gUFG3gKxTp44qV66s/X/2NbBmzZqQnm33HNm5efPmEa//0KFD2rVrl0455RSvx8H9WbJkifE6lDi//PJL43XDhg1LJFyDWbx4sb788kvt3btXaWlpevjhh0NazjORW7FixZAHvQEAAAAAAACcxJQOAk4//XTjtefjyv7k5ORoz549xnSXLl0iWu/ll1+ujh07qk+fPpo3b17Q+detW6f169cb0z179gy6zIoVK4zXbdu2DTvGNWvWaObMmXr33Xf1zjvveH3uQIr6f5Skjh07hr1eAA7Xs6f01FNSr152RwIAAAAAgKVMSUD28riB/uSTT7Rz586A87/++uvG68aNG0c8qEuTJk2M14sXLw46/zPPPOO1bIcOHQLOf+LECa/RtFu3bh12jJ07dzZeFxYWau7cuUGX+fDDD7Vp0yZjun///mGvF4DDffyxdNNNPCYBAAAAIHqFhXZHAARkWgKyevXqkqTjx49r3LhxysvL8znvZ599pjlz5hjTw4YNi3i9ffr0MV5/8803WrZsmd95586dq/fee8+YHjlyZNDRujdt2qQTJ04Y023atAk7xs6dO6thw4bG9LPPPltiJO7i6xw/frwxnZWV5ZXgBQAAAAAAAOKJKQnIjIwMjRkzxpj+/PPPdcMNN3j1Y5iXl6fZs2dr1KhRys/PlyQ1a9ZMl156qc8yzznnHGVnZys7O1vnnHOOz3m6dOni1Y/j6NGjS7SE3Ldvn6ZNm6Z7773XeK979+7q169f0M+1ceNGr+l69eoFXaY4l8ulu+++25g+fPiwrrzySr377rsqKCgw3j9x4oTmz5+voUOHat++fZKk9PR0TZ06leHagUTGL5UAAAAAosWTVXA40zJbl1xyiVauXKk333xTkjsJ2atXL2VnZ6t8+fLauHGj9u7da8xfuXJlPf7441El11wulyZPnqyhQ4fqwIEDys3N1c0336yaNWuqQYMGys3N1aZNm3T8+HFjmVatWumRRx4JqXzPkbol92AwkTj77LN12223afr06ZLcSdExY8Zo0qRJatq0qfLy8rRx40YdOHDAWCY9PV2PPfZYRP1OAgAAAAAAAE5hSgvIIvfdd59Gjhyp9PR0SVJBQYHWrFmjr7/+2iv52LhxY7366qvKysqKep1NmjTRyy+/rPr16xvv7dixQ8uXL1dOTo6RfHS5XBowYIBeffVVVahQIaSyPQeMycjIUKlSpSKOc8SIEZo+fbrXSN379+/X119/rZUrV3olHxs3bqyXXnpJ5513XsTrAxAn+KUSAAAAgBm4t4CDmfpsr8vl0ujRo9W/f3/NnTtXS5cu1Y4dO3TkyBFVqlRJLVq00AUXXKD+/fsrIyPDtPW2bNlSCxYs0Pz587Vo0SKtWbNGubm5Kl26tOrVq6dOnTpp0KBBYQ9288cffxivI2396Klv377q0aOH/vvf/2rJkiXKycnR/v37lZqaqszMTLVs2VK9evXSeeedZ+r2AQAAAAAAAOziKiykAzJ4W7lypdE/ZUpKik499VSbI4oSvwLBiYqq3gsukD74wN5YAAAAAMS3HTukpUulQYPsjgS+xHnqzYw8kamPYAMAwhTnJyIAAAAAAIIhAQkAAAAAAABY4c/BmpMdCUgAAAAAAADACv372x2BI5CABAAAAAAAiHeMf+BMpUvbHYEjkIAEgHBkZdkdAQAAAACURP/ycDASkAAQjo0b7Y4AAAAAAIC4QgISAGLthhvsjgAAAAAAgJghAQkAsXTJJdLkyXZHAQAAACDR0AckHCzN7gAAIKnMm2d3BAAAAAAAxBQtIAHATnQUDQAAACBatH6Ew5GABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAADEO/qBhIORgAQAIBbuusvuCAAAAJCoSD7C4UhAAkC4Kla0OwLEo0aN7I4AAAAAiaqw0P0PcCgSkAAAAAAAAAAsQwISAIBY4LEYAAAAWInrTTgYCUgAAAAAAIB4RvIRDkcCEgDC9cIL5pVFPy3Jg+8asNfjj9sdAQAAQNIiAQkA4broIqlrV7ujAACE429/szsCAACApEUCEgDCVaaM9L//SZ9+anckiCc8FgMAAAAgSZGABIBIpKVJZ59tdxSIJzyCDSS+Hj3sjgAA4BQVKtgdAeAoJCABAAAAMzzyiN0RAACcItZPv/C0DRyOBCQAALHARSGQ+Bo1sjsCAEAy43oTDkYCEgAAAM41dqx74K+ePe2OBAAAZ6PLHzhYmt0BAACQFLggBCIzZYr7/x9+kNq0sTcWAACcimtNOBwtIAEAAAAAAMxkR0KQR7DhYCQgAcBO/FIJAKGJh/qSG7/gWrSQbrjB7igAIPFwDoLDkYAEkJweftjuCAAASD5jx0ojRtgdBQAgWQ0fbncESYsEJIDkdMcddkeAZFO+vN0RAPEtHlpAAgBgJ1pBBvfMM+aUc9VV5pSTREhAAgAQCwMG2B0BENhpp9kdQWDRJCAHDTIvDiS+fv3sjgBAIrAjGciPdcGVLh19GSR6I0ICEgBipWXLku9xkZA8SpWyOwIgsM8+szuCwMqVi3zZmjXNiyMQbkgSQ3q63REAAKzQpIk55Zx6qjnlJBkSkAAQK2eeaXcEsEuvXnZHAMS/Jk3cA5hEgh97nMXpiVqnxwcAvjip7uraVRo8WOreXTr7bLujOSktTZJU0LevzYEkJxKQABArvi4KnHShAGuceab01FN2RwEEFw/10Suv2B0BAADO5ZRzeZ060ptvSv/7n3T55XZHc9KfP0gWPP64Dpx+us3BJB8SkAAQL2L1CCHM07attHSpeY97AMnO6f1UIjS0SAUA2Kl+fa1/6ikdr1498jI4l4WNBCQQD6ZOtTsC2K1iRVrRAUCkYnWT4JSWJ4gO3yOAeJWdbXcEbk5NzplVv3OeiAgJSACwU6gn5x07GEU5HtWvb3cEADwUduxodwgAkDwi7bc3UdiRhGve3N3/IqxHEjJsJCABIFYuvDDyZcuUMS8OxM7DD9sdAQAP+dOn2x0CACSPlSulKVPsjiL5vPeedPvtdkfhTGYmhZ3aytPBSEACQCxkZ0v9+tkdBWIt2X/5B5zmzDPtjgCS81uNOD0+IF6UKpXcfZjbVZdUqiRNm2bPuouceqq96w8VScSYIgEJAFa7/35p+XIphSoXAGzBDQbCQQISAKIzatTJ14l4DuY8ERHuhgHAavfe6/4lEgCcjIvp6LENE0Mi3iwDdknWevH66+2OwF4VKtgdgW/F98dI6/tk3a+jRAISAJxu1iy7I0AyadDA7ggA85FQcha+j/h10012RwDEhxo1Yr9OpybFrIirXTvpoovCX47zj61IQALxgIoyuQ0ZYncESCZr19odAQAAAOw2Z47dEfj33XfSggVRF+OiBWRMkYAEACfLzpZSU+2OApE491y7IwCca8wYuyMA/OPGEjBPsjakSIR6ZNAgqW5du6NAAiEBCQBOlggXL8koNVWaOtXuKADnmj498iRk377mxmIm6mwkuhtvtDsCAECcIgEJAHZK1l+FE1mNGtJnn0kdO9odSWRIoMDpHntMatnS7iic4eab7Y4gMk6vZ5wen51at7Y7AiB+2NEPJOBgJCABIJ6MGGF3BAhmxgzpjDPsjgIIX7wkXRo3lpYtC2+ZRP2x5x//sDsCAIAvLpf07LOxXydig20dERKQAJLX5Ml2RxC+Dh3sjgBIXlWq2B0BAADxJZkTNWedJY0aFbv1JeqPbVZim8UUCUgAyevqq92DvMSTZL6IA4BIxeoGgzo6uKws59/w8T3GXk6OtHy53VEA5kpNlf71L2nNGrsjQRGzzj+cJyJCAhJA8qpdW/r2W+mTT+yOBEA84GLTOfgu4lOTJlK3bnZHAadyemIaCIfneapcOfviQGDUOzFFAhJAcitXTurRw+4oECN7zz/f7hDgVBkZwech6QVEpmZNacgQ6aOP4uM4iocYEw3bPHFZneAZNcqZ+4/n53ZifMmK78JWJCABIJ5w0ozagU6d7A4B8YpfyePX7bfbHYE14uWcsHCh9MYbUv367mmnx82xDsSPf/1LuuACu6NwBqfXrU4UaX3Pto4ICUgAAADEl3Av/Js2tSYOAOYh8YtEQoLKmahnbEUCEgCcjIsXIDYeecTuCOxHfRO9WG9DbqSswbGARLd2bez6Y+V4iu9tYEbsDj5XuaJpAengz+VUJCCBeBDPJy0AiAdXXhl8HupiIDlwrCORtWwpNWsm0S82ELnLLrM7grhEAhIA7MQvZ7Fn9Y1lKIOZwHkqVbI7AiB5cO6DLyR+Y+Pxx+2OIDlEuz9Hcj3JMRScWdvo2mvZ3hEgAQkASC5W3/hmZVlbPuzDhaZz8F24sR2sUa2a3REkJxLTsVFUb1B/xE642/pf/5IOHrQmlnAl2nFp1ucpVy7xtk0MkIAE4gGVW/x66im7I0CsNW9udwTRidUNSbVqJ2/yy5aNzToBs9xwg+/3uaEPjdO30/XXS6VL2x0FgESRnx/e/KVK2f9ETY0a9q4/VgLdZ0+YELs4kgQJSACwyqxZ0k032R1FcO3b2x1BzPzmL2mA2DvvPGnLFmn3bmnRIrujCY3TkyaIjaeekp55xrzyUlKkW281rzwnqlzZ7gjCU7689PLLdkcBWIsGDtbyvGbIy4vNOs38TlNTzSsrXq+fbrvN7ggSDglIIJmdcordESS2yy8PPo8TvoMXXrA7gpg5yuPRzlK2rLsVZEqcXI7E6wV0IrLru6hUyf3Dkpk3Zldemfj7VoMGdkcQvsGD7Y4gNurWNbe8ihUjX5aEWGwken3jFJ7784kT9sURrWTeXypUsDuChBMnV/wALFG1qt0R4MEH7Y5A6tDB/bhZgtt9ySV2h4B4l+g3x8l8k2E3pyXokv3HGjO+j6IkdWZm9GVZZf366BKGvgwfbm55QCI4fjw26+E8DocjAQnAfsk8+mx2tjRxov8WYMUvJLiwiNiRJk3sDgH+xMt+3a2b3RHA6SLdl2+4QSpTxtxYnMzJyfy6daNvlT17trRypfTf/0rff29KWKbbtk0y+7zYsmXk3228nAcSgZOPv0TiuU9Hmujv0cOUUBAAx0NMkYAEkplTKtwrr5Q+/dTuKOwzYYJ06JB0yy12R5LQ9vzlL3aHEB9i9Th0+fKxWY+ZJk2yOwLnuvZauyOIXw0auEfT/O9/7Y4EkjRiRGTLNWzoHrhm1CjpL3+R2rRx/1+zpqnhmaJJE6lOnfCXq1078N+jua4sLHTOdSlgtvr13U8chevuu3kM2Mn44SRsJCCBRFC7tvvCN57FYzLCTGXKMOKmxQqLti8XC4GlpkqXXWb9eu699+TreLnpjPd61krjxsV2fYlyHKelSaNHu1/36mVvLLHk5O8v0th+/lk6ckT617/sH73WCi6X9MQTdkcBMxTt404+DsMVD59l7lypTx+pbVvp8cdDW+b886WffpKGDrU2tmQW7Q8nCAsJSCARbN/uvvANVzycrKPxz39yYkBJZu0TnTqZU06zZuaUY6YXXrB+5D+n9XkH2GHOHKlKFbujQCIyo3ubcuWkefPcXcV8/LE0YID7/auuir5swExOvN4vfp/VqJH03nvSqlXS3/4Wejl16/IotpnGjrU7gqRGAhKAuewezbZVK+muu6Q337Q+gWK2UC6erLrAcuKFm9M98og55dx/v1SqlDllmaVsWXcCf8eO2MSW6D+GAL5UqiRdfHF0ZXDswJ/27aMvw+WSLrnE3VWMZwLkyiujLxvw9NlndkcQPie2SuScEFyxp3xc3APFFAlIAOYZNMj9C3nz5vbFcMEF0uTJ0uDB9sWA2HvqKbsjiNzgwdIPPzhz5NAaNaTly6Wzz7Y7Emfgwt6/WF/AO/W7iHVcVm13p25fhM6MfcPffnDKKdGX7QuJgOTUv3/kAyLddZe5sYSDetI+0XSJU7asaWEgfCQggWRm9oXenDkkKqLBhUxk3nxTuukmu6OITpMm0nnn2R2Fb+3aSbNm2R0FYoE6KDgztxHb25n4Xk4Kd1tEs+3iabu7XO6++cxoZWqHeNrWwfz1r3ZH4F8ibWenefZZuyNAhEhAAjCf037Brl/fezoRO4ePVrxeJGVm0toVcIJ4rUNgD6ddJ8A3f8d1oO/PSd/ta69ZU27TptKHH0orV0rXXGPNOhDcsGHO7k/aScdCJMyMP9qynnrK3cilRQv3AD6R/mjPtYrtSEACcLa//CX6Mh57zLtvymeeib5MK8T7hQoQKadcENaoEfjvaWmxiSNc8+e76znALE45JmGvWO8HZgyc48mq5FSiHB/9+5d8z44WhZEOxFW5sqlhOErxfSzUe4Ty5c2PxQlatJA+/dQ9Ivjf/mbuMRjN/VfXrubFkSRIQALw75JL3ANRlCkT3nLhnhQCVfxTp4ZXli+XXCItWyZNn+7uo/Laa6MvM1ZidZEbr8nPeI3bTNnZ0vXX2x1FYnj66cB/d9pgQUVq1ZJuvdW+9dvRBYJTEwCxjKtvX+duh2DiNe5kY+b1XCjLtmplbz/iVkpNtTuCktq1k3r3PjndsKF09dWxj2PChOjrBCfWKbGOacoUZ+5niYwW0GEjAQkks2Anxosvdo8k3bp1TMLxKTvbnHK6dJHGjJF69jSnPMApqlSRnnvO7igSw4ABvluESO4fMOCtXDn3Y1D33mt3JMmjXj33/zVrSvfcY916+HEHUmQJlGhapblc0htvSJ06SXXrSpMmRV5WtAJ9Ds/tEuqx4tT+IhcskF5+2f0D3HffSRUqmL+OYPtRo0bWlBvPIqmDx441NwYnbV+zYvFVTjTnu9Klgz89Ay8kIAEgnjjpYsCOX8kBq/nrV8iqUV/j2aFD0qJF7haYJKxi44cf3P/WrHH/sAbzOek8Gw0rR8EO5G9/i25d7dpJX30lbd0q/eMfkZVlhkcfdScXzDBjhjnlWCEtTbrqKunGG81/BL5IoH3RrEYOyX4OSk+3ruxEqROtEukI7kmKBCQAZzDrwiHScqZN857u1y/6WMIVbxdPd95pdwT2SqYLMqv3zWTalk4WT9+DXbHa3YdwxYrux1QTue8zu8XbudhKkYyCnZlpbevcWBk+XNq+3Zyykr2fuIKC4PNEctzVrBn+MmYKdnyYeZ6K5bqKOKkuNCuWatXMKQcRIwEJwL+ik5mTTkBWuekmacQIqU4d6ZxzpCeesDsiN6tvsiNtqSBJLVuaFwfgFPFY38VjzDbaOmZMZAt27uz/Ef0i8ZTERfIKdT+NdH+++ebIlnOaqlV9v+9Z54Za/zqpboh1LKEkICORKPuZGaz4Tou6/EgkL79sfplcg4WFBCQA+znhoqxsWenf/5a2bZM++si6kROd5vzz7Y4ARZxwHCSaBQvsjiB5xNH++/uFF+pIqH2O1a0rffGF+1HzpUvd54pkYPUNVaSj3sJ8gQYaTOFWESbIz7em3IoVrSnXCSJpfWy2okeLnZBgi+bzFdVx11wjnXtuyb874fMlkTS7AwAAx+rSRfryy5PTdjxSxEkxMDuTHnGUcIma1Z/VqoGuzHw8i2MxYeRXrqw1M2eqwjffqNFppymtW7fAC9DXovmysqRTT5VWrrQ7Ejz+uOTvGIi07o/382MiJ7bsEEoLyHjfZ3wx8zMFuwZx+vazM75du6Tjx/23aI4W14dh4WctIJmF+su2009qVnnwwZN9hZx6qvTXv1q7vkTZzn372h0B4k2gFjixcMYZ9q4f4YuyviwsXVoHunWTTj9duvbaADMm6Y1FLM5Hc+dKvXtbv55wxcO5eNw488o64wzpiit8/y0etkUgkba0/ec/Q583HuuIQN+rFd+5VY9g2y3ej49kUb58wOSjKx6P4ThGAhJIVt27S6VKWVP22LHhL2PWSdzMi4FzzpE2bJB+/tndEjKcvlAiaTFj5wnQzHW/9VZ4F+9w4wLIPvG+v3ITFJ277rI7AueJxT6VlSUtXGj9ehLRgw+6+6oeMUKaPdv9aGE4PM83KSnSq6/6LsPfflC3bnjrs0skcdarJ91wg/mxxAsrrkWsegTbE+dB8zlpmzopFkSFBCSQjDp3dvd3GEykFyFDhkS2nBNVqiQ1bChlZIS33H33mbP+eDzhZmRIt90Wm3WRtIMZPEco9bdPOflYdMJxEEkMHTuaH0ckivq5MkM4+0ks9qly5axfB6zrRsKflBTpllvc13KXXmpOmb76RfW3j9aoYc46nahdO7sjsF6szhm1arn/T9QWkFZy0nndCdc/TtgeMAUJSCAZLV8uNW9ubpmjRp18XaaMNGOGueWHyiknqF697I4gNE7ZXk519dX+/+aECzLJOXHEq1B/XEiGYyXW+9LgwZEvy34fXJs20ksv2R1F4nO53P0oxjtfdVyg4yxeRiAeOtTa8j1/wIK3J590/x+LFpDJcI4OhHNi5JJ934kxEpCAmcwc8CAWzOzQuHgLElpdxBcuXHx75hn/f+OCxflC+Y7Y980RyXZMYyxES33+udSihd1RJL6PPnJ32RJPfB2vvvrirVzZfxmB+u510vlx0iSpffvQ5w+lLvOsu4YPD21wCydtk1id9wYMcP+fqC0grdyOThgF20mc/PmcdGzHAcuu/DZu3Kg33nhDy5cv17Zt25SXl6fq1aurWbNm6tevn84//3ylWXDhuWzZMi1YsEArVqzQrl27lJ+fr8zMTLVv3179+/fX2WefHXJZL7zwgh5++OGw1p+amqqffvop6HxffPGF3nrrLX333XfatWuX0tLSVLNmTZ166qm65JJLdNppp4W1XjjExInS3/8uHT1qdyT2ozIOn53JEqd/XzfdJD39tN1RIBE5fd9PdHXrStu22R2FPaze96I5XyTzcRHuduvZ05o4zPDoo9Lo0aHNe/310t13S3l5J98L9CNcvGjSRFqxwj2Y4KpV5pTpuY+UKuV+sui++9wt/V5/3Zx12MWs68znnjv5OpQWkFaNUGyGm26S1qyRPvkkvOXMvGZ3cgIuFE4+pzg5tgRkSQvIJ554Qv3799crr7yitWvX6vDhwzp27Ji2bt2qjz76SH//+981ZMgQbdq0ybR17ty5U8OGDdO1116refPmafPmzfrjjz907Ngxbdu2TQsWLNCIESM0ZMgQ/fzzzyGVGUoiMVyHDh3SzTffrOHDh+v//u//tHXrVh07dkyHDx/Wxo0bNXfuXF1xxRW64447dPDgQdPXD4sNHiytXSt98YXdkSBRFL/gcNpJslkz7+lbbrFmPU89JY0ZY03ZThHpxaXT9oni6te3O4LE5/R9oDjPYzneYg8m3m8Sw2Fm35lmeeUVuyNwjsJC94/iofZPWaWK9PDDJ1v3XX99bB8vtuLY8ezDLsXCB/+aNJFmzpRee826dcSzzp2Dz5Oebl7/6Wa7/Xb7z1VmPrWWTGLxdKITz4UOZnoTxAceeEAzZ848uYK0NGVnZ6tMmTLauHGj9u3bJ0n64YcfNGzYMM2ePVt16tSJap1btmzRFVdcod27d3u937hxY1WrVk07d+7U5s2bJUnfffedBg4cqOeee04dg3R+npOTY7xu27atKlasGDSW1NRUv387duyYrr32Wq3y+PWtXLlyatasmfLz87Vu3Tod/bPl3DvvvKPffvtNL774ojLCHfwC9iksdN9sx8sNNycrROuf/5SuuEI6eFBq1Uq64w7r1uW0Lg6S6fiJ5jwUb9vJ10AMVmveXPK45khI55wjffutdNZZ0rhx0ZcXb/uVL2Z8Bqu2Q7BymzZ1j5p8993WrD9SyXojGOj76tdP+uGH0MoZPdrd9/GJE8EHmrE7IRNM48ZShQrRlzNwoPTWW9GXk2w898mzz5ZatpSCNe4ZP14680zpvPOsjS0cN9/s/7rASechK2OpV0/65RfryrfSiy8GnyfaumzSJOnVV6MrI4mYmoBcuHChV/Kxd+/eGj9+vKpVqyZJOnHihObNm6eHHnpIR44c0Z49ezRq1Ci99dZbckV40Bw5ckQjR470Sj726NFDd999txo0aGC8t379ek2cOFHffPONDh8+rBtvvFHvvPOOavq5oT127JhXS8nHHnss6kTp1KlTjeSjy+XSqFGjdN1116l06dKSpAMHDuiJJ57QK3/+evv1119r+vTpuuuuu6JaLxAXnH4haxenb5d+/aQNG6Rdu9wX+4H6hIpHTrq4tFNmpvvxtZUrT773+OPSrbfaF5NZin/HffvaE4cZ7rpLeuih2Kzrggu8p4PVVR995Pt9px9jTo8v0Ha3MvYVK6R33rGufNjHrkdhzbzeKVXK3ZrOjGPA434yYQTaLgEa00S1vs8+k045Jfi8555r/voj8d137laZLVv6n8dJrRKtXNfjj0vx1j1cdrY0YoTUu7f162rUyJ3ovPZa69eVAExri37ixAlNnTrVmO7Zs6cee+wxI/koSenp6RoyZIiefPJJo//HH3/8UQsWLIh4vbNmzfJ6lHvw4MGaMWOGV/JRkpo2baqXXnpJZ555piQpNzdX999/v99y165dq/w/+6uoWLFi1MnHDRs26I033jCmb7vtNt18881G8rFoPffcc49u9hhVbtasWdqWrH0j4SSnJ6Gk6GKMh88H/6pXdz/iFSfJx8OhPo4Gb8895x7Qonx590Xd5ZfbHVFgjRuHNl/xi3YrH9OzmpWDung+NeJySR7XfFGh/reWVdu3fHlrynWCgQPtjiCwGTPsjsDNqcn5L790d4d0xRWRLe/UzxUr2dnWlFu1qrVd6Zj5vQ0YILVr5518dPp+YWUXBh06uMc5SEtztyqOh+v9nBz3/hbCNZ3LjPPkNddEX0aSMO0qe9GiRfr1118luR+7Hj9+vFL8fOHdunXTkCFDjOmXXnop4vW+5tHXRlZWlsaPH++3NWVGRoamTJliPNK8ePFirV+/3ue8no9fZ5tQEc+cOdNIaGZlZem6667zO+8tt9yiZn/2q3bixAm9SpNeBOL5a4uVj7+Gy64TdaLdzDr9gieWTPpud155pQrT000pK6l07Oh+fOrgQenf/3beBWinTt7TTrlJjxdXXx347wsXuhPPAwe6WzO2bev9d6vqKn+JTqfWjU6NywqJ+FkvvbRk38ZOE+AewqdEuy4K5vTTE7PVYqyYdVyHut85cf/0dT8V6zid9DSGyyVNmODumuHAAef/AA1HMy0B+d577xmvu3btqtq1awec3zMB+eOPP2rr1q1hr3Pz5s3avn27MT18+HClB7mprF69unp6jFbnr/XlmjVrjNfNmzcPOzZPBQUF+uCDD4zpAQMG+E3OSlJKSooGDx5sTHsuC3hJTfUeGfjmm6Ugx17MOPGCAoknggvl/EqVlP/xx1KvXjFfd1KKVV0wf747edCtm/Sf/zjnMa5QRLsvFSUDo9nWEycG/nu1au7E89y5sRv197TTpKuuis264lWwfSdRB7eyisfTSo5lRktnzl8IxKrHVq3c78yss7p0CW0+qz7PyJFSrVrWlB2vLNx3joT6xAxMYUoCsrCwUMuXLzemix5zDiQ7O1uZmZnG9Mcffxz2erds2eI1ffrpp4e0XGuPx+++/vprn/N4JiCjbQGZk5NjDL4juVuABuO5DX/99VevFpmA4b773P3cFGnQQFq1yt0R7vPPR19+UWUfSqUfzYnBzJMKF9XhifftFekFZ5cu0gcfSHfeaW48sE+dOtLs2e5+pq6+2r1vm3lD4tSEzL33SuXKRVfG0qVSw4amhBM2X9t11Ch3a9tly5w3+FQ8iff6PdbOPju2XTB43AdZIlCdZXV9Fsm+x/7qHE493yWDceO8G5eEiuMnYr9wLxBTppxlt2/frgMHDhjTrUPsX8szsbd69eqw1+u5TkmqEWy0tj9VrlzZeO2ZaCxSWFiotWvXGtPRtoD0TB6mp6eradOmQZdp1KiRV/+QkWwfJKlq1dz93pjZ+ocLkcQXD99xIlxc3XST9/Sjj9oTB+JbkybSnDnuZGuA/qzjVvXq7v5Goxl9PR44uU5zcmyJovjorG3bulsYRzIISKDvy6rvMh6uG6ySzJ89WcXqO+/ZkwR+jB1u21a/0YdjzJjSW/nmzZu9puvXrx/ScnXr1jVe/xLB0O5livU/dfz48RLv+XL48GHj9R9//KH9+/d7JSW3bNmiP/74Q5KUmpqqJk2aaMmSJfq///s/rVy5Urt27VJ6erpq1Kih008/XZdcconaFu8LyYPn9qlTp44xAE8gLpdLtWvXNgbYKd7aEzZo3Vr64Qdzy7zmGimUPlA5qSQHOy5ouYj2L9j5JJLjcvp0qWxZafVq6ZxzpL/9LbLYnCBR6qV4PAYqVZIGDSr5fqTfiZ3fpdNjDrR/3HGHNG3ayelEeowrUY5vJ7vwQvc54fnn3Y9bPvOMu//JL76Qvv7a3d/a3/9ud5ThScT9ximfKT3dvU/Es3g83wZiVRcYvrRvH7t1JZuUFO24+mrVimJcEoTOlBaQu3fvPllgSorXyNeBeD6C7VlGqGoV6xvBV2tGX4rPV3zdnn8vW7ashg0bphtuuEHvvPOOtm7dqmPHjunQoUPauHGjXnvtNV166aW6/fbbjaRlcZ7lV69ePaQYJXltx0i2D0x2ww12R4BkVPyCIp4uMP79b7sjiM5zz5lfZunS7oTFwoXux7/jecRlmCfcm7J4qgeCiecb0hEjTg52kZHh7hYlnO8mFo/BRrqOeP5e4kVKinuU1p9+cg/sVDT4TadO7tbyIXYt5UjxvP84tX79/HPz7kWc9BmdFIuTnX568CQkImbKSNgIiSktIHNzc43X5cqVCzjAiqfy5cv7LCNUzZs3V8WKFY1HsefMmaMuQTqNPXjwoD766COv944cOeI17fnI9MGDB43Hn6tUqaL69esrPT1dv/zyi3bt2mXM93//93/asGGDZs6cqQoVKniVt3//fuN18b8F4jlvJNvHLHl5ebat2wym7OSS8vPzFeyhmLy8POnP7RXKegsKCkL6FSC/oMDnuvMLClTo7/vJy/MbQ9F3mlpYqECn/fz8fBXm5QWdz3PeIq4QtleRgoICFeTn+4w3L8Dn8FtWDPfZYNs4HCk+9ofCwkLlR7hdQ1H0vaUUFob9i1TQz3jxxUp99lm5vv024vgkqeDcc1WQlyeXj+OgUDK2Tzj7SX5+viQpJT/f5+fOf/ttFV54oXT0qP/v+MQJv/tsJCL9bov2EbPqupDjD3GdhZLP+qP4eqKN32fcfuoVT4Uul9cx5i+WomPFrO3sFUMIdWzx+YvHLPmuQ0IRyrkr6H4RZNv4Wz5VJfeP/MJC/+c2Y6bg362v9Rcd+yeLcU/7K8uzjimhYUPp22/dfS/XqeNuARnGPuKr7GDLltiOwc71Ee6z/o5bz7LDqbMC7T9mHlN5Ye4XnnwdV6GUFUqdGdG5IoxzTKDrB59/U4D9OkQBr1ki2O/yTpww6iFPYZfjr64JsZ4tKCz0uo4Md/v5+85CWX/hGWfI9cUXPv+W17699PTTSjPhx9G8/Hyf27pISv36UbdSKn5fIIV2nSuF/p17ftfBrmML27aV6/vvwy63iK/vL9h9XMD7NAW+1vDpww+V8tBDSvHRfY+vaxl/6wiVv3sqf9fOxXlux2jvXwLts5Feixe/HvC53hDupwPFEW5MycCUc/6xY8eM1579FgaT4dG3z/Hjx8Neb2pqqi6++GK98sorktwjWvfo0UP9+vXzOX9hYaEmTJigQ4cOeb1ffN3FW0g2bNhQ48aNU/fu3ZXq0S/LihUrNGXKFK1atcpYbsyYMXqu2InBs/xYbh8zFBQUGJ8vXnU0qZztv/6qYJ0L/LB6tfL/fJw/lPXu3btXobQX/u3XX1XXx/s7fvtNO/x8Pxm//aY2fsor+k5bHD2qsgHW+8uWLdq7apWa//GHgg1xsP3XX7XbI5aqv/yiRkGWKbJnzx79vn69WviJNZzvcPeuXdoWw33WX2yRHDd1d+9W8Z5sjxw9qjUeZZ2ydasahl2yfz///LNyV61SgxD3RU+hfEbXk0+qwxlnRBbcn3KuuUZHVq1SDR/HQV5enr7/M45w9pMf/uxOoc6uXSo+xMWRRo30U5060qpVch0/rg5+ytiwYYN89RAcaZ1Z5ZdflBXBcof/+ENrwzxOAgk1ftfRo363jafjx4+rlI/3i68n2vh9xV123Tqf9YqnwsLCkGLZunWrfjdxO3s6dvSoQr86kP44ckQ5Pj5vrZ07VTuC9W/YsEGH/xzIJtI6rdQvvyhQD+D+lm9z4oSK9/QY6NxmKCgI67vwt/6iusBfWSdOnNDqYLFUqiQdOuRORAYoq7j8/Pywj4Pi86fu36/2fub9/vvvVWrrVrUKMR5Px44dC7hPrlq1SlW2bAm5zgq0/5h5TG1Yv95nvRyKQ4cOaV0E9VIodaavcoItVy6Mc4yvc/jhw4e1dtUq1d65U8XH0z127Jh+jPJaqc6ePSXOn0ePHtVPq1Ypbc8etQuzvJycHB3z8TRZuPuHv+3a4siRgNe8RQ7k5mqjRxl1d+0qcW129MgR/eRnPb7iXbtunRoeORLwWvp4jRraOmCAGvtJQK6K4FrHn40bNuhQgEYx6QMGqG2Ug1lu3bZNvxfbRr6uc4v2GU+hfkbP77rJwYOqFGDe1ZMnq23fvmGXW6TZoUMqvsX27tsX8Nr5t99+084w676NmzbpYKBj84or1NFHAjIvP9+4Hg62jlDt37dPP4dY3/jiuR2rbd+uBlHEsnHDBh2qWNHn3yKpX0MV6D402vN3sjLl2a8THv1RhNr6UZJXX4iRZoRHjBjh1X/jnXfeqenTp5doMbhlyxaNHDlS7777rsqW9T79FI/Zs8/GU089VfPmzVPPnj29ko+S1KFDB7366qteo1ovWbKkRAvLSLeP5/rImMMSoTY35/GImDjUoWQ6Z3/PnrFZuUWPHhSmp+twi2ApoMCORDkQWNhC3BaFHBdIFPHYB2SsOD2+QCyKfY+fH/phsmR7JDCejjULYv3ptde0v0cPHasdyc9I5joRRpdh8SLPI19gGgfts/lhPGUZMgd9PkfFgqiYkoD0TJQVFBSEvJxnUi09PT2idWdmZuqxxx5TqVKljPU/++yz6tq1qwYMGKCrr75affr0Ua9evfTpp58qLS1N0zw7DJeMZYt88MEHWrJkiV577TU9/fTTKlfO/+9VGRkZmjZtmtc8RS0yi0S6fTybBUe6fYCoUNnH1P7u3XWsTh1jOr9cOe267DIbIzIJ+1FS23feeXaHAAfbcs89XtOFKSnac/HF9gQTa3FYN+ZVqKAdV19tdxhwgmRLkFosv1IlyeXS5vHjLV9XQv6AGmx/TKDPfKxW8TbNFiVY/YlkW1Jf4E+mPILtOfK05+PYwXg+Vlw8CRiOM844QzNnztTo0aO1fft2Se7k5o8//ug1X506dTRlyhQ1LjZKYfEEo8vlUo0aNVSjRvFG4r5VrVpVffv21ZtvvilJ+vbbb3XkyBFju3g+dh3O9vGcN5rtE42UlBS1aePvQd7kUieEXyRbt24tnXJKyGVWrVIlpPlq+Vl3zZo1VaOdn4dcApyI2v25TGqQUX7r16+veu3aKbVs8IdW6tSurdoesbj+7Ds1FNWqVVPVJk0CxhqqzMxMnRLmMlYIN27D11+r4OGHpWPHVHjrrWpdrL6Ktj/F4ho1aqTCdu2UUrVq2MuG+hmD7Wehrsfl4zhIS0uLaFu3bt1aqampSvHxK3/pMmVOlhmgzm5q0j5bxPXTTxEtV65s2cj3Nx9CLqtY/8lFCps2lWv9evfrMmVUbcoU6dVXI19PiHyWF0L3Ja6UlJBiqVe3rur6ma+wTBm5/GyPUJQK8xgp67mPekipWfyByNA0adNGCrINgm6jIOcJv8u3aKGC//s/pSxeLEkq/Pvf1eqccwKvS5LC+EHXc/35+fnGY9fSybrAn/T0dNP31SKpqalhl11i/j17/M7btm1bKcL61+9153ffqXl9d4c0rhAHf5TMP979aeKnXg5F+XLlIooz0s8WdLnDh0Neztc5vNyfn8fXea5U6dJRfycpHoOJFjHOn7/9FnZ5zZs3l6L4/or4+1ypIXaDVbFSJa8yfH7OMLdfdosWQa+FjPLatZNGjvT/dxM0adw4aJ0fLV/nTDO2pSev78nP47lF2rZtG1G5RXzdCwW7j6tVu7ZqhvnZGmdlqTDIMikXXSQVe0Te37VgwaBBSpk7N6wYilSuUiXk+sYXz2Vdy5dHFEORxq1ahbXPhrJPeV0P+EmQBion6vN3HFq9enVYDep8MSUBWanSyR4XDh8+7O5MPYTMuGdfjJWjzNq3a9dOCxcu1Pz58/Xhhx8qJydHubm5qlq1qrKystS3b19ddNFFKlOmjDZs2OC1bKaPyjBcHTp0MBKQJ06c0K+//mokOj0/W/H+JwMxc/tEw/NR+WSWGsLj82mpqVIY2yvUR/L9rTs1JcX/+gLEYXynQY7T1DA+T4lYAtzQFZeSkqIUP+sJd/8LVFYsRXzc1Kol/dm3i89vPYztGgrjO45gNOaQP2OUvzob6/GRXHFlZ0e0rVNTU93L+fjcLs91Buig2t96I/7uI1zOlZJiaj0dcll+5nMtWyZNniwdPizX6NFK82jVG9F6QuSzvBCOF6/v23iz5OjBgepDV06OtHWrNG6ctHRpqCG7XXCBXFu3hrWIq1493583klHVs7KU1rFj0OM06PcVZFv7XT4tTfrgA+mbb6SyZZXSunVoj+eE2ZrC3/qNusAPn/uHSSIpu8T8wc71kdYrfvaHtCyPXh/DOB/F6loymvW4XK6Ilg9pmSuv9P4h5okngi8XzjnG17ms6PMEO89FKlC5kW5HE/YTv58rxGuREteRPvbzgNvv+eel668/Od2ggdLatIm6jjX1PB/m/UokfJ4zA+2nEfBaLtpzWLB5fZSfEqQODHif5m+ZUL6bcLbjpElShAnIFJfL9z1ViNcaaUGOI8PYsdLUqYHL6tIlrPsJs46XQOVEff5OUqZsBc+Wgvn5+dq3b5+qhpAZ3717t/G6WrVwhz8oKSMjQ0OGDNGQIUMCzrdu3TrjdaVKlQI+Yh2q4vF79kFZ3eOXx99//z3kMvd4/KptRpIUUYrkxs5qTn6cIMpWb0AJl10m/e1v0oEDJ997/HH74nHy8WenzEwjiR4XfH2P4T4qVL+++1+4Pxb27y8984zUq1d4y02ZEt78/jRsKP3nP/bvyykpUufO9saQiHwk0k0v32mcGJMkPfWU+7pozRrpggukG2+0OyJYZfBg6e23pf/7P/cAVf/6V/D98pJLYhNbEScdJ3Y/mlu+vHsQsSLFulKLe/76Yb/5Zne9FEisvptTTw3890aNnLXPIiqmJCAbNPAe02jr1q0hJSC3bdtmvG7UKNTxcqPn+ehNdna2KWUWf7TaM6nZsGFD4/W2bdtCaiFaWFhoPE5evAzYxOSWZ2Gx++QciX79pIoVvZNFQDRKlZJmz3bfuB06JN11l+Rj4J6wxOOx5RTJdjFoxed9++3wlxkzRor22uXss6VPPgn9M117bfB5km1/AMJRsaL07LPhLRPt+alo+Yzi48xLCvFx5IjXGQkz6pA77oi+/GbNoouhQgV33f777+6kcygNXf7xj+jWGS/MPE94tsaOxssvS889J23ZIg0ZIl1+uTnlStadF824dn3yyeAJyFgJtp16945NHIgJU5p01alTx+sR4TUh9gmTk5NjvG4exSinhw4d0qZNm0qMfO3PkiVLjNfFn8X/6quvNHnyZN12220aMWJEyM+4b/V4fMrlcqmmx6OCrVq1Ml4fOXJEP//8c9DyNm3a5JXUbBHlKLIwQSgtIMM90UR7YorVDV8k6ylVyn1iK+ozZfhwU0NCHCnWj2VUeveWNm2Sdu2SRo+25hiwK5ES6QUlSdTohLr9Qpkv0n0nnO9wzJjI1uHpuuvCi/Vvf4t+nWYj4Wkt6pX4Euh4uOmmkn9/8klr12nHIBXly0uBBnDxUf7e3r1V6NnAIDVVuvPO6OKQ3J+/WrXQko81awZvAYaSiifPIj0n1Ksnvf++9NNP0oQJ9jY4iUYsz4lmnx843yQV054pPf30043Xn3/+edD5c3JyvB4x7tKlS0Trvfzyy9WxY0f16dNH8+bNCzr/unXrtP7PzvElqWfPnl5/37Ztm15++WUtWLBA//vf/7xaSwby2WefGa+bNm3q1S9m06ZNvVqEfvHFF0HLW7ZsmfG6SpUqprXURBSsOCEleoV75ZXuRNG+fdJLL/mfjxvJ0Hn8oGGKM84wtzxfHnzQ+nXYgf3W+SL9jvhuvSVAx+kJy+wkUDiceA3jxJjsVqOGOzFXtD8MHSp17Rp9uU7b1s8+605ChiGvcmVt/Oc/VdiqldS6tbvlYhiDSYbF3/Yy80faZHLBBXZHYB+nHXuJgG0aM6YlIHt59F/0ySefaOfOnQHnf/31143XjRs3jjjB5jna3eI/R1AM5JlnnvFatkOxx/c6derk9Xj0nDlzgpb5ww8/eCUM+/Xr5/V3l8ul888/35iePXt2wJaVBQUFmj17tjHdu3fvkAb1QRimTw9/mVBaQCZa5RXOfudv3nLlgveLlmjbzUqnny55jkyflhZe61LP72LkSPcv9JK130Hjxu7HW4BYo24BAGniRGnzZmn9emnWLOtaeRVdC8ZJ3Vvocin3rLOU/9130urV0kUX2R1SbMT7feU555hXlpXbIpbbOd6/UyQNUxOQRYOtHD9+XOPGjVNeXp7PeT/77DOvxN6wYcMiXm+fPn2M1998841XIrC4uXPn6r333jOmR44cWSKxV69ePa/WmG+99Za+/PJLv2Xu3r1bt912mwr/PNFWrVpVl112WYn5Lr/8cmNdOTk5eipAnwuPP/640UozJSUlqu0DP7p1C3+ZeG2Sj8Tickkffyzdcou7hennn0seP8QE9d137v5u3n1Xevppy8Is4frrpU6dwl9uwgTzY/HkcQ4xXHfdyddc0PmXKNvGzM9h9013onwnoaJ7Gvv3OVjH7O+2fn339UKy1RNW4LgLzuxtVDReRK1a0v33m1t2vEm0/S/Y5ylVKjZxICZMS0BmZGRojEe/RJ9//rluuOEGr74R8/LyNHv2bI0aNUr5+fmSpGbNmunSSy/1WeY555yj7OxsZWdn6xw/v3R06dLFqx/H0aNHl2gJuW/fPk2bNk333nuv8V737t1LtFQsMm7cOGOY9Pz8fI0cOVKzZs3S8ePHjXkKCgr00UcfaciQIdq8ebPx/n333aeKFSuWKLN58+a6xGOEsyeffFKTJ0/WwYMHjfcOHjyoBx98UDNmzDDeGzJkiFcrT9jIiaNgJ9oJCKGpVk164glp5szwk3pVqkhXXSVdeGHsb0IiGbH67rvNj8NTz55S+/Ynp2vUkG64wdp1+sNNobPFQ30bDzGaacIE6wbTSBQxHOTREahHT0q2+iACLiv79oW5vvpK2rpVWrfOdxcCVvejHUn5sTwGE3k/DTS4FOKOKaNgF7nkkku0cuVKvfnmm5LcSchevXopOztb5cuX18aNG7V3715j/sqVK+vxxx83kn2RcLlcmjx5soYOHaoDBw4oNzdXN998s2rWrKkGDRooNzdXmzZt8koetmrVSo888ojfMps3b66HHnpIY8eOVUFBgY4cOaJJkyZp+vTpys7OVkpKin7++Wf9/vvvXsuNHz/e61H04u655x6tW7fO6Ffy5Zdf1uzZs43Hz9euXasjR44Y87dp00bjxo2LaLvAAk5MQAaSyCcimC8W+0sk/U36Gr3TTC6X9Nln7tagR49Kf/2rewRLIJElSmJiyBCpSxepYUO7I3Eml8vdJ96tt578AahKFXe/zKEsC3uFc5wmwvcVzmcYMkT6837TQIto3y64QFq40Pu9KAZ/jUo0556MjJPdBjlFsH32mmtiE4dVnHKtUKeO9etIhDo0TpieUbnvvvs0cuRIpaenS3K3FFyzZo2+/vprr+Rj48aN9eqrryorKyvqdTZp0kQvv/yy6tevb7y3Y8cOLV++XDk5OUby0eVyacCAAXr11VdVIcgNZv/+/fXCCy+oRo0axnuHDx/WihUr9M0333glH2vUqKEnn3xSV1xxRcAyy5cvr//85z9erTmPHDmi7777Tt99951X8rFnz5566aWXVJpf9q0RSdI7mQehmTbN7ghgtXjZF61Qvrx71Mvx490tIJE4zNyvY31xWr++u6uF4v7s7gZ/atDA7ghCY9V5NJT98tFHpXnz3CMfr1ol1a1rTSxFhgzxnh471tr1mYUb0PgxaZL3tXynTt5PM4So0AnfudXXX3fe6d3/9zXXWDfQjqdQt63Z8zlJZmb4y8Tj5wTCYGoLSMmd5Bs9erT69++vuXPnaunSpdqxY4eOHDmiSpUqqUWLFrrgggvUv39/ZZjYsqVly5ZasGCB5s+fr0WLFmnNmjXKzc1V6dKlVa9ePXXq1EmDBg0Ka7Cbrl27avHixVqwYIE++eQT/fDDD9q7d69cLpdOOeUUNW3aVOedd5769OmjcuXKhVRmhQoV9Mwzz+iLL77QO++8o2+++UZ79uxRfn6+qlWrplNPPVWXXHKJukXSRyF8yn/6aaXedJMxXdiqlVw1a4ZfUCIOQhPqL4lnnmltHJJ5J9x4+w7MwMWKdZJxfwpVoux3Tv0cgwe7W+TOnSvt2OF+b8oU6c8feJEAYrXvuVySRzdAlpsyxf2o5KpV7m4ubr89duuOBvW9vcLZ/s2aufvAfvppd6ve8eOdEVcgdp1rmjRx9/89d677R9bLL4+8rKpVJY8GRUmF+sE6Tti2ToghSZiegCzSuHFjjR07VmOj+NXz448/Dmv+UqVK6bLLLvM5CEykMjIyNGDAAA0YMMC0MiXpjDPO0BmRPI6IsBUOHaq98+er6qJFOp6ZqZQnnohsxz/1VLNDC51VFy3Tpwf+XEWVcWqq+xfUhx+2Jg7PdSF8yfaYFhJT06buEVqdyo46qkkT6fvvpU8+cbda89XvFeCPXfV9w4ZSgEEhEaJWrUq+d+ONsY/DqTp1kl56yZ51O+1aqmdP93miuHr13OcOl0u67bbYxxVLdnwndu0Hdt8z2b1+xLU469QOiED58vp58mR9++WXWv3uu9JZZ0VWTrNm5sZltVBODu3ahf5oVLAWoJyMkGycdgMS7555xvwyI/2OYr1cIJmZ7taQoSQf2SeBxFG1qnTddd7T8dKa1J9OnaS//c3uKJzFjOvnYcNK9oFZqpT04IPOPy/E6v7Bqu1gRRddkXD69xwoPqfHDlORgERycLncfcXE20AywUR70na53I9KHTrk/+9mrQvOxsArsNu557pHdjeTFfVW377e0y1bRr8+X4/H0tox8Zmxf1asGP4yZiWAuGm03nPPSa+/Lj32mPuR9nD6znfiddtXX50cEKk4q/cnH4PUHI+kSyYnqllT+uYb6eOPpW+/df9bv96dmHSSRKwznn3W3PKceNyaYcgQ/2MwJOpnhk8Jlo0BbBavFWiIfZjGhUS8uDGTv33UiYME+Hr8LJF16GB3BOGx4li78krzyzTb3Xef7NC/VCnpgQciK+eVV06+HjPGux5u2FD6y18ijRBOZNW5KT3df/3tb50jRki1alkTD8zlckmXXeYeydzqwYMS3YMPek0WlCqlPZF2sRXJ9b7V9whly7ofxe7Qwf2vXj1r1xdMvN4T+ePv81x7rbRggTNicbJKlaR77w1/ueefNz8W2IoEJGCWhg3DH+0sHk8gSEx16rgvzp3USnjiRLsjiK3sbHcrQMSWryRNpUol3ysa/OWMM9z9Mr7zjvv/SAb3OOMMqX//k9NVq0orVrgTQ6NGSV9+6axjEdGz8nz/0EPhzV+pkrs1XSD8mBf/+A69NWrkbmWflaXC5s218Z//VEHZssGXs3o7ci9gjki3YzTbv2jfuOiiyMswSzwc7xMmhL/M1VebH4cvHIcxw9UtYIaiVjBWVf5OqBTj4cSG6Nx9t/T7785I/P3wgzRokN1RxL7PmgULpKlTzS8X4fFsnShJZcp474/16kn9+oXfN/Czz7qTi0uWlExyNmsm/fvf0r/+5R6pFPHrllu8p4cM8T2fWXVIJOVkZkqjR/v/e/v2EYdjmm7d7I4AgQS6NnXqNeOVV0obNyp/9WodYDBQxCsn3BfGwqWX+n9sO5YeecTuCBIKCUggWv/3f9KGDdIVV8R+3U69wLNTspyUIxVsn6lc2d0ay2516tgdgT1Kl3aPOF88gYHYOv9894Wv5G75OG2a+/G2aDVrJp1+ujMuqBGaSM6zd94pdenift26tXTffebGFAtNmti7/tNOM79vNcQO12Iwm1X3PKGW6/R9Opb3hGavy9+2dco2HzjQ7ggSClfAQLQ6dJBq145s2URKIEbzWRJpO9ihqD86mC/QxU+yPyIbD8dtpBevpUpJb74pTZ/ubv1YrZq5cSGx1asnLVsmnTjhTmCnpLh/rIy1eDhG/fn6a7sjQDDR7F9Vqkj79nm/l6yD4TklyRKKeIo1XoVyXJUpU/I9M34khW/cZ5kqye+ekLTMPIHG8wU+EsPw4b4vRuJZPFzktm0rVa/u/d7TT8c+jmB1UDy2vnICl8udSIqn5CPnI+dISXEnsuPxh4rrr7c7gshxDJzk5PPoSy95T3frVvJ8itA5+buOlUiP/VC3nZPqlnHjSr43ZUrs1h+r/c1J2xymicOrIiCBFBa6RzZ0Kir++FCunPTCC1L58uaUx4VsaFJT3YM/ZGS4p7t0kQYPtjcmX8aP59dbp0jkG+ysLPazROGEfoAjlaznr3i7XuvfX3rqKXeXFAMGuFucAwhN/fruftuL3HST+0fxeJWs9XaSIgEJ2G3KFOn2292j306aJJ1yit0RxR4nnugNHSodPGh3FMnn2mulTZvcoyEvWWLP8ZsMx89VV0W2XKxvylu39v+3tm2lFi1iF0uspaZK999vdxTmM+v4suM4jWT/b9MmefvgRey4XO6kyZdfSm+9FXlXRnYx83g2oywnJqCdGFM0nHat9eCD0q+/Stu2uZP5iba9kbBIQAJ2K13aPcDB4sXSP/7B4ARAvKlTx33Tnp5udyT+Oe3COVz33y+ddZa7j6Ps7NCXi/Xnvv12dyLOU3a2e8Tst9+ObSx2uOUW6fnn7Y4ifjj5htEpsY0da3cE8Cfezyuhcsqx4ATRfueJts/YvW/UqmXtD0aJ9n1Fyu7vOcGQgAQQmmCVLyep+BDKSZQTrTNVrSpdeKHdUZwUy/2kfn13C9PDh6WFC80t28zPccop7vg6dXL/++gjKSdHeucdqWFD89YTLSvraye28rzuOrsj8C3ez5uxiP/BB6V//tP69Ujx/304QSJeP1i9XyTiNpNi37cix2/iccp36pQ4EgQJSCCeJUuF+NBDoc97+eXWxZEIkmWfSUQNG0p169odReIx++bvvPOkr75y/zvnHHPLDoY+GE8q2hZ160p/+5utoUhK3CSD1VJTpdtuszuK+MT53jpmHs/J/j0l++cH+0CSIQEJJKpEqszHjpVmzZK6dg083/nnS6edFpuYkp3VnV1XqGBt+aEiaYB4cu217pGX7eSUY2btWumbb6TVq+O7c/5YC+fawSnftScnxhQLTvnciXTtabZE3TaPPBJ691HR7KfR7uPRLm/F93fqqSXfq1XL/PUADkICEohWNCMPO/1ixDM+O2N1udwtG6dM8f33mTPdIyi+/75zLsITWWqqNH26tetwSl+oTj9GAU8VKkjPPuvuKzPZVa8udexIq1DAKlxvwUns2B+jXee//uU93bZt4MHsgARAAhKIlp0tteItOdK8uTXlXnmlNHhwycEfYJ5y5aRXX5XGj5c++8z9mKlVrrnGurKTlRUX5vFw8xlKHRlv9WgwV10lHTxodxSJI9b9k11/fWTllysX2XLFBfq8jRubsw4gGfk7thLtHITQdesmvf661L27NGiQtGCB3RGFxux9lmMgqTikiQkQY1R0oTE7wfDkk9YmrmAdl0u64gq7owDMr5fOOsvc8pwghd+X44KvfblNm8jKevFFaciQk9NXXhlZOYHEw7VTPMSYKAJta1+tsM1KkgN2sKpuuewy9z8noj6FBUhAAk4T7/0vBXLuuXZHgHjbZ5IVF33mCGV/v/NO6+NwGuqBxDN4sHTsmPTf/0pNmkgTJ0ZXXqLuI6VLS0eP2h1F4irabypVcg/C9fHHJ//28sv2xGQFp52jE/V4dTq2u7ViPZAfYoKfyIF44O8EF48nvg4d7I4AwdSuXfI9vjckqmrV7I7AGoMG+f+blTfPvrrauOEG69Znlm7d7I4gesOGSW+9JU2dKpUpE11ZTkuwmOWss5JnsDq7v8PXXnO3yj3jDHdfdwMG2BtPpKy+1rb7ewqHnbHG03aCOZzSJVM83m87GAlIwCr9+plXlhNOulZWvlTszvKXv0innOL93mOPxW79Ttjf7RYPx4RdMfoaVKRpU9/zJvO+dMcdUtWqsV9vlSre/RhWrhwfrUz/+U+7I3Bz8j6bCPWSyyUtWRLZsk7mxNhr1JDeeEP6/HNp1ChnxojouVxSs2Yl34/1AGBOrjsRWNeuJd8bOtTdYj1GXOw/MUMCEskpFhdB990XWQuEeL1Ai0XcnBxiIy3N3RF2hw7uxM5zz0nt29sdFeBWqZLUt6/3e089FXl58VrnBtO5s/TDD/as+9ln3a2fHnlEWrXK/Uiw051+Oo97Sclxni1TRho+3O4ozOWU780pcSQbu7f7jBne01WqSBdfbEsoYQt129m9je0Qq+ujxo3djR+KVKsmTZ8em3Uj5khAIjnF4iRy6qnSmjXWriMZT4aIjS5dpG+/ldatc7dmStQkDeLT669Lo0e7HzOeN086/3y7I3KmWrXsWa/L5W69MHq0VL++PTFE4uyzrSt7+PCSgwO9+KJ16wsF9XpwDz1kdwSRs/r7Zf8xRyJcy595prvhRfnyUp060qxZUnq6uetgf0tsc+e6Gzw8/LD0/ff2Xb/AciQgASvFsOl4yJzymBngj5MuMtMSZKy2RLjB8VS+vLt13Zw50iWX2B0NEFxmpjshW6RHD/sT54lWL4SiQoXw5h85kjrGn2Tcf5LJLbeUnPb3naekSOPHSwcPStu2SX36WB9fcSTc41tamrvBwx13OC/5SF1nKhKQQLK56qrQ5w3nZBuLyjleTv79+9sdQXK66y7zy0xNdQ/sgJLi4XjkohHRMnMf+uc/pe++k5YtkxYvduaPlPFwXAfjqz+6Ig8+6P9vvr7rypXdrawRmkTYf6wSb+ejiROlgQPdLRoHDHBP+xLtd273dgk1frvjtIO/z3zhhbGNAwmFBCSQbDIz7Y7At0Q6sT/8sN0ROJe/wULMMHasdPnl5pf73HPmlxmpRDpOnIJtilhq187d4X5qqu+/O7nVdbwcK//6l/+/ZWe7/0+GRFm8fF/Jzqnf0ymnuB+L3bZNeuutkoMTRsKJx10029+JnycWBgyQsrJOTteoYV8sZnHqcZiASEACVgpWmVHZJaaiGxyU9M9/nrzBLt4fWrQqVXL3O/T11+aWW6qUueWZregCuG7d4PMkm2T93DBPrPehK64wv++0SITyuWO5bXr1Cn3e3r3dgyAlE+o6xAPuexJDaqr7Wvsf/3A/ffTdd3ZHhDhCAhLJKRlOgPH0GeMpVkSnf39p+XLp6aelpUuls84yfx3Juj89+6zdESBeJOsxEg8qV5YmTbI7Cud54IHwfgzq0cOyUADHiecEdKxij+dt5ERVq7rPVZMnSzVr2h1N9ALtH+w7piIBCSA0ZlW+VOLo0EG68UbpjDPsjiQxFCWTLrgg+rKGDo2+jHhDnQSnGTdO+vZbe9bt1OR0p07SV19JLVvaHQlgLs5B5rC67nJq3QjEGRKQgJUS6aLC6hNvIm0rJ2M7xzerf6FNtFZD3DAgXtWrZ/064u180Late6RdOMO555Z8Lxl/xIoW56nYqVOn5HtVqkReXrzVoYADkIBEckqUEwYXLQAAIBJcQyQ2q7/fCy7w7vO6ShXp5putXScQqcJC6fnnvd9r105q1syeeBKNv4HV4gXnw5ghAQnEszJl7I4gtjg5AED0EuVHuERm13cUznqdfE52cmxWsGN/SUmRvvhCuvde6Y47pFWr3IPBIXHZeVwF28dDOQZ695aeeMLdmrpXL/fo3qEK9tn/8hfv6SuvDL1spwrn+37xRe/pu+82NxYkjDS7AwBs4ZQLUyvj4AYT8copxyfCV/wCHEB8atu25Hvnnx/7OMLFtU9sVaki3X+/3VHEt3i/5onVMRftdiosdMd6yy3uf2bw/Ox33eUeZHHHDql+fen2281ZR7y46iqpdGnpo4+kNm2km26yOyI4FAlIIF5UrSrt3ev9XqCTvlMvaJwaF+zBzWJ8mzbN3fJFkipUcLeEcRLqGyAyAwZItWpJv/3mnk5Ndd7x7UvRMR+rc0vHjrFZD5wlknML1zuJ7fTTpTVrpF9/lerWlSpWtDui2Bs82P0v0XDsmooEJGAls25+4+EmOprKmYo9djIy7I4AThbusXj77e4b8I0bpZ49pcaNrYkL5oqHcwrsUbRvpKZKS5e6H6M7csQ9MnfduvbG5kSPPWZ3BLCaWdeoVta71OnOULmy+x8SS/nyUosW7gRzkYcesi+eOEcCEgjFNdfEbl0k42CVq66S0tPtjsJ6XIiX9PDD0ogRweeLZNv17On+50TUpwiHk+qOWMQS7PjIypLeeMP6OMLhpGP6/felbt3sjgLxzkn1jh1i9fnNeIQbyWvqVHe/ngcOSJ07S8OH2x1R3GIQGsCXiy8++bp8+cg70nXShXK0gn0WTszO1bCh9MAD0nPP2R1JSew3sXHZZe5fb4tccUVyJKOBaCXSeRyBhXs+uuACa+IwC+fX5BEv/TAmWn2aaJ8nmQXbt/v1k37+Wdqwwf10QM2asYkrAdECEskpJUjuffZsacYMafduadgwqUkTa+LwdeJK1gvGZP3csfD889K559odRei4oDNfhQrSN99I//d/7h9VLrxQevNNu6OyHvUKAF8S7TyTaJ8H8cMp+16w8z3XA4hW1aruf4gKCUgkp9q13UnFDRt8/z09XRo1yvo4Qj0ZOuXkDiB+lS0rDRkSeB7qGsBbIt+0JmJrpqKYypYt+bdSpWIbCxKD1XVAItcxiS5evrtrr5VefPHk9A03hLZcqPMBYeARbCQnl0uaPj05RygLhxNvLoBg2G+dz1dyALAbdUfibINKlUr2TTtzpj2xxEK8JEISRaIcJ/Ek2DbnO/Fv/HipSxf3NjrjDOnee4Mvc/rp0nnnWR8bkg4JSCSv/v2lX36xOwrrJOLFKBcXQHwqPpCX5y/xAGCFWbOkgQOlTp2kRx+VBg06+bdEvEYqjmsm6yTD/uPL2LEl3zvnnNCXt3O7ZWSYX2a8HGMNGkhffCEVFEiffy7Vr+9/3ldecf9Ys2RJ8C7LgAjwCDaSW6VK1pafrBcoVmF7AvHpmWekOnWkdevcHXkHexQcSHZ2ne/sWO+oUdITT5ycjmbANM/4a9WS5s4Nfdl4SSaEimsmc1i9X8TT9zRypPTUU9KOHe7pCy6QWrWKrsxYHHf33COlplq/nkQwbJjdEdiioEyZkm9Wrx77QJIACUgAQGKJp4t5O8VyO5UqJd1/f+zWh8A4RiA5J+E2fbpUrZr0ww/S+edL111nd0TxxynfJRJbtWrSqlXuFnIVK0rDh9sdUXDz50t/+Uv05XDeTGgFZcuqoE8fpbz//sk3n3/evoASGAlIwErBLgitPJmZfTFaq5a55cEagwaVbPHRtKk9sUSKizz7cBMLINbS0919lIWC8wNgr+rVpdtuszuK0AwaJF18sXXlc82UUApeeUUp997r7qLtssvcT+zAdDzYDyA0115r3cARhYWcxM1y333eI3326RO4rxe78b2Hh5tvAPCPcwoAIBKVK0szZkjvvSdddVX4yyfp4+vhIgEJxLNYJiPKlpVmz5YaNYquHG4OrNWypfTVV9Lf/y5NnizNm2d3RLAaxxTCxT7jGwl+52PfRbyKp6eenIj6GU73xBN0IRICEpBAorLiRH3RRdKmTe5+X+Bcbdu6R/y86y6pdGm7o4HVuCj3j22DaCXyjT3HBwCEhvrSHGee6T09bpw9cVihUiV3v5Fvv213JI5GAhKIZ3bdGEVzEuYEDkTOzGOeYxFAcYmccE021PHWMXPbJvv3FOrnd2Ld5MSYnO7BB0+OLt2+vXTjjbaGg9hjEBoA9uMEDjgDxyKQ3JI9GRKvqLutEw/bNl6O23jYlrDW2WdLGzZI+/ZJNWtKGRl2R4QYowUkYKXq1QMPABLqBYPTLiysuIBw2mcEACCRRXsur1q15HuNG0dXpp24DgHgD/WDeSpUcN8fJ2rykUR7QCQggdtu854ePNi8sl0u96jE6enhLQMkCysu6LhIRDiSsc7lGIEZzj3X3YLF03PP2RNLuJLxuIe9/O1z1Mfxi3oECBsJSOCOO9wX0ampUocO7r4p/Ln7bu/pu+4KXv7w4VJOjnsUaUSHi7TkwAVdbHA8ubEdgMikpEizZ0vNmknVqkkPPOB+vA5IJHacI4oP1DFxYuxjABAZrisDog9IoEYNafHi0OadMEEqKJC+/FLq0iX0C4KsLKlr15LrIdECAIBzcSMR2FlnSWvX2h0FEFtWX78//LB06aXSr7+6j7GRI61dHwDECAlIIBwZGdJDD9kdRWi4aQIQiMtFPQF4SrYfBTn+Exvfb3zw9T117Spt3Cj98YdUqZL7Ka1Akq3u8uXss6X33vN+r3hL0mhccon03Xfe7511lnnlA0mCR7ABOzn94pALGgAAYs+u6wPO+/GJ7y3xlC7tHugpWPIRbjfdJJUvf3K6YkVpxAjzyh81yj14SpH69d1JSQBhoQUkECuhXhyaddPBxSjiVbTHAPs+ijj9Rx44C/sL2wAIRSTHCcdWdNsg2LVd+fLSV19Jkya5550wwdz+96tUkVaskKZPdz8Rd/fdJIeBCJCABOIBCRU3tkPi4Tu1DzdDQHCJXEfF42cLFnM8fiY4m9X7VLKfi83cvi1aSK+/bl55xTVpIj3zjHXlA0mAR7ABAIkl2S/mo5GMN++J/pl9jUpct27s4wBiIVnr/2T93ACAuEICEgAAIFE98oj3dL160nnn2RMLAACeQk2ek2RHvGBfDYgEJJCoqPwAJLv0dLsjsF+HDtJrr0mnneZOPH7wQeK3+kTi4trGN47p+FWlit0RxA77KZD0SEACdgrnQvqFF0q+N2yYebH06FHyvfr1fc/bvXvJ9xo2DG09HTqUfK9pUy5KgFhLhhv5Tp2kGjUCz5MM22HoUOnrr6VFi9x9ZMH5kmG/BCA9+qjdEQBAzJCABGIl2gRb797SWWednB4zRqpePboyPRV/TK9ZM6lLF9/zPvyw93StWlK/fqGtZ8IE7+ly5aTrrw/tZosbMsBaifZDQGqq9Pjj7noGgLdkPqf27l3yvYEDYx8HcNpp4c3vq8FAgwamhAIAViMBCcSLMmWkjz+WliyRVqyQpk83t/xTT5X++1/pnHPcF+Effug/GdGihTR/vnTGGVKvXtLixVJKiNVJ3brSggVSx47u5T/8UCpb1rSPEXNDh3pPjx5tTxwAfBsyRNq+3f0PQGIL9UeUAQO8kzbVqkk33GBNTEg8ZiXv//a38H/4++c/vac7d5aaNzcnHgCwWJrdAQAIQdGFTlqadytIs/3lL+5/obj4Yve/SFx0kftfInjgAWnDBmnlSvej6XfeaXdESGTJ3GIpGpUquf8B8SIWrZETrcVzONLSpG++cf+Ym5cn/f3vtJSGb047Tjp2dPflO2OGlJkpPfig3REBQMhIQAJO47QLHQSWlSV99ZXdUcQvEmoAADtUqyY99JDdUViH86s5nLgde/Vy/0sm3B8hXvj6wbtmzdjH4VA8gg0AcJZoLzKdeLNgFi7Azcc2BRJHItf/gVCPxRbbG4A/3btLtWt7v/ef/9gSihORgARi5YorSr43aFDs4wAAf7ipQjLz1QfgM8/EPg4peRNpwVBHJZ86deyOwBy+WtvedFPs4wBgrZQU6bXX3E/JVawo3XOPdO65dkflGCQggVi57DKpUaOT09nZkfehCCQybrwB2KF2bWnUqJPTPXtK551nXzwApCee8E48P/qofbFE47zzvEewvuIK970AgMRz9tnSxo1Sbq57vIA0ej4swpYAYiUjwz169b//7b6QGjlSSk21OyrAXrRmgd1IeMPTv/4lXX21dOSIdMYZiX2e9tVPVWZm7OMwE+eUxHPJJdKnn0r/+5/Utm3ogyU6TVqatHix+7NkZEjdutkdEQDEHAlIIJYqV5bGjrU7CgDwjWQc4B5lNhnccot0//3uUaCLTJ9uXzyAP927u//Fu9TU5H4Ukx8IgKTHI9gAAABAsqla1d3is1Qpd2Jg3DipfXu7o4JZ+EHJOmzbyHh2cVHkySdjHwcA25CABBA/mjQp+V68PooDOBGtE4DkcuON7j6qDh92D5JBHeBb377e0057VJ3vzTpsW/PUq+dueV2kTx/prLNKztepU8n3MjKsiwtAzJCABBJVIv46W6eOdNFFJ6czMtwd+wJApLi5hBPF8hxeqpRUpkzs1heP7r3XPZqp5H6Mdto0e+MB4tUTT0irVknLl0sLFvgenOOf//Tuf/eWWxK7P14gidAHJID4Mneu9Mgj0s6d0vDhUuvWdkcEmK9ly5Lvde4sFRTEPhYAiBctWlhT7umnS99/706aNGvGo+pANNq2Dfz37t2lpUult9+WGjWSrr8+NnEBsBwJSMBpErHlYiiaNSv53l//WvK90qWlu++2Ph7ATtdc4x6w6uBB97TLJf3jH9J999kbVyw8+qg0evTJ6alT7YsFQPwYO1YqX9668hs0cP8DYL0uXdz/ACQUEpBAPEiGRwQrVZJuukl6+mn3dNWq0u232xsTYJfSpaVPP5XuuEM6flyaMEGqXdv69Tqhrrn1Vvejjl984W71ScsHAEVq1PD9/qJF0nnnxTYWJ6lTp+R7vvrNBgDARiQgATjHk09KPXtKO3ZIF18s1a1rd0SAfTp0kD76yO4oYs/lkq691v0PADyddZa7FeKWLSff++wzqVs3+2JyghtvlMaPl44dO/neQw/ZFw8AAD6QgATgHC6XNGiQ3VEASCbJ2u0FEI9cLumdd9xPTPz+u7vF9Jln2h2V/SpUkObMkf72N3er+YkTaQFpllNPLfle796xjwMAEgAJSCAecIOMRFWuXMn3SpeOfRwA3K65RnrppZPTjz9uXyyAL23bugeogLd+/dz/YK6BA6VataTffnNPp6fTFzkARIgEJOA0TuiDDYiVKVOk99/3fm/cOHtiQXKizvX2r3+5fwT48UepVy/p5pvtjig51aghZWZKu3effG/CBPviAZJVaqr0+efugeCOHHFfo9SsaXdUABCXSEACAOzTpo07wfHUU+7pu+6KfpTRZG4xfOON0jPPnJy+447wlicZh/LlTw4GBvukpEgPPOB+1Dg/3/04Lf2iAvZo2FCaOdPuKAAg7pGABADYx+VyDz50113uG+5ateyOyNmCJVcffFDat0/6+mt3v2j33hubuACYb8QIqXt396Ofp53m7ucPAAAgTpGABADYr04duyNIDFWqSK+/bncUAMzSvLn7HwAAQJxLsTsAAAAQIh6RBgAAABCHLGkBuXHjRr3xxhtavny5tm3bpry8PFWvXl3NmjVTv379dP755ystzfxVL1u2TAsWLNCKFSu0a9cu5efnKzMzU+3bt1f//v119tlnh1VeQUGBPvnkEy1atEirVq3S7t27dfToUVWoUEH16tVT586ddemll6pBiP2VTZo0SbNmzQorhvr162vRokVhLQMAAAAAAAA4helZwCeeeEIzZsxQXl6e1/tbt27V1q1b9dFHH6l169aaNm2asrKyTFnnzp07dfvtt+urr74q8bdt27Zp27ZtWrBggdq3b68pU6aoUaNGQctcs2aN7rzzTq1bt67E3/bu3au9e/dq1apVevHFF3X55Zdr7NixSk9PD1jmTz/9FPqHAqKVzANxAAAAAAAAxzA1AfnAAw9opscIYWlpacrOzlaZMmW0ceNG7du3T5L0ww8/aNiwYZo9e7bqRNnv15YtW3TFFVdo9+7dXu83btxY1apV086dO7V582ZJ0nfffaeBAwfqueeeU8eOHf2WuXLlSg0fPlxHjx413itdurSaNWumMmXKeJWZn5+vmTNn6ueff9a///1vvy07CwsLtXbtWmO6c+fOysjICPr5qlevHnQeAAAQggce8B6Yp1w59+jCAAAAACxlWgJy4cKFXsnH3r17a/z48apWrZok6cSJE5o3b54eeughHTlyRHv27NGoUaP01ltvyRVhn1ZHjhzRyJEjvZKPPXr00N133+31WPT69es1ceJEffPNNzp8+LBuvPFGvfPOO6pZs2aJMg8dOqSbb77ZSD6WLl1at99+uwYPHqxSpUoZ8/3888+aPHmylixZIklaunSpHnnkEd15550+Y92yZYv++OMPSVJ6erpefPHFoC0mAQARKF3a7gjgVMOHSy+/LK1f7+5P84EHJM7FAAAAgOVMGYTmxIkTmjp1qjHds2dPPfbYY0byUXIn3YYMGaInn3zSaCX4448/asGCBRGvd9asWdq0aZMxPXjwYM2YMaNEn4xNmzbVSy+9pDPPPFOSlJubq/vvv99nmc8//7x+//13Se4WnM8995yGDRvmlXyUpEaNGunZZ59V7969jfdeeeUV/frrrz7LXbNmjfG6cePGJB8BwCrt20vFzgP5r75qTyxwljp1pBUrpEWLpO+/l/7+d7sjAgAAAJKCKQnIRYsWGYm3tLQ0jR8/Xikpvovu1q2bhgwZYky/9NJLEa/3tddeM15nZWVp/PjxfltTZmRkaMqUKcZjz4sXL9b69etLzPfOO+8YrwcOHKjOnTv7Xb/L5dLEiRON5OSJEyf04Ycf+pw3JyfHeN28efMAnwoAEBWXS3r+eamoC4vrrlPhX/5ib0zxIhlG2S5fXjrvPKl1a7sjAQAAAJKGKQnI9957z3jdtWtX1a5dO+D8ngnIH3/8UVu3bg17nZs3b9b27duN6eHDhwdtVVi9enX17NnTmC7e+vKXX37xKrNv375B46hatarat29vTK9evdrnfJ4tIElAIiaSIZEA+HPeedKOHVJ+vjsZyWPZAAAAAGCbqBOQhYWFWr58uTFd9JhzINnZ2crMzDSmP/7447DXu2XLFq/p008/PaTlWnu0ePj666+9/rZ9+3avR62bhNgxfeXKlY3X+/fv9zkPCUgAiDGXS/LTGh8AAAAAEDtR35lt375dBw4cMKZbh/hIU3Z2tvHaX6vBQDzXKUk1atQIaTnPZKFnUlCSzjjjDH3//ff68ssv9fbbb3vNG8i2bduM1xUrVizx971792rXrl3GtOdnB0o47bSS79WrF345hYXRxwIAgNNdeKH39Nix9sQBAAAAv6IeBXvz5s1e0/Xr1w9pubp16xqvf/nll7DXW6ZMGa/p48ePl3jPl8OHDxuv//jjD+3fv79EorFKlSqqUqVKSHFs3bpVP/30kzHduHHjEvN4JjozMzNVoUIFvf/++3r//ff1/fffa8+ePSpbtqxq1aqlrl276tJLL1VWVlZI60cCevhhybN7gCpVJI9uCwAAgIeHHnKPbL5+vXTWWdKtt9odEQAAiIWsLMljYGIx2K+jRZ2A3L17t/E6JSXFa+TrQDwfwfYsI1S1atXyml6zZo26dOkSdLnirR53794dcktHX5544gkVerQ08+xj0tc609LS1Ldv3xKJ29zcXOXm5ionJ0cvv/yyhg0bpjvuuMMYMRxJpEULadYsafJkqVw56V//oiIFEBv0HYt41Lat9NNP0okTUqlSdL0AAECyeOQRaeBAd7/vkvTMM/bGg4Cizm7l5uYar8uVK+d39Oviypcv77OMUDVv3lwVK1Y0HsWeM2dO0ATkwYMH9dFHH3m9d+TIkbDXXWTRokV6++23jekuXbqoVatWJebzTED+9ttvxuvMzEzVq1dPhYWF+vnnn43+I/Pz8/Wf//xHGzZs0IwZM4IOrmO1vLw8W9cfrfyiysjPtCMNHuz+VySS7yAvz+cBHu/fJxCJaOsBpxxLKQUFJfpOKSwsVH4Esfj6TPn5+SqkjkC8Sk+XCgrc//yIy2sCAKaiHgCcc20btYsukv73P7m+/FJq316FZ58d0r0z9YA9ok5AHjt2zHhdOoxRRjMyMozXx48fD3u9qampuvjii/XKK69Ico9o3aNHD/Xr18/n/IWFhZowYYIOHTrk9X4k65bco3ffeeedxnR6errG+ulzKCcnx2u6TZs2Gjt2rDp16mS8V1BQoKVLl2ry5Mn6+eefJUlLly7Vgw8+qIkTJ0YUoxkKCgq0atUq29ZvhR9++MHuEGKi1C+/yFePrIn2fQKRCLce6OjjPTuOpfq//67MYu8d/uMPrY0gFl+f6ZdfftFe6ggkkWS5JgDgH/UAkpFTrm1NUbq01KOH+3WEn4F6IDaifkblxIkTJwsL45EXz0eLI820jxgxwuvx6TvvvFPTp08v0aJyy5YtGjlypN59912VLVvW62/hxFwkJydH1157rf744w+vdbds2bLEvMePH/capKZ37956/fXXvZKPRXF0795dc+bMUYsWLYz333jjjRIJTABAbP3RtKnX9I5hw2yKBAAAAADiT9QJyNTUVON1QYBHXorzTDpG+ohxZmamHnvsMZUqVcpY/7PPPquuXbtqwIABuvrqq9WnTx/16tVLn376qdLS0jRt2jSvMoqWDdW3336rq666ynhcWpIGDRqkq666yuf8GRkZWrlypT755BPNnDlTU6dODfh5K1SooOnTpxuJ0cLCQqOVJwDAHr/dcIMK/jxfHKtTR3sGDLA5IgAAAACIH1E/gu058rTn49jBeD76HG4S0NMZZ5yhmTNnavTo0dq+fbskd3Lzxx9/9JqvTp06mjJlSolRqsuVKxfyuhYvXqzbbrtNR48eNd7r16+fJk2aFHC5lJQU1a5dW7Vr1w5pPY0bN1bXrl21dOlSSdKyZctCjtFsKSkpatOmjW3rN0N+fr5Xk+rWrVt7Jc4Tlp9R4du1axfjQAD7RV0PtGungkGDVLB9u1JbtlTzihUtiDK4lFNOKfFeubJlTTuu6zdooHrUEUhgSXtNAMBAPQD4lkz3idQD4Vu9enVYjQ59iToBWalSJeP14cOHVVhYedmghQAAOFZJREFUKFcIo2h69sUYzSjUkvtAWbhwoebPn68PP/xQOTk5ys3NVdWqVZWVlaW+ffvqoosuUpkyZbRhwwavZT1H4w7k+eef1/Tp0702+KBBg3T//fdH9Bh3MB06dDASkDt27NCxY8eiStRGI9FG4k5NTU24z+STn8+YFJ8dCCKieqBRI/c/O3XqJD3/vNdbrh49TDuuU1NT/dYdQCJKmmsCAH5RDwBuyXwcUA/ERtRbuEaNGsbr/Px87du3T1WrVg263O7du43X1apVizYMZWRkaMiQIRoyZEjA+datW2e8rlSpUtAWkCdOnNB9992nOXPmeL0/YsQI3XbbbZEHHETxbbJ//36vbQ0ASEJXXy2NGyft2+eezsiQ7rjD3pgAAAAAIIiom+41aNDAa3rr1q0hLec5MEujGLYo8Wxmm52dHXDew4cPa8SIEV7Jx9TUVE2YMMHS5KNU8nH2cB4VByRJIbREBhBnSpWSPv9cGjhQ6t9fWrZM8vFYdkiyskq+5/FUAwAAAACYJeoWkHXq1FHlypWNQVnWrFkTUt8BniM7N2/ePOL1Hzp0SLt27dIpp5zi9Ti4P0uWLDFeB4rzwIEDuvbaa7V69WrjvbJly+qRRx5Rz549Q45v8eLF+vLLL7V3716lpaXp4YcfDmk5z0RuxYoVVb58+ZDXCQBIYM2bS3PnRl/Oc89J5557cjozU+rTJ/pyAQAAAKAYUzovPP30043Xn3/+edD5c3JytGfPHmO6S5cuEa338ssvV8eOHdWnTx/Nmzcv6Pzr1q3T+vXrjWl/icTDhw+XSD5mZmbq1VdfDSv5KLkTsjNnztS7776rd955x+tzB1LU/6MkdezYMax1AgAQ1NlnSxMmSBUrSvXrS6+9JtH5NgAAAAALmJKA7NWrl/H6k08+0c6dOwPO//rrrxuvGzduHPRRaH+aNGlivF68eHHQ+Z955hmvZTt06OBzvnHjxnklHxs0aKDXX39drVq1CjvGzp07G68LCws1N4RWKx9++KE2bdpkTPfv3z/s9QIqLLQ7AgBOlpoqTZwo5eZKW7ZI551nd0QAAAAAEpRpCcjq1atLko4fP65x48YpLy/P57yfffaZV5+Kw4YNi3i9fTweFfvmm2+0bNkyv/POnTtX7733njE9cuRIn6N1v/766/rwww+N6Tp16mjmzJmqV69eRDF27txZDRs2NKafffbZEiNxe9q0aZPGjx9vTGdlZXkleAEAAAAAAIB4YkoCMiMjQ2PGjDGmP//8c91www1e/Rjm5eVp9uzZGjVqlPLz8yVJzZo106WXXuqzzHPOOUfZ2dnKzs7WOeec43OeLl26ePXjOHr06BItIfft26dp06bp3nvvNd7r3r27+vXrV6K8Q4cO6ZFHHvH6XM8880xUo0+7XC7dfffdxvThw4d15ZVX6t1331VBQYHx/okTJzR//nwNHTpU+/4c3TQ9PV1Tp05lOHgAAAAAAADELdMyW5dccolWrlypN998U5I7CdmrVy9lZ2erfPny2rhxo/bu3WvMX7lyZT3++ONRJddcLpcmT56soUOH6sCBA8rNzdXNN9+smjVrqkGDBsrNzdWmTZt0/PhxY5lWrVp5JRk9vfbaazpw4IAxXb58+ZAHjSmSnZ2tO++80+u9s88+W7fddpumT58uyZ0UHTNmjCZNmqSmTZsqLy9PGzdu9Fp3enq6HnvsMbVt2zas9QMAAAAAAABOYmrTuvvuu09VqlTRCy+8oBMnTqigoEBr1qwpMV/jxo31+OOPKysrK+p1NmnSRC+//LJuvfVW/fLLL5KkHTt2aMeOHV7zuVwuXXLJJfrHP/6hsmXL+ixr4cKFXtN79+71GgwmFJ7JTk8jRoxQ7dq1NWnSJOXm5kqS9u/fr6+//rrEvI0bN9Z9992nTp06hbVuAAAAAAAAwGlMTUC6XC6NHj1a/fv319y5c7V06VLt2LFDR44cUaVKldSiRQtdcMEF6t+/vzIyMkxbb8uWLbVgwQLNnz9fixYt0po1a5Sbm6vSpUurXr166tSpkwYNGhR0sBvPgV+s0LdvX/Xo0UP//e9/tWTJEuXk5Gj//v1KTU1VZmamWrZsqV69eum8884zdfsAAAAAAAAAdrGkc8HGjRtr7NixGjt2bMRlfPzxx2HNX6pUKV122WW67LLLIl7nd999F/GyoSpfvryuvPJKXXnllZavCwAAAAAAALCbKYPQAHCgwkK7IwAAAAAAACABCQAAAAAAAMA6JCCBROVy2R0BAAAAAAAACUgAAAAAAAAA1iEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJJCoGAUbAAAAAAA4AAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEkhUWVmSy+X93j332BMLAAAAAABIWiQggUSVni5NmXJyumFDacQI28IBAAAAAADJKc3uAABY6M47pXPPlX79VTrrLKlyZbsjAgAAAAAASYYEJJDoOnZ0/wMAAAAAALABj2ADAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuQgAQAAAAAAABgGRKQAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuQgAQAAAAAAABgGRKQAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuQgAQAAAAAAABgGRKQAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAACSL/v29p4cOtScOJBUSkAAAAAAAAMli3DipenX369q1pdtvtzceJIU0qwreuHGj3njjDS1fvlzbtm1TXl6eqlevrmbNmqlfv346//zzlZZm/uqXLVumBQsWaMWKFdq1a5fy8/OVmZmp9u3bq3///jr77LPDLvP777/XnDlz9PXXX2vnzp0qLCxUjRo11KpVK/3lL39R9+7d5XK5Qi6vsLBQixcv1jvvvKPVq1fr999/V5kyZVSjRg116dJFAwcOVPPmzcOOEwAAAAAAIKAzzpDWrJF++UVq2FCqXNnuiJAELElAPvHEE5oxY4by8vK83t+6dau2bt2qjz76SK1bt9a0adOUlZVlyjp37typ22+/XV999VWJv23btk3btm3TggUL1L59e02ZMkWNGjUKWuaJEyd0//3368033yzxt82bN2vz5s1699131a1bNz300EOqXvQLQpA4R48erW+//dbr/ePHjys3N1fr1q3TzJkzNXz4cI0ZM0YZGRlBywQAAAAAAAhZ1aruf0CMmP4I9gMPPKAnn3zSSD6mpaWpVatWOu2001SlShVjvh9++EHDhg3T9u3bo17nli1bNHDgwBLJx8aNG+v0009Xw4YNjfe+++47DRw4sEQCsLjCwkL9/e9/90o+lipVSm3bttWpp56q8uXLG+8vXbpUV199tQ4cOBCwzL179+rKK6/0WnflypV12mmnqVWrVkaL0MLCQr300ksaN25c0M8OAAAAAAAAOJmpCciFCxdq5syZxnTv3r31v//9T/PmzdOsWbP02WefadKkSSpTpowkac+ePRo1apQKCwsjXueRI0c0cuRI7d6923ivR48e+vDDD/Xee+/plVde0QcffKAFCxbotNNOkyQdPnxYN954o3bs2OG33BdffFGLFy82pi+//HItW7ZMc+bM0RtvvKFly5Zp9OjRRtJw06ZNuvvuuwPGetddd+mXX36R5E5mTpw4UcuWLdOsWbM0b948ffrpp7rwwguN+d9991298sor4W8UAAAAAAAAwCFMS0CeOHFCU6dONaZ79uypxx57TNWqVTPeS09P15AhQ/Tkk08aibsff/xRCxYsiHi9s2bN0qZNm4zpwYMHa8aMGWrQoIHXfE2bNtVLL72kM888U5KUm5ur+++/32eZe/fu1VNPPWVMDx06VBMmTFCFChWM90qXLq2RI0dq0qRJxnuLFi3SihUrfJb52Wef6dNPPzWmp0yZoqFDh3r1g5mZmalHH31UF198sfHe008/rUOHDgXYAgAAAAAAAIBzmZaAXLRokX799VdJ7seux48fr5QU38V369ZNQ4YMMaZfeumliNf72muvGa+zsrI0fvx4vwPCZGRkaMqUKUa/iosXL9b69etLzDd37lwdPnxYkvsR6TvvvNPv+gcOHKgePXoY0/4+y8svv2y87tatm1dLx+ImTJigU045RZK0b98+zZ8/3++8AAAAAAAAgJOZloB87733jNddu3ZV7dq1A87vmYD88ccftXXr1rDXuXnzZq8+JIcPH6709PSAy1SvXl09e/Y0pn21vnz//feN13369FHZsmUDlun5WZYsWaI//vjD6++5ubn6/PPPjemBAwcGLK9s2bLq37+/Mb1w4cKA8wMAAAAAAABOZUoCsrCwUMuXLzemix5zDiQ7O1uZmZnG9Mcffxz2erds2eI1ffrpp4e0XOvWrY3XX3/9tdff9u/frzVr1hjT3bp1C1pely5dlJqaKkk6evSoV7JRkr766ivl5+dLklwuV0jbx3OeFStWKDc3N+gyAAAAAAAAgNOYkoDcvn271wjQngm+QLKzs43Xq1evDnu9xUedrlGjRkjLVa5c2XjtmWyUpLVr13oNitOqVaug5ZUtW1b169c3pot/lpycHON13bp1ValSpaBlNm/e3HhdUFCgH3/8MegyAAAAAAAAgNOYkoDcvHmz17RnMi6QunXrGq+LRocOR9Fo2kWOHz8e0nJF/TtK0h9//KH9+/cb056fJSMjQ7Vq1QqpzECfxbPM4oPj+JOZmanSpUsb08VbewIAAAAAAADxwJQE5O7du08WmJLiNfJ1IJ6PYHuWEariycHirRn9KT6f57o9X3vGF0ygz7Jr166IyiwaiMZXmQAAAAAAAEA8SDOjEM/+CcuVK+d39Oviypcv77OMUDVv3lwVK1Y0HsWeM2eOunTpEnCZgwcP6qOPPvJ678iRI8Zrz9aQFSpUCDmWQJ/FczqcMj3nLf64eSzl5eXZtm4zFPW/6W8aQOKjHgAgURcAoB4AQD1gF1MSkMeOHTNeez42HExGRobxOtTHpz2lpqbq4osv1iuvvCLJPaJ1jx491K9fP5/zFxYWasKECTp06JDX+57r9nxt1mcxY/t4lhFLBQUFWrVqlS3rtsoPP/xgdwgAbEY9AECiLgBAPQCAeiBWTHkE+8SJEycLDLH1oySlpZ3Mf0baym7EiBFeg8rceeedmj59eolWiFu2bNHIkSP17rvvqmzZsl5/84zZis/iOR1OmUUja/sqEwAAAAAAAIgHprSA9EyUFRQUhLycZ1ItPT09onVnZmbqscce01//+lcdO3ZMBQUFevbZZ/Xiiy8qOztbFSpU0K5du7Rp0yZJ7kThtGnTdPPNNxtllCpVytLPEmmZns2AI90+AAAAAAAAgJ1MSUB6jkYdzqPCno8qeyYBw3XGGWdo5syZGj16tLZv3y7JnRD88ccfvearU6eOpkyZosaNG3u9X65cOeO15yPS4XwWz3mLfxYryoyVlJQUtWnTxpZ1myU/P9+rSXXr1q29ksIAEh/1AACJugAA9QAA6oFIrF69OqwGdb6YkoCsVKmS8frw4cMqLCyUy+UKupxnX4yej1FHol27dlq4cKHmz5+vDz/8UDk5OcrNzVXVqlWVlZWlvn376qKLLlKZMmW0YcMGr2U9R6b2jKN4X5GBHD582GcZkvf2CadMM7dPNDwfL08EqampCfeZAISHegCARF0AgHoAAPVArJiyhWvUqGG8zs/P1759+1S1atWgy+3evdt4Xa1atajjyMjI0JAhQzRkyJCA861bt854XalSJa8WkJ6f5ffffw953YE+S6Rles7rmSQFAAAAAAAA4oUpg9A0aNDAa3rr1q0hLbdt2zbjdaNGjcwIJSSeTW2zs7O9/ub5Wf744w/t2bMnpDI9P3Pxz9KwYUPj9S+//BJSebt27dLRo0d9lgEAAAAAAADEC1MSkHXq1PF6RHjNmjUhLZeTk2O8bt68ecTrP3TokDZt2lRi5Gt/lixZYrxu166d199atmzp9fh4KJ/l8OHDXonF4p+lVatWxustW7boyJEjQcv0XK/L5SqRKAUAAAAAAADigSkJSEk6/fTTjdeff/550PlzcnK8Whd26dIlovVefvnl6tixo/r06aN58+YFnX/dunVav369Md2zZ0+vv5cvX14tW7Y0pkP5LF9++aXRGWdqaqo6d+7s9feOHTsa/Qnk5+dr+fLlQcv0XG/Lli29+pEEAAAAAAAA4oVpCchevXoZrz/55BPt3Lkz4Pyvv/668bpx48YRt/Br0qSJ8Xrx4sVB53/mmWe8lu3QoUOJeXr37m28fuedd4K2WPT8LF27dlXFihW9/l6xYkWvBOsbb7wRsLzDhw/rnXfeMaYvuOCCgPMDAAAAAAAATmVqArJ69eqSpOPHj2vcuHHKy8vzOe9nn32mOXPmGNPDhg2LeL19+vQxXn/zzTdatmyZ33nnzp2r9957z5geOXKkz9G6Bw4cqDJlykiS9uzZo0mTJvktc86cOfrss8+M6auuusrnfFdccYXx+pNPPgnYWnPixInau3evJKls2bIaNGiQ33kBAAAAAAAAJzMtAZmRkaExY8YY059//rluuOEGr8FZ8vLyNHv2bI0aNUr5+fmSpGbNmunSSy/1WeY555yj7OxsZWdn65xzzvE5T5cuXbz6cRw9enSJlpD79u3TtGnTdO+99xrvde/eXf369fNZZrVq1XT99dcb0/PmzdNtt93mNSr10aNHNWPGDE2YMMGrzO7du/v9LJ6Pqf/jH//Qv//9bx07dsx4b8+ePRo9erRX68ebbroppBHFAQAAAAAAACdKM7OwSy65RCtXrtSbb74pyZ2E7NWrl7Kzs1W+fHlt3LjRaNknSZUrV9bjjz9u9I8YCZfLpcmTJ2vo0KE6cOCAcnNzdfPNN6tmzZpq0KCBcnNztWnTJh0/ftxYplWrVnrkkUcCljty5EitXr1an376qSRpwYIF+uCDD5Sdna2MjAytX79eBw8eNOavW7eupk6dGrDMadOm6YorrtDWrVuVl5enRx55RM8995yaNm2q48ePa+3atTpx4oQxf8+ePXXddddFsFUAAAAAAAAAZzCtBWSR++67TyNHjlR6erokqaCgQGvWrNHXX3/tlXxs3LixXn31VWVlZUW9ziZNmujll19W/fr1jfd27Nih5cuXKycnx0g+ulwuDRgwQK+++qoqVKgQsMy0tDQ98cQTGjRokPGY9okTJ/TDDz9oxYoVXsnHU089Va+99lrQloo1atTQzJkzvfqdPHjwoFasWKEffvjBK/k4aNAg/etf/1JKiulfEQAAAAAAABAzpraAlNxJvtGjR6t///6aO3euli5dqh07dujIkSOqVKmSWrRooQsuuED9+/dXRkaGaett2bKlFixYoPnz52vRokVas2aNcnNzVbp0adWrV0+dOnXSoEGDwhrsJiMjQw8++KCGDBmi+fPn68svv9TOnTt1/PhxVa1aVW3btlXfvn3Vq1evkBOFtWrV0muvvaZFixbpvffe0/fff689e/YoJSVFNWrUUMeOHTV48GC1b98+wi0BAAAAAAAAOIersLCw0O4g4CwrV65UQUGBJCklJUWnnnqqzRFFJy8vT6tWrTKm27VrF9Vj/wDiD/UAAIm6AAD1AADqgUiYkSfi+V4AAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMq7CwsJCu4OAs3z77bde0ykp8Z+nLigoMF4nwucBED7qAQASdQEA6gEA1APh8txektSxY8ewy0gzKxgkruI7WrxLtM8DIHzUAwAk6gIA1AMAqAdihTQvAAAAAAAAAMvQAhJB0RwZAAAAAAAgOZnRSpQ+IAEAAAAAAABYhqZtAAAAAAAAACxDAhIAAAAAAACAZUhAAgAAAAAAALAMCUgAAAAAAAAAliEBCQAAAAAAAMAyJCABAAAAAAAAWIYEJAAAAAAAAADLkIAEAAAAAAAAYBkSkAAAAAAAAAAsQwISAAAAAAAAgGVIQAIAAAAAAACwDAlIAAAAAAAAAJYhAQkAAAAAAADAMiQgAQAAAAAAAFiGBCQAAAAAAAAAy5CABAAAAAAAAGAZEpAAAAAAAAAALEMCEgAAAAAAAIBlSEACAAAAAAAAsAwJSAAAAAAAAACWIQEJAAAAAAAAwDIkIAEAAAAAAABYhgQkAAAAAAAAAMuk2R0AYKWNGzfqjTfe0PLly7Vt2zbl5eWpevXqatasmfr166fzzz9faWkcBoDdFi5cqFtvvTXs5f73v/+pZs2afv/+/fffa86cOfr666+1c+dOFRYWqkaNGmrVqpX+8pe/qHv37nK5XCGvr7CwUIsXL9Y777yj1atX6/fff1eZMmVUo0YNdenSRQMHDlTz5s3D/hxAMnr88cf19NNPq06dOvr444/DWvaLL77QW2+9pe+++067du1SWlqaatasqVNPPVWXXHKJTjvttLDKO378uN599129//77+umnn7R//36VL19etWrVUvfu3TVw4EDVr18/rDL37t2rOXPm6NNPP9WmTZt0+PBhVa1aVfXr11fv3r3Vv39/VapUKawygUQTST0wadIkzZo1K6z11K9fX4sWLQo4jxXn+MOHD2v+/PlavHix1q5dq4MHD6py5cqqXbu2zj33XF1yySWqXr16WGUC8Wz58uV69913tXLlSu3atUuHDh0yzrennXaaBgwYoJYtW4ZcXjxc61MPnOQqLCwstDsIwApPPPGEZsyYoby8PL/ztG7dWtOmTVNWVlYMIwNQ3KOPPqoZM2aEvZy/BOSJEyd0//3368033wy4fLdu3fTQQw+FdNLfuXOnRo8erW+//dbvPC6XS8OHD9eYMWOUkZER/AMASer777/X5ZdfrhMnToSVeDh06JDGjh2rxYsXB5yvf//+Gj9+vCpUqBC0zI0bN+rWW2/V+vXr/c6Tnp6uv/3tb7rhhhtCupFZvHix7rnnHu3fv9/vPJmZmXrwwQd19tlnBy0PSESR1gOXXXaZVq5cGda6giUgrTjHf/vtt7rtttv022+/+Z2nXLlyuvfeezVgwICg5QHxbNu2bRo7dqy++eaboPNedNFFmjRpksqXL+93nni51qce8EYCEgnpgQce0MyZM43ptLQ0ZWdnq0yZMtq4caP27dtn/K1atWqaPXu26tSpY0eoACSNGDFC//vf/yRJzZo1C/lXwGnTpqlq1ape7xUWFuqWW27xSlCUKlVK2dnZSk1N1fr163Xo0CHjb1lZWXrzzTdVsWJFv+vZu3evhgwZol9++cV4r3LlymrSpImOHDmitWvXev3YcdFFF+mRRx4J6TMAyWbr1q0aOnSodu/eLUkhJx6OHTumYcOGadWqVcZ75cqVU7NmzZSfn69169bp6NGjxt86deqkF198MeANws8//6yhQ4d6XRdkZmaqUaNG2r9/v9avXy/PS+UbbrhBt99+e8A4Fy5cqDFjxig/P994r1GjRsrMzNT27du1fft24/3U1FQ9/fTT6tGjR9DPDySSSOuBwsJCdejQQX/88YckqXPnziElAapXr66HHnrI59+sOMd/++23uvbaa73qpDp16qhOnTravXu3fv75Z6/5J06cqKFDhwb9HEA82rx5s4YOHaq9e/ca76Wnp6tZs2aqUKGCfv/9d23YsMHrfNu8eXPNmjXLZxIyXq71qQdKIgGJhFP8Uc7evXtr/PjxqlatmiT3ryXz5s3TQw89pCNHjkiSWrVqpbfeeius5tkAzHPWWWdp165dkqSZM2eqc+fOEZf1wgsv6OGHHzamL7/8co0ZM8ZoCXX06FH95z//0RNPPGFcSJx//vl68skn/Zb517/+VZ9++qkk9wXOXXfdpUsvvdTowmH37t2aPHmy3nvvPWOZe+65R1dddVXEnwNIROvWrdP111+vnTt3Gu+FmnjwfOzS5XJp1KhRuu6661S6dGlJ0oEDB/TEE0/olVdeMZYZPny47rrrLp/l5efna8CAAcrJyZEkVapUSZMmTVLv3r2N64GtW7fq3nvv1Zdffmks9/TTT+vcc8/1WebWrVvVv39/IznSrFkzTZ061etxsi+//FJ33323kYgsV66c3n//fdWoUSPoNgASQTT1wObNm9W7d29J7gTGypUrlZ6eHlU8Zp/jDx06pD59+hjXNbVq1dJDDz2kM844w5hnzZo1uuuuu7RmzRpJ7sYSs2fPVqtWraL6LIDT5Ofn6+KLL9a6deskuX94u/HGG3XNNdd4JRd37typRx55RP/973+N9y644AI9/vjjJcqMh2t96gHfGIQGCeXEiROaOnWqMd2zZ0899thjRvJRcl+sDBkyRE8++aRRofz4449asGBBzOMF4P7FsejkLEnZ2dlRlfXUU08Z00OHDtWECRO8HsMsXbq0Ro4cqUmTJhnvLVq0SCtWrPBZ5meffWZckEjSlClTNHToUK/+YzMzM/Xoo4/q4osvNt57+umnvX59BZLd22+/rcGDB3slHUK1YcMGvfHGG8b0bbfdpptvvtlIPkpSxYoVdc899+jmm2823ps1a5a2bdvms8w5c+YYyce0tDTNmDFDF1xwgdePkfXq1dPzzz/vdcMwffp0r9aNnh599FEj+VinTh29/PLLJfqy6tKli1577TWjpffhw4cD3hQBiSSaekCScaMuSY0bN446+WjFOf7f//63cV1ToUIF/ec///GqQySpRYsWevXVV9WsWTNJUl5enqZPnx7VZwGcaN68eUbyUXIfY6NGjSrRsrFGjRqaOnWqrrnmGuO9hQsX6rvvvvOaL16u9akHfCMBiYSyaNEi/frrr5LcNxPjx49XSorv3bxbt24aMmSIMf3SSy/FJEYA3jxvJmrXrh3VoAxz587V4cOHJbkfm7jzzjv9zjtw4ECvxx791QEvv/yy8bpbt2668MIL/ZY5YcIEnXLKKZKkffv2af78+eGEDySknTt3auzYsbrzzjuNJw/CNXPmTCPpl5WVpeuuu87vvLfccotxMX/ixAm9+uqrPufzbCk5cOBAdejQwed86enpmjp1qpHo2Lhxo9FlhKedO3fqgw8+MKbHjBlToouIIjVr1tQ999xjTM+bNy9gf5FAvDOjHpBk/GggyZRB38w+xx87dsyrT7obbrhBDRs29Fle+fLl9eCDDxrTy5Yt09q1a8P9CICjvf3228brbt26qX///gHnHzNmjFdXTO+++67X3+PhWp96wD8SkEgonk2iu3btqtq1awec3zMB+eOPP2rr1q2WxQbAN88EZDStHyXp/fffN1736dNHZcuWDTi/Zx2wZMkSo+VSkdzcXH3++efG9MCBAwOWV7ZsWa8Lq4ULF4YUN5ConnnmGV1wwQVej1RlZWVp5MiRIZdRUFDgldgbMGCA3x8XJSklJUWDBw82pj2XLZKTk6ONGzca04MGDQoYQ40aNdSzZ09j2tex/cEHHxiPelWoUMF4TNSf888/30hQ5uXlBR1YB4hXZtQDRTyvGaJNQFpxjl+6dKlyc3MlueuiYINKtG3b1utxS64bkEiOHz/u1eqwb9++QZfJyMhQt27djOnVq1d7/T0ervWpB/wjAYmEUVhYqOXLlxvTZ555ZtBlsrOzlZmZaUyHOvoeAPOYdTOxf/9+r7I8L1786dKli1JTUyW5+4vxvACRpK+++spodeVyuUKqVzznWbFihXEBAiSjF154weti/9JLL9WcOXPUoEGDkMvIycnxGiQmlGPb8zj89ddfvVpNSfLq07FSpUpq06ZNWGV++umnKt6N+hdffGG87ty5c9BHQ1NTU70ex/rkk0+CxgDEIzPqgSJmJiCtOMd71gPNmjXzus8IpUzqASSS7du3q1SpUsZ048aNQ1qucuXKxmvP83+8XOtTD/hHAhIJY/v27Tpw4IAx3bp165CW82xxVfwXFgDWM+txqrVr13olBELpwLls2bKqX7++MV28DvCMrW7duiE9Hu75GQoKCvTjjz8GXQZIdK1bt9bMmTP1wAMP+BzRMhDP4zA9PV1NmzYNukyjRo28+ocMdGy3aNEipEHoPI/t3Nxcr5EyJXk9MhVqB/KeZXINgkQXTT0gmdtntGTNOT7aemD9+vU6duxYSMsBTteoUSOtXLlS33zzjd59912je5RgigZpk+R1XMbLtT71gH9pwWcB4sPmzZu9pj0rmkDq1q1rvC5+MwHAWseOHdPPP/9sTGdnZ+vbb7/Vf//7X33zzTf67bff5HK5lJmZqY4dO6p///4lOnAu4lkHZGRkqFatWiHFULduXSOG4nWAZ5mhttTIzMxU6dKldfToUUnSli1b1LVr15CWBRJN586dNWDAAJ177rkhJfl88TwO69Sp49UpvD8ul0u1a9fWpk2bJLmPQ39lhnpse14vFJVZtOzx48eNPqgjLXPnzp06evSoV+IUSARm1AOSd+vHzMxMVahQQe+//77ef/99ff/999qzZ4/Kli2rWrVqqWvXrrr00kuVlZXltzwrzvGe1zSR1AN5eXnatm1byC3FgHhQoUIFr0FiAjl06JCWLVtmTHseC/FyrU894B8JSCSM3bt3G69TUlK8Rr4OxLNJtGcZAKy3du1ar8ce7rvvPq/HFops2bJFW7Zs0bx589StWzc9/PDDRgfQRTyP31AedfA1b/E6wLOlRThlnnLKKcavt9QrSGZPP/101GV4HkOeHdMHU61aNSMBacaxXbVqVaWmphp1lmeZu3fv9mqVEWqZxa9Vdu/erXr16oW0LBAvzKgHJO8EZFpamvr27VuiAUJubq5yc3OVk5Ojl19+WcOGDdMdd9zh84cLs8/xBQUF2rt3b9hl+qoHEjHxAITihRde8BpZ2rP/5Xi41qceCIxHsJEwPPteKFeuXMAO6j15PgJCX21AbHk+9lBYWGgkHytUqKBWrVqpc+fOqlOnjtcyS5cu1aWXXurV2kiS1wiyof7KKgWuAzynwynTc17PriEAhC/SY9tzXjOO7ZSUFK/O7j2P7eLlV6xYMewYi5cJwJtnAvK3334zko+ZmZnq0KGDTj31VK++4/Lz8/Wf//xHf/3rX3XixIkS5Zl9jj948KDxA4VEPQCE6/vvv9dzzz1nTDds2FDnnHOOMR0P1/rUA4HRAhIJw7OfhHAeX8rIyDBeHz9+3NSYAATmeTMhuW8i7rzzTl1wwQVex+a6des0bdo0LVmyRJK7b5ibbrpJs2fPNubzPH7NqgPMqFcStQ8XIFbi4dgufpx7drofanm+ygFwUvHBpNq0aaOxY8eqU6dOxnsFBQVaunSpJk+ebDwGuXTpUj344IOaOHGi1/LUA4BzbNu2TTfddJPXjwXjxo3zar3M9UD8owUkEoZnZRVq60dJXpVaXl6eqTEBCKx4vytvv/22+vfvX+Ik3KxZMz377LMaOHCg8d6aNWv0xhtvGNNW1AGe0+GUWTTanq8yAYQn0mM70HHoOe05X6RlFi8/1DKLz+fZagLAScePH9e2bduM6d69e+v111/3Sj5K7jqie/fumjNnjlq0aGG8/8Ybb5RIYJp9jqceACLz22+/6eqrr/Z6lHn48OFej19L8XGtTz0QGAlIJAzPg7agoCDk5TwrifT0dFNjAhDYSy+9pM8//1yzZ8/Wyy+/XKJfR08ul0sTJ070eiT7lVdeMV5bUQdEWqbnRQP1ChAdK45DzzLDucj3nNfzh5LiNy2hlll8PuoLwLeMjAytXLlSn3zyiWbOnKmpU6cGPF4qVKig6dOnG8dmYWGh1zWDZH7dEmkCgXoAyWzjxo0aOnSo1w8M3bp10+23315i3ni41qceCIwEJBJGmTJljNfhNFn2bIYdahNpAOY55ZRT1K5du5BGssvIyNBll11mTG/dutUYzc7zsYlw6gDPeYvXAVaUCSA8/9/e/cdkVf5/HH/dEEgIYgzTqVMTUSMrfyy0H9NphpbNzWWhEtnmj1plKSRYLk1LN3NussipW21lmyaGitkSnJSSqDVbLhNUbGYFFCqEtzi4ke8fzNO5brh/gNyfr+Dz8de5zn2di2PrvM913udc13WrXtv2BKS9DyL5P6VLW4dqAbejoKAg9e7dWwkJCc2uuZbExsYaK9PaV9aV2j+2uA/f9LdN4gBuV8ePH1dycrLKysqsfWPGjFFWVlaLCbhbtT9AHPAfCUh0GlFRUda20+k0VqP0xr7Kln3iagC3ppEjRxrlG8O47dev/br2xel0WtvuMcAeV1rTJnEFaD9tvba9XYdtubavX7+uq1evttimvb3WtOlej3gBtC97n6G8vNx4yG/ve3xkZKTxNTRxAPBsz549mj17ti5fvmztGzdunDZt2uTxBUNH6OsTB7wjAYlOo2fPntZ2Q0ODEcy8sc81ERMT0+7nBaB9uQ/TvrF6nT0GXLx40e/2vMWAtrZpr9ujRw+/jwPQ3N13321tt+Y6rKystLbdr8O2XNuXLl0yhmfZ2+zRo4fxwGH/2/6eo8Ph8DoNBYDWc7+v21fRbe97fFBQkFH2t033eMHzCDq7Dz/8UG+++aYxWmDq1KnasGGD14VgOkJfnzjgHQlIdBr9+/c3yhcuXPDrOPt8E/fcc0+7nhOA9uc+RKFr166SzBhw9epVvxMA9ljhHgMGDBhgbd8Y6u3L33//rWvXrrXYBoDWs19Df/zxh18jHBobG/Xnn3+22IZ72d9r271fYW8jNDTUmEaiLW327t272QJcAG6Opz6DFJh7vL0v0pY4EBISYsx1DXQm9fX1Sk9PV1ZWlrH/pZde0gcffGAsFtOSjtLXJw54RgISnUafPn2MT5VPnTrl13H2FfGGDh3a3qcFwIPi4mKtWbNG6enpmjNnjt9vCO0vDaSmh3ZJio+Pl8PhsPb7EwOcTqfRMXCPAffdd5+1ff78edXW1vps0/53HQ6HhgwZ4vMYAJ7Zr8Pa2lr99ttvPo85d+6ckXiwr4br3qb7yrie2K/tqKioZg8Hw4YNu6k23c8RwH/279+v999/X6mpqUpPT/f7OPtDfbdu3RQREWGVA3GPv9k4MGjQoE67+ARub3V1dXrttde0e/dua98dd9xhXdf2PrwnHaWvTxzwjAQkOpXRo0db24cPH/ZZv7i42HhzMmbMmICcF4Dmqqur9cknn2j37t0qLCzUsWPH/Dru4MGD1nZkZKQGDx4sSYqIiFB8fLz1mz8x4MiRI9aQyuDgYCUkJBi/jxo1ynob29DQoKNHj/ps0/534+Pjm80NB6B14uLiFB0dbZWLiop8HmNfbOKuu+5q9nBgv9b/+ecfnTlzxmeb9mvb3t9oqc2jR4/6XE3TPabQBwE8O3XqlLZs2aK9e/cqNzfX7y+fCgsLre1Ro0YZvwXiHm+PAydPntS///7bqjaJA+iMXC6XXn/9dX377bfWvq5du2rTpk169tln/W6no/T1iQOekYBEp5KYmGhtFxQUqKKiwmv9rVu3WtuxsbF8qQT8Dw0bNkzh4eFWOTs72+cx5eXlys3NtcpTpkwx5l2bNGmStZ2bm+vzLaY9BjzyyCPq1q2b8Xu3bt2MTsC2bdu8tud0Oo3zmzx5stf6AHxzOBx64oknrPL27du9JveuX7+u7du3W+VJkyY1+7Ji8ODBxjAsX9d2WVmZ8eD05JNPNqszceJEBQcHS2qayyk/P99rm/v27dOlS5ckNX0FYu/DADDZH+gbGxu1Y8cOn8fk5eXp3LlzVnnq1KnG74G4xz/88MOKjIyU1DTc1Nd5/vzzz/r111+tckuxBejo1q5dq4KCAqscHR2tLVu26LHHHmt1Wx2hr08c8IwEJDqVxMREa7L6uro6LVmyRC6Xq8W6hw4dMhIeKSkp/5NzBNCka9eueuqpp6zy999/r127dnmsf+XKFS1cuNDqaHTp0kVz5swx6jzzzDPWynmVlZVauXKlx/ays7N16NAhq/zCCy+0WC85OdnaLigoUE5Ojsc23333XSuhEB4erunTp3usC8B/s2bNspKIxcXF+uijjzzWzczMtL5oDAoK8nh/t1/b27Zt8/glRX19vTIyMlRfXy+padqHiRMnNqvXq1cvPf7441Z51apVHl+ElpWVafXq1VY5MTHRmAgfgCkhIcGYZ23z5s06e/asx/rnzp3TsmXLrPLAgQNbTPK39z0+LCzM2J+VlaWSkpIW26upqdHSpUut8vDhw/Xggw96/PtAR/Tdd9/p008/tcpRUVH67LPPjKHPrdER+vrEAc9IQKJTCQ0NVWpqqlU+fPiw5s2bZ8z/4nK5tH37di1YsEANDQ2Smr6EaM3n3wDaxxtvvGG9IZSkpUuXKisrS06n06j3ww8/aObMmfrpp5+sfampqerXr59RLyYmRnPnzrXKOTk5SktLM+aXvHbtmjZu3Kjly5db+8aOHauxY8e2eI4TJkwwhlu+88472rRpkzG/XGVlpRYtWmS8EX3llVeMYaMA2m7o0KGaNm2aVc7KytLq1atVU1Nj7aupqdGqVau0ceNGa19SUpIGDRrUYptJSUnWV5Aul0uvvvqqsrOzjReXFy5c0Ny5c40hWYsXL/a4WMyiRYvUpUsXSVJFRYVmzZrVbHqJo0ePKjk52VqVMzw83Oi7AGjO4XDo7bfftspOp1PPP/+89u7da3wRXV9fr507d2rmzJm6fPmypKYFHdasWdPiAheBuMfPnz/f+s3pdOrFF19Ufn6+sYBWcXGxUlJSrJclwcHBWrJkSav+mwC3uoaGBq1atcr6f9/hcGjdunWKi4trc5sdpa9PHGiZo9GfpQSBDmbZsmX64osvrHJQUJCGDBmiiIgIlZaWWm8tJKl79+7aunWrBg4c+P9xqsBt78iRI5o/f75xkw8LC9PQoUMVGhqq33//XeXl5cYxc+bM8TgJ/Y1Egn24ZEhIiIYMGaLQ0FCdOXPGSFr07dtX2dnZXpOFFRUVSk5ONl5mREZGKi4uTnV1dSopKbG+jpKk8ePHa8OGDcbwcAD/ycnJ0VtvvSWpaRG5AwcO+DzmypUrmj17tn755Rdr35133mlNn1JSUmIMxbr//vv1+eefKywszGObp0+fVkpKiqqqqqx90dHRio2NVU1NjU6fPm0kN5KTk42vqlqSm5urjIwM47h+/fqpV69eKisrM+JIUFCQ1q1bZ3wNDtwu2hIHNm/erHXr1hn7unfvrri4OLlcLpWWlhrzrYWEhGj9+vUtfrV8QyDu8UVFRXr55ZeNlXJ79eqlfv366eLFiyotLTXq31iQD+hM9u7da7xgCw8P18iRI1vVRkxMjNasWWPs6yh9feJAcyQg0Sk1NjZq/fr1+vjjj41A4S42NlaZmZk39RYGwM07efKkFi9e3OxG7C4qKkppaWlKSkryWq+urk4rVqzQl19+KW+3uREjRigzM9OvoY9lZWVKTU3V8ePHvdabPn26li9f7vELKQBtSzxITV85pqen+6w/fvx4rV271vjC2pOSkhKlpaV5XYgmODhY8+bN08KFC/1aqfObb77R8uXLjcSmu6ioKL333nvGfFbA7aStceCrr77SypUrVV1d7bVebGysVqxYoYceeshnm4G4xx87dkwZGRn666+/PNYJCwtTenq6MQQU6CwWLFigvLy8m2rDU2zoKH194oCJBCQ6tdLSUu3YsUOFhYUqLy9XbW2toqKidO+992ry5MmaOnUqSQLgFtHQ0KD9+/crLy9PJ06cUGVlpVwul2JiYjRgwABNmDBBU6ZMadWw5hMnTmjnzp06cuSIKioqVFdXp+joaD3wwAN6+umnlZiY2KqvFBsbG5Wfn6+vv/7aOsegoCD17NlTo0aN0nPPPafhw4e34V8P3F7amni4oaioSLm5ufrxxx9VWVmphoYGxcTEaMSIEZo2bVqrJ7Z3uVzas2eP9u3bp1OnTunixYsKCQlR3759NXr0aM2YMcPjUG5PqqqqlJ2drQMHDuj8+fOqrq5WeHi4YmNjNW7cOCUlJTFNA25rNxMHrly5ol27dungwYMqLi5WVVWVgoOD1aNHD8XHxysxMVETJ05sVT8/EPf42tpa5eTkKD8/X2fPnlVVVZW6dOmi/v3769FHH9WMGTPUp0+fVrUJdBRTpkzxOlerP3zFho7Q1ycO/IcEJAAAAAAAAICAYXIqAAAAAAAAAAFDAhIAAAAAAABAwJCABAAAAAAAABAwJCABAAAAAAAABAwJSAAAAAAAAAABQwISAAAAAAAAQMCQgAQAAAAAAAAQMCQgAQAAAAAAAAQMCUgAAAAAAAAAAUMCEgAAAAAAAEDAkIAEAAAAAAAAEDAkIAEAAAAAAAAEDAlIAAAAAAAAAAFDAhIAAAAAAABAwJCABAAAAAAAABAwJCABAAAAAAAABAwJSAAAAAAAAAABQwISAAAAAAAAQMCQgAQAAAAAAAAQMCQgAQAAAAAAAAQMCUgAAAAAAAAAAfN/cGh1t95OpsoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "deadtime_fun = interp1d(zh_f, zh_p, bounds_error=False,fill_value=\"extrapolate\")\n", + "\n", + "plt.figure()\n", + "plt.plot(pds.freq, pds.power / deadtime_fun(pds.freq), color='r', zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## New dead time model function\n", + "\n", + "Stingray versions >2.0 introduce a new formulation of the dead time modeling, which includes:\n", + "\n", + "1) Using detected rates, not incident (which means, the rates that the user can actually measure!)\n", + "2) Allowing for background rates (e.g. the events which produce dead time but get filtered away during source selection or other filtering processes)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mnon_paralyzable_dead_time_model\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mfreqs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mdead_time\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mrate\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mbin_time\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mlimit_k\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m200\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mbackground_rate\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mn_approx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Calculate the dead-time-modified power spectrum.\n", + "\n", + "Parameters\n", + "----------\n", + "freqs : array of floats\n", + " Frequency array\n", + "dead_time : float\n", + " Dead time\n", + "rate : float\n", + " Detected source count rate\n", + "\n", + "Other Parameters\n", + "----------------\n", + "bin_time : float\n", + " Bin time of the light curve\n", + "limit_k : int, default 200\n", + " Limit to this value the number of terms in the inner loops of\n", + " calculations. Check the plots returned by the `check_B` and\n", + " `check_A` functions to test that this number is adequate.\n", + "background_rate : float, default 0\n", + " Detected background count rate. This is important to estimate when deadtime is given by the\n", + " combination of the source counts and background counts (e.g. in an imaging X-ray detector).\n", + "n_approx : int, default None\n", + " Number of bins to calculate the model power spectrum. If None, it will use the size of\n", + " the input frequency array. Relatively simple models (e.g., low count rates compared to\n", + " dead time) can use a smaller number of bins to speed up the calculation, and the final\n", + " power values will be interpolated.\n", + "\n", + "Returns\n", + "-------\n", + "power : array of floats\n", + " Power spectrum\n", + "\u001b[0;31mFile:\u001b[0m ~/devel/StingraySoftware/stingray/stingray/deadtime/model.py\n", + "\u001b[0;31mType:\u001b[0m function" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.deadtime.model import non_paralyzable_dead_time_model\n", + "non_paralyzable_dead_time_model?" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "10000it [00:00, 25078.61it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPYAAAP9CAYAAAAO5OMUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3gUVdsG8Hs32fRKCSWUBKR3CKGpVOmIgPjCB0SkKEiVjiAoXTqiIgJKkypSpXcSOgSQQCgJ6ZX0vvX7I2bcyW6STbJpcP+uy8spZ2bO7O6Q5NnnnEei0Wg0ICIiIiIiIiIiojJFWtIdICIiIiIiIiIiovxjYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMMi3uC86dOxd//fUXAGD58uUYOHCgUc+fkpKCw4cP4/z583j27BmSkpLg4OCAqlWromvXrhgwYACcnJyMek0iIiIiIiIiIqLiVqyBvStXrghBvaJw7949TJ8+HeHh4aLt0dHRiI6OxsOHD7F582bMnz/f6AFFIiIiIiIiIiKi4lRsgb2kpCR88803RXb+e/fuYdSoUUhPTxe2OTs7w9nZGdHR0Xj16hWAzIy+uXPnIiMjA0OHDi2y/hARERERERERERWlYgvsLVu2DJGRkUVy7uTkZEydOlUI6lWpUgXLly9Hu3bthDZPnz7F3Llz8fTpUwDAkiVL0LRpUzRq1KhI+kRERERERERERFSUiqV4RlEPwd28eTOioqIAALa2tti+fbsoqAcADRo0wO7du1G3bl0AgFKpxJo1a4qsT0REREREREREREWpyDP2EhMTMX/+fACATCaDqakp0tLSjHb+jIwM7N+/X1gfO3YsXFxc9La1sbHB0qVLMXjwYACAl5cXnj17hnr16hmtP7m5d++eaF0qZVFiIiIiIiIiIqK3lVqtFq23atUqX8cXeWBv2bJlQjbd559/jiNHjiA0NNRo5/f09ERCQgKAzEBZXkUxsobf+vj4AABOnz5dbIG97LK/eURERERERERERIYq0pSxy5cv4/DhwwCAunXrYty4cUa/xo0bN4TlunXromLFinke06FDB2H50qVLRu8TERERERERERFRUSuyjL3ExEShCq6pqSmWL18OMzMzo1/n2bNnwrKhhTDq168vLL948QIZGRkwNzc3et/y8iYMxdXOOnwT7oeoJPF5IjIePk9ExsFnich4+DwRGc+b9DwVdjRnkQX2lixZIgzBHT16NBo3blwk13n16pWwXLNmTYOOqVatmrCsVCoREhKC2rVrG71v2UmlUuENk0qlaNGiRZFfsygplUo8fPhQWG/SpAlMTYut0DLRG4XPE5Hx8HkiMg4+S0TGw+eJyHjetOfJ29tbFCvKryIJa168eBFHjx4FANSuXRsTJ04sistArVYjNjZWWDdkGC4AVKhQQbQeHR1t1H4REREREREREREVNaOHNBMSErBgwQIAmZHGohqCCwBJSUlQqVTCup2dnUHH2draitYTExON2i9DKZXKErmusWi/9vrWichwfJ6IjIfPE5Fx8FkiMh4+T0TGw+dJzOiBvSVLlggZcCNHjkSzZs2MfQlBRkaGaN3QefKyBxqzn6c4qNVqUerom+Dx48cl3QWiNwafJyLj4fNEZBx8loiMh88TkfG87c+TUYfiXrhwAceOHQMAuLi4YMqUKcY8vY7sGW8mJiYGHZe93dse3SUiIiIiIiIiorLHaIG9+Ph4LFy4EAAgkUiwdOlSWFhYGOv0ehU0QJe9nUwmM1qfiIiIiIiIiIiIioPRhuJqD8EdPnw43NzcjHXqHGUPHBo6pLagQ3iNSSqVokmTJsV+XWNSqVSilNfGjRsbnDVJRGJ8noiMh88TkXHwWSIyHj5PRMbzpj1P//zzj1AVtyCMEtg7f/48jh8/DgCoXr06pk2bZozT5snW1hZSqVR4AZKTkw06Lns7BwcHY3fNIGW5HLM+JiYmb9w9EZUUPk9ExsPnicg4+CwRGQ+fJyLjedufp0IPxY2Pj8e3334LIHMI7pIlS2BlZVXY0xpEKpWiYsWKwnpMTIxBx71+/Vq0XqFCBaP2i4iIiIiIiIiIqKgVOqS5f/9+YQiupaUltmzZgi1btuTYXjuo9vvvv+Pvv/8W1r///vt8B9lq1qyJyMhIAEBQUJBBxwQHBwvLMpkMzs7O+bomERERERERERFRSSt0YE8ulwvLqamp8PT0NPjY58+f4/nz58J6enp6vq/fuHFj3L59GwDg6+tr0DFPnz4Vlt955x0WzyAiIiIiIiIiojLHaFVxS4q7u7uw7OPjg8TExDyPuX79urDctm3bIukXERERERERERFRUSp0xt6kSZMwadIkg9t36dIFoaGhAIDly5dj4MCBhbp+u3btYGtri6SkJCgUCvz5558YNWpUju0fPnyIJ0+eCOu9evUq1PWJiIiIiIiIiIhKQpkvG2JhYYGPP/4Yv//+OwDgxx9/RIcOHVCvXj2dtklJSZg3b56w3rx5czRr1qzY+kpEREREVFppNBqo1WphXaVSifarVCpIJJLi7hbRG4HPE5HxlOTzJJVKS92zW6oDe3PmzMHhw4eF9QsXLqBatWo67T7//HMcPXoUsbGxSElJwciRI7Fo0SJ069ZNeMF9fX0xZ84cvHjxAkBmOeQ5c+YUz40QEREREZUyGo0GqampSExMRHJyMpRKpc5+bX5+fqXujxmisoLPE5HxlPTzZGpqChsbG9jZ2cHKyqrEn+VSHdgzVLly5bB27VqMGzcO6enpiI2NxcSJE1G5cmXUqFEDMTEx8PPzEx0zffp0tGjRooR6TERERERUcuRyOYKCgqBQKHJtZ2r6Rvy5QFQq8HkiMp6SfJ6USiXi4+MRHx8PmUyGGjVqwMzMrMT6U+aLZ2Rp164dtmzZgqpVqwrbIiIicPv2bVFQz8LCAgsWLMDo0aNLoptERERERCXK0KCeRCKBqamp8F9JZyQQlWV8noiMpzQ9TwqFAkFBQZDL5SXWhzfqKwN3d3ecPHkSf/31F86dO4eXL18iPj4e5ubmqFmzJjp06IAhQ4bA2dm5pLtKRERERFTsNBqNTlDP2tpaGE5kYmIiapuamiqsl4bhRkRlFZ8nIuMpyedJpVIJ01ikpKQA+C+4V7t27RJ5ros9sHfx4kWD265YsQIrVqzI1/ktLS0xbNgwDBs2LL9dIyIiIiJ6o6WmpoqCepUqVUK5cuX0ttVoNKJAn4mJCQMRRAXE54nIeEryeTIxMYGZmRkcHBwQGxuLyMhIAJnBvdTUVFhbWxdLP7S9MUNxiYiIiIgod4mJicKytbV1jkE9IiIiyl25cuVEgbykpKQS6QcDe0REREREb4nk5GRh2c7OrgR7QkREVPZp/yxlYI+IiIiIiIqMRqOBUqkU1q2srEqwN0RERGWf9s9SpVIJjUZT7H1gYI+IiIiI6C2gVqtF69rzExEREVH+Zf9Zmv1nbXFgYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiKgMYmCPiIiIiIiIiIioDGJgj4iIiIiIiIiIqAxiYI+IiIiIiIiIiIqdQqEo6S6UeaYl3QEiIiIiIiIyzF9//YW5c+fm2U4qlcLMzAy2traoVq0aWrRoga5du8LNzS3HYzZu3Igff/wxz/PKZDLY2tqiUqVKaNSoEXr06IG2bdvC1DT/f14+efIEFy9exI0bNxAeHo6YmBhIpVI4OjrCyckJ7u7ueO+999C6det8n7u4JCYmYtu2bbh48SLCw8ORlpYGGxsbuLq6Yt++fSXdPaJSSa1WY//+/bh+/To2btxY0t0p0xjYIyIiIiIiesOo1Wqkp6cjPT0d0dHR8Pb2xm+//YZ3330Xq1evhqOjY4HPm5GRgYyMDLx+/Ro+Pj44cOAAatasiUWLFqFt27YGnScoKAgrVqzAhQsX9O5PTU1FaGgovL29sXnzZrRo0QJz5sxB8+bNC9TvopKQkIBBgwYhODhYtD0+Ph5KpbKEekVUukVGRmL8+PHw8fGBu7t7SXenzGNgj4iIiIiIqAyyt7fHF198oXefRqOBXC5HXFwcbty4gRcvXgAAPD09MXz4cBw6dAgWFhY5nrt69eoYOnSoznaVSoX09HS8fv0az58/x8OHD6FWqxEYGIhPP/0U3377rd7jtL169QrDhw/H69evAQBmZmZwd3dH3bp1YWdnB4lEgtjYWPj4+OD+/ftQq9Xw9vbG8OHD8dNPP6Fjx46GvkRFbvv27UJQTyaToWfPnqhVqxbkcjlcXFxKtnNEpVRAQAB8fHxKuhtvDAb2iIiIiIiIyiAbGxuMHj06z3YajQbbtm3DqlWrAAAvX77ETz/9hOnTp+d4TJUqVQw696tXr/DNN9/gzp07AIBFixbB3t4evXv31tteLpfjiy++EIJ63bt3x7fffovy5cvrbR8YGIi5c+fi3r17UCgUmDhxIo4cOYLatWvn2bfi4OvrKyyPHz8eEyZMKMHeENHbiMUziIiIiIiI3mASiQRjxoxBv379hG0HDhyAXC4v9LldXV3x+++/4/333weQOVR3wYIFiI+P19v+xIkTCAwMBAA0adIE69evzzGoBwA1a9bEb7/9hnfeeQdAZmDw559/LnS/jSUlJUVYbtq0aQn2hIjeVgzsERERERERvQWGDx8uLMfHxxttKJxMJsPq1avh5OQEAEhKSsLmzZv1tvXy8hKWP/roI5iYmOR5fgsLC0ycOFFYv3LlCjQaTSF7bRza/TAzMyvBnhDR24pDcYmIiIiIiN4CWVlvWSIiIox2bnt7e3z++edYsmQJAGDv3r346quvdIJd2pl8qampBp//3XffhYmJCWxsbODg4ICUlBTY2NgUqs+xsbE4ePAgPD094efnh8TERFhbW8PZ2Rlt2rTB4MGDUatWLZ3jcqpM7OHhISy7u7tj165d+e5TYGAgDh06hBs3buDVq1dIS0uDnZ0dKleuDHd3d3z44Ydo1KhRnudRqVQ4f/48Tp8+jUePHuH169eQSCSoUKECmjVrhp49e6Jbt26QSCR6jw8JCUHXrl0BAM7Ozrh48WKu15szZw4OHz4MAFi+fDkGDhwo2t+lSxeEhoaiTp06OHHiBO7evYt169bh8ePHsLKyQu3atfHxxx/jo48+Eh2nVCpx5swZnDp1Co8fP8br169hamqKSpUqoWXLlvj444/RqlWrPF+PR48e4ciRI7h16xYiIyORkZGBcuXKoWHDhujWrRs+/PBDyGSyPM9jKKVSiePHj+P8+fPw8fFBbGwsZDIZKlWqBHd3dwwcOFBvhmdKSgreffdd4dk4duwY6tWrl+u1QkND0bVrV2g0GtjZ2cHT0xPm5uY67Qr7GmT1o1OnTti8eTPS0tJw4MABnD17FgEBAUhISICjoyOaNm2KDz/8EN27d9f5fOmrvH379m3h3Pqem6ioKBw6dAienp54+fIlkpOTYWNjgwoVKqBFixb44IMPhIzhtxUDe0RERKXY08gk+MWk4j3XcrC3NN4vnERE9PbJ/ke2qalx/xzs168fli1bBrVajbS0NNy9exft27cXtalcubKwfPjwYQwfPhxWVlZ5ntvW1hY+Pj45BqLya9euXVizZg3S0tJE2+Pj44Vsxh07dmDYsGGYPXu20V8rfbZv347Vq1dDoVCItsfGxiI2NhZPnjzB9u3b0b9/fyxdujTHIMzTp08xa9YsPH/+XGdfcHAwgoODceLECTRq1Ajr1q1DzZo1i+R+cvLw4UN89tlnwlDw9PR0xMbG6lRUfvToEWbOnImAgADRdoVCgYCAAAQEBOCvv/7CwIEDsWjRIr2vR2pqKr755hucOHFCZ19ERAQiIiJw8eJF/PLLL1i3bh0aN25c6Pt79OgRZsyYIQw5z5KRkYHk5GT4+flh79696Nu3LxYvXiz6/FtbW6NHjx5CkPTEiRN5BvaOHTsmZI726tVLJ6hXFK/BkydPMHnyZJ1q0FFRUTh//jzOnz+Ptm3b4ueff4a1tXWe58vJyZMnMW/ePJ0vAbKe05cvX+LgwYN49913sWHDhkIH+8sqBvaIiIhKqd9uB+GLPx9BpdagorUZvCa9i3cqFPyXIyIiers9ffpUtF6jRg2jnt/BwQENGjQQhvh6eXnpBPY6d+6MP//8EwDg7++PYcOGYcKECejYsWOeGVPGCuqtWrUKW7duFdYrV66MTp06oUqVKkhISICnpyeeP38OlUqFnTt3wt/fH5s3bxaCe02aNMGsWbMAZGYmZgU3hgwZIrymVapUyVefTp48ieXLlwPIvM927dqhSZMmsLGxwevXr3H37l3hdT169ChsbGywYMECnfM8evQIn376qRAIMTMzw/vvv4/69etDo9Hg6dOnuHbtGhQKBXx8fDB48GDs3LkT9evXz1d/C0qhUGDWrFl653fs06ePsHz//n2MGjVKCLyam5ujY8eOqFu3LjIyMnD//n3cu3cPQGYGZUZGBtauXSs6X2pqKoYPHy68blKpFO3bt0eTJk1gbm6OkJAQXL58Ga9fv0ZQUBCGDRuGbdu2wc3NrcD3d+PGDYwbNw7p6ekAAEdHR3Tu3BnVq1cXXnMvLy8olUphvsk//vhDFIwbOHCgKLA3bdq0XD/7x44dEx1b1K9BWFgYxowZg5iYGDg4OKBLly6oUaMGEhMTcfXqVbx8+RIAcPPmTSxevBgrVqwQju3QoQOsrKwQFBSEffv2ARBX4NZ+bry9vTFjxgyoVCoAQIsWLdCyZUs4ODggNjYWDx8+xP379wFkVvuePn16jlMAvOkY2CMiIiqFNBoNvjv7DCp15jew0SlyrLz0Er8OblbCPSOit41CpcaKywE45xeLVLmqpLtTaliZmaB3g0pY8EFdyEzKxtTlO3bsEJarVq2aZyZQQbi6ugpBhOyZVgDQtWtXtGrVSgjKPHnyBBMmTICNjQ3at28PNzc3tGrVCvXr1y+SLLmTJ0+KgnpffPEFJk6cKBoyPHv2bBw+fBgLFiyAXC6Hp6cn1qxZg9mzZwMA6tSpgzp16gAALl++LAT2evfujTZt2hSoXz/88AOAzMDLxo0b0a1bN502O3fuxNKlSwEA+/fvx5dffokKFSoI+5OTkzF+/HghqNe4cWOsX78e1atXF53n1atXmDx5Mp4/f46EhARMmDABx44dK1RmlaGyPhONGjXC/Pnz0aBBA4SFheHatWtwdXUFkJnZNn36dCGo16RJE2zYsAHOzs6icx0/fhyzZs2CWq3G33//jQ8//BCdOnUS9i9cuFD4LNapUwfr16/XGY6enp6OVatWYffu3UhPT8fUqVPx999/w97ePt/3FhUVhWnTpglBvf/7v//DrFmzYGlpKWrn5+eHKVOm4MWLF/jnn3+wdOlSLFq0SNjfunVrVK9eHcHBwQgLC8O9e/dyDLT9888/8Pf3BwDUqlULzZs3F+0vitcgKxO0f//+WLhwoehzM2vWLKxcuRK//fYbgMwg9IwZM4TPacuWLdGyZUvcunVLCOzlVIH7xx9/FIJ68+fPx4gRI4R9Go0GqampuHDhAubMmQOVSoXLly/Dx8fHoKHqbxoG9oiIiEqh5AwVguPTRdu23gpiYI+Iit3yy6+w6mpg3g3fQt6hiQCAxT2LJ9upoNLT07FmzRqcPXtW2Pb5558XybW0K9zGxcXp7JdIJNi0aRO++OILeHt7C9uTk5Nx9uxZoY9WVlZo3rw52rRpg06dOhklo0ypVGLdunXC+qeffopp06bpbTtgwADIZDJMnz4dQObQXQ8Pj3xn4hkiISEBr169ApAZfNEX1AMy5/A7e/Ys7ty5A4lEgkePHqFLly7C/t9//x2vX78GkDkv3vbt22Fra6tzHldXV+zYsQP9+/dHVFQUQkJC8McffxTZZyI7e3t7/Pbbb3BwcAAA1K5dG7Vr1xb2Hzt2DGFhYQAysym3bdumN8jUr18/vHjxQsjS2r17txDYe/r0qZDJ5uDggO3bt4uCoFksLCzwzTffIDQ0FJcuXUJ0dDR27dolKtZiqK1btyI2NhYA0LdvXyxcuFBvu9q1a+PXX39F7969kZaWhj///BNjx44VArASiQQfffQRNm7cKLweOQX2tLP1BgwYINpXlK9BixYtsGLFCkil4i81JBIJZsyYgTNnziA0NBRqtRo3btwQVeQ21IMHDwAAdnZ2osI/2rp27YpevXrhxIkTMDExwYMHD97KwF7Z+GqJiIjoLROdkqF3e6pcWcw9IaK33d2QxJLuQql2K1A3eFVckpOTsW3bNr3//frrr1i7di0mTpyIDh06YOfOncJxnTt3xpAhQ4qkT9rZSfoCe0BmYGfPnj2YP38+KlasqLdNamoqrl+/jnXr1qF///7o06cPjh8/Xqi+PXjwAEFBQQAAGxsbTJkyJdf2ffv2RcuWLQFkDiE9dOhQoa6fE+3KwKGhoYiMjMyx7cqVK3Hx4kWdoB6QmR2VZfLkyXqDelnKlSuHyZMnC+v79+8vSNcLpF+/fkJQTx/tAPTo0aNzzZ77v//7P9SuXRudO3dGw4YNhe1Z2WAA8L///U9vQEvbhAkThGXt19FQSqVSGGIOIM/AYNWqVYVhsyqVSuezPWDAAGH47ZkzZ3TmXcw67u+//waQmenZv39/0f6ifA3+7//+Tyeol8XExATu7u7CelRUVK7nyklWxm5ycjKePXuWY7vJkyfj7NmzePToEYYNG1aga5V1zNgjIiIqZVKVcpwOfg7YxALp1oDyv3lX/glPQpuajiXYOyJ627hVs8Ml/5ILXpV2JflvckJCAlauXGlwe6lUiiFDhmDu3LlGm68uO+2503L6wz9r34gRIzB06FDcunULly5dwvXr1+Hn56e3/cuXLzFjxgycOHECa9euLdCw0Rs3bgjLHTt2NOgcffv2FebxunXrVoEyufJiY2ODRo0awcfHB8nJyRg0aBA8PDyEufG0Va1aVe85QkJChCHBJiYm6N69e57X7dWrFxYsWAC1Wo2QkBCEhobqDHctCrlVsVUoFKL3KXvwMrvKlSvj5MmTOttv374tLBuSwdWwYUNYWVkhNTUVQUFBiIqKgpOTU57HZfHx8UFKSgqAzGzTrGHFuWnVqhX++OMPABCGpmfJqsx88+ZNxMfH4+rVq0KV4iyenp6IiYkBALRv3x6VKlUS7S/K1yD7kN/sypUrJyxnDU3OL3d3d5w9exZqtRrDhw/HsGHD0LVrVzRu3Fj071eFChVgZWVVZP+mlQUM7BEREZWw59HJ+MkrACZSCSpUe401T88jXp4GSU1AowGQ4ASE1wHUpvAOTWBgj4iK1dxOrpBAwjn2stGeY680MjU1hbW1Nezt7fHOO++gWbNm+PDDD3MMDBlLYuJ/GZ65ZYxlMTU1RYcOHdChQwcAmRVg7927hzt37uDWrVt49uyZUPETyJzTbsqUKaJ58gyVla0HwOChvQ0aNBCWs1cANaZZs2ZhzJgxUCgUiI6Oxpo1a7BmzRpUqFAB7dq1Q4cOHfDuu+/mmOGo3beaNWsaVGnYxsYGNWrUEOa9CwoKKpbAXrVq1XLcFxMTI2SnWVlZ5do2JyqVShjaDECUmWiosLCwfAX2Xrx4ISynpqbme/7K0NBQnW0DBgzAzZs3AWTOJ5g9sJdb0Yyifg3yyv7TztzVfn7zY8qUKbh+/TqSk5ORlJSEX375Bb/88gvs7e3h7u6O1q1bo3379kX+b1pZwMAeERFRCYpKykDnTdcRnpgBOL2CJCZItF8iAeAQBY15KhDQDA/COCSOiIqXzESKb7rWwvJ+jd/qjIjSyNnZGRcvXizpbohkZRABef/xr0+5cuXwwQcf4IMPPgAAREZGYs+ePdi1a5eQEXXt2jWcOXMGPXr0yNe54+PjhWVHR8O+JNNup328sbVt2xa//vorFixYIArSvX79GsePH8fx48chkUjQokULDB48GB999JEoI1J72LOh95bVNiuwV5T3py23obVZcwTm1S43CQkJBQ4mZcnva1HY107f8T169MCiRYuQkpKCS5cuITk5GTY2NgCAlJQUXLhwAUDmHHTZ52Us6tfAkMBxloL245133sHOnTsxb948UUXvhIQEnDt3DufOnQMA1KtXD4MGDcLQoUNFRXDeJgzsERERlaCFZ59lBvVsXkNSMSjHdhLLZGiqvMCL6Eo5tiEiIippjx8/FpaNMYl9pUqV8NVXX6Ffv34YMWKEUJzg+PHj+Q7sFSTAoFarheWiDmy3b98eZ86cgaenJ86fP49r164hPDxc2K/RaHD//n3cv38fBw4cwNatW4VAT0FlVR0Fch86nZf8vLbacwpmp1QWfi7h7Of4/PPPc53TTx9DhtJq034dnZ2d8z3Xm7m5uc42S0tL9OrVC3/++SfS09Nx7tw5oUDG2bNnharBvXr10jm+JF6DotCoUSMcPnwYd+/exZkzZ3Dt2jWdatvPnj3DsmXLsHfvXuzYsUNnSPLbgIE9IiKiEhKbKsfmG4GAVAlUfZ5ne4lDFEJSQ4qhZ0RERPkXGBiI6OhoYT37PFzbt2/HsWPHEBMTg48++ghfffWVwed+5513MGbMGGFOwZzm4suNdgZYToU9stNuZ2dnl+9r5peJiQk6duyIjh07Ash8TW/fvg0vLy9cvXpVyFr09vbGihUrsGTJEgAFu7fsbXO6P0OCdhkZ+ot+5Zd2H7SHdedH9ky/nj17FnmlVO1+W1tbY/To0UY574ABA4SiHCdOnBACe7kNwwVK5jUoKhKJBK1bt0br1q0BABEREbh16xauXbuGa9euCZmFr169wpw5c/D777+XYG9LBqviEhERlZBTvv9WCSsXBolMXO1MowE0at0f08FmT6DSyh4gIiIqLQ4cOCAsV6xYUVQZE8gc2ufj44OIiAhh7rD80J63rCDZZdoZSL6+vgYd4+PjIyzXqFEj39csrJo1a2Lw4MFYv349vLy88NFHHwn7jh07JmQUuri4CNsDAwORmpqa57kTExMREvLfF4ba96edVaddECUnBa18ml3VqlUhk8kAZA431c5YzMmaNWuwePFi/P7774iJiYG5ubkoa0t7/rvcZGWDFkTNmjWF5cDAQINes/T09DzfJzc3N+G9vXnzJhISEhAdHS08P7Vq1dJbyKIkXoPiUrlyZXz44Yf47rvvcObMGXz22WfCvuvXr+daVfpNxcAeERFRCVCrNXgWlQxIVEB5PVl4IQ2A522hUcpEmzNMk3Eo8FEx9ZKIiMgwr1+/xsGDB4X1jz/+WGfIZVbGDQA8ePAAjx7l7+eZ9hC8unXzX7TEzc1NWL5y5YqQ/ZabU6dOCcu5VXMtjKNHj2LUqFHo1KkTNm3alGM7S0tLzJ07V1jPyMgQMu6cnZ2FIgIqlQpnz57N87qnTp0SsvEqV64sKpxhYWEhLCckJIiGJGcnl8tFc6AVhoWFBRo2bCisX7lyJdf26enp2L17N3bv3o0VK1YIw6W1g8qnT5/O87q+vr5o164dmjVrht69e+c7wNWiRQshIJmRkYHLly/necy6devQokULtG3bFgsXLsyxXVYwV6lU4tKlSzh9+rTwfmRl8OlT3K9BfuQ1rP3q1av4/PPP0a1bNyxYsCDHdjKZDBMmTBAV6mFgj4iIiIpUukKFkXu9IZt9AkvOvwDsoyAxzZatl2oHJFYEVDIgykXnHOt9rhZTb4mIiPKmUCgwY8YMJCQkAMjM1hszZoxOu3bt2okyy2bOnGlwpldcXBx+++03Yb1///757mfr1q2FrLTk5GRs2LAh1/YnT56Et7c3gMxARL9+/fJ9TUPI5XJ4eXkhPDwcf//9t1AVVh/t4iTm5uaiQhmDBg0Sln/44QckJSXleJ74+Hj89NNPwvqHH34o2u/g4CAUSFAoFLlmWG7fvt2gDEFDab+327ZtE+aS0+fPP/8Uru3m5oZy5coBEL8Wly9fhpeXV47n0Gg0WLVqFYDMQKGdnZ1wHkNZWlqid+/ewvq6detyfU0CAwOxb98+AJmfbe1gZnbahVLOnz8vBG2lUmmuz0Fxvwb5oZ1xqz0/YRZTU1NcuXIFwcHBOHfuXK7DstPS0kSfkbdxjj0G9oiIiIrRgYdh2HkvBMJ0NQ4Ruo2iawD495vM+MrQKMQTIt+KDoJPnJ7jiIiIipm3tzeGDRuGGzduAMgcwrlkyRK9RR2kUimWLFkiVK4MCAjAwIEDcfDgwVyHLt64cQPDhg1DaGgoAKBTp07o1KlTvvtqYmKCqVOnCus7duzA2rVr9V772LFjmDNnjrA+YsQI1K5dO9/XNESvXr2EjKMXL15g/vz5erMJk5OTRdlL3bt3FwVIhg8fjooVKwIAQkNDMXLkSFGF3SyBgYEYOXKkkNnk7OyMsWPHitpIJBK0bdtWWF+yZImoYi2QGQzau3cvfvjhh/zecq4GDRqEatWqAQCCgoIwYcIEvdljV65cEYJRADBu3DhhuV27dujQoYPQz8mTJ+P8+fM650hNTcXChQvh6ekpbJsyZUqB+v3ll18KwVB/f3+MHj1a71DiFy9e4PPPP0d6ejqAzGG8uWXeValSBe3atQOQWRH63r17ADKLreQWxCqJ18BQ2v8+RERE6AT32rZtKwThY2Nj8dVXX+n9DCgUCixatEgoFtKyZcu3MrDH4hlERETFaMM1//9WzFIhsRZ/A6mRWwDJWt+QaqRAbBWgUoCo3W8vbmONu/jbdSIiImMJDw/Htm3bdLar1WqkpqYiIiICjx49wsuXL4V9pqam+O6773INurVu3RobN27ExIkToVAoEB0djfnz52PZsmVo06YNatasCUdHR6SnpyMyMhJ37twRBadatGiB9evXF/i++vTpgwcPHmDnzp0AgM2bN+Po0aPo3LkzKleujISEBFy/fl00B5+bmxtmzpxZ4GvmxcbGBrNnz8b8+fMBAEeOHMHly5fRqVMnODs7QyaTITg4GJcuXRKCGxUqVBAFKYHMLLsNGzZg9OjRSEtLw+PHj9G7d2907NgR9evXh0ajga+vL65cuSJkBVpbW2P9+vV6C2eMGTMGly5dgkajgZ+fH7p3746ePXuiWrVqiI2NFSqUSiQS9O7dGydPnjTK62FhYYENGzZgxIgRSE1NhZeXFz744AN07doVrq6ukMvluHv3Lm7fvi0cM2LECLz33nui86xevRr/+9//EBQUhOTkZEyYMAGNGjVC27ZtYWNjg9DQUFy8eFEUMBo3bpwQRMsvFxcXLF++HNOnT4dSqcT9+/fRo0cPdOzYEfXq1YNcLsfz589x5coVYSht1uufFezOycCBA+Hl5SUEA7O25aW4XwNDOTs7QyKRQKPRIDQ0FF9++SVatWoFS0tLjBgxAlKpFAsXLsTYsWOhVqvh6emJrl27onPnzqhevTosLS0RHBwMT09PRERkftltZWWFr7/+ukj7XVoxsEdERFSMvEO1Anl20boN4itByNYTtlWGxikA2tOR7Pd/gFWt+0IqYfI9EREZX3BwsFCB1hCNGjXCvHnzDJqHrlOnTjh69ChWrFiBq1czp5dITU3FpUuXcjzGwsICY8eOxdixY2Fubp5jO0PMmzcPzs7OWL9+PdLS0hAREYG9e/fqtJNIJPjss88wbdo0Yf60ojJ48GCkpKRgzZo1kMvliI+Px5EjR/S2rVu3LlavXi1ktWlr1aoV9u3bh6+++gr+/v6Qy+U4d+4czp07p9O2cePGWLt2rajwQ/ZzLVq0CIsXL4ZcLkdKSgoOHTokamNlZYVvvvkGdnZ2RgvsZfVt7969mDJlCgICApCcnIyjR4/qtDMxMcHYsWN1gpwAUK5cORw4cABz5swR5rzz8fERFUTJYm5ujqlTp2LUqFGF6nfPnj1hb2+P2bNnIzIyEhkZGTh79qzeOQ9dXFywdu3aXIfhZvnggw9ga2srDK+2s7NDt27d8jyuJF4DQ9ja2qJv3744fvw4gMyhwpcvX4aNjQ2GDx8OiUSCd999F6tXr8aCBQuQnJyM1NRU/P3333rP5+zsjBUrVqBJkyZF3vfSiIE9IiKiYmRtZoIU+b/DDWxjdBvE6xk+oDTPzOKz/e/b1PC0RNyMCkL7Si5F01EiIiI9pFIpLCwsYG9vDxcXFzRq1AhdunRBy5Yt85wQX1vt2rWxZcsWPHnyBOfOncOjR48QEBCA2NhYpKenw8bGBuXLl4erqys6d+6Mrl27onz58ka7j5EjR6Jv3744cOAAvLy88OrVKyQkJMDMzAwuLi5o27YtPv744yIbfptTn7p27YpDhw7h9u3bePXqFZKSkiCTyVC+fHk0adIE3bp1Q8+ePXUKk2irX78+Tpw4gVOnTuHcuXP4559/EBMTA5VKBScnJ6E4QteuXfOsLvzJJ5+gXbt22LNnD65du4bQ0FBIJBJUrVoVHTt2xNChQ1GtWjW9QzwLq379+vj7779x4sQJnDt3Dj4+PoiJiYGpqSmqVq2Ktm3bYujQoXjnnXdyPIejoyM2b96Me/fu4fjx47h79y4iIyORmpoKGxsbuLq6ol27dhg8eLBQfKSw2rVrh/Pnz+Po0aO4dOkSnjx5gri4OKjVapQvXx4NGjRAjx490Lt37zwz9bKYm5ujd+/e2L9/P4DM4duGBrhL4jUwxLJly+Di4oITJ04gPDwcGo0GDg4OiImJQYUKFQBkZti2adMGf/31Fzw9PeHv74+EhARIpVI4Ojqibt26eP/99/Hxxx+LCr68bSQajTDLDxUxb29vIeVWKpWiRYsWJdyjwlEqlXj48KGw3qxZM5iaMlZMVBB8nt4eDVdegm9UMmCaAUk98UTUmnRrwM9N/4EOEZA4PxNtmtaoI1a5F81E3mUZnyci/VQqFZ4/fy6s161bN9fggEajEU3+bmVlla/ADRH9h88TkfGUpucpvz9b9SlsrIjjd4iIiIqRNOt3Dn3ZeokVhEULUylW99MampFUHtm/itvx3Nv4HSQiIiIiojKDgT0iIqJilJCeWbUL1vG6O5P+G2LkaCXDtI61Mb9bncwNKhmQ4iBqHqNIxMtEcYU6IiIiIiJ6ezCwR0REVIwS05UANIB1nGi7RikD0m2Eddm/c95YmWml8mtXy/3X6RBfnW1ERERERPR2YGCPiIiomKjUGiRlKAGLZEhMleKdKQ7QroYrM8lctpJpB/Ycdc55MpiBPSIiIiKitxUDe0RERMUkOSOXYbgp4qCdmYmejL0Ma2gU4upp1yL9oVSrjNlNIiIiIiIqIxjYIyIiKiaJWYE9qwTdnckOotXy1pkBPFHGHiQ6WXupKjm8Y0KN2EsiIiIiIiorGNgjIiIqJglpCgAawCpRtL2iuQ2gsBBt++aDugCyZewBQKqDznmvRfobs5tERERERFRGMLBHRERUTBIzlIBZGiSmCtH296vUgker6sL6B3UroOs7FQBkz9gDkGKvc96rEa+M31kiIiIiIir1TEu6A0RERG+LhDQFYJmos729kwumdGqO8e1doFCr0b5mOUil/xbPyJ6xp7CARmEGiUwubPKM9Idao4ZUwu/riIiIiIjeJgzsERERFZPEDKXOMFwgM7AnkUjQpqZu1Vtrs+w/qiWZFXQdooQtcfI0vEh8jXr2TkbuMRERERERlWb8ap+IiKiYJKQrAYtk0TZTiQmal6ua4zE6Q3EBIM1OZ9Od18GF7h8REREREZUtDOwREREVk7g0OWCRItrmal0BZiY5J9DrDMUFgDRbnU13ohnYIyIiIiJ62zCwR0REVExeJUdDIlWLtjWyzzlbD8ghYy/dBhqNRLTpzuugQvePiIiIiIjKFgb2iIiIismr1GidbbkNwwVyyNjTSIF0a9Em75gw+McmFap/RERERERUtjCwR0REVExCM3QDe62dquV6jIVpDj+qsw3HlauVqLv+BJZfeFHg/hERERERUdnCwB4REVExCZW/Fm/QAO0rVc/1GIlEon+Hnnn21OaJWHjmGYLj0wraRSIiIiIiKkMY2CMiIioGKrUKiZI40TZzlQ3szC0KdkI9lXFhmQSlWoPfb7OQBhERERHR24CBPSIiomJwOyICkKpE2yrJyht0bKNKutl5yLCCRpXtx7hlIgDAOzS+IF0kIiIiIqIyhoE9IiKiYnAqwF9nW33bKgYd6+EmnofPzsIUgARIzxbwM08FpEr4xaQWtJtERERERFSGmJZ0B4iIiN4GNyN1h8e2q5z7/HpZZnSqjSp2FrgbEo/OtSsgIV2BkfseZM6zZ50gtJNIAI15Cp5HmyFDqYK5qZ6KukRERERE9MZgYI+IiKgYPEuK1NnW06WWQcdKJBIMb1UNw1tlZu79E5455BbpNrqNLVIgT7PHP+FJcKvuUNDuEhERERFRGcChuERERMUgSiEunAGFOVpWNmyOvezqO9nA3FQKpFvr7rRIAQBEJGUU6NxERERERFR2MLBHRERUxBIy0iGXiOe9s5PYw9SkYD+GZSZSNKlsC8itoFFLxDvNkwEAqXKVniOJiIiIiOhNwqG4RERERez0qwAgW/ythmXBsvWyNHe2x92QBEBuJWTpAfh3WYMUubJQ5yciIippc+bMweHDhwEAy5cvx8CBA4vsWiNGjMDt27cBADt37kSbNm2K7Fr5kZiYiG3btuHixYsIDw9HWloabGxs4Orqin379hXonHK5HFeuXMHVq1fx4MEDxMTEIDExEdbW1nB0dISrqys6dOiALl26oGrVqka+IyIyNgb2iIiIitilIN3CGU3LVy7UORtV/rcibrq1KLAnMVFBI8tAqoIZe0RERGVZQkICBg0ahOBg8e8R8fHxUCoL9gXe6dOnsWrVKoSEhOjsi4+PR3x8PF69eoWLFy9ixYoVGDJkCCZNmgR7e/sCXY+Iih4De0REREXs/uswnW0dqxlWETcnDStpBfayM0/mUFwiIqIybvv27UJQTyaToWfPnqhVqxbkcjlcXFzyfb4dO3Zg2bJlwrqTkxPc3d1RvXp1WFlZISMjA2FhYbh9+zZCQkKgUCiwa9cu3LlzBzt27ICDg4OR7oyIjImBPSIioiIWmBoDmIi39XJ1KdQ5Gzj9WxE3Q39lXGbsERERlW2+vr7C8vjx4zFhwoQCn+vGjRtYvnw5gMwg4fz58/HJJ59AKtWd71ej0eD06dP45ptvkJSUBF9fX0yaNAm7du0q8PWJqOiweAYREVERS0KiaF2qMoOzjV2hzulsb5G5kENl3BRm7BEREZVpKSn/TbXRtGnTQp3r559/hkajAQDMnj0bQ4YM0RvUAwCJRIJevXrhp59+gkSSOUnw7du34eXlVag+EFHRYGCPiIioCCnUKmRIU0TbLNR6suzyKesXbSjNoFFmS8A3T+FQXCIiojIuKxAHAGZmZgU+T3p6Ou7duyesDxgwwKDj2rRpg/fff19Yv3TpUoH7QERFh0NxiYiIitDLxNeARCPaZgfjTEAtlQBqjQTIsAZME/7bYZ6KJLncKNcgIqLSJat6q62tLe7evQuVSoXjx4/j6NGjePHiBRISElCxYkU0bdoUw4cPh5ubm3BsdHQ0/vjjD1y4cEEonlCjRg188MEHGDlyJGxs8v7iycvLC8ePH4e3tzeioqKgUqlQvnx5NGrUCF27dkW/fv1gapr3n5lyuRyHDh3CqVOn8OzZM6SkpKBChQpwd3eHh4cHGjdunK/XJSIiAgcOHICnpyeCg4ORlJQEOzs7uLq64v3338f//ve/Yp0jLjY2FgcPHoSnpyf8/PyEqrOVK1dG69atMXToUNSuXVvnuL/++gtz587V2e7h4SEsu7u752tYbGJiIlSq/77wS09PN+i9BoB3330XN27cgL29PdRqda5tk5OTcfjwYVy+fBnPnj1DfHw8LC0tUblyZbi7u+Ojjz5CkyZNcjxe+94HDBiAFStW5Hq9Ll26IDQ0FABw4cIFVKtWTdgXEhKCrl27AgCGDRuGBQsW4ODBg/j9998RHBwMR0dHNGnSBGPGjEGLFi1E501MTMRff/2Fixcv4vnz50hKSoKFhQVq1qyJdu3aYciQIahePfe5kjUaDc6dO4czZ84IlYclEgkqVqyIVq1aoW/fvujQoUOu5yAyFAN7RERERcgnLkJnWzkT4wT2Nn/cDGMPPgTSbQDr/wJ7EgkQIY81yjWIiKj0io6OxqRJk+Dt7S3aHhoaitDQUJw5cwZz586Fh4cHrl27hhkzZiA+Pl7U1tfXF76+vjh+/Dj27NmD8uXL671WcHAw5syZg7t37+rsCwsLQ1hYGM6dO4eff/4Za9asyXXoaFBQED7//HO8evVKtD08PBxHjx7FiRMnMGnSJANfBWDz5s346aefkJGRIdoeExODmJgY3L17F7/++ivmz59vcLZaYezatQtr1qxBWlqaaHtW1VlfX1/s2bMHw4YNw+zZsw0KhBZGhQoVIJPJoFAoAAB//PEHpkyZYtCxI0aMEAUVc3Ly5El89913Op8vhUKBxMREPH/+HLt370bfvn2xaNEiWFvrmUqkCGUvHBIZGYnIyEiMHDlS1O7w4cNYunQpkpKSRNuTk5Ph4+MDHx8f7Ny5E7Nnz8bw4cP1XiswMBBfffUVfHx89O4LDAzEX3/9hQ4dOmD16tUoV65c4W+Q3moM7BERERWhBzG6gb3K5o5GOffwVs74434ILseE6+yLVsQb5RpERFQ6qVQqfP7553jy5AksLCzQrVs3uLq6IioqCpcuXUJUVBTUajW+//57WFpaYvHixcjIyEDjxo3RoUMHmJmZwdvbG56engCAgIAALFmyBOvWrdO5VnBwMIYOHYro6GgAgFQqRfv27dGkSROYmprCz88Ply9fRmpqKoKCgjB8+HBs2rRJb0ZSQEAAhg4ditjYzC+gLC0t0bVrV9SuXRtJSUm4cuUK/Pz8sH79ejg65v3zcsGCBdi/f7+w3rBhQ7Rt2xYODg6IiYmBl5cXXr58ieTkZMyZMwdxcXEYNWpUgV5zQ6xatQpbt24V1itXroxOnTqhcuXKiImJwY0bN/Dy5UuoVCrs3LkT/v7+2Lx5sxDca9KkCWbNmgUA2Lt3r1AVd8iQIahRowYAoEqVKvnqk1Qqxfvvv48LFy4AADZt2oTXr1/Dw8MDderUyfVYYeqPXOzduxfffvutsO7o6IjOnTujRo0aSElJwd27d4Xg84kTJ+Dn54fdu3cbnDVYWK9evcKBAwd0tleqVEmU0bp9+3ahwAgAlC9fHp06dUK1atUQExODa9euITAwEHK5HIsXL4apqSmGDBkiOufz588xYsQIIcBpZWWFLl26oFatWlCr1Xjx4gWuXLmC9PR0eHl5YfDgwTh48CCDe1QoDOwREREVIZ+4SJ1tzhb6syHyy9zUBBfGtcMeXwd43Hwu2hevjjfKNYiINGoFUu6vRHzIeWiUqSXdnVJDYmoFK9decGgzHxITWbFfPzU1FU+ePEHjxo2xadMmODk5CftiY2MxZMgQBAYGQqlUYv78+ZBKpViyZAkGDx4sOs++ffuwcOFCAMCZM2eQkJAAe/v/MstVKhW+/PJLIahXvXp1/Pjjj6hfv77oPFFRUZgxYwZu3bqFjIwMfPXVVzh69KhOEGrRokVCUK9+/frYtGkTqlatKuyfOXMmtm3bhtWrVyMuLi7X1+DgwYNCUM/W1hYrVqxAt27dRG00Gg3+/PNPfPfdd1AoFFi9ejWaNWuGVq1a5Xrugjh58qQoqPfFF19g4sSJMDMzg0ajQWpqKr766iscP34cS5cuhVwuh6enJ9asWYPZs2cDAOrUqSME2y5fviwE9nr37o02bdoUuG+TJ0/G9evXkZaWBo1GgwMHDuDAgQNwcXFB+/bt4ebmhpYtW+Y7aPjgwQMsWrRIWB84cCDmzZunE7S7cuUKZsyYgcTERDx9+hRff/01fvjhhwLfT35cv34dANCnTx9MnjwZTk5OePLkCSIiIoTApa+vL1auXCkcM2jQIMyfPx9WVlbCNoVCge+//14YBr1ixQp0795dCMqlpaVh0qRJQlCve/fuWLx4sc4Q8MjISEyfPh137txBSEiI8JknKigG9oiIiIrQ84Qo0bpGZQJnK+MMxQX+rVxXywW4Kd6emK0SLxFRQaXc+x6pD9aUdDdKJXn0AwCAY/vvSuT6VlZW+Pnnn0VBPQAoV64cPv30U1HAZcSIETpBPSAzE+z3339HQEAAVCoVnjx5gnbt2gn7jx49iufPM788srOzw44dO+Ds7KxzHicnJ2zZsgWDBw/Gs2fPkJCQgE2bNon6cOPGDaGyqp2dHbZs2aLTd6lUirFjxyIuLi7XYIdcLseGDRuE9Q0bNujNEJRIJBg8eDCSkpLw/fffQ6VSYcOGDdi5c2eO5y4IpVIpynb89NNPMW3aNL1t+/XrB2tra8yYMQNA5tBdDw+PfAfV8qN+/fr44YcfMG3aNNEw04CAAAQEBGDPnj0AMrMBW7dujfbt26Njx455ZpKtWbNGmHvvgw8+EGW8aevYsSM2bdoEDw8PqFQqYe655s2bG+cG8+Du7o41a9YIgTztTD0A2Lp1qzAPYadOnUTDdrPIZDJ8/fXX8PHxwf3795GWloY///wTn3/+OQDgwIEDCAgIAAC0bt0a69evh4mJic55KlWqhF9++QW9evVCVFQUPD09cefOHbRu3dqYt0xvEVbFJSIiKiIajQZBqdnmupNbwcHSuJkd5cytIFWJq+WlSpJyaE1ElD+K6Ht5N3qLpUfcLrFr9+7dG5UqVdK7r0GDBqL17EMGtb3zzjvCclY2XZajR48KyyNHjtQb1Mtibm6OOXPmiI6VaxVzOnv2rLD8ySef6AT1tE2YMEGULZXd+fPnhSzCFi1a5FmIwMPDA3Z2dgCAW7duISJCd6qMwnjw4AGCgoIAADY2NnnOYde3b1+0bNkSQGYm2KFDh4zaH33ef/99nDx5Eh9++GGO8/qFh4fj2LFjmDNnDt577z1MnjwZfn5+Oba9fTvz8y+VSkXvvT5ubm7o3bu3sK49hLqoDR8+PMdhxQqFApcvXxbWv/rqqxzPI5VK8emnn6JBgwbo2bMnKlasKOzbt2+fsDxu3Di9Qb0sNjY2ovn9jhw5kvdNEOWAgT0iIqIiEp2ejFRVtuq0GZawN3JgDwAs1OIhLxnSFCjUqhxaExEZTlbR+EMW3yQWld1L7Nq5FajQDjhYWVmhVq1aObbVLmSgXYAiIyMD9+/fF9Z79eqVZ5/at28vzI2Xnp6OBw8eCPuuXbsmLHfu3DnX81hbW+carLt165aw3KhRozz7ZWpqKnq99BUBKYwbN24Iyx07djSoOETfvn2FZe37KUpOTk5YtWoVrl27hiVLlqB79+45zmWoVCpx5swZ9O/fH3v37tXZr33PTZs2FVWlzUlJ3DOAXIdeP3jwQMhidHZ21hlmnl3Pnj1x5MgRbNiwQSjG8vr1a/j7+wttDPlMavfJ2J9HertwKC4REVEReZkYo7tRbgEHC+MH9qzUtkiFVpaFRAO/xBjUd8g5G4KIyBDWrWYDEgmUnGNPRHuOvZKSU7YeIC56kJWplhOpVH++R2RkpJBxZ2lpCVdXV4P61bBhQ2HIbVBQENzd3aHRaBAe/l+xp9q1a+d5nvr16+PcuXN69718+VJY3r17N3bv3m1Q37KEhYXlq31esrL1AOQZGMqinVWZNZdecSlXrhwGDx6MwYMHQ6PR4OXLl7h79y7u3LmDmzdvIibmv99hFAoFvv32W9ja2ooCc4W957CwMKhUqlwz24zB0tISFSpUyHG/9mehbt26BbrGixcvROtt27bN1/HG/jzS24WBPSIioiJyPSxUd6PcEvaWxv/xayexw+ts23wTohjYI6JCk0hlsHGbB6v3lxpUIZOKj4WFhUHtCho4ySoCAAD29vYGv//aGWBZ54iLi4NSqRS25xVszH6e3PpWEHkV5sgv7f4YUs03e7vC3k9hSCQSoWjH0KFDodFocO/ePWzduhWXLl0S2i1duhQffPABzM3NART+njUaDRISEoq8ImxenzXtIKYhn0t9Cvv+yeVypKam5jr8nCgnDOwREREVgZ+9AjD3+n0g+xfEcssiydhzNHHQ2eabEAmgsdGvRUREpUNRB1o1Gk2BjssqQgDknA1oCDMzsxz3aQcJe/bsmeuwZH0MGSqZHwV5rbKKTgBF/17mh0QigZubG9zc3LBt2zahWmxsbCw8PT3RtWtXAIW/56xrFZSh189pPsEs2p+lgtL+zNva2mL8+PH5Pkde/STKCT85RERERvbXP+GYePgfwDkNOr+uFlHGXkVTByDb77c+cZFGvw4REb097O3/q+KekJAAjUZjUCBGOxvO1tYWQGamlkwmg0KhEM6XV6ZWYmLOFd61+9a8eXN89tlnefarKGn3x9BsQO12Bc0UM8SoUaMQGRmJmJgY7N69W1QsJS+jR4/GkSNHhMrIfn5+QmDPwcFBaFeQe5ZKpbCxsdHbzpCgnfZ8kIWh/drn9pkz9BxqtRqjR48udL+IDMXiGUREREY28/iTzAWzNNF2jcoEUMmKJGOvvJktNGrxj3Xf+CijX4eIiN4eVatWFbLm0tLS8OrVqzyP0Wg08PX1FdZr1qwJIDMzS7uirnabnORUjRUAatSoISxnBZ3ykpCQIMqsMibt+QcNuTcA8PHxEZa178fY/Pz88PLlS8TFxRWoSIP2vHPaGZguLi7CckHuuUqVKpDJ/vudSPvc2tWU9ZHL5UYbTq392mvP3ZgThUKBKVOm4Pvvvxcq4WZ9zgEgJSXFoDnz5HK5ULSDqDAY2CMiIjIipUqNV7H/Ti6fLbAHuSUASZFUxbUyMwUyxPOyPE+MLvAwKiIiIjMzMzRr1kxYP3nyZJ7HeHl5CfONyWQyNGnSRNjXpUsXYfn06dO5nkepVMLT0zPH/W3atBGWr1y5kmf2llwuR58+fdC0aVN06dJFVKHXGNzc3ET9SUlJyfOYU6dOCcu5VW0tLO2+7d69O9+/G2gHdLWDfNrnffToEUJCQvI8V273bGlpKSzHxsYiN48fP9YZ1ltQzZo1E4bBBgcHi6rb6vPw4UOcPn0av/32G/744w8AmYE97WI2Z86cyfO6+/btg5ubG1q3bo1x48YV4g7obcfAHhERkRHJVf/+kmmigMQ025wt8sxfWC1Mjf/j19rMRCewl6zMQFhqwYaUEBERAcCgQYOE5e3btyM0VE9hqH/J5XKsXr1aWO/evbsoWKNdUfXw4cO5Ztrt27cPkZE5TynRo0cPWFtbA8gsfrBp06Zc7+O3335DdHQ0lEolYmNj8z0nX15at24tZH4lJydjw4YNubY/deoUvL29AWRmM/br18+o/dE2dOhQYfnFixdYsmSJwceePn1ayLKrWLEi2rVrJ+yrXr063N3dAWQOP12xYkWu57p//74osPfhhx+K9lepUkVYfvToUa7ZbHm93/lhbW2Nbt26Ces//fRTru137twpLGsfp/2sbNmyBVFROY+ciIuLw6+//gogc/hvQavxEgEM7BERERlVhvLfwF72bD0AkGdWLyyKCbKt9AT2AOBJfITRr0VERG+Pvn37CkGHpKQkjBw5Uu+wy+joaHzxxRd4+vQpgMw5x6ZNmyZq06hRIwwcOBBAZhBwzJgxoqGZWY4ePZpnkMjOzg6ff/65sP7LL7/gxx9/FObwy6JWq7F//35s3LhR2DZq1CjRnHjGYGJigqlTpwrrO3bswNq1a/UOKT158iTmzJkjrI8YMQK1a9c2an+0ubm5iYJ7u3fvhoeHBx49epTjMWlpadi6dStmzJgBIPN3l6+//lo0dBYApk6dKlRdPnfuHObOnYvk5GSd83l6emL8+PHCUOhu3brhvffeE7Vp2LChMG9famoqvvnmG533Mz09Hd988w2uXr1q4N0bZvz48cK9nThxAqtWrdK5tkajwU8//SRk49nZ2WHYsGHCfg8PD1SsWBFAZrD5008/xYsXL3SuFR4ejvHjxyM6OhpA5lyFJT1HJJVtLJ5BRERkRHLVv8Nb9Ab2LNG8atFMjm0l0x/YuxAYhA+c6xXJNYmI6M0nk8mwceNGDBkyBHFxcQgKCsKAAQPQvn17NG3aFKampvD398fFixeRmpoqHLNixQpUq1ZN53xz587Fw4cP4efnh8jISAwePBgdO3ZEo0aNoFAocP36dSHg5Orqmuu8fl988QX++ecfnD9/HhqNBhs3bsShQ4fQqVMnVKpUCdHR0bh586Zo3jR3d3d8+eWXRn6VMvXp0wcPHjwQMro2b96Mo0ePonPnzqhUqRJiYmJw69YtUaaim5sbZs6cWST90bZgwQKkpKTg2LFjAIBbt25h8ODBqFatGtzd3eHk5AQrKyvEx8fD398fd+7cEQ0nnjNnDnr37q1z3latWmHWrFlYvnw5AOCvv/7CpUuX0KVLF1SvXh1paWm4c+cO7t+/Lxzj6uoqtNdmamqKzz77DOvWrQOQmdX46NEjdO3aFY6OjggJCcGFCxcQHx8PBwcHNG7cONfh2vlRv359zJs3D99++y0AYOvWrTh58qTw3sXHx+Py5cvCMF2pVIrFixejQoUKwjkcHR2xYcMGjB49GmlpafD390f//v3RoUMHNG7cGBKJBH5+frhw4YIQNJTJZFi5ciUcHR2Nch/0dmJgj4iIyIgylP9Oyp1DYO+zTkUzOba1mYkw1FfbzYi8J28mIiLKjYuLC/78809Mnz4dDx48gFqthqenp96gSs2aNbFmzRrR3Hra7OzssG/fPkydOhVeXl5QqVS4ePEiLl68KGo3dOhQvPPOO1i8eHGO/ZJIJPjhhx+wdu1a7NixAwqFAmFhYdizZ4/e9v3798eiRYuE+dSKwrx58+Ds7Iz169cjLS0NERER2Lt3r96+f/bZZ5g2bZpOFlxRkEqlWLlyJd59912sW7cO4eHhAICQkJBc58arVasW5s+fjw4dOuTYZuTIkahQoQIWLVqEhIQExMXF4dChQ3rb9u/fHwsXLhSGUWc3duxYhISE4ODBgwCA0NBQ0dBXAMLre/z4caMF9oDMz5ydnR2+/fZbJCYmIiwsTJhDT5udnR2WLFmCHj166Oxr1aoV9u7di2nTpsHf3x8qlQpXr17Vm2Ho5OSEFStW5PraEhmCgT0iIiIj+i9jL11n3+YP22Csm6vOdmMwM5HqDewFpeQ++TQREZEhqlWrhv379+PSpUs4ffo0vL29ER0dDYVCgXLlyqFRo0bo0aMHevfuLVTSzYmdnR22bduGc+fO4fDhw3j06JGQhdWkSRMMHToUHTt2xO7du/Psl4mJCWbOnImhQ4fi4MGDuHnzJoKCgpCYmAhzc3M4OzujZcuWGDRokNHn1cvJyJEj0bdvXxw4cABeXl549eoVEhISYGZmhho1aqB169YYOnRokQ6/1UcikaB///7o2bMnLl++DC8vLzx9+hRhYWFITEyEWq2Go6MjKlasiGbNmqFr165o166dQYHQvn37olOnTjh48CCuXr2KFy9eID4+HqampqhWrRrc3NwwcODAPN8DExMTLFmyBB999BEOHjyIO3fuIDo6GlZWVnBxcUGPHj3wv//9D9bW1jh+/LixXhpBnz598N5772H//v24evUq/Pz8kJiYCAsLC9SuXRsdO3bEkCFDUK5cuRzP0aBBA5w4cQJnzpzB+fPn8fDhQ8TGxkKhUMDBwQH16tVDly5d0L9/f9jY2Bj9HujtI9GwXF6x8fb2Fir3SKVStGjRooR7VDhKpRIPHz4U1rWrCRFR/vB5enP4RCShyerLgKs3JFb/Fa6wNJEhacSyIplfDwD++iccH++4C9S9CYnsv8qAthIbxI/8tkiuWVrxeSLST6VSiYYA1q1bV5gbSx+NRiMMrQQAKyurIvs3jOhNx+eJyHhK0/OU35+t+hQ2VsTiGUREREaU01Dcd+wqFOkvHJ1rl4etuSmQIc7aS1anQKFWFdl1iYiIiIio5DCwR0REZERylQaQqiAxFVdSc7XNeciGMThameHKl+11huNqJBoEJHE4LhERERHRm4iBPSIiIiPKUKoAme78eq42RRvYA4Dmzvaoaa17nReJr4v82kREREREVPwY2CMiIjIiuUqjN7DnUgyBPQCoauGos80nNrJYrk1ERERERMWLgT0iIiIjylCq9VbErWmjG3ArCq62FXS2nQ0IQpqC8+wREREREb1pGNgjIiIyohyH4hbxHHtZ6jtUQPZ69xeCgtF+oydep2ToP4iIiIiIiMokBvaIiIiMKKehuMWVsVfD3hpQWIg3mqXhYVgi9nqHFUsfiIiIiIioeDCwR0REZET6huJam1jA3swyhyOMq4qdhU5lXMjSAYkaTyKTiqUPRERERERUPBjYIyIiMiK5Sq2TsVfJ3K7Yrt+2hiPMVFaibRIJAFka0jnPHhERERHRG4WBPSIiIiNKyEiHxFQp2lbF0qHYrm9rYYphjevo7jBPQ6qcgT0iIiIiojcJA3tERERGFJGRoLOtqoVDsfZhYL1auhvN0pCmUBdrP4iIiIiIqGgxsEdERGRE0XoCe9WsHIq1D3XsKupuNEtHmpIZe0REREREbxIG9oiIiIwoWp6os626dfFUxM3iYuMICSTijbI0pHGOPSIiIiKiNwoDe0REREYUq9QN7LnYlCvWPpiZmKK6tX22jemcY4+IiIiI6A3DwB4REZERxSmTdLa52BZvxh4A1LItL94gS0eqQqm/MRERERERlUkM7BERERlRgjJZtK5RmqKchWWx98M1W2BPItUgWZ1a7P0gIiIiIqKiY1oUJ9VoNLh69SqOHTuGhw8f4vXr15BKpahcuTIaNWqEfv364d1334VUary4okajQatWrZCSkpKv46ZMmYIvv/zSaP0gIqK3V1RSBqIViZCYaG1UWMDcpPi/R6tlqzv8NwXJeloSEREREVFZZfTAXlhYGGbNmoU7d+7o7PPz84Ofnx+OHTuG5s2bY9myZahdu7ZRrhsYGJjvoB4REZEx9d1+HRKbbMNd5RYwMy2JwF55nW3pEv6cJCIiIiJ6kxg1sBcaGorhw4cjLCxM2GZlZYV69epBJpPB398fr1+/BgA8ePAAn3zyCfbt24c6deoU+tpPnz4Vlh0cHNC4cWODjqtRo0ahr01ERBQQm4q7EZGQvJNth8IC5qUksCeXpkKj0UAikeg5goiIiIiIyhqjBfbUajVmzJghBPVkMhmmTp2KESNGwNzcHEDmcNkzZ85g4cKFiI+PR3JyMsaNG4dTp07BzMysUNf39fUVlrt06YLly5cX6nxERET5EZGUAcjSdXcozGFWIkNxdQN7GrM0DNpxF30aVMIo9+oM8BERERERlXFG+0vjwoULuH//vrC+ePFijBkzRgjqAYBEIkHPnj2xefNmYX69kJAQHDt2rNDX187Yq1evXqHPR0RElB8yEwkgy9DZLlVZwERa/AG08uZWkGX//k6WjiOPIzD24EP8fie42PtERERERETGZbTA3sGDB4Xlpk2bYsCAATm2bd68OTp27Cisnz9/vtDX1w7s1a9fv9DnIyIiyo90hVpvYM9MVfwVcYHML9NspbbZOvNfRuHKSy+LuUdERERERGRsRgnsaTQaRERECFl4ffr0yfMY7Xn1AgMDC3X92NhYREVFCesM7BERUXFLU6j0B/ZQMoE9AHA0sROtS0wVgDSzuMfzaBbSICIiIiIq64wyx55EIsGxY8eQlpaGly9fomrVqnkek5iYKCxbW1sX6vra2XqVK1eGg4NDoc5HRESUX2kKFWAqDuxp1BJYSCxKqEdAOZkd/BTZNpqlA+k2JdIfIiKi/JgzZw4OHz4MAFi+fDkGDhxYZNcaMWIEbt++DQDYuXMn2rRpU2TXyo/ExERs27YNFy9eRHh4ONLS0mBjYwNXV1fs27evQOeUy+W4cuUKrl69igcPHiAmJgaJiYmwtraGo6MjXF1d0aFDB3Tp0sWgv+2pbDBkyjKpVApLS0s4OTmhfv366NKlC/r06QMTE5Ni6KHxdOnSBaGhoQAyp42rVq1aCfeoaBm1Kq6lpSWaNGmSZzu5XI5r164J6w0bNizUdTkMl4iISlqavqG4SnOYl0DhjCxOZvZAaraNsjQG9oiIiMqAhIQEDBo0CMHB4nlx4+PjoVQqC3TO06dPY9WqVQgJCdHZFx8fj/j4eLx69QoXL17EihUrMGTIEEyaNAn29vYFuh6VLWq1GikpKXj16hVevXqFU6dOYcuWLVi1ahVjLaWYUQN7hpDL5Zg/f74QPZVKpfj0008Ldc7shTOioqLw119/4erVq/Dz80NKSgocHBxQt25ddOnSBYMGDYKlZckNjSIiojdPqlypG9hTmEOlLpn+AEAlcz2/hJvpqdxLREREpc727duFoJ5MJkPPnj1Rq1YtyOVyuLi45Pt8O3bswLJly4R1JycnuLu7o3r16rCyskJGRgbCwsJw+/ZthISEQKFQYNeuXbhz5w527NjBkXFvkCFDhqBGjRqibWq1GnK5HAkJCfD398eNGzegVCrx/PlzjBo1Cvv370f16tVLqMeUmyIP7KnVaiiVSoSEhMDT0xO7du1CUFCQsH/hwoWoXbt2oa7h6+srLGf9o5OeLv7DJTo6GtHR0fDy8sIvv/yCpUuXigp4EBERFUZ0egok0mxRPIU5UuQF+0bdGKpaOuhuZGCPiIioTND+O3f8+PGYMGFCgc9148YNLF++HEBmkHD+/Pn45JNPhHnytWk0Gpw+fRrffPMNkpKS4Ovri0mTJmHXrl0Fvj6VLr17985zuLm/vz8+++wzREREICYmBsuXL8fPP/9cTD2k/CjywN7y5cuxc+dOne2VK1fG119/jR49ehTq/BkZGXj16pWwfv/+fQCAiYkJatasiYoVKyIxMREvX76EQpE50VB0dDTGjx+PRYsW4eOPPy7U9QujoOnTpYVKpcp1nYgMx+ep7AtLjdPdqDBHilxVYv/eVzG3hUYDSCRaG2VpwmJ6hhymJThUuKjweSLST6VSQaPRAMicI1uj0Qjr+mTfl1tboqKg/ZnL6/Na2q9VkOcpJeW/QldNmjQpVJ9++ukn4fhZs2bhf//7X6796NmzJxwdHTFy5EhoNBrcvn0bnp6e6NChQ4H7QMaRNSS2atWquHjxYoHOYchn3NXVFd9++y3GjRsHALh48SJCQ0NLxbyLeT1PJfFvR9b/lUplsf+8LPLAXlhYmN7tjo6OiIqKQnp6OiwsCj6x+LNnz0S/sEskEnh4eGDUqFGoXLmysD05ORm7du3CTz/9BIVCAZVKhW+//RYuLi5wc3Mr8PULSq1W4+HDh8V+3aL0+PHjku4C0RuDz1PZ8zwySHejwgJKtabE/r2Pi0gDFOaAmdYQYa2MvVv3H8LG7M0L7GXH54lIzNTUFKampkhNTc3XhOhpaWl5NyIyIu2/8+RyOVJTs08cazxq9X9Z9xkZGUV6LcCw50n7i0GNRlPgPqWnpwsJMEBm0M6QczVp0gQdOnSAp6cnAOD8+fNo0aJFgfpAxleYz4Shn3E3NzeYmZlBLpdDo9Hgn3/+KZVDsrM/T9qBtfT09CJ9nlUqlTBSValUlsjvnUUe2Hv9+jXq168PBwcHxMbG4uXLl1Cr1Xj69CmWLFmC3bt34+effy7wcFx/f39hWSqVYt26dejZs6dOOxsbG4wfPx7NmzfHmDFjoFQqoVAosGzZMhw6dAgSUToDERFR/sSp9fzCoDAv/o5oMTcBILfUE9jTAJAgTamBjVkJdY6IiApk7NixuHfvHmxsbHD16lWoVCqcOnUKf//9N/z8/JCYmIjy5cujcePGGDJkiCgQ8/r1axw4cACXL18WEjCqVauGzp07Y9iwYbCxybu40s2bN3Hq1Ck8fPgQr1+/hkqlgqOjIxo0aIBOnTqhV69eMDXN+89MuVyOY8eO4ezZs3jx4gVSU1NRvnx5tGrVCkOHDs13gcXIyEj89ddfuHHjBkJDQ5GUlAQ7OzvUrFkTHTp0wKBBg4q1AERcXBwOHz6Mmzdvwt/fH4mJibCxsUHlypXRunVrDBgwQO88eceOHcO3336rs/3zzz8Xllu1aoUtW7YY3JekpCRRkDQ9PR3W1tYGHduuXTvcvn0bdnZ2eWbAp6Sk4Pjx47h27RpevHiBhIQEWFhYoFKlSmjVqhX69euX6/uqfe/9+vXDd999l+v1+vTpg/DwcADAiRMnRJlkYWFh6Nu3LwDgk08+wZw5c3DkyBHs2rULoaGhcHBwQKNGjeDh4YFmzZqJzpuUlISjR4/i6tWrePnyJZKTk2FhYYFq1aqhTZs2+Pjjj+Hs7Jxr3zQaDS5evIgLFy7gn3/+QUxMDKRSKcqXL4/mzZujV69eaNu2ba7nKA2kUimsra0hl8sBiAPg+iQkJODEiRO4d++e8BlIT0+HjY0NKlSogGbNmqFXr15o2bKlQde/d+8eTp48CW9vb0RERIj+venZsyc++OADvcPJDT33pEmThGncunfvjiVLlhj071dpU+Q93rNnj+ibwOjoaPz4449Cae6AgAB89tlnOHr0KBwdHfN9/o8++gg9e/ZEcHAw0tLS0LRp01zbt2vXDqNHj8bmzZsBAD4+Prh3716JZO0REdGbI1GdDmT/vaLEA3sSQCHOipdINNDIMgCFBVKVHFZHRFSWvX79GjNnztTJDA8PD0d4eDguXLiA6dOnY+jQobh+/Trmz5+P+Ph4Udvnz5/j+fPnOH36NLZt24Zy5crpvVZoaCgWLFgAb29vnX0RERGIiIjApUuXsGXLFixbtgyNGzfOsd/BwcGYMmUKAgICdM7z999/4/Tp0/jiiy8MexEA/Pbbb9iyZQsyMsRFrGJjYxEbGwtvb29s374dM2fORL9+/Qw+b0Ht27cPP/zwg86871lVZ319fbFnzx588skn+Oqrr4o8kFC+fHnIZDJhaqoDBw5g/PjxBh07ZMgQDB06NM92Z8+exYoVK3Q+XwqFAklJSXj58iX279+Pnj17Yv78+bCyssr3fRTGnj17sHr1amE9KioKUVFR+L//+z9Ru+PHj2PVqlVITk4WbU9OToavry98fX2xd+9eTJ06FUOGDNF7raCgIMyZM0c0R2KW1NRUBAcH4/jx42jbti2WLl1aoDhIcYmLi0NcXOZ0M1KpFHXr1s2x7b59+/Djjz/qzY7L+uy/fPkShw4dQvfu3bFo0SKYmen/hvn169dYuHAhbty4obMv6727cuUK/vjjD6xZswYVK1bM1309ePAAU6ZMEZ7RXr16YdGiRfnKYi9Nijywl/2FqVixIr777jtUq1ZNeLAiIyPx008/Yf78+QW6hoWFBerUqWNw++HDhwuBPQDw9PQs9sCeVCpFkyZNivWaxqZSqURppo0bNy6zDwJRSePzVPbJn9wAsk+lp8wM7GX/Jri4JNnFAo91/wCDLA1QWKB6rXfQzLn4sheKC58nIv1UKhX8/PwAZE5fY2VlleuzodFoRMObLC0tOcqlFMjKTlGr1Zg6dSqePHkCCwsLdOvWDa6uroiKisKlS5cQFRUFtVqNdevWwc7ODkuWLEFGRgYaN26M9u3bw9zcHN7e3sIwy8DAQKxduxZr167VuWZISAhGjRqF6OhooQ/t2rVD06ZNYWpqCj8/P1y+fBmpqakICQnB2LFj8fPPP+udjy0rsSM2NhZA5ueqa9euqF27NpKSknDlyhX4+fnh559/FgU8zMzM9AaDFixYgAMHDgjrDRs2RJs2bYQRY15eXkLW1cKFC5GSkoJRo0bl+LoCgLm5eYEDT6tXr8bWrVuF9cqVK6NTp06oXLkyYmJicOPGDbx8+RIqlQp79+5FcHAwfvnlFyG416pVK8ycORNAZqAkqyrukCFDhIqkVapUyXf/3n//fVy4cAEAsHXrVsTHx8PDwyNff0fnZN++faIsQ0dHR3Tu3Bk1atRASkoK7ty5gwcPHgAATp8+jcDAQOzatUsnQ1Q7yGNiYpLnPWr/e2RhYSFqrz3dV0hICA4fPqxzfKVKlfDuu+8K59mxY4dQYATIDIh26tQJ1apVw+vXr+Hp6YnAwEDI5XKsXLkSVlZWOsG958+fY+TIkUKA08rKCp07d0bt2rWhUqnw4sULXL16Fenp6bh58yY+/fRTHDhwIMeAel73X9DPqaGfce1gaPfu3XMcablt2zasWrVKWG/QoAHc3d1Rvnx5KBQKBAUF4fLly0hISACQGQiuWbMmpk+frnOuuLg4jBkzRlR01c3NDS1btoRMJsPz589x8eJF4fe9zz//HIcOHRJ9nnL7bDx69AiTJ08WApADBgzA0qVLC5z5p1KpIJVKIZPJIJPJULt27Xz/3vnPP//kmQ2ZmxLLMRw7dizOnj2LR48eAQCOHDmCr7/+usAvZn44OTmhevXqwj+SgYGBRX5NfcpiimduTExM3rh7IiopfJ7KniR1imhdo5YCqsz3sKTeS1tLs8yhuNmZpQOpQIb6zftZpA+fJ6JMEolE9MdO9vWcKNQqrPC5jPORfkhVyYuyi2WKlYkZeldvgG+afwCZtPi+PMh6z1JTU/HkyRM0btwYmzZtgpOTk9AmNjYWQ4YMQWBgIJRKJb755htIpVIsWbIEgwcPFp1v3759WLhwIQDgzJkzSExMFA1ZValU+PLLL4WgXvXq1fHjjz8KE/hniYqKwowZM3Dr1i1kZGRg2rRpOHr0KKpUqSJqt3jxYiGoV79+fWzatEk0hHLmzJnYtm0bVq9eLWQKZd139s/rwYMHhaCera0tVqxYgW7duonaaDQa/Pnnn/juu++gUCiwZs0aNG/eHK1atdL7uuZ0LUOcPHlSFNT74osvMHHiRJiZmQnzoX311Vc4fvw4li5dCrlcDk9PT6xduxazZ88GANStW1fIirpy5YrwN6shVUxzM3nyZFy/fh1paWnQaDQ4ePAgDh48CBcXF7Rv314InGR/v/Ly4MEDLFq0SFgfOHAg5s2bpxO0u3LlCmbMmIHExEQ8ffoU8+bNww8//CBqk9/3ILf22svXr18HkDl0d/LkyXBycsKTJ08QEREhxB98fX2xcuVK4ZhBgwbpZBYqFAp8//33QnXg77//Hj169BCCcmlpaZg8ebIQ1OvevTsWL16sMyddZGQkpk+fjjt37iAkJASzZs3Ctm3bcr3XnO6/oF+25HSsUqkUskp3796NS5cuAfivkIa+Y8LDw7Fx40ZhfeHChTqZkEDmUO3Zs2fj3LlzADKf36lTp+r8jvbdd98JQb1y5crhhx9+QOvWrUVtfH19hS8IAgMD8fPPPwvPUNb96btXHx8fjBkzRsjI/OSTT7Bo0aJCfWmVdWzW/01NTYv9C+US/S23f//+QmAvKSkJAQEBqFWrVrFcu0KFCsI/kllRYyIiooJKzhbYyxwCW7KZLZamJoBcT4Eqs8wMnOQMVoslorwt97mM1U+vlnQ3SiXv2FAAwKKWunN8FwcrKyv8/PPPoqAekPnH8KeffioKuIwYMUInqAdkZoL9/vvvCAgIgEqlwpMnT9CuXTth/9GjR/H8+XMAgJ2dHXbs2KF3fjEnJyds2bIFgwcPxrNnz5CQkIBNmzaJ+nDjxg14eXkJ59qyZYtO36VSKcaOHYu4uLhcgx1yuRwbNmwQ1jds2KA3Q1AikWDw4MFISkrC999/D5VKhQ0bNmDnzp05nrsglEol1q1bJ6x/+umnmDZtmt62/fr1g7W1NWbMmAEA2LVrFzw8PPIdVMuP+vXr44cffsC0adOQlJQkbA8ICEBAQAD27NkDIDMbsHXr1mjfvj06duyYZybZmjVrhEyjDz74QJTxpq1jx47YtGkTPDw8oFKpcObMGTx48ADNmzc3zg3mwd3dHWvWrBGCL9lH7G3dulWYQ7BTp05YtmyZzjlkMhm+/vpr+Pj44P79+0hLS8Off/4pzH944MABYXh569atsX79er0BnkqVKuGXX35Br169EBUVBU9PT9y5c0cUvLp69SpevHiR6z0lJyfn+IzUqVMH77//fo7Henh45HpubQMGDMCsWbNyHDJ84sQJYUhr586d9Qb1AMDa2hoLFy7E+fPnodFoEB8fj6CgIFEMKCAgAKdPnwaQ+cXspk2b9H5G6tWrh8WLF2PChAkAMl/7adOmQSaT5Xgfvr6+GDVqFBITEwEAQ4cOxcKFC9+ITPQSDezVqFFDtJ59PH5R0p5/wdCJQ4mIiPRRqdVIQ7bqdv/OrzeiVbUS6FEmS5kJoMghYw9Aijz72GEiIl33YkNKugul2s3okhn9A2RmcVWqVEnvvgYNGojWc5oPDADeeecdISCRlU2X5ejRo8LyyJEjcy0aYG5ujjlz5uCzzz4Tjp0/f74wxPLs2bNC208++UQnqKdtwoQJ2Lt3b47VLM+fPy9kEbZo0UJvUE+bh4cHNm3ahMTERNy6dQsRERGoXLlyrsfkx4MHD4QsIxsbG0yZMiXX9n379sWePXtw//59KBQKHDp0CBMnTjRaf/R5//33cfLkSaxatQonT54UVd3NEh4ejmPHjuHYsWMwNTVF165dMWXKFL1DMMPDw3H79m0AmQHZOXPm5Hp9Nzc39O7dG8ePHwcA7N+/v9gCe8OHD88xgKNQKHD58mVh/auvvsrxPFKpFJ9++inS0tJQs2ZN0dxuWXUEAGDcuHG5Zm3Z2Nhg5MiRQpbgkSNHRIG9kydP6h0+rC0hIUGUZahtwIABuQb28sPf3x83b95E79699e5v2bIlZs2ahdDQ0BzbZKlYsSIqVKggPLvZ5zLMyuYDgC5duuT6+WjXrh3c3NwglUrh6uqKhIQEVKhQQW/bFy9eiIZIjxgxosBTwZVGRgns+fv74+DBgwgJCUF4eDh27doFS0s9f0hkk1VZJYudnV2+rqvRaLBhwwbExMQgJiYG3bt3x0cffZTncWq1GqGhocJ6UX4zQkREb77wtERokK0QhcIcZiZSTHrXtWQ6BcBSljkcWKMygcREKztPlhnYY8YeERmiVblquBTpX9LdKLXaVqxZYtfOrXCgdsDBysoq15FR2okO2gkQGRkZuH//vrDeq1evPPvUvn17ODo6Ii4uDunp6Xjw4AHc3d0BANeuXRPade7cOdfzWFtbo0OHDqI/9LXdunVLWG7UqFGe/TI1NUXTpk2FOQXv3r0rVE01Bu1J/jt27GhQ8kjfvn2F1/fWrVtFHtgDMjMrV61ahblz5+LChQu4evUq7ty5Ixr2nEWpVOLMmTO4ePEi5s2bp1NEQ/uemzZtimrV8v4ys2/fvkJgT/s9LGrZh15re/DggZDF6OzsrDPMPLuePXuiZ09xlu7r16/h7//fv5OGfCa1+3T37t082xvTkCFDdBKtgMyh9ykpKQgJCcGdO3cQGRmJhw8f4quvvsKZM2ewevVqnay4Vq1a5fr6avPz8xNVV84q6JJF+9+ILl265Hm+X3/9FUDmv3E5BW79/f0xd+5c4TP+4YcfvlFBPcBIgb2UlBT89ttvwvqNGzcMehP++ecfYVkmk+U7wCaRSHDs2DEhSKdUKg0K7D169Eg0/JYVcYmIqDCCU+J1NyrMcXPyu2hegsUp7C1lkJlIoVBYACZaQ4VlWRl7DOwRUd7mNuoECcA59rLRnmOvpOSUrQeI55jKK4Eip3nOIyMjhWQMS0tLuLoa9mVVw4YNhSG3QUFBcHd3h0ajQXh4uNAmp0n4tdWvXz/HwN7Lly+F5d27d2P37t0G9S1LWFhYvtrnRXui/7wCQ1m0syqzpokqLuXKlcPgwYMxePBgaDQavHz5Enfv3sWdO3dw8+ZNxMTECG0VCgW+/fZb2NraioKhhb3nsLAwqFSqIp+PzNLSMsdMrqx+ZMmt6mtusg+bbdu2bb6Oz/55XLFiBVasWKG3bb169QBkBiEvXryYr+tkMWTORqVSiT179mD58uVQq9U4ffo0ypcvjwULFuR6nEqlQkBAAIKDgxEcHIygoCD4+fnhyZMnOgFkjUb8xbj2vxEFfS+ymzp1KlJS/vs9+N69e0hJSXmjRm4aJbBXv359ODg4CGmNf/zxR56BvdTUVBw6dEhYb9OmTYFeWHd3dyFF1cvLC6GhobmmhwPAL7/8Iiw7ODjgvffey/d1iYiIsugL7NmbWpdoUA/IHIrbr2El/BVvAVj89wuNRKaARqLiUFwiMohMaoJvmnTF8jb93oi5iN4k2pU/c1PQwIn2VEn29vYGv//ac3FlnSMuLk409NOQ0Vo5zemVvW8FoS9DrTC0+5Nbv7Xpe51KgkQiQZ06dVCnTh0MHToUGo0G9+7dw9atW4XiCQCwdOlSfPDBBzA3z5xupLD3rNFokJCQUKCKsPmR12dNO4iZ31GEWQr7/snlcqSmpha4ym1RMDU1hYeHB1JSUrB+/XoAwJ49e/Dpp5+iZk3dTOUbN25g165d8PLyEubcyy6rkEVOFWBfv34tLGsX8SmMrKCeubk5MjIyEBoaitWrVwtFg94ERgnsyWQyDBo0SJi40dPTE8ePH0e/fv30tlcqlZgzZ44wrhrIrJJbEB9//LEQ2FMqlViwYAE2b96cY/W73377TfSP08iRIw0aNkxERJSTW2EROtusUDq+Bdz1fy0Rcvgx7qTEiHfIMpDMjD0iojKtqAOt2bNpDKU91C6nbEBDZM3Np492kLBnz565DkvWx5ChkvlRkNdKO7hRmoLmEokEbm5ucHNzw7Zt24R53GJjY+Hp6YmuXbsCKPw9Z12roAy9fk6xgSz65hrML+3PvK2tLcaPH5/vc+TVz5Li4eGBzZs3CxWVz58/j9GjRwv71Wo1Fi5cKFSo1mZrawtXV1fUr18fzZo1Q4cOHTBs2DDR1GjajPFe6DNu3Dg0a9ZMeF/27t2Lnj17FqrSdGlitE/Ol19+iRMnTiAyMhIAMHfuXISFhcHDw0MUOHv8+DGWL18uGkM+ePBgvamqc+bMEU0YeeHCBZ1x+25ubujVqxdOnToFIDOoOHr0aCxYsECU3h0dHY2NGzdi//79wrZGjRphzJgxhbxzIiJ6m2UoVdh87zlgK95uIykdgT1LmQn+17AW7tzxEe+QpTNjj4iIcqWdMZOQkACNRmNQIEY7G87WNvMHpKOjI2QymTCnliGZWlnVK/PqW/PmzYWCHSVFuz+GZgNqtytoppghRo0ahcjISMTExGD37t145513DD529OjROHLkiFAZ2c/PTwjsOTg4CO0Kcs9SqRQ2NjZ62xkStNOeD7IwtF/73D5zhp5DrVaLAl9lnbW1NWrWrAlfX18A4iHYQGZF4aygnkQiQb9+/dCrVy80atRI73QBaWlpOtuy2NvbCwlgCQkJqF69eqH7P2HCBEyePBkAhNiRRqPBvHnzcPz48Tci0ctogT0bGxv8+uuv8PDwQEJCAhQKBdauXYtNmzahXr16MDMzQ2hoqE5ktlu3bvj2228Lde0lS5YgODgYjx8/BgChYkutWrXg5OSE+Ph4PH/+XPTtQJ06dbBly5ZcyyETERHl5bRvNFI1qcj+Z46tSekI7AFATRs9fziZpbN4BhER5apq1aowMzODXC5HWloaXr16lWsRDiAzIJMVAAAgDNmTSCRwdnYWqu/6+vqiffv2uZ7Lz88vx301atTAw4cPAUAIOuUlISEBNjY2RTKnm/b8g9r3nxsfn/++dNNXyMBY/Pz8EBGRObrg7t27+QrsAZlznWW9xtoZmC4uLsJyQe65SpUqor/Htc+dvdBmdnK53GjDqbVfe+25G3OiUCgwY8YMVK1aFTVr1sSQIUNEQ1NTUlIQFhaGqlWr5noeuVyOjIwMIfhdmmm/N1lDsYHMe8gauQkA06dPz3U0plKpzDV4Wr16dSGw9/LlSzRu3DjXfp04cQL379+Hi4sLOnfurHeux4EDBwrL8+fPx/Xr15GQkIDg4GCsWbPmjSikUfC8aD3q16+PP//8U1SSOC0tDQ8ePMDt27dFQT0rKytMmzYNP/74Y6FTTm1sbLBz504MHDhQ9A1SVllmX19fUVDvww8/xK5du1C+fPlCXZeIiOhmUBwgE39jrFGawkaW8/Ch4lbTRs+8N7J0pDJjj4iIcmFmZoZmzZoJ6ydPnszzGC8vL2G+MZlMhiZNmgj7tOdhP336dK7nUSqVQgVbfbSH0F25ciXP7C25XI4+ffqgadOm6NKli6j6pjFoF2S8cuWKaLL+nGSNOgNyr9paWNp92717d76H0L569UpY1i5ooH3eR48eISQkJM9z5XbP2plTsbGxuZ7n8ePHOc7Tll/NmjUTYhLBwcGi6rb6PHz4EKdPn8Zvv/2GP/74A0BmAFs7O+3MmTN5Xnffvn1wc3ND69atMW7cuELcQdFKT08XAvKAOBDq7+8vml8we+Xk7O7cuSMabpv9PdT+TFy9ejXPvh0/fhxHjhzB+vXrERgYmGf7ChUqYNasWcL67t27i70icVEwamAPyHyT9+/fjy1btuCjjz6Ci4sLrKysIJPJULFiRbRv3x4zZ87EhQsX8MUXXxhtLgFra2ssX74cf//9N0aNGoXGjRvDwcEBpqamKFeuHBo0aIBRo0bh0KFDWLVqlcGTexIREeUmXaECTLNNEKw0h6WsaCu85YeL3sBeBqviEhFRngYNGiQsb9++Pce5sYDM4Nnq1auF9e7du4uCNdoVVQ8fPpxrpt2+ffuEaZ706dGjh1B8MSYmBps2bcr1Pn777TdER0dDqVQiNjY233Py5aV169ZCwCM5ORkbNmzItf2pU6fg7e0N4L/hi0VFO9jy4sULLFmyxOBjT58+LWTZVaxYEe3atRP2Va9eHe7u7gAyAzQ5VXHNcv/+fVFg78MPPxTtr1KlirD86NEjJCUl5XiuvN7v/LC2tka3bt2E9Z9++inX9jt37hSWtY/Tfla2bNmCqKioHM8RFxeHX3/9FUDm8F9jVYAtCgcPHkRqaiqAzM9q1lBsQDezMreArFwuF+ZrzJJ9Tr3+/fsLMaKzZ8/m+m/E8+fPce/ePQCZiWMdOnQw4G4y6zRkTQWn0Wjw9ddf51jso6wwemAvy/vvv4/vv/8eZ86cgbe3Nx4/fgxPT0/8/vvvGDNmjEGVb1asWIFnz54J/2WfX0+f2rVrY/bs2Th06BBu3boFHx8f3LhxA0eOHMHs2bPzTOUkIiLKD7/YJEhkCvFGRekK7JUzt4KNqbl4o1k6kpmxR0REeejbt68QdEhKSsLIkSP1DruMjo7GF198gadPnwLInHNs2rRpojaNGjUShsXJ5XKMGTNGNDQzy9GjR/MMEtnZ2eHzzz8X1n/55Rf8+OOPwhx+WdRqNfbv34+NGzcK20aNGmW0iptZTExMMHXqVGF9x44dWLt2rd4hpSdPnsScOXOE9REjRojmhzc2Nzc3UXBv9+7d8PDwwKNHj3I8Ji0tDVu3bsWMGTMAZAZ0vv76a52prKZOnSoMbT537hzmzp2L5ORknfN5enpi/PjxQpGJbt264b333hO1adiwoTBvX2pqKr755hud9zM9PR3ffPONQdlc+TF+/Hjh3k6cOIFVq1bpXFuj0eCnn34SsvHs7OwwbNgwYb+HhwcqVqwIIDPY/Omnn+LFixc61woPD8f48eOFIacODg75miMyKz5y8eLF/N1kAZw4cUIUrO/bt68oAFurVi1RkZuVK1fq/cwHBgbCw8MDT548EW3PPt9enTp10KtXLwCZQ57HjRun99+bwMBAzJo1S8j4GzZsWI7zNeqzePFioap4YGAg1q1bZ/CxpVHpLLtCRERURjyPiwWyJ8QpLGAqLV3V7VxsHPE4Xqt6ryydGXtERJQnmUyGjRs3YsiQIYiLi0NQUBAGDBiA9u3bo2nTpjA1NYW/vz8uXrwoZPXIZDKsWLFCb2LG3Llz8fDhQ/j5+SEyMhKDBw9Gx44d0ahRIygUCly/fl0IOLm6uoqGgWb3xRdf4J9//sH58+eh0WiwceNGHDp0CJ06dUKlSpUQHR2NmzdviuZNc3d3x5dffmnkVylTnz598ODBAyGja/PmzTh69Cg6d+6MSpUqISYmBrdu3RJlIbm5uWHmzJlF0h9tCxYsQEpKCo4dOwYAuHXrFgYPHoxq1arB3d0dTk5OsLKyQnx8PPz9/XHnzh3RcOI5c+agd+/eOudt1aoVZs2aheXLlwMA/vrrL1y6dAldunRB9erVkZaWhjt37uD+/fvCMa6urkJ7baampvjss8+EIMupU6fw6NEjdO3aFY6OjggJCcGFCxcQHx8PBwcHNG7cONfh2vlRv359zJs3T5j/f+vWrTh58qTw3sXHx+Py5cvCMF2pVIrFixejQoUKwjkcHR2xYcMGjB49GmlpafD390f//v3RoUMHNG7cGBKJBH5+frhw4YIQNJTJZFi5cmWxjyg8efKkUKMgO7lcjsjISNy8eVP0/FWvXh1ff/21qK2NjQ0++eQT7N69G0BmcLd79+7o3LkznJyckJCQgCdPnuD27dvCEHDtIjraw3izLFq0CL6+vvD390doaCgGDhyI9957D40bN4aJiYkQ1MwKIDZu3BgTJ07M1/3XqFEDEydOFIKWO3fuRI8ePdCyZct8nae0YGCPiIiogNRqDQKT4/QE9swRlWycSm3GUtNWHNiTyORITMp9YmoiIiIgs0jCn3/+ienTp+PBgwdQq9Xw9PTUG1SpWbMm1qxZI5pbT5udnR327duHqVOnwsvLCyqVChcvXtTJPho6dCjeeecdLF68OMd+SSQS/PDDD1i7di127NgBhUKBsLAw7NmzR2/7/v37Y9GiRYWe4z038+bNg7OzM9avX4+0tDRERERg7969evv+2WefYdq0acVS0FEqlWLlypV49913sW7dOoSHhwMAQkJCcp0br1atWpg/f36uwxxHjhyJChUqYNGiRUhISEBcXBwOHTqkt23//v2xcOFCYRh1dmPHjkVISAgOHjwIAAgNDRUNfQUgvL7Hjx83WmAPyPzM2dnZ4dtvv0ViYiLCwsKEOfS02dnZYcmSJejRo4fOvlatWmHv3r2YNm0a/P39oVKpcPXqVb0Zhk5OTlixYoXBQ0iNad++fflq/+6772Lp0qV6R17OmjULISEhuHz5MoDMjER9z6BMJhPmEszKoH38+LFoCDOQWUl77969mDlzJq5evQqVSoXLly8L59f2/vvvY/HixaKCHob67LPPcPLkSTx58gRqtRpff/01jh49WqBzlTQG9oiIiAooPCkdGZJ0nYq4UJghPLGUBfasdb8JjlfqDpUhIiLSp1q1ati/fz8uXbqE06dPw9vbG9HR0VAoFChXrhwaNWqEHj16oHfv3qKhefrY2dlh27ZtOHfuHA4fPoxHjx4JWVhNmjTB0KFD0bFjRyELKDcmJiaYOXMmhg4dioMHD+LmzZsICgpCYmIizM3N4ezsjJYtW2LQoEFGn1cvJyNHjkTfvn1x4MABeHl54dWrV0hISICZmRlq1KiB1q1bY+jQoUU6/FYfiUSC/v37o2fPnrh8+TK8vLzw9OlThIWFITExEWq1Go6OjqhYsSKaNWuGrl27ol27dgYFQvv27YtOnTrh4MGDuHr1Kl68eIH4+HiYmpqiWrVqcHNzw8CBA/N8D0xMTLBkyRJ89NFHOHjwIO7cuYPo6GhYWVnBxcUFPXr0wP/+9z9YW1vj+PHjxnppBH369MF7772H/fv34+rVq/Dz80NiYiIsLCxQu3ZtdOzYEUOGDMl1arEGDRrgxIkTOHPmDM6fP4+HDx8iNjYWCoUCDg4OqFevHrp06YL+/fvna/hocZBKpbCwsICtrS1cXFzQqFEj9OzZU1REJztzc3P88ssvOHXqFI4dO4bHjx8jPj4eUqkU9vb2cHV1RatWrTB48GBUrVoVT548EQJ7p0+fxuzZs4VhsVkcHBywZcsW3LhxA8ePH8e9e/cQFRUFpVKJChUqoHnz5ujbt68wV15BmJqaYsmSJRg8eDBUKhVevXqF9evXY/bs2QU+Z0mRaPJbEocKzNvbWxgDLpVK0aJFixLuUeEolUqhxDwgriZERPnD56lsuuoXg04H9kNSWVw9TRPQFDbKCkhcqjtkpaSs+ecyZt09IdpmG9EC8XOH6T+gDOPzRKSfSqUSDQGsW7euMDeWPhqNRhhaCWROTm6swndEbxs+T0TGU5qep/z+bNWnsLGiIiueQURE9KYLS0wHZHoy8xTmmPxureLvUC5q2upm7KVoUvS0JCIiIiKisoKBPSIiogKKTpEDprrz1JmozTG8lXMJ9ChnLja6Q0ZUpunIULKABhERERFRWcXAHhERUQFFJ2foZOxJNSa4Ou591HeyLaFe6acvsAdZOhLTlcXfGSIiIiIiMgoG9oiIiAooM2NPHNhzsXVEO5ecJ1QuKeXNrWCavWaWWTqSMhjYIyIiIiIqqxjYIyIiKqDopAydobjVbexLqDe5k0gkcDDNVnmNGXtERERERGUaA3tEREQFFJaSBIlUXFy+urVDyXTGABVkduINpnK8Tk0vmc4QEREREVGhMbBHRERUQBHpiTrbnK1KZ8YeADiZi/smkQCvkuJKqDdERERERFRYDOwREREVUIw8WWdbVSs7PS1Lh6pWDjrbApJji78jRERERERkFAzsERERFYBKrUGyOkVne9VSnLFXXU9gLzglvtj7QURERERExsHAHhERUQHEpMihyVY4AwCcrUtvxp6rjW613vC0+OLvCBERERERGQUDe0RERAUQnSIHZBk620vzHHvv2JfX2RYl150nkIiIiIiIygYG9oiIiAogIDYVyJaxJwFQ2dK2ZDpkgJq2dtCoxT/6YxUM7BERERERlVUM7BERERXAT16vdDL27EytYCo1KaEe5c3OQgbILUTb4lW6BUCIiIiIiKhsYGCPiIgon55EJOH0s2jAVBzYK83DcAHAzsIUUIgDe6maVMhVyhLqERERERERFQYDe0RERPl0xT8GkKghMRUHxGrb6xanKE3MTaWQKi10trMyLhERERFR2cTAHhERUT6lylU62XpA6a6ICwASiQQWGiud7YHJcSXQGyIiIiIiKiwG9oiIiPIpXakCZHKd7aV9KC4AWMFaZ1sAA3tERERERGUSA3tERET5lKFU683Yq2JVujP2AMDBRLdqb2BybAn0hIiIiIiICouBPSIionxKV6p1KuICZSNjr5K5bvCRGXtERERERGUTA3tERET5lJmxVzaH4laxsoVGLf7x758YU0K9ISIiIiKiwmBgj4iIKJ8yynDGXnkbc0BhLtrGjD0iIiIiorKJgT0iIqJ8ylCqdDL2LE1ksDezKKEeGa6CtRmgEPczIi0RCrWqhHpEREREREQFxcAeERFRPunL2KtqZQeJRFJCPTJcBWszQC4O7KmhQWhKQgn1iIiIiIiICoqBPSIionxKU6h0quKWhWG4QFbGnrnO9sAUDsclIiLDKBSKku4CERH9i4E9IiKifEpWZUAi1Yi2OVuXjcBeeSvdobgAEMh59oiIKA/JyclYvnw5tm7dqnf/xo0bUa9ePdSrVw8bN24s5t4REb2dGNgjIiLKp0Rlss62spWxpxvYux4aVgK9ISKisuLmzZvo2bMntm/fDqVSWdLdISKifzGwR0RElE/JmlSdbVWt7EqgJ/mXOcee7lDcI88CS6A3RERUVty5cwfR0dEl3Q0iIsrGtKQ7QEREVNakqtN0tlUtSxl7SnNoNBJIJP8NJ47KSIBarYFUWvoLgBARUek0adIkTJo0qaS7QUT0VmHGHhERUT6lafQF9spGxp61mQkAiW4BDVkGUhWqEukTEREREREVDAN7RERE+ZSBshvYk0j+zcjTCeylIzFdXvwdIiIiIiKiAuNQXCIionySS9N1tlWxLBuBPYHCAkCCsCqRahCQlIiq9lYl1yciIsrTiBEjcPv2bVhZWcHb2xvPnz/HqlWrcPfuXchkMtSsWRO9e/fGZ599JhwTHx+PI0eO4Pbt23j27Bni4+ORkZEBa2trODk5oUWLFvjwww/h5uaW4/W0/fjjj/jxxx8BABMnThSG327cuFHvdn38/Pxw4MAB3L59G6GhoUhNTYWDgwNcXV3x/vvv45NPPoG9fdmY5oKIqCQxsEdERJRPSmmGaN1EI4OFqayEepN/g5tWwcHwVzrb/RJi0L5a5RLoERERFURwcDBGjBiB+Ph4YdujR4/wzjvvCOu7du3C2rVrkZqqW/gpPj4e8fHxeP78Ofbv34/evXvj+++/h5mZWZH1OTU1FStWrMCBAweg0WhE+6KjoxEdHY3bt29j8+bNmDt3LgYNGlRkfSEiehMwsEdERJRPqmyBPXONRQn1pGAmveeKg3/c19n+Kjm2BHpDREQF9fXXX4uCeln69OkDANi2bRtWrlwpbG/QoAHc3d1RoUIFyOVyBAcH4/Lly8I5Tp48iWrVqmH69OnCMUOHDkWnTp3g5eUFLy8vAECHDh3QoUMHAECLFi0M7m9GRga++OILUQZggwYN0K5dO9jb2yMsLAyXLl1CVFQUkpKS8PXXXyMiIgITJkww+BpERG8bBvaIiIjyQaPRQGMiDuxZoGwF9t51LY9BDVzxV+Jz0fag5PiS6RARlWoalQIJJ5cj4sk5aOS6WV9vK6mZFWya9UHF/gsgKYGs7dTUVNy+fRvVq1fHwoUL0apVK8TExOD06dNo164dwsPD8cMPPwjtFy5ciP/7v//TOU9KSgpmz56Nc+fOAQAOHDiAKVOmwNQ080/F3r17C9fLCuy1aNECo0ePznefly9fLgT1LC0tsWzZMuH8WTIyMrB69Wrs3LkTQObw3oYNG6Jz5875vh4R0duAgT0iIqJ8eJ2WAkjFQ4cspZYl1JuCa125Ev5KFG8LTY0vkb4QUekW//cyJJ5eVdLdKJXSA70BAE6DFpfI9U1NTbF161a4uLgAAKysrDB27FgAwIkTJ5CenjknbOfOnfUG9QDA2toaCxcuxPnz56HRaBAfH4+goCDUqlXLqH0NDAzEwYMHhfXVq1ejW7duOu3Mzc0xb948ZGRkYP/+/dBoNFi9ejU6duwIqZS1H4mIsuO/jERERPkQlJKgs81GWvYKTtSwcdTZFpGhe29ERPKAuyXdhVItze9miV37vffeE4J62bVs2RKzZs3CsGHDMGbMmFzPU7FiRVSoUEFYT05ONmY3AWQGGpVKJQCgbdu2eoN62mbMmAErq8yfry9fvsS9e/eM3iciojcBM/aIiIjyISj5zQjslbMwh0ZhBolMLmyLzkjM5QgieluZubgh3fdSSXej1LKs3bbErt2yZcsc97Vq1QqtWrUy6Dx+fn5QqVTCukKhKHTfsrt5878AaK9evfJsb2dnh/feew9nzpwBANy6dQutW7c2er+IiMo6BvaIiIjyIURPYM/OtOwF9mzMTQGFOaAV2ItVJEGj0UAikZRgz4iotHHo8zUkEgnSOceeiPYceyWlevXqBrdVqVQICAhAcHAwgoODERQUBD8/Pzx58gRxcXGittmr1RpDUFCQsNygQQODjmnYsKEQ2NM+noiI/sPAHhERUT6E6hmKa29qUwI9KRwbM1NAYQEgSdiWoVEgXp4GR/OyF6gkoqIjMZHBod8CWP1vBQP/pYy9vX2ebW7cuIFdu3bBy8tLmHMvO4lEAolEArVabewuCrSr9zo66k4HoY92O33Vf4mIiIE9IiKifIlIS9LZ5iizLoGeFI6Nucm/gT2xwOQ4BvaIiMoIExOTHPep1WosXLgQBw4c0Nlna2sLV1dX1K9fH82aNUOHDh0wbNgwhIaGFllfC5IFqD08mIUziIj0Y2CPiIgoHyLSdQN75czKYGDPzBSQm+tsD0yOQ/PyziXQIyIiMqatW7cKQT2JRIJ+/fqhV69eaNSoESpVqqTTPi0trUj7Y29vj6ioKABAXFwcatSokecx2kOEbW1ti6xvRERlGQN7RERE+RCVLWNPozKBnZlu5ltpl1PGXlBKnJ7WRERUlsjlcmzbtk1Ynz59OsaOHZtje6VSicTEoi2g5OLiIgT2nj59imbNmuV5zJMnT4TlmjVrFlnfiIjKMuYzExER5cPrjGwZe0ozWJjmPBSqtLKUmUCi1D8Ul4iIyjZ/f3/RnHRDhw7Ntf2dO3egVCqFdX1z7RV2fkXtirYnT57Ms31iYiK8vLyEdUMr/BIRvW0Y2CMiIjKQRqPBa3mKeKPSDOamZe/HqUQigTV0hxAHMLBHRFTmyeVy0XpsbGyubVeuXCnaph3ky6I9x5323HeGGjBggDAn4K1bt3D+/Plc269du1YYHly5cmVRYJCIiP5T9v4SISIiKiGJinRkqBXijUozWJTBwB4A2JqZQ6MUz8oRxMAeEVGZV6tWLZiZmQnrK1eu1An2AUBgYCA8PDxEQ14B/fPt2dj8VwG+IEU2qlevjo8//lhYnzFjht7MPblcju+//x579+4Vtn3zzTcwNeUsUkRE+vBfRyIiIgOFp+oWziirGXvAvwU0FBaAabKwjUNxiYjKPhsbG3zyySfYvXs3AODcuXPo3r07OnfuDCcnJyQkJODJkye4ffu2UK1WJpNBocj88kp7GG+WatWqCcvHjx+Hra0tKlWqhDp16qBLly4G9WvevHl49uwZHjx4gLS0NHz11VfYsmUL2rVrBzs7O4SHh+PSpUuIjIwUjhk7diy6detW0JeCiOiNx8AeERGRgcLT9Ewsriibc+wBWQU0zAHL/wJ7rzNSkKLIgLVMt2IuERGVHbNmzUJISAguX74MAAgPD8eePXt02slkMowbNw4AsHHjRgDA48ePMWjQIFG79u3bw8XFBQEBAdBoNPjjjz8AAJ07dzY4sGdubo4dO3bgu+++w+HDh6HRaPDkyROdjEEAsLa2xsKFC9G/f3+D75mI6G1UNlMMiIiISkB4qp7AntK87GfsZROUEl/8nSEiIqMyNzfHL7/8gnXr1qFz586oWLEiZDIZzM3N4eTkhDZt2uDLL7/E2bNnMXHiRFFw7vTp00hPTxedz8LCArt27cKgQYNQqVIlyGQyWFlZ6R3imxsLCwssX74cR44cgYeHB+rVqwd7e3uYmJjAwcEB7u7umDFjBs6fP8+gHhGRAZixR0REZKAIfRl7SjNYyMpoYM/cFEjUzcwLTI5DA4dKJdAjIiLKy65duwxuK5FI0Lt3b/Tu3TvPtg0bNsSzZ89ybePk5IRly5bluH/SpEmYNGmSQX2rX78+5s2bZ1BbIiLKWdn8S4SIiKgE3AmP0t2oNIO5Sdn8cWpjZgLIdTP2OM8eEREREVHZUDb/EiEiIipm/4Qn4s8ngbo7FGawlJXNOfYcrGQ5DMVlYI+IiIiIqCxgYI+IiMgAf9wPhcpEPN+QRi2BpYk5Gle2LaFeFU4VW4vM4hnZMGOPiIiIiKhsYGCPiIjIAFFJGYCpeIJwidIc+0e4wdq8bE5ZW8XOHFDJoFGLfx14GK1nyDEREREREZU6DOwREREZIFWh0gnsuVd1Qt+GZbfIRBU7CwASneG4vnGvoVSpS6ZTRERERERkMAb2iIiIDJAkz4DERCXaVs3avoR6YxxVbP8N6MnFw3FVJhm4FRRbAj0iIiIiIqL8YGCPiIjIAPGKFJ1tVazsSqAnxlPF7t+AXraMPYkECEyJL/4OERERERFRvjCwR0REZIBEVarOtiqWZTuwV8lWf2AP+H/27js6rupaA/h3p/dR75Yty12uGIwBg03vEOqj10ASAgklBdIbARJCCqQQAqEn9OrQwWAbsI17L7LVexlN7/f9IXvkq3tlq0zT6Put9dab2becLZPRaPacczZQzwYaRERERERpj4U9IiKiQXBF5YW9ItPo7IZ7gFa9/88Apc64Hhb2iIiIiIjSHQt7REREg+BVKOyN9hl7MUH5jL1Gb08KEiEiIiIioqFgYY+IiGgQ/PDLYqN9j70YhaW4LX4W9oiIiIiI0h0Le0RERIMQFHyyWEkGFPaOLs8CwjqIoiCJdwSdqUmIiIiIiIgGjYU9IiKiQQirApLngiggV29KUTbxc/sJEwEIsn32usOu1CREREkjimKqUyAiIhrV0uG9lIU9IiKiwwhFooiqg5KYQTBAJYz+t9ELZxXjmvllssKeK+pBVIymKCsiSgSVSvo7KxwOpygTIiKizND/vbT/e20yjP5PJERERAnmC0UAjXTGnkkwpiib+NKqVfjnJXNkDTSiiKLFx1l7RJlEEATo9X1FfKeTS+6JiIhG4uD3Ur1eD0EQDnF2YrCwR0REdBjdvgAEjfTbOLN69C/DPUCnUUETkRcqa93dKciGiBLJbrfHHjscDvh88v1DiYiI6PB8Ph8cDkfs+cHvscmkScmoREREo0idW94h1pZBhT0AMMIEd79YrbsbxxRMSEU6RJQgdrsd7e3tEEURkUgEtbW1sNlssFgsMBgMUKvVsXMPnHNAJBJJyUwEokzA1xNR/KTy9RSJROD3++F2u+F0OmN77AmCwMIeERFRuqpXKOxlaS0pyCRxrGqLrLBXxxl7RBlHo9GguLgYzc3NEEURoiiip6cHPT3y33MAEI327bWZin2DiDIJX09E8ZNOrydBEFBcXAyNJjUlNhb2iIiIDqPBI//Am6M1pyCTxMlWW9DcL1brYWGPKBPZ7XZoNBo0NDRIPhj1J4qiZFNwrVbLGUZEw8TXE1H8pNPrSaVSoaysDGZz6j4bsLBHRER0GM1eeROJPH1mzdjL1VllMe6xR5S5zGYzKisr4fF44Ha74fF4JMuaDuj/wYmIho+vJ6L4SeXrSa1Ww2w2w2KxwGw2p2ym3gEs7BERER3Glo4OWazAYEtBJomTZdBDDOkgaIOxGAt7RJlNo9HAbrfH9gQSRVEygy8cDmPLli2x55WVlSn/8EI0WvH1RBQ/qXw9qVSqtJtty98kREREh7ByXxc+qmmCkC2NFxnlM9xGM5teA3j1wEGFvTp3N0RRTLs/XogoMQRBkDXPOJharZYcJ6LB4+uJKH74epLijp1ERESH8NeV+wBNUBITRaDIlFmFPatBC4QMkpg7HER30JeijIiIiIiI6HBY2CMiIjqE/25okhX2ENbCqsusvXFsBo2ssAcAe3o6U5ANERERERENBgt7REREA4hN89cEpAfCepi0mTXdP9uoBYLywt5HNQ0pyIaIiIiIiAaDhT0iIqIBNDsDAERAE5IeCOtg0mVWYe/kyXlASC+Lc8YeEREREVH6YmGPiIhoAHu7PIAmCFnviLAu42bszS/LwmkV42TxBq8j+ckQEREREdGgsLBHREQ0gOoOr3x/PSAjZ+wBwK1HT5PFWgM9KciEiIiIiIgGg4U9IiKiAVR3euT76wFAKPNm7AFAockMMayRxDqCrhRlQ0REREREh8PCHhER0QD2dnoBrdKMPT0s+swr7Cl1xu0Os7BHRERERJSuWNgjIiIaQJ3Dp7gUd25BHkw6jcIVo5tVr5E10PCLAXhCCrMWiYiIiIgo5VjYIyIiGkCPP6RY2PvrefNTkE3iKc3YA4BaT3cKsiEiIiIiosNhYY+IiGgATn9YsbA3v6ggBdkknlmnhqBU2HOzsEdERERElI5Y2CMiIhqAUmEvV2+CTp15y3ABQBAEGGGSxVnYIyIiIiJKTyzsERERKRBFEc5AWNY8o9hoS1FGyWERzLJYnduR/ESIiIiIiOiwWNgjIiJS4AtFEIlGAbW0sFdosqYoo+TI0sh/Pu6xR0RERESUnljYIyIiUuD0hwF1GIJKlMQzfcZett4EMSr986COS3GJiIiIiNISC3tEREQKnIEwoAnI4sXGzJ6xZ9drgaC0gQb32CMiIiIiSk8s7BERESkYqCNusSmzZ+xZ9RogpJfEmrxOBCPhFGVEREREREQDYWGPiIhIwUCFvcIMn7FnNWiAkHTGnggRDd6eFGVEREREREQDYWGPiIhIgUuhIy6Q+TP2bAqFPYDLcYmIiIiI0hELe0RERAqcgZDyUtwMb55h02tke+wBQI27KwXZEBERERHRobCwR0REpGDgPfYyfCmuwh57ADvjEhERERGlIxb2iIiIFCgV9gwqLSwaedErk3ApLhERERHR6MHCHhERkQJnQF7YyzdYIAhCijJKjiyjFgjrIEalPydn7BERERERpR8W9oiIiBQozdgryvD99QBgXqkdgACEpTMTaz2OlORDREREREQDY2GPiIhIQZfPC0EdkcQyfX89AJicZ0aJzSBroFHvcSAqRlOUFRERERERKdEk4qaiKOKzzz7Dm2++iY0bN6KjowMqlQpFRUWoqqrCueeei0WLFkGlin9d0ePx4LXXXsOHH36InTt3wuVyISsrCyUlJTj55JNxwQUXoKCgIO7jEhFRZukIumWxcWZ7CjJJLkEQcOKkXDzXIp2xF4pG0Ox1oXQM/BsQEREREY0WcS/sNTU14Qc/+AHWrFkjO1ZdXY3q6mq8+eabmDt3Ln7729+isrIybmOvXbsWd911F5qbmyXx9vZ2tLe3Y+PGjXj00Ufxk5/8BBdeeGHcxiUioszTGfAA/fpklJgzfykuAJw4KQ/P1Ss30GBhj4iIiIgofcR1ylxjYyOuvPJKSVHPZDJh3rx5WLBgAfLy8mLxDRs24NJLL8Xu3bvjMvbatWtxww03SIp6paWlWLBgASoqKmIxj8eDe+65B//5z3/iMi4REWWmnrBHFhsLe+wBwIxCq3JnXA8baBARERERpZO4zdiLRqP43ve+h6amJgCAVqvF7bffjquvvhp6fe+UB1EU8d577+HnP/85HA4H3G43vvnNb+Kdd96BTqcb9thutxu33347/H4/AKC4uBj33XcfjjnmmNg527dvxz333IPt27cDAH7zm99g9uzZqKqqGva4RESUuZxhryxWZMz8PfYAoNCiB0J6WZydcYmIiIiI0kvcZux99NFHWLduXez5r3/9a3z961+PFfWA3n17zjjjDDz66KOx/fUaGhrw5ptvjmjsRx99FG1tbQAAq9WKJ598UlLUA4Dp06fj2WefxZQpUwAA4XAYf/jDH0Y0LhERZS5XVF7YKzaNjRl7hVadrHkG0LsUl4iIiIiI0kfcCnsvvfRS7PHs2bNxwQUXDHju3LlzsXjx4tjzDz/8cNjjBgIBvPDCC7HnN910EyZMmKB4rsViwb333ht7vnLlSuzcuXPYYxMRUWYKhCMIwi+LF4+RGXsmnQZmlQmiKI2zsEdERERElF7iUtgTRREtLS2xWXhnn332Ya+ZPHly7HFtbe2wx16xYgV6enoAACqV6rBNMfovv3333XeHPTYREWWmTk8I0AYlMQEC8gzmFGWUfEUWIxCWbpNRxz32iIiIiIjSSlwKe4Ig4M0338S6devw8ssv49xzzz3sNU6nM/bYbB7+B6Uvvvgi9njKlCnIz88/7DXHHXdc7PEnn3wy7LGJiCgzdXiCgEZa2DOrjFAJce05ldYKrXpZA41adzfE/tP4iIiIiIgoZeL6CcVoNGLWrFnIzc095HnBYBDLly+PPZ8xY8awxzx4Ke1gG2FMmzYt9nj37t0IBALDHp+IiDKPUmEvSzN2ZusByg00POEgugLyvQeJiIiIiCg1kj71IBgM4ic/+QkaGxt7E1CpcO211w77fvv27Ys9Hj9+/KCuKSsriz0Oh8NoaGgY9vhERJR5Wtw+CJqQJJart6Qom9QosOrZQIOIiIiIKM1pEj1ANBqNFc9WrFiBZ555BnV1dbHjP//5z1FZWTnse3d1dcWeD2YZLgDk5eVJnre3tw87ByIiyjz79u/derCiMdI444DeGXvywl6NuxtH5JUpXEFERERERMmW8MLefffdh6effloWLyoqwo9+9COcfvrpw763y+VCJBKJPbfZbIO6zmqVfjg7eL+/ZAqHwykZN14O/rdXek5Eg8fXU3qpdXbJYsVGy6j/vT0U+WaNbCkuAOxzdqT9vwNfT0TxwdcSUfzw9UQUP3w9SSW8sNfU1KQYz87ORltbG/x+PwwG+YyAwei/N55eL/8AokSnk3b5S8Uee9FoFBs3bkz6uIm0ZcuWVKdAlDH4ekqtna2NsndIncefcb+3D8Xb4VOcsbeudjc2hgb3RVq64OuJKD74WiKKH76eiOJnrL+eEr7HXkdHB6ZNm4aFCxdiypQpUKl6h9y+fTt+85vf4Pzzz0d1dfWw7t1/xoBarR7Udf3PG+vVXSIikuoK+2WxMoMxBZmkTq5BrbjHXnOQzTOIiIiIiNJFwmfsPf/885JCWnt7Ox555BH897//BQDU1NTg+uuvxxtvvIHs7Owh3Xu4Bbr+52m12iGNS0REma0nKi/slejHVmEv36gCRDXEsAaCpu+LtJagJ4VZERERERHRwRJe2OtffMvPz8cvf/lLlJWV4cEHHwQAtLa24q9//St+8pOfDOne/ZfwDnZJ7XCX8MaTSqXCrFmzkj5uPEUiEcmU15kzZw561iQRSfH1lD5CkShcX66UxU+YPR/jLUP7Amo0mxaOAG+937scV+OOxdujAcyZMyeFmR0eX09E8cHXElH88PVEFD+Z9nravHkzotHosK9PeGFvIDfddBPef/99bNq0CQDw+uuv40c/+lFsqe5gWK1WqFSq2D+A2+0+zBVQPC8rK2vQY8aTRpOyf/6EUKvVGfczEaUKX0+p8XlNF/7vmbXosXkg9DtWZs2GRj12/ptoNBrkmXXoCBkAY9/7ZlfQC78YgUWb/C/FhouvJ6L44GuJKH74eiKKn7H+ekr4HnuHcv7558ceu1wu1NTUDOl6lUqF/Pz82PPOzs5BXdfR0SF5npeXN6RxiYgoM935xlY09vgBTVAS14ha6MdQUe+AUrtBsTNurbs7BdkQEREREVF/KS3slZeXS547HI4h32P8+PGxx3V1dYO6pr6+PvZYq9WitLR0yOMSEVFmCUeiWF3v6H3Sr7CnE4fXvX20K7EZFBtosLBHRERERJQe4jL9YO/evXjppZfQ0NCA5uZmPPPMMzAaD7/JeDAo/eBks9mGPPbMmTOxevVqAMCOHTsGdc327dtjjydNmsTmGUREhED4wL4WoqywZxTGVuOMA0rsBqBRobDnYWGPiIiIiCgdxGXGnsfjwRNPPIH3338fmzdvxhdffDGo6zZv3hx7rNVqUVxcPOSxFyxYEHu8detWOJ3Ow17z+eefxx4vXLhwyGMSEVHm8R8o7KnDEFSi5JhpjBb2Sm3KS3HrOGOPiIiIiCgtxKWwN23aNEkDiueee+6w13i9Xrzyyiux50cffTTMZvOQxz7mmGNgtVoBAKFQCC+//PIhz9+4cSO2bdsWe37mmWcOeUwiIso8/nCk90G/2XoAYFGbkpxNeiixG3q74vbDpbhEREREROkhLoU9rVaLiy66KPZ8xYoVeOuttwY8PxwO4+6770Z7e3ssdtNNNw1rbIPBgIsvvjj2/JFHHsHOnTsVz3W5XPjxj38cez537lzMmTNnWOMSEVFm8Yf2z9hTKOxZx2hhr9RmACIaiBHpnwucsUdERERElB7i1jzjlltuQWFhYez5Pffcg0cffRQ+n09y3pYtW3Dttdfivffei8UuueQSxSWxd999N6ZOnRr7v4aGBsWxb775ZuTk5ADoXRZ83XXX4YMPPoAo9i2l2rFjB66++mrs3r0bQG875Lvvvnv4PzAREWWU2FJchcJelnboM8ozQandAECQzdrjHntEREREROkhLs0zAMBiseCf//wnrrnmGvT09CAUCuGhhx7C3//+d0ydOhU6nQ6NjY1obGyUXHfKKafgF7/4xYjGzsnJwUMPPYRvfvOb8Pv96Orqwq233oqioiKUl5ejs7MT1dXVkmvuuusuzJs3b0TjEhFR5uhbihuQHcvWWpKcTXoYn71/b8GQATB4Y/FmrwvBSBg6ddz+jCAiIiIiomGI24w9oHevvZdffhlz586NxXw+HzZs2IDVq1dLinomkwl33nknHnnkEWg0I/9gcMwxx+Cxxx5DSUlJLNbS0oLVq1dLinoGgwE/+9nPcOONN454TCIiyhyxpbha+Yy9XN3YnLGXZdTCqtfIGmiIEFHvcaQmKSIiIiIiion7V+3l5eV44YUX8Nlnn2Hp0qXYsGED2traEAqFkJWVhcmTJ+O4447DhRdeGFs+Gy8LFizA//73P7z66qv44IMPsGfPHjgcDuj1eowfPx7HHXccLrvsMpSWlsZ1XCIiGv0O1Twj3zA2Z+wJgoAJOUZsVmigUePuRqUtLwVZERERERHRAQlbQ3PCCSfghBNOGNE97r//ftx///1DusZoNOLKK6/ElVdeOaKxiYhobBmoeYYYVSFLZ0xBRulhQrYJmxvkhb19zi6gROECIiIiIiJKmrguxSUiIhqtBpyxF9bBpFMnP6E0MT7HJFuKCwC/XLYJzU5/CjIiIiIiIqIDWNgjIiLCIbrihnQwasduYW9CtlHWFRcAGr0O/PPL2hRkREREREREB7CwR0REhP1LcYUIBHVEeiCsg0Ezdt8uJ+SYgLAOYlSQHtD5sbrOkZKciIiIiIio19j9pEJERHQQfzii2DgDYc7YAwT5clxtAI09XIpLRERERJRKLOwRERFh/4w9LQt7/U3Jt8CiV8uX42oD0IzdfxYiIiIiorTAwh4RERGAQCTKGXsKLHoNfn7qVAj9CnuCIKIn7ElRVkREREREBLCwR0REBADwhw61FHdsv13etaQS314wVRZ3Rd0pyIaIiIiIiA4Y259UiIiI9vOHo4AmID8Q1o/pGXsHHFFYJIt5RW8KMiEiIiIiogNY2CMiIsKBwp7CjL3Q2F6Ke8B4S7Ys5hdY2CMiIiIiSiUW9oiIiKC8FFcUAUS0Y34pLqBc2AurfYhExRRkQ0REREREAAt7REREAICA0oy9sA6AACPbv6LMZJcHtX54g5HkJ0NERERERABY2CMiIgKwf8aeVqmwBy7FBaBTa2ASTNKgNgBPMJyahIiIiIiIiIU9IiIiAPCGw4A6JA3uL+ypVEIKMko/drVFGtD54Q6wsEdERERElCos7BEREQFwhb0Q+tfv9hf2qFe2RlrYE1RRNHhcKcqGiIiIiIhY2CMiIkJvYU+GhT2JXJ1NFtvn7EpBJkREREREBLCwR0REBABwiz55MMTC3sEK9fLCXq2nOwWZEBERERERwMIeERERAMArKs3Y0yc/kTRWbJB3xq33OJKfCBERERERAWBhj4iICADgF/3yYFib/ETSWJk5WxZr8jmSnwgREREREQFgYY+IiAgAEIBSYY8z9g5Wbs6SxVoDPclPhIiIiIiIALCwR0REBAAIqZQKezpcd9S45CeTpnKNRoj9ZjG2B5wpyoaIiIiIiFjYIyIiAhBWBSTPxYgGOUY9vn3chNQklIZMWjUQNEhinSEnRFFMUUZERERERGMbC3tEREQAouqgNBDSYdNdSzC/LCsl+aQjs04DhKSFvYAYQmdAofEIERERERElHAt7REQ05kUiUYhq6Yy9fIMFJXbDAFeMTWadfMYeAOxzdaYgGyIiIiIiYmGPiIjGvBafB4JKupzUJBhTlE366i3syf9d9rq6UpANERERERGxsEdERGNejdMhi1nUpuQnkuaUluICwD43Z+wREREREaUCC3tERDTm7VMo7GVrzclPJM2ZBliKyxl7RERERESpwcIeERGNeTUuhyyWr7cmP5E0p1YJ0ItG9G+Cu72rPTUJERERERGNcSzsERHRmNfgdspiRSYW9pQUWY2y5bifNzXh3R1tKcqIiIiIiGjsYmGPiIjGvGafvLBXYrKlIJP0d/LkfNlyXFHrxwOf7EpRRkREREREYxcLe0RENOa1+V2y2HiLPQWZpL+vzSySdcYVBGBrZ0eKMiIiIiIiGrtY2CMiojGvM+CWPBejKpRYLCnKJr2dMjkPuqhRFu8IyWc9EhERERFRYrGwR0REY54j7JEGwjpkm3SpSSbNGbRqnDqhXH5A50cwHE1+QkREREREYxgLe0RENOa5Il5pIKxDlkGbmmRGgR8umikPan1wBkLJT4aIiIiIaAxjYY+IiMY0XziEoNivIBXWwW7UpCahUWB6dr48qPOjxxdOfjJERERERGMYC3tERDSmKXXERUgHm56FvYHk6E3QC/1mNGr96PFzxh4RERERUTLxUwsREY1pTV55YU8PAzRq+XdfEW87Aq1rEPG0IhrohqA2QG0phTarEtrcKgiCkIyUU04QBORq7WgKHtQJV+dDj58z9oiIiIiIkomFPSIiGtPqXA5ZzKwyxR5HvG1wbvonPHteRahjy4D3UZuLYZxwOqxV18NQckwiUk0rhXppYU/QhNHscQPIS11SRERERERjDAt7REQ0pt27bAuglsZsGhMivg50f/4LuLc9BTESOOx9Ip5muLc+CffWJ6EvOQ7ZC38CY/nJCco69UqNWVjvksb2OrsATEhFOkREREREYxL32CMiojGrtsuL7d1dsvgS9WY0PD0brs3/HFRRr79A00q0vHom2t65BhFvWzxSTTvjzTmyWK2nOwWZEBERERGNXSzsERHRmFXn8AGaoCz+7fCfEfV1KFwxNJ6d/0XD03Pgq/1wxPdKN5W2XFmswcvCHhERERFRMnEpLhERjVndvhCgkc7I04oRZIt+xfP1RQtgHH8qdPmzodLnQAx7EOrZB3/dx/DVfQQx7JVdE/V3ouX1c5B93G9gn39XxjTYmJol30uvNdCTgkyIiIiIiMYuFvaIiGjM6vaGZDP28kUP+pfeTJMuQNaCu6EvmKd4H/vcbyPi74Zr06PoWfcnRP39lveKUXSv+BHCzlrknvhnCMLonzA/LTsPoggcXKfsDLGwR0RERESUTKP/kwUREdEwdftCUGmlM/YKop7YY7WlFIXnv47Cc14YsKgXO9eQjawFd6Psms0wT7tC8RzXpkfR8f6NEKPhkSefYvkmAxDWS2I9EdcAZxMRERERUSKwsEdERGNWp6sDojoiiRWKvYU9ffFClFz+BUwVZw3pnmpTPgrOeBL5ZzwJQWOUHXdvfw4dH9wEUYwOP/E0YNKpIQQNkphb9CA6yn8uIiIiIqLRhIU9IiIak0QxikkNv5LF86MemCZ9DcUXfQCNuWjY97dMuwLFl34KtblYdsy9/Tl0r/jRsO+dDgRBgC5qksREIYpmL2ftERERERElCwt7REQ0JnV//jOYgptl8WL7OBSc+RwEjV7hqqHRF8xF8SUfQ2MdLzvWs/Yh9Kz784jHSCUTzLLYXldnCjIhIiIiIhqbWNgjIqIxx7vvHfSs+R1aVRbZsanzboKg1sZtLG1WJYovVS7udS3/Iby1H8RtrGSzqayyGAt7RERERETJw8IeERGNKWFPM9rf/zoAoE2QzzgrsebEfUyNdRyKLlwKlTFPekCMov1/VyHkqI77mMmQq7HJYvtcXQpnEhERERFRIrCwR0REY4YoRtHx3tcR9bUDANpVJtk5JUZ5sSoetNlTUHT+m7KGGtFAN9revhTRsD8h4yZSpS1XFtvW3Z6CTIiIiIiIxiYW9oiIaMxwbXkCvrq+pa+tgnwpbokpMYU9ANAXHYm8Ux6VxYMdm9G9/O6EjZsoU3NyIEalf0rs6ulIUTZERERERGMPC3tERDQmhD3N6F5+jyTWppIuxRVEFXL08ll88WSZdhns8++UxZ0b/wbv3rcTOna8VeSYgKBBEqv3dKcoGyIiIiKisYeFPSIiGhM6l92BaLBHEmuEXfLcKBghCELCc8k+7l4YSo+XxdvfvwkRb1vCx4+X8dkmICQt7DnCHnjDwRRlREREREQ0trCwR0REGc+77x14d78qizcK0sKeVZ3Y2XoHCCo18s94Eip9tiQe9Xeic9kdSckhHibkGIGgURZnZ1wiIiIiouRgYY+IiDKaGAmh67PvyeKO8ZcjohYlsSyNvEtuomis45B36j9kcc+ul+CpfjNpeYxEmd0IQaGwt9vJffaIiIiIiJKBhT0iIspozo1/R6h7tySmMuZj+/jbZOfm6uXNNBLJPOkCmKddIYt3fvwdRPyOpOYyHDqNCrkauyxezcIeEREREVFSsLBHREQZK+LrgGPVb2Tx7GN/hT2+qCxebExcR9yB5C5+ECpjviQW8TSha8Xo6JI73pIji23tGj37BBIRERERjWYs7BERUcZyrL4f0YBDEtPlzYa16jrUunpk55eZ5bPPEk1tzEPukj/K4u4tT8DXsDzp+QzV3PwCiKK04chTm3bjtc3NKcqIiIiIiGjsYGGPiIgyUtjVANemR2XxnMUPQlCp0eSVF/YqbFlJyEzOPOUSmCaeK4t3LbsDYjSSgowG7/QphUBQ2hkXOh9ue20LwhH5rEgiIiIiIoofFvaIiCgjOVb9FmIkIImZJp4N47glAIA2v0t2zZQs+bLSZBAEAbknPQxBJ10KHOzYBNeWx1OS02CdMiVfXtjTBtDk8qKm25eapIiIiIiIxggW9oiIKOOEHNVwbXuyX1RA9jG/jD3rCrpl103PyU1sYoegsZQge+FPZfHuz3+OiL8rBRkNTpZRi2JDliQmCAC0PrS7A4rXEBERERFRfLCwR0REGcex+j4gGpbEzFMugS5/duy5M+KVXhRVocya3K64/dnm3AJtzjRJLOrvhOOLX6Uoo8E5vqxMHtT50O4JJj8ZIiIiIqIxhIU9IiLKKCFnLdw7npcGBTWyj/mZJOQTpctE1VE9VKrUvi0Kai1yFz8kizs3PYpgx5YUZDQ4V82cLA/q/Wh3s7BHRERERJRILOwREVFGca79o2y2nmXaFdBmT5HEgoJf8lyPfvvEpYhx/CnyRhpiBF0rfpyahAZhsj1PHtT50O7hUlwiIiIiokRiYY+IiDJGxNsG15Yn+kUF2I/6gSTiDgYgqvoV/1SmBGc3eDmLfw9BrZfEfDXvwNewPEUZHVqFJQcqCNKgzscZe0RERERECcbCHhERZYye9X+BGJHOxDNNvgC6nKmS2G6HvBmFXWNOaG5DobVPhG3ut2Xx7hU/giiKKcjo0HRqDcrMWf2CPnRwjz0iIiIiooRiYY+IiDJCNOSBa9M/ZfGso34oi+3slhf28vSpbZzRn/2oH0Cls0tigZZV8Fa/maKMDm2Krd9yXK0fbR6/8slERERERBQXLOwREVFGcG9/DtGAQxIzjj8N+oJ5snP39HTLYkVGW6JSGxa1IQf2I78ni3d//lOI/fYQTAeT+u2zJwhAo1f+70xERERERPHDwh4REY16oijCueERWdx2xHcVz1/f2i6LlZrSq7AHALZ5t0FtLpbEQl074N7+bIoyGtgkq7yBRluwJwWZEBERERGNHSzsERHRqOer+xChrh2SmDZnGozlpyie/3lDiyx23LhihTNTS6U1IetoeTdcx6rfQoyEUpDRwCr7L8UF4Ig4U5AJEREREdHYwcIeERGNes71CrP15t4KQRBk8W0tLrT6XbL4yRNKEpLbSFmrrocma5IkFnbWpN2svUm2XFksqPbCG0y/ZcNERERERJmChT0iIhrVQt274Kt5RxJT6bNgmX6l4vnrm3oAbUAS00CNHL0pYTmOhKDWInvhT2Rxx+r70mrW3kSLvLAHnQ9tbnbGJSIiIiJKFBb2iIhoVHNu+JssZp15A1Ras+L57kAY0EiLTbl6i+LsvnRhnvJ/0GZPlsTCzhq4dzyXoozkDBotbOp+/+Y6H3a2u1OTEBERERHRGMDCHhERjVrRoBuubU9Lg4IK1jnfGvAaXygqL+zpLIlIL24ElRpZC34kiztWpdesvXJTjjSg8+P/nlmDDk9A+QIiIiIiIhoRFvaIiGjU8ux6CWJIOiPMVHketLbxA17THfBDUEcksUKDNSH5xZN5qtKsvX1w73g+RRnJzcotlDwXBBHOiAdL/vY5wpFoirIiIiIiIspcLOwREdGo5dryuCxmm/3NQ17TEZA3zigy2uKWU6IIKg3sC+6RxR2r74cYjShckXyzcwvkQZ0P21rdWFPvSHo+RERERESZjoU9IiIalYIdmxFoWS2JaewTYRi35JDXdQble74Vm9J/xh4AWKZeJu+Q21MNz55XU5SR1CRbvjyo8wEAWt1cjktEREREFG8s7BER0ajk2vJvWcxadR0E4dBvbV0Khb1Skz1ueSWSoNIg66i7ZfGerx6EKIopyEhqkk25My4A+ENciktEREREFG8s7BER0agTDfvh3t6vI6yghqXq2sNe6wh5ZLFya1acMks8y7TLoLaUSWLBtvXw13+cooz6VFqVCnt+AIAvlB7LhYmIiIiIMgkLe0RENOp497yGaKBbEjNVnAWNufiw1zqj8sLehFFU2BPUOtiP+K4s7vjqwRRkI2XW6lFi6rdf4f4Zez7O2CMiIiIiijsW9oiIaNRxbXlCFrPOunFQ17oj8sLeRGv2iHNKJuvMG6HSS3P2132EQOu6FGXUZ5I1TxrQ+QCInLFHRERERJQALOwREdGoEnJUw9/wqSSmtpTCOP60QV3vFX3SQFSNLIMxXuklhUpngW2OvPtvz1e/T0E2UpU2aWFPUImANgBfmIU9IiIiIqJ4Y2GPiIhGFfeO52Uxa9W1EFSaQV3vh1fyXBXWxyWvZLPNvRWCRlqQ9Ox5DSHHnhRl1GugBhqcsUdEREREFH8s7BER0aghiiLcO/4ji1umXz2o66NiFAHBL4lpooa45JZsalM+LFXXSYNiFD1r/5iSfA6YbMuXB3Ve7rFHRERERJQALOwREdGoEWhZjXC/GWn64mOgzaoc1PXtfg8giJKYThxdy3APZj/idkBQS2LubU8j4mlNTUIApigV9vScsUdERERElAgs7BER0ajh3v6cLGaZfuWgr2/09MhiRozewp7WXgHzlIslMTESgHPzP1OUETDJlgcBgjSo88LPwh4RERERUdyxsEdERKOCGAnCs+slaVCllRW2DqXRKy/smYTRW9gDAPv8u2Qx56ZHEQ37Fc5OPKNGi3HmLGlQ7+NSXCIiIiKiBGBhj4iIRgVvzXuI+jslMVPFmVAbcgZ9D6XCnkVlHnFuqaQvmAtD2WJJLOptg2fniynKCJhq77ccV+uHOxRMTTJERERERBmMhT0iIhoVPArdcIeyDBdQXoprU4/uwh4A2ObdJos51/8FoigqnJ14U/oV9gQB6A47U5ILEREREVEmY2GPiIjSXsTvgHfv25KYSp8F04SzhnSfBoXCXpbGMqLc0oGp4mxo7NIGIsGOTfA3fJqSfKYqNNBwRFnYIyIiIiKKNxb2iIgo7XmrX4cYCUhi5skXQ9Doh3Sfr1raJM9FEcjSju499gBAUKlhm/ttWdy5/i8pyAaY3H8pLgAnC3tERERERHHHwh4REaU9z66XZTHztMuHdI+tLS5s7eyQBsN6mPXakaSWNqxV10LQ2SQx796lCDn2JD0X2R57ADyCK+l5EBERERFlOhb2iIgorUV8nfDVfSSJqS2lMJQeN6T7/O3zGkDbr4FDSAejVj3CDNODSmeFdeYN/aIinBv+mvRcxpmzIIjSPzH8Kk/S8yAiIiIiynQs7BERUVrzVr8BiBFJzDz5YgjC0N7CXtpUD0EdlgbD+owp7AGAbc4tQL9/F9fWJxHxO5Kah0pQwRCV7l0YVLuTmgMRERER0VjAwh4REaU1t9Iy3CkXD/k+JnNYHgzpYcqgwp7WPgGmyvMlMTHkgXvbU0nPxQRpYU9Uh9AV8CY9DyIiIiKiTMbCHhERpa2Itx3++k8kMbW1HPqiBUO+l9GgUNgLZ85S3APs874jizk3PQpRjCY1Dxtsstiunvak5kBERERElOlY2CMiorTl2fO6wjLciyAIwpDvFVb75cGQHkZtZr0V6kuOhS5/riQWduyBr/aDpOZhV8sLezt62hTOJCIiIiKi4cqsTzNERJRRPLvly3AtUy4Z1r16IgrNG0K6jFqKCwCCIMA251uyuHPj35OaR67aLott72Zhj4iIiIgonljYIyKitBTxtMLf8KkkprFNgK5w/rDu544o7O8W1iMiisO6XzozT/0/qPTZkphv3zsI9exLWg75uixZbCeX4hIRERERxRULe0RElJZ6l+FK94Ub7jLcaFREQPDJD4T0aHYGhplh+lJpTbBUXdcvKsK16dGk5ZClM0EMayWx3U4W9oiIiIiI4omFPSIiSkue6tdlMfNwl+H6QxA10gKeGNEAohpLKnOHdc90Z5t9MwBpEdS19UlEwwoFzgQwalVA0CiJ7XF1wBsMJWV8IiIiIqKxQJOIm65atQpLly7F+vXr0dbWBrfbDYvFguLiYhx55JG48MILMWPGjLiN19XVhWOOOWbI1/3ud7/D+eefH7c8iIgoPiL+buVluAXzhnW/Lm8I0AalwZAOE3NNOHZCznDTTGvarEoYJ5wOX827sVjU3wXPzpdgrbom4eMbtWogYAJMzlgsLEYw/68fYO23T4NJl5A/QYiIiIiIxpS4zthraGjAlVdeiWuuuQYvvPACdu3aBYfDgXA4DIfDge3bt+OZZ57BBRdcgDvvvBNutzsu427fvj0u9yEiovTg2/c/IBqWxEyV5w9rGS4AtHsCQL8Zewjr8cVti6BWDe+eo4FyE42/QUzCvoJGrVo2Yw8Adjra8fqWloSPT0REREQ0FsTt6/Kamhpcfvnl6OrqisW0Wi2mTJkCq9WKzs5O7NmzJ/ZhYunSpaiursZzzz0Hi8UyorEPLuwVFhZi8uTJg7quoKBgROMSEVFieKrfkMXMk4Y/w7q6pxv9a4ILSwqRb9EP+56jgXHC6dDYJyLcszcWC7atQ6BlDQzFCxI7tlbVO2OvP70PO9ri88UeEREREdFYF5fCXiQSwW233RYr6qnVanzrW9/C9ddfLynatba24qGHHsLrr78OANixYwd+/OMf489//vOIxj+4sHfppZfi1ltvHdH9iIgodaJhH3w170tiKmM+9MVD33LhgH3OblmsyGgf9v1GC0FQwTb7ZnQtv1sSd236e8ILewaN8ow96L3o8ATlcSIiIiIiGrK4LMV99dVXsWvXrtjz+++/H7fddptsJl5hYSEeeOABXH/99bHYu+++iw0bNoxo/B07dsQeT5s2bUT3IiKi1PLVfggx7JXETBPPgaBSD/uete4eWWyc2Tbs+40mlqrrIKgNkph710uIeNsSOq5B09s8Q7bqV+/p3fOQiIiIiIhGLC6FvTfe6FsytWjRIpx33nmHPP/OO++ULINdunTpsMcOBALYt29f7PnUqVOHfS8iIko9b/Wbspi58tDvK4fT7JUX9iZYs0d0z9FCbciBedpl0mAkCNeWfyd03PHZJkCUd8aFzotOL2fsERERERHFw4gLe8FgEOvWrYs9P+eccw57jU6nw6JFi2LPN2/ePOzxd+7ciUgkAgCwWCwoKysb9r2IiCi1xGgY3r1vS2KC1gxD+ckjum9bwCWLVdrGRmEPUG6i4dryOMRoJGFjHj8xB0eW2WX77AnaEFq93GOPiIiIiCgeRlzYa2xshF7ft/l4ZWXloK7LysqKPe7ulu99NFgHL8OdOnXqsDsmEhFR6vmbPkfU3ymJGSecDpXGMMAVg+MIeWSxydk5I7rnaKIvmAd90dGSWNhZA1/tBwkbU6tW4aNvHovzJk2UHWsLDf99n4iIiIiI+oy4sFdRUYH169fjq6++wtKlSzFlypRBXdfY2Bh7bLcPfwPzgxtncH89IqLRzbtHoRvuCJfhAoAzIi3siVEBE0fw3jMaWWffJIu5Nj+W2DENGlw0dZIs7og4EzouEREREdFYEZeuuABgtVphtVoHda7b7cbKlStjzwc7y0/JwYW9qVOnoq6uDq+88gpWrlyJmpoa+P1+5ObmYsaMGTjttNNw7rnnQqOJ249NRERxIoqifH89lQbGCWeN+N6eqFfyVZYqood+jL0XmKdcgq5Pv4dowBGLeff9D2FXAzTWxG1jMT2rQBYLatzwhSIwaoffEIWIiIiIiOJY2BuKxx9/HG533/46J5544rDuI4oidu7cGXv+9ttv45e//GVsz70DWlpa0NLSgo8//hj/+Mc/8Pvf/x6zZ88eXvJxFA6HU53CiPT/d+7/nIgGj68nINi+AWFXrSSmL10MUWMZ8e9Lv+CTPNdEDaP+d/DQaWGadiXcG//aFxIj6Nn8OOwLfpywUSeZFZY8671YUd2BEyflJmRMvp6I4oOvJaL44euJKH74epISRFEUkzngpk2bcMUVVyAUCgEAJkyYgKVLlw5rFl1NTQ1OP/10WVyr1aKiogLZ2dno7u7Gnj17EI1GY8cNBgMefvhhnHDCCcP/QYZh/fr1kjyIiKiPseafMNZLO7V6Kr+PQMmFI7qvOxLCSVtflsRM3gIsWziyhhyjkcpbg6y1l0tiEV0Beha8AgiJ+67vxI2vwSP4Y8/FoAHYfTReOrsAE2xja+YkEREREdFAVCoV5s2bN7RrEpSLooaGBtxyyy2xoh4A3H333cNeGnvwMlygt6D33e9+F8uXL8dbb72Fp59+Gm+99RZWrFiB6667LtZYw+/344477kBNTc2wfxYiIoovbdcKWSyYu0jhzKFpD3llMYOoVzgz80VNExCyzZXE1ME2aLu+SOi4uap+W3Vo/YAQwZvV8qYmREREREQ0eEkr7DU3N+Paa69Fe3t7LHbdddcNexkuAOzbty/2WK/X4+mnn8Ytt9yC7OxsyXm5ubm45557cN9998VibrcbDz744LDHJiKi+FEFWqHx7JbEwtYZEPXy/dmGqj3kk8XMMI74vqNVoPhrspi++fWEjlmskRb2BAGA3oe398n/2xARERER0eAlZf1LdXU1brzxRjQ3N8diixYtwve+970R3feWW27BNddcg4aGBgCH74p7wQUXYMWKFXj77bcBAB988AGamppQUlIyojyGQ6VSYdasWUkfN54ikQi2bNkSez5z5kyo1dwInWg4xvrryb3lMXT3i+XMuBgVc+aM+N5rdwWBfdJYoSUHc+Jw79FIjExDU+3DiPo7YzFd9xeoqsiGxlaekDHn9rRjVe1eaVDnRbfTkpD/DmP99UQUL3wtEcUPX09E8ZNpr6fNmzePaNu2hBf21q1bh1tuuQXd3X0f2RYuXIhHHnkEWq12xPe3WCyHLegd7Oqrr44V9gBg5cqVuOSSS0acx3BkWndetVqdcT8TUaqMtdeTv/Y9WcxSeXZc/g1q3U5ZLF9vG1P/vhIaDaxV16Jn7UMHBUX4djyF7GN/mZAhq7ILgdp+Qb0XapUAUVBBq07sAoKx9noiShS+lojih68novgZ66+nhP4l/dZbb+Haa6+VFPUWL16MRx99FEZjapZBzZw5U1JQrK3t/0mDiIiSKRr2wV//iSSmNpdAlz83LvevdTtksUKDVX7iGGKdeaMs5tryb4iRkMLZI3dSucJMQL0XkaiIfV3yPRCJiIiIiGhwElbYe/jhh/G9730PwWAwFjvvvPPwt7/9DQaDIVHDHpZGo0FWVlbseU9PT8pyISIiwF+/DGJYuteaqeLMWMOjkar3OGSxUpM9LvcerbTZk2EYd5IkFvG2wLvv7QGuGJlpOTkwCP0aluh7C3q729lAg4iIiIhouOJe2AuFQvjBD36ARx55RBL/xje+gd/97ndpMT3y4GKj2WxOYSZEROTd944sZqw4K273b/ZJv8ARw1rkmlL3BVO6sM36uizm3PRYQsYSBAHz84ulQZ0XgIjdHSzsERGNxIbGHsz6/TIYfrgUVz+/Du5AONUpERFREsW1yhYMBnHbbbdh2bJlfQNoNPjFL34R933sXC4XHnvsMXR2dqKzsxNXXXUVFi1adNjrHA4HnM6+/ZaKi4sPcTYRESWSKIrw7vufJCao9TCWnzTAFUPXFnBJAyE97IaR7/E62pkqz4PKVICoty0W89d9iJCjGtqsyriPNy2rECvbamLPBZUIUefDrnZ33MciIhpLvvXKJmxt7X2ve25dI44os+OOEw79e3z53k78+J0dCEdF/OzUKThj2si70BMRUWrEbcZeOBzGd77zHUlRz2w249FHH01IcwqDwYAnnngCL7/8Mj755BN89NFHg7pu5cqVEEUx9vzII4+Me25ERDQ4oc6tiLjqJDFD2RKotPGZTe0Lh+Dqt8y3t7CX+tnjqSaodbBWXSeLu7Y8npDxptsVPjTqvWh1BRIyHhHRWOAOhLGqziGJ3fXmtkNe4/SHcNa/VmHFvi58WduN855YjRanP4FZEhFRIsWtsPf73/8en3zSt/l5Tk4OnnnmmUHNohsOrVaLefPmxZ7/73//g9t96G/9w+Ew/vWvf8WeT5o0CTNmzEhIfkREdHj9Z+sBvfvrxUuDwv56nLHXp7eJhnQvQ9fWpyBGgsoXjMC0LOXCXocn/mMREY0Vbe6hfzny9FcN8AQjsefhqIhHVtbEMSsiIkqmuBT2Pv30Uzz11FOx53a7HU8//TSqqqricfsBXXzxxbHHDocDv/3tbw95/v33349t2/q+wfrGN74Rt83ZiYho6JT314tfYe+z+iZ5MKyH3cgZewCgtVfAOP5USSzqa4dnz+txH2u6vVAe1HvR6WVhj4houNrcyr9DQ5HogNesquuWxT7Z0xG3nIiIKLlGXNiLRCK49957Y8tbBUHAH/7wB0yePHlE97366qsxderU2P8pOffcczF37tzY81deeQW33347mpubJefV1dXh1ltvxTPPPBOLnXTSSTjvvPNGlCMREQ1fxNeJQPMXkpg2dwa09oq4jfHC1n3yIGfsSVhn3SSLuTb/S+HMkSm3ZMGs0UmDeg+2tbpx/hOr0cmZe0REQzbQjL3abp9inIiIMs+Ipyy8++67qK2tjT03Go148skn8eSTTw76Hnl5eXjggQeGPLZKpcJf/vIXXHHFFWhoaAAAvPPOO3jvvfcwefJkZGdno729HdXV1ZLrFixYgIceemjI4xERUfz4at8HROmMAtOE+M3WA4A6t0P2FZYuakSxVR/XcUYz08SzoTaXIOLpm93ob1iGYNdO6HKUv1gbDpWgQlVWIVZ31PcF9b2dcd/a1oo/frYXvzlzWtzGIyIaCwYq7FV3ejApT3m/WqX1SqJCjIiIRoe4FPYO5vV6sWLFiiHdo7S0dNjjFxYW4qWXXsKPfvSj2B5/0WgUO3fulJ2rVqtx1VVX4Y477oDRaBz2mERENHKK++tNPDuuYzjCbqDfJLFr5kyCWc+luAcIKg2sM6+HY9W9krhryxPIPWHoX7odSlV2saSwJ6iiEHV+IGjEbz/azcIeEdEQDbQU98zHVuGfl8zGDUeVQ6WSlvICYfky3S9ru3Hswytw09HluO6ocdyuiIhoFBnxJ5u9e/fGI48RycnJwT/+8Q9s3LgRr7/+OtauXYvm5mb4fD5kZWWhuLgYxx9/PM455xxMnDgx1ekSEY15YjQMX837kphKnw198cK4juOOeqTjisAj586P6xiZwFp1PRyr75PMoHRvexrZx/4SKo0hbuNUZSnts+cBgvyyjYhoOA7VPOPmlzahxxfGXUsqJfH2AbY++LK2G1/WdqMy14wTKnPjmicRESXOiAt7S5cujUceMgfvhzdYc+bMwZw5cxKQDRERxVOg5StEA9LNu43jT4Wgiu9MuoAg3WNIBz10as7W609jK4dxwhnwHTSLMurvhHfP67BMuyxu41RlF8mDeg/gyovbGEREY8nn+7oOefwn7+6QFfYO10n3vo93s7BHRDSKxKUrLhER0VD4at+TxYwVZ8R1jGA4iojaL4mZBeX9hgiwzfq6LBbvJhozlQp7hr5ZlZ5AOK7jERFlsgc+3oOvGnoOeU4gHIUvFJHEBlq+e8B7O9tHnBsRESUPC3tERJR0vtoPZDFT+alxHaPB6YagkRaK7GpLXMfIJMYJZ0BtKZPE/I2fIdi1I25jFBttMKv7NS7Re2MPB1oeRkREUu3uAH7xvnxPcSU729yxx5GoiE4vf9cSEWUSFvaIiCipIr5OBFq/ksR0+XOgNivsvzYCWzs7ZLFcHQt7AxFUGlirrpPFXVueiN8YgoAKc740qPMC6N3b73DLw4iIqNfnNd2KTTCUrGvqRqvPhY3tLVi6uw6iEMZI+uC6/GH8Z30jlm5rhSiyny4RUapxoyEiIkoqX91HkiYNAGAcf1rcx9nV0ymLFRlscR8nk1hnXg/H6t8qNNH4VdyaaEyzF2KLsyH2XFCJEPU+IGA+7PIwIqKx5l+ravH4qjrkm/W4/+zpmFFkBQB8Uds9wBUiYHQBlm7A2APovbhpy6fAlr4zhOmAGFEDARPgtwCebMCdDUQP/9HQ6Q9h/h8/Q3Vn72zrq44oxdNXHDHSH5OIiEaAM/aIiCiplJbhJqKwt88p/9BTZs6K+ziZRGMdB+ME6V6HUX8XvHtejdsYc3KK5UF97z57nLFHRNRn2Z4O3PzSJqyqc+Dt7a2Y+eAy/GX5Xjj9IXxZ269phtYPFOwDpnwJYeJ6CAU1EKzdEHTKv1cFdQSCyQUhpxnCuG3AtJXAuC2AtQOAiIc+rcYNL2zA8+saJLPy/ruhKVbUA4Bn1zVie6srET8+ERENEmfsERFR0oiiKCvsCVoLDCXHxH2seo98Q/EKa3bcx8k0tlk3SbrjAoBr8+OwTLsiLvc/qqBEHmRhj4gIALB8byeWVXdibokNyxU63t7+xlY8uaYeG5qcvQGdD8ivBeytEIThjysIAGydgK0TYtCA7y1vARyFeHJNPdzBCG5eOB4A8PiqOtm1T69twH1nTR/+4ERENCIs7BERUdKEOrcg4mmSxIzjlkBQ6+I+VrNPXtibnJUb93EyzYEmGhF333JZf+NyBLu2Q5cz8g9uc/MUCnuG3tkfXIpLRGPZa5ubcfHTX+Fw29ZtaHICqjBQUAPkNI6ooKdE0PmB0l0Q8+qAlkn4zQe7cOOCcqhVArp9Idn51R0ehbsQEVGycCkuEREljbfmfVksEctwAaAjKF0aJIrAlCzO2DscQaWGdeb1srhr8+NxuX++wYJsrUka3D9jr50z9ohoDHt4xb7DFvUAAJZOYNIaCLmHL+qJQT1EVw7E7iKInaUQu0og9uRD9FkgRg99saD3Qxi/BQ32NTjqkQ/wh2XV6FDoXr7xwOxBIiJKCc7YIyKipFHcX29CYgp7jrBbGgjrUGQ1JmSsTGOtuh6OVff2a6LxDLKP+01cmmjMyyvBx817+gI6HyBEuBSXiMa0ZdXypk8SQhQo3Asht/GQp4nuLKCnAHDnAGH9Ie8nmnoAa2fvUl5NWPk0axc2hD/Ghs/qAV+B7PjuDg/a3QHkWw4xFhERJQxn7BERUVJEQx74m1ZIYpqsSdDaJyZkPHdUujRICOmRZdQmZKxMo7GWwVRxliQWDXTDu/uVuNy/KqtI8lwQAOi9aOdSXCIiZZoAULF+wKKeWlD1zsrbfRRQOwdwFB+6qAcAoqq3I27LJGDXMRAbpkEMKH8BJmjCEMZtB0p29hYY+9nAWXtERCnDwh4RESWFv+FTICIt3JgStAy3J+BDRJDOPDALZqhVcd6IKINZZ31dFnNu/ldc7j0ju0ge1HvhDCjPFiEiynThiLxYFmN0AhPXQTC6FQ+fUDAJ6869C2iaCgRNiucclqgCegqBPUdBbJwKMaz8RZiQ3QJUbAA0fkm8rts3vHGJiGjEWNgjIqKkUFyGO/7UhIy1pqVVFisx2RMyVqYyjj8damu5JBZoWolg57YR33tmllJhzwOnn4U9IhqblJpSAOjdT2/CRgha+YxmMaKBunEGPjjjZszMLYxTJgLgKAJ2L4DYVax8htEFTFwP6PsKjXUOFvaIiFKFhT0iIkoKb8170oBKC0PZ4oSMtby+WRabnJWTkLEyVSKbaFRlK3wANbCwR0Rjl1JTCtjagPKtEFTy2XyixwZUz8ckXQU06t6PdGdNk+9/dzjXHTkOdy5W2BIjqgGap0CsnQkxJJ+9J2iDvTP3TA4AQF23d8hjExFRfLCwR0RECRfq2YuwY48kZihdBJXOkpDx1rXJZ+wdUTD0DzxjnbXqOkBQS2Lu7c8gGh7ZzAy7zohx5ixpUO9BMBJFIBwZ0b2JiEYjWWHP1gaUbYcgyNvkil3FQM0cIGTA+Oy+PfF+feY0TMztXYo7u9iGheMP3wneZtTg1uMqBj7BnQvsnQ/Ra5MdEtQRYPwmwNaOmi4fPNxOgYgoJVjYIyKihPPVJG8ZLgDscnTJYseVlSRsvEylsZQqNNFwwBOHJhqzsqVLvARdAFCHOGuPiMaUaFTESxub8O1XN/cFrR37i3ry88XmSqB5Mg58jPOH+mbzzSu1Y+v3l6Dl56dhze3H41enTz3s+CpBQJFVD5tBI4kvnpiLxy+d0/skrAdq5kDslm+jIKhEoGwbPu3Yjvyfv4d7/rddcZxgOIqfvbsDc//wKa54di3a2QWdiChuWNgjIqKE89W+L4slqnEGAHQGXbLYzLy8hI2XyayzbpLFXHFoojEnR6HQqvfgLyv2QRTlM1SIiDLRrz/chf97Zi22tOx/3zJ3AWXbZEU9UQSExulAVxmAvoOnTJG+t+k1ahRY9dCqVThlSj7euelofP3octx31nR8+7gJsvGPLs+CQavGHSf0LcctsRnwj4tn47qjxuGFq+fj5oXjcURJNtA0BWLbeNk9BAFA2Xb4Ta144OM9+LS6Q3bOY6tq8ZsPd2NTsxP/3dCEW17ZLDuHiIiGR3P4U4iIiIZPjAThq/9EElObi6HNm5WwMT1iv71+RAGFBmvCxstkxvGnQm0tR8RVF4sFmj5HsHMrdLlVw77v7ByFTdkNbtz74W6oBQG/GMRMEyKi0SwUieIPn1b3BYzO/XvqSb/cEEUBqJ+BO444Gn9duQ/+cO8sPUEALp9XesgxTp9agNOn9m5FUdPlxd8+r8GB707yzDqcX9U7C+/np03FSZPy0OwMYFFFDkrsBgDAJXNKcMmcEgTDUXzz5U14br0KYsSAcNFOSfFREACxbBtQPwNvbm3F4kppwfG217ZInr+yuRmiKEJQmpZIRERDwhl7RESUUP7mLyGG3JKYsfyUhP4xHxKke8DpYYRaxbe84ehtonGDLD7SJhqzsxVm7Bk8AID7Pt49onsTEaWjd7a3YtoDH6P81x/g75/XYF1DD9yB/fuKav1A+RZZowxRBNAwDXDlYUahBc9cMQ+T8syYkG3EE5fOxcRc86DHn5Bjwts3LMAJE3Nw2pR8vHvT0TBo+/ZRPX5iLi6dWxIr6h1Mp1Hhicvmwnff2fDd/XVcnH0y+k+uFgQA47bjleqtg8rHE+SeqkRE8cAZe0RElFD+uo9ksUTur+cJhBDV+nFw2dAqDP6DD8lZq66D48tfA2LfhzD39meRveheqDTGQ1w5sMm2PGgFDULiQXvqGXoLwKGIiFAkCq2axVgiygwufxiXP7cuto/ot1/djGvml/UeVIV7i3qakPzCpimAs3fGXZZRiwtmFeOi2cPfM/bM6YU4c7pCZ/JBUql6311PL6nCy5ubIfZbNiwIIupta7GmbSGOKigHAPT4FH4uAN2+ECx6fhwlIhop/sVMREQJ5av7WBYzlp+csPF2dTtkMx6ytInpvjtWaCwlME08WxKLBhzw7Hpp2PdUq1QYZ8yVBvUeAL1TQNq4sToRZZD/bGiUNQd6em0DALG3Ucb+GcsHE5srAUfftgVZRm2i0xy0U6fkQe0uABqmy2buQRXBWR88jo3trdjT4cHmFqfiPbq8QcU4ERENDQt7RESUMNFADwKtayQxXf4cqE35CRtzW5d80+4CnS1h440Vyk00RrYcd5JFOmtEUImArnd/xFYXC3tElDk2NysXt1C4D4JV3sld7CzZ3yijT3YaFfbKs0145dojMd82GWiU74naFfRg3iuPYMrv38MJf/1c8R7dXuWZfERENDQs7BERUcL46pcBonT2XCJn6wHArp5OWazElJXQMccC4/hTobFKuyEGmr9AsGPLAFcc3jSbwnKw/bNWWNgjokziC0XlQWsHhLx6WVh0ZQMtk2TxdJqxBwDnVRVhze0nYMON/wextUJ2XND7gHFbAUHhZ0fvUlwiIho5FvaIiChhfPXyZbiGBBf2apzdsth4S3ZCxxwLBEEF6yylJhr/GvY9lRto9O6z1+rmEi0iyhzeoHQZLrQ+oHSn7DzRbwIaZgCQNpgyaFQotOoTmOHwzSq2YpF1DsROeYdewdwDFO3BgW0WDsbCHhFRfLCwR0RECSNrnKHWwVByXELHbPA6ZLFJtpyEjjlWWKquA1TSjc7d259DNOQd1v3m5w/cGZcz9ogok7R7DvqyQogC47ZDUEuLfWJEDdTNBKLyhhLfPq4CxoM62KYTQRDw5g1H49zcYyD25MmP5zQDOU2y+O1vbIH9x++g/Ncf4O1trclIlYgoI7GwR0RECRF21SPUvUsSMxQfC5XWlNBxW/w9stjULPkHDRo6jbkYponnSGLRYA88u14e1v1KLVaIwX4zUGIz9ljYI6LMUe/w9T0prIZgdMlPapwGhHo7ja/6zvH4w3kz8MvTp+Ldm47G786ZnqRMhyfLqMVr1x6NAucciD6FhlVFewCzdEa9OxCBKxBGQ48f1/5nvXxWIxERDQoLe0RElBC+uk9kMWP5SQkftzMk/bAkhjUYZzcnfNyxwjrz67KYa8vwluNa9RrAL/0AKGiDgDrEGXtElDFEUewr7Fk6IeTKZ6+JHWWAq/dLqFMm5+Go8izccUIlfnrqFJw2tQCCIMiuSTcqlYCKLAtQNxNiSCc5JggAyrYDGr/itd2+EN7e1paELImIMg8Le0RElBC++o9ksUQ3zgAAZ8QtDYQMyDPrlE+mITOOPwUam3ST9EDzlwh2bB7yvXQaFRBQKLoa3CzsEVHG6PaFeptnqINAicK+el4bsL/5hFmnxr1npvfsvEMZl2UEwnqgvgpiVFqMFDQhYNy2AZtp1HQPb1sHIqKxjoU9IiKKO1EU4a+TNs5Q6ezQFRyR0HG94SACkBaEhLC+d2YYxYUgqGCdKW+i4RxuEw2/wpItg4eFPSLKGL2z9USgZBcErbRhhBjWwNo2CytuPR6vX38U9v7oZBxVnpWSPONhXFbvUmL4bEDTVNlxweQCCvcqXhuMKBf8iIjo0FjYIyKiuAt1bkXEK90I2zBuCQRVYjf+rvc4ZDEjzKNiCdNoYqm6Nn5NNPwKM/b0bu6xR0QZY1+XF8hqgWDrlB9snozvHjMdx07IwXlVRci3pGfn28Eqzzb2PekphNglb5Ik5DYCNvmy23Z2QyciGhYW9oiIKO58/WbrAclZhlvr7pbFLAL314s3jbkIponnSmJi0AnPrpeGfK/TKsohRvv9OWLwoNMbRCQqjiRNIqK08PrOWqCoWhYXHQWAswCnTM5PQVaJUZ5llAZaKiF6rfITS3YCOo8k1NSjvP8eEREdGgt7REQUd756pcJe4htn1CnM2LOrFZZ60ojZZt0ki7k2Pzbk+9x23EQI/ffZ03sgIgqHL6R8ERHRKHHXm1vwdONHENQRSVwM6oHmyQCAWcUKha9RSjJjDwBEFdAwA2JYOstbUEf377fX9+/yyuZmRPmFDhHRkLGwR0REcSVGQvA3fCqJqa3joMmanPCx6xRm7OVoM+cDUzoxlJ8EjX2iJBZoWY1A+8Yh3efsGYW4ZMoUSUxQiYDegy4vl2UR0ejz5Jp6nProF5h830f448YvIFil702iCKBxGhDtLXZlmzKnwZNsxh4AhAxAw/Ten/sggsELFEn32zv3idUQ+59IRESHxMIeERHFVaBlNcSQdHmNcdxJSdnnbp+rSxYr0LGwlwgDNdFwbX58yPc6pXyiPGhwo8vLGXtENLos3daKG17YgI92d6Da4VBcgouuUsCblezUkiLPrMPEXJP8gCcHaB8vCws5TYC1I/b8nR1t+Gh3h+w8IiIaGAt7REQUV766j2SxZCzDBYB9zn6zIqIC8gws7CWKdYZCE40dzyPar7B7OEfklMqDRjdn7BHRqPOf9Y19T4r3QNCEJcfFoB5oq4g9v2yuvLnEaCYIAn53zgzlg+3jIXrs8njJTkDT1zDpQxb2iIiGhIU9IiKKK8X99cYlp7BX7+23FDdkQJZRm5SxxyK1uRCmyvMkseE00ajKLoJa6N9Aw4Uu7rFHRKPM+sae3gfWDgj2dvkJzVOAaG+HeJUA/Oy0KfJzRrkLZxXjz1+bqXBE6F2S23+/PU0YKN0BoHcJ7sp9Ct2DiYhoQCzsERFR3EQDTgSaV0liurxZUJsLEz52JBpFs88pDYb0sBk0yhdQXCg20dg0tCYaerUGE0x50qDBgzY3OyQS0ejhCYSxo90NqMJA8W7ZcdFRiMfOPBFXzy/D2dML8L+vH41pBZk5q3yS0nJcAAjrgaapsrBgcQB59QCArxp6EAhHZOcQEZEyftohIqK48TcuB0TpH+OG8pOTMnaLz4WIGJUGQwbYDZyxl0iGcSdCY69EuKdvH6lA6xoE2jZAXzB30Pepspeg2tMWey6ootjtbAcwKY7ZEhElzqZmZ2+DiMIaCFrpVgJiWIu7Z5yOG48ux41Hl6cmwSSyHupLNVcexK5iCDnN0njBPsCThYDPhrUNPTh2Qk5ikyQiyhCcsUdERHHjq0vdMtxahY64nLGXeAM20dgytCYa83PLZLGDC31EROlufaMTMLiBnEb5weZJWDKhKPlJpYhVr/zeW2o39D5oqYTol87qEwQAZdsBVRibmpzyi4mISBELe0REFDe++n6NM1RaGEoXJWXsOo9SYc8AOwt7CWetuhZQSWdGunc8j2jQPeh7HFM0TharD7CwR0Sjx5r6bqB4N/o3gRddOcgJl4ypGWgDFfZ+eur+PQVFde9+e1HpP5ag8wOFe9HQw60YiIgGi4U9IiKKi7CnGaHObZKYoXghVDpLUsavG3DGHpfiJpraVABz5fmSmBh0wbPrxUHf45jCcQf2TY9pC3MDdSIaHURRxJuNGyGY+s00i6pQEZiN/1x1JCwDFLsy0UCFvbOnF+Djbx6DUybnoVCXixJflewcIacZn7btQrc3CFEUFe5CREQHGzvvLkRElFC+uo9kMUN5cpbhAsDbe+rkQc7YSxrrrK/Ds/tlScy5+THFZbpKTFod1CELIrq+WX496EZUjELVv2MuEVGa+bKhHd22neg3WQ+/mH8Kfjr3tJTklEoDFfbyzDqU2o1YMqm3YZIoijj7g3/hvcadkvNWBr5A7i/D+Nr0cXjuyiNg1KoTnjMR0WjFv5SJiCgu/Ir76yWncQYArG1tlQe5x17SGMYtgSZL2ugi2LoWgda1g76HOWKXPI8KEexxctYeEaUvbzCMu97ciuNefBaCJiQ5lqe14fszT0xRZqml1yh/zNRrpAU6QRDwr0WXQhWVzq4XtCGgeBde39KMFzY0JSxPIqJMwMIeERGNmCiK8DV8KokJOiv0RUcmZfxAOAIfvNKcQjpAVMGm51LcZOhtonGjLO7c+PdB3yNbJd9/al1nw4jyIiJKpF99sBt/XL0RyJYXn34771wYNGPzPUjov9HgIZSY7Jgcmiu/h70DsLdh2Z6OOGZGRJR5WNgjIqIRC/dUI+Kql8QMpcdDUCVntlxzjx/Q9ttoO6QHAC7FTSJr1bUQ1HpJzLPzRUR8g5t1V6zNlcXWdrCwR0Tp66+f7wWK98gaZhh8BbhhxtyU5JQujiyTzsI+e3rBgOfOs06G2JMvP1C8G6/tqIlzZkREmYWFPSIiGjFf/TJZzDguecuPdnf3QFBHpMGQAQBg0nFfnmRRG/NgnnKpJCZG/HBtfXJQ11eYCtB/n/RVbfXKJxMRpVg4EoVH3yJrmCFGVVignT+kWWuZ6I7FlVCrev8N9BoVbj9h4oDnltkNQPPk3tn2BxHUEbjytqLDwy65REQDYWGPiIhGzF+/TBYzlC1O2vibO9vkwf2FvbH+wSrZbHO+JYu5Nv0TYjSicLZUZY4dCBolsY3dTeyKSERpaXenCyjcKz/QUY4jCouSn1CauXxeKVZ/93g8edlcbLxrMU6erDAjb7+yLCMQ0QKNU2XHBIsDBX9+Elc/vw4bm3oSmTIR0ajEwh4REY2IKIrw99tfT2XIgS5/dtJy2OVQWOoZNCRtfOqjLzoSukLp3oph5z74at497LUTc0yAzyqJucN+7HWxgQYRpZ8Ht3wKQReQxMSgHugoQ1WRdYCrxpZ5pXZcc+Q4TMm3HPK8Mvv+92xPDsSuEvkJhXvx3JbdmPfQZ1i6TaFZFhHRGMbCHhERjUioazsiXukf2YayEyAIyXuL2efukgdDLOylitKsPefGfxz2uoocE+CXf/hb08HluESUXpq8PfhP3RfyA60TAVGNqkIW9obiiFI7VAcm2LdMhBiQvocLqihQugOAiL+sUJglSUQ0hrGwR0REI6K0DDeZ++sBQJPPIQ8GDbh1UUVS86Be5imXQGXMk8R8te8h5NhzyOsqcuUz9gAW9ogo/fx03bsIiCFJTPTaAGfvctMZLOwNyfgcU98efKIaaJwm23NVMLmAvHpsa3UnP0EiojTGwh4REY2Ir/4TWSyZ++sBQEfQKYstLCnCPSdNSmoe1EulMcBadZ0s7tz0z0NeV2IzQBu0yz7MrWmvi2N2RETDt6PNhdmPvIUnd62RH2ypBCBgcp4ZVnZkH7IHz63CprsW4xvHjAd8dqBjnPyk/Bo0+jvwwMd7EI5Ek58kEVEaYmGPiIiGTRSj8Dd8JompTYXQ5kxPah7OqPTbeyGsw+e3LkaxjctxU8U662YA0sYl7q1PIhryDniNWiVgQpYFCJgl8VXt9bj3o51w+kMDXElElHhOfwgn/eNzbMGG/r/eIDoKAJ8NAPCDE/ml0nDNLLbhzGkFvU/aJ0D0S98PBJUIlO3APe9sxY/f2ZGCDImI0g8Le0RENGzB9o2IBrolMcO4JUntRCuKIgKCtFhkEM0DnE3JorVPgGni2ZJYNOCAZ+d/D3ldhUIDjbAYwU8/XodFj6xENMoOuUSUGr/6YBdaxEYIZmlnVjGq6t1bD8CntxyLG48uT0V6GaPkwJdyogpomAYxKv2bQjB4gPxaPPUVt2kgIgJY2CMiohHo3w0XAAxlS5KaQ7vfDVEVkcRsqkN336PksCo20fg7xP5rbQ8yIccUm/UiYXJhS4sLa+odccyQiGhwPIEw/vb5XqBIoXFDxzggrMediyfi+Im5yU8uwxTb9H1PAhagfbz8pLw6tEU60OUNJi8xIqI0xcIeERENm69+mSxmHLckqTls7myXxXK1CoUhSjpj+cnQZEmXpAXbNyLQ/OWA15TYDIBXYdN5Y+8+iku3t8qPEREl2NZWF/zWRgg6vyQuhnRAxzhoVAJ+duqUFGWXWUpsBkwvOOgLuo5yiP3eFwQBQOkObG5xJDU3IqJ0xMIeERENixgNw9+4XBJTW8dBY5+Y1Dy2dckLe4UGe1JzIGWCoIJt9jdlcefGvw14TaFVBwTMvUvbDmZ07T+uV7iKiCixtrY5gPxa+YHWCkBUo/nnp8Fm0CY9r0wkCAIe/7+5mJJvhk6twgkTc3u75PZ7XxD0Pty35f0UZUlElD5Y2CMiomEJtK6DGHRJYsay5O6vBwA7HR2yWJkxK6k50MAsM66BoDFJYp7dryLiUZ5511u4EwBfv+XUeg8gRKBV808XIkq+Z2u/hKCRNvAR/WagpxA2gwa5Zl2KMstMC8dnY8cPT4L/gbPxv68fDQRNvUXUfj7o3ICX92zD7z7Zg398XoNAOKJwNyKizMa/jomIaFj89Z/IYoZxi5OeR42rSxarsHKPo3ShNmTBMu0KaTAagnPzY4rnF1n3b5ruU1h2ZXTDG+SHNiJKrna/GyucG+UHWisACLjjhOTOVB9rTDpN74OuUojuLNnxyz9+Hne/sxm3vLoZ5z2xOrnJERGlARb2iIhoWHwKjTOMSW6cAQD1XofkuSgCk+zZSc+DBmabI1+O69r0T4jhgCxeaNm/1FapgYbRCU8wHO/0iIgO6b6NHyEM6e8e0WMH3Dk4a1oB7lpcmaLMxo4TJuYAEICmqRAjasmxqNYPFFUDAD7Y1YHNzc4UZEhElDos7BER0ZCJ4QACTSslMU3WJGhs5UnPpTXQIw2E9CiyGpOeBw1Mlz8bhtITJLGItwXu3S/Jzi207l/O5lNqoOGCN8QZe0SUHBsae3D+M5/h4W0rZcfKAzPgue9svP31o2HRa1KQ3dhy5+JKaFQCEDIALfJCqpDdAlg6AQBvbG1JdnpERCnFwh4REQ1ZoHUNxLBPEjOWJX8ZblSMoisk3ecPIQNyTdzrKN3Y5t0qiznXPwxRFCUxk04Dq14DhAwQw/0+LBtd8HApLhElQZc3iEWPrMRbHasQRVRyTHTmYk72OBi16gGupng7r6oIa24/HmqVADiKILpy5CeV7ALUIXR6gslPkIgohfj1EhERDZlPcX+9JUnPo9XnRgT9Cj0hA/K4iXnaMU08FxrbBISdNbFYsG09Ak2fw1B6nOTcQqserkC4dzmutW8PRUHnR2fAk6yUiWgMe2NLC7yqHsAubfQjigDaKlBZYY77mKIYRcTdiJBjL8LOGkR8HYj6OxH1dyPi74IYCfQmIEYBiIBKA5XOCpXODpXeBpU+GxprKTTW8dDYyqE2l0BQZU7xcU6JHRvvXIw5D32KSNMUiJVfQdD0LZEWtEGIxbvxeU0+Wpx+FNkMKcyWiCh5WNgjIqIh89cvk8UMKZixt0+hcQaCBnYnTEOCSg3b3FvQ9dkPJPGeDQ/LC3sWHfZ0eHqX41ql/40bAm0Jz5WIaGe7ByjcB1mjd0chEDBjZpHCdgFDEA26EGhdh2DbWgRavkKwcyvCPXt7i3fxotJAa6+ELn82dHmzev9/wTxozMXxGyPJZhRZceHMIry0qRlongyM2y45LtjbsaZ+F0p+5cCtiyrwl6/NTFGmRETJw8IeERENSTTkhb9llSSmzZkOjbko6bnUuOWFPV3UxOVRacpadT26v/gVxJA7FvPueR0hZy20tvGxWKc31PtAYZ+95jALe0SUeKvaayD0+2JBjApA+wQAwGlT8od0v2jIC3/jcvhqP4Sv7kOEOrcBEA973YhEwwh170Soeyc8u/r2NNXYK2EoPQ6G0kUwlC6Cxl4JQVbBTF/HVeT0FvacBRB7OiDY26UnFO8GvHY8smIfrjqiFAvK2VCLiDIbC3tERDQkgeYvgIh0/5pULMMFlAt7WWpLCjKhwVDp7bDOuAbOjX/rC4pRuDb+HTnH3x8Ljc82YkebG/DKO+N2RDuSkSoRjWGiKOKr4DpA2+9AVykQMsBm0KAs6/BNmiKeVnj2vArPnjfgb1ohe+9MlXBPNdw91XBvexpAb6HPVHEmjBVnwlB6PFSa9F7CWpl70DLo5skQTT0QtH3/toImDLFkF1A3E5/t7WJhj4gyHptnEBHRkPjql8lixpQV9rplsXydvBhE6cM299uymGvLE4iG+vbOO79q/+zPqBai3yQ5t0foQjjKBhpElDhv1W+DVyt9fxEjaqCjt/P7NxaOV7oMABDxd8G56TE0v3I66v41Hp2ffBf++o/jVNQTAEENqLSAWtf7PA7CPdVwbngEra+djbpHi9G29HJ4dr+KaL8mWemiMu+g94WIFmiaIjtHsHYBWS3Y1+VNYmZERKnBGXtERDQk8v31BBhKT0hBJsCeHunsLVEEikws7KUzbfZkGCvOgm/f/2KxaMAB97ZnYZvzDQDAZfNK8Y8varGp2dnbQMPQ98EsKkSwqasZR+SVJT13Isp8kWgUP1yzVH6gYxwQ0cKgUeGGBeWSQ6IoItC0Es7Nj8G7+9Vh7ZOnMuRCmzMN2qxKaOwTobVPhNpSArUhB6oD/9dvJp0oRiGGPIgGehAN9iDi7UDYVYuwsw5hVx3CjmoEOzYjGnAMOg8x5IFn9yvw7H4FgtYCU+V5sEy7HMbyU9KmEUdFjgmCsL+RCQC4cyF2F0HIbpGeWFSNbV2Tkp4fEVGysbBHRESD1rvZ91eSmC5/NtTG3KTnsqq2GysamqRLpUIG5JvTewkRAfZ5t0kKewDg3PAwrLNvgiCokGXU4vPbjsOXtQ6c8kIz0O/D2hdtNSzsEVFCPFu9Fruc0r08xZAW6CzDyZPz8N3jJ2JqQe+WD9GQB66tT8K16Z8IdW1Xup0ylQb6ogUwFC+ErnA+9IVHQmObMOR97gRBBUFnhUpnBVAGKLwVi6KIiLsRwY5NCLStR6Dxc/ibv5DsdToQMeSGZ8fz8Ox4HmprOaxV18I641pobOWHvTaR9Bo1rHoNnP6+jrhoqYRo7oag6yuqCuoI1gS/RFRcApXAhWpElLlY2CMiokHzN64AROkySMO4E5OeRygSxTlPrEK43C9diBQ0YPZkzthLd4ZxJ0GbO2P/5vG9Qt274Kt5H6aKMwAAJp0GJ03Ow3RrCXZgl+T6z9tr8W0sSmrORJT5ApEwfrH+PfmB9vF45vIjceURvV8oRHwdcG74K5wb/46oX6E7uwKNfSKME06HsfwUGMsWQ6VPznuVIAjQWMugsZbBVHEWAECMhhFs3wR/w6fw1rwHf+NyIBo65H0irjo4vvw1HF/+BsYJp8M680aYJp6Tsll86v5F0KgGJ5sW4ePwR5KwT9eFv2xdAVV3GXa0uXHR7GKcPHlojU+IiNIdC3tERDRoivvrlS1Oeh5bWlzoDLggqKQdBXO1Ntx2XEXS86GhEQQBtrm3ofOjb0niPev/EivsHZCjyYIY1kDQ9M3M+KK1JhlpEtEYIYoiNjQ58YfNn6LO45AeCxiA7mLMKLQi7G5Ez5rfw7X13xAHsf+cxjYB5skXwTz1Uujy56ZN51lBpYG+8AjoC4+Aff4diAZd8NV9BO/epfBWv4loQL5/bR8Rvpp34at5FxpbBWzzboW16rr9swaT5+I5xXjsyzpJ7GfHLUDTigbsiOyUxL+/eikie44Agib844tavH/zQpwyxK7GRETpjHOSiYho0PwNy6QBQQ1D6fFJz6PDEwR0fln8m0dOhVnP76xGA8v0K6AySNeN+es+RKB9oyRm1mp699k7SK2nGw98tgUtTvn/BoiIhqLTE8SZj63C/D9/jOfrv5Cf0FaBmVlhlFffi4Z/T4dz498OWdQTNCZYqq5D8f8tR9n1O5Fz/H3QF8xLm6KeEpXOCvOkryH/tMdQfnM9Cs9/HZbpV0I4TLEu7NyHrk/vQt2/KtD52Q8RdtYd8vx4unKedDuGkyblYVFFDi4oPBZiQNqxOCpEgNIdAHq/DHxwWXWy0iQiSgoW9oiIaFAi/i4E2zZIYvqCI5K2nOhgnZ4goJN/sJqRU5D0XGh4VBojrLNvksWd6/4keW7WqQGv/H9j9yxbjfl/+gzNLO4R0Qg8+Gk13t/VDuTWQ9BIl6OqfCbchk/wkvVGONf9CWJk4N832twq5J74Z5TfVIv8U/8JQ/HRaV3MG4ig1sFUcRbyT/83ym9uQP7p/z7sF3hi0Annuj+i/t9T0fbutQgOZb/BYTqhMhdv3rAAl80twfeWVOK/Vx8BQRAwJdcGNE7ra6yxn2ByAfm1AID3d7XDEwgr3JWIaHRiYY+IiAbF3/AZDnzbfYBh3JKU5NLlDSkW9iqtyW/iQcNnm3MLoNZJYu6dLyDsaog9N+nUgNcuv9jYg2ZnAC9ubEp0mkSUwd7b0Qaog0Bug+zYH8Jv4nbbi9CJXoUrexnKlqDwa2+j9Kp1sM35FlR6hd9Xo5RKY4Rl+pUovuQjlF6zGfb5d0JlzBv4AjECz47/oPHpuWhbejmC7ZsSmt85Mwrx/FXz8btzZiDPrAfQ2zEXPhvQodDgI78WMPYAAD6p7kxobkREycTCHhERDYq/4VNZzJiCxhkA0OlVXoo7kYW9UUVjLoJl+lXSYDQM54ZHYk9NOjXgs8pmX8DkBAA8/VV9grMkokwVjkSxvc0N5NdCUEclxxaG63FOdNsAVwKmSV9DyWWfo/ji92GacNqonJ03FLqcqcg5/n6U37gPeac/AV3+nEOcLcKz+xU0PnckWt+8CIG29UnLsyLH1PugfTxEn0VyTBAAlG0HVGG8s6NNfjER0SjFwh4REQ2Kr/4TaUClhb7k2JTk0qVQ2LNo9MjVm1KSDw2f/YjvymLOzY8hGuidVWHSqgFRDfilH9BgcANCBDo1/5QhoqERRRHPrm3A2Y+vQkDwANnNsnO+7/8cSqU6Y8VZKLliNQrPeRH6oiMTn2yaETR6WKdfhZIrVqPoovdhmnj2Ic/37n0LTc8fjdallyHYtSPh+ZXYDL3vC6IKaJgGMSp9jxB0AaBkF1bWcMYeEWUO/jVMRESHFfG0ItQpnbmgLz4aKm1qCmnd3hCglS7FrbDkZvyMiUyky5kOY8VZkpgYdMG15QkAgFm3vxlKv+W4gkoEjG5MzDUnJU8iyhz3f7wH1/xnPT7Y1QEU7JN1WD89tAdzIq2SmKFsMYov/QxF578OfcHcJGabngRBgHHcEhSe9xpKr9kMy8wbAJV2wPO9u19F4zNz0f7BzQltsqFSCZiQs795RtAMtFTKzhHs7dji2w1fKJKwPIiIkomFPSIiOiyf0jLcssUpyKRXi9cNQSPd+Hqy/RD7/lBas8+/SxbrWf8wxEiodykuoNhAA6YefjAjoiH795reJfwl5n0Qstolx1RiFHf6+7rjdqrLUHjeqyi66H0YShYmNc/RQpczFfmn/APjrtsO65xvQVDrlU8Uo3BvfRL1T81A57K7EPEmZjlsbDkuAHQXQ3TK/z6IFu6G+ecv4/Jn16LNFUhIHkREycLCHhERHZbS/nqGFO2vBwDNfocsVmnNSX4iFBeG0kXQFUqXtEXcDfDsehHe4P7C3QCFPTc7GxLREIiiiOoOF663vIVJpStkxy8ObUNltBuuqBH3O67Gu5PfhGniOZwRPggaWznyTvwzyq7fCdu870LQGJVPjATh3PAw6v89Dd2rfotoaODmJMMx4eDCHgSgaQrEkLRRk6COAmXb8cLGBtz55ta4jk9ElGws7BER0WH1319PUBtgKDo6RdkAHSGnLDbRxhl7o5UgCLDPv0MW71n7RzT17F9yHTZADBqkJ5h64A6ysEdEg+fq2Itn836BU3M/wHKttHOqXgzjO/5VeMN7PE5peRiPub+GCflZqUl0FNNYSpC7+Pcou34nrHO+NeASXTHkhuOLX6DhqZlwbX8WohhVPG+oJDP2ACCi7d1vr18TJsHoBgr24dXNzQhH4jM2EVEqsLBHRESHFHY1IOzYI4npS46FoBlgqU0SOKMuWaySHXFHNfOkC6CxVUhiwY5NODvroL0d+++zp46gM9KVjPSIaJQTRRGurU+h88UFONqwFb8zHCc75wL/btzddgfu7LodHdFsAApFIho0jbmodwbftVtgmX4loNiOpHeGdsd7N6DpP8fC17B8xONa9Rp50JsNdJTLwkJeA/zGNuxoc494XCKiVGFhj4iIDsnXsEwWM45bkvQ8DohGRXgh/wOchb3RTVBpYDviO7L4AtczfZ1vPXbZ8S6hXRYjIjpYxNuGtrcuQscHNwEhFz7QTMRGTZHkHEM0ivLxP8PywLxYzKRVY1axNdnpZhytvQL5p/8bpVevg6nyvAHPC7atQ8vLJ6P1rUsQ6t497PGOKJW/V3zzmPE4N38BRK/Cf8/SnXhvXx32dXrR7PTDEwjj36vr8O/VdfBzH1ciGgVY2CMiokPy1y+TxQxlS5KdRowzEIaok3bEFSCgzCz/Q55GF+uMa6HSZ0ti4caP8dllZpw0KQ9H502QXePWcMYeEQ3MV/8JGp89Et69bwMAwhDwB8OxsvOuqTwJPz11fqwopBKA35w5DTbDwJ1eaWh0uVUoPPdlFP/fcuhL5P8NDvBWv4GGZ+ag89PvIxroGfI4C8qzMKPQIondtqgC95w0FWiYDjGilhwT1GF8f8MrqLz/A5T+6gNYf/wObnxxI258cSNO+OtKRKL91vASEaUZFvaIiGhAoijCV79MEhO0FugL56ckHwDo9AQBrV8Ss6ks0KjUA1xBo4VKZ4F1zjdk8fFN/8CH3zwGn3/jVOhE6T57QX0XonHal4mIMocYjaD7i1+h5ZUzEPG2xOKvaaejWi1ttmRTm/GHRafBpNNg9XePx6rvHI8995yM20+YmOy0xwRD8dEovuQTFJz9H9kWDDHRMJzr/4z6p6rg2vrkkPbfEwQB79y0ENceWYZzZxTivZsXYnqhFQvHZ+PsSeOBxmnya4wuoLBaFv+qoQdvbWuRxYmI0gkLe0RENKCwcx8irjpJzFC6CII6dTMYWtw+QBuQxPK0nK2XKexzb4WglhbvvLtfQ7BrOwRBQC7ypReow9ja3ZrEDIko3YXdTWh59Qw4Vv0GQN9sKz/U+LNB3vjpqvLjYNL0dk1VqQQcVZ7Vr7MqxZsgCDBPvghl12xCzvEPQKVTfh+PetvQ8cHNaPrvIvibVw36/uOyjPj3ZfPwxg0LcOqUvveNpy+fh1OLp0HsKJPnlNsE2Npk8R+8vX3Q4xIRpQILe0RENCClZbip3F8PADZ3tkPot/92sSErJblQ/KlNBbDOurFfVETPmgcBAMXqQtk1HzXtkcWIaGzy1ryPxueOhL/hU9mxZ3Wz0aKS7rEmBoy4tPyIZKVH/QgaPezz70DZ9dthm3MLICjPvg+2foXmF45H+3s3IuwZ/gy6bJMO7918DM7JWwjRa5OfULIL0HkloT0dnmGPR0SUDCzsERHRgPovwwVSu78eAGzvln+bPpGNMzKK/Yg7AJW0q6F7x/MI9dSgXF8kO//T5r3JSo2I0pQoRuFYfR9aXz8XUV+H7HgrrPiDbpH8wrYKFFoN8jglldqYh9wT/4TSq9fDOOGMAc9zb38GDU9VoWftHyFGgsMeL89kAOqnQwxL32sEdQQYtw0QpE0zurzDH4uIKNFY2CMiIkWiKMpm7Kn0WdDlz0lJPgdUuzplsalZeSnIhBJFYyuHZfpV0qAYQc+6P6JEnwsxLF0K/nn7PogiNzcnGquiASfa3r4U3Z//HAcvvT0gYp+Bs8N3IKSWTvcWfVbAmYdcky5JmdLh6HKmoehrb6Lw/NehyZqkeI4YdKFr+Q/R+OwR8Na8N6xxso1aIGwAGqfLjgkGD1C6Ewf/b2nFvi5EoyLfa4goLbGwR0REikLdOyUbjgOAoewECCluUtHg7ZbF5ubJZ3HR6JZ15PcASD+Eu7c8gXy1A/BK92LqCLix2ymfoUNEmS/YtRNN/z0O3uo3FY8bq76ONyr/je5sp/xgawUEQUCWkZ1v042p4iyUXbUe2cf9BoLWrHhOqHsXWl8/F61vXoiQQ9744lBi/83dORDby2XHBXs7kFcfe/7Iin2Y+NuPoP7+27j6+XXwBsNDGo+IKJFY2CMiIkVK++ulehkuALQHe2Sxo4pY2Ms02uwpME++SBITIwEc4XwO8Mg3Wf+ocXeyUiOiNOGpfhNN/z0Woe6dsmM+UY/bO29H2ftn4vtrPoagknZVFd3ZgCcbWQYt1CpBdj2lnqDRI+uoH6Ds2i0wT7t8wPO8e99GwzNz0LXyp4gG3YO6d/bBxdy2CRDdWfKTCvYBlt5VAh/u7kCdwwcAeG5dI55b1zjon4OIKNFY2CMiIkW+hmWymHHc4uQn0k9PxCV5LoR1yDUaU5QNJZL9qB/IYlO7/guzV75s7s/rNyQhIyJKB6IYRfcXv0TbWxdDDLpkx2vDRbiw9T685TseUa0XyG6W36S1AgDgCUbkxyitaCylKDjjKRRf8gl0+XOVT4oE0bPmATQ8NRPuHf857JJZ6SxNAWiYATEo3WtREACUbZc10wCAHy5lp1wiSh8s7BERkYwoRuGvl3YUVBnzoc2dmaKMekXFKPwqaXc6vai8RIdGP33BXBgnnCmJaaJeXKtdBjEi3fB8l6cBe9oHN1ODiEavaMiDtqWXwbHqXsXjHVmL8bXWB7ArPL43UFAj66Qu9uQD/t7uuFML+B4yWhhKj0PJ5V8g9+S/QWVQbpoV8TSh/d1r0fzSSQi0rR/wXtn9l19HtEBdFcSo9ONxbzONrYBKuvTW4QsN74cgIkoAFvaIiEgm1LEFUb+0SYWxbDGE/p+OkqzZ64QoSJdT2VXWFGVDyZC14Iey2A2WpVB7pP/dBW0Qv16+IUlZEVEqhN2NaH7pJHj3vK54PGvBPfiw7GE4RUtvwODq3SvtIKIoAG0TYs9nFPI9ZDQRVGrYZn0dZddthW3OLYCg/HE20LQSTc8vRMdH30ZEoUuy4r6KAQvQOFU+psHb2ykX0r8/Wpz+Yf0MRETxxsIeERHJ+OqXyWKGcUuSnYbMbz7bLIvl6+T7rVHmMJQcC0PpCZJYttqNheEG2bmft+9NVlpElGSBtvVo+s9xCCrMwhJ0VhSc8xKyj/0l2jwHZlaJQKHC74TuIiBoAgCoBOCmo8cnMGtKFLUhB7kn/gmlV66BoWygbUJEuDY/hoYnZ8C54W8Qo32z7mQz9g5wFkBsHycLC5ZuoHgPDu6UW/X7ZVjX4Bj+D0FEFCcs7BERkYxfcX+9JUnP42B7Oz14dK18T5tSY1byk6GksivM2rtD9a4s1hRR2EeLiEY9z57X0fziiYh4mmTHNFmTUHLZSpgnnQ8A6PAEew+YuyFYHJJzxagKZ+ctwEvXzMcvTpuKr24/ASdNzkt0+pRAurxZKLrofRSc/R+orfLutgAQDTjQuex2ND53VOyLy0N2Qm6rgOjKkYWFnGYgt+9LpW5fCH9Zvg8AsKPNhXs/3IX/rm887P5+RETxpjn8KURENJaI0Qj8DcslMbW5BJqsySnKqNeKfV2AzieLT7LmpyAbSiZj+SnQFy1AoGV1LDZXaIQ5HIFHo47F/LoueIJB6FX83pIoE4iiiJ6vHkT3yh8rHjeULUHBOf+F2tBXhGlzB9A7W2+f/ILOMvzh+nmYkm/BRbMTlDQlnSAIME++CMYJZ6LnqwfR89WDECPyZbKhzq1oeeU0mCdfBNtC5T0a998RaJgOsWIDBIN0X18U7gWCRsDVWxB+em0DvnvCRCz8y3KEIr0FvTX1DvzhvKp4/XhERIfFv3yJiEgi2L4B0WCPJGYYtyTl++u5AmHFwt6i0pIUZEPJJAgCshb+VBoDsCTSb5mdOoJv/e8LzpYgygBiJISOD785YFHPUnU9ii54W1LUA4B2dxCwt0EwSpvpiGENfnPUqZiSb0lYzpRaKq0J2cf8DKXXbIJp0gUDnufZ/Qo6np+L26wvQo+A8klRDVA7E2JI2oU91inX6IzFHl6xL1bUA4B/flmLYFi6Hx8RUSKxsEdERBK++k9ksVQvwwX2F/b0/Qp7YQ0unKG89IYyi3H8adAXL5TElkTkM3Ke3bEZj6ysTVZaRJQA0aAbrW9eCPfWfyscFZBz/APIO+UfENQ62dE2jx8oqJHFT7TPx92Lp8U/WUo7WvsEFJ7zAooueg/a3BmK54gRP263v4D3i76LM4xf4OC982LCBqBuprxTrioKlG8GdL2z+Z5cUy857glG0MTGGkSURCzsERGRhL/+U1ls4I2pk8fll8/Ym5lbCI2ab2VjgSAIyF74M0nsmHC9/ERLN17YKN+Hi4hGh7CnBc0vnwxf7XuyY4LWjIJzX4Z9/h2Ks8hFUUSrdh8EnbSoMt6chfRAMAABAABJREFUjf9ddAFUqtTOPKfkMo47EaVXfoWcJX+ESp+leE6Zph1/zX0Q/8n/KWZrd8tP8Ft7l+X2q/sJmjAwYTOgUS7gNbOwR0RJxE9DREQUI0ZC8DetkMQ0tgnQ2itSlFGf1oCz91vyg0yyctPzscRQfjL0JcfGnheJHlRGuqQnGZ1Y3dAvRkSjQrBrJ5pfOEGx863aUobiSz6BufJc2bG/LN+Lo/70GXJ/vhSR3BrZ8V/PPxN6NbcWH4sElQb2ud9G2bVbYZ11E3o3cpBboN+O1wrvxh9z/ohSdVssPiF7/356rZXye2sDvcU9dUh2jDP2iCiZWNgjIqKYQOtXEEPSjaLTYbYeADT7HbLYZBsLe2PJYGbtCSoRMEn3iCSi9Odv+hzNLy5G2FkjO6bNm4mSy5ZDXzBXduzFDU24/Y2tWNvQA4dlb+9MqoPkqrNx+UT5dTS2qE35yDv5ryi54kvJF0T9nWdagQ+KbsMP7U/DKnhw9oxCFNv0QGcZxPZxsvMFvbd3Wa4qIok3OQfYu4+IKAFY2CMiohh/wzJZLB321wOA9qBDFqvKLkh+IpRShnEnQl+6KPb8OKXluGYH/GE20CAaLTy7X0XLK6cj6pfPtjWMOxEll3wCjaVU8doHl+3pfaAJALkNsuNnZi+ESuBHHuqlL5iH4ks+Qf4ZT8Eh5CufI4Rxs/UNfFz0bRzleRHPXjaz90BbBcTuItn5gsnVW9wT+op7nLFHRMmUkDnpq1atwtKlS7F+/Xq0tbXB7XbDYrGguLgYRx55JC688ELMmKG8kelIdHV14aWXXsKyZcuwd+9eeDwe5OTkoLy8HKeffjrOO+882O32uI9LRJQpfPXLZDFDmhT2uiI9shU0M3JY2Btremft/Rwtr5wKADg63ACVGEX04A/ulm70BKMwaNQpypKIBqtnw1/RtexOKDUvME+7HPmnPqbYJAMANjU58VXD/hm6+bWy7RpEdxaOmTox3inTKCcIAizTLodbWIQnX/gRbrK8AbNKXojLUbtwfMcD0Hz+Cpad9T2c+L9ciE1TIKpDEGyd0nuaeyCWbwHqZgKiGrva3Hh8VR2MWhUunl0CnYbFZSJKnLgW9hoaGvDDH/4QX331leyYw+GAw+HA9u3b8cwzz+Dss8/Gr371K1gs8Wk5/+GHH+LHP/4xHA6HJN7a2orW1lasWbMGjz76KO69914sXpwey8qIiNJJNOxHoOkLSUybPXnAWRLJ1hN1Av3qNFPsyt+2U2YzjlsMQ9li+Bs+hQ1BzIq0YaOmbxaFYHSj1utFocmawiyJ6FBEUUT3Fz9Hz+r7FY/bj/w+so/7NYRDzLZ7fn1j7wOdF8hulp/QWoE8sz4e6VIGOn7qOOCqP+H59TfgVN+/ML7jFQiIys4LO/ZgnOObeL1gIh5yXo5PG2ZDHL8Fglm67YNgccSKe69tacFrW1oAAE+srscH31gouy8RUbzE7auDmpoaXHLJJZKinlarRVVVFRYuXIjJkydLulctXboUV155Jdxu94jHfvfdd/Gd73xHUtSrqKjAggULUFra94G0vb0d3/rWt7Bs2bIRj0lElGkCzasgRqTfWBvKlqQmGQUeSN8vVBEdrFpDirKhVMs6aK+948O1suOrXQof8okoLYjRCDo/vlW5qCeokHviX5Cz6N5DFvUAYHurq/dBwT70b5Ir9uQDfhsq88xxypoy0fETc/Hbi07EiVc9h6Ir1mADFgx47kzdXjyRdy/+m/cLzGtRQ/TKvzwSLA6gfKtkWe7HezrwrVc2wx0Iy84nIoqHuBT2IpEIbrvtNnR19e6LoVarceutt+LLL7/Eq6++iqeeegpvv/02Pv30U3zta1+LXbdjxw78+Mc/HtHY9fX1uOeeexCJ9P7ynDJlCl577TW8++67eOaZZ/Dxxx/jqaeeihX4IpEI7rzzTrS2to5oXCKiTKO0v166LMONRKMIqrySmC7CD2tjmbHseBjGnQQAWKxQ2FvOwh5RWhLDAbS9cyVcmx+THRM0RhSc8yJsc755yHv4QxH85J0deGtbK2B0QrB3SMcQBaCtAgvHZ2NuiS2u+VPmMhXMwrm3fYaGo55H0DbwtlFH6bfj5bxf4K/ud2D0a2XHBUs3UL4FUPUV8v75ZS0WPLwSoQj3fyWi+ItLYe/VV1/Frl27Ys/vv/9+3HbbbbJltoWFhXjggQdw/fXXx2LvvvsuNmzYMOyx//jHP8Lr7f2wV1paiqeeekq2f9/ChQvx/PPPo6Cgdy8mj8eDRx55ZNhjEhFlIl/Dp7KYMU064tZ5uiEK0uUxJpHLLMe6nON+DQCYHWlFVtQnObY33Ia39nqULiOiFIkG3Wh582vw7n5Vdkylz0bRhe/BXHneYe/zh0+r8duPdgMQgcJq2fFjbDPwyNkL8MHNCyUrhogOR6NW4fjjLsaU69Yi79R/Qn2I7UjO0K/DisAjGBeSr0ATLA5g/CZAHYrF9nR48Wq1B/es6MJ177fjkZU1iEZZ6COikYtLYe+NN96IPV60aBHOO+/Qb8h33nlnrMgG9C7LHY7W1la89957kvvm5OQonltUVCSZHfjqq6/K9uMjIhqroiEvAs2rJDFtbhXUpvRoTrHb2SGL2VTx2aOVRi990VEwTboAaohYFK6THBM0YTy8swGiyA9NROkg4utAyyunw1/3keyY2lyC4ks/hqFkcPuQ/fTdnb0PrB0QzE7JMbNGh1fPvhi3HDcBZn1C+gTSGCCo1LBWXYey67Yj54QHoTIq7+lrRwCv+Z7D9Ei7/B4mFzBhQ2/H5v0eXOvEh/V+bO0M4c63tuPNbS2J+hGIaAwZcWEvGAxi3bp1sefnnHPOYa/R6XRYtGhR7PnmzZuHNfZ7772HcLh3irPVasXpp59+yPNPPfXUWOEvHA7jww8/HNa4RESZJtD0ORANSWLGNFmGCwC7euR/MOeo2eWcgOxjfwlRUOEEheW43dpOVPdwTyOiVAu76tH84okItK6RHdNkTULxpcugy60a1L1aXfuLJEIUKNwrO/79WUtQaOSMbooPlcYA+xHfwbjrd6Jj8g/gisq3AckSA3ja8xqqIm2yY4LBC1Ss723wouDh5fvinvOLG5pw9fPr8OsPdiEYljcDIaLMM+LCXmNjI/T6vm5TlZWVg7ouKysr9ri7u3tYY3/xRV/3xgULFkCrle9xcDC1Wo1jjjkm9vyTTz4Z1rhERJnGVy//fZhOjTN2OOR/LOfpspKfCKUdXc406KZcjeP7zdgDAFi68GVzQB4noqQJdu1A04tLEOreKTumy5+LkkuXQWufMOj7fV7Tu6c3cpog6Ps1fIIRd1alxxYSlFlUOguOOvs3GHf9Djgm3QY/pM27skU/nnW/iqPCjbJrBV0AqNgAmHpkxz6p7oxrni9vbMJlz67Fc+sa8fP3duLW14Y3gYaIRpcRF/YqKiqwfv16fPXVV1i6dCmmTJkyqOsaG/t+6dntw5t1sXNn3x8IVVWD+5Zv2rRpscfDnSlIRJRp/LL99QQYyk5ISS5KdvbIl+IWsrBH++Uf+1PYoiHM6DdbQjC6sOJA10wiSrpA61o0v3QSIq562TFD6QkovvjDIW/5sLKmq3ffsjz5LN35urkwa/UKVxHFR3Z2Iead8wdMvmkXrHNvhaDuK/BZEcS/Pa/jxJB8Fp6gCUEYvxGwyxs4BsIRWWy47v7fdsnzf62q45YURGNAXPbYA3qXwk6aNAkGg+Gw57rdbqxcuTL2fLCz/A4WDAbR1NQUez5+/PhBXVdWVhZ73NraCr/ff4iziYgyXzTgRKB1rSSmK5gLtSE7RRlJiaKItW3SDqdiUI8sAz+8US+9vRxPu8/E4lC/D/oCsMnfwg81RCngq/8EzS+fiqhP/sWMqfI8FF7wNlT6oXes/aKmG8ivhaCRLrMXfRYcZZ067HyJhkJjLkLekocw7obdsM+/C4K2d4muARH8zbsU5wd3yC9SiRDKdsBUuB1A3/vSrvbBNXra2uLCuY+vwpK/rcSbW5X35tvbKV/yG+ByXKKMl5IdZR9//HG43X3dg0488cQh36O9vV3yh3p+vvKGpv3l5eXJ7jNu3Lghjx8PB/YHHK0ikcghnxPR4KXy9eSr/xQQpePpS05Im99Rn9d0whFxQdLYMGiESaNKmxwp9f7huhB/tP0Sf+/3/WKBdSdanD4U29kZk2iohvve5K1+HZ3vXQdEg7Jj5ulXI/vEvyIKDaJD/B0ejYrY2NEClDfJD7ZOhL1Sw/cFSi59LmzH/BrmubfDvemvcG38O7TBHvze9z5yRB/+rZ8nu8SX14bZ5l1QNU3CBv8MbGh0YHq+6ZDDhCJRnPyPz9Hm7n1Nfba3CxfOKoJOLeCyuSU4a9rAM1+7PH4UWFLzZWinJ4hNzS5U5plQnmVMSQ6UmViLkEp6YW/Tpk147LHHYs8nTJiAk046acj36emR7lFgsw3uGz+rVbqZrtPpHODMxIpGo9i4cWNKxk6ULVu2pDoFooyRzNeTce/L6P+nVlOoHLVp8jvqTxuaIPSfXx40wt3Vho0bfSnJidLPseUF+LLzGFitAbiEvg8wHrMPn6xei6qCoc8MIiKpwbw36VrehHn3AxAgnyXkK70CXbnfQv3mrUMad0N7AK2eCMbbNPDm7IGgks7CFV05gCcbnq42bNw4uNlPRHFnOB/C/JOhb3oZoZoX8GP/clREu/FLwxJE+v0hs9mYhQkTduOvzhfw0VsLcf/SEzExNwc/PMoOo0a+qG59WyBW1Dvg1c29s/Ze2NCMh5fk4Ohi5ZVzqzZsQbk1+fN5dnaHcNsnnegORKFXC7j32GwsLjv86j6i4RjrtYi4LcUdjIaGBtxyyy0Ihfo6L959993QaIb+iyYQkG6GfXADj0PR6XSHvA8R0VijdUiX4YpQI2Sbk6Js5D5p65IHg0bFP3xp7LqhyoqPcD7mB6X7F/WoDGhqfTVFWRGNLYaG52HZfZ9iUc874dvwTbwN0unXh/fYZhdu+rATP/nCgauX74Fgky7tFUUALb3b+th0nJlLqSVqLPCXX4fv4d/4YdctONLTgyc8b8Aqyj9z1qizcVfWYkwv+AIvWm/Aop4H8cCHK/HqbjdWNfdtF/VOjRc3fzRwkw0RwB/WOREdYNsJTyg1S3Gf3e5Gd6B37EBExONbuectUaIk7VNRc3Mzrr32WrS3t8di11133bCW4QLyZaxqtXpQ1/U/b6xP2SSisU0I9UDt2S2JRazTAY05RRnJmUwKe6EGjDBp+AGO+oy3afDMWeNQqZ8kO1bt3wEh2J2CrIjGCFGEseZRmPY9LD8EFTyT74F/3FVDvq0/LOLZHQe27xGBwr3yk7pLgGDvMkarjl/4UHoIilq87D0ZZ7b+EY+1XIt7OjeiPOKQnRcQNPiR6RT8zLwYZ5pX4C/mH+Dk+muwY+0/8MKGnWj2hPHLL+XX9bfPGcaGdvnSdwDwhFKzz+y7tdJVFdu7QtzzlihBkjInt7q6GjfeeCOam/s2P1+0aBG+973vDfueKpX0jXuwBbr+52m12mHnMBIqlQqzZs1KydjxEolEJFNeZ86cOegCKxFJper15K1+A52Q/pGVPeUMVMxJnxl73i9XyINBE/KLSzFnTnnyE6K05s8txL+X/QnRg2YFLdOMw2+9byD7qD+mMDOi0Wcw702iGIXjs7vgrn9SfgOVDnmnPwlT5deGNf6WFhe84f2fH+xtEEzSGT9iRA209TXQO2LGFMwZnx6Nn2hsM69dAyAAQMDywDwsb52Hyu69mDpuG3YarLLzX9dNx2pNKe73fohj0YA77C8ArhfQtHUOLjUdjf95j0WPKL/uYG83K//dmF86HnOqCuPwUw3Rf+R7YVZMq4LdkJrP38kmiiLe29UBVyCMs6blw6xLSXuDjJVptYjNmzcjGh3+7NqE/69r3bp1uOWWW9Dd3fdN+cKFC/HII4+MqKhmNEp3hAoGlb+h6G+4S3gTYThLkNOZWq3OuJ+JKFWS9XoKNcuLZubyk9LmtSyKIlzo90FOFICgAVMKrGmTJ6WPI0qKYfLp4Db1bfuxV52DTduew/HzboEuZ3oKsyMa3fq/N4nRMNrfvxmeHc/LzhW0ZhSe+wqM5UPfS/sA5/5lfBAiQME++Qkd5UCkb5udPKuB7wuUFopt8kYR1cGJQHUFdHnVCBc0QOy3LL1JZcM1lgtxRWATfuhfCTNCKAlsxG+yN+JnWU/gi8AsvOtdiA/9R6Erapfd/7O9CluXAHCHokl/XTj9IcV4tz+KXEv8ctnQ2IOHPq2GTqPGT06ZjAk5h25CEo2KeHjlPry1tRVT8s349RnTkGvWHfKa4bryuXX4z/rG/2fvvsPjqK42gL8z26t6r25y7w0XbIMB07shoSShJQQIoSRAQhJSSCCQSvIBAZIAIaF308HYYGMM7r3KVu9d2r5zvz9WljSalS3Lkkbl/T3PPtKee2f3CKyyZ++9BwAwLtmJr354MpyWwffzSQgBKEEoQQ9EKHJTgi0QQW+H+x6IkLftcygBiHDrTQkCSrDD/QDQYUyEA5FxJQgIBUIokaZ+Qulwv/UGpTWfMIQIw2nKgi/rWwi5pwz7WkSffuVvv/02fvrTn6qKbosXL8YjjzwCq/XEDs6MiVH/MOvYZfdoOs+LjY09oTyIiAYzb9Gn6oBsgiV9vj7JRFHjCUAxt0D1p2/ABqfFhPm5XJVBWi6rESFvLmBXbzH/xJCDcavvRsZFb+mTGNEQo4R8qHr3Snjy39aMyZY4pFz4Nqxpc3r02I2+IGRJQnlT6xvyiUWQzOo350XAAtRkqmJxtr55gU50vG5ZmIunNxRFGZEQqB4NeBKBzN2QTNrFKf+zTMHnphz80rsKi0MFAACzFMJi62Ystm7G/eIf+DowHh965+IT7ywUhyOr8Rp80TtCN3YR70slDVGOUQFQ1ezH6MTeOe6lqtmPk/9vLVoCkR157++pxKF7l8Jk6HpL/rMbi3H7m5HmPSsPVKPeG8T/rprZK/l0tL2ssa2oBwB7Kpvx2vYyfGtWVq8/19GIkB9hfy0Ufz0UfyOUQCOEvwFKIPK54m9oiyuBBiiBJij+BohAAxR/E5RQC0TQEym0DUBmFMLYtAsNM5/XOxXd9Vlh729/+xv+/ve/q2Lnn38+HnjggV6ppCYlJUGW5bblitXV1ce4App5kiQhISHhhHMhIhqMwi0VCNbsUsUsaXMhm47+bmd/2l5ZC8nY6V1fvx0ffnce7NzSQF3INmRgHzoV9kwjcEPBq/Aceg/2EWfplBnR0KAEmlDx9qXwdX5zCIDBnorUi9+BOfH4j5wRQuCXH+7Dgyv3I6QIOMwGwOQDEqMUSCpGAkL9Aj7Wxt8LNDDMyIzFDSdl48kvC6NP8MQCB2dCZOyF5NKutCuSY3Cd4wIsDebjXu9nyBaNbWMGScFJlp04ybITv4j9F/KD6Vjtm47Vvun4yj8Bfqh3pDX6+7+wV9xVYa+le7vsuuOxLwrainoAUNrow6qDNTg9L0k173CtB1f9bxPWF9YjrKiPn3lhSymeWD6111fS/WNdgSb23MbiHhf2hBAQgUaEvVUIe2uh+Gqh+GoQPvLR2+G+tz0ugkO/S7gcrIMcqDr2xCGu13/7BYNB3HvvvXjzzTdV8e9973u4/fbbIR1nJ6yumM1mpKWloaQkUgkvLOzih2YnRUXtfxikp6druuQSEQ0X3uLVmpgtc0n/J3IUX1eUaWLLcnNwEs9QoqMY7U7CXp8dktXTFttkSEONZIPyye0Y+Z1TIRn1O4qDaDAL+2pR8fp58Fd8rRkzunORevF7MMWO6tFj/+KDvfjtx+1F+WZ/GMjMhySrzx0SLTFAY1Lny2ExDt7zlWjo+celU/GNaRlY+vg6zViG04CSZjNQOAkitgJIPQDJoF0V9YlpJD43ZuO7/o34rn8j7NAW6UaaSjHSVIprXO/Aq5ixITAeX/knYL1/IrYHRuO5jcWYnxOHJaMT++TrjKa43hs1Xt2psFdY58FvP9mPYEjgR0tGYULq0c8R7OihTw9oYp/sr9YU9u5asQtfHO66gdam4gYsGtX9xT4f76vC6vwazMuJw9njo59duKdSu5vw4/3VKK73wmyQ8be1h7CpqB7LRphw5QQz7OFahD0VCHsqo3yshOKpgAhrOysToJiToFhS9U5Dd71a2AsEAvjBD36AVatWtT+B0Yhf/vKXWL58eW8+FYDIAYlHCnt79uzp1jW7d+9u+3z8eJ6zQ0TDly9KYc+ataT/EzmKbTXlmtj42GQdMqHBZGKKE+/sSgA6FPYUScYqYy4uad6Nhk1/Qeycu3XMkGhwCreUoeqt8xGs2akZM8WPQ+rF78HozOjRY++pbFIV9QAA9npIMeqVGEIAKB+FFJcVFU3tL3SvncNmSjTwnDI6EbeePAKPfK4+I/KS0Q48sqURgATUpwLNsRAZ+yA5tQWogGTE361z8bx5Mr7n34ArAtthRfStkTY5gJOtW3GydSsAwCfM2OzPw1v/G4ctY07GDy64BAZ73/8dVdLY1Vbc9sJeMKxg/t/WorR17svbSlH4s9MQZ29feKMoAk98WYDPD9ViTnYsblkwAgY5slDIE9T+NzAb1IuIAiEFr2zTvknc0VdF9V0W9grrPLjnnd04XOfFZVPT4bIYccPLW9vGkxxmjElyYES8HQ+cPR5pLgs2Hy5B/uFtmGOuQ5KhHkmGOiTK9Ug0NODDx36LREMDzpLrcZWhAeYdITTuABqjPvswIBshyWZIBnPkc8kASHLbreP9yAKx9jFARrMhA76Mb0IYnXp/JbrrtcJeKBTCrbfeqirqORwOPPLII1i4cGFvPY3KnDlz8MEHHwAA1q9fD0VRNN1yOwqHw1i/fn3b/ZNOOqlP8iIiGgw6n68nGaywps7VKZvodtdXamIzk9J0yIQGkwsnpuCh9QlAknr73semkbgkuBv1Xz0A5/grYXRldvEIRNSZ7CtFxatXINyobWJhTpmJ1AvfhsHW8xVBr2/v/EaOANK0K3JQlwb4XHj8G1NQ1ujD+3srMS7ZhfvOyOvxcxP1pT+fPxFZMTbc//E+NPhCOCfXhm/kHSnstQpZgYLJELHlQMoh7TEkAGpkO35nW4R/mGfj5sB6XB7YCUsXBb4jrFIA86w7MM+6A6h4BYVP/BBGVw4sqbNgTpkFc+IkmBMmwuDMaNtZ1+IPoajBi8wYW4+3qBbXd7UVt70Y/9bO8raiHgC0BMJ4ZkMxbls0si321zX5uPOtyLExz28uQaMvhJ+fngdPIPr24rImPxRF4OVtpSht9GHEMZppAMC97+3GnYtHanYWCiHwnRe2YNXBGsgI42BRPpIMdVhijRTqkg2thbvGOiS11KPk6UY0oxYJ8OGTQbqATDJYIVnckM2tN5MTkskOyWSHbLRDMh753Nb2uWS0QzZ1GjNYANkEyRAp2kmyGTCYIR2JyWbAYIIkdV27OZZQKIStW7cee+Iw0WuFvYcffhifftr+IjE+Ph5PPfUUJk6c2FtPoXHaaafhd7/7HcLhMKqrq/HRRx9h2bJlXc7/4IMPUFsbOcPAaDTijDPO6LPciIgGslBzCUL16hdMlvT5A2574sHmKqDTiQlLc7gqg45uZmYMjH43QiGT6sXRGmM2fDDAGvKg9vO7kXz2f3XMkmjwkFsOwb3jVoQD2jOtrRmLkHL+a5At7hN6jnWdt8rFlUGyqs+HEmEDUJkLAJiXE4dklwU3zs89oecl6muSJOHOJaNww5xMbNu+DTZjpJixIDcOa1X/7iWgPg1oTIRIPgzElyLaKVY1Bht+bVuCh82LcKb3MG4Pr0Y6mrqdT6ipAKGmArTsf7X9mc1umBMmotk2Go/vtmNLUwL81iw8cvXZmJlz/G+oljR0sRW3w4q9d/do37x9dkORqrD36NrDqvE/f5aPn5+eh+1l0b/e0gYfvvfqNvxz/bGP6TIgjFi5CQlSI/744tO4cYYT4ZYKhD3lCLeUo7m+FHc0HcSDaXWIlxthkJRjPqbuDGYYrAmQrfGRj7bWj5ZYyJYYyGZ3h8JdDOQjnx8ZM5hR0xLA6vwajEl0YHLaif1cp/7TK4W91atX45lnnmm7HxMTg2effRZjxozpjYfvUmpqKpYuXYoPP/wQAPDb3/4W06ZNQ0qKdq97WVkZfve737XdP+OMM6LOIyIaDnxFqzQx2wDbhlvV7EejaFR1xDUrVqQ6uNyejk6SJHxrvAv/qksA4tpXAXklEz4z5uCMUD5a9r0M7+QbBty/e6KBxtC0G64dt0MONWjGbCPORvI5z0M22k7oOYQQ+KKgQwMBQxBI1q4MRGUuEI6825PsGlhvRBEdi91saCvqAcB9p4/B8v9s0nazVUxA+RigLg0i7QAkh/Z7DwC8BhmvO0fidTEKqc0SzvPl43L5K+QatceYHIsINMJftg4mrMMPLEBb/43XgUJHGozuXBhjcmF0ZsLgSIXBngyDPRUGRzIM9hTIljjVirfuNM8QUepkcofHEELgYI1HNV7vDcIXDOOrovq2mAQFDskHl+zBwQMFqJJbcIrVA7fcgli5GfFyI+LlRsTJDbAYPRDGIEKGMHwGGY2yBU2SGQfqLfjupxY0InLfK5kQQjwC8UkIQkYQBoQkGSHIMECBQQgYoUBG5KNNBOEUATgQhEv4I5+LINzCjyTRgiTFg0ThQZJoQYzwo7tdB3yGWBT6nKgJx6JaiUFNOAYhUxzuPmtOh+JdpJAHczz21wlkxNoQYzN18xnU9lU1Y94ja1DnDUKWgMcumYIbTso57scJhRVUNgcQZzfBZuLZp/3hhAt74XAYv/3tbyFEpMOMJEn44x//eMJFvauvvhpfffVV2/29e/dGnXf77bdj9erV8Pv9qKiowBVXXIEHHngAc+bMaZuzfv16/OQnP0FVVeSMDrvdjjvuuOOE8iMiGsy8Ras0MesAa5zx8f5KwKx+xzfdGq9TNjTYfGeCE+99loJyqF/gvG8ajTNC+QCAmlW3IeOKryEZevYHMNFQ5yv+DO7tt0AKezRjjrGXI+mMf/XK98++qhbUejpsPUwqgGRUFzuEzw7UpgMAvj2L2+hp8FsyKgF77z4Vz2wowt3v7NZO8DuBw1MhnLVA8mFINm1DBgCAJFDuEnjSlYsn/OPgaHRhjrcaSw27MMeyE6NMpSeUZ7ilDOGWMvjLtE1A2sjG9lVgZhd+Fg6jLsGKZmGHX5gQFEYEhRGBMhP++Bcn7BYrxvhCuMXlgwRAlhRIEDC1SKhd+xF8gSAqGhrw29gCWKQArFIANskPqxRA8Qu/w9TaeqxKbYJbboFT8sIgKWiABcWyu+1WIrtQJruwVXKgSk5HlTQGQUn/IpNRhBGr+BEfDsAVUmANSTAGzFCCNvj9bjQGYlETjkOt4kaoi3LNp5/FobLZj0UjE3D+xBSclB2HUx9Zhz2VzXBbjXhq+VRcOjU96rVfF9ajusWPU8ckahoOPfDJftR5Iz+LFQHc98FeXD83+7gaoBbVe3HRv7/GppIGZMRY8fK3ZrHpXT844cLe+++/j4KC9nbONpsNTz/9NJ5++uluP0ZiYiJ+//vf9+j5R44cifvvvx933303FEVBcXExrr76amRnZyM1NRVlZWWqTriyLOO3v/0tsrJ61mqaiGgo6Nw4QzI5YUmZqVM20a04eFizBWVKwiA9tIT6nc0o46XFeThl+06E5fYCwSemkfB7DbAgjGDNLjRs/itiZ/1Ix0yJBiZP/juoeucbkKJ0YnRN/i4STvkrJLnnL5Jb/CFsLWtEhtuKLws6bEe0NAPxJdoLykcBkGEzyfjxktE9fl6igSTZZcFZ45KjF/YAABLQnAA0x0O4aiIFvk5b1FWzLT54knxYBeBT7xyg6Uy4a82YrpRiqvkgzk0uwRhpLxSvdlv9CVFCUHy1UHyRlbczTACOVvP3A5AAxGiHGlobbscC+EaHTRoeGFEsu/FpQwxKTG4UWdJR0qGQ1yQNjlW8IcmAaoMd1Qa75rgZoBlC8QD+esBv73BzAAErgMiKzyM/M/NrPHj6a/V5wo2+EL75301wW42YmRkLi1FuOyvxnnd2t3UTHpfsxPpbT4bL2l4SemZDseqxypv8KG7wISu2+6uyH151EJtKIqtMSxp8+Om7u7Hy+/O7fT31TK8U9jryeDxYs2bNcT1GRkbPumcdcf7558NsNuO+++5DfX09AKCwsBCFheq99TExMfjNb35z1HP4iIiGumDDIYQaD6ti1oyFA27V0vryEsChjp2cwVUa1H1WgxHjTanYEW7/Q7VFMuMzYw5Ob121V//lb+AYcwlMMSP0SpNowGne8wKqPrwWULQH1MfM+jHiFtx/XCs4Oiuo9eD0J77EgeoWWIwystteNAogfb/mTR3RmAC0xCMr1oq1tyxE5nG8yCQa6OLs3fn7S8J3xk2HENNgjqvFfw6th99Se/QrbE2ArQlNAFaHTFjdPAWfmM7C35bNx7qN+2Fv2Y+zUmsQ6z+AYM1OeGv2wCC0TTv6iwKgSnKgSHajUI5BoRyDIjkGRbIbRXIMqmTHMR9jKJBkBbA1R24dCEUCAjbA51Tfwtp/P2FF4MwnI01DzQYZf75gIi6ZnIY/rT7YNmdPZTOe3lCEHyyM/P3T1bmIuyqajquw9/c16mMUVh2s6fa11HMnXNjLz8/vjTxO2JlnnomTTjoJL7/8MlauXImCggI0NDTAbrdj1KhRWLx4MS6//HLEx3MbFxENb51X6wED73y9Fn8Ih1tqNIW9yfFcsUfHZ7Y9Ezua1O9Av2ca3VbYEyEvalbeipQL3zqhQgXRUNG47QnUrPwBAKEZi5n3G8TPvfuEn+PxLwtwoDqy6sgfUrC/9XPEVkCyN6rmCkUCKkYBAIt6NCTFWo9d2Lv3tDH4zZnj2u7/A0uxrbYUN3zyLr5u3BcpBh2FZAwCsZXYhUos/WgzRFgGfC7cXenGLxZdi0qjEX/fUYocVGO0sRSZxkpkGSqRaazA7LgGxIRKIELRCz/d1QQzymUnKmQHyiUnymVn28ciOQbFsht+qdd6e/aYpAAQBghFhhAyIGRASJHbkdPxJAFARD5KApDDgByCJGt/bvZaXrIArJ7IDe2NR0TQAnidgM8B+FyRj0FrW66BsII73toJRQiEFHV+9763GxdMTGnr/hvN7opmLBubfEK5B0IKWgIhWE2GEz5zb9WBavx97SE4zQZcnB5ChlP/fzMDwQn/V3jnnXd6Iw+N//znP8d9TWxsLG644QbccMMNfZAREdHQ4C36VBMbaOfrbSiuh2L2aA4XHhdzYn9Y0PAzz5WKf9UbIBnCbbGO23EBwFvwAVr2vQTn2Mv1SpNoQKj/+iHUrf2ZJi4gwTP6x8iaeWevPM/vVx7QBg1BICXKgoHqbCBgw8ob57GoR0OS3Xz0QofdZMAtC7SryqfEp2PNxdci5hdvwWevAGIqIDkaozyClmRQAEcDgmjAz7e2vvk1FjikSDgUMgOhTCA4CggbMcUZh3PHpqOuvgmxsg8JJj/e3LQPcrAJDtkDh8mPkfFGhBFGaZMHAaHAIxvQLJtQL1lRL1tRK9nQImn2nfYLOSxDCpmgBC1QQlYgZIZNssHrNQAhE6AYgbCx9aMhUszrdnsLNSEpbUU+l11CU8gLGAPamykA2eyLzD9BkskPmPyAu70wJ8LG1mKfE/C64Pc58fzmYs21zf4w8h78FIFw13nsqojegbjWE8DP39+LkgYvrpmdjQsmpaLZr13lDQDn/+srfLivCg6zAY9dMgVXzezZDpwtJQ04+6n18IUi+X6w24A3zkuGUeYbsyxvEhENI0II+IrUK/ZkSyzMSVN1yii6dQV1gFl9WLtFNiHTEeUwFqKjSLGZgKYEILb93e0WyYw1xmwsDbVvF6lZfSdsOWfAYOUBzzT8CCFQt+anaNj4R+2YZEBL3i8QSD6jb5NIPhRZVdTxuQNWoDpyLvaMTP78p6HpaKvFY20mPP2NaUjpogu0ySDj5JwUfLTPANSlQ5i8QEwl4K7uutnG0XKRBWD2R26ttgfLsH3HLvXEGCCyraJ1a8WRb13rcT/lCRMhU+T8uWDrLdDxowVhESmc3ndGHq6ckYkmfwhjEh1Y/uwGfLC3qpeTkYGwjJlpiVhx3Vxk/uYjhJXoq/iWT03Dny7Jw4oDBfjem+sBsw8weQGLB7B4VG9IHi/JEAKc9ZFbqy/CBiA3Uug7UvBDwHbUoh4Q2bLb0a7yJtz/8T68sKW9KctbOysQazN1WbD7cF/kv3NLIIxvPb8Zt76xA26LEb9aNhbfnt393gffeWFLW1EPACo8YeypDWJSoj5F44GEhT0iomEkWLcH4RZ1dzRrxskndAB6X1hzqCbyh00Hee4kbpWk4xZvNQCNSarCHgC8b5uCpU3thT3FU4m6Nfci8bRH+ztFIl0JJYTqT25C886nNWOSwYqmcfcjGL+gV54rrAj8YdVB7YC1EYgr08bLRgOtL8pdFr5soeFl652LMTHFBfkYq5FSnB2KfkEbUJ0DVOdAGP2Asw5w1gDOuhMqFOlJKHLkbLm2gp1NVciLMVswOc0Nv6Tg64r6qI8xJtGBOxePamsiAQCn5yX1uLB36ZQ0vLItys+sViPi7UhxWXD93Gz8Y11B1DmLRyUize7GaRmjgIbDnUYFhDHQWuRraSv2wdoSKdr1gGQIA46GyO3Is4QN7Wf1HSn4+e3ouGJxZ3kT6r1BvL69DEFF4Fcf7kVZo7apUr03qDlfryv13iDqvUFc8+IWnDI6Adlx9mNe83VhPbaVaVek1vhOfNXjUMDfkEREw4ivMMo23OxTdcika6Gwgs8KyyHlqv8A5fl61BMWgwR3KAmNYfV23A8MI3A/2rfjAkDTjqfgHH8FrBkL9UiVqN8pIS+q3r0SnvwVmjHJ7ELiOa+gptrda8/30KcHcO97ezpFu2qYkRjpBnokH76xQ8NMbpz9mEU9AEhxRV8m9/fzZsFqknH9S1sBCAiLB7A1AvbGyEeLR/N9pwchAITMrcW61qJdW/HOFtkue5StsTcvGIH7z4qcP7ipuB53rdiNlQfau/4mOcx4/qoZqqIeAFwzOwuPfXEYB2vUbyR3x4PnjMfXRfUoqIt+7uCI+Eih6tGLJyMjxopfvL9XM2fpmEQAQIor2mozCQhZIreWjjsJBITJD1ibERfvx8LxZqwpK0R96PhXZwJdFPsUubXQ5wR8LtR5nYj/+Xvo6fbkY1l1sAbfmqUu7PmCYdz8+nZ8drAGC3Lj8fB5E/D+3sqo1zcFWNgDWNgjIhpWvEUrNTFb1ik6ZNK1LaWNaEYjz9ejXpPqtKOx03Zcj1DwN+U0/Ej+QDW36qPvIuPKDZBNx373mGgwC/vqUfH2xfCXrNGMydYEpF60AoaEqUD11l55Pn8oHKWoByCuVLNlUCgyUD6q7b7FKPdKDkSDidPSvd0UXW3TjbebcN6EFPxp9UHsqmgG/I7IrT4tMkFSIMze9lVhZh9gbD2vzRg44RV+QkiRs+tCptaPFiBobv3YejsSQ9ff44tHJmDxqARcNDkV0//0mWZ8Yqqr7fMZmbH4+MZ5ACK7PwrrvFgyKhHpMdriZ5zdjE23L8YnB6rwxLoCfFFQh0afejWcw2xAS0D732FkggM7frQEW8sasfDvazXjRwp7kiTh6hmZUQt7oxMj25jt5uglme/MyoI3FMaLWzrutJHaViouyUnFq6fNBgBU+1qwpbYE5z73CQKmSDdkydKzZieSrESKvx0aGUWKfa3NOVoLfvDZcbT/b91V0uDTxK5/aSv+t7kEAHCwxgOLSYZJjv5cjSzsAWBhj4ho2BBKWHO+nsGRBlP8eJ0yim71Qe02XAAYG5ukQzY0FKQ4zdhXrd2O+2/DHHwv/Blccvsfv6H6A6hb+3MkLNGeNUY0VIRaylDx+rkIVG/XjBlcWUi96B2Y48chFOrZlq9o3thRrg0aAkDKYW28Kqe1q2MEC3s01D1y4STc+saOtvsXTkrt9irV1KMU9hwWIz787jwse+JL7OzcBEHI7cU+aP/GEq1NICCHAUPrxyPNHqQO58YpcmTLvNLaQVaRgbAJUAwAJExMceHy6en436YS5CU58OjFU5DgMGHSw6uOuVrukslpePnbs9ruW4wy/CF1IWdCijPqtQtHJADaniMqLqsRF05Kw4WT0hAIKTC0rpD8eH8VmnwhnDkuGe5731NdMzElUkh0WIyYnxsf9XETHO2r8NLcVritRlXR8No52cf8/zs3Jxbfm5eL566YgSl/WIXdnc66WzI6se3zRKsDp6Xn4ZS42rbtxUIOAdbmyM3WFPnYw1WakWJfU+TWSihSZGWl3956cwABO+C3tR2h0B2eoLpw+tnBmrai3hFPflnY5fVNQRb2gN4osRIR0aAQqNwEJdCgilmzThlw25tWHqjWNM4AuGKPei7ZaQGa4yNnyXTgczbht41XaeY3bvk7vMWf91d6RP0qWH8AZS8uiVrUM8WPQ/plq2GOH9frz/v010XaYOpBzXlRwm8HatQHsJsNfMlCQ9sNJ2XjR0tGYVyyExdMTMHfLprU7Wu7KuwdKS6lx1ix8fZFOGd89/+Oevob0yKFuZAlUqzxuiNbQpsTIremxPZbSzzgiYms4vI7IttnFSOObN28ZEoafnZaHnbddQreuGYO0mOssBgN+OqHJ+PBc47+5vIlU9JU9x8+d4LqfrrbivHJLvQGs1GGQZZgkCUsG5uMS6emw2kx4qoZGap5Pz8976g5yRKwoEPBz2yUccei9hXITosBP106+pj5pLkjb24YZAmf37IA35ye0VaUO3lEPG6Ym625ZsGIDoVGxQh4YoHaTKBkPHBwNrBnIUT+NIiyURB1KRA+R2QrdA9IsoBk9UCKqYaUXAgpazekURuB8WuAMeuBnG1A2j4gsRBwV0a2fxsCANRPWOtRN02Keg7rUTQFevgFDDFcsUdENEx4C6Ntwx1Y5+v5gmGsOlgNpKsLe7IkYbQrsYuriI7OZTFGVhE0JgFx7auGJFnBK8apON83GfOtHYscAtUf3YCMqzZCNjn6P2GiPuKv3IzyN86D4tGeVWRJnYuUC96AwZYQ5coT4w2GsepgjTrorIEUG+XMpNLRke/XDmKsfMlCQ5vFaMBD507AQ52KRN3R5VZcW/uqMbNRxsvfmoWlj6/DuoI6AJHtot+elYVffqjdJnr1zEwIAXz3la0IhqMXTs4el4xYm0mzuqqjiyal4iddFLHi7Gbcdcpo3HXKaGwtbUCTP4Q0lxV3rdiFw3UeXDY1A8unpquu+d68HKw5VIuXtpYiwW7CE8unwNzHK3ofv3QKMmJt2FvZjIsnp2H5VHWx8do5Wfjr5/kobt1Set3cbM3W31+ckYdFI+ORX+vBueNTkNzF/7OO3B3OBIy3m/HfK2fg8UumoKTRi7FJzqhvzN80Pxf/WFcQdXsrgEix1hsTuR0hhSGsLe2r+qxNgNUDSepZwUySENnWbY6eg1Dk1m3YZiBkxidNZXhwWyXizQ5sK/JhxeFiwGKM5Bo2tq387Aq34kbwtyQR0TDhLdI2zrBlD6zz9dYcqoU3qADWFlV8tCsRVqNJp6xosAsprX+c1qeoCnsAIGIqcU/xTXg35XY45fY/QkMN+ahb+zMkLPlzf6ZK1Ge8RatQ8fYlEIEmzZgtZxmSz32hzwrZaw/VqrfPyWEgbb9mnqhPBjxxmvixVvUQDWdH24rbkdVkwIrr5uDV7WVo9IVwzewsfFVUH/VaSZLw7dlZWDIqAW/uLMdtb+7UzJmc7savzhiLS6em4eKnN0R9nKe/MR0W47G3ZU5Nby80vfqd2V3OMxlkvHD1TDx12VTYTIa2rbN9yW424oGzu/4ZFGc3Y8ePl+DtXRVIdJhxRl70o2OWjE7Eki4e4/q52XhqvXq76dhk7RZjl9WIcdauVyjG283Yd8+peG9PJdJcFix57IsuC7NthCGyItPboVGSpEBYmgFbh628lhZI8omvjpNkBbB4IzcA+5Uq3LtxX/v4yCgphg2RN3yE1OGjBPicKAuPBKD9vTHccF07EdEwoIS88JeqD/c1xo6G0ZWlU0bRvb+3EjAEIRnVy/InxKbolBENBcvGtq729MRABDu9AHLUo0SKwYMN39Zc17jl/+At1h7UTTTYtBx4HeVvnBu1qOcY902knP9an65O/Xh/tTqQfAiS2a8KiZARKB8Fm0nGWePatwxOz3DjvAnsik7UlQR7tK6qgDvKStc4uxnXz83BHYtHIc5uxvQOBbUjMjqsNsuJt+PWk0fi8UunaOZdMT0DZqOMCyeldVl8724DkOPltBj7pajXXW6rCVfOyMSysck9OuLm5gW5qq/nvAkpbVtxj5fNZMDFk9MwLze+59uUhQz43EBdOlCWB+TPjGzjPTgDojQPojYNoiUGItQ/b7pLhjAkYxCSKQDJ7INk8Ua2AcdWYqdjM5rDwWM/yBDHFXtERMOAv3QdRFj9IsqWvVSnbLq2vqAu0pmtk0lxfFFHPXfu+GRkxlgj22QakoHE9rO+JCmyau/5mtNxpm0dFlq3qa6t+uBaZFy5AQZrbD9nTdQ7Grc+jppVtwFCu13JPe0HiF/8MCSpb9/r//RAh8KerRGIj7J1r3w0EDbjLxdNwvVzs/Hx/mp4AmGcNS65z7faEQ1mchcFru4UmJJdFszLiWvbngsAt52sXTJ15fQM/HHVQeyvjvyNdsX0DExOa1/hNT7K6rLu5kCRFYtf3LIQz2woQnqMFbcvirJsrQempLmwraxREx+b5MDeKu3f2x39dOkY/Gn1QfiOrLYWcms3XBeA9u3IwhAELC3ITQUCxmZIFg9KfHWAydejRh3HK2TwoyzQfOyJQxwLe0REw4C3KNr5egNrGy4AFNR5oxb2JsSysEc95zAbsemORXjm62L8+KNmVWEPABBTCdRk4Sd138ea7Lsggu2rmsJNhahZeQuSzvoPX6DQoCKEgrq1P0PDhj9EHY+b/xvEzL6rX/5dHykGAAqQvk/zYk80xwENyXhi+RRcPzcHAHB6F9vZiEjrlFEJ+LTDOZbzc7u/NfHxS6fgmhe2YH91Cy6YmILvzcvRzHFYjNh0+yKs2F0Bt8WIM8epG3GM66KwR903OzsWs7Nje/UxI8VX7Rsp501Mxd5jNKmYmx2LT26ch6e+KsS/v4rS/OiIsAnwxGLv986BqbXRkfyjtwEICJMfMHkBsw/nTYuF2xXC2/sPozHsAYyByLbcEySFTUg22U/4cQY7FvaIiIYBX2Hn8/UkWLOW6JFKl0JhBaWNPiBV2xF3Yhy34tKJSXRYcOeSUZBl4M6deyB1OMdRsjVDWFpQ6k+Gdd4D8H52i+raln0vwTbiTLjGazvoEg1EIuRH1Uc3oGXvC9pBSUbi0kfhmnRtv+QSCiuo97Zuk0osVn3vAa0HqZeOASD1WndLouHmtkUj8fmhWoQUAYMs4YdRVt11ZXKaGxtuX3TMeQ6LEZdPy4g6NiLeDrvJAE8w3Ba7emZm1LnUfxaP0jZDkiTgO7Oy8MrWUhyu83Z5bZzdhHm58ZiXG49TRiXiW89vPupzmTTdyyUgaI3cPMCNo+bgrPEpuCj/K7y5pwKAgJDDgDHQegsChiBgCAFyKHIWq6HDR0kAktL6sfVznwOG2iy4p0Xfjj6csLBHRDTEhX318FduVMXMydNgsMbrlFF0pY0+KAKaFXtGSUaemys3qHdMTHEBa5OB1EPqgZgKoHIkDsZegtGjPoLn4Juq4ZpPfwhr+nyYYnpnewxRXwn76lG5Yjl8xas1Y5LBgqSznoVj9EX9lk+tp7WoZ/YASYe1EypzgaANAJCXxC7URD1x3sRUbLhtEb4qqsOMjBjMyIzt1+c3GmTcevIIPLjyQOS+LOH6udn9mgNpzcmOw3Vzs/HP1sYc8XYTHjh7PCakuvCbs8bh2he3dNlcI9bafn7eBRNTEWsztb9J0wNHujfHO44U4SRAMQIBIxDoesXdH8+fgDvf2tXleAiA71gNQoYBFvaIiIY4X/FqzdlKtqxTdcqma4X1XgBCU9jLi0mC2cBfV9Q7pmfEAA3JECmH1NsBYyuAylyc/OgX2HbLw3CXf41wS2nbsAg0oeq9byNt+UpIBnZopoEp1FiI8jfPR7BG+yJItsYj5fzXYE2f3685VbcEAIjIFtxOHRWF1wnURFb1XDI5DUnO6N09iejYpqS7MSXdfeyJfeS3Z43D1HQ39le34KxxyZjZz8VFiu7J5VPx4yWj4A8pGJfsbFtZd+WMTJyUHYft5Y1RuxrHdeiq7LIasebmBfjdJ/vxv81RzkjthrbCnu34VtctGZV4zDmNARb2eBItEdEQ5yvqvA0XsGYPvMJeUb2vtSNuSBVnR1zqTUlOC0bHJgAt6vOHJFMAcNUCAH63pgZJy/6ludZfvh716+/vlzyJjpe/aitKX1wUtahndOci7bLV/V7UA4AaTwCIL4HkaFDFhQBQmgdAwq/PHItnr5je77kRUe+RJAmXT8vAz07LY1FvgMlLcmJymluzXXZUogMXTkqLek2cTf0m5oRUF567cgb+7+LJx3w+h1nbDTnJ0VrYsx/fm6MTU459RENT4MTP6hvsWNgjIhrivIWfqAMGM6zpC/RJ5igK67yAVds4YyIbZ1Avm57uBuqi/LuKLQcAvLClFNasUxAz8w7NlPqvHoSn4KO+TpHouHgLPkbZy6eqVpkeYU6egbTLP4M5fmy/53WoxoPFT30MpBzSjJ0ePx0rv3MGlD+ch5+dlgebSftCkIiI9NHVz2S39di7aP5w3gTV/XPGt3c3N3bRxbkr3emK3sjCHgt7RERDWai5BMG6vaqYNfUkyAOwe1RRfRcdcdk4g3rZ6CQH0JQIEer0x6mrBjD6AQC7K5oRN//XMCdN63S1QNX730aoqbhfciU6lqZdz6L8zfMhAk2aMVvuWUi79GMYHfq8QXLdS5uBjL2azocZ1ni8ce5lWDL62FusiIio/3XVMd3QjU7q18zOxt2njsa4ZCfOm5CiWuUXVHp/26zF0Pfd3Qc6FvaIiIYwb9RtuKfokMmxRQp7UTricsUe9bILJqYCQgYa1EVjSULkrD0Aq/NrIBnMSDrrWUgm9YH+ircale9eARHu+SHSRCdKCAW1a+5F9YfXA0pIM+6adB1Szn8VstmpQ3ZAvTeIVfVbIdkbVXEhgJ9POA82I8+qJCIaCDp3MD53fNdvqltN2hKStdOqOrNRxgNnj8euu07Bm9fOQXZc+4KCoz12Z79aduyV5ukOA8bG8fcJC3tEREOYr1Bb2LNlLdUhk2MrbtCu2DPLBox2c0UH9a7ZWbE4eUT8UbbjCry7O1LgM8ePQ+LSRzXT/GVfonbNT/s4U6LolGALKt/5Bho2PBx1PG7+r5Cw9FFIsn6Nhz4qOAwka7fgojoLC1Nz+zsdIiLqwj2njsboxMibmJkxVty3LK/LuaeOToStU3GvO+fuHTE5zYUzxyapYokOMyQJWDgiHmfkJSEnzoZr52TjtpNHdvk4MzNj8K3xTvz7jMTj3t47FLHNIBHRECWEgLdopSommV2wpM7SKaOjq/UEgBR1YW9sTDJMMs9dot4lSRLeuGY27nzbgaer90Gyt29hlCxeCHsD3tktYXtZIyanueEc9034Stehadvjqsdp3PxXWNPnwTHm4v7+EmgYCzWXoOKtixGo3KwdlI1IPO0fcE24uv8TA9DoC+KVbWVo8gfxh4LXtF1wfXagKheJjuPrikhERH1nfIoLW+9cjPJGP5KdZjgsXZeJ3FYTfn56Hu59bw+EAE7KicPyqendfi5JkvD2dXPx5s5y+EMKLp6cCoMkIaQIWLs41+8HC0fgb2vUbxStuGYWig/s7vbzDnUs7BERDVHBun0IN6tb0lszTtZ1BcfRNIRaIBnCqhg74lJfibOb8feLJuGZh9cD9k5nk8WVAZ5Y/OXzfPzzsmkAgIRFD8Nf8TUCFRtVU6s+ugGmhPEwx4/vp8xpOPNXbELFWxdHbZIhW2KRfO6LsGXpc9zCO7sqcO2LW1DVEgASCyClVKnGhQBQMg4QsqbbIhER6ctmMmBEQvfO4L7n1DG4eHIa6r1BzMiIgdFwfBtBDbKEiyeru/Eaj/I+/g8WjsA/1xfCE4y8TrhiegYSHGbwtON23IpLRDRE+aKcr2fLOlWHTI5NCIEmNGriPF+P+pLdbMTZ6ZMglE5/DrmrAEMAXx6uawtJRguSz34esiVONVUEmlDx5sUI+2r7I2UaxloOvI6yl0+JWtQzxo5G+jfW6FbUK2v04ZJnNkSKetYmIKlAO6kqB/C5AOC4XwQSEdHAkpfkxJzsuH75eT460YGtdy7Gr5aNxRPLp+CZb07v8+ccbPhblYhoiPIWfqKJ2bIHZmHPH1IQNms74k6MY2GP+tYLV8zFZPsoVUySBRBXhopmvypuislF0rJ/aR4j1HAQle+wmQb1DSEE6r96EJUrLocIeTXj1swlSP/GGpjiuj4Tqa+t2FWBQFgBpDCQuVu7BdfrAKqzdcqOiIgGu1GJDvz89DxcPzcHBp6pp8HCHhHRECSUMHzFq1Uxgz0FpoSJOmV0dI2+kKZxBgBM5FZc6mMOixH/Pv0c7UBcGWo9ATzzdRHOfWo9bn5tO+o8AdhHnoPYuT/TTPcVrUTt53f1Q8Y0nCjBFlS9eyXqvvhF1HHnpGuRetEKGKzx/ZyZ2rqC1tWtqQchWdTFR6FIbVtwiYiIqPcNzIOWiIjohASqtkDx16ti1qwlkKSB+Q5Xo19b2DPAgJGuBJ0youFkRmIm5iXlYF1V+/ZByeyHcNXgmhe3tMUKaj1Ycf1cxJ70MwRqdsJz4HXV4zRu+T+YEibBPfm6/kqdhrBgQz4q3r4UweodUUYlxC/6PdzTfzggfq6vL6gDXNWQ4su0g5UjAL+z7e4V0zP6MTMiIqKhj2+dERENQd7ClZrYQD1fDwDqvQHAqi7sJRpjYZD5a4r6x/fHL9AG49XNZ97dU4kGbxCSJCNp2b9gTpyiuaTm0x9E/f4jOh7ego9R+r95UYt6ksmJlPNfRcyM2wZEUa/eG8Tu2hogfa9mTDTHATWZbffNBhnfPSmnP9MjIiIa8viKiYhoCPIWaQsL1gF6vh4A7KmvgiQrqlimNVGnbGg4ujR3CpwGmyomOesBs0cVq2oJAABkkwPJ578K2ZakfiAlhIoVl8FftbUv06UhSgiB+g1/RPkb50Lx12nGje5cpF+2CvaR5+qQXXTrCmqBjD2QjCFVXISMQMlYAJHi47njU/D1bSdj0SiuxCYiIupNLOwREQ0xSsgHf8laVcwYMwom98BdJbGzXrt9a6QjKcpMor5hMRhxWuJk7UC8ugNpVYeGGiZ3DlLOfQmQTao5ItCIijcuQKixsE9ypaFJCbag6r2rUbfmJ4BQNOPWrFOR/s11MCdpV4rq6S87P4sUwTsrHQuELG1337hmNianufsvMSIiomGChT0ioiHGX/YlRNinitmyTtEpm+7Z21SpieW52BGX+tflObMgRKdgbDkgt69Eqm5dsXeENWMBEk97TPNY4ZZSlL9xLsK+2r5IlYaYQO1ulD4/Hy37Xoo67p5xe6RJhm1grXbbUF2ETxq+0sRFbRrQ1L7q+oGzx0NmF0MiIqI+wcIeEdEQ4y38WBOzZg/swl5+i7awNyGGHXGpf01OTFIVIwBAMoRVq/a+/+p2PPzpATT52ot9rgnfQuy8X2oeL1i7BxVvXQIl5NOMER3RvOd5lD4/H8Ha3ZoxyWhD0pnPIGHR7yHJA6PnnRACn+fX4EfvbsXZ7/8bQlJXw00hB/4+/0KYDZGXGaeNScRti0bokSoREdGwMDD+QiAiol7jLehc2JMGdOMMACjyVqnui6AZWa4YnbKh4SrFZQGqMwF3tXogviTSAEDIKG304e53duPVbWVYd+vCtuYFsXN+gnBzCZq2P6m61F+6FpXvfAMp574EyWDury+FBgEl5EPt6js1/2aOMLpykHzeS7AkT+/nzLrW7A/hmpc24c2d5UDWTkjuRtW4UCScaj0ZN80bhW9MzUKdJ4hRiQ6dsiUiIhoeuGKPiGgICXurEajcrIqZU2YMuO1bHTUEvKgPN6uDPifcVr73RP0rzmYCvG4Ij0sVl0wBwK1eVfpVUT22lrYXNSRJQsIpf4V95Dmax/UeeheV710NoYQ0YzQ8BesPouzFRV0W9SLn6X0xoIp6APDYugK8ubMCSCiG5K7RTqgYibNHjAIAxNvNLOoRERH1Axb2iIiGEG/hSgDqbVG27NP0SaabttVqG2fA54DbwsIe9S9JkpDutgHVWdrBxGJ0/t46UN2ivl42Iums/8KSOkdzuefA66j68DoIJdybKdMg1HLgdZT+7yQEqrZEGZUQO/dnSL3oHRjsA6+B0Gf5tYC9AUjJ14yJhkSgNgPzc+N0yIyIiGj4YmGPiGgIiXa+3sAv7JVqg1yxRzoZmWAHmhIh/FZVXLK2AI46Vay8yY/OZJMdKRe8AVPCRM1Yy57nUf3JTRBROp7S0KcEW1D18Y2oXHE5lECDZly2JSLlohWIm/cLSLJBhwyPLb+hAcjcBalTHwzhtwGlYzEhxYXpGTxGgYiIqD+xsEdENEQIITTn60kmB6xpJ+mUUfdsrYuyYs/vgIsr9kgH18/NBiBFztTrLLFIdbe0MXpTDIMtEakXvwdT3BjNWPPOf6Nm5Q9Y3Btm/BUbUfq/OWje8a+o45b0+ci48mvYc07v58y6L6SEkW/bGNma3oFQJKB4AqAY8b15uW3nThIREVH/YGGPiGiICNbtRbi5WBWzZi6GZLTolFH3bO+0Yk8oEqyKA0YDf0VR//vWrCysuG4OUJ8KEVIXlyVnPWBrP1evrIvCHgAYHalIvfgDGN3abqBN259E1QfX8sy9YUAoYdR//TBKXzwZwbr9UefEzLwTaZd8BKMzo5+zOz53790CpdOqVQBA+RjA5wQAXDY1vZ+zIiIiIr5qIiIaIrTdcAFb9lIdMum+sKJge125Ouh3IMY6sIuRNLSdPT4F/7tiNlAbpUiRVND2aVcr9o4wujKReskHMDi1q/9a9vwPle98EyKk3c5LQ0OoqRjlr52JurX3AlGKuLItESnnv4b4kx+AZDDpkOHRfbK/Ck+tL0RpcwgP7t2Pz4P7NHNEfQpQlwog0nwm2cnOz0RERP2N+5yIiIaIqOfr5Qzs8/UONFXDGw6qgz4nG2eQ7i6flo5q35m4dedTkAzt22YlVy2EtQnwuVDacOyinCkmF2mXfICyV05HuEW9OtVz8E1UvH0Jks99CbLJ3utfA+lDCIHmPf9F7ao7oPjro86xZZ+OxGVPwehI69/kuuk3H+3DfR/sjdyxtAAjNkHqdOyf8NmB0jEAIltvxyY7uQ2XiIhIB1yxR0Q0BIhwAL7i1aqYwZkJU9w4nTLqnq464sbZBt7qFRpeJEnCLfPyMNU6XjvYumrvWCv2jjDFjUHaZSthdOdqxrwFH6L89bMR9tacSLo0QIRaylD59sWo/uDa6EU9gxnxi/6AlIveHrBFPV8wjN+vPBC5YwgCWTtUxW0AEGEDUDQREO3VvrxER3+mSURERK1Y2CMiGgJ8ZV9CBFtUMVv20gG/euLLiiJt0OfE2eNT+j8Zoih+NHkxhKL+c0ly1wDWZtR5g/AGw916HFPMSKQtXwlTXJ5mzF/6ReQMtvoDvZIz9T8hBJp2P4eSZ6fCk/9O1Dmm+PFI/8ZaxMy4FZI0cP8E31jcAE8wDEAAmbshWdQFbCEAFI8HAupVpnnJzv5LkoiIiNoM3L8qiIio27wFH2liA30bLgB8UHBIE5udnIF7Th2tQzZEWldMGYFFsZO1A4mRVXtHa6DRmdGVibTlK2FOnKIZC9UfQOmLi+Ar/bLHuZI+Qk3FqHz7kq5X6QFwTbkR6Vd8CUvS1P5NrgfWFbQ2yEjJh+SM0iyjMhdoTtCEc+NsfZsYERERRcXCHhHREOAt/KRTRBrwjTMA4EBTpeq+CFrw9/NnwGzkrycaGCRJwvNnXQCroVOH3JhqwNqE4vruF/YAwGBPRuqlH8GSOlczpnirUf7q6WjZ98oJ5Uz9QyhhNGz+O4qfnQJP/oqocwzOTKRcuAKJpz4C2ThwC18N3iDqPAEAwJcFtUBcGaTEYs080ZgIVGdHfYy8JK7YIyIi0gNfORERDXJhbw0CFRtVMXPyNBhsiTpl1D17qusQNHhVMbeIwaysGJ0yIoouze7GDXknaQeSD2FTScNxP57BGofUSz6AfdQFmjER9qPy3StQu/ZnEEr3tvlS//NXbkbpiwtRu/oOiGBz1DnOidcg8+rNsOee0c/ZHZ/ffLQPCb94H4n3fYB73tmNT8sOAGn7NfOEzw6UjMWRZhkdTUhxYkYGf3YTERHpgYU9IqJBzlu0EoBQxWzZA38b7sv79mliU+MzBvy5gDQ83TXlFFjkTqv2XHX449cbu7ji6GSTHcnnvAD3jNuijjd8/RDK3zgPYW91jx6f+oYSaELN6h+j9Pl5mjdUjois0nsbSaf/A7JlYBe78mtacN8He6GIyNl5D63dirrELZAk9e8UETICRZOwJDcZ509MwU+XjsHD507ApFQXlo5JxAtXzYQs82c3ERGRHozHnkJERAOZdhsuYMs5XYdMuq+mJYD7PtsAqVOPjCUZOfokRHQM6fYY3DrhZDy841NVvMS6C/KP3sL1c3PwndlZmJLmhsNs6FaBWpINSFj0EEwxI1Cz6nZAqDuP+go/Run/5iH53BdhSZnRq18PHR8hFDTvfg51a36GsKe8y3nOSdci4eTfD/iC3hFPfFnYfscQAHJ2QDKoV4oKRYp0wA3Y8IfzxmNGVnzb2J1LRvVXqkRERNQFrtgjIhrEhBDwFnysiklGO6xp83TKqHvO/9dXgFW7fW153lgdsiHqnrunnAITTKqYZG8CXDV4an0hFv59Ldz3vocL//01GrzBbj+ue+r3kXL+a5DMbs1YqKkAZS8tRsOmRyA6Ff6of/hKv0TpCwtR/eH1XRb1TPHjkbb8UySd9vigKeoBQGlD63EIUhjI3gnJHOXMyNI8wBMLABjHc/SIiIgGHBb2iIgGsWDdPoSbClUxa+YiSEaLThkdW3G9N9J10dqkihsUEyYmDOxzAWl4i7PYsSxhpnYg5RA6bod/e1cF4n7+Pq787ybUd7PAZx9xNjK++QVMCRM0YyLsR+1nP0L56+ci1Fza0/TpOIWailH5/rdR9tIiBCo2RJ0jGayIm/8bZFz5NawZC/o5wxNnNMgABJC5G5K9UTMuqrKBhtS2+2xsRERENPDwtzMR0SDmi7YNd4Cfr1fc4APkECSLemVIqimR5+vRgPeXhWdABM2qmGTxAHFlmrnPby7BXz7L7/Zjm+LykH75Gjjylkcd9xV+jJLnZqDlwOvHlzQdl7C3BrWf34PipyegZc/zXc6zZZ+OjKs3I3bO3ZAM5i7nDWQSAKTvg+Su0YyJhiSgMrft/sWj7f2WFxEREXUfC3tERIOYt/AjTcyWs1SHTLqvosmvWa0HAOeM4FlNNPCNiHfj1rFLtAPJhwBZuzrv1x9pm8QcjWx2Iums5xC/6GFAMmjGFV8tKldcjsp3r0Sopeuz3uj4KYFm1K3/HYr+PRYNG/8EEY6yLRWAMWYkks97BSkXrYApdnD/3Frv3QwpTvvvSHjcqg646Q4Drh7PbbhEREQDEQt7RESDlAgH4S1arYoZHOkwxWu38g0kFc1+wKY9X29p1ggdsiE6fg+fvBSWsLrIIRlDQHJBrzy+JEmImfFDpF/+OYyxo6POadn3MkqenYLG7U/x7L0TpAQ9aNj8NxQ9PQ71634JEdBuSQUAyeRE3MLfIfPqrXCMOn9QrzB+d3cFJj31X+wWOzVjwmcHCich2WFD4b2n4pkzEvHi2cnIdLLnHhER0UDEwh4R0SDlL18PEVQXyGw5pw34F5uRFXvawt6MhEwdsiE6fibZgJnGKF1q40sBc4smLITQzu0GS+osZFzxFVyTros6rvjrUfPJTSh7eSkCVdt69BzDmeJvQP3XD6HoX2NQu/pOKJ7KLuc6J3wbmd/ZhdhZPxrQZ5h2x57KJpz3ygrskjdrxkTQDBROBsImnDshFakuCyYkmGE1DuzfK0RERMMZC3tERIOUtyDKNtzsgb0NF2gt7NnUW3HdJitGOON1yojo+M1LHA3RpP43K0kCSD2Ijo00AKDuODrkdiabnUg87TEkn/cKZFv05jL+0rUo+e9sVH30XYSaS3r8XMNF2FuNui/uQ9E/R6Nu7c+geKu6nGsbcTbSr/waSWc8CaMjtct5g8m9a9ZCZOxG5/eARNgIFEwBglYAwBl5STpkR0RERMeLa+qJiAYpzyAt7BU3NgNmryo2PT5jwK80JOrIZTEC5aMgnHWRgl4ryVUH4aoBmtqLcGWNfsTbT6y5gmPU+bCmz0ftZ3ehefdzUWYINO98Gi17X0TMzNsRM/NOyGbXCT3nUBOo3o7GLY+hec9/IULeo861pC9A/IL7B2Wn26P5sGQv3qpfqS3qKRJQOBHwO9pi83Pj+jk7IiIi6gkW9oiIBqGwpwqBio2qmDlpGgz2ZJ0y6r5D3kpIVnVsVhK34dLgMjsrFgjYgZoMILFYPZh6AGiJA5RI84vyJh8mpp54kc1gS0TSsn/BOf4qVK+8BaH6A5o5IuRF/frfoXHLY3BPvwXuaTfDYB2+q2GFEoLn4Fto3PIofCWfHXO+OXEK4hb8BrbcM4fEmw1NvhCue2kLPtlfjZQUL/Kd66FI6jMZhZCA4gmAJ1YVz4y1IRQK9WO2RERE1BMs7BERDUKRbrjq7X623GX6JHOcygPVQKfCHs/Xo8Hm1NGJyIixoqQqByK2ApKxfbutZPZDJB0CKiKNL8qb/L363LbsU5Fx1UY0fPVga/dW7eMr/jrUf/kbNGz8M9xTb4R7+q1DZitpdwQb8tG86zk07XoG4aaiY863pM5F7Jx7YBtx9pAo6B1xy+vb8cq2MsDWgDrrdkgirBoXAkDxONUKUyIiIhpceMYeEdEg5Dn8oSZmHySFvXqpThNjYY8GG7NRxjvXzQWUyJZcjYQSwBo5S7K8sXcLewAgG22Im/8rZHx7Bxzjruhyngg2o2HDH1D0z1GofPcqeIs/73Ezj4FOCTShaeezKHv5NBT/exzq199/zKKeNfs0pF7yEdIu/wz2kecMqaLe9rJGPLepGLA1ADnbIRnC2kmleUCjdqX3H88f2N3ViYiIqB1X7BERDTJCKJrGGZLZDUvqXJ0y6j5fMIygqREdXzobYcRod4JuORH11JR0Nx4+dwJ+vEJEVu0524vWkgSI9H1A/gyUNfn6LAeTOwfJZz4N//RbUfv53fAVr44+UQmiZd9LaNn3EkwJE+CadB0cecsH/So+xd8AT/4KtOx/Dd6CD6OuXtSQjXCMuQQx038IS+qsvk9SB6Gwglte2w5hqweyt0MyKJo5omw0UJ+miSc6zLh2dnY/ZElERES9gYU9IqJBJlC5RdPF0Za9FJLBpFNG3XeorgmweFSxJEMCZIkLyGlwirebAEhA6RiI0Rsgye0FFMnWDJFQjIqmvl+RakmZgdRLPoSvaCXqv3qw6wIfgGDNLtSuvhO1n/0Y1szFcOQth2P0hTB00XV3IBFCIFS/H57DH8J7+AN4iz8FwoFuXWuwp8I15Qa4Jl8Po0Nb0BpK/rg6H59X5EdW6slRinoVI4DaDE3cZJCw+Y5FiLEN/N8nREREFMHCHhHRIOM5/L4mNli24X5SdFjTjTHbmqRPMkS9IMHR2u02aAOqcoCUQ+oJyYdwoCnKVt0+IEkSbNlLYcteCl/pOtR/9SC8h9/r+gKhwFf0KXxFn6Jm5S2wpMyGLed02HLOgCV1FiRZ/z8ThRAINRXCX7oWvpIv4C38GKGG/ON6DEvGQrgnfxeOMRdDMpxYd+LB4i8bN3Rd1CsfAdREX5G36fbFyIix9XV6RERE1Iv0/4uNiIiOi7dAe76eLecMHTI5fp+WHtLEZiVm6ZAJUe+I67iyqToTIqYSkrWlLSTJAhuUL1HdshiJDmuUR+gb1vR5SL3wTQSqtqFx2z/QvOd/EMGWri8QCvzl6+EvX4/69fdDNsfAnDob1tTZsKTOhiV1Tp933RZCINxShkDVNgSqtyFQuQW+si8Rbi4+9sWdGFzZcE24Cs7xV8EUO7oPsh24ntu/GRXxGyHJ2rMURflIoCbyMzfJYUZYCNR6Io1frpmT1Svdm4mIiKh/sbBHRDSIhH118Jd9qYqZEibC6BoczSe21ZdoYmfnDK8X3TS0mAwdt5HLQMlYiJGbVCtTFWsTkv/+JH429XTcc+po2M399+eXOWkKEpf+H+IXPoDmPf9F47Z/IFiz65jXKYEG+Ao/hq/w47aYbE2AKS4PprgxMMXlwejMgMGeAoM9GbI9GbIlBpLBAinK1nohFIigB2FvFRRvDcLeKoQ9FQg1HEKw4VDrx4NQvNU9/lplezIcoy6EI+8SWDMXR81jqHhzRzl++/E+GA0yfrVsLE7Pi6x8/ue+9bhx7StdFPVGATWR3xVLRiXgte/MRozViI3FDTAZJExNj+nXr4GIiIh6Bwt7RESDiK/wE0Cot1YNlm24AFDgq1D/5gkbcWrO4ChKEkUzKdUFm0mGN9j6felzRbbkJheoJyYV4v41m1BY58XT35ze73nKFjfcU78P15QbEajaGmmksfdlhJoKjn1xK8VXA3/ZOvjL1h11nmSwQDJYAUmGCPshlACghE70S4jK4MqGfeQ5cIy5BNb0BZBkQ588z0ByuNaD5c9uQEiJFO8ueeZr7PzxKXipaD3u2rAi6jWXpyzCd0+ej9d2lGNskgPfPSmnrSg9Kyu2v1InIiKiPsDCHhHRIOIZxNtwf7hiE8JGryrmCMfBbBz6L8Rp6HJajPjBwpF46NMD7cGqbAhXDSRbc1tIkgRE5m78Z7Md/1g+BRad/t1LkgRL8jRYkqchbsFv4S//Gp4Dr8Fb8BEC1dt75TlE2N+97rQ9IBkssGYsgi33DNhyz4Apbhykzgd3DnGvbS9rK+oBQLM/hEveexEbfTs0c4UAUJqHm5csxIIR8VgyeuA3SCEiIqLjw8IeEdEgIYSA97C6sCeZHLCmL9Apo+7bW9mMv23YBilHHc+xpuiTEFEvevCc8Th1dALOfHJ9a0QGSsZBjFSfcyZZvBBp+3CgqgUT09z6JNuBJEmwps2BNW0OcPKDCLWUwVvwMbyFn8Bfth6hhoN6pwjZGg9r+jxY0hfAmr4AluQZkIwWvdPS1cr9HbYrSwqQsQcbfVWaeUKRgOLxQFMSxiY7+jFDIiIi6k8s7BERDRLBmh0It5SqYrasJYPiRe6aQ7WArUkTnxbHbbg0NJwxNhkLcuOw9nBdJOB3AJUjgFR1B1cpthKP7fkSf08beCttjY40uCZcDdeEqwEAYW8N/BUb4C//CoGanQjW7UOo7gBE2Nfrzy2ZHDDGjIApLg/mxCmwJE2BOXEKDK6sYbci71j2V7c2QTEEgawdkByNmjkiLANFk4CWOABAomPg/54gIiKinmFhj4hokPAc/kATs+UMjvP19lU1Azbti89bZkzWIRuivvGn8yfhG89txKFaTyRQkwnhqIPkqlPNe6pgJb5fNwUT41J1yLL7DLYE2HOXqc7xFEJBqKkIoYZ8hFsqEPZUIuyJfBTBFoiwDyLkj3wUSut5e2ZIsgmS0QrZlghD6022JcLoyoYpZgRkWxILeN3Q4A1GCnsmL5CzHZLFq5kjQkagcDLgjawKnZ8b199pEhERUT9iYY+IaJDovA0XAGy5A2/VTzT7q5o1K/aSTDGYm8mtuDR0zM6Oxb57TkVYESis9yLvwZWRLbmjNkIyBdrmBUUIZ73/L2y56DbEW+06Znz8JEmGyZ0Dkzvn2JOp120qaQDs9UDWTkhGbUMSEbACBZOBQPu/q0umpPVjhkRERNTfWNgjIhoElEATfKVrVTFT3BiYYkbqlNHx2VlXCSlO/SL01MwROmVD1HcMsgSDLGFEfGthJWwGisdD5G5FxwVpJb5aJD7xF+R558JpNuGXy8bi3AksdFPXhBD46441QO42SJLQjntcQOEk3L5gHFYfrEF5kx8XTU7FjfNy+z9ZIiIi6jcs7BERDQLeolWAElTFBss2XEUROOytADrtBpublK1PQkT9wCB3qOJ5YoGqXCD5sGqO5KrFPt9OoGQELnnmaxy+9zSkua39mSYNAIoiIMtH34YcCIdw65dv4O26LxFtx7JoTASKx8FpNuOP50/so0yJiIhoIJL1ToCIiI7NG+18vdzBUdgrafQhaNGerzc7kYU9GtruXDyq/U5VNkRTvGaOlFQIuKsQDAu8u7uyH7Mjvb26rRSJv3gflnvewV0rdkEI7So8ACj1NOD0D/6BJ/d9GXVcVGcARRMAYYBR5p/2REREww1/+xMRDXBCCHgL1OfrSQYrrJmLdMro+OyvatE0zpAhYXpChk4ZEfWPu04ZhWVjk1rvSZEtuX6bdmLGHsDW2N7tlIY8TyCEa1/cilpPEGFF4A+rDuLj/dWaeX/bvBFjX34YayoOacaEIkGUjAUqRgOILOM7Z3xyX6dOREREAwwLe0REA1ywdjdCjYdVMWvGyZCNUQoEA9D+mkbA2qyKZduSYDOadMqIqH8kOS1474aToPzhPPzi9DxAMQKFkyDCBtU8SVaA7B3YXFmmU6bU3z49UIMmv/rc0btX7Gr7PBgKY+GLz+GHm5+HR/FprhdBM3B4KlCv7qz8vXlsakJERDTcsLBHRDTAeQ69p4nZRpylQyY9s7WmFJKs3mI2NY6r9Wh4+eWysXjzmtmRbqXF49F516VkDGJ1eBUqvE3RH4CGlHpfUBPbUtqIQEjB71bthOWxB7DOsyX6eXpeF5A/A/DG4Icnj4DdZIBBlnDPqaOxcERCP2RPREREAwmbZxARDXDeKIU9+yAq7O1sKtXETkriqhIafs6bmIqVN87DqY+vA8pHAWkHVeNBgwcL33ocN6Sehyun5SAjZnCsyqXj5w8pUePfenslXqpaCckZiDouatMi/3aEAYkOM/50/kQ8dO4EKELAYjREvYaIiIiGNq7YIyIawMK+OvhK16piprg8mGJHdXHFwHPIq91eeHrmSB0yIdLfktGJ+M2ZYxHvGwFRnakZz/dU4J7tL2H8wx/jUI1HhwypP9S0dCrcSWEg9QBern8fkklb1BOKDFE8DijLA0SkgLdwRDwkSYLJILOoR0RENIyxsEdENIB5Cz4CRFgVs404W6dsjp8QAlVKlToYNmFaUpo+CRENAPeeloeKXy7Db6afDdGQpBmXHI1oTtmKX368K8rVNBTUeDpsxbU2AqM2QkooiTpX+OzAwRlAQ4oqvnCEtssyERERDT8s7BERDWDew9G24Q6ewl5hSx0Csvrgd0coDlK0g6OIhhGDLGFcshMoGQfRHKsZl5z1+E/lB6hs9gIAQmEFlU1++IJhzVwafL4urAMggKTDwMjNkCzeqPNEfUrkPL2AQzN2Ms/TIyIiIvCMPSKiAUsoYXgOf6CKSWY3rOkLdMro+H1RcVgTS5K1K5SIhqOZmbGAkIGiSRA52yDZG1XjkrMOqf/+I2Yo87Gv0odmfxhZsVa8dPUszM2J0ydpOmE3v7Ydn5YcBkbug2RrjjpHhA1A2WjMcOVhk2jUjE9Jc2NGZkwfZ0pERESDAVfsERENUP7yr6F4q1UxW85pkAwmnTI6fqvK8jWxEVZuwyUCgNx4O8YkOgDFABRMhvC4NHMkZz02GT9Hcyiy8rWo3ocfr+AW3YHIFwzjZ+/twdLHvsCvPtwbdXXluoIqPHbwE2Dkpq6Lei0xwMFZ+OeyZXj8kqmqzrgmg4Rzx6fgxatnwiBz5TMRERFxxR4R0YDlOfyuJmbPHTzbcAFgbacVe0KRMC4uVZ9kiAagM8YmYX91C6AYI8W93G2ago9kb4LI3QoUTAZCFqw5VIviei8yY9k1V29CCLywpRT5NS1YX1CPFbsrAACfHqxBWBG4emYmPtpXjaxYK/L9xbh3y1uQEqM3RRGKBLlqJE5yTsJ3LsjGd2ZnQZIkbLtzCV7dVoacOBsumpwKt3XwvLlDREREfY+FPSKiAcp7qPP5ehLsuct0yaUnmoI+7G2sUAd9LmS5nfokRDQAnZGXhP9bezhyRzEBBVMgsrdDsjep5knWFoiRm4DCSYDPhez7P8YpoxJQWO+Fy2LEr88chzpvAIGQwMWTUxFnN/f/FzOEhRWBz/NrYDLImJ/bfk7onW/vwl8+065MBoD7P96Pv605hIZwM5CSDymmCuhikZ3wOrH58u9haoJ2RfPEVBcmpmpXcxIREREBLOwREQ1IoeYSBKq2qmKWlFkwOFK6uGLg+bKyEAqEOuhxI9Vl0SchogHo9LwkZMZYUdzQ2mQmHCnuufP2oNFQo5ormQIQuVuA4vFAcyI+Pdg+fv6/vmr7/KFPD2DT7YvgsPDPvN6gKAJnPvklPtnffjTCE8un4OxxKfjHusNdXyiF0eA6DCQWQZKVqFOEIgNVOVgaPy1qUY+IiIjoWHjGHhHRAOQ7/L4mZhtxlg6Z9NwXlYe0QU8M0tws7BEdYTUZ8OH3TsKikfFtsfnZSTh81R3IMmRo5ksGBcjeCSQWAp0L5632V7fg3T2VfZXysPP6jjJVUQ8AvvvyNmT+5iN4g9EKdgKIqQDGfAUpuaDrol5zLHBwFlCdjUS7tfcTJyIiomGBb+USEQ1A3gJtYc8+YpCdr1d5WBv0uJEdx3PBiDoal+zCqpsWoLDOg6qWAGZkxECSJFybdhZ+uX0FpLhy1XxJApByCMLWCJSMi5zP18nl/9mI8clOTEpz99NXMfSEwgp++OZOPPbF4e5fZK+PbLvttJW6IxEyAuWjgIYUHNmb643SaIOIiIioO7hij4hooFH88Bd9qgoZHGkwJ0/TJ58eCCsK1lcWqmLCbwPCZmTzwH+iqLLj7JiZGdt2fltunAMozYMoHxF1vuSuAUZuBKzRi0iz//o5Dla39Fm+Q917eyq7X9SzNQI5WyGN2NplUU8IQNSlAgdmAw2p6HjgXkWT/8QTJiIiomGJhT0iogHG1LAZIqTummjLPROSNHh+ZG+vK0NzqNMLVY8bSQ4z7GYuFifqjkgRXAJqsiEKJ0TOY+tEsviAEZujbs31hxQ8ub5Qcw1p7a1sxgubS3CgQyH0s/zaY19oaQGydkAauRmSs77LaaIlBsifAZSOBcLaxibLxib3JG0iIiIibsUlIhpoTLVfaGL2QXa+3sv792iD3hjkxtv7PxmiQSqr4+rWpiQg3waRtTNSzOtAkkVka66zJrI1N9h+3UOfHsCD54yHLxhGaaMP6W4rrCZDf30JA1YgpMAXCsNtNWHFrgpc+swGBMKRs/DuWDwSN88fgXUFRynsWRuBpCLAVQ2pi063ACACFqBiFNCYiC5b4gL41qzMHn4lRERENNyxsEdENJAIAVPtWnVMNsGWvVSffHropf27tEGPGzlZ3IZL1F2ZsZ0aKvidQP5MiIw9kW24nUiORojRG4CqHKA6E0c2ZmwtbcAF//oahfVejEyw461r5mBCqqsfvoKB6d3dFfjOC1tQ3RLAhZNSUVjnbSvqAcCfVufjT6vzo1wpAEddpMvtUVbnAYAZZvxixlI0l6Xigf3RHitiZmYMfrJ0DEYmOHr41RAREdFwx8IeEdEAInsLYPCVqmLWzMWQzYPnRbgQAgd9pZA6/IYRIRPgtyMnjiv2iLrLYoyysk4xAkUTIRKKgeRDkdV6HUiyElm9F1MJlI4BvDGY/qfP2sbzazz4zcf78PxVM/s6/X4lhIAnEIbFKMNo6PrYAn8ojBte3orqlgAA4I0d5V3ObSMpgLsKSCiGZGs+eh5hGajNxL2zTsNPpk5A1Sg/nv6qBGWN7UcTGGUJ9581DnedMrp7XxwRERHRUbCwR0Q0gJhrPtfEBts23I8LCiAZg+pgSwwACTnsiEt0XE4ZlYBPD7avzpuW7sbzV83EH1cfxPqKbBQ4NqMJDZrrJGsLMHILREMSUDFCtT33xS2lQ6qwV9Hkx2XPbsDnh2oxKsGOF6+eiRmZsZp5lU1+fJZfoyqyHZXJB8SVAnHl2p9pnQhFAurSgapsIGzGSZlJAIAkpwW7fnwK3ttTiTS3BeOSXbAYZcTaTMf7ZRIRERFFxcIeEdEAYqqNVtg7W4dMeu7pXTu0QU8sACA9xqodI6Iu/XDRSKzOr4HSujDvtkUjMTbZiSeWTwUwFb7QMvxi8/v44/bPAElorpdiqiBc1UBtBlCd1da4oazRh1SXpa0D72D2+08P4PNDkfPwDtZ4cMdbO7HqpgVt44oi8LuV+/GrD/chrGj/G6kJwFkXKei5ao56fh6ASEOTurTI1udQ+8+3yWnuts9jbCZ8Y3rGcX9dRERERN3Bwh4R0QAhBWphbFQXxUwJE2CKHaVTRj2zpiLKeVItMQCAGRkx/ZwN0eB2/sRUrP/hyfjicB1mZMRgwYh41bjVaMJDs8/Dnv12rKj/POpWUUkWQGIxRHwpUJsOVGch49cfId1txWvfmYU52XFdPv+B6hb84PXtOFjjwWVT0/GrZWNhkI+/GNjoC2JLSSN+9v4e7K1sxnkTU/HXCybCYWn/U/StneX491eFSHVb8fPT8rr9RsBfPlP/zPksvxbeYBg2kwEPfXoA97yz+9gPYmkGYiuAmEpIpsAxp4uQMVIsrc0AwtrVdykuS7dyJyIiIjpRLOwREQ0Qptq1kKBeTWIfeZ5O2fRMKKygJFSu+u0iQkbA78C3Z2WyKy5RD8zMjMXMKFtLOxrnTsOKTTMiZ+8lFUAyhDVzJFlpLfCVAA0pKK3NwFlPrkfxL06HLUqnXCEEvv38ZqwrqAMA/O6T/RiZYMe1c7KPK/9Xtpbi+pe3otEXaov966tCTEhx4o7FkTcuvjhciwv//XXb+LbSRnx+8wLIRykieoNh/PKDvVHH3t9TCZNBPnpRz+SLnJ0XU3nMs/OOsMEOT3laZJWeEr278KRh3JiEiIiI+h8Le0REA0TU8/UGWWHv9X35EEb1ahfZG4t3bzgJp+cl6ZQV0dCX6DADkICaLKA+BSL5MBBXFnUrqSQLIK4ciCtHXUsMHA+U4qKcifjjeZNVxfeSBl9bUe+Iv605dFyFPW8wjJte264q6h3xo7d34dwJKchLcuKpLwtVY+sK6rC5tOGoBc1ffrAXD686GHXskmc2RL/I3AK4qwF3dbeLeQAgmuPwrZFzYGhJxL9rio869xen53X7cYmIiIhOFAt7REQDgBL0wFT/lSpmsKfCkjpLp4x65rk9OzWxb+RNxBljk3XIhmj4cJg7rB4Lm4GyPKA2AyIlH5KrtsvrJEcD4GjA68F9+PSFL/HSBWcjRknET9/dg0/2V2vmby1txB9WHURVsx+zsmJx6ZS0o57Tt+ZQbVsH2mgm/2EV3rp2Dp7eUKQZe3tnBQIhBQAwNztOtXpPCIFnolyjIYcBe33k3DxnLSSL99jXHHmOsAGoT41sXw7Yceq8cdhZ3hR17s0LclHvDeLCSam4eHJat5+DiIiI6ESxsEdENAD4i1dCUtSdGu0jz4EkyTpl1DOb6gqATq/xvzN+kj7JEA0jwXCUphB+B1A4GcLaCCQXHL3AZwihwVaEZR/+A3LIgnBzPOCMB1riAKHecnrXil1tn//p/Im4bdFIVLf48eKWUiQ6zFg+Jb2tCLexuP6Yed/82vaoY7/+aB9+/dE+AMB5E1LwxjWz24qIBXVeVDZHKRhKYcDWBNgbIsU8W2NkhWI3CQGgOS5S0GtKUH3tKS5Llx11/3rBpKNuGyYiIiLqKyzsERENAN5D72hi9lGDaxuuEAIVSgXQoQYgKUacmp2jX1JEw8T4FGfXgz53a4GvCUgoAdyVRy12KUY/pPgyIL4MQpEiXa1bYgBPDOB1qYpdT3xZgHk5cTj7qfWo8wYBAG9MK8fzV82EEAIPrjxwzNzzazzHnPP2rgq8t6cS28uaUNzghckgAxCA2QtYmwF7I2BrBGzNkKJ0Bz4W4bNHinkNyUAoeuMLt8WIeLu2UQYAFvWIiIhINyzsERHpTChheA+9p4pJRjusWafolFHPbKuuQNigXs2ShGTIg2zVIdFgtHR0IjJirChp8HU9yecCSsYB5SMh4sqA+NJjdoCVZNG6jTVy1p4QAHzO1psDe1rsWPJEHfx+I44s131xSymafCE0+kNRz9Y7bnIYMPlw7ovvARYPYGkBrC3AeE+kIUgPCa8TaEyM3AIOAMClU9LwyrYyzVyLUcaEFBfya49dhCQiIiLqTyzsERHpzF/+NRRvpSpmzT4NstGmU0Y989KBXZrYBFeWDpkQDT9Gg4z3bzgJk/+w6tiTw2agOgdjpHHY7y0CYisBV023imSSBMDWHLm1CgCAIgNBS9vt3dp8IGwE4oyRj4oBEBIAqfUjAEkBZKX9oyHYegsBxiBg8gMmHyRjsAf/RbSEkACPG2hqLeYFrZo5f79oMsoafVh7WN005NaFIxBjMyGsaFcDmgxcrUdERET6YWGPiEhnnvy3NDHbiHN0yOTEfFqm7U65OHWUDpkQDU8TU11Y9f35WPLYF0edJ0vAQ+dOwB2LR+H17WWRDrJyCMJVDcRUAY76414JJ8kKYPFGbgOI8NsjZ+Y1x0W2Eitd/+l74aRUJLssWH3TAlQ2+yFJElYfrEGqy4JFoxIAAKeOToQkta5cbPXYJVP6+ssgIiIi6lK/Ffb++te/4tFHH0VGRgZWrlzZq4+9fft2XHrppcd93X//+1/MmjW4Ok4S0dDjyV+hui8gw5p7pk7Z9IwQAtsbC9WxsBHLcnP1SYhomHJYDF2OLR2TiKtmZGJGZgwmp7kBRIpZ183Nxj/XFwINqZGbFIZw1AOu2kgnWfNRtvcOIEJIkS3CHnf7LaRdlReNySDh7lNGA4icl5fqjlx32bR01bzMWBuundP63wvAuGQnvtFpDhEREVF/6pfC3rZt2/Dkk0/22ePv3r27zx6biKgvBev2I1i7RxULuSfDYEvSKaOe2VFXDo/otFKnJRaTUtz6JEQ0TCU7ozd+GJlgx5PLpyI33q6KS5KEJ5dPxTWzs7Dw72sjQWEAmhMiNwDC6MeFc+zIzQhixeH9ONBccVydZvuCUGTA54h0/vU78J1J4/H0Z/WaDr5H/Ovyafj+q9vgD7WvRHz127Pgshixq6IJZ41LxpikozQg6eCJS6fgiukZaPAFcda4ZFiMXRdTiYiIiPpanxf2ioqKcNNNNyEY7J3zUaLpWNjLyclBVlb3znSKiYnpq5SIiLql82o9AAgmnKxDJifm3aI9mliqlAqHhSc+EPWnrFgb5uXEYV1B+xlxD5w9HreePAI2U9cFqPm58Sj9xekY99CnmoYX01OS8Ow5C+C0GHFhYg2WPLYWwuxtbWLhAcwewORrPRMv0KOutNGYYEbAa249t88KBKyRj35H5HO0n233w5nT8fTqz6I+TqrLgsumpqHBF8RdK3YhGBZYPiUN509MhUGWcFre8b2RIkkSThmdeCJfGhEREVGv6dNXXPv27cP111+PqqqqvnwaVWHv+9//Pi666KI+fT4iot7Skv+2JhaIH3yFvdfytSunT0sfo0MmRPTKt2fh7hW7UNLgw3Vzs/HN6RmQpGM3eEh1W/Hi1TPx03d3wxdUcNHkNJw5Lgmzs2LbVqWluS0AJCBgj9yaOj+KgDAGAEMIGXEGPHrZBNT7vbj5ja1oDgQjtThJABCAkCNNN4Qcaa4RNgBhE26YPRqPnDcdz35dgu+9su2YedtNBkxMcUUdkyXg+atmwG424ocnj8SVMzLgDSrIih1czYmIiIiIutJnhb0333wT9913H7zevj1EWQiBvXv3tt0fN25cnz4fEVFvCXur4S9VH3IftuVAsWfrlFHP+MMhbK3vdL5ewIqLxo7QKSOi4S3NbcWzV8zo0bXLxiZj2djkoz52NBaj3LrNVQJCFiBkwa8WTcV52ZGfZ80LEnHza9u7lcOomDhYDEbMzort1vyZmTEwGmR8b14O/rGuQJVT9a+WqVYOJzqib1UmIiIiGqzk3n7AiooK3H333bjrrrv6vKgHAAUFBfB4PAAAk8mEUaPYgZGIBgfPoXcBoe48GRiE23DXVhxGEOqte1JLLJaM4lY1oqHG2cX2+vvPVL+xGmM14qJJqW33vz8/Fzt+tKRbz5HqihTfpmXE4OLJ7Y8xOc0Ft1X7/NfNjRQPb56fC5OhfWXiNbOzeBwAERERDXm9+tfOY489hieeeKKt0AYAI0eOxBlnnIHHH3+8N5+qTcdtuCNGjIDZbO6T5yEi6m2eA29qYsH4hTpkcmIe37ZZExtjy0KcnT+PiYaLK2dkQJaBhz89CIfZgL9cMEnzM2BCqgvzc+PwxeG6Lh4l4khhDwBe/tYsvL+nEgBw8sgE7K5oxrdf2Iz91S0Yk+jArQtH4KoZmQCASWlubLtzCV7eVoqcOBuunJ7Zy18lERER0cDTq4W9f/7zn6qi3vLly3HPPffgww8/7M2nUdmzp/3Adm7DJaLBQgk0w1vwkTpmikPIPUmnjHru49L9Hc+whxDArTOm65cQEfWpxSMTsDq/RhVLcVlw+6JRuH3R0XdO/GrZWCx/diPqvV03VUt1tW/3lSQJZ41Pabs/OzsWu+46pctrxyY78bPT8o71JRARERENGX2yP2HSpEm4++67MWfOnL54eJWOK/ZY2COiwcJb8AFE2KeKBRIWAVLXXSsHolpfCxpQq4oZAy5cN5PHIhANVdeflK0q7N2xeGS3mnMAwNIxSdh3zykoqvchzWVB+q8/0sxJcfEcPCIiIqLu6tXC3pw5c3DxxRdj6dKl3f4D70R1LOyNHTsWe/bswauvvor169ejuLgYoVAIiYmJmDp1Ks466yycfvrp/ZYbEVFXWg68oYkFE5f0ex4n6rX8ParVegAw2prZ1kGTiIaeK2dkwiTL+HBfFSalunDzgtzjuj7RYWlrYjE7KxZfF9W3jdlNBiQ6uI2fiIiIqLt6tbD36KOP9ubDHVNtbS0qKyvb7j/11FNYt26dZl5JSQlKSkrw7rvvYtKkSfjzn/+M7Gz9u06GQqFjTxrAwuHwUe8TUXQi7Icn/11VTDLHIhgzs+3+YPl+ev3QTk1sTnzuoP/5RoMbfz/1vYsnJePiSa3dc4WCUEg5+gVd+OXpo3HOvza03b9iejqEEkYPH456Gb+XiHoPv5+Ieg+/n9QGdauwjqv1ALQV9Ww2G3JycuB2u1FZWYnDhw+3zdmxYweWL1+Of//735gwYUJ/pquiKAq2bt2q2/P3hR07duidAtGgYKpdC1ewSRXzxZ4EyKa2+4Ph+0kIgS8qD6hjiozxinHI/XyjwW0wfD8NV8kA/rYkHiuLfMh1G3HZiBB/fgxg/F4i6j38fiLqPcP9+2lIFfacTifuuOMOXHjhhXA4HG3x4uJiPPLII3jzzUgHyvr6etx00014/fXXERcX1685ExGZq1dpYoGEJf2ex4kq9DehER510BODcaOt0S8gIoripDQrTkrjzw0iIiKinpD1TuBEdFyJFxcXh1deeQVXXnmlqqgHAJmZmXjooYfwgx/8oC1WVlaGxx9/vL9SJSKKECGYaj5Xh2QrgnFzdUqo59Y2lWpiJk880h08X4+IiIiIiKg/DOoVe/fffz9+/OMfo6ioCA6HAyNGjDjq/Jtvvhlr1qzB5s2bAQAvvvgi7rzzTpjN/X9IsyzLmDx5cr8/b28Kh8OqJa+TJk2CwcAX9ERH4ytehapQgypmH3EWMqbOGnTfT3d/+JUmNt6eg+nTpvV/MkQd8PcTUe/g9xJR7+H3E1HvGWrfT9u3b4ei9PyA4UFd2AOAmJgYxMTEdGuuJEm4+uqr2wp7Xq8XGzduxLx58/oyxS4ZjYP+P7+KwWAYcl8TUW/zHXpbE3OOuUjzi2igfz81B/34vPKQKib8VsxLyxjQedPwNNC/n4gGC34vEfUefj8R9Z7h/v00qLfi9sSMGTNU9ztu5yUi6ktCKPAceFMdNJhhH3G2PgmdgPeL9iIkOr2r1JyAWVk8t5SIiIiIiKi/DLvCXkJCgup+Q0NDFzOJiHqXv+wrhFvU59LZsk+DbHHrlFHP/XztF9pgczxmZHZvBTURERERERGduGFX2AsEAqr7nRttEBH1Fc/BNzQxx+gL+z2PE9XiD2Kft1AVE4oMoy8WE1NcOmVFREREREQ0/AzaTcglJSX43//+h9raWtTU1OCOO+7AuHHjjnldUVGR6n5aWlpfpUhE1EYIgZYDb6iDkgH2kefqks+JeG3/QcCkfpMELbGYkhIHs3HYvV9ERERERESkm0Fb2BNC4Kmnnmq7P2fOnG4V9j7//PO2zyVJ0py5R0TUFwJVWxFqyFfFrJmLYLAl6pRRz72Sv0MbbIrHJSfxjRIiIiIiIqL+NGiXVmRmZiIjI6Pt/muvvYZwOHzUa5qbm/Hcc8+13V+4cCHi4+P7LEcioiOGyjZcAPiqLl8Tm5cwGj88eYQO2RAREREREQ1fg7awBwCXXnpp2+cHDx7E448/3uXcYDCIe+65BxUVFQAiq/VuvPHGPs+RiAgAWva/ronZR52vQyYnpsbXgspwlSom+e347LtLYTcP2kXgREREREREg9KALeydeuqpGDt2LMaOHYtTTz016pxrrrlGtWrvkUcewf3334+6ujrVvN27d+Oaa67BRx991Ba76qqrMGvWrL5Jnoiog0D1DgRrd6tiltS5MDozurhi4HqjYCcgCVUsTU6HQZZ0yoiIiIiIiGj4GtTLK2w2G/7xj3/gqquuQn19PQDgP//5D1544QXk5eXB6XSirKwMhYXq7o3nnnsufvKTn+iQMRENRy37X9HEHHmXRpk58L1wYJsmNjdutA6ZEBERERER0YBdsdddY8aMwSuvvILp06e3xYLBIHbu3In169erinpWqxW33XYbHnroIRgMBj3SJaJhRgiBln0va+KOMRfrkM2J8YaCWFt9QBUTIRNOSR+pU0ZERERERETD26BesXdEVlYWXnjhBaxduxYrVqzAli1bUFlZCb/fj/j4eGRlZWHx4sU477zzkJbGro1E1H8C1dsQrNuvilnS58PoytIpo577uHQf/EpIHWxKwIQUtz4JERERERERDXP9Uti7+OKLcfHFx7c6ZeXKlcf9PAsWLMCCBQuO+zoior4SfbXe4NyG+2bhTm2wMRHjkp39nwwREREREREN/q24REQDVWQb7qudotKg3IYbVhS83amwJ8Iy3OFEpLosOmVFREREREQ0vLGwR0TURwKVmxFqOKiKWTMWwuhM1ymjnvui8jCq/S3qYHM8xifFQJLYEZeIiIiIiEgPLOwREfWRqNtw85brkMmJe7NwhzbYxG24REREREREemJhj4ioDwgh0LK/0zZcSYZj9EX6JHQChBCa8/WEANAUjwkpLn2SIiIiIiIiIhb2iIj6QqBiA0KNh1Uxa+ZiGBwp+iR0ArbXlSG/qUYdbIkFFBOmZ8TokhMRERERERGxsEdE1Ceah9A23Gf3bdIGmxIBANMy3P2cDRERERERER3Bwh4RUS8TQkHLvlfUQckAx+gLdcnnRAgh8O+9mzrFADQmIs1tQaKDHXGJiIiIiIj0wsIeEVEv85etR7i5WBWzZZ0Kgy1Rp4x6bnXJYdQrjeqgJwYIWTA1jav1iIiIiIiI9MTCHhFRL4veDfdSHTI5cY9s+1obbEwCAMzNievnbIiIiIiIiKgjFvaIiHqREIq2G65shH30BfokdAKEEPisek+nGIDGJNhMMr57Uo4+iREREREREREAwKh3AkREQ4mv+HOEW8pUMVv2aTBY43XKqOc21ZSgLqzdhnvNjFG455TRSHNb9UmMiIiIiIiIALCwR0TUq5r3Pq+JDdZtuC8f2qKJxfjT8c/LpvV7LkRERERERKTFrbhERL1ECfng2afehisZrHCMulCfhE7A6gPV+L8d6vP1hACmuUbplBERERERERF1xsIeEVEv8R5+D0qgQRWzjzwXsmVwdY9dd7gWZzz3ETxoUQ+0xGJGapI+SREREREREZEGC3tERL2keU+UbbjjvqlDJj0XVgRueX07gs5y7WBjEianDa4iJRERERER0VDGwh4RUS8I++rhOfSuKiZb42HPXaZTRj3z5s5ybC5pAGIqVXEhJDh9qThvQopOmREREREREVFnLOwREfUCz4HXgXBAFXOMuQSSwaxTRj3z8b4qwFkLyRhUxaXmOPzfhTOQ4BhcXw8REREREdFQxsIeEVEviLYN1znItuECwN7KZs1qPQC4Y+o8XD0zS4eMiIiIiIiIqCss7BERnaBQUzF8xatVMYMrG5b0+Tpl1HO7qusBd7Uq5jZZ8esFC/VJiIiIiIiIiLrEwh4R0Qlq3vsiAKGKOcdeDkkaXD9iX91WigqpBJKsqOKX5E6BzWjSKSsiIiIiIiLqyuB61UlENAC1RNuGO/4KHTLpuVUHqrH82Y1ATIVm7KpRM3TIiIiIiIiIiI6FhT0iohMQqNmJQPU2VcycOAXmhIk6ZdQzf197CDD6AUe9Kh5vcmJR6kh9kiIiIiIiIqKjYmGPiOgERGua4RiETTPWFdQBsRWQJHX87PQpkAfZlmIiIiIiIqLhgq/WiIh6SAgFLXte7BSV4Bx7uS759FRxvRdljT4gtlwzdtOEOTpkRERERERERN3Bwh4RUQ/5S9ch1FSgilkzF8HoytQpo575sqAOsDdAsnhV8RRjIuamDq6vhYiIiIiIaDhhYY+IqIeadz+niTkH4Tbc9YX1QJx2td59sxf1fzJERERERETUbSzsERH1gBL0oHnfy6qYZLDAPvoinTLquS8KKwB3lSpmN5jwzZHshktERERERDSQsbBHRNQDnoNvQgQaVTH7qPNhsMbplFHPhMIKNjTthyQrqvjyEVPhNlt1yoqIiIiIiIi6g4U9IqIeaNr1H03MOf5qHTI5MSsPVCPoLtXEr8ubq0M2REREREREdDxY2CMiOk6hpmL4Cj9RxQyONNhyTtMpo5754nAtzvzPx5Bszap4qjkO85Nz9UmKiIiIiIiIuo2FPSKi49S8+78AhCrmHHcFJNmoT0I9dNsbO6I2zbhixCxIkqRDRkRERERERHQ8WNgjIjoOQgg0735WE3dOGFzbcA/VeLChtAaIqVAPCAl3TJ2vT1JERERERER0XFjYIyI6Dv6y9QjW7VfFLCmzYU6YoFNGPfP6jjIgtgKSIayKjzZnI83h0ikrIiIiIiIiOh4s7BERHYfm3VGaZgyy1XpAa2EvTts04y+LlumQDREREREREfUEC3tERN2khLxo2fuSOmgwwzH2Mn0S6iF/KIz11YchWT2q+MTYFJyZNUanrIiIiIiIiOh4sbBHRNRNnoNvQQk0qGKOkefBYI3XKaOe2VraiFBssSb+/fEL2DSDiIiIiIhoEGFhj4iom5p3Rmua8S0dMjkx7x8sAlzVqphVNuOqUTN0yoiIiIiIiIh6goU9IqJuCDYchrfwY1XMYE+FLed0nTLquVeKNqLzwryLs6bCZbLqkxARERERERH1CAt7RETd0LzraQBCFXNOuAqSbNQln57yhoLYE9yvid8zbbEO2RAREREREdGJYGGPiOgYhBJG085nNHHXxGt0yObE/Hvf1wjLAVUsVknCxPhUnTIiIiIiIiKinmJhj4joGLwFHyLcXKKKWTMXwxQ3uDrIKkLBn3Z8ponPd03RIRsiIiIiIiI6USzsEREdQ9OOf2lirkmDb7Xeu8V7cKhF3TRD+G1Ylj5Op4yIiIiIiIjoRLCwR0R0FKGWcngOvaOKyZZY2EdfpFNGPffnHau1wZpMjE9x9n8yREREREREdMJY2CMiOorm3c8BSkgVc467ArLRplNGPbOpuhiryg+qYiJkAupTMC6ZhT0iIiIiIqLBiIU9IqIuCCG62IZ7rQ7ZnJg/7FilDdamw2k2I91t7fd8iIiIiIiI6MSxsEdE1AVfyecI1R9Qxcwps2BOGlzNJg431eKlQ1tVMaFIQG06xiY5IUmSTpkRERERERHRiWBhj4ioC0Nltd4dX7wHAaEO1qcCYTMmprj0SYqIiIiIiIhOGAt7RERRhL018Ox/VRWTjHY48y7TKaOeKfU04O2STqv1BICaTADA6WOTdMiKiIiIiIiIegMLe0REUTTvehYi7FfFHHnLIVvcOmXUM/dt+BiKpKiDjUlAwA4AOGtcsg5ZERERERERUW9gYY+IqBMhFDRuf1ITd0/5rg7Z9FyVrxn/yf86ykA2AGDRyHjE2839nBURERERERH1Fhb2iIg68RWu1DbNSJ4Oc8osnTLqmb/u/BxBEVLFRGMC4HcCAG44KUePtIiIiIiIiKiXGPVOgIhooGnc9g9NzD3le4Oqe2y934s/bv9MO1CdjdGJDlw9MxNXTM/o/8SIiIiIiIio17CwR0TUQai5BJ78FaqYbI6BY+zlOmV0fLaUNGBraSOeLfocARFUjYnmOPxk/gz89qzxOmVHREREREREvYmFPSKiDpp2/AsQYVXMOeEqyCaHThl1TzCs4JKnN2DF7grAEADGbIVkUM+x1OXixnm5uuRHREREREREvY9n7BERtRJKKFLY68Q1+QYdsjk+z2woihT1ACCxCJJBXZwUzbH4vzNPRlasTYfsiIiIiIiIqC+wsEdE1MqTvwLh5hJVzJqxCOaECTpl1H3v7a6MfGL0A/GlmvGYxjG4ZnZWP2dFREREREREfYmFPSKiVo3bntDEXFO+q0Mmx0cIgXUFdZE7iYWQZEU93hSPk1NHDKrmH0RERERERHRsLOwREQEI1u2Dr/BjVUy2J8Mx+kJ9EjoOBXVelDf5AZMPiCvTTqgcgbk5sf2eFxEREREREfUtFvaIiAA0bn1ME3NN/A4kg1mHbI5P22q95EOQZKEaEw1JgM+JM/KSdciMiIiIiIiI+hILe0Q07Cn+RjTtfEYdlGS4Jw/8bbgA8FVhHWBtghRbqYoLAaAqBzfOy8Hs7FhdciMiIiIiIqK+Y9Q7ASIivTXtehYi2KyK2UddAKM7W6eMjs/28kYg9aAmvjx7On5z3rnIS3LqkBURERERERH1NRb2iGhYE0JB49ZHNXH3tFt0yKZnNjfkQ0pqUMXsRhP+PP9cpNtZ1CMiIiIiIhqquBWXiIY17+EPEKo/oIqZE6fAmrFQp4yOT2WzF3XufZr4nZOWIN0eo0NGRERERERE1F+4Yo+IhrXGLf+nibmn3wJJknTIpvvqPAF8WVCH10o2QrJ4VGMO2YYfTVqiT2JERERERETUb1jYI6JhK1C7B96CD1Ux2ZoAx9jLdcqoe9YdrsWyJ79Ec8gHjP4KUqef5N/IWACnyaJPckRERERERNRvuBWXiIatxq2PaWKuSddCNtp0yKb77vtgL5r9YSD5ECRjSDUmfHbcOO4knTIjIiIiIiKi/sTCHhENS4q/Ac27nlUHJQPcU76nT0LdpCgCH++vBqxNQFyZZtxUNQYTU106ZEZERERERET9jYU9IhqWmnb8CyLYoorZR18Aoztbp4yOTVEE/vxZPgABpB1A52MARUMivjt5GixGgy75ERERERERUf9iYY+Ihh0RDqJhy981cffUm3XIpvse/PQAfrxiFxBTAcneqBoTiozrck7Bn8+fqFN2RERERERE1N/YPIOIhp2W/a8i3FSkipmTZ8CasVCnjI6u1hPAgysP4A+rDgKGIJCar5kz1TQRT1w4Z8B38yUiIiIiIqLew8IeEQ0rQgg0bPqzJh4z47YBWxT71v824909lZE7KQchGYOq8RjZhTXf/OaAzZ+IiIiIiIj6BrfiEtGw4iv+DIHKzaqYwZUNx5hLdMro6PZWNrcX9Rx1kOIqNHP+c+pyOEzmfs6MiIiIiIiI9MbCHhENK1FX602/BZLBpEM2x/b6jtbOt1IYSNuvGU9RMnFO1oR+zoqIiIiIiIgGAhb2iGjYCNTuhvfQu6qYZHbDNfFanTI6tjd3lEc+SSqEZPGqxkTYgMcXXKxDVkRERERERDQQsLBHRMNG46ZHNDH35OshW9w6ZHNsh2o8WF9YD1ibgMRCzfjvZ52L88dl939iRERERERENCCwsEdEw0K4pQLNu59TB2Uj3NNu1iehbnjqqwJAUoCMPejcF8Poi8WdUxfokxgRERERERENCCzsEdGw0LjtMYiwXxVz5C2H0ZWlU0ZHFwor+PdXRUDSYUhWj2pMKBKuzzodssQf4URERERERMMZXxUS0ZCnBJrQuOVRTTxmxm39n0w3+EIKfvjWLpSHqoDEIs34yPBE/PqU6TpkRkRERERERAOJUe8EiIj6WtP2J6H461Uxa9YpsCQPvOJYSBH47ic12F3nA0Zpt+DOTsjG52dfDZPRoE+CRERERERENGBwxR4RDWki5EfDpr9q4rGz79Ihm2P7vMSH3bVBIO2ApguuRTbiP4u/yaIeERERERERAWBhj4iGuKbd/0G4pUwVM6fMhDXrVJ0yOro38z2AuxJSXLlm7NfTz8KYmCQdsiIiIiIiIqKBiIU9IhqyhBJCw4Y/auKxs++C1HmP6wAQVgS21TcA6fs0Y1Z/Au6YfLIOWREREREREdFAxcIeEQ1ZLftfRajhoCpmihsL+6gLdMro6D4p8qApZRckQ1gVFyET4monswsuERERERERqbB5BhENSUIINHz9sCYeM+vHkAZYgUwIgauf34IXy7ZASmrSTigZi2/OHNn/iREREREREdGANrBe3RIR9RLv4fcRqN6mihlcWXCO+4ZOGXXt9R3lePHATiCxUDMmqjOB5gRcOiVNh8yIiIiIiIhoIOOKPSIacoQQqP/695p4zIzbIRnMOmR0dC/tOghk7kbnY/+E14mYxjzcffYYzM2J0yc5IiIiIiIiGrBY2COiIcdX9Cn8pV+oYrItEa5J1+qUUdc8oQBer/8EkjmkiouwjMsSl+KFm9gwg4iIiIiIiKLjVlwiGlKEEKhbf78mHjP9Vsgmuw4ZdU0Ige+ueQUhc5Rz9UrH4qI8nqtHREREREREXeOKPSIaUnzFq+EvWaOKyZY4uKfepFNG0X2yvwr3b1yFz7ybNGOiOhMZyMLZ41J0yIyIiIiIiIgGCxb2iGhIqf/yN5qYe8YPIVvcOmSj5gmEcP/H+/HgygOAvR7I3aY9V68lBqgYiZdvngGXlT+iiYiIiIiIqGvciktEQ4a3aDV8JZ+rYrIlFjHTbtYpI7UHVx6IFPXMHiBrJyRJqMZF0AwUTcDL5yRjVlasPkkSERERERHRoMHCHhENGfVRztZzT78VsiVGh2y0XthSChiCQPYOSMZOzTIUCSiaiBy7HTkurtQjIiIiIiKiY2Nhj4iGBG/xZ/AVr1bFZEss3NNu0SkjtVBYwaG65shKPYtXO6FsDOB147I8B6TO+3OJiIiIiIiIomBhj4iGhPovo63W+wEM1tj+T6ZVKKwgGFYAAK9uK0M4dQ8kR4NmnqjOAurT4DJJOHuErb/TJCIiIiIiokGK+72IaNDzFn0KX/EqVUw2x8A97Qf6JARgxa4KXPfiFlS1BCKBpEOQkis182KDaairGIEEuwk/n+2C08T3W4iIiIiIiKh7WNgjokFNCIG6tb/QxN3Tb9FttZ4vGMYNL29tL+rFF0NKLtTMG2lPwdZLfgCvH7AbgV07tvdzpkRERERERDSYsbBHRIOa99A78JevV8VkSxzc03+oU0bAuoI6VDT5I3diKiClHdTMEQEL/rbwm7AbzbAbgVAopJlDREREREREdDTc80VEg5YQCuq+uE8Tj5l1p65n6+XXeCKfOKuBjD2acRE2AoWTMTs9uZ8zIyIiIiIioqGEhT0iGrRa9r2MQLV6+6rBngL3tJt1yghQFIE/rT4I2OuBrN3o3OBWKDJQMAnwOxBvN+mSIxEREREREQ0NLOwR0aAkwkHUrfuVJh475yeQTQ4dMopY/uwG7G4uAbK3Q5IV1ZhQJKBoIuCNwYyMGEidq35EREREREREx6Hfztj761//ikcffRQZGRlYuXJlnzxHWVkZXnjhBaxZswYFBQXw+XxISkrCyJEjcfbZZ+Pss8+GzWbrk+cmov7VvPs/CNUfUMWMrhy4Jl2nU0bA14X1eD1/L5C9DZKhU1FPACgZBzTHAwAun5auQ4ZERERENJSJcAjB2iIYnIkw2Fx6p0NE/aBfCnvbtm3Dk08+2afP8cILL+DBBx+E1+tVxUtLS1FaWoo1a9bgiSeewEMPPYSpU6f2aS5E1LeUkA91X96vicee9DNIRosOGQF1ngBO/8/7UYt6AICyMUBjMqZnuHHZ1AzcsXhU/ydJRERERENWsK4URX8+F76CzTC4EpHx/RfgnLhUt3xa9qxG8/YPYM2eBvec5dytQtRH+rywV1RUhJtuugnBYLDPnuPpp5/GAw880HZfkiSMGTMGsbGxOHz4MCorKwEAhw8fxre//W3897//xcSJE/ssHyLqW01bH0W4uVgVM8XlwTn+yn7NQwiB3RXNiLWZMOuJt9GYsilqUU+UjwTqIiv0Nty2iH/UDGDBulJUPH8HAuX74Zp5ERLPvQeSgQ3kiYiIaOCr/eDP8BVsBgCEm6pR+cKP4PzNZl1yadz4BoofuajtfrDyIBLP+4kuuRANdX36amXfvn24/vrrUVVV1WfPsWXLFjz00ENt92fPno3f/e53yM7OBhB54f3RRx/hF7/4Berq6uD1enHTTTfh/fff57ZcokEo7KtF/VcPauJx834JSe6/AowvGMayJ77E54dqAUctkL1Tc6Ye0FrUq8lqu8+i3sBW9vSNaN7yNgDAV7AJxrh0xC26Vuesek+g6hACZXthGzkHBme8rrkIRUH9Z/+Er2AznFPOgmv6ebrkEaovR7ilFua0cZDk3jl6WCgKRMADyeLg9zwR9YuwtwnhpiqYEnN77WcZDT417/1Bdd9XuAWK3wPZYu/3XGrf/5P6/sd/Y2GPqI/02avgN998E/fdd59ma2xve+CBBxAOhwEAEydOxFNPPQWr1do2LkkSzjjjDGRnZ+OKK65AS0sLysvL8cwzz+DGG2/s09yIKEIJ+NDy/+zdd3QUVRsG8Ge2b3rvBZKQ0LtSRKoUEZAiooJiAxEFBUGwoSL2z46KFRUVpAkqqIAIgvTeWygppPey2TrfHytDNrtJNskmEHh+53DYmblz5+5m787MO7cc2wCFdyi0TTtJ60VRRMmxv2ApyYN7y35OBRryd70Biz7fZp0qqCPcmo10dbGr9O4/Z61BPa9MIPwEBJlol6ZiUI+ubhaDTgrqXZLz2+vXTGCvcM9KpC64B6JRD7m7H6Kf2QRNZJt6O55oNqH40O8QlBq4t+xnd6OZueJ55PxmbW2ft/FT+A2cBoVnIDTRHeDeZmCDBMTy/vka6d9NhmjUQxvXHVEz/rAbj6j40B8o2P4jlIFNofAMQN4/X0GmckfQ6Nfg3ryXXZ5lSYeQMn8UDBlnoI3vgcjHlkHhE1Lv76WxEC0WQLQAMjmDntc5ffopFB/4DargZvBoP4TfhzooPvQHUj69G5bSfGiadEL00+shd/etdj+LQQeIYoMEfUSTARlLZqJo/y9QR7RG6H0fQ+kfVe/HvZaYCjKQ88c7EI16uLfuj/wtC2HMOgfvbmPhN/BJCDK5w/2MealQhzRr0LKKJiNKT22xWWfKT4OpKBsKz4AGLQs1vNLEnSg+9Ds0ke3g2Wk4f98bgMsDexkZGXj33XexatUqV2dt5+DBgzhw4IC0/MILL9gE9cpr3rw5HnvsMal137fffosJEyZALnf8A0hXH9FirvSE1RAshjJYygoh9/CvczksZcUwFaRD4RsBmcrxd7ayMuT++R6MORfg1fUeuDfvWady1IUpPx0WfTGUQbFV/libSwtwdk5HGLPOAgACbn8BQSPnAgDSvn4Y+f98DQBQhTZH0xe2VXkhaiw4h8KDn0jLFr0ICIBvjzcgCPX/dDqjSI9/z+fihkgffLnjAuB7EQg9DUdvX0yPAbIjgHLbZvau/bh6pWd2wJhzAR5tb4Vc6+UwTfGhP5C3+UsovEMQOPxFKLwCa328K8WsK0La1w+j5PhGaCLbIfShr6AKiG6QYxuzz9utM2ScgakwE6WntkId0cbuwthckgcADr+3Jcc2Qp92Eu4tekMd1qJeylwTmcuegWjUAwDMJbnIWvUyIqcsr5djiSYjzs27CWXndgMAPDuNQOTUlZe3iyLy//7MZp/cP9+TXgff/Q78B02Xls2lBRDkCsjUrpvx2mIoQ8aSGdJnojuzDflbvob/gCekNCXH/0bSO7c63D/107sR+8ZJKRBoLs5F5ornkbfxUymN7tRWZP/2GkLGfeiyclfFUlYMs64QSt+ra3Ie0WREwY7FKNr/C4r2rAAAuLcZhIhJP9g80Ck68BvytyyE0i8KAUOfgcIryOn8s39/+7+biLYIGjXPqaBGTa4rig+vQ87atyAoNQgY9jzc4ro6tV9VjLkpyFo5B+bSfPj1nwr3Fr3rnOfVTp96DNm/vYGCbYts1l+6NhBNBhTt/wWiyQi3+B5Q+l97D8eM+WkQTQYo/aMcXj8Zc5JQemYHNJFtnDp3iKKItO8mw1KaDwAoO78XWavmImTse1Xul732f8ha8RxEixkBQ5+Vrs2cJVosNWoZmPPne8hdb/0tNGafR5ooIviut5H39+eQuXnDv//UK96SvC6MOUko2vcLVMFx9fJwSrRYcOGt/tCnHAYA6bMEgLIL+1GWcgQhY993uK8pL6XBA3v61KMO1xvSTtoF9kzFOYDF7PRvvk1+mWeRt+lzCEoN/PpPgcLDv1blrS8Wox6WkrxG9YCv+OhfKN7/C9RR7eDdbSxkypqNX1586A+ba6egO99AwG2zXFa+kpNbkLvufQhqDwjNRkP0CnVZ3o2ZSwN7n376KT7//HOUlpZK62JiYjBgwAAsWLDAlYcCAKxdu1Z6HRsbiw4dOlSZ/o477sC7774Lk8mE3Nxc7Nq1C926dXN5uci1TEXZSP3kLuuNfpPOiJi8BKqgmMrTF2Yia/UrMBdkwKf3BHi07u8wncVQhtKT/0AZEA11aAIAQJ92EoJMAVWwbQCm9NS/SPlkDEx5qdDGdkXk1J+h8AmBKIqwlBZApnaDoFA59X5Kz2xHyocjYSpIhyq4GSKnr6nyZGsqykbu+g8hGvXI/etjiPoSAEDe5i/R5JnNcIu/SUprzE9D6fFNUIXEQ9Oko81FhWgyoGD7jyg9sx1lZ3fBYiiFb59J8B80zalyl5fzx3vI+GkmYDHDo/0QRE79udJxyHLXfygF9QAge/UryN0wHwG3zZaCegBgSDuB7DVvIfjO1x1lY33P2+ZANOkhCAIMF0ww51pbyaV9+hhC7v0I7i371vi9ANaLYlPeRYhGHVTBcQ7T7E8twN3vL0Or0kN4ThmL8yEKCMHnHOeXFosBubmYWzwX6rIcrND0x+dBk/FIt9oFqDJXvojs1dYLbpnGA1FPb4BMqYHu7C5oY7pAE9UWpae3Iem9IYDF2oK55Mg6NH1pN+Ru3k4fx1ScA13iTqiC46AKigUEWb09YdNd2I/0RVNgyr8In14PI2CItWtG6oJ7UHzgN+t7OPYXkt7qb/c+RLMJotmIsuRDyFw6G6aCNPj1exx+/R+vU5kMmWcdrj/9VBOIBh0gVyBk7Afw6zcZoigi/dvJyPt7AQSFCoEj59pctGT/9gYyl1nfk0zjgaiZ6+AWd/l8ozu7GwXbf4AqKBY+Nz8AmcajTmWvjCiKKLuwH7qzu2BIP2WzrWjPihrfmAH/tbgCKt1Pn34aJUc3SEE9ACja+zPKkg5CNBuRvuhx6BJ3VnmMrJ9fhE+vCZBrPZG+eIY16CeTI/jON6CJ7oj07x6DqSQHfn0nI2DY87XqdqZPOQzLf4HZSzJ+eBLeXe+Wbi7K/0ZVZMpPQ8mxv+DVaThEUUTq5/ei+OBau3S56z+q18CeWVcImdodOb//D5lLZwOCAM8OwxA0+g2oQuLr3CXPYtSjcNdS6C8eh1fH4dDG3ljjPC4unIiCrd/YrCs5/AfOze2CqKf+gCo4FqWntiL5g+HSb5gucQeaPL/VqcBb7sZPkLX8Oet+p7bCoitC+CPfVZq+NHEn0r58EIacC/C56T4EjpyLjB+nofTMdrjF90DIPe9D7u4DAMj65VVkrXjeZv/ig2vg0X4Igse8BaV/FHLXfQhDZiK8bhwNdVhLlJ7aAm2zm6p8KCFaLLjwRl8YMk4DAIoO/IrY147V6ObbkHEGglIDpV+E0/tcSYW7V1hbDZsMdtty/3wffgOeQNI7g1F2dpd1pUyOgGHPI2jES9bffYvZ6RtM3bm9yFn7FiCTw3/QUza9Ba6krNXzkLXqJcBihleXuxA+6QebOlp66l9ceHsAREMpIFcgYtKPcGvRB4U7FkPhEwrPTiPt6rQh4zSMWbbXI7nr3kfw3e9U+TuduXSWtfUsrNdmnh2GQdu0s1PvI3P5c8j58z3Itd4IfeBzp4ZSyFo5x2a5+OAaFB9cIy2XHP4DTZ7fdlV0I9ad24Os1a9AkMkROPwlaKLawlSUjezVc2HMSYJX13vg3eVOKb0+9RjOvtgJorEMgO1DbEeEnEQIeRdgjouCwrv6h7CGzLNImX+HFNRzpGDrN1B4BzvclrdxAQSVG9xiu1R7LMB6P6RL3AFt0xugDm/p1D4V6S7VY7u8T9jcu2StfgVZq14GLGb49nsMoffNt9tHFEXruaFCS29TYRbOzesOc0EGAKBw5xLEvnrE4T2JKIow5aZA4RuGzGXPonDPCmgi2yJ0/KeVfm51lff3Z0hbNAWwmODT436EPvTVVd9yrfjwOmtQ7r/fBn3qUYTc/U6N8sj+/W2b5dwN86Fp0hkFWxZC7hkI/0HTYcpPgyhaoI3tUqPPJP/f73Hxi/sA0XoPqDq8Afr7fgauYOOfq4UgiqJ9/7Fa6ty5M4qKiqTl0aNHY/bs2Vi3bh2eecZ6gxMeHo6NGze65HjDhg3DyZMnAQD33XcfnnvuuWr3GTNmjNTKb/z48Xj22WddUhZn7N+/H5b/bohkMlm1gcirnclkwsGDB6Xldu3aQaGo5Ie0IB0Kr2AIMhlKTvyD/M1fQOEdAr+B06ptWZD6xQM2NwSenUcicsoKablw93Jk//oaIJMjcMRcZP384uUbSkGGpi/thjqspU3LOFNBBs6+dANMucmAICBk7AfQnd2Fgm3fAwD8+k9FyLgPpPRnX+yMsvN7pWX/wTMRMOQZpMwfjZJjf0HhG47wid/BYtRD4RkAbcwNsBh0EM1Gu9ZV5+b1gO70v9Kyd4/xCJ/wDSoqPvQHCrZ9j4LtP1T62bg1740mz/wNAChLOYoLr/WEuSQXAODeegAiHl0MuYcfzCX5uPDWLTbv4ZLIJ1bDs+MwANbWC7nrPkDRwTXQRLRB4PCXpJsb6bMrzsHpJ8OlVi7SZ3LrDATd+YZ0EyZazMhaNVcKSDlLE93hvy4F02wu7srS9yDpnS4wZVsAB5POAoB3t7GAIIN3j/HwaNUPoigi7+/PULhzCUpPbAYAaGO7IGzCt1IwV3d2N9K+m4yyc3sAAD49H0LYQ1/a5f3AK+9h6plZUMMICwTMSRiAfd7h6Jd9Btkqd6wLjIdepgBSE6DK98Ne/eMQitKl/T0f/AGh7fsh7ZtHUHLyH7jFdUPYw99Ireps6pMuH5F5uyGYDVAGROPiF/dX/oEJAiIeX4G8jZ+g5OgGm01e3e5BxKTKvz+A9eK+7NxuyN39cHHhBJhyL09Kog5riYBhz8O7291V5uEs/cUTyP5lHiz6EhTtW2WzLWLKCogmA1I/tT+WR7vBiHxiNQS5Alm/vma9Ofjv5r+86Nkb4d6iT5VlEC0WGHOTAbNJuuj07DQCunO7kbVyDkpPbKr2fSiDYqGJai+1PLokcvoaeLYbDN25vTj3ku3NkTqiNWJeOQBBJkdZylGce7GjdHPrdeOdiHjsp2qPWxVzaQFyN8yH7vS/EFRuCBz+IjSRbaw3kStfqHS/mFcOQhPV1unj6M7tRepn42BIOwGP9kMRNGoe9GknoG3SEQrfCCT9byBKT/5Tp/dySej9n0Ed0Rrn591UZbqomevg0bo/RIsZFl0hZFpvmC2Was9PRft+QfIHtzvMU+4djMDhLyH920erPLb/rTPg1rw3Uj6+03ojXomEBYV2XXwvEc0mp7qllp7ZgZKj66GJag+P9kMAABk/PIHcjZ8CZpPDfdxb9kPktF8hGvXIWDIDujPb4ZbQE0Fj3qq0PBWlf/+E1DJEUKoRPXtTjVqrGTLO4MzTVQSr5ApETV+L3HXv2wVGI59YBXVkW4gmg/SbXZ65OBcXv34YRXt/rpCnEs0/zYdM7QazrhDFB9agLPmgNZirL5HOB1UJHPEytLFdkfS/gZWmEdTucIu/GSWH/3D4vqJnbYR7ws0O99Wd3Y1zL9sGSX37PorQ8Z84TF+eKIq4+Pl4qdWb34AnEHzPe7W+YSzcu8r6IMJiRuDIufDuehcAa4tVXeoxXFDFAe7WFjaVXesB1geIJcc2QhQtcG/ey6aFre7cXpx/tYcU+HBE2+wmm+ujS4LveQ85a9+CKT8NXjfeibAJ30Km0qD46Ib/HmY2g6WsGLoz26Hwj4LPzQ/g7JwO0oNQyJUIn/ANvLvdc7msoojCnT9Bd243PFr1h0fbQTX+3KpiLsmD7uwuKHzDoYloDcB6Dkx8tqV0QwoAkdPXwrPdrTDrCmHKu4j076ei5Oh6abvcMwCi2SS1xvNoeyvCJy+Rri1FkwHnXunu8PpOHdkW/oOegnf3cXbBsqzVr9gF2gBrHffpNQEhY9+vNKhefHidbb2QK9B0zk5om3Ss9POo9nfgP9r4Hoh8YlWtWl1V1wLXXJJvfage0qzSdKLFjLKkgzj34uVAsKDSoukLO5C5bDaKD/0urVeFxCP4nvfg2W4wUhaMReH2Hy/vo9Qg7s1TKDn2F0TRIo0B7dZxBI79+CJUW6ytKeXeoYh5eU+V90JmXSHOzIqXgld14T94JoLHvFVlmuJDfyDp/aHW84ogQ8SUFfDqNLzGx7r41cPI/+cr+zLcOgPBd1kDP/r000icnWBTJ5o8twVu8T2kZWNuClI+HgPdmW3QNO2MiMk/SQ08sn5+2RooLyfqqd/t6rM+/TQuvNnPet9XgVvzXoie/bfLA2761GNIfK6NFCADgMBR8xAw+GmYirNRuGMx9GknofSPgtInDJroDtBEt3eYV2niTmQunQWLrhB+A6fD56ZxlR7XXJwLmZtPpQFyU3EOcta+DXNhJnx6PQy3Zt2lbaIo4tycjihLOnB5B5kcCR9lOmxNay7JR9bquTDmJkMb0wVK/yi4JdyM008432vAs/NIRDy+3O7zv/QbXXpiE7QxXeDd4z7oU47i7Avt7PLQ3/ElLGHtqzw/NQZ1jRXVS2CvdevWmDVrFm680XrBsnLlSpcH9oxGIzp06CDNtvvmm29i+PDh1e43Z84c/PST9QaqY8eOWLx4cZ3L4qzrKbBnLslH1qqXUbRvldS9Te4djJC73sHFrx+WLuw00R3RdM4OmEtyYdYVQhXY1OYpi0VfghMTbVuyCEo1mn+hg6gvQfZvbyD711edKq97q/6ImLwEcg8/XPx6AvI32wdvymv64i5oY26AubQAJx/1sdseOPwlu5OJDZkcEGQIGDJbemqnv3gCic/Yd6to+e3laiiKItIWPoL8zV849b5i5u6HJro90r55FHl/27aMdYu/GdHPbELSu7c5vvEAoApNgFtCL+gSd8CQcdraMqmcJs9tgaZJJwgKNQSZDIW7VyBl/h0O8/LtMwnq8FZwb9kXpYk7kPbVQ069B0fCJn4Hn5vuBWD9TJI+aIOS/Y6b9duRKxH99AaUHPnTGvStwC3+ZjR57h+YCjJwekaM3Q159LP/wD3hZohmEwr+XYQLBzdDuefbKg/5R2ACZng8jZAC4Fvj/xBedNwujTqijd3T1qYv7Ya2aWeUnNuLxFXvQlSooTi6CoIuz27/2oh59Qg0EfazgFuMeqR9PcGuO5QjQWPeQsDgmXUqhyHjDM6+2AkWXaHD7R7th8BSWmA3HsslXjeMhjauGzIWT3e4HQC8uoxBxOQlDreJJiNEiwmpC8baBwEayKXvdOpn99l97mEPL4TCLxKayLY2Xagt+hLk/PEeDGkn4NlpODw7j7K7+DHrCpH4bGubC1aFdwgin/zFLnBQUci98+F3y2NOlV8URZx9vp3jFgNyJbQxNzq8Ka8tTdPOUHgF27TocMSn1wT43/oUkj8YDkPaCSj9o+A39DkkFcthCWoJxcEl0B7/GQqvIITcO18KSuWs+xAZPzxRZd7Vkbv7SQ9TqhL5xGpAEKAKiZcCVKLFjKzVr1gHOreYEXTHqzbdj8srOvg7kt8bYnODoPSPgjEnqdpjhz28EKWn/7U55/kNmg7v7uOgCmhq9/DmEtFsgik/Daefira56QKsN7TG7PPQNOmM8EnfQxnQBPmbv0L+1m+g8AxA0Og3oA5rbv3tfnugTaDCEYVvOEx5qVWm8en5IMIesr1JTF0wrsqHX+5tBkGXuEMKijQ0VWgCYl8/DktpPmRqDwgKpbQtb9OXSFs4wW6f8tcDlSncvRwp80fbrIuc9hs8299ml9Zi1KNw+48oPbMN2rhu8Ok+zqaHgakgA6efir78sE6uQLO3E5G/9Vsp8CPK1dDf8yNE32i0a9cOusO/o3DnT1AGNoVPj/uhCo6FaDIi6b0hKDmyzpqNux+C7nwDvr2t7/HC/26t9DqkpkLu+9g6XtuPzvc4EJQaxL56WGqVX75VNQCowlpArvWCJqo9AoY+azP2myHzLAS5wmadRV8KQamRbp5FUYS5MBNyryAYs8/jwpu3SL0V/PpPRfA97yH9+6nI++tjm3L59n0UHu2H4OJn9zr1W3JJ0J1vwv/Wp5D0zmDpM69M8F3/g/+tT9msS3r3NoctjC8Jn7wE3l3GONx28euJdteoqtAExL56BBAtNt8vi1EPi64QBdu+r/L8XZ7CJxRN5+yAIFfBmJcKzX8Bw+L9v0J3dhfc4ntA5u4LTURrKXicuXIOcv98DzI3XwTcNgtlF/ZBNBnhN/BJaJt0RNGBNUhdcA8sukKoI9og4vFlUHiHQJe4A+qINlD6hqFw7ypkLH7KppeJM8InL0HqJ3c59958I2DMvwih3G+59033wX/QUyg58TfU4a2hTz6Ewj0roAqKRdAdr6H40FqkLZxYozJVSiZHs3cuQOkXXmmSsy/dID3sBi7/jtU08JX4XNtKWxgqg2Kh8AyEaDKg7MI+m23uLfsh6un10vFSP7tXangBAJ4db0fkE6sgWsw4/oB9ECfg9hcQcNtsFOxcAmPmWXh1vQsXv7jfYfD7korBxPJEixkF276HIf00vLvdA5m7L7JWvICSo+uhje0Kj3aDoU85AlVIPHx63A+LoRRF+3/FxS/G25yzneHd/V4EjnrFprW3pawYZ55uBlPB5cYCEVN/htzDH3KtFwyZiVCHtYTc3RcpH9+J0pP/QO7hD99+k+HbeyJKjqyHTOMBjw7DIMiVOD/vJugSd1gzkisRM3c/ZBoPXPz8vkofzIZN+AY+PcZbPw9RRPHBNUj79lGbxgB10eS5rTatOEWzCRe/nmDX0l/m7mvX0wIADP1fgrnFEAb2XBnYmzx5MkaOHIl+/frZVP76COydO3cOgwZdjsYvWbLEqTf/+eef4513rM1JAwIC8O+/rrsJqc41Gdg7cACys5shGEvRYuhkqL38YcpPx4U3+0F/8ZhT+SiDYq0nUVGEoNRA2/QG+A2aDq9Ow1G4axlSPr7Tbp/Y148j+aORMFy0D55Uxb3NIEQ8+iNOTnZuDA//W2fAs/NInH+le/WJq9Dk+X+hTz1a6Ym52QcXofAKgiCTo+jAGusNXA143TAahbuXOdym8AmDKf9ijctckUzjgcARLyNzxQtVtkwBAAiC3Y1gTWlju8AtoSeKD/8J0VIGQ+qp6neqgWbvpaBo3yqkL7Lvvhk4/CV4dx+L1M/HQ3dmm0uP60jA8BeRu+6Dern59L9tFoLvtJ9FuOLT5SrJ5Ih785RNF3hRFFG8/1fo047Ds8PtUIc1l7aZi3NRemY7ZGo3aGO6QFCqcW5uV5sLRYfkikpbHjnL64bR0KefhHurWyDqS1F8+HcYsy/UKU9XUUe1Q/RTf+DUE5WPBSIoVAgY+hwCh1tvqFO/uB8FWy8Hlf1vnYGgMW/ZnGNz189H+vdT7PNSqu1a1jqijesGdVhLeLQdhMK9P0PhGQifmx+Awi/CptVEWdJBnH2hvTNv9aolqN3RZNZGGPNSkb7oMZjy0xq4AAJCH/wSXp1GIm3hRNvfbUFA2ENfI+/vBTDmpcKj7WAoPANRcnwjdGe211uRNDE3wi3+ZmjCW8Gr692QqTQo2LEEGT9Os7mRqIxnx9sBCHatcNVR7WBIO1llC62ainh8OUqOb4QhMxGeHW5H+g9T6/yb0VDkHv4Ivut/8Ow8CvqLx3B+ruNWj3FvnYGlrAhlF/bD7b9Wb6LFbNOi5/zrfexaF2uiO6Lpy3uk3wZzSR4yls5Gwbbvbc7Z2rhuiJr2G8qSDyHv7wUo3GnfWtiz8yjrA5ByN6WmlsNg7D0b0QV7kPnD1HJvzNoazlSUhYwfnrTLy6vLGBizL1y+kXQVQVbjm2bPzqNgLsmFMfu8XdfV8mRuPoie9Rc00R2Q9tVDyN+yEADg228yvG68E2kLJ8KQfgoyN2/43Pwg/Ac+iQtvD4Ah7SRUoQkQDTqngu7SW1FqXFpPHElYUAC51guiyQBLWTHOv94L+pQjVe7j3mYgDBePw71Vf3h2GoHiQ2thzEmShstwRFBp4TfgSQTd8Sp0iTuR8vGdDltJ1ZTCL8IuiCCotIietREWfTGS3nI87I7M3Rex8w7j3CvdKi+HXImAwTMdPgi+0tya94ZFV4CyC/tdlmf4pB/h2Wk4CncthUVfCq8bRkHhFQRTcQ7SvnoIRftW2+0T+/oxqMNa4FLYQBAElKUcRfavr0I0Gayt1/97aGbMTUXaN49U+1CuKqrgZpC5+cCQcdrhtXHCgkKUHFlXaUOD2rjUeraitG8n24ydWxWvG0ZDn3a82rrlDLl3sDVgp/W2O7/WhmfH4fAfMrvSc09VtPE94Nl+KLJ/eQWWsuI6l6Wi4LvflYaGMhVkIGPxU1U+tKvIeOMEmLo+wsCeKwN7lamPwN6uXbtw7733Sst//fUXIiKqH2Pk559/xuzZswFYf5SOHTsGWQON5VDxj9WmTf3NRtgQzGYzTv5vGBSnrE8KlcHNEDFzPTIXPY6Sg5Wf9J0iCAh7bDmylj8LY/pJu83qyHbQJx90sGP11E06QV/FU5v6INN4wqIvqfIiVOEXBd8BU6E7vR3Fe1dUmo5cI/iBL1F6dD2KdtWtC2Rj4N17IhQ+4YBogczNGwrvEKQtuKf6HStQR3eA7y1T4dltLDK+mYjCck/SFP7REI06CAoNTLnlbmjkSsBiqnOg93oTNmUltHE3IfHJULvfDVVEGwhyJTRNOiFwzNvI+HYSinY6bqlYJ4IM/sNfgv9/4x/m/DIPOatfdv1x6Krh1vIWeHQeiczvJl/polAFyuBmCHvcem1w4YXKu8/7DngSPv0eQ/bKFyr9XVCGJFgfqJqNLiufoHKr/qFfI6IMikPAqHlI+9S5lliNgfXvnthoguHOUAY0hbZ5L5vrEaqad++JMGaeRemxy8O3BN7zHkoO/YHSI3863MdvyLMwF2ej4J+vIPcMgleXMcjf9PnlOi9XwKfvY9A0vQGF275DaTWtSK9KgoDY99P/G/NYgKBQQp98EBcqDK3SmGkTekF3svqhKBqae7shCB6/AJk/TEXxvp9rfM9gan4bjANeRuvWrRv1xKiHDx++PgN769evx+OPX25ps3v3bnh5OZ4psrwNGzbgsccudzvauXMnfHx86lweZ5QP7F0TijOh/XqwzSpR6+uyLoRE9cniHwdZzpkrXQyiOjE16w9Z1knI8p1vHVJT+uEfwxLVBerF4yDLOlFvxyGiqlkCm8PiHwPFicq7UBIRUd2ICjVMXSZCyD4Dxcnfq9+BrihzWAcY7nBuCKvGojaBvUbbVlGvt+1epNFoKklpS6lU2ixXzIdqQO0FUa6CYL48uxmDetRYMKh39TN2fxzyIz9DVlj12FvXM8XpqscucwX1qsdgDuvAoB4RAFHjDaGs4IocW5Z1gvWQiKieCSY9lP9+dKWLQU4SCus+5NS14MrPJ15LJpNtM3Jnu9NW7HdtNtvPrEhOUmpgbln99PZEV5qh1wyY4/q5JK9vIjqhQOvjkryoapaw9jAMeQeiQn2li3Ldk1+s+fg+ovza/buJwtV3+WTxqnww9CvNHFn1JC6O0pubOp5N9koy9ngSFt8mV7oYRHaM3R6Fsbv9mMFEdHUztRgKU4L92H7kPKE406VDSzRWjbbFXsVAnrNdXCsGBCu24Gso18oYe0f0UyA/tR6C3vFMlxW5teqPsrM7Hc6MGTrpR+SuebPGY+cF3PkWfPs9hqyls5D/1/wa7XstC77/M2T//CLMVQx+ropoDWP6aYgmxy1XPTqNhPfNDyD1/as7gKsIaAKlbwS8ez6IzCUzYCk3s5x3z4cQfN/rKNr7M9LO/FWn4zzeajg6dpuEju1vQNnZXRDkSqS8fUtdi+8UuVcQzMU5gKXqhxGqiDZQh7eq0ZhrfkOfg6U0H5omneHWoi+KD/4KhXcoMn94AqY818x4VZGgUMG93VB493wQFz8aAdFksEvTovsgKLyDYbqxJ84+GeYgl6tHTQc/l7n5wH/4izCkHkPBP1/VeBD4q5mg1CDq+e0o+OdL5FeYARIAvPs+Cu8eD0Ad3goWfQlSP7wdZfU4OYQrqZt2RvDYDyEoVEh67Wa7WcRdTRnQFMbsygf5BwDIFQgc/SYsZcXIWfVivZXFu9cEBI37CKXH/0bqu87fhEQ+uwXa2K5IeedWmzGdqhLUaTD8hz6HnF9fRU5Vs8+XEzZ1FS5+ONzpctVGdLseKNJfRFFa9dcpIQ8thMWouyrGK5S5+UAd0Qa6SmYddyVB5QavHuNR4ORg866mieuOsgqTXsm0XpXOyH6JZ9d7ULTDyQmlnBQy8Xtk/fgkzMXZLsvT0TjRPv2fQNBd/4NoNuH0toa7DhbUHhD1rhlIX+4VhICR85DxTd1nf5V7BsJclOWCUtWM76CnoGl6A/L+fBf6lMP1en7QxHaFNv5mmAvS4dnlbqS+N7j6na4gj47DoU89CmPGaQgKFTRx3WFIOeLSuuHMxH1yr2AIcgXMpQXQNL0BMBuhO73VdWWoQBkUC2NmYqXbfW+dicA7XoO5NB+JUwJrdYymb5+DaChB6YnN0MTciMJ/v0P+Bte0NnTmt7M8uU8Y1BGtoQyKdXgOiJi5HnKvYGQtfRqlLpolHQAEiBCK0tGqx63XzBh7tdFoA3tardZmWa/XQ6VSVZL6MoPB9uZRrb5yLQoa86wtErUHzDE9oThe/WQZbs17ocnT66QZlbJ+fgk5a98CBBmCRr8G3253w7NVP6R+eg9Kjv0XgJEr4Nt7IooPrnE4s6Vnx+EIHDwDgiAg9N4PIVdrkbP2bQCAwi8S2iYdUZZ0EMbs8y57y/VBpvWCR+uBlc5sWxte7W6DV7vBOPdKd4czganCWiBmzk6YS3JhyDiDgm2LkP/P19J2zxvuQOTj1vLkRLVHWdKBWpdFFdochjTH3YfUEa3hc/ODyPhppl3QSu4jQBEsh2gQIagFuLcYjqBbv0HKJ3ej+MCvAAD/wU8jeMybl4/lH4nkD4ZD1JdAE90BIXe/A7lCAZ9Ow5HlHeLULI+V6dvjWTzf/QZrudsNQp2GKJUroQ5u5tzs0XIFmjyzGRAEGDIT4RZ/M+RaTwCAWVeIjB+no3DPcqiCmyHswa9gKspyOrAn9w5G8Mi5EMo9LNHcYh2HVOUbhvOv9azRUzBtfA+ogmLhFtcN6T9OdziYetMXd0Ed3hIytTsAwDjiZWQue8YundovDIIgQOEbCpnGw24mLkHtjth5h3BmdvM6Panz7jEeJUfWVTlDqne3sVXO0OXRfgiKdi936njKgGjEvX1W+sxDx32A/M1fOZzZtq5k7r6wlNgOkeDe6haUntri1Iy5NT6exhPhjyyCe5P20B22b0Gmie6A8PGflFvhhsAhzyD5g+FXPLipDmuJ0Ac+Q/4/X0uzYF4SOHIu/Ac/DZny8jVD88+KcO6V7ig7u6vWx5R7BsBc5PjGJmDY8/Ab8AROPW5/sa8KawGPVrdAGRQHzw5DoQpsiuzf7Ge/roqg0iJ65jpo47ohf/OXyP7tjUrPlZqYGxEy5i3IVWp4tujtMI1H+6HS7zIAu9m0wyd8g8yls5ya6U4TmgCFQgG/Xg8jd83r1X5XVaHN4d1xGOraGce9VX9omnRCzhrHn6U2oiXKEqufqA0AfG8eD0EQIJiNyPjhiWrT+9z8AELu+xglxzbCVJgB95b9oAqIxrl5PaA7/a/DfZSBMdZJMKrh1XkkfPs9hvPzbqr32Vejpv8Gubt/1YE9QUD4o4uR+onrJ6YIGfMWCnYsRt7GTyAotQga/Tr8B0yFqTATpsIsFGxbhJw1b9rso4m5EZGP/oDS/lNw/pVuLimHd7ex8LtpLDziuqJgx4+Qu/vBo81AiGYjzr3cBZayIimtT68J0MbcgLSF1Qe1wsZ/igtv94el1NodXFBp4X/LY9Z7CoUC3jfdh4J/v3PJe4AgQ9T0NSjcvRwlR9dD06QTAm6bjdLTW6HwDoVnx2EAgIIdSwBBgEfrARBUWhRs/Q4Zi6dXmq1b/M0oS9ovndPlnoEIn/QDtDFdkLPqJZjyHddkhRPXcHLPADR7LxlJb/VHqYNAtsIvAtGzNkKXuBPZq+fCkHG62o/Bt88keLQfguT3h1V6nlL4RSJkzFsQZDL4dh0DAEhbNAV5GyoPtJrDO0FrKan0+rgiZWAMwid+C0GhhqZpZ2kGbAAwjnkLmT89bbdPxGNLrbNc7/8FGYufcur34pIWX+mRueIF5K7/sNLfjcCRrwAWM7JWv1xpUE0b2xVh9y+A3MMfZRf2Q+EbLs3yXXzoD2SvedNulu/yPNreCm1MF6jCWgAQkfb1w3bXg7GvHYWgdoegUMGUl4r0RVNsZuKWuXkjZNxH8LnpXpv9dGd349zcrrW6/giq5DO/xH/wTASPeQv5/yzExa8edJgmYNA0KBQKKLwCHG73vOEOWEryUHZhP8zlGi1cEvX0BmiDmgAA3CJaAQDUfuEo2vGjtTFAHYU99BWK9q1GwbbvnUqf8MHloXMcnQPcotpC4RWEkiadahTYa/GNBcfvr7qnhFCSDblcfm3EV2qp0b5zb29vm+Xi4mJ4enpWu19x8eUfAoVC4dQ+VDVzTG+Hgb2YVw4i+aORMGYmQuEThuC7/gcA0okoaOTLCBjyDAS5AoLc+lVUeAUh6un1KLuwH4aMM3CL7wGlbxhSPs1zGNgLHPGylJ8gCAge8xZ8ej0MS2mBzUmvqgtjO4IMkMkh13jCXJrn1Mw8cq8gBA57HqJoQcYPT1aaTqb1QszL+1BycjPSvnpIWh8y7kP49BiP4iPrkb/1Gyi8guHT80GoApog75+vAdGCvL8+sbkAafLcVhTuWgrdud3QVWjtItN4QOFrDYrEvLIf+f8shCCTwafXwyi7cACW0ny4txkImVINmdoNSr8IaKLaw1JWjOKj66Ft0hkhd78r5ed/2yykfnq34/fuHYyQsR/CkH4KHm1vhTq8JbJWv4KSo9axv9ziuiNw1DwUH/gVOes+gNzNB4Ej58KQdgKi2QSvG++EXOsJz463w5R/EQrvUBQe/A6FB1+DoPzvosVNgKDQIqDfu5Cp3RH55GroU49CpnKTbhov8Wh1CxI+zoEpNwXKoJjL3w+FEl7dxiL3j3ccvo85TYdh7rlfKv3bLXYbgJkd29usEwQBglJtd9OpjeuGoDvfxIXXelaan1//KfC68U4kvdVfusA3h7aDud2dEN0CENeiNfJ+nQeLvgT+t86AOqw5AEAdmmD7+Wu9EPbQlwh76Evb/AdNR+6f7wOwBj/dm/dC0jv2rWy8Oo+yCeqV5xbXFdFPb0D2b6+h5LDjmdIuUQXHIWLKSmgiL7dEzl3/EfSpR23ThSZAG3ODzTqfXg8jc+Ucm+Ccpkknm4tWn5sfQO562yeQYQ99BVVQDIJGvYLMpbMrLVv4I98j9csHKg3+Kf2jEPrgl0hbOBGmPMfj+QXf8x5E0YLCHYvtNwoCAoc+h+KDayufFVKQSReOIfd+bPOZy1RaeLQfAuGnGTbfpcCRcyGaTSg+8BvKLuyr9P1VxrfPJISM/wR5f32C9O+nAqIFCt9whE9chKL9q5H2zaQa51mR3DMQUU+thSooDsa8FCh8QqHw8AcAuDkIAAWNft1unWeHoYiZuw+lp7dB26QTZO4+SJyVYJeuOqEPfG5zY2zs/jjMTXpYA+OaEqR/Md4mfeDIV1B04FeYi3Pg128y/AZOgyAIUAY0hT79FHSn/4U6og2ipq+B0j/S7niCTI7oGX8gbdHjKNzufEuf0PsXwK1FX6gCmwKiBabCLCQ+1xqW0nwpjdwzAH63PA6FZ4BdKwRBoULc6/YPBNxbDwAcBMgduXSD6BbfAwDg2+cR+PZ5BBZDGQp3LUXGj9Mgmg3wuvFO+PSeCE1UeymoKVM5HtM4ZNyHyHL3RcG/30FQqBA0+g2b32elXzjCJ30PuVcQcv98r8ryqYKbSfuEjl+A9MXTYSkrhnvz3tK5pTz/QdMhCAJ8ej5o84BKKtt9H8O376M49/KNKDu3B4C1ZVnAsOeQtfw56/vSeiFk3IeQewag9MQmm5tCAFBHtoUqtDmUvtUH9gJHzZN+v/z6TUbJkXUoPrimyn28uoyBTKWFZ/vbbNYHDJ6J5A8cXL8IMkTN+B2ZPz2Non2rAQCa6I5o8twWlJ7ZjpQPR8BSVgRVSDyC7ngNCu9gxLy8F0X7VsOQcRr6i8ft3mN5nh1vh1uLPtI1jShTwHDrG3D7912YKwm8+PZ5BO4t+kAURXi0G4zig44n+fAbOB3eXcbAs+NwZPzwJAp2LoZM4wWfm+6Fe+sB0CXucPibLnPzgaU0H24JPRHx+HKcmhJkl0YVmoDQ++Yj+M43IJpNkLv7ALBeXyq8gqAeNQ/FB9dCn3JY2sfrhjsAANpYa/DAcPG4TZ5Bd74BdXhrZPw0E5bSAvj2noiAoc+i+OgGGDJOwT2hF8yl+Sg5ugElJzdDG9MFQXe8ai1PcCwCb3/BJr+QcR8i/YcnYNEVwufmBxA6/hMIcgVUIfEoO78Xbs17Q+7uh6R3B9uUxaPDMGhjbkDkE6uR/curEI1l8B8yG+qQZlKa4LvehmgyoOzCPri36ANlUBwyf5rp8O9wSfjkJfBoMwgXv7gfRftWAQAEpRrhk36ER9tB8Gg7yCa9Nta2a71vr4dslv1ueRw5a9+qNAjnc/MD0Db7AkX7VkHpGwHPTsOlB32RT65G1so5sBh0gEyG0mPWCRcVPmGIeXkv9OmnUHr8b7g174nM5c9DV6F1ZsCw5yFTquHV9S67wJ7COwRxb56GTKWBOqQZ1KEJOPdy9cMEyLRe8Gx/G1p8bcTpJ8Mdvq+AIbPtrqV8ej5YdWAvri8CO/bGxfkjq3/QJggIm/CN9JtdkSayncP1qpAECDIZvDoNh2eHYTDmJiN71cvI37YIgICAwTPhP/hpnHoi1KaFoXf3cRAUKgSPeRMBQ2ZDd34fRJMBKR+NlIJ8ysAY+A98EjKNB7x73IeCrd8hy0EL66ZzLt+jVLz+u/T9Ei0WFB/6HZayImii2iP9xydhyDgD7+7jEDj8RZvrQaV/FC680Vcqh+cNd0Ad3vLydp9Q6ZiGrHMwpJ2EW8LN0nesPG3MDYh8cjXy/voExYcqmSRDJrdreODesh/8B06DpTQfRXtXOXxI797S2qPHp+cD8Ow0AqenR9kE9P0GPAGlT+jlw/z3+1ae3y2Pw715LwCAxaBD3qYvUHJ0PUSzET43jYdHK/thhpQ+oYh78xSK9v8ChV8Eivf/itz1H9ql8791BvK3flPpw0UAUAXHI2zidwi57xPAYsKFtwei7NzuStOXF3D7HGSvnistqyNaQ+Fl/c1WR1Y+s3tF7q362/z9K2Pxdu6h27Ws0c6Ke+HCBQwYMEBaXr58uVNdWz///HO88471xj4oKAhbttR/t4RLys+KW5uZTq42JpMJBw8eBExl0CwcBkF3+UlC4B2vInDos7AY9TDlWm/2ZGq3Wh9Ld24vLrzRx+YH0avbPYiYVP2TfwAoObmlyiALYH2aEzvvMOSegYDFBJnGA6b8dJiKsqCOaA3RUIrMlXNQdm4P3NsMhEebQdZmz1Ht4N6yLwBAtFiQ9O5gKQji1eUuhN73MQp2LYUpPw3eXe+WAjTFh/9E6eltcEvoCfeWfav90TLmpiLr5xdhKsyAb59H4Nl+iLStYPuPSF0wVlr27fcYQu9zXXcM0WJG0tsDL7ekLCfqqd/tLvrqwmIoQsq3bWAusb1x8Ok6B75dn69T3gU7f3LYQuAf3xg81m4EhqUfxasn7J8gpcv8Md7ndSS/N8FuW8r8O+1aWobe/xncW92CMzNj7dLL3f3g1qIPwh74HHIPP5SlHEXxwTWQeQbhnLal9QICQLt27er81MlUmAlBoYbczRsWox6np0XYnMAVPmGIeeUAFF7VN/83FWTg9IymNhd+/oOfRsDQZ2HMTYEqKNbuhj9zxQvI/mWezbqwCd/Cp8d9dvlnLJ1t04oieOz78B9wuZWLPv0UEme3kIJjMjdvNHs3GXKtJ0RRRFnSARguHrepB5e0WGiCIe0kCnYuQdm5PXYXbzGvHoYmojVEkxGi2YgTE+0v/lp+e/lUaTHqcf61nlJLLb+B0xByz7vI+/tzpH032e4CMHDkXHjdeCdKT/4Dt/geUIe1sMsfAPI2fYnM5c9CNBsRMOQZBNz2tHS8Ew/bB1PCH10Mzw5DYcxLhS5xFxSeAXBvMxCG9FOQqdyg8IuQflf0F0/AmHMBbgk9IVNZW7wXHfwdxft/Qd7fC2zy1Ta7Cb69Hkb22rcgmgxQeAbCVJgBY9Y5yN394NPrYfj2mwxD2glootpD4R3s8P2IooiUj++UWjJ63XgnwicvceoCLfGF9tAnOT8sgzIwBnFvn0HRnpUoPfkPVE0645ymhTUoBqBt61ZIeauv9BDEs/MoRDy+rMqyWMqKIdN4VHtsURRx9vm20KccsVkvKFSIenoDdGe2o/jwH9BEtkPgyJch13rZ5aE7txeZy2bDXFrw3w3Dk9LnmrnyRZuLY99bHkfovfbdbERRxLkXO6HsQuXjIXp3H4egMW9B4eEPQVF5LwdRFAGzsdI0KZ/cjcJyrYKVgU0R93YiBEGAqSADglwJuYef47xNBmT//j/okw5C26y7w4dhCQsKbD4n0WKRbpoN2ReQ8eM0lCUdhNzDD95d75aCsvqLx3F2TgfpJtmz0wiEPvC5NUAKwFxagJw/37MGZ/pOgjo0Afq0kyg7vw9uLXpLN1mixQJTQToKdy9DwbYfoPS1PpxUBcchb/NXSPv6Ybsyu7ceAH3KEXh2GIaQcR/YfXbG3BTozu1B3ob5EFRa6E5vk1pgeHYagYjHl1f6kKVw93Lk/vUJdIk7rL/BgoCgO99CwOAZ1uD/4T8gmgxwb3WL9LlZyophyL4AdViLSvPVp51E4nOtAXOFcavdfNB0zg6oQxNQeGwTzu78E5bobhC9w9G2VUuYUg8jf8tCu9+Opi/vhbZJR+tnXZKHvM1fwpSfBrm7H/I2fQZTbgq0sV0QOXUVFD4hDssEAKVndti1nAse+wF8ez0Mi74Ecg9/CDKZ3fdQ4ReBZu8mVX89lZ+Gi5/fZ/17dRqB4Lv+J12j5qz70KaFpUzjgbh3zksPLERRdOo3rDpmXREEmbzKa2OzrggF/36Hsgv7oPAJg//gmQ5/P6oiWizIWvkCCnYsgTq8JfxvnYkLb90iPehS/BcEkGk8IIoiivathjH7PLw6j4TSP6rW769o32prS2wHmr60G9qmnZ3Kpyz5MIw5SXBv0dsuMFPxGOqwloh5ZT8EhQrm4lycnhkjtWwEgMgnf4Fnh8tDy5hLC3DyUZ9qy+A3aDpC7rbeO+b9/TnSvn1UuhbRxnWHb99J1kCYg+9FxrJnrdc2FVqEWYJbQz9qAdp16gKxMB1lyYeQ/O5tdvsDAAQZQsZ9CL//elM4YirIwKmp9nWq+WdFDs9jFqPeeq/z32eau3EB0r991Ho4lRax8w5BFRxnt1/x0Q3I2/Ax5J4BCBjyjM3DG4u+FCcfD7C5TqzJvVpN6BJ3oXD3Mij9o+Bz8wNOnaudYcxNhaBUQ6bUoPjIOljKiuHRbjAylz2L/M2XZ12NnParzX1Y0cG1Nn8/hW844t46LV1vAUDJsY24+OUDMOYmw6PdbYh4bJnNdXPO7+8gY8kMaVnm5o3491MdBiRroizpEM7O6WDzHRRUboh97QiKD/8p/d0dSfg0H3K3y42pLEY9inYvR/7Wb1By1H5ojfLXyqbCLKR8NAqlp7ZA4ROK8EcXS0FKU2EWTk+PrD6gLZMjavpaeLQZgJRP73H8cB2A8aYpMHUa75J7pyuprrGiRhvYMxqN6NChA4xG64npvffew+DB1Y8vMGfOHPz0008AgBtvvBGLFi2qc1mcdc0G9gDIzm+D2+bXYS7MsF6gTl4itcJzFWN+GvK3LIQh/RTUIQnwGzC1Rj92psJMnJpifwMq9w6G0jcCoQ9+AW103f8moiii9NRWCHIFtLFdXXIB6MwxC3f+hKIDv0IT0cbaeqGKm7ZaHcNiQenJzcha9TJKT2wGAHh2HomIx5ZVetNQGzn/PI3Cfe/brJN7RiHivkOQKWsfHE4rLMP+/bvQ5OtedtsWh7XHa/H9EFxWhA07PrfZdlARj4nec9G7VRP8+lAXu31LT23F+VcvD/IuKNVo9r/zkHsF4szMOJuubcFjP4D/gKkOy1e+PgGuCexVVLh7BS5++QAsZUXQxnVD+KOLoQqIdnr//H8WIv2HqbCUFcO721iEPvSVTdfEiow5STgzu7l0kaeObIumc3Y6bPEjmk3I3TAfusQdcG/RFz69J9jVnYKdPyH719cgKDUIHvOWdIFQXtI7g20Cd97dxiJ80uUuBKLZhPOv95Za8Hp3H4fwR2zPA2eebgZDxuVZkz07jUDk1JW25bWYUXpyC2Ru3ja/G+aSPORu/BTZq16GaDJAHdEa0U9vqDT4Zfc5mAyATA5BZjtGSMVAlyqshbXriQt+X0RRRPGh31F86Hco/aPh23uCzYWcbdkUNarvoiii7Pw+AKJdK8yq5P/7PS5+fm/1Cf8T8dhSeN04Wlp2VJ/kAlB8ZD1kSjXcWvRx6W9zWcoRpH8/Faa8VCi8guHRYRg82t4KzX9dY+rCoi9F1s8vouTEZmhjbkDQ6Ncrvbk3l+Tj4sIJDruFK3xC0eS5rXatnGtDd2E/kt68xRqYkisRMekHm8+/JjKWPYuc3y635NTGdrVp4VFThqxzKNy9AqrApvDsPNLl5+DS09twft5NNuvKD11RE4bMsxBNBqhCE5xrkaAvQVnyISi8gl3ydwSAgm0/IGvVyzAVpEPu7guPtoPh2+cRaKLbA6j83KS/eByJz7eTAkQe7W5D5LRfK30fFkMZLPpiyN197X7fKhJFEWfndJB+8+Qe/oh764zU+u4SXeIunH+jj9RSOvT+BfDt80htPobLx7aYkbpgLAp3LYXMzQdhD34Fr84j6pTn1ab48Drk/P4/CCotgka8LP2tXc2QdR5nZjS1W9/885I6PewvL+/vz5G/9RsoA5si+K7/2bSAKtr/K9K+fdTaKrv/FATd+abd9/PY+OrrXfTsjXBv0UdaLks5AuOlYVEqeYBRnvm/4TDMxbnQXTyBxIvZEIOaAzKFzbWeo7I0eW4L1GEtnTqOo/3LB1qqozu3F/qUw/Bod5tTD3wdyfrlVWStsD6EF5QaNHn2H7tWeo2RxahH7roPoL94HF6dRsCjw1C771L2mjeR99cnkHsEIGTch3CLv8kuH9FkgGg2Orx/NeuKcOGtW6xjeCtUCLn3Y/j2tn+IVBu5GxdYHxwby+AW1x0Bw1+Ee4L13kV3fp/1wfhn4+z2q+z7Y8g6hzMzbM9BgSNfQeDttg0wRIsF5pJcyNTuNkFOACjYvhjpi6dBNJbBvWU/KP2iYC7JhU+P8YAgQ1nyQbg37w1NlLU1qu7cXpx76fIDAbfmvRDyyI84euocoLTeVzCw10gDewAwcuRIHD1q7eY1ceJEPPXUU9XuM3r0aBw6dAgAMH78eDz77LMuKYszruXAHgC0bdMaMqPO7sLrapKz7gOb1gGObuqpeoas8xBNeqhC4l1602TIOoTUH7sAom2Lp6DbFsO92aha57vjQh6GfrUT+SVlOJhtf4H+dmwvfBdpPVm8cWwNbsu0jndSImhxu+98pMsD8f09HXBPR8fNvDOXP4fstW9BUKgRMu5D+Pa0jqVRfPhPpH42DuaibHh0GIaIR3+sNBjdEIE9wDomn7k4F8qA6Fr97cy6IkC0OAz8OFJ6ZgfyNn4KhVcQ/AY8CaVf/c7cWZZyBCkfjoQh4zQ0Ue0R8cQqu+ClaDGj5PjfkCk10Da7ye5zyPv7M6mbqqBUI/rpvxxeoFXFmJMMU2EG1BFtqgx+Oqtg51Jrd3jRAggComb8CY/W/euc79VKFEVk/DgNeZu/hMIzEEq/SJSe2QZBJkfgyLlwb9kPaQsnwpiXCp+eDyFo1DybgGND1aerkWixIHF2c5uhG3x6T0TI3e+4rFUDYG0hoju/F+qQBKiC7VsnO8ti1CPt64dRuGcF1KHNETZxkUsCovVFNJtw+qkml7vtCwJi5u6Xbj6uNVXVpbILB5C/7XsovIPh22eSNParK5h1hcjdMB+ivhS+fSdB6ef4/GvIOofSE5uhCmsBt1j7h2+1ZSrOgVzr7fKH1Nebugab6qq6FpbVBfZUwc0Q+8bxaoPRzqqqPiW9fzuK918eEkam9ULCp/lOX6ulfTsZeeXGNfO5+QGEPWw/NEF9EkURJUc3wJB+Cu6t+0MdEt+gx2/sRIsZ+ovHIffwtwlSN4SLXz5oM76wZ8fhiHzi50rTJ707RBpiQlC5Ie6NEw6HLalOTVpBFx9Zj/x/voLCJwyBt78AUe15TV3r1TVW1HjfOYAuXbpIgb1t27ZVG9jLz8/HsWOX+8B37dq1Xst3vRFk8qs6qAdYxyoQ9aUoOvAbNFHtHI73RNVTBTZxeZ6iaEH2xil2QT1t9AC4xY2sVZ4mswWv/nUaL687ZV0hd3wxeVFzufXLM0EP419dMvwt+fhd3RPp8kB8OLw17mpfeUAq6I5XETjiZUAQbC7+PNoMRPz7qbAYdE4HwuqbXOtV4648tvvX7MbNLa4r3OIa7rdWE9Easa8fg1lXALmbj8OLcUEmh0erymcz9u3zCNQRbaBPPQr3Fn1rFbRQ+kfW6gKnMt5d7oQ6JB66c3vg1ryXzZhK1yJBEBAy9n0Ej3lLaiUomowQLSbpqW/M3JqPO3g9EGQyhD2yCGlfPghjfip8bn4QwWPecnmAQuEdDM92dZ+JUaZUI/yRRQib+F2DtHCvK0GuQNSMP5CxZCYspfnwGzjtmg3qVUcT3R4h9dTaS671QuDQ6h++qwKbWserdLFLXW+pbnxufsAmWBDgxN/Ular7TfEb9JTN2Mtyz0A0eX4r8jZ8bJ2Y5NYZLgvqVcev76M2gT3f3hNr9JsYOMI68UjpyS3QxNyIwFHzqt/JxQRBsD50vIYfPNYnQSaHJqL1FTl2wO0voCzpAMou7IcqrIU0TmhlIqasQP6mz2EqyoLPTeNrfc1bk++4R+v+Ng+1TSZTFamvP406sDdgwAB8/bX1ScSRI0dw5MgRtG5deWVYunSp9AXw9vZG9+7dG6ScdPUQZHIEDH0GAUOdG2CcGk7xsUXQp9l2vxLkavj3eb/WN3svrTuF1/46DUAEPHOA0NM4WhKMVsUZNukuqr0gmpRAajzE4gD8orF9wvh4j+pvGiq7aRYUKshd3C2aqibIFXW+KXNr1h1uza6uc4Qmun29dZm6WpUfUkBQKCFAeQVL03i4xXZB7OtHq094FWkMQb1LNBGtET2jkoHWiUgSdOebsBh0KDu/B27N+8D/tllXukg2/PpPQeGupTDlJgMyOYLueBXqkHiEjPugwcvi0XYQomf/jaIDv0Ed2hw+PR3PpFoZhVcQIp9YVT+Fo2ueKrApmr602zq+sNq92oeBMqUafv2nNFDpyBmNOrDXoUMHtGrVSmq198wzz2Dx4sXw8LDvanL8+HF8+unl5sl33nknNBrHM7sRUcMyl+Uid6t9sNW780wofewH73VGZpEe725OBJRlQMgZCF7Wad8XNOmKj46sltKlqr1wwtISONMcHgoNimHbYnB239odn4iIiOh6pvAKRMRkxwPeXw1UAdGIfe0odIk7oPSPgjq05jOyu5J7i95wdzCjPFFDEGTyq6aHEdWc60a8d7G+ffsiISEBCQkJ6Nu3b6XpZs2aJT3lPXXqFO69916cOHFC2i6KItatW4f7778fpaXWwXUDAwPxyCN1G1yXiFwnb+vzsOhsp1tXeMfC+4aZTudhMFnw4ZazeO734zh0sRCDvtyGMu8LQNxuKagHAJv8Y/FZdFfkKLU45RaA2f6PwpzaBkPiI1D46mCMbHN5VjGNQoaHbqz9rHBEREREdPWSaz3h0br/FQ/qERHVRaNusQdYx9mbNm0a3n33XQDAsWPHcPvttyMuLg5+fn64cOECMjIud7vTaDR4//334enpugF+iaj2ylK3oujIl3br/Xu/B5lC62APq3M5pXhr0xnsSsqDTBCwN6VA2vb69j1A6BkIPiX2OwoC5je9CR/5DwPS4gGjtavf6gets3b9OLYTvtqVhPQiPcZ1DEdsQN2mmSciIiIiIiKqL40+sAcAjzzyCNzd3fHOO+9IrfLOnDljly4kJAT/+9//0LlzZ7ttRNTwLKYyZG+YZLfeLW443JoOqnS/Er0J3T7agsxig+0GpQ4IOQvBK9vxjgBEowpIjwUKAwFYW/u2DfWSWv6qFDI82r1Jjd8LERERERERUUO7JgJ7ADBu3DjccsstWLp0KTZv3oyUlBQUFxfDw8MD8fHxuOWWWzBq1CiH4+8R0ZVRsOt1GPNO2awTVJ7w7/VOJXtYLTuUZhvUk5mAwCTALwWCzPHMtwIEJCia4fjxQMBi+9PXxK/yloFEREREREREV6sGCeyNHDkSI0eOrNE+GzdurPFxQkJCMHXqVEydOrXG+xJRwzJkH0b+nrft1vvd9CoUno6nTF+w7Ty+2HkB+1MLrSsEC+CTDgSdh6AwVnqsOPdgLOozBplZagw7uMtue7SvW+3eBBEREREREdEVdM202COixkO0mJG9fhJgMdmsV4d2g2fbiQ73WX8qC5NXHr6UA+CdaQ3oqcoqP45ZgbCyBBwdfx8UMjmytHqH6dhij4iIiIiIiBojBvaIqMEVHvgY+ozdtivlKgTc8ikEwfFk3Qt3JQEQAc8ca0BP42BijP+IIoDcMCCrCebdcQMUMjkAINBD7TA9W+wRERERERFRY8TAHhE1KGPBWeRtm2O33txqOlT+LR3uszclH0sSDwFNkyC4FVWZf1uvaESXtUaGSoE7bg3D+M4RNtujfbW4kKezWRfhranhuyAiIiIiIiK68hjYI6IGI4oWZK+bANFUarP+lDES4zZ2xui8QwCAUW1D0SvGH3PXn8S8XduAwCQIUZW30AMApdEDD0T3wicDeksz3Dry2uAWGPvDPmk5xFON9mHedXhXRERERERERFcGA3tE1GAK989HWeoWm3UWUcCzeY8ixyBgwfYLAIAF288hKCIfmZozECJ1jrKSiAYNpib0wf9u7g2FXF5tGca0C8M/Z3PwxY4LCPJQ46s720GlcNz9l4iIiIiIiOhqxsAeEdW7T/49j992bMV78mehqrDt6+Ih2G9IsC7IjIBvOuCXiiyVHpW3uwNEowrIioavPhIv39fTqaAeAMhkAj4d1RYfj2gDmayqIxARERERERFd3RjYI6J6te5kJqb+fAA/Bb4Bldxgs+2MMRzvFtwNqEoBv1TAJx2C3FJlfqJRBUVeJJrJ4qHSKvDGHS3grVXWuFwM6hEREREREVFjx8AeEdWrtzcl4mHPX9BRfcpmvUmU4dGyCdBHnYLgmVttPqJBDWRH4uuBg3Bvx2jIGZgjIiIiIiKi6xwDe0RUL0xmC1796zSSz+3DR8FLpPW5ggYrlS3wmaIr8nxyq+xuCwCiXgtkR2FC8xvw7v2t4a7mzxYRERERERERwMAeEdWT7/am4PV1R7Aq+D2oBBO2yyPwk6oV/lTGwShUPx6eWOoJ5ETggeYd8dWkDg1QYiIiIiIiIqLGhYE9IqqxwjIj3vvnLPJ1RgxpGQwfrRLtQr2gkMtgMlugkMuweH8qJvktxib3QDym6oXzct9q8xVFAIWBQE44oPPCuI4R+GRk2/p/Q0RERERERESNEAN7RFQjoihi4Oc7sDMpHwDwwZZzAACtUoYIby3O5BWgeUwZ0k0H8HdINEShSfV5muVAXiiQGw4YNejXLADTesbg1uZBEASOpUdERERERETkCAN7RFQjR9KLpKDeZRbo1Lk4rc4A4rNxQmYBVACqGUFP1HkAeaH4X8/eCHJzR1K+Dne0DUV8oEc9lZ6IiIiIiIjo2sHAHhHVyJ7kfOsLwQK45wFe2YBnNgSFyan9RbMcKAiyttAr80SHcC9M7hoHjbL6cfeIiIiIiIiI6DIG9ojIRkaRHn+cyES7MC+0D/cGACRml8BTrcDhjHw8tHYjEJYFeOVAkDsXzAMA7zIgP7eZNahnUWD+iDbQKmUY2SaUQT0iIiIiIiKiWmBgj+g6dCy9CDmlBnQM94a7+vLPwOG0Qtz4wRboTZbLieVGwCMX8MwBPHIhRJudPk6opQi3G07Au8gLGU1ewcLEZHhpFPh4ZBuM7RjhyrdEREREREREdN1hYI/oOmG2iFh1JA3P/X4Cp7JKAADtwryw9uEu+HJnEvam5OOXoxkAREBd+l8gLwdwK0RN5q9wFw0YZDyD4YYT6GJOQYopCGvjV+Cr4e3x0fDWkMsEqBVsoUdERERERERUVwzsEV0HdEYzbvtyJzYl5tisP3ixEOFz1wMyE+CeD4TmWVvlqcpqlL9okaGjPgsPWnait+k8tLB20TWJcpxr9SFeG3gjAMBNxZ8cIiIiIiIiIlfhXTZRIyOKIoRKmtDtTcnH6iPp8NIocVuLILQI9gQATFp+yDaoJ1gAbaF18guPPEBbVKNWeQAgmmVAsT9QEIi7xd2Y5/ODXZqgXm/g/o4ja5YxERERERERETmFgT2iRmTHhTxMXHYQqQVluLtDON6/vRUUchkA4N9zuej96TaYLSIA4OnfjuHtIS3RJ84fi/YlAdoiwL0AcCsA3PIhyC1VHcoh0aQAiv2AwkCg2BcQ5WijPIOXQ74DRNu0bjFD4dVhap3fMxERERERERE5xsAe0VWuRG/CV7uSkFGsx+t/nZHWf7LtPPzclJg7qDkA4NNt56WgHmQmQFuImbvWAEcKgOZFEGQ1D+QBgJvFE57GYKRf9ABKvQBcbtrnKyvEd+HvQ24y2uyj8IxGwIAvK21ZSERERERERER1x8Ae0VXKYLLgr9NZuO2rXZWmmbfhNPzclNiTkYYfz54AQooAt0JAU/OutZeIFgEo9QaK/PHJgN54pFNzHLhYiC4fbIGpXLM8Ocx43+89eJnSbDOQKRF024+Qa3xrVwAiIiIiIiIicgoDe0QN7GJBGR7/+TD2pRSgX3wA3hvWCl4apU2a3Un5GLNoD87n6ewzkBus4+O5FQHaIkw/9S8EuQlCRO3LJOo8gBIfa/faUm9AlOP+zpGY1LkFAKBDuDd+GNsRb2w8jf2phQCAp30Wo4fmkF1efj1ehzrkhtoXhoiIiIiIiIicwsAeUQOb8etRrDqSDgBYuCsZoZ4azLu1ubQ9vbAMQ7/eicxiPaAqA9TFgLYY0BQD6hIIKn2dyyAa1ECJL8a3aINH2rRDer6IbtF+eO73E9hwKgs3x/jhjdta2Owzul0YRrcLAwAUnVyO7N9/tsvXPX40vDpMqXP5iIiIiIiIiKh6DOwROSmrWI+UgjI0D/KAVimX1ouitXtqxfHk9CYzlDIZZLLL63NLDVhy4KJNugXbz+OxnuFILMrC8YJMfHHgGDIDUoCIEghys0vKLpa5WVviXfpn1KBZgDs+6tsTHmoF8F9rvy/vbFdtXobsI8jZMMFuvdK/FQL6f85x9YiIiIiIiIgaCAN7RE5YezwDd3+/D0V6E+IC3LFuYlcEuKvwwJIDWHkkDfEB7ritZTB2XMiDn1aFUG81lh9Mg0UU8UL/eEzvFYuVhy7ijh+3Ae6lgPrSvxLkqkoRsXSDzfEE99qXVRQFoMwDo2IScGt0M3y8Pg/7k6xdeke3DcUj3ZogT2fA4BbBNgFKZ5jLcpHx250QjSU262VqHwQPXQaZsg4FJyIiIiIiIqIaYWCPrlt5pQbsTMpHpI8WrUI8cTitEO9tPgu5XMCsPnGIC7gcpHrql6Mo0psAAGeyS/Dm32cQ5aPFisPWiSNOZpXg5OazAERAYbB2oVXpAJUOM/YdxgcpQIouF0KCyeXvQ9RrAZ3n5X9lHoAox7v33IJIHy3uTxCx9VwuFHIB3aJ9a92iTjQbkfnbXTDln6mwRUDgoO+g9Imr+5shIiIiIiIiIqcxsEeNwr6UfPx1Ohs3RvmgV2yA3fby3WF3J+Vj6qrDyCjS45FuTTCrr33AKSVfh54f/ytNTvFMvzh8uu0C8nVGAMA3u5NxalZfNPHTIr1Ij5NZl1qoiYDciM/2H4FaYwT8SgGl/r8gnjWYJ8gs9sczAKhZ4ziHRKMaKHP/L4jnZf3frLRL56NVIsJbAwCQyQT0jPWv23FFETl/T0VZyib7Y3V7EW5NB9UpfyIiIiIiIiKqOQb26Kr369F03L5wt7T8xeh2eKhLlLT82fbzeGX9aShkAl4emICX1p3EhUsBu7XH8b9NZxDrb+0qO7tvHJRyGab/ctRmxtnX/zoDCBZAaQAUBpgVBsQuWITmYUpkG4qA6CJrAE+plwJ3BgD1NZqcKAqA3s3a+q7M/b//PWyCeG/e1gKCIGBPcj4MZos0IQcATOoW7dKx7gr3f4SiI1/ZrXeLGw6fG2e77DhERERERERE5DwG9qhe5ZYaUGa04K8zWWgd4oUO4d7436ZEfLjlLII91fhweGt0a+JX6f6iKGLmb8ds1v1v0xk81CUKB1ILcM8P+3Ais1ja9sBPBy4nFCyA3IgccwlycrKwa9sZrE07iO6xHliecQIIN1q7zf73T1DYd5M9CQAqQFDV8YOo9P0BMGitQTy9+3////dalKFjuDf0Cgss7iJMWhGns60tB5sFuGNC12j4aC8H+jaezsavx9LRNtQL4ztHuqyMped+R+6Wp+3Wq4I6IHDgQgiCzGXHIiIiIiIiIiLnMbBH9WLdyUw89csxHM0oktYJAnBLswCsP5UNAEgpKMNtX+3CF6Pb4uN/zyOzWI9IXw1iAzQY3T4ETQM02HQ2E6eK0gB3MyCz/jtpMuHRTaX4as85mGQmIMwEyM2AzATIjYDcBCiMDrvE7jIDu04Bgn1v3nolmuWXA3gGt8sBPIMWEGVo6ueGfdN64qtdSfj5cBoifbSY1K2JXRfaPcn5yCzWo09cgN3EF32bBaBvM9e+MUPWIWT+Pg4QbT9LuXsogoeu4GQZRERERERERFcQA3tUJ1vTi/Dq6RMolhciIXEHov20SCnQYV9qPqABEC0CgghAhCiIWG8EECNaW9MJFuTLLBi9cxOgsgD+FhwXAOQBn/59+RhCrP1xPz93BvCvv66wtSGalNZAnUHz3//lXpuVuFTaXjH+UPoI2HA6W9r3/dtbwVurxPResZjey8Eb/k/nSJ96fheXmQqTkL5qGERDkc16Qa5B8NAVUHhGNFhZiIiIiIiIiMgeA3tUa3qjCTPOb4HFuwAAcKjE+g8ABM8rWLB6IIoCYFRX+KexfW2pvjp1CPfCrw/dCA+1AgcvFmBXUj56NPVDi+Cr6wMzl+UhfdVQmEsu2m0LGPgV1CGdr0CpiIiIiIiIiKg8Bvao1vZn5cDiVnCli1EnokUATGrApARMKsf/jGrr/9W0D/zf0JYY3CIIwxfuxqn/ZtHtHOGN7VNvxsnMYhTpTegc6QO5zJpPuzBvtAvzru+3WGOiSY/MX++AMfe43Tafbi/BI370FSgVEREREREREVXEwB7VWqsAb8gsClhk9pNOXAmCKIPFpLB2ezX/97+p3Ovy/18K2lnkqE2HXneVHI/3aAqDyYI2oV64t1OEFLDb/URPfL8vBUq5gLEdretbhlxdLfIqI4oWZP35AMpSt9ht82z9EHxufOYKlIqIiIiIiIiIHGFgj2rNU6XBjKCueCtlP6ApkdaLIgBRACD89//lZQHCf9tlgEVm83/7UF9kFBqRVmCosF0BmOXWIJxFYf3/v+WmPp5Y88BNiPH1hFImx3v/nMWcP06i1GjGXe3DMLRVCI5lFOH1v07DIlb/nl4ZlIAgDzUsooh7OkQgs1iP7BIDboj0gUwmILtEjzPZpWgX5mU3eYX0uWgUeLR7kzp+ug1PFEXkbpqOktPL7bZpmw6Gf9+PIAhX06iGRERERERERNc3BvaoTu4Ii8TJFE+sOlqMyy3fHAd/hrQIxsr7O+N8ng4+WgVWH8nAK+tPQSEX8PrgFhjdLgxmi4h3Nyfii51JSMrToVesH57uE4cvdiRh6UH78d5+vPMmNA/wlZan94rFhC7RMFos8HNTSeuHtw7BDe/bt0Ir75Fu0Xi2XzOb4JWnRoHYgMszvwa4qxHgrnbik2l88rbNQeHBT+zWq4I7IWjwDxBk/LkgIiIiIiIiuprwTp3qbESsG1YlltqtT3ymHyYuP4i/z2TjhkgfvD+8FRRyGeL+C5Q91CUKD3WJstlHLhMws08cZvaJg8UiQvZf91Z/NxV+O5aBUqNZSjv15qboEu2Lijw19l/rThE+KHz1VjR7YyMyivTS+rgAd7wyKAGhnhr0jPWv3QdwDcjf8z8U7H7Tbr3COwYht6+GTOnuYC8iIiIiIiIiupIY2KM6a+GnRK9wDTanlgEAVHIZNkzqiqb+blj/SLda53spqAcA7cO9ce65fvhhXyoyivVoE+KJuzuE1yg/D7UC+6b1RN9Pt+FkVgn83ZT4YnRb9IoNqHUZrwWFhz5H3tZn7dbL3YIRMuI3yN2CrkCpiIiIiIiIiKg6DOxRnQmCgJe6+WBnqTcu5OtxV/sw9Gjq+tZvgR5qPNkzpk55hHppcHRmHyTmlCDMSwN39fVdBYpPLEbOxil262VqX4SMXAulT9wVKBUREREREREROeP6jmqQy3goZZjeMwYKxdX/lZLJBDQL9LjSxbjiShJ/QdafDwKwnVVEUHogZMRvUAW0uTIFIyIiIiIiIiKnyK50AYio4ZWcWYXMNXcBotlmvSBXI3jYz1CH3HCFSkZEREREREREzmJgj+g6U3J6JTLX3gNYTLYbZAoE3bYE2sheV6ZgRERERERERFQjV3+/SSJymZJTy5H5+712LfUAAYEDvoZbzG1XpFxEREREREREVHNssUd0nSg+udRxUE+QIXDg1/BofteVKRgRERERERER1Qpb7BFdB4pPLEbWnw8AosV2gyBD4MCF8Gh+95UpGBERERERERHVGlvsEV3jCg8uQNYf9zsI6skROOg7BvWIiIiIiIiIGim22CO6RomiiPyd85C/4xX7jYIcQbcugnv8HQ1fMCIiIiIiIiJyCQb2iK5BomhB7qbpKDz4if1GmQJBg3+Ae9yIhi8YEREREREREbkMA3tE1xjRbEDWuodQcvInu22CXIOg2xZz9lsiIiIiIiKiawADe0TXEIuhCJlr7oHuwp9222QqbwTf/jM04T2uQMmIiIiIiIiIyNUY2CO6RpiKUpCxejgM2YfstsndghE84jeoA9tdgZIRERERERERUX1gYI/oGqDP3I+M1cNhLkmz26bwaoqQkWuh9Im9AiUjIiIiIiIiovrCwB5RI1eS+Auyfr8PoqnUbpsqoA2CR/wGhXvoFSgZEREREREREdUnBvaIGilRFFG4/0Pk/vM0ANFuuyaqH4IGL4Zc49PgZSMiIiIiIiKi+sfAHlEjZDGVIefvqSg++o3D7Z6tH4J/nw8hyJUNWzAiIiIiIiIiajAM7BE1MqaiZGT8NgaGjD0Otgrw7fEavDtNhyAIDV42IiIiIiIiImo4DOwRNSK65E3IXDsWFl2W3TZBoUXgoG/gHjei4QtGRERERERERA2OgT2iRsA6nt4HyN3yDCCa7bbL3UMRPHQF1CGdr0DpiIiIiIiIiOhKYGCP6CpnLstHzl+PouT0Cofb1WHdEXTbYs58S0RERERERHSdYWCP6CpWlrYTWWvHwVR0weF2r3aT4dfzLQhyVQOXjIiIiIiIiIiuNAb2iK5ComhBwZ7/IW/biw673gpyDfz7zYdny/uuQOmIiIiIiIiI6GrAwB7RVcZUko6sPx9AWdJfDrfLPaMQPGQp1MEdG7hkRERERERERHQ1YWCP6CpScnoFsjdOgUWX7XC7W+wwBPT/HHKNXwOXjIiIiIiIiIiuNgzsEV0FzGW5yPn7CZSc/MnhdkGuhl/Pt+DZdhIEQWjg0hERERERERHR1YiBPaIrrPTsGmRveBTm0nSH25W+8Qgc/APUge0auGREREREREREdDVjYI/oCjGX5SL3n1koPvZtpWk8Wo6Hf5/3IVO6N2DJiIiIiIiIiKgxYGCPqIGJooiSEz8i55+nYdFlOUwjcwtCQN+P4R53ewOXjoiIiIiIiIgaCwb2iBqQMe8UsjdORVnyxkrTuDcbBf++H0GuDWjAkhERERERERFRY8PAHlEDsJjKULDnfyjY/SZEs95hGpnGH/59P4RH/OgGLh0RERERERERNUYM7BHVI1EUUXpmJXK3PANT4flK07nFjYB/nw+gcA9puMIRERERERERUaPGwB5RPdFn7kfu5hkoS91SaRq5ZxQC+nwAt5jbGrBkRERERERERHQtYGCPyMVMxReRt/0lFB/9FoDoOJEgh3fHJ+DT9QXOeEtEREREREREtcLAHpGLmHU5KNjzNgoPfALRXFZpOnVIF/j3mw91YLsGLB0RERERERERXWsY2COqI4u+EAX73kfB/g8gGooqTSf3CIdfj1fhnnAXBEHWgCUkIiIiIiIiomsRA3tEtWTRF6Lw0AIU7H0XlrLcStMJCi28Oz0F785PsdstEREREREREbkMA3tENWQuzULBgY9QdOBTWAwFVaZ1T7gLfj1ehcIzsoFKR0RERERERETXCwb2iJxkKkxCwb73UHTka4gmXZVptU0Hw7fbi1AHdWig0hERERERERHR9YaBPaIqiKII/cV/UXjgY5ScWQWI5irTayJ6wbf7XGjCujVMAYmIiIiIiIjousXAHpEDFpMOJSd/QuH++TBkH6o2vTqkC3y7vwRNZF8IgtAAJSQiIiIiIiKi6x0De0TlGLIPo+jotyg+/gMsZTnVptdE3QKfG2ZBE9GTAT0iIiIiIiIialAM7NF1z1yWj5KTP6Ho2DcwZOx1Yg8BbnHD4XPD01AHd6r38hEREREREREROcLAHl2XLCYddOd+R8mpZSg9uwaiuazafQSlOzxa3Auv9pOh8mveAKUkIiIiIiIiIqocA3t03RBNepReWPdfMO83iMZip/ZTeMfCq92j8Gw1HjK1dz2XkoiIiIiIiIjIOQzs0TXNXJKB0vN/oPTcGugubHA6mAdBBm2TQfBqOxHaJoMgCLL6LSgRERERERERUQ0xsEfXFNFsgD5jD3RJG6E79zv0GbtrtL/Stxk8Wt4PjxZjofAIq6dSEhERERERERHVHQN71KiJZiMMWQehS9mEsuRNKLv4L0RjSY3ykKl94dZsBDxb3gd1aDfObktEREREREREjQIDe9RoiKIIc3EK9Gk7UZa+G/r0nTBk7HNq4ouKBJUX3GOHwT1+NLRR/SDIVfVQYiIiIiIiIiKi+sPAHl2VLIYiGHNPwJB9GIbsI9L/lrKcWucpcwuCW5Nb4RY7FNroAZApNC4sMRERERERERFRw2JgjxqcKIoQDYUwlVyEuSQdpuJUmArOw1SQCGP+WRgLEmEpzXTJsVSB7eDWdDDcYoZAFdyJk2AQERERERER0TWDgT2qG1GEvOQMFEVHUYRtkMEI0WyAaNZDNOlg0RfAos+HWZ8Piz4flrJ8mEvSIJpK66U4Cq+m0ET2hjayNzSRvaFwD62X4xARERERERERXWkM7FGduJ19H5qLSwEA+Wca+OCCDEr/ltCEdIE6tCs0Eb2g9G7SwIUgIiIiIiIiIroyGNijWjOXZkpBvXonyKD0iYMqoA1Uge2hDu0CdXAnyFSeDXN8IiIiIiIiIqKrDAN7VHsyBUQIECC6LEtBoYXCOwZK7xgofOKg8m8FVUBrKP1bQKbQuuw4RERERERERESNHQN7VGtyjR900Q/D7cIXTiRWQa72hUztBZlbMBTuoZC7h0HhEQq5eyjkHhFQ+sRA7h7KCS6IiIiIiIiIiJzAwB7VSVnUg9AHD4Wi5DRi4hKgULkBMhUEuQqCQgOZ2hsytQ8EuQaCIFzp4hIRERERERERXTMY2KM6E9WBMKoDoYlsB4WCXykiIiIiIiIioobAPo9ERERERERERESNEAN7REREREREREREjRADe0RERERERERERI1QvQ2IlpiYiCVLlmDnzp1ISUmByWRCUFAQ4uPjMXToUPTv39+l47EdPnwYd9xxR433++GHH9C5c2eXlYOIiIiIiIiIiKgh1Etg76OPPsKCBQtgMpls1icnJyM5ORl//fUXWrdujbfffhsxMTEuOebx48ddkg8REREREREREVFj4PLA3rx587Bo0aLLB1AokJCQAK1Wi8TEROTl5QEAjhw5gnvvvRdLly5FeHh4nY9bPrAXHR2NyMhIp/bz9vau87GJiIiIiIiIiIgamksDe3/88YdNUG/gwIGYM2cOAgICAABGoxErV67E66+/Dp1Oh+zsbEyZMgUrVqyAIAh1Onb5wN6jjz6KESNG1Ck/IiIiIiIiIiKiq5nLJs8wGo148803peU+ffrg/fffl4J6AKBUKjFmzBjMnz9fGl/v6NGj+O233+p0bFEUcfLkSWm5efPmdcqPiIiIiIiIiIjoaueywN769etx8eJFANbut3PmzIFM5jj7Hj16YMyYMdLywoUL63TsCxcuoLS0FIA1eBgbG1un/IiIiIiIiIiIiK52LgvsrV27VnrdvXt3hIWFVZm+fGDv6NGjSE5OrvWxy3fDbdq0KVQqVa3zIiIiIiIiIiIiagxcEtgTRRE7d+6Ulm+66aZq90lISEBgYKC0vHHjxlof/8SJE9JrdsMlIiIiIiIiIqLrgUsCe6mpqSgsLJSWW7du7dR+CQkJ0uvDhw/X+vjlW+wxsEdERERERERERNcDl8yKe/78eZvlqKgop/aLiIiQXiclJdX6+OUDewkJCThx4gRWrFiBnTt3IiUlBSaTCQEBAWjXrh1uvfVW9O/fv86z8BIREREREREREV1JLgnsZWVlSa9lMpnNTLhVKd8Vt3weNZGbm4vMzExp+csvv8T27dvt0qWmpiI1NRVr165F69at8d577zkdgKwvJpPpih6/rsxmc5XLROQ81ici12F9InIN1iUi12F9InId1idbLgnsFRQUSK/d3d0rnQ23Ig8PD4d51ET51noApKCeVqtFdHQ0vLy8kJmZadOq8MiRIxg9ejQWLlyIli1b1uq4dWWxWHDw4MErcuz6cuTIkStdBKJrBusTkeuwPhG5BusSkeuwPhG5zvVen1wS2NPr9dJrjUbj9H7lZ681GAy1OnbFwJ6HhwemT5+O4cOHw93dXVqfkpKCDz/8EKtXrwYA5OfnY/Lkyfj555/h6+tbq2MTERERERERERFdKS6ZPMNoNF7O0MnWegCgUFyOK9a2W2r5lni+vr5Yvnw5xo4daxPUA6zj+b311luYMmWKtC4tLQ0LFiyo1XGJiIiIiIiIiIiuJJe02JPL5dJri8Xi9H7lg3lKpbJWx543bx5mzpyJ5ORkuLu7o2nTplWmf+yxx7B161bs378fAPDTTz/hqaeesmk92BBkMhnatGnToMd0NbPZbNPktXXr1jbfBSJyHusTkeuwPhG5BusSkeuwPhG5zrVWnw4fPlyjWFpFLgnsabVa6XX5brnVKd/9Vq1W1/r43t7e8Pb2diqtIAi49957pcCeTqfD3r170a1bt1ofv7bKt1i8Fsjl8mvuPRFdKaxPRK7D+kTkGqxLRK7D+kTkOtd7fXJJV9zyQbWSkhKIoujUfsXFxdJrHx8fVxTFKR07drRZLt+dl4iIiIiIiIiIqDFwSWAvODhYem02m5GXl+fUfllZWdLrgIAAVxTFKf7+/jbLtZ2Rl4iIiIiIiIiI6EpxSWAvOjraZjk5Odmp/VJSUqTX1Y2N50oVZ+CtONEGERERERERERHR1c4lnZDDw8Ph4+OD/Px8AMDx48fRrl27avc7ceKE9Lp58+Y1Pm5qaip+/PFH5ObmIicnB9OnT3cqn4qBx9DQ0Bofm4iIiIiIiIiI6EpySYs9AOjSpYv0etu2bdWmP3HiBLKzs6Xlrl271viYoijiyy+/xMqVK7F582Zs3brVqf22bNkivRYEwW7MPSIiIiIiIiIioqudywJ7AwYMkF7//fffyMjIqDL94sWLpdexsbFISEio8TEjIiIQHh4uLa9cuRJms7nKfYqLi/H9999Lyz169ICfn1+Nj01ERERERERERHQluTSwFxQUBMA6ht3s2bNhMpkcpt2yZQuWLVsmLd977721Pu4dd9whvU5MTMSCBQsqTWs0GjF79mwp6CgIAiZNmlTrYxMREREREREREV0pLgvsqVQqTJ8+XVretm0bJkyYYDOenclkwtKlSzFlyhSpZV18fDxGjx7tMM++ffsiISEBCQkJ6Nu3r8M0DzzwgE2rvQ8//BDz5s2zm5n3+PHjeOCBB7B+/Xpp3bhx49C5c+eav1kiItbevYcAACFOSURBVCIiIiIiIqIrzCWTZ1wyYsQI7N+/Hz/99BMAa3BvwIABSEhIgIeHBxITE5Gbmyul9/HxwQcffACFovbF0Gq1+OyzzzBu3Dhp8o5FixZhyZIliI+Ph4eHB9LS0pCUlGSz35AhQ/DMM8/U+rhERERERERERERXkksDewDw8ssvw9fXF1999RWMRiMsFguOHz9uly42NhYffPABYmJi6nzMZs2aYfny5Zg5cyb2798PwNrt9ujRo3ZpNRoNJk2ahIkTJ0Iul9f52ERERERERERERFeCywN7giBg2rRpGDZsGJYvX46tW7ciPT0dOp0O3t7eaNGiBQYNGoRhw4ZBpVK57LiRkZFYsmQJ/v33X/z22284cOAAMjMzodfr4efnh8jISPTq1QtDhw5FaGioy45LRERERERERER0Jbg8sHdJbGwsZs2ahVmzZtU6j40bN9Z4n5tuugk33XRTrY9JRERERERERETUGLhs8gwiIiIiIiIiIiJqOAzsERERERERERERNUIM7BERERERERERETVCDOwRERERERERERE1QgzsERERERERERERNUKCKIrilS7E9WLv3r02yzJZ44+rWiwW6fW18H6IriTWJyLXYX0icg3WJSLXYX0icp1rqT6Vfy8A0KlTpxrtr3BlYahmKv7xGrtr7f0QXUmsT0Suw/pE5BqsS0Suw/pE5DrXe31q3GFNIiIiIiIiIiKi6xRb7F1Bjb25KBERERERERER1V5dWxxyjD0iIiIiIiIiIqJGiE3GiIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIQb2iIiIiIiIiIiIGiEG9oiIiIiIiIiIiBohBvaIiIiIiIiIiIgaIcWVLgA1PomJiViyZAl27tyJlJQUmEwmBAUFIT4+HkOHDkX//v2hUPCrRdeenTt3Ys2aNdi/fz8yMzNRXFwMDw8PhIaGonPnzhg5ciRatmzpdH6HDh3CsmXLsHv3bmRkZEAURQQHB6NVq1a4/fbb0bNnTwiC4HR+oihiw4YN+OWXX3D48GHk5ORAq9UiODgYXbt2xahRo9C8efPavHWiBvPMM89g5cqVAIDXX38dI0eOdGq/+jg3bd++HStWrMCBAweQmZkJhUKBkJAQdOjQASNGjEDnzp1r/P6I6oPZbMa6deuwfv16HDlyBFlZWTCbzQgICEDr1q0xdOhQ9OvXDzKZc8/0eX6i69mxY8ewbNky7NmzB+np6dDpdPD29kZMTAxuvvlmjBkzBt7e3k7nx/pE14MPPvgAn3zyCcLDw7Fx48Ya7evq6y2DwYA1a9bg999/x7Fjx5Cfny/ds/Xs2ROjRo1CVFRUjfLMzc3FsmXLsGnTJpw9exYlJSXw8/NDVFQUBg4ciGHDhtXod8HVBFEUxSt2dGp0PvroIyxYsAAmk6nSNK1bt8bbb7+NmJiYBiwZUf1JSUnBrFmzsGfPnmrT3nbbbZg7dy48PDwqTWM0GvHKK6/gp59+qjKvHj164PXXX0dQUFC1x83IyMC0adOwd+/eStMIgoD7778f06dPh0qlqjZPooa2efNmTJw4UVp2NrDn6nNTcXExZs2ahQ0bNlSZbtiwYZgzZw48PT2rzZOovhw6dAgvvPACTpw4UWW69u3b491330V4eHilaXh+outZWVkZ5s6dixUrVlSZzt3dHXPnzsWQIUOqTMf6RNeLQ4cO4Z577oHRaKxRYK8+rrcSExPxxBNP4PTp05WmUSqVmDp1KiZMmOBUUH3Dhg147rnnkJ+fX2mawMBAvPrqq+jVq1e1+dUHBvbIafPmzcOiRYukZYVCgYSEBGi1WiQmJiIvL0/aFhAQgKVLl1Z58UjUGJw/fx533303cnNzpXVKpRLx8fHw9PRETk4Ozpw5g/I/pc2bN8cPP/zgMLgniiIef/xxmxOYWq1GQkIC5HI5Tp8+jeLiYmlbTEwMfvrpJ3h5eVVaxtzcXIwZMwZJSUnSOh8fH8TFxUGn0+HkyZM2AY/bbrsN7777bs0/DKJ6VFRUhNtuuw0ZGRnSOmcCe64+N+n1etx77704ePCgtM7d3R3x8fEwm804deoUysrKpG033HADvv76a9480RWxfft2TJ48GaWlpdK6wMBAREVFwWg04vjx4zAajdK28PBwLFmyxGEAgecnup4ZDAZMnDgR27dvl9bJ5XLEx8fDy8sLqampSElJsdnnpZdewt133+0wP9Ynul4kJyfj7rvvRlZWFgA4Hdirj+utc+fO4e6777a59gsMDETTpk2Rn5+P06dP29yzTZgwATNmzKiynH/88QemT58Os9ksrWvatCkCAwORmpqK1NRUab1cLscnn3yC3r17V/v+XU4kcsLvv/8uxsfHS/+mTJkiZmVlSdsNBoO4ZMkSsV27dlKaESNGiBaL5QqWmqhuTCaTOGTIEOk73aJFC/HDDz8Ui4qKbNKlp6eLTz/9tE0dmTp1qsM8v/zyS5t0L730klhYWCht1+l04qeffiq2bNlSSvPYY49VWc6JEydKadu0aSP++OOPotFolLZnZmaKTz75pM1xv/322zp8MkSuN3v2bJvvaHx8vLhixYoq96mPc9PLL78spU1ISBDnz58v6nQ6aXtBQYE4b948m+O+9tprdf8AiGro/PnzYvv27aXvYe/evcWNGzfafL8dfV8ff/xxh/nx/ETXs/nz59t8Dx955BHx4sWLNml27dol9unTR0rTsmVL8dSpUw7zY32i68HJkyfFm2++2eY716dPH6f2dfX1lslkEocNGyalveGGG8Tff//d5pyYlJQk3nfffTZ5btiwodI8k5KSbM6zQ4YMEY8ePWqTZvv27Ta/Cx06dBDT09Od+gxciYE9qpbBYBB79+5tc6Izm80O027ZssXmBPXLL780cGmJXGfp0qU2P/yrV6+uMv3rr79uk37//v0223NycsQOHTpI21988cVK81q+fLlNXnv37nWY7p9//rFJt2bNmkrzLB987NKli12AkuhK2bRpk11Qr7rAXn2cm06fPi22aNFCSvf5559XevwPPvhASteqVSsxOTm5Zm+aqI4efPBB6Ts4YMAAuyBEeXPnzrW5gTp37pzNdp6f6Hqm1+vFjh07St/B8ePHiyaTyWHa5ORksVOnTlLaadOm2aVhfaLrwapVq2wenNYksFcf11uLFy+2CbpXVpcMBoM4fvx4Ke2tt95aaX2fNm2azfvKyclxmC4tLU3s0aOHlPb555+v5hNwPc6KS9Vav349Ll68CMDaxWnOnDmVDr7co0cPjBkzRlpeuHBhg5SRqD6sXr1aet2jRw8MGzasyvTTp0+36d60Zs0am+3Lly9HSUkJAGvXiaeffrrSvEaNGmXTjLuyuvTtt9/alHHw4MGV5vniiy/C398fAJCXl4eff/658jdD1EAKCwvx/PPPA7B2c9dqtU7tVx/npkWLFkldLWJiYvDQQw9VevzHH38c8fHxAKzjKH3//fdOlZvIFQ4fPoytW7cCAGQyGd5++22EhoZWmv6JJ56Qui+JoohNmzbZbOf5ia5nBw4csOkW+8QTT0AulztMGxERgXvuuUda3rRpk03XPoD1ia5tGRkZmDVrFp5++mnodLpa5VEf11vfffed9HrUqFHo2LGjw3RKpRJvvvkmlEolAOuYfJs3b7ZLl5GRgT///FNanj59Ovz8/BzmGRISgueee05aXrlyZZXj8dUHBvaoWmvXrpVed+/eHWFhYVWmL3/zdPToUSQnJ9db2Yjqi8FgwL59+6Tl6gZIBgCVSoUePXpIy4cPH7bZ/vvvv0uvb731Vri5uVWZX/m69M8//9iMoQQABQUF2LZtm7Q8atSoKvNzc3OzCU7+8ccfVaYnagivvfYaMjMzAQATJ06s9KKpIlefmywWi80F3MiRI6ucQVQmk+HOO++UlsvvS1TfLs0cDQDDhw9H27Ztq0zv5eWFp556ChMnTsTMmTPRpk0bm+08P9H1LD093Wa5VatWVaZv166d9LqkpMRmPC+A9YmuXZ9++ikGDRqEVatWSetiYmIwadIkp/Ooj+utEydOIDExUVq+4447qixDcHAw+vTpIy07qiN//vmnNGalp6cnBg4cWGWe/fv3l65hTSZTtROCuBoDe1QlURSxc+dOafmmm26qdp+EhAQEBgZKyzWd7proapCamgq1Wi0tx8bGOrWfj4+P9Lr8hV5+fj6OHz8uLZcPAFama9eu0hPjsrIym4s6ANi1a5f0tEsQBKfqZ/k0+/btQ0FBQbX7ENWXTZs2SS0J4uPjnb4wrI9z04kTJ2zqrDN1tPxxL168WO2spESuUr7FXfkbnqrcf//9eOqpp/Dwww+jU6dO0nqen+h6V3GmzUut7SpTcQb28teLrE90Lfvqq69sAs+jR4/GsmXLEB0d7XQe9XG9tWPHDum1t7e33cOr6vJ01PK2/EQ6N954o9TCrzJyuRzdunWTlv/+++9qy+BKDOxRlVJTU1FYWCgtt27d2qn9EhISpNcVWy0RNQZNmzbF/v37sWfPHqxZs0ZqAl6d8jMjeXt7S69Pnjxpc8Ko7mkwYH3iGhUVJS1XrEvlT2oRERE2x6tM8+bNpdcWiwVHjx6tdh+i+lBYWIgXXngBgLUr7euvv+70zLL1cW4qX5+USiWaNWtWbX5NmzaFRqOpNE+i+pCeni51Q9dqtdW21qsOz090vYuLi7NZ3rJlS5Xp//33X+l1aGgo3N3dpWXWJ7oetG7dGosWLcK8efPg4eFRo33r43qrfJ4tWrSAIAjV5lm+jhQUFNjMNg1Y6/IlztTjink29DUhA3tUpfPnz9sslz/pVCUiIkJ6XbGSEDUmnp6eiIuLszmZVKa4uNjmYq98K7/ydUmlUlU5FlJ5VdWl8nk6+6QsMDDQ5r1cuHDBqf2IXG3evHlSF9yHHnrI6eAcUD/npvJ5hoeHQ6FQVJufIAg2XYBZn6ghlL/ZiImJkVr6pKSkYP78+Rg1ahS6du2Kdu3aoX///njuueewf//+SvPj+Ymud5GRkTbj3L3//vvIzs52mHbPnj02XeHLj7cHsD7Rte3GG2/Exx9/jOXLl+PGG2+sVR71cb1VmzpSvs5VzNNgMEgP0GqbZ0ZGBsrKypzazxUY2KMqZWVlSa9lMhkCAgKc2q98d6fyeRBdy7766iubwZfLj91Qvh6Urx/VqaouXQqK1DTPSwMqO8qTqCFs3LhRmpwmNjYWjz/+eI32r49zU/nl8pPgVKf8sVmfqCGUv+kPCgqCxWLBF198gcGDB+Ojjz7CkSNHkJeXh7KyMiQlJWH58uW46667MHv2bOj1erv8eH4iAp599lnp9zw1NRV33HEHVq5ciezsbJhMJiQnJ2PBggV46KGHYDQaAQAtW7bEuHHjbPJhfaJr2SeffIJbbrnFqRZxlamP663a1BE/Pz+bSXLK55mVlWXT8tbZPCtejzZkvas+PErXtfLjMbi7u1c5sGV55ZvkckwHuh4cOnQIX3zxhbTcpEkT9O3bV1ouPzNSxbFcqlJVXSq/XJM8y6ct352RqCEUFBRgzpw5AKxBuZp0wS2fxyWuOjfVto6WT8vzHTWE8i2J3Nzc8Morr+DHH3+U1sXFxcHf3x/Z2dk2g4n//PPPSEpKwjfffGNT53h+IrK2yFmxYgXmzZuHDRs2IC0tDc8884zDtIIgYNiwYXjhhRfsJsZgfSKqWn1cb9WmjshkMri5uaGoqAiAbR2pmL+Xl1eNy1gxz/rGFntUpfJPdp3pinhJ+QtGg8Hg0jIRXW1SUlIwefJk6QkuAMyePdumaXn5euCquuSK+umo9QZRfZo3b570BPP++++3mV3QWfVxbqqPOkpUH8rfKGzZskUK6t1yyy3YsGED1qxZg++++w5r167Fhg0b0KtXLyn93r17MW/ePJv8eH4isvLz80PPnj2r7XZ30003YcKECQ4DCKxPRFVrDHWkYn0pP0GOs/k5yqc+MbBHVSofqHC2RQQAm4BGxZmjiK4laWlpGD9+vE1T6/vvv9+mGy5QP3Wp/HJN8izf7Jz1kxrSX3/9hV9++QWAtVXrE088Uat86qM+1TZP1idqaOVvaC4F+caMGYP58+cjMjLSJm1kZCQWLFiAQYMGSeuWLl2KU6dOScs8PxFZB98fMmQIXnjhBWm8LrVajTZt2qBLly5o0qSJlHbr1q24/fbb8eabb7rsXML6RNeL+rjeKr9cPl1t86yYv7N5Vkx3aTbrhsDAHlWp/JfTYrE4vV/5ylDd1NBEjVViYiLuvvtupKSkSOt69OiBGTNm2KWtj7pU2zzLn2RYP6mh5Ofn48UXXwRg7cb06quv1uipanmsT3Q9qzi2UWRkJJ5//vlKxzySyWQ2MxeKoojvv/9e2s76RNe75ORkjB8/Xho8X6PR4JlnnsGuXbuwfPlyfPfdd/jzzz+xYcMGDB48GID1u/r1119j1qxZNnmxPhFVrT6+z+XzrEkwrXza8q3tKgYcnc2zYrqGrHcM7FGVtFqt9LomTUnLP012tukqUWOyb98+jB07FmlpadK6rl27Yv78+Q5/xMsHMGpSl8qnrViX6iNPovpSvgvuuHHj0Llz51rnVR/nJtYnaiwqjul11113VTtOpaenpxSQAIBt27ZJr3l+ouvd3LlzpXG/1Go1Fi5ciPvvv9/u4VNkZCTee+89TJo0SVr322+/4bfffpOWWZ+Iqna11pHy59Hy15mA80Ot1LYLryswsEdV8vb2ll6XlJTYzA5TlfIzg/r4+Li6WERX1K+//orx48cjLy9PWterVy989tlndieCS8rXg/L1ozolJSUO8wBs62dN8mT9pIa2YcMG/PrrrwCsN0bTp0+vU371cW6qbR1lfaKG5u7ubrPcsWNHp/Zr37699Do5OVm6UeH5ia5nycnJ+Oeff6TlSZMmVVunpk2bZjM+7Jdffim9Zn0iqlp9XG/Vpo5YLBaUlpY6zLN8fjXJs2K6hqx3DOxRlYKDg6XXZrPZJpBRlfLjjVWc9pmoMfvoo48wY8YMmyc3w4YNwyeffFJlt8LydSknJ8fp41VVl2qbZ/m0zk7fTlRb+fn5eOmllwBYuxDOmzfPrsVRTdXHuSkoKEh6XZP6VH6GUtYnagi+vr42y35+fk7t5+/vb7N8qYUSz090PduzZ4/N8h133OHUfnfddZf0+vjx49J3l/WJqGr1cb1VmzqSm5tr0xW4fJ6BgYE23XHLH9vZMgqCYHferU+K6pPQ9azirFDJyclOXUCWH3OsadOmLi8XUUMzGo147rnnsHr1apv1jzzyCKZNm1bp2EaXlK9LpaWlyM7OdironZycLL2uWJfKD+SclJRUbV4AkJmZibKyMod5ENWHn376Sbph0Wq1+OKLL/DFF19Umr78RdHChQuxZs0aafnNN99EQEBAvZybyteFlJQUiKJYbb0WRRGpqakO8yCqL82aNbNZLj9LblUqDgZ+abB+np/oepaZmSm99vb2tgk6VKV58+Y2y6mpqfD392d9IqpGfVxvNWnSBPv27QPgfB0pX+cq5qlSqRAaGiodszZ5hoWFVTtMhisxsEdVCg8Ph4+Pj/RU9/jx4zZNzytz4sQJ6XXFEx9RY2MwGDBlyhRs2rRJWqdQKPDSSy9h9OjRTuXRsmVLCIIgdRk8fvw4br755ir3KSkpsTmRVKxLrVq1kl5fuHABOp2u0q7Alxw/flx6LQgCEhISnCo/UW2Vb91aWlqKrVu3Or3vqVOnbGbvvHSTUh/npvL1SafT4dy5c4iJiakyv7Nnz9qMp9KiRYtqy0BUVxV/t8+fP4+2bdtWu196err0WqPRSF2EeH6i61n5G+/ys3VWp+Lg+pcCE6xPRFWrj+utVq1aYeXKlQBsr/WqUr6OeHt7Izw83GZ769atpcBebfJs6GtCdsWlanXp0kV6XX6w5cqcOHHCpsVF165d66VcRA3BZDJh6tSpNkE9d3d3fPbZZ04H9QDAw8MDLVu2lJadqUs7duyQmojL5XLceOONNts7deoktbgwm83YuXNntXmWP27Lli3txpAgaixcfW5q1qyZTau/7du3V5vnv//+K7329fXljRM1CD8/P5vv2oYNG5zab/fu3dLrli1bSoEJnp/oehYSEiK9Li0txblz55zaLzEx0WE+rE9EVauP663ydSYrKwunT5+uNs/ydaT8NaWjPHfu3FntDL4V62ZDx0AY2KNqDRgwQHr9999/IyMjo8r0ixcvll7HxsbyRocatbfffht///23tOzn54dFixahR48eNc5r4MCB0utffvkFOp2uyvTl61L37t3h5eVls93Ly8vmpLFkyZIq8yspKcEvv/wiLQ8aNMipchPVxZQpU3Dy5Emn/5V/Yvr666/bbIuIiJC2ufrcJAgC+vfvLy0vXbq0yos4i8WCpUuXSssDBw6stisJkavcfvvt0uuNGzfizJkzVaZPS0vDX3/9JS2Xrz8Az090/erSpYtN67uffvrJqf1WrFghvW7WrJnN+FysT0SVq4/rrfj4eJsu7NXVkbS0NJtGG7feeqtdmltuuQVyuRyAdZiY9evXV5nnn3/+idzcXADWnl0Vz7P1jYE9qtaAAQOk8SYMBgNmz55tN07LJVu2bMGyZcuk5XvvvbdBykhUHzZv3oxvv/1WWvb29sZ3331n04S8JkaNGiV1ncjOzsbcuXMrTbts2TJs2bJFWr7vvvscphs7dqz0+u+//5aaoTvy0ksvSSccNzc3pweIJroa1ce56Z577pEuFk+cOIGPP/640uN/8MEH0hNhmUzG8x01qBEjRkgtcIxGI2bPno2ioiKHaQ0GA2bNmiV1M/Tw8MDIkSNt0vD8RNcrPz8/m0Dcd999V20LokWLFtm0IBozZozNdtYnoqrVx/VW+TqyZMmSSlvLGo1Gm3NiWFgYbrnlFrt0ISEh6Nevn7T86quvVvoQOS0tDa+99pq0PGDAAJsJPRoCA3tULZVKhenTp0vL27Ztw4QJE2wGhzSZTFi6dCmmTJkCs9kMwBo5r0lXRaKridlsxquvviqNkSIIAt555x27QctrIiAgAA8//LC0vHLlSjz11FM2szeVlZVhwYIFePHFF6V1PXv2RM+ePR3m2bdvX5vm4y+88AI+++wzm3EosrOzMW3aNJunt5MnT3Z6JkWiq1F9nJuaN2+OESNGSMvz58/Ha6+9ZhMwKSoqwquvvooFCxZI68aMGYO4uDiXvTei6vj5+eGZZ56Rlg8fPox77rkHO3bssEl39uxZPPjggzbdg5588km7bnk8P9H1bMaMGVIrObPZjAkTJuDjjz+WgmOXZGVl4eWXX8a8efOkda1atcLdd99tk471iahq9XG9NWbMGKnVnslkwmOPPYZly5bZPPRNTk7Gww8/bHNOnDlzZqWTXEybNg1qtRoAkJGRgXvuuQe7du2ySbNz506MHTtWmijOzc3N5vq0oQjipbtWomrMmTPHpnm6TCZDQkICPDw8kJiYaHPy8/HxweLFi6sdCJPoarVmzRqbH2U3Nzd07NixRnkEBATgzTfftFl36URTvvm3UqlEQkICVCoVTp8+bXNSi4iIwLJly6q8KMvI+H97dxMS1RrGAfzJGqhgkCJIMPtgaNGiSIKkVdgipCIKog8kWhVthCiwXVIugiTKTbt27sqCCaKShCCoIFpIESMWtDLJssEwGArvIhru9OE45dQ9199veTjnMGfxznPO/5z3fUaitbW1JNBIp9OxevXqKBQKkcvlShaEbm5ujkuXLn238DP8F2zZsqW4WPHZs2e/+7LoWzNdmz58+BCHDh2Kp0+fFrctWLCgOHU3l8uVTKtau3Zt9PT0xPz58yu7UJgBFy5cKHnoifjylUFDQ0Pk8/mS5jMRX6bwnjt37ofnUp+YzR49ehRHjx6NiYmJ4rZUKhWrVq2KRYsWxdjYWAwNDZVMGVyxYkX09PT8sJOu8cRscu3ateLLpvr6+ujv7y97TDXutwYHB+PgwYPF5moRX16EZTKZGB8fj8HBwZIx3NraGqdOnZryd2az2Th58mTJccuXL4+6uroYHh4uGY81NTVx/vz52LZtW9nrn2mCPaZtcnIyLl68GJcvX56ya1Qmk4nu7u7f+rIJ/ra2tra4c+fOb53jZ4WtUCjE6dOno7e3N6b6C25sbIzu7u5pfco9PDwcx48fL7Z6/5k9e/ZER0fHH22/DpWoNNirRm0aHx+P9vb2sjemzc3N0dXVFel0uuw5oVp6e3ujq6srxsbGfrrPvHnz4siRI9HW1jblQ776xGw2NDQU7e3t8ezZsyn3mzNnTrS0tMSZM2e+Ww/v34wnZotfCfYiqnO/lcvl4sSJE1M20Jg7d24cPnw4jh07Nq31kW/duhUdHR0lgeG3amtro7Ozs2Rq/58k2KNiL168iKtXr8b9+/fj9evX8fHjx6itrY01a9ZES0tL7Ny5UxEh8bZv3152MfJyyhW2gYGBuH79ejx8+DBGRkaiUCjE4sWLY926dbFjx47YunVrRW9ZJycno6+vL27evBkDAwMxOjoaNTU1sXTp0tiwYUPs3bs31q9f/1vXBNVWabD3VTVq04MHDyKbzcbjx49jdHQ0Pn/+HEuWLInGxsbYvXv3LzXRgWrI5/ORzWbj7t278fLly3j37l2kUqlYuXJlbNq0KQ4cOBANDQ3TPp/6xGx279696OvriydPnsSbN29iYmIi0ul01NfXx8aNG2PXrl0VNQc0nvi/+9Vg76uZvt/69OlT3LhxI27fvh3Pnz+Pt2/fRiqVimXLlkVTU1Ps37+/4iVU3r9/H1euXIn+/v549epV5PP5WLhwYWQymdi8eXPs27fvr057F+wBAAAAQAKZcA8AAAAACSTYAwAAAIAEEuwBAAAAQAIJ9gAAAAAggQR7AAAAAJBAgj0AAAAASCDBHgAAAAAkkGAPAAAAABJIsAcAAAAACSTYAwAAAIAEEuwBAAAAQAIJ9gAAAAAggQR7AAAAAJBAgj0AAAAASCDBHgAAAAAkkGAPAAAAABJIsAcAAAAACSTYAwAAAIAEEuwBAAAAQAIJ9gAAAAAggf4B1g3OAEDAFmEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "rate = 1000\n", + "tmax = 10000\n", + "deadtime = 2.5e-3\n", + "dt = 0.0005\n", + "segment_size = 1\n", + "import copy\n", + "source_fraction = 0.65\n", + "\n", + "def split_between_source_and_background(times, source_fraction):\n", + " times_shuf = copy.deepcopy(times)\n", + " np.random.shuffle(times_shuf)\n", + " times_source = np.sort(times_shuf[: int(source_fraction * times.size)])\n", + " times_bkg = np.sort(times_shuf[int(source_fraction * times.size): ])\n", + " return times_source, times_bkg\n", + "\n", + "\n", + "times = np.sort(np.random.uniform(0, tmax, rate * tmax))\n", + "times_dt = filter_for_deadtime(times, deadtime)\n", + "\n", + "times_source_dt, times_bkg_dt = split_between_source_and_background(times_dt, source_fraction)\n", + "\n", + "source_rate = source_fraction * rate\n", + "\n", + "pds_source_dt = AveragedPowerspectrum.from_time_array(times_source_dt, gti=[[0, tmax]], dt=dt, segment_size=1, norm=\"leahy\")\n", + "\n", + "model_source_nobkg = non_paralyzable_dead_time_model(\n", + " pds_source_dt.freq, \n", + " dead_time=deadtime, \n", + " rate=times_source_dt.size / tmax, \n", + " bin_time=dt\n", + ")\n", + "\n", + "model_source_corr = non_paralyzable_dead_time_model(\n", + " pds_source_dt.freq, \n", + " dead_time=deadtime, \n", + " rate=times_source_dt.size / tmax, \n", + " bin_time=dt,\n", + " background_rate=times_bkg_dt.size / tmax, \n", + ")\n", + "\n", + "plt.plot(pds_source_dt.freq, pds_source_dt.power, label=\"PDS of source events\")\n", + "plt.plot(pds_source_dt.freq, model_source_nobkg, zorder=10, label=\"model of Source\")\n", + "plt.plot(pds_source_dt.freq, model_source_corr, zorder=10, label=\"model of Source+Back\")\n", + "plt.plot(pds_source_dt.freq, pds_source_dt.power / model_source_corr, zorder=10, label=\"ratio\")\n", + "\n", + "plt.legend(loc=\"upper right\")" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'PDS / model')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABTUAAAQgCAYAAAA35bgJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOy9eZwdRbn//5klG0lYZZFdRKImmIsiIC73J/LlKlevioJXr6KoFxQVxQXEC4IriMIVRfAKKJtsUQRZEyAhEJYEskz2fZtkkskymcw+c5b+/TE5J2ep6q7qruquPufzfr14kenTXfV0dXctTz1Lg+d5HgghhBBCCCGEEEIIISQlNCYtACGEEEIIIYQQQgghhOhApSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYQQQghJFVRqEkIIIYQQQgghhBBCUgWVmoQQQgghhBBCCCGEkFRBpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYQQQghJFVRqEkIIIYQQQgghhBBCUgWVmoQQQgghhBBCCCGEkFRBpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYQQQghJFVRqEkIIIYQQQgghhBBCUkVz0gKQ+mDu3Lllfzc2Up9OCCGEEEIIIYQQUq/k8/myv9/1rndpXU+lJkmEyheXEEIIIYQQQgghhBBVaC5HCCGEEEIIIYQQQghJFbTUJIlQC+7npdamtXA/hCQJvydCzMHviRAz8FsixBz8nggxRy19T1G9eKnUJLHQ2NhYfFkbGxtx0kknJSxRNLLZLFpaWop/n3jiiWhu5udESBj4PRFiDn5PhJiB3xIh5uD3RIg5au17mj9/fpmuSJd0q3QJIYQQQgghhBBCCCF1B5WahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVVGoSQgghhBBCCCGEEEJSBZWahBBCCCGEEEIIIYSQVEGlJiGEEEIIIYQQQgghJFVQqUkIIYQQQgghhBBCCEkVzUkLQAghhBBCCCGEEBKFKS1tmLZyOyYeOh7fet+b0NTYkLRIhBDLUKlJCCGEEEIIIYSQ1PLXeZvwhfvmF//evHsAv/7Y2xOUiBASB3Q/J4QQQgghhBBCSGr56kMtZX/fMHNNQpIQQuKESk1CCCGEEEIIIYSklsFsPmkRCCEJQKUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBUQaUmIYQQQgghhBBCCCEkVVCpSQghhBBCCCGEEEIISRVUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgghhJBU0Zy0AIQQQgghhBBCCCG1QPdAFt9+dDFmrevASYfvi1s+9Q4cNHZk0mIRUpNQqUkIIYQQQgghhJCawvM8NDQ0xF7vtdNX4c7XWgEAq3f0Yv99RuD/Pj05djkIqQfofk4IIYQQQgghhBBigOumry77+7ZXNyYkCSG1D5WahBBCCCGEEEIIqSk8L2kJCCG2oVKTEEIIIYQQQgghhBCSKqjUJIQQQgghhBBCSE1BQ01Cah8qNQkhhBBCCCGEEFJTePQ/J6TmoVKTEEIIIYQQQgghhBCSKqjUJIQQQgghhBBCSE1BO01Cah8qNQkhhBBCCCGEEEIIIamCSk1CCCGEEEIIIYTUFAypSUjtQ6UmIYQQQgghhBBCagqPDuiE1DxUahJCCCGEEEIIIYQQQlIFlZqEEEIIIYQQQgipKeh+TkjtQ6UmIYQQQgghhBBCagrqNAmpfajUJIQQQgghhBBCCCGEpAoqNQkhhBBCCCGEEFJTePQ/J6TmoVKTEEIIIYQQQgghhBCSKqjUJIQQQgghhBBCSE1BQ01Cah8qNQkhhBBCCCGEEFJTUKdJSO1DpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYSQmoLu54TUPlRqEkIIIYQQQgghpKbw6IBOSM1DpSYhhBBCCCGEEEIIISRVUKlJCCGEEEIIIYSQmoLu54TUPlRqEkIIIYQQQgghhBBCUgWVmoQQQgghhBBCCKkpaKhJSO1DpSYhhBBCCCGEEEJqCo/+54TUPM1JC+AaN910E2655RYcccQRmD59upU6tmzZggceeACzZs3Chg0bMDAwgIMPPhjHHXcczj77bJx99tkYM2aMcnnZbBbTpk3DU089hUWLFqGjowOjRo3CYYcdhpNOOgn/8R//gZNPPtnKvRBCCCGEEEIIIYQQEjdUapawcOFC3HbbbVbreOCBB3Ddddehv7+/7HhbWxva2towa9Ys/OlPf8L111+PyZMnB5a3YsUKfP/738fKlSvLjg8ODqKrqwsrV67Egw8+iH/913/Fz372Mxx66KFG74cQQgghhBBCCHEN2mkSUvvQ/XwPra2tuPjii5HJZKzVceedd+Lqq68uKjQbGhpwwgkn4JRTTsEhhxxSPG/9+vX44he/iCVLlviWt2TJEnz+858vU2jut99+OPnkk/Gud70L++67b/H4zJkzcd5552Hbtm2G74oQQgghhBBCCHELep8TUvvQUhPAypUr8dWvfhXbt2+3VseCBQtw/fXXF/9+97vfjV/+8pc4+uijAQzH+3jmmWfw4x//GLt27UJ/fz8uvvhiPP3000JX9P7+fnznO99BV1cXAGDs2LH4n//5H3ziE59AU1MTgGG39ClTpuC6667DwMAAtm7dim9/+9u4//77rd0nIYQQQgghhBBCCCG2qXtLzUcffRTnnXce2tvbrdZz7bXXIpfLAQAmTpyI22+/vajQBIatNs866yzceeedGDt2LABg69atuOuuu4TlPfjgg9i4cWPx2ltuuQWf+tSnigpNAGhubsZnP/tZXHfddcVj8+bNwyuvvGL8/gghhKSb9u5B/Oc9c3H672fhdy+uZXB9QgghhKQajw7ohNQ8davUbG9vx+WXX47LLrusKr6laVpaWrBgwYLi31dddRVGjx4tPPetb30rvvGNbxT/vuuuu4rK0FKmTJlS/PeHP/xhnHbaadL6P/KRj+CEE04o/v3ss8/qiE8IIaQO+Px98/BQSxte3bAL33l0Cf62cEvSIhFCCCGEEEKIlLpUat5666348Ic/jEceeaR47LjjjsPXvvY1K/U9+eSTxX+/+c1vxkknneR7/qc//Wk0Nw9HBujo6MCcOXPKfu/u7kZfX1/x749+9KOBMrzlLW8p/nvDhg1KchNCCKkPugYyeG7VjrJjX3pgfkLSEEIIIYREh04nhNQ+danUvOOOO8qUgueeey6mTJmCY445xkp9pe7e733vewPP32+//TBp0qTi3zNmzCj7ffz48ZgxYwbmzp2LBx54wNdKs0Ah9iaAons7IYQQAgB9Q9UeAf2ZfAKSEEIIIYSYgUpNQmqfuk4UNGnSJFx++eU45ZRTrNWRyWSwdu3a4t8TJ05Uum7ChAlFl/VFixYJzxk3blyg1ScAdHZ2Yu7cudoyEEIIIYQQQgghhBDiInWp1DzllFNwzjnn4EMf+hAaGhqs1rVp0yZkMpni36rWoEceeWTx34WEQGHo6enBd7/73aJl6tixY3HeeeeFLo8QQgghhBBCCHEdlww1Pc+zrnsgpB6pS6XmLbfcEltd27dvL/v74IMPVrqu9LydO3cin8+jsTE4WkA+n8fQ0BA2bNiA559/Hvfcc09RhubmZtx4443Yf//91W+AEEJIzePSpJ8QQgghxASeQ/7nngdQp0mIeepSqRknu3fvLvt73333Vbpu/PjxxX97noeuri4lZeQ3v/lNPPfcc1XHjzvuOFxzzTU49dRTleq3TTabTVqESFRmpBdlqCeEqMHvKXlkfXLa++p6hN8TIWbgt0SIOZL6nrK5nDNzmUw2i6ZGajVJdDg+lUOlpmUGBwfL/h49erTSdSNGjPAtR0ZbW5vw+IEHHoi2tjZks9liZvWkyOfzaGlpSVQG0yxevDhpEQipGfg9xc+OfvFkqNb66nqE3xMhZuC3RIg54vqelixZgvYxTbHUFcSClhY0U6lJLFDv41NdZj+Pk8qdIRUXcgBVikdV7XtHRwcmTZqE0047Dccdd1zx+Ouvv44f/vCH+OxnP4tt27YplUUIIYQQQgghhBBCiIvQUtMylUrMfD6vdF2lMrTSclPGjBkz0NS0dzeqtbUVv/71rzF16lQAwMKFC/HVr34Vf/vb3zBy5EilMgkhhNQ2DoWcIoQQQggxgkvzG5dkIaSWoFLTMmPGjCn7e3BwUEmZODQ0VPb3qFGjlOorVWgCwFFHHYXf/e53+MlPfoL77rsPALBixQr89a9/xQUXXKBUpmkaGxtx4oknJlK3KXK5XJmZ96RJk6ranhCiBr+n5GnrGgAeba86Pnny5ASkIVHg90SIGfgtEWKOWL6n+6vDsL3t7W/HEfuphX+zLcs73vEOjGymoyyJTq2NT4sWLVI2/hNBpaZl9ttvv7K/e3p6ypIAyejp6Sn+u7m5WekaP6644grMmDEDW7ZsAQA8/PDDiSk1gWr3+rTT1NRUc/dESFLwe4qf5iZxe/M5pB9+T4SYgd8SIeaI63tqbo7/u5VlXG9qbkJzc3oVT8Rd6n184laBZQ499NCyv3fs2KF03fbt24v/PvDAA9HQEC2o8MiRI/GRj3yk+PeqVaswMDAQqUxCCCGEEEIIIcRFknD5ltVJ93NC7EClpmUOP/zwsniYra2tStdt2rSp+O9jjz3WiCxHH3108d+e52H37t1GyiWEEJJuPHCmTQghhBASlbxEe8mZFiF2oFLTMiNGjMAJJ5xQ/HvZsmVK15We97a3va3st5aWFvziF7/A17/+dXzxi19UlmVwcLDs73333Vf5WkIIIbULrQcIIYQQUmskMb2R1SlzSyeERINKzRg49dRTi/9++eWXA8/v7OzE0qVLi3+fdtppZb9v2bIFd999N6ZPn45XX30VK1asUJJj0aJFxX8ffPDBVUmMCCGEEEIIIYSQWiAJRSLdzwmJFyo1Y+Css84q/nvx4sVlmapEPPTQQ8hmswCGEw2dfvrpZb+/+93vLgsE+9e//jVQhq1bt+LZZ58t/n3GGWcoyU4IIYQQQgghhJBgZCF9qNMkxA5UasbASSedhIkTJxb/vuKKK8qym5eybNky3HrrrcW/zzvvPIwePbrsnIMOOghnnnlm8e+//e1veO2116T19/X14Tvf+U4xMdCIESMSzXxOCCGEEEIIIYTYhImCCKl9qNSMyBlnnIEJEyZgwoQJvtaPl19+eTGD+cqVK/GFL3wBy5cvL/7ueR6mTZuGL33pS+jr6wMw7CJ+0UUXCcu77LLLsM8++wAAcrkcLrzwQjz44IPIZDJl57366qv4zGc+g/nz5xePfeMb38Cb3vSmcDdMCCGEEEIIIYQ4ThJ6RFmiIEKIHZqDTyEmOPXUU3HppZfixhtvBAAsXboUH//4x3H88cfjwAMPxIYNG9De3l48f/To0fjtb3+L8ePHC8s74ogj8Ic//AEXXXQRhoaG0NfXhx//+Mf49a9/jRNOOAGNjY1Yv349tm/fXnbd5z//eXz961+3d6OEEEIIIYQQQkgdIrXUpAM6IVagUjNGLrroIowdOxY33HBD0Rpz9erVVecddthh+M1vfoOTTz7Zt7zTTz8d999/P37wgx9g7dq1AIDu7m7MnTu36tz9998f3//+93HuuecauBNCCCG1BKfZhBBCCKk1EnE/lx3nZIsQK1CpGTOf//znceaZZ+Khhx7CzJkzsWnTJvT09GDcuHE44YQTcOaZZ+JTn/oUxo0bp1TepEmT8Pjjj2Pq1KmYNm0aFi5ciJ07dwIADjjgALz1rW/F+9//fnziE5/A2LFjbd4aIYSQlJJEdlBCCCGEkFpDbqlJCLEBlZolnHPOOTjnnHO0rpk+fbp2PYcddhguueQSXHLJJdrXimhqasLZZ5+Ns88+20h5hBBCCCGEEEJImknC5Vua/ZwbyIRYgYmCCCGEEEIIIYQQUlMkoUfM01KTkFihUpMQQgghhBBCCCGpxCUrSJksDolISE1BpSYhhBBS53CiTQghhJBaI4npjTRREG01CbEClZqEEEIIIYQQQghJJdLkPAns2spliVcOQuoFKjUJIYQQQgghhBCSSlzSF9Iik5B4oVKTEEIIqXM4/SaEEEJIWpHGsYxZDgDI58XHaalJiB2o1CSEEELqHE60CSGEEEKiI4+pSQixAZWahBBCCCGEEEIISSVSRWICmkR59nOqNQmxAZWahBBCSJ3D+E+EEEIISSvS5DwJzG9oqUlIvFCpSQghhNQ5NB4ghBBCSFpxaXOW2c8JiRcqNQkhhJA6h/NsQgghhKQVlxSJMgWrS4pXQmoJKjUJIYQQQgghhBBSUySh1Mw7pGAlpB6gUpMQQgipcxi8nhBCCCFpxaVZjDRRUMxyEFIvUKlJCCGE1DmcaBNCCCEkrbikSOQ+MSHxQqUmIYQQUudwAk4IIYSQtOLSPEaa/dwlIQmpIajUJIQQQgghhBBCSE2RhCLRpaRFhNQDVGoSQgghdQ4zchJCCCEkrUitI2OVYpi8Q67whNQDVGoSQgghdQ6tBwghhBCSVlyax8jdz2MVg5C6gUpNQgghpM7hRJsQQgghaUXmcZLE/EaetIiTLUJsQKUmIYQQQgghhBBCUok0jmUCikRaahISL1RqEkIIIXUO59mEEEIIIdGRK1gJITagUpMQQgipc5LIDkoIIYQQYgKXrCOliYI41yLEClRqEkIIIYQQQgghJJW4pDB0SBRC6gIqNQkhhJA6h/NvQgghhKQVqaVmrFL418m5FiF2oFKTEEIIqXNoVUAIIYSQWiMJC05p9nPOtQixApWahBBCSJ2TRHZQQgghhBATuKQwlFtqOiQkITUElZqEEEIIIYQQQghJJTKFYRJqRHmioJgFIaROoFKTEEIIqXM40SaEEEJIWnFpHiOTxSUZCaklqNQkhBBC6hzOswkhhBBSayShSGSiIELihUpNQgghpM5JIpA+IYQQQogJXLKOlCcK4lyLEBtQqUkIIYQQQgghhJBU4pK6kJaahMQLlZqEEEJIncOJNiGEEELSitQ6MoEZTj4fe5WE1DVUahJCCCF1Dj2i4uf11k48MH8zWjv7kxaFEEIISTVS68hEYmoy+zkhcdKctACEEEIISRZOtOPl/15Zj4sfXgTPA/YfMwLPXnQa3nnk/kmLRQghhJCISON70i+GECvQUpMQQgghJEYuf2JZcdHT2Z/B9TPWJCsQIYQQkmLkisT4cclqlJB6gEpNQgghpM6h9UC8dA1ky/5+qKUtIUkIIYSQ9OPSPEYe35MQYgMqNQkhhJA6h9YDhBBCCEkrUkvNBCY4eYdkIaQeoFKTEEIIqXM4zSaEEEJIrZGM+zktNQmJEyo1CSGEEEIIIYQQkkpcUhjKrUbjlYOQeoFKTUIIIaTOoUsUIYQQQtKKNI5lAtMbTqkIiRcqNQkhhJA6h/NvQgghhKQVefbz+Gc4UvdzTrYIsQKVmoQQQkidw4l2fNAqlhBCCKldXFKwElIPUKlJCCGEEBIT1GkSQgghZpENrUmMufLs5/HKQUi9QKUmIYQQUufQeiA+2NKEEEKIWVxSGDL7OSHxQqUmIYQQUue4tBiodeh+TgghhJjFpTiW8uznHP8JsQGVmoQQQkidUw/z7Ewuj+6BLPIyv7CYqIOmJoQQQmLFpTiWUlf4WKUgpH5oTloAQgghhBCbzN6wC+fd8zpaOwfwwTcfhPs//y4cMn5UIrLUgwKZEEIIqVdkFpkc/wmxAy01CSGEkDqn1mNq/uDxpWjtHAAAzFizE//36obEZKn1tiaEEELiJhWJgjj+E2IFKjUJIYSQOqfWrQdmreso+/vqqSsSkqT225oQQgiJG6l1ZMxyAIydSUjcUKlJCCGEEBITXOoQQgghZnFpbHXJapSQeoAxNQkhhJA6h/Ps+HDFgmMwm8PNs9ZjR98QvnTyUZhwyLikRSKEEEKM4lb283jlIKReoFKTEEIIqXM40Y4PV9r6U3e+jieXbwMA/P7FdVjwvX/F8W8Ym7BUhBBCiD6ujK2AX/Zzh4QkpIag+zkhhBBS59TyRNsVy8gCLkizvqOvqNAEgL5MDr98blWCEhFCSHj6hrLY0TuIvCxDC6l5ZPOYJOY3eWY/JyRWqNQkhBBCSM3i2iLCBXkWbemqOnbna60JSEIIIdF4alk7jv75szjk6mn49ztmo7M/k7RIJAFccvmWyhKvGITUDVRqEkIIIXWOC4o2W7h2a7VsFUsIIXHieR6+8+gSdPQNKzKnrtiOe+duSlgqUu9IrUY5/BNiBSo1CSGEkDqnlufZzrmfuyUOIYSkli1dg1i1o7fs2CWPLE5IGpIkLllHymXhBIAQGzBRECGEEFLnuKb4M4lrd+aaPCbZ3Z/B9x9filXbe/DvbzsU3/vXN6OxsSFpsQghNUquhscuooc0OU8C74hclljFIKRuoFKTEEIIITWLa4uIWlYgX/zwItw/fzMA4IW1Hdh/zAj892nHJCwVIaRW4ZYJKeDS2MqEVYTEC93PCSGEkDqnlqffsiykSeGCNA0NdlQBBYVmgYv+ttBKPYQQAgCWujKSQqTWkbFK4V+nC+M/IbUIlZqEEEJIneOY3s8ort1aLbc1IYQQUu/IM7FzAkCIDajUJIQQQuqcWp5ou3ZvTBRACCFmaKADOtmDXJEYrxyAT/bzmOUgpF6gUpMQQgghNYtjOk3n5CGEEELSjlSRmESiIIcUrITUA1RqEkIIIXVOLc+zXbs3LmoIIcQMjKlJCrg0tspiebvmOUJIrUClJiGEEFLn1PI827V7c0wcQgghpGZhoiBCah8qNQkhhJA6p5Yn2q7FsHTBUiOMcdOji7fig7e8jE/+ZQ7W7Og1LhMhhOjiQHeqzNqdvbhv3ibM29SZtCg1iUuvAt3PCYmX5qQFIIQQQgixhWuLCBfE0ZVhYVsXPnnna3v/3tKN1VecgQb6fhJCEkTm5usas9btxNm3z0bPYA5NjQ2447zJOP/ko5IWq6aQbRgyURAhtQ8tNQkhhJA6xwXrQVu4tuh1TBwlfvD4krK/13X04YW1OxOShhBChklLd/rzZ1ahZzAHAMjlPVz+xLKEJao9XHL5TuM4T0iaoVKTEEIIqXNqef7t2r25lKFVlWdW7qg6tmFXfwKSEELIXlzuN0uZtnJ72d/t3YMJSVIbbO0awBfum4cP3foy7p+/OWlxqshL3c/T8b4Skjbofk4IIYTUObU8z3bt3vxibcXlzW2iGnqeE0KSxrX+ncTDOXe9jlc37AIAzFizE4eNH4Xxo8RqjSQUiVJX+JjlIKReoKUmIYQQQmoW5xIFSY675iZPCCGuw16z/ti4q6+o0Cxw8d8XyjcMY5BJtU4O84TYgUpNQgghpM5xTfFnEtcWETILjpxrggbQSFNNQkjCcDOo/tjZl6k6tmJ7r1PzGLmC1R0ZCaklqNQkhBBC6pxaXhe6dm8yeWQxuFylUqXJWGGEkLhht1N/jGgUb6j5hXaJG3ns7JgFIaROoFKTEEIIqXNqeZ7t2r1J3c/TptUkhJCEYa9ZfzQ3ue8lIE0UFK8YhNQNVGoSQgghpGZxzYKwZiw1K9zPHWtmQkgd4Fr/TuwzolGsvpDGsUxAlShNFMT3lRArMPs5IYQQUufU8kTbtTuTLbDijKmpGg5zIJPD6h294jIMykMIIWFI22YQiU6T1P3cHZfvGp5SEeIkVGoSQgghdU4tT8BdSyQht9R0S85Nnf349ztmY9GWbuHvlYpRt6QnhNQDTLxSP2RzeUxZuAUrtvUIf3fpTWD2c0LihUpNQgghhNQsri0ipDE1HRP0jjkbpQpNAGhApfu5W/ITQmofdjv1ged5+Mjts/Hcqh3611qQJ7BOxtQkJFYYU5MQQgipc2p5ou3avcmUf/l8zIIE8JNpK31/V3VhJ4QQW1CpWR/M3bQ7UKEpz36eQExNZj8nJFao1CSEEELqnFqeaLtmQSiTJs6Ymiao1GmmS3pCSC3gmoU7scN98zcHnuNSKAJ59nN3ZCSklqBSkxBCCKlzanmi7dqaNy0xNYOgpSYhJGnS1WuSsEhyA5Uht9Q0K4sKLiUtIqQeoFKTEEIIITWLa2sImQI5bVl8GxoqY2omJAghpG5hv1MfNKVsF02aKChWKQipH5goiBBCCKlzanlh6Nq9yeTJxajVNLE8rHY/d6yhCSE1D/ud+qBJwVTTpeQ8LsX3JPGSy3u4bvoqvLB2JyYfvh9++m8TMHpEU9Ji1TxUahJCCCF1Ti1Ps11b9MrWNDNW78D/O+FgHLn/mHgFCknKDGcIITUIdUT1QaPCgONSch6pLDHLQeLnxplrcNXTKwAAz6zcgcFsHjd9YlLCUtU+dD8nhBBC6pxath5wza1bJs5XHmrBxF8/j2krtsUqT1gaQPdzQsLgeR5unrUOH7ntVVzyyGL0DmaTFim1pC0WMQlHlJiaSZDPJy0BSYrLn1hW9vfvZ61LSJL6gpaahBBCCKlZ0qSw7R7M4lfTV+OsCYckLUogtNQkJBx3vb4JlzyyGAAwdcV2dPYN4e7PvTNhqdJJenp3EgUl93Pp8fjfEqksfGEJsQItNQkhhJA6p5bn2a7dW5CSdcaanTFJEo3qmJqEEBW+/OCCsr/vnbc5GUFqACqJ6gMV93MZTmU/50hJiBVoqUkIIQmQzeXx13mb0TuUw+feeQT2HzMiaZFIHVPLC0PX7s0xcUJTnf28Vu6MEJIW0tzteJ5X1Y8SMWlzP6elJiHxQqUmIYQkwH/8eQ6eXrEdAPDr51ej5Xv/in1HU7FJkqGWrQdcuzcuagghxAxpjqnpeQzjoUqkREGmhVFAnv08XjkIqReo1BRw00034ZZbbsERRxyB6dOnW6ljy5YteOCBBzBr1ixs2LABAwMDOPjgg3Hcccfh7LPPxtlnn40xY9QzoObzecyYMQPPPPMMWlpasH37dgwMDGD8+PE46qijcMopp+Dcc8/FMcccY+V+CCHqLNrSVVRoAsCGXf246/VN+Nb73pSgVITUJkktIjZ09GFUcyMO23d0uTyOKVlNwcUaISRu0tztpFn2uFGKqelQg8qU7Q6JSEhNQaVmBQsXLsRtt91mtY4HHngA1113Hfr7+8uOt7W1oa2tDbNmzcKf/vQnXH/99Zg8eXJgecuWLcNll12GlStXVv3W0dGBjo4OtLS04M9//jM+97nP4fLLL8eIEbQIIyQp/rlka9Wx66avolKTJIZLiwHTxH1v2VweFzy4AH+dtxmNDcAvPvI2XH7G8YnJYwu6mxNCkibN/dCw7DTVVEHFUjOblygSE3hH5O7n6X1fCXEZJgoqobW1FRdffDEymYy1Ou68805cffXVRYVmQ0MDTjjhBJxyyik45JC92U7Xr1+PL37xi1iyZIlvefPnz8d//ud/lik0R48ejXe84x049dRTceyxxxaP53I53HPPPfja176GbDZr9sYIIVXk8x6un7Eab/vVdJxx68tYsa0HgHhyxnkOSZJafv/ivrUX13Xgr3sSf+Q94Kqnl6OjbygxeWxReR+1cl+EkPSQ5n4nzbLHjUpMzaFcXng8GfdzWmoSEidUau5h5cqV+K//+i9s3749+OSQLFiwANdff33x73e/+92YNm0aHnvsMdxzzz144YUX8Pvf/x4HHHAAAKC/vx8XX3xxlUVngZ6eHnzjG9/AwMAAgGFl5pVXXok5c+ZgypQpuPvuuzF16lQ8/fTT+MAHPlC8btasWbjxxhut3SchZJjHl7Xjh08sw4rtvXh+zU78571zAYhjKHGiQ5Kklt+/uGOuff3vC8v+zuY9/HlOa/FvFyw1TCSnqGxXB26LEFJnpLnfSbPscaNiqTmUFSs1k4CJggiJFyo1ATz66KM477zz0N7ebrWea6+9FrlcDgAwceJE3H777Tj66KOLvzc0NOCss87CnXfeibFjxwIAtm7dirvuuktY3u23346dO3cCAJqbm3HbbbfhC1/4AkaNGlV23pve9Cb86U9/wr/9278Vj919991oa2szen+EkHK+/OCCsr9b2rqwZkev8FwXFB2E1CJxf1pdA9WeEKUWJLXypbPLIoQkTaoTBdXMaGAflZiagzJLzQSaOcWvJSGppK6Vmu3t7bj88stx2WWXSa0hTdHS0oIFCxYU/77qqqswevRo4blvfetb8Y1vfKP491133VVUhpbyz3/+s/jvT33qUzjllFOk9Tc0NOCaa64pKjwzmQymTZumexuEEA06+qpDWXQNZul+TpyjlpXqcS8cRbWVfvG10tTV7uc1cmOEkNSQ5v40zbLHjZL7ucRSM4mxSZ4oiA+dEBvUrVLz1ltvxYc//GE88sgjxWPHHXccvva1r1mp78knnyz++81vfjNOOukk3/M//elPo7l5OI9TR0cH5syZU/b7xo0bsXnz5uLfH/3oRwNlOPDAA/Ev//Ivxb8XLVqkIjohxCANEIeF5zSHJEktv39xLxxFCuLSfYxaWcjWsiKckLjh9xSONCuJ0it5/Ci5n0ssNZNA9jnzMyfEDnWr1LzjjjvQ19dX/Pvcc8/FlClTcMwxx1ip75VXXin++73vfW/g+fvttx8mTZpU/HvGjBllv2/evLnMzfz444+HCvvvv3/x352dnUrXEELMIZuXcUFDkqSWX7+4b03Ulg0lWxlpXoSXUplotpbfIUKIm6S53+G8Tx0V9/OhnCz7uWlpgpHG1IxVCkLqh+akBUiaSZMm4fLLL/d13Y5KJpPB2rVri39PnDhR6boJEyYUXdYrrSrf8573YOHChdi1axfa29vLlJV+bNq0qfjvfffdV+kaQog5GtAgdj9PQBZC6oG4F46i2hpr0lKz4u9kxCCkJvA8+aYnkVO5uZImamUsiAMV9/NBlxIFydzP+dAJsULdKjVPOeUUnHPOOfjQhz5kJAuoH5s2bUImsze2nqo16JFHHln898aNG4XnHHDAAcVs6UG0trZi6dKlxb/f/OY3K11HCDGLqMtJ88ScpJ9asR4UEb+lpsj9vNRSU60M23OTqNTyO0NI3PBrCkea+6H0Sh4/UdzPnbLU5EMnxAp1q9S85ZZbYqtr+/btZX8ffPDBSteVnrdz507k83k0NoaPGPD73/++bLH1wQ9+MHRZhJBwOK6nIHVKLU+0Y4+pGfS7gkC2rbZMlF1lqVnLLxEhlhn+fjhB0CXN3U6aZY+bJhWlpjRRUPzIEwURQmxQt0rNONm9e3fZ36pu3+PHjy/+2/M8dHV1KbuZV/LMM8/g0UcfLf592mmnKbvB2yCbzSZWtwkqs9GLstMTIiKbywFe9cTL87zUfxdh4feUPLI2r4V3MiO5B1v3JlzLePlifVmF93swk8GIpnCbmCrfUzYb/Xlncrmy802USYhLxDk2ZbNZwKvbVAehkfWnaeh3MtkMUiCmMaJ8T55g3lzJQEbcmPmKsSoOchKr0VwCspDksfHMuXYqh0rNGBgcHCz7e/To0UrXjRgxwrccVZYsWYLLLrusrNzLL788VFkmyOfzaGlpSax+GyxevDhpEUhKWLliBdraq7/lbDZXc99FWPg9xU/rpl7h8Vp4J1fuGBIet3VvosnrlrY2tLR0AQBWbQ8eyxe0LMTIJjNWW6LvaW3bgPBcnTbZsGEDWhr2eqLsHhQv4mrhHSIEsDs2tSxciGaVwIGkjNVbovdlSbFo0WKMG1m/imyd76l1Y1/gOZu2tAuPb2htRcuIncp1maC9vUt4vHXTZrS0dMYqC0meOPqjel87UakZA5ULHFUX8ubm8scTRgO/fPlyfPnLXy7L9H7ZZZfh7W9/u3ZZhJDoNDSIHczokkKIHWKPqRnxd8B+jF0TxTNRECHmoCtyOMK229xtg7i1pRsNDcDF7xiPkw4ZZVYwBfjI1VFpK4fyBPHZEhIz9bs9FCOVSsx8Xq3XrVSGVlpuBjF37lycf/756OzsLB779Kc/jfPPP1+rHEKIORogjmfHCRBJklpeULug1GzQzH4ui8flEu5L6Bae5+GZjf24a2k3Vndmgi8gdQW/p3CEabeuoTy+OWMnWnYMYcH2IXxjxk70DMWvEeMzV0dlSMzIdgPZ0ITUPLTUjIExY8aU/T04OIiRI0cGXjc0VO4yN2qU+i7is88+i+9973sYGNjrlvGxj30MP/3pT5XLsEVjYyNOPPHEpMWIRC6XKzPznjRpEpqamhKUiDjJ/W1VhyZMmIAtzR3A3KVlxxsaGjF58uS4JHMKfk/JM7t/I/D67qrjtfBO9m3YBTyzo+q4rXtrfLgdQLlnxZFHHIHJk48FAHSt7QCe83eFmzhpEvYdrbeRWUDle2obtQ2Y2VF1bVmbCPqvUo486ihMnnxk8e8dvUPAw1v9y6xjrnhqOW54aQsA4LYlvXjuwlNxytH7JysU8cXa2CT4tk488USMHsFxTxelvqyCq6etLLPqy+SB6bvH4aoz32JDxGEEz3zixIk4cJ/g9WCtEOV7aslsAmZ3+p4zfv8DAFS7qR951JGYPPkoHVEj84bNy4FlPVXHDz/88OJcgNQogm/dxjyo1tZOixYtUjb8E0GlZgzst99+ZX/39PSUJQGS0dOztzNsbm5WugYAbr/9dtxwww1lL8anP/1p/OxnP4uUPd0kla71aaepqanm7onYYURzM5oECUA8eHyH9sDvKX4aJGNDLTyHxkbxJK+pqQkNFlKMi4xCGhsbi23ZqJAAqLGp2Vjbi74nWZvo1NnYWF5uc7M4RE4tvENRyeU93DBzXfHvwWweP3l2FaZe+J4EpSK62Bybmpub0dyc3gVpUoTpyxZtqVY2LWnvsfZsPYmZYZPBfj6N6HxPsjlKKRmJPqRyrIoFydyioWQuQOqHOJ55va+d6vfOY+TQQw8t+3vHjh144xvfGHjd9u17A/AfeOCBgYuvTCaDn/zkJ5gyZUrZ8QsvvBDf+973NCQmhNhiOKZm9becAm9TUsPU8vvnSXzPPE+67ohWn6C6xpKKXHA/NxNT06v420ChNUp/plrh+8zKauthUr/w8wmHqb7SZv8lK1s2NpFqVFpqSBJUM4l2lj9zQogNqNSMgcMPPxwjRoxAJjMcQ6m1tVXJ/XrTpk3Ffx977LG+5/b29uKb3/wmXn755eKxpqYmXHnllfjc5z4XTnBCiHEa0MCYmkTIQCaHK55chpfWdeCdR+6P33zs7Rg3Kp5hupYXV7LFRd7z0ChM2xUN0SK7LKamQhk5y5mCZJZDOlSKSKUmIeEx8U3WI2loNZnilY9cHZW2GspJlJoJtLOsSj5zQuzghi9yjTNixAiccMIJxb+XLVumdF3peW9729uk53V1deGLX/ximUJzn332wR/+8AcqNAlxEGH2c0506p5fPrcKN724Dq9v2o0/vboBP3pqedIi1QQuWEyUWmerWWpaFMYQtawIJyRuOAcIh6l2s2G1XyAN/bnrqIw3MqVmEsg2KThuEmIHKjVj4tRTTy3+u1T5KKOzsxNLl+5NJHLaaacJz+vt7cWXv/xlLFq0qHjs4IMPxr333osPfvCDESQmhNigoUGW/ZwTnXrn58+uKvv75lnrJGeap5YX1HFbyYjKLbfUDK44He7n5sskhBAd5OFF3OmR/EKgEDVU2mpQ6n4eP9JE7HzmhFiBSs2YOOuss4r/Xrx4cVm2KhEPPfQQstksgOFEQ6effrrwvB/+8IdlCs1jjjkG999/PyZOnGhAakKIDUTxcTnRIUlSy6+f7N5sKQ5Fi5nSL16lWvvu5wbKiF4EIWQP/J7CkQblkVTGeMVINUoxNV2y1JQd50MnxApUasbESSedVKZovOKKK8qym5eybNky3HrrrcW/zzvvPIwePbrqvPvvvx/Tpk0r/n3EEUfgnnvuwVFHHWVQckKISTwPaGRMTeIYLlm1mMYJ93PNmJq2LTVNkK9YqdfyO0SIKboHssLj/HzCIet3dPtQm+1f2VfurZMPXRWVtpJaaibQzny2hMQLlZoGOOOMMzBhwgRMmDABZ5xxhvS8yy+/vGihtXLlSnzhC1/A8uV7Y6Z5nodp06bhS1/6Evr6+gAMu5JfdNFFVWX19PTgxhtvLP49cuRI3HrrrVWZ1gkhbuHBk2Q/5wSIEBvE7Z4oqq+hLPu5ivu5UZGqMBHuorIE9mCE+DN/825M/PUM4W8MQRMOeSI4+TU242eKkFrtxSpFukldoiAHNlMJqSeY/TxGTj31VFx66aVFZeTSpUvx8Y9/HMcffzwOPPBAbNiwAe3t7cXzR48ejd/+9rcYP358VVn33Xcfurq6in+PGzcO119/vZY8EyZMwGWXXRbybgghYeBEh7hILb9/YRa9UQh0P1cqIwXu57X80hiGbUUA4PoZq7Fp90DSYtQUcYcXCQOzn0dHyf1cYqmZBHL3cz50QmxApWbMXHTRRRg7dixuuOGGojXm6tWrq8477LDD8Jvf/AYnn3yysJynn3667O+Ojg7MmjVLS5ahoSGt8wkh0ZG6n3OeQxKklt8/F2JblbmfOxBT0wSVC/VafoeiUgtWeOs7+jCyqRGH71cdDomo8eCCNulv/H7CEWajOO62lsfU5ENXRc1SU5ZxPH7k2c8JITagUjMBPv/5z+PMM8/EQw89hJkzZ2LTpk3o6enBuHHjcMIJJ+DMM8/Epz71KYwbN05axtq1a2OUmBBiElGiIEKSpJYXV/LFhSX3c0F9pSEn3HA/d6OMesG2EqW9exCLt3bh+IPG4pgD9zFadj7v4UsPzMe98zajoQH4yb9NwJVnnmC0DsLvKSwyK0hZHEsZNqdl0jGID10ZlfFaHlPTtDTBpCGBFSG1BJWaFZxzzjk455xztK6ZPn26dj2HHXYYLrnkElxyySXa1wLAggULQl1HCEkWD3Q/Iep4nkcleETk7ol26hO6nzuWKMhEH1RZRi0rxqNis2Ve29iJs29/FTv7MthnRBMe/MK78O9vNxdf/aX1Hbh33mYAwwvya6auwIWnHoNDxo8yVgfhvCAspvp3q4mCGHYoFtzKfh7vZioh9Q4TBRFCSIx4Hqc0RJ24vJBreT3tQubZspiaCtVat9Q0EVOz5N9Ltnbj9N/rhcCpJ2y+aze9uBY7+zIAgL5MDtdOX2W0/O88urjs77wH3PrKeqN1EBKWMNnP494nlMfUrOGB1zCREgUlMOuWhkXgIyfECrTUJISQGBm21ExaCpIWsvk8mhqbrNdTy++kC5lny7KfK5yftpian79vHlo7mQBFhsrT9DwPvUM5jGxqxMhmdZuD++ZvLvv75fW7NKXzp3swV3VM5uapQz7v4Z9Lt6I/k8fHJx6KfUbW9pIkKImJ+1+8m7jQvwdBBVd0aiZRUKxSkFqksz+Dvy1sw/iRjTjO89BIby4AVGoSQkjsuJSVs1Zo7x7E40vb8cZ9R+Ejbz2kZly2MzkPo2IYqWv5jZRnP0/KUlMlpqZl93MTZewpZH1HH1raugyUWLsEPc6ewSy+9MB8PLxoK94wdiTu+dxJ+LcJh8QjXACintTE+3Pu3a/jH4u3AgDefug4zPn2+2tasdk7lPX9ndOCcEhjajrUoFJLzZjlSDMq4+agzFIzgYZ26PUjNcTO3iG8839nFjeR/+2YMfj56QckLJUb0P2cEEJixPM4kTXNup19mHzD8/jvKS346B1z8N1/LklaJGNkU2Cx5zrOZT9XON9+TE1zZXQP+itrSLD74wMLNuPhRcMKvh29Q/jmw4uccU0V7Q9FFW3p1u6iQhMAlrb3YErLlmiFOk7vULXFaykMTBMOFzatgmDSmOioWbuHv9Y0DDlAbHDHnI1lXjFTN/Rja6//2FIvUKlJCCEx4sHjpMYwt7y8Htt6hop/3/TiOnQNZBKUyByZmALf1/I76ULm2TKlpkK9DuU7kFK7b4x5gp75hVMWlv29Zmcf1u7ssyiROkJLzYgfz4MtbVXHrpm2IlKZrtOX4cLTBlKlpk8fGvdwx6Qx0UndFMUhBSupHX74xLKqY6+3DyYgiXtQqUkIITHiefElf6kXbpi5purYsvaeBCQJjyyZTVyWmrX8Ssqz48bpfl4aU9MF9/Po5btkCeU6YZoq46eViRFRKI+oT742goPoEWipyc8pFGmIXUhLzehEGbOS2LSVKrL5zIlhNEJw1zS1G7yGEFJT5PIe/jxnI7b1DOKzJx2B4w4am7RIoWCioHhIm8IlJ5E3NqVmuppLCxdc0nQtNdPkfk6CYVMFU+vvE2Nq2iEV2c8l47gHoHcwi+amBoxqtp8QMM1E+T6S+LSYHIrERVNjPW4TVkOlJiEkFZx//3zcvyfL6/Uz1mDupR/A8W9Iq2KTsxrbpK2FZcrLuNzPaxkXLCbKEgUpnJ8Ga272Y+rUcniHMAjjdNb4+xQcU5OEQdZXurSxKZPkqw8twAtrOzB+VDNuP28yzp18eKxypQmHHqcScgvilN1InZHJ5XH11BWYumIb3nbIeNz0iUk4aOzIpMXypZk6TQB0PyeEpIBt3YNFhSYwnJjiuumrE5QoPJ7npW5ylkZcWtCokM0l7X6ervbSwYVFb6kLr4qCK2f5uZvMfk6CCdNUrrSvOKZm1DLrbxUWpNQk4ZCNXS5tDMnGmhfWdgAYntN+/e8LuYnpQ5THmURfKk8UZK4Oz/Nw68vrcdTPnsFbfzUdz67cbq7wOuWWl9fjuumrMX9zF+6bvxnf+sciI+Xa3NhspqUmACo1CSEpYGl7d9WxP8/ZmIAk0fGQPoVbGklbE2cl8fNkyk7TpK29dJAmCopRhjJLTSfczxlTM07S3FRxWVWmuY1UCHY/r/EGsIQ8UZBee9psfRVROvoymLaCSikZafs+4gh7s2hLN77x8CJs3j2Aldt78em7X8dglpsnUbj00SVlfz+woDqpXRhsvr6MqTkMm4EQ4jyNcQdAsojn0c0sDlI2/5XG1HQlWUiaMbXojUJpH+aC+7kRS03V89L2MVogjBLQlWYTWVVGttSsnSFdmT66n1shDYmCVPvA/gwVUjIiWWom8DZI30uDHfv3HitXwHUNZHH/fDNKOBKOJOY7TfU4oAqgUpMQ4jyNNdRTeZ47i9VaJm1WZMm7n9curi16VV5NmZLbJVRFTMGtWKVrIIMfPLY0aTFCE9d6qdZfE2Y/t4Nsc8qlOYDqMO6OxO4RKVFQAg0bh3Jr0ZauqmNbuwes10vkJJGYkpaawzBRECHEeWot/pZLk+1axaV4WirIlJfxuZ+nrME0cCELaamliIrVSBqyn6vKWLtvlhofu2MOXlzXkbQYRon6TIUu7TX+ogQnCqrxBrCErNVcmgOoPtta/waikLbvI6nN1FpbL6UNeSxVD+II1dFhTM1hqNslhDhPLfXXHpgoKA7SpjiWZj+Pyf3cZGst3dqN0256EW/8yTR859HFicd4kieScPcdse0ab2KBqG6p6W4722b1jt7QCk1XWk2sgHRFuvTAREF2kIYX0XxHbU4zGUUmOmmz1JSN4WYTBZkri5iBjyQ5qNQkhDgPY2oSXdLWxrJs13FZaprkq1NaMKe1E+3dg/jdi+tw37zNicqThDuQnwxqiYLsyWIK5ZiaVqVwm9U7ekNfK+sTagFhRvUaf1OCEwXFJEiNIXtvXGpPdat2h4TWIJ/38OsZq/H+m2fhggfmo6NvyHgd0WJqxo/cUtOcNKL3qpaMQNJIEvNNl/q6JKFSkxDiPDWk02T285hIm0JAbqkZl/u5mXI6+zN4dcOusmNfeajFTOEhiSNgv44MKrXajqlponjV9qvn7i7KO+bKOCFMFBS1zFoa1BUJdj8ffl9Wbe/Bup198QhVA8iGSN3vx6rSQfU8Nz55be6euwmXP7EML63fhbte34QLp5gf89NmHR5H2BtRUfXYt7pEGjZZahXG1CSEOE9tWWrS/TwO4kqwYwp5TM2Y3M8NNVcmJnl1kC1uk3pFVBZn6YipqVhXSq2PTBDlzl1JFhVX/EtHbtcaQZmtc3kP//XXeXhgQRsaGoAfnnE8fvGRt8UkXXqR9ad+/VPcU0pXNihs8eUHF5T9/fCircbriGSpmUD7S5VbJusQFFY7qyV38DxPWVmczLyytvsXVWipSQhxnhrSaQKo70W+LgOZHH7+7Ep88+FFeG1jp/J12ZQFsZLJG1/2czP1NDno+yR3B4rRUrNECJVa06CTZ/KLYKLcuytdmI0v2r1ewj69g/5KzVnrOvDAgjYAw+/Nr6avRmtnfxyiOcX2nkG8vL4DW7vUsjjLEwW50/Ew+3n9kZylprnyyTA6z0ymQLc532S/MQwtNQkhzlNTlppIh8LCFc67ey4eX9YOAPjTqxvw2nfej8mH7xd4XdpiUcrc5eNyPzdFk4PfqgvuQGXu5yoxNa0nCjJQBhfqgdSCpaYIG5K5e7dmCIqp+cvnVpX9nfeAm2etw68++nabYjnF7A278LE/z8GO3iEcMGYE/vGld+MDbz7I9xpTiYJsoh6qwx2Zo6Jj3aZWXoRrjUmhjn8WbDOIynJwCpZ68p6HRsWtuBr6hFMHLTUJIc7joPFXaDyvtiauNmnbPVBUaALDVovXTF2hdG3tuJ8nG1Pzdy+uxbl3vY7rpq+KzRXeNPJFb7xyFFDZsbcfUzN6+YUSgrrneu7vkoqpabLNbWQ/r8eM6kExNUVKz209g7bEcZIbZ67Bjt7hJDO7+jP49fOrA68Js2kV96uWsumIEUy3cdqyn0tjeVuuQxQDmURD5/uVPneL72CND53K0FKTEOI8tWWpSedzVUSZgx9d0i44s5qaUWrG5IMqa63vPLoEAPD3RVvQM5jDzz/y1ljkMYncDSxO93Pxv2XYfn1NFF+wJg0qq54n3JEsNSO8BHkPaDI0bAoTBUV8pvW48A5Sau47agSAcpfr3QP+1p21xpSFW8r+fmLZtsBrZEOkS5aa6tnPawfT95K2mXMcr58wpmb9da3W0elLpBa6poSJuew0QUtNQojz1NoY7dBc22miWKu5mLDGD5lFZiY2S83geirdI4XlmBDGMHFYTOigptR0sSXLUZXQ/TuxR6SYmi5bahorvaTMGn9RgtzP9x1dbWeyuz9jS5yaQR5TU35N3Iof5VAdNfQNmN40jOZ+Hn/DxhNTU+B+bq54sgedR+aSVXC9QaUmIcR5TMblSRrPS4fCwgWitFPaLDVlCty03YeLLqTy7LgxWmqWTDtVao1ipaeCiVsvlBHsfh69rrQSZTEdZV/G9SaPS1HqEoMBD1So1KwzS80wuNC/B+GSLHFheghLWwvKs5+bjKlZfayW1kuuoBPjXO5+nrY3OH1QqUkIcZ5aGgyGY2omLUU6iDIpTpsyUCZvXBan6WotPZKIceRXl0p/Zt/93ERMTTX383pc0BdIylLT9Tavx2V3kNX9+FEipSYtNYNwoX8PQj37uUNCR8T0vURZByTxLsieuVFLTZFS01zxZA9aMTWlCaIMCSMs3GLZKYJKTUKI89RSf20qpmbXQAZdNb7giWKtljqlpkR5Gdd9mJpwudjqScQ48kOlXteVUoDOQr1+iRRT05FFvGiRXEsbjXERtEElih1OS81gZH2lS31oLSkrVTGeKCiha0PXGcO8Q/SO11IOAlfQi6lpURAJ9de7iKFSkxDiPA7NTQEA7d2D2LirL9S1Ud3PPc/DpY8uxv5XPo1Drp6G/31hTeiyXCeaUjNdMTVlRjyxKTVreFokz34eo/u5J/63DNuymXE/Hy6E2c/lRMp+HilRkMmYmoJEQTbKrPH3JMhSUzRm0VIzGHn/rluOvfdPdTpSS5+A6TEsbW2TlBsydZrm0XmX5WEHiG2o1CSExEYml8dPp63E5+6di7tea1Ue3F1SuFw/YzWO+Ok0HPuL5/CF++aFUrxFmdO83robN724DgAwlMvj8seXob17MHyBDhMtUZA774wKMiVs2hIeubjwcME90Sv7d3DF1mNqxlhGXM08kMlhIOOfYTpuorxjUbow+5aaFsqMVqTzBG1QicastI1jQezuz+Bnz6zE1VNXGJu3yFrIJUtN5ezn7ogcGfOWmtGMAeJGmijIZB0GyyJy9NzP9Y6boJb6jShQqUkIiY3vPLoE10xbgQcWtOGCBxfg3nmbkhZJi119Q7jyqeXFAe6v8zbjhbU7tcrwEG1y9vNnV5b9nc17uOnFtaHLc5l6ShQky37umvt5kPWYSxsQBRKJceSDmqWmfTmioux+HsO93PD8Guz7P09h3I+exM+eWRl8QUxEufVIFv0R6q2Elj9myASY68k2sGrFgjWf9/Ce38/C1VNX4GfPrMS/3DgTvYPR3etNJQqymWClNp6gHqbvOVr28/iRWuwJDu/qG0JH35B+HYKyXOuuN3X2Y93OcJ5trqAzr7U5d5PNv+uxfxFBpSYhJJBV23swY/UO7O6P5gp168vry/6+4IEFSte5Mqe/Y05rlZLp639fqFXGsPt5eBlEE5+tXTVqqRnF/TxlFi4y5WV87udqFBbmPYNZ3DO3Ff9YtCWSm2wcuOF+vrculVrtu59HL98VS/vNu/vxg8eXIpv3kPeAq6euwKrtPVbrjIMo/Z9993Pzz9SVcd4GubwXeH9DkjGrd8gt6+OwPLGsHcu37f0u27sH8efXWiOX64IlfhDKlpqW5YgT4+7nRkuzj6ql5tVTV+ANV0/FwVdPxY+eXKZXh6BVXNqEumbqChzzi2fx5mufw/n3zXN+rihDJ5qVPJZq9HuXbYyls1XNQ6UmIcSXO19rxaTfPI8P/fEV/MuNM7F6R6+xstOWaGIwW7246BnUW3B4CF7c+CHKkNptwNrBRaJlP0+X27bM1T627OeKbZ3JeegZzOLk376AL96/AJ+663X8571ztcuJE+miNyEZVJSBBYXWxl19+OETy/CzZ1ai22DSEDMxNeOry49fPre66thPprlhrZlU9nPbbR7Z/Vyw8Haw6zCGSj8uG7N29upbcLnIE8u2VR3769zo3jqyod4l/Ym6VbtDQkfEuPu5I+E4VFF55ut29uFnz6yE5w3LeN301VipsSEnqsOVREFbuwbw82dXFtv+3nmb8cqGXckKFRK9mJqS4wbewaFs7fQPNqBSkxAixfM8XD11eTGu04Zd/bjt1Q2JyOEqurtvw5OX8PdTT0rN+sp+nqylpipDuTweWLAZK7fv3dz428ItWLHHAsfFT1Ue4ygZYVXdz3f0DuJfbnwB189YjaunrsD/d+tLxmQ2UYpqGbabWWS9vjOEK58NolhnRNnPsP1mRy3fkXV3bKj047L4ma68y1GxZVUm+8Z0NwVsjgcuz2FtYd79PF1tKA97s/f4z5+r3ny7ZuqKSHW40rf+4eX1VUrXSx9dnIwwETERU9ME0hAmKfs2bEGlJiFEylAuj9bOgbJjv36+drNtB2Eq5lKU4Wfc6DpSatZVoqCE3c8V2zqT83DV09WT7n8s3mJaJGPIF70xylBSl6r7+e9nrUdnSciP+Zu7MGtdh3nhQuKKS6XIpc0Va5WkLDWNup9bLr8eULHUlJ2zs682MqAL4/8Z+E7DhBeJu3dIm1eSCUwrIaOUlkR3pWKx19VfPXfv0vDIENXR4EhUzX5B0r4+xxL5qaIz3snONfEKDmXpfu4HlZqEEOeppQ7bQ7QFIS01qxGti9Lmfp509nPVN3Iol5coOfTKiRN5bKv4pC2tS9VS8/bZ1VbxuonJpPLE6n5ut51Fmx+NbqzrIr1hUTZ1jGY/F7Rl1NhoooV32iyxdFDZZMtI2jRqLHNXECtg7JTrdzwJlOMPuyR0RExvGkZLFBR/w4bNfh5Vz+/Ifp4kiZEjwmmi8/bIldnR30HZGFFD3UYkqNQkxHEWbN6NO2ZvxPzNu5MWJTFcnujpyuZ58piaKoNeGpSaK7b14OzbXsV7fvci7p+/OXQ5qpNikVWWa27bQch0l65lP8/k8uJ4eHsKcFExIdtESErvrbLAkin0zVmLR39OqmVYt9QUVNDkiFYzyvfgsqVmlNAgQB3G1FTobGQhSGqlXcSWmtHLlffv8paL2qZD2TyeX70DC9u6lM5P2XTECKYViUkoJqMgz35u7j4cnG4VEW5iuDEsa6OziWdzDiyz1CTDVK+OCSHO8MjiLTjv7rnI5j00NzbggS+8C+ec+MakxYqdtA3cQefLrsnlPTQ3+Y/640ZWd9s9Dik1Pc/D2bfPxrqOPgDAf/11Ho4/aCzeffT+2mWJFs6iSVFjA1Dp1JI2pabcUtOt+8jkPKES2S0py5Fb8sRoqemJ/y0jDe69riQKErWVM+7nEa6NFFPTp+LVO3rx7UcWY3vPIL52+rG44N1HaSvLHeuWnEfNUrO2F6zCmJomypW6n+uVo/oN7O7P4Mz/ewVzNw0bGvz4/52Aa/5tgu816qE6aufDcmkIcylRkG1RnBn7HB6XdTERU9OI+7lkUuDSt5YktNQkxGEue3xZUTmTzXu44ollsdbPjrIcU8Ox1LJAob1FFkjdmhnYbTJrXUdRoVng0n+GCw4uaqcmwaRI5NKSPqWmWN7YLDUVp1xDubzQtbewHnex1eWW0THKIPm3jLyPRbcJTJStGnLA9kJdtPnhiKFmctnPfX77xF/m4Knl2/D6pt346kMtviENBjI5vLR+V9XxyJaagmO1PN+IkiioltvFSEzNmBMFPbJ4a1GhCQC/mrEa3QFxEFUlqaVn7Zb7efzIEwXZrdeRoU/4/FOq09SMqSk+buK5S8eI6EXXBFRqEuIwq3f0lv29quJv27jSUbqye21iQP7cvfOwcVe/8DeVgVM0UZLt3iVBa2f1vb0sWBSrIFZWCJSaopiaDrWJCrJFby4m6x0t93PBtLnw7rq4KHMhUVApKotn2evb0TeE7zy6GF9+cAEWRAhJYuLWld3PrVtqVh8TbX4kQbTs5+bdzxe2dWFpe0/ZsW8+LN502tk7hFN/96Jx2QCxMsuVcd4GURIF1Uq72OoHwlhqRukdLnhwQdnfg9k8nl6xzfeaNFjem8alREFJkJSHiCNDn/AuXdls1EXn+7X5fF1a67kI3c8JIVJciY/niBhCdNtoV38GjyzeKvxNZaHocFMYR5Qoo0mwFSeaKKXNUlP27F1zPx/KeamLh+dEoqA9QnQPZNHWNRh4ft4TS3fjzLXFf983bzNWXP5BHHPgPqHliUKhiKCibLey0P3ckdWTbUtNXWug9p7qd29Je7fw3L8tbMOiLeLfoiQxqkdU+vG0jVnaiCy37BS753h87Rn0rdZl9nPT5UVKnBZ/yyblIeKKUlMUh7IuEgVZnG/GlTg0rdBSkxAixZV1iyNiWB+QVSa+rjwTGSbFE7WHyFKzFhIFhXE/f2ldB6au2GYkeLhqa2Uk2c+LiYKc+Vr34oT7uQfcM7cVh14zFdfPWB14vopCayiXx8+fW2VCvHAU3c8DFvSWv0WnY2pGuHWV9YvcSi16m3/974ukv9mwPHN9bIuCSrxMqaVmjbSLMKamiURBkv4lzilAUF2uGAjEiek+Im0tmDZ5TSO6f0eGZSmy71TPUlNWdgiBKmBMTX+o1CSESHGlnzQ5Icznvciuc7ZQssxx5qmIMTm4ip6TKKaoUKnpmIVjKQs278bpv5+FCddNx82z1sHzPB+lpngSc/HfF+L9f3gJH7ltNt538yz0DUVLFqX6jQ3l8kIruGJ8RQebXSZSnC6BQ7k8vv3IEgwoKqBVu6j7520OJY+JO1dPfmEX0TzfEUPNSPeuNh5oHpeU+dK6Dtz68nrlkAaMqamHyniUkbRpDTeLkY1iaf8e4zwv6HtQttSsoY/A9K2kLaam7P2z7rmgMMV4bMlWfOsfi3Dry+utfScubzbKkDWFThQom/NKxtT0h+7nhBApJvtmFyZrf1/Yhq881IKugSy++b434caPvR3NIn9mDYwq8ZTcDSXX5j2hwi/NCJWaqjE1Hc0k63kePvGX17BxT+zRSx5ZjMmH76uV/bxt9wD++MqG4t+vb9qNx5a24zP/ckR4uRTPk2U/dzlmmNRFN0YZZm/sRGd/Rvn8nOcp9Zlh1wgmHlehiED3c8sNrZpQLAmijHsq44Hsu9Ot9wO3vATPA0Y0NeCRL70bH3nbof6yRY6pGeny1BHFUrNWEL2SJt4DU9nPoxCs1FTcAHJ3GNXGuPt5lGsTaFebFnth6i0wpaUNn7lnbvHv9R19+NVH325eDtH3brwWs8iTuGpYalr0DGJMTX9oqUkIkWLSKjDpXdahbB7/PWUhuvZkqbx51jpMX71DqwzbC7EoljldA+oKk7Qg3ulVO89V9/MX1u4sKjQLfPMfi6SupqL7uG9+tXXeNx6Wu4qaZEjmfl7xf5ewmY1SlSbNvkPVeiJJ5dDekAMB51l+K1y2CLFuqWlIoVMoJ5PzcMWTywPPtxFT03UvhCioxNSUZz+vjXYRvc9mYmrKNq3ia7egb7VGHqEWxhMFpawR5ZupnvDftustUDlX/PXza4zLALgd61qGbHNCZzyV90fRoaWmP1RqEkKkGLXUjHKtATkeX9ZeZSn1lYdaohdsEBXjQtmEpaCsTRqTkzRxoqDqSZFoIuJagp0C23qGqo4t2tIttdSMy+JUK/u5KFGQV/i/e+0uz34en6xjR+k5xqhOosO6b5r4TtVdKiNXpS1HgyOzW9sxNeWWmuHrXbilK/CcqAYjovfWwa7DGCpWmLKNuFppFtF9NBjYfJC6jFpqOJFeJkjJ70qojjgx3f7RDCPib9mwlppRQzIE3emO3uo5qA2E33ssNYdHOp5qvD82xzHG1PTHkWkfIcRFTPaTkTIXGpCkZ7Ba6bd590Dkck22kZL7ueR4l+D+0o5IWSl2fa6+1lVLTRkyeUXKWRsTQ9XWkrmfu6jMLOBCoiBd8p6nJJ8b7ucBVkrRq/JFtZ9IG9Fiatptdbqf6+HqJlvSmHE/j3fTStS3mIupGUYiNzEeUzPKtQm0q7ROy7K48g6J5HDcUNPIBoncMyj6g6n1ECVRoVKTEBILSY+zJibPtsfjKO6GzlhqGnzQosmBqqWmqzE1ZcgSScSlnNVKFCQMAVAox6BQhkhobVGGrhLIhnuvaZTdzy3fi9MxNSO8ZSrvjG7mZ1NPwo77ee0SpR9PQVeghK37kBVrS6kpmoMEZj+v6bdbjOl7dnnjVIQJq78wuPKuCcNNODIuy5C7n+tYatqzuB+Sbo658cyThkpNQogUk5OISK4jBsQwkWXTNirrHrlS042YmtaznysmqUmbpaZMSSDamU3yzjI5T/gt5QMUXEkuSOK25BHXpX++yiVhezWTlpqmzguLqG1dsQiJ0s6RLDUtv9s2sp/XMlEsbFxRUkTFljuqNK6sZpOrtrJqXO8wsrjyrG+cuQb7/s+TOOiqp/HXeZtClWHc/Tyha03XaT1RkBuvkLABXBmXZUgTBWn0JTabXzaOuPLIk4ZKTUKIFJMdZZTJmjODtACTi0eVhaKsHXuGcsbkcAWRYrLSSsLzPLH7ecrc/WRK2PgsNdXOG5LF1Ay4Lkkdc1KLi1J0FajqiYLCxtSMTkHGpLOfu+x+HuXWo8TUtP29RVVqinB5nI9KJoEOsD+TQ3/GnXmBaK5k4jOVW8TJiWIxpuotUkqasp8va+/G9x9bip7BHHb1Z/DlBxdgV98QPM/DP5dsxZ9e3YAtXcGhm8wnCjJanHWSkjfOzVo/xInB3BiXZcjdz3UsNfWO68CYmv7oRa4nhNQVRhMFRbHUNLAEN+J+rlFImAldFPdzVwY1k2KIFHqV6wnZJCSTMvfzXET386ivt+pzkycK8ldw5fKecDEYB9JvJsb9bd3+QNW9N7ylZvR7L5QQqNRMIPt5Uu9aJVHaOdJ4IGlzU60SdeHsiM45NiJZamo2ted5+OETy/Dr59dgVHMjbvjYRFz83mND128KsaVm9BdBaqnp03BRvkuxt4j/NY5Mz5T48dMryv7O5Dzc/NJ67Ogdwu9nrQMAXDl2JF695H047qCx0nJM33PaDCNsZsH2rdeRl00khiPDshQT7ueycwezeby4difeMHYk3nbo+FDyMTazP7TUJKSGWLSlCx+85WW888aZuGdua+TyTC5Gk+6K47bcCWOYoeR+Lr026RY2jyguZqWyQnbfrrqfy95CWQzQuAKDq8fUFCcKKsbUlLyhScaIlC9645NB3/3ccz6GmKp4SWQ/d2XxFCn7ucLFutnPTT0KOzE13X7foxDneDRv8278+vk1AIYX0t95dDF2xpTxOAlMzYlUu4xwiYIULTUVZbDJxs7+qmMrt/cUFZrAcAbtm15cV3VeKabnpNFCWMXfsnIDBLuyhCndhkxpjKkZxupb9dz3/P5F/OstL2PSb57H9TNWa8sG+Fhqhiqt9qBSk5AaIZ/3cPbtszFz7U4saOvCF+9fgLmbOiOVaTTpS8KB8m0NpTLRwkwSlNzPLQahdg2xpWb5k5S1Wdrcz2Xiqi6G47rbjDRRkL8ENtxVVZErfuKTSdv93FOMqRk2+3m4yyrK8Mr+Lz3PulIzuJ9IiiivfZSYmvbdz6NdL1rcOq7Dj0SclppXPbW87O9s3sPNL/kroOLAVjZkeczk6GWLELqfB8XUTNG73Sy4v0VbuquOlSo5RZj+nlPUhADMKMjCEKbd4won4spmowwz7ufic7f1DO35HfjFs6swECI0CLOf+0OlJiE1wjOrtmPz7vI4N9/755JIZRp1P0/o2gJxZz8PZ6kZZRHrxpTPdozRStevtFlqyshKJiuxxdRUPG8olxe6DBYeg5/7eVLINx7ik0H3/lW/5yQTBalmvLfdzC7H1FRzIZdYN0eIqWmiH/Zz4V+4pQuzN+xCLu/h1pfX48qnlmNhW1fkOmuVKG6Dule29wxWHdvZl3wiQVuWW6Y2llXPDrOppyqLC9b5ou9e5knih3GlZhRLTXNiqNcptdS0XG+Iu7UxPRN/7+brMYlsc0Ln9Vdpy+7BLF5a36Fe6B5k2c8d6DacgDE1CakRNnVWB+5+cZ1+p1mKyX4ymutI9PrjDlBta2JR7zE1KyfcsoV/6pSaEnlVd2Yjx9RUbK5MzvNNFCQrJln383gteUzUlc97Ss8kSXcuVxbqYktNq1Uqo6LUjGIdYtPNvLEB8LMl+cAtL+HDEw7BY0vbAQA3zFyDl7/1Ppx0xH6BZYseT7p6bD3ijPE8orHaXsUFCx/Ru2riMw2TLCtKvxnO/VytbBe+AZGlZpj5lMl7+ePL6/HnORtDX59MTM3g4zbkClOmDaMIUYnOJwoyEFNT9dQwbeFCP+4ytNQkpEawsbY1uRgNo+R7bMlWnHDddJz5f69Ert/W2t9kvL4o2c9dsdQUEbbtxUrN8r9l9522wT/x7OeK3+ew+7kopqb/9aXv9gtrduLivy/Etc+twlDW/nOSLy7i+2bCuJ+rENpS08C9BymyK8+zhTCmpiNaTZXnKHs3VMYDXYWozmsoSohSSibnFRWawHD8xqsrkozIcN1ixzSRLDU1+46RzdVLO1kstqRReQ+C7j9MoqAoiCwZgz5VVVlcmMeZUmqaupdV23tw8cOLjJQVJ9JQUQHtErVvDNPuVpSaok0Mx/t9qaWmRvOozq3CtAVjavpDS01Capio41SSlpqd/Rl8+u7XjWV7MzGW6gxCdZv93KAcoozgVTE1a8T9XKbAcC3b4VBATE25K+3w8VnrduKMP75cnCQu2tKF+z7/LiuyFnAjUZCuUlNtahw6pqaBey8YnwX1dbYX6um31Ay/USVfOOudLyKMC//jy9qDT5LgguutLaKMR7pXjqzc+QOQiWHzKIiwGyme59/PyUq1FlMzxKae6qvtwicgjBkaxlLT0L1cWREjNgxJJCFTsdSMs14/bOx5iPpzV8LCyJC95jrvj81vWC4fAWipSQjxIcmYmn95bWOgQkcn+VDcY2m9xtQUEbbpRXGcKidFNRNTM6L7eVT03M/1k3wUlM+XPb6s7Nt4YEEbegazqmKGQjYhjTdRkN75qotIW+7nKm2jOtG33cw2Y2p29A3hwikt+NgdszGlpU37epXHKHvWKvsZupaaOu+hwIvZGCLx0tVj6xGn58DIpup3XxaLLU7E7ufB32mgJXgIS80ofb9ow8RU9nMXpi3m3M/N3Mzqnb1GyokbqQLK8jN2xf1cdP9uqzTNjJs246HX8safCWipSQiRYnJ3U7czbhXECK0k73loVBwarC3+ZcdDNJ3KusdmDDUTmHxnajGmpuw11HE/tzGxUS1xOFGQ/HpZOYVF36sbdlX9tqs/g3Gj7E1HXPhmbLmfhyWsokB0TmBZKgJFQNRWQa7Tqpx391xMX70DAPDEsm04cJ8R+NBbDtaQTcVSU3I8QjgSE5tfNq1q3Oyd7RHN/VzvfFfdz0W3oe5+Lj/RRKgFHcJkP1cVxYXNadH9hVHKmxrDTMRhTCSmZkLPMlw8fxtzyuoyHTfUlG5OaMXUVDwvTFuYXG/WIrTUJKRGcHys0B5mx41sCjxHJ/lI3O7ntuLayJOeuDuqhVUoi7OfB58DhMvWGQeyx5S0+7nq65PNeUJLlaKCS3p/fnXbvUcXrJvDZD9XaZfw2c+j33tRkR1QVDKJgqL3+O3dg0WFZoFv/WOxVhlR3M9VxjddayCd19CUYliE6J1weAiLTBRLTV0lhcj9PI7YxWFQUmqGPMHv24uyyW0zpqYL34AxS00XbmYPSUgiV0BZnu+EstQ0L4cw1rXjWs0oG4wFbCYKIv5QqUmIo+gOfDYsEY26n2uWNV7BcktnII57LA3TdCqLWNd36kzKoWKpKU8U5EiDKCJTwsaZNVeFobCJgnxdASOL5YtsQhrnN6Od/VzVhSlsTM2IvwMaC3Wls8IjThQUvdydvUNVx5Zv69EqQy1RkOy4+U0unY1AV+KS1gJxeg6MECk1XbDUDNnhBm6aSJMnhqoukFDZzxWb34XN6WZB55l09vM0kpSHSDgvMQuWmgJBHNdpGnE/t5koyESs7FqG7ueEOIoLfZRJEXStDVTcUVUH4q6BDK6fsUarflVMWk5GSRTkwmQYkLiYhSxLNJGu3N2UW2q60R6V6Lqfe97wPZYqc61sYGhkPxdVX/gOZOUkaTkb50aAqf7AxiJDB6WYmgXr3IB3x3pMTYcTEkSy1FT4ZLQtNTXeK5FFmikcGa5iIxMlUZDmpSOE7sPJN7hIApXv9OFFW3D//M04dPwoXHv223DQ2JHl5cY8JwoTU1NVEhfmcaYSBZka8k2ENEpC6aObxE3198B6Q1wTV0xNV8ZlGbL3XKd1bE51k+8d3IZKTUIcRXeQsTFUmJwI6BY1blSw+7nSgjHv4T2/m4VlmhY2InTcBUK5gKjE1JQmPdGvLy7CzmNEir7KZy6ba+fyw+67tmKpmsZPCZvJ5dHUuPd7sBJTU7HI4Zia8kRBodzP1aoOTZyLXlN15T21dgnrwhRs/aRQxp6zbC/SghAp6my6Tuug0qdHy34uOS6tK1ieAoypaY5o7ud6jBDE1HTB4l8kQukbJhvXPvfXecV/r9zeg+cvfm/Z73FuWgEy9/MAS01HrNpVcC1RUFoxkUk7XL1hDCrMyyESw41RWU6UsbiATUtNeZ0EoPs5Ic7iQieVpPv56GaFmJoKI/Hjy9qNKDR1CTOxUHI/lypNtKtzHpF1nwdgR+8g5m3qxK6+Id82S9raTQc/WWOxslGsIiOLqRlwXZLPQjeZShRMuC/5lVNJaPdzA4pI1S4uiUWciQWDiTJUnqNM36ViVam7CHMlUVC9EaelZFpjaqq8mi+s7UBrZ3/ZMRPvumr9gPi7MBVT0wHds3BDKIxS3qWN9iREUTFAsCFXKPdzGxu8grtzfUyJEgqmgM2YmlLrX+2SahNaahLiKNqWmhbGCpMdpW5ZKrevoih4ZPFWzZr1MGkloGSZIz1ud1gbzObQ0ZfBAWNGYPQIucLZpBWhaB49a10H3varGdjZl8Eb9x2FGz42UXp9Nu9BQTfuBH6WECrx0OKySM3k88K6Cu+u1FIzwRWOPA6R+br8LId1y1GRz9ZTV+lPCreUtKWmSF8Ud2I4GVHczyONBwa+Q5sxNV1SeMRBLoK2SndMHVmZTQ/AkBPu52asGbd2DeKo/cfsLTdGS3xArPQLdD9XFMUJ93PB+xNmT9KFeymQhCiJxdQMk/3cwqazqEjHdZo+2c/Vy1A91WRMTTIMLTUJcRQXjMxMdqDau+YKQ4OKosCkhZj97OfB58hj9mlXp8zybd046cYXcMRPn8GJv3kei7Z0aV0f1kVWFodxZ18GALClaxA3zJTHSnUhjpgqQe7ntlGdCA9lA7KfS67z+w5tT9RkxVtxP5cmrdCrS7XfCp8oKPoiPCiO6t667CJqWxN1mshOGvQYfzV9tfT7Vum+bFpqho2puXZnL/ozOd9z6s01NcpYpNtNCS01nUgUVH2s9BtTvc3Kd1jev/vJEt66ux7dz8Pgwr2Eob17EB+7YzYOu2YqzrnzNezoHQxVjnzDyb9loir+whlURKtTLEcaLTUl46ZGAyl72SiXGAyVncNQqUmIo9jYOdPF5MJDt9NVs9QcPimf93DjzDU484+v4OK/L0TXQKZ4TlIJY8LUqqLICDtRisL109cUs/6u2dmHnz+zUnqucOFiMKZmJXM37fa5PvmFXCUyi0pfpWYM77Dq6zNsqVl9PDD7uZ9S09LyJ5vL40+vbsBvX1grqdc8cvcl3XJUJ8ZmY2p+5aEF6B3MKsbUVK3L7vsrVGomP3wCCH6OVzy5DP8reT8jxdSUvYcaXWLYBejx107HSTfOxAqfsC+uPJ+4iGNjqsBIQUxNJ5SagmO67ueAQKkZQoEv+kXd/bz6WJAFtGr/74J1o248Yt2EOF1Defzq9U5c9mIHnly+TVe8UOi06lVPL8cTy7ZhW88QHlm8Fb94dlW4OhUsNa3kQghxTVyJghzXafrEQVVHPSyPPsn3Dm5DpSYhjuKATtNsTE3N7ljl7MJE8i+vteL7jy3F9NU78MdXNuDivy8qnpNNaDIff/Zz7eqUufP11rK/pyzcIj1XuHAJWW82oqWljkI7k8tjU2c/ugeykeoMi39MzfJ3OMmuYSgrSRRU+L/kBfVb9Nlax33mnrn42t8W+tRrYSIvdV/Sq2s4UVD8T/ovc1px77xNetnPA061fRei+k20nRn38+BzbnpxnfC4yiaX7L0yYTEcxWBr5fZe3PiC3Iq+3oiU/Vzz/BGNbsbUFFpHlv6ueKeVTSlVRPhaauqdX4o4O7j/NcqKDgfm/c0C93M/5Mo78Q8/eLEDf1vVhxmbBvCJO+fipXUduiJqc/OsdfjtC2uVNhdun72x7G9Z/xxEUtboYeY1jKk5jNz9XL19VM8Ms0ZkTE1/qNQkxFFqLqamtqWmyoJu+P8XP1yuuLhv/ubiv21bapqM16fkfi49XnvDWtRnp3p92+4BvP/ml3D0z5/Fm699DtNX7YhUbxj8vvc43OhVa8jkzbuf27AS2LirD/8IiKdro2swFVPTvvu5nK+XbAr5oexSafn1dTkhWJR3Wy0ep95xncVrWPfzAre9ulH6m7tPzA6Rsp8baCwXLDWDUL3Pyu89lKVmhI0QcaKgIEtNVYVt8l+GtqWm5LjIKry1sx/ztg2VHfveP5do1ReW7/5zCT5377xY6gLCKdtt1ut/TUyWmsZrMYuJRI+qSuUwTZ587+A2VGoS4ii2Jjee5+GO2Rvxkdtexdf+thC7+zO+5xqr18L5hcmtSOlTsNA0uQOpMyCHyn6u4n4ujfmiXZ0VTL62UZ+dqlLz/17dgDmtnQCAHb1DuOLJZZHq9UPXVQuoXhBbcVlSbOuhrH+iIBn+Sk2lqrV43ScsQQEbXazcQk6vnLznWU0UFPS8lWJqVvxffp7dqbiobU08WxNlRBnHo4wHJiz6bVrV2A5J4BpxhsERfW8uxJcWSVA6loS1cJIq1fwsNQVXqT4i8aaeKaWmmgw20Y2pqWMtvqWrOj5lYe4lw2RX8fdFW7CtO1yMTF3CzPXM1Kt/jY31g0gOm8nnTGAi+7nqN/ydRxfj+48tQbuB97HOhlMpzH5OiKPoTm5UY6s9vGgL/ntKS/Hvrd0DeOSCU4TnmrXU1CtNJ6amiP5MHuObGiO7MIclnKWmyiJWcly/utgIHVMz4rNTtY75WUWM0NcCJtlRkMfs8bHUjCOmpuJ5MkvNKNnPrVgJKMWnjcc6Yfi4Xl3KMTVDflzBikiFMgKe+d7zlEQKja1EQSbeyyifrsq1uv2JTqxu1xegaSJSoiDd0D2C012w1BTJVdp9qb6blafJFfialpqK33uo7OdKJbuh7Nd1P5cqNQOed1Ks7ejDIeNHWa9H1y3fWL1hsp9bsdSsLjPsfCUuZPNULfdzxXPnb+7C/M1dmNLShjVXfAjNggRv1WVLjitLV9vQUpMQR7E18H3loZayv/+5pB2DWXGmUqMxNTXLipr9vG9P9lXr7ueGLLOGr1FRxIS/Nm1ETfSTVJIoP8KEK0hFTM09Qsm+B79v1Yb7cBSFULR6o0+Kh89XO8/WGkFtU0mtLNt9kzhRULIKyb1lWLbU1Bx/dO4pqvu5H+71zHaJ0/1cdLoLlpqib6HRiKWmzFJQjug31fpF30XQXCNNlpr6iYLEx03di+kxzlR29yBkt++ipaaVmJqptNSUbQaql6Hbkq2dA3h4kX+opL1l6/d19QSVmoQ4iq4+R3Xg7xIkQsnkPOTzntWM67olR11U9w2ZV2rq7DKGUUqrrHuScmlRxaQyPnJMzSjWMZYaVO6qJSeWmJqKVWTyeQjyUAQ+9bjdz1XeQxvP2NQCL5dXcz8PS6B1pUr7KZ7rYgwxFZJWjEaJqRkmYVcldt3Po5dhe85ikjis7QuInr0LlpoiyhIFhdwkkSrwNeM4q9Yv+i6ClZpqZbuwOd0sGuB90HE/d0GnFZtSM8Rcz0i9Ia6Ja4NX1aMwKWR9hk7zhPmEn1m1Xf8iUgWVmoQ4SpyTm2umrcDIyx/Hvv/zFO58bW+ma5MKKm1rAyWlpvyk/qKlZlLZz8NcE7+l5oLNu3HOna/hU3e+hkVbukKVUYrQ5SjkRCaqUjNako5IVUsJU6yKlU/UqaKqXJmcJ6wr2P1cXmZcQeorsfGIzVlqqp0fOqamAUWksvu5qlAGuerpFZH7MyOWmhEKUVFAypOkSOTRUmoqn6pNlLmF53m4eqp4zuIq2SiWmpbPj4sgucJmP9f9BoavCV9/GEtN1c/OhWen4AVbRlIJccISl1JTZcPJRhOF2YyzMQcTldjguNZJNk/Vi6mp35aq76S0aEe/tbhx/PUipH6J0wDhxplrkfeGXbZLkwcZdT/X7HVVBgYn3M81LWX8iDumZtdABu+7+SU8sngr/rF4K07//Sz0DFZb8uognMiEjakZWakZ5dqYLTV9qoslpqbi/WZyeaGlyl73czFxZz9Xs3IzW+/O3iE81NIm/E3XxV7d/dzOAk2leuWFekIT7lNuehEbOvpCX28mpqbdjRVdS009paabVjUL2rrws2dWCucsrhKlD7cRjzwJgmIshrXUDLPRK5qPRmm3IK+QVGU/11T66cQ0DTNemW4S3ZihYUlK/xSmfDshgFJoqWkipmaIepWVmtLjyfcbLkClJiGOktTkZiiXx22zNwJIOqZmMEru5wZdd/Wyn+uXr2SZI4upEuJh/faFdUXlLwD0DuVw9+ubtMsJIuzaOOpEK5pCIWalpl+iIAUrn7h6Cw/i5xmY/dzndyvu50qWhubqW7uzF5NvmIlv/WOx8Hdt93PPszpRDbSu1FAKm7LAMs1gNo9fTl8V+vqkEwWpZT+XHJfJo2EwqBtbT4coTXvZ40vL/h7K5fF/r26IKJFdosTU1MXVBa6oTylzP1csx1aioCgu4kEeQWmKqamreAoTUidJ4tqsCRsqKqp4YcatuOZgju6TFZErNdXLCDO2xWU9XOtQqUmIo+gOTCa7xM6CpabBMnXLUrl9P0VJQVlnIwC2CqEyECrF1JRcG+I2p6+ujuMyZ+MupWvjyNJZk+7nUssq+TWxxNRUPc8TLwqKlpqyWH5OWmqaq+/WlzegrWsgkjxhzg/vfh7t99JzgvqCJI2P7omwSWNCbNsbK7qLMC1LTZuJgiI0bmtnf9Wxjj7HLTUjZT/XwwXFmCqllnuqc4rqmJr6SjXRb6r1i04z5n7ugKWmKa8qcSii5ImriZN6krL7e2JpO66TbPLF5n5uvBazyOapOmFkwrSlqnW0SU+9WqQ5aQEIIWJ0J6Y23BBNTrC0XagUumm1mJp2u3upkjGEYUaUmJphHlXvUHXW+31GNildm/cAkRePyXcmSfdze4mCJPX5XFNp5SN264mGesyvgJiakuviThSkFFPT4DO+YeYa39917zGfV3smSVo+pClOXBhMhGO2bqkpOy7bXNB452Py0qwLYs1+7ugHFyRWWEvJMBu9omvULUVFlpr+V6fJUlMX3RAYSROXJbNcAWWmfp1ERDe9uBaXPrpEWpYVpaagTDffiL2EmZ9HObeAanIuuadeiEprECo1CXEUFzopPxEeXLAZTy7bhhMOHovLPng8RgREF9edrClZaqrE1DTpfq6xyAtTq1piCPHxMJMSkVJz3Ci1YSGX95R3F8MnCoqmVXDTUlO/4Mp4bHZchdStVEQbKEFX+7ufxzOhrjrHeK1ynLPUDCheyX0f/orsvWXZaelsLo/XN+22UjaQlpiaelZqOn2H1eznEa4VSeWqAqWA7c3VUlxtiyDLPVVlT+W8T/qu+7S5UOESYZMmaANC9Ym48Oz0Q0VJrNtEz9uBjZK4mjhM/HS98sXHReX7KTQBWzE1q4858Hr7YiSmZoibjOp+7nizxgaVmoQ4SpLu5wVkIjy0oA2fvXde8e/WzgH88dPv8C9Ls9tVOVsppmZi2c/1hxm1jM16i1g/REmBxipaambzeYwURDAxObhGVUi7mShIfNxvIlSw8tnU2Y/fz1qHXz/vbxVok2H3c/Hx0v9XEr/7uco58U0FdbNgD8fUDCashX6gy7iSpXyhrIC6VIXSoHcwi7Nvn40X13VYKH0YE+9HFCVFlJiaJhZnVpWaEdolzKZK0kRKFAQPA5kchnJ5jB/VHPjN+yn5bIYUCELUp4RJFFRp9BomKZboF9U5ahj3c3UrVLXzbKIrgmyK7cCtCImrjW27CsuVpnbWHrqILTVdfSuGkbqfa4gdZmiL6n5OhmFMTUIcxYUsiLIB6L+ntJT9/SeFIP36LlTBFziR/dygO4CK4sO2pebYkeV7XfIYieIyhdYYYRMFRfwGXLTUDJX9POeheyCLk26caU2hqXq7ec8TKjuK7udhlJoW9h2UQjnE2MXqvst5T9H9PKQ8wdaVCmWoWjZZaOcnlm1TUmhG0cuZENv2xopuf6LzrdnUfyU/u4mXKO7njy7eijf+ZBr2v/JpfO6v89A3VL0ZWYrs2Q/FmKxIhNhSs8H3dxHVMTUl9WmU4VeOyrWBSk3Fwl2Y9+tiUrkWB3HJZXJtkMt76M/kyuZRJhM0xbWx7OgrUcRELOowY76ypabj7Zc0VGoS4ij6MTXNyyDrx7sFFn5hy4pyfmGgGSlwfbcRU1PHjTrMjqSS4kNq6addnUSpWW6pKWs+HQvYsK9msomC7MweZKX61ZbZk913p8VkGDqud+Ls5/7X+b3bNpJ5qZSoW+vWrgF85u7XcdpNL+LGmWs0g8fr1ZX04lbHanx9R5//eRbu5Qv3zws+KSJJu5/bCEeiFVPT0YysYvfz2MXQIkqioBfWdmD3wPCc68EFbfjnknbf82Vzj8FswkpN0cGGgN8FVMXUlLo/+1hqChUuUSw1/dtW9d5ceI3149+LccHqVERcYkktNTXbd9X2Hrzzf2di7BVP4tSbXsS6ncPjrQkF3N5rtC8JRPhdOvpOFDDifh7iJqOOta6Pf3FBpSYhjpL0ohYwO/7olqVyfmHXcsyI6q5sr/t5Mu0YptooLrNh3heR5cY+I8qVmjILO9ni2JR7ST7vRR6oo1gArt7RG61yCTJFmK/7ed7DA/M3W5GnWL+G651fTDtZObG7nyt8TLr1nn//fExZuAVzWjvx/ceW4qGWNnV5dC01FTuQsJtZQeKoWHV5HnDtc6tw8cOL/M/TEUwR1RhgYeP5AsknCooUUzPigteTWGSbIsonLxLLdbdGk33c5/7qr9CXVZW4UlMgWLn7uao1Y2W5aueVXSM49tL6XfjYHbMxdcU23/pF75q5REFuv8ci5BaD1cdduL242jjMBraInz2zEou2dAMA5m3ejWv3ZDCXzyU1K4CdmJrCjQPH+2lZO+i0aZj2V7XUdL39koZKTUIcJcldzsJEM9Hs50oLuuH/jx5RHQcyNvdzQ7uxgP/EorWzHzfPWoe/Ldwirk+7NjGVC0aZ8lIn3mWYuH8mnluUyetpv5uFP7y0LrIMlYSRKJPLOxFgHxieVIVKFOSznk4u+7l6eb2DWTy7akfZsS89sMCoPKUMx9QMviis0i6o7IFMtRV3JZ39Gfxk2srguiw8X1WFW5RFQOKWmlGyn0eUx/PsWmrW2+IsTmWO7BkPJu1+LjhW5n6uWE61pabaeWXXSH57Ytk2fOS22VjY1uVTf/WxoPmQ8neX7CMalkHzfJ2ENS4obeMSQWXDSWWdcO+88g3t22dvBOBnWKAP3c+HkVu/qpcR5haVlZqyby1EnbUIlZqEOIoTg3+CZaksegqD+phmuaWmyR1IHcVSOEtN8UWrd/TiX26YiUseWVxU1lZdK6mwZzCLC6e04LhfPItP/GUO2rsHfWWoFEE2Wdd1Gd7ZO4TP3P06jr/2OVzwwHx0Dfi7UptI8BT10V89dQWGDFu3hImDlMl5VhKBldWv2FaeJ461FxhT06cCOxNqBYWQRrX92ervTidGnW6iINXTbSm7Vay6Nu0eULPoNCFQBTatCAuYkDvKqx0lpqb8uFrdHuzG1Kw34lTiympK2lJTROlnrG7NWP63dKHvc7tBNf3wiaXya0PE1FQP7+LAvF9TBJ1ETWHmZKZbJK4Wliug/CVQ7XbDJJ3ULSsKQktd89UYxYQnXJj5rHKiIM3j9QaVmoQ4im6/GMXNLg5sxtQcI7DUHMgMz2ijBOhXYSCbx5yNu6qOh1nMyiYWN85cg139/kpAWXW/fXEtbp+9Eet39eOfS9rx/ceWaJWja6kpu+8fPbUMUxZuwdqdfbjr9U24dvpqXzmSttQEgI6+DOZt3h1ZjlJ0rBoKZGxk0qmsX+M8oaWm51+Of6KgZJSaWnGSIoq4vXdI6/y8pxZ+wZb7+YBBBYgNpbXqfUdyP3fcUtPzPNz1Wqvkt3BlFsh7ntU5RST3c4FcDuwB+xKnfO66n0f7vUB1oiDZRqGfpaZ/HU+v2C6/VnAsaJM3TdnPdUmbpWbS7uemMJkoyIb7uWja6mryqALy7Od254rKiYIM1lmLUKlJiKPoDrwmd3gL3avJjlJXPpWzCwPQPiOTcz8HgPfd/FKVu1KYiZNsQP3jK8HZ5WX1/fjpFWV//3Wef2zGynK0Y2oKDjcAuO3VjWXHfhWg1DQxyTIxeTVtqSmb1AVaalq2TFNPkuBJEgX5X+8fU1Opai3UEt2oE/ek0cYio5Sg0k0qQOy4n5svsxITjyBasjL/36+dvrrKNbGA7FId93ObRCnedFf42sZOfOyO2fj4n+egpc3sJlaBOLsPuaVmcEgJm4jkagj4XUSV+7nkQt2YmqrYdD93QemnK4KOci3M3Znu6uNqYulcz1D9uvGUw5QVhXRaauodFxFmLa7ufu56CyZLc9ICEELEqAwy2VweM9bsxOjmRisDtU6Zw8oOecdsaqJUfs7w/0XZz20kCpLdXTbv4cqnluOfXzmleCxMrVEmFqaef5X7uaT9dNo1zCLUjKVm5CKMW0mGcRlSsTaOK+amB/G7Vjgku4+43c9VJpYuTxCV3c8tWdMZVWpaWMrE4X5uxlIz/LVB1l9XPrXcp16ZxYla3baVK6a/vbCl7eobwgduean4vk9fvQNbrz4LY0eZXR7Fa6kprmwoQgZ2E1hLFBQi+3kU74Aw7ueqL6gLQ5K2AYJlS03TTRKbUlPzuC6yqWll+SrfFWNqDiNXFNu21FSzMXS8+RKHSk1CHCVojjSUzeNDf3wZL63fBQAYJYgrGRWdyY3n+StWdDtjlYGhYM0kOjVOS00AeHxZe9nff1uonhm5QDSrHjP3WfnMpZaasiyBRqRww/0csGCpGaKFMjnPumWaqlSeJz45kvu5hU9URRdtO/h7FPKe2psS3v3cv/QBg1Zddiw11W48iu7ThNyR+vRIihdJmaqWmrCjjDaBMPt5yHb+7YvryhT4vUM5/Gn2Blz6gTeHFU9IrDE1JVUlbqkpkKssUZCqwr3iu4jbUlNUX1AM8DRZauqiE4cwhkg6gcTmfh5iA1sH2aZX5feh4vVhJaamQD7X325pm2oIHqYtoyblc3WsjhsqNQlxlKCBd+qKbUWFJmDWsqZgcakz9uY9D40+VkPa2c8VOum9yUmqz+3PmE8UpMrfF7bhxplrta+LEv5T9y5lC5zKppTG1NSx1FQ+M1z5MsxYapp9f1R310sZyuVjcD+Pdn2g+3nMlppKiYK0Nm3i7UfULTXDEVS8yZiaNlpOZw2Qy3v43xfWYmHbbvx/x78BF7z7KKXvyYilZoRm1E3GVlavzGJaNaZmXi2ma1hcWYK9sr6j6tjcVvMu6LFaakqOJx5TM+LvBSpf4TDWVVH6c1F9QfOVsEmQkkDfq0pSjvBY8jfoJ4Gpcd733TNSg7rbv8o7ZSWmpnDzO1w97d2D+MVzqzCQyeF7//pmTDhkXETpxJhIFBTmHgXOhpKy9Y7XG1RqEuIoQWPMd//pn/DFBDr9pKkJa/F8HUtNwbmyLOFRUNUrffMfi0OVbzP+WiU9gxKlZsXf0uznMktNQ6NrUIwqFUwoJUwnmgoTB8l2squg+qvOFXzNhddBVo6/pab5GZlKiXr3HC/WY2oGFG82pqb5e9FR8v/PU8tx/YzhGL73ztuMoWweXzv92MDrXI+p6UcY67Wy62H3na+3RVictyt75xJXagott/YeC2vNKLvKmqWm4Fhg9nPVslP4YcgUlaJ7cUNp6zcXMVVHuN90UA1lpLI5FtccLEwt+byH9/zuRazf1Q8AuG/eZmy48kwcNHZkJPnEdUmOW54rqja/A5+P0zBRkICbbroJEyZMwBlnnGGtji1btuB///d/8alPfQonn3wyJk2ahA9+8IP4yle+gr///e/o7+83Us9ll12GCRMm4Atf+IKR8kh8mIjtERWTcUR0LVZUqvYbaAoxNZOgvXsw1HU/fWYlnl0pz7rph+570TOYVSrHiKVmCCvDKFZKxTIUZAxqt4zhOGSy0vwsGDJ5z2IeYn38duBl9xF/oiCVibz5ek0xnP08WEBbBrwDBjeF7Lifq59bUGgWuPjhRUrXuZ793A+5okddceSqgkWY/TwBOXSId94mPp64UlN0zBP/24/KuUGYUAtRHofQ/TwwUZBa2S6MSboi6CiCXHCv91V2GwvjFO43HWThSSqPqoQxiWsOFqZ5H1vaXlRoAsMGKze+sCaKaFLk7ufm1sI2SP6rcgMqNStYuHAhbrvtNqt1PPDAA/jIRz6CP/7xj1i8eDG6u7uRyWTQ1taGWbNm4Uc/+hE+8YlPoKWlJVI9zz77LB599FFDUpO4CTIzt9mJFbOfa1wT5FZiJft5UZFSjQ1LzTg460+vYuaaHdrX6U5KuqVKzfK/ZQtrmVLT1HsZFKNKBZWJSJDiYMgBS81sHJaaGk9OOFkNuMZPSR2X61MltoO/R0G1vrCJgoKKd9/93L6a38Qzj/Jqm46xvKGjD2t29Cpd73lmnpuNDMBxJUVLK/LEOTELUoHomXuSf/tROV6EUeBHcYMWlRu0CaseyzZ59YSuYk/uBl19POl3EPBvY3OWmn4KdTOVyC01y/9OzFLTZ/Nbh5cFIUL+sWhrGJECMeF+HioZluIlNsbTWoJKzRJaW1tx8cUXI5PJWKvjzjvvxNVXX120xGxoaMAJJ5yAU045BYccckjxvPXr1+OLX/wiliwJ52K8cOFC/OAHPzAiM0kG1XgpNtFyzww4V7fT1cnY5xdTU4eX13fguumr8MTSduHvcQ0c339sqfY12paaEkvWylJkyku5+3n1sVAxNY24nyvUE3CScUvNEMVlcp71hbyOXH4WGHL3c7/yorfxjt5BXD9jNW59eT0Gszml78Hkpo1pkk4UZNb93FhRRVRvO8p3k2pLzYpLv//YErzpl8/h2VVqG2bGrIlkC2/D35PrizoX5m0uWMlVUm6pqSZflVIzxEI/kqWm4Fig+7lifS4o/XSRiWxKqWUa3/dCw5XeD50wH2GRKSsr7yG5mJr6m98i4nxjVBXFfti8x+S/HrdhTM09rFy5El/96lexfXs4108VFixYgOuvv77497vf/W788pe/xNFHHw1guNN85pln8OMf/xi7du1Cf38/Lr74Yjz99NMYM2aMcj1z5szBxRdfjL6+PuP3QOIjaAIax9xAK5FGxN9L6R3M4s9zNgae55v9XNP9/LElW/HJO18rDmr/+/GJ+Pb7jys7J64BZe4m/UQFQkWTz0RF7n5e/rfcUlNd6RFGsWDCQtKEpabJeJae58knoj5iZHJ5p9zP/WJlyZWa9qwjugYymPTr57GtZwgA8NCCNpzxljcEXqe3+x5avFCoVmfrvTCa/dxCz9mo6H8eZZw0o9RM5trSNl+7s1c7cd2w+3n4+kvLaRK5i0coW/TkXV/sxanLkVWVtFJT1A+UHlOVrnIMlX0n/snpFCsTICo2lx8O1yALtZOm7Oe6Esit29SOxY1fG8vky3tAk8Zg6zfmBT1i1XBNqu2eXPZztWMuIWsrrZiaoSw1HW+YlEBLTQCPPvoozjvvPLS3i62zTHHttdcilxteKEycOBG33357UaEJDHdkZ511Fu68806MHTsWALB161bcddddynXccccduOCCC9Dd3W1WeBI7QUGgbXaChTFVy3orcKdarbCBTA7v/N8XsGJ7sJucnyJlIJtXiiVT4PuPLS1r80sfrbaSdnncEU2iBn0Ucj1DEqVmRTmyhYFtj+ghVyw1Dc32fvfiWoz54ZP48dMrhL8HxtS0nf1c41xxTE3/a2xmP7/5pfVFhSYAzFy7E0u2Bo+BJvs30yi7n4d8L4LKd91SUyemZliSThQULfv53n9fN321/EQJw+7nJvpg8w+f7uf+yC0145WjkiAlh+qrYsRS07D7uUgulWsqcXmOKUM1Yc3wucnfoJ8I0jiVmnL7v3tmUA1lpBZf3PxzCdrEcBEz2c9NSaNettutGh91rdRsb2/H5Zdfjssuu8xYYh4ZLS0tWLBgQfHvq666CqNHjxae+9a3vhXf+MY3in/fddddRWWojPXr1+PCCy/E9ddfj2xWrKwgyTOUzePl9R1Yvi14wR3kfh5HJ2bS5F61qPvmb8YqxbhfQTuQfkq9SlTrdBVRU/gpJlRjasrcwGWWmqYmLUMGlCoqE5Fg9/PocrR29uM7jy7xtT4NstQMIqrSU2fSLnYr8sr+X4lNS81fPLuy6tgzCgm3dKqNe9KoaikX9qkHFW1UqWmspL2oxtSM8lmYslRM4trS7znMs3x1wy6rMUVdXoSZli1uKxx5TM1kW11Ye6lSU7HlK4dD2VXW3M8l1/rNJdTdz5P/MnRFkCqVFY/FjZ8Mst905yi+dRh6xjJnqSrDBAXhbbifi27TVDW29rXklrriHzK5PP7w0jpcM3VFMV51mHtUvYQxNf2pW6Xmrbfeig9/+MN45JFHiseOO+44fO1rX7NS35NPPln895vf/GacdNJJvud/+tOfRnPzcHSAjo4OzJkzR3heNpvFz3/+c3z0ox/FzJkzi8dPOukkfPaznzUgOTHFrr4hvO/mWXjfzS9h4q+fr8rIWomJ2B5R0XI/DzhVVe5fPLtKuc5iHD/ZJN7wQO3yLuMdszfiw396FU8u22tx7pfBuHdQLaam3FJTvS3CKNzccT+P/sx/9ky10q0Sv1oyOfvZz3XuUtSuhQl2OPfzaG3cn6l+V/YbHRxdx3bw9ygk3dMs3mLO28OGUiceS00Tlorhr42y0Iw69H3sz3OU42/6ymHI8ikIl9334hBtV98QHlm8BfM374ankY06aUrnVKoRbVSzn0dxAfZDVq6fUlPd/TyUSEbRnefqrFXCzMlNfz/+7udmNgR8EwVplSRH3VJTpSwDAimUGc4124Awiui6n3/mnrn41j8W46fPrMRJ/zsTa3f2hlonOjx8pYq6VWrecccdZTEnzz33XEyZMgXHHHOMlfpeeeWV4r/f+973Bp6/3377YdKkScW/Z8yYITyvr68P99xzTzG5UXNzMy666CLcfffdOOiggyJKTUzy90Vb8PqeWImeB/z82ZW+yWx0MgqaJkxGXVPZz3ViuRVjasoUKcYXTkaLM860ldvx0TvmoKVt+D37+6It0nPlsR3Vdnml2c8Fh8PoH4woNRWKCLLUNCHH1q7BSNerWGrGuaj3SxQkw6b7uYj9x4wIPEfL/Tzmb1+1TWwlCnp8mblwPDaaTnWMCpsdHkg+UZDpuH9JYHoMBsTP1JX7FWFbtDU7ejHpN8/jnDtfx8m/fQF3vt4qliNpS82gjW/FcirnJKrKnfK6zH+X/kpNtbKTfkZh0FEEOqG09XsvNC31TNahi7Rv9RTPKyE+9/PkyeU93Dt3E/7w0jrs7B0q+03el1Qfb+3sxyOL92Zh7xnM4drpq0M9X9X+SHaWC+3qAnWr1CwwadIk3HPPPfj5z3+OcePGWakjk8lg7dq9QdonTpyodN2ECROK/160aFHg+aeffjr+/ve/47vf/S5GjhypLyixyoVTFpb93TOYw8w1O6Xnm7J8DEPRlVSjDlPyDgisrmQUY2pKfg9SWNUq10xdgVteWo9v/WOx8HfPx7W18rDMzVyeebEameLFb9c+NkvNgHNMuOGqyOHrfp53Lfu5fLIqK8am+7mI0SOaAs9x2lJTsbrQMTVDXRUOG00Xh6WmCbGTstQsS8CSoKLEhvu57b7QdPG22//ml9Zhy56NM994gQlPh4Tjhlf6bzUBqyw1NeoT1auLTE6/5Inq7udhJDKLvvu55LjisSBMf+9+MoRRkIvL8avfzEOW960VSn+lREHmXzzR+BWmGtPP/9N3vYbz75+Pb/1jMf7lxpllik2/RFGVLNrSVXXsjtkbQz1d1XZJ4Z5HrNRt9vNTTjkF55xzDj70oQ9ZT8CwadOmoiUlAGVr0COPPLL4740bxZmgGxsb8cEPfhAXXHABTj311GiCEqcIGlzjsNjUqcFUtnYdJVJhcisr22RcOCA9u2GPLmnH8wEKc9XJm0y3KIu1qUM272GkRDthRpmoIEPAfZjIAq2yU+6bKCiXx+hmfyVd5JiaGm+3aO3mBXyLvpaaFlZyKmWa3LRJG3Hej40Fk2r28ygYsdSM5ELup5TxL9cF5QhgTkkQhCO3K8S2bDe9uE7pvKTjNYqq9yT/9qM6UZD4vKdXbMe5d72O/zv3HThwn3JDjygtId+4k1+j2vYbdvUFn+QQTyxtx4H7iL0i3E0UpL/Bqh9T045CvRTlObyBzf0wBCWUzObyyOQ9jG5u9J2/mhRt1fYePLpkrxfK5t0DuG32BvzwjLcA8HM/rz4uk9jkO/7y+g681tqJU47aH+859kBj5dYqdavUvOWWW2Kra/v28oQFBx98sNJ1peft3LkT+XwejY3lxrXjxo3DH//4x+hCkkQIM7jGMSUouHdpLfoDf1crTEeJFDR46Fh9qpAW16DmxgbsHpAnDPPg58ZQ/os0pqaGm4aMbD6PkRKHAVpq7iWT86DgTR0JU5aa0mtittRUUySr48JiTEQaEkHbaLo47luaiMHzlDcRorqfy+oK9ozYe0KSb66NMDqilnd5bHZFNBf7sLL3VFG8SsXDzr4hyZnDIXjedNA+uP6jby87biMshK+lpmLZK7b34n+eWoZffORt+oIZQqdlPvbnObjsg8cLfwsTpiYOwlhRGnU/1ypJjux1q5RVKaam2aUSAIml5p67X7SlC5+5Zy6Wb+vBe445AA+d/y4csd8Y5bLD7uGL4kT/ZNrKolJTHkpBJINYiHDu59XcP38zPn/fPHjesGfKX//rndL30+XxL07qVqkZJ7t37y77e99991W6bvz48cV/e56Hrq4u7L///iZFS4y0Z2ivzEYflJ1eWk4+L22LjOx4JosRDWqZcYFwbZ3P55DNZpHNqV+byWSRzcojWmQlyspK+XQUHJnssJyygahnUD7ZldXvK1vAyG/yvY5S1oimBl/X+6FMRvrO5nLl7+RgRizHYCYrlFHURrL5x8BQBiMby7+f7qE8fjVjNe6au1kqvyrZXC6wHQeGMv6/Z4LLCJYjmoJtKJcPnrR4XiQ5dSZFTy7fVnUsn/d8+4xMzr+vMz0mKGX8VHg/CgxJzkt+LKt+7irjU1BfZhKddlZFfVEjfg9U5MlK+sihTBZNipaiUS1gMpms0Co1G7DpU9qP27CEVmVwKIvsqGorc5lMKs9FdKUXsv8T9Xul8zITc72MAWv/SrLZLBa0dWHept3BJxeuKfkOPc/DlIVbsWxbD858y0F4bwxWQKJ5Wi6/97nJ5ryVlN7HHXNasXn3gO/5v3l+DX754RMCZamqRyKPbKwcGJKPYzmN/va66atx4SlH4Yj9RitfY5Kc5oayLOmpqN+X9Vt+367p/stvXjgkme8OZbLIjlDXpPm9y6V9leje8vngviybzUrryFVcP5jxn+MCanNlXcQJJYdlu+KJpVi+rQcA8MqGXbhhxmpc/1GxIt8TZD7zvPBrWxF7+3tJuC1B+3iSssKMEaLyv/vo4uI6P+8BP3pyGd7xRrH+qNDSYXURtQKVmjEwOFieJGL0aLWBasSIctOcynLSSj6fR0tLS9JiGGXxYnHswiDWrl2LloE28W+b+oXHFy1aiNHNjRgaClbYAQjV1lvb29HS0ofVW9XfucVLFmN/weKlwOp2cVlR3oVNm9vQ0tKF/n5JWy1dHliGX/2Vv23a3BO6LF2ilNUYsBfc0rIQmzb3Cn/bvKdNC6zeLF4wrN+wES2N1bueW7dWZ03OSCZVCxYuxn6j9irCs3kPX5i6HZt7tgrP12Vj6ya0jN7le87qTv8J39ZtOyI/165uhUzSPousnr5+jM77f4uZbDaSnEoy+tA/OIiWlhZpn7GzY5dUvtbNm9HSor44L0WmvO/tC3bj27Fzp3Kbyd6TpMeyvt6+QBlE49OOnZ2WJKpmQ2srWkbIw2GEIaOwYQUAeckiReW5bdwofofmL2jBiCa1BW5vbzR30vktLWgWKDUzARslm0q+qY5d/n2gTRYvWYKtY6rnBe3t1fHIALXn0if4tnfsCNdP9/RUj+mdnZ3SssLM9YYMhGqp5HdPvIrLZ+2CTtEbWzejZUwnAOCOxd3446LhPv/a6atxw/sPxPuOsKtEGxionkt07No7LqzYFax8AYD2PWPyQNbD9/6pNleofJ6DA8FzW9k7MCBZiy1eshSd48XL6t1d6uOr5wFXP/IavvUvagYwptm2Tfxt6tK6aTNaWjrLjm3cKJ6r+327AwPia8Lit+7a2S9WCi1aXD5XDaJrSK4Y7u/vL97v7q7qeU9X1+7AvqylpQXLt4vHwNJvCgDW7Q7+rja3taGlJdocsBLRZs7uri60tLTgyeXlHqy/nbUe/3WU+H62batuo4GBgVD9/aZN1eser0Qn0b5dPA8VzRXXSea6mzaL3y0/WgVrlfae8vZY19GPY/aReT4ME1YXUSvUfaKgOKjUvle6kMtobi4fHOtdA19vJOt+XqhMvbagU20YixR2AmVFm15MpMXCvzlgvZ2HenB3mUWDbDNfp40qrZie3diPzT3m+jklt5uAcwYNvLgqRfidks171v1to95l0HP3s1iL8l3JFg8qUQPqOaZmrBhouxUdGTy0shcLtg8vJOJIFJSXuSJqlBH11qUx3izXawrpPCaCgGkIuVCKjWfxuwVdWgrNYTn2XlBQaALDz+jGeeE2lfTqD/hdM1HQS20D6MuGa90oz0Qmpp8ouu6hgxYU4XEjzH7twEDq734uO64nt28dhppAVSaV8crO+qz6mAf9BHgmRQsaO7TczyVlJP+G1y+01IyBSiWmqttXpTK00nKT1DZSpVOMPaZOVUHjlA2xi9nPJYUPuZItIWaGXSP9lUiqLSObW9+5tBt3L+vBQWMaccW798ex+w4PJ6LTZYN/pWL06Q1md+RVJn1B7qEZAzpWlbb2EyObj2Ehb+pT0ZgUqvwWhEypqVKkjnIqPmdtPcLGloqzZ4ya1O6ltgF874UO5Pbo9q88dX/l+47y3ORJIzyofpFRhyBZXelJFGS+TNGzD6sDikPJYqOKjd36A5Pfs2g1uJkoQ5goqOSYajMV7iMT4eWKpNSUHPdNhhehvrQiag4X2sHv2ZtKFOQ7/9YtSoLqhpGKysGm0Ukpngf0ZJIbnIJq1tmEMzknV20RF/QCLkOlZgyMGVMe/HZwcBAjR46UnL2XSvfiUaNGGZUrKRobG3HiiScmLUYkcrlcmZn3pEmT0NTkn50Y91ebpL/pTW/C5LceIjx9ZcMW4KVdVccnnXgixo9qRvMTO4H+YBeayZMnB8pRyWGHHYbJk49H+5jtwPMdgecDwNsnTsRh4+Xv6PZ9dgAzql0Qw8hX4JBDh+Uc9dwLQFd1fJUjj3kTAH+3x3e84x3DAZ8F9RZ/28PzXeuA+XLXnOK9aNxDYFkhyttn1Eh0CFy9Ckw6cRJe7NkILKi+l0MPOwyTJ7+5+PfKhi0Aqt/DwiJoQzfw07n9mPud9w1fv30VsKjcjWXkyJFAf7U8J7ztbTh6/zHF78n0xOqNbzwCkycf63vOUGsnMLXajb7A6LHjqt9RTca8/AoAf3dZv1tvaGrG+PHjgHb5uzyiuTmSnONmzwa2qX3rwvpHjMTkyZOxTdJnjBu/37B8gnf5sDe+EZMnHxeq3r4NuwBsrzrePHIkAP+YSwcecCAmT1Ybi/KbdwNPV9dj8psPw7ixY6ueu8r4dOCqRQDiybR75JFHYfLko0Jf/6XpLxaVVh6AG+d349gDxgC7/cOBAEBDQyOAaoWNyrcyu38j8Fq1BdvEScNjsAojn3sRQLCcMiZOOhHjBHX1DGaBKXLX2zeWfFP7L10AGN4wUmXCW9+KYw/cp+r4wW0rgGXV7aLyXMbOehnYWf5c9tf4lksZ/9qcqn71gAP2L8oRaq5XQd9QDpiyRVs20xx++OGYPPlNw38I+quo41wQo559Aegu75P3239vW2c37fYdiwsUnvUyrw14pVOp7sp7Gzn1eQD+34SsPUY8NQOiPuXNx5+AyYeLXcbHzp4NQH18PeigN2Dy5LcHn2iBN2xeLvw2dTn0jYeja/x+GDeqCScdsR8AYFG2FUBn1bl+797oGbMAmHONPvbYYzH57YcKf9u0ux94tL3q+Nve7r++qWR7zyDwcHU5ADBq9Oji/e67YC6wuTxG+X777Rc4/588eTI61+wEnqueE5Z+UwDgtXUJ5y6lHHLooZg8+S2+5+jiPbQFlTPb8ePH48g3TwBQPXbJ3oFDNi0Hlq8rOza6pA11eLV/A/B6+djR0NhYLOuANYshmhftf8ABmDz5HWXHOsftFK5pD3vjG4VrKz+OOOIITJ58TPlBwXMfv+++gCQkGBBufHKJRYsWRYr3TqVmDOy3335lf/f09JQlAZJRGuunublZ6Zq0UOlan3aamppC3VNjo/w6WZiC5qZmNDc3K+/shJGrqakRzc3NaGxU7xyD2kB6P1HehYZhORske2aZfPBeWlNTszARg+i3hoDQESbf6yhljWjyl7OpqXnPYr+ahsbG8rol55WyaGs31ncO4vg3jBW+M1KrqobyuozvNjY2BLajF3B/Qzkv8nONqqzN5D00BpimeYj6LUXbd85juJ1kEypf+SreAx06B8QWRkptrvB+FGiQ9IVJj2WNCvcg6puD+jKTVPUpmixpL19g9w7l0KQov8ydTEUeWRv5jduVRO3SGiR1NQa43Za2uWqmdhs0SuYFMpmUnosoG7zitSplNfr0R2Hmek2uRI4K6GeT6MtK+y/V+aaH4WuaNRbvlfemMteQtYdsbPHv5zS/wQb1sck0srmhLpc9sTem/SXvfxN++/FJ8CRR7/zu1XT/5fecZO+g7nffFPDRF995Yf+z99nLLMmbm5ulc5KGindHZaz3IszBZAjdzBuA7oxYaSWrv0GwPmtoCLm2DZjHebJ3TfA9NjdL+p8Q76vqHEm2Vi0QVhdRK9TvncfIoYeW7wjt2LEDb3zjGwOv2759787KgQcemOjElMSPPKbm8A9xmJvruGYFJmeOKIuIgruPrOxBhcB6ec9Do2TC6febywQlsch7ntQltPI5ZhV3zboG1IL8l1I56TH9jqiIHpSZfEAlOGOQHFGVmgrZSKP2B1GvL4aCkPzuF0dJJROtjI4+8XunkjFVkFRTfq6j7j2yDZ0gorqE69VlHtWYmlG+PWk8YY2XIcq77Xd90H0Vrnt6+TY8sCAZK+JhOcTHjff1Bgv0AKze0Yuv/W0hWjv78aE3NuJLbx+nnPFeVJ4LJB2SQBhjr8z9XE3AwpwkypIoSlvILpUlrRuuT69CV94ZU/zuxXXo7MvgLW+ottqOG79HIfvN5PPTKco/bI9sbCg/ruZ+bv6Nk33vnf36a4VKws57RJTeumyeKnY/F8tgc66omguhXqFSMwYOP/xwjBgxopgBuLW1Vcn9etOmTcV/H3vssbbEI44iG2QKh8N0YioL/bK6tM71P9tGR19MFCQpfECQfa+6DPXfXFVsVCLKlltK3lNfbCro0wDs3U3XUZZULgJ0lAUqqEzUgupUUYwH1hFxNZnJeYELOJ1J6Q3Pr8HVU1dgZHMjfvvxiTj/5KMiK7mK/VKIRUEkpWa/2K1f5V3SuWcbk34ThI6pGePt2IhbqHrfUd5r/5ia0cpQRfYeB8ngecD6jj6cffvsaAJExMZ3I9rgD9vHyt6jz/91Hua0dgIAVu0Ajt63Gf/v6DHikwNwpetIug8T9QOlx1TFK+xDRlFsROkXpImCLG3cxY2tDa+7524KPikG/O7OVExNv+etta7yKUc2NlQeVpkLmX4/ZWtND8AuyUa0DBfmKqL2kRnAhhG36plpKFf9jtcbzH4eAyNGjMAJJ5xQ/HvZsmVK15We97a3vc24XCR5/AdX+aAQFtWBK8xUMTBRkIVet9Dxy0pWUUj5Bnev+C0t40bQZN/zPOnzqDyuulgs1Kizo1m5CDD9iqiI7rcQAcwoNaNOGDP5fPAzVSxrWXs3fvD4UvRlcujsz+C/p7RgV59/vE8VghZCthIFdfaL42aqKOP1LCbc/PpDL+tjXSiYLzMoHEMBK5aaGl1CZEtNSV2BSk0AV09dEaluE+guzkLXY7DArV0DRYVmgZ+8uit0eXFaRfvhYh/mSf7tR+GdimKpGaUpggwOhL9p1pFklnDXXhPT34+fcYesLm2DEL93wdCmmFxxWH5c5bs3bcXt9410Sry6vvHwouFY0Qmio9SWW2rqN2blFUM6kwzB9fUKlZoxceqppxb//fLLLwee39nZiaVLlxb/Pu2006zIRZLFr/OLECtXXqZmz6fTNwd15DY63aDs5yquw36TFVcWAbqT96AQOnlP/jwqj6suFgsy6rRYpUIxrokVMPy+/nnORnztbwt9y1Cx9g2WI9r1GYXUvqp1XPnU8rK/MzkPB/14Kl5YGz5JUGn9OjvdKr8FIVOaqIRNMGFx1zuYjWyJW+vYaB11paZ5iyyt9ybiuyG11Ax4vfOehxfX+ifJi4OgMDphED35sN+gqHm7BQvrQcVhwPO86rAqjnQPSXdToupL20b1uyoqNQ3LEvVa/zFOr46kn1Ut429MondcXoeZBygPE+UpZ+pW6RtNz2HkVqSe1FLz1pfX44onq42+TEbeCypL1g6ib1tWVltXcALfSirnzUOStasrG2SuQqVmTJx11lnFfy9evLgsm6KIhx56CNns8MRqv/32w+mnn25VPuIe8p0ur+z/OuhaM+icHVS03GzevEKjwEDGtPt5MgOK6gK+QLBVn6fsxhAUc7KyTp3Bv7Js063r975fP2MNvvpQC9Z1+GeAdsFSEwi2KFWtY2OnnSzIQcob/5ia4euVTfKC2mv42uj1jP+fp/Du376gUZJZwsbajjWmpoWqVMMb2rDI0lkARl0rqsZNq8Tz3FCM2HE/rz5mclEetqjfPL8Goy5/AuN+9CR+P2td8bgDjwFAvJu0+byHbd2D6C1REIuqL+2H1N3P9yg1E7LUDLVx58LHqIhrkpqMnwj4P3u5h5zm2snndJ2S/BSXqt58apaaZp+6X3grmaUmAPzhpfXV11h+IUufrU4Ma9m67NaX14eQoRyZpaZ03aZdY21CpWZMnHTSSZg4cWLx7yuuuKIsu3kpy5Ytw6233lr8+7zzzsPo0aOty0jiJ8yOYeFwmI5edWJVjI+oUclbrpuO9/zuRSzYvFv4u6yk0ip0FybFmJqS3wcVTPh1LMiSGjh08xMExl/Mq7tQaVtqCk6XiVNpTWc+ro/8N9GOsAhXlJpB7ig2Q0uokPc8PLWsHf9+xxzJ7/JroygkwsQ3C7pWhN+7tKCtS70gw6QipqaFnlN3oycMZmJqRrt3ueVIcL0uWHWEcdUNQnStSffzMO22dmcvLnt8KbJ5D4PZPC59dDE27x7eQErSlbgUG94/Ijr6hnDWn17FYT+ZhmN/8SymrtgGQNwOpYdU232v+7m9mJp+RYex5tN9A1z4dmsVfw8e2TV6dfidXvbOBxqDyBWXcoVn+Q8qnsymde5+YUdkIYN0sDX8q7YpoL8u00HX/ZzdxTBUahrgjDPOwIQJEzBhwgScccYZ0vMuv/zy4iC8cuVKfOELX8Dy5XtdAT3Pw7Rp0/ClL30JfX3D1kMHH3wwLrroIrs3QJxENTu1DiYH5kqyeQ+zN3bi03e/HhgQXlZHv4JlZSnF7OeSsgcyUZWaWuJYQ99S0x8Pfjt+lRMiPWVZlERBptd+JpSJKorxIExYEcncUQqo3mqUhaAfmbyHCx5cIP3dlvu5rGlVLIzjVE7VMzaaLgadppbVhryMqDLIjvsX7IqlpnRxG6FM0bUmFXZhuvxfP7+m7O+8B/zyudWGJDJDXIqyO19rxfTVOwAAO/sy+N4/lyjN/5QtNQ282DYsNcNYAMrr0DrdKK4o4W3hb0wi6/M1DS5843b6Uzq2+fX/8iRy1ecGYdr93M/iVTf7ue23sdQSWGcT0VYGdgAYyuqNm9wEGYbZz2Pk1FNPxaWXXoobb7wRALB06VJ8/OMfx/HHH48DDzwQGzZsQHt7e/H80aNH47e//S3Gjx+flMgkQYJiUYXpwrTdz0NUsnZnH17dsAvvOfbA8rIUrtVVahbj+El+V7Gy83c/t6t0U8W4paYnHwKr3M8VJzuFs4SWmhKBqmJqKtWkjglFlIpiPAhFD35fMgGrdtV7tbW73DWQhZ+9Yt6TJ6eK5H4ucxFWaA+dal1QEIkI+zjjvB0bCuE4LDVlYuu5n0e7d50YX6V4Buo2gY7liyqiNglrqSl6jcK0W3t3dRy11l17LDW1S7NDXH3Y9x9bWvb30vYedPRlJDE1vZJ/q5VfeNZRFDGRYu2GKFNbqal1tllceV8LmFbY+PU9cktNc88vMP+AJ/53pTzSREEVh5PIfu5vqemv1PQ8z9rmu7A+Jffz6uNBuQvCygD4uZ+79nW6BZWaMXPRRRdh7NixuOGGG4rWmKtXV+/mHnbYYfjNb36Dk08+OW4RSYz47uwGTNjCdG66LqphJxPbe6uzKUstAz2vWKO2pWYh+7mkbJUkL3ru58kMKLoL+OBM9OrxeFQXDkGhAETYTxQkPq7z7Qzl8pEnWSYmjEHJglTbLs7JYik5z4w7byWyK027n7u6Ex7e/Ty++7FRk03XrwImrHaifvuyzQwV93MXFPE2FKuiMs3G1NQva8yIpqpj/XvmH66sQ5NUcmfz8jjeBXTdz1U3XIV1RWiKMOOYbn0ubEjESZyKLB1DhgK6j8Pv/KCiSn/3k0c1CZtK2LG45t55z8OuAKVmNu9hRJOddyHoHdMZ801KWGWpyeznoaBSMwE+//nP48wzz8RDDz2EmTNnYtOmTejp6cG4ceNwwgkn4Mwzz8SnPvUpjBs3LmlRiWX8JnGqme10iMsFRrTAUFGiqWQrVylTpzzfCU5MMaiC0FVqBlmoDlvNiX+risej+BIEKZhFZCsG7rjcz3Xfs6FcHqOaqxetynIYmDFmDMXUjEMZJCKf94y5dpUSxZrORPbzpDGdRMEGNtbn8cTUFAuuYxUY9b15cW0HugayePdR+5ctyFTcz12w6giKDV51XEG5IVRqGrzXMM9sVHO12U5hk9aVDZEkFWXDSvbq+ssVOGplFfr2SLGYA373ewPDeBy4On5U4nkeVmwT53uwW288IUWAcOsuk9nPA5X7pdbLknNk35OofBVPIfOJgsTlvbR+V+C1A5k8RjQlEx1RNs0WPX+bn7TUUlNyvgNDvRNQqVnBOeecg3POOUfrmunTp2vXc9hhh+GSSy7BJZdcon2tKt/61rfwrW99y1r5JDq+lpqGdgxLiSv2cNDktex4yQ/67ucFRZpk8Rkxrl5a3c9VkspIY7ZW/K2a/bww6GtlP6+y1DQ9sRIf7x3SC1Q+mI2o1DRwW0MGLDWHsnm8rDCptIGfIt1G9nOlazUuddVyJrSlplkxAuoyX1sc61/pAldjHI363lz0t4UAgM+/8wjc/bl3lpQbXK8Lr6zuPEZFuSG697AKLpEcxiw1M65Zag7/PwlldzYvthxWcbWtpKDAjmapGbAp4PNbGA+QNMTU7M/k8Mm/vIZpK7fHXnfe89AY0wadvxWlmY1X3zrKlJZBin55/2ky+7npmJpRyhvI5jA+QD1lL1GQ+Y13FaosNSWGF66MJa7CREGEJIhfxx80YIXp2/QH5nA9qEinJg8Uv/d4v2b8wkI9Mikrs2uL0EkUlNR4YtpS09d1pWqXV+2uQ1lqViYKUr9UCdmz7RvSU55Hjatpxv086Jn617G7P4PTfz8rshxhyftMwm1YaqqgZanpqKlN6JiaMd5OWifiUivgBCx87523Gcvau0vKDVbKuKCI113chl2Am3U/179mzAiRpeZwn+3AYwCwtw9LQp6hbF6swNlzaEvXAOZv3q1UVhyWmv7XysYxn2t0K7TwjHoGs2jbPSAdyx5dvDURhSYQryVrGIta7URBfqEISv8dUtGf9+TjUHX282DZ43I/V0HXkyoqpc2lswlnsh+tLIru5+GgpSYhCRLFXSVMhxrXbrHQUlNBiRbeUlP8u8pOfpj4OnGjuysZlCk77/k8j5DZz/fG1FRvM/sxNSVKTc33LGoGdBP3lQkoJKiOhxdtwTzFRaMNcj7uUtEsNeO51o2ewBxx3o+NbjSORbALMTVLuX7GavzlP08CoOLC6IbLq6o1UdDxoDLDtrOpREEiS82Bovu5GwQlVrTJUC4vceH08I9FW3D+/fPRq7jZWHBaUNm0lhH0iP3dz8XHzSYKMvuUnlzWjs/fNx+d/Rmccfwb8ND578KB+4wsO+dzf51ntE4dTIaPCMI/UZC6Usu3jgjnKSnZ4Ek9BiqvUHn3jCcKilDegOb83CTyjPLqa9owVL53Ms8sV0KZuAotNQlJEP/dPP9duDBdm+7OdtjuUzQwqJSlrdQsWB5ISg9KrlJahvC3KvfzZAYUbUvNIKs+yDNRVx5WdfHa69oWXGaByvcxrt1i1cVTgSDL1yBMTNiDLDUB//fzKw+1RJYhCr7u5xbdCE1d64KCSERSiZ90sNF0cUzuTSjhTQ4ZOjE1h0OMJI+uq65Kewndz40uMPWvEScKKlhquvAkgsP12GQolxf2854H/PjpFVpjciHmY5S9xigtEKZf0K3PtMLk0keXFLNOT1+9A/fM3WSuAgPE6QnhV5MpS01/9/PSf4vWSp7w3HJ51DfdVL4T031ClOdZaakZZ3+lE1PV5AhbWZKu+7kjQ0zi0FKTEEt4noc/vrIBz6/egclH7Cc8x0/ZoboLp4N6huQ9dYWsTMtSs+TfYS01Zajs5Ps+g4qfkho3mjSDagYnCvJZbFb8raoIL7qfi8qUtHFa3M8jKzUNTNhV3FHyHmApaWRk8nlzC4bya0NfqnWtK1bblYR3P3fDMiYs8Vhqio/rfM8m35vGMqWm/7mez6I3TnRjarrhfq5flmiI7nfMUtOr+H+cZHJiS/2c52FJSVgFFXb1Z3DN1BU4cJ8RoeWxEfLEpKWmyW93e88QVu3oLTt26aNL8O33H2esjqjEuWno17SmvEl8EwWVKi1Fv5cc9FNcqoaQSiSmZiRLzeC5btgEiUFXyZSxcY+luomCyDBUahJiiVteXo9v/WMxAGDKwi3Cc8JMgqL0rXF1zE8s3YZDxo3C/3vLwWjcM9sPsjwFQsTU9AplSH5XKC4V7uea5wfH1PRJFFRxWHVyEsYKJLlEQWaV57avB4ChbHAZec9Dk6PZsP2ydSbmfl4LSs1UJAoyTxzPw0TSCLNKTfVyPci/tzix4R0iVI4lrNQU1e9eoqDCGB1/3UO5vPDZBoXKkfHL51bh8jOODy1PoPu5T8cqu9SvSN3X06TlcQqM+f291gy/r2HqsmWpGZRUVfqu+WxaVR5Vcz8PPEWLaDE1g+fntqwk5e7ngusMtlllWTKlpmycc2SISZzQSs3zzz/fpBxSGhoacNddd8VSFyEmKSg0/fBTugVbYpiZePvWEbKrfKilDQ+1tOHstx6Cx75yChoaGuzG1JT8bjxRUEIjh677eRC+MTUrftB2P9eQo/L5GJ+8SmTXjakZXakZ6XIAapaariyeReR83GGj7OpHcj/XeFtdbdsGNGD5tm585p65WLSlGx9880G46z8nJy1WGTbazrRliQgzlpqGhEGlpaZ/wXlP7u0RJ6oeAcXjIRfgJmPyhXlmonFSJfxNnOwdo+OXaygrjqmpmxCjQDbv4YH5m0PLE6UNpJtzPi+O7jiVjRjHuxRdT58kiHMDxl/5bMaYRDUUgajc0nfFz1JTquAKYZhgPKamQfdzHTr6hrB4SzeOPXAMjj5gH+3rdcKlmGyxyv5IW6np1lCTGKGVmnPmzLEey8nzvFTEiyIkLKEsNeGvyKvk/Pvm4VPvOBwfn3SYvgtFxI7yyeXb8FprJ045+gCl3W1dpWZQxm21REHqzyA5pabZ8vyseCqPKruf7ylP5x3LViz6TK/BZffYO5TVLMeOHKZxwTJLhpvZz3XOdbdt/+fJ5Vi0ZdiFc8aanbhp1jr85+H+18R5OzaUKLEoNaWuaBplWLPU9D/Xzxo/TuRKgvBt66L7uV/9LjwHAMlmP8/lhe0qS4ihgs4zr1xPRmkDuTWf/Brd1zMoMaAODg9dRZxJFCQ5rm+p6afg9q8vSOlZOK6qgFPZ3DI9nkYZ91QSBYncz5ds7ca//elVtHUNYMyIRtz7uXfikye+UaGsvdjwJlKhylJT4pkV53eSRiIlCvI8z+p/hNQ6cbif3ztvMz5552t4Ymm78kBTOM3EV/i7F9ftKTP4fnTdz4MybqslCgouv0BSixPjlpp59cmbdvZzjR3NqpiahptXJrpuTE0X3M9dqicMfu7nXkIJH2ojURDwj8Vby47dMHNd4HXxxtQUHx/K5vHA/M34W0ubtmVSHJP7tFtqutAd2NhINZn9XESYBb7f++jCcwCCPVtsMiSJqamSAE+GjgWiSa+bMIov3fczSrtU4opS3Y84rcrDhJzSj6np99veX8WWmiryaBgmhLR+j4JJS03Vkv7w0jq0dQ0AGF5L/uyZlUrXlZYvk1ucJ8LedyWz1NT1fKg3QltqfvOb3zQpByF1iV/HH9R56fanFz+8EE9+9TSlc/fWEb2r9Cr+X/373l8ymjOboIEzsvu5A+57gPmYSB78d4BLUXU/97OaVbWkNR/XR1ygdkzNiO9BXO+Rq4o3YNhKSG7hEl7waO7n6risMHYdUctlc3mc/vtZmLd5NwDgjOPfgGcuOk3ZO0e1X4qCTBnw02dWYtSMRpx69AH40YeOR3OT3D7AqKVmiRInqE/x4EZ/oBsDTEUBI3Q/N3izoZSaPs/DgccAoMT9PIG+LJPLC9/ZKC76ekrN8njTQe+ZX8lhPA50m1y3f1vW3o075mzEgfuMxKUfOA5jRjTtlcuReawffm1nfP7rp9SUtJVr2c89H5kqj6vF1DTbJ9iOqSnij69sKPt7QVtXlYW237u0oaMPszd2Cn8Lin0alcqydN3PyTBUahKSIL5xVwL6Lt3d19bOAeUOsTDQmug+i2WpWGBoTr72TtLFv6u5n/v9Vv5jUnoN8xaM8ren8rhfnKjyMsXX+1Gl1DS8/JNaasYcUzMulxGX9W45T56tM5JSM/SVevW62rZh5YrzdkQLt8eXtRcVmgAwffWOYqgSFZKMqTl99Q4AwFPLtyHnefjJv00QnjfsdWROHq1EQT6WPHGin/08XJkmw1eGKUu2gZrLu+N5lnyioOqKw8bUBIAmDW2Xybmcn6JJtf4gdJS9a3f24uTfvlD0dJqxegeeueg9oetOgihrIV1UM5NHkUF1fSY6q9xSU3ydTvZzlbHSeEzNCOWpZD9XZSiXx6jmpsDznljajs/cM1f6e2UT3jO3FV+8f0FE6fZSOUbIEqjJY2q6/43HQST3c0JINMK5n4efmCq7nxfr0q9DWpbCZEF3YC1aB0p+jx5Ts/zvpIYN0+5Dec+TKisrB0cT2c9l8ltPFGTKUjOqUjOm3VWXFy/+MTWjlBtBIapxqcttG4Y4b0dU1fUz1lQdu332RuUy41FqBtfh5+Jmuo213c/NVh+KoNjgVccVGs12TM1wlpqysSbrzIZImI1HUwzH1BQfD4uOpWbl8wn7uvi9nzpzySBUvIwKXDd9dVnopudW7cCKbT3Fvx15/XyJM1ZgmNinuuN/pERBZf+Wz5lUreDV4hQHn6NDlPmSSm4F1f2M7kG1+Pk/f3alr7FD6d3s7s/gvx9aqCaAIpWtNSh1P0/D15wcVGoSkiD+7udmdgxVypTVYUKZVihLNkfzJP9WwU+RBkTfoXRlADG9fvd8FryVx7XdzzXksO1+Lnsv9GNqRpODMTX3WAcbWjCUEsniRuNcV71+wvbRccZZE7udVh8c4ePGXUkciaVd++51EwWZrj9MFmWTsej2lumgUlNySc9gzhmlUqKWmlnx+xhFqanzfldvUPtfK1OahHFdVqmvEh1LTdFm0IK2vVbwKu2UtKWXqkeQCVST+JSiHxvYr469v4neCxVLTb/+vcowIQlLzYSyn1fSMxg81/c8T+p2XqD0/fy/VzdE6rfEMpT/LbXUlG4SEiCC+3kYNm/ejHnz5qG9vR27d+/GUUcdhfPOOw8AsGXLFuzatQtvf/vb4xSJkEQJs2MYpfNS7YeLSk2DPaVUiVZSibalZsAkXSlRkO8zKP8xqYmf+Xg3cpe4MK4rhTJL/69CZfZz85aa4uNxW2rGNV93VfEG2LPUjHLLOgspVxXGQWL1Z/N4esV2HLbvGJx81P6xyFSJaOEm6ptHNIW3vLJB1P7etIg6lpoebFiKArrRzuTucuLz1eK/CeoxeLNhypIluuoZymJEoyP2IwY3q3WRWWpGiak5qKH8MOV+7neZWUvNaM+oVBSVe1WxjrNJmOQ9YQnzDLVjavr9FvBsypSePnMm1TVi6mJqGnQ/V7XUDKK0fbb1DBop048hSb+oG6O63rCu1PQ8Dw8//DD+8pe/YM2acnej973vfUWl5ssvv4wrr7wSkydPxhVXXIHJkyfbFo2QxImS/dyu+7m5Hf297vLBnbFJFw/AQKKgqt39ZDC9OPWgPiFSV2ruuV5D1uqYmmaRPVvdCbyrCq1KXJYzl5cvpdNgqelw00rpGMjhoud2Yn3XcHb0a86agB+fdQKAmN3PhcoMgaWmhvInyZia6teblVHP/dx8+zSgAbqjoGqG3uJxheJFSkdXs5/3DGax/5gRUUUyQpClZmVSDZNkcnnhHDCKxZOeUrP877Bvi7/7uU/9mu9U1OznuvNqFYs2m5hMshSlLmNKTZ/Tt/cO4UdPLsOh40cJ3//yZycvX9Wbz3T281zeww0z12DOxl04/dgD8e33H1dlxR/NUtPcu9hTodQMK1bpdTbmHlWWmpqJgtI4P7WBVaXmzp07cemll+K1114DsHfAFA0KbW1t8DwPCxYswH/913/hqquuwmc+8xmb4hGSOGGynxcIs9uu734eHa/i/7K6Kv+tgpmYmn6/hWuBpsYGowOf8V3UvHpMM9XYTmHczysnW6YtYeWWmnq7ty5bQJbi8sTGL45rtERB8ShEXVUY+0n1zMZ+rO/a+67/9JkV+N6/Hoexo5rjTRQkOCaatOtYasaR/Ty6hbZppWZp2f7n2nhdQ3ifh3DbVCmz+iSj7uchGk+mg+oZzGG/0Y4pNaW/AxqfoBZDOXFiE5mbpQrRLDX9n3GDJP+5f6xEH8Wcb23VRLFgBcrvV+V11vVeMY3fN2fcUtP3GeodD1MHMBwHVeVaeUxNH/fzynMVPhOdPu/nz67ET6YNx5J+eNFWDOXy+OEZb6mSLyyV7udRHn+lpWbYNUbp/dgIfVP5nOXu5+brriWs+UR0d3fj/PPPL1NoAsCoUaMAoGo3sK2trXg8m83iJz/5CZ577jlb4hHiBGEUalEW8aoDV1ERaWAyoWNZqrsuCYqpqbLw1VEsqzaHTlZOFYzHmoQ8vmG1+7lamX5WILK6Kt3PTd+n7Nnqx9RMx0zCZTn93KWiKCSi3HKUmGxp4Ddzu8r+znvAnNbO2OUQ9c9i93OdmJppUGoaEmQPuomCTBNmWNONDa4itmiRblKpGcoLRlJ/z1DWGdfAvd4U5jeXghiUWF9FsdTUubZKqRmyTr/5t8kNcp1EQUH1qXwaPZobvabxtdQ0XJffo5BuvGr2L5E2W0uu9ctFIHv9K2VVstTUuL+CQrPAj55cXl1eFKWmSqIgxbJ6Kub6oROElfxbFmokClEtNckw1pSaV111VdHdvLm5GV/5ylfw2GOPYf78+cLzL7vsMnz961/HyJEj0dDQgHw+j2uuuQb9/f22RCQkccK4XERyP1eOqem/o69D0ZVdZhlYOoBr3lSQdaDKAHD33FZc8eQy4W/VE2E1+cJYtPhhI96Nsvu5Yt3F+KaiwOeSayon7nG5n+vH1DQhjX1cljPveb6ZPEMT4VqdS11VGOtuPBX7zBjvR1RTRjAYjXQupma06xO11LSgSpNZr/khjwEWXrEmGpOStmCRKaGSdustJchS0+Y3JbOqjFKljlKz8tSwn2YYhRigf58ZkzE1FfqCpC01/dYmpl/LMApUfYMLvfPLZCh7drLyNSw1DbufqxBF76eSKEhV3O6BSvdz9fWJ7Lo4NlRl4Sd0w7nUG1aUmgsXLsTTTz+NhoYGjB49Gn/5y1/wgx/8AG95y1uk8VoOOOAAfPvb38a9996LcePGAQB27NiBxx9/3IaIhFhld39G6bwwLhdROi/1mJrmUbEM1B0rguI4qkwMb3t1I34lcQWJ4n5uEtNjqOejYArrfl44TUfWSkta0/cpe359jKkZO7m82P0QiCZ3XNe62rK6cgUpNmwgaubIlpqpiKlpRo4CWomCLDRPmHw3fjHhdI6XlylQaia8oyPNfj6UTTyzdIGg+dL01TuwcVeflbp1XMVtlFnujm1nzPB1Tde11Izsfi7+t4zK2INxU6Y0ynvY2TtUtNgz/f34lWZqjhJF5tIr/WJ8msx+blpRF2VeZrKvqHY/D1dO6TLIgqFm1TupmyiIDGNFqfnYY48V//3tb38bJ598svK1J554Ir7zne8U/37++ecNSkaIfV5e34G3Xj9D6Vz/3cmARYuOUHtQdj8PmPzqUCwr4HcgvKWmjKhuApXPR9n93LBS04alpqr7n677uc6LWZUoyLhSU3xc2/08knt0fJMQl6c7fpPwpLKf6zyaKO+ASyQxKRZnP48WU9M19/PHl7bjo7fPxpcfWIBt3YPa16tQptQMeI53vtZqtG4gnKWmftbgcFZFYd/rMPckQlb/UDbvTL+8d0NDLNFH75iDt1//PB5f2m68bhXrK110HrlujElZqAW/a8O6posQWbLroJJBu5TELTX3iLitexBn3PoyDr56Ko775XN4Yc1O8+GXQiifdUWINi8Jflc9Tz4GVh5VaT/TY1WU8dms+3mwpaYKZeEcrCQKKi9THlNTpsg2LlIqsaLUnD17NoDh+Jmf/exnta8/99xzsc8++wAAli0Tu4US4io/e2Yl2vcsaoIIs+u7N5u4tmjKk4Mgl3EdCiWoTBZMWx1FTSYRNg6T6Vj7NtxvpM+j4rDqYrEw2ArdOyRFVFlqGl7+ueB+HqcOyWXFm58iPVr2cztWN9Xnhq7GKtobQQY3rFRRttTUMAXsGrBvWaT6bs3ZuAv/8ec5eHL5Ntz5eis+esfwHNi4UrOkeZJ4H8MlClLcPSueH1ymaEwK29amxhyZR8NQLu/MgjMo+zkw7MVw7XOrjNdtMqNxGEpfmUgKJ8U6qn/Tq1UnUZBIAatiqVn6HSUdU7Mwf7xt9ga8uK4DALC1exCXPb7UQgJJ/XWXyezngdcq1Jv35Na8YebwxtcYkbKfVyQKiiBHlaVmyHJKn0PUeLciKuXSzn5uWJ60YkWp2d7ejoaGBpxwwgnFxEA6jBw5Esceeyw8z0NHR4cFCQmxx9QV25XPjeJ+HmYSr5393EBPGaSELZ2w6C/QC2WLr4uu1Ax3nekBxrSyz/NRMFXWpex+XnhnNOTIWU4UJBM9TvdzGxMgGa4q3oAgS80ISs3QV4a39HEJXWP0vTE1LQgjQVRV1OzncaDaRpc+uqTs79c37cbK7T3KMaxVKbXUTOJtbAyRKUj2fqqGP1H9PQ7LXT+klpo5eaiXuFGd172yYVeEOsSFD2biGwdFlCpZ7Lmfy3/TrVJn7ir6KkvfOdn7V2otn7yl5rCMVz29ouz4nNZO85aaCnJUH9etI8pGbWk5snM8H0vNynm1glIz6lqpKjlR+LKULDUVh6LKmMbhLTX3/jvqulJEpVhMFBQOK0rNQnKfgrVlGMaOHWtKHEKcJZyl5vD/w0ziVTvEMAqqIFTKChuMW3aZcUtNxeJMr69ML46Hk7aIqdrlVbyXfFFZUn2BrLaqREGm202q7NZr0ChyRY2NpYOrijcgKKZm+HKj3HItxNTUfeZBLqg2EIko6pubwwRttIhq24qUQG27B4x/j00aMTVtYDL7uYyg01WszpJAprx10lLTah3i44M2AtFpoGupKXvV/Z5lWIWnCFmiEBGizYbS6mTTnVJr0MRjakYIxaWLn1Jb9ouu0i/KnL20Jl9LTVmm9qo5fLDsyglBJXVWWmJHyn7uYEzN0sviGGvk7ufWq041VmaQBxxwADzPw5YtW0KX0do6HA9o//33NyQVIe4R1l3F8zy77ucBFpA6FEpQ8UILn8lX/Lt5paZaeXG5UYfFg3rsIF33cx1Jq93PzSJrN91JSTRLTSo1gYL7uWQSHiVmaegrNWNqOtq2puMQ2yCpfjMqKk213+hm4fGRzY3GN2kayrKfJ6DUDHGNPJmF7Pxw5fn1L3EgUwoMZV1Sag7/X6WdwralbMPQRqIgHUqfjynX4EpMZvDWstQUfJivtXZi7qbOPUkhxZRag1VatMWNX39mPomNz2+G3HujWWoGv6sePGX3c5MxNWUWhP0VlthR5hlhQlXInlvvYGVMzepzVG7ddvbzyvdF2/3ckTEmaawoNd/0pjcBADZu3Ij169drX79w4UJs3boVDQ0NOO644wxLR4g7+HX8cvdzucVTELrZz824nxfKDO6M9S01C4o0M8qrSsJebXqAsaHsU81Kq+1+rjFpSCpRkK7RSBQFQtSA/zq4Pq+RTQajWWqGv1gvpqabrauvoB/+f9Lu58LzHGtilWc+bpRYqTmqudF8TM0yS02jRSvREMJUUzrOSM4PUgb4z5kUhbKAb0zNmGWRoWOpKVtUByG15NIM+WKaskRBEZ6Ir7GBz3W6dUa11Lx99ka8+7cv4r/+Ok8q81CZ+7kbMTVFmPZ28euWZT/FGlOzbE0knzMpu58bjKkpsyDszxi01AwRqkI2z6621AwnV2kbxuN+Lnvuas+8XrGi1Hz/+99f/PcNN9ygdW0mk8Evf/nL4t/vec97jMlFiG1MWoBJd+i88Mo61ev2KiKjUyhLvrjZ+4NrVkeVkwHV2sxnKzc/qVNdVKrOrQvPYs3OXmU5bFsxSi01tV12w8tA9/O9yN2lxMe3dA3g3Ltexym/fQE3PL9GODmPcsdaMTWTNTSSovtuhrGojorqaxnn+6tkrRah/FFN5pWaTaWJghLQ4JlMFKSaqE61PCDcfEA3+/lAJodLHlmM4699Dv9++2xs3NW3p27x+cPu5270yzobGmEUC4C8j7eR/VyHOLKfhwkn5Xe+6jfu910+sKANC9p2C38rVVC5ElNThGnLOP8s9WY2XqNIXHqt3KLdk35rldeotF90S83y9ydKtImqREEKsskSa/UMVSpbw8lUep2NdWdliYypGQ4rSs1PfvKTxZiYzz77LH7xi18glwvuMHt6enDJJZdgwYIFAIazp3/yk5+0ISIhVhjUNJv3dz8XH/d8duiC61NUahaynxvoP/eWFTwA69Zn2+qo8hmo1mNaHhuxJk1nP897Hn7w2FLM3tipLIdthZ+p+GupcT93VPFWQPa8Ze17/v3z8fdFW/D6pt34weNLMWVhW/W1Edq3FmJq6r7LSUyKdRPUxYGSS57CSTKZGxsarFoOJrG2CZcoyGxf61ecbF7UM5jFyu09keIGFhRHf5q9ETfPWoe1O/vw1PJt+PYji4fr9k0U5AY68XTDuos7q9QsqT5aYjp9hRgQzkJMde4QpJj/2TPibPalipOkE235zV1Mz6HCrLvitdQMNvTwM24J436u2k/L+oXK7zvK+xTG/Vxm2VxpqRk+UdDe65KNqSl55jaFSRFiv5mIHHjggfjWt76F6667Dg0NDbj33nsxc+ZMfOxjHytzJx8YGMCqVavQ1taGV199Ff/4xz+we/fwjlJDQwMuuOACvOENb7AhIiFWkJmMywjnfh6+U1WPqVmoy1xXKSup9Hj47OfhZAoi7ABoWhwbMTWl70LFcVX38/W7+nHzrHUqRZaVnc97uHb6atw0c6tSPTqI2i2MEiySpSZjahaRtYWo2+wZzOK5VTvKjp1//3x85l+OKDsW5Y5rwf08rHV7nNZjqjXFqagbvn9/ZYCKPNKwKrBjYV8gPYmCxMcVh58qfOdMgt8WbN6NT/zlNWzs7MeR+43GIxe8G+88cv+S+lQVR8N8//HlZccfXdLum4nYrZia6vOlMIoFQP58dDf8TaNrqSktJ2TczDB9WyaXx8jmYNujoPxqsr6i1Lot6fHNtAW2H76JgkJakFcSTXEu/ndl+VKlZpW3VbAsyu7nypaa4e+/Mj6nCjJLzSr381ASlV9nJaZmRZGydlYNG1avWFFqAsCXvvQlrFy5Eg8//DAaGhqwceNG3HLLLcXfPc/D66+/jv/4j/8oO1aI2fP+978fl1xyiS3xCLGC7u522J1d6+7nRRlCVVNellf+fz+0XXQKC3RL+1RVlpqK9ZgeYIxbfuZ9LDX33GNrZz8unNKCFdvV3MllCk1A/i7nPA8z1uzA1dPElgRREX1fYSYkqbHUdHxiI1OQi5QRop130cQ1mkWE+rlJL/pk+D3zBlRP4uPIgFyJqgI1VvdzhXNU5JGd4nnhY1+r1JVMoqAwMTX1lASR3M8Fv/1qxmps7OwHAGzaPYDrpq/GQ+ef7F+JAD8X36FcXtrPh41NaYOiZ4vCuWEtK2XtkHSioFKxonw5ftfqhloIwpSlpuzXMkvNhF9T35iappWaPr8Zs9TUOrviWoV+3vPk7VJtqami1FSTWPYdm1Rq9imEQqh852VtUWmdb8JS04aHWWUfQffzcFhxPy/wy1/+Et/97nfR1NQEYO9Da2hoKCovvQo3SM/z8LnPfQ5/+MMfQgUlJyRJdCew4dzP5VYBwfWpKuXMLXyLClJpoqCS71+zxrgtNZXdz01auNrYFYTfDvDw/y+c0oKpK7Ybr7uUbM7D1/620Fr5om8ozAQ5mlIzzkRBbk94ZN2jqH1VXV1tJX2oPjd0NVbxGwtEipgk3AxVa4xX0apwjko5kuN5z46FfWn5cRPOUlNP0Eju54IfH1xQHrLibwu3aMlTwE+p2T2YlS42M7m8M/3y3g3mYHnCxtSUJgpKWfZzmaLQ38pP73gQqkkGg75L2Vq6dL2S9Kad7ncdBb9blX2r2jE1DYU4kBXjZ6lZeJa5vIdMLq/UfqptLFvjfvDWV/DxP8/B5t3DG0hR5hlDuXyZ+7VKUaru52HFKoupaWlNVoqu1ycZxpqlZoELL7wQZ599Nu688048++yz2LpV7GI4btw4fOADH8CXv/xlTJw40bZYhFhBFgdDhrPu56FKl5QVoHgsPe5pZ6UOKZRy+XbbOe6ySssMsiowqdCUNWM272HNzj5j9VQitNQMo9SMsB6LN1FQbFWFQrZIE8mtrAiLcM867eVKso9K/PqopoZq1/697uc2pSpHta54LTXNWK/4Wbybdz/fW14SSogwiYJkGxky6YNuy6//tqmw97OG6xnMyWNq1pn7uTSmZkglqSnMZT9Xq0PleBAyl9pKgjYAVSw1kx7f4kwU5JvQSWPj1Y8oEitZakK+Ye4BeHTxVlzw4AJ09meU6vR7rzv7M7jyqeXY0jWAtx82XnreY0vbkcnl8eR/nxZZEd09mMVBzSMBqLVlRlJff2Y4xFXjnsEr9JqupHwriYIqitQNk+XIEJM41pWaAHDkkUfiyiuvxJVXXom2tjZs2LABXV1dyGaz2HfffXHooYfiLW95Cy0zSeox6X7uFzsjbJ+qaqWms6MfWFZFmbLfh/+tV19xga4vlhLV7udqmJwg2phsDicKktRnqU4R9rOfVx8LpdSM0B6yyZYNkra2CEInUZDqOxjljmvCUtNHsOHFbvnvhXVsnNZjqjXFm/08+ByVzQy5JU20zRBZmaJ/x0WYREHa2c9DlgeEc6FVdakPstT0cz93pevQCT1hOlFQ4jE1S24nUsgS30RBeseDKG3LTC6PX81YjSVbu/H/TjgYF7z7qOKaOezKeShrV1Gjg58Sx/Sw4FecbrgMaR2R3rHgcvyyn2fzHi6c0qKs0CyUJ+PTd72O6auH45v/Y7F/7PunV2xHLi+3IlWlZzCLg8aODJStgMxSs3B9IwreweHkKXM/j+Fb0a3B8al/bMSi1Czl8MMPx+GHHx53tYTEgq77ud8OpI2YmqoTS6/i/yZQsczQjqkZu/u5fUVLtQwGC9uD5/k/D9PtKVsLW1dqCsoPF1MzvAyxWmq6E75NiKztRe2rntTMjtVN9bluzhr9lZrVx2z3mSKU+804ZVI4J1KyB8+CpWaJ1MnE1NTHz9JI5/y9v8t/s6mY8dPn9vi4nw/l5PGr46YYU1NBnLDu4q66n5dbagYje95+bSd/18M9/1JFzQ8eX4rfvbgOwN6QCl8+5WgAwRbUsnsp9ZxIetMu3iRxPr9JjpsOo+GHypoon5d/a2tDeD/J5G3bPVBUaOqUFdW6ttRtXKUov7VE+WZgOLlKr7KxbqnsI3THDDdGmOSxGlOTkHpDd3fbz91anjU0/IChGqcjyGVchyCrzygLtb2Wmna69LBjl8k1jI3Fa95nwe3B/AApdz+3u9Ax5n4e4RkwpuZeZJNBoaWm4r1EmV/qTBwd0UtU4Xf/zsTUVKwy3oVtcGUq4kg3h2D+flTcEm3SGML/XD8WXVB5fovX8t+yBrOf+C2Wugez8uznTlpqBks0kDHrfp58oiAzGwI679/e4+HqKm3LgkKzwNf/vjcWeWj382ypUjPZtzTOcSncM9RUMkWZl5TG1JTlIoDcUjMMsq5yS/eAdll+8T5VKVVqitq+8pUPstQsEFaqspiaMbifuzJmpI3YLTUJqWX0EwXpD66eF75TVY35WVREGuhaC2VIF3+e+N8q6FgehKHKUtNONVoymMCDTzgAKxZGYurB/ZzZz/ei436uqguO8qrWgqWmn1wiHVThGcR5N5V1yZRNzrmfqyg+ZYvgPJBvsNePJpIoKMQ1MmWFPPyJ/435xtSs+K1fEsexNMaa6hzHT5/bM5SWmJrD/7dpqSnbxItzHBRRWn0khZPPtVJX4ZD37hdTs/Q3E4mCknY/f3xpOxZs7oqlrlDPUHdzRu90qQx+IQ1MPjNTbvfDZUVXUpdZaiqc7/et7Ogdwv5jRmDcqObwMTVLrosjUZB2uANjkqSb0ErNm2++2aQcvnzzm9+MrS5ComDS/dxGoqBBRfkKpZu11Aw+V9tS0/JqQTf7+U+mrcCH3vIGozLYuMV8Piimptn6dvQOCY/bds0WWmrG7X7OmJpFZAtesfu52r3UffZzzZiaBZfDJN3PZeNknDKpPE8lpab0uGf8nSmzNkvghQwT914mp9RzI+C2fN3PKy7uk1gbDubyGNPY5F9RBX733j0QEFPTkb6j8CxUxAmbKChp5ZiMUrlUxgyp+7nPNXLvqnD4WZ+VEibWLVDuuZX0Y7t99sbY6vKPi6q+8epbhyH3c79+0uTc0mSSq+GYmtHk6Rna2/8oxdT02QU/+ufPYsz/z953x8tRle8/s+XWJDe9956Q5NIkIYTQQVCQXkTAL0UQREERRCkiKiBYEFB+ooAiKB0UBemht0AaENJID+nt3ty+8/tjM7uzs6fPOTOze+fJJ5+7u3PmnPecOXPKe573fdMJ3HXiFOV+XqDUjKBPzVirmYUvpWZQgX1ipWaMUoF8oCC1a8rm58JMzd2LXx1KzdxfupLWgbJPTXmxhOBVuvHKueH5Rbjh+UVaZTDiUxPsk9mgzJi3NYs7MldB52NqRntlI2d+LoaYqUm/RmRqhrB79ZZImyejF/2cnw+tPW0b+GJni6xYTIgweExCJfq56pyuct07tu9qpSg12zOoTsspNVnm5w2tLJ+amci4Bcn70+XLoxqtPGxGJg0FJqi+5gzzCjEHTlvy3ChwmZqU36Nkfh4kVPZdQTLnCl1ykdOwAgWpQFe9AeCT9Ttx5TOf+JJnZ7OcT00WUxPIsva/99QC/N9+Q5TkcetMjfjU9FSyM72POuHLp6Zt28L/Re4hXY8Ro5QQjPm5unmwqHy2568OsMydSZ9FkPOpaWisOO+RuXhr+RYjeYvClE9NKsPIprM4dWPdDr2bfi9IG02VE2Q/axhRtoUORD1QEF2pSfpNrNF1bR5MlmMSrAMukhLKWfwHub7yFhUJpaZAUSJpmihswIxt4+MvdkpKJS5PuQYK4tWK1d+91xpb24np3P1PNPo5O1BQB92nZntw8ykPMus63dHPw0YQ5ue6fWo6awfeup3Xh8UCBUXzuZkAa+6jXQorUBDVvYnt32+lG7S8VOox7fdv+BWnwPxcZMASGXd2trTjaU70dhrca0UjPjW93wNUopcTlJmaX/rSl7hp1q1bh9WrV8OyLNi2jaqqKkyaNAmjRo1CXV0dKioq0NDQgBUrVmDu3LnYsmVLjv154IEHYty4carixYgRCmQXgqzBkaagsKGmmAHE5cubjPsfKp0sRDY38qyO4jx049In52P25Qdlywlh4WeiRNtmmLUYKjMM6DM/V2+RIDd5UWEE0UBrC9I4KNrkgUU/j+xmXU6p6bgACLI23n5Jm4eClYkPIbM3CkPEBvDp+gY5oSTkCSVQkIJ1lrRPTU612EzNwu8083OVIDjOu1STThblu5MZ/Tw6J015piY/re7o52FDR7AQ3r0iB/cycOZL3rqdG/2covRsbXcrauRkK2WwnoYuxbQvxblAuTaCMj/XVoQUGlrZgYKALNP4ppcX47MNDUgKmhHQDiF5CD5QkFwZMQkwC2Wl5gMPPMC8vmDBApx33nmwLAs1NTX43ve+hxNPPBFdunQhpu/o6MD//vc/3HTTTdi4cSPef/99nH322ZgxY4aqiDFiBA6dTE2qubYNfLZRbbMkztTcvfhVKsWTF8dEvOBUUrLEPFNTRTIxfLRmB7Y1taF7dToUxkXwTM3ymSCjEf08uLaM6H4yB6lAQQEwNWUUlVFtW5ZcSYISKhcoKMD6FDE1aYGCAtxYi4xxfqMkf7xeM1OzIH+tWQtBxeMUfVOuxgxi9RHvvVTzcwUNjlP32opipWZDK8enpnRpZpA/BOZLpOpTM7pMTZdSU+C9pikCg4x+7hyY8JSa/EBB5N/d+4HOxNRkPQ/aJWmfmlKpPfcKKOAzGb1MTdlx2jREAgV958n5gflijQMFlQZ8mZ/TsGvXLlx++eXYvn07evTogYcffhhnn302VaEJAMlkEscccwwee+wxDBw4EE1NTbjiiiuwYcMGEyLGiGEE7pNPEaj4dlm6uREn//UDqXIcCCs17cK/OkA9xRbwH0NDUAuxIE2IvTCj1GQxZ6NjLucX2nxq+nj8poMhuRH1jQltMUhWaorl6VfxZCJtkGAHCir+rS0EpcPHX+zEH95cjpcXbwJA9+0crE9NPvw0VSaT9S2mE4Wb3eCfo6ipthuyDGdeF2Can3t9atICBbn6n2g7OnXvUlnsi5PH1IzKIaEUU1PRp2Z0mZrkz7Jgm5/Tflcr0GHV89btPAZ1rNQsBOt91BUF3FegIBF5oPcAgWp+HtLWZ2cLO1CQBbXgUqqPxd08QRzcdKLXUSuMKDUfeeQRrFq1CpZl4dprr8Xo0aOF7+3Xrx9+9rOfAQC2b9+OBx980ISIMWIYgVbzc8qoducbn0uV4UaboNLVzv3VN7KKDNLyfmuCYRXmGKHGSyqGiUUFS3Fp29FlpcmC1J9UFiT+mJoB+tSkbaoi8kBlop+Lm5+ryyPTLNFowWIwzc8Jv7XnxrLgavT2iq34zpPzcfj/exu/f30ZlSkXZBuL+dRUl2jFtl1opDAFVVGw2Q1hs5lQ2DHIKgl4Lc40PxdlaiqYVrvNz71oZPrUjBBTc3e1xczPy4upKRv9nAY1P/hqZYkyNdWjn+fzNcE+iyrYimnxg1fVMmTupeWTsfWuLVkkhzDQ0CIXKMg0TEc/9641pM3PdQpTwjCi1Pzvf/8LAOjZsye+/OUvS98/Y8YMDBgwAADw8ssva5UtRgyTCCJQ0JvLt0qV4UYYTE2eglRkAmchiDW0w24qF5+amQzDHQCi75tRFESmppJPTXUZAvWpSalbVDYsNNbqmu3NWLBuR8FvwQQKEkdUmSxspmbxZtdhnYdVncue/jgagYI0RT+nYemmXeo3UxC2T00VpibVpyYlPT/6OaMsQaamW2EnHCho99+KVPG2aWdLO3Vsa+2IjuVDjqkpkLazRz+n6QmDZGq25Zia7Pv50c/JCa577jNU/+g/mHHnG1i2Wf94FVUw3X4xlIhyZcilL5ChIB/avikg8/OQXme3UlOXb3xAfb3oLi4Qn5qyRURz2A0cRpSaK1asgGVZGDlyZC7wjyyGDBkC27axdu1azdLFiGEOsgwAFfNzPxBVaurcMNl2lq1w6ytLqdf9lBuEuRPNXDIImNi82qCz94KMfm4asU/N4GVggSXHlF/PwhX//jj3nZbS+/z8MTXFb45IExaBJteP39yCbS3F41YU+gI1UFCAopmwHHCDplDzg8K5Unv2XAjGYiiA7gAbrPG7SKlpgKlJkq+hpZ3O1OzIROaQMG9+zpdHxe8oUBrm56YOwuiRqtXKas8xNdljiar5eTbvDN5avhVLO5FSk/U4dCmm/bzzQj417fIOFMTzqfnRmh2EX/nw5RZg970m1lDeHKM5ikYfxnxqAkBLS4tyHtu3bweQDSAUI0apQJapyY5+rn9YE17M2wV/fMGGjW/+8yPqJq/wVFI+/yDMe53nGsZEE3igIJTPhBoFpWaQ/lhpckZlo8lbDP7utWVYviW7fqDVxdue/qKfSyg1I9KGXtDq8MLKZmxvJSg1QxzLHESBqSnyOP08ctUoqyyIMHhMQi1QEP3wjPg7p2dKmZ8L+NQUhVN1ktx8n5rSxRlBPlAQHy2K/TdIdysykA0UJJJP8TXy76oKruv+9xm+99QCfLhmO/G646NYjTrUecF6/PRxSV8Z3Htdn2nrjoxmpiadUR/O4LXTkPm5n6yc9WsUfWpGZIoJHUaUmn379oVt21i4cCF27pR3lL5mzRosWrQIlmVh0KBBBiSMEcMM9Jqf+5WmGNLRzzXMJtub2/HPOXTGte1zsRmErqE1RJNNE2XaNsOnmR2Omb0JRMH8PEhdGK2sUlFqZmzgzjc/3/2ZriRww0/NZPbf0WjBYsg+25xPzRDfcbpSMzgZPly9Det3sg/e/bRRk6L5LgvuDW6pmJ/blGagMpA4zca0bvHcq1OpySq/oZXuU9O2874Rw4YjhZhPzU5ufk75Xc0fI788EhZuaMAdb3yObz06j3j98P/3Nu57b6WA+XkMN1T2XcFGP+fnY0Pvu0Zb94f1OjdwAgWpwk99nAP12KdmdGFEqbn33nsDANra2nD77bdL3WvbNm688cbcA95///21yxcjhinoND83cUImakad86mpocwveBtH12eVuSIY8/PwpgxTTE2WU/tymSCjwNRUvVUnKyoyPjUFtIhLNzUCoLebV0EQnPl5NNrQC9lnGwUFC+1wLUhF61f+8h7G3fIy/vvpemoaP1NLs3GmpvbsuVAzP6fPM8TfNTI1aYGaVBR2tuevGzua25jjkOxhtynkfWryO4/jU3PdjmZc/7/P8MuXFmNnczvnrugcoHmhz/xcgalpcFz77lMLlAMFdVawngbt+coSkHWYOQMMRXnG1n6AsKGhlSlLkDDF1PQDZ+1kYj3tzVGaqRmRNgobRpSaJ554Yu7zgw8+iN///vfICIwIjY2NuOKKK/Dqq69mhUskcPrpp5sQMUYMI1AxP/9g1Ta8vXxL0eRhYm0o6idJ5kSfBxmzTRXFQRDMgLz5efAzh4nq2WCdAJeTT83i39SUmn5kULu5Iik/PdOKogWxCBoicji+vWhtXszU9LF5kEgbVaWmbN90FMth1iYKTE0A2NHcjp89v4h63c8zN2J+7hInHPNzfYGCaIiqT00nZ1K7b2tiK/v8MEN1wlmLiTE1O7CjuQ17/noWbnxhEa55diFm3PUGV8kRVaamu2/4eXfYfvD1MjVF0NjawWViRuVQMypgs21pvwfHnFu+tQlrtjdl86Ee/ug/QFixtdivahR8auqN8aCeV6tRpmbh96iuN6MOI0rN/fffHwceeGCu8/zxj3/EV77yFfzpT3/C7NmzsXnzZrS0tKClpQUbN27E22+/jd/+9rc46qijcpHTLcvCueeei9GjR5sQMUYMI5BdvM5athn73f46DrjzTRx/3/tCJ3R+IM7UFF/88sBbUImYWjDzD1KpGeA8o/MZeJHJ2HTfQXZ4fnR0g6RQVzM/97MJUrs3nZRXIESfqcmXw4nCSuuf3jEsKIVzRPfq0uOfwzYIs0tEwaemg/dWbaNe88XUNKDIco/LpcPUJP9Oe9S8eunxqSmvcM5ZrxCK5x1mR0ap6dRBIG1LewZ/eW8lNjbm2Vvz1+3Ei7v9ONIQVaWmrPk5DUyliCaFmCx4TM2osmfDAtv8nLIu1liGCOp/PQsbG1oYinL9TM3lW5qI5YSBBk6goDDgrJ3MEE1sz3fZ+2MAQMpUxrfccgvOPPNMfP7557AsC8uXL8dvf/tb5j22bedOgo866ij84Ac/MCVejBhG4MfM6N+frMfry7Zg5qheAEz51BTLNMfU1DBU8hZUBRs1hUoHydQMEradNUE2Fv2csQCPqK9/aegyP/ezKVC9M8vUlNt8Rz1QkIhy1VFECDM1DbFuvIiIXtg3cj41Q5SBGv2c9FuIDe9n/jPB1HT31zA2mypmrnQlgdzv+fzo17zjXJMBpqZKn4ic+blA32luz+Ded1cV/f7cwg04Ymwf6n1RmWu8kDU/p7GSWfeS+vqO5jas3FqsLNKJBIeeFNVnEhpYemldTE2fTb5lVxvueONzjOvbhZq/dqUmgakZ1vTb3J5BJmMjkbC0rgH85BRk0M9yWW8GDSNMTQDo2bMnHnroIRx22GGwbZv730E6ncZll12GX//616ZEixHDGNp8nshf9Z9Pcp/NRD8X22g51P+SYGoGMPo77LAg5xlnERVHP1dHKZufpxXMz6MeKEjUn+O2pjZG9HN/J9pulINPTVkEuTCnoZkyD5HaOMxm93O4Y8b83M3UDL5hlPz8So49Ws3PKc9Ayafm7qxVhtJSZGo2t3cQlWWkfrdqWxMO/eNb6H7Ns7jwMXJQm7ChLfo541F62+bFRRsx6pcv4dC731YuTwS8AF5RZc+GBbZfVDozUqoMDU3+u9eXMeXRva5bvoVkfh7moaIjQ2giFMDk4ZTfZi6T5alvGGNqAkCPHj1w11134YMPPsDTTz+NWbNmYcOGDdS0RxxxBP7v//4Pw4cPNylWjBjG4Hfx6nbUbMT8XFCp8K+P1+OaZxciqWJv5gGfqZmHSp3L1vx8918T1cvY9IW9zbhWaiAyNRWqFkagoLTCu0eTMyqbGpFAQQCweGMjUhTz+2Kmpro8MveWyzsRhejnNOV2WN3UYYQU/e6jjcyYn+cRRluprAY+3dCA38xaihE9a3D8pP45BhzLVxwLMpGLTfjUVOkS0VFqOu8+P21zWwa1FUlCHsVpr3l2IV5dutmveEYRRqCgq//7KTbvavNRmhh4S4WoHGpGBUwPAlSmpmQZcsnJedhseXSv61YQGMVh9pzsGsXSuu/yk5fJIIvunMtlrRkGjCo1Hey7777Yd999AQArV67Ehg0bsHnzZrS1taFr164YNmxYrMiMURbwe5KzZZdbqelXmmLIyPfLlxbjpMkDfJfJK7KQfaKSfxBKzeAnmZwPLwPLCtu26b7Oysajpk6mpg9mh6pSU2OgoKj41BQdfjY0tKB/t0riteJAQf7gdnvDQrnsC9tCOKDxgqbcJi3mgxCzw7aR8KjsFm1swKcbGpTzNB4oKIQOqRIoaMEXO3HFv7MWKFcfNhq/OHoCAPpz5Y21TPNzYZ+aKkpN9cOAlg79fUEFUkrN9g50qSQpNYtvfmD2at+ymYasT01aT2fd622b2au3C0jmH7zXMiqHmlGBkk9NWaWmhgnWthk+iWFrX9dFl6kZjf4bFFNTpbrls2vzh0CUmm4MHToUQ4cODbrYGDECgd8T+e3NbufI5EHKstQ3pLKmh4/PX6dWkAsyE6/KQiCIBduZD36Ig0f1CnTiyJmfG5hH+UxN/WWGATJTU0WpqS6D6uK2QkOgoLaODH76/Ge45eUlSjLoRodgZ7ZB74M6fWoC2Wcr0tTlcnoehQ0uTQbSz0G0e0fGRtqlv7nqmU9w66tLfeVpxqemvwNAv/BruHHTS0vws6PGI8nwk+bH/Nyr6NXJ1HSmfpVmjwpTU+agtLktQ/ShGoHhQwnufuNnHcdSsITFtuIGCiqTuUsXWK2hK/q5jvckY9t08/OMfkLH8q27ig55w3zfbR9jLg1+FKQmmZpuqJQSv+FZGPOpGSNGZ4RORh9tMqlUYHA5CGNxLWd+rj9/XTjmz++GZH5ugKnJWNbbKJ9TP1LbtSu8o6XC1PSWdd/7q3DTS0sisxEVVaixFvNFPjV91k302UalDf0iF/08RBnoSs1wmJpuedbtaMZts/wpNAGgqc2A+bmbqRmCokIlUJAXPL/ePGWQqFIJABpb24npaD5dWXDyVmJqRkSpKcPUbOkgKzXbMxm8sGgjHvpwNXY0mzet1oWCAwEfj4PVdA/PWYvaq/+DW19ZEuhakfdWqqx5yhlM83PKE5b2qalh5mId7rYZYDs0tWWwo7lwzIxCoD6dc52f/WJrRwafby5ms+qAu7+UywF6GAiMqfnOO+/g5ZdfxuzZs7FhwwZs27YNyWQStbW1GDRoECZOnIiDDjoIBx98sJKJS4wYUYBOejptIPfzekQlCqcbfjdqQZ1Cz127Y3dE6mDgTGwmapfJMHyalRVTs/i3wJmaik8wrYGpeVHEgjaIKjVZZlfeMczvgldcqVkeL0UUfGrS+gFJpCDEdG907n57hZYyjZifuz6HEihIY1406XlDBOu6t00aDfjULIdAQSJ9J8vULP79nndW4p53VgIAhveoxuzLZ+oU0Rjko5+Tf+c1XVNbBlf951McM6GfsGx+wdszx0zNQsj45eX9ToOOJpc53NUFb1+JBFNTowx+LFVOe2A21u5o1ieMC7bk+FScgS5JShvGlZoLFy7EtddeiwULFuR+cxbTbW1taG5uxpYtWzB//nw8/PDDGDp0KG688Ubst99+pkWLEUM7dCxeHfo/7SDOz6Achm9IHvz6EgnSCfqqbcWOtE1BZgMiC5uRr22XC0+TYn6u4lPTRx9TvVVFgR71vYsoY8SGTVW6tbbr9qkplq58mJrhK1ho/YDM1DTf8O45Vdd8YiJQUOjm5xoCB/I2qrxqsRQ0Xp+j6xtaiOm8Y4gIMhy5WYiOUlP8oLTDtrmBIpdvbcIvXlqsQTLz0Bb9XPDenzz7qXIZsuC9llFwORIlsFqD9njlmZr+Ydv0fEzN4956RsGnps41gB8FvymFJoCCB63mUzMGYNj8/LnnnsPpp5+OBQsWZDfKNnmjkmMk2TZWrFiBc889F0888YRJ0WLEMAIdTEiH/m8iknEUoyC6JyyVCTTIBZsKe04VTlOYiX7ONj8PIwiFCUQhUJDqBkrN/Dzaz000+nlGgqkZlPl5uZgE5ZiaIcpAM50j+9Q0LAzMzCEm5tqwzc91zH68ZuGan7N8arru3djYSmUzKSmcHaWmwpsTHaVm9q9I1+nI2ELuBn4za5lPqYKBtujngjcv3xLcATiXqVkm6zldYD3DKAUKas/YePijNcRrppia3qk5XKamrV2GqC7jCszPFUaoiFYrcBhjas6ZMwdXXnklWltbcwNu7969MXXqVIwZMwbdunVDR0cHtm/fjsWLF+P999/Hli1bYFkW2tvbcd1112Ho0KG5qOkxYpQCdCxeNzS0oK46rW1yjToKN2ry9we5YAvU/NyAP5lc3jbH/Fx7ieEgCoGCgmRqRn3vIm5+Tvf6WuRT02dvFW2zqLetKCIR/ZyyIbNhY/HGBmzZ1Ya9B9chnUwEE/28RB5u4QFg8OXr8AyViyJO9V3Hvp913X1p9Xa6Uonn15OVt0q7/+Gt5fI3GUCeqSlWiXJyBCYb/ZwG0baLkr1LzNQshEr08zACBQHAK0s3E3835UrMW88w50YT5uelgM5WX50wotS0bRvXXHNNTqFZW1uLH/3oRzj++OORSpGLbGtrw1NPPYVf/epXaGhoQHt7O66//no888wzsY/NGCUDHRPN+oYWjOnTpWw20TzYBZ+jztQMTqnpx9yNnzfdV0/W9Fd/mWEgq7wtjOYYNFNT9V4dPjWjBimfmpShNCymZtTbVhR5pmZ49aH1g/veW4X7318F2wamDu2O5y6YhoqU+THXzSCO8nKz0FVL8M9PR6Ag3rzG65eiConV2+imgu7DZ9EqOTmXMmNbJlBQuUE2+rkFYM32Jqzc2oQJ/bqie3UaQDQPt3h9MlZqFoLVXHTzc/H8m9s68OP/mnU/YIyp6ck2TKWmSRdcUYNfK4xO0ERCMLJa/N///oclS5bAsix07doVDz74IE4++WSqQhMA0uk0TjnlFDz44IPo1q0bAGDZsmV46aWXTIgYI4YRqPhq8mL9zqwfqM44RkWdqRlkWXnTC/1lZmy64jLL1Cyf3qdjkeYrUJDivelEOZqfiyoQ6XUpUmr6lEmcqRntthVFWwQ2uKx+4DTzuyu34fH56wJRIkXAzagQMjb5c1DQY37uKNXJ4D1uFtPefRDC8n+tFCgot8GWvjUyaGrL4NIn5+O0B2aHLUrgKDA/F3iGm3e1YcKvXsEBd76JKbe9io+/2Cl8r0w6HeC+M6XcaQ2Atb7VwdS8+PH52O6JIq4bJqKfA9HyqTnulpfx6pJNnUJhV0DuUahvJ2giIRhRaroVkT/84Q8xbtw44XvHjh2LH/7wh7nvzz33nFbZYsQwCR3m51/sVmqWyyaaB/emVaXKQUZ2DPLEu6U9g40NLWhu0794sUFf2Nkor1O/InMaJfPz0mBquouK4kZGVCa68TnQ2l54xW9fFVWaRa811dAeAfPzDsEN2fmPzMXq7Qad8+9GAVPTeGnq8Ot/2i90MDV5YvPqxbruvsLqN26fmuLNyFbGlgruenN5bo3ZmVAYZEvsKTa0ZN0UrN7ejDve+ByA+IFvkO9nHN1cDqIuLAp+l2ji+z9YJSWPCswxNf2vl3Xhi50tOOsfH6GpTd5dSKmhYB8cohylDiPm5/PmzQMA1NbW4vjjj5e+/2tf+xpuvvlmNDY2Yv78+ZqlixHDHHSYnzsOxsslWAsP7lqqLASDVN6IBjrRgb1++1qOtasbmQx9YVdO0c8BPT6C/LDFVO9UMbu9+In5uPvtFZgyoCvmrdupWLI5iEbstBlMTS9Dwe/mUZipWSJsPh4cpmaY77jM4dD4W14xKEkW7o1blN0d+fU/7Rc6moZnAs1VejLeQ/dYsIbpU1OBqen8jRVIJYmMT6XBn95ZgbtPnhJJpm4UDzCjDNY7TGvKqJFMTEU/91YziK712Dn74ukFX+CB2auLrq3Z3ow1ARxsRgkR62olBSNMzU2bNsGyLIwePRrpdFr6/nQ6jdGjR8O2baxfv96AhDFimIEOpebnWxoBlLaZkwz8+hIJkj1p6nSUBF0Kzf5dK4t+y/rNZDE1y6fzFZmfBx4oSO1m1aBU89btwN8/XIN563Yo3W8S4ubndPcIXhcfsU9NOdCC9AQqQ8Qmtyi0iQjc43I40c91+tSkzz8ssMZv96XY/DyGG7Lm5zQIM/sD7CdRG0+jDlZr7WxuI/4etSY25UYmDJ+aFoBEdM8SA0GB+blK9POI9c+wYESp2d6e9SWhotB04OfeGDHCgo7Ds2WbdwEon000D+4BXMn8PFCmZuk9k9qKZNFvGZttZlN6taTDy3hWeUf9vIuqt6YUzM+jDnHzcxmfmv5661X/+RQPzF7F3ayWy3jsMF3DrI4plokqSmVcDz1QkIYdg9/3TDhQEIPd06LQ/5w7ysuOofNAX/Rz+fJMo1TGr6iAxvZ+efEm/PWDYrYgEL35X0f8BhLCiH6esCwtB2aljMK5XeF+faKUNIwoNbt37w7btrFixQrlPJYvXw4A6NGjhyapYsQwDx0T37Itu2DbduROBk2hlJiapbh4TBGOQFn9i6VQKkWEHShI9V5VpmaUIRX9nMbU9LDq/HbV+99fhXP+MQc3PL+ILZO/YiKDKEc/Dwul4pPOLWXpBgrKbshfWbqZeJ3vc5N+zX1pQwPd0qHZ5aNN2KQ+xzAVTF8GKLWq9qmtoF6TjX5OQxTdQsXm53KgPX9mxPKINXE5BQpKWIi2M+sAYFM+x5CDkV3ThAkTAAAbN27Ee++9J33/O++8g40bN8KyLIwZM0a3eDFiGIOOCWBHczu27GorK8WSKJSinwd6Ih4thpEIUgR6TcZmmP8xTH9LEd73SOUZ+mNqqt2b7sxKTYZ7BC/LT1dX/dkLbKVmuYzHth3+Jjhq5t5ueaK8t1q7oxlnPfQhvvynd/DE/HWBl68jUFBbRwYz7nyDep1rfs7ou26FEyudipsgJ7dYfxRd9O1S7GrHgTbzc83pdCBqh0RRB+35v7dqG/Ue0fk/KAa9qTlUh7smWViWpcVfc7lApQ/FFgRZGNk1HXjggbnPP//5z9HY2Ch8b0NDA37xi1/kvs+YMUOrbDFimIJOduWyzbsiZ6JnCgW0e4X7g9ygB+lTUxdIZsys6NK2XV5slGJzGoU8fPQx1VvTZehkSNinJiOQVZH5eUCdtZz2je2ZTKjveNQ24YWBgkIUhIOXFm/Cgx+uwfOLNqKxNfiIsDra5r8LN+CD1dup1/2Yp4syWVUUXE6ycvI3XW7oR/Af7sBvoCAAWLqpEXfujoLOQ7A+NTvHXkEXVA4oSfe0tmfw99mr8cDsVWhpz47HQT13U/vDIqZmAF0rYenx11zK8Bv9PJ6WsjCi1Dz++OPRtWtXAMDixYtx3nnnYfVqsp8KN1atWoXzzjsPixcvBgB069YNJ554ogkRY8TQDp2DyrItjUVmluUKt3ot+tHPS++ZkMzPMzZdUWejvMwfwg4UpHqC2rmZmvQ+WGR+7k8kYUTR7FAV7R3hsrGjNo5GjTkaVehgav5m1lLmdV7XYCsrxdYSKuuMOFBQ9CGq1FRl3U++7VU899lGobRBdpNOwn/QBpVn433vMxkbB/3hTZz9j49wzj/mYMadb6IjExxfzhTBIhSmJqJ9mBgECszP4zlGGSkTmdbW1uLKK6/EtddeC8uyMGfOHBx99NE49NBDMWPGDIwaNQp1dXUAgO3bt2PJkiV444038PLLL6OjI3vaYVkWvvvd76JLly4mRIwRQzt0Dv7LtzR1TqamQhO+s3KrPmE4CNtsUwVkn5r0hV028nTp1ZMGHY7P/Zgeq/vULL9VnnCgINumBwrSHP3cjRcWbUSf2grsOaiuWCZ9xYSOtgyLq20eUWMWFTA1OzljhAVdPjVZ4PVLJlPTdqej59GRsfH28i24552VeH6RnJKqM5n5ldKbkExY6F5NDzCrw/y8WSI4S5BrqKiNp1EH6dHwnpf36itLN+Hdldty32ev3o4XFm3E4WN6+xdQAKZ8anrbIZBAQYl41i20WOw8c4xuGFFqAsApp5yCzz77DH//+99hWRba2trw/PPP4/nnn6feY9s2rN3q+lNPPRVnnnmmKfFixNAOnT7XdrV1KPl9KkUUmozJt+HvXxczB+qsIDM16Uytsot+roWpqd4isU/NPEQPajI2vc29i3md4+5Rf3oHAPDzo8fjx4cV+vMuF5+aQPib4MgxNSMmTzmD9x7xXjOmT82CCNf0dNub2zHzD29JbthtIflihINeNWkkGS5b3Ez7IJQGQXaTePySA2kM4gcoK0xw91vFgZDvevNzHBaUUjMgpmYwgYJin5oF5ucKTR6PAFkY3TVdc801uPLKK1FdXQ0g/9Ds3Uwg57/7Wjqdxo9+9CPccMMNJkWLEUM7dJ5otXVkOo2Zk9/o5zHYIAcKojO1skFaTEsVHPQwNf2Ur3ZfugyZmnKBgsjX2rxMTb9CEfCz5xehqa3QZ2E5jcdtYZufR8zcu72THCD6haVh58mb4/2YnxcekLLzkZ0HnOTlNA7wUEpV7dulEiw31B0+lQayCHJ8LUULojBBai1eC4q6nwnquZsivejwQS+LbPDz8lvvqkLldS6nPZsfGKeCnHvuuXjxxRdx0UUXYY899iAuihKJBCZOnIhvf/vbeOWVV/DNb37TtFgxYmiHznWFjJlLOSEemPWDGCjIpvdXm8GSK0WEb36udm9FGTI1xc3P6e1W5FPTQFdt7cjgA08k1HJ6J9oD9P1FginTOVW4u1RnZ4ywYFn+24drfu4jUFDGQ5LQic5ofl5Kbmj61FYw1SK6op+LIljz89J5TlGAivm5aBMHNT4EFigoZmoGAncrl9K4GzUYMz93o2fPnrjssstw2WWXYdeuXdi8eTO2bt0KIBsMqG/fvqipqQlClBgxjEHn4O9lCZUzCgMFhShImULa/BylxdDgIfRAQYr3kp5bqUM4+jmjfwYV/dybbTmtM8P21xy1TbjbHL+zb65Y0ONTk2N+zrmfdTBiMphPZwwUFDFCNRN9ulQymcSF0c9LqGICiNp4GnUQzc8V7iEhuOjnwZifBxEoKBv9vHOj0Kemwv3aJCltBKLUdKOmpgY1NTUYMmRI0EXHiGEUOk1AWtqixWQxidj83CyIgYJAX9jbdnmdFHrNhkqFqanD1DNqEDY/ZzCJvQo5Uz3V+36U09jUngk3GFjUzM9j800xWFbWSNBPa/HNy/0wNbN/TfbtcpobeSgltwy9o8bUNF9EDrFSUw6k5+/3sEU2nV8ExdQMYm7MWgCU33pXBu71ppJPzXgIABCA+XmMGJ0FOsf+pvbOxNQkf46hB2SmJsP8vMx4DEUnzwErNVXvLMclnmiAGhv0Nvc+vqAWc+W0b2zrCPcdj9omPGryRBUW/G8+uVGGOY+CtZd38jbC1PT87QxoK6H3om+XSibLujBQkHnEPjWjC9LsJxsoiJp3QA/e1LtZHCjISDEFSFixR003ymsHFiwCY2o2NjaioaEBHR3yypqBAwcakChGDL3QubBo7kzm565FgKgz7hjiIAUKcgdpK75WXqd+RSfPAZufqzM11cuMKmSYmrSU3n5ragHofWzlxNSMzc8L4Z67y/C1ixR46ySu+bkAU9PEu9oZzc+jxqhmoXdtBXa2tFOvu/tEEGN5rJiILog+NTn3iLqBDixQkKG4C971VRAK89inpsf8PB46lGFUqfnJJ5/g3nvvxTvvvIPNmzcr5WFZFj755BPNksWIoR96fWqWjtmPX7hbrZwUB1EBKVBQhqG4LHulpsKr5UfZXk5t6RcyPjVpY4H3V1Nrbm+25fQcbYRbH1HGblBYvrUJzW0dqEonwxYl0rA0+D7jmp9zErDWCI4iyYhS0/lbTgMBB1EL6MVCZSrRaaOfx5ADaXzwM+64EZj5eWBMzdj8PAj4tViMh5ssjCk1H330Udxwww3o6OjoVIuAGJ0XOh0qN3cm83P3CVV4YpQtiD41mUqj8jJALzY/l9+okdaPyzY3Yt2OFuw5sBtqK+lTqerasxwNckSHSJbSLawAPuV04GLbsfm5G9c8uxA3PP8Z7jttz06/uWJBR8vwnjyXqcnoO3mfmlIiCSPs9yZomApGYgIJjmIkE/A6s3RarvOB9Gz8jksOglonBOZTM6jo58ZLiTbsgkMX+TaP9WxZGPGpuXDhQtxwww1ob6ebAsSIUW7QuU9r7kRMTTcittctC9B8atLNe8uLZaDD8bk3j3vfW4kJv3oFB971Jr50++tYva2Jeq/qNrgz61Z4SnfWd1Mop7Epy9QOr0JRVJa0ddj4zpMLSsrkNmhYGswEuQE5OM3Pjn7uMDWlxRJC2AznoBE1RjULPBPWjE+lgSw6Uz8pNdg28NjctRj0s+fR+7rncMcbn2v0qalBQAGYi35ue74bKaYA2QMJ8+VEGQVMzXjsUIYRpuZf//pXtLe3w7IsJJNJnH766TjssMPQt29fVFZWxifhMcoSOn2PdKpAQQEvNjsbkiSfmrDpTDiUFyutiKmpULUCf1wZGz/932e5ReXCDQ342+zV+PFhY4j32or7ws48S7ICWXlhjpVV+L2c3omwqxI1pqaDbU1tWMk4oOjssOAwyNWfH+89emzeWlx8wHDq9bB8arrz7yyI4uEDDYkEe850z8PBMDVLp+06G7Y1teGsf3yElt1+Kb/31AJMHdqdeY93TKGpMQIzPzfG1Cz8Hkj087K0S1JHbH6uDiNKzffeey/3+frrr8cpp5xiopgYMULF2+ua8asPtqO5w8b1Td1x9IT+2vLuvD41QxOjbEGPfk5hwpWZiZ13UabG1Mx/XrujGau3Nxdcv+bZhXSlZszUlEZW6U7rn9605mRglVvKyIRufh7d+S0OVmcWvEf/6tLNeGv5Fkwf3pN4nc3U3F2GoZe1nMYAEUT18IGEpBRT07w8na2vlBI+3dBQ9NuP/vMp8x7vq0B3jxPMg28Nyvw8iEBBidinpt9AQfFwk4UR8/ONGzfCsiz07ds3VmjGKEs0tXXgyte3YnVDBzY1ZXDpU59gwRc7teXfuaKf5z+XExsqKiArNelKjXIzsdNtfi670SuhfWFkYDOYmt6fTW0iypmpefm/PsayzbtCKz/KDLAgfIiVKiwNZoIi79Gtryxh3M/P29QTjK4q3gxMscFMIOuXj+VTM1iLoFJSCMcAFm9qZF6X8QceBMyZn3u/B6DUjH1q+t8Hx8MNAENKzerqagDA8OHDTWQfI0bo+HBNlqHpxguLNmrLv6kzKTXdn+OBWTtI0c9ZfjNtu7xMp3Q4Pncv9GSVoqqLws58cp1h9MFyChT0jb0Hac9TBO+s2BpKuQ6ivOFnPefxfbugKyMoWLlDx9ZT5NE//fF6jLv5ZXzvqQVFayEmUzNXRjD+5sodUX5PvUhYFif6ef5zENUqJYVwDP66LnI+NQ1ZO3gV/kEc8lno3JZJQOF6t3RG3ejBiFJz6NChsG0b27dvN5F9jBihgzTO6zQZb27vPAsi9yTa2TYNQUA++nl5KZd1+Ahyt5XsIk+1LTvzGi/bP+nX3AhqzNC9Ee7bpQLf2Gew3kxLBEGYtKmCJdt+Q7rjjL3CUURHApb/cUn0fV28qRF3vPE5/vjW8oLf2T41s9dMeTeIcLc1gigzqr3gRz8PVmlQSm0Xg6/AF1ZqBqSSCoqpqeoTXgY8lnVng1L0cwNylCKMKDWPOuooAMDixYuxfv16E0XEiBEqkgRFUavG4D6dSanpRmfbNASBFClQEJOpSQ8iVIrQbX7Ouj+TsXHTS4ux/+9fxzn/+Agbdrb4YGoq3VYWsEH3bVhkfm5QBpPl2HbnZuNGFazNbSKg57X3oDqcvufAQMqSQVDm525c8e9PCr6H6VOzs61PTLHBTCCRYKtF3PNJbH4ewws+U9P7XcySpNSgw7JJFnH0c49PTZX7tUlS2jCi1DzllFPQu3dvZDIZ/OIXvzBRRIwYoYLEfmvVeHIWZSaLbhSYn8dDs3bQfWoymJpl9ByKo5+bMz+/9/2V+MmzC/Huym14YPZqXPLEfOWW7Mwn10yfrwGZnwfBCO28Tzi6YCkjrEQwm69kwsKDZ+5tviBJBGV+zoIIU9PU7NXZyHelpKDhKUYyPpUGsiglhXAM/rrQux4gMSU7MqVPCAgl+nnsUzN2w6YJRpSadXV1uO2225BOp/HCCy/g0ksvxapVq0wUFSNGKCArNeNFjAoKHSSHJ0e5gmh+Do5PzTJ6DrqZmqzbr3l2YcH3x+evi31rKSAbKIimdLc934OB7qjYNmJ2QhTBel+DMpLL+hiz0KUyGUBpcgh7+8kyh3TeUHPRz8toYiwzyAUKMi9P3FVKC+2cEwvv9E9SWrd2lD4dwDt2BhMoKLZacc8tKr0oHm+yMObxfNq0abj//vvxrW99Cy+++CJeeukljBw5EiNGjECXLl2E87EsC7/85S9NiRkjhhLI5uex8kIFBQ6S45FZO0h9NWPTlXOfb9mFQ+9+27BUwUGLUtP1arczGBgbGlqFfhNBZ17j8ZTuhd8NKTA8300cuIStIIpRDJavsqA3X0GZu4siCuIwmZq7X1JTh6OdjalZSkhYFgiednLI+FQaxChv8Jia3nUkab/X1pEp+T2MjvWyLHS4NSkVnDxlAL48vi/Of2Ruwe8xU1MPjCk1t27divvvvx8NDQ2wLAuZTAZLly7F0qVLpfMKWql5++234w9/+AMGDRqEl19+2UgZ69atwz//+U+88cYbWLFiBZqbm9GnTx+MHDkSxxxzDI455phcFHlRzJs3D48++ijef/99rF+/HrZto1+/fthjjz3wta99DTNnzuz0pyG6QFIUtcSMLCXETE2zoAUK6iwLe68OUs38PH+PrIP2L3a2SJcHdG7TZF4gK9Z3fTJ4y9HM1LTtTrOQLyWwmJqJgMzknH4Rte4RhSi1TJ/Gjk9NQwuJeLMZXSQ4Qazcr3X8HGN4IetTk2SZ19qRKflVdbHvUPNlBjWvRgF11Wmcu99QXPLEfLQQFOMdGRt3vblcOt9S73e6YESp2draigsvvBDz58/PKdEsy1I6wQhaCTdv3jzcc889Rsv45z//iZtvvhlNTU0Fv69duxZr167FG2+8gT/96U/41a9+hfr6em5+bW1tuPHGG/Hwww8XXVu+fDmWL1+O//znP5gxYwZuuukm9O3bV1tdOiuI5ucxU1MJzqhQ6iecUQXZp6b6wr5rZQo7W9p9ShUcvMoxFQf+BUpNSV9Z61WVmmFrD0IEi0nsHSeCGjbMMDVjRA1tzEBBwSj13OvmKCEKjBrWoZRz8GBqSIhXeNFFMmEJRz8PwqQ2RmlBh0/N1o5MySvMvfUMJlCQFfq8EhRo1XSa+TtPzsf/e3tFYPKUG4woNZ9++mnMmzcvp8hMJBKYOHEihgwZgqqqKhNFasGqVatw8cUXo62tzVgZ999/P2666abcd8uyMGbMGHTv3h3Lly/Hhg0bAGSVkeeccw4efPBB7LHHHtT8bNvGZZddhhdffDH3W2VlJcaNG4dkMonFixejoaEBAPDGG2/gnHPOwcMPP4xu3boZqmHnAElRxNoMxeCj1BcDUUUqSQ4UpLqw/+j7M/Hasi244fnPsGJrE/+GkKHD8bn7FlmmpqoCuJOs8YiwbTozspipGczAIfu+WBZ7TIt9akYTrMNJy2IrTnTBKYGwzAgVUeDTCDE1jUU/jxcpUQWP7RW0wtiMzwABAABJREFUT80YpQVenxBharZ1lL4FVCiBghCNuSUI0KwwbNhobc8oKzTjMS0LY0pNB1/60pfwq1/9CgMGDDBRlDYsWrQI559/PjZu3GisjDlz5uBXv/pV7vuXvvQl/PKXv8TQoUMBZBWUL7zwAq677jps3boVTU1NuPjii/Hcc89RTdHvvffeAoXm17/+dXz/+99H165dAQDNzc24//77cccdd6C9vR3Lli3Dj3/8Y9x5553G6tkZkCI472lp7whBktKHczIYbxjMIE3oq1mlkRpG9qrFyF61eGXJJjwwe7U/4QKA7kBBceAf87BhF7kNyF3zmkcZehxeZbRst0lYFpfl0FkW8qUEFpObZ+KqC5E1P7fC77OsdUJ+LWGqbDP5xvCPqEU/j1Fe8I475crUDCdQUGdiajpWGIW/2zawtUmdUFfqynRdMBL9fMWKrKa5srISd9xxR+QVmk8//TROPfVUrF+/3mg5N910Ezo6soqvPfbYA3/+859zCk0gywI48sgjcf/996O2thYA8MUXX+Cvf/0rMb8tW7bgrrvuyn0/44wzcP311+cUmgBQVVWFiy66CD/72c9yv73wwgv48MMPtdatsyFJeHNa2+NBRQXOnBlvGMyAbH5u+158JUtkFVKk1FTyqZn/zGJqknztqqJEmtcIMgyle1BMzdMemI2731qeL0ey3/C6gm137mccVbDcSwS9+Yqa+TkQTp91v3thMjUfXNhgJN8Y/hG16OcxygviTM3SRhhMzYQVvaB4ppA/sCyub2OruluvUu93umBEqbl9+3ZYloUJEyage/fuJorQgvXr1+Oqq67ClVdeWeTfUjfmzp2LOXPm5L5fe+21VFP88ePH45JLLsl9/+tf/5pThrrx2GOPobGxEQDQvXt3XHnlldTyTzrpJBx88MG57/fdd59kDWK4QWJqkia5GHzkfGrGw7IR0MzP/cIyMnvoR/EiTSUPMZ+aPavT8plT0EnWeESwAgUVpzUnx+X/+hg7mrOn57JrexGlf2d+xlEFL/p5ELA8f6OCsORpdrkEYI3fef/cZuR4dPEuMxnH8I2sYoR+vZCpGa81Y8ihmKlJCRRU4hrzYqam+TKtgCwgogCqT00Aja2xtadfGNmW9unTx0S2WvHHP/4RX/7yl/HUU0/lfhs5ciQuuugiI+X997//zX0eNWoU9tprL2b6k08+GalU1jvAli1b8N577xWlefbZZ3Ofjz76aNTU1DDzPO2003KfX3vtNezaFS/QVEEMFBQrNZUQMzXNgqRc0dHWJcvU9G1+Tr+/TqdSs9Ms84phg654LwoUZFCOlvYM7n9/FcCQhwYe88BG537GUQXLvYQVWPTzbCmJiDnVDKr+XjS35Td7LKa9E/U8dmXT+ZDg+Lt9ecmmXP+Iu0cMWXj7TCvJ/Ly9/MzP40BBepEPAlj4u237VGqWeL/TBSNKzQkTJsC2bSxbtozIMIwC/vKXvxQo9U455RQ8+uijGDZsmJHy3n777dznAw44gJu+rq4OkyZNyn1/5ZVXCq5v27YNn376ae77jBkzuHlOmzYNyWQSQNbX5ltvvcW9JwYZJKVmSxz9XAnOqXkm1moaAWnBoMOkpFTMRYqYmr7Nz+nvuc5T+hJpXiNguUfw/m56ze0sNKV9agqsrjrzM44qWIcWFoIxCY+ZmoV4Z8VWbG5sBcCeu5wr8VKi84EXKAgAfvLcQgDx/j+GPLzKPqL5eab0OcBeQ6RgzM/ZriPKCbm5vUipacfm5xpgRKl5wgknAAB27NiBf//73yaK0IZJkybhgQcewM9//nN06dLFSBltbW1YtmxZ7jsrmrkb48aNy32eP39+wbXPPvusYAMtkmdNTU2BD09vnjHEQfKdFzM1/SEelM0gmSheLug4fY0YiYiKIJmarCAjKvjF0eO15lcqsG0GU7Pou9mRw1l8yiqseUxm27Y7yTK+tMByL5EijKUmkPO7FbEOYlnh+Pn8yl/ew7hbXsaspZuYLEznWqmbgMaQBy9QEADc8vISADGTN4Y8hMzPy4Cp6RU/iHfFEnh3WfjDiZMxrk+tPoEMguZT00ZxcMoY8jCi1DzssMMwffp02LaNG2+8EfPmzTNRjC/st99+uOuuu/DYY49hv/32M1rW6tWr0daWj2olygYdPHhw7vPKlSsLri1fvjz3uaKiQjgYEyvPGOKIzc/14Yy/f4jj/vIevtjZErYoZQmSE24dp686g+KYhPZAQQylh06lpgXgnH2HaMuvlGCDESjIa35ueM3tLD6lfWoKvB9RDATT2cELBBbEI3P6XNTY8GGZnwPAll1t+PmLi9lMzdiVTaeFjAlrqSueYgQPoUBBmUzJ+2vVQQKQhV/z80kDumLuDw7GxhuOwmuXTNcnmAHQzM8BoKFF3bK5tHudPhgL9fCrX/0KY8eORWNjI8444wz8+Mc/xqxZs7B27Vq0traaKlYYf/jDH3D44YcHsqnYuHFjwXdRn6PudJs3b0bGtZl25ynjw9Sd1itXDHEQlZpx9HNlPPPpelz21IKwxShLkDbindr8nFP3Dy+fiaHdqwvzcN3DUnqwTNNlYVkWBtZV4aEz99aWZ6kgk7GLzKAchMEkUClHzKdmjKiB9Q5nWe/BPbVS7h8Hj+qFe0/bU2ue89buYPvUtGOfmp0Vou/m0wu+wNn/+CgAiWKUE2wAjS3teOaT9fhg1TbiOrCtwy75A5UwAgUlfAYKsmChIpVAr9oKVO52sRdVUAMF2f6YmvGUl0XKRKY/+MEPAAD9+/fHokWL0NHRgSeffBJPPvmkdF6WZeGTTz7RLWKg2L59e8H3bt26Cd3XtWvX3GfbtrFjx45cNPlt27YR0/HgNrH3yhUk2ttLnGZN2HHHTE1/+O/CDWGLUJawM5ndCpb8rNfOYBvy4Ly7VonMom3t7QXjDU+pOalfLQbXVWHltqb8Pbady6OljTx2tbe3a2VqZjIdaG9vR9eKEgkzrxEdmQzaKf64M65nAZg/oXaeg2x3T/JW6XY27xjRAjP6OWzYdhDzfLaPR06pmckIM2osANDcVhsbWzGG8XwymQza29vRVurryxjSsDMdQv3thPvfD0CaGOWGdTuasddvZ2HJJnaA3abWNub1qKO9vaNgfeVnryCKjo4OXy5D7ExeZjvqayo7Q5zbM3YGO5rUCX9O60U1jk1QMKLU/M9//uOi2OYfXWf1c9PSUmhWW1VVJXRfOl0YSdedj5vtKpofkDVVJ+URJDKZDObOnRtK2TpRqCaKESOaWLVyRdEx3o6djUp5HT+qJvfubt4c3qGIDD5fvgJzM3mFeTNn3Js7dy6adhW2T1tbe67eK1Y1UO9r8eHo24uVK1ZiLjbi83XN2vIsFWzYsAFVKbL2ZNeupoL5w/SyYt26dZg7twEdkovljg52X+jo6MDixYv9iBbDAFra6c954/r12BWARUZjQwPmzp1b4LYoCti0aRM6BBWGDQ07sUqzi6NuFRZ2NpDHXwDYtHkL5s6di8+2hG8NFiNYLF68GGs3xi6MYphBY2sHV6EJAPM/WRiANOawctVqzK3amvve0Mivs1988vHH+GKd2p4EAJYuWYLqbVndxuKIj/2bNm3C3LlzkfEoHxsaGrFk5Rrf+S9Y0LktHo0oNYHOq8AkwctKTIiERQWQShU+HrcG3r3YFc3Pm2fJsyVDRjIBxAHPY0QdJNOOjKI6/tQxeWfcpcIfzHjYkyKEai8byX1LO2NuM6HviBxbKwDYoJs9Bb22cNpfOvq5SJrO+HAjDgYRUPl5JS12vkWw/JVnCtlxUew4N2FZ2uW37cKxuPi6Y36ut9wY0UcCxcE3YsQIGrqDRQYN7/gamPm5j1fXfW/U/ZTTop8DQFPsws43jCg1//a3v5nItmThVTpmBOncXqWjm7mZdPmNEM3Pm6eXCRpDDknLQnvM1YwRcVgo3lyqLFQu26sbxvTIjxlRXzw4KF6k0Ss/olt2SvQqpNy30A4ybnp/G1qkNBds5KMkdj6w9JbuS0EoOJ1+Lq3UjH1qlh2yvrTl+1wqAchYhUW1X1gQ33xa0O93OQP2e+gMzTGnovOhRJYjMcocrRrXgGHAO3YGEv0cfn1q5lEqZAsvbACNPpSa8ZyXhRGlpulo4qWG6urCoBMtLS0FZuA0eM3DKysrc5/dJude83YW3Gnd+QWJRCKByZMnh1K2LnR0dCD16DrExi4xoo7Ro0Yg+d52wGVWWVlVDUDOtHHKmOGorx+U+95v3WfAp3RTwKhg8JChBXLjyQ0Ailnq6aSFW46bjPpJ/dHt/feADZvzF60E6uvrAQC91i8CsLPo/ieW6DXTGT5sGOqnDMCmmk3Aq1u05h119O7dB1XpBIDi/lVVVZ17FpmMDfxznVFZBgwYgPr6kcDD66RWjlWVFcCuJur1MX26YOzYscD/NukQM0YAGDxoICobW6XHvXQyiRYJrWbXrl1RX1+Pqv+9CjTS+1DQ6NunD1Kr1wAt/IP07nXdMGzYIOCtrdy0orCsBCoqq0Cbu3r06In6+iloWrEVeCF+rzoTJowfh40VW4DZpeEWJ0Z5YsjwkQA2c9NFFQMHDkR9/fDc94qXXwdpHaYTU6ZMxtu7VgJzP1O6f/y4sagfVAcASH6xE3guukGQ+/bpg/r6CUg9vRFw+V+tqalFZZcqAP72EZMmTSogvZUa5s+fL0XU88KY+XmMPOrq6gq+NzQ0CAX3aXD5DkqlUgX3OAGDvOl4aGzM+61w5xE0vKb1pYiomYbFiEFCOpksYsyoMDVTyWTBe5uUcHsRJiwrUSC3N3ruwG5VuPXYiZjcvysmDcgGcUsmvO1l5/LoCIhH5bR3KlW6CxRlJCzAovQvKz9/8II+6UBy93OQjn7OmSDuPHEK0p3x2ZYw0qmk0riXSiYAiCs1E5aFVCol5VooCFiJhLCJbzJhae/fGY75+d8/XINzvjQE1en4vepsqEinkCrhzXyM8kBQ60NjSBSul4MwP69IpXztJ9KpVE7mdMR1C4lktn2LeomV9duqCucxJT37tM6GaK2YyhT9+vUr+L5pk9gJ8saN+dOGnj17Fph7uvPcvFn8VMidZ+/evYXvi1EMr+IjRowoIpmwikzFvYo9EXjNu0rF3MurjPIqwib264Iz9hqUU2gCxWaTze0ZnPfIHCzd1Ig2EaecGpA3Py+RhtaIjE03LXf/HJR/Tdu2FaKf05/bdUeMxf7DepTMOxQji6RlKT2zQ0b1kkofVdcTMnUnuT3xi4xtcw8yjvzTO/h8i/ngFjGihYTiuxkjhk60lHigBe96ORDzc8ufOyv3ej3q23JnPe+tr20DDS0+lJqx/TmAWKkZCAYOHFjgv3LVqlVC961evTr3efjw4QXXhg0blvu8a9cuYUWpu+wRI0YI3RODjGTEB88YMQBywAYVhpu3u+v2l2YK3qp6dZKkwwlS3e57bxX2u/117GgONsBaiTSzVti2zQgUlP8clE9+lfUi7dDrtmMn4qdHjUMiYXVKhXUpI6XwzHrVpPGNfQZL3ZPf+EjdZhwWxBVHiYR+v8sZm//O2zZwzbOlHYE4hjyySs2IvTAxOh1KXqnpET8IF6EJy99KyP3aR31fwjqw3NmivreIVZpZxErNAJBOp7O+s3bj008/FbrPnW7ChAkF1yZOnFgwgYvk2djYiJUrV+a+jx8/XkiOGGQkI/L2RHwMjxEykoniBYOKMsi7YSiVblfE1PR8JzHqaCy7rU1t+PO7K4nXdMNp71JpZ52wbcCmLNO2NLXi/ZXbsGFnCzWNTqiFhqEzBtyL7njsLi1kWe9y97z7vQNRlZJbLESZqSmqODIS/Rx8piYArNgaHT+kpYKTJg8IWwRfSPpUjMSIoQMlr9TkWDaZgOUz+nlpMTXJsAE0tAZLmChHREQtU/6YOnVq7vNbb73FTb9t2zZ88sknue/Tpk0ruN6lSxdMnDhRKs933nkn54A1mUzGAZ18gmVeGCS6VXZe/xkx+EhYxaeXOpiapcKK4C3SSCe7UXBl50hVIs2sFRkGU3PdjhZM/f3rmPCrV/DqUvMO+S1LzQSLxhhwL7o74aMtaZAOiFioTicwslet9FjppI4a60RGGtK84xcZW811Sgw+xvXtErYIvpDwqRiJUXo4ecoAtNzyFfTtwg+8GxRaAnJPZAredVcQ5ud+XUcUrKkiPgjkyAoeMW3b9sXUjJFFBLZunQNHHnlk7vOCBQuwYMECZvpHHnkE7e3ZDl5XV4fp06cXpTnqqKNyn//1r3+hqYl9Ov2Pf/wj93n69Ono1q0bI3UMHqJifl5XleYnitFpQVowtCsoNb0b1Ih0fy7cVSX5nSExrqOgTOjMPjVt8BfTW5vacPNLSwKRR2VhTzM/L2Rqdr5nW8pISpq4JigbGFFErXtYEmw4E84VRHxqxlBDqfuIj915dD4kExbSyQRqIhQYrDVmakoja37eSXxqOut67T41/UhVPoiVmgFhr732wh577JH7fvXVV1Ojln/66af44x//mPt+6qmnoqqqqijdSSedhOrqagDZ4EM/+9nPqOU/+uijeP3113Pfzz77bOk6xChEVJiaddUxUzMGHcmERYh+3jkDBZGqTWRqRqBuUfWrFwRsW2yRNmuZeaYmoOaugdaH3M+zEz7akkZK8iQzp9SULCfveqJ0e4gJpqZtB7PJ7oyIynpWFdn+FrYUMYKEs0aoqYiOUrPUzc+9o2sQw60Ff+vcKPrUHNmrhvi75fnrwK/5eTwrZhErNTXg0EMPxbhx4zBu3Dgceuih1HRXXXVVbrG6aNEinHXWWVi4MO/Q3LZtPP/88/jmN7+JXbuy0Rv79OmDCy+8kJhf7969cf755+e+P/HEE/jBD35QEA29ubkZd999N66//vrcbzNnzsTMmTPVKhsjh6j41IzNz2OwkPVtZsD8vEQ23O6qkpS5ZKVmdOoWIVG0YfrwHszrNuxAzJ5EYFnykSUthkIn9qlZupD120djZXDv89wfFcj4Pkso+B8VgYqVQQw+ZBX2UUMcKKjzwZmXayuiswdqLXnzc7YPehOwLH8HvFFiar5/2YHY/vOj8eKF+xOv04aoxtb2mG2pAdEZCToBpk6dissvvxy/+c1vAACffPIJvva1r2H06NHo2bMnVqxYgfXr1+fSV1VV4Xe/+x26du1KzfOiiy7C/Pnz8eqrrwIAnnnmGfzvf//DuHHjUFFRgcWLF2Pnzp259IMHD8Ytt9xipoKdDFFZA3aLzc9jMJAkmJ+rLFTKgalJ2g+T6hEFpWY5m5/z2lckynGQkJUlxfC9WOj/SVmkUPHWpTMw/Y43whYjcMgGClJnahbeHxVYEB+PSIdpOtBW4kqDqKL0mZrlOFPGEEGUzM9LnalZFP3c8ELMCT7n50AiSj41UwkLXatS2LKrlXidZoHV2Kpueg7ETE0HEeGadR5ceOGFuPbaa1FTk6cmL1myBO+9916BQrN///7485//jH333ZeZXyqVwh133IGTTz459zK3tbVhwYIF+PDDDwsUmnvttRceeugh9OzZU3OtOieisgisq4rPJmLQkUgUn14qMTW9PjWj0f25KDA/J0z90TU/zyIKsugGr05Z8/NoLNMsWNKs0TQj0lQBU7NEt+E9a9IY16c2bDEKEIRPwJSk3z5HJNmxMqquJ+QUumbGrrYonXaUEUrep6YEiziGGfSoDpZg4YwEkTI/L/FDF+9ax7TFDM0cWwZRYmo6oI1FNLKCX+VxRJbLoSPWhoSAb3zjGzj88MPxyCOPYNasWVi9ejUaGhrQpUsXjB07FocffjhOOukkdOkiFo2woqICv/jFL3DaaafhySefxDvvvIP169ejtbUVPXv2xJQpU/DVr34VRx55JBJRCOtbJoiK+XnXWKkZg4EkwQm3HvPz0oD75JlUbdIiKAoMqXyUxPBl0Q1e+2bNz6NR72z0c7l7Ukk686BczM+j8I64kbQsdBjmK6gzNdXaKlotvDv4j6BQWT9p+mvQ3hHv3kwgKutZVfiNoBzDPwbVVWFrU1vg5dZGSKkZBwqSg99gekDhPBn2uiR/IEmWg+Zahmc9N6Z3LRZvavQrXtlDWRty+umn4+CDD8bMmTMxceJEnTKFihNPPBEnnnii1D0vv/yydDn9+/fHd7/7XXz3u9+VvpeGKVOmYMqUKdryi8FGVMzPu8Y+NY3gjhMm4fnPNuLfn6znJ44wsmaAhb+p7AuLzc8j8gJwUGB+TligkeoRhdNeHSfYUQVXqZkB7ER0lBeyrFGW+Xk5BAqyEMzmYXiPaizf2iSUNoh3luTKgwVlpmZUzc8lFbpmmJqlrTSIKqJieaSKhFW6zPdyQb+ulVjwxU5+Qs2Izc/1wbtENk2M93vwB2T9N3vzCwu84vNBAAvBa+co7ElKAcrakDlz5mDu3Lm4/fbb0atXLxx44IE46KCDMGPGDGGGYYwYpYyoLAKrUtGZ0MsJo3rVIpXYFLYYXBw5tg8unTECf/tgFR6dt67oesIqVtwpRT/3TMPR6P18bN6VZw6Qah1VpqaDCImiDVzz8wgxNQE1n5o0FDI1o1NHGViWhSCMPmRMYoN4Z5MMZTUJtA0M/77Cv1GCqEimfGrGgYLMoPTNz80o0WOIgzXvmYCzjK2OElOzzMzPg/Cp6f6rggKfmv7E8Q0eGYH2O4lw4QbfuikG4EOpOWTIEKxatQoAsGnTJjz11FN46qmnkEwmseeee+YibI8fP16bsDFiRAlRYWpWpUvcbiiisKzSWOgfMbYPvjKxHx6es4Z4PZkgMDUVFirePKKk+GPhV68sQTpp4cYvjy+p6OedOVCQbZv35SQDWVlSiQR1kR6lBbgqKpJmFFZeyJQRmE9NCZnUfWoW/o0KsiblgmkTZuSP0LBQVojKIb0qkpLvZgz9CGvdFJuf64N3eDUd/Tw3R/rKw8XUjMh2mOtT03Odt8bkrW/ieTELZaXmCy+8gM8//xyzZs3Ca6+9hg8++ACtra1ob2/H7NmzMXv2bPz2t79F3759cyzO6dOno7Y2Ws7lY8RQRVQUXjFT0wwsBH/yrAKeqWKCEFmwMwUKAoBfvLgY39x3CHrVVhRdIz1iKwILI5rvnXIA77XK2DYSEWFqWlCMfl6mPjX36NcVQ3vUBGPuLcXUNCjIbsgyNVVN66LqT1dGHgvBKL5j6EEqKqf0isian8cIE0Evl53Aj1EyPy/1QGZexqDfw+VLDhiOu95cTr1edj41OeXnfG564xxwmjmeSsXgyxnfiBEjMGLECHzzm99EU1MT3n77bcyaNQuvv/461q5dCwBYv349Hn/8cTz++ONIJpPYe++9cdBBB+Gggw7C6NGjtVQiRowwEJU1YGUqAhqYMoRlWZFRXLOQU2pSZCUyNZXMz9nfo46fv7gIvz5uj6LfSQqHsBdGgFuxEbIgBiBiShOV6OeAvCxpxuRQyNQsrYfbvTqN/3dK1m93IObeUqzIaMkDqDM1vfdHBRbE+2zCig5rJgYfpc7UjAMFhY+EZaF3bQU2NbYGWm6Uop+XOlPTq5P1a37O20PlmYvqL29h9POQlZq5v2Q5VJmaIsE1Y2iMfl5dXY1DDz0Uhx56KABgyZIlmDVrFmbNmoUPP/wQ7e3taG9vx/vvv4/3338ft912GwYMGIADDzwQM2fOxPTp01FdXa1LnBgxjCMqG46qWKlpBAmrRJiauydP2uIhYRVPiGpMTe/36LeNG1ub2ogmGiRWZhQee978vPwgYn4eFZ2mZVlqTE1GfvnP6nKFgc9/fBjqqtMAgvNhKYog3tlsVHvx9KoslDxLO1odRLbupaa078wohQNcFuL+Fj4SFnDvaXviuHvfC7TcaDE1o6/UfO6CqXht2Rb0qk3jB//6pOCaV7nml3jKWyfkrRl8lOFaw0dlBOCZn3vBV2r6FKiTwFjY5NGjR2P06NE477zz0NDQgLfeeguvvfYaXnvtNWzYsAEAsHbtWjzyyCN45JFHkE6nse++++Z8cY4cOdKUaDFiaEFUFF4xU9MMLFhU9mOUkDc/J19PWsVLfZWFStSYmoPrqrB6e7Nw+o6MXVI+NR1ETbGhAzwGV8a2jUfdFEXW/Dz2qQkEH7k9KTG1BaGUSUoqTnisDep9ET7QEB2OsodpZmWJoQ+lr9SM+1vYSFgWjh7fFz8/ejzueWcFVmxtMlqeMy3XVhhTZUijFJiah4zujSPH9cWyzY1MpSYveI0IeAxwHebnkWJqcoq3PH8d8IgmYderVBDISNClSxcceeSROPLIIwEACxcuzPninDNnDjo6OtDa2oq3334bb7/9Nm655RYMGjQIM2fOzJmqx4gRNcian/eoTmNrUxs/oSRipaYZWCXD1MyCtnhIJPT4NouaT80RPWsUlJrFv5OqEYUFBG3xUw4QMT+PilIzK4ukUpNpfl66TE23ci6IAx+Z9zCw6OcybMWEKlMze0PUph8ZlS7Jl3OM6CI2P4/hF4ndLpt+fNgY/PiwMaj7ybPY2dJuvNwomZ+Xgk9N510nzZlu8XUEa+TNYc5lP/O3+86w50zegSTNXzav24hYN8UISKnpxfjx4zF+/HhceOGF2LlzJ15//XW89tpreP3117F582YAwOrVq/GPf/wD//znP/HJJ59wcowRI3jIDp73nFqPA0f0RL+fPq9VjjhQkBlYyDKuog5ncmSZn+tY7Bebn/vP0w9klfkZSkRtMlNTWSxtKG+fmuzrtg1EJE6QEmuUZX5ewNQssYfrFjeQwDxRVGpKpFc1rdPhZ8wEZMSxYuZcSaHUmZqWFb33pbPB24VMPw5nWo6S+XnUmZqWlT9sI73y7qWOjsjnvHFFf/TzaIwBtLEoR1bwXOYzNdnlxTrNLELnbHft2hXHHHMMjjnmGADAggULcizO+fPnRypYQIwYbsiebGeVZPoH3JipWQzL8n9yZVmlsdDnnXQmLU1MzaLv4bZNhYxtKoAtu1qJDuxJjzhaTM3wZdGNhGXhwBE98frnW4jX7QiZn2eVmrLm54LRz31JFjwKGRHBKBHF0xoUZDdYz5WEfKAg+bWC+29UIKM4Smiad2IEg1JY69Dg9MvSrUF5wKtQCup51EaIqdnaEW2lpnsPSmRquhZefoME0cogXdcVKCjsMYA3CtGYnP4DBcUAIqDU9GLSpEmYNGkSLrnkEmzduhVvvPFG2CLFiEGE7CbKlJIsVmoWozKZQLPPE1MLVmmYn+8Wkc7U1GOW5Z1Uw96vyvb7D1ZvR/2vZxX9HiZTs64qhe3NZPMsWpTEckDCsnDbsXtg6u9fJ17P2IAVkVWabcubwqcZk0OBX8oSfraBMDWlAgUFoGSVVJz4DYIQtf4hV/foyR+DjlJY69Cgwy9fDP8oXiMG80BY5uff/NIQ7Gxux+Pz1wUiS1tHRBYuFLjJOGTzc5dPTQ1V4Zqfa2Fquj+HOwio1odvfq4kTqdDpLUhPXr0wLHHHhu2GDFiEJGSHDwTlhklWRz9vBgVGtokkSgNP1M8/2vJhKVlQiwyP/efpS/oeMYAeSMUxMLoxMn9cfCoXtx0YbezCSQs4EtDu+PBM/fGvoPriq7bkGdHmgLNbQELbPNzN6ugtJ6uFfDmQWb8DSRQkKRPTR6Lnnofw+dZmLAkDshipmZpoRTWOjQkc4cHpVuHckCR+bnh8hxLTpb5uRXw4UrUmZrJAqZm8XW3ck0HU5Nvfu7/QCJotzgioNXHGaNkFf6xT00xxNqQGDEUITt4WjDjo7EqQv5kogJZ02QSLFjMgB9RQY6pSTV31bPY9+YR9oa1UpO9adDRz+uqUvjo+zPx6Nn7shl9OWV19PugLJyF7hl7DcI73z2w6LqtoEg0BXXzc/K1kg4UxGF56IbMHBs1c3hAfcOmg71iCqIyZZWaRkWJoRGlbH7uiF7CVSgLBG3Nk/OpyTE/D7JbtEVcqck1Py9gapo3P9dhkRSp6Oe864pze9j1KhXESs0YMRQhb35uGVk4xkzNYugwybes0mAvOBLS+pYxpmbITZPW1O/JPjW1ZE3ExH5dUT+wDhaHuV3u5ucOSPXL2HZkTp5tG8hI7lNYz7UgUJCiTGHBLW8Q/VLO/NygILvBUlaT4JxhSis1nb8Re/llpLE0HabF8I87TpiEZ87bD71rK6hpSlupqcZ+iqEX3tY3z9TM/mX51LRgBRo85rONjYGVpQL3e05ee+U/BxMoyD/LOkoHxbwAn/m5XS7fUh6fg0SsDYkRQxEqgYJMjEtRivwXFaQ1NHSWWRv9icTphrSTvKxPTT3tUfi9PJiapLYxuQh2Z81aqKgufkoBvAjgNkqdqZmgvh+FC/DSerhBm3nJsBN0sPN5yEY/l1G0Ohs2OfA2RmHBCcgigpipGR2kEhaOmdAP3ztwBDVNKRzg0pA7PAhXjE6P0Hxq8szPA5FCHmHsL2SYmjpIp7wq5oPp6SkjKmsq2jpBVb44+rkYYqVmjBiKkLVMTuzeEOieyKpjpWYRdPhbNMWs1Q1nkqQHCtKjgIgaU1OXT82gmZruRY0QUzOyS3J1eBd23r5k29FZpGUUIrGnknRGn/v3Unuy7r4YhDmUzFzZsyZtUJIskhI+JQH16Ofe+6MCOYVubDIXFTjPgfU8AjgTMIY4UFA0YHn6UFCPg2V+biE6ii4vwgjyyvOp6V546ThY5h2W5HxM+ijD+3zDnDd5RVuev6KIfWqKoYSnsRgxwoWsUtMZeGOlpnmkNfgutVAalH9HQtriIWt+roOp6VFE+c7RH3QtCIP2qVnI1OTXIaLrcV8oYnR4rmdsW9rk2xRUWKMspniUTKVkUcjUNC+86PibTlroWpkyLA07ABQJqhu2/MYnWh1EhvWUkFQAxzCHnN9txvtUCmsdGlQZ0TH0InCfmrun5YpkQsjqJWrQ+c4lLOC8qUP5ZXL8TxYyNc371PR78OfOQ7RMk+C5jbIU6xszNcUQKzVjxFCE7IQksrCUhWWFc9oXdaQ1BPgpFfO5nPk5pRvo2lxGjqlZooGC3IoKVhV0nGBHFbxFaKQCBWUUop8nE4zo5/nPYb9DsnCLG4z5uVi6njUVgSgAs9HP5diKgI9AQQqsUJPIsp4E08ZMzchAJOiciSCWJAyuq9Kepw7FiE6oilEK600WiqKfB/Q8LMuimqBnx6FAxOCiOp1/x3565Dit4+P4vl1wzyn1TBcTQPCBgrg+NRP6mZphDgO8dXveAksO8VwqBvNH2zFilCnkzc/1MzXTiURJ+H0MGqyo0qIolU2ZM4lSmZqWHqZmWP6SaKjQFJmeVA2Tr5Q7b9ZGUvVEtxTAY3REQ52ZhZL5OUP5VcDULDGVddDRz0UPAHtWpwMLXCRTjGoQBCe1TBsnExYyHdF5c2KmZnSQP1CnpwnKp6aJcSNvXq89a2lUphJoz9hKQVai9g7LgmeBoRsnTO6f+0wjMljQ41NeB97/3kw8v2gjRveuxVcn9sPtry/TlrfT9rw5k2d+XhAoKACfms5lnQcB2baI5nukuubjmp9HtL5BI1ZqxoihCGmm5u6/WpWayWAj+5UKRJmakwd0xfx1O4nXSkap6TA1KbLqcpRexNTUkKcfVKb0uF2gL4rMQN6nZvmhiNGBwkWobUdniaYSKIg1N5QyU9ONKAUK6lkTkFJT1qemw0KRZmrKs1eSloU2w2+NZYlvyWKfmtGBiJI8KJ+aJsaNKDE1u1amsL25DR0K90ZZGSOCIM3PB9dV4et7D8qXRUmna/2rAxP7d8XE/l1z33W+CzmlJqfRC5iaBAEKzM81MDX55udqB38OiIE+w2RqcsYiFSsMgG6Jl0PpDhtaEdutxoihCHmfmtm/KY2rRx2MxHKEiGny8B7VmPuDg/Ho2fsQr1uIxsk/D46INEWKpYmp6c0hzP3Dt6YN08bUJJufa8maUl7+M1Op6ZixlEAflIW3zb3NkLGj4/g861NT7p4sU5N8rZCpWVpwyxuEAkGYqVlTYViSLFJJ2ejn2b+qLSXTxEH4RLQg/txLxX1LZ4DzzNhKzYCYmgbKcWSPQnfrUpFUVtDoYsuGtWYgH1bqx/cPGokPvz+z4GCbNS5F9XBF5xzqtL0MU5OU0r3WCcT8XFHJ572/8Lfwnrfl+Uu/Licjn6kZA4iVmjFiKENaqckxE1YBKyBFZ4aMT006w1GPMtA08tHPWWn0lZP7HtIWondtBS6fObJkAwW5sxbZSJaaibIIvBtbb3M/v2gjnl+0MUCJ6FBhaoowcIHobrZoCFpc0bmyR3U6kLdEdu7ObWBU75OoVSBKTRmWqlWeY1cpInfwyVJqBuX/0ECeUYp+3q0qrazM1/UOB/UsvQiKqXnTMRPQu7aysCxKWot1MWSYYGry1hSF5uccpqaWQEHs6ypWCYX5F98ZhXGABktxrIq3+mII3fx869atsG0bPXv2DFuUGDGkILtwcAYlvebn8bkECTLRz6lKTZTGROKIyFrMlDpTc0zvWtx98hSs2taEI8b2wYBuVXhr+RYteZOqYTb6eT5vIfPzEuiDsgiK0aEDGYWgRWlmoCAXUyK61SbCrZwLRIkoOAB3q05jR0u7UhmphIV2wc1bksHAJUF1HMm5FJGY3oPwrS1jymlJMjW7V6exralNSa4YbDj9iPU8AmNqGvGpmf0bhXmka2VSuY66nkFYZuzF87oZkPZetCa3IuzbVydTUzSrwkBBxdfdSx3ReZGFTsfU5NTHAvs6DTFTUwxalZq2bWPJkiVIJBIYNWoUNd2qVatw991348UXX8SOHTsAALW1tTjwwANx7rnnYvLkyTrFihHDCGT1iXnzc51KzYjO1iFDpl1YZqJRYlLNGNETb3xerMhzRGQp2fUwNQu/B902h4zuXfDdJFPTpILAnTPb/Lw4fbkgSN9bfmHb2QjoMhA3P49wxSMA0YPD7lUprFYsI50UV2omJJR62fSKSk1OBFUSgmBnyZrey5ga96yJlZqmkLMSYjyPoAJOmvGp6bDU9Octiy6VKanDCDd0yZ9KWGhVcerpE0HM6xZlXKH6MCTIFRWYYGryquqeJ0jt8tKSTbBtG5YlPi+KlkdCXm5/cyUpzzCQZ55S+qOy8paj1Iy1mgA0mZ83NDTgtttuw7Rp03Dcccfhtttuo6Z96aWXcNxxx+GJJ57A9u3bswEBbBsNDQ147rnncNppp+HWW2/VIVaMGEYhb4qWTW+CqRmFxVyUIMNgZQXYicpiqFtVCj85fAzxWk6pKRicRBXeSTrIliE9BhG/qSIgbUB0HjwUleeqDOuZqZqplAK81Y7Ke0aCbvPzcgkUFITsluAr3t2H+bnMXCHL+lEed3NsD/EMTI5ZboiKlLDkVPY9qtNK8sTgI8f8jYDfQZPRz6MwnnatTKkzNTVVICjWrRfF0c/1y0GbW2klybDLg4bO9hH13+yO6UDqbtua2nDpkwsAAO0d/jVlvDnMEpSbBtL6Pcr74fyBpZyQUa5TlOCbqfn555/jW9/6FlavXg1798J/27ZtxLQffvghLrvsMrS1ZU9jLcvK3QMgp+C899570djYiJ/+9Kd+xYsRwxhUAwWZ8KmZTFjIaJiAygUiCi+ntWiThcW4FiTuPGEyTpjcHwO6VRGvO5MjS1YdGwnv4iHsDYQupiapGiZZK8Lm587fsBvaAEqJqZlVasrdwwooU8qBgtwIgmUqzNSsVo9+Lns4IvM+qgZFySuhxO8JhKlpiT93WUuHuqo0kglLix+3GIVwngL7EC3b30w3f7mbn3epTClLoUsZGRTr1osi83MDYlCVmoyyorq+MMPUZGfq3rc6h3TeM9s/vLUc1x85Fu2yJioE8Kro90CC6FNTLSstyK/bKdct9nUaeGNDPGtm4WtXuGPHDpx33nlYtWpVwe9bt24tStve3o6rr74abW1tu18kC1VVVTj//PNx55134he/+AWmTZsGIKvcfPjhh/H888/7ES9GDKOQJYo5g6/OU1SHZRKWY/CoQlugoAhoNWeM6ElVaAJiTE0dtfDmEXaXqyhV83NX1ikBO7Xwe6B+FDM6ogsVn5qpRIK7qPV+LjUEIbuoAiTL1FQTSFqpaSgt+X7xHIKKfi6TVkopm8gGAHHQozqNM/ceJFFiDBry0c8ZaRCMux1V02xmnhFiau47uLtyO+pq/9CYmt4AgAbKoK2Z6Oa+0XIj5YZOsUSZmt6+QWub5z7bgA4NNs28Ovo9kAg60CcPPOapBfZ1Grh1irWaAHwyNX/zm99g7dq1Ocbl3nvvja9//evYZ599itI+/fTTWLFiRS5tTU0NHnjgAeyxxx65NCeddBL+8Ic/4Pe//z1s28Ztt92GI444oiyZKjFKH9Lm5zn2RfF9FckEWjvkT8VSLqZmjDxSUiaFlN8RDaYmT0HrXDUeKCgA0yIZVOoyPye0jckAXO4+xWPOZNNHoBNqRimZn9vazc9dTM0I15uHICQXPVyoq1Jfysr6pZYzP1dkajomahK3BxMoSNz8PpGQ799XHDwKU4d2x/Ktu3DQyF54ZO46PPjhGgVJY7ghskbIu9sxuzs2ytQMeDitrUhiV1tHjunWozqNc/cbguv/t1ApP13LjvDMzwu/m5jfaHVjreNLd5YVh+h75VUK0+7auqsNQ+rMKzVV5rrC+4sRBTIKDeqMVPb1WKeZhfJKcMuWLXj88cdzg9b3vvc9fPvb36amf+yxxwAg54D2wgsvLFBoOrj44ovx9ttv4/3338eqVavw+uuvY+bMmapixohhDNLm54xrVWk1paazIYuVmoVIS7RH1H1q8hRsOQawaaWm93uATUMqSh9Ts/g3s0zNfN5s8/PosE90o7TMz+VNMtNJusq/wKemslSdA6LzWqDm55LBclSg4mcsakzNrPm5TN7ZxAeO7IUD0Wt3HhIFxqBC1JojiPY2UUSOqRngiNqjOo2/nbEXqtNJ/PzFRahIJnDTVyagKu0j+rmmiTA883Pz87qST82ILjB07i+EAwV5pjvaQcZlT3+Mg0f18i0X750UZZjy7uf9FhR463ZVX/lhk0hKBcpKzddffz1nSn7EEUcwFZqbN2/GnDlzcizNqqoqfOMb36Cmv+CCC/D+++8DAF555ZVYqRkjkpD3qZm9wSZMIFWpBHYoyOAovMJaxEQVcoGCaL9Hw2yFp6AV2bDoMPnyNkWQLUPSKWnzqRmw+bk7a6ZS0+diL8ooYnSEI4YQ1AIFJagbqUKmpi/Ryh6ir+GoXrU+AgWZZ2rKypZj1kmMQ4H51BRlakqwOp28SXnE8A+R6OBBHeKaKMNZ+wS1DJ7z/YMwvGc1ulVlg1sdOqZ3wXVVppguhllY7qiCcCuj4lMzqtsjnWKJmnF7mZqstnl16Wa/YnHhN/o52admeA887zOTrXyXlZEXNDFmamahvCt84403cp8vvPBCZto333wzFxDIsizsv//+qK2tpaafOnUqKioqAADz5s1TFTFGDKOQZUawkqsqaHKBguLFfwFk2Dd0XzzRULbwGIkigYJ09I+i6Och9zlt0c+JTE1z5ufudhQxP6e18zHj++Jre/TTKltQ8C5Eo6y8sBWYmsLm55EYYdQQxPsvMsees+/g3UxNNXnMuppQk0nlQCOw6OfCgYL8v9dRVUaUGpxmZK0Dsj7E9ZZLcgtx8Gj/7C8v/CpGZDG4e1VOoUmCqhRBRT+vSCYwfXgPLWW5EYT5OZ2pSVcihb1WpUGnmbQoA9Dbx0yuvSyLTOLxpgHU3xnyYZhiZhrAKzq/rpfLl/ecNLg/LQsoT2GLFy8GAHTr1o1oRu7GO++8AwA5xeYBBxzATF9ZWYlhw4bBtm2sXr1aVcQYMYxC3vycfkNlKqkkQy5QULz6L4BcoCDy7xbMOLWXBdenpghTU4tPTc933zlKlE34TRdTk+xTM3ympgNWiqgu1nkoLfNzNZ+atCq5f49yvXkIQnbeuHXTMRNwzyn1vsowGijIZxvJvN+BMDUlai8beIaUMsqHHaUEpxlZShQL+vvQmXsPxvi+XXLff3jwKHSvpisDVeHXhFUWvHZSNj8PKPr50B7VeOM7M/CVCX21lOcgikxNy4ru0aGMXIeN6Y1bvjIB9QO7Ea+L+pUtMj83uMexwFe2mYh+HoV5g77+s5jXaYi3+GLw5VPTsiwMHz6cm3b27Nk503Mgy8TkoXv37gCAxsZGVRFjxDAK2YGTlVw16ImjfInNzwshwr5xJltm9PMITI5pzqrDkZAdKMi/HN4swm4aXUxNUj2i4VPTSU/Lp3QXOt4uHWXlrFr0c7rprbvu0a01H0HIztvkf+eA4bmgcOo+NWXncf8HZtwyBNj3XgQTKEjG/FxWARzNzWk5wGlbNlNTf3v36VKBDy47EC8t3oRetRWYPrwnfvHiIq1lAMFHP+e9a6qvYlBMzY7dpge61X3FTE2t2QNgBAqipLcQ3XWSzPv23AXTkExYeGL+OmZevByLzc9NHuDz8/bvU5M0byhmpgGm1rL8toypmoAPpea2bdsAgGlGDgCbNm3KRT0HssrK0aNHc/Pv6OgAEO3NTozODVmimDPQkvbHyubnMVOTCCmmJqXps4uh8NtVB1NTR/+ImsmwPvPz4noE5VOTbX7O3qjJMqGihCAYHbqQZWrK3cM6VCmb6OeB+N/jXHclUJVG1vxcppwgzc8jFygo4Z+pWcKvR6SQP/hkpZEL7CSCZMJCTUUKx+7RP1+OgYcq6k9QF3jvmup7r4s1x1u/ZHLu4PSU5yBcpiZ/LRU1yIjlVJs2X+WZmuxMvX3XuPk5Z+2UX+cqvjOE28J83iJkhOxfORm55udSuZUvlIfQqqoqAEBraysznRPwB8g+xH333Vco/02bNgEAampqFCWMEcMslAMF6VRqOj41Y6VmAXjsRjdYPjWj0Kyim27j0c+9p/C+c/QHfebnxb+lDPrZk2ZqMvtn2E9BDd5qR7keNoCMpFYza35OrlOhT80YNGSZfmYYUW4EEShIFvmNkfj9gSg1LfE+m9Awf0Zh/i0H5MzPOdYcusdh0prExCMNmqnJV2oq5hsQUzMwpaaBB0Lzd85SIkV1GJE69NmdlnaYL8rU9M53JttGiqmpKAjpvijMGywfr+6/ouDVKfapmYXyzq1nz56wbTunfKTh3XffBQAp0/OGhgasXbsWlmWhb1+9Pj9ixNAF2QUIK7VvpmaElQJhoCIl3h5Rj37OO3XPm9HT02gxP/cqNQNsGtLiOKpMzZ8cPgZ/PGkyozx3OfQ6WJzFXlSU7iooPZ+acvekkgzzc9fvUav3Dw8eJZzWtOiWxY+erYP1Ku1TU4FdIwtLcIPqRjDm5+IRzePo59GBs8HmWQboDFxCK8/EI3XkDmo+5K23VcciXQcTPPmc+Ux3cxWZn2vOH6AHRKOVFWWLFpkDIge0QzhRxX5VujB+g8l3xgKfQajqY9JB1Hxq8ooWDejkRVT7cNSgvCscPHgwAGD16tVoaGigpnv11VcLBvjp06dz83799dfR3t4OAEI+O2PECAOypiLOa0CKBqcamMS5L2ZqFkKEqcljL1gIX2mU9c3HUWru/ms8UFDEop/rYmqSauEnUNCPDhnNVFa6n4WIPoUlSdjPQBWlZH5uZ9R8atLgfo+i9PzO2mcwLpg2jHp9n8F1AUoj5pNRB+tV3vxcnl0j+5id5DLjdtQONrPzp0RbEdo13sjpgTMcsc3P9a93yExN/c9U1PRWW3mGmJq6+jvvgKND9pROEEEcVtLqRveNH73DQwcyB0QOaHsb52fe+1VdpNQ01zgJKx9LhZ4m+1fd/DyYgxNRcMkIivny9vgxUTML5V3hjBkzAGR9Xz777LPENO+88w6++OKL3Pfhw4dj5MiR3LwffPDB3Of6en+RLWPEMAUJMiAA9uTBUoIwZdi9IYsDBRVCRinFZsKF264iLCJnzcBUamroH1EzP6c9Y+kTUELbqL6PAJulBxS2G5Op6ZxgR1jproqiCJxR3XUgewilNVBQRKtqgf1O/+TwMYXpDdfDAv9ARwfrNYpMzXxh4kmD8qkpqpTSYekQ1XelVMFmahowPw+KqanAbDaJsKOfi5uf622xogCABp4I7fCGpUSKSr/wQrR93HWjrnsJaUmo8pABdLOz3RDpXn5Z1qT7DOnspUCrTl7pKVdhrvm5VG7lC+Wd28EHH5z7fPvtt2P9+vUF1zOZDO644w4AWdNzy7Jw3HHHcfN9+umn8cEHH+S+H3bYYaoixohhFDrNz1WVkrFPTTJk2DdRjn4uopx1mL9sf1kalJre7yF3OdqiQPa9JPrU9PE+pRIJ5rvufhZMRp+z+KFeD79/qqK0zM/lF8msPmByE+EXtOfwjb0H4fhJAwrTGpZFxCejjk25bPRzGfgOFBQ1paaMQjchl76zmZ+/f9mBgZXlDF+s9rQs/WxfolJTawm7y1FkRJuCuk9NPeXzlZrZv7qbKxCmpqT5eVaOiHQMD1SYmrRnK6rYL2ZqismggoRlCZifO39V58ri+0wxkUXAqwdvXU8Ddy6MtZoAfCg1hw8fjpkzZ8K2bWzevBmnnHIKnnjiCSxduhTvvvsuLrjgAsyePTvX4bp164YzzjiDmeczzzyDa665ZrffHgtTp07FiBEjVEWMEcMoZCcDVqAg1Q1J7FOTDCFlIMcXZRSYcCLK2RxTk6nU9C+Ld/EQVKTRbFnikFVI6vapmbA4i2jXJdoC3Z2MxUAIu3+qopTMz7M+NeVWjKzxJ6rPzLLo7/SwnsEHbExY9GBLJKg2q2xQMJly/PvUFM8giDVAlj0rllaWqUlUapqL12YUIvPH6F61AUiShTN+sfqIkejnQZmD5xQF0RhclaOfB2R+HlygIL35A/LRz7OHv/rl0AHR5+2Wn6vU5ORZnfYwNQ2+o0JMTZ8HEqTmCFWpmTuQpCnf1epbzgd8OpHyc/O1116LE044AY2NjdiwYQN+8pOfFFy3dvtTsCwLV199Nbp3716Ux8KFC/HRRx/hqaeewrx583L+F1KpFK688ko/4sWIYRSqTE3ScKvM1Ny9eY7NzwshY1JIXwyFP5GIMTWzYAcK8l8Pbw5RnWNlDwhIqf28j7xFdMGpO5M5w1ZsWDzlaYRRFP08wuOXGlOTbjod9phCA0thRfSNZ7ge2f4tk97fHGqiHL/Rz2VeC9YBiS5kFd+CaSGnACaljeq7wkM6aaE9CjaQu5E7wGUsiyxL/zhMWoaZGDeCDhTEQ/TNz7N/dSuBiwMF6X8g1OjnlPSy80iQUGJqUtcVu/Pk5FWVCjhQEGcYFJWbfn/xnR0RCAXO6o+s6zTE5udi8KXUHDJkCO6++2585zvfwbZt2wDko5w7Ck0AuOCCC3D88ccT87j44ouxbt263L3OfVdffTUmTpzoR7wYMYxC+qSFsaCs8ZgEiCLH1IzKai4ikFFKsaOfaxJIESIBj5xxltUHdPSPUmHX6WBqygYP8ZbNJGq6ronIygzuENWHwEGp9CUg+37J+9Skm59Hua402YIyI3VDOnq2YjnSPjVl0ioKpWR+HrHBQPb5kRCtGokjq3jJMNME+bic8Ytpfs65roKgxo2gAwXxoCqGrnW8aKCg8mJqktNbEFtHhwHRxy1kfi6w9gSKmZom2c0i44lqML18GcW/hWt+7u86Dby2jJWaWfh+0/fdd1/861//wimnnIKqqqrc77ZtY/z48fjtb3+L73//+9T7e/bsWRAdK51O44YbbsCZZ57pV7QYMYxCdnBiTR41FYpKzdinJhE62DQWwmeQyTA12dHP/cvibaaobCC8kFZqEmZBVaamwyJgvevurP2Zn5eyT83C71HtS4DD1NQX/Tyyz4zBaAkq4Ic3/yBaymSgIKdfqx5aSpmfBxUoSNhkkh/oqSBvQtrIvisciMzbQZpKZwRc1Jgw0yUzvPWWAZRPoCBd7c874MiZn+spLodipqZ+0MY51vvUrcoXf8sYxIOu5T/TmZpieQXK1BTI26/rCNJ9YbLkeUra/HVZ8oUvsToNtLzpffv2xY033ojrrrsOS5cuRWtrKwYNGoRevXpx7+3duzcAoKamBkcddRS+/e1vY8iQITrEihHDKGTXLaz0qkpNR4kSNZZGKSHagYLEfWoGHijId44SZcswlqTNz4vTqys1+afO7vLYm0znL52ZUKoLnVJiamZ9asrdk0oyop9HkzTCdLcRxvwirxRTK0eWlS2z+XLac1jPGkwZ0A3z1u0QLMO5X1yuIFzQyB0WSuZNzCPKIwMdIn0qyKqJrBEsznUVBB79PCLdRT1QkJ4K8NZApphskWRqWupKTcvim0/7gWg/cY+7NKJFnq3MzqsoUJDBeSMbKIjdgL59ahKG2jCZmg7oPjUL/4qCy9QMv8qRgNbji3Q6jfHjx0vd86Mf/Qg//OEPMWLECCSiutqPEYMA2bnAGZRswuiTTiaQTlpo61ALSBEzNQsh0xq0tNlFvgZhfECEReQsGlgLYh39w5t92G1DA83nEg3E6OeK/ulySk3B8liy8nzvmNiEBgWv3FHtS0B2sZiRXCSnEvQgN1F9ZkyfmiE8IN74e+Lk/p708jJaFtnvH+8eUbjl/+sZe2Kv37wmWIY8myMwpqZgWh2b5SiPCyykBQQPsmq5QEEcn5rBRD/XX3NRhU5QKBmfmpobrPiwUv8DkTc/t9CtMq1UVlUqgaY2thsJPxBnvec/U+uf+8vOM9BAQSJpfL67JPllLWt0glcN1frG5udiCF2LOHz4cIwaNSpWaMYoOehgIrihYqKW96kpfWtZQ2rjSWm7rPljuKtkmSjurD5gJPp5VHYQHsi+C0SfmorzkfM+Mhkxrmts83P2CbZlhd071VFa5ufyTE0WUyuqSk2APt6Rxg/TvS/BGX9vP36ShjIs6UMQmVq7n3X9wDq8f9mBUmXIlBUMU1N8bpWVhpRv2O5fVCHyLAJlau7+y2ZqWtpZ5MGbn0ejvygzNXUpNUXNzzU3V/G8rjd/gKXUoys7VZmadVVqylBRXH3YaKF0Qj41BRmPVV6mpsFXJpGwBAIF+Xt3iT41w1RqcqqhXE/u2ByrNYEIKDVjxChVyA5OzmBHGnosALUV8hNvPvp58at88pQB+OmR46TzLAeIPBuH4Ug3Pw+fKRJp8/No7B+KIM/ULK6Ib6Ym43YR/0husBbrUVaQsVB65ucKTE0qcySaYCmsiBspwxVhBZr517n7YVBdtW95EhZQK+n6ReaVU309VdgcQSgA5ViqkusjwgMMe/5VhYg7oSAPckSCCZqYT4IOFBREfxndu5abRvXZ6mp/3vrFnE9N8w8gRVkTs4pWV2qa9cX5lQn9sO/gOm66gjUjT6nJyStqTE2/LGuiT01Ji0ed4O098xZYchUu1bV+0IiVmjFiKEJ2jOENYip+NdMMn5odGTuyiifTkNp4Un7PRj8PtwFFzNjEAgVpUGp6T+F95yhRtsGAGaSmUfapmeSfOrufBascEcVGqTKZvHrnsN8zFmyoBQpijStRhAX6Ox0U48qbP60I0u8q8iQsC+P7dpG/USJ/N2RFlOkrQfk9VTGZFMuXlEc03xUeRA6og6xZRuDg04J+pSDZp6b+midzh4lmWtXt5unnX+a7WAvdpyaXqZn9q938PACNAk1fy5orulVGk6mZTibwxndmcBWb7udErf/utp8+vCczryADBWV9arKRs0hSLqP4tzCZmjw44sqbn7OvR7jKgcLIMcSaNWvw6quvYs6cOVi2bBm++OILNDY2or29HV26dEG3bt3Qt29fTJ48GVOmTMGBBx6ILl3MLSxjxDAB2fnbGZRog4+a+bmz2Cq+1mHbJct0CBLs6OfByuJFVVqEqclmnAJ63BN41TRRNRmW93Vb/JvRQEGua0LRzxnXS/X9DiKggC5kMpAPFMQ8YPApkEHQ3umgfOO5wQoURPpZRZ6kZWFy/25S9/gJliN6L8/1BAmBmJ8rBEnyA51KzYQl/x6rQoT9G+SYl8mtEehpjDA1A6qkyejnQ7tX41/n7of3V23DnoO6YZ/B3YXlkUVQPjUd6G6vQJialEU5y02PMlOz2nzU9IpUAidMHoAPVm8XSs9jau47pDumDeuBd1ZsJabzBgoyOY+LdIc8U1NNDlKfCzNQENf83KmvZL68sTTWaWah9Y197bXXcM899+CDDz4o+N0dGGXbtm3Ytm0bVq1ahdmzZwMAqqqqcPjhh+P888/HuHGd01w2RulBmqnJWVAqMTV3a6tIE317hx1ZxZNpyNQ6ytHPe1RXcNPkmZr0NHo2mIXfo9CzDh/TGy8u3lTwm2xdiebnqj41E45PTbHy2NHP2eyTKPRPVZSUUlPJ/DxBfW5RZdey3G2EEiiIIY8uJBLAsB7V/IQu+JlbRO9V2fgEEijIEpdJT/RzuTxYSCUSaO0wF/TDDSGlZoAzqLPHZ5uf659PgjM/lz8EEM8bmDKwG6YMFD/8UO23uvp7WIFDg1iPJCkHwVQ3PQC6KTIuTTM1HfBWF+5AhbQ1o/uRv/CtaTjzoQ/xr4/XF6WrSnnMzw0SNxIWOTCuG7l1LuX6l4Z0x9y1O6hjN2k9FWbwc94boBIEEChdq4WgoaU779ixA5dccgkuvPBCfPDBBwWdmNehbdtGU1MTnnnmGZx44om48cYb0draqkOsGDGMQt68isXKsqR9ewHs6Oedmanph02TywPhTyTdqwsXVSRxcoGCGLLqMT+PniLqhqPGFSzSfnnMeC1mj77NzzlmfiLlWJ6/pOsReARK8FY77PeMBZVAQakk3R9kVMdkZvTzEMzPWT41ST+rmp/LKpllylF91s5tUubnQUU/FyxGdtNGSq+zRkEGUxQyPw9wHBCx5siud/SWS9I/mVI8AmYUxSrvVckwNTU3VxBzm3T0cwvoqmh+rqoMlQVPT+I+VOUxNQGgtjKFaw4fS0znZWqa9anJDxSUdx1Bvj6wWyX+esaejDJKC6ry8pTPMVMzC99MzS+++ALnnHMOVq5cCdvOM8Ns20Z1dTWGDh2KAQMGoLq6GqlUCjt37kRDQwM2bNiAlStXFuTV0dGBhx56CB9//DHuvvtudO/e3a94MWIYg+zgxEuvZH7u+NQkKTUzdmSiQQYNmVqzFkNhKyB61HiUmiievHgBjwA9ZmDeHKLQt/Yf3hOzL5+JFxdvwuheNTh6Qj889OEaqTxI7abKpsuZnwuWJxKQiN0/w38GKiilQEEqPjVZvnCj8N6QkGXhkWULhakJBvtGkwJM5f2ReX6qB0F5NodwUQFFP/d/WCgDnazmLPvePFPTsoqDcYSNjMDBp2Xpf8+Dclthkqmp0iaqcqhYa5Egut7T3VzBmJ9T5gTGPclEljTS2NohVZbpQEEOuExNVwIRpWb2Ozmv4kBBPOnUIWV+zpjrT9tzEBKWhdMemE29PyoQNj+XlJv3bsU+NbPw9ca2trbi/PPPx4oVK3KLnZqaGpx66qk4+uijMXnyZOYiaPv27Zg7dy6eeuopPP/882hvb4dt25g7dy4uvfRS3HfffUilghlUYsSQhSp9nDb2qJmfZ/Mk6UbiQEFioPvUDN+8t0cRU9Mqmr2Eop/r8Klpsb+bBKusCf26YkK/rrnvOszPnTJlFwqyPjV5m8zsX8ZzLdH3u9jXYDhyiEDJ/DzJChTkXyZTkGGXmq4Gk6mpiQHm1OuWr0zAVf/5VOgeP0xNUYVO3vxcvLAg/BdakDE/l5OHlFzn/BuE0hfImneKrA2DHAbyB5/0NCbWO+RAQVqLAJCvl4lHrNImqu2oyij0QrSvi+5hDhjeAx+t2YFdbWylYBCvGE2pR3XTs/tNq6tKSys1vZZSpsBbXrgviyp1ae1RFSBTUyRQkDNv8awyaH0r7D2aF7x3SjUwUtTqGVX42ureeeedWLJkCSzLgm3bOPzww/HCCy/gqquuwpQpU7gPt66uDjNnzsRvfvMbvPTSS5gxYwaALMvzgw8+wP333+9HvBgxjEL25XFeh/OnDi26dviY3kVmASJwfGrSzc/jgZAHWhslrPAVED0JTE0vnEUD61GXevRzGegIFASo1S/P1GQpIvPX2IGCeIuj6Ppn5KGYqRndemRslUBBDJ+aER2TWQqroJQTbiQstusFHXA2VN+ePhwDulUK3SNTtl/fsVJMTQHWd5CQVmoS89AjC5A/ADaNmnRS6LkF6e8856KG6VPThPk5YdzQW0Q2z5xiRH/uKocFKmN8RTJRFJlaFboDBXWpTOGnR/HjXUSRqemIpBIsSCdTkzW/8JSaQubnnt9pXcDrU9MkhJiaHCIA73A/quspGlSZmqVVy/Cg3Lt37tyJ++67L9fRvvGNb+DOO+9Ez549lfLr168f/vznP+Pss88GkFVs3nPPPbF/zRiRheqg9K1pw9DLpazac2A3HDSqly+fmiTlRtb8vHNCpt5RNu8tZmoWp+H54wH0bFa8iqew24YGWXMxWmqV+qUEAgW5s2UFJOKbsURZFciGqKlUFGDb8ubnTF+pEa2rZdGjjQcVxdgNljxk83MF5cPu59SlMoX5VxwsLJdw/ortlmeniN8fCFPTEq+/vAK3+Aadc0xQLhSq00khuYN8ozLCPjX1ShXUYYjl+asTKlYuKl2tS2VS2zwoztQUz/OKg0fhuiPIfhodRDP6efZvNwUWrE6fmr8/fhL1ms3hM7qXHyKBgrLfxeZO2bWNDBKWhE9NynUeszFq6ylT4nDNzw2VW2pQVmo+99xzaGtrAwDU19fjJz/5iRaBfvSjH2HixIkAsgGIZs2apSXfGDF0QzVQUPfqNOb+4GBcc/gY/Pzo8XjtkgNgWZYvn5qkRUx7xjYa2S7K0LHxjEJ0aW/0c9LGXWRNosWnpsX+HhVIm59LOp5noSLFZ4y4i2Oan3PKMrEJDQrF5ufRrUfGtpGRdMWXStBVbFGuq0z0cx0qdRZ7hsWUJ/2s0qzuW3rWVGBgtyqpe3goNj8XgwqbI5hAQeJPXYtPTY1VCsr8vDqdFGqjIIeBTM5FDT1NYNHPDVRcxFpFFUExNbtUpLS1je6xwMltZK8aZrpwAwWxC69UYCjqYmpedehonDRlIPW6FqZm0UGx2MOgBBXXAgt8hW3e/Jy9DqdVJ2prYC4ZIfdXcp/CSR771MxCWeXhVjZefPHF2gbjRCKB888/P/f9jTfe0JJvjBi6Idvj3YPSwLoq/OzL4/Hjw8agy+4TRH8+NYul6dSBgiSqzY5+rkUcZRQFCiLIIzKX6Zj4/ZpS+oGO50lPT1lMKbw7ziED6053vn5MRk2YCwaFUgoUpORTM0H3BxlVWKD3eVOMq+/PHEWXx6Kr0HS1bYUnJLbuZ1Z8ECTIoFLwuxWIUlNqHJaTh5Rar0/NYE54ayoEmZpRMz9H6Zqf5/PWn7tSMDEFMXQyNcXNzwXT5RRP7HRBKJjoSj1yeufn5nZ57Z0un5pHjOnDvM4PFORSagozNUUky+4TTUFEBj5T08lL7rlHFSpBAAG+q6lYp5mF8iy/fPlyAEAqlcL06dN1yQMAOOSQQ5BMZhU8ixYt0pp3jBi6ILso5SVXYmpyfWpKZ1kWkGPT0DfOYZ8CFpmfE9I46x2WpFoCBRV9j2bnkg8UJPc7CxW72QAsEdz5+jVTDrt/qqJoAR7hgSqjYH4eRrRwv8iaFpOvmVJOsPwcJhjykKAiT0VKPhKsScWetwwppmYQ5ucQlylqgYKCND8Pc1geRWDTHTkuq1Rhmp8bWO8E1eZ5xYf+vFXqoMrU1NX+wqxkze0VKlOTkt7ZpzVxghyRoIupyXusPBdSBebngkxN0a7UYZDiZ1kWDhzRi5kmwZnrckpA6v1mO50sw1/EF777ryhKcEkZCpS3ups2bYJlWRg8eLD2COXV1dUYPHgwbNvGmjVrtOYdI4YuSJufc4YxP0xNmvl5lE0dTUKm3tTJFFbo5vtFgYIIsjrmHd6ohm4YCRQU0a6l671UabM059QZKOyb7OjnvMVR+O4RVOFVYka5FrZtSwcKKlV/pzSZTSkn0kn6AJtgtCHpispcV5H09kN+Hn4OzOQ3MuJ38J6RFr/KUgrdYMvjIag4StWpRKjj8nlTh2JI97wbheMn9cfo3rUAeIGCLO3veVA+NfPm5/ozV2kSNZ+aKW1tI3rAIVpeXhHDGWMC0LzImp87v6ooNVWCt7JkoIHP1Mx/1m9+bpapOWVgNxw8iq7YzDM1ac/V+cu+bgoXHzAcvWsr+Al3g2t+zqkPDaW61g8aylv2xsZGAFAODMRD7969AQANDQ1G8o8Rwy9kXx7efF9bIX844EzwRKZmJw4UJAN29PNwW7Crx7k5y6dmv66V2GdwXcG1v56xJwBNPjU9ZUe1b+liaqo0maOkYS3u3ZcSDDNlbvFWdBXLPITpykAWKkxNIFjzUh3IBuYhXzOlEGIxNS2w2Bvk9LLwmp+LBPiS89dMzoMHFTYHj1GiS2Ela7Iqnm8xdM6/Qc3lNRViPjVNoWdNBeZ8/yD84cTJ+PvX98KjZ++bu8ZbBwRjfm6udUzkHBhTs1LMbYEIdJuf59Jzkkcx+rmDpjZ583Nd9eEzNTnXXWpPulK38Luo7CYDBTn969kLpmJo92pimrxPTXIeTj1otTHd54b1qMa8HxyEO0+YLJSeJ42qtCJ7OJGgseUOZaVme3s7AKCqiu9YXQVOvs3NzUbyjxHDL2THUt4i30+gIJpPzbCVcmFBjk1DycMKnwnn7TNkpmYefzl1T+w1qBt611bguweOwKn1WefkZpiawbWNzOJbXqmp7wTYUdKwbvWWR1usiJz4lqpJimikziggo8DULEVklYiUAx5DAT8qOUxNur9bPfAyRdmHEezNF+seB8JKzVxZ4oXxmZo65gBxX7GqgRT95MFCUGNMdToZqjsNC0CPmgpcNH04vr734IJ+QXvdnKYp1ejnzmbeRN5qgYLky8man8vfR4Lu6Oe5Ax1OukDMzykHYbwDsG/sM1i6LF39ibd+5QXTEWNqsr/TYJSpuXu8qUwl8b2ZI4hpRH1q0pWe6vKJon+3Klx8wHAcNY7tG1UEPHN6GsK2GiwVKDeTM4kkDLW08+BjzXOMqEJ2UOKl9xUoiOhTM9oMKJMQqXfeFyV94xy15rt85sii3w4amTftmDKwG2ZffhA23HAUfve1SahMZfuUFlNAzveoQH4zTfldJVBQ0vGpSb9X9US9KJ9SNj/3aZYbJGxJpqaz8I1Knab0Fgt2wFKSm/KpyYpIa1mSTE0FgYrNz+mwBNIU3aPYSM5tMmMZl6mpha0vjqgFCgpqUyga/TwM0IIlqfQ3EZCUqCbbRrW7DKqrwm3HTiReUwsUJH9PbWVSG4tVnKkphlzgMi7T13zPpx4CU9fx2d8vnj5MuixdtfHL1BQLFGQxv9PzFkqmBPcz4QUh5JmX0y3qzPY5eTYzO33e4kNODpF6xtoyH0rNGDE6O3QpTxz4CRREitLXp7aiZJlcfpFV+IilZZkfR01pdOmMEejl8rN58KhemDKwG/c+HaaHxUxN31kagSxLRi9Tkx/9vHjxSU7HdTgewf4pCu/CPMrVkIl+Pq5PLW79anZzHIU6PXxMH/zliD6oFTwwCzr6OUupmfWpKb6BVfOp6Y1+zs9DzvzcqzQVVDbkmFHiZfGUlrrmANFcdKw9SpapGeK7z6omrQ84fVo7U5N0GGLwOagqBRMWMLiOYh6rZH4uL0MYTE3dCCZQEEUxzzkAG9qjBv/8xj5SZYm8D10rU6hOs1UpXKUmpwylQEGcPB2YDRRE/uxGLlAQLQ/O/aaHdWmLTMHrsmOVkFIz1mpCb4SfGDE6EXQ7+hXdeLrhMDUvmDoU1z63EG0d+VHttmMnYv4XO6XzLAdYVnbyz3TwR3maEixrfq5bMn/o06USc39wMO57fyW6VqZw4f5ip8+6TA8LvkeUjyL7zOjRz+Xr57yPzCiznu/0jSa/vKj1T1F49yVRVs5mfWqy09x72p74xt6DkGKYU4cBy/OXl5b2GEwoJ1IJC70YDvilmZoKMshEP3fGWplyVH1qqqTnKV+0KDVhCT93aZ+ahORao58HptQMN1AQa16mH6A51zUrNUmHIVpLyMIZnlW7eLZfk6+pBQqSv6lrpb7o58JMTcHixM3Pzfd7qvk5Jb3795kj5WKAiFSnriqF644ci0ufXICWdrLfTq75uYQyirbE8D7ydkEKpmg6FbhlorUAz6dm2NHPdUN13STySsc6zZipGSOGMmRfHt6YpGR+vls70KOmYre5cfb7pTNGYOrQHiWr9NAB4QiQjGth+sa66tDRxN8H1lXhJ4ePxXcPHJkzL+fBBGsmyLWETFnafGpK5ZJFRc78XLw81fKzSqjSfMFLyfxchKmZSlhFCs0oKP0tzobBm5a68TAwDg6qq+L41GRsVDWJUxwoiJxxTTqJqw4hj8csqPbzvLmneFl883PxvGiQG4cl8ya0jt5AQdqyYqI6nQyVpc0qmxbhPG/iqVcW8mGI3jIK81ZXGOgc+9QCBaW0uUgQX/vKKT952YYaKEigbO8hFg8WLPz0yHHMNMmEhfOnDsOmG46i58MRTcbNnqj5OU3B6kXGoFKzwPycInfe/JyWB/t+0+O6bPa8Z52vj1y+paa8DQsxUzNGDEXoZl2wTPFocEeP/fb04Th7n8HI2EDXquyrHYWNdRiwIL4YZU0WQWyEzps6FIeN7o3/9/YKzFq2GQAwvm8XfFuQhSkCLUxNT18qF4W5ToaGSKAgb3k8k0BWPqX6DIoDqES3Ijb4TE3iMyT9FHA1ZRlYvI0HKW9VDOlezRyjExadFUg2P5eXwRt9nZbF7MtnYvDu6K0mD1hycuSUTOL3B8HUBMTrr2POKUXz85qKJNqbw+PM8GqZtCx0eDg9zvuk+/AiqEBBubxV77NYTE0Vpaa8DF0qkmgWVETxwDvg+MXR4wGomNayb/AWa8IcVjT6d/73/IW0pNbYsoCL9h+GFxZtwJvLtxLTOP2jtjLrPoC0VuA1s0wziQYKElXgmjQ/F2Jq5gIFsZ+rTosqGbj7j0hTmfOpKZe+s8K3UnP9+vV46qmnNIhSnG+MGFGG/AkOb0EgP2p5o7fWVha+0hHWFRiFY34uAlayIDZCtg2cvtcgnL7XIKzb0Yy1O5qxR7+uqFLwsUqDGZ+a9Dz/b78huO+9Vb7LDAJ0n5oK72NChakpXUy2DE2BgiwreF88YbJ+ZZGxbS6bQTjarA6BJMDzV+WGxUhnwnR3cF0Vs90syL0bKhIW+9QsTnPx9OEY17eLqxzxkrwpxU23yfezEIz5uTikxyZCcr2BgoJ5+6pTSexEeyBlkcDrY6mEhdYO7z3Zv8GYn/srgzVfqYqfsBgHOgqZqqwdulSm0NrRKn0fCax3PZmwcM6+QwDIMMd3/+XcEEigIJpSk5Le/bv3EIuHhAX07VqJVy8+AJsaWzHghueZ8iQsi2jVwesPMusvUabqqF41GNenFp9tbMz9RvIpajL6uVsmWhNwzc8dqwWqf+3SQr4+coh9aorBt1Jz8eLFuPrqq3XIEiNGSUGX7z4Hw3tUo2+XCmxoyC9srj5sNG56aQn1Ht5murNS1i1Y3MXotUeMBcBjappvP7fCZEC3KgzoVqW9jCCjn0/s1wV9aiv9F6gI2Ymd52dMBs7pOGvj5r2ibH5u6XIrYBk9raeVWfg90OKlkMnwo5+TxuEoDL35zShfGMtisJZJUYx91m9w92pq0AfAYWqSr5F+1xEoiPQuFh/mSBeTv1cynV7zcx0HIOIqKR2BFHW+Q0Gan4fptoYHFus6CPNzv7BAZ7apKkxZ/VrFJFyJqVmZxLYmPe3FUmrO+f5BGFiXXWPqtpAI1/ycnN79u5cEwoPTPsmEhX5dK1GRTKC1o5BN69aTZutPUGpyyrEluJqiTE3LsnDf6Xvhm//8CGt3NOPc/Ybi+En9i+4zGf28kKlJOTTYnYjad5wDPuraxGyf0517nqkpq2CP7pwSJcTm5zFiKELaET5neEwlE7jhqHG49MkFaM/YmNivC7657xBfSs2oDYM08wzd4DE1x/apxRl7DcqlpSGIvUkQCiUjgYIYJ6u651+Z7GQWiAD9PVZZLKWdBRpj7ey95idQkI5NScICOvjJtKJoAR65kSqPj9fvRJ8u9IA2gDgjKfCFqeWUK5hcgq3ktyZZ83OWLObZGemiQEH8ZyZTtqpCVCUadSDRzyFTB9m8zb4vQQUKqqlIhjqa8cpm+9TUK7kJ83MSG8756o+pSb6m0m+UfGpWpLStm1gy11XJb/t5wVoc6PIJygJVqSnw1smOgd7UpNsLmZqUfDjF1laIPxNRn5oAMG1YDyy86lBmfmEzNROcvsWzWjBvfq43raq0caAgMfhSaso4t40Roxwho6QTGfAu3H84DhvTB+t3tmCfwXUF0czJ5bMzDWKRIQPRiOS6yvJi70F1uHTGCJw0ZQC67DbVZymGglBCmFxUODBhesjzgRMWwmRqOkwANlOz8JrqQthi3CsDGrvAJIp9agZavDReXbqZeV3Y/DzgejrDv9him57IRKCgId2rfDA19ShZRczPi8sWz9/v85a5nRYV2IEuVxWi6Kw+NUOPfs4pmsgqh7wSXQQmfPGaOIS2QB//AvOpWZnSdrjHGq/d1REtzUkXBfNz2pwhw+oXhUhQR/dvPBNqGi6ZPhy/eHGR0F6SztRUq2j4PjV3X+e0Ha1+pOYY3bsWSzY1Fl9QgO4Dd56SlgYh83N5ccoOykrNl156SaccMWKUJGQGJtFJZ3TvWozuXQsAaOtg+2biscmixoAKSoFiWeQTzeMn98c5XxoinE8QTE2eaasOaDE/t9jf3b9Hq9exQfepKZ+XWPTzwu+0k3feu2tZenxqhmEpKRoBvlQgykgKejyWYWCxkpCjGPury+C6arZPTcY4Qvpd7X3lHzB4x2c/z1A42rDzN4pMTcE6yL7TpORx9HN58MpmjVWW5kNwE+OGRTBAd76pRz+nH6CovDcqctRo9KHOGldFlHA08OMCyOWnAjpTkwxf47XAmtfrU1MkHy/6dq3EL4+ZgJ88u5BLchA1PxeFUaam+zPt/coxNdltR1d6FuP2r+2Br/zlPTEhNULkEeR8ako+LyGmZqzVVFdqDho0SKccMWKUJGR0dCpzDnOjKTDKRU1XEJQJmAWLaNooO4EHoWw5eHRv42UYMT+npfNpfn7YkCq8tKpZ+X7ZeZ3u01K+EiLRz3Up9CzoZGoGi2Lz89IGmf1UjKCbWtUpvRcmGFeD66qwvZl+aMeMfq6pHb0+1kjvgnfKkGJqelpJ9F4VNgc3UFDAfU/apyYxD41KzYC0mjXppC+5X/n2/rjrzeV4bN46pft58xZZ0Ui/5gekNZjfElgiqubNOkBRU2rKy1CVTmhjzTGZmu7PgoKKjkehBgoyMFd4byXVz/3O+Dkgv/KQ0Th/6lDc994q/PCZT6jpZMzPRWCWqelWoJPly0U/p4ifC3ZIvV584egJ/fC3M/bC32evxuzV27B5V5u40B7IWWaI78ll9xcmrGXKEREzTo0Ro7Qg8wKpzDls5Qj//qgxoIIamGlMzagpNXvWpHH2PoONlgGYqYcphYOoKS8Nsms0WmkqYjhKElZ7ey8pm59bukw8dSi8/ZUZsWFKGqLKAFKqHx48Sq8w7vJyGwK+fKyxUbdvvIHdqtC3SyWHUcRyDUFSssoLVGR+TkjjdbMURF/NmdxJLDC4gYJ0MDUZjDYvosYiD+pAtTrtz6dmbUXK1/28aoZufu6zCNY7qpo36wBFpQ+qtGN1OqnNaof1rhcomrSURs7bFGSZmn7g7RM8n5oybEISetZUoH83dpBN3UxNk+w+d3vQ5MszNSl55A5m5ZS539hnMJ771jTcd/peQrLS4M5d1l8/MT8fYxQfMVUzVmrGiOEDMmYmKiYpsiaBRfdLl2gWgSk1KWXJnkqaEreuKoVz9xuK9783E1UazY5oMNHurBz9mPykAu60NMWBygLdMWdl3erNl8o8EChPxx4iDLant82jdvgiC5I/Q1KVSL/dcNQ4/OCgUZg5sidOIEQn9QOnOJFn3MZSamp+Pj/78jgkEhbb/Hz3P+I1wbblodinZnEmOrcJoiKqsDm4TE0tSk2JOijk7YVOdqVKgBQV+PWpaXooZAcKkstr38F1GNCtEldQDmbIAcbIhZyzr9jhLpupqdZ4TKamwgNR6bb9ulRqU2ry3HqQPrMgajIbqvm5T4UiCd6iyD412dcBub0f73CKdj2Kayj3+8iLfk59fpyxiecyI0iCo9CaXdn8nH9DrNLUHP1869atWLp0KTZs2ICamhoMHjwYo0eP1llEjBiRQpiMcJFNStQmuiBN4IhKzYxcHqZM1v5y2p44cfIAI3mTYKIaJhaRAD/gBQ+yAex0+tQUCxQkWj5bAF0+NXUoO2QjqHcGpqZoNOeqdBK3HjsRALBscyOeXPCFNrlyplsCadsYgyMrSrks/vGNvXHanoN250uXjBWRmKjUVJClwnOCotunpldO2X4uk57rU1MHI1sirezcSX5fpLJg4pT6gXhU0aRbBn59arJYgyLg3clyJSE7n7x32czc59teXSpWFqWI3x8/GRWpBD5d34B+XSrx+Hzys2LOrYrNxnKZU5GSH/x47Ti0ezV2tLRjW1PWLPaaw8egIpVARnJ9SgPrXVeyGBM8ZAmEqUlZH9IPwPQdMChHP5coU9U3chTXUAWBgijy5aKf09bBufvlnrs3f1W4b+dtLUSKyr9Lcoh9aopBi1Jz3rx5uOOOO/D222+jo6Nwa9O3b1+cddZZOOuss1BZyaZVx4hRajA9j/iNzB21iS4483MLtx27B467t9BZ9LemDZXKx5S4QT8WE4tNljLQT3EkpqbJfkzLWqXItAhT09OpVJmaFjSZjvvOQT4AWJFSU4MM5HKKfSKaACuKtxu8x+X18agLIv2klaHUJN2vyooa37dL7jObUWQ+rJKXqanbp6YXwj7sGPLQEAxTU1zhJu1Tk6io1tcDTq4fiH1eWYLZq7dry5OEdDLha93AUuaLgPd8iObnu+/RfYhLkoVWQteqFP7fyfUAgAXrdlCVmqyhVnU+TFh0ubxjhFh+bDkm9e+Ku06cjOcXbcTQHtU4alxfAPr8G7IOhv2Yn0eDqSkZ/dzzXWZN4B1/eD41qWtJmcMprm9k8vWoEViAwvefJl2OqcnJg3ad1+f89kkpa0yBN4qnpKUhis83ivC9gv7jH/+IM844A2+88Qba29th23bB//Xr1+PXv/41Tj75ZKxatUqHzDFiRAamxxlW9mJMTX2ysHD/6Xuim4B5l8zA/PBZ++Bf5+6Hr07oJy2PBeCocX1wwPAeud/O2mcwRvaqlcynPCaSYJma6q1mwT+jSFugIAU50gl+9HPSIlsFlhWdQEGychQFCjI0kAZ1iCJsfs55M/z6k/WC52TfjfaOYHxquvsbe/MtxwZX6UPF5ufFabx6BplSlMdBzkaOBF5fD/oAJGo+NQHg3P3kDjVVkO236oL7ZhZxrpNZ5U7ZvorWBnagG9Y1NViMZ6bC1OTJYVnAsJ41uGDasJxCEyhmhZMwuK6Km4bJ1CyQQ+6QhZc6kEBBVKUeOb03ucyaoMj8nHCvUPRziZ6p6hs5Ku+uG4VMTbKAzhTMm+tp7yGvz0VVGShtfi4wDMVETZ9KzUceeQS33357ETvTDcuyYNs2Fi9ejPPPPx8NDQ1+iowRI1Iw7ZSWyfgSGBRNKQu8OHZiP6FpW2ZBUVuRxFcn9sPRE/ryE3tgWVnGxCvfno7/fWsaZl08Hfefvqd0PjxxDxvTG9cfORbn7jcUj52zr3T+QSFIn5q+WJoheHmmLXpUmsxZeLEWUqLRz3ntaAmkEYEOdo60T82iNvAtglA5piAcKIiTLK3ZP0d+M8rPl2l+ThD8qHF9fMlEy9dBwqK7VyAywBSaztvepPK8wQFMmgZ708kUxdsM6+pZsnXwk6/u97dnTVprfiRk+62/+/3UmtdkrAOYIMZLkSJEfUI6sBnXRJA1+SdfU2JqKh4wiDAIP7nyECy9+jD86FC6a7eyDhREMz8XLFvm0FwkUJC7zrTnrpWpWUo+Nd1KTUqafKAgdtvRlPl8pqbZQ6KCtAb35LFPTTEom583NDTg17/+de4B2baNadOm4cgjj8SgQYPQ3t6Ozz77DE8++WSOobly5UrcdddduOqqq/RIHyNGyAjVp6bAIBeUeCYWFJUpxz+hgjy770olEzhirNrmG+BPJFWpBK4/chwAoKlNxqtgsAg0+jnjGg9pDS+UrAUX/YRfXhZHftadoswBka2tFp+aOhhcsqfOnvSmGNFBRTwmRxQuBk+atEy4awHklBUC2bLMz0l99NDRvTFlQDfMW7dDUqZ8Xiyz/Sx7inJN8DcehKKfe5rFpMLJm05noCAdrwLrmXghOzaRxlvNrwN61VTozZCAhOVvXPbL9OT1GRZTM4jxUqRurHGB1baq7WaB/l5XKBw08ZYxNDE7BLSaXSpTuf80aA8U5CieuKw4sfz8QDb6ufd9SCUtoF2sLG+eRPPzhPu6WD4s8MaOUjI/L1CgU8TjBwrKXuhdSx67TfdJd/a8t1OkKMvzV1gOyfSdFcpLhueeew7bt28HAFRWVuKuu+7C/fffj69//es46KCDcNhhh+Hiiy/Gs88+ixNOOAFAVvH5xBNPoKWlRY/0MWKEDNNMSNYCNUqBgkQVWTKMwaqU+ajgPPDZcvkElRIn+kGvP4yYn9N+98E0oTE1ZXL0Mqt4kFGc8JALFMS4WZSlyO17DCabDEKJfu5Jb+p90K0UoYFsnk1Q0nAqqp+pyVeyO2iTNj+38PolB6C2Qm6cdmfF8/0mE/1cBV6TNrJPTS9TUzx/bx+QHRmlGD5BKKQk5Nfx7pUqU9OP1DoDW5DAGquCUEqJFMFaSpkQkRWcyUSgINpVEaVmvgz6NVHzfdGemj9k4cgUQAeSjn7u+V1mnBTx/V3oU9O/wlHl/c2WIVxEYHCLRKtXLlAQJw/LstCVoMg3z9TUvCZz3iWfa2YiYqqmulLz3XffzX3+4Q9/iMMOO4yYLpVK4cYbb8SYMWMAADt27MCcOXNUi40RI1IwPY/IKEdk79cJ0XJkfMZV+rBF1lVvmYknkbC0+8TTBSPm5xqVgQ5SCUtaKemFPFNTn+KkQiH6OW2RzSveQnR8asoqVERN8P0iqEMd0feeJ45owCFRyCygZc3PgWxwjx8fNkZJJla+gHNQRrtGUsxIiQFA0KemQNk0qPY+Rw6ZsYxrfq6JkS1af2mmpoY8eOgZCFPT32ETK2iNDrBY5UEopUSahs3ULP7Nb3wdi9HmaoGCeOWRE4j41HTAGjvZbj2EiygC79mFy9QUW0fJrIW99SUzNS3XdbF8WOAyNSndMfJMTcrzyTM1+evwod2ri66zDmMBvQfb3DW5wCOQOWh2IzY/F4Py4164cCEAoLa2FqeeeiozbSqVwhlnnJH7/vHHH6sWGyNGpGB6HmFlL7LWCo6pKVYObUFxav3Aot/G9pEL6lMgT0jKXD+KWJMwYn7OYFGpFhctn5rylRCLfu6/HKeM6DA1/aU3xtQMaCAgsp8I6XjS6GZqOl1NpBnaGCwhJnNKUmT3uMFSxLEYb6QyVRgVYtHP1ZmaXoje69SlPUNXNHsRRFAsmRKiMja5EQxT018fYfl3FAHvVlbQr2CYmvxCmExDA2O6bp+avDrSrspEP2e9XywGvPs28fGo8K+KTLpAddcjWLQM8cCbkutTU8MBOU882ejvYUKkr+V9alLycH0e2qNYqblmexNTBp3Md775Ob8sVXHiQEFiUN5Cbty4EZZlYejQoUin+QuFffbZJ/d55cqVqsXGiBEpmF4EshZw0fKpKVYWrb2+PX0Yulfnx5HvzBiBblXpXN7S8sjfogSvbFWdSalJPZVWL0uLT03J9LQiVURxzM+lAgUpLtL9RJkXKV8qD59MTdrdfg42suX4ul0YRPYTSfHGM0u0LL3KKcv5w8+ztV3Op2a+CNln7/rM8f3G8turA15/eUSmpsadgqjcjhwySo4glJqAvCJEFKSa6p63SOaLuuGXqem3ylzzVUKCvPl5AIpxgSKYPiEJv9k+X1IWA1nloFrVp6aE9TlTycELwJaTQ7w4IQQSKEjWp6bngh+mJgnu/GQsC2goW5+alDSiPjUBYAiBqbliK1up6dcti+5WzVvPyN0XlH/4UofyDL9r1y4AQNeuXYXSDxo0KPd5586dqsXGiBEphKnCElFGBMZYFExHW1CM79sVc74/E//6eD0G1lXhhEn9/ckT0gRQmUoCaAulbBYC9akJNdYUAKQ0nHTLbnDoihP5OjhKEtad3ms0UgVfARaOQpImi1SZAmzVXjVpLLzqUPzoP5/iV68sUZIrzEBBJIikSiUsKd9qIuWJiMdiarKDc0jK5LkhlbDQTig7G3BFJl85OYD8IYS7TC90MjVF4RTB8AhQhCBcn8iw8GXHFdK4rbtKQawLEgkNTE0f5fPqSIx+7ipbFKrPRmR6DtqNT9DRz2lPOCPlU5NehnigIMF5y2HTcdIHY35OYyrS1o6Fv/vxqUl6Ou78dDA1eUnp5ufiZQQFkb7mDEe0NnLXaxiBqblym1mmpgxEirI8f0UhZH4eUzXVlZptbdmNuwhLE8iaqTtobGxULTZGjGjB8HjJyl5kcg7M/FywGPopIzC0Rw2+M2OERqnMw1ubqJqfB+pTU2Lj60U6EbwJhQ4/SA7UAgXJMQ8K7xWVjA4dPcNEoKD8RkpZrEB8xAHigYJE6pJOWmgRjM7KgyOWSLkqPjVV4M2JrtRkmZ/TFTMyEDE/L/apKQ5vdrJKBBnlduQCBekYm0qQnWJBg09NP0xPznUyUzNftii8BwKiEGEfs83PSb/56ycW6O1WkZLPWzn6uSbzc+FAQYJVyyliOOlDZWrS1nGe77qZmgWWB4Iy+CmTHihIre0n9uuCT9Y3KN3Lg0X57EaOqUn1iZr/nWS5M6Y325rHr09NmbFFSKkpeEDghUi3jXWaPohmzqmq7CINADo6OlSLjREjUkgY1mqylSP+7tcJi3HS7YbuCZkqj9bcGOV45O5c5ufqyjgadDA05M3P/Z+uOxDxqSlqDsUr34Ke56pjISSrNBc1P+dd4yFMpiapZJHnldbo2T7PCuCX28pQajLNxCVl8rYBq//LjDEqig1vZGNSDl72lNQmB+L9nAQZn5osP3q6YFnidZA9UCCbn0tlEQn4DfTjW0GnoBRx+qnMOK7q/1eEjcjzteuFX/NzlssAtUBB7LahXZUyP2cUwXqO7kuyT5CXPhCmJqXfiRYt51OzMC2pmxWan9PmMpnDIHZa3ebnv/vaJKX7RFBgfk4RLxf9nKYQdv3+lQn90Ke2MNjb1ZxAhf6jn+ehgwlpef6KIoruBaKIaO7AY8QoEYTqU1Og8OACBYmBxdTUCZ3VlslrysBu+grWCBP9lM5wVA90kNYwI8kuPGiy1lbIGzJUqPjUVGwsi7ERCxr+AwUVZyDDMhQtxxRElQEiddFpepn3lcdPy4siyitDPH3hd1p9WSahurq916embqamF7LMKBklRyBMTYkiZKUhjdtRGd9k4NunJsweyrL8/8rIrXr4ItKnRc2ndYFlXWJEqUm5LhP9nMnUZFxzly08HuXmYvYNgQQKklQcih4ik+BNahOOXoSinwuXKKDUpM6XEoW4cNiY3rj75ClqN3Pgrgo3+jktD9fnqnQSfzhpci7g2zn7DsZXJvRlyhDkwVjYgYJirmas1IwRwxfCXHOLTM5BiSfaDipMTRXmgp4QKiLlFOKGo8Zh+G6/L327VBhbLMjCxIaXbi6i3u9SCQtDuhQrE2WUxbqYmrd+daJkTi7zc0Ya7zXanokbQdXS8377ZbkA8u+btz+ShoWcmY6PWgYVPEU0UJAIVM06ScixAgSEYZmfi5Shmp4V+IG60SH1F0k5gOCjn4vCKUPK/Jzrx88/LFjC87Ge6OelqdT0IzZLwSZ0P+dJi7L4ePC+t1ccPKrg+yUHDCfe59f8XOTgQRb6o59zrlMSyCiKeSb6OgMgit4i+76qkH2lAwV5rsishb1jHZGp6UoTRPRz6h5Kca1jWRa+NW0YhnSvUrqfBRGmZi76uaCy+qQpA7H62iPQdPMxuO/0vXbHMRCTQQXu23lrZZGinP4oK1bsU1MMsVIzRgwfCDVQkMAgFxxTU0z1QF9o6ZVTK1NTopyxfbpgydWHYdmPD8Pa647Et6YN0yeIDwQb/Vw9z1QCOGF0Dao9lM2fHjlOPVMOaH1y/2E9cNqeA6XycqK3szb+3sWn6kLYgp5TaB3rIGmmpucG1ujhj6kZzPhHNukshpD5uUYzYsvzlwWW+TmzDJ/PnrVJkwnipfKoi8zPCXl49YoySnZvfuJMzWxCkq9RGrhKTU3dSlzB4b8sE2cS95xSrz9TF2QDXBXfr28TTgJJKeQoz6WYmh5l37WHj8X/7TcE4/t2wVn7DMaNXx5PvE+EjZi1QqBcE5ZQHNkDQnLO3jFCBKrm5989cIREGezyRZREsgeGvNSy/V5JqUkzPxdcj8r0cW9KsosMt1KTlo+6ItULWaWuKEwoxCzKZze4TE3Chap0kqvMdGB6PC1IK5Gf7LsnpNSUyrE8oRwoqFywdOlS/POf/8S7776L1atXo729HX379sXYsWNx7LHH4ogjjkAqpb+Z3nzzTTzzzDP48MMPsWHDBnR0dKBPnz7Yc889cdxxx+Gggw6Syq+trQ3//ve/8eKLL+Ljjz/Gli1bkEqlMHjwYEydOhUnn3wyxo8nLzJiqCMo1gbvhJB1bxAQLYc2MLMWQ6TTsXTSwtP/tx/+9sEq/HPOWrHCFWHRHgAFiYSF4T1rct9/dOho3PxyYfTmqUN7aJNPTCb9ebKVvWodL52wUJ1K4N//ty+u+u9naO3I4KdHjsOQ7sVRD2mQZR5S+2TCwkNn7o3rjhiLPW59VSgvFaamr0BBOnyQalgJycpRlJxwu4xCTrgcQ6BFZPVCRBytTE2J+quan8vCKxI1mi1YLi6Kf1Ppx15mFDlffUxN0Y1MjqkpWCm/fhxFIcc4kpOIZNppIlDQGXsNxPOfbcCj89ZpzxtgK+NFYMEfO513J0n57Sga5ZSahWm7VqXwl1P35N4namKdSiSIBy0XTR+Oa55dWPDb/31piFCeNGSDM5GveV1UCOXHGcJp/WNI92r88OBRuPXVpfwyWNZNyNaJF71C3PzcEkovvw6wIKuKYc0XIr/L+B721pfoIsPtU5NmvSQ1brKv6/apaRIFbUMRL6fUNHSI4XcNWBhYy38bW0UfxFCK/qXDQKdWat5xxx24++670d5eGGp01apVWLVqFV566SVMmjQJt956K0aOHKmlzPXr1+OKK67Ae++9V3Rt9erVWL16NZ555hnsueeeuPnmmzFiBP/kbvbs2bjyyiuxevXqgt9bW1uxaNEiLFq0CH//+9/xta99Dddeey26dOmipS4x/C0+xcsgT/uRMj8XTMdSIMniy+P7oldNBVGpGVy9+SVdcsBw3Pf+Kqzf2QIAOGufwRjQTb+pBwvBBgpSL8s5hZ45shfev2ymUh7SPjVZ1ywLE/p1Rf+ulfhi9/NjQSRQUFGgFEGzm+Lr0VnI+o1+Trq/lMxXWebzhb/x89LqU1MirbL5uaS43vRMn5oMFxc64I1srNu0tUh3Lym4qPk5i5mlExZkFCFyedPG7YQl51uUh5qKFB4+e1/8ubkdddc8qy/j3fDL1LQsfxpqXj8gzTdO+/oxPxeFaOyrZAJErdxXJvTFo3PXYu7aHQCAvQfV4ahxbL96PLAsjUQZYW6oMjUB4JavTsRF+w/Hq0s34bxH5iqVkV8bFL44Rb6smVIS8uXcEQRTk+XLXaxMGaVmYVqyT02XbFRXQuJQdR8RhtLrpMkD8Ph8+uGQWyTa88n5TtegECbnr69h+ObnAntyRXli83Mx+FZqrl+/Hk899ZTRe44//nip/EXw85//HA888EDueyqVwrhx41BdXY2lS5di69atAIAFCxbgrLPOwiOPPIJBgwb5KnPFihU488wzsXHjxoLfR40ahd69e2P9+vVYvnw5AGDOnDk46aSTcM8992Cfffah5vnCCy/g8ssvR1tbW+63dDqNcePGoaamBp9//jk2btwI27bx1FNPYf78+fjb3/6G3r17+6pLjCzCPD0RKTsw83PBTZWKnx+2Ka/8PbJgK7349w+qq8bc7x+ER+etRa+aCpxaL2fSrANmfGpSfvexJ9MSKEgyvYhCXfQ9ygdmYW84CssXyro4n0COVMQgHyio8AZSc+XMdHz03aDGZ6ICk5RO4InpND+XqX+boubIrxkVa5NGNylUUxh7UexTsziNVwkTRJdyypBRagbR16Uiv0szNclIWJZUABVRdK0yw+lgKeNF4Pcx8u5nmZ/LRT9XDRQkztQEijWgqUQCb106Aw99uAaWBXx9r0EFc3htRRKNrTyOYiGyYw257kpMTc4tvFdjRK8arNvJJp/w1swiB22i76iTisvUlHznZbtQkumShAxvej9+toPwqUnybXnIqF758hTiEpjCJQcMxwert2HF1ibi9QKfmpQ8+ExNf/XyzdSUuF8kqei75IVIPWKdpgal5uLFi3H11VcLp7dtW/oe3UrN5557rkChedRRR+G6667LKfra2trwxBNP4KabbkJTUxM2bdqESy+9FI8//rjyBqupqQkXXXRRgULz4IMPxo9//GMMG5b3u7d48WL89Kc/xQcffIDGxkZ8+9vfxr/+9S/079+/KM/Fixfjhz/8YU6haVkWzj33XFx00UXo1i0bWMO2bbz22mu4/vrrsW7dOixduhSXXHIJHnroISST8ieQMQoRjPm5RZxNhZiaQW3qBdPpnpCpCxml3Myhb9dKXHLAiNDKD9SnJuMaDzpZaqIQOxyQy5OVXJipySvDKmWmZuF35sGBvDg5BBUoSBQizaQaVZhcnnj9z9lXzYRTmqnp+U71EWbJbWdU9F5epSapxOJAQeYVVk4Roj41s+bn5vu6BXPl0JmaFkppu+ZXwWwxlPmi97NAOsTTYX4uClKXJrUXy3dgdTqJ86YOJV7/zXF74KLH58G2gapUAs3tfGooa6xRCxTEbhuRluM9C170c7L1g7wcgHh/lA8UJPdus9aHoubLuteYIoo7mTmjf7cqHD2+L55duGF3/sAvj5mQu043PxcuQhsm9uuKuT84CI/OXYcLHp1bdN0tKq0JcoGCKGWEzdTU3ay5w3oDPjVjINg4J6JsLgc6orJ60dbWhltuuSX3/ZBDDsHvfve7AuZiOp3GaaedhjvvvDPnT/Pjjz/GM888o1zugw8+iGXLluW+n3rqqbj77rsLFJoAMGbMGNx333044IADAADbt2/HjTfeSMzz1ltvRVNT/oTk5ptvxpVXXplTaALZNj/ooIPw8MMPo2/frInGnDlz8Pe//125LjHyCOIFop5wCTEjgxkI/S56lJWaGk5G/aBUphkTCx4ZFpUoFHzyF0F23hBZXPg1sXXD+yxCDxSkJfq5ZHpP5UhtoHqizcs3KBDZpwL3mVDs855wVSqBHxyk5mLH77Onm5+Lb1RVIRIoyNt2MmV78xNmRu1Op5OpqaPN/CrcVMssJSR8HjZZhhXUpIOejpxSUzwf1cMXkp9YUnvRDqR4TXvBtGF445ID8JdT6zHnB2KxCZg+NZUCBbGvC5mpcq6zDuySCbJS02+/4t0tb7Ehl56p1BQ0X/bF1CT85s7Pj390Nx49ex9cfdhofPNLQ/DSRftj6rAe+TI0Rz/3A8sCulWlMXVod+L1QoUvWT7zPjWDaxeRovIWSHJ5x0pNMfjaQtq2bfS/CbzwwgtYuzbrgy+VSuG6665DgjI5z5gxA6eddlru+3333adc7kMPPZT7PHLkSFx33XV0c4eKCtx8882oqKgAALz44otYvHhxQZrVq1dj1qxZue8nn3wyk9Har18/XHfddbnv99xzDzo65Ew0YhQjGKYm+XeRQS4w5Z4gq0bF/JwEZ3jQNY/XVhSylt0LFVYbBuHHTAdMLHhYi0jVxbMOhY60+blAkbILCla/8F7x4yNKx0JHx0zrVwyiAlDxRNuNUJWaBLlF3kOd5ucsHD2+L648ZDQu3H8Y3vvegRjao4Z/kwZ4m4CqvAB5Yw7om9fSnrJJ5RUzNdXLE73VSScaKEhE2Rh1riPJXx2gV/ERBLLkDR/3G1Y8kdrHcbEgM17u0b+rhFR5kBT1pDHAz3Pcf3hP/N9+QzG2j1j8AIvhzEWFqenHp6ZoHqzmSSZofp7Z32lw2oZ70CrL1JRsWmafECzajysmkl6iUKlJvk+2yJqKFH5x9ATce9qeOGiUmKs4v2sdlfnBKVPEJQCXqUmd6/3Vy7/5eT4DXhuJTNeq47uIMj72qenD/Pyll17SKUdg+O9//5v7PH36dAwcyPZvd9ppp+HBBx8EkGVrrlq1CkOGyJlpLV++HGvWrMl9/+Y3v4l0Os28p2/fvjjkkEPwv//9DwDwzDPP4PLLL89df+uttwrSn3/++Vw5Dj/8cPTs2RNbtmzBxo0b8e6772L69OkyVYnhQZjLZ5FBLmqnO/RNqrgSqPCank3vXSdOxjf/OSf3/Y8nTZbLIOIw4lOTcbKqWpwWn5qSE7vIO+LXvLrgmueiKnPAsiwjUe1VYGIjLrqRYuYbreFPqJV0Rj9noUd1Gjd/ZQI/IQeymw5vcqqZaYI1xuh5sN53j+hT04dSU3VD5twWvUBBwfvxlR17UwlL2GxfN5z+42fdVZFM+Bzz2DeTAwXxmZoVycJo5DccNU5JPpJPTZJMqkxNFSQYY42SUpMb/ZyfBy+NHvNzybFb89svuy5VMj8XPEQTgbJPzQBGzTDOcqzceMe+DtDXPjmmJq0MJcny8Evo0N2s+cN6OcQ+NcWgrNT0GzQnDNi2jXfffTf33THxZmHcuHHo06dPzhfmyy+/jHPOOUeq3BUrVhR8nzp1qtB9kyZNyik133//fWqeffv2FYqSblkW9thjD7z++usAgPfeey9WavpEEErD7IRIMtkRuTda0N1e1MlUsuZn7zsEA7pV4e3lW/GlIXU4ekI/T17k6SJqShMajJif0373UVYqhAbVscEoSs/of94rfvzJ6lgs6zjd9c/ULM5A1UynIA/1W32DzD7lS2TE/Jxo8qknb9lsvH1WKfq5Ltk9GZGej7fpfAWBkbxVlKnpN+K2KEwOz2yfmuJIJS2gXYNACsgzl8TS/+mUKfjWo/Ny36cP7+E7gBGvbLb5OfnmHtVp3H/6nvj+vz5GW4eNn315HIb3VGN2E31qEpSAdJ+aBg5owVBqpuTL4zM1/deB9b6nEgkyUxPe8U6wMA1zMQnS0dJVzM8F5xsRkIYod3aiilUTCCNspFOiCFmFG/2cIr7fPWOQyl6hvYREWjeiRlCKKsyE/4so1qxZgx07duS+T5o0Sei+cePG5ZSa8+fPly7XXSaQNQUXQffu3XOfP/30U2qeovkBQF1dHTXPGPII0/w8SoGCRKGbWabTp+YRY/vgiLF9pPKKWPNSYWJCZJ1Kq5amg6kpCxNm3qzkotGfRcrQ4lNTw/mu3+5F3oAV/i01kOQWqUtQTE1dzD75xXnhd7r5OZsNbgJCB4W+lOxiNzvpulSILdH9RtwWRdbM3VA5VKWmXDbZqNnhuFZyxnbR+eIbew/G3LU78OjctRjWowZ/OrkegL/+zbuXaH6ec+dDVzwcu0d/HLtHccBSWZCYmqRy6QHEfItALJ+WrVqgIL8J+IeNTKZmgnzdu/4WNj839MrLelpJMTYQoqbf/piaPPNz+lxmGmEwNfPjHfm6uzloafJMTTPvu+9AQRK3C5mfW+z6+pEjZmoGHCgobCxfvrzg+9Ch5Oh5XgwePDj3eeXKldLlVldXF3xvbW0Vuq+xsTH3edeuXdi2bRsxT9H8vHk6vkVjqCOIeYRWRpQCBQFig64ueZzBm5ZbULUuFZ+aJqJAs06lVdtFj09N8aldtDid0c+9TaNaZZbPQd04diL74My3+TmRqWlRr4nnq3yrEYjIE5RPTX1MTdnFuRhzhqVoMPVcrz50TNFvN355fGHZEvmpiunUTzR4EyvQiV9ZvHkE/U7JjnFeP6lBIsc6EkxflU7ijhMm44ufHoV3v3cgJu72U2nU/JwR/Zy2TtA5z4gqNVmHHbrBWrNUKgUKYkupoznZSk2LaHZbxNSULFP3ux+E+bnfMt3gBwoi3xfEPiEMJl/emoY/bvD2sbr8kbJkUIHuw0InN3nrLz5in5qdTKnpsC0BIJFIFEQ8Z6FPnzx7y52HKAYMGFDwXZQh6U3nLtud5/Lly9Hc3CyU58KFC4n5xVBDmCZfUQoUJArd7UU7uNW5iIhYEyrBjPm5/k1H0BtS0QWPzkBB3rz8+N3TsZCtTie5ac6fOhQnTu5vbOFJuj23YPaXdaQgUhfVqMKyCIup6U1OY9+wFA2mNokT+3fFN/bOu1b62h79sB8lsqsKhJlRu/8O7VGD648cm7tvQl9y4JNs9HPzb4rJzbm2QEEBHQqQIMvUDAMkxRAv8KLOQ1GXW84cSNnTmZr625Z1gKIyHuswP+cdzjIDBVmWUKAgUeT8W2v3qSmXnvVui65Hayv56x0ZuJWkIgFzTCEM/+pcpqb7M6Vt8tHPzbSd/0BB+c9hKg3Fxr1Yq9mpzM+3b9+e+1xbW0uNeu5Fly75haQ7D1GMHz8e3bp1y5mMP/roo5g2bRrznp07dxYFY2pqasp93m+//XKfW1pa8PTTTxdEaifhnXfewbp163LfRRWhJtDeHpLTI01wIsfLLBJ019mybG6emYAi3PutG+t+O0NYBe++p4NSv/b29kD6mG1nSqIvZzLsfpBOWmjrYE+I3np2dMg/Mx4cUgTtuYogIxEkImGJ9l2xPJ28Moy2yXR0FJSZoOTNfbczGe5zFcGho3phY0Mrtja1UdN0rUjgn2fuBQCo+NGzRddJZlkseOtmEe63dqezbbW+lJVL+VYpkJ5VB+EdsAT6W2B6fZs8f3xz38G4/4PVue8XTB3ClFm2D2YyHWhvF2C32DZsSt4dHcXjO6m9eSDV6y+nTMbF+w9Fh21jvyHdi8YimbHJzhTOD6wxk3bfTw4dhYumDkHGtvHR2h346r0fFKVPWEAHp1/peBey76PcWCiKjgy5P+piagYxTzvzicg7wZTHx8Pyzi9eWIz5hjbWis+TfLQT3h9S/jRGHend9wvbtqnvdSbTAemhhTdnCawbWWtbXhl2poPIWEqgsJ1F32VnPOL1a2+d/ChmSUhaFr3dKO2R8YzBVx8yEg/PKbRSPHJsbzy/aFPRvUX1IVXH9Sxp71a2z+pVphaL4W8vIruGA5x60feZFvJjOq3v2JmO3X2LXL5NWaeIwu8euMM1noq0kch73d7eLj3Gi64d/OydygGdSqnZ0tKS+1xVVSV8X0VFRe6zjKm3g2QyieOPPx5/+9vfAGQjmR988ME49thjielt28b111+PhoaGgt/dZU+cOBETJkzIsTlvu+027LPPPhg9ejQxzx07duCnP/1pwW/u9ggSmUwGc+fODaVs3UhInCOp1tmmDPYNO3Zw81y8la6o0Im5c+eivY0/6O7Yvo16Pw2rVjcW/2jbmDt3LlbsIJf52cKFaOyqZ3hjTWTbtm4rib7c2MZeZN86owcum7WFmcZbz6Z2cp47d+7A2rVqY4vDzliwYIHS/QCwy3X4w8XufsRDq+BY6eS1rYW+sFi2bCm6N+SVRlu3bGPmRcP6L77AksRWIblY2L51M67Yqwt+8d427Gon9/WlS5eg645Kah4tkgdk3rpt2lR8WNjS0oK5c+fii3U7pfJ2o1mmL/gA6Vmt30CoU3ML97k27NimS6wcmgjPZ+vWLURZThrYjtm90/hkcxsm967A1/q3MmVeQxqfGVgwfz5qXM5zmxobiOk2b96ExYt3Ea998smn2FxTuElcv34HMS0LtHqld/+ft7XY3dDqneIbrFWrV2FuZX5cbaaMmV6sXLUKc9Obi37/fB35PevoaMe8eex+tWuX3HMiYfHixdi2lfy8vJCdF7duIfdHnrK2OD15zRPEPG3b2bXtqlX8cYclz5bN25RlWLZsGXrvWkO9vmkD+T2ZO3cuVq8kv2/t7W3a2m/jF8X9p9oq3hO0tpD7+sKFC9HQRe/Wdcf2bVi8aBHxmkq916xhv2tbKH3djcWbyXtN577la8ntYwGYN28eUbmSyXQUlCs6t27ZPVcs2cTe/xatEXex3wPZA4v2Vvr8uZnyzqxauRJzrUKrxJPH1OCx3XPLCaNqUJsgy+kti9SmGzesx9y52bx2NZKf+yeffIzumhmiXixdsgQ12yr4CSloa5PfKy6YPx9VqQTWNZLH6C2bN+fakDZ3Lfz0E2yoSlL3WV+sW4e5c8XmHBJ2tKofigPAyhUrMNfeAABooKxVHHR0tHPf64ULP8XOLilqf6VBZE9kC6YrZ3Qq83P3SyvK0gSAVCo/gaqeGHzrW98qCPxz5ZVX4te//nUR83PFihW46KKL8J///Ac1NYXRBd0yW5aFK664IkdJ3rFjB8444ww8/vjjRYPTu+++i9NOOw2ff/55QZ7JpNlBtjMgXPNzgXsly+pVlYDJuVdGCSyUHy07jcVE15BMHDwznwMGVmF0ndxGgdX0qmZOQQcKEjVl0xkqwHtF2aempccczAJw5LBq/O+E/vjNzJ7UNLw8dEPWPx0JEbYCpSIo61lan+5fm8K9R/TBO6cPxD2H90a/GvaEIG1+7klPi8PB9Kkp+BsLQ7sqTnQSBfWpViuDWm+a7zLGNZ3wM7YrlynN5jIjhwiCnL5Ulz4sn4LUQEEaR/ivjqwpekZXf6l7UTraczTxeC1YWvt1EPMlbd3g/K4z+rmpV0rnuy2T11X7dscTX+2LJ77aFz/er7uwcpUb/ZwunbhwigjDlTAv6I0l0Db56Of8PFTgd0zWPd9Znr+y97EQ+9TsZEpNtxIvI2FP4FZkptNppbL79OmD3/3ud6isrMyV/6c//QnTp0/HiSeeiHPOOQdHH300jjzySLz66qtIpVK49dZbC/Jw7nUwY8YMXHbZZbnvO3bswI9//GNMnToVp59+Os466yzMnDkTZ599NpYtW4Y+ffrg6quvzqV3M1BjRBe8yYAF2Ynuqn3r8P296+RukoCuCSI6gYICKsgnRDa88nXRv4TTESjoy8Oqi37rmqZs1kQX9bKKG8Y1b5nqgYL0oiploZbSTrzS/Dtz93d/FEFaYIqN2cE0Rlhjl3cDxPLHRQ1GRvhNZj2ftIBL9+wmcQe7bAA4aXThIXTv6gT2H+BlN4s1uky9s+n5+fasElvuf5fRLipd5sBBdIa3G7Tnp2KiGhZYCiXd+Ml+5HUar/os2fwcoIuiW0UCl9R3yymojhpWjb36Fu9FaIcdRpSamjPltZdIeTwFBe2dd1z4EA9+PD+aUKyYzI/l21U2ryFdUxiy25rLT/8u9KlJTlMKy5uxPeR1G069RHxq0hqH73/WH3S+2zqUhup+bWOIoFOZn7sjhsuYXrvNvr2KRRnsv//+eOCBB3D55ZdjzZqseUh7ezs+/vjjgnSDBg3CzTffjFGjRhX8XltbW5TnRRddhF69euGXv/wldu3KUuAbGxvx0UcfFaTbb7/9cPPNNxdQo0n5BYFEIoHJkyeHUrYudHR0YMGCBcKT4eFjeqG+vl6prMTj6wEUm7P27NGDm2fyi53As+IBoUaNHIGNDa3A+9ulZKyvr0f635uAFrZ5Su+ePYAVxaYerHp82LoKeK9Ynvr6enTdvAt4ZkPRtYkTJmB4z5qi31WQfHw9QPFTIvIMooDW9gzwyDrq9fr6elS/+gawjW6O5K1nc1sH8GhxnnV1dRg4sCfwkbw5qMPUnDRpkjKT/PpxbXhw8Sxs2ZVlrI/pXYt9B9fhHx4/SgCQTCSEnl8Np20cOHlt3dUGPPEFMc2YMWNQP6xH7nvfFZ8Ai1dQ8wIA/KNY9gEDBmDM2N7A//wFfOvXty/q67MRnnd+vgV4qdjsdeyY0XmZCbLU1NQAW8THDG+b912zEFj4ecFvVVVVqK+vx8Bty4C5nwnn7UatpFyqIPWh3is/BT4rNEerrq7m9rfeS+YDy8hmoKrIrlsKrUz69O6N+vo9fOf9QcsqqfmifspkVLmCU/Wc9yGwZn1Rur59+mDc2IHA/4p9ne2xx0QM6FboQqjfhsXAgiXc8r97wHB8Y59B2HOgmlKzbssu4N/Fc85R9SNx9J4WfvP65+helcZvj5uAvQYVKp5oY6YXQ4cORX39oKLft3bZDLxS/H5WVVRk+xXh3QSyAYYOHD8AL69azC37hhOnoiH9Ke59f3XRtXHjx6HHF0uJc7gXTj//dZ8dmHHXW2jl+GzuTplLK/+7BWgSd29RU10F7Cg2EyS+d5T2UkUqlUJ9fT1WpNYDr7Ndg7DGgT6ffwwsKXZ9cPY+g7BmezO+vtcgHDG2N37+3stFaUaPGoX6Ub2oeQ/etgyYVzye1tfXY0liHfBmsdzVVZVa1zn19cCVX21Bc3sGQ7sXH0ICQLe33wE2FcsyceJEDOtBvocIgWfcs0cPjB8/krhWVqn3nLbVwHvzqdd79+qF+vpJzDxaVm4DXige+xx5ttSSx4JUMpldzz0/C2gsnEfSu/unA9G51ZGXJpNXNgfVr70JMFxgySoTu9bWUJ9Hn+XkddTw4cNQP2UA4Y48+n+xCPiEP2YkntgA7zw6aOBA1NePAADUffAesL74mUyeNAk9atQIUUQQ+vT4sWNRP1idkHJHv53Y+3dvSN2zZ/0UpJMJrNvRDDxNnsPr6ycCADbXbiL21/rJk9CtanfbEOo1cOBA1NePlJLLjcbWduAx8lpcBMOHD0f9pP4AgC7vvANspO9xk8kUd90+ceJEDO1eTe2vNEyePJlbDxv+9k5RwPz586VIh150KqVmXV3+hW9sbIRt20In3G7flm4TchXU19fjueeew5NPPonnn38eCxcuxPbt29GzZ0+MHDkSX/3qV/GVr3wF1dXVWLKkcIHujsLuximnnILDDjsMDz30EGbNmoUVK1agqakJ/fv3x8SJE3HiiSdi5syZsCwLr776Kje/IOA26S9l0LrPpTNG4K8frMKO5nZ0rUzhR4eOVa4zrY+mkwlunhWSZVamU0il5B0Np1IpoSOoFOX4nVWPRII8QKdSKVSkyfelUiltfYxVrUSC/wyiACtB31BaVra9eCem3nqmKWeHCctSnlQdpmYymVRu155dUvjo+wfhjjc+R2Uqge/PHInLn/6YmDaRsITKSQq4KzlkVK9cXhVpentXePqmyDthWcWnxIlEAgkNixd3H6Y9N977JHuK7M2L1L7W7nR+FmhBmOQClPGLsGNLWPz+lqRRlHyhWJakprFLxpUPAKTTKaRS+WeaptQ3yZjf0oT+KCrHBfsPxx79uwpKSy6bhFQqhW9+aQjOnTacfq/gm5KijH8pyrvAGsdqK5J45ryp+PuHxUpKEupqqvDn0/YiKjXTyaTQWAjk34l9h/bEO989EHv/9jVmeovybsgyl2sqUhjSvQqrtuUVoVceMjqQedp5v9Mp/pjFHE8pbXz/GXvnPq/fSSZm8ObOCopsqVSKul4UGbdkMbA7Oz/auEB7N/wglUwgnaS/1/L5sZ+/yLqRNrc799H6WHL3WEB6b7zjhOiYae2+L8Xp19468dzjyE7PrD1Pwkd/Ed2XZAh88nQqnz9tbMzOeWbHH79l1A/qjv938hTc9NJiLN8q5os8nUpl3x3aM3H18xTl/apMp5ly+12nVNj+1oDu/iOynuTJ6qxdaP2VdR8PNvztncoBnarm/fr1y33u6OjA1q1b0bMn2YeYGxs35k/vevfu7VuOiooKnHbaadxo5Ytcjqvr6uqYzMqePXviO9/5Dr7zne8w81y8OH9SP3DgQEGJY9BAG5YOG9MbVxw8Cp+u34kJ/bpiCOU0WgS0cZRlisG7l4ZUwsKXx/WVu0kCupUMoZufB1SOXzBNzpy/0ibWdB846j419bTokO7V+NVXJ+a+U32FCQrKS1aZSuBnXx4vlN5bpqq5sQl9nbJpjE9hyL6qsnn6yTnM95NkqiTSTKVmfi6bj7d+NJcTlsUwa/MhvClztiCeGn0co9/z9P/thxG99FgtAGr13HNQHU6ZMgCPzqOzVGmmfbJTggXgp0eOw4WPzUN7xsaQ7lU4b78hcpkoIrFbWL/jocjddFcE7PtY60aV/mUKrHFBNyzN+fJ0hTrWwbRn5ZhDk31qsr/T4Kz1dPjwVinfgYr5uUgZwj41OS5lwtyP+H1HLcvCBdOG4YJpw3DUn97GC4Ro8MVlWgV/i/Mkf3aDt4/1+65EzbWR5fkrfJ/IDbFPzc6l1Bw2bFjB91WrVgkpNVevzp9YjxgxQrtcNLijWI0bNy6yeXZmsJQlQ7pX+1JmOqAvXvmjnOwGOZVIYGBdFf5vvyG4771VAIBBdVVYs51v/qVz8cBDzqcmddOrpRguysqnpuQ0K+RHRxIpU16eKUKJLnho/TadtPDLoyfgyHF9MHlA3pyV1ZbeA1qRwwkSLFiB+fjhJfG7cGQpAP28YyfXD8R7q7apZ+ADpEcT5BgZVDmy44Y3NU15kQ0URNksSZXoydfnGOMnoIFoW8nOa6xn6VzSM1aot3xCcZBQue//9huK/Yf3wOptzdhncB161ATjP16XT02hvkSdf9k3swMF0X4PfqFDmxdNsO8Tlu5AQRxFjYYyaO3j/E5kanp+E21LU49ffn/CH+dUoLoGy5abv1dEuWcKOt/RuioxU3mnSNqc6paJJp1pn5p+fSy7b9e53pYmkZTKZjNkdCql5qBBg9C9e3ds27YNAPDpp58K+UtZuHBh7vP48eMZKdloaGjAhg0b0KtXrwJTeBpeey1vrkOS07ZtbN26FRs2bMCYMWO4ZnqbN28u8N9ZCr4ASxVBnA6ZYmoCwJ9PqcfJkwdgW3M7jhjbG32vf15FRN/y8EBfRMQTgBcJC8gQlUcOu0QuP/rmXv08X0egIBKo/UT4fvLvJ0wagB8cPKro91JialoFn9UW5f6Zmmz3CCr40pDuOJjhW840bMIKWIypaUAWQvvqKsfvuEGbx1iKBj/dTTfbKJevD0VUUTrK7ypMOp21taD+rvPGOXqgIEml+e7k4/t2xfi+6m4GVMBjLgUBXtGsOZbK/guB7lRBMc80Iomld1zQEShItQyWUtP7k6wYuru1bHZMpSbtd41zLvHwtSAf+lxmGjrLqK0Qc/ljcca7grUlp7/S4PcQ0m+76GcnK673BdLERM1OFv0cAKZOnZr7/NZbb3HTL1y4EJs25WnY06ZNUyr361//OvbZZx8cffTReOKJJ7jpFy1aVGAqfsghhxRcb2pqwpQpU7D//vvja1/7WoHilYZnn30254C1pqZGuS4x8gjiZJu2iRA5gZJeNCQdBZeFoyf0wxl7DULXSn1nHx0krZoCnHoFYQrImoRMbZBNgMp88PwVBXURKZmPGylDzanCcCq8X26zx1qnee8JO/q5CRavLMibBUup7O/MGIG7TpyMWRdPD5VJTTZV4wsUlAJB18GPbC7e6tH8kFmWGQWGbxYdNV9987EsG1SEqakD/pTJapA2Pzf80n9n+jBMHkBWljqy+hVBaExWVPizzc9pvwc/kHarIq87TYiim6nJZZ8JFEY6FBMpI2d+ThhWvXfIHrLoJyXIpWczNWljJr8QYfNzgtrIfWsQ+xEadC4bZNnxInMibR3HPQDw2Xr+x2J/99PyM3GgECs1O6FS88gjj8x9fuWVV7B+fXHELjf+8Y9/5D6PGjVK2WR79OjRuc8vvvgiN/0f//jHgnv33nvvguvV1dUYNCgfHZOXZ0tLC+69997c9+OOOw4VFcGY5JQzeKelOkCfMPj36jDv8Gsy50Zzm3wQImaZASwXWPViMcyiBp5pjOxmkLWpUt1Y6vKp6QV1syZYHvU9p7YBa+NYeE2IcU35PTDzc+7CUz94Zjq03787YwS+PX04qtJJjOld7If6gmlDNUnIRobE1BS4Lzjzcz35yI8bhenp5ufyyj2V8uXvp/zuK1exvFSYQM4cqWOu8qNo5vU3mhJH12GbLvzmuImY+4ODif1AF1NT5G66awb23UympsIhnSnQDtNNrPl0H6DoMKmt5PjioZXhPF9SOxWbnwsIgvyYqbvlZfNLMWh7tLx0zrmsw9dsPhQZAnh/dJYhazHlx6cmbz7WcUAU1JmMyAybPyCQVRyHMAiXIDqlUrNv32wglNbWVvzoRz9Ce3s7Me3rr7+ORx99NPf9rLPOUi736KOPzn3+4IMP8Oabb1LTPvbYY/jvf/+b+37RRRcRX4Avf/nLuc8PPfRQAaPUDdu2cd1112HNmjUAgMrKSpx//vnSdYhRDDpzwnwZJs3P/eTBQnN7Rks+zuQR5iKi1MA/EZUDVeHgY/pN+w/mTYRf33yyygRWvt7noG5+bulRVBTkSSuLJ4s/GYj+Jzkn2iJt360qjW9PH5773qM6jSsOKnYX4Adf32sQ8XdynfgNZcT8XJE1GgToDHKL4be3+AKP2ZS/1x/oLhpE5mN/B4TUd4GxktfK1IT6BjEo8/OgQJJKR3AzankW+zvvdwdqgYKCfwZ11WS/fmaYmnoZvjrMz/ccWIfBdVUFv/3tjL3yZVDe+bz5Ob9caX/ImhvfsoCrDxWfj1kBo/2IpmvODdMdls53VNYPpci4oSqejlr5aRvtinzFOUKIqVk6HBtj6HRKzYqKCnz/+9/PfX/rrbdwwQUXYNWqVbnf2tvb8cgjj+DSSy9FR0eWWTZ27FiccsopxDwPPfRQjBs3DuPGjcOhhx5KTDNt2rQCH5aXX355Ebty69atuPXWW3HNNdfkfps5cyaOPfZYYp5nnnlmLiL6tm3bcO655xZETAeAzz//HBdddBGeeuqp3G/f+c53MGRIMNEgyx0JKqU+GpOYSqAgL3TWpEmBqcmqAkuxpgvR3FLJg64E2j3Jaqqon3xSht4bv2Z1dGUC/4TaC++mUtWRua6WEmJq+rzOA5nV6PRL2hhLkcXz+50nTMIjZ+2D24+fhDk/OAhj+nTxJasbPWvSuILgUxXg+9+iIapKHBr8SstmalLK9LWB9SexH6am37ZSYmruvhT2hke13VV9apoGaVzKBwoy08cK0ijmzVJq0uaiMHxqdqMyNfXDz0EsMT8NB8iJhIU/nDQFPXYrd0/fcyBOnNw/f53zrEQCBYnC1NNPWBZ+esQY/PGkyRjkUeCSwGZqyq/F3HKIgHX4yioriLdH57ohxdIeE8sm/17QNqq+JDXUy8/w5S6fN4WaXAOI3BfrNDtZoCAHJ5xwAj766CM8/PDDALKKzSOPPBLjxo1Dly5dsHTpUmzZsiWXvnv37rj99tuRSqk3l2VZ+OUvf4kzzjgDO3bswPbt23HJJZegf//+GDZsGLZv345ly5ahtbU1d88ee+yB3/zmN9Q8+/TpgxtuuAE//OEPYds2PvvsMxx33HEYPXo0evbsiQ0bNmD58uUFDIaTTz4Z3/rWt5TrEaMQVBalxgmGlpMfs1Ua/ARqEZm0mtv0MDXzZVJ+18lOYWQW9kZRBvRootm/+qIhq7e/KfNzWcVYcTq5zR7rXSgKFKR4tGhZ+gMr0d8ndjkmmAhiTM3iF7Cto/A3y7Jwcv1ArbLVVaVwzyn12H94Dwyqqyam4fnfoqHklJo+xaX14WzAMdr7pQ7f5myU37X60ZbcoLNK1nrAZ/nYnCqOc34DRZgCqRVyTE1DfUzHvexAQXK/mwQtArOpuaZdk793QI9PTQD46sR+WHv9EWjrsFFbkSy4j6qAzq3nSOWyv/Ogu+Wza0ULF+4/HP26VuLE+z9gpk/R/P2ANTbypRYdY0iHr+52Djf6ub68GM1MBK1+bpnCZ2qa36wJmZ9bhX9FITZmlNCG1BA6pVITAG644Qb06NEDf/nLX9DW1oZMJoNPP/20KN2oUaNw++23Y+TIkb7LHD16NP7617/ie9/73v9n777Dq6jyPoB/b3pvkBAIEEggoRdRujQVQQEFRIq6ll2RVdHFBjawoMKy7uorq+y6ropdEJQF14LYC4pYWZAmECJVILRA6vtHzHAnd3q5M3Pn+3keHu5MZs6cO3fKmd+cgh07dgAAdu/ejd27d4uWCwQCGD16NO6++24kJSUppllfi3PmzJk4fvw4amtrRQMM1UtKSsLUqVNx1VVXmf4edIrsA46FBXEzAwXp7fBZqtBgZSHyRJW1fWrK7edwlcG9dAtRa65rXU1N4/UedL4g1sxsTU29D3tKp511zc+Brs3SkZsaj91HThpKA9BW6Fdbwuyho1SrUUuBOdjRCunuZKx0eosM1UCp5HfSVLveaK4U8iIxz6rNmL1uKA22JV9T0/h9yuz3NtPPp9Z9pfeYt2qgoNnD2yn+3VywTXltuReEumtq6lraOKlsnaqpacP2QrYv/zJAiVK50U3Nz2UHCrJhW1GBACqrrXvhbkWfmvXiY6IhVWnV0OjnBvNhNBCjNd26vKgnbtfo51oroajd09VaQ9nJynP0wk65ePTjn01vO/h7G82dFV/LVE1N85sXp1d/Lunt+sHifEQq3wY1A4EApk2bhlGjRmHx4sX45JNPsHv3bpSXlyM9PR3t27fHsGHDLB9Qp0OHDli+fDmWLl2Kd999F+vXr0dZWRkSEhLQokULnHHGGbjooot0DUg0cuRI9OnTBy+99BI+/vhj/Pzzzzh+/DhSUlLQpk0bnHnmmRg7diyys7Mt+x5UJyyjn+vctpZ15Ujd3K28mFrVp2a9sAwUZPsWwsPqPjVl0zGRULhramrNq9zLAbnCsNKDZcN1tBSoA4FASIk6gACiowL42wUd8YdXv8OxCmMvDMTNp4ztJ7OXO+U+NeUftP92QUdMe2OdMC8tIQadcqVHJraSlsNU6jvZMbib08xeg+Wbn8unLDVfa5+ael/0adm20nzRMiYDr0ZqnNf/SW7vZCTG4lB5JXq1zMBVZyh3SxSoq6ppiNGBgpTWa56egJ1lJ0TzBrdprDdrhtQdneI8n+pT0+QxpuWeoHN+PcU+NWVeKjpTUzN8o58HAFRaWlNTZXuWBGpkyiT1QU2JTIQOFKTxemTRcR2aH33LGxr9XFM+rPleTvbxb+U5OqCgEbrnpeGb0sMat61+XzJaOcaKY85Un5pBq+ZnJuIT7bFe6fQMdvelZXkvtRy0i2+DmvUKCwsxffp0TJ8+3XAaq1at0rV8fHw8JkyYgAkTJhjeZkONGzfG1KlTMXXqVMvSJHXyNSosDGqqvJE1sq4cMwMFaVnOSJ+aUuov3npq8thB64O0G8gH4Or/t2afBWC8EKcy4KdhdvWpKd/8XCEvDdYx+3JifLc8DC3KxvxPt2HW2z+pJ6YjbTs8PKpDyLwaiQdKtcJfVCCAS09rjie/2I7/7TkKALjjrLaIj7FptKkG21ZjfPRzAxnysLCPfm58VeV0LUzYypqaSn9rlZmItTcNxKHySuSlJyBWQ1V5o9/Tjj41Lz+jBR7/dBsOllcCABJiojBtgPlWVfVOb56ONTvLhOlbe6QLn6VratYHlMxtV+obNzwX5Ms+ymkrNz9XDpSFk1xNTTtERQVQYeELd/WamhYEauQGCqo/BiU2EdL8XOc2La+pqTNtpRdSZvJmqk9NUR6MB1bNsvaZM4CPru2Hxz/bhpPVNSjISsKlL36jsLx8OsJnw3kxuGIQq/bNvecW44W1pbJ/1/ZiU/uy4vXU1/DO06h9fB/UJDJDNtgRhqCaloKm7oGCDDQ/P7ut9poRRvrUVAwQhaEQ4bGKU7JkB7WpDx5ZtB0zwVGr+4isJ5eq2T41jfShFFJT0+B3Dk4mMykOLTOk+3ZUT0e94Gn2IeyRCzpiTckh9G2VhWv65GvMl/LfowJAo+Q4fD1tAD75+QCapMSjU9M0U/nUys7alHakbbQpvBZmk5E7/tMSYuVrvpg4Hs3mNxwvMmW3LVdr2cTDfkZiLDJkRpq2kmpNTdn15FdMio3G5zf0x73vbERldQ3uPLstMpOsa1n1z3FdMXnRd9i09wgGt0jAqIJT11ipXNUHmuxoQdIwRfn+ZpW37ZnRz2X71LR+WwEA2Smhx02HJsYGlbO7ZQMg/5vUl6G0DBSkucKCvqxpJm5+rs5If7BWdvkiVYkhOHkzeTDL6k0kx8fg1sFtAADvbdqnuKyW5zCj+bPia1nV/LygUTLmj+6Mu97agEO/vUgLpqlPTeNZUcWgJoOaRKbIFgLD0KemloKm3guo0uiCUhonx+Huc4o0L291n5qyQRgra81Yl5Sj1JrGWLXPAjC+z+waE0I++Kgtp2r9V+lJ17I+NUO2aSgZXW+X5ah9hxvOVK49pVQDQj4gXfeX+JhonNU2vF2raGp+LvGltPzW3mt+bo7cg2pGYoyu4JDWAr1to59bec/R2cxcufl53R+talVg1yi2ctlTWis6KoCi7BS8cMlphvKkpmNuKj67vi++++670HxJZEyoqWlT4NwKRkY/d1efmtbnJSpQF7BoWDP372M6G0xPOY/WBGqkUznVp6b127V6z0cF97mo4RgzNPq5lnxYNEBqOCpZaMlHuNPW0oLA+H3D0Gqy+dC/ffG61/ZrhWv7tcLvX/0WT39ZYji9cLUm9BsGNYlMUHvgtnMbmgYK0ltTU8fN/cdbBqFpWryumhHlVo9+HoYHTCVeejMWjiZRQN2+Nxxgs+l309ucM3R9mQcIhQwHAtoCW0bL01qbI1pBLWmzm5auAVFf+JNex8lm2lquq2q1OmTTduloz3LMFs7lHlTTE2Jtub6bf7CXe3C1/55v5AWnW56djJ6vSgEHu1vERAcCkOtqUer3tuqaJJV2SNNhg+eGYm03V/WpGcaamr8l+vqVPXHLf9Zh1+GTuLp3SwwsNNY/q3qfmua/hKGBghoeQxqvWadefFu78/Ump9ynpvFtaK6pqfJ3+eu2tvTNqLXxaUS95rHMPTEg/Vnftu07V8wwHKSt/9+GPHmoNzTbMKhJZIJswcLKoKbcQ72Gh18rCw0NdWgwIIeWNU9UVaN9TgrW7z0qzBtc2EjzNhsKS5M/hW146Sai3qemNdvRmky7nBRsCDoOACA51p7f02yzOmM1pKQLwQ1ryhhufh4ybf5NuPyDgUpA3OTBo1hT00W1h05tW30Z6RHdrX8R5TSzuZU7/jMSYnUNhqI1H96oqSk939B1yOLDyWh6avtd7qFc6bvZ/QIgKiqAGpn3sEo1NSssHElb2F6DI9xoAMXI6Odu6lPTjpzUf71m6Ql48dIeFqSndr80vQnZ3/FUn5pSQXdjL0IDDf63SkDmsxwjo59rYW7081OfzbYIMsPOZxGjuRcPFGQ+DaOsGijICsLzlrXJ0m88VieAyF2crEWkbdRkfWna1adhvQeGt8d9w4oR+1vfnclx0arN15UKBPIPvRYGlS1LyVlq/dNZ9T0DgYCmQtzDI8UDxgxqnoBEm0YKksuN2T41lR72tDYh1dSNhIZ8yi3TPke5XzAt54raEmYLfkoFctnfzsGqmppqakrMs7LWiFuY/e3lm5/bVFPTZH7lryVW3nPUa75o3bZSrvQ+bNfW1lrygCudttx68iuGo+9yOUpBzRMmB50xc71XW1Wq3/R6ZgfUs5LcoFV2BIisH9VbJahpxTZkfizF5ucN5unNh9W7Xm/Qy0h5S0uWzRzfoibWDkZU7KxfYUUtS+PdLJk/6Mx1LyAz32PlNL9gTU0iE5x8wAnXQEFWaZoWj9/1aI6c1Hh8k5OK/+05gtOap6OgUbLhNMNRa0aJhypqyg8UVP/m0NJjVt3w9k2w+PLT8co3pWiRkYALm5Rbtv2G1AZJUiO3axQL2XJ5aZCYFQMFKW3vd6e3wOs/7sLqHYdU09EbTLGKVC0ttRrEnmx+blHaeintX6cp9qmpo+aL1mux6aCmiYdns4zUOLfyum7mfqdeU1NuPfl1nKhBWE+p+bmRARHFaWtYxmCtMCM1Nd30osWOrFj9/dSb65rfhpHm54Zratp0sxCXPdQZqampaaAgE8HIgOizcyeKVX0mSzH6vaJ0/r6S27bxXIkKQLZ7kVPbt/Z+L1QiseFQ8VLLQbswqElkQngGCtK3bdG6Oreld6Ag0bYkNnb3OUVo2zgZh8orMb5bM2SnxAOoa7resPm6EU52zO01arVawt38HADGdG6KMZ2boqqqSnIwBqvIBhg1Hu5qI43KrxNaymj4IG64T82GzRFl8piTEoePruuHnw8cR7u574emY6JWUD2zD4VKo3PLjvhs4oC94vQWeGaN/k7eT21bfRnpmprWv4hymtkHOdnm54mxOHKySmabxplufi4338KfTW8tPLVuMAAgKS465G8ZifofAcJ9eHqzpqa1AyLKbU9yOZW/e2X0czl2ZMXqoJ1qn5pW1D5TbX4utd0G0zq/t+VNcXUub1+fmtZ8sXAF//vkZ+Lz7QdF8zITtY9toJfhmppBv7DxNMxTamlVU20sEmi89upv/9vwlMqYJpufE5kiW4MrDLXeZFrniOi9WVt9U44OBHBpj+a4vn9rIaBpJfmCjHsK4W4h3/xc/L9ZgYB7aoHVs6tPTSOFbMtGP2+wmnzAI4DY6CgUZacgKyl08AVRTQPZY0QlIG7y6FHuU1N6HTPXqpsGFqBVZqLh9bU0Z5IeJEpD2ga/122D24imJ3c2/9JIC7uan6fEyY9+bqr5ufFVFbcdjsEBjdXUrPt/cu/8kH392GhjozsbUV6pHOiTq2mk9N2c7IJCasv1WW1isqyjpfxi9Jsrv4jTN98Jdo1+bm169r9AVnvRqmWgIK1OlRGtDv4GB73U0zYy+rnefOgVvGq4gv9/HtFBdMxO6NYMqTJ90FrB6NcS19Q0Ws614gWA9Hwt3a1Z/YuqlWvNYFCTNTWJTJG7xYbj5mZ1n5rRUdr6QtTDihH5lHIUjuYebgvQGaXWibl1NTXdt8PMBsbkvpNyIVtayEBBRoOaDadN1FRQ3ZZazROT21DqgF9vgEeLTk3T8P0tg9Di/ndRdkK6NqASLduuMTr6ucHvdc/QIsTHROGrHQfRs0U6hjc6duqPkoMWWcNsOnI1x6KiArqC7FrzEY6mlObT0hfMVa6pWffHrKQ4zDm/PaavWI/qmlpc3bslerfM1J83g7/4UZlat/UMNT93tKZm6Lbrz90BBY3QPD0BO8tOGExbYp6GZZTm11OqqSn3Nyeb+TdkT01Na9MLS5+aMonoan6ucVvCvdji/aTlhWowpe6x9NZuD2bm8BYHNY2no0e/1ll4/4998dI3pWiRkYibBxbauj0rApJurampun0dZRAt1Mq1ZA6DmkQmhKNjdTM1Q/Tkw+wgQXYFs5TComq1D62gPPq5d96NqTXVt+yYDbgvsCn/3bXl09qamuI/aGkCX5dP5WPNaK02O2sFaSXZ52P9/zY1iUyJj0GHJqkhzbi0MNz8XMOeNHoZjo+Jwr3nFgOA7d05WMlYP2mh87Reic0+eMqeZ+aS1ZSWmZqaAHDTwEJccUYLVFXXIifVWG1Co6fdYZWgphzF5udmyywB4/2QSW25PjtRUQGs+EMvTF36A7775bChFych22uwQfnjUHmfGOtT0z3382q1TvAMsPr7qTY/t6T2mXKgRqpcoTUwLkdp8b9d0FFfYtDf56LSsWum1ZZVv384W4idWdAIZxY0Csu2jF5m3dOnpsy5YlEN3XpangdtPUa88zhqGzY/J7KBlqbhWpkZKEjP5dPukc/toLdGi5+pHS9W7TI3Nj+XDxJoW1+umaNizQGNfUEarqnZ8CHX4MsPvbUl1NIwQrlPTWlWXK6MF9bVV1SqfWo2bSle7XJD+cWA9d/J7AsXMw/Pprchs7ye0c+zkuIMBzTNvMM7YjCwlyzRF2g9s+UsM7+Y1C4P/h06N03DB9f2w/e3DLIlX0Zranpl9HMAuGdosWg6PzMRaTY0s7X626ldC6zYnmyt2t+2Ld38XDxP80CJKsvNHt4O1/drrSktcbr6GHoBpiFdMy9HgveNBx+hNDF6bwtezYo0jFKr1ay4fYtfYqq9rDfDipaRXsegJpEJTtbUNFN1XoodQU27KzLKF2Qs3P8Kf/PSLUS2Vmug/n+L3la7rJYmYL4GitxSirVeZO6uVvWp2ZDRQr2Wzas+pJlufy6RppC29CpW7Dej+dZUU9Pg6Ofhaurplhio8sAl0vPNZN18TU1z6WYkhvZrq5XcyxWl2t7Wjn5ea3jfq9XUlCsrNEtPkF3H0ebnEvMkA0lG0pZYSXsASpmXRj//fa8WaJeTAgCIi47CfcOKbQkGhL+mpn3bONX8PPRvDe9JWvOhVka846y2hu5beoNeys3PZYJPml4kqi8jv93gdFxyU7WY8QBeIOiz+TSMMjLQp7B9HZvX1Oqp/lzSnizpwObnRCY42VxH26AT2vNhuvm5A1dpo7UVrNgGYH/Q1kpqzc+t2mWBgPtu2GaPEyOFIsl+/wKhBR+j14qGx57xmprqBU/VwKjK39VINj8PiP9vyMmamloKr8ZHPzeQIQfZed3XUytS67XYbH7la1FqS3jeiA64ZvF3UGpFq/c81FNT0ymHVWpqyv1+eQpBTdMj2Ztofy7dp2boctY1bW0wLbuc8vaMvERwqk/NvPRErJ02AN/+chhNU+ORn5Vky3asvobpuedavQ2lPjUbHul6c2H1USAaKEjD8kZqaurNh17Ba0ZoTNOagYIMl7WMrSeXj2CmauhKlkE0ND//7Yix41jx0OOobVhTk8gEs7U2zGzD6oGCYqxsM2+hM1tnhcy78+y2ALzb5NIJ8jU1rb3JBuC+38VsjWrZPjV1dlwvtT0tp52Z2pRq62pL23waegmFP43N+M1sQy+jzc+tfhGllZsLu8cq5EfFtqP/SrPXJrNdnvy+V0t8eeOZeOnS09C5qfQI9Xr7kVUcKMjiw8no/jtisE9NpaCmkwPYSG3ZqhGntVyXZI9DlfWURz937iW9nITYaPTOz7QtoAlEWE3NQP3fjR9DIcsJy2taXDO9AUEjfZhr68da2xd7blJ30XR8TBRGdsjVnY7XROxAQVrOEZ3zVdOz8RDxUiUbu7gzikHkEWaahmvfhvGCZjhrakqx4hpb2DgZF3RsIkznpMThur6tFNex8pu4sTm1Eep9atpTo8QN5M8hc+vrHf1cqhBluKamhu3VzdeevvyDsr3HjpH+J61pfm5sPS3HjeTo5xY+YJnlxHXt7LaNQ+ZJBbuSYuv6UdRTw1p7rWtty8mx4iHntOYZGN8tD60ypQM1emuWK/2WdgYi9EiNV24YJtcfWF5aouw6pgcKMrOu5Esra7ah6UWTgXQBtZqa5u6TXhX2mpqWBDWVyyTSzc/NbdPqe4be/aB07BodKBHQfnyP6pCL3vmZwvSMIW2QGtTHa6SeJ5bU1LQgMGqUHc3PzQZp7Sh/MabJ5udEpshdllzTp6aO7Shd4C/r0RzPfb1TmP77mM6mtqXXot+djoVf78Sh8kpM6p6H3DT52htA+AJrkTT6uXU1Nd0XBratpqbOB0Spxa06j4020zaTtlWkA4DK27bzwdCK9aSbn2tJW39+3Cw3NR67j5xEekIMpg9pE/L3oxJBzZT434KaMmmaedCxa6AgI8eS3Lmvt1zRIlM+8OeWq/GfR3TA6Ge+kv27kebnZvvUNLO6dPNz615ahW5PeVptfj2lF3Gyx6Mb31RayPqammovAe3bRn2/u5pqamrcll2/v96gl+JLZNkXPlryoe37pSbE4MNr++LLHYeQkRiLjrnimvZuudZazXgA79SKdr5AViN3XdPSOtGKSgFSy0T4JdUxDGoSmSAfLLFuG3JJaRsoSHtGlAI080d3RnJcNDbsPYph7XJwTe98zelaISY6Clf1bKl5+XCMROs16gMFWbMdN+4vM2/x65bT/6ZXahWpc9bumnnqTceDCp5yy6hsw45RF9VGP7eiNrydBW3JgYI0BTVteIPv4MuXH28dhE37jiE/M1HyZVReemhArs9vtWH0XMfD1aemlenqPYTlFp/UPU9+HQu/b1QgYDi9c4uzMaJ9Eyxfv0fXenY2P6+7LxjsU1NinnXNz6Xmieca7QZB6TnebX1qhovV307PPdco2dHPo+Tz0PA+rb38o295rYKTM9383EQ+9BzfsdFR6CfRJRYQeS8k6xn9WuKgtdFtm9+pal01GGG8T8369Y1vm+Sx+TmRCWqdddu7bWuWqadUYEhNiMHjY7tg1R/74rbBbWRHYW3IqYdpK/d+pNx71GphWPU9A3DfDdt8TU3957nWh16rLhVG+57Usnm13aQ06IkWSqub7TpAidE0DNfU1JJ2hJXKspLi0Cs/U7Z2/cVdmwrNzevNHdEBgD0PiaYHlzH5giSYXE1DuWM+NSEGsQ2exFplJuL0Fhmy2zD6bRu2xmiZkYi2jZMNplbXN+IbV52BDdMHi5pw1pO7BqTExyAtQbr+hZNBBMnm5xLnrqGgpo01kb00+nm4eLOmpvT8+t9XW5+a+rZpZ/BXS9rKL5GNX5etOr61Phd5jdHrkej3tSANo8w8p5upAayUnh1HiocaDtomworPROEld2Gytvm5zAVZR1V3LSLpbXzYmp+HZzOWUO/nyZqdFjBRm8cuZvqlrVtfer7eQrbR5uda2NlM2+7mh0qD6sht2WzT07q0jaWh5eFF+juprxe2PjWtCqabTCgpLgavX3kGOjRJQeusJDx1cVcUZafUpW1D0d9sivIPOfpTljuO5FJKjI3GuC7NhOm46Ci8dGkPxW0Y/X0mds/DWb/1gZoSH42HR3X47dpuIuAWCKAoOwUtJGpfKr0AzZMJiDtZZtF6ftvV/NzockpNeM2+/PMqq79eOAYKkn0uEJqfa0hD4zXLrtplUTqvmUZqaoazH+sIeoQSMfq19I5ub+W2xfmQnm8qqGkwY3aWpb30PGoXNj8nMkHu+uSW5ud6KBV2/UzpHuSlN2OqfWpatB03luvUmt4bXV9vIdvK5ucNjz2jhfrgZIy+lTZbI1up/0n5a6wFQU2DSRgeKEhTrRE3nkH2OrsoGz/eOjhkvh27wmya8i8y9aclX1NTfp1/j++GXvmZ2HbgOMZ3a4aeLTMVt2G0mJCRGIu3r+6N0sMnkBofg4zE2Lq8GUtORLLpnsLyeekJWL/3aMh8J/vUlMqvZQMFGVhH67rKzc/NvfzzqvDX1LRvf9aXMaSbxzbIh85sWB2QEdfkU19esWWMiTKe3a1lvM54AM/aNIwyM1CQXSK9n2KnMKhJZEI43mzb+VAfzMkLvNWsLFxESkElnH1qum2fmX35YKRQJFULSyodbTWuVRfR1Ezbrl/FbGxfKSgq26zeguuVnQMFSdFWa8RQ0oo89O5FxI7j1ezDhHwzR/3pyl6TFb55XEwUpvZvrXkbZq7FUVEBtMiQH4QoXHJT4yXnOzn6udQ1S7pPTf1bkVrFqnPByOjnXm7Fc8dZbfHge5sUl7H624WjpqYcPc3PtbIrvwHRZ/WN6B2YUSvW1FRmuEWLqKamwTKTBb+NXFlRU9lbrrsZUzmyqfm5DWl6DatmEZkgd2EKRyHQ+pqa9jzsOSF8zc+9cxuRH2k3IPrfCi46FACYr4Eit5TS6IlS60j9BNbVEpCZH/Qd1Y5Wo/0FStVK1EO6/8n6GifS65jp5P3UNozRNlCQxPY01RoJz8njslNUktuuI4BSjWj95Ps5NpCYDKv3oZb07jirre40lC4hGUlxkvMdrampufm58W0E01q+UltOaZ/J3c68HKy5pk8+ujZLAwBk/lbbuCHrzxHlBO3cnfXleKnfrOEhqzUfp8qI1hK9cNWQuN6BGbWma11Q08MnigLDtSyDPht9VrJij9rT/Nxczux4cvRSy0G7MKhJZEJYamrq3LZRMVZECVwicr6JddSOyXA/fIWT/DmkLa9GampKrWLn6OdGa6Nq2bpqE3aThakaiZGG1PrUtGK/yaVxZc8WyE6WDqRo3bZk83NNedKwkE+48lpi4uE5dB37v1+492BBoyRc1bOF4jJSeVJ66JULRjnZY4725ucGamqa+NXU1oyJjkK334J89e4bVgwgMpuft8hIxBc39MfGGUOw+fYhQjcKdlKvqWnf/jzVp2boNkKbn+vLhxMvSILpHZixbr76Ruzu19zrjH6t4OPL6GCSdjY/N/O7m82W2YoAJI3Nz4lMsHNkXrVtuK2mppu48WHYaerNzy0q2EH9hn/zwEJLtqWVWn+iquvL7DzlPjW1BTAtK1DrnC+5rIUBG7Pqj0cn+tS8pnc+nrq4G37YdRhdH/4w5O/pMqMxB5PuJ1Q9z3YEELxaftZzaoSr1rzZQceCydeet47lgQiZ+V/c0B8nq2rQtVka0hKUA0d67zVyQU3TNTVN7Gntzc8Nb8IQLdubc357THphLQ4cr0Svlhn4Q8+WACJ39PP4mGi0aZwctu2pHVd27k59AwVpI5QRLc55cGpmuthR+ls4+9T0cvBfidFng+D9ajSIZ8UxZ6RP/FPb9xKPFvQsxKAmkQmygYQw1NS0YvTfYHYMFBQJl1il3eylYIHaA7SVfWoq6dE8HVP7t7JmYxqZDYzJnoOKfTxJLG9h88SGQRwr+/oLSUM1L+YorW/niyO1mvYdm6SifU6KaJCShJgoXNAxVzVtpRHdlfPkrWK0nbl1W9+8Soz8bGYHMNPC+sE9pNMrbJSMRgq1m82QDWo6Ofq5xDyruhcx06emlnNmaHEOtt5xFg6VV6JpWgJif2t37tfRz62mtruc6lMztMygL22r8623z0WlJcy81GWfmsqM19Q89dlwUNPOmppa+tQ0ESxXYsezo4ceR23DoCaRCU7exNw2UJCbyr2W1nRR+JuXbiKytRWFt/DWCEC+ILBr1lBkJcUKD1HhIlsDRWM2DI1+rvEBV1O/PloK/LIPpMrraTmG1QIjZgtokv1PNvi/ISsCGnEyx2H9142KCmDllD748/ubsXn/MTRNS8BVPVuiU9M0yfWCSdUc1FZTU3URV7HzGuime4oaI1mVHf3c0oHuwkPPbyW1qNI1JDPJnqBmOPrUtGygII3JaF0uLSE2pEZtJA4U5Ea2BjXra2paVK6oW84e+mtqGvubGtbUVGa0vkvw/jBaRrRij5q5rskHy6VeGmhnS1DTSw+kNmFQk8iEcNzC5O6TVseFIqv5udM5cJ9w9fMUCMgXlZvIjGJrN7n82NqnplTzczv71JSbL6oNYTANlfWURi/XIikuOmReSnxd8cTO5ueJsaHbBcTft2laAv52QSfdaRvdJeFqfu6FLjr05NDpWp3GRj+3pxaIXWkB5q+lgHSelE4X2T41zTY/NxPUlJgnGdQ0vglb0lHchsEXYySmfp+1b4cqNT83HFiq7wrGaKZk6D2ulPab/CCHWl4kWlX2tSQZ1zE8cnnQZ+N9aprfqWYGCpJjuqamp6rEeAcHCiIyIRyFPbkbiuV9atowUJBTb44sbf6vkJbZYE44yfcraW2B1Y3lOrlaC1rzKncIKHXZILWOVM0so+ex1k7/rbhMqJ1OZs+Cu84OHS35nnOL6rYt8ytZ8b0S5IKaFlw/tDZPNbKMm9iZXT2/g9MPCUZ+t3DUgAtXsNfOrXilT02p5Ixk0cy3MrWuhf3FkjzHmp+HlBn0pW19VxZBnzUsr3S5lMuatnSt+V6Rep4Y/VrB+8No83NruhnSXymhntkWCHLY/NweDGoSmeDs23Nrt27+ASEyRUo5RbZPzYD4f7MCAfftM2dqakqlo21eSFpalpGdf+ovaoUeo/0HmS2gtc1OwS2DTg0edeOZrdEuJ1VxHSsCQlI1RAFrCtJSI7presDyWlTTRl7aFUYCZOHpU9O6tJTS82LzcyVGXuRI19TUn0czwSM77r2RGqypF65zRPi7tZsTqS+TaNmG5pe6hnOjPV0tx7xi83MD69Rj83NlRr9V8O5wtvm59HwzXT+ZzZcdAUgGNdn8nMgUJ5vwWT9QUGTekKmO2gjg1tXUDDjeFLQhs6O6ygY1FWo3a21qbnfTJysesNR+Tytqyf15RAdMG1CA2lqgWXrCqW3b+FInMVamT00Ljl+jo59bfV2vy4uxAKvTvNBEvp6RrKrVnreC1XtQ/iFP+5akflelVg/yAwVp3qRMPuT/pnZ9MToQmFFazwU7zhk7rkl+Zud1rT5QI93Fg7mBgqxumRR8vpgth5jZpVa9HInUs8T46Oen1uvQJAXZyXHYd6xCmPe3Czratm25fAQzc12TvIcZTo2swpqaRCaEpfl5mGpqxtgweIvTTQKtoLSXvfTt1I4W6/rUtCQZS8kH/LQ+KErPVyoUSf1FqvBstGDV8Nizopm20doOVj3rNE1LEAU0lfJkxbU3Sbb5ufm0NbZODeG12h4ey65tjOwGtdrzVghXYNjOspBc37d2BtuMpC117sZGB5DRICg7pU++YjpSW3ayVp3RgUL8Su2cs/OMFIKamgYXNFf+UTOsXY5yujr3hGJNTRMviCxrfh6h54nhmppBn2Oio3DvucVC5ZmuzdIwsVueehoW/DSmBgoyWFkAAPq2ypT9my1dl3npgdQmEXoKEoVHOB4X5PvUtHY75kc/j8yn20j5XmqBPetqarov0GG+pqb0fOXRzzXW1NRwHmtqfi73+6rWsjSvdVaSBalIkzv/rKhdoWWgIKOkRz9XX89rFeY91K2wrYw8GKvVnreC5TU1TTzkKVE6jOzq61FpbbXzUOr8llonEAjgofPaCX/LTY3H1P6tlfNl4mux+bnz1F8g27dtpWB8SJ+aGtM0WnP8poEFSIjR1u+4mTIOwObndjLcp2aDHTulbytsmD4Yn0/tjy9u6I8cDQOHWrFH5crYdvepOXtYO8QHHf8Pj+ogfDY6cJKShJjIPP70YPNzIhOcrKlpdX9S4Ri0gJyjVuizrk9N9x1H8rX9tOXVSPNz6ZqaEvOsqiErNz+gvozUslrSrnd+hyZ4Z+M+7D5yUmVJ/cz+dkrkampakbZ0Tc3w1RpR48LT1NOM7E8bGkeECNfvrOe6L7WkkeC42TKLUp6NNT+XXueaPq3QOz8T2w+Wo3fLTE0P8w1p3b12dP3CoqG17B39/LdtSGwi3O+fspLi8OWNZ2Lg45/hYHllyN/Fzc/N3RvNvGyxrAsgS1JxHytGP69X0CgZBY2StadhZ/NzM6OfS8xreH4NatMYq284Ex9s2Y92OSkYWqxcc9mMnMQotMuU7qbFT1hTk8iEcDww2PlQH8yOPjUjoRaP0l7x0veTb55T/7/+318qyUDAfYU7uTe12h8Upekd/dzOPjXlWJG+luZ0717Tx5brob19atrY/FwqXQ0lLq81YWNwtI6lfWpauFOt/n1kX57oSUMy4KL/Zmo6qKnwN7XzUDKoqZCfrs3SMapjrqGAptMiqU9NW5p9NhCvUDsRsLmmpp6BgrSWf35bzsie69Q0Dc9N6i6drs68dM5Nk/2bmUAxRz9XZvRrWbE7LKmpKVcxSEMGzdQABoAuzdJww5kFIQFNq7pmy0qKxXmtEvGvcxqzYhIY1CQyxckBUdw2UJAfL6eeCmqaXkD7dtxWtpM7T2M1RpCMjH6uNYDp9EBBmtJW+XtNLdAxNxXvTO5tfmMat21Jn5oyo59bsc9qJC4OTtXU9NJ1yiinv6OR303uHm7lEWB1GcWKpuBNUhNC5jVPT9SdFzuf4VRrampsfm6EZC1vm/s/VBKpwRq7ZKfEo0fzdNm/27k3lZufNxgoSGNOzP78ZgNDADBtQAFSE+QblxptZQKw+bkao9/KmhfqppOQ735KU/NzuXu0uYxZVV55+ZLuuLdPJpoms+E1wKAmkSmR1PzcjoGCIkGklFPU+tS0O7jmJLlTJVZjHzRGgppSf5EcKMjgaaf1ASU472rlKKOB0foHfDte8jjTp6Y9B3E4m8JReBn51eRraprLi11pWbWdmwcWhJy/9w0r1r3NE5U1utcJppRnK5ufW0FrynbkwGu1x93gXxd3lf2bnedkfZc4WoLg4bo2tGks3dw4N+nU/VcuL+e1y8F/r+6Fh0cpj5QtHzgN336I1IpyhmtqWrFtC1IxUn4/tX17WPUONkIPOcN4qyIyISxBTQtGNdbClubnlqcYfpFy05A7jurnWtanJgKu61dTLj9xGiOKcg91SoE16ebnUvO0FKyMF8zV1tTyS6kONlSrnAcz7Gx+Lt+npumkTYx+bn7bFH5Grnlylx8rg+pWH05makTVy06Jx5PjuiIjMRYp8dF45IKOqv2szTm/vWi6cXIc8jP11+7USn2gIP3rhIMd916+aNGva7N0/OOiLpJ/s7N8pFhTs2E+NKZpNrdts1Nw88BC0byWqdHo1+xUjW25bfzu9BY4V0NfhGrdKxlZV69IPU2M7h/31NSUnm+qT02T+XK6ZUmkYn1VIhPCcQ8zW1NzYvc8vPRNqepy5kc/N7W6J1nVL0pYqNTCs+rnc2WfmjIZUuv7qp7c91GuqRn6N6lCnlU1ro3XsgxaVi7wrTENO353uTSt2G2JsdK/vxUPOVP7t8bn2w+K5l1yWp7qerY0P5eY52TXKXZw+v7j3pqa1u4Y+fNR33auOKMFrjijheblLz+9BZ75qgQb9h5FVACYeU6R6dYlSjlW697HzpqaZkoVdpwGkdSnZjhZ8QJAL6FPTYmNhIx+rvN3NZPveSM74Jo++fho8z6U7izBgLwEpMSdOn/NXqfka2oaX1evSA3+G/1W7ulTUzoVTX1q2nQOW9W3b4QecoYxqElkgpMXFK030AeHtwtLUHN4uxxs3PezaN5pefL9ClF4qR0uSn8fVNhIeh14ozauXABHc01NI31qahzp3LqRN+VqdAeCljGa9imPj+mMa5f8IPr7ucXZBlPWsG0T/SGpke1T03TKwJjOTdE+JwXr9x4FAPRrlYkBBdLnUTA31PbyIqdrPhjqUzMMP3a4Die7y0JNUuOxdtoAfLH9IJqmJaA4J8V0moqjn6v8NtJ9aloU1JTqj1dj0uxT0z2MviQ0Q08AWnNNzd/SNHuJbdM4Ga0y4vFd7K+a13HyuNcrUs8To18rEmpqyp/D7vitI+3ltFlsfk5kQlQYLihyW9D6QJSflYQbz2ytupzZB6wZQ9qKgkTN0hIwpnNTU2m6waMXdnI6C5ZQbX4u8/eYqAAePK+95N/k0nPJ/V4gd2ibDWoqNj+XrKmpPW96WTFQkJY0JnTPQ6fcVGH6poEFyEqK070tzXmSme/20c/jYqLw5Y1n4h8XdcHT47vhvSl9NRWEvfZgxEJ1HSM/Wzhqalp9PKn1zWynhNhoDGrT2JKAphrV5ueSNTXtyQvg7HkWSS9awhmMkK/lZV8elMokRoOS4dhjsjUtta5vYl9b1vVSBJ0nwYwer9YEJM0nYqZPTbtY1qdmhB5zRrGmJpEJ4bigyA6UoWPjWm4MZpsYNUmNx+c39Mef39+MhJgo3HtucVhqothtSJvGGNKmMVZt3h/yN6drB+mh9jAq9/dPru+Hni0zdWzHfb+5XJY0Nz838CAv9SfpgYKM7S+t/WNZ87b8VBoZibFYfeOZWLVpP7KSYtGnVVZQHqz/7eX71DSftlxQ06pAUHJ8DK7una9rHTuCmjf0b4XbVmwQzTuvvXo/ZaSdkV9Nvk9N67jwcuwaSrtGffRz/etoZar5uR01NSOgHFfPqmafZthaU7O++bkN+chMjA2ZN8yiVhpm94mZF0RWlVu89kJSK6Onv2tqasp8AU01NWWD5ebUuOA6FIlYU5PIhPAMFGR+25qCmhZ8me556Xjp0h54ekJ3tMxMMp2eG8RER+Htyb3RJDU+5G9eui2p/bpSf4+NDugKaNan47baW6YHCjJQspJaQyodTQMFSSyitX8sO36JxNhonN+hiSigWZcH67elpVm9UXIDBTl59NpxT7nyjOZolnZqUIaBBY1weosMS9KO0Oc43aytqWndTrX653Hbtd0u6jU1pZqf25QZ6GiGa8Pvwz41jTFb+9AIe5qf1/2fEBuNP/ZtJcyPj4nCvee20545xbyYq7VuZl9bdXhHUOxfxOj9yIrdYefo51rK/7LHlUt+a7fkwy1YU5PIhHBcT+RqE+kJQmpZ1Mmq+G4XHRXAgNZZWPT9LqezYpjaG0crR4B0241Wtvm5xpqaRk4NqX0glY5VD4xWFL6ceAgzyor9Jj9QkOmkDbOjtkd6Qiy+u3kgnl1TgqTYaFzVs6VlabPCQR1DfWqG4UWE1YeT267tZih9F0drapo4p+zpU9P6NP1A9kWjjSdRTLR8y5uGgXgj+Xjswk44o0UGdhwsx4WdctGlWZqhfGqlNY9m9qlVv0YkXRuDGf1arqmpKZNGfEwUhrfLwX837NWdptlgq1XlJr+8ZNSKQU0iE8JxE5OqIQjoC2pqueFHQlPxcHNDUyat1N6EW1awc+FNVi5PZpufK9E60rmW085MbYNwFixtqakp970suF4lxNjb/NwIqQGmrNAoOQ43DSy0J3GytKYmhYdSuUitPGTr6OcSaWuuVWdJDsR4nForHDU1rexLMjitqKgArjijhaG8WZEX2fVl01VPOEOiWX3/1lkSSyqL1PPE6NeyYndYsUflfpeoAPDcpO64edk6vPbDLhw9WR26fZt+U+88OXoLm58TmRCOEyhHJqip5waq5fmfTYyUubGvSD3UOlI38vWk9kkg4L6afXYNFKREag3J5ucWvUxQGwhKUxqyNce0pWJHjF9uy1bsNrl9H2k1Ne3ksezaxsjLHNk+NV28T12cNd2UvouR89CuFxKAnhdL1v9Cdn6vSOZE01U9AwVpDpSH4aQ320rETN+HCbHRuLLnqUBtdFQAD+kYHLOe1+7dWhkOalqybfOpyJ0SUYEAspLi8PSE7vjo2n7S25fNl7k8WVUhJkIPOcNYU5PIhHAEunLlamrqCmqypqbfqf261jY/d9exJN+nprZ8WlVYtbX5uQtqatpBbtt2voRxdqRhd507pI2lfWpaePx5qDGBqxgpDrnh3GVNTf3sut7LBtrsDGrW19T02E8m31Rf4/om++T850Vd0bVpGnYcKsfYzk1D+gvXIlIfoYyeH5aUPU2noFRT89R8veeqln7ulVg2+rlF6UQKBjWJTAjHTaxJilzzc+1paKqpGal3ZBt56XlRrdBo1a/vxqPIbE1NI99J6tgw2vxcOv2G/WNJLxfOPjVtaX5u40BBstt0tKamc9v2MqevxYZq9pl8kNfC6vu6215YmWGmT03pdUxkJkjDazvg7IsWtuKxlp2/pWJNTY2DCzbk5K+vdV+ZPUSjowK44cwCU2m4seslKzja/NzGFjnBs/X+dmazpScA+qcB5o5LP2GjAiITwnELk6upqa/5ufqyHChImdfL9WrNKKz6foGA+4p2cvnR2qemkQdcrX2uaQk6aHn4sLOpm5OBDPkaqPZt08maSZEUQLhvWLHTWQgbI7+a3Llv9Ah4clxX0fTgwkZIkBlo0KjIOTqVGRoczqK9I9mnptYaazb8QJFeU9MujtTU/O3AldpEyEBB9mVDN7N5sbP8o1WkPkIZ/VrW1NQ0n4bc7xJ8/7WkUoANv3+rzERc0zs/rNv0MtbUJDIhHBeU3DQrBgpSX4Y1NfXzUtM+tT41pQogRr5fQGFbTpF7U2vn6OdStW2kzjHrmv2br9Fopl8qu9g5UJDsNm1LWZ2d3yucOjdNxZU2DCjhVsaan1ubh8t6NMdP+47ite93oXVWEv45rou1G4gwSg/MTtbUNMOOV4pu+F5eZEU/13qdan6u5WWptjTD8VLTbFBJrXwbDpFy77aKa2pqmigby3drYO55SW3RdjkpeHp8N7RvkoK0hNCBrNTy51cMahKZ4GTzc6trakZSDSE7SL75drzRo3ZqBVPp72dkOwZWsplcljQ3PzcS1LRxdFwpsjUVVNbT0mG52X6tzJBL09Y+NR08hiPluWj1DWdaXkvQzYwcM7I1NQ0egHExUfjziA7484gOhtbXwo3Xd6Osb35uUU1NE+vaUlMzUi5KYSYfqLNvf8Yo9BMeOlCQtnyE49c3+0LVbJ+cVojUs8TJpxxrgprq8/Vuxmy2amqU92pKXDR65Wea3Ir/sPk5kQnheEuSIxvU1J6GlmVZblXm9b7E1JrnWNb83IXvDuUeNm1tfi6Zju5kTLPiuPVb83Nng5puO3uUyeXWTwFNwOI+Nc1mhjRR2s96+iyvZ+vo5xYvp0ckvfB2w2vosNTU1JKPyPlZTfcHbgWv3bvtZkVLNiv2qLaBgvQFxe3+qctOVGlajoecGIOaRCaEI0gh10RWT6BBU5+aGkeCJm9SexNuVSjSjTdZuTxpralppLBaI1Gis/LhMLTTf+nl1K5RwdcR94Wj5Qu19tZ6dW4/8MHIm4z8anLXAzcfAm68RtjB0ZqaJqIB9vSpaX2afqD2ItkOegYK0ioc1yM9zXyll7MyN8bwPLGeFS/UzTU/t4faqVh2olJTOjzkxBjUJDLBKxcUTX1quqFU4DGe6lNTbr7lNTXdV6tVrvCiPaipf5tWNj/XVOtCtv8ud/0WeskdS3b2AVxZXWNb2mr4YGRMaryzvSkZuebJ/dYuu3yKuDlvenmp+bmT91S+aDFGtvaXraOf12879G8Nu0vS3rTbXJ7MbEN7DWVzQVEruK3caxUnn3OsKA/Z0/zcXMbUXlxpralJYgxqEpnglXuYpj41+TStyOt7x0ifmqppymzHbeeFXHa0Nj83UliVDGraObiNBc203fa7AUo1Na1Jv1laQsg8J5tOM4BgzJQ++Yhx8B5mqKam7OjnPAbCQXmgIP3puaFLDDsCKywaWsvWmppC83MNtdBc9LuazYobBjnkeWI9a0Y/l6mpqWn0c3taU6jFiU9WaXuxHqmBdKMY1CQyIVw3scdGdxJNj+mcq2t9DhREsjU1f/uLkZujVw4ZR2pqShRbbH3olZvvkd9Ijnyw1pov1nCE6HOKGiMjUX60SbvxwciYrKQ4PDyqo2Pbd7JmXzh5MMuy3FpT0ww7csAX3sbIl7nso6f5ufaBghx8WaQ1mG9yfSu44fy3g1R56MqeLVTXs2Ig1XANFCS7fZ3ztVKr/Xpm6yxN6UTmEWccg5pEJoTrBPpDr5a48+y26Nw0FeO7NcOCi7qorxREy8XbqwXX4uzksGxHujmPd6h1eG1p83NrkrKMbJ+aMdpyamigIBPNz4sMHNPyb5SVtxncDMau2hKm0pTJlVUPEMPb5WDhxO4YWpSN3/dqiZcv7WFJukZF6oNROEzt3xp/GWnfyN9KjPxs8qOfm8wMmZagsRZ/MKuKUFL3DiebCvOaZIwTg4zU/1ZatuGmn1W+qb659cPJo49QqqKjAnjwvHbCdKOkWNw8oFB1PW8NFCSzfZt+U7WA76yhxZrSccFh7yrOdkJE5HHhupHGx0Tj/mHtcP+wduoLS9A0UJBH78h/GdkRFz7zFapr6m4SDWu1WkVq73irT03lQqNVv34g4I4CZjCzo58b+TqSAwXJnGNzzm+PGSvWA6grGP9lpLjGmWRAPaTWhTRRv0Eu+13MsOolTCAQwKU9muPSHs0tSc8srwUQ3HZMOdW3ppG9INunpqmc2MvNedNL6bvMHaE/OG5dn5qh9w7NA6bY8At57ZrkFk7086iUcsOjSnuXBkZzo53pF6qy88N37LrtXmilGUPaom9+FrYfOo4hbRojLz0xLNsN10BBeo8Tu37rTrmpmNKnFQa3aWRL+pGOQU0iE7xyC9M0UJBHg5rnd2iCT6/vh4+3HkDnpqkYWpzjdJZcSe0YsKympgsPI9mamjaOfi6djvT82wa3QdvGyVi35wgGFTZC/9biAo1kQL3BtHyfUqf+YGZUXadY0Veol0Tq94p0RvrLla+p6d6DwM15s8rvejRHj+bputdzQ/DPnpqa1qfpJuH+2ezcXP11SNuLUK2Bcvvp7dNQ+/oGM2RApJ8nAwobAQhvsM2SmpoyxXzxC3+57ZurQSxHqijeJz8Tn07tbzJlf2NQk8gEr9zEIn2goJ4tM9GzZWbYt+ulIJHsm2wdHctr2477hrlwpk9N7fkAgNGdm2J056b6N/Qbo8G/4IcGFzyTh7C7T023sXMwKT9w6rAwVlPTngcmMm5Ct2Z4ZmJ3Q+va2fzcSV4uGzrJiUCb1S1vnGa6T03LcqIuUsskTrKmT03j5X+7zuEaqS5GDKTph5eMerBPTSIf0NSnJi+Oirx+81Drsyiia2rKzNca1DQSppUqtNj5cOhEU7dwkMt9pD5oR+jXChunXqkY6lPTg+em93IsT+raWNjYeB/d1jU/D6U1ZTt+HwZrjHGiSbTST9WwWwPtzc/t//3N7hM3lHOcz4G7WNKnpiVBTen5OSnxp7ZjfjOmuSEPXsegJpEPaCmUsuAa2WT7b/ttvlW/fgDuC2zK9qljYwRJqhavraOfyzaf0ZOGy344yOcpUoN/vA57k5GHcrVrMtlLSxNdPeSaOYaTHdfwSLrW3nlW25B5Q4uyw5oHe2tq1jc/V9+Im35Ws+UXN1xLee+2nhUvAOR+l9zUoKCmzlYTZn9qK0aGB9x1DruBC27BRN7lslZCsrQUSr06UJCTvPL7A+o3Yakbv5Hm9YGA+xqgO1EAkVrDyppZDX8buZTVHrSt7ELBjl9d9ntF6ANEpH6vcHFq9xm5fcr2qemy62ewSDo8rf4qltXUNNE0kTU1lf2hV0s0T08Qps9vn4P2TVJt2ZYVLxqVTO3fOmReTkqc7PIhfWpqHnzKfvLBI415lAtKhfHYdcNLjUhjZ/PzJkFBTb3bl7pH63lOkLrGG7nORtCl2RLsU5PIBLf1fSRHy409UptzWsXre0etebJlzc+tScZSZg/taqm25CokCy12Nj+XfdMcUF3m1LLuw4GC3M3u7PZqmYHVOw4J031bZdq8RWOMPDzL9qnp4mPAzQFXK5ipQWNn8E9z83MbshBJQc3MpDh8e/NAvPRNKVLjYzCpe55t27I70HZdv1Z49btfsOfISQDAQ+e1R4zGLnUAZ48pq8k39Q9nHjywozzGij0qV6bKTIw1vB3T54RFfWqSGIOaRD6gqU9Nrz1Nu4BXgtqAeq0BywYKCrjv5mz2IcJATNPS5udmmpKF87S2o1aE3HEZqdcrN3YBoMTuS+CsocUY++xXKK+sQVJsNGaeU6S4vFN7z8h25WtqUjhYfa5ZN1CQ8bPKlubnEVYDLSspDtf1C63laDW7A21F2Sn49qaB+GDLfrTISETfVlm6tuGmW43ZWq0c/TwyWXE909L9lPzxo337ep6hLGt+Hgh4qsWg3RjUJPIBTaOfu6mE40KS/W956Hai1jeMdTU13fe+2mxh08jvLDlQkMGdPKJ9EzyzpkQ0r2OuuMmclkKZlU3Nw8Vvo5+T2LB2Ofj2poH4cfcRdG6ahjYqA7k4FRQ2slk39AOnl5vzZgVTfWraOVCQgzs+wn/ysLPyp2ySGo/x3bTVNjV6aIejRCdfq1Xj+i44SlkmcScz5X89LybMNj83cgzziBOLsPdvROHllRCBlpttTDQvj0rcUGgyQ7XpsYGvJ7VP3FiuM/vbVdfoX0eqgGO00DtzaJGoYJafmYhhxTmiZWS7F1BJO/i4cOdvJ40PEO7QtVlayLw/9Gpp6TbaZqdgdOemqgFNJ1nZ/JzCQ/rB1DhbB4KzL2myid19ahrZtmgZFx1VZnOip+9Du/B6LmZFpQ+79mjDMSTku+eSXt+WVkk8fExjUJPIBK8ENbVcK1lTM7KpvXG06tcPwH03Z7MPmzUSr1XVvqNVHYEDQKusJHx4bT9c0LEJLjktDx9e2zekf85IrdEoV3jU0XUY2ahFRiIu7JQrTKfGx2DGkDaO5cdLR7ts83MXn7PuzZl+d50TOhL2RI213qTYOVAQeY9aP+bhFjK4oAdOZq1BSbWWSOHghf1pl9FBZYB6hY3c8RLyYHllyLzsBgNq6f3tzLZ6kqyNbyAdPx9zUtj8nMgHtPSJlKthJDjyLrU3jlYVtN14kzXfp6ZEUFNlHekmhMbz0K91Fvq17in7d6OF+uDCmZtqbtRjTU33e+WyHvjnF9ux/1gFLuvRHAUOPsx46bCQbX4e3mzo4uaAq17jujTDn1dtwbo9RwDUjYTdRaLmsVa2DhQUObvd98LxW0qOzhwy+rm2tMLRzZLZPjGdrBVbz899at57bjGWr9+Dyuq6Y+X89jlonpHocK7q7D1aETIvO1n8vCtf6cOeH1W6ogSbn5vFoCaRD6gVts9rl4McBjV181KNCrXmyVbeHN0WHLNj9HO1c0q6pqa5fBgRvE0vBiQitQZqJImNjgrLwBuRRq51BA/t8EiIjcaXfzoTS37YhYSYKFzYqamp9Kz63bzUVzfJc3/zc/cwW2Z0Q5nTz2WSTk3T8MUNZ+KZr0rQJDUeNw0ocDpLgv1HT4bMa1hTUw6bn3sLg5pEZngkqiV3s+3SNA3D2uXg7rNDm2FRAx6/4ajdMC17IKt1383ZbH6kBv1RK8Ba9SZWK0tGbzSZPTu+nVye2F0GSfHSYSF3DXHDA7oc9+bMmMTYaFxyWnNL0rKz+bmbjwmSJt96wqHm5y7JhxT7Rj8P33d00e50RPe8dHTPS3c6GyGS40NDXfmZSaLpcP92OSmhlYiapSXoTsdN57AbsFcqIh+QqyH27MRumHN+e8mLPqnzRki7jlrznkh+aDL7sCn1kGmkT0c797Ds6KE2btNJfm7qRZFBrk9N8iZbBwrioRIxwvFTjuzQJGTeXR6svOCt5uc8Sa1mxTPW1P7iViSBAHDHWW0azNNXfjbbp+atgwpDjtl7hhbrTodHnBiDmkQmeCWoJd/0mJdEraTueWZvbOGk1meModHPTfaDFC5msyNV61K1+blUPux86JWZH5xPtePVZT8bAPlrVMOBkogAb93TZPvUdPFXcHPenBapQQ3WBjJGNlASht3ZvkmqKLCZn5mIy09vIc6H/dnQzGyfhnpHr7ZDpJ7/XtetWRqu69cKQN09986z2mru99uua19uWgIWjO2ClPhoJMZG4W8XdETrRknqK5IiVs8iMsErIS0vPjy5jZcelqWoFbAjuU9Ns6oNBDVrJNqs27lfjAaY3f7AKt+nZnjzQd7g8sNZRHb08zDnQw8v7d9ws+qa5JVyJSkzG6gza8kVZ+Dlb0tx9GQVxnfLQ3pirDgfLjqXzZZD3PBdXJAFkhAIBPDY6M646+wi1NbWIleimbfe386KcvPVvfNxde98U2m44bh3EwY1iXxArlYTr4f+ofZbuz24ZUb9iIxGSdXUVGs6Gv6amsbOcbfXNpbLP/vUJK+T7VOTx7YnWfW7SV2TeUh4j9MtWaKjAor9xbrp5bN8/6PhWd8KUWz76mpNFAbDdUP3BUa46Rx2A56CRCa0TosNmXdZD2s6nbeSfE1NXhDNcHc4SEztpi11jBj5frUK23JKldRIPzrU1ITOU/uKRpqsm6FllHC1892N1wO5PLGpF0nx0lHhyZqars6ds2ztM9nB/c5f3Fpu2Z9euIVq71PT+S62WCbxLjd0X2CE2/MXbgxqEpmQmxyN/s1Ovf1JjI3CHWe5rzNuo7W46BSv3zzkb9om+tQ0k6EwqpSKSurQNju0/51zirJ1p2PvQ6/M/DD+SHZsS76vUOu3Rd7nxsC8HB7DkcWqQ8/Jl6X/d2En0XROShw6N01zKDfe5oZ7shKXZAOA+X3ihn3NoCaRs9j8nMikP/fPwsdH07H/eCUuP70FinNSnM5SCPapSeEc/dxth5XZwub57ZugWVoCfjl8Qph3/zDlkQqlWnXb2vzcgqasbvvdAPl9xpGjyevkulBw833ZzXlzmhM18a02sXsenv96J74sOYTY6ABmD2/Ha61Bbqg96BXyLYm07Ss3NB/mr+pdTncVYZTLsxd2DGoSmRQbHcC0Aa0RE+Pe04lvEO3h8u4IRdT71LRwWy473ro2TUPTtHjsOnxSmPf0+G6a14+OCmDVH/vgtuX/w9GT1bh1cCHaZiu/vJBqfu7E6OdeJzv6ucuOMXIHLx0V8n1qhjkjOrg4a46zat84Wa5olByHj6/vh//tOYKspDi0yEh0LjMRyi3nt9ZyWjiOR7PNf90QKGaZxHrh2qOyNX115MCJ6zYPOTH3RmGIyDKsqWme1K7yUExTodaA+P9gXgraKomKCuD/LuyEq175DkdOVuGCjk0wtktTXWkUZafg9St7al5ecqAgB0Y/D6Y2KJAbrwda+gol8iL5PjV5bHuRnc3Pw3lExEZHoWuz9DBuMTK5vfaXS7JhCfl9Hc4+NcO2KQoTt5yrpA2DmkQ+ID/6Oa/YWuWkhI6cl5eW4EBOjFHrc8jKwp8bj6qxXZrh3OIcHK+oRnZKnO2F3fA3P7cvbSexT03Sw0vngRdfNrqtFr6bOP3SitzFitpfdnLTMWW2+bgrmp+7aH9GiviY8Az9YsV9zYnf3y3XErfgQEFEPuCGTrS97k8DWofUrHngvHYO5UY/tT6LrDwU3HpcpcTHICc1PiwP5rUS9W3sHShIPXUvBiTYpybp4aVCvjdHPyc5Hry8ko3k+7kOc0ZkuCUfgNIzirZMuqErDy+Wr9zkmQndRNNdmqaheZi6v5B/AaEdm587j0FNIh+QveGHOR9e1jg5Hv+4qAtS4qMRHxOFP4/ogCKVfhXdRO3mx5ujtaRrarq7Jo/ZNPIzk0LmDSvWP0p8MLl9xubn5HU8hiOLZc3PI6XfF5LklrPeTS+AzJaN3PBN3JAHL7u4azNc0ycfyXHRKM5OxpPjujqdJdVuu8hd2PycyAfk32Ly0qzHVT1b4qqeLZ3OhiFqHbFbO/o5jyupgYLsrFzohj3eJDUeF3RsgjfW7QEAxEQF8MB57U2lyebnpIeXbmnyzc/d+yVcnDXHWXXfk3wh5oorPOlhtvah3bRmw8kQu/nm5+Hb1y75WT0rITYaT4ztgifGdgn7tvX+dm557cRDToxBTSIfkH14Cm82yEFqfQ6xQGatcD+YWtInkAX5e+nSHnj4wy3Ydfgkfnd6c3TPMzfgBJufkx5KR8VDJgPsVvNi83OSxz6TKZgb+nn0CrNdZJkdPd0KfPHgXV49V90SXHULBjWJfMAN/c2Qs9RqDfihT81wkhzB1uGamrmp8dh/rEI0LyXe2mJAQmw07jy7yNI0pbDpLunRt1UmrjyjhdPZEPHifZkP7vKs2jN8UI1sbjm/NdeCtDUXv23D5Ea8GpQid9AbFOdx5U7sU5PIB9xSiCLnqNXks64/MB5vgFxNTWc9PrazaDohJgqX9WguTLvxd5MrbLKiJkmRO4Y/+GNf5KTGW7KNKxoER89u29hQOtGy/XW59+B24zXCLWztM9m2lMkusoESl/yaWo/XcATZze4rN+xRXhuJnMWgJpEPyA8UxLuwX6iN7mfkgUxqFalRv/1IcvRzh5sn9s3Pwg1ntgYAJMZG4e9jOlteU9Nqct+LNTVJj5ho64q7fzqzAHnpCQCAzMRY3H5WW0Pp8BCOLJbV1ORAQRFBtpaXS857l2RDkebm5y6o9e6F/UnS9PbJyiu0O7n7aYaILCE/IEF480HOUStgG6n5xqC4PKnnUjsDcVp+i6ioAB65oBMeHN4OUYEAEmKjG6ThPnJ5Yp+aJCUcg3B0aZaGH24ZhC2/HkOL9ETDNUDd8CCul4uz5jjLWjtIps097zVm+4m0m1vyAVjQ/Fw2XRd9SXItt5+rpI3vg5pbtmzByy+/jNWrV2Pnzp2oqqpCTk4OioqKMHLkSJxzzjmIibF+N3366adYvnw51q5di71796K6uhrZ2dno1q0bRo0ahYEDB+pO88svv8Trr78upFlRUYHMzEwUFxdj8ODBGDNmDBITEy3/LuR+8jU1yS/UmvdYGaBkRRPp0c+drqlZLynOO7d+uYcS1tQkKeE6KjISY9GjeYYtafPI9iZbB4KzLWUKN7f8lm56KW16oCAX9H3IAGrkUWvhRu7inScbGzz22GNYsGABqqqqRPNLSkpQUlKC9957D506dcK8efNQUFBgyTb37NmDW265BV9++WXI33bu3ImdO3di+fLl6NatG+bMmYPWrVurpnnw4EHMmDEDH3zwQcjf9u7di7179+Ljjz/GE088gT//+c/o27evFV+FPMTtzWDIfmq/NY8Fa0nWtuFDr25y34sVNSlSufla7Oa8+c11/Vrh759uE6bPLc52LjMUQr7czZOoIbNBSTc84/BX9S6ek5HBt31qzp49G/PnzxcCmjExMejYsSNOP/10ZGZmCsv9+OOPuOyyy1BaWmp6m9u3b8fYsWNDApqFhYXo1asXWrVqJcz79ttvMXbsWHz99deKaR45cgS/+93vRAHN2NhYdO7cGT179kROTo4wf9++ffjDH/4gGfykyCY/yiov5H6h9ibcyiOBNTVlBgpySU1N+TTcdz2QyxKbn5MUFx7CurnxPKzn5rw5zcrB9rS48cwCdGiSAgBomhaPWUOLrckAWUK+dYw7RNKp7IZapwmxvg2peJ5Xm5/zWUvMlzU133rrLTz33HPC9LnnnouZM2eiceO6ESwrKyuxZMkSPPTQQygvL8f+/fsxdepUvPbaa4YLdOXl5ZgyZQr27dsnzBs0aBDuuOMO5OfnC/M2bdqEe+65B2vWrMGxY8fwxz/+EcuWLUNubq5kug899BA2btwoTF900UW45ZZbRIHZd999F3fddRcOHTqE6upq3HzzzXjnnXfQqFEjQ9+FvEe2T83wZoMcpPYmmw+r9rNzD0fq78eBgkgPNzzckj9Z16emtq5L2jROxpo/DcCeIyfRKDnO9YO+UR233Lpckg0ASv0La8ul3oFe7JCWEIsBBVn4aOsBYd6zE7uFbftkvUgtV0cq371WqKysxNy5c4XpwYMH45FHHhECmkBdTcfx48dj/vz5Qn+a69atw/Llyw1v94UXXsDWrVuF6YsvvhgLFiwQBTQBoG3btnj66afRr18/AEBZWRnuv/9+yTT37NmDpUuXCtOjR4/GAw88IApoAsA555yDf/3rX8J3OXr0KJ555hnD34W8hwEA4s3ZefYOFOSONKwm91DCipoUqdx8aLs5b05z4qVVQmw08rOSGNB0ITcE2pRoLY7UhqE6mNm+C91S0+6ZCd0xtCgb7XJSMGtoESZ2ywtvBsgQPh5FBt8FNd9991388ssvAOqanM+cORNRUdK7oX///hg/frww/fTTTxve7osvvih8LigowMyZM2ULKXFxcZgzZw7i4uIAACtXrsSmTZtClvvss89QU1MDoK7AM23aNNntd+7cGcOGDROm2QTdX+Sbn4c5I+QYdnjtPLc3P3cj1tQkPSLhsIiE7+BHVr04ZJPCyOCGfh6VuOlFt+nRz10yGGqrrCS8Nbk3/nfbYMwaWoyYaN+FWTzJiq4inLhuS9Xq9zPfnW1vvvmm8Llv375o1qyZ4vLBQc1169ahpKRE9za3bdsm6pPziiuuQGxsrOI6OTk5GDx4sDAtVUt09+7dwufGjRujSZMmiml27dpV+Lxz507VfFPkcPsbY7IfO62PbFacy248FOSyxD41KVK5+b7sxmuEW9haU9PGtMkeru9TU+tyDp70mkc/tzcbFOHc/gKCtPFVULO2tharV68WpuubeCspLi5GdvapEQVXrVqle7vbt28XTffq1UvTep06dRI+f/XVVyF/T01NFT4fP35ctYlA8Cjv8fHxmvJAkYE1NSlcBWzWMpFna/PzCD2X5R6oGNMkKZFwWLj5XHZzwNVpVv1uSXHRIfNS4kPnkTd57UVyeJqfy5VPTfap6bF9Td7FQ815vgpqlpaW4vDhw8J0cNBQSXHxqREFf/jhB93bDd4mANUalfUyMjKEz+vXrw/5e5s2bYTPx44dw9q1axXT+/TTT4XPhYWFmvJAkYEDBVE4b7hsEiHN1ubn9iXtKLnvxebnJCUSHmK9/w0in1SZKjnOmn4tbx4YWj6fe34HS9Km8JFvIeUObrpUmm5+7vJaseRu8t1zaT+CHGl+zkctEV8FNbdt2yaabtmypab1mjdvLnzesWOH7u0mJiaKpisqKjStd+zYMeHz8ePHcejQIdHfe/XqhaKiImH6gQcewPHjxyXTWrFiBT755BNhetKkSZryQJFBvqYmb/l+YUdH6jx89HH76OdurIUl97WiefARhR1PuzovXtJDNN2xSSraNE62JO0WGYm4+5wiYV9f27cVujZLsyRtCh+3DF4jx033e7P7is2HyQy9xw+PK3fyVVBz3759wueoqCjRiOdKgpufB6ehVdOmTUXTUrUupTRcruG2A4EA7r//fiQlJQGo6/Nz3LhxePvtt3Ho0CFUVlZiy5YtmDt3Lm699VZhvTPPPBPDhw/X/T3Iu1hTk+Q7Urf+KODbQ2l2vkTw27ksM74f+VwknAd82eh+ozvn4pZBhWicHIfOTVPxzMRulqZ/77nF+GXmUOy8+xzMH9OZx0QEcctP6ZZ8KDE7+jmRGXLHFZ9x3MmathIeUVZWJnxOTk6WHfW8oZSUFMk0tGrXrh3S0tKEZuiLFi1C7969Fdc5cuQI3nvvPdG88vLykOW6deuGRYsW4d5778WXX36JzZs344YbbpBMMzY2Fpdccgluvvlmzd/dLsH9e3pRdXW14rTbyOWvuroKVVXsq8kPamqkj4Fa1KKqqgo1MseI3nO1pqZG9niTS8tr55NRNTXVtl375Pq90rO96mrpZZ28XssdCzXV9u1LLwreF345n6TIXee8dKxUV1Wh1qWdxtbW1EjO99L+1UPuXAoAeHBYER4cdqq1lNX7oFFitC3pUnjIXYuqXXLv0npfqKmpsSy/cudTdY10+aVaY5mpWmFfE6lRfGapDY2X1EjcBwOB8F+r/VzWk+KroObJkyeFzwkJCZrXi4uLEz5rbToeLDo6GhdeeCEWLlwIoG4k80GDBmHkyJGSy9fW1mLWrFk4evSoaL7ctnNzczF48GD8/PPPijVJhw0bht/97nei7+OEmpoafPfdd47mwWo//vij01lQtPOo9IV23bp1yExgUNMPdpZId01RdugQvvvuO+yQ+bvSuSp1Yy8tLUV6+V7daQVz+/lkVMmOHfgO+mv7m6HnWnu8Ujpg4eT1Wi5P/1u3DqlxrK5ZT+k3itTzScrPv5yQnO+lMsf333/n2pp5JQbuE5HET+cSmbN5v/Qz208bfsKJX5x//P61XFsAZGdpKb77Tn+FHi3qz6camZeyP/30E6p2x6qms+e49Hfxy3WJzDlZLX38ff/994iWeMFYWnosZF51dfhjGxs3bULL1FPXEr/fn3z1RFBZWSl81lNTMSbm1AFjNAo/efJk0cA/t912Gx5++OGQmp/bt2/HlClTsGLFCqFZuVKev/jiC5x77rmYO3euENBMTk5G9+7d0bNnT+Tl5QnL/uc//8Hw4cPxr3/9y9B3IO+SO9pd+txENpDvCFv572TMsPzEkHkF6c4/yChx4/VALk8urchGZJpbA5pEZB5P71Bq5VOj6xOZ4aZzNVoiLwlSM33M3U9YFouOPlUjTaqGkZzgQGZsrPobIynZ2dl45JFHcM011+DkyZOoqanBP//5T/z73/9GcXExUlNTsXfvXmzduhVAXSB13rx5uO6664Q04uPjRWl+9913mDx5slADNSMjA7fffjtGjBghCsRu2LABc+bMweeff46TJ09i3rx5OHLkCKZNm2bou5D3yAcAeEH0PYsPAY58Xuf3nVKxsqQcVb/daro0jkVhurH7h5/Jj34e1mwQERFpFimjnzuZXwY1KRy8cPzc3zcTd3x6UJhunxWLnCS2tAzmq6Bm8CjkwU3R1QQ3+24YWNSjT58+eO655zBt2jSUlpYCqAuYrlu3TrRcXl4e5syZg8LCQtH85ORTIyvW1tbijjvuEL5HZmYmXn75ZbRq1Spku+3atcO///1v3H777Xj99dcBAP/4xz8wcOBAnHbaaYa/j1FRUVHo3Llz2LdrperqalE1706dOomC5m6TdagcWBbaJLhzp47ISnK2OwIKj//V/gJ8cShkfmZGJrp27YrvqnYCq0P/3rVrV9k0o17bA0Dc7CevWR7atsgA3t2vOS2vnU9adAXwaUEZnlxdgsykWMwYXIjUeJtvuS/9EpoPhd+voeMV1cCi3abSsFp5pUyeunRBYqy3jxFZEr+jmuDfKBLPJ612J+wDPjwQMt/JY1iRyXM23L6t1H+f8DI/n0tkTmXJIeCd0HJQ+/btUNgoOXSFMNt39CSwdI/qcs2a5aFr11aWbFPxfHp5V8jyxe3aoX1OSsj8hnYdPgG8EfpdIvW6RNaqqKoBXg09/rp17SrZcuLTY9uBr8UtbaOiomw93jp2qsHxhC14fm0pmqUlYMHYTmjbKDGi7k8//PCDrkqHDfkqqJmeni58PnbsGGprazU18wnu2zK4CbkRXbt2xVtvvYWlS5finXfewYYNG1BWVoasrCwUFBRgxIgROP/885GYmIjNmzeL1g0ehX316tWiv99+++2SAc16UVFRuO+++/DVV1+htLQUtbW1eOqppxwJagLiJv2RIDo62tXfKS5WOm+xMTGuzjdZJ0bmRhcVFUBMTAyio6T/rnR8SF0+o6KjESWzLa3HmtvPJ63OyG+EM/IbOZoHPfsxRqYs4eRvEVsrfY+Oj41FTIyvetBRpPQbRcr5pEVMjLlrjxu4Oa9yXTe5Oc9W8tO5RObIHSduKXfHxmrrUzMqOsq2/KqdT7Ex2s63WJll3LCfyf1qA9KFX7nWudHR4b8PxsQA9w1vj/uGtxfmNewS0e/3J1998yZNmgifq6urcfDgQWRlZamuFzz4TuPGjU3nIy4uDuPHj8f48eMVl9u4caPwOT09XVRTc82aNcLn5ORkDB8+XHW78fHxGD16NObPnw8A+Oyzz1BTU+P4SOhkvyiZ4D377vIPs30WETmBfWoSuQc7FyEyJ+CSUpdb8qFEax75LENEvopm5efni6ZLSko0rbdz507hc+vWrS3Nk5LgKsXFxcWiv+3de6opcX5+vuYRzdu1ayd8Pn78OA4ePKiwNEUK2aBmmPNBzpHt38niwmBtbS1qZUayJHdz44OB3EON3DWN/I1HRfjxVCQKJV/mCm8+5LglH1aIoK9CDuDxExl8FdTMy8sTNR9fv369pvU2bNggfA4OCup19OhRbN26NWTEczkfffSR8LlhPw3BQczgPj/VNKyV6caHWLIeazWRXHDIzKHhhTf95G1ufzAkd2GZxl5S76u4x4lCub11jFvyoUTzYEZe+DLkWiw3RAZfBTUBoFevXsLnzz77THX5DRs2YP/+Ux099+7d29B2J02ahB49emD48OFYsmSJ6vIbN27Epk2bhOnBg+eqMGAAAGB7SURBVAeL/p6bmyt83rFjh6jfTyVbtmwRPsfHxyMzM1PTeuRtDAyQ2m9t5bHAAoI3ufFXk30w5DFGFHa1Eg3QeS4SacfTRTvNo59znxL5nu+CmkOHDhU+v//++9izR3nkt5deekn4XFhYGNIMXKs2bdoIn1euXKm6/BNPPCFat+GAPn379hU+V1RUYOnSpappVldXi5br06cPC6M+Id/8nL+/X8gHh6zfFpufk1V4jyI9eLQQkRvI3bvcck9zSz6swGcZMsOKo0fqhR+Fly+Dmjk5OQDqgoEzZswIGT2q3scff4xFixYJ05dddpnh7QYP5LNmzRp8+umnsssuXrwYb775pjA9ZcqUkJtPhw4dRE3S//rXv4pqdkqZN28etm7dKkyrDVREkUN+oKAwZ4QcI1tbN7zZIBdz4/XAhVki8i2+ryLSJlKanzt5zmsNvLqx7ELeweMnMvguqBkXF4ebbrpJmP7ss89w9dVXiwYNqqqqwquvvoqpU6eiuroaAFBUVIRx48ZJpjlkyBAUFxejuLgYQ4YMkVymd+/eoiDktGnTQmpsHjx4EPPmzcNdd90lzBswYABGjhwpmeZdd92F2NhYAHWD/lx88cV4/vnnQ5qi79ixAzfeeCOefvppUZ7l8kqRR65PTV7H/cPttQaIiMzi5cxeUvEN7nKiUG7v9skt+VCiufm5rbkgUsfaws6LcToDThg9ejS++eYbvPLKKwDqAptDhw5FcXExUlJSsGXLFhw4cEBYPiMjA48++ihiYozvrkAggAcffBATJ07E4cOHUVZWhuuuuw65ubnIz89HWVkZtm7dKhr0p2PHjvjrX/8qm2aXLl0wZ84cTJ8+HVVVVTh+/Djuv/9+zJs3D61bt0ZaWhr27t2Ln3/+WbRe165d8Ze//MXwdyHvYU1NCudPzco8ZBVeo0gPPljYS6prEZ6jRNq55RqlNR9eOL/5cp7MsOL4YfNz5/mupma9e++9F1OmTBFqOtbU1GD9+vX46quvRAHNwsJCPP/88ygoKDC9zTZt2uDZZ59Fy5YthXm7d+/G6tWrsWHDBiGgGQgEMGbMGDz//PNITU1VTHPEiBFYuHAh8vPzhXknTpzA+vXrsXr1alFAMzo6GpMmTcLzzz+P5ORk09+HvIODbRCbn5MatzxsBeM1St3Cid2dzgL5mBuvG0ROkzsv3HJL05oPZ5ufa1zO3mwQifCe506+rKkJ1D0oTZs2DaNGjcLixYvxySefYPfu3SgvL0d6ejrat2+PYcOGYdSoUYiLi7Nsux06dMDy5cuxdOlSvPvuu1i/fj3KysqQkJCAFi1a4IwzzsBFF12ka0CiHj164L///S/efvttrFq1Ct9//z3279+PiooKpKeno2XLlujVqxfGjh2LFi1aWPZdyDui5Nqfk2+oFbDdUtAmInUxUQFU1dRiSJvGuKBjrtPZcQ2vXccaJcXi1+OVTmdDM/apSaQNXySbF0m1SSlysFamO/k2qFmvsLAQ06dPx/Tp0w2nsWrVKl3Lx8fHY8KECZgwYYLhbTYUHR2N8847D+edd55laVLkYJ+aJF/A5lFAdfhg4A2/79USs84pQtmJKrTLSUE0X1p51oKLumDcwq+F6T8NMN8qyE6SfWry8CPSzC2tD9yRC2uwHEtO4zHoPN8HNYn8gH1qUrh+ar6/JLJf84xENHc6E2Ta2C7N8MaVUfjvhr1ol5OC6/q1djpLurEYQRTK9aOfuyUjCjQ3P/fAd6HIxtqbzmNQk8gH5AtXLAn4hWztABOHQEp8NI6crBLNi4kKsImiR/Fq4A5/GdkBt/znf7J/5+8kz4vXnpEdczHSI10IeHH/EjlBrszllgCcW2qMKuHo5+RGfHZ2J98OFETkJ6ypSfKDRRlP86mLu4mm46KjcOlprD9GZMYlpzVHcbb8YH7JcdFhzA3RKVK1UViOIAplR5nLSlqz4YUaaG7Zp+QPXjgn/IhBTSIfYIflZEefmkPaNMbYzk0B1PXbev+wYqQnxiKJQRdP8kLNDT9okhqPNX8agOW/74l/jusS8vdbBhU6kCtv4CEcfqy1QqSdW84XL1wrtTc/98CXISJbsfk5kQ/IN4NhQcAv7Pil42Ki8OrvemDrr8eRGBuNZukJAIBuzdKQn5mI7QfLhWVfuayHDTmgYN2apeHbXw4L05eeludgbsiM5PgYnNe+CWpra/HdL4fx90+3IRAAZp1TjLz0RKez51psHm0v7l8ibWRfJHus2O1kEFbrMwrHyqNwcsuLCRJjTU0iH+Nl2T/s6t8pEAigsHGyENCsn/fUxd3QNC0eUQHgmj75GNWxibkNkaq7zylCQkzdbT07Oc71IymTukAggMdGd8auWUOxe9ZQzBxa5HSWiES8FqQhCge3t5DSGpjxQlNbBpmIiDU1iYh8INwF7CFtG6N05lCbUicpozs3xQ+3DMLWA8fRpWkamqTG61qfjwXupfe3JLKD+8MbRO7mlhZSLsmGIs0DBXnguxCRvRjUJPIxFgT8w+2d1pM1Chsno7Cx/CAzRERG1Uq0P+c9hCiUXO1Bt5wubsmHEs19atqbDSLyADY/J/Ixt7wxJvvxtyY1PESISC82/SQK5fY+NSOpTBhJ34WIjGFQk4jIB2RravKBlIgihBf6f/My7l0ibdxe5nJHLpRp3Vde+C4U2TiInvMY1CQi8gG31xog57G2AxEpkXpw42WDSDu3nC9uyYcSzc3PPfBdiMheDGoSEfmAWv9Obqk9QERE3sE7B1EouZeEPF+00z5QEPcqOYuHoPMY1CQi8gHecImIyAw27yfSxu2DM2oNBLJZLRF5AYOaREQ+IF/AdkkJm4iIXE26+TnvIURa8XzRjvuKvILBf+cxqElE5AOyfWqGNxtERORRkkHN8GeDyPUipczlZFzRa/uKiJzDoCYRkQ/I9qnJUiMRRQjWlgg/3kOIQkVKmYvXVCJ1XjuvIxGDmkREPsAbLhEREZFzOCijdiy3klcw+O88BjWJiHxAtikUS41EFCH4XGEvqf3LOwhRKPkyV3jz4WXcV+RGPC7diUFNIiIfkG0KFeZ8EOl1yWl5oun7hxU7lBMif6uVqI7CF2NEoWQHZwxrLojIaqyV6U4xTmeAiIjsx1oDpEXnpqn4YdcRYfrWQYUO5qbOwyM7oryyGj/sOoKz2jbGtAEFTmeJXIqXM3vxWY5IG7aOMY9N9YlIKwY1iYh8QK1oyHI2AcCsocX43Yvf4HhlNQobJWFy73yns4Sc1HgsvvwMp7NBHsCgm704+jmROV47X5yslcZyKbkRj0t3YlCTiMgH5GoH8N5MwcZ0boqe0zOw6/BJtMtJQWoCiwlERER6yJa5WOgiIrIcn1aIiHxAtn+n30rY5xZnh/xt/ujONuaI3Kp5RiKaZyQ6nQ0icplaibqwDNIQhVIrc3mFk9n11p4iIidxoCAiIh+Q7d/pt/8bJ8fjhjNbC/Pb56RgYvdm9meMiIg8y2tBGiLSztnm57y2EJE2rKlJROQDWjpcf+SCThjTqSkOllfinKLGSIrjLYKIiOqwT00ibRiPI4pMrTJDWzINLGzkQE4oGJ9YiYh8QOvo5wN4YyYij6p1slqRD0jtXQZviEJx5G7zuAfJjc4tzkFeegJKy04I8+ae38HBHBHA5udERL4g3/ycxUYiIiIiqzDYbx73IblRVFQAb1/dG0OLstGrZQYW/a4HujRLczpbvseamkREPsCyIRERmcGasET+khgb7XQWiFynQ24q3prc2+lsUBDW1CQi8gG5Dtf5JpyIIgVDbvaSbH7OV2ZEISLhrIiPicJlPZo7tn1eW4hIKwY1iYh8QK5oyCIjERFpITlQEG8iRCG8OnJ3UXYyACAuOgp/HdURqQnONer06C4kIgew+TkRkQ/IDxTEUiMRRQZezcKP+5wocvzzoq7okJuCuOgopCXEOp0dIiJNGNQkIvKBKAYviSjCsfk5EbmBV0tcgQDQODne6WwA8O4+JKLwY/NzIiIfkG1+zlIjERFpwObnRNp49bxwU77dlBcicjcGNYmIfEB2oKAw54OIyC4cnNtetRJ1YTmYB1EorwbkeD4TkRcxqElE5AOsqUlERGYwaExE4cI+34lIKwY1iXziwk65oumuzdIcygk5gWVDIop0vM7ZSyqmyX1OFMqrNR7ddD67KCtE5HIMahL5xG2D2yAjsW4kw4SYKMwaWuRwjiicZEc/Z7GRiCIEaxLaq3FyXMi8VplJDuSEyN3cFBzUw6PZJiKf4+jnRD7ROz8TP9wyEN/9chhtGyejbXaK01miMJILXnq14E1EROF15RktMH35/3CiqkaY99cLOjqYIyKykpuafLsoK0TkcqypSeQjeemJOK99EwY0fUi+piYREZG6lPgYPDuxOxolxSIxNgqzh7dDN3ZlQxTCq2UrN+WbLYmISCvW1CQi8gEWDYmIyKxxXZthXNdmTmeDyNXcVONRDzdl2015ISJ3Y01NIiIfkCtge7XgTURERORGXi1ZsXYkEXkRg5pERD4gV0xl8ZWIIkUtRwoiIjLMTe+5XZQVInI5BjWJiHxAtk9NlhqJiIiILMOylXlsSUREWjGoSUTkA2xSRESRLi0hNmRednKcAzkhIj/zapnLq3HE7nniAcsGFjRyKCdE5AQGNYmIfEB+9HOPlmCJiBro2yoTLTISRPOemdDNmcwQEXmMm0qEevJy37ntkBBTF9ZIjovGXee0tSdTRORKHP2ciMgHZPvUdFMJlojIhEAggOcnnYbfv/od9h09iWv7tcI5RdlOZ4uIfMarZSs3NfnWk5XzOzTBtzcPxLrdR9ClaRoKGyfblzEich0GNYmIfIB9ahKRH5xZ0AgbZwxxOhtE5GNeLVp5Nd8AUJSdgqLsFKezQUQOYPNzIiIfcNPbdyIiIiJyFzcVFVluJSKtGNQkIvIB2ebnYc0FERERUWTzajyO/awTkRcxqElE5APyzc9ZgCUiIiKyilfLVh7NNpEpuanxoumWGYkO5YSMYlCTiMgH5N6+s/xKREREZB2WrYi846+jOiLqt5M2OiqAv4zs4GyGSDcOFERE5AN8+05EREREclhUJD+a0D0PrbKS8PXOQzijRQZ6tsx0OkukE4OaREQ+INunJkuwRERERJbxatnKq83miczqnZ+J3vkMZnoVm58TEfmAXEGVncITERERWcerZStv5pqI/I5BTSIiH2BNTSIiIiKSwzIhEXkRg5pERD7AgioRERGR/bxa5vJqvonI3xjUJCLyAbmCKsuvRERERNbxatnKq83micjfGNQkIvIBuYIqO4UnIiIiso5Xy1YezTYR+RyDmkREPsCamkRERERERBRJGNQkIvIBBi+JiIiI7OfVMpdX801E/sagJhGRD8g1hWJTIyIiIiLreLVs5dVm80TkbwxqEhH5gFwxleVXIiIiImKRkIi8iEFNIiIfkO9Tk0VYIiIiIqt4tcajR7NNRD7HoCYRkQ8weElEREREclhWJCIvYlCTiMgHZGtqsvxKRERE5HssExKRFzGoSUTkA7J9aoY1F0RERETkRiwTEpEXMahJROQD8jU1WYQlIiIiIiIi72FQk4jIBxi8JCIiIiI5LCoSkRcxqElE5ANsfk5EREREcvgCnIi8iEFNIiIf4EBBRERERCSHRUIi8iIGNYmIfCAgU1SVm09ERERE/sEX3UTkRQxqEhH5AAuqRERERCTHqRfdibEMSRCRcbyCEBH5gGyfmgx2EhEREfmeU2XCJ8d1FU3fMqjQmYwQkSfFOJ0BIiKyn1zn74xpEhEREZFTZcJJpzVHXHQU3tm4Dx1zUzG1X2uHckJEXsSgJhGRD7CmJhERERG50UVdm+Girs2czgYReRCbnxMR+QCDl0REREQkR65VDxGRmzGoSUTkA7LNz1mAJSIiIvI9lgiJyIsY1CQi8jEWYImIiIiI77mJyIsY1CQi8jEWYImIiIiIZUIi8iIGNYmIiIiIiIh8LMD2O0TkQQxqEhH5GAuwRERERMSamkTkRQxqEhH5GAuwRERERERE5EUMahIRERERERH5GN9zE5EXMahJRORjLMASERERUYDNd4jIgxjUJCLyMRZgiYiIiIglQiLyIgY1iYh8jAVYIiIiImu1zkoSTY/t3NShnGjH99xE5EUMahIRERERERFZ5IHh7RAbXRclzEyMxW2D2zicI3UBvuomIg+KcToDRETkHL6VJyIiIrLWhO556NI0DZv2H0OP5ulonpHodJZUsUxIRF7k+6Dmli1b8PLLL2P16tXYuXMnqqqqkJOTg6KiIowcORLnnHMOYmKs302ffvopli9fjrVr12Lv3r2orq5GdnY2unXrhlGjRmHgwIGK6y9ZsgS333676Xz89NNPptMgIu9iAZaIiIjIeh1yU9EhN9XpbGjGIiEReZGvg5qPPfYYFixYgKqqKtH8kpISlJSU4L333kOnTp0wb948FBQUWLLNPXv24JZbbsGXX34Z8redO3di586dWL58Obp164Y5c+agdevWlmyXiEgKmxoRERERERGRF/k2qDl79mw899xzwnRMTAyKi4uRmJiILVu24ODBgwCAH3/8EZdddhleffVV5OXlmdrm9u3bcckll2Dfvn2i+YWFhWjcuDH27NmDbdu2AQC+/fZbjB07Fk8++SR69OgRklaTJk3Qv39/Xdvft2+fqGZmv3799H8JIiIiIiIiiihsvUNEXuTLoOZbb70lCmiee+65mDlzJho3bgwAqKysxJIlS/DQQw+hvLwc+/fvx9SpU/Haa68hYPBqX15ejilTpogCmoMGDcIdd9yB/Px8Yd6mTZtwzz33YM2aNTh27Bj++Mc/YtmyZcjNzRWl169fP11ByfLycowfP16YLiwsxKOPPmrouxBR5GABloiIiIiMPucSETnJd6OfV1ZWYu7cucL04MGD8cgjjwgBTQCIjY3F+PHjMX/+fKE/zXXr1mH58uWGt/vCCy9g69atwvTFF1+MBQsWiAKaANC2bVs8/fTTQsCyrKwM999/v+Ht1rv33nuFWpoJCQl49NFHkZrqnT5eiMgeLL4SEREREcuERORFvgtqvvvuu/jll18A1DU5nzlzJqKipHdD//79RbUbn376acPbffHFF4XPBQUFmDlzpuzbsLi4OMyZMwdxcXEAgJUrV2LTpk2Gt/32229j6dKlwvSMGTPQtm1bw+kRUeTgW3kiIiIiYpGQiLzId0HNN998U/jct29fNGvWTHH54KDmunXrUFJSonub27ZtQ2lpqTB9xRVXIDY2VnGdnJwcDB48WJg2Wku0rKwM9957rzDds2dPTJgwwVBaREREREREFHk4eCQReZGvgpq1tbVYvXq1MK2lT8ri4mJkZ2cL06tWrdK93e3bt4ume/XqpWm9Tp06CZ+/+uor3dsFgIcffhi//vorgLoaoLNnz2bNLCIS8GpARERERHxEJCIv8lVQs7S0FIcPHxamg4OGSoqLi4XPP/zwg+7tBm8TqBu5XIuMjAzh8/r163Vv96effsKiRYuE6SuuuCKkD08i8jcWYImIiIiIRUIi8iJfBTW3bdsmmm7ZsqWm9Zo3by583rFjh+7tJiYmiqYrKio0rXfs2DHh8/Hjx3Ho0CFd2/3LX/6CmpoaAEB2djamTJmia30iinxsakRERERERERe5Kug5r59+4TPUVFRohHPlQQ3Pw9OQ6umTZuKprXWumy4nJ5tr127Fh999JEwPXnyZCQnJ2ten4iIiIiIiPyBXZQRkRfFOJ2BcCorKxM+Jycny4563lBKSopkGlq1a9cOaWlpQjP0RYsWoXfv3orrHDlyBO+9955oXnl5ueZtLliwQPicm5vrusGBqqqqnM6CKdXV1YrTRF5RU1Pt+PnI84nIOjyfiKzBc4n8prqqCrVR9gQ2eT4RWYfnk5ivgponT54UPickJGheLy4uTvistel4sOjoaFx44YVYuHAhgLqRzAcNGoSRI0dKLl9bW4tZs2bh6NGjovlat71x40Z8+OGHwvSVV14p+g5Oq6mpwXfffed0Niz1448/Op0FIkN2bN+O72r3Op0NEZ5PRNbh+URkDZ5LFOm+//67sNXW5PlEZB2/n0++an5eWVkpfNZaSxMAYmJOxX6N1miaPHmyaOCf2267DQ8//HBIzc/t27djypQpWLFiBZKSkkR/05rnF198UfickpKCiy66yFCeiSjysaUREREREbH5ORF5ka9qakZHRwuf6wfQ0SI4kBkbG2to29nZ2XjkkUdwzTXX4OTJk6ipqcE///lP/Pvf/0ZxcTFSU1Oxd+9ebN26FUBdIHXevHm47rrrhDTi4+NVt1NeXo5ly5YJ02PHjhU1nyciIiIiIiIiIvI6XwU1g0chD26Kria42beWwKKcPn364LnnnsO0adNQWloKoC5gum7dOtFyeXl5mDNnDgoLC0XztQz0895774lGTR87dqzh/NolKioKnTt3djobplRXV4uqeXfq1EkUNCdypZd+CZnVqlUrdO2U60BmTuH5RGQdnk9E1uC5RBFNokzYtWtX2zbH84nIOpF2Pv3www+6Kh025KugZnp6uvD52LFjqK2t1VTNPrhvy+Am5EZ07doVb731FpYuXYp33nkHGzZsQFlZGbKyslBQUIARI0bg/PPPR2JiIjZv3ixaN3gUdjkrVqwQPnfs2BHFxcWm8muX4Cb9kSA6OjrivhP5Q4wLj12eT0TW4flEZA2eSxRJ7jirLR58b5Mw3a1ZWliPb55PRNbx+/nkq2/epEkT4XN1dTUOHjyIrKws1fX27dsnfG7cuLHpfMTFxWH8+PEYP3684nIbN24UPqenp6vW1Dxx4gQ+++wzYfq8884zl1EiinjsPomIiIjIX67u1RJv/Lgb6/YcQWp8DO4b1s7pLBERGeKroGZ+fr5ouqSkRFNQc+fOncLn1q1bW54vOcFVirXUuFy9ejVOnDghTJ9zzjm25IuIiIiIiIi8KT8rCV/+6Uxs/fU4clLikJ1ivIs1IiIn+Wr087y8PFHz8fXr12tab8OGDcLndu2Mv8U6evQotm7dGjLiuZyPPvpI+Kylj5MvvvhC+NyqVauQIC4RUUMBsKomERERkd8kxkajY24qA5pE5Gm+CmoCQK9evYTPwU215WzYsAH79+8Xpnv37m1ou5MmTUKPHj0wfPhwLFmyRHX5jRs3YtOmU/2cDB48WHWdtWvXCp+7dOliKJ9E5C9sfk5ERERERERe5Lug5tChQ4XP77//Pvbs2aO4/EsvvSR8LiwsNDzwTps2bYTPK1euVF3+iSeeEK172mmnKS5fWVkpGkW9U6dOBnJJRH7DmCYRERERERF5kS+Dmjk5OQCAiooKzJgxA1VVVZLLfvzxx1i0aJEwfdlllxne7vDhw4XPa9aswaeffiq77OLFi/Hmm28K01OmTFEdpX3r1q2orKwUpjt37mw4r0RERERERERERG7mu6BmXFwcbrrpJmH6s88+w9VXX42SkhJhXlVVFV599VVMnToV1dXVAICioiKMGzdOMs0hQ4aguLgYxcXFGDJkiOQyvXv3FvWLOW3atJAamwcPHsS8efNw1113CfMGDBiAkSNHqn6vLVu2iKZbtGihug4RkdoLEyIiIiIiIiI38tXo5/VGjx6Nb775Bq+88gqAusDm0KFDUVxcjJSUFGzZsgUHDhwQls/IyMCjjz6KmBjjuysQCODBBx/ExIkTcfjwYZSVleG6665Dbm4u8vPzUVZWhq1bt6KiokJYp2PHjvjrX/+qKf3gEdoBIC0tzXBeicg/GNIkIiIiIiIiL/JdTc169957L6ZMmYLY2FgAQE1NDdavX4+vvvpKFNAsLCzE888/j4KCAtPbbNOmDZ599lm0bNlSmLd7926sXr0aGzZsEAKagUAAY8aMwfPPP4/U1FRNaQcPZhQXF4f4eI5iR0TqWFGTiIiIiIiIvMiXNTWBusDhtGnTMGrUKCxevBiffPIJdu/ejfLycqSnp6N9+/YYNmwYRo0ahbi4OMu226FDByxfvhxLly7Fu+++i/Xr16OsrAwJCQlo0aIFzjjjDFx00UW6ByQ6fvy48Jm1NImIiIiIiIiIKJL5NqhZr7CwENOnT8f06dMNp7Fq1Spdy8fHx2PChAmYMGGC4W02NHv2bMyePduy9IjIH1hRk4iIiIiIiLzIt83PiYiIAwURERERERGRNzGoSUTkY4xpEhERERERkRcxqElERERERERERESewqAmEZGPsaImEREREREReRGDmkREPsY+NYmIiIiIiMiLGNQkIvIxhjSJiIiIiIjIixjUJCIiIiIiIiIiIk9hUJOIyMfY+pyIiIiIiIi8iEFNIiIfC7ABOhEREREREXkQg5pERD7GmppERERERETkRQxqEhERERERERERkacwqElE5GOsqElERERERERexKAmEZGPsfk5EREREREReRGDmkREPsaBgoiIiIiIiMiLGNQkIiIiIiIiIiIiT2FQk4jIx9j8nIiIiIiIiLyIQU0iIh9jUJOIiIiIiIi8iEFNIiIiIiIiIiIi8hQGNYmIfIwDBREREREREZEXMahJRORjbH5OREREREREXsSgJhGRjzGmSURERERERF7EoCYRERERERERERF5CoOaREQ+FmD7cyIiIiIiIvIgBjWJiHyMIU0iIiIiIiLyIgY1iYh8jBU1iYiIiIiIyIsY1CQiIiIiIiIiIiJPYVCTiMjHAmyATkRERERERB7EoCYRkY+x+TkRERERERF5EYOaREQ+xqAmEREREREReRGDmkREREREREREROQpDGoSEfkYK2oSERERERGRFzGoSUTkYwG2PyciIiIiIiIPYlCTiMjHGNIkIiIiIiIiL2JQk4iIiIiIiIiIiDyFQU0iIh9j63MiIiIiIiLyIgY1iYh8LMAG6ERERERERORBDGoSEfkYa2oSERERERGRFzGoSURERERERERERJ7CoCYRkY+xoiYRERERERF5EYOaRERERERERERE5CkMahIR+Vit0xkgIiIiIiIiMoBBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIyMdq2akmEREREREReRCDmkREPlbLoYKIiIiIiIjIgxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIfY5+aRERERERE5EUMahIREREREREREZGnMKhJREREREREREREnsKgJhEREREREREREXkKg5pERD7GLjWJiIiIiIjIixjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIfKy2lr1qEhERERERkfcwqElERERERERERESewqAmEREREREREREReQqDmkREREREREREROQpDGoSEfkYe9QkIiIiIiIiL2JQk4iIiIiIiIiIiDyFQU0iIp/ITIwNmZcWH+NAToiIiIiIiIjMYVCTiMgnnp7QTTTdpWka2manOJMZIiIiIiIiIhMY1CQi8okR7ZvgwfPaoU3jZJzZOgsvXXqa01kiIiIiIiIiMoTtDomIfCIqKoAZQ9pixpC2TmeFiIiIiIiIyBTW1CQiIiIiIiIiIiJPYVCTiIiIiIiIiIiIPIVBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT2FQk4iIiIiIiIiIiDyFQU0iIiIiIiIiIiLyFAY1iYiIiIiIiIiIyFMY1CQiIiIiIiIiIiJPYVCTiIiIiIiIiIiIPIVBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT2FQk4iIiIiIiIiIiDwlxukMOG3Lli14+eWXsXr1auzcuRNVVVXIyclBUVERRo4ciXPOOQcxMdbvpk8//RTLly/H2rVrsXfvXlRXVyM7OxvdunXDqFGjMHDgQN1pnjx5EitWrMDKlSvx008/Yf/+/QgEAsjJyUG3bt0wevRo9OnTx/LvQkREREREREREFE6+Dmo+9thjWLBgAaqqqkTzS0pKUFJSgvfeew+dOnXCvHnzUFBQYMk29+zZg1tuuQVffvllyN927tyJnTt3Yvny5ejWrRvmzJmD1q1ba0r3448/xj333IOdO3eG/G379u3Yvn073njjDQwaNAhz585FRkaG2a9CRERERERERETkCN82P589ezbmz58vBDRjYmLQsWNHnH766cjMzBSW+/HHH3HZZZehtLTU9Da3b9+OsWPHhgQ0CwsL0atXL7Rq1UqY9+2332Ls2LH4+uuvVdNdtmwZrrnmGlFAs1mzZujZsyc6dOiA6OhoYf4HH3yAK6+8EsePHzf9fYiIiIiIiIiIiJzgy6DmW2+9heeee06YPvfcc/Hhhx9iyZIleOGFF/Dxxx/jvvvuQ2JiIgBg//79mDp1Kmpraw1vs7y8HFOmTMG+ffuEeYMGDcI777yDN998EwsXLsTbb7+N5cuX4/TTTwcAHDt2DH/84x+xe/du2XTXrFmDGTNmoLq6GgBQXFyMF154Ae+//z6ee+45LF26FB988AFGjBghrPO///0P//d//2f4uxARERERERERETnJd0HNyspKzJ07V5gePHgwHnnkETRu3FiYFxsbi/Hjx2P+/PlCf5rr1q3D8uXLDW/3hRdewNatW4Xpiy++GAsWLEB+fr5oubZt2+Lpp59Gv379AABlZWW4//77JdOsrq7GrFmzhIBmt27d8PzzzwtB0Xo5OTl4+OGHMXjwYGHeyy+/jKNHjxr+PkRERERERERERE7xXVDz3XffxS+//AKgrsn5zJkzERUlvRv69++P8ePHC9NPP/204e2++OKLwueCggLMnDkTgUBActm4uDjMmTMHcXFxAICVK1di06ZNkt9l8+bNAIDExET87W9/Q1pammwebr31VuFzeXk5vvjiC0PfhYiIiIiIiIiIyEm+C2q++eabwue+ffuiWbNmissHBzXXrVuHkpIS3dvctm2bqE/OK664ArGxsYrr5OTkiGpWStUSXbJkifD5D3/4g+p3KSwsxB//+EdMmTIF06dPR/PmzbV+BSIiIiIiIiIiItfw1ejntbW1WL16tTBd38RbSXFxMbKzs4W+MFetWoXLL79c13a3b98umu7Vq5em9Tp16oS3334bAPDVV1+J/nbixAl8/vnnAIBAIIBx48ZpSvNPf/qTpuWIiIiIiIiIiIjcylc1NUtLS3H48GFhulOnTprWKy4uFj7/8MMPurcbvE0AaNKkiab1MjIyhM/r168X/e3HH39ERUUFACA/P19zmkRERERERERERF7nq5qa27ZtE023bNlS03rBzbR37Nihe7v1o6jXq6ioCJkn5dixY8Ln48eP49ChQ0Kg86effhL+VlRUJHzevHkzlixZgk8++QS7du1CVVUVcnNz0a9fP4wfPx5t27bVnX8iIiIiIiIiIiI38VVQs74JOQBERUWJRjxXkp2dLZmGVk2bNhVNr1+/Hr1791Zdr2HtzH379glBzeC+PZs0aYKTJ0/ikUcewTPPPIOamhrRelu3bsXWrVvx4osv4sorr8TNN98sOzgSERERERERERGR2/kqqFlWViZ8Tk5O1hzYS0lJkUxDq3bt2iEtLU1ohr5o0SLVoOaRI0fw3nvvieaVl5cLn/fv3y98jouLw4033oj3338fABAdHY22bdsiPT0du3btEmqXVldX41//+hdKS0vxt7/9TXb09XCoqqpybNtWqK6uVpwmIu14PhFZh+cTkTV4LhFZh+cTkXV4Pon5Kqh58uRJ4XNCQoLm9eLi4oTP9f1Y6hEdHY0LL7wQCxcuBFA3kvmgQYMwcuRIyeVra2sxa9YsHD16VDQ/eNvB/XQuWrRImL744otx4403imqhrl+/Hvfccw++/fZbAMB///tfdOjQAZMnT9b9XaxQU1OD7777zpFt2+XHH390OgtEEYPnE5F1eD4RWYPnEpF1eD4RWcfv55Ov2iBXVlYKn/U0v46JORX7NVrDcPLkyaKBf2677TY8/PDDITU/t2/fjilTpmDFihVISkoS/S04z1IBzmnTpuH+++8PaVbfvn17LFy4ED169BDmPf744zhw4ICh70JEREREREREROQkXwU1o6Ojhc8N+51UEhzIjI2NNbTt7OxsPPLII4iPjxe2/89//hN9+/bFmDFjcPnll2P48OEYOnQoPvjgA8TExGDevHmiNOrXBRDSdPz000/HlClTZLcfHx+Phx56SAiMlpeXY/HixYa+CxERERERERERkZN81fw8eMTx4KboaoJrRQYHFvXq06cPnnvuOUybNg2lpaUA6gKm69atEy2Xl5eHOXPmoLCwUDQ/OTlZ+NywFuell16quv38/Hz06dMHn376KQDg008/DVsT9IZB5EgYqCj4O0XC9yFyEs8nIuvwfCKyBs8lIuvwfCKyTiSdT8HfRU/lw3q+Cmqmp6cLn48dO4ba2lpNg+UE920Z3ITciK5du+Ktt97C0qVL8c4772DDhg0oKytDVlYWCgoKMGLECJx//vlITEzE5s2bResGj8IeHOAEgNNOO03T9rt16yYENbdu3Wrqu5hh5GB1s0j7PkRO4vlEZB2eT0TW4LlEZB2eT0TW8fv55KugZpMmTYTP1dXVOHjwILKyslTX27dvn/C5YX+VRsTFxWH8+PEYP3684nIbN24UPqenp4sCmZmZmaJltXwPAGjUqJHw+eDBg5rWISIiIiIiIiIichNfBTXz8/NF0yUlJZqCgTt37hQ+t27d2vJ8yQkexaq4uFj0tzZt2oimjxw5oum7BA+WFDwAUrh5vYo0EREREREREREZZ7amqa+Cmnl5ecjIyMChQ4cAAOvXr0fXrl1V19uwYYPwuV27doa3f/ToUezduxeNGjUSNYWX89FHHwmfG+azYZDz559/1hTU3LNnj/A5NzdXdXmrBI+8TkREREREREREZIbvqsv16tVL+PzZZ5+pLr9hwwbs379fmO7du7eh7U6aNAk9evTA8OHDsWTJEtXlN27ciE2bNgnTgwcPFv29ffv2ov49V65cqSkfX331lfC5U6dOmtYhIiIiIiIiIiJyE98FNYcOHSp8fv/990U1F6W89NJLwufCwsKQGpJaBTcX1xKAfOKJJ0TrNhwIKDY2Fueff74w/dprr+HXX39VTPO7777DDz/8IEwH7wsiIiIiIiIiIiKv8GVQMycnBwBQUVGBGTNmoKqqSnLZjz/+GIsWLRKmL7vsMsPbHT58uPB5zZo1wgjkUhYvXow333xTmJ4yZYrkKO2TJk1CbGwsAKCsrAx33nknKioqJNM8fPgw7rjjDmG6efPmGDJkiO7vQURERERERERE5DTfBTXj4uJw0003CdOfffYZrr76apSUlAjzqqqq8Oqrr2Lq1Kmorq4GABQVFWHcuHGSaQ4ZMgTFxcUoLi6WDRT27t1b1C/mtGnTQmpsHjx4EPPmzcNdd90lzBswYABGjhwpmWabNm0wZcoUYfr999/HVVddJRpgCAC+//57XHLJJdi8ebMw74477nB0oCAiIiIiIiIiIiKjArW1tbVOZ8IJM2fOxCuvvCJMR0VFobi4GCkpKdiyZQsOHDgg/C0jIwMvvfQSCgoKJNMaMmQISktLAdQNRrRq1SrJ5TZv3oyJEyfi8OHDwrzc3Fzk5+ejrKwMW7duFdW07NixI5599lmkpqbKfo/q6mrceeedWLp0qWh+ixYt0LRpU+zduxfbtm0T/e3aa6/FjTfeKJsmERERERERERGRm/k2qFlbW4tHHnkETz31FCorK2WXKywsxKOPPoq2bdvKLqM1qAkA//vf/3DjjTdix44dsssEAgGMHj0ad999N5KSkjR9lyeffBJPPPEEjh8/LrtcYmIibr31VlxyySWqaRIREREREREREbmVb4Oa9bZs2YLFixfjk08+we7du1FeXo709HS0b98ew4YNw6hRoxAXF6eYhp6gJgCcPHkSS5cuxbvvvov169ejrKwMCQkJaNGiBc444wxcdNFFhgYk2rNnD9544w28//77KCkpwaFDhxAfH4/CwkIMGDAA48ePR3Z2tu50iYiIiIiIiIiI3MT3QU0iIiIiIiIiIiLyFt8NFERERERERERERETexqAmEREREREREREReQqDmkREREREREREROQpDGoSERERERERERGRpzCoSURERERERERERJ7CoCYRERERERERERF5CoOaRERERERERERE5CkMahIREREREREREZGnMKhJREREREREREREnsKgJhEREREREREREXkKg5pERERERERERETkKQxqEhERERERERERkacwqElERERERERERESewqAmEREREREREREReQqDmkREREREREREROQpMU5ngMhLtmzZgpdffhmrV6/Gzp07UVVVhZycHBQVFWHkyJE455xzEBPD04oiz+rVq7FixQp888032Lt3L44ePYqUlBQ0bdoUp59+OsaMGYMOHTpoTu/777/HokWL8NVXX2HPnj2ora1FkyZN0LFjR1xwwQUYMGAAAoGA5vRqa2uxcuVKLFu2DD/88AN+/fVXJCYmokmTJujduzfGjh2Ldu3aGfnqRGFz++23Y8mSJQCAhx56CGPGjNG0nh33ps8//xyvvfYavv32W+zduxcxMTHIzc1F9+7dMXr0aJx++um6vx+RHaqrq/HOO+/g3XffxY8//oh9+/ahuroajRs3RqdOnTBy5EicddZZiIrSVpeD9yfyq//9739YtGgR1qxZg927d6O8vBzp6ekoKCjAmWeeifHjxyM9PV1zejyXyC8effRRPP7448jLy8OqVat0rWt1eauiogIrVqzAf//7X/zvf//DoUOHhGe2AQMGYOzYsWjZsqWuNA8cOIBFixbhgw8+wNatW3Hs2DFkZWWhZcuWOPfcczFq1Chd1warBWpra2sd2zqRhzz22GNYsGABqqqqZJfp1KkT5s2bh4KCgjDmjMg+O3fuxPTp07FmzRrVZc8//3zcd999SElJkV2msrIS999/P1555RXFtPr374+HHnoIOTk5qtvds2cPpk2bhq+//lp2mUAggCuuuAI33XQT4uLiVNMkCrcPP/wQkydPFqa1BjWtvjcdPXoU06dPx8qVKxWXGzVqFGbOnInU1FTVNIns8v333+Puu+/Ghg0bFJfr1q0b/vrXvyIvL092Gd6fyK9OnDiB++67D6+99pricsnJybjvvvswYsQIxeV4LpGffP/995g0aRIqKyt1BTXtKG9t2bIFN954IzZt2iS7TGxsLG644QZcffXVml4qrFy5EnfeeScOHToku0x2djYeeOABDBw4UDU9OzCoSaTB7Nmz8dxzzwnTMTExKC4uRmJiIrZs2YKDBw8Kf2vcuDFeffVVxYIzkRds27YNEydOxIEDB4R5sbGxKCoqQmpqKn799Vds3rwZwbeRdu3a4YUXXpAMbNbW1uL6668X3bzj4+NRXFyM6OhobNq0CUePHhX+VlBQgFdeeQVpaWmyeTxw4ADGjx+PHTt2CPMyMjLQpk0blJeX46effhIFe84//3z89a9/1b8ziGx05MgRnH/++dizZ48wT0tQ0+p708mTJ3HZZZfhu+++E+YlJyejqKgI1dXV2LhxI06cOCH87YwzzsC///1vPjySIz7//HNce+21OH78uDAvOzsbLVu2RGVlJdavX4/Kykrhb3l5eXj55ZclAyi8P5FfVVRUYPLkyfj888+FedHR0SgqKkJaWhpKS0uxc+dO0Tr33HMPJk6cKJkezyXyk5KSEkycOBH79u0DAM1BTTvKWz///DMmTpwoKvtlZ2ejdevWOHToEDZt2iR6Zrv66qtxyy23KObzrbfewk033YTq6mphXuvWrZGdnY3S0lKUlpYK86Ojo/H4449j0KBBqt/fcrVEpOi///1vbVFRkfBv6tSptfv27RP+XlFRUfvyyy/Xdu3aVVhm9OjRtTU1NQ7mmsicqqqq2hEjRgjHdPv27Wv/7//+r/bIkSOi5Xbv3l172223ic6RG264QTLNf/3rX6Ll7rnnntrDhw8Lfy8vL6994oknajt06CAsc9111ynmc/LkycKynTt3rn3xxRdrKysrhb/v3bu39k9/+pNou88++6yJPUNkvRkzZoiO0aKiotrXXntNcR077k333nuvsGxxcXHt/Pnza8vLy4W/l5WV1c6ePVu03QcffND8DiDSadu2bbXdunUTjsNBgwbVrlq1SnR8Sx2v119/vWR6vD+RX82fP190DF5zzTW1v/zyi2iZL7/8snbw4MHCMh06dKjduHGjZHo8l8gvfvrpp9ozzzxTdNwNHjxY07pWl7eqqqpqR40aJSx7xhln1P73v/8V3RN37NhR+7vf/U6U5sqVK2XT3LFjh+g+O2LEiNp169aJlvn8889F14bu3bvX7t69W9M+sBKDmkQKKioqagcNGiS60VdXV0su+/HHH4tu0MuWLQtzboms8+qrr4puem+88Ybi8g899JBo+W+++Ub0919//bW2e/fuwt9nzZolm9bixYtFaX399deSy3300Uei5VasWCGbZnDgtVevXiHBWSKnfPDBByEBTbWgph33pk2bNtW2b99eWO6f//yn7PYfffRRYbmOHTvWlpSU6PvSRCZdddVVwjE4dOjQkCBMsPvuu0/08Pjzzz+L/s77E/nVyZMna0877TTh+Lv88strq6qqJJctKSmp7dGjh7DstGnTQpbhuUR+8frrr4teGusJatpR3nrppZdELx3kzqeKiorayy+/XFh2+PDhsuf8tGnTRN/r119/lVxu165dtf379xeWveuuu1T2gPU4+jmRgnfffRe//PILgLpmfTNnzpTtaL5///4YP368MP3000+HJY9EdnjjjTeEz/3798eoUaMUl7/ppptETfpWrFgh+vvixYtx7NgxAHVNhm677TbZtMaOHStquiB3Lj377LOiPJ533nmyac6aNQuNGjUCABw8eBBLly6V/zJEYXL48GHcddddAOq6dkhMTNS0nh33pueee05oXlRQUIDf//73stu//vrrUVRUBKCu77Tnn39eU76JrPDDDz/gk08+AQBERUVh3rx5aNq0qezyN954o9Bkr7a2Fh988IHo77w/kV99++23oqbgN954I6KjoyWXbd68OSZNmiRMf/DBB6KmrADPJYp8e/bswfTp03HbbbehvLzcUBp2lLcWLlwofB47dixOO+00yeViY2Mxd+5cxMbGAqjrg/PDDz8MWW7Pnj14++23hembbroJWVlZkmnm5ubizjvvFKaXLFmi2P+mHRjUJFLw5ptvCp/79u2LZs2aKS4f/OC4bt06lJSU2JY3IrtUVFRg7dq1wrRah/AAEBcXh/79+wvTP/zwg+jv//3vf4XPw4cPR1JSkmJ6wefSRx99JOozDQDKysrw2WefCdNjx45VTC8pKUkUmH3rrbcUlycKhwcffBB79+4FAEyePFm2wNiQ1femmpoaUeF1zJgxiiNFR0VF4eKLLxamg9clstuSJUuEzxdeeCG6dOmiuHxaWhpuvvlmTJ48Gbfeeis6d+4s+jvvT+RXu3fvFk137NhRcfmuXbsKn48dOybquw/guUSR7YknnsCwYcPw+uuvC/MKCgowZcoUzWnYUd7asGEDtmzZIkxfdNFFinlo0qQJBg8eLExLnSdvv/220E9tamoqzj33XMU0zznnHKEMW1VVpTr4kdUY1CSSUVtbi9WrVwvT/fr1U12nuLgY2dnZwrTW0c+I3KS0tBTx8fHCdGFhoab1MjIyhM/BBd1Dhw5h/fr1wnRw8FNO7969hdoCJ06cEBVqAeDLL78U3nIGAgFN52fwMmvXrkVZWZnqOkR2+eCDD4RaJEVFRZoLxXbcmzZs2CA6Z7Wco8Hb/eWXX1RHnyaySnBNy+CHPSVXXHEFbr75ZvzhD39Ajx49hPm8P5GfNRxNub6WpZzgwXgAiMqKPJco0j311FOiwPu4ceOwaNEi5Ofna07DjvLWF198IXxOT08PeXGnlqZUrevggcN69uwp1OyUEx0djT59+gjT77//vmoerMSgJpGM0tJSHD58WJju1KmTpvWKi4uFzw1rqxF5QevWrfHNN99gzZo1WLFihdDsQU3wCHjp6enC559++kl0s1SrCQDUvW1v2bKlMN3wXAq+oTdv3ly0PTnt2rUTPtfU1GDdunWq6xDZ4fDhw7j77rsB1DUff+ihhzSPIG7HvSn4fIqNjUXbtm1V02vdujUSEhJk0ySyw+7du4WuFxITE1Vraarh/Yn8rE2bNqLpjz/+WHH5Tz/9VPjctGlTJCcnC9M8l8gvOnXqhOeeew6zZ89GSkqKrnXtKG8Fp9m+fXsEAgHVNIPPk7KyMuzYsUP0959++kn4rOVcbphmuMuEDGoSydi2bZtoOvimq6R58+bC54YXCCIvSU1NRZs2bUQ3UjlHjx4VFXaDa3cGn0txcXGKfZ8FUzqXgtPU+oY0Oztb9F22b9+uaT0iq82ePVtodv773/9ec2ASsOfeFJxmXl4eYmJiVNMLBAKiZu88nygcgh+0CgoKhFpeO3fuxPz58zF27Fj07t0bXbt2xTnnnIM777wT33zzjWx6vD+Rn7Vo0ULUr+UjjzyC/fv3Sy67Zs0aUdcPwf1rAjyXKPL17NkTf//737F48WL07NnTUBp2lLeMnCfB513DNCsqKoSXh0bT3LNnD06cOKFpPSswqEkkY9++fcLnqKgoNG7cWNN6wU38gtMgimRPPfWUqLP54L5ags+D4PNDjdK5VB8Q0ptmfQfyUmkShcOqVauEgbgKCwtx/fXX61rfjntT8HTwgF9qgrfN84nCITjokZOTg5qaGjz55JM477zz8Nhjj+HHH3/EwYMHceLECezYsQOLFy/GhAkTMGPGDJw8eTIkPd6fyO/uuOMO4VpeWlqKiy66CEuWLMH+/ftRVVWFkpISLFiwAL///e9RWVkJAOjQoQMuvfRSUTo8lyjSPf744zj77LM11YSUY0d5y8h5kpWVJRoULDjNffv2iWpda02zYXk0nOeeemiYyKeC+2BJTk5W7MQ3WHA1dPbjQn7w/fff48knnxSmW7VqhSFDhgjTwSPgNey/SYnSuRQ8rSfN4GWDm/AShUNZWRlmzpwJoC4gqafZeXAa9ay6Nxk9R4OX5f2OwiG4FllSUhLuv/9+vPjii8K8Nm3aoFGjRti/f79o4ISlS5dix44deOaZZ0TnHO9P5Hf5+fl47bXXMHv2bKxcuRK7du3C7bffLrlsIBDAqFGjcPfdd4cMAsRziUidHeUtI+dJVFQUkpKScOTIEQDi86Rh+mlpabrz2DBNu7GmJpGM4Df6Wprf1gsuLFdUVFiaJyK32blzJ6699lrh7T0AzJgxQ9ScIvg8sOpcsuL8lKq1Q2Sn2bNnC2+ur7jiCtFIslrZcW+y4xwlskPwQ9LHH38sBDTPPvtsrFy5EitWrMDChQvx5ptvYuXKlRg4cKCw/Ndff43Zs2eL0uP9iaiu1taAAQNUm5n269cPV199tWTghOcSkTovnCcNz5ngAcG0pieVjp0Y1CSSERyk0VoTBoAomNNwlECiSLJr1y5cfvnlouYFV1xxhajpOWDPuRQ8rSfN4KYWPD8pnN577z0sW7YMQF1t5htvvNFQOnacT0bT5PlE4Rb8MFcf4Bw/fjzmz5+PFi1aiJZt0aIFFixYgGHDhgnzXn31VWzcuFGY5v2J/G7Dhg0YMWIE7r77bqFvvvj4eHTu3Bm9evVCq1athGU/+eQTXHDBBZg7d65l9xGeS+QndpS3gqeDlzOaZsP0tabZcLnq6mrNeTGLQU0iGcEnZk1Njeb1gi8EsbGxluaJyC22bNmCiRMnYufOncK8/v3745ZbbglZ1o5zyWiawTdYnp8ULocOHcKsWbMA1DXfe+CBB3S9TQ/G84n8rGFfZi1atMBdd90l28dZVFSUaITa2tpaPP/888LfeT6Rn5WUlODyyy8XBglJSEjA7bffji+//BKLFy/GwoUL8fbbb2PlypU477zzANQdp//+978xffp0UVo8l4jU2XFMB6epJ5AYvGxwLcuGwVataTZcLpznHoOaRDISExOFz3qqTwfXItBaXZvIS9auXYtLLrkEu3btEub17t0b8+fPl7yBBQdv9JxLwcs2PJfsSJPILsHNzi+99FKcfvrphtOy497E84m8omE/fhMmTFDtlzY1NVUIyADAZ599Jnzm/Yn87L777hP6+IuPj8fTTz+NK664IuSlW4sWLfC3v/0NU6ZMEeYtX74cy5cvF6Z5LhGpc+t5EnwfDS5nAtq7FzLabN0KDGoSyUhPTxc+Hzt2TDQKmJLgEaAzMjKszhaRo/7zn//g8ssvx8GDB4V5AwcOxD/+8Y+Qm2C94PMg+PxQc+zYMck0APH5qSdNnp8UbitXrsR//vMfAHUPhjfddJOp9Oy4Nxk9R3k+UbglJyeLpk877TRN63Xr1k34XFJSIjyk8f5EflVSUoKPPvpImJ4yZYrq+TRt2jRRX9D/+te/hM88l4jU2VHeMnKe1NTU4Pjx45JpBqenJ82Gy4Xz3GNQk0hGkyZNhM/V1dWiII6S4P4FGzdubHm+iJzy2GOP4ZZbbhG9sRs1ahQef/xxxaa0wefSr7/+qnl7SueS0TSDl83Ozta8HpERhw4dwj333AOgrtns7NmzQ2qa6WXHvSknJ0f4rOd8Ch6JmucThUNmZqZoOisrS9N6jRo1Ek3X107j/Yn8as2aNaLpiy66SNN6EyZMED6vX79eOG55LhGps6O8ZeQ8OXDggKj5e3Ca2dnZoibowdvWmsdAIBBy37VTjPoiRP7UcATAkpISTYXn4D4GW7dubXm+iMKtsrISd955J9544w3R/GuuuQbTpk2T7cusXvC5dPz4cezfv19TwL+kpET43PBcCu64fseOHappAcDevXtx4sQJyTSI7PDKK68ID2yJiYl48skn8eSTT8ouH1wgfPrpp7FixQpheu7cuWjcuLEt96bgc2Hnzp2ora1VPa9ra2tRWloqmQaRXdq2bSuaDh4NXUnDgQ/qByfh/Yn8au/evcLn9PR0UbBFSbt27UTTpaWlaNSoEc8lIg3sKG+1atUKa9euBaD9PAk+7xqmGRcXh6ZNmwrbNJJms2bNVLuGsRKDmkQy8vLykJGRIbzNX79+vajJhZwNGzYInxve+Im8pqKiAlOnTsUHH3wgzIuJicE999yDcePGaUqjQ4cOCAQCQjPZ9evX48wzz1Rc59ixY6KbaMNzqWPHjsLn7du3o7y8XLb5e73169cLnwOBAIqLizXln8io4FrNx48fxyeffKJ53Y0bN4pGaa5/SLPj3hR8PpWXl+Pnn39GQUGBYnpbt24V9Z/Uvn171TwQmdXwur1t2zZ06dJFdb3du3cLnxMSEoRmcbw/kV8FBxyCR2RW03AQkfqADM8lInV2lLc6duyIJUuWABCX9ZQEnyfp6enIy8sT/b1Tp05CUNNImuEuE7L5OZGCXr16CZ+DO5aXs2HDBlFNm969e9uSL6JwqKqqwg033CAKaCYnJ+Mf//iH5oAmAKSkpKBDhw7CtJZz6YsvvhCaRURHR6Nnz56iv/fo0UOoaVNdXY3Vq1erphm83Q4dOoT0GUPkFVbfm9q2bSuq7fn555+rpvnpp58KnzMzM/ngSGGRlZUlOtZWrlypab2vvvpK+NyhQwchMMP7E/lVbm6u8Pn48eP4+eefNa23ZcsWyXR4LhGps6O8FXze7Nu3D5s2bVJNM/g8CS5TSqW5evVq1ZHaG56f4Y6BMKhJpGDo0KHC5/fffx979uxRXP6ll14SPhcWFvIhjzxt3rx5eP/994XprKwsPPfcc+jfv7/utM4991zh87Jly1BeXq64fPC51LdvX6SlpYn+npaWJrphvvzyy4rpHTt2DMuWLROmhw0bpinfRGZMnToVP/30k+Z/wW/KH3roIdHfmjdvLvzN6ntTIBDAOeecI0y/+uqrigXYmpoavPrqq8L0ueeeq9p8isgqF1xwgfB51apV2Lx5s+Lyu3btwnvvvSdMB58/AO9P5E+9evUS1bp85ZVXNK332muvCZ/btm0r6ouP5xKRMjvKW0VFRaKuG9TOk127dokqrAwfPjxkmbPPPhvR0dEA6rpGevfddxXTfPvtt3HgwAEAdS36Gt5n7cagJpGCoUOHCn3MVFRUYMaMGSH9MtX7+OOPsWjRImH6sssuC0seiezw4Ycf4tlnnxWm09PTsXDhQlGzCT3Gjh0rNBnav38/7rvvPtllFy1ahI8//liY/t3vfie53CWXXCJ8fv/994WmF1Luuece4WablJSkuUN8Ijey4940adIkoaC8YcMG/P3vf5fd/qOPPirUBIiKiuL9jsJq9OjRQu2ryspKzJgxA0eOHJFctqKiAtOnTxea16akpGDMmDGiZXh/Ij/KysoSBSEXLlyoWmvsueeeE9UaGz9+vOjvPJeI1NlR3go+T15++WXZmtKVlZWie2KzZs1w9tlnhyyXm5uLs846S5h+4IEHZF+g79q1Cw8++KAwPXToUNHgReHAoCaRgri4ONx0003C9GeffYarr75a1BFuVVUVXn31VUydOhXV1dUA6t6Y6GmeS+Qm1dXVeOCBB4R+kQKBAB5++OGQARr0aNy4Mf7whz8I00uWLMHNN98sGqXvxIkTWLBgAWbNmiXMGzBgAAYMGCCZ5pAhQ0RNJu6++2784x//EPU7s3//fkybNk305v7aa6/VPGIukRvZcW9q164dRo8eLUzPnz8fDz74oChYdOTIETzwwANYsGCBMG/8+PFo06aNZd+NSE1WVhZuv/12YfqHH37ApEmT8MUXX4iW27p1K6666ipRk7g//elPIc1ReX8iv7rllluE2pHV1dW4+uqr8fe//10IDNbbt28f7r33XsyePVuY17FjR0ycOFG0HM8lInV2lLfGjx8v1NasqqrCddddh0WLFoleeJeUlOAPf/iD6J546623yg7oM23aNMTHxwMA9uzZg0mTJuHLL78ULbN69WpccsklwqCYSUlJovJpuARq659aiUjWzJkzRc0yoqKiUFxcjJSUFGzZskV088/IyMBLL72k2ukvkVutWLFCdENKSkrCaaedpiuNxo0bY+7cuaJ59TfZ4CYPsbGxKC4uRlxcHDZt2iS6oTdv3hyLFi1SLJTu2bMHl1xyiSiYk5qairZt26KiogI//fSTqAP8wYMH4/HHHw/p6J7IDYYMGSJ0zP7QQw+F1ChryOp709GjR3H55Zfjxx9/FOYlJiYKzdV/+uknUXPCzp074/nnn0dCQoK+L0pkgb/97W+iBz6grnZJixYtUFZWJhpoC6hrtv7nP/9ZMi3en8ivVq9ejSlTpuD48ePCvNjYWLRu3RqZmZk4ePAgNm/eLGoim5+fj+eff15yxHSeS+Q3S5YsEV605eXlYdWqVarr2FHe2rhxIy677DJhIEmg7iVgYWEhjhw5go0bN4rO40suuQQzZ85UzOeyZcswffp00XotW7ZEbm4udu3aJTono6Ki8PDDD+O8885T/f5WY1CTSIPa2lo88sgjeOqppxRHCCwsLMSjjz5qqkYbkdOmTp2Kd955x1Qacjf1iooK3HvvvXjttdegdPvp3r07Hn30UU3NF3bt2oWbbroJa9euVVzuoosuwqxZs2TfSBI5TW9Q045705EjR3DbbbepFsoHDx6MefPmITU1VTVNIru89tprmDdvHg4ePCi7TExMDCZPnoypU6cqBjl4fyK/2rx5M2677TasW7dOcblAIIBhw4bhvvvuC+n/MhjPJfITI0FNwJ7y1k8//YSbb75ZcbCg6OhoXH311fjTn/6kqT/0t956C7NmzRIFSxtKT0/H/fffL+rSIpwY1CTSYcuWLVi8eDE++eQT7N69G+Xl5UhPT0f79u0xbNgwjBo1ijdR8rzzzz9fdeAFNWo39e+//x5Lly7FF198gT179qCiogJZWVno0qULRowYgaFDh+p6w15bW4t3330Xb775Jr7//nvs378fUVFRaNKkCXr06IGLL74Y3bp1M/WdiOymN6hZz4570+eff45ly5ZhzZo12L9/P6qrq9G4cWN0794do0ePNjRgGJEdysrKsGzZMrz33nvYunUrDhw4gNjYWLRq1Qp9+vTBxIkT0aJFC83p8f5EfvXhhx/i3Xffxdq1a7Fv3z4cP34cqampyMvLQ8+ePXHhhRfqGgSV5xL5gdGgZj2ry1tVVVX4z3/+g7fffhvr16/Hr7/+itjYWDRv3hy9evXChAkTdHcbdOjQISxatAirVq3C9u3bUVZWhqSkJBQWFmLgwIEYP368o909MKhJREREREREREREnsKOJoiIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT2FQk4iIiIiIiIiIiDyFQU0iIiIiIiIiIiLyFAY1iYiIiIiIiIiIyFMY1CQiIiIiIiIiIiJPYVCTiIiIiIiIiIiIPIVBTSIiIiIiIiIiIvIUBjWJiIiIiIiIiIjIUxjUJCIiIiIiIiIiIk9hUJOIiIiIiIiIiIg8hUFNIiIiIiIiIiIi8hQGNYmIiIiIiIiIiMhTGNQkIiIiIiIiIiIiT4lxOgNERERE5G5DhgxBaWmp6XQWLlyIXr16WZAjIiIiIvI71tQkIiIiIiIiIiIiT2FNTSIiIiLSLCcnB0VFRYbWTU9Ptzg3RERERORXDGoSERERkWb9+vXDnDlznM4GEREREfkcm58TERERERERERGRpzCoSURERERERERERJ7CoCYRERERERERERF5CvvUJCIiIqKwmzFjBpYuXQoAWLBgAQYOHIiFCxfilVdewc6dO5GWloaCggIMGzYMl1xyScj6x44dw+uvv44PP/wQmzZtwq+//oq4uDhkZ2fj9NNPx/Dhw9G3b19defr888/x2muvYe3atdi7dy+Sk5PRsmVLDB8+HBdffDFSUlLw/PPP4/777wcAXH/99Zg6daoojSVLluD2228HAOTl5WHVqlWq2x0yZAhKS0sBAA899BDGjBmjuHxpaSmWLl2KTz75BDt37sShQ4eQkpKCZs2aoW/fvhg9ejQKCwsV03jssccwf/58AMDdd9+NSy+9FBUVFXjjjTfw1ltvYcuWLdi/fz9SU1PRunVrDBkyBOPHj0dqaqrq96n35ZdfYvny5Vi7di1KS0tRWVmJ9PR0FBUVYeDAgRgzZgzS0tJE69x333144YUXANQNLPXJJ58gLi5OdVvPPvssHnzwQQBAq1at8Pbbb2vOJxEREXkTg5pERERE5Li77roLr732mjC9f/9+7N+/H8XFxSHLLlu2DHPmzMGvv/4qmn/y5EkcOXIEW7duxauvvorevXtj7ty5yM3NVdz2r7/+iunTp+Pjjz8WzT906BAOHTqE77//Hi+++CL+7//+z8Q3NK+6uhqPPPIInnnmGVRUVIj+dvDgQRw8eBDr1q3Dv//9b1x88cW44447NAUEAWDDhg24+eabsXnzZtH8AwcO4MCBA/j666/x1FNP4S9/+Qv69eunmNaOHTtw55134ssvvwz5W/3v+tlnn2HBggWYPXs2zj77bOHvo0ePFoKaZWVl+Oijj0R/l/PGG2+I0iAiIqLIx+bnREREROSopUuXigKawUaNGiWanj9/Pm699VZRQLNZs2bo2bMnunbtipSUFGH+F198gXHjxmHLli2y2/71118xadIkUUAzNjYWnTp1wumnn46MjAwAQElJCX7/+98LNSrDraKiAtdccw3++c9/CgHNQCCANm3aoHfv3ujQoQNiYurqK1RXV+Oll17CFVdcgePHj6umvW3bNlxxxRVCQLNRo0Y444wz0LlzZyQlJQnLHThwAH/84x8V9+eGDRswbtw4UUAzNjYWHTt2xBlnnIHs7Gxh/sGDB3HDDTfgrbfeEuZ17twZRUVFwvSyZctU879lyxasW7cOABAVFYULL7xQdR0iIiLyPtbUJCIiIiJH1TcVPu+883D99dejadOm2Lx5M1auXIkuXboIy61YsQKPPfaYMN2jRw/cfvvt6Ny5szCvoqICy5cvx9y5c3Ho0CHs3bsX119/PRYvXozk5OSQbd9+++3Ytm2bMD1u3DjcfPPNyMzMBABUVlZi6dKleOihh3DgwAE888wzFn97bWbPni0KvI4bNw7XX3+9qBZqWVkZnnrqKTz55JOoqanB119/jZkzZ+Ivf/mLYtrPPfccAKBly5a46667MGDAAAQCAQDA0aNH8dhjjwnf++TJk3jsscfwyCOPhKRz/PhxXHfddTh06BAAIDo6GlOmTMGVV14para+cuVK3Hvvvdi7dy+qq6tx5513okePHkLAc/To0Zg7dy4A4P3338eRI0cUm72//vrrwue+ffuq1swlIiKiyMCamkRERETkuCFDhuCvf/0rCgsLkZSUhC5duuCmm24S/n706FHcc889wvRZZ52FhQsXigKaABAXF4cxY8bgxRdfRHp6OgBg69atePLJJ0O2+dlnn+HDDz8Upq+66irMnj1bCGgCdbUM/7+9+4/JqorjOP5BAVFR4oeahohTwCSnU9fa/K1JTMIcOBmUTIPsx4gMyi3bXNkPW6NIm+l0lMuEME3FcK0ZBaiIaTqjSNIIhCQNIzSGINAfjLvngs+PEoMn36/N7Tn33ufcc8C/PpxzvkuWLFFGRobc3d3V2traXVN22PHjx5WdnW20V61apVdffbVLeOfl5aWUlBRTiLl//34VFRXZfYe/v7927typWbNmGYGmJHl6euqFF15QRESEcS0/P7/L9ndJ2rZtm6qqqox2WlqakpOTuwSS999/vzZv3iwPDw9J7b/bjz76yLi/cOFCY9VpU1OTaSVnZ21tbdq/f7/Rjo6OtjtXAADw/0CoCQAAAIft2bNHISEh/+hfcXGx3X6ffPJJU5jW2a5du1RfXy9JGjRokF5//XUj+LqRMWPG6JlnnjHaWVlZamxsND2TlZVlfB45cqSeffZZq/1NnjxZSUlJdudxK2RkZBifp0yZooSEBJvPR0REKDw83Gi///77dt+RnJxsCnM7i42NNT43NDTo/Pnzpvutra2m4DUiIkILFiyw2l9oaKgiIyON9hdffGF89vPz04wZM4y2ZWjZWXFxsS5cuCCpPdR15PxNAADw/0CoCQAAgB41cOBA3XPPPTafsaxmPWfOHOOsS1siIyPVt29fSe1Ff06dOmXca25u1qFDh4x2VFSU3aI6cXFx6t+/v933dqfGxkbTtnNHi+BYnitZVFSka9euWX22T58+mjdvns3+xo4da2pfuXLF1P7hhx9UU1NjtC1DUGvi4+P1/PPP67333tPGjRtN9yzn+c0335j6tmRZICgiIsLhwkgAAMD5caYmAAAAHDZ06FBTIRdHdGwDtyY4OFh9+lj/W3tTU5NKSkqM9pgxYxx67+DBgxUQEKDy8nJJ0rfffqv77rtPUntxGcsiOlOnTrXb36BBgzR58mQdPnzYofd3h9OnT6u5udloOzp3y5C4ublZ3333ndU5+vv7mwos3cjgwYNNbcsxdYyzg5ubmyZOnGh3jMHBwVb/L3UE13V1dWptbdVnn32mxMRE0zONjY2msJuq5wAA3F4INQEAAOCwadOm6Y033ujWPn18fGzer6mpMZ3hmJ6ervT09H/8nt9++8343LmKeWBgoEN9hISE/KehZkVFhantyArIG7l48aLVe46seu1Y8dqh89miltvR77rrrpteMenu7q7IyEijiFFOTk6XUPPgwYP666+/JElBQUGmolIAAOD/j+3nAAAA6FH2Vgn++eef3fIey36uXr1qumerurYlW+dO3god54jerI6K5DfSUbDnZlj+PB39WdpjufLyzJkzKisrM9233HoeFRXVLe8EAADOg5WaAAAA6FG2tp5L0vXr103tCRMm2N3SfiOW50L269fPdK+trc2hPv7rMxs7z3369On/qp+hQ4d2x3CsslXk6d8KDQ1VSEiIzpw5I6m9YFBqaqok6ffffzdWzLq6umrhwoXd/n4AANC7EWoCAACgV+t8nuNTTz2luXPn3lSfnUPRK1euaMCAAXa/13mFpy2OBqW2ivh0nvv69evtrmztCZbj7FxE6GZERUVp3bp1kqTc3Fwj1Dxw4IBaWlokSTNnzpSfn1+3vRMAADgHtp8DAACgVxs2bJhpJeCFCxduus9Ro0aZ2mfPnnXoe5WVlTbvW46zczGdG2ltbbW5vX7YsGGmdnfM/VawHGd1dbVDc5ek7OxsFRQUqLy8/IbfiYyMlKurq9FvaWmppPbzNDtER0ffzNABAICTItQEAABAr+bp6amgoCCjffToUYe+19zcrNWrVys9PV3Z2dmm4HLEiBEaMWKE0S4qKrLbX1tbm06cOGHzGcvt6R1FbGyxFuZ1mDRpkikodXTuZ8+e1erVq7Vx40bt3btXly9fduh7/5ZltfOOauv2nD9/XmvWrNFjjz2m8PBwnTt3rsszvr6+mjlzptE+ePCg6uvrjd+Dj4+PZs2a1Q0zAAAAzoZQEwAAAL3e7Nmzjc95eXmmatvW7Nu3T7t379bmzZu1Zs2aLqFZeHi48fnTTz+1u7W8sLBQVVVVNp+xrCTe0NCgX3/91ebzubm5Nu/7+PiYAsMdO3Y4tApyy5Yt2r17tzZs2KDVq1d3qVbe3caPH2/aAv7JJ5/Y/Y7l3H18fBQcHHzD5yxXYn755ZfKz883zhpduHCh3Nzc/u2wAQCAEyPUBAAAQK/3yCOPGOHV9evXtXLlSpshZFVVldLS0oz28OHDNWfOHNMz8fHxRp+1tbVas2aN1fCvtrZWL730kt1xhoSEmFZWbt++3eqzP/74ozIyMuz2+eijjxqfy8vL9corr9g8rzMvL085OTlGOyws7JafOenq6qrY2FijvWfPHhUUFFh9vrq62jT3xYsXWy0YNWvWLPn4+EiSSktLtWPHDuOeZYV0AABweyHUBAAAQK83bNgwrVy50miXlJRoyZIlOnTokCnga2lpUU5OjuLi4vTHH38Y11etWtWlcvnw4cP13HPPGe3c3Fw98cQTXVaBFhcXKzY2VtXV1XbH6efnp8mTJxvtDz74QFu2bFFTU5NxrbGxUVlZWYqNjVVjY6NxZqQ1YWFhppWq2dnZevzxx7ucA3r16lVt2rRJycnJxs9kwIABSklJsTvu7rBs2TIFBgZKat+qn5SUpG3btqmxsdH03JEjR7R06VLV19dLkoYMGaLExESr/bq5uenBBx802idPnpTUXh193Lhx3TwLAADgLKh+DgAAAKeQmJio8vJy7dq1S5J07tw5JSQkyNfXV6NHj1ZTU5MqKiq6FN5ZsWKFFixYcMM+ly1bpp9//lnZ2dmSpPz8fBUUFCgoKEje3t6qqqoywkx3d3d5eXnp0qVLNseZkpKi+Ph4tbS0qK2tTW+99Za2bt2qMWPGqLm5WeXl5cZ5m+PHj9ekSZOUmZlptT8XFxe9+eabWr58ub7//ntjnPn5+QoICNCdd96puro6VVZWmgJENzc3paWlKSAgwOZ4u4unp6c2bNig5cuXq7a2VteuXdO6deu0fv16BQcHq1+/fqqoqFBNTY3xnf79++udd97pUo2+s+joaH344Yema1FRUbdkHgAAwDmwUhMAAABO47XXXtOLL76owYMHG9dqa2t1/PhxnT592hRoenp66uWXX1ZqaqrNPteuXavU1FR5eHhIal9lWFZWpuLiYiPQvOOOO/Tuu+9q9OjRdsc4depUvf3226Yx1tfX6+TJkyopKTECzdmzZysjI0MDBw6026eXl5cyMzMVExOjvn37GtcrKyt17NgxlZWVmQLNUaNGadu2bZo3b57dvrtTSEiIdu7cqSlTphjXGhoadOrUKRUXF5sCzcDAQG3fvl1Tp0612++4ceN09913G213d3fT6k0AAHD7YaUmAAAAnEp8fLwWLVqkvXv36vDhwyorK9Ply5fV2toqLy8vhYSEaMaMGXrooYfk7e3tUJ8rVqxQRESEdu7cqa+//lrV1dVqaWmRv7+/5s+fr4cffli+vr4OnYEptRchuvfee5Wdna2vvvpKFRUVamho0JAhQzRhwgQtWrSoyxmf9nh4eGjt2rVKSEjQvn37dPToUVVWVqqurk6urq7y8/NTaGio5s+fr7CwsC7b7f8r/v7+yszMVGFhoT7//HOdOHFCly5d0rVr1+Tt7a3Q0FA98MADioiI+EdjnD9/vkpLSyVJc+fONRVlAgAAtx+XNlunjAMAAAAwLF26VMeOHZMkJSUl6emnn+7hEd0+EhMTVVhYKEnKyMjQ9OnTe3hEAACgJ7H9HAAAAECvdvHiRR05ckSSNHLkSE2bNq2HRwQAAHoaoSYAAACAXu3jjz9WS0uLJCk2NlYuLi49PCIAANDTCDUBAAAA9Fp5eXnaunWrpPaCSTExMT08IgAA0BtQKAgAAABAr3HgwAFt2rRJPj4+qqmp0S+//GLcW7VqlTw9PXtucAAAoNcg1AQAAADQa/j7+6usrKzL9ZiYGC1evLgHRgQAAHojQk0AAAAAvcbo0aM1ceJE/fTTT3JxcdHYsWMVFxenRYsW9fTQAABAL+LS1tbW1tODAAAAAAAAAABHUSgIAAAAAAAAgFMh1AQAAAAAAADgVAg1AQAAAAAAADgVQk0AAAAAAAAAToVQEwAAAAAAAIBTIdQEAAAAAAAA4FQINQEAAAAAAAA4FUJNAAAAAAAAAE6FUBMAAAAAAACAUyHUBAAAAAAAAOBUCDUBAAAAAAAAOBVCTQAAAAAAAABOhVATAAAAAAAAgFMh1AQAAAAAAADgVP4GuqZ5jCjR59YAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_source_dt.freq, pds_source_dt.power / model_source_corr, zorder=10, label=\"ratio\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.ylabel(\"PDS / model\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function is also used internally in some timing products, to easily correct the spectrum, through the method `deadtime_correct`. Please note that the example below works a little too well because, in our simulation, dead time is constant. In general, this correction is appropriate for relatively low values of _constant_ deadtime, while we recommend using the FAD correction from `stingray.deadtime.fad` for variable dead time and high count rates." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPYAAAQACAYAAABiT9ddAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAABcSAAAXEgFnn9JSAAEAAElEQVR4nOzdd3hUVf7H8c8kmfSE0HuTKkXAQlEUBbsiirirq9ixFyyroCh2UBH7rthWwa5YKBZAUYoI0ov0ngAhhfQ2mczvj/xyzWRu+tTM+/U8++zcM7ecjFyG+8n3nGNxOBwOAQAAAAAAAAgoIb7uAAAAAAAAAIDaI9gDAAAAAAAAAhDBHgAAAAAAABCACPYAAAAAAACAAESwBwAAAAAAAAQggj0AAAAAAAAgABHsAQAAAAAAAAGIYA8AAAAAAAAIQAR7AAAAAAAAQAAi2AMAAAAAAAACEMEeAAAAAAAAEIAI9gAAAAAAAIAARLAHAAAAAAAABCCCPQAAAAAAACAAhXn7ghMnTtTXX38tSZoyZYpGjx7t1vPn5ubqm2++0aJFi7R9+3ZlZ2crISFBbdq00YgRI3TZZZepRYsWbr0mAAAAAAAA4G1eDfZ+++03I9TzhDVr1uiBBx7Q4cOHndpTUlKUkpKiDRs2aMaMGZo0aZLbA0UAAAAAAADAm7wW7GVnZ+uxxx7z2PnXrFmjG2+8UQUFBUZb27Zt1bZtW6WkpGjv3r2SSiv6Jk6cqMLCQl111VUe6w8AAAAAAADgSV4L9p577jklJyd75Nw5OTkaP368Eeq1bt1aU6ZM0ZAhQ4x9tm7dqokTJ2rr1q2SpGeeeUYnnHCCevfu7ZE+AQAAAAAAAJ7klcUzPD0Ed8aMGTp69KgkKS4uTh988IFTqCdJxx9/vD766CN1795dklRcXKyXXnrJY30CAAAAAAAAPMnjwV5WVpYmTZokSbJarYqKinLr+QsLC/X5558b2+PGjVOnTp1M942NjdWzzz5rbC9fvlzbt293a38AAAAAAAAAb/B4sPfcc88Z1XS33HKLmjRp4tbzL1u2TJmZmZKkkJCQahfFqDj89scff3RrfwAAAAAAAABv8Giw9+uvv+qbb76RJHXv3l233Xab26+xYsUK43X37t3VvHnzao857bTTjNeLFy92e58AAAAAAAAAT/PY4hlZWVnGKrhhYWGaMmWKwsPD3X6d8kNpa7oQRs+ePY3XO3fuVGFhoSIiItzet4rWrFnjtB0S4pUpDgEAAAAAAOCHSkpKnLZPOumkWh3vsWDvmWeeMYbg3nTTTerTp49HrrN3717jdceOHWt0TLt27YzXxcXFSkxMVJcuXdzet+pU/I8HAAAAAAAA1JRHSsZ++eUXfffdd5KkLl266K677vLEZVRSUqL09HRjuybDcCWpWbNmTtspKSlu7RcAAAAAAADgaW6v2MvMzNTjjz8uqXSoqaeG4EpSdna27Ha7sR0fH1+j4+Li4py2s7Ky3NqvmmoIQ3HLVx02hJ8H8CXuJ8B9uJ8A9+BeAtyH+wlwn4Z0P9V3NKfbg71nnnnGqIC7/vrr1a9fP3dfwlBYWOi0XdN58ioGjRXP4ykhISFO/8Ea2lDchvbzAL7E/QS4D/cT4B7cS4D7cD8B7tOQ7qe6hJRujTV//vlnzZkzR5LUqVMn3Xvvve48vYvi4mKn7dDQ0BodV3G/8lV/AAAAAAAAQCBwW7CXkZGhyZMnS5IsFoueffZZRUZGuuv0puoa0FXcz2q1uq1PAAAAAAAAgDe4bShu+SG411xzjU4++WR3nbpSFYPDmg6presQXncKCQlR3759vX5dd7Lb7dq8ebOx3adPnxpXTQJwxv0EuA/3E+Ae3EuA+3A/Ae7T0O6nTZs21Ws4sVuCvUWLFmnu3LmSpPbt2+v+++93x2mrFRcX5zRvXU5OTo2Oq7hfQkKCu7tWI2Fhbp/i0KdCQ0Mb3M8E+Ar3E+A+3E+Ae3AvAe7D/QS4T7DfT/UeipuRkaEnnnhCUukQ3GeeeUbR0dH1PW2NhISEqHnz5sZ2WlpajY5LTU112m7WrJlb+wUAAAAAAAB4Wr0jzc8//9wYghsVFaV33nlH77zzTqX7lw/V/ve//2n+/PnG9vPPP1/rkK1jx45KTk6WJB04cKBGxxw8eNB4bbVa1bZt21pdEwAAAAAAAPC1egd7RUVFxuu8vDwtW7asxsfu2LFDO3bsMLYLCgpqff0+ffpo1apVkqRt27bV6JitW7car7t27criGQAAAAAAAAg4blsV11cGDhxovN6yZYuysrKqPeb33383Xg8ePNgj/QIAAAAAAAA8qd4Ve3fffbfuvvvuGu8/fPhwJSUlSZKmTJmi0aNH1+v6Q4YMUVxcnLKzs2Wz2fTVV1/pxhtvrHT/DRs26K+//jK2L7jggnpdHwAAAAAAAPCFgK/Yi4yM1JgxY4ztN954Q9u3bzfdNzs7W48++qix3b9/f/Xr18/jfQQAAAAAAADcza+DvQkTJqhHjx7G/xITE033u+WWW9SkSRNJUm5urq6//notXLhQDofD2Gfbtm0aO3asdu7cKal0OeQJEyZ4/ocAAAAAAAAAPKDeQ3H9QZMmTTR9+nTddtttKigoUHp6uu666y61atVKHTp0UFpamnbv3u10zAMPPKABAwb4qMcAAAAAAABA/TSIYE8qnWvvnXfe0cMPP6xDhw5Jko4cOaIjR4447RcZGamHHnpIV199tS+6CQAAADQoDodDJSUlvu4G4NfsdrvLtsVi8VFvgMDmy/spJCTE7+7dBhPsSaUr5H7//ff6+uuvtXDhQu3atUsZGRmKiIhQx44dddppp+nKK69U27Ztfd1VAAAAICA5HA7l5eUpKytLOTk5Ki4u9nWXAL9XfpooSdq9e7ffhQNAoPD1/RQWFqbY2FjFx8crOjra5/ey14O9X375pcb7Tp06VVOnTq3V+aOionT11VdTkQcAAAC4WVFRkQ4cOCCbzebrrgABJyysQdXVAD7ly/upuLhYGRkZysjIkNVqVYcOHRQeHu6z/vj14hkAAAAA/IPNZiPUA+rIYrEoLCzM+J+vK3yAQOZP91PZd2NRUZHP+sCvDAAAAABUKzEx0WnYbUxMjDEMKTQ01Ic9A/xf2RD2Mv4wfA8IVL68n+x2uzEdRW5urqS/w70uXbr45L4m2AMAAABQLZvNZjywtGzZUk2aNPFxj4DA4XA4nALw0NBQgj2gjnx5P4WGhio8PFwJCQlKT09XcnKypNLvyLy8PMXExHilH+UxFBcAAABAjcXExBDqAQCCXpMmTZyCvOzsbJ/0g2APAAAAQI3Fx8f7ugsAAPiF8t+JBHsAAAAA/F50dLSvuwAAgF8o/51YXFwsh8Ph9T4Q7AEAAACoMRbKAACgVMXvxJKSEq/3gWAPAAAAAAAACEAEewAAAAAAAEAAItgDAAAAAAAAAhDBHgAAAAAAABCACPYAAAAAAACAAESwBwAAAAAAgIBhs9l83QW/EebrDgAAAAAAPOvrr7/WxIkTq90vJCRE4eHhiouLU7t27TRgwACNGDFCJ598cqXHvP7663rjjTeqPa/ValVcXJxatmyp3r1767zzztPgwYMVFlb7x9K//vpLv/zyi1asWKHDhw8rLS1NISEhaty4sVq0aKGBAwfq9NNP1ymnnFLrc3tLVlaW3nvvPf3yyy86fPiw8vPzFRsbq86dO+uzzz7zdfcAv1RSUqLPP/9cS5Ys0bRp03zdHb9AsAcAAAAAkFT60FxQUKCCggKlpKRo3bp1ev/99zV06FBNmzZNjRs3rvN5CwsLVVhYqNTUVG3ZskVffPGFOnbsqKeeekqDBw+u0XkOHDigqVOn6ueffzZ9Py8vT0lJSVq3bp1mzJihAQMGaMKECerfv3+d+u0pmZmZGjNmjA4ePOjUnpGRoeLiYh/1CvBvycnJuv3227VlyxaddNJJvu6O3yDYAwAAAIAg0qhRI916662m7zkcDhUVFenYsWNasWKFdu7cKUlatmyZrrnmGs2ePVuRkZGVnrt9+/a66qqrXNrtdrsKCgqUmpqqHTt2aMOGDSopKdH+/ft13XXX6YknnjA9rry9e/fqmmuuUWpqqiQpPDxcAwcOVPfu3RUfHy+LxaL09HRt2bJFa9euVUlJidatW6drrrlGb775poYNG1bTj8jjPvzwQyPUs1qtOv/883XcccepqKhInTp18m3nAD+1b98+bdmyxdfd8DsEewAAAAAQRGJjY3XTTTdVu5/D4dB7772nF198UZK0a9cuvfnmm3rggQcqPaZ169Y1OvfevXv12GOP6c8//5QkPfXUU2rUqJEuvPBC0/2Liop06623GqHeueeeqyeeeEJNmzY13X///v2aOHGi1qxZI5vNprvuukvffvutunTpUm3fvGHbtm3G69tvv1133nmnD3sDIJCxeAYAAAAAwIXFYtHNN9+skSNHGm1ffPGFioqK6n3uzp0763//+5/OOOMMSaVDdR9//HFlZGSY7j9v3jzt379fktS3b1+98sorlYZ6ktSxY0e9//776tq1q6TSYPA///lPvfvtLrm5ucbrE044wYc9ARDoCPYAAAAAAJW65pprjNcZGRluGwpntVo1bdo0tWjRQpKUnZ2tGTNmmO67fPly4/Wll16q0NDQas8fGRmpu+66y9j+7bff5HA46tlr9ygpKTFeh4eH+7AnAAIdQ3EBAAAAAJUqq3orc+TIEbedu1GjRrrlllv0zDPPSJI+/fRT3XfffS5hV/lKvry8vBqff+jQoQoNDVVsbKwSEhKUm5ur2NjYevU5PT1dX375pZYtW6bdu3crKytLMTExatu2rQYNGqQrrrhCxx13nMtxc+bM0RNPPOHSfu211xqvBw4cqFmzZtW6T/v379fs2bO1YsUK7d27V/n5+YqPj1erVq00cOBAXXLJJerdu3e157Hb7Vq0aJF+/PFHbdy4UampqbJYLGrWrJn69eun888/X2effbYsFovp8YmJiRoxYoQkqW3btvrll1+qvN6ECRP0zTffSJKmTJmi0aNHO70/fPhwJSUlqVu3bpo3b55Wr16tl19+WZs3b1Z0dLS6dOmiMWPG6NJLL3U6rri4WD/99JN++OEHbd68WampqQoLC1PLli114oknasyYMTVafGHjxo369ttvtXLlSiUnJ6uwsFBNmjRRr169dPbZZ+uSSy6R1Wqt9jw1VVxcrLlz52rRokXasmWL0tPTZbVa1bJlSw0cOFCjR482rfDMzc3V0KFDjXtjzpw56tGjR5XXSkpK0ogRI+RwOBQfH69ly5YpIiLCZb/6fgZl/TjzzDM1Y8YM5efn64svvtCCBQu0b98+ZWZmqnHjxjrhhBN0ySWX6Nxzz3X582W28vaaNWt04oknSpJOOeUUffTRR07vHz16VLNnz9ayZcu0a9cu5eTkKDY2Vi1atNBJJ52kCy64QIMGDaryMwoUBHsAAAAAgEpVfMgOC3PvY+TIkSP13HPPqaSkRPn5+Vq9erVOPfVUp31atWplvP7mm290zTXXKDo6utpzx8XFacuWLZUGUbU1a9YsvfTSS8rPz3dqz8jIMKoZP/zwQ1199dV6+OGH3f5Zmfnggw80bdo02Ww2p/b09HSlp6frr7/+0gcffKBRo0bp2WefrTSE2bp1qx566CHt2LHD5b2DBw/q4MGDmjdvnnr37q2XX35ZHTt29MjPU5kNGzbohhtuMIaCFxQUKD093WVF5Y0bN+rf//639u3b59Rus9m0b98+7du3T19//bVGjx6tp556yvTzyMvL02OPPaZ58+a5vHfkyBEdOXJEv/zyi9566y29/PLL6tOnT71/vo0bN+rBBx80hpyXKSwsVE5Ojnbv3q1PP/1UF198sZ5++mmnP/8xMTE677zzjJB03rx51QZ7c+bMMSpYL7jgApdQzxOfwV9//aV77rnHZTXoo0ePatGiRVq0aJEGDx6s//znP4qJian2fJX5/vvv9eijj7r8EqDsPt2xY4c+/fRTDR06VK+++mq9w35fI9gDAMCPbU3O1u60PJ3euYkaRbnvN8IAANTU1q1bnbY7dOjg1vMnJCTo+OOPN4b4Ll++3CXYO+uss/TVV19Jkvbs2aOrr75ad955p4YNG1ZtxZS7Qr0XX3xR7777rrHdqlUrnXnmmWrdurUyMzO1bNky7dixQ3a7XTNnztSePXs0Y8YMI9zr3bu3xo8fL0maPXu2EW5ceeWVxmfaunXrWvXp+++/15QpUySV/pxDhgxR3759FRsbq9TUVK1evdr4XL/77jvFxsbq8ccfdznPxo0bdd111xlBSHh4uM444wz17NlTDodDW7du1dKlS2Wz2bRlyxZdccUVmjlzpnr27Fmr/taVzWbTQw89ZDq/40UXXWS8Xrt2rW688UYjeI2IiNCwYcPUvXt3FRYWau3atVqzZo0k6euvv1ZhYaGmT5/udL68vDxdc801xucWEhKiU089VX379lVERIQSExP166+/KjU1VQcOHNDVV1+t9957TyeffHKdf74VK1botttuU0FBgSSpcePGOuuss9S+fXvjM1++fLmKi4uN+SY//vhjpzBu9OjRTsHe/fffX+Wf/Tlz5jgd6+nP4NChQ7r55puVlpamhIQEDR8+XB06dFBWVpaWLFmiXbt2SZL++OMPPf3005o6dapx7Gmnnabo6GgdOHBAn332mSSpXbt2GjNmjCTnv5PWrVunBx98UHa7XZI0YMAAnXjiiUpISNCxY8e0adMmY9GeZcuW6YEHHqh0CoBAQbAHAICfen/VAd361UbZSxxqHhOu5XcPVddmdf/tJQAAdfHhhx8ar9u0aVNtJVBddO7c2QgRKlZaSdKIESN00kknGaHMX3/9pTvvvFOxsbE69dRTdfLJJ+ukk05Sz549PVIl9/333zuFerfeeqvuuusupyHDDz/8sL755hs9/vjjKioq0rJly/TSSy/p4YcfliR16dLFWJV3+fLlRrB34YUX1nlI4GuvvSapNHh5/fXXdfbZZ7vsM3PmTD377LOSpM8//1x33HGHmjVrZryfk5Oj22+/3Qj1+vTpo1deeUXt27d3Os/evXt1zz33aMeOHcrMzNSdd96pOXPm1KuyqqbK/kz07t1bkyZN0vHHH69Dhw5p6dKl6ty5s6TSyrYHHnjACPX69u2rV199VW3btnU619y5c/XQQw+ppKRE8+fP1yWXXKIzzzzTeH/y5MnGn8Vu3brplVdecRmOXlBQoBdffFEfffSRCgoKNH78eM2fP1+NGjWq9c929OhR3X///Uao969//UsPPfSQoqKinPbbvXu37r33Xu3cuVObNm3Ss88+q6eeesp4/5RTTlH79u118OBBHTp0SGvWrKk0aNu0aZP27NkjSTruuOPUv39/p/c98RmUVYKOGjVKkydPdvpz89BDD+mFF17Q+++/L6k0hH7wwQeNP6cnnniiTjzxRK1cudII9lq2bGkMYy9fvfjGG28Yod6kSZM0duxYl74sWLBA48ePl91u16+//qotW7bUaKi6vyLYAwDADzkcDj21YIfsJaVDJFJyi/Tir7s0Y0w/H/cMAGrGZi/RUwt36Putycorsvu6O34lOjxUFx7fUo+f013WUP9dz7CgoEAvvfSSFixYYLTdcsstHrlW+RVujx075vK+xWLRf//7X916661at26d0Z6Tk6MFCxYYfYyOjlb//v01aNAgnXnmmW6pKCsuLtbLL79sbF933XW6//77Tfe97LLLZLVa9cADD0gqHbp77bXXOg0ldpfMzEzt3btXUmn4YhbqSaVz+C1YsEB//vmnLBaLNm7cqOHDhxvv/+9//1Nqaqqk0nnxPvjgA8XFxbmcp3Pnzvrwww81atQoHT16VImJifr444899meiokaNGun9999XQkKCJOegVCqtQDt06JCk0mrK9957zzRkGjlypHbu3GlUaX300UdGsLd161ajki0hIUEffPCBUwhaJjIyUo899piSkpK0ePFipaSkaNasWU6LtdTUu+++q/T0dEnSxRdfrMmTJ5vu16VLF7399tu68MILlZ+fr6+++krjxo0zAliLxaJLL71Ur7/+uvF5VBbsla/Wu+yyy5ze8+RnMGDAAE2dOlUhIc5/71ksFj344IP66aeflJSUpJKSEq1YscJpRe6aWr9+vSQpPj7eaeGf8s4991yNHDlS3377rUJDQ7V+/XqCPQAA4F65RXYdyHCev+edPw4Q7AEIGE8u2KHnft7p6274rXVJWZKkp8/3zlDG8nJycvTee++Zvme325WTk6M9e/ZoxYoVysnJMd4766yzdOWVV3qkT+Wrk8yCPak02Pnkk0/08ccfa8aMGUpJSXHZJy8vT7///rt+//13vfzyy+ratatuu+22OgUEZdavX68DBw5IkmJjY3XvvfdWuf/FF1+sjz/+WGvXrpXNZtPs2bN155131vn6lSm/MnBSUpKSk5PVsmVL031feOEFORwOtW7d2iVU+e6774zX99xzj2moV6ZJkya65557NGnSJEmlFYDeCvZGjhxphHpmygfQN910U5XVc//617+0aNEidejQQd27dzfay6rBJOmf//ynaaBV3p133qnFixdLKv0caxvsFRcXG0PMJVV7fJs2bTR69Gh9/PHHstvtmjt3ru644w7j/csuu0xvvPGGHA6HfvrpJz322GMuQ9Xtdrvmz58vqbTSc9SoUU7ve/Iz+Ne//uXy569MaGioBg4caAwnPnr0aJXXrUxZxW5OTo62b99eabj/4IMP6s4771SbNm28MhemJwV27wEAaKDScl3nkJGkouIShYf5b3UHAJRZdcA8nMHfVu73zWeUmZmpF154ocb7h4SE6Morr9TEiRPdNl9dReXnTqvswb/svbFjx+qqq67SypUrtXjxYv3+++/avXu36f67du3Sgw8+qHnz5mn69Ol1Gja6YsUK4/WwYcNqdI6LL75Ya9eulSStXLnSI8FebGysevfurS1btignJ0eXX365rr32WmNuvPLatGljeo7ExERjSHBoaKjOPffcaq97wQUX6PHHH1dJSYkSExOVlJTkMtzVE6paxdZmszn9dypfkWimVatW+v77713aV61aZbyuSQVXr169FB0drby8PB04cEBHjx5VixYtqj2uzJYtW5SbmyuptNq0bFhxVU466SR9/PHHkmQMTS9TtjLzH3/8oYyMDC1ZssRYpbjMsmXLlJaWJkk69dRTXcJgT34GFYf8VtSkSRPjddnQ5NoaOHCgFixYoJKSEl1zzTW6+uqrNWLECPXp08fp75bmzZvX6fz+iGAPAAA/lJZnHuxtT8lR39bxXu4NANTewA6NtWhnqq+74dcGdWzs6y64CAsLU0xMjBo1aqSuXbuqX79+uuSSSyoNhtwlKyvLeF1VxViZsLAwnXbaaTrttNMkla4Au2bNGv35559auXKltm/fbqz4KUm//vqr7r33Xqd58mqqrFpPUo2H9h5//PHG64orgLrTQw89pJtvvlk2m00pKSl66aWX9NJLL6lZs2YaMmSITjvtNA0dOrTSEKN83zp27FijlYZjY2PVoUMHY967AwcOeCXYa9euXaXvpaWlGasCR0dHV7lvZex2uzG0WSqtXqytQ4cO1SrY27nz76rmvLy8Ws9fmZSU5NJ22WWX6Y8//pBUOp9gxWCvqkUzPP0ZVFf9V75yt/z9Wxv33nuvfv/9d+Xk5Cg7O1tvvfWW3nrrLTVq1EiDBg3SqaeeqtNPP71Of0b8FcEeAAB+YGtytkIsFnVvHiOLxaK0PJvpfpsOZxHsAQgIk8/tLotFzLFnovwce77Qtm1b/fLLLz65dmXKKoik6h/+zTRp0kTnnHOOzjnnHElScnKyPvnkE82aNcuoiFq6dKl++uknnXfeebU6d0ZGhvG6ceOahbHl9yt/vLsNHjxYb7/9th5//HGnkC41NVVz587V3LlzZbFYNGDAAF1xxRW69NJLnaqWyg97runPVrZvWbDnyZ+vvKqG1pbNEVjdflXJzMysc5hUprafRX0/O7PjzzvvPD311FPKzc3V4sWLlZOTo9jYWElSbm6ufv75Z0mlc9BVnJfR059BTYLjMnXtR9euXTVz5kw9+uijTit6Z2ZmOs3Hefzxx2v06NG68sornRbBCUQEewAA+JDD4dB1n67TR2tLf+N63cnt9P4/+1c6FHfj4Wz9y5sdBIA6soaG6Onze/pkDjkEns2bNxuv3TGJfcuWLXXfffdp5MiRGjt2rLE4wdy5c2sd7NUlYCgpKTFee2r4cplTTz1VP/30k5YtW6ZFixZp6dKlOnz4sPG+w+HQ2rVrtXbtWn3xxRd69913jaCnrspWHZWqHjpdndp8tuXnFKyouLi4zn2o7By33HJLlXP6manJUNryyn+Obdu21dVXX12r4yMiIlzaoqKidMEFF+irr75SQUGBFi5caCyQsWDBAmPV4AsuuMDleF98Bp7Qu3dvffPNN1q9erV++uknLV261GW17a1bt+rZZ5/VJ598og8//LDS+SkDAcEeAAA+9PWmw0aoJ0kfrk7UPacfV+lQ3L+OZHurawAAeMX+/fudFsKoOA/XBx98oDlz5igtLU2XXnqp7rvvvhqfu2vXrrr55puNOQUrm4uvKuUrwCpb2KOi8vvFx3u+0j40NFTDhg3TsGHDJJV+pqtWrdLy5cu1ZMkSo2px3bp1mjp1qp555hlJdfvZKu5b2c9Xk9CusLCwxtesSvk+lB/WXRsVK/3OP/98j6+UWr7fMTExuummm9xy3ssuu8xYlGPevHlGsFfVMFzJN5+Bp1gsFp1yyik65ZRTJElHjhzRypUrtWLFCv3666/Gn+G9e/dqwoQJ+t///ufL7tYLs28DAOBDV8xc49K28VCW0nLNh+Km55sHfgAABKovvvjCeN28eXMNHDjQ6f2MjAxt2bJFR44cMeYOq43y85bVpbqsfAXStm3banTMli1bjNcdOnSo9TXrq2PHjrriiiv0yiuvaPny5br00kuN9+bMmWNUFHbq1Mlo379/v/Ly8qo9d1ZWlhITE43t8j9f+aq68guiVKauK59W1KZNG2P119zcXKeKxcq89NJLevrpp/W///1PaWlpioiIcKraKj//XVXKqkHromPHjsbr/fv31+gzKygoqPa/08knn2z8t/3jjz+UmZmplJQU4/457rjjTBey8MVn4C2tWrXSqFGjNHXqVC1dutRpNefff/9dycnJPuxd/RDsAQDgI2sSM0zbZ61JVFJWvul7zFMFAGhIUlNT9eWXXxrbY8aMcRlyWVZxI0nr16/Xxo0ba3WN8kPwunev/byGJ598svH6t99+M6rfqvLDDz8Yr6tazbU+vvvuO914440688wz9d///rfS/aKiojRx4kRju7Cw0KhWatu2rbEwit1uN+Yfq8oPP/xgVOO1atXKaeGMyMhI43VmZqbTkOSKioqKnOZAq4/IyEj16tXL2P7tt9+q3L+goEAfffSRPvroI02dOtUYLl0+VP7xxx+rve62bds0ZMgQ9evXTxdeeGGtA64BAwYYgWRhYaF+/fXXao95+eWXNWDAAA0ePFiTJ0+udL+yMLe4uFiLFy/Wjz/+aPz3KKvgM+Ptz6A2qhvWvmTJEt1yyy06++yz9fjjj1e6n9Vq1X333ee0UA/BHgAAqLXle83/4fPLrlS988cB0/fybQR7AICGwWaz6cEHH1RmZqak0mq9m2++2WW/IUOGOFWW/fvf/65xpdexY8f0/vvvG9ujRo2qdT9POeUUoyotJydHr776apX7f//991q3bp2k0iBi5MiRtb5mTRQVFWn58uU6fPiw5s+fb6wKa6b84iQRERFOC2VcfvnlxuvXXntN2dmVT/uRkZGhN99809i+5JJLnN5PSEgwFkiw2WxVVlh+8MEHNaoQrKny/23fe+89Yy45M1999ZVx7ZNPPllNmjSR5PxZ/Prrr1q+fHml53A4HHrxxRcllQaF8fHxxnlqKioqShdeeKGx/fLLL1f5mezfv1+fffaZpNI/2+XDzIrKL5SyaNEiI7QNCQmp8j7w9mdQG+UrbsvPT1gmLCxMv/32mw4ePKiFCxdWOSw7Ly/P6c9IIM+xR7AHAICXFRbbtSYxQ3/sr/lcNmXybZX/5hsAgECxbt06XX311VqxYoWk0iGczzzzjOmiDiEhIXrmmWeMlSv37dun0aNH68svv6xy6OKKFSt09dVXKympdC7bM888U2eeeWat+xoaGqrx48cb2x9++KGmT59ueu05c+ZowoQJxvbYsWPVpUuXWl+zJi644AKj4mjnzp2aNGmSaTVhTk6OU/XSueee6xSQXHPNNWrevLkkKSkpSddff73TCrtl9u/fr+uvv96obGrbtq3GjRvntI/FYtHgwYON7WeeecZpxVqpNAz69NNP9dprr9X2R67S5Zdfrnbt2kmSDhw4oDvvvNO0euy3334zwihJuu2224zXQ4YM0WmnnWb085577tGiRYtczpGXl6fJkydr2bJlRtu9995bp37fcccdRhi6Z88e3XTTTaZDiXfu3KlbbrlFBQUFkkqH8VZVede6dWsNGTJEUumK0GvWlE7/cuqpp1YZYvniM6ip8n8/JCcnu4R7gwcPNkL49PR03XfffaZ/BoqKijRp0iRjsZATTzwxoIM9Fs8AAMCLUnMLdf7bK7U2KbNOx+dRsQcA8GOHDx/We++959JeUlKivLw8HTlyRBs3btSuXbuM98LCwvTkk09WGbqdcsopev3113XXXXfJZrMpJSVFkyZN0nPPPadBgwapY8eOaty4sQoKCpScnKw///zTKZwaMGCAXnnllTr/XBdddJHWr1+vmTNnSpJmzJih7777TmeddZZatWqlzMxM/f77705z8J188sn697//XedrVic2NlYPP/ywJk2aJEn69ttv9euvv+rMM89U27ZtZbVadfDgQS1evNgIN5o1a+YUUkqlVXavvvqqbrrpJuXn52vz5s268MILNWzYMPXs2VMOh0Pbtm3Tb7/9ZlQFxsTE6JVXXjFdOOPmm2/W4sWL5XA4tHv3bp177rk6//zz1a5dO6WnpxsrlFosFl144YX6/vvv3fJ5REZG6tVXX9XYsWOVl5en5cuX65xzztGIESPUuXNnFRUVafXq1Vq1apVxzNixY3X66ac7nWfatGn65z//qQMHDignJ0d33nmnevfurcGDBys2NlZJSUn65ZdfnAKj2267zQjRaqtTp06aMmWKHnjgARUXF2vt2rU677zzNGzYMPXo0UNFRUXasWOHfvvtN2MobdnnXxZ2V2b06NFavny5EQaWtVXH259BTbVt21YWi0UOh0OHDx/WfffdpwEDBig+Pl7XXnutQkJCNHnyZI0bN04lJSVatmyZRowYobPOOkvt27dXdHS0Dh06pCVLlujQoUOSpOjoaD3yyCMe7benEewBAOBFH61JqnOoJzEUFwDg3w4ePGisQFsTvXv31qOPPlqjeejOPPNMfffdd5o6daqWLFkiqbRqaPHixZUeExkZqXHjxmncuHGKiIiocb/MPProo2rbtq1eeeUV5efn68iRI/r0009d9rNYLLrhhht0//33G/OnecoVV1yh3NxcvfTSSyoqKlJGRoa+/fZb0327d++uadOmGVVt5Z100kn67LPPdN9992nPnj0qKirSwoULtXDhQpd9+/Tpo+nTpzst/FDxXE899ZSefvppFRUVKTc3V7Nnz3baJzo6Wo899pji4+PdFuyV9e3TTz/Vvffeq3379iknJ0ffffedy36hoaEaN26cS8gpSU2aNNEXX3yhCRMmGHPebdmyxWlBlDIREREaP368brzxxnr1+/zzz1ejRo308MMPKzk5WYWFhVqwYIHpnIedOnXS9OnTqxyGW+acc85RXFycMbw6Pj5eZ599drXH+eIzqIm4uDhdfPHFmjt3riRp2bJlWrZsmWJjYzV27FhZLBYNHTpU06ZN0+OPP66cnBzl5eVp/vz5pudr27atpk6dqr59+3q8755EsAcAgBc9tXBHvY7Ps9nlcDiqnTwYAAB/EhISosjISDVq1EidOnVS7969NXz4cJ144om1+k7r0qWL3nnnHf31119auHChNm7cqH379ik9PV0FBQWKjY1V06ZN1blzZ5111lkaMWKEmjZt6raf4/rrr9fFF1+sL774QsuXL9fevXuVmZmp8PBwderUSYMHD9aYMWM8Nvy2sj6NGDFCs2fP1qpVq7R3715lZ2fLarWqadOm6tu3r84++2ydf/75LguTlNezZ0/NmzdPP/zwgxYuXKhNmzYpLS1NdrtdLVq0MBZHGDFiRLWrC//jH//QkCFD9Mknn2jp0qVKSkqSxWJRmzZtNGzYMF111VVq166d6RDP+urZs6fmz5+vefPmaeHChdqyZYvS0tIUFhamNm3aaPDgwbrqqqvUtWvXSs/RuHFjzZgxQ2vWrNHcuXO1evVqJScnKy8vT7GxsercubOGDBmiK664wlh8pL6GDBmiRYsW6bvvvtPixYv1119/6dixYyopKVHTpk11/PHH67zzztOFF15YbaVemYiICF144YX6/PPPJZUO365pwO2Lz6AmnnvuOXXs2FHz5s3TkSNH5HA4lJCQoLS0NDVr1kxSaYXtoEGD9PXXX2vZsmXas2ePMjMzFRISoqZNm6pHjx4aPny4LrnkknoH/v7A4ihbzgYet27dOqN0NiQkRAMGDPBxj+qnuLhYGzZsMLb79eunsDCyYqAuuJ+CR8iDc+t9jvypFyoirPJ/mAc77ifAPSreS1FRUbJYLOrevXuV4QAAVw6Hw2lRhOjoaH5JB9SRP91PdrtdO3b8/Yv7unxH1jcrYvEMAAC8KDai/g/DeUUMxwUAAABAsAcAgFe1axRV73PM25qs/el51e8IAAAAoEEj2AMAwItCazhMICY8VG9fcYLpe9d9ul69XlysuVuOuLNrAAAAAAIMwR4AAF6UVWir0X5xEWG6eVBHPTKim+n7+bYSPV3PhTgAAAAABDaCPQAAvCi7sGbz41lDSyv7osMrn5NvdWKmWAMLAAAACF4EewAAeInD4VBWQc0q9qyhpV/RUdaqv6pzWUgDAAAACFoEewAAeEm+za6SGhbYhZcFe2FVr6KbmltU324BAAAACFAEewAAeElNh+FKNRuKKxHsAQAAAMGMYA8AAC8xG4Y7/ozj9L9/9ndpv/D4lpKkKCvBHgAAAABzBHsAAHhJdmGxS1t8RJj+0b+NGkWGGW1hIRbdO7SzJCmaYA8AAABAJcKq3wUAALhDVoFrsBcXEaYoa6gW336qHv1hm2z2Ej16dje1io+URMUeAAAAgMoR7AEA4CWmFXv/X6nXv20jzb95kMv7zLEHAAAAoDIMxQUAwEuyTIK9uIiqf8cWZa36qzotj2APAAAACFYEewAAeEl2JUNxq1LdUNw0KvYAAACAoEWwBwCAl1Q1FLcyLJ4BAAAAoDIEewAAeEndhuIS7AEAAAAwR7AHAICX1Klij8UzAAAAAFSCVXEBAPCSrDrMsRcZVvXv4JJzCvXAnC36358HFRcRqtcu7atRfVrVq58AAAAAAgMVewAAeElSZr7TtsUiNYq0VnmMxWKp8n2HQ3p5yR5l5Nt0MKNAN3y+Xhn5tnr3FQAAAID/I9gDAMBLtibnOG13bhKt8Goq8morI9+mT9clufWcAAAAAPwTwR4AAF6QXVCsxMwCp7bjW8R65Fq/70v3yHkBAAAA+BeCPQAAvGB7So5LW48aBns3D+pQq2vtTc+r1f4AAAAAAhOLZwAA4AVbj2a7tB3fIq5Gxz5/0fHKKSzW6sRMndmlqdrER+qphTsq3X9Xam6d+wkAAAAgcBDsAQDgBduOulbsHd+yZhV7jaPD9ck1JxnbP+9MqXL/ozlFOpRZoDaNImvXSQAA4HM2m01Wa9WLawFAGYI9AAC8oOLCGZLUs45z7J3QOr7aff5KzibYAwDUyNGjR7VgwQL9/vvv2rlzp1JTU1VUVKSYmBi1atVKffr00bnnnquhQ4cqLIxHSE85cOCAnn32Wd14440aNGiQr7tjWLlypa699lpJ0sCBAzVr1iwf9whAefytDACAF2w8nOW03TIuQk2iw+t0ruaxEWoZF6Hk7MJK98kpKq7TuQEAwSM5OVnTp0/X/PnzZbPZXN7PzMxUZmamtm/frtmzZ6tTp0565JFHNGzYMB/0tmH74IMP9NJLL6moqEg33nijr7sDIIAQ7AEA4GFZBTbtSXNe0KJfDaruqnJC6zgtrCLYy7eV1Ov8AICGbdGiRXrooYeUm/v3vKwdOnTQySefrNatWysyMlLHjh3T5s2btXr1apWUlGjfvn269dZbdffdd+vOO+/0Ye8bnp9//llFRUW+7gaAAESwBwCAh20+4rpwxglt6hfs9WkVr4U7Uit9P6/IXq/zAwAaru+//14PPPCASkpKfwnUq1cvTZgwodLhnwcPHtQTTzyhZcuWyeFw6LXXXlNcXJwxPBMA4Dshvu4AAAAN3YZDWS5t/eoZ7PWoZn6+PBvBHgDA1c6dO/Xwww8bod4FF1ygzz//vMo53dq3b6+3335b5513ntH24osvav/+/R7vLwCgagR7AAB4mFmwV5MFMKrSo3lMle/nE+wBAEw88cQTxpDP3r1768UXX1R4ePVzvoaGhuq5555Ts2bNJElFRUV6/fXXPdpXAED1GIoLAICHbT/qvCKuNdRS5xVxy3RvXk3FHkNxAQAVrF69WqtXrza2J02aJKvVWuPjY2Njdf3112vatGkKCwtTUlKSiouLTVfK3b17t7744gutWrVKSUlJysvLU0JCgjp37qwzzjhD//jHP9SoUaNKrzV27FitWrVK0dHRWrdunXbs2KEXX3xRq1evltVqVceOHXXhhRfqhhtucFq19aGHHtINN9yg9957T5999plSUlLUrFkzDRgwQHfccYe6dOnidJ2MjAx98cUXWrp0qfbs2aPMzEzFxsaqffv2OvXUU3XVVVepVatWNfp8srKy9PXXX+uXX37Rjh07lJ2drcjISHXs2FFDhgzRqFGj1LZtW6djevTo4XKe8kOcZ86caVpN6c5+r169Wl988YVWr16to0ePKiYmRt26ddOll16q0aNH1+gcAHyHYA8AAA9Lz3eeDLt1XKSsofUrmm8VF1Hl+1TsAQAq+vbbb43XXbt21Yknnljrc1xxxRXq27ev+vXrp6ioKJf38/LyNHXqVH3xxRdyOBxO76WkpCglJUWrVq3SjBkzNHHiRF1++eXVXvPgwYMaO3asMjIyjLaNGzeqa9eupvtPnTpVH374obGdlJSkQ4cO6f7773fab/bs2ZoyZYqys53nwj127JiOHTumjRs36v3339fdd9+tW265pco+fvPNN3r22WddzpWTk6MtW7Zoy5YtmjlzpsaPH68rr7yy2p+5Ku7qt91u15NPPqnPP//cqT0jI0N//vmn/vzzT3311Ves0gv4OYI9AAA8LKug2Gm7UVT9v34tFkuV7zPHHgCgomXLlhmvhwwZUqdzJCQkaPDgwabvFRYW6tZbb9WqVauMtuOPP15DhgxRo0aNdOjQIS1evFhHjx5Vdna2HnnkER05cqTaFXYfeeQRp1CvzEUXXeTStnLlSv32228u7f3793eqlpsxY4amT59ubHfq1Emnn366mjdvrszMTK1atUqbNm1SUVGRXnrpJSUnJ+uxxx4z7d8HH3ygKVOmGNtNmzbVmWeeqXbt2iktLU1Lly7V/v37VVRUpBdeeEFhYWFOFYaS9Omnn+rgwYOSpCuvvFIdOnSQJOP/PdHve+65R4sWLTK2BwwYoEGDBslqtWrz5s1asmSJ1q1bV+nxAPwDwR4AAB5WMdiLj/D81y/BHgBfc9htylj5jPL2/iBHcZ6vu+NXLGHRiu58gRIGTZIltOZDYesjKytLhw8fNrbrUq1XnSlTphihXlRUlJ577jldeOGFTvsUFhZq2rRpmjlzpiTp9ddfV69evXTWWWeZnjMvL0+rVq1S+/btNXnyZJ100klKS0vTjz/+aBpOloV61157rW688UbFxcVp3bp1xmIhkrR8+XK9/PLLkiSr1arJkydrzJgxLr80W7x4sf79738rOztbH330kU488USXMHHbtm164YUXjO3LL79ckyZNUnR0tNFms9k0depUffTRR5Kk6dOn6+KLL1bTpk110003SZJ+/fVXI9i78MILTYffurPfc+bMMUK98PBwPf/88y7/rbZs2aLbbrtNR48edekLAP9BsAcAgAc5HA5lFVao2It0z0Pcixf30r/n/WX6XoGtxLQdALzl2Mqnlblqqq+74beKUtZLkhqf+qRXrnfo0CGn7ZYtW7r1/Pv379eXX35pbE+bNk1nn322y34RERF69NFHVVhYqM8//1wOh0PTpk3TsGHDFBJiPk1FWFiY3n33XXXq1EmSFB0drXHjxlXal0svvVSPPvqosX366ac7vT9t2jRjmPDjjz+uK664wvQ8Z511lp599lndc889kqTXXntNF1xwgVM/3333Xdntpb9MO/PMM/Xcc8+5nMdqteqRRx7R5s2btX79ehUUFGj27NnVDu+tyF39djgcTlV/EydOdAn1pNLFVd555x2NGTNGNputVn0F4D2sigsAgAflFdllL3GeYyg+0j2/V7txYHu1bRRZyXWLTdsBwFsKj/zp6y74vYIjq6rfyU1yc3Odths3buzW88+bN0/FxaXfPYMHDzYN9cp78MEHjaq2Xbt2ac2aNZXue/rppxuhXk2MHTu20vc2bNigv/4q/aVYixYtKg3Hypx33nnq1q2bJGnfvn1au3at8Z7NZtOvv/5qbN93332VnickJET/+te/1KNHD51zzjnG6sI15c5+b9q0yajebNGihf75z39Wep6ePXuaDnkG4D8I9gAA8KDMAteALc5NwV7j6HD99e+zNOtfA1zey6diD4CPRbQ6xddd8HuRrQZ67VqhoaFO2+6uwPrjjz+M1xdccEG1+8fHxztV0q1cubLSfWszbDg6OlrHH398pe+Xv07v3r2rnbO24vXLB5Dr1683FrBo27atevbsWeV5zj77bH366ad6/vnnddlll1V7XU/1e+nSpcbr008/3eXPRkXnnntubboKwMsYigsAgAdlFbo+OLlrKK5UGhJefWI73fPNZh3L//tazLEHwNcaD3pMFlmYY89E+Tn2vCU+Pt5pOz093a3nP3DggPG6qmCtvF69eumnn35yOb6i9u3b17gfbdq0qTKo2rVrl/F68eLF6tGjR43PLZWusFum/PDm7t271+o8teXOfpd/XdnKwuVVF1gC8C2CPQAAPKjiwhmS+4bilhcdHuoc7BUR7AHwLUuoVY1PfdJrc8ihau3atVNoaKgxH1xqaqpbz19+1dqaDvMtv5/ZqrdlGjVqVON+VAwwK6rqOjVR/vi0tLQaX7e+fNlvdw/bBuBeBHsAAHiQ2VBcd1bslYmyOlcn5FOxBwAoJzw8XD169DDmaVu9erVGjhxZp3MtWLBAHTt2VPfu3Y0hoWWLOtRGWcgoqdKFMyTXYcRVCQur+hG3/DWHDBnisrBGdTp27Gi8LptT0Bvc2e/aCg8Pr/OxADyPYA8AAA/KKnAdihsf4YGKvQrBHkNxAQAVnXbaaUawt2zZsjqdIzc3V/fff79sNpsaN26sKVOm6KyzzlKjRo109OhRSdKxY8fUoUOHas917Ngx43VcXFyd+lNb5SvUunbtqptuuskt58rKyqpXv2pzrfr2u3nz5sbrmlQCevpnA1A/LJ4BAIAHmVXseWIobpTV+Sudij0AQEWXXnqp8ToxMVGrV6+u9Tm+/fZbY+GNjIwMYz698qvWbt26tUbnKgsZpfpVlNVG+cBxx44dNTomOzvbdLGR8ucqPwdeZWw2mx5++GG9/PLL+uyzz2p0bbNr1bff7dq1M15v27at2vPs2bOnRtcD4BsEewAAeMiS3Wl6dtFOl3ZPDMWlYg8AUJ2uXbvqjDPOMLanTJlSq9VxMzMz9dZbbxnbZ599tlq1aiVJOuWUv1dB/v7776s9V1ZWlpYvX25sn3TSSTXuR30MGjTIeL127VqlpKRUe8x1112nE044QcOGDdPs2bON9n79+hlDfw8ePFhtALZp0yYtXLhQs2bN0scff+yzfg8fPtx4/dtvv6mgoKDK8/z666+16isA7yLYAwDAA55csF1n/vd37U13XQnSU4tnlJdXZK/TfEcAgIbt3//+tzFn2ubNmzVhwoQahXsFBQUaP368Mdw2PDxc9913n/H+ZZddZsyFt3LlSi1atKjK802fPl35+fmSpFatWjkFg540aNAgo2LNZrPphRdeqHL/uXPnasuWLSopKVFycrL69+9vvBcTE6Ozzz7b2H7zzTerPNenn35qvD7nnHOc3is/j2BJSYlH+929e3djFd+srCz997//rfQ8R44c0eeff17ltQD4FsEeAABu9vn6JD25oPJhMo08MhTXOdgrcUg2O8EeAMBZ9+7dNWnSJGN73rx5+uc//6k//vij0mNWr16tK664Qr///rvRNmnSJHXp0sXYbt++vcaMGWNsP/jgg6aVe0VFRXr++eedQq7HHnus2kUv3CU0NFTjx483tufMmaPJkycrL8/1F3GLFi3S448/bmyPGjXK6WeWpNtvv11Wa2kl/rx58/Tiiy+6BKUOh0P/+c9/9PPPP0sqnU/wX//6l9M+sbGxxuvExESP93vSpEnGwiczZszQu+++6xIoHjx4UOPGjWOOPcDPsXgGAABuNmF+1XMLxXthKK5UOhw3PIzf4QEAnP3zn/9UQUGBnn/+edntdm3ZskXXXXedOnTooEGDBqlNmzayWCxKTk7WmjVrnOZ0CwkJ0YQJE/TPf/7T5byPPvqotm/frvXr1ys/P1/33Xef3nnnHQ0ZMkTx8fE6fPiwFi9erOTkZOOYcePGOVW9ecPIkSO1ceNGzZw5U5L02WefacGCBRo+fLjatWunY8eOae3atdq0aZNxTNeuXfXYY4+5nKtnz5569NFH9cQTT0iS3n33XX3//fc666yz1LJlS2VkZOjXX381humGhIToscceU7NmzZzOU37eu2nTpikpKUlWq1XnnnuuunXr5vZ+Dxo0SLfccotmzJghh8OhF198Ud98842GDRumuLg47dy5U4sWLVJhYaE6d+6svXv31uWjBuAFBHsAALiRvcSh/cfyq9zHE0NxI02CvXybXQlR7g8RAQCB77rrrlOfPn307LPPasuWLZKkAwcO6MCBA5Ue0717d02ePFknn3yy6fsRERH68MMP9eSTT+qbb76Rw+HQX3/95bRIRpmYmBhNnjxZo0aNcs8PVEuPPvqo2rRpo1dffVX5+flKT0/XV199Zbrv6aefrhdffNGpqq68q666SvHx8XriiSeUlZWlQ4cOmc6hFxcXp8cff1wjRoxwee/yyy/Xxx9/rKKiImVkZBjDY6Oiooxgz939vv/++9W0aVO98MILKi4u1q5du1wWAencubPeeOMNXXTRRabnAOB7BHsAALhRkd11XpyKIj1QRVdxjj2pdJ49AAAqc9JJJ+nrr7/W6tWr9fPPP2vz5s3au3evsrOzVVxcrNjYWLVp00b9+vXTeeedp8GDBxvDNysTGRmpKVOm6LrrrtPs2bO1cuVKHTlyRDk5OYqLi1P37t11xhln6PLLL1eTJk289JOau+GGG3TJJZfoyy+/1PLly7Vnzx5lZmbKarWqRYsWGjBggEaNGqUhQ4ZUe66LLrpIp59+uj7//HMtWbJEu3fvVlZWliIjI9WlSxcNGzZMl1xyiRo3bmx6fLdu3fTRRx/pzTff1MaNG5Wdna3Y2Fjl5OR4tN/XXXedzjjjDH300Udavny5USnYoUMHXXDBBbr22mtN5/wD4D8sDmbW9pp169YZfymGhIRowIABPu5R/RQXF2vDhg3GdvlVoQDUDvdTw5GRb1OTx36scp+SaSPdft1JP2zTcz87r8D7+mV9dOdpnd1+LX/H/QS4R8V7KSoqShaLRd27d3ea6B9A9RwOh9N8eNHR0dWGpADM+dP9ZLfbnaYrqMt3ZH2zIibeAQDAjYqKq/6tdo/mMR65bpTV9Sv97m8261BmgUeuBwAAAMD3CPYAAHCj6obiXtyrlUeuazYUV5Lmb002bQcAAAAQ+BiXAgCAG1UW7J3euYlO7dxET57bwyPXDa1k+MGOlFyPXA8AAACA7xHsAQDgRmbB3r/P7KLnL+7l0etWtvptdmGxR68LAAAAwHcYigsAgBsVFbuuSRXugVVwKxrQtpFpe3I2c+wBAAAADRXBHgAAbmRWsRfhhWCvT6s43Xu66wq4R7ILPX5tAAAAAL5BsAcAgBsVmqyKGx7q+a9bi8Wil0f1Ucu4CKd2gj0AAACg4SLYAwDAjcwq9rwR7JXp3TLOaftIdqEcDtfhwQAAAAACH8EeAABu5Otgr1WFir3C4hJlFrCABgAAANAQEewBAOBGRWZDccMsXrt+xaG4kvTJ2iTlsjouAAAA0OAQ7AEA4Eb+VrEnSXd9s0mDXluqo8y3BwAAADQoBHsAALhRkd11PjuvBnvxrsGeJP2VnKNP1yd5rR8AAAAAPI9gDwAANzIbihsR5s2KvchK39t2NMdr/QAAAADgeQR7AAC4UaGPh+IO7tBY8ZFhpu8V2Oxe6weAhstu5+8SAAAk1+/EkBDvx2wEewAAuJH54hne+7qNiwzT22P6mYZ7BSZ9A4DaysvL83UXAADwC+W/E8PCwmSxeG/RvDIEewAAuJH54hne/YL/R/82Sn3yPJf2fCr2ALhBVlaWr7sAAIBfKP+dGBcX55M+EOwBAOBGvl4Vt0xYaIjL3H4EewDcITc3V+np6b7uBgAAPpWenq7c3Fxj21fBnvkkPAAAoE6Kik1WxfXiUNzyoqyhKiw3/LbAxlBcAHVntVpVXFwsSUpOTlZOTo7i4+MVHR2t0NBQH/cO8G8Oh8NpLi673e6TIXtAQ+DL+8lutysvL09ZWVlOoZ7ValV0dLRX+lARwR4AAG5kVrEX4YOKPUmKsoYoI//vbSr2ANRHu3btlJSUJJvNJqm0cq/8Qw2AqpWU/P1vBF9MsA80JP50P1mtVnXo0MFnYT1/mwAA4EaFPl48o7zIMOcKmnwq9gDUQ9mDi9Vq9XVXgIDjcDhUXFxs/M/hcK3wB1Az/nQ/lX03hoeH+6wPVOwBAOBG/jLHnlRasVdeQTEVewDqJzw8XF26dFFeXp6ys7OVnZ1tDM8FULXy9woBOVA/vryfwsLCFBcXp7i4OEVHR/t8WD3BHgAAbuRfwR4VewDcz2KxKCYmRjExMWrVqpUcDofTkCgAroqLi7V582Zju0uXLgoL43EcqAtf3k8hISE+D/Iq8shP7nA4tGTJEs2ZM0cbNmxQamqqQkJC1KpVK/Xu3VsjR47U0KFD3ToO2uFw6KSTTqr1PB/33nuv7rjjDrf1AwAQvFbsS9eMFftd2sPDfPPlH8mquAC8wGKxsHgGUI2KQwVDQ0O5b4A64n5y5vZg79ChQ3rooYf0559/ury3e/du7d69W3PmzFH//v313HPPqUuXLm657v79+5m8FwDgMw6HQ2M/XWf6nr9U7DEUFwAAAGhY3BrsJSUl6ZprrtGhQ4eMtujoaPXo0UNWq1V79uxRamqqJGn9+vX6xz/+oc8++0zdunWr97W3bt1qvE5ISFCfPn1qdFyHDh3qfW0AADYfydaetDzT93wV7JktnuFwOPxu+AAAAACAunFbsFdSUqIHH3zQCPWsVqvGjx+vsWPHKiIiQlJpNcNPP/2kyZMnKyMjQzk5Obrtttv0ww8/1HsFkW3bthmvhw8frilTptTrfAAA1EZVw1z9ZfEMSRr9wZ8a2buVbjilPQEfAAAAEODc9qTx888/a+3atcb2008/rZtvvtkI9aTS+TfOP/98zZgxw5hfLzExUXPmzKn39ctX7PXo0aPe5wMAoDZCQ8xDsrAQi0Iqec/TKg7FlaTvtiTr5i826H9/HvRBjwAAAAC4k9uCvS+//NJ4fcIJJ+iyyy6rdN/+/ftr2LBhxvaiRYvqff3ywV7Pnj3rfT4AAGqjsNh8RUhfVetJUoRJxV6ZKT/v9GJPAAAAAHiCW542HA6Hjhw5YlThXXTRRdUeU35evf37XVcQrI309HQdPXrU2CbYAwB4W2VDccPDfBfsmVXsldldyXyAAAAAAAKHW+bYs1gsmjNnjvLz87Vr1y61adOm2mOysrKM1zExMfW6fvlqvVatWikhIaFe5wMAoLYKbJVV7PluHruKi2cAAAAAaFjcuipuVFSU+vbtW+1+RUVFWrp0qbHdq1evel2XYbgAAF+rtGLPh0NxzRbPAAAAANBwuDXYq4mioiJNmjRJSUlJkqSQkBBdd9119TpnxYUzjh49qq+//lpLlizR7t27lZubq4SEBHXv3l3Dhw/X5ZdfrqioqHpdEwCA8goqmWPPl6oaigsAAAAg8Hk82CspKVFxcbESExO1bNkyzZo1SwcOHDDenzx5srp06VKva2zbts14/eeff+rDDz9UQUGB0z4pKSlKSUnR8uXL9dZbb+nZZ591WsADAID6qKxir7J2b4j04fx+AAAAADzP48HelClTNHPmTJf2Vq1a6ZFHHtF5551Xr/MXFhZq7969xvbatWslSaGhoerYsaOaN2+urKws7dq1SzabTVJpyHf77bfrqaee0pgxY+p1/fooLi722bXdwW63V7kNoOa4nwJfXqHNtD23yO6zv+8jqpnfr6jIppAQ380B6CncT4B7cC8B7sP9BLgP95Mzjwd7hw4dMm1v3Lixjh49qoKCAkVGRtb5/Nu3b3f6j2ixWHTttdfqxhtvVKtWrYz2nJwczZo1S2+++aZsNpvsdrueeOIJderUSSeffHKdr19XJSUl2rBhg9ev60mbN2/2dReABoP7KfDsOZBt2l5Q7Lu/748eqnrl2z/XrQ+Kqj7uJ8A9uJcA9+F+Atwn2O8nj/9rPjU1VT179tTgwYPVvXt3hYSUXnLr1q165plnNGrUKO3evbvO59+zZ4/xOiQkRK+88ooeeeQRp1BPkmJjY3X77bfrnXfeUVhYaZ5ps9n03HPPyeFw1Pn6AABIUqH/TbFXbcVefjHffwAAAEAg83jF3ieffKLQ0L8n705JSdEbb7yhzz77TJK0b98+3XDDDfruu+/UuHHjWp//0ksv1fnnn6+DBw8qPz9fJ5xwQpX7DxkyRDfddJNmzJghSdqyZYvWrFnjk6o9AEDDUeiHIVlNgr3af/MCAAAA8BceD/bKh3qS1Lx5cz355JNq166dpk2bJklKTk7Wm2++qUmTJtXpGpGRkerWrVuN97/mmmuMYE+Sli1b5vVgLyQkRH379vXqNd3Nbrc7lbz26dPH5b83gJrhfgp8jQ5slZRj+l6/fv2825n/lxaTKi1Jr/T9jl27q1fLOC/2yDu4nwD34F4C3If7CXCfhnY/bdq0SSUldR/+4/FgrzLjxo3TggULtHHjRknSt99+q0ceecQYqutJLVq0UPv27XXw4EFJ0v79+z1+TTNlQ4IbitDQ0Ab3MwG+wv0UeArslVfs+eq/ZWxkeJXvF9otQfHnjPsJcA/uJcB9uJ8A9wn2+8mnM2aPGjXKeJ2dna19+/Z57drNmjUzXmdmZnrtugCAhqmw2P9W44qyVv2by9yiwF6dHQAAAAh2Pg32OnTo4LSdkZHhtWsXFhYar2NiYrx2XQBAw5Rv87/VM6pb8TbP5n9hJAAAAICac0ut4p49e/Tll18qMTFRhw8f1qxZsxQVFVXtcUVFRU7b8fHxtbquw+HQq6++qrS0NKWlpencc8/VpZdeWu1xJSUlSkpKMrZbt25dq+sCAFBRQSUVe+PPOM7LPflb9RV7BHsAAABAIHNLsJebm6v333/f2F6xYoWGDx9e7XGbNm0yXlut1loHbBaLRXPmzDFCuuLi4hoFexs3bnQafsuKuACA+iowqdhLiLLq5oEdTPb2juoq9gj2AAAAgMDmlqG4PXv2VEJCgrH98ccfV3tMXl6eZs+ebWwPGjSoTkNiBw4caLxevny5UyVeZd566y3jdUJCgk4//fRaXxcAgPLyTYa1rrvvDPVq5btVZ+Mjw2SxVP5+HsEeAAAAENDcEuxZrVZdfvnlxvayZcs0d+7cSvcvLi7WhAkTlJKSYrSNGzeuTtceM2aM03kff/xxFRdXPhn4+++/r8WLFxvb119/fY2GDQMAUJWCYueKvVZxEerYJNpHvSkVHR6mi3q2rPR9Fs8AAAAAApvbFs+444471LLl3w8PEydO1IwZM5Sfn++03+bNm3Xdddfpp59+MtquuOIKDR482OWcEyZMUI8ePYz/JSYmuuxz8skn64ILLjC2ly1bpptuukm7d+922i8lJUWPP/64nn/+eaOtd+/euvnmm2v/wwIAUI7NXqI/D2Y4tVU3v523fHz1iRp/xnFqnxDp8h6LZwAAAACBzS1z7ElSbGys3n77bV177bXKzMyUzWbT9OnT9d///lc9evRQeHi4kpKSXIbKnn322XriiSfqde1nnnlGBw8e1ObNmyVJf/zxhy688EIdd9xxatGihTIyMrRjxw6VlPxdTdGtWze98847slqt9bo2AAAXv7fSpa26+e28JS4yTNMv6a1bBndQrxd+dXqPOfYAAACAwObWp46ePXvqq6++Uv/+/Y22/Px8rV+/XqtWrXIK9aKjo3X//ffrjTfeUFhY/fLF2NhYzZw5U6NHj5al3GRCe/bs0R9//KFt27Y5hXqXXHKJZs2apaZNm9brugAAbDyUpYU7Ul3a/aVir0xMuOt3LcEeAAAAENjcVrFXpkOHDvr888+1ZMkSzZ8/X+vXr9fRo0dls9mUkJCgbt266bTTTtPo0aPVpEkTt103JiZGU6ZM0c0336yvvvpKq1atUmJionJychQfH6+WLVtqyJAhuuiii9SnTx+3XRcAENy+3nTYtD3S6h8Ve2WiTYLGfII9AAAAIKC5Pdgrc8YZZ+iMM86o1zmmTp2qqVOn1uqYLl266OGHH67XdQEAqKlCe4lpu/9V7Ln2h8UzAAAAgMDmX+UEAAAEmJScItN2f5ljr0xEWIhCLM5tDMUFAAAAApt/PXUAABBg9qXnmbb7W8WexWJRdIWqPVbFBQAAAAIbwR4AAPWwJy3XtL2okiG6vlRxAQ0q9gAAAIDARrAHAEAdFdtLdDCzwPS9o5UM0fWlivPs5RQyxx4AAAAQyAj2AACoo4MZBbKXOEzfO5JlHvj5UlyEc8VeDotnAAAAAAGNYA8AgDraW8n8epKUnFPoxZ7UTMVgL7uQobgAAABAICPYAwCgjqoK7544t4cXe1IzsSZDcR0O84pDAAAAAP6PYA8AgDpKzTWfRy8mPFRX9Gvj5d5Ur2LFXnGJQ4XF/rfIBwAAAICaIdgDAKCO0kyCvRHdmmn1+DPUqUm0D3pUtZgKwZ4kZbOABgAAABCwCPYAAKgjs4q9d67opx4tYn3Qm+pVrNiTpBzm2QMAAAACFsEeAAB1lJbnGuw1iwn3QU9qxizYo2IPAAAACFwEewAA1FHFir2IsBDFVFigwp/ERrj2jWAPAAAACFwEewAA1FHFYK9pdLgsFouPelM906G4RQR7AAAAQKAi2AMAoI4qLp7hz8NwpUqG4hYQ7AEAAACBimAPAIA6cDgcLhV7/h7sxTLHHgAAANCgEOwBAFAHeUV2FRSXOLX5e7BnPhSXVXEBAACAQEWwBwBAHVSs1pOkpgEY7FGxBwAAAAQugj0AAOogNc8k2Iu2+qAnNRdrsmIvwR4AAAAQuAj2AACog+1Hc1zaAnIoLsEeAAAAELAI9gAAqCWHw6E3lu9zaff7YC+SYA8AAABoSAj2AACopT8PZuiP/cec2iwW6cwuzXzUo5qJDTcL9lg8AwAAAAhUBHsAANTSqgMZLm1X9W+rNo0ivd+ZWggPC1F4qPNXP3PsAQAAAIGLYA8AgFoqKC5xabvulPY+6EntxUY4L6BBsAcAAAAELoI9AABqqcjuGuw1Mpm/zh9VXEAjp4hgDwAAAAhUBHsAANRSoUnFXkRYYHylVgz2MvMJ9gAAAIBAFRhPIQAA+JFADvaaRFudto/l23zUEwAAAAD1FRhPIQAA+JHCYteVZCNCQ0329D9NosOdtrMLi1VkElQCAAAA8H8EewAA1JJZxV54mMUHPam9isGeRNUeAAAAEKgI9gAAqKVCk8UzAnUoriSl5Rb5oCcAAAAA6iswnkIAAPAjZkNXA2cormuwl55PsAcAAAAEIoI9AABqKZAXz2hqMhQ3LZehuAAAAEAgCoynEAAA/IhZsGcNDZQ59kwq9vKo2AMAAAACEcEeAAC1VDHYiwgLkcUSGMGeWcXeukNZPugJAAAAgPoi2AMAoJbMgr1AYbYq7hvL9uqL9Yd80BsAAAAA9RE4TyIAAPiJiqviRoQGztdp0xjXobiSNPmnbV7uCQAAAID6CpwnEQAA/ERhsd1pO9Ar9iRpe0qu7CUOL/cGAAAAQH0EzpMIAAB+IpCH4kZZQyt9L7eo2Is9AQAAAFBfgfMkAgCAnwjkYK8quUX26ncCAAAA4DcaxpMIAABeRLAHAAAAwB80jCcRAAC8yDXYq3x4qz+6tE8r03aG4gIAAACBhWAPAIBaCuRVcSXptiEdTdup2AMAAAACS2A9iQAA4AcCfSjuuT1a6PpT2ru0E+wBAAAAgSWwnkQAAPAxh8MR8MGeJJ3euYlLW04hQ3EBAACAQBJ4TyIAAPiQze5waQvEYC8mPMyljYo9AAAAILAE3pMIAAA+VLFaTwrUYM91wQ8WzwAAAAACS+A9iQAA4EOFdteqtvAGE+xRsQcAAAAEksB7EgEAwIdMK/YCbFVciaG4AAAAQEMQeE8iAAD4UFFxw5hjLzaCij0AAAAg0AXekwgAAD5kNhQ3Isw1JPN3zLEHAAAABD6CPQAAaqHhLJ5hMhS3kIo9AAAAIJAE3pMIAAA+1HCCPSr2AAAAgEAXeE8iAAD4kFmwFx6Ai2dEhIUoxOLcxhx7AAAAQGAJvCcRAAB8qKFU7FksFpfhuAR7AAAAQGAJvCcRAAB8qKEEe5LryrgMxQUAAAACS2A+iQAA4COFdpNgLwCH4kquC2hQsQcAAAAElsB8EgEAwEcaUsVexQU0CPYAAACAwBKYTyIAAPhIQw72chiKCwAAAASUwHwSAQDARwqLXavaGkqwR8UeAAAAEFgC80kEAAAfsJc49MSCHS7tgRvsOc+xV1hcInuJw0e9AQAAAFBbgfkkAgCAl9lLHLpy1holZxe6vBeowV5cRJhLW0a+zQc9AQAAAFAXgfkkAgCAl324+qBmbzps+l7ruEgv98Y9WsRGuLSZBZcAAAAA/BPBHgAANbDqQIZp+4U9W+i4ptHe7YybtIxzDfZ+2ZXqg54AAAAAqAuCPQAAaiDPZMXYly7ppW9uOEUWi8UHPaq/lnHhLm33fLtZT5nMIwgAAADA/xDsAQBQA/m2Epe2u07rLGto4H6VtqpkCPGUX3Yqk7n2AAAAAL8XuE8jAAB4UZ7N7rQdGmIJ6FBPklqazLEnla6Ou/5Qppd7AwAAAKC2AvuJBAAAL8mvEOxFW0N91BP3aWUyxx4AAACAwEGwBwBADeQVOQd7UdbA/wptGhOukEqmB8wptJu/AQAAAMBvBP5TCQAAXpBf3PAq9kJDLCpxmL+XVei6WAgAAAAA/0KwBwBADVRcPCOqAQR7Vckm2AMAAAD8HsEeAAA14DoUt4EHewUEewAAAIC/I9gDAKAGXBbPCG8YwV7rePMFNKjYAwAAAPwfwR4AADWQZ2t4i2dI0mNndzdtJ9gDAAAA/F/DeCoBAMCDSkocKix2nmOvISyeIUlXn9hOfVvHubQT7AEAAAD+j2APAIBqVByGKzWcOfbiIsO0/K6hLu05BHsAAACA3yPYAwCgGvnFJsFeA5ljT5JiwkMVYnFuy2LxDAAAAMDvEewBAFCNiiviSlJUWMMJ9iwWi2IjwpzaGIoLAAAA+D+CPQAAqpFvK3Fpayir4paJI9gDAAAAAg7BHgAA1ai4Iq7UcObYKxNPsAcAAAAEHII9AACqYb54RsP6CqViDwAAAAg8DeupBAAADzCbYy+6gVXsxUUS7AEAAACBhmAPAIBq/L7vmEtbQxuKW7FiL99WomK769yCAAAAAPwHwR4AAFX4bXeqnliw3aW9oS+eIUk5JpWKAAAAAPwHwR4AAFX47+/7TdsbesWeJCVlFvigJwAAAABqimAPAIAqfLHhkGl7Q59jT5IGvbqU4bgAAACAHyPYAwCgEg6Ho9L3GtqquI1Mgr08m11rEjN90BsAAAAANdGwnkoAAHCj9Dxbpe9FW12DsEA2tHMT0/ZDWQzHBQAAAPwVwR4AAJXYm55X6XsNrWJvaOemOt0k3MsuLPZBbwAAAADURMN6KgEAwI32VRnsNaw59iTpkbO7ubQR7AEAAAD+i2APAIBKVFWxFx3e8II9s5VxCfYAAAAA/0WwBwBAJfYdy6/0vYZYsUewBwAAAAQWgj0AACpR2VDcVnERijcJwQKdWbCXU2j3QU8AAAAA1ATBHgAAlUjJKXRpC7FIj53TXSEhFh/0yLNiI1yrEKnYAwAAAPxXwys3AADATcxCrQ0PnKnereJ80BvPM6/YI9gDAAAA/BUVewAAVCK7wjDUAW3jG2yoJ0kRYaGyhjpXIlKxBwAAAPgvgj0AACpRMdQyq2hraCr+jAR7AAAAgP8i2AMAwITD4VBOEcEewR4AAADgvwj2AAAwkVtkl8Ph3BaMwR6r4gIAAAD+i2APAAATZpVqsUEY7FGxBwAAAPgvgj0AAEyYBVrBULEXGxHqtE2wBwAAAPgvgj0AAEwEa7BX8WcsLC6RzV7io94AAAAAqArBHgAAJrILCPbKULUHAAAA+CeCPQAATJhW7EU2/GDPbB5Bs5ATAAAAgO8R7AEAYIKhuH/LKWJlXAAAAMAfEewBAGCCYO9vDMUFAAAA/BPBHgAAJrILXavU4iqsGNsQmQ7FJdgDAAAA/BLBHgAAJqjY+9uxPJsPegIAAACgOgR7AACYCNZgr22jSJe2Pw9meL8jAAAAAKpFsAcAgIlgDfYGdUhQiMW5bdneNN90BgAAAECVCPYAADCRE6TBXnykVf3axDu1rUnMVC7z7AEAAAB+xyNPKA6HQ0uWLNGcOXO0YcMGpaamKiQkRK1atVLv3r01cuRIDR06VCEh7s8Vc3Nz9c0332jRokXavn27srOzlZCQoDZt2mjEiBG67LLL1KJFC7dfFwDQsGQXOAdZIRYpOrzhL54hSUM7N9W6pCxju7jEoZUHMjS8WzMf9goAAABARW4P9g4dOqSHHnpIf/75p8t7u3fv1u7duzVnzhz1799fzz33nLp06eK2a69Zs0YPPPCADh8+7NSekpKilJQUbdiwQTNmzNCkSZM0evRot10XANDwVByKGxsRJovFUsneDcvQzk30+rK9Tm1bj2YT7AEAAAB+xq0lc0lJSbr66qudQr3o6GgNGDBAAwcOVLNmfz8QrF+/Xv/4xz+0c+dOt1x7zZo1uvHGG51CvbZt22rgwIHq3Lmz0Zabm6uJEyfq008/dct1AQANU8VgLxiG4Zbp3CTapS0lp8gHPQEAAABQFbc9pZSUlOjBBx/UoUOHJElWq1Xjx4/X2LFjFRERIal0iO5PP/2kyZMnKyMjQzk5Obrtttv0ww8/KDw8vM7XzsnJ0fjx41VQUCBJat26taZMmaIhQ4YY+2zdulUTJ07U1q1bJUnPPPOMTjjhBPXu3bvO1wUANFwZ+Tan7UaRwRPsNY9x/U4+mlPog54AAAAAqIrbKvZ+/vlnrV271th++umndfPNNxuhniRZLBadf/75mjFjhjG/XmJioubMmVOva8+YMUNHjx6VJMXFxemDDz5wCvUk6fjjj9dHH32k7t27S5KKi4v10ksv1eu6AICGKy3POdhrGl33X0AFmuaxrj9rai4VewAAAIC/cVuw9+WXXxqvTzjhBF122WWV7tu/f38NGzbM2F60aFGdr1tYWKjPP//c2B43bpw6depkum9sbKyeffZZY3v58uXavn17na8NAGiYiopLXIbiNom2+qg33hcdHqaYCguFULEHAAAA+B+3BHsOh0NHjhwxqvAuuuiiao/p1q2b8Xr//v11vvayZcuUmZkpSQoJCal2UYyKw29//PHHOl8bANAwHaswDFeSmpgMT23IWsRGOG0zxx4AAADgf9wS7FksFs2ZM0dr167VV199pZEjR1Z7TFZWlvE6JiamztdesWKF8bp79+5q3rx5tcecdtppxuvFixfX+doAgIYpzWTYaTANxZVc59mjYg8AAADwP26dCTwqKkp9+/atdr+ioiItXbrU2O7Vq1edr1l+KG1NF8Lo2bOn8Xrnzp0qLCx0mgsQABDc0vII9ipW7KXn21RsL1FYqNtm8QAAAABQT17/13lRUZEmTZqkpKSk0g6EhOi6666r8/n27t1rvO7YsWONjmnXrp3xuri4WImJiXW+PgCg4UnPMxmKG0Rz7ElSswoLaDgcrguKAAAAAPAtt1bsmSkpKTHCs2XLlmnWrFk6cOCA8f7kyZPVpUuXOp87PT3d2K7JMFxJatasmdN2SkpKnfsAAGh4TCv2gnyOPUlKySlUyzgq3AEAAAB/4fFgb8qUKZo5c6ZLe6tWrfTII4/ovPPOq/O5s7OzZbfbje34+PgaHRcXF+e0XX6+P28qLi6ufic/Vv6zN9sGUHPcT/4lJbvApS0hIiTg/96ujaZRrv9EOJyZr57No33Qm9rhfgLcg3sJcB/uJ8B9uJ+ceTzYO3TokGl748aNdfToURUUFCgyMrJO5y4sdJ7Iu6bz5IWHO1ddVDyPN5SUlGjDhg1ev64nbd682dddABoM7iff2rrP9Rc+KQf3akN28EzdUJCe59K2+q+dapIbeJ8B9xPgHtxLgPtwPwHuE+z3k8fn2EtNTVXPnj01ePBgde/eXSEhpZfcunWrnnnmGY0aNUq7d++u07krVk6EhobW6LiK+wV7ugsAcJZVVOLS1ig8uBaNSIhw/XmPFfJ9CQAAAPgTj1fsffLJJ05BWkpKit544w199tlnkqR9+/bphhtu0HfffafGjRvX6tx1Degq7me1BteE6ACAqmUWugZ78SZBV0PWNNL1l2Vp+a6fCwAAAADf8XiwVzF8a968uZ588km1a9dO06ZNkyQlJyfrzTff1KRJk2p17opDeGs6pLauQ3jdKSQkRH379vX6dd3Jbrc7lbz26dOnxlWTAJxxP/kX+x8rJf09z160NVQDT+zvs/74QousAumnxU5tJVGN1K/fCT7qUc1xPwHuwb0EuA/3E+A+De1+2rRpk0pK6v4LdI8He5UZN26cFixYoI0bN0qSvv32Wz3yyCPGUN2aiIuLU0hIiPEB5OTk1Oi4ivslJCTU+JruFBbms4/fI0JDQxvczwT4CveT7xTY7NqV5jy/XNMYa9D992iTEKMQi1Ti+LstOacoID8H7ifAPbiXAPfhfgLcJ9jvJ5+OKxo1apTxOjs7W/v27avV8SEhIWrevLmxnZaWVqPjUlNTnbabNWtWq+sCABqm33anqvNzP+tQlvOquE2iwys5ouEKDbGoRaxzRfvhbO8vNgUAAACgcj4N9jp06OC0nZGRUetzdOzY0Xh94MCBGh1z8OBB47XValXbtm1rfV0AQMPz4Ny/lGwSXsWEB25pf320jq8Q7FUIPAEAAAD4lltqFffs2aMvv/xSiYmJOnz4sGbNmqWoqKhqjysqKnLajo+Pr/W1+/Tpo1WrVkmStm3bVqNjtm7darzu2rUri2cAAFRsL9GaxEzT9yLDgjTYi4vUOmUZ2ym5RSq2lygsNLgWEgEAAAD8lVv+ZZ6bm6v3339fCxYs0KZNm7RixYoaHbdp0ybjtdVqVevWrWt97YEDBxqvt2zZoqysrCr2LvX7778brwcPHlzrawIAGp7C4sonrI0MC84gq1W88yJVDoeUnMNwXAAAAMBfuOVJpWfPnk4LUHz88cfVHpOXl6fZs2cb24MGDVJMTEytrz1kyBDFxcVJkmw2m7766qsq99+wYYP++usvY/uCCy6o9TUBAA1PQRXBXpQ1SCv24l1XjT/CPHsAAACA33BLsGe1WnX55Zcb28uWLdPcuXMr3b+4uFgTJkxQSkqK0TZu3Lg6XTsyMlJjxowxtt944w1t377ddN/s7Gw9+uijxnb//v3Vr1+/Ol0XANCwVFmxZw3Oir3WcZEubYezCPYAAAAAf+G2J5U77rhDLVu2NLYnTpyoGTNmKD8/32m/zZs367rrrtNPP/1ktF1xxRWmQ2InTJigHj16GP9LTEw0vfYtt9yiJk2aSCodFnz99ddr4cKFcjgcxj7btm3T2LFjtXPnTkmlyyFPmDCh7j8wAKBBqSrYiwjWOfZMKvZYQAMAAADwH25ZPEOSYmNj9fbbb+vaa69VZmambDabpk+frv/+97/q0aOHwsPDlZSUpKSkJKfjzj77bD3xxBP1unaTJk00ffp03XbbbSooKFB6erruuusutWrVSh06dFBaWpp2797tdMwDDzygAQMG1Ou6AICGo6DYXul7UcFasRfvWrF3iGAPAAAA8BtufVLp2bOnvvrqK/Xv399oy8/P1/r167Vq1SqnUC86Olr333+/3njjDYWF1T9fHDJkiN555x21adPGaDty5IhWrVrlFOpFRkbq8ccf10033VTvawIAGo6qF88Izoq9to1cg73ETII9AAAAwF+4rWKvTIcOHfT5559ryZIlmj9/vtavX6+jR4/KZrMpISFB3bp102mnnabRo0cbw2fdZeDAgfr+++/19ddfa+HChdq1a5cyMjIUERGhjh076rTTTtOVV16ptm3buvW6AIDAV9XiGcE7x16EQkMsspf8PbXFwWP5VRwBAAAAwJvcHuyVOeOMM3TGGWfU6xxTp07V1KlTa3VMVFSUrr76al199dX1ujYAILgUVjkUNzgr9sJCQ9QmPkIHM/6u0juQQbAHAAAA+IvgLEEAAKCCqofiBu/XZYeEKKftgxn5TotTAQAAAPCd4H1SAQCgnCqH4gbpHHuS1KFxtNN2bpFdM1cnKj2vyEc9AgAAAFCGYA8AAFVdsResq+JKUvsKFXuSdMPn69XnxV+1NTnbBz0CAAAAUCZ4n1QAACinoIo59iKDdI49SWqf4LoyriQdyS7U23/s93JvAAAAAJRHsAcAgJhjrzIV59grb/vRHC/2BAAAAEBFwfukAgBAOVUPxQ3eir0OjSsP9vam53mxJwAAAAAqItgDAEBSgY2KPTPdmsUoIcpq+l5cRJiXewMAAACgvOB9UgEAoJxCexXBXhBX7EWHh+nZC3rKGmpxeS+3qPJ5CQEAAAB4HsEeAACSCmyVh1TBvCquJN1+aiftnDDcpT2vis8MAAAAgOcF95MKAAD/r+rFM4K3Yq9Mh8bRGtyxsVNbHhV7AAAAgE8R7AEAoGqG4gbxHHvlRVcYkkzFHgAAAOBbPKkAAKBqFs8I4jn2yjML9hwOh496AwAAAIBgDwAASUVVDMUN9jn2ykSHOwd7DkfVQ5gBAAAAeBZPKgAASCoornxYKXPslapYsScxHBcAAADwJYI9AABUdeWZNdTixZ74r6hwk2CPBTQAAAAAnyHYAwBAVQd7FgvBniTFmAR7uQR7AAAAgM8Q7AEAIKmAueKqxVBcAAAAwL8Q7AEAIKmwijn2UKri4hkSQ3EBAAAAXyLYAwBAVOzVBBV7AAAAgH8h2AMAQFXPsYdSVOwBAAAA/oVgDwAAEezVBBV7AAAAgH8h2AMAQFIBc+xVi4o9AAAAwL8Q7AEAoMor9q49qZ2Xe+K/YkyCvdyiYh/0BAAAAIBEsAcAgCTzxTMSoqy687TOPuiNf2IoLgAAAOBfwnzdAQAA/IFZxd6GB4apfUKUD3rjnxiKCwAAAPgXKvYAAEHP4XC4BHsje7Uk1KuAij0AAADAvxDsAQCCXpHdtVovMoyvyIqo2AMAAAD8C08tAICgZzYMN4Jgz4VZxV4+FXsAAACAz/DUAgAIetmFriu7xkQwDW1FVOwBAAAA/oVgDwAQ9DLzXYO9eII9F+GhIQoNsTi1McceAAAA4DsEewCAoJdZYHNpaxRl9UFP/JvFYnEZjjt/61F9vDZRDofDR70CAAAAghfBHgAg6GUWuFbsNYqkYs9MzxaxLm1jP1mnl5fs8UFvAAAAgOBGsAcACHqmFXuRVOyZOb9nC9P2masTvdwTAAAAAAR7AICgl0XFXo1ddLx5sLf1aLaXewIAAACAYA8AEPTMhuLGE+yZOrldglrEhru02+zMsQcAAAB4G8EeACDoMRS35kJCLJo4opvpe4XFrJALAAAAeBPBHgAg6JkvnkGwV5m7T+tsWtGYXej6OQIAAADwHII9AEDQyzar2ItiKG5lQkIsuv6U9i7tZnMVAgAAAPAcgj0AQNAzq9iLiyDYq0q8yedDsAcAAAB4F8EeACDoZeY7V+xFW0NlDeUrsirxJkOVCfYAAAAA7+KpBQAQ9I7mFDltMwy3emZz7GUxxx4AAADgVQR7AICg9sGfB7UlOdupjYUzqmc2FJfFMwAAAADvItgDAASt3MJi3f3NJpf2RibVaHBmNgdhlskiJAAAAAA8h2APABC0tiRnK7fI7tJuNswUzkyH4jLHHgAAAOBVBHsAgKCVkW9eYZaZT0BVHebYAwAAAHyPYA8AELQyK6kwCwu1eLkngSc+glVxAQAAAF8j2AMABK3KKvbO69HCyz0JPGYVeyyeAQAAAHgXwR4AIGgdqyTY+9eAtl7uSeAxWzwjm4o9AAAAwKsI9gAAQcusYu+7G05Rl2YxPuhNYAkPC1FEmPM/I7IKWRUXAAAA8CaCPQBA0DIL9vq3beSDngSm+ApVe8yxBwAAAHgXwR4AIGiZLZ6REOm6KATMVZxnj2APAAAA8C6CPQBA0KpYsRcaYlFsRKiPehN4KgZ7LJ4BAAAAeBfBHgAgaFUM9hIiw2SxWHzUm8BTsboxJbdIDofDR70BAAAAgg/BHgAgaLkEe1EMw62Nto0inbYLi0uUmlvko94AAAAAwYdgDwAQtDIKCPbqo33jKJe2Axn5PugJAAAAEJwI9gAAQYuKvfpp38g12DtIsAcAAAB4DcEeACAoFRbblW8rcWpjRdza6WBWsXeMYA8AAADwFoI9AEBQysh3XcG1ERV7tdI+waxir8AHPQEAAACCE8EeACAoVRyGK0kJUWE+6Eng6mAa7FGxBwAAAHgLwR4AICiZB3tU7NVGoyir4iKcw1AWzwAAAAC8h2APABCU0vOKXNoaE+zVWsWqPSr2AAAAAO8h2AMABKVUk2CvWUy4D3oS2CouoJGUWaCFO1J81BsAAAAguBDsAQCCUlqu61DcptEEe7V1YrtGLm3nvf2Hpv6y0we9AQAAAIILwR4AICilmVTsNaVir9aGd21m2j7l513KK3JdeRgAAACA+xDsAQCCUlquSbAXzRx7tTWkY2PT9uzCYh3MKPBybwAAAIDgQrAHAAhK6XmuQ3GZY6/2Iq2hOrubedWeWVUkAAAAAPch2AMABKXUChV7kWEhig4P81FvAtvNgzqatlf8jAEAAAC4F8EeACAoVawmY369uruiX2ud2aWpS7vZcGcAAAAA7kOwBwAIShVDJ1bErTuLxaLJ53Z3aadiDwAAAPAsgj0AQFCqWLHH/Hr10ywmwqUtzWQeQwAAAADuQ7AHAAg6eUXFyreVOLWxIm79mH1+VOwBAAAAnkWwBwAIOmaVZE2o2KsXszkK01kVFwAAAPAogj0AQNAxW9SBOfbqxxoaovhI51WFqdgDAAAAPItgDwAQdA5nFbi0Mcde/VX8DFkVFwAAAPAsgj0AQND5bkuyS1u7RpE+6EnDUrHqkYo9AAAAwLMI9gAAQaWouERfbTzk1BYRFqJzujf3UY8ajooVe+n5NpWUOHzUGwAAAKDhI9gDAASVpXvTlF5h8YyLj2+pRlGsiltfFVfGtZc4lFngulAJAAAAAPcg2AMABJWDGa7z613at5UPetLwmK2Mm5xT6IOeAAAAAMGBYA8AEFTybXaXNlbEdY/2CVEubVuTc3zQEwAAACA4EOwBAIKKWbAXZeXr0B1OaB3v0nb5h6uVnE3VHgAAAOAJPMkAAIKKWbAXGRbqg540PGbBniQN+89yFdtLvNwbAAAAoOEj2AMABJWCYteAKcpKsOcOLeIi1CouwqV9R0quVh3M8H6HAAAAgAaOYA8AEFQYiutZXZpGm7YfZRENAAAAwO14kgEABJV8m2vFXiQVe24zuGMT0/ZCk0pJAAAAAPVDsAcACCpU7HnWpX1ambabBaoAAAAA6ocnGQBAUDGrHIti8Qy3Oa1zE53aqbFLe4FJoAoAAACgfgj2AABBxXRVXIbiutUz5/d0aTNbtAQAAABA/RDsAQCCSsVgzxpqUWiIxUe9aZjMglKzQBUAAABA/RDsAQCCSsWAKYpqPbeLDHP95wUVewAAAID7EewBAIJKQYVFHAj23M/sM2WOPQAAAMD9CPYAAEElv9g5YDKrLkP9mH2m+VTsAQAAAG7H0wwAIKjkU7HncWZz7FGxBwAAALgfwR4AIKi4zrHHV6G7mX2mhVTsAQAAAG7H0wwAIKhUrByjYs/9IsNYFRcAAADwBoI9AEBQqTgU1yyEQv1YQy2yWJzbKi5aAgAAAKD+CPYAAEHD4XC4LJ7BUFz3s1gsiqoQmBYUU7EHAAAAuBtPMwCAoGGzO+RwOLcxFNczIisEpgXMsQcAAAC4HcEeACBoLN+X7tIWGcZXoSdUHOLMHHsAAACA+/E0AwAICvvT8zTirRUu7ZFU7HlExSHOzLEHAAAAuB/BHgAgKHy4OtG0naG4nlGxYo859gAAAAD3I9gDAASF15btMW0n2POMinPsVVyNGAAAAED9EewBAIJCo0iraTtz7HlGxc+Vij0AAADA/XiaAQAEhfjIMNN2KvY8o+Lnyhx7AAAAgPsR7AEAgkJsuHmAV3GRB7iHy6q4xXY5HA4f9QYAAABomHiaAQAEhZwi86GgrIrrGRXn2HM4JJudYA8AAABwJ4I9AEBQOJZnM21njj3PMBvizDx7AAAAgHvxNAMACArp+UWm7VkFxV7uSXCIMAlMWRkXAAAAcC+CPQBAg2ezlyin0LxaLN9GFZknmA1xLuCzBgAAANyKYA8A0OBl5JsPw5WkUX1aebEnwSPKpGLv5aV7dCzPvHISAAAAQO2FeeKkK1eu1Pz587Vu3TodPXpUOTk5io2NVevWrXXyySdr9OjR6tWrl9uul56eriFDhtT6uBdeeEGjRo1yWz8AAP7pWCXB3pX926h781gv9yY4mFXsvbZ0r77eeFib/32m4iOtPugVAAAA0LC4NdhLTEzUww8/rNWrV7u8l5GRoYyMDG3dulWzZs3SRRddpKeeekqxsfV/oNq6dWu9zwEAaLjSTRbOGN61mT6++kQf9CY4VLYoSWJmgb7edETXn9Leyz0CAAAAGh63BXv79u3TVVddpfT0dKPNarWqe/fuiouLU1pamnbt2iWHwyFJmj9/vnbv3q2PP/643uFe+WCvZcuW6tatW42Oa9GiRb2uCwAIDGbDPy/r20oWi8UHvQkOZqviltmdluvFngAAAAANl1uCPbvdrrvvvtsI9UJDQ3X77bfrhhtucArtkpOTNX36dH377beSpG3btunRRx/Vq6++Wq/rlw/2/vGPf+iuu+6q1/kAAA2L2VDcxlEMBfWkyir2JPMKSgAAAAC155bFM77++mvt2LHD2J46daruvvtul0q8li1b6vnnn9cNN9xgtP34449av359va6/bds243XPnj3rdS4AQMNjFuw1iQ73QU+CR1ho5dWQVS1mAgAAAKDm3BLsfffdd8broUOH6pJLLqly//vvv99pGOz8+fPrfO3CwkLt3bvX2O7Ro0edzwUAaJjMKsSo2POsdo2iKn0vnZVxAQAAALeod7BXVFSktWvXGtsXX3xxtceEh4dr6NChxvamTZvqfP3t27fLbrdLkmJjY9WuXbs6nwsA0DBlFrgGewkEex41rEtTdW4SbfoeQ3EBAAAA96h3sJeUlKSIiAhju0uXLjU6LiEhwXh97NixOl+//DDcHj16MBE6AMBFVkGxS1ujSLcuDI8KoqyhWnbXaXr2AtcpMqjYAwAAANyj3k81nTt31rp165Sdna3k5OQaV8wlJSUZrxs1alTn65dfOIP59QAAZrILXYO9eII9j2sdH6mJI7pp/tZk/b7v71/iUbEHAAAAuIfbnmri4uIUFxdXo31zcnK0fPlyY7umVX5mygd7PXr00IEDBzR79mwtX75c+/btU0FBgZo2bapevXrp3HPP1ciRIxUWxsMcAASTihV7oSEWRVlDfdSb4NMkynmhkowCm+wlDoWGUGUPAAAA1IdPEq733ntPOTk5xvZZZ51Vp/M4HA5t377d2J43b56efPJJY869MkeOHNGRI0f0yy+/6K233tKLL76oE044oW6dBwAEnKwKc+zFR4QxdYMXNYl2ns/Q4Sid95CViQEAAID68Xqwt3HjRr3zzjvGdqdOnTR8+PA6nWv//v3Ky8sztletWiVJslqt6ty5sxo3bqxjx45p165dKikpkSTt27dPY8eO1euvv64zzjijHj9J/RUXuw4NCyQVA9SK2wBqjvvJszIrVOzFR4QF/N/BgSTBZNjzYz9s1SuX9PJIwMr9BLgH9xLgPtxPgPtwPznzarCXmJioO+64Qzbb35UTEyZMqPPQ2PLDcKXSQO+OO+7QVVddpcaNGxvtaWlpevvtt/Xhhx/K4XCooKBA9913n2bPnq1OnTrV6dr1VVJSog0bNvjk2p6yefNmX3cBaDC4n9wrLTvPaTtctgb3d7A/K8zKdmn774oD6hGeo9PaRHr8+txPgHtwLwHuw/0EuE+w30/1XhW3pg4fPqzrrrtOKSkpRtv1119f52G4krR3717jdUREhGbOnKk77rjDKdSTpKZNm2rixImaMmWK0ZaTk6Np06bV+doAgMCRaytx2o6xeu3rD5Liw80/78WJBV7uCQAAANCweOXJZvfu3brqqquUmJhotA0dOlQPPvhgvc57xx13aM2aNfruu+/0xRdf6MQTT6xy/8suu0wXX3yxsb1w4UIdOnSoXn0AAPg3h8OhXJvDqS3Gyvx63tQo3Pzz/m53nmk7AAAAgJrx+FDctWvX6o477tCxY8eMtsGDB+uNN96Q1Wqt4siaiY2NVc+ePWu8/9ixYzVv3jxje/ny5briiivq3Y/aCgkJUd++fb1+XXey2+1OJa99+vRRaCirTAJ1wf3kOblFxbI7Dju1tW3eRP369fNRj4JPclSKtGK1S3tseKhH/jtwPwHuwb0EuA/3E+A+De1+2rRpk7EuRF14NNibO3euHnnkERUVFRltw4YN02uvvabISM/PqWOmT58+slqtxjx/+/fv90k/JNV5bkF/FRoa2uB+JsBXuJ/cJy/PdZGMRlFWPl8vahJj/p2fa7PLLosiwjz7DzHuJ8A9uJcA9+F+Atwn2O8njw3Fff311/Xggw86hXqXXHKJ/vOf//gs1JNKw7SEhARjOzMz02d9AQB4XlaBa7AXH1H/inHU3PEtYhUR5vpPDodD2pee74MeAQAAAA2D24M9m82mhx56SG+88YZT+6233qoXXnjBL1LU8mFjTEyMD3sCAPA002Av0vffRcGkUZRVT57Xw/S93Wm5Xu4NAAAA0HC49cmmqKhId999t3799de/LxAWpieeeMLt89hlZ2frnXfeUVpamtLS0nTNNddo6NCh1R6XkZGhrKwsY7t169Zu7RcAwL9kFdpc2gj2vO+hs7oqMixE47/b4tS+O40FNACgPlJyCvXvuX9pZ2quxvRrrXuGHqfQEBaJAoBg4bYnm+LiYt1zzz1OoV5MTIxee+21GgVutRUZGan333/fmCuvdevWNbrO8uXL5XD8vTriySef7Pa+AQD8h/lQXII9XxjetZlLGxV7AFA/N32+QfO2JkuSVuw/plZxkbpqQNsqj8nIt+nN5XtVXOLQHad2UvPYCG90FQDgAW4bivviiy9q8eLFxnaTJk00a9Ysj4R6kmS1WjVgwABj+/vvv1dOTk6VxxQXF+vdd981trt27apevXp5pH8AAP/AUFz/0blJtEvbkaxCH/QEABqGwmK7EeqVuX/Olkr2LmUvcWjwa0v12I/b9eSCHRowfYkKbHZPdhMA4EFuCfZ+++03ffjhh8Z2o0aNNHPmTPXu3dsdp6/UmDFjjNcZGRl67rnnqtx/6tSp+uuvv4ztW2+9VRYLZeoA0JBlFZoFeyye4QsxEWGKrLCIRlpeUSV7AwCqk5Lj+ndocnbVvzBZsP2odqT8XS19KKtAX2087Pa+AQC8o97Bnt1u17PPPmsMb7VYLHrppZfUrVu3ep137Nix6tGjh/E/MyNHjlT//v2N7dmzZ2v8+PE6fNj5i+nAgQO66667NGvWLKNt+PDhuuSSS+rVRwCAf8srKta93252aWcoru80iQ532k4n2AOAOkvNNf87tPzUQxV9ui7Jpe2tFfvc1SUAgJfV+8nmxx9/1P79+43tqKgoffDBB/rggw9qfI5mzZrp+eefr/W1Q0JC9Nprr+lf//qXEhMTJUk//PCDfvrpJ3Xr1k2NGzdWSkqKdu/e7XTcwIEDNX369FpfDwAQWD5cnWjazlBc32kSbdWhrAJje11SljYfzlKf1vE+7BUABKaUSoK91NyiSufNY8QSADQsbgn2ysvLy9OyZctqdY62baue3LUqLVu21JdffqlHHnnEmOOvpKRE27dvd9k3NDRU11xzje677z5FRUXV+ZoAgMDw884U0/aEKIbi+krTChV7knTyK0v1w7hBOstkcQ0AQOUqq9jbm55XqwUxqijwAwD4uXoHe3v27HFHP+qlSZMmeuutt7RhwwZ9++23WrNmjQ4fPqz8/HwlJCSodevWOv3003XxxRfruOOO83V3AQBekp5nc2nr3yZereMjfdAbSKUVexUV2Uv0n+X7CPYAoJZScszn09ubnqeBHRqbvmc2TDe3yK70vCI1jrJS0QcAAabewd78+fPd0Q8X5efDq6l+/fqpX79+HugNACAQmQV7H199og96gjKNTSr2JGn2JiZuB4Daqqxi76qP1mr2xsN647K+ahHnXLmXabJa/MbDWWr2+E8ac0JrfXjVAEVZQz3SXwCA+7llVVwAAPxRxRVX+7WJ1/Et43zUG0hSU5OKPQBA3VQ2x54kfbXxsJ5Y4Do9UWVhYNkxX/OLFgAIKAR7AIAGq+KKq2bzu8G7Kq6KW15VqzgCAJw5HA7NXH2wyn3eWrHfpa2qYE+SHpz7V736BQDwLoI9AECDlG+zK99W4tRmNr8bvKtpTOX/DbILXYeHAQDM3fH1JpfvOTNZBc7TUlQX7CVnm8/bBwDwTwR7AIAGqWK1niQ1Jtjzuaoq9lJyqn7YBACUOpxVoHf+cK3GM7P9aK7x2mYv0bF81/lnAQCBi2APANAgmS2cUVWoBO9oElV5uFpdFQkAoNQf+4+ppIazF2xLyTZeu+MXKEXFJfplZ6rWJGbU+1wAgPqr96q4AAD4I7OKPebY872mMVVU7BHsAYCTRTtS9MGfB9UsNlwPn9VVreMjJUl/Hsyo8Tmu+3S9ft6Rqh+3H9XRegZ7eUXFGvaf37UmMVOSNP6M4zT9kt71OicAoH6o2AMANEhpphV7DMX1tar+G1CxBwB/W5OYofPe+UOfrEvSa0v3qtOzi7ThUGmgVptgT5JmrkmsVaj3x/5jevuP/dqVmuvUPnvTYSPUk6RXl+7RnrTciocDALyIij0AQINkVrFHsOd7Vc+xx4TtAIJbVoFNu1Jz1aFxlL7edFjlFwu32R0aMH2Jbh3SUb/vS/doP059fZkkyWKRfrltiIZ1aSZJevePA077ORzSx2uT9Ng53T3aHwBA5Qj2AAANktkcewzF9b0oa6i6N4/RjhTXCg+G4gIIZpsPZ+mi91bqYEaBmkRbTb/HJGnGipotmuEODof0wJy/tPq+MyRJiZkFLvvsTMnxWn8AAK4YigsAaJDSTEIiFs/wD8+c39O0naG4AILZS7/t1sGM0uCsslCvMuf3aO6JLkmS1iZlavnedBXY7GpuMk/qtqMEewDgS1TsAQAapPR85tjzV2P6tdHe9gnq/NzPTu2pblitEQAC1YerE+t0XPuESN1z+nH6cXuKm3v0t9PfXK7w0BAV2Utc3ttwOEuFxXZFhIV67PoAgMpRsQcAaJDSTSv2CPb8Rccm0Woc5fzfIyWXOfYAoLYeOqurOjeJ9vh1zEI9qXTuv42Hsj1+fQCAOYI9AECDVHEOt0aRYVQT+JmKQWtmQbGPegIAvuUov0pGLQ3t3ETNY3071cS+Y3k+vT4ABDOG4gIAGpwCm13bKkzm3bd1vI96g8rERTj/MyS7kGAPQHDKK7LX+djOTaIVG+7bx7rEzHyfXh8AghkVewCABuev5GzZS5yrH04g2PM7BHsAUMpsXtiaaBptVXykVSEhljod764pKhIzXFfLBQB4B8EeAKDB2XAoy6WtXxuCPX9TMdjLKSyu13A0AAhUZiu510T5ufUePLNLrY//Z/+22vjAsDpdu7ykTII9APAVhuICABqcDYcJ9gJBXKTzP0NKHKXD0WIi+OcJgOCSlle3YK9FbITx+tkLeiohyqp1iZk6s2tT7UzN1WtL91Z5fHioRY0rqdrr0TxG2yvMV1uZVQeOaV96njo2jpLFUrfqQQBA3fAvZwBAg7PliPPqfCEWqU+rOB/1BpWJNQnwsguLCfYABI1ie4ne//OgJv+0vU7H5xT9PYWBNTREj4zoZmzvTs3VlxsO6XBWoUIspb88qSjEYlGruEi1iovQkey/Vya/dUhH3Tyog85+a0WNFjbadyxfxz33s644obU+veYkl6HBuYXFemDuX5qz5Yh6tYzTu//op05eWMkXAIIBQ3EBAA3O0ZxCp+22jSIV7eOJxeGq4lBcSXpj+T6G4wIIGo/8sE23fbVRydmF1e7bwmTl2yv6tal0/y7NYrT5wTM198aB2vDAmXr+ouNd9jm3R3OFhlj0+mV9FBFW+mg4pGNjPX/R8TqpXYK2Pzxc3988SK9d2qdGP8+XGw9r3tZkl/b//L5Pb/+xX0eyC/XLrlTd/c2mGp0PAFA9nnIAAA1OWq7zJORNo10fhuB7ZsHecz/vVFiIRU+c18MHPQIA77HZS6odKlve7ad20qtL9yrj/xfaCA8N0RUnVB7sSVLj6HBd1KulJKllXLieWLBd+bYSSVKXptE6u1tzSdLlJ7TR+T1a6Eh2oY5rGm0Mp20RF6Hze7aQw+FQaIhFn6xNlCQt33es0msu2pmqS3q3cmp7eP5Wp+35W4/K4XAwbBcA3IBgDwDQ4KRXmKuoCcGeXzIL9iTpmUU7CPYANDhrEzM08futyiuy6+Hh3dQiNlxF9pIaH98hIUo/3DxITy7YLrvDoUdHdFeLuIjqD/x/zWIitHr8GXp5yR5FWUM1cXhXhZYbMhsTEaYulfy9bLFYdPupnXT7qZ0kSZN/2q6nF+4w3XfB9qM16k9ukd10SgYAQO3wNykAoEHJt9lVUOz8oNSkkonB4VtxEaGm7SWO0nmnwkKZMQRAw1BYbNcF76xUyv+vfnvJ+6t019DOtTpHoyirBnVsrO/HDa5zP45vGae3r+hX5+PLtGsUWel7h7IKVFLiMObZyyk0n6MvI99GsAcAbsC/mAEADUrFaj2Jij1/VVnFniSl5dkqfQ8AAs3sjYeNUK/MG8tqPgxXkhpF+k8INrxrM1U2ijan0K6dqX+vprs7zXxl3bIhxQCA+vGfbwcAANwg3SQQomLPP1UV7B3NKVTLWgwxAwB/tupgRr3PkRDlP99lXZrFaOZVA/Tkgh3aleoa3N3z7SbFhodpZ2qu8mx203NkFBDsAYA7EOwBABoUKvYCR3XBHgA0FPmVhFu10SjSf4I9Sbr6xHa6+sR2+mVnqs6escLpvYU7Uqs9PiPffIguAKB2GIoLAGhQzIZwUrHnn+KqGFaWkuMa0AJAoCqw1XyRjMo09dPvsqGdm6htFXPuVYahuADgHgR7AIAGxbxizz8fhoIdFXsAgkVmPYedDjuuqRr7afV5eFiI5t44UG3iaxfu7U3P04wV+/TZuiTZSxwe6h0ANHwMxQUANChmc+w19dOHoWBXdbBHxR6AhuNQZkGt9r/+lPbadDhLJQ6HBnVorCfP6+GhnrlH/7aNtOre09V96i+VzqlX0eSfthuvv9xwSLOvP8VT3QOABo1gDwDQoJgvnkGw54+qCvZScqnYA9BwJGXVLth77x/9ZKls2Vk/1aZRpDo0jtK2ozm1PvabzUe0Jy1XxzWN8UDPAKBhYyguAKBBYShu4IgJD630PebYA9BQFNtLlJxd819WPHZO94AL9cq0q8Nce2W+23LEjT0BgOBBxR4AoEExC/YaRxHs+aP/Y++uw9u4sj4A/0bMssxsJw4zM3PTNmVmbre0Tbndft0yt1tmSplSTMPUMDOT7ZhBtsU83x+KZUuaEdgyn/d59tl6ZjS6jm3NzLnnnhPqwZVq7BFCOosyox3hSsjJxQLkJSgxs1cSHp6a1zoDawGZWnmTX+twUZ09QghpCgrsEUII6VQCl+IqxELIxPyZYaR9oow9QkhnURymvt7QDA223TsJAkHHzNJrLCOu6Rl7NldktfkIIYT4o6W4hBBCOpXAwB4tw+2YKGOPENJZnNRbQu6/ZXROpwjqAc1bihvNcmVCCCENKLBHCCGkUzHY/AN7cbQMt127ZFAa5/Y6mwtOt6eVR0MIIbG34ZQ+5P5hmdpWGknLa85S3DIK7BFCSJNQYI8QQkinYrC7/L4O1XmVtL2HpvVAqlrKua/WGtzhmBBCOpL/LD6M9zbmhzymX4q6dQbTCjKbsRT3r4PlMRwJIYR0HRTYI4QQ0mmwLAtjQGBPI6PAXns2PDMOBx6cgknd44P21VBgjxDSAa08Vombf9yDuR9vxvMrj4U9XtWJJqCak7Hn8rC47rtdMRwNIYR0DRTYI4QQ0mnYXR443f5d9Shjr/3TKSSY3jMpaHuNhQJ7hJCOZcMpPWZ9tBmfbS3EkiOVbT2cVhevEKN7gqLJr/9qRxE25odeukwIIcQfBfYIIYR0GoHZegCgpoy9DkHHUQuRMvYIIR3N59tOg2XDH1dvRs/ElhtMG2AYBi/O7duscyw/2vUCooQQ0hwU2COEENJpGGwcgT3K2OsQdBzdiymwRwjpaPaU1EV1/PPNDIK1RxcPTsfr8/o3+fWbC2piOBpCCOn86GmHEEJIp8GVsaehwF6HwJmxR0txCSEdiMvtwYEyY8hj/j2pO3YV1UFvdeDeid0xIiuudQbXynomKpv82m2na8GyLBiGieGICCGk86KnHUIIIZ0GZex1XNxLcR1tMBJCCGma49Vm2Fwe3v2PTu+B587qfBl6XFRSYZNfq7c4cbzKjJ5JqhiOiBBCOi9aiksIIaTT4MzYoxp7HQItxSWEdHR7S0Jn6/VJ7jqBquZ2+t1eFN2SZkII6coosEcIIaTTMHA1z6CMvQ5BJ5cEbaPAHiGkI9lbagi5f0JuQiuNpO2pJNzX3muGZ0b0+sIaayyHQwghnRoF9gghhHQa3Bl7wZlgpP3hWopbSzX2CCEdyJZC/qYPN47KRrcERSuOpm3xLcV9YEoerhia4bft/AGpQceVGGwtMi5CCOmMKI2BEEJIp2C2u3D7z3uDtqubUeeHtB6JSACFWAiL0+3bRhl7hJCOwuZ0Y8Mpvd+2TK0Mr8/rD51CjGk9EttoZG2DL2MvQyvDN1cNw9Oze2NPqQEpKikGp2ugeXyx33E/7inBpO7xmNojEfGK4IxuQgghDSiwRwghpFO49/cDnNspY6/j0CnEsNRRYI8Q0vFsKqgJapwxt28KLh6c3kYjaltKCfekWtyZa3JeohJ5jTrnamQivwZY5UY7LlmwAzk6OTbePQFpGlnLDpgQQjowWopLCCGkU/hsayHndqqx13EELsetpcAeIaSdKzXYcNbHmzH9g01B+6b37FpZeo2JhNyPmQIBw7k9gydwV1BjxVc7imI2LkII6YwosEcIIaTDM3PU1qunocBehxEY2KOMPUJIe/fk0iNYeqSSc9/UHl2nWUZzpWv5M/L+OFDWiiMhhJCOhwJ7hBBCOrxyk513n1pGgb2OQqfwD+wZbC643B6eowkhpO19soU7W7xHohKJSmkrj6Z9mdnLP2MxVEdcvow9ACiqpUYahBASCgX2CCGEdHjlRv7AnkxEl7qOIkEZXCA9VNCWEELakjPExEPfZFUrjqR9emJmLySd+VzP0cnx4JQ83mPTQmTsFdZaQ2bmE0JIV0dpDIQQQjq8UMEfhuGu50Pan+w4edC2ghorMrTB2wkhpK2FyiTrTYE9TOiWgMMPT0VxnQ258QqoQpTGCJWxBwDqxxfj5XP64ZrhmUhRd+1MSEIICURpDIQQQjq8UBl7pOPI0SmCtuXrLW0wEkIICa+ghv/zqQ8F9gAAOoUEA9I0IYN6QOgae/Ue+usgsp9djs0FNbEaHiGEdAoU2COEENLhlRsdbT0EEgM5Ou6MPUIIaY9CfT5RYC86g9I0ER3ndLN4ZfXxFh4NIYR0LBTYI4QQ0uFV8CzFvX5EViuPhDQHBfYIIR1JqM+n3kkU2ItGj0QlbhgV2TV7d4mhhUdDCCEdCwX2CCGEdHhcgb1MrQwPT+vRBqMhTZWplUMQUBKxMMRSN0IIaW0utwefbCnA44sP4eMtBZzHJColnM2ASGifXjoEa/81Duf1Twl53Cm9BSV11CmXEELqUfMMQgghHR5Xjb1jj06DVCRsg9GQppKIBEjXyFDU6IEtv8YKq9MNiVAAYWDUjxBCWhHLsrj++934dldxyONuGEnZ4k01sXsCSg12/H6gPORxmc8sx+JbRmN27+RWGhkhhLRflLFHCCGkwwvsipuXoKCgXgcVuBz3cIUJmscXQ/no33h/Y37bDIoQQgAsOVwRNqj3wty+ePasPq00os4pNcKut08sPtzCIyGEkI6BAnuEEEI6vMCMvZQIHwpI+8PVGdftYeFwe3DPb/tRyVNPkRBCWhLLsng8TCBpXv8UPDytB8RCesRqjkiv4duL6uB0e1p4NIQQ0v7RVYcQQkiH5nB5UGdz+W1LVlFgr6PK0Mp497k9LH7eW9qKoyGEEK+CGmvYpg0PTqG6rrGQFSeDTBTZY2ohNVgihBAK7BFCCOnYaqzOoG3xCipa3lGFC8rW2YJ/3oQQ0tKOVZlD7l94/QiM7xbfSqPp3BQSEW4ZkxPRsSeqQ/9cCCGkK6DmGYQQQjq0arMjaFuCQtwGIyGxkKQKHZRNoKAtIaQNnNKH7tB9Tt/QnVxJdP53Xn9M6BaPghorxuTEYdK7GzmPO1FNndMJIYQCe4QQQjo0vTU4sEcZex1XuIw9l4dtpZEQQkiDUIG9mb0SIaK6ejHFMAwuGZwOAHCFqKN3otqMnUW1eGd9PjRyER6b1hPJVGeXENLFUGCPEEJIh6a3cC3FpYy9jio5TMaexeFupZEQQkiD/BCBvRtHZbfiSLqeUEHTNcer8da6U75Jn9XHq7DrvskQCJjWGh4hhLQ5mloihBDSoVFgr3MJl7FndVFgjxDS+k5xLPmc3jMR7180EJeeySwjLee8/txLnXcW1/llcu8rNWJTQU1rDYsQQtoFytgjhBDSoXHV2KOluB1XuBp7lLFHCGkthyuMeGXNCQgZBltP1/rtG5SmwfLbxrbNwLqg/8zshS2FtSgz2sMeu/xoJTUyIYR0KRTYI4QQ0qFx1dijBgsdl1QkhEYmgsHm4txvcVJgjxDS8uqsTox5az3vZ1G3eHkrj6hrG54Zh0MPTcW8z7Zi3Sl9yGOpezohpKuhpbiEEEI6NFqK2/mEWo5LGXuEkNbw+4Ey3qAeAOTGK1pxNAQAtHIxPrl0MERh6ucdqzS30ogIIaR9oMAeIYSQDq2GAnudTqgGGlbK2COEtIJjVaGDQ32SVa00EtJYzyQVLhiQGvKYvw9XIO/5lfh6R1ErjYoQQtoWBfYIIYR0aNUW/6W4UpEAcrGwjUZDYsHh8vDuo8AeIaQ1cDXLaGx6z6RWGgkJNDJbF/aYU3oLbvhhd8huxoQQ0llQYI8QQkiHpg8I7CUoJGCY0Mt0SPtmCrHclpbiEkJaw8kQASGGAfISaCluW4m0vqHbw2LRofIWHg0hhLQ9CuwRQgjp0AJr7NEy3I7vqmEZvPuoeQYhpDWcrOZfinvl0AyaQGpD3aKob1hQY23BkRBCSPtAgT1CCCEd2ula/5t2Cux1fJcNyYBczH2LQhl7hJCWZrK7UGEK7rhe77Ih/JMPpOVFE9grpMAeIaQLoMAeIYSQDollWXy8uQAe1n97vIK/8QLpGHokKrH5nol4YEpe0D7K2COEtLRTIZbh3jgqG2f3TW7F0ZBAcXIxNDJRRMcW1FCNPUJI5xfZJyIhhBDSzjzw50G88c/JoO2pamkbjIbE2sA0DV4+px+WHK7A/jKjb7vVyd9YgxBCYuEkR+OMp2b3xm1jcpBM15g2xzAMDDZX0PahGRrsLTXC3WjGj5biEkK6AsrYI4QQ0uFUmux4c11wUI9hgKuGZbbBiEhLUQR0OKaMPUJIS9t2ujZo2/BMLQX12pFxucGdca8YmomzevtnU5YZ7dhfasD09zci4+lluOe3/XC6aYKIENK5UMYeIYSQDud4lTloCS4AfHbpEIzvFt/6AyItRiHxD+yVG+0w2lxQR7gMixBCwjHYnPh2ZzH2lBrQI0GJ73YV++1nGGB4ZlzbDI5wOqtPMjbm1/i+FgsZXDciE/kcy6hnf7wZpQY7AOCd9afQPV6Bf0/q3mpjJYSQlkZ3xYQQQjqcwE64AHD+gFRcNzKrDUZDWlJgxh4AaP+zGLeNzcHtY3MwOF3bBqMihHQWxypNmPXR5pBLNsfm6JBC2Xrtys2jc/D1jiIcqTSDYYCXzu6HJJUUOTp50LH1Qb16Dy86SIE9QkinQoE9QgghHU6NNTiwd9mQ9DYYCWlpgRl79T7cVIAvt53Gnvsno2eSqpVHRQjpLF5ecyJsHbbzB6S10mhIpFLUUmz/9yTsKKpDmkbquw7k6MJ3zHW6WVSbHUhQUrMtQkjnQDX2CCGEdDhcgT2dXNwGIyEtTc6RsVfP5vLgl32lrTgaQkhnsylfH/aYs/pQF9z2SCkVYVJegt/kDlfGHpdVx6taaliEENLqKLBHCCGkw6nhWIqrk9PMe2cUKrAHAB9tKmilkRBCOhun24Ojleawx/VIDJ8FRtqHSAN7y49WtvBICCGk9dBSXEIIIR2O3uoI2qZTUMZeZ8S3FLdehlbWSiMhhHQma45X4eudxXBxdWJqJF0jg1QU+nOItB/JKimkIgHsrtCdb7k6HxNCSEdFgT1CCCEdTi1nxh4F9jojruYZjWVHUE+JEEIa+3hzAW77eW9Ex3aLjywDjLQPAgGD7Dg5jlWFzsQ8UGaE3eWmoC0hpFOgpbiEEEI6HK4ae3EU2OuUwmXs2ZzuVhoJIaSzeHv9qYiPzY2nyYOOJpLluC4Pi7Fvrce7G07BHSZrkxBC2jsK7BFCCOlw9Bb/pbhamQhCAdNGoyEtyekOvZzK7KDAHiEkOvvLjBEfS4G9jifSTO7dJQbc/et+PLHkcAuPiBBCWhYF9gghhHQ4gRl7tAy38yoz2kPut1DGHiEkCnZXdJ8ZubTcv8OJtIFGvU+2FIJlKWuPENJxUWCPEEJIhxMU2KPGGZ1WuKCt2eFqpZEQQjoDrq7qoWRHGSQibS9ZJYnq+CqzAyUGWwuNhhBCWh4F9gghhHQ4gQ9m8YrobuJJx3HdiKyQ+y20FJcQEgU9T2BPIhTg7L7JQdv7JKtaekgkxpJV0qBtvZOUGJ6p5X3NnhJDSw6JEEJaFHXFJYQQ0qFYnW7YXP5112gpbufVO1mFx6b3xPMrj0EoYIKKnFONPUJINLiaLwHAf2f3wkUD07DsaCWcbu/nzNw+yciKo4y9jmZ6z0SopEKY7A3Xh+fm9kWlyY4dRfs4X/PtzmKsOFYFmUgAp5vF4sPlAIBnz+qD8wektcq4CSGkqSiwRwghpEPhWkZFHXE7t2fP6oMHpuTB7WFx/udbsSG/xrePauwRQqLBFdib2C0ej0zrCQDY/u9J+GLbaaSqpbh7QrfWHh6JAY1MjDfPG4C7ft0Hq9ODq4Zl4Lz+qXC6PXhq2VHO2q3f7irmPNdV3+zEkYenIZMCvISQdowCe4QQQjoUrocyytjr/OqDtwqJ0G87ZewRQqIR2FUdAO4c3xDAG5imwWvz+rfmkEgLuGFUNi4elA67241EpXdprlAgxLsXDsTFC7Yj0l4ZVqcHL685gbfOH9CCoyWEkOahGnuEEEI6FK6HMmqe0XUoJf5zknaXJ2h5LiGEcCkz2LDmRHXQ9ni6hnRKapnIF9Srd8HANGy+e2JU5/luZ1Esh0UIITFHgT1CCCEdSjnHEpokZXChbNI5KcTCoG3UQIMQEs6X204j97mV+GLb6aB9NDnUtYzMjsOlg9MjPr46yk7KhBDS2iiwRwghpEMpNwUH9lLUFNjrKgKX4gJUZ48QEprN6cb9fx6Aw+3h3B8vp87qXY1WHl1FqsIaSwuNhBBCmo8Ce4QQQjoUroy9FBUF9roKrsCe2eFqg5EQQjqKvaUG6ENkXVHGXtejlUX3M99UUAOWZcFGWpyPEEJaEQX2CCGEdCjcGXuUbdFVKLky9mgpLiGEg+dM/c0dRXW8xzAMoJFSP8GuRiuL7mf+0aYCdH9+JYQP/oVrv90JC00oEULaEbqKEUII6VAquDL2aClul8FVY+/Kb3Zi532TIBLSfCUhBFh6pAJPLTuK7adrIRMLYLLzB/91cjEEAqYVR0fag/pO65Fa3ajpytc7izEpLwE3j86J9bAIIaRJ6A6YEEJIh1Ju8u+KGycXQyoKDvaQzimwKy4A7C8z4qnlR9tgNISQ9qZAb8F5n23D5oIauDxsyKAeAFBT7a4p2qW4gR7482CMRkIIIc1HgT1CCCEdSmCNvRQVLcPtSrhq7AHAcyuOococnM1JCOlaVp+o5m2SwUUmosehrijajL1ABhstxSWEtB90JSOEENKhBAX2aBlul8JVY6/e+xsLWnEkhJD2qIKjDmsoI7PiWmYgpF2LtsYeIYS0ZxTYI4QQ0mEcKDPC4vRfVkUdcbsWrhp79dafqubdRwjpGqrMjvAHNXLJ4PQWGglpz5q7FBcALvh8K/SW6H7fCCGkJdBUBSGEkA7BZHdh4KtrgrYnU8ZelxIqY6+wxtqKIyGEtEfhAntD0jW4YGAa9pUacG7/FFw9PLOVRkbakzh58x+Dfz9QjsHrTuG/s3sDANweFsI2bsTCsh4Y9rwPy8m/INb1Qvz4ZyGQqNt0TISQlkeBPUIIIR3CymNVnNtpKW7XwldjDwAKa61gWaqET0hXFi6D6vm5fTGnT3IrjYa0V7HI2AOAp5cfxYNT8nDDD7vx895S5Ojk+PaqYRibGx+T80fLdPBr6NfcBwCwFa6Ex1aD5LMWtMlYAMBRtR+2on8gThwAeeakNhsHIZ0dLcUlhBDSIZTz1E3K0MhaeSSkLXF1xa1ndXqiXoZHCOlcQn0GXDgwlYJ6BACglsYuv+WjLQX4eW8pAKCgxop/LdzXZpNM1Wv+7fe1+cj3bTYWa+EqFH87GtVr/o2yn2fAsPejNhkHIV0BBfYIIYR0CCY7dwe6uX1TYvYezpqjKPlpGgo/zkHVqnvgcdHSzvZGIgx965L61DKcrqWfGyFdFV9gr3uCAm+dP7CVR0PaK0EMl8ze/8dBv6/3lBhQY3XG7PzRYJ2m4G1uWxuMBDDsfgfwNPw7GHa93SbjIKQroMAeIYSQDsHscAdte/P8ATFdilu16h7Yi9fDbS6Fce8HMB34MmbnJrGRqJSE3M+ywHMrj7fSaAgh7Q1XYO+9Cwdi090TkK6lDG/SOsoM0XVnbkmsw9gm72s5+Zff186aI1Qug5AWQoE9QgghHQJXYG96j8SYnZ91O2E7vcpvW/Xqe2J2fhLMZSyC9fRaeOyGiF+TopZiQrfQtYtWHafuuIR0NXaXG24PG5QpdU7fFNw+LhdJ1EGdtKIyY/sJ7HnaKLDHpa2CjIR0dhTYI4QQ0iFwLcVVSfkbKUTL46iL2bnaI9bjRt2ut1G5/DaYj/3S5rPmlpN/oejLASj7ZSaKvuwPR/WBiF/72w0jcdvYHPRMVHLuz4+wOy7LsrCcWgzj/s/gtlRE/P7heJxmOA0FYN1U74+Qlub2sLj+u13QPr4E4of+QuBHW7gs387CoT8Ey6klUU2UkPCm92zaBGKpsW2Wv3Jpi8Cex2nm3O626Vt5JIR0DdQVlxBCSIdg4cjYC9VIIVoee23MztUe1Wx4HHU7XgcAmA58jqQ5X0LV54q2G8/mZ8C6LAAAt6UctVtfRPJZX0X02niFBO9fNAhmuwvqxxdzHsOyLBgmdA0l/T8PwrDrLQCAQJ6EjCs2QaTJ9jvG47TAUbETQmUanDVHUbfzTQgkKujGPwtJfJ+gc9pKNqPir0vhtpRBnNAfKfMWQqztFtH3RQiJ3pvrTmLBjiLe/fHK2HQ/bc+M+z9D1co7AdYNoTINaZeuhljbva2H5Yf1uGHY+wEsJ/+CJL4vdOOehkCiauthhTU0QwuPh8XqE9FlgrfUUlxnzVF4HCaIE/qibsfrcNWdgrLXpVDkzoLHxR1M5Kq719Lc5lLO7R6bHtDmtu5gCOkCKLBHCGlxzppjMB5cAKEyFZqBt4ARemfPXcYi1Gx6Ch6bHpohd0KePa2NR0raM5OjhTP27J07Y68+qFevduuLLRrYc9blw7D7HTBCCbTD50Mob8h6YFkWjopdfsebj/yA06VbIEkciISpb0Kkzgz7HkqpCBlaGYrrgh9mrC4WCjF/YM/jMMHYqEOfx1oJ48EvoRvzhG+by1SM0p9nwlUbXLPPXr4DWTceAyPwv5Wq2fh/cFvKAADO6gOo2/k/JE59M+z3QkhXwrqdqN3yLMzHFkIUl4fEqW8FBdUjOg/L4uPNBSGP6ewZeyzrQc2mpwHWO/nlNpfCsOttJEx5o41H5s906Gvo19wHALAVroTbpkfynC/adEz3TeqON/45Gfa4H64djpH/W4eCCLPBgZbJ2NOvexR1O14L2m469DVSL1gEcUJ/zte1Rcae21zGvd1GpTI6O7etFtWr7oQ1fxnEiQOQNPvTdjfR0Bm1SGBvy5YtWLRoEXbt2oWKigqYTCaoVCqkpaVhxIgRuPDCC9GvX7+Yv69er8dPP/2ENWvW4OTJkzCbzYiPj0d2djZmz56NefPmQavVxvx9CWltLOsBw3SMlfTOulMo/noYWLd35tJ2ejVSzv0ZLOtB2cI5cNYcBQBYTi1C5rV7Idb1asvhdmisxw1n9QEIZDqI1FltPZwmYT1u1G57EdZTSyBNHQXd+GcgECsABNfYEwqYsB1So9GZA3tcs/hO/aGWez97HUq+HeXLgjQf+xWZ1+0HIxCe2V/L+TqXIR8uQz4YoRTJZ38b0XvdPjYHTyw5ErTd4GChCJGo46g+ENQpsHbzM36BPeO+TzmDegDgNhXDVrIR8sxJDees2g9b0Rq/44x73qfA3hkO/RFULbsZzpqjUHQ/BwlT3/TL2GE9LjgqdkMgT4g6y9FpKIC9eD3ECf0gTR4a66HD47TAfPQnMAIRlL0u8U1QNZdDfwSswwhJyrAOc11vLsupJahcer03cwfegvqVbgfSLvw76nPtKKrDkUruJX/1Ontgz2Othttc4rfNsPvdsIE9w75PoP/nQcDjQtzY/yJuxP0tOUzo/3nI72vz4W/Bzv48bGZ1S7plTDYWbD+Nagt/B1u5WIhEpRTvXzQIcz/ZEvG58/UWfLerGAqxEGf3TYaomfcrLmNR0ASdD+tB1aq7kTLvF87dbRHYc/Fl7FkpsNfZGXa9BfPRnwAA9pIN0P/zEFLO/Tlm52dZD+xl28AKFd6OaW34GdKexDSwV1RUhIcffhjbt28P2ldbW4va2locOnQIX331Fc4++2w8/fTTUKlik4K9YsUKPP7446itrfXbXl5ejvLycmzbtg0ffvghnnvuOUyePDkm70lIU7EeF1iXDYxYEdWNvK14PSqWXA+3qQiqPlchccYHYIRts8TE47SAdTsglMWFPM6w6y1fUA8ALCf+gNtSAZep2BfUAwCwHtRufw1JMz+MeAxuSwVY1gORMjXa4XcorMcF89Ef4TKchiLvHEg4ZmQ9TgvKFp4Fe+kmgBEiftLL0A69uw1G2zyGXW+idtNTAAB72RZ4nCbf74Q5IGNPKRHG9IGAN9hkPA1L/jJIk4dCmjIssnM5Lajd/AycNYeh6HEhVH2vbtOHF7elnHN7JMtVm8Kw90O/f09X3QnYSzdDljEeAOCxVoV8vfnYz2DdX0QUPHlsek8s2F6EY1X+D/cGhwepyuZldNZueTbkfkflXl9gz7DnfVSvvrdZ79dcHpcNjEDsC6C2F05DAWo2/AfmIz/4tpkOfQVJ4gBoh3szeDx2A0p/ngFH5e4zn2GvQDv0rojObyvdirKFs8E6zQAYJM78COr+18Vs/KzbgZLvxvqC4YZ9HyPtklXNDsTVbPovarc8DwCQZUxE6oWLYxYwbK8af8+N2QpXgHXZ4TKXwnTwCzBCKZS9Lwub5fHTnpKQ+wEgTta+luJ6XFYADAQi7g699rJtsBWvgyRpMOTZ08Oez2UO/28Q9BpTCapX3e3L8qtZ/ygU3c/mLC8QKx57TdA2/dr7Ydz/GQRSLRKmvQ1l3rwWe38ufZLV2PvAFKw+XoUcnQJWpxuzPtrsd8yNI70TpVpZ6MfmybKdOEe+AQWuFHxkPB8L95Vh4T5v1trcPsn486ZRzRqrvWwrAP7auK7a47Cc+JNzX3vK2PPEuMaeYe9HqN3yPBihFPGTXoayx3kxPX9ztdR9VkvxOEyoWnkHLMd/g1jXG0lzPockcWBU5wi8d7Kc+CNm42NddpT9ejZsxf8AABQZl8PSvW3vvdqLmE0N5ufn45JLLvEL6onFYvTv3x9jxoxBz549/X6pFy1ahKuuugomU/PX/C9ZsgT33HOPX1CvW7duGDVqFDIyMnzbKisrcccdd2DNmjXNfk/Seli3E3U7XkfZb/NQs/HJiIqRs6wHrJt/9i1azpqjKPlhEgreT0bl0huadYF0VO1D8VdDUPBePEp/mASX8XREr2NZFpXLboHbWAiwHpgOfQXjwQVRvz/LsjAf/w2GPR/CHebhmo/xwAIUfpiGwg+SUbnsFrCe4Npn9Qy73w3aVv7nxbAVrQ3abjrweUTvz7Isqlbfi8KPMnH6k1xUrbiDt65IW3GZilG59EaU/XouzMd/a9a5qlf/G5VLrkfNxidQ8t04OCr3Bh1jOvCFN6gHAKwb+nWP8M6Wtgcs64Hp8Heo2/k/uEzFZ7axqAv4fTEdXOBramCy+/+eaSXeukK1216ByxT9g00gvoy905/3RvXKO1Dy3RiYDjdkkdXtehsFH6aj8ONcmM7MTNarWnEb6na8BsvJRahadhMsx39t9viaw23mDuyFC7A1Vd3O4Aw1S8FSsG4HDHs+QNXKf4U9h+NMEMV44AsUftoDp7/oB8vJRfA4TKjZ/Ayq19wPR9V+MAyD28bmBL3e4PCEPH9Mag55vNcZ1uPmDFb43qsVGpUY9n6Ewo8ykP+20nutbOPmKPVYlkXl31f7BfXq6dc97Ptv4/5PvUE9AGDdqNn4RMRZtIZdb54J6gEAi9ptL4U83m2tQtXqe1H+x0UwH/8dAGAr3YK63e/CXr7D71h7+Q4UfpTll+FqL9kIW6F/B+1ouS2VqN32su9rW/E6mNv4c6KlmQ5/H/LvxGUsQNkvs1C75XnUbHwSxQuGhL3POVLJ/3esZswQw4kePE122oJh78co/CANBe9oUP3Pw0F/p5aTi1Dyw0To1z2CsoVnwbAn/GSn28R9rQ/VpMB44AtfUM83tp1vhf8GzrAWrkT5HxehcukNcNYcC3s83727Yfc7YF0WuM2lqFp2CzyO1q8Fl6aR4cphmRjfLR5TeyTinL4pAFhkCcvwf2NEyIn3rhrQysRQMFYkCOrAwP/6Mk66F58lPocLlWtwn/YHvBTvfy/z9+EKfLS5oFmfy3zNKBoz7HmfczvrbIPAHs99WeDvpfHgVyh4PwX57+pQtyO65eOO6gOoXnU33OYSuAynULn4GrhtwQHk4NcdRN2ut2HJXxrV+0XLdPQnFH6Uify3Ne3quhyKYfe7MB/5AazbDkfVXlStik2SAOtxw+MwNfv53LD3fV9QDwBkxd+Dsceu+VlHFpPAntvtxt133w293vuHKhQKcdddd2Hz5s1YuHAhvvzyS/z1119Yu3Ytzj//fN/rDh8+jMcff7xZ73369Gk8+uijcLu9F6devXrh119/xZIlS/DVV19h1apV+PLLL30BPrfbjfnz56O8nPshh7Q/hj3vQr/uEVjzl6B26wvQb3gi5PHmE3+i8MN05L+tROWK28F6gutyAd7AgqNqP9yWyrBjqF5zP+ylm+Gx18J06BsY9kaeVRZIv+EJX6aavWxr2IuYrXg9Sr6fgMIP0+CqO+E/rpV3+H3ttlbDcvIvOKr2BZ3HbalA7dYXkP+mFBV/XYrq1Xej6MsBvA/8fDwOE6rX3AvW5a0zYjr4JawFy6I6h710c9CSjHqRXPQcFTthrL95YT0w7v8U5X9cyPuzjkQk7+usOQrj/s9gL98Z9tjyPy+G6dDXsBYsRcVfl8JWsjnsa7i4TMUw7muoA8a6rDAeXAB72XbvQ2jZNgCA+VjA8guPE6ZDkS1l9L3EZYO16B846041aazRqFp+KyqXXAf9Pw+haMEguAyFcFTuhjsw0M26YTryI4DgjL0Xlc+jasXtqNnwOIq/GtLsrqa8XXEb/V5Vr7oXHocRjqr90K+9Hx5rFdzmElQtu8X3/izrgeVMsMD3/a5o+FtlWQ/qdr6Joq+Hoey3eXDog5eRxpK9YhdMPA/HLhN/wfnm8FiDP1eF8iRULrkO1avv4QzsB3JU7oGz5hiqlt8Kt7EQrtrjqFh0BUp/mobazc/AsPttbxZV7QnEK4KznCqt/BMOAH8g18WTZcB57JkHF7elnDcr0vtetRGfsymcdfmoXnMfWIfRm/289YWGIFkzuS2VqFxxO0p/ngXDvk+jfjBx1hyBvYx/+Vp9UKB2+yt+21mnGbaSTRG9hzkgsO6qPX4mK4pbxd9XwbjnfVhO/omKvy5B1ap7UPrDJOjX3IeS78f7AmzOmmMo+XEyZ6ZR2a9zUbfrbTiqD6Dkh0ko/CgL1Wvug6NqP8xHfw77OWotXO732QJ4J3Gi1REeFIEzdeA2PhnymLqdb8JlyG94jduGqmW3wMmxHJ5lWfx9qBx/HOD+u5uv+Rbb0m/AwcwrkFv2abPGHituczn0a+f7mgYZdr4Be6n/34ZhzwcA2xA0Mux+B46qfdCvfwx1O97gDO7wNSlw1nCXEfDuOxq0zVG5J6Lvw6E/jLKFc2E5+SdMh75B+R/ng3WFbhTR+OfKx2OvgeUkd8ZZaxEKGPx2wwgcnPAz1qTdieuKzkPVqnsAAOqqFViXdju2pt+IzxOfhZpp+Fncova/5s9TrIeM8f83ueOXfTjvix3wsCyEpiMQV62FxxFZB2PT0Z9QteymsMe5z0yUBrKc+BOOqv0RvRfg/RkbD34VVbf6oLFYwmfsuS0VqFpxOzz2GrBOM/TrHoaj+mDE7+GdHGn4DGTdNlhOLQr5GlvJZpR8Oxr6tfej/LdzUbv1xYjfLxpua7X3e7NWgnXbULv1hYYJ+HasZqP/c7a9ZGNUnbb5kj0q/r4SBe/Fo+DDVJiO/Ahn3Sk46/Kjuoaxbifn86PQkh/xOTqzmAT2Fi5ciKNHGy4QL774Iu6+++6gZbYpKSl46aWXcMMNN/i2LVmyBLt3727ye7/xxhuwWLwXyIyMDHz55ZdB9fvGjBmDb7/9FsnJyQAAs9mMd955p8nvSVpX4B+wYbf/z471uGEpWA7r6TVgXXZUrbzDd9Ew7f8MlhP+F1vgTP2n78ah+OthOP1pHkyHv0fdzv8h/x0t8t9LgHF/Q+YYy3pgLfCf0alZ/xhYloVh70coXXgWqlbeFdEMEQBYT/nXkAn8fvzG6TSj7PfzYC/bypu6Xv+B6Kw5iuKvhqL8jwtR/M1I1G5/teEYlx1lv54TdFPtselh2Pdx8DndTt4PZmvB0kaZEV7lv5/HmR3mttXyfm987KVbeN/bWXscNVueR9Xy24L22QpXwHp6Nf95K3ahbscbQbNz9VlihR+kIv+9BNTxzFhbT69G0VdDULXidpR8NwbGg/zdOx1V++EIyPqo2/n6mfOsRe3WF2AtWhfRxcx8NLheimHXWyj5ftyZh9AJMB35EbbidUHHRZMl5jKXoejLASj7eQaKPu+Nwo9zUbfrnbA369FiWRZuSyVMh75u2OYwwrj/U95U/fpjzQ43eooK8Ub8G/gl+RGMETY8EHnstU3KYG0skuCLx1EH44EvYDr8nd921mXx/S2xDlNQ7TaPvcaXVWo9tRj6fx6Es2o/rPlLULn4mpg9nHucFr+/n5rNz6Lk29F+weHGXMboAnus24G6HW+gasW/YDnl342W9bigX/coCj7ibnph2PV2cAA6BEflXtRufSHg/W1+ASvWbYfp0DeI5yim93+banGgmj/Dm++BquSbkRE/ALlNxfA4zajZ+H+hj2tm0JmP9fRqlP1+Poo+7+XLHqxX8u1o6Nc96vt9cFurYSvdEjKLh0vlsptg2v8ZbEVrUL3yjqiX1ISr5Vj89TBYCpZzZo9GEmiwlwWXfwEAN8fvtsdlhUN/GLaAa4Vx7wfwPRyyHt91wHz8VyDEKgH92vtR8t042Es3w20ph2H3uyj+ehgq/r4SxQsGwVq4kve1LBucUeqJoqh87fZXkf+2BgXvJ8KwN/g6Hg3W44L5+G8wH1sY09UOjdlOr4bLEDrYadzPFYBjYTm1BNX/PIyKv6+C5dQSAMB3u4pxzqdbOc9z+NYU3Kn5BWLGDQFY1Kx7pMUzcyJhPLjArzQJ4M0+aSzwftNZcwQl341H3fZXoV/n/TcIxLcU11kbHLyrx7U00F6+Dfp1j4T9/DMfW4jGwRRnzTGYOe61/ccSvkGF91z8Y24tzspdkOZ/7/vauPcDWE+vhmfLQ4gTeDMKJ8r24ELlGt8xk2S7g86TKgz+e15ypBJVh7+Cdtf1UB96BKcXDAp7HXYZi1C5pHmlBWzF61D89TBvk5UwLPlLUfzNCFQtuwnF34z0ZTVHi2+SrHHzDOPBBUHXrrqd//P7mmVZGA8sQOXyW2HY+7HfZ6flWPB9rqv2RNA2t02PymW3oGjBYJT+OMnv77Bu+2shVx41lenwd97JtsbbDn7Nc3R4Dv0R2Ct2cV47YiXU81ek3BwTu0DDMwnrMKJy8dUo+rw3ij7vheqV/4r4Hthy6i/O7Yyr9TN926OY1Nj7/feGP/gJEyZg3rzQ9RHmz5+PRYsWoaLCe6O7aNEiDBkyJOr3LS8vx9KlDRfA+fPnIz4+nvPY1NRUPP7447j3Xu8a7IULF+L+++9HXFxc1O9Lmo5lWRh2vwPD7vcgkOmQMPk1yNLH8h/P9QHT6ALAetwo+2WWL6ghUCTDE/AApV/3GJQ9L/LbZtjzHhwV3qwr1m1D5ZJr/fZXrboT8m5nQaRM5X3YNx/9EdWrvPV/bFgJt7UCidPeBQRi3rpzHqeF93ttjGVZGPe8j+o1/w57rNtUBJE6C4a9HzfMjrEe1Kx/DGJtdyh7XgjTke95szdqNz8N3Zj/eM9lrULF4mthK1zhratw1leQJg/x/x54lkkULxiC9Cs2QhyXBwBw1p1EyfcTIvp+Gyv9cRKkqaORMm8hhIok33Zn3UkUfzMyKKjYWPmvZ0Os6wX1wFuhHXYPPA4jajb+X9ByYN2E5xE34gHf91+75TnfPv0/D0DRbU5QE4+azc/4ZVfUbHwSsoyJMB/5HkJlqreG2pnumFw3ppbjv8F0+FtULrnety1x9mdQ97066FiBrQw1676FgGFhORWumDjrLX7NwV62FS5jUcjuoh6HEa66U6jd8bp3mfcZbnMJ9Gvnw3Lqb6Se/2dManYZD34F/fpHg/5GAaB26wuQpo3hfJ2jYifs5TvAOo34OflRqATcy65r1j/m+7mGw7Ie2IrWAQwDWcZEuI2nI86q1K/lLjBuK1oHjAZcZu4Zc3vZNsgzJwYtlXFU7oZTfwiShKY3lXLb9NCvewTmw98BjADxE1+GstfFqN0WeibaHWXGXvWa+b4goXH/J0ie+y0kSYMgVKbDkr+Ys1tfvUgyNhpzVO6JKPBYu+VZ6Obdybnv5e11+HJ2Euc+vow9t6UcxV8Pg2YI9zkbc5lLUP77BUENM4LPWQHE9w57vlBsJZtgLVwJSeIAKPLOg6vuJMp+mYNQNZfqdrwGWdYUCMQqlP95ETw2PQSKZKTO+w3S1BFh39Ntq4U1f4n/Obe/GlUNo3AP9KzbzpvJZS/nDtrVMx39CZUcgQ7Am40q1vUE63HBcmoxTAc+g6VgechAne99Szag7PfzOSdMgsbPkxnIuu2o3fJ8RDXSomWv3IOa9Y95v3DbUL3mXshzpjep6yDLsihbONf3OyxNHYW0S9eCEQhhr9gFu/4EGIcWrIT7/jqQy1AIlvVArM312954wpR/MNwPrPq1833/bT76E9IuWYUnlthwjnw9xsv24KCjG3RCI86Wb0CdKA0JJWMQGLYv/20ecu8x+67TLOuBcd8nsFfshCJ7BhQ9L4p5HSyXsQhCRYqvFrJTH5yJ5KxuCHzzPdw2niiynvobjqp9vppXbmuVry5toKqlN8JlKIR2+Pygen58wYG6Ha/DsPtdZFy9g7eZmYWjvIhx/6dQ9b6U83gAcNVFFtir3fIclD0vjLqmVywFZlECQNnCs4J+P/8v7jM4WDG+M8/kPE+uqBTDJYdhZyUweLzLwbc6+iGj4ktfao3AVoET619H77N4mmIAMO77OCi7t6lqt78MzdC7IJTx/z3XbX+t4XPS40LdtqbVrePLJPVYGyaXuDNH/cvNGPa85+umbDrwBTw2PeJGecs4BE6iegX/HddseAKmg19yj8dRB2ftsZjXl7SXbAzaZivZ4H1PpxnGfZ/AVrwesvSxkCQPhTi+D0TKNM5z6Tc8gbozJSZkWdO89+VNrLHu0B9BzfpH4LZUQTPkDqj6XOnb56zhXkHirDnCWWPaUbUfVSvvhMtUBGXeeVAPuAEeR/gl440Z938K9aBbg5pesSwLw663YCtaC1nGBKgH/yuoVEY9xk2BPSAGgT2Hw4GdOxuWpZ1zzjlhXyORSDBhwgQsXLgQALBvX/CywUgsXboULpf3g06tVmP27Nkhj585cybi4+Oh1+vhcrmwYsUKXHzxxU16bxIZlmW9SzXzl0KcOBDSlOEND8V13rTczOsP8RYQdjUKNPid1+0AI5TAcvJPvxtvroCBy3AK+nWPQpF3LmTp4wAg7HIQeFwwHfwKcSMf5K1BVbs5oDDo8d9QePw3MCIFtCMe8GaDeNzQDrsXIk02gMizNkwHv4ooqAd46/+I1FmcWRHV/zwERd48VAUs2Q3Eetxg3XbU7XoLtsIVALwf4tVr5yP9Ev86QnwXEo+9Bsb9nyF+gjdIZtjzQZPrd9nLtsCw9wO/7pSmgwtCBvXqOWuOQv/PAxDH94a1YDlnjT/DzjehHX4/HFV7/YJ69ayn1/jd0HrsdbAXr/c7xm0q8mbJnGHJX4KUs70zvHx1UAJr5dRsfBKqPlf5P0y4bVDvuxMmW+Q14/hungBv0IgvsGcr3oCKv68M+Xpb4QoY938GzaBbIh4PF2ftcVStuD1oZraxUHXyDHvex0SBijeoFynjgQWo2/kGnIHLSxhhUL2haNlOr0LF31fDfPRH7v1FayHPnMi5dL05gT23rRalP0z2uyHzLpc3hw1iRJOxx7qdQZl/FX97bwiFqgzeh/KmclTuASNShD1OINEiXi7G+Yo1GCw5hm32fvjb6m3ScVDvRJXZDnv5drDKRIjjevheF24JFNdnRyCuG3cuHiv3Z7/HbvDWZ/Q4oep3ra8DdCDLqcUo/+MC37+xbnz951b4WW79ukcglCf5sr49lgrUbnsJKef+FOaVgKs2uHaWvWwL7OU7YStaC2nqKF9DFD6RdF928ATwLCd+R9GX3gd83dgnoezlf89W1ygzPZDLeBqsx4XSH6ecKTofncDs+qawFa8D63H5gkmNsVEsbQpkPvy9/waPC6ZD3/hdMyNlL9vqF5j2fr0WjuoDvvs1rVgHw6D34VEE17JsrHrtgzDs8tbXVPa5AokzPvTd39kCrqHNod/+OkbYsvBiwplJEr8SesUw7Ob6fWJhPb0aihxvEKZ287O+Au+m/Z8hceYnUPW7OiadiVmXHWW/z4Pt9GowIgWSz/4eim5z4LYGZ8sKZPFwW6ugX/847Gce+sMp/no4Mq/bD1FcT1QuDp3JVbvpvwDrDvrdCNWZlHXbYdz/OeInvsC5XyDVBm2zl28H63by3iM6IwzsAUDZb/OQcdU2COWJEb/GbdPDfPQXCKQaKHteFPQ357ZUovqfB+HUH4ay54XQjngwKJAbclKd5/r2rO5DKBnu4P6nicH1JGvcKqgF/pP8kiPvACECe9YIJhgi5nbAqT8CYYikisCJKnv5NrAed9QTvPy1H6tgr9wDoVTH/e8a8HMJvBbX7XoTcaMe5i23EPis5Q3ih85qdlTuiSqw53Fa4KjaD0l8b86/B4C71IlTfwiVy2+DvWS9rwxF/coyRiRH8txvoOh+TsB5iv2udbbTq2A5+SeUPS8MOr/19GpYTvwBcXxfqPvfEPT3yLIeVPx5oe+9K5dsgTiuJ6SpI2Ev38lbJimwjibrccFy4g9ULLrct82buNO0FZH2sm1Bgb3arc/7Ji0sJ/+Cx2nmXRIscEUXTOysmh3YKy4uhlQq9S2HzcvLi+h1jTPlamoiW8IYaNOmhnXqo0aNglgcOnItFAoxduxYLFrkXXu/evVqCuy1ELe1ChWLrvCvo8SxBMttKobt9Boous3hPA9fSr7HXgehIikoXZtP3Y7XULfjNaRe8DdkEc6e188uct2IecfGPavBuiyo3dyQ6m468j2ybjwKgVjJG9hrfDPktlSiavnNEY0R8N5MKXucz3lut7HQu/QtzExf0Rf9OJfI2IvXw22rgVCmaxhriCYVddtfgbLXxZAkDPBrMtAUtZuf8bsRNR7gnmnjYzrwBawFKzj3uS3l8Nj0nLOyQEMaOcuyMB36CrWbg4N/gSzHFsJZlw9GKOatgxJYW8NtPA176SbI0sfBqT8MxYnXIa5aC6Ejdsv2HNUHg24SAO/fVvkfF0S0/FT/z4NQ97sWjEja5HHU7fhfyKAeEHoZmunw97hCkcG7v16o7mP2su2oWn4LOIMhzQzq1eML6gGALUQQyFF9CMqewds9TgtqtzwLp/4QFHkXQN3/2qBjLCd+C/48Yj0RZchEU2MvVMYdX12f5vDYa4EImicIZDpoTn6A1+LfBgBcq1oCTY0Z35tneQud778dFTsPA2CgG/dfxI169Mz5mx5YiRbX57PHYUTpLzPhqNgFADDs/QAZV+3gfHgy7vvE7wGoZkPk9Ymd1QcQ+JfHVaKC87UcgT0AKPmuIbu2PiBSu/lZGPZ+AIFEi8Rpb0OeMwNAcPZFtOp/tysWX42s9LEQqbyfA6zb6fu341K17GZULYv8WtpSnDVHOYP2fDU9WdYTNrhkKQheVmotWMEZ2GNZFpYTv8NauArS5KFQ9b/e7zPSsOe9oNfUbnke9sqGf1uBsway0l9hyfs3AMB0+FuYj/8GcVwPaEc8CKFMB3vZdl9QDwDMh7+Dx16HlHkLATBw8wS3m8J+6i88o4s+i9xRscsX2DMd+sZvX9Xym1G14jZIEvoj+ezvINZxfCBHqG7nG77l3qzLgoq/r0TWjcc4r3ECsQJVy2+LurZc2a/nIGnOF95ajWEE3k8B/B1L69XteI03sMe11I51GGEv3867CiewRnQoblMxjAe+RNwI/+x4e8UuOCp2Q5Y1BWJtt4bjbTUo/nq47zqk/+dhSJKHeCfXRz4EeeZEVC690bfM2VGxE4xYCW1AVnbNhsdDThbweTQu8jIgOiF3ZpHbUgFnzVGINDmo2fhfmI/9ApE2F0mzPgViXEcz1PWat/as8XRQFm4oHpeNszYpADjKd6Dkm5EAI+AM7DGNKoWxLAtXwDJQj7UKrMcFJ08tPre5FCzrgfnoT3CbyyBJGhR2vI7KPUDvyzj3sSwL66lFcBkKIc/1dl8v/XkmPPYaCKRx0I17Gm6bHmJtLpS9LwfDCOCsOwV7KfcqEL5GgazLiool1yHz6l2+hBAA3gZ8AfeotVtfgLLnhWDdTngcdRDI4mHNX4by3xtWTZqPLUTKuT/DWXMEjFgFSXxvOMp3BAXp6na8DkWPC7yr13gC2I3vBViWRcWiKyK+j4hEYDNHl7kMdQG1D2s3P+OdhOdAGXtezQ7sdevWDbt27YLRaER5eTkyM/mXfDVWXNzwoaLVcke6wzlypOFBpn///hG9pk+fPr7AXlMzBUlo9X/wkRRHB7wPGLaiNWDddijyzoc8a7Jvn5OnqLzHXoParS9GnC1Rr2br80hqlLERinH/p9BNeB4eW/O6RnqslTAd+hby3Fko/WkK9zH2Wt+y02hqUAHwpSV7eDo8RtLoI1Tdm8IPUqDqew1Ufa6ALHt62C6FJd+OhlCdzZk92RT1gZpIuyPWC/fv6DLk897c1D+E12z8P1/qeyTspZug3/CfyAcJoPTHKUia8wUql98GmTu29ewA8BY+1q97OOKC/qzLAlvZVsgzJzZpDCzLhp0tBRA6I9PjwABJ+KYeHls1BLIEvwdXt7UKlvwlqFp+KyLJcGopjso9vDPMtZufhuX4b5DnzETcqEd8M8BVy2/1BQstJxcBDAN1v2v8Xss3AcI3+dAYVx0yPtHUWImd8D8vgTQOzj3+jRee032IeYp1UDB2JDjqHyhZ1Gx6Csrel0Gs7c7fLKUFVK++F/oNT0Cs64WkWR9DktAftdte9gtMOasPwlqwFPKs6XDb9X5LclqioHzZb+dBHN8bcaMe9Zu8AeofZP5GTUBmOhfD7re91+Qz2U8eaxUql96IrBu9dbdi1cQDrAfW/GVQD/DWaXZGEShoS5YTf8BWshEiVQbkuXN8n0181zSPpRJCZUrIc7LO4M8Rl6GAc2JD/89DvoCbEd7PC7+ADcfEn61kfdADnqzkB1jy/g3Lid9R3aikhOXkIqRetBTmk8G1F62n/obp0Nfe5cgxWkpYT8xEPxnj1B/xNtliWe77HtYNR9VelP16DjKu2QmBWAl75R7U7XgdDCOEdvh8SBIHwF6xC666kxCqsiBNHQGGEcBasAK2ko2Qpo+FKWCCh3WaYNj9DlyGgqC3tJdtC9l4h4/LkB9VsxWPvc4vsyiS92RZFqzTDIHEv2a628h972Q69A08ThPkmVPACMXeoPLxhXBUH/Jev6JQs/5ROMq3w22p8AajBWJULr3BL8ChGXIXdGOfhPnIj373c25zCaynvCsArEWrkXnt3qBMef2a+7zdrUs2QZo8BKp+1zYpqBcrhRy1aZ3VB1G14g4wwuDmUM3hChHY42v646o9HlVgz81T99EPTxDJXr4NttItkMT35b2HdRlPw16xm/u9LeWoWnEHbwCNS932V6Eb/xznxHDN+sd8ZUYYsRKs04L6exOPvRbVq+9pGHvpVngcBr860tFgHUaU/3kRUs7/AwKJFgKxgjO71lG5B6f+1/B7IUkeFnSPZju9CgXvNSy51o54EOKEvkHnMh/7xdt0McSqC2fNMV8JG0fFjpgG9QAAgbVHd/4vqB4pAN5JeKqx5xWTGnuAdymsWq2O6FiTyYQNGxrSzSPN8mvM4XCgpKThQyMnJ/TygHqNA4/l5eWw2WyQybiXgZIIsW6/TBxr/tKIg3qAf7Fkw+53IUkeBt24p6DInc37wGo8uACG3W9HPVR78XpYoyigXPz1cMSN5K5fFg3D3ve9H/I8N7Zum94X2IvkYbwxW+FKVK34V9CMVr3AJaRNYTr0FUyHvoKy16WwFoSfHXbzLKGOVvlfl8JauBLS1FFgeQKXTeWqO8V7c1MflDRGcVMAoMnFjRvX3Ys1rhlNj8MUdSFxp/5QUGDP4zDCZSqBWNs9ZK0PR9VetFZArfDjbDAiOWSpY8CC9S0tbw881sqQkxGOqr1wVO2F+cTvyLx2L8B6YD6+0O8Y/T8PQdX7Mr8b/XCZF6F4C2qPgDi+N9QDboTl1BII5fHQDL0HArHf+rY2CuyFxxc4Gi3lmM1nPTDsfh8Jk1+JerKguViHAY7y7ahedQ+S5n7NOWlQs/kZVCy6EqzLAnnOLCjy5sG4/7MWGY81f7H3f4UrkDD5dYi03SDWeO+lKhdfEzL7tDFH5R7oA5pcuC1lyH8nsnvCaJiP/gxbyUa4TMUQSDUxP39LaNxYRTv8fsRPfAG20q2o28G99M5lLoFQmcKbfeyti8pRHN5cApehwPfw7TKXofLvq2Er/sfvuLodr0PZ6xIwIhmM+z4O6igMIOQDniXg98KpP4TKJdeB5am/2x6yJuuZDn0F6+nVYWuLugynULv5GWhHPIjSH6f67j+sBSug6HkBjI3qpEoSB0HV9yro1z0c8pxcZT+AyAJsfKIJmjuq9vuWzbMeN2+B+8a8jYT2Qpo6CklnLYDlxF+wFq7gnRQx7vsIxn0fQZoyEmmXrkHt9le8S4GbqH6Clq/WpWH3O2DdDtgruOtuAQDcDhh2vQ2ue5D6332LqQiWk9xF+duao3K3N7Mthurvfd2WSnhcFt/nvttSgZJvR3G+xll73JeF7Rub/jAMO98E67ZDM+ROSFOGA/BmVpZ8O7pZYyz9IfREssuQz5utai/b2qTyC/q185Ew5Q2/bR6HEXWNnjfDlQTiyoCOlqNyD05/7P2ZSFNHR1TmpL5ufCh1O16DZvC/OPeFa1rj1B9C6c8zYvJMySXwfizaiQAK7HnFLLAXjU8//RQmU8MPYOrUqVGfo7Ky0q/IbFISd3HsQImJ/vUaKisrkZWVFfX7Ey9J5QooTrwOxm1Gjfk2JE19DXXbXwn/whAcFTtR/tu5SL9iM29tnoiKMPOoabRMNhy3qYi33kA0nGE6jFnzl0Ag1UKkTOWdLQvFuP+Tpg4tKpE+6MVKfYFmW4jOgk3lNBTwBvacNUdRueyWmGUdtiWn/nBQbRRbycaosycCA4SWU0tQsfgqsA4jJIkDkXLBXxDKkwBGiNrNz8B89AeItD2gHXo3nBxZCi3G4wLrMEa0PKktVC69MewxrtrjsBasgFjXI+jn5LFVw3T4e78luW5z0x8MgUYBxUYP+DUbn0TC1Deh6n89BCI5gPYb2IuWYdebMB36OqoOpLFkK16HysXBS6oB+HXTthYs46zHGGvOqv0o+2UWAEA37hkoe17Y6p/1kWqvf9eRqtvxGgRSbVC358ZKvh0NadoYbyAmfTxUfa8EGAGkyUMh1vUKubTZXrbVF9jTr5kfFNTzYlG5/Ga4ak/wNv7gIzQegPVEcBfKwC7D7VmkDYMM+z6BSJPrN6notpT5BfUA7+enfl3zlpu3BtPRHyHLGA9nXT4cFTsiCxZUeb8ve9lWFH0eef0xe/k2GA9+2aygXqSM+z7ibfLhOybKUi7tTozr17qNRajd/ipqNvwHYD1Q9roUSWd9hapVd/O+xll7HCzLwm0uASOQAIwAZQvn+v6eLCf/QvqVWyDWdoP+n9BB7lhwVB2IKNEgGoa9HyJuzP/5ZbDby7ZG1HCppdjLuEsGNQnrafJEIeuytlhQDwDcZ5Zte5xmGHa9E3WSCy3F9Wr1wN7evXvx8ccNS7Jyc3Mxbdq0qM9TV+cf2dVoIpu5DcwqNBhar8ZOoPrGHx2V01oD5dHnwHi8NddMe96GNHUkbAF1xJpKv+EJX/egQJ4IZhr5RPtazlTgGNP/8yBqNv0XCbO/gpOjTTuJPUftSd7GAY6qfd609E6AddthOPg1FD0v8WV5WQqjfwgz7HkPtrJt0Ix4ELKsGahcdjNYhxGA99/r9Mc5gEDkF4hy1hyDNX9xk8cuy5kDW8GS8Ad2IKEalTRm1x+FhyfJsWr5zTAd/h7ipEHQjHgYrmZk7IVSvfpeGA58iZRL1oFhGDj13PXWOqK2CurViyarvTXVbH4Kbp7MKwLIsr0ZC9ydGCPTOIOPT31tJmvBUl9dMDBCxM/4JGR5kMrFV8NhOA31kLthCfHZG26ykY92d/vJvmtprMOAuoAgXkdm3PN+UFCyJVWv5M4MagmhlpYCiPmKj47OVrYV5hO/+QKG5qM/QpZ7dlAH9MbsVftR9tu5sBUsAyOSQyDV+S239dhrUbP1ZeimvBW2S3wsNO6UHTMeF2yV+yFNa6gTaS0N3Zm9o2FdlvAHtQG3tQYOUyUq/5jnnXiIEnOmeYbbHZt62R0Vw/L1Vm8BRUVFuPzyy1FZ2RBY+eCDD5qUsbdr1y5cfnlDJ5bFixeje/fuYV934sQJzJ071/f1d999h2HDgts3t4Rdu3bB44ntrEtbYuyV0G2d57fNLU2B0N687BFCWoNDNwZiw14w7vZ5kWspHpEGAlfTJzRYCGFPuwCy0p9jOCpu5u7zIStdCKE1v8Xfq71xS5JhT78EivzQnVltaRdCUrUaAmfTmlBFwjDoA7i0g6HddhGEUXRrJqSzsSfNhLhmGwSu2jZ5f7csAy5Vb0irVoU8zhE/HhJ9ZB1WCSEkVjySRAgczatN3pasGVfCmnMzAAYQyqA6+Agk1e1zIq6zccaNgLi2aYFUl7IXDMM6eGZuAIFAgKFDh4Y/sPFrWmgsQUpLS3Hdddf5BfWuv/76JgX1gOBsN6Ewsu5Ygcd19chuc7CSeHhEcX7bKKhH2iNz93vhliT7bROZjnS5oB6AZgX1AICBu1WCegDAitWwpc0Lf2AnJHRUhA3qAYCsdGGLBvUAQKxfB3gcENiiywx0y6nMBWkatywDbmnoBhJtgRWpwYoUbfb+QlsxJPrwTcMoqNf1mHs8AlPv/7b1MEgX15GDegAgL/4W8RunQbf5LMhOL4DIyN28I5Ys3e6BNePKFn+f9q6pQT0AYNyhax92Fa0S2Dtx4gSuuOIKFBU1LHubMGECHnjggSafUyDwH3qkAbrA48Ri/oLvJAxGCGfC+LYeBQDAnnxWWw+BtGPOhMnwyNL9tjU1GFI39EuYu98Lp2ZgLIZGQmBFatjTL0G+J7LmSKRlCG0lEFpPg0HkGeduWSbcsuAuf/U8QiWMfV+EOa/5zYnaAsu0v3sHtzy7xd/D3H0+XOp+Ub3GI9LC2C+62rtuRXcYhrRM05DmYEUasMK2C+wB8JU/IaQeCwHsybPhkSS09VAI6RQYjw2K/PdbPFDpESphy7gcrmY8U3gkSXBL0wAAbmlqrIbWIhwJU2FLvSDm56XmGV4tXmNv586d+Ne//oWamoaH6DFjxuCdd95pVlBNLpf7fe1wRFbY0m73r5cmlUqbPIbmEAgEGDiwYwcG3G43jlRPgrQ8us41vBghbxvrUERxPZF5yc8o/iQDrL02NmPpBFQDb4Np34fNOgcjUkAz4kHUbX4qRqNqOYxIAXHCADjKgzthDRg1G3rjQlgMu5v1Honn/oasnFkALgHgbXpS9deFzTpne6DodRkkqaMgSRoKSepouE1FsBethX7lrS36vgJFMpR9r4Vxx6uc+/P6DIM0bTgGLfsfFilifyPQ1nRT34Vh+4twG0+39VBCklSthrRuW1R9jXUDroSz7iSsHPFzeY8LETf+RYjUmWBZFkXvNq/hUqsSShE/9R0Ilemo/P3sth6NjyiuJ5RpY2E+tKBF36f3nP/CenIEqpdEnl2QcdVWMCI5Sg5GHsSNS85B3sip0JtugvnApxG9RpI8vEm1eaKRlt0HFtcROMzhG8loxz0HRY8LULogukAoaRvybufAeqp9dkYNRxyXh8HDRsOp16CsA5cHFicMgLO6afUf2wN59/Mg7zYXtRv/06xa4JH6zjQTDlaMJdYx+C45fO1O4k8g1cFjb9kVD+FI43tg8JAhsJdYUMHdLzIkRiRH9i35AACPpQwCRSqK3tcBnrZr+CHNmg5p2lgYtj4btC+5/7lQD7odFb+eBXtx7JY4M24TwLIYMHBgxKs426N9+/Y1q2xbi2bs/fnnn7juuuv8gnqTJ0/Ghx9+GBSYi5ZWq/X7unGX3VACj4uLi2vWOJpDJBJ16P8JhUK4tNHVJ8y4ZjdSzvsdqn7BHQETZ3wAkTr6zBzNoFshFouhGdh1ijpHQpETvimNQKqDIm8eBDLuWd6sm45D3fuSWA+tyRQ9uIM7SXO/Qc6dNUg9b2HQPmnGBIjFYsiShzT7/eXJg/z+BiTq9PAviiFxQn8wQhnkuXOQevEK5NxRCWm6f9asQJYAacrIqM6r6nk+dMPuhjLrzL+VrhvUfS+L5dADMNBNeB6ZV+2Abti9ABjOo8TKBAiFQpwyAA62TZq4t5ikOV8gbvAtSL90DeKnvNHWwwkr2uLj6r5XQCTVcu5LnvUJZLpciESiDpU1L00dheybTkI74Dqous2EdngLFO9uRKBIRuLMj8MeJ0kehtQL/oRQ3rRsHVXfqyI6TqzrDbFEBrEyMeJzqwfcDJmuGySqFIgT+kf8OpE83vv7oeHP+gwkz50Z8bFNJVIkQChRhz8QgCyxH2TxPSI+t7zbXMSNeQI40+RIqEyP6WeDQJ4Us3OFI89u+Z9FNBJnfIC40f+BPHcO7zHJc76APGd2bN935kcQyP3/XhhR855/uAgkau89SRR/L7GgHnATZFkNJZWEynTIc2Y1+XzyrMmxGBY0w/4dk/P4MJEFClS9LoB24A3Iuuk4Ui9eiTphy5QTOOVMw7+r/43/1N6Op+tuwlZHf2ywcSeLlLoS8J6haRPQQnXsymlst/fBUzU3YbejJzzdLkP2rcVIvzx2JQPKpf1wUj0LgpTRIY9LnPUpMm8uwJ5hf+G/yu9hF0T2ed4UAlk8Pkn4IuQxkrieZ54nmpZpJ07oB7FYDLFYDKk2y/v/qdE9A8RS9u1lSL9oMRLGcQeaxcpkbwxBruPczydh+nsh9zOsG/DYIBQK2zw+0pz/NVeLBfbefvttPPDAA36ZdPPmzcN7770HmUzW7PMnJSX5LcetqoosVbbxcQzDICGB0tabgxWp4BHHR3y8WJsHRbezkDDlDYi0Dc1OJElDoOx9GRKmvQUw/r+WQkWIDzuBGKp+1wAANEPvASNWRvcNdGICqQ668cGzJY0lTH8HKef+jJzbuTt1CmTx3p+ToG2CKoxQivTLNyDrphPIvdeGlHN+QPpV2/yPESuhyJ0DhmEgVCRDlj3Db7+6//UAAEnS4GaPR6jwr9MnVLZeDShp2lhkXrMLuXcbkHr+H5BnToJAqkXijPf9/kbiRj/mezCMlCgu+OFTIJI3+QZd1fdqxI3+D+/++EkvI27EAxAqUyBUpkCSyH1DKpDGQW9xwu7ywMkR2BMoUpE0p/nFcvkC29Fgoqy7JY73ZvGI1FnQDrkTyj5XNHsM7YU0fTwkCf3BSLi71QskKr+vZdnTW2NYEUm9aDnndln2dKReuBhCRZLftpYk1nSDUMl//VP2ugTJ5/6C9MvWQaztDgFPIDUUZa9LkDjz44i+l7jRjwEAhLLIr/nMmZ81wzBInPZ2xNdogTTO+15RBKMUzQgoREog0/m+p3DEup5RnZsRiKEb8wRybi1B2mXrkHXjMaj6RBZ0jYQ8q2k1raOl7H0Z5LnhA2QtNaEhGvKw3zVQqEiFqu810I39P6Se/wfEut6cr2MkakgSIw8+R0KRNw+Z1+xG/OTXkDjrE+TebUbSHO6sWrGuV0Tn5Pq9qn9t/d9NLElSRviCwoxEjdQL/kbKvIVIv3IrEme8j9QL/kbqxSuRdslqZN18CqkX/NWkSQ9Fj/MhTQ0dlImUPMznWfzEl5Bx7R4IlZFNzspzZ0PZK/wktzi+L4Az90+ZE6FM7BPR+aPxr+oHMKP8Hfxpnei3vcoTx3n8AtNcvGa4EoWJ0U/Sp5z7c9iEC6EqM6J7qB/MM7DAPBcXVbyIyiFvQahIgjR1JDSDI+uenDD1TaRfuQWpF6/k3P95+XDMPHQbZhY8Bc3IRzmPkefMhqrv1fj1OIsL/7Djy70m/GIYy3lsLDiVeXhhjwpHnfwBUmma93deIE/mPSbUdVPMcf8uz4ndxIqq37VRPQMKeO776gnPTHRE+1klSQif+U7LcVsgsOd0OvHQQw/hnXfe8dt+22234eWXX45JNBIAJBIJ0tLSfF8XFhZG9LrTpxuWPKWnp0Miie4BmASLpq4PI/IufRZI1Ei7aBnixv4X8RNfRMr5f0AgkkHR7SwkzvgQjNAb/BXreiP14mW8Fw1J0mDfQ4ZImYqkmR9DqEgBI5RBO3w+cu+xIvWipc38DmNLIOWepQjKzIgyOBP8PlqoB97Me+Miy54OZd55DV9nTvHbL9b1BsMIwAhELXKz6HufxAHeB2aV/0yzNHUU0i77B9LUkRCps8CcCfhKkwYjYeqbECrTIYrrgeS530DQKIMiaeZHUPa6BJLkYdCNf9b3YCRJGtTssTIBPxNhiAsx38+5qeJGcd+oSOL7IP2qLUg+50ekX7kF2qF3Q9EtupqTYm0e53bt8PuiHmf2LaeRNPszaEPMmIs0uX5fS1K4M38FUh2K6qwAABeCZ8zVfa+COL75N86SGGRzRvpQ5js+YNwiZRrPkc0jy4xNBkQ4irx5ECpSIc+ZhaTZ3tpoAnFwZgojDg6KaIfeDQjOZO5FmBkRqQJXCnbauR/kA8VPfg3yrMmQJAZ/VqResMjvcwYA5FnTog7eNCZJHgbduKch4vn7E2lzeQN76VduQfLcb6DMOxeM0PtvFzi+SGhHPABGIPI+nF+4hPf3WD3gJih7e7N4BVFkBkqTGzq6yTImIOf2yBps1V/XI/33ZYTSsEEBacaEiM4lkPAHSAXSOAjEkf07izTdACBosomP50xWrECqgSxtNBihGEJZHISK5k8gieP7Qj3otlaZpEuY/DpEmvCrL7RD7oRm6L0xf3912jCknv8X5N3mQtnzYqRdstL3NwKAd8KKYRjeSaamkKaPg1AWD6EiGdqhd0Pd71owQjFEHFlQ0tRR0Ay9J6LzaoYFB83U/a8DcOZ7SBke9VgFsgTeAE7cyIeRffMppF++Adm3nIY8ZwYU3c+B9Mx1kxEIIc+cCFnGeDCMN/teFBf671aSOMjvHleWNRVJsz+HNH0s+DL4oyFJHMibbSbLmAT1gBshie8b8T2OQKxC4qxPoRlyd8jjAoPGKmnov7dSV3STijZWgn9s3F0yq93cn1t1rBIAg42pTyJh6tvcJxZwZ85LEgYg7fJ/IM/lv6eUZ01B8txvQt6LPVVzExZaGiYWqs0NST8JU/+HzBuPQdH9HN7Xa4b9G5rBd0CaPBSydO5A3ElXBgDgeJUZ+1PvRsbVO6AZeq8vKCZKm4A32Ycw/p0NuPzrhpING+xNfzYINWYAOGHTAWBwQ9UTKHFxZ7rLzqy64ZuY0454ENm3FCLlfO4yAVzZ0eoBNwTdZzeVLGMiUs75CfJucyM6nglzjWkI7EX3jFQ/GR7yvamBRmwDew6HA3fddRd+//133zaRSIRnn30W8+fP933gx8qAAQN8/3348OGIXnPoUMMC9r59+8Z0PF0VX+fDwIcjZR//mjwiTTZ0ox+Ddvh8iBo9vKj7X4fMG48i/cotyLh6JyTxfXgDS7I0/xt5Za+LkXXzKeTcVYv4iS+CEQghTY7+JqcpEqa+GVHauqrPFUFBLMA7K6Ib9wxEmlxI08Yg7eJVyL69ArpxTwctt6wX6oZfINVBKItH2iUroR0+H9qRDyH7ltPIvOEoMq7egdQL/vYLVGmG3InGN1Ter8+cS8Q/WyRNHYX4SS9DPfBWpF60DFk3nfDNWgLepRlpl6zy+x60w+cjafbnSJz1CdIvWw959nRk33wS3f7tQO69dmTfXo70y9f7PRQ2phl8B7JvyUfW9QehCLjYiNSZSJ77DTKu3Iy4kQ+BEXgDBUKZLuTMo0DBH6TjwwjFYDgepmXZMxA/5bWwr1d0PzdomzXzGtQN/QKa0U+g/ueh7HkR5Ln82SgiZRqUPc73/Xspe13sl/nKCKVQ9b2G87VCRWpQBlU9efZ0qAfdHvb7qKcacKMvi5GRqHlnGcXx/sEDvp+zQCRDcZ23UDxXxh4jVkCs69XspU2SxIGQJIcuK6AbF7rOZDTBDnFCPwhE/pnrrMfFeWyoG+pIxE96OSjrmS9I3FSK7mcj5dyfkX1rIVIv+AtirTeg4bYF167hClQpus1FxpWbkTjjQ6RfviFspnE0ppW9h0sqn8cBR7eQxwnVWd6/GwCKnv7LljTD7vNNLDTGCIRIvXBJ1J8dSWd9jZw7a72fUaMegaoP97J3cVxP3oCvSJUR1XtyUeSd5/vbYxgG8uxpSL9qm98DASOUIeumk0ic8b7v30DAk7GnHeFfQ08gS4Aiz7+rdeDkCB+BLA4AIEufAGEE36tI19MveBNIqEj1BpDDUPa8GLoJz/HuZxhhxAHU+vFoBt8R0fGsw8i5nS/DDPA+dAVKmP5+UDkGZc8LIM+ciPRL10I96LYWm6wTabpBqEiCSJsb0fGqPlf4BRWEqgwcGfkX3jJcGva1z9TewLldqkyEPGsKUs/7DclnfxsUHA6VzSJOHMC5XZI8FNK0hoCCUJWJrJtOIO2SVUic8SEyrz+EjGv3+H5WQlUmEiZz3wNIkgYFfSbHT3oFmkG3IvXCxdCNexrpl2/gXU6qyJ3ldz1XdD8HsqyG0itxIx/y/ZtyTaRwnjNvHjKu2Rk0sSLW9YQibx4YoQTS1JEQiCPLTA8XkJdlTEDm1TsRN/ZJJM76BKkX/A2BWAmxJgfaUQ/zvi5u9GNIPvs7aIbeg/iJL3IeI9J0g0iVDkk89zNe6sXLfEEUgSyy4AIjUUEgkkET5jMk0n+fekWeDGy3Rz45ucE2EFaWe9VbtYc7MGTweO/Dam0uyPrfguxbTvt/hgtE0I3hXmHBCMUQKdOQev7vyLmjinOpuiRxAOTZ05BxzR6oB9zEeZ6fLf7ZwlVm//pvQlU2tua9h8Mjfkfi+Yv97rcEimRoBjfchzICEefk2wlXw3Vi2dFKSBIHImHyK8i+OR9ZN5/Ca5I38NLGWmwu8L8vWW4dhR9MkU2+BCrOexRMiFVlBQ5vEKvMnYDrq57gPOazY1ocqTDxxkiEihQIJGoocmch+/ZyqAbc6Pu7VvW9Cqo+lwe9RqRMQ/qVW72ZtVdsCr3yLQyBVANF97ORet5vSJn3a5PP4zufL7AX3QoD4Zl7glAoYy+GzTNcLhfuuecerFmzxrdNqVTirbfewoQJkc2SRmvUqFFYutSbjbVlyxZ4PJ6gbrmNud1ubNmyxff1mDFjWmRcXY2HJ2Mv+exvoV//OGxF/0CSPBTx45+J+JwiZapfsI/vA4CrjkDgbIFAqoFAGgdPhI015NkzwcIDSUJ/mA59A4+tGoxIAdZl4X1N3KhHoRl8B0yHvwtbCF/Z50oIZDrUbml4eNCNexoMwyBu1MOIC7ipiRv1CDRD70bhxzlgHQbf9sSZn0DZ80K4zaUo+jJ4+YjwzA2LOC7P7waILx9G2eM8pF26FrbifyBJGgJFo0CSUJEMl7GA+4WMICg7K+Oa3XAZCgDWDZG2GxhGgLSLV8BevgMCqZr3hgvwPmAKI7zZipYkeTDn9yGQ6pB28UoUL4h+tp5hREFNBUSa7LBZHSJtd2iG3g3LyT9925yagbDm3u79Nx18KbQDbgDrtnGm2oci1nZH4syPUbvpaYARQDf+GbBOE0yHvgoehy70uROnvYW4kQ9Bv+FxmA9/x3ucPHsmEia+7PuaYRgIlWlw1foXmWfESojj/AN7oYJqDYE9jt9cjwsCsRKaIXehbjt/Awb1oNtg3MvfSIZhBEiZtxD69Y/BXryB83dE2etSSJIGw3z0J5gOfRO0P5rliVzZjNKUEUHbNEPuRsKU12DJX4ry34KDwPwYQCBE3MiHIU0eCt34p1G18k7A44RY1xvqwXcAjMDvM6ipBBItdOMjPw9XtgpwJrh6JlvGbSlr0li0w+9H3Y6Gh+lvTA2fYU6O2x1V32ug7HUR3JZKKHLn+ILScSMeBFg3bMXrIU0dGTIQKlJnIfmsb1D2S2RLXyTJw6Dq7R+0UOSdh9otz/ttY0RyKHtfGlSfqx7nbDcbWcFloSIVssxJSJz+bvB5RXKkXrgYddtfBeu2QzPsXojUmUHHcJHnzoY4rgdqt78CgViF+EmvQMAR3JfnzIa1IHQmff33xwjFSLt0Deq2vQzWZYV64K0o++0cv2shgDATeAySzvoKsvSxEMiT/IraK/tcCfPhb8+8lxTa4fdBkjgIrrqTqNvxuv9ZhDJIEgfCEmbsAPyCQIruZyNu9H9QuyV0wJpvZYIsawpsxf9w7tMMuxes2w57mbdplFCZBlXvyyBLG4XKJdfDUX0A8tw5vsw4aepISFNHImHqW3BU7UXJt6ND/t7Ejfk/1G5+GgDAgoG595PQ6X+Ds3I35/HiBO+1XZLQHyJNLlyG/JDfszRlGNIvWwfzsV8gUmfCmXct5v53FW5Ucf+OrbcNQjdRCf62jsMC01l4Iu7zoGPC3T/IMicFbavPvJHouIMskqQhSJjyOoz7Pwc8Tih7XwqRKgMidRZkjTJBM67eAbe5DAJFEu/fCSMQIeX831G99n54bHpohtzty0KSZ0/3LSMV63rBcuIPuOpO+l4rUudAqMpA0uxPoRl6F+BxQ5Iy3C8ooOxxATKu3gGn/hCkycNRs+kpzmt/YwKx0hs86HEeLMfO1CoWiJAw7b0mJWWEC+wJ5IkQ63pBN/rxoH3x456Guv+NYF1m2IrWoXrNvwHWA5E2D+pBt0OkTIWy50VgWRb6dY8EvV6W7Q0iieP7wFqwzG8fI1b6TdJEet2uv58L9bulGXJX0DZJfD/YCrmXjgIAo8jE/0pH4f2El6EW8D9j1Ftt4/+cq+LJ2KsP7L2y5gS+2lGE9y4aiDnn/YHarc8DHhe0Ix6EQKpBzcYnQ763QKqBesD1/p/dAhGUPb0TYgzDcJZ1AQBLQDCy2tIQ2GNZFvM+24q/D1cAAIZnKrHp7ochy5oOl7EA8szJECqSUWqwYW+pAf1S1Igf/RgqFjUEtI46s5DvapgEk4ka7hcFUi0YiQZvbdjJOTY3hHis9g7opryJyxXea1+k9yAjPi9DtvJ1vD3RiQH7rwvaf8za8PvF9/O58/fDAA5DKhLgIEf8rXH5DxujhnTC20ic/j5Ytz1ogtjvdbI43+eaOLE/3IXB35M0dTTsZVuCtjfWeGmtPGcWRHE9gu7royE8c52LNggeCcZtjfk5O5qYBfZeeeUVrF692vd1fHw8PvnkE/TvH9t6FY3NmDEDzz//PNxuN6qqqrB8+XLMns1f12Pp0qXQ6/UAvJmEs2a1fD2WroAvY0+s64WUc3+KyXuIVOlwVAR/KEdaj0OSPAy206vCHqfqexWSZjfcKMaPfw4sPBCI5LDkL0PFosvBOk0QKlKgHfEg3JYyiOP7QtX3agDeIFz57+f7nTNp7jewHP8NbksF1ANvgSxtFKQpw8AIpbCXbYE0fTy0YZZgCMRKxI9/DtVr5wMeJ2SZU6DseSEEEhUEEu4bKK5MsnBk6WMgSw8OeGtHPoSKv7jrc7DO4JsRhmEgDpixZwRCyNJGRT2mWOJb8iaQxkES3xvaEQ+gbjt3h1Y1X9aFIDjgJJTFQyANXWdCO3w+5FlTkHTW1zAd/ApCTQ5OKy/wy7QLfKCOhrrfNVD3a5jVt/LcXEqThoQ9l0idCVn6BM7AXvbtZRCIVZyZOEKpDoF5aJKkwb4syoZt/EshCmq8F2quwAzr9t4c6sY/C1nmJFjzl8CwOzhYoep7DWTp42A8uIDzJptlWYhU6Uie8wVc5lKc/jg4s1MgS4Ci21wous2FNH0Cqlf6/z7oxj4Ja8EK3g5rqRevgL1kI6SpIznr/yi6zQUjVjU0qRCIfNkBQp4HflXfq5E0+zM46/JhPvYLhIokqPpcCdZpAcu6fQ8h6v7XQ5Y5BW5zKaTJw8CIpIgb+Qg89joYdr/Dee5wkmZ/7m3UkjaGdyZV1ftyGPe877ctjuNBLlAkSy64xI16FG5bNewlG1Ap7Y/Xd57v2/e58Ry8meBf00s94EbIMoKzoRmht9ZZpMIuPVFlwm0qAiNRc2Z+SpOHQtn7MpiP/OA9XpmG5LnfQhJiaRNXdhpfJl2g7FtDly4Rx+Uhccb7IY/hIlKmQZ45CeoB3JlU9XTjn4az9phfwCJQ48ClWJPjF4TUDp+P2k3/bThWlgDt8H8D8K4UcFTt9TtX9m0lvsYiKef+hOo198FjN0A7/D5oBt0K64Ab4aw+BHnuTIjP1P6Nn/gitMPuQ/F3Y+E2FQHwZrELpBoIIsiCavx7zjAC6Mb+H+JGPYLSn2fCXrqJ8zXaYdzLUjVD7oKtZEPwZ5dQAln6eMgvXg7TgS/gcVqg7n89BBIVJIkDkX7VdgAsd7Ypw0CaNBjiuJ5w1hzhfF+hIhVxox+HMK4PTh9cBWfCBLhVvZEy/X4w9kqc/jQPCJjWqv+dZQQiJM1ZgOpVd8FtrYLbXOJ3XOO/A2nKMEjPlGP4aLN3UsXNMQXpZIW4rip08AEI/3cgECugGXYfDDsbPg/qazXXl4sJJEkaBIFYCe3Q4OBNY4xQApEmfHkaafJQpF8S+p5UINUi/bJ/ULXyTlhO/AGBIgmJMz9sKEvCk+kOeH8O9T8L9aDbYDryHcCTFQ4AzJkAQdLsL2BIGQFXXT6UvS5pcjMLoSI1ZAAgsF5xoPr7R0lCf8iypsJtLoE0bYxfsJQv4Cg/E7jleg/W6b9UL9LPzPoghHclgiqomZSi+9mcE0CaoXfCsJtn+SuAblkDsSl/IKaXvY0Jsj14Pf4t3mOtHgmWWvkTUsJl7AFAmdGOO37Zh1OPTUfqeb/5tntctqDXKXteFLRNkeft+ms99bd30njMk36/7+I47nvswOXVjTP2dhXX+YJ6ALCjqA5Lj1Ti7H6jgDPPDOtPVeOcT7fCYHNBKRFi4XUTMHLc0zAe+ALrK+T4b83Nfu9RGZAReLI6fNB0W4kFt116D7TDvM9jrMsO07GfwDqMePNUX1ydzx0zKDRLcd4SKU5w3K4frWu4N6hj1djv6I4Bkobr3n9qbvX9t93FPcFS/3v88eYC/Pv3/bA6PbhlTDbevzDyJcR8AWZZxgQ4a46G7AzcuDQFIxQj44rNMO7/FHU73wz6XA8UP/El6Nc1JKtIMyb4PmMjTbYBwtTab8Stiq4kTmcUk8De2rVr8eWXDQXMtVotFixYgJ49m157JhKpqamYPn06li3zzsg899xzGDJkCFJSgpcnlpaW4vnnG2bEZ82axXkciZ5HHvxp1pSgUiiqftfCctK/voBY19uvAUcocaMeQVkEgT1lb/+UZkYk9V0qFLmzkHn9AbhqT0Kc0J/zYVaeMwuS5GG+IKQsaxqUPS+GKqDoLiMQIW5U8ExjKJrBt0GRdy48jjpf/TvfviF3+gU0JCkjOG/mm0rR/WxIEgfCUbUveGczawG2JiFv9ov3wsW3tFkg1UEz6FbOfQxHTTBGKOHN2FP1uxayjEm+BwlV70uh6n0pXC4XCvfsCfs9NJVIzf2woR50S0Svr19e2RgjlIac8XbbqjnOE/w3KxDJIcuYCFvxOt+2+k6dWwu9NxzfmmbjkTj/rAN5jnf5BMMwUOTOhjR5KGdgT6TOhCxtFFR9rkDRl/3hrDkWcETDwykj5M6yaJw1rOpzBep2vOZ7aFH1vQpiXS8kTH8HlX9zF7uXZ07yPXBwn1+DlPN+R82G/4B12xE36lHfww3fMl/JmaCsWJuLuBH3N3wPHEFlsTbXL9jOiKRImPI64ie/ioo/L/b7fBUq05F+xUYY938KwBt0NO77FM7aYxBI46Dufz0U3c/m/V7qSdPGQJ4zy5c1Ic+Zzbl0MFAkD8ZcBFINkmZ+BADQ2eyo3d6QrbHMOgqnXcnIEnkfIKSpoyBNH9ek9wkk4vjbqJc482Moe14Ep/4QROps3oY7SXMWQNX3anjsdVB0P9sv063xNQXwLuXmouxxPqpX3R0yu7wlRbJkFvAGJDKv3QeP0wxX3UmUfBf8sCoIsexGN/oxyDImwll9AAJ5AuTZM3xBbN24p1D+R0P3dFnWVL9uwbL0cci40j9Dge9vU6hMQeY1u2EpWOqtH5np/d3lW4qbOPMjOKoPQZl3rl8WVz1GKPFmrpdtASNSwHz0J1+GqaLH+ZBlTeE8r1AWh9QL/oY1fzGqVt4Jt6n4zL/D477vjWu5rzfwETrbStX3KtRs5O5emDDtTe9na4/zYTM3/I4zAuGZSafAXPWGuoKAd6Iw4+rtAABH9UFULr0BTv1hyHPnQD2Ie6Jsy5nPezljD9oXmPXDJ5LllfHjnoZY2w2O6gNQ5M72q5Ul1vUMukaECrK3JKEiGSnn/gSP0wxGpGhS9pwsbRTSr9gEy4k/zwReWFQuud7vGGUvbxaxQCRD3IgHmj1uhmGQMPnVoInuenz3Ylwk8b2BeO7l6Jqh98Cwq3EwjIE8yztxxrVcM/AeP9KluDjz786cWaFSn33LCGVIu2QlbxdSsbY74qe84b2uBwQVnar+YNJmIS/BgRPVwGorfzae1SPBU7U3Qc8TvAP4a+w1DuwBQLnRjgPlRgzPjPNtE4hkUA+4Gcb9n/i2rfDMxC9fbMPoHB3um9QdYqG35nbKvF/hrDkKgVgRlIHPH9gLGGujjL1Ptwavcnpp9XGc3a/hWvniyuMw2LyBabPDjWdWHMM/dz6Cym534aqXVge9vrTOhlXHqnDDD7tQYrBDKQlfu/ezrYW4YWQWxnfz3tMyIinUfa+G0ebCc98uxbCEXPST5PuOD+w0/INpBi5TrfDbdsTpfy/zoP4uvBT/LrKE5fjTOgE/msMvAWZEClSbHbj3t/2wnQn+fby5EBcPSsfMXpE1l+K7Z5CmjgSEYtRt5V7WDiAoSUEg1UA7/D4IZDpULed+LqqnHngz7OU7YDnxB0S6Hkho1DApVImJQKGW5wMAy4hhyZsPVhx9A7HOptmBPbfbjeeeew4s673AMwyD1157rdlBvWuuuQZbt271fX3kCPeM4n333Ye1a9fCbrejvLwcV155JV544QWMGtWQGbRlyxY8+uijqKz0Lr9QKBSYPz/6jk2Em1ueA48kEQJHQ8fh+HGRL7uNhLLH+Ug+92fUrH8MzpqjEKoykDDtnYhvcuRZU5By3m+8NxmAt4aKPEyRa5EyLWSRe0YgQvpl/8By4g9AIIKi+7kxrS0pUqUDCG6GoRl6L6yFK+HUH4ZAFo/4GNaoArzfV9rlG1C39QXUbn3Bb1+0Acq2xDdL7OvAqOC+SGZcs+vMvz0HjsAe63Hzdk5MmvUJ5/aWJtLkQqhMg9vc0AFZ1e/akMuiG5OkDAcjkoN1NaS6J0x9M+RrBDIdUBc4Du46h7oJL6Diz4vgtpRDpM6BdsSDcLk92HSmHsoP5hm4U/Mz1ALv+4viekAW0OWRb/a9cV039eB/Qb/Gv2B242YjvMunGv0dC8QKZFy9A5aTf0Eg0fpqNql6XQJF7lkoeD8JYN2+4wNrj/GRZ06E/LK1weMP0TyouRhGgKTZn6Ny2U3erBCpDglT34RIle6XtSZtQkF2hmGQct7vsBWtAVgWsuxpEX0exmJSQioSYla2HMsKvb8vDkhwTvmruFCxFilaFV64+JmYfTaLVOl+AUzAu5RWN/a/UPW7Bgwj4H3w8x1/JjjNJW7EA6j4u6FGLdeSL8AbcEqY9jaqlnHXOQIaHuCbS5oxAfbi9f7vH8XSGkYohlAYB4GYu/xBuCVy8syJvkCb3/Zuc5E440OYDn0DkSYb8RNe4Hh15ARSTfDEHE/GXn0H9lAYodgX9JOmDIN64E1g3Q6I4/uG/H1kGAaKbnORdf1h2IrXQahMhYSnHlw01INuQ+22l4KCDoru50DRqLkWF7GuF5w1R/228QXlJQn9ggKqXLYW1AIADJ7g36XAh2QAQdckgP8z3P91Ur+6XY1phz+AqhW3NZxPqoM0rW1L93AtaY+GNGkwpGeuFx6XDaK4Z30TU/Kc2b5GGLGk6DYXKef/hfLfghsMCKLodh2KZtBtMO7/1Pf7qx54i2/yRJ41FUJVhi8QDgQHwCMt4M82Wq6uG/t/kKYMg7P2BOS5s8MGfbVD7oR2yJ1gWRauuhOwVR7EiaIauFV9AIEIt4xOwSN/H4GJ5f69na+/B2usw1DHhk6Y4M3YY4N/d4pqbRgekJORMPV/EMf3grPmGBYZh+OGtUkAyvDr/jKYHW48NdsbiGEYxhts5cCVbHHaFXzf3bh5htXpDtofuK1xRh8ArD+lB8uy2FvqX5KhXmGtFTf8sAuna72ZiPVBwXCu/34XDj88DUJBw2fxlsIaONwePF93Pd6Mfx0JQgN22XviC5P/5ObnprP9AnsHHN1w1OX/mXXUlYMLKl4Gn5frrsJD2oZSL4xIAUniQHy9q9QX1Kv3yurjEQf2lN3PgX7t/X6TfpKUEd7P+R4X+BI3uAJ89/1diCfPy0GSyj+bub7JZSgCiRrJc7/m3KfIm8eZ/QqcqWmaMhIuQwHk2dOgCVHrO+mCpThSqfYF37u6Zgf2lixZgoKChnpEcrkcX3zxBb744ouIz5GYmIiXXnqpSe/fvXt3PPvss3j44Yfh8XhQVFSEa665BtnZ2UhNTUVpaalfJ1yBQIDnnnsOWVnhmxyQCAlEMPd4CNoTL8Jj10PR/RyoBtwY87dR5s2DMm8e3NZqCCTqiItw15Olc9d6lCQOhCRpEOLG/F/QEsGmYIQSXxH21iLW5iLjym1wGk5BqEiNqMhotAQiGXTjnoKz7hTMR74H4A32KHLnxPy9Wkq4jD2+Nu28QT14Z/cD09GF8gQwPF3G2gojFCN+4guoWvEvsC4LJCnDET+J/wYjkFCmQ/zEl84sB3dB0f1cqPoF1xRpTDPotqAZPVWfKziPlaWNQub1B+EyFUGkzoZArMT207UwO7w3eAZWhXnlr+KlHmsxs0+mt5tnQACIb0lk4+PUfa9B7aanfUsPxPF9/DvHRlrcXyQPeuAHAIFEhbiRD/kC4AJZPFT9ro3onHz4MqBjEdgDvL//yef8BI+9FoxQGtPaJ4xAyLn0OByRtnvIpZqBuBoSXdtPhdVFVjjP3A+bWCUWmOdCZhfgeQH3krumSj77e9RuexFuUylU/a8LmZ0ZLWWvi5GqSIG9ZAMkycP86p8GUve7BiJ1NnfNP4Eo4kYO4WiH3IWKRoE9bRMnePgaXjS1uQPDMFAPuCHscuDmYELUNYpWtPVTGZHUl6kcC0KZDumX/YPaba+AEYig7H05RKq0iLrDakc8iKrlDRnfAqmOs35dpIw2Fw5WeBuILLGOxf/FfQYx0/CA/2qdfza0VCRA/OTXUL3yX75t9ZnezaHqexUsJ/+E5eRfYMQqJEx9o9mBtfZEIJIh46ptMB/9BYxYDmWPC8O/qIn4Ar1CReQZe6GIdT2RcfUuWE78DpEqw6/xESOSInnud6heOx8eey00Q+4MCtAKI+3M6fEPNIXrhsqFYRiI43qAUeXCbWhYnXHfxG7I1inx0mruZctHndlhg3oAf2DPyBEkL6oLrkXGCCW++r+PPb0MQEPW7Curj/sCe6EIxErIc8+CNX+xb9v7xuDfryqzA3tLDNApxFyJv355xlyBP8C7rPifk3rOfdtO14YdK5cT1RYcrjChf2rDv3f9uTbZB2Jy2fvQCsyocMfBE1Au4JgrG9dU/h+uVi1FjVuNNwyXB3wn4f1inoorlMt9Kws+t1yAusX5cLmD/5FWHKvC/jM1BwFAcCYYuf5UNX7fX45+KSpcNyILAgEDoTIFyXO/Rs2mp8EIJVDknQfN0Lt8z9GqXpcAvS7hDOx9uqsWpc69+OX6gMnJCAJp2wprsexoBQamaTCvv/9yWoFYiZTzfoN+3cNgXTbEjXoU8pxZ8Nj1EKlzOJ/HdeOfRc2GhkYvjEgOSdJQoOpE2LF0FTEJ7DVmsViwfv16nqO5ZWQ0r7vbvHnzIJFI8OSTT6K2thYAUFhYiMJC/zoyWq0WzzzzTMg6fKRpnAkTkT75FghYR4s1PqgnjKL7ZGN8Nc/SL9/IW1elI2FE0lZZLpI050uoB9wA1mWFPHtG1AHWtsSfsXcmsMfxMBmu42Xc6P+grKhRlhUjhLL3ZRDKkyBUpMBtKfft0k14nuMMrUfV50rIs6bD46iDSNMtZBdJLprBt0PZ+1J4HEaIeTLvGlP2vBh121/1ZXWo+l0LsY6/BoZA4t9YZf0p/5u2QncqLIOfR/wo/qWasswp3gyxMwI7nAqkGmRcvR2GPe+DEUqhGXqvX+AvFllcunFPQZYxES5TEeQ5M5vdwZS3W1oMA/gt2bSmKXRjn0TlktCB48a4skd768R4Z2oCblvpvyTc5vLgZLUZPZMi6xgZCYFEFfNM6cb4MtQ4x8Jzrcu4YnPIepbRUPa8ECnn/QFr4QpIEvpD1T/yn1Ug3YTnUbP+Md/X0vTx7fq6Epjd1tFJEgci+awFUb9O2etimI/9Amv+EjBiJeInv9qsANj2olqcWfwDvUeLF+quwyPaBZAwLiwwnYUdDv/7m/+d1x/q/nPAOgywnFoCcULfmKwWYYQSJJ/7C9yWcghEirD1cjsigVgJdf/mTThF9D48je+E8ug6iYci1uby1qeUpY9BxhUbeV/bHu79GYbB5UMzkJegBBYG7zd5wmegAoCN5f5eXByP+kV1wTX16nk8LEoN/kvhbS4PrE435OLwyQ+J099B9Zr5cNYewzsFffGLeWrQMf+c1GPI62shFDBwe4KDVtuL6lBYY8G207X4bT93I4sT1WYsOlTOua85dpfUoXeS0ntPJGB85QEAwMrKYHXzT+xstA/GRnvTJ1yrPDqcXf46xkr3ocKtw15nT6DiFO/xg15rePY4q08yrhiageu+3+X7HF18uALfXT0cQgHjzc47E5CutTrx+LLjqDI7cNuYHIzIiuN9Dzsk+HV/WdDPnxEFB4wbb1t6pAJnf7IF9T/el87uiwen+k9kSMBPsAAAgS5JREFUyTMnIeMK/5qzoe5rVf2ugWHP+74sXM2QOyHgWR3VVTU7sHfyZOQz6i1pzpw5GDNmDH766SesWrUKBQUFqKurg0KhQF5eHiZPnozLLrsM8fGRdy4k0WGEUghF7XtWUyDRwuPwXxvYHi7sHQnDMJBnBV+oOwK+5R/1AT1pysigrokJYbLaZJmToOp3HUwHvwQYIXTjnvIt19aNfxZVq+4E3A5IEgdBHSbDrTUIlSm8db4ier0sPvJOchIV0q/cCmv+EggkGsiizNzaXBBc0Le+/gmfuNGPo6JyNzz2WggVKYgbGVybQ6TOQnyIIKsib553OX39Ocf+N/JBnxHLrBoAUPW/AaYDDY19tMM7dzkJZa9LYDnxJ8zHfvbeLDIC35IN9aDboR54E6pX3gmXuRTqATdC0W0u53mGJUtxzxAN3trtv2TndK0tpoG99oQvczVWQb16im5zoOjW/IxtzeB/wVl9AOajv0Ac3xuJ05vW0KW1cC03U/S4gOPIzs2bcfE73KZiMGJFVJ3B6+0vNeDPg+XIS1Ci1OgfbPjSdDZ+Mk+DCG4YWP+/1fsn5+HGUdlgBAJoh8+P+echwzAQKVPDH0hCalx43297O5pEioSqUSOylhIn5/7cNnIspW2u4lr+7qHFBu6g3/EqMwamhQ9yi9RZSDn3J9RYHHj5/0J3EOcK6tXLfY6/mzAAfLCxIKKmGNG65ttduObbXUhSSvDf2b0570NbkpmVY4Ut+kaDiw9XYHHAkuWf95ai7/KjGJGphVoqwuS8BDAMg3M+3YKN+d7v6/OthTj00NQQ90PeieXAn788ayoYsdJvoithWkOjmOdWHEPjH++HmwuCAnvREinTkHH1Lljr695mTYbLFdky666i2YG9RYsWxWIcQb76KnRrdi5xcXG45ZZbcMstkRWDJ11P/ORX/ZaOqAfw1yIinQ9fDb36WWVGJEXi1DdRueJ2sA4DlD0vhiLMMhWGYZA062Poxj0FRiD2ew91/+sgz5oKt7USksSB7ToLpaUIxAooezZtqU/gcooEhRg9E0Pf5MqzJiPz2n1wGvIh1vVqUhZa/KRX4bHVwlF9APLcWdAOuTPqc8Ra/ITnwDoMsJfvhCxzErQjO05ty6ZgBCIkn/0t3Na3wIjkEIiVcJ5ZmlvfgCX98shWByTIgmv2VZiCi/N3FuL4fhAq0/1KBCTO+KANRxSaQKxA0uzP/TrSt2ey9PG+Tsf1uLoddwUMwzS5e/uWghpMfm8jHG7ubpAAYOGoO/bNVcNwxdDmZUGT1sHw1qyNXXO3lqbIO69VVsNoZWJw5QKbPQ0ZYuNzdfjhmhFwsyzS1FJ8tu00Sg02fLqlEEV1NvxinoKLlGt8x/9lCe76Dngz9vaU1OGxvw/DaHfhvkndccHANHg8LO7/4wDna45WmiIK7NX7Zmdx+IOa4dtdLXv+SrMDdy7kaBjYAiZ1j8f+MiP0FmfMz/3M8oY6qNePzMKDU/J8QT0A8LDAx1sK8fI5/SDNOQv2goZl1DvsDcuvA3/+AokKurH/hX7dIwDrhixjkt+9fuCKm5PVFrAs2+xVMUJZHFS9L2vWOTqzmHTFJaSjUPW7BqzHBeupvyBOGIC40Y+39ZBIK+JbJtR4Ca6y18WQd5sL1m2PKijEV4dPpMlucpfPrqzKbMcpvf9s7MisuIhuCpqblSjW5iLtkhXhD2xFQnkiks/+rq2H0eoa18Xk6qgcCV0XC+wxAiESpr6BymU3g3UYIe82N2ZNM4j33zf1wsWoWf8IPHYDNMPubbOuqR3ZOxtOhQzqccnRyXHRQP4GZqR9iWXzuNaUce0+OKsPgBHJIG+lOtJauQhfmyfhAuU/vm0V7jg40VAy5daxOUjXNgT6bh3jLYkyqXsCpn+wCe8aLkY/8Sn0lRTgmDMTbxq4P/ePV5lx1sdbUGb0Xgc3FdRg532T8NWOIvy8t5TzNUcrg8OOG07p8eyKo7C7PHhgSh7m9vXed72z/hTu+W1/lP8CXVO8Qow1/xqPz7YW4uYf94R/QTN8se00UtXBq9ReXXMCVw7NwHNHJuJp6UrIGAccrAifGOf5jjnC8fPXDrsXih7ng7XXQZw4wBewr2+oGsjqdKOw1gqtTIw0TfNq1X69owivrz0BlUSIm3sJ0T+h6yVOcKHAHulSGEYAzcCboBlImXqkQeByEYFYAcSwgQCJ3vbTdUHbQtUBIYRPvDS4LlCFycFxZOeh7HEB5NkzwTrNECiSO+wDdnslie+NlHm/tvUwOrSmZPSsun0cJKKOk+1FgktbqAfdFuLo9kGkTOXt/NpSpCIhvjKfhdnyLVAIvAG3D40NS/y7xStwySDuCeSpPRLRPUGBk9VpOK/iFSgYGyysDG5w18QLrLHn9rD437qT+OsAf826Y5VmVJsd+OdkNeLk3tUT53y6BXVnOs5uKqjB1nsnYmCaBv9b1z7KdPEZkq6Bwe7C6GwdvmvhzL/5k7vj9bX8/x71q1CSVa1TFurXfdyB22Fv/AOgN3aIXsNA8Qkcceb4dfU9WhHcvRYAKtkUPLisGkW1m3DDqGxcNyITNVbuzMMxb63H/jIjhAIGr57bD/dM6Nake5N/TlT71RLcU8xgyQWpkAjpPocCe4SQLo+vwDNpO1sLa4O2jaTAHmmCrpaxV08gUQFUWJp0IskqysroaHTjnoJTfxjOmqOQpIyAdsQDbT0kPwnT3kH1qrt8X0tTR7XZPeEeRy+cU/4axsj245QzHVsd/SETCTAlLwEvndMPshDNK3onqXCy2gI3hE2qy/f51tMh9/9zqhrj31nPmbkHAHaXB08sOYzPLhvSIrXvYuX9iwbitrG5vq9tTjd+5WnQ0VxjcnT4v5m98P7GfFid3NnJfZO9XW1TWimwx5V511i+Kx35ruAA8tEq/9cdKjfimeVH8f3uhpIf607pcefCvbhhJPcqpf1l3q7nbg+L+34/gMf+PoR4hQRPz+6NG0I0xQt08YLtaJwUaHSyOKh3YEgS1cynwB4hpMsTSNThDyKtqnEnsnoU2CNNoZMGB/aqzA0Ze063B24PG/KhiRASGyzL4rMwQQQ+Sik9tnQ0koT+yLhmD1iXFYxIDkbQvj5nVX2vhqNiN8xHf4JIm4uE6e+26XgK3GkoMDcsNz/yyDRkxYXvjNvSQe9IgnV/HChHYpiGGS1lbI4OY3J0cLMsvtlRhGqOenVjcnS4eXSO37aZvZKaHNi7YVRWyIBojk4OjUyMZ8/qg/v/OMh5zMTu3qZDzfn5ZcXJcLqWv9NxLBypMMHp9mDF0Uq4PCzu+W0/CmqCm7BYnR68tzE/onNanR4U19lw0497MK1HInLiw6+U2lxQ43f/Vq/Ozt+IpSuhKyQhpMtjWXdbD4E04vGw2JjvX3g3RydHajNrcpCuSSxkECcTodbW0D3tt/1lWH+qGkabC9d9vxtVZgeuGpaBjy4ZDDkF+AhpMe9uyKf6W10MIxCCaafZwwKxAokz3kPijPfaeiictLLIHtWTeDK+3r5gANI0Mlz85fZYDqvdmdYzEc/M8dY6nT+pO55dcQyfbCn07e+RqMRXVwyFUOC/XPPq4Zn4fNvpoGZtkXhuTh/sKzFge1Fw6RgAyNF5A1X3TcpDdpwclyzYEXTM5LwEAEBSEwN7fZJVOPjQVCw/WokNp/QYkRWHC77YFrLjcFPUWJ2QPtwyDVMBYO3JalwbENjzeFi8tPo41pyowvjcBNw/uTuWH63kfL2JJyOyq6HAHiGkS9GOeAB121/12yZNGtxGoyFcDpQbfXVb6k3oFt9GoyGdQZJK6hfYA4A5H22BxdkQ1P9mZzFm9U7CNcOzWnt4hHQJbg+Lh/7izlwJRyKk2nqk61FJIntU56vRppOLcV7/VAxK02BvqSGWQ2s2AePtyhqJCwemYkpeIi4dnI7Up5YF7e+T3BA4ztYp8NElg/HRJYNxpMKEUoMNQzO00MrFQa9TSUVYf9d47C424KudRfh5TwnqbE6/pbNxcjFqOerGpWpk2Hj3BJQYbMh9bmXQ/lxdQ6bl8Mw4zu+r25lgloLn53zb2BywLPDR5gLO/b2TvMuuZ/ZKwsxeSd7xykScGYvt2ena4Oy/R/8+hFfWnAAALD9aBbvbDaOdOxHD6KDAHkCBPUJIF6MZdDsMez8E6/DWelD2ugRCRXIbj4o0tv6UPmjb+FwK7JGmS1ZJcCygRkzjoF69uxbup8AeIS1k9fEq2FxNewCTUtMM0sm9ck4/PNgo8D27dxIEgsgaAvAt5dTJxRAKGCy6eRSmf7CJt0ZeSxMJGDwxsxe+2VmEPskqvHvhQMQrJOjz0qqwy0jn9knGz9eNDHlM7yTujNDeySr0Tg6dLSoWCjAyOw4js+Pwv3n9Ud/PYf0pPQw2FybnJUDz+GK/1ygl3sx+kVCAbB33ElJNo2zLVLUUcrHAL2B45dCMsM0jBqSqcef4bnj7ggEY8MqaoPsYrqZymXHyDhfYc7j9I7zHKk14be0Jv20vrDzO+3qjk5biAgBdJQkhXYpIk43Mq3dBN+4ZJM74EElzFrT1kEgArsAeZeyR5khURrbMxWh3hT+IENIkX+8oavJrqeMh6exuG5uD60dmIVEpwfhcHd46f0DEr+XN2FN4r30ZWjl2z5+MYRmRNwZ5YW7fiI8N587xuXhiZi8cfngafrthFDK0csjFQmy5ZyIen9Ez5GvP6Zfi9/VTs/07FmtlIvRLic1Sb4GAAcN4/zexewLO7pcClVSEcwPG8Pq8/n5fPzGzV9C5RmfrfP8tEwv9mkoIBQwemtoj7HhS1d6fq1gowOo7xmFmr0Tfvp6JyqCagQAwo2dS2PO2N4GddF9cfTzibE4AMFHGHgDK2COEdEEiTTbiRj3c1sMgHFiWxerjVX7b4uRi9EuhBiek6SIN7BFCWgbLsvj7cEWTXy8VUe1L0rmppCJ8dtmQJr2WL2MvXtGw/FQmFmLZbWMw8NU1KDV4O8PLRAJcMyITH28uDHrtA1PyYLA7Q2ZKTegWDw/LYmN+cMOzer2TlPjPjODAF+BdzvrMnD54alZvLD5cAaPdhQytDHcu3If8GgsuHZyB60f6Z9H/e2J3LNxXij0lBogEDF6Y25d3KWusfHDxIMh+24/DlSZcMCAN143wH9ONI7Pw8urjsJ/JSJ7RMxF5if7did86fwBG58ThZLUFlw5OR98I7mvjFQ0/13StDEtvHYuDZUYU1VkxLjceKo6GQjeMzMK7G041OTu6LdRaGhpimO2usF2aA9FSXC8K7BFCCGk3DpWbUGa0+22bkpcQ8XIUQriUGlq2YxwhJLSD5SbOboaRCny4J4Q0CFVjr7F4hQRLbxmDV9acgNPtwf1T8nCy2sIZ2BMKGDx3Vl9M7p6AH/aUcAZb+iSr8OycPnh/Uz6eWnaUcwz/3DkeCWEm1wQCBmc3yorb+8AU3mPVMhG2/3sSdpfUIUUlRWYEXYObK00jww/XjuDdnxOvwO75k/HJlkIkqSS4e0K3oGMEAiZkqY8eiUocD1hqyzUp2S9VjX6p/EHBfqlqbLl3In7aUwKVVIRHFh3iPba9qM/YW7D9NOb/cSDq19NSXC8K7BFCCGk3VgZk6wHA1B6JHEcSErmpeQn4+zB3NzVCSMtbe6K6ya+VigS4h+NBmRDixddVNY6jYcSANA2+vGKo7+twDTpm9U7GrN7JyNLK8fRy/+DdOf1SkKyW4slZveFweziz+xIUsc+YFwoY3oYUbaV3sgqvnNuvya9/YW4fv865PROV6N/E1SoD0zQYmKYBALyz/hSK6tr35OaiQxV4bc0JvxqT0aCluF5UY48QQki7sfZEcGBvOgX2SDPN7UsNcghpS1yf7Xzm9knG6Sdm4NYxObhmeCa23DMRyWrujCRCCP9SdXEE3aR7JCqDAoA3jc4OOu6yIelo3OshVyfHrF4N9dx6JXLXuaMVF5E5r38qHpraA4lKCQamqbHgiqEx+bfrz5PdJ46gbum0Jt5/N6WLeVODegBl7NWjwB4hhJB240hF8DKEvjEqiky6rp6JSnx+2RD0CKh5QwhpHVsKayM6bnC6BguvH4kMrRwfXDwIX14xFIPSNS07OEK6MKGAwWPTGxpYqKRC/GtcbtBxfVPU+OOGUZjeMxHnD0jFHzeOgkzcEFDsmUTX1+YQCQV48ey+qHhqNvbcPwWjc3ThXxQBvhrVZ/UJP+F565gc3DImO6IgIACUPjkLJx+bjrrn5nDuf/Xcflh8y+iIzhUNqrHnRYE9Qggh7UZxQC207vEKMAzN9pLmu25kFo4+Mg33T84LeZzN6W6lERHSNbAsi3KTPfyBAJ6Z0wcSET2eEBKtO8fn+n1946jgrDs+D0zJw9p/jcMnlw7G3vunYChP99yz+6Vg+W1jsfD6kRiQ5h9w70WBvXaJL2Nvbt8UhLu9jpOL8OHFg1H11JyI6pwmqyTIjVfwZpBmauWY3TsZ03vGdiWOyUmBPYACe4QQQtoJs92F2oCW95lxsjYaDemswmWA1tlcrTQSQroGq9Pt6xYZTpqGltwS0hT/mdEL5/RNQZxcjFm9kvD07N5RvX5i9wTcOCobufGKJr1/gkKCfgHX1//M6MlzNGkt8/qnQCH2D7RlaGW4eliG31JqLvVLtNUyEa4fET6wF24ivr57czxH7cfmMDlZeFhajkuBPUIIIe1CYLYeAKRrW77bGela+iaHDuytO9n0Iv+EkGB6izP8QQA0MhHvsjFCSGgpain+uGkU9M/MwZJbxyBd27oTowzD4H/nDUDSmU6uo7PjcOd4anrT1hKVUiy6eRSm5CVgXK4OD0/rgd3zJ0MhEeHDiwfhrD7JQYG/elpZQwBuYvd4zOzVvEy7pDPdm+MU0QX2frp2eMj9HhawuCiwR11xCSGEtAtFtcGBvcxWvjElnd+gNA0EjPdGkMulX+3AOo0M47vFt+7ACOmkIg3s/WdGL8h5HjAJIe3fjF5JOPHYdNTZnEhRSSFqQhMFEnuT8xKx6o7goFy2ToFFN4+G0+2B9OFFQfsbN1VhGAaLbx6D5ccq8fKq41jdhE7n9UFfnTy6TsmD0sLXWaXOuJSxRwghpJ0oqrMGbaPAHok1pVTEW3Om3qtrjrfSaAjp/PQWB+8+hgHumdgNO++bhAemhK5/SQhp/1RSETK0cgrqdSB83ZO1Mv8cMIGAwezeybhsaEbYc3LVXEzwBfaiy9jrnhC+fqPBQRl7lLFHCCGkXSiuC87Yy6DAHmkBA1I12Fdq5N3/+4FysCxLjVsIaaZSgw1nfbIlaPu7Fw7EpO4JSFVLfQ97hBBC2g8ZTwa1Who+hPTfWb1x5Tc7fV9fMTQDQoH3niraW6v614VipAYaFNgjhBDSPhRxBPYyqcYeaQHdE8IXBz9SaUKfZKr3RUhz3PTDbs7GGekaWdjMWUIIIe1PJHG5y4akw+xw448DZeiRqMR/ZzU0c7G1QBBOLqSJWMqRJYQQ0i6UcCzFpYw90hLO6pMc9pgNp2paYSSEdF5GmwtLjlRy7ouPsng6IYSQlnP1MP/ltXND3CeJIsigYxgGN43Oxu83jsJr8/pD3WhZ77n9UyIe11MRdHfOVAnRS0fXFArsEUIIaRcCM/YSFGLeZQCENMfYHB1GZ8eFPGbtiarWGQwhnVR+jYV3X7yClt8SQkh78dDUHsjVeVfJpGmk+L9ZvXiPndYzEeKADLl3LxwY8XsNSddgSl6C37b6unvjc3WY2SsROTo5bhyVjX9P7M57nnE5OtzQT4XPZyVGFGzs7GgpLiGEkHahxurfOTFZJW2jkZDOjmEY/HbDKNzxy178tr+M85if95bi1XPtSFbT7yEh0TDbXfCwwCl9qMAeZVcQQkh7MSBNg30PTEGxwYZUtRQaGf9ndLxCgrsndMPra08C8DbKuHxIesTvxTAMlt46Bj/uKYHN6cHlQ9IhFgrgZlnezuizeydhaUAG+IIrBqOm4GjE79vZUWCPEEJIu2C0ufy+jqQ4LyFNlaKW4rPLhuC3/Us499tcHry/KR9Pzgq/DIQQAhhsTjy++DA+3VIIG0ddvcYosEcIIe2LUipCryRVRMe+em5/XDAgDVVmB2b2SoRCEt09u1gowFXDMiM+/qnZvf0CexO7xSM7To6agqjetlOjpyZCCCHtgtEeENiT0SWKtKw4uRjDM7XYUVTHuX/xoQoK7BESAZfbg6nvb8SuYkNEx0tFVGaBEEI6svHd4lvtvUZl6/D3zaPxyZYCpGlkEdXe62roqYkQQkibc7k9QRkelLFHWsNnlw3BDd/vxkm9BbUBy8GLDcGdmgkhwZYfrYw4qEcIIYREa06fZMxp1NTD5XKFOLrroeYZhBBC2lxgth5AgT3SOgamabD9vknQPzMH03sm+u2rNDnAsiyqzQ7YnO42GiEh7d/mwtq2HgIhhBDSZdFTEyGEkDbHFdhTUWCPtLLAhi0OtwcT392Ajfk1SFCI8fVVwzC7dzLPqwnpurafrm3rIRBCCCFdFmXsEUIIaXNGe3A2FGXskdaWqJQEbduYXwMAqLY4cc+v+8GybGsPi5B2jWVZbIsisPf0HKqNRAghhMQSBfYIIYS0Oe6luFRcnbSuJFVwYK+xY1VmlBvtrTQaQjqGghorqsyOiI49f0Aq7hrfrYVHRAghhHQtlA5BCCGkzVGNPdIeJHFk7AWqsTqRqpG1wmgI6RgizdY79sg05CUqW3YwhBBCSBdEGXuEEELanIkCe6QdSAqoscel2hJZZhIhXUUk9fUytTIK6hFCCCEthAJ7hBBC2hxl7JH2IDnMUlwAES85JKSr4ArsBX5+v3B231YaDSGEENL10FMTIYSQNkddcUl7kKQMn7H3xOIjqDY7cfXwDEhFVAeSdE2Hyo1YdrQS2XFybC+q89vXJ1mFDy8ehNt+3osyox23jc3BlUMz2mikhBBCSOdHT02EEELaHGXskfYgXPMMADhQbsQtP+3BD7uLsey2sa0wKkLaD6fbg3v/2IcPNuWDr0H0yKw4TOyegIMPTW3dwRFCCCFdFC3FJYQQ0uYosEfagziZOOJjVxyrwsEyYwuOhpD256PNhXh/I39QDwCGZ2pbb0CEEEIIocAeIYSQtme0u4O2UWCPtDaBgIFEGPmt0ZFKUwuOhpD2Z/mxqrDHjMrWtcJICCGEEFKPAnuEEELanMnGkbEno/plpPX1T1VFfGwlNdIgXUxxnS3k/qw4GUZmxbXOYAghhBACgAJ7hBBC2gFaikvai0sHR17kv9QQOshBSGdTHOZ3/roRWRAKmFYaDSGEEEIACuwRQghpBwIDe2IhQx1HSZuYP7k7XpjbN6Jjy4z2Fh4NIe2H3c2iyuwMecwV1P2WEEIIaXUU2COEENLmAgN7lK1H2opYKMDD03rg0ek9wh5bToE90kVUW92YvbAs5DFiIYOeicpWGhEhhBBC6tGTEyGEkDYXuKSRAnukrT0ytSd2Fxuw+HAF7zG0FJd0Vvl6C+b/cQDHq8wYlwjsqXLA7ArRChdA93gFRFE0nyGEEEJIbNCTEyGEkDa1o6gW+TVWv20qCV2eSNtSy0RYdPNoaB9fzFkDEqCluKTzuumH3Vh9ohoAsD90op5PD8rWI4QQQtoETasRQghpU3f+si9o25AMTRuMhPx/e/cdHlWV/3H8M+k9IYUACS2BhN4FRARRRLGLKNbVXTtW0BVdu6Ku+ttV14ZtrbuiiKsoKIIUQYoC0ntoCYRUkpBeZn5/INdMMkkmyZRM8n49j88z99xzz3yDObl3vnMKarv/jMQ6zx09XiaLpf5RTICnOVpQaiT1GiORxB4AAG5BYg8A4DZb0wv0S2qeVZm3l0l3je7unoCAGv40NF7tQ/xsniurNCuvpP7NBABP82uNv8n26hFFYg8AAHcgsQcAcJv//Ha4Vtlfz0jU8C7t3BANUFvXyCBtnD5W/54ySH1iQ2qdZzouWpuaX7bYKzbU37GBAAAAu5DYAwC4hcVi0ewaiT2TSbrjtG7uCQioQ4ewAN1wSmfdcEqXWufS8tlAA54vvaBUh/NPrHW6romJvSFx4Q6MCAAA2IvVyQEAbpGWX6qDNTbNGJcYrbjwQDdFBNSva7vav5vr0/J0dlKMG6IBHOPB+Tv0wtK9kk58sdKUxN74ntGssQcAgJuQ2AMAuIWtD49n9Yx2fSCAnUZ0iahVNndzuh48s6frgwEcYHdWoZHUk6TXfz5Qb/3HxvdQaICf+ncMVUSgr/79S6piQ/11/9i6N5kBAADORWIPAOBypRVVuva/G2qVn9I5wvXBAHbqHBGoTmEBOlLwx/Tb9Wn58rr/G82c2EvXDI5T18ggN0YINM6s1QcbVf+Sfh00KP6PNVBZDxUAAPdjjT0AgMtd+cl6lVSYa5UPI7GHFsxkMmlUN9uJjEe+26nuz/4on79+owfn71B5Ze3fb6ClySps3OYvPaNJXAMA0NKQ2AMAuFTm8TLN25ZRq7xndLAiAn3dEBFgv5Fd6x+hZLZILyzdq4AH5+ut1QdksVhcFBnQeL5ejfso4O/j7aRIAABAU5HYAwC4VGp+ic1ypuHCE1zSr4PddW+fu0XvrD3kxGiA5vH2Ntld95yubGwEAEBLRGIPAOBSmcdtT/368/DOLo4EaLyEqGC9e8VAu+vf/802J0YDNE9JeZVd9YJ9TLquV4iTowEAAE1BYg8A4FJZReW1yq4bGq+zesa4IRqg8f4yvIsSouxba6ywzL7ECeBKZrNFK/blaM2hY3XWCfDx0rLbRurpUyP0+fntlRzJUgkAALRE7IoLAHCpzMLaib0/n8JoPXiWxKgg7cspdncYQKOVV5p1+us/69fUvHrrnZEYpVHd2ik4nw0zAABoyRixBwBwqUwbuzDGhPi7IRKg6bpHBttdt7SCUXtoOT7ZkNZgUk+SJiS3d34wAACg2UjsAQBcKtvGiL32IX5uiARouk5hAXbXtZXMBtzl5wO5dtU7tYEdoAEAQMtAYg8A4FI1kxxeJikyiMQePEuwn7fddW1NPwdcpbzSrC3pBcovqZAk7cwotOu6gZ3CnBkWAABwENbYAwC4VM3EXlSQn7y9TG6KBmia8/u011+/3W5X3Yw6doIGnG1PVqHGvblaRwpK5ett0pSBnbT6YN0bZlQX4OutyspKJ0cIAACaixF7AACXqrkrbnvW14MH6tU+VJf262BX3Qym4sJNbvp8k44UlEqSKqos+mTDYbuuiw+3f6o5AABwLxJ7AACXsVgstUbssb4ePNWcPw1Tn9iQBuuxxh7c4aeUHK3Yb996ejX946K+Do4GAAA4C4k9AIDLFJVXqaTCbFXGjrjwVF5eJt00omuD9ZiKC1crrzTrvm+2NenaMQmRmtS/o4MjAgAAzkJiDwDgMlk2NhGIYcQePFi7QN8G67B5Blzt/5anaH1afqOvm9irvZbcNop1TwEA8CAk9gAALnPgWHGtsthQRuzBc0UG2ZPYY8QeXOvdNQebdN3LF/eVF0k9AAA8Cok9AIDL7MwsrFWWFN3wGmVASxVhx4i9dal5KqmockE0gFRYVqkDx0oarNetXaCGxIUbx9PHJqhnDH+PAQDwND7uDgAA0HbssJHY623H5gNAS+Vjx+im/NJKnffOWj1xTpLGJka7ICq0doeOFeu1nw/Ix8ukqaO6KT4i0Di3N7uoVv1+HUK19ehx43hsQpS+vXG4gv19lJJdJF9vk7q0C3JJ7AAAwLFI7AEAXGZX5nGrYy+T1DM62E3RAM2XZOcIp+X7cjTuzdV64YI+uv+MRCdHhdbseGmlhr28QtlFJ9ZunLs5XRumjVGw/4nH+s3pBbWuuX1UN/WIDtYXm48oOSZEd57WXX4+JybuJPI3GAAAj8ZUXACAS6w+kKtFu7OtyrpHBinA19tNEQHNFxXspysHdbK7/vNL9shstjgxIrR2X2w+YiT1JGlPdpH++9thSdK8bUd1w+yNta7pGR2ss5Ni9NbkgZo+NtFI6gEAAM/HiD0AgNMVllXqjDdX1Srv1Z5puPB8H101WMM6R+j+b7Y3WDenuEKHC0rVudrUSaAxFu3OqlV26xeb9drP+7Ul/biNKxgZDQBAa8bXdQAAp1u4K1MVVbVHKSWT2EMr4OPtpeljExUfHmBX/T1ZtddAA+x1sI6NMepK6kkikQwAQCtGYg8A4HR7s4ttlp/ePcrFkQDO89dxPeyqtzur9iYygD3MZovNNfTq0yM6WF52bPICAAA8E1NxAQBOl5Jje5fGC/vEuiEawDnuGt1dQ+PDtTe7SAE+3rryk/U26+2xsWspYI+9OUUqKq9q1DUju0Q4JxgAANAikNgDADjd/tzaI/Y2TBvDKBK0OqO6RWpUt0jlFpfXWeeln/bpWHGFHjm7pwJ9vRXo662IQF8XRglPtfFw40brBfl66z52YQYAoFUjsQcAcLqUGiOUEqOC5OPNahBovSKD/Oo9/8G6VH2wLlWSZDJJM8b10LPn9XZFaPBgaw8dq/e8l0kqfPY8bT16XFuPHte5yTHqEGbf2o8AAMAz8akKAOBU5ZVmHcqzXuw9ISrITdEArjOgY5hd9SwW6e9L9mrzkcaNxoLnyykq16FjttcgtWXNwfoTe+EBvgrw9dawzhG64ZTOJPUAAGgDSOwBAJzqUF6JzDU2xE2ICnZPMIAL3T6qa6Pqr9if46RI0BK9unK/Oj75g7o986OmfLROVTX/UNZQVlml9Wn59dYxsboBAABtDlNxAQBOZWvjjEQSe2gDbh7RVZVmi2atOqhtGccbrJ+SY//ILXi2Y8XleuDb7ar8PZk3Z3O6pmw7qkn9O1rVW30gVwt2ZmpgxzDFRwSqvMpcb7vXDo13WswAAKBlIrEHAHCq1BrTcCWpe2SgGyIBXMvLy6Q7TuuuO07rrnnbjuryj9apoqruUVn7bCTB0TotTclRWaV1km7a11uNxJ7FYtEj3+/Ucz/uNc5HBtW/wYrJJN0yonGjRAEAgOdjKi4AwKkyjpfVKuvIuk9oYy7q20E7HhhXb52UbEbstRWlFVW1ylLzSmU2W/Tt9gz5zZhvldSTpNziilrXvHZpfw3oGKae0cF674pB6tMh1GkxAwCAlokRewAAp8ooLK9VFhvi74ZIAPdKiArWkttO1ZmzVts8vy+3SCnZRTp6vEwjukSwc3QrVlppe0rtyyv26f5vttvVRnSwn24f1VVTT+vmwMgAAICn4YkRAOBUmTZG7MWGkthD23RGj2g9eU6yQv1rf7daUmFWz78v0emv/6yB/1iu/JLaI7TQOhyzMfpOkh7+bqfdbYzs0k4mdssAAKDNI7EHAHCqmlNxg3y9FWIjqQG0FY+enaT8ZybqiQnJddbZkVmoF5btrfM8PFtuSe2RzJJqrbtXn5Hd2jkqHAAA4MFI7AEAnCqz0Dqx1z7Ez02RAC1LYnRQveef+3GvLJa6N9uA56prxF5jjOpKYg8AALDGHgDAyTJqJPaYhguc0Ce24Y0Ozpq1Ws9M7KVdWUX6YVem+nUM031jE+Tv4+2CCOEMvxw6plmrDzarjZhgPw3vEuGYgAAAgEcjsQcAcJqKKnOtnRxJ7AEnDOgYpohAX+XVs5bespQcnfbaz38UbDyizMIyvXxxPxdEiMY6VlyulJxiJceEKDSg9mN2fkmFJry9xq627h2ToMFxYbr+041W5dHBfnr78oEK8uMxHgAAkNgDADhRzWm4ktSeHXEBSZK3l0lnJEbpq61HG3Xdv1bs10sX9WXjhBZmzcFjuujfvyi7qFwxwX76/paRGhwXblVnzuYjKiitbLCt83q111PnJCvI11sZx8s1Z9MRdY8M0rVD43VmjyiSegAAwMBTAQDAaWpunCExYg+oblyP6EYn9iTpmR/36MFxPbTl6HEF+3krKSbECdGhIXuzi3Tnl1u0L7dYe7OLjPKsonI98O12TezVXp9tPKKi8kolRgXrm+0Zdba16NaRCvP3VZd2gVZ/J+8/I1H3n5Ho1J8DAAB4LhJ7AACnsZXYY8Qe8IcJSTFNuu6x73fpse93GccTe7VXiJ+3yqvMmj42UacnRDkqREg6mFus134+IF9vk+44rZviwgMlSTd9vlE/7cu1ec2Pe7L1455s43h7RmGd7Y/q1k5n9Wza7wIAAGjbSOwBAJwmo7C8VlksiT3AkNw+RFNHddMbqw5Ylf967+m656utWnXgmF3tfLcz03i9YGemUh46S/ERgY4Mtc0qKK3QKa+sUHbRib9nf1+yV1MGddJfhnepM6nXWO0CfR3SDgAAaHu83B0AAKD1OlJQWqusA1NxASuvXtpPX//5FE0e0FGnd4/Up9cO0dD4CJ3SOaJJ7VVUWawSfWg6s9miF5amGEm9kz7beETn2LkJhj1C/fmuHQAANA1PEQAApzl0rKRWWWdGEQFWTCaTLuzbQRf27WBVHh/e9L5y6xeblRQTrLGJ0c0Nr80qqajS5A/XuSRJmm/HhhoAAAC2MGIPAOA0aXnWiT2TSYoLD3BTNIBnaW5fOXPWam1NL3BQNG3PV1uPumzkY5aNHcQBAADsQWIPAOAU69PytKDGh+IOof7y8+HWA9gjPqJ5iT2LRXpl5X4HRdO6peaV6LsdGTqS/8fyAasOOGb9PHtcMSjOZe8FAABaFz5dAQAcbldmoU7918pa5Z2bMbUQaGviwprfX95be0iSZLFYZLFYmt1ea7R4d5b6vLBU57/3i3r+/Ue9/8shHS+t1Ia0/Ga1e80Q+5J1Pl4mXT2YxB4AAGga1tgDADjc66sOqNJcO4nQpR2JPcBencIds9HMwdxiXfvfDVp98JhO7x6lT64ZrLg2nGRfn5anqXO3KDWvRH8a1lmrDuSqqLxKklRSYdaNn2/SjZ9vatZ7XD8sXu9fOVg9o0P0xA+76qx3cd9YPTCuhzqxRAEAAGgiEnsAAId7rY7pf/FsnAHYzd/H2656gb5eCvT1Vm5xhc3zZ7+9RnuziyRJy/fl6KlFu/XW5IEOi9OTVJktuvY/G7Qr68S/xwtL9zrlffrEhkqSbh/VVW+vOWi1Q7ivt0kvXNBH95ye4JT3BgAAbQuJPQCAQ9W3CHznZq4ZBrQ1PaKDjaScJMUE+2nZ1FF6cWmKNh7JV/sQf714YR/dMmeT1h7Ks9lG9esl6Z01h1pVYq+iyqx/LE/R9zsz1a9DmGZO7KWIQF+bdbceLTCSes7Ut8OJxF5MiL+2P3CGvtuZqQ6h/urfMUz+3l4K9ucRHAAAOAZPFQAAh1qWklPnudgQx0wtBNqKB8Yl6pY5m43j6WMT1Ts2VP++cpBVvcggv0a1a7FYZDKZHBGi27295qD+tmCnJOmnfbkqrqjSv6cMsqqzIS1Pj36/q1m73A6JC1dZpVnbMo43WPfkiD1JCgvw1RQ2xwAAAE5CYg8A4FBL92bXea5X+xAXRgJ4vhuHd1F4gK9+2pejUzpH6Lqh8TbrRQXZHqFWl/GzVuu07pH66xk9FBpQ/+Pgot1Z2ptdpAv7xDZrOr3FYtFXW49qZ2ahJvZqr0Fx4VbnK6rM+uVQntqH+KlnjP1/K/5vWYrV8Qe/purdywfKy8ukg7nFennFPr2yovm7A/eMCdbharvm1qcLyw4AAAAXIbEHAHCoukbs9esQqsE1PsgDqJ/JZNLlAzvp8oGd6q3XrpEj9pam5GhpSo4O5Bbro6uH1Fnv8YW79PSi3ZKkv36zXeunjVFyIxP0x0sr9fKKfXp84R+bSDy+cJcW3TpSYxOjJUkFpRUa/drP2nr0uLxM0gsX9NH0sYkNtp1bXK6Dx0pqlR/KK1FEoK9OfXWljh6ve3mAxogO9lNRWZVddb28WsdoSAAA0PJ5uTsAAEDrkV5Qqp2ZhbXK7x2ToB9vO7XVTP0DWpqoRib2Tvpkw2E9+v1OHc6vnRwrqajS/y37Y3OJ4ooqPd+EzSau/e8Gq6SeJFWaLXp37SHj+I1VB7T16IkprmaL9PB3O5VTVF5vu6sP5Cr6sYU2z5337lr1fmGpw5J6khQT7K92doyMfGR8T4e9JwAAQENI7AEAHMbWaL0nJiTrnxf1VQzr6wFOY0/CqS7PLN6jxGeX6J01B42yjONlmrftqEoqzFZ1P/g1tVFtH8gt1jfbM2ye+8+Gw3pi4S6VVlTptZUHrM6VVZr1w+6sett+5LuddZ7bmVmoDAcm9SSpfYhfnZtynHRB71hNG8NutwAAwHWYigsAcJif9tVO7I3rEeWGSIC2pbljYcurzLr7q626qG8Hfbw+TX9bsEOVZovNun1eWKoqs0XDOkfo5YvrT9qv3J9b7/s+9fs03yMFtdeu+2hdqrYdPS6LLLpjVHd1Cv9jV+3ySrOW1rNRjzPEhPgp/bjtxF7BMxMV6Ostb6bgAgAAFyOxBwBwmG1HrXeL9PU2aXiXCPcEA7QhdSXhGqOs0qxXVuzT35fUP9325HT7PdlFCvX30azJA/RTSo5mrT6gyCA/PXZ2ktqHnkj2bTyS3+D7nkzu1bRwV5YW7joxau+DX1O196GzFOjrLUnaerTA7p/LUaKC/NSujhF7If48UgMAAPfgKQQA4DA7MqwTe0nRIfL38XZTNEDbcUGfWE2ft63Z7TSU1Ktp3rajGtWtnW6YvdEoW3UgV+unjVFJRZX+uXxfs2OSpPSCMr3+8wFtPJyvtPwSlVc1P5HZWGEBPg1OxQUAAHA1EnsAAIfIKixTTnGFVVnv2MbtngmgaXpEB2tir/b6bmemS9/36PEyq6SeJG08UqCuMxfrWEmF7Yua6IFvtzu0PVuePa+X/rag9tp9HUL91b9jmLbV+PICAADA3dg8AwDgELZ2w+3VnsQe4Cpf//kUXda/o111Q/y99fl1QzV5gH31Gystv1RF5VVOaduZ7h+bqL+f31uDOoUZZe0CfTVr8gD5envJ16v2o3OnsIBaZQAAAK7CiD0AgEPsILEHuJWPt5fuGdNdc7ek11uvU1iAPrl6sM7oEa2OYQH6YnP99duKPw2Nl4+3lx4Y10MPjOshSSosq5S/j5d8vU8k9M5OipGvt0kV1aYCv3xxX7fECwAAILkwsffKK6/ojTfeUFxcnJYsWeLQtrds2aLJkyc3+rr//Oc/GjZsmENjAYC2ytaIvd6xoW6IBGi7gnzrXtNy6qhuuvv07uoYGqDQgBOPgKd1j9RLF/fVQ/N3qLTSXG/b08cmOGzNPEfr1T7E5t+ghvh4mVRptigm2E8PndWz1vmam2JEBfvpiQnJeuT7nbJYpIm92uuSfh2aHDcAAEBzuSSxt3nzZr3zzjtOa3/Hjh1OaxsAYJ9Nh613vzSZpOSYYDdFA7RN0cF+NsuHxofr4fE91dHGtNF7Tk/Qpf06aPA/f6pzXbxHz07Sk+ck65TOEbrqkw0OjbmmMQmR6tchTG+sOmD3NVcNjtPjC3fVef79KYN0+9zNVsnLr/98inq1D1FKTrFGdm1n98YYD53VU9cMiVNhWZV6x4bIZDLZHScAAICjOT2xl5qaqqlTp6qiwrELKFdXPbHXtWtXde7c2a7rwsPDnRUSALQp5ZVmrTl0zKosKTpYQX6s+AC4Upd2QRreOUK/pOYZZe9eMVDXD+ssb6+6E1Bd2gVp61/PUPLzS1RYZr02Xp/YEN0/NlGSFBvi36h4TuvWTi9e2FejXl1p9zWdwgL02qT+Kqms0vu/pNp1zQV9YutM7MWG+uvygR1VXFGlaV9vU3mVWdcOidP5vWPl5WVSz5jGLxnQpV1Qo68BAABwBqd+4tq9e7duuukmZWVlOfNtrBJ7t99+uy699FKnvh8AwNr6tDyVVFhP4zs9IcpN0QBt29wbhun+b7brcH6p/jK8i64fFm/XqLKOYQH69JqhmjF/u0orzbqwT6wu6BOrMQlRxhpzHcLsT+wlxwTrpztOU0WVRaH+PjpeVmnXdTG/Jw+HxIXrfTWc2PPz9lLfeqb9f3zVYAX5+ej2Ud109eA4lVWa1T60cQlKAACAlsppib2vv/5ajz/+uEpKSpz1FpIki8WiXbv++Ia2V69eTn0/AEBtP+3LrVU2hsQe4BZx4YH69NqhTbr2/D6xOr9PbJ3nO4TavwPsn4d3kclkkp+PSfec3l0zF++x67r2ISemE9eXrKtuQMdQ+fl4aUxCZK2/RdlPnaPIoD+mJ4fbOd0WAADAU3g5usGMjAzNmDFDDzzwgNOTepJ08OBBFRcXS5J8fX2VmJjo9PcEAFj7YVdmrbIxCZFuiASAM4UH2P5O+LZTu1ode3uZNGVgJ+P4qXN7af6Nw+16j/a/j9g7PSHKrnU6L/5984q/1dj84tzkGKukHgAAQGvk0BF7b775pt5++20j0SZJCQkJmjBhgmbNmuXItzJUn4bbvXt3+fnxAAcArrQ3u0hLU3Ksyrq1C2QNKqAVqmtK7z2nJyi9oFRfb8uQl0l6dHySukZa/w2Y2DtWkUG+yi2uf93l2N+nyXp7mbTiztP0rxX7VVJh1s0ju2jNwWO6Zc5mlVedmPp/7ZA43XN6giTp7KQYzb52qD5Zn6aukYF66pzk5v64AAAALZ5DE3vvvfeeVVLv8ssv14MPPqgffvjBkW9jZefOncZrpuECgOu9u/ZQrbKrhsS5IRIA7tI9Mkhf3nCKdmcVKdDXq87E/vSxiXrku502z53UvtoGHdHB/nrq3D+e75JiQnRGYpTS8kvVMzrYWI9POpF0vGJQJ10xqJMAAADaCqessdevXz/NmDFDw4fbN+WiOaqP2COxBwCuN397htWxySTdNLxrHbUBeLr7xibqH8tTjOOxCVHy8zmxukty+/p3mH3ozB5KiAzSpvQCdYkI1B1fbqlV5+Qae3Xp0i6IEcEAAAC/c2hib/jw4Zo0aZLOOussu3Zfc4Tqib3k5GTt3LlTc+fO1dq1a5WWlqbKykpFR0dr4MCBmjhxos4++2yXxQYArV1FlVm7sgqtykZ2aafuUXzoBlqr6WMTtOZgrn4+cEyJUUH6v4v62H2tyWTSlYPjdOXgOFksljoSe+xYCwAAYC+HJvbeeOMNRzbXoNzcXGVm/rFg+7vvvqvVq1fXqnf48GEdPnxYCxYsUL9+/fTSSy+pS5curgwVAFqlPVlFqjRbrMoGdApzUzQAXKFjWICWTz1NxRVV8vfxkq930/ZiM5lMuuO0bnr95wNGWVJMsIL9vB0UKQAAQOvnlKm4rlJ9tJ4kI6kXGBiorl27KiwsTJmZmTpw4IBRZ+vWrbr88sv1/vvvq08f+79hdobKykq3vn9zVVVV1XsMwH6e2p+2pOfVKusVHeTxf9/g2Ty1P3maAG9JFrMqK81NbuOhcQn6cU+WdmYWKcTPW8+f14v/Xy0IfQlwHPoT4Dj0J2utKrEXEhKi6dOn65JLLlFwcLBRnpaWpn/961/6+uuvJUl5eXmaOnWq/ve//6ldu3Yujfkks9msTZs2ueW9nWXr1q3uDgFoNTylPy3derxWmX9hpjZtyndDNIBtntKf2qoPxoVpf0GQ2gd5K6w8XZs2pbs7JNSBvgQ4Dv0JcJy23p+aNneihag+Eq9du3b64osvdM0111gl9SQpPj5eL7zwgu666y6jLD09XbNmzXJVqADQKu3Pr6hV1j3co78zAuBi3l4m9YjwVZifRz+WAgAAuIVHP0HNnDlTv/zyi+bOnatPP/1U3bt3r7f+HXfcocGDBxvHn332mcrLy50dJgC0WvvyrafchvmZFBXg0bcWAAAAAPAYHj+sIjw8XOHh4XbVNZlMuu666/Tbb79JkkpKSrR+/XqdeuqpzgzRJi8vL/Xv39/l7+tIVVVVVkNe+/XrJ29vFrwGmsIT+1NZZZUOfrbIqqx/pwgNGjTIPQEBv/PE/gS0RPQlwHHoT4DjtLb+tGXLFpnNTV+z2OMTe401ZMgQq+MDBw64JbEnST4+reuf39vbu9X9TIC7eEJ/2ppha0fc8BYfN9oeT+hPgCegLwGOQ38CHKet96c2N18qKirK6jg/nwXeAaAp3lpzsFbZwE5hbogEAAAAANqmNpfYq7mmXs2NNgAADXvppxS9tdpGYq8jiT0AAAAAcBWPHat4+PBh/fe//1Vubq5ycnI0ffp09erVq8HrUlNTrY47duzorBABoFWqrDLr6UV7apWbTFK/DqFuiAgAAAAA2iaPTexZLBa9++67xvHw4cPtSuytWLHCeG0ymWqtuQcAqN/urCLllVTUKu8ZHaxgf4+9rQAAAACAx/HYqbjx8fGKi4szjr/88ktVVVXVe01hYaE++eQT43j06NGKjIx0WowA0BptSi+wWT42McpmOQAAAADAOTw2sSdJkydPNl6npKRo1qxZddatqKjQgw8+qIyMDEknRuvddtttTo8RAFqbjYdtbzr04LieLo4EAAAAANq2FpvYO/PMM5WcnKzk5GSdeeaZNuv8+c9/thq1969//UszZ87UsWPHrOrt2LFDf/7zn7Vo0SKj7Nprr9WwYcOcEzwAtGKbbYzYy3higrpHBbkhGgAAAABouzx6MaTAwEC99dZbuvbaa5WXlydJ+vjjjzV79mwlJSUpJCRE6enpOnTokNV1F1xwgR566CE3RAwAnm/TEevEXvfIIMWE+LspGgAAAABou1rsiD179ezZU1988YUGDx5slFVUVGjbtm1au3atVVIvICBA9957r1544QV5e3u7I1wA8GjZRWU6erzMqmxgpzA3RQMAAAAAbZtHj9g7qXPnzpo9e7Z+/vlnffvtt9q4caMyMzNVVlamyMhIde7cWWPHjtWFF16ojh07ujtcAPBYu7OKapX1iQ11QyQAAAAAAJck9iZNmqRJkyY16polS5Y0+n1OO+00nXbaaY2+DgBgnz02EntJMcFuiAQAAAAA4PFTcQEArrM7u7BWWVJMiBsiAQAAAACQ2AMA2G2vjRF7PaMZsQcAAAAA7kBiDwBgt93Z1om9yCBfRQX7uSkaAAAAAGjbSOwBAOxisVhqrbHHNFwAAAAAcB8SewAAuxzOL1VxRZVVGdNwAQAAAMB9SOwBAOyyJb2gVllye0bsAQAAAIC7kNgDADSorLJKz/64p1b5gI5hbogGAAAAACCR2AMANMBstmjKx+v184Fjtc717xDqhogAAAAAABKJPQBAA+ZuSde8bRm1ysMCfNSlXaAbIgIAAAAASCT2AAD1MJstmrl4t81z3SODZDKZXBwRAAAAAOAkEnsAgDqtPXRMW9KP2zw3oks7F0cDAAAAAKiOxB4AoE4bDufXee683u1dGAkAAAAAoCYSewCAOm3PKLRZfuupXXVhn1gXRwMAAAAAqM7H3QEAAFqunRnW03C9TFLmk+coMsjPTREBAAAAAE5ixB4AoE7bM61H7PWMDiapBwAAAAAtBIk9AEAtC3Zk6LRXVyrjeJlVee/YUDdFBAAAAACoiam4AAAry1Oydcn7v6rSbKl1rndsiBsiAgAAAADYwog9AIDBbLbovnnbbSb1JKkPI/YAAAAAoMUgsQcAMMzfkaENh/NtnosI9GUnXAAAAABoQUjsAQAMi/Zk2yw3maS3Jg9QWICviyMCAAAAANSFNfYAAIY9WYW1yjqG+euNSQN0cb8ObogIAAAAAFAXEnsAAMOe7CKr467tArX/4fFuigYAAAAAUB+m4gIAJEmlFVXal1NsVZYUE+ymaAAAAAAADSGxBwBQTlG5Ih75vlZ5j+gQN0QDAAAAALAHiT0AgP6xPEXlVeZa5YzYAwAAAICWi8QeAEA/1rEbbs9oEnsAAAAA0FKR2AOANq680qxfU/NsnkuKYSouAAAAALRUJPYAoI3blnHcZnmf2BAlRAa5OBoAAAAAgL1I7AFAG7eujtF6708ZLC8vk2uDAQAAAADYzcfdAQAA3Gt9Wn6tsg3TxmhQXLgbogEAAAAA2IsRewDQxq1Py7M69vfxUt8Ooe4JBgAAAABgNxJ7ANCGlVVWaXN6gVXZwI5h8vXm9gAAAAAALR2f3ACgDVuXmq+KKotV2dDOEe4JBgAAAADQKCT2AKCN2nykQKe//nOt8qHxrK0HAAAAAJ6AxB4AtFH3fr3VZvmw+AjXBgIAAAAAaBISewDQBmUeL9PyfTm1ygN8vNQnNsQNEQEAAAAAGovEHgC0QQt2ZspiqV1+xcBO8mHjDAAAAADwCHx6A4A2aP72jFpliVFBev6CPm6IBgAAAADQFD7uDgAA4FoWi0XLUrKtyqKD/bRzxpny9jK5KSoAAAAAQGMxYg8A2piDx0qUU1xhVTYuMYqkHgAAAAB4GBJ7ANDGbDicX6tsaOcI1wcCAAAAAGgWEnsA0MasT8urVTY0Ptz1gQAAAAAAmoXEHgC0MRvSao/YGxJHYg8AAAAAPA2JPQBoY36rMRU3ISpI7YL83BQNAAAAAKCpSOwBQBuSV1KhzMJyq7KBHcPcFA0AAAAAoDlI7AFAG7Inq6hWWc+YEDdEAgAAAABoLhJ7ANCG7MkurFXWMzrYDZEAAAAAAJqLxB4AtCF7sm2M2COxBwAAAAAeicQeALQhe20l9mJI7AEAAACAJyKxBwBtxJH8Uv1nw2GrshB/b3UI9XdTRAAAAACA5iCxBwBtwGsr9yv+6UW1yntEBctkMrkhIgAAAABAc5HYA4BWbn9Ose79eqvNc0nsiAsAAAAAHovEHgC0cq/9vF9mi+1zYxKiXBsMAAAAAMBhSOwBQCtWVFap9345VOf5c3vFuDAaAAAAAIAjkdgDgFZs8Z5sFZRW2jwX4OOlhCh2xAUAAAAAT0ViDwBasW93ZNR57rZR3VwXCAAAAADA4UjsAUArlVNUrvfW2p6G2zkiQI+M7+niiAAAAAAAjuTj7gAAAI5XUWXWuDdX1Sof1ClMz1/QR2MTouTnw3c7AAAAAODJSOwBQCtRWlGl//52WBuPFGhDWp62Hj1eq87dpyfo7CQ2zAAAAACA1oDEHgC0AvklFTrllRXam11UZ50e0cG6bmi8C6MCAAAAADgT87AAoBV4a83BepN6kvTdTSPk7WVyUUQAAAAAAGcjsQcArcBPKTn1nu8cEaDE6GAXRQMAAAAAcAUSewDg4SwWi35Nzau3zimdI1wSCwAAAADAdUjsAYCHO3isRFlF5fXWGUZiDwAAAABaHRJ7AODhGhqtJ0ln9WAnXAAAAABobUjsAYCHW2cjsdclItB4feupXXVKlwjXBQQAAAAAcAkfdwcAAGie7RnHa5Vtum+sMgvLVGWxqFf7UDdEBQAAAABwNhJ7AODhdmYWWh3HhwcoPNBX4YG+booIAAAAAOAKTMUFAA9WWlGl/bnFVmW92oe4KRoAAAAAgCuR2AMAD7Y3u0hmi3VZMok9AAAAAGgTmIoLAB6mosqsvy/Zq5X7c5ReUFbrPCP2AAAAAKBtILEHAB5m5uI9enrR7jrPk9gDAAAAgLaBqbgA4GE+/e1wvedJ7AEAAABA20BiDwA8SElFlfZmF9V5vmu7QHUKC3BhRAAAAAAAdyGxBwAeoqSiSlM+Wl/n+UBfL82aPEAmk8mFUQEAAAAA3IU19gDAQ9z1v636dkeGzXO+3iYtuvVUjeoW6eKoAAAAAADuQmIPAFq47KIyPb1oj/79y6E667xycT+SegAAAADQxpDYA4AW7tr//KYfdmfVef7bG4frvN6xLowIAAAAANASsMYeALRgu7MK603qSdLEXu1dFA0AAAAAoCUhsQcALdj8OtbUO+nspGg2ywAAAACANorEHgC0YAt2ZNZ7/v4zergoEgAAAABAS8MaewDQQuWVVOinfTl1nt9y/xnq2yHUhREBAAAAAFoSRuwBQAv12cbDqqiy1HmepB4AAAAAtG0k9gCghfpoXVqd524a0cWFkQAAAAAAWiISewDQAqXll2j1wWM2z0UE+uqe0xNcHBEAAAAAoKVhjT0AaGGWp5Xo/k+X1Sqf2Ku9rh4Sp3GJ0eoUHuD6wAAAAAAALQqJPQBoQTKKq/Twqjyb56aO6qbz+8S6NiAAAAAAQIvFVFwAaEEWHSxRWR0bZvSJZbMMAAAAAMAfSOwBQAsyf3+xzfJAXy91bRfo4mgAAAAAAC0ZiT0AaCFKKy1KLay0ea57ZJC8vEwujggAAAAA0JKR2AOAFsBstuiLPUUqq7J9vrCuEwAAAACANovNMwDAzcorzTrv379qyd6COuvccmpXF0YEAAAAAPAEjNgDADf7fNMRLdmbU+d5k0maPKCjCyMCAAAAAHgCRuwBgJst2ZNd57lR3drp/jMSlRQT4sKIAAAAAACegMQeALjZd7sybZbfOKKL3rl8oIujAQAAAAB4CqbiAoAbVVSZday4wua5sQlRLo4GAAAAAOBJGLEHAG5QWFapjUfyVVBaqfIqc63zkUG+mtirvRsiAwAAAAB4ChJ7AOBCuzIL9caqA3p15f5663105UBFBfu5KCoAAAAAgCcisQcALjJ/e4Yu/PcvDdb7YEK0JiTFuCAiAAAAAIAnY409AHCRF5ftbbBOiK9JPSN8XRANAAAAAMDTkdgDABfZdKSgwToTuwXKz9vkgmgAAAAAAJ6OxB4AuEBeSYXySysbrHdJYrALogEAAAAAtAassQcATvLroTxlFpZpcFy4bp+7ucH6E7oEKqkd03ABAAAAAPYhsQcATvDY9zs1c/Geeuu8emk/9W4fqgU7M9Q1IkCD/XJdFB0AAAAAoDUgsQcADpZbXK4Xl6U0WK9buyCd2TNaZ/aMVmVlpTZtynN+cAAAAACAVoM19gDAwVbuz1VZpbnBet0ig1wQDQAAAACgtSKxBwAOll5Qale9ru0CnRwJAAAAAKA1I7EHAA5ksVj03tpDdtUN8Wc1BAAAAABA05HYAwAH+vPsjVqXlt9gveGdI5wfDAAAAACgVXPZcJFXXnlFb7zxhuLi4rRkyRKnvEd6erpmz56tlStX6uDBgyotLVVMTIwSEhJ03nnn6bzzzlNgIFPfADjH5iMF+mh9ml11rx4S5+RoAAAAAACtnUsSe5s3b9Y777zj1PeYPXu2/v73v6ukpMSq/MiRIzpy5IhWrlypt99+Wy+88IIGDhzo1FgAtD0Wi0X/t2xvg/VGd4/UlYPidPuori6ICgAAAADQmjk9sZeamqqpU6eqoqLCae/xwQcf6LnnnjOOTSaTevbsqYiICB04cECZmZmSpAMHDuj666/Xf/7zH/Xt29dp8QBoWywWiy7/aJ2+3HK0wbrLbh8lLy+TC6ICAAAAALR2Tk3s7d69WzfddJOysrKc9h4bN27UCy+8YByfcsopevbZZ9WlSxdJJz5wL1q0SI899piOHTumkpISTZ06Vd9//z3TcgE0y6xVB/T2moPam1OkwrIqu64hqQcAAAAAcBSnbZ7x9ddf64orrlBGRoaz3kKS9Nxzz6mq6sQH6r59++rdd981knrSidF7EyZM0AcffKDg4GBJ0tGjR/Xhhx86NS4Ardv3OzM19cst2nikwO6kHgAAAAAAjuTwxF5GRoZmzJihBx54oNZ6d462adMmbdy40Th+9NFHFRAQYLNur169dMcddxjHH374oZEQBIDG+teKfY2+ZmxClBMiAQAAAAC0VQ5N7L355ps699xz9dVXXxllCQkJuu222xz5NoYFCxYYrxMTEzV48OB660+ePFk+PidmH+fm5uqXX35xSlwAWh+z2aKnF+3WmNd/1p9n/6bvdzW8xEC7QF+r4wfP6uGs8AAAAAAAbZBDE3vvvfeeiouLjePLL79cc+bMUdeuztn9cfXq1cbr0047rcH64eHh6tevn3G8dOlSp8QFoPV5fulePb5wl1buz9WH69IarP/kOcnaOWOc/jK8i85OitbHVw/WhKQYF0QKAAAAAGgrnLJ5Rr9+/TRjxgwNHz7cGc1LkioqKrRv3x9T4ezd5TY5OdmYvrtlyxZnhAaglSmrrNI/lqfYXX9YfLgePTtJkvTuFQOdFRYAAAAAoI1zaGJv+PDhmjRpks466yyZTM7d+TEtLU0VFRXGsb2jAuPj443Xhw4dcnhcAFqfr7dmKLe4ouGKv+vXIcyJ0QAAAAAAcIJDE3tvvPGGI5urV1aW9fpWMTH2TXGrXi8nJ0dms1leXk7bHBhAK/Daz/sbVT8+wvYmPgAAAAAAOJJTpuK6Qn5+vtVxWJh9I2RCQ0ON1xaLRQUFBYqIiHBkaHarrKx0y/s6Ss1dhdllGK3NxiMFOu31Vaqostg8H+jrpZIKc63yUD/vRvdv+hPgOPQnwDHoS4Dj0J8Ax6E/WfPYxF5ZWZnVcUCAfSNkfH2td6ms2Y6rmM1mbdq0yS3v7Sxbt251dwiAQ928KNtmUu+6XsG6ODFYsUFe+jG1VE+sybM638WSo02bCpr13vQnwHHoT4Bj0JcAx6E/AY7T1vuTx85BrTkaxt7ptD4+1rnMtp7ZBWBbSaVZm7PLbZ67ODFYXcN8FODjpQldAtUj/I+/K+PiA9QjwtfmdQAAAAAAOJLHjtirmcgzm2tPh7OlZkKw5gg+AG1PYblZ/0spVqXZokt7BKmw3KKbFmfL1gTcwTF+6hr2x59OX2+TPjonRiuOlMrf26RTO/q7LnAAAAAAQJvmsYm9wMBAq+OysjL5+fk1eF15ufUIHH9/93wI9/LyUv/+/d3y3o5SVVVlNeS1X79+8vb2dmNEQONlHC/TGbPWKCWnWJL0zcEKhQb4KKfU9pcFH143Qr3ah9QqHzakeXHQnwDHoT8BjkFfAhyH/gQ4TmvrT1u2bLF7sJotHpvYCw8PtzouLCy02hijLoWFhcZrHx8fu65xlprTgj2dt7d3q/uZ0LpZLBZdN3uTkdSTpNT8Uinfdv2Ft4xUv04RLomN/gQ4Dv0JcAz6EuA49CfAcdp6f/LYNfZiY2OtjrOzs+26Lisry3gdGRkpk8nk0LgAeI7lKTlalpJjd/2h8eENVwIAAAAAwEU8NrHXqVMnq/XxUlNT7bouLS3NeN2tWzdHhwXAgyzfZ39ST5Iigxqe7g8AAAAAgKt4bGLP19dXSUlJxvGOHTvsuq56vd69ezs8LgCeY+PhOubc2jAkjtF6AAAAAICWxWMTe5I0YsQI4/WqVasarJ+Xl6ft27cbxyNHjnRKXABalsoqs2Z8u139Xlyqa/6zQekFpZKk3w4X2N3GJf07OCs8AAAAAACaxKMTexMmTDBeb9261WpXFFs+//xzVVZWSjqx+caoUaOcGh8A96syW3TuO2v14rIUbc8o1Ke/HdatczYrNa9Eh/JK7GrjnOQY3XladydHCgAAAABA43h0Ym/w4MHq27evcfzQQw9Z7Xpb3Y4dO/Tmm28ax1dccYUCAgKcHiMA90nJLlLnpxdpyV7rzXW+3ZGhrjMX293OdzePVESgb8MVAQAAAABwoRab2DvzzDOVnJys5ORknXnmmXXWmzFjhrGz7e7du3Xddddp586dxnmLxaIffvhBN9xwg4qLiyVJMTExuvXWW537AwBwu5s+36Sjx8ua1cYpnSMcEwwAAAAAAA7m4+4AmmvEiBGaNm2a/vnPf0qStm/frosvvlg9evRQZGSkDh48qIyMDKN+QECAXn75ZYWGhrorZAAusPpAbqN3vV0/bYyGvvSTVdnto7o5MCoAAAAAABzH4xN7knTrrbcqODhY//jHP4xReXv37q1Vr0OHDvq///s/DRs2zNUhAnCyzONl+tt3O5V5vEwX9+ugGfO3N3xRNfNvHK7BceH69Nohuu2LzcovrdSk/h101eBOTooYAAAAAIDmaRWJPUm69tprNX78eH3++edavny50tLSVFhYqJCQECUlJWn8+PG67LLLFBIS4u5QATjA2oPH9OQPu7T2UJ5KKqpUWmk2zn27I6OeK2uLDfXXxN6xkqQpg+J0Qe9YlVWZ1S7Q15jqDwAAAABAS+OSxN6kSZM0adKkRl2zZMmSRr9Phw4ddPfdd+vuu+9u9LUAPEducbkmvL1Gx8sq7b7muqHx+nZ7ho6VVNQ61yUi0Oo42N9Hwc2OEgAAAAAA52qxm2cAQF3mbk5vVFKva7tAvTV5gG45tavN8zUTewAAAAAAeAISewA8xtzNRzTxnTW69YvNjbpu4S0jFeDrrTMSo2ye79yOxB4AAAAAwPO0mjX2ALRuqw7k6vKP1jf6usFxYUqKObG25tD4cJt1GLEHAAAAAPBEjNgD4BHeXXuoSdfdeVp343V0sL/NOp0jAprUNgAAAAAA7sSIPQButT+nWCUVVUqKCZaPt+3vGsxmiz74NdWu9j66arAW7srUrsxCXT6wk244pbPVeZNJslisr+kYRmIPAAAAAOB5SOwBcJtnf9yjx77fKbNFOjspWm9eNkC5xRUa0DFMfj5e2n70uOZtP6q/LdjZYFsh/t669/QEXTs0XtcOja+z3quX9Ned/9tiHIf6+2hAxzCH/DwAAAAAALgSiT0AbpGWV6Inf9gl8++j5xbtzlaP55ZIknpEB2vGuB66639bVFppbrCt964YqGuGxMvPp+HVBf4yvLM+23hYK/bnysfLpL+f31sh/vwpBAAAAAB4Hj7NAnC6kooq/bArSx1C/TWiaztJ0k/7clRRZbFZf292kW6es8nu9k9PiLIrqSdJAb7eWjZ1lHZkFKpdkC/TcAEAAAAAHovEHgCnyiup0JB/LteBYyVGWVJMsCrNtpN6jTV9bIJ6RAc36hqTyaQ+HUId8v4AAAAAALgLiT0ATvXqyv1WST1J2p1V1OT2RneP1HtXDFRxRZWCfL3VMyakuSECAAAAAOCRSOwBcBqz2aLHF+5ySFvBft6ae/0wTUhu75D2AAAAAADwdCT2ADhFbnG5znl7TbPbiQry1afXDtWQ+HBFBvk5IDIAAAAAAFoHEnsAnOKln/ZpfVp+s9rw9jLp46uHaHxSjIOiAgAAAACg9SCxB6DR0vJK9NjCXcorqdCYhCj1jA7WGYlRCvLzVnZRuaKD/bRoV1az3qNTWIA+umqwzuwZ7aCoAQAAAABoXUjsAWgUs9mis99arV2/b4Dx1dajxrkgX28VV1SpT2yItmcUNqpdfx8vlVWaFR8eoPemDNKYhEj5+3g7NHYAAAAAAFoTEnsAGuW3I/lGUq+m4ooqSWp0Uu+z64bq9O6RyiwsV5/YEPl4ezU7TgAAAAAAWjsSewAa5bfDzVs3r6YLesfqsv4d5eVlUoewAIe2DQAAAABAa0ZiD4CVKrNFm47kKzkmRMH+1n8i9uUU6ZY5m5v9HuEBPpr3l+Hy8/bS8C4RMplMzW4TAAAAAIC2hsQe0AZVVJklSb41prwezi/RmNdXaX9usSQpISpI+3JOvG4f4qfMwvImvZ+/j5duGdlVb6w6oIgAH82aPECnJ0Q14ycAAAAAAAAk9oA2pKyySnM3p+uhBTuUWViu64bGa9ZlA7Q5vUDr0vL0z+X7jKSeJCOpJ6nJST1J+tOweL1yST+9ckm/ZsUPAAAAAAD+QGIPaCP+tWKf7v16m1XZu2sPaePhfK1Lc+y6ebGh/so4XqbIIF/dPqqbHh2f5ND2AQAAAAAAiT2gVbFYLCoorVSAr5f8fbyN8tm/Ha6V1DvJkUm9EH9vrbxjtPp1CFX68VLFhvizwy0AAAAAAE5CYg/wIGazRV9sTteRglKd2ytGvdqHGueOFZdrysfrtXhPtvx9vDSxV3v986K+Cg/w0XWf/ubUuAZ2CtMNp3TWxF7tlRQTIkmKCw906nsCAAAAANDWkdgDPMhdX23Vm6sOSJKeWuSrH287VYPjwiVJr686oMV7siVJZZVmfbX1qL7aelT3nN5dVWaL02Ia3zNaP9x6qtPaBwAAAAAAtjFHDmjhFuzIUN8XlipgxnwjqSdJeSUVuuPLLbJYTiTtlvye1KvplRX7m/ze5ybHKOvJc/T25QPqrHPNkPgmtw8AAAAAAJqOEXuAG+SXVCg1r0QJUUEK8rPdDVcdyNVTP+zWD7uz6mxnzcFjCnpogUL9fZRd1PRda23pER2sBTePlCTdMKyz5m5O18Jd1rF0jgjQZQM6OvR9AQAAAACAfUjsAS62Yl+OLvtwnbKLytWtXaAW3DzCaq08SXp15X7d+/VWWeyYQVtWaVZZZdOSeiO6RKh/xzBtPXpcIX7e+nFvtiwWyWSSHhnf06jn4+2lr/58itYezFNpZZXS8ktVUlGlqwfHKcSfPyMAAAAAALgDn8gBF3vg2+3G6LoDx0r0zOI9+vjqIcb5DWl5mj5vm11JveZ6+txeGp8UYxzvyizU0r3ZGhofoVO6RFjV9ffx1pjEKOcHBQAAAAAA7MIae4CddmcVav72DOVUm/JqNluUVVim0oqqWvWzi8p0tKDUqmz70eNaeyjPquw/Gw4rLa9EFVVmSdK/f0l16mYXkhQR6KvHzk7SWT2jrcqT24fotlHdaiX1AAAAAABAy8OIPcAO/9mQpj/P3qhKs0XRwX5advsodQjz16QPftVP+3LVIdRfp3eP1Ob0AkUG+cnfx0vLUnJkMkl3je6uly/up/fWHtLNczbZbL/LzMXy8/bSoE5h+iU1zyExL586SqO7R+ofy/fp+SV75OPtpb+f11vXn9LZIe0DAAAAAAD3IrGHNquorFJLU3LUrV2g+nUM09b0Ar20Yp98vEyaMa6HEqKCJUkWi0V/W7BDlb+PossuKtf/LUtRXESAftqXK0k6erxMczann2zZeA+LRfrXiv0K9ffR35fsrTee8iqzw5J6kpQUEyKTyaT7z0jU/WckOqxdAAAAAADQMpDYg0c4dKxYP+3L1eC4cPXtEFpv3a3pBbr/m+3KLCzTrad21a2ndqtV50h+qYa/skJHfp8q+9BZPfTmqoPKK6mQJH25OV37Hx6vEH8fHc4vVWqe9ZTaD9alyt/H/pnszyzeY3ddR2gf4qf2IX4ufU8AAAAAAOBaJPbQ4q3Yl6OzZq1WpdkiHy+T/nvNEE0e2Mk4P397hp5fulc+XiY9PL6nps7doj3ZJ0bN3T53i+ZsSlfHMH+d3ztWUwZ1kslk0kMLdhhJPUl67kfr0XQ5xRUKe/g7PXhmDx09XmYzrrJKsxN+Wvu9dHFfJUYF69fUPPl5m/TYwl3GhhvTxybKZDK5NT4AAAAAAOBcJPbgdGazRal5JeoQ5i9/H28t3JWpt1cfVEyIv/52Vg91aRdU7/XTvt5mTIOtNFv0zI97NHlgJxWUVujZH/fqhaV/JOWWpeTUun7J3mxJJzap2JVVqBuHd9HH69Psir2h6bPOdk5yjIrKq2S2WGSS9POBY5KkvrGhumFYZ4UH+uqCPrGSpAv7dNCCnRka0DFM5/WOdWPUAAAAAADAFUjswSkyj5fp0YU79eXmdOUUn5jeGhPsp0fOTtJfv9mu8t93gP1pX46W3j5KH65LVXZRubq2C1Tf2FCN7h4pH28vbUkv0IbD+VZtbzpSoEPHijX+rTXam11U673r8+QPu7VgR6ZjfkgHigsP0N6HztQn6w/r4/Wp6hIRqNtGddOobpFW9bamFyi7qFyndmsnfx9vq3MDOoVpQKcwV4YNAAAAAADciMQemqWk0qzZu4pUWGHRw52L1bN9mPZmF2ncm6t0ON96XbqsonLd89VWq7KdmYXq+OQPtdod1ClMC28Zqad+2G3zfS/696+NTuqd9KsDN6hoiqSYYJkk7cr6I/6Z5/aSv4+3bhzRRTeO6FLntf06krgDAAAAAAAnkNhDs9yxNEdbsn/fcCJlpX68bZSmfrm5VlKvsTYeKVDsE7UTfidtTi9oVvvuEhPsp2W3j1KHsAD9sCtTK/fnakxClM7qGe3u0AAAAAAAgIchsYcmO5RXYiT1JKmwvEoj/rXCjRG515+GxuuMHtG656utOl5WKUmKDvbThmljtPrgMeWXVujSfh0VFXxit9oJye01Ibm9O0MGAAAAAAAejMQemqxDiL/C/EwqKLe4OxS3CPL1Vo/oYA3oGKrnL+ijjmEBkqQ+sSH6v2Upv+/Sm6T4iEBdHhHo5mgBAAAAAEBrQ2IPTebn46Ub+4bqpd8cMy02MshXucUVDVesxtfbpK//PFzn9mqv9IJSXfjeL1abbYzvGa2Dx0q0x871+AJ8vHR6QqQsFmnamATtzi7S0eNlumZwnLq2C9LCXZlal5avc5JjNK6H7emzw7u00+d/GtaonwMAAAAAAKCxSOyhWa5KDtb8/cXanVfZYN2oIF99cs0QrdiXqwBfL83+7bC2ZxRKksYlRumbG4drb3axJn34q/blFBvXXT6go347UmBzs4wnz0nWub1OTGftGBag1XeP1sfr05RfWqFrh8QrJsRfkvTg/B16YeneeuNrH+KnjdPHqsPvI+8kaWKNOpMHdtLkgZ0a/FkBAAAAAACcjcQemsVkMumSHsF6YV1+rXODOoVp45E/RvM9NiFZ5yS31zm/rys3Y1wPLdiRKR8vkyb2ai8vL5MGdArTzgfGadHuLB04VqJxPaLUq32oXly6VzPm77Bqv2OYv+4e3d2qzNfbS38ZXntX2ScmJCnAx0tPLaq9y+6AjmGKDw/QK5f0s0rqAQAAAAAAtGQk9tBsZ3cJ1Cu/5aus6o+y207tqjcuG6DlKdlalpKjYfEROq+39UYRvt5eurhfh1rt+Xh7aWLvWKuyO07rpkN5JXp37SGVVZrVKSxA39w4XEF+9v0KB/h664lzkhUd7Ke7v9pqlN8wrLP+feUg+39YAAAAAACAFoLEHpotwt9L9w8N13O/5stskfp3DNWz5/WWJI1NjNbYRNtr0TVGkJ+PXr20v166qK8KyirVLtBXJpOp0e1MHdVNFWazFuzI1ICOYXrynORmxwYAAAAAAOAOJPbgEJckBuu2s4cqvbBCgzqFycfbyynv4+PtpcggvyZf7+Vl0rQxiZo2JtGBUQEAAAAAALgeiT04TGyov+LaBbs7DAAAAAAAgDbBOcOqAAAAAAAAADgViT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5ksFovF3UG0FevXr7c69vLy/Lyq2Ww2XreGnwdwJ/oT4Dj0J8Ax6EuA49CfAMdpTf2p+s8iSUOHDm3U9T6ODAaNU/N/nqdrbT8P4E70J8Bx6E+AY9CXAMehPwGO09b7k2enNQEAAAAAAIA2ihF7buTpw0UBAAAAAADQdM0dccgaewAAAAAAAIAHYsgYAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IFI7AEAAAAAAAAeiMQeAAAAAAAA4IF83B0APE9KSopmz56ttWvXKi0tTZWVlWrfvr2SkpJ04YUX6uyzz5aPD79aaH3Wrl2r+fPn67ffflNmZqYKCwsVEhKijh07atiwYZo0aZL69Oljd3ubN2/WnDlz9OuvvyojI0MWi0WxsbHq27evLr74Yo0ZM0Ymk8nu9iwWixYvXqx58+Zpy5YtysnJUWBgoGJjYzVy5Ehddtll6tWrV1N+dMBlHnroIX355ZeSpOeee06TJk2y6zpn3JtWr16tuXPnauPGjcrMzJSPj486dOigwYMH69JLL9WwYcMa/fMBzlBVVaUffvhBixYt0tatW5WVlaWqqipFR0erX79+uvDCC3XWWWfJy8u+7/S5P6Et2759u+bMmaN169bp6NGjKikpUXh4uBISEnT66adrypQpCg8Pt7s9+hPagldeeUVvvPGG4uLitGTJkkZd6+jnrfLycs2fP1/fffedtm/frry8POMz25gxY3TZZZepS5cujWozNzdXc+bM0bJly7Rv3z4VFRUpMjJSXbp00TnnnKOLLrqoUX8XHM1ksVgsbnt3eJxXX31Vs2bNUmVlZZ11+vXrpxdffFEJCQkujAxwnrS0NM2YMUPr1q1rsO7555+vp556SiEhIXXWqaio0NNPP63PPvus3rZGjx6t5557Tu3bt2/wfTMyMjRt2jStX7++zjomk0k33HCDpk+fLj8/vwbbBFxt+fLluuWWW4xjexN7jr43FRYWasaMGVq8eHG99S666CI99thjCg0NbbBNwFk2b96sRx99VDt37qy33qBBg/TPf/5TcXFxddbh/oS2rLS0VE899ZTmzp1bb73g4GA99dRTuuCCC+qtR39CW7F582ZdffXVqqioaFRizxnPWykpKbrnnnu0Z8+eOuv4+vrq7rvv1s0332xXUn3x4sV6+OGHlZeXV2edmJgYPfPMMxo7dmyD7TkDiT3YbebMmfr444+NYx8fHyUnJyswMFApKSk6duyYcS46Olqff/55vQ+PgCc4cOCArrrqKuXm5hplvr6+SkpKUmhoqHJycrR3715V/1Paq1cv/ec//7GZ3LNYLLrzzjutbmD+/v5KTk6Wt7e39uzZo8LCQuNcQkKCPvvsM4WFhdUZY25urqZMmaJDhw4ZZREREerRo4dKSkq0a9cuq4TH+eefr3/+85+N/8cAnOj48eM6//zzlZGRYZTZk9hz9L2prKxM1113nTZt2mSUBQcHKykpSVVVVdq9e7dKS0uNc6eccor+/e9/8+EJbrF69WpNnTpVxcXFRllMTIy6dOmiiooK7dixQxUVFca5uLg4zZ4922YCgfsT2rLy8nLdcsstWr16tVHm7e2tpKQkhYWF6fDhw0pLS7O65oknntBVV11lsz36E9qK1NRUXXXVVcrKypIkuxN7znje2r9/v6666iqrZ7+YmBh1795deXl52rNnj9Vntptvvln3339/vXF+//33mj59uqqqqoyy7t27KyYmRocPH9bhw4eNcm9vb73xxhs644wzGvz5Hc4C2OG7776zJCUlGf/dddddlqysLON8eXm5Zfbs2ZaBAwcadS699FKL2Wx2Y9RA81RWVlouuOAC43e6d+/eln/961+W48ePW9U7evSo5YEHHrDqI3fffbfNNt99912rek888YSloKDAOF9SUmJ58803LX369DHq3HHHHfXGecsttxh1+/fvb/nvf/9rqaioMM5nZmZa7r33Xqv3/fDDD5vxLwM43oMPPmj1O5qUlGSZO3duvdc449705JNPGnWTk5Mtr732mqWkpMQ4n5+fb5k5c6bV+z777LPN/wcAGunAgQOWQYMGGb+HZ5xxhmXJkiVWv9+2fl/vvPNOm+1xf0Jb9tprr1n9Ht56662WI0eOWNX55ZdfLOPGjTPq9OnTx7J7926b7dGf0Bbs2rXLcvrpp1v9zo0bN86uax39vFVZWWm56KKLjLqnnHKK5bvvvrO6Jx46dMjypz/9yarNxYsX19nmoUOHrO6zF1xwgWXbtm1WdVavXm31d2Hw4MGWo0eP2vVv4Egk9tCg8vJyyxlnnGF1o6uqqrJZd8WKFVY3qHnz5rk4WsBxPv/8c6s//F9//XW99Z977jmr+r/99pvV+ZycHMvgwYON848//nidbX3xxRdWba1fv95mvZ9++smq3vz58+tss3ryccSIEbUSlIC7LFu2rFZSr6HEnjPuTXv27LH07t3bqPf222/X+f6vvPKKUa9v376W1NTUxv3QQDP95S9/MX4HJ0yYUCsJUd1TTz1l9QFq//79Vue5P6EtKysrswwZMsT4Hbz++ustlZWVNuumpqZahg4datSdNm1arTr0J7QFX331ldUXp41J7DnjeevTTz+1SrrX1ZfKy8st119/vVF34sSJdfb3adOmWf1cOTk5Nuulp6dbRo8ebdR95JFHGvgXcDx2xUWDFi1apCNHjkg6McXpscceq3Px5dGjR2vKlCnG8fvvv++SGAFn+Prrr43Xo0eP1kUXXVRv/enTp1tNb5o/f77V+S+++EJFRUWSTkydeOCBB+ps67LLLrMaxl1XX/rwww+tYjzvvPPqbPPxxx9XVFSUJOnYsWP63//+V/cPA7hIQUGBHnnkEUknprkHBgbadZ0z7k0ff/yxMdUiISFBN954Y53vf+eddyopKUnSiXWUPvnkE7viBhxhy5YtWrlypSTJy8tLL774ojp27Fhn/XvuuceYvmSxWLRs2TKr89yf0JZt3LjRalrsPffcI29vb5t14+PjdfXVVxvHy5Yts5raJ9Gf0LplZGRoxowZeuCBB1RSUtKkNpzxvPXRRx8Zry+77DINGTLEZj1fX189//zz8vX1lXRiTb7ly5fXqpeRkaGFCxcax9OnT1dkZKTNNjt06KCHH37YOP7yyy/rXY/PGUjsoUELFiwwXo8aNUqdOnWqt371D0/btm1Tamqq02IDnKW8vFwbNmwwjhtaIFmS/Pz8NHr0aON4y5YtVue/++474/XEiRMVFBRUb3vV+9JPP/1ktYaSJOXn52vVqlXG8WWXXVZve0FBQVbJye+//77e+oArPPvss8rMzJQk3XLLLXU+NNXk6HuT2Wy2eoCbNGlSvTuIenl56YorrjCOq18LONvJnaMl6ZJLLtGAAQPqrR8WFqb77rtPt9xyi/7617+qf//+Vue5P6EtO3r0qNVx3759660/cOBA43VRUZHVel4S/Qmt15tvvqlzzz1XX331lVGWkJCg2267ze42nPG8tXPnTqWkpBjHkydPrjeG2NhYjRs3zji21UcWLlxorFkZGhqqc845p942zz77bOMZtrKyssENQRyNxB7qZbFYtHbtWuP4tNNOa/Ca5ORkxcTEGMeN3e4aaAkOHz4sf39/4zgxMdGu6yIiIozX1R/08vLytGPHDuO4egKwLiNHjjS+MS4tLbV6qJOkX375xfi2y2Qy2dU/q9fZsGGD8vPzG7wGcJZly5YZIwmSkpLsfjB0xr1p586dVn3Wnj5a/X2PHDnS4K6kgKNUH3FX/QNPfW644Qbdd999uummmzR06FCjnPsT2rqaO22eHG1Xl5o7sFd/XqQ/oTV77733rBLPl19+uebMmaOuXbva3YYznrfWrFljvA4PD6/15VVDbdoaeVt9I53hw4cbI/zq4u3trVNPPdU4Xrp0aYMxOBKJPdTr8OHDKigoMI779etn13XJycnG65qjlgBP0L17d/32229at26d5s+fbwwBb0j1nZHCw8ON17t27bK6YTT0bbB04hvXLl26GMc1+1L1m1p8fLzV+9WlV69exmuz2axt27Y1eA3gDAUFBXr00UclnZhK+9xzz9m9s6wz7k3V+5Ovr6969uzZYHvdu3dXQEBAnW0CznD06FFjGnpgYGCDo/Uawv0JbV2PHj2sjlesWFFv/Z9//tl43bFjRwUHBxvH9Ce0Bf369dPHH3+smTNnKiQkpFHXOuN5q3qbvXv3lslkarDN6n0kPz/fardp6URfPsmeflyzTVc/E5LYQ70OHDhgdVz9plOf+Ph443XNTgJ4ktDQUPXo0cPqZlKXwsJCq4e96qP8qvclPz+/etdCqq6+vlS9TXu/KYuJibH6WQ4ePGjXdYCjzZw505iCe+ONN9qdnJOcc2+q3mZcXJx8fHwabM9kMllNAaY/wRWqf9hISEgwRvqkpaXptdde02WXXaaRI0dq4MCBOvvss/Xwww/rt99+q7M97k9o6zp37my1zt3LL7+s7Oxsm3XXrVtnNRW++np7Ev0Jrdvw4cP1+uuv64svvtDw4cOb1IYznrea0keq97mabZaXlxtfoDW1zYyMDJWWltp1nSOQ2EO9srKyjNdeXl6Kjo6267rq052qtwG0Zu+9957V4svV126o3g+q94+G1NeXTiZFGtvmyQWVbbUJuMKSJUuMzWkSExN15513Nup6Z9ybqh9X3wSnIdXfm/4EV6j+ob99+/Yym8165513dN555+nVV1/V1q1bdezYMZWWlurQoUP64osvdOWVV+rBBx9UWVlZrfa4PwHS3/72N+Pv+eHDhzV58mR9+eWXys7OVmVlpVJTUzVr1izdeOONqqiokCT16dNH1157rVU79Ce0Zm+88YbGjx9v14i4ujjjeaspfSQyMtJqk5zqbWZlZVmNvLW3zZrPo67sdw2nR9GmVV+PITg4uN6FLaurPiSXNR3QFmzevFnvvPOOcdytWzedeeaZxnH1nZFqruVSn/r6UvXjxrRZvW716YyAK+Tn5+uxxx6TdCIp15gpuNXbOMlR96am9tHqdbnfwRWqjyQKCgrS008/rf/+979GWY8ePRQVFaXs7GyrxcT/97//6dChQ/rggw+s+hz3J+DEiJy5c+dq5syZWrx4sdLT0/XQQw/ZrGsymXTRRRfp0UcfrbUxBv0JqJ8znrea0ke8vLwUFBSk48ePS7LuIzXbDwsLa3SMNdt0NkbsoV7Vv9m1ZyriSdUfGMvLyx0aE9DSpKWlaerUqcY3uJL04IMPWg0tr94PHNWXHNE/bY3eAJxp5syZxjeYN9xwg9XugvZyxr3JGX0UcIbqHxRWrFhhJPXGjx+vxYsXa/78+froo4+0YMECLV68WGPHjjXqr1+/XjNnzrRqj/sTcEJkZKTGjBnT4LS70047TTfffLPNBAL9CaifJ/SRmv2l+gY59rZnqx1nIrGHelVPVNg7IkKSVUKj5s5RQGuSnp6u66+/3mqo9Q033GA1DVdyTl+qftyYNqsPO6d/wpV+/PFHzZs3T9KJUa333HNPk9pxRn9qapv0J7ha9Q80J5N8U6ZM0WuvvabOnTtb1e3cubNmzZqlc8891yj7/PPPtXv3buOY+xNwYvH9Cy64QI8++qixXpe/v7/69++vESNGqFu3bkbdlStX6uKLL9bzzz/vsHsJ/QlthTOet6ofV6/X1DZrtm9vmzXrndzN2hVI7KFe1X85zWaz3ddV7wwNbQ0NeKqUlBRdddVVSktLM8pGjx6t+++/v1ZdZ/SlprZZ/SZD/4Sr5OXl6fHHH5d0YhrTM88806hvVaujP6Etq7m2UefOnfXII4/UueaRl5eX1c6FFotFn3zyiXGe/oS2LjU1Vddff72xeH5AQIAeeugh/fLLL/riiy/00UcfaeHChVq8eLHOO+88SSd+V//9739rxowZVm3Rn4D6OeP3uXqbjUmmVa9bfbRdzYSjvW3WrOfKfkdiD/UKDAw0XjdmKGn1b5PtHboKeJINGzbommuuUXp6ulE2cuRIvfbaazb/iFdPYDSmL1WvW7MvOaNNwFmqT8G99tprNWzYsCa35Yx7E/0JnqLmml5XXnllg+tUhoaGGgkJSVq1apXxmvsT2rqnnnrKWPfL399f77//vm644YZaXz517txZL730km677Taj7Ntvv9W3335rHNOfgPq11D5S/T5a/TlTsn+plaZO4XUEEnuoV3h4uPG6qKjIaneY+lTfGTQiIsLRYQFu9c033+j666/XsWPHjLKxY8fqrbfeqnUjOKl6P6jePxpSVFRksw3Jun82pk36J1xt8eLF+uabbySd+GA0ffr0ZrXnjHtTU/so/QmuFhwcbHU8ZMgQu64bNGiQ8To1NdX4oML9CW1ZamqqfvrpJ+P4tttua7BPTZs2zWp92Hfffdd4TX8C6ueM562m9BGz2azi4mKbbVZvrzFt1qznyn5HYg/1io2NNV5XVVVZJTLqU329sZrbPgOe7NVXX9X9999v9c3NRRddpDfeeKPeaYXV+1JOTo7d71dfX2pqm9Xr2rt9O9BUeXl5euKJJySdmEI4c+bMWiOOGssZ96b27dsbrxvTn6rvUEp/giu0a9fO6jgyMtKu66KioqyOT45Q4v6EtmzdunVWx5MnT7bruiuvvNJ4vWPHDuN3l/4E1M8Zz1tN6SO5ublWU4GrtxkTE2M1Hbf6e9sbo8lkqnXfdSafhqugLau5K1RqaqpdD5DV1xzr3r27w+MCXK2iokIPP/ywvv76a6vyW2+9VdOmTatzbaOTqvel4uJiZWdn25X0Tk1NNV7X7EvVF3I+dOhQg21JUmZmpkpLS222ATjDZ599ZnxgCQwM1DvvvKN33nmnzvrVH4ref/99zZ8/3zh+/vnnFR0d7ZR7U/W+kJaWJovF0mC/tlgsOnz4sM02AGfp2bOn1XH1XXLrU3Mx8JOL9XN/QluWmZlpvA4PD7dKOtSnV69eVseHDx9WVFQU/QlogDOet7p166YNGzZIsr+PVO9zNdv08/NTx44djfdsSpudOnVqcJkMRyKxh3rFxcUpIiLC+FZ3x44dVkPP67Jz507jdc0bH+BpysvLddddd2nZsmVGmY+Pj5544gldfvnldrXRp08fmUwmY8rgjh07dPrpp9d7TVFRkdWNpGZf6tu3r/H64MGDKikpqXMq8Ek7duwwXptMJiUnJ9sVP9BU1Ue3FhcXa+XKlXZfu3v3bqvdO09+SHHGval6fyopKdH+/fuVkJBQb3v79u2zWk+ld+/eDcYANFfNv9sHDhzQgAEDGrzu6NGjxuuAgABjihD3J7Rl1T94V9+tsyE1F9c/mZigPwH1c8bzVt++ffXll19Ksn7Wq0/1PhIeHq64uDir8/369TMSe01p09XPhEzFRYNGjBhhvK6+2HJddu7caTXiYuTIkU6JC3CFyspK3X333VZJveDgYL311lt2J/UkKSQkRH369DGO7elLa9asMYaIe3t7a/jw4Vbnhw4daoy4qKqq0tq1axtss/r79unTp9YaEoCncPS9qWfPnlaj/lavXt1gmz///LPxul27dnxwgktERkZa/a4tXrzYrut+/fVX43WfPn2MxAT3J7RlHTp0MF4XFxdr//79dl2XkpJisx36E1A/ZzxvVe8zWVlZ2rNnT4NtVu8j1Z8pbbW5du3aBnfwrdk3XZ0DIbGHBk2YMMF4vXTpUmVkZNRb/9NPPzVeJyYm8kEHHu3FF1/U0qVLjePIyEh9/PHHGj16dKPbOuecc4zX8+bNU0lJSb31q/elUaNGKSwszOp8WFiY1U1j9uzZ9bZXVFSkefPmGcfnnnuuXXEDzXHXXXdp165ddv9X/RvT5557zupcfHy8cc7R9yaTyaSzzz7bOP7888/rfYgzm836/PPPjeNzzjmnwakkgKNcfPHFxuslS5Zo79699dZPT0/Xjz/+aBxX7z8S9ye0XSNGjLAafffZZ5/Zdd3cuXON1z179rRan4v+BNTNGc9bSUlJVlPYG+oj6enpVoM2Jk6cWKvO+PHj5e3tLenEMjGLFi2qt82FCxcqNzdX0omZXTXvs85GYg8NmjBhgrHeRHl5uR588MFa67SctGLFCs2ZM8c4vu6661wSI+AMy5cv14cffmgch4eH66OPPrIaQt4Yl112mTF1Ijs7W0899VSddefMmaMVK1YYx3/6059s1rvmmmuM10uXLjWGodvyxBNPGDecoKAguxeIBloiZ9ybrr76auNhcefOnXr99dfrfP9XXnnF+EbYy8uL+x1c6tJLLzVG4FRUVOjBBx/U8ePHbdYtLy/XjBkzjGmGISEhmjRpklUd7k9oqyIjI60ScR999FGDI4g+/vhjqxFEU6ZMsTpPfwLq54znrep9ZPbs2XWOlq2oqLC6J3bq1Enjx4+vVa9Dhw4666yzjONnnnmmzi+R09PT9eyzzxrHEyZMsNrQwxVI7KFBfn5+mj59unG8atUq3XzzzVaLQ1ZWVurzzz/XXXfdpaqqKkknMueNmaoItCRVVVV65plnjDVSTCaT/vGPf9RatLwxoqOjddNNNxnHX375pe677z6r3ZtKS0s1a9YsPf7440bZmDFjNGbMGJttnnnmmVbDxx999FG99dZbVutQZGdna9q0aVbf3k6dOtXunRSBlsgZ96ZevXrp0ksvNY5fe+01Pfvss1YJk+PHj+uZZ57RrFmzjLIpU6aoR48eDvvZgIZERkbqoYceMo63bNmiq6++WmvWrLGqt2/fPv3lL3+xmh5077331pqWx/0Jbdn9999vjJKrqqrSzTffrNdff91Ijp2UlZWlJ598UjNnzjTK+vbtq6uuusqqHv0JqJ8znremTJlijNqrrKzUHXfcoTlz5lh96ZuamqqbbrrJ6p7417/+tc5NLqZNmyZ/f39JUkZGhq6++mr98ssvVnXWrl2ra665xtgoLigoyOr51FVMlpOfWoEGPPbYY1bD0728vJScnKyQkBClpKRY3fwiIiL06aefNrgQJtBSzZ8/3+qPclBQkIYMGdKoNqKjo/X8889blZ280VQf/u3r66vk5GT5+flpz549Vje1+Ph4zZkzp96HsoyMDF1zzTVWCY3Q0FD17NlT5eXl2rVrl9WC0OPGjdMbb7xRa+FnoCU488wzjcWKn3vuuVoji2py9L2psLBQ119/vbZu3WqUBQYGGlN3d+3aZTWtqn///vrkk08UEBDQuB8UcICXXnrJ6kOPdGKUQefOnZWfn2+1+Yx0YgrvCy+8YLMt7k9oy9auXavbbrtNxcXFRpmvr6+6d++udu3a6dixY9q7d6/VlMGuXbvqk08+sbmTLv0JbcmXX35pfNkUFxenJUuWNHiNM563du/ereuuu87YXE068UVYYmKijh8/rt27d1v14WuuuUaPPfZYvXHOmzdPM2bMsLquS5cu6tChg9LT0636o5eXl/7xj3/ovPPOa/DndzQSe7CbxWLRyy+/rPfee6/eXaMSExP1yiuvNGtkE+Bud911l3744YdmtVHXja28vFxPPvmk5s6dq/r+BA8ePFivvPKKXUO509PTNX36dGOr97pMnjxZjz/+uEu3Xwcao7GJPWfcm44fP64HHnigwQfTcePG6cUXX1RoaGiDbQLOMnfuXL344os6duxYnXV8fHx0yy236K677qr3Qz73J7Rle/fu1QMPPKBt27bVW89kMuncc8/VU089VWs9vOroT2grmpLYk5zzvLVr1y7dd9999W6g4e3trZtvvln33nuvXesjf//993r88cetEoY1hYeH6+mnn7aa2u9KJPbQaCkpKfriiy+0cuVKHT16VCUlJQoPD1fv3r117rnn6qKLLuImAo93/vnnN7gYeUMaurFt3rxZ//vf/7RmzRplZGSovLxckZGRGjBggC644AJNmDChUd+yWiwWLVq0SAsWLNDmzZuVnZ0tLy8vxcbGaujQobriiis0aNCgZv1MgLM1NrF3kjPuTatXr9a8efO0bt06ZWdnq6qqStHR0Ro8eLAuvfTSJm2iAzhDfn6+5s2bpx9//FH79u1Tbm6ufH191a1bN5166qm66qqr1LlzZ7vb4/6Etmz58uVatGiRNmzYoKysLBUXFys0NFRxcXEaPny4LrnkkkZtDkh/QmvX1MTeSY5+3qqsrNQ333yjhQsXaseOHcrJyZGvr6/i4+M1YsQIXXnllY1eQiUvL09z5szRkiVLdPDgQeXn5ysoKEiJiYkaO3aspkyZ4tZp7yT2AAAAAAAAAA/EhHsAAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA5HYAwAAAAAAADwQiT0AAAAAAADAA/0/JEtEDfNmwtgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pds_source_corrected = pds_source_dt.deadtime_correct(dead_time=deadtime, \n", + " rate=times_source_dt.size / tmax, \n", + " background_rate=times_bkg_dt.size / tmax)\n", + "\n", + "plt.plot(pds_source_dt.freq, pds_source_dt.power, label=\"PDS of source events\")\n", + "plt.plot(pds_source_corrected.freq, pds_source_corrected.power, zorder=10, label=\"Corrected\")\n", + "\n", + "plt.legend(loc=\"upper right\");\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/Deadtime/FAD correction in Stingray.html b/notebooks/Deadtime/FAD correction in Stingray.html new file mode 100644 index 000000000..00cc8dd92 --- /dev/null +++ b/notebooks/Deadtime/FAD correction in Stingray.html @@ -0,0 +1,379 @@ + + + + + + + + Fourier Amplitude Difference correction in Stingray — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Fourier Amplitude Difference correction in Stingray

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+import matplotlib.pyplot as plt
+from stingray import EventList, AveragedCrossspectrum, AveragedPowerspectrum
+from stingray.deadtime.fad import calculate_FAD_correction, FAD
+from stingray.filters import filter_for_deadtime
+
+import matplotlib.pyplot as plt
+
+
+
+

Dead time affects most counting experiments. While the instrument is busy processing one event, it is “dead” to other photons/particles hitting the detector. This is usually not an issue if the count rate is low enough, or the processing time (dead time) is small enough. However, at high count rate dead time affects greatly the statistical properties of the data, to a point where a standard periodicity search based on the periodogram/power density spectrum (PDS) cannot be carried out.

+

The Fourier Amplitude Difference (FAD) correction is described in Bachetti & Huppenkothen, 2018, ApJ, 853L, 21, and is able to correct precisely deadtime affected PDSs if we have at least two identical and independent detectors. This is common in new generation X-ray timing instruments, often based on multiple-detector configurations (e.g. NuSTAR, NICER, AstroSAT, etc.).

+

In the code below, we calculate the PDS of light curves without dead time, after applying a dead time filter, and after applying the FAD to the dead-time affected dataset.

+
+
[2]:
+
+
+
def generate_events(length, ncounts):
+    ev = np.random.uniform(0, length, ncounts)
+    ev.sort()
+    return ev
+
+
+
+
+
[3]:
+
+
+
ctrate = 500
+dt = 0.001
+deadtime = 2.5e-3
+tstart = 0
+length = 25600
+segment_size = 256.
+ncounts = int(ctrate * length)
+ev1 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])
+ev2 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])
+
+pds1 = AveragedPowerspectrum.from_events(ev1, dt=dt, segment_size=segment_size, norm='leahy')
+pds2 = AveragedPowerspectrum.from_events(ev2, dt=dt, segment_size=segment_size, norm='leahy')
+ptot = AveragedPowerspectrum.from_events(ev1.join(ev2), dt=dt, segment_size=segment_size, norm='leahy')
+cs = AveragedCrossspectrum.from_events(ev1, ev2, dt=dt, segment_size=segment_size, norm='leahy')
+
+
+
+
+
+
+
+
+100it [00:01, 98.20it/s]
+100it [00:00, 134.62it/s]
+100it [00:01, 80.61it/s]
+100it [00:01, 52.97it/s]
+
+
+

Now let us apply a deadtime filter to the events generated above, and calculate the corresponding periodograms

+
+
[4]:
+
+
+
ev1_dt = ev1.apply_deadtime(deadtime)
+ev2_dt = ev2.apply_deadtime(deadtime)
+
+pds1_dt = AveragedPowerspectrum.from_events(ev1_dt, dt=dt, segment_size=segment_size, norm='leahy')
+pds2_dt = AveragedPowerspectrum.from_events(ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')
+ptot_dt = AveragedPowerspectrum.from_events(ev1_dt.join(ev2_dt), dt=dt, segment_size=segment_size, norm='leahy')
+cs_dt = AveragedCrossspectrum.from_events(ev1_dt, ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')
+
+
+
+
+
+
+
+
+100it [00:00, 154.30it/s]
+100it [00:00, 167.20it/s]
+100it [00:00, 133.60it/s]
+100it [00:01, 67.74it/s]
+
+
+

The FAD method relies on averaging out many values of the difference between the Fourier transforms in the two channels in contiguous frequencies, and it works best when the frequency resolution is very high compared with the distortion of the power spectrum due to deadtime.

+

For example, in NuSTAR the effect of deadtime appears above \(\sim10\) Hz. We want to calculate the correction on a Hz-by-Hz basis, so that the correction is adequate. The frequency resolution from the FFT is 1/segment_size.

+

Therefore, the ``segment_size`` should ideally be some hundred seconds to have some hundred bins in a Hz. The smoothing length should be of the order of the number of bins in \(\sim1\) Hz (in this example 2Hz).

+
+
[5]:
+
+
+
results = \
+    FAD(ev1_dt, ev2_dt, segment_size, dt, norm="leahy", plot=False,
+                      smoothing_alg='gauss',
+                      smoothing_length=segment_size*2,
+                      strict=True, verbose=False,
+                      tolerance=0.05)
+
+freq_f = results['freq']
+pds1_f = results['pds1']
+pds2_f = results['pds2']
+cs_f = results['cs']
+ptot_f = results['ptot']
+
+
+
+
+
+
+
+
+100it [00:33,  2.99it/s]
+
+
+
+
+
+
+
+M: 100
+
+
+
+
+
+
+
+
+
+
+
+
[6]:
+
+
+
for spec, spec_dt, spec_f, label in zip(
+        [pds1, pds1, ptot, cs],
+        [pds1_dt, pds2_dt, ptot_dt, cs_dt],
+        [pds1_f, pds2_f, ptot_f, cs_f],
+        ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']
+        ):
+    plt.figure(figsize=(10, 8))
+    plt.title(label)
+    plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)
+    plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)
+    plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)
+    plt.legend()
+
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_0.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_1.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_2.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_9_3.png +
+
+

As can be seen above, all power density and co- spectra have been corrected accurately in their basic property (the white noise level). See Bachetti & Huppenkothen 2019 for more information.

+

Note that this can also be done starting from light curves:

+
+
[7]:
+
+
+
# Calculate light curves
+lc1_dt = ev1_dt.to_lc(dt=dt)
+lc2_dt = ev2_dt.to_lc(dt=dt)
+
+results = \
+    FAD(lc1_dt, lc2_dt, segment_size, dt, norm="leahy", plot=False,
+                      smoothing_alg='gauss',
+                      smoothing_length=segment_size*2,
+                      strict=True, verbose=False,
+                      tolerance=0.05)
+
+freq_f = results['freq']
+pds1_f = results['pds1']
+pds2_f = results['pds2']
+cs_f = results['cs']
+ptot_f = results['ptot']
+
+for spec, spec_dt, spec_f, label in zip(
+        [pds1, pds1, ptot, cs],
+        [pds1_dt, pds2_dt, ptot_dt, cs_dt],
+        [pds1_f, pds2_f, ptot_f, cs_f],
+        ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']
+        ):
+    plt.figure(figsize=(10, 8))
+    plt.title(label)
+    plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)
+    plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)
+    plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)
+    plt.legend()
+
+
+
+
+
+
+
+
+100it [00:34,  2.93it/s]
+
+
+
+
+
+
+
+M: 100
+
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_2.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_3.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_4.png +
+
+
+
+
+
+../../_images/notebooks_Deadtime_FAD_correction_in_Stingray_11_5.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Deadtime/FAD correction in Stingray.ipynb b/notebooks/Deadtime/FAD correction in Stingray.ipynb new file mode 100644 index 000000000..3a0cc90e1 --- /dev/null +++ b/notebooks/Deadtime/FAD correction in Stingray.ipynb @@ -0,0 +1,371 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fourier Amplitude Difference correction in Stingray" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from stingray import EventList, AveragedCrossspectrum, AveragedPowerspectrum\n", + "from stingray.deadtime.fad import calculate_FAD_correction, FAD\n", + "from stingray.filters import filter_for_deadtime\n", + "\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Dead time affects most counting experiments. While the instrument is busy processing one event, it is \"dead\" to other photons/particles hitting the detector. This is usually not an issue if the count rate is low enough, or the processing time (_dead_ time) is small enough. However, at high count rate dead time affects greatly the statistical properties of the data, to a point where a standard periodicity search based on the periodogram/power density spectrum (PDS) cannot be carried out.\n", + "\n", + "The Fourier Amplitude Difference (FAD) correction is described in [Bachetti & Huppenkothen, 2018, ApJ, 853L, 21](https://ui.adsabs.harvard.edu/abs/2018ApJ...853L..21B), and is able to correct precisely deadtime affected PDSs if we have at least two identical and independent detectors. This is common in new generation X-ray timing instruments, often based on multiple-detector configurations (e.g. NuSTAR, NICER, AstroSAT, etc.).\n", + "\n", + "In the code below, we calculate the PDS of light curves without dead time, after applying a dead time filter, and after applying the FAD to the dead-time affected dataset. " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def generate_events(length, ncounts):\n", + " ev = np.random.uniform(0, length, ncounts)\n", + " ev.sort()\n", + " return ev\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:01, 98.20it/s]\n", + "100it [00:00, 134.62it/s]\n", + "100it [00:01, 80.61it/s]\n", + "100it [00:01, 52.97it/s]\n" + ] + } + ], + "source": [ + "ctrate = 500\n", + "dt = 0.001\n", + "deadtime = 2.5e-3\n", + "tstart = 0\n", + "length = 25600\n", + "segment_size = 256.\n", + "ncounts = int(ctrate * length)\n", + "ev1 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "ev2 = EventList(generate_events(length, ncounts), mjdref=58000, gti=[[tstart, length]])\n", + "\n", + "pds1 = AveragedPowerspectrum.from_events(ev1, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2 = AveragedPowerspectrum.from_events(ev2, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot = AveragedPowerspectrum.from_events(ev1.join(ev2), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs = AveragedCrossspectrum.from_events(ev1, ev2, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let us apply a deadtime filter to the events generated above, and calculate the corresponding periodograms" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:00, 154.30it/s]\n", + "100it [00:00, 167.20it/s]\n", + "100it [00:00, 133.60it/s]\n", + "100it [00:01, 67.74it/s]\n" + ] + } + ], + "source": [ + "ev1_dt = ev1.apply_deadtime(deadtime)\n", + "ev2_dt = ev2.apply_deadtime(deadtime)\n", + "\n", + "pds1_dt = AveragedPowerspectrum.from_events(ev1_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "pds2_dt = AveragedPowerspectrum.from_events(ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')\n", + "ptot_dt = AveragedPowerspectrum.from_events(ev1_dt.join(ev2_dt), dt=dt, segment_size=segment_size, norm='leahy')\n", + "cs_dt = AveragedCrossspectrum.from_events(ev1_dt, ev2_dt, dt=dt, segment_size=segment_size, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The FAD method relies on averaging out many values of the difference between the Fourier transforms in the two channels in *contiguous frequencies*, and **it works best when the frequency resolution is very high** compared with the distortion of the power spectrum due to deadtime. \n", + "\n", + "For example, in NuSTAR the effect of deadtime appears above $\\sim10$ Hz. We want to calculate the correction on a Hz-by-Hz basis, so that the correction is adequate. The frequency resolution from the FFT is `1/segment_size`. \n", + "\n", + "Therefore, **the `segment_size` should ideally be some hundred seconds** to have some hundred bins in a Hz. The smoothing length should be of the order of the number of bins in $\\sim1$ Hz (in this example 2Hz)." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:33, 2.99it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "results = \\\n", + " FAD(ev1_dt, ev2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen above, all power density and co- spectra have been corrected accurately in their basic property (the white noise level). See Bachetti & Huppenkothen 2019 for more information.\n", + "\n", + "Note that this can also be done starting from light curves:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100it [00:34, 2.93it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "M: 100\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmYUlEQVR4nOz9eZxcVZ0//r9O7Uvva3pJ0tn3dCckIWGJQEwAWRRBUVBBR0DRWfzMjD+d33xwGWccPzqjoqKiIigIKAKiArKTEAJk66ydtdOd9L4vtS/3fP+4tde9VbfWW139fj4eeaSr6tat09VV977vOe/zPoxzDkIIIYQQkh6N2g0ghBBCCJnJKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAMUTBFCCCGEZICCKUIIIYSQDFAwRQhJC2PsJsbYBcaYjTG2Ls+vfQVjrCfi9jHG2BUKn9vFGHt/rtpGCJl9KJgipEgEggRnILgZZIw9zBgrCTz2BmPMxRibZoxNMcb2M8a+whgzRjy/gjH2EGNsILDdKcbYVxK85PcAfJFzXsI5P5jr3y8Rzvkqzvkbme4nNkibSRhjDzLGTjLGBMbYnWq3h5DZhIIpQorLDZzzEgDrAWwA8O8Rj32Rc14KoAHAPwP4GIDnGWMs8Pj3AZQAWAGgHMCNAM4keK35AI5JPcAY02XyS8wGOXiPDgG4F8CBLO+XEJIEBVOEFCHOeS+AFwCslnjMHujFuRHAFgDXBR7aCOB3nPNxzrnAOT/BOX8q9vmMMSNjzAZAC+AQY+xs4P4uxtj/jzF2GICdMaZjjN0YGIKbCPSOrYjYTxdj7F8ZY4cZY3bG2K8YY/WMsRcCPWOvMMYqlfy+kUN3jDEzY+wRxtg4Y6yDMfZlid6mtsDrTjLGnmSMmRhj1sB71hjo3bMxxholXsvMGPsfxlh34PlvBe6L69WKadfXGWNPMcYeZYxNAfi3QE9iVcT26xhjI4wxfeD2ZwK/wzhj7G+Msfly7wHn/Cec81cBuJS8Z4SQ7KFgipAixBibC+ADAGSH3zjn5wHsA3B54K53APwnY+zTjLElCZ7nDvR+AUAr53xRxMMfhxicVQBYCOBxAP8EoBbA8wD+zBgzRGx/M4DtAJYCuAFiMPNvge01AP5Bwa8b62sAWgKvvx3AJyS2+SiAawAsALAWwJ2cczuAawH0BYYuSzjnfRLP/R6AiwBcAqAKwJcBCArb9kEAT0F8f74LYA/E9yDoNgBPcc69jLEPQnwvPgzx/dgF8f0khBQYCqYIKS7PMsYmALwF4E0A/5Vk+z6IAQEA/D2AxwB8EcBxxtgZxti1Kb7+/ZzzC5xzJ4BbAfyVc/4y59wLMQgxQwxCgn7EOR8M9KTtAvAu5/wg59wF4BkA6SS2fxTAfwV62HoA3C/Tzj7O+RiAPwNoU7JjxpgGwGcA/CPnvJdz7uecv805dyts2x7O+bOBnj8ngN9BDEARGG79WOA+APgcgG9zzjs45z6If8u2RL1ThBB1UDBFSHH5EOe8gnM+n3N+b+CEnUgTgDEA4Jw7Oef/xTm/CEA1gN8D+EPkMJQCFyJ+bgTQHbzBORcCjzdFbDMY8bNT4nYJUtcY044LEtsMRPzsSOF1agCYAJxNo11SbfkjgC2MsQYAWyH2cO0KPDYfwA8DQ6QTEP9ODNHvHyGkAFAwRcgsFRgKvAjhk3cI53wKYk+IFeJQmFI84uc+iAFB8PUYgLkAetNpbwr6ATRH3J6bwnN5ksdHIOYkLZJ4zA7AErzBGNNCHJ6T3T/nfBzASxB78W4D8ATnPLjNBQD3BILj4D8z5/xtxb8NISQvKJgiZJZhjFkYY+8D8CcA70HMZQJj7P8yxjYyxgyMMROAfwQwAeBkmi/1ewDXMca2BRKq/xmAG0Cug4HfA/gqY6ySMdYEcdhSqUEA1YyxcqkHA71rDwH4X8ZYI2NMyxjbEigxcQqAiTF2XeD3/XcARqn9xPgdgE8BuAXhIT4A+Fng91gFAIyxcsbYR+R2EvF3YwD0gaR6OsYTkgf0RSNk9vgxY2waYsDwA4hDTNcEAgRA7DX5NcTelz6IydvXcc5t6bwY5/wkxOTvHwX2eQPE0g2eTH4JBb4JoAfAOQCvQEz4VpTTxDk/ATHJuzMwvBY3mw/AvwA4AmAvxKG37wDQcM4nIZYm+CXE3jd7oB3JPAdgCYABzvmhiLY8E9j3E4HZf0chJsjLeQni0OglAB4M/LxVwesTQjLEwj3KhBBSfBhjnwfwMc75+9RuCyGkOFHPFCGkqDDGGhhjlzLGNIyxZRCHF59Ru12EkOJFVYoJIcXGAODnEBPnJwA8AeABNRtECCluNMxHCCGEEJIBGuYjhBBCCMkABVOEEEIIIRlQLWeqpqaGt7S0qPXyhBBCCCGK7d+/f4RzHluIF4CKwVRLSwv27dun1ssTQgghhCjGGOuWe4yG+QghhBBCMkDBFCGEEEJIBiiYIoQQQgjJABXtJIQQMqt5vV709PTA5XKp3RRSAEwmE5qbm6HX6xU/h4IpQgghs1pPTw9KS0vR0tICxpjazSEq4pxjdHQUPT09WLBggeLn0TAfIYSQWc3lcqG6upoCKQLGGKqrq1PupaRgihBCyKxHgRQJSuezQMEUIYQQojLGGP75n/85dPt73/sevv71r6e9v5aWFoyMjGTcrjfeeAPXX3993P3t7e14/vnnQ7efe+45/Pd//3fGrzdTUTBFCCGEqMxoNOLpp5/OSgCUD7HB1I033oivfOUrKrZIXRRMEUIIISrT6XS4++678f3vfz/usa6uLlx11VVYu3Yttm3bhvPnz8dtMzo6ih07dmDVqlX47Gc/C8556LFHH30UmzZtQltbG+655x74/X4AwOc//3ls2LABq1atwte+9rXQ9i+++CKWL1+O9evX4+mnn457LY/Hg/vuuw9PPvkk2tra8OSTT+Lhhx/GF7/4RQDAnXfeic9//vPYvHkzFi5ciDfeeAOf+cxnsGLFCtx5552h/bz00kvYsmUL1q9fj4985COw2Wxpv39qo9l8hBBCSMAbJ4cwPO3O6j5rS424Ylld0u2+8IUvYO3atfjyl78cdf/f//3f44477sAdd9yBhx56CP/wD/+AZ599Nmqbb3zjG7jssstw33334a9//St+9atfAQA6Ojrw5JNPYvfu3dDr9bj33nvx2GOP4VOf+hT+8z//E1VVVfD7/di2bRsOHz6MpUuX4q677sJrr72GxYsX49Zbb41rp8FgwDe/+U3s27cPP/7xjwEADz/8cNQ24+Pj2LNnD5577jnceOON2L17N375y19i48aNaG9vR3NzM771rW/hlVdegdVqxXe+8x387//+L+67774U3tnCQcEUIYQQUgDKysrwqU99Cvfffz/MZnPo/j179oR6iD75yU/GBVsAsHPnztA21113HSorKwEAr776Kvbv34+NGzcCAJxOJ+rqxMDu97//PR588EH4fD709/fj+PHjEAQBCxYswJIlSwAAn/jEJ/Dggw+m/LvccMMNYIxhzZo1qK+vx5o1awAAq1atQldXF3p6enD8+HFceumlAMTeri1btqT8OoWCgilCCCEkQEkPUi790z/9E9avX49Pf/rTWdkf5xx33HEHvv3tb0fdf+7cOXzve9/D3r17UVlZiTvvvDOrRUuNRiMAQKPRhH4O3vb5fNBqtdi+fTsef/zxrL2mmihnihBCCCkQVVVV+OhHPxoapgOASy65BE888QQA4LHHHsPll18e97ytW7fid7/7HQDghRdewPj4OABg27ZteOqppzA0NAQAGBsbQ3d3N6ampmC1WlFeXo7BwUG88MILAIDly5ejq6sLZ8+eBQDZYKe0tBTT09Np/56bN2/G7t27cebMGQCA3W7HqVOn0t6f2iiYIoQQQgrIP//zP0fN6vvRj36EX//611i7di1++9vf4oc//GHcc772ta9h586dWLVqFZ5++mnMmzcPALBy5Up861vfwo4dO7B27Vps374d/f39aG1txbp167B8+XLcdtttoeE2k8mEBx98ENdddx3Wr18fGhKMdeWVV+L48eOhBPRU1dbW4uGHH8bHP/5xrF27Flu2bMGJEydS3k+hYJEZ//m0YcMGvm/fPlVemxBCCAnq6OjAihUr1G4GKSBSnwnG2H7O+Qap7alnihBCCCEkAxRMEULITDJyBnj924BjTO2WEEICKJgihJCZZOiY+P90v7rtIISEUDBFCCGEEJIBCqYIIWQ28rrEf4SQjFEwRQghs9Fb3xf/EUIyRsEUIYQQojKtVou2tjasWrUKra2t+J//+R8IgpCVfX/961/H9773vbj7n332WRw/fjx0+7777sMrr7ySlddUKlhn6vvf/z5OnDiBtrY2rFu3LlQ0VKk33ngDb7/9dsqv39LSElXTK120nAwhhMxEKtUIJLlhNpvR3t4OABgaGsJtt92GqakpfOMb38jZaz777LO4/vrrsXLlSgDAN7/5zZy9lpSBgQHs3bs3VAX9v//7v3HLLbfg3//931Pe1xtvvIGSkhJccskl2W6mItQzRQghhBSQuro6PPjgg/jxj38Mzjn8fj/+9V//FRs3bsTatWvx85//HABgs9mwbds2rF+/HmvWrMGf/vSn0D7+8z//E0uXLsVll12GkydPxr3G22+/jeeeew7/+q//ira2Npw9exZ33nknnnrqKQBij81Xv/pVtLW1YcOGDThw4ACuvvpqLFq0CD/72c9C+/nud78batfXvvY1yd/nvffew5YtW7Bu3Tpccsklofbs2LEDvb29aGtrwze+8Q384Ac/wE9/+lNceeWVAIBHH30UmzZtQltbG+655x74/X4AwIsvvoj169ejtbUV27ZtQ1dXF372s5/h+9//Ptra2rBr1y4MDw/j5ptvxsaNG7Fx40bs3r0bADA6OoodO3Zg1apV+OxnP4tsFS6nnilCCCEk6PQrgG0wu/ssqQeWvD+lpyxcuBB+vx9DQ0P405/+hPLycuzduxdutxuXXnopduzYgblz5+KZZ55BWVkZRkZGsHnzZtx44404cOAAnnjiCbS3t8Pn82H9+vW46KKLovZ/ySWX4MYbb8T111+PW265RbIN8+bNQ3t7O770pS/hzjvvxO7du+FyubB69Wp87nOfw0svvYTTp0/jvffeA+ccN954I3bu3ImtW7dG7Wf58uXYtWsXdDodXnnlFfzbv/0b/vjHP+K5557D9ddfH+qR45yjpKQE//Iv/4KOjg48+eST2L17N/R6Pe6991489thjuPbaa3HXXXdh586dWLBgAcbGxlBVVYXPfe5zoecCwG233YYvfelLuOyyy3D+/HlcffXV6OjowDe+8Q1cdtlluO+++/DXv/41ag3ETFAwRQghhBSwl156CYcPHw71Gk1OTuL06dNobm7Gv/3bv2Hnzp3QaDTo7e3F4OAgdu3ahZtuugkWiwUAcOONN6b1usHnrVmzBjabDaWlpSgtLYXRaMTExAReeuklvPTSS1i3bh0Asafs9OnTccHU5OQk7rjjDpw+fRqMMXi93qSv/eqrr2L//v3YuHEjAMDpdKKurg7vvPMOtm7digULFgAQF4aW8sorr0Tlg01NTcFms2Hnzp14+umnAQDXXXcdKisrU3xXpFEwRQghM4nPo3YLiluKPUi50tnZCa1Wi7q6OnDO8aMf/QhXX3111DYPP/wwhoeHsX//fuj1erS0tMDlyl65C6PRCADQaDShn4O3fT4fOOf46le/invuuSfqeT/5yU/wi1/8AgDw/PPP4//+3/+LK6+8Es888wy6urpwxRVXJH1tzjnuuOMOfPvb3466/89//rOitguCgHfeeQcmk0nR9pminClCCJlJRs+o3QKSY8PDw/jc5z6HL37xi2CM4eqrr8ZPf/rTUI/OqVOnYLfbMTk5ibq6Ouj1erz++uvo7u4GAGzduhXPPvssnE4npqenZQOQ0tJSTE9Pp93Oq6++Gg899BBsNhsAoLe3F0NDQ/jCF76A9vZ2tLe3o7GxEZOTk2hqagIgBoBKbNu2DU899RSGhoYAAGNjY+ju7sbmzZuxc+dOnDt3LnS/1O+yY8cO/OhHPwrdDg4lbt26Fb/73e8AAC+88ALGx8fT/v0jUTBFCCG55HUBp18G/D61W0IKmNPpDJVGeP/7348dO3aEEro/+9nPYuXKlVi/fj1Wr16Ne+65Bz6fD7fffjv27duHNWvW4De/+Q2WL18OAFi/fj1uvfVWtLa24tprrw0NlcX62Mc+hu9+97tplSIAxIDltttuw5YtW7BmzRrccsstksHZl7/8ZXz1q1/FunXr4PMp+x6sXLkS3/rWt7Bjxw6sXbsW27dvR39/P2pra/Hggw/iwx/+MFpbW3HrrbcCAG644QY888wzoQT0+++/H/v27cPatWuxcuXKUNL81772NezcuROrVq3C008/jXnz5qX8e0th2cpkT9WGDRv4vn37VHltQgjJm1MvAb37gaVXA03rM9/f64FhjxU3AHNWZ76fK7+aeZtmuI6ODqxYsULtZpACIvWZYIzt55xvkNqeeqYIISSXeLDwItWFIqRYUTBFCCGEEJIBCqYIIYQQQjJAwRQhhBBCSAYUB1OMMS1j7CBj7C8SjxkZY08yxs4wxt5ljLVktZWEEEJiUA4WIYUilZ6pfwTQIfPY3wEY55wvBvB9AN/JtGGEEFKUpvrFcgnFxDkOjKY+tZ6QYqEomGKMNQO4DsAvZTb5IIBHAj8/BWAbY4xl3jxCCCky+x8GDj2ufPv+w8D0QOqvw7n4Lx/e/Tlw+Pf5ea0ipdVq0dbWFvrX1dUFAPjBD34Ak8mEycnJ0LZvvPEGysvLsW7dOixbtgxbt27FX/4SN2hUEP7rv/4r5ec8/PDD+OIXv5iD1uSO0p6pHwD4MgBB5vEmABcAgHPuAzAJoDrTxhFCSFGSCo6mBwDbcPz9J/4K7Pu1+LPU45O90kHTG/8NnMjTCValeoXFxGw2h6qGt7e3o6WlBQDw+OOPY+PGjaH15IIuv/xyHDx4ECdPnsT999+PL37xi3j11Vez2qbYAptKC25GSieYmomSBlOMsesBDHHO92f6Yoyxuxlj+xhj+4aHJQ4KhBAyW+37NbA3pvM/djjQPhR9e6wTOPAboEemAPLA0ey1j+Td2bNnYbPZ8K1vfQuPPy7fm9nW1ob77rsPP/7xjyUff/HFF7F+/Xq0trZi27ZtAMRlWD70oQ9h7dq12Lx5Mw4fPgwA+PrXv45PfvKTuPTSS/HJT34y7vbw8DBuvvlmbNy4ERs3bsTu3bsBiIscf/rTn8aaNWuwdu1a/PGPf8RXvvKVUGX322+/HQDw6KOPYtOmTWhra8M999wDv98PAPj1r3+NpUuXYtOmTaF9ziRKFjq+FMCNjLEPADABKGOMPco5/0TENr0A5gLoYYzpAJQDGI3dEef8QQAPAmIF9EwbTwghRe2t7yd+3Dkh/u8YyXlTZou3et/CiDO772eNuQaXNV2WcJtg0AEACxYswDPPPIMnnngCH/vYx3D55Zfj5MmTGBwcRH19veTz169fj+9+97tx9w8PD+Ouu+7Czp07sWDBgtBadl/72tewbt06PPvss3jttdfwqU99KrR+3fHjx/HWW2/BbDbj61//etTt2267DV/60pdw2WWX4fz587j66qvR0dGB//iP/0B5eTmOHDkCABgfH8fNN9+MH//4x6H9dnR04Mknn8Tu3buh1+tx77334rHHHsP27dvxta99Dfv370d5eTmuvPJKrFu3Lo13Wj1JgynO+VcBfBUAGGNXAPiXmEAKAJ4DcAeAPQBuAfAaV2udGkIIKVY+t9otIDkSHOaL9Pjjj+OZZ56BRqPBzTffjD/84Q+yuURyp9x33nkHW7duxYIFCwAAVVVVAIC33noLf/zjHwEAV111FUZHRzE1NQUAuPHGG2E2m0P7iLz9yiuv4Pjx46HHpqamYLPZ8Morr+CJJ54I3V9ZWRnXlldffRX79+8PrRXodDpRV1eHd999F1dccQVqa2sBALfeeitOnTol804VJiU9U5IYY98EsI9z/hyAXwH4LWPsDIAxAB/LUvsIIYQAgCAAp/6mdiuKXrIepHw5cuQITp8+je3btwMAPB4PFixYIBtMHTx4ECtWrIDf78dFF10EQAyC5BY5TsRqtcreFgQB77zzDkwmU8r75ZzjjjvuwLe//e2o+5999tmU91VoUirayTl/g3N+feDn+wKBFDjnLs75RzjniznnmzjnnbloLCGEzFpns5tcTArb448/jq9//evo6upCV1cX+vr60NfXh+7u7rhtDx8+jP/4j//AF77wBWi12lAS+ze/+U1s3rwZO3fuxLlz5wAgNMx3+eWX47HHHgMgzg6sqalBWVlZ0nbt2LEDP/rRj0K3g71p27dvx09+8pPQ/ePj4wAAvV4Pr9cLANi2bRueeuopDA0NhdrS3d2Niy++GG+++SZGR0fh9Xrxhz/8IdW3S3VUAZ0QQmYCuSRzUpSeeOIJ3HTTTVH33XTTTaGhtF27doVKI3zhC1/A/fffH0ouj1RbW4sHH3wQH/7wh9Ha2opbb70VgJhovn//fqxduxZf+cpX8Mgjj8Q9V8r999+Pffv2Ye3atVi5ciV+9rOfAQD+/d//HePj41i9ejVaW1vx+uuvAwDuvvturF27FrfffjtWrlyJb33rW9ixYwfWrl2L7du3o7+/Hw0NDfj617+OLVu24NJLL8WKFSvSft/UwtRKbdqwYQPft48ODoSQInfyRaDvILB0B9B0EfB6YIjjyq9Gbyd1/+vRwyFRVlwP+L3i0F9jG7Ds2uT7A8QyBmdfAy68J/14OuRea4bo6OiYkSdwkjtSnwnG2H7O+Qap7alnihBC1CDIle1T+HiUFGoke2zhQIoQkhVpJ6ATQgjJgN8DaBIk8XbtTPx8uVGFifNijxUhJG8omCKEkEI0cjrx44JMNeqDj2W/LYSQhCiYIoQQNY2cBjTa1J/nmgBMFdluzazFOQctKUsA+ZpdiVAwRQghqRo4AuhMQM2SzPd15KnM95GIxwEYLLl9jRnOZDJhdHQU1dXVFFDNcpxzjI6OplxHi4IpQghJVUdgAeGUZq9l+SQdmaDedxBYdo30ds4xCqaSaG5uRk9PD2jNWAKIwXVzc3NKz6FgihBCConSnqSevWK5BZIxvV4fWm6FkHRQaQRCCCkke3+hdgsIISmiYIoQQgqJx5Gb/dqGxOKatqHc7J+QWYyCKUIIyYscrzbhdSV+fPiE+P/Iqdy2g5BZiIIpQggpRKlOz37r+8BQR27aEsvjAFyT+XktQmYACqYIISQfBL/ybc+/A/jdybc79VL07fGulJqUtj0/BvY8kJ/XImQGoGCKEELy4cyrMXck6Hk6+zrgtuW0OeHXeg049ERqz0klMCRkFqDSCIQQkonxLsDnBmqXJd92rDPnzUmqrz369vl3VWkGIcWEeqYIISQT7Y8DR58Wfx44Gj0b78J7YkHNoMne/LYtFXt/BdhH1G4FITMSBVOEEJINrkmg48/AsafD9517U732pMo2BJz6m/izxyEumOyeVrdNhMwQFEwRQkg2BPOIEuU6eSN6rXJR78nvzc5+dv8QmDgPXKAhQEKUoGCKEEJywW0D/L7o+ybOh392jmf/NQePZX+fhJCkKJgihJBcOPVi4sez1YukVLKinlIu7BWT6wkhCVEwRQghucCFxI+feSU/7Qjq3Z/e87p2ZbcdhBQhCqYIIUQtO7+ndguSS7USOyGzEAVThBCilnwP9RFCcoKCKUIIySbnODB6Vu1WRPN51G4BIUWNKqATQki2Hf49ULVQ7VaIzrwKTPUp21ZuO9cUoLcAGi0tJUOIBAqmCCEkFwph6RhAeSAFAIJPLD4aiQvAnp+Iy+VUzAdOvyT9XEJmMQqmCCEkX5LN8CsEsUFgsM2jZwCPPf/tIWQGoJwpQgjJF0+C6uiEkBmLgilCCMkXSgQnpChRMEUIIUQBpnYDCClYFEwRQgghhGSAgilCCCGEkAxQMEUIISTsZMwCzbScDCFJUTBFCCFE3mSP8m1tw4Dfl7u2EFKgKJgihJB0vf5ttVuQe45R8X/Blzyw2vtL4OTzuW8TIQWGgilCCCHZk0pPFiFFgoIpQgghhJAMUDBFCCGxBD/g96b2nJMv5KYthe7U39RuASGqo2CKEEJitT8G7Pxeas+ZOJ+bthS63gPx9/UfAvY/nPemEKIWWuiYEEJiTfaq3YKZ7QQloZPZJWnPFGPMxBh7jzF2iDF2jDH2DYlt7mSMDTPG2gP/Ppub5hJCCCGEFBYlPVNuAFdxzm2MMT2AtxhjL3DO34nZ7knO+Rez30RCCCGEkMKVtGeKi2yBm/rAPyqJSwgpfqkmoRNCZiVFCeiMMS1jrB3AEICXOefvSmx2M2PsMGPsKcbY3Gw2khBCVJFqEvpsc/Y1tVtASEFQFExxzv2c8zYAzQA2McZWx2zyZwAtnPO1AF4G8IjUfhhjdzPG9jHG9g0PD2fQbEIIIao7L3VdTcjsk1JpBM75BIDXAVwTc/8o59wduPlLABfJPP9BzvkGzvmG2traNJpLCCFZduG91Kbx+zw5awohZGZSMpuvljFWEfjZDGA7gBMx2zRE3LwRQEcW20gIIblz5lVgql/59h3P5a4txYAxtVtASN4pmc3XAOARxpgWYvD1e875Xxhj3wSwj3P+HIB/YIzdCMAHYAzAnblqMCGEqGq2FufMJkEAwAGNVu2WEJIVSYMpzvlhAOsk7r8v4uevAvhqdptGCCGkKO1/CLANA1fSaYMUB1pOhhBCUkHDWJmz0QQkUlwomCKEkGQ4DwxNEUJIPAqmCCEkme63gTe/A/jcybclhMw6tNAxIYQk039I/H+yB/C61G3LTObzAH4KSEnxoWCKEEKUOvx7tVsws7U/CkwPqt0KQrKOhvkIIYTkBwVSpEhRMEUIIYlwDlrbPQWCT+0WEJJ3FEwRQghAs/WyxW2Tvt9PQRYpXhRMEUIIAHS+pnYLitvQcbVbQEjOUDBFCCEAMHxS+n7neH7bQQiZcWg2HyGEJPLuz9VuASGkwFHPFCGEEEJIBiiYIoQUL/d0YDYeIYTkDgVThJDi5JwA3v6xuBSMUj6PGICR7Dj7OrDv14DgB7p2qd0aQnKGcqYIIcXJPSX+P9YJtFyafHvXFLD3l4BrMrftmk3OvyP+339IfH8JKVLUM0UIIUEUSOWG4Fe7BYTkFAVThBBCcuvMK2q3gJCcomCKEEIIISQDFEwRQgghhGSAgilCCCGFze8FLuylMhekYNFsPkLI7DTVD0xeULsVRIlzO4EL7wEGK1C/Uu3WEBKHgilCyOzCufhv/8Nqt4Qo5XOJ//s96raDEBkUTBFCZpfON8L1j0hh41wc4iOkwFHOFCFkdulvV7sFJJZzAnj928BkT/T9p18Cdv0P5UqRgkfBFCGEEHWNd4n/9x+Ovj94mwt5bQ4hqaJgihBCSOHgHOjeA3idUg/mvTmEKEE5U4QQQgrH+Dkxr802CAqeyExBPVOEEEJUFhE0CYEhvcjEc8by2xxCUkQ9U4QQQtTBOXDocUBnUrslhGSEeqYIIbPH698GvC61W0GCfG5gvBsYPqn8OX6f+Hfseit37SIkRRRMEUKKn+APDx+RwnHod9G3J7rDP4+eEf9uAICIYT6/W/y/Z19Om0ZIKmiYjxBS/N78f0BZg9qtILGmB6NvOyeAqR7JTQGIvYqnX8ppkwhJBwVThJDZYapf7RYQJSRLIgSc20k1p0hBomE+QgghhS04m48CKVKgKJgihBBS2OwjareAkIQomCKEFCePXe0WkGyZ6lO7BYQkRMEUIaT4uKaAY8+q3QqSjr52tVtASMoomCKEFB+PTe0WEEJmEQqmCCGEEEIyQMEUIYSQ4hKsrE5InlAwRQghpLgcewZo/13imlWEZFHSYIoxZmKMvccYO8QYO8YY+4bENkbG2JOMsTOMsXcZYy05aS0hhBCSjG1I/D+0HA0huaWkZ8oN4CrOeSuANgDXMMY2x2zzdwDGOeeLAXwfwHey2kpCCCGEkAKVNJjiouDUGH3gH4/Z7IMAHgn8/BSAbYwxBkIIyTXXpNotIITMcopyphhjWsZYO4AhAC9zzt+N2aQJwAUA4Jz7AEwCqM5iOwkhJN7wSWDPA8DoWbVbMqu5uR+TfrfazYgQe71PSG4pCqY4537OeRuAZgCbGGOr03kxxtjdjLF9jLF9w8PD6eyCEELCgpWxbYPR93M6mebT07azeGz6pNrNIEQ1Kc3m45xPAHgdwDUxD/UCmAsAjDEdgHIAoxLPf5BzvoFzvqG2tjatBhNCSJwsJhpzcPRPOuETaFFdpcb9LrWbII2yTUieKJnNV8sYqwj8bAawHcCJmM2eA3BH4OdbALzGOV0aEkLypOutrO1qyulD16gDXSOOrO2TEFLclPRMNQB4nTF2GMBeiDlTf2GMfZMxdmNgm18BqGaMnQHwfwB8JTfNJYSQ3PIHrgOpZ2oGC17L73lA3XaQWUOXbAPO+WEA6yTuvy/iZxeAj2S3aYQQQkgGBJ/aLSCzBFVAJ4QUn65d4Z8ne9RrByFkVqBgihBSfMbOqd0CQsgsQsEUIUSxYccw3u2PLTOnIpqtRWLZRwBOy8iQ/KJgihCi2FOnn8L+wf0o5sm6FJ7NMPZRwO8Vf3ZOAO/9AvB5VG0SmX0omIrQMdqBC9MX1G4GIYWr0GKoJEHdmN8FoQADvzG7G3s6R2nGYKZ2fhd470Hg+J/E2978l7OY8kzB5rEl3zBP3u59G692v6p2M2YdCqYivH7hdfz57J/VbgYhRYFzDrdPveGWCb8bT0yfwjuuAdXaIKd3Qixy6fJSMJU2rxPwB2brTXSr1oxHjz+K3xz/jWqvH6t9uB0nx6kafb5RMDWLuXwuPND+ADonO9VuCilC73SO4YHXz8LpUSegcnDxRDvop+KbhJDcomBqhjgzfgbPnH5G8rHOiU5MeaZS3ueYawwAcGjoUEZtI7MPVzDed3poGgBg91CtH5IHk73AyCm1W0FmqaRFO0lheKn7Jcn7z06cxd+6/gaD1oDPrvlsnltFiAo4B4ZPADXLVGvClOCBDgwWjV61NpAIPg9woHCG2sjsM+t6ph5ofwC7e3cr2nbC4YHXX9g5DX/r+hsAwOOn2SskDwphqttQB3DsWeDCO6o14dGpE3h4qkO11yeEFJZZF0wBwKFhZcNav97dhT8f6svKa065vPjL4b6CD87IzGH32jHqHFW7GfkXnLHltkXXmZqgmbiEEHXMymAqFd2j2Ule3XVqBKcHbegctmdlf9mgJO9lNuOc49Xzr2LIMaR2UyQ9cuwRPHnySVVeu1DqTHHOMegLfEcPPprRvuweH6Zc3iy0amaY9LsxKRRvj/ak04uBKZfazYjiFbxp5beqgXOOQ8OH4PQ51W7KjDDrgymXz4UBe+FNnSapaR9qxwPtD8Drlz4ZegUvHmh/AAcGDyjep91rx8mxk3jh3AvZaqYinHMcujCR9bICfsGPt/veLqoh4VP2XvzRdgZnvZMZ7+twzySO9WX/RDfhd+PRqRNwCIUVqD02fRKPTZ1Quxk5c7x/CudG1L14nfZM45Fjj2DSLX4+Xzz3Ih49nlnQny/DzmHs7t2N186/pnZTZoRZH0w9e+ZZPH36abzX/57aTSEZODx8GADg9ItXUQfOj+PtsyOhx90+NwDgyMiR/DcuRT3jTrx2YgivnxgO3ecXOHwZDhGfGD+B9qF2vDeQ+LM+6hzFsZFjGb2WnAmHBz95/QwmHV74BB8EntnvNOYViyVO+MW/L7r3hKthyxi1u+GKCFRH/S6c8kxk1I5EDnlGMCV40OmdGT0ShcDm9mEwm71Kk73Avl9HfzYme4C3fiDWq8qRU+OnYPfa0TEm5tcFi0JPODx46K1zsLsLd6arXxC/I+7gd4skNCuCqWHHsOxBO1geYN/gvnw2KS845xizF08vRCrePDmMdzvHZB/3Cxx7u8bgFwpjuCqSL9Amlzd8wv/17nP40WtnMtqvEKi2nSyAefLkk3iz503Zx/ecHcVbZ4ZlH0/keN8UPD4BJwam8ODhB0MTKLKm8w3g3M6Em5watOFob7gn68npU3jFcT677cihSb8bz9jOwlPE688d6Z1EZzZ7lc68DEwPAPaIz23XbjGQGj4JePLbg3XwwgQmnV6cGpzO6+uS3Cn6YGrYMYw/nPoD9g3kP1gamnZFnRDz7WjvFB55uwsXxjLP+5p0T2bci1BIDpwfx1unR9B+YSJ034RromBygWJNuwrjCpYFpvPt6xrPaD8un/hZOjd5TtkTunYDr38bEBR8nwaPJt3E6y/Mv7MS77oH0e+zo9srnog5OLpH7XDksZ7XmN+Ffl/+AhA39+NtZz/8Co9BvRMRvU3TA8BUv/jzgd/Ef4ZOvgDsvj9LLZ25XF4/Xu0YpElSaSr6YMruFb/ww870rqQz8eiebvxxf0/eXzco2E0+4cgsV8PhdeCxjscUl5RweHwF130dm2zvDZzMgweOEecIfnfid2gfbs9302aEKc9UqNtfqdgqCl2TXeixnwUAHOhWHozZ3D7YO3dh1O8CBAWfK092Jo3MlHDL6+fom3Shoz9/vRxPTJ/CM7azeXu9d10DaHcP47TC3LiByYhgqvON8M+cA+4pwD0NjBXOyg/7usbw/ZdPZTyUL0fJRf3erjEc7pnE4Z6JnLSh2BV9MBXpcM8EzgwpW5Ay0x4Kl8+Fg9O/x9FRMZeHFUJ9HhksSeOCszl6bMoCw5+/2YkHd6Z2oBK4kNE0/4FJF45nkDwcnGFTSJMRUplteW7Eju7R5D0FozZ3yoGux+/Bo8cfxRsX3kjpebGeP/c8Do7uSvl5v9jZiZ93H8eT06fglQmm3s3y+nvdmMJeoXA+C5FmSpCXTb7A8VhQ+Nvb4MFpJAjYs1lGwz4MOFI8dsX8GvsDFxduX/aDqWN9k/jpG2cxPJ049ynfnfKcc/z1cH9WRk4KwawKpl7tGEr6gUqFy+fCI8cewaB9MO4xWyAxdtQrDmOcHCi8sfFCGtLaO7AXT558MpTDJodzjp2nhuOSU08OTmPSmb3ZUn22vqwtXvrM6WdwcOhgVvYl59mDvXj6QK/kY5xz7Do9HMjRsOGNk6mVevAFAphg8myqfrunGz3jmR0wx+CE2yfg5zvPwOHxYp9rCN4Ue8pScUgzhHNC5jMEc8UrcMVDXoXO5fNnfYjybfShQzMKF3LbQ95v6weGTgCDxyUfL4RjbLC8z6i9sBLJPX4Bpwan8VyWajmqreiDqVzWUuq398PutWP/4P6cvUYm1P8aKxfsEQoOy8rxCxz7u8fx+725LdCYrVl/7/S/g357P/b07cnK/tLh8grY1zWOV0+IQZQa+UJ7zspfuSst1TDt8sLrE/De8Fm85xrA3qnMEvJnsoEpF04PFk7NulRNCx5x2BbAwfMTONSTPHD1CRydwzb4hORBpD/y6DemMC8vxs/ePIvH30s8MeGZM+H1UgcmXSmXMxmxzc4JQokcGj6U9oWbmoo+mIqU7CrB4fHh3Ig946sJm8emWmXq986JY+8XxhzwKzjoqGXa5cW0TIHEaZc36VCUT2YWHkuy3ons41mKL+xuX9QMwVTqWmVbqjlOSoTfv+wFZIqT0AN8gVlsvgQ9M5xzvO3qz6hdSj1v78Lj06fg9vkxZnfjWN8kBM4x6fTmNJnXEzcklNrfRO47lA+/nTqBJ6dTW5R4yuWFze1XNEM5G7+a0+PHwKSy8gwCgMffO4+/HErtMxc5qxQADvVMxPUcv9r9Kt7ufTul/QZ1j9oVj4rk+9PQOXkWB6aehEeILk2xu3c3/nz2zwmf6/D4YCuwvNxZFUwFyQVLJwemMTDpyni46DfHf4NXz78aui3k8aB1KDA77an9PaGE1ELM1/rZmyfw5Rd/gWmP2EavXwgFIb/cdQ4P7uxM2Jsh55WOIfztWHZzXbwKiy36/AIe3NmJl4/HD/sGvXZiEK+ePKd4n+madE/if977CY6PxK8fN+w5k5VCfPsH9yet5jzh7YFXiD4hCdyPcW96pQiU9jQP+50Y8uUnF6PLO4VxvwsHzk/g5KANUy4fnF4/jvdP4UTgRGZz+2D3Zufg71SShJ+A1y9gzOFB/5QLDo84xNY9Zpd8b71+AT3jDtVXS4g8hAmc4zlbJy745PNfMx5eGzqBhWOJS2zEvCAG3B04Ny49hG7zKMvVfbdzDAfPT0Tdd2S4A7t7lM1Gj72AOhIRrKX6lpwcP5naE1J0YkwsGOv0T6T83J+/2YlfpJiXm2uzMpiaSjLNXKr3YsI1gbMT0rNXYg80wavToB++elp225kgWYJ6OsZ83bD5R9E+1A4AeO3EUNwsknc6o4OpP5/9M/YN7E2431MDU5KJ6Jm870qHofyBo1VHv3yA0X5+Ag8ffTRhfaVQ308GH5U/HOzAkd5JvHRaeh3K9sFjmMxglqfNP4x3+9/FXzv/KruNT/Ci07kbZ507o979PvdhnHPGD3vavXbZ75isoewvNpyVT3vgFw7mAo07vegcys6wXF+CIEKJfd3jod4Kj19AR/80+iZcksO/Z4ZsuDDuzGovgNvnV/xtPOkZx2+mTkRt74YfPT4bXs5lbbBjz6DOllp1+D73YZy0R1+kBI87p8ZPSd4flOgQ235hAocVDIMCgD1BuYoXjw7A6VHeW318NJwHJgi8IGvyFZKiD6aCH9rIAEnuqiV475lhG376ZvRB/Xcnfqe4wODJARumnJkdfC6MOfD9l09ltwqwjOB7I3AhlGycDrffnfKQTSSXN/GQyIXpCwVVXPXdzlG8GxHwTTrdEBIUUhyxuRH8lF2YSp4TMObpR9dkV1pt6xkXu87lLhwOnp/AQ7sT/60mHB7Z78oZh3jVHuxZlMIh/j09QvQB3sulK07/6cyf8Lujz2HCmeQzn8eu1oensh+sveK4gEFeOPlOiS40ghcI2boGnHZ5ceD8hGTC+dC0K25txDecvbAJHsWz+GIdYhI9RaOdwPE/xd/f+SbgzKx+Go/5/mcjAT3TIOaY7S8Y9Yq9ONPu9C6gntrfgx++chJvXHgDE64J2e0EQZzskmlpHM45zgzZIAgcZ4dt+Ovh/AzZZ6Log6mgIceQ7EE81q7Tw3AnObEr5fRHX1Eky+kJClb/PXh+HD9782xWci+O903hD/uiT+IOjw8nB6bBOceL517Eg4cfTGmfdq89NGT1cvfLeOHcC3ALmV05yxm3e9KqgeL1e5P2LsUG3Up6st4+O4q3I4YiHzn+Sxyz/0V2+1QPiofGX8Xz555P6Tkurx/ffzm1XBQpDo8Pv97dhb0xxTljeymVnCx83IM3h5KvRzbpnsKpQRueOZikBEeOZvFNIn62UzbW04v9xp/yjGMXl555WeycgXpHUiUAzg7bJddG5EBU0nkq8ckgkxjq7Y2eMOTlfni5AHS/DRx5CgBwyD2CXSz8OZx2eeHxCTg/6sCpwWmcG7ErOhZ1TuZuKMrm9inKH3MLdnQ7E/foJ9M74YRDGMfx0eN4+fzLsttdGHdgX9c4XumQT3VQYtzhxZ8P9WFv1xiea++bEZXidWo3IJccXgfsgWUCHD4HOuypL1ibjYtggfugYcrf6rfPjIQSE4N5T1MOL2pLjUmf6/BPwCMwGDTWuMekcok6+qdghBEOjx9dU11Rj3HOk9Y9eeTYI6i11OIjSz+C81Nit3uf+wgWmLeAcw6f4INeqw9t//NDP8f6+vWy+xtJULri7LBNHIowSz0qf4R95PgjoWDK5rXhoaMPYa72CsltBc4zuqoK5gedHRlDrzP/i8hmWqA1yO0TYAHQN+GE02fHhTEHltVZsrLvIJvbhxKjLhS4Bk+Syaq9mwYDZSac8WU0HB6fmJhtSL0977F+bOctqT8xQjemUI/svk/pmhY8MDEt9Ewru02uBm7OeCZw0juB66wtGe9rwuHFWbcd3CBe5JzzTwIa8bvq9QvQa1PtExB/ay8X0OWdwsuO8zBrdLiaL8CpCwO4YhOw29mHceZCXeAZv9x1DnVlRgxNRR+fjLWJX0mu1IvcRYhXcMLuHwWwNOlvEcwZ+tJ2+W1d/nR6QNM/6QWvFwXO8caFN3B89Djubbs35f0EOw8KZeUHJYq6Z+rhYw9jV69YJHDC4YGfK/vDKL3yUTp9/oJrP47Z/oKT9pfh8iXvHXv33JjETB1lDk+9gKM2+d6RIJ9fSPpB3dM5ip++cRauJOPsw47o6vLBYZ39g/vxiyO/gMMbvjr0cz/2SuY9iV/gTGuOHLc/j2HP6aj7YnulXD4XLtilp9V39E/hwZ2doQrpB8+PRy05o9SP3n4ejx+WX98OEAuFvtbZjvtfPR2aUt1n68PvTv0icECNZvOP4IH2BxIOrSWSbm/ru51joWHDbAgGT5FVmf2CX9EQM4/s25UolHioZxIdA8FlVsQZYLE9gifYKJ7TnEk4GzCWn/NQr4ocB7w4pBnCPjaAoSzWs0vXb6dO4E/29IfdlTrWN4kLgeVb9roGMSl48JLjPLqzsLAzBw8tSu3w+nGajWOvV+z16Bl3Yl8KlfSDBEHA+TEHdjn6QnlXTsGH7lFHwmN/bCCVioPnx/HYu92h23bfJI7Z/hI3OeO083V0OndnbSbuycnMeqQy8fq5A1G5w9nW7XxX5lyijqIOpiIpWmpB4os04unEc0dOomfcAafHH5VX1DMtdgM7PD48/t552ZL9o94uuAU77P4xdE2fltwml46NHQgleg97TuM77/wQfz3ajd/vOw+50cPzU+dxpE/syQqeRFId/w8mEzsiZlWN2d1ZW3z5yb3n0T8ZfZIXuIALrsTlCJwef+iEG2swcBL0hhYbFuD0+BX97sEeLT/3gsMPR0wPV+Qu9nSO4v/t/g3+0PEC/EJ4Qerz0+LBfdoX300+6hHfz16b/BDR2clT6HMfQbpXly92vah4WyGLBQmfO/tc3JBikJ974UPqJxePX8Cky4ehaTcemerAKw5xiPscxAN8KsHU6cFptF+YgMA5fIIQziWKEAwS3fBjII1cR4fgk5yp5+OC5Hst9Rf2+gWcGbaF2pePGY2ReXl7XYP4aw4CuODvGlWEM8HHL9Enc2hoAL0TTpy3pZ+OcMF1AGccb0BwjCvq3XN5hahg7Nz0MbgFOyZ90RePqaRI9LracdaRwoxDIK/1DzqH7SnnDj9zOly3i3MOjz/8PXr95FBUrt2otwt7B/biwZ1n8f2XT4Vmsqtl1gRTkVKZndbt3Is/nPo9Low5cbhnAi91vRSXV3RmyI6BSZfipWpSFTmN3OX1h2arSXUhS/1mHeMH8XafWKdk1NuJo71TONovJmaKV+0s7jv2l86/YP/Ec1H32dy+jBMqTw7YouqepDNTMNhr0zfhwu8OvhPV86VEovF3l38Kfe7DKbcJEHM+AKDL+Y6iY1b3WHTwMGJzS/ZITnumFb/vu/vewIA7uhpzOB8suc6JzuCTJEXm/L3bmbhafUwj5B/iHP12+QTTQ9NPK3+dAJsnXO+Lcw674MUpzzh+OXkMXia+x2+6+vDAhLK/dbBcCgewt2scfUrrD6XwdXl46jh+PRVfSfvByaN43tGV9PkcYs7K8LQ76UoPPYj4Dspsc27EltYwi1SgWUg45+Dg6BXih8BMvklxQe0khj2nMeUbRO/JvWkFztl4hwY9JzHp68eJsRMZHZcPXZjAn9p7JdfL7J904sTweRyefibuMXF0IzqtQO6z5BW8ssfpYfe5UOmIyOPAkOcknj33aCjAbD8/gd8dfAcPtD8APw+/rt0tXmgdUnlNwVkZTCXDOZf8cAocOD6S256lh96Kv6qLnEb+zKFT+OOhI+idmMYTJ55Iad9O/yS8PHyQDc62UmLa5cXerjHZ3oNzI3Yc6Z2Met+Gbcm7xQ8PH8Yjxx6R7ImRc9L+Cuz+UXgFJ07b9qScpJ3IuGscA+4OOGO++O/2HEXXRPgqcsQ5gvbpP8AjxB8gXEJ6wxu/3dONXafjF+T+7fHfYsyn8Go/jQ6pnukeHB6ODyoELvbEJjJm9+DPMkOzo2n2QLoFW9TQbLmrByyFzyogBu1Sr++JmG111jMR9ZiTSQcOHDztIpACOAacmQ+RnvdKXwAInOOgexi+FN4fN3w4oAl83xL8Xmem4l/zgncaP588Cj8XQ/T+SWdKS7a87enDcxr1K9cPwgGb2wdHxGhCJyZkfxc/98rO1I0sfurj3lDu6K+O/Er29b1C4u9GcFZjcEQhkdfOv4YeWw9GnCM4NCRdCkWKw+uAT/DhtRND6ByWzq3qGnGgo38aPh5ur9cnoHvUjr8e6ccvd0Ufl+Q+Tn85+xc8fOxhycdGPN147uxzcfeP+brg9Ao473ovdN8521EAwIRP7GUupHINFExJOOH4Gw5O/17yMakEXz/3whuo4prpGmTJCobuHHgWpxyvweP3YdzuwXjghME5h9cv89zACbbD/mKonQBw1iHmk7ljTv5SJ9Bgj8nQtPRV2N+ODcDm8kUdWKYUFj9NtoTMuRF73JfGKzghQIDd7UffZDrj8uH9ef0CHnn7HPom5E96P3nvWXz99YdCt48MH4HABUz5+nFapqdL4MpWa48U+fkKxqVunx8230hK+wnyKFje4rmzz+Gt3rcAAJMOb2jmVPv0U2gfl5+5AwAnBqajemQFgeOJ984rWnRZzrHpF/HsmWdDt0s90YF2vjs+gmubxfJzjv5JJzx++Yn7B9kgOj3Sn08l0/2fsp2Bn3NMu33g4BiMGbY77Z3Ae+4BnGTKewljX1WqFee903hNcx5vsgvwRwRq+9xD8Ah+9E2KZQy6Rh14SdOV9DVH7W74BAGnIwo0+gNDplLG4UI3ptIaSh73u5LOxg3+TqN2TyiN4ahmBHuZdA/poemnk0xgCl/F/KVTzFl1++UvJged4dEGqeNO8ELg2RPhulX7usbwi52dkitHeAUvfn/y90nzeP2CL9RD9PCxh1Ma1g/a2XkWf9jfhbNDynrMDw8fTtjzDESnggT5Ahf+0774C8xgYJvNVINMUTAlIbacgZRDw4cw5fKid9yJMfcgjtiew8nxo/jlO+8lfS4A7D4zgu+/fCoUJIw6R1Pqqr1g68KJgelQheWD5ydw13PfUfz8SV847ya2nP9LXS8p3k+Qy595sqmU3gknnj3Yiz8ekc+DyrR7dzSwPpbcSTNI7iroLzE1UCLzHiKrGSc6wNsCwymx27i8fhzonpB4hjKpzO6zuX043j+FM0O2UCsmvOE6Pcf6JuPqAAncH1XB2O7xoX/SJbvocqwxu0dyaHPEKR88dsusMi+XHxSckcqBpEnkkvuVGcYZs3vQNerA4LQbPTKB+ADscAQmcIwxV8QQGI8KUmRf2+fAmN2DCacXDo8fkzE9GsG8r9ieKc45Ru0eeBSUVJEq1nnSK/ZATzI3TrNxTDi9uBC4UPSH8gmVvZcOjw+nBm04FZMG0TfpkuzpHvY7sUvTg0Oa8GfPq7DnbUrw4PHpU/Cw8PYTzvAFp9TJdySiB9MLIe734pxDJ7jhS6NStxIXxhyyJXMiZ1P/9vBf0Ws/j1/uOochR/LFyrunuuPue7Xnb1E9RMFeNKXcPj/sbj8G3MdwcPoPGPQkn7H85oVdoZ8FLkherHPO0TEaXdMtNjlfTuSQn5pmZTDFOU97RlTQ3oG9ONY7hfMRB/a/nXsz1NsjJzhr671z4pVk+4VxdE/04cmTT+Lg0EHFrx87K9DtEyRP9sft0kNg/e5jUbcjA7nOyU74/AJ8Egfis0N2/H5ffMFJm1/+yvjg+fFAwcp4R3onZU9WnHN0jneBc469Q2/J7j8TnPvx0tl3U66Q3jEW/cWPXeDU5o+/mpJzcPr3eOJAuHs+8sAarLtjF0Yw5R9IulaYN81ZoADgCZxE5Kokj9o9kut8ddj/png2XtTr+QScHJjGL/YnXocrKPgXkhvJfMoWHj6K7GEIfi0mHN6oE+eETM9p8ITr8gmhiQiS2wkcx1h80GdnXrgg9iT5GQ/to4dN471zY3HlRgZcDpydnI4KfEbtbuzpHIVXCA8xjviceEWi6rfU37xr1AGHV9k6dr2YxmlEBzWnI4ZAvRDQM+5Me0ZnsP3nfPIXqRwcfbBBAIdNYghsgCnr6XRJfAaDk48OuIfxs8kj8HD5Cuw25sV3eqKPw3sH9mKO7SgapsWhcIc/0QzCmD373EDPXugE+V6qt8+Owun1Y8o3kPCCeszbhbOOXbD7R/HUqacStEEktTpBnz2z+mZ9E+LxxxOo2TjmjR7mk/puHjgffr8eOvoQHjr6UNw2XsGLP51+qaCG7VI1K4Mpl1fAvX/+Ac4MTePCmCP0AU5WU0lOMNlTSc/SwfOToRpSTv8k7t//M/zp6DG4vH5cmIrPG5Lr8WkfVlYJ3OVPL2jc2zUeccXKQt3OAufoTXpQDb8PnHO8d24MT+6NDsCEwNWEzeULXfHGGvGexZt9L2LM1x01qyMbbD7xyu7M1DEcH9+LEY/yXDipRayf2h9daDJyODUYlD7X+Qd0u+Kn8nLOccrxenj7iKGPYL0Vl38aXsGFcyN2jDnHZHtuTihc1BQILH8xdhKTTi/2nB3FmfH4YpmxBze5K+inTj2FBw8/iBHnMHpdhxJ+FzyBnjsh9L1LrbdoKFCI0Z2g2rxU/lPswt/TEvXE7PDinZHwVX+yEiVn2YTk/S9putAN6e9u7HHmhwNH8Mvx46GZpABwatAGL4Somme73NK5acMZzY7l2K8ZRIdmFG+7+mGTKVI6DQ/8kJ5VqFSiRWQGYMc+zQBOsbGoeMTjj75I5GmWQPJyP951ibOTPUlmhrpY9OMnYvKWTthfgt7vgNEX/q7F9niGJnLYhuB1O2H1SF9cBXMh/QLHGUe4lIrb54LXH1/WA4hfUUCOxyfgxGhqyzM5/ON49cQFTMmsQjCexmfNF9Hz6fF7QvmQkTUFj/ZO4ljvFDqHczOJKx+KuminnFG7+Ef886F+9Ew5MafchBFb5ifrZMuhAOIVWDCvasR7BgL3o9fejb7BCXT1D2KBeVHU9n6ED24+vxBaI2tgSvlVotKq61IOTv8ei8c2Y9TmgUlrhFdwwcvjgx+pV4i8z+ePXtupz3006Wt7BBssAPrdR1AiWahTGa9fwLjDg7pSEwAEhl3EgMjt88ArCPArTKLtmuzCM6f/DE3MLMRENWjOjzmwsLYEE+5xjAVq78gFG4PuExgcBBoT1GdtH25H+3B7wnYKCmqqDbg78Or5odDFwItH40/WU04fUBK+LdelPuoS38/nOp/BoGcMDcbV0fuJmBXmSDpcIn5HfH4BOomCjIPMgbkwY8zvRokmjeqcUa8kBjcmnfg6r2q6FU+1SrbZeZbe0Hfws9HOBuH0+kOftRHBCYOCApU9mI4a9hv3uTA44kFzpQUlRvlD/n7HEPpcdtxWHV0E0gM/Xtecx1xeCv+EgFBNUpk3QEzY53HfkUQ8gfa6YgKdQYlZiXLvu9cvwOMXJIdy33SGP9s+qQAlphc+6nZ/fFJ3vT26Z3rM4UG5oQcuYzWA6BIjA1MuwFAu2WabbwRuwQ5jTJHlZ8/9DqZzNeiX6Ik+59yDOaiW3B8AjNrccPsEWA3KTu8Hpp5Eo3EN5hhX4oRdTPH40cHSqFEXpYKzP2MPb8PT7rii010ReZXB543ZPdjbNYb6MlPcvn3cjfMTw2iqlv/d1TQrgqlkXYcC5+gaUf7BGbW5cXYoezlCU974qxbOBbiE6F6GyCGW4enkVwg2icQ9OQIXh/W0GhZVroBzjhNj4enaJxx/C4xlb06wt/iDqMB53FI2UiZ9vbD7h9FgXBPx3MwK2J0etGHS6YXLI2BOefhLyjnHycFpDLndMGvjv7xSxt3jkjlMY974/IRMjHo74ZbpJeCc453OMTRWmDC/Or7SPQB0u5Tl7knuH5AczgOgeLagVADv8QlRQ0Vyky38AnBhTCzIWFkhnzsVOTQ7bHPDpJeu9M0g5nJJHQWmnF5MuX2oK0m+ukCsREOAADDBks1mlX4zgzlhNngDJ3751zk1FP13YkB4pl6wHV4Pxh1eDDnG4Zvjgk/msD9i9wBci9jzdDAwG4ETZp8OwfUMPEJ03pfD64dJp8GIzYNhjwtzK6KvgFwef1qV6ZXa3z2Ocbgwook/Nva5HIBGfCf7Jlxxyf+xQVvU7YjvoS/BcF2pZxAl3hH0TVSjvswErUbi7ysIUfsDxFnVwSAm0skR+WNKojI8pwbFx1Y2lMluE6vPfQT1huVR9zncqR93Xzx+AWPec5jH26LuPzNkiwum5GbMC34etxKG0z+JAY94HopdoWLYcxpzjCtTbmu2zYpgSm6GXbBe0enB1LoWR2zpd6uLNYA2JtzmnHNPqLZUi/ni0P1yi9ZK4VzAmK9L8fZ7eg5gb9c4FtZa464KIlcsDyYFegUv+mzhqz3p6vLhg8mYtwtHeqVr+nh8ESdFj5j3EhlMibM6Eh+FI6fuxgoOlfVOOKO+0MPe1New29O3R/L+VHKkop4n8zd1J+jKDx6DBiZdssFUMACd9g+hL0GRz0gX3GKSf6JK6cmqqCdaiie2wGpkQT+p3B6fn4dWMJAy5nfB6jLggl3cryvBkNyYTCJ+MCAaUlDGI1vEYoQyPZPTbkxrlH3PGZiYLB3orPL6eSjZPcgrcPRNuqCBFp1sAoPT06hgGXTzxjgRMYtw1O6BTsNg8GtDX32PX8CRXuWzbafhSbsGk5Ag87F/0gldCceI3QMLm8IplijvSV6Pux3aJAnP3aMODEy5sH5eZfyDQ8cB5zh4ybrQXW5hOi4PK9kC95F1xC6MOeCfl3mu0WHbsylsHf96A/aBUD2qxd45CZ/dOdGJCW/88mZyOuzhnr7IOmaci4GgWVuBarQo3l8uzIqcKbmeqZP2VwDkd/0fP/eiz5F48cvIIp3BOkYTDmUBXDAf44wztcq4g3bxgNc5bA8NJSayu3d3VIKjjwcSE2NOaMHP/QXX/qg8okxxcJxyvBq6nU7vlT1B0vygQ/kXPRmO7KweHxRcqkTgYhJ0okWcBe7HX8/JJ3j7/ELowCyXn3fEFl8DRk5Hf3o9trI9YTHLaizqjS6YO6TgwsaG9C9+BM7h54Ghq8AJJFnOTSLjcGEqwffL4xcwxaUDu0T5W+5Am6QuuILHDg6uKME3dsZgpDHmimpHbM5Y7BCa3MQTOePMhdEU8yNPesZhE7x4i/VglyY+728Kbkwwd2jCQT+Ul+3gMXl2HH7U2Tpktg6Tu+jgzvggTmrS0rhd+Qy1nnEnOgaSf++mfAOhGGh/9zj2dUUf/5LNigueL2M90P4AdvbsxG+PhssJ2Tzx+/L4wpOafvLeU1k57wYvwpJN/MqHWRFMxVJ78cQ3el6T/OCOey/EFYEUlwZJ3BsmlRQ67RuULCgpJ/Jkf6RH+koyss0DttHQ88QS/+Kl6OGY555Osyq8R7DD5o8e4omcwn3O+XZEcCaVpCn+7u2DHVFX6/F1bTJbyVpQcGIdmnLLBwtpODcSPhl0jdox6VZ25e8U4rdLbWkf+RPxnrOjSZO1pXJVEhE4R+fR6OFKZ0xum5LAJjahOBXBE/ApjOMvmrPwcD8OMuUFZmMdYtFT2qWCm7/IFGgdd0YXCBhn4aBD6Wy3WDaJmZu9PunvbDCpP9XaaUF25g33EMb82pHfwlGvsgDMzfzwQcCrjgt4zt6JcZlh1WMsfsKIctG/67j3fNKeqSCBx/eUyZXQkOJMYS3NA90TGLMnft9s/vBnb+epYcmSGOk6OnI06tgvlai+v3scB86PY2jKlfHalcElw6jOVJ6Nx/TqZPL+R57I0sV5cIkM8RDiipjNdNSmbJp4JLllPaZ82etdAaLrfuw8NYwplxfvdI7h0IVJuCMOsHb/KMa9FyBwnvY6fMfsf41a7DfV/Ry3i71mz5/9W9T9Z2Uq/cY6eH4iYRHPoEFP8qtUABhXUO/JLaQecNk9fhwdOQqbfyTJlG1xdmQmvAnyRYDwxI6g2Bo0yReKjc4P8vgEIKLgpVQwFpvkPQxHymUukjnIBtEZ6IFxcT/skP5bnkihcCYAeOBL/fsRcfA6neZQVVeCxPgRlnnvcTBfLvLvNQxH1NCaPSYgG4143dhZl4kE/9YOBWU5gifeVC+fIj92JTKz8qS82zkWdTGZ7PuZqZMDiS9cI88HwQvjdIORdL9jfkHhMTiza1xVzIqcqcicnFQoLRqWKV8WrxDyKfpEEP3pP+d8GxZPBQBIzv5LJtxTlt63SuACBtwdKItJKYqtoTTl6w9sH38wliriKcSc0IPLTIx4MgtUAOCYLfVlcRxuH357YHdWrzLTFT2Jg2HQnbygX6RyVy9KPYPoKVsPgMHhs0FgHCzwq/kFjsOaxCezPZo+rBJSmO2j4GRygYWDXIfghY1JB1O9LLVe2DG4UGGXT3yXOmFNu30oN+klts6dQZbeqg4TDg9QKv48LTPUKoDjdXYedpn3VE5wxl5XoPxEoqWLHAgGDuLtVL8pkRMlzN6JlJ7r8QkwA9BwP07YX0Jziq+dK73udgCQrR2WTvJ5NiXr5S5ERd8zlUmuyhHbn2Qfy0bV1TFvV8b7yJZUktuVCiZRn3W8JZOgnh2xFdyD+tyHZQtQAoCPO0NXi0qG6+SMehPnwOWSwKUrWMdvJ7fmmPpBWFCJRxyGCC67/ebgH9PaTyonZmeKB+0f9x5LvlECkbMcR5hT9m+3i/VIBm1TLp/sOoFjcCbsMUhU5ynSG474vKNUBGf4cQAHRkdxAVOyZSL84HF/r5O+xD04ghBOtO/QiL3XEx75YCrVQC2qfSO/gdMbDpKNKdbtCy6FZPWmtxyUUlI5o7EjMpFGPOIxS65moFxZhLhajDnqQUp0WIosJu2N+JknWUc015IGU4yxuYyx1xljxxljxxhj/yixzRWMsUnGWHvg3325aW7q3kllZXuF0h26ipWvMvhKyr10p1AaAhDXS+qfiOy5i3+RbPx+qRZ0jJVoiZjINZ+U9kKei1lzTuB+xcHU0d7cLLmTDOfAeYlioUBsb5I6lNRnKxbuiKA9sscrVmQ+VKzIBcQHI3Kl3tL0ohPy+XNyBUZTlSwkC+ao+QWO3ZpeHNQMYYqlcMxM8gJTMQsUj6R4PE5lUegxz0lMSqyFp5RG7iIyy9cwXh7/eZGqUZWtIfAJrxhwB4tC57MnKXI4sy/iHNRpV1bIOleUDPP5APwz5/wAY6wUwH7G2Muc8+Mx2+3inF+f/SaSTPVNOFFtzWGBlxwqhJN9JKm8n+RFKNU15fJizBu/DEmhiQ3HnR4/Ige0lJ4GEuUEqU3J4sbJRBaUjB2CsyUJWpSc9JIV3ExUgiJVf2PSyfapSHW9Ranq+NnCuB9VjnMYsyzI2WtI6XEdTLqN2AuvvPaUUh6fgPYLE1nfb6qGPdmt9ZeqpD1TnPN+zvmBwM/TADoANOW6YSR77G4/elOYRZKOAU9mwx8kd1Kto5YNHfYX0n5u09RBlLn6MO3ygcmUvFBSvmMmeIl15fX13AoWPs5Wz7uSsFFg8VsVzsBzeiw+cTSEyfSAjdjcGc9mSxcHkq7vmar93eNxs1KVLIBcbFLKmWKMtQBYB+BdiYe3MMYOMcZeYIytknn+3YyxfYyxfcPD6RU5JOm5MJY4mBIULqci+/wMq5ST4hJbvV9Knf1kKE8qVpmnX/L+oHGZ6ukzjSvLvSTdEr1yR9kIdjPlC9ymWsIi1/uZqZqmpHuLUs3Ty6aeMWfUMi65ksrqG9midtK84mCKMVYC4I8A/olzHvuNPQBgPue8FcCPADwrtQ/O+YOc8w2c8w21tbVpNpnkQjAhkZB8MfhtqHBFLjGU2sl3Jp6sPRnUvErXBHNHlR5IxivwtBd9J+oSOEeN4wzqZQqL2j3F0aNbiBQFU4wxPcRA6jHO+dOxj3POpzjntsDPzwPQM8ZqstpSQkhRkhsOSaY/yZIbJH35XF6HZM+B7nGYfJPQyxRsnqlleJRR93dLmoDOxFVvfwWgg3P+vzLbzAEwyDnnjLFNEIO0TMrOEkJmCbN3AmZv/HR4uXwpQog0JWVSCqgaSlFRMpvvUgCfBHCEMdYeuO/fAMwDAM75zwDcAuDzjDEfACeAj/FsLkZGCClqZt9E3H1N0+15bwch2WCS+DyT4pY0mOKcv4Ukpbk45z8G8ONsNSpbMq1RRAghhKSqxpF4RQQN96Hc1YsJ81zw4q+dPSsU9V/xQPeE2k0ghBCSgokimamZSIXzAqzeEVg82S8qTdRR1MEUIYSQmWUmztJMVbAWFSkeFEwRQgghBaDUPYDmqf2InJlW4bqAUveAeo0iiihJQCeEkIzV2k9Dy90YsSyJqS9FCAGAcrdYXJWBgwdSlYOFbaeNc1Rr10yQyWL12UDBFCEkL4x+sdZvuasXJp/8gryEEJIqtQsI0DAfIYQQQkgGijaYcqW4kjghhBBCSDqKNphSu8uPEKJMlfOc2k0gRBWVrm5ouLheXq39tMqtIZko2mBK4LRQJyGEkMJQ5u6TvD8YTAVzCsnMVLTB1JiLlgYkhBBSGMrc/bKPmb0TEvfS6MpMQrP5CCGEEJVoBQ+qndHLzzRNHYRdXw2/xiD7PAZx9CVyORoNLQ6umqINpjhF9YQQQgpcrUM6V8rqjR5dMfht8GlMEJh42q63dUAnuNBTdlFoG5blYIpxPzjTIMnyvARFPMznEyhCJ4QQUhzq7CdRZz8Zuq0TXDl9Pa3gQdN0O0rdQzl9nWJRtMHUhHtC7SYQQgghWRMMoHSCO3RfiWcQuciv0nIPAMDsG8/6votR0QZThBBCSLHR+x2YYzsaul3h6oHJNwW934FSz2Dc9s1T+1Hu6slnE2elos2ZIoQUBqtnBEb/tNrNIKQoRPZKBTEuoN7RIfucUs8gJk3N6b0gpR8rQsEUISRn9H4HKl3dUffRsAEh+UKRUL7QMB8hJCcY96PeLn+1THJjwjRX7SaQHDL7JhRvW+YeyF1DSBQKpgghOcHoqlgVnKaxFzWLd0zxtga/PYctIZGKNpiiOlOEkJnIpzGp3QRSBLSCJ0t7onOpEkUbTBFCyEzk0pbCqatQuxlkhmuwHcno+RaP8h4wQsEUIYQUFJe+DKOWRSk9x66vDv3s05qz3SQyC5V4h9VuwoxStLP5RmzZ6uIkhJDccGtLYPTbQrd7ytYj2dIdfaWtaJw+FL0fXRnGzfOhEzzwaYy5aCqZgUy+SbWbMGsUbc/UlMOndhMIISShMfOCmHuSJ48H12aLxyiQIgnp/U5YPan1OBkEB0y+STAIqLGfht7vyFHrZraiDaZsbgqmCCGFza8xqN0EMovU24+j0nUegLhwsoYrO0/WOM5A73fC5J9ClbM7+RNmoaINpgghRC3xPU6pSyUJ3S/bWxXm1pZl0Boy08VWThcXTj6hUmuKT9EGU4xKrRBCVOLQV2W8DyVJ6ALTAkhcTkEqiPJqLOk3jMxIFs9o3H1SS9NkD4eG+2Uf1XJvYM3A6NILc2zHZuRagkUbTBFCSLEaKFmNIetyKMmxmjbWx93n1pXArS3NQcuIGgpx7ctqRycap9tlH690dqPUMwiTL7rtOsEluWBzoSvaYIp6pghRG30JY/mZASOWxZgyNmY07ObTGOHRWjNqi0cb3zs1ZWzMaJ9EHSUpJpVHap7aj3JXr+Lt9YIDSgp5Jl32hgf3URxFQYs3mFK7AYQUoXJXD5qn9qNYDoD55tRXwKUrx5SxAcPWJQCACdO8nL6mL5Dk7tJFB29TpkYMW5eFlp/pLVuHKWNDTttC1KOB/JBbqUdcw6/EM4QSz3DSJWusEkOGs13RBlOEkOwLd7/T5Uq22Ay1SbdJNwfLpSuHT2NCX2krpo11oft9GgM4NHBrS9LaL5l5jD5bwsc13I8K1wVUuM6jynku4bZ6wYnmqf0odas3HMcggEFQ7fVjFW8wRcd6QkiRSDo7UCavYdSyEECwNlV4G5shHFjRoZIASJjfFEsjiCUVrAqrpGu4HzrBlWKLeML1BZumDqLedjzFfeZO0QZTdIAgRF219lNqN2HW47KHeDpCzmaZFt5kKQzzl7t60Djdjjm2Y0m3jazYXuYeQIPtSNSMQ53gDuR38dDtQlG0wRQhJP8Y90MvOAEEE1UJIYUhHADV2ztSfrYhzQAslZl5NY4zoZ+NvikAgDYiYKp2dKLUMwC9P9Vertwr2mCK0ZUXIXlX4+gMdL1TgnohGrYswbBlidrNICoIXuSkqyJQOR1AaNJCLJ3gQo3jDBiXzmUy+qZCQVJQteMsjL740g76wLBgRdRMQ3G/Br89labnRfEGU1QbgZC8M/qnkm9EVOPWlcGtS70kg5/pc9AaUgwYBGi4D7X2U5hjOwaTb1K27lWt4zRqHadjns9R4zwTt21wqRupHu7oxPPCuHBLvgYBIYRIYBACV6h04ZKIQ1cFiy/xVHM5E6a5slf5+TJqXgi3riylBGUyezRNHcx4H4wLaedYMi6AB1YCUBMFU4SQlGm4H43T7ZgyNGDKRIUeExmzLIDXbUa5W74wol1fC6e+Iu7+yFl3anDoq+DUV6raBjI7FGIV91QUbTBF18qE5E6wC97qG8UUGqHhvoTrcM1GAyWrQomyXq0ZgHTVcQAYN+e2cGc6+kpbwVnRZoIQFen9TphSCJ5KPENw6itDeVRR+xJcGa8GkA1FHExROEVIrsROSW6YPhKVx6BReWgq16YNc0JVo+X4NKbQAsQuXTkGS1bCm2BB4kIj1qYiJJ5BEBPA0y1NUG9PrT6UWEz0guRjdfYT6Cm7KK12ZFPxflsoliIkZ2oCSaQawQsgNiEUKEswpDXT+Zk+1NOUCq8m9ecolUkKrsC0oZ5GABi2Lgv9XQmRonZ9p9jASit44A8sm6SWpH24jLG5jLHXGWPHGWPHGGP/KLENY4zdzxg7wxg7zBhbn5vmEkJmgkwWXi10xbYY8JB1GSZMzaECn25tCeVJkYwwnt8ZdunUzco2JT1TPgD/zDk/wBgrBbCfMfYy5zyyn+5aAEsC/y4G8NPA/6qhjilCco+Bw+SjcgiFyKUrV7SdT2OCzTBzhh9J4at2ns3r60X2rKolac8U57yfc34g8PM0gA4ATTGbfRDAb7joHQAVjDFVlx836ilxkpB8qImpGzMb+Zm6Qwyx+kvWhNblI2Q2iC0Gmm8pRRyMsRYA6wC8G/NQE4DIQcwexAdceWXUqV93ghBSnNzakqjbI5ZFGDUvUqk18fwaQ4J1+dLTV9oKu74m7nUIKQQ1ee4Ni6X428YYKwHwRwD/xDlPKwRkjN3NGNvHGNs3PFy8ORWEFBMGAc1T+2Et4jyoVPk1BvSUXRSqDC4wnWSdqGIiMB38muhK6DZ9rUqtIaSwKAqmGGN6iIHUY5zzpyU26QUwN+J2c+C+KJzzBznnGzjnG2pr6UtIyEwQrB9V7u5TuSXEV0ClFfxMD4e+KuE2bm1pnlpDiLqUzOZjAH4FoINz/r8ymz0H4FOBWX2bAUxyzvuz2M6U0dJ8hJB0xQ5nRVKrkGV/yRoMWper8tqxpgwN6C9dGzfMN22oV6lFhKh70lcym+9SAJ8EcIQx1h64798AzAMAzvnPADwP4AMAzgBwAPh01ltKCCF5MGJZDJeuHDrBA4FpYPZNRD3uUKlsQKHmJ3k1FugFByZMzdDG1Keiwp9ktkj6Seecv4UkIR/nnAP4QrYalQ0l+tRXRieExCuMNdnzJ1hSYNi6BABg9Yyg0tUdsUX4cMiZRnyDVOoKt+urUeoZBId6E24GS1aEfi539YR+HjfNB2cMZt+4Gs0iJK+Ktn4ALSdDCMkGu0F+yG/EsgSTxqZQInq+TZqa0Fu6ruDW0Js0NsFuqMn6jEJCChV90gkhURgEaDktJyLFq4leqNinMWLaOEel1gAAK7hAipDZqGi/hRo6wBCSlhr7WTRMH1a7Gapw6ipkHhF7uoNDf4QQEomyAwkhUYz+2bk8jENfjTFzi+RjAyUrofc7KaE6S4JJ64RkCwuUcFFLER8ZKGeKEKKcLUFulE9jKqgaT4SQwkJjYYSQJOjChKTHq7VI3i8wWu6LFJeiDaaoaCchhKjLpzHCE5O0z8EwalmgUosIyY2iDaYIIdk22ypOEVkZXKwKTAdBpVIShOQKBVOEEELyxqMtibtvwjQXo+ZFKrSGkOwo2gR0GuUjJDPlrl54tBa4dbRYLcmeSVNT1G2vxgyboU684VShQYRkQdH2TFEwRUhmSj0DqHZ2gnEBAKBReeoxKQ485ujs1Feo0xBCsqhogylCSHaUu3vVbgIpQtMGNSvHE5JdFEwRQhKyeMfUbgIpasnHEahYKil0FEwRQkKqnOfUbsKMRzWUsmvYsgR9pa1qN4OQhIo43KesKUJSRb1QmRmxLIGXKqVnTU/ZRWo3gRBFqGeKEDKr5LLnyKUrg19jyNn+C10wmdylK4t7bMI0Fw5dFfwa+RpT/SVrJEsnEFLoirZniiqgE0JIfnm0JbK9SR6tJVwCQYZfY4ib7UfITEA9U4QQQnKHBU8zyoIkubpmnE5XpIDRp5OQWYJBQIXzPDTcF3W/lnuh9zuh9ztUalm+RZ/UZ/OwXD6Mmhdg2lAPj8yix7GmjNIlE/rKWuHQV2WzaYRkTdEGU4zG+QiJYvWMosQ7jDJXX9T9c6aPot5+fNYW5fSD1onLJb/GgElTM2KDWK9WTNSPT9iXPnZzaKh3ihQs+mQSMmuICxXHnqoYghXOfZgNJkxzo2+b58KjscCrUdZzQrLDoa/CkHUFnPpKtZtCSMaKNgGdECJNyz3QCW74NMao+6udnSq1KL/8LLonyqO1YqhkhUqtmc2Y7NBff8kasEDwT8hMQD1ThMwyJt8k5tiOqt0MQmT5NYa4YJ+QQkbBFCGEEGUKrLNozNyidhMIAVDEwRSjWiWEEAAubRmGLUvVbgYhpIgVbTClT1Bll5DZqfgvMAZLVsJNFbSLliOQrO7VmFVuCSHRijaYsuqlC78RQkQN04dRb+tQuxlZ5dWY4dFaE26TaDkTUtjcujL0lF1EwRQpODSbj5BZSsu90HKv2s3IOZuxPvSz2GsV7qFzaePXkCOFT9CI6yty5G6dRUJSUbQ9UwYtfckImU3GzAvi7hu2LA0suhufOc3BMGpdlIeWkWybNDZjwjQPTn05pg3SFdMJyaeiDabqy2laLSGRCmwiVtZJLTUiaOI73wUmXmjZDHVUUXuG4kwDm6EWAMOkqUnt5pACoHZGKA3zEUKKllRujcB06CttDQVVpLg5dZUw+8bVbgYpcnRZRkiREtfaK/b+KCniNapDXy27hcB0UP9aluSDV2sK9GJJoc9AsWiCupPOKJgipAjpBBcap9th9Yyo3ZScmjQ2yz5GFbRJkBg8xxs3zctzS0iuaFSOiymYIqQI6f0uAIDZN6lyS3LLqS9XtJ1XawGHBlPGhhy3iBQaPzOo3QQyC1AwRcisMXuHNASmQ2/ZOrh1VAphtnHrqObgbLAU8RNQ8qlogyk+G1NFCAngEnGT2TtbknDpy0+S82pMcOor1G4GyZIyqFuMt2iDKUIIoq4qTP4pFRtCSP4MWZdL3u/XhIf8BktWyeZSEZIqCqYImaHKXT2os59M4Rmzd5iPzC4erTWUK8XB4NBXQ2A6WvC6iDGm7vGtaIMpjcpvbDExamjh2HzRa0yKty31DMLgtynenga/UtdQrvzvMdutaizcfDSfxoi+0laa4VnEqq3qTjQo2mDKoEvvV1tkuTyt59WXxX9JddriCOgajKvVbkKUlVk+aJfq6rK6v0yYNKUwpbBe3OWCfGkAQBzaMwYCLpZmOKXWpziVr09w+KbGsDDpthoFxTpXlVwPACgzpzcMNM+0Ma3nzWRl5tzlrKRzXHbqxJmepRb5AGquaX3oZ7u+JvWGzTIXCfXJN4qhkUrgzAGmcs970QZTAFBqCh8IKyzKvujlusaUX6epQnoF8/rS/FzVWrSVCR9fZLks7X0vt24vuJ6pxrIKrJtXkcU9FlafjZ5Jf56kVCL6M2b2TqDEM4jIEKg2paHAeBaDOpXCDTplrztkXY7BQI5MpkGMUVOC9WW3wqixBu5J7wCtJKgjypk0iS8w/Cz++D5hnov+0rXQ6+V7LFjEQsnj5vnpN1ChMlP2c7Sk9mnRx393Gnnmx3FTGoumfK58VcavOxMkDaYYYw8xxoYYY0dlHr+CMTbJGGsP/Lsv+83M3Jyy9AKbpfXJP4A1pTJf1hSPw22lt6T2hIB6g3SyZYv5Yqy0XouF1YmDrURMGvHqTmkwmg86jQ4miYNF1DYsfDWqn0Fd+xzhYdXIq+ZEInMFqp1nUeHqCd3WByrZNU/tT7tNxjR7efPFo7VCYHqU6OSqXCuzwLwFK6xXR92ndiHAdMyvtiTdJt2/qVcr7turSf4a2bLCenXSC7qhkhUS+VAsKshqrIg/B2gjEtDz8bcuNWb/OFpu0qO2JPoYp5H4ZebzcEBaxlMfEjPrNKgrTX4srefRnw2zIT4ASzYkt1qYeb2ESr5RDwO4Jsk2uzjnbYF/38y8WdkR2d9QGfjjaVjyX7nFvDn0s04jbm/SlmKx5X2S2we3AYB6wzIss74/vgEBC82Xyr6ukuEHadJHgSp9C0zaMuxYNSetIceV1mtDbcokdyTYsxG+2g+bb47vSZB7H+rKjFjdFD4gVFrlD0wLzZeEfi7VyndNrym5UfYxQDzBpmKF9RpFw6JGnSaq51RKZt3W4ofPLNOrlI2r1Gx5vzAfFp78irfcFP/3btIvCf281HIVgPCQn1RvBSD/vpq0FmhiZneVywxdlevCxT+1BRZxNcr0lANAc6UZKxvKsLpJWbHTWE59BQZKVodKCsQGZfqY40zkRU06ynWNSXulAPFv7daVYtowB1PG6NGFYM9N8LswaWzCqHkhmk3r8NHWDRm1T4o2Ylgr8qNh1WvzErBVWQyoSDLkWgbx77JOUJ7ikOwCNmgRr0j4eKVZL9lzpkRpgiBQ7W9h0siCc74TwFge2pJ9MqM3lRK9LA3G1QlPrCZNGcp0c6Lua640o3VuOQw6DeZal6PBuBqNxrWwauXXBKvQJ85xSZXFqEXwF9UGTh4apkVJoA3BE3Y6B/zIHo9MEvpb51YE9iFxhaKPHw6Ruwo1aDUojTihLq4twRLZnsNwexMN4uklFsKNepylFkSateVoMCbv1q6w6LG6qVyyF0HHgoG/9AGxQeIKO1aN42zCx9fzehh5YSz0a4EeJUh+pSzVm1KjmxsX8Jitl2DUvAh2g/z3UMrGBdFF/xZZLsPyqvhe3wbjaly5sDV0e9OCKhj14bYtm1OCz1y6IKXXDtJpWVQv8IKa+AsQKbUKegwA8XhQbtGnnVMKRC/TE3tBE3uYsGgrAAAtNRZsWRT+e1QZ43seDDHfxTnlRiyyXA4WuACuN0r3wEcO+U+amuKq3L9/4WbctWl7qFdo2jgHTn0l6gxLUVMS/i6tLvmA5P6DTDLvmVEbff/nKsIXUw1lJpQaxeNevmabWQ1aMIhBSyyDNv53YAqzHKxG6QueuRVmyddK9rxILbwcq5L0RjVXmLEg4njZxEvwASHi/FEky8lsYYwdYoy9wBgrmAFSkz7+15PLR7FoK0In1jLtHMltAEQNAzAGWAJdmDqNHg3GVaEvfqrqDNJTdqUCs8iTSmtzRejnUl09mkytWF1yI5YGesc2tkSfIFY0lGL5nFJoNSyqlycRk6YM1db4k/4c40rZ5zRXxr/PXEFuUipDcjqtBjUlRsngOJFUD2rNpraUtleiJcFJco5hFeaaLkKlTnrdMLnekqASruz9CF5pJruKlRN8F6t44uCuTSM9/GbmOlRw8e99EZ8DPY/+7pTGHISNOg2qLQbURAwRcHBUxQ4ZMBboOUnt77y6sRxf2h7+HpbrmnDVvKvitjNozDAmyOeqshpRnsaweEO5CSsbor+TsT09ciLzNrc2b417PFfD9POrEwd7DBpoGNBQHn08uHhhdAC6tvQmrLRGBzPWmOGhJmMragyLou5bXbM6+ZC/RguzXhsX6AGA1Rh+rllXhv7StbL7CQYihpjPaaKcQg1j0MVcyErlONVYDXFBWaiNEt9nbcQvs8RQAaNEb75eYn+x3ylAusAvAOg0DFcIc0O3lX6bkl0YBc8CkYHdWl6LSiQ+9jMAa03hY8nH6xdDBw2aeWFUuM9GMHUAwHzOeSuAHwF4Vm5DxtjdjLF9jLF9w8PDWXjpxBbWlmB5Q2nUFdF882asKJcfagMAXYITullbgRJdfARtTiFJe7l1R9x9waGHRmP0l9kgkZuQqIu+3rA81LPx/hX1oV6hIJNei0qrAZsWVKHUpA8FccvmhD+Q86tKUW9YDgMTf6fVjVW4a+1dca9l0sh/iNOZ2bPCejWWW+RHlKUODoB0fkCiIVMNtFHDnlsWRf89Iw+wgHTvmZyaiB6ClvK5WGK5InR7fdmtaAgEoHeuuiPQzui2a6GHhmlRa1gcCvrqy4yYWxUfnMbmJgTVIv7+S4T4iRXBt5Mh/uo6WnQbY6/QN/I5CYcL5A7Cq3kNtnLxYK2HBhfzcI+CWa/FB8vDvTtzA8GCpbQiLhgO/vm1GoZ5VZaszuqRC7xjh2jnV1lCbQiqKTEkzbmsNSwO/dxSY4XVqMOCmtLQcUDDWHywmKzNGfz+Vq30khxV+hbJ++M+v4GUh7XN4jFKywySQcxlzVuwfl44l1PHDJI918lUGsWTq07L4r63YWID5PLE+kvWoC8QRMUODUt16F8e+MxqGVBbYsSHjYvjNwq4xBy/FmTscHWVRQ+zXqu4t7CUG1AS+F1NOg300OATluheO5NGFwpaIvdqMWjj8qtimQI91ma9FtrAe2dNYRKK0iR1pZ/S+bwMi3gFPl++BqsM4c+nLtBxsY7X4XphkdzT8ybjYIpzPsU5twV+fh6AnjEm2V/HOX+Qc76Bc76htjazZFEltBqGSot4INJrxA+wSVOKBnPik+O2FeETg1Gid8uiiT7gaJkWtabw8F1LTeLkzGAeQWTehTGQFzDHuEL6OREn/wpTdDC1Y9UcLK0vwerGcnx0Y/hKYk1z8ryIZtM6AIg6YLeULUCTqTV0IllUK54QFlu2Rg1TGpiyIYhkgr1RZm1FqM5S8CQUObtSqvyEHLMmcdL9yoYyzCk3YVVjWdSJMZWyBFLWB4Yc2kpvwdqKq1Cqi87XajCuwfqyW0O5e3VlRjRXmrG5Wfw7WLXxX52FtSVorrQkPKlK/a0rzHps1TXjEqERFYjvPYo86SbrrDNH5DTFBhhGiYPnlojgTRtxmLlWWIglvBLNFWZsbq7BRfPDf6cKmEK5XNVWAxbGLmJc3gw0tkXdJTAdakuNWDanFHdsaUn8SyShpMdy88IqfGBNQ1xeUnD4OfLku6S+FNURJy6pz2+zcV3cfdcten/oOFBh0WPZnFIsrgsHZVLD4FIXFJHmVVlgNWqjhslj8+mWWd+Pj6+8SfL582VmScYOg65rrkNLjQVWo07suZcJzuaVhXtd6w3LZNt9a8TxLJGNLVVY1Zj4eMcYk8xT9GsMEAJBVDBHMthrEvuuXiw0wBpYtqSx3Cw79BfUZow8z0n3zFskErSTKTXpUV9qRI1MYPQha/gcF3sRGttTFiv4fY7tFZ2rL416PzQss5E1JUHXAl6OVl6HVbwm9P1cLdRElYRhYNCAqV5bMuNgijE2hwV+S8bYpsA+RzPdb7Zdu+BatJXeAh0zygw3hf8QkQfKCrMYMOgkcmeCJ6PbV9wOozZx7k1kV7BBY8Eiy+WYH5HoXq1fILt9c6UZGyJOOtqYD82y2npUlxhx8byFqJfInag116JaQa5W7FCAVsPwj9uWYEm92ANVpmsIJdCX6mqxpL5UMuenxXwxdsy9IenrBa2yXo/W0g+jLaIXLXgSWmS5HHNN69Faca2ik92KBrGtkdtuXRoboIiPLaixYscqcUg3GDQvMl8eODkr62mMTbBdGnivNEyraLKDhjHMrbLAoEl+YFlaX4KLF1ahJNBVHwxSSoy60H2xmjQlqIEFZUZd6CC6lFdCE3MYTHaAXcjDJyqzXvpEEykqUIu4Xw8NlvMqfLx0KRoN1qiufg0YNvA5uFZYgHvKEiXxc/g0JoxYFsOjLQEL9N4oHVprMrYm3yhCsCf5ovmVYIxhSXUj5pXNkyywKvURbawwYXFdCRgTcyY/vOhjEdtHf0Y+ufKTWFa1DJ++tAWbFlRJfuZXlVyHpkpz1Gttm3cV5pkuAgDUWqIvVCv0zbAadfjAitWhnrOWspa4/X5681q0NscH82IxTum/dqUp+qJl/Zw1aCg3Y+Ocjfje+/9VUZkPudxAIHEyfdBda+4K7Ee690mXQupFpV4M8gSNdJt00GDIKh/8pUqnie9H1Md8F6XeeQYx4As+FvsxqdKacJNZWW/NGplcpWCQNzcwjBZ7zKgtMaJZ5u/TwK2osRqwvlw+b/Fall5e4UJUxJWEmVtpVvRZySUlpREeB7AHwDLGWA9j7O8YY59jjH0usMktAI4yxg4BuB/AxzgvvGWGm0qa4oZ+Ik9ATOat2DZvG25YvANXzEtcq2lFRK5DY7n0HzXyAqFc1wgdM6BC3wSTtizqoFmmqw8NuwWvQhljWFRrRevccmg0DK1zy9E2twK3r7gdtZZa3L7idrTWSp8ktBotlpXG51HEkkpOjLzivXRxDT62aS7WlNyIReat0DLpg12VvgV1ljlYYZUfsjNpSkO/s4bpoGX60HBsbLBba1gSSmSVEjld95pFW0N1t1ZYr8F888XY3KT85Hn7xfMwp8wUdQWfaNgk9mQnNxQZafPC1BKjAcCqt4Ix8epLr9WIEyZ49ElTasZmMPCuNBtQX2rCPF6G5Vx8/ciWfqhkEVYI0u2KPYgGD+8bMAcbhej8wuDHpVqiJyz8bIYqrfzjjaWWqBmyQQstc3D7itvharwYgyUr4NKVx31WGspNUX+vBuNqrC29CR9eGg7uDSnWTQt+noJ/6lpLLYxaI9aUfFDR8+dXW0MJ4kZmxcLqWiy2vE+y9EWpQfzeV1gMCSeNzKuyRF3ImPV61BgWo630ZtSaoz8XNfr4k2qZsQybKm9Go3FN6DNcYzWgwhLd+8kYw1e2/GO4V6CpLDSEB4i98kGLKqJfp8JiEHsN4oZlo/+2kY8uNF+K1YGCqVKqAnmEkbX19Fp9qK3r51fGPWdRxWI0l4gXk6vKo4t/Rn5/GWO4etUclCy5HCPl8blTJqbDQN1H0VkdPas78uJ2a0SPidyMtcoEn30gPlcskl7DQn/3NRFJ/FLPMWvE1082+WgBKnCjsBitMUP1wWc1RMz8jczNuszcCLNGOrm+kptg1mvRZJIfvQh+LirMelSY9SiDESVcj0uFprg2JGLUadBcaYnrZMg3JbP5Ps45b+Cc6znnzZzzX3HOf8Y5/1ng8R9zzldxzls555s552/nvtmp0TJt3B+70bgWRr0mdICUm37LwPDR1ovxwVbpZOCguVUWfGn7Unxp+1LZLvdNC6rROjd8IGqbW4GPr7wRK63XRm232HIFqi1ie2r0i3FJ/TVYW7sWdWWm0NWCxaCD2aCFLvBhLjeWp5xY/b654kEheGBqqjSjxKjDHJkyCJsWVKGh3Iy1TXWK8hvM2vDvWqabg/mmTaHbK6zXoK1ErKtVFxj+iG1+bakRbQqKcwYTsmtLjVhfvz7Uk2DWlqNa34LmUvEAJ1cwb17pPCyrL0VtqRHlZoNETo4OW+bEJyIrtabkxtBMUZNeG5XDl64G4yoYIwoOgnO08F7xR4ntNYzhM2UrsTYQgC2qtWKbUfxMazUMq8oqsQSVMc8BrihtxMdM0ZMjLAYtyow6XFJVjwZEByYlBh0+UrcgamJE0ByZGWct1RasjcgDXFwrHeyU6cwoN5YDTAsec+iy6MQTzOaF1di2QhxardYvQINxFXTMgDJTOEhIllO0aYH00JSUZLNB5ZTp5qDWsCThNh9d9tGEj9dH1M6bYxWD2uD3MnJY8LOXiBcTq2uie/v0GmPCSSQAUG+ITjsoNelDs7MajCuxqnoV7mz9MO7ddDOubomYnAMGg06D61euiRt+C5YqkZopWaFvhkGihEpQia4O68tuxZb54jCWUZu8N5IxhoaSBny+9fOoMSY+jq9sLMMHl1+N5eVbQ79v0CJ9LaaN8ZOTLBE9a1oFgz0fL01tfcBgL4xOw1BbasSVlmbUaM0oi1i0ORgw6TUMd5WLf2erUYcqiyFugo5cbFUekTgul0NZHuiJn8tLscFSh0+XrUSF1giLQYvFvBLzArWs1ltrMFdfijaJWZuxDDoNWmqs0EGDq/h8VMOcsA2xCqUOXmG0Isfml4mVbRfWil9SzsXcpE018j0nVy+4Aia9BnWW7Cw1Ehz+iTyQb1lUjUsWS3/YgkESA0ONqUHRkFH085MHViurxAPpMsv7cffau2HSa7GmuTzpDKJ0ulMXW94XNTORMU1oiOOmdU24obUhNEMq2PbFdSXYEtGL85GlHxGfG/Eefnz5x/GFdV/AxgWVWFQrfxDeuKASK2SWoVlfvx5Wow6L60pQZiwL9GKGOtBx+8Xz8HcXb5Z8LgCsK/1Igt9cPOEmOunOLZ0b6l27akWSz5vfF3eX2T0EuKdRxcdh1mtlZ/uZNFpowFBm0qGu1ITllWWothpQYpDevsZqxBVVjTDE9OgyiAGs3BXvektdwqvrWA3lZliNOqxsKFNUJDe29++mxTeFAg+NhoWG+4wSEySULA8jNTsruORQjVl5McEllWKwtKFerGVUEpiaX10S3fvTaFwj+fxEr2XVW8VeysDnSsM0qCkxhAL1YE+YXsvQVF6Oe9vuxcLycB7N+rrkBWHXl90a1bbYWa0NxjXQarTYtngVtswVjyWxPYUbW2oxvyKcG2oxaNFsWgfOOSx6+dzSFdarcfX8DwEQe4sjbWipxG1r3o8PLN6Kj7ZelPT3CB4vIi+SIif2zDVdhAURdelW16xGrVE8Zxh1GpQHLsJaat8XuuK7vrQltP3oittCQYQeGvgMyvMuzRG9V4sDtbtiv1dzA/suMeigZQyNOis+WroEupjfq6HMhLpSI/SB46qV6bHEUh6aFBCkYQzry8TPSWQuZfB9sup0Eb39DBwcGhY+6t4oLMY6Hp0LyiAGWG1c/J6U6PW4wboAlpjh0uVC/IUKC7wPmxeGH2vUW6BhQC23YH6VBa0K8n/VVtTB1L1t9+JDiz+EbfO2AZAuOrasvhQVFj1ig+BPrL8cv7jx/w+TLr6XJnjASGW68aVzN2J1zWrJIZ7bN8/DDa3hA85nL1+A6xdej0bjWug1Ziyqiw8SrHrpwEFufDV4ANfEdGuL/2tCwVs2Xb1qjmTbY1kMOiyuE09821bU4eIF0pMTpNpYYawIPKZJ2DOn02hCv3ulPnFS6wcXfxDNpY0w6MTt68pMCafCB4PCZBMPIpl14eDq+oXXo7bMiIsXVEXNtNm6tCb6qss2BJzfA7htKDGEg6ZSWxfQfwhaxlBjNUStaRdMWq+yGqBhYjmM4BCyhjFY9FrZfprQQV1Bh6c5kJSrz+AqsdysR7U1ovdqxQ2SV9GfXP1RtM0Nf48aShoSnphjpTNrbJF5K7bPuxo3LJLOBby65dqomXkA8P5578fnWj+HTQ2bcEnjJagtNeLqNXPQXBnd1mS9Q1JuW34bPrP6M1H3fXJLS9TxZUVDKb5y+Sclnx/5fimd/VdnWIaNc8REdLlVF5JZ2ViGD7XODX1XpcrXAMD1q5di8zwxp8YUE9xqGINBZ8DHW98nWV0bEHvNpA4HFoMOa0s/FEpBMOk0qDUsRqV+btIeDvuccMB1aXU9GGNYYahCU00V1vJaXCnMgwk6CBd/Hu8X5uMTZclzqyIvfG6uXoDaEgPMBi02CQ2hUiHBXyPZcJ1OEz2kqmEMHypZiEZt/DF4kaEcNwqLURrRG1UGA1YK1biYhXvf6suMYBBTCxjCxa9TEdnupajCwsCIhVmvwQZhDm4tEXvqGFioh7qamfFh7RLUwwqTQZtWkn6+FX4LM9RYknitvUqrAZVWA25eNB+/e0dZuYZgz0kwONMn6GqeX23B8spV2NwQ7tkw6DTw+ITQl72u1IS6UhPuvdIS6h4HykMzeupKTTg7Hf1FSjUt7ZrVc3DMUYoFFXPRa+tNuG26xeWs2mq4henQ7ZWNZagbig5GTXoNXF5Bdh9rmyvQXHM1njjxBAxa+S/uhxZ/CGWGMsm2XrtmDl44MhB13y1Lb0GfrQ/2QS20TA8/Xkr4u9Rb69E2tw83L058QLxsYRM+0DIPxnOJh+7KzXrotAyXBMowBNvdXNoszjLSl0KjYVFB8kXzq7B+XBx645wDzglcZm6EoWI5lpuGMO00Y7LXC53ENdG1wkLMM5phNeiievcil7PQQYMSjQEXm+IrxJfodDHJsWK9HLlp1eUwoMyoQ4Uhiyu3z1mNhjJT6AKhwSi+F3Osc7C0ei7aL4ym3GOr1xihZYaY+8zwCs6Ez9MwLZZXL5Ydwq821WCu6SJMRhRLZYzFBSpWffQhd/PCarzTmXy+TmzQodfqoYceiUrSVlgMWFodvd4cC/Q0JLKxpQo+QQAmwvd9dONcjNs9cGISgNgTJrU8SzJ6rQbNVeFATm4G1lqJYeJUNBjXoFzfiAH3iajv1PaV9VhQY8XLxwcBiLXqLppfif3d47j94vB7tWVRNY4eDx/r3doS8Jjj0efLA712Zh0uXViDwSkXOkfsaKo0Y+FC+VqFALBBmIMR5oAf3tB9DAx3V60GB8fRsWls5y1wcR+8EFBrNcAY0xkQPIbIXw6JFurL8A6GQ7MQ5TAwLEYlTBE90c2VFlRojagyarDBVA+rTGJ+IgatBvWlRtjcPsAFXKJrQF25ERquQXWJEZVG6WOGOHHAn/LrqaXog6lESvVVmAic1y0KqrQGBeOYLY1bsKxqCYxa+Sn7jRVmzFOwVhaAhL0fSgWT8CLrRgX3/W+X/BMA4IH2BxLuY2P9Jhw7PSj7eHCmXV2ZEcPTQOvccpwbsWOx/v1x284rm4dGayPeDMSp6+ZVomvEHjoHSBXcLAt0k8fmVESeBJIFybHqLHWos9Thdc0pAEha02Vzw2Ysr1qOKlN8t/SapnIc6RVPKreu+CCshsQnlYW1Vly7uiHuNT/X+rnQyXZ1zWqUGErQUtaC53Fadl+L9OWw9h2Luu8qNhcWM8Pbzn4AYq6E3q5BjTlxuxhj+FSZdA9DZAJ4MJG2NGJG4GfKVsLmiD7Q6WK6d+eWWdCsKYFvKmEzEgqebD9dthLmhvDSH9vnb0eZZj7qTC0p7a9EVxl3fC7T1mNU6EoYvAPS5QcsmkoA7qRLQQV7uIP/f3LLfDCI3yUlwdS6OSug1ZzAoQuTUfc3Vpig0yo/bnx2zWdDP4fqczE9BO4Ofb/uav0MvIIXv3ozfEHSVGFGU4UZewN33djWhM0Nma3m0FQiJhqXaKN7oq9annioW+myJlZtNRaaL40KuE16LVY3lYeCKQDYurQWW5dGt2FBjTVqptqc+i9H77xiHjBxPuqu+jKTmMcWcxy/t2YNukcdmF9lCQ1RN6IEjbwEBxF9YVuiibnYgQEcHO8vm4u3nH1R2y7TV2DK5MF6o3RPftBqQzU+IHDJiy5A/Nv2TkRfTJRpDJgSPOJs40oL5krUrgtS0rNp0IZHDjSMQc+0AEOodFExmNXBlJbpYNVbYffa03o+gyY0+yZSsKK0XBe2xaAVe6ZSqNIR2QOzcc5GvN0rneev0TB8/opFkjPzghZXLEa1Ob4n5bblt2HEOYIyYxkA+WCqqcKMz1y2AHbfMI5NB5LhAwe4lhoLukYcoWHF6xeKM3PehBjEbJu3DaypBH9tF9/zT2yOX6ldp9HhrjV3QafRwe2T78WKVGoohdvvBgDZ2isA8A/blsAvcPzy6CsJ96dhmrhAyqKthMM/HjVrLjhccvOSmzHiGoluUyDXYtOCKsngLfIgzxjDgogilbFW16zGe/3tUflLwUCjSmfCcmNZKJgqMeqwWWZavXLhwNVq1GFLUw1edIp/s1ZjDUwaHWxJrhrvrRKv3E9rJ7BvdBBarUYsdFiaeo+Geeu/APrwyc2kM+F9C+SrVSfywbZGaM+FA+K5potQqZ8vGTgDwB2XtMgG3y3mzbh5SY1kOkCkZZViD+fSSnFII9FnVMqOlh04M3Em7v7FtaVw+BwxNcPk/+6Rveg3tDbi17u7sNSyDVO+gdAwullnhhlmAAMyexFPjrHBcyQln725pXOxpfqjGLdHf8djCw0HlRh1uHRxDZbPiT/mpsps0MLpUdbrwcCg15iig+kl24G9v0r+5Kb1KOk9gFV10jk/GsYgJBhlWFRrxYUxJ9YaK+OCKS3TYLMpcQ8YIP4t5AKp2lIjakuNUcFUNmbFmbLQMZBMKOleYaJ6rs3KYCrysxt5ELIYtHAk+IJds3oOqksM+O6bB8XnynzmFteVYHVTmWztn5svasaFMUfa62MtrVwqG0wBya/cdrTEV2AHgApTBSpMFfALyYcQy816OGzxb8DCmhLctE7+inVZlXhS+WsguJI7IMcOnSYb1fzEik+Efq4pMeLeKxdJ9vRpNSzthWmXW3fgwNSTAMQDFOccnHMwxlBvrUe9NXq47MrldWipscYtpaHY9CDgngaMpdgwZwM2jPcDA0dDD1sNOiyssYYC11tKFuMp2xmsNKQfSDEuLi8R+3YvMpbjdt0yVCTohZWzpLQCzX7xPdi0QGY49JIvAj17gfPvAs0bgUUxsyf1yt9DqYuUyM9CY7kZJREzOzVMF7fuZqRExVK1TI96a704hJGoTYxJzl4DwgnviyvkK2nnQrAMglFTilqJi8J0JEo/WFixEJ0TnTDqwp8hrUYPwB26ff3a+IrhQYyJqQNKzSkzoX/SJfnYnZe0wJ0g3SBSiUmHtgVVuGh+JfacDfQiltQBzRuA0gYg8r1bH5OjtvRqoPeA7L7vLF2Bh6aOx93PIH4HgykgSmgYw0qD9AVBJAPThmZkRi4lZdZrUFtqQm2pEY0w4rhnDGUJaoDJWdlQpmiiR6asRi0W1VpTXiEgV2ZlMBUUe8hNFkytiFk3S+50xRjDp9d+HMdGjqFjrCPu8TKTPmm1XjmxtVwy1VRpDlU4Dwr+XnPKEn+JE+WKZYtRJ+Y0LG8oBeCQ3S6uKncaV0YNVvkDeaxllu2Y8F2QDVrKzXrotZrQLM607HsImDgMNLQCgl/8FyNyenydzoJ7K9LrrQHEg6BuchG6HDaclVjbPJ1ASjFjqRhANV0knpwk6kyl4x+2LYHd48PJke7QfZF/M6lZlvm+0v34xfOwdeILWFZfEfdYg7UBTp98PpeS9S4Taao0o3c8cb5YtrTVtuGaFvkZ1ABCBYIjBXvZY49TyXxoXRPGHR7J4VmTXqt4uJBBrLEX39jt4Z8tVYBjDNClduFk0uhCF2aRNrRUJr2AjPW5YA5XAtdaW1CtNcGq0WFTSxW0GrFnzKjTYH61NTTsZoAJl5pTS6UIvsvJ1g5VymrUYdzhlS2RwMAUB5r5MCuDqeAyCqUmPUa84keAg4cOotko/VVnqcOgWX6oLF3Vpugr+0zXIfvohviZbRoNw8c3zUs6W7HGXIMGawP67f2w6sqAxBfnaWGMhfIZ3H7xd11Znfrsp2Q+s/ozimc0istkVEYVDoz091ctznCILUb/IeDN/5e9/ckoN+vR4iuFz8Ekg6lYwarxei2Dzy/2+M3VpxE8LonoKTWld5EhR6thKDPpMbeiUpwAMG9J1N9mmSU+z29lQ1lUTk2ulZn0KJsj3aNw05KbcvraH2xrxAOvn02+YY7dclGzbAV7k16Le963MOHQ0SWNl+DQ8CFsm7cNo/1doeel3SusMqmitdmwQB/uEAj20GsYi1onMVXBBPg1TWWwJljkOFRsRuGxsbnCjCqrIaUyK2qaGa3MsnlVFiytL8GCmhKs8lyPjtEOlOpLcd1aMzr6p5N2G16+YDn+cOJUqFBertSUGDBi8+T0NeTIFe6MtaVxC54+/TSW11ehipel1A2fKqPWiHvb7s3JvpPlvES1Q6fFZSvqsLC2RPLAkCiXRImakkDhUCew2liNHp8to/2loyQwUyzRYa/UqMfa5nJY9FrYPX6s1ZWlNdsHzclrBaWqqcIMjTvc+jkl1fjhB/4BpXqx8v6lTZdiepBLLiSebJ27oLXN5Ql7snNBw9JbRFyOUaeFVsMUDe2nItWLPKNegzKT/O+VbGp8W10b2uraAAAlOvke7JxZcSPQvRswpx+U5Jpc2kmmrrHOxwnPOOoNloSBUplJhwaDKWrFikQYYzMmkAJmWTDVVGHG8b4pVJcYQlcslaZKXNIk1g8pNekVVT++cVUrPrBiVU5qM0X6yIa5mHSKU2cz7YHKleBMxvqSGlw1L7fBZSHJdOq2LM7xycVuoGYp8Aaw1dyU9Cm58D5tM6xWjTjrJoHgwU48UBfG4WR9/Xo4vA5c3hy9dEhZRDHF1tpWvKY5hQqLOOQuVagzmWCl9XzatKAKn25tUbRtLnpwg+ROmsFjYuTkihpzDYYcQzAlWUZlRitrANbcEr696CogzYlNudDaXJ52jm4yZRoDNkmUV4lUpTVhrbEGLYbEdQfNBi0sBi1aapLXJyw0hXH0y5NVjWWYV21JeAWkVK4DKSB6XH9+2XzsH9wfWhqlUFSaKvHBxR9MWil+cV1J1sbS1fKl7UvxVu+VaLSmlkuQkr4DwKmXgOUfyN1rKGBmOixMZ8hOxkZTPaYFb/SdczeJibxZZtQasW3+tqTb3fO+hdBpNFk5yVgNWiytL4XHkb33TApjTFHP2d1r745aNy9f2uraIHAhaumay5ouw/Kq5agwVeS9PaqZd3HKTxHz33Jz0ax20cuPKVxCR8OY5FJUM8GsCqYYY1kJpNQwxzonaogr08TTbArWi0nkhtYcBiB5dFlT4gWvM+YOFD21jyTebobZKHXlWjEPqEm8Pl0uJTrBfO59ixJOWY/FGMN1axvQ3V4Yx5dULvYayk3oGXfG9TZ97n2LxOKdKdBr9Li4ITqQ0Gl0sikRV6+sx57O0ejK9xm6obWhsI/zy64FOh9VuxVpW9lQlnLR6NlgVgVT+RY8gMwrTby4JiFxLryndgtyr4APyOY0hv1mqhvbGjHh8MaVDBHfg9y+D3VlJnywLbtD2cGlqQpWYxuA9IKp2HUy1TDTRxhyhYKpHKq11OKetfdAq1H/C1Bobt88D15/4Z5M1aNublyw0Kw1R8mq6dCmuGRMMct2aRRATEKvL6NjVKy6xTswp+8I1usqMtuRqUysk9Z0EZDOZ9lcCTjHcYWlWVxnT2cEfO7kzyN5VThHzCJFgZS0QqoPUlDGu1R9+VKTHm1zK2Sr92eVuSLpJh8pXQJLGgsTF6NczWQl0m5Z82lglYBE6x8qsuULcXfNq7JgxBYTECUpGRAqyGksTS+YoiAsp+iSb4a6puUatJS1pDSln4SVG8thTrHAXl5M9SXfJsfMem3uZo9edIf4b/PnFSWf12rN6ZVbmCWCid75KKA7K2k0QA4uiJu2fxGtOz4Vfefl/yK9cbK6TFqFFxvLr1O23Uxlyl1ZHiXokm+GaihpQEOJ8ordJNrtK25XuwmAIAA8UKeI5eagXXDKimMigpxLmy7N7WzPGBvqN2BD/YbsFoklsqxGbXYKapbUif+OPxd9/6qbxGNC5P3lzWJ1dTn1a4D5W4A9EQvYa3WAP6aKcpKFvGe8MnXKyARRMEWIWk69KFY3B8Qg46I71G1PIVq6A7DWqt0KxVprW/P6ehRE5dfdW7OfsxalLrB+o+AHOt8APHagfjXQfzi8TVmjONt3/iVAd2CN1tiVA1bcCBx9Wv516lcBg8ey2vTZjoIpQvKJc+DQE+IiqcFAChCH97z5WSMt7ypb0s8Fa8p+dXRCCsaGz2DdW/+FA66hqEKnaFgrBjw+N+CIKZOy5GqgaQMw1Su/3zzUQSw4WV6KKlWUM0VIPnEuBhZH/xj/2Fs/yHdr8qNGWcE+Qmad0npsNjfi3oq18b2MGi1giF/uCFodUJqk+n6pwtUoFmxVtl1Q28dT2z6fUv1dsoyCKUJIbtFQFCHps9al1tM0bzNgsAJbFMz+TJa0rY+ZpFMgPV5zyiSKvKqcc0rBFCG5duA3QPcetVtBSMao8rUK9CZgq8xMPymLrszea6/7ZOrPscSsb3vlV7PTloAtC6uxoKYkq/vMBgqmCMklrwuY7BWTSQkhJFuCEzPKZdZrNZaJOYexvUvJRJYsiZ25qCSYXnp1aq9XJCiYIiSX9v1K+v5iv8KvnK92CwgpHlJD5RVzgUu+CMxZHf9Y8DlLdySv57bmI0BZg8xwfMR9ckFbLEMWlvNZsl36fmtN5vvOEQqmCMkl11T07dmSPzRvi9otIKT4GRUELguvACzV8jXeahYDF90p/pOy7Frxf6U9XNZqoHmjsm3lyF1sFvDSUoWRTUZIMfJ7o2+ffV3ZwY8QQlK16iYxaIpV1ghcfHf0fcECnlILJ0dd8PHUhwkBwBjIaVLakzRvs/i6yXJLmy4CTr4g/rzlXsA5DrQ/nnr7cqBwwzxCZrLBY8DO70Xfd/4d4PTL6rRHTdWL1W4BIcWvbjlQorDA7aIrgZbLgNrl4fuCAZa5Uv55BmtqbapWWOR00ZXJjxNzNwFz1oRvm8rFGnY6iZl9KqCeKUJyYfSs2i1QV+TSDiqvmUUIiWCpFgOQBZfH3F8l5k9VzAOGTkQ8wKK3AcQe9k13AY5RYP8j8a8RXDNWnyD4MlgAjyNxW5s3AD37xJ8Xbwvs0yzeH7Tx78SK8CqjYIqQbBk+KdZhUXo1VizMFWKOVLD7HQB0Rb4OGCEz0UV3Jq4UXiPROxQsANoQWCpp091iIKQzikOI1hoxmFn3iXDPVUOrWPepbpX8a235e+DN74Rva6V6mJg4nBeZK3XZP0VvYipXvfo5QMEUIdkTXAvryq8C7ml125JPhpLoPItgTZwV1wOmClWaRMiMUbUQGD2DqB4gue0a12X2WmUNyrarWwEMdYhDfwZrdK0oq0ReFiD2GAV7rhiLHpKTElt2oaQ23DMWudRWAQRKSlAwRUi2TfYAE+fVbkX+GGMK6Gn14v+RB9ONfyeuM0YIibbqQ+LFV2xwEav11rw0BwCw/LpwJXWllJR7CQZpcoI9Y8HcL7kZiAWIgilCsu3Ab9VuQX4t3g6MJckRS1brhpDZSquPrxquNq1e+fp+qVj1IaC0ATj7mnh70VXS9asqW4AtX5hR+ZYUTBFCMmMsASqoSCchRIF5F4v/gj/LmUGBFEClEQhJbOICDU8pEZyeXCDTlAkhJJ8omCJEjtcJHHwUOP6n+McEARg+Fc4TGDiS37YVgk13iTN7yKyxrGoZ9Bo9llYuVbsppFAYAjmTGokCoLMIDfMRIkfwif/bBuMfO78HOLcTWH0zULtUXMx4tingdbJIbpQby3HX2rvUbgYpJCs/KOZMFlreV55RzxQh6XAH1tzz2NRtR6GZLWsPEkJEBkvyMgiAsm1mMOqZIiQZqSm/fe3BBwHHGNB3MJ8tKjw6k5hMWi+zgj0hZPba+q9FPwxIPVOESBGEcK0ojz18P+dA55vh2x47cPjJ/LZNDcmuKhkTpzlTCQRCSCytruh7ralnihAp3W8BXbvDt12T4nIHY51A99vh+yO3KWaxQVJpvTrtIISQAkTBFCGA2BPVtQto3ijmADhGox/f84D4f6IV1WeTDZ9RuwWEEFIwkg7zMcYeYowNMcaOyjzOGGP3M8bOMMYOM8bWZ7+ZhORYsMfp9N/E23JLIzjH89emQkWz+AghJIqSnKmHAVyT4PFrASwJ/LsbwE8zbxYhecYF8X/Br247ClHbbeGfmzcAGz+rXlsIIaQAJQ2mOOc7AYwl2OSDAH7DRe8AqGCMKVyampACwwXAbQOgYNHO2WDZNUDl/PDixTpj0SeSEkJIqrKRM9UE4ELE7Z7Aff1Z2Dch2eO2AXpL4tXZR88Cb/8IqFqQv3YVstoV4v9zWsVldZo2qNseQggpQHktjcAYu5sxto8xtm94eDifL01mO59bDJLOvKxseyrGGU2jAeZtFqc4E0IIiZKNYKoXwNyI282B++Jwzh/knG/gnG+ora3NwksTolBwseKRU8q2t1GwD4CG9AghRIFsBFPPAfhUYFbfZgCTnHMa4iMzA+figsWzPUfq4nuAtR8N39YZ1GsLIYTMMEn77BljjwO4AkANY6wHwNcA6AGAc/4zAM8D+ACAMwAcAD6dq8YSkjG3DXj92+KMtJJaoO8AcOoloGaJ2i3LL4MV8DrCJSAsVdELlcqVhiCEEBInaTDFOf94ksc5gC9krUWE5MPQcaDkfYB7WrztmlS3Pfl2yd8Db98PeBxqt4QQQmY8WpuPFAfO5XtTxs4BwydknhjICbIN5aRZBU2qmnvbbeKCxZZq8TajQwQhhCRDU3NIcTi/R1yA+PL/I9ZCinToifjtx84CC98HTPbkp32FaOWHgD0/iZ6hVzlf/OdxANP94fpShBBCZNFlJykOfe3i/16nsu2nB8UlZCbO56xJBaskMJNWbxH/L22M38ZgAaoX5a9NhBAyg1HPFCkyKSROH3oyd80oVBpdeDkYrQ646I7wkB4hhJC0UM8UKS49+8VeJxLt8v8jfX9ZY/ywKCGEkJRQMEWKS89eYN9Darei8GgCuU/zL1G3HYQQUoRomI8UB7lK3f2H8tuOQrPoSrHnSaMBrvyq2q0hhJCiRMEUKW4nnle7BepqaAX0ZrVbQQghRY2CKTJz+H1iD5RGG76987vAihvCa+8Fvf7t/LevUJTOAaYHxJ91JnXbQgghswDlTJGZY+d3gQO/Cd/22MT/z72pvCRCsVn/yfj7ShvCP9NCxYQQknMUTJGZZXoAGOoQf/Z71G1LIShvVrsFhBAy69EwH5l5jj0r5gG1Py7edk2p2pyCwxiw/lNIqeYWIYSQtFHPFCkMfh8welb+8fPvRt8OBlJEWnkT9VoRQkieUDBFCsOZV4DDvw8nTgPiwsVjneL6eWdfU69thBBCSAI0zEcKg3NM/D8ykbzvAHDqJXXaMxPQ2nmEEFIQqGeKqMPrFIfqEuU7Ocfz156ZprwJWHqN+POc1eL/Kz8o/t+0QZ02EULILEU9U0QdA0eB8S7gwruAsQwY7455/AhwYa8qTZsR1n0yXPZg2XXA4veLSfn1K9VtFyGEzEIUTBF1DR4FvK7w7aHjwMBhYPC4em1Sm6UKcIwBpjL5nrvI+lEaDaChKueEEKIWGuYj+fX6t6OTySMDKQDon+WBFABUzBf/n7c5fF8weCprAErr898mQgghsqhniuSOIABeO2Asjb7//LvikickXsU8YP4WwDEC1K0MJ+DrTGKe2ZqPAAarum0khBAShXqmSO6cexN4+8eA2xb/WGQJBBKBA6ZyYN0nohcopmVhCCGkYFEwRbLH5wE63xR7pABgLFCE0+tQr00zjUYvfX/zJvF/rTF/bSGEEKIIDfOR7NnzIzGg8jqBZdeE7+dcrG7evVu9ts0UFfOk75+/RfxHCCGk4FDPFFFm4jzg98bfP3JGnHkGiIEUANiHorcZPS1WN5/szW0bZ7J5F6vdAkIIIWmiYIok55oEDj4GnHw+/rEjfwDe/Tkg+CPuDOT3BGfqnduV8yYWLYNF7RYQQghJgoKp2czvBQ78JnkyuM8t/m8bkt9m+ET458keoHc/4J7OvI3FasUN0bdrl4v/xy4Rs+keYMsX8tMmQgghaaFgajabHhCH3k6/nPm+XJPRt2lNPWmmcvH/8qbwfZvuBsoagSu/CpTURW+vN4nFOwkhhBQsSkAnALj4n8cBeGzxJ3Qp9hHgzKvh24IvN00rJiW1QNsnAJ8TMFWE77dWq9YkQgghmaNgajaLrV20/9fi8iVXflUsrFnWCFTMFWfjBb3zU8A5Ic46mzgfvr+LZuoltfGz4v96k/j/6g9HB1WEEEJmJAqmSDhYCq4DN3EhesmX4DCTfSTiOUJ+2jbTXf5/gF3/K/1Y7bL8toUQQkhOUDA10/W1AydfEGsQLbwitecGg6ipvuj7Dz4afVtqsd3JntRea7bY+i9iz519CLDUADoj0HorQjMcCSGEFB1KQJ8pfO7onqGgky+I/3fvkX+uxyEW0hT8wFinuMSLfTQ6aArWiCKZ0erF3Kj6VeEFiasWAlUL1G0XIYSQnKGeqZniyB/E4bcrv5r6c3f/MP6+9x6Mvh05rEcIIYQQxahnaqaYuKBsu13/Axx6Mnw7Mnk8kbHO1NtECCGEEAqmiorgF4frgoGR3we88d/KnhtbJ4ooozer3QJCCCEqo2BqJhs4Gn37zf8X/tk1CXTRMi45x5g49FqzRO2WEEIIUQnlTEXyeQCmAbQF9rb0Hw7/3PWWuNbdpf8IdPxZ/jl7Hsh9u2aDttvEgOngY9KPL7pK/H/1zflrEyGEkIIy+3qmPI6YRXkj7PofYN9D2XutgaP/X3v3H2RlVcdx/P3du7usu/xYWFbAXWBXoQKJX64IQoKYDZVpmeNglloWOf1QZ7TU/mlqprHGmcrGpsax0prKjH5Iv7NktLFUVvEnyIj4A5D4jYAkuPDtj/Ncn7u7F1x4du9zee7nNbPzPOec59579h64+73nnOeccBddEge74Lk/xen8psHFJpVL/zODoS2984e1huOoKfF1PRdBFRGRilB5wdRDt8Kqe+P0rvXw/D9g50shvW9735/rjd2w/GbYtrZ7/q71sO6B0HO06t4wCfxgF2xdU3xC+MEuWLWs+3pO+/eGVch1l136qnKhJ7DQ1Iuh41MKoEREpAKG+dxh/SMwZlo8WXjrmrg8v9bShhVHfp4Dr4dgZ+iYOO+16A67TU/AyAm9nxNgx4vw9FLYHgVckz4Eo6PejF3rw7VDRsGezaFebXNDICalU7g1jlmPgDcKlmrr4dQPw7O/D+nqQfE6UiIiUtGy3zO180V4YTk8dQ+8+caxP0/nT+CxO8PK3688HPJWLQtHPxSGD7ethd2bej92e0HP1b6ChTe3rA7HPZvD8VCXAqlSm34J1DbE6TOuCvPmGsdCw0gYXBAwnTip9PUTEZGy16eeKTNbBNwK5IA73P2bPcqvAG4BNkZZt7n7Hf1Yz2NzYF98y//uV+Hxu47+OR64BcadAfv3hPTjPwvHwt6L7S/0fQ7Ty/858mrlUlrD22BoaxzY1g2DBTcc/vqpF8MJw0tSNREROT68bTBlZjng+8C5wAZghZktc/dVPS79lbt/YQDqeOx6Bjj7dsTnD/8QZl9V/HHLbw7Hs28KvUUvPdT7mlcUEB03Bp8Ie7fE6Vx1mKdWmM57uzlQTaf0b91EROS415dhvlnAWndf5+4HgLuBCwa2WiXwv51x0HQsuvb3X12k/1Xl4vP6pu5ldph/9oObB64+IiKSWX0JplqAwr1MNkR5PX3UzJ4ys6VmNrZfape2JMGWpGvO5+PzltO6l/VM56+fcdnA1klERDKpvyag/wFoc/epwH1A0clJZrbEzDrNrHPr1q399NIiRdQ2wJzPwbTFYTL52NND/tk3Qfv83tfXDYXq2tLWUUREMqEvwdRGoLCnqZV4ojkA7r7d3fPjXncARb76g7vf7u4d7t7R3KwhFRkA4+fEQ3x1w2BEezif8N4QSIHWhhIRkX7Vl2BqBTDRzNrNrBZYDCwrvMDMChZf4nxgdf9VUaSHhpGHLzt5Acz/csmqIiIi8rbBlLt3AV8A/kYIku5x92fN7Otmdn502dVm9qyZPQlcDVwxUBXuM00QrxzvuS7tGoiISAUzL7a9SQl0dHR4Z2fnwL3AqythzV8H7vmltOqb4q1+GkbC69Hip/OuDSvb73417LnY2Md7H17fFtYK0x18IiLSB2b2mLt3FCvL/nYycnyprYea+jhYmv6xEEhV14X9E5/+dcg/84thS5dcTUgPPenoXudIQ4UiIiJHIcPbyWiS8XHhHe+Lz0+/Ek7/NOQK7qobPh4GDQ4La+ZXHreqKK+mtHUVEREpQj1Tkq6W02B4Oxw8EFYqB5hyIfz7Nph0Xvdr60fA+DNhzNTS11NEROQwFExJOprfCft3h/P6Ed3LBg2JlzEoZAYnF1kjSkREJEXZDaa0llD5OXk+rHsgnE+5MN26iIiI9JMMz5mS1OT3vjvjs3HeWV+CcXPSqY+IiMgAym7PVE5bg/QbqwI/1PfrF9wQn4+aDENbwwRyKD58JyIichzLbs/UoKFp1yAb5t8Ac6/pnd8wMixbUKi2ofd1ky+A1qK7C4mIiGRCdnumNGcqGbOwsnhVFVTVhR6lg2/Cgb3xEgW7Xun+mNmfO7oeLBERkQzIcDCV3U63ATfqVJh8fu/8XE0cSAEMKdiSccy0eChPRESkgmT4r596pjj1I2HtJnd49Pbe5UPHwGlXwI4X4Y3XYM1fQv6I9r49f64m9Fjt3dp7eQMREZEKkd1gqpJWx570IVj9h3DeMBLesShstZJfBBNgxqWw8udh+C6/H+PMy8MxHzw1vwv2bYNhrUf3+trfTkREKlh2g6njsackVxPmJR2tEe1QVR0mhA9rKX5N47iwVEGuFg51hWPPeWU1dUcfSImIiFQ4TSwqJ2ddD2Nndc8r3Lsur3De0ulXhrvo5n/p8IFUXv2IsKfdCY1hQ2ERERFJTMFUfxveBhOLBEB5sz4DMz8RztvPgvqm8LPgxpA34Rzo+FTYgw5g9DSYd22cBmibC9XROlo1CopERETSlN1hvsMZPQX++0zxssZxMG0xPHl379v+h48Pw2i71sMzS+HNN+Kywc0w84rud7M9//fir9EwMhzzi1e2ze19zZBR4Se/D12uOg6aWmbC6HfDC/cDB470m4qIiEgJVE4wNWsJ7N4IY6aGCdubnoTn/hyXz74qHj6bcSksvzmcTzgHsPA4gMaxMGoKbOgMAc+ezb0DqZ7qhkHHJ+OJ38ei5bQwp2p0VI8TT4UNK7TSu4iISMqyHUzNuBT274GmiWFYrKEpLhszLQQkD95S/LHzb4D9u8P8op7qorzxc6H5ncUfP2sJvLoyBDxNp0DNCUl+k7B45knT4/QpC6FtXjzcJyIiIqnIdjDVOO7I5bnq0GO0oTMOkPKqqooHUgCtHWG4bnjb4Z+7oQna3xMCsvFFhvKSyq9MLiIiIqnKdjDVF0NGw6Tzju4xZn1b2LJ6EEy58NjqJSIiIscF3c0nIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCSiYEhEREUlAwZSIiIhIAgqmRERERBJQMCUiIiKSgIIpERERkQQUTImIiIgkoGBKREREJAEFUyIiIiIJKJgSERERSUDBlIiIiEgCCqZEREREElAwJSIiIpKAgikRERGRBMzd03lhs63AyyV4qZHAthK8jvSd2qT8qE3Kk9ql/KhNylMp2mW8uzcXK0gtmCoVM+t094606yExtUn5UZuUJ7VL+VGblKe020XDfCIiIiIJKJgSERERSaASgqnb066A9KI2KT9qk/Kkdik/apPylGq7ZH7OlIiIiMhAqoSeKREREZEBk9lgyswWmdkaM1trZjemXZ9KYmY/NrMtZvZMQd4IM7vPzJ6PjsOjfDOz70Xt9JSZzUyv5tllZmPNbLmZrTKzZ83smihf7ZISM6szs0fN7MmoTb4W5beb2SPRe/8rM6uN8gdF6bVReVuqv0CGmVnOzFaa2R+jtNokZWb2kpk9bWZPmFlnlFc2n1+ZDKbMLAd8H3g/MBm4xMwmp1urinInsKhH3o3AP919IvDPKA2hjSZGP0uAH5SojpWmC7jO3ScDs4HPR/8n1C7p2Q8sdPdpwHRgkZnNBr4FfMfdJwA7gSuj668Edkb534muk4FxDbC6IK02KQ9nu/v0giUQyubzK5PBFDALWOvu69z9AHA3cEHKdaoY7v4gsKNH9gXAXdH5XcCHC/J/6sHDQKOZjSlJRSuIu29y98ej8z2EPxQtqF1SE723e6NkTfTjwEJgaZTfs03ybbUUOMfMrDS1rRxm1gp8ELgjShtqk3JVNp9fWQ2mWoD1BekNUZ6kZ5S7b4rO/wuMis7VViUWDUXMAB5B7ZKqaDjpCWALcB/wArDL3buiSwrf97faJCp/DWgqaYUrw3eBLwOHonQTapNy4MDfzewxM1sS5ZXN51f1QD65SDHu7mam20hTYGaDgd8A17r77sIv0WqX0nP3g8B0M2sEfge8K90aVTYzOw/Y4u6PmdmClKsj3c1z941mdiJwn5k9V1iY9udXVnumNgJjC9KtUZ6kZ3O+mzU6bony1VYlYmY1hEDq5+7+2yhb7VIG3H0XsByYQxiSyH/RLXzf32qTqHwYsL20Nc28ucD5ZvYSYXrIQuBW1Capc/eN0XEL4YvHLMro8yurwdQKYGJ0B0YtsBhYlnKdKt0y4PLo/HLg3oL8y6K7L2YDrxV020o/ieZx/AhY7e7fLihSu6TEzJqjHinM7ATgXMJctuXARdFlPdsk31YXAfe7FgrsV+5+k7u3unsb4e/G/e5+KWqTVJlZg5kNyZ8D7wOeoYw+vzK7aKeZfYAw9p0Dfuzu30i3RpXDzH4JLCDs4r0Z+Crwe+AeYBzwMnCxu++I/sjfRrj7bx/wSXfvTKHamWZm84B/AU8TzwX5CmHelNolBWY2lTBpNkf4YnuPu3/dzE4m9IqMAFYCH3f3/WZWB/yMMN9tB7DY3delU/vsi4b5rnf389Qm6Yre/99FyWrgF+7+DTNrokw+vzIbTImIiIiUQlaH+URERERKQsGUiIiISAIKpkREREQSUDAlIiIikoCCKREREZEEFEyJiIiIJKBgSkRERCQBBVMiIiIiCfwfXPm1Oki1hqUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACmTUlEQVR4nOzdd3xc1Zk//s+Z3tSLJUuyJcu9yAUbMMUBDAYCIQUSSCGQ3SSQsiWbzW6yr/0Skk02m1+yS0KyhLCBkELonQABExtjY+Mq9ybLkqzeNb3e8/vjTp87M3eaZjR63q8XWDNz587RaObe557znOcwzjkIIYQQQkh6FPluACGEEELITEbBFCGEEEJIBiiYIoQQQgjJAAVThBBCCCEZoGCKEEIIISQDFEwRQgghhGSAgilCSFoYYx9njF1gjFkZY2un+bWvYoz1ht0+zhi7SuZzuxhj1+aqbYSQ2YeCKUKKhD9IcPiDmyHG2OOMMZP/se2MMSdjzMIYMzPGDjDGvs0Y04Y9v5wx9hhjbNC/3RnG2LcTvORPAXydc27inB/K9e+XCOd8Bed8e6b7iQ7SZgrG2GLG2MuMsRHG2Dhj7C+MsSX5bhchswUFU4QUl49wzk0A1gFYD+Dfwx77Oue8BEA9gG8CuAPA64wx5n/8AQAmAMsAlAG4BUBHgteaD+C41AOMMVUmv8RskOX3qBzAKwCWAJgDYC+Al7O4f0JIAhRMEVKEOOd9AN4AsFLiMZu/F+cWABsB3OR/aAOAP3HOJzjnAuf8FOf8uejnM8a0jDErACWAw4yxc/77uxhj/8oYOwLAxhhTMcZu8Q/BTfp7x5aF7aeLMfYtxtgRxpiNMfYoY2wOY+wNf8/YVsZYhZzfN3zojjGmZ4z9jjE2wRg7yRj7F4nepjX+151ijD3NGNMxxoz+92yuv3fPyhibK/FaesbYfzPGuv3P3+m/L6ZXK6pd9zPGnmOM/ZExZgbwb/6exMqw7dcyxkYZY2r/7b/x/w4T/t6m+VK/P+d8L+f8Uc75OOfcAzEwXsIYq5Lz/hFCMkPBFCFFiDHWBODDAOIOv3HOewDsB3Cl/649AH7IGPsCY2xRgue5/L1fALCac94a9vCnIQZn5QAWAHgSwD8CqAHwOoBXGWOasO1vBXAdgMUAPgIxmPk3//YKAH8v49eN9l0Azf7Xvw7A5yS2+RSAGwC0AGgDcDfn3AbgRgD9/qFLE+e8X+K5PwVwEYDLAFQC+BcAgsy2fRTAcxDfn58A2A3xPQj4DIDnOOcexthHIb4Xn4D4frwH8f2UYxOAQc75mMztCSEZoGCKkOLyEmNsEsBOAO8C+M8k2/dDDAgA4O8APAHg6wBOMMY6GGM3pvj6D3LOL3DOHQBuB/Bnzvnb/t6SnwLQQwxCAn7BOR/y96S9B+ADzvkhzrkTwIsA0kls/xSA//T3sPUCeDBOO/s55+MAXgWwRs6OGWMKAH8D4B84532ccx/n/H3OuUtm23Zzzl/y9/w5APwJYgAK/3DrHf77AOBeAD/inJ/knHsh/i3XxOudCmtjI4D/BfBPMttECMkQBVOEFJePcc7LOefzOedf9Z+wE2kAMA4AnHMH5/w/OecXAagC8AyAZ8OHoWS4EPbzXADdgRucc8H/eEPYNkNhPzskbpuQurlR7bggsc1g2M/2FF6nGoAOwLk02iXVlucBbGSM1UPsTRIgBpWAmJP2c/8Q6STEvxND5PsXgTFWA+AtAA9xzuX2YhFCMkTBFCGzlH8o8CKETt5BnHMzxJ4QI8ShMLl42M/9EAOCwOsxAE0A+tJpbwoGADSG3W5K4bk8yeOjAJwAWiUeswEwBG4wxpQQh+fi7p9zPgEx+Lkd4hDfU5zzwDYXANzjD44D/+k55+9LNcyfX/YWgFc45z9M8nsQQrKIgilCZhnGmIEx9iGIs732QsxlAmPs/zHGNjDGNIwxHYB/ADAJ4HSaL/UMgJsYY5v9CdXfBOACIBkMZNEzAL7DGKtgjDVAHLaUawhAFWOsTOpBf+/aYwD+hzE2lzGmZIxtZGKJiTMAdIyxm/y/778D0ErtJ8qfAHwewG0IDfEBwMP+32MFADDGyhhjn5TaAWOsFMBfAOzinCcqZ0EIyQEKpgiZPX7JGLNADBh+BnGI6QZ/gACIvSa/hdj70g8xefsmzrk1nRfjnJ+GmPz9C/8+PwKxdIM7k19Chu8D6AVwHsBWiAnfsnKaOOenICZ5d/qH12Jm8wH4ZwBHAeyDOPT2YwAKzvkUgK8C+A3E3jebvx3JvAJgEcSE8cNhbXnRv++n/LP/jkFMkJfycYizMb8QNhPRyhibJ+P1CSEZYqEeZUIIKT6Msa8AuINz/qF8t4UQUpyoZ4oQUlQYY/WMscsZYwomVgH/JsSZgYQQkhNUpZgQUmw0AH4NMXF+EsBTAB7KZ4MIIcWNhvkIIYQQQjJAw3yEEEIIIRmgYIoQQgghJAN5y5mqrq7mzc3N+Xp5QgghhBDZDhw4MMo5jy7ECyCPwVRzczP279+fr5cnhBBCCJGNMdYd7zEa5iOEEEIIyQAFU4QQQgghGaBgihBCCCEkA1S0kxBCyKzm8XjQ29sLp9OZ76aQAqDT6dDY2Ai1Wi37ORRMEUIImdV6e3tRUlKC5uZmMMby3RySR5xzjI2Nobe3Fy0tLbKfR8N8hBBCZjWn04mqqioKpAgYY6iqqkq5l5KCKUIIIbMeBVIkIJ3PAgVThBBCSJ4xxvDNb34zePunP/0p7r///rT319zcjNHR0YzbtX37dtx8880x97e3t+P1118P3n7llVfwX//1Xxm/3kxFwRQhhBCSZ1qtFi+88EJWAqDpEB1M3XLLLfj2t7+dxxblFwVThBBCSJ6pVCp8+ctfxgMPPBDzWFdXF6655hq0tbVh8+bN6OnpidlmbGwMW7ZswYoVK/DFL34RnPPgY3/84x9x8cUXY82aNbjnnnvg8/kAAF/5ylewfv16rFixAt/97neD27/55ptYunQp1q1bhxdeeCHmtdxuN+677z48/fTTWLNmDZ5++mk8/vjj+PrXvw4AuPvuu/GVr3wFl156KRYsWIDt27fjb/7mb7Bs2TLcfffdwf289dZb2LhxI9atW4dPfvKTsFqtab9/+Uaz+QghhBC/7aeHMWJxZXWfNSVaXLWkNul2X/va19DW1oZ/+Zd/ibj/7/7u73DXXXfhrrvuwmOPPYa///u/x0svvRSxzfe+9z1cccUVuO+++/DnP/8Zjz76KADg5MmTePrpp7Fr1y6o1Wp89atfxRNPPIHPf/7z+OEPf4jKykr4fD5s3rwZR44cweLFi/GlL30Jf/3rX7Fw4ULcfvvtMe3UaDT4/ve/j/379+OXv/wlAODxxx+P2GZiYgK7d+/GK6+8gltuuQW7du3Cb37zG2zYsAHt7e1obGzED37wA2zduhVGoxE//vGP8T//8z+47777UnhnCwcFU4QQQkgBKC0txec//3k8+OCD0Ov1wft3794d7CG68847Y4ItANixY0dwm5tuugkVFRUAgHfeeQcHDhzAhg0bAAAOhwO1tWJg98wzz+CRRx6B1+vFwMAATpw4AUEQ0NLSgkWLFgEAPve5z+GRRx5J+Xf5yEc+AsYYVq1ahTlz5mDVqlUAgBUrVqCrqwu9vb04ceIELr/8cgBib9fGjRtTfp1CQcEUIYQQ4ienBymX/vEf/xHr1q3DF77whazsj3OOu+66Cz/60Y8i7j9//jx++tOfYt++faioqMDdd9+d1aKlWq0WAKBQKII/B257vV4olUpcd911ePLJJ7P2mvlEOVOEEEJIgaisrMSnPvWp4DAdAFx22WV46qmnAABPPPEErrzyypjnbdq0CX/6058AAG+88QYmJiYAAJs3b8Zzzz2H4eFhAMD4+Di6u7thNpthNBpRVlaGoaEhvPHGGwCApUuXoqurC+fOnQOAuMFOSUkJLBZL2r/npZdeil27dqGjowMAYLPZcObMmbT3l28UTBFCCCEF5Jvf/GbErL5f/OIX+O1vf4u2tjb84Q9/wM9//vOY53z3u9/Fjh07sGLFCrzwwguYN28eAGD58uX4wQ9+gC1btqCtrQ3XXXcdBgYGsHr1aqxduxZLly7FZz7zmeBwm06nwyOPPIKbbroJ69atCw4JRrv66qtx4sSJYAJ6qmpqavD444/j05/+NNra2rBx40acOnUq5f0UChae8T+d1q9fz/fv35+X1yaEEEICTp48iWXLluW7GaSASH0mGGMHOOfrpbannilCCCGEkAxQMEUIIcXKPg5s+xEwdi7fLSGkqFEwRQghxcrcJ/47dDy/7SCkyFEwRQghhBCSAQqmCCGEEEIyQMEUIYQQQkgGKJgihBBC8kypVGLNmjVYsWIFVq9ejf/+7/+GIAhZ2ff999+Pn/70pzH3v/TSSzhx4kTw9n333YetW7dm5TXlCtSZeuCBB3Dq1CmsWbMGa9euDRYNlWv79u14//33U3795ubmiJpe6aLlZAghhJA80+v1aG9vBwAMDw/jM5/5DMxmM773ve/l7DVfeukl3HzzzVi+fDkA4Pvf/37OXkvK4OAg9u3bF6yC/l//9V+47bbb8O///u8p72v79u0wmUy47LLLst1MWahnihBCCCkgtbW1eOSRR/DLX/4SnHP4fD5861vfwoYNG9DW1oZf//rXAACr1YrNmzdj3bp1WLVqFV5++eXgPn74wx9i8eLFuOKKK3D69OmY13j//ffxyiuv4Fvf+hbWrFmDc+fO4e6778Zzzz0HQOyx+c53voM1a9Zg/fr1OHjwIK6//nq0trbi4YcfDu7nJz/5SbBd3/3udyV/n71792Ljxo1Yu3YtLrvssmB7tmzZgr6+PqxZswbf+9738LOf/Qy/+tWvcPXVVwMA/vjHP+Liiy/GmjVrcM8998Dn8wEA3nzzTaxbtw6rV6/G5s2b0dXVhYcffhgPPPAA1qxZg/feew8jIyO49dZbsWHDBmzYsAG7du0CAIyNjWHLli1YsWIFvvjFLyJbhcupZ4oQQggJOLsVsA5ld5+mOcCia1N6yoIFC+Dz+TA8PIyXX34ZZWVl2LdvH1wuFy6//HJs2bIFTU1NePHFF1FaWorR0VFceumluOWWW3Dw4EE89dRTaG9vh9frxbp163DRRRdF7P+yyy7DLbfcgptvvhm33XabZBvmzZuH9vZ2fOMb38Ddd9+NXbt2wel0YuXKlbj33nvx1ltv4ezZs9i7dy8457jllluwY8cObNq0KWI/S5cuxXvvvQeVSoWtW7fi3/7t3/D888/jlVdewc033xzskeOcw2Qy4Z//+Z9x8uRJPP3009i1axfUajW++tWv4oknnsCNN96IL33pS9ixYwdaWlowPj6OyspK3HvvvcHnAsBnPvMZfOMb38AVV1yBnp4eXH/99Th58iS+973v4YorrsB9992HP//5zxFrIGaCgilCCCGkgL311ls4cuRIsNdoamoKZ8+eRWNjI/7t3/4NO3bsgEKhQF9fH4aGhvDee+/h4x//OAwGAwDglltuSet1A89btWoVrFYrSkpKUFJSAq1Wi8nJSbz11lt46623sHbtWgBiT9nZs2djgqmpqSncddddOHv2LBhj8Hg8SV/7nXfewYEDB7BhwwYAgMPhQG1tLfbs2YNNmzahpaUFgLgwtJStW7dG5IOZzWZYrVbs2LEDL7zwAgDgpptuQkVFRYrvijQKpgghhJCAFHuQcqWzsxNKpRK1tbXgnOMXv/gFrr/++ohtHn/8cYyMjODAgQNQq9Vobm6G0+nMWhu0Wi0AQKFQBH8O3PZ6veCc4zvf+Q7uueeeiOf97//+L/7v//4PAPD666/j//2//4err74aL774Irq6unDVVVclfW3OOe666y786Ec/irj/1VdfldV2QRCwZ88e6HQ6WdtninKmCCFkJhg8Bkz15rsVZBqMjIzg3nvvxde//nUwxnD99dfjV7/6VbBH58yZM7DZbJiamkJtbS3UajW2bduG7u5uAMCmTZvw0ksvweFwwGKxxA1ASkpKYLFY0m7n9ddfj8ceewxWqxUA0NfXh+HhYXzta19De3s72tvbMXfuXExNTaGhoQGAGADKsXnzZjz33HMYHh4GAIyPj6O7uxuXXnopduzYgfPnzwfvl/pdtmzZgl/84hfB24GhxE2bNuFPf/oTAOCNN97AxMRE2r9/OAqmCCFkJjj5KnDwD+k9l7HstoVkncPhCJZGuPbaa7Fly5ZgQvcXv/hFLF++HOvWrcPKlStxzz33wOv14rOf/Sz279+PVatW4fe//z2WLl0KAFi3bh1uv/12rF69GjfeeGNwqCzaHXfcgZ/85CdplSIAxIDlM5/5DDZu3IhVq1bhtttukwzO/uVf/gXf+c53sHbtWni9Xln7Xr58OX7wgx9gy5YtaGtrw3XXXYeBgQHU1NTgkUcewSc+8QmsXr0at99+OwDgIx/5CF588cVgAvqDDz6I/fv3o62tDcuXLw8mzX/3u9/Fjh07sGLFCrzwwguYN29eyr+3FJatTPZUrV+/nu/fvz8vr00IITPONv9wx9Xfkf+cwaPAydeAupXAso/kpl1F4OTJk1i2bFm+m0EKiNRngjF2gHO+Xmp76pkihBBCCMkABVOEEFLs8jQCQchsQcEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQmaisXOAK/0aQYSQ7KFgihBCZqIjz6Rfd4oUHKVSiTVr1gT/6+rqAgD87Gc/g06nw9TUVHDb7du3o6ysDGvXrsWSJUuwadMmvPbaa3lqeWL/+Z//mfJzHn/8cXz961/PQWtyh4IpQgiZbkMngH2PZj7LzjmVfBsyI+j1+mDV8Pb2djQ3NwMAnnzySWzYsCG4nlzAlVdeiUOHDuH06dN48MEH8fWvfx3vvPNOVtsUXWBTbsHNcOkEUzMRBVOEEDLdTrwMWIfz3QpS4M6dOwer1Yof/OAHePLJJ+Nut2bNGtx333345S9/Kfn4m2++iXXr1mH16tXYvHkzAHEZlo997GNoa2vDpZdeiiNHjgAA7r//ftx55524/PLLceedd8bcHhkZwa233ooNGzZgw4YN2LVrFwBxkeMvfOELWLVqFdra2vD888/j29/+drCy+2c/+1kAwB//+EdcfPHFWLNmDe655x74fD4AwG9/+1ssXrwYF198cXCfMwktdEwIIdNJEKb/NWk5Gdl29u3EqGM0q/us1lfjioYrEm4TCDoAoKWlBS+++CKeeuop3HHHHbjyyitx+vRpDA0NYc6cOZLPX7duHX7yk5/E3D8yMoIvfelL2LFjB1paWoJr2X33u9/F2rVr8dJLL+Gvf/0rPv/5zwfXrztx4gR27twJvV6P+++/P+L2Zz7zGXzjG9/AFVdcgZ6eHlx//fU4efIk/uM//gNlZWU4evQoAGBiYgK33norfvnLXwb3e/LkSTz99NPYtWsX1Go1vvrVr+KJJ57Addddh+9+97s4cOAAysrKcPXVV2Pt2rVpvNP5Q8EUIYRMp463890CUoACw3zhnnzySbz44otQKBS49dZb8eyzz8bNJYq3NNyePXuwadMmtLS0AAAqKysBADt37sTzzz8PALjmmmswNjYGs9kMALjlllug1+uD+wi/vXXrVpw4cSL4mNlshtVqxdatW/HUU08F76+oqIhpyzvvvIMDBw4E1wp0OByora3FBx98gKuuugo1NTUAgNtvvx1nzpyJ804VJgqmCCFkOo2cyncLSALJepCmy9GjR3H27Flcd911AAC3242Wlpa4wdShQ4ewbNky+Hw+XHTRRQDEICjeIseJGI3GuLcFQcCePXug0+lS3i/nHHfddRd+9KMfRdz/0ksvpbyvQiM7Z4oxpmSMHWKMxUwZYIxpGWNPM8Y6GGMfMMaas9pKQgghZBZ58skncf/996OrqwtdXV3o7+9Hf38/uru7Y7Y9cuQI/uM//gNf+9rXoFQqg0ns3//+93HppZdix44dOH/+PAAEh/muvPJKPPHEEwDE2YHV1dUoLS1N2q4tW7bgF7/4RfB2oDftuuuuw//+7/8G75+YmAAAqNVqeDweAMDmzZvx3HPPYXh4ONiW7u5uXHLJJXj33XcxNjYGj8eDZ599NtW3K+9SSUD/BwAn4zz2twAmOOcLATwA4MeZNowQQgiZrZ566il8/OMfj7jv4x//eHAo7b333guWRvja176GBx98MJhcHq6mpgaPPPIIPvGJT2D16tW4/fbbAYiJ5gcOHEBbWxu+/e1v43e/+52sdj344IPYv38/2trasHz5cjz88MMAgH//93/HxMQEVq5cidWrV2Pbtm0AgC9/+ctoa2vDZz/7WSxfvhw/+MEPsGXLFrS1teG6667DwMAA6uvrcf/992Pjxo24/PLLsWzZsrTft3xh8cZZIzZirBHA7wD8EMA/cc5vjnr8LwDu55zvZoypAAwCqOEJdr5+/Xq+f//+jBpPCCEzzq6fA267+PNV35afHL7NPzTyoX8Vn7P9v8TbV38n/nMO/h6Y6gPqVgLLPpJ+m4vcyZMnZ+QJnOSO1GeCMXaAc75eanu5PVM/A/AvAOJNQ2kAcAEAOOdeAFMAqqI3Yox9mTG2nzG2f2RkROZLE0JIkZvqBTwOedu++2Og6z2Z++1Lv02EENmSBlOMsZsBDHPOD2T6YpzzRzjn6znn6wNZ+4QQMqtxLlYyP/K0/OcMHI7/WMdW4HAK+yKEZEzObL7LAdzCGPswAB2AUsbYHznnnwvbpg9AE4Be/zBfGYCxrLeWEEJmunjZD5bB7Oz/wj75r0kIyYqkPVOc8+9wzhs5580A7gDw16hACgBeAXCX/+fb/NvQt5cQQhKhw2TBoFMWCUjns5D2cjKMse8zxm7x33wUQBVjrAPAPwH4drr7JYSQGW28U0wWtwzluyVEJp1Oh7GxMQqoCDjnGBsbS7mOVkpFOznn2wFs9/98X9j9TgCfTOmVCSGkGI12iP9O9QIl0kt/SOIc8DgBderFEElmGhsb0dvbC5oYRQAxuG5sbEzpOVQBnRBC8sVlBnRlods7HwiVOtj/GODzAJfck/nr0Np8CanV6uByK4Skg4IpQgjJl/6DgNog/RgNExIyY1AwRQgh+dLzQfJthk8Bblvu20IISRsFU4QQklUZJjG77WK+VcDxFzPbHyEk5yiYIoSQQnLsOapcTsgMk3ZpBEIIITngmMzOfgaPZWc/hJCkKJgihJBMeJxA/6HsFeDMVn7U0PHk22z7EXD6zey8HiGzGAVThBCSiTNvigGJeTqH5rJY6qD/UPb2RcgsRcEUIYRkwmMX//V5pu81uZDa9l4XcG4bIPif57YnXiyZEJISCqYIISQX4nYeZWE4MHwosHd/6Ofz70m/zuhZoGcPMHJSvH3yVeDU65H7tAyKw37mgczbR8gsQ8EUIYRk03Sv73b2bfFfrxvo2pl420Db3NbYx0bPiv+Onc1e2wiZJSiYIoSQmW7bj1Lb3joc/7Hu3WJgRgiRjYIpQgghIVwAunbkuxWEzCgUTBFCSFHI4vDidCbTE1IEqAI6IYTkRFQGunUY6G8HBF9eWgMAGD4pJp8TQrKKgilCCMmWsXPx6zbtezS3rx1d7FMqEX6sI85z7cmT1wkhcdEwHyGEZMuFD/L32h/8OvL2RJf85/a8H3l7umckEjLDUTBFCCEkkmNC+n7OxeVzCCERKJgihBASabJHLOIZrWcPsPMBwGme/jYRUsAomCKEkGxgcUqeH35qZi7d4pyKvW/0jPivi4IpQsJRAjohhKRq5DRgmgPoy5NvO35e/K+QUYoUIRmhYIoQQlJ17AVApQWu/KfQfe1P5q89hJC8omE+QghJh9eV7xZMD7cN6D2Q71YQUtCoZ4oQQuSwDouVwcsa5G0fL4dqpjnxMjDRDVTMz3dLCClY1DNFCCFy7HsUOPh7+dtPdOeuLdPJYxf/5UJ+20FIAaNgihBCcmH0LNC9O9+tkCmDDHTOgY6tgH08e80hZIahYIoQQnJB8AKd2/PdigzIHKa0jQIX9gHHX8htcwgpYBRMEUIIyYC/V4uWoCGzGAVThBAy2yXKh6IgiZCkKJgihJDZru9g8m28TsDjyH1bCJmBqDQCIYSQ5A49EXajSMo+EJIlFEwRQgiJNXxcrPJuG813SwgpeBRMEUJIumxj+W5B7gyfEv8jhCRFOVOEEJKuQykU8Sx2UhXfOQc63wWc5ulvDyHTiIIpQghJl8+T7xbkh9sqbzvLIND9vrgkDSFFjIIpQgghqTn2AjB8UsaGgRpUvpw2h5B8o2CKEEJI6qZ6890CQgoGBVOEEELSJ3jz3QJC8o6CKUIIIek78DvxX6kSClQ9ncwSFEwRQogUlxU48crsTTJPJjpQosCJzGJJgynGmI4xtpcxdpgxdpwx9j2Jbe5mjI0wxtr9/30xN80lhJBp0rkNGDoOjCSotTSbA4ixjny3gJCCIadopwvANZxzK2NMDWAnY+wNzvmeqO2e5px/PftNJISQAjZbAyrnVL5bQEjBSBpMcc45gEBREbX/v1l69CCEkDBcyHcLCCEFQFbOFGNMyRhrBzAM4G3O+QcSm93KGDvCGHuOMdYUZz9fZoztZ4ztHxkZSb/VhBBCZoDAdXeChZGHTwJe17S0hpBckRVMcc59nPM1ABoBXMwYWxm1yasAmjnnbQDeBvC7OPt5hHO+nnO+vqamJoNmE0IIyTu3LbPn20aB4y8Bp/6cleYQki8pzebjnE8C2Abghqj7xzjngUuL3wC4KCutI4SQQuex57sF+XMww7UJfW7xXxet3UdmNjmz+WoYY+X+n/UArgNwKmqb+rCbtwCQs84AIYQUvmQJ5lL1lWYLx2S+W0BIQZDTM1UPYBtj7AiAfRBzpl5jjH2fMXaLf5u/95dNOAzg7wHcnZvmEkIImXHM/cDJV/PdCkJyRs5sviMA1krcf1/Yz98B8J3sNo0QQkjRGDwGLPtI5H2ztawEKTpUAZ0QQgghJAMUTBFCCCGEZICCKUIIIblBw3hklqBgihBCJAUKTVJAQAhJjIIpQghJhUBLyGRfggrphMwAFEwRQkg0jxPgPunH3v3x9LaFEFLwkpZGIISQWWfnA5G3XVbp7UgSyYZIaQiVFAcKpgghJJlDf8h3C2YGzoHO7YBlEFh4LeCexUvtkFmFgilCCEmGlk2RxzoM9OwRf973m9jHXRZAWxJ7P6OcKTKzUc4UIYSQLEkybOecSvz4RBcw3pm11hAyXSiYIoSQRPrb892C4nH27cSPtz8JHH56etpCSBZRMEUIIYmY+/PdghkkyXCdZTDyNhX1JEWCgilCCCHTZ+fPAPt44m3Obp2WphCSLRRMEUIIyY7+Q8m38TjEJPVE5SZ692WvTYRMAwqmCCHFZ/ICsO1HwFRfvlsyu8gJpgBg4DDw/i9y2xZCphEFU4SQ4hOYETbRFXl/suElQghJAwVThJDZYeQ08MGvxX/j8XmBwaPT16ZZL5CALrPOlM8LuG05aw0h6aJgihBSxMJmi1mHI/8FxNlk598T83gAsXr3ydemrXVEBp9XHLIdPAqceAnY9WC+W0RIDKqATgiZnQQBOPoMMH4ecIwDyz8KuC35bhWJ5vH3RHW+K1ZQJ6QAUc8UIWR2GmgXAykA8Hny2hRCyMxGwRQhZHbyufPdAhJAa/ORGY6CKUIIIfkRXgE9Ud0pQgocBVOEkOIj2dORYOkSyyAw2UPLm0y39j+Fft7/WJyNqNeKFD5KQCeEzD4+D3BuW+i2ywIceiJ/7SFU8oDMaNQzRQgpXvF6moZPTG87CCFFjXqmCCGzj2Uo3y0gcvTsCSuiSkOwpHBRMEUImX36DuS7BUSO8KFYQgoYDfMRQgjJM0oyJzMbBVOEkCJEJ+cZxUELUJOZjYIpQsjs0rUz3y0g0ajGFJnhKJgihBBSeBIt8SMIgNs+fW0hJAkKpgghRYxmgM1YO34a/7EzbwK7fg74vNPXHkISoGCKEELIzBKoE8aF/LaDED8KpgghhBQ+WuqHFDAKpgghM4/XRSdXQkjBoGCKEDKz2MeB9/4HGGiPv01goeOuXUC/fzsKvgghOUIV0AkhM4ttVPx37Bwwd23y7fsPAtZhwNKf23YRQmYtCqYIIcWPlo8hhOQQDfMRUmQ8ggdDNlrIlxAys7h9brh97nw3Iy0UTBFSZN7pfgfPn30eDq8j300hJHvctny3gOTYb47+Br85+pt8NyMtSYMpxpiOMbaXMXaYMXacMfY9iW20jLGnGWMdjLEPGGPNOWktISSpIbvYK+UTfHluCSGEzA5yeqZcAK7hnK8GsAbADYyxS6O2+VsAE5zzhQAeAPDjrLaSEELSRoseE0JyK2kwxUWBVSjV/v+i5xh/FMDv/D8/B2AzY4yOYISQPKHDDyFk+sjKmWKMKRlj7QCGAbzNOf8gapMGABcAgHPuBTAFoCqL7SSEkBRQTSlCyPSRFUxxzn2c8zUAGgFczBhbmc6LMca+zBjbzxjbPzIyks4uSBFxep3444k/YsROnwWSZebMakoJVOCTEJKClGbzcc4nAWwDcEPUQ30AmgCAMaYCUAZgTOL5j3DO13PO19fU1KTVYFI8+qx9MLvNODBENYBICqIzCJxTsXWkBG/au3d6fPjg/DiGLc6090GmiWUAGDic71YQIms2Xw1jrNz/sx7AdQBORW32CoC7/D/fBuCvnBfepZ3ZbcZD7Q9h0DaY76YQQrLlyDPAmbfiT523pPZ9t3vEWZDjtplZ72ZWaf8TcOr1fLeCEFk9U/UAtjHGjgDYBzFn6jXG2PcZY7f4t3kUQBVjrAPAPwH4dm6am5kLlgsAgJNjJ/PcEkJIuhw+Fx6eOooB95R4h8cu/lt4128kV3ye5NsIPmDbj4Dz7+W+PWTWS7qcDOf8CICYBbA45/eF/ewE8MnsNo0QQmINOEYgcI5D1h7Ux92KZvPNeoGh3gsfAC1X5rctpOhRBXSSsV19u/C7479LviEhOUGBEyEkvyiYIhk7PHIYNg8t9UCmSdzhvND9ox4rHpo8gnEfJZETQnKPgilCZhC7x46H2h/CgHUg300paOdGjwEAOj3mlJ9L/VyEkFRRMCWTw+vAwaGDKMBJijMWo9NWyvqtYv2kI6NHkm5LixAULpfXh+4xG3iOi4tyznHaPQEvF3L6OgVjogs485d8t4LMQhRMybStZxv2DOxJuawC55wWnJ3FDo8cxpgjpuQayUQKQWKug5V0nR22on/KCZsrt8eGLq8F79gvYK9zKKevUzDanwT6Dua7FWQWomBKJrcg1pwRkNoV3uvnX8evj/w6F00iM8Cuvl145vQz+W5GXnSOWPGr7efg8eW4V2QG9sBNVwe3m4vBmp2nX8R0xhg7F/rZbQ97oDADalJcKJjKsW5zd76bQPKsUHtHcm1nxyicHh+mHDJqAmUDDcHPXkMnxOKtAbt+HiqN4JsFgSTJu1kVTGWSo0O5UmSmKPbPKuXakRiDEjmEXlfsfZwDw6co8CZZN6uCqVT5BF70JyYys8zWXq5UUcA1y8jNS+0/BBx/UfyXkCyiYCqBB985i22nh7OyL6fHhw86xyg4k1CMAUK3uRt2jz35hjk0ewKKqN/z5Gv5aQbJn8keedu5rf5/s1sXb9I5iVHHaFb3ORMdHzs+a8u2UDCVxOELU1nZz44zI3j/3BjOjVhlbX9w6CB6zDIPEKSgCFzAnzv/jJfPvZzvphQ3a2CGWlQwPng0rd25vD44PDTztliMWt0Yt0/PYtV/OvWnWTnRZN/gPnww8EHw9rsX3sWLHS/msUX5M6uCqWz0gKR7te/xia8td2LTnoE9eK1T+grb7XPj8MjhtHq57B47XD6JXAKSNYG/y6RrMu19dI5Y4c31LLiZjnPAMgS4/BcoY2cz2t3Bnkm0X5jMvF2kILy++xBOD1ry3Yyi4xE82Nq9FXaPHfsG9+HA0IF8N6kgzKpgqljs7NuJXX27cMFyIeXnPn78cTx+7PHsN6rAdAxbcLw/O72K2TBiH5G97cCUAy+39+O9s8U3bGBzefHs/guwu7M0w2r/Y2E7l1fPa8rhyX25BpIRu9uLcVtsr1K7awS/mTouax+LRt+RuDfsYnjoODB+Ps0WZsbu9uLPRwbg8s68ntDT46dxZuIM9g/tz3dTCgoFUyl6qeMleIRpmuodR6BnySujdozUScvHZ94XOFWvHh7AW8fjFyoUBI5jfVMQhOnJ13r2zLM4M3EGjx17DG5f4qEHp0c80YeXFPjTBz14aHtHTtso1y/eOYsD3eNpPffwhUn0TjhwtDfFQNcxAez/bUT9oJi/XJ+8K+QTA+aCCrRnu1GfA76oCu2He6dweii2V+l9x0CwdlbGTrwCHH4qO/tK0Qfnx3FmyIIT/akvd0QKEwVTafD45AVTEzY3fNN0spZyatCMX7/bif5JR97akC2vdb6G0+Ons7a/9t5JvH1iCEf6pu+kurNvJ5xeJ85Pnceh4dRmEw2ZnXB5QiecRMPNuU7o9wocO85k1mvmTfV70bMHsAwCo6eBvuRXxMkG4x2e7PVM+biAPm8oF/KCV1xkedSX3e/dNnsvjrtie984OHon7HAmyPcq1EkeU4Ibz1jOYpczu0nLg+bcLXA95ZrCkK34Ksq7vQLeOztC6QVpomAqhx5/vwunBvN35dE7Lh7Mx6xuDNoGcW7yXJJnZIfT44PDLf/qkYHh4NBBPH/m+bjb9Jh78E6PVLd9epz+9iU6AaUr2Zp47/S8g939u2HzZHdGUb4MWAcg+HsWPD5PcFZTondh73n5PVs2lxd2jwcn3ONiPlqi4bxtP5K932Tkhh+7nAN42doZDJ7Oe8QAfcCb3b/vSfc43nX0xdzv8XFcmHDg5MDM6+Vw+gtrDmU58OybiJpJG1NzKv3g8omTT+D5s/GPVelovzCJB94+k7NAxu1Nvt99XePY3zWR9AKTZqRLm1XBVOewDedH5c2my9YHxuwQDxbZXPEinba9cPYF/KUrOwuADtmG0Gvpjfv4r7afw8Pvyg/cODj2DOzBkD39q72TA2a83B57oilkyf6OqfQmdI3a0DMmXYrB6XUG1wfsGLZktSL5kG0IL3a8GJzR81b3W3jm9DOye2/leGRHJx4+cgDb7b3osKX2N45+BzPpLTrsGpVc427CP+zuyPPweR47wQvfe/8DeByQFUS5rPLrVqUrqhkfdIrfT5eMoCdVJwfM+N9tHRi1Jp54FBhFSef88uq5V1P+znPO8Zfjg3FHTl7qeAm/OfqblNuSL7MqmNrTOY7BqfRmsmXaTX5qwAybL7LOlE/woXOqc8ZF+s+ffR6vnHslL6/NOceOMyMYiurGf/PYIDpHCqynZxr/rC8e6sPzB6UD3OfPPI//7/3HMGp14dXDA/jTB9krueHwigfCcafY0zRgE4drwtew/MPubvRG9xSkoM/Zjn4+DJdXwJ+P9cZcvZ92T+BXU0dj8m6idbgn8YzlLPoh74Iq2i5HP/YXyILBDo8PXmFmDMdMCW4ICY5xXoHD7U/EHvU5MBIV8HLOsc85hKlMZyHv/BnQtSvxNj4v8P4vgNNvZPZaBeT8qHhcTBZMZeKC5QK6zF0pPcftE3Ci34wXD0lfIPVb+5PmlxaSWRVMTaffHf8dzjt2B2+Pe7tx2rYVvbbQ7JF9Q/vw5vk305qVFw/nPHSFkbW9Fg6fwHGgewLP7JP3nglcwEPtD2HvwN4ct2x6pBPUjzom0D/pxHMHxGArF0Obyew+J2+mnZQh9ym4uRsWpwfMbYctagj5fecAOOdwJQmmJgTxZGJh+T1AH3eP4znhDHwpLpoerv3CJI5NY75fuiyCG0+YT2GPczDuNgNmJ3onxADqGctZPGuJLHFh417scw7hRUsnhiyuhIFZxgLr+Y2exv9u68Af98RfW/XVc69GXAibnZ6Uv1sjlplTpsbtc+c1NUHgQkEHVxRMhRk2O/H60YGszPCyeWyY8IR6AFyCmM9gcYcOgBa3OFslcHWfDbs7x/DgO2cLvk7RlN0Di1O6W3jS7oY5zmMBchOYff7u+vaR9pTal64puyft9/3Y6DE81P4QvAItzBqu0XwQRo8YjFXZTua5NaKHJo9gp6M/4j6Xx4dhixOdozZwAGanF26Jz8Jef2BxgqUfYAJSSfSpHbdsbm/WEtO7PWbJWXZ2/2e5z5faSTi89zDQxgmHG26fIKuwqi8Lv5bbK0gHOz4P4HXiguVCcGa3T+A43mfGK4f7Y7dP4HjUbL59XeN481j8wDMa54mXPOscscqutZXsLXv69NP43fHfyW5btv2156/BYT+L04Mpe35n1UeblcFUvA/fa0cGcHrQAoszuyezTIKah9ofCib3RpOa0XW8T/xyvtzej1P+L1E287Wy5bFd5/HCwVD3rtsrBN+n3+7qwqPvnce7Z+TXZgp48VBvyrlTw/ZhvN39tqzh1qMjR/HC2RckH/P6BDy26zzePB7/YHh60BLsdo8WKH7nzlJR1Z5xW15nk4bLViuOK0KzCPP9sT7iipzReGLAjHMjNri8Ajw+Ad1jtmBSeP+UIyZX7TybyvkQv9QxwuX1YcTqwpHeKYxYXLC6vOgYtkgGVi6vD91jtoRB15Tgxp9tXfirPX4eZar2K+QHFFJy+rnv3Qdc2BdxV+D9kdvTFO/9PNQzGTORYMrhiTtMvrVnK351+FdxX+dE2L5cGc5gDVz858uZiTPBn3/z3nk8tis/NcLimZXB1Kg1t12FR3onsb8rNFtpX9dE8OdUvuKB4CI6mMrFNGfOeV57RA50T8RUnz7YPSG9cQJdo3acGBzAQfPTMHvlHZDfOP8Gzk6cldWF/V7fexi0Se/37GQHprz96BiSzsnhnGPc5sbgVOJp2yy4fdLmxAh0gx/uncQr7QPY2SFdwqB3wh6Tdya5naUXD7U/lHTdsVxNvT88cjjmPsH/Wq4cJXxnM0gLDPt0j9kjTmz5dLBnEh3D4mfU7vbh1KAZI1Z3cJWGcB3DVvRPOWH1X2DaBS/aXSMRQaDXf3yaFOQFElZX9nrEcuGQawSTvgTfjbDk9Gz9HokueB/beR7P7pcOVM9OyK/6/9dTw7C55B3jBS5E/I3d/guEfMl3bUc5ZmUwFS+kCdx7tG8KP9sq/0N6evw0+q2h7t13Tg5LHphSMW5zY1/XBMxZnHmVyInxE3jkyCMwu0MH/FfPvYq3u9/O+WsHkpcD79mEpwcWb/oLTFt9Yo/WpDd7uWhS3jw2GNEl/+dzb+Kc/b2420fn+mSiY7IDXVNdEffZfeP4zdHfwO6xw+4SX2syztpkz+7vTZqI3jthR+ekePXXZ+2DV/DixbMvwuYLDU8lKwORqvYLkxFt3t2/O2abbS7x7yqn9EAmJzsvF3DMlc7i5OL28WqBZWsB6kHYYM3xSSb6N/+r4wLedwxgOM1ZkVMOD472TUleUPRO2GWvjdjuGsFDk0fSz5+Kk4ju9rmx2zGAly2hArmDtkE8cuSRvC9cnimXYMG4Q97ki4cPPxzRA//EB93Y3xV5cXts9FjM8wSB48yQJe5xRy7OOQannBAEjjdPH8H/bN+R0f6mwywNphLbn2J153d63sFLHS/J2lbuYTSQM9Q/6cDPt56NGB/uNotJkeEBXHD/US/Aw64wLozbg1Nwg/sas+HpfT3oGBcPHlPOUE7XBcuFlK580jXlikykPe/YjbP2bTB7ByNef8jsxC/+WhhVwAFxynF4l3zS43qWL8ZfP/968Oc+ZztO2d6GxydgT2d61cnDDZmdeHZ/b0ROx4RzAgO2AVxw5mYtLo9PwLZTw3GvwqfbMT6KHY4+nPfK71ESwDGJ6Ukq3qsYwPPWxN8Hub1Fcrn9vVBSQaqcj3dg+RS7xIXFhQkHRqOWkBE4h1sQInLPOAf2OcWLLW+CJH4BHG+wTpxyh4KAUZ8jbkFVznlwRqgnbDSgfbgdkw4nOid6caLfDIvLC4vLi86wRevZZA/KnRcw4j4XczxLJDrnycc9snvUnzj+XMKL7YNDB2H2hI73x62v4+XO5yK2uWC5gFfOvSJ5wRBeqmYy7PyTcMjX6cGY1Y1tp9O/GAaA00NiOkTvhANPHHsZxybez2h/02FWBlOpnNMCwUmmuQ2DLvmJs88d6MXApHjlNuH/EPdPxX75A1/aUcco3ul5x//FDD3OuYBDlmdxdFwc3++dcMTUohHrfDglE2UFgSfsFj4+ehydU52yfy85njwa6gnrsL8b0TN2YTz3V4Zur4CBsPfa5fWlvH5Wn+swhi1OOGU+r9fSGzcvTq4ht1gdPlFeRPRnI9FBO3Cys7q8OD1owbZToYOj3Zf68KuU6L9noH1Sn0W5phyeiOHLA85hdHrSm/XmhvgeeGT+bRiAk2wMk2z6ZmjZkvRMBUo5xDt6ZSO+9wkCfBkeH+NdZL5iO4+Hho5hyOKKyYPyCjzhGo8+cHiYEDFRoNMjBsbnPWZM+lxiz96EeHG6/fQIfvuOf1g5vM6Uz42ejhN49XAf/nJ8EJMODyYdHgyZQ39nNtkDk3sYXfZ9ePHsizFtcXl9koUzT9n/EpHz1OXYgw77u7JSDt48dTImgT3cnoE92Dv6esR9Dn/vWmAY79Vzr6LX0hs1ozzf2YiAxyv+rWdK+Q9gFgVTh1NYDT6fZZ/MbjN6xlKb+fLG+Tdwevw0fnX4V/CEXYkK/pPBmcmjMc9xesTE0kTOj9pwpHcK43Z7cD3AcO/2vos3z7+ZUlsFLgRn2El5/cyelPaXDpvHhl6bdFHRvxwfxFN7QwvxPrTtHB7allrl+GH3GZwbtuF4gqnrXp8An8Cx9ewJfOet3+L9vr2hgD2LxzJf2PqN4dO2B90n0WF/FxfMsUOh485xuMJyRsZtbln5VeEePfooLJ7Es9WieyckZ3e6Eie9OqLy/E4MmNHpT/DnEGvrvB8nxy2psOOAR+Yssil/r9SExCK9M0H0+ynH8X4z+pPkAY547QmD2niH3H6vNRhcR39eBsxOHOlLPQ/NxznOj9rw+6lT+L35JND+JwDiELPGKzEMNnAEJe5BaKIKFTeaD4D7Yj8TTol8q4e2ncOvtsceRxy+yPfEKYi34+Wvvtn1Jl4996r0L5aChw8/jPf6QikJr3W+lvE+o4evt50axgNvn4mzdax0yy54fAKmHJ5pW2c1nqIOpnyCL1h24K9hV9ZS56rT46exe+xP8PLIoIFz4KHtHdjdORrsUt3VHznePuXwYPe5MVnjxOF/7h5zZM7KuHMcfzzxRwy701+DzimY4REcGHXHDwCGzE683N6HFw72YdI5DiFOIq/F3yv122OP4tGjj6bdpnA/eO//8O/bH8jKvh54+0zyhUIl/tiPtj+LVzvego/HnryH/bNxPD4Oj+CJ+95IiV7lPjphMzy/Y1/XBF470o9jA+LncsASGprLZhqSL85i2C5BDFLs3tjevqdOPYU3e15Kuu/w8hVSPbeHpyQq7if43X6/W6Kmz0BsAnq4F+IExQwMbq8Ah1fAWBaKFZ4cMGPU5gaHuHi4VO+ZGe5gMOVO4cDOOcdDk0ewO0EtJrlsbi/2dI6l3JsKABe8FvzWfALvOvqS5iKFPxrIdUyWn/amLX7Npulkd/tg9/iCx7ekgoFN7O9nttlhjdoPB8dD7Q/h4NDByN1k4Sq9c7ITFywX8Hrn68k3TiI85ylZiYV0RE8oCrzO+33vY9I5iV7LBZy2vQ3u7/lNVnbhYPeE5EjJL//agcd2no872Wa6FHUwtbVnK3577Leytg3MGnILsdGxyyPA6vQGu1Sj84gC02EDhefkiu7tMbvM8PoEWH3xx5un7B6cH7WBc44ucxd29u2MeJwxoNOxCz3O/XAL0sNinSM2cWhPsOGo5U30udoTHgY5xC/asb6plGZ02Nw2PHHyCUw4Q8NCZ0eGU36fEjnYE3/IadQtPQR5elhMUE928P+/I/+HdstzCbcJl+rv1TcReQU7bHEFe4/GPJ3wCpn1bjCwiJ7KVNjcFni5K3ig8/HYgn2Pvpd4anLEZyVHF43xqmJP2t1JP6ucc3R6pmQFDoFeKQ7gcO8UhiSmwB9TjMLDogPoxCkCg4I9+Na0u1IvBRLdziGzExyh9IBkegQzLBA/Z0M+8Xhx3DWGg64R7O0az3qZmILlTi+F4I8f9OD/dkgfZ/YMxO9lj/eR8HB5PcCpVhsPF93rdXLAjD2d4zjUMxmz7dP7evB+VJASOG66vUJMradk14FTrim0j7TjubPPYXvvNth847B74h83w4dSXV4BfXGWngGArhRHdLKtqIOpdBb29XI3DpqfjjsrK16hyWzZ1xU/OACA148NYHDKCZt/ttaRkSMx23iDX8j4B3GXYMGoRzwI2HyjSWcYTTk8ePvEEN47K33A752wxyzU+fbZY+KXZ7g9Znu3YAfPoAI0ADh8kyn1HCXi8vpwdqIDg9bYQJZzAScHpjAcZ6jr6MhRyeGyaIlmvjl9ThztH8aR3imMOYbR7diHfeOxV5+JhkjFFwnbFl7sGY237E/y7q8jlpfQaxd7SQdcJyIS3gP2d03ErW4ud0ar0+uE3WOHV3DB7ss8eR4Ajk9NYiKYnMvgFLzwhX0ffBDwa/MxvGnrxi5/BfV4fIKQ0bp30YFX+Dt/wWvBoQyDqGi9sOCoV95V+k5PP95BbI+RVXAnrNVkdnrgE3jWqrDL6YxlcX6OL7b94c+zuryYDHxGdv0cjZP7gyMTUgVI5b9Gal3LYuK7B1bfaPB4Flj6Jfx4Kgg8K71bjxx5JOJ2ILncIzhijqf9k058ELUo+ZTdg74JB473T0WU+7B6rLKvmaIrmac6xBfoKEinBzZXVPluQCGYck0F6+gEeqamvNKVbG0uH0p06rj7OiCzNpLT44XN5YVRm/xPYPYOAGgAEHlFE1i0uW1uCVxeHziPc5CRuPOk7c2Ukp4DB1apWTgAMDjlRI0x8gRq98S/qj1mfRUqpkUdTAlfl3OOf33nJ5hbro+43ylYcNL2F4x7lmD3uTK5v4Ykj0/Awe5JdI/9BWM2N9aV3h5xjDxkeRade+fCIUzgohZDzPMfb38DrTWxv4fAxR6ScoMmaRv6rWIw5hM4PP6hOYfXikHbIHye0O+3o1f+FOF+1xHYkpwUgleZPjeOjx6Hw9IUuSRGkvNC9MnUJ3DsPjeG2hKt7Hb+9vhvwTnHabsTLsGGS7WfDj4mdfLw+jgQ9hWUOoBHz/J6zHwi1EZwnGETwX0fdY2iRKFGvGvL7nE7KhD7d3f5BOzrG8Wkxg23Iv53KVEP2RHPKDRC4mtai8uDrlE7uFH8czw0eQSVCb43BxVDqPCocR0aE+43IPCVlXsi9AgcZ4etUJiUsLi8CWfUBfY7aXeLx01l6H6z0xOskJ4vFpcX50asaK0xodF8EGZ9DVyBQw3ncAtT6HHICXbTH5ufsHtwfvI5MCH0GQsMZx0M6y164VAfPugax4q5pSjVxz8Hpeuo9RWUqObgKnwy4XZbTw6hxxbbk/d+v/SMu4NDB7FnYA/uXX1vxP3hFzDPnZE/AtA52Ylj1lex0PAh+IQFsp+Xa0XdMyVXeD0NS4Ihtmi7zo7gv7eGxsWnHB7sODMimYsT7Vtbf4ojvVOyKvWafQOS9w9OuYILNx/snpTspo0n3dljnCNriX5e7oLbKyS82pqwe9A/6YypGu4VxO5emzCGPZ3xE52t7uR1VQKVqccSFHOd8vbDLUR2MY+6z8ElWDFsjj+UdnIgPIE6wZTiOFOcTw+PRqxD6EuhJ07gnogZROH1oaK91/setvXsxNtnj+P0oEWypbvPjcVd4T3A7RNPAsMyK0FvOz0Mm0v83V0SQ+xSJlPsHQ4Ehz7OMWF3o4NN4CyLvOgZDM8dY8Arig6c8U4CAOxxcmsmbW78xd2DUatbctgvIHz4d8Lu9gewEqUFOMfpsGn8gSCsa1TMywkPyk6zxBdtAufY3TkWk8+Trs5RGz44PxZsJxAa+nxPISZmT8YZcvX4BFjdPoyF5RRyiInrJ/2rNHAAh1jqi0hz8GDR0HjGk+Syhn9WGUITDWptpzA8/CC8jkS9pekdC8MPeeM2FwAm+fkP75kKzH5NNINPijeFoX6Ldwivdf8x7uNWpzdhj7NUSLm9R8wxPjkef0Z7dM9UjzX+qNKgXcwtzNas4myZtcFU+Fhv+Np44evpdTsSL477+pn9aJ/6c/ADH1gDacAVW8wsoGfcDq9PCHatHuubSrqad7zcn3hCX0r5V0vR+UMDUw44wnqhAo92DFtjun0T7YdzjteO9OO9c114qP2hmO0PdE/g/Eiik6g/uTWlY1bo95YzS8XiSP2E0z7cjh7nfpyx/xUAEk7RDogeShLghdkjXvVeGA99BhVh7X/00IvwhAVxhxLkiAGJZ5HF+1xyzjFis4qBMvclDG6TVW9PpYr+lMOD9p5JybXDApXXI9oZZz9yPxoTNjesYZ/pC3ECw0Dvq8ABp8R09nAOxP99pXLyTg1aYHVFBsQ2tw/9U05YXF68YxcD5zNDFrzTPYgzluTDaFIzLaf8uU5ygykOjgthM9lOuMfhCpSGgIBz7ikI8Xq+0+DjPFjJPuACCwVWgTYls5cN4JGp0Od61OfA4ahlfqwSeV/x9q3gvmCtq3LHBWh88opchu85VSMWt2TZBIvbAneiSuwy2N0+dDlDhW/ltM7mif+aF+IsaxPN6pkIFl4OXORHD+0FiqCOec7D6xNwYdwevPDZO7xd1usUklkZTA2aXXhs13m8eKgXD7x9JnjycEV9oMc85+ESrBhyn4JNIpfDLoj3BZI9A/sZdsefDjow6cDOjrCaPW4f9p2fwNkhCy5MJL8yn3DH9lLFy6NJlMgezu6bDO6Dg+PQ8CE88n7k2lNdozYcND8ta3/RxtwX8Obp43Efn3Tkbhq5VEmHAM4F2KWmQssQ6NIOBDqHL8Q/6cUrrNfjPIABZ2zRxc7RyAOWxRe6YndK1JFyekMHv8gkeHmnvvYLk9h5dhRTDg98UcGB3OUn0pEoTyl6pmsiLn8Ad84zGbwvk5N+91jo/fcJ6ddQP8vE9pzFBMbggA0eeCHE9OyO293wcR7K3wEwZnPjXcUFPJekKCcgb+ID5zwmgBDCesi6YcaIL/JzNwZxv4fYEPYpBmGFOziL8RybDBa4lC/0+q95O/GaItT7IPX3elVxThxGjHq/wm+Ns8gT/zOWs9jlryuVzt+tzBla13OMx/YAxaR/+D/DY7bw3q3I3yZ6rT25fnv0d3jq7B9kb99n7UP7cHtwZp7d7YXD7YPZO5RSbunApBN2tzdyuN/PIXMVh71jf8ZZ+7bg7cC58cWOUA2uXv/FjEuwYF/XBHonHDg9ZJEMLGeCWZkzNeVwwwSx+xwQD5j741zxH7f+OeY+gXN0SSxWK3fmy9a+2KJufziwF+cd4gnaxaVP8J1jI9gz/BYAccmbgMjp7aEv8gXnQf89yU8tg/YBaFViQsPu/t3osEcOCaWzPE7gVX3cgwvOg6j1VaS8j3T0OCMDwSmHBz1jFriXC1ArWTB5v8u5G/3nJ+H1ppZ/MGZ1QaWQfx0yanVJ5jg4hUlIZRaFV1aOZ8rhgVGjxLhzHE+dekpym+jPkdk7CM45GIv8RASGOcSh1A+gUyuCw89ub+K/e/TQZzyBWTjhnyPBn3gbzenx4IWDvaib44VB5gnbxznedfTjIn9uoVw+zmF2eCCUpf75Fk/y8b9bHn/PzklF6LtUyXXQJvk+hpddsLi82KXswwhzoCQ84cgvutVSexY4x+lhC8pKR3BJZQ0AYABW7FMMwuTfp415YHZ44BU4akyRn0o7/MOw8KF9YhxzSrQYZDYc9Y5hESpjXs/l9cHu9qEiKlcwPKXBAXlDteEBppxJMna3D1aXFyfZGFp5ueR2UgvPRw9fTzk86PCdivh+Tgpj6LJ3R2SicXAwJO7BDF9yKhUdw1bxYkZm+uHLHS8DAH6z/00ovQ2oqw693x2O7Sm9tssr4NSABetKU3oaJuIMqXYMW3F5Q+QokFSPod3lw4HuCVQapfNMx6zuvNeTimdW9EwNWxJ3lbo8QkqrjF8Yt+PFQ33JN5Rg8Q3DLrE8RSCQAhB3SvxzB7vSek25hsxOyWTZ6PpJ8USPYTvC1k7jHDFrOwVkuo5hIm6fG12jNtjdPvzvto6IZREs3mGMWd2yhujCnRmyprVobXQvWbyyBV0OcUr1lMMjObwpcI4T/WacHLBg0jkZ9/Wcvtg2jnu7Iu6X6h3yCTy4EG4ygcBVzvDe4b5e/Obow3D6a1y9eOpdHLa8ELOdh4sXB6OW5J87gXO4fAL6p5wYSVBYdNDsjOnhAMSZTFa3L60SAOlcP0f3pETzChxHhibQg9DfqNtngZ1Jt683LAjw+CL7nrz+vievwDHAbHjZch6d/rU39yliT/BWty9hUHCMRQ6fOaN6O4YtLlic4tp7p8KGbgPHVh8HHNyLnSy95YJsLHEAdmxgCmN2N1w+ISYn7syQBQ7Bi/M2S8RQLwBMwInuqGr8ZpcX2qjvj5snzz3yCcD758Zgc3kzXoMxvGfI7huH1RtKhI83gxYQjxvjnq6I+6wyZ3fKkygNILpOo/h5GrO6U8rTTdQjLrfsx3SbFcHU9o4zGHKdivv40RSn9waGWtIpciZnAV8fpE8i3hwGHVMODzpHbHjmaOyMjPB8nkRO2d6KuH3WHFu2Qcp0VpyX81IeIbM8hVRIXZ0lIwRnVnpTnlLc7diLE7Y3Iu5zuH1w89B+EgW3gaHwg+anI8oYBNrRm+CzsrdfHOqd9OcljrtDU/KP9E7K/A0ijVjdwZ618EKZIyzUjknmgkfg8EgEU4F7wvOOMlkcOZyPSe9nyuuGO857PGB24lVfJ9oV6a1tFn7hc5SNwCvwiOT4nqn0a/FMRS2TY4k6Trl8Ao71myM+PxanN2K9vWecZyICykDeVDbe8fOYjPvYiM2F/x5sxyHLWEzb31P0Yhh2vKLogDNBDhwAqKOGQvtdxyNyGgOO9CY+pyT7fV8/GpnOccr2djA/M9ruc2PBWodJ+V/YKwgpX0SmYywsqDs0fCj4s9srhA3npRd0OoUpPH3qOVkTvqbDrBjm2zv6JoZcLpSp6iPuz6TiK89gLbVknWBS7Xrz2CDswmTSfdtc8sfGI9rk/3VOjJxDmTX9abcnByYjbkvl+KRL6iQfuOKy+ybg5S5/GYmQwHspcB96nPvQYwGSHcrOOXZg1FmdlTYDYs6UVP5BugIHaoEDb3dth04dO/yTjMsfPO3tO4bx0dUxy1rIccoWWjex1zwGu8eecBafJ0ER0nif22SFNyXXlMzg1NwPK/aH9do43N6E31eB8YQfJ6mTsz3JZyHecWnS7kFNSeJBQo+PBy+RAwnkiUj11iUT6DUYZQ6c5vEno7zvGMB7tsjvoyeqDsMuRWwPv5zjcnQdKKfgxXFFZG9NP0K9q1a4I3JiB1hkUNnNxM//RIKeQ5v7POa4I2ccjnq74HB6EF6cJTo/aczTCa2iFCZlNXon7GisiC2zISWVv8yujlEInEOhkBeYnOy3wOryYmNrVQqvklhPWK5hYAQgPOWib9ICjVIBk04lu4RQIuOebpwbN8Dj1qNOuyzj/WVqVvRMBVh94ok3MAX+kOUZnLJLLHmRQODg3uc6LDvBO1qiKfiJdDs+kLw/2TCmHOFX4/Gm6QOh5PohsxOcc/RPOiIqz24/LXZFuwTxQJZuj0O0wIKXB81PY9B1PCawPGV7Cx32d2OS/+1uX3B21qi7E8+eSr6uld03gT8ce0oytyIdDo+QUtmKZMJPCmdlDsdFCwwZnJ9MXmxUjuN9ZhzoT7wO1+FhcY1Ii09ekUof5xiUe8UdZlcaw0geCOiHFf0s8v10ZJgM+5aiK+HjUsm2Uj1ogNjzk+mSH13cjFcUoaT2RMN6njgDmeEpEacV8YMpqWKkgSVcooO48BAgnYWu33XG1gU8ohBf38ME2JP0OAV6qgIzCqWo4lwMhK+aofdMQunfbsrhweCUE92OfThjewcA8Ox++Z/NVC5Ez4/a0Dkq/1iQrZIZ4RJVJwfEvKkTA2bs74r8zIx5zqf0Oq6oGY79LnkjILk2K3qmhiTqAAWuxFO9Iu+dcKDSqMGktzfuci2pOj0Zv/6GHOeGQ1/mRGUZsqHXKXbVdo7Y4BN4xMyncJ2OnXDbHRlVjg5nDitf0J/C7xh9YBan9kdeQ0idn86N2GLyKMRtpz/5UeC+YOJ4bINyc2BMx+PtsZM1ALHorElZEwxqOQTYfGMJ60p5uAPqqPc6eratFCvcmGCpB2CjzIFRJn0yGGBWlHP5RUhTkW6+oFShTA6OPUy6Jl3AgMxaXgBwWDGM+UKKGch+3ZhKmPfiyvBCJfq4YvMmHurZqxhImORmTZCPFTiG6L3Je1OqHOfgVWgxaFqJEwNmPGkNzUrlXICbyztneGTkZ4UbcB3DiMuNhbUpPS3uUF+iw1ym5z1Z54QEHWwdU7Fr11p9o6jC3PQblQWzIpgKCB9bPWl7MyevEa9yeiLhiYWZMnszXyxVLqkrSKcwFTH8k7ksrvqLQE+AvAO5VI5aHmIp9Dj3wyVYUa9dEfOY1eXF0ST5GdNFqpfF5htDhz2yarvDN4nTtq0J9zXu6UGtPvUA5q8K+SUVgOTDiAAwxOwYYuIJxCkxNdwtYzgtHmuKeSt9U040luvhDVsDcDfrwyV8LgRwjLDsXOAF7GUDMLPUetI98OGwYgR6jyLhEkqZiF7Wq2vMnu1DRVDiHqLYA0K8HqwB93EMuk7gofY9cNvnAlged6+Bniy5BlyxpWfk5P71SFwwAoiZrR7IC3N5BQwjcQ90NrgSvecSv9YZ2zuYX3Zn7hokQ9JhPsZYE2NsG2PsBGPsOGPsHyS2uYoxNsUYa/f/d19umps6qZlomX7B3T4hbnQeb02/TKWT05KKgSTFGOXKbiCVucQFQUXeFK4C5fSOxGPOYNHYUU8HupzSw7yZmHR4MOg6kXzDNEl9T6ITRqVOVirBhbKx9lw1KyjVnKExianfqQYbmYoOAEeYA2+x1IZK5BpkqSWseyHgDYXYFh9Pnh+WjkmHB+awXi+vEFtDK5vcWVr/Lfx7dsEmPyCZ9KQ3+zFy9QVR9Ps0YZPukQsc5wTug5e7cNQab43P6dcZFujFGxnJBzk9U14A3+ScH2SMlQA4wBh7m3MefQR+j3N+c/abmBmp6sqZijcDqytOTlM2ZNKTJudAk/BKII6BydzPepOq55WKTIIfKe0XJtN+bk8GX3wf90rOGpIjUW+amL93NL1GyWBOo6cWAIzuESgQNc06Gw0qAlJL17iZEPN3Hk6hl+qcv8CoHPFyuoDI4ce0h8RTfNqA2ZmzXikgcd7cXMsRjJR/KPWdJi5RFqHTsSv1/WfJoPs4qtTJ179LtsxUNsUrHOpMuVp9diXtmeKcD3DOD/p/tgA4CaRYGa/AJFqjLBPRtT0KxblhW0Gtrp0KOcFQINm92MnNt4iWjZkz6RpL4zsx5Z+RaUtQbdmXj/FWv71J8pIKmUVGfl2y3qR0ZgAmE57nVixBM+dc8iLY6fHBI8Qf3ci1VCqMyyk7cGHcXhA9RLnsnZQjpdl8jLFmAGsBSHXBbGSMHWaMvcEYi03uKCC5HjIrRMnqnsxkUlXqi1G6PVMzTWCSQyKDCQp05lqqQ1/TZRjZaVe85Y/kcIbljyXqwSousb+nxmeDgnslzzWHeiYxYfNgyJ3ZxKN02N2+tJe3iUfOckbTwZ3FMjzpkB1MMcZMAJ4H8I+cxyxadBDAfM75agC/APBSnH18mTG2nzG2f2Qke0nXJLlcFvwkZLrNmvN0Cg4ohpJvJFO6b28OR9sKFpOoOVhrO4Vqe+J1FUfcydddzLaecTscOchjKwS2aShCmoisYIoxpoYYSD3BOY9Z/4FzbuZcXAiMc/46ADVjLKbqIef8Ec75es75+pqamgybntigbfpmtRFCMscgQMHlHxAH8tg7Vcw8AsfAVHq9DWakXpZipquyn5O8X+Ob/h7MyThr4wWkelE94u5IaYJOfuU3lJczm48BeBTASc75/8TZps6/HRhjF/v3m5vEJJmmXMU7rEVIMaqyncNcy2HZ2+cid4eI0u3IPpTmMjgzmcaX/UlO6ZKawZepQs0FLjRyZvNdDuBOAEcZY+3++/4NwDwA4Jw/DOA2AF9hjHkBOADcwfNR3ZAQMmPpJBZmJqTQOeCZUQUbUz0z52M4ciZK+hngnO9Ekv4zzvkvAfwyW40ihMxuJe7Z18NBZiZWNPMPZ7oZNJtvJmGMYU9nXkcaCSFpoxPUbJXt2nDTT/5nV+edhNE9msO2zB7prD6STTOpdzJlNNBIyMyg9+SvFhYpLHJqYRWLan/yuk0TM1+LpEhIYfJKLhRvz9SsnKRLyMxU5egM/qzgxTl1m5DEOIzuUTCZa4eSwlK0wRQhZGaoiVqnTCGj6jIhBSNLQyAGzwQqnN2oskmXWiDJFHhphJmKeqYImRm0UVPLVcL0LhxMSCaUSYL/ansHSlzJ6x4GemR1PnPSfRYrrdcCrXdmzuot2mCKEDIzVdvP5rsJhGSNzjuFMldfwm3E4CnUw8Vm6VB3jf0Mambo979oE9CpoB8hhJCZoN5yBD6mznczZjga5ssJgabyEUIImSFm69BesSjaYMorzJ7ptYQQQgqP1hueD8ihErK7nqTBMxZ3bUAyvYo2mHL7KImVEEJI/tTYQzNVy5x9qLMezyigUnAPlP4JGib3CCodXdB7JzNtJsmCos2Zorl8hBBCCkWJe0j81zUEm6YabqUx4fZ6zyR8ChXcSlPwvrmWIwAAj0IHdZZ7uUhmirZnihBS2FSCE+XOC/luBiHTyugZRa3tVNLtqhznUGs7LfkYBVKxxjz5He4s2p4pMOqbIqSQVds7oBJc+W4GIaQIuARbXl+/eHumaDIfIQWN0ZeUEEnZ+G6Y3CNQ+xxZaE18VfZzqLZ35PQ1Zori7ZmirClCCCGzVLmzBwDQW3pRzl4jOvld7bNDYCr4FJqcvWahKt6eKUIIKUJ2dWW+m0CyQO2zT+vrVds7YHIPZ2FP8RdknmM7iTrrsSy8xsxTtMEUo5wpQkgRGte35GzfVIV7+iSafGFwj0fcDi+JkC6ddyorEz4CCzKXOKXXG5ytw/dFPMxHCCEkFT6FBkofVeKeDlqfNe5jJe7IQCVQEqEQKLhYEFvJqTB2uOLtmaKcKUIKWqZX2iSxIePylJ9j1tbloCWEFL+iDab4LO1qJKSQBfIsaAmM3PModcGfvQpdgi1DwgtEkpkk/vlOKrcpHQxCsFcqWr3lSNzHZouiDabM7ql8N4EQEkbrNaPBfAhan3VWLoExpW3IyX77S1ZnbV8CU2HQtCJr+yPTQ8EFGN0jkhcp5Y7sFMattZ7CXMthyceU3AOd15yV15mpijaYooWOCZl+SsENg2dc8rHAwTZy8dfZw5KDITS7uhKcJT+Me2T2TAHye7HI9FBweTlsFc4e6L2TqLWegsk9Erzf6BmN2p8Xpa4BqAQnDJ4xNJoPQOdN3vmgFnJbs2qmK9oE9DErJVESMt2q7WehFpxwqkohsMjDS2BtMpVv9i2F4VKWAAAGTKvAwDOePj6hm48KZzemtA3gkvmh0fdRDulMlWryuUawQeOMXw080LtU4h4C4z4AYtmE8HpUddZjcCtNGNc3p97gWapogymzk4IpQqabSsZVtMEr3XM1G2SrmKFNUw2bpjor+0rEqq6ByTOSfEOSV5WO8yk/JxBISVEJLqgEV8JgSslpAkm4oh3mc3myk3RHCCH5NmRcJms7q7om7BYL5mkJcYYCpXu1QuyaKlmvS/Ir2TCdnORwBfeklKwuZ2gwE3rPJIzu0eQbFoiiDaaoW5sQMlNFF8/0KA2ynjelb4y4bdHWobf0InCJQz0Hw7BxqeR+Bkyr/IntNCu6GMyxnUy6zVzLEVTbCmeWbZXjHCqc3cHbap8DJn+qQCEq2mBKQRXQCcmbuZbDcRPRZ6Mp3dyUtjdrU9seACyaOSlt71Vo4VEaMKZfEPOYT6GJyXkjM5fcmm5anznniyOna47tBMqdvfluRlz0bSGEZA1HqE+40nE+uI7cbC7QadHMianfNKZvBWcKOFWlaDQfACD2RillztyKFkgeTmWYZtS4GADgUFcAhXn+JHkwx3Yi302YkYq2Z4o6pggpDBqfHfXWo/luRkFxqMvhVJVG3DdQ0ga7OjZHKTATcFzfApeyNObxdNE6fCQ90kO/2hzVmdJ7JmZEL3fR9kyx4o0TCSkYSsGNeutRjOtbgr1Q0dS++NO0SXIj/h4ku7oy7nscEEgon9Q1JtzOqqlJ+DghqTJ6xnKy3ypHZ072m21FG3HQ2nyE5J5asANAwitHWhB1OjH0ll4Eq6Y26XZySCWuE5IJjc8Gxotvtn3xflMoliIk71SCE6Wu/nw3Y8awaGrBmRJOdVm+mwJA/ixCQuRQcg9qbadQ4ehOvvEMU7TBFMVShEw/xiPzKVSzOPE8HR6lAX0la3Kez+RNoXjohG5+DltCih+H3jMJgAcLhWqE4hv6L+JgisIpQqaNP4jK1gr1JHfG9K0xw4A2dQ2cKuneME6zeUiKlII7uJZfnfU4qhznYPBMBB9XCS6Y3MNoNB8IHjPk15Di/oKhhVUDrXiDKRmLfxJCcmsmVTDOlUKrIu5QlyG6735CPw+jhoX5aRCZUZiMGKbeehRzrGKJBZXgAhBbHqXENQgAUAheKAW37BpSJvcoqu0dBTfDr3hn89HFFCHTIPEXTe+dSPh4MRsyLodHqc93MwjJmEpIb3HyRAVAWVjPUnTplEAgJkUZDM4Ka/3dou2+oWE+Qkg+FUsgFZ0HR2YPrc8KBfeizno8redHJ5rrPbHr+Un1MAWGCGeS4g2mKJYihBAAAKe0B5IGg3sMCn/SeICSu2Q/PzrRvMwVGsoLLL6sTrPXCyisHM2i/YZR0U5CyHQbNbTmuwmSzNq5cClNcZPMs8EmUb2dFB+TeySt55W5+rLaDqNnFA3mQ8GcrHwr2pwpQgiZbk5VeVrPCywZE27QtDLD1oRwpsCIcUnW9kdIvgWCKJXghFehzXNrZPRMMcaaGGPbGGMnGGPHGWP/ILENY4w9yBjrYIwdYYyty01z5aNhPkKmG+XWpGPQtEKyR8ur0BbESSLasHGp5P0Co2vzYmP0jEKR5uLbuVIiu4TC9JIzFuYF8E3O+XIAlwL4GmNsedQ2NwJY5P/vywB+ldVWpoES0AmZPrP52zahm5fR870KHThTZqk1uWNXVWLItBxupVHycV8KhUDJzFFrO53T/SsynJWX7kzDbEsaTHHOBzjnB/0/WwCcBNAQtdlHAfyei/YAKGeM1We9tSlg1DVFyLQqlNyF6WYr8kWDA7MSXaoSeBTFMUORFA6dz5zR8+XWp8q1lLK0GWPNANYC+CDqoQYAF8Ju9yI24JpWpbrcLsdACEFwwVKtz5z29OmZSKqC+KSuKU+tyS230ogB0yrYJIqPhie0exR6jOkXwE6J6GSalboG8t0E+cEUY8wE4HkA/8g5TyuUZIx9mTG2nzG2f2QkvRkBhJD8UQpu6Lyhr3+VozOPrck9q1q61yk6cJrQz4sJsIqJOIQX29s/ZlgQ/NmlKoFDXQGzNq+DEmQWKoTF1GUFU4wxNcRA6gnO+QsSm/QBCD+6NPrvi8A5f4Rzvp5zvr6mJrdd45QzRUi2cdRbj6LafjbfDZk+lC6QEE9wCvExyqEi0yd6uZrpJmc2HwPwKICTnPP/ibPZKwA+75/VdymAKc55XvvdKGeKkOzS+OwRtwupYF6ucLook2TRzMGYXn5NrVHDwqLuuSP5l+/jkZy5rJcDuBPAUcZYu/++fwMwDwA45w8DeB3AhwF0ALAD+ELWW5oiCqYIya1yR2EkfuZS+JIwLqUJCu6jWWsApnSNKW3vVJXBqSqDyT2coxYRkl9JgynO+U4kmfnMOecAvpatRhFCCp/OG7vOVjGzaaojkqsndPNn5Bpi02nAtCrvPQaETIeiXXOF+qUIIenoLb1I1nY2TXXRzuDLFp9CA69Cl+9mEJJzRVyylsIpQrJBwb1U3ZrENWRaDha1GG48XoWuYIoskuISvSDztL9+Xl89h3RKKi5HSKb0ngnMtRyG1meNuL/M2Qclz+/sGVIYPAo93EpT8Lbgr+buUsWuNxhvMWQK1kmm8p12ULSfYDUliRKSMa3PAgCoiVpSosQ9mI/m5JzDv1DxiGER1NSDkhaBqTBoWkGJ+mRWKdpgihBCUuVj4soJLlUpXCiVPXxFIlGeFJltinaYjxBCMsWZEnZVZb6bQQgpcEUbTCmozhQhRCYKmAghmSjaYIom8xFCZKOLr7xyK435bgIhGSneYIoQkhGV4ALjs6PgoltpyHcTZjW7mnoGycxGCeiEEEl11mP5bkJBcKrLYPCOw6OQF3BN6pqop4WQWaZogylG43yEEBmSzTyzqyvhUJeDy+zIpwV9CZl9inaYT0HBFCFpEYf2eL6bUVDkBlKEkPzQeybz+vpF2zNFCElPg+UQnMrSfDeDEEJky/ei48V7uUWzcwhJm85nzncTCCFkxijeYIoQQlJEl2C5lvgddoWt8UfITELBFCFkVvMyWkOuUAj+5XzC0Rp/ZCYo2mCKKqCT2Urts6PC0Q1KIk9uXN+CcUNLvptBErDQ7EgyAxRtMEWhFJmtqu0dMHpGoRQ8sp+j4D6Y3MPQeady2LL88yj0wZ9HDIthV1dCYDQPp5DZ1NX5bgIhSdFRhBCCMucFGD1j+W5Gzlm0dah0nAcAuFQleW4NCeD+y1+BxV7fc6ac7uYQkrKi7ZmivilC5FNyb76bQGYRt8KACd284G2HuhxmbT2mdI1JnztsXJLLphGSliIOpgghcnG6+CDTyK0ywaapCbuHwaydG3fINbxoKvVUkUJUtMEUowR0Mmsl/+yrfQ7UW45CQT1SZIbx+QMuq6Y2oneLkHwq2mCKEBJfiXsQSu4OJpxrfdY8tyh7xvQLqIJ7geIyrnHH9c0YNi6N+7jA1BgoacOkrjGqd4uQ/CnaYIoWOiazHUuhNEIx9VA51BXwKA35bgZJk11dBbfSKPnYhG4+AMDH1KC8WFJIijaYIoQkx/jsqEXlVWhlPe5R6qajOSRNdnVFvptAiCQKpggpcgruhUpw5rsZedNXsiaivpQUp6oMw8alsNKwUU7Z1VVwqspg0dal9LxgTyPlwpICVbR1pso0dAVDCADU2E5DLTjRW3pRvpsy7Ryqctmzv+INLZHsEZgKo4aFwdujhlZwJP/7jBpaoRacEbP6CCkkRRtMETJrMUSsJKOW7JVi/v8LqLGdnpZm5UN07hSVgCgsTlW5rO0Epoq7CDJnCjAuZLFVhKSuaIOpEh0tjklIMib3MFSCK9/NICRtPqaBiosXDH2la6HzmOFSmTDXcjjPLSPTKd+XSUUbTFUYY1cfJ4SIGPcBAAVSZMYL9Db6mBocCjjU5fltEJmVaACakFmomEohkNlODKbGDK15bgeZzSiYImRWyneneH75FJQGQEgxUeT5kFa0w3yEEEDhH84L0PjsKZTynHk8iuTFOodMy/1FHwkhxSO/0RQFU4QUMa3XHPyZcQG1tpMAEHdB2Zls2LgEXkXyopvJak4RQkiqaJiPkCJmco8Ef26wHAr+XIw5U26lKRgkulQl4r9xptOT2c3HaJiXZFfRBlOzZJUMMguJixLL+YBzaH2WXDenIDlVpegrWRsMqgihAKrY5fekX7TBFCHFSOuzosZ2GqWugaTblrgGp6FFhYszOrylaonx2nw3IWemdHODP7tU1GNJsouONiRrGnVr8t2EoqcU3AAAtS/5WntqqiEVJPgTzlMNsDQqOkTOdBbNHACAXV0ZvC964etJXdO0tolkn1qZ3+9q0R4ppvuNVeZ7XmYBMCqrp+V1Ko0zs7ue5XiRVpXgRKP5QDDgyne3dyGZ1DViQjcfTlVpSs+bV5l8dmAxUbHkCfzxbGytSvu5ahkTB9I1pWtMui6lXU1ruc50GgqmckOpYCjRTd+MpWpT7Am+SuK+bNLImAY+nbSK6clPaa0xwqSdWbPRmnS5X2RY581NfpQyT9cJerW8BYqj1WoWx9zHmQI2TTVSnT492y6StAojlps+HLzdargyb21xKbNzPKkp0cbcV0yzWWfZR7RgJQ2mGGOPMcaGGWPH4jx+FWNsijHW7v/vvuw3M3NSXyg55CxL09ZYJnm/Ls2TwUylmqYET5VSgVVx3vNCpWQq1GqW5Gz/KsEJtc8ecZ/GZ0trX2Vc/K6UcvHvWapLrSZTAzdhMa9ABU/vO5epRt3ajJ4/T7chSy2JNFPykXRhF0Uqlp+/IQCMGBehrzSzv2W4krALMKumBhO6+Rg2LsOUtiFrr5FMXZrnoUTmlOhg9J9rlgli76AhR+ceVRqRW5VhZo4kpEpOz9TjAG5Iss17nPM1/v++n3mzsiN8kKO5OvVeHAVTor40VJNGHac+TY5Hb+JiSa6yy9WNAIA1TeUZv1ZrjTHjfWTDPNOi4M8GTW4OGLo4PWzKDAs91qpje0yyoURVizrrcRg9oxH3l3JNRj14S7iYY5Lq5/siXoelvApr+Jy0XztTddplKW2vVuiCV/jVmgXB+1fWZCcALlHVwqhMfxgsFRtakg9ZNVUmrrW1zHgDVphuTul1l1YujftYjWZhksBMakiagSc5RRmU8X/XQdMKDBmXBY+SJfrw7y+DTVMNQ0kZLNo6NOovhXMahvpUORiKUikYDP7v+RyI5zlj2LFxAS8LXhhlwqBWpt1bHM6kUaKxPPHnr4Lnbtg3V5L+ZTnnOwCMT0Nbsi/s+6lShH7VCoO8k2Kpqg5qZfxtKwxqlOnVqNCbpLNTZKSszNfn5ioYAPSKMigVgF6jhFad2Zc4k0Tc1U3Z6UVqrNDjby+5OHh7rsQXUsW0KFXFP4nL6T2r165Mr4Ep0KsVWNlQivqy3Bw0LhPEq+14F5ImHvm5bhNqgj8v41XQcRVKIO8AvIRX4mahFQt5BS4TQjOmDGnUBNbw+Afr6rBcueTDNKlFgJWq+dBplKjWRK7vtrS6RXJ7fdj3afnc2Dys6J7wSnWzeL9mYdK2hO9bKlWhRFUbc1/43zlwrAsPCivU8wAAy+pLsLG1Co0ViS8u9coyaBVGsCSnCH3UBU34cSL84rNJdxG+eck9cfdjUsb+TgGJehqXGrfETefwKnTwKA1oqjSgtlSLalPob6L2J6DX+v9OZaoGjBsWoK90LRwqMahKt8cqvFeoMuxcY9KoUK8yooWXwcCzP8w4hxtQCi2ayvXQqZVQMoYKrsNKXhO88FZnMCZYHue8WaFXQ5/g/BA9VK5WKpJ+O6/gDVDxyH1WGTSo0BfuygXZCpM3MsYOM8beYIytyNI+86JMNTfi9nVNHwm7FRkdmXQqLJ9bio8t/Ch0ytDBaa52lezXK1HWoa3kY7K2naNZGpHPYFBWJQ1UjJrIL22ZXh08+KTSs2PQqGSdCOI9N1q5Or0D1YLyBfjsss8CEE9YG1urIr6sjLGEJ4BFhmuSvka8HqhkPYGpWDSnBCU6ddIgVacsjTl5VsdJwF8nhILIauiTxvKBLvu53IRmhD5HtTBgC2+GKYVgSgGG5bwK1Qh9D5RpHF4aEJqyHj2kEHiv9CoFeNjfItMDrJKpoFEYsby+FJe11iR/AoC6slCgUKZXR1ysXLKgEgtrQ7/HHO1SVKnFoKxJdxHWld4ed781JVpow07GUsH2IsPVMfctrY8N6AyKUE9Lur24ekU5dMr4SfuLwn7Pan01FEwJo9Lfownxu8QY8PVrFmJlQ1mwt3x+VWQwV65qjNl3oDc8/PcAgLaSjwMIzR6uqRA/uwIL/Y5aRdjnSMnQWmOKCDgV/kDfFAzEGBhDRE/YAu06lKjnB2+XRvXy3iIsxFVCE8qjPn/qsCRDo0YV8fn8hKkVq3gNFvDyiOfUqcXPUxVPvzr/Ol4XcbvKqIm5IMqkZ0wZp4vapFUlTGlRKBhaeXnEBRuQOPhgEkdbg0YZ0dNeFpV+kO/pNtkIpg4CmM85Xw3gFwBeirchY+zLjLH9jLH9IyMj8TbLmpZqcbhmSZ28miJrSm5Fq+FKLNBfHryvXFMZd3gvQK1Uo1IT+iDXaZfLer0G3eqUksjVCh10ihJcs1AcLtIqTJKBynLTh1GhnodazRIsroscslpQY8Sy+lIsn1uK1WHDf4uNVwR/Dlxt1mmXY7npw6gp0UCjUqBJdxF0MpNCpa7W4wkEL3Jnu5VpIwPIeFdMctWURB5wWsrmSf6eqhRnHGljAqWwg6zM4Te9ogyVaunekYDAiSGVUM8AdfAqtbZEG5FPkshcboLWf0CW+3rpXg2XhZ2EakwaKBlDU7kepgQ5XGVJAqsW/UaJ9onfb7VSgTmlkT1KcgPo8IO8IuxznMow60XzK7AgzckVUjOZqtShnimjVvpkV61pDQYnUhhjmKOJP3wX/jnWKrXYUP5JtOgvQ4O/13iV6RasK701OLvaqBCHOueW67GhWd6wmkkVeRJWMQ3Wld6OWs0StNaagOrFGDW0wqvQYYH+cpSq6rDQ8KGY/aQ6w1vO377ZWBLc6mphXsJt1f6yHOvnR/7eTUoTakp0KNGqoJL5edNK/C5q/+l8njp07JrPI4/DVUaN7Hyqkoi/bfz37stlK/F5XeJhdQZA6f/dAkFPvL9HoEdKg8TtLLSyJRm3hnNu5pxb/T+/DkDNGJOcI885f4Rzvp5zvr6mRt4VYCa+cfE92NhahUqjvKQ/hX/oQOO/yuScQ6VSYKnhuoTP45xjaVlouK62NPnr1WmXSR6k5NRq+tTST2BtySeDOQgmnSp41VVp1ECnKEGLfiP+6drlkh9YpYLFnHT+9bpQAFlXqoOSqVGvWQGdogTKsCHSRAfWdMkNKP9h/ZdT2m+T7iIomPQXcvGcUIC9sDYycFIopL8WzbpLk75meG6ZnAkIgb+DKcHM09vWNWB9ghPPPN16rNfWYg4i89rK9PH3eRGfg1aV3OHXyAN8NnIEq40aqBUs5qo+MABQV6KNeFWdKv57qVUpoGDJ84AAxOm1jP2F5mrbJIeLVzaUosKojhnGC/S0hPdKrJtfHnFRsSBJ3qFGpYCCMTRUhH4Pk06FNU3lSYeDpf4mjCmg9B/TKvxJwOEnIL1ajXm69RFD3+GvnarFFYuxbl5FxH4UTAWVQjrAldNLEvh+xPseA4BWbUDrvHlY2VCKMtVcLDR8KKJnKvh6CgaNUgG3woDKsB4nAMH3yaCsQAUrCV4AJJrNuaapPKJnLtmweLwg4nN1i4LH78W8EnoZQ4CBmeL1pbGfC2OgphqACuhQGnZsYUh+wSFFlWBKr4opZF0IJ+o5Ch/S28TFXsrlfHpyDLMl42CKMVbH/O8kY+xi/z7HMt1vNqjjfImTdQfesKI++PPciINY/Geqw4rAyelS1yvKJe8vUdbF3LeiahVWNIQOykqFAiys+OCqhjJcsqAKly6ojPhyK8KHv5K2KFK1egFUSiWuWVobUWunSr0AKqZFiaoGSytWSl4BhlssMSShVYROKhXqJrTqN8Vsc+mCyojbKiVDXWn83i6Nv3fBoFFirnY1SlQ1qFTPR4myNqJERSBw06mVuGZxM9bNL0eZtiyiF8mkVaFEovdDTr6V3B6n8O03tlbFdFkH28sM0GtUUCsVWNNUjvlVBigVDFqfBSpBLNzZVFGBW+tboIICNwut+Igg5v0o4wSFAKCGEg0s9FmJzn1JROsPbFL+TIUNYejVStSV6mJ6xJRguEaYh3srVmGltgofEppQEp48yxiiv4dqpQINZXpcOm8xVpZHfh4TDVElUqddhoWGqyLua60xokSnxtK60oiTbI2hRrIXo7msMWK7wPB6eI6PVPsUjKGxQo+2xjJoVUroNcqYz1Vg6HeOZinaTB+L2Ufg5FanFbMuVtRXYk1TeURP9rLSKyKeU1uqxVqJySpNCfKrllSEEvQZY1jfXImvXr0QSgVL+Lx4ok/Kcnq4TWoTSvXqpN+9ttrVmCxbhlHjIlSpF0CrMOLqxs2Yo1kKBVNhbemtWGK4FhqmDrYj+q8antOnb1gR0QuZXOhzWw7xfHG5Yi5K1aHPtxLikFgygV5alYJhsaYCazSx/ReVMnrSlTx++z9ftRiVCRLBKw0azEkwO1GtYNAl6D2KdzYNpBfUwxTTs5ZIKsewXJBTGuFJALsBLGGM9TLG/pYxdi9j7F7/JrcBOMYYOwzgQQB3cD4zVsbTKqVPjuEfL8ZY3KuT8ANoINovUdWiXGIqqEGjjDtEppS4ommpFgMOo7ISVSZNcHr63HIddGolNjRXxuRLSV0dXDMveY5QQG3YF4P7P+qrm8ojfv9l9aVoK/kYFhmuwSV1l+G7N8YGQuFMEsmy4bOEKlTzoGbiSXb9/HLUaBZBwZQpFbjcWPchLNBf6d9HJfTKMiwyXAMlU6NZvxH/vulvg9sqmRrrSm/HXcu/jOXVi6FVKcVZSP6Xa6rU44aVdVgts/RCs/4SlIQNQ0Qf0ANBniIsGVufwmSA+rD8O71GiXK9GhqlAgruRZ31eMywlUIi22CjMBelOpXkVWywnSkMgaSTdtHES1DP5c0INUEDjUKBTfoGlCHqYN0Yf8LGLa23oE4fOdRSqZqHtpKPodYQ+zlcakzc4xztE0tuhE4lvof3rr43eP9HFoTyKucbQsnSiyrEmaefWrcAf785NAv1ovkVqNa0ijmQxhslX6up0pAwOPjx9Xfho4s+jAbdaqgU2phe0EAP3BzNUqwrvR0qhSrmZFOpicxTaqkyRuR6BVy5KHSirjZpcPviO4K3r54Xe7GkUojt3tAkDjNGfJeTfK3LVYkrkc/XXxJzX6An+fKGy3DnxtghcRb8l8GjEhfD1iiMWGG6GQsrFqNBt9rfbg1USmXCk/INvAVzuAErhCpg0fUJ25qojEAl9LhRaMFcxL7fyUY2onMmrzU0YaO+Pma7ZarKmPui3cRDEy7Ko0qZNGpKIr5/mqjeQY2SJTxu1JXqUGNKPkqTKA0g+pF56pKY3CsAaCrXo1Wb3oVTtsiZzfdpznk951zNOW/knD/KOX+Yc/6w//Ffcs5XcM5Xc84v5Zy/n/tmy3f7ktuxqVH6hF9jEj/IrYYrJXtQAr5weQsuihrnjrahuRJ/2/ZZ/Pj6u2KSvgN+cPU9koU8GWOo166IODHWlemw3HhjxNXx7RuacPsG8WRxxaJqLJNIOo0WmK6sjqpsHH1y4eC4pfWjmKNZEvdg8g+bF+H6FYmnu6ebpB7QpFuHVn9gtMx4A1bKmJ790eXrxNwiXVXMwV3J1KjWS1dmX1u7FiuqVqCtui34pa8r1UkOz8U7ZlSqmxP2dDZo16BJtw5lqlDC/YqG2EBNq4wdXlEwpeTwhl4R+nzNYZVYeeYh8bWiZjc2KcXPdyk0qGC6iKvo6INgvOGdD6uaI25zcGj8PVNSn5PGcj0W1pgwtzz0eVOAYS2fg5Yq6WCqTaiBKew7s3FBVTAg9Ck0qNAkzhkLd+3yOVgX9V1VMS2W1sYegDX+oaBqdeQMvjlhQWedMbKn+M7ld+KLq74IRVjPcCDAAoB6XWgYfHnVcmxq3ISL6tZEXJAoGMM83frgSVyOm+ZFJq2X6HS4ekHsrNPFxs0AIk/kl0lUJpcKLgHpC7JAD3eluhkPXP+vuHlVKDBUMAWUisgCxXqVHp9a8ilcO1+8kLu4JflJXa5y//co+rMOAHONcyXrCS4oE/++9cbYgCPa312zEMvC8kwrdeLrLBOq8GF1C8zaOlzC56IVFYDGAKz5TNx9JbtAUYflBIUfQ5QJIs4qg0ayPIHUfQaNAholQ1NUFf9416n1PH5ucaVEZfzw4crovNXoQDLeMXION6DCqJEsei0VjM5XlUQEoKuE6oT5XNOpMFqRQ1X6KqysFg86OrUiWJBPo9CjWtsIxgCjsiqmByV82EenViZNdlMoGK5atAAlOp3kh3VeRSXmlOnRZGoO3vfFK1vw9WvE4KNeuzI4fTn4uspSKJkaav/wkiZOT1oyH134UbSVxS8VVqaqh0ahwYdal+DWda1xk5EVCgbGGDYvi3qvwobtGrRrUm7fLWvmwqhVBk84Jao5+Oqar+Ifr1mLezclL1OgVDDc1NaA/9j8JcwvnS+5zedW34hPr44c1tAoNfhQ04egVqrRWKHHxS2VYXkcoT9iQ4UeK+amV96hXNWEGs2i4ElKpWQxORN3Lr8TNzffjmXGG7CgOhQIrDR9BFLqlUZcLczD1cI8mNzDwfuD+Vf+v99qZQ1u0yyCFipcq27CjYb5wd9s7bxy1JTooFUqUKJTSQ5XLJljwtr62BOhWiEOMcTLY6op0WJ+pfiZuEyYi+vQDCAyX+dyfWjW7B0tLWgrq4ROpYh5bzgUcFZ/TrzBGJbXroHPWIcpo/QkD5NWhQ8tjp+POacsdLINJTJH1v9aVh86mZZpy1AZ9r1UK9SS38Omknkxta0UTIGV1SuhVIjvk0Yp/hsv/+SqpqtQri0HAFzdFHlRYFDHnuiqJK7655rE72Z4ralLFlQFe5oDogOLFaabcfuSOyClTCN+9uPVdLq4pQqL50T2ulfrq6FVafCN6xZjQ3NmwdR1y+egRiMGcAwKrJhbipvaxPaHD0vG682+vvl6fGHlF9Bc1pz0tRhjQLn497ZrKnHTyo/hGl0DFqIclQodTsy5JfIJpXMl9iJfKknxq41VuKwkNg0kYEG1EavCLtSUCgUuml8ZU3RXyZhkb5AOSlRwHZQslIsVKOGwVJH4b6gNOxaUca1kcFeD2GHfdbwODOKM79urW9HgD+iMGmVwOFynUgRzK8N7x7RMGdtznUdFH0yFK9Gpw9aAYlhSth63LfxsTDG5Cl0l2hrL8IUNYsJx4CpUzSI/DLoEwzVLjVsifv7GJZ8HANSFFwFViiePja1VEVdarbWRV/Ab6tfh8obLExbFCwgcMsOj+gZTQ8Ik77natuCBKJ2ibEuM1wVLNiiYEqtM4gHHpDGgRKfCZ5bGv3oDgNYaE9oay8EYg0alwFVLxJOhQaMKBrXJ8pWW1JUkrNR9/cL1+PDC+L2P0cO54YnE8yoNuKzxooi/v1qhD75n9Rox4JtbVh5zEpQzXKlgClw0rwofX70E92/6WvD+pnLxwBjo+dCr9IDPAzVToATitOeWiV3BsK9Mr8YlLZXBg5CCMVRoxM92hVaLBdpSlGpVqC3RQsEYtCpF8GcpGpUyxZyQyDw9AKiGIZgQGzCfl2K1NtRbyBjD9YZ52FRZj081xfZCBRYnZmBYX7cBhvolmFMTvy5RPtzQ/GHM1bYl3OaSBZW4clE1ltVJ9ygvr1qOOUbpnt9kf4br5l+HH26+F3dcHBomW1JXgo+slney1yqMqNBJB0v1pnosM96AGnWoR6pEVRPsWVtcsRg1BnkTiq5eUotqkwaBTJDAxyUwo1fjH/LXqhSo8A9nzasyYK6mDWtLPiWWXtCqYNSq8I3rFsf0usSjV+kl89qkej+Wzb8aw5UboNbMB5uzGqUX348Tcz6KwUVisHm2ejM2fuqfxY0VqphE+sB3JnrfJsQen5b4e8FMCjVKdSrUmnRx1x7dpG7AZRLDeQFzSnUwaVWySgTEq811JRfz/AJtX6urwQahDst1FdAwZcoV0A0KdfBd10OFy4UG1MU5F60xVeMTlQui7mViDqv/AjG8QhUHUFpAwVTxLFCUBgVT4MMrWuBZLmDY7MJzB3oBACWaUnx93VeDQZROpcP1zdfDOmTDUevLUDBA4JDMjQowKCtggXiwmF9eB4Na/ABd3bIeb3ccgUlZEzxAXrqgCpcuqMKFcTscvjJs7YvsUl1eXwHG4l8ZaJQaVGgrMGQfirvNLWvm4sRubTA4qTXUYtg+LL1xipnFKqaVrG58cUslvrAy+suR2Neujh0mXGG6CXq1/C/NxtYq7D6X2hyIv131t3j06KPB22qlGmuaymFzewEAlzdcjr0nzoTaZLwJAHD10loM25RQjZegqawSy6qWYbHhapyxb5N8nao4B0qFggWHbVsNV8LLXfjEukY4vT6UaFXYMn8LTBoTXjj7DTQamjC/qRROjw8nBy2ASnpaPiAOv+jVZcH8m1Rm8hi1SgicQ8uUaOFlOM+msKS8DOcwIbm9Tq1IqQhppVKHuSrxwkHDlLjaEFVrqLIFS1rXoF5bj7feBxZXi8nUjDG01hhx6rzsl8oKZVSPUqvhSrgF+Uv2qJUKrE+jl+aqpqug8jK06C/DhLdbcptAflYgSLlozkXYUBf/xFupi9+O2y5qhNXlxZvHBoP3bWyej45ha+j1wuq1XTtf/jI5c0p1WBTWi6VTK2F3+1CirEOLfiPKVA0oVdXj769ehT+d+lNwO1mzxaJSdRkDorN351cZcH409DcLH9K/foXY6zOvdB4+u+RL2Nc1DoNWCTAFLNo6eAyVAMYxZmgFAj1ETEyynlOixdSSfwL2fxU6tRLVCgadWokbjPNxQbDjtH0KV6hie5UCQ4HX6pvQo7ZgiaYCR1yjMduZNMqI4efp0lxthK3fh0qTFis8lbAIblTajdBwJaywJ33+am013hcGUGPUokJQA3bgIk0VBnVWjCmdqHFoI3rn4k3EiUcFBa5UNOA0Yt+z6Tbrgik106NCPQc1EA8+CgWDVqGMucIJz4kAgNbyVqgVZyBFpYj/Nl6yoAqfWxMaepprmosN5XfA7RVithXbYMDWvsj7kx1IllYuxRUNV+Ch9oeCcVD0GHa1SYsFNWIX6m2Lb0OVrgrHRsXlFtUpLpisjcqZuWFlHd45OQSPL/k10RWtDVigKUNnR+i+ZL+fVmGCOsHMtGhy6k5F5zNolVpcM+8anBg7AQC4sflG/P7E76HXKPGR1sjhtsYKPRQ+8Xdf3VgGu1eNDqcGdf4hFqmk+89dOh9KpQdPnhaDh7tW3IVnTz8Lu9cecxIIFI7VqBTBobGFFWKQ+Tely6Hzf948QuxnCAgNUWtVYjp6vETmcqUYoDaoYnOZakxaMDAoGcOdxqU4ZbFgjakK68urcW5KOphqLDdEBHOtNUa4vALGrG4AQJW/V7iGi5+3O0qSLK+z+g7UAqgF0HT9L6HWlsLrv+5uKWvBBY0y7mfOpBR7vgxZXMIl+qo8vMBvqjNutqyYAwUTA+g7nw/dv7h8MU6Pn44YhltetRyCwHHzsrXY1RGboB1+7GKM4atrvprwtW9ddCtqDbXYC+nALLC/8GDq6qW1uHpp6HP9sbUNsleSkIMxFkxzaCptRLmuPGv7DleiU2N1YwWcYWUO//HaRcE2BFzWWoVVjWWy16XUKBW4dnkdTp3WQqVgUPmHdheoy1BnMkIzqUGDKf4EDL1ChSWa+Hm5FQZNzhbdLlGoYRE8kj13Ro0KF/svABagFB84B9HASzDiD6QWJ2gzIF6XM/iL0dqVADwAgLXaGkALeEw+bJuK//wGbsJpOFCvMmLAa4tbOLQQzLpgioFhTcV16B5LHlUnc828zSjTmmBUR35JAh/6OYYGIM5VfK4oFAwfXTMXdQl6CKKTT1NdoHjxHBNc3los9/ekLKsvRf+kA0d6p2DQKDHlFA8uUl9OnVqJlmoD4A+mPrY2vUrom+dtxomxE6gz1sUEswZ1/I/1nRvno2vUJtmruLRyaXAo1aQJ5ag0lYROYAZlOWpKAEyGnmdUG3HroltRqQ9d7ZtU1ZirrwW8wCfWNaCmRAuPT6zHsqB8AYxqY0ozFgN0CQL3gLoyHfRqJcrinOzmqvyJ10o9Pl+6DEZ/jZ1SroGZuWO2Lzeo0VpjRLVJHBK8Qj8XZQoNLMyLC1ZH3HbUloifQUHgcEz50KAx4UahJWIqeIz5lwHDJ4EFkSUOtAYxKNIAuHvF3dCpdDhm+FXc3ZSq6tFW8nHJz3ZDhTil3H9cT+qi+dXos0/GXGBlIl4OXlNpk2QwpFAwXNxSiV0dkVfg/7B5Ucp1v2oMNWBM3F94wJSKwGzjXPjC5dITDjQqBeZVGoK1rKJFf58WG66Bj3uTvl68pPtU6zGplAp8qmwRTAo1/mg+FbzfoFFh4wL5QX1t2GQUg1oJu8eXUjsC5HwsakwarNZVYud4aFTDCA0u1cX2olUodfhqeRt2j48FgylDnGWdshXzVEGPLxhXwKRX4phrDC2qUvT6e6FKMlwrNdtmXTAFxHb9ytVSbcSChi144dRbAMRk1MaS2GUQVjeWw+0VsG7epyQTDG9uq8fBnomUpqOnItADlY7AgSU8YXVD3QacnTgbsU1bY7nk8y9ZUIXasiq81BmZe2VQVsDuEwPL8CKZ6RSQA4AllUuwpFJ6Edp5VQbcsmYuaku08Eb1XFSbItfoSuTjCz+OcWfkspSLDNfgk4vm4Ll9kfdH57osNmzG325swd7O8eA6aGqlGp9d9tmY4DtdRo0K5Xo15kUtzcHA4g5B31u2KuIgawqrxXY5b4CTBw7cofeNgQUDIwBo8+c7jSpdsMjok5lXaUB9uR5qpQKXzKtKfIXNGHDpvfEfB4JD5gAAXRlQ2QJIzHoMD6TCOzYDddNcMhdh+NSKzTg0XInW8tbkG0+z6By1eDbUbQj2RAcucpbVl6YdTGVNVPNbJUozBGhVCtk5YABQpauDUyIQ2VC3AfMWzMOUQ140vbSuFPu7J7B8bik+OJ94mdrAsPUnTAvhkhHISalTGXGj0IKDbAhqI0d5DioNBXp4woc51SoGLRS4p3pFysNtADCPl6KHmVFhUGNxifQM6nRpmBLrdGIngBoKbBDqsKWsHr1uJ6pKlTgdew047WZdMKUJm3kWfRiqNmkwao3/VxF7URrw13PHMe7ui7udUsFwaYIrkflVRsyPM00cEOvWqJVqPDlijrsNIPak9Jh7sLZ2bcLtkol3lRkYLtpQtwEb6uQtyMwAlOtjT+SLDZvR7dyLmxbclFLbAgHn5a2pfTlbMwgoA+pN9ag3ReadKJkapdoyyFn7u1SnxrXLI4Os6KVwAMTMtJIrMEyU6nPiaS43oX/SkfU1rhhj0PjzjbQJKpmnbN6lYhCVYAj4C5c3Y8TiwgfDJ9N+GZ1Kh41zY5ehyZblc0sxbsvt2UCv0uOetnvg9DkjemIMGjFnKR+UEgHwLRLBUmB4tSJBjqqU2zc0oXvMFgw4o4dAa2XmIJUZ1JK5nInUqSRSJ5QqoLIVMNUCnS8lfP5FjZUYtpsxDHvKQ1tVSvH3KlHEf790aiVqjBo0lOtxzCbuv8qgwbpq6V4/OZbySvQwM9aVVWODTjzu9XrFPLs5Uu9HGKljYKAjQur3r4cJJqUGS+s0GPLaATdgSvD7TodZE0zd0HIDDsGNnhFF8Nib6Rh0rkZvm0oDw0qJgymtUhuRz3PXirvg8rlSeq1LFlRGHMAYGBSMYU1TOW5ZnLiAXjx6lR6LKxZjVXWo4KSCKdGi3xi35lM8CgXDN65LkltTYO66rDnh8guFal6lAXq1Eh0j1uQbI/b7k0JaW3Yok189lxs0KDdocHRKPHE3VxnR5Uz8nGX1pdh+OvdrhwaU6dVorUxeAylTSoUSRkXkhdMdF8/DYzunOZMfQFtNG65ouAL3XPhPAMCNq+riziQ2aFT4xLqGuAnY8WpEVxo1cWfG5c3KT/h/eCnhZkaNCjqPUvZQdLg2TRXmqoyokahdF9CoMqEX1uAs5oZyPWoNmSW4r59biVaXCU3aUODUqDLhrtJlMCrUOA/5kzUA8btq0qpQmmBZLEAM1K43zsc8lbx1Y3Nl1gRTC8oW4Kx6EIAZC2tKUFuiiynEuXnZHLx3diRmvbBoc0p1GB9NfJWfDRqVQjJRPR6j2phwCOmTiz+JCVcoh4uBYVX1CsmhguZqQ8LZitFWNZThSO8UmqvFXKBUZvjMNCVaFZbUlaCtsUwy3yJnB/ACW1ggkEtVaRR7dLPye2fpd5xXaUDPeCgv0qBW4ZKWSiyZU4Iuybzr0N9RzpqKgBgEWV3pDeWEu23xbSjV5Kd6c5leDaWCwSfk97NVadREDCVHS9STPxP1lF+MeZN7Q3cYqwFbZD6c3EW2ozHGJAOp8Ou7y/T1qA7bRpHi60ltWaJTSy7DZfSnEtSV6jBudUvWR5OiVDDZMxhb1enVAcymWRNMAaFu4hKdCqsklguZW64PVhhPpK2xDAZjBbKYjyrps5fMw8BUksvoFNQYaiLqwXxlzVeytu/aUl3GPUjLq6QLMRYahYLhw6sy70ko1ZTC5rGFEpt79wNn38ZXrvyGdK9Lz+6MXzObwnOp6vIwbTuRj61tgMcXeSESKDoLiNPfz/o7nxrK9Viia4Ox3IiL6y6W/Rp3X9aclbbGq0Z+94q7Y+774pUtOb+Im06lqhpohFl1GgIACOGJ2xXzAbe/16Z8HjDZA0AsHdLtSTw6IdecUi0MYZ+b8NA5ULsp158qvVqZdCURrb92Y6IJVIVqVn2K18+vwJxSbcZXOQp/cclcCwxRFAOdWhmx5ITKvzxBYDHqL7d9WTKHopB8adMCeFLoKUzmhpYb0G/tD/Um+oMlndcM7H5UzK2wDgOX3AMYKoHRswn2RsIpFSxYeTzal9q+BCVTYrTaDb1GGXY1HTuZJJHwHl29WixwesXCGmyPU74tVRGJ9n5SV/4zSXRPblv5FoxaUktNKDR3li6FMsX619bAwsTaEmDpzcCRp2O2uUQ7B82qErxoPZdxG1cYK7HfOQSDQg27EDl2eLmuHnqmKozeHYUipZmPhWRWBVMKBctKd/HF9Rdjyj2FBlN60/oLWbpdy8l85arImVAN2tUwKCqDsyET1eoqFCatCtksuKtX6aVniFn8M6ys/rPyyCmg6RKkXs1oBpKRB5WOdXPWYcA2gHpTfTCAT5SAfNdlzSkNfSkVDP/gr1eUrWBqupQb1BizumMCnbsva4bbl72LBymXtVbhz0cGJCetpOtDS2pQOY0XoRGJ3i2bgNJ64LA/OLriG8DOB8Sfw9ZwtGrrsL/h89h4WVTV/NplwZ4pBWOoVxmxVFMJY4bHxw3aWqzSVOFV23nYoxKxdApVwsrq0RbVmuDwOHFKRtHOZAJB6ErNzAygwhX+GawAVeur8emln853M3IiMOSUzZo6UpRMjWrNgrRqLc06ne8CXTsBIT+zrnLusr8D+g6IPzfKH2a7ofkGVOgq8OSpJ5NuW2uoxRdWfkH2vgsucTmHbl3XiEGzM2ZCQUUO3gOdf6ZZ4N/WGhP+fvOiRE9J6pp512D/4H5U6cQTcrw6VNOi+fLI22qduH6fuR9Y89mIh7xKiWC+rAlYdB1w9u3gXddErwyQSON6MV0gCmMM+jg1oVJVbdJiubcCp6xjaFJlNmtawRi+UrYq+YYzAAVTJMKSyiWYdE3KLoWQrtsuasz5Ve+ME0i+lgowpymQCgxf6zXTeGhQKGOKdMqxoDy1pYqmy9LKpbIW1S0URq0qK6VE5FhcsRgCF7C4InszdKv11bihJf5C7nmx4uOA2z8r9qK7srrrm40tmBRc2Onoj32w9RrJYCrb6lQG3FO2EsosXHQXywU1BVMkgkqhwuUNlyffMENyFygtSlN9QO9eYNlHxcCpdz9Q1hhKQj35Wt6aVqZXY8Xc0uDCojPByuqVMCSpYzOdrpl3TfKNZinGGJZVLZO1bVNJEy5YLuS4RVmij+oNq028KP26+RU4cmEyrZeapy7BPJTEBlNX/KN4YZLARl0d3nH0ojwLNZmyEUgVk5lzxCSkWBx/EXBZgNbNgGUA6Nia7xZFkLseWdaoMpu5s6lxU5YaQgrJzQtuTrug7bTa9K2U10/50OIafGhxaGY1FlwNnHwF0JcDk9JrJiallqgrVdEMrPk0sO9RwDqMJnUJ7lbLC2ZjqLSAd2ZPFsglCqYIyaXu3eJyJyV1wNAJ4MTLQHgyqa8A1kHItyLp5ifZxRjL2YSYdGlUCqijC/Iqs3AarV4IXPlPKT/NqEhy4aPLYv0ypZqCqQQomCIklzq3i/9d/R2gz5/LIAQKPc6Aq+5cKW8ShzurU1umg5B8+sqHCmd9xpuMzahS6oHlHxUT3QPmrgH628WfW7LZa1tYgW2hoWCKkOnQ+W7BVTDPuZI5gCW0Gj1qlwGBNfKWf1SssUPIDCJ3YemcWPNpQKkFDjwOAJiv9vc6zYkqdhx+nKHv2LShDDJCpkP3+4Aj+eLIRSVqKjh0/qKAc9fQQZ6QeKoXiUOH+vLI+yuaxRpWci3aks1W0XB8EhRMEZJtnItJ5eb+2PvD9R/K68y9nFKqxYTVgMu+HgqmCCHx6crEpHZjTfJtE0kysy91hRFMMYhLQBUaGuYjJNu4AFzYB/QdjH4g8mZ3Ya21lzWX/z0QvTQQ9UQRQrLg0gJdboZ6pgjJttmWGxVNY4xMiA2oWQoYq/1L4xBCcmOWH3/yhIIpQqbLbA2yypvEfzUG4OIviYs2E0Lyb9nNoZ8XXx/52NrPhb67QPxhw9qlwIKrEr9OeRNQWZgrFmQLBVOETJtZGExd8Y9A2x35bgUhM09ZCmvypasubF08VdQq7uVNgKkudHvOCul9rPg4MH9j4tcpnQvUpLCE0MJr5W9bICiYIiRnCiNhc9os3iIGT+HU+uwUNSRktmm6BLj03vSfn87sO0Wc7+rCa4GMl49JoT1NGwDVzFpsnIIpQrLO3wMVLM4ZuLvIe6bq10gvaUEISR1jsWv+yRH4DirTCEY+9K3I2yb/jMLpHJoPlH8wVE/fa2YBXTISkm3nd0jfL/imtx3TRakGrvwm1aEhJBeUqtSCquZNgK5cnPAhh1oHeJzSj9W1ASX1gKkWsA6L95U3iReK5gH5bUp2IckU4ixoAFj9afHfeRuBY8/Lf408o2CKkGw5/qJ4NThwJN8tmV6tV1MgRUiubPpW8m3CKVVAwzr521e0hFYmCDD4yw8wJgZSQKinq6JFDH7iBVPRKx8EaIzx26BQAj5/MBXI3apZDDRcBPQdCG3XcqUYJO79v8S/Ux7QMB8h2TJ8avYFUoB4wCOETI/apbnNQ7zkHmDd52Pvn7sWaL0msrRJzZLE+zKFFR6tSrIOZ/jMwaCoHi2VPjIoa7069HNlS+L95xgFU4QQQshMseLjqfdWpcJQKV0nTqEA5l0SGchFL3kTbc7K0M+MAYuui3z8yn8K/dx2R+wElmjhPeBqnRjYTcesRxlomI8QQggpZoEhOsbE/KVVt03TC0cN/zeuF/+zDAJeV+RjSlVsj1v0DEJVWJDHufj7NF8OHH46e01OEwVThGSDfZYtYkwImTlWfExMQRg5JSaSa0uAEn8NqZJ6MWcq07Uzl38UOPEyUNooJo9zDrgs0tsGXtvrTrzP5ivF/XgdwNCJHKw3mD0UTBGSCo8T8Ngjpwqf3xF7lVWsDFWAfSzfrSCENK4HqmUWwtSWiD04I6diH2u6WMw3CiSap2vOcnFxZkNlKOiZ6BL/LW1Ib59qnVi/zuME9JVA1aJQyZnSuZHb5rn0DAVThKRi5wPiv1d/R/yCKzVA1678tmk6mWoomCKkEETnH8kRLMoZNvwWPmNPrnizd8MTzgGgohnY+DVAV5ra/qOpdeJMPgBQaICL7i64ZakomCIkHYIgBlb1bfluCSGEyLPiY0B/e+a9UKmQFUil2KsUKOwJiDP8gPQKnGYRBVOEpOPos+K/s7EUAiFkZtKVAQs+lPl+AjPoyudnvq9MldYDbZ/Ke1somCIkHeOd+W5B/i25IXRVSAiZPcoagU3/LK5+UAiqWvPdAgqmCJGF89mXK1SzGBg5E3lfeJLn3LXT2x5CSOEolECqQFDRTkKSEXzA4NGCXMIgpxbfkO8WEEKKWSAhfv7l+W1HFlDPFCHxTHQBYED7n/Ldkul1xTfEqc3xrjxXfkKcak0IIZlQKMSZ0UUgaTDFGHsMwM0AhjnnKyUeZwB+DuDDAOwA7uacH8x2QwmZdu1P5rsF+SG1lESAUp18PS5CCJll5AzzPQ4gUX//jQAW+f/7MoBfZd4sQqaRZQg4/Ubei74VpA1fFP/VlYl1XhZem9/2EEJIAUraM8U538EYa06wyUcB/J5zzgHsYYyVM8bqOecD2WokITl19BnAZQXqV4tVdhP1zMw2phpg4WagelHe67gQQkihykYCegOAC2G3e/33xWCMfZkxtp8xtn9kZCQLL01IFgR6pA78Dtj/aOR9s0WimTlNF1MgRQghCUzrbD7O+SOc8/Wc8/U1NTXJn0DItAgLnJxm8V+pNayKla4UuOSefLeCEEJmrGzM5usD0BR2u9F/HyEzU387MNaR71ZMn9K5NDuPEEIykI2eqVcAfJ6JLgUwRflSpKAJAuB1hW5HD+mdfgMYPTu9bcqn2TakSQghWSanNMKTAK4CUM0Y6wXwXQBqAOCcPwzgdYhlEToglkb4Qq4aS0jKOAfOvg3UrRR7YADg3DtA737gsr8DnFP5bV++mGoB63C+W0EIIUVBzmy+Tyd5nAP4WtZaREg2+TxA3wFg8DCw6VvifYNHxX/bnwDs44BKm7/25cvKTwCWQeD4S/luCSGEzHi0nAyZvezj/h9m4TCX1Oy8NZ8G5l06/W0hhJAZjoIpUnx8HuDkq4DbJm97rzu37ZkpKpqB1qvz3QpCCJlxKJgixWfoGDB4TMyVIvGpDeK/+vK8NoMQQmY6WuiYFJ/A7LThk8CSD4fu7zsIdLwDCN78tKvQVMwHVn0SqGzJd0sIIWRGo2CKFDeXvwinzwuc+Ut+21KIqhfmuwWEEDLj0TAfKT6jZ0I/7/2//LUj3wyV4r/LPgLMWQE0X5Hf9hBCSJGiYIrkl8sir2ikZRBw2+Xtc/x8Zm0qBm2fApj/622aAyy/BWi5Mr9tIoSQIkXBFMkf6zDw/i/FXKZk9v8WOPj75NvJncFX7KpagepF4s8aQ+j+livFGlOEEEKyhoIpkj+BOk+TXfK2d0yEfvY4ge0/BsbOibd9XmC8E9j1YFabOKNUNEfebvkQcPk/ABpj6L7mK4CaJdPaLEIIKXaUgE5mJtswwAWg+32xF2bHT/LdovypXQoMnwIWbQE8dnGpGABgLLJXihBCSE5QMEXyh7HEj9vGAJ8bKK2Pv81Ub3bbNBMt+TAwZyVgrAJQle/WEELIrEPDfCT/OAc63wU++HXk/XsfAQ48Lv2c4ZOhn2d7QKXShvKjCCGETDvqmSKFofv90M/bfgSUNYZuhwdZXjegUEYmrR/8Q+7bRwghhMRBwRQpLLYx8d/w3qbggsQA3vtvygMKt/TDybchhBCSUzTMR/Jv9Gzo572PJN9ebr2p2aB+db5bQAghsx71TBEyEy2+PlThnBBCSF5RzxTJ3Ok30ixNkGQ2HxFFD+UZq4GGdbF1pQghhOQF9UyRzPW3y992tEOshSR45S0jM9tVNIeWhQmobMlLUwghhEijYIpMr6PP5rsFM0t49XJAHN6rW5WfthBCCJFEwRTJLduYmNvDGDDRle/WzDwLrwWUGmDyAtCyCdCa8t0iQgghUSiYIrkz2QMcegJYcgOgKaFeqVSVNYTKQFAJBEIIKVgUTJHUCT4x30mZ5ONjGxX/Pf0mYKBlTlK27vP5bgEhhBAZaDYfSd2eX8mbvXfmL6Gf7WO5a0+xWHenmFyuL893SwghhKSAeqZI6lwW8d/jLwL6CultLIPT156ZomohMNYh/ZhSJS6hs/oOsdePZjoSQsiMQcEUSd/wqcjbzilAVyYGAideyU+bCtmi66SDqUvuATRhieWMif8RQgiZESiYIvFNdAEKtZgILcfuh4DqRZHLwxDRio+JCzRLUaoBlWZam0MIISR7KGdqtuk7AIycjr2fc8AxEXlf+5PAwd+LQ3bhCw8nQoGUNM4Rt+I7DekRQsiMRsHUbHPmLeDYC7H3d78P7HlYrAsVbf9vgYN/SHPJGCJKFDBRMEUIITMZBVOzxZm3gAO/i73fMQEIglgTCgBcU4B9HPA4Yrf1eYFtP8ptO4tN+TzxX0NVZB7U1d8BtCX5aRMhhJCsopyp2aLvQORtnwewjYgBVlUrgr0jliHg8NNUaTtbGjcAy28RAydBEKvBL7hKfKz5CnGRaLUhr00khBCSGQqmZiLOxZlzcusRBYpnhjvytLhECQCMnQvd37ld/NdlzaSFJMBYHeqBUijEmXsBc9eI/xFCCJnRKJiaiXr3Ax1bgfV/A5TMib+dxwnsfED6sUAgRXLLUJnvFhBCCMkxypkqVNt+BJx4WfqxyW7xX+ek+G+gp+rCXvHnwaPi8wN5UCS31LrQz4YqYOlN4s9VrflpDyGEkGlFPVO5Zh8X/6temPpzh04Ayz+afLuu94CuXeLPZY3AydfEn489n/prkviqWiOHRAFgzWcA+6iY4A8Al3xZ/Le+bXrbRgghJG9mV8+UzwOc+jPgtqX+XM4Btz31533wa+Dos/H3aR5I/PxtPxITl8MFZoUde0EMmHr3hR4TvKm3kcizaEvsfRXzgbrVgMYArLpt+ttECCEk72ZXMDV0DBg4AnS+m/pzL+wFdv08trBlKnxRgc6FD4ADj0cOx7mssUUcoxcJHjnz/7d378FxlWUcx79PkqZNryFt2qY3aEuwLYWWNpQUWkurZaoiOIIOKALeCgojgg4D/qGjM46XGe92HBlEUVFkVLQojjJYkZvYQgHpTUoBe6O32AtS2qZ5/OM9291NNm2aTfacnP19ZnbOOe++u+dtnunus+d9z/vm77cezh6vvqf77ZPjy53a4LzrYM7Hw35lFVxwU5j9XUREyk55JVOZJKU7657tiWb2XvdA12asPvAaHNybPW55OUx6mZs47Vwbtm/uD9v/7YEnvpd/pQlg5Z1hu3ez5nkqhbpJJ64zsC7cqSciImWvzMZMZZKgbiRTmQRq39bQTZg7D9ORg2CV+eurrfpx/uufuzds927OTuR4YEf2+X1bs0lUy6aO5z9yEFb//OTbLSevcXHoPs2dUmLcudB/KDR9OMRKREQkUl7J1LFcqhvJ1PGW/Hjs2zBgGMz95InfxiwMSH/qh9mygy3hildGy8uFzyGl0X46g6pqaHx72B8yOjxEREQi5dXNd0yBZOpo6/EX883t2nvie2HbdjTccQdhaoKM5+/r/H22rMxPpCB7J54kx9R3h+3QBpj/mXjbIiIiidalZMrMlpjZBjPbaGa3FXj+WjPbZWbPRo+P9XxTu+HQgXa3sncyZurgXnjsm2Ex3zdaYMeaMOD80IGOr8316uMd54JqPdzx9vlc3bkjUHpO7iSnIxpDl+vcG8JcUQPrYHB9VG90WD9v9rWxNFNERPqOE3bzmVklsAxYDGwBVprZcndf267qr9z9xl5oY/c989MwuHvuDWFAeGcDx5/+SbjKBPljZTY+DJMXwksrOr7mlcc6XlHasSbMTC7JNePK0GXacDacsQQqKkP5vJtjbZaIiPRdXRkzNQfY6O6bAMzsXuBSoH0ylTyZu+SeXBa2masOWOd3xbVfx65QIgXw8qMdy9YuP+kmSon1q4EFt4JVdHPsnIiISL6uJFNjgdyF3LYA5xWod5mZvRX4N3Czuydv8bfXd4Vt+6kHJD2qB8GkBbD+QXjLEqifCodfD1egjrwZ6mSuRomIiPSAnrqb7wHgl+5+yMyuA+4GFrWvZGZLgaUAEyZM6KFTd+KNlt59f0muhhkw8swwmSZk186ria9JIiKSXl0ZgL4VGJ9zPC4qO8bd97j7oejwTmB2oTdy9zvcvcndm+rr6wtV6Tnbnund95d45A4gzzX+3LAdPT1sK8tr1g8REYlPV75xVgKNZjaRkERdAXwgt4KZNbh7ZpG5S4B1PdrK7ujCJOXSBzV9JNws8MjXs2Xzb4HKapi4ACqURImISGmd8JvH3VvN7Ebgz0AlcJe7rzGzLwGr3H058CkzuwRoBVqAa3uxzV1TUaZTaKXZjCvCtv2Yp8xg8sp+pW+TiIiUvS79jHf3B4EH25V9Pmf/duD2nm1akUzJVOrUTczuDxsblnWZfpmSKBERiVV6+0Q0OWbf1a8mrEXYfH2YBPXFP8MpE/PrzPxgmDdMY6NERCRm6f0mGjg87hbI8YxohN0vhv0x58C21WF/YYELnLOu7lim6Q1ERCQh0tsXpgkZ+4Yp74TGi+JuhYiISLelN5kqtJix9K7m67tW77zrsvtVA3SzgIiI9Gnp/RbTlanSqzmlY1nzJ+DUufllA+sKv762lydyFRER6QXpTaYkHiOn5h/X1MKkC2H6e8PxpAVhO2R02PYfErZzlsJZ7ytFC0VERHpUegegS8+b8i5Y/8fs8annw+BRsOdF2P3vUHbme8IYqMe/A0MbsnXr35I/uHzC+VA3OVtnkG4YEBGRvknJlHRu9HQYNh42/CkcN5wNo8+Co0egqjpbb+SU/NdVDwxJ1fG67Soq8pMtERGRPkrdfBJkZhfPGDAMplwMY2bml5vlJ1KdGTkVqgf1WPNERESSKr3JlGtxvpNSOwEW3AqNi8Px8MnZQfwT58OgEfG1TUREJMHSm0wNHhl3C3pf/8GFyxsvConQvJuzZcMn59c57YLs/rxPh0kwKyopOKXEafNgzseLba2IiEgqpXfMVFpvsx80Av63O+yPmg7/+UfHOuNmhweEQd+th6GiCh75Wig7/0aoHgyvPA6148PyLRmZfXXRiYiIdEl6k6m+Ms/U0DHQdgRe3xWO6yZBy6bCdadeHAaAtx0N3ZjbnunaOTJjnJo+AgdbstMRzLu54yLBI6eCt3Wc4kBEREQKSm8yVUpDG2D/9pN7Tb8BcPricMecO/ztq2FyyzGz4Mlloc6sD4WJMKtqYOdaGHVmKM+sS5dZ/Pecq8IVpv3b4dCBzs85ZFR45LahPbPQJhEREemS9I6Z6im5d7l11vU17dIweBvCWnMLb4eq/vl1KqvyxylNvzybtJiF10y6EAYMDWVV1TBsXDhnRUWo2/5q2+D68Lra8eF4aAPUn9Gtf6aIiIh0j3lMd701NTX5qlWrevckh9+ATStg+/MnrttvAMy6JlwJ2rcZVt8DY2fDGReFMUePfiMkNK+9kH3N0DGwfxvMv6Vj8vTmPnjqDmhrjQZ49wsJVVsb7N9y/DFdbUcB05p1IiIiCWFmT7t7U8HnUp1M5VrxlbBtvj4kRKPODIlTW2vHcUMAO9fD8NNDAgRwcG8Ya7RrA6xbHrrmpl8GIxr7zvgsERER6ZbjJVPlM2Zq8kJofTMkUBPnZ8sLJVLQcVbvmtqwHTUtXJF66WGom6hESkREpMyVTzI1obnn3qumNlyVEhERkbKnQTkiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEJVMiIiIiRVAyJSIiIlIEc/d4Tmy2C3i1BKcaAewuwXmk6xST5FFMkklxSR7FJJlKEZdT3b2+0BOxJVOlYmar3L0p7nZIlmKSPIpJMikuyaOYJFPccVE3n4iIiEgRlEyJiIiIFKEckqk74m6AdKCYJI9ikkyKS/IoJskUa1xSP2ZKREREpDeVw5UpERERkV6T2mTKzJaY2QYz22hmt8XdnnJiZneZ2U4zeyGnrM7MHjKzF6PtKVG5mdl3ozg9b2az4mt5epnZeDNbYWZrzWyNmd0UlSsuMTGzAWb2TzN7LorJF6PyiWb2VPS3/5WZVUfl/aPjjdHzp8X6D0gxM6s0s9Vm9ofoWDGJmZm9Ymb/MrNnzWxVVJaYz69UJlNmVgksA94BTAOuNLNp8baqrPwEWNKu7DbgYXdvBB6OjiHEqDF6LAV+UKI2lptW4DPuPg1oBm6I/k8oLvE5BCxy9xnATGCJmTUDXwO+5e6nA/8FPhrV/yjw36j8W1E96R03AetyjhWTZFjo7jNzpkBIzOdXKpMpYA6w0d03ufth4F7g0pjbVDbc/e9AS7viS4G7o/27gffklP/Ug38AtWbWUJKGlhF33+7uz0T7BwhfFGNRXGIT/W1fjw77RQ8HFgG/jsrbxyQTq18DbzMzK01ry4eZjQPeBdwZHRuKSVIl5vMrrcnUWGBzzvGWqEziM8rdt0f7rwGjon3FqsSirohzgKdQXGIVdSc9C+wEHgJeAva6e2tUJffvfiwm0fP7gOElbXB5+DZwK9AWHQ9HMUkCB/5iZk+b2dKoLDGfX1W9+eYihbi7m5luI42BmQ0GfgN82t335/6IVlxKz92PAjPNrBa4H5gSb4vKm5ldDOx096fN7MKYmyP55rn7VjMbCTxkZutzn4z78yutV6a2AuNzjsdFZRKfHZnLrNF2Z1SuWJWImfUjJFL3uPtvo2LFJQHcfS+wAphL6JLI/NDN/bsfi0n0/DBgT2lbmnoXAJeY2SuE4SGLgO+gmMTO3bdG252EHx5zSNDnV1qTqZVAY3QHRjVwBbA85jaVu+XANdH+NcDvc8qvju6+aAb25Vy2lR4SjeP4EbDO3b+Z85TiEhMzq4+uSGFmNcBiwli2FcDlUbX2McnE6nLgr66JAnuUu9/u7uPc/TTC98Zf3f2DKCaxMrNBZjYksw9cBLxAgj6/Ujtpp5m9k9D3XQnc5e5fjrdF5cPMfglcSFjFewfwBeB3wH3ABOBV4P3u3hJ9yX+fcPffG8CH3X1VDM1ONTObBzwK/IvsWJDPEcZNKS4xMLOzCYNmKwk/bO9z9y+Z2STCVZE6YDVwlbsfMrMBwM8I491agCvcfVM8rU+/qJvvs+5+sWISr+jvf390WAX8wt2/bGbDScjnV2qTKREREZFSSGs3n4iIiEhJKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKYKSKREREZEiKJkSERERKcL/AdRCZJ56SCPyAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAHiCAYAAADMP0mlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAClwklEQVR4nOz9d5xbV50//r+Oepnebc/Y497H45bYKU7DToAkEBIIhJLQIWTZZdndH+xjN5RlF/YLn4UlgbChJEB6TyCF9Nhx7Lj3cRtP71Uz6uWe3x9XXVfSVb0azfv5ePjhkXR1dUYj3fu+57zP+zDOOQghhBBCSHpUSjeAEEIIIWQmo2CKEEIIISQDFEwRQgghhGSAgilCCCGEkAxQMEUIIYQQkgEKpgghhBBCMkDBFCEk7xhjNzHGehhjVsbY+jy/9pWMsd58viYhpLhRMEUIAWOskzHm8Ac3Q4yxBxljJf7H3maMORlj04yxKcbYQcbYdxhj+rDnVzDG/sAYG/Rvd5Yx9p0EL/kzAHdxzks454dz/fvlGmPsfsbYGcaYwBi7I8193O5/b6cYY72Msf+PMabJclMJITlAwRQhJOAGznkJgA0ANgH4t7DH7uKclwKYA+DbAD4J4CXGGPM//nMAJQBWAigHcCOA8wleawGAk1IPzNAA4iiAOwEcSrQRY6yZMdYZ52ETgH8AUAPgYgDXAPin7DWREJIrFEwRQiJwzvsAvAxgjcRjNs752xCDpa0APux/aDOARzjnE5xzgXN+mnP+VPTzGWN6xpgVgBrAUcZYu//+TsbY/48xdgyAjTGmYYzdyBg7yRib9PeOrQzbTydj7J8ZY8cYYzbG2O8ZY/WMsZf9PWOvM8Yq5fy+jLEmxtgzjLERxtgYY+xe//1LGGPvMMYsjLFRxtjjCd6zX3HO3wDglPOacfZxH+d8F+fc7f8bPAzg0nT3RwjJHwqmCCERGGNNAD4EIO7wG+e8G8ABAJf779oL4D8ZY59njC1N8DyXv/cLANZxzheHPfwpiMFZBYBFAB6F2FNTC+AlAH9hjOnCtr8ZwHYAywDcADEA/Ff/9ioA35Txu6oB/BVAF4BmAPMAPOZ/+D8AvAqgEkAjgHuS7S/LtiFO7x0hpLBQMEUICXiOMTYJ4F0A7wD4ryTb9wOo8v/8dxB7Uu4CcIoxdp4x9sEUX/+XnPMezrkDwK0AXuScv8Y590DMsTICuCRs+3s450P+XpxdAN7nnB/mnDsBPAtATmL7RQDmAvhnf6+bk3P+rv8xD8ThyLlR9+ccY+wLEIdaf5av1ySEpI+CKUJIwEc55xWc8wWc8zv9QU0i8wCMAwDn3ME5/y/O+UYA1QCeAPAkY6wq0Q6i9IT9PBdibxH8+xf8j88L22Yo7GeHxO0SJNcEoItz7pV47F8AMAD7/MONX5CxvxiMsdv8Q5WTAI4BmB+47f83P2r7jwL4MYAPcs5H03lNQkh+UTBFCEmZfyhwI8QeoQic8ymIvVpmAAtT2C0P+7kfYq9Q4PUYxMCnL532JtADMbiJSXrnnA9yzr/MOZ8L4KsAfs0YW5LqC3DOH/EHqRUAWgB0B277/3UHtmWMXQfgtxAnAxxP95cihOQXBVOEENkYYybG2BUAngewD2IuExhj/84Y28wY0zHGDAD+HsAkgDNpvtQTAD7MGLuGMaaFOIPQBeC9TH+HKPsADAD4CWPMzBgzMMYuBQDG2McZY43+7SYgBnuC1E7Cfm8GQOvfT0rHV8bY1RCHSm/mnO9L8/chhCiAgilCiBz3MsamIQ6l/QLA0wCu8w+/AWKg8QCAUYi9StsBfJhzbk3nxTjnZwB8BmLS9yjEBPMbOOfuTH4Jidfx+fe9BEA3gF6I+VqAOEPxff/swxcA/D3n/EKcXb0KcWjxEgD3+3/elmJz/h1iWYmX/PW+rIyxl1PcByFEAYxznnwrQgghhBAiiXqmCCGEEEIyQMEUIYQQQkgGKJgihBBCCMkABVOEEEIIIRmgYIoQQgghJAOKrc5eU1PDm5ublXp5QgghhBDZDh48OMo5r5V6TLFgqrm5GQcOHFDq5QkhhBBCZGOMdcV7jIb5CCGEEEIyQMEUIYQQQkgGKJgihBBCCMmAYjlThBBCSCHweDzo7e2F0+lUuimkABgMBjQ2NkKr1cp+DgVThBBCZrXe3l6UlpaiubkZjDGlm0MUxDnH2NgYent7sXDhQtnPo2E+Qgghs5rT6UR1dTUFUgSMMVRXV6fcS0nBFCGEkFmPAikSkM5ngYIpQgghRGGMMXz7298O3v7Zz36G73//+2nvr7m5GaOjoxm36+2338b1118fc/+RI0fw0ksvBW+/8MIL+MlPfpLx681UFEwRQgghCtPr9XjmmWeyEgDlQ3QwdeONN+I73/mOgi1SFgVThBBCiMI0Gg2+8pWv4Oc//3nMY52dnbj66qvR0tKCa665Bt3d3THbjI2NYceOHVi9ejW+9KUvgXMefOyhhx7CRRddhNbWVnz1q1+Fz+cDAHz961/Hpk2bsHr1anzve98Lbv/KK69gxYoV2LBhA5555pmY13K73bj77rvx+OOPo7W1FY8//jgefPBB3HXXXQCAO+64A1//+texZcsWLFq0CG+//Ta+8IUvYOXKlbjjjjuC+3n11VexdetWbNiwAR//+MdhtVrTfv+URrP5CCGEEL+3zwxjZNqV1X3Wlupx5fK6pNt94xvfQEtLC/7lX/4l4v6/+7u/w+23347bb78df/jDH/DNb34Tzz33XMQ2P/jBD3DZZZfh7rvvxosvvojf//73AIC2tjY8/vjj2L17N7RaLe688048/PDD+NznPof//M//RFVVFXw+H6655hocO3YMy5Ytw5e//GW8+eabWLJkCW699daYdup0Ovzwhz/EgQMHcO+99wIAHnzwwYhtJiYmsGfPHrzwwgu48cYbsXv3bvzud7/D5s2bceTIETQ2NuJHP/oRXn/9dZjNZvz3f/83/ud//gd33313Cu9s4aBgihBCCCkAZWVl+NznPodf/vKXMBqNwfv37NkT7CH67Gc/GxNsAcDOnTuD23z4wx9GZWUlAOCNN97AwYMHsXnzZgCAw+FAXZ0Y2D3xxBO4//774fV6MTAwgFOnTkEQBCxcuBBLly4FAHzmM5/B/fffn/LvcsMNN4AxhrVr16K+vh5r164FAKxevRqdnZ3o7e3FqVOncOmllwIQe7u2bt2a8usUCgqmCCGEED85PUi59A//8A/YsGEDPv/5z2dlf5xz3H777fjxj38ccX9HRwd+9rOfYf/+/aisrMQdd9yR1aKler0eAKBSqYI/B257vV6o1Wps374djz76aNZeU0mUM0UIIYQUiKqqKnziE58IDtMBwCWXXILHHnsMAPDwww/j8ssvj3netm3b8MgjjwAAXn75ZUxMTAAArrnmGjz11FMYHh4GAIyPj6OrqwtTU1Mwm80oLy/H0NAQXn75ZQDAihUr0NnZifb2dgCIG+yUlpZieno67d9zy5Yt2L17N86fPw8AsNlsOHv2bNr7UxoFU4QQQkgB+fa3vx0xq++ee+7BAw88gJaWFvz5z3/G//7v/8Y853vf+x527tyJ1atX45lnnsH8+fMBAKtWrcKPfvQj7NixAy0tLdi+fTsGBgawbt06rF+/HitWrMBtt90WHG4zGAy4//778eEPfxgbNmwIDglGu+qqq3Dq1KlgAnqqamtr8eCDD+JTn/oUWlpasHXrVpw+fTrl/RQKFp7xn0+bNm3iBw4cUOS1CSGEkIC2tjasXLlS6WaQAiL1mWCMHeScb5LannqmCCGEEEIyQMEUIYQUkmNPADt/qnQrCCEpoNl8hBBSSMbalW4BISRF1DNFCCGEEJIBCqYIIYQQQjJAwRQhhMxkXhdgHVG6FYTMahRMEULITHb0MWD/75RuBcmQWq1Ga2srVq9ejXXr1uH//b//B0EQsrLv73//+/jZz34Wc/9zzz2HU6dOBW/ffffdeP3117PymnIF6kz9/Oc/x+nTp9Ha2or169cHi4bK9fbbb+O9995L+fWbm5sjanqlixLQCSFkJpvqV7oFJAuMRiOOHDkCABgeHsZtt92Gqakp/OAHP8jZaz733HO4/vrrsWrVKgDAD3/4w5y9lpTBwUHs378/WAX9Jz/5CW655Rb827/9W8r7evvtt1FSUoJLLrkk282UhXqmCCFkJnJOKd0CkiN1dXW4//77ce+994JzDp/Ph3/+53/G5s2b0dLSgv/7v/8DAFitVlxzzTXYsGED1q5di+effz64j//8z//EsmXLcNlll+HMmTMxr/Hee+/hhRdewD//8z+jtbUV7e3tuOOOO/DUU08BEHtsvvvd76K1tRWbNm3CoUOHcO2112Lx4sX4zW9+E9zPT3/602C7vve970n+Pvv27cPWrVuxfv16XHLJJcH27NixA319fWhtbcUPfvAD/OIXv8B9992Hq666CgDw0EMP4aKLLkJrayu++tWvwufzAQBeeeUVbNiwAevWrcM111yDzs5O/OY3v8HPf/5ztLa2YteuXRgZGcHNN9+MzZs3Y/Pmzdi9ezcAYGxsDDt27MDq1avxpS99CdkqXE49U4QQMtOMtYv1qNbeonRLis+51wHrUHb3WVIPLP1ASk9ZtGgRfD4fhoeH8fzzz6O8vBz79++Hy+XCpZdeih07dqCpqQnPPvssysrKMDo6ii1btuDGG2/EoUOH8Nhjj+HIkSPwer3YsGEDNm7cGLH/Sy65BDfeeCOuv/563HKL9Odo/vz5OHLkCL71rW/hjjvuwO7du+F0OrFmzRp87Wtfw6uvvopz585h37594JzjxhtvxM6dO7Ft27aI/axYsQK7du2CRqPB66+/jn/913/F008/jRdeeAHXX399sEeOc46SkhL80z/9E9ra2vD4449j9+7d0Gq1uPPOO/Hwww/jgx/8IL785S9j586dWLhwIcbHx1FVVYWvfe1rwecCwG233YZvfetbuOyyy9Dd3Y1rr70WbW1t+MEPfoDLLrsMd999N1588cWINRAzQcEUIYTMNNMD4v80xDcrvPrqqzh27Fiw18hiseDcuXNobGzEv/7rv2Lnzp1QqVTo6+vD0NAQdu3ahZtuugkmkwkAcOONN6b1uoHnrV27FlarFaWlpSgtLYVer8fk5CReffVVvPrqq1i/fj0Asafs3LlzMcGUxWLB7bffjnPnzoExBo/Hk/S133jjDRw8eBCbN28GADgcDtTV1WHv3r3Ytm0bFi5cCEBcGFrK66+/HpEPNjU1BavVip07d+KZZ54BAHz4wx9GZWVliu+KNAqmCCGEkIAUe5By5cKFC1Cr1airqwPnHPfccw+uvfbaiG0efPBBjIyM4ODBg9BqtWhubobT6cxaG/R6PQBApVIFfw7c9nq94Jzju9/9Lr761a9GPO9Xv/oVfvvb3wIAXnrpJfz7v/87rrrqKjz77LPo7OzElVdemfS1Oee4/fbb8eMf/zji/r/85S+y2i4IAvbu3QuDwSBr+0xRzhQhhBBSQEZGRvC1r30Nd911FxhjuPbaa3HfffcFe3TOnj0Lm80Gi8WCuro6aLVavPXWW+jq6gIAbNu2Dc899xwcDgemp6fjBiClpaWYnp5Ou53XXnst/vCHP8BqtQIA+vr6MDw8jG984xs4cuQIjhw5grlz58JisWDevHkAxABQjmuuuQZPPfUUhoeHAQDj4+Po6urCli1bsHPnTnR0dATvl/pdduzYgXvuuSd4OzCUuG3bNjzyyCMAgJdffhkTExNp//7hKJgihBBCFOZwOIKlET7wgQ9gx44dwYTuL33pS1i1ahU2bNiANWvW4Ktf/Sq8Xi8+/elP48CBA1i7di3+9Kc/YcWKFQCADRs24NZbb8W6devwwQ9+MDhUFu2Tn/wkfvrTn6ZVigAQA5bbbrsNW7duxdq1a3HLLbdIBmf/8i//gu9+97tYv349vF6vrH2vWrUKP/rRj7Bjxw60tLRg+/btGBgYQG1tLe6//3587GMfw7p163DrrbcCAG644QY8++yzwQT0X/7ylzhw4ABaWlqwatWqYNL89773PezcuROrV6/GM888g/nz56f8e0th2cpkT9WmTZv4gQMHFHltQggpWG/5hzWu+m78bTrfBTp2AQsuAbreS749SaitrQ0rV65UuhmkgEh9JhhjBznnm6S2p54pQghRmtcNnH8D8Mm7aieEFBZKQCeEEKX17AV69gG6EqVbQghJA/VMEUKI0gSxGCF4dpYPIYTkFwVThBAyU9kzX1OMEJI5CqYIIWSmcUyK/4+cVbQZhBARBVOEEJJPHicw3pHZPgaPZ6cthJCskB1MMcbUjLHDjLG/SjymZ4w9zhg7zxh7nzHWnNVWEkJIsTj5DHD0McDjULolpICo1Wq0trYG/3V2dgIAfvGLX8BgMMBisQS3ffvtt1FeXo7169dj+fLl2LZtG/7615hTc0H4r//6r5Sf8+CDD+Kuu+7KQWtyJ5Weqb8H0BbnsS8CmOCcLwHwcwD/nWnDCCGkKNlGxP8p2ZyEMRqNwarhR44cQXNzMwDg0UcfxebNm4PryQVcfvnlOHz4MM6cOYNf/vKXuOuuu/DGG29ktU3RBTblFtwMl04wNRPJCqYYY40APgzgd3E2+QiAP/p/fgrANYwxlnnzCCGEpMznDeVVkRmrvb0dVqsVP/rRj/Doo4/G3a61tRV333037r33XsnHX3nlFWzYsAHr1q3DNddcA0BchuWjH/0oWlpasGXLFhw7dgwA8P3vfx+f/exncemll+Kzn/1szO2RkRHcfPPN2Lx5MzZv3ozdu3cDEBc5/vznP4+1a9eipaUFTz/9NL7zne8EK7t/+tOfBgA89NBDuOiii9Da2oqvfvWr8PnEmawPPPAAli1bhosuuii4z5lEbp2pXwD4FwClcR6fB6AHADjnXsaYBUA1AJpqQggh2TA1ABx5CLj468m3bXsBGDkDXPEvgEqd+7YVkXf73sWoI7unrhpjDS6bd1nCbQJBBwAsXLgQzz77LB577DF88pOfxOWXX44zZ85gaGgI9fX1ks/fsGEDfvrTn8bcPzIygi9/+cvYuXMnFi5cGFzL7nvf+x7Wr1+P5557Dm+++SY+97nPBdevO3XqFN59910YjUZ8//vfj7h922234Vvf+hYuu+wydHd349prr0VbWxv+4z/+A+Xl5Th+XMznm5iYwM0334x77703uN+2tjY8/vjj2L17N7RaLe688048/PDD2L59O773ve/h4MGDKC8vx1VXXYX169en8U4rJ2kwxRi7HsAw5/wgY+zKTF6MMfYVAF8BkLX1cAghZFbo3CX2OE10Jt92zL/OGhcAUDA1EwSG+cI9+uijePbZZ6FSqXDzzTfjySefjJtLFG9puL1792Lbtm1YuHAhAKCqqgoA8O677+Lpp58GAFx99dUYGxvD1NQUAODGG2+E0WgM7iP89uuvv45Tp04FH5uamoLVasXrr7+Oxx57LHh/ZWVlTFveeOMNHDx4MLhWoMPhQF1dHd5//31ceeWVqK2tBQDceuutOHt2Zs1UldMzdSmAGxljHwJgAFDGGHuIc/6ZsG36ADQB6GWMaQCUAxiL3hHn/H4A9wPi2nyZNp4QQmacdNZDHT0fFSCRXEnWg5Qvx48fx7lz57B9+3YAgNvtxsKFC+MGU4cPH8bKlSvh8/mwceNGAGIQFG+R40TMZnPc24IgYO/evTAYDCnvl3OO22+/HT/+8Y8j7n/uuedS3lehSZozxTn/Lue8kXPeDOCTAN6MCqQA4AUAt/t/vsW/DQVLhBAih9OS+HFLd+jn8fbctoUUhEcffRTf//730dnZic7OTvT396O/vx9dXV0x2x47dgz/8R//gW984xtQq9XBJPYf/vCH2LJlC3bu3ImODrEcR2CY7/LLL8fDDz8MQJwdWFNTg7KysqTt2rFjB+65557g7UBv2vbt2/GrX/0qeP/ExAQAQKvVwuPxAACuueYaPPXUUxgeHg62paurCxdffDHeeecdjI2NwePx4Mknn0z17VJc2nWmGGM/ZIzd6L/5ewDVjLHzAP4RwHey0ThCCCka1hGxxlQ0zoFh/0Rp7ku+n8nu5NuQGe+xxx7DTTfdFHHfTTfdFBxK27VrV7A0wje+8Q388pe/DCaXh6utrcX999+Pj33sY1i3bh1uvfVWAGKi+cGDB9HS0oLvfOc7+OMf/xjzXCm//OUvceDAAbS0tGDVqlX4zW9+AwD4t3/7N0xMTGDNmjVYt24d3nrrLQDAV77yFbS0tODTn/40Vq1ahR/96EfYsWMHWlpasH37dgwMDGDOnDn4/ve/j61bt+LSSy/FypUr037flMKU6kDatGkTP3DggCKvTQgheffWj4GSOsA1LdaYuvSbgM4MCALwjr+aTONmoHe/+PNV3w09t/1NoPv9xPsP3/6dnwKCF9j2T4Bam93fowi1tbXNyBM4yR2pzwRj7CDnfJPU9nJn8xFCCMmUdTjx7LrJ2CEcQkjho+VkCCEkn4QEQ3nW4fy1gxCSNRRMEUKIIpLUNW5/UxwCTEXvAQrICFEADfMRQkgh6n4fKJ0L1K2Q/5xzr4n/q8IO7ZY+oGwuQItSJMQ5By3cQYD4NbsSoZ4pQghR0mRn/McyrSk12Q0c+hPQvTfxdh27xAT57veTl2koQgaDAWNjY2mdRElx4ZxjbGws5Tpa1DNFCCFKkiqXEK1nf3r7dokVrYOLK8fdvz/Yan8TGDwGXPTl9F5vhmpsbERvby9GRpK8T2RWMBgMaGxsTOk5FEwRQogSbCPAhE3etpn2UA2dBFbdmHw7APC6MnutGUir1QaXWyEkHRRMEUKIEo48Iv7fsCZ3r3HmldztmxASRDlThBCipMETiR+3j+enHYSQtFEwRQghhYr7gPf/T+lWEEKSoGCKEEIKVTZrRtlGxXUAJVFJAEIyQcEUIYQUqp592dvXvt8CfQeztz9CSBAFU4QQMlsEinpG83ny2w5CigwFU4QQkitnXwWGTindikgeJ+Cyhm6feFq5thBSJCiYIoSQXPB5xWG1U88r3ZJIe38FvHdP6PbIWeXaQkiRoGCKEEJyYedPlW6BNK879HPnu7GPu6bz1xZCigQFU4QQMlt17FK6BYQUBQqmCCEk14QMl4MhhBQ0CqYIISTXBK/SLYjllrkuICEkKQqmCCFkNtr9y/iPCUKCAp+EkGi00DEhhJBIO38KcAG49JuAzqx0awgpeNQzRQghOZfnXp5MhxW5P8fr/BuZt4WQWYCCKUIIIYm5poHxC0q3gpCCRcEUIYRk21h7/l+zc3fu9n3wj8DRx3O3f0JmOAqmCCFEjtHz8peGOfZEbtsipWNn7vZNhTwJSYgS0AkhRI7jT4r/169Sth2EkIJDwRQhhGRLzz7AWBV7v9eZ/7YQQvKGgilCCMmWeLPfjjya33YoYfwCYK4F9KVKt4SQvKOcKUIIyTXHhNItyL2jj4uJ6oTMQhRMEUIIkcZTXFOQEtXJLEXBFCGEEGnDbZG3x9oBpyXyPs4jyyb07M99uwgpMBRMEUIIkefYE8D+30Xe17EzsqBnLwVTZPahYIoQQoh8XnfkbeekIs0gpJBQMEUIISQ1b/04driPkFmMgilCCCGpsw4r3QJCCgYFU4QQkqr+w8ChPyndivxwWRM/znl+2kFIAaOinYQQkqozr4R+nuwGyuYBKrVy7cml9+5J/Hiq5RMIKULUM0UIIemaGgAOPwxceFvplhBCFETBFCGEpMtjF/+3jSrbjkIk+IDOdwGfR+mWEJJzFEwRQkgyyfKGZiuvSyzkKaX/CNCxC+jek9cmEaIECqYIISSZ0TNKt6DwcA6c/isgeKUfF/w9UtQzRWaBpMEUY8zAGNvHGDvKGDvJGPuBxDZ3MMZGGGNH/P++lJvmEkJIjrmmgcET8R+nkgCi0bOzYwFnQmSQM5vPBeBqzrmVMaYF8C5j7GXO+d6o7R7nnN+V/SYSQkgeHX1MzIGqXgJoDbGP7/+99PM8jty2q9AMHgdKapVuBSEFIWkwxTnnAAIJA1r/PyosQggpTu7A4U7GYS7QS2UdBLzOnDWpYFlHlG4BIQVBVs4UY0zNGDsCYBjAa5zz9yU2u5kxdowx9hRjrCmbjSSEkII0dl78321Xth2EEEXJCqY45z7OeSuARgAXMcbWRG3yFwDNnPMWAK8B+KPUfhhjX2GMHWCMHRgZoSsaQsgMZ+lVugUFiAPd7wPtb4Xu6n5fLJNASJFKaTYf53wSwFsArou6f4xz7vLf/B2AjXGefz/nfBPnfFNtLY21E0IKGC2Tkr72N2Nvd+xSpi2E5IGc2Xy1jLEK/89GANsBnI7aZk7YzRsBtGWxjYQQQgghBUvObL45AP7IGFNDDL6e4Jz/lTH2QwAHOOcvAPgmY+xGAF4A4wDuyFWDCSGkINnGlG5B4RN8xbuGIZnV5MzmOwZgvcT9d4f9/F0A381u0wghZAY5/qTSLSh8PjegMirdCkKyjiqgE0JIBKZ0A4qXz610CwjJCQqmCCGz22QPMHBM4gEOOKdoEeNsohl9pEjJyZkihJDidfgh8f85LbGP7fmV+P+yHflrz0znnIr/mODLXzsIySPqmSKEEEIIyQAFU4QQQnKI6nWR4kfBFCGESAmv4E0IIQlQMEUIIeGYfzbf4HFl20EImTEomCKEEEIIyQAFU4SQ2atzt9ItIIQUAQqmCCGzV8dOpVtA2v4KnHlF6VYQkhEKpgghhOSHpSf2vsHjQP/h/LeFkCyiYIoQQgCg7yDA40zjt4/nty3FxOcN/ZyooCchMxhVQCeEEAA4+yqgL4fk2ny9B/LenKJBvU5kFqCeKUIICRA8SreAEDIDUTBFCCGEEJIBCqYIIYQoz+NQugWEpI2CKUIICee2Kd2C2Ylyq8gMRsEUIYSQ/Bk9FznDj5AiQMEUIWT2cU5RuQOlHH8KuECLSJPiQqURCCGzz55fKd2C2c1pEf+3joTui1fji5AZgHqmCCGEKEOqIjohMxAFU4QQEkC9I/l19m+Rt13TwFs/Bia7lWkPIWmiYIoQQgJOPa90C2a3SX9PVd9BZdtBSIoomCKEEFIAqFeQzFwUTBFCCCGEZICCKUIIIYSQDFAwRQghJL+mB8VE82S8LnFbQgocBVOEEELyyzUtfT9jkbdPPAMceAAQfLlvEyEZoGCKEEKI8gaOxd5n6RX/73k/v20hJEUUTBFCCFGe0wI4JqUfu/BOXptCSKoomCKEEFIYuH84b/g04LYr2xZCUjDrgqm/HO3H8V6L0s0ghBCSyNlXlG4BIbLNumDq/LAVr7cNKd0MQgghiQhepVtAiGyzLpgihMwi4xeAkbNKt4Kki8W53zYKdL6b16YQkggFU4SQ4nX0ceDE00q3gsjVsSv081g74IvTO3X4IXFbrys/7SIkCQqmCCGEzAyBpHROdadIYaFgihBCSOGbHgR2/y8weBzgEosiCz7A48x/uwgBBVOEEEJmAuuw+P9EJ+DziD9P9YceP/ks8O7P894sKfs6xvHg7g6lmzFj7B/cj0HbzF42iIIpQsjswTnw3j1Kt4Jki30s9PPoOeXaEWX3+VFM2D1KN2PG2D+4H8+ce0bpZmSEgilCyOzhnARcVqVbQTIxNaB0CwiJoVG6AYQQknXjHQAXlG4FyYXw3ihCCkTSYIoxZgCwE4Dev/1TnPPvRW2jB/AnABsBjAG4lXPemfXWEkKIHEcfU7oFJB+kEtEJUYCcYT4XgKs55+sAtAK4jjG2JWqbLwKY4JwvAfBzAP+d1VYSQgghUvoOAc4ppVtBZrmkPVOccw4gkGSg9f+Lvhz4CIDv+39+CsC9jDHmfy4hhBCSfW4r0L0XKDmsdEvILCcrAZ0xpmaMHQEwDOA1zvn7UZvMA9ADAJxzLwALgOostpMQQjIj+IDh00q3gmRTIC/O41C2HWTWk5WAzjn3AWhljFUAeJYxtoZzfiLVF2OMfQXAVwBg/vz5qT6dEELS987/p3QLSCZOv6h0CwiJK6XSCJzzSQBvAbgu6qE+AE0AwBjTACiHmIge/fz7OeebOOebamtr02owIWSWmx4SFzBOxURnTppClEaZJKQwJA2mGGO1/h4pMMaMALYDiO4rfwHA7f6fbwHwJuVLEZKcV/Di1c5XYXFZlG7KzHHgD+ICxtF8nvjLifQdzG2bCCGzmpyeqTkA3mKMHQOwH2LO1F8ZYz9kjN3o3+b3AKoZY+cB/COA7+SmuYQUlz5rH85PnsfO3p1KN6XgTdjcuOeNc3B64ixyu//3BbOcCMkz17TSLSAy2D129E73Kt2MnJAzm+8YgPUS998d9rMTwMez2zRCCAlpG5yCV+AYtbrQWGkKPdCxE+g/DLjt8Z9MJ1tCUuYRPFBBBbVKnZX9PXX2KVg9VtzZemdW9ldIaDkZQsjM1rk7cSAF0BIkBLCNRS6MTJL67bHf4tnzz2Ztf1ZP8S7lRMEUIYSQ4tR7AHBMij/vux84+EdFmzMTDduHlW7CjEDBFCGEkJnJOhL/MbcNOPcacExisgIhWUbBFCGEkJlJquRFYMg3MKHc68pbc8jsRcEUISQnesbt+NvJweztkIqtEDmG28T/e6IX6kiBIFBVdZISCqYIITnx1MFenOqnBWiJQnr2pf3UC/sfwkvP/qMYVBEiAwVTZMaxubxwe+kgN9OdG5pG/2TqV/827sGoj3oNSO48cOo57LINwO3zKt2UhNon2/HrI7+GxWWBy0fDmUqiYIrMGBPOCQzbh3H/zgt4fH+30s3JKsaY0k3Iu78eG8Dj+3tSft6z7vN4YvpcVtuy58IYuseTlFcgM1eiRHUJwgwZUz47cRYAcG7iHH5//Pc4PU4LeSuFgikyYzx6+lE8dfYpAMCo1S37eRaXBSP25AdTt0/+PmeC4SknRq2hq1WLy4KuqS4FWySNc47fHf8dTo2dys4O08x16Uujl4zMEPt/p3QLcmrcOQ4ABfn9ni0omMqzYfswHjjxABxeOnDny8NtD+PJs08m3GbAOoDfHf8dOi2d+WlUHjz8fjf+vCd0cH2k7RG8eOFFBVskzcu9cPvc2NW7Kzs7fPcX2dkPAQB4BQH9kw7wGdJbQ7LvoVMP4emzTyvdjIJGwVSeHRo6BIfXgX4rVeItJIN2cdZZMf9d6GRI0tE5ZkfXuB2Tdo/STSEKmXJPYcg+pHQzChoFU2RGc3gd8AlxFr4lZAaaEtwFlWDvE8QgnHMKxgmJh4IpMqM9cOIBvNr1qtLNICRrHpo6nfUE+1ln4JjSLSBJeHwejDnGlG5G1lAwlSaPz4M9/XvgFQp76uxs0GHpULoJGcv3Vb8gcIxZ5U+ldnp8GJ5y5rBFJNtsLi88vtRLiBztncTR3snsNyifTucmN9An+HBk+Aj1hmfBy50v4/Ezj0PgxVHmhoKpNB0aPoTDw4dxcuyk0k0hfvcdvQ/v9b2ndDMSsrgsGV+NDVgHMj4A7To/ij/t6YJFZh7M80f68PD7ypajoEGm1Bzrs+BEnyXl59ndPtjdRRQsZFR2JPK5x0eP473+93Bi7ERmbcqybJdW6Zrqyvns5j5rX073n2+zKpjy+Dy44NgNj5B5PkLgyiTlk9osKyfUb+3PW68L5xxHRo7k5bXSYXFZ8JPdv8XP338Qzx7ujQhk5B4MB6wDePb8szg4dDCjtgSKZTo88k6a/ZO575WajbW2cs1JxW2T83kBx6SsTQOFMbMRaEw6J3F+4nxKz/lb59/w1wt/zfi1E7G4LHjxwot44dyrlCeXglkVTJ2dPItJTy8G3ImvKpweHx7a24VxW3HVHQLE4G/aPS17e4vLgje63kirW7t7qhvPnX8OR0eOpvzcYuMRPHi47WH0TjjQNWZH56gd754fTXk/No8NADDmlN+79beTgwkPih6fgEPdEzk7cMbb76Gpx3HW/mZOXjMRH+eYdoUC2RGfAwOw5r0dmbC7vfDSUifyuJL8bc+8COy9D/CFXdzkqCl2jz0YiD165tGU8z3bJ9vRPRXqIc7Fd9YreDFpd+PV0xdSquc3282qYCrakwd68OSB2ArM7SNWjEy7sL9zXNZ+ToyewJvd+TspdE11Ydg+DEC8QtrTv0d2sPNu37v486k/y65ztbN3J85MnEG/tR/Pn38evz7ya9ntnPaIQduEc0L2c1I1aXfD7i78vLVUg9Exxxh+feTXwb9zJk71T8ErSB90OTjePT+Kd86M4Nxw/gMKqze1ytQRpsVyFh7uw7Qg/6DfMWLFib4puLzi3+TJ6XPYrwotyHzBY8Fj02chRJ2o+r02dHlSW2uQg2PKmf2SAkd7LTjuH8LzcgF2IfFrODw+7LkwBqur8L8rOeeJ6mUd8heLzWEe1Lt97+K1rtfw4MkH8ejpRwFEBkKCwGFT6G9j89jwx5N/xKRzMnhfYJhXqTbNRLM6mOqdcKB3IvMhv529O5OW8W8ba0PvdG/GrwUAL154MVgJ/MDgARwePoy28TacmziHv7T/JeFzA1c16XRTpzrG/cjebpwflt8LJmXSOYkpd/wTWNvANI72yMsLaZ9sz6gtyQzaBmVVWpcjUMlYbpv3D+7HBcuFtF7L5RF7OLy+wuvSF7iAly68JB1U2sXeuWetF/DnKfnLaFhd4onCFyfAfNPei3GfE24eeXJ9ztqOF22dsl8HAAYsTpzsn8KkI/tX+E7/3+1VezcenGpLuO2EXXz90RQmHSTi8QkxFzGHXSMYKaCSDtEmfS4Me+2ApRdwJLvAi/NdcE0D3XuT93ZFOTZyDOcmxBmagd7lcG+dEZfJUmLN0XMT52Dz2OLmgdlc3pgLi1RwztE+2R5zQVlsQ4izOpjKSIr9wG/1vIUX2l/AhUnxhOfj2bkKCuxH4AJe63oNPdOpr3WWSyPToZPIEwd68MDu1GbePXL6ETx06qGstOVvnX/LWkAr5ZlzzySttJ4rT554G/+7J/5rF/RSOf5jqlfwxlyUTLomcXb8Al6+8BoAoNZ6JvSg/3eKV5NpzOZCx2hqJ709F8bgyuIJzeG/wg8/SToELzpS7OGKxsExBgc45+jMcF/pON5nwdHeyIuYPY4BPKlgSQe724uRBMHiI9Nn8JT1PHD8SWDvb+LvKNFyROMXxOHAiezNIH7lxACO+d/LTIdus12Y1+n14VivBV1j4rqVPsGHYyPHUupp75nuwd86/4Z9g/tkbW9xWWbkbMlZG0zd+2boS/+3k4MQwq5S8xEwe5J0y8s17fTiRJ8lrSnQuSJwQbKHpmfcik5Lh6JXJElXVi+wHGi5B8cBixPjNjd6xu14/kgfPD4PpryhoavE+ymcK8S3et6Kue9g10Qwv2zx+Duy93V2yIrBqdR7Yqyu3Fb6ftnehZdtnXCGlVUROEe7xyL7u9EHK3ar+nDGM5mjViYmN+Dk4BiedmbUsyHX3t4xvDccSH8QMDIt428/FtbzywXx4J/GckROrxM7e3fC4kp99mTbQKj3vnOqA3848YeUS+6wNA9cbq+A3gnpBb45eLDXemRaHBo9MXYC7/a9i+Ojx2W/RiClxOpJfmHj8rnwcNvDeKc38nu+f3A/Rh2p55jm06wJpgZtg3inJ/QH8oQNaZzqnwp2g8fDOUf3WOGtKt82MIVppxcDlsKpAfT+wPt48uyTcAiBqy0Oj0/AoPskLjh2x+09s3vsEeP2hSI8b2B3X/z258MrJwfjHvwA4KmDvbgwYsNb3btw3v4OHL7JhPvzCTziu6CIROcBnxfzpg7D5A5PuM9exPvo9Nms7UsuiyCe5MPDkRPuMfzN1iU7OLLBE7GvQjU67Ub7iC0vx6d3WA/2qvqB0bM4PTiF8yPW5BeZx54I/bz7f2UM/4VMuaeCQ+uvdr2KE6Mn8HDbw+k0PWjvwB44vU7JocBErC4vDnVNBIMfud5oG8Lu82Nxc6MCuVOBtzHQwx3eGTDmGMvaBXJg/+HHWK/gxf7B/Xjm3DNZeY1cmTXBVKaraR/umcTTh3pxXoEkXTmG7PLymeL1ULh9bpwaO5Xyl+LM+BkM2kI9IE6PDyMOsVfKy8UD6EvHB/Cbt9vhFsQDROBKhXOO/YP74fSK2z1y+hE8cvoR2XlCgeelShA4psOSgu1uL7rGpA9eHaM23L/zAjpGxcePjhxNmpcmJfp955yj03oyeU9ZlOEpJ3rGk+elTLrEk4KPhy4SRqZdONlngcvrC4YjTx7I32d62D4sOcwafuDknEd+Bl1TYBBQ5Uj+/d3jHMSz1sjPzkE2iOet8XPJJnyxnyGbywcf57B5vAkD12TEXhnx78s58Iy1Hafd0idrq//klCyRPNdGfA54kXov93jY+2gN+x0Cw1b56Dl3M//Q0EQnPP6es5RP8bZR9HttwXcg0fHwyTNP4pWOVwAgpxeBPeN2HEgyGerCiBUur4DBFINWi0P8W6XbczhkG8LjZx4PlqSZcE5g3Clv4hYgvr9DMosBF3pxz1kTTKUj/Pp30t9zFT0bRskhK4vdA5s/CbTflllBxXd638ErF97Avh7pQCZeEPZG9xvBK4bhaSfue7sdr5yInYovNZusc6oT+wf3Y3ffbgChq5K/df4taXt93IM/nPhD0u3CCZzj3NA03j0/it/t6gj+LV840o+97eOSyZ8DFjFwSfUgFbMf60DE7WnfEM5NH8TO3p0Z7VcuBuD8sBVTTi/++F5n3O129u7EC+f+ht3nR4N/w/B6WPE+7w+degiPtD2Ovsn4gd6TZ57E8+efj7k/cEIKkH3QjGrLYecwBrxi0HvePYleTKOPWdHnjQ0WfRASnkDGrG6c6JtCTwYTVBxRhS8HvTa8aS+snMaA465R/HryGJ6cPocjLLUZpE7Bi8fCevhe8ifpe7mAw97htIIzpXDO8ZxVxsUc5+i3TMV8H3on7HjrdOYzcMM9dbAXu84VxhBX9O876RSHpgMTRB49/SgeO/2YrH1N2N043DOJR9/vLopZg0UbTHHOcbzXosjsCFlSiMEmnNI1gP6wuyPhSu4CF3Bo6BA8ggcCF/DXC3+NW2PK7rHjcPckXjnZH3d/Hp8AryCAc459HeMxJ4vRsGTzOBOlYtoHAB6e/Gr81c7Ieiy+BM+JV2G8f9KB99rHcLBL7B0ItH/aKX6RE+UV2TxTafeEuXwuvHTh5Yj7OMTX9vikf49gAcsUY3U5wX2b5X30OWJnvzEmlvn46+mD2NcxHrxqlTO1f8o9hb1dHXhif0/M5yLgaM8k9l5IfNXqcPvgTdCLMQp5PUWv2rtxSBV/lfsXVRfwqlP6AiTXaXP5uPzycQEOxJ6g4h0P9zhDvcsTSO1zftoT2dvm8k+KOekex3HvGM6z7JdGOeYP/uIFxLLe487dMXd5nVOwyyhkO2Bx4eyQNdjzGNAz7sCRnkk5r54T2ag99kb3G7K2c3l9+L/3DqY9I/70wLR/WJIFP5dSx+DwY5rXJ+DcUGYzxHOlaIOpnnEHXm8bwjtn05+qzjmXXY8JEGc6ZCuf5ljvJH7zTjtG7CN49PSjSSt7nx0KXX1b3VZcmLyAtrE27B3Yi0NDh2Dz2CKKvUULfIhZgo/Egc4JHOqawIXRSbx5thNvnI48WfkEL7oc7weH9yIe4x7YhcmI+1442h/Rk+H2CtjTPiY5ffv8ZKhS8KGpxxMGU4+feVzy/lRzg97ueRttk2Kl8Tf6n5bcr0/wRQREbq8Qs4RH95gV74cFJ7k04e0KtiNc+AFp1N2Odmv8Curp9rba/SUH4h3QHUnyObw+AUd6JvHmGfEqd9A2iGNjp8LaBbynCgX7mXb793jTPyh3jduCdZ6U4GBioOSJ8x684ejFa6pOCP7vdeDKfywHhYhHJYZKAQRf25cktDnnnkS7J/ReOgVv8DPY67XiZVtnzGfyfeeQf9+JPwPH3WOYileDrGOnv/0O7HKIKzX07nsOYzZ33BYHEr0tTnGfSl2snx4/jWH7cPC4HSjzcXpQ3mc63gU6ANmJ3k6PgBH3eXmJ/kCwNESsUDueOPNEzKO/P/F7AOJn+KG9XfjrsQH0jBde/nLRBlMe/wE9UAsl2WyHCbs75sPVaTuFB048EHeGhsXhiRj22ze4D39p/0vMkE463mgbhsPtC9ZYGrLFv8qO9vS5p/FK5yvBJEE5MwcDv3uyq3KfAPyl4ymctL4YcyDpsXVgzNMJhy/y/XL4JnF0+hk4fZFTuCds7oik/sDSJnLG0D08Nsj1CTyrw66nxk5hb9+B4G2ppNAnzj6B3x7/bfD26cEpvHZqKKIGz+kR8fMwlUIwxcDAOcff2vfi4ODhmMcdbh/sHjuOjxyP+J0DQeb7HYkrpAd64xI5PX4qr6u6+/y/R+BA+cy5Z3BqQhw+siL2gO0RAj2KYv2k8BlmmX4KfEk+R/2Tzpghf4vDA2dYr0a8PTgTzNSSu6RONxO/S7ssA5I9KYHSC0Je+sGSO2AZweMXpMsJvGbvxt9s4kXAmM+JP0ydCvZ2vWjrRIdnCkO+yJOnx9/7ZU/wXrrgxXvOfvzFlriMwRPT53DcNQo3hJhj2pTLGzHTO2DvuFiiI5Xg1OH2Jc0dS/TX55xj0n+eerP7zWCtQSByJODFYwOSxagDRh2jePT0oxkvSZUKQeDBIrnRnEIoAJQq4RK4aDrWa8GEfyQmm+VLsqVog6lU/eVoqNZHwIhTTJaNNzR2qn8KLx8PdY9PuiYBIKY3663u2One+wb3pTWNVo5EM0F8AheTxKdd+PlrZ4NrtIW6V5MfzO3e1Gaa2HyJh3Y8XiFuAcVU7OsYx5k0uoA9Ej0pgS9woDCiV+CSbQxUdw/0SAZ6vwKbvtf/Ht4beiXmeXJM2N24MGLD4ydfj3nszdPDePbsy9jVt0sy4TM6R03qJO3liU8E7w3skrxSBICDQwfRb40/JJwJudO8nWdfAXweCJzD4RUwZgsFXOkk1I4h9L2NVzE+kVMDUzgcNsQz4LPhNBvDlEQgmA7OeUzwMOX0Bk/oHByDU86YnkEl8zoDQ74HVUM4okqcS+ThvmAie3dUntszYXlMdrc3GEB2e6cx4XPCG9ZD1+0PxgO/dbzeOzn+9F4ndrfH76lxuH3weH1weZNfKB3pmcThbvF4kc4ivxdGbWgbmEZ/kvzNs0PTCYferG7xvR20D0bcn255BTnODE3jUNekZK+1m9swPO2K+zl1enwYno7/O/dPOgqiNNCsDaY8ggNCVOHM6B6R6BOQV3Chz9/lHAiYwg/a8XqP2sZD1YltLi98gvj8lzpeithOiNOz4vZGVhuetLtlLQvh4z6MWV0YtE7gz6f+DEDsOTncPYnD/eIMpz3dbeiz9oVeN0uLzcrt+gWAV08N4eUTqffmSeXmTNhiD2oenxDxvnoEB0bd4u/v9QmS04n39O+JuD1oceJkvxj87mkfwysnIg9E8Wb4HRk+Imt4L3CACxc4ocerTG5x2jFuc2HaFQqKepyHwGWePI5NPwubL3HPEwfHi52hKck+gWPcOY6Xz+/EE6cTT1We9PSi33U8pm7bs+eeldW+ZHp9NmDnz7KyLwDYreqLGDYKb3Y6lb1/P3QaZ9kE3lZJ9xKEf9Oie16knPZM4MGpU3HbMuXwomPUhs7RyIud6GWCvELi5Hspdnjw1tCg5NJNiY4YrqiT3Jk4sxkB4LhLXi/o0V5LMIB0cQGPTp/F245QcNI36YgZ0v/15LGk+x2PM1x5oHMiYeX4/3zzZew8H3lh4eVueHnoOYELscDb0WnpTNqeaIGhWpfMxcmleH0CbJ7QZy3dMPtYjwVvn5GfaB/I7d3fMSG55u24zR1TPuO9/vfwcsfLONlvQfuw9AX8tNODx/f34PVT8kducmVWBlOcCzhufQHdTumKrPGOMxccu/D+0JvYO7AXZ8bPxDxu9yY+IPoEjmO9luBU9AnnBM5OhGbB/O8b5/D8kdir/YNdE3jrTCj3q21gGsd7k/dqHRk+grNDVvz15MngfVMO8Qt5eOxdAMD+0Tfx/Pnngz1T3Y59SXNRAsNxY1Y39rSPSR5gO0YT916dHZpG+Ff53FDq0/PlJHqO29w40DmBwbBAud2xC93O/bB7bHDG6S6WGt+3uXzBmW1tA/GrTocXywRCQ2rRV4teX2jdtnHneNxlc6adHtz75rmY4FHgHGcGrXjxWGQg6kNs8LavQ7p30O5Lnhw8EXaS+89X38XDpx7FmUFr3PeAQxyqu+DYjUHXqZjHB2yZDYMLnKfVcxRP+FXtUJwE99e7BiKCYgtc6EToOxieOGuT+D54BenpDRaHBxdGpoOzEBPp828jddIfnnYFyzh4wt4bJ7x4wHEKwzz0e+3vnIjJrQlvWyAfK9w7rAcHVIMxJ7z2Eavk3+KAcxh7HLF/5x6JmZVSbZDL4w9+pWZsjocl0gucY2jalfBz86y1PeI5AKD1jsHQfy/6RvzH37CLTZNnHLW2s+i3x5beODb9LI5NPxe8fXow8ruS6pqb4UNhmbjnzfP4xXvixcyQbSjJLGWJZHD/fWeGpnFhJPSZ9Qk+HBgMpUScnzgfd4m1eBeX0X+bI8NH0GHpSJjrGhiWjZ4IoIRZEUxNu6cjqq8GPhDjnsiEbIFDsjDnO73vYNDeBZf/gNQ51ZlWOwJXg+Gzo85PnI/YJjoIif4SRovOHeqfdOBA5zhGpl2yup4DAl9upzAtWfY//FQQGK8O9I4d7bFE5IqExL9mjQ4AcmXMJr4/Y1Z38MARSJDvGLPitztDB0Kvj+Noz6RkjkTAqQRBVMC0b0jW0IrF4cHJ/tD+7B7pE7nTI8Dj4+i3SPdIJJrRGfgbHOiSX/tFSp/zCDjncIUd1O1uH84MTsPrE3B+eBourxDs7X3qYO6W7Zl2eTEgszYNEAr+AaBjzBZxGwCGZa5XNxXWG/yOqgfHVCPw+AS4fUJEoCx1sugYj535BYifpwEZJ4JRnwNn/b060WsGAmIP0JREHlxg6PKCEHnxFd1GX5ILKA8LPe7mPlzAJDg4Tk5P4MBUbGCwzzkYc18iHOJxUU7F/2RJ5wEHwhavdnh8cPuEmJmp0XW9XvdGnhOcllfQLXRjcOAd2Dw22MPqwlU5OqD3yQtyAhexAYELiuiSAIEeLJvHhp5xO37+2llYvH04ZX0JTx07gHhSubYIpC64fC7Y46RgDMQ51sTTOdUZcd54tetVvNn9Zkr7CGf32nGoayKi/p9Urb628RMxI0xK0SjdgHwIDHEl0zYwhbaBKTRWGgGEQgGLy4KO8beRbuxpc3nROWZDU5UJQGoLyr6fYCq5U5jGpCfypBVYQ+n8sBUeX3pDdl2Tg9B7JvD2mREsbA4MNYUOYAOTsSeyVAo/vtH9Bji/Jq22xRMv5+rdfjHfKJRwHdqua8wKm88Cs7oagBjImgQbOsZsmHS4oVbL+zsFXlutymyIdMo9hWfOPYPOgVKUa2sAfUa7AyAegCY9veh07k26baIR3iH3GVTrFsfc/9LxAdzYOje4BuOR6acAfCfFRnKg812wsvkASqIfBABohNSm64fnlYQHGdFX4hzxe6I7mQUdmMRWVMd9nQP+MhsmnTrifkdUbhOHuMRJwLjdjX0TYxiFE9UwBO+3xpkscs5jgcPjg0/g2IXUc9UsPH7A1uaOPcYcZkO4MD2KT5YsjXlsl6MfJ1SjKBF0OMVi84kYxN9VbjI9IH4/e+wOlEAXs6+A3RdGMWCewmEWO0PbFud983gFCCoeDDai/9bJFogOBG7nh6dw/sSDYNPSM6JV3Isjp88D2sqE+4s2OOVEY9jtvRfGsWGhHs+dfw5rTB8HgOAqBo6o2dDhhiR6mH577LfYUL8BG+s3Sj5nzOrCWdtraDS0xjzm9nIY1LHPyaW+CQfKjVqUG7XihZtXQP+kM+5x6dzkOewd3I1B1xyodfPA+YKUPnPZNiuCqViJT5LJ6mYEko7lCiS2yy38KDdh1JFkiCZRvZ5Edp0dhbV6EgBwYbILBq0aTx7qTPo8uQmMe9rH0GzsSliGIdr5YStKDRrUlxkkH3//QpzaUrb4s1o6bUdx3nYeK8w7AIQOtEd7JnGs14JSY/z3z+ELraO2r2McGjXD5uYqAIDVO4ID3X041efFsFr6by6V/P16lxj4Ddg7oTZUQB8VTKWTRzzsPgOLN7WTr9MjAEZxhpwgAOUmbagNEt+dYYn177ypLHPi/8VUlh4AK0P3j3cAltz1cAFAv8UR92hwholBxkmJYCOel9kFrPJUwmmNPLnzqJ9tbh9eYZ0AA+bzsuBjx13xk51H/bkmJXr5h+0hJl5cTXIX2jGJBSiDJup795Y99B4Hhr172DTgM+KAaxjl3BSxfaCOVGCmYPR1jEcQh9RS4fMnJvs4D0ZQ0b1l/bDikGMk6RwZDh48Fo3Y3PC4AIu/lz5RDSku8XjgpUZck+jp9mGtScCoxQETi/ylq+3t0PusGNC0JG5cHnkED97s3I2N9RvRZ+2DIAjBfEqvT4gop3OqfwqttZ6ENeUGLU78ZbAfMKRfyDaZU/1TmF9tkvUZD5SkGXKfxtT0ObRP1mFJ5ZKctS2ZWRlMRQ/vhfMITmiYHoyxmKDGIzgAmNN+Xbkxc6CoZDIdjsgk6ej2+njk1bFUbY6hKSeaKo0REb3UCdPiTN7zFP28iQTv86DrFHxIPJvM6fHB5fVBr1FjZNqFkWlX/GAqLCfoeK8FaE3a3GA9lei6WF1jdnHmlETuS0Cb7RU8sLsm2JHi9YnTlt1eAW6M4Q/H/4wNZbeic0I6F6bHKU5Ljv6bxZs+DMQOCSTMm/Pv181Tm3kZLrBsTXgwJTUssDcqkD3WY4E37G875Z7CI6cj1yyLX3MmTJJA6mS/BV6NKu2v5KDME/479l5U+v/QAoDDA/GDKw8TcMY5gVpN/G7FmKrZmMY8xH6u33MMYIuhAaoMrrYHWejvf1I1Cjv3YC2vjbv9iDVyRuS04IFg9wQ75YcFO2xRxxW7xxfRd9efoAp+9DEiuifO7vYCeqDdPYl292TC58bTDyvmoTR4O/o7NeZ2gqmBKnXkey51ERu4Z0gYgNtbi0mHGz4OaHh4PpYXGn8tqyp7J9ylKXznOHJWJbZvwoHucTveKh9Gm1NceaDdoQm+bMCQ+zQEDvz1ZAdOXZgLvf/j4Yu64OsYtaFBL2BwzI45eiFieM0n8LR75tvtuyJuy1kD9y9H+7F5eeRxOzCbXilFmzMl98/qFkJ/OLtvAsetz2PMk7guiZRT/VPBGR97BvYEk7jlFkDjnGPQ1YZDU4/jSL9Yc8UjOCXrKcUTPS4fvX+pHjevj8edGTjkDiUQjns6JfcZ+ll2MwGIQ5Qef+/FlDc2f8rq8uK+t9txqGsy4v52GcOJVpdY9O/FYwMJ6ykFrsLD62IFAisvT5ysCsTmnYSv/g4Ah6elywoAiBnnH7e5cXZoOmwIOPYT3D4S+t3l9gJG1/xK5I8HdwaXTZIy5m7HuCf5Gnn7O8cjPhDhazcGvNb1mux2xSMIPLgQa3bFf2/7Jh14whUKBL0QsIf1YypsGM3pFdATJ6BweoWYHDeBSX/OjrhGcMFjwYjVhb4JeTOwbHCjnyeYGSqRb8Tj7NPj4zGlRt7wdaPLEZsnxCH+buLM2QQNjPKnqGE2qdm4AheH6eTWzHIj8WfiIeuZiOVv5FBxD8zuUWgljucuIRQ86X1TEZM67jt6X0qvE07u2xivSG6gRMSBrtBMtylv7Kw3j38IPTplxJOgd3nAdQqnbOJsdJdXwL6O8bjtyHQpnHifp2dPvx2RMpNsAliuFW0wJddpW2iZklGPmAw+7UttmuW4zQ2Lw4NzQ1YMTzkx7pjEuYlzON5rwf6eUGCW6MtxfvI8+l3i9N1A/Z7j1ufR6zwc3ObsxNmENaSipzuH34xexiO82JxUFd8h6wj6nEeDvVlSV4VjnvgLyKZC4D74uAenwpKxwxPDw/Oh5M7aGLVP4thAf8xacR7uhFsI3Cfut891FB7ugNXlxVhY0Cgnty1RBeRU6vucGZzGmDVxT92FUUuwlEGyq3RrkpIH4Toce3Bo6nH0Og8nLGnhFJIn30t5ozu2TpaUwOdXTuHL8MeiC/gFClaGSzSLLBxD2IK5MozBgRFmxzHIO2GMWF2wJZna7vEJoYV2IQ5xW8IuChINxbyh6sYub2wNo0CJgvClYuxuL45NjcLq8qJ30hEzxCU9qQTBAHY6rPfR4vBgxOrC4LQrYdAzEbWwt4+H5TPFeV6fxYnBKQfOpbksDefyApNE25S5BlDp7IJKxsLk4b3BnPOUyiDwFNcx7Jrqwv6OxO/LMetzKe0zUc9i+LsU3hEBxD9eSi0in6gHXi4f9waD/UKoM1X0w3xuwZkwZAyvBRKoPRTo3hQT4ByYW2EMbtMxakN9mT5iWOxM2DTj9hEbpp1e8GaO19uGMOyWntXiFcT6Ri8dH8DmWldEAU+7x4fSyDxM+LgHr3e9Dp83/phGvIOB1NIrdpcvmODcPmJDdUnksESgByLRlb8r6go4W0XfphxeQBt2W8bacNEebnsYp6yxB5nw4DTcsDu1K9UAuUOycoXq2UT+Ncc8nZjwdEZcWQZOPm4h/aE8IHI4NhslB0bd59HtDFVX7hq3RwRpDrcPxqiE7cEpJ9wCgLL4y/7EDCMzJ5p5efDCwMeBnkkHXuSxPcsnXWNo0kQnt+dT4vc1MNojcB4cfmwKO+60I/Q5S1bgNtH6bFbmCTblaK8FL6jaERidia7mneyT0KYKBezTYb3bUqUVAkajamT1W5zQqRl06tBB2uMTYHX7oFWxYO6MjwPugl4wOfRu9TqPRDwSXU/Q6fHBoA19/n3cA7dggwAf3IIde9rt2NycWiJ7NnXJGGaTEv17AfHLIAxMTaa8/8DF6aSnFwPuEzAZQwGcgnVpg4q+Z2r30IvBn8fiTIHmXMAZW2jYIVAnaMTqQteYHXvaI6/yk5Wy9/iE4PT66C9WQHjxstODE5LlCMJN+0+ih7rjTzmOvpKUOwQSfXCWCr6krpiGXJF1RLJZQdfmG4Pgz804PZB6jZWJBMNVycgtehndLZ4N/f6ZktGfmwHXcckuegC44IhdsDVd2TgohQdSgDj7M/yq9US/JWLq9aHuiYjaSGI7Yhsidwq0VLDBEX85i3CeOCfsZD2BicppyBHIh4u3Fx721bLJ+F7L6RUNlE2I13Q5hYHT8evJY+jxhC8hIjZggvmH2AUx9WDC4Yl4P7wsu8HUA1NiDTSBiz1k8Xriwk1JvCcGrwXqOGuF7mkfw4WRyIvOw92T2NM+FiyD0+nYizbb33DGFurBDdQB83I3PP4Lfqsv0Tqz4gfEKUylfWEovl769ZraBsQyKaNWV/D7/Yd3Yy9sxm1uHO9Pf+ivy7kPDp8loic/GytoZKrog6kxuwUWuwec84jkynA+7olZ8iR6Hblw/ZOOsN4S6T/i/s5xf8J6cg5fZj0LAdFXFMnWXwv/4oT3HIiBk/h72d0+eH0CnEnqqUy4RmUniMpxxvY6upz74z6eSi5ZqgbdkXkcnjjT8rMZxKRq0tObUj5UquTOxkunmKDXx9E5GvqsuiW66H936NmY7+tLPZElTnrYdNL8mIBxmxuHuieTbie15El0oCclWY9esj3Ee3xMcMKJ1IOaRLPpbHBjEk7sViVe0iRb3+ZBxB7fjrkjL1A9Po4hZo/5XRMFdALnODU97h8qjGztMRa/KGaggnigfMXwtBP9FifGJeq1yXkPyp2J38chidmuQGh2t9Rs28Cx+7j1OYy4xRy9eDWhwjl9U5K97/E6EqKFFxpNh49znBuyRny/o7m9At7vTj0vudAVfTAFiBWJx2xuyeTGuM8RRhHvqzQ05cLJPjHYkurFAYDXu97Eafurko+Fs3j7MRk1U05uEJYpZ9jJOFGdKKmTXbQ3+p7PSpvCJSr90OVI3JMnp4fFG2c1eVdUbtBxa/q/W7YumKLzE3LtpO2vsrZrt+/M2msycGj9n/2dnSdjqtObJ2OvuHcxeb2D4+7QyWRI4uSeiFXGotDJ+mS7IS/fLHpY5JBzGK+qOmU9N5wnQe/5G6pu7FTJe988MoPVRGws+XE3kNMVnSCfqHe93+LEeds0Bqec6IsqO9PJ4r/f0YFXomB52pW4DpVcWsEBnc+GemsbKpzxy7VEk5t3mexC9uyQNStrNKZywbynfSzua3Y54l8oJyLw+N/FXK4tKEfRBlPRxbuk1nFLpNsZv9psuPAZbwGBj090j0b05yowu+7trvcj7h92n437oUm2OG0q4n8tIh852iOvB+T94bczaU6MVHo9AoXtApItZwNk1qVdyLLxGYkuqxEucjiES87GTFedTXoJCgDQuGKDazknagAY405MwYVJuPC+KrX2WhOUyDji7wEJ1HOKx8ISf9a8Po6eSUfEEF42l8xJ1xCzYzjF4FOunY7YHp3Tqsjel0QXcoF3J9W3yeL0omfSkdf3t956CnW209AKdpS4xc8Mg4DRqQTL6yQIfjw+ceZkIDCUmm0dLbynN185RkPu2OWkMnFk+um4HRhKSxpMMcaaGGNvMcZOMcZOMsb+XmKbKxljFsbYEf+/u3PT3PSks4J8JlF8vNeTWuARCOVDhZvwxq/RlA9CilekF0ZsSJD3mnNttr8p9+IFxpnB8J+cRZnDSzS4BBvOZ7N3igupFfyUIZCQ/baqBzvjLDqcTLwZai6ZM//6WOLZhFIBm8vrS2uoLdsxwt6w4FMQeMb5YQAw7LPjhMyFjTPljPM3SmVJokRUafbe1djaMXc6/gLM/VErTQTK7TAmLr58oHMi4QoZ0WyuUDt7J/LT0z2V4sz4mUzObD4vgG9zzg8xxkoBHGSMvcY5jw45d3HOr89+EzPXM+5AQ7l0scdcSFTvKRPRifCZ6nTukbzfw50YcZ+XfCyRQpiemg2JirrmVZrnrEH3yeQbpSGwnEU2TqaJnLA9B6nrvHQ/XwIPDSOl6zTLbG3DdIzbPZJ5PMnk8q/jSDL5Ro5plxc+HYc6TjHSfPYY+bLQRaOOky6QjD5BXi4gFlTOpvAVOOLlcSUTPekoGYF7Ui73MFMl7ZninA9wzg/5f54G0AZgXq4blm3DiT6YMoZaC2HqZbbFS6yOd38uKT3eXYg605yibI8a8sxUoBJ8oD6XUl+F6ByqfPLFKaxJUuMVOCYdHgwkWForutJ/LvXLXOJLCfFmrw5aCjc9IXrJNLtvMu38qJkmpZwpxlgzgPUA3pd4eCtj7Chj7GXG2OpsNC5T4ZXME13s2HzS0zTDk37TjeTlCq9VNVNlcro5b387W80oGvmY7stlDFFEz8xJVhpEaUrlGrnSmHU32wTSJzji50PJmT05G4iLhiem4l6UO3sRffSV89xciJfKMhvIDqYYYyUAngbwD5zz6P7JQwAWcM7XAbgHwHNx9vEVxtgBxtiBkZFENTOyI9mMr4B2+7uS9+dzBlX0h1BuraNC0pdkgehEUqnYTbJHbu2mcNnqpS11DcLoSVz0NJ1aR7mqj5TM39KYdZcrhdqTFr4eYq6C8jNpVkqfiSod3Sh1D8HoicyTTOd7PdPJyffMJVnBFGNMCzGQephz/kz045zzKc7Fctic85cAaBljNRLb3c8538Q531RbG3+xTRJb+JCQXJiSqHGTL+WuPlQ7Ypck4mFDvpNpHCALYRYcSS6dv60cqSwHlCv11pOYO300D6/Eo/6fvRIthZUPcmbzMQC/B9DGOf+fONs0+LcDY+wi/36pq4EQGRKt75drxdgjOFuDqfdY4uKRJD9U3Aut4IQqQXmRbGPgqHB2Q6Vw2QCnR8kRFWXzbuXM5rsUwGcBHGeMHfHf968A5gMA5/w3AG4B8HXGmBeAA8AneTYqhGWA0pnJTOHMwqKfMxmTGNIuc2WvdtVsMcryU+yXJKaXuai2FAYBasENryq12ecGjwUm7zhUgg/jpoVpvz5JX9JginP+LpLEJpzzewHcm61GEUJmD6nhkDKXcsOPhGQivEdKxT0QmDbB1pEqHN0we8bQX9qS0vOYf5iPzerhPmV/96KtgE7ITBFYmogQMvNVOruCPycqyinF4F8DVTULE8hnOgqmCCGEkBmg2n4BNbZzSjcj63Q+q+L5XpmSkzNFCCGEkLTEDj8ZvJNp7cnoLc6yD3W2M/CpdBgoWZv2Pjw+GuYjhBBCilK9tS3mvhp7uwItSZ3OZ4Umy2tlxpPusjwBShe+LtpgKs6yT4QQQkjeaAX5syx5gc1Dr7OdQYP1hNLNkMXNbYq+ftEGU1Y3JfUSQgghs8GkR9k6a0UbTNl9+VsKhhCSPfOmjijdBEIISUnRBlOEkJmJYeatS0kImd2KN5hStgA7IYQQkmd03lNK0QZTVo+ymf2EkEhqwQ2N4FS6GYQUPKPHonQTcoJByOuahflUtMEUIaSwzLEeR4P1pNLNIKTglbt6Ez7eOHUQlY6uhNsUoip7h+TyUcWgaIMpRrURCCGEFDgV98DgnYTWZ49T04lD77MiegjP7BnNS/sAwOiZhMGb+Qx5Y5rFSmcCqoBOCCEzgFtlhk5QtpYOyb5k6/eZPBOocnRgwrAgTy2KVe0Qi4z2lm1UrA2Frmh7pgghpJgMl6xQuglEAYHeqnxVIifpKdpgihVYJVlCiKjafmHGL2pKCCHhinaYz+WjKJ6QQmT0TsA4XZwLthJSDAxeC1zqEqWbMaMUbc+U3WtVugmEEEJIhnJbO4pBQIWzGyruAyAOJ9bYz6PK0ZnT1y02RRtMEUJIsekvXYcJw3ylm0GKiNk9ihL3CEpdAwAAFgyqqCZcKoo2mKKcKUJIsRGYBpwV7WGbRDF5xlDqGsrpazD/aiGMqqdnpGhzpgghhJCZLHyoTaqulFZw5LE1JJEivsShnilCyMyRbo+TwDQYKlmV9utadXVpP5fkD+OxC4AnKpdQazsLk2dMxp6pRyobijiYIoSQmcPHdGk/16MyYtS0JOE2brU5pfuJskrcwxG3GWKDqUT0vukcJJFzmDzjyEYApuJe6Hy2rOyrEBRtMEXLyRBSGBgEmhmUB05NedzHpnUNGDYvj/NocZzMik2Fsycn+1VzDxqnDsIQZ2mXygSvW+IeRZWjAyXukYzbUWM/jzrb6aLJ1SraYIoQUhiMngmZww0kW4bNkdXSBaYGwOBUlynTIJIXKi5A63NE3eeNuK31iUsSlbgiAyLuT43R+eKXFQoU243eZ+I2eVFvPRWT36XzFdfSSBRMEUJIkXGrzfAxbcrP86oMEBjNS5qp9L4p1NtORdxXbb8ABgEl7mHofNbg7EANdyfZW+qjOzqfPSYYM3gt0AoOlDoHU97fTFK0wRSVRiBEWQavBaWu4j6AZtOYcWFW9zdQ2hL82aGtjHm8v7QV/aWtEfcNm5ejv3RdVttBlKX3TWPe1GFUOHtQZzsDvT/YEetIpTjEFrW5WnD7hwynAAB1tjbU2c5kodUzT9EGU7xIxmEJmalq7OdR7upTuhkFxavSS94/ULIWHrUJ48aFcKtSSwi3a6vSel2Bqf3Df+H3Ua/UTGT0prc8U5W9M6PXFZPRxcKf2VLqGpyRizoXbTBFPVOEFIZyJwVUAcPmFQmDH7u2CsMlK2Lu5wkO1ZOGxoza5IsT4JHiZ/KOJ3g0eYdEti+W1IIb5a4+1NjPZ3W/+VC0wRQhRDnhCapqf9JqcZN38cahwngaw3mDJaszfu14XGozBKbBqGlxRvshJFsCS9qIOOqtp4K9YIWqaIMpwWdSugmEzFqpzPYpBqOmRbK2i1eYk0cNtwXYtVUYMq+ET5V+DarkGPpL18Gpqcjha5BCZfbPtA3kPQVosnwRlLgXLD4GDq3gKPjyKsUbTAmUM0UIKXxT+rkxuUsBAtPAo6YLQ5Iq+ee/wILG0aULInuH/PfJ3K/OZwsmumdK753Oyn5yrWiDKUJI/pjdowXfDV9IRk1Lgz/HC6TiS39YT1ClXi6BzDyGtAOQ7HRC1NlOozaNWX0qxAZwMyV/ioIpQkjGKp1dqHJ0KN0MxXhUqfUeOTVlwYDKpS7NRZMkBZLfXeqSvL0myb8a+7m0nie358ngmYroMVJzD+qtbWm9pkoIpQTUW0M1sqrt7Wiwnkhrn0qgebCEEJIhn0oHm7YWZo/8ZTacmjL0lm3MYavEhHfpNd1otjOJ1TB9UtZ2OsGGWvvZ0O0MhvR0Prvk/cY4y90UKgqmCCFZZ/BalG5C3rnVJpgLbOLiQOnaoln7jOSeOmlVdBIPDfMRQrLG4J1Eg/UEKpy9Sjclp6b0c2Pus+mqJUsY9Je2pJEXlb7w9fcEpklrWRlC8ic22J+J5VSKt2eKUTc2IflWY29Xugl5N2xe7v+JwasyxDwuMC0GS9ZAJTE7Ktv6SteDZ+HYZ9dW0YQCUmAKu4e1aHumKJQihOSDW0Yyt8A0cZeSySaxjlXmR7/owqIWfeIq61JBJCFypFtCIbAuoM5nC5Z3UFLRBlOFHcMSQsjMMa2vT/i4l+WyqCgpZiXu4bSeV+YaACCWYWiwnlQ8T7N4h/kIISRHuIJ931TWgCgl1V6kXAwVGz2TKHP1QRvVG6Xz2bL+Wqko2p4pWuiYEJJN0fWgBkrWYqBkbU5ey60yi/+rzTGP+VQ69JZtyMnrSgnlhJHZLtUSCCVu6VIhmQzLVTk7YwIpILJelRKSBlOMsSbG2FuMsVOMsZOMsb+X2IYxxn7JGDvPGDvGGMvfN50QQvLApquOuO1T6XK2Zp5PZqVyqWAr2+TkhBEiReezQutzxNzfYJVXz2omkTPM5wXwbc75IcZYKYCDjLHXOOenwrb5IICl/n8XA7jP/z8hhBQFX0HlBTEMm1eknNQuMPGQ71FTwjjJj1L3UF5eR+mxqKQ9U5zzAc75If/P0wDaAMyL2uwjAP7ERXsBVDDG5mS9tYSQgmDyjMcsjEryy602B4Mj+c8xYcS0DBZD4tl5qfKojVndHyFSauznJRdgLgQp5UwxxpoBrAfwftRD8wD0hN3uRWzAlWdKx6mEFK8qR0fEOlqzgbdIenNcmlLwLKbLulWmhKUR3OoSyWKmhKRK6Rl7icj+RjHGSgA8DeAfOOdT6bwYY+wrjLEDjLEDIyPy17AihBClya0kPmpagsGSNRm9lsUwD251CZya8oz2k03D5pWS93MZ1d29KgM8Kuq9IsVLVjDFGNNCDKQe5pw/I7FJH4CmsNuN/vsicM7v55xv4pxvqq2tTae9hBCiuES5Sk5NecYFOr0qA4bNy/O6DE0ybrUJ07p6ODQVweFFr0oPiyF2aR1C8k3FlZ3Nl3TAnTHGAPweQBvn/H/ibPYCgLsYY49BTDy3cM4HstfM1NEgHyG5wSAo3YS8sejnodzVB4emAoA4g08tuGdtjlAg10rFvWBcCM5m1PrEqeocqgSfDzoqk9zRKJzDKSd78VIAnwVwnDF2xH/fvwKYDwCc898AeAnAhwCcB2AH8PmstzRFVAGdkOzT+Wyos51Wuhl5M61vwLS+QelmFByBaSRjI7u2EiouwOidCN7n1JTGbkhIkUkaTHHO30WSSwrOOQfwjWw1ihBSmKKrDKu4D9X2Cwq1prANm1fIzrMqZlN6cWK3wIq2RjQhxVwBnRCSayXuIeh9ac1HKXputTlnRT3zJTvBoHg0zkeBUTJ7KX3Op7X5CCFpCyw2OvsofejOvYGSteAye5NcGrFKukNbCbN7LJfNIqQgUTBFCCF+AtMoPiuoUKTSq+ZVGdBbthEAoBHcwZypaV14vlnxB6Bk9iraYT5CCCH559SUARCX37EYUqvdPKWnMgtkZqJgihAiC+M+VDh7km9ICCF5p+wcfgqmCCGylLkGlW5CXowZFyvdBEJIijSCS9nXV/TVc4jqTBGSOb3PCp3XCp9KO2uKdTq0FRhliymRmhAiW9EGU4SQzKi4D7W2M8HbgSrgs4FTUwHnLPp9C0lv2QY0Th1SuhmEpISG+QghkuZOH4m4zai/l+QFzfojMw8FU4SQILXghlpwSz7G6SRHMhBYzzBRyQX6jJGZqmiH+ThdRBOSsjnW4wAQrBlUzFzqUuh900o3Y9awa6vgURmg5h7U2M8r3RxCsop6pgghshi9k0o3IWucmnKMmJfFBI1yK36T9HjUJjg15cHbY8ZFCraGkOwp2p4pvYYOioSQWAMla+MONU0Y5id87qhpCczuUXhn+Jp7uSQwNQBxVmQyTm054MhxgwjJg6INpgxatdJNIIQUGB/TwqeKv3ivR2VM+HyPyohJQ1O2m1VUBKZBf2kLBFa0pxdCYtCnnRAya1gMjYg3W6y/dB0FAFkisPgBKwBMGprgS7INITMJHTkIIQSgQCqPrLo6AJg1hWBJ8aPEIkIIIYSQDBRvMEWlEQghMti01Uo3YdaSW1dqsGR1jltCSGaKN5gihETQCE4YPRNKN6PgTBibZ0VdrcLEMGFYAIemMuFWXpUhT+0hJD0UTBEySzRYT6LacSHu4yruC/5MuSwkX2y6GlmlJqLLWXhVBnA6hZECQZ9EQggAoM7WFvrZelrBlhASy60yKd0EQuIq2mCKUqYIkU8juKARXMHbWoEqKZL8CVSe54zW5iMzU9EGU4SQRDgMXgsClx0Vzh5lm0NmtWldA6b0c2DT1QJInJg+pZ8T/Nmtpt4qUhgomCJkltEITlQ4e1FjPw+jx4Ia+3l/YEWIMjhTYUo/NyYHyqvSx136BwDGTEty3TRCZKEqdYTMMg3Wk8Gf1dxNgRQpWEMlq4IBll1bDaN3Em61Ofh4YB1AQpRWvMEUDb0TQqIk6uUghUPq8O3QVqBXu5Hy+UhBomE+QmYBFfcq3YSC4FKXKN0EQkgRKt5giqbzEUJI0fEyPQDAop+rcEsICSnaYb5yXZXSTSCEFBCXulTpJpAs4EwVt2K9V2WARnDmuUWEFHHPlFlLB05CkmF8dlQ696oMGDEvU7oZJAfGjIuCP3sZ5cQRZRRtzxQhJJz0uDcrsvFwh6YCdm01AB6xdA4tlFu8HNpKgHLSZ71ablT09SmYIoQUjTHT4uDPPpcOasGtYGsIIfmyktco+vpFO8xHCAmZjZVCvMygdBNInkwampRuApnlijaY4sU1ekFISrQ+O2ptZ8Eg5kTFK41QTDlT07r6iNt0CJg9AoU9AxcNPqZVrjFkViraYIqQ2azC2QO9bxo6rw0AUG89JbldqXswn83KKa+KeqIIma2MWmXDGQqmFNTSWK50EwgpGh5a9JbIIFUFnyYokExRMKUgFZuNmSwkn7SCHY1TB5VuRl64KZgqGoGCnFxmth/3H0vlDO0KEvOuvCoDLTU0wzGFM0OLNpgy6Qp/AUyDwt2SpHiIuVGxp5IS90j+G5NjUifYMeNiiS3JTFOuEYOoaX2DvzCnvBOkQ1uJaV09LIZ5SbcVmDKT2HW88M9JJH1FezbXz4BAhWWpZ6pCm/wAQorbvKnDqLOdiblfI7gUaE1uTRrmAwCc6jKFW0KyrURdC0Maleo5VLAYGmUFSmOm5jj7yF3PRj034QpOMw6LWeFHHGlqKCv8ZFSepSmHatDMlWKj06T+1dT5bDloSeZMWvlX5CountA0quQnNp9Ki8GS1XCqy+DUKBtYVWgbFX39QmdWV8vedonxyriPye/Nj/z89JWtD/4sMG0wEHdoKmJmgWZivVAneX8NN8GYxbKOlTy181s9z84Q+OWC/M95iT6/PYAyDhm5fX1lXz53GGMoNRR2TdJs9UwVEq1K2Sq06ajRLUq+UZ5VmYsnfyOV36WVS5+M4vGqDBg1LwVn+T2UGdWRk0eqtQtlP9ekT2+4Z5n5mrSel0z075ILS01Xyd5Wp4p/4l/RkDhojhds8ahT3ah5KXrLNmLMtBgWQyM2lN2KEuhltzGeauTn+NfMU7t4aObJ/8YlEqkx9aWR70klQkFchSHxRXylUf5FvpwzYXRbosm5AMulpEcgxtgfGGPDjLETcR6/kjFmYYwd8f+7O/vNTE99nN6phvLEUX2z8eKUXkfFlB0LryqJf7JaYNycx5akbml9SUrbqxPUj1lSl9q+ArQsvQPgshTbHi5Zz1O2gimlDzCA/IKhFVyPRkgP8cxL8p1NZNS0BIB45VqqEXsh0ulJatCvDP6cSvCULSVq+RWeW5sqoJfRu6liQL1uZcR9qR7/AKBM0xD3sRJNDVRMDZO6Iul+eJIU8vDrT6O6HOqoYb1AUO1RJ/9Ox5tKn8tvzA6hGYuiApumCiO2C81YzCtS2pfen4PVItTK2n4pr0z4+PUpXlRq1Nl7p7Tq5J9VnVqFalPhXmTKuZx7EMB1SbbZxTlv9f/7YebNyo7aOJFsc7UJ8yojv2xLTFcEf67QhMa263TyF0ctTyESz4ReVYK1JR/BPP06AIA67AgTfZKo1hZer0u4mpLYv5FBFXlCDQSEyYYKSg0a1CW5esmmaom2h6vRxU+KThbklBk0WNGQeu5Ire0sAEDvsybczqRVwyxxJbqQl6OEa1HGC+ugFT7z1aGrgU1bA4shtYBIo2ao1i7EhrJbsch4acptKFVLDwepmTbtgDwVc1IIKI06dcKLrESqtM3Bn6vT3IcUhvQvOleak52CRJxpMGJejjFjKNgdMUkfw/UpDD/H+7aaZe5D7d+DARqs4ZHBz2fLVsAIDZYkCXaimfzpHeUyetQaK2QElxp5Izl1WRoyDKdNEpitEqrxqdJlWK2tknzcrFVjXY30Y/mSNJjinO8EMJ6HtuQNYwxNlUZUmELBjyrsrVAxNerK0jspV5oTB1TpdKlHDwswMGhVBmiyOJW3zJj4i1SrWxr3Ma0quwGMOmrldz0TgwoGYKnpyoTPLctDQCvnRFymqUeTfiOunfcZWfuM93lbU3JDxG2N4ELj1EEYPZOS2+t905LVzrcIcyNu6zQqVElc5a3ltbiaL0CTtiThVaCaAdcKzViWwgkg3lAD83dGlCL553nS0IhGw2ZMGBekMCtLfAG9Rvwefe2Kxbh4YRUWmy4P9jAtrS/B8oZSaFjq36nV5g/DpK6EXpW8p5Kx5D0fiS7SFxkvRYN+JdbPr0ipjYmFeoNWmLen9Mxkx7twJnXyz0q86e1GdTnMUcdBDh7TqwYALnUJuH+0QM0Alyb2oiS659egVcOmq4WaiT0gcpUZtUnzczfpanFVzdyE2wCAHmp8WJB/8WvwB6eqsPesNk6gY1SFvivVZl3wYimdXKotfC4MXAO9RhX3vZIaMkxkcUkZKpIcuyvVBhjifOerzDoYUwiOcyFbiQZbGWNHGWMvM8YKsvpZ4MpmfpX44WGMYeWcMslZfx9YWY/FtfEPjPVpBlpSAl3qifKn1GnmVi0xbYu4vbbkRqiYGguqI79AjYb1qDTpsGqO9Dh8a+nNKFXHz2VZYbo2omcvQE63fiKr5sa2x6Suwhx9eh+xeMfIQAC2uM4c9VrSB385Q0RLTFeCMYZNzfITb6NVG+ti8kd0PhtWCzUwecYSPlftT+Q2+A8w1UhtmGx+tQkmnToiqXO70IxrhdAVvx4aGLn8k2lp2LY6tSp4tRzIM1GHHY7idfvbtKGr+lQDn+UNpbhyeS2M/gN9uWYuFhgvAiD2kIon2Mjv2grzdpRr5mKx6bKI+zk4Vpqvw0rzdWgoE0/WiYa6UpGo/lyFthGXLVogawgvmlFdjhJN5FBhmVELXVgQaFJHXt3HS5UIkOpZjqbyn/TD/14La8zxNo9r7bzYYLxBvyrmvtXzQscNqd5jgz/5PPoztrZlAxrKjaiR6I27RIg/Y1obp5fZ4P8brVHXyp4QpZZ5SjZCg1Zeh/VCXUTPVLzgyMwiv3srePrHJQDQaVjCz6lOEz+wCRybAiqNWnyqbBnKDFo0xelBC/SQLgib6ZlKTlY+ZCOYOgRgAed8HYB7ADwXb0PG2FcYYwcYYwdGRvJb/0blj2ijr26W1YX+OPW65ZinXwd12JcjUPckuE2ZHqpEQzRhQ/71uhUJ21SqK4VBJR4gjP7/18+vQGOlEfMNm7C25Ea0lt4S8zwWlWxb5/+iRo9hl2nmRNzWqozQMH3MLAuDSjy4lJu0wbyj8O+JimmwY3VoiKPSpI044IT3JAV6+Eo1tVhhvjZuvS/GWPDks3VxNRbVxh5csz1s2lAe+0VdO68c25bWorpEh2pz5IF3mSm1hN9STW1MAJYsYTbArIvfy7LYdHnE7eSBEUc9xPdTp2ZoqjDGnVG3Wkh8UF2I0AnMCA30MUM18mekMjBcKYhD6JUmLRZrpXuq6kr0kr1mQ+aV4EyF1qYKALGf70ZDK5aZro7bU6pVq9Dkv5hK1D0U/jc0qcUerHLNPGiiFk42qssjeprl5lHFe8fklgRIJ59ujn41lpu2QxU2o2zr4mo0ls6FWVUNk7oypte3talC9ncw+jgZboFBvGA0hh0L4g0fRudMhY8eLKpYBMYSv1albi7KDNqEk4/U/vdgYY0Zy0xXYaX5WgCARi0evVSMRQzDt2I+tIbQkH10Ly8gPZMsV7UO1ZyhBiZooUYTpI8v0d93OZOxSpkWC8N6j2u5CZVxvkurIB43PsDmy212XF+sjA2IowWC0XKVHh8UFuEyYV7MeUzpCV0ZB1Oc8ynOudX/80sAtIwxyUxJzvn9nPNNnPNNtbXykuayzaCN/AOUhH3I5hlaUa9fEfwSGLQqlGrqsaHsVpRqxJ6ZKrMuJt+lXrccAFCtj7x6matvwULjJXHb8tlVnw27igr1JHxmxZdRo1sMrcqIrYsj36c5+lVYZBSvklsaK7CuqRyLasz4xpYPB6/ckuUcJ/pi1ZTosGZeGS5eWIVKsxg03XnVYszxByLlmrlYXFeCpfXSB36dqgTzDZtw/eLrwn+tGCvNH0SzYUvwdmpfA44ti0JX0HJzrKNPQiadGiUGDYw6NZbVl0YE0eJ+1VgoY5mJhcatwZ+XmK6Mm98xL+yqK/xz19JYHuztrNevCH5mAkMe0SePwNVriXsYjVMHY4b1VrBGrOHykpUXoSLh46XQ4YPCIvxdzVo0pNEjG+h90vt7AcrCrqIvNtSjihuCQxOBd/8j5QtxY8nC4BV/4P8FJQvw0ebPo6lC/NsvqpqDixdV4aKF4m0106JEU4sqf1CTbKJJPCvMOyTvTzZEb1JXYUPZrQm3SXyBlfiDHO9coVXpsSxqttxFDRdF3K7ULoCKqcHCDvl3tt6Jjyz5KBhj+M5ln8fK2uaI50RPkpDqGQKAUk1dcBKOmmlihjulZviG9wpVmcVjTmOlEXMrQn+zhTVmLAs7zjAw6DXqmN6zSMkPBiWaOug0KqhVDCWaOhj9PejratfF/m4lV6C/8S601V+PDwgL8PfzL8VVc0M9kIFjRn2p2O7wITe5J3dTkuFqI498PHxGXSDYLfcfTypNOswtN6DKrENN2PHOpNWgvkyP+lI91umkjw2MMazltbhUmIdabsLlqrn4uDmU3hG+v2ZWjjsrWlDBkn/H5ieZeViqFvd7jbEp4ncJHBdKo4ImLVSoghF3VrRAywunIEHGLWGMNTD/p4YxdpF/n4nHIPJo5Rzxy9hYacSXNm3H59Z8UnI7JjEjb/388F6G0BdjboUxopu6QbcGG8puRZUu+bh4QGCo6NLFNdi6OH7vwCWLQx/8NfPK0KBbEzxY6TQqmHQagAG15vLgwbZKOx+lGulgtVG/HqW6Uqwr/VjE/YHrQbGkhBaMMaxoKMPS+tJgrkng8eju8TuvjEzwrNEthj5sNk2ZURORjL2+9OMxSeaAGJRcNGd9zP3RZxGNWhVxoNKGHfS1Kh0aDetjAkapE0G8CQrhrlkRGtIz6dVJr9Q1TBf3pDu/2oSti6uxrqk84vNj1muCv0+puh4VhsS5N4HcIrN7FPPKDVhdF/l7zFfVwwANdgjNks8PTz5PtgSDXqOCFirUmQyoCuu5k7sUUmCreSjBvKiZepVqAy7jjdCABa+kF1SbsEhbjhq1MfgaFf5eqm9svgI3b2xEg2kelps/gCbTCqgYC57QdEx8T+fq1uKzG7agNMnU7UywFA6d4cHFHN1azDVKB1RrqmJP5nJbU6Kpw39/4JvBezY1bMLNi0PHutD3LbLnZ0VDGW6/pBkLa8z4+KamiJ6g8IuLUk1txAVAtEDJvApNU7Bnb+OCSqwtuVHWb1Bq0KKpyhTsdQTEYDj6Aie55D2lX9y4A7ev+xCubLoy4v5V1auAslBvp1pTC0PZB4O3jzd9FXVXfAtlYZ+rwGc0cIHdV3UNNgtisKXXqKBioYuo8N8t4IPCIqhTLOsxtyx0bF1WX4IVDaFj9CpDJdRM/FYbtWqomTgcpmEM1WY9dGoV9EyNUn/yegOPPdZUw4h/aF6DjfNDQatWxRLmJJX5A56rhNieqgW8LO7wHRC6GF6mqxD3ZdDCoFEFk/YTfQJWVlSgrlSPxf7nKklOaYRHAewBsJwx1ssY+yJj7GuMsa/5N7kFwAnG2FEAvwTwSZ6tapQZMmgMmGueD5O6Ega1EVcs2IIao3RUHj5TLPw88YnNsVVrVYxFXPVGX4FUaedjhXm7rCuTUp14kKvRhoKN6B6UwGsZoj7M1Sbx5KaJurJZZLoES01XS75ehbYRn1v9uZgSAwtLEw9JJqJVs+DJpdwQe6WiYgzzDZuwuuTDWFNyQ3CY8utXRc52q9TOx/LyTbH798+UCkxrD796BSK/bHPMc1GnWxbTexg4EaRaxiI82FgdllNWZU69l+bSeWLiukmniRuMlGka8MmLmmRf1X6lYk1Md/ei8V0AxJlDUq9TbdZF3F/CtVijr8LVYQfCQPf+mpoKrGwohUalivheRCee1nAjNgjxix9uVc2F1v8ZqecmVEQNH5T4Zy/OlRiKjcYhfl8ZY1hSIZY9mKtfG/x8MKZChSG92kmB70W8fD8106LcqEV52BBj+MWGVG9YeE8lYyosMm+M2Wap6Uo0lSwJ7mNdUzkWSwx9SzFoxTzIueXlWFRrDpYbuWhBo6yaVuHHm4+tFy8eNsyPPE4uMkYONYer1UZOTgm8hzqNKmnduXi9gOGf/zXzyvCpi+ZjcYV4vIj+2/z7FV8KXpwEhhJ1Ya+7am4ZmqpCt1fOKcea2tVi8BStshnQmqBRMZiYGUwlfmY5F2cKMrUa0MQOUTZrxWPDlL4BcyC+/2rGMK/cGPx+GrXq4N80kAerlTgFqzhLOFnjI5XNwdsalQqVJh2WGMtRX6rHgorIz8xc/+tro457ZujwIWER5kdd4NSV6v1BYOKcqGiB9z3699kmNMXcVxY1+1Cjin0PwgO3RLMuP1axCJ8sX4prTZkPN2Yq6UAq5/xTSR6/F8C9WWtRFn1hzRfQOWrDxHBf2rWg5lUY8Q8fWIq733gP05bIx2p1S2BUVcQ8R8W0wa7oZAcTg8aAO1vvxM9HzqLbeQAAgkNqATUl+mCip89/35cuXwiTTgWt3oH1devBOUeZvgQNupVY01iOI92TKf2eqyo34MhUV0rPqdDOwzy92JPU0tAMW98abGloxYVhT8R2i2tLwCcQ0/0v96pTrzJjTckNMdPPlzeUwCtwDFicwfvqy/RoqayFd9CECbv4B2sMlMHg0j0xLbUt2D+4P3jboFXB6RFittOEBRCBgC78V5hTbgQ80c8KWVe7Drv7dsffIIHl5g/gjO11mFVlAEKVznVMnTDwCgTgiY6LV/MF2DJH/LzuvSBO3F2jq0aN2og5mtDBudSgEQ9yvth9mKGNqfAsJsPymCvvi/lctJgjTxb6FGZQhbui6QrUmergHA59NravqkdjZR0OpLG/wESKJaYr4RJiy0tomA7LG/SwjYTe0PBcxZvWz8NLPZHPkXPsMaoqoFGr8I1LtuPQ0CEA8hZuZQy4paUVV88Xg6DwhHHGGKpMOthdjqT7CSg3afGt7cvg8DbhgRMPBO+PV9/t44u/iFdODGLUfSF4X2vtevT4RmDWmtG6qArvX4icDC72yottMqjKUCdxYWIIC1BLDVo0lBvQgKVYUrEE/zN8GqWaWszRtwAAKvVVWF0/DyrWh7X15RhyRP7dyo1iANzTmfz3V6l1ECoXoNptQ42pBANSG130FWw72wErPNhiqsZx9xiuMy1AqWDGcf8mkqVFmjYDp8QLHa2aweeV7nO4notBYyeziBeFYd+3lbwaJpUWKxpK4RNCz7/OtABOo1fyM1Ollh6K00gEctETr6J73lKxyVAPHzSoNGlxDqEc6S18Dl5mHQmfa9Zr0FxSAq3EcTicnqkjjlFKKpwBRwVdtLAKn744FNnWlUb1fMQ5EzUZNqJGtziYY1Whq4dJr0GFJjQ0VKKuwXzDZlRpsxM537BuLj6+qRGlBi3UKjW2zNkCvVoPg8aAL679PP712otx8UJ59TbCe+O0Kj0umRs/v0ur1qKlsRwfXLUgeJ+G6aFXiR/kD62di3/c9kFUGMUvYyBJv9G4GlcviJxVeJHM9oXTqUzBv0Pg5HTd4svx4aWXY3l9KeZXmaDXiMN/GxdUpjQ8oFfr8YEFHwAAfGLdRqxrrAh7NHEn68WLqtHaJAYGqS5cvdh0OVaXfCh4+9ZVN0KtYqjQi6+/qHx58LEybQ2Wmz+ATeaLoncDjEsfmNbOKw8eWpeGTbS42hTZ2yr2LLKIAzFjLOYgxcBiegWN0GBuuQHLK2LzIgL5Ixv1dShNUnojKOqqX8/VMb1YEY+r9Witaw1+Nm5YNxdr5pWjwlCBJn3s56yxJHYmZuD7e2frncGAX8P0ceuaJfpsRfceB6wq+VCwCriaMTQa1qPM31tao1sEjf933DJnC+5svTP2+dXxc/euaIydSRvQGFZPL5WEaKMmrCfHn6ANhALHRsN6VGlDx4JQzpQWN21oRJVZBwaGSxbXYF6lEYtqzcGLoTK12Ku3rqkcO1bXozKsZyxwqA38/9lVn8Udq+8Ie5xBxdRYaro6oohpS20L6soM0GoCf5vIv9H1i65P+Pte3yK26ZZltwBacYi5ojaUtrFlUdhnQV+KChjQiFI0aUvxIXMzVIyhucKMEv8Q4OU86nO25BpgyQdiXjfZrMzKqIkY5aZQblT4TEotU6E0qlTOB/y9NdX+YCqd4SKDVo2FJSWoMuuwUCu/6rqRqXGRoR6bmysj8t5quRFaGfXGGIA6icKruRy6zxQFUxAPjoGTf3WJLmLWScDikg0xuTCBqL3Z38Vs1lTgv678dswU6RrdouBBOvykFq6uTC+rQN7S+lI0VsavDZLKjAZV2PBgiV6D1rrWuNs2ljTihqU7sH3RNsnHdRoV6ssM2OJPCA6UWWg2t6KltgXf2h7Kq7p0SU3E7WgbF1SipTH+ME2zeRU21m9Ea10r5pjnwKBVY16lMeJ3D7+Smm9eGgyWwkmdFA1aLVQqhiV1JbhlY2NM6YzAwS/1XI5It624DeWauTD6PEDHLtR7vbh+5Tp885qlMGlNuLP1TiwqC71HX7p8If5u2yZ8rHUB1kW/N87J4I83CKGh0/Dhv8BJXs0ZVuhCuYCbmyuxvil5/Z9wVwhN+IBGPJHOUZXg5tIluLJiLsz+PIzAsg8MDHdWtGCToQ7zK8V8mKQn9FLxBKZnKuiYGqt5Da5suAot+hpUmyLLc0hdhSergm/SRn53WudXYE2cxOpMhRcGNqhKg5NYltSVoE63DHdt+CrqdcvRqN8Qdx8qpkatbgm+e+XH4m6jVsV/T+vN9cEZzMvqS6FTpX4Vb1RXRJwQ15TcgDrdMjQbQxNIKjVNmKtvwRz9mpjnf2JTEz7SOg/1+iVYaLwE1dqFqDfV4wPN27BmbiW0Ki106shjXyBRxKgxxvzN0jG/TPpi9ivbFuHzlzYHZ3nWGGtw06rPAE0XoSIsf3Pr4mp8a/uy2ONrWK9rU5UJn9sqfi9iSxxEliqRU/EbCJVXAMS8pHkV8t+LZNXkAWBdY3nSmlBLTeViqkYKwVSARiUOGQZ6x1b6SzJc4Z/Vm6g48Epd6GKoXC0eU1KpAZZvhduyAlOqrYqZpbW8IfbAHa9swtwKI5Y3lKCpUnrY79MXL4g4YG1bVpP2bCS5AleKKpa82jZjDCuqVkCrSnxloNeocemSGlnj7eo4wx9VZh3MCRbJVKs0uHjOxdCoYrcJ5KBp1KpgL8q66kuxsFyc4aVTmdFs3IKlpisjhr7C0/zW163HF1pvQVOVCTqNGhctrMIXL7ocBo0Bi2pLcMO6ORGlDNIpnlphqIBOo0KZ14rrzAvwoYQzlMQ8q3KTFgatWpx0EIdWIv8AiH9VqlGpUg4My6FHDTNiw/wKbJhfgbkaMxhjMECDFqFW8oDHWOIE1qBVHwEAqJkKH1EtRiNKoV36UVx20d+DmTOrjRNuiX84Y/WcMnxu9Wfi9lx8fFPymmLxMkQb43zXNzdX4utXLkalyYR5hta4w4AGrQo12sVoMog5VqHgUf7f65Zlt+DS6tsAAKvnluFLW8QyBYH8Mjn+/pql+NDaBlzXfB0WmFdBpzLF1IliTIUG/cqEyz0xxlCpFfMBb152c7BH8cstX5bOX4qjRK/BxgWRFwAlOvHvGejVlcus1wQnOATMKZmDG5d/HBfNib+sTklVA5bGCdznlhugVTMsCi/9USq+32UGrRjApLAIcGD2XrlRm5OlbgIBnpw2rZao/dci1CYN2wKf3UBvtdzf46aSxVioLYtbRqWQFPZKwDlWa6rFiF0cyw0kBBriFBubU2FA97gd80rnwOZLb7JilVkvu+do44IqbFyQu/L4H1zbgL8e24BSTT1K1DUp9WhdNu8yvNv3bsJtArsLLzg6r9KIvolQ/kb41eiKylYMDMae9NfPr8CtS5vw+P4eLKwxY9rpwebm2PdlbslctNS2YH5p6Ao0PEjQqrS4btG1eMXiDOaxWWL2Ito6d2vEbbWKQafW4fZVt/tvq/Faf9jjaebj3XbRfIx2W7FosByIDlKtI6jZfx/MwjWY35zakkB6TeoBUjr0CQrzAfLW7lrXWA6d14f33TbAXAvoTEDLJwCVBui/z78jPVC1JLRf/+8m1YMcT6mmFhvqW4O368oMYb2jBpTrYw/Weq0KjZUmNNeYsGZuOV4+MSir97hGtxhl6gao2OngfR/bMA/PHOoDIAYVBq0aKpYgwc6/3ebmKmyqn5Nwu2TmVRoxanVDrw3N4kpF4AJxUcUi/OPlTegataNv0p5Rm6JV6sXgqEzGrKwvbxO/Dwe7JoL3NZU24aYlN8GsM+PE6AkwiHXJqmr0EenOcpeTayxNHESvveGbgM8N7PlVzGMLqs1YUG2GwCvhAwc2fSEYTAFIeDEkpZXXwSOVqJgFWrUK28uacEw/JiuYkjquNKMcg5jKRfMwR2MumJyoZGZ1MPXxZR/Hr4/8GgBQadbhqhV1ca82tiysxvL6UlSXLIPb54bD68Cec/IPKLWGJljQiebyZqxrGsKi8tjSBR9Z8hFMu6fT+2VStKimBGqmRXXYOlwAcN3C6/BKxysJnxsaVoh/ZKo263DxwiqsDhtC+fjG+AeoNVUbMTA4FHO/QavG3Aojblg3F/OrTAkXCF5UHgo6dGodKk1e9Iw7sMjfC9FStxwLtnmwp30UbQPy3ufwHiup4ZTmsmYIzpi7Zak061BZVwoMSjw4dg5lRg2uNk6gaUVs9Xk190TUl6ot0WPE6oJaxbAhrKTHIm15MFCuMGqD041zbV6FEc3a5AdBk04TWyumejHgFpPspZaMaaw0Yvuq+oieXElVi4GO43CrzVhluhpb5shfZ/PG1rnBnJSb/DPcltaX4s+n9vq/o5Hv48c2zAueaOYbAjNST4ulHirEk2u02lI9ti6uRnO1GY/u65Ys39FYZcSSOKkBQGxOjZQrltVh7TyxAOdU4vgtqTKDFmsby4PBVHiv3Mo5ZbKCzdsujh1yW1G1ApWGShhZNd5C4uTkAK2awePjwQu3OSVzIo6fHrUJgiHUkyJnfTrZNDrxX/ViYPRc2P2h11AxJvbEhAVSuOL/B/S8D4wfjdjdhvkVYIxFBIjBXUKFchjgQnoHmkCvUJU/L69cpcMkOFRMDKZa1DVo0SevS5foyBGezG7WqRMWIS5Ws+83hjh+3jvdCwC4cXGoDopUHZAAlYoFlybQqXX+XhX5wdSqukasn38n2ifbYdJpJK9O5pXEX7IgE2a9OmEQEi48IIlneeVyjDnGYBuOn2vDGMMlS2pi7ktXslyYaF9c80Xcd/Q+bF1cHTFcWm7UJmyHnBlU4XY078Arp09H3KdiDEIWqoMwMCypNQMSPUA6ny3idrzZNteZxRwODxdQqtfIqmmjS3M1eINGhRqNAROwQoVUC7FGY2CMwSMxE4kxJi/PyVyN3rLYMgRyJFpOSkp4sDS3woD+Saf/ZyM+0ir9vWaMBRObE+UQBsypMKBv0gGjRpzBuWFBBfRqeb0JcmqqpWLbslqoVSosqy/BrnNqlBq0uG6NmCvqEcSIbWO99HsvlTfHGEODuQEWu/xor9yoxajVHXGf3p9bs6RiKUbtB6FRqXD5PLGsQ04uI1Z9FHBbgaETYpCkNQCX/QPw7i+kt1epgAVbgQP/G9nu2kXARGg29fr5Fdhnif2bZXJUWaatQEWJHhXQ4xAmZedtyfFR0yKMm5xo1paizTokmeZh0qoBV+L93FnRgj9OtcEmZBj1K2BWBlPh+RHxunPvWH1H8KCQqS9evjBYxTVQ52pRRWpDN+kw6tTYvqoeL3aXQaNWwZWlFXw0Kg22NW7DkTPnIqbnZtuG+g1oMKW33hljDLcuvxWD9thun8AXXU7gVGUQhxSrDdL5OiqmitjPlctr0VRlwp/3SJeZaCxthM1ji30g5uDjvz3ZDdjHAVN+VkTfML8i7SHC9fMrwXkFylwqHHQOo1ZiNo4knUmcKW+sjLhvsPZSnPY2YFFBVK2T7+MbmyBwjvuPv57V/V66uAar5pRhzCN+tvQadcxJa0nFEiwoWyD19Kwy6TTYvkrscfnqFZH14rQqreSMxHzQqXX44tovQsU1sB44B6NOjbW1a9Pfn0YFtzfB9Hy1BjBWAM2Xif8AQJtiD9jWOwFDOWAbBS78BICYbpJpsKP1XzgZWKA8CkO9xgSXN7Uhw3maErS5x1GjMoD534rAMSLw6atQ6dGkL4E1wTnTpFOD+4OpcqM2aWA108zKYEqObMwgCQivmFuuL8fX1n0NqhSr3qZrcW0JNH3ia1WZdWktMJoPgWTdlQ1lODQhfvmby5rRYE5/8dhqYzWqjbFB0OVLa6DTqHDcFhqSCOTM1JsiE3Oby5vxyRWfDAZVAfPL5qNrqismIIusmi9aZf4gBH/OQ3hPqCxT/cD7/wdc9V1gehA4+VzMJgs0pTjvi5cBlppkeVDJMMZwsaEBi7XlqFbJnEARHA6MfC/Hq1rhGs9ubk4+qFTi8E5TaVNWe5sDveNjsSNBQTuapYtgBug1Ym+HXuasvnTzAaXI6qzNQvdRoHcqG9PoP3PxAgxPpzmOn6oEszLTsVBThitMjVimrZB8XG7n+TJdBeZrSmBQacDBsaDKhJo0ejqNWjU2LqhArdoEq+DB891AFWIDT02ezo3ZRsFUBgL5CtGJe5UmLSYSdFenGkjd2XonRh2j6J7qTr2RYW6/pDn4s5xps/lUYdIFhzqqSj+A46PHYwIbKSVacThmrln+Uj4GrRpXLKvFMuvH4PXnHTWYG8RyBRKJyNGBFCCetOweu6yhy8Aq9QnJObIdeEDy7u2m+TjvOi75WIAGDJVqAzbrY/OvcqFGbq9UhML6TMoVL9H+hsU3ZLzvcl3s5zHwmU9HnakOi02Xo1Sd/Lv1ieWfgEmTvYvKbMvHp6XcpEW5KY2gbN2twNHHU3uOsRJna7Zj2ehrEXfXlerR69Ug1YEFxhhW67LTo23wz5wWa82ln3sWuPgsUWlxlTA/WE4l3PWmZpz1TMKcZM3CQjOzWpuGwDIiDWXZLzOwubkKcyuMqC3VY1/HODY3i70SH9/UhDGrG08f6s3aa9UYa+IuhRMtMDV9fYIcsGy4ZWMjTvVPZX3mWImuJGZGXTwVhgrctuI2lOlTr4EypyRyllSFoUL2c7UqrWTglTOuyKrOKha6iNfKCM4ZY/hUaSgvZ7muEmfcCbo48inOxyeVT9UtGxsly5KUGjSYdnolnpGeKxuvxJ6BPVixoAFtAzasn18RVeQ1sXlxyiVEW1SxCBcmL0QUzwyYWzIXH1nyETx//nkY4lS3TiR64ex45B5vsimwZmSg7lN2d14jDqXlQ1V6aRzjpoUx9y2uLcGI04oRZ2xF/pkssMZotHK1HptlBPuFpuiDqZoSPT6zZQGqzanXAkpGpWLBL314AqlZr4FZr0k+3p4jGrVKVkJrpuZWGDO6SsmWVIKgXND6Z8mUaFIP6IKS9XC9d0/ETTlr2CVyjakJ15hi151MJjBkne2EZikr55She9yOSnPyngGpky9jDEvrS9A77sDXr1ws8azUNZU1oalMfN+uTnE5y89uXRCzAHe65pXMw5VNV+Zs0opSAseu3xx9EwLP8rGzdgUgvf67siQC5miB/MNANXOs+DBw+sVctoqkqOiDKSA/B34pn7+0Ga4kawsVohpjDUYdebqCKwJlukosMV2BNVXLk28sV5LgKvpRtYpBzYDm6twOyxi0amxdJJ2MnzJ9CeCyorFqOTByFEvNkT2Fq+aWYZVEkcCUXkKjxl0XfzzuMi/5FL78RzakUuiyECysMeN4nyWrs8hSksFs4rQs2wH0H5F8yOwfNju06GvYELaE0kda58I9GnvxsFhbjk+XLg9WAgcgJq07Y3MlrzMvSDgEGpi0kOryV1LkvqV5fucVMSuCKaWIJRCUbkXqbll2CwQu4P5j9yvdlBlBr1GhTNMAk066B+X6ljny8y6mh8QgI0UMYm9VlcSisQXrkr8DAFT17MOdFS2APrVlbeRKtdxFIbhs7mXQMA2ay5uzvu/PX5r9fcpx1Yo6XLSoSlZgu6p6FU6MnsjbRJ2cmLdR/CfhFtMS7B0fQ9Sa2GJNvIaoCwidGXDbIgOpwP1OCzCnBRg4FtpHkmrhWrUKy+tLspKgv6SuBENTrpQquge0NJbD5sreELzSKJia5TQqhjuvWhJxn4qpZvZBLM/WNYoF96SKLgJisce4ohPPD/xBPEiaC3E8IsdmZv55TpToSiTXk8yG6OVT8kWtYhEzmxO5fN7l2Dp3a8Lj0LL6Uuyxjs3IApElWh3KoJec/StuUAdM+n+W6v6pWgT0HxZ/nrMuIpiSI1sXXXqNGvPTzG8z6zRp/e1qS/SokjH0n28z71NIUragbAG6pqTrHqlULC9LjxQzlYolLPiaMrctWAGc5NcN6+YEC24S5TDGoE2wzh8AXLywCuvnV2RczkMJasbE4fIFEsHUpd8E1DqgN06dssoFYu91w1qxdIqcnNG1HweOP5lRm+UwMw2W6yplVVRPV6oFnPOFgqlZ4Lrm6+AW3Mk3VMBNS27KqDL6jNP+ltg1v/qjkfePtQNv/Tjt3X6qdJm4Dlghm7sec+fXYXjvE/IWPVbAkrrShMu3kMLBGEsYSH1s6ccw5c7NmnE5pUtSA8zg7wGft0H8F27x1UD7m7lplwyMMcmJLdtNTTjsGkWV3Npz6ZBY+D6fKJiaBdQqNYwq5WfdSYkuT1AsPtI6V3oh3u694v+LrxYXSZ2zLiuvV5nGFPm8K6lD7bwNqHX3RSXOzqJgmuRNg7kho6K/Bam0AViaoDBrvMKfpcq+D5VqA642JV48OmOXfSu3+0+CgqlZSu3vDUq2BtncEvnFMEnIIqn31TYW+tnqX9R5MLVch5nN33O2Ml4xy+z2rM3ExHNCEqpZBqgTDH/Gy7VkDJi/JXQxJ6V2OTByJrP2KUnhPF8KpmYpjVqFL29blHC45dMrP13QFZBnFJ8H2Bc2OzKYeM6QbhBhULhbm5CZpNJQiQlngRSqlaFcrfcvmJ7CRUFlBusyLroyeTC1+ibg5LPpv0YRo6PxLJZsOmteK3wXOyG7U4DvKFsJNc24JES2jy39GJzemTO54NOl/rp1zZcBZ15OvPHGO4CJjviPq6NmcAYS0hmTv0gfANStAE7K33w2oWCKECUEgqs0qzybVIU3NTihymagoUXpVpBZTK/WBxdBnlHmtgLOSaBrT/xtyuaI/+IJHxosCVufs2qROPmFZIwubQlRgoIzbhTR+qn4uR45ms25pmYNAKDWNAtrdhEST93KsBth3714yevRtv1zVptTLCiYIiQfevZF3nZNK9OOQhS4Ui7L7mSHBWULcGfrnTBrk0w1J6QYrbxe/L9+dexjlc1AzVJgyTWh+wzlwPLrQkHVlq9L71etSWuVhmJHwRQhuea2A13vKd2K/DP51/BLdsVbMR/Y+g3pgz4hxWjzF4FVN+bntaR6ftUaYO0tgKkq8v6568VFlAFAVwJs+oL0PgOTX6oWZa+dMxzlTBGSa4PHlW6BMszVgH0MqF6cfFtDZgsaEzKjlNRF5i4VkvrVoQub0nrpbVpuBYZOisnxb/8k921afJVY2qFrD3Dh7dy/XhqoZ4qQXJtt+VEBTAVs+Rqw8iNKt4QQkk2mKmDh5enlO0qVdFHL7NepXZ766+UJBVOEZMvImdiZMadfVKYthcJYKf9ASQiRVr1U/D+TYbVADaryFCuRp/L93fqNyNs6M9B6W+Ln1K0Etv5d4m0C5RtMVcDl/whc8S+xQZnCy5JRMEVItpx4Bjj2ROR9Ka7mTgghMcrnAVd9N3H5g5jn+NfIa1gr/l+1CNj2T2KOYrhkOY01/t6g+lXyXzvg0m8C+iRrXa7+KKA1xPY6VS2U3l6jF9t8xT8DmrD6WRRMEUIIISSrjBViAFbZHLpPqjzJ5i+Jlc3jCfQARQdhiWgNYuAGxCa5Gyukn7MqKh1AzgoPpf4ZwBrl64dRMEVIrqRSWbgYzfbfn5CZwFQlVjZPKk7Pj9TCyypNZOAW+Lm0AVj3Ken9yK1zFW7Nx8TZhxd/LfXnZhkFU4Rkm30csPQBRx9TuiW5teVr4lRqAJizDth6p7LtIYSIgVHtsvy9XuNGiTujAi+Df2myFR+WX6NKTm+TRg/MaQF0yq8hS8EUIZnyOABP2Jpf7/8fcOhPwESnYk3KC2NlaHo3Y+IBc/FVyraJkNlu9U3Ampuzt795G8Veo5SS36N6paPzmQJJ6SUJVidYcGno52R5VwWAptkQkomhU8Cp5xVPfiwYWmPo53kblGsHITNd7bLCGCovrRdnzyUyZx0wcFT+PsOPE/GoNGLe1ei5qCVwChMFU4Rk4tTz4v+FcNBTQqBnKjBzqH4N4JgUC+wVQFIoITNWNnuXcm35B8XcKY/df0eWLi7V2vRmESqAhvkIScWFt4GJLqVbUTjKG4FL7gIaxEWFoVIDi66gQIqQ2YQxefWokl10XvTl7LRHARRMEZKKrj3AkUeUboVy5qyLvW8G5DMQQmYAc82MXUSZgilCiDzVi4Fl1yrdCkJIwZKZ7qD2F9s0SySgN24W/5eTV1VAKGeKkACfR7qoHQCMd4Sm9wKAc2r2Lc67+iZxGK92OeC2Kt0aQshMZawA1n9GrDsVbf4W8d8MQ8EUIQBg6QUO/Rlo+YTYAxMtumbUnl8Bc1vz0rSCsOzaUKC55mPKtoUQMsNIJKRXNOW/GTlEw3yEAGKRTSC12lD9R3LRksLDVFTmgBCSnNo/8aR6ibLtUAD1TBESIWzM//wb4rj9gkuUa45SapaK9V2WfABo2qx0awghM4HWAGz9BqAzK92SvEvaM8UY+wNjbJgxdiLO44wx9kvG2HnG2DHGGF3CkpnPMQn07AMuvKN0S5QRnh9GCCFyGcpi19lrWCv+P0Nn6skhp2fqQQD3AvhTnMc/CGCp/9/FAO7z/0/IzHXscaVboIyrviv+f+41ZdtBCCkejZtDy9IUqaQ9U5zznQDGE2zyEQB/4qK9ACoYY3Oy1UBC8iKwHExglM/rCj02PZj35ihu7nqx8GbtcqVbQgiZ6Rgr6kAKyE4C+jwAPWG3e/33EVIYHJOAdSS157htoZ8PPJDV5swI5hrg8n+cfeUfCCEkDXmdzccY+wpj7ABj7MDISIonN0LStfc+YP/vlG4FIYSQIpWNYKoPQHjBiEb/fTE45/dzzjdxzjfV1kpUPiVEMVlamJMQQsisk41g6gUAn/PP6tsCwMI5H8jCfgnJrrN/AwRf4m169wOCkJ/2FJotX1O6BYQQMiMlnc3HGHsUwJUAahhjvQC+B0ALAJzz3wB4CcCHAJwHYAfw+Vw1lpCM9B0CKhaISdWCT1zlfOgkcOqFyKrn7/y3cm3Mt4a1wOBxoH41YKxUujWEEDIjJQ2mOOefSvI4B/CNrLWIkJziQOcuoHM30PopMZACgLF2ZZullIXbgJXXK90KQgiZ0Wg5GVI8pociZ+HFM3BM/P/0i7ltz0xAs/UIISRjFEyR4nHgD/LKGARqSjmnctueQqKmlaMIISRXKJgiM9twm1hHKsA1nXj7sfbZFUQFbL1L6RYQQkjRomCKzGwnnwMORvVGeRyhn/uPRD42eDzXLSpMKq3SLSCEkKJFwRSZOUbOijPyonmckbePPBz6+czLuW0TIYSQWY+CKTJznHharBWVTGDpGJc1t+2ZqTbeoXQLCCGkqFBWKpm5fJ74j42cBdpeyF9bZgqVBiijdcgJISSbqGeKzExeN7DzZ/EfP/F04mCr2NWvirqDR96sWpi3phBCSLGjYIrMTF5n8m1mM0M5cNV34z++9uPA5d/OX3sIIaSIUTBFCtvoOWCiM/K+d38BCF4lWjMzzL8YWHBZ4m1UakCjy097CCGkyFHOFClsx5+Kvc/jABwTkffN5iG9aIuvDv2sM4uBE/NfN9HwHiGEZB0FU6Q4JMqfms0u+Tvxf8aAi78K6EuVbQ8hhBQhGuYjhaVjF/DWj5VuRfFgLLR8jqkKUFPxTkIIyTYKpkjhmBoAOt+Vt+2xJ3Lblpli0xcib1NSOSGE5B0FU6RwHHxQ6RbMDBd9JfRzaX2o5wmgpHJCCFEABVNEOfZxcUhv6JTSLZlZzNVKt4AQQkgYCqZI/gg+sTJ5gHVY/H/kdOy2p18C2v6an3YRQgghGaBgiuSOxwEc+lOojEHnLrEy+Vi7fwMe96kYOAoMHs95Ewveuk8CC7cl3qZiQX7aQgghRBIFUyR3htsASx/QvVe87bSI/3sckduNnMlvu2aSqoVA86VA66fE2/M2xG6z5ub8tokQQkgEqjNFcoOH9Tr1HxH/BbT9Beh6D7CPhe7zuvPVspmjvDH0c2UzcOV3pLejpHNCCFEUBVMk+waOAadfBOZvib9NeCAFACefzW2bikH4rD1CCCEFg4b5SHY5LcDQSfHn6IApkfELuWnPTDP/YmDVR1J/3pwWoGpR9ttDCCEkKeqZItlj6RMTzgNGzynXlpmqfL6YJ1W7HFh4hfznrfhw7tpECCEkIeqZIvKNngN69kfe99aPQ4sR20fz36ZiU7NEXJh4zceonhQhhMwQFEyRxFxWoP0tMaH8+FPA+dfFZHGXNbQN9UBlx/yLlW4BIYSQNFAwRRI787JY2mCiM3TfoT8C790Tuy1PUDeKSKv014gylAOLr1a2LYQQQtJCOVMkMe7z/y+E7rP5h/N83shtz7ycnzYVC2OFWCOq75CYI5WKjXcAWkMuWkUIISRF1DNFRIIPmOxO7Tm9YflTb/04u+0pBhVNiR/f8nVAowcWbAVMVantu2wOYKxMv22EEEKyhoKp2cY2Cpx9NXZI7sJbwOGHxWKaAZwDzqn4+7rwdk6aWDRabgUuuUv6sdbb8tsWQgghOUPB1Gxz7Amg7yDgnIy8PzBL78I74tp5gg94+yehWlE97+e1mTNe622AWgvoS0P3Xf6PoZ8raT09QggpFpQzNVv4vMDOn0beBsQZempt5La9BwDrUOR9E125bV8xqVokHSxp9PlvCyGEkJyjnqliYh0Geg9G3TciDtd5bJH3H39C/H/0HDB0KvIxryNy9h6Rb9m1wLpb4z9uKMtfWwghhOQF9UzNdPZxYN9vgYu/Auz/vXhf5QIxGDJWisN6zZcBne9GPi9RLtTUQM6aW9TK5wHzNiTe5uKvA6ASEoQQUkyoZ2omev9+4NQL4s+9B8SyBXt/E3p832+Bc68Bk/6hud590vvp3J3bdhar+tWRt5Otpbfla8BFXxZ/VqnECueEEEKKBgVT+cY54JjMbB/2sdBiwol0+5PGvW7pxzt2ZtaO2WrVjZG3GUu8vbESMNfkrj2EEEIURcFUvvUeAPbeB0wPJd8WEIOv7vcBr0v6sb6DsfeT3GPhXx0W9T8hhJDZhIKpTMTr8UkkMPTmmJC3/Vg70P6muCZetC4aplNOWN6TzqRcMwghhCiOgql0jbUDu/4fMNkDDBwVc5QSufA2cPih0KLAgkfe6wj+EgZuu9hDZR8PPdaxK+VmkxSs+yTQuCnxNpf9Q6iXSkXzOQghZDaafUf/qX6gdE7yPJdkAqUDpvqA9rfEn5dul97W5wW69kTe1/ZXsbdp4x1iTg3nYoA2eAxY/iFx3bXwJVrGzov/2t/MrN0k1sLLpQPTqoXA9GDo9tZvhNYoXHCJmMCvMQBl88QlYeZtzE97CSGEFJTZFUyNdwBHHwOWfABo2pz9/XfsFE+wW74uLmIbcPRR6e09TuD8G8DKG4Bd/xO6f+QMcNFXst8+kr75F0fWiFq4TfwXsOjKvDeJEEJIYZg9w3yWXjGQAgDbiLzn+DxiYBNgHRGH80bPAT0S5QYCpQam+mJfO57Rc8B798Te3/GOvDaSzJnCZtrVrRD/r1ok/l/eKP5fQcu/EEIIkSarZ4oxdh2A/wWgBvA7zvlPoh6/A8BPAQSiiHs557/LYjszM3ImMlnb6xCH0JbuABrWAhqd9PPOvQoMHBN/rl8VqhTeeyC0TfSCwYBYA8o2Ig4BBYYAE/FJ5E+FB3Ekt+pW4P/f3r3HVlnfcRx/fyktBVpa2kIv3FqkogwBEbkIOsXJcDpd1GyYLSoaMXNOtswssj+2zMTskmUXM7PMODK2bF7mZWOLyTSKczGbglfAy0SCCirIXUGLwHd//J7jOT1tae3Tnufw9PNKTs7z/J7nnH4533D67e/5Pb8f+06HrWvDuKcF384usVM9Ds66qeOSOyIiIpFuiykzKwFuB84DtgJrzWy1u+etQcI97n5DP8QY34YH2u+/97/w/NrDsGMjzLwi7B/5GHZvhtrWMLniR/uyr8lfciVj8+Odt+ePkZLiVjE6u11a3v6YCikRETmGnvRMzQY2uftmADO7G7gY6KK6KDLdFTX7tsHRI/Cvn7Zvn38jmjdoAMlczsuf3VxERKQbPRkzNQZ4K2d/a9SW71Ize9HM7jOzcX0SXVwHdnXdc5Tr2VUd2568DfYfY6yTHJ9GNMLUSzoO8B9WA+esyI6VEhER6aG+upvv78Bd7t5mZtcBq4CF+SeZ2TJgGcD48eP76Ecfw9N39Oy8rmYjP3K472KRwqlsaD+lwcSzoXp8mNuroh5Kh4b2WVeDH0kkRBERSY+e9ExtA3J7msaSHWgOgLvvcvfMeid3Ap1OuOPud7j7LHefNWrUqN7EK3Jsda0wa2n7tgnzoGoMjGzOFlIAlfUwoqmg4YmISPr0pJhaC7SaWYuZlQFLgNW5J5hZY87uRcDLfRdiL7W9n3QE0h/mXd9xgHiu4VGRPn1J6I0SERHpZ91e5nP3w2Z2A/BPwtQIK919o5ndAqxz99XAjWZ2EXAY2A1c1Y8x98zet7o/R44PUy+FDfeH4qi8CprPDPN9TTo3rHG47dkwi/yJi6C6ObympiU8RERE+lmPxky5+0PAQ3lt38/ZXgGs6NvQYjq4M+kIpLcqRoUJUjPqWqF5ATTNCPtNM8PlutFTYO+boZgaUqnB4yIikoj0LidzVIPHj1uD8uZ1Mgvr531yfFB2CoPKxrB0z8TPFiw8ERGRXOktpqwk6Qjk05q9DNr2hzUOe2pwWVgLUUREJCHpXZuvrCLpCORYWs6C+cvbtw2vbT/OaUgljD65sHGJiIh8Suntmcq9BV6Kw5BKwGHaV8LyLblrEpaPyG43ToP9b8NpV8EQFcUiIlLc0ltMSTKG1cLBXeHOu3FzYP1fQvs5ndyfkLvm3enXZrebTg0PERGR40B6iynTunoFM2YmDKsLC0dXjYGTLgg9TyWlcMYNPRu/Nris/+MUERHpB+ktprRIceGc+PnwXDYMaie173EaUplMTCIiIgWS3mJKPVN9Z971Ya27DQ+EJVgyaxnWTIRJn8ue15vB4vNvRIWviIgcz9J7N5/0XEU36ySWV0H1hDAeavIFMH5OaB83O9yBF0fZ8NCjJSIicpxKb8+Uejs6GjUZ3ns1bJeWw8cfhe0TFsKeN+DATti1qfPXlpbDnGVhu7I+vEZERETSXEwNIMNq4ODuju0zr4ARTfD4j8P+1Evg8KGw1M6IJnjlIXjnBSivhhOipVi2b4SXVnd8LxEREelUeoupNN8dNmgwTFoIhw7AlidDYdQwDTY/Hi69VTbCkbZwZ12+wWXhfIDJ54dlWMqGZ4/Xfwbe/E/7tfFERESkS+ktpqonJB1BfJUNMLwO3t2QbTtxEdRNDpNZfrg3FFON08O8ThWjYWQzDOrhUjpm7QupjNOWgh+FJ37W/s48ERER6SC9xdTxcjffrKth3UpomgFvPx+1LYWK+uy/IbeYapqZbR9a3X4yzNoT+iamQSVASZgvqmps37yniIhISuluvs5UjM5uj2js/vzJi0NPUcPUju35hteF55qJoRCqrIfZ10LrIhg6MhyrbOi6GOxNkdhyFlgvUt04LYzHEhERkS6lt2cq35zr4KnfhoInt6cn44xvwr6tYUxRzURY86PQPvNK2LMFPtgOr69p/5qWM8PM36NPCsuftH0AuzfD9MvDZJWlQ0P7u+vh4w9h06PhvQ/sbF+wZQqs068Jl9fyzf16GCd16EDv/u3N88NDRERE+ly6i6lTLgtFS+mwMPYnc0mss2JqSEUoivKZQU1LGIvUMA32bwvTCAyrCcuo5L/H/OUd36PhlPBcOym8rqal8zFdXY1PGlqdfX8REREpKukupupaO2+ftTT08oxsgUPvd37OyV+Etv3ZfbMwuWRda9fv253MJbOaib17vYiIiBSddBdTXalsyG6XV3V+Tv74JxEREZFOaAC6iIiISAwqpkRERERiUDElIiIiEoOKKREREZEYVEyJiIiIxKBiSkRERCQGFVMiIiIiMaiYEhEREYlBxZSIiIhIDCqmRERERGJQMSUiIiISg4opERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYjB3T+YHm70HvFGAH1UH7CzAz5GeU06Kj3JSnJSX4qOcFKdC5GWCu4/q7EBixVShmNk6d5+VdBySpZwUH+WkOCkvxUc5KU5J50WX+URERERiUDElIiIiEsNAKKbuSDoA6UA5KT7KSXFSXoqPclKcEs1L6sdMiYiIiPSngdAzJSIiItJvUltMmdliM3vVzDaZ2c1JxzOQmNlKM9thZhty2mrM7BEzey16Hhm1m5ndFuXpRTObmVzk6WVm48xsjZm9ZGYbzWx51K68JMTMys3saTN7IcrJD6P2FjN7Kvrs7zGzsqh9SLS/KTrenOg/IMXMrMTMnjOzf0T7yknCzGyLma03s+fNbF3UVjTfX6kspsysBLgdOB+YAlxuZlOSjWpA+T2wOK/tZuBRd28FHo32IeSoNXosA35ToBgHmsPAd9x9CjAX+Eb0f0J5SU4bsNDdpwMzgMVmNhf4CfALd58E7AGuic6/BtgTtf8iOk/6x3Lg5Zx95aQ4nOPuM3KmQCia769UFlPAbGCTu29290PA3cDFCcc0YLj7E8DuvOaLgVXR9irgSzntf/Dgv0C1mTUWJNABxN3fcfdno+33Cb8oxqC8JCb6bD+IdkujhwMLgfui9vycZHJ1H3CumVlhoh04zGwscAFwZ7RvKCfFqmi+v9JaTI0B3srZ3xq1SXLq3f2daPtdoD7aVq4KLLoUcSrwFMpLoqLLSc8DO4BHgNeBve5+ODol93P/JCfR8X1AbUEDHhh+CXwXOBrt16KcFAMHHjazZ8xsWdRWNN9fg/vzzUU64+5uZrqNNAFmVgHcD3zL3ffn/hGtvBSeux8BZphZNfAgcFKyEQ1sZnYhsMPdnzGzsxMOR9pb4O7bzGw08IiZvZJ7MOnvr7T2TG0DxuXsj43aJDnbM92s0fOOqF25KhAzKyUUUn9y9weiZuWlCLj7XmANMI9wSSLzh27u5/5JTqLjVcCuwkaaevOBi8xsC2F4yELgVygniXP3bdHzDsIfHrMpou+vtBZTa4HW6A6MMmAJsDrhmAa61cCV0faVwN9y2q+I7r6YC+zL6baVPhKN4/gd8LK7/zznkPKSEDMbFfVIYWZDgfMIY9nWAJdFp+XnJJOry4DHXBMF9il3X+HuY929mfB74zF3/yrKSaLMbLiZVWa2gUXABoro+yu1k3aa2RcI175LgJXufmuyEQ0cZnYXcDZhFe/twA+AvwL3AuOBN4Avu/vu6Jf8rwl3/x0Elrr7ugTCTjUzWwD8G1hPdizI9wjjppSXBJjZNMKg2RLCH7b3uvstZjaR0CtSAzwHfM3d28ysHPgjYbzbbmCJu29OJvr0iy7z3eTuFyonyYo+/wej3cHAn939VjOrpUi+v1JbTImIiIgUQlov84mIiIgUhIopERERkRhUTImIiIjEoGJKREREJAYVUyIiIiIxqJgSERERiUHFlIiIiEgMKqZEREREYvg/rv7ykGDoJRAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmIAAAHiCAYAAABLDqCjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACswUlEQVR4nOz9d5wc5ZnuD19PdY6Tk2ZGmlHOWSCiwSDhBA5gg/FicPZi7/7W74Zj79njtN5j7/Ge412ntTFgHAGbZKIBESwQAiGhBJJGcSRNzjOdQ9Xz/lHdPR2qqqvTdM/o/n4+oOmKT3dXV93PHa6bcc5BEARBEARBzDxCuQdAEARBEARxoUKGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKBBliBEEQWWCMXcUY6yn3OAiCmHuQIUYQBFEEGGPGco+BIIjZBxliBEGUHcZYO2PsEcbYMGNslDH2Y8aYwBj7F8bYWcbYEGPs14yxqtj2VsbYb2PbTjDG3mSMNcXWvcwY+y5jbA9jbIox9ifGWG3SubYyxl6L7XeQMXZV0rpaxtgvGWN9jLFxxthjjDEHgGcAzGOMeWP/zWOMfZMx9lBsHFMA7mCM3ccY+07S8VI8aYyxbsbYPzLGDjHGfIyxexhjTYyxZxhjHsbYDsZYTck/cIIgKgYyxAiCKCuMMQOAJwGcBdABoBXAAwDuiP13NYCFAJwAfhzb7XYAVQDaAdQB+CKAQNJhPwng0wBaAEQB/DB2rlYATwH4DoBaAP8A4GHGWENsv98AsANYBaARwA845z4A7wXQxzl3xv7ri23/QQAPAagG8Dudb/lGANsALAVwPWQj758BNEC+J/+tzuMQBDEHIEOMIIhycxGAeQD+kXPu45wHOeevAvgEgP/HOT/NOfcC+BqAW2IhwAhkA2wx51zknO/jnE8lHfM3nPO3Y0bU/wLwsZjB91cAnuacP805lzjnzwPYC+B9jLEWyAbXFznn45zzCOf8L1nGvptz/ljsWIEs28b5Eed8kHPeC+AVAG9wzvdzzoMAHgWwQedxCIKYA5AhRhBEuWkHcJZzHk1bPg+ylyzOWQBGAE2QPVfPAnggFkb8P4wxU9K259P2MwGoB7AAwEdjYckJxtgEgMshe87aAYxxzsdzGPv57JtkMJj0d0DhtTOPYxIEMUshQ4wgiHJzHsB8hWT3PsiGU5z5kMOMgzFv1bc45ysBXArgA5DDkXHa0/aLABiJnes3nPPqpP8cnPPvxdbVMsaqFcbIVcaevtwHObQZp1llP4IgCABkiBEEUX72AOgH8D3GmCOWiH8ZgPsBfIUx1skYcwL43wAe5JxHGWNXM8bWxMKNU5ANLSnpmH/FGFvJGLMD+DaAhzjnIoDfArieMXYdY8wQO9dVjLE2znk/5HytnzLGahhjJsbYlbHjDQKoixcLaHAAcpizljHWDODvivD5EAQxhyFDjCCIshIzkK4HsBjAOQA9AG4GcC/kEOROAGcABAH8TWy3ZshJ8lMAjgL4S2zbOL8BcB+AAQBWxBLgOefnISfY/zOAYchesH/E9L3wNshG3TEAQ4gZUpzzY5ANw9OxkOY8lbfzGwAHAXQDeA7Agzl+HARBXGAwztU87gRBELMPxtjLAH7LOb+73GMhCILIBnnECIIgCIIgygQZYgRBEARBEGWCQpMEQRAEQRBlgjxiBEEQBEEQZYIMMYIgCIIgiDKRLqA4K6ivr+cdHR3lHgZBEARBEERW9u3bN8I5b1BaNysNsY6ODuzdu7fcwyAIgiAIgsgKY+ys2joKTRIEQRAEQZQJMsQIgiAIgiDKBBliBEEQBEEQZWJW5ogpEYlE0NPTg2AwWO6hEBWA1WpFW1sbTCZTuYdCEARBEKrMGUOsp6cHLpcLHR0dYIyVezhEGeGcY3R0FD09Pejs7Cz3cAiCIAhClTkTmgwGg6irqyMjjABjDHV1deQdJQiCICqeOWOIASAjjEhA1wJBEAQxG5hThli5YYzh7//+7xOv/+M//gPf/OY38z5eR0cHRkZGCh7Xyy+/jA984AMZyw8cOICnn3468frxxx/H9773vYLPRxAEQRCEPsgQKyIWiwWPPPJIUYynmSDdELvhhhvw1a9+tYwjIgiCIIgLCzLEiojRaMTnP/95/OAHP8hY193djXe/+91Yu3YtrrnmGpw7dy5jm9HRUWzfvh2rVq3CZz/7WXDOE+t++9vf4qKLLsL69evxhS98AaIoAgD++q//Gps3b8aqVavwjW98I7H9n//8ZyxfvhwbN27EI488knGucDiMr3/963jwwQexfv16PPjgg7jvvvvw5S9/GQBwxx134K//+q+xdetWLFy4EC+//DI+/elPY8WKFbjjjjsSx3nuuedwySWXYOPGjfjoRz8Kr9eb9+dHEARBEBcac6ZqMpmXu4Yw7AkV9ZgNLguuWtaYdbsvfelLWLt2Lf7pn/4pZfnf/M3f4Pbbb8ftt9+Oe++9F3/7t3+Lxx57LGWbb33rW7j88svx9a9/HU899RTuueceAMDRo0fx4IMPYteuXTCZTLjzzjvxu9/9Dp/85Cfxb//2b6itrYUoirjmmmtw6NAhLF26FJ/73Ofw4osvYvHixbj55pszxmk2m/Htb38be/fuxY9//GMAwH333Zeyzfj4OHbv3o3HH38cN9xwA3bt2oW7774bW7ZswYEDB9DW1obvfOc72LFjBxwOB/793/8d/+///T98/etfz+GTJQiCIIgLlzlpiJUTt9uNT37yk/jhD38Im82WWL579+6EZ+q2227LMNQAYOfOnYlt3v/+96OmpgYA8MILL2Dfvn3YsmULACAQCKCxUTYK//CHP+Cuu+5CNBpFf38/jhw5AkmS0NnZiSVLlgAA/uqv/gp33XVXzu/l+uuvB2MMa9asQVNTE9asWQMAWLVqFbq7u9HT04MjR47gsssuAyB72S655JKcz0MQBEEQFypz0hDT47kqJX/3d3+HjRs34lOf+lRRjsc5x+23347vfve7KcvPnDmD//iP/8Cbb76Jmpoa3HHHHUWVbLBYLAAAQRASf8dfR6NRGAwGbNu2Dffff3/RzkkQBEEQFxKUI1YCamtr8bGPfSwRWgSASy+9FA888AAA4He/+x2uuOKKjP2uvPJK/P73vwcAPPPMMxgfHwcAXHPNNXjooYcwNDQEABgbG8PZs2cxNTUFh8OBqqoqDA4O4plnngEALF++HN3d3Th16hQAqBpKLpcLHo8n7/e5detW7Nq1CydPngQA+Hw+HD9+PO/jEQRBEMSFBhliJeLv//7vU6onf/SjH+GXv/wl1q5di9/85jf4r//6r4x9vvGNb2Dnzp1YtWoVHnnkEcyfPx8AsHLlSnznO9/B9u3bsXbtWmzbtg39/f1Yt24dNmzYgOXLl+PWW29NhAitVivuuusuvP/978fGjRsTYcx0rr76ahw5ciSRrJ8rDQ0NuO+++/Dxj38ca9euxSWXXIJjx47lfByCIAiCuFBhyZV5s4XNmzfzvXv3piw7evQoVqxYUaYREZUIXRMEQRBEJcAY28c536y0jjxiBEEQBEEQZYIMMYIgiLnAwNvAS98FQvnnfRIEMfOQIUYQBDEX6D8o/+sfLe84CILICTLECIIgCIIgygQZYgRBEARBEGWCDDGCIAhidnLmFeBg7tI7BFFJkCFWRAwGA9avX49Vq1Zh3bp1+L//9/9CkqSiHPub3/wm/uM//iNj+WOPPYYjR44kXn/961/Hjh07inJOvcR1xH7wgx/g2LFjWL9+PTZs2JAQlNXLyy+/jNdeey3n83d0dKRothEEcYHQ/SowdrrcoyCIgpiTLY7Khc1mw4EDBwAAQ0NDuPXWWzE1NYVvfetbJTvnY489hg984ANYuXIlAODb3/52yc6lxMDAAN58882Euv73vvc93HTTTfiXf/mXnI/18ssvw+l04tJLLy32MAmCIAiiIiGPWIlobGzEXXfdhR//+MfgnEMURfzjP/4jtmzZgrVr1+LnP/85AMDr9eKaa67Bxo0bsWbNGvzpT39KHOPf/u3fsHTpUlx++eXo6urKOMdrr72Gxx9/HP/4j/+I9evX49SpU7jjjjvw0EMPAZA9RV/72tewfv16bN68GW+99Rauu+46LFq0CD/72c8Sx/n+97+fGNc3vvENxfezZ88eXHLJJdiwYQMuvfTSxHi2b9+O3t5erF+/Ht/61rfwn//5n/jv//5vXH311QCA3/72t7jooouwfv16fOELX4AoigCAP//5z9i4cSPWrVuHa665Bt3d3fjZz36GH/zgB1i/fj1eeeUVDA8P48Ybb8SWLVuwZcsW7Nq1CwAwOjqK7du3Y9WqVfjsZz+L2ShKTBBzlqNPyDIaBEHoYm56xE7sALyDxT2mswlYcm1OuyxcuBCiKGJoaAh/+tOfUFVVhTfffBOhUAiXXXYZtm/fjvb2djz66KNwu90YGRnB1q1bccMNN+Ctt97CAw88gAMHDiAajWLjxo3YtGlTyvEvvfRS3HDDDfjABz6Am266SXEM8+fPx4EDB/CVr3wFd9xxB3bt2oVgMIjVq1fji1/8Ip577jmcOHECe/bsAeccN9xwA3bu3Ikrr7wy5TjLly/HK6+8AqPRiB07duCf//mf8fDDD+Pxxx/HBz7wgYQnkHMOp9OJf/iHf8DRo0fx4IMPYteuXTCZTLjzzjvxu9/9Du9973vxuc99Djt37kRnZyfGxsZQW1uLL37xi4l9AeDWW2/FV77yFVx++eU4d+4crrvuOhw9ehTf+ta3cPnll+PrX/86nnrqqZSengRBlJmBt8s9AoKYVRTFEGOMvQfAfwEwALibc/69tPU/AHB17KUdQCPnvDq2TgRwOLbuHOf8hmKMqdJ47rnncOjQoYS3anJyEidOnEBbWxv++Z//GTt37oQgCOjt7cXg4CBeeeUVfPjDH4bdbgcA3HBDfh9LfL81a9bA6/XC5XLB5XLBYrFgYmICzz33HJ577jls2LABgOyhO3HiRIYhNjk5idtvvx0nTpwAYwyRSCTruV944QXs27cPW7ZsAQAEAgE0Njbi9ddfx5VXXonOzk4AcpN0JXbs2JGS/zY1NQWv14udO3fikUceAQC8//3vR01NTY6fCkEQBEFUBgUbYowxA4CfANgGoAfAm4yxxznniSco5/wrSdv/DYANSYcIcM7XFzqOFHL0XJWK06dPw2AwoLGxEZxz/OhHP8J1112Xss19992H4eFh7Nu3DyaTCR0dHQgGg0Ubg8ViAQAIgpD4O/46Go2Cc46vfe1r+MIXvpCy309+8hP84he/AAA8/fTT+F//63/h6quvxqOPPoru7m5cddVVWc/NOcftt9+O7343NUzxxBNP6Bq7JEl4/fXXYbVadW1PEARBELONYuSIXQTgJOf8NOc8DOABAB/U2P7jAO4vwnkrmuHhYXzxi1/El7/8ZTDGcN111+G///u/E56k48ePw+fzYXJyEo2NjTCZTHjppZdw9uxZAMCVV16Jxx57DIFAAB6PR9V4cblc8Hjyb2ly3XXX4d5774XX6wUA9Pb2YmhoCF/60pdw4MABHDhwAPPmzcPk5CRaW1sByMajHq655ho89NBDGBoaAgCMjY3h7Nmz2Lp1K3bu3IkzZ84kliu9l+3bt+NHP/pR4nU8/HnllVfi97//PQDgmWeewfj4eN7vnyDmDIzJ/wYmyjoMgiByoxiGWCuA80mve2LLMmCMLQDQCeDFpMVWxthextjrjLEPFWE8ZSMQCCTkK6699lps3749kfz+2c9+FitXrsTGjRuxevVqfOELX0A0GsUnPvEJ7N27F2vWrMGvf/1rLF++HACwceNG3HzzzVi3bh3e+973JsJ76dxyyy34/ve/n5dcBCAbO7feeisuueQSrFmzBjfddJOiYfdP//RP+NrXvoYNGzYgGo3qOvbKlSvxne98B9u3b8fatWuxbds29Pf3o6GhAXfddRc+8pGPYN26dbj55psBANdffz0effTRRLL+D3/4Q+zduxdr167FypUrEwUG3/jGN7Bz506sWrUKjzzyCObPn5/z+yaIOUc0JP/b9Ux5x0EQRE6wQivOGGM3AXgP5/yzsde3AbiYc/5lhW3/B4A2zvnfJC1r5Zz3MsYWQjbQruGcZ1gUjLHPA/g8AMyfP39T3HMU5+jRo1ixYkVB74WYW9A1QVxQ7L0X8MSKlK7+WvnGEa+YnIkxzOS5CKIAGGP7OOebldYVwyPWC6A96XVbbJkStyAtLMk57439exrAy0jNH0ve7i7O+WbO+eaGhoZCx0wQBEEQBFF2imGIvQlgCWOskzFmhmxsPZ6+EWNsOYAaALuTltUwxiyxv+sBXAbgSPq+BEEQBEEQc5GCqyY551HG2JcBPAtZvuJezvk7jLFvA9jLOY8bZbcAeICnxkJXAPg5Y0yCbBR+L7nakiAIgiAIYi5TFB0xzvnTAJ5OW/b1tNffVNjvNQBrijEGgiAIgiCI2Qa1OCIIgiAIgigTZIgRBEEQBEGUCTLEiojBYMD69esT/3V3dwMA/vM//xNWqxWTk5OJbV9++WVUVVVhw4YNWLZsGa688ko8+eSTZRq5Nv/7f//vnPe577778OUvZyiYEARBEASRBBliRcRmsyXU6A8cOICOjg4AwP33348tW7Yk+iPGueKKK7B//350dXXhhz/8Ib785S/jhRdeKOqY0sVX9YqxJpOPIUYQBEEQRHbIECsxp06dgtfrxXe+8x3cf796Z6f169fj61//On784x8rrv/zn/+MjRs3Yt26dbjmmmsAyK2BPvShD2Ht2rXYunUrDh06BAD45je/idtuuw2XXXYZbrvttozXw8PDuPHGG7FlyxZs2bIFu3btAiA3/P7Upz6FNWvWYO3atXj44Yfx1a9+NdEx4BOf+AQA4Le//S0uuugirF+/Hl/4whcgiiIA4Je//CWWLl2Kiy66KHFMgiAIgiDUKUrVZKXxau+rGAmMFPWY9bZ6XN56ueY2cYMFADo7O/Hoo4/igQcewC233IIrrrgCXV1dGBwcRFNTk+L+GzduxPe///2M5cPDw/jc5z6HnTt3orOzM9Gb8Rvf+AY2bNiAxx57DC+++CI++clPJvoxHjlyBK+++ipsNhu++c1vpry+9dZb8ZWvfAWXX345zp07h+uuuw5Hjx7Fv/7rv6KqqgqHDx8GAIyPj+PGG2/Ej3/848Rxjx49igcffBC7du2CyWTCnXfeid/97nfYtm0bvvGNb2Dfvn2oqqrC1VdfjQ0bFLV5CYKYaQLjwOs/AzZ+EqhS7EBXHo4+CZiswOJryz0Sgigbc9IQKxfx0GQy999/Px599FEIgoAbb7wRf/zjH1Vzp9TaTb3++uu48sor0dnZCQCora0FALz66qt4+OGHAQDvfve7MTo6iqmpKQDADTfcAJvNljhG8usdO3bgyJFpubapqSl4vV7s2LEDDzzwQGJ5TU1NxlheeOEF7Nu3L9H7MhAIoLGxEW+88QauuuoqxLse3HzzzTh+/LjKJ0UQxIwydlr+d/DtyjLEBuRJHxlixIXMnDTEsnmuZorDhw/jxIkT2LZtGwAgHA6js7NT1RDbv38/VqxYAVEUsWnTJgCyAaXW8FsLh8Oh+lqSJLz++uuwWq05H5dzjttvvx3f/e53U5Y/9thjOR+LIIgi8fbD030mCYKYVVCOWAm5//778c1vfhPd3d3o7u5GX18f+vr6kN6wHAAOHTqEf/3Xf8WXvvQlGAyGRML/t7/9bWzduhU7d+7EmTNnACARmrziiivwu9/9DoBchVlfXw+32511XNu3b8ePfvSjxOu4F2/btm34yU9+klg+Pj4OADCZTIhEIgCAa665Bg899BCGhoYSYzl79iwuvvhi/OUvf8Ho6CgikQj++Mc/5vpxEQSRL8PkfSaI2QoZYiXkgQcewIc//OGUZR/+8IcT4b9XXnklIV/xpS99CT/84Q8TifjJNDQ04K677sJHPvIRrFu3DjfffDMAOSl/3759WLt2Lb761a/iV7/6la5x/fCHP8TevXuxdu1arFy5Ej/72c8AAP/yL/+C8fFxrF69GuvWrcNLL70EAPj85z+PtWvX4hOf+ARWrlyJ73znO9i+fTvWrl2Lbdu2ob+/Hy0tLfjmN7+JSy65BJdddhlWrFiR9+dGEMQcQ5LKPQKCqFiYWl5SJbN582a+d+/elGVHjx6lhz+RAl0TxAXDS6mpArj6a6mve/cBx58DWjcCS6/L7xy+UcDiAoxmfWO54u/lbYePy6HTLZ8BnI3K26aPVy+F7k8QMwRjbB/nfLPSOvKIEQRBENpIErDnLuCdR3Pfd/SE/K+nv7hjIog5AhliBEEQs5mwP/s2hQY+eCy0OJGZ30oQRGGQIUYQBDGb2fVf5R5BeQh5yj2CnIhKUYTFcLmHQVQgc8oQm435bkRpoGuBIGaYkRNAdAYNDe/QzJ2rCDx8/GHcffjucg+DqEDmjCFmtVoxOjpKD2ACnHOMjo7mpZNGELMCzrUrEWf6PugbBQ4/BHQ9PbPnnUWMBkfLPQSiQpkzgq5tbW3o6enB8PBwuYdCVABWqxVtbW3lHgZB5MbICcA9DzA7tLfb8wsgMAZc9VXl9ZIIGGbw9i6G5H+DE+rbHHsaGDoKrLtlRoZUcYyckFtNrb+z3CMhKow5Y4iZTKZECyCCIIhZRzQke5VczcDmT2lv6y+Bd0WMAt7B0rZAGjtT1MO9GRzEoOjHB4p61BLhGSj3CIgKZc6EJiuFXSdH8OMXT5R7GARBzDbilYmB8dKe56XvTutv7fuVrC8GACeeA976NeAfy36MsF8+Rt+Bkg1TD28GB3EuMruS9gkiHTLEisyeM2OIiJSnRhBEJcJSX071yWKvAOCNeWyioeyHiYcg+w/kPxQxmrlsshd45f/Khh6p8RMXCGSIEQRBlItIUM7nKjXRQG7bn/4LMN5dkqHgpe/KRtjO72euO7dbrrzsehr4y78DgYnSjCEJzjneOD2KQFjjexg6CoR9JR8LcWFChhhBEESx2Hsv0PWM/u1f/QFw5E/5n09vs+8zr8j/6jXIzr4GHLg/vzHpIds4RmLpHaXIhUujZzyA106N4vmjg8obhH3AO4/J+XsEUQLIEJtFDPgGcN5zvtzDIAhCDc9g7nlTw135n+/th3PbPlfvWyHhwWNPyqHPCieu9BGJqrzX+GcWmpqZAREXHGSIzSIeOfEInjj1RLmHQRBEpROcLE4o7fAf9W2npFs23EVeJILQARliBEEQM4Q3FMWLxwYhSiUu6NlzF7D7JznuxDIXjZ2OrVJYRxBEUSBDjCAIYoZ48dgQDp6fxJmRGUj8VgpDkkFFEBUHGWLEBYk/4seu3l2QOJXIq3FyyIuByWBZzj3hD2tXsc1SKqoF22Rv4ceIhma+nRJBzDHIECMuSF4+/zIODh9Ej6en3EOpWJ442If795wry7l/uasbv3ytuCrsBIChY9N/v/VrffsMd6lLWfjHCtMSqyDUzEnOOXYHBzAulmdSQsx95kyLI4LIBQmyJ4yr3n6JchOKzAJvpSQC3a8A8y8FjGbtbb1DsASHAdgLO2cu8hhiFHjthzmeIO038fYj039LYqYHbPAdIPRGjueYPfijfuwPDuG45Mft5R4MMSchjxhBEES+9B8Azu4Gzu5KXT7eLQuTJvPmPeg486D+Yx97Cujelbk8F3mMsEefUn4uvHl36uuJ86Vvy0QQcxgyxAhijhERI9jZsxMRMVLuocx94gnx6YnxB+4HjhUoNdN/CDizs7BjlALfCBDJUalfL1RMQFyAkCFGELOUkBjCsH84Y/mB4QN4e+RtHBg+MPODIqbxjWivL3PD7IKQFPpEziScA8efLe8YCKJIkCFGELOUx089jj8e1ym4SVQearlec80rFJzMXHZ+T4HHnFA+LkHMQsgQI4hZipI3jCBSeOexmT2fkhzM+NnMZYUaYnoppEVTnLlmGBMVBxliOhEljrd7JytLB4goGPo+ZzeBaAAHhw8W93v0jQIHHwRyybGbUDA2KgHPgP5tczI4VLb15dmkuxiaZhnH7AH+8u/q0hsxyM4qP5xz7O7bDU/YU+6hlAUyxHTyZvcYnj8yiKP9F+aFQhCVyI6zO7CrdxdGAlnysXLh5A65tc+EhoaabwR45f9ON4L2DhXv/EpEw3J1ZjE8PJWIXk2zXIh/f2PZ9egcoSGAzz0B4dnCcGAY+4f24/mzz+vafm/3GCYDc6cYiQwxncRVvkNR+rESRKUQFmWJCHGmH6J9+2XjaPh48Y+t5N07sxM4/TIwfLT45wOyeo3mMoJ/GGsGH0PT8Oszcr6TQ168fjpPz+EcR8/veCoYwSsnRvCnAyXwopYJMsSIOY8oifjVO7/C6YnT5R4KQaijlXwuxrTAiq0JFufA/UBgQv67+9WCDnUqMolXA32Fj0mLQkPRZ3cDB34PAGBhue+nJaTtVS2W+PMTB/uw+9S0IcY5x87jwxj3yZOKqWAE4egc9XwWgfhXP5c+IzLEiBnBE4yULR/LH/XDF/Hhld5XynL+ckH5b5UHU0tIGj0F7P1l9gMMHC7ugJKJa4ONniroMM/6zuJQFqOm7Jx+OaOIIG4IzTRTgSj2nR1PeHjueeUMHnnrwmy9dqHes8gQI0rOZCCCu185g93kjicUCImh8t6AD/weGCpRyE8Bc9QLiGkPfb1J9Rr6XRLnmBBL5DFLR817V4i+2FR/aUK9OinXFRj3tElJA+ifpL6WueAJRuAPl1nbrgDIECNKji8k/0DOjfrLPJILi+AsaFI8EZzAPYfvwZHRI+UZgCTKnpFiyDy89F1dm23s+z3cRx/I7di+7FIlb4YG8XtP18w0pz65o/jHHC9hk/dIoPBwJpGBP+LHaKD8E+y7XzmDn/9l9qaekCF2ARIRI/BFfOUehi5CSTP87hEfTgxS1ape3h55Gz2eyg5xjIfkHoVnp8ok/zD4dp47FqZ5YNShAReKighERNmImOqXF2p4nPqj8kTHx2evZyCDYmhLBCeAV/8T6Nlb+LEqGG8oOuN5U/cfux8PduXQP5VQhAyxC5BHTz6KX73zK0yGKluZ+uT4Sdxz+B4M+gYBAI/u78WTh/ohShyiVNjslhX4IJ0tDPllWQVJ4jjcMwmpwM9tzlHuVj0avHVuAgfOTwAH759e6B8r23gqjXDWCrvYbzzekHz0ZEnHU25+sfM0/rD3/IyeM1TiULgv4kOft8SFHxUAGWIXIHHNpd8d/V2ZR6JNj1f25qRrRN39ymn88IUT5RhSWRn0DeLMZH7hm/3nx7Hj6CDe7ss0vvedHcNz76jnKIWi4pyqUMpKLl6YaAnCgGIktYm4Z7D456hElEKHSssme4E9d2EgWtxUh6pgLxCa3R73Yc8M5QhqsOfMGO7fo6HBp4DaxPjBrgfx2MnHijCqyqYohhhj7D2MsS7G2EnG2FcV1t/BGBtmjB2I/ffZpHW3M8ZOxP67vRjjKQk5OlBmo+dhyBNM5HPlQvy99k4EcGaksJBnMCLi5a4hTY+XP1w8zahilaQXg66xLpybUr+BPXziYTxzRqU/YRYCYdmQCkYyDaqdx0ew6+wRDPiUjbGfvnQKP3mpQr0JkYAsvlqK/B89x9SSkxAjGcfQVZTAJeBA/pOkGUvYLzZndurb7vTLmd/NqZeKMwa/Rr5T5dwqKppdJ0cwUKRig6DGREe1AnkWUrAhxhgzAPgJgPcCWAng44yxlQqbPsg5Xx/77+7YvrUAvgHgYgAXAfgGY6ym0DFVArPxN/u718/hV7u7dW07GZrETw/8FK+f68J/vXACA5NB/OHN83hs/7TI3vHx4+ga68ppDLtOjmD/uQkc7Z/Kab+5wAvnXsCTp58sy7lPB3bhkROPlOXcBdF/QPaQzITXSJJ0qbQnCHnyT2rPo+VPPFS3MzB7hC7vmzqKP3iK4N0+lyTGeuD3wJ5fTL8WNSaXkgg2l3LqiFlJMTxiFwE4yTk/zTkPA3gAwAd17nsdgOc552Oc83EAzwN4TxHGRORJSMFjokTce/J6r5zs3DsRyNhmx9kdeOHcCzmdP9/cr509O0uSS3DP4Xvw5sCbRT9uNqJSFF1jXRWtq3Ni0IOpYGFtRgr2SJbi85FUPK7n3wAOPpCbzlb/weKMSQe8ovy7+vBLEYyImfeOghg/K7egSpxEw8t14Pewdz1W3PPPMsJiGBPBiXIPoyScGD+Bnx74KQLRIl9jRaYYhlgrgOQMwZ7YsnRuZIwdYow9xBhrz3HfiiUqSon2R0T5eHvk7ZLkEoTEUFkMsT39e/DCuRfKV02ogycP9eMPb85scnA6JSm6UGv3E0/6rtA8oslAFD0TAUgVbLxXHJPFryo+MejBn9/Oodl6mXns5GP4/bHfl3sYJeHwiCyArFSYtrd7DD94/jiiYvnzX2cqWf8JAB2c87WQvV6/yvUAjLHPM8b2Msb2Dg9nL/2eKR55qxc/+0thStR6iIhzp8HpTFPqCknOOSRe3B+zLyrn2pW6KqlQPMFZGNY59RKw7z4AQFiK4KcTh1KU4LvC4/jpxCF4dEi8jPpC2H16FMGIxmSMc+DUi4WOOive2HdRaEUxkYrq/SOinL/05KH+WZFacWDoAPb078kohrpQ2HdWnliFKqAQqRiGWC+A9qTXbbFlCTjno5zz+BPlbgCb9O6bdIy7OOebOeebGxoaijDs4qAUkisFz559dkbOo0UoKuoKRUWlaMUbjsU0zp48/SR+dvBn8Ef8GA+OF+24pSA5v3W2q1GnkoPxce71hC7XcY/s0UvujXg8MgFPKIq7d7+TtehmxCsr5PvCUXBw3DN1BE/5ulM36nsLOPdGyqLz4yRurIXEOQbTqiKlaARdB9/Q7/E7r6+Jd4iLeFw4iWFkfidvdo/h5385nXl1eYeBV3+QU+hZ4hxiCb2VfnEMAVG/JNFrfa9h76C6ttre7jFMBrLfx8NR5ahQMCLi/Bhd53oohiH2JoAljLFOxpgZwC0AHk/egDHWkvTyBgDxfiLPAtjOGKuJJelvjy2b9RQzt0eURAzrEIDUc5y9A/mLGt7/xjnc80r2ZOWHjz+MXxz+Rdbt5grnYw/z3x79Le4/dn+WrSuH2axGfWriFI6NHSvZ8adiD6CoTu/SqSEvXj89hpAUxdlImjfk+HMZ2xez8jfO7MsQU+eN0CB+NvAOfr9/+jvu3vMExvb+EQPndLZBUvFYAUCESwjGNORGJHkyfZJlTqL2nJF12zLu5/6YF2lM/+9n0BNCX1o14UvHhvDLXd26jxFnd99uPHHqiZRlx3zP46jvzzkfS4mpYASvnBhJ9L+ME5Wi8IQ8KR7gfWfHFaNCj+7vxUP7enSF/vRUQIbFMERJLEol3E8P/BTnAvsLP1CRMBZ6AM55lDH2ZcgGlAHAvZzzdxhj3wawl3P+OIC/ZYzdACAKYAzAHbF9xxhj/wrZmAOAb3POK1qxcKZvdQO+gaJVsx0bP4Y9A3vy3n/cr8/LNRosrOWFTxzFOa8Xdrvy+sloHxxCXUHnKAXREomDRqVoRbQRqSSe7Zbna82x10UxQoaOAY3L89pVVDl9z0QA54cnsbWzFowx9QdO7IEucY4j/VNor1G5+EvMkCcIo0FArd1c8LEkziGEfRiM+vGw9yRucy+HS9B33BExgGBUwoBnOh9PDMgGblTtw86BR7ynMCoGcGf12oKPpRclo/7A+Ym8jrV/qLRGRNzuTNcPfObMM3jtbBcaxRvwhXct1DzGqFcOghXrmXn34bvR7GjGNa3XF+V4/cFjqHfM3PevRcGGGABwzp8G8HTasq8n/f01AF9T2fdeAPcWYxwzwfEBDwYng3jvmpbsG+eAKIkIiSHYTak3YDVtJz2ExTB8ER9qrLIiSKkMhWLT5duB6KADV3VuzFgX5WGc8r8Cp6EOwBqc95zXnZ8Vz+US2OzSMd7Zs1OX9yckhmDW+aArhJHACMLpTas1+MHzx9FRb8eHN7SVcFTZiYgSDpyfwGbOlQ2idx4Far6ifoB4vt6J5wGD8q3TE4rCZZle1zcih4okDhi0Jv2xpPGwKMETjOLUsFfzvZSKU8NyXtwlCwuf6EQhYXAshFfDfYAV6Il6scJcm1j/gCfTs3UqMolnfWdRZbAAAExSEDhwP+DUkY7S9Wdg8TUpi0QuwaDwex9VqNQcZvrTTDjnOB4exyIuFuchWmGM+ZR/3+c95zHmC6PRCpyZKJ1MymQgArc185PN93lYydXnACnr50z/ZBDHBopfNfXCuRdw3zv3Fe14D+/rwY/fvL8kobLJQERBwTn3C/1QzwReO5VboiiPGV1BSX5QPXHqCTx1+qmk9Rx7+vdgLJjpWPVH/fjtkd/mPM5yoycs7Y/4cc/hezRzPrJxetiLcYUb8FjkLN6aejBROPCHrj/kXKHaPaKdK6JkGA2EjibCvr/YeRr3vFpYU+jdp0bx6okRHJmaQFdYJZcvxahPu6aHYsawFE2Evbw8jMeFk5iC/NlMBCK6w5kXAj0TAUyo5BmNKTQnPx77XiZj1xoDl6tYz+uoXO7bn5KzNRD14eeTb+N8VL9RO6jT83zeP4gX/Ofx+lThof2p6ADemnoQAbEyEvwjopSiBxlnzBdO8ZA90/2nop+bc44hTxD3vnpG01v4jvcpnPblH92pNMgQqxBOThRXufzcmB/7e3NrM5HM+TE/fvD8ccUkzHtfPYNnNVri6OWFo0N44/R0DkYxZi0hMYS9g3vxp5PKNwlvxAt/OIpn3u5P5AHly+BUED94/nhe3Qjy5cSgB0f6Mm/Y/lhi8+GRw4pyG3pCd4NTITz9dn/G8qGwbICcnpAfOt2jPgx5StDaJ42+0KFEHow3FC34+4o/RJ4KnsEL/uLIbvRy+SF/jpX/IapVgOKXovjpxKGEgROnbyKAMZ96Za4o8bzkMDgyr7lXA/2433Mcj3pP6T6mIzyU24lPPJ/4szdWedyTgyEWkfRdY+HYdr4iVDWPR+T7tCdaGjWAgUn5PjUVjGDvwF6MBcdwelLdgFT7bn71WjfeOlf6YqTJWAqMViFcSPJiMFSh3T7ygAwxnRw4N5H4W+QRvD3ydsGGA+ccPz3w04IS6AtlKqz8AImX9g5MaT9wJ8LDOOh5GCGF2W0uPPvOIP5zR+EK2/Gbv1a4sm8iCM5l72YoIuL4YH4ezlND8g1+3K8/TKdFVJSySg+MeMOaRrBWS5BcUKoWfOm83EamfyKIU0PT0g4T/rBm9SXnHFFeIhkOBoicwzODxnApCEZEXRVqcThPlW/tCo9jAurf/aM+OZn6EV9qUvXZMT+6BtUNlT3dYzjYM5F1PHFD73BoBByyJ6xnLPVBGuEixsUg+qM+BHSq2df6uxN/2yanxy5xjid9hXlIc0YMa6v0FwhjKMmk7lDs+zs1PIE9A3vw2MnH8Ocz+SX1633kcc7hE8fkEO7YiYy0mEBYxOEe/RWeKSTNNzjnmve8QlJ7ZhIyxPKgN3QAO3t24pwnf48TMG00lEMwNE6hD25/1AORRzEaLKzFTDl0d8Z8Yew6NYKnDvUnEktLxf6h/ej3ZnqbknmzexxvnRtHOCql9Gqb6Wq4SX8E/5VDU/Vf7urGz/9yGsGIiLtfOY0/7k31Ng1FunDI85iq0V8ofZNBPHmw+F0V9KDmgzoVmUxU5elh//kJvN0/iQe9x9EHbQ+OKHG8fmYMb/dOoW9SNnayefimJHmyEMgjTzTen/R4eAKe2HHGfKEUCY748mORicQEtbdI/QaV8PDcjNbdwQH4c8hrTCE5bH7yefXt8oZDiBmmxYg0ZKMYmofeqLancjx6Dke9z+F8aC9ePL8Du/t2p6x/+nA/dhwdTL3v+sfksH8OHBk7gnvfvhcBcSKn/SoNMsR0kB6ei3L5Bz1bkt+1+P0bZ/FSV47u/yKQizfxndF3cj6+XiHUc6PywySso8TaH/Gj39uPPm+fYg6aFrv7duPRk49m3S4qcuw4Ooi93WPwh6OKuVPjkXPY2aOzQXIMUYpiIHQ04yYcljJFS0c0QlVa/PntAXiCUfSMy8aBP+JHVIpiMiobSZ5w8XMrx2NJ10UzVhlDNPYZGaSwbhdA+lbP+s7i+UBu4c8oJExKYRxk2r/HiCSPzxuK4uyoH1Gp9IKUIpeww38Oj3nlkFbXoDfxPZcDzjm8oaiub71P9GF/cAgvTk0XB4icK+byBaeGsfuef0Df2cywFwdPbZ2E4lQEukP9mOc5CGtoDP6IH0Ph40VNLp8IDyOokn/GOUfXgCchBqyX437tJushST6fT5Rz7nxJ4shDU8GE9/fXu8/K2pT+cWDwHWBo+l6v+hEkLd/TL+eJHfXNbtUrMsR08Md95W3jUgq8oSiGpoLwhcSUsOtM0aUjHBg3dHNRfg5HJRzumczZxf/AnvMZYcE3To9i96np5N1HTz6KR08+isdOPoYHjj2geqw/HejF/gJyKeI3KbXn65nAbrw98nbi9YnxE3it7zXNY56YOoi+0CHsOLkfI7FZ6GS0D297n8REJLPNi8RFBCX9hpPERewZfhF+cfp93/fOfbjr0F2QtLwXBT5vQjomQ/2TATy8ryermOaYP4zTI170R30AA+ZP7gE7+6ritgEpiuf95+CPharOsMwwS9xLpMXTvm6cjkzvG8/PieTQduXcRPYOAIUS/+R8OjxRAZ39aguha8CD8UAkMUkORUUEo8rabPGxS5zLfUSPP4e+ySD6p4IYEQPoTjJSpvrl8Of5E7n1CH1wxz9g176f5/5GANjC8qTOHJlCl+d19AT3wy8VT8Xp9eFncMT3jOK6UFTCmC+M40OFTZIknl0Xzx/xY8g3gt+9cS4lDP9m71E8eDIm0RTOTQC20ntI6oUMMR2MerPfUM9OncWQf+Y9S7mQnMx7uGcyUaqejUBYxA+eTy81L0yZXs9nenxcp3BjEgNTQXhDUZzLQ9E53RB7LckIe/zU44r9ypQ4PezDy10z14br+bPPo8ej3TMvIsUV4MP4/Rvn0D3iSxhNAWnaeJqMDMEbmUJv6CCOeJ9GWPLr8jYFpSmMhs7jbPCNjHX+GQgbaF2NO44M4tyYX7EiND7tDkYlHBoYx5MH++FLyncTzu5StIj3hoZwIjyBExF910TfRABv9o3Aw1PH0B2Zwp990/1EvbEJRC6Fl4fFwjXmRvIIzUchKXpuCm0En41xfziRExg3XN86N4H9KhPKlDEOHQV69yVe3j91HF0R/ZMm33A3Av7Me8uopxcHz72s+zhqRGO/U54tfBgJAMHCQv1H+6dUP7NcmYxml7L49ZFf48GuBzOW/+md/RjKqMK/sCBDLEcmo32KHoSnTj+Fh44/lNcxcw2rJBSG88AXiubk9uacJ5LRxyPnMBUtLIdB4hJC0XBCsbo8KL//1/p24Y/H/6i4Lpuhky8nBj04Nlw6PR4AeKP/DZz1diVeixLHo0nl6RKmb/qvD/0ZD524H15RnlQUO8lekjhCURFH+qa0+zOqkDCWxShQjDZa5+XQxrA3hGeFbkg8irF04eL+3MQzvQre2J6JAB4Jn8ITEW25A73TGz8i8EL+XR4pgiF2YsibYoBmI4gonhZO40BY3Vs9Aj8iUP+OAxER6eZGKCphMhDRvCPKXQmy38OUP8vU/TIMXo37akCK4mDPBB577VDWc+cCy/H+L0kc0vk3wfsPYk/f/sT9vNHXhdqA/gKGCZ0C3cVCKzdtWvyVQ4fI/pyDDLEcGQjpy1cqZXr13YfvxhOnn1Bdr9aEvG8igEM9kwoaYJkoVUueCezGSf9fUpbp+c2c90zP+J87+xy+/8ZPdOxVOjjnibylZA6PHCpKK6k4PeP+rL0Kf7XvNfzbznvx+6O/Txpf6lj1MhWI4OSQNyVnyBfxYd/gPo29kBJO5Dy75lchPHdkED996RSefWcAzx1RLvA4OHwQh72PAUhV9uac46evvibf0M/tRvjMa6ql9kpyKPFX4xrViZKS4XD8OaBf/8M3XY08ZV2WkKPer3uHcBYvCurFQvnkGGW7VpMJQDbaTml4BN8UBvAmU564eUNRjPjCmEyrOO6fDGIqFM1LMqMYmNKq7JKNAg7gOMbhLZHHT45YcBgl7SKHF44NoXdS9vz/aPeT6Bo5B0niMIte2CNj+OmBn+Lo6NFEVb4aBiks50EWgiRCUA1XF2ZRXUhqfGSIKXB21IcdKg+JXPFFfDg5Pp34GYwGiyIx0OdVrxJT0v4CpkMGvix97oY9IdVjpBOJtRs50qecYxCVJPx+vxyumghEcHridE5hl1IwHJi+2U6J2pWMeomKEg71TKTIOPxxbw/2dGt7/uLVPmOBZGNIwlhMWyiXforv9E1h2BNKMaSKmSA/5gvn9LBWIrk6Vi2Pb1fvLkQkebKQ/ECejPZiz/CL2D+0HyLnGPSEEpOKoej52PYS3hp8C/998L/xwrkXUo5b0MP9zE6cHvbipI5cmlAO+V3p+PLwEiohajzGzkU86M2irdU96svp84o/cnlaErwHyg96MfYZpSfMF8P+CkhR+JP0wEYUVPRzpX8qiL7JAIaZ/NuaTvMo7s3M7T2NZu87OO19OqXgKCJKmIgZrfHfUPwePRkIZTSR39W3K2t1ZIv3MFq8hyHwKIzRAH7w/HH85bj+iejB85OI9h7API/6JCUgTuJwVvmTC8nkUoYMMQUeeasXh3vlmV42Xac4ao1Nnzj1BJ47+xwisTDKvW/fi3vfvhe93l7VWevJIQ/eVHiAD0wGsfvUaM4Pw5AYyklPJV0T6pynGwc9DydeJ5cKx2f/ajpSkej0WLMZd0FxCuO5CjjGGPGGcFpnW5hokoaRXywgRJo04ZsIROALiTgx6IVXHEEoVo2omJekwBtJodqz/sOJv4cDuXvockn0VkMpJNk1oHxdFgTngGcAEKOISBHNh0eEx9Tsw97EAzsurTAi9uKxk4/hyOgRvN7/OgDg4OBRnE/LFawOpHqRQlExaxJ/nEFPCEMauVRqRkep8QSjOemoPek7gz/Fqh+nEIIf8r1pQgphPxuEBI7eyUCKtMDR/qmsj8uoxHFmpPSFA4rnTgpy/nLqCO6bOlrQ8WpH96VUSEpc/q+Y33E8NJ/8uZrD8nPHwKM4MymHGR95qwc/fvEkfrmrW/WZkb5YqQWZWsiv0deFBo8c6XnrbG5FRtFA9olJICIV6hyb85AhloXHD6rn7zAweMURRHkYb3YrX8Bxj0RyHtiEP4yvPnsvDg0fUdzniYP9ePXESEaIoyc264k/OKJSFF1jXYo/zu7AtG7LPYfvwSMnHgHPyMgAvOJw1jDGX3qfg5hkvBSrVFjkEZz0/yXxGR3xPYM9w/kJDZ4Y9GJwKvMhebR/Cr3j+YXaokmJ1aLEVY3tZPxhEcd9L+Ad75N5nRMAPNHSNfgWeQRjke6s20VUwiOeAsMyEhcxHjkn5x4GxzE4fBgYOQEMHsYvDv0Cz5/NrtOUXAqfTJ+3L0VS5sD5CTy0bzq3b2gqhOVp19fxQS/6depdDcKHJ4RTqh6WlzRChUrk7aHjmS/V2ggltkk6F4/9F4qKeFk4jx2CnDrwcqgH55kHUwjjSeEUng53JwycyWAEPTGl8/7J6fd/etibSPTPpbXTgJR/+HsSIbzKUu/Lu5mOPEsxBPhz+G31vpWxKMIkBJMlX7K85Xh/22TGIt3oCe5HKD2ErWKsnB2d/qxKEbHNFgrVYlhzolmEwUpiop1YHDGpQlOUuGJOZuZI5LHs7R7Dz1VSd8rJXOxXWlTiYZ6w5MdR359TjBmRyw9dh0FukMs5x/ngW7AKbgCLFY8XESUc7ZcNj/MT0zeFg+cn4Io1OZ2I9MBtbAEHx5gvhN2nRrFynjvjWG/0v4GDwwdhNVphMVgwEZrA8trlAJAIbSWj9CPuCR6AVxzBWLABPcH9GImcwrXhO3Dc/yIW2a7Anw70YYRlzymL8jB4rJmyKHFERAlWk0Fx22FPCC4jMB45j6noQEzQtjgNob1poqF/fnsAYckPV1P28cd/DPH3ISUZn/vPjSMiclyyKP9myJOBCMJRCWaj9vyHp5WCeyOZnr7dp0axcUE1LEblzzjduB6JVan2hWRvm1Wo0j3uZLKVqQfESYyETwFYqrh+IHwEA6EjaLMG0OM5kLgDsag8vlMTmTfJ9PfSPdWdeeD0i7t3H1whKwBlA+H8RCARGk1eaxLl37vEMx8j/Ux+AA8mGWKF6Jf9yVd4n8JkItJ0BagWPRMBGBjDcJZCjPMhL3pZAFfz+YllDAzdSYbBOAuhx+PHPKsl5qnPtCYmEYI7bc7/+GR36ti5CBNTvpbTeYeNIMRSr8NxFkp8YXED57XgADjnMMRdQcEp4GyqsGg+cMkDoFpxXXoBygNdD2A8OI4719+ZWNbrfQlGKYzx4NUFjyVOLgnuksTRp9E+KBt+jcjG0dGj8ERH0R/KdDJMBSN4p3cK610ihKTvOsqDaVeH/GZODXlhiRwGQh5gy/Tap07KGmahiITjgx5dRQf3vHIa86vCiWbmlqx7zCzkEdPJZLQXIo+kPIjiN+F4+f/ZMT+GwydwPrhPdebSneS6j4hSIqTnD4sYnAqh19uL04Fd6A0dAAC8GNMxmkhKap0MROQWEjHPQEgM4fdH/oj/s/OhlO30MhHpwQPHHsBQ+DgkLuK13tfhjQ4nKiSVPE3pnAu+iXPBPYhIAew5M4b95yYUZ/zhqJTxwxkNThukubR5UeKNwVc01w9NBbFPwXvZF5rOc+j3ZeaNxXPh8iUclXCkbwr3vXYmRTVficlILDzLAHCGnokpRa+l1g1o39lx7E0KM6R7VxWT0gsl9jA4F1Rv2RWJeUIConKSd8+4P0W7DQAefDMPHb+wH1Uh2Uui9jmNeEM4wVKvhapQau5lNkPLz7Rn41p790d94FB/sIUgIqLgxU7mcSFTeDQYEbNqmOkJx/rCIjwsjDEEMKURktvP5XzagEp+26TCRC49j+4Xk2pFULnHtIa8cgh52BNEX47q/pM8hMeFkxjn6vstHv2LquHzfFpu8fjocWCqD2JwOoTX5DuKusApPHJSlnKY6c4Z/VPBFC9bnJDkTZl85sNL51/CCRWx1+HYc2QscjZluU+r6jeUGfp8Z2h6suZJEqKNpknDpIdn40ZY+r20Eqo0yRArIv0T0z/eV08OK2rzJE/Od58excHzqQ+keCL/cFi9oemJQS/G040ZbxgRkePt3sLbyLzdl18PsNFINw57H0+8VsplU1IBT65UzHDXx3ij/42UH1CUhzDoUy+omPBHFF3Wp4Z9GA9kzgZD0rTXqRgtQOKMeEM4N+pP5Br6QiLu36M/hNU36cepIR8Gp/QXUACy4RgVubL3KIZPLJ3W2dBUUK5OTbpOtZpSxzk/lvnd6A0dAgACk8AZbWM8ZfM0Q8qk1jNV4YGgxVQwAn9IzFqY0jMRwGja5Cn+KT0rnMEO1p3TeePc7zmeVzsjJV4VevGKoC7f4udRPBnrCVmIScE5R3+svVMxQnDhPCZP50T5ez6bLGacw4M6I1d26BgwegovvPqvmRvHvp9Brl+wOpm4MStxCX8++1jW7Sd8IXiOvQSDR7nQ6x3vUzgdUBYwLibj0cKqfQOicmrCueCb+OmBn6JrrAshMYS7D98NIHMSOhGtPIF2MsQ0OKSj2a0aB89P4uF9uWtPJechaakGh1RUpLWZ2ZnXm93jmuOUoP9BsW9wH8S0Gc/DJx7O2G4yMH3Mpw71wSeOIizFb+7y+0/32Ig8Ak902qgL6yzpngpMezPVGPGG8fBb+WuQxT1xZ0d9OHB+Iu/jKDEVLU5lcIJk3UxPCL0TARzR0UM0GBERFqW8CgHMYlrYdkr9s25I0lLTwygLIKJglP/Fn/37nAxGMehRNupeZ33oxqSuX2OEZZ7/fFSfUfhrj3bFbUiHGno6wWg0I2F9hAcSfTVz9e6IEoc/5knrikwgGvuN9ifkcwq/Z52fCOguyEiFo8Z3RnkII7GJclRfrttJT+bDn6Xp0/lDoua9RIm2qX0IhcYxGsw+qdp/ZhgTgQgsU2dhjyj/1rLdE4xSSHVfvXg0zjEuBvDAibsRlXLXL4wXkf3XKy/h1ZPTxmb6czyX585MQYaYBi8c1VfBp+ZBiUo8Z9G85NDcQ8f/oLpdrsflnOPAufw8XVr3sGxu3WBau5OhpDBnTzBHoUxxGCcDL6eNjackkJ8ZmX4wh6MSunw7En3RElqgabo38bBk/CHyzOlnsPvUKKai2tIW8TJytS4BnHOcDbyR4npPP3e6Oz15HIGwmKi2LbfkRxyt7zv9YZfuwXvs5GOZO3E54ff4gAfRNA+GUQrKwq15oKTX5Q71YxD6q/pOsQn8JZCZBB6VOI6PTmVNTpeT4jO3GWJ+HBKGc0rWH/OFE9WwzwTOam7LE9e5vP2ZiHyd+iNiSvjw2Yj2cZQY9ITwmkZivFclhMkht5BK/8wiEsdoLGTkk0qjzwXIuogSIHdY0Ejf6It5WyTO8dbuF9Ax8CyavAoVmBPyZ8f94xmdFzhX7jiQjhSWjU1bdPq+PBG7Pht8XfqV8wPahpHNew7O8LShJoFrCr++dEz9udfoO5qTaKwelH4j/qRuH/nweFesF280BJu/N8OY3n1qtOB0k2JCyfo6Sc+p6R7xwd+s/pB42/sEaoztGB6fwJo2J857zuPZ7tyqDf1ps63kh+CEP5KTV0wp5FMO9IaZ+qeCODXsw0WdtTAI8hs/G9yTYcgMe0M4NTT9cM1VCZ6DZ+RF+EIiXj89qpnrdPD8BJZbtY8t8jBGI92YjPZhda1d3s/zCJbar0Y8mV2rgvHkkD45DgApTXtzV8zWviGp5XNpHlHhQTQ0FQTgUty+VxwDUJuyrNn7DiLnnTBXvz/r+Rr8x4FQPbhNLmpRElUVuYg9Qm66cWNJFWXxn58nFEV/NAhkeU76WATvYASreUPW84QhYg9THltUktA16IHTYsSa1tyKLHxSBM/4ugEgYfDEmUr7reh5LHEAIaZf8iOOJxiFLyxClDhsKkU8JyITOR0znVOYgFGlebXE5bBh70RAluvI4oI4EZlEm1gFAQwmhSrZkVgIO8IlYGw6ZykqhnBq5IdYKLTD/xd9MU2m5pn06JMcev30KMZdEdWHuc3fj+okAzyzn0Eq8WKyZAZ8Azjg+SPmJY1Vddw5It8ripuoNRY5h92ngOXsLNyhEdgjI4CpMbHeFRpE0Kh8LyoH5BHTSW8wtQls/2QQr51Sn4mEJT8Gw12QuIioxHM2wvSw48iQLoFJACmzwFxyjbQQc/T4ydV0sX3TDKr0ajx/SH6958wY3jo7npHAHScYTr2pqMku5IKe8Ep6CGFKochgIKwsT3JcJZm1EOK6d8VGSfIkGb84rthn7s3eExkzzlPDvoQWmG6SRC3BJbhDfeptaPqmPaxK3qpTPC08pHCcFg1xSimPMNk56Pt9dmMSY0z5s4nbPPmkI5we9Wp6gPIlrFDsoeXhm0zyWqt1NhhTy8+DHCk4Px5I0QtL5x1hBG8GtUNr4wgm5Dq0CCCCk5C9Mg3+1J63owhgb+w8/aIfwYiIcX9YvjrCw3CH+jASeAP3jWk3Dk//vLjOrHGlrVK+47Bv2ksXyW8CPhw+gS7ftJTMIyceyYj8tHjfzuvYekmWYMqXca/8/rsjb8MbnfYKVoV60OSTuw9UgpOCDDENJB7FMd9z2lUdOghHpYTxk0uFhp7k5mGP/APMpdGu/spE9RvrQPgI9p/T7z72iakeprPBPSnrxzUSKKcT+HN7EI7oaCyej7cnHgrtCx3CW1Ny5ZNSZelQWL1puVZ3BV+oBBWNmuQ/Gz3mew6n/K/imO+5lOUv9fwZEYXCjHglbj5VmzXB83CH+hNhIS3iAqe28PRkKZpm7L/yamq7LpnUa2xMDCYemOdZ8boU5MoI/HgMJzAhZvf4JlckDnpC8BZp4pWNbLIZWmgZce/0TeJI/xTOYQpPC6cxhenPYDwQUa3WVEItdJo5HmRIZMQ5IiSnGkh46+w4vGERPROBmNdXZtQXVmwVFyejpykAQ1qqQkSM4K2pBxOec113wN63gHiz+p5Mr75Sj9dkD3ZI8uJ88C34xDF4glG8pXKfFwqssEwmHnaPD8MnjiQkmDhizgNJBDQKqUKSV1XM2i95cNz/YkZru/2eP+DVE/mJiBcTMsQ08Itj8IvjCSmJdMZ0qqafGPTmlWjNwXWF8g73TCY8U/klpaaGtvQQFKd0x9iDkgddvh1p+6cbQPmNO5fkYKWKTSDTKMh2xHhl6mBYf/uhdHac25F9oyyUox1fVLWvnKzrk4xf06CUB981qN+4SYRCVL5HJdoHfqN+PJ3Xzi89RzGe5K3RIyBZbHqYHKbuU6kYSyf+zsahfv9Iz9+Mo8csV9sm30uydzKoWjE9Fbs3DcR03MJpBQzZxGxLzUhEeaLuj4gJbTe9JPd+fOpwP57v6gYw7V2fCkQUi7hymUop5U8m38rf8T6Vsu4vXcO6nw9qbcviua7JvDX1YCI/N54fembEh64BD/pjPZ055Mrzn/3lFHD2NWAg1QuX3vlmb/e4ZtX7KX9mRXU4Vy99CSBDTIWp6AD80gQA5YRqQLu5b74ku5inYgKg2dhxWrupsx6SQ1sTEbkqTC20livp1Y7pREQJPcFMFetshKIi+ib0/YiCERFvnZ3Qte07aRIgepqk58qId6rgvo0z0U5mIE2Y8eWBzErVQtATJvdGhxItowAAoSlNT0Myrwq9MIXHUOc7mWG0e6RMb2hAwVMXlKJ4MpZnlStRharHOErhbCVORyYTeT1hLupquxb3DLwlyCG0IYVrONlzFsL0b6kgCYpsxTsa9zOt9lGlJJ+WYL4kmYqIxuQkTr5dFA6cmwAABEUP3pp6ED9/9R0c9v4pr2MVolc2MJVq/LVNKT9zDvWk/qaMUghtU/sQnlSWrBgITRdCKI1u3B9OuWZ4cBKccwg8qpqjphTB0rosR8O5F60UG0rWV+GkfzpsERQL1+YC5B9jtt/j6eHpB07XwHSytrwbg9Llmhz7ngiPYCA07anhnGPMF5Y9ZTlGoPIJ2+klmKTTs1elPVQ66TeSfp1GGJBb4rvWvgeLJCGx+/QYlthL18oocZ5To1jU6Mh7/3RXfjE11vQSz6lbhxp5QdiXuBKSc8HOTwSwRcFI6Rn6P2CQ4Danqv37eOY10ZcWfpwIROALi1hea8p7/EfZaIZwLADVkGGYSXgb07/pZ/3n0M+CMAA4EBrRbbAkez6yNSJ/VjgDJ5ff4wlW5H6iBdIDDywwYEzDuxcnH1MjOWdtMi3FQwJHj0Ke35g/Aoc5/vjUvrFOBCI59QLVwhPNTOAfFnsgCcrvPCrxnL1y6Rz3vwhvVHsyLUjhFJkIs+hDo+8YPGa5pcngyFEA85V3jtEzEQAEe8oyX+w3MhUdQANkYfNxKYI2z0GIghmDjhVwhEfgsTRB6XsQFIxknziK5DorPRWupYYMsRnkjdOpNzilHDB/DsbPRDRTz2hn3xMYCk3fqLsGPRj3xS7GSuvrkCPZ2uukc9L/ctHHkKvOj4zyjbq3gDYjcfafG8eaNu1KuuSq0jgDoWkXv5aujxZnAq/ltR+Qee3yIlVNKYVdWJaCAy18RcivUjLCsnGaTd8Hkj02uUg85BpC9TL52PFWTlocZKm6Vfn9LrITQBQHBW2NrGRjXMt7PemPoA7aBnXysSYQwpOCdl9CiXNEwtqGcbGMMADoDx/OWDYljqHBo9wuq1+n51iL5Im+Gu7QQIrckzUiX7/WqLITYzyilhOsbBQFY95rb1hE3IoySGHUBM7CFp1AVagXPe5NGfsZFDQhR8Kni9RQr3hQaLIAwjz/xrWAsiV+xqtetZWOknciPQSRMMIAhHnpQ1lKpISViki2/LlcBUvPj01/n8Ucc5SHFEMTIbGw6weQ83xyze8DiiPmqn4zzY7WLNQRHlHUbtITWjkbUH9fFdDJJC+SPyq9+VDDnlBRjEg1wkmJ7MGopFosVKivIZsRlo6W5y+XpH4AGFepYo3DIee2+c5NN5IXPTtzOkcyxyOZbZ5GI6kGVkRB6FTgUcXJRjCjyrZ8np+oxGGbOonWKbmyOVldn3ERjnD2hHmlSZYtOlG0MZYT8ogVQLqkRa7kkuw96Y+kqO7ng1bbJDXe9j5R0DnV1MUrkYHJUKIA4bj/haIeOz13IihN4fXRR4py7EoRey0WNUHlnI3T0RMqrZanGQqNwayyzhoZRXZ/c+WZaxOB6Vm93rzUmQ8gVz7DLIBhVjypgvjk6mSSx3M0eCCnYwyGjmlecX4p9zCxBACco8erLryrF63Kbz2YJPnzPj3sgy06ofheq4K9cKgUPKSMpQS5upUCecRmCf5w9r51pSAsFea10a6cmzk8Gl6jZE9LXCU/IpVWWybXMKsWXQPlk1UoB/mGwQZ56XPy8uUkm1BdF69oE7myV4CYvfSGtCfzjEto8B3PbOWldcyJAHong/jeK79PWe7J0lu2wdcFWyQ1jJ5r95N8MOiUwZhj880UyBBTIN6zaqbIp8ceMQeYhXeWgVwacBcBJc279CbZ+dLgO5Gx7GQe+VzFQKu6cjZQaEJ4ufDkoL9YelL9RSciRxCM9MIielAbOJuoEjTqFK1OFzU+nUUg1SJ6URdQzjXLxlRMYYDIDwpNKjASye9izJfkHntqWlfE3GN2PrqKzfSnUO87AVEwqazVhzDRDQj6wovmqFf3VLSUfRDnMmEVUdRKoZR5dHpwhEd0bWeUgmj1HMCQYwUafQq9L3OhBDeefvE8XFxEo68LjIuJkKQacYmkSoDlorJeIsgQU0DSoQtTKmZeVZ3Q08GgFGiFS+cSBh6BIzSMKWsLtHKwrOIU8hDcT2HEG4JQghtrIarxBKFGcj6knmba7mDheV+FVBFrw3WFUG2RCQRM1YnX2Yw2GaYi3jQ3oNCkAjn3wyNmNelNv4niUuPvhjvcD0s0fy03vUQknlUzK45Sv0Q1hsskNkpc2DhDqdWEVgVNS1YCbT+BR1NCoNbopNxeTIPhiL5isHSDU0liIp1kuRu7jsT+2QYZYsQFz2RU+wajRiUIAc4GlGbgAo+ibWofrNHSiQZn46gw927oxNzBFp2AI5I9dFkTVFatL4RGXxeavdNyGvX+k3CH+jT20FYRSNYT0/LIGXgE1cHzSPd9pTbsVhsHj3nXOBiXUtX/k+7V6YbfWX/pCxKyQYYYQRAlgUGCUQoqBiNNsdm2nrJ1grgQKXySkl+IvsF3QndBgP6R6PPaCTwKZ3gI1mhmJXi2aW9VsBdN3iOoCvZlNE9PRk1ktpxQjpgCAaoAIYiCiYs3JmMW/Wj0HcOYrSNluVZ4pdF3DAFjNTgzFHuIBJE3enuFlgtnOD/RZkuRWvqVCrVQZlzc1Sx64UOd7uMFI+XP/ySPmAKRIs8GCGIuIXARQp55dbKCNoclbVaqlPsSxyz6UBXqnbOJusTsRK1XaKVQHaycysSZxphmrBnKWICnBzLECILIiWbvYczzpOaDCFxE29Q+2COl08Sr9JspQcxF8p10ZcManYBRCkEp6GiUQik5anowJrV/qvenagSqVaS2Te0rSbFDrpAhRhBETggKXQEMsZugKzSg6xj5ZK9kq9oiCEKdprz0x7ii8HExqPefQpPvCJiCIVYdPFf0PLW2qX0ZnngAECAiJJa3KpoMMYKYYzAuoiZJiZsgCEKPTEQ6bVNvwVRgmztlZONLrzfKFpnQfWSjRqJ+g1/ZqOye7NZ9/FJAhhhBzDFc4UE4IiNw5ZCsWxXs1a3ynS8N/uMV2FKbIIiZxpnjvSY57JiNfAzOckNVkwQx18gjq90VlkOKPnO94nqz6ENUMENiJsX1cQQeBYMErjLHmxZjpNR7grhQUQoRzhTOcKpILjiHP1oKr59+yCNGEIQmAo+g0XcMTd7sOSYGHkGtvzvrdpWQIEsQRHGQk+H1T64sOlohlYr0lkr2yBhEqbxpHGSIEcQsxRkeRKvnQMnPU+eXK470Vi3aouOlHA5BEBUIy6HTSKkqMWcrZIgRxCylOtijmZDvDvUXJV8i9aZZnJBiXHyRIIi5QTm9XLMdMsQIYg6Tr66XWfSi0XssozUJhRQJglCiJnC23EPIC2d4OPtGJaYohhhj7D2MsS7G2EnG2FcV1v//GGNHGGOHGGMvMMYWJK0TGWMHYv89XozxEARRGDWBczBLPhhFfVo+7jT9sEYd+WQEQcwdtPo7Foo7rN1wvBBKOW69FFw1yRgzAPgJgG0AegC8yRh7nHN+JGmz/QA2c879jLG/BvB/ANwcWxfgnK8vdBwEQWSiJJaohT0yhqhg0b29QQpD4NGMvDBzSbSHCIK4EJnrnvhiyFdcBOAk5/w0ADDGHgDwQQAJQ4xz/lLS9q8D+KsinJcgiILgcIZH4DPVJpbEW4FEBBuA7Ar4Ld7DpRocQRDEzFBmNZ1ihCZbAZxPet0TW6bGZwA8k/Tayhjbyxh7nTH2oSKMhyAIHTjDw6gOnkNtoDuHvUiSlSCIucX58fJ68GdU0JUx9lcANgN4V9LiBZzzXsbYQgAvMsYOc85PKez7eQCfB4D58+fPyHgJYi4Tr4ZU6h2ZrrVDEAQxVxHngEesF0B70uu22LIUGGPXAvifAG7gnCf6FXDOe2P/ngbwMoANSifhnN/FOd/MOd/c0NBQhGETxOyiJtCNJu87GltwqPnYBR5Bnf+0otGlDU8xyiyiJ/G3owKqjQiCIGY7xTDE3gSwhDHWyRgzA7gFQEr1I2NsA4CfQzbChpKW1zDGLLG/6wFchqTcMoIgpnFERmGSlKsYBR5F29RbcIaHYItOpqxjkFAd6IEtOp7UYkhek51Uw67efzLxd03wnN6hEwRBVCwmn/6+vKWg4NAk5zzKGPsygGcBGADcyzl/hzH2bQB7OeePA/g+ACeAPzLGAOAc5/wGACsA/JwxJkE2Cr+XVm1JEIQO4sKt1cGejHUtnsOkZE0QBKGCECmvGG1RcsQ4508DeDpt2deT/r5WZb/XAKwpxhgIYrZjkMLgjMUaa3MYpXBOUhJqJBthjHOYRR/CBocujbBGX1fB5ycIgqhkBDGUfaNSnr+sZycIIkGL9zDmeQ4BkCsam71vwyz6AHDNVkVGKQSL6FNcl75fVagHjb5jMEpB2KP5qe4TBEEQxWNGqyYJgtCHOSobVkYpBFtkAq7wtHK9wMUUL1ez923V46gZcBSqJAiCqAzIECOICiRZEd+alnw/z3NA93Gs4lSxhkQQBDEnKbN6BYUmCeJCJ1mSgiAI4kIjGClvCyUyxAjiAsQgUWiSIAiiEiBDjLhA0U6An+vUBTKaVxAEQRBlgAwx4oLEFRpEi/cwtfIhCIIgygoZYsQFiSUq50UV0ytWHTyPZs0WREpw2CITGa2H4nlbRilEFY4EQRBzGKqaJC5wCq+XMUohGKQwnOEh1W0afV3wm2rgNTemLHeER1ETPJsxprjx5QwPkSFGEAQxhyFDjCA0sIheRJkZomBW3UZLxyuOWfTCLHozDDGl0Kg72J/4m4wwgiCIUlNeAQsKTRIXBGbRD8ZzL1Fu8HWhyXe0BCNSxx3uz74RQRAEMScgQ4yY8wg8ikbfUdQGzuS9f+kot5QgQRDEhQ4r69nJECPmPHFPmDm5HyNjsXWlOp/ygc2iL8Wwc4aHiz8AgiAIYtZAOWIEoQsOi+iDNTIBBo6IYIXP3KC4ZatnPwCgx70JZtGHqGBNrGv0HQMADDuWIWRwln7YBEEQREVDhhhB6KB1an9K/0cAqoZYHMZFNPqOIWhwZ6yrDpzDoHNlUcdIEARB5AMl6xOEIoxLcIYHoedHYha9WXO5DDySGp5MXy+FYZSCymPJ44faGmvObZaUz1kT6M75mARBEMTcggwxomJxh/pQHeyBPTKmuo1sPIXQ6OtCg+8EAO0crXhoUIkW7+EUQdZiJemni7UCsmyFIzJalOMTBEEQ+VPeVH0KTRIVTNyAEdJkJ0xiAFHBAs4EtHgPTy+X/GCQ0OrZD6+5ERPW9hzOFU35W2LGrHIX7lA/3KE+3ecgCIIgiHTII0ZUHAIXVVsPCVxEk++IqhRF3HjSUrk3SGFYo5MAAFt0HAwS5nkOJtY3eWXdsNpAuuJ9KmSEEQRBEIVCHrFZRNxrI7HZ8bUJPAIGQGSmnPZr8r4DA4/AZ6pXWCsbWhbRm/e4zKI/8bdJDKQo2QOAgYdj55jK+xwEQRAEoQfyiM0i5nkOpnhuKp15nkNo8RzKeT8DjwAAHJERAIAlqt8gSk+2rw10Z3jHqkK9ib9NUiBxvpQxFLEZOEEQBEGoMTtcK0SR4WDg4AXY4bJa/TGM2hYhYrClrKvzn0qE/oqBLTqhe9uawLmU13aFhPh0Y00pF6zR16X7nARBEASRL+QRuwCp959C69T+glTdrdEpGKUQ3KF+GKVQyjpbdCIvuQcAGceKYxblRHyTKBtRAo8qGllKTbTzIR6eJAiCIIhSQh6xC5C4t6o6eA7eLKKk2bBFx2HzjmPQsQIRg11lK454gTCDBMalRJ5bct5b69RbqgZco+8oAsbqFO9YbRYdLr2GpprxRxAEQRClhjxicxiBiylhOIFH0OQ9UpJzGTVyqhzhac9Vne9UIs/NGR5KyXvL5kXLJUQJyIamHkySP/tGBEEQBFECyCM2C2CQ4AiP5LzfvJiye497EwDAHhnLCN0ZpDBEwax5HGd4CNXB85i0tKIq1ItR28IML5KBh+EMDyOS1FcxjkX0wAe5AtIaq0RkkFAdPJ/Yppg5ZQRBEAQxWyBDLC84LFEvQkZXwUcyi15EBStMYgD2yCjGbR0Z60uZOG7gEUgwgkMA4xIEiADnqAr2Yty+ABxCwmCKVxvWBU5nhDSTjSol0sVPa/ypGl3JXjOCIAiCmCkYL2+vSTLE8sAd7Ic73I9hxzKEDM4CjsTR6OtCRLAnwmPjtgVIbrhgiWbqZTnDwwgb7AgbHAkV+HRcoYHE3zWBszDwCIIKhmNyy5+IYIVJCiZysQKRagRMNYojt0fGdb9LpRZF9mjqMltU//EIgiAIomiUuccRGWI5wiAl9K0MUhgwyMstohciMyKaFppjkGCQwonlcgiOAxAQMspGXHqOklEKISqYoXZ1xHOfxmwdqA10Y9CxArboJMxRL0YcSwCkamXFx5vNaDTF8sni/2olsRerDyNBEARBXMiQIaYbjqpgH1zhgZSl7mAfAqZqNMTCh+PW+RAFM4JGt6zaHuqHLTqBXvcGcAio959M7KvUC9Es+tHoOwbODOh3rkoxqNKxReS8KpMULGq7nXiCf1Wol2QcCIIgiLkNhSYrG2t0EiGDC+5Qf4YRxrgEd1gOU8apiXmrpswtKcvrfScy2vIoqbfHvVCMi5iXRZU+Hs5L7rtoi0wohgIBwCz6NI+nRCFaYwRBEARBaEOGmArN3ncAZKqw6yXZCAOUeyMq5VmpNbPWS13glOq6XOUfCIIgCGKu4w+LZT0/GWIKMEi6DLCa4Nms22hBYT+CIAiCKC+ilNnmbiYhQVcFqoLqeVkEQRAEQRDFggwxBZzhoXIPgSAIgiCICwAyxAiCIAiCIMoEGWIEQRAEQRBlggwxgiAIgiCIMkGGGEEQBEEQRJkgQ4wgCIIgCKJMkCFGEARBEARRJsgQIwiCIAiCKBNkiBEEQRAEQZQJMsQIgiAIgiDKRFEMMcbYexhjXYyxk4yxryqstzDGHoytf4Mx1pG07mux5V2MseuKMR6CIAiCIAg9hMrc97lgQ4wxZgDwEwDvBbASwMcZYyvTNvsMgHHO+WIAPwDw77F9VwK4BcAqAO8B8NPY8QiCIAiCIEpOWPSV9fzF8IhdBOAk5/w05zwM4AEAH0zb5oMAfhX7+yEA1zDGWGz5A5zzEOf8DICTseMRBEEQBEGUHGPUX9bzF8MQawVwPul1T2yZ4jac8yiASQB1OvcFADDGPs8Y28sY2zs8PFyEYRMEQRAEQZSXWZOszzm/i3O+mXO+uaGhodzDIQiCIAiCKJhiGGK9ANqTXrfFliluwxgzAqgCMKpzX4IgCIIgiDlJMQyxNwEsYYx1MsbMkJPvH0/b5nEAt8f+vgnAi5xzHlt+S6yqshPAEgB7ijAmgiAIgiCIrLAyn99Y6AE451HG2JcBPAvAAOBezvk7jLFvA9jLOX8cwD0AfsMYOwlgDLKxhth2fwBwBEAUwJc452KhYyIIgiAIgpgNFGyIAQDn/GkAT6ct+3rS30EAH1XZ998A/FsxxkEQBEEQBDGbmDXJ+gRBEARBEMWHl/XsZIgRBEEQBEGUCTLECIIgCIK4gClvuj4ZYgRBEARBEGWCDDGCIAiCIC5gKEeMIAiCIAjigoQMMQUmrO3ZNyIIgiAIYg5AOWIVh9fcWO4hEARBEARxAUCGmAoT1vnlHgJBEARBEHMcMsRU8Jobyj0EgiAIgiDmOGSI5YnPVA8ACBuc6HeuQcjgUt12ytJS0LlCBmdB+xMEQRAEUZmQIabBsGNZymufqQ4BY03KMg4GUTBjxL4YQ2nbA0C/cw2mLPPQ71yDcesC1XP1uDeiz7VOcV1UsOQxeoDn+fWS4UcQBEEQMwMZYhqILLMn+oStHT5TPQKm6pTlnAkIG5wYsS9B2OCAKJgTywFAFMzwmesRMFZDGQZJ4XwAEFTdR5lx6wL0utaj170+YRxKzAiuszLEpzMsKzJzTuMiCIIgCCIV5Sc/AQCIClYMOVbALHpRHTwPABCZCeO2BbBEpxT3CRrdCBrdYJBgkMIZxtWYvROtU/sBAD3uTTBIYVhEb2L9iH0RRGZBk+8IAFlKI+4RiwpWGKWgrrFzZgAgh06HHMsRMdgADrR69ituP25dgIjBiqhghcSMsEXGYYtOqB6/x70JRimIZu87usZDEARBEEQmZIhlIWywwyCFAciGUBwxZhyle8bicAgp2ycvT0YUzPALtYnX6d4vn7keRimUeD3kWA4AaPQdAwAMOFdlNYbCBof8R5JDbMS+GNXB84ljh40ORARbYv2ofREAwBEehiiYwGEAgwQOAdboJAD58wgbHDCLPsXzes2NcIaHNMdGEARBEOWkvCpiZIjpImCqwghbjKDRnVgWFSzoc62HxEoT3ZXzxXiG4RY3qjgEMEgQmQmDjpUJDxoASDFvmBZBYxUGnFUQuAhLdCrFCEtGKUwZMk4XJkiY9ryZkzx78jncYFyEIzKadTwEQRAEcSFCOWK6YAgaq5BuN8sGT+62dFhwIGRwa24jMSMkZgKApNwu5X5YUUNqMr+alw6QQ4o97k1J5zEgYKpR3b5QQkbt96n0+Ymx9x0n3ulgxL44sWzS0lrw2AiCIAgCvLy9JskjVgaGnMtz2j5umHjMzdPLBFMsrMjAIWDYvhQRg0014b+S8JibMGltgy0ygbDBDs4YqgM9sEfHEusafF2J3DmvuTGj20G8GCKZiGCHSfLPyHsgCIIg5gaWtMn/TEMesVkAZwb0uDfBZ65PLBu2L8WYrTNRlRkyuspihMW9aT5TreJ6JYNpet9qiIJZ9vzFHGMRg3KIVA/pem3BLF5HgiAIgrCRIUbkgyiY4VcxfmYSn7kePe6N8JkbEjpp03ltDCGDM68m6nIoODcCpuqUsOuIY3GKcZqvrhpBEARBlAp6MhFFQHZn+cz16HeuQb9LFrENxpL6veZG9LrW53TEeGFERKHyNGCsztBES84ZG3Isw6htIQCGPtc6eMxNAArvcDDgXFXQ/gRBEETlUd4MMcoRI4pMPBSZbvRwZkCfax2qgj3wWJoz90sUJshVmJIgv073jMU9XrbIeGJZRLClHDNscAJJhaNhgxPAICIGe2JZ0OBG1GCBMzycWDZsXwKBi4gYbIqSIEpyJARBEARRCOQRI2YMiRkxbutQzGWbss7DuHUBAibZ8BKZCf3ONZi0Fl4dGTBVo9+5JkV+ZMSxRKE/KEPAVJNicKW3e+p3ril4PARBEEQFwcqrJEaGGFERcAixYoTpH4TsXVP7gUwv15NPplU0oMWIfQkkZkx0N0g+zoBzVUY/UoIgCILIBQpNErOaiGDHpHVeUY4lCtOVMyP2JYgKZnAmZDRj73VtAIMkG2hFOTNBEARRLkhZnyDygMd+OXJj9sJ/RiP2xSkhyaCGEC1nAlVgEgRBzBF4mdP16WlCzEoigpx47zcXR8JDy/DKh0HHCsXlSlWggFwJShAEQVx4kEeMmJWIgjlFM0wvI/ZFMInB2CvZkyYbQcVzTg84VydyytKR21YFM5aP2hdB4FHM8xzMWOczNcARGc5YThAEQRQDStYniBkjaKxOSF3EVfyLLYyrZoRlQ6malKo0CYIgSku5c8TIECMuWKKCBT3uTSVteg7kJiSbHtLMt9qTIAiC0AejHDGCmLskS1/4TbWJykxZ4HZtxvbJorMEQRDE3IcMMYIoEWO2Tgw5lqcsi7dbGnQsj+WLZSdiSE3wn7IUR66DIAiCKD9kiBFEifCbajPyxSIGO3rcm3Jql5SewxbNs1CBIAiCqDzIECOICmXC2g5AOYk/nX6FMCdBEASRHdHoKOv5yRAjiArFa27QvS0JzBIEQeSHaCpvbi7dvQmiSPhNtfCaGzOWx40kDkPGOu2KSn1F1ZlisCyjWTlBEAShjNFQXlOIBF0JokiM2ToVlwdM1ZiUWhU9XFOWeRnJ92GDE4xLqucJG1Ld6LIYrJh4zVm5VXEIgiBmDxYjGWIEMcdhCRFZPQw5lmUsG3CuglEKq7ZiUlPBGbYvRYP/uO5zEwRBXGgYBTLECILIQlSwaldakheMIAhiVkI5YgRRICGDq9xDyEjWD8dyxOICsgRBEERlQh4xgiiQEftiCDxahvMugi0ylXg9ZZkHd6gPPlM9Jq3z4DfXZtUrG7N1oDbQXeKREgRBEGqQIUYQBcKZAJHNfE/IoLEawaSKySlLCwLGqlgzc4aIYMvYx2Nugis8qPscEcEOk+QvwmgJgiAqE069JgmCKBZyr0rlfLEe9yZd4rDJlPf2RBAEMfcpyBBjjNUyxp5njJ2I/VujsM16xthuxtg7jLFDjLGbk9bdxxg7wxg7EPtvfSHjIQiiOHjM2as8IwI1KCcIgiiUQj1iXwXwAud8CYAXYq/T8QP4JOd8FYD3APhPxlh10vp/5Jyvj/13oMDxEASRAwFTxtwJQGajcSUklilQSxAEMduwW8p7LyvUEPsggF/F/v4VgA+lb8A5P845PxH7uw/AEAD9vVsIgigZydWWSvplWur+uYY5CYIgKpEqa3mryws1xJo45/2xvwcANGltzBi7CIAZwKmkxf8WC1n+gDFmKXA8BEHoIGhwY8ixPGVZmNoiEQRBzDhZp7SMsR0AlBJG/mfyC845Z4yp5vYyxloA/AbA7Zwn+rd8DbIBZwZwF4D/AeDbKvt/HsDnAWD+/PnZhk0QhAJhg5zX5TPXZ7RKAoBR2yKIghFGKZSyXBTMiDILLKIn8XrS2gqbd7z0gyYIgiglhvJ6xLIaYpzza9XWMcYGGWMtnPP+mKE1pLKdG8BTAP4n5/z1pGPHvWkhxtgvAfyDxjjugmysYfPmzVTMRRA6GbN1IirIzuaQ0Y1+11qIbPrGw8HAYvWRAVM1AGQYYhwsJSes37kGwLR2GUEQxKzF1VLW0xcamnwcwO2xv28H8Kf0DRhjZgCPAvg15/yhtHUtsX8Z5PyytwscD0EQafhNtSner2QjDACGnCswYW3P69hTlvLewAiCuLDxm2pV16Xf61SxVhVpNPlRqCH2PQDbGGMnAFwbew3G2GbG2N2xbT4G4EoAdyjIVPyOMXYYwGEA9QC+U+B4CILIkYhgg9fcqHv7dOMrTDIWBEGUCa2ioX7X2qz7i4K57L16Cyp74pyPArhGYfleAJ+N/f1bAL9V2f/dhZyfIIgSo3B/ylTsn94oYKxGxGCncCVBEDMC16jsni2Qsj5BEAURMk43PedMwJSlJScPG0EQRP4UbohRiyOCICqOkEE2rrxmJcm/1BvfpHUepizzFPcnCGL2M2pbWO4hzGnIEFOgxpRf4jJBzBVEwYwe9yZFiYvMDpQMUWHmm54TBDH30Z1wn2D2hSrJEFNggfXicg+BIOYoDEFjFQJG5dZKBEFUIrPHuBFVkvfjEj6VCBliCgjUQ48gSoLEBIzYF0MUyiugSBDE3OymMWJforjcb6qb4ZHohwwxgiAIgiBmPSGDCxFDelW3zJRFqUFQZUCGGEEQJUdtlkoQRGGUS75BVMgL9RvVxVXLT+WGV8kQU6DKRmETgkgnLlORT65F0OiCyMyYsFKfWIIoJmIBuU9hFe9ROlzBhvGYMz1MPrN2+C9kcGLYvjTr+ZSOnalfmDtaKvzlhAwxggCwpGnu5UoUG6+5Af3ONYgYMpX0IzF1/aBRrVUIQ79rjeaN0FfBORwEUS76XOtV10UEKzzmpryPHTRWa64PGVzwmJsRNFZBZKkeMCXlrZDRrXm8iMGeojuoh3jlNmfT5sqwY5mmor4aY7aOxN+VlDNGhhhBABDK3OJidsAUwxEAEDHY0OvaUNCMM/lGSxCEjKRRPDboXFXSakCfuQ6T1lbEJ1KTllaEBSVJm9IxZuvEkGN5wvCasrQgZHBmGIYy2e7jLGG4Jod0m+z5G7PFgO58KtSaOso9BIJQpcE1M7pdUkzDx2eqz7ptqQypfGa+BEEok8vvNN1r5LE0w2+WJ1vxkKieystJS1sOI0yFMyFFzzCS1tu2GDlyTnN5IyJkiClgMxvgNlZuhQVBdNTN0Kw0JuzqybHiSCmnJDvKO/lMdaTUT1ywLHNcq2hsWAz5Pr5ZQb8nr7kBQ44VCBrdGHCuxrB9cd7HUsNvUtcZTL+3tBrmKW+oinyA5M/UarDmeIziQoaYAtevy/WLJYiZxZj3TTg3HIbSJLd6zQ0pni6e5VakrPBfeup54QnCBFEIDkMdet0bMpY3ujJDkjZj9vuCmuBpHKVE+RbLqqRXDOFYnmhUsIBn0d1UOl42lPJQwXPvB7nRfTOGHcswkmQsTlma4TE3wWeR27eZYYTdpHC+GYQMMQWcFiMMObdVIGY32X/kjPLIikZUsKLPtS7xOlsCr1aeTCkxxGbNwiz86qt45SqJVwoNztnyGSlcgFa5MMYmyGE1q1GA1aT9Oxm3LtBVtdjvXIN+55rEa5tQrX+oacg5ZqVk+rNRLCAwOFOKiDgzYNLalvCImVF+AXcyxFRwG1rKPQTdWE3F/RrdxvImLuaL3VDatjkbXB8r6fHVaDDPPg2uVQsXwGeqx4BzVYrBlQ+cCfBaGjFhbUOfa92MahWx2M3aZiz/zTpXKuEBUwmYNKxoqw4P0kwRNGhXHGaEJ62ZFcreps2ax/CZ6yAKZngszbAaBZjNmXIy8W3UCnOKybh1AQYdKwo6hlDB+mB6qZyrsMKYTd6PJndx49tMxw18gW0LOm2XFPW82cgWjetsyC98xRhgEPT9FIyG2XNdlBMmCBi3LUBUsOacbB8VLOhzrUe/cw2mLC3wmJvBIcBrboLEjDPqHbMhNvYL+Guvs5evoXv1DHj1KsHbOeRYjqCpGoDswVFi0LkyRX4hTr0heyL8tDEq/xs0uhGdfxkkwZSSL9bj3oSoMLP5UoUW4xjnQDEPGWJ5YmSV79IupTZWnWlhxYVvm9355/M4zPoe7pYZnkGX2stXCKUam8/UAIkZIApmTFnmZVR5zcRzsyVtcqNH5LmVz00tumzhrnSaFHKXZgO5GJzLpdy9sumVg8kGV3IOpJohFBWsiSrGeKL+RvfNcAn5/w4ZGIYd2qHKtW1VuGRR9qrpOK1V2oacXee9FlDTFtS+A+i/L2Um7ZcLMsTypNpU6ri3OpsWpF5oas67XG+gM4GhSNNPi5D50HNY8nu/eeSAapKPAew01GGeZXXG8oUz7HUsFRsXVJflvEJ+5Zswpl2nBh0e8rmYk3WJlHvhknmGCkmKjTmHSVYj9CV3b7Zdn/jbY2lKua6SdbBWOt+nuH9cTd6Vli5S6yiOl7LRnD1fzGExYlmz/ipLJU3GgEkOo/pMdVg1TzsEO+RYBgDocW/EuG2B7vPGmW/domu7qGCGx9yMAefKnM9RbGbnL+YCw5ymm5LLDaPSSDcitdCaOZXLG8d0zJ4c5txd5Usd16I5pTJJxiiYoKeQYCZQqtLSi2UW5ljlSrHm1VZeOaGWBp0GR66UKjdrlaTPc9POMw2L3OaI+jY+V5M6kUo26FnS79oquBA1tyAi2FOkYuJirUvsV+kemdfcqHtbPWko+cMS3r2oYEWPexMiBrtqxbfITOhxb0rSJWMAGMyqrY0y74ucCYqTdLXxTVpbES2zdAVAhljOGJk5JUxhZBa0WDIt6hpH/oZCsgHishrhMmgnz+v16FRCLkQ+KOXrKRlEQoGXc7t1U9Zt5lVP/2hNggVWobT6ViaFm9A8d2ZYxGlsKOk4AKC1xpbifS2mMZytpH4mma2/k9lE3GviTLrXFeNzX4TqLOeV/3XxwjxKXQ3XAQCaXRZUa4Stk6UdGsypelvp97VG6zoMOlcUrJSfTQpGyCPH0mHKzL+1GaaLBSYtrRh2LMOG+dWAox4Ck9sJDTgzJ5fpSEJcMT8/2ajqpJCy5LxY9b5Uaak0yZAhliNOY2OKR8pmqEaLZU3GdrmWRVuTKmbqkzwPTmv+D6h5jtSchIai525o3znT3d75hg5XOd4PAGiyLEss4wqzoW0d21LOmZ4rYMnSmsMqaLvMAeATq29M/L3G+SEsc2zLuk+xsRttuHP9nSnLFtvelbHd2raqgvMEkz9lxoCtC+sSVboGxRYj+vKp0pmwtuczvARjtg7V6sxcf4ul9N4VagCUgpoyhlTNSZ+1UkhTy8jJB2uB320nr0IdtyUKRlrMDt0GZPpEr07FaKw3L8xpea6wHB77q53X46NLP4pGe2NGeLTBNG1YeizNCBmcuGr+ZZrHswgOXNxyMcKxKI/EDOAQIM2/DD5zqjdzYYMDa1rVetdOs2aevE3QWAVJUL9e0sdfSZAhViJMSTeVfCrtFtQVHhKwG1MNj2IXgroM2i5wlzF1vdua303VLDiw0X0z5ts2am7nNrvRZp0WPlxivxpuYxNcMW+RVcj+o15ouywlX6PWlJqj0OpMzQ3UO8sSmJzon00apMm8XHN9td2E5c3Zw7smwQqHxYj6WaKTlE0UMhtyNaXypMXhzk2KJjlstohXK27D8owWV2Nmvo8mbkeHc+ZFcPUYJenJ3PGKvvS8PEDOTyoFuX59FoMAl8WINbwBl/FWGGLVtNWGQr7P7KNInqC0WzanSOgsc6ZOtNVy8yI6qiCVk+LltJgGu3z/zLzfZ35f6xqUJ0PVdvk+aRGc2NS0CcPOZRi3LkAgVilarVAoUeswF+SISGe+VVvao5yQIZYHSvcaU5o7OfknNs+amYSd0/lytKAW2C5Gp+1SXNR0WWJcVoMbRp0SDVVGfQ8uxrIbFtr757Y9V4jBbphfrbq9gZmw2H4V7IJ8k3Easofvqk1tmuFGpZBouqGt5K1rr7VjbXt2Q7DVKt/IljQ5sU5h+6VNLqxvyp5cqjdkqjbLVs/LKF7BRRwtnSdANk6bFcL/ehHrc9MpSr4u7VA2tI0lvHVW26YfPmqGIACsr1av3NvCW/De2vlo5jNrjDUI2SeQ6cncziRj631S6vU401XKatjNhpRxWwUHtkotuNrWivYs7YIanJlGhlHIvJPYY10sXIbpHDGjsRatNfJvkTGW8ixwGad/o80uC9wq3sNJa6a8Rfokedy2AL2u9QDkdAinggFcY8rutTYI8oQq/b2taHHDZGCJyTCHEPOAyVumPwscBmXDUAke01MLGKs1t6tkpYPKuMpnCfGYuPyYTb1yltq3KVa9rXZej1Ydhli9aVERRojEyGpM7TAKRnRY5WRRA0y4bIH2A6nJshyL7e9CnWkR6s2LUozL1c4PYJXz/ar7WhVvRtoPWLWig/nWTXAatZNu47exUleGtigk0KffkLJVAQGyh1SvIQzIDyd7Tkn/08ZfspduWc0ypY0TqHkJ9YSx60ydquuUKqfUaHZbdRt3+UhmXNl+bc77JJPNUIzTChfc3IytkvpExggB7ixeHlvse2/jLk2D74POhXDwzIdvA7djfrUdNoOxpIbYRilzEtaI/CVkVhrqYISgqh1m5IU/rrQ8bAYmaFa+JjucJGZEIxww1S/Fu83qBopRYCnh0JC5GgBQazdnJK3bDbVY5/pIyv3FZqiGKUtEpaXaApNBljV9//ybU+QYQgZ3iqq8OgwuuwVumxF1pk7FKkmL4MJi+7tQb5afVUr5q3GUfv+rW6uwaYHy5MGV9r2kG4pacLMLve4NGaHN2QQZYjlgF9RnoBbBgRpTpkpxnEX2yzXDWI3mpdjovrmg8SlhjlWQOI0N+MCi92NLR41qrtYHl10Ft7EZjDFs67gaa5wfSjqOAxbBieWO7Wi1ZLqfk2cb7qQZvVZ5dHzWtTwtz6rW1AmAob3WXpQZcZU9/zwTi+DKuCl02i7N+l0td2xPeV2vMCvWA4O+3LV04mbZ8jrtUKdanlc8jKz0CIjPyquM81RLxS9t3arprVSCW2TDLh6uUKLK2AqbPXtRRTJtzvzzz9I1zOIoeUatMOJ9pk40Qt34WcHr8O4qbQHO+PNZychKRs3YXcZrEte8ScctPv33odeEbkNpClWaVIzHYjysrEYBDpXJ222uZXgXV79W7GYjljTK99OgqRon664CVlyvuG08/Lqq1Y07rvsx6pv/GQDgcWrneaU/Iy7u1NYr+8q2pXjX0tj9yWAE1xEqrTG1o9m8EvUOW8rExsAYVs2rwk2b2vBXq27BMkfmBOaS+UvRbtmEJfarUGXMLbneajKoptxoRX0W2d6FBvNiSM4t8JnqFduhJRco2DSq7dPvy7Gdyw4ZYirUZ/EIbF+VW0iuytiKTtulhQwpLyyCA6uc78f/eb+cZG40CKq5BG010z8Sm8rNym6oQZMl8+E+v9aumAtn12gaHS/lthtqUWNqTxhw8aoep8WIjTnIXQDIcM+vaHHhyiWZMyWzYEtUu7qz5CEssl2Jda6P5DSOdMmR+I0m19/86rYq1JmKk6SbCw22zJts3PhY0ujEWteHAcihTVNSDkqVcR62Nr8LddY6RW+lkZmxwHZxooLMY57+HZktnTFl78zfXq2pAwITUGuaj7DJldLEN048GVft2gVy18WaUAjrAECTiqxDS5UVVTaTqhFlhIBNVu0QuV7PqcnAEr+ZtVJDIrG9wWnRnY9ZYzNhe+208dFaZc1JpsSUxUtVW6gqvw6rUE+j62TUNLiySdMwAHXzpr3AI46lgMmGiUUfzNhWYAyt1TZcvawRdnsdhFjYjAvaHvwrl6ZeG0vqlRtmC4wBMaMrkQqhUNkIAGYjg2v+GoQNTvzdls+j3bIJLmMT/r/Nd+Ift2cWmgFAva0+Izz4lW1LsX2VPFHPlvieT8FOnHTvuM1QhXbrJkQNVozbFoBDwPLGVjiR9v51kCxtYVSZhJYDMsQ0WGS/QnWd3WREi4qCcHrvx7jBkS25vVRYBCcElZl9HLuhOs+jy+/NwJgu0ct04g9xBgNWzavCRfPWJh1VH2ajkJAL+cTFqV7JBpcVJoUb9fa2m3DJgg4AgJAl9GQyaDeBNykYtsXKR1jbWpVXuXmhNNjk8BqH7KFZ3OhKhJKtJkPKTSzuKd4wvxqXL27Gx9dv1TgyQ52pI1G5NWltAzrVf2dxrIIL610fhSWR+5Z6811h3pzQWqrR8IAOFkm8sU1Bhyob26QOAKmGViF6WgwMdQ75OquHDYY8budmo4BOkxsWg4Aqq0l3SNnM5Wvy7+atwW016l7vXDza2QwhW1q+XovbiiaXJa92dGaVz6rBacnwmM3jzkQOE9v4SVzy6e+nrA9XK6eVCACENKO6wdIBr0k2tqIK3qvkMCRnArY0p3qc17VXob3aJhdF1Cv3oHWn5YcaBQGOmmYsWnspFtRWg6k8C+K/qEZ7bs8ppXujzWRI3BeX2q/GpfOyOyEWNjgwv84ut5yDtpF0XfuHEtdL+vevdTUImJ5011sKq9QuJmSIaWBkFm1RUZUH+Lzq1Nj51oXyzELtB5BO+lENKgnDhbIwqTdje6yiZHFjqtyB3VBTtLLpdNbWXoGl9lT39/ZlyxOfufb9dXrlpgU1+N41f5t4vdyxLcWINsVKmpM///YaJ2qzVBRWm9pQ5zRnbclhMggp1WKfXPFZze3jaOVYqVFKjauOemUvj8kgoLO2Fu0u5RvXAttFcBobYDUZUO+0ZM33mldtzbma871rlD0D0yhlbspLkkMVyWKZhZCP0KkNmZ7X5M/hsw0rsNxRhU6TjpxDhc+4RsGTuLJFX1i70WVJeIbjeWlq3sN1UiOu5Quwob0atRYrGgx2CLx4QrTJ7yxen7OE12ArT829Mwosxbu/PWboxlkl1WGzpPx9r6ytQoM1cyK9uNGZ4TFr5c5p7y5jAGO4dkUTPrwh9+4qS10X62qmPe5YhNrFW5Un0I0rgJZ14LEbpB6RaS2S7++fXPlJdFbpvy912i5VDvcl4dSZ79XktqI19uxsMCsZmYXHEBljaDLLebPXrqwcOQsyxLKwuNGJ+WlxbbXL3sRsGesbXdaClfBrTR0A1Cvh1AwFxoD3rWnBB9YqJw+nhyg552irSTUilzu2Z+QBNbrlG/769upsQ089X+xzqDcvxBL71WixdWbV9gKAm7dkGgCbFtRgbdt0EqotqYLIbqhNyV9Y37geLZZVqDctSowd0J45bXTfjIU2WRNHj2DuyqSEfYNOD9YC20VZt4kn7LfV2HDJojrF2f/fXfxXus5nyCKamq9+Vo3NgU9u0tYPSqa5yoaLF2aGrNUeKDWm+VjenHueXJxCdMGS81EaHOaEsaLl6VGq7lUj+R0vcrhxe8NymJly5Vkyej1Nhdx71KQ2zBBghJASen4fX4Rr+QJYFIxN1bFx/d9LC3dkPbY1bX0D7JgHZR29OqcFK13Vus5tgpDhKVzTVoWO+twKIVxWY6xThoxBQ9XeWdMEp1Mee2d92ntw1ANW9d+DPWmSoOdKjN/fGQOc5uy6g8kGaI2pPQcle/1oRQEW269Ek9sKe3UDau0mwJhfiDH+/MsltFkqyBBTYUGtfDEbDSxhpWdDYEa0WtfBnlQBYjIwOaemTU/lyjTxPBe7yQC7JWk2pkC13ZwidXD1skZsXViHRpcFy5pdWNKUasDFXcbZQnJZx5hD89ZlzU60VFlltzMzJxLg45/t1cvU82aUvCe1DnOiAqreVq8ZnjAJJrRYVkNghpyT/ze068tRc+Whkfbld2fmOaWcu3EDbGYD/vqqRRkGcjKb2vTNYNe5blQstNBL8mec7DltdFtzzgXSYxwxxrDRfbNmpWS69tSEtR2SWzsZPl+sJgOqrCZUW026PU3mPDQEi41WM2s9ociFWTx01TYTBDAIYFiIKrhiHp9sxQZXxRLj0x+DxX4sKr7Hdq3weSobauoKbl/1mSs68VdbZU3CBYYOcADmtJDe/FplL+u6pGdHVhuf88Rx4zmD2Tz6cXmMXFuYlbPVnttmQvvSDXAs3KqaG5dMk9uSuIdWmeT7Q7urHcuaXdjckXsldrEhQ0yFyxfX4+Yt7SkPDMYYWsyr4TYnh2kyfxnpGixGg4BrVmS6Qd1G9TBJjcOMtW1VaHBZcM3y6X2rVfJfkqUOWjW8JwDQUe/A1vlLsiap54LJOH0uJc9GrUPO5RAYw4qkh9hHNrbir69apNuQaXCZ4bYZ0ewoTohJi09f3ok1ORrQWjQ7mmFm8s1WztvTvr07TbKxYzUZdOTBpK6PewRd5tJUtr1ndTMuylLRlcy72jOV/7VYbL8yIV559XJ1IUmjwFJyenyWRvDqDqVNExR603NZjaqyKfHvdDWvR43RnMjhKpSFPPt1qHqFaFw66YasSzDjPbYFaOVOOIxGrGxx41pbO65LC/slYzIICWNBYAzLzPKDLVseXboHSw+rFXpJZpN3KDV1Oiqi3VZT4pqZsi+EZKvFuF2fZBFjDO/O+A0koWKduSxGtNbYsLBB22MVn5wWGuIsFnFPlVKaQepLBpj0OUkWNjjxoZgnz2mox0b3zai31aPWYc5rEl1syBBTQRAYXAqGis1QhUsaPgCTQfnLqzN1os3VpuuiXmS7UnO277AY0eRogiF2ozEbBCxtKvzBahAYvrTlFnxmzWcKOk5NbKbttBoxv1a/m94euyFxyEZqLlpgixtdWDWvKkPhvhRkm0nqZYHtYgCy8n88sTW971wyLqsRZqOAFXX6hUjTXfmNpmX41OpPwW3W9maY2HSezPs7bkr8LUmpN/dkQ9BhcsBkENDk1m9kLKzSzjO8qL0jUfFaa+qAOyYq3Fpj0wyBs8T/9FNKkdC6WH5RExz4Qt1qRbX4fDDpaM6c64O0idvxbrs8oWwwyhOE6+zz0WxwYBNvhskgoMpmgoEJibBgMSdv+RAvSLBxIz7tlgsvyv0gbamyIRdbUBLMiNYth1iQKr8+7CYD3Jbihw5LyYoWN65b1azaHDydbJ65Nc4bcNvK21KKqvS0TppJyBArItevm4cvXbUCNyy6Ac122SOhVa3IGMMy+7VY6/pQynKbYdpFvSipIsdqMmgmQi9rdmFRo36DyGq0phiCzqSWOC3V2dtiVNtNuGZFE1bPc2t6d9TKxfUSP7RaOEtPTs7q1iosatS+IaW/A6VqyEKpNsoGpFoj92tXNGF1axUExmAUlB96TXb1JNO4m50xlpI3p0ayV9YdE5tUI/6gv7LtyqzHTSf+XqpNymHDjtpaXBvzGidX8H50k3aYMdvNWkkhXIl53JnkbWG40bkYy7h+jx8AtFXb8qrgywWlKstGlyXtwTL9e7Bo5NpczOdhuVl9Iqhk2FXlaPTkmv6QXiyUifzeGmCHNXZN5fOJcwArzanfrzRvI7D4GgBAvcOMeSb5PhxyLUjfPYN8uk0wAKJKNfZi1zp8ZElukjnyODKv92yTsVypjXkAl8WcAk3utGeFWX4GSYY8c7eMQkrObaGYBFtGZKCSEvUBMsTyojH9wovhtk2roV8x7xostr8rRWMJANqsG1L0thgTUqQO1jhvwLtbP5x1DFs65RtoR8zbAsgGT6MruwGVTDx36vaLV6HRbUV7rR2fvaJTd3K0ycBK/vAxGQRcvbwRH908/VDO9ZzbVjbhhnXqGlIL3B1wGApTZl7W7MqaO+Q0NmKj+2bYVORClLywydy5/k5UW5X3BfQZj531Dryrcx3WOG9IOW9LlRWL7FdkCDmmexxy8bzEpVxMgglrnR9Cu0XuF2pWuEkrJc0qfc9VxnloVvkNrnN9GLcuvy3xOnMSkHmORbwaa7mco1hlNcJuNqDJaMdV7nmICDZNXbI48TBQ6tiBa+zaJfJX29vQ7LKgUSEPUu/nbDEIqs2sW41OXGVuwzyeauCYBJZzM3S9D4vk71GAbKCmw9L+jaPns07mw0718F62z2++KfXhLM2/DGi/KDGO662deI/UCV9d9s4otXZzwtOfDTOTDZX3r1oMoW2zYrP6xe71KekX8ahBcl7uAneqgWgWjDApVGRe13FdxrJkgem4IaU358ttNeHvrl2CFTFjySDI3UUSVfhV7UDLOrS4r8AKx3twx6Udqsdqt27CnVtyEzJvclszlPjzodTPrVwgQ0wDRywJMN2z0KGjIbfZYFHMAWs0L8WWjlosbnTi0kXTgnnx3C+TYMv4MSn2N4zp08R/1PlSZZyH9a6b0F4zbUDk6+qPGxE5dPJRpS7W8in+wF7fXp1oDJt+AyoGV7RdniJvoaYKr/XbrXWYM1TKlVs/lYZ4eDKb7lhzlRVVFnuiRcnWhbVYNc8Nu9mIqxauzBByXJhjdVgyq1ursKpVvraMggWMCeCcY0PjBrRZ1+d1zCrjPFxed3HaUp44h0MleVet3c9CXg0zDBCY/JBpjoXpjAJDn3tdVpdLe7VNTlhXuDiWaXicAMDKjDAZBF3hUq32O1qstNVAAEsxFJrd1hTvU1yBP5fWVMlYTQZU2Uyq18ritJ6ZVXYTmt2W1IKf2KntSbljm61ybpQjpiuVrgnYYlS/Nl2xfa5l87FCSutdaMr+WRqYALOOkDAAzLe4EmHpbFSb2nDdghtwSds6zK93qTarT2ZpkxPbVzXh4s463Ln+Tty5/s5pQy32ndUZ488lBmfsc2231MBu0n5eXdxZi3cvWZxTg/V0I2Z5wwJ8bKVs8FVZqwGrG2Zmh81QpXlNCUzA6mblqv6Lmi9S9Aq+b01Lhqd1RYtLVX5nNkCGmAYuswu3rbwNFzWnygwodYrPlQaXJeWh/anLcteUqjQWNciNqtOVwfXkWiXPojkAW6wHYjxhPc6d6+/E+xeq97xM/83rfa4YBIavbJsWprxq2XRybK7q/vHZ61L71Vhie7euXKp0b0o6ty6/FTcsukFzm3jnhlpjdkO1pWr6fOnNhNNJv+nlUu5tMgiKKu9GwYhGs3YfTC30eIuS83auMlyEhqoPQa0mb2WLG0ua5GutMSk1gJdBTNcMAXaTAQawlM86W7ui7a42tHAHFjurU5bbzUYsanCkeAfvrF6bss02ezu2WptRJ+TmUY8jMIaVLW7VSVxnmiFmYAyd9U5cZWtFU1oXigbYYRQYOqocWGiqwg3SYpggYEtHTc45smvbqlDNrFiCtN+wJTNHSO0nEHK0Yrt9Pj7uUheubWuTe/ou4NMT2hWtl6hu32Bryskjw2Lth/SHQGPb2bLfuxhj+PjKD+PGJTemLG+psmK5Qs9JJT60+ENYVS/35a23KXQyiU2oLQp5cem/5fi2m5s3pxVlqd93qu3FK4wpB2SIZcFlduWXhKADh46mzg226dYl82vtuGPVHbhk3vQPPD30OROoKegLAlNsVK0lvVBsLEYDtq1s0pFrop9NORpiDosRn76sE05jY8b3E++1dsmi1Bl6cuXXrctvxceXfzxlfbW1Gm2u1Hwpc1rT3SrjPHxg4QfQYlFuW5KMwBhu3tKe4pXNlXhyfauOfMJi8rfXKCuKa3Gk5SYMutWlO6psJpgMuRldV0ptuDRZ9LRBflDrMVMbnBY0qFTbrbPU44b6DnRg2liwmwxg0A4ftVqd+NvO1YpSIkZB0LyNOQQTNlobdRkHFp1eojgMwNaO6etsnaUeH4mFFFdZ6tCioCUoMAZL2vdhFKb1vNJHaYmF5EMGJ66Q2nCNtAAuixEOs1Gx9RoAoGEpPle1GoYsbZokkx2LzdWoMWhc57FxBZzyeW0mO66+6G9VN4+nta6oXYGLF8gTp3xlO9InRj5LzBCqXwLUqxuPyViNVjQ5UvOmbrloPt67Rr2BfS4sr12OK9uuxIbGDRnrnGYnLmu9LPFc+9iyjxXlnHox6vBIlhoyxMpIu4puTLLuV5urDRaTAZcsqkOj2wK7yY7F1dMVd0ZmxW0rb1M6TNFoSNOXee+aFmzuqNGtOzPTsfjVrVWquVbxhP/0npTxmdrFnbV4l4amWTIZSapJqDUaj+dwaYUxqq3VqLFmN/6W2bdnNEyf756vuyXSvGobLl5Yp5ivpYdGlxWfuqwDG+fPrA6PllfgXUsbYDcbYDMZSj5DroYV9QoK+/H8Na18J6tRPa/LwASss9Qj2XRqclvw+QUrsNqUv+FcLGqR+8TKLhixXKrFfO7GpdYWNCuEFAu5S8Q7A+xvvRVbmxrQ7nAkEr7j3t9FrjTvDhNgYuoGak6GUcyy2jC/OjFx1sPV86/GDZ03Zd9Q9zA4AqZaTDRdDLiaEwbi9QuvT3luFIP4PWzTguxFLQITsLp+NQyxXptOo3yPNcXkfNY1rMOGxg24c/2dqsUFly+u16XHqfW4uXlLe0IOx212Y2vLVrxv4fuyHrPUlN8UnKXoTaTNxwhRa5garw50mV0wCSasa6/ChzrmKbp7i0n6W6iymXDFEn3GilbT70LIRb08mXqnGWajG6vmufFKt7ys1tICq1F+eF66WH/C/i0xxf+fHdqhPda8Rpodk2CFCZnG4Ec2tiKaJD/RVmODIDBUGU1gtsxr5aYlN6HX15vXGHIJ029dWIfXT4/mdZ50lCqytq2UK04BueqtUHL+3mIGcL3TknMLJy3aq22wm41wCiZcZGrGaxgs2rFLSfqdbylqAZ7jPdHVDCC3a8YgsERFHyDfr7Z01GA9qvBrzzGIXMrpeLlQKVpc6bS729HubseIN1S0Y1pNhpR0jlxYYrsaPnEkYZDpwWk1wRHRNlkMWRp5z6u2JVoQMsawsWmj7vOXEjLECiD9Rl3MH+H7Ot+HQDSguY3dbMT8utwSqd/X+T7VZGY9/E0WNfh0rIILFzVfhD0DexLL4kmh6Z62YqL2EGWMocpmSnkY6G1JlE4hnQlK6SRckHZNxD2vn17fif1DE9jddyplfbW1WrESs7nKCq9v+rWe61vrIaunKmtxoxM1zApR+9JH1N6EUdtC2IwTEEKTWiMCID80ghFRcQuPpRlYcAlw/PGs40tgUvCGupqBoaP6j5Enm6VmLIh5lGoFCybFEIw6+9hWIjm1mMlzAmYU5LZMzQY7eqPego5VceTwPirlLTPGcjLC9NJmrQzDKlfIEKtQOqo6KvK4arpNcZezHhpcFmzdOj/n8vlik8vMvN5lwYgnVNT5rsCAFY73YF5DFqujiLQ45JwPtQbecVymKnTWO7Bh5TrsH9qf9biLqxdjyD+Ezc2b8xpXXG+vwWXBpfMa8NLB7PsETDXgfErX8T91WQeOD3qwY2/mutM1VwALL0sYYgWY1znv0WjIPcw3D07UxiRvrrG3Y1AMwCmUXx18dpGHRWLMfr8SYtk+mvlkREmY71qAs+OFe8LLARlisxyWVllVLlbXr0aPp0f39tn0ziyCE2aDGVtblHvCJRtRubbPyYcbN7ZiYDKoW+1ZD4wx/I/tmyEw4LED+YUGc6XZ0YwvrvuiqtBwc5X8vSytb8PFrr8C5xz7h/aneMOUrjeDYMAVbVfkPa4r267EW0NvJV7fuLEtpW2WKjptH6vJkF3cdd464FSfvgPaagDI39mlthbU52FQAXKSfCGYmQHtxtmlnF4K2k0K1X3Na4CBw1n3FQQGZItWbvgEoKHfF8ciGHG9cyEarfpTMorvHa+M8KieUdx5tb42T3oo/1Mwf2avP7vCmUkXsFr5b6Gs0NHYOH4uk2DCluYtsfGksrQ29zwCgRlx+8pPZ/XgzXfP1+w7Waxbkt1szNqzLR8MQukFcdPR6vawvNmNT13WgQV1jqIocre52vC5tZ8DMF0xGq9ovfXi+Yll6VpH8+vsKRIbWsifHs/rgZayS5YQ9eW2pArJmo7En+stDWjL0Rhab2nARqtG/8BZTL63Pq26Tq3Ch89UrcL77AqSLe0XZS5ToNFlQbXNlNG5Y7LpYgRM1fKL6vmAVcfvgQloNzph0WG0EerdUi40yBDTyZYK6NCulw53R1GOkyxq+oG1LfjE1vkZ27yr7V24qPkitDnVW9G4ze6SV3bOFmbDrK0YOnnVlmoAco9JU8zrU++04CvblqKtRja6mtzWROIsMB0uVTOsP7yhFTcptDyqspmwpNGlqxuELU0AucltxTXL5bZT2b6btZakQo4Fl2c9lxaX2lqw1Zq9cX1TTIR2vnHmhIHTiadCxvXgbKbiPjayfe4rW+TiGjUszACD2uRi0x1Zz28SBEWl9qnmrTjY8rHcJkpGM7DiA8BaZQmGizpkT5lafuyyZhcWNjiwNQdZmUotECgnxerxOlMU9ItijNUyxp5njJ2I/atorTDGRMbYgdh/jyct72SMvcEYO8kYe5CxLCUPZSQ9JBX3BJnZ9Ey+VI6NXH9opfCwLGlyKYYTrUYrNjdvznrObF661fVyG5GZaOYdJ97NoLW6tIrMNSb5gRt/jzNNh7sDl867dEbPWW2txqdXfxqr6lbp3meBewE+v/bzqoZYR71DUfJFYAxrWtPELhcov1+LYMONhmkP7f9Xuw5rW9PCSA3LsucDGRTCnM1rZM9JGtl+jdc7OvEuu/JEpgZW3Fm9Fk3Gwq7RQu4IjDFcsrAuIQmzurUKG1U6T5QCWeMt9f6r+/24U3Ww4mHkJlsJZUCa1wAWZcO5o96Br2xbmhB9TsdiNOCD61t190hNJy7Lk2urqNlAvF9k+rMk3nt3Tf20SHGT24qWqtmjtF/o1OarAF7gnC8B8ELstRIBzvn62H/J8uD/DuAHnPPFAMYBfKbA8cwYjfZGbK6/Gu3WTeUeSgKjYMQX132xbOePe+Ka3ZmzV4vBgpuX3YwF7gVY37g+Y32zoxl3rr8TTvPM5bssqmnDJYvq8N4lynloxcJisKe2JCkBn7miE59W6c7wvoXvU/zMS43VaM15UqDW6DxXLm+9THF5yOBUFSROYfOnMDY/s0efJma7nEt08RdSFrdUWdGkUSHcbnJhlbk0Mi+lwCgIRQ0pxb+PrKrxRagMbTDY8DHXEtlLq2KsF0I+3ql49bXeXo9aLGpw4qplDbq6ecw2Lmu9DNd1XJdxH7Uarbhz/Z2YlzSJFxZcBmPHzE4+C6HQb/6DAH4V+/tXAD6kd0cm36HfDeChfPafSeIhkzrTwpTlly1YCaECVHnjFYvrG9Zr5v/kSnxWpretSIO9AXeuvxMrGttw8cLMB0udrQ7vX/j+jN6dapTC5X7L8ltw/aLrAch5SfIPWL0ZeCHEww9624QUgttqUhWRLRaV1CQ33sEhvZ1WnBW1K+Q/0qp5g6ZqnFr0yewnsNXAX7Miz8GlXvsGxmDOs8gjWxP4fGjg2r+/eFhHT2uyYlBlN6HWbka9w5xQwVc0SoxmzTBm68qtqHdZ9HuTXKkP9HKF+OZVWXHl0npsW9GUfWMdNDjVJ0DxxeX+LW+YX51DuyYZk2DComqdyf2CUJymxzNEoSNt4pz3x/4eAKB2JVkZY3sZY68zxj4UW1YHYIJzHo297gEwc3GpHHCb3bhz/Z0ZzZBbqmz4yralKZ3s48RvKMV0Eaf2Y5z+W2AC7lx/Jy5q0ZecqheHxYgvXb0Ym3Ns8fOutndhZd0KuAzFubFokauwa621Nqt0Q7GIhwmU2j4RhdFRZ8fyZheqmzvkBc7UxHej0QpH4ypctenOjH0jpsKLEPJh1Tw3lqzV731d21ZVdCP+Osd8fKZZ28C0mgxY3epGZwHN3gHZsKnTUU3KwOAwG8AYg3Xjx7FmnltTnd5tMWaEKgGgesOHcNvWBTk/4JUotJo1Fxhj2LSgNrUBeg5oVc2np0PUOczY3FGD69eWZvKpl6uWNebVqkwLu8mAedVWXLeqdJGHUpH1CcEY2wFA6Z39z+QXnHPOGFO7IhZwznsZYwsBvMgYOwxAS4VRaRyfB/B5AJg/PzMPo9JoqbLimhWNOTeprTTycZe7zC68e/67cbDreAlGNBuZDSn62jDGUGetw5nJM7AXmK9UrPHUOMwAzEDnFYDJlrH+9sv+JWVZW40drTU2XLGkHra32uFBWPnYaa+3mRYURanfbTUBTgvg1be9nl60udJSZUWVObuR4bIUxxD5qHNxbvI6NZ2wm41gQfVNqmwmLKouUgrDptuBF/8pZdHnqlaDAXgn5llzWCo838rZJFd0Nq5MWbyleQs6q1LTFRhjuruizDYEgeHmLTHb4Hx5x5IrWX/pnPNr1dYxxgYZYy2c837GWAuAIZVj9Mb+Pc0YexnABgAPA6hmjBljXrE2xIV5lI9xF4C7AGDz5s1lebJdsqgupTlznOtWN+PNM+MpzXYZY1jbVj2Do6s8LuqsRUeBs+q8mf22T8WxuXlzVrmQXJnvno9zU+dy3i+ftl5mo4CPbZa9oW5Y4Eb6MVJ/2/NizcwX29yoNlVsHZE6JhsQmTmxYCXkJt06PVRNK1PCSTOij+ieJ4evxemuC6ZYesfatio4rUYsLNc9TC8GI9CyDrBm78M4kzS6zRifgD49wAucQkOTjwO4Pfb37QD+lL4BY6yGMVkGmjFWD+AyAEe4HFN6CcBNWvtXElsX1ik2OG10WfH+tS26W97csOgGfHjxh4s9vIrjssX1aK3OT+hytqK/XVLhN6d17TN74xWYUPSCg/d0vAefXKkjZyuNec552L5ge95VttV2E9xWI+CoB8zKD9oFdQ789VWLiiLnkROGIoXFXOUJ0eR6ZWcYXAuKXDzjzE+vjTGGRQ1OXflU8fyySpCSWFa7DBaDBUtr8usDWSy2LqzDJ7bOL1lqxobGDQBQFL3DclPoJ/Q9AH9gjH0GwFkAHwMAxthmAF/knH8WwAoAP2eMSZANv+9xzo/E9v8fAB5gjH0HwH4A9xQ4nllBm0tdc4uYvXx2zWdn9Eb87uVNePfy0ufhlRKjYMy7UnZxzWJ0jXflte+KuObYRZ/T3E5NZiArRgsQzbPBssEMiJH89q0ANlgacIBPoBN5ThR0FBzl9CtbfysQGAf2/Sr7tnmyrnMbwv0HsK5zW8nOoZcqSxU+s6b8AgQGQcjaQaUQltUuw7LaZSU7/kxSkCHGOR8FcI3C8r0APhv7+zUAa1T2Pw2guBnmc5B4leHi6twabhMzS7E6GhAzgGLYLrdQ2Pr2anhDUeWVJlumIbb+VtnIGjoKSMoNyCuOJduAE88DkDW4Xg8OZN3FzAxYyzPzkBY3OvOoHk36TvKVNjHZMnIIi42puh2Xvu+HJT0HMXehcq5ZgNVoxWfWfAZmYfpBbzVY4ZW8ldJW7ILi4oW1kLL1piMqm4s+B4R9BR3CZjLkVhVdE2vD865/Al76bkHnnjHaNicMsfWWBqy36Ev03tBeDVFKNWwbnHrz+hRuavVLgIVXgx/9I3A+lkq87hbg4APqh0k33GzVQGBC5xiIfNnSvAXjwXHMd1d+UV2lQIbYLCE9OflDSz6E857zifYxxMxx6aL67BupoCa3sXF+DbpH/Ghyl86Vnw9WozyeZTVzIwSQwOxQzQ0jCiefkK5mWH/BZYCjDnDEDMGaTqBWWcA4QZqeGzbcBuz+8cw2Ar4AqbXW4pblt5R7GLMKMsRmkJs2tSX6tRWK2+zOqX3MbELPfbLBJt+Qy9U2qNgsqJNbn1QaFoMFX1j7haIKBV8QLHo3cOyp/PPEVKiK6WvVayj1zzYKMoucjYA3rVj/6q8pb2txyi2oxs8WckaCKDp0d51B2mvtJVc/v1CIq+Kn6+QQxccgGMquxK1GvGoy3oeuEJotsgel3Zq/xzNBwzLgiv9f4cdJw2oy4JKFdUWb0FUi8QbezQYlvbo0s21L4Unpl9rmgTFWtPZaBJErdOURBDFrWdewDourFxelR2mztRafr1oNo62CBC/rlwAjJ8o9Cv3ULQZGT+a3b8zYtwgmfNS1BNXCzBS/rLTWY6XRXZRelgSRD3TlEXOacnpy4kKQtY65E0aqNBhjRW0Ub8zlYTxvQ/Y8pbyIeX2qWgFXSwmOn4a7iOfIU7MLSE3RbzDYYNLS5KtQDy1B5AN5xAiiRKya58biRmf+WlREZbPsPfK/paqArFsM8OKW51ZUmvrS64Djz5Z7FJms/7gsMzJLaLQ3osnehMtbLy/3UIg8IY8YQZQIxpiqEUYTeiID1+wW582Z1o0576JqSFqK2NO3pkNufTRLMAkm3Lj0RjTYKyikXmTseTZEny2QR6zCIO8JQVQul9paSudVcjYBnsFSHR1AZcoOan6e7jb5M9ESZN38qcIMMZKzqGhu2tSGGsfs8VDmAxliFcTtl3bAaiIn5Wyj3dWO857z5R4GUWrs///27jXYrvKu4/j3f265X0/uNxKS0EBCcqAHCJdWCBeBXkILxlAZMorGUTvWsWjBvnDsyIx9I+q0OsO0tehUWgZFGItDKY3FsYqlggVKGVIuUxBI5SaaEgg8vljrkJ2Tc9/77Gedvb+fmTN7r2ets9bDecI+v/OsZz1PL32Tef4ZC4rXntnw5sHJvFJjbPkoPPltOPhSg09cExc3nA8r+orJWIcznjU1p5VLW02hW4/tbvXCoZ6ebS0GsQpZ2OKpv1Vdsu4SDr3d2PmiVEFn7J3cGfFXby8G57/6zLFzYw2l72PFGKuhgtDac+DQ642vY63F7ylu4x1+A/71zxtwwiH66zo663oA4BgbL4Le9VPq1qNan0FMlTN/ZjcvvPZ2feOo4qiXSdXV0eUcRKpfR0fxFOarY5xwdGDJpMFOvbp44vLtt+Cdt+DFHzSujoN1TSu+GmnxJnjqviF3zesqn0TunuCTsl09sOTEidZMU8yvvP94Oqp4P34Q74O1uc0r5tJZsX+pO/tW8KFtK+oaL3fm8b1sWz2PzSvmNrBm9TthaTGWZZFTWrSOLZcXa1cOpXd9c+tSq7MbFo8hdJz44fqv1dFZzFxfh3eXOOoq7wwMsQTVcTOXcvnsDWyetaqua6k9zJ7Wxcye6v+RXP0aalJdtHkZF20exxiLJpjZ08WGJfV9qE/v7mTHpuo9hXbi8rlsWjansjPVawIWj7A01dZdzH7q6yzvGmacy7xV8NqzR5c1e/D44DUZJ+J9nwQC3vo/eOY79Z9vBEu7ZvrYsVqKPWJSkxnC2svVczdx4cw1Q+9cs70xFznurMacZ6I6Ootbq9PmwJozRj9+Zm/xOtztVamN2CMmSVPd3JU1G03oUaunF23b7qInEKDvY6ydPpsHH7uF1TMasManNAXZIyZJAEs2FeOqlm/LXZPxm7HgyPQX9eocZUHxTR+A/joW2+6ecdQ1lk9fyK/P38rinnkTP6c0hdkjJkkA0+fB+689tvyMXy2eQKy67hnw01cm/zqdPdA5hl8d68+DH+2b/PrUq6NrarSvxmzh9IVHHv6YAgxikjSSRgxmn6iBgftrz4an/6W51z7r440913c+17jzNfKX7ClXwU9+2PhpOJTN7k27c1dhXLw1KUk6YuBhko7y9uHCdc29brN7MmYtKibAlTIxiElSK2jU07gn74Klm4/0EG25HLb/2vjP4xqO0ph4a1KS2tUQk6YybxXMX31ku7N75LUex2vWoCWLxhXYDHdqPQYxSaqSgQWpO7rhnbcbeuqjYsypVxcPKAw2Ws/aRHreumcVyy6tfV8x35ikdxnEJKlKVp9RhJ2Vp05slvraHqaRpqKYt3L4fY3W0VEEvxFNnafcpEbyTxNJqpLOrmKm/I7atVYnGFIWrIUTfnbsx59y1cSuI2nCDGKSlMv8YZY+GrNRxkwN9KyNtiD3nHK92Q5vkkjNZhCTpFyaNXdVo2bdl9RwBjFJmgpGG9M1Z3nx2j1z9HMNXmx8+dbidajB+5NuAk9CNmqqDqkC7IfObOWCGTz3yk9zV0NSM512DeMe9xWdI+9fvwOWboFZvaOfa/15R2+vfG/xVSlOVaH2YBDLbGffCl5/43DuakhqptlLRj8GGFcY6eiEucsnVJ3GsrdKGg9vTWY2rauTRbNd40zSKDacD3OW5q4FTJubuwZSSzGISVJOp10D235+9OPmLIP+X5r8+owmZ6+bdyvVgrw1KUlj1TOz8Wsozl4CjPVWZQtzAL7alEFMksbqrN/MXQNJLcYgJkljZa+NpAZzjJgkVdXAAuADr5Jajj1iklRVq04rxqSt6j9Stm33kScX5yyDgy9DVxWD2hjH0k1ozJ09k2odBjFJqqqOTjjuzKPLFq478v49lxZhbdqc5tZrMg0sdp5lln+p+QxikjRVdXbD3BWjHrakey6PA/M6qthzNkj3DNj8EZi/OndNpKYwiElSi9syaxUr55zAws7pzb3w1l1w6PXxf9+STY2vi1RRBjFJanER0fwQBtC7fhwHj2XclzO6qvX41KQkKSPDldqbQUySJCkTg5gkSVImdQWxiFgYEfdExBPl64IhjjkvIh6q+XojIi4r9305Ip6q2ddXT30kSZmt6i+e5Fy2NXdNpCmh3h6x64B7U0obgXvL7aOklPallPpSSn3ADuAg8I2aQ35nYH9K6aE66yNJymnaHHjvHpg2e3zfN5blo5ZtLZ6oXHv2xOomVVC9T03uBM4t398M/BPwqRGOvwL4x5TSwTqvK0kar+XbYOnm3LWYuK6eYo4xqYXU2yO2NKX0fPn+BWDpKMfvBm4ZVHZDRHw/Im6MiGl11keSNJz5q2HBcblrIanGqD1iEfFNYNkQuz5du5FSShEx7HPIEbEcOBm4u6b4eooA1wPcRNGb9plhvn8vsBdgzZo1o1VbkiSp8kYNYimlC4bbFxEvRsTylNLzZdA6MMKpdgG3p5Teqjn3QG/aoYj4S+DaEepxE0VYo7+/34lnJKkVTGjRb6l11Htr8k5gT/l+D3DHCMdeyaDbkmV4IyICuAx4pM76SJIkTRn1BrE/Ai6MiCeAC8ptIqI/Ir4wcFBErAVWA98e9P1fiYiHgYeBRcAf1lkfSZKkKaOupyZTSi8B5w9R/gDwyzXbTwMrhzhuRz3XlyRJmsqcWV+SNLqtu4o5vCQ1VL3ziEmS2kHv+uJr0oxhQlepBdkjJkmSlIk9YpI0mU78ULHsjyQNwSAmSZNp2ZbcNZBUYd6alCTlMzDuzKWX1KbsEZMk5TN/DZx3fe5aSNnYIyZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTpFYXLqgtVZVBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMjGISZIkZWIQk6R2kVLuGkgaxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqkriEXEz0XEoxHxTkT0j3DcxRHxeETsj4jrasrXRcT9ZfnXIqKnnvpIkiRNJfX2iD0CfBS4b7gDIqIT+DxwCXAScGVEnFTu/ixwY0ppA/AKcE2d9ZEkSZoy6gpiKaXHUkqPj3LY6cD+lNKTKaU3ga8COyMigB3AbeVxNwOX1VMfSZKkqaQZY8RWAj+u2X62LOsFXk0pHR5ULkmS1Ba6RjsgIr4JLBti16dTSnc0vkrD1mMvsBdgzZo1zbqsJEnSpBk1iKWULqjzGs8Bq2u2V5VlLwHzI6Kr7BUbKB+uHjcBNwH09/e7YJokSZrymnFr8rvAxvIJyR5gN3BnSikB+4AryuP2AE3rYZMkScqt3ukrPhIRzwJnAl+PiLvL8hURcRdA2dv1ceBu4DHg1pTSo+UpPgX8dkTspxgz9sV66iNJkjSVjHprciQppduB24co/y/g0prtu4C7hjjuSYqnKiVJktqOM+tLkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMqlrQldJ0hSw7mfg8CFYvCl3TSQNYhCTpFY3fS6cfMXox0lqOm9NSpIkZWIQkyRJysQgJkmSlIlBTJIkKRODmCRJUiYGMUmSpEwMYpIkSZkYxCRJkjIxiEmSJGViEJMkScrEICZJkpSJQUySJCkTg5gkSVImBjFJkqRMDGKSJEmZGMQkSZIyMYhJkiRlYhCTJEnKJFJKueswbhHxE+CZSb7MIuC/J/kaGj/bpXpsk2qyXarHNqmeZrXJcSmlxUPtmJJBrBki4oGUUn/ueuhotkv12CbVZLtUj21SPVVoE29NSpIkZWIQkyRJysQgNrybcldAQ7Jdqsc2qSbbpXpsk+rJ3iaOEZMkScrEHjFJkqRMDGJDiIiLI+LxiNgfEdflrk+7iIgvRcSBiHikpmxhRNwTEU+UrwvK8oiIPyvb6PsRcWq+mreuiFgdEfsi4gcR8WhEfKIst10yiojpEfHvEfGfZbv8QVm+LiLuL3/+X4uInrJ8Wrm9v9y/Nut/QAuLiM6IeDAi/qHctk0yi4inI+LhiHgoIh4oyyrzGWYQGyQiOoHPA5cAJwFXRsRJeWvVNr4MXDyo7Drg3pTSRuDechuK9tlYfu0F/qJJdWw3h4FPppROArYDv1H+/2C75HUI2JFS2gb0ARdHxHbgs8CNKaUNwCvANeXx1wCvlOU3lsdpcnwCeKxm2zaphvNSSn01U1VU5jPMIHas04H9KaUnU0pvAl8FdmauU1tIKd0HvDyoeCdwc/n+ZuCymvK/SoV/A+ZHxPKmVLSNpJSeTyn9R/n+dYpfMCuxXbIqf77/W252l18J2AHcVpYPbpeB9roNOD8iojm1bR8RsQr4APCFcjuwTaqqMp9hBrFjrQR+XLP9bFmmPJamlJ4v378ALC3f205NVt46OQW4H9slu/IW2EPAAeAe4EfAqymlw+UhtT/7d9ul3P8a0NvUCreHPwF+F3in3O7FNqmCBHwjIr4XEXvLssp8hnVN5smlRkoppYjwMd8MImI28LfAb6WU/qf2D3fbJY+U0ttAX0TMB24HNuWtUXuLiA8CB1JK34uIczNXR0c7J6X0XEQsAe6JiB/W7sz9GWaP2LGeA1bXbK8qy5THiwPdwuXrgbLcdmqSiOimCGFfSSn9XVlsu1RESulVYB9wJsVtlIE/sGt/9u+2S7l/HvBSc2va8s4GPhwRT1MMadkB/Cm2SXYppefK1wMUf7ScToU+wwxix/ousLF80qUH2A3cmblO7exOYE/5fg9wR0351eUTLtuB12q6mdUg5ZiVLwKPpZT+uGaX7ZJRRCwue8KIiBnAhRTj9/YBV5SHDW6Xgfa6AvhWchLJhkopXZ9SWpVSWkvxe+NbKaVfwDbJKiJmRcScgffARcAjVOgzzAldhxARl1Lc6+8EvpRSuiFvjdpDRNwCnAssAl4Efh/4e+BWYA3wDLArpfRyGRA+R/GU5UHgF1NKD2SodkuLiHOAfwYe5si4l9+jGCdmu2QSEVspBhh3UvxBfWtK6TMRcTxFb8xC4EHgqpTSoYiYDvw1xRi/l4HdKaUn89S+9ZW3Jq9NKX3QNsmr/PnfXm52AX+TUrohInqpyGeYQUySJCkTb01KkiRlYhCTJEnKxCAmSZKUiUFMkiQpE4OYJElSJgYxSZKkTAxikiRJmRjEJEmSMvl/b95f0tPj3rgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Calculate light curves\n", + "lc1_dt = ev1_dt.to_lc(dt=dt)\n", + "lc2_dt = ev2_dt.to_lc(dt=dt)\n", + "\n", + "results = \\\n", + " FAD(lc1_dt, lc2_dt, segment_size, dt, norm=\"leahy\", plot=False,\n", + " smoothing_alg='gauss',\n", + " smoothing_length=segment_size*2,\n", + " strict=True, verbose=False,\n", + " tolerance=0.05)\n", + "\n", + "freq_f = results['freq']\n", + "pds1_f = results['pds1']\n", + "pds2_f = results['pds2']\n", + "cs_f = results['cs']\n", + "ptot_f = results['ptot']\n", + "\n", + "for spec, spec_dt, spec_f, label in zip(\n", + " [pds1, pds1, ptot, cs],\n", + " [pds1_dt, pds2_dt, ptot_dt, cs_dt],\n", + " [pds1_f, pds2_f, ptot_f, cs_f],\n", + " ['PDS from light curve 1', 'PDS from light curve 2', 'PDS from lcs 1+2', 'cospectrum']\n", + " ):\n", + " plt.figure(figsize=(10, 8))\n", + " plt.title(label)\n", + " plt.plot(spec.freq, spec.power, label='No dead time', alpha=0.5)\n", + " plt.plot(spec_dt.freq, spec_dt.power, label='Dead time-affected', alpha=0.5)\n", + " plt.plot(freq_f, spec_f, label='FAD-corrected', alpha=0.5)\n", + " plt.legend()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.5" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].html b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].html new file mode 100644 index 000000000..fb7e6b5f4 --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].html @@ -0,0 +1,632 @@ + + + + + + + + Dynamical Power Spectra (on fake data) — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Dynamical Power Spectra (on fake data)

+
+
[1]:
+
+
+
%matplotlib inline
+
+
+
+
+
[2]:
+
+
+
# import some modules
+import numpy as np
+import matplotlib.pyplot as plt
+import stingray
+stingray.__version__
+
+
+
+
+
[2]:
+
+
+
+
+'2.2.dev64+ga4a8b8a0'
+
+
+
+
[3]:
+
+
+
# choose style of plots, `seaborn-v0_8-talk` produce nice big figures
+plt.style.use('seaborn-v0_8-talk')
+
+
+
+
+

Generate a fake lightcurve

+
+
[4]:
+
+
+
# Array of timestamps, 10000 bins from 1s to 100s
+times = np.linspace(1,100,10000)
+
+# base component of the lightcurve, poisson-like
+# the averaged count-rate is 100 counts/bin
+noise = np.random.poisson(100,10000)
+
+# time evolution of the frequency of our fake periodic signal
+# the frequency changes with a sinusoidal shape around the value 24Hz
+freq = 25 + 1.2*np.sin(2*np.pi*times/130)
+
+# Our fake periodic variability with drifting frequency
+# the amplitude of this variability is 10% of the base flux
+var = 10*np.sin(2*np.pi*freq*times)
+
+# The signal of our lightcurve is equal the base flux plus the variable flux
+signal = noise+var
+
+
+
+
+
[5]:
+
+
+
# Create the lightcurve object
+lc = stingray.Lightcurve(times, signal)
+
+
+
+
+

Visualizing the lightcurve

+
+
[6]:
+
+
+
lc.plot(labels=['Time (s)', 'Counts / bin'], title="Lightcurve")
+
+
+
+
+
[6]:
+
+
+
+
+<AxesSubplot: title={'center': 'Lightcurve'}, xlabel='Time (s)', ylabel='Counts / bin'>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_8_1.png +
+
+
+
+

Zomming in..

+
+
[7]:
+
+
+
lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve')
+
+
+
+
+
[7]:
+
+
+
+
+<AxesSubplot: title={'center': 'Zoomed in Lightcurve'}, xlabel='Time (s)', ylabel='Counts / bin'>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_10_1.png +
+
+
+
+
+
+

A power spectrum of this lightcurve..

+
+
[8]:
+
+
+
ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')
+
+
+
+
+
+
+
+
+33it [00:00, 13361.52it/s]
+
+
+
+
[9]:
+
+
+
plt.plot(ps.freq, ps.power, label='segment size = {}s \n number of segments = {}'.format(3, int(lc.tseg/3)))
+plt.title('Averaged Powerspectrum')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Power')
+plt.legend()
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.legend.Legend at 0x3231a8790>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_13_1.png +
+
+
+

It looks like we have at least 2 frequencies.

+
+
+
+

Let’s look at the Dynamic Powerspectrum..

+
+
[10]:
+
+
+
dps = stingray.DynamicalPowerspectrum(lc, segment_size=3, norm="leahy")
+
+
+
+
+
+
+
+
+33it [00:00, 4274.61it/s]
+
+
+
+
[11]:
+
+
+
extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)
+plt.imshow(dps.dyn_ps, aspect="auto", origin="lower",
+           interpolation="none", extent=extent)
+plt.title('Dynamic Powerspecttrum')
+plt.xlabel('Time (s)')
+plt.ylabel('Frequency (Hz)')
+plt.colorbar(label='Power')
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.colorbar.Colorbar at 0x323144650>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_16_1.png +
+
+
+

It is actually only one feature drifiting along time

+

# Rebinning in Frequency

+
+
[12]:
+
+
+
print("The current frequency resolution is {}".format(dps.df))
+
+
+
+
+
+
+
+
+The current frequency resolution is 0.33333333333324333
+
+
+

Let’s rebin to a frequency resolution of 1 Hz and using the average of the power

+
+
[13]:
+
+
+
dps_new_f = dps.rebin_frequency(df_new=1.0, method="average")
+
+
+
+
+
[14]:
+
+
+
print("The new frequency resolution is {}".format(dps_new_f.df))
+
+
+
+
+
+
+
+
+The new frequency resolution is 1.0
+
+
+

Let’s see how the Dynamical Powerspectrum looks now

+
+
[15]:
+
+
+
extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)
+plt.imshow(dps_new_f.dyn_ps, origin="lower", aspect="auto",
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(15, 30)
+
+
+
+
+
[15]:
+
+
+
+
+(15.0, 30.0)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_24_1.png +
+
+
+
+
+

Rebin time

+

Let’s rebin our matrix in the time axis

+
+
[16]:
+
+
+
print("The current time resolution is {}".format(dps.dt))
+
+
+
+
+
+
+
+
+The current time resolution is 3
+
+
+

Let’s rebin to a time resolution of 4 s

+
+
[17]:
+
+
+
dps_new_t = dps.rebin_time(dt_new=6.0, method="average")
+
+
+
+
+
[18]:
+
+
+
print("The new time resolution is {}".format(dps_new_t.dt))
+
+
+
+
+
+
+
+
+The new time resolution is 6.0
+
+
+
+
[19]:
+
+
+
extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)
+plt.imshow(dps_new_t.dyn_ps, origin="lower", aspect="auto",
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(15,30)
+
+
+
+
+
[19]:
+
+
+
+
+(15.0, 30.0)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_31_1.png +
+
+
+

Let’s trace that drifiting feature.

+
+
[20]:
+
+
+
# By looking into the maximum power of each segment
+max_pos = dps.trace_maximum()
+
+
+
+
+
[21]:
+
+
+
plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)
+plt.xlabel('Time (s)')
+plt.ylabel('Frequency (Hz)')
+plt.title('Detected frequency drift')
+
+
+
+
+
[21]:
+
+
+
+
+Text(0.5, 1.0, 'Detected frequency drift')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_34_1.png +
+
+
+
+
+

Overlaying this traced function with the Dynamical Powerspectrum

+
+
[22]:
+
+
+
extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)
+plt.imshow(dps.dyn_ps, aspect="auto", origin="lower",
+           interpolation="none", extent=extent, alpha=0.6)
+plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')
+
+plt.ylim(15,30) # zoom-in around 24 hertz
+
+plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')
+plt.xlabel('Time (s)')
+plt.ylabel('Frequency (Hz)')
+plt.colorbar(label='Power')
+plt.legend()
+
+
+
+
+
[22]:
+
+
+
+
+<matplotlib.legend.Legend at 0x32779f050>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_36_1.png +
+
+
+
+

Shifting-and-adding

+

Shift-and-add is a technique used to improve the detection of QPOs (Méndez et al. 1998). Basically, the spectrum is calculated in many segments, just as in the dynamical power spectrum above, but then the single spectra are shifted so that they are centered in the variable frequency of the followed feature. This technique is implemented in Stingray’s Dynamic Cross- and Powerspectrum. We can apply it here, using the trace_maximum functionality from the +sections above.

+
+
[25]:
+
+
+
max_pos = dps.trace_maximum()
+f0_list = dps.freq[max_pos]
+
+new_spec = dps.shift_and_add(f0_list, nbins=100)
+
+# Let's compare it to the original power spectrum.
+plt.plot(ps.freq, ps.power, label='power spectrum', alpha=0.5, color="k")
+plt.plot(new_spec.freq, new_spec.power, label='Shifted-and-added', color="k")
+
+
+
+
+
[25]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x327d906d0>]
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Bfake_data%5D_38_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb new file mode 100644 index 000000000..e4097583e --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb @@ -0,0 +1,665 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on fake data)" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "'2.2.dev64+ga4a8b8a0'" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# import some modules\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import stingray\n", + "stingray.__version__" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "# choose style of plots, `seaborn-v0_8-talk` produce nice big figures\n", + "plt.style.use('seaborn-v0_8-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generate a fake lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Array of timestamps, 10000 bins from 1s to 100s\n", + "times = np.linspace(1,100,10000)\n", + "\n", + "# base component of the lightcurve, poisson-like\n", + "# the averaged count-rate is 100 counts/bin\n", + "noise = np.random.poisson(100,10000)\n", + "\n", + "# time evolution of the frequency of our fake periodic signal\n", + "# the frequency changes with a sinusoidal shape around the value 24Hz\n", + "freq = 25 + 1.2*np.sin(2*np.pi*times/130)\n", + "\n", + "# Our fake periodic variability with drifting frequency\n", + "# the amplitude of this variability is 10% of the base flux\n", + "var = 10*np.sin(2*np.pi*freq*times)\n", + "\n", + "# The signal of our lightcurve is equal the base flux plus the variable flux\n", + "signal = noise+var" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# Create the lightcurve object\n", + "lc = stingray.Lightcurve(times, signal)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Visualizing the lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAKOCAYAAAD6VwfUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgeElEQVR4nOzdd3hT5fvH8U+6KZSyVymUvfcQEGSIiiIOFBUVFRT3wD1x4t7r6xYc4ED5iQoiggzZe+/RMsoutIXSmfz+QCpt0zZJT3JOkvfrurwsyck5d9LTk3M/435sDofDIQAAAABA0AoxOwAAAAAAgLlIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAAAQ5EgMAQB+LSEhQTabTbNnzy51W5vNJpvNZshxExMTZbPZlJCQYMj+AAAwE4khAAA+NG7cONlsNt10001mhwIAQL4wswMAAMBXNm7caHYIAABYEokhACBoNG/e3OwQAACwJIaSAgCCRklzDJctW6aBAweqUqVKiomJUY8ePTRp0iSX5hLa7Xa98847atWqlaKiolSzZk2NGDFCBw8eLLBdnz59NHz4cEnSV199lR+Ps6Gl2dnZ+vDDD9WrVy9VrlxZUVFRatCgga644gpNnTrV5fdVXPxnPp6Tk6OXXnpJrVq1Urly5dS+fXv99ttvstls6tWrV7Hve/HixbLZbE4T7nXr1ummm25SvXr1FBkZqapVq2rgwIEuzQUFAPgePYYAgKA3ffp0DRo0SNnZ2WrTpo1at26tpKQkXXHFFXrggQdKff2wYcP0yy+/qE+fPmrSpInmz5+vsWPHaunSpVq2bJkiIyMlSQMGDFBubq7mz5+vRo0aqWfPnvn7OPPnlJQUDRgwQEuXLlV0dLTOPvtsVa1aVbt379aff/6pI0eO6KKLLjLkvdvtdl1++eWaOXOmevfurdatWys7O1sXXnihatSoofnz52vnzp1q0KBBkdd+/fXXkqQbb7yxwOPffvutRowYoZycHLVr105nnXWWkpOT9eeff+qPP/7Q//73P91+++2GxA8AMIgDAAA/Vr9+fYckx6xZs0rdVpKj8Fff8ePHHbVq1XJIcrz++usFnvvll18coaGhDkmO+vXrF3hu586d+ftr0qSJY9euXfnPHThwwNGgQQOHJMdXX31V4HVjx451SHLceOONxcZ58cUXOyQ5+vbt6zh48GCB59LS0hwzZswo9X0VjrOk+BMSEhw7d+4s8tpRo0Y5JDmeffbZIs9lZWU5qlat6ggJCSnw3leuXOkIDw93xMbGFolz4cKFjkqVKjnCw8MdmzZtKvb9AwB8j6GkAICg9tNPP2n//v1q166dHnrooQLPXXrppbriiitK3cd7772n+Pj4/H/XqFFDd955pyRp1qxZbsWzcuVK/f7776pSpYomTZqk6tWrF3g+JiZG5557rlv7LM3LL7/sdKjsDTfcIEn65ptvijw3depUHTlyRH379i3w3l966SXl5OTo7bffLhJnt27dNHr0aOXk5OiTTz4x9D0AAMqGxBAAENTmzp0rSbrqqqucPn/ttdeW+Prw8HD179+/yOPNmjWTJCUnJ7sVz7Rp0yRJgwcPVqVKldx6racuvfRSp4936NBBbdq00fbt2zV//vwCzzkbRmq32/Xnn38qNDRUgwcPdrrPc845R5K0aNEiI0IHABiExBAAENT27t0rSapfv77T54t7/LRatWopLKzolP2YmBhJUlZWllvx7Nq1S9J/iaW31ahRQ+XKlSv2+dOJ3+lEUDo1B3LKlCmqUKFCgQTwyJEjSktLU15enipVqlSguM7p/7p06SJJOnTokJfeEQDAExSfAQBAKraqZ0hIyW2opT1vVByestvtJT5fUlIoSdddd50effRR/fjjj3rvvfcUGRmpH374QdnZ2Ro6dKjKly+fv21eXp4kKSIiQkOHDi1xv9WqVXPxHQAAfIHEEAAQ1OrUqSPpv566whITE30YjVSvXj1J0pYtW1x+TXh4uHJycnT8+HFVqFChwHO7d+8uUzy1atXS+eefrz/++EO//vqrhgwZUmw10mrVqikqKip/DuHpaqwAAOtjKCkAIKidXqfvxx9/dPr8d999Z+jxIiIiJEm5ublOnz///PMlSZMmTVJqaqpL+zyd3G7evLnIc9OnT/ckzALOHE66detWLVq0SPXq1VOfPn0KbBcWFqb+/fsrLy9Pv/zyS5mPCwDwHRJDAEBQGzJkiGrUqKGVK1fq7bffLvDcb7/9pokTJxp6vLi4OEnSxo0bnT7fsWNHDRw4UEeOHNGVV16pw4cPF3g+PT1dM2fOLPBY3759JUkvvvhigYRz+vTpRd6TJy699FLFxsZq2rRpevPNNyWdWrvR2bDXp59+WmFhYbrzzjudJod5eXmaNWsWxWcAwGJsDofDYXYQAAB4KiEhQUlJSWrRooUqVqzodJuYmBj99ddf+YlM4a++adOm6ZJLLlFOTo7atm2rVq1aadeuXVqwYIHuvfdevfvuu2rSpEmB4Z2JiYlq0KCB6tev73S46ezZs9W3b1/17t1bs2fPzn88KytLCQkJ2r9/vzp16qRWrVopPDxcZ599toYPHy5JOnz4sC644AKtWLFC0dHR6tWrlypXrqw9e/Zo5cqV6ty5c4F9bt68WZ06ddKJEyfUuHFjtW/fXomJiVq+fLkeffRRvfLKK0XiLC3+wm699VZ99tlnBY7ZtGlTp9uOHz9eN998s7KystSoUSM1b95cFStW1IEDB7Ry5UodPXpUH330EYvcA4CFMMcQABAQiuuBk6TY2NgSXztgwADNmzdPzzzzjBYsWKDt27erdevW+uGHH1S7dm29++67hhVLiYyM1LRp0/Tkk09q4cKFWrlypex2u3Jzc/MTw2rVqmn+/Pn6+OOP9d1332nBggXKyclRrVq1dNFFF2nEiBEF9tmsWTPNnTtXTzzxhBYsWKCpU6eqXbt2mjx5stq0aaNXXnmlzHHfeOON+Ylht27dik0KpVMFa7p27ap33nlHM2bM0N9//62QkBDVrl1bPXv21KBBg1xaHxIA4Dv0GAIAUIIXX3xRTz31lO666y598MEHZocDAIBXkBgCAILe/v37lZubq7p16xZ4/M8//9TgwYOVkZGhxYsXq2vXriZFCACAdzGUFAAQ9JYtW6ZLLrlEbdu2VUJCgkJCQrRlyxatX79ekvT444+TFAIAAho9hgCAoJeUlKSXX35Zc+bM0f79+3X8+HFVrlxZnTp10u23365LL73U7BABAPAqEkMAAAAACHKsYwgAAAAAQY45hl5gt9uVnJysmJgYp4v/AgAAAIC3ORwOpaenq06dOgoJKblPkMTQC5KTkxUfH292GAAAAACg3bt3F6m8XRiJoRfExMRIOvULqFixosnRAAAAAAhGaWlpio+Pz89PSkJi6AWnh49WrFiRxBAAAACAqVyZ3kbxGQAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAAAQ5EgMAQAAACDIkRgCAAAAQJAjMURQczgcOnI8S3l2h9mhAAAAAKYhMURQe+qXdeo0ZoZuGrtEDgfJIQAAAIITiSGCVm6eXeMX75Ik/bP1sNbsSTU5IgAAAMAcJIYIWoVHjx4+nmVOIAAAAIDJSAwBAIDLMnPy9NncHfpx2W6G4ANAAAkzOwAAAOA/3py+WZ/9s1OSFBZi0+COdU2OCABgBHoMAQCAy04nhZL0zoytJkYCADASiSEAAPDIvtSTZocAADAIiSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMhZMjF8+eWXNWTIEDVs2FA2m00JCQkuv/bRRx+VzWZThQoVnD6flZWlp59+Wg0aNFBkZKQaNWqkMWPGKCcnx6DoAQAAAMC/WHIdwyeeeEJVqlRRx44ddezYMZdft2rVKr311luqUKFCsYvuXn311Zo8ebJGjBih7t27a+HChRo9erS2bdumcePGGfMGAAAAAMCPWDIx3L59uxo2bChJat26tY4fP17qa/Ly8jRy5EhdeOGFSktL07Jly4psM3XqVE2ePFkPPPCA3nzzTUnSLbfcokqVKumtt97Srbfeqh49ehj7ZgAAAADA4iw5lPR0UuiO9957Txs2bND7779f7DYTJkyQJI0aNarA46f//e2337p9XAAAAADwd5bsMXRXUlKSRo8erWeeeUb169cvdrulS5cqLi5O8fHxBR6Pj49XnTp1tHTpUo+OX7t27QL/ttvtHu0HAAAAvrUv9aRmbTqkHo2qKqFaebPDAUwTEInhHXfcoYYNG+qBBx4ocbvk5GS1bNnS6XNxcXHas2ePN8IDAACABTkcDl39ySLtSslQ5ehwLXz8XEWFh5odFmAKv08Mv/vuO02bNk3z5s1TWFjJbycjI0ORkZFOn4uKilJGRoZHMezbt6/Av9PS0hQbG+vRvgAAAOAbqSdztCvl1P3f0Ywcrdubqs4JVUyOCjCHJecYuiolJUWjRo3SzTff7FLRmOjoaGVlZTl9LjMzU9HR0UaHCD9STCFbAAAQoAp/9+fZuRlA8PLrHsPnnntOJ06c0MiRI7Vt27b8x0+ePCmHw6Ft27YpMjIyf05hnTp1tHfvXqf72rt3r+Li4nwSN6zBZjM7AgDwrZw8uz6du0Mns/N0R59GKh/p17cBQSM71679qZmKr1JONr68AHiJX38jJCUl6cSJEzrrrLOcPt+kSRO1atVK69atkyR16dJF48eP1+7duwsUoNm9e7eSk5N1ySWX+CRuAADM8PXCJL3+52ZJUlZunp4c6HzePazD4XBo6GeLtDzpqK7sVFdvDGlndkgAApRfDyV99NFHNXHixCL/tWzZUlFRUZo4caLefvvt/O2HDh0qSXrnnXcK7Of0v6+77jpfhQ4AgM+9/uem/J8/+2eniZHAVcuSjmp50lFJ0k/L98jOUEcAXmLJHsNvvvlGSUlJkqRDhw4pOztbY8aMkSTVr19fw4YNkyR1797d6es/+OADJSUl6corryzw+MCBA3XxxRfrrbfeUmpqqrp3766FCxfqiy++0PXXX6+ePXt68V0BAGCuzByWU/I3KSeyzQ4BQJCwZGL4xRdfaM6cOQUeGz16tCSpd+/e+YmhJyZOnKgxY8bo22+/1TfffKO4uDg9//zzeuyxx8oUMwAAAAD4K0smhrNnz/ba66OiojRmzJj8HkgAAAAACHZ+PccQAACYxyYqZAJAoCAxBAAAHnGIQigAEChIDAEAABCUaNoA/kNiCAAAAABBjsQQAAAAkGSzMW8WwYvEEAAAAACCHIkhAAAA4GMpJ7K1avcx5ebZzQ4FkGTRdQwBAABQFMVSAsPB9Exd8PZcHc3I0dCu8Xp5cFuzQwLoMQRgbQ6HQ4/9vEadx8zQ+MVJZocDAD7FjDffcjh8k3r/snKvjmbkSJK+W7LbJ8cESkNiCPwrkFph/1y/X/d9v1JzthwyO5QyW7HrmL5fuluHj2fpyf9bZ3Y4AACUWfKxTLNDAIpgKCmCVqC2wqZm5OjO8SuUZ3foz/X7teaZCxQR5r9tQFsPpJsdAgAAQMDz37tFAE5tPZiuPPup/s/MHLvSMnNMjggAAABWR2IIAAAAAEGOxBAAAABByVfFZgB/QGIIAAAAAEGOxBAAAB+w2x2as+WQtlBQCbAsmy1QS9MBpaMqKQAAPvDOzK16b+ZWhYfaNOXeXmpaM8bskAAAyEePIQAECLvdoR+W7tL4xUnKzbObHQ4KeW/mVklSTp5DL/y+weRoAAAoiB5DAAFneVKKjmfl6Zwm1YJqWNDXCxP17G+nEo60k7m6o08jkyNCcVJOZJsdAvzUqWIpwXNdgzVk5uTpaEa2aseWMzsUeBE9hjBdnt2hpyev0wVvz9Wvq5PNDsfvBXt9tb82HNAVHy3UjV8u0Rfzdpodjk+9Om3zGT9vMjESBAsbCYrXBVPjFnxn2rp96vXa3xr1/cr8tY+LcyAtUz1fnaXuL/+tD/7e6qMIYQYSQ5hu8Y4j+nphkjYfSNeTk9aaHU7ACbZbirf+2pL/85gpG02MxPdO5uSZHQIAwA/c/u0K7U45qV9WJeuvDftL3Pa7Jbt0+HiWJOmN6VtK3Bb+jcQQpluedDT/5/SsXBMjQSDYuC/N7BAAAPAbSxOPlvj8+mS+V4MFiSH8WmZOnuylDIEAAHiHI+gHrxvnZHaefl6+R8uTUswOBUCQIjGE3/pl5V61fXa6er8xS/tST5odDgAAHnvm13V6cOJqXfnxQq3efczscIIGTRvBa9vBdH2zMFFH/h0mCxJD+LFX/tik7Dy7dqec1NcLk8wOBwAAj/24bI8kyeGQxs4PrsJZVnKq6mvgHAfOnczO0+UfLtDoyet181fLzA7HMkgM4bf2p2Xm/zx3yyETIwEAwDgH0ujBALxp5qYD+XUtVtFDn4/EEPgXrXcAfMVKl5sPZ21Tz1f/1idztpsdCmA6lgcJDqUt0RGsSAwRtAL14m+lG04A1nbkeJZe/3Oz9hw9qZf/2KS0zByvHetkdh43YwBgYSSGAAAEqYPpBYcsHjvhncTwi3k71eLpabrsw/nKymW9TQCwIhJDAJYWoB27QFB54fcNkqS1e1M1acVek6Pxb/S5AvAWEkMAAOAz2w4eNzsEv0LbmG+dzKFHG+6x2x3KzbObHYYhSAwBAEARdrtDr03bpCs+WqAZGw6YHQ7gE4/+tMYnxymtzkFmTp5uGrtEZ700Q3+Z/PdH7YLiZebk6fL/zVfTp/7Q+MX+v3QaiSFMF6jXm03707RoxxGqnfrIJ3O2q/ETU80OAwgYy5KO6n+zt2t50lE9+rNvbpYBs525FJaZfly2W7M3H9KBtCyN/Jp19oy0ZGeK7vt+lSH7+nHZbq3ekyq7Q3ry/9YZsk8zhZkdABCIFmw7rOu+WCyHQ3ryohYaeU5Ds0MKeC//scnsEICAsnjHkfyfj5zINjESIPgs3pFidggByeFw6I5vlxu2v0370w3blxWQGMJ0gTh/4t2ZW/OHXrw4dSOJIQC/1+XFGaoRE2l2GEGBolu+w6Ce4GJ30NBVEhJDwAtW7zlmdggAYKhD6Vk6VGh5C09wIw4j5dkd+mLeDh1My9KdfRurSvkIs0PyO/xN4jTmGAIBpvCcxjy7Q9sOpis7NzAqZnmDw+HQoh1HtGl/mtmhBJXxi5N069fLtCwx+IZMWfU+zGHZyADnflm5Vy9N3aTP5+3Ui1M2euUYOXl2HT5e9kYRt9BrDBOQGCIgMOymeMPHLVX/t+bq8v/Nl93OTZ8zn/2zQ9d8ukgXvvuPFmw/bHY4QWH7oeN68v/WafqGA7ry44VmhwP4rSU7U/TQxNWatm6/2aGY4sNZ2/J//nnFHsP3n5Nn1+X/m6/OY2bozembDd8/rGN/aqZST+aYHYapSAwBP5GZk6clO1N0LMO9sfHrk9Py/79hHz1izrw09VThGodDem/mVpOjCQ5ztxwyOwSo5Ea1X1aVvhC9jW4NU+XZHRr59TL9tHyP7hi/3JChvv4mLTO3xOd3HcnQh7O2acWuox7t/491+7Vu76nvzvf/3lbK1sbhL8u3Ji7brW4vz1S3l2ZqQ3Lw3iuRGCIgBMP4+LvGr9BVnyzUBe/M1fGskr8Ii3PCw9cFkzV7Us0OATBd4uET2n7ohNlhoBQnc/LyezgcDmmNn81vP5aRreRjJ722f4fDoZvGLtHrf27WNZ8s0hEPhoN6Mz5fO5ieqYPpzpfjsNsd+njOdj360xrtTsnwcWTme3XaqQbikzl5+mjOdpOjMQ+JIeAnZm46KEk6kJalOZvpbQHgPdPWB+ewRLP830rXh0AGSkPozsMndM5rs3T2q3+79f7dkWd3aMfhUw0c2Xl2/bPVOlMFfL3G8ezNB9XtpVM9YnOcjNj4a+MBvfLHJv2wbLee/MX/1+Nz1+Hj/43Gmrc1eO+xSAwBPxTsY+D9TUZ2rtIy+Z0BcO7+H1YX+1ygzqF/7rf1SsvMlcNR8vs3Up4fzbO3GfyLf/3PzbI7Ti3X4Gyu5DcLk/J/Zqh/8CIxRLF2p2RoxLiluu/7lV5NRHYeYbgSAtf2Q8fV89VZ6jxmhmZtPujWa+dtPawuL87QJR/MK3b4jy/l5Nm1P9X8OODfqHwKSdoSYAuDW936M+bNOZsyQeVySCSGKMHDP63W35sOavKqZL3vxYIck1aUXuDAF7hVgTc8+X9rlXIiW9m5dg0fu9St174ybaMOpWdpzZ7UAq25ZkjPzNF5b81Rt5dn6oXfN5gaC6yDJM87ArWX0B/xq5C4QypeoJ0fJIYo1qId/60t9vm8nSZG4l8cDocyc8xreePybS3LkzyrhCcpvxKe5FqFSG/6Y91+JR45VZDgC64HAAKEVRs3Ai3hgH8gMYRPLdh+WOe8NkvDvljscWVNq1uw/YjZIRRry8HjZocAP7XrSPBVqQNwytET2Rauau1+Yjd780Fd/clCfRzE1ScBZ0gM4VPXfrZYu1Iy9M/Wwxo3PzB7HSYu213scwu2HdZlH87Xc7+tN2Wx+dF+VmnM4XDorw0HzA4DMJyvKxK6yhdhTVqxV+uTWRbGX0xZs0+dX5yh3q/PCphlDG4au1SLd6bolT82aesBazaYMpzYO6x67bUKEkOY5u9N7hXiCATXfr5Yq3Yf09j5iZq9Jfjev7smLt+jGRv5nBB47EF8c5J6MkeXf7hAiYcpPOYP7pqwQnl2hw4fzw7I+cVLdqaUvhEQJEgMAZPMZi3CUr02rWhJbX9jY6aIoQ6lZ+nO8ct11/gVOvzvYtUv/L5BbZ/9U+/O8F6RLKOduWaWmcw6P7Pz7Pp5hXfWrgsmvu79WLfXv3t6Pfm06Lnzb5k5eRr9yzrdNHaJth10rRLu0YwcrdjleX0Af0ZiiIDAhTswnb7xR+Dx9E92zJQNmrp2v6as3aeXpmzUnqMZ+mLeTqVl5urtGVuKnQeVm2fXrM0HtfWANUrkN68VY3YIpmM9VuMF53dhYL7pwHxXvvfjst36ZlGSZm8+pFu/Xu7y6678aIHW7DnmvcAsisQQAFCs/amZuvazRfpg1jazQ5EkTV6VnP/zpJV7dSCt4LqKJ7KdJ4av/LFJw8cu1YXv/uP3vR4AYCSrVmY1woTFu/J/3uHG8HW7Qxo3P9ELEVkbiSHgB5gsDbM88+s6S1fanbC4+GJPZzq95E6u3aEvWW6jVPRWWJdVbuLXJ6dq0PvzdPO4pfT+BgCrnFdWciA9s/SNAgyJIeCHgnO4kG8YnoP7+e/qz/XWrgrryTy1xCMUPYH/sOr1fuRXy7R2b6pmbjqo/812f0SBzapvzCL4fGAGEkMEBDrU/mOVzyLP7tD+1ExTluUAAH/mraJAxzKytT451ZDrcnLqf70p/7dib5n3Z1Xe+l2Q+AWGQPs1khhC0ql5RHeOX64Hf1yttEyGhFhdWZO/6ev369avl+m31cmlb+yhW79epm4vz9R9P6zy2jG8IdAu8q46mJ6pJHrSYCF/rN2nhyau1rJElhNwVUnfDftTM9Xnjdka+N48vTAlkJadCIzGx5QTpyoV7z12UmPn79QWixTKkpyfV1m5eRo+dom6vDhDf67fX+Lrc/LseuH3Dbpp7BKvz/G22x3anZJBo7SHSAwhSXri/9Zq6tr9+nnFHr3nRyXf4b7MnDzdNWGFpm84oHu/X6ljGcaXzU88fEIz/12n8rfVyflfeLCmFbuOqucrs9T79dmauMy1OXsITFa5ldqfmqk7xq/QT8v36NZvlnOTZ4CJy3brWMapht+xFi2qkWd36PN/duit6Zt1vJgKw0azypk14J25yszJ0/WfL9Zzv23Q+uS0As8fz8rVB39v1Q9Ld1mi7sBPy/do1uZDOpSepdu+Kbna5x/r9uuLeTs1e/MhPfPreq/GddO4per12ixd8+kiS3xO/obEEJIKLjb/uY8KM5j957pqt7XWqHE4TrVyfTZ3h1db1I5mZCsnz/HvMaXEIxmGH6Nwr/PJnDzDj1EWdrtDy5OO+iRh9VUH5L7Ukx6/9r2ZW5WdZ5ckvTptk1EhWVpmTp52p2SYduPA/UrJlpzRS5hyIls5druJ0QQGT671uXkFP3dvn7Y/LN2tMVM26r2/t+mNP/1/HduSFL72HEzP0vjFu7SzmMqZL03dqDemb9GjP6/V72v2uXWs7Fzj/36W7nS9J//Hpf81OC5P8t6916H0LM3dcmqN6CWJKW5VIcUpJIawHE9ahtcnp2l3intfet8sTHL7OEY68zvhqwWJavPsdPV6bZZenLpRQz5eWGKVt83707Rpf1qxzxthfXKqPpy1zeUFYf3J07+u0xUfLdD5b88tdt27jOxcfTp3uyat2OMXrY6P/LTG49f+s/Vw/s9WWXjdm/LsDl324Xz1em2Wnv89kIbUua+sQ6e9Nf+qsCNBcF5aUeGKxHYvXwvfnrEl/+dxCxLLvD8jovXl9ILUEkbwnLnswoduLh/00MTVHsdkBF9VPM3KLdgIfTK7bI3Sm/en69Vpm7R4h3UrcxuNxBCmcTicL2De+41ZRdYmc8UoN+eypWcWTAh2GdRz5smE8ud+W19g2MzJnDwtKuFC9NXCJF347j+ascE7FSMzc/J09SeL9PqfmzX0s8XKs/gwLncTt28XnfqCPXw8S98t2eV0m1f/2KSXpm7SAz+u1tS1Jc+fkE6dPx/O2qYVu8zpiT4zuUPJVu9J1ab9pxo8rDqkDgUN/YxhYc54+xPx9WgPZ/cEKMrdBrxfvVhPwBP+8ns+fDxbH83eruu/WOyVaTdWRGIIp1bvPub1Y6zafUydx8wo8vjulJP6dpH7vXllHZ7w4tSNSj7m+XC8snCWd5WWjDkc0i1fL/NKPBv2peUnqofSs3TkhLUv4pk5ng+TKW446Vdn9Ci//3fJ824dDoduGrtEr/+5Wdd8ssgyX3p2u0PLElN00ElDy6rdx7Q8KQCLenhwp+zs2nH0RLY27ktzaQTDyew87U8NvvWuysqdPC/pSIYOplvj78poRja8BWvxrDKhwcHnvjBxLVlPfts5eQ4tS7TW9CNvITGEU5d+ON/U45u1oPb/rQzcktvuKNwyX9bhYv7e0n+olBvSPLsjfy5Ddp5d887ovTPqRs2T38ELUzboyo8X6ry35+roiWwdSs/S+uRU/bXhgC77cL6u+GihaS3JVirVfs2nCwvM0dxzNEO9X5+lC9/9R6+VMs8pPTNH578zR91enqmP52z3dqhBzdvDGM3y9cJEnxwncBcwt861BK75aLb/XSsD9a+nMBJD4AxW6ekpC3e//H9bnaxnf12v7YeOGxaDr+YdWZVVht6eHiaZejJHT/2yTn1en6WB783TyDN6mu/9bqVJ0VlHTp5Df50xLHvC4l1K+3eoeWnJ3lcLErU75VRS+cofrhfusVBe7JTV4wskr00L7CIrgK8EaNuRT5EYImgdMjAJzM2ze7VXzJsXuy/m7dS4BYm673sSBF/4xke9A4VNWbtPJ8o4ET+QnVm1z51GkiQvVPVF8LDbHU7n8ZWUmHPza6xcizTkmY3zChKJIdxw0bv/6OZxS4ssReCPdqdkaM0eY5aEmLp2n9o+N13nvT3X6Vwuf7Fub5rSMnP06+pk7U/1/55Tqxo9eb1HxZUABJ6PXBh+7A8jMMyd/1m2jOZ/fjisMZgcSs9SyolsjZ2/U/3enK1PLDZk3x/+Pt0RZnYA8B8b9qVpw740fTJnux6+oLnZ4ZTJraUsxuqOl//YqIzsPG07eFzfeFA0x0qGj13q1TWGgpGzL43N+9NVs2KUCdEAJXN35ENZ5q0xXFV63YO1+g4fz1LdytFeiKZs1u1NVeu4WLPD8Gue/jXZ7Q5t2JemWrFRqlYh0tCYiuOLeeJzthzSLV8tzV97WZJe/mOTruxUV1V99D6DDT2GcJvVyh57YuM+49YAPD2/SJJmbjzo8uu+WZSk8YutlUh6Kyl0dq+5YtdR/bB0lzJ9XA7dn61PTtWUNfss+ZmlnswpdmHmYHQoPUujvl+pxyetUbqTURaeDNuav+2wRv+yTssSA6Oa7Ordx3TLV8v02dwdLm1fXAVhX9t2MF0/LtvtVjx5dofW7kktdt1Ud/R5fbY27/dgfVkPzrnCt/4lnbcexeRjVi+E5mp4hXOyV6dt0sXvz1Pf12e7vaazK8ct66fmaa/ajV8uKZAUnraPKtBeQ2IImOjJ/1tnyZv8siqpITEnz65Vu4/pyo8W6NGf1+qpX9b5LjAXWPW+YVdKhi79YL7umrBCT0+21meWciJb/d+ao75vzHZ74eVA9faMLfplVbK+W7JbX85LLPP+0jNzNHzsUn2zKEnDxy5VTp7nS7ScKdfJTZfRilvyY/WeVM3YeEAvTt3o0hJJVhjyd+R4li75YL4e+WlNgSJOpRn1wyoN+mCeLv1wfpmLU+XaHXri/9aWaR+ecuhUcrX1gHlJ4MH0TP25fr9SM3wzrcVKFZSL88m/jSvpWbmaUMzavO6y2x36ct5OPT15XZmnPwRuRdzAQ2IImCwQ5my6KifPrsH/W6DLPpyfv3bjT8v3lPkmN1i+dE4XSfhx2R6TIynok7nb85f08GRonNFST+bo5+V7TO3BmLD4v5uzt2dsKfP+thxIV/a/fyfpWbk6ZtBN8ZS13h0BYrc7dO3ni0rd7syqsMVJtECP9MxNB5XxbxEnd0ZY/PbvSJttB49r7tZDZY5jy7+JmRkNWe/M2Krz3p7r+wNLyszJ08XvzdNt3yzXdV+Ufl4Fox0GVRifveWgnv99g75emKT1yQVHWaVn5gTd8l4Z2bm65atlOue1WS5dr/wViSEAn5m6dp/W7i1a9OfuCStMiKZsko6c0NcLE5V0pOjN6pn3an7Q2Fxme84YTm0F93y3Ug9OXK1LPpin5GPWis1qth0seBNpdzj08Zztemmq60tvlGTu1kNatCMwhr5K0kkDKvumnfReY6AvCmG8O3Or149RnJW7juUXulm3N03HDRiaC+dKWmswGJdY+W31Ps3YeEC7UjL0wu8bzA7Hayg+A8Bn9hx1fpP+53rzWt8KN7i7ksjl5tl15ccLdSg9S9UqRGreo329EpuvBFruOnfLqR6ZrFy7fludrNt6N/LasQIt8f95xV5DF58u7m8e8ERWbsHEfM2eY+YEEgRKGkLr74X2PPH3pv/uU3Z5MI/TX9BjCBjM9PvE4BhV6VOFvx+TUjLyh04ePp5VZC07X5wDk1bs0fxth31wJP9S+PRPz6RHwR1GJoXwvRKH1Xv5wmTGV8+1ny1mHUIvCQ20Vi+4hMQQANxUuLKdGXMcH/hxta77fLHmbCn7fCUzcM/hHqsWRTKKN89ju92hG75cooaPT9Hn/7hWAdUqDh/P0jtGDd202DnkzjUg8fAJXfz+P7pp7NIiz7k73/ZYhnvVbYP1UhUaUvZ3nptn10/L92j+tiMGRPSf09dDu92hN6dv1vCxS7RiF0ttGYHEEG4v3RDoNyhl4a2bXT5y/+XtmwqqgBb0/ZLdZofgFdMDuNiBJK3dm6pdR7wzPGvW5oOau+WQ7A5pzJSNXjmGtzw+aa1LFVut4KGJqzXwvX+0eIexSYAkPfzTaq3bW/Zlphw61cvoLSeycrXj0HGXlsVwtoWrjYy+SFaNuJ/5aPZ2PTRxddl3VIy5Ww/p/b+3adbmQ3piUtFKvc7eA/ewJSMxhFf/aIPN+uQ0HXWzNbI4VmqlDKbendw8h8bN3+nVYxj5veTJmlWFBdL3pBEVQH3B3b8pf+vp8sSXXvq7225QlUajuHNjanb1w8LzzEqLfX1yml6YYnxhjqWJxvQGncjK1QYD1zE+08nsPLV65k/1e3OOXvWwOIvRSUtunl3/t9KzKtZG9Bi++Zd3r8e/rd6X//OmYqpQkwi6h8QQRcoQW4FZeYgRFd1mbXY+JMrqC+vilOw8u579LXArjqF0VvxTDbZpVEHUFuVnSj8RjejZM0rhv2Vv/m1f9uH8/J8/nmONubrv/71N9//gWuN/4Y8mEOYY+uJaHgAfUwEkhnBbVq4xCyu7auO+NN345RI9PXldkYpk/uTwcWN6Ev2Rty/OJe1/2BeLfb5kQZDdw8MDVkw+rcTpMDsLfGZGNfBt3JemKz5aUOzz/2w9rEs+mGfIsVA2rt74bz7g3rqpvsgnyrK0iLtrLFMhNjCQGMJtp6sx+spzv63XnC2H9PXCJP26yruLMXtTWRdxN4ov1rmyUgvaP1sPa/Qv60w7fkklvwF/54vrSSC6edxSLU8qeXjkmj1F13wtCyNSWncaOO12h/7Zekg7Dxdd6xXWl1C1vFvbD/10kZcigS+RGMLyzlwcefziXT4//po9x/TYz2s0Zc2+0jf2hAVawQPdzE0Hvbr/Ae/84/ZrMrJzNfqXdXrgx1U+b2wx2p/r95sdgqFcyeXTM3N0y1fL9OMyz+bvLN5pfIEOT/hTYmfVS+Xh41matGKPDqZnuvya5FTXty1RoQ/ll5XJuue7laUmnb7w2p+bNeyLJbrgnblKOkJy6Ctm/U2fyLbeiC5vtsv+s/WQci3S4G8kEkN4xJNKiBnZZV9PzNvz9HLtRf/Ib/9mub5fult3TVhhSKEPV9kd0pYD6W5/bqV9Qt5aWiHlRLYyc6z3xWBVY+cn6ptFSZq0Yq/e8vIEfU/Y7Q6Xfp/7Uk96tI7Y1gPWKgjirp+W79GMjUULg7h6o2CVOYNmLLXiD9Izc/TNwkQtKGWtUIfDoas+WagHflytIR8v9N1c8mIO8+vqZP22OrnEYapn2pd6Ug/8sEovTtlg+FSN0/PssnPtev1P14qxFL6P/3n5Htk9+GP5celuNX3qD13z6UK3X4uy+WHpLg187x99Mc97RdzMuG4VHv0z7IsleuTnNT6Pw9tIDOERVy/ypz3xf2vV8uk/vRSNcexOvtTPbNmd5+GC4p4kxY9NWqPz356r/m/OUdpJ98b6l8QbVWi/X7JLncb8pXPfnKMjx/2798sVRtz7vTn9v7+h75b4vie8JHa7Q8O+XKzmo6eVuu309e5XTdydkqFvFiV5EpopFmw7rDlbDhW46f95hfOewq8X+s/7shqrFOiy2x1q8+x0jZ68Xtd+vrjE5SL2HD2pHYdO9YYlHcnQtoOlN3j46qb20Z/WaPziJOWVkFi9PHWTJq3cq8/+2akflnpvqRdXq3UXjvTBiav19cJEt4/3yM9rlJ1r14pdx9x+rbvSMnN01/gVXj+Oq8xs7MnMydOjP689VZ32d98XcfPmJcRZ5+OkFXu9d0CTkBgGiT1HM/Tgj6v11vTNPu/6zsrN0wQThoAu2Zmi0b+ss8Sipxe/P0+5ee5dsdIzTyWTyamZhg7VM3qhWUl6bNJaORzS3mMn9eGsotXYrNwr4Y0vkjPL4xc3ksUqPUbO/LPtsFfOE+nUsLter83yyr6dcfXcW7s3VdnFFNa69vPFuvHLJS4NZXe30czbHA6Hko+d9KjXJVC4O7RufKGGmq9KSEwKJ12e9J57yw/LduvJ/1unsSUsA/Lr6v/m7b8zY6t2HDpuuXPllWmbTD1+aWfPR7O3a8paY6aauPrJW3XqursFa/yJtf4qvIfEMEg8/9sG/bxij977e5sm+7iAi7sJkREyc/J01ScL9c2iJF3x0QLl/LuWz0eztxsypNVdOw6d0Mrdnieo+9MMmo/iA5sPpPnVvCXXuPd+Ppq9XVvdrFBnJd4cMv2cRZcCmbwqWXd8u7zEbV75o/Qb1JMWG05949il6vHK37r+i8Wm9MhZ4Qb28An3RjG8XigROZbh3ze7r/77fkr7/aecyFa/N+cUGB7nzV+fq+dGZo5xjdne+Aswo+Eb8BYSwyAx/YxFcj/34rhvqzhzOI/DIf24bLfu/2G1Xp22Sa+6cHPnDcezfJ+QGsnhcGjn4RMa8/sGzd7s3WIuVufKDc2LUzd6PxAZc+Pmy3v331Zbt7LwzE0HSxxRcTwrVwfTM306lzbP7tC6vZ5Vp9yfmqm5W06tq7pg+xHt8uEcaSv5ZM4Ot7ZPy/Tva3VhOW42zv603LOCSiU57sJnunLXUR8sbVT2AyQdOeFxA3Oe3aE3/tysO75d7nR5C4uMpvZbhetEBF4jtfeFmR0AfM+oCeY5eXaFh/pH28JTZyxX8JUfzgEy+8ti4rI9emP65vxhU5/P26klT56rGjFRLr3e4ZBe/3OT02Gmnjh6IlsVy4UrNOTURd+K36VHTxQ/p8Yqc6l8ITvXrs/n7VBOrkO39W5odjilKu030/XFmapSPsLpfGRPJR05oSU7U3RB61qqGBVe4LnHJ63xuPJp4QQ2w0nVwE37rdmz7e7t3J6jGXpp6kZVqxCpxy9soXIRoV6JK3j+co21ek+q9qWe1L3frVR2rl3vXNOhyDaX/8+1gjll4WqSnJqRo9jocKfP9X59tupVidafo85RuYhQt3rFp6/frw88KN4H17zpQiG3Kz/2/nnmz/zjrh6W1OXFGR63ZPurN/7crFUlFCIIVK9O21RkLo07y3ds2p9WalJ4ZrK0/dBx9X7d+Ty092duVYcX/tK5b87WMRcLGpgqyBssx87fqdembdbbM7Z4VM24rLzRYpxyItuw4YWZOXka9P48PfzTGo38almR54tLCo+cyNLhUgo9rXZhwemkI4HRi/jAD6s1de1+fb0wSS2enqabxy3VwfRMDftisVv7cbbkRHpmjoZ+ukhnv/K3Fm63xjIjRvD1tIrnft2gpYlHtXpPqh74cZVPj33apGKKRhX24ez/rlXO1qLdlZLhUdGw771Y4Oe0P9cf0F0TVmjvsZNeP5bVFL4vcTbH3Oj1QQPtK57EEB47lpGjO8aXPCfHKoxq3D9yIlvXfrZIJ328Xs/uo/5987YhOc2t7R+auLrYG9bTLYKJRzJ8Pl8W7juzcMT7f1u/pfz8t+dqv1FrzLngz/X784cuLt6ZUsrW/xnwzj86+5W/taSY1+Tm2XXf96uMCLFERhaWchTzsyuWJBb8HGZuOqjer83WP1udV5I+mJ6p31YnK/WMis/LElPU69WiDVJLE49q4Y4j2nvsZIFpGf6mcIKT7uMhs9POKKK20gfVQp3Z6kLVWEn6dG7pw4/3pZ5KvNxJDIwcaVCSKWv2uT1txp9GsrgTqpWL31kRiSHKZHfKyRJLYQeijOw8bT3o2+FX/lYSuawFJ1y9aXA2RwO+Vdrv2o/uNSRJOw+f0GqDW5RLUlwlVFdk5dp16zdFexkl6UB64C8bU5riCgHZ7Q5d/uEC3fPdygI9ineMX6GsMvw+pFNL9+wqpRfWX/4mHA5uqf3Zrxaez+2PXL2tOd1g4K9IDFFmd0+wzvo9ZRUIE5X95aYDQNn5e8VMM6zacyx/mN2aPan5vYaHDEimv1qYpMEfzS9Twu8Od1I3d3qEth08rnNen6WRXztveAgWGdm5+VVdi+NsqKmnXP19BsK9ii+Y8Tk98IPxa0X7EokhyuyPdfsNn+uV53Dox2W7dVsxreGBJNDyOBLTU05/DHx9wwycd8XLKZS0lWUInbOc4PDxbG3xwWiGzJw8r11v/zdrm3an+HfPhxE+nr3dadEmTwX692MwJqxrC9XaWLjDv+chU5UUhijr8JvCVu46ZtochDMZOebeW18IWw6k645vlysyLFSfDOvknYNYnC+XD5DK/rsMxgJG7pi8aq8+nrNDvZpU02MDmiskxP9vNry5NmSw2LgvTdd8ulANqpXXM4NaKSrcO5VHjfDr6mS1jov12v7Ts3LV+pk/FRPlndu4SSvLNn3B1/PwveW9MsyL/r+Ve9SwWgW1i69kXEBBZNN+92oTeFtxHcPr9lorzrKixxA4gz/OqLh7wgptP3RCG/alafTkdaW/wATe/lSnrdtf+kYW8s6MrWaHUIDRv5+yzjt+5Kc12rgvTZ/O3aF2z03XjkOuFYywsif+b61Pj2eFheW9YdGOFH23ZHeB+VObTVxyo7j1aV0pXlJWuXaHjlp0KPGgD+aZHYLXnW4gLO5P7f4fVmvwRwu0Pjm4qrcb5fsl3q/giqJIDIPY35sO6OM5xqwrVxL/S7W8w1ufw5YD/900z958yEtHcY+vb0qXJbpezdETVr7JNnJ+i1E+8KCVfX9qprb9W9TpzBEI6Vm5emP6ZsNiM0tx1TELm7nxgEaMW6oJi90vhV8aC54qBZzZE19aqD+cUfbfzHlww8cuNe3YVrbNheqfVh92eOmH88u8jzy7Q98ucmPtZAvdMKWUsBavkTJz8pSb55s5uSgdQ0mDkE3Syl1HNWJc4M/fg/9Z68OKkJJrvcSH0k+tGVetQqTb+7di4uZtb8/Yovv6N3HrNee8NkvZeXa9cFnrIs9NXbtf6Zk5iolyvuB0SfxtFMDdE1bqZE6e/t50UL2aVPN4P85uul+f5v8J9mlnDvPfZeIw3YMeFKwxa56Zf/0lmG+1i0P+S7vEG1HUyAwzNx10+zXujhaZsmafRv2wUnGVyumnO3q4/B3r6lGM/PoN9Pmhp9FjGKS+XWRsa/T1ny/2WRU2fxVo6UFJF8lZmzzrufxkznbLDkF6Z8YWt1+zcV9agXXS/IU7X6ZGndfZ/7YYvzJ1o9PnH/jRvyu9OXMwreh6iWcusbBhn7FzVzy50TNDemaO4QXNSpNDjwV8wN8aqtz1x7p9pW90hrsmrFBOnkOJRzL03kzjp1gESzJnJBLDIJWeaezN6taDx/VLGSerI3C8/mfB8t6uJg8vu7kgry+d2ZjiSuJ0PCtXV360wIsRGceT5M5bBX9OFFO04i8PFxb/28NGCl94vwyFLUpjlY5qd4cLrtp9TF1enKHRk9e7tL3dg/mseYXuFh0OafEO7w5HP9O8ba4NK/Y2bpqN4vs/Nqv8fRf2+xr3EsMzuVtwMPnYSf3GWo2GIzGEYVbvOWZ2CJD5i6s6HFLhezUr3H/0e2O2Fmz33Q3ZjkMnik1ynMnNs2t5UooOphftRbKipFIW8baKjQb3urki1cWCIHuOGvMZ5ubZiy2C4m3OEr+yFB96f+ZWZea41ns3YfEuNXxiqtvHuPazxUUeO3Tcd393/0cjKoph1nelkRXYfeG539brovf+yR9p4gtWTcaNRmIIBJivFiaaHYIl7Th8wukNoVU8/et6XfHRQp375hzTk3uUTdeXZri0nVG3Yj1fnaW2z/6pH88oyGLWPcyjP61Rs6f+0EMTPRv66+pw17TMXMMqvX72zw4dzwqM5RXgOyn/Dnd2b+i9dbMLI65Hvnp3K3cd0zGLVuT1dySGQIAJtDV1gsXpKpTpmbmauGyPqbGYfXx/Z/S6rqXZn5Ypu0N6ZZq5Q7EPpmXqh2W7lWt36Kfle7Q/1b1euM1uLAq/3cAlTP43e7ue+9W1oav+zM86hSxv0oq9WrjdvcXMA32OodXYbJz37iIxBHyEaxNctfeo6z2Ge4+dNHwY0CoXq/GVxErFPNIMnlNtVQXKy5vQMZGWWXA4q7tz2ZfsdH2en9FvL7eMa2/COrq+6FqPvRHe/muLhfsA4QuBluyTGMKv+PrPr7j7bSOHgwRDa5Yr77Esn4OvPsJbvlqm9s9P188rrDVHaM4WEwusFDOO6hMfrJHqqlkWrcZpZK8XUJpgmSPlyRIinlri5TV0YR1WHgZsJBLDIOWNG+nxi3dp8ipr3TADRpqx8YCOZeToo9nWSXokaefhE2aHUMQb091f3iPYRId7bylhK9zEpGXmWKrn2Nde/3OT9h5jvnCgK7232fW/xa+DuEbAsZMFl6hxZwQBjMMC90Go8HAfI933/Sr1aVZDseX+W4jayGFupV1ev1mUpLf/2qIKkd49tQNt6ACsZfWeYz5fxw2+FxURanYIXnXFRwvNDsFUH87arjlbDun3e3qZHYolBUoPZoEh3GXkakVeq1qWdNTj1+5OOamdh0+oQbXyOpCWafg6rnANPYZB6FB6VpnKiZcm2cQW0qcnr1PKiWztSrFeKf3tBwNr2JjRZ9DhE74b/mN1m/ana8A7/5gdRoloHDGGLVDujuGUVYqB3fLVUlO/m3GKUe3kgXrVGDd/pyRp9mZrDv8PBpZMDF9++WUNGTJEDRs2lM1mU0JCgtPtMjMz9dlnn+nSSy9VQkKCypUrp4YNG2ro0KHauHGj09dkZWXp6aefVoMGDRQZGalGjRppzJgxyskJjuIEp/1t0Tk3ZWXl+XrjFiSaHYKhDhUzj2PhDveqtJ2WZVZLqUXPmf1p1l7PcPbm0uc1ZuWyBIBZyDdxphkbD2ppYsHeHBp3YDVr96ZKknLyLHhuBsk11ZJDSZ944glVqVJFHTt21LFjx4rdLjExUbfeeqt69uypm2++WXXq1NGOHTv00UcfadKkSZo2bZr69u1b4DVXX321Jk+erBEjRqh79+5auHChRo8erW3btmncuHHefWNAAPl4zna1rRuri9rUNjsUmOCVPzapc/3KJW5zZZAPJSwrT+5DDh/PUrUKkYbHUpI5Ww5p3d5UdaxX8vkAAH7LgrmqN1gyMdy+fbsaNmwoSWrdurWOH3c+BK969epauXKl2rdvX+Dx6667Th06dNDDDz+sZcuW5T8+depUTZ48WQ888IDefPNNSdItt9yiSpUq6a233tKtt96qHj16eOdNwVDZPl4nrDArFHawgjvHr9DmMQPMDgMmGbsgUd0aVi32+dOtvyhGKUMcPLkPGfy/BZr9UB+fXaGy8+y6aewSORxS7dgoHx313yG4Vh4iAgB+yJJDSU8nhaWpWrVqkaRQklq2bKnWrVtr3bp1BR6fMGGCJGnUqFEFHj/972+//dbtWFE6IydT2x2nksIfl+02bJ8om7lbDpe6zckc7w4pDPb7Q7Pe/7GMbJpILGZXSoYSj/i2Su3p82+fmwvaA8Fgx6HjuuDtuRrwzlztOGS9CtKSlJ3nEEt5QrJoj2FZ2e127du3TzVr1izw+NKlSxUXF6f4+PgCj8fHx6tOnTpaunSpR8erXbvgUDq73b+rShnpgR9WadJK45awWLs3VU2f+sOw/aHsdh4uvajOF/N2ejUGvs/KhsW9TeKliYB2hyPgi9p4s4AafCPpiPWKxHnDDgsuJ1TYd0t2mR2CVwT4ZdArLNljWFYff/yx9u3bpxtvvLHA48nJyYqLi3P6mri4OO3dyxp8RjjdepxyItvQpNBKmLQP+F6iH9xgAQACT3Yxa7IG2oilgOsxXLBggR544AG1a9dOTzzxRIHnMjIyFBnpfFJ+VFSUMjI8a73at29fgX+npaUpNjbWo30Fkoxs762XGEhIMgHXpHu4BqtVhzimnfReNWwayoHAFegjAoy8K+IOyz0B1WO4fPlyDRw4UHXq1NGUKVMUFVVwInx0dLSyspyX2M/MzFR0dLQvwoQf4YISeOwMQQs6r/yxyewQnNp5+IRLQ7EBINBMX7/f7BDgRMAkhitWrNB5552n2NhYzZo1y+mQ0Tp16hQ7XHTv3r3FDjNF8ChmpEARVCX1X91enml2CEC+D2dtL/a5275Z7tE+X/h9o455sTcS7lmwrfQCXUCwubWE61uWlwvWoXgBkRiuWLFC/fv3V0xMjGbNmqX69es73a5Lly7au3evdu8uWNFy9+7dSk5OVufOnX0RbsDz5xEOpydgr9ubqlmbD8oRaIPHoYPpzkcN+DM75ynOMGfLIb3yx0azw8C/bvl6WekbmYDLhv/Kys3T4h1HdDwrsKbsrNh1TDM3HtC7M7eaHUrQ8vvEcOXKlTrvvPNUoUIFzZo1Sw0aNCh226FDh0qS3nnnnQKPn/73dddd560w4UdW7T6mSz6Yp+Fjl+qj2cW35gNW8fMK84o8+XNDUCD7c/0Bs0PAvzKy6f2AsQ4fz9bVny7SFf9bEHAN2Dd/tczj+eQoO0sWn/nmm2+UlJQkSTp06JCys7M1ZswYSVL9+vU1bNgwSVJSUpLOO+88HT16VPfee68WLFigBQsWFNjX5ZdfrvLly0uSBg4cqIsvvlhvvfWWUlNT1b17dy1cuFBffPGFrr/+evXs2dOH7xJW9dQva/PX83nzry3mBhNEzFoyIRC+UjfuSzPluDbZDF2ntDQUagKA/2w+kK5Vu4+ZHQYCiCUTwy+++EJz5swp8Njo0aMlSb17985PDHfu3KkjR45Ikp599lmn+9q5c2d+YihJEydO1JgxY/Ttt9/qm2++UVxcnJ5//nk99thjXngnwcnfG6+OnmBujhnu+Naz+VSSAq7F1F/M23ZY85g/BQCmOUmPNAxkycRw9uzZLm3Xp08ft28Io6KiNGbMmPweSHjH4h1H9MT/rTU7DI8wNM4cm/anmx0CAABA0LJkYgj/d/Wni8wOwWMhZIZuoUIrfGVXimdrzQIAgg/3J+7z++IzgNF8nRdm+XCOFuDP7p6w0uwQAADIZ1Z9BG8hMYTh/L1AhK97DPu8Mdunx0NBn87dYXYIAAAApiMxhOH8vVWfkaQAAAAINiSGMNzOwyfMDqFMyAsBAIHOv8f24LTk1EyzQ7A0qpa7h8QQKITiM+6xwtBh8yMAAMD3Hpq42uwQEEBIDIFCXMkLF+5g7bbTko5YoFIkmSEAAECZkBgChbjSY/jS1E1auydVe45aICkyWcqJbLNDAAAAQBmxjiHgoRenblBcpWizwzDdH+v2mx2CpqzdZ3YIAAAAfo0eQ6CQw8dd6wHLyXPo5xV7vBwNSpN0xL+LHQEAgMDx/ZJdflv0hsQQKMTV2jOUqLGG3SknzQ4BAABYjFm1BB+btFZLE4+ac/AyIjEECjmUnmV2CAAAAPBTPy3fbXYIHiExBDzEqhYAAADWlJ6Zo+2HzJlukpvHUFIgqNgYTGq6CYt3KSs3z+wwAACAxbz6x2azQ/A7JIYA/Nrrf3LhBwB3+WtxDMBVSxJTzA7B75AYAp6iw9ASNu1PNzsEAAAAv0diCHiIvBAAAACBgsQQAAAAAIIciSHgIaqSAgAAIFCQGAIeoiopAAAAAgWJIQAAAAAYxU/7DkgMAQ8t3nnE7BAAAAAAQ5AYAh6yswQUAAAACvPTe0QSQwAAgCDD+vYACiMxBAAAAIAgR2IIAAAAAEGOxBAAAAAADDJ36yGzQ/AIiWEQ+GZRktkhAAAAAEHh8PFss0PwCIlhEPh11V6zQwAAABaydm+q2SEAsBgSwyCwNPGo2SEAAAALuXP8CrNDAGAxJIYAAAAAEORIDINArybVzA4BAAAAgIWRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEMAjabzewQAAAAAFgYiSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAaBNXuOmR0CAAAAAAsjMQwCxzJyzA4BAAAAgIWRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEOY8Twzlz5ujiiy9WjRo1FB4ertDQ0CL/hYWFGRkrAAAAAMALPMrcpkyZossuu0x5eXmqV6+emjVrRhIIAAAAAH7Ko2zu2WefVXh4uKZMmaLzzz/f6JgAAAAAAD7k0VDSdevW6eqrryYpBAAAAIAA4FFiWKFCBVWpUsXoWAAAAAAAJvAoMTz33HO1cOFCo2MBAAAAAJjAo8Tw1Vdf1fbt2zVmzBg5HA6jYwIAAAAA+JBHxWeee+45tWrVSs8884y+/PJLtW/fXpUqVSqync1m0xdffFHWGAEAAAAAXuRRYjhu3Lj8nxMTE5WYmOh0OxJDAAAAALA+jxLDnTt3Gh0HAAAAAMAkHiWG9evXNzoOAAAAAIBJPCo+AwAAAAAIHC71GM6dO1eS1LVrV0VFReX/2xXnnHOOZ5EBAAAAAHzCpcSwT58+stls2rhxo5o2bZr/b1fk5eWVKUAAAAAAgHe5lBg+/fTTstlsqlatWoF/AwAAAAD8n0uJ4bPPPlvivwEAAAAA/oviMwAAAAAQ5DxaruJMCxcu1MqVK5WamqrY2Fh16NBB3bt3NyI2AAAAAIAPeJwYLlq0SCNGjNDmzZslSQ6HI3/eYfPmzfXFF1+oW7duxkQJAAAAAPAajxLDlStX6txzz9XJkyfVu3dv9enTR7Vq1dL+/fs1a9YszZ07V/3799e8efPUvn17g0MGAAAAABjJo8TwySefVE5OjiZPnqxBgwYVeO6ZZ57R5MmTdeWVV+rJJ5/UlClTDAkUAAAAAOAdHhWfmT9/vgYPHlwkKTzt0ksv1eWXX6558+aVKTgAAAAAgPd5XJW0cePGJT7fpEkTT3cNAAAAAPAhjxLDLl26aPXq1SVus3r1anXt2tWjoAAAAAAAvuNRYjhmzBjNmDFDH330kdPnP/zwQ82cOVNjxowpU3AAAAAAAO9zqfjM888/X+Sxvn376u6779Y777yjXr16qWbNmjpw4IDmzZunrVu3asCAAZo+fbrOOussw4MGAAAAABjH5nA4HKVtFBLi2VREm82mvLw8j17rz9LS0hQbG6vU1FRVrFjR7HCU8BiVYQEAAABfSXxloNkhSHIvL3Gpx3DWrFmGBAYAAAAAsB6XEsPevXt7Ow4AAAAAgEk8Xq4CAAAAABAYSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAgpzLieFHH32kffv2eTMWAAAAAIAJXE4M77rrLsXHx6t79+567bXXtGXLFm/GBQAAAADwEZcTw7lz5+q+++7TwYMH9dhjj6lFixZq1aqVRo8erWXLlnkzRgAAAACAF7mcGPbs2VNvvvmmtm/frlWrVunpp59WRESEXnzxRZ111lmqV6+e7rvvPs2aNUt2u92bMQMAAAAADGRzOByOsuwgMTFRkyZN0uTJkzV//nw5HA5VrlxZgwYN0uWXX67zzz9fUVFRRsXrF9LS0hQbG6vU1FRVrFjR7HCU8NgUs0MAAAAAgkbiKwPNDkGSe3lJmauSJiQk6IEHHtCcOXO0b98+ffLJJzrrrLP0/fff6/LLL1e1atV0xRVXlPUwAAAAAAAvMXS5iurVq+uWW27RlClTdOjQIX333XcaNGiQZs6caeRhAAAAAAAGCvPWjitUqKCrrrpKV111lXJycrx1GAAAAABAGflkgfvw8HBfHAYAAAAA4AGfJIYAAAAAAOsiMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDlDl6vYunWrpk2bpujoaF111VWKiYkxcvcAAAAAAC/wqMdwzJgxio+PV0pKSv5jf//9t9q3b69Ro0bp1ltvVceOHQs8DwAAAACwJo8SwylTpqhRo0aqUqVK/mOPPfaY7Ha7nn32Wd12223avn273nvvPY+CevnllzVkyBA1bNhQNptNCQkJJW6/ePFi9e/fXzExMapYsaIGDBigVatWOd02OTlZN9xwg6pXr65y5cqpc+fOmjhxokdxAgAAAEAg8CgxTExMVMuWLfP/vXfvXi1btkx33HGHRo8erf/973/q06ePJk2a5FFQTzzxhP7++281atRIlStXLnHbRYsWqXfv3tq5c6eef/55Pffcc9q6dat69eqltWvXFtg2JSVFPXv21KRJk3THHXfo3XffVYUKFXTVVVdp7NixHsUKAAAAAP7OozmGR48eLdBbOH/+fNlsNg0aNCj/sc6dO+vTTz/1KKjt27erYcOGkqTWrVvr+PHjxW577733KiIiQnPnzlVcXJwk6aqrrlKLFi304IMPavr06fnbvvLKK9q5c6d+/fXX/Fhvvvlmde/eXQ899JCGDBmiChUqeBQzAAAAAPgrj3oMq1evrr179+b/e9asWQoPD1e3bt3yH8vJyZHdbvcoqNNJYWm2bdumpUuXasiQIflJoSTFxcVpyJAhmjFjhvbv35//+IQJE9SoUaMCCWxoaKjuuecepaSkaOrUqR7FCwAAAAD+zKPEsF27dvr111+1bt06bdu2TT/88IN69uypcuXK5W+TmJio2rVrGxaoM0uXLpUkde/evchz3bp1k8Ph0PLlyyVJ+/bt0969ewskr2due+b+3FW7du0C/zVp0sSj/QAAAACAGTxKDB9++GEdO3ZM7dq1U7NmzZSamqoHH3ww//m8vDzNnz9fnTp1MixQZ5KTkyWpQG/haacfO92z6c62AAAAABBMPJpj2Lt3b/3+++/6/PPPZbPZdN111+nCCy/Mf37BggWKi4vT5ZdfbligzmRkZEiSIiMjizwXFRVVYBt3tnXXvn37Cvw7LS1NsbGxHu0LAAAAAHzN4wXuL7zwwgLJ4Jl69eqllStXehyUq6KjoyVJWVlZRZ7LzMwssI072wIAAABAMPFoKOmIESP066+/lrjN77//rhEjRngUlKvq1KkjyfkQ0NOPnR4m6s62AAAAABBMPEoMx40bV+wC8qetXr1aX331lSe7d1mXLl0kSQsXLizy3KJFi2Sz2fLnOdauXVtxcXFatGiR022lU0tsAAAAAECw8SgxdEVmZqbCwjweqeqSxo0bq3Pnzpo4cWJ+cRnpVKGZiRMnql+/fqpVq1b+40OHDtX27dv122+/5T+Wl5en999/X5UqVdJFF13k1XgBAAAAwIo8ztxsNpvTxx0Oh3bv3q0//vgjf/imu7755hslJSVJkg4dOqTs7GyNGTNGklS/fn0NGzYsf9t3331Xffv2Va9evXTPPfdIkt5//33Z7Xa9+eabBfb72GOPaeLEibr22mv1wAMPKC4uTt99952WLl2qzz//XDExMR7FCwAAAAD+zOZwOByubBgSEpKfDDocjmITw9McDoceffRRvfzyy24H1adPH82ZM8fpc71799bs2bMLPLZw4UI99dRTWrx4sWw2m3r06KGXX35ZHTt2LPL6vXv36rHHHtMff/yh48ePq2XLlnr00Ud19dVXux1ncU5XJU1NTVXFihUN26+nEh6bYnYIAAAAQNBIfGWg2SFIci8vcTkx7NOnT34yOHfuXNWrV08JCQlFtgsNDVWVKlXUr18/jRw5UqGhoe6/Az9HYggAAAAEL39MDF0eSnpmL11ISIiGDx+up59+2uMgAQAAAADW4NEcw507d6pSpUoGhwIAAAAAMINHiWH9+vWNjgMAAAAAYBKPq5Lm5ORo8uTJWrJkiY4ePaq8vLwi29hsNn3xxRdlChAAAAAA4F0eJYbJyck677zztGnTJpVUu4bEEAAAAACsz6PE8MEHH9TGjRs1dOhQjRw5UvHx8V5fzB4AAAAA4B0eZXPTp0/XOeeco/HjxxsdDwAAAADAx0I8eVFmZqbOOusso2MBAAAAAJjAo8SwdevWSkpKMjoWAAAAAIAJPEoMH374Yf3666/asGGD0fEAAAAAAHzMozmGNWrU0KBBg9SjRw/dd9996tSpU7EL3p9zzjlliQ8AAAAA4GUeJYZ9+vSRzWaTw+HQCy+8IJvNVuy2ztY3BAAAAABYh0eJ4dNPP11iMggAAAAA8B8eJYbPPvuswWEAAAAAAMziUfEZAAAAAEDgIDEEAAAAgCDn0VDSkJAQl+YY2mw25ebmenIIAAAAAICPeJQYnnPOOU4Tw2PHjmnLli06efKk2rVrV+wSFgAAAAAA6/AoMZw9e3axz6Wnp+v+++/XggULNGnSJE/jAgAAAAD4iOFzDGNiYvTpp58qLCxMTz75pNG7BwAAAAAYzCvFZ0JCQtS3b1/98ssv3tg9AAAAAMBAXqtKmpmZqaNHj3pr9wAAAAAAg3glMdy0aZMmTpyoxo0be2P3AAAAAAADeVR8ZsSIEU4fz83N1e7duzV//nzl5eXpzTffLFNwAAAAAADv8ygxHDduXInPN2/eXA8//LCGDx/uye4BAAAAAD7kUWK4c+dOp4+HhISocuXKqlChQpmCAgAAAAD4jkeJYf369Y2OAwAAAAACgsPhkM1mMzsMt3itKikAAAAAwD+UKTGcOHGiBgwYoJo1ayoyMlI1atTQgAED9OOPPxoVHwAAAADAyzwaSupwOHTDDTdowoQJcjgcCg0NVbVq1XT48GFNnz5df/31lyZPnqzx48cbHS8AAAAAwGAe9Rh++umnGj9+vDp27KgZM2YoMzNT+/btU2ZmpmbMmKFOnTrp+++/1yeffGJ0vAAAAAAAg9kcDofD3Rd17dpVhw8f1vr161WuXLkiz588eVKtWrVStWrVtGTJEkMC9SdpaWmKjY1VamqqKlasaHY4SnhsitkhAAAAAEFj58sXWaL4jDt5iUc9hhs2bNBll13mNCmUpHLlyumyyy7Thg0bPNk9AAAAAPgt97vezEdVUgAAAAAIch4lhi1bttQvv/yizMxMp8+fPHlSv/zyi1q0aFGm4AAAAAAA3udRYjhixAglJiaqT58+mjVrlvLy8iRJeXl5mjVrlvr27aukpCSNGDHC0GABAAAAAMbzaLmK2267Tf/884++++479e/fXyEhIapSpYpSUlJkt9vlcDh01VVX6Y477jA6XgAAAACAwTzqMbTZbBo/frzGjx+vfv36KTY2VikpKYqNjVW/fv00fvx4ff/990bHCgAAAADwAo96DE8bOnSohg4dalQsAAAAAAATUJUUAAAAAAzkh6tVuJ4Y5ubm6vzzz9egQYOUk5NT7HbZ2dkaNGiQBgwYILvdbkiQAAAAAADvcTkx/OGHHzRz5kwNHz5c4eHhxW4XERGhm2++WdOnT2eeIQAAAAD4AZcTw59++kn16tXT4MGDS932sssuU4MGDfTDDz+UKTgAAAAAgPe5nBguW7ZM/fr1c3nHffr00fLlyz0KCgAAAADgOy4nhgcPHlTt2rVd3nHt2rV1+PBhj4ICAAAAAPiOy4lhVFSUTpw44fKOT5w4ocjISI+CAgAAAAB/lZPnf0U4XU4M4+PjtWzZMpd3vGzZMsXHx3sUFAAAAAD4q+NZuWaH4DaXE8PevXtrwYIFLs0bXLFihRYsWKA+ffqUJTYAAAAAgA+4nBjeddddkqQhQ4Zo48aNxW63adMmXXnllbLZbLrzzjvLHiEAAAAAwKvCXN2wZcuWevLJJzVmzBh16NBBV155pfr166e6detKkvbu3auZM2fq559/VlZWlp5++mm1bNnSa4EDAAAAAIzhcmIoSc8//7zCw8P1wgsvaMKECfruu+8KPO9wOBQWFqbnn39eTz31lKGBAgAAAAC8w63EUJJGjx6tYcOG6csvv9T8+fO1f/9+SVKtWrXUs2dPDR8+XAkJCUbHCQAAAADwErcTQ0lKSEjQ888/b3QsAAAAAAATuFx8BgAAAAAQmEgMAQAAACDIkRgCAAAAQJAjMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAABgoKxcu9khuI3EEAAAAAAMdCg9y+wQ3EZiCAAAAAAGiokKMzsEt5EYAgAAAICBosJDzQ7BbSSGAAAAAGCguErlzA7BbSSGAAAAABDkSAyBYvRvUdPsEAAAAACfIDEEnHjtirbq0aiq2WEAAAAAPkFiCAAAAABBjsQQKIbD7AAAwALKR/hfZT0AgPtIDAEAQLHKRfjfWlwAjDP2pi5mhwAfITEEAADFstnMjgAA4AskhoATDgaSAoAk6cbu9c0OAUGiTmyUHjivqdlhAEGLxBCWEl/F/xYDBeC5L27srPpVo80OA8WICAvR9d1IDOEbCx4/V/ee28TsMODHWtSuaHYIfo3EEJby8AXNzQ4BgI91SahidghBpVqFCJe3/fLGLqoU7fr2AAD/RWII013ctrYkqWnNCrqwdS2ToznFJibVwDh1YqPMDsHSHr6gmSnHbVWHlmUAKA3Ta4IHiWEQuL5bPbNDKNF713TQP4/01a9391R4KKckAk/1iiSGJalp0ucTX5khrAAAnMZdeBB4+PzmGtrVusmhzSbFV4lWVDhrZQHBpk1crNkhFHFBq5pmhwAAfok5fv6NxDAIxEaH6+XBbcwOwxDPX9rK7BAAGOT9oR1Uw4K9qa3rWC9ZNZKDUWEAvGTSHT1MLSTIRKCyITEEiuHg7gnwqkHt6pgdglPRkcYv6D6Myp4AggDrnvo3EkMA8DYaGSypuBuY8hHGD2uvHhNp+D4BwGqoFeHf+O0BBunVpJrZIQAAAJji4+s7KTSELkN/RmKIAhgCAACAewa2qW12CIDpzmtJ4S5/R2IIj5BAAnBFw2rlNfzshDLt4+c7uhsTDOAlV3eJV0yU8XNTnRlxdgN9cWNnnxwLkPxrNgT3p2Xjm6sY/EaozaZcF64A0eGhOpGd54OICvKnixMAaXjPBkrPzCnTPipHRxgUjWu8UXwGMMrTg1qaHQKAAEWPIQr44NoOZodQrG4Nq5gdQokCPWl9+IJmbr/mwfOaeiESwLt6N61udgjwMwF++QcsY1T/Jpp4e3d1Sahsdij5osJD1KBaebPDMITfJ4bHjx/XSy+9pDZt2igmJkbVqlVTjx49NG7cuCLLDSxevFj9+/dXTEyMKlasqAEDBmjVqlXmBG5B717TXhe0quXz49pc7Pd/6Hz3ExOc0qFepTLv447ejdx+zdVd491+TUSY31+WnIqhF8pvxJYLN3yfVhrd5E4Sw7AsNxTzwdasSEVamKujAfcAVjGqf1N1SaiiN4a0MzuUfOuevUAzH+htdhiG8Os7MLvdrgsvvFCjR49Wly5d9Oabb+qpp55SXl6ehg8frsceeyx/20WLFql3797auXOnnn/+eT333HPaunWrevXqpbVr15r4Lqzj0vZxLidpvhYRGqLOCRbvMbRwm3HDahXKvI8QH1Uae3ZQK58cx5cckh67qLnZYZjGVsa0KK6ydxZLtujlzlLaxVcyOwS/dX//pjq7cVVL3cDCWN/c3NXsEFxSp5J5C84Hg7DQEJ/dI3mbXyeGixcv1rx583Tvvffqyy+/1K233qpRo0bpn3/+UYMGDfTJJ5/kb3vvvfcqIiJCc+fO1f3336/7779fc+fOlc1m04MPPmjiu/BPPk8g3Tzc3X0beycOuMWThKC0U+vG7tZdKLykMt3Xdq2nTvWtM/TFn0SGhbIcjEkq0NPtsfv6N9H4W7qpVxOGJgeqsxtxXXJmZK+GXj9GoE/fMYtfJ4ZpaWmSpDp16hR4PCIiQtWqVVP58qfG+27btk1Lly7VkCFDFBcXl79dXFychgwZohkzZmj//v2+CxzwM01qlL3H0SiNLRRLYSUNJbHZbDqrgTV6vXs29r+bGV99dlb5HVkBQyABuON00+jVXdyfRmIUb0wFcFXL2hVNO7ZR/Dox7Nq1qypVqqTXXntNEydO1K5du7Rp0yY9/vjjWr58uZ599llJ0tKlSyVJ3bsXLXnerVs3ORwOLV++3OM4ateuXeC/Jk2aeLwvb6oew5e8NwVy61Xl8r6tCulL9apEmx2Cz70+pK3PjuVvg2vevrq92SHAB7yx3EPTWjGG79MIl3eIK30jL3r7aobSms0Xo7wGtq2dP5wyMizU68crTkkjd1A6v04MK1eurF9//VVVqlTRVVddpfr166tFixb68MMP9fPPP2vkyJGSpOTkZEkq0Ft42unH9u7d67vATfLhtR0V5gd/MOc2r1Hsc67exFt5vh+s5cHzg69yalnn/FmVES3FzMUJfJFhITq3RU2N6m9sI+695/63P6P37a9euryNLu9Q1+wwUEauNHy/f411q9rDdX6dGEpShQoV1Lp1az300EOaNGmSPv/8czVu3FjXXnut/vrrL0lSRkaGJCkysmiPWVRUVIFtPLFv374C/23dutXjfXlT1wZVNOOB3vrr/nPMDqVEd/crfn6glcvIB3KPoaesnqD3bVZdNWKizA7Dcmw2aWSvBgUeqxRt3vAcV/RpVl2/39PT7DDwr+YW7T070y0Gz4Pq3bS6frq9uz4Z1kn39LNOYli4QrsvWXnov6cq/3st7NqgSsAUHDECn0Vg8OtZ5WvXrlWPHj309ttv6/bbb89/fOjQoWrdurVGjhyp7du3Kzr6VC9TVlZWkX1kZmZKUv42gS7BD9ZZCQ910l7x7/eazy48XN+Cgq+WxmhV59S8A2unyf/Z+fJASdJn/+zMf+z0cLSx8xPNCKlUl3eIU3wQDgv2prL0LH94XUeN/mWdHA6pfGSYZmw8YGBkxvBGYR2rV89G2U25t5fW7EnV2Y2rmh0KYDi/7jF8++23lZmZqSFDhhR4PDo6WgMHDlRSUpISExPzi9M4Gy56+jFnw0wBwAj39w+M4aq3ntNQnT2orGr1nmNPDO1az+wQPObtHqSYqDA1ql5BE0Z203e3dlPFKL9ug0YQc7YGcJ1K5TSgdS3FRFl7FAXgCb9ODE8ndXl5eUWey83Nzf9/ly5dJEkLFy4sst2iRYtks9nUqVMnL0aKYMBSBNZhpfXpzmlaXTUqBsZw1dqx5fTTHT0UHWFeYQEjlaVHrFoF7xVk+vmOHqoT67/nzH3nWmcYJVAWV3Ssq65UKoakZwa1zB/9E8j8OjFs2bKlJGncuHEFHj927JgmT56sypUrq3HjxmrcuLE6d+6siRMn5heikU4VpZk4caL69eunWrVq+TL0gPDCpacWIrfZTl083dG/RU1J0u29GxkelyE8aFAfeU5DxVfx38IV/lCYyB+9eFlrs0OABZU0X7pT/cp+PSSxWoWC8/kDr784cFTxcsVpM+c34j9mfLufOb+0YlRYmYuDVYgM01tXuV/htkXtivr4+rJ3/pQLD1XTmtafO11Wfp0Yjho1SlWqVNFjjz2mYcOG6eOPP9ZLL72kDh06aN++fRozZoxCQ0+1bL/77rvKyspSr1699M477+idd95Rr169ZLfb9eabb5r8TvzT9d3qa8LIs/Tb3T3dXvvrsxs6adMLA/TYhc29FF3Zuft9FlsuXL/f08s7wZTRnX1LT8DnP9ZP57es6fQ5T79U/KH6pZHDHGs66Rlk3huc6ZLACAOzWGlEgb96+IJmZodQqnHDu5gdQsBy5W/o3WvaK7ZcuGIiwzR2eFd9f2u3Mh1z4eP9NPiMTghXv7nv6ttIA1rT+eMqv04M69evryVLlmjYsGGaNWuW7rnnHr3yyiuKj4/Xzz//rDvvvDN/2x49emj27NlKSEjQU089pdGjR6tx48aaO3eu2rVjjR1P2Gw29WhUTa3jYj16bVS4/w1HK1dazBZtHG1UvfTKcDUrRql+Ve8mMQPb1C77Tix8V1cuIlRPDWyR/+/CC8nTeA7A10q77ER6UITrrr6NvTqc2gh9mtXQWJJDr/jh1qLrghfWqk6sFj9xrpY+1V+d6ldWi9oVy1Td2hdrMcLPq5JKUqNGjfTVV1+5tG337t01c+ZML0eEQNalQRVt2Z+u/WmZTp+3cpGN+CrltDvlpFePUTs2SvtSnX82kjT87ARNWbuvxH34+6X/ll4NVb9qea3dc0zDuieYHQ7gc9y/BYdqFSJ1+Hi22WGUyJOktwjrfq2bpkO9SqoUHa5jGTklbmeFDgB/GLlkJX7dYwj4WmRYiH6/t6e+vKmz2aG47fEL/+vJOr30QGFGLBDubUZf4r3xpXFey5p64Pxmqh5TdO3UYMQXs38mS57GHIw94/48l660yO/sY9FaAPAZ/z274S4SQxgiOtL8VqEztarj/vBWV1WrEKm+zWo4fc7K9wYDWtXS85e20h19GunZQa2cbjOsW4Jvg/KAhT9ieJG/DyOqU8l/C1PBv5X1e6l5bf+txEijlHfwqQYuEkMY4pym1cs0dtwdY1yo8nhBq1qKK8uNmKct5Z4f0etCQmy6oXuCHh3QXLHF/K5io8P18uA2RR73duU6+FZZc6xAuSm4pmu8z47Vv2XN/Dm8Zq+BWLhqKALLxW0NmMuNgOLn7WqSzP/eCYTP0BUkhpBU9gpjFaPCNeVe31TkvO6sevrshs76ekRX1S5mra/QEJvmP9ZPia8M9ElMp/nzcKLTajn5TB8Z4Fn1WCvPuXRHw2rlzQ7BbxRe9sTKX6ZnN6pW7HOlrUvq7tuqEBGmv+7vrbkP99VLl5u7hMkrV7RVMK9Oc1Fr6yVOZxatctWZDQyXtKujwR3j9NiFzYsd0WI1xVXBthIrX78AbyAxhHo2rub2HAJn18oy9dCdue9SLsQ2m03ntaypc5pWN70FqbDASIMK+un27mpgUGLkqy9ZIw9zV99GmnqfMY0eVcpbfw5ncVwdkvXj7UWr1VmxgaB5rRiFFMqOLmrzX0nzD67toFvPaWjoMSPCQlSvarRsNpupw8471a+sX+/u6bPjWanBrFJ0uO6w4Jy567vVL/BvV76TR/Vvogtb19LlHeL0wqWt9dZV7XV770YKLXReW+fTL+jTGzrrNoP/xoDC0w6MvO+w0rXMW0gMoR6Nq1pq/k7zWhVVy8l6cP4gEK8Zrix1EcgaVa9gWGW1oV3rqeq/w3KjwgPz8tuxnv+uz9ekxn+LF9eOLacnLnK/F8coZy4O7Q2eLDNkBWVZIqFahUgtfbK/mpyxSLVVllyICg/VG0PaqW3dWD0zqKUeGdBc7eMrlfiamhWj9NH1nfT21e0LTA+wYkNMsLutd0MNP/vUVA54VzAkb94UmHcmsITCQ8pcFRpi00QnvQ6AJMsOgevbrHqp28REhevP+8/RT7d31/OXGjOcsLKP5vbCt246O8GwnnqcEh0RqvDQgrc9N/e0To/VlZ3q6te7e2r42Q3MDgUGq1o+Qs8MamXJ3mp/YYX+Cyt1ongLiSG8VrWrLOsHxVfx7kLrrnDW6lpaQ1RxLbXxVcrp+m7mFpwIFO3qVlL5iFM9eFbqWX5jSDuXtqtWIVKdE6ooxKAvGE/nf+KUM4tmdW1QxcRICqoYFa5po3wzb7s4VrwFMnoEg1V6DJ0JhHtQ+m7gLfQMegeJIXwuvor7cxF9PjSmlMMV22pUzOv+eaSfmtfy35LfVlIuIlQ/3t5djw5orgkjz3K5wmPXBlX09YiuBR4z8nulKpUe/dJLl7dRi9oVdWP3+urWsKrZ4RQQGebdZYBu7F6/9I0spl0pwytLEgiJliuMbuwNko/NqUDJPcr6O3SWhPnLZ9PGT4fNm4XEEEW8e017r+7/4QsCt4ejpOukn1xDjQ3US2+6VZ1Y3dGnkRpWr6BHB7hWUffH27rrnKalD/eEtXR3M1m7uad7w/AualNbf9zXS89d2rpI0Y5A98D5zXR1Z+OX7DAqAbu/f9MCFbO/vKlz0CR3RvJlz8rgjnE+OxbM409DKo0agRYsa2KSGKKIS9rV0dibuig81Ng/goFtamvqvb10Sbs6hu7XK9x866ffk7Pv33ouXJRiosLcO6APuXP9L/3+o+znVOE9VIqOMKwirtPjBcd3gVt8eVPwyQ2d3Nq+rEvvBJPYcuF69cq2ZodRxMwHe2vGA71177mNdXvvRnrrqnb64sbO6te8ph+1sPmPsxu51/jy0PlNi33O3YJNCX4wj3ZQ+//uWXy1XjOM987V7fk+dwGJIYqw2Wzq27yGHr/Q2Ip8zWrFqGWdwBxO2SXhVCVGZ0NeHyrlRrV6TKTOM2E9pzNvoG/rbU4BhkvbF20k8OTC7Y9zDYyKOZC/57o2qKKKUe7diBlVQdbbalQs29Dj5rViSt/Iokqb15dQtbwa16ggm82m0BCbBnesq3NbWH/Nu5J4s/GqrJ67xL1CWLf0cv/7ovBIpP9d11HSqR7GFrVP3Rc8dqH5o4mcrcN6Vee6urpzvLokVNY3I84yKbJTxYnObe4fa1R6g6s9dsU1XF7WIU4LHzvXyJCKqBbj/1NKSAxRLP+71fY+d5OWRwY0s2wP6c09G+j+/k11d9/Guu/cJv89YWKmYUbPaTCWdrdJ+mRYJ1UtH6GejYtf5N2441kvffVGW0I5N5LSS9vHqX5Vz4c4Xdref4bsFf6ovxvZrcTtrTCk94mLzE9SPFX4e6q0U71e1WitffZ8Xdmprvp7KQG/tH2cFj1+rlaMPk+bxwzQRW1qSzo1j/bXu8/W6qfP1+29S67YWdrzZ/rw2lOJp7sNMEue7F/ksciwUL16ZVtNvL2H2tT1bL6auw1cztzTr7G+uKlLmfcTzGrFerdg3Znrcg7pVNerx/IWEkP4dde61ca5VylfsCW88KLFxfHmjfNrVzgfKhYVHqr7+jfRQxc0U3SEZwlZw+rWHwYE5y5oVUvLR5+nb28xrwXcW74e0VXREaE+X+6hpJvGwpeqqPBQTb23lz4Z5t5QWV/y1vU1LLT4W4+KBjYOvXi5Z0vCtKsbq1vPCa5lBWKiwvXGkHb6/MbOhu73zAaYWrFRqlI+okhRpfDQkALrMBbn3nMbu3zcgW1PJZ4N3bwGeGP5n9hy4bqgVa0y7aN9fCXVrxp437f+mjwV5+zG1fT5DZ319MUt9cwlrcwOxyMkhgh4dc5oIeqa4KVy9P/eQEWGherLmzrr/JY19b/rOhZoJSzpFstbvVZfj+iqq7oYV1yizxlr9VWKDrdcFUdPWLE3y9cubP3fTcsIL6yh5ute2XOaVte6Zy/Q3w/2tkTvU3HKR4apiYEL2UeFW+Mr3Soju687q2DD3AAnN+cWCdUpq3yO7vDmX5snDZhmNx6PvamLpo3qpcrlzV0WxezPoTiPXdhcF7RyrZfa1boXpW11b79TDQxGNkKdqX/LmhrRs4EqRFq3dkRJrPEtAnjR+9d20MVta+uly9uoXbz3yxb3a15Tn97QOX+ojJna1a1k6P5euLS16lWJVpXyEfrShSEtZt3XvHtNB5OO7J/uP6+pWsdVVNeEKhp5jvPE0KL3Ffk6xFcu8O+QEJtsNpuiyrCeqr95zE/WtPTlnOBPhnXK7z2+6ewErx2ntHdk6t9PGT9uP8xPLaNv8xqqHWvd+aVmq1ohUp8MK76X+uELmqlZzRi9dmXbEkcauOP+85pq8l1na8YDvd16XXSkf8xfLyv/TGfhF6zSQtWpfhV1qn+qp/DFKRucbmOzFW2ddevepQw3Ov7UKhxfJVpzH+mb/++flu9x6/WlnRJGnTED29TWPd+tNGhvga9pzRj9fo+5i6k748r50KdZdQ1oVUv1ipmv9+41HXTL18uMDcyiLm0fp2d/c36NC1YXtKqlNc+cr9B/GwqCQbMzChPZbMbP2bTax1itQqQOH88yOwxDDetWX98sSjI7jHxm3abc1bex7urr+hBiV9hsNrfXQ61VMUrnt6ylmRsPGhqLFQVPUypMZ+UEyGLfc/kKF7Mwq3poccr6ublTrMMdvr5xeWqgsRV8rc6VJVhO8/ZQ3Y+v76RrutYr9vn+LWvq8xuMnTclnZoXBc/EGFCIw5ni/u7DQkPcSgot/FXlkmY1Y3RPv8ZqWbuiXruirSw8mrrMRl/cUhNv7252GIZ6ZEAzPTOoZYHHrJaMWyEcX/2djhveRb/f21MRYSFOfw/urp1rdXyzQeUjgqN73KqcXWh+u7unEl8ZqA3PX6C1z56vG7rX1/Xd6hnecmaGXk3+q4J5tUHzH83sCXhjSLuA+2IojTtFIKygvxeWg7morflDxf1V9TKUdL+47X9VnquaPG/Lqmw2mx48v5mm3tdLQzrH+32iK0nxVYoOx4yJCtPNPRv4vMiUt3VNqFLisMm+Z8z1R1FGnu9f3tRZfZrVULUKp65ZV3QsWiwn0L7/SQyDVLeGp4ZWlgsP1QWtPaiWZYXmIi8y++2drm5os9kUExWu5y9trTGXtXG/5LXZb8SJ169sp7v7Ntb/ruuoDvUql/4Cizu7cVWPEtO4yv4772RAa+skRZEmzSFsVN24ojH+qrilTrzZTtOmbqyev7SVLmlXp0hFXV9e7q7ubFxRL3/lbBSQtxrpvrjRnGUayjLiwVsjSd4b2kEvXd7GrdfUrFhwmYZXBrdRbS8v3eCPCjc29WtesFGxR6OqevSMudx1K5cLuM+RxDBIfXx9J70xpJ1+vfts1Yjx35PaW0UMAqGF1apqxUbpoQuaeVycp2p5/19AVpK6N6yqsxp4qUquH+rq4WdhZm/x6QY2M1hhaJmra8S5c5l25fd5Q/cEvTe0Q/7C6Kcl+LDn6Oqu3k8MnX0Ud/X1/TIaZp9ql7avo6Y1Y4o8bnRxNaPXHB5STONBaY1Zpf0JxESF69qz6qlaBdd7zId2jc+vWnxlp7q6pms9/X5PT5dfHyy6lFK53maz6Y4+jTTjgXP0yIBmmnBLt4Cbu0xiGKQqRUfoyk511cTJxRY4U1laTKMKrVdVqVzZ5hY9M6ilS+tdGcl78yBt+mpEV6/s2x89cVELtYnzftVgBJbHLjzVet8mLlaXtY8zZJ9Wvc0b2Ka2bunp/jxzX83v/25kN68f49NhnRQWYlPl6HA9f6mx68S9PLhoL1xZltopbnmFFy7zbH3Nsqhftbym3XeOvryps8frexbmy+rC7vDF32/jGjG6s0/jYoue+TMSQ/g1d1tqLHod81uFP87WcQVb8GOjwzW4w6mbtf4taqihC8PvSkpEh3thjT1nTs+DrBETWWQoiZFCDGhpDJTGyvbxlfRboRbsQHlv8J7bezfS2mfP1//d2UNhLq5zZgRvNRiV5MPrOpq+Hl5Jujfy/rq257eqpaVP9tc/j/Zz6fukJF0SCk5lKB8ZZmjvT3HX96t8PAy50r+NqQnVyqtf85qKDKOuBIrHchWwrDqxUUpOzZQk9WlWw+RoTjnPC0UsAsnTF7fSyl3HdOxkjt77dy3BN69qp8cvalHmQhHemK9RXDvBp8M665+th9S+XiVFBOI6eCRcZeoJKGGnvngJCvFWldPCujesqoU7jqh7w6qq6+YcYU8aJWnIPKXw5cqo5Nibn+/lHeIUZULjgTOP+sn6prAGEkMYqmXtitqwL02SdH23+vp4znaP9/Xohc113/erFBkWonv6uV4F0VuV6ga2ra1BbT2fgxBhQnl7X/e41KsarTmP9FVWTp6q/lvFy2azuVyF0Flr7SfDOulkdp7h8z9KUi4iVOe38qAok5e0j6+kVbuPmR2Gx85tXlOvTdtsdhgog9hy4Uo9mWN2GMZzIzkYN6KLth44rqY1Y5SVm+e9mAxmZn7plQYYi1v6ZH+35v952zUGVP/2l0aKWhWjVCGS1KYsArApHGb64NoO6tGoqga2ra07yzhJ/tL2cVr8xLla8kR/tXVxknmn+pX16hVti33enUSp8HXww2s7qlxxS3u4sOM+zaubkhx6k7N3XSEyLD8pNMJ5LWrqsg5xCrHoYlzeXqfv8g5x+vj6Tl49his8LQ4jFVxw21MMKzVXmEX//nwpMixUreNiA3MUgUE4S04tx+KLgiSuJmveiMWq1+NvbznLsrH5C9JqFOvM9eZc1bB6BU0wcAJ64RLLpfn5jh6GHdstLlyha8RE6fvbumnJzhS98scmHwQFV1i9RbtxjQqmzGeSTvXWvjx1ozrWr6zzWjCM2lMxftqCfUP3+qVu06tJNf2z9bAPovG9iNAQZefZJbFmIsxFrlNU4duu0BCbGtco27xTq98P+ALNXihW05oxGn1xS/VpVl3f3+r9amPBoGO9yrq9t+/LjQc6M6uj+eKLJDY6XP3/TczK0nPnrgta1dLsh/vqravau9RjW7iYQ6Bz9bR7d2h7vypp3q95DQ3tWk83dE8oddv3h3Yotvqivxs7vIsiQkMUGRaij4eVrdfezF+/VatH+gNvjwiBcfhNGcM/mzHhMzf3bKCbe/qmEqSVcIEJHlb/4j/dc//x9R214/AJJVQtr6ZP/WFyVEWVCw/V/ec1NXSfVv/duMqblW294cubXF9MvFJ0hK47q77GLUjMf6zwSI+mNV1vxS9LAhVqcPZ1duNqmvdoX8kmv17v19/5U6MKzEPzhzFIDAGTefMrLzyEQQH+6KYeCdqdkqFuDavmr+0XFhridJFnjxjwDRpik+z/7ueNIe00qF1tp2XQmZtWMiM7c8y6fw4t9DvuXL9gz/GNPRL0fyv3asfhE3r+EmPXnjvTVZ3j9cb0zcrJc6iHQUsn1HB1OgN3pc7xucBP8FV1CokhEKCu7FS3+GI5JeDa6DvFDUPt1rCqnvXiDbQRRl/cUq9O26T28ZU0sE3BpLBLQmUtTTyq6IhQDWxb2+nrmxtQkAbWFFaoyFZMVLj+uO8cnczJU2w57y0tUbl8hH66vYeWJqboio51vXYcf9OzcTX9vmaf4ft1dv2ic88IfIi+MvzsBI2dnyhJeviC5lq1+6i5AVkAiSGgUy3apy8OvmZEg2qbuFit3ZsqSYqrVE5/jOqlij5a28sKGGrke8PPbqAbuyc4nXv46bDO+n1Nss5qWFXliym88u6/61zCPxTuFXRXRFiIT6p5touvpHbxlbx+HCOvOc8MamnYvpwZ3LGu5mw5pA370vTsJa00fOxSt15fuPhVoAzxLm4B+mDhScOxP+jTrEZ+Q0hcpZLXGx3Vv6kcDikyPETDz07Qfd+TGJIYwqvKhYfqZM6p9Z7axceaHE1RPRtXU2y5cN3br0mBxNDfRr9c0q6OqsdEavP+dI2+uEWZkkJfv/foiFBlZJ86R85r6V9zsaygpJu0c5pW19wth7x27OIK0lQuH6FhJRQuaVm7oiFLWJi9cLOZ95W+Xvrm1nMaasyUjT49plkubOO8l9sbnh3UUtd3c1799dL2dfLXL21Zu6LHx4gIC9FHZVjypnujqqpSPkIpJ7LVLr5SwCzXce1Z9bQkMUWSb4t6WYVZ1a69bWCb2pqx4YA27k/TExe1KHHb2HLhlh+d42skhvCqFy5rrfdmblWXhCo6u7H7y19427e3nCVJyrP7WypYUHRkqFsFI9xSws1vyzqe36yc9s3NXXXX+JWqWiFCjwxopuRjmQUPH9yNumVyf/8mXk0Mva2k3/03N3dVTwteU9zlyfldLjxUV3auq+d/32B8QMUY2rWeNu1P10/L9xiyv9OJhtV0TahiyILgrrrp7OKLu13Zqa7mbT2sxCMn9NTAkm9wval8ZJh+v6enVu0+prMb+f5vzltfARe1qa01e1KVeOSEHjq/mZeO4j2+/W60/j3S6Y+jXERomasIBzMSQ3jVlZ3q6spOzPUIVIPa1dFXCxK19eBxPXyBZ1+snepX0aInzs3/d7Xykbqhe33N3nxII89p6PNhov1b1PDp8bypQ71ilo8IgGS7V5PqZXp9FT9cl658RKieuaSVOtar7POh4uUjw/TGkHaGJYZNa1bQoh0phuzLSD/e3t3sEPLFRIXrC281+LmpTqVyqlPKsDx/ExEWoqedDOOtVTFK+9NONVCe3diYIkaBxmaz+UGqCE+QGMIjAXBfWSp3qgVW9GJBBSurGBWuP0edo4zsvGLnkrkrJMSm5y9tbci+TnMnaX3liraGHtsTZZ3PhdLddo7/rSdaPjJMV3X2XW9WMOjBjb+hYqLCVTk6XEczchQealOrOOtNISnNx8M6afyiJPVsUk31q5Y3OxxJZW8Ig2vOblxNf64/YHYYpiIxBDzUp1l1zd58SNUqRKpvc9/1Ml3ctrZXKsx5ymazGZYUekuj6q6vo2b0WmjuigwLCfj5Lp58xNUrRBoagy//ZkvC2uPmqls5Wm8MaadZmw5qRM8Es8Pxe6EhNo0b3lWTVyWrf8saXq1C6y3t4yupvQ8KGJXmm5u76qGJq5VQtbxu6RV860lXKOW+IrLQXNcoA+ZMXtU5XnM2H9Km/ekac7mxDdT+wtp3c4DBqrl4c+nKfevH13fSssSjal47xqfDukb1b6Idh05ow740nx0T0jVd4vX90t1ePUaXhMoafXFLv7yZ8rbzW9XSG9M360Balga1q2N2OJJI6rzBjGYZX0x56FCvsvYcPenVY1iFEZVh29WN1eo9pypt39AjoexB+aFeTapr8RP9i32+rNcfM65f7epW0hwX572XVuQovkp0gX/XrVz2oc5R4aGWGb5tlsAoLYWg5e767Ze2j8tvhSpufTVXRYWHqmeTai4nm0ZpXCNGU+/r5dNjBip3vhjv7tfYabGTSuWMm6t2R59Galu3kmH7CySx5cI1/f7emnzX2XrrqnZmh+PUxe18V80S/uW2cxoGTDVPX/jwuo66sXt9vX5lW7Wr63/DUeHc3f0a50+VeOIic6tKwzmuUvBrN55REr9Xk9KrpdWKjdK0Ub00dngXvTnEmjeXZmN2m3N1K0fr21vOUnShtZ8CdS0oKyg85DS2XLjaxVdSuI+XanCVlef/hf17M3Zh61omRxKcWsfFau7DfVW/anTpG0N1K0fruUtba0jneNapDSBdEqpo+v3n6Oc7umtkr4ZmhwMnGEoKv3ZN13pasydV+1Mz9fiFrpXzrls5WnUrW+fLma88c7lb6OXzGzvrpi9PLRD91Yiu3ggJfsqIOS4lKcv98S93na1N+9M1gMTQNLVio9S8VoySjmSYHYohwtwdshOgLmhVM79gScPqZS9WE+h5sDtz/uF7JIbwaxUiw/Te0A5mh2G6khY5R8naxMUqJjJM6Vm5qh0bVer8vh6NqmnuI31ls0k1K0aV6dhGzfF4dEBzvTptkzE7Q0BqHRer1n5YIRLW9fylrXTlxwslSSNKWI8x0N3Tr4n+2XpYmTl5esTDZZusrkXtsq9Z7C4Hk7hNQWIIIKiViwjVT3f00JwtB3V+y1oKcaEHsVZs2RLC4niU4Nuk23s3VOu4ihr2xRLXXsP3rYXwywgmgXSv2zmhisbe1EV7jp3UVZ2Dd73i1nGxWvpkf2Xn2lXZD9dHdUX9quX18AXNNHXtPt16DkNAAxmJIQC/d07T6vpuyS5JUs2K7hcDalYrRs1qxRgdls/YbLaAXOcqOsL8r6i2dWO15t/qiAAKssqyL2YrHxmm8r6tQ+dzd/VtrLv6NjY7DHgZA8QBFZ3nFxMVJkeQtuT747se2auBKkeHy2Y7NawykFrlg81N/5amDw2x6dEB5g/LeuSC5qocbc3lQ5686L951Tf3bGDakPLmftyo4qno8FBVq3CqdygsxGaJde8AoKzMb44FLCAkxKaejatp3rbDqh4TqV5NqmvH4RNmh2UJ/jARvmH1Clr0xLnKzLYrNjpcdnvBzNAf3oNPWfjzeHJgC3WsX1kJVaPVuIb5CUfPJtW0YvR5avD4VLNDKeKGHvWVmZOnzNw83dmnsXLzzGkRuahNbX21MFEbktP04PllS+b9pQJlSIhNY2/qqp9X7NG5LWoE7BBCAMGFxBD412c3dNaypBS1qF1R5SN996dB55YxIsNCFRkW3EtHdG1QRUt2ppgdRpmEh4boEossYH9accmK2ctmRIaF6p5zm+T/OzUjx6fHj/n3Olk+Mky/3d1TmTn2oFq+pU3dWLVhjT0AAYShpMC/ykWEqleT6j5fsB4win/0tUi1Y8uZHYIhru9WL//nno1LX0c1EPT7d06ZzSZd3eW/92+z2dxKChnujWD22pVty7wPszvX29WtZG4A8AoSQwAF+EtyAf/y+IXNJUnlwkP15EDX1hy1uvNb1tJD5zfV4A5xeuGy1maH4xNvDmmnpwa20Pibz1LLOr4vYe/v/CEfvqfffwVGBneMMzGSwDWkU11d0dG/K7k+f2krVY4OV1iITZ8M62R2ODAIQ0kBIIB9MqyTbvtmudlh6LbejdS9UVVVrRCpuEqB0WMYEmLT3f2alL5hCer42WdRuXyEbulFufpA0cpJcn9770Y6npX777p8zU2IKvDZbDYNaldbP6/YU+S5cuGu9byb3evesHoFzX2kr3LyHKrCHNuAQY8hPOIvBQKAYHdBq1r6+Y7uZochSWpbt1LAJIVGiY4IkwtLZwKGefjfRdhtNjldfqB8ZJieGdRKLw9uS1EdH2tVp6LPqvyGhNh0W++yNfLERIWTFAYYegwBk3FPCAS3C1vX1pS1+8wOA0Hizj6N1CG+kiqXj1CL2gwHtoovbuysbg2r+rTh/fELW+j+/k3VfPQ0nx0T1kaPIQD4MRoW/N91Z/1XxKVXk+AoYgPz2Gw29WhcjaTQYro0qOLTiuinRbk4dBXBgR5DoBhmj993ByN7PVMxytxLYGRYiOKrlNPulJOKDAtRt4ZVTY0H5ujeqKpeu6KtNh9I14ieDcwOB4APhPDFDQsiMQQQcAp/33aIr5T/8/kta2r6hgOSpOu61fdhVEXZbDZ9NbyrJq3Yq/4tawbVGnD4j81m01Vd4kvfLgj6hwP9HcaY3BgF6+hQr5KiwkOUmWNXzYqRqhDBuQHzcRYCKCA0ACph2Gw2jb/lLI1bkKgLW9dSjYpR+c+9ckVbta+3S01rxKhT/comRnlKw+oV9NC/xSC8pXmtiooIC1F2rl0xUWGqHB18xQKGdauvbxYlSZLu79/U5GgQrJ0lo85tqt9WJysnz6Ebu5vbMBXMru5cekOMt8VEhev7W7tr9uaDGtimtkIC4LvXSH40aCugkBgCKKBDvcoqFx6qkzl5qhMbpRgT5jwY4ezG1XS2k0XHq5SP0J19ilbiC2TlI8P09Yiu+nP9fl3Sro7CQ4Nvevmo/k2UkZ2nqPAQ3dyL4ZowR72q0Zpyby/tOHRC/VvUMDucoBNXqZyevaSV+jSrbnYokqT28ZXU/owRLVb0/KWtzA4BPuSfd3wAvKZCZJgm3t5dc7ce0oBWtViaJEB0a1g1qOcwVq0QqTevamd2GF4VGsrfqj9oWjNGTWv6ZkkCFFS/arTOa1nT7DAsr1x4qK7pGq/WdWJ1eYc4s8OBD5EYAiiidVysWsfFmh0GADdUiAxTj0ZVtWD7Ebde98B5TfXWX1skSe8P7eCN0Irwp+JeQLBZ8Fg/1rAMUiSGABAgqsdEmh0CTDZueFdtOZCuxTtT9MLvG1x6ze29GykmKkwVIsN0cdvaXo4QgNWRFAav4JtoAliMGesWITA9fEEzRYWfuqzfd24Tk6OBGSLCQtQ6Ljb/PHD1NcPPbqAhneMZOg74CWd/qlVI6FBGJIaACS5rXyf/5zt6NzIxEvi7MxsW6lctr7/u760fb+uuUf1JDOF/elukKAhgdYWHY/doVFVfj+iqW89pmP/Y3X2Dp9BavSrRZocQEOiqAEzwxMAWKh8ZphoxURrcMU6Ldro3JwjBrX+LGpqx8aBqVYxS/xYFCynEV4lWPF+Q8DNVykeoWoUIPTagudmhAH5pwshukqT4ytFKz8yRzWbTrb0blvIq/3ZLzwb6fN5O2WzSbTSyG4LEEDBBjZgovXh5G7PDgJ/68LqOWrj9iFrHxSoijIEf8H8rRp9ndghAQIiNDtfLg9uaHYZPPHphc3VOqKI6laLUtm4ls8MJCCSGAOBnIsNC1acZa6ABAIJXeGiIBrSuZXYYAYWmZiAAUC4CAAAAZUFiCI9QuA4AAAAIHCSGAAD4gcY1KpgdAgAggJEYAgBgUa9feaqIRIXIMD17SSuTowH8G6Od/Efh5TjgGxSfAQDAooZ0jlfXBlUUHRGm6jGRZodjGO75AMB6SAwBALCw+lXLmx0CACAIMJQUAAAAAIIciSFQDAcD3AHAK5jqBQDWQ2IIWEDDagwVAwAAgHlIDAELGNI5XlXKR0iSRvZqYHI0AAprcEbjTdcGVUyMxDUMeAAAuIviM4AF1KwYpdkP99H+1Ew1rs5aZYDVfHhtR93y1VKFh4Xo1SvaFrvdTT0SNG5Bou8CAwDAICSGgEVUjApXxahws8MA4ETLOhW14PFzS93uyYEttOfoSc3YeMAHUQEAYByGkgJ+qmbF/9Y069+ypomRADgtPDREg9rVNjsMAADcRo8h4KfG33KWvl20S72bVVe1CoGz8DUAAAB8j8QQ8FONa8To2UtamR0GAAB+ISKUgXJASfgLAQAAPkXRVPjK0K718n9+9MLmJkZiXZFhpAM4hR5DoBiUewcAwL89M6il2sTFqmH18mpeq6LZ4VjSIwOa64XfN0iSRvVvYnI0MBOJITxiMzsAAACAUkSFh+ras+qVvmEQu7F7fYXYpJw8u27skWB2OJLE78wkJIYAAABAkAoLDdHwsxuYHUa+DvUqabhFEtRgQ2IIAAAAwHQfX99JA1rXMjuMoMVsUwAAAMCPVCkfYXYICEAkhgAAGIjCVQC87e5+jfN/PrPyqr+zUcTCVAwlBQAAAPzIJe3qKD0zV4fSs3RzL+vMD4R/IzEEAACA37qhe319vTBJUvBUs7TZbLq+W32zw0CAITEEAACA37qzT2MlHsmQw+HQXX0bl/4CAE6RGALFCAlhoDsAeANXVxipVmyUvh7R1ewwAL9H8RmgGNd0iVfYv8lhz8bVTI4GAFzXr3mN/J9joqzXBkx9HgCwHut9WwAWUbVCpH66o4eWJaboio51zQ4HAFxWp1I5fXhtR83ZclA39aAwBQCgdCSGQAnax1dS+/hKZocBAG4b2La2BratbXYYAAA/wVBSAAAAAAhyJIYAAAAAEORIDOGRelWizQ4BAAAAAaRl7YpmhxDUSAzhspcHt5EkRYaF6KV/fwYAAAA89cG1HdQuvpIev7C54ul4MBXFZ+CyoV3rqV3dSoqJCuMPFwAAAGV2cds6urhtHbPDgEgM4aaWdejiBwAAAAINQ0kBAAAAIMiRGAIAAABAkCMxBAAAvuUwOwAAQGEkhgAAAAAQ5AIiMUxJSdFDDz2kxo0bKyoqStWrV1ffvn31zz//FNhu8eLF6t+/v2JiYlSxYkUNGDBAq1atMidoAEBActAdBgDwQ35flTQpKUl9+vTR8ePHdfPNN6tp06ZKTU3VmjVrtHfv3vztFi1apD59+iguLk7PP/+8JOmDDz5Qr169tGDBArVpw7p8AAAAAIKT3yeG119/vXJzc7VmzRrVrl272O3uvfdeRUREaO7cuYqLi5MkXXXVVWrRooUefPBBTZ8+3VchAwAAAICl+PVQ0rlz52revHl65JFHVLt2beXk5CgjI6PIdtu2bdPSpUs1ZMiQ/KRQkuLi4jRkyBDNmDFD+/fv92XoAAAAAGAZfp0YTp06VZJUr149DRo0SOXKlVP58uXVtGlTffvtt/nbLV26VJLUvXv3Ivvo1q2bHA6Hli9f7nEctWvXLvBfkyZNPN4XAAABz2Z2AACAwvw6Mdy8ebMkaeTIkUpJSdFXX32lL7/8UhERERo2bJjGjh0rSUpOTpakAr2Fp51+7Mz5iAAAAAAQTPx6jmF6erokKSYmRrNmzVJERIQk6bLLLlPDhg31xBNP6MYbb8wfXhoZGVlkH1FRUZLkdAiqq/bt21fg32lpaYqNjfV4fwAAAADgS37dY1iuXDlJ0tChQ/OTQkmqXLmyLrnkEu3fv1+bN29WdHS0JCkrK6vIPjIzMyUpfxsAAAAACDZ+nRjWrVtXklSrVq0iz52uUHr06FHVqVNHkvPhoqcfczbMFAAAAACCgV8nhl27dpUk7dmzp8hzpx+rUaOGunTpIklauHBhke0WLVokm82mTp06eTFSAACQz2F2AACAwvw6MbzssssUExOjb7/9VsePH89/fN++ffrll1/UtGlTNW7cWI0bN1bnzp01ceLE/EI00qmiNBMnTlS/fv2c9joCAAAAQDDw6+IzlStX1htvvKHbbrtN3bp104gRI5Sdna2PPvpI2dnZev/99/O3fffdd9W3b1/16tVL99xzjyTp/fffl91u15tvvmnWWwAAAAAA0/l1YihJt956q6pVq6bXXntNo0ePVkhIiLp3764JEybo7LPPzt+uR48emj17tp566ik99dRTstls6tGjhyZOnKh27dqZ+A4AAAAAwFx+nxhK0uDBgzV48OBSt+vevbtmzpzpg4gAAAAAwH/49RxDAAAAAEDZkRgCAAAAQJAjMQQAAACAIEdiCACAgSpHR5gdAgAAbiMxBADAQOc0qa6WtStKkq7qXNfkaAAAcE1AVCUFAMAqQkJsmnRnD+09dlINq5U3OxwAAFxCYggAgMGiwkPVqHoFs8OwrKoVGG4LAFbDUFIAAOBTI3o2yP/58g5xJkYCADiNHkMAAOBTXRKq6KsRXZV4+IQGdyQxBAArIDEEAAA+17tpdfVuWt3sMAAA/2IoKQAAAAAEORJDAAAAAAhyJIYAAAAAEORIDAEAAAAgyJEYAgAAAECQIzEEAAAAgCBHYggAAAAAQY7EEAAAAACCHIkhAAAAAAQ5EkMAAAAACHIkhgAAAAAQ5EgMAQAAACDIkRgCAAAAQJAjMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkAszO4BA5HA4JElpaWkmRwIAAAAgWJ3OR07nJyUhMfSC9PR0SVJ8fLzJkQAAAAAIdunp6YqNjS1xG5vDlfQRbrHb7UpOTlZMTIxsNptPjtmkSRNJ0tatW31yPAQ2zicYifMJRuJ8gtE4p2Akq51PDodD6enpqlOnjkJCSp5FSI+hF4SEhKhu3bo+P6YkVaxY0afHRWDifIKROJ9gJM4nGI1zCkay4vlUWk/haRSfAQAAAIAgR2IIAAAAAEGOOYYAAAAAEOToMQQAAACAIEdiCAAAAABBjsQQAAAAAIIciSEAAAAABDkSQwAAAAAIciSGAAAAABDkSAwBAAAAIMiRGAIAAABAkCMxBAAAAIAgR2IIAAAAAEGOxBAAAAAAghyJIQAAAAAEORJDAAAAAAhyJIZ+zm636+2331bz5s0VFRWl+Ph4Pfjggzpx4oTZocGitmzZoqefflrdunVT9erVFRMTo/bt2+vFF190et5s3rxZl112mSpXrqzy5curV69e+vvvv02IHP4iIyNDDRs2lM1m0913313kec4plCYlJUUPPfSQGjdurKioKFWvXl19+/bVP//8U2C7xYsXq3///oqJiVHFihU1YMAArVq1ypygYUnHjx/XSy+9pDZt2igmJkbVqlVTjx49NG7cODkcjgLbcj7hTC+//LKGDBmS/32WkJBQ4vbunD/Jycm64YYbVL16dZUrV06dO3fWxIkTjX8TbrI5Cv9VwK/cd999eu+993T55Zfrwgsv1MaNG/X++++rV69emjFjhkJCyP1R0GOPPaYPP/xQl1xyibp166bw8HDNmjVLP/74o9q2batFixapXLlykqTt27era9euCgsL06hRoxQbG6vPPvtM69at0x9//KH+/fub/G5gRQ899JA++eQTHT9+XHfddZc++OCD/Oc4p1CapKQk9enTR8ePH9fNN9+spk2bKjU1VWvWrNEFF1yga665RpK0aNEi9enTR3FxcfkNEB988IEOHjyoBQsWqE2bNma+DViA3W5X7969tWDBAt14443q1q2bMjIy9N1332nJkiV65JFH9Oqrr0rifEJRNptNVapUUceOHbV8+XJVrFhRiYmJTrd15/xJSUlR586ddfDgQT3wwAOqW7euJkyYoDlz5ujLL7/U8OHDffH2nHPAb61bt85hs9kcgwcPLvD4e++955DkGD9+vEmRwcqWLl3qOHbsWJHHn3zySYckx/vvv5//2JAhQxwhISGOlStX5j+Wnp7uqFevnqNp06YOu93ui5DhR5YvX+4IDQ11vPnmmw5JjrvuuqvA85xTKE3Pnj0ddevWdSQnJ5e4XZcuXRwxMTGOPXv25D+2Z88eR0xMjOO8887zdpjwAwsWLHBIcowaNarA41lZWY4GDRo4YmNj8x/jfEJh27dvz/+5VatWjvr16xe7rTvnz8MPP+yQ5Pj111/zH8vNzXV06dLFUaVKFUd6erpxb8JNdCf5se+++04Oh0OjRo0q8PjIkSMVHR2tb7/91pzAYGmdO3dWbGxskcevvvpqSdK6deskSSdOnNCvv/6qPn36qH379vnbVahQQbfccou2bNmipUuX+iRm+Ie8vDyNHDlSAwYM0ODBg4s8zzmF0sydO1fz5s3TI488otq1aysnJ0cZGRlFttu2bZuWLl2qIUOGKC4uLv/xuLg4DRkyRDNmzND+/ft9GTosKC0tTZJUp06dAo9HRESoWrVqKl++vCTOJzjXsGFDl7Zz9/yZMGGCGjVqpEGDBuU/FhoaqnvuuUcpKSmaOnWqcW/CTSSGfmzp0qUKCQlR165dCzweFRWl9u3bc4MFt+zZs0eSVLNmTUnSmjVrlJWVpe7duxfZtlu3bpLEOYYC3n77bW3atKnA0NEzcU6hNKdviOrVq6dBgwapXLlyKl++vJo2bVqgsfP0eVLcueRwOLR8+XLfBA3L6tq1qypVqqTXXntNEydO1K5du7Rp0yY9/vjjWr58uZ599llJnE8oG3fOn3379mnv3r3533mFtz1zf2YgMfRjycnJqlatmiIjI4s8FxcXp8OHDys7O9uEyOBv8vLy9MILLygsLEzXXnutpFPnl6QCrV+nnX5s7969vgsSlrZz504988wzevrpp4udoM85hdJs3rxZ0qmRLykpKfrqq6/05ZdfKiIiQsOGDdPYsWMlcS7BNZUrV9avv/6qKlWq6KqrrlL9+vXVokULffjhh/r55581cuRISZxPKBt3zh+rn2thph0ZZZaRkeE0KZRO9Rqe3iYiIsKXYcEPjRo1SgsXLtRLL72kZs2aSVL+8C1n59iZ5xcgSbfffrsaNmyoBx54oNhtOKdQmvT0dElSTEyMZs2alf/9ddlll6lhw4Z64okndOON/9/e3cdEXcdxAH8fJ4rHHecZM+7ORFdnpRikHBRoSgU6KAiLmSVKIfaAVmjZw3IdpTWXjaZATag/0GkbWmE5KxZjREJOJ6TLzq7uTiWGwiH04IHAtz8cl+fxdIHdwb1f229sn+/397vPb/sM+Nzv4buKtURDJpfLERYWhuTkZMTExMBms6GgoACPPfYYysrKEB8fz3qiYXGnfry91tgYjmIymQznz5/vc8xutzvmEA1k06ZNyM/Px5o1a/Dqq6864r2109HR4bIP64uutnv3bpSXl6Oqqgr+/v79zmNN0WB634i8fPlypy81VSoVkpOTUVJSAqPRyFqiITlx4gRiYmKQl5eHp59+2hFfvnw5wsLCkJWVhV9//ZX1RMPiTv14e63xVtJRTKPRoLm5uc/iamhoQHBwMK8W0oAMBgM2b96MJ554Ah9++KHTWO/D+n3d0tAb6+tWCPItHR0dWL9+PRITExESEgKTyQSTyQSr1QoAaGtrg8lkwsWLF1lTNKipU6cCAEJCQlzG1Go1AKC1tZW1REOSl5cHu92OtLQ0p7hMJkNSUhKsVissFgvriYbFnfrx9lpjYziK6fV69PT04MiRI05xu92Ouro6REZGeigzGg0MBgNyc3OxatUqFBcXQyKROI3PmTMHEyZMQE1Njcu+tbW1AMAaI1y6dAkXLlzAwYMHodPpHNuiRYsAXLmaqNPpUFxczJqiQfW+TK33ZVhX641NmTIFer0eAPqtJYlEgnnz5l3HTGk06P1Hu7u722Wsq6vL8ZP1RMPhTv2o1WpotVrH37xr5wIe/jvosYUyaNh+/PHHAdcx3LVrl4cyI2+Xm5srAIj09HTR3d3d77xHHnlE+Pn5ibq6Okesd805nU7HNedIdHZ2itLSUpetsLBQABBLliwRpaWlwmg0CiFYUzQwm80mFAqF0Gq1Tmt5/f777yIwMFDMnDnTEYuMjBQKhUI0NDQ4Yg0NDUKhUIj77rvvf82bvNMLL7wgAIitW7c6xVtbW4VarRYqlUp0dXUJIVhPNLDB1jF0p35efPHFftcxnDRpkmhvbx/x/IdKIoQQnmtLabjWrVuH/Px8pKamIjExEadOncL27dsRGxuLiooK+PnxojA5KygowNq1azFt2jS89dZbLjVy4403Ij4+HsCVtXmioqLg7++PnJwcBAUFoaioCCdOnMDBgwexePFiT5wCjQIWiwUzZsxAdna20/IVrCkazM6dO/HUU09h9uzZePLJJ9HZ2YkPPvgAjY2N+PLLL5GQkAAAOHz4MOLi4jB16lSsW7cOALBjxw40NTXh+++/R3h4uCdPg7yA1WrF3Llz0draiscffxyxsbGw2WwoKiqCxWJBQUEBnn32WQCsJ3K1a9cux2MRO3bsQGdnJzZs2AAACA0NRXp6umOuO/XT0tKCefPmoaWlBevXr4dWq8XevXtRWVmJ4uJiZGZm/o9neQ2PtaQ0Irq6usS2bdvEzJkzxfjx44VGoxE5OTlO37QSXW3VqlUCQL/bwoULneb/9NNPIjk5WSiVSjFx4kQRGxsrysvLPZM8jRpms1kAENnZ2S5jrCkazP79+0V0dLSQyWRCLpeL+Ph4UV1d7TLv8OHD4t577xWBgYFCLpeLhIQEcezYMQ9kTN7KZDKJlStXCq1WK8aNGycUCoVYsGCB2L9/v8tc1hNdbeHChUP+X0kI9+rn3LlzYsWKFeKGG24QEyZMEHfeeaf45JNPrvMZDY5XDImIiIiIiHwc7zMkIiIiIiLycWwMiYiIiIiIfBwbQyIiIiIiIh/HxpCIiIiIiMjHsTEkIiIiIiLycWwMiYiIiIiIfBwbQyIiIiIiIh/HxpCIiIiIiMjHsTEkIiIiIiLycWwMiYiI3GAwGCCRSFBZWenpVNyyYMECREREQAjh9r719fXw8/NDcXHxdciMiIi8ARtDIiLyWRKJxK1ttDWDvUpLS1FdXY3NmzdDIpG4vX94eDgefvhhbNq0CX/++ed1yJCIiDxNIv7LV4dERERjgMFgcIm9//77aGtrw/PPP49JkyY5jWVkZEAul6O5uRnTpk2DTCb7fxIdBiEEbrvtNvj7++PkyZP/+ThHjx6FXq/Hli1b8Nprr41ghkRE5A3YGBIREV1l+vTpsFqtMJvNmD59uqfTGbby8nIkJCRg69at2Lhx47CONWvWLPz1118wm83w8+NNR0REYwl/qxMREbmhr2cMLRYLJBIJMjIycPr0aaSmpkKlUkGpVCIlJQUWiwUAYDKZkJaWhuDgYMhkMiQmJuK3337r83NaWlqwceNG3HrrrQgICIBKpUJSUhJqa2vdyvejjz4CACxbtsxlrL29Hbm5uQgLC4NCoYBCocDNN9+MRx99FMePH3eZv2zZMpw5cwbl5eVu5UBERN6PjSEREdEIMZvNuPvuu9HW1obMzEzExsbiwIEDuP/++3Hq1ClER0ejubkZGRkZWLRoEQ4dOoSkpCT09PS4HGfu3Ll49913odVqkZ2djdTUVNTU1OCee+7BF198MaR8hBCoqKiARqNBaGioy9iSJUtgMBgQFBSErKwsPPPMM4iKikJlZSV++OEHl+PFxsYCABtDIqIxaJynEyAiIhorqqqqsG3bNmzYsMERW7NmDYqKihATE4PXX3+9z7GysjKkpqY64itXrsS5c+fw6aefOsW3bNmCqKgoZGVlwWKxICAgYMB8jEYjLly4gAcffNBl7OTJk6ipqcFDDz2Ezz77zGmsu7sb7e3tLvvo9XrHeRIR0djCK4ZEREQjZMaMGcjJyXGKpaenAwAmT57sMrZixQoAV5aD6FVXV4fq6mqkpaU5NYUAoFar8dJLL6GpqQnffvvtoPmcOXMGABASEtLvnIkTJ7rEpFIpVCqVS1ypVCIgIMBxXCIiGjt4xZCIiGiEhIeHu7yURa1WAwDuuOMOlzGNRgMAaGhocMRqamoAADabrc+3pv7yyy8AgJ9//hlJSUkD5tPS0gIAfTZ5s2bNQkREBPbu3Qur1YqUlBTMnz8fkZGRGD9+fL/HnDx5Mpqamgb8XCIiGn3YGBIREY0QpVLpEhs3btygY5cvX3bEbDYbgCvP8Q30LN9Q1hPsvRpot9tdxqRSKSoqKvDmm29i3759ePnllwEAQUFByMjIwNtvv43AwECX/S5dutTnVUYiIhrdeCspERGRF+ltIN955x0IIfrd3njjjUGPNWXKFAD/NpvXUqlUyMvLw9mzZ3H69Gns3LkTOp0O27dvx9q1a13m9/T04OLFi47jEhHR2MHGkIiIyItER0cD+PeW0uGYPXs2pFIpjEbjoHN1Oh2ysrJQVVUFuVyOzz//3GWO0WiEEAIRERHDzo2IiLwLG0MiIiIvotfrERMTgwMHDuDjjz/uc05tbS3+/vvvQY+lVCoRERGB+vp6dHR0OI2ZzeY+11BsbW1FR0cHZDJZn58LAHFxcUM5FSIiGkX4jCEREZGX2bNnD+Li4pCZmYnCwkLo9XooFAqcPXsWR48ehclkQmNjY5/N27WWLl2KY8eOobKyEosXL3bE6+vrsXTpUuj1etx+++3QaDQ4f/48ysrKcPnyZcczh1f75ptvIJVKkZKSMqLnS0REnscrhkRERF4mNDQUx48fh8FgQFdXF0pKSpCfn48jR45gzpw5KCkpQXBw8JCOlZmZCX9/f5SUlDjFIyMj8corr0AqleKrr77Ce++9h6+//hp6vR6HDh3Cc8895zT/jz/+QFlZGR544AHcdNNNI3auRETkHSRCCOHpJIiIiOj6Wb16Nfbs2QOLxfKfXxxTWFiI7OxsfPfdd5g/f/4IZ0hERJ7GxpCIiGiMa2xsdLxcJi8vz+397XY7brnlFtx1113Yt2/fdciQiIg8jc8YEhERjXFqtRq7d+92vFVUIpG4tb/VasXq1auRkZFxfRIkIiKP4xVDIiIiIiIiH8eXzxAREREREfk4NoZEREREREQ+jo0hERERERGRj2NjSERERERE5OPYGBIREREREfk4NoZEREREREQ+jo0hERERERGRj2NjSERERERE5OPYGBIREREREfm4fwBLjL0f1S65EQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], title=\"Lightcurve\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Zomming in.." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5oAAAKOCAYAAADHxWayAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABxN0lEQVR4nO3daXgUVfr38V+HkISQEIIokBAIiwuLyC57iIKKCIJsoiKy6bjgAiMwKoLIqDjijjuIgiCDojACCiIIyo4o8hcRlCACIrKHkISQel74dEtId9LpVHdXdX8/18WlqaquPpWcWu469znHYRiGIQAAAAAATBIR7AIAAAAAAEILgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAhICOHTvK4XB4/e+2224LdpEtbcWKFXI4HOrYsaPXn5k+fXrAfre33XabHA6Hxo8f79X2zvqxYsUKU74/NTVVDodDGRkZpuwPABB6IoNdAABA6V1zzTVKTU0tcpsjR45owYIFkqTq1asHoFTA3zIyMlSrVi3VrFmTABUAwgCBJgCEgDFjxhS53jAMde/eXZLUrFkzjR07NhDFCis9e/ZUq1atlJCQEOyiFPLuu+8qKytLNWrUCHZRAABhgkATAMLAE088oU8++USJiYn64IMPFB0dHewihZyEhARLBpmSCDABAAFHH00ACHHLli3To48+KofDoZkzZ3pMsd2yZYtuvvlmJScnKyoqSlWqVFHPnj319ddfe9z3H3/8oZEjR+qiiy5STEyMKlasqA4dOujdd9+VYRiFtnf2LZw+fbq2bNmiHj166LzzzlOFChV05ZVXauPGja5t3377bTVr1kzly5fXBRdcoDvuuEPHjh3zWJavv/5affr0UVJSkqKiolS1alX17dtX3377bZG/m/T0dMXHx6tixYq64oortGzZMo/bF8VTH82zlx87dkz33XefUlJSFB0drTp16uixxx5TXl6eT9/praL6aO7fv19Dhw5VtWrVFBMTo3r16mnSpEk6c+aMV30xFy1apPbt2ys+Pl4VKlTQNddco2+++abANuPHj1etWrUkSbt37y7QX9hdfVy4cKG6d++uqlWrKioqSklJSUpPT9eLL77o9XFJnvuSnr38v//9r9q1a6eEhAQ5HA4dOnRI0dHRKl++vE6cOOF2vzk5OUpMTFSZMmW0d+/eAusOHjyoMWPGqEGDBoqNjVV8fLxatWqlt956y+05AQChikATAELYb7/9pv79+ys/P18PP/ywrr32WrfbzZs3Ty1atNCsWbN0/vnnq3fv3qpdu7Y+/vhjdejQQa+++mqhz/z0009q0qSJnn32WZ06dUrXX3+9WrdurfXr12vgwIG65ZZbPD5Yb9iwQa1atVJGRoY6d+6sGjVq6IsvvlB6erp+/PFHjRgxQnfeeafOP/98XXXVVTpz5ozeeOMN3XDDDW73N2nSJLVv317z5s1TSkqKevTooerVq2vu3Lm6/PLL9b///a/QZ2bMmKHOnTtrxYoVql+/vq699lodOnRIV111lebNm1eC37J3jh49qtatW2vOnDlq1aqVOnTooL1792r8+PG66667TP8+b/z222+6/PLLNXXqVEVEROj6669Xamqqxo8fr379+hX7+ddff13dunWTJHXp0kUXXHCBPvvsM3Xo0EE//fSTa7vGjRurV69ekqTy5ctr4MCBrn+9e/d2bWcYhoYNG6brrrtOCxcuVK1atdS7d2/Vr19f27Zt03333Wfq8T/99NPq16+f8vPz1bVrVzVr1kyRkZHq2rWrsrKy9MEHH7j93IIFC3T06FF16tRJycnJruXfffedGjVqpEmTJunkyZO66qqr1Lp1a/3www8aNmyYbrnlFlPLDwCWZgAAQlJubq7RunVrQ5LRqVMn48yZM26327dvnxEfH29IMl577bUC6+bNm2eUKVPGiIyMNL777rsC65o3b25IMgYOHGjk5OS4lv/4449GUlKSIcl45ZVXCnxm4MCBhiRDkvHCCy+4lufn5xu33HKLIclo0KCBUbVqVWP79u2u9Xv27DEqV65sSDJWrFhRYJ+ffPKJIcmoUaOGsWnTpgLrFixYYERGRhoJCQnGoUOHXMt/++03o3z58oYkY+bMmQU+88wzz7jKmJaW5vZ35s7bb7/t+n24Wy7J6Nmzp3Hq1CnXurVr1xplypQxHA6HsWvXLq+/y/l7HDdunFfbp6WlGZKM5cuXF1jerVs3Q5LRq1evAuXavn27Ua1aNVe5zy1bzZo1DUlGTExMgb9Hbm6u0aNHD0OSMWjQoAKf2bVrlyHJqFmzpsdyOn/3KSkpxjfffFNgXV5enrFgwQKvjuvccnoqf9myZY3PPvus0Oc+/vhjQ5LRsWNHt/u97rrrCtWdkydPGqmpqYYk49lnny1wvv32229G06ZNDUnG1KlTPR4/AIQSAk0ACFHDhw83JBnVq1c3/vjjD4/bPfbYY65g1B1nUDNkyBDXsi+//NKQZFSqVMk4fvx4oc84g6s6deq43Vfbtm0Lfebbb791BTZvvvlmofX333+/IckYP358geUtWrQwJBlffPGF2/I7fw9nB7bOY+7SpYvbzzRr1sz0QDM+Pt7t36Fr166GJGP69Olef5cZgeauXbsMh8NhREdHG/v37y/0mVdeeaXYQHP06NGFPrdhwwZDkpGamlpgeXGBZm5urnHeeecZkowvv/zS5+NyV05P5b/jjjs8lqVy5cqGw+Ewdu/eXWDdH3/8YURGRhrx8fHGyZMnXcunTJliSDJuvfVWt/vctGmTIclo0qSJV8cGAHZH6iwAhKD3339fL730ksqWLav//ve/Ov/88z1uu3LlSknSwIED3a4fPHiwJOnLL78s9JmePXsqPj6+0GduueUWlS1bVj///HOhPmySdNVVVxVaVqdOHa/W79u3z7Xszz//1IYNG1S5cmWPc1526NBBkrR27VrXMuex3HzzzW4/448Ux2bNmrn9O1x88cWSCh5XIKxatUqGYahDhw6qWrVqofU33XRTsfvo0qVLoWW+Hs/GjRt16NAh1a1b1/U387cePXq4XV62bFn1799fhmFoxowZBdbNnj1beXl56tOnj2JjY13LFy9eLEnq06eP2302adJEcXFx+u6775SdnW3OAQCAhRFoAkCI2bZtm4YNGyZJeuaZZ9S6desit3cGgs7BWs5Vu3btAtt585nIyEjXSKfuAk1383jGxcV5tT4nJ8e1bNeuXZL+CjgjIiIKDDLj/Od88D948GCh8nsaGKm4OUl9kZKS4na5M1A/+7gCwfk7qFmzptv13oyi6+6YnMeTm5tbovL8+uuvkv4OVAPB07FLf794OTfQfPfddyVJt956a4Hlv/zyiySpW7dubuthRESEMjMzlZ+fr0OHDpl5GABgSUxvAgAhJDMzU7169VJmZqb69eune++9N9hFcisiouj3nMWtdzpz5owkqVKlSq5BaTy55JJLvCucn3h7TIHmcDg8rjPr71TacvgqPz+/yPXlypXzuK5Zs2Zq0KCB/u///k/r1q3T5Zdfrm3btmnTpk1KTU0t1OrqrIvdu3dXYmJikd/L9EIAwgGBJgCEkKFDh2rbtm2qV6+e3nrrLa8+k5ycrB9//FG//PKL2rZtW2i9s6Xm7NE1nf/vXHeuvLw8VwvV2Z8zm7NFLTY2VtOnT/f6c8nJydq+fbt2797t9piLms4jVCQlJUn6uyXxXMePH9eRI0cCVh5nC/jZo9UWJyoqStJfL1jOlZeXp/3795eqTLfeeqtGjx6td999V5dffnmB1sxzA+OUlBRt375d9957r6688spSfS8AhAJrvl4FAJTYCy+8oDlz5qh8+fL68MMPC6SiFsXZMuN8iD7X22+/LUlKS0sr9JmPP/7Y7VyD7733nk6fPq06der4NdBMTk5Ww4YN9dtvv2ndunVef85Z/lmzZrld/95775lSPitr166dpL/6qx44cKDQ+tmzZ5v6fc6g0NOcoc2aNdN5552nHTt26KuvvvJqn85gefv27YXWLV++vNTzk95yyy2KiIjQnDlzlJ2d7aoX56bNStI111wjSR6nRAGAcEOgCQAhYM2aNXrwwQclSW+++abq1avn9WeHDRumuLg4ff7553rzzTcLrFuwYIFmzpypyMjIAmm4HTp0ULNmzXT48GHde++9On36tGvdjh079PDDD0uSRo4cWZrD8sqECRMkSf379y8wYJFTbm6u/ve//+nHH390LRsyZIhiY2O1cOHCQgHV888/r40bN/q30BZQu3ZtXXvttcrOztbw4cML9BHduXOn6/dqlvPPP19RUVE6cOCA25bSsmXLasyYMZL+GqRpy5YtBdafOXOm0Hyo6enpkqRXXnlFf/zxR4HyDx8+vNRlTkpKUqdOnXTo0CE9+OCD2rNnj9q2bVtg4Cqn22+/XdWrV9frr7+up556ym2f2x9++MEvc7QCgBWROgsAIaBPnz46ffq0EhMT9dlnn+mzzz4rcvvKlSvrmWeekSRVq1ZN77zzjvr376/bb79dr776qurVq6eMjAytXr1aDodDU6ZMUaNGjQrsY9asWUpPT9f06dO1bNkytWnTRsePH9cXX3yhnJwc9e/fX//4xz/8dsxOPXv21KRJk/Svf/1LHTt2VP369XXRRRcpJiZGe/fu1ebNm5WZmanFixe7+mlWr15dr7zyigYNGqSbbrpJL7zwgmrXrq0ffvhBW7Zs0fDhw/XSSy/5veyl9dZbb+nTTz/1uH7GjBm68MILPa5/9dVX1aZNG82dO1erV69W27ZtlZmZqS+++EJdunTRpk2b9Ouvv7paI0ujbNmy6tq1qz766CM1adJEbdu2Vbly5VS5cmU99dRTkv56MbF161a98847atKkiVq1aqWaNWvq4MGD+v7773XgwAEZhuHa54033qhnnnlGW7duVYMGDdS2bVsdO3ZM69atU48ePZSdna3du3eXqtwDBw7UkiVL9PLLL7t+dic+Pl6ffPKJrrvuOv3rX//Ss88+q0aNGqlq1ao6evSovv/+e/3666/q16+fbrjhhlKVCQBsIcjTqwAATKD/P9+ht//czWX47bffGv379zeqVq1qlC1b1qhcubJx/fXXG6tWrfL4vQcOHDAeeOABo27dukZUVJQRHx9vtGvXzpg+fbqRn59faHvn/I9vv/12kcfhjqd5Kp02bdpkDBw40EhNTTWio6ONChUqGBdffLHRp08fY+bMmUZmZmahzyxZssRIS0szypcvb8THxxtpaWnGkiVLjOXLl5s+j6anco8bN65Ec2Iaxt+/x+L+bd682TCMoueb3Lt3rzF48GCjSpUqRnR0tHHRRRcZEydONLKzs42oqCgjIiLCOHXqVIHPeJqf0snT3/HPP/80hgwZYlSvXt2IjIz0WBfnzZtnXH311cZ5551nlC1b1khKSjKuuOIK4+WXXy607YEDB4xBgwYZF1xwgREVFWVcfPHFxn/+8x/jzJkzxc6j6an8Z8vKyjIqVKhgSDJiYmKMo0ePFrn94cOHjccff9xo3ry5ER8fb0RHRxs1atQwOnToYDzxxBPGzp07i/1OAAgFDsM469UgAACApK+//lrt2rVTgwYNtHXr1mAXBwBgM/TRBAAgTOXl5Wnz5s2Flm/fvl233367JM+pogAAFMWSgeaTTz6pPn36qHbt2nI4HF5NnD1jxgy1bdtWFSpUUFxcnBo2bKjHH3+80HbHjh3T8OHDlZycrJiYGDVo0ECvvvqqaNgFAISb7OxsNW3aVLVq1VKXLl3Ur18/tWrVSg0bNtQPP/ygDh066P777w92MQEANmTJwYAeeughVapUSU2bNtXRo0eL3X7w4MF655131KtXL9dQ5Lt27So0AEBubq46d+6szZs3a/jw4apXr54WL16su+66SwcOHND48eP9c0AAAFhQTEyMxowZo2XLlmnjxo06evSoYmNj1axZM91444266667VLZs2WAXEwBgQ5bso/nLL7+odu3akqSGDRsqMzPT4+TZU6dO1dChQ/Xuu+9qwIABRe73lVde0d13360XX3yxwLDnvXr10v/+9z/t2LFDNWvWNO04AAAAACAcWTLQPFtRgaZhGLrwwguVkJCgTZs2SZJOnDihuLg4ORyOQtu3a9dOmzdv1qFDhxQTE+NavmrVKnXo0EGTJk3SqFGj/HYsAAAAABAOLJk6663t27fr559/1j333KPHH39czz//vA4fPqwKFSqof//+euaZZxQXFydJys/P1zfffKOmTZsWCDIlqWXLlnI4HNqwYYNP5ahWrVqBn/Pz87Vp0ybFx8e7DXgBAAAAwN8Mw9CJEyeUlJSkiIjADs9j+0BTkubMmaPc3Fw98sgjqlWrlj755BO9/vrr2r59u7744gs5HA4dOXJEp06dUnJycqH9REdHq3Llytq7d68p5crPz1dKSoop+wIAAACA0tizZ4+qV68e0O+0daB54sQJSdLBgwe1dOlSderUSdJffS4Nw9A777yjTz/9VF26dFFWVpakv4JKd2JiYlzblNT+/fsL/Hzs2DFVrFhRe/bsUYUKFXzaJwAAAACUxvHjx5WSkqL4+PiAf7etA81y5cpJkpKTk11BptPAgQP1zjvvaMWKFerSpYtiY2MlSTk5OW73lZ2d7dqmtJzpshUqVCDQBAAAABBUwejOZ8l5NL3lbP6tWrVqoXXOfpNHjhyRJCUmJqpcuXJu02NzcnL0559/uk2rBQAAAACUjK0DzUsvvVQxMTFug8fffvtNknTBBRdIkiIiItS0aVNt3ry5UKvm+vXrZRiGmjdv7v9CAwAAAECIs3WgGRsbq169eun333/XRx99VGDdq6++Kkm69tprXcv69++vrKwsvfHGGwW2ff755xUZGal+/fr5v9AAAAAAEOIs2UdzxowZ2r17t6S/BvrJzc3VxIkTJUk1a9bUgAEDXNs+8cQT+vzzz3XTTTdp+PDhSk1N1aJFi7Rw4ULdeuutatOmjWvbYcOG6e2339aIESOUkZGhevXqadGiRfroo4/0yCOPKDU1NaDHCQAAAAChyGEYhhHsQpyrY8eO+vLLL92uS0tL04oVKwosy8jI0MMPP6wlS5bo2LFjqlOnjoYOHaoHHnig0HwxR48e1SOPPKJ58+bp0KFDqlOnju666y7dfffdpnWSPX78uBISEnTs2DEGAwIAAAAQFMGMSywZaNodgSYAAACAYAtmXGLrPpoAAAAAAOsh0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmMqSgeaTTz6pPn36qHbt2nI4HEpNTfX6s6NHj5bD4VBcXJzb9Tk5OXr00UdVq1YtRUdHq06dOpo4caJOnz5tUukBAAAAILxFBrsA7jz00EOqVKmSmjZtqqNHj3r9uW+//VbPPvus4uLiZBiG22369eun+fPna/DgwWrdurXWrFmjsWPHaufOnZo+fbo5BwAAAAAAYcySgebPP/+s2rVrS5IaNmyozMzMYj9z5swZDRs2TF26dNHx48e1cePGQtssWrRI8+fP14gRIzR58mRJ0tChQ1WxYkU9++yzuv3229WmTRtzDwYAAAAAwowlU2edQWZJvPjii/rhhx/00ksvedxm1qxZkqT777+/wHLnzzNnzizx9wIAAAAACrJki2ZJ7d69W2PHjtW4ceNUs2ZNj9tt2LBBycnJSklJKbA8JSVFSUlJ2rBhg0/fX61atQI/5+fn+7QfAAAAAAgFlmzRLKk777xTtWvX1ogRI4rcbt++fUpOTna7Ljk5WXv37vVH8QAAAAAgrNi+RXP27Nn69NNP9dVXXykysujDycrKUnR0tNt1MTExysrK8qkM+/fvL/Dz8ePHlZCQ4NO+AAAAAMDubN2iefjwYd1///0aMmSIV4P4xMbGKicnx+267OxsxcbGml1EAAAAAAg7tm7RfOyxx3Ty5EkNGzZMO3fudC0/deqUDMPQzp07FR0d7eqTmZSU5DE9du/evR7TagEAAAAA3rN1oLl7926dPHlSl19+udv1F154oRo0aKCtW7dKklq0aKH33ntPe/bsKTAg0J49e7Rv3z517949IOUGAAAAgFBm60Bz9OjRuuWWWwotHzdunH755RfNmDGjQF/J/v3767333tPzzz/vmkdTkp5//nlJ0s033+z3MgMAAABAqLNkoDljxgzt3r1bknTw4EHl5uZq4sSJkqSaNWtqwIABkqTWrVu7/fzLL7+s3bt3q3fv3gWWd+3aVdddd52effZZHTt2TK1bt9aaNWs0depU3XLLLWrXrp0fjwoAAAAAwoPDMAwj2IU4V8eOHfXll1+6XZeWlqYVK1YU+/mNGzcqMzOz0Lrs7GxNnDhRM2fO1P79+5WcnKxBgwZpzJgxKlu2rBnFd406e+zYMVWoUMGUfQIAAABASQQzLrFkoGl3BJoAAAAAgi2YcYmtpzcBAAAAAFgPgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADBVZLALAAAAAARaZk6ecvPyFRUZobhoHokBs3FWAQAAIKyM/mCL5mzc4/q5X/MUTerdKIglAkIPqbMAAAAIG5k5eQWCTEmas3GPMnPyglQiIDTRohkmnOkhkkgRAQAAYcv5POR2eXSACwOEMKKNEOYMLkd/uEVLfzhQYB0pIgAAAAD8hUAzRJ3b9+Bcczbu0dhu9WnZBAAAAGA6+miGIHd9D9zxlDoCAAAAAKVBoBmCPAWQLVMrBbgkAAAAAMIReZNhYNnINFWpEKPcvHw1fXxpsIsDAAAAIMTRohkGEmOj6IsJAAAAIGAINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGCqyGAXAAAAhI7MnDzl5uVLkqIiIxQXzaMGAIQjrv4AAMAUoz/Yojkb9xRY1q95iib1bhSkEgEAgoXUWQAAUGqZOXmFgkxJmrNxjzJz8oJQIgBAMNGiCYQAZ6oaaWp/I30PCCzn+eZxXXQACwMACDqevACbOzdVjTQ10vcAAID5eLFfMqTOAjbmLlUt3NPUSN8DAABmG/3BFjUc95maPr5UDcd9ptEfbAl2kSyPQBOwMU+pakWlsIW6YtP3AAAASoAX+74h0AQAAAAAD3ix7xsCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYComgAEAAIAtOOcxlMRchggLdq7z9ikpAAAAwtboD7YUmmKiX/MUTerdKEglAvzL7nWe1FkAAABYmrt5DCXmMkToCoU6T6AJAAAASytqvkLmMkQoCoU6T6AJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADCVJQPNJ598Un369FHt2rXlcDiUmprqdrvs7Gy9+eabuv7665Wamqpy5cqpdu3a6t+/v7Zt2+b2Mzk5OXr00UdVq1YtRUdHq06dOpo4caJOnz7txyMCAN9k5uTp8MlcHT6Za5vhzAEEBtcHAFYWGewCuPPQQw+pUqVKatq0qY4ePepxu4yMDN1+++1q166dhgwZoqSkJP3yyy969dVXNW/ePH366adKT08v8Jl+/fpp/vz5Gjx4sFq3bq01a9Zo7Nix2rlzp6ZPn+7fAwOAEvDnRM2ZOXnKzctXVGSE4qIteSsAfOKs25JCun7bfSJ3AKHPklffn3/+WbVr15YkNWzYUJmZmW63O//887V582Y1bty4wPKbb75ZTZo00YMPPqiNGze6li9atEjz58/XiBEjNHnyZEnS0KFDVbFiRT377LO6/fbb1aZNG/8cFACUQFETNY/tVr9UD8/nPqDycIpQES7Blz+vDwBgFkumzjqDzOKcd955hYJMSapfv74aNmyorVu3Flg+a9YsSdL9999fYLnz55kzZ5a4rKGC9BvAWvw1UbO7B9Q5G/dw3sP2igq+Qq1+h8JE7ggfPGOGr5B85ZWfn6/9+/erSpUqBZZv2LBBycnJSklJKbA8JSVFSUlJ2rBhg0/fV61atULfbyfh8gYYgOeH0Ny8fCk6wIUBTFRs8EX9BgKOZ8zwZskWzdJ67bXXtH//fg0cOLDA8n379ik5OdntZ5KTk7V3795AFM9SwukNMAAAAAKDZ0yEXIvm6tWrNWLECF122WV66KGHCqzLyspSdLT7V5oxMTHKysry6Tv3799f4Ofjx48rISHBp30FGm+AAQAAYDaeMRFSgeamTZvUtWtXJSUlaeHChYqJiSmwPjY2Vjk5OW4/m52drdjY2EAUEwAAAPBKuIykjNATMjX1m2++UefOnZWQkKDly5e7TZFNSkrymB67d+9ej2m1AAAAQKDRxxF2FhJ9NL/55ht16tRJ8fHxWr58uWrWrOl2uxYtWmjv3r3as6fgCbtnzx7t27dPzZs3D0RxAQAAgCLRxxF2Z/tAc/PmzercubPi4uK0fPly1apVy+O2/fv3lyQ9//zzBZY7f7755pv9VUwAAADAa0xjA7uzZOrsjBkztHv3bknSwYMHlZubq4kTJ0qSatasqQEDBkiSdu/erc6dO+vIkSO69957tXr1aq1evbrAvnr27Kny5ctLkrp27arrrrtOzz77rI4dO6bWrVtrzZo1mjp1qm655Ra1a9cugEcJAKVH3x0AAGBFlnwimTp1qr788ssCy8aOHStJSktLcwWau3bt0qFDhyRJ48ePd7uvXbt2uQJNSZo7d64mTpyomTNnasaMGUpOTtaECRM0ZswYPxwJAPgPfXcAAIBVWTLQXLFihVfbdezYUYZhlGjfMTExmjhxoquFFIBvaEkLrqL67oztVp+/BwAACCqeRIAAcwZodg7OaEkLPuYnA4KPF25A6fnjPOLctAZ+60AAnRug2TE4oyUNCE+h8JLMTLxwsyYCDHvxx3nEuWkdnH1AgLgL0OwYnNGSBoSfUHhJZiZeuFkTAYa9+OM84ty0FttPbwLYhacAjSHKAViZp5dk4TyPH9NOWA9zTtqPP84jzk1rIawHAFgOaZrWUeRLMjIYYBFk28BOwiXFOzSPCjBZuFwQACsgTRMAYLYjWbmWeIYLpxRvnpaBYoTTBQEItlDpywwAsJYrJ38pqfAzXCAbE8KtD2loHQ1QAt5cWMLtggAEG2maAAB/OvsZLtCNCeGW4s1TMsKStxeWcLsgAACAgug+Y1+d61fR0h8OFFqem5evTNGY4G8+/wa//PJL/ec//9H69et15MgR5ecXfiB3OBzKy2OkL1gLrZRA8RiMBwDoPmN3k3o10nP9InTgeLYrddaJxgT/8+npYeHCherRo4fOnDmjGjVq6OKLL1ZkJA8isAdvLyyZOXk6kpUboFLBCnhr/RcG44EvTvphCgnOSQQTL6ZDQ1x0pHJjo4JdjLDk0xkyfvx4lS1bVgsXLtRVV11ldpmAoHP3BhOhjbfWf2EwHvjCH9dMzkkEGy1ewXP2i6tweclklVFxzeTTkWzdulU33ngjQSZCkqc3mAhdvLX+G4PxoKT8cc3knATCW/unlxf4ORxeMnkaFdfOInz5UFxcnCpVqmR2WRBiMnPydPhkrg6fzFWmH1Kq/MXTg3bn+lUCXBKUlK/pzsW+tQbgkbtzpLTXS85JAGebs3GPrZ4lSyOUjtWnV4JXXnml1qxZY3ZZEEJCKeVp2cg0VakQo9y8fC39YWmwiwMPSHcGrGHVqHSVj47kegnYkJUHggvFzJqiRsUNBT61aE6aNEk///yzJk6cKMMwzC4TbK6olCc7vqFJjI2y3MUWBZHuDFhHea6XgC2N/mCLGo77TE0fX6qG4z7T6A+2BLtIIW9Sr0ba+tjVWjYyLdhF8Quf7gaPPfaYGjRooHHjxmnatGlq3LixKlasWGg7h8OhqVOnlraMsBk6zyPQikp3dvemEAAA/I2B4IInlEfF9anmTJ8+3fX/GRkZysjIcLsdgaa1nczJU+6Z0GiaB85GujMAIBjsOiUPA8HBH3yq/bt27TK7HAiCc0f0AkKFM935cB7zoAIA/MsZXI7+cEuhLBq7jk8BmMGnQLNmzZpmlwMAEILs+nYfMJuVB1mB74obiI70U4Qzaj1c6M8GwExWGH2aQBdWcO65QCtXaPB2IDrSTxGuvLrjrly5UpLUsmVLxcTEuH72RocOHXwrGQKG/mwAzFbU6NOBertvhUAXYJCV0OWpX2PL1Epan3E4wKUBrMerK1zHjh3lcDi0bds2XXTRRa6fvXHmzJlSFRD+R382AGYL9ujTgQp0aTFFccweZCUzJ09HsrhfW9HZL+6bPs6L+1DBOec7r+6Ijz76qBwOhypXrlzgZwAArCgQgS4tpgi04voDIrh4cR96OOdKx6tAc/z48UX+DABAOLFCajDCi7f9ARF+yKzwD8650qMmAgDClq8PaMFODUb48VTnGMgvvJFZ4T9FXefhnVIHmmvWrNHmzZt17NgxJSQkqEmTJmrdurUZZQMAwG94QIOdMZCf+Y5k5dqqRZDMisBaNjJNUWUimIe+BHyugWvXrtXgwYO1fft2SZJhGK5+m5dccommTp2qVq1amVNKAABMxAMa7I7+gOa7cvKXkuzzwonMisBKjI0KdhFsx6c76ebNm3XllVfq1KlTSktLU8eOHVW1alX9/vvvWr58uVauXKlOnTrpq6++UuPGjU0uMgAApcMDGgBPnC+cQgV9OBEsPtW0hx9+WKdPn9b8+fPVrVu3AuvGjRun+fPnq3fv3nr44Ye1cOFCUwqKwDuZk6dK5Xl7A9iN3dK/ANhHuAQtodI/jy4CCCafrg5ff/21brjhhkJBptP111+vnj176rPPPitV4RBc7Z9ezsUIsCG7pX8BsIdQDVpWjUpX7pl817UzVNBFAMEW4esH69atW+T6Cy+80NddI0iiIgtXhzkb9ygzJy8IpQFQWpy/wN8yc/J0+GQu54SPigpa7P47LR8dGZL974rtIgD4mU+vMlq0aKHvvvuuyG2+++47tWzZ0qdCITjioiPVr3lKoRsJ/ZUA6/M0xQHnLyCN/nBLgfMjFFrhAo1+zQBKyqcWzYkTJ+rzzz/Xq6++6nb9lClTtGzZMk2cOLFUhUPgTerdSKtGpQe7GABKaFKvRtr62NVaNjIt2EUBLOfclzCh0AoHBJMzQ4AsARTFqxbNCRMmFFqWnp6ue+65R88//7zat2+vKlWq6MCBA/rqq6+0Y8cOXXPNNVqyZIkuv/xy0wsN/ypPzj5gS3HRkcoNwfQvwBsnS/iwSysc4JtQ7asL83kVUYwfP97juh07dmjHjh2Fli9evFiffvqpxo4d63PhAAAAiuPuwReA+RhgKDBO5uQp94z9+9F6VRuWL1/u73IAAACUmKcHXwDmo69uYLR/OjRiL68CzbQ0+vwgfJQ0/QoIZ+Eypx6sy92Dr6fBsQAAgcMTAXCWc0cmBHwVDgEY/XRgRatGpat8dKSW/rA02EUBAFPY9eVZ6D35AKXg7iR2N78oUBQrBWAnc/JUqbz5AwQV108nFJ398iDYmQ/OsoTqS4zSYEA7AKFi2cg0VakQo9y8fFu+PONqjKCxQ4tPv+YpliwXrMtqAyW0f3q5X4LccJsI3EqDzZxbFlqRASA0JcZGKS46UofzcoNdFJ/wBI2gsFKLjyerRqUrpVJssIsBmwn2QAnuWuAZDbB0rDTYjLuy+PPvm5mTpyNZ9nzAAQAEFzmBCLiiWnysNOkv6Vewo7joSPVrnlJoeSi2MgaKlX53nspiRhmdE7A7r8OjP9iihuM+05WTvyz1vgEA4YcnaQRcsFt8gFA3qXcj3XNF3ZAZHh3+d26WSddG1bRwy/4glggAYHdet2i++uqr2r+fmw4A2AEt8vCWuywTgkwAQGl5HWjefffdSklJUevWrfX000/rp59+8me5AAA2dSQrN+ijssJ73qTdLhuZplWj0gNQGjhTmM9OYwYAO/L6lffKlSv10Ucf6eOPP9aYMWP0r3/9S5dccoluuOEGXX/99WrevLk/ywkAsAn69IWexFjzp8hBYXYYKA8AvOV1i2a7du00efJk/fzzz/r222/16KOPKioqSv/+9791+eWXq0aNGrrvvvu0fPly5edbZ+AEAAAAq/PHQHnnDvAEAIHkUyeeRo0aqVGjRho3bpwyMjI0b948zZ8/X1OmTNHLL7+sxMREdevWTT179tRVV12lmJgYs8sNwM/sMM8prKNz/Spa+sOBYBcDsC2z56ZlvlUAwVbqJ8fU1FSNGDFCI0aM0MGDBzV//nx99NFHev/99/Xuu++qXLlyuvrqq/Xhhx+aUV6gWM4AieDId6RvoaQm9Wqk5/pF6MDxbFJngSAL9HyrAOCOqVeb888/X0OHDtXQoUOVmZmpRYsW6aOPPtLixYvN/BrAI97gll5R6Vtju9UPQolgF3HRkcr1oi/fkaxcXgQBflTkfKtMIQYgQLzuo1lScXFx6tu3r2bPnq2DBw/662sAF09vcOmbUjJmp28B57py8pdqOO4zjf5gS7CLAgAA/MRvgebZypYtG4ivQZgr8g0ubI0BLUITL4IKYloLe8jMydORrNxgFwMALI+8JQCWRjp0aPA0WBCpfH+hX7Q9uPs7wfpO5uSpUnmm6AECLSAtmgACLxRaR0iHDh2TejXS1seu1rKRacEuiuX4Y1oLmM/T3wnW1/7p5aTqA0FAi2aAMFUEAmn0h1sKtR7ZsXXE2wEtTvIwbgveDhYUbortF02LbwHBap3y9Hdiah97YNRdBEKwZz4I9vefK/glCAOkRCHQ3D30hOpNllQ2ILy0f3q5Je6hy0amqUqFGOXm5WvpD0tdy89+8RUVGd6JY8F86HX3AoAXN/CnYHf1Cfb3uxNaT5wWVNxUEaH20A9rC7WbrKfzK9wf7oBQZ4V7aGJslOKiI3U4r+DAQO2fXl7g5871qwSyWJYR7IfeSb0a6dHr8gr9PQB/CPbctZ6+/54r6iryTPCyvkx9GtuxY4deeuklTZ06VSdOnDBz17bFVBGA/7g7h/o1T+EFDhBi3AVrdrmHhmNarVX615fnXhCyrDYORbBnPvD0Pe2fXq7Wk9cEpAzu+HQGTpw4Ua+//rq+++47VapUSZL0xRdfqFu3bsrOzpYkPfXUU1q3bp1rPQD426pR6UqpFBvsYiCA6P8eHmidshdv+9cDvrBSl7QjWblkURXBpzvywoULVadOnQJB5JgxY5Sfn6/x48dr//79eu211/Tiiy9q/PjxZpUVAIrE2+vwYqWHDX9hWoa/cX4DKK5LWqBdOflLSeGbIl8cn0LwjIwM1a//9x9z79692rhxo+68806NHTtWr7zyijp27Kh58+aZVlAAQPAcybJGepJTuEwJwrQMAPC3YHdJ89R6abUU+VWj0i0xnZhPgeaRI0cKtGZ+/fXXcjgc6tatm2tZ8+bN9euvv5a+hICsl4sPhJsrJ3+phuM+s0zQE+yHjUAKteAZAOwqLjpS/ZqnBLsYxSofHalEC0wn5lMeyvnnn6+9e/e6fl6+fLnKli2rVq1auZadPn1a+fmhdbNHcNghPY5+YggXwUpPCidMywAA7llh3uxJvRtpbLf6OnA825U6C/d8ehq+7LLLtGDBAm3dulUxMTGaM2eO2rVrp3Llyrm2ycjIULVq1UwrqF1Z4YSwMztMD2OHQBgwU6i1GFoNA9+EBncvDAD4bvSHW0w7p07m5Cn3jO/3srjoSOVaoMXQ6nx6Sn/wwQd1xRVX6LLLLnMtGzlypOv/z5w5o6+//lqdOnUqfQltbNzCn/TRd9xkSqPY9Lggv+G3QyAMlMaqUenKPZPPW1s/yczJ05Gs3ELLGfjG/ib1aqTn+kW47mMnc3h5AJSGmS9uOBcDw6c7WVpamj755BO99dZbcjgcuvnmm9WlSxfX+tWrVys5OVk9e/Y0raB244gqR5AZBoIZCHt6QAXMVD46UuWDXYgQ5S4bojScKfx2T98PpWtbXHRk0F+IAqHKLlkDZ3evCrdMR5/vRF26dCkQXJ6tffv22rx5s8+FCgWOMmULLbPLCQHrM/sBFUBgecqGkP7q513S9ORzU8rsmr7PtQ2AN1aNSlf56Egt/WGpKfvz1zO6mem+duTTqLODBw/WggULitzmk08+0eDBg30qVChaNSpdk3rZ76YP6ynqARXBFUotMfAvT4Fkv+YpPrVGnvsgY8eRaosLvhEYjPL+t3BrfbITs7oXLBuZpq2PXe23Z/RwDjIlH1s0p0+frtTUVHXv3t3jNt99953eeecdTZs2zefChRL628AsDMRiTbTEoDSWjUxTlQoxpqa8WqEfe0kUF3wfzuMljr8xuN3fwr0lKlwkxkZxffEjv0U/2dnZiowkuAL8bdnINEWViaBjexDRyozScj7seHIkKzfsWvX8EXzDs+IGtws3dggyaXGF1fl89XY4HG6XG4ahPXv2aPHixUpKSvK5YEBxTubkqVJ5hpa2woS8Zjl3PlK78NQSQ79smMU56m/n+lWCXJLAKS74hrmKHdwuzFntek6LK+zA6yt4REREgeBy/PjxGj9+vMftDcPQ6NGjS1U4oCjtn14etik9ochdypZdH6qdLTG5efmmDVSA8OLpRQsPlkDgmT3wjBm4FsAOvA40O3To4Ao0V65cqRo1aig1NbXQdmXKlFGlSpV0xRVXaNiwYaYVFHDn7JQeBmGxL08pW3a9kdLnA6UVFx2pfs1TSMn2I2c6Mq2mKI4dxtmwWosrIJUg0FyxYoXr/yMiIjRo0CA9+uij/igT4JG7C+kDc74NyYvruWmkofwwRFoWUNik3o00tlt9HTie7UqdhXmcv1MyY6yPEb2LZsUWV0DysY/mrl27VLFiRZOLArvw56Tgxb1hntSrkR69Lq/AwDehGGSG2sh/oTKRPBBocdGRyg2hfthW5MyM4dpkTeE8ore3g/340uLKOBcIBJ+uqjVr1jS7HLCJcy/4Zgc/3rxhtkMKS2mE2sh//q4zAFBadpsKJlyE4oje3mYr+TvA9nacC1LMURo+15rTp09r/vz5Wr9+vY4cOaIzZ84U2sbhcGjq1KmlKiCsw90F319vgn0NqkJhqo9QGvkvkHUGALyxalS6cs/kk45sAcVlu4TaiN7eZisFKsD25n5MijlKw6cnvX379qlz58768ccfZRiGx+0INEOLpwt+ad8Ee7ph+BJUhdJUH6HAX3UGgH0Fu/95+ehIlQ/oN1pfMPpA+pLtYucRvYvLVjr7PHB37zQjuHa3D2/vx3bNqkJw+XR1HzlypLZt26b+/ftr2LBhSklJUWQkrRPwzaRejfRcvwgGvEDQMOk1EBhW7X8ezumBwegD6Wu2i51H9C42W6mIYM+swX7cjXNREnbIquJ+bi0+XVGXLFmiDh066L333jO7PAhTDHiBYAnngSbg2dkpfTCHlfufh2t6YLD6QAYz28WOI9iaOTaFt/uyY4r56A+32DKlOpT5VHOzs7N1+eWXm10WhIEjWbmKKsODW7AwylxBoTjQBErv3IeVzvWrBLE0ocNK/c89vUAItz7kodYHsjgEIt6zY4q5u78tLwuDy6cracOGDbV7926zy4IwYKc3Y6Ho7FHmgt1Pygr81Q8G9nbu39+u9SGc00GLExcdqX7NU9y+aArnPuR27gPpDU/nclRkRFDTQnkJ7B/9mqdw/Qsyn377Dz74oG699Vb98MMPql+fjsFAoJzMySt1Cs2cjXuUmZunhVv2F1gebilj7jDpNUJJuKaDemtS70Ya260+4wOcxc59IH3lDEaCeczeTjUC760ala6USrHBLkbY8+mJ9YILLlC3bt3Upk0b3XfffWrWrJkqVqzodtsOHTqUpnwIAeHaQuSPN5Ttn15e4jQ+d7//c4NMyRr9pIIt1OdoRXg6Nx303GwGOyttfzvGBwhfztZbq7R4hVvatr9xP7cGn/4KHTt2lMPhkGEYevzxx+VwODxu625+TYSXcB1V1l9vKEsatJdklDk7jCgH2IlVUtSd6aDuBr+yax9Uq/S38xSs2z2ID3XO1ttgKc1UI7CfcG108ekMe/TRR4sMLkvrySef1DfffKNNmzZp165dqlmzpjIyMjxuv27dOj388MNat26dHA6H2rRpo6eeekqNGzcutO2+ffs0ZswYLV68WJmZmWrQoIFGjx6tPn36+O14EL5vjc14Q2nGxYk3e0DgBWsqD0+jRXoa/MquDz9W6W/nrr8nfcNQnNJONQJrc3bFkf6+JoVjtxyfroLjx483uRgFPfTQQ6pUqZKaNm2qo0ePFrnt2rVr1bFjRyUnJ2vChAmSpJdfflnt27fX6tWrdemll7q2PXz4sNq1a6c//vhDI0aMUPXq1TVr1iz17dtX06ZN06BBg/x5WAgD/nhDGQ43I+a9QqgJ5lQenkaLDIeMhWD1t3P293ROiUOQCW/wEjh0lY+OLNB9Kpz6PZ/NkjX8559/Vu3atSX9NcJtZmamx23vvfdeRUVFaeXKlUpOTpYk9e3bV/Xq1dPIkSO1ZMkS17ZPPfWUdu3apQULFqhbt26SpCFDhqh169b65z//qT59+iguLs6PR4ZQ56+gMJRvRsxjiVBkpak8woEV+tvFRUeS9gh46WROnnLPlO5aWFR6Oqnr1mDJv4IzyCzOzp07tWHDBvXp08cVZEpScnKy+vTpo88//1y///67a/msWbNUp04dV5ApSWXKlNHw4cN1+PBhLVq0yLyDQNgK5aDQbMxjCdjXkaxcZXqZjXAkK9evmQv+6m+XmZOnwydzdfikf8sPhJv2Ty8v9bgdzrT1c5G6bh0+/RUiIiK86qPpcDiUl+e/C/OGDRskSa1bty60rlWrVpo2bZo2bdqkrl27av/+/dq7d69uvvlmt9s699e3b98Sl6NatWoFfs7P52017Km0bxhLOtIu81gCgXEkK1dRZcx9t+x8SPRmMCE7DgRHtgVgfWenrUvhOy+4Vfn0l+jQoYPbQPPo0aP66aefdOrUKV122WUepzwxy759+ySpQGumk3PZ3r17S7wtEK5Km/Jb2pF2mccS8A8zAj1PqWjuXgzZPW2NbAtYTXFponZPyS/NS2Z/pK2bMW85fAw0V6xY4XHdiRMn9MADD2j16tWaN2+er+XySlZWliQpOrpw7YqJiSmwTUm2Lan9+wvOSXj8+HElVi3clG82qwybH6rs/qAULKUZaddOF/Wzzz9S6uwv1FrS/XH9cje6qhnbWpHdH9oRejydU8EaAMsX515nO9evokm9GllyVFZf5i1HYaY/1cXHx+uNN95Q48aN9fDDD+uVV14x+ytcYmNjJUk5OTmF1mVnZxfYpiTb2kGwhs0PRe4eMMnv/4s3D9/hOBcYKXWhxznf79kvD+w80rO/Aj1nmpo38yKXZFsExpGsXF5M25jd00TPvs6eW/ZgB8ruXs6F0svHYPFL7YyIiFB6errmzp3r10AzKSlJkvuUV+cyZ1psSba1umAOmx+Kzn3ADMaF29k6ZpVWVOcIjt68YQyH6VfORkpd6ArUqKH+6C/pjr8CvZLMi1ySbckM8D9nPeDFtH3ZfXRjq5bf7lkYVuW3p+ns7GwdOXLEX7uXJLVo0UKStGbNGg0dOrTAurVr18rhcKhZs2aS/hqwJzk5WWvXri20H+ey5s2b+7W8ZgnGsPmZOXk6khXYt01mDH3trWBe+EZ/uKVQKkmwOUdw9PYNo51SXkvLrHOM1PfwFcjWvZIEesF07nUwHASzdZEX00Bhk3o30j1X1A2bF+eB4Jer248//qi5c+eqbt26/ti9S926ddW8eXPNnTtXjz/+uKvVct++fZo7d66uuOIKVa1a1bV9//799cwzz+h///ufa4qTM2fO6KWXXlLFihV17bXX+rW83jq7dcsKD5/BegAIlxP93N9tuD1shSNS34GCQnFAoeIEu3WRfqhAYeH04jwQfPptDh482O3yvLw87dmzR19//bXOnDmjyZMn+1SoGTNmaPfu3ZKkgwcPKjc3VxMnTpQk1axZUwMGDHBt+8ILLyg9PV3t27fX8OHDJUkvvfSS8vPzC33/mDFjNHfuXN10000aMWKEkpOTNXv2bG3YsEFvvfWW4uPjfSqvmc59ALXCw6eVAp9QGFkN4a241HcrvFyC+UJtsCF/C8V+8p4C50C0Lq4ala7cM/n0lYXfWa0rEILLp6v49OnTi1x/ySWX6MEHH9SgQYN82b2mTp2qL78seDEcO3asJCktLa1AoNmmTRutWLFCjzzyiB555BE5HA61adNGc+fO1WWXXVZgH+edd56+/vprjRkzRlOmTFFmZqbq16+v999/X/369fOprGZy9wDKw+ff7DSyGvzLmXJmR0W9KDlyMpeRbEOUsy84A+MUb9WodKVUss/gfN4qqg+Yv1+glo+OVHm/fgNgza5ACC6fopddu3a5XR4REaHExETFxcWVqlBFTZ/iTuvWrbVs2TKvtk1OTtaMGTN8KJX/ebrRWGkEz2Uj0xRVJiKgaa3OgWkItu3Fn/16SzJRvJ2ES7p4uLJLf8lgC+XUtaIGaOLlEqPi2h1dgXAun87kmjVrml0O2ERiEB6SnAPThCs7pgsHql8vNzEAduPuhUM4DobkTrD7rQabnbN1EFgnc/JUqbz1X1xSmwELs2s/JR6YAMB7XDMLmrNxjzLDsIX3yslfquG4zzT6wy3BLgosrv3TyzX6A+vXk1I9wc6dO1dTp07V5s2bdfToUSUkJKhp06YaPHiw+vbta1YZgbCxalS6K22M9KHCGNACdmGHNEgGKLKuQP1trFxP7ZbJ4wtPrZeBPi+DMYUdSsZdXbHDOC4+lcwwDN16662aNWuWDMNQmTJlVLlyZf35559asmSJli5dqvnz5+u9994zu7xASCsfHWmLVIiSMLNfLwNawA7skgbpHKDo7AGo6CccfM4Xjkt/WOrX77FSPQ3Xl4hFDRAVKFaqB/DMU12x0jgu7viUOvvGG2/ovffeU9OmTfX5558rOztb+/fvV3Z2tj7//HM1a9ZM77//vl5//XWzywtYhpXfBFtJYmxUSA/uUVrnDmgUagMchSM7zQkZ9/9fblUqz3lqFYH6O1ipnpaPjgzKGBBWMKl3I2197GotG5kWlO/3FGRa9ZoVzib1bqRVo9KDXYwS8elqNnXqVKWmpmrlypUqV66ca3mZMmV0xRVX6Msvv1SDBg00depU3XHHHaYVFrCS9k8vJyjwg6JubnYcGKk4Z7cqOY/P3y0ZCCy79rVGeKGeBo/VRqRmOjnrstsLQZ9K+8MPP+j2228vEGSerVy5curRo4feeOONUhXOzs67ZniwiwCTuQuASDcxn6f0kFC+8cVFR7pSX0Lx+ALtSFauospY4218qM4JidBCPYXEdHIwHzXJT2Ival3sNnYZmhh/sUJfinDhnGvO2Xpp1sBInHPhwUr9vOz29hnhiXoKienkYD6fXvnWr19fH3/8sbKzs92uP3XqlD7++GPVq1evVIULdXYZmhh/m9S7kdY9dKXH9fRpMM/ZfcfMuvFxzgEAAASGT0/FgwcPVkZGhjp27Kjly5frzJkzkqQzZ85o+fLlSk9P1+7duzV48GBTC2t3noYmDtRcUZ6CIIKjkqlSIUb9mqcUWk7/FusJ9jmHwKG/NAKNeycAFM2np+I77rhDq1at0uzZs9WpUydFRESoUqVKOnz4sPLz82UYhvr27as777zT7PLaWrCHJnb3/QRHvvFXaifMFexzDoHjHFTpwPHsYlNnrdSHE/Zw7ryW3DsBFDd4IXwMNB0Oh9577z1dd911mjZtmjZv3qzDhw8rISFBTZo00eDBg9W/f3+zyxoSJvVupHuuqBu0ucrODpAIjkrn7AFcYF3BPucQON6O3GilPpywh3NHh+beCaC4wQtRysGA+vfvT0Dpg2B3uidAQrgJ9jkH72Tm5OlIFqPuwpq4dwI4FxluReM3AQAIutEfbPHriM7npj4CCA5eKCHU8BLKM68Dzby8PF177bWKjo7WvHnzVLZsWbfb5ebmqlevXjp9+rQWLVqkiAhylAEAnmXm5Pl92qCS9OEE4B+jP9zCCx8EBQNiBofXv905c+Zo2bJlGjRokMcgU5KioqI0ZMgQLVmyRO+//74phQQAhC5nypG/xUVHKtGLPpwA/MNTkMnDPvzN2Z/ybPSl9D+vf7sffPCBatSooRtuuKHYbXv06KFatWppzpw5uummm0pVQACwClK+AmPZyDRFlYlgACcExcmcPOWeCczLD3+wW/mdD/uH87i2wr8YEDPwvP4Nb9y4UVdddZXXO+7YsaM+++wznwqFwjJz8lxv/U8yByAQcP7uQ4i/0eqIYLL7Cw67lH/ZyDRVqRBj24d9pkmyJ/pTBpbXZ/cff/yhatWqeb3jatWq6c8///SpUCiIPg1AcAWiDyHgCWmFwWf3v0FUZETAUtS9lRgbZdsgU2KaJMAbXl85Y2JidPLkSa93fPLkSUVH88rADASZwN+CMUGypwe0zvWr+OX7/IXUX3ty17cIgWP3flx2L79V2P1lg1nIqkNJeH3lSUlJ0caNG73e8caNG5WSwo0RgLmsMEGyM+UrNy9fS39YGpDvLK1Qy4wIt4edc+dqO5mTZ5sUSbuye2qn3ctvNZ7uPeEk1O4j8D+vrz5paWl67bXXtGnTJjVr1qzIbb/55hutXr1ad955Z6kLiIJaplbS+ozDrp+ZGw6BZJXWsGBPkOxM+bLT4BWhdJ0oTX9ZOw9xT9+iwLJ7aqfdy29FzntPuE6TFEr3EQSG11egu+++W6+99pr69OmjhQsXql69em63+/HHH9W7d285HA7dddddphUUf3ltQDNXXwvnf+3SogL7s9KNtbQP3aSR2pOn/rLeBoruWiVILQTgrbjoSOUyYJkkGjtQPK/vrPXr19fDDz+siRMnqkmTJurdu7euuOIKVa9eXZK0d+9eLVu2TB9++KFycnL06KOPqn79+n4reDg7+wHbTi0qsB9vHt6tOMhEccI9/cfO04e4q2slDRQZ4h4ASmfVqHSVj46kscNLds6mKY0S3V0nTJigsmXL6vHHH9esWbM0e/bsAusNw1BkZKQmTJigRx55xNSCIvSF60loZcX1SbHr/GdFTRput6DZF6E0fciqUelKqRRb4s+RhgoAvivPC7oSCddsmhIf3dixYzVgwABNmzZNX3/9tX7//XdJUtWqVdWuXTsNGjRIqampZpcTYSBcT0KrO7c/pFOotQTZNWgOd+c+7PDCyv74W4WHQPydgzFKOeBJOGbT+HSEqampmjBhgtllAcLyJAyE0t5QQ7n1h5EZQwsvrOzDXf8u/lbhIVB/ZyuMUg6cLZSfp9zhLIPlhNtJGAiebrbB6sh/JCvXMm+TGZkx9PDCyh4m9Wqk5/pFBG30aASOsz+fFPi/c7BHKYd3rPJMAHNxpgFhwt3NNlijFjtHr+1cv0rAvxvhgRdW1lFUOjN/p/BQPjpSlcr7r2/4yZw85Z7x3L+eemZ97l6IM6qt/RFoAmHk3JttoPojenrQtMsN5GROXrCLANgW6czwNzuOoI3Czs1GYQo/71h5ujau8gD8rrjRa60s3KdCAcxAOnNoO5mT59cWS1/YLRWTgYv+whR+JWP1Z5TwqbkAgmpS70ba+tjVWjYyLdhFKRF3F/BwuukDZon7/+mTvgaZPIhbV/unl2v0B1uCXQwXO7aYO1/InsuOx4LAKWq6Niug5gIImLjoSOXafA5Hbvo4t98Q/YgCgxFES8ffgfqcjXs0tlv9oP4t7D6KOAMXwQxWmq6N2ouwkJmT57pw098Ovlo1Kl0plWKDXQwE2dmjpdKPKLB4EPed2YG6uxcsuXn5QR10x6qjiBc3WNHZGLgIvrLiixbrlATwE6vnr8M+ylvo4o3goh9R8PAg7jszA/VJvRrp0evyQmYgHn+2+IbK7wjWZsUXLdZI4AX8iCATAIC/OPvKlqa/rFMovXwLdB9Jq/ShC6RwPOZwFzpXCABAqVh5iHQAwVOS1E87C1RqdiD6FR/JylVUGesEdvSlDjwrBPb8xQEApJgD8CicUj/9mZodyD50V07+0u/fUZRVo9JdLd70pTZPSVK8rTC1XPBDXQBA0Fl9iHQA1sK1oeT82YfOan+P8iamaONvJU3xntS7kdaMbB2IornFXx6mYFRXIPRYaYh0oCSYc7N0ivsdcW2wHiu0XiEwSpriHcy+1ASaISYYOfmk3AGhxYpDpAMlwZybpePu99e5fhVN6tWINEgLcwYgB45nBz11Fv5ll9G3uVKEmGBcWAgygy/Yb++D/f0wlxWHSAdKijk3S+fs3x+/O/uIi45UbmxUsIsBSKKPpmX4OtojD/GQAj8su9W+P9wcycoNmRT1UDkOWJOZU3mEI+fvj98dAF9w5bCA0qSekpMPp2C/vQ/294eTUEqJav/0cnWuXyXYxQBgEqZJCj5PjRBRkRGuezQQCDwFWkBpU0/Jybe2I1m5AWt5DnbOfrC/H9bn7lwg/R4IDYzZYA3uGiEYwAnBQKAZIsjJty5n8E+rDUqjc/0qIfEARxYGELqYJsk66GMLK+DMt5hlI9O0alR6sIuBUvB0Qw2FIAHBM6lXI2197GotG5kW7KKU2qTejbjOAWGCvvrBQx9bBBs1z2ISaZW0PVps4C+hlLkQzHm9APgf0yQBoEUT8INJvf9qfaLVpjCmQgFKj/MIVsc0SQC4GwF+EhcdqZRKsW6n/bCKokam8xemQgFKj/MIAGB13I0APzt32o+TOXlq//TyIJfqL0WNTOdPTIXif8W1eDHEvf1xHgEArIw7EvyONC5rT/sRrJHprPw7CQWe+grbeYh75ucrjPMIAGBVBJow1blTMJDGVZgV+1bxsBqaQqnFi/n5AAChKhhdmQLBnk8cNhfKKW2TejXSc/0imLepCMW1NAFmCpWXCMzPBwDWYsUX53YVrK5M/mbv0ttUKKa0nS1UHmz9KZRamoBgCYWbMAAEkpnBIS/OzRWsrkz+ZP8jsKmiAg3eEIUHAnLY2cmcvKB9N/PzAdbA84r9mB0c8uLcXKH2bEhNCCJPlSlU3xCFav45wle41mkz+kuWpgsB8/MB1hCqzyuhzuzgMNSCI5iHq4BFheIbolDNP0f4Ctc67S7IdAaO3gbfod6FAAgXofi8Eg4IDhEIXAksLBQvAqGYf47wRp0uGFyXJPjmARUIDaH4vFKUcM1mAUqKOzoCLtxuSAh94VynV41KV0ql2ALLShJ8h/PvDoA9hWs2C1BSnBEAAJ+V9/BgRQAJwF+s0KJINgtQPNr4AQAAYBvOFsWzBaNFMS46UpXKMzgZ4AlnBgAEyMmcPI8tgAAA79GiCFgfZyUABEj7p5erc/0qwS4GAIQEq6boWyG1F7ACajwA+Im7h4rSzj8JALA2q6T2AsFGjQcAP/E0VyQAILSR2gvQogkAfjWpdyOtGpUe7GLAj4pKhyNVDghfDBaEcMcdEAD8jAGAQpu7NDmJVDm7oD8dAPgHd0AAAErp7DQ5SaTK2Yi7FHdeEgBA6XEVBWyA1DzA+qw6AiaKR386ADAfT6ghhPSf0EVqHgBfcW/wDv3pAMBcXE1DCOk/oY3UPAC+4N4AAAgG7jIhhvSf0EZqHgBfcG8AAAQad5oQRDACADgX9wb7OpKVq6gy4ZXqHI7HDIQaAk0AAAALu3Lyl8EuQsCF4zEDoYZXRQDgZ4waDKAkwvG6EI7HDIQ6zmoA8DNGDQZQEp6uGaEsHI8ZCHU84QBAADBqMICScF4zDhzPDps00nA8ZiCU8ZSDsEe6DgKFwVgAlERcdKRyY6OCXYyACsdjBkIVT9gIK53rVynwM6mLAAAAgPl4wobtFDewijM10Z1JvRrpuX4RzCUH2/JU/2mZBwAAVsKTCWyntAOrxEVHqlL5KIJMWFJxgaS7+k/LPAAAsBqeTGBLDKyCUOUMJOds3ONadm4geXb9D0TdZ3oWAABQUjyZw7YYWAWhyptAMpD1313wK9GSCgAAPOMJAQAsyGovUsgiAAAAJcFTAkIOaX6Af1gt+IW5uHbCKhj0DAgNtj9jMzMz9cQTT+jSSy9VfHy8KleurDZt2mj69OkyDKPAtuvWrVOnTp0UHx+vChUq6JprrtG3334bnILDb0o7WBAAhCOunbAKBj0DQoOtz9j8/Hx16dJFq1ev1sCBAzV8+HBlZWVp9uzZGjRokLZt26ZJkyZJktauXauOHTsqOTlZEyZMkCS9/PLLat++vVavXq1LL700mIcCk5HmBwAlx7UTVhHoQc8AmM/WZ+26dev01Vdf6f7779dzzz3nWn7XXXfpkksu0euvv+4KNO+9915FRUVp5cqVSk5OliT17dtX9erV08iRI7VkyZKgHIMd2SW9ijQ/ACg5rp2wCuoiYG/WiQp8cPz4cUlSUlJSgeVRUVGqXLmyypcvL0nauXOnNmzYoD59+riCTElKTk5Wnz599Pnnn+v3338PXMFtjvQqAAAAAEWxdVTQsmVLVaxYUU8//bRSU1N1+eWXKysrS++88442bdqk1157TZK0YcMGSVLr1q0L7aNVq1aaNm2aNm3apK5du/pUjmrVqhX4OT8/X+UGTfNpX3ZBehUAAAAAT2wdGSQmJmrBggUaOnSo+vbt61oeHx+vDz/8UD169JAk7du3T5IKtGY6OZft3bvX/wUOMaS0AAAAAHDH1oGmJMXFxalhw4bq3r272rRpo8OHD2vKlCm66aabNH/+fHXu3FlZWVmSpOjowlFRTEyMJLm28cX+/fsL/Hz8+HE1emKVz/sDAAAAADuzdaD5/fffq02bNnruuef0j3/8w7W8f//+atiwoYYNG6aff/5ZsbGxkqScnJxC+8jOzpYk1zYAAAAAgNKx9WBAzz33nLKzs9WnT58Cy2NjY9W1a1ft3r1bGRkZrsGC3KXHOpe5S6sFAACF2WX0cQBA8Nj6buAMEs+cOVNoXV5enuu/LVq0kCStWbOm0HZr166Vw+FQs2bN/FhSAABCB6OPW4enwJ6AHyg5XqKZy9a/sfr160uSpk+fXmD50aNHNX/+fCUmJqpu3bqqW7eumjdvrrlz57oGBpL+GiRo7ty5uuKKK1S1atVAFh0AAFub1LuRtj52tb4Z21nfjO2srY9drUm9GwW7WLZg5sOsu6CfgB+hIBhBHy/RzGXr39j999+vd999V2PGjNH333+vtm3b6vDhw3rzzTe1f/9+TZkyRWXKlJEkvfDCC0pPT1f79u01fPhwSdJLL72k/Px8TZ48OZiHAQCALTH6uG+cD7NzNu4psNzXh9mzpxxjujGECrPPE28xhZ95bP1bq1mzptavX68JEyZo2bJlev/991WuXDk1btxYkydP1g033ODatk2bNlqxYoUeeeQRPfLII3I4HGrTpo3mzp2ryy67LIhHAQCBR3oQEFxmP8wS9CMUBSvo43wyh60DTUmqU6eO3nnnHa+2bd26tZYtW+bnEgGwGoKqwoL1phjA33iYBYrHeWJfPE0ACHkEVe6RHgQAAPyFJwoUQusPQhFBlXu8KQYAAP5A1IBCGHELoSouOlKVykepUvko6jIAAIAf8aQFt2j9AQAAAOArIgd4REodAAAAAF+QOgsAAAAAMBWBJgAAAADAVASaAADLYfRrAADsjbs1AMByGP0aAAB7424NALCkYI5+TYsqAAClw90SAGBZwZr7lBZVAABKh7slAJyFliw4MZ8wAAC+46kJAM5CSxbOFqwWVQAA7I67JgCcg5YsAACA0uHJCQDciIuOlKKDXQoAAAB7InUWAAAAAGAqAk0AAAAAgKkINAEAACzK02jXjIINf2MUdpQWtQQAAMCi3I2EzSjYCARGYUdpUUsAAAAs7OyRsBkFG4HEKOwoDWoKAACAxTESNoKFugdfkToLAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAABEhUpPvbrqflAADYFXc2AAACJC46Uv2apxRY1q95ChOgAwBCDnc2AAACaFLvRhrbrb5y8/IVFRlBkAkACEnc3QAACLC46EgpOtilAADAf0idBQAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAEAAAAApiLQBAAAAACYikATAAAAAGAqAk0AAAAAgKkINAMkKpJfNQAAAIDwQPQTAP2apyguOjLYxQAAAACAgCD68ZM9L96kX375ReclJhBkAgAAAAgrtGj6Sf6p40qMLUuQCQAAACDsEGgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABTEWgCAAAAAExFoAkAAAAAMBWBJgAAAADAVASaAAAAAABThUSgefjwYf3zn/9U3bp1FRMTo/PPP1/p6elatWpVge3WrVunTp06KT4+XhUqVNA111yjb7/9NjiFBgAAAIAQFRnsApTW7t271bFjR2VmZmrIkCG66KKLdOzYMW3ZskV79+51bbd27Vp17NhRycnJmjBhgiTp5ZdfVvv27bV69WpdeumlwToEAAAAAAgpDsMwjGAXojTat2+vjIwMrV+/XtWqVfO4XcuWLfXjjz9q27ZtSk5OliTt3btX9erVU6tWrbRkyRLTynT8+HElJCTo2LFjqlChgmn7BQAAAABvBTMusXXq7MqVK/XVV19p1KhRqlatmk6fPq2srKxC2+3cuVMbNmxQnz59XEGmJCUnJ6tPnz76/PPP9fvvvwey6AAAAAAQsmwdaC5atEiSVKNGDXXr1k3lypVT+fLlddFFF2nmzJmu7TZs2CBJat26daF9tGrVSoZhaNOmTT6Xo1q1agX+XXjhhT7vCwAAAADsztaB5vbt2yVJw4YN0+HDh/XOO+9o2rRpioqK0oABA/T2229Lkvbt2ydJBVoznc5OowUAAAAAlJ6tBwM6ceKEJCk+Pl7Lly9XVFSUJKlHjx6qXbu2HnroIQ0cONCVThsdHV1oHzExMZLkNuXWW/v37y/wszMXGgAAAADCka1bNMuVKydJ6t+/vyvIlKTExER1795dv//+u7Zv367Y2FhJUk5OTqF9ZGdnS5JrGwAAAABA6dg60KxevbokqWrVqoXWOUegPXLkiJKSkiS5T491LnOXVgsAAAAAKDlbB5otW7aUJP3222+F1jmXXXDBBWrRooUkac2aNYW2W7t2rRwOh5o1a+bHkgIAAABA+LD1PJpHjhxRzZo1VaFCBf3444+Ki4uT9FefyQsvvFDJycmuAYNatGih7du368cff3S1cO7bt0+XXHKJWrZsqc8//9y0cjGPJgAAAIBgC2ZcYuvBgBITE/XMM8/ojjvuUKtWrTR48GDl5ubq1VdfVW5url566SXXti+88ILS09PVvn17DR8+XJL00ksvKT8/X5MnTw7WIQAAAABAyLF1i6bTvHnz9PTTT+v7779XRESEWrdurXHjxqlt27YFtluzZo0eeeQRrVu3Tg6HQ23atNGTTz6ppk2bmloeWjQBAAAABFsw45KQCDSthkATAAAAQLAFMy6x9WBAAAAAAADrIdAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqQg0AQAAAACmItAEAAAAAJiKQBMAAAAAYCoCTQAAAACAqSKDXYBQZBiGJOn48eNBLgkAAACAcOWMR5zxSSARaPpB3bp1JUkpKSlBLgkAAACAcHfixAklJCQE9DsJNP0gIiJClStX1s6dO+VwOIJdHFjIhRdeKEnasWNHkEsCK6FewB3qBTyhbsAd6gXcqVu3rgzDUFJSUsC/m0DTDyIiIhQRERHwtwawvoiIv7pFV6hQIcglgZVQL+AO9QKeUDfgDvUC7pQpU0bS3/UjkBgMCAAAAABgKgJNAAAAAICpHEYwhiACAAAAAIQsWjQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0AQAAAAAmIpAEwAAAABgKgJNAAAAAICpCDQBAAAAAKYi0DzHTz/9pEcffVStWrXS+eefr/j4eDVu3Fj//ve/dfLkyULbb9++XT169FBiYqLKly+v9u3b64svvijRd5qxD/hXoOvF+PHj5XA43P575plnzDw0lEJJ6sX69et17733qm3btoqLi5PD4dD06dNL/J379u3TrbfeqvPPP1/lypVT8+bNNXfuXJOOCGYIdL2YPn26x+vFPffcY+KRobS8rRuGYWjmzJm68cYbVbduXcXGxqpGjRrq3r271q1bV6LvPHbsmIYPH67k5GTFxMSoQYMGevXVV2UYhtmHBx8Ful6sWLHC4zXjuuuu88chwkcluZ9MnjxZHTt2VLVq1RQdHa1q1aopPT1dH330UYm+08xrRmSJPxHipk2bpilTpqh79+66+eabVbZsWS1fvlyPPPKI/vvf/2rt2rUqV66cJOnnn39WmzZtFBkZqVGjRikhIUFvvvmmrr76ai1evFidOnUq9vvM2Af8L9D1wum5555T5cqVCyxr1qyZqccG35WkXixatEhTpkzRJZdcossuu0yrV68u8fcdPnxY7dq10x9//KERI0aoevXqmjVrlvr27atp06Zp0KBBZh8ifBDoeuH00EMPqV69egWWXXzxxaU6FpjL27qRk5OjAQMGqHHjxrrxxhtVq1Yt7d+/X6+99ppat26td999V7fcckux35ebm6vOnTtr8+bNGj58uOrVq6fFixfrrrvu0oEDBzR+/Hj/HzSKFeh64XT77berffv2BZZVr17d7MNDKZTkfrJ+/Xqlpqbq2muvVeXKlXX48GHNnTtXN9xwgyZMmKCxY8cW+32mXzMMFLBhwwbj6NGjhZY//PDDhiTjpZdeci3r06ePERERYWzevNm17MSJE0aNGjWMiy66yMjPzy/2+8zYB/wv0PVi3LhxhiRj165dZhQfflKSevH7778bmZmZhmEYxty5cw1Jxttvv12i73vwwQcNScaCBQtcy/Ly8owWLVoYlSpVMk6cOOHbgcBUga4Xb7/9tiHJWL58eWmKjQDwtm6cPn3aWLFiRaHtfv/9d+O8884zLrjgAuPMmTPFft+UKVMMScaLL75YYPkNN9xglC1b1sjIyPDxSGCmQNeL5cuX+3StQeCV5H7izunTp41GjRoZcXFxRl5eXrHfZ/Y1g9TZczRv3lwJCQmFlvfr10+StHXrVknSyZMntWDBAnXs2FGNGzd2bRcXF6ehQ4fqp59+0oYNG4r8LjP2gcAIZL041/Hjx5WXl+d74eE33tYLSapSpYrKly9fqu+bNWuW6tSpo27durmWlSlTRsOHD9fhw4e1aNGiUu0f5gh0vTjbiRMnlJuba9r+YC5v60ZkZKTS0tIKbVelShWlpaXpjz/+0B9//FHs982aNUuxsbEaNmxYgeX333+/Tp8+rTlz5vhyGDBZoOvF2U6ePKns7GwfSo1AKMn9xJ3IyEglJyfr5MmTOn36dLHfZ/Y1g0DTS7/99pukv05mSdqyZYtycnLUunXrQtu2atVKkooNKMzYB4LLH/XibI0aNVJCQoJiYmLUpk0bLV682IRSw9/OrRdm2L9/v/bu3euqR2fjemEP/qgXZ+vevbsqVKigmJgYXXbZZZo5c6ZfvgfmK0nd+O233xQVFaWKFSsWuV1+fr6++eYbNWnSRDExMQXWtWzZUg6Hg2uGxfmjXpztvvvuU1xcnMqVK6eLLrpIL7zwAn13baKounH48GEdPHhQ27Zt04QJE/Tpp58qPT290HXgXP64ZtBH0wtnzpzR448/rsjISN10002S/hqQQ5KSk5MLbe9ctnfv3iL3a8Y+EDz+qheSVLFiRd1+++1q06aNEhMTtX37dj3//PPq2rWrpk2bpttuu828A4Gp3NULM3C9sDd/1QtJio2N1U033aQrrrhCF1xwgXbt2qUpU6ZowIAB+vnnnzVu3DhTvw/mKkndWLRokdavX68BAwYU+9B45MgRnTp1yu01Izo6WpUrV+aaYWH+qheSVLZsWXXv3l3XXnutkpKStG/fPk2dOlX333+/vv32W7399ttmHQb8oLi6cdFFF+nQoUOS/mrR7NWrl1555ZVi9+uPawaBphfuv/9+rVmzRk888YRrYIWsrCxJf/3iz+U8yZ3beGLGPhA8/qoXzn2fa/DgwWrYsKEeeOAB9e7dW3FxcaUoPfzFXb0wA9cLe/NXvZCkvn37qm/fvgWW3XHHHWrevLkmTpyogQMHKjU11dTvhHm8rRs7duzQgAEDlJycrMmTJxe736KuGdJf1w2uGdblr3ohSW3bttX8+fMLLBs2bJiuvfZaTZ8+XUOHDlXbtm1LVX74T3F1Y968ecrOztbevXs1d+5cnTp1SidOnND5559f5H79cc0gdbYYY8eO1csvv6zbb79d//rXv1zLY2NjJUk5OTmFPuPMdXdu44kZ+0Bw+LNeeHLeeefpH//4h44ePVqqkSnhP57qhRm4XtiXP+uFJ9HR0frnP/+pvLw8LVmyJCDfiZLztm7s2rVLV155pRwOhxYvXlzsA6NU9DVD+uu6wTXDmvxZLzyJiIhwfdfChQt93g/8y5u60aFDB1111VUaNGiQFi1apPj4eLVt21ZHjhwpct/+uGYQaBZh/PjxmjhxogYNGqTXXnutwLqkpCRJ7lPVnMvcNT2bvQ8Enr/rRVGcrRJ//vmnz/uAfxRVL8zA9cKe/F0visL1wtq8rRsZGRlKT09XZmamli5dqksvvdSr/ScmJqpcuXJurxk5OTn6888/uWZYkL/rRVG4Zlibr/eTgQMH6vfff9e8efOK3M4f1wwCTQ/Gjx+vxx57TAMHDtRbb70lh8NRYP2ll16q6OhorVmzptBn165dK+mvkaKKYsY+EFiBqBdF2bFjhyT/DSYC3xRXL8xQrVo1JScnu+rR2bheWFMg6kVRuF5Yl7d1IyMjQx07dtSxY8e0dOlSNWnSxOvviIiIUNOmTbV58+ZCLRTr16+XYRhcMywmEPWiKFwzrKs095NTp05J+muQoKL45ZpRoslQwsRjjz1mSDIGDBhQ5HxEvXv3NiIiIoxvv/3Wtcw5X+KFF15YYL7Eo0ePGtu2bTMOHjzo8z4QXIGqF6dPn3Y7Z9Kvv/5qVKpUyTjvvPOMrKwsk44KpeVtvThbcfMlnjx50ti2bZuxb9++Asv/+c9/epxHs2LFisbx48d9Pg6YK5D14s8//yy07dGjR426desaUVFRxp49e0pcfviPt3UjIyPDSE1NNRISEoz169cXuc/c3Fxj27Ztxu7duwssf/nllz3OiRcZGclczRYSyHrh7pqRnZ1ttG3b1pBkrFu3zreDgF94UzcyMzPdzqWdl5dnXHnllYYkY+XKla7lgbpmOAyDcYzPNmXKFN1zzz2qUaOGHn/8cUVEFGz0rVKlijp37ixJ2rlzp1q2bKmyZcvqgQceUIUKFfTmm2/q+++/18KFC3X11Ve7Pjd9+nQNGjRI48aN0/jx413LS7IPBE8g68XRo0dVq1Yt9ejRQ/Xq1XONOvvWW28pMzNTs2fPVp8+fQJ27PCsJPVi9+7dmjFjhiTp//7v//T+++/rhhtucL2JHjBggGrWrClJWrFihdLT0zVw4EBNnz7dtb9Dhw6pWbNmOnTokEaMGKHk5GTNnj1bK1as0FtvvaUhQ4YE4KhRnEDXi6SkJKWlpenSSy/VBRdcoIyMDE2bNk379+/X5MmTNWLEiAAcNbzhbd04ceKELrvsMu3atUvDhw9Xy5YtC+2rc+fOrpanjIwM1apVS2lpaVqxYoVrm9zcXLVp00bfffed7r33XtWrV0+LFi3SRx99pEceeUSPP/64X48X3gl0vWjRooWSkpLUrFkz16izM2fO1I4dOzR8+HC9+OKLfj1eeM/buvHtt98qLS1NvXv31sUXX6xKlSpp7969mj17trZv317ovhGwa0aJwtIwMHDgQEOSx39paWkFtv/hhx+M7t27GwkJCUa5cuWMtm3bGkuXLi2037ffftuQZIwbN67QOm/3geAJZL3Izs42hgwZYjRs2NCoWLGiERkZaVStWtXo1asXbxktpiT1Yvny5UVuu3z58kLbDhw4sNB3/vbbb8Ytt9xinHfeeUZ0dLTRpEkT4/333/f/wcJrga4XI0aMMJo2bWpUqlTJiIyMNM477zyjS5cuxqeffhqYA4bXvK0bu3btKnK7c+uGc/tz70WGYRhHjhwx7r77bqNatWpGVFSUUa9ePeOll14iY8pCAl0vnnrqKaNVq1ZG5cqVjcjISCMhIcHo2LGjMWvWrMAdNLzibd04ePCgcffddxuNGjUyEhMTXfeCTp06GTNnzix0vgfqmkGLJgAAAADAVAwGBAAAAAAwFYEmAAAAAMBUBJoAAAAAAFMRaAIAAAAATEWgCQAAAAAwFYEmAAAAAMBUBJoAAAAAAFMRaAIAAAAATEWgCQAAAAAwFYEmAAAlMH78eDkcDq1YsSLYRSmR9u3bq3HjxjIMo8Sf/e677xQREaG33nrLDyUDAIQiAk0AQNhyOBwl+me34NJp7ty5+uqrrzRx4kQ5HI4Sf/6yyy5Tr169NHbsWGVmZvqhhACAUOMwfHm1CQBACBg/fnyhZc8//7yOHTum++67TxUrViyw7rbbblNcXJz+/PNP1ahRQ7GxsYEpaCkYhqFLLrlEZcuW1datW33ez8aNG9WiRQv9+9//1kMPPWRiCQEAoYhAEwCAs6Smpmr37t3atWuXUlNTg12cUlu6dKmuuuoqTZo0SaNGjSrVvurXr6+TJ09q165dioggKQoA4Bl3CQAASsBdH82MjAw5HA7ddttt+umnn9SzZ08lJiYqISFB119/vTIyMiRJO3fuVJ8+fVS5cmXFxsbq2muv1S+//OL2ew4dOqRRo0bp4osvVkxMjBITE9W1a1etXbu2ROWdOnWqJKlfv36F1h0/flyPPfaYGjZsqPj4eMXHx6tOnTq68cYbtXnz5kLb9+vXT7/++quWLl1aojIAAMIPgSYAACbZtWuXWrdurWPHjmnIkCFq27atFixYoE6dOmnbtm26/PLL9eeff+q2225Tx44dtXjxYnXt2lX5+fmF9tO0aVP95z//UXJysu6++2717NlTa9asUYcOHfS///3Pq/IYhqEvvvhCSUlJqlmzZqF111xzjcaPH68KFSpo2LBhuvPOO9WyZUutWLFC69atK7S/tm3bShKBJgCgWJHBLgAAAKFi5cqVeuaZZzRy5EjXsttvv11vvvmm2rRpo0ceecTtuvnz56tnz56u5bfeeqt+++03zZs3r8Dyf//732rZsqWGDRumjIwMxcTEFFme7du36+DBg+rWrVuhdVu3btWaNWvUo0cPffTRRwXWnTlzRsePHy/0mRYtWriOEwCAotCiCQCASWrVqqUHHnigwLIBAwZIkipVqlRo3S233CLpr+lDnL799lt99dVX6tOnT4EgU5KqVaumBx98UAcOHNCyZcuKLc+vv/4qSapatarHbcqVK1doWZkyZZSYmFhoeUJCgmJiYlz7BQDAE1o0AQAwyWWXXVZokJxq1apJkho1alRoXVJSkiRp7969rmVr1qyRJB0+fNjtqLg7duyQJP3444/q2rVrkeU5dOiQJLkNGuvXr6/GjRtr9uzZ2r17t66//nq1a9dOzZs3V1RUlMd9VqpUSQcOHCjyewEAINAEAMAkCQkJhZZFRkYWu+706dOuZYcPH5b0Vz/IovpCejOfpbO1Mjs7u9C6MmXK6IsvvtCECRP0wQcfaPTo0ZKkChUq6LbbbtMTTzyh8uXLF/rcqVOn3LaCAgBwNlJnAQCwEGdA+uSTT8owDI//xo0bV+y+LrjgAkl/B6/nSkxM1HPPPac9e/bop59+0htvvKELL7xQL774ou65555C2+fn5+vo0aOu/QIA4AmBJgAAFnL55ZdL+juFtjQaNGigMmXKaPv27cVue+GFF2rYsGFauXKl4uLi9PHHHxfaZvv27TIMQ40bNy512QAAoY1AEwAAC2nRooXatGmjBQsWaNq0aW63Wbt2rbKysordV0JCgho3bqzvvvtOOTk5Bdbt2rXL7RyeR44cUU5OjmJjY91+rySlp6d7cygAgDBGH00AACxm1qxZSk9P15AhQ/TKK6+oRYsWio+P1549e7Rx40bt3LlT+/fvdxsMnuuGG27Qpk2btGLFCl199dWu5d99951uuOEGtWjRQvXq1VNSUpL++OMPzZ8/X6dPn3b12TzbkiVLVKZMGV1//fWmHi8AIPTQogkAgMXUrFlTmzdv1vjx45WXl6d3331XL7/8stavX69LL71U7777ripXruzVvoYMGaKyZcvq3XffLbC8efPmGjNmjMqUKaNPP/1UkydP1meffaYWLVpo8eLFuvfeewtsf+LECc2fP1/XXXedUlJSTDtWAEBochiGYQS7EAAAwH+GDh2qWbNmKSMjw+eBfF555RXdfffdWrVqldq1a2dyCQEAoYZAEwCAELd//37XYD/PPfdciT+fnZ2tunXrqlWrVvrggw/8UEIAQKihjyYAACGuWrVqmjlzpmvUWIfDUaLP7969W0OHDtVtt93mnwICAEIOLZoAAAAAAFMxGBAAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFQEmgAAAAAAUxFoAgAAAABMRaAJAAAAADAVgSYAAAAAwFT/D4iKJ6OUKnN5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# A power spectrum of this lightcurve.." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 13361.52it/s]\n" + ] + } + ], + "source": [ + "ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4wAAAKOCAYAAADtdZcdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADh5klEQVR4nOzdd3hUZfrG8XsmPRBC772IBRAQxQYEBHFVUBBwURALP+u6uooFy4odV13FxU5TdC241kVZEAG7Inal996TEJKQZOb9/YEzOWdKMpNMkkPy/VwX15WZOXPmZAgkd57nfV6XMcYIAAAAAIAA7qq+AAAAAACAMxEYAQAAAAAhERgBAAAAACERGAEAAAAAIREYAQAAAAAhERgBAAAAACERGAEAAAAAIREYAQAAAAAhERgBAAAAACERGAHAwXJyclS7dm25XC716tWrqi+nxnC5XHK5XGV6jvVP7dq1dfzxx+vOO+/U/v37K+hqAQCoOC5jjKnqiwAAhDZz5kxdfvnl/tu//PKLunTpUoVXVDP4wmI03yJ9z7ngggtUu3ZtSdKmTZv09ddfKy8vT23atNEXX3yhFi1axP6CEVOLFy9W//791a9fPy1evLiqLwcAqhQVRgBwsFmzZkmSmjdvbrsN53rsscc0a9YszZo1S5988ol+/vlntW7dWhs3btSECROq+vIAAIgKgREAHGrdunX67LPPVKtWLc2cOVOS9Oqrr6qoqKiKrwzR6Nixo+677z5J0vvvv8/fHwDgiEJgBACHeumll2SM0fDhw3XmmWfqqKOO0o4dOzRv3jzbcRdccIFcLpemT58e9lzXXHONXC6XJk+ebLvf6/XqlVde0YABA1S/fn0lJSWpffv2uuGGG7Rz586g88yaNUsul0uXXnqpdu3apauvvlqtW7dWQkKCbrzxRknSgQMH9Pzzz2vo0KHq0KGDUlJSVKdOHZ100kmaMmVKiYFp/vz5ysjIUO3atVW3bl0NHDhQS5Ys0eLFi+VyuZSRkRHyeRs3btR1112njh07Kjk5WXXr1lX//v319ttvh32ttWvXavTo0WrYsKFSU1N1/PHH69lnnw17fHn07NlTkpSbm6vdu3f779+1a5duvvlmHXXUUf7r7tu3r15++eWgdljf3+Hs2bNt92dmZio+Pl4ul0v3339/0Gs3bdpUiYmJysnJsd2fk5Ojhx56SD179lRaWppSU1PVvXt3PfbYYyooKAg6z6WXXiqXy6VZs2bp+++/1/nnn6/GjRvL7Xbr3XfflSTl5eXpX//6l0488UQ1atRIycnJat68ufr27auHHnrIdj7r19Lu3bt11VVXqUWLFkpOTlbnzp310EMPhbwOn7lz5+qcc85R48aNlZiYqFatWunyyy/XunXrwj5nw4YNuv7669W5c2elpqaqbt266tq1q26++WZt3LjR/3n2799fkrRkyRLbmlTr119GRoZcLpcWL16sjz/+WGeeeabq168vl8ulH3/8UZLUtm1buVwubdiwIeT1hFsra71/2rRp6tGjh1JTU9W8eXNdf/31/r/Lffv26a9//atat26t5ORkHXvssXQhAIg9AwBwHK/Xa9q0aWMkmYULFxpjjHnwwQeNJHPBBRfYjn3vvfeMJNO3b9+Q5zp06JCpV6+ecbvdZvPmzf77CwoKzHnnnWckmdq1a5uMjAwzfPhw0759eyPJtGjRwqxdu9Z2rpkzZxpJ5uyzzzatW7c2jRo1MsOHDzfDhg0z99xzjzHGmM8++8xIMk2bNjX9+vUzf/7zn82AAQNMcnKykWTOPfdc4/V6g65z5syZxuVyGUmmd+/eZvTo0aZ79+7G7XabG2+80Ugy/fr1C3reggULTFpampFkOnfubIYPH2769evnf72JEycGPefnn3829erVM5JM+/btzZ///GeTkZFh3G63ueGGG4wkE+23SN9z1q9fH/TY559/7n987969xhhjVq5caZo3b24kmZYtW5pRo0aZs846yyQlJRlJ5qKLLrK9T2+++aaRZC699FLbud955x3/uTMyMmyP/fLLL0aSOfXUU233b9q0yXTu3Nn/93T22Webc845xzRo0MB/nkOHDtmeM27cOCPJXHHFFSYxMdEcddRR5s9//rMZOHCg+e9//2s8Ho/JyMgwkkzdunXNOeecY0aPHm0yMjJM48aNTVJSku18vq+lIUOGmHbt2pkGDRqYCy64wJx77rkmNTXVSDJnnXWWKSoqCno/r7nmGiPJJCYmmtNOO82MGDHCHHvssUaSSU9PN998803Qcz788ENTu3ZtI8m0bt3aXHDBBeb88883Xbp0MZLMzJkzjTHGvPjii2bw4MFGkmnSpIkZN26c/8/DDz/sP1+/fv2MJHPVVVcZl8tlunfvbkaPHm1OP/1089NPPxljjP/fcKivCWNM2K8z3/0333yzSUpKMmeddZY577zzTP369Y0kM3DgQLNnzx7TqVMn06JFCzNq1CjTt29f/7+fl156KeTrAUBZEBgBwIEWLlzo/8HWFxo2b95s3G63SUxM9IcOYw4Hv0aNGhmXyxXyB9O33nrL/0Om1S233OK/f/v27f77PR6PueOOO4wk06dPH9tzfD/k+0JjTk5O0Ott3rzZfPLJJ0GhcMeOHaZnz55Gknnttddsj23atMmkpqYal8tl3njjDdtjTz31lP81AwPj1q1bTd26dU1CQkLQOZcvXx4Uuo05HMa7d+9uJJmrr77aFkg+/fRTf1iJZWC89dZbjSTTqlUr/329evUyksy4ceNs4WzFihX+IPnMM8/479+9e7dxuVymTZs2tnNff/31RpLp2rWrSUpKMrm5uf7HpkyZYiSZu+66y/b59+7d2x9I8vPz/Y/t37/fH5buvvtu2+v4AqMkc++99wb9/S5evNhIMieccELQ10VRUZHt78AY+9dS3759TVZWlv+xjRs3+n9xMWXKFNvznn76aSPJdO/e3axevdr22LPPPuv/JUBhYaH//g0bNvjD4uOPP248Ho/tecuXLze///67//aiRYvC/oLCxxcYrWEzUHkDY9OmTc3KlSv992/ZssU0atTISDLHHXec+fOf/2z72nnuueeMJNOuXbuw1w0A0SIwAoADjR071kgyd955p+3+QYMGGUnmX//6l+3+v/71r0aSue+++4LO5asizp4923/fnj17THJysqlXr57Zs2dP0HM8Ho85/vjjjSR/tcSY4h/yExMTzcaNG6P+vObPn28kmREjRtjunzRpkpFkhg4dGvJ5voAT+AO8L/T+/e9/D/m8//znP0aSGTZsmP++JUuWGEmmYcOG5uDBg0HPuemmm2IWGDdv3mwmT55sEhISjCTzyCOP2K6hfv36Jjs7O+hcvve5Q4cOtvu7detmJJk1a9b47zvuuONM27ZtzRNPPGEkmfnz5/sf8/3df/LJJ/775s6d638vQ1V6t23bZhITE02DBg1sj/sC4zHHHBMUuIwproDecMMNpb9Zls/R5XKZX3/9Nejx119/3R/+fIqKikzTpk2N2+0OCos+Q4YMMZLMe++957/P9+/jsssui+jaogmMgwcPDntMeQPjiy++GPSYr9pep06doH+7RUVF/irxhg0bwl4XAESDNYwA4DAHDhzQf/7zH0nSuHHjbI/5bgeuU/LdH7i+be/evfrwww+Vlpam4cOH++9fvHix8vPzNWDAADVo0CDoGtxut04//XRJ0tdffx30eI8ePdS6deuwn4MxRkuWLNEDDzyga6+9VpdddpkuvfRSPffcc5KkVatW2Y7/9NNPJUkXXnhhyPONHj065P0fffSRJGnkyJEhH+/bt2/Q57BkyRJJ0vnnn6/U1NSg54wdOzbs5xWJdu3a+degtWrVSrfffrsKCwt17bXX+qek+j7fYcOGKS0tLegcY8aMUUJCgtauXautW7f67x8wYIAk6ZNPPpEk7dy5U7/99psGDBgQ9JjX69WSJUuUnJysU0891X8O33s2YsSIkOvnmjVrpk6dOmnv3r1avXp10ONDhw6V2x3840OPHj0UFxenGTNm6LnnntOuXbsieLek448/Xscdd1zQ/SNHjlRSUpLWrVvnfw9+/PFH7dixQz169FDHjh1Dni/U37lv3e8VV1wR0TVF4/zzz4/5OX3OPPPMoPs6dOggSTrhhBOC/u3GxcWpbdu2kqRt27ZV2HUBqFniq/oCAAB2b775pnJzc3XqqaeqU6dOtseGDx+uOnXqaNmyZfr111/9ezL27NlTXbp00a+//qqvvvpKp5xyiiTptddeU2FhoS6++GJbOPINBvnPf/5T6gb11iEtPm3atAl7/I4dO3T++efrm2++CXtMdna27bYvEIQ7b7j7fZ9H165dw76WZP8cfK/l+8E6ULj7I+Xbh9Hlcik1NVXt27fXOeeco6OPPjroGtq1axfyHPHx8WrdurU/MPr2bhwwYICefPJJLVy4UP/3f//nD4cDBgxQ165d1ahRIy1cuFCStGzZMmVmZmrAgAFKSkryn9v3nl1//fW6/vrrS/xcdu/eraOOOsp2X7i/i44dO2rKlCmaMGGCrrnmGl1zzTXq2LGj+vTpowsuuEBnn312yK+1cO+32+1Wq1attGbNGm3ZskUtWrTwX/uyZcui+rrdtGmTJKlz584lPqcsSvq3UF4tW7YMus+3x2eox6yPHzp0qMKuC0DNQmAEAIfxVQ83btzor/JZ+X5QnjVrlh577DH//ZdccoluvfVWvfzyy/7A6Ks4BlYqPR6PJOnYY4/ViSeeWOL1hKr+pKSkhD1+/Pjx+uabb9SnTx/de++96tatm9LT0xUfH69Vq1apc+fOQRNAAz+3QKEqWtbP46KLLlJCQkKJn0dleeyxx8odOsPp16+f4uLitGjRIkmyBUaXy6X+/fvrP//5j7KysmyPWfneswEDBqhVq1Ylvl6o6nNJf/fXXXedLrjgAv33v//VwoUL9dlnn2nmzJmaOXOmzjjjDM2bN0/x8WX/0cN37a1bt/ZPMg2nd+/e/o9LC5flUdL7URKv11vqMeG+7kt7DABiicAIAA6ydu1aff7555IOV6Gs7YiBXn31VU2ePNn/A/iYMWM0ceJEvfHGG5oyZYrWr1+vb7/9Vm3atFG/fv1sz/UFhZ49e8Z0DP/Bgwf10UcfKS4uTh988IHS09Ntj69Zsybk85o3b66VK1dq06ZNtvZJn3DbEvgqUPfdd5+/Va80vmqdbxuFSF8rlnzXEG4LiKKiIn9VzHesJNWpU0cnnHCCvv32W/3666/65JNPdMwxx6hZs2aSDofAN998U4sXLw4bGH1/9xdddFGFtGg2bdpU48eP1/jx4yVJ33zzjUaPHq2FCxdq+vTpuuqqq2zHh/t78Hq92rx5s6Ti98B37a1bt47q67Z169ZauXKlVq1apYYNG0b7KZVZYmKiJAVtaSLJ/7kBgNPx6ykAcBDfD8HDhg2TOTyYLOSfTp06Be3J2KxZMw0aNEj79+/XBx98oJdfflnS4TV5gRWWM844QwkJCZo3b17IH2bLKisrS16vV2lpaUFhUTrcIhtKnz59JElvvPFGyMdff/31kPefddZZkqS33nor4mv0rXF79913lZeXF/T4q6++GvG5ysp6DQcOHAh5DYWFherQoYMtMErFAXDmzJlat26dLRD6Pv7oo4/0+eefKy0tLaiCXJb3rDx69+7tD48///xz0OM//vijli9fHnT/f/7zHx06dEjt2rXzt1+edNJJql+/vr799tuoApdvLeCMGTMiOt4X9EraMzQSzZs3lyStXLky6LH58+eX69wAUFkIjADgEF6v1x/yxowZU+KxF198saTg4TeXXHKJJOmll17yBx/ffVZNmzbVNddcoz179mjYsGEhK12ZmZl6/vnno/qhuUmTJqpbt64yMzODwuErr7wSNoxdccUVSklJ0Xvvvecf+OPz7LPP6quvvgr5vAkTJigtLU2TJk3S9OnT/S2LPsYYLV26VAsWLPDf17dvX3Xr1k27d+/WLbfcYnvOF198oWeffTbiz7es+vbtqxNOOMG/8XphYaH/sdWrV+vOO++UJN18881Bz/WFwmeeeUbS4fDv06lTJ7Vq1UovvfSScnNz1adPn6AW0GHDhqlHjx6aN2+e/va3vwWtJ5UOV1lfeeWVqD6nTz75RB999FHQ10tBQYH//Q81KMkYo+uuu84WnLds2aKJEydKkm2dZUJCgu666y4VFBTovPPO048//hh0vtzcXP373//Wzp07/ffddNNNqlWrlmbMmKGnnnoqqB10xYoVWrFihf+2L6SvWbOmXKHR1zb72GOP6eDBg/77ly1bprvvvrvM5wWASlVF01kBAAEWLFjg3/TcujdeKKtXr/Zvb2HdkzE3N9fUqVPHP5Y/cMN2q0OHDpnhw4cbSSYhIcGcdNJJZtSoUWbEiBGmZ8+eJj4+3kgyeXl5/uf4tkIYN25c2PP+4x//8L/+aaedZkaPHu3fouP22283koL2EjTGmGnTpvk3Hj/55JPN6NGjTY8ePYzb7fbvNTho0KCQ71vdunWNJNOyZUszePBgc9FFF5nBgwebJk2aGEnmtttusz3np59+8j+nQ4cO5s9//rMZMGCAiYuL82/BEO23SN9zwm2hEGjlypX+/RZbtWplLrzwQvOnP/3JJCUlGUlm9OjRIbe9yM3NNYmJiUaScbvdZt++fbbHrfslPvbYYyFfe+PGjbaN7vv27WsuuugiM3ToUNOpUycjyfTu3TvkecPtOejb1qNu3brmjDPO8J/Pt2/gUUcdZfbv3+8/3ve1NGTIENO2bVvTsGFDM2LECDN06FBTq1Yt/9+3dZ9Mn7/85S/+LTl69OhhLrjgAjNq1CjTu3dv//u3fPly23M++OAD/x6bbdq0MSNGjDDDhg0zXbt2Dfl59ejRw7+NyJgxY8wVV1xh/vGPf/gf922rsWjRopDvhzGH985s1qyZkWRatGhhhg8fbk499VQTHx9vJk6cWOq2GqGU9m8wkusCgGgQGAHAIS6++GIjyfzf//1fRMefdNJJIfdkHD9+vP8Hzueee67U87z99tvm3HPPNU2aNDEJCQmmYcOGplu3bubqq6828+bNsx0bSWA05vAeeieeeKJJS0sz6enpJiMjw8ydO9esX78+bGA0xpiPPvrI9OnTx6Smppo6deqY/v37m48//tjMnj3bH6JC2bp1q7n11ltN165dTa1atUxKSopp166dGTRokHnyySfN1q1bg56zatUqM2rUKFO/fn2TnJxsunTpYv71r38Zr9dbKYHRGGN27txp/va3v5mOHTuaxMREk5aWZk4//XQza9askGHRp2/fvkaS6dmzZ9BjL7/8sv9avv/++7DnyM3NNU8++aQ57bTTTN26dU1CQoJp3ry5Ofnkk81dd91l23/TmNID4+rVq83f//53k5GRYVq2bGmSkpJMo0aNTK9evcyjjz5qsrKybMdbv5Z27NhhLr/8ctO0aVOTmJhoOnXqZO6///4Sf3HyySefmJEjR5oWLVqYxMREU69ePXPssceacePGmbffftsUFBSEvMarrrrKtGvXziQmJpq6deuarl27mgkTJgTtK7p+/XozatQo06RJExMXFxe0L2OkwWzNmjVmxIgRpl69eiY5Odl0797dzJgxwxhT+j6MoRAYAVQ2lzFhRtUBAOAQ//d//6dp06bp0Ucf9e9liCPbrFmzdNlll2ncuHExHbwEAIgt1jACABxhw4YNIfd8fPnllzVjxgwlJiZq9OjRVXBlAADUXGyrAQBwhP/+97+68cYb1aNHD7Vp00YFBQVavny51qxZI5fLpSlTpgRNDAUAABWLwAgAcIS+ffvq4osv1hdffKGVK1cqPz9fDRs21LBhw3TjjTf6t6IAAACVhzWMAAAAAICQWMMIAAAAAAiJltRK5PV6tW3bNqWlpcnlclX15QAAAACogYwxOnDggJo3by63u+QaIoGxEm3btk2tWrWq6ssAAAAAAG3evFktW7Ys8RgCYyVKS0uTdPgvpk6dOlV8NQAAAABqouzsbLVq1cqfT0pCYKxEvjbUOnXqEBgBAAAAVKlIlskx9AYAAAAAEBKBEQAAAAAQEoERAAAAABASgREAAAAAEBKBEQAAAAAQEoERAAAAABAS22oAAABYFBQUKDMzU8aYiEbOA4AT+P7Pqlu3rhITE2N2XgIjAADAH7xer/bs2aOmTZvK7aYRC8CRxev1aseOHTH9P4z/CQEAAP6wf/9+NWjQgLAI4IjkdrvVoEEDZWZmxu6cMTsTAADAEa6oqEhJSUlVfRkAUGZJSUkqLCyM2fkIjAAAAACAkAiMAAAAf2DIDYDqIJb/lxEYAQAAAAAhERgBAAAAACERGAEAAAAAIREYAQAAgEqwePFiuVwuzZo1q6ovBYgYgREAAACwWLx4sSZNmhTTveyqo127dumyyy5Tt27dVL9+fSUnJ6tjx4664oortGbNmqq+PMRIfFVfAAAAAOAkixcv1r333qtLL71UdevWjdl5+/btq7y8PCUkJMTsnFVp//79WrVqlc4880y1adNGKSkpWr16tWbMmKE5c+bo66+/1rHHHlvVl4lyIjACAAAAlcDtdis5ObmqLyNmOnfurC+++CLo/hEjRuikk07S1KlT9cwzz1TBlSGWaEkFAACoYfLz8zVp0iR17txZqampqlu3rrp27apbbrkl6NiPP/5YZ555purWravk5GR169ZNzz33XMjzPvvss+rcubOSkpLUqVMnTZ06VbNmzZLL5dLixYv9x02aNEkul0u///67brzxRjVr1kypqak644wztHLlSknS22+/rZ49eyolJUVt27bVCy+8EPI1I72+tm3bKiMjQytWrNA555yjtLQ0paena8SIEdqxY4f/uEsvvVT33nuvJKldu3ZyuVxyuVyaNGlSie/pb7/9ppEjR6pFixZKSkpS06ZN1b9/f82dO9d/TKg1jG3btvW/RuCfjIwM22t89913GjZsmBo2bKikpCR17txZDz74oIqKikq8tsrWpk0bSYcrkFaRvEdwHiqMAADUYJm5BUpNjFdiPL9Drkmuu+46zZgxQ5dccoluuukmFRUVafXq1frkk09sx73wwgu6+uqrdfLJJ+vOO+9UrVq1tGDBAl1zzTVau3atHn30Uf+xjzzyiG6//Xb17NlTDz/8sHJzc/Xoo4+qUaNGYa9j3Lhxql27tu644w7t3r1bjz/+uAYPHqz7779ft956q6655hpdfvnlmj59uq666iode+yxOv3008t0fZK0detWZWRkaNiwYXr00Uf1008/6fnnn1d2drbmz58vSbrqqquUnZ2td955R0888YQaNmwoSerWrVvYz2Pv3r0aMGCAJOnqq69WmzZttGfPHn333Xf65ptvdM4554R97pNPPqmcnBzbfd98842mTp2qJk2a+O+bO3euhg8fro4dO+rmm29W/fr19dVXX+nvf/+7fvzxR82ZMyfsa/hkZWWpsLCw1OMkKTU1VampqREdW1hY6D/3mjVr/OH67LPP9h9TnvcIVcyg0mRlZRlJJisrq6ovBQAA8+Kna02b2/5rznh8sTl4qLCqL8cRdu7cWdWXUCnq1atn/vSnP5V4zLZt20xSUpIZPXp00GN//etfjdvtNmvXrjXGGLN3716TnJxsunbtavLy8vzHbd++3dSpU8dIMosWLfLff8899xhJ5txzzzVer9d//5QpU4wkk5aWZjZt2uS/f9euXSYpKcn8+c9/LtP1GWNMmzZtjCTzxhtv2I699tprjSSzYsWKoOtbv359ie+Rz3vvvRfy3IEWLVpkJJmZM2eGPWb9+vWmcePGpkOHDmbPnj3GGGPy8vJMkyZNTJ8+fUxhof3f6j//+c+g9zecfv36GUkR/bnnnntKPZ/PBx98YHtukyZNzOOPP247JtL3CLFR2v9l0eQSfp0IAEAN9dq3myRJa3blaOmG/aUcjeokPT1dv/32m3799dewx7z11ls6dOiQrrjiCu3Zs8f2Z8iQIfJ6vfr4448lSQsWLFB+fr6uueYa2xq9pk2b6uKLLw77Gn/961/lcrn8t/v06SNJGjp0qFq1auW/v1GjRurcubNWr15dpuvzad68uUaNGmW7z1f1sp47Wunp6ZKkjz76SNnZ2WU+T1ZWls4991wVFBRo7ty5atCggaTD7+/OnTt12WWXKTMz0/a5+qp4vgppSR5//HEtWLAgoj+XXHJJxNd98skna8GCBXr//fc1efJkNWvWTPv377e1ysbqPULloyUVAIAaKrfA4/84v9BTwpGobp588kmNHTtWXbt2Vfv27dW/f38NGTJEQ4YMkdt9uJ6wfPlySdLAgQPDnmfnzp2SpPXr10s6PAQlUKj7fNq3b2+7Xa9ePUmH1w4GqlevnjZu3Oi/Hc31hXs9Sf5Qtnfv3rDnKU2/fv10ySWXaNasWXr11Vd14oknauDAgbrwwgsjnhJaVFSkkSNHatWqVZo3b57tffN9rpdffnnY5wd+rqGccMIJEV1LtBo2bOj/exgyZIjGjh2rbt26adeuXXr++eclxeY9QtUgMAIAUEMVerz+j71eU4VXgsp23nnnacOGDfrwww+1ZMkSffzxx5o+fbr69Omjjz/+WImJiTLm8NfEyy+/rGbNmoU8T6gAFo24uLio7vddk/XjaK4v3HkDz10WL730km655RZ99NFH+uyzz/T444/rwQcf1JNPPqm//OUvpT7/2muv1YIFCzRt2jR/1TPw2h599FF179495PObN29e6mvs27dPBQUFpX8ykmrXrq3atWtHdGyoaxk4cKCmT5+up556SklJSZLK/x6hahAYAQCooQqKLIGRvFjj1K9fX2PGjNGYMWNkjNHtt9+uf/zjH3rvvfc0cuRIderUSZK9ehRO27ZtJUkrV64MCju+qaexFs31RcvaJhuNLl26qEuXLrrllluUmZmp3r176/bbb9d1111X4jkfffRRvfjii7r11lt1xRVXBD3u+1xr1apVrs91+PDhWrJkSUTH3nPPPaVOhi1JXl6ePB6PsrOzbYOPyvoeoeqwhhEAgBqq0FOcEj3lrK7gyOHxeJSZmWm7z+VyqUePHpIOV6EkadSoUUpKStI999yjvLy8oPNkZWXp0KFDkqRBgwYpKSlJzz77rPLz8/3H7NixQ6+++mqFfB7RXF+0fJU133tRmn379snr9druq1u3rtq1a6fc3FzbexLonXfe0W233aZhw4Zp8uTJIY8ZPHiwGjdurMmTJ4e8pry8PB04cKDU64z1GsZwbbC///67Fi5cqA4dOvjDYnneI1QtKowAANRQtKTWTAcOHFCzZs00dOhQ9ejRQ40bN9b69ev17LPPql69ehoyZIgkqWXLlnr22Wc1fvx4HXPMMRo7dqzatGmj3bt365dfftG7776r33//XW3btlWDBg10zz336I477tBpp52mMWPGKDc3Vy+88IKOOuoofffddzGvHkVzfdE6+eSTJUm33XabLr74YiUnJ/srY6G8/PLLeuKJJzRs2DB17NhRCQkJWrJkif73v/9p1KhRSklJCfm8vXv3asyYMUpNTdVZZ50VFK6bNGmiQYMGqVatWnr55Zd1/vnnq3Pnzrr88svVsWNHZWZmasWKFXr77bf1zjvvBO3bGCjWaxgffvhhLViwQOecc47atm0rY4x+/fVXzZ49W4WFhXr66af9x5b1PULVIzACAFADeb1GRZaQ6CEw1hipqam68cYbtXDhQn388cfKycnxB8iJEyfa1sJddtllOuqoo/TYY4/p+eefV2Zmpho2bKjOnTvr/vvvV9OmTf3HTpw4UXXq1NGUKVN0++23q3Xr1rrllltkjNF3331XIYEgmuuLxmmnnaZHHnlEzz33nP7v//5PRUVFuueee8IGxoyMDP3www/673//q+3btysuLk7t2rXTY489VuLavAMHDig3N1fS4f0fA/Xr10+DBg2SdLjKuHTpUk2ePFmvvPKKdu/erXr16qlDhw666aabStwnsqKce+652rJli958803t2rVLHo9HLVq00MiRIzVhwgQdd9xx/mPL+h6h6rlMeVf4ImLZ2dlKT09XVlaW6tSpU9WXAwCowQ4VedT5rnn+2/8Y0U2jerUq4Rk1w65du9S4ceOqvoxq5frrr9fUqVO1ffv2Mgc4ANEp7f+yaHIJaxgBAKiBijz23xfz+2OUV6g1aNu3b9fLL7+sLl26EBaBIxQtqQAA1EDW9YuSFHATiNrixYt1yy23aPjw4WrZsqU2bNigF198UTk5OWGHuQBwPgIjAAA1UEFgYKTCGJbXa5SZV1jVlxFW3ZQEud1Vvx1Bx44d1aFDB7344ovau3evkpOT1atXL02cODHm214AqDwERgAAaqDCgJZUpqSGl5lXqJ73L6jqywjr+7sHqX6txKq+DHXs2FHvvvtuVV8GgBhjDSMAADVQYZG9wuilwggACIHACABADRS8hpHACOebNWuWXC6XFi9eXNWXUiY//vijzjjjDNWrV08ul0uTJk2q6ksCSkVLKgAANVDgGkYqjOHVTUnQ93cPqurLCKtuSkJVXwIiUFRUpAsuuECFhYW6//77Vbdu3SrZO7G6ePfdd/Xjjz8eEaH7pZde0r///W/99ttv2rNnj9LS0tSxY0ddddVVGjt2rOLi4vzH7tq1S7fddpuWLVumLVu2KDc3Vy1btlS/fv00ceJEdezYsdKvn8AIAEANFLiGkSmp4bndLkesEcSRbd26dVq3bp0ef/xxNqqPgXfffVcvvfTSEREYv//+e9WrV0/XXXedGjdurJycHM2dO1eXXXaZPvvsM02fPt1/7P79+7Vq1SqdeeaZatOmjVJSUrR69WrNmDFDc+bM0ddff61jjz22Uq+fwAgAQA0U2JJKhREIduDAAaWlpcXkXDt27JAk1a9fPybnw5FjypQpQffdcMMNOuecczRz5kw9+OCD/n1KO3furC+++CLo+BEjRuikk07S1KlT9cwzz1T4NVuxhhEAgBooaOgNaxgh6dJLL5XL5VJWVpauueYaNW7cWMnJyTrttNP0zTff2I4taT1hRkaG2rZta7uvbdu2ysjI0E8//aSBAweqdu3aaty4sW6++WYVFRUpPz9fEyZMUIsWLZScnKy+fftq+fLlIa+zqKhIkyZNUps2bZSUlKRu3brp9ddfD3nsd999p2HDhqlhw4ZKSkpS586d9eCDD6qoqCjkNa9bt04jRoxQ/fr1VadOnVLfsw0bNmjs2LFq0qSJkpKS1KFDB91xxx3Kzc21nbtfv36SpMsuu0wul0sul0sbNmwIe959+/bpb3/7mzp06KDk5GQ1aNBAJ5xwgh599NGgY9944w2dfvrpSktLU2pqqnr37q233nor6DiPx6P7779fbdq0UXJysrp166Y33nhDkyZNCroe39fC3r17demll6phw4ZKS0vT+eef7w+/L7zwgo455hglJyfr6KOP1nvvvRfyc4n0+lwuly699FJ99dVX6tevn2rVqqUGDRpo/PjxysnJsb2fL730kv85vj+zZs2SJG3evFmXX365/+ujcePGOvXUU/3PcYo2bdrIGKOsrKyIjpUOVyArGxVGAABqIPZhREkGDx6sRo0a6e9//7v27t2rf/7znzrnnHO0fv36clXctmzZokGDBunCCy/UiBEjNH/+fP3zn/9UfHy8fvvtN+Xl5en222/Xnj179Nhjj+n888/X8uXL5Xbbaxy33XabDh48qGuvvVaSNHPmTI0ePVr5+fm69NJL/cfNnTtXw4cPV8eOHXXzzTerfv36+uqrr/T3v/9dP/74o+bMmWM7b05Ojvr166fTTjtNDz74oHbt2lXi57Nx40addNJJysrK0rXXXqtOnTpp8eLFevjhh/XFF19o4cKFio+P15133qnTTjtNDz30kK688kr16dNHktSoUaOw5x45cqQ+/fRTXX311erWrZvy8vK0fPlyLV68WLfccov/uLvuuksPPvigzjrrLN1///1yu9165513NHLkSE2dOlXXXXed/9i//OUveu6559S/f39NmDBBu3fv1rXXXqt27dqFvY6zzjpLLVu21H333ac1a9boqaee0rBhwzR8+HC98MILuuKKK5ScnKynnnpKI0aM0KpVq2zni+b6pMODgc4991xddtlluuiii7R48WJNnz5dbrdbL7zwgiTpzjvvlNfr1WeffabZs2f7n3vqqaeqqKhIgwYN0tatW3XttdfqqKOOUlZWln7++Wd99tlnGjduXIl/p4WFhREFOJ+GDRtGfGxWVpYKCwu1f/9+/e9//9OMGTN01FFHhVyX6LuOwsJCrVmzxt96e/bZZ0f8ejFjUGmysrKMJJOVlVXVlwIAqOEW/LbDtLntv/4/j/9vRVVfkiPs3Lmzqi+hSo0bN85IMtdcc43t/jfffNNIMs8995z/vpkzZxpJZtGiRUHn6devn2nTpo3tvjZt2hhJ5s0337Td37NnT+NyuczQoUON1+v13z9lyhQjycybNy/oNVu3bm0yMzP992dmZprWrVubevXqmdzcXGOMMXl5eaZJkyamT58+prCw0Paa//znP4OuvV+/fkaSufPOO0t+kywuuugiI8nMnTvXdv+ECROMJDNt2jT/fYsWLTKSzMyZM0s9b2ZmZsi/h0DLli0zkszEiRODHjvvvPNMWlqayc7ONsYY8+uvvxpJZvDgwcbj8fiP+/nnn43b7TaSzPr16/33+74Wrr32Wtt5//a3vxlJplWrVrafaX/66Scjydx+++1luj5jjJFkXC6X+frrr23Hnn322SY+Pt4cOHAg6PoC+a7jkUceCXosEr6/p0j/ROOEE07wP8/lcplBgwaZtWvXhjz2gw8+sL1OkyZNzOOPPx7xa5X2f1k0uYSWVAAAaqCgbTWoMMLib3/7m+32gAEDJEmrV68u13lbtGihkSNH2u47/fTTZYzR9ddfL5fL5b/fV4UL9ZrXXHON0tPT/bfT09N19dVXa//+/f4W2QULFmjnzp267LLLlJmZqT179vj/+Ko08+fPDzr3hAkTIvpcvF6v3n//ffXo0SOo6jNx4kR/Ja0sUlJSlJSUpG+++abEttVXX31VLpdL48aNs31+e/bs0dChQ3XgwAF99dVXkqT//ve/kg6vnbNWbLt27arBgweHfY0bb7zRdtv393LJJZfYWna7deumOnXq2P6+ork+n1NOOUW9e/e23TdgwAAVFRWV+F74+L4uFi1aVGqFOJTjjz9eCxYsiPhPNJ555hktWLBAL7/8skaNGuWvNoZy8skna8GCBXr//fc1efJkNWvWTPv37w9qpa4MjmtJXbVqlV555RXNnz9fa9euVX5+vjp06KCRI0fqxhtvVK1atWzHr1y5UrfddpuWLFmigoIC9ezZU/fee6//P7ZIxOIcAAAcSYK31aiiC4EjtW/f3na7QYMGkqS9e/eW67yhWh/r1asX8jHf/aFe85hjjgm6zzc5ct26dZLkX/94+eWXh72enTt32m43atRIdevWDXu81e7du5WTk6Pjjjsu6LH69eurWbNm/muJVmJiop588kndcMMNateunY499lgNGDBA559/vs444wz/ccuXL5cxRkcffXTYc/k+x/Xr10s6PFQlUOfOnfXRRx+FfH7g10K4vy/fY9a/r2iuL9zrSdF9/bVp00Z33nmnHn74YTVr1kzdu3fXGWecoZEjR+rEE08s9fn16tXTwIEDSz2uLE466ST/x2PHjtXEiRPVt29f/fzzz+rQoYPt2IYNG/qvY8iQIRo7dqy6deumXbt26fnnn6+Q6wvHcYFxxowZevrppzV06FBdfPHFSkhI0KJFi3TXXXfpzTff1Ndff62UlBRJ0tq1a3XqqacqPj5et956q9LT0/Xiiy9q8ODB+uijjyL6y47FOQAAONIEbqvB0BtYWfeFszKWSrS1GhgoXBUk3Hkjfc1o+J736KOPqnv37iGPad68ue12ampqmV6rIlx99dU677zzNHfuXC1ZskRvvfWWpk6dqgsvvNA/4McYI5fLpY8++ijs+xcq0EYj3Hkj+fsqy/WV9DUS6dfCAw88oMsvv1xz587VZ599pmnTpunRRx/VrbfeqkceeaTE5xYUFGjfvn0RvY4k/3TTshg3bpwmT56sWbNm6f777y/x2ObNm2vgwIGaPn26nnrqKSUlJZX5daPluMA4YsQITZw40dZmcPXVV6tTp0568MEHNX36dP/eNRMnTlRmZqaWLVvm/4/gkksu0XHHHafrrrtOK1asKPE/s1idAwCAI01QSyqBEVHybQ8R6ofr9evXKyEhocJee/ny5TrvvPNs9/3++++SiitUnTp1kiTVqlWrQgoAjRo1Ulpamn777begx/bv36/t27eHDaqRatasmcaPH6/x48fL4/Fo7Nixeu2113TzzTfrxBNPVKdOnTRv3jy1bt06ZNXVyje1duXKlUFVvJUrV5brOsOJ5vqiVdrP5+3bt9f111+v66+/Xvn5+Ro8eLD+8Y9/6Oabb1bjxo3DPu/LL79U//79I76Osv5CQ5Ly8vIkhf43FO54j8ej7OzsEgcmxZrj1jD26tXLFhZ9LrzwQknSr7/+Kkk6ePCg3n//fWVkZNj+MdauXVvjx4/XqlWrtHTp0hJfKxbnAADgSMQaRpTXUUcdJUn6+OOPbfe/9tpr2rZtW4W+9rPPPmubZJmVlaXnnntOdevW9W9fMXjwYDVu3FiTJ08O+QN5Xl6eDhw4UOZrcLvdGjJkiH744QfNmzfP9tjkyZPl9Xo1bNiwMp07NzfXti2HdLjy1q1bN0nFAWPs2LGSpDvuuEMejyfoPNZ2zyFDhkg6vCeg11v87/+XX37R//73vzJdZ2miub5o1a5dW1Jw2PJNFrVKTk72B9bStqWI9RrGoqKisK20//rXvyQdXq/oE+49+f3337Vw4UJ16NChUsOi5MAKYzhbtmyRJDVp0kSS9PPPP+vQoUM65ZRTgo71velLly619QoHisU5StKsWTPbbes/TgAAqlIB+zCinDp37qyBAwfq+eeflzFG3bt3148//qh33nlHHTt2DPqhPZYaNmyo3r1767LLLpN0eFuNTZs2adq0af620lq1aunll1/W+eefr86dO+vyyy9Xx44dlZmZqRUrVujtt9/WO++8o4yMjDJfx0MPPaQFCxbo/PPP17XXXquOHTvq008/1RtvvKG+ffuWuoVDOKtWrVK/fv00bNgwdenSRfXq1dPy5cv17LPPql27dv7BMyeeeKImTZqkSZMmqXv37ho5cqSaN2+u7du3a9myZfrwww9VUFAg6XDr55VXXqkXXnhBAwcO1LBhw7R79249/fTT6tGjh5YtWxbzrrpori9aJ598sqZOnaprr71W55xzjhISEtS7d2/99NNPuvLKK3XBBReoc+fOql27tpYtW6Zp06apd+/eIddwWsV6DWNOTo5atmzp/7ts0qSJduzYoXfffVffffedzjjjDF100UX+4x9++GEtWLBA55xzjtq2bStjjH799VfNnj1bhYWFevrpp2N2bZE6IgKjb5PR+Ph4/xvq+81VixYtgo733bd169YSzxuLcwAAcCQKWsNIXkQZzJ49W9dff71effVVzZ49W3369NGiRYt0zTXXRDTRsqweeeQRffbZZ3r66ae1c+dOHXXUUXr11VdtP3hLh6uMS5cu1eTJk/XKK69o9+7dqlevnjp06KCbbrrJX7ErqzZt2uibb77R3//+d73yyivKzMxUy5YtNXHiRN11112Kjy/bj9qtWrXS5ZdfrkWLFundd9/VoUOH1KJFC/3f//2fbrvtNttay3vuuUe9evXSU089pSeffFIHDx5U48aN1aVLFz311FO28z7zzDNq3ry5pk+frgkTJqhz58569tln9e2332rZsmX+OSGxFM31RWP06NH64Ycf9Prrr2vOnDnyer2aOXOm+vXrp+HDh2vx4sV69dVX5fF41Lp1a91xxx26+eabY/iZRSY1NVXXXXedPv30U82fP1+ZmZlKS0vTcccdp6lTp+rKK6+0rds899xztWXLFr355pvatWuXPB6Pf7rwhAkTyr0mtSxcpjyNt5Xk+uuv19SpU/XQQw9p4sSJkg7/B3XJJZdo+vTpQdOv1q1bpw4dOuiGG27Qk08+Gfa8sThHNLKzs5Wenq6srCzbGGIAACrbUwtX658LVvlvX9S7tR4a1rUKr8gZdu3aVeL6JqA6GjJkiD755BNlZ2eXOHQGR47S/i+LJpc4bg1joLvvvtufvn1hUSqeYnXo0KGg5+Tn59uOCScW5wAA4EgUuIaRllSg+vMNWbH6+eef9dFHH2nAgAGERYTk6JbUSZMm6YEHHtBll12m5557zvaYbwxyqJZR332hWk1jfQ4AAI5EgfswMiUVqP5eeuklvfzyyzrnnHPUqFEjrVixQi+88IISExN13333VfXlwaEcGxgnTZqke++9V+PGjdO0adOCFuF27dpVSUlJ+uqrr4Ke+/XXX0s6PHG1JLE4BwAAR6Ii1jACNU7Pnj31zjvv6KmnntK+ffuUlpamAQMG6J577lGPHj2q+vLgUI4MjPfdd5/uvfdejR07VjNmzJDbHdw5W7t2bQ0ZMkRvv/22fvrpJx1//PGSDk8imjZtmjp16mSbbpqVlaXt27erYcOGatiwYZnOAQBAdRHUkur8kQYAyumkk06qsC00UH05LjA+/fTTuueee9S6dWsNHDhQ//73v22PN2nSRIMGDZJ0eOzswoULdeaZZ+pvf/ub6tSpoxdffFFbt27V3LlzbVXJd955R5dddpnuueceTZo0yX9/NOcAAKC6CNqHkRIjACAExwXGpUuXSpI2bdoUcu+afv36+QNjx44d9cUXX+j222/X5MmTVVBQoJ49e2revHkR758Si3MAAHCkKSiyB0QPFUYAQAhHxLYa1QXbagAAnOKvr/2g93/a5r/9py5N9eyYE6rwipxh586datKkSVVfBgCUS2n/l1WrbTUAAEDssYYRABAJAiMAADVQ8BrGKroQh4mPjw+5PzMAHCkOHTqkhISEmJ2PwAgAQA1UELStBhVGSapXr5727t0rj8dT1ZcCAFHzeDzat2+f6tatG7NzOm7oDQAAqHiFRUxJDcXtdqthw4bau3evjDFMSwdwxPD9n9WgQYOQ2xKWFYERAIAaiDWM4SUmJqpx48ZVfRkA4Ai0pAIAHM3rNWKgd+wRGAEAkSAwAgAc68Nftuvou+fpT1M+U1ZeYVVfTrVSGLCGkZZUAEAoBEYAgGO99OUGFXi8WrHjgJas2l3Vl1OtBFUYmZIKAAiBwAgAcKyDBUX+j6kwxlbQthq0pAIAQiAwAgAcy5pp8gvY5iCWAltSWcMIAAiFwAgAcCyvZV1dXiGBMZYKglpSCYwAgGAERgCAY1nbJAmMsUVLKgAgEgRGAIBjWSd35hMYY6qwKCAwMvQGABACgREA4FgExooTuIaRvS4BAKEQGAEAjmUNjHkMvYkZY0zQGkb2YQQAhEJgBAA4lpc1jBWiKEQ4ZA0jACAUAiMAwLFsFcZCFtnFSuDAG4kpqQCA0AiMAADHslYY2YcxdgLXL0pUGAEAoREYAQCO5WEfxgoRusJYBRcCAHA8AiMAwLGYkloxQgZGKowAgBAIjAAAx7Iuq6PCGDuFRSFaUlnDCAAIgcAIAHAsKowVI3BLDYkKIwAgNAIjAMCxrINY2IcxdkK3pFbBhQAAHI/ACABwrMChN4YqWEyECoy0pAIAQiEwAgAcyxpivCZ0KyWixz6MAIBIERgBAI4UKsDkFxAYY6Eg1NAbqrcAgBAIjAAARwoVYPKLWMcYC7SkAgAiRWAEADhSqADD4JvYKPIGB0YKjACAUAiMAABHCrXNA3sxxgYtqQCASBEYAQCOFLLCSGCMCVpSAQCRIjACABwpRNek8mlJjYlQgVFiUioAIBiBEQDgSKFaJKkwxkbYwEhbKgAgAIERAOBItKRWnAJP6GDIOkYAQCACIwDAkUIFxvxC9mGMhcKicC2plXwhAADHIzACAByJltSKE64llQojACAQgREA4EihBrAw9CY2wgZGht4AAAIQGAEAjsQaxooTbg2jocIIAAhAYAQAOBItqRWHCiMAIFIERgCAI4VqSc2jJTUmiljDCACIEIERAOBIocLLoSICYywUhmlJZUoqACAQgREA4Egh1zBSYYyJgjAVRi8VRgBAAAIjAMCRQlW7WMMYG+H2YWQNIwAgEIERAOBIoYfe0DMZC+GG3lBhBAAEIjACABwpVLWLfRhjI9waRiqMAIBABEYAgCOxD2PFYQ0jACBSBEYAgCMRGCtO+JbUSr4QAIDjERgBAI4UqtqVT2CMiXCBkZZUAEAgAiMAwJFCrmEkMMZEYRFrGAEAkXFkYHz44Yc1cuRItW/fXi6XS23btg153IYNG+RyuUr88+qrr5b6erNmzQr7/L/85S8x/uwAAJEIOSWVoTcxwRpGAECk4qv6AkK54447VL9+ffXs2VOZmZlhj2vUqJFmz54d8rG//OUvysvL0+DBg6N63WOOOcZ2X+fOnSN+PgAgdrxh1jAaY+RyuargiqqPolCbXIo1jACAYI4MjGvXrlX79u0lSV26dFFOTk7I42rVqqUxY8YE3f/VV18pKytLI0aMUMOGDSN+3UGDBikjI6NM1wwAiK1Q7ZFec7g6lhQfVwVXVH3QkgoAiJQjW1J9YbGspk2bJkkaP3581M89cOCACgoKyvX6AIDyC9cemV8QujqGyIWfkkpgBADYOTIwlkdOTo7efPNNtWnTRoMGDYrquUOHDlWdOnWUnJys448/Xq+88kq5rqVZs2a2P506dSrX+QCgJgmTadhaIwbCrWGkwggACOTIltTyeOONN5STk6MJEybI7Y4sD6empuqiiy7SgAED1LhxY61fv15PP/20xo4dq7Vr1+qee+6p4KsGAAQKNfRGYlJqLIStMBIYAQABql1gnDZtmtxuty677LKInzNq1CiNGjXKdt9VV12lXr166YEHHtC4cePCTmotyfbt2223s7OzlZ6eHvV5AKAm8oQZzEKFsfwKPaGDIXkRABCoWrWk/v777/r66681aNAgtW7dulznSkpK0oQJE1RUVKT58+fH6AoBAJGiJbXiFBaFaUllDSMAIEC1CozTp0+XVLZhN6H4qop79uyJyfkAAJEL1x6Zz16M5RZ2H0ZKjACAANUmMBYUFGj27Nlq1KiRzjvvvJicc/Xq1ZKkJk2axOR8AIDIhat2UWEsv3BrGBl6AwAIVG0C4/vvv6/du3dr7NixSkhICHlMbm6uVqxYEbS2cO/evUHHZmVl6ZFHHlFiYqIGDx5cIdcMAAgvXHghMJaPx2vCrlVkWw0AQCBHDr2ZPXu2Nm7cKEnavXu3CgoK9MADD0iS2rRpo7FjxwY9J5J21G+//Vb9+/fXuHHjNGvWLP/9Xbt2Vb9+/dS1a1c1btxYGzZs0IwZM7R9+3Y9/vjjatmyZQw/OwBAJMKFlzxaUsslsLqYGO9WwR9rGgmMAIBAjgyM06dP15IlS2z33X333ZKkfv36BQXGzZs3a/78+Tr11FN1zDHHRP16o0eP1uLFizV//nz/JNOTTjpJM2fOpLoIAFUkXIUxP8zAFkQmMDAmWQJjuEFDAICay5GBcfHixVEd36pVK3k8pf/GOSMjQybEb08ff/zxqF4PAFDxwgZGKozlErilRnJCnA7kF0liSioAIFi1WcMIAKhewraksoaxXAIrjMkJxT8KMCUVABCIwAgAcCT2YawYBQEtvcnxcf6PWcMIAAhEYAQAOBJDbypGcIWxODCyrQYAIBCBEQDgSEWeMGsYqTCWi3UNo8slxce5/LepMAIAAhEYAQCOFG4ACy2p5WOtMCbEuRXnKg6MTEkFAAQiMAIAHCncABYqjOVTYEmFiXFuud1UGAEA4REYAQCOFL7CSBmsPAqLrBVGl63CSGAEAAQiMAIAHClshZGhN+ViXcOYEOeW2/KTAENvAACBCIwAAEeyhpcEy2AW1jCWT6HXvobRbVvDSGAEANgRGAEAjmRtSa2VFO//mMBYPtaW1MR4t+JYwwgAKAGBEQDgSNaW1FqJlsBIS2q52FtSA9cwVsUVAQCcjMAIAHAka4WxtqXCeKiIwFgegdtqWKek0pIKAAhEYAQAOJJ1T8BaSXH+j6kwlk9BYGAszothBw0BAGouAiMAwJE8luEsgWsYDWvtyqwwYB9G6xrGcFuZAABqLgIjAMCRbBVGyxpGr7FXyRAd2z6M8S7blFQKjACAQARGAIAjecNMSZWk/AICY1lZh97EuwOmpJIYAQABCIwAAEeyDmCpbVnDKLG1RnkEr2GkJRUAEB6BEQDgSOH2YZQIjOVhW8MY2JJKhREAEIDACABwJGt4SYqPU7yldTKfwFhmgdtqxFl+EmBbDQBAIAIjAMCRrOElPs6l5ATL1hoExjIrsqxhTAiYkkpeBAAEIjACABzJOvTG7bIHxnz2YiyzktYwelnDCAAIEF/6IQAAVD5rhTHOLaUkFv+Okwpj2dn3YXTZqoq0pAIAAlFhBAA4kqVzUm6XSym0pMZEYVH4llSmpAIAAhEYAQCO5LVVGAMCIy2pZWYbehNvb0k1BEYAQAACIwDAkYq8xcEmzh2whpEKY5kFrmFkSioAoCQERgCAI1nyYvDQm0JviGcgEoFrGK0VRg9vKwAgAIERAOBI1vV0QS2pVBjLrDBgWw23mympAIDwCIwAAEeyTUl1uZSSSGCMBWuFMT7OrThbhZHACACwIzACABzJtg9jwBpGht6UXUFRQEsqFUYAQAkIjAAARwrah5GhNzFRGDD0xpIXCYwAgCAERgCAI9kDo1spicXfsmhJLbsib8A+jLSkAgBKQGAEADiStdoV53IpOZ6W1FiwtqQmxNuH3jAlFQAQiMAIAHCkoJZUy9Cb/CKSTVkFbqsRZwmMhpZUAEAAAiMAwJGs3ZFB+zBSYSyzwG01bC2pBEYAQAACIwDAkYq8xZUw9mGMncChN5a8yBpGAEAQAiMAwJEseVFuN/swxkpgYIxjWw0AQAkIjAAAR7KtYXQFVBhpSS0z2z6M8fY1jFQYAQCB4qv6AgAACMW6ni7O7VJCXPHvONmHsewC1zC6XdYKY1VcEQDAyagwAgAcyWtJL4eH3rAPYyxYW1Lj3QGBkcQIAAhAYAQAOFJghdG2rUahhy0gysDrNSqyhMLDLanFjzMlFQAQiMAIAHCkoH0YLWsYvUYqYJf5qBV67e9ZUEsqFUYAQAACIwDAkby2wOi2BUZJyi8gMEaryGMPhMFTUiv7igAATkdgBAA4kq0l1eVScqI9MLKOMXqFnuAKI1NSAQAlITACABzJvg+jgiqMBMboBbbxJsa55XKxDyMAIDwCIwDAkUJtq2GthrEXY/QKA1tS412Kc1FhBACER2AEADiOMcY+9OaPUGOtMlJhjF5hUaiW1OLbTEkFAAQiMAIAHCew0OX+o7KYbAmMhwiMUQtcwxjvdtmmpJIXAQCBCIwAAMcJbI30VxgTi79tUWGMnnUNo2/9opuWVABACQiMAADHCRy+4lu7SEtq+VjXMCbEHX5PmZIKACiJIwPjww8/rJEjR6p9+/ZyuVxq27Zt2GMvvfRSuVyukH/eeuutiF9z27ZtuuSSS9SoUSOlpKSoV69emjNnTgw+GwBAtAKDiztUYGToTdSsLakJ8Yd/BHC7mZIKAAgvvqovIJQ77rhD9evXV8+ePZWZmRnRc2bPnh1030knnRTRc/ft26fTTz9du3bt0k033aSWLVvq3//+t0aNGqUZM2bosssui+byAQDlFDh8xdeSal3DmE+FMWrWoTfx7sOBMY5tNQAAJXBkYFy7dq3at28vSerSpYtycnJKfc6YMWPK/HqTJ0/W+vXr9f7772vIkCGSpCuuuEKnnHKKJkyYoJEjR6p27dplPj8AIDrewDWMIYbe0JIavULL+5r4R0uq2zol1Rv4DABATefIllRfWIyGMUbZ2dnyeqP/bvfvf/9bHTp08IdFSYqLi9P111+vffv26cMPP4z6nACAsgsaehOiJTW/kHQTLWuF0d+SSoURAFACRwbGskhPT1d6erpSUlI0aNAgffPNNxE9b/v27dq6datOPvnkoMd89y1durRM19SsWTPbn06dOpXpPABQ04RrSU1JpMJYHrY1jH9swMjQGwBASRzZkhqNpk2b6m9/+5tOOOEE1apVSz/99JOefPJJ9enTRx9++KEGDhxY4vO3bdsmSWrRokXQY777tm7dGvsLBwCEFdgs4mubTGboTbkUhAiMtgojgREAEOCID4yTJ0+23T7//PN10UUXqXv37rrmmmu0evXqEp+fm5srSUpKSgp6LDk52XZMtLZv3267nZ2drfT09DKdCwBqkqKAxBi6JZXAGC3rthqJIbbVoCUVABCo2rSkWnXq1EmjRo3SmjVrtGrVqhKPTU1NlSQdOnQo6LH8/HzbMQCAyhFUYfS3pBZ/26IlNXqhWlIteTGoFRgAgGoZGCX5927cs2dPicc1b95cUui2U999odpVAQAVJ2gNo29KajwtqeUROjBaW1Ir/ZIAAA5XbQOjrxW1SZMmJR7XrFkztWjRQl9//XXQY777evXqFfsLBACEFTQllaE3MVEQYkqqbegNFUYAQIAjOjAePHjQ3zZq9cMPP2jOnDk65phj1KFDB//9ubm5WrFiRdDawtGjR2vt2rX64IMP/Pd5PB7961//Ut26dXX22WdX3CcBAAgSuJbOHWIfxkNsqxE11jACAKLlyKE3s2fP1saNGyVJu3fvVkFBgR544AFJUps2bTR27FhJh6uIf/rTn3T++eerU6dO/impM2bMUFxcnF544QXbeb/99lv1799f48aN06xZs/z333777ZozZ44uuugi3XTTTWrRooVee+01LV26VNOmTVNaWlrlfOIAAEn2CqM10FiH3lBhjF5pLanGHN7X2GW5DwBQszkyME6fPl1Lliyx3Xf33XdLkvr16+cPjE2bNtXAgQO1aNEivfrqq8rLy1OzZs104YUXauLEiTr66KMjer0GDRroiy++0O23366nn35aOTk5OvbYY/X666/rwgsvjO0nBwAolS0wWsILLanlYw2M8SGG3kiH3/v4OAIjAOAwRwbGxYsXR3Rc06ZNNXv27IjPm5GRIROm3aZFixZRnQsAUHGsrZFhK4wMvYmatSU1IURLqnR4HaMjfzgAAFSJI3oNIwCgegrXkpqUUPxti30Yo2etMCaGaEmVmJQKALAjMAIAHMdaYbQWwFjDWD6h1jAGVhgZfAMAsCIwAgAcx5Jr7C2pAWsYwy0zQGilDb2R2FoDAGBHYAQAOE6RpS8y3BpGY6QCD/2T0SgosqxhjD/8vroDfhLwegmMAIBiBEYAgONY19FZK2DWwChJ+QUExmiEWsMYF1hhJDACACwIjAAAx/GEmZKanGgPjKxjjE5kaxgr9ZIAAA5HYAQAOI61LbKkCiOBMTqhAqMrcEoqaxgBABYERgCA44TbViMhzm27zV6M0SmIZB9GSowAAAsCIwDAccK1pEpsrVEehUWWNYzxrGEEAJSOwAgAcBx7S6r9sWRrYKTCGJWQ22oETkmlJRUAYEFgBAA4jrXCGB+QaGolFQfGgwVFlXZN1UGh1/q+/tGSGrSGsVIvCQDgcARGAIDjWNsi3QElxlqJ8f6PcwmMUQnVkuqmJRUAUAICIwDAcby2NYz2x2onFQfGnEO0pEYjdEsqU1IBAOERGAEAjlNkmeYZ2DKZam1JPUSFMRqhAqNkHyxEhREAYEVgBAA4jrXKFdSSaqkw5hIYo1IYYlsNyR7KqTACAKwIjAAAx7EUwoIqjLUTaUktqwLLG5toqTBa32KvVwAA+BEYAQCO4ymhwkhLatnZWlLjw7SkUmEEAFgQGAEAjmPdhzGowmgdesOU1KhYp6Ta1jC6WMMIAAiNwAgAcBxraIljDWPMhFvDaK3isoYRAGBFYAQAOE6JQ28SrS2prGGMlDEm7BpGayj3UmEEAFgQGAEAjmOrMNrzoq3CmEOFMWJFAUHQ2pJqzeSsYQQAWBEYAQCOYw0tcW77typbSyprGCNm3dtSsg+9cVu31WBKKgDAgsAIAHAc29CbgO9UtqE3tKRGzNqOKkkJlrIiU1IBAOEQGAEAjmPbhzFwW41EttUoi8LAwBgXpsJIYAQAWBAYAQCO47H0RbpL2FYjr9DDNhARCgqM1pZUy08DDL0BAFgRGAEAjmNfwxh+Ww2JdYyRKiwKHHpjaUllH0YAQBgERgCA49haUl2B22rYAyNba0QmeA2jtcJISyoAIDQCIwDAcUrchzEpznb7IBXGiFhbUuPdLtv7aq8wVuplAQAcjsAIAHAc+z6M9sAYH+dWkmX9HYNvImMNjAkBo2fjqDACAMIgMAIAHMcaGAMrjJJ9HWMOgTEi9sBof09dTEkFAIRBYAQAOI7XhN+HUbK3peayhjEiBZahN4nxgRXG4o8ZegMAsCIwAgAcxxpa4t3B36qsg29YwxiZEltSmZIKAAiDwAgAcBzb0BsXLamxUOQNHxitbb90pAIArAiMAADHsQ29CdmSWhwYaUmNjLUlNT5gDaM1lHtIjAAACwIjAMBxikoZelPbsoaRCmNkrC2pibSkAgAiRGAEADiOt4RtNSQp1bqGkcAYkZLWMFqXiTIlFQBgRWAEADiOx5JZ4kJWGK1Db2hJjURJ22rY9mGkwggAsCAwAgAcxxpaQg+9KW5JpcIYmQJLCg+qMNrWMFbaJQEAjgAERgCA49iH3tCSGguFRZY1jPHhAyMVRgCAFYERAOA41kmdpbekEhgjUeI+jG6mpAIAQiMwAgAcp/SWVGuFkTWMkShpDaObKakAgDAIjAAAx7FXGIMfr80axqiVtIbRetNQYQQAWBAYAQCOY1/DGPytyraGkZbUiBSVsA+jvcJYaZcEADgCEBgBAI5j3QswLrgjlZbUMih5H0bWMAIAQiMwAgAcp7QpqYFDb2ijLF2htSU1PmAfRqakAgDCIDACABzHGhjdIbfVKF7DaIyUW0CVsTQFlgpjvDv8lFQv4RsAYEFgBAA4jq3CGGJKqrXCKLGOMRIl7cNofYtpSQUAWBEYAQCOY+meDFlhrBUYGFnHWKqSttWgJRUAEA6BEQDgON5SKoyJ8W5b6GFrjdIVlritBlNSAQChOTIwPvzwwxo5cqTat28vl8ultm3bhjwuPz9fL774os477zy1bdtWKSkpat++vUaPHq3ly5dH/HqzZs2Sy+UK+ecvf/lLjD4rAECkSht6IwVOSiUwlqYgwimprGEEAFjFl35I5bvjjjtUv3599ezZU5mZmWGP27Bhg6688kqdfvrpuuKKK9S8eXOtW7dOzz77rN5++23NmzdP/fv3j+p1jznmGNt9nTt3LuunAQAoI2toCdWSKkm1EuOVmVsoiTWMkSgsYR9GW0sqgREAYOHIwLh27Vq1b99ektSlSxfl5OSEPK5Ro0b64Ycf1L17d9v9F198sXr06KFbbrlF3333XcSvO2jQIGVkZJT1sgEAMVLa0BtJqpVUPCk1hzWMpcrJLw7VgWsYrZncwxpGAICFIwOjLyyWpkGDBmrQoEHQ/ccee6y6dOmiX3/9NerXPnDggJKSkpSYmBj1cwEAsWGd1BkXZvGEtSU1l5bUEv2yJUvfbdzvv92iXqrtcVpSAQDhODIwlpfX69X27dvVpEmTqJ43dOhQHThwQC6XS127dtUtt9yiMWPGlPk6mjVrFnRdAIDS2YbeuEMnRuvWGjkExhL9438r/B+3b1RL/Ts3sj1ureJSYQQAWFXLwPjcc89p+/btuvvuuyM6PjU1VRdddJEGDBigxo0ba/369Xr66ac1duxYrV27Vvfcc08FXzEAwCqSCmNqYnFLKttqhPflmj36bPUe/+1bzuys+BKmpJIXAQBW1S4wfvnll7rpppt0/PHH64477ojoOaNGjdKoUaNs91111VXq1auXHnjgAY0bNy7spNaSbN++3XY7Oztb6enpUZ8HAGoaj2ULCHfYNYyWllSG3oRkjNEj84qri8e3TNdZXZoGHediH0YAQBiO3FajrJYtW6ZzzjlHzZs319y5c5WcnFzmcyUlJWnChAkqKirS/PnzY3iVAIDS2CuMoQMjLamlm/frDv20Jct/+7azjraFQx9rwdHDGkYAgEW1CYzff/+9Bg0apPT0dC1atEgtWrQo9zl9VcU9e/aUfCAAIKasm8eHm5Kamsg+jCUp8nj16PyV/tt9OjXUqR0bhjyWNYwAgHCqRWD8/vvvNXDgQKWlpWnRokVq06ZNTM67evVqSYp6eA4AoHwi2YextmVbjYMFrGEM9NayLVq3+6D/9q2Djw57LFNSAQDhHPGB8YcfftCgQYNUu3ZtLVq0SO3atQt7bG5urlasWBG0tnDv3r1Bx2ZlZemRRx5RYmKiBg8eHPPrBgCEZ9uHMUxgtK5hpMJol1/o0ZMfr/bfPqdbM3VtGX4NfZxtDWOFXhoA4AjjyKE3s2fP1saNGyVJu3fvVkFBgR544AFJUps2bTR27FhJ0saNGzVo0CDt379ff/3rX/Xll1/qyy+/tJ1r2LBhqlWrliTp22+/Vf/+/TVu3DjNmjXLf0zXrl3Vr18/de3aVY0bN9aGDRs0Y8YMbd++XY8//rhatmxZCZ81AMDHOngl7NAbWlLDembRGu3Izpd0OHBPOLNzicdbK4ysYQQAWDkyME6fPl1Lliyx3efbIqNfv37+wLh+/Xp/dXDSpEkhz7V+/Xp/YAxn9OjRWrx4sebPn++fZHrSSSdp5syZVBcBoApEMvTGVmGkJdVv0cpd+teiNf7bF57YSu0alvx90M2UVABAGI4MjIsXL47ouIyMDJkofhMa7vjHH3884nMAACqerSU17LYa1n0YqTBK0qa9ubrx9R/l+1bXPD251OqixJRUAEB4R/waRgBA9WMfehP6GLbVsMsr8OjqV5YpK69QkpQY59azY05Q/VqJpT7XVmEkLwIALAiMAADHsVYY48MkRuu2GrkFnqg6TqobY4zufPcX/b4923/ffecdp+Nb1Y3o+bSkAgDCKVdgjIuL08UXXxyrawEAQMYYW5UrLoIKo8drdKio5o73fOWbTXr7+63+2xf2aqU/n9Q64udb14myDyMAwKpcgTEtLU2tW0f+DQkAgNIEBpawU1ItaxilmtuWunrnAd33wW/+291apuve846L6hxMSQUAhFOuwNijRw/9/vvvsboWAACCAkskU1IlKfdQzZyU+uEvO1ToOfye1UtN0DMX91RyQlwpz7KLoyUVABBGuQLjbbfdpg8//FALFiyI1fUAAGq4wI3jw1UYk+LdtjBZUyuMviE3knRWl6ZqWS816nNYM7mXCiMAwKJc22rs2rVLZ511lv70pz/p/PPP14knnqimTZvKFeKb+yWXXFKelwIA1BCRVhhdLpdqJcYpO/9wUDxYUDMDY15h8eedklC2b+v2ltRyXxIAoBopV2C89NJL5XK5ZIzR22+/rbfffluSbIHRGCOXy0VgBABEJHANY7jAKB1uS/UFxppaYcwrKG7FTUksW+MQLakAgHDKFRhnzpwZq+sAAEBScGAJ15Iq2dcx1tQ1jLmWwGjdaiQaTEkFAIRTrsA4bty4WF0HAACSIm9JleyB8WBNrTAWFgfGaIfd+FhbUlnDCACwKtfQGwAAYi2wwhhXUoUxsTgg0ZIqpSaWMTAy9AYAEEZMAuN7772nCy+8UMcff7w6duzov3/58uX6xz/+oa1bt5bwbAAAigVVGOMibEmtoUNvrC2pKWWsMFpDOS2pAACrcrWkGmM0ZswYvf7665KklJQU5eXl+R+vX7++7rzzTnk8Hk2cOLF8VwoAqBGCht6UUGGsbQmMOTV0DWN+oXXoTSxaUst9SQCAaqRcFcannnpKr732msaPH699+/ZpwoQJtsebNGmi008/XXPnzi3XRQIAao7AwOgu4TuVtQWzpq5hpMIIAKhI5QqMM2bMUM+ePfX8888rPT095P6LHTt21IYNG8rzMgCAGqSsFcaauw9jDNYwWn4aYA0jAMCqXIFx9erV6tevX4nHNGzYUHv27CnPywAAapDAwMKU1JJZh96UeUoq+zACAMIoV2BMTExUTk5Oicds3rxZderUKc/LAABqEI+3+GOXSyG7V3zsLak1bw1jkcerAssbVtYKo20fRiqMAACLcgXG448/Xh9//LEKCwtDPn7gwAEtWLBAvXr1Ks/LAABqEGtLakntqBItqdZ2VKnsQ2/saxjLdUkAgGqmXIFx/PjxWr9+vS699NKgSuOePXt00UUXac+ePbrqqqvKdZEAgJrD2pLqLqEdVToyWlILirxatGKX9h0siPm5AwNjakLZhp9b32dDhREAYFGubTXGjh2rjz/+WLNnz9Z//vMf1a1bV5J07LHHau3atSosLNT48eN13nnnxeJaAQA1QJkrjA5tSb15zk/64Kdtalg7UZ/fNqDM6wxDsa5flMqxrYaLllQAQGjlqjBK0ksvvaQXX3xRRx99tHbv3i1jjFasWKFOnTrp+eef1wsvvBCL6wQA1BDWwFLSwBspYA2jQ1tSP1m+U5K0J6dAv23Lium5rRXGOLdLCXElv1/hxFl+GmBbDQCAVbkqjD5XXHGFrrjiCuXl5Wn//v1KT09XrVq1YnFqAEANY53SWUpedHxLqjHGFuoOFcZ2gaB1D8bUhLgSBwSVhCmpAIBwYhIYfVJSUpSSkhLLUwIAahhrhSs+ruRGGGtLaqHH6FCRR0nxsWv5LK9Cj5E1fx2K8USZfOuWGmVsR5WYkgoACK9cLaknn3yy7rzzTn388cfKz8+P1TUBAGowj63CWEpLapI9JOU6bB1jfpH9eiq0wliOwGirMJIXAQAW5aow/vzzz/r22281efJkJSYmqnfv3jrjjDM0YMAAnXzyyYqLc85veQEARwb7GsaSj7VWGCUp51CR6tVKrIjLKpP8gCmmBTGuMOZazp9SjmE6tKQCAMIpV2DMzMzUV199pY8//lgLFy7Ul19+qU8//VSTJk1SamqqTj/9dA0YMEADBgzQCSecEKtrBgBUY9FMSU1JiJPLJfkyptMG3wRWFA8VxrYCam1JLeuEVImWVABAeOUKjImJierXr5/69eun+++/Xzk5OVqyZIk++eQTffLJJ5o/f77mz58vl8uloiJnfRMHADhTNPswulwu1UqMV84fA2+ctrVGhVcYLQG5PBVGayXXmMPDeso6QAcAUL3EdOhN7dq11aNHD+3fv1/79u3T1q1btWfPnli+BACgmrNmqtK21ZCkWklxlsDorF9O5gdVGGMbGPMs54vVGkbp8DrGMu7QAQCoZsodGPft26dFixb5q4qrVq2SMUb169dXv379NGDAAJ1xxhmxuFYAQA0QTUuq5Nta45AkBwbGooqtMOZZKozJMVrDKB3+O4gkrAMAqr9yBcYePXrol19+kTFGtWrVUp8+fTR+/HgNGDBA3bt3p50FABC1aFpSJalWomUvxgJnt6TGvsIYmympgeHQyzpGAMAfyhUYf/rpJ7lcLg0aNEi33367+vTpw2RUAEC5RF9hLP6+47gKY0BALPDENtBat9Uo15RUd3CFEQAAqZz7MP7tb39Tt27dtGDBAp1xxhmqV6+ezjnnHD3xxBP66aefYnWNAIAaJNoKo3VrjRzHBcbKqzCmJJb9d8CBwZxJqQAAn3JVGB9//HFJh9cx+tYwfvLJJ/roo4/kcrnUoEED9e/fX2eccYauvPLKmFwwAKB6s1UYI/i1ZqolKOU6bVuNosAKY6zXMMZqH0b7bRPbywQAHMHKVWH0qV+/vkaMGKFnnnlGK1as0JYtW/T444/L7Xbrrbfe0rXXXhuLlwEA1AD2wFj6t6lalgqj07fVcOoaxqCWVCqMAIA/xGxbjYMHD+rTTz/VwoULtXDhQv3yyy/yeg9/Y0xLS4vVywAAqjn7GsbSj69tWcPo9JbU2O/DWHz+5PIMvQkxJRUAAKmcgXHJkiX65JNPtHDhQi1dulRFRUUyxiglJUX9+/fXgAEDNGDAAJ144omxul4AQDVnrW5FsrWDtSXVaUNvAltSDxXFtgJqDaSpMRx6w5RUAIBPuQJj//79JUkJCQk68cQT/XsunnLKKUpMTIzJBQIAahavpboVuD9gKNahN07fVqOgqOIqjClsqwEAqADlCowTJkzQgAED1KdPH9WqVStW1wQAqMHsaxgj2VbDuRXGoDWMMQ6MeTEKjIFvMy2pAACfcgXGf/zjH7G6DgAAJEkeS1aJLDAeOfswxjwwxqolNaCS62VKKgDgDzEberN9+3b9+OOPyszMVHp6unr06KFmzZrF6vQAgBoi2pbUWtY1jA7bVuNIqTAGBnOmpAIAfModGDdt2qRrrrlG8+bNC3ps8ODBeuaZZ9S2bdvyvgwAoIaIduiNo7fVCNyHMYaB0es1MdtWgympAIBwyhUYd+zYodNOO01bt25V27Zt1bdvXzVr1kzbt2/XZ599pnnz5qlPnz5aunSpmjZtGqtrBgBUY55yDL1x+rYasZySmh9wruRytKQGvs2GCiMA4A/lCowPPPCAtm7dqkceeUQ33XST4uKKv1l5PB498cQTuvXWW/XAAw9o6tSp5b5YAED157UNvSn9+FTLGsaCIq8KPV4lRPLESlCRU1LzAibCWrcXiZbL5ZLbJfneelpSAQA+5fqOOnfuXA0cOFC33HKLLSxKUlxcnCZMmKBBgwbpv//9b7kuEgBQc0TbkmqtMEpSroPaUg9V4NCb3IDAmFKOCqNkf69pSQUA+JQrMG7fvl0nnnhiicf06tVLO3bsKM/LAABqEPu2GqV/m6oVEBhzHDT4JrBtNJYVxsDqZXJC+aqq1vZfpqQCAHzK9d0lPT1dmzZtKvGYzZs3q06dOuV5GQBADWILjKUXGJWaEGdbg3cgv7ACrqpsKnINo7XCmJIQJ1cE6z1LYguMtKQCAP5QrsB42mmn6a233tI333wT8vFvv/1Wc+bM0emnn16elwEA1CDWllR3BC2pbrdL6SkJ/tuZuU4KjMFTUmM1UCZWE1J9bC2pBEYAwB/KNfTmrrvu0ocffqg+ffpo9OjRysjIUNOmTbVjxw4tXrxYr732mtxut+64445YXS8AoJqzDb2JsGpWNyXBHxSdFBgDK4peIxV5jRIiKZ2Wwjr0pjwTUn2s2dzLGkYAwB/KVWHs2bOn3nrrLaWlpWn27NkaP368zj33XI0fP16zZ89WnTp19Oabb6pXr15Rnffhhx/WyJEj1b59e7lcrlL3cfzmm280cOBApaWlqU6dOjrrrLP0448/RvWasTgHAKD8PJaiXCRDbyQpPTXR/3F2nnMCY2CFUYrd4JsKrTASGAEAfyhXhVGSzj33XG3atEnvvvuufvjhB2VlZSk9PV09evTQ+eefr1q1akV9zjvuuEP169dXz549lZmZWeKxX3/9tTIyMtSiRQvdd999kqSpU6eqT58++vLLL9W1a9dSXy8W5wAAxIY3ypZU6XCF0SczryDm11RWgWsYpT8G3ySV/9y2NYy0pAIAKkiZA+OmTZu0dOlSud1unXjiibr44ot18cUXx+Si1q5dq/bt20uSunTpopycnLDH/vWvf1ViYqI+/fRTtWjRQpI0atQoHXPMMbr55ps1f/78Ul8vFucAAMSGpywtqanOW8NojAlZTYzV4BtrhbG8W2pIsg3NIS8CAHzK1JI6YcIEtW/fXqNGjdKIESPUrl073X777TG7KF9YLM2aNWu0dOlSjRw50h/0JKlFixYaOXKkPv7441K39IjFOQAAsRPtPoxSYIXRGYExXOtprLbWyLNsHxKTCqOLllQAQLCoA+Nrr72mf/7znzLG6Oijj1bnzp3l9Xr16KOPas6cORVxjWEtXbpUknTKKacEPXbyySfLGKNly5ZV+DnCadasme1Pp06dynQeAKhJrANX3BFWGK1rGLMcUmEM1Y4qxXANY0HxeZiSCgCoKFEHxmnTpik+Pl7/+9//9Ntvv+n333/XRx99JLfbrWnTplXENYa1bds2SbJVBn18923durXCzwEAiB1bS2qE36WcuIYx1MAbKXYVxtzC4gpjTKakWt5rpqQCAHyiXsP4888/a8iQIRo4cKD/vjPPPFNDhgzR559/HtOLK01ubq4kKSkpeHpAcnKy7ZiKPEc427dvt93Ozs5Wenp6mc4FADWFvSU1ssToxDWM4SuMsVnDmF8Q2ymp1moueREA4BN1hXH//v06+uijg+4/5phjtH///phcVKRSU1MlSYcOHQp6LD8/33ZMRZ4DABA7ZaowOjEwhgmGsWpJtU1JjUGFkTWMAIBQog6MXq83ZDUuMTFRXm9svglGqnnz5pJCt4z67gvVahrrcwAAYqcsU1LTUyxrGB0y9CZcS2rMAqN1SmpiuXfJsm1h4mUNIwDgD2WakuqK8Bt4RTvxxBMlSV999VXQY19//bVcLpdOOOGECj8HACB2yrQPo6XCmHOoSIWeyv0FZijhWlJjtYYx1i2pVBgBAKGUKTA+/vjjat26te3PE088IUlB97du3Vpt2rSJ6UX7dOzYUb169dKcOXP8w2ukw4Ns5syZowEDBqhp06b++/fs2aMVK1YoKyurzOcAAFSsslUYE2y3nVBlrOgpqbFuSaXCCAAIpUw9LNnZ2crOzg752JYtW8p1QZI0e/Zsbdy4UZK0e/duFRQU6IEHHpAktWnTRmPHjvUfO2XKFPXv3199+vTR9ddfL0n617/+Ja/Xq8cff9x23qlTp+ree+/VzJkzdemll5bpHACAimUtDkZaYQwMjJm5hWpYO3j5RGWq6CmpebaW1FgMvSn+mMAIAPCJOjBWxjrF6dOna8mSJbb77r77bklSv379bIHx1FNP1eLFi3XXXXfprrvuksvl0qmnnqo5c+bo+OOPj+j1YnEOAEBseG1TUiMLjAlxbtVOilfOocNbTWQ5YGuNcNNQYzUlNS/WQ2+s+zBWfUcvAMAhyr9KvgIsXrw4quNPOeUULVy4sNTjJk2apEmTJpXrHACAilWWllTpcJWxODAGt6QaY3TXu7/qs9V7dPufjtbZXZuV/2JLUNFrGK0Vxphvq8EaRgDAH8q0hhEAgIpSlqE3Uulba/yyNUuvfrNJm/bl6tH/rSzfRUYg3FpFp65htFUYaUkFAPyBwAgAcBR7hTHy55UWGDfuzfV/vCs7v2wXF4UKn5LKGkYAQCUgMAIAHMUWGKOpMFr2YswM0ZK6+8Ah/8e5hR6ZCg5F4fdhLP8aRmOMcguK/LdjExhpSQUABCMwAgAcxR4YI/82lW6pMGblBg+92Z1THBiNiV1raDgVWWEs8HhlzXSpCeUfSWAfekNgBAAcRmAEADiKxzYlNfLn1bVsrVFahVGyrwGsCOErjOUPjHkB156cWP5v5/Y1jOU+HQCgmiAwAgAcxdoO6Y5iSmppaxiDA2NR0DGxlB+m9TQWFca8gOplamL5K4y0pAIAQiEwAgAcxVOGfRil6NYwSsFVulgL15IaiwpjYHU0FlNSGXoDAAiFwAgAcBTrpvHRBMZo1jBKFd+SesjSkmotlMakwmi59sR4d1TvUzhsqwEACIXACABwlDK3pJawhtHjNdpbyYHRWmFMSypuGY3FlFRrS2osqosSLakAgNAIjAAARylzS2pqcUtqVl6hLfTsO1igwAyUV1h5axjrWMJsrFtSU2OwpYYUOCU1JqcEAFQDBEYAgKPEYuiNMdKB/OJAGLh+UarcKanpMQ6M1pbUCqkw0pIKAPgDgREA4ChlrTBaQ5l0uMroE7h+UarcoTd1kouvLTZTUovDcEqMKoxuN4ERABCMwAgAcBTrpvHR7MOYnBCnpPjiJ2TmFQ++CVVhDNyaItasgTH2Fcbic8SqwhhnyeYe1jACAP5AYAQAOEpZW1Kl8HsxVnVLap2U4qE3BTEYemPdQ7IiKoxMSQUA+BAYAQCOUmQJjPHu6L5NhduLsSoCo3UaaqwrjNbqZayG3jAlFQAQCoERAOAo1vVzUebFsHsxhl7DWLFTUq37MMZ6DWNuBQy9ibMNvYnJKQEA1QCBEQDgKLY1jNG2pKaEa0nNDzq2wltSrRXG1BivYbTuw5gYX8KRkbO1pJIYAQB/IDACABzFPvSmHGsYS2lJrcgpqR6vUaGn+POI+ZTUiqgwWn4iYEoqAMCHwAgAcBRrccsddWC0rGGswqE3+QETWO1rGMv/unkVsIbRWs2lwggA8CEwAgAcpTwtqdZglvXHthr5hR5l5wevV8ytwG01AgOjdUqq10hFnvJVGW1rGGMUGF2sYQQAhEBgBAA4inVLh3K1pP5RYdwTYuCNVLFDb/ID2k6tQVYq/zpGayCNXUsqU1IBAMEIjAAARynXPowhttUI1Y4q2ds6Yy2wwpiWbA+M5V3HWBEVxjj2YQQAhEBgBAA4SqwrjOECY2WtYYx3u4JCXXkrjNahN+zDCACoSARGAIBjeL1G1uJWXLT7MAasYTTGhNyDUarYKan5lj0YkxPilBjwiZS3wmitjibHqCXVms2pMAIAfAiMAADHCAwqUbekWiqMhR6jvEKP9hwo8N9Xv1Zxy2pFVhgP2QKdW0nx9m+35Z2UWhEVRtsaRvIiAOAPBEYAgGMEbucQ747u25R1Ww3pcFvq7px8/+3W9VP9H1dohdESCJPi4+RyuWxVxvK2pOZaBvbEaugNLakAgFAIjAAAxwjcMD7KvKhaiXGKt1TKMnMLbWsY2zQoDowFHm+5t7cIx96SeviTsFYZy72GsbCCh94QGAEAfyAwAgAcIzCoRDv0xuVy2Qff5BXYA6OlwihFvhfjgfxCPfThck3+aEVElcn8EGsMEy2BsTxrGAs9XhV6it+nithWgzWMAACf+NIPAQCgcngDclRclGsYJalOSoL25Bxet5iVW2gbetMqIDDmFXhUJ2DLi1Be+XqTXvh0nSSpYe1Eje/TvsTjA4feSIEVxrK3wwZuB5KaGJtv5da32hAYAQB/oMIIAHCMoKE3UVYYJamuZVLq/qCW1Fq2YyMdfLNyR7b/45+2ZJV6fH7A0BspdhXG/IBrjlmF0UVLKgAgGIERAOAYQS2pZagwWgffbM3MtVX7mtdNtq1xtA6PKUlWXmHxOffnlnq8dY1icryvwhgX8vFoBYbcClnDSF4EAPyBwAgAcIzgoTflqzCu3plje6xh7SRbwMqPcA2jNTBuy8wv4cjg88Z6DaO1JTXO7VJCXPTvUShMSQUAhEJgBAA4RnmH3khSumXozZpdxYGxTnK8khPibPsWRtqSag2MOw/klxr4bNtqxHhKqvWaUxMOb9kRC9a3mpZUAIAPgREA4BgxaUlNKW5J3bD3oP/jRmlJkuxDYiINjNn5xa2rxkg7s0uuMh4KMfTGXmEs+9Cb/ArYUkOyh/PASi8AoOYiMAIAHKO8+zBKsm2rYc2fvsBoHRITyRYZkr3CKElb9ueVeLytJTU+1JTU2FQYYxkY3QRGAEAIBEYAgGMUBVQY48uQGK2B0apRWrIkRd2Sml/oCWpB3ZYZRWCM8ZRU6xrGWE1IlZiSCgAIjcAIAHCMwGErZVjCqPSUMIGx9h8VRltgLH1KamB1UZK2lhoYQ+3DGJspqXmWa66oCiNTUgEAPgRGAIBjWPdhdLtUpoEu1m01rIrXMEbXkpodIjCWWmG0Dr2JD1Fh9JQnMFqG3sQyMFrea0NLKgDgDwRGAIBjWFshyzIhVbJvq2EVag1jbgTbapStwhi8rYZtDWOE23mEkltRLamWnwhoSQUA+BAYAQCO4bUU3txl3C4i/BpGX0tq8ZTUSCqM5W9JjW2FMd829Ca+hCOj42YNIwAgBAIjAMAxrC2pZa0wpiUnKFTW9K1hTI1yDWN2fuiW1JLaNkNXGC1rGAtjNCU1IXbfxtlWAwAQCoERAOAYtpbUMlYY49wu1UkOrjKGWsMYyZTUrNzgwJhf6NW+gwVhn2MdauMLitYK46FyVBitLampVBgBABWMwAgAcAxrZctdxgqjFNyW6nZJ9WsdHoZjnSyaH9EaxtBVyJLaUkNtq2FfwxibltTkGK5htA+9idlpAQBHOAIjAMAxYjH0RgoefNOgdpL/fKkJUVYYQ6xhlEqelFra0JvyrGHMraApqXG2bTVIjACAwwiMAADHsO7DWNahN5JUJyAw+tYvSvY2zkgCY6g1jJK0ZX9JgTHUPoyxmZKax5RUAEAlIjACAByjyFZhLPt5Avdi9K1flOwtqWWdkipJ2zLzQ95vjNGhouCW1IrYhzElhhVG656XXgIjAOAPBEYAgGNYWyHj3WX/FhXYkmoNjLahN4WlT0m1BsZ6lrWRWzNzQx5f6DGy5q3k+NhOSa2wCqM1MJIXAQB/IDACABzD1pJargpj+MAYbYUx2xIYj21ex/9xuApjfpH9nL6W1FhVGK1bgbCGEQBQ0QiMAADHiMW2GpKUXsIaxpQoh95YA+MxTYsDY7gpqYGTV0NOSS0q+xpG2/rIGAZGNy2pAIAQjujAOGnSJLlcrrB/EhKC9+EKlJGREfb53333XSV8FgAAn9htqxF+DaN16E1eoUemlGqatSX1mGbFgXHfwYKQFcrAdtOQFcaiGFUYYzr0hgojACBY7Hb8rQLDhw9Xx44dg+7/+eef9eijj2rIkCERnadhw4Z64okngu5v3759ua8RABA5a6dmeSqMka5hNOZwxS7c8JhCj1cHLaHw6GZptse3ZuapY+PatvsCK4y+yqJtDWM5AqNtDWNMK4zFHzMlFQDgc0QHxm7duqlbt25B91911VWSpCuuuCKi89SqVUtjxoyJ6bUBAKJnrWyVax/GCNcwSocrduGCV3bAhNTGaclqWDtRe3IKJB3eizE4MBaHwcR4t3/6aCwqjF6vsZ0/lmsYrRVdCowAAJ8juiU1lIMHD+r1119Xy5YtddZZZ0X8PK/Xq+zs7FJbkwAAFSdW+zAGBsaGtUNXGCV7xS5Qdr59imp6SoJa1E3x394WYh2jdehNsiUk2tcwli0wBg7USUmM3e99rRVdKowAAJ9qFxjnzJmj7OxsXXrppYqLi+w3r1u3blXt2rWVnp6u2rVra/jw4VqxYkW5r6VZs2a2P506dSr3OQGgOrMNvSlHhbFdw9pq37CWJOnk9vVtQ3CS4wMCYwmDb6zrF1MS4pQY71ZzS2AMNfjG2pKabFljaK0werxGRWWYlBo4pCem22qwhhEAEMIR3ZIayvTp0+VyuXT55ZdHdHy7du102mmnqVu3boqLi9M333yjqVOnauHChfr888/VtWvXCr5iAICPJ0ZDb+LcLr37l9O0bMN+9W5f3/aY2+1SSkKcv7JY0qRUa2Csk3L4W2aLUgOjZYqpJdBZK4zS4a014uOi+71tYLiNZUuqtaDLlFQAgE+1CowrV67U559/rjPOOEPt2rWL6DkzZ8603R4xYoSGDh2qjIwM3XTTTVqwYEGZr2f79u2229nZ2UpPTy/z+QCguvPattUo37nqJCeo/9GNQz6WmhhZYLSuYfRVKW0Vxv2lVRiLA2FiYGAs8ipgmGuprO2zLldwCC0Pa4XRS4URAPCHatWSOn36dEnS+PHjy3WePn36qG/fvlq0aJHy8kLvswUAiL2iGLWklsY65CavsCjscVkhAmOLepY1jFmRt6QmBbTClmUdo7XCmJIQ5x+oEwvWNYxeI9b0AwAkVaPAWFRUpJdfflkNGjTQsGHDyn2+tm3byuPxaP/+/TG4OgBAJLwxmpJaGuvav0hbUv2B0VJh3J6ZHzQgJt8SBK3rJYNaUssQGHMDAmMsBbYA05UKAJCqUWD84IMPtHPnTo0ZM0ZJSUmlP6EUq1evVnx8vOrXr1/6wQCAmIjV0JvSWNf+RdqSWic5ODAWeY12Hzhke84hS4UxydqSGrBe8VBR+NcNx1oNjeUejFLwvpdMSgUASNUoMPraUcPtvbh9+3atWLFCubm5/vuysrLk8QR/w547d66++OILDRo0SMnJyRVzwQCAIJ4YbatRGltLakmBMd869OZwYKybmmCr7m3NzLU9J1xLqtvtUoJlYWbZWlKLnxPzCqMrsMJIYAQAVJPAuG3bNs2bN08nnXRS2KmmEydO1DHHHKNvv/3Wf9+iRYvUqVMn3XDDDZoyZYqefvppjRs3TkOHDlXDhg315JNPVtJnAACQKq8lNdWyf2G0Lakul8u2jnFrZr7tOdYgmBwQ6qzrGMsSGHMLiiuMsZyQKknugJ8ICIwAAKmaTEmdNWuWPB5P1MNuOnfurF69eum///2vdu7cqcLCQrVs2VJXX3217rjjDrVo0aKCrhgAEIp1a8LAFslYslcYIxt6U8eyl2PzuilasytHUvCkVFuFMWDdYmK8W/qjg7Usaxh9rylJdaMdsVqKwIBOSyoAQKomgfGOO+7QHXfcUeIxs2bN0qxZs2z3HXPMMXrzzTcr8MoAANHwxmgfxtKkJlinpEZXYZTs6xi3ZQYGxpIqjMUBsiwVxsUrd/s/Prl9g6ifX5LAgO6N/vIAANVQtWhJBQBUD7ahNxVYYYx86E1x9dEeGIvXt28NCoyh92GU7HsxRlth3JaZp5U7D/hvZ3RuFNXzSxO4RYeHllQAgAiMAAAHqawpqSmWNYwlDb0JW2GsV0KFscQ1jNYKY3RTUpesKq4uNq2TrKObpkX1/NIEvt+sYQQASARGAICDVFpLagQVRq/XBExJLQ6ZzdMtQ29KWsMYEBjLU2FcvHKX/+N+RzUKqgiWV3BLKoERAEBgBAA4SJGtJbXiXscWGMOsYTxwqEjWIlu4CuOBQ0W2YGkNjEkBQ2/KOiW1oMirL9bs9d+OdTuqFDwllZZUAIBEYAQAOIi1qlWRFUZr5S/clNRsSzuqZA+MTeoky3p51irjIcvQm6TACmNc2SqMyzbuV86hw9cZ73bptE4NI35upJiSCgAIhcAIAHAMa0iJr+KWVOv6xYQ4l1Is4S8hzq2mdYoH31jXMeYXhd9WIymhbGsYF68qbkft2aae6iQnlHB02biZkgoACIHACABwDGsbZEUOvUm17cMYOrhZK4x1khOC1gw2t2ytscVSYSxxDWMZK4xLLNtpVEQ7qhQiMNKSCgAQgREA4CC2ltQK3FbDOiU1XIXRui7R2o7q07ZhLf/Ha3bl+D8ucR/GhOjXMG7PytOKHZbtNI5qHNHzohXUkkpgBACIwAgAcJCqqDDmhlnDaG1JrRMiMHZuUrythXV/xBL3YSxDhfFTy3YaTeok6Zhmsd1Owyfw7WZKKgBAIjACABzEY8lQFVphtA69CTMltbTAeJRlH8RVOw/I/BF2S2pJta9hjCwwLra0o1bEdho+LpdL1lNTYQQASARGAICDWKtalVVhLPQYFXqCw5s1MIZqSbVWGDNzC7XrwCFJUr4lCCbHh1/DGElgLPR49fnqPf7b/SqoHdXHuhcjQ28AABKBEQDgIJXXkhpvux2qypidV9yqmp4SH/R4kzpJqpNcfP/KHQfk9Rpbq2lgS2q0U1K/37hfB/7YTiPO7dLpFbCdhpV1KxOG3gAAJAIjAMBBKm/ojb3yF2pSamkVRpfLpc4BbakFAZXKoJbUKNcwLrasX+zZum7I64gla4WRfRgBABKBEQDgIPYKY8W9TmpAYAw1KTUrYFuNUI6yDr7ZccC2flGyVxQP345uSupi23YaFduOKtmruqxhBABIBEYAgIMUWdcwVmCFMSHOrXhLOAo1KbW0CqMkHR1QYbRuqSGVbx/G7Vl5Wr4923+731EVs/+ilfUtZ0oqAEAiMAIAHMQ+9KZiv0VZ21JDtaSWtg+jZK8wrtqZExQ8A4feRLOG8dH/rfR/3CgtScc1r1Pi8bEQZ1vDWOEvBwA4AhAYAQCO4fFWTkuqFLgXY6ihN9EFxrxCj9bsyvHfdrukhDh7lTTSCuPX6/bq7e+3+m9fflq7CttOw4o1jACAQARGAIBjWCdzuitwSqpkn5QaGBiNMaXuwyhJ9WolqnFakv/2z1uy/B8nJ8QFhbzE+NK31Sj0eHX3u7/6b3dqXFtXnN6upE8lZpiSCgAIRGAEADiGp5LWMEpSimV9YV6hvZU0r9CjQk/xtZQ0ndQ6KfWnLZn+j5Pig7/FJllaVMNVGKd/vl6rLZXK+8/vYguaFcma0akwAgAkAiMAwEEsGa1C92GUSm5Jte7BKIWvMEr2ttTACmOg0iqMWzPzNOXj1f7bw3u00MntG4R97VizhnQqjAAAicAIAHCQytqHUSp56I21HdXlktKS4hVOZ0tgtD4vVGC0Vh1DVRjv++A35f2xNUed5HhNPPuYkj6FmKMlFQAQiMAIAHAM+9CbyqswlhQY05LiS1xPeZSlJdUqVEuqvcJof81PVuzU/37b6b99y1lHq5FlfWRlsO3DWPo2kQCAGoDACABwDE9VDb0pDGxJtUxITQ3fjipJRzWpHfL+aCqMRR6v7nn/N//tbi3TddFJrUt83YrgZkoqACAAgREA4Bjeyhx6E2GFsaSBN9Lh4Nm6fmrQ/ckJpVUYiwPjih0HtHlfnqTDLbAPnN+lwiusoVhfkpZUAIBEYAQAOEhRJe7DaJ2SmltgH3Jj21IjueTAKNkH3/iErjAW31fkNf4q3uZ9uf77W9VLVbeWdUt9zYoQxxpGAEAAAiMAwDFs+zBWcIWxpCmp0VQYJalz0+C21OT4kltSpeK21M37LYGxfkqpr1dRaEkFAAQiMAIAHMMaUuLjqq4lNTs/usAYusIYah/G0IFxy/48/30t6wa3t1YWKowAgEAERgCAY3gqcVuN1IRYVhgja0lNDAiMvkmptsBYzykVxiq7DACAgxAYAQCOYa1qVfy2GpFNSa0TQWBs37C24gOut7Q1jFLx4BvbGsYQA3QqC/swAgACERgBAI7hqbIpqSUMvYkgMCbGu9WuYS3bfUmlTEmVDgdGY4xjKozWLmAvaxgBACIwAgAcxJpRKn4fRktgDKowFgfISFpSpeC21FBDb+LcLlslsqDIq30HC2yv37KeM9YweqgwAgBEYAQAOEjVVRjLt4ZRkjoHDL4J1ZIqBe7F6NFmS3UxMc6txmlJEb1eRXBZ3nMqjAAAicAIAHAQW2CszDWMJQTGOsnxisRRgRXGEC2pkn1SakGRV1ssW2q0qJdS4ZXVksSxrQYAIACBEQDgGLZ9GCs4OKUk2FtSzR+vXVDktbWIlrXCGDjgxsdeYfQ6Zv2iFLitRhVeCADAMQiMAADHKKrEllTrGkZjpPzCwxNLrXswSpEHxlb1U21VxfAVxuLXLSjy2iakVuX6RYkpqQCAYARGAIBjWNfNuSv4O5R1DaMk5f4xKdXajipFNiVVOlydO6FNPf/twKmpPo6uMFoyOi2pAABJimxhBgAAlcA6mbMyK4zS4XWMDWQPjKmJcUqIizy53jv0OE1ZuEbHNquj7q3qhjzGtobR49Hm/c7Yg1GS3C6mpAIA7AiMAADHsFa14uMqNjAGbnvhW7dYlgmpPh0bp+lfo3uUeIy1wphf6NVWB1UYrS2p5EUAgERLKgDAQWwtqRVcYXS7XbbBN75JqdnlCIyRsFYYt2Xm6VCR13+7VRWvYWRKKgAgEIERAOAYtpbUSthewtqW6lvDmG3bUiP2gTHRUtlcuzvH/3FSvFsNayfG/PWiYX3PCYwAAInACABwEG9xsa3CK4ySffBN3h8VxhU7Dvjvq5tasRXGtbsO+j9uWS9Frkr4nEtifXmmpAIAJAIjAMBBqrLCmFfo0YH8Qr37w1b/fad2aBDz17SuYVy/pzgwVvXAGylwH0YCIwCAwAgAcBBrG2RlBMaUxOLZb7kFHr37w1Yd/KPSmJoYp+EntIz5a9qnpBaXVKt64I0UuIaxCi8EAOAYTEkFADiCN2DNXKW0pCYUh7e8Ao9e+Xqj//b5PVpUyBpGa2C0quqBN5J9SioVRgCARIURAOAQgfv+VU5LavHvTRet3KXVu4qH0FxySpsKec2kgO08fFo6IDAyJRUAEIjACABwhMCAElfJQ28Wr9zt//iktvV1dNM6FfKaiWEqjE5oSXVbLo3ACACQCIwAAIcIDCjuSvgOlZoQuto3poKqi1IJLakOGHpjbQM2tKQCAERgBAA4RNW0pAYHxoa1k3TWcU0r7DUT44K/9aYmxqleBWzhES3bPowERgCACIwAAIcIHHpT2VNSfS46qVXYttFYSEoIPrcT9mCU7BVGpqQCAKRqEhhdLlfIP7Vr1474HB9++KFOPfVU1apVS/Xr19fIkSO1fv36CrxqAIBVVaxhDKwwxrldGt27dYW+ZqgKoxMmpEr2wBgY4AEANVO12VajT58+uvLKK233JSRE1t7z9ttva8SIETr++OP16KOPKisrS08++aROO+00fffdd2revHlFXDIAwMIJLamDjmmiZukVO3wmKcS6SScMvJEka5ZlWw0AgFSNAmP79u01ZsyYqJ9XWFio66+/Xq1atdJnn33mr0r+6U9/0gknnKBJkybphRdeiPXlAgACeANaIN2V0pJqD28VtZWGVcgKowMG3kj295w1jAAAqZq0pPoUFBQoJyen9AMtlixZom3btmn8+PG2Ftbu3bsrIyNDb7zxhgoLC2N9qQCAAEEVxkpoSW1uqSZ2aFRLp3RoUOGvGW4NoxPE0ZIKAAhQbQLjW2+9pdTUVKWlpalx48a6/vrrlZWVVerzli5dKkk65ZRTgh47+eSTlZ2drVWrVpXpmpo1a2b706lTpzKdBwBqgqoYetOnU0ONPqmVTmpbX1P+3KNSBs+EqjC2dOAaRg95EQCgatKSetJJJ2nkyJHq2LGjsrOz9eGHH2rq1KlasmSJvvzyyxKH32zbtk2S1KJFi6DHfPdt3bpVxx13XMVcPABAUoh9GCshvMXHufXw8G4V/jpWodYwOmbojZsKIwDArloExm+++cZ2+5JLLlG3bt105513asqUKbrzzjvDPjc3N1eSlJSUFPRYcnKy7Zhobd++3XY7Oztb6enpZToXAFR3RVVQYawKgRXGtKR41UlxxrdjW0sqaxgBAKpGLamBbrnlFiUmJmru3LklHpeaevi3uocOHQp6LD8/33YMAKDiBAaUapoXg9Ywtqyf6og9GCX7lNTAii8AoGaqtoExISFBzZs31549e0o8zrdlxtatW4Me890Xql0VABBb1oDidskxISrWAiuMThl4IwW0pFJhBACoGgfG/Px8bdmyRU2aNCnxuBNPPFGS9NVXXwU99vXXX6tOnTo66qijKuQaAQDFrIEx3l1tvz0pObDC6KTAaB16Q4URAKBqEBj37t0b8v67775bRUVFGjJkiP++7du3a8WKFbY1if369VOzZs00bdo025YcP/30kxYvXqyRI0cqISGh4j4BAIAke0WrGudFJcbZh944ZeCNFLiGsQovBADgGM5YZV8ODzzwgL7++mv1799frVu3Vk5Ojj788EMtWrRIvXv31vXXX+8/duLEiXrppZe0aNEiZWRkSDrcujplyhRdeOGF6tOnj/7v//5P2dnZeuKJJ9SoUSPde++9VfSZAUDNYq1oVcYejFUlaA2jkyqMtKQCAAIc8YExIyNDv//+u1566SXt3btXcXFx6tSpkx588EHddNNN/kmnJRk5cqRSUlL0wAMPaMKECUpKStIZZ5yhRx55hPWLAFBJ7BXG6hsYA9cwtqrvpApj8ce0pAIApGoQGM877zydd955ER07a9YszZo1K+Rj5557rs4999wYXhkAIBoeb/HH1XVLDUlKT0lQ2wap2rA3V03qJKldw1pVfUl+1qBOYAQASNUgMAIAqoea0pLqdrs0/dITNffn7Rp0bBMlJ8SV/qRK4mYfRgBAAAIjAMARakpLqiR1aFRbfz2jU1VfRpA4N0NvAAB21XgOHQDgSFJTKoxOFse2GgCAAARGAIAj2AJjNa8wOhVTUgEAgQiMAABHsAbG6rwPo5O5mZIKAAjAt2QAgCN4DC2pVY01jACAQARGAIAjeGlJrXK2KakkRgCACIwAAIewVRgJjFXC+r57WMMIABCBEQDgELY1jLSkVglrTqfCCACQCIwAAIfwUmGsctagToURACARGAEADuHxFn9MYKwacWyrAQAIQGAEADiCl5bUKmfbh9FbwoEAgBqDwAgAcASG3lQ963Ym7MMIAJAIjAAAhyjysg9jVWMNIwAgEIERAOAItpZUvjtVCev7bgiMAAARGAEADmFtgaQltWrQkgoACERgBAA4gnUqJ0NvqoY1qBMYAQASgREA4BDWgBJPhbFKuFzWbTWq8EIAAI5BYAQAOAJTUqseFUYAQCACIwDAEdiHserF2SqMBEYAAIERAOAQHstG8VQYq4Z1SiqBEQAgERgBAA5hbUl1ExirhJspqQCAAARGAIAjWFtS42hJrRLWyq7XsBcjAIDACABwCIbeVL3AtaPkRQAAgREA4Ageht5UucCg7iExAkCNR2AEADiCNTDG8d2pSgS2ArOOEQDAt2QAgCPYAyMVxqoQWNhlUioAgMAIAHAEazihJbVqBLWkUmEEgBqPwAgAcARrOImnwlglAgMjeREAQGAEADiCl30Yq1xgZddLYgSAGo/ACABwBA/7MFa5wJzOlFQAAIERAOAIHm/xxwy9qRpBLalUGAGgxiMwAgAcgZbUqhf4vpMXAQAERgCAI9CSWvWC9mGkJRUAajwCIwDAEayBkQpj1aAlFQAQiMAIAHCEAssiRiqMVSPwbWcfRgAAgREA4Aib9+X6P26anlSFV1Jz0ZIKAAhEYAQAVDmP12jdnoP+2x0b167Cq6m5AltSDYERAGo8AiMAoMpt3pergqLiltSOjdKq8GpqLpfLZWtLtW51AgComQiMAIAqt3pXjv/jRmlJSk9NqMKrqdniLVXGnENFVXglAAAnIDACAKrcGktg7EQ7apXq2Li4uvv1ur1VeCUAACcgMNZgB/IL9fnqPXpq4Wp+iwygSq3edcD/MesXq1b/zo38H3+yYlcVXgkAwAniq/oCUDWKPF71fmihcgs8kqQT2tTTaR0bVvFVAaip1lJhdIwBRzfWM4vXSpJ+2LRf+w8WqF6txCq+KgBAVaHCWEPFx7nVpXm6//b3G/dX4dUAqMmMMbaW1A4ExirVo3U91f1jDanXSEtW7a7iKwIAVCUCYw3Wo01d/8ffbyIwAqga27PydfCPbgeJltSqFud2qW8n2lIBAIcRGGuwnq3r+T/+YXMm+21FKDO3QBPf/kV/f+9X5Rd6Sn8CgBJZq4vpKQlqVDupCq8G0uG2VJ8lq3ariP01AKDGIjDWYNbAmJlbaNs0G+FN/3y9Xvt2k17+aqOeX7Kuqi8HOOJZt9To2Li2XC5XCUejMvQ7qpF8u2tk5RXqh82ZVXo9AICqQ2CswRqlJalV/RT/bdYxRubnLVn+jz9evrMKrwSoHthSw3nq1UpUD8svFWlLBYCa64gOjKtWrdLf//53nXzyyWrUqJHS0tLUvXt3Pfjggzp4MLJqWUZGhlwuV8g/3333XQV/BlXPWmX8flNmyGPW7c7RP+ev1DICpSRp8/5c/8e/bsvS3pxDVXg1wJFvbUCFEc5gbUtdRGAEgBrriN5WY8aMGXr66ac1dOhQXXzxxUpISNCiRYt011136c0339TXX3+tlJSUUs/TsGFDPfHEE0H3t2/fviIu21F6tq6n937cJunw+PRAHq/RZbOWauPeXE37fL0+uTlDTdOTK/syHcPrNdqyL89/2xjpi7V7NfT45lV4VcCRjT0Ynal/58Z69H8rJUkrdhzQ1sw8tahb+vdUAED1ckQHxhEjRmjixIlKTy/eHuLqq69Wp06d9OCDD2r69On6y1/+Uup5atWqpTFjxlTkpTqWtcK4cucBHcgvVFpygv++ZRv3a+PewxW13AKP5ny3Wdef0anSr9Mpdh7IV0HA8IfPVu0mMAJltDfnkPbnFvpvExid45hmaWqWnqztWfmSpMUrd+ni3m2q+Koq396cQ7r7vV/lcrl0z5Bj1Tit5v7SFKhIWbmF+mb9Xv24OVPtGtbSiBNasqbdIY7owNirV6+Q91944YV68MEH9euvv0Z8Lq/Xq5ycHKWlpdWoL86jm6UpOcGt/EKvjJF+2pyl0zs19D8+79cdtuNfX7pZ1/bvqDh3zXmPrDbtzQ2677PVe2SMqVFfN0CsWNcvpiTEqXk6FSyncLlcyujcWK99u0nS4bbUmhgYb/vPL/716juz8vXalScrIe6IXtEDOMa36/dp4fKd+nLtXv26LUvWgf1frt2ryRd0VVJ8XNVdICQd4WsYw9myZYskqUmTJhEdv3XrVtWuXVvp6emqXbu2hg8frhUrVpT7Opo1a2b706mT8ypzCXFudWtZ13/buh+jMUb/+80eGLdm5umz1TV3E+fN+/OC7tuRna+1u3NCHA2gNIETUt019JdRTtW/c/F+jF+s2VvjthL6fPUe23Cz7zbu1xMLVlXhFQHVx2vfbtKo57/S85+u0y9b7WFRkt75YavGTv9WmbkFVXOB8Kt2gdHj8ej+++9XfHy8LrroolKPb9eunW699VbNnDlTc+bM0bXXXquPPvpIvXv31i+//FIJV1z1TmhjHXxTHBh/2ZqlrZnBAcn32+aaaNO+4AqjJH26ak8lXwlQPaxh4I2jndaxoRL/qKblFXr09bq9kg7/QnHDnoP6fVu2CqvpHo1FHq/u/+/vQfc/s3itlqyqub84BWLlrWVbgu5LS4q3TfD/dv0+DX/2S23cy9ZvVemIbkkN5cYbb9RXX32lhx56SJ07dy71+JkzZ9pujxgxQkOHDlVGRoZuuukmLViwoMzXsn37dtvt7Oxs23pLp7CuY/xhU6a8XiO322VrR/W1rUrSwuW7tCs7X43r1Lx1HJvDBMbPVu/W5ae3q+SrAY58BEZnq5UUr97t6+uz1Yd/KfbM4rV6/dvN+m7jPu3JOfxb/5EntNSjI4+vysusEK8t3ayVO4sHMjWsnej/nG9640d9dEOfGvl9ENXDyh0H1LROstJTE0o/uALkFhTpJ8v+rlf1ba+zuzbTcc3rqMhrdNObP+rDXw7/HLpu90ENe+ZLvXhJL1uRA5WnWlUY7777bk2dOlVXXnmlJk6cWObz9OnTR3379tWiRYuUlxdcYatuerSu6/84K69Q6/YclDHGFhiv7tdBDWsnSZKKvEZzQvxWqCawBsa+RxW3an29bp8OFdWMVq1Cj1e/bs2K+vPNK/Doule/1wXPfmn7JuEUxhiZwH4YB3v3h616auFqZeUVln6wgxEYnc+6vca36/dp3m87/MFJkuYs26I91Wx7oay8Qv1z/kr/7XO6NdP0cScqIe5wy/TegwW64fUf5fEeOf9nlNW8X7fr/17+LmimAUpX5NDq+30f/K7BT36qwU9+WmX/dpdt3K+iP/79JMW7ddOZR+n4VnUVH+dWckKcpo7uqav6Fe9WsO9ggcZM+0YrdmRXyfXWdNUmME6aNEkPPPCALrvsMj333HPlPl/btm3l8Xi0f3/133uwYe0ktWmQ6r/9/cb9Wr0rR+v2FJf/z+3WXCN7tfTffn3pJnlrwDfKQNaW1FG9Wvp/eMgr9Dh2n8pDRR7N/mqDpn22Tr9uzSrXDzher9GFz3+lc//1ucZO+zaqVrTnlqzV3F+2a9nG/bpkxrdaY9lKoartyMrXOU99rqPvnqf3f9pW1ZdTqi/W7NGNb/yofy5YpUnv/1bVl1NmB/ILtSM733+7E4HRkayBMZzqtrb9qYWr/dN7E+Pduv2so3V8q7q67ayj/cd8tW6v7v/v75r36w699+NWvfndZv37m03V6gfaD3/Zrmte/V4Lft+pa15dpvm/ERpL4vEaLdu4T5M/WqGB/1yijnd+pDHTvnHUL5S/WrtXM75YL+nwDIZ3vt9aJdfha2+XDi+NChxs43a7NPFPx+jBYV38gxbzCj36y79/UG5BUaVeK6pJYJw0aZLuvfdejRs3TtOmTYvJtMrVq1crPj5e9evXj8EVOp+1LfX7Tfttv0ns2Li2OjaurT+f2Mp/3+Z9efpibc1at5df6NGuA8W/iTu6aZrtfft8deW/H1sz8/TDpv0lVsaeW7xOd7/3mx6Yu1zn/utz9bx/ga6a/Z1e/mqDdmTlh31eKKt2HdD3mzIlSd9u2KdZX2yI6HlFHq9eX1q89jUrr1DjZizVruzoXr8i5Bd6dNXs7/T79mwdKvLq9v/8rG0h1u46yeKVxZuoz/1luw7kH5lVRmt1MTHOrdb1U0s4GlWlTYNaumnQUWqUlqTjmtfRpae21dSLemjQscWD5ZasrD6Bcd3uHL305Qb/7Sv7tFerP742rzi9nc6wBOhZX27Q1a8s0w2v/6hb3/pZd7zzi8568jPd8c4vyj5C/136LN2wTze+8aN/EIkx0g2v/6hftmRV7YWVgcdrKvT/yR1Z+br9Pz+r90Mf64Jnv9JzS9b6/3/7fM0effDT9lLOUDkKiry6+z37DgILft8Z5uiK9fW6ff6PT2nfIOxxF/duoyl/7u6/vWZXju5578j9RemR6ogPjPfdd5/uvfdejR07VjNmzJDbHfpT2r59u1asWKHc3OIKUVZWljye4N/6zJ07V1988YUGDRqk5OSasT6hp6UtNTAw/qlLU0mHf2g4rWPxP+rXv91cadfnBFv229cvtqyXamtL/aySA+PqnQfU/7HFGvbMl3puybqwx31iCRfS4bD2v9926u/v/aaMxxZpXRQTXn8O+EHhiY9XRRSuFq7YpZ3Z9raXrZl5unTm0ioNO8YY3fnOr/rJ8nnlFngcX7X7ZWvx9RYUebVw+a4SjnYua2Bs2zBV8WxV4Fh/PaOTlt45UHP/2keThh6nc7s119ldm/of/3T1nmrTdfLg3OX+VrnGaUm6JqOD/zGXy6XHRh6vZukl/2zw72826cx/fqqPq+iH8fJauztH//fydyoosneR5BV6dPlLS0MOxHOqvTmHNPyZL9R10nw9Mq/8E/ADGWN03b+/1+tLN9tata2cMixwxhfrbf/vStJ3G/dp38HKnUJ68JB9/eLJHcIHRulwl9u4U4q39JmzbIve+aFmLo2qKkf0d+enn35a99xzj1q3bq2BAwfq3//+t1555RX/H+vAmokTJ+qYY47Rt99+679v0aJF6tSpk2644QZNmTJFTz/9tMaNG6ehQ4eqYcOGevL/27vvqCjOrw/g312WpffeEUFRpCmgqCg2rLGXqDEaNcbEEjU9JtYY3/xSrTHRFKPGRFPUWKJiLyiooKAoAirSQaRJZ+f9Y93ZGXYWFqRJ7uccz5HZ2d0Bhp25z3Pvfb75pgW+q5bhz5kpS8gqxq0MZUrNYC/lTcHkIGf2/0dvZiKnqG3VrdSGm45qY6wDXW0thHDWrIxLL8CjZqwF2HU5hb2Y770iHLyXVVbjVrr60eCyShn+qkc6Ss2R5ZKKaqz6R7WLYE2/XlZeLC0MpOz/b2UU4o1d11RuSprL9ov38ec11YvOsVtZTTbqWlUtQ0ZBKa6lPMaR2Az8HZ2K7CLNZ1plMgZxafyUt4M3mj6NViZjkF1Uhod5JY1W68m9cfGwNmqU1yTNp4+HFRQJPXlPKngDGc+riKRHOHFbOQDz7hBPGOjw+wOaGUix9eUA+DiawMFUD25WBuhkZww/J1PYcwLJzMIyzP7lChbujm7Wa8Ozyikqx4yfIpH/NCVXIhbh9dD27O86p6gcM1t4sE9TT8qrMPPnKHZQ8NvTSY1ei3nqTjavJEUkkg/CcwOcqw8e405my5ZhpOeXYl34XZXtMgY4Ed+8Axvc+kVdbTF8HOtuCPnBsE7obGfMfr3077h6DXiTZ/Ncd0mNiooCAKSkpGD69Okqj/ft2xeDBg1S+/yOHTsiICAABw8eRFZWFiorK+Ho6Ii5c+fiww8/hIODQ5Mde2vjaWsEfakWSir4M66OZnrwslf+gYZ1toWFgRSPnlSgSsbgz2upmNu3fc2Xa3Wyi8pw7UE+gttbwESvYR3BUh4pA0ZF6pyXvQlM9bWRX1IJhgEuJD3CSF/7Rjnm2tRcIzM59wlyi8vZxkQKN9MLUVkt/1CWiEU4914/RKfkY3dkCjsjevZuDt4eXHdHYQC4IXBD+O/NTJy6nY1+auqcUh6V4CynvumLCb44Hp/FBpHn7ubi/b9u4MsJvo2STq6piKRHWH0onv3a28EEYhHYG4vl++PQs72Fys1iQ+2OTMGWM0l4mFeCmhMxbpYGOLIoRKPFie8/eoLicn79xtmEXBSUVjb43BYSl1aA7RfvIyWvBOkFpcgsKGPPpbDONvhuWrdn/n1xA8b2VL/43LEw1IG3gwmbeXD6Tg58nUxb9qCe0eFYZeqgt4MJxvoL3wd0cTDBgfm9VbaXVVZj/Ym7+O5sMlsvfuB6OmIe5uPgwt4w1m2ZjpSaUgRYD/OUM4hrx3pjQoATrAx1sOrpMiN3sorwxq5r+HFGILRbaWZAZbUM8369xssgAYAP/rqBrs6mGnW4ZRgGJRXV0NXWYuvouGQyBl8cVa7LGehqhs1Tu8HKSAcMw+BC0iP2c+7Xyw+wclSXZ/yulBKyirBsfxyKy6uw7kV/tLeq/TN01T+3UPp0HVUjXQkCXMxw6mkq+fFbWZgQ4FTb0xtVXfWLQnS1tbBxij9e2HAeTyqqUVJRjXm/RuPvN3pCV7vu5zeViioZDsWmw83S8Ln//KtN6/wr19DPP//MdjYU+nf69GmVfUNDQ9ltnTp1wp49e5CUlITi4mKUl5cjKSkJmzZt+k8FiwAg0RIe4RniZcu7KZRKxBjXTdn8ZkfEAxSUNM0oY0WVrFFSnIrLqzBm00XM3XkVL/9wucGvmcK5gDqZyQNGLbEIvdyVs4znGrA21+3MQnx9PKFejRJupBYgo0b9oVDTnWjOupqd7Y1hZ6KHYd52eCtMGSDGphVolI5SUSVDPGfm2ZwzU7jsQBxKK4SL+ndHpbA1MA6meujTwQqrRnphYCdlgPnXtTR8welI2NRSH5dg3q/X2Bs6S0MpvpvWDWvGeENxT5BeUIZ1J1RHY+urqlqG5fvj8MFfsXjwSDVYBOQBv6Y1sEKzOBXVskZNfUvPL8XUbZex92oqLt/Lw8O8UjZYBOQzsDGN0Ok2MYc7w0gB4/OoLyct/0zC85kazXWRU5s/rqsDxAJBQm10tbXw7hBP7J/XizcbkpJXgl84dZFNqayyGl8cvYMNJ+7Wq9lKtYzBwt3RvM+YRQM92EDilV6uvFmzc3dz8X9HGj/FszEwDIP3/4zFaYHa2scllXj7jxsqmRLF5VX46tgdTN12CUPXnUOPT0+g48f/wmv5UQR8chxR9/NUXutIXCYvI+v9oZ6wMpIP3IpEIkzhZGX9FZ2mcp2sljF494/r8FlxFF8fT9A4e+PYzUyM2XQBl5LzEJdWWOfv4dSdbPzLGWR+d3BHTOL0pTh3Nxdllc3XmIcbMPZoV3s6KpeblSE+HevNfh2fUYg1nIHf5iaTMZj9yxUs/v06xm+5iCsC50hb8VwHjKRxCa1tM5RTo6LAbX6Tll+KWduj1AYLDfXP9XT4rzqGXp+dxN2sZ0vj2BP1kK23uJ5agDMN7Ob3kFPD6MRpztGHk5Z6PjG3Xul6RWWVeGnbZaw7cRcTvo3QODXxqECnOqEPquinDWoAwJ8z8uXtIJ8ZBeSNDDTpcJiQVcSmjopFwKYpXdkUpYd5pdh0KlHlORVVMl667JTuztASiyDREmPD5K7w4xzTplNJ2HnpQZ3H8awqqmR4bcdVNkiWiEXYPLUb7E310MXBBDN6KtfT/OH8PV6QXF9FZZWY/csVbI9Q/b50tcUwkCpHRQ/FatYUQV3DicZKS62qluHN36LrXK5DKJW3Psoqq3lp3rSkxvMptKMyYIx5mI/8kuathdIUwzDYF52GD/6KRYKaa0pWYRmScpTdwXtyBgPrq4uDCfbP74XxnAHWH87fa5bujkv/jsPGU4n48ngCPvo7ru4nPPV/R+J56bgTAxzx5gAP9muRSISPR3Tmdc39JeJ+q0xN/d/RO7zPqNCOVnh/qLLD7dmEHPzC+VyOeZiP4evPYf3JRFxIfIT4jEJkFpax17zHJZWY88sVXqZRtYzBV8eVA539Olqhmwu/UeLYrg6QSuS32kVlVSqf0z+cT8aeK6koLKvCuhN38cP5e7V+XwzDYOPJu5iz4yqecO67zibkqD23yir5dfneDiaY0t0FIR5W7LGVVlbjQmLz9GF4Ul7F64dQV/1iTaP8HDCR07V/x6UHuJXeMp2Jt51PxtmnEwWV1QzWHrn9XC3PVR8UMBIWt+MnAFgZ6cDfSTWIdLMyxJw+yrVxrjx4jPm/Xmu09YbCb2Vh0e8xeFJRjYyCMsz79VqDR76qZQzbPlpB086eNXHXYOR2c+ztobxhyigow9fHE3D9Yb5Gy1ccuJ7OFskXlVfh29NJGh2LYMBYxwxjV86AgJZYhN6cm6GzCXVfKLijzu7Whghub4FpPZSjzd+dTVJZKuPYLeV6bRKxiLc0i55UCz9MD4ArZ0mXZfvjmrxt++HYDNzkXFyWj/RCUDvlRX5JWAe2oUW1jMGHf8c2aFY6Pb8UE7ZE8Ea4O9oYYd+8XohZNgjxq4bw0pOO38rSqJaT+3sI4PxOz93NbZTZ/vUn7iLqvvK8eaWXK7a81A0H5vfiLSlwICZd47/LorJKvL33OiZuicAnB2/h+K0sRKfkszPPYhHQztLgmY+dND9fR1MY68rTtmVM8zf/0oRMxmDVwVtY9HsMdkemYN6ua4I3ddxZD0tD6TPPemtrifHu4I7sTfnjkkpePXdTiEsrwF+cZiB7r6ZqtFTQ71Ep2HpOea0M8bDEmjHeKmnnEi0x1k/2Zwe7KquZFukQXpufL9zjXUt9HU2weWpXzAlx4133Pj0cj9uZhdh0KhHjv72IB49KhF6O9bikErO2K2s3/45O4w0wcDN3FEz1pRjhbcd+/Sun+c3tzEJeOisArDkcr/YaWFpRjfm7o/HFsQSVx8qrZGo7FW87l8x+byIRsHq0fJkKAx0J7+fRXN1SG1K/WNOKkV68e4et59Q3/nsWyTnFausk49IK8PlRfmbU1QePcfL2859pIYQCRsLyrxEwDvayUZuO8/4QT4zyU9bqnbidjQ/+in3mkZXLyY94qYKAvAlPQ1MOjt3MROpjfje3Mwk5SKpnoTTDMLzZEO4Mo4OpHtpbKW92159MxKhNF9B19XG8vvOq2lRBhmFUbh52XUqps+toYnYx7yKlEJdWwLuBzywoQzonbbVm8M/v8JpT5++OOyLo7WAKQH6BVNRNVlYzmLPjKm+kb9cl5fcX5mUDayN+zYiFoQ62zwyCpaE8vVXGAAt/i8a1FNXgt7HsuqwcVQ7rbIOXujvzHjfUkWD5C17s19Ep+Vj0ewyy6rEEyI3UfIzadAG3OU0O+nawwh+vB8PPyRSm+lKIRCIM6mTDruVZVFZV5wivTMbwgt3XQ9uzN+tVMkZwIKE+LiblYgNnpniwlw2WjeiMIV1s4eNoislBTpA+rVcqLKtCuAaNEmQyBot/j8EfV1MReT8P287fw6u/XMHkrZfYfZzN9Vu0BoU0nERLjBBeWqrqTevVB3nYdfkB/o3LwNUHeUh5VNJs66hVVcvwzh838BNnoPBuNr+xm8LFRE6anJtFo9RUWxvr8mZDtp5LbrLUP4ZhsOZQPGp+lC/9K5Y34FlTRNIjLOXMRLa3MsDGKV3V1iYa6kgQwhkoDW9FXZrP3c1h6ywB+UDUjzMCoS+VQCyWd7hV1HqXV8kwcsMFfH70DhvAAMC0Hi74ZpIfts8MwoH5vbBsRGf2sbvZxVi4OxplldVYd0IZuA3tYosuDsKBzxTONSY6JR/xGYUor6rG4t+vo6LGQLu6pUsikh5hzOYLOHRDmYlib6ILf06He6HP/6pqGS/DZXKQMy+zh7s0Tnh8drN0Om5I/WJN+lIJ3gh1Z78+cD1dbefe6w/zse1cMnLr2Xjq2M1MDPjqDPp/eQbL98fx0rtLKqqwcHc0r1RD4fOjd9T+HJ/n2UcKGAnL3EDKq7l4wUd98xaxWITPx/vygo69V1Px2b+116FVVsvw6eF4LNwdjcOxGbwZlbi0AszefgXlArMsOy49aNDM0zY16R31rSXJe1LBawhUc724Kd1daj4FBaWVOBKXidm/XOF9QCrEphXwbv4BeS3ahpOqqZ1c3IuCi4U+ewNfWc3w2lTHPFQGXRYGUjiZ6/Fepw/ngp9dVM4LboTcSFW+tmJE0ERPGx+P6MRuT855gtGbLmDbuWQkZhcjgvN9TxX4Gcm/BwP8MD0Qek8DhrJKGWb9HNUk3c9uZxbyZs9m9m4neFM42MuGt9bagevpCP38NDacuFvnzd7Rm5mY+F0Er4PwSz2c8cP0ABjVaHhhoq/Nq4GtKy31Xo2GN12dzXhdjA9qkNaa8qgEH/wVizWHbiHmYT57AXtUXI5Fv8Xw6k3/N47fiMhUX4qBnZU/lz+u1p2W+nV4Qp03lJSO+nzrWyNg5N4s7Y9Jw7hvI7D07zjM3XkN476NQJ/PT6HzsqMI/fyU2vTQxlBWWY3Xd10TTJ8+elN1sONisnLApmf7hqej1vRan/Zsw5SswnKN/m4a4tSdbN5nruI9i8qrsPC3aFQKZAHdz32C13ddZQMmU31t/DA9sM4GWgM4Nein7mRrlFGjUFRW2SRprA/zSrBgdzRbJ25lpINfZgbBgtMMztZEF2s5NXDcgM3KSAc7ZgVh9eguGO3vgL4drODjaIqZvdthRk9Xdr9Td3IwdvNFtjGQSAQsGdRB7XF1czHjzVbvjkzBuvC7vHKHRQM92GtgaWU1Zm2PQnp+KW5nFuKVnyIxeesl3jU60NUMBxb0xvRg5XGduJ2tkqVy+k4Oey0Si4CF/T14jw/oZM2WluQWlyO6AbXpCVlFeGPXVQxdd06jWcqG1i/WNMrfHtZP60WrZQx+FLjfu/4wH+O3XMQnh+Ix7YdIjc/TapkivVT+9faIBxj37UXcz5UP1q/65xaSc5UD9ws5qdu3M4sEZ/Wzi8owZevl53IdU4ACRlLDZ+N8MMTLFh+P6IzutSykCsgb4Hw7tSuvK9SWM0nYEXFf7XN+j3qI788m48D1dLyx6xqC157Ap4fjcSYhB9N/jETR05thbS0RvpvWjXcj+e6fN+q10Py1lMe8RjCK9SQB+Y1ufRZV5s4uSiVi9kNKYVbvdtg7Nxhz+7aHt4MJasYgQnnt3NlFxSwTIF8i48Ej1RlEBW7AOMzbDt6cdA5uWuo1bv2is6lKYGRroosONsqfb211jGWV1byW4Nz3HOlrj1m9lXV/FdUyfHIoHhO2XGS3uVro17owr6+TKTZP7cre4DwuqcT0nyLrNaunCe7P3N3aEN3bmQvuJxKJ8OlYb95FvrSyGl8eT0D/L05jX3SayoWZYRh8fzYJc3deRVml7OnrAB+P6IzVo7qoXWNwGCdd6djNzFrTUuM46aiOZnowM5BiuI/y+RcSc/G4lgZGN1LzMWbzBeyOlKefjd50AaFfnMZXx+5g0e8xyH56Y6ElFmHdi34w0Ve9aeTWZJ1NyEF2Lb+jI7EZvAEQXydT9Pe0hlGNzrPBjXhzTpofN2DMKSpH/NMGXnezivD+n7Fqn3f/UQk+3qd5jV19FJdX4ZWfong3sHqcWeyaA5AP80p4nUF71rOuqjZO5voY7adspLflTJJg8PYsqqplWHtY2fikm4sZ1oxWprxHp+Tjm3B+KmN2YRlmbY/iLZ/x7dRucNUgPbyfpzVvSRXuAGVt9sekocenJ9BtdTgi7zVeg5CyymrM3XmV/V60tUTY8lI3XjaQwjBvO4zr6sjbNrCTNf59M4Q3c8r10fBOvAFy7gz1GD8HeNioXxZIJBLxZhn3XknFljPKlNlxXR2xaGAHrHvRj/2ZZheVY9SmCxi67hzbyVRhcpATds3uAUtDHfTztIZErMxSiagxOL2H00MgtKM1bGusH2ptpMubcaxPWuqj4nJ8tC8WQ745i8OxmYjPKMTcnVdrXaLjWesXuXQkWnill/LeY3dkCq8so7yqGu/8cZ2dBYzPKOR1Qa7N4dgM3Mvl34fFpRVixIbzWPnPTfwWpfy5zujpiiWDOvAa+X11PIF3LY/PKMSYTRcRkfwIs7ZHIaPg+VnHVIECRsLj7WiCLdO68QKA2hjoSPDTjEC4cVIy//fvHbWd2bjpFADw6EkFvj+bjOk/RuLR0xtdkQj4epIfBnvZYv2L/mz9R35JJRb9Hq3xCBG3eLyLgzE+G+/D1l08qajGH1c0H+XlpaOa6Qmm6ga6muP9oZ74Z0FvXP1oEFaOVKY1Xn+YzxvRLiqr5I1AfTC0E2yM5UFolYxR250zPb+U92E7xMuWV8fGbXzDrV+smW6swJ1lrK2O8XZmETsCrSUW8WaiFY0Qvp/WDWacAOMx54N7SnfnOrsN9vO0xqdjlDc4D/NKMem7iDpTdDX1pLyKt+bk1O7Otaac2Rjr4tDCEHw0vBOMdJUBTnpBGRb9HoMea09g1T+3EJ9RiMpqGZbui8Onh5UjknraWvh+WgBmqZnFVAjrbMNe8AvLqnhdGmvipwXLg/Ze7pZsA6NqGcPrhMd1NiEHL35/if07U3jwqATrTybyas+WDOqAAFfhYLqPhxWbhixj5HU8Qm5nFuKtvdfZr53M9fDzjED8OCMQMcvDcHBBb6x4oTO+mODLG70nzx8bY1104nwmnEnIwZPyKry+6xrbxl9XWwxXC30Y1hgsuHwvr9ZzviGyC8swZesl3s1zL3cL7JwdxH59O7OINzDH3dfORBcuFqqBxrN4o59yHcPUx6U4EKP8/GcYBhcSc7HpVCKvqYqQC4m52HX5gUpzoT1XUnGXs0zN0uGdMCnQiTegtPl0En6PSsE34QkYtekCuq89wStvWDOmC4I1vIG3NNThBRonNEhL3XX5AdufoKJaJjgj1BAMw+DDv2J5GTsrRnoJNvJTWDnKCwM8reFopofVo7yw9eUA3kxkTfJGbf68ex1AHmS/OdBDzbOUxvo7QofTYEbGyeRYPlKe8hrmZYulw5QZOzlF5bz04i4Oxtg1uzvWjvVh74tM9LR5vzPugHJOUTmvno6bGs3FTUs9fqv2TC6GYZD3pALfn01C6BensfNSCq/zd7WMwRu7ruGyQFYVIB/U5tYv+jqa1vp+dZnS3Zn9TCmpqMZOTsnJppOJSMjiZyptOHm3zrRbhmF4Tfy4a0cXl1fx0ts72hixzZTeHtyR/RtPySvB71HyAeqTt7Mw/tuLbMpsdlE59kQ1TZZBU6KAkTwzcwMptr8SxKZGFpVX4ZxA8PH4SQUiOQGNunvoNaO9MeJpOmxne2N8yOlsdik5jzcyp87DvBIc4Ywkze7tBmNdbd7syPaI+xrn63PrIIVGLGsyN5Biek9X9HJXfpB/fvQ22xjowPV0NsVVX6qFiYFOmM9JFdkXnabSQAbgj4rbmejCx9GEd2N/9cFjyGQMKqtlvOCCW+fAxR0xjbyfp7bbbSwnHbWDjZFgvVmYly2OLuqDEA/+bJFUS4zx3TRb32lSoDMWcS6+9x+VYNL3EbXW32jqwPV0Np1TV1uMsV2FL55cUokYs0PccOadfpjWwwXcmDfvSQV+vHAPQ9edQ/DaE7zZSxtjHeydG8y7EKtjqi/ldWOsbQSU2/BGUS+jrSXGEE5aas1BGUB+Ps38OYo958Qi8G7wuXq5W9S6tqpES4yxXZWzJX9cTVWZPX/8pAKv/nKFd45vfTkAZk8vvFpikbwjba92GN/NUXB9M/J84c4ynr6Tgw//juWts/nFBF+cfqcf4lYOxq1Vg3mZKd+E32202p74jEKM3nRBZWDtxxmB6Opsxisn4N5cRyQpb3CD2zdO/SJXeytDXjbB5tOJqJYxOJuQg3HfXsTUbZfx+dE7mLLtktq09zMJOZi67TKW/h2HPv87hS1nklBWWS1fDuK4cvZwuI8dujqbyTMlxnjDwVRejsAwwHt/xuKb8Lu4/jCfF4y8GtIOkwKda75lrQZ2Un6+1RUwbjmThKV/x/HeszGW5gGAXyIe4C/OwNWkACfechZCDHUk+GFGIM6/1x/Tgl01+n2b6Kmm604IcIKLRd0zsib62rzgXeHzCT68tTln9W7Hm40E5INt6170w4F5vXklDApDONlTx25msYPqf0enssGZhYEU/T2Fr0eDOL/HpJwnbDlIWWU1fo9KwZxfrmDUxvMIXnsCHT46gq6rj+PTw7dRVKYsj7Az0WVn8MurZJi9/QovI0aBm44a4GLOBr4NZaKnjclByvuLny7cR1llNW6mF2CzQBPBhKziOmv9T8Rn89J/f5wRiC8n+PIyFAD5/cH6yf7s/ZCnrTEvk2D9yURsOZOE2duv8DravjO4IxYOcMfzhgJG0iiczPV5gYLQTe+J28o6BxM9bVx8vz/eG+LJ63T1/lBPlQ/L6T1defVkXx1PwP4Y4VkNhe0X77OjXrbGuuwH9cucmYwHj0pwWsN1w7ijvjXrF2vD7SqZlPMEf15LVWl2M8rPHoY6EkwKcGIv7DIG+DpcdZaRO0sZ1tkGIpGIN4paWFaFu9nFuJ1RxNaCikWAj5pRvKB25uyoZ0WVDJfuCY8Kcm++fNQU9gPyBg/bXwnCxyM6swMI04JdeGs21uXNAR5Y0F/5YfowrxQvfn+p1jTdujAMw1uyY6Svfb0WuTc3kGL16C448mYfDPGyZWcEFRSdYAGgs50x9s3rpbYBgpDhnOVrjt3KEkxXk8kY3ORcgLmd5UZw6o0vJuUi6n4erj54jItJuVgXfheLfo9hbxykEjE2T+2GI2+G4PTboVgyqAPbtKm9lQG+nuhXZwDHTee6m13MOz+elFdh3q/XeOl9X07whaetcIBK2gZuwBh5Lw/7OTNoM3q68s5RfakEizkDQ5H38ngBW0Odup2N8d9e5DX7mhTghI1T/KEj0YJIJMJgL+XNseLzlGEY3ixnY9Yvcs3jNOlIynmCQV+dwcs/RvLKB1Ifl2K7QI19tYzBp5zmb4VlVfi/I7cR+vlpvLk7mm3ooa0lwnuDldcdEz1trJ+s/m/a3ECKBf3d8f7QToKP14Zbx3gnq0hwYI9hGHxx9I7gOoGZhWXPlJpXLWPwb1wmVnOa3Pg6mmDlKK9GD/gVFE10PG2NEOJhifeGqHZGVWdqjXubWb3bqZxrIpEIq0Z64bU+bgh0NcOyEZ0RvqQvRvmpXxN0UGcbfh1iymMwDIPfOWmTY/wd1AZn7taGvPuwv66lYfPpRIT87xTe+zMWx25l4frTtZ9rNnnRl2rhrUEdcPKtUGyZ1k3ZxK28CtN/jFRpMMirX3QTzmKpr1d6tWOvybnF5dh7NRXv7L3BXvOsjXR477X+ZKLaASqGYXiN30I8LOHrZIpx3Rzxz4Je6MhJPf5oeCd0tOWnIi8e2IE9lpyicvzfkdvsvaiORIzNU7tiXj/3Jjs/m5Kk7l0I0cwwbzt2Dafjt7JQXlXN637FnR0b0MkadiZ6eD20Peb2dUNcWiG0JSLBm0qRSIT/jffB0HXnkF1UjmoZgzd/i8Gj4grMFEidLSqr5OeX93Jlu721tzJE3w5WbCe/ny7cVzvqxpWiZkmNuvg4mmK4tx3bzOSb8LtoZ2nIS52Z/HQkVCoR482BHnj3jxsA5DNFb4QWwMteHhjk1ZihVTQ7MTeQor2VAZtaFHU/DzLOh2EHGyOVNDAFXW0tdHezYNcROpuQg34drVX2485s+TjVHgiJxSLM6t0OL/jY4eHjEvgJLM1SG5FIhLfCOkJbS8yOmqfll2LSd5fw66vd4WZV/wYp11P5DYZe4iwHUh8dbY2wZVo35BaXY190GvZeScUdTtOOAZ7W8pbzan7e6oR1tsWHf8ehWsYgv6QSEUmPeLO/AJCc+4Q3StnFXvl76OFmDgsDKR49qYCMASZsiRB8H2Nd+ah64NNZaVdLAyx8GqDnPamAoa5Eo451HW2N4O1gwp4Xf15Lha+TKe5kypsfcNPcFvR3x1Bv1ZF10rZ0czGDoY6E15QJkNetfjhMNRjp28EKfk6m7CzT1+EJKjN76fml+OH8PehLtRDsZoGuLmZqu+luv3gfK/+5yUuPe3dIR7zetz3vNQd72bLLR1xLeYzsojIUl1Uhq1DZpErTtMz66mxvjAGe1ux1MjlXeBBs8+kkvBjozKsh/usa/7NGIbOwDJmcOuKXg13hXCOdtpuLOZYO64TVh26BYeTp7P08rdGvo7ypS0Nn+DvaGMHBVI9NtTt5OxvTOYOyDMNg5T+38DMnALY30cWTimp2ndeYlHzYefMbsgFARkEp1p9IRFllNTxtjdDJzhid7IxhaShFzMN8/HM9AwdvpLN114B8Fu3bl7o1ecflbi5m+HdRn3o/r6uzGYZ2scWRuEwEuZrjncHCwaZES4wPBP5m1LE20kVXZzO2Z8PRm5kQiUS8z+GJgeqzfEQiEQZ1tmH/LjYKrKlck1Qixihfe7w9uCNsjOV1kX07WOHrSX5YsDsaDCMvOZq27TKm93RFBxsjOJnr8esX6+iToSl7Uz2M9LNnS05WHrjJ63r76RhvmBtKMXazvK9CfEYhwuOzBTOALiQ+4jUPnNdPOcjjbi1fFmt/TBosDHUEn+9soY8p3Z15a3wC8oZK214O4GVWPG8oYCSNZmBn+RIBldUMisqrcP5uLgY8TXUorajGWU5TlbDOyhkVkUjEa6IixMJQB9++1A0zfopk0yBWHbyF3OJyvDO4I3tDwDAMdlx6wN606Eu1MLlGms2Mnq5swHjubi4Ss4vgbq2+YB3gB4yOZvWrbXkrrAP+vZmJahmDjIIyvLHrKvtYFwdj3uzfWH8HbDmdxN5ILNgdjTcHeGCYtx3C45WpJqb62ry1AwNczNmLw9UHj3mjZ+rqFxX6eFjyAsaaSiuqeZ0MfRxMVfYRYm2sC2tj3bp3VGPhAA9ItET439POu5mFZZj0/aUGfeju4swuejuYqJ1x1ZSloQ5mh7hhVu92iE0rwPFbWbA21sWUIOcG3XyZGUjRs70FW0d4ODZDJWDkpvc4meux6Z2A/AZjSBdb7KpljTdbY11snxmkMiIKyP8Ga6vfETK+myMbMO6PSUdHWyOsPniLbfgDyFPWFg9U3z2QtB1SiRg921vgGKdphomeNjZN8Rec2RCJRFg8qAOm/xgJAIi6/xgXEh+h99NMlZvpBZjxUxTb4XHDyUToSMQIcDVDsJsFGEY+G/fwcYn8H2dGW0cixlcT/QRTALs6m8HSUAe5xfL6sOO3snhpki4W+mymR1OY19+dDRgVurmYYUZPV7z7xw2UVsqDqW/PJLG1UWWV1byU09COVnAw1cNvUQ95Nf3GuhJedgbXzN7tMMzbDtpa9f9bV0ckEmFAJ2v25jg8PosXMP5w/h4vWHS10MeuV3tg+f44tnNy9MN8wQGlj/fFCXZX1pdq8TqWK2iJRdgwxR/2Tfi7e1YikQgbJvsjo6AM9qZ6jZqKP9jLhg0Y/72ZicJS5cCNn5MpOtTSlAcABnW25a3DqSARizDS1x493CxgZawDK0MdWBvpwNxAKtjIbYSPPQpLq/Dh3/JmV+kFZVgrMLssX3/RtD7fYq3m9HFjA0ZusDjazx4DnwZ2IR6W7DV2/Ym7GNjJWmWmb+MpZWZXoKuZSmM8PakWXqwj3Xl+f3fsvZLK1m93sjPGD9MDWvW5qQlKSSWNxkRPm7cI7OFY5Yzi2bs57I2krraYl76kqW4uZtjzWjCsOB1KN59Ownt/3sCl5EdYffAW+n5+mg0wAGBigJNKp8e+Hax46Rfv/nED4bey2PrCmiqrZby0mfrMMAKAm5UhJgYoR/e46YuTa3zwSLTEWMRpz52c8wRv/haD0M9P4ztO7eYATxveh3WAqzIojLqfx2uN3VVN/aIC93eRlPNEZS2jWxkF7Ki9VEuMDrbNtwTCG6Hu+Gg4vwnAxO8iNFqIWqGgpBL/3FDu/1KP+tXp1EYkEsHH0RRvhXXEtB4uz3QDwK1vOnozUyUtVajhDdeC/h5s11uplhhGOhJYGurAwVQPI3zs8OcbPQWDxYYa6WvPph8VlFZi6d9xvGBxRk9XbJrqX2ezI9J2hNbITvh6km+tA2x9PCx5n0/fhCewDWAmfXeJtzQNIK+NupD4CF8cS8CXxxPw+5WHuJj0iBcsWhrq4Lc5PQSDRUCeAcGdGfg3LpOXDtuY3VGFdHWWB4daYhECXMywY1YQ/pgbjBd87TGztyu7308X7rFdwX+JuI+Mp//XEsubjK0Z441ji/tgGCed/YNhnWCqrz7939ZEt9GCRYUBnPq3y8l57GDtzfQC3rXY09YIe+YGw8FUjzeIGcNJx1UorahW24StZrAoEgHd25njl5lBTZZK3JgkWmI4mes3et02d3mlh3mlvKVkJtUyu6jQzcUMtpwBXgOpFl4NaYez7/bDV5P8MDHQCf06WqOLgwmsjXXVdv0G5I1ouOU4QhqjfpHL09YYoR3595WWhlLemsrcpS9i0wpwukb32Sv383ApWZnF1dDUUWsjXXw+wQdulgaYFOCEP+YGP/fBIkAzjKSRDfO2Y1tAH7+ViYoqb0glYl6RcYiHFfSkDUsZ6WRnjL9e74mXf4xkWx7vuZKKPQIdT7XEIrzSy1Vlu1gswvSerlj5j7zu4VpKPmb/cgWWhjoY29UBEwMceTOO6fmlvDSnmusZamLRQA/8HZ3Ku6HWl2phpK/qWpcjvO1wLiEHezlrddUM4rhF7gB4jW+4DXqAumcY3a0NYWeiy96QnE3I4QWy3EDF086oQYvsPovZIW7QkYix7MBNMIz8pnHh7mjczSrC4oEd6gxI/rym/Lkb6UrwgsDPvDUY7GWLj/bJ01Ifl1TicnIeO9sC8GcYheojbU10cWxxX8hkTLMEaWYGUgzsZIMjcfwGAka6Enw+3gdDulAa6n/NaH977Lr8AAlZRXhviGed6f6KWcZpP8hnGa88eIyV/9zCrssP2FopkUg+Q3IzrVBlkfOavOyN8d20bnVmgQzpYovdkfLZ+IikR7wU8sZKk6vNipFeWDq8E1sqofBa3/bYdTkF+SWVKK+S4ZvwBHwwtBM2nVIOFk4KdEL7p2n57a0MsXlqNyTnFKOsUobO9s1fJ9zDzZyd9auoluFcQg5CO1pj4e5o9vdlbiDFLzODYG0kD0i43VVvpOWjslrG+1lcvveIfa5UIoavowluZxSxy24pXuMFX3sM97ZTWSriv8jFwgCetkZssxbFLJuethZGqBk84dISi7D5pa745eJ9eNoZY3KQc73q/Gt6PVS+xNjRm5lIyCrC3exi5HE6dL8c3LCykNrM6ePGCwJXj+rCy8QJdDVHsJsF2xF53Ym7CO1oBZFIBJmM4S0B5e1g0qCJDYURPva8uu22gAJG0qjCOtviQ61YVFYzKCyrwoXEXIR4WPI6qIVp0DmyNk7m+vhjbjBe+TmKF8xweVgbYn5/d7XdyyYGOGF3ZAqv5XJucTm+P5uMbeeSsWaMNxs0cdNRzQ2kKouva8LGWBev9GqHbzldu0b52Qu+llgswucTfDGluzO2nkvGv3GZvIBVX6ql0onU1UIfloZS3uwlIE9RcqtjTS2RSIQQD0s26K4ZMMbWMbPVHKYFu8LBTA8Ld8ewI9gbTibiblYxvprkC32p8EcZwzDYxWmzPa6ro9p9W5q5gRQ93MxxIVF+MTsUm8EGjNUyBnHp3MZDpmpfpzln9MZ3c+QFjN4OJtg0patKDRX5b9CXSnBoYQhKK6o1HhTs7W6JABczdg1ZbgqjVEuMb170wzBvO5RWVCPqfh4uJj1CzMPHMJBK4GimB0czfTia6cHJXB+d7Yw1Ov+D3SxgpCtBUVkVqmQMW08HNF39Yk01g0UAMNbVxvx+7vjkaXObPVceoqC0kj0+PW0tLOLMkig0pK67sehI5NcjRQOhE7ezcT4xl1c/9/l4H155go+jfK1ihgHKKmW4k1nEGwQ7z1nip3s7c+yY1R0MwyD1cSkePCqBi4W+Rt3K/2sGe9nyunsC8kF8Te9ZujqboWsdA8z10dvDkjfomVtcjsTsYlgb6TTJORvsZoEZPV3x57VUzOjpKpjqvHCABxswxjzMx+hNF5BbXIGswjJeKuvz2pimKVFKKmlUJvravLbPh2IzEHkvj73giUX8VtwNZWGog19f7cGOAIlFQJCrvLD/9NuhOP60q5g6BjoSHFwQgi0vdcUAT2vecgkyBlj5z012/T9uupOTWcPTCub2ac+O2IlEwJSg2kfY/J3NsHlqN5x6OxQvB7tAV1v+5zq9p6tKUX/NbqkKfs5mGt1Acevlzifm8tJzb6jpzNnc+nva4K83evJSgv+9mYkXv7+kdjmQgzcyeDcuNTvwtjbctNR90Wm48XQ5k3u5xbxUrC4OraPjaL+O1k8HPiSY1bsd/ng9mIJFUq8MEpFIhEUCda5GuhL8MiuI/ZvQk2qhTwcrvD/UE7/NCcYPMwKxclQXvNrHDUO97dDFwUTjwRKpRIz+nqrNvTysDdlZsJbyUg8XXrds7oDMrN7tnqkuvKlw01L/uZ7Oq6V+OdiF9zgAGOlqw8NaGTBE11he43yiMmBUDI6KRCI4meujt4clBYtqcNNSFdStvdgSLA110MPNoskGOEQiEVaM9ELsisF4K0y4oVAPN3MEcTKyrqcWIC2/lBcsdrAxfOaJjbaIAkbS6Lg3vcduZuIgZ4mNoHbmvBSBZ2GoI8HPrwTiyJshuPLRIOyZG4xX+7jBtY4ZNQWpRIwhXezww4xAXPpgAN4f6sku0F5WKWPbgHNnGJ/lQmWir41ds7tjpK89vpzgW2ejHwUXCwOsGtUFUUsH4uRbfdXWBgQKLLTur2FzmN7ulmzQXFRWhZX/3EK1jEFxeRWvLba3hg1vmkoHG3mXMm4h+o3UAmw+rdrVraJKhs+PKmto+nawqrPwv6UN8bKF/tOb7dLKarzyUxTu5T7hdal1MtertU6pOYnFIqx70R83lofh4xGdmz1dmbQNvdwtEMipw1asY9qU6aFCN9fNNbtYG11tLSwepBpAm+lrY05ftxY4orr197Rml3VQLOcEyG+8hTrkAoA/p3t2dMpj9v/ZhWW8WbLe7g1PC/yv6WRnxBtQdbXQ5zXHI8o0eHWTh1ZGOvhktDfV3guggJE0urDONuw6NIVlVby1gIQu0s9CJBKhk51xvdb5E2JtrIu5fdvjbc6o1IHr6Yi6n8dbW6q+DW9q6uJggvWT/TVaNL4mI13tWkfmhGYYuwpsE2KqL+XNMu649ADzf732tOOqfJuORAwPm5ZLfVIwN5Bix6zuvFrE784kq6z3tOvyAzbYF4lQZxF+a2BhqIOvJvqxwfujJxWY9sNlXkq3pl1qmxOl7pBnIRKJ8MUEX3RvZ46Bnazx1xu9mnzdzr4drFSabjR1wxtNjfF34K33BgDz+3vwFnhvTSwNdXh1iYB8QHbdi/5ql7jw4zQ7iuHMMHJnFy0NdeDZiI262jqRSIQx/srMqpd6uNBns4Dg9hb4+ZUgLOzvjlWjvPD9tG44uKA3rn40EJEfDqAgWw0KGEmjM9WX8tJSuW2/hdataU2mdnfmpcqs+ucWHuQpUxpbcyqMl70Jm7aq4FePttWfjfPhXZyPxGVi/q5r7Ned7Y0F625aglQixieju8DSUD5QUFEtw7L9cexyIkVllbwC9jH+Di3SEKIhhnSxxSejvdmvUx+X4uAN5Sy9UMMbQp53LhYG+P21YGybHtiky1ooGOhI0IdTXyXvttk6AkYtsQjvDVUOXjqZ6zVqd+emMKBGiu/7QzzRyU79Z64/J2BMznmCghJ52Qq3frG3uwXN9NTTG/3a44OhnljxQmfM7KW6TjWR69vBCkvCOuLlYFeEedmii4MJLAx1KMCuReu4+yNtznCBYmMve+N6r2HY3CRaYix7oTP7dWxaAeLSlAu+P+sMY1OSd5MzZb9ub2WgsqRIbWyMdfH7a8Ho4aYcXeN2pfNpZYGKiZ42lnKW3LiQ+Aj/PA2svjuTzHZkk0rEausZWqsp3Z2xRCAtDWi5xkOEtDVDOZ18vR1MGq1cojH097TBFxN8MTnICTtndW/16d5jujrC+GlJx6DONoIdyrk8rI1gwKl1jUnNB8MwvBnG3h6UjlpfOhItvNa3PWb0akfBNmlUFDCSJhHmpUxLVWjsdNSmEuJhpbYxT2sOGAHwZna7N6D+x0RPG9tnBgkG/N6NuMhuYxnt58ALcFcfvIXE7CJsO5/Mbnulp2uzzFg0tgX93QVbj1PASEjjGOVnj4kBjvB1MuWt19ZajO/miLVjfdR2+25NHEz1cHBBCLbPDMJ3L3Wrc6ZGSyziLdwenfIYCVnFyOasvcld15kQ0rJaZ3958twz1Zeip7slziYo18QJ82rd6ahcS4d3wpmEbHYtMEB+gbNr5es9zezdDnezi1FaUY03Bdqva0JHooUNk/1hZaTDa3HPXWC7tRCJRPhkdBcM+eYcqmQMcorKMe7bCHbdRRM9bbwR6t7CR9kwIpEIy1/wwqPiChx62jjKw9qwXrPGhBD1JFpi/G+8b0sfRpvhbKFfry7Jfs6mvCUODDnrYXpYG9L6ioS0IhQwkiYzwtuODRhdLPRVivhbs3aWBpjZqx2+O6ucqbI31YWkldTwqWOoI8GGyf7P/DpisQjLX+iM9lYG2B35EMN97Fp0ra/auFsb4dU+buwal9w11eb3c3+uAywtsQhfTfKFjbEuYh4+xrvPQeMeQgjRBLeLd8zDfN56w709aHaRkNaEAkbSZEb7O+DUnWzcTC/EqlFdnrti4vn93fHntVTkFstr4Vp7OmpjE4lEmBbsimnBri19KHVa2N8DB2LSkZavXDPTwVQP0wRSOp83OhItXl0tIYS0BdxOqfkllTh/V5mR1IfqFwlpVVr3dAl5rkklYnz7Ujecfbcf+nZ4/j78jXS1eWtI9aJ6ilZLT6qFFSP5NUhvhXVQ29KdEEJIy7I20uXVlytmGLW1ROjuRksbENKa0AwjIbUY29URVkY6yC+pxDCBRjCk9RjU2Qaze7fDtvP3MNLXHqP9HOp+EiGEkBbj52zKywwBgK7OZtCX0u0pIa0J/UUSUocQSo15bnw0ojOWDu/03KU/E0LIf5G/kykOcdaZBYAQql8kpNWhlFRCSJtCwSIhhDwf/AW6b9P6i4S0PhQwEkIIIYSQZudlbwJtLeUgn4meNq01S0grRAEjIYQQQghpdrraWuhkZ8x+3cvdAlpiyhIhpLWhgJEQQgghhLSIoV2UDeWoWRkhrRM1vSGEEEIIIS1idkg72JnowlhPgv6eNi19OIQQARQwEkIIIYSQFqGtJcZof5pZJKQ1o5RUQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIkLX0A/yUMwwAACgsLW/hICCGEEEIIIf9VinhEEZ/UhgLGZlRUVAQAcHJyauEjIYQQQgghhPzXFRUVwcTEpNZ9RIwmYSVpFDKZDOnp6TAyMoJIJGr29/fw8AAA3L17t9nfm7QddB6RxkLnEmksdC6RxkDnEWksz8O5xDAMioqKYG9vD7G49ipFmmFsRmKxGI6Oji36/gBgbGzcYsdAnn90HpHGQucSaSx0LpHGQOcRaSzPy7lU18yiAjW9IYQQQgghhBAiiAJGQgghhBBCCCGCqIaREEIIIYQQQoggmmEkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAsY2TiaT4euvv4anpyd0dXXh5OSEt956C0+ePGnpQyOt1Nq1azFhwgS4ublBJBLB1dW11v0vX76MgQMHwsjICMbGxhgyZAhiYmKa5VhJ65WQkIBly5ahR48esLKygpGREfz8/LBmzRrBz587d+5g9OjRMDMzg4GBAUJCQnDy5MkWOHLS2ty5cwdTp05Fp06dYGJiAn19fXh6emLJkiXIyMgQ3J/OJaKJkpIS9lo3f/58lcfpXCLqiEQiwX+GhoYq+7aF80jS0gdAmtbixYuxfv16jBkzBm+99Rbi4+Oxfv16REdHIzw8HGIxjRkQvg8//BDm5ubo2rUr8vPza9330qVLCA0NhYODA1atWgUA2LhxI0JCQnDx4kV4e3s3wxGT1ujHH3/Epk2bMHLkSEydOhXa2to4deoUPvroI+zZsweXLl2Cnp4eACApKQk9e/aERCLBu+++CxMTE2zduhWDBw/GkSNHMHDgwBb+bkhLSk1NRUZGBsaMGQNHR0dIJBLExsbi+++/x2+//YaYmBhYW1sDoHOJ1M+yZcuQk5Mj+BidS6QuISEhmDNnDm+btrY27+s2cx4xpM2Ki4tjRCIRM3bsWN729evXMwCYXbt2tdCRkdYsKSmJ/b+Xlxfj4uKidt/AwEDGyMiISU1NZbelpqYyRkZGzKBBg5ryMEkrFxUVxeTn56tsX7p0KQOA2bBhA7ttwoQJjFgsZqKjo9ltRUVFjLOzM9OhQwdGJpM1xyGT58yePXsYAMxnn33GbqNziWjq6tWrjJaWFvPll18yAJh58+bxHqdzidQGADN9+vQ692sr5xFNL7Vhu3fvBsMwWLRoEW/7q6++Cn19fezcubNlDoy0am5ubhrtl5iYiKioKEyYMAEODg7sdgcHB0yYMAHh4eHIzMxsqsMkrVxAQABMTExUtk+aNAkAEBcXBwB48uQJDhw4gNDQUPj5+bH7GRoaYvbs2UhISEBUVFSzHDN5vri4uAAAHj9+DIDOJaK56upqvPrqqxgyZAjGjh2r8jidS0RTFRUVKC4uFnysLZ1HFDC2YVFRURCLxQgKCuJt19XVhZ+f33NzkpLWSXH+BAcHqzzWo0cPMAyDq1evNvdhkVYuNTUVAGBjYwMAuHHjBsrLy9WeRwDos4oAAMrKypCbm4vU1FQcO3YMr732GgBg2LBhAOhcIpr7+uuvcfv2bWzcuFHwcTqXiCb++OMP6Ovrw8jICNbW1liwYAEKCgrYx9vSeUQ1jG1Yeno6LC0toaOjo/KYg4MDLl68iIqKCkil0hY4OvK8S09PBwDe7KKCYltaWlqzHhNp3aqrq7F69WpIJBJMmTIFAJ1HRHPbtm3DggUL2K9dXV2xc+dOhISEAKBziWjm3r17WL58OZYtWwZXV1fcv39fZR86l0hdgoKCMGHCBLi7u6OwsBCHDx/Gxo0bcebMGVy8eBGGhoZt6jyigLENKykpEQwWAfkso2IfChhJQ5SUlACA4DnGPb8IUVi0aBEiIiLw6aefomPHjgDoPCKaGz16NDw9PVFcXIzo6GgcOHAAubm57ON0LhFNzJ07F25ubliyZInafehcInW5fPky7+uXX34ZPj4+WLp0KdatW4elS5e2qfOIAsY2TF9fH9nZ2YKPlZWVsfsQ0hCKc6e8vFzlMTq/SE0ff/wxNm7ciDlz5uCDDz5gt9N5RDTl6OgIR0dHAPLgcdy4cQgMDERJSQk++OADOpdInXbu3Injx4/j7NmzKt0suehcIg3xzjvvYOXKlTh06BCWLl3aps4jqmFsw+zt7ZGbmyt4oqalpcHS0pJmF0mD2dvbAxBOp1BsE0rDIP89K1aswCeffIJXXnkFW7Zs4T1G5xFpKB8fH/j7+2Pz5s0A6FwitSsvL8eSJUswbNgw2NraIjExEYmJiXjw4AEAoKCgAImJicjPz6dziTSItrY2e+8NtK3PJAoY27DAwEDIZDJERkbytpeVlSEmJgYBAQEtdGSkLQgMDAQAREREqDx26dIliEQidOvWrbkPi7QyK1aswMqVKzF9+nRs27YNIpGI97i3tzd0dHTUnkcA6LOKqFVaWoq8vDwAdC6R2pWWliInJweHDh2Ch4cH+y80NBSAfPbRw8MD27Zto3OJNEhZWRlSU1PZpm5t6jxq6XU9SNO5ceNGresw7tixo4WOjDwv6lqHMSAggDEyMmLS0tLYbWlpaYyRkREzYMCAZjhC0pqtXLmSAcBMmzaNqa6uVrvf+PHjGbFYzMTExLDbFOtUeXh4PDfrVJGmkZGRIbj95MmTjFgsZvr3789uo3OJqFNRUcHs3btX5d/mzZsZAMyQIUOYvXv3Mnfu3GEYhs4lol5ubq7g9rfffltlbdi2ch6JGIZhWjZkJU1pwYIF2LhxI8aMGYNhw4YhPj4e69evR69evXDy5EmIxTTJTPh27NjBpuhs2LABFRUVeOuttwDI1z2bNm0au+/FixfRr18/ODo6st0LN2zYgKysLFy4cAG+vr7N/w2QVmHTpk2YP38+nJ2dsXr1apXPGhsbGwwaNAiAfE3PoKAgaGtrY/HixTA2NsbWrVsRGxuLQ4cOYfDgwS3xLZBWYsyYMcjIyED//v3h4uKCsrIyXL16Fb/99hv09fVx+vRpdo0zOpdIfd2/fx/t2rXDvHnzeMts0LlE1Fm8eDEuXbqEfv36wdnZGcXFxTh8+DBOnTqF7t2749SpU9DT0wPQhs6jlo5YSdOqqqpivvjiC6ZDhw6MVCpl7O3tmcWLFzNFRUUtfWiklerbty8DQPBf3759Vfa/ePEi079/f8bAwIAxNDRkwsLCmKtXrzb/gZNWZfr06WrPI6Fz6datW8zIkSMZExMTRk9Pj+nVqxdz/Pjxljl40qr8/vvvzPDhwxlHR0dGR0eH0dXVZTp27MjMnz+fefDggcr+dC6R+rh37x4DgJk3b57KY3QuESH79u1jwsLCGHt7e0ZHR4fR19dnfH19mTVr1jClpaUq+7eF84hmGAkhhBBCCCGECKJ8REIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCSKP46KOPoKenh/T09GZ9X4Zh0K1bN4SEhDTr+xJCyH8BBYyEEEJaFZFIVOu/ffv2tfQhEgEpKSn46quvMG/ePNjb27Pb79+/D5FIhN69e6t9rmIfV1fXBr23SCTCqlWrcP78efzxxx8Neg1CCCHCJC19AIQQQkhNRkZGWLJkieBjnp6ezXw0RBOrV69GRUUF3n777RZ5/+HDh6NLly5YunQpxo0bB5FI1CLHQQghbQ0FjIQQQlodY2NjrFixoqUPg2iooKAAv/76K8LCwmBra9tixzFt2jS89957OHHiBAYOHNhix0EIIW0JpaQSQgh57pw+fRoikQgrVqxAZGQkhg8fDnNzc4hEIty/f5/d79ChQxg8eDDMzc2ho6ODjh07YsWKFSgtLVV5TYZhsHHjRnh5eUFXVxcODg6YP38+CgoK4OrqqpIuOWPGDJX3Ezq+mlJSUjB37ly4urpCR0cH1tbWmDhxIuLj41X2VbzvkydP8M4778DZ2Rk6Ojpwd3fHZ599BoZhBH8+kZGRmDRpEhwcHKCjowM7OzuEhYVhz549AIDbt29DJBJh0KBBgs9nGAbt27eHgYEBCgoKBPfh2r17N0pKSjBp0qQ6962PutKTa/58Fe//ww8/NOpxEELIfxnNMBJCCHluRUREYO3atejduzdmzpyJ3NxcSKVSAMCyZcuwevVqWFtbY9SoUbCwsEBkZCRWrlyJkydP4sSJE9DW1mZfa9GiRVi/fj3s7OwwZ84caGtrY//+/bh8+TIqKirY130WV65cQVhYGAoKCjB06FBMmDABGRkZ+Ouvv3DkyBGcOnUKAQEBvOdUVlZi8ODBSE9Px9ChQyGRSLBv3z68//77KCsrw/Lly3n7b926Fa+//jokEglGjhwJd3d3ZGdnIyoqCps3b8bEiRPh6emJfv364cSJE0hOToabmxvvNcLDw5GcnIyZM2fCxMSkzu8rPDwcANCzZ89n/Anx1fzeFHbs2IHk5GTo6+vztru4uMDBwQHh4eFgGIbSUgkhpBFQwEgIIaTVKSwsFJyd8/T0xIsvvsh+fezYMWzZsgWvvfYab7/w8HCsXr0affr0wT///ANjY2P2sU8++QQff/wxNm7ciMWLFwMALl68iPXr16N9+/aIjIyEubk5AGDNmjXo168fMjIy4OLi8kzfU2VlJSZOnIiysjKcP38ewcHB7GPx8fEICgrC7NmzERMTw3teeno6fH19cfz4cejp6QGQB1IdOnTA119/jQ8//JANfG/duoU33ngDJiYmOH/+PDp16sR7rYcPH7L/f/3113Hq1Cls3boVa9eu5e33/fffAwDmzJmj0fd2/vx5GBsbw8PDQ+0+KSkpatOM8/PzBbcL7f/TTz8hOTkZwcHBWLhwocrjgYGB2LdvH+Lj49G5c2dNDp8QQkhtGEIIIaQVAaD236hRoxiGYZhTp04xABg/Pz/B1xg1ahQDgImPj1d5rKqqirG0tGQCAgLYbbNnz2YAMD/++KPK/or3cnFx4W2fPn06A4C5d++e2ucsX76c3fb3338zAJj33ntP8JgXL17MAGDi4uLYbS4uLgwA5u7duyr7v/zyywwAJjY2lt02f/58BgDzzTffCL4HV0VFBWNra8vY2NgwFRUV7PasrCxGW1ub8fX1rfM1GIZhysvLGQCMh4eH4OP37t2r9XfK/VfzZ1xTeHg4o62tzbi5uTHZ2dmC+8ydO5cBwBw5ckSj4yeEEFI7mmEkhBDS6jg4OCA1NbXO/YKCggS3R0REQCqV4rfffhN8XCqV4vbt2+zX165dAwD07dtXZd/evXtDS0tLk8OuVUREBAAgOTlZcObszp07AOT1hV5eXux2ExMTuLu7q+zv5OQEAHj8+DG77dKlSwCAwYMH13k82tramD17Nj755BPs378f48ePByCfwausrFSZtVXn0aNHAAAzM7Na9+vVqxfOnz8v+Nj9+/fRrl27Wp9/69YtjBs3DoaGhjh8+DCsrKwE91PMDufm5tZ16IQQQjRAASMhhJDnlrqOnHl5eaiqqsLKlSs1eh1FYxcbGxuVxyQSCSwtLRt+kJxjAoC9e/fWul9xcTHva1NTU8H9JBL5Jby6uprdpkjtdHBw0OiY5syZg7Vr1+K7777D+PHjwTAMtm3bBgMDA0ydOlWj11CkyZaVlWm0f0NkZmZi2LBhKC0txfHjx9GxY0e1+yoaGimOixBCyLOhLqmEEEKeW+qampiYmEBPTw/V1dVgGEbtP+7+AJCVlaXyWlVVVYKzVWKxmH28JqGaPMV77N69u9Zjmj59et3fuBqK4DItLU2j/Z2cnDBixAi2+c3JkyeRmJiIF198kVf3Wdd7SqVSNiBubCUlJXjhhRfw4MED/Pjjj+jTp0+t+ytmPK2trZvkeAgh5L+GAkZCCCFtTvfu3VFaWorr169rtH/Xrl0BAGfOnFF57Pz587xZPAVFCia3kYzClStXBI8JUKamNoUePXoAAI4eParxc15//XUwDIOtW7fWu9mNgre3N9LT01FUVFSv59VFJpNhypQpuHLlClatWqXRrOft27chFovh7e3dqMdCCCH/VRQwEkIIaXPefPNNAPLAR2jWMD8/H9HR0ezXM2bMACDvisqdKSsrK8MHH3wg+B6K+smtW7fytsfGxmLdunUq+48aNQqurq7YvHmzYEAnk8lw+vTp2r+xOiiW01i1ahWvRlNBqC40LCwM7du3x7Zt27Bv3z74+fmprQ1VJzQ0FDKZTDBQfhZLlizB/v37MX36dHz88cd17l9eXo6YmBj4+/urTeUlhBBSP1TDSAghpM0JCwvDypUrsXz5cri7u2PYsGFwdXVFQUEB7t27hzNnzmDGjBnYsmULAHlDlgULFmDDhg3o0qULxo8fz67DaGZmBjs7O5X3GDVqFDw8PLB7926kpqaie/fuSElJwf79+zFq1Cjs2bOHt79UKsWff/6JwYMHY8iQIejTpw98fHwglUqRkpKCiIgI5ObmPlMtYOfOnbF582bMnTsXfn5+GDlyJDw8PJCbm4uoqCiYmJjg1KlTvOeIRCLMnTsX77zzDgBo3OyGa+zYsfjyyy9x7Ngx9OvXr8HHzxUZGYl169ZBV1cXDg4Ogo2CQkNDERoayn59+vRpVFRUYNy4cY1yDIQQQihgJIQQ0kYtW7YMISEh2LBhA86cOYO///4bZmZmcHJywpIlS/Dyyy/z9l+3bh06dOiATZs24bvvvoOFhQXGjBmDTz/9FL6+viqvr6urixMnTuDtt9/G8ePHERUVhS5duuDXX3+Fubm5SsAIyFNfb9y4gS+//BKHDh3Ctm3bIJFIYG9vj9DQ0EYJdF599VV06dIFX3zxBU6fPo19+/bB0tISPj4+mD17tuBzZsyYgXfffRf6+voaN7vh6tmzJ3x8fLBz506sWbOGre98FiUlJQDks7yffvqp2v24AeOOHTsglUoxa9asZ35/QgghciKGW/VPCCGEEBWurq4A5Ms/tEXh4eEYNGgQZs+erZJiq6mdO3di2rRpOHDgAF544YVGPsK65eTkwNXVFZMnT8a2bdua/f0JIaStooCREEIIqUNbDxgHDx6MY8eOITo6Gn5+fg16DYZhEBQUxNYyqutg21TeeustfP/990hISBBMISaEENIwlJJKCCGE/AfFxsbi4MGDiIqKwrFjxzBu3LgGB4uAvBZy69at2LdvHzIzM5s9aLOxscGOHTsoWCSEkEZGM4yEEEJIHdriDOPPP/+MV155BSYmJhg8eDC+/fZbmJubt/RhEUIIaWUoYCSEEEIIIYQQIojWYSSEEEIIIYQQIogCRkIIIYQQQgghgihgJIQQQgghhBAiiAJGQgghhBBCCCGCKGAkhBBCCCGEECKIAkZCCCGEEEIIIYIoYCSEEEIIIYQQIogCRkIIIYQQQgghgv4fqndLGBHrpREAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(ps.freq, ps.power, label='segment size = {}s \\n number of segments = {}'.format(3, int(lc.tseg/3)))\n", + "plt.title('Averaged Powerspectrum')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Power')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It looks like we have at least 2 frequencies. \n", + "# Let's look at the Dynamic Powerspectrum.." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "33it [00:00, 4274.61it/s]\n" + ] + } + ], + "source": [ + "dps = stingray.DynamicalPowerspectrum(lc, segment_size=3, norm=\"leahy\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAKOCAYAAAA8vlEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4IElEQVR4nOzdd3hUZdoG8PucSa80pYQSmoKAAgJCpAREcUGKKCgWsGBFXLuogIoorIqVXdelqdh2scEKuCp1VcAIKPopIAgIISgtCQmpc97vD8gsMUPJcE84k9y/vbiudWbyzJmZc2bmnfMUyxhjICIiIiIiIq5gn+oNEBERERERkf/RIk1ERERERMRFtEgTERERERFxES3SREREREREXESLNBERERERERfRIk1ERERERMRFtEgTERERERFxES3SREREREREXESLNBERERERERfRIk1EfJKTk2FZlu+fbdtITExEcnIy+vXrhyeffBK//vrrqd5MV3nsscdgWRYee+yxoN/Hkf/Cw8NRt25dDBgwAJ9++mnQ7ltEREQqnhZpIlJGnz59MGLECAwfPhwXXXQR6tevj6VLl2Ls2LFo3Lgx/vznPyM/P/9Ub2aV07RpU4wYMQIjRozApZdeivj4ePz73/9Gnz598OSTT57qzZMTlJqaCsuysHTpUr/XL126FJZlITU1tUK3S0RE3CPsVG+AiLjPmDFjynxBLCgowOzZs3H//ffjpZdewi+//IK5c+fCtqv2bz133HEHrrzyStSqVSvo99W1a1e89tprvv92HAePPvooJk6ciPHjx2Pw4MFo2bJl0LdDREREgqtqf7sSkRMWGRmJkSNHYvny5YiOjsbHH3+MGTNmnOrNOuVq1aqFFi1aVMgi7Y9s28bjjz+OJk2awHEcfPjhhxW+DSIiIsKnRZqIlEubNm1w1113AQCee+453+VPPfUULMvCHXfccdS/feGFF2BZFm666SbfZddddx0sy8Jrr72G9evX47LLLkOtWrUQFRWF9u3b45///KffWKtWrcK9996Lc889F6effjoiIyPRoEEDXHPNNfjhhx/8/s2R97Vu3ToMGjQINWvWREJCAi644AJ88803vtvOmjUL5557LmJjY3H66afjlltuQVZWVpmYx6tJ+/LLL3HFFVegfv36iIyMRO3atZGSkoLJkycjLy/vqM/VibJtG23btgUAbNu2rdR1c+fOxUUXXYQaNWogMjISjRs3xq233lrmdr/99hssy0LTpk3LxL/33nthWRZiYmJQWFhY6rpXXnkFlmXhoYceKvN3X375JYYMGYJ69eohIiICderUwdChQ/Htt9+Wue3WrVthWRaSk5NRVFSEp556Cq1atUJ0dLTvsQHAt99+i6uuugrNmjVDdHQ0qlevjjPOOAPXXXcd1qxZUypmSX3l1q1b8a9//QudO3dGXFwcqlWrhv79+2Pt2rVHfU53796NMWPGoFWrVoiJiUF8fDw6d+6M6dOnwxjj928cx8Fbb72FCy+8ELVq1fLtj3379sVbb71V6nEuW7YMANCzZ89SdYZLly7Fddddh549ewIAli1bVur6I89uH5ky+fnnn/teZ8uyfM/xkc+BPyVxj3X59OnT0a5dO8TExKBevXoYPXo0cnJyAAD79u3DnXfeiYYNGyIqKgpnnXVWqTO9IiJyEoyIyGGNGjUyAMySJUuOebvvv//eADAATHp6ujHGmN9++81ERESYxMREk5OT4/fvzjzzTAPArF692nfZiBEjDAAzevRoExsba1q2bGmuuOIK06lTJ999vPXWW2ViXXDBBSYsLMycc845ZsCAAebSSy81Z5xxhgFgoqOjzbJly8r8Tcl93X777SY6Otqcc8455oorrjCtWrUyAExcXJz56aefzN13320iIyNNnz59zKBBg0yNGjUMANOrV68yMR999FEDwDz66KNlrpswYYLvMbRt29ZceeWVpk+fPqZhw4YGgNmyZcsxn+c/3seIESP8Xt+7d2/fc1jivvvuMwCMx+MxPXv2NFdeeaVp3ry5AWCqVatmVq5cWSrGWWedZQCYrVu3lrr8nHPO8T2GpUuXlrrusssuMwDMp59+WuryyZMnG8uyjG3bplOnTmbIkCHm3HPPNQBMRESEmTdvXqnbb9myxQAwDRo0MP369TNRUVGmT58+ZujQoWbQoEHGGGP+85//mLCwMAPAnHvuuWbo0KFmwIABpm3btsa2bTNp0qRSMUv25T//+c8GgOnSpYsZNmyYad26tQFgIiMjzaJFi8o8l99++62pU6eOAWAaNWpkBg4caC688EITHx9vAJirrrqqzN/k5+ebvn37GgAmPDzc9OjRwwwbNsz06NHDVK9e3TRq1MgYY8zu3bvNiBEjTO3atQ0A06dPHzNixAjfv59++slMmzbN9OnTxwAwtWvXLnX9kY+xR48eBoC55ZZbjGVZpm3btmbYsGGma9eu5rvvviv1HBxtPyt5XY92+b333msiIyPNxRdfbAYOHOg7Dnr37m327NljmjdvbpKSkszQoUNN9+7djWVZBoB5/fXX/d6fiIicOC3SRMTnRBdpXq/XREREGADms88+811+9dVXGwBm2rRpZf5m0aJFBoDp1KlTqctLFk4AzF/+8pdS1z3zzDMGgGncuHGZeAsXLjS//fZbmcunTZtmAJgWLVoYx3GOel8vvvii73LHccw111xjAJhWrVqZOnXqmA0bNviu3759u6lVq5bfhcrRFmnvvfeeb0H0+eefl7rOcRyzePFik5mZWWb7/TnWIm3Xrl2+BcSMGTOMMcb8+9//NgBMYmKiWbVqle+2Xq/X3H///QaAadiwocnPz/ddd8cddxgAZubMmb7L9uzZYyzLMm3atDEAzLhx40o9hpo1a5qIiAhz8OBB3+Uff/yxL/6Ri3FjjJk3b54JCwsziYmJZu/evb7LSxZpAExycrLfRUVqaqoBYN59990y16Wnp5v/+7//K3VZyb5s27b54IMPSl03ceJEA8DUq1ev1Lbn5uaa5ORkA8A899xzxuv1+q7bsWOHad++fann+Y/PXZs2bcwvv/xS6rr8/HyzYMGCUpeVLLCOdpwtWbLEADA9evTwe/2RMQCYWbNm+b3NyS7S/ngc7Nixw5x22mm+4+TKK680BQUFvuv//ve/H/V4FRGR8tEiTUR8TnSRZozxnW048kvzihUrfGc6/mjIkCF+v1CWLJw6d+5c5m8KCwtN9erV/Z7hOZaUlBQDwPzwww9+7+v8888v8zfffvut78upv0XmXXfdZQCYxx57rNTlR1uknX322bSzCv4Wabm5ueaLL74wHTt29J11yc7ONsYY07NnTwPATJw4sUysoqIi07RpUwPAzJ4923f5Bx98YACYa665xnfZnDlzfAu36tWrm5SUFN91a9euNQBM9+7dS8Uv2Z7Fixf7fSyjR48us0g+cpH2zjvv+P27kjN9+/fvP/oTdYSSfXnIkCFlrnMcxxfvjTfe8F3+17/+1QAww4cP9xtz9erVBoBp166d77Jdu3aZ8PBwExYWZjZv3nxC28ZcpPXp0+eotznZRdqxjoOEhASzZ8+eUtcVFxebmjVrlvt4FRGRslSTJiIBcRwHAErVtHTu3Bnt27fH6tWrS9V37dq1Cx999BGqV6+OK664wm+8iy++uMxl4eHhaNy4MQBg586dZa7//fffMWPGDNx7770YOXIkrrvuOlx33XXYtWsXAGDjxo1+7+uiiy4qc9mR9VjHut7fdvxRRkYG1q1bh5iYGAwbNuy4tz9Rr7/+uq9eKDY2Fl27dkVaWhoaNGiAjz/+GPHx8SguLsZXX30FABgxYkSZGGFhYRg+fDgA+GqjgEM1TrZtY/Hixb7LSv5/7969kZqairS0NF89Usl1vXr18t1+z549SEtLQ61atY7aPr579+4AgJUrV/q9fuDAgX4v79ChAwDgmmuuwYoVK+D1ev3e7o+uvvrqMpdZloWrrroKALB8+XLf5QsXLgQADBkyxG+sdu3aIS4uDt99951vBMXixYtRVFSE1NRUNGnS5IS2iWnQoEFBi32s4+Dcc89FzZo1S13n8XiQnJwM4MSOExEROTq14BeRcvN6vcjMzAQA1KhRo9R1d9xxB2644Qb8/e9/x/Tp0wEcaj5QVFSEESNGIDo62m/MBg0a+L08Pj4ewKERAEf629/+hnvvvfeY89qys7P9Xl6/fv0yl8XFxZ3Q9X/cDn9KBn43btwY4eHhx739iWratCm6du0K4NBiq2bNmujUqRMuueQSREZGAgD27t2LgoICREREICkpyW+cksVEenq677Lq1aujbdu2WLNmDdavX48WLVpg0aJFaNasGRo0aIBevXrhww8/xPLly9G3b18sWrQIQOlF2pYtWwAcWqwdbzTD7t27y1x2+umnH3X/mDx5MtavX4/58+dj/vz5iIuLQ6dOndC7d2+MGDEC9erV8/t3JYuGo12+Y8cO32W//PILAKB///7H3Hbg0POclJTke63PPPPM4/5NMDRq1ChosY91HPi77sjrT+Q4ERGRo9MiTUTK7f/+7/98nf5at25d6rorr7wS9913H959911MmTIF8fHxmDZtGgDg1ltvPWrM8sxbS0tLwx133IGwsDA899xzuOSSS1C/fn3fF/yrrroK77zzzlE78R3vvk529pu/jnkMf5yTxtarVy+sWbMGixcvRnx8PDZu3IhbbrkFAHDBBRcAABYtWoSLLroI//3vfxETE4POnTv7/r7k7FaNGjWOu9Bp0aJFmcuOtkADgLp162LFihX44osvsHDhQixfvhz//e9/sXjxYjzxxBOYM2cO+vXrV+7HfKSS7R8wYACqV69+zNuWLIqD9VqfqGM9Z8dScib8WI51HFT1+YgiIsGmRZqIlNs777wDAGjVqhXq1KlT6rro6GjceOONeOaZZ/DGG28gOTkZv/76K3r16kU72/D+++/DGIM777wTd999d5nrN23aRLmfQJWcFdyyZQuKioqoZ9OOp2bNmoiMjERBQQF27Njh9wxlyRmjP55p69WrF5599lnfIq3kMgBo2bIl6tati8WLFyMtLQ0HDhzARRddVOqxldxXTExMUBaTtm2je/fuvpTJ7OxsTJo0CZMnT8ZNN93kN8Vu27ZtOOecc8pcXtKW/sjnoEGDBtiwYQPuvPNO36L0eBo2bAjg6Km1p1JERAQA+FJUj7R9+/aK3hwRESkH/RQmIuXy/fff46WXXgJwaIaWP7fddhts28arr76Kv//9777LWPbt2wfAf4rk+vXrjzkDqyLUrVsXbdq0wcGDB4865y1YwsLCkJKSAgB44403ylzv9Xoxe/ZsAECPHj1KXdetWzeEh4f7Zm9ZluWb2QUcmuv13Xff4V//+heA0qmOwKEFT+vWrbFjxw6sWrWK+rj8SUhIwFNPPYWIiAhkZGT4TaF8++23y1xmjMG7774L4H81csD/6iLfe++9E96Gnj17Ijw8HEuWLPGlex5PyeKpuLg4oOtPVEkK6IYNG8pc9+mnn55UbBERCS4t0kTkhBQUFGDGjBno3r07Dh48iIEDB/ptTAEcqsXq27cv/u///g8LFixAnTp1qA0OSlLl3njjjVJnCfbs2YPrr7/+pL/cMowbNw4AcOedd2LJkiVlrl+6dKnf4dgMJWcXn3nmmVINXBzHwdixY7Fp0yY0bNiwTIOMuLg4dOzYEXv37sW//vUvtGnTBqeddprv+gsuuADGGN/C+4+LNACYMGECAGDYsGGlGpOUKCwsxL///W+sX7++XI9pypQpperHSnz22WcoLCxEQkICqlWrVub69957D3Pnzi112V/+8hf88MMPqFOnDi6//HLf5TfffDPq16+PV199FZMnT/ZbV/Xjjz/igw8+8P137dq1cfPNN6O4uBiDBw8uMyi8oKDA15CkRMnZu59++snvYy25ftOmTSe1L5cssJ999lnk5ub6Ll+9erVv/xQREXdSuqOIlDF58mRfutrBgwexa9curFmzBrm5ubBtG3fddRcmTZp0zLqUUaNG4eOPPwYAjBw5EmFhvLeb66+/Hs8//zzWrFnja6ZRVFSEpUuXol69ehg0aBA++ugj2v0FYsiQIRg3bhyeeOIJ9OrVC+3atUOLFi2wf/9+/Pjjj/j111+xZcsWJCYm0u+7f//+uPfeezFlyhR07twZPXr0QO3atbF69Wps3LgR1apVwz//+U9fXdWRevXqha+++gr5+fllFmEl/52fn4/ExES0b9++zN9feuml+Mtf/oKHHnoIqampOOuss3DGGWcgKioK6enpWLt2LXJycrBw4UK/dWlH88QTT+D+++/HWWedhRYtWiAiIgJbtmzxnbGbNGmS37TSUaNGYdCgQUhJSUGjRo3www8/4Pvvv0dkZCTeeOMNxMTE+G4bHx+Pjz/+GJdccgkeeughPPfcczj77LNRp04dZGZm4vvvv8evv/6KK664AoMHD/b93bPPPouff/4Zn376Kc444wycf/75qFOnDjIyMvDdd98hISHBl15Z8hy99tpruP/++/HZZ5/h9NNPBwDcf//9OPPMM9GoUSO0a9cOa9euxdlnn41zzz0XkZGROPPMM3H//fef8HM2atQovPrqq1i5ciXOPPNMnHfeedi1axe+/vpr3H///Zg0adIJxxIRkQp2aicAiIiblMxVKvlnWZaJj483jRo1Mn379jVPPvmk+fXXX08oVl5engkPDzcej+eYf1Myu+xoA3mPNlMqIyPD3HDDDaZRo0YmMjLSJCcnm7vuusvs37//qDGPd184ytwoY4yZNWuW34HSR5uTVmLJkiXm0ksvNbVr1zbh4eHm9NNPNykpKebpp582eXl5fv/mj441zPpYPvzwQ9O7d29TrVo1Ex4ebho2bGhuvvnmo87NMsaYxYsX+56HefPmlbm+SZMmBoAZMGDAMe979erVZsSIESY5OdlERkaahIQEc+aZZ5ohQ4aYN9980+Tk5PhuWzInrVGjRkeNN3v2bDN8+HBz1llnmWrVqpno6GjTtGlTc8UVV5gvv/yyzO2PnBH29ttvm44dO5qYmBiTkJBg+vbta7755puj3te+ffvME088YTp06GDi4+NNZGSkadiwoenevbt56qmnzKZNm8r8TXFxsZk5c6bp0aOHqVatmomIiDANGjQw/fr18zv77W9/+5s555xzTHR0tO/5PnIf37Jlixk6dKipXbu28Xg8ZeamHW/WWolNmzaZyy+/3FSvXt1ERUWZtm3b+gaWH21/D+Q4KO92iYjIsVnGHKX9mYjISXjrrbdwzTXXYMCAAWXSzUSCLTk5Gdu2bcOWLVuO2oZfRETErVSTJiJ0BQUFeOqppwAAd91116ndGBEREZEQo5o0EaGZNWsWli9fjq+++gobN27En/70p1LdAUVERETk+HQmTURoli1bhtdeew179uzBNddcgzfffPNUb5KIiIhIyFFNmoiIiIiIiIvoTJqIiIiIiIiLuLImzbIsv5fHxsaWGlwLABs2bMCDDz6IZcuWobCwEO3bt8fjjz/ud8jqyXAcBzt37kR8fPxRt09EREREKjdjDA4cOIB69eodc17oqZSfn4/CwsIKua+IiAhERUVVyH1VJa5cpAFAt27dcPPNN5e67I+DSjdv3oyUlBSEhYXhgQceQGJiIqZNm4Y+ffpg4cKF6N27N217du7ciQYNGtDiiYiIiEjo2r59O+rXr3+qN6OM/Px8NG4Uh12/eyvk/urUqYMtW7ZooUbmypo0y7IwYsQIvPbaa8e83dChQ/H+++9j9erVaNu2LQAgJycHrVq1QlRUFNavX08765WVlYVq1aqhK/oiDOHH/4MTYXs4cQDAOLxYAGDxfhmyoyJosQDAeHmP1RQU0GLRufmMLXH/AAArnPt7kWH+esh+i2S+rtq2wLh42zzxcbRYAOA9kHP8G5WH+74y/A/xM9WO4L4nOYXFvGDkz3vLw3veTDHxcQLwVEvgBQvjfRcpdgqxbN9sZGZmIjExkRaXJTs7G4mJidi2OhkJ8cE905d9wEGjc7ciKysLCQnE10vceyYNAAoLC1FYWIi4uLIfWrm5uZg3bx5SU1N9CzQAiIuLw8iRIzF+/HikpaWhU6dOlG0pWeyFIRxhFmmRZhEXaXDxIs0iL9Is3i9DxiI/b0xVaZFmkRdpFvOLpHu/0GvbAuXebfOQ3y8t1ueVj4sXacTPVJv8vDnU/Ze8SCM+b4b8uUU9HmzusQUcvTzHLRLibSTEM79rSkVyZyItgPfeew8xMTGIj4/H6aefjtGjRyMrK8t3/bp161BQUIAuXbqU+dvOnTsDANLS0gK+/7p165b617x584BjiYiIiIhUJAcGTtD/5+IfbkKcK8+kderUCUOGDEGzZs2QnZ2NBQsWYOrUqVi2bBm++uorxMXFYefOnQCApKSkMn9fcll6ejp/4yzLnWc46Ok7vFBOXh4vGMB9rMyUU4CbhkJ+Ta0w3uHOTmkxRdRw3PQdh3xssVOTiaww3tkDy8P9DZC9zzEx9xFvdjYtFgB4atagxjO5B2mxnELugc887h12Kryb00SZmRHk70feLOLxQHycXvaHlogfrlykrVq1qtR/Dx8+HGeffTYeeeQRvPjii3jkkUdw8OChD4rIyMgyf19SuFhym0BkZGSU+u+S/F4REREREbfzGgfeIP8+4HXxD4+hzrXpjn90//33IyIiAvPnzwcAxMTEAAAK/PzalZ+fX+o2IiIiIiIiocKVZ9L8CQ8PR7169bBnzx4AQL169QD4T2ksucxfKuTJsiIiaIXYzM6CVji5INZ2YUrnYXY0r8WrNzPr+DcqD2aqhxvTaoPFIbcJDi97hj1gXu6cGWoqppf7vJki3mM1xeT9l5guZvnJwDgpxbz3cpv846KTze3uyNxH2O9xdiyvM6Y3s2LmSwWCmboOAHZsNC2Wk8M9q8JNc2aWI4TG2aNDNWnBPZWmmrTgCZkzafn5+dixYwdq164NAGjTpg0iIyOxYsWKMrdduXIlAKBDhw4Vuo0iIiIiIiIny3WLtL179/q9fNy4cSguLkb//v0BHGq1379/fyxduhTfffed73Y5OTmYPn06mjdvTmu/LyIiIiISSoLf2fHQ/yQ4XJfuOHHiRKxcuRI9e/ZEw4YNkZOTgwULFmDJkiU477zzMHr0aN9tJ02ahEWLFuGiiy7C3XffjYSEBEybNg3p6emYP3++6+dXiIiIiIiI/JHrFmmpqan48ccf8frrr2Pv3r3weDxo3rw5nnzySdxzzz2+zo0A0KxZM3z55ZcYM2YMJk+ejMLCQrRv3x6ffPIJevfuHZTtM4WFtEG5dnw8JQ4AoIjbDtZ4eb+MmGLutnkL3VsT4eY2y9Tcfpc/b6bIve3aqdhDxT2819XNLfPdjF1nyMas52Mfp15m/R37PY54rLJr0pycXFosVx/31PdL29Vz3Ut4jYE3yN9Lgh2/KnPdIm3gwIEYOHDgCd++ZcuWmDt3bhC3SEREREREpOK4bpEmIiIiIiInR90dQ5vrGoeIiIiIiIhUZTqTVk52TDRsizOTzDlwgBIHAGDzZi/RkfOVmfn4VgR3vpxz8CA1HpWbG+mQ918rnLePGGYNJFxes2ETjy3y7EYrgjOfEgC/dpT4WJnzMwG4u36UvG1WGG8fMezSQOIsSKeA3E2PWKvFnvPHrNGsMrXKR3Bg4NWZtJClM2kiIiIiIiIuokWaiIiIiIiIiyjdsZycvAI4FinVgJniRUylAAD7iFEHJ8vJ526bcXin1k1eHi0WwE3FpKfFMdOU2Om15P3XFBDjsVOymGmAtntTWNlposwUVod83Lt59Iab083Z73HU8QXk9yQq+v5GHLlDHiHBTFG0o3jjI2xjAS6ubiihxiGhTWfSREREREREXERn0kREREREKhkNsw5tOpMmIiIiIiLiIjqTVl7GAS1/28W/Pjj5+ad6E47KJrbiptd9eYi1WuxtY9ZWGW4LaDs2lhrPyc3lBXPxccpu186sN2K29QbAPbbY20as6XE76nsmfTyAi18HF9egM9/j2O9JzM8G5ogcxxTRYgUT8RvrMe9DgkNn0kRERERERFxEZ9JERERERCoZbwUMsw52/KpMZ9JERERERERcRGfSxC9Xz8Kh1kRwf6dgz4aiYtZWkWtJTCE3v59aW8WshQK/ZoOJOYPQjo2hxQIAk+/e5415bFH3XQSh7pZ57LNrA4m1WnZ8PC0WAFgx0bRY3t9302K5nZNHrI9nfga6uFb5SF5z6F+w70OCQ2fSREREREREXERn0kREREREKhl1dwxtWqSVk+XxwLI46U/0NBQi4yW2+GW2HiYzxdw0OzuGl+Ll6rQ4dgprETlNlJiSZbPTz1zcituyec+bk8trd03n4lbt7GOLnbZHfV3ZreSJnJwcajyb+ZnqYlYYb0QOEITPBpEQonRHERERERERF9GZNBERERGRSsaBBS/IQ+P93IcEh86kiYiIiIiIuIjOpJWTKS6GYdW7EGtTrHDuS2lFRNBisWtTmG3CLXJ7dWq7YHK9BrM2xRw4QIsFAJ5qidR4Tk4uL1Y+8TUFuW6RPPKBWQ/FbiXPbNduisj1Qcw6Q3K9HH0sCHP72PXKbq5xO8j7HHT1mAby/muF876LUGvtjRMSHTMcc+hfsO9DgkNn0kRERERERFxEZ9JERERERCoZbwXUpAU7flWmRdqpREzNMNxO8tT273ZsLC0WAJhC3oOlpj+Amz5pJ8TRYgGANzOLGo+JmiYKd4+QcPLyaLHs6GhaLICc9kROJWa+J1mRkbRYAGCKeM+bh9wyHxHclujevft4wdijEIijNzyJCbRYAODNyqbFYn9uMfG3zaWP1cVjPKTy0CJNRERERKSS0Zm00KaaNBERERERERfRmTQRERERkUrGMRYcE+Q5aUGOX5VpkXYKMdvoUmtJwG17y2w9DAA2sZ6EXpNGrP9wcw0Zs/YD4Nb0ANzaQPaxRUV+HeyoKF6wcG4tFLMmjRkL4I5VYNdngvxYrTDe60p//yWOomG//1I/79nPG7NGk/6ZyvsuwqyTtU0hwJ1EI1KG0h1FRERERCqZkpq0YP9jmzRpEoYMGYImTZrAsiwkJycf929mz56N888/HwkJCYiLi0Pr1q3xxBNPlLldVlYWRo8ejaSkJERFRaFVq1Z45ZVXYIz7Br7pTJqIiIiIiLjCww8/jBo1aqB9+/bIzMw87u1vuOEGvP7667jssstwzTXXwLZtbNmyBdu2bSt1u8LCQlx44YVYu3YtRo8ejZYtW2LhwoW4/fbb8dtvv+Gxxx4LzgMKkBZpIiIiIiKVjBc2vEFOmgvGkITNmzejSZMmAIDWrVsjJyfnqLedMWMGZs2ahTfeeAPXXnvtMeNOnz4daWlpeOmllzB69GgAwE033YTLLrsMTz31FK6//no0atSI90BOkhZp5WRHRcK2ODnSTj659oDIFPNmkVFzygE4zBoLqwpl/DLnfZFnxNjRxFooAE5uLi8YeU6aZfNSQ9i1VdRaF/K2MV8HZu0SwK2pZL73AoDn9NOo8by799Ji2eQZbszPBmYNGcA9tpg1t2z0z/t84mvKfO9lD6eVUkoWaMdjjMGkSZPQvn173wLtwIEDiIuLg+WnZvvtt99GTEwMbrrpplKX33XXXfjggw/wz3/+Ew888MDJPwCSKvQNVURERERE2Jo3b466dev6/lWEDRs2YPPmzUhJScETTzyBmjVrIiEhAdWqVcOtt95a6gyc4zhYs2YN2rVrh6g/NMnq1KkTLMtCWlpahWz3idKZNBERERGRSsZUQAt+cwpb8G/YsAEA8M9//hOFhYUYO3YsGjdujI8//hivvvoqNmzYgMWLF8OyLOzfvx95eXlISkoqEycyMhK1atVCenp6RT+EY9IirZxMsRfGIqW2MNtns7vSEOO5u911Hi0WQE6zYyOnKDKxnzfmCAnmWAWA22KdnS7GTMnyxMfTYgGAN4e3j7BHPlCPLfJ7ucnKpsaDw9tHnHxyu3ZmiiI7Fd4wU2LJ+y8zHrOdP0Dd37iHqYtHs5wiP//8MxISEir0Pg8cODQHYffu3fjss8/Qu3dvAMBll10GYwxef/11fPLJJ/jTn/6Eg4fHQUUeZR+Niory3cYtlO4oIiIiIlLJhGoL/hMVHR0NAEhKSvIt0EqMGDECALB06VIAQMzhH/gLjnLiID8/33cbt9AiTUREREREQkr9+vUBAHXq1ClzXUld3P79+wEA1atXR3R0tN+UxoKCAuzZs8dvKuSppHRHEREREZFKxmtseE2QW/CfwhnQbdq0QVRUlN+F144dOwAAp59+OgDAtm20b98ea9euRUFBQam0x6+//hrGGHTo0KFiNvwEaZFWTqa4GIZZS8bixm0qwa6xKCwkBiO/uxBfB5uc208dXUDGrCED+G3MqVxc0+NqxOeNPVaByXL5cc88Vk0R8b0c5FotN3+mkvdfO4q4z5GfN2r9KLUu2wJO4eJEDomJicFll12Gt956Cx9++CEuvfRS33WvvPIKAKBv376+y4YNG4Yvv/wS//jHP3xz0gDghRdeQFhYGK644oqK2/gToEWaiIiIiEgl48CCE+TKJicIq9XZs2dj27ZtAA41BSksLMTEiRMBAI0aNSo1tPqpp57C559/jquuugqjR49GcnIyFixYgPnz52P48OFISUnx3famm27CrFmzcM8992Dr1q1o2bIlFixYgA8//BBjx45FcnIy/bGcDC3SRERERETEFWbMmIFly5aVumzcuHEAgB49epRapDVs2BArV67EI488glmzZiErKwtNmzbFs88+i7vvvrtUjIiICHz++ecYO3Ys3nnnHezduxdNmzbFyy+/jFGjRgX/gZWTFmkiIiIiIpVMRXRfDEb8ko6MJyo5ORlvvfXWCd22WrVqmDp1KqZOnRrAllUsLdLELyuCOGeKObsG7p5FZnl4tQLsWThWGG+mFnOeFsCvTaFy8Xw5N9fNOOR5M3ZsLC2WKSTXLNq89zj2DDc7Lo4az8nlva7MmZcAeZ8jz0mzPLxjlf3+yz5Wqdw6T5Zdzy7ihxZpIiIiIiKVTMV0d9SCNVg0J01ERERERMRFdCatsiD/ksFM22OnUlDbtZNT2dgpilTEts2WTW6zDG5LaU8CL8XLm5lFiwWAmr7DPE4BwDi89xF2ShZcPEICzP2XOWoAgJOTQ43H5OTlcQO6eLQC9bOB/jiJn4PsNNFwd35NtYwNuPkt6bBD3R2DmxYf7PhVmc6kiYiIiIiIuIgWaSIiIiIiIi7izvPIIiIiIiISMAc2vCE4zFoO0SKtvGwPYHHywZm51uy2zW5uyevqdu3MWgFybQqzjszVtXcAvFnZtFjUGkgyU8xtJe+Jj6fF8uZwR2Uwa9yYI0YAwBTy3pOsyEhaLID/2cCuR6Ui1kO5+nOGjDo6hj2ehViLahPf3yyDkKhJk9CmRZqIiIiISCWjFvyhTTVpIiIiIiIiLqIzaSIiIiIilYwDG45q0kKWFmnlZHk8sEg1aSDOJKLPrTLEeG4+Fe7iuTrsbbPCiDWQxH0XCML+y6yZc/EsPTsqihYLALzZ7q3lM8W814FZ58Lm5m0DyDMNyXW31BmE9P2XVz9qR4TTYgGAU0jctuhoWiyAWx9v8nnHljHcemARf7RIExERERGpZLzGgpf5o/tR7kOCQzVpIiIiIiIiLqIzaeVkx8fCtjlpEA6xTbirW6ITU1AAbjoFs3U24O7XwXjdm6ZEziik7nP015S4bcw0JQDcdDEP9zdA4+XFs2O4aaLMFEX2/ubmlv70bWO+DuQW/Mx0c/YICQ8xHjNlGuC2zXcOHKDFCpV0R28FzEnzqiYtaHQmTURERERExEV0Jk1EREREpJJxjA0nyHPSHDc3hwtxOpMmIiIiIiLiIjqTVk7effthWaT2t8T6D0+1RFosAHBy82ixmK2HAQAeYm2Vxf2dglp3QIwFAI7LW3tTMV9Xw24Tztw2djEfj5Ofzw1IHEnh5tpROi95/yVy9bgBci21Ib4OXmJtFcBvm89kuXSsgmUsIDTK0iSEaZEmIiIiIlLJqHFIaFO6o4iIiIiIiIvoTJqIiIiISCXjIPjDpt2bdB/6tEgrJyssDJbFedqYdRFOHrf+g1pHRu78w5x1wqxzAUCtEWLWMAAg19+R35bJtYFU5NoU5j7CnpfEnhvoVvTH6eLuZuz6O0/16rRY3sxMWiw68mtqR/Fm89Hrix3i+zn5/ZI6d405PzNE5qRJaNMiTURERESkknFgwwlyZVOw41dlemZFRERERERcRGfSysmKCIdlcVKMmGko7FbGnoQEWix2u2BmapwdQRqncBiz7TizXTBwaN9lMYXcVA9TxE0/Y44vMA75tyyHl8ZKb2FOTf8lp8QSnzd2SpYdE0OL5eTxxp8A/JRYaooiO82ZmEpsx8bSYgHuHjfgkN/P3cqOjOTFMhZAnjISDF5jwxvkYdbBjl+V6ZkVERERERFxEZ1JExERERGpZBxYcBDs7o7BjV+V6UyaiIiIiIiIi+hMWjkZrwNjcWojLGJ+NDvf3a1tbwHACufttswaMoBcC8UcgwDu80bfNuLzBnDrPdm1gXYcr9aFepyCW6NJbxPOrJdj1reBOy6DPlbBxbVQlof82RARTYvFHmvDrJejj3xgvgz0cSq85435nuSESAt+1aSFNj2zIiIiIiIiLqIzaSIiIiIilYwXNrxBPh8T7PhVmZ5ZERERERERF9GZtPLyeoOQc33ymHPNAG6ti6dGdVosAPDu3ccLRq6Xg4dYN0OsqwIAU0icRUauiWDXpLnxGC3BrJdj77/G6+K6GcOtI2NiHlsW8z3E5Zi1fABgDh6kxqMi1lRaEeQaXhfXLboW+/1NxA8t0kREREREKhnHWHBMkFvwBzl+Veben5tFRERERESqIJ1JO4WMwztdzk4bYbYdp6YnkrHbXYPZips4ogEATBE3fZKJPQrBjomhxXLy2a3kXfyrI7NNODkVM6xObVqs4oxdtFgAqOm11HRYAHZUFDUe9Vh1cdo0+zOVOfbBFJC3jXmsslPNqe9JxG0zDnM6QNA4FdA4xNH5nqDRMysiIiIiIuIiOpMmIiIiIlLJOMaGE+Rh08GOX5XpmRUREREREXERnUkrJ1NcDMNu207g5HFrepj58+yaCEOsY2DXaTHbZ7PbItvx8bxgRUW8WAAc8mN18vJosey4OFosNvY+Qq/DIaLWkRHboQOgvl8y64EBwCnkHqtu5ubxFlWFHcWtpXaYYxWYYzxcPBLkSF5Y8CK4+3Kw41dlOpMmIiIiIiLiIjqTJiIiIiJSyagmLbTpmRUREREREXERnUkrL8vi5aqTZ8RQEWs26DURxPoPdt2BKXbv4BRTWOjKWADos3Us4iwyQ6xvA7jzEZlzoQBuTVpY40a0WADgTc+gxbLIx72THxr1KQzUGuPwcF4sAE4us37Jve/lbFYY73Xgz5Uk1o8yvzuECC+CXzNW9Z7ViqMzaSIiIiIiIi6iM2kiIiIiIpWMatJCmxZp5WUMAE66EjNVidp62O2IqUqeatVosQDAycmlxbI85Dc+mxePOQYBADzxsdR4XuLr4OoUGZv8Fk5MOy3eso0WCwA1PZw9RsWK5LUdp4/eII9AYY7L8JDbtTNTFO2YGFosgNxKnswUkdPXXYr5mtqmEHDvSyqVhJa/IiIiIiIiLqJFmoiIiIhIJeM1doX8Y5s0aRKGDBmCJk2awLIsJCcnn/DfPvjgg7AsC3FxcX6vLygowPjx49G4cWNERkaiadOmmDhxIoqKyE3uCJTuKCIiIiIirvDwww+jRo0aaN++PTIzM0/477799ls899xziIuLO2pZxhVXXIG5c+fihhtuQJcuXbBixQqMGzcOmzZtwmuvvcZ5ACRapJWX7QEsUktYcttx1yLXfzDryJwDB2ixAG5toCkObtvck8Fu/e4lvw42sUbIKSC34mbWVrFrUZntrtljFcJ422aKub+YMkdSsI8tZg0ZwK3rMeTxLJaHODomL58WC4CrR+5Q9zniawBwazSZ4wEc476zLv4YWHCC3ILfBCH+5s2b0aRJEwBA69atkZOTc9y/8Xq9uOmmm/CnP/0J2dnZ+Oabb8rcZsGCBZg7dy7uueceTJkyBQAwcuRIVKtWDc899xxuvvlmpKSkcB/MSagiqwQREREREXG7kgVaebz00kv48ccf8fLLLx/1Nm+//TYA4K677ip1ecl/v/nmm+W+32DSmTQRERERkUomWDVjf7wPAGjevDnsI7pIZ2RkBPV+j7Rt2zaMGzcOjz76KBo1anTU26WlpSEpKQkNGjQodXmDBg1Qr149pKWlBXtTy8X1i7SDBw+idevW2LJlC0aNGoWpU6eWun7Dhg148MEHsWzZMhQWFqJ9+/Z4/PHH0atXr6Bsjx0RBtsK5wQLJ8UBP32Hipz25N2/nxeMmd7FRk6PcfPIB0/16tR4iOAdW/jtd14suDu1CA4xFZPd1juc+LyxU82Jrd8N8TUAQH+sTi5xvAU5FZ6K/f4bHkGNx0Q9Vr3uHVli2bz9zTIWQM6El8DddtttaNKkCe65555j3m7nzp0466yz/F6XlJSEHTt2BGPzAub6Rdr48eOxe/duv9dt3rwZKSkpCAsLwwMPPIDExERMmzYNffr0wcKFC9G7d+8K3loRERERkVPPMRYcE9wfQ0ri//zzz0hISAjqffnzzjvv4JNPPsEXX3yBsOP8CHrw4EFEHqVmPSoqCgddNs/Q1Yu0NWvW4IUXXsDTTz+Ne++9t8z1Dz30EDIzM7F69Wq0bdsWADB8+HC0atUKo0aNwvr162G5+Zc6EREREREpt3379uGuu+7CjTfeeEINP2JiYlBwlGY0+fn5iCEPsT9Zrm0cUtKl5eKLL8bgwYPLXJ+bm4t58+YhNTXVt0ADgLi4OIwcORIbN250XW6piIiIiEhF8MKukH+nyuOPP47c3FzcdNNN2LRpk+9fXl4ejDHYtGkTtm/f7rt9vXr1kJ6e7jdWeno6kpKSKmrTT4hrz6Q9//zzWL9+Pd5//32/169btw4FBQXo0qVLmes6d+4M4FCBYKdOnQK6/7p165b6b8c5lHzs5BfAsUiJyOT2w1TEOgaLWUsCwBTyEsGZOeoAYMCrEaI/b8RWxvQW/OWYg1LhyGfjqfV85NpAat0MO4vBxbUuVI7LHyexjtdm1o6CO24grE5tWiwAKP59Dy8YsQYSADw1a9Bieffuo8UCAIs4TqXKvIdUIdu2bUNubi7OO+88v9c3b94crVq1wg8//AAA6NixI9566y1s3769VPOQ7du3Y+fOnRgwYECFbPeJcuUibcuWLXj00Ucxfvx4JCcnY+vWrWVus3PnTgDwu+otuexoq2URERERkcqsImvSToUHH3wQ11xzTZnLH330Ufzyyy+YPXs2EhMTfZcPGzYMb731Fl544QXfnDQAeOGFFwAAV199ddC3uTxcuUi79dZbj9ulpaS4z18BYFRUVKnbBOKPrUOzs7NLvdAiIiIiIsI1e/ZsbNu2DQCwe/duFBYWYuLEiQCARo0a4dprrwUAv9l0ADB16lRs27YNl19+eanL+/Xrh0suuQTPPfccsrKy0KVLF6xYsQIzZszANddcg65duwbxUZWf6xZpb775Jj777DMsX74c4cdoUV9S3OevADA/P7/UbURERERExP1mzJiBZcuWlbps3LhxAIAePXr4FmmBmDNnDiZOnIg333wTs2fPRlJSEiZMmIAxY8ac1DYHg6sWaQUFBbjnnnvQt29f1KlTB5s2bQLwv7TFrKwsbNq0CbVq1UK9evVKXXekksuCUQBohUfAYs1JI9ZDMeuNDgXk5W6bAm4eOLNuxpBz1C3m3Cr2thGfN09N7lwzJ/sAN15eHjWea7Hr5YjzkuzDGQ0szuEf39yIWTdjCsnz5dw8E87Lra1ivv969+ylxQLg6lpD7/4sXjD2exLzuw1x2wzxO1IwObDhBLmxRzDiL126NGh/HxUVhYkTJ/rOzLmZq7o75uXlYffu3Zg/fz6aN2/u+5eamgrg0Fm25s2bY/r06WjTpg0iIyOxYsWKMnFWrlwJAOjQoUNFbr6IiIiIiMhJc9WZtNjYWMyZM6fM5bt378btt9+Oiy++GDfeeCPOPvtsxMXFoX///vjggw/w3Xff4ZxzzgEA5OTkYPr06WjevHnAnR1FREREREKZ11jwBrmxR7DjV2WuWqSFh4eXKfID4Ovu2LRp01LXT5o0CYsWLcJFF12Eu+++GwkJCZg2bRrS09Mxf/784Ayyti3eKXNmOhv5sVLT9pixAMAx3HhEFrGltHMSjW/8sWN4KVnFv/1OiwUAMOTXlHg82OTaViePl7bHHiFBT41jYr7Hkfc3aooi+1ggp2W5OrWT+dyxvz8QRxewW/AzUzE9CQm0WAD3/dIUu3jskYgfrlqklVezZs3w5ZdfYsyYMZg8eTIKCwvRvn17fPLJJ+jdu/ep3jwRERERkVOisrfgr+xCYpGWnJwMc5RfyFq2bIm5c+dW8BaJiIiIiIgER0gs0kRERERE5MQZY8MxwU1jN0GOX5VpkVZOdlwsbJvTypza4jcY9Xck9PEAzNx+cltkah0ZuTbFyc3lBWO+BgDsSF4tHwA4xH2O+rwB1OeOWR8EcB+rKSa/J7m43siK4I23cHPNLQCYomJiMO5jZY59oI8HiCLW8uVzP1OZoze8OeT3S+JnNHMMjWUAqMRNgkyLNBERERGRSsYLC14EubtjkONXZTpHKSIiIiIi4iI6kyYiIiIiUsk4JvjdF12eoR3StEgrJ5OXB2NxcqSp+fPFxDoBAMbNRx25joyJOV/OMOfoAdT6Dyuc+9bh5PNm4QCAFcbbPvrrQNx/2cc9tV6OPcONeWyR53NR47Fn1ZFnatnR0bRYDrm2ilmLSq0zBOAcOMALVpVmuFHnIxK3jf04RfzQIk1EREREpJJxKqC7Y7DjV2V6ZkVERERERFxEZ9LKycnLh0NKd2S3H2ZitvY2BeR0MWL6gxXGbf3ObGXMbq/OTMmituEGYMfHU+M5ucRRCGR2TAwtFnXkAxk9G4iZgs1+73XxWBBmWj0AOHl5vGDsFvyxsbRYTh43BdvN+wiMe0sImPsvM63eGHKquYgfWqSJiIiIiFQyDiw4QW6RH+z4VZnSHUVERERERFxEZ9JERERERCoZr7HgDXIL/mDHr8q0SCsny+OBZXFyy6nts5n57gAMs5VxOLeVMbPuC+Q24dTW7+S6L279B7fgiN0S3c1jGthtx5mo9R+FRbRYAHfsgynk7r/McQMG5PdyL7k4kPk+Qm4lz6zRZNcr23G8ejnv/v20WG5HHc9C3d8swL1tBaSS0CJNRERERKSSUQv+0KZnVkRERERExEV0Jk1EREREpJJxYMEJcs2YujsGjxZp5WS8XhjLfScgmTURAGBFuHM2CRuz9k4CR6+/Y9YekGc5WR5ezRG7JMLdxyqvzpBZOwq4vL6YWcPrdsxjlTzoz5uZSY3nWuQ6QxC/bzG/J1nGATQqTYJMizQRERERkUrGVMCcNKMzaUHjvlNCIiIiIiIiVZjOpJWXMWAlGVHbtTvcxCfj4rQnajoFO3WVnCJDRU7bczUXtwln8iQmUOM5Bw7QYhkvdwyCHRlJi2XYKazMWBHckSXMtvQAYMfyWsk7ubm0WABgEfcROvLxQMVMsaWPP+F9phriphlmsCByTAXUpGlOWtDoTJqIiIiIiIiL6EyaiIiIiEglozlpoU3PrIiIiIiIiIvoTFp5WRatRoXZttlTLZEWCwC8Wdm0WHZ0NC0WAMDh5ajTW44T65fYtSnMeE4ut86FX8dARK5fYrZE92aRnzfm60Cu5WO+X1Jb5gPcx1pIbplPfh3YdWRMzJEq9Po2Yv2zHRlOiwUAjkbRiLiSFmkiIiIiIpWMGoeENqU7ioiIiIiIuIjOpImIiIiIVDJOBQyzDnb8qkyLtPIizkljzibxZufQYgGA5eFtG3teErPugI5Yd8B+nKaIV4fD3D8A2hF1REDivDo3z5dzcS2fFcatm2HW8rl59h175iUdc6YWG/G4p7/HEd/PnXzyce/i44Fam008tiwDoIgWTsQvLdJERERERCoZ1aSFNtWkiYiIiIiIuIjOpJ1KzFQldgoKM92RnLZnhfPSH0wxOV/BxelnzFQgU0xMJwSoaaIAuCmK5GPLsom/OpKfN8vDi2eRR294M3nHqqdWLVosAPDu2UOLRd0/AJhidvok79j3JCbQYgHctH/nIHfMCPNzi5rODW5JghXG/Vrp1vIGY0Ij11Fn0kKbzqSJiIiIiIi4iM6kiYiIiIhUMjqTFtp0Jk1ERERERMRFdCatnKywMFgW52mzifn4TlY2LRYAWMSWvK5ur06vhXJvTRqzpbQVGUmLBQBOXj41nh0TQ4vFrk0xYNa4kcdbEGs0rWLeyAeAu/969+6jxQIAm3g8OOwaXvKxCmL9kjczixYLINcrk+uLqfXPbh4LQh5dAOL7iCeB953LmEKA+7UrKHQmLbTpTJqIiIiIiIiLaJEmIiIiIiLiIkp3FBERERGpZAwAB8FNR3Rx8m3I0yKtnIzXC0OqY2LWRdjx8bRYAODk8ObNMPPAAXKNEHuuGbGWz1OtGi0WAHgzM2mxTG4uLVYwOHl5tFj0uT/EGgv2toFYL2cc9350M+vbAHIdGbneiFlfDHC/kLHr5dw6U4vOzbMbyZjvcd4DB3ixQmROmoQ2LdJERERERCoZNQ4JbapJExERERERcRGdSSsvY+DGDFyHeBqfzZtN7lPLTN9hp42EE1Mz9u+nxQJAfd7cnAJ4KCDxGGW3lCa2MGejpiiSU4mpqXHsVEzi/sZsIw8ATiE3LcuOIr4OLj622O9JVgRxPAA7rdPmvZ+zt435WcMczWKbQsDdWf8AdCYt1OlMmoiIiIiIiIvoTJqIiIiISCWjM2mhTWfSRERERETEFSZNmoQhQ4agSZMmsCwLycnJfm+Xn5+PadOmYeDAgUhOTkZ0dDSaNGmCYcOG4aeffvL7NwUFBRg/fjwaN26MyMhING3aFBMnTkRRkfs6dupMmgQfue7LjginxXLy82mxAMAUuLfeiIleQ0ZGresh15Ax6yKo4yjY2K3fCwtpsdgt+O2oKFosajt/AJ6aNajxmKNj6EjjcYLBFBHfM9nHlpvHZRBrUZ083ue9EyIt+EP1TNrDDz+MGjVqoH379sg8xvigrVu34uabb0bXrl1x4403ol69evjll1/wyiuv4IMPPsAnn3yCnj17lvqbK664AnPnzsUNN9yALl26YMWKFRg3bhw2bdqE1157jf5YToYWaSIiIiIi4gqbN29GkyZNAACtW7dGzlFm95522mlYu3Yt2rZtW+ryq6++Gu3atcP999+Pb775xnf5ggULMHfuXNxzzz2YMmUKAGDkyJGoVq0annvuOdx8881ISUkJzoMKgHt/dhIRERERkYAYY1XIP7aSBdrx1KxZs8wCDQDOOusstG7dGj/88EOpy99++20AwF133VXq8pL/fvPNN8u9rcGkM2kiIiIiIhKw5s2bw7b/d+4nIyPjlG2L4zjIyMhA7dq1S12elpaGpKQkNGjQoNTlDRo0QL169ZCWllaRm3lcWqSVl2Xx8sFdPFvHFPPyrS2b+ysLe+4PE3Omi5vrvthz0tio+y+5folZR+Y5/TRaLADw7t7LC2YcXiyA+n7JPraY8Zg1iwDg3UN8TcGtEaLPWyTW8xmQZ7i5GPMzmn3YM+vImDP+bGMBLi4JLuHAgoMg16QFOX4g/v73vyMjIwPjxo0rdfnOnTtx1lln+f2bpKQk7NixoyI274S5+5uWiIiIiIi42s8//4yEhIRTvRn46quvcM899+Ccc87Bww8/XOq6gwcPIvIoPzRFRUXhoMuacakmTUREREREQtrq1avRr18/1KtXD/Pnz0fUHzrvxsTEoOAoZ9zz8/MRQ85kOFk6k1ZexgAgpd2Q2+gy2XFxtFjOUbryBIzZZpn8GlgRvLRTQ279zkTfNmIqG8BNyaK2zgaoj5WankjGPBYA8uvgkPdf5vuIQ84XI6OmFBLHKgCAFcYbzwKHu23MfcQmvr8BgPG6eJ8jHqvMVHO14C99H26wZs0aXHjhhUhMTMSSJUuQlJRU5jb16tVDenq6379PT0/3+zenks6kiYiIiIhISFqzZg169+6N+Ph4LFmyBI0aNfJ7u44dOyI9PR3bt28vdfn27duxc+dOdOjQoSI294RpkSYiIiIiUsmEagv+8li7di0uvPBCxMXFYcmSJWjcuPFRbzts2DAAwAsvvFDq8pL/vvrqq4O1mQFRuqOIiIiIiLjC7NmzsW3bNgDA7t27UVhYiIkTJwIAGjVqhGuvvRYAsG3bNlx44YXYv38/7rzzTnz11Vf46quvSsW69NJLERsbCwDo168fLrnkEjz33HPIyspCly5dsGLFCsyYMQPXXHMNunbtWoGP8vgsY8jFIJVUdnY2EhMTkWoPRpjFyXu3wont2ol1AgAAm9h+2MX1H/TcfmIrbuO499Bk7rsAv37JySV2aHJxK3k25igPU8St6fFUr06L5c3MpMUCwB2nwm5Lzx7lQfxsYI+3cHMdL/Vz0MX17HTMGnSiYlOEpc4HyMrKckVHwz8q+c7a4YO7EBbL/Z7zR8W5Bfhm8AvU5yI1NRXLli3ze12PHj2wdOlSAMDSpUvRs2fPY8basmULkpOTff+dn5+PiRMn4s0330RGRgaSkpJw/fXXY8yYMQgPJ9a1EuhMmoiIiIiIuELJIux4UlNTUd5zTVFRUZg4caLvzJybaZEmIiIiIlLJVETN2KmuSavMtEgrL8fLO/3uEFM9yOkPdnTU8W90gphtbwFuigy79TAz3Yadium4uHU2HTvF1qXoqXHkFEUmb1Y2LRY7zY6ZkmWKXd7am5j+a4rJqcTM1Dh2mjMRPU2UnRLLxPxqw3xNXbx/SOWhRZqIiIiISCVjKmBOms6kBY87KzJFRERERESqKJ1JExERERGpZAyC31DYvf2KQ58WaeVlewCLkw9OrT0gH4VObi4vGLlejtqa3uHW4FjEOjJ2nYAVxmsta3m4J+Gd/HxqPCZmW3qAW7fo5loSer0c8XmzIqJpsQAADrFOq8jlX3mYnzXMUS8A7Ah3tc8+klPI+7ynjxogvw5Mls38/kAcH2EcwL1vv1JJaJEmIiIiIlLJOLBgUbuv+L8PCQ7VpImIiIiIiLiIFmkiIiIiIiIuonTHSsLV9R/EWijA3bOcTBEvSd2OIs9Jy8sjRnNv7Qebm/c39nEP5gxC4rEAkGdDEWvIAG5NJb0Gkr3/MuuX6PMMee9Lbq73pM6DA7eWj11fbIh1ZMz9zRgX7x9H0DDr0KYzaSIiIiIiIi6iM2kiIiIiIpWMYyxYQT7TFexh2VWZFmnlZEeEwbY4qQHMdAp+u3berkEdNUDGTi2yo6NosbzZ2bRYAKijEOgtoMmooxAKyelixBbmVgR3/6W2kiensjFTauyYGFosALCIryk7TZTeXt3w9hHmcQoAxkvcf12d7sj9UsxMUWQfW87Bg7RYzO81ljFqwS9Bp0WaiIiIiEglY0wFDLN2+WjHUKaaNBERERERERfRmTQRERERkUpG3R1DmxZp5eQUFMKxOOd2qa3pyTnqzBa/diR3N2Pmz7Nrq7w5udR4VNScBG4Lc09CAjUetZ6E2fod5FpUcv0Ss37UjuLVZwLc583JI7cJZz5vcXG0WABg8gu48YqIbcwLuNtGrTEmf6YyX1cnJ4cWi80h72/Umkrme7lxVJMmQadFmoiIiIhIJaMzaaFNNWkiIiIiIiIuojNpIiIiIiKVjOakhTYt0srLGACkmrQIXk2aHRtNiwVw6xiYNWQAYMfG0mKxa1PAnA1Fnm9ksfPxibwHDlDjUWsqibPvAFC3zRRxZ7gx51axj3sm5rwkANR6T3a9EfW4dzlXz+Rk7nPE9xAAgOF9blk29wu7cdw5g9AYFaRJ8CndUURERERExEV0Jk1EREREpJLRMOvQdlKLtPXr1+PXX3/Fnj17EB0djdNPPx1t2rRBArmddmVlCnmpGU6ui1u/s9k6AXyq2dWrU+M52dnUeKaQlwbIPrY8zOcuLJEXC4B3zx5eMPZYECJmWifAHeVBT08kp8YxRytQR2WAmxrHTtvz7t/PC0ZOhWdivgaHA3Ljsbh1u6RSKfcibfHixZgxYwY+//xz7PHzgW7bNtq1a4fLL78cN9xwA2rVqkXZUBEREREROTGHzqQFuwV/UMNXaSe8SPvggw/wyCOPYOPGjTDGICkpCQMHDkSdOnVQo0YN5OXlYe/evVi/fj2+/fZbfPPNN3j00UcxfPhwTJgwAbVr1w7m4xAREREREakUTmiR1r17d3zxxRdo3bo1Jk+ejCuuuAINGzY86u0LCwuxZMkSzJ49G2+99RbeffddzJ49GwMGDKBtuIiIiIiI+Kdh1qHthBZpBw8exMcff4y+ffueUNCIiAj06dMHffr0we7duzF58mRs3LjxpDbULazISFgWp3W+KeC1uWfXWIBYY8HOUTd5ebxgzJb5ALUOh12bwmzX7t27jxYLAKxw97ZEZ9d/MGtTmPVBAGDHxdFiOeyxCkTsOkMrPIIWiz1WwY6JocaDw6vFodcvMd/PPbzXFAD1fYT+2cB83ti1WsxxKrG8Y8E2hYB73+Kkkjihb0bffPNNwHdw2mmnYcqUKQH/vYiIiIiIlA9vsu+x70OCQ23yREREREREXCSgRdqECRPw7LPPovAYba6XLVuGCRMmBLxhIiIiIiISmJKatGD/k+AIqBDkscceg2VZmDt3Lj766CPUrFmzzG2WLl2KCRMmYPz48Se9kW5iCgpgLE7OtRVGrMNh130R59cw6zUAwBTz5sux2cTaQPYMITczRdzHyjy26HUzRE5+PjWexdznyHPSrDBOLTDAfw+hxiM/b87Bg9R4bkY97sn7iB0dTYtVlV5TZo2bk5PDi2Xc+z1EKo+A0x0bN26ML7/8El26dMGmTZuY2yQiIiIiIifDVNA/CYqAF2nDhw/HzJkzsW3bNnTp0gVffvklc7tERERERESqpJPKDbjuuuvQoEEDXHbZZejduzdmzZqFK6+8krVt7mRZtHQUakohM3USgB0fT4tl8nmjBgBu2gg7zc4hjlWgtpEHuGlU7DbLZFYkse14ITk1jhmMPUKCidg6G+C2pmenYDOPB0McfwKAPkKC2v6d/D5Cfe7I77/mGDX85UZOiWU+VvZ4ACrie5JlAIRCxmNF1IypJi1oTnqPveCCC/DVV1+hdu3auPrqq/HUU08xtktERERERKRKopx+Oeuss7Bq1SpccsklGDduHDZv3oy6desyQouIiIiIiFQptBy52rVrY/ny5Rg2bBhmzZqFaGJKmoiIiIiInDhj+JUT/u5DgoNayBQdHY0PP/wQd999N1566SVYAeRNb9iwARMmTMCaNWuwc+dOFBUVoWHDhujbty/uv//+MmfoNmzYgAcffBDLli1DYWEh2rdvj8cffxy9evViPazSDLGVDTGvnF3HYHt4udsOsZYEYNcduLe2yo4h1lUB5Jo07rsyu6U0Mx69xoJZR0auN6LXQzERHyuzvg0A99gi1/J54mKp8bwHDlDjUTHfl8h1X26ul2PWtFsR3HpPJy+PF8zwatCNWvBLBQjoyHSco3+xtSwLL7zwAq6++mocDOCL0o4dO5CRkYFLL70U9evXR1hYGL7//nv84x//wLvvvotvv/0Wp59+OgBg8+bNSElJQVhYGB544AEkJiZi2rRp6NOnDxYuXIjevXsH8vBEREREREJaRQyb1jDr4OG2BDxCx44dA/q7Cy64ABdccEGZy7t3746hQ4fitddewwMPPAAAeOihh5CZmYnVq1ejbdu2AA6NBmjVqhVGjRqF9evXB3Q2T0RERERE5FTh5lUEUaNGjQAA+/fvBwDk5uZi3rx5SE1N9S3QACAuLg4jR47Exo0bkZaWdio2VURERETk1DJWxfyToDjhM2lNmjQpd3DLsrB58+Zy/x0A5OfnIycnB/n5+fjxxx/x4IMPAgD69u0LAFi3bh0KCgrQpUuXMn/buXNnAEBaWho6deoU0P3/sfbtWCmegbLCwmmx2DUW3swsXjDy2UxmjZAp4tbgWJGRtFjUuTrgzuVzO+o+wn7eiMcDu17OMA8Hdr0nsZaPPVeSyU5MoMbz7ttPjefmLgHM+Xfsz1TqthVz66EsYqM3h12zqGwoqcJO+JNq69at5Q5+MqmG06dPx+jRo33/nZycjDfffBPdunUDAOzcuRMAkJSUVOZvSy5LT08P+P5FREREREKVujuGthNepG3ZsqXMZc8//zxefvll/PLLL9SNAoBBgwahRYsWyMnJwdq1azFv3jzs2bPHd31JU5JIP2cuoqKiSt0mEBkZGaX+Ozs7G4mJiQHHExEREREROREnvEgrqQk7UvXq1Y963cmqX78+6tevD+DQgu2yyy5Dx44dcfDgQTz00EOIOdyevKCgoMzf5ufnA4DvNkxWeAQsi5OmaCfGU+IAgHfvPlosOvLPLPT22UTGz/4YMHJ7dWaKFzsFkJkKBJD3EXa6DbPFuk3eNmq6o3vbhNNHDRAfKz09kdzSn5kT6+bjnj0ChdpKno15PCg90V2IU6OOeR8SFCHTOOTss89Gu3bt8Le//Q0AUK9ePQD+UxpLLvOXCikiIiIiIuJm7q2e9iMvLw/79h06Y9SmTRtERkZixYoVZW63cuVKAECHDh0qdPtERERERNxAc9JCm+vOpO3atcvv5UuWLMEPP/zg69wYFxeH/v37Y+nSpfjuu+98t8vJycH06dPRvHnzgDs7ioiIiIiInCquO5N22223ISMjA7169UKjRo2Qn5+P1atX491330V8fDymTJniu+2kSZOwaNEiXHTRRbj77ruRkJCAadOmIT09HfPnzw/KIGvj9cKQcvydLGKrWhe312G2pQfIreld/LzZseSaCGJrZDe3MAe49SRuHoVgCsi1VUSu3kfY9XIubq/uZvTHSvzMd06i8Zg/1JpKh/y5xfyuxP5MpdZmM8eCWKrFCqJJkyZhzZo1WL16NbZs2YJGjRods8v8qlWr8Mgjj2DVqlWwLAspKSmYPHlyqTnKJXbu3IkxY8Zg4cKFyMnJQatWrfDggw9iyJAhwXtAAXLdp+iwYcPwxhtvYPbs2di9ezcsy0KjRo1wyy234P7770fDhg19t23WrBm+/PJLjBkzBpMnT0ZhYSHat2+PTz75BL179z6Fj0JERERE5BQLwcXkww8/jBo1aqB9+/bIzMw85m1XrlyJ1NRUJCUlYcKECQCAqVOnolu3bvjqq6/Qpk0b32337duHrl274vfff8c999yD+vXr4+2338bQoUMxc+ZMXH/99cF8WOVmGXNiP3t07969zGW//vortm/fjvPPP99/cMvCsmXLTm4LXaKkBX+qPRhhpO6O3KHM7u14qDNpgbHjed0/AZefSSN3oLPCib9au/hMmpu5+Uyam7uT8s8ukasaiEPFXd0J0M3dScln0uzoKFosJzeXFgsA90ya4Z1JKzZFWGo+QlZWFhISuAPoGUq+szb8x3jq6+uPk5ePX2+eQH0ufvnlFzRp0gQA0Lp1a+Tk5Bz1TFqnTp2wfv16/PTTT6XmJLds2RKdO3fGp59+6rvtAw88gGeeeQbz5s1D//79AQBerxddunTB5s2bsW3bNsTFxVEeA8MJv2t88cUX5b4uGOmGIiIiIiJybKHaOKRkgXY8mzZtQlpaGm644YZSHd2TkpIwZMgQzJo1C7t27UKdOnUAAG+//TaaNm3qW6ABgMfjwejRozF8+HAsWLAAQ4cO5T6Yk3BSw6yrIsu2aItPN5/9ov7C6eKZROxZZNRfJIlnvgDAjo2lxaL/WkpWZep62PtvBCdLAACcw/MqWZhnlk0ut96Iur+xz+B4uF+giCcjYJOzLBzinEp6BkgR8ewt82wmyO/n7B/nyY+VxsVZOKdK8+bNYdv/O3OfkZER9PtMS0sDAHTp0qXMdZ07d8bMmTOxevVq9OvXDxkZGUhPT8fVV1/t97Yl8UJykRaMgdUiIiIiIhIElXyY9c6dOwH4n4t8ZOpjeW/rFu4tGhAREREREdf7+eefK7w+7+DhLqyRfs58R0VFlbpNeW7rFie0SDsynzNQv/32G2rXrn1SMSodZloAu/ECsakJNT8GcHWxuavTRojpGcxGCQA/9dcK46XtwSani1Eb33CPLWa6GDsV02GmKJJTqKhNIcjp4fQGLsyGV17yZwMRu2EQtVEYXJzmzHwPAaifg1YE73PLMjZAfqjBYR3+F+z7ODViDo/bKfCz3+UfTrkvuU15busWJ/TNvkmTJnjwwQfx+++/l/sO5s+fj44dO+LVV18t99+KiIiIiIj8Ub169QD4T1MsuawklbE8t3WLE1qk3XPPPZg6dSrq16+P/v37Y/bs2di8ebPf2+bm5mLZsmV45JFH0KhRIwwYMACWZWHQoEHM7RYRERERkaMxFfTvFOnYsSMAYMWKFWWuW7lyJSzLwrnnngsAqFu3LpKSkrBy5Uq/twWADh06BHFry++EFmkTJ07E+vXrMWLECCxZsgTXXXcdzjjjDFSvXh0tWrRAly5d0K5dOzRq1AjVqlVDr169MGnSJFSvXh1vvPEGvv76a5x99tnBfiwiIiIiIlIFNGvWDB06dMCcOXN8jUGAQ01C5syZg169epUq1xo2bBg2b96Mf//7377LvF4vXn75ZVSrVg19+/at0O0/nhNOVm/QoAGmTZuGKVOm4O2338bnn3+OL7/8Ehs3bvTdJiIiAm3btkVqaioGDx7styVmqDNeLwyr/ovZwpVdvkRsKe1hD2Um5rxT2yIDrh28CYBaSwJyvQa7/o5Z48auv6NiDyom7nN2FLm9er6L26uz63CInEIXj6Mgv8dR675cXBtoyOMtnHziYyXXojLrR5l1hsa4+Lg6Uoh2d5w9eza2bdsGANi9ezcKCwsxceJEAIe6zV977bW+27744ovo2bMnunXrhtGjRwMAXn75ZTiOgylTppSKO2bMGMyZMwdXXXUV7rnnHiQlJeGdd95BWloapk+fjnjy99WTZRlzciuFoqIi7N27F9HR0UhMTGRtl+uUTG9PtQYhzCIV2bp43hfzw7NKLdKYyF9g7Lg4WiyTl0eLBfC/ELm6SQpzppabF2nR0bRYAHmRFs5tpuHmRRr9s4GpCi3SmDPh2DMIqVy8SGP+GFhsirDUfISsrKwK72h4Ikq+szb422PU+a3+OHn52H77Y9TnIjU1FcuWLfN7XY8ePbB06dJSl61YsQJjx47FqlWrYFkWUlJSMGnSJLRv377M36enp2PMmDFYuHAhcnJycNZZZ+HBBx/EFVdcQdl2ppP+pAoPDz/pzo8iIiIiIkJkrEP/gn0fZH9chB1Ply5dsGjRohO6bVJSEmbPnh3AVlU8zUkrJysiAhbpTBq7xS8Ts4W598ABWiw2+q/9zDNM5LMkDvF1oLf1JrOjiL8c2tzXgXkmzWKPByjmnYF02PNmiL/Q0898MdN1mRkWCMI+4hC3j/xYmZjt2gHgJJOWQgc7TZ+J+RpUlddTTilyroyIiIiIiIicDHf/HC4iIiIiIuVmTPBP+umkYvDoTJqIiIiIiIiL6ExaOVkeG5ZFqo0g1n2xO1FRO9CxEX+2odaQAfxue0zMuhlmO38AoO+/vK6dzFhs1PogwNWdAD2JvA5q7HpgJ4/Ybc+QjwUXdym04mvQYgGAd/duXjD2cc98/yWPLGF2/mXWPrN5iF0YjSkEsmnhgidEW/DLIS7+RikiIiIiIlL1BLRIO+DiX0pERERERKq8khb8wf5XhXk8Hlx99dVBiR3QIq1evXq4+eabkZaWxt4eERERERER14uPj0fDhg2DEjugmrTTTz8d06dPx4wZM9C2bVvccsstuOqqqxBHzGt2K+dgHhzLfTUqFrFOAABMEe8xWuz6JSJTxJ5VR5wRQ65vs2NiaLFMIbdmkb2PUGu1yPUf1NqqfPK8L+LrwK7l82Zm8oKR25HZ8fG0WE5ODi0WAPr7iPHy3uOcPXtosQBwayrZ875cXK/s5BJnGrLrWh1eTaU3J5cXy7i4bv8Iljn0L9j3UZW1a9cOP/74Y1BiB/SusXnzZvznP//B4MGD8cMPP+C2225DvXr1cMstt+Cbb75hb6OIiIiIiIirPPjgg1iwYAE+++wzeuyAuzteeOGFuPDCC7F7927MnDkT06dPx7Rp0zB9+nS0bdsWt956K6666irExsYyt1dERERERI5H3R2D7vfff8fFF1+MP/3pTxg0aBA6duyIOnXqwPKThTN8+PByxbaM4eV9LFq0CNOmTcNHH32EoqIixMbG4qqrrsLtt9+Os88+m3U3p0R2djYSExORag9GmMVrnU/j4tQMO5aXZgcAKOKlGTj5xNbZIKcUElNOAcCTVIcWy5u+ixYLAKxw7jQQ5yAvfYf5mgLc9u/sFvx2BHEsCDndkdpKnp16RkzJYqZOAqCPt6CPLXErckqsFcZ7j7OrJdJiAYB37z5aLIs4WggIRkkCR7EpwlLMRVZWFhKIrf1ZSr6zNnhhAuzoqKDel5OXj+13jXftcxFstm3Dsiz8cTl15CLNGAPLsuAt5/sx9ZtR06ZN0aRJEyQkJGDPnj3Izc3FP/7xD0ybNg2XX345Xn31VVSrVo15lyIiIiIi8kcV0X2xind3nDVrVtBin/Qizev1Yu7cuXj11VexaNEiOI6Dpk2b4sEHH8R1112HtWvX4plnnsGcOXPg8Xjw9ttvM7ZbRERERETklBkxYkTQYge8SNu6dSumTZuGWbNm4bfffoNt2+jfvz9uu+02XHTRRb7b9e7dG71798bgwYPxySefUDZaRERERESOQTVpIS2gRVqfPn18Z83q1KmDRx55BDfffDPq169/1L/p2LEj5s6dG/CGuoUdFQHbijjVm1GGRc45toh1ON5a3Pz5gqd5LaoH1vuOFgsAusV8TYv16LaBtFgA4P0zr4mPx3s6LRYAFKdnUOMx2+Y77Db3ROxaPmZ7dXZNGnPMCLM+CODWQLJb8LNrhKjIdV/U9u8uzuBi1pCxWcS6VoBck0Ydp2JpcSKlzJ07F2+//TbWr1+P3NxcbNq0CQDw008/4d///jeuvvpqJCUllStmQJ9Un332GXr27InbbrsNgwYNQtgJfOD1798f9erVC+TuREREREREXMUYg2uuuQbvvvsuACA6Ohp5RzRYqlGjBh555BF4vV489NBD5YodUIurn376CYsWLcLll19+Qgs0AGjdunVQ8zZFREREROQwU0H/qrCXXnoJ77zzDkaOHIl9+/bhvvvuK3V97dq10bVrV8yfP7/csQNapJ155pmB/JmIiIiIiEilMHPmTLRv3x6vvvoqEhMT/c5Ha9asGbZu3Vru2AGlO86ZMwevvPIKZs+e7Te/Mj09HcOHD8eoUaMwePDgQO7CtZy8fDgWae4MMR/f9hBz8QFsv7EhLVZuI+6cnhZ38nLUF/5UjRYLABZa59FihTXi5vb/PKoaL5jNrTNs/sgeajzYxDlYDncGoVPIm/PHnLnmdqaAVxvo6ueNXKdFnS8HcLePWiME6rw6an0buK+DRf68BzGek8edPcrErM+0DADeW3nwqHFI0P3888+47bbbjnmbWrVqYc+e8n/PCeibzPTp07F///6jFsAlJSUhMzMT06dPDyS8iIiIiIiIq0VERCDnOA2ftm/fHtCg74AWad9//z06dux4zNt07NgR69atCyS8iIiIiIicjJJh1sH+V4Wdc845+Pzzz1FU5P/U6oEDB/DZZ5+hQ4cO5Y4dULrjvn37cPrpx27BHeipPdez7EP/COxI3qn3HW80oMUCgDrP5R3/Rico7K8babEA7pl1ZltvtuJt26nxzvwrL9bBFrV5wQBkf8Tt/FrtFl4eipc8HsCyeR9oVhh3/3XyialK7FQ2Ina6GDOVzVONm0rszea29GdijwegpnYyUycB6vHAHm8B4vNmR0fTYgGgpmIaF49TkdA1cuRIjBgxAtdddx1effXVUtft2bMH119/Pfbs2YNbbrml3LEDWqTVqlXL1///aH7++WdUq1YtkPAiIiIiInISLHO4fi7I91GVXXvttfj8888xe/ZsvP/++761z1lnnYXNmzejqKgII0eOxMCB5Z99G9ApofPPPx/z5s3Dxo3+z5Bs2LAB8+bNQ7du3QIJLyIiIiIi4nqvv/46pk2bhhYtWmD37t0wxmD9+vVo3rw5Xn31VfzjH/8IKG5Ai7T77rsPRUVF6Nq1K6ZOnYqNGzciNzcXGzduxMsvv4yuXbuiuLi4zKwAERERERGpAJqTVmFuvPFGfPvtt8jJycGOHTtw4MAB/PDDD7jpppsCjhlQumPHjh3xt7/9DaNGjcKf//znMtd7PB688sorOO88Xjtyt7DPagrbw6kD6Tyb11hlRafNtFgA4EmqS4vlJbbOBgDjEN8R2HUHxLbNdlwcLRYAOL/zakSjyW2Ww5703yk2UD/dG0GLdcY93Jo0at0MuxU3cf+1wgP6eDl6POJjtWJjabEAwNm/nxbLm5lFi+V27PEAzH3OFHC3jVmr5eYREvRtI/UAAAArgtmC34RGC36pcNHR0YgmHe8Bv6PddNNN6Nq1K/72t79h1apVyMzMRLVq1dC5c2fcdtttaNmyJWUDRURERERE3KZz58644IIL0LNnT3Tt2hVRUVG02Cf1s1PLli3x8ssvs7ZFREREREQkJKxbtw5ff/01Jk+ejIiICJx33nm44IIL0KtXL3Tu3Bmek8gC4eajiIiIiIiIVAGZmZlYsWIFPv/8cyxatAhfffUVli9fjsceewwxMTHo2rUrevXqhV69euHcc88tV+yTWqR5vV5s2LAB+/fvh/coueXdu3c/mbtwnczHiuGJ5dRGfNWWOeOImwduwoizSch1B3ZMDC2Wk5tLiwVwZ2A5uQdpsQDAJubjO3v30WIBQNi3vLl8AFCraWteMGJNBADA8GYcGXK9J3WWUxF3lhP1sR7kHlvMWr6qhF236GZOHvE9zlShTg3U+XK8IjLHhEZBmoUKaMEf3PCuFxERgR49eqBHjx544oknkJOTg2XLlmHx4sVYvHgxPv30U3z66aewLAvF5ZxxGPA75BNPPIHnn38eWVnHLnI+2uJNRERERESksoiLi0O7du2wf/9+7Nu3D+np6dizJ7DGbQEt0p5++mk8+uijSExMxLXXXosGDRogLKzq/CImIiIiIuJqxjr0L9j3UcXt27cPS5Ys8Z0927hxI4wxqFGjBnr06IFevXrhggsuKHfcgFZW06ZNQ1JSEtasWYPTTjstkBAhq/pN+xBmcdp7O8SW0qacp1CPx9m2gxeMnJpBTVEkplIA3PEAzNRJADDE14GdwmpycqjxTvtsGy1W85UOLRYAbLyoBi2Wl5x2ysTef2FXkR8CyY+TfaxS38+Z41RAfqzkFFbm8UAdQ3MoIDEWeduY6ebMxylyWLt27fD999/DGIPY2Fh069YNI0eORK9evdC2bVtYJ/E9M6BPg+3bt+Omm26qcgs0EREREZGQUBHDpqtQiaQ/3333HSzLwoUXXogxY8agW7duJ9XR8UgB/URRu3btche/iYiIiIiIVBZ33303zj77bHz22We44IILUL16dfTr1w/PP/88vvvuu5OKHdCZtKFDh+LDDz9EQUEBIiOZHQpFREREROSk6Uxa0E2ZMgXAobq0kpq0xYsXY+HChbAsCzVr1kTPnj1xwQUX4Oabby5XbMsEUKhy8OBB9OnTB9WqVcNLL72Exo0blzdEyMnOzkZiYiJ6hl2GMIvTypyaP0/OA7fCOXV3wcBso0vHzJ93XNwZlVzLx2aF8cYN2NFRtFgA0HZZJi3W6nbc8QB2FO+xOvn5tFh05P3XEx9Pi+U9cIAWy/XY4y2YyO+/FrG5mh0XS4sFAN6sbF4wF48H8FSvTotVbAqxaP/ryMrKQkJCAi0uS8l31kZPPUl9X/fHyc/Htocfce1zcars3LkT//rXvzB58mTs3r274lrwt27dGkVFRdi5cycWLFiAxMREVKtWrcztLMvC5s2bA7kLEREREREJkGUqYE6ae9flFS43NxfLly/HokWLsGjRInz//fdwnEMNa+ID+DEvoEWa4zgICwtDw4YNfZf5OyHH7CYnIiIiIiLiFiWDqxctWoS0tDQUFxfDGIPo6Gj07NkTvXr1Qq9evdCxY8dyxw5okbZ169ZA/kxERERERCqCatKCrmfPngCA8PBwdOzY0TcTrUuXLoiIOLnSoSoyeMadmHUz7DotZjw7OpoWCwBMUSEvGLk2hTobqqrMhQJ/zh99NhTR6lvOocUquojbuCnyix+p8ZgsYpMqU0SeK1lQQIvlOZ072sb72+/UeMzaKvZx72rEuahODnFWKBu7XpmZkXUab0YlvAXAfl44CV333XcfevXqhW7duiE2llsvetLvtj/99BPWr1+PnJwcXHvttYxtEhERERGRk6EzaUH39NNPBy12wK2V1qxZg/bt26N169a4/PLLcd111/muW7ZsGWJiYjBv3jzGNoqIiIiIiLhWRkYGFi5ciHfeeQcLFixARkbGScUL6Eza+vXrkZqaCgC46667sGHDBixcuNB3fffu3VGzZk289957GDBgwEltoNuY4mIY0ul8OyaGEicYmOliTl4eLRYdubmNm8cqULm8Bb8dwUsldg4epMUCuJ2wnnv1r7xgAB5JvZwWy9nGfd4MMaXQzfuvd/debkDyY3VzKjFzdAw1rR7c/dcmp1QZ4nsccxwFwN3f9jzPG/ngPWgDvLdLCXG//vorbrvtNnzyySdlruvTpw/+9re/ITk5udxxA1qkPfroo3AcB6tXr8aZZ56Jxx9/vNQizbIsdOnSBWlpaYGEFxERERGRk6AW/MG3a9cunH/++UhPT0dycjK6d++OunXrIiMjA//973/xySefoFu3bkhLS0OdOnXKFTugRdrSpUsxePBgnHnmmUe9TcOGDfGf//wnkPAiIiIiIiKuNnHiRKSnp+Mvf/kL7rnnHniOaBLk9Xrx/PPP44EHHsDEiRMxderUcsUO6NxvVlYW6tate8zbFBYWlnuytoiIiIiIEBirYv5VYfPnz0fv3r1x//33l1qgAYDH48F9992HCy+8EB9//HG5Ywd0Jq1u3br46aefjnmbdevWBZR/6Xq2B7A4rXSZtVrs+jaT694298zHagrJdQfEHyaYra4PBeTl47PrNWx2HQPx2DION5fD+nYDLdbDfa+hxQKAPam1aLFqvHVyBdN/xDy2PIkJtFgA4M3OocZzNWKtLPs9jlm/xP5MZX7em0LuyB3mmBz2Z6rVqD4tVq37aKFQ7N7STKlgGRkZuOqqq455mw4dOmDZsmXljh3Qt7Y+ffpg4cKF+Prrr/1e/+mnn2L58uXo169fIOFFRERERORkmAr6R5aTk4OnnnoKbdq0QXx8PGrVqoWUlBS89tprMH/4oWjVqlXo3bs34uPjkZCQgIsvvhjffvstf6OOIjExEb/++usxb7N9+3YkJJT/x8GAFmmPPPII4uPj0atXLzz88MP48cdDA1DnzJmDu+++G/3798dpp52Ge++9N5DwIiIiIiJSxTiOgz/96U8YN24cOnbsiClTpmDs2LHwer24/vrrMWbMGN9tV65ciR49emDLli2YMGECHn/8cfz888/o1q0bvv/++wrZ3vPPPx/vvfceVq1a5ff6r7/+GnPmzEHXrl3LHdsyf1ySnqBvvvkGQ4cOxdatW/8XzLJgjEFycjLef/99tGvXLpDQrpSdnY3ExESk2oMRZpHaexuHEwdBSM3IzeUFY6c7ujg1Q+mOgalS6Y4eTro0ANjNGtFiAcCeTsx0R253X2q6Y7VEWizA5emOxM+ZQ/FcnO5IPFbtqEhaLICb7miF8UaMAIAVTnwdHO7+xkx3hM37LlLsLcCiDc8hKysroDMkwVbynbXJo0/BjooK6n05+fn45fGHac/FihUrkJKSgrvuugvPP/+87/LCwkK0aNEC+/btQ2ZmJgCgU6dOWL9+PX766SckJSUBANLT09GyZUt07twZn3766Ulvz/GsWbMGKSkpcBwHw4YNQ2pqKurUqYNdu3Zh6dKleOedd2DbNr744gt06NChXLEDPjI7dOiAjRs3Yv78+VixYgX27duHxMREnHfeeRg4cCDCw7lvIm5hR0fCtjizWJjzl5y8fFosANSD2snnbpuTz5s3w/zCfCgg70OAP4/IxUn07MdKXJDCcOs/TDHvS4z3p59psQDA064mL1ZD4pcrACYrmxbLu28/LVZVw5zRRZ19B8Aifglnfs7QsRfexIWVFcGbVQcAP99wGi1Ws0fX0mIZw/2hUv4nO/vQe329evVKXR4REYFatWqh4PD7xqZNm5CWloYbbrjBt0ADgKSkJAwZMgSzZs3Crl27yt32vrzat2+P9957DyNGjMDs2bPx5ptv+q4zxqBGjRqYOXNmuRdowEks0gAgLCwMAwcOxMCBA08mjIiIiIiIMAWpZqzMfRB16tQJ1apVw9NPP43k5GScd955OHjwIF5//XWsXr0af//73wHAN4u5S5cuZWJ07twZM2fOxOrVqyukP8Yll1yCX3/9FR999BHWrl2LrKwsJCYmol27dhg0aBBiA/xxi5xPJSIiIiIiVUnz5s1h2//LYsnICKzDb/Xq1TFv3jyMHDkSQ4cO9V0eHx+P999/H4MGDQIA7Ny5EwBKnUUrcWTqYzD9+uuvSEtLg23b6NixI66++mpcffXVtPgBLdImTJhwQrezLAvjxo0L5C5cy8k9CMcipT8xa7XI6Q8OucWvW7FTCpm1AvRtI6Z2mmLu/sFM/QVAPbboKbHEeBa53rP6xz/SYvVduYUWCwA+uq03LZa9nJzuyKzTiuTWQrFTCpnHKvvYYtakUeu0QK5/Jj9vDnEfCavFS5kGgMZziWUhxO81jgmROcAGsELsTBoAxMXFoXXr1hgwYABSUlKwb98+/PWvf8VVV12FuXPn4sILL8TBw+9FkX7eM6MOl+wcZH+3OMJ9992HF154wddt0rZt3HvvvZg8eTLtPgJ6F3rssceOel3JlwZjTKVcpImIiIiIyP/8/PPPlMYh33//PVJSUvD888/j1ltv9V0+bNgwtG7dGjfddBM2b96MmMMN8wr8/MiQf7gXQgy5qV6Jd955B8899xwsy0KLFi1gjMGGDRvwzDPP4Nxzz8WQIUMo9xPQIm3JkiV+L8/MzERaWhpeeukl9OvXr9STKyIiIiIiFSQEa9Kef/555Ofnl1noxMTEoF+/fpg6dSq2bt3qayziL6Wx5DJ/qZAM06dPR1hYGBYsWIDevQ9leXz66afo168fpk+ffmoXaT169DjqdQMHDsQVV1yBTp064corrwx4w0REREREpOooWWB5/ZR8FB8exVJcXIyOHTsCONSyf+TIkaVut3LlSliWhXPPPTco27hu3Tr079/ft0ADgIsuugj9+/fHF198QbufoDQOadOmDQYOHIinnnqq8nV+tCxevQuxTTiz9fDhgLRQwf4R52Swnzfm/DD6DCHmbDNyLRR7bpWTw5zzR2znD26LavacP+bz9nGHBrRYAOA5k/hYyXOm7Fje7EYvcdQA4O4aN+bsOwCwwnnHFrve0zA/U8l1hp7TeG3ut17Lnd1Yf/IKXjBi7SiMi0fahLizzjoLn376KV577TU88MADvsszMzMxd+5cVK9eHc2aNYPH40GHDh0wZ84cPPHEE74zazt37sScOXPQq1evoLXf379/P1q0aFHm8pYtW+Lf//437X6C1t2xYcOG1A0VEREREZETFILpjnfddRfeeOMNjBkzBt9//z3OP/987Nu3D9OmTUNGRgb++te/wnO4ec6LL76Inj17olu3bhg9ejQA4OWXX4bjOJgyZQp3w47gOI7fhiURERFwiHMHg7ZIW7VqFaKjeb8uioiIiIhI5dWoUSN8/fXXmDBhAhYtWoR3330X0dHRaNu2LaZMmYLBgwf7bpuSkoKlS5di7NixGDt2LCzLQkpKCubMmYNzzjknqNvJPtvuT0CLtF9//dXv5cXFxdi+fTumTZuGL774otR8AxERERERqRhWBbTgD0b8pk2b4vXXXz+h23bp0gWLFi3ib8RxTJkyBdOmTSt1WXb2oXT1hg0blrm9ZVnYtm1bue4joEVacnLyMVeQxhg0b94czz77bCDh3c0Qzx0Tc5rtBG5ND7Mugj4Lh1jHQB4vR62JYM9Jo2Lm9oNfh0OdW0V8TQHAOXCAF8wmz3AjHhDs/Tcjlfcel7Q9nhYLALz7MmmxPNWq0WIBgDczkxrPjo2lxXJyibWjAPkNnVyLSpy7ZgrInw3E2uxGH+2mxQIAL7UmmLl/WO4uuJegy87O9i3K/mjHjh2U+wjoXWP48OF+F2m2baN69ero1KkTBg4c6DdfU0REREREJBQx686OJaBF2muvvUbeDBEREREREQGC2Dik0rI9gEVKMXJ4KQv0ts3EFtWmuIgWCwC3/Ts5bY+abkPcPwBQU+PsCG4Lc4fcUpq5j9jk8QAgjkLwZmbRYrGxxwPU/2A7LVanRRm0WACwqgevhTn7vdyTmECN5+TmUeMxUVv6k0dvUNN/yWnOP9/blBar+ZTNtFgAuJ+DFdDowXVCsLuj/A/3XUhEREREREROSkBn0po0aRLQnVmWhc2byb+yiIiIiIhIKaHa3VEOCWiR5jgOioqKkJFxKGXE4/GgVq1a2LNnD7yHT+nXrVsXERGlu6IZdmqZiIiIiIhIJRPQIm3dunXo3bs3GjVqhEmTJqFr167weDzwer3473//i4ceegiO4+Dzzz9HfDy31fGpZtkWbYAds3yJWUMGAHZCHC2Wd99+Wiy349ZEkPPnibn9TgG3s5FNHnzvHDzIi0Wu+2LWaLLHA1DrZsg1lWY/73VYmVKdFgsA1k85kxar5bgttFgA4N3NbYnu6roear0y9z2OWRuY06M5LRYANP6I935p2ONUiPV3FnHUgGUcgPhxH1Q6PxKyAqpJe+SRR5CZmYmlS5eiR48e8Byeg+XxeJCamoolS5Zg3759eOSRR6gbKyIiIiIiUtkFtEj78MMPMXDgwDLpjCWioqIwcOBAfPDBBye1cSIiIiIiIlVNQOmOe/fuRVHRsVN2ioqKsHfv3oA2ys2M1wvDas1LPI1viG29AW6KouXhtgtmpmRZYdwpFHZMDC0Wu4U5vc09kZNP3jZmiky4eyeVsI976piGqChaLICbwkpNSwYQt5m3j2T15LVDB4DET7jHFvN9hP3ZwNxHPA2SaLEAwPmNl3Za7e5fabEAoLg/MT3cSx7yS0ybthN5ac62KQRCoZJDLfhDWkCrjaZNm+K9995DVpb/GoH9+/fjvffeC7gLpIiIiIiISFUV0CLt1ltvxc6dO9GpUye88cYb2Lp1K/Ly8rB161a8/vrrOO+887Br1y6MGjWKvb0iIiIiInIcJS34g/1PgiOgHI077rgDP//8M15++WVcf/31Za43xmD06NG4/fbbT3oDRUREREREqpKAE+lffPFFXHnllZg5cybWrl2LrKwsJCYmon379rjuuuuQkpLC3E7XsKOjYFucttfM/Hl6/Qez7oBc98WsJ2HWkAGA98ABXjBW7WNJuKM0+gmEYde3sbt6M8cNEI9TANy6r9hYWiwAALHe08nPp8UCQH3e2Bq+vZUWa+egZFosANj9D268xsO+p8WyySN6mO/nuS1Op8UCgKVfzqXF6tuqJy0WADh5vGOVOWIEAPW4d4ifz44hP85gUU1aSDupb89dunRBly5dWNsiIiIiIiJS5bm3bZmIiIiIiASkImrGVJMWPAHnU3m9Xrz44os477zzkJiYiLAjUtq+/fZb3H777di4cSNlI0VERERERKqKgM6k5efn4+KLL8Z///tf1KxZE/Hx8cjJyfFd37hxY8yaNQs1a9bEE088QdtYN3AO5sGxSDVRFq8Qx5BnkzDrl9xcm0KvN2LWkRHrqgDAFBL3EXZ9EPmxMo8tGO7PhJ6EOFosb6b/MSiBYtePUhni/svcPwAU78ygxar7L3Kty394+xsA3LtpHS3WIxsupcUCgL+2fJsW688b6tBiAUC/9n1osbyZv9NiAYAdx9tHrCJuLbVTyDsemPXsxnBnLQaNatJCWkBH01/+8hcsX74cTzzxBHbt2oWRI0eWuj4xMRE9evTAf/7zH8pGioiIiIiIVBUBLdLeeecddO/eHQ8//DBs24bl51fJxo0bY/v27Se9gSIiIiIiUk6mgv5JUASU27J161YMGDDgmLdJTEzE/v37A9ooV7M9gEVK9SKm7xhi62wAsAy7JzqPHRF+qjfhqAwxtdOTkECLBZDHA7DTE8nsyEhaLHa6LjNF0c3jLcKSG9JiAUDx1l95wVycruvdu48WCwA85GN1SofutFg1uF3u8fCGTrRY8bG/0WIBQDFz5A4xPRHgtqZ387ElEmoCOpMWGxuLvXv3HvM2W7duRY0aNcode+PGjRg/fjw6d+6M0047DfHx8Wjbti2efPJJ5Obmlrn9hg0bMGjQIFSvXh2xsbHo1q0bFi9eXO77FRERERGpLEq6Owb7nwRHQIu0Dh06YMGCBX4XTQDw+++/Y8GCBQENtJ45cyaef/55NG3aFOPHj8czzzyDM888E2PHjkVKSgry8vJ8t928eTNSUlKwYsUKPPDAA3jmmWeQk5ODPn364PPPPw/koYmIiIiIiJxSAeXK3Hnnnejfvz/69++Pv//976Wu++6773DzzTcjNzcXo0ePLnfsyy+/HA899BASExN9l916661o3rw5nnzyScyYMQN33HEHAOChhx5CZmYmVq9ejbZt2wIAhg8fjlatWmHUqFFYv36933o5ERERERERtwpokdavXz+MHTsWEydORMuWLRFxuF17XFwc8vLyYIzBhAkT0KNHj3LH7tChg9/Lr7jiCjz55JP44YcfAAC5ubmYN28eUlNTfQu0km0YOXIkxo8fj7S0NHTqxMtRB3C4joxUS0Zs7W1H82pwAMDJL6DFotdWZWdT41ERfxSg1pCxufzHD2ZtFR2zZoM58oGMWkMG7vuIN8d/FkjAXHw8ONk5x79ROZiiQlosu4D3OQMAVjhvdAwbdaxNDvc1ZbI83Jo0o5q0k6MW/CEt4KrzCRMmoHv37pg6dSpWrlyJffv2ITo6Gqmpqfjzn/+MCy+8kLmd2LFjBwCgdu3aAIB169ahoKAAXbp0KXPbzp07A8BJLdLq1q1b6r8dhzuHTERERERExJ+AFmm//vorIiIi0Lt3b/Tu3Zu9TWV4vV488cQTCAsLw1VXXQUA2LlzJwAgKSmpzO1LLktPTw/6tomIiIiIuI7OpIW0gBZpjRs3xogRIzBz5kz29vh11113YcWKFXjqqadw5plnAgAOHm5nG+mn1XZUVFSp2wQiIyOj1H9nZ2eXqpMTEREREREJhoAWadWqVUOtWrXY2+LXuHHjMHXqVNx888146KGHfJfHxMQAAAr85LTnH55rVHIbJk98HDwWJ7fcyePNX3KIM1jY6NvGnsNCZMfy9jlzRCdTSjxmnRa5BscK486+Y9bN0OuNiDUWhjhrkY58nFL3X3adi4vfk9zMIb/HUeu8Y6NpsQAAxFmm7BMXFnGupCkkvvcC3Pdf4v4RKiqiRb5a8AdPQFXnnTt3xtq1a9nbUsZjjz2GiRMn4vrrry/TRbJevXoA/Kc0llzmLxVSRERERETEzQJapD322GP473//i+nTp7O3p9R9PP744xgxYgSmT59eppV+mzZtEBkZiRUrVpT525UrVwI4eqdIEREREZFKzVTQPwmKgNIdFy5ciNTUVNxyyy145ZVX0KlTJ9SpU6fMQsqyLIwbN67c8SdMmIDHH38c1157LWbOnAnbLruWjIuLQ//+/fHBBx/gu+++wznnnAMAyMnJwfTp09G8eXN++30A3gM5sCxSahbz1Ds7JYu6bdw24VY477EacgtoZmtkZstmANR0G098PC0WABjitgGAKS7iBWO3uSceqpbNPe6NQzzuySmFpsi9YxXsKF66GDs93NUpsS4+tryZWbxgbOxUYubnIPm7iE1MxXQKiZ8LxqFNYxI5moAWaY899pjv/69du/aoqY+BLNL++te/4tFHH0XDhg3Ru3dvvP3226Wur127tq+9/6RJk7Bo0SJcdNFFuPvuu5GQkIBp06YhPT0d8+fP1yBrEREREamSVJMW2gJapC1ZsoS9HT5paWkADrX5HzFiRJnre/To4VukNWvWDF9++SXGjBmDyZMno7CwEO3bt8cnn3xSIaMBRERERERE2E54kTZv3jy0aNECZ5xxBnr06BG0DXrttdfw2muvnfDtW7Zsiblz5wZte0REREREQo7mpIW0E16kXXrppXj00Ucxfvx432X//Oc/8c9//hMffPBBUDbOjayICFpNGr1VLRMz551cE2EKibUu7NbZzDocZn0QAMvDe6yG3MrYMGsFAG6ti4vbtVNryEDeR9jPm4trq6h1ZG5v5294rytzfwP4ta1M9uH5rQxOPm98DwBXt7mnP1YW4nEgcjQnvEjz96Vs/fr1OoslIiIiIuI2OpMW0sitlURERERERORkaJEmIiIiIiLiIgF1d6zKTGEhDKvfqIvnpFnhxF3DxXUC/DlTxFjMWV8AdX8zBw7QYgHg1+G4uH7JzSwP73c7U0yel0SczefNyqbFcj12bSAR+z3OU60aLRZ9H/Ez7zVQVjh3hia1lo89+Yi4/zLfQ2xTCJA/BoPBAv8l8XcfEhzletfQ3DEREREREZHgKtfpkilTpmDatGm+/87OPvRLU8OGDf3e3rIsbNu27SQ2T0REREREyk2NQ0JauRZp2dnZvoXZkXbs2EHbIAkQs+U4AFNQQI1HxWxh7uZUTHJ7auY+YopcPD4CoD5WK4KbFW6KinnByKlsxuve9u8OMcXWjoqkxWKjtvMHYIVx918rOpoWy8nJocUCAO/+/bRY9OeNGI+9j7h55A6TFcPbdy3HExLpjhLaTvhdw3Hce+CJiIiIiMj/WObQv2DfhwSHujuKiIiIiIi4iLo7ioiIiIhUNqpJC2lapJWTFREBywqnxKLWppAxW/zS65eYdTj00QW8582K4OxnvnjEGjcv+zVl1zEwxw0UuLdu0Y6Npcaj1qIyR4yQOfnkmlsXt7ln1yuz68jcyo6Jocaj15G5FLuWmlk37v3td14sQx6RI+KHFmkiIiIiIpWRe38vk+NQTZqIiIiIiIiLaJEmIiIiIlLJlHR3DPa/YNi3bx/uu+8+NGvWDFFRUTjttNPQs2dP/Pe//y11u1WrVqF3796Ij49HQkICLr74Ynz77bfB2agKpnTHcjIFBTAWqX6GWQ9Frv8wzBohdt1XGK9Wi10vx4xnisk578zaFOZcHQShjoH5upL3XyYnL58az7J5j9WKJM8iI9am0Pc3Yk0a+3kzhdz3OOb7rxXO/QrCrDU07M/UYl4Nuh0fT4sFcOsMTTH3ebOjomixnHzu+6UEz7Zt25CamoqcnBzceOONOOOMM5CVlYV169YhPT3dd7uVK1ciNTUVSUlJmDBhAgBg6tSp6NatG7766iu0adPmVD0ECi3SRERERETEFa655hoUFxdj3bp1qFu37lFvd+eddyIiIgLLly9HUlISAGDo0KFo2bIl7r33Xnz66acVtclBoXRHEREREZHKxlTQP6Lly5fjiy++wAMPPIC6deuiqKgIB/10R920aRPS0tIwZMgQ3wINAJKSkjBkyBB8/vnn2LVrF3fjKpjOpJWTFRYGyyI9bcT0M3qbeyJmegzATQOkp2Q5xNbv7HRHJnLLcWa6GBs/NY74icZ+3mzeRwL9eWPGcvH4E3Z6IrsFPzWlm5jCeiggL03fOXCAFgsAN22a/Lwxxw04ubm0WADgFBI/B5lp+sYByJNjQl3z5s1h2/97v8nIyAgozoIFCwAADRs2RP/+/bFw4UJ4vV40b94c48ePxzXXXAMASEtLAwB06dKlTIzOnTtj5syZWL16Nfr16xfQdriBzqSJiIiIiFQyodg4ZMOGDQCAm266Cfv27cPrr7+OmTNnIiIiAtdeey1mzZoFANi5cycAlDqLVqLksiPr10KRzqSJiIiIiEjAfv75ZyQkJJx0nAOHz2LHx8djyZIliIiIAAAMGjQITZo0wcMPP4wRI0b4UiAj/WRERR1uOOMvTTKU6EyaiIiIiEhlE4I1adHR0QCAYcOG+RZoAFC9enUMGDAAu3btwoYNGxBzOE23oKBsV9f8w508Y4ipvKeCzqSVkykuhmHllhNz1K0w7ktJbRccG02LBQDeTGJNBLs2hVgTYbPr5cJ5tYGurtcAqCMp+HUzvG2zwiOOf6NyoD5Wdm0Vk4trINk1ZHTMuh56TSVx29iTN1w81oZZR0b/LsKs4WW+BsxYUkr9+vUBAHXq1ClzXUmnx/3796NevXoA/Kc0llzmLxUylLj800BERERERMorFGvSOnXqBADYsWNHmetKLjv99NPRsWNHAMCKFSvK3G7lypWwLAvnnnsud+MqmBZpIiIiIiJyyg0aNAjx8fF48803kXPEoPWMjAx89NFHOOOMM9CsWTM0a9YMHTp0wJw5c3xNRIBDDUXmzJmDXr16+T0bF0qU7igiIiIiUtkEoWbM730QVa9eHc8++yxuueUWdO7cGTfccAMKCwvxyiuvoLCwEC+//LLvti+++CJ69uyJbt26YfTo0QCAl19+GY7jYMqUKdwNOwW0SDuVmHUzxBoyNpNftqjTLTxxsdR4jp8C1oBjHS58ZWGeNqfXHbDrvoi1KZbNrf+gPlZyXQRztpkdHUWLdSgg73XwZmbRYgHc2kD2seDq/ZeNWRPMbjjA/Lwnfs7Q0WsqXby/SdDcfPPNqFWrFp5++mmMGzcOtm2jS5cuePvtt3H++ef7bpeSkoKlS5di7NixGDt2LCzLQkpKCubMmYNzzjnnFD4CDi3SREREREQqmxA8k1Zi8ODBGDx48HFv16VLFyxatCg4G3GKqSZNRERERETERXQmrZyssDBYFudpc3OKIrPFLzttj5la5ORxt80UF/GCkdssGy8vFciKILd+J6fEMlPtTCHxNQUAwzvu3fwe4mUeCwA3jYo+8sG9rb1NcbB/Rj8Jbh69QT62XJ2iSGSK3Dt6g5mmbxkHcO/br08wui/6uw8JDp1JExERERERcREt0kRERERERFxE6Y4iIiIiIpVNCDcOES3Sys14vTCk2gg7ilc3w677Yub202urXJzzTkVsIw9wnzdq7R0AKyycGo9da1hlEI9VZjt/ADAO8z2Jm0TC3DZ263cnN5caj/q5xa7TIr5nsmvIXD2mIZz3VdDVzxvxc8sYjQaQ4NMiTURERESkkrGMgcX80f0o9yHBoZo0ERERERERF9GZNBERERGRykY1aSFNi7TyMrw93iHOX/IkJNBiAYA3O5sWy46OpsUCAIc4U4tdN8OcccSuO6AipzdYHvJJfZtXW+XmGgsrglzLd/AgLRa1hgwAHN7xwK77Yh6r7BoyKzKSGo9a/0yuu2ViP2/Mzxp6XbZDfB3cXIPOnssnEmRapImIiIiIVDIaZh3aVJMmIiIiIiLiIjqTVk6ehHh4LE66EjO1yHvgAC0WANjx8bRYDnnbrDBiu2B22ggznaIqdUwK56btIS+PF4s9CoGYGmdyXbz/EtMTAcBTvTotljeLl85Nx97f2G3uiTzVE6nxvHv38YIxUwABGKeYGo/JzWNtmJ/3TJZxAPe+pP+jmrSQpjNpIiIiIiIiLuLOnyhERERERCRgqkkLbTqTJiIiIiIi4iI6k1ZOTl4BHIvTZp1Zm0Jvc5+TQ43HxHzemO3QAcAU88YqhNWpTYsFAMW//U6Nx8SuW6TW9ZBrq5h1X+w24cz6JXYtiZNDbE1PHJVxKB7xp2Rym3A7KooazyHuI959+2mxAFCPe3adFvN1MLyPmUOY75fkY4v6ec8euRMKVJMW0nQmTURERERExEW0SBMREREREXERpTuWk/F6YSz3rW2dfHKbZWb6DrmlNDP9jN56mPhYvXv20mIBAFy435awPNwUL+qYhmLutjHTd8CMBe7zxk53NMT3JHbaEzUlK4Kbgs1MTwTg6tRO5uvKzuCivw5MxBRF9v5LHSFB/Qx07+fpkdQ4JLSFxl4mIiIiIiJSRehMmoiIiIhIZaPGISFNZ9JERERERERcRGfSyss4ADj52zaxfbaTn0+LBYBaW2XZ5Joew4vHfA0AwCnk9UY2xcW0WAC5TotcC2WKuT/FMZ87T0ICLRYAeLOzabGMQ/4Jk1nvyd5/iccqe/9l1kKxa3osct2X8RJbrLPbtTNrjMnPGxV724i1WqaIe9wzMY97Y8ijWYJINWOhS2fSREREREREXERn0kREREREKhtjuB1Zj3YfEhQ6kyYiIiIiIuIiOpNWXobXKsfVc1OImLUkAGByc3mxyL8AMevvDMiznIg1QvQZWOQaIVf/ssecG0iu6aFuG7G+DQBMIXmmIRG11iUnhxbL7dg1wcwaTTuKu23M90xmXSsAwMX1VXZMDC0WfZ5sCNCctNCmM2kiIiIiIiIuojNpIiIiIiKVjeakhTQt0srJCguDZbnvabOrV6fGc/bv58UipicC/FQ7JmraHjsV08XPm5vTE+mpmOQ0QCoXdx23o6N5wYgt8wHAOXCAFoueHk5Oq7ejomix6KNjiNjptczW9PR0c+YoD/L7GzNF0QrnPW+WMUDVy56UCqZ0RxERERERERdx8U/rIiIiIiISCMs59C/Y9yHBoTNpIiIiIiIiLqIzaeVkHAPjwn6j3t27T/UmHJ3FLXSxiLUpzFoSOmY7dJBb8JPrZsCsiQCorenZNT1M9NeBWX8XTq6tcnELfjs2lhbLFBbRYgH8fYRZR8asbwPIY20s7m/Ypoi4/7I/U5k1muTjnon5Xm4M9zgNGjUOCWk6kyYiIiIiIuIiOpMmIiIiIlLJaJh1aNOZNBERERERERfRmbTycry0XHVmrYAp4M4msWNiqPGYXF1HRmTHcl8D5vPGrtOywiOo8UwR8Xgg16Yw60lcXS9HjsesqbTj42mxAJe/J5Hrl5i1suw5aez3Edciz5VkzoKkH/fMOlnqsWCFRi2WMcGfQ+riOaehTmfSREREREREXERn0kREREREKhnVpIU2LdLKyY6KhG1xUiocZqtlcrt25+BBXjDytlHjEVu1szk5OdyAzOfN4abXUttTk1HTbVyOm4Lt3lRM+rHlZux0XTdjjt4gpteysccqmCLeY6W/XzJT6ajfRezQSHeUkKZFmoiIiIhIZaM5aSGtCv3EJiIiIiIi4n46kyYiIiIiUsmoJi20aZFWTqbYC2OR8rfJdT1ULq5fotbNEHPxAXAfK7t1NnHbrDDuWwe7jsFDbLHuzc6mxQK4zx29bsZx8aeti9+TmNtm2dzj3pBfUzuK9/5LrX0G+Xggv/9aYeG0WKbQvTW87Hbs1PdL5ueMi+vZpfJQuqOIiIiIiIiL6EyaiIiIiEhlo2HWIU1n0kRERERERFxEZ9LKy7KrxtwZZv1SOGeuXAlmPr7lIc9w8/AeqykmztEDqDUW7Foodo0bu47MrTy1alLjeffuo8ajcnENL7WOjPyeZIH7vDn5xPl35LovOy6OFsvk5dFiHQpIrGFy85kL8lxUN9cZhoLK0jjk4MGDaN26NbZs2YJRo0Zh6tSppa7fsGEDHnzwQSxbtgyFhYVo3749Hn/8cfTq1Sv4GxdEVWC1ISIiIiIioWj8+PHYvXu33+s2b96MlJQUrFixAg888ACeeeYZ5OTkoE+fPvj8888reEu5dCZNRERERKSyqQTDrNesWYMXXngBTz/9NO69994y1z/00EPIzMzE6tWr0bZtWwDA8OHD0apVK4waNQrr16+HFaJnUbVIKy/jAKgCrVfdvEMzUz3YqUXU543XshkATBExTdTlLfipbZvJLcyZ6Tvs9ESbON7CiuCmOVPbtZOPe2pLdHYqMfE1BQAUuzfd0VBTMbmJRtT0dfbnM/OxqjW9EHm9Xtx00024+OKLMXjw4DKLtNzcXMybNw+pqam+BRoAxMXFYeTIkRg/fjzS0tLQqVOnCt5yDi3SREREREQqmYqsSWvevDls+38L/oyMjJOO/fzzz2P9+vV4//33/V6/bt06FBQUoEuXLmWu69y5MwCE9CJNNWkiIiIiIuIaW7ZswaOPPorx48cjOTnZ72127twJAEhKSipzXcll6enpQdvGYNOZNBERERGRysYxh/4F+z4A/Pzzz0hISKCFvfXWW9GkSRPcc889R73NwcNp8JF+0rqjoqJK3SYUaZFWTsYxMBXRb7S8yDnqzHoSm3jQAoAhHnBOXj4tFhD8+tyTQmyNzK7T4td/uLdtM3MkBXtMA/N5c/K5x5Z9+AOXwSkkj7cgYj5OIAiPlXk8kFvJU48HF7e5d/U+Qn7eqDWVxM8tywBw79tIyHvzzTfx2WefYfny5QgPP3p9fkxMDACgoKBsPWr+4c+gktuEIi3SREREREQqmxDs7lhQUIB77rkHffv2RZ06dbBp0yYA/0tbzMrKwqZNm1CrVi3Uq1ev1HVHKrnMXypkqFBNmoiIiIiInHJ5eXnYvXs35s+fj+bNm/v+paamAjh0lq158+aYPn062rRpg8jISKxYsaJMnJUrVwIAOnToUJGbT6UzaSIiIiIicsrFxsZizpw5ZS7fvXs3br/9dlx88cW48cYbcfbZZyMuLg79+/fHBx98gO+++w7nnHMOACAnJwfTp09H8+bNQ7azI6BFWvk5Xl79DDO3n1zTw8zdZs9yssKJuy15posVxpttZsdG02IBgDczixeMWN8GAHYUd5aTk5dHi8We9+VmzJo09nwu6rYx30MAGD/1EIGi729urr+LjaXGY87So8+CJH6mUmtu2cifDcxji8kY9x5XR7JQAS34yfHCw8Nx+eWXl7l869atAICmTZuWun7SpElYtGgRLrroItx9991ISEjAtGnTkJ6ejvnz54fsIGtAizQREREREQlBzZo1w5dffokxY8Zg8uTJKCwsRPv27fHJJ5+gd+/ep3rzTooWaSIiIiIilY0xwe9UWkGdUJOTk2GOcl8tW7bE3LlzK2Q7KpIWaeVkRUbCsjgpbdQUGQ/3dC6zlbEdF0eLBQDOgQO8YOTT4MznzZvFTaegtjAnp6Aw05QAbqqSW9NtAH5KITPN2RQW0mIBgCeRN8rDm51DiwVw9zdvdjYtFgD6exzzCxn7uPfEx9Nisd/j4OUdD8ZLC3U4oHvHDYhUZVqkiYiIiIhUMpapgJo0rfGDRi34RUREREREXERn0kREREREKpsQHGYt/6NFWjmZwkIYF57bdXNLXnZtCrMOh15vxGw/7HALD5g1Fsz6IAAw+eQaN2bbcXJLacvDi8c+ttxcm8IcIUEfD0B8HWxiXRUAGOI4CgAwXt77EvNYAABvTi41nluxnzfqa0ocQwNwx2U4zM8Z4wDcCT4iZbgy3XHSpEkYMmQImjRpAsuykJycfMzbr1q1Cr1790Z8fDwSEhJw8cUX49tvv62QbRURERERcRvLmAr5J8HhyjNpDz/8MGrUqIH27dsjMzPzmLdduXIlUlNTkZSUhAkTJgAApk6dim7duuGrr75CmzZtKmCLRUREREREOFy5SNu8eTOaNGkCAGjdujVyco7eLvnOO+9EREQEli9fjqSkJADA0KFD0bJlS9x777349NNPK2SbRURERERcw0Hw0zKV9hk0rlyklSzQjmfTpk1IS0vDDTfc4FugAUBSUhKGDBmCWbNmYdeuXahTpw5v4wyxCpM5v4Z9upm4bey6L+ZMImYsNgNu3QGzxo0+Z4pcYwHj3k8NU8R7HeyYGFosgFtbxa6T9VSvTotFr9MixqLOgQS//s7NNZWeGrx9xLtvPy0WwJ0Xyq7htWN4+4iTy60LZM4epX5Pog+rEynLlTVpJyotLQ0A0KVLlzLXde7cGcYYrF69uqI3S0RERETklFJNWmhz72mEE7Bz504AKHUWrUTJZenp6QHFrlu3bqn/dhz3/jIvIiIiIiKVR0gv0g4ePAgAiPSTzhEVFVXqNiyeagnwWBGUWA6xXTA7tciK4DxGgJ/uSH2s5Pbq7Lb5VNT0Wu6PFqaY/CMI85c95vNGjkdtKQ1wX1fyseXdT0w/Y7+mbv4lmdheHXD3+y81RZH8mrLTWJlMEXGEBDsFu4i3v1FTJ2FpPpgEXUgv0mIOvxkU+FkE5Ofnl7pNeWVkZJT67+zsbCQmJgYUS0RERESkQmmYdUgL6Zq0evXqAfCf0lhymb9USBEREREREbcK6UVax44dAQArVqwoc93KlSthWRbOPffcit4sEREREZFTy5iK+SdBEdLpjs2aNUOHDh0wZ84cPPHEE74zazt37sScOXPQq1cvbvt9AN7sXFgWt22wGzHzwOmY9SRuriEjs4mtuJ1CZm4/+K8Du9aQiVn3RX7emCMp2HWy9uE6Ywb2tlHjkevlmPXFAPexWja5NpA4tsQ45C+exGOVXffFrG11yH0AqKifC7bS/CToXLlImz17NrZt2wYA2L17NwoLCzFx4kQAQKNGjXDttdf6bvviiy+iZ8+e6NatG0aPHg0AePnll+E4DqZMmVLxGy8iIiIicopZ5tC/YN+HBIcrF2kzZszAsmXLSl02btw4AECPHj1KLdJSUlKwdOlSjB07FmPHjoVlWUhJScGcOXNwzjnnVOh2i4iIiIiInCxXLtKWLl1artt36dIFixYtCs7G/IEdEQbbCqfEYqaNGGKaB11VanfNRE7Zc8ijEKjcPArB5elnTJaHmC7m4tbv9JElLk4TNYXk9HziscreRzw1a9BiGeKIHAAwXvc+b8z3Syuc+/5mR/PSnL3Z2bRYMCFSKlERNWNV5TvZKRDSjUNEREREREQqG1eeSRMRERERkcBZzqF/wb4PCQ6dSRMREREREXERnUkrJ1PshbE4NQPM2hTL4f6UwWyx7omPp8UCuHnl7Px5JlNEriVh1laxc9DZ+f3Ex8qs0wIAw6wNZNfyEWtdrDBO7W4Jah0O+Xlj15Ex0VvJE0dIsI8tJzOLFotd90Wt9yx07/ulnRBHiwUA3v2819STkECLZUwhQCxxCxrVpIU0nUkTERERERFxEZ1JExERERGpbAyCP3RbJ9KCRmfSREREREREXERn0srJeL0wFmdtaw4epMRxO+psEoCaP+/qeTORkbRYQBDmJbkZMUeeXpvCnKnF3n+J8xbdXFNpx8TQYgGAk8udqUXFnBkI8OdeEjFrA21yLbXJyyMGc++pCyc7hxrPjuDVtjK/i3gNr25f5Gi0SBMRERERqWQsY2AFeVEf7PhVmdIdRUREREREXERn0srJCguHZXFOvzPTgTzVEmmxAMBLbGXMbnfNTH9wmO3QAW4qELt1NhF7dIEp5qaO2NHRtFgOOS2ZmZLFTJ0EuGNB2K3fmS3M2a8pfRQCEzndkTlagZ4Sy0Qea0Md00BOOWWPQmAyXuLIB2IJgWVsgPz1ISjUgj+k6UyaiIiIiIiIi+hMmoiIiIhIZWMAcE8K+78PCQqdSRMREREREXERnUkrJ2YLfmY9CbWGjM2Qc/uJOerM2iWAW+tCr9cg1s24upYEgJMfCsUCJ49ZQwZw919PQgItFsBtn+32mko3Y459sGNjabEAwMnL58WqSnWLRK4+FpijWUKkBb+6O4Y2nUkTERERERFxEZ1JExERERGpbAwqoLtjcMNXZTqTJiIiIiIi4iI6k1Zejhcg1aSRS7Vciz2DhTpfrmZ1WiwAMIW8bWPWfrDRa3rYNW4uPriYtaj0uhni/CXvgQO0WHTs/YP4SzW9lo/9OhCfO8OeU8mcCceuISPPq2OyomJosQz5PYk6C5L03Q0ALGMBoVCWpjlpIU1n0kRERERERFxEizQREREREREXUbpjeVkWLyXIzaeImake5HRHOLznrfi332mxAHBfU2LqGQDY0VG0WKbQ3XkezBRbU1xMiwWQ01jZKVkuThMNa1CfFqt4RzotFkAep0JOT7TCwqnxmPuvm1O62Zj7CPs9iZ42TWQxx+QQ9zfLOKGR7ugA4H6V8H8fEhQ6kyYiIiIiIuIiOpMmIiIiIlLJaJh1aNOZNBERERERERfRmbTyMgasyX3MNuaubmHOrjsgbpvNzHcHYIp4tQLseg0nN5cWy47i1bcBAAz3rcjVtS7ENtBubiXPrpcr3r6DFova1hv8GiEm+rHg4lbyzPclJz+fFgtwdbmnu+vlcnn1csy67OAXepGoBX9I05k0ERERERERF9GZNBERERGRykZn0kKazqSJiIiIiIi4iM6klRdxThqzjsyKjKTFAgBTUECNR0X81cbN82HYPNWr02J59++nxQL4NW6GOEsPhluDw5zhBsOti6DWL7Frl4g1bvQaMuJMQyuCV6sMgF4TbEDcf9n7SDhxJhz7M5D4uUWvqWTODyPW2h+KR6yXI873NMa9dail6ExaSNOZNBEREREROeU2btyI8ePHo3PnzjjttNMQHx+Ptm3b4sknn0SunwZoGzZswKBBg1C9enXExsaiW7duWLx48SnYcj6dSRMRERERqWwcBL8RJblz6cyZM/HXv/4VAwYMwNVXX43w8HAsWbIEY8eOxb/+9S+sXLkS0Yc7c2/evBkpKSkICwvDAw88gMTEREybNg19+vTBwoUL0bt3b+7GVTAt0srJjouFbXFO5zsHDlDiAPz0RGpLXnK6DTO1k/68MdNOmSl7ALxZ2dR4TMbLbiVPjEdMZQPAHSERE0OLBZDTf5lpnag6KdiufpwgfzawD/t84nPHTuEipuuyU2IN8bhnjwOyPEr4qmouv/xyPPTQQ0hMTPRdduutt6J58+Z48sknMWPGDNxxxx0AgIceegiZmZlYvXo12rZtCwAYPnw4WrVqhVGjRmH9+vWw2J/hFUh7v4iIiIhIJWMZUyH/mDp0+P/27j04yur+4/jn2VzIbRNwUC6heCkBRRHGkoBcKnS4Vcq1k1K1CBSwVrAF21K1IgEVa1sHp4J1hDKUYXCmCi20ii3eBpFgkSLIVAKxJMhFBLnlQm675/cHJjW/DWr0u8mTzfs1wzDzPE9Ozu6eZzdnz/d7vn3rTdBqTZo0SZK0d+9eSVJZWZk2btyoIUOG1E3QJCktLU0zZszQ/v37tWPHDtO+NTUmaQAAAAC+tKysLHXq1Knun7XDhw9Lkjp06CBJ2rNnjyorK3XjjTdGXNu/f39JYpIGAAAAANEQCoX00EMPKT4+Xrfeeqsk6ejRo5KkzMzMiOtrjx05cqTpOhkF5KQ1Uri0TGHPJuY6EAyatCNJ4dJSs7akKGxRbch0C3Pr0gVVhmUVjHN6LNtzxltnuxq7rZElSZ7h90/GiTOWOZqh0sidrr4Sw8fqWb4GkuIuvdSsrdDHp8zaMmc83qzzFk0/G4w/Zyzvrbi2keFWX0XozFmztgIZ6WZtSbbPm6s2fk0Nx4hlaRZnXJolappwC/4DBw4oPd12bNaaM2eO8vPztXjxYvXo0UOSVP5JLmWbBv6OS/qkrE95Cy+zxEoaAAAAAN+ZP3++li5dqjvuuEP33Xdf3fGUT76Aqmxgs6WKiop617RUrKQBAAAAsSbsJC/KK2nGO1F/Wl5enh5++GFNmzZNTz/9dL1znTt3ltRwSGPtsYZCIVsSVtIAAAAA+EZeXp4WLlyoKVOmaMWKFRFb6ffq1Utt2rRRfn5+xM9u375d0oWdIlsyVtIaywuY5btY1kkzZ1jTRdb5S4Z5X+a5d4b1OCzj5yVJYcP6NZbjQ/b5d5Z5PS5s/F2WZd5XwLb+i6sxzNkwrpcUOnHCtL3Wwvo9zrKOm3mdP8M6aWHrfE9DNR8eN23P9P3XPIfXtDk71kX+oqUJc9IsLVq0SAsXLtTkyZO1cuVKBQKRn8NpaWkaM2aM1q9fr927d6t3796SpNLSUq1YsUJZWVnKyckx71tTYpIGAAAAoNktW7ZMCxYsUNeuXTVs2DCtXbu23vkOHTpo+PDhkqRHH31Ur7zyikaMGKG5c+cqPT1dy5cv15EjR/TCCy+06ELWEpM0AAAAIAY1wUqabNuvrW126NAhTZkyJeL8TTfdVDdJ69atm958803de++9+vWvf62qqirdcMMNeumllzRs2DDTfjUHJmmNFQ7Zbe/t5xm+j5fyLbcLNufjrd89w3IDliGnkuSq/fuaxnfsYNpezfGPzNryc7iutYDh+PUSE83akqSQYei65eOUpHCVcXkLQ2Hj7bG9eLs/afxchsaarx+rj9+TEB2rVq3SqlWrvvD111xzjTZs2BC9DjUjJmkAAABArGmhOWm4gN0dAQAAAMBHWEkDAAAAYk3YyTpnrOHfgWhgktZYnmcXI225RGwdt+3j5WvLHKHQiZNmbUnG2+YbvwaWW2d7CbY5Pa7GOG/G8LkLnT5j1pY1yxwcyTg3xbhMQ9hy6/eEBLO2rJnnkBmXQPFzjpDl+PX1veXjz2fz8iyGZUZazWuAmMEkDQAAAIg1Lhz9jeB8vNFcS0dOGgAAAAD4CJM0AAAAAPARwh0byYtPkOfZ5DO4asNaU9bx0YZ5B4HkZLO2JPs8MlOG+R+Wdc2sBZKTTNsLnzfOczGspeeqjWsIGd6rvq6TZpwLFdc2w6yt0NlzZm1Jkhdnm4djyTwSybIWpHW+nCHzepyWuVrGz5tpDU3j90vL1yEQDNq15aoku/KI0cMW/C0aK2kAAAAA4COspAEAAACxhi34WzQmaY3lwpKM4kd8vJWxZUhLuLzcrC1Jps+br8OUrMPsDENkQlWGobpS6wqX8PN9b/g6WJdpCJ05a9aWr7dXNx4f5uUyDMP0LcPPJClcYhd/5iVaP292YySQkmLWliQpbBgTa/2ZGrC7Vy3HR9gZl8oAGsAkDQAAAIg15KS1aOSkAQAAAICPsJIGAAAAxBqnJlhJi27zrRmTtEZyNTVyfs4psWL5EK2fL8stzK23WbZ8rMZ7Z1vmppiWj5B9jpBle+Eq29wDL2A3RpxxwnYg2W4rbvNcVEPm970hP+dCSTLdSj5c5uMxUllp26Dl8+bjPG/rfDnLx2rZt4Crkvw7fBEjmKQBAAAAsYactBaNnDQAAAAA8BFW0gAAAIBYEzYsG/WZvwPRwCStsQJxkmcUW25Yt8rXtZeMxaWnm7UVMqybIsl22d8wh8HvTOtMWbO8TyU5Z3ivGtYzlKTw+fNmbcW1zTBrS5JC50rtGjN+TS1Z55BZ5kBKPs/ns8y7tX6chjnGgdRUs7Yk23qhoXPnzNqSZPq3jWV+G3XS0BQIdwQAAAAAH2ElDQAAAIg1bBzSojFJayQvIV6eZ/O0Wa6Wx6Wn2TUmKXy+wqwt662MLcMprLd+Nw3bM96C3/k3SsmcZaiSZQiVJMkw/MwyTEmyDbUzDU+U8WM1DgG0DDs1L2+RmGTanp9Dky2fO/PPhrDdGLH8fJZsQ2KtnzdLpiVLXDjqqV6Af+8mAAAAAF8OK2ktGjlpAAAAAOAjrKQBAAAAsSbsJEV5pcsyjBT1MElrpECbRAU8mxyVsOHADpfZbZ0tGedFGG8lH0i2y7EIl5WZtSX5fAvo1sQy/MI6N7DSLqfHWZfe8HHYivNxyRKrqiySbYkRSXJVxjluhjlHpjlCFxq0a8o6985yzBmX3rD8rAm0aWPWliSFK2zz78y0piRvNBsmaQAAAECMcS4sZ/xFY0O/A9FBThoAAAAA+AgraY0UOlciz0swaSu+YweTdiSp5qOTZm2ZswxTknGIonEophdnuBW3n8MdfR5mF0gyDIk1DrcxDRezHiOGr6t5eQDL0Djj9yTL0LhQSYlZW5J8HcJqHwqfbNZWuLzcrC1Jxq+D7cqFF2/zN40UhfdLw/BJy/fegKuSbLMlosO56OeM+fk9poVjJQ0AAAAAfISVNAAAACDWuCbY3ZGVtKhhJQ0AAAAAfISVtGZU8+Fxu8asc4QsGecdWOaTWG7nL9nmy1nGz0u2OT1eol2pAUlylZWm7YUt2zO+t0xzq6y/wTS8V63z5Sxz3Jyz3oLf8D3Oent1y3Iqkq8/a8LnbUvRmPLzFvzWY8SQqzYshWD4nuRctVlbURUOS16Ud19kd8eoYSUNAAAAAHyESRoAAAAA+AjhjgAAAECsYeOQFo1JWiN58fHyPJunzbK2jvlN4uN6STJsL3zetqaLn3N6TMdIyDYvJZCSYtqeaY0j85pwdvH7gWDQrC1JcpY5PXHGeYtV/s2bseTn/CDJNh/VNN/ImGV9Lsl4/BrX+TN9j7OueZloV8PNWfbNhSX/Dl/ECCZpAAAAQIxx4bBclDcOcWwcEjXkpAEAAACAj7CS1kgu7OQ8myVzL8EybMQ2RMY0/Cxg+11AuKTEtD2/st6C33LbZvttvW3HiOW9Zb29sOXr6ud7IWAdLmYYGucFjLfgN3xNTcPgFYWwPcsQRR9/A28dXmsZ9m9dAsW0dIFxeHi4ynCre8Mw0RazBT85aS0aK2kAAAAA4COspAEAAACxJuwko+ivi2IlLWpYSQMAAAAAH2ElrbHCIbP8GT9/9xAuKzNryzQ/yLo945wIy23zA2mpZm1JUujMWbvGDEsNSJIXZ5y3WFlp1pZ5/odl34zvrUDbDLO2nOF7iCR5CYZ5X4avgWR8rxr3zXr8yvA9ztUYfwpavi/5+LNBxqULLPNHrXMqLduzzB31nGsZW/A7JynKuZ+spEUNK2kAAAAA4COspAEAAAAxxnJH8ov+DlbSooaVNAAAAADwEVbSGisQJ3lGce+GNTvMc1NSk83aMs2FkmzrsPj4G6BwmWHtGknxHTuYtVXz4XGztiTJhWxz3ExrwlnnLxnWIAyXl5u1JUmhkydN2/Mt41pOobPnTNuzZF1LzzSvx7oWpGEtMuv73rRenWV+m6RwhV1NuEBSkllbkm0un2V+m3MtISFNn+RWRjsnzb/1Dls6VtIAAAAAwEeYpAEAAACAjxDu2FiGW/BbMt3eV1L4fIVpe6YMn/9AsmEIimxDWkKnT5u1JUmhj+3asw5TcjXVpu2ZhrEalxtwxttnm/Lhe1stL2AXomgeZmcpIcG0OXfeNmw6kJFu1pYrsw3XtSxvYc0zDMX0DEtlSJIzDNe1fg0snzfr8gAtARuHtGz+/UQGAAAAgFbIx18nAgAAAPhS2DikRWOS9gXVLufWqFry48qu8U3iGS5fO2cdymb3WAPOdpc3z7C9kPHzZtk36/HmnG24rmm4o/m9Zdeen+8ta5bj1/I1MGccOmQ9RgJhu50AnbNrS5LClo/V+HUIGD5Wz/A1kGxfB9PXQNbvl3bhjjWq/qRNP/5B+D9N8Tdr7XMBe0zSvqCST7Yx3qoXm7knF2H9N4d/Q/ttH6ttSoR9e5Z4H/1yrO8tH88PWk3f/Jya4uN0YEnSqebuQAtl+dng588Za36+V3Xhb8OMDNscQQuJiYnq2LGjtn7YNH+zduzYUYmJtqWgIHnO718D+EQ4HNbRo0cVDAblGdfYQfPIysqSJB04cKCZewK/YWygIYwLNIRx0fo451RSUqLOnTsrEPDn9g4VFRWqqrJddb2YxMREJRnXyAMraV9YIBBQly5dmrsbMFT7xpqebrdbGWIDYwMNYVygIYyL1smPK2iflpSUxMSphfPn9B8AAAAAWikmaQAAAADgI+SkAQAAAICPsJIGAAAAAD7CJA0AAAAAfIRJGgAAAAD4CJM0AAAAAPARJmkAAAAA4CNM0gAAAADAR5ikAQAAAICPMEkDAAAAAB9hkgYAAAAAPsIkDQAAAAB8hEkaAAAAAPgIkzQAAAAA8BEmaQAAAADgI0zSEJP279+vBx98UP3799ell16qYDCoPn366JFHHlFZWVnE9QUFBRo/frzatWun1NRUDR48WK+++moz9BxNrby8XFdddZU8z9Ps2bMjzjM2WpdTp07p5z//ubp166akpCRdeumlGjp0qN54441617311lsaNmyYgsGg0tPTNWrUKL3zzjvN02lEVWlpqRYvXqxevXopGAyqffv2GjBggFatWiXnXL1rGRcArMQ3dweAaFi5cqWWLVumsWPH6rbbblNCQoJee+01PfDAA/rzn/+s7du3Kzk5WZL0/vvva8CAAYqPj9e8efOUkZGh5cuXa+TIkdq0aZOGDRvWzI8G0fTggw/qxIkTDZ5jbLQuxcXFGjJkiEpLSzV9+nR1795dZ8+e1Z49e3TkyJG667Zv364hQ4YoMzNTixYtkiQtXbpUgwcP1rZt29SrV6/meggwFg6H9e1vf1vbtm3TlClTdPfdd6u8vFzPPvuspk2bpvfee0+PPfaYJMYFAGMOiEE7duxwZ86ciTj+q1/9yklyTz75ZN2x3NxcFwgE3K5du+qOlZSUuK5du7ru3bu7cDjcFF1GM9i5c6eLi4tzjz/+uJPkZs2aVe88Y6N1GTRokOvSpYs7evToZ16XnZ3tgsGgO3z4cN2xw4cPu2Aw6IYPHx7tbqIJbdu2zUlyc+bMqXe8srLSXXnllS4jI6PuGOMCgCXCHRGT+vbtq4yMjIjjkyZNkiTt3btXklRWVqaNGzdqyJAh6tOnT911aWlpmjFjhvbv368dO3Y0SZ/RtEKhkGbOnKlRo0Zp4sSJEecZG63Lli1btHXrVs2bN0+dOnVSdXW1ysvLI64rLCzUjh07lJubq8zMzLrjmZmZys3N1csvv6wPP/ywKbuOKDp37pwkqXPnzvWOJyYmqn379kpNTZXEuABgj0kaWpXDhw9Lkjp06CBJ2rNnjyorK3XjjTdGXNu/f39J4g/xGLVkyRLt27dPS5cubfA8Y6N1efHFFyVJXbt21ZgxY5ScnKzU1FR1795da9asqbuu9jW/2Lhwzmnnzp1N02lEXU5Ojtq2bavf/OY3eu6553To0CHt27dP9913n3bu3Km8vDxJjAsA9shJQ6sRCoX00EMPKT4+Xrfeeqsk6ejRo5JU75vPWrXHPp2Lgthw8OBBLViwQA8++KCuuOIKFRUVRVzD2GhdCgoKJEkzZ85UVlaW/vSnP6mqqkqPP/64Jk+erOrqak2bNo1x0cq0a9dOGzdu1IwZM/S9732v7ngwGNS6des0fvx4SbxfALDHJA2txpw5c5Sfn6/FixerR48eklQXztSmTZuI65OSkupdg9hx55136qqrrtI999xz0WsYG61LSUmJpAt/fL/22mtKTEyUJI0fP15XXXWV7r//fk2ZMoVx0QqlpaXpuuuu09ixYzVgwACdOnVKy5Yt06233qoNGzZo+PDhjAsA5pikoVWYP3++li5dqjvuuEP33Xdf3fGUlBRJUmVlZcTPVFRU1LsGsWHNmjXavHmztmzZooSEhItex9hoXWp3e73lllvqJmjShZWUsWPHavXq1SooKGBctDLvvvuuBgwYoCVLlujOO++sO37LLbfouuuu08yZM/X+++8zLgCYIycNMS8vL08PP/ywpk2bpqeffrreudpk8IbCUGqPNRS+gpapsrJS99xzj26++WZ17NhRhYWFKiwsVHFxsSTp7NmzKiws1JkzZxgbrUyXLl0kSR07dow416lTJ0nS6dOnGRetzJIlS1RRUaHc3Nx6x1NSUjR69GgVFxerqKiIcQHAHJM0xLS8vDwtXLhQU6ZM0YoVK+R5Xr3zvXr1Ups2bZSfnx/xs9u3b5d0YadIxIbz58/rxIkTeuGFF5SVlVX3b8iQIZIurLJlZWVpxYoVjI1WJicnR9L/Nhf6tNpjl112mbKzsyXpouPC8zx94xvfiGJP0ZRqJ1ihUCjiXE1NTd3/jAsA1jznnGvuTgDRsGjRIi1YsECTJ0/WqlWrFAg0/J1Ebm6u1q9fr3//+9/q3bu3JKm0tFTXXnut2rRpo4KCgojJHVqm6upqbdiwIeL4iRMndNddd2nUqFGaPn26rr/+enXv3p2x0YqcPn1al19+udLT07Vv3z6lpaVJko4dO6asrCxlZmbWbS6SnZ2tgoIC7du3r24F5ejRo7r66quVk5Ojl19+udkeB2zNnTtXTzzxhB577DHNmzev7viZM2fUs2dPVVRU6MSJE4qLi2NcADDFJA0xadmyZZo9e7a6du2qhx56KGKC1qFDBw0fPlzShfo2OTk5SkhI0Ny5c5Wenq7ly5fr3Xff1QsvvKCRI0c2x0NAEyoqKtKVV16pWbNm1duSn7HRujzzzDP60Y9+pGuvvVY//OEPVVVVpT/84Q86duyY/v73v2vEiBGSpG3btmno0KHq0qWL7r77bknSk08+qePHj+vNN9+sm9Cj5SsuLtYNN9yg06dP67bbbtPAgQN16tQpLV++XEVFRVq2bJnuuusuSYwLAMaas5I2EC1Tpkxxki7676abbqp3/X/+8x83duxYl5GR4ZKTk93AgQPd5s2bm6fzaHIHDx50ktysWbMizjE2Wpd169a5fv36uZSUFJeWluaGDx/utm7dGnHdtm3b3Le+9S2Xmprq0tLS3IgRI9zOnTuboceItsLCQnf77be7zMxMFx8f74LBoBs8eLBbt25dxLWMCwBWWEkDAAAAAB9h4xAAAAAA8BEmaQAAAADgI0zSAAAAAMBHmKQBAAAAgI8wSQMAAAAAH2GSBgAAAAA+wiQNAAAAAHyESRoAAAAA+AiTNAAAAADwESZpANDC5eXlyfM8vf76683dlUYZPHiw+vTpI+dco3929+7dCgQCWrFiRRR6BgBA82KSBgA+4nleo/61tIlZreeee05bt27Vww8/LM/zGv3zvXv31ne/+13Nnz9fpaWlUeghAADNx3Nf5itMAEBU5OXlRRx74okndPbsWf30pz9V27Zt652bOnWq0tLSdPLkSXXt2lUpKSlN09GvwDmnq6++WgkJCdq7d++Xbuftt99Wdna2HnnkEd1///2GPQQAoHkxSQMAn7viiitUXFysgwcP6oorrmju7nxlmzdv1ogRI/TYY49p3rx5X6mtnj17qqysTAcPHlQgQHAIACA28IkGAC1cQzlpRUVF8jxPU6dO1f79+zVhwgS1a9dOGRkZGjdunIqKiiRJhYWFys3NVfv27ZWSkqKbb75Z//3vfxv8PR9//LHmzZunHj16KCkpSe3atdPo0aO1ffv2RvX3j3/8oyRp0qRJEefOnTunhQsX6rrrrlMwGFQwGNTXv/51ff/739euXbsirp80aZIOHTqkzZs3N6oPAAD4GZM0AIhhBw8e1I033qizZ89q+vTpGjhwoDZu3Khhw4bpvffeU79+/XTy5ElNnTpVQ4YM0aZNmzR69GiFw+GIdm644Qb99re/VWZmpmbNmqUJEyYoPz9f3/zmN/W3v/3tC/XHOadXX31VnTt31uWXXx5xbtSoUcrLy1N6erpmzpypH//4x8rJydHrr7+ut956K6K9gQMHShKTNABATIlv7g4AAKJny5Yt+t3vfqef/exndcfuuOMOLV++XAMGDNADDzzQ4LkNGzZowoQJdcdvv/12HT58WOvXr693/JFHHlFOTo5mzpypoqIiJSUlfWZ/CgoKdOLECY0ZMybi3N69e5Wfn6/x48frL3/5S71zoVBI586di/iZ7OzsuscJAECsYCUNAGLYlVdeqblz59Y7NnnyZEnSJZdcEnHuBz/4gaQLW9zXeuedd7R161bl5ubWm6BJUqdOnfSLX/xCx48f1yuvvPK5/Tl06JAkqWPHjhe9Jjk5OeJYXFyc2rVrF3E8IyNDSUlJde0CABALWEkDgBjWu3fviA01OnXqJEm6/vrrI8517txZknTkyJG6Y/n5+ZKkU6dONbj75IEDByRJ+/bt0+jRoz+zPx9//LEkNTjh6tmzp/r06aNnn31WxcXFGjdunAYNGqS+ffsqMTHxom1ecsklOn78+Gf+XgAAWhImaQAQwzIyMiKOxcfHf+656urqumOnTp2SdCHv67Nyv75IvbLaVbKKioqIc3FxcXr11Ve1aNEiPf/88/rlL38pSUpPT9fUqVO1ePFipaamRvzc+fPnG1x9AwCgpSLcEQDwmWonc48++qiccxf9t2DBgs9t67LLLpP0v4nf/9euXTstWbJEH3zwgfbv369nnnlGWVlZ+v3vf6/Zs2dHXB8Oh3XmzJm6dgEAiAVM0gAAn6lfv36S/hf2+FVce+21iouLU0FBwedem5WVpZkzZ2rLli1KS0vTX//614hrCgoK5JxTnz59vnLfAADwCyZpAIDPlJ2drQEDBmjjxo1auXJlg9ds375d5eXln9tWRkaG+vTpo927d6uysrLeuYMHDzZYo+306dOqrKxUSkpKg79XkoYOHfpFHgoAAC0COWkAgM+1du1aDR06VNOnT9dTTz2l7OxsBYNBffDBB3r77bdVWFioY8eONTiR+v8mTpyonTt36vXXX9fIkSPrju/evVsTJ05Udna2rrnmGnXu3FkfffSRNmzYoOrq6roctU/75z//qbi4OI0bN8708QIA0JxYSQMAfK7LL79cu3btUl5enmpqarR69WotXbpU//rXv9SrVy+tXr1a7du3/0JtTZ8+XQkJCVq9enW943379tW9996ruLg4vfTSS3r88cf1j3/8Q9nZ2dq0aZN+8pOf1Lu+pKREGzZs0He+8x197WtfM3usAAA0N88555q7EwCA1mXGjBlau3atioqKvvSmH0899ZRmzZqlN954Q4MGDTLuIQAAzYdJGgCgyR07dqxuY5AlS5Y0+ucrKirUrVs39e/fX88//3wUeggAQPMhJw0A0OQ6deqkNWvW1O3O6Hleo36+uLhYM2bM0NSpU6PTQQAAmhEraQAAAADgI2wcAgAAAAA+wiQNAAAAAHyESRoAAAAA+AiTNAAAAADwESZpAAAAAOAjTNIAAAAAwEeYpAEAAACAjzBJAwAAAAAfYZIGAAAAAD7yf+bjpdFze37AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.title('Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## It is actually only one feature drifiting along time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 0.33333333333324333\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dps.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 1 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_f = dps.rebin_frequency(df_new=1.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 1.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dps_new_f.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAy0AAAJlCAYAAADXbB2zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOGklEQVR4nO3de3QV5b3/8c/sXMlVEAiQNFAgIkUEEWjAcgANQu0PilVQQcyhBcQCXagtNQrIHVvLURdQbbkUK9geOdoDp6hHQfACiSeHVpH2EC4FLCEoyiUJIQnsmd8fmNQ0QTLh2cNk5/1aay9WZk8+z2wy2ck333mesRzHcQQAAAAAPhW40gcAAAAAAF+FogUAAACAr1G0AAAAAPA1ihYAAAAAvkbRAgAAAMDXKFoAAAAA+BpFCwAAAABfo2gBAAAA4GsULQAAAAB8jaIFAAAAgK+5LloKCgo0duxYde3aVcnJyYqLi9O1116rhx56SEVFRXXuP3LkSDVv3lzx8fEaMGCA3nrrLSMHDwAAACD8WY7jOG4+YcuWLVq4cKEyMzOVlpamyMhIffTRR/rNb36jpKQkffDBB2rdurUk6cCBA+rbt68iIyM1ffp0JScna8WKFdq9e7dee+01ZWVlheRFAQAAAAgfrouWi1m/fr1Gjx6tn/3sZ5oxY4YkafTo0Xr55Ze1c+dO9ezZU5JUWlqqbt26KTY2Vnv27JFlWSaGBwAAABCmjM1pad++vSTp5MmTkqQzZ85o48aNGjRoUHXBIkkJCQmaMGGC9u7dq/z8fFPDAwAAAAhTDS5aysvL9dlnn+nIkSN64403dP/990uSbrvtNknSrl27VFFRoX79+tX63MzMTEmiaAEAAABwSZEN/cSVK1dq2rRp1R936NBBa9eu1YABAyRJR48elSSlpqbW+tyqbYWFhQ0dXm3btq3xsW3b2rlzpxITE7nkDAAAoAlyHEclJSVq166dAgH/LpJbXl6uyspKT8aKjo5WbGysJ2OFUoOLlpEjR+raa69VaWmp/vznP2vjxo367LPPqp8vKyuTJMXExNT63Kr/uKp9TLBtW1/72teM5QEAAKBx+vvf/660tLQrfRh1Ki8v19fbJ+jYp0FPxmvTpo0OHjzY6AuXBhctaWlp1SfDyJEjdccdd6hPnz4qKytTTk6O4uLiJEkVFRW1Pre8vFySqvdpiH9eXvn06dO66qqr9C/N7lCkFdXg3C8LtGhuJEeSzh/9xFiWaYHoBp8GdTKztMMXWXWcP5cjEFu7iG4o6zLO37rYxSXmwiyzf12yDJ8jVkSEsSz7rNlzxCQrNtponlPuzV/lGsKKMvc1dc6Z/UFu8tishARjWZJkny42mucY/MutFW32/DXJijT3NTXNOW/2/I1o08pY1vm/1741xeUw+V7unD9nJOe8c07vaZMSExON5IVCZWWljn0a1OGdHZSUGNpuUHGJrfY3HlJlZWXTLVr+2fXXX68bbrhBv/zlL5WTk6N27dpJqvsSsKptdV061lBVl4RFWlGKtMy80QYC5n7BlaFCKhQCho/NkbmqxbFsY1mSFDB0bkiSFTD7A902+XUwXbQYPkcsy2DRYvgcMckyeL5JkmMZ/IuAYZZlrrB1rPPGsiSzx+br73uZPUdMf9+bZPJraprp8zfCx7+LmHwvd0xe2e+oUUwVSEi0lJAY2uO05f//h/oy+pvN2bNndeLECUlS9+7dFRMTo9zc3Fr75eXlSZJ69+5tcngAAAAAYch10XLs2LE6t2/dulW7d++uXhksISFBw4cP17Zt2/Thhx9W71daWqqVK1cqIyNDffv2beBhAwAAAI1X0LE9eYQL1/3VBx54QEVFRbr55pvVvn17lZeXa+fOnfr973+vxMRELVmypHrfxYsXa8uWLbr11lv14IMPKikpSStWrFBhYaE2bdrUKFp3AAAAAK4s10XLPffco9/+9rd64YUXdPz4cVmWpfbt2+v+++/XT37yE6Wnp1fv27lzZ23fvl2PPPKInnjiCVVWVqpXr156/fXXlZWVZfSFAAAAAI2FLUe2wXnAFxsjXLguWkaPHq3Ro0fXe/+uXbtqw4YNbocBAAAAAEmGJ+IDAAAAgGn+XTMQAAAACFO2bIV6mnzoR/AOnRYAAAAAvkanBQAAAPBY0HEUdEI7UT7U+V6i0wIAAADA1+i0AAAAAB5jyWN36LQAAAAA8DU6LQAAAIDHbDkK0mmpNzotAAAAAOrtxIkT+vGPf6zOnTsrNjZWrVq10uDBg/Xuu+/W2O/9999XVlaWEhMTlZSUpGHDhumDDz5o0Jh0WgAAAACPNdY5LYcPH9agQYNUWlqqH/zgB7rmmmt0+vRp7dq1S4WFhdX75eXladCgQUpNTdW8efMkScuWLdOAAQO0Y8cOde/e3dW4FC0AAAAA6uXee+/V+fPntWvXLrVt2/ai+/3oRz9SdHS03nnnHaWmpkqSRo8era5du+rhhx/WG2+84WpcLg8DAAAAPFZ1n5ZQP0x655139N5772nGjBlq27atzp07p7Kyslr77d+/X/n5+Ro1alR1wSJJqampGjVqlDZv3qxjx465GpuiBQAAAMAlvfrqq5Kk9PR0DR8+XM2aNVN8fLyuueYarV27tnq//Px8SVK/fv1qZWRmZspxHO3cudPV2FweBgAAAHjM/uIR6jEkKSMjQ4HAP3oVRUVFDcorKCiQJE2cOFEZGRl6/vnnVVlZqSVLlmjcuHE6d+6cxo8fr6NHj0pSjS5LlaptX57/Uh8ULQAAAAAuqaSkRJKUmJiorVu3Kjo6WpI0cuRIdezYUY8++qiys7OrLxmLiYmplREbGytJdV5W9lW4PAwAAAAIY/v27VNRUVH1o6GaNWsmSbrnnnuqCxZJat68uUaMGKFjx46poKBAcXFxkqSKiopaGeXl5ZJUvU990WkBAAAAPBb04OaSpvPT0tIkSW3atKn1XNVKYidPnlS7du0k1X0JWNW2ui4d+yp0WgAAAABcUt++fSVJR44cqfVc1bbWrVurT58+kqTc3Nxa++Xl5cmyLN14442uxqZoAQAAADwWdLx5mDRy5EglJiZq7dq1Ki0trd5eVFSk//zP/9Q111yjzp07q3Pnzurdu7fWr19fPSlfko4ePar169fr5ptvrrNb81W4PAwAAADAJTVv3ly/+MUvdP/99yszM1Pf//73VVlZqWeffVaVlZVaunRp9b7PPPOMBg8erAEDBmjatGmSpKVLl8q2bS1ZssT12BQtAAAAgMe8XPLYpEmTJqlly5b6+c9/rlmzZikQCKhfv3568cUXddNNN1Xv179/f23btk0zZ87UzJkzZVmW+vfvr/Xr16tHjx6ux6VoAQAAAFBv3/ve9/S9733vkvv169dPW7ZsMTImRQsAAADgMVuWgrJCPka4YCI+AAAAAF+j0wIAAAB4zHYuPEI9RrigaPkK54/UviFOQ1lfumuokTzLXLvPSkw0liVJOnPGXFZMjLksmf06BE+eNpYlSZHp7m6y9FXs458by5Ik+2y50TwrytxbjxVr9hyxz5SZC6usNJclyYqOMhcWMNtoN3psMnu+OefOG8sy/b0VkRBvNM+JiDCWZfZravh9xDH7m5jJ12r6/dI+9qmxrIDpr2kddztvqIChn/cBxzL9FgKfoGgBAAAAPBb0YE5LqPO9xJwWAAAAAL5G0QIAAADA17g8DAAAAPAYl4e5Q6cFAAAAgK/RaQEAAAA8ZjuWbCfEN5cMcb6X6LQAAAAA8DU6LQAAAIDHmNPiDp0WAAAAAL5GpwUAAADwWFABBUPcPwiGNN1bdFoAAAAA+BqdFgAAAMBjjgerhzmsHgYAAAAA3qDTAgAAAHiM1cPcodMCAAAAwNfotAAAAAAeCzoBBZ0Qrx7mhDTeU3RaAAAAAPgaRQsAAAAAX+PyMAAAAMBjtizZIe4f2Aqf68PotAAAAADwNTotAAAAgMdY8tgdOi0AAAAAfI1OCwAAAOAxb5Y8Zk4LAAAAAHiCTgsAAADgsQurh4V2zkmo871EpwUAAACAr9FpAQAAADxmK6Ag92mpNzotAAAAAHyNTgsAAADgMVYPc4dOCwAAAABfo9MCAAAAeMxWQDZzWuqNTgsAAAAAX6NoAQAAAOBrrouWvXv3avbs2crMzFSrVq2UmJionj17auHChTpz5kyt/XNzczVixAilpaWpWbNm6tSpkyZOnKi//e1vRl4AAAAA0NgEHcuTR7hwPadl9erVWr58uUaMGKGxY8cqKipKW7du1cyZM/XSSy8pLy9PzZo1kyS9/vrr+s53vqNOnTpp6tSpatmypf7yl7/o17/+tV5++WV99NFHSk1NNf6iAAAAAIQP10XLnXfeqZycHCUnJ1dvmzx5sjIyMrRw4UKtWrVKU6dOlSQ99dRTioiI0I4dO9SyZcvq/bt166aJEydq/fr1mj59+uW/ii+xYmJkWdFGsgK2bSRHkhQVZS5LkoJBY1FOHR2yy2Lw/82KNLtWhF1RYSwrEG32a+qcOGUsy4o28z1QJWDwfJMkKzbGWJZz7ryxLEmKSEowmmeUbW5CpXPe7P+bArHmsiIizGVJCsSYO9+Cp4uNZUmSU1lpNM/k95YM/r9JklVu7v3X5M8Zyez7iBUw+5dtk+/ndlmZsSzTrC/+4H3ZOU6EVG4kKuSCHtxcMtiUJ+L37t27RsFS5a677pIk7d69u3pbcXGxYmNj1bx58xr7tmvXTpIUHx/vdngAAAAATYyx8u7IkSOSpJSUlOptQ4cOVUlJibKzs/Xhhx+qsLBQ//3f/62HH35YXbt21d13321qeAAAAKDRsJ2AJ49wYeTam2AwqPnz5ysyMlJjxoyp3p6Tk6NPP/1Uq1ev1rp166q333bbbfrd736nxMTEBo/Ztm3bGh/bhlvFAAAAAPzBSNEyffp05ebmatGiRerSpUv19oiICKWmpiorK0u33367WrRooe3bt2vp0qW6++67tWHDBkWZnusBAAAA+BxzWty57KJl1qxZWrZsmSZNmqScnJwaz/3rv/6rduzYob/85S/VK4rdfvvt6ty5sx544AE9//zzmjBhQoPGLSoqqvFxcXFxnXNtAAAAADRul1XezZkzRwsWLND48eP13HPP1Xju448/1rp16/Sd73ynumCpMmrUKEnS22+/fTnDAwAAAI2SrdDfqyWcJk80uGiZM2eO5s6dq+zsbK1cuVKWVXOJv8LCQkkX5rv8s/NfLLV53vSSmwAAAADCToOKlnnz5mnu3LkaN26cVq9erUCgdkyXLl0UERGh//zP/9SpU6dqPLdmzRpJUp8+fRoyPAAAANCo2Qp48ggXrue0LF++XI8//rjS09OVlZWlF198scbzKSkpGjJkiFq0aKHp06dryZIluuGGGzRx4sTqifjr1q1Tp06dGjyfBQAAAEDT4bpoyc/Pl3Rhzkp2dnat5wcOHKghQ4ZIkp588kl16dJFK1eu1KJFi1RRUaHU1FQ98MADmjNnjpKSki7z8AEAAACEO9dFy5o1a6ov77oUy7I0ceJETZw40e0wAAAAQNgKOgEFQ3zzx1Dneyl8XgkAAACAsGTk5pIAAAAA6s+WJVvWpXe8zDHCBZ0WAAAAAL5GpwUAAADwGHNa3AmfVwIAAAAgLNFpAQAAADwWVEDBEPcPQp3vpfB5JQAAAADCEp0WAAAAwGO2Y8l2Qrx6WIjzvUSnBQAAAICv0WkBAAAAPGZ7MKfFDqP+RPi8EgAAAABhiU4LAAAA4DHbCcgO8X1UQp3vpfB5JQAAAADCEkULAAAAAF/j8jAAAADAY0FZCiq0SxKHOt9LdFoAAAAA+BqdFgAAAMBjTMR3J3xeCQAAAICwRKcFAAAA8FhQoZ9zEgxpurfotAAAAADwNTotAAAAgMeY0+JO+LwSAAAAAGGJTgsAAADgsaATUDDEnZBQ53spfF4JAAAAgJCyLKvOR0JCQq19CwoKNHLkSDVv3lzx8fEaMGCA3nrrrQaNG36dlmBQssyslWBFRxvJkSQrOclYliTtn/w1Y1nJPT8zliVJmSmHjGUFrPPGsiRpWPJHxrI2nrzBWJYk/el4a2NZnxy9yliWJHV95KDRPKfsrLEsK66ZsSxJcs6WG80zyYoy95btnDP7vaWSEmNRJt97JSl4uthYVkRCvLEsSZLBr6kkBU+eNphWajBLsiIijOaZZAXM/Q03cHULY1mS5JSY+zoErko2liVJwc9PGMuyy8rM5DjnjOR4wZElO8Srhzkhyh8wYIAmTZpUY1tUVFSNjw8cOKD+/fsrMjJSM2bMUHJyslasWKGhQ4fqtddeU1ZWlqsxw69oAQAAABAyHTt21L333vuV++Tk5OjUqVPauXOnevbsKUm677771K1bN02ZMkV79uyRZdW/qOLyMAAAAMBjVXNaQv0IlcrKSpWW1t0JPHPmjDZu3KhBgwZVFyySlJCQoAkTJmjv3r3Kz893NR5FCwAAAIB6+4//+A/FxcUpMTFRrVu31rRp03T69D8uT921a5cqKirUr1+/Wp+bmZkpSa6LFi4PAwAAAMJYRkaGAl+au1VUVNTgrL59+2rUqFHq3LmziouL9eqrr2rZsmV6++23tWPHDiUkJOjo0aOSpNTU1FqfX7WtsLDQ1bgULQAAAIDHbMeS7YR2In4o8t9///0aH9933326/vrr9dhjj+mZZ57RY489prIvFlaIiYmp9fmxsbGSVL1PfXF5GAAAABDG9u3bp6KiouqHaT/5yU8UHR2tTZs2SZLi4uIkSRUVFbX2LS8vr7FPfdFpAQAAADwWVEDBEPcPQp1fJSoqSu3atdNnn124jUa7du0k1X0JWNW2ui4d+yp0WgAAAAA0WHl5uY4cOaKUlBRJUvfu3RUTE6Pc3Nxa++bl5UmSevfu7WoMihYAAADAY1VzWkL9MOnzzz+vc/usWbN0/vx5DR8+XNKFpY2HDx+ubdu26cMPP6zer7S0VCtXrlRGRob69u3ramwuDwMAAABwSQsWLFBeXp4GDx6s9PR0lZaW6tVXX9XWrVv1zW9+U9OmTaved/HixdqyZYtuvfVWPfjgg0pKStKKFStUWFioTZs2ubqxpETRAgAAAHjOVkB2iC96Mp0/aNAg/fWvf9Xzzz+vzz//XBEREcrIyNDChQv10EMPVa8MJkmdO3fW9u3b9cgjj+iJJ55QZWWlevXqpddff11ZWVmux6ZoAQAAAHBJ3/3ud/Xd73633vt37dpVGzZsMDI2RQsAAADgsaBjKRji+7SEOt9LTMQHAAAA4Gt0WgAAAACPhWJ1r7rGCBd0WgAAAAD4GkULAAAAAF/j8jAAAADAY44TkO2Etn/ghDjfS+HzSgAAAACEJTotAAAAgMeCshRUiJc8DnG+l+i0AAAAAPA1Oi0AAACAx2wn9EsS205I4z1FpwUAAACAr9FpAQAAADxme7B6WKjzvRQ+rwQAAABAWKLTAgAAAHjMliU7xKt7hTrfS3RaAAAAAPganRYAAADAY0HHUjDEq4eFOt9LdFoAAAAA+BqdFgAAAMBjrB7mTvi8EgAAAABhiaIFAAAAgK9xeRgAAADgMVuW7BBPlGfJYwAAAADwCJ0WAAAAwGOOBzeXdMKo0+K6aNm7d6/Wrl2rN954QwcOHFB5ebk6deqkUaNGafr06YqPj6/1OZs2bdJTTz2lnTt3qqKiQmlpabr11lu1bNkyIy/iy1L+YCs6wTaSlRhVbiRHkl7b38FYliTF7jB3Era89zNjWZJ0IKaFsSz71GljWZJUENXXWJYVYbZR2TzN3N8QAt3M/j3i22/vN5oXF6gwlvXyN68xliVJTuU5Y1mBhNrvh5fDLikxlmXFxBjLMs2KjzOaF6isNBhm9heA4Emz73EmRSQlXOlDuKig4Z8NgWaxxrLsz08Yy5IkWeZ+1lgG398kKaJFc3NhlpnvrYBdKZn7EQMfcf2bzerVq7V8+XKNGDFCY8eOVVRUlLZu3aqZM2fqpZdeUl5enpo1a1a9/9y5czVnzhwNHTpUc+fOVVxcnD7++GPt2rXL6AsBAAAAGgvb8WBOSxjdXNJ10XLnnXcqJydHycnJ1dsmT56sjIwMLVy4UKtWrdLUqVMlSZs3b9acOXM0b948zZo1y9xRAwAAAGgyXPcce/fuXaNgqXLXXXdJknbv3l29bdGiRWrdurVycnIkSaWlpbJtM5duAQAAAI1V1c0lQ/0IF8ZeyZEjRyRJKSkpkqQzZ87onXfe0Te/+U2tWrVKqampSkxMVEJCgu6++2598sknpoYGAAAAEMaMzNYNBoOaP3++IiMjNWbMGEnS/v37FQwGlZeXpzfeeEOPPPKIevTooXfffVfPPPOMdu3apf/93/9VXFzDJly2bdu2xsd0cAAAANBYMKfFHSNFy/Tp05Wbm6tFixapS5cukqSSL1a5OX78uFasWKEJEyZIkm6//XYlJSVp7ty5ev755/XAAw+YOAQAAAAAYeqyLw+bNWuWli1bpkmTJlXPXZFUvYJYIBDQuHHjanxOdna2JGnbtm0NHreoqKjGY9++fQ3OAgAAALxkf3GfllA/wsVlFS1z5szRggULNH78eD333HM1nktLS5MkNW/eXDH/dD+Aqku7Tp48eTnDAwAAAGgCGnx52Jw5czR37lxlZ2dr5cqVsv7ppkApKSlKT0/X3//+d5WVldWYu1I1ab9169YNHR4AAABotJjT4k6DOi3z5s3T3LlzNW7cOK1evVqBQN0x48aNk+M4+tWvflVj+7PPPitJuu222xoyPAAAAIAmxHWnZfny5Xr88ceVnp6urKwsvfjiizWeT0lJ0ZAhQyRJM2bM0Msvv6wf//jH2rt3r3r06KH33ntP69at080331x9bxcAAAAAuBjXRUt+fr4k6eOPP66eUP9lAwcOrC5akpKS9O6772rWrFnasGGDVq1apbS0ND366KOaNWuWIiIiLvPwAQAAgMaHy8PccV20rFmzRmvWrKn3/i1bttSzzz5bfUkYAAAAALhh5D4tAAAAAOqPTos7l32fFgAAAAAIJTotAAAAgMfotLhDpwUAAACAr9FpAQAAADzmSLIV2k6IE9J0b9FpAQAAAOBrdFoAAAAAjzGnxR06LQAAAAB8jU4LAAAA4DE6Le7QaQEAAADgaxQtAAAAAHyNy8MAAAAAj3F5mDt0WgAAAAD4Gp0WAAAAwGN0Wtyh0wIAAADA1+i0AAAAAB5zHEtOiDshoc73Ep0WAAAAAL5GpwUAAADwmC1LtkI8pyXE+V6i0wIAAADA1+i0AAAAAB5j9TB36LQAAAAA8DU6LQAAAIDHWD3MnbArWj4dE6/IQLSRrKMljpEcSepQ9pGxLEmKSEw0FxYwe0Kf//Qzo3kmBSIijGU5waCxLEnS4UJjUUn7DhrLkqRNL7cymhfxtVRjWb3e+ZuxLEm6r3mesawHxv/IWJYkxew6ZCzLPl1iLEuSrOgoY1n2yVPGsiQp0Pwqc2EG30MkySo9YzRPlrkLKJzyCmNZkuQEbXNhAbNfB5MCV7cwmmd/fsJYVrDE7Pe9SdaN3Yzk2MFy6XMjUfCZsCtaAAAAAL9jTos7zGkBAAAA4GsULQAAAAB8jcvDAAAAAI8xEd8dOi0AAAAAfI1OCwAAAOAxx4OJ+HRaAAAAAMAjdFoAAAAAjzmSHHO3BLzoGOGCTgsAAAAAX6PTAgAAAHjMliVLIb65ZIjzvUSnBQAAAICv0WkBAAAAPMZ9Wtyh0wIAAADA1+i0AAAAAB6zHUtWiDshob4PjJfotAAAAABokLKyMnXs2FGWZWnq1Km1ni8oKNDIkSPVvHlzxcfHa8CAAXrrrbdcj0PRAgAAAKBBZs+erePHj9f53IEDB9S/f3/l5uZqxowZevLJJ1VaWqqhQ4dq8+bNrsbh8jAAAADAY47jwc0lQ5z/pz/9SU8//bR+/vOf6+GHH671fE5Ojk6dOqWdO3eqZ8+ekqT77rtP3bp105QpU7Rnzx5ZVv0uYaPTAgAAAMCVYDCoiRMnatiwYfre975X6/kzZ85o48aNGjRoUHXBIkkJCQmaMGGC9u7dq/z8/HqPR9ECAAAAeKxqyeNQP0Llqaee0p49e7Rs2bI6n9+1a5cqKirUr1+/Ws9lZmZKkquihcvDAAAAgDCWkZGhQOAfvYqioqLLyjt48KAef/xxzZ49Wx06dNChQ4dq7XP06FFJUmpqaq3nqrYVFhbWe0yKFgAAAMBjjfnmkpMnT1bHjh310EMPXXSfsrIySVJMTEyt52JjY2vsUx8ULQAAAEAY27dvn5KSkoxkrV27Vm+++abeeecdRUVFXXS/uLg4SVJFRUWt58rLy2vsUx8ULQAAAIDHGuPNJSsqKvTQQw/ptttuU5s2bbR//35J/7jM6/Tp09q/f79atmypdu3a1Xjuy6q21XXp2MUwER8AAADAJZ09e1bHjx/Xpk2blJGRUf0YNGiQpAtdmIyMDK1cuVLdu3dXTEyMcnNza+Xk5eVJknr37l3vsem0AAAAAB5rjPdpiY+P1/r162ttP378uH74wx9q2LBh+sEPfqDrr79eCQkJGj58uF555RV9+OGH6tGjhySptLRUK1euVEZGhvr27VvvsSlaAAAAAFxSVFSU7rzzzlrbq1YP69SpU43nFy9erC1btujWW2/Vgw8+qKSkJK1YsUKFhYXatGlTvW8sKVG0AAAAAJ670GkJ9ephIY2/pM6dO2v79u165JFH9MQTT6iyslK9evXS66+/rqysLFdZFC0AAAAAGqxDhw5yLlIhde3aVRs2bLjsMShaAAAAAI815vu0XAmsHgYAAADA1yhaAAAAAPgal4cBAAAAHnO+eIR6jHBBpwUAAACAr9FpAQAAADzGRHx36LQAAAAA8LWw67Q4Z8/KsYJX+jBqibi6hdE852y5sSy71FyWJAXi48yFBc1+LW2D/29WlOFvH4Ov1amsNJYlSRGtWxnNc4pLjGXtzIw3liVJ/3PDD41l/cdLS41lSdKA/InGstJnJBnLkiSdPG02zyDb4PnmVJ4zlhUKVmyMubBzZl+ryWMz/bdju6zMWFYgxuDXQFLgqmRjWVZSorEsSdozt7mxrJs6HzCSc+5MpXSLkajQY1KLK646LXv37tXs2bOVmZmpVq1aKTExUT179tTChQt15syZr/zcZ599VpZlybIsffbZZ5d10AAAAACaDld/Kl69erWWL1+uESNGaOzYsYqKitLWrVs1c+ZMvfTSS8rLy1OzZs1qfd7Ro0f1yCOPKCEhQaWlpcYOHgAAAGiUPJjTojCa0+KqaLnzzjuVk5Oj5OR/tConT56sjIwMLVy4UKtWrdLUqVNrfd6UKVPUqVMndevWTWvXrr38owYAAADQZLi6PKx37941CpYqd911lyRp9+7dtZ77wx/+oI0bN+q5555TREREAw8TAAAACB+O480jXBhZPezIkSOSpJSUlBrbi4uLNXXqVN1///3q27eviaEAAAAANDGXvfxRMBjU/PnzFRkZqTFjxtR47qc//als29bixYsvd5ha2rZtW+Nj27aNjwEAAACEAvdpceeyi5bp06crNzdXixYtUpcuXaq3b9++Xb/61a+0bt26Oi8pAwAAAID6uKyiZdasWVq2bJkmTZqknJyc6u2VlZWaNGmSsrKydM8991z2QdalqKioxsfFxcUURwAAAGgcHCv0q3vRaZHmzJmjBQsWaPz48XruuedqPLd8+XLt2bNHS5Ys0f79+6u3l5RcuMHXwYMHVVxcrI4dOzZ0eAAAAABNRIOKljlz5mju3LnKzs7WypUrZVk1q7jDhw/Ltm19+9vfrvPz+/btq/j4eO7ZAgAAAOCSXBct8+bN09y5czVu3DitXr1agUDtBcjGjx+vb33rW7W2L1++XNu2bdPq1avVvHnzhh0xAAAA0Mh5sSRxOC157KpoWb58uR5//HGlp6crKytLL774Yo3nU1JSNGTIEPXo0UM9evSo9fl//OMfJUnDhw9Xy5YtL+OwAQAAADQVroqW/Px8SdLHH3+s7OzsWs8PHDhQQ4YMMXNkAAAAQLhyvniEeoww4ermkmvWrJHjOBd9bNu2rV6fT5cFAAAAQH1d9n1aAAAAALjDzSXdcdVpAQAAAACv0WkBAAAAroQwmnMSanRaAAAAAPganRYAAADAY8xpcYdOCwAAAABfo9MCAAAAeI37tLhCpwUAAACAr1G0AAAAAPA1Lg8DAAAAPGd98Qj1GOGBTgsAAAAAX6PTAgAAAHiNifiu0GkBAAAA4Gt0WgAAAACv0WlxhU4LAAAAAF+j0wIAAAB4zbEuPEI9Rpig0wIAAADA1+i0AAAAAB5znAuPUI8RLui0AAAAAPA1Oi0AAACA11g9zBU6LQAAAAB8Lew6LcGSUllWlJEsKyLCSI4kWc1ijWVJMnqRohVl9jRwyivMhQXMrnoRiI0xmmeSEwwayzJ57kqSKs8ZjbNLzxjLCsQ3M5YlSZH7jhjLGtvz/xnLkqR0FRnLynr7kLEsSfr94RuNZbWaUGIsy7RAYoLRPPvUaaN5JjlB22ieoR/NF7LizH7fyzb3Wp0Ss+ev1THdWNZff5JoLEuSMp4z93Pr0/8pN5Jz3jH78yqkWD3MFTotAAAAAHyNogUAAACAr4Xd5WEAAACA31nOhUeoxwgXdFoAAAAA+BqdFgAAAMBrLHnsCp0WAAAAAL5GpwUAAADwGkseu0KnBQAAAICv0WkBAAAAvMacFlfotAAAAADwNTotAAAAgNfotLhCpwUAAACAr9FpAQAAALxGp8UVOi0AAAAAfI1OCwAAAOA17tPiCp0WAAAAAL5G0QIAAADA17g8DAAAAPCY5Vx4hHqMcEGnBQAAAICv0WkBAAAAvMaSx67QaQEAAADgaxQtAAAAAHyNogUAAACArzGnBQAAAPCYJQ9WDwttvKfotAAAAADwNTotAAAAgNcc68Ij1GOECTotAAAAAHyNTgsAAADgNe7T4gqdFgAAAAC+RtECAAAAwNcoWgAAAACvOR49DCooKNDYsWPVtWtXJScnKy4uTtdee60eeughFRUV1bn/yJEj1bx5c8XHx2vAgAF66623GjQ2c1oAAAAAXNKRI0dUVFSk22+/XWlpaYqMjNRHH32kX//61/r973+vDz74QK1bt5YkHThwQP3791dkZKRmzJih5ORkrVixQkOHDtVrr72mrKwsV2NTtAAAAAAesxwPbi5pOP+WW27RLbfcUmv7v/zLv2j06NFas2aNZsyYIUnKycnRqVOntHPnTvXs2VOSdN9996lbt26aMmWK9uzZI8uq/5LMXB4GAAAAoMHat28vSTp58qQk6cyZM9q4caMGDRpUXbBIUkJCgiZMmKC9e/cqPz/f1RgULQAAAIDXGuGclirl5eX67LPPdOTIEb3xxhu6//77JUm33XabJGnXrl2qqKhQv379an1uZmamJLkuWsLu8rBAs1gFrGgjWXZ5hZEcSbJLSo1lSVJE86uMZdmnThvLkiTHCZoLs83W1VZCrLEs50yZsSxJkm3uncWKiTGWJUnO+fNm84LmzhGrRXNjWZLklJwxlmWXFBvLuhBo7hx585ttjWVJ0tVfjzCWlfHHz4xlSdKo5v9jLGv6/CnGsiSp9ZsfG81zikvMhUWYff+1Db5nRqS1MZYlSYFoM783SNJP3/6jsSxJmr67vbGsb0z/3FiWJAU/PmIsK9DczHt5wK6UzL6FhIWMjAwFAv/4nq5r0rwbK1eu1LRp06o/7tChg9auXasBAwZIko4ePSpJSk1NrfW5VdsKCwtdjRl2RQsAAADge4345pIjR47Utddeq9LSUv35z3/Wxo0b9dln/6gWy8ou/JEipo4/osbGxtbYp74oWgAAAIAwtm/fPiUlJRnLS0tLU1pamqQLBcwdd9yhPn36qKysTDk5OYqLi5MkVVTUvmqpvLxckqr3qS9Xvd+9e/dq9uzZyszMVKtWrZSYmKiePXtq4cKFOnPmH5dUOI6jtWvX6u6771bnzp0VFxen9PR0jRgxQu+//76rAwQAAADCTdXqYaF+eOH666/XDTfcoF/+8peSpHbt2kmq+xKwqm11XTr2VVwVLatXr9ZTTz2lTp06afbs2XryySfVpUsXzZw5U/3799fZs2clXaiqxo0bp4KCAt19991aunSpJk2apD/96U/q16+f1q5d6+ogAQAAAPjX2bNndeLECUlS9+7dFRMTo9zc3Fr75eXlSZJ69+7tKt/V5WF33nmncnJylJycXL1t8uTJysjI0MKFC7Vq1SpNnTpVkZGR2rZtmwYOHFjj8ydOnKhu3brp4Ycf1pgxY2pMCAIAAACaDMe68Aj1GAYdO3ZMbdrUXghj69at2r17twYNGiTpwtLGw4cP1yuvvKIPP/xQPXr0kCSVlpZq5cqVysjIUN++fV2N7apouVhFdNddd2nhwoXavXv3hdDIyFoFiySlpKRo4MCBeuWVV/Tpp5/W+aIBAAAA+M8DDzygoqIi3XzzzWrfvr3Ky8u1c+dO/f73v1diYqKWLFlSve/ixYu1ZcsW3XrrrXrwwQeVlJSkFStWqLCwUJs2bXJ1Y0nJ0ET8I0cuLHmXkpJSr32jo6N11VVXmRgaAAAAaHwa4eph99xzj37729/qhRde0PHjx2VZltq3b6/7779fP/nJT5Senl69b+fOnbV9+3Y98sgjeuKJJ1RZWalevXrp9ddfV1ZWluuxL7toCQaDmj9/viIjIzVmzJiv3PfVV1/V//zP/2jcuHHVy501VNu2Ne8xYNv2ZeUBAAAAuLjRo0dr9OjR9d6/a9eu2rBhg5GxL7tomT59unJzc7Vo0SJ16dLlovvt27dP48aNU2pqao3WEQAAAAB8lcsqWmbNmqVly5Zp0qRJysnJueh+Bw8e1C233CLLsvTaa6+pVatWlzOspNp38iwuLq6xQAAAAADgV14sSezVksdeaHDRMmfOHC1YsEDjx4/Xc889d9H9Dh06pMGDB6u0tFRbtmxR9+7dGzokAAAAgCaoQUXLnDlzNHfuXGVnZ2vlypUXnf1/6NAhDRo0SKdPn9bmzZt1ww03XNbBAgAAAGGhEU7Ev5JcFy3z5s3T3LlzNW7cOK1evfqi91o5fPiwBg8erFOnTunNN9/UjTfeeNkHCwAAAKDpcVW0LF++XI8//rjS09OVlZWlF198scbzKSkpGjJkiEpKSjR48GAdOnRI06ZNU0FBgQoKCmrsO2TIkHotkQwAAACEHQ/mtDTZTkt+fr4k6eOPP1Z2dnat5wcOHKghQ4bo888/18GDByVJS5curTNr69atFC0AAAAALslV0bJmzRqtWbPmkvt16NBBjhNGpR0AAABgEnNaXKl7QgoAAAAA+MRl31wSAAAAgEt0Wlyh0wIAAADA1+i0AAAAAB6zPFg9LOSrk3mITgsAAAAAX6NoAQAAAOBrFC0AAAAAfI2iBQAAAICvMREfAAAA8BpLHrtCpwUAAACAr9FpAQAAADzGksfu0GkBAAAA4Gt0WgAAAIArIYw6IaFGpwUAAACAr9FpAQAAALzG6mGu0GkBAAAA4Gt0WgAAAACPsXqYO3RaAAAAAPganRYAAADAa8xpcSX8ipaICMmKuNJHUUsgLs5onn2mzGieSVZMjLGsQFKisSxJCh7/zFhWINHssamy0liUfbbcWFYoBKKjjGWd/9shY1mSFHF1C2NZgWaxxrIkyQnaxrICVyUby5KkYMHfjGXtyTR7EcCi1v/PWFb5GMtYliRZa819TSXp/tT/NZb1+qnrjWVJ0nea/8VYVrm9z1iWJN2RUGws6zvfNHe+SVKbsuPGsuzyCmNZki78zmWIfeq0mRznnJEc+A+XhwEAAADwtfDrtAAAAAA+x0R8d+i0AAAAAPA1Oi0AAACA15iI7wqdFgAAAAC+RqcFAAAA8BqdFlfotAAAAADwNTotAAAAgMdYPcwdOi0AAAAAfI1OCwAAAOA15rS4QqcFAAAAgK/RaQEAAAC8RqfFFTotAAAAAHyNTgsAAADgMVYPc4dOCwAAAABfo2gBAAAA4GtcHgYAAAB4jYn4rtBpAQAAAOBrdFoAAAAAjzER3x06LQAAAAB8jU4LAAAA4DXmtLhCpwUAAACAr9FpAQAAALxGp8UVOi0AAAAAfI1OCwAAAOAx64tHqMcIF3RaAAAAAPganRYAAADAa8xpcYVOCwAAAABfo9MCAAAAeMxyQn/H+lDne4lOCwAAAABfo2gBAAAA4GtcHgYAAAB4jYn4rtBpAQAAAOBrdFoAAACAKyGMOiGhRqcFAAAAgK+FXafFioyUZZl5WVZEhJEcSXIqKoxlSZJTWWksK6Ll1cayJMkuLjGWdf6T48ayJCkiId5YlsmvgSTZZ8uNZUUkJRjLuhBo7ntBkuzSM8ayrEizb2N2camxLCs6yliWZPYcsc+UGcuSpMh2bYxlBY99YixLkpwSc1/T1Kf/11iWJAWfizGat7y0i7GsiMRoY1mStKyyp7GsQPOrjGVJ0qqzZ41l2WfN/tySbe5P8VaE2b9Vm3z/NfZ7kmObyfEASx67Q6cFAAAAgK+FXacFAAAA8D1WD3OFTgsAAAAAX3NdtOzdu1ezZ89WZmamWrVqpcTERPXs2VMLFy7UmTO1r1MvKCjQyJEj1bx5c8XHx2vAgAF66623jBw8AAAA0BhVzWkJ9SNcuC5aVq9eraeeekqdOnXS7Nmz9eSTT6pLly6aOXOm+vfvr7Nfmsx24MAB9e/fX7m5uZoxY4aefPJJlZaWaujQodq8ebPRFwIAAAAgPLme03LnnXcqJydHycnJ1dsmT56sjIwMLVy4UKtWrdLUqVMlSTk5OTp16pR27typnj17SpLuu+8+devWTVOmTNGePXtkWZaZVwIAAAA0FsxpccV1p6V37941CpYqd911lyRp9+7dkqQzZ85o48aNGjRoUHXBIkkJCQmaMGGC9u7dq/z8/AYeNgAAAICmwthE/CNHjkiSUlJSJEm7du1SRUWF+vXrV2vfzMxMSaJoAQAAAHBJRpY8DgaDmj9/viIjIzVmzBhJ0tGjRyVJqamptfav2lZYWNjgMdu2bVvjY9tuPDcTAgAAQNPGzSXdMVK0TJ8+Xbm5uVq0aJG6dLlwN96ysgt3W46JqX2339jY2Br7AAAAAMDFXHbRMmvWLC1btkyTJk1STk5O9fa4uDhJUkVFRa3PKS8vr7FPQxQVFdX4uLi4uM65NgAAAIDvMBHflcua0zJnzhwtWLBA48eP13PPPVfjuXbt2kmq+xKwqm11XToGAAAAwH+u5P0aG9xpmTNnjubOnavs7GytXLmy1tLF3bt3V0xMjHJzc2t9bl5enqQLK5EBAAAATU4j7LSsXr1ay5cv14gRIzR27FhFRUVp69atmjlzpl566SXl5eWpWbNmkv5xv8bIyEjNmDFDycnJWrFihYYOHarXXntNWVlZrsZuUNEyb948zZ07V+PGjdPq1asVCNRu2CQkJGj48OF65ZVX9OGHH6pHjx6SpNLSUq1cuVIZGRnq27dvQ4YHAAAA4LEreb9G10XL8uXL9fjjjys9PV1ZWVl68cUXazyfkpKiIUOGSJIWL16sLVu26NZbb9WDDz6opKQkrVixQoWFhdq0aRM3lgQAAECT1BhXD7vYVVJ33XWXFi5cWO/7Nc6ePVv5+fmuGhiui5aqe6t8/PHHys7OrvX8wIEDq4uWzp07a/v27XrkkUf0xBNPqLKyUr169dLrr7/uuiUEAAAAwH8aer/GkBYta9as0Zo1a+q9f9euXbVhwwa3wwAAAADhy8M5LRkZGTWmc/zzKryXw6v7NRq5TwsAAACApser+zVStAAAAAAesxxHlhPaVktV/r59+5SUlGQ838v7NV7WfVoAAAAAND1e36+RTgsAAADgtUZ4n5YqV+J+jXRaAAAAANSLm/s1btu2TR9++GH19su5XyOdFgAAAACXdCXv10jRAgAAAHisMd5c8krer5GiBQAAAMAlXcn7NVK0AAAAAF5rxBPxrwQm4gMAAADwNTotAAAAgMca45yWK4lOCwAAAABfo9MCAAAAeI05La7QaQEAAADga3RaAAAAAI8xp8UdOi0AAAAAfI1OCwAAAOA15rS4QqcFAAAAgK+FXafFOXtWjhU0kxU0kxMKVnS0sSz71GljWZLkOObK+kB0lLEsSQoWFxvLCiQmGsuSpEBsjLEsJ2gby5IknTtvNs+kiAijcZZlGctyKs8Zy5KkiObJxrKCJ81+3+u8uXPEatbMWJbfOZWVRvMCCQnGshyDX1NJshLijWUFT5w0liVJEW1amws7c9ZcliQFDL4nGf7Z4FRUGMuK7JBuJMexK6RDRqLgM2FXtAAAAACNQThNlA81Lg8DAAAA4Gt0WgAAAACvOc6FR6jHCBN0WgAAAAD4Gp0WAAAAwGPcXNIdOi0AAAAAfI1OCwAAAOA1bi7pCp0WAAAAAL5GpwUAAADwmGVfeIR6jHBBpwUAAACAr9FpAQAAALzGnBZX6LQAAAAA8DU6LQAAAIDHuE+LO3RaAAAAAPgaRQsAAAAAX+PyMAAAAMBrjnPhEeoxwgSdFgAAAAC+RqcFAAAA8BgT8d2h0wIAAADA1+i0AAAAAF7j5pKu0GkBAAAA4Gt0WgAAAACPMafFHTotAAAAAHyNTgsAAADgNe7T4gqdFgAAAAC+RqcFAAAA8BhzWtyh0wIAAADA1+i0AAAAAF7jPi2u0GkBAAAA4GsULQAAAAB8jcvDAAAAAI8xEd8dOi0AAAAAfI1OCwAAAOA127nwCPUYYYJOCwAAAABfo9MCAAAAeI0lj10Jv6IlIkKyIoxEBWLNNaLs8gpjWZJkRZg7NscJozP6EgJxccayLMsyliVJahZrLCp48rSxLEkKREcZzXMqzH0/WFHRxrIkyXGCxrICCfHGsiTJqTxnLCsiKcFYliQ5ZWfNhdm2uSxJwbIyY1mBmBhjWRcCzV7w4Bj8WRMw+J4kScETp4xlRaa0MpYlScFjnxrLCrS4yliWJOlsubEo2+D3giQFEsy9jwT/XmgmxzH3Pgl/Cb+iBQAAAPA5Sx6sHhbaeE8xpwUAAACAr9FpAQAAALzmOBceoR4jTNBpAQAAAOBrrouWxYsXa9SoUerYsaMsy1KHDh2+cv/XXntNt9xyi9q0aaP4+Hh16dJFP/7xj/XJJ5809JgBAACARs1yvHmEC9eXhz366KNq0aKFevXqpVOnTn3lvitWrNCkSZN044036qc//ani4+OVn5+vp59+Wq+88oo++ugjxcebXV0HAAAAQHhxXbQcOHBAHTt2lCRdd911Ki0tvei+v/jFL9S2bVu99957io29sHTipEmTlJKSooULF+rNN9/UyJEjG3bkAAAAAJoE10VLVcFSH8XFxWrRokV1wVKlXbt2kkSXBQAAAE0TN5d0JaQT8YcOHaq//vWvevjhh/V///d/+vvf/65XXnlF8+fP18CBA3XzzTeHcngAAAAAYSCkSx4/88wzKisr0zPPPKN/+7d/q94+fvx4/epXv1JERMPvXN+2bdsaH9uG76AMAAAAhIrlOLJCvCRxqPO9FNKiJSoqSunp6br99ts1fPhwxcXF6b//+7+1evVqRUREaMWKFaEcHgAAAEAYCFnRYtu2hg0bpvPnz2v79u2yLEuSdOedd+rqq6/Wz372M911113KyspqUH5RUVGNj4uLi5WcnHzZxw0AAACEnP3FI9RjhImQzWl577339O677+qOO+6oLliqjBo1SpL09ttvh2p4AAAAAGEiZJ2WwsJCSVIwGKz13Pnz52v8CwAAADQlzGlxJ2Sdlm984xuSpHXr1uncuXM1nluzZo0kqU+fPqEaHgAAAECYcN1peeGFF3T48GFJ0vHjx1VZWakFCxZIktq3b69x48ZJknr06KE77rhDL7/8snr37q177723eiL+f/3XfykzM1Pf/e53Db4UAAAAoJHgPi2uuC5aVq1aVWsuyqxZsyRJAwcOrC5aJOnFF1/U008/rXXr1mn27NmybVvt27dXTk6OHnvsscta8hgAAABA0+C6aNm2bVu9942OjtaMGTM0Y8YMt8MAAAAA4ctxLjxCPUaYCNmcFgAAAAAwIaQ3lwQAAABQm+VceIR6jHBBpwUAAACAr1G0AAAAAPA1Lg8DAAAAvMZEfFfotAAAAADwNTotAAAAgMcs+8Ij1GOECzotAAAAAHyNTgsAAADgNea0uEKnBQAAAEC9LF68WKNGjVLHjh1lWZY6dOjwlfu///77ysrKUmJiopKSkjRs2DB98MEHrsel0wIAAAB4zfniEeoxDHv00UfVokUL9erVS6dOnfrKffPy8jRo0CClpqZq3rx5kqRly5ZpwIAB2rFjh7p3717vcSlaAAAAANTLgQMH1LFjR0nSddddp9LS0ovu+6Mf/UjR0dF65513lJqaKkkaPXq0unbtqocfflhvvPFGvcfl8jAAAADAY5bjePIwrapguZT9+/crPz9fo0aNqi5YJCk1NVWjRo3S5s2bdezYsXqPS9ECAAAAwKj8/HxJUr9+/Wo9l5mZKcdxtHPnznrncXkYAAAA4DUPVw/LyMhQIPCPXkVRUVFox5V09OhRSarRZalSta2wsLDeeXRaAAAAABhVVlYmSYqJian1XGxsbI196oNOCwAAAOA1R1Ko71j/RSNn3759SkpKCvFgNcXFxUmSKioqaj1XXl5eY5/6CLuixamolGOZabU5waCRHEmyIiKMZUmSXccJ0FARrVsZy5Ik+8QpY1nWVWa/wZySEnNZ588by5KkQFwzY1kRCfHGsiSz55skRVyVbCzLOWf262C7+KvPpTiV54xlSYbfkwyfI4oy9x5nf37CWJYkBZqZ+94y+TWQJJnOc8z9BhQsLjaWJUlWpLlfOZzzZv/fTB6bDL9fmvw6BFz8glgfTrm512rqa2A5tmT2xwIaqF27dpLqvgSsaltdl45dDJeHAQAAADCqT58+kqTc3Nxaz+Xl5cmyLN144431zqNoAQAAADzWWJc8rq/OnTurd+/eWr9+ffWkfOnCBP3169fr5ptvVps2beqdF3aXhwEAAAAIjRdeeEGHDx+WJB0/flyVlZVasGCBJKl9+/YaN25c9b7PPPOMBg8erAEDBmjatGmSpKVLl8q2bS1ZssTVuBQtAAAAgNccebDksfnIVatW6e23366xbdasWZKkgQMH1iha+vfvr23btmnmzJmaOXOmLMtS//79tX79evXo0cPVuBQtAAAAAOpl27Ztrvbv16+ftmzZctnjUrQAAAAAXvPw5pLhgIn4AAAAAHyNTgsAAADgNVuS5cEYYYJOCwAAAABfo9MCAAAAeMyL+6hcyfu0mEanBQAAAICv0WkBAAAAvMbqYa7QaQEAAADgaxQtAAAAAHyNy8MAAAAAr3F5mCt0WgAAAAD4Gp0WAAAAwGt0Wlyh0wIAAADA1+i0AAAAAF6zJVkejBEm6LQAAAAA8DU6LQAAAIDHLMeRFeI5J6HO9xKdFgAAAAC+RqcFAAAA8Bqrh7lCpwUAAACAr9FpAQAAALxmO5IV4k6ITacFAAAAADxBpwUAAADwGnNaXKHTAgAAAMDXKFoAAAAA+BqXhwEAAACe8+DyMHF5GAAAAAB4gk4LAAAA4DUm4rtCpwUAAACAr9FpAQAAALxmOwr5nBNuLgkAAAAA3gi7TksgIU4BK9pMmMnqNGCZy5LknDtvLqv0jLEsSbIizNXC9qnTxrKMC9pG484f+8RcWCDCXJakyJRWRvNsg+ecU3nOWJYkBWJizIVZZr/vTb4nmfwaSFIgMcFYVkRCvLEsSXIMXtMdiDT7Y9OuqDCaZ0Ub+vknKXB1C2NZktn3c6eszFiWJFlxccaygp99ZixLkgKJicay7NJSY1mSFGjWzFyYbfZnaqPg2BceoR4jTNBpAQAAAOBrYddpAQAAAHyP1cNcodMCAAAAwNfotAAAAABeY/UwV+i0AAAAAPA1Oi0AAACA15jT4orrTsvixYs1atQodezYUZZlqUOHDpf8nBdeeEE33XSTkpKSlJCQoOuuu07z589vyPECAAAAaGJcd1oeffRRtWjRQr169dKpU6cuuf/3v/99Pf/887rjjjt07733KhAI6ODBgzp8+HBDjhcAAABAE+O6aDlw4IA6duwoSbruuutU+hU3Klq1apV+85vf6Le//a3GjRvX8KMEAAAAwokjDy4PC228l1xfHlZVsFyK4zhavHixevXqVV2wlJSUGL0zMQAAAIDwF7LVwwoKCnTgwAH1799f8+fP19VXX62kpCRdddVVmjx58ld2aAAAAICwVjURP9SPMBGy1cMKCgokSf/+7/+uyspKzZw5U1//+tf1xz/+Ub/61a9UUFCgt956S5ZlNSi/bdu2NT62bfuyjxkAAACA/4SsaCkpKZEkHT9+XG+++aaysrIkSXfccYccx9Hzzz+v119/Xd/+9rdDdQgAAACAP9m2pBD/0T2M/qgfssvDmjVrJklKTU2tLliqZGdnS5K2bdvW4PyioqIaj3379jU4CwAAAIB/hazTkpaWJklq06ZNreeqLu06efJkqIYHAAAA/IubS7oSsk5L9+7dFRsbq8LCwlrPHTlyRJLUunXrUA0PAAAAIEyErGiJi4vTHXfcoWPHjukPf/hDjeeeffZZSdJtt90WquEBAAAA/2L1MFdcXx72wgsvVN/N/vjx46qsrNSCBQskSe3bt69xE8lFixZp8+bNGjNmjKZNm6YOHTro1Vdf1aZNm3Tfffepf//+hl4GAAAAgHDlumhZtWqV3n777RrbZs2aJUkaOHBgjaIlPT1deXl5euyxx/Sb3/xGp0+fVqdOnfSLX/xCDz744GUeOgAAANBI2Y5Cfst6uwl3Wtyu+NWhQwetW7fO7TAAAAAAICmEc1oAAAAAwISQLXkMAAAAoG6OY8txQnvzx1Dne4lOCwAAAABfo9MCAAAAeM1xQj9RPoyWPKbTAgAAAMDX6LQAAAAAXnM8WPKYTgsAAAAAeINOCwAAAOA125asEK/uxephAAAAAOANOi0AAACA15jT4gqdFgAAAAC+RqcFAAAA8Jhj23JCPKfFYU4LAAAAAHiDTgsAAADgNea0uEKnBQAAAICvhV2nxTl3Xo7lw1rMMXtMTuU5c2EBy1yWLnwNTIlIiDeWJUl2RYWxrIhWLY1lSZJ94qSxLCcYNJYlScHjnxnNs2JijGUFkhKMZUlS8ORpY1mB+ChjWZKMrrdvRZr7GpjmVFaazQsa/H9LTjSWJUmBKLM/hu3SM8aynFPmvhckyYqIMJZl9GegJKnMXJTh30FMfj8E4uKMZUmSXWbu/y2QYOi93HGkcjNR8JewK1oAAAAA37MdyeLysPryYUsCAAAAAP6BTgsAAADgNceRFOIliem0AAAAAIA36LQAAAAAHnNsR06I57Q4dFoAAAAAwBt0WgAAAACvObZCP6clxPkeotMCAAAAwNfotAAAAAAeY06LO3RaAAAAAPganRYAAADAa8xpcYVOCwAAAABfC5tOS9U1e8/v+bmSkpKu8NEAAADAa8XFxfra19Y1irkc53VOCvFhnte50A7gobApWkpKSiRJX/va167wkQAAAOBKKikpUXJy8pU+jDpFR0erTZs2eu/Yq56M16ZNG0VHR3syVihZTmMoRevBtm0dPXpUiYmJsizrSh8ODMjIyJAk7du37wofCfyE8wIXw7mBunBeNC2O46ikpETt2rVTIODfWRDl5eWqrKz0ZKzo6GjFxsZ6MlYohU2nJRAIKC0t7UofBgyqerPhcj98GecFLoZzA3XhvGh6/Nph+bLY2NiwKCS85N8SFAAAAABE0QIAAADA58JmTgsAAACA8ESnBQAAAICvUbQAAAAA8DWKFgAAAAC+RtECAAAAwNcoWgAAAAD4GkULAAAAAF+jaAEAAADgaxQtAAAAAHyNogUAAACAr1G0AAAAAPA1ihYAAAAAvkbRAgAAAMDXKFpwRezdu1ezZ89WZmamWrVqpcTERPXs2VMLFy7UmTNnau1fUFCgkSNHqnnz5oqPj9eAAQP01ltvXYEjh9fKysrUsWNHWZalqVOn1nqec6NpOXHihH784x+rc+fOio2NVatWrTR48GC9++67NfZ7//33lZWVpcTERCUlJWnYsGH64IMPrsxBI6RKS0u1aNEide/eXYmJiWrZsqX69++vNWvWyHGcGvtyXgCNV+SVPgA0TatXr9by5cs1YsQIjR07VlFRUdq6datmzpypl156SXl5eWrWrJkk6cCBA+rfv78iIyM1Y8YMJScna8WKFRo6dKhee+01ZWVlXeFXg1CaPXu2jh8/XudznBtNy+HDhzVo0CCVlpbqBz/4ga655hqdPn1au3btUmFhYfV+eXl5GjRokFJTUzVv3jxJ0rJlyzRgwADt2LFD3bt3v1IvAYbZtq1vf/vb2rFjh7KzszVt2jSVlZXpd7/7ncaPH6//+7//089+9jNJnBdAo+cAV0B+fr5z6tSpWtsfe+wxR5KzdOnS6m2jRo1yAoGA8+c//7l6W0lJiZOenu5cc801jm3bXhwyroCdO3c6ERERzpIlSxxJzpQpU2o8z7nRtHzrW99y0tLSnKNHj37lfn369HESExOdI0eOVG87cuSIk5iY6AwZMiTUhwkP7dixw5HkTJ8+vcb2iooK5+tf/7qTnJxcvY3zAmjcuDwMV0Tv3r2VnJxca/tdd90lSdq9e7ck6cyZM9q4caMGDRqknj17Vu+XkJCgCRMmaO/evcrPz/fkmOGtYDCoiRMnatiwYfre975X63nOjablnXfe0XvvvacZM2aobdu2OnfunMrKymrtt3//fuXn52vUqFFKTU2t3p6amqpRo0Zp8+bNOnbsmJeHjhAqLi6WJLVr167G9ujoaLVs2VLx8fGSOC+AcEDRAl85cuSIJCklJUWStGvXLlVUVKhfv3619s3MzJQkfjENU0899ZT27NmjZcuW1fk850bT8uqrr0qS0tPTNXz4cDVr1kzx8fG65pprtHbt2ur9qr7mFzsvHMfRzp07vTlohFzfvn111VVX6ec//7nWr1+vjz/+WHv27FFOTo527typOXPmSOK8AMIBc1rgG8FgUPPnz1dkZKTGjBkjSTp69Kgk1fjLWJWqbV++lh3h4eDBg3r88cc1e/ZsdejQQYcOHaq1D+dG01JQUCBJmjhxojIyMvT888+rsrJSS5Ys0bhx43Tu3DmNHz+e86KJad68uTZu3KgJEyZo9OjR1dsTExP18ssva+TIkZJ4vwDCAUULfGP69OnKzc3VokWL1KVLF0mqvvwjJiam1v6xsbE19kH4mDx5sjp27KiHHnroovtwbjQtJSUlki78Mrp161ZFR0dLkkaOHKmOHTvq0UcfVXZ2NudFE5SQkKDrrrtOI0aMUP/+/XXixAktX75cY8aM0YYNGzRkyBDOCyAMULTAF2bNmqVly5Zp0qRJysnJqd4eFxcnSaqoqKj1OeXl5TX2QXhYu3at3nzzTb3zzjuKioq66H6cG01L1WqC99xzT3XBIl34S/uIESP029/+VgUFBZwXTcxHH32k/v3766mnntLkyZOrt99zzz267rrrNHHiRB04cIDzAggDzGnBFTdnzhwtWLBA48eP13PPPVfjuarJlXW17au21dXuR+NUUVGhhx56SLfddpvatGmj/fv3a//+/Tp8+LAk6fTp09q/f79OnTrFudHEpKWlSZLatGlT67m2bdtKkk6ePMl50cQ89dRTKi8v16hRo2psj4uL03e+8x0dPnxYhw4d4rwAwgBFC66oOXPmaO7cucrOztbKlStlWVaN57t3766YmBjl5ubW+ty8vDxJF1YiQ3g4e/asjh8/rk2bNikjI6P6MWjQIEkXujAZGRlauXIl50YT07dvX0n/WKzjy6q2tW7dWn369JGki54XlmXpxhtvDOGRwktVBUcwGKz13Pnz56v/5bwAGj/Lcf7pdrGAR+bNm6fHH39c48aN05o1axQI1F1Djxo1Sq+88or+9Kc/qUePHpIu3AG5W7duiomJUUFBQa1iB43TuXPntGHDhlrbjx8/rh/+8IcaNmyYfvCDH+j666/XNddcw7nRhJw8eVLt27dXUlKS9uzZo4SEBElSUVGRMjIylJqaWj1Zv0+fPiooKNCePXuq/8J+9OhRXXvtterbt682b958xV4HzHrwwQf19NNP62c/+5lmzJhRvf3UqVP6xje+ofLych0/flwRERGcF0AjR9GCK2L58uWaOnWq0tPTNX/+/FoFS0pKioYMGSLpwvr6ffv2VVRUlB588EElJSVpxYoV+uijj7Rp0yYNHTr0SrwEeOjQoUP6+te/rilTptRYAplzo2n59a9/rfvvv1/dunXT97//fVVWVurZZ59VUVGR/vjHP+rWW2+VJO3YsUODBw9WWlqapk2bJklaunSpPvnkE23fvr26wEXjd/jwYfXq1UsnT57U2LFjddNNN+nEiRNasWKFDh06pOXLl+uHP/yhJM4LoNG7kne2RNOVnZ3tSLroY+DAgTX2/+tf/+qMGDHCSU5Odpo1a+bcdNNNzptvvnllDh6eO3jwoCPJmTJlSq3nODealpdfftn55je/6cTFxTkJCQnOkCFDnPfee6/Wfjt27HBuvvlmJz4+3klISHBuvfVWZ+fOnVfgiBFq+/fvd+677z4nNTXViYyMdBITE50BAwY4L7/8cq19OS+AxotOCwAAAABfYyI+AAAAAF+jaAEAAADgaxQtAAAAAHyNogUAAACAr1G0AAAAAPA1ihYAAAAAvkbRAgAAAMDXKFoAAAAA+BpFCwAAAABfo2gBAAAA4GsULQAAAAB8jaIFAAAAgK9RtAAAAADwtf8P/nkVfNmV8zEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)\n", + "plt.imshow(dps_new_f.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15, 30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 3\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dps.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 4 s" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "dps_new_t = dps.rebin_time(dt_new=6.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 6.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dps_new_t.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(15.0, 30.0)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzgAAAJlCAYAAAAW61cfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABf9ElEQVR4nO3de3gU9b3H8c9sroQkiIpAgoCBiAoIIlBI5QFs8Ebh4CWoKOaggLRCD6K1hAKGe1uLlwNUWy7Fgugpx55ii/V4A60SPClqkbZyK6CEWLFcQ8ht93f+wGyNCbtJyOxMZt+v59lHmZmd+WQyu9nvfmd+YxljjAAAAADAA3xOBwAAAACApkKBAwAAAMAzKHAAAAAAeAYFDgAAAADPoMABAAAA4BkUOAAAAAA8gwIHAAAAgGdQ4AAAAADwDAocAAAAAJ5BgQMAAADAMxpc4OzcuVN33XWXLr/8crVq1UpJSUm67LLLNG3aNBUXF9e5/KhRo9S6dWu1bNlSgwYN0ptvvtkk4QEAAADgqyxjjGnIE9544w0tWLBAAwYMUIcOHRQbG6uPPvpIv/zlL5WamqoPP/xQF110kSRp79696t+/v2JjYzV16lS1atVKy5cv144dO/SHP/xB2dnZtvxQAAAAAKJTgwucs1m/fr1Gjx6tH//4x3rkkUckSaNHj9aLL76obdu2qXfv3pKkkpISde/eXYmJifr4449lWVZTbB4AAAAAmu4anE6dOkmSjh49Kkk6deqUXnrpJQ0ZMiRY3EhScnKyxo8fr127dqmwsLCpNg8AAAAAjS9wysrK9MUXX+jgwYN69dVXdf/990uSbrrpJknS9u3bVV5eroEDB9Z67oABAySJAgcAAABAk4pt7BNXrFihKVOmBP/duXNnrV27VoMGDZIkHTp0SJKUnp5e67nV04qKihq7ebVv377GvwOBgLZt26aUlBROewMAAIhCxhidPHlSaWlp8vncO1hwWVmZKioqIrKt+Ph4JSYmRmRbbtHoAmfUqFG67LLLVFJSog8++EAvvfSSvvjii+D80tJSSVJCQkKt51bv5OplmkIgENDFF1/cZOsDAABA8/Tpp5+qQ4cOTseoU1lZmS7plKzPPvdHZHvt2rXTvn37oqrIaXSB06FDh+CBM2rUKN16663q16+fSktLlZeXp6SkJElSeXl5reeWlZVJUnCZxvj6kNTHjx/Xeeedp0ExIxVrxTV6vXYyVVVORwjLim30IQFJJtAkY3bYKxCZN9RG88U4nSAky+fuDnGzOAZdzteyhdMRQgqUnHI6QniWe785bw588e7/Wxwoq/35zg2qVKl39LJSUlKcjnJWFRUV+uxzvw5s66zUFHtfKydOBtTp6v2qqKigwGmMK6+8UldddZV+9rOfKS8vT2lpaZLqPg2telpdp681VvVpabFWnHsLnGZw6pxluf9N1c2M1Qw+XLr9g4fl8gLH5a/jZnEMupzPinc6QkgBKzKntZwTt7/PuJzPpZ9jvipgBZyOULcv3wLd/l4tSckplpJT7M0ZkPv3gx2a9B3o9OnTOnLkiCSpZ8+eSkhIUEFBQa3ltm7dKknq27dvU24eAAAAQJRrcIHz2Wef1Tl906ZN2rFjR3CEtOTkZI0YMUKbN2/Wn//85+ByJSUlWrFihTIzM9W/f/9GxgYAAACaL78JROQRjRp8PtJ3vvMdFRcX69prr1WnTp1UVlambdu26YUXXlBKSooWL14cXHbRokV64403dN111+nBBx9Uamqqli9frqKiIm3cuLFZtA8BAAAANB8NLnDuvPNO/epXv9KaNWt0+PBhWZalTp066f7779f3v/99dezYMbhs165d9e6772r69On60Y9+pIqKCvXp00evvPKKsrOzm/QHqeZLauHa86f9J086HSGs5jAQgps1i0EafO7O6PpjMMad7y9BptLpBGFZMe6+zipQUuJ0BNjMinP5+6C/GXzr7tovqa3gdThuF5BRwOawdq/frRr8Ch89erRGjx5d7+Uvv/xybdiwoaGbAQAAAIAGY5gTAAAAAJ7h7h4tAAAA4EEBBWT3yYj2b8Gd6OAAAAAA8Aw6OAAAAECE+Y2R39g7CIDd63crOjgAAAAAPIMODgAAABBhDBNtHzo4AAAAADyDDg4AAAAQYQEZ+eng2IIODgAAAADPoIMDAAAARBjX4NjHcwVOoPS0AlaV0zHq1gyG6rNi3X1ImCqX/m6rxcQ4nSC8gLuPQ19iotMRQgqUlTkdITSf+49B4/Jj0HL569j4/U5HCM+4++aCptLdf0t88XFORwjLuHsXIsq5+9MsAAAA4EHcB8c+XIMDAAAAwDPo4AAAAAARFvjyYfc2ohEdHAAAAACeQYEDAAAAwDM4RQ0AAACIMH8EbvRp9/rdig4OAAAAAM+ggwMAAABEmN+cedi9jWhEBwcAAACAZ9DBAQAAACKMYaLtQwcHAAAAgGfQwQEAAAAiLCBLflm2byMaea7AMQEjY0XpFVVNwATcve+shASnIzR7prLC6QghmSqXvxlb7s5n+dydT5KsWHf/6QmUlTkdITSXH4OSZMXGOR2hWXP9MSg1i+MQ0cvdf2UAAAAADwqYMw+7txGNuAYHAAAAgGfQwQEAAAAizB+Ba3DsXr9b0cEBAAAA4BkUOAAAAAA8g1PUAAAAgAjjFDX70MEBAAAA4Bl0cAAAAIAICxhLAWPzjT5tXr9b0cEBAAAAUC+LFi1STk6OMjIyZFmWOnfuXO/n/uAHP5BlWUpOTq5zfnl5uWbPnq1LLrlECQkJ6tKli+bPn6/KysoGZaSDAwAAAERYc70GZ8aMGTr//PPVp08fHTt2rN7P+/DDD/X4448rOTlZxtR9B9Lbb79dGzZs0L333quBAweqoKBAs2bN0p49e7R69ep6b4sCBwAAAEC97N27VxkZGZKkHj16qKSkJOxz/H6/JkyYoBtvvFEnTpzQn/70p1rLvPzyy9qwYYOmTZumxYsXS5LGjx+v8847T48//rgmTpyorKysemWkwIkgKy7e6QhhGb/f6QghmYoKpyOEZMXGOR0hLCvW5S/7mBinE4Tk9mPQBOr+VsxNTHm50xFC87n7GPTFu/99xlRVOR0hJLe/TprF54Wqhp0yhNr88slv89Uidnyqqy5uGuI///M/9de//lX//d//rdzc3DqXWbdunSRp6tSpNaZPnTpVjz/+uNauXVvvAodrcAAAAADY4sCBA5o1a5YeffRRderU6azLFRYWKj09XRdffHGN6RdffLHS0tJUWFhY7226/KtcAAAAwHtMBEZRM1+uPzMzUz7fv/oaxcXFtm73q77zne8oIyND06ZNC7ncoUOHdMUVV9Q5Lz09XQcPHqz3NilwAAAAADS5559/Xq+88oreeecdxYY5Rb60tFQJCQl1zktMTFRpaWm9t0uBAwAAAERYJEdR2717t1JTU23d1tcdOXJEU6dO1X333Veva2eSkpJUfpZrNMvKypSUlFTvbVPgAAAAAGhSc+bM0alTpzRhwgTt2bMnOP306dMyxmjPnj1KSEgIXnOTlpamoqKiOtdVVFSk9PT0em+bAgcAAACIML/xyW9sHkXNwQEDDxw4oFOnTukb3/hGnfMzMzPVvXt37dixQ5LUr18/Pffcc/r0009rDDTw6aef6tChQxo5cmS9t02BAwAAAKBJ/eAHP9Ddd99da/qjjz6qv//971qzZo1atWoVnH7nnXfqueee05NPPhm8D44kPfnkk5Kku+66q97bpsABAAAAUC9r1qzRgQMHJEmHDx9WRUWF5s+fL0nq1KmTxo4dK0kaOHBgnc9funSpDhw4oNtuu63G9OHDh+vb3/62Hn/8cR0/flwDBw5UQUGBVq5cqbvvvlvXXHNNvTNS4AAAAAARFpClgM23pAyo6c9RW7lypd56660a02bNmiVJGjx4cLDAaYz169dr/vz5Wrt2rdasWaP09HTNnTtX06dPb9B6LGOMu2/nW08nTpxQq1atNMR3i2Itd97l2XL5HdolyfjtuOdtEzIBpxOEZMW689irweX7UC5/nZiKCqcjhGY1g/s3u/0YdPk+9MW7/33GVFU5HSEkE3D3R59m8XmhqtLpCHWqMpXabH6r48ePR3zUsPqq/sy6cXuGWqbY+7s+ddKv4Vf+3dX7ww50cAAAAIAIi+Qw0dHGewWOCUhy57eDxuXNEUnytaz/GONOCJyq/02enGDFuPubX0kKVLj8QAy4+5tft3+7b8U1g7d1l397bird3aULuDtes+D2Donbj0FJkhWdH5zRPDSDv4QAAACAt0RmmGh3f6FkF3d/FQkAAAAADUAHBwAAAIiwM6Oo2Xuqn93rdys6OAAAAAA8gw4OAAAAEGEB+eRvhvfBaQ7o4AAAAADwDDo4AAAAQIQxipp96OAAAAAA8Aw6OAAAAECEBeRTgGtwbEEHBwAAAIBnUOAAAAAA8IwGn6K2a9curV27Vq+++qr27t2rsrIydenSRTk5OZo6dapatmxZY/mCggItWrRI77//vv75z38qLS1N1157rfLy8pSRkdFkP0g1KzZOlhXX5OuNFoFTpU5HCMmKc/dZlYHycqcjhGe5+3sNX2KC0xFCCpS5+3dsmsUxGJ03nmsqls/9+88EXH5aTDPYh/A+v7HkN/Yei3av360a/Glx1apVWrZsmUaOHKm77rpLcXFx2rRpk2bOnKlf//rX2rp1q1q0aCFJeuWVVzR8+HB16dJFkydP1oUXXqi//OUv+sUvfqEXX3xRH330kdLT05v8hwIAAAAQnRpc4Nx2223Ky8tTq1atgtMmTZqkzMxMLViwQCtXrtTkyZMlSU888YRiYmK0ZcsWXXjhhcHlu3fvrgkTJmj9+vWaOnXquf8UAAAAQDPij8CNPv0MMlA/ffv2rVHcVLv99tslSTt27AhOO3HihBITE9W6desay6alpUlSrdPZAAAAAOBcNFnZePDgQUlS27Ztg9Ouv/56nTx5Urm5ufrzn/+soqIi/e///q8eeughXX755brjjjuaavMAAABAsxEwvog8olGTXLHt9/s1b948xcbGasyYMcHpeXl5+vzzz7Vq1So999xzwek33XSTnn/+eaWkpDR6m+3bt6/x70Ag0Oh1AQAAAPCGJilwpk6dqoKCAi1cuFDdunULTo+JiVF6erqys7N188036/zzz9e7776rJUuW6I477tCGDRsUF8eIZwAAAIguXINjn3MucGbNmqWlS5dq4sSJysvLqzHv3//937Vlyxb95S9/CY6sdvPNN6tr1676zne+o2effVbjx49v1HaLi4tr/PvEiRN1XhsEAAAAIHqcU9mYn5+v+fPna9y4cXrmmWdqzPvkk0/03HPPafjw4cHiplpOTo4k6a233jqXzQMAAADNUkD/uheOXY9ovYCj0QVOfn6+5syZo9zcXK1YsULW127cVlRUJOnM9TlfV1VVVeO/AAAAANAUGlXgzJ07V3PmzNHYsWO1atUq+Xy1V9OtWzfFxMTot7/9rY4dO1Zj3urVqyVJ/fr1a8zmAQAAgGYtIF9EHtGowdfgLFu2TI8++qg6duyo7OxsrVu3rsb8tm3batiwYTr//PM1depULV68WFdddZUmTJgQHGTgueeeU5cuXRp9/Q0AAAAA1KXBBU5hYaGkM9fY5Obm1po/ePBgDRs2TJL02GOPqVu3blqxYoUWLlyo8vJypaen6zvf+Y7y8/OVmpp6jvFrs2IsWZY7q9VARaXTEcIz7j5b01S6/LRGlx57X2X5rPALOShQVu50hNBc/hqRL8bpBGHFtGr69/6m5P/aWQeu0wzeZ3wtE5yOEFKgpMTpCCFZCe7ef5Jkyl36Xm2ic9Qw1NTgAmf16tXBU8zCsSxLEyZM0IQJExq6GQAAAMCz/MYnv8034rR7/W4VnT81AAAAAE9qkht9AgAAAKi/gCwFZO9p43av363o4AAAAADwDDo4AAAAQIRxDY59ovOnBgAAAOBJdHAAAACACPPLJ7/NvQa71+9W0flTAwAAAPAkOjgAAABAhAWMpYCxeRQ1m9fvVnRwAAAAAHgGHRwAAAAgwgIRuAYnEKW9DM8VOIGycgWsgNMx6mTFxTsdITyfuw8JU1HhdISQfAkJTkcIy/jd+fr4F7/TAUKKSUlxOkJIpqrK6Qhh+Y8dczpCSG5/HTeH33HgVKnTEUKz3P2hz1S6/3csy62nPlmScToDnObuT7MAAACABwWMTwGb71Nj9/rdKjp/agAAAACeRIEDAAAAwDM4RQ0AAACIML8s+WXvtUx2r9+t6OAAAAAA8Aw6OAAAAECEMciAfaLzpwYAAADgSXRwAAAAgAjzy/5rZNx9Zzn70MEBAAAA4Bl0cAAAAIAI4xoc+0TnTw0AAADAk+jgAAAAABHmNz75be6w2L1+t/JcgWPFxsqy3PljGb/7L/XyJSY5HSG0gHE6QUhWSorTEcI7dcrpBM1aoLTU6QihxcQ4nSA8y91/cI1x9/uM2/efJMlUOp0gNJfvQ1+LRKcjhBU4XeZ0hLPwSS5/CcN+7qwEAAAAAA8zshSweRQ1Y/P63crdX2EAAAAAQAPQwQEAAAAijGtw7BOdPzUAAAAAT6LAAQAAAOAZnKIGAAAARFjAWAoYewcBsHv9bkUHBwAAAIBnUOAAAAAAEeaXLyKPprZo0SLl5OQoIyNDlmWpc+fOdS5XVlam5cuX69/+7d/UuXNntWjRQhkZGbrzzjv1t7/9rc7nlJeXa/bs2brkkkuUkJCgLl26aP78+aqsbNi9tThFDQAAAEC9zJgxQ+eff7769OmjY8eOnXW5/fv3a+LEibrmmmt03333KS0tTX//+9/19NNP6ze/+Y1eeeUVDR06tMZzbr/9dm3YsEH33nuvBg4cqIKCAs2aNUt79uzR6tWr652RAgcAAACIsOZ6Dc7evXuVkZEhSerRo4dKSkrqXK5Nmzb64IMP1Lt37xrT77rrLl111VX6/ve/rz/96U/B6S+//LI2bNigadOmafHixZKk8ePH67zzztPjjz+uiRMnKisrq14ZOUUNAAAAQL1UFzfhXHDBBbWKG0m64oor1KNHD+3YsaPG9HXr1kmSpk6dWmN69b/Xrl1b74ye6+BYCfGyrHinY9Qp5rxWTkcIa9f3OjkdIaTdY592OkJIXZ/7jtMRwrr0RzudjhBSoOy40xFCsmJinI4QkqmscjpCWL7EBKcjhBQ4fdrpCCG5/RhsDiyfu0eWCpSWOh0hLCvenZ+1LGOkcqdT1E9APgVs7jXYvf7GCAQCKi4uVtu2bWtMLywsVHp6ui6++OIa0y+++GKlpaWpsLCw3tvwXIEDAAAA4F8yMzPl8/2r2CkuLnYsyzPPPKPi4mLNmjWrxvRDhw7piiuuqPM56enpOnjwYL23QYEDAAAARJjfWPLbfA2O3etvqC1btmjatGnq1auXZsyYUWNeaWmpEhLq7vAnJiaqtAGdTQocAAAAwMN2796t1NRURzNs27ZNw4cPV1pamjZu3KjExMQa85OSklReXvf5hWVlZUpKSqr3tihwAAAAgAhrrqOoNcb777+vYcOGqVWrVtq0aZPS09NrLZOWlqaioqI6n19UVFTnc87GfVceAQAAAPCE999/X9nZ2UpJSdGmTZvUqVPdA1r169dPRUVF+vTTT2tM//TTT3Xo0CH17du33tukwAEAAADQ5D744AMNGzZMycnJ2rRpky655JKzLnvnnXdKkp588ska06v/fdddd9V7u5yiBgAAAESYMT4FjL29BmPD+tesWaMDBw5Ikg4fPqyKigrNnz9fktSpUyeNHTtWknTgwAENGzZMR48e1fe+9z1t2bJFW7ZsqbGum2++WS1btpQkDR8+XN/+9rf1+OOP6/jx4xo4cKAKCgq0cuVK3X333brmmmvqnZECBwAAAEC9rFy5Um+99VaNadVDPg8ePDhY4Ozbt0///Oc/JUn5+fl1rmvfvn3BAkeS1q9fr/nz52vt2rVas2aN0tPTNXfuXE2fPr1BGSlwAAAAgAjzy5JfNg8TbcP6N2/eXK/lhgwZImNMg9admJio+fPnBztCjcU1OAAAAAA8gw4OAAAAEGEBY/8wzoGGNVA8w3MFTuBUqQJWpdMx6nRqWHenI4TVssgd46WfzfXpVzkdIaTzxjudILx/3tTN6Qghnf/in52OEFKgrO6bkLmGCTidIKxAA+5GjdqM3+90hGbPuPxTnxUf73SEsExFhdMR6mSMOz8DIrI8V+AAAAAAbheIwChqdq/fraLzpwYAAADgSXRwAAAAgAgLyFLA5lHU7F6/W9HBAQAAAOAZdHAAAACACPMbS36bR1Gze/1uRQcHAAAAgGfQwQEAAAAijFHU7BOdPzUAAAAAT6LAAQAAAOAZnKIGAAAARFhAlgI2DwLAMNEAAAAA0Mx5roNjxcXLsuKcjlGnz74R43SEsLos/MjpCKElJDidIKSLfrPT6QhhfTz7UqcjhHTBH1o4HSEky+93OkJIpqLC6QhhWbHu/tNjxcc7HSGkwOnTTkcIy4p159/haqaq0ukIIZnycqcjhOVLSXE6Qp18pkI66XSK+jERuNGnoYNTP7t27dLs2bM1YMAAtWnTRikpKerdu7cWLFigU6dO1fmcjRs3Kjs7W61bt1ZSUpIuvfRSTZ48+ZzDAwAAAMBXNfhrtFWrVmnZsmUaOXKk7rrrLsXFxWnTpk2aOXOmfv3rX2vr1q1q0eJf38DOmTNH+fn5uv766zVnzhwlJSXpk08+0fbt25v0BwEAAACai4CJwDU4UXqjzwYXOLfddpvy8vLUqlWr4LRJkyYpMzNTCxYs0MqVK4Pdmddff135+fmaO3euZs2a1XSpAQAAAKAODT5FrW/fvjWKm2q33367JGnHjh3BaQsXLtRFF12kvLw8SVJJSYkCgUBjswIAAACeUH2jT7sf0ajJfuqDBw9Kktq2bStJOnXqlN5++2194xvf0MqVK5Wenq6UlBQlJyfrjjvu0D/+8Y+m2jQAAAAASGqiUdT8fr/mzZun2NhYjRkzRpK0Z88e+f1+bd26Va+++qqmT5+uXr166Y9//KOeeuopbd++XX/605+UlJTUqG22b9++xr/pDAEAAKC54Boc+zRJgTN16lQVFBRo4cKF6tatmyTp5MkzY/QdPnxYy5cv1/jx4yVJN998s1JTUzVnzhw9++yz+s53vtMUEQAAAADg3E9RmzVrlpYuXaqJEycGr7WRFBxJzefzaezYsTWek5ubK0navHlzo7dbXFxc47F79+5GrwsAAACIpMCX98Gx+xGNzqnAyc/P1/z58zVu3Dg988wzNeZ16NBBktS6dWslfO3mjNWnlx09evRcNg8AAAAANTT6FLX8/HzNmTNHubm5WrFihSyrZoXYtm1bdezYUZ9++qlKS0trXGtTPSDBRRdd1NjNAwAAAM0W1+DYp1EdnLlz52rOnDkaO3asVq1aJZ+v7tWMHTtWxhj9/Oc/rzH96aefliTddNNNjdk8AAAAANSpwR2cZcuW6dFHH1XHjh2VnZ2tdevW1Zjftm1bDRs2TJL0yCOP6MUXX9TDDz+sXbt2qVevXnrnnXf03HPP6dprrw3eO6cp7X6sp3wtEpt8vU3hivy/Ox0hLP/p005HCMn4/U5HCMkXF+d0hLC6/fKE0xFC+ueNlzodIaTWL2xzOkJIVqz7j0FfarLTEULyHz3udITQjHE6QbPXHF4nbmfKyp2OUCdjKp2OABdocIFTWFgoSfrkk0+CgwV81eDBg4MFTmpqqv74xz9q1qxZ2rBhg1auXKkOHTpoxowZmjVrlmJiYs4xPgAAAND8cIqafRpc4KxevVqrV6+u9/IXXnihnn766eBpaQAAAABglya5Dw4AAACA+qODY59zvg8OAAAAALgFHRwAAAAgwujg2IcODgAAAADPoIMDAAAARJiRFJC9HZZoHVSeDg4AAAAAz6CDAwAAAEQY1+DYhw4OAAAAAM+ggwMAAABEGB0c+3iuwEneG6uYBM/9WJETE+N0gtAC7r5czpSVOx0hLGvXfqcjhJSa0s3pCCGZygqnI4Tmc/lrWJL/yFGnI8BmVoy7TxAJlJU5HQE2MabS6QhwAXe/AwEAAABAA9DqAAAAACKMU9TsQwcHAAAAgGfQwQEAAAAijA6OfejgAAAAAPAMOjgAAABAhBljydjcYbF7/W5FBwcAAACAZ9DBAQAAACIsIEsB2XwNjs3rdys6OAAAAAA8gw4OAAAAEGGMomYfOjgAAAAAPIMODgAAABBhjKJmH88VOGmrPlKsFe90jDr5y8udjhCWqapyOkJovhinE4Tmc/8bSeD0aacjhLTv3xKcjhBS5vstnY4QkmkG7zOy4pxO0KyZqkqnI4Rl/AGnI4Rkxbr7448JGKcjhGfc+ju2pGaw+2Avd7/CAQAAAA/iGhz7cA0OAAAAAM+gwAEAAADgGZyiBgAAAEQYgwzYhw4OAAAAAM+ggwMAAABEmInAIAN0cAAAAAAghEWLFiknJ0cZGRmyLEudO3cOufx7772n7OxspaSkKDU1VTfccIM+/PDDOpc9dOiQ7rnnHrVp00YtWrRQ3759tX79+gZnpIMDAAAARJiRZGy+Z48dq58xY4bOP/989enTR8eOHQu57NatWzVkyBClp6dr7ty5kqSlS5dq0KBB2rJli3r27Blc9siRI7rmmmv0+eefa9q0aerQoYPWrVun0aNHa9WqVRo3bly9M1LgAAAAAKiXvXv3KiMjQ5LUo0cPlZSUnHXZ733ve4qPj9fbb7+t9PR0SdLo0aN1+eWX66GHHtKrr74aXPZHP/qR9u3bp5deekkjRoyQJN13330aOHCgHn74YeXk5Cg5ObleGTlFDQAAAIiwgKyIPJpadXETzp49e1RYWKicnJxgcSNJ6enpysnJ0euvv67PPvssOH3dunXq0qVLsLiRpJiYGE2ZMkVHjhzRyy+/XO+MFDgAAAAAmlRhYaEkaeDAgbXmDRgwQMYYbdu2TZJUXFysoqIiDRgwoM5lv7q++vDcKWqB0+UKWAGnYzRbVqy7DwkTsPlk1XNkysudjhCeL8bpBCFlPvqR0xFC+nvelU5HCOmS/Pr/AXCKqaxwOkJIvqQkpyOEZKoqnY4QlvH7nY4QmnH35wRfixZORwgrUFrqdIS62X1RSxOK5H1wMjMz5fP9q69RXFxs63alMwMGSKrRvalWPa2oqKjBy9YHHRwAAAAATar0yyI4ISGh1rzExMQayzRk2fpw99f1AAAAgAcFjCXL5g5O9X12du/erdTUVFu39XVJX3bDy+s4u6WsrKzGMg1Ztj7o4AAAAABoUmlpaZLqPrWselr16WcNWbY+KHAAAAAANKl+/fpJkgoKCmrN27p1qyzL0tVXXy1Jat++vdLT07V169Y6l5Wkvn371nvbFDgAAABAhBkTmYdTunbtqr59+2r9+vXBQQSkMwMKrF+/Xtdee63atWsXnH7nnXdq7969+t3vfhec5vf7tWTJEp133nm66aab6r1trsEBAAAAUC9r1qzRgQMHJEmHDx9WRUWF5s+fL0nq1KmTxo4dG1z2qaee0tChQzVo0CBNmTJFkrRkyRIFAgEtXry4xnqnT5+u9evXa8yYMZo2bZrS09P1/PPPq7CwUCtWrFBKSkq9M1LgAAAAABEWyWGim9LKlSv11ltv1Zg2a9YsSdLgwYNrFDhZWVnavHmzZs6cqZkzZ8qyLGVlZWn9+vXq1atXjXVccMEFevfddzV9+nQtW7ZMJSUluuKKK/TCCy/o9ttvb1BGChwAAAAA9bJ58+YGLT9w4EC98cYb9Vo2PT1da9asaUSqmihwAAAAgAhrrh2c5oBBBgAAAAB4Bh0cAAAAIMIieaPPaOO5AseKiZFlxTgdo06mqtLpCOFZcU4nCMPvdICQrLh4pyOEZfzu3oeOjmlZD+lvu/x1bLm/Me/214mVkOB0hNBOn3Y6QXgBd7/PWLHu/vgTKKt9N3cA9efuVzgAAADgQZG4T43LvzO0jfu/6gMAAACAeqKDAwAAAETYmQ6O3aOo2bp616KDAwAAAMAz6OAAAAAAEcZ9cOxDBwcAAACAZ1DgAAAAAPAMTlEDAAAAIsx8+bB7G9GIDg4AAAAAz6CDAwAAAEQYgwzYhw4OAAAAAM+ggxNBVkyM0xHCMpUVTkdo1kzA73SE8Cx3f5tj/O7eh8UTyp2OENIlhS2djhCW/+hRpyOEFChxOkHzZ8W6++OFqapyOkJIVkKC0xHC8iW4873GmArphNMp6omLcGzToA7Orl27NHv2bA0YMEBt2rRRSkqKevfurQULFujUqVMhn/v000/LsixZlqUvvvjinEIDAAAAQF0a9BXLqlWrtGzZMo0cOVJ33XWX4uLitGnTJs2cOVO//vWvtXXrVrVo0aLW8w4dOqTp06crOTlZJSV8NQYAAIAoF4FrcBSl1+A0qMC57bbblJeXp1atWgWnTZo0SZmZmVqwYIFWrlypyZMn13reAw88oC5duqh79+5au3btuacGAAAAgDo06BS1vn371ihuqt1+++2SpB07dtSa9z//8z966aWX9MwzzyimGVyDAgAAANjNmMg8olGTjKJ28OBBSVLbtm1rTD9x4oQmT56s+++/X/3792+KTQEAAADAWZ3zMCd+v1/z5s1TbGysxowZU2PeD37wAwUCAS1atOhcN1NL+/bta/w7EAg0+TYAAAAAO3AfHPucc4EzdepUFRQUaOHCherWrVtw+rvvvquf//zneu655+o8rQ0AAAAAmto5FTizZs3S0qVLNXHiROXl5QWnV1RUaOLEicrOztadd955ziHrUlxcXOPfJ06coJACAABA82As+0c5o4PTMPn5+Zo/f77GjRunZ555psa8ZcuW6eOPP9bixYu1Z8+e4PSTJ09Kkvbt26cTJ04oIyOjsZsHAAAAgFoaVeDk5+drzpw5ys3N1YoVK2R97c7oBw4cUCAQ0I033ljn8/v376+WLVtyTxwAAAAATarBBc7cuXM1Z84cjR07VqtWrZLPV3sgtnHjxumaa66pNX3ZsmXavHmzVq1apdatWzcuMQAAANDMRWIY52gdJrpBBc6yZcv06KOPqmPHjsrOzta6detqzG/btq2GDRumXr16qVevXrWe//vf/16SNGLECF144YXnEPvsjN8vYzXJ6NdNzoo75zEdbGe5/F5FprLK6QghuX3/SZJ8Lj8f1+93OkFIGVP/6XSEkCq6d3I6Qlix75c7HSGkQJm78+HcWQkJTkcI6etnxriRlZridIQ6WYFy6YTTKeC0Bn3iLiwslCR98sknys3NrTV/8ODBGjZsWNMkAwAAALzKfPmwextRqEGtjtWrV8sYc9bH5s2b6/V8u7o3AAAAAKKb+8+ZAgAAADyGG33ax50XqwAAAABAI9DBAQAAAJwQpdfI2I0ODgAAAADPoIMDAAAARBjX4NiHDg4AAAAAz6CDAwAAAEQa98GxDR0cAAAAAJ5BgQMAAADAMzx3ipoVFyvL8tyPFTGmosLpCCFZMTFORwjJVFU6HSEsKzbO6QjNWtWhYqcjhFTVM93pCGHFWi6/6NUEnE4QkhUf73SE8Px+pxOEZCqrnI4QWpz7P8f8c8jFTkeok7+iTPovp1PUl/Xlw+5tRB86OAAAAAA8w/1fEQAAAABewyADtqGDAwAAAMAz6OAAAAAAkUYHxzZ0cAAAAAB4Bh0cAAAAINKMdeZh9zaiEB0cAAAAAJ5BBwcAAACIMGPOPOzeRjSigwMAAADAM+jgAAAAAJHGKGq2oYMDAAAAwDPo4AAAAACRxihqtvFcgWPKy2WsgNMx6mY1g4PMoql3LqyYGKcjhGWqKp2OEJrLj0FfixZORwjpk+vdfwx2+3s7pyOEZP39gNMRQjIVFU5HCMvt74WWz+V/jwPuP6+o9Y4TTkeoU5W/3OkIcAF3f5IAAAAAgAbwXAcHAAAAcDvLnHnYvY1oRAcHAAAAgGfQwQEAAAAijWGibUMHBwAAAIBnUOAAAAAAkVY9TLTdjyZWUlKihQsXqmfPnkpJSdGFF16orKwsrV69WsbUbBm99957ys7OVkpKilJTU3XDDTfoww8/bPJMX8cpagAAAADCCgQCuvHGG7Vlyxbl5uZqypQpKi0t1fPPP69x48bpb3/7m3784x9LkrZu3aohQ4YoPT1dc+fOlSQtXbpUgwYN0pYtW9SzZ0/bclLgAAAAAJHWDK/Bee+99/TOO+9o6tSpeuKJJ4LTv/vd7+qyyy7Tz3/+82CB873vfU/x8fF6++23lZ6eLkkaPXq0Lr/8cj300EN69dVXmzbcV3CKGgAAAICwTpw4c4PXtLS0GtPj4+N14YUXqmXLlpKkPXv2qLCwUDk5OcHiRpLS09OVk5Oj119/XZ999pltOSlwAAAAgEgzEXo0of79++u8887TT37yE61fv16ffPKJPv74Y+Xl5Wnbtm3Kz8+XJBUWFkqSBg4cWGsdAwYMkDFG27Zta9pwX8EpagAAAICHZWZmyuf7V1+juLi4Uetp3bq1XnrpJY0fP16jR48OTk9JSdGLL76oUaNGSZIOHTokSTW6N9WqpxUVFTUqQ314r8CxrDMPF7Ji45yOEJbx+52OEJLb88lyf1PU16KF0xFCMpVVTkcIzaXvL9Uyp3/gdISwrLR2TkcIyYqPdzpCaBUVTicIywTcffMNKybG6QghWYkJTkcIq/TiZKcj1KmqMlba7nSKemqG1+BIUnJysnr06KGRI0cqKytLR44c0bJlyzRmzBht2LBBw4YNU2lpqSQpIaH2sZyYmChJwWXs4L0CBwAAAEDQ7t27lZqaes7r+eijj5SVlaUnnnhCkyZNCk6/88471aNHD02YMEF79+5VUlKSJKm8vLzWOsrKyiQpuIwd3P91MwAAAOA1zfA+OE888YTKysqUk5NTY3pSUpKGDx+uAwcOaP/+/cFBCOo6Da16Wl2nrzUVChwAAAAAYVUXJ/46LhmoqqoK/rdfv36SpIKCglrLbd26VZZl6eqrr7YtJwUOAAAAgLCuuOIKSdLq1atrTD927Jg2bNig1q1bq2vXruratav69u2r9evXBwcckM4MPrB+/Xpde+21atfOvusxuQYHAAAAiDDLnHnYvY2mNHXqVP3qV7/S9OnT9dFHH+mb3/ymjhw5ouXLl6u4uFjLli1TzJeDeDz11FMaOnSoBg0apClTpkiSlixZokAgoMWLFzdtsK+hwAEAAAAQVqdOnfR///d/mjt3rt544w298MILatGihXr37q3FixfrlltuCS6blZWlzZs3a+bMmZo5c6Ysy1JWVpbWr1+vXr162ZqTAgcAAACItGY6THSXLl307LPP1mvZgQMH6o033mj6EGFwDQ4AAAAAz6DAAQAAAOAZFDgAAAAAPINrcAAAAIAIsxSBUdTsXb1rea/AMZG4YqtxrDj3725TVel0hNAslzcdTcDpBGEFTp92OkJoLv8dm1J3v0asL4fndLOTvdo6HSGklq994XSE0JrB71iBKqcThNQc/h67XfL7B52OUKeqQLnTEeACvMIBAACASDPWmYfd24hC7v6qFAAAAAAagA4OAAAAEGnN9D44zQEdHAAAAACeQYEDAAAAwDM4RQ0AAACINE5Rsw0dHAAAAACeQQcHAAAAiDDLROBGn3RwAAAAAKB5o4MDAAAARBrX4NiGDg4AAAAAz/BeB8eyzjxcyFRUOB0BkBUb53SEkKzEBKcjhOb3O50gpMDp005HCOvgUHd/t9btVXd/5WnFuv9PtykvdzpCSG7/e3zitr5ORwir1ca/OB2hTgHj7t9tDXRwbOPuvzIAAAAA0AANKnB27dql2bNna8CAAWrTpo1SUlLUu3dvLViwQKdOnQouZ4zR2rVrdccdd6hr165KSkpSx44dNXLkSL333ntN/kMAAAAAzUn1KGp2P6JRgwqcVatW6YknnlCXLl00e/ZsPfbYY+rWrZtmzpyprKwsnf7y1Ijy8nKNHTtWO3fu1B133KElS5Zo4sSJev/99zVw4ECtXbvWlh8GAAAAQHRr0Im8t912m/Ly8tSqVavgtEmTJikzM1MLFizQypUrNXnyZMXGxmrz5s0aPHhwjedPmDBB3bt310MPPaQxY8bI5+MMOQAAAEQhY5152L2NKNSgCqNv3741iptqt99+uyRpx44dkqTY2NhaxY0ktW3bVoMHD9bnn3+uzz//vDF5AQAAAOCsmmQoloMHD0o6U8DUZ9n4+Hidd955TbFpAAAAoPlhFDXbnHOB4/f7NW/ePMXGxmrMmDEhl3355Zf1f//3fxo7dqwSExPPabvt27ev8e9AIHBO6wMAAADQ/J1zgTN16lQVFBRo4cKF6tat21mX2717t8aOHav09HQtXrz4XDcLAAAAALWcU4Eza9YsLV26VBMnTlReXt5Zl9u3b5++9a1vybIs/eEPf1CbNm3OZbOSpOLi4hr/PnHiRJ3XBwEAAABuE4lhnKN1mOhGFzj5+fmaP3++xo0bp2eeeeasy+3fv19Dhw5VSUmJ3njjDfXs2bOxmwQAAACAkBpV4OTn52vOnDnKzc3VihUrZFl1D0G3f/9+DRkyRMePH9frr7+uq6666pzCAgAAAJ7AIAO2aXCBM3fuXM2ZM0djx47VqlWrznovmwMHDmjo0KE6duyYXnvtNV199dXnHLZeLN+Zhwv5kpKcjhCW/+RJpyOEFvA7nSC0sxT7ruJzd8bAqVKnI4RkuXz/NQeXzfqr0xFC+uyeXk5HCKnNz7c6HSE8l78XWi1aOB0hpLhT7h84yZSVOx2hTsZUOh0BLtCgAmfZsmV69NFH1bFjR2VnZ2vdunU15rdt21bDhg3TyZMnNXToUO3fv19TpkzRzp07tXPnzhrLDhs2rF7DSgMAAACeE4FrcOjg1ENhYaEk6ZNPPlFubm6t+YMHD9awYcP0z3/+U/v27ZMkLVmypM51bdq0iQIHAAAAQJNqUIGzevVqrV69OuxynTt3ljFRWjICAAAA4XANjm3cebEKAAAAADTCOd/oEwAAAEAD0cGxDR0cAAAAAJ5BBwcAAACIMCsCo6jZPkqbS9HBAQAAAOAZFDgAAAAAPIMCBwAAAIBnUOAAAAAA8AwGGYgg/8mTTkcIz3J3zetrkeB0hJBMZZXTEcJye0Yrzt1vS67ff/HxTkcIy+3vhf4WltMRQvIlJTkdISxTUel0hJB8yS2djhDS51e5+31Qkjr9IeB0hLoZl+aqC8NE28bdn2YBAAAAoAHc/xUBAAAA4DEME20fOjgAAAAAPIMODgAAAOCEKO2w2I0ODgAAAADPoIMDAAAARBqjqNmGDg4AAAAAz6CDAwAAAEQYo6jZhw4OAAAAAM+ggwMAAABEGtfg2IYODgAAAADP8FwHx4qJkWXFOB3jLNya6ytMwOkEoQVcnq85cPnv2JSXOx0hJF9iotMRQjJVVU5HaPZa/d3d+/Cz3F5ORwir/dodTkcIqWqtuz/+dB71kdMRwgoE3NkaMMaduRBZ7n6FAwAAAB7EIAP24RQ1AAAAAJ5BBwcAAACINAYZsA0dHAAAAACeQQcHAAAAiDQ6OLahgwMAAACg3o4cOaKHH35YXbt2VWJiotq0aaOhQ4fqj3/8Y43l3nvvPWVnZyslJUWpqam64YYb9OGHH9qejw4OAAAAEGHNdRS1AwcOaMiQISopKdF9992nSy+9VMePH9f27dtVVFQUXG7r1q0aMmSI0tPTNXfuXEnS0qVLNWjQIG3ZskU9e/Zs+nBfosABAAAAUC933323qqqqtH37drVv3/6sy33ve99TfHy83n77baWnp0uSRo8ercsvv1wPPfSQXn31VdsycooaAAAAEGkmQo8m9Pbbb+udd97RI488ovbt26uyslKlpaW1ltuzZ48KCwuVk5MTLG4kKT09XTk5OXr99df12WefNW24r6DAAQAAABDWyy+/LEnq2LGjRowYoRYtWqhly5a69NJLtXbt2uByhYWFkqSBAwfWWseAAQNkjNG2bdtsy8kpagAAAECkRXAUtczMTPl8/+prFBcXN2p1O3fulCRNmDBBmZmZevbZZ1VRUaHFixdr7Nixqqys1Lhx43To0CFJqtG9qVY97avX6zQ1ChwAAAAAYZ08eVKSlJKSok2bNik+Pl6SNGrUKGVkZGjGjBnKzc0NnraWkJBQax2JiYmSVOepbU3FcwWOqayQsXtIikay6vglu42p8DsdoVkzfvYfnMUxeO5avvk3pyOEdHDJpU5HCGvpw5udjhDShF9OdjpCSJ0q33c6QlhWnDs/QlrGSOVOp6ifSI6itnv3bqWmpp7z+lq0aCFJuvPOO4PFjSS1bt1aI0eO1K9+9Svt3LlTSUlJkqTy8tq/jLKyMkkKLmMHrsEBAAAAEFaHDh0kSe3atas1r3pEtaNHjyotLU1S3aehVU+r6/S1pkKBAwAAACCs/v37S5IOHjxYa171tIsuukj9+vWTJBUUFNRabuvWrbIsS1dffbVtOSlwAAAAgEhrhsNEjxo1SikpKVq7dq1KSkqC04uLi/Xb3/5Wl156qbp27aquXbuqb9++Wr9+fXDAAUk6dOiQ1q9fr2uvvbbOLlBTcecJlAAAAABcpXXr1vrpT3+q+++/XwMGDNC9996riooKPf3006qoqNCSJUuCyz711FMaOnSoBg0apClTpkiSlixZokAgoMWLF9uakwIHAAAAiLBIDjLQlCZOnKgLL7xQP/nJTzRr1iz5fD4NHDhQ69at0ze/+c3gcllZWdq8ebNmzpypmTNnyrIsZWVlaf369erVq1fTB/sKChwAAAAA9XbLLbfolltuCbvcwIED9cYbb0QgUU0UOAAAAECkRfBGn9GGQQYAAAAAeAYdHAAAACDS6ODYhg4OAAAAAM+ggwMAAABEmPXlw+5tRCPvFTi+GMmKcTpF3fx+pxOEZcXGOR0hNBNwOkFIvoQEpyOEFSgrczpCSFasu9+WAuXlTkcIKeb81k5HCMt/5KjTEUIKfOXmdW502cP7nY4Q1sLYG52OEFLHo9ucjhBScziryFRUOB2hTsZUOh0BLuDuTxIAAACAF3ENjm24BgcAAACAZ9DBAQAAACLMMmcedm8jGtHBAQAAAOAZFDgAAAAAPINT1AAAAIBIY5AB29DBAQAAAOAZdHAAAAAAJ0Rph8VudHAAAAAAeAYdHAAAACDCGCbaPnRwAAAAAHiG9zo4JiAp4HSKusXEO50gLMuynI4QUqCswukIIRm/3+kI4bn8d2wC7v66yYqNczpCSP5/HnE6Qli+pCSnI4QUKCt3OkJI/iPHnI4Qli/e3a8TK9bdH38CpaVORwjPcut35L7mc10Lo6jZxq1HJwAAAAA0WIMLnF27dmn27NkaMGCA2rRpo5SUFPXu3VsLFizQqVOnai2/c+dOjRo1Sq1bt1bLli01aNAgvfnmm00SHgAAAGiOqq/BsfsRjRpc4KxatUpPPPGEunTpotmzZ+uxxx5Tt27dNHPmTGVlZen06dPBZffu3ausrCwVFBTokUce0WOPPaaSkhJdf/31ev3115v0BwEAAACABp+EettttykvL0+tWrUKTps0aZIyMzO1YMECrVy5UpMnT5Yk5eXl6dixY9q2bZt69+4tSbrnnnvUvXt3PfDAA/r4449df80HAAAA0OS4Bsc2De7g9O3bt0ZxU+3222+XJO3YsUOSdOrUKb300ksaMmRIsLiRpOTkZI0fP167du1SYWFhI2MDAAAAQG1NNsjAwYMHJUlt27aVJG3fvl3l5eUaOHBgrWUHDBggSRQ4AAAAAJpUk4yT6Pf7NW/ePMXGxmrMmDGSpEOHDkmS0tPTay1fPa2oqKjR22zfvn2NfwcCLh0aGgAAAPgabvRpnyYpcKZOnaqCggItXLhQ3bp1kySVfjmGe0JCQq3lExMTaywDAAAAAE3hnAucWbNmaenSpZo4caLy8vKC05O+vJFbeXntG6aVlZXVWKYxiouLa/z7xIkTdV4bBAAAALgOgwzY5pyuwcnPz9f8+fM1btw4PfPMMzXmpaWlSar7NLTqaXWdvgYAAAAAjdXoDk5+fr7mzJmj3NxcrVixotZwzz179lRCQoIKCgpqPXfr1q2SzozIBgAAAEQdOji2aVSBM3fuXM2ZM0djx47VqlWr5PPVbgQlJydrxIgR+s1vfqM///nP6tWrlySppKREK1asUGZmpvr3739u6evgS2ohnxXf5OttCoFTp5yOEF5sk1yWZRvfl9dvuVWgotLpCGFZPnffe8r4/U5HCMlUuXxAk2ZwbzFTWeV0BNgs8OWp6G4Vk5rqdISQrJgYpyOE5dr3auPy92hERIM/zS5btkyPPvqoOnbsqOzsbK1bt67G/LZt22rYsGGSpEWLFumNN97QddddpwcffFCpqalavny5ioqKtHHjRm7yCQAAgKjEKGr2aXCBU33vmk8++US5ubm15g8ePDhY4HTt2lXvvvuupk+frh/96EeqqKhQnz599Morryg7O/scowMAAABATQ0ucFavXq3Vq1fXe/nLL79cGzZsaOhmAAAAAO/iGhzbnNMoagAAAADgJu6+ohwAAADwIMsYWcbeFovd63crOjgAAAAAPIMODgAAABBpXINjGzo4AAAAADyDAgcAAACAZ3CKGgAAABBh3OjTPnRwAAAAAHiG5zo4gdLTClhVTsdotqxYdx8SgbIypyOE5Pb9J0m+pCSnI4TkLznldISQLJ/ldISQjN/vdISw3J7RiolxOkJIpqrS6Qjh+dy9D/0nTjgdITTL3e8zkmTFxjkdoU6WkdQMXiKSGGTARnRwAAAAAHiG+79uBgAAADyGa3DsQwcHAAAAgGfQwQEAAAAijWtwbEMHBwAAAIBn0MEBAAAAIoxrcOxDBwcAAACAZ9DBAQAAACKNa3BsQwcHAAAAgGdQ4AAAAADwDE5RAwAAABwQrYMA2M1zBY4VEyPLinE6Rp1MwP1HcaCi0ukIoVmW0wlCs9zfFDVVVU5HCM0EnE4Qkgm4/HfcDI5B1/+Oq9ydrzmwYtz5dzjI5flMZYXTEcJya0ZjXP45BhHhuQIHAAAAcD1jzjzs3kYUagZf9QEAAABA/dDBAQAAACKMG33ahw4OAAAAAM+gwAEAAAAizUToYbPS0lJlZGTIsixNnjy51vydO3dq1KhRat26tVq2bKlBgwbpzTfftDUTBQ4AAACARpk9e7YOHz5c57y9e/cqKytLBQUFeuSRR/TYY4+ppKRE119/vV5//XXbMnENDgAAABBhVuDMw+5t2On999/Xk08+qZ/85Cd66KGHas3Py8vTsWPHtG3bNvXu3VuSdM8996h79+564IEH9PHHH8uy4RYgdHAAAAAANIjf79eECRN0ww036JZbbqk1/9SpU3rppZc0ZMiQYHEjScnJyRo/frx27dqlwsJCW7JR4AAAAACR1syvwXniiSf08ccfa+nSpXXO3759u8rLyzVw4MBa8wYMGCBJthU4nKIGAAAAeFhmZqZ8vn/1NYqLi89pffv27dOjjz6q2bNnq3Pnztq/f3+tZQ4dOiRJSk9PrzWvelpRUdE55TgbChwAAAAgwprzfXAmTZqkjIwMTZs27azLlJaWSpISEhJqzUtMTKyxTFOjwAEAAAA8bPfu3UpNTW2Sda1du1avvfaa3n77bcXFxZ11uaSkJElSeXl5rXllZWU1lmlqnitwjN8vY7nz0iIr9uwHgWsYm4fbOEcm4M7fbTVTVel0hLCaQ0Y0nhUT43SEsKz4RKcjhBQ4XeZ0hNACfqcThGXFu/vvnamqcjpCSFZcvNMRwnLv3xIrIvd+iVbl5eWaNm2abrrpJrVr10579uyR9K9TzY4fP649e/bowgsvVFpaWo15X1U9ra7T15qCuz8tAgAAAF5kTGQeTej06dM6fPiwNm7cqMzMzOBjyJAhks50dzIzM7VixQr17NlTCQkJKigoqLWerVu3SpL69u3bpPmqea6DAwAAAKDptWzZUuvXr681/fDhw/rud7+rG264Qffdd5+uvPJKJScna8SIEfrNb36jP//5z+rVq5ckqaSkRCtWrFBmZqb69+9vS04KHAAAACDCmuMgA3FxcbrttttqTa8eRa1Lly415i9atEhvvPGGrrvuOj344INKTU3V8uXLVVRUpI0bN9pyk0+JAgcAAACADbp27ap3331X06dP149+9CNVVFSoT58+euWVV5SdnW3bdilwAAAAgEiz+UacwW1EQOfOnWXOcr3P5Zdfrg0bNkQmyJcYZAAAAACAZ9DBAQAAACKsOV6D01zQwQEAAADgGXRwAAAAgEiz4T41dW4jCtHBAQAAAOAZdHAAAACACOMaHPt4r8AxkRhzr3FMVaXTEZo/l7darbh4pyOE5fbj0IqNczpCSG7ffzL23DStSfn9TicIyYqJcTpCSFZigtMRwgqUljodISRfixZORwgpUHHa6QhAs+a9AgcAAABwOw/dB8dtuAYHAAAAgGdQ4AAAAADwDE5RAwAAACKMQQbsQwcHAAAAgGfQwQEAAAAiLWDOPOzeRhSigwMAAADAM+jgAAAAAJHGMNG2oYMDAAAAwDPo4AAAAAARZikCo6jZu3rXooMDAAAAwDM818Gx4uJlWXFOx6ibCTidICxTVeV0hNB8MU4nCMnXItHpCGH5T1Y6HSEkU1nhdISQrIQEpyOEZCpd/hqWJJe/z7j+fbAZ/C2RidIT/6OIFePOv8eWCUgufwkHGWP/ayVKX4t0cAAAAAB4RoMLnEWLFiknJ0cZGRmyLEudO3cOufwf/vAHfetb31K7du3UsmVLdevWTQ8//LD+8Y9/NDYzAAAA0KxZJjKPaNTgU9RmzJih888/X3369NGxY8dCLrt8+XJNnDhRV199tX7wgx+oZcuWKiws1JNPPqnf/OY3+uijj9SyZcvGZgcAAACAGhpc4Ozdu1cZGRmSpB49eqikpOSsy/70pz9V+/bt9c477ygx8cy1CRMnTlTbtm21YMECvfbaaxo1alTjkgMAAADA1zS4wKkuburjxIkTOv/884PFTbW0tDRJonsDAACA6MSNPm1j6yAD119/vf7617/qoYce0t/+9jd9+umn+s1vfqN58+Zp8ODBuvbaa+3cPAAAAIAoY+sw0U899ZRKS0v11FNP6fHHHw9OHzdunH7+858r5hyGGGzfvn2NfwcCzWDYTAAAAECSZYwsm4dxtnv9bmVrgRMXF6eOHTvq5ptv1ogRI5SUlKT//d//1apVqxQTE6Ply5fbuXkAAAAAUca2AicQCOiGG25QVVWV3n33XVmWJUm67bbbdMEFF+jHP/6xbr/9dmVnZzdq/cXFxTX+feLECbVq1eqccwMAAAC2C3z5sHsbUci2a3Deeecd/fGPf9Stt94aLG6q5eTkSJLeeustuzYPAAAAIArZ1sEpKiqSJPn9/lrzqqqqavwXAAAAiCZcg2Mf2wqcK664QpL03HPP6cEHH1RcXFxw3urVqyVJ/fr1a/LtmqpKGSv8cqibFWvrZVnnzLi8KPaXnHI6QlhWbFz4hRxkKiucjhCSqXT3MWidw+AtOMPt74PNgZWQ4HSEkEwdX766ic/l+09y/99jRLcGv4uvWbNGBw4ckCQdPnxYFRUVmj9/viSpU6dOGjt2rCSpV69euvXWW/Xiiy+qb9++uvvuu4ODDPzud7/TgAED9G//9m9N+KMAAAAAzQT3wbFNgwuclStX1rp2ZtasWZKkwYMHBwscSVq3bp2efPJJPffcc5o9e7YCgYA6deqkvLw8/fCHPzynYaIBAAAA4OsaXOBs3ry53svGx8frkUce0SOPPNLQzQAAAADeZcyZh93biEK2jaIGAAAAAJHGlZQAAABAhFnmzMPubUQjOjgAAAAAPIMCBwAAAIBncIoaAAAAEGkMMmAbOjgAAAAAPIMODgAAABBhVuDMw+5tRCM6OAAAAAA8w3MdHCs2TpYV53SMOpnKCqcjNHtWQoLTEUIylVVORwjL9cehL8bpBKEZd38dZsW48/3vq4zf3fvQ+P1OR2j+Ai4/79/tr+PkZKcjhGXKy52OUCdjmtHrl2twbEMHBwAAAIBneK6DAwAAALie+fJh9zaiEB0cAAAAAJ5BBwcAAACIMMsYWTZfI2P3+t2KDg4AAAAAz6CDAwAAAEQao6jZhg4OAAAAAM+ggwMAAABEmpFk9y2ZorOBQwcHAAAAgHdQ4AAAAADwDE5RAwAAACKMYaLt47kCx1RWyFgu/WX6YpxOEJYV6+5DIlBe7nSEkHxJSU5HCCtQWup0hNACfqcThOby13GgotLpCLCb1QxOvjB2X1hwjly+D01FhdMRwrJi3PleaJmAVOV0CjjN3Z9mAQAAAC8yisAw0fau3q3c/RUGAAAAADQAHRwAAAAg0rjRp23o4AAAAADwDAocAAAAINICEXo0oV27dmn27NkaMGCA2rRpo5SUFPXu3VsLFizQqVOnai2/c+dOjRo1Sq1bt1bLli01aNAgvfnmm00bqg4UOAAAAADCWrVqlZ544gl16dJFs2fP1mOPPaZu3bpp5syZysrK0unTp4PL7t27V1lZWSooKNAjjzyixx57TCUlJbr++uv1+uuv25qTa3AAAACACGuO98G57bbblJeXp1atWgWnTZo0SZmZmVqwYIFWrlypyZMnS5Ly8vJ07Ngxbdu2Tb1795Yk3XPPPerevbseeOABffzxx7Isq0nzVaODAwAAACCsvn371ihuqt1+++2SpB07dkiSTp06pZdeeklDhgwJFjeSlJycrPHjx2vXrl0qLCy0LScdHAAAACDSIjiKWmZmpny+f/U1iouLm3QzBw8elCS1bdtWkrR9+3aVl5dr4MCBtZYdMGCAJKmwsFD9+/dv0hzV6OAAAAAAaBS/36958+YpNjZWY8aMkSQdOnRIkpSenl5r+eppRUVFtmWigwMAAAB42O7du5WammrLuqdOnaqCggItXLhQ3bp1kySVlpZKkhISEmotn5iYWGMZO1DgAAAAAJHmgRt9zpo1S0uXLtXEiROVl5cXnJ6UlCRJKi8vr/WcsrKyGsvYgQInkgJ+pxOEZarsGc2iqfhsfDE0BVPHC9l1LHefmWrFuPsYNAF33xXa1yLR6Qjh+d39Xmj8TXzjiKZmXJ5Pkqly+esk2d1/SwKn7Ptmu6lYPne/V8N++fn5mj9/vsaNG6dnnnmmxry0tDRJdZ+GVj2trtPXmgoFDgAAABBpzbiDk5+frzlz5ig3N1crVqyoNdxzz549lZCQoIKCglrP3bp1q6QzI7LZxd1f5QIAAABwjblz52rOnDkaO3asVq1aVWN0tmrJyckaMWKENm/erD//+c/B6SUlJVqxYoUyMzNtG0FNooMDAAAARF5Akt1n+jXxGa3Lli3To48+qo4dOyo7O1vr1q2rMb9t27YaNmyYJGnRokV64403dN111+nBBx9Uamqqli9frqKiIm3cuNG2m3xKFDgAAAAA6qH65pyffPKJcnNza80fPHhwsMDp2rWr3n33XU2fPl0/+tGPVFFRoT59+uiVV15Rdna2rTkpcAAAAIAIs4yRZfM1OE29/tWrV2v16tX1Xv7yyy/Xhg0bmjRDfXANDgAAAADPoIMDAAAARFozHkXN7ejgAAAAAPAMOjgAAABApAWMZNncYXH5zantQgcHAAAAgGfQwQEAAAAijWtwbOO9AscXI1kxTqeom2niuy3ZwLi8lWlOlzkdodmz4tz9srdiXPr6/ZIpLXU6QkiBU6ecjhCez92/Y9cL+J1O0OyZ06edjhBaM/gdu/UjjTFVTkeAC3CKGgAAAADPcPdXuQAAAIAnReAUNbn7zBy70MEBAAAA4Bl0cAAAAIBIY5AB29DBAQAAAOAZdHAAAACASAsY2X6NjMtHx7ULHRwAAAAAnkEHBwAAAIg0E7D/hkJuvWGRzejgAAAAAPAMOjgAAABApDGKmm3o4AAAAADwDM91cKyYGFlWjNMx6mQq/U5HqAeXn6vp9m8iLMvpBOH53X0cGpfnczsr1v1v68blo/r44uOcjhCSqXL/+4zbf8duz2fFxTsdISzXvlebgOs/ygQxippt6OAAAAAA8Az3f9UHAAAAeA3X4NimwR2cRYsWKScnRxkZGbIsS507dw77nDVr1uib3/ymUlNTlZycrB49emjevHmNyQsAAAAAZ9XgDs6MGTN0/vnnq0+fPjp27FjY5e+99149++yzuvXWW3X33XfL5/Np3759OnDgQGPyAgAAAMBZNbjA2bt3rzIyMiRJPXr0UElJyVmXXblypX75y1/qV7/6lcaOHdv4lAAAAICXGEXgFDV7V+9WDT5Frbq4CccYo0WLFqlPnz7B4ubkyZMyUXouIAAAAAD72TaK2s6dO7V3715lZWVp3rx5uuCCC5SamqrzzjtPkyZNCtn5AQAAADytepABux9RyLZR1Hbu3ClJ+q//+i9VVFRo5syZuuSSS/T73/9eP//5z7Vz5069+eabshp535D27dvX+Hcg0FwGPQcAAABgF9sKnJMnT0qSDh8+rNdee03Z2dmSpFtvvVXGGD377LN65ZVXdOONN9oVAQAAAHCnQEC235U0ShsAtp2i1qJFC0lSenp6sLiplpubK0navHlzo9dfXFxc47F79+5GrwsAAACAN9jWwenQoYMkqV27drXmVZ9edvToUbs2DwAAALgXN/q0jW0FTs+ePZWYmKiioqJa8w4ePChJuuiii5p8u6aqUqZxl/XYzpeY6HSEsFw/yl3A3flMZYXTEWAzX1KS0xFCCpSVOx0hLCsmxukIIZmqKqcjwGa+xASnI4TUHF7HMi499cmtuRBRtp2ilpSUpFtvvVWfffaZ/ud//qfGvKefflqSdNNNN9m1eQAAAMC9GEXNNg3u4KxZs0YHDhyQdGYAgYqKCs2fP1+S1KlTpxo39Fy4cKFef/11jRkzRlOmTFHnzp318ssva+PGjbrnnnuUlZXVRD8GAAAAADSiwFm5cqXeeuutGtNmzZolSRo8eHCNAqdjx47aunWrfvjDH+qXv/yljh8/ri5duuinP/2pHnzwwXOMDgAAADRTASPJ5g6Ly0/tt0uDC5yGjnzWuXNnPffccw3dDAAAAAA0mG3X4AAAAABApNk2ihoAAACAuhkTkLF51De71+9WdHAAAAAAeAYdHAAAACDSjLF/EIAoHSaaDg4AAAAAz6CDAwAAAESaicAw0XRwAAAAAKB581wHx9ciUT4r3ukYdQu4fyQLU1nldITQAn6nEzR7Vqy7X/aBikqnI4RkTp92OkKzZ8UnOh0hpMDpMqcjhNYM3gd9LVs6HSEkU8XfunPmi3E6wVn4bG+KNJlAQLJs/mzIKGoAAAAA0Ly5+6tcAAAAwIu4Bsc2dHAAAAAAeAYdHAAAACDCTCAgY/M1OIZrcAAAAACgeaODAwAAAEQa1+DYhg4OAAAAAM+gwAEAAADgGZyiBgAAAERawEgWp6jZgQ4OAAAAAM+ggwMAAABEmjGSbB7GOUo7OJ4rcExFpYzldIqziIlxOkF4Lh8v3Yp19yHrS27pdISw/MdPOB2hWbNc/jo2fr/TEcIy5eVORwgt4O59aMXFOx0hrMDpMqcjhOT217Est36Q+Qq3fl5way5ElLs/LQIAAAAeZAJGxuZrcEyUdnC4BgcAAACAZ9DBAQAAACLNBGT/NTjRecoeHRwAAAAAnkEHBwAAAIgwrsGxDx0cAAAAAJ5BBwcAAACINK7BsQ0dHAAAAACe4ZkOTvU5hr/a96RSU1MdTgMAAIBIO3HihC6++LfN4tqTKlVKNsesUqW9G3ApzxQ4J0+elCRdfPHFDicBAACAk06ePKlWrVo5HaNO8fHxateund757OWIbK9du3aKj4+PyLbcwjLNocSth0AgoEOHDiklJUWWZTkdJ6TMzExJ0u7dux1O4j7sm9DYP2fHvgmN/RMa++fs2DehsX9Ci/T+Mcbo5MmTSktLk8/n3isxysrKVFFREZFtxcfHKzExMSLbcgvPdHB8Pp86dOjgdIx6qX7BcSpdbeyb0Ng/Z8e+CY39Exr75+zYN6Gxf0JzYv+4tXPzVYmJiVFXdESSe0tbAAAAAGggChwAAAAAnuGZa3AAAAAAgA4OAAAAAM+gwAEAAADgGRQ4AAAAADyDAgcAAACAZ1DgAAAAAPAMChwAAAAAnkGBAwAAAMAzKHAAAAAAeAYFDgAAAADPoMABAAAA4BkUOAAAAAA8gwIHAAAAgGdQ4DSxRYsWKScnRxkZGbIsS507dw65/Hvvvafs7GylpKQoNTVVN9xwgz788MOIZI20Xbt2afbs2RowYIDatGmjlJQU9e7dWwsWLNCpU6dqLb9z506NGjVKrVu3VsuWLTVo0CC9+eabDiSPjJ07d+quu+7S5ZdfrlatWikpKUmXXXaZpk2bpuLi4jqXj6b983WlpaXB19nkyZNrzY+2/WNZVp2P5OTkWstG276pduTIET388MPq2rWrEhMT1aZNGw0dOlR//OMfaywXTe/LkpSfn3/W48eyLMXFxdVYPtqOn5KSEi1cuFA9e/ZUSkqKLrzwQmVlZWn16tUyxtRYNtqOnX/84x+aNGmSLr74YsXHx6tjx476j//4Dx07dqzWstF23MBZsU4H8JoZM2bo/PPPV58+fep8gX/V1q1bNWTIEKWnp2vu3LmSpKVLl2rQoEHasmWLevbsGYHEkbNq1SotW7ZMI0eO1F133aW4uDht2rRJM2fO1K9//Wtt3bpVLVq0kCTt3btXWVlZio2N1SOPPKJWrVpp+fLluv766/WHP/xB2dnZDv80Te/gwYMqLi7WzTffrA4dOig2NlYfffSRfvGLX+iFF17Qhx9+qIsuukhSdO6fr5s9e7YOHz5c57xo3T+DBg3SxIkTa0z7+ofTaN03Bw4c0JAhQ1RSUqL77rtPl156qY4fP67t27erqKgouFy0vS9L0i233KKuXbvWmr59+3Y99thjGjFiRHBatB0/gUBAN954o7Zs2aLc3FxNmTJFpaWlev755zVu3Dj97W9/049//GNJ0XfsfP755/rGN76hQ4cO6f7771ePHj20Y8cOPf3003r77bf17rvvKikpSVL0HTdwAYMmtXfv3uD/d+/e3XTq1Omsy/br18+kpKSYgwcPBqcdPHjQpKSkmGHDhtkZ0xGFhYXm2LFjtab/8Ic/NJLMkiVLgtNycnKMz+czH3zwQXDayZMnTceOHc2ll15qAoFAJCK7wq9//Wsjyfz4xz8OTov2/bNt2zYTExNjFi9ebCSZBx54oMb8aNw/kkxubm7Y5aJx3xhjzDXXXGM6dOhgDh06FHK5aHtfDmXixIlGkvn9738fnBZtx8+WLVuMJDN16tQa08vLy80ll1xiWrVqFZwWbcfOf/zHfxhJZt26dTWmr1u3zkgy8+bNC06LtuMGzqPAsVGoAmf37t1Gkrn33ntrzbv33nuNZVmmuLjY5oTusH37diPJ3H///cYYY0pKSkxCQoK59tpray07d+5cI8m89957kY7pmPfee89IMtOnTzfGsH+qqqpMnz59zPDhw82+fftqFTjRun+qC5zy8nJz8uTJOpeJ1n3z1ltvGUnmP//zP40xxlRUVJhTp07VWo735X8pKSkxqamppkOHDqaqqio4LdqOn1deecVIMj/5yU9qzevXr59JS0szxkTnsXPllVeaFi1a1CpO/H6/SUxMNBkZGcaY6Dxu4DyuwXFIYWGhJGngwIG15g0YMEDGGG3bti3SsRxx8OBBSVLbtm0lnTktory8/Kz7RvrX/vOisrIyffHFFzp48KBeffVV3X///ZKkm266SRL754knntDHH3+spUuX1jk/mvfPf//3fyspKUkpKSm66KKLNGXKFB0/fjw4P1r3zcsvvyxJ6tixo0aMGKEWLVqoZcuWuvTSS7V27drgcrwv/8v69et14sQJ/fu//7tiYmIkRefx079/f5133nn6yU9+ovXr1+uTTz7Rxx9/rLy8PG3btk35+fmSovPYKS8vV2JioizLqjHd5/OpRYsW+vvf/64vvvgiKo8bOI9rcBxy6NAhSVJ6enqtedXTvnpeuFf5/X7NmzdPsbGxGjNmjCT2zYoVKzRlypTgvzt37qy1a9dq0KBBkqJ7/+zbt0+PPvqoZs+erc6dO2v//v21lonW/dO/f3/l5OSoa9euOnHihF5++WUtXbpUb731lrZs2aLk5OSo3Tc7d+6UJE2YMEGZmZl69tlnVVFRocWLF2vs2LGqrKzUuHHjonb/1GXlypWyLEv33ntvcFo07p/WrVvrpZde0vjx4zV69Ojg9JSUFL344osaNWqUpOjcN927d9fOnTv14Ycfqnfv3sHpH374oY4ePSpJ+uSTT6Jy38B5FDgOKS0tlSQlJCTUmpeYmFhjGS+bOnWqCgoKtHDhQnXr1k0S+2bUqFG67LLLVFJSog8++EAvvfSSvvjii+D8aN4/kyZNUkZGhqZNm3bWZaJ1/7z33ns1/n3PPffoyiuv1A9/+EM99dRT+uEPfxi1++bkyZOSznwo3bRpk+Lj4yWdea1lZGRoxowZys3Njdr983U7d+7UO++8o29961u65JJLgtOjdf8kJyerR48eGjlypLKysnTkyBEtW7ZMY8aM0YYNGzRs2LCo3DdTp07Vb3/7W40ePVpPPvmkevToob/85S+aOnWq4uLiVFlZqdLS0qjcN3Aep6g5pHpkkfLy8lrzysrKaizjVbNmzdLSpUs1ceJE5eXlBadH+77p0KGDsrOzNWrUKM2ZM0fPPvusHnnkES1atEhS9O6ftWvX6rXXXtPTTz9da2Swr4rW/VOX73//+4qPj9fGjRslRe++qR6d8c477wwWN9KZb+dHjhypzz77TDt37oza/fN1K1eulCSNHz++xvRo3D8fffSRsrKyNGzYMD322GO6+eabdd999+mdd95Ru3btNGHCBPn9/qjcN4MGDdILL7ygkydPavjw4erUqZNGjBihoUOH6tvf/rYkKTU1NSr3DZxHgeOQtLQ0SXW3Zaun1dXO9Yr8/HzNnz9f48aN0zPPPFNjXrTvm6+78sorddVVV+lnP/uZpOjcP+Xl5Zo2bZpuuukmtWvXTnv27NGePXt04MABSdLx48e1Z88eHTt2LCr3z9nExcUpLS0t2AGM1n3ToUMHSVK7du1qzWvfvr0k6ejRo1G7f76qqqpKv/rVr3TBBRfo5ptvrjEvGvfPE088obKyMuXk5NSYnpSUpOHDh+vAgQPav39/VO4bScrJydHBgwf1wQcf6O2339ahQ4f0zDPP6ODBg4qNjVXXrl2jdt/AWRQ4DunXr58kqaCgoNa8rVu3yrIsXX311ZGOFRH5+fmaM2eOcnNztWLFiloXKPbs2VMJCQln3TeS1Ldv34hkdYvTp0/ryJEjkqJz/5w+fVqHDx/Wxo0blZmZGXwMGTJE0pnuTmZmplasWBGV++dsysrKdPDgweAAHtG6b/r37y/pXwOafFX1tIsuuiiq35er/e53v9M//vEP3X333bVOKYrG46f6A7jf7681r6qqKvjfaD52YmJi1Lt3bw0aNEgXXXSRPvvsM33wwQcaPHiwkpKSovK4gQs4PIqbp4W7D07fvn1NSkqKKSoqCk4rKioyKSkp5lvf+lYEEkbenDlzjCQzduxY4/f7z7rcbbfdZnw+n/nwww+D06rHzM/MzPTkmPlnG0L0zTffND6fr8YQm9G2fyoqKsz69etrPX72s58ZSeaGG24w69evNzt37jTGRN/++eKLL+qc/vDDD9e6h1K07RtjjDly5IhJSUkx6enpNYbQPnTokGnZsqW59NJLg9Oi8X35q4YPH24kme3bt9c5P9qOn6lTp9Z6DRljzNGjR0379u1N69atg8NoR/uxY8yZIaJzcnKMZVnmzTffDE6PtuMGzrOMMcbRCstj1qxZEzxtZsmSJaqoqNBDDz0kSerUqZPGjh0bXHbLli0aOnSoOnToEBw1a8mSJfrHP/6hd999V7169Yr8D2CjZcuWafLkyerYsaPmzZsnn69mA7Ft27YaNmyYJGnPnj3q37+/4uLi9OCDDyo1NVXLly/XRx99pI0bN+r666934kew1c0336zi4mJde+216tSpk8rKyrRt2za98MILSkpK0ubNm4Mj1UTj/qnL/v37dckll+iBBx6oMWx0tO2fBx98UFu3btXQoUPVsWNHlZSU6OWXX9amTZv0jW98Q5s2bQpehxJt+6baL37xC91///3q3r277r33XlVUVOjpp59WcXGxfv/73+u6666TFH3vy1916NAhdezYUVdffXWtQSuqRdvxc+DAAfXp00dHjx7VXXfdpW9+85s6cuSIli9frv3792vZsmX67ne/Kyn6jp2SkhL1799fN998sy655BIdP35czz//vLZt26YFCxZoxowZwWWj7biBCzhdYXnN4MGDjaQ6H4MHD661/JYtW8y1115rWrZsaZKTk811111ntm3bFvngEZCbm3vWfVPX/vnrX/9qRo4caVq1amVatGhhvvnNb5rXXnvNmfAR8F//9V9m+PDhpkOHDiYhIcEkJiaabt26mcmTJ5sDBw7UWj7a9k9d6rrRZ7Vo2j+//e1vzXXXXWfS0tJMQkKCSUpKMr169TILFiwwp0+frrV8NO2br3rxxRfNN77xDZOUlGSSk5PNsGHDzDvvvFNruWh6X/6qBQsWGEnmF7/4Rcjlou342bNnj7nnnntMenq6iY2NNSkpKWbQoEHmxRdfrLVsNB075eXl5o477jCdO3c2CQkJpnXr1ua6664zr7zySp3LR9txA2fRwQEAAADgGQwyAAAAAMAzKHAAAAAAeAYFDgAAAADPoMABAAAA4BkUOAAAAAA8gwIHAAAAgGdQ4AAAAADwDAocAAAAAJ5BgQMAAADAMyhwAAAAAHgGBQ4AAAAAz6DAAQAAAOAZFDgAAAAAPOP/AexWnPOAAHbDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)\n", + "plt.imshow(dps_new_t.dyn_ps, origin=\"lower\", aspect=\"auto\",\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(15,30)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's trace that drifiting feature." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "# By looking into the maximum power of each segment\n", + "max_pos = dps.trace_maximum()" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'Detected frequency drift')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3sAAAKOCAYAAAAf5QD9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACIk0lEQVR4nOzdd3gU9drG8XtDSGhJqIYamogFFJUmioCCDWnSBMWAFEM7IlZEOuixcpQWOoiiCFJFPaKCHlEEURQQKUKkKtISOiSZ9495k8lKAsmyyW/L93NduZxntt2BJebZmXl+LsuyLAEAAAAAAkqI6QAAAAAAAO+j2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIADR7AEAAABAAKLZA4A8UKlSJblcrvSvkJAQRUVFqVKlSmrevLnGjBmj3bt3m44ZUGbNmiWXy6WuXbvm6HGHDh3So48+qnLlyik0NFQul0vDhw/PlYwwq3HjxnK5XFq1apVXH7thwwbde++9Kl68uEJCQjx+DQC4XKGmAwBAMLn77rtVunRpSdLJkyd14MABrVq1Sh9//LGGDh2qfv366eWXX1aBAgW88noul0uSZFmWV57PEwkJCapcubIqVqyohIQEYzmyq0ePHlqyZImuvPJKdejQQWFhYapVq5bpWPATJ06cUIsWLbR3717Vr19f1apVU0hIiEqXLq3hw4drxIgRGjZsGB8gAMgTNHsAkIeee+45NW7c2G3f2bNnNWfOHD399NN66623tHPnTi1ZskQhIZx8kdfOnTun5cuXq2DBgvrpp59UpEgR05Hgo95++22dOnVKMTExbvvXrl2rvXv3qmHDhvr6668NpQMAG79JAIBh4eHh6tGjh77++msVLFhQH330kaZPn246VlD6888/lZycrCuuuIJGDxcVExOjq6++WoUKFXLbv3fvXklSlSpVTMQCADc0ewDgI2rWrKkBAwZIkt54441M77Np0yZ17dpVMTExCg8PV4kSJdS8efMLrgdKu14tTcbrBTPuT7N69Wq1b99eZcuWVVhYmEqXLq0OHTpow4YNWeY9ePCgnn/+eV1//fUqUqSIIiIidPXVVysuLk6bNm2SJA0fPlyVK1eWJP3xxx9uGSpVqnTBcy5fvlzNmzfXFVdcobCwMFWoUEGPPvqodu7cmWWODz74QPXq1VOhQoVUokQJtWjRQj/++GOW98+Ky+VSxYoVM82aJu3ay4SEBH3wwQe67bbbFBUVJZfLpWPHjqXfL7t/Txn9+OOPuv/++1W0aFEVKVJE9evX1/z585WQkJDpn9eqVavkcrkuOFKc5lLXLOY0Y8Y/izlz5qh27doqVKiQihcvrnbt2un333/P8ntLSEhQ//79Vb16dRUqVEhFixZVzZo19eSTT+qPP/6QJM2dO1cul0v3339/ls+zePFiuVwuNWvWLMv7/NPx48f19NNPq2LFigoPD1flypX19NNP6+TJk1k+JuP1eJ9//rnuuusuFS9eXC6XK/3fxD+v2Uv7+4iNjZUkzZ49O/3PrHHjxqpUqZJGjBghSRoxYoTb+4tTOgHkFk7jBAAf0rlzZ7300kv67bfftH//fpUtWzb9tnfeeUePPvqozp8/rxtuuEH16tXT/v379d///leffPKJJk6cqLi4OEnSlVdeqdjYWM2ePVuS0n8BzczLL7+sQYMGyeVyqXbt2rrtttu0c+dOzZ8/X0uWLNGCBQvUokULt8esX79e9913nw4ePKgrrrhCTZs2Vf78+bVz505NnTpVpUuXVo0aNVSrVi21bdtWH374oQoXLqx27dqlP0fJkiXdnrNPnz6aNGmSwsLCVKdOHZUpU0a//vqrZs6cqYULF+qzzz5T3bp13R4zZswYvfDCCwoJCVHDhg1VpkwZ/fDDD2rQoIG6deuWoz/72NhYnThxItOs//TKK69o0qRJuuWWW9S8eXNt27YtvRHKyd9Tmi+++ELNmzfX2bNnVaNGDdWoUUMJCQnq0KGDHn/88Rx9H9nhScY0zz//vF577TXdfvvtuu+++7RmzRp9+OGH+vbbb7Vx40aVKFHC7f6ffPKJOnTooBMnTigmJkb33XefUlJStGPHDr3xxhuqWbOmunbtqnbt2umJJ57QJ598ot27d19weqQkTZo0SZLUu3fvbH2fx48fV6NGjfTTTz+pWLFiuv/++5WcnKz4+Hh9/fXXypcv30Uf//7772vKlCm64YYbdM8992jPnj1Znl5dunRpxcbGaseOHVq9erWqVq2q2267TZJ09dVX69ChQ/r888/1888/64YbbnC7DpRrQgHkGgsAkOsqVqxoSbJWrlx50fulpKRYYWFhliRrxYoV6ft/+uknK3/+/FZUVJT1+eefuz3mu+++s4oWLWrlz5/f+u2339xuk2Rd7Ef9Rx99ZEmyYmJirPXr17vdtnTpUis0NNSKioqyDh8+nL4/KSnJKlu2rCXJGjhwoHX27Fm3x+3evdv64Ycf0utdu3ZZkqyKFStmmWPChAmWJKtWrVrW9u3b3W6bNGmSJcmqUqWKdf78+fT969evt0JCQqzw8HDriy++SN+fkpJi/etf/0r/3mNjY7N83X+6VNa0v8f8+fNb//3vfy+43ZO/p5MnT1plypSxJFljxoxxe8wHH3xghYSEZJpp5cqVliSrUaNGmWadOXNmpt//5b6XSpUqZW3cuDF9//Hjx6169epZkqwRI0a4PSYhIcEqUqSIJcl6/fXXrZSUFLfbt2zZYv3666/p9eDBgy1J1uDBgy/4fnbs2GG5XC6rbNmybu+Di3n88cctSVbdunWtI0eOpO/ft2+fddVVV6V/T//8d9moUaP022bOnJnpc6fd55+PzerP3bIsa9iwYZYka9iwYdnKDwCXi9M4AcCHhISEqHjx4pKkw4cPp+9/8cUXdf78eY0dO1Z33nmn22Pq16+vIUOG6Pz585o8eXKOXi/ttLJZs2bppptucrutRYsW6t27txITE/XOO++k7582bZr279+vO+64Q6+//rrCwsLcHlehQgXdfPPN2c6QkpKiUaNGKSQkRPPnz9eVV17pdntcXJxatGihnTt36uOPP07fP378eKWmpurRRx/VHXfckb4/JCREr7zyittRUW979NFHddddd12w35O/pwULFujAgQO67rrrNGjQILfHtG/fXq1bt/Zq9st9L40cOVI1atRIr4sUKaKnnnpKkrRy5Uq3+77xxhs6ceKEunXrpoEDB15wVOzqq6/WNddck17HxcUpX758mjFjhpKTk93uO3nyZFmWpZ49eyo09NInJp06dUrTpk2TJI0bN07FihVLv61s2bJ67bXXLvkcd999d46X7gAAX0KzBwA+JjU1VZKzbEJqaqr++9//Kl++fHrggQcyfcztt98uSVqzZk22X+fQoUNat26dSpYsmeV1X5k976effirJbni8YcOGDfrzzz914403XtDoXSzHV199JUl66KGHLrh/eHi42rdv75V8mcmsAfP07ynt++jUqVOm11N26dLFC4kvL2NG99577wX7qlevLknav3+/2/6090r37t2zla98+fJq1aqVDhw4oMWLF6fvP3v2rGbOnKl8+fKpZ8+e2Xqu9evX6+TJk7ryyisvOP1Xsj/MKFq06EWfw9uNNgDkNa7ZAwAfkpKSkj7oI+MRvqSkJEm65C+nf//9d7Zfa9euXZLspu9SyzxkfN60xd/TfsG/XGnDV9avX59ps5NVjn379klSpoNeLrbfG9IGuWTk6d9TXn4f3ngvVahQ4YJ9ERERkuymLCNP3iv9+vXTwoULFR8fn37d5Pz583Xo0CG1bt1a5cqVy9bzXOrPVbL/HjMO1snsdgDwZzR7AOBDNm/erHPnzklS+qlyKSkpkqSwsDB16tTpoo//59CTi0l73uLFi18wgOWfrr766vTtSzVkOZWWIyYmRk2aNLnofevVq+fV1/ZUwYIFL9iXW39Pnko7QpyRNzLmZP1HT94rTZo00bXXXqsvv/xS27dvV7Vq1RQfHy8p+4NZvCWzv2cA8Cc0ewDgQ9577z1J0nXXXafSpUtLsn/pLlCgQPp1VOHh4V55rbQjNIUKFdKsWbOy/biYmBht2bJF27ZtU+3atb2WIyYmJkc5ypUrp507d+qPP/7I9GhPQkLCZWfLCU//ntKypy1B8E9ZfR9p10qeOHEi09v37NnjtYyeiomJ0datW7Vt27YcNbh9+/ZV3759FR8fr65du2r16tW68sorc7TkwqX+XC91GwAEAq7ZAwAfsXHjRr311luSpCeffDJ9f2hoqJo2baqUlBS365iyI3/+/JJ0wbALyf5luEaNGtq7d6++//77bD9n2mCSGTNmZOv+aU1JZhkkqW7duipevLjWrl2baYOSlbRry+bOnXvBbefOndOCBQuy/Vze4OnfU9r38f7778uyrAtuf/fddzN9XNoAmp07d+r8+fMX3P7ZZ595LaOncvpeSdOlSxdFRERo9uzZ+s9//iNJeuyxx3J0pPDmm29W4cKFtX37dv3www8X3L58+fKLnsKZGy71bwEAvI1mDwAMO3v2rKZPn67bb79dp06dUqtWrS5YF2/o0KEKDQ1Vnz59Mv0lPSUlRStXrrxgqEba0Y0tW7Zk+tojR46UZA8HSRsUktG5c+e0bNky/fbbb+n7evTooTJlyuiLL77Qs88+m37aaZo9e/Zo/fr16XWpUqUUFhamv/76S0ePHr3gNfLnz68XXnhB586dU6tWrTJdyP3UqVOaO3eu/vrrr/R9ffv2VUhIiKZPn+62EHhqaqqee+659Gu28pInf0/t2rVT6dKltXHjRr3yyitu91+4cKEWLlyY6WtVqlRJlSpV0tGjR9M/JJAky7I0ZswYffvtt17L6KmBAweqcOHCmjFjht56660LTi397bff3N5baSIiIhQbG6vDhw9rxowZCg8Pz/G6iYUKFUofItS/f3+3xu7AgQPpE0Tz0qX+PQKA1xle+gEAgkLa+mx33323FRsba8XGxlrt27e3GjZsaBUuXNiSZIWEhFgDBgywTp8+nelzvPPOO1Z4eLglyapatarVvHlzq1OnTtYdd9xhFStWzJJkTZo0ye0xTzzxRPraaB07drS6d+9ude/e3e0+L7/8cvpabtdee63VunVr68EHH7QaNmyYvkbaJ5984vaY77//3ipZsqQlyYqOjrbatGljtWvXzrrpppuskJCQC9YRa9OmTfpacZ07d7a6d+9uPfvss2736devnyXJcrlc1o033mi1bdvW6tChg1WvXr3073vLli1ujxkxYkT6n13jxo2tTp06WdWqVbPCw8Otxx57LNfW2du1a1eWz+HJ39Nnn32W/piaNWtanTp1sm655RZLUvqagZlleuedd9LXg6tXr57Vtm1b68orr7QKFy5s9e/fP8vv35OMaa+T0z+3ZcuWWYUKFUq/vV27dlabNm2smjVrXnQduy1btqS/5sMPP5zpfS4lKSnJuuGGGyxJVvHixa22bdtarVq1sooUKWLVqVMn/c84q3X2LrYupifr7B04cCD9z6Jhw4ZW165dre7du1tLlizx6PsDgEuh2QOAPJDWJKR9uVwuKyIiwqpYsaJ13333WWPGjLF27959yefZtm2b1adPH+uqq66yChYsaBUuXNi68sorrRYtWlhTpkxxW/zcsizr1KlT1sCBA63KlStb+fPnz/IX9vXr11uxsbFWpUqVrPDwcCsyMtKqXr261b59e+udd96xTpw4ccFj9u/fbz355JNW9erVrQIFClgRERHW1VdfbfXp08favHmz230PHTpkde/e3SpfvrwVGhqaZWPw5ZdfWu3bt7fKlStnhYWFWcWKFbOuvfZaKzY21lq4cKF17ty5Cx7z3nvvWXXq1LEKFixoFS1a1Lr33nutdevWXfSX7qx4o9mzrJz/PVmWZa1bt8667777rMjISKtw4cJWnTp1rLlz514y07x586ybbrrJCg8Pt4oWLWq1atXK2rx58yW//5xm9LTZsyzL2r59u/XYY49ZlStXtsLCwqyiRYtaNWvWtJ566inrjz/+yPLPsXz58pYka/Xq1Vne51ISExOtJ5980qpQoYIVFhZmxcTEWE888YR1/PjxLBu23Gr2LMt+jzdu3NiKioqyXC4Xi6wDyFUuy8rkAgEAAOATEhISVLlyZVWsWDHPh86YtHr1at122226/vrr9fPPP5uOAwB+iWv2AACAT7EsS8OGDZMkDRgwwGwYAPBjLL0AAAB8wtKlS7V48WJt2LBBP/30k2rWrKkuXbqYjgUAfosjewAAwCf8+OOPmjlzpnbu3KmWLVtq6dKlCg3lc2kA8BTX7AEAAABAAOLIHgAAAAAEIM6NyKbU1FTt379fERERcrlcpuMAAAAACEKWZen48eMqW7asQkIufuyOZi+b9u/frwoVKpiOAQAAAADas2ePypcvf9H70OxlU0REhCT7DzUyMtJwGgAAAADBKCkpSRUqVEjvTy6GZi+b0k7djIyMpNkDAAAAYFR2Li1jQAsAAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIADR7AEAAABAAKLZAwAAAIAARLMHAAAAAAGIZg8AAAAAAhDNHgAAAAAEIJo9AAAAAAhANHsAAAAAEIBo9gAAAAAgANHsAQAAAEAAotkDAAAAgABEswcAAAAAAYhmDwAAAAACEM0eAAAAAAQgmj0AAAAACEA0ewAAAAAQgGj2AAAAACAAhZoOAAS906elhATTKXxPxYpSoUKmUwAAAPgtmj3ApM2bpTvvlP76y3QS31O8uPTZZ9LNN5tOAgAA4Jc4jRMw5fBhqWVLGr2sHDkitWolHThgOgkAAIBfotkDTDh/XmrXTtq503QS37Zvn9S6tXTmjOkkAAAAfodmDzBhwABp1SqnHjxYsiy+0r5eftn5s1m7VurVy94PAACAbKPZA/JafLw0caJTt24tjRxpLI5Pevpp6eGHnXrOHOm118zlAQAA8EM0e0BeWrVK6t/fqWvWtBuZEP4punG5pKlTpbp1nX3PPistX24uEwAAgJ/hN0wgr+zcKbVtKyUn23XJktLSpVKRImZz+aoCBaTFi6WyZe3asqROnaRffzUaCwAAwF/Q7AF5ISnJnrx55Ihdh4ZKH34oVapkNJbPK1PGbvgKFLDr48ftP8fDh43GAgAA8Ac0e0BuS021rz/bvNnZN2GCdPvt5jL5kzp1pOnTnfr336UOHeyJpgAAAMgSzR6Q2154QVq2zKn79bOnSyL7OneWBg1y6i+/lAYONJcHAADAD9DsAblp7lzppZec+s47pbFjzeXxZ6NH26dwphk/XpoyxVweAAAAH0ezB+SWdeuk7t2d+sorpQ8+sK/XQ86FhEjvvCPVqOHs69tX+uorc5kAAAB8GM0ekBv275datZLOnLHriAh78mbx4mZz+bu0P8cSJew6OdmecLprl9lcAAAAPohmD/C206fthdIPHLBrl0t6/33pmmuMxgoYlStLCxY4R0gPH7ZP7zx+3GwuAAAAH0OzB3iTZUk9e9qncKZ5+WXpvvvMZQpEjRtL48Y59aZNUpcu9uRTAAAASKLZA7zrlVekd9916i5dpKeeMpcnkMXFSX36OPWSJdLQoebyAAAA+BiaPcBbli1zXx6gfn17WqTLZS5ToPvPf6QmTZx6zBj7lFkAAADQ7AFesXmzvRacZdl1uXLSwoVSgQJmcwW6/Pml+fOlKlWcfd26SevXm8sEAADgI2j2gMuVNiDkxAm7LlBAWrxYKlPGaKygUaKEPaEzIsKuz5yxJ6GmDcgBAAAIUjR7wOU4f15q317audPZN2uWVLu2sUhB6brr7AXs006Z3bdPatPGWfoCAAAgCNHsAZdjwABp5UqnHjxY6tjRWJygdv/90ksvOfX330u9ejmn1gIAAAQZmj3AU/Hx0sSJTt26tTRypLE4kPTMM9LDDzv1nDnSa6+ZywMAAGAQzR7giVWrpP79nbpmTbuxCOGflFEulzR1qlS3rrPv2Weljz82lwkAAMAQfjMFcmrnTqldOyk52a5LlrTXeCtSxGwu2AoUkBYtksqWtWvLkjp1krZsMZsLAAAgj9HsATlx/Lg96fHwYbsODZUWLJAqVzabC+7KlrUnoqYtfZGUJLVoIR05YjQWAABAXqLZA7IrNdW+HmzTJmffhAlSo0bmMiFrdepI06c79e+/Sx062BNUAQAAggDNHpBdL7xgr+eWpl8/e9ojfFfnztKgQU79xRfSwIHm8gAAAOShUNMBAK85cED6+mvnWjpv2rnTfaz/nXdKY8d6/3XgfaNH20djly2z6/HjpchI6dprvf9a+fJJt94qVajg/ecGAADIIZdlsQhVdiQlJSkqKkqJiYmKjIw0HQf/tH271KCBdOhQ7r9W1arS2rVS8eK5/1rwjuPHpVtukTZvzv3XioyUvvnGntAKAADgZTnpSziNE/4vMVFq2TJvGr2ICPtUTho9/5L291aiRO6/VlJS3r0fAQAALoLTOOHfUlLssfq//ebsu/56+3Q6b4uKshdNz43T/5D7qlSRPv3UXnfv6FHvP79lSRs22NsJCfbyHJ99JoWFef+1AAAAsoFmD/5t0CDpk0+c+oknpDfeMJcHvq12bXtIS24ZOlQaNcre/uor6fHHpUmTcu/1AAAALoLTOOG/3n5bevVVp777bumVV8zlAYYPl9q0cer4eGniRGNxAABAcKPZg39as0bq2dOpr7pKev99e5FzwJSQEPtDiOuvd/b961/Sl1+aywQAAIIWzR78z969UuvW0rlzdh0VZQ/fKFrUZCrAVqSItGSJVLKkXaekSO3b24u6AwAA5CGaPfiXU6fsRu+vv+w6JET64AOpenWjsQA3lSpJCxdK+fPb9ZEj9oTOpCSjsQAAQHCh2YP/sCype3dp/Xpn3+uvS3fdZS4TkJWGDd2v1/v1V+mhh+wjfQAAAHmAZg/+48UX7evy0nTrZk87BHxVjx72NXtpPvpIGjzYXB4AABBUaPbgHxYvll54wakbNLBH2rtcxiIB2fL661LTpk798svSO++YywMAAIIGzR583y+/SA8/7NQVKtjXQ4WHm8sEZFdoqDRvnnTllc6+Hj2k7783lwkAAAQFmj34tr//tgdbnDxp14UK2ZM3o6PN5gJyonhxadkyKTLSrs+etdfj27fPbC4AABDQaPbgu86dk9q1k/74w9n39ttSrVrGIgEeu/pq+5rTkP//sXvggD1Z9vRpo7EAAEDgotmDb7IsqX9/6euvnX3Dhklt25rLBFyue++VXnnFqX/4wZ4wa1nmMgEAgIBFswffNGGCNGWKU7dtKw0dai4P4C0DB0qxsU793nvSv/9tLg8AAAhYNHvwPV98IQ0Y4NS1akmzZzunvwH+zOWS4uOl+vWdfYMH29eiAgAAeBG/PcO37NghtW/vLDx9xRXSkiVS4cJmcwHeVKCAtGiRVL68XVuWveD6pk1mcwEAgIBCswffkZhoT948etSu8+e3l1iIiTGbC8gNpUvbH2QULGjXJ07Y7/9Dh8zmAgAAAYNmD74hJUXq3FnassXZFx8v3XqruUxAbrvpJmnWLKfetcs+sn3+vLFIAAAgcNDswTc8/7z08cdOPWCA9OijxuIAeaZDB2nIEKdetUp6/HFjcQAAQOCg2YN5c+a4j6O/+27p1VfN5QHy2vDh9iLraSZNsr8AAAAuA80ezPr+e6lnT6e+6ip74enQUHOZgLwWEiK9/bZ0/fXOvv79pZUrzWUCAAB+j2YP5uzdK7VuLZ09a9dRUfb4+aJFTaYCzChSxB7YUrKkXaekSO3aSb//bjYXAADwWz7X7G3btk1Dhw5V/fr1VapUKUVERKhWrVoaM2aMTp48meljli9frqZNm6pYsWIqVKiQrrrqKvXr1y+PkyNHTp+2G70//7TrkBBp3jypenWjsQCjKlWyJ9Dmz2/XR47YEzqTkozGAgAA/snnmr0ZM2Zo7Nixqlq1qoYOHapXX31V1atX1wsvvKAGDRro9OnTbvcfMWKE7r//foWGhmrEiBF666239OCDD2rv3r2GvgNckmXZw1fWr3f2vfaafa0eEOwaNpQmTnTqX3+VHn7YWXsSAAAgm1yWZVmmQ2T0ww8/qFq1aoqKinLb/8ILL2jMmDEaN25c+lG7zz//XM2aNdPIkSM1JOM0u1yQlJSkqKgoJSYmKjIyMldfK+C9+KI0eLBTd+smTZ8uuVzmMgG+5vHHpbfecurnnpNeeslcHgAA4BNy0pf43JG92rVrX9DoSVLHjh0lSZs2bUrf9+KLL+qKK67QoEGDJEknTpxQampq3gSFZ5YscW/0GjSwpw7S6AHuXn9datrUqf/9b+ndd83lAQAAfsfnmr2spJ2WGR0dLUk6efKkvv76a9WrV0/Tp09XuXLlFBERoSJFiujBBx/UX3/9dVmvV6ZMGbevatWqXfb3EPQ2brRPR0tToYJ9fVJ4uLlMgK8KDbWvY73ySmdf9+7S2rXmMgEAAL/iF81eSkqKRo0apdDQUHXu3FmStGPHDqWkpGjNmjV6/PHH1bNnTy1cuFBxcXGaP3++mjRpolOnThlOjnSHDtmDJk6csOtCheyjfP/fvAPIRPHi0rJlUtopGmfP2oON9u83GgsAAPgHv1jMbMCAAfruu+/04osvqvr/T2s8fvy4JOnvv//W1KlT1aNHD0lSmzZtFBkZqREjRmj27Nnq3bu3R6954MABtzrt3Fh44Nw5e4R8QoKzb/Zs6cYbjUUC/MbVV9trT95/v5SaKh04YDd8X30lFSxoOh0AAPBhPn9kb8iQIRo/frx69eqVfm2eJBX8/19yQkJC1KVLF7fHxMbGSpJWrVqVZzmRBcuS/vUv+xfTNMOG2c0fgOy5917plVecet06qUcP+98XAABAFny62Rs+fLhGjx6tbt26KT4+3u228uXLS5KKFSum8H9c81WmTBlJ0tGjR/MmKLI2caI0ebJTt20rDR1qLg/grwYOlLp2deq5c6WXXzYWBwAA+D6fbfaGDx+uESNGKDY2VtOmTZPrH9Mao6OjFRMToyNHjlxwbV7aMJcrrrgiz/IiE198YY+PT3PDDfbpmyE++7YDfJfLJcXHS7fc4ux7/nn7mj4AAIBM+ORv3SNHjtSIESPUpUsXzZgxQyFZNAddunSRZVmanPHIkaRJkyZJku67775cz4os7NghtW/vLARdqpQ9kKVwYbO5AH8WHm5PsP3/MxtkWVLnzlKGJWkAAADS+Nyi6hMmTFC/fv0UExOjUaNGXdDoRUdHq1mzZpLsoSn16tXTtm3b1KtXL91www365ptv9O677+qOO+7QZ599pnz58nklF4uq50BSklS/vrRli13nzy+tXCndeqvZXECg+PFH6bbbpNOn7bpyZfs6vhIlzOYCAAC5Lid9ic81e127dtXs2bOzvL1Ro0Zug1cOHTqkIUOGaMmSJTp06JDKly+vTp06aciQISpQoIDXctHsZVNKitSqlbR8ubNv+nTp0UfNZQIC0QcfSB07OnXjxtJnn9kfrgAAgIDl182er6LZy6Znn3WfGjhggDR2rLE4QEAbOlQaNcqpe/e2hyIBAICAlZO+xCev2YOfmjPHvdG7+27p1VfN5QEC3fDhUps2Tj1pkv0FAAAgmj14y/ffSz17OvVVV9kLQYeGmssEBLqQEOntt6Xrr3f29e9vXyMLAACCHs0eLt++fVLr1tLZs3YdFSUtXSoVLWoyFRAcihSxJ92WLGnXKSlSu3bSzp1mcwEAAONo9nB5Tp+2G70//7TrkBBp3jypenWjsYCgUqmSvSRD2nCWI0ekli3tybgAACBo0ezBc5ZlT9n84Qdn32uv2dfqAchbDRu6D2fZvFl6+GFnrUsAABB0aPbguZdesq/LS9Otmz19E4AZPXpI//qXUy9bJr3wgrk8AADAKJo9eGbJEmnwYKdu0MCeAuhymcsEQHr9dalpU6f+97+ld981lwcAABhDs4ec27hReughp65Qwb5eKDzcXCYAttBQ+7rZK6909nXvLq1day4TAAAwgmYPOXPokD344eRJuy5UyD7KFx1tNhcAR/Hi9imcaQutnj1rD1Lav99oLAAAkLdo9pB9587ZI90TEpx9s2dLN95oLBKALFx9tX1Nbcj//5g/cMBu+E6fNhoLAADkHZo9ZI9l2YMfvvrK2TdsmN38AfBN994rvfKKU69bZw9xsSxzmQAAQJ6h2UP2TJwoTZ7s1G3bSkOHmssDIHsGDpRiY5167lzp5ZfN5QEAAHmGZg+X9sUX0uOPO/UNN9inb4bw9gF8nsslxcdL9es7+55/3r6mDwAABDR+W8fF7dghtW/vLMxcqpQ9kKVwYbO5AGRfgQLSokVS+fJ2bVlS587Spk1mcwEAgFxFs4esJSXZkzePHrXr/PntXxgrVjSbC0DOlS5tf1BTsKBdnzhh//s+fNhsLgAAkGto9pC5lBT7k/8tW5x98fHSrbeaywTg8tx0kzRrllPv2mUPWTp/3lgkAACQe2j2kLnnn5eWL3fqAQOkRx81FgeAl3ToIA0Z4tSrVrlfkwsAAAIGzR4u9M477uPa775bevVVc3kAeNfw4VKbNk49aZJ95B4AAAQUmj24+/57ex2uNFddZS/MHBpqLhMA7woJkd5+W7r+emffwIHSkSPmMgEAAK+j2YNj716pdWvp7Fm7joqSli6VihY1mQpAbihSxP73HRlp16dPu1/PBwAA/B7NHmynT9uN3p9/2nVIiDRvnlS9utFYAHJRxYpSt25OPWmSlJpqLg8AAPAqmj3Ya249+qi0fr2z77XX7Gv1AAS23r2d7R07pC++MJcFAAB4Fc0epJdesq/LS9Otmz19E0Dgq15duuMOp540yVwWAADgVTR7wW7JEmnwYKdu0MD+Zc/lMpcJQN7KeHRvyRL7+l0AAOD3aPaC2caN0kMPOXWFCtLChVJ4uLlMAPJeq1ZSmTL2dmqqNHWq2TwAAMAraPaC1d9/Sy1bSidP2nWhQvYn+tHRZnMByHv580s9ezr11KnS+fPm8gAAAK+g2QtG585J7dpJCQnOvtmzpRtvNBYJgGE9e0r58tnbBw7YH/4AAAC/RrMXbCxL+te/pK+/dvYNG2Y3fwCCV/ny9tH+NBMnmssCAAC8gmYv2EycKE2e7NRt20pDh5rLA8B3ZBzUsnKl9Ntv5rIAAIDLRrMXTL74Qnr8cae+4Qb79M0Q3gYAJN15p1StmlPHx5vLAgAALhu/5QeLHTuk9u2llBS7LlXKviancGGzuQD4jpAQKS7OqWfNcoY4AQAAv0OzFwwSE+1rcY4etev8+aVFi6SKFc3mAuB7unaVChSwtxMTpfffNxoHAAB4jmYv0KWk2Gvpbdni7IuPl2691VwmAL6reHHpwQedeuJEe7ATAADwOzR7ge7556Xly516wADp0UeNxQHgB/r0cbZ//FFat85cFgAA4DGavUA2Z470yitO3ayZ9Oqr5vIA8A916kg33+zUkyaZywIAADxGsxeovv/eXiQ5zVVXSfPmSaGh5jIB8B8Zl2F4/33pyBFzWQAAgEdo9gLR3r1S69bS2bN2HRUlLV0qFStmNBYAP9Kpk/2zQ5LOnLEncwIAAL9CsxdoTp2yG70//7TrkBD7iF716kZjAfAzhQrZkznTTJokpaYaiwMAAHKOZi+QWJbUvbu0fr2z77XXpLvvNpcJgP/KeCrnjh3SF1+YywIAAHKMZi+QvPSS+5pYXbva0zcBwBPVq0t33OHUEyeaywIAAHKMZi9QLFkiDR7s1A0a2OvpuVzmMgHwfxmP7i1dal8TDAAA/ALNXiDYuNFeOD1NhQrSwoVSeLi5TAACQ6tWUpky9nZqqjR1qtk8AAAg22j2/N3ff0stW0onT9p1oUL2Ub7oaLO5AASG/Pndl3GZOlU6f95cHgAAkG00e/7s3DmpXTspIcHZN2uWdOONphIBCEQ9e0r58tnbBw7YHygBAACfR7PnryxL+te/pK+/dvYNHSq1b28uE4DAVL68fQZBGga1AADgF2j2/NXEidLkyU7dtq00bJi5PAACW58+zvbKldJvv5nLAgAAsoVmzx/973/S44879Q03SLNn2wuoA0BuuOMOqVo1p46PN5cFAABkC92BP7rhBunee+3tUqXs62cKFzabCUBgCwmR4uKcetYsZzAUAADwSTR7/igyUlq8WBo0yF5ioWJF04kABIOuXaUCBeztxETp/feNxgEAABdHs+ev8uWTXnxRuu0200kABIvixaUHH3TqiRPtYVEAAMAn0ewBALIv46CWH3+U1q0zlwUAAFwUzR4AIPvq1JFuvtmpJ00ylwUAAFwUzR4AIGd693a2339fOnLEXBYAAJAlmj0AQM506iRFRdnbZ87YkzkBAIDPodkDAORMoUL2ZM40kyZJqanG4gAAgMzR7AEAci7jqZw7dkhffGEuCwAAyBTNHgAg56pXl+64w6knTjSXBQAAZIpmDwDgmYzLMCxdKu3day4LAAC4AM0eAMAzLVtKZcrY26mp0tSpZvMAAAA3NHsAAM/kzy/17OnUU6dK58+bywMAANzQ7AEAPNezp5Qvn7194IC0ZInZPAAAIB3NHgDAc+XL26dzpmFQCwAAPoNmDwBweTIOalm5UvrtN3NZAABAOpo9AMDlueMOqVo1p46PN5cFAACko9kDAFyekBApLs6pZ82STp40FgcAANho9gAAl69rV6lAAXs7MVF6/32jcQAAAM0eAMAbiheXHnzQqSdOlCzLXB4AAECzBwDwkoyDWn78UVq3zlwWAABAswcA8JI6daSbb3ZqlmEAAMAon2v2tm3bpqFDh6p+/foqVaqUIiIiVKtWLY0ZM0Yn/3HB//Dhw+VyuTL9eu211wx9BwAQxHr3drbnzZOOHDGXBQCAIBdqOsA/zZgxQxMmTFDLli310EMPKX/+/Fq5cqVeeOEFffDBB1qzZo0KFizo9pixY8eqZMmSbvtuzvjpMgAgb3TqJD35pD2k5cwZezLnwIGmUwEAEJR8rtlr166dBg0apKioqPR9cXFxqlatmsaMGaPp06erX79+bo9p3bq1KlWqlMdJAQAXKFTInsz55pt2PWmSNGCAvTwDAADIUz73f9/atWu7NXppOnbsKEnatGlTpo9LSkpScnJyrmYDAGRDxlM5d+yQvvjCXBYAAIKYzzV7Wdm7d68kKTo6+oLbrr/+ekVFRalAgQJq0KCBPvnkk8t+vTJlyrh9VatW7bKfEwCCQvXq0h13OPXYsSzDAACAAX7R7KWkpGjUqFEKDQ1V586d0/cXLVpUvXr10rhx47RkyRK99NJL+uOPP9S8eXPNmjXLXGAACHYZl2H45BPp9dfNZQEAIEi5LMv3P27t37+/xo8frxdffFGDBg266H0PHz6sGjVq6MyZM9qzZ4+KFCnilQxJSUmKiopSYmKiIiMjvfKcABCwkpOl226Tvv/erl0u6aOPpPvuM5sLAAA/l5O+xOeP7A0ZMkTjx49Xr169LtnoSVKJEiUUFxenY8eO6dtvv82DhACAC4SGSgsXSmXL2rVl2ZM6t2wxmwsAgCDi083e8OHDNXr0aHXr1k3x8fHZflzaZM5Dhw7lUjIAwCWVLSstXiyFh9t1UpLUogVr7wEAkEd8ttkbPny4RowYodjYWE2bNk0ulyvbj92+fbukzIe5AADyUJ060owZTv3771KHDvZpngAAIFf5ZLM3cuRIjRgxQl26dNGMGTMUksn6TMnJyUpMTLxg/549ezRp0iSVKFFCDRo0yIu4AICL6dxZeu45p/7iCxZaBwAgD/jcouoTJkzQsGHDFBMTo6ZNm2ru3Llut0dHR6tZs2Y6ceKEKleurNatW+uaa65RsWLFtHXrVk2bNk0nTpzQe++9p4IFCxr6LgAAbsaMkTZvlpYts+tx46SaNaWePc3mAgAggPncNM6uXbtq9uzZWd7eqFEjrVq1SmfPnlXfvn31/fffa+/evTpx4oRKliypW2+9Vc8884zq1q3r1VxM4wSAy3T8uHTLLXbTJ9lDXL74Qrr9drO5AADwIznpS3yu2fNVNHsA4AU7d0p160qHD9t1yZLSunXS/w/WAgAAFxdQSy8AAAJIlSrSggX2UT1JOnRIatlSOnHCbC4AAAIQzR4AIG81biy99ZZTb9wodekipaYaiwQAQCCi2QMA5L3eve2vNIsXS8OGGYsDAEAgotkDAJjx5ptSkyZOPXq0NG+euTwAAAQYmj0AgBn580vz59vX8aXp2lVav95YJAAAAgnNHgDAnBIlpKVLpSJF7PrMGalVK+nPP83mAgAgANDsAQDMuu46ae5cyeWy6337pDZt7MYPAAB4jGYPAGBeixbSiy869Zo10mOPSSwFCwCAx2j2AAC+4dlnpYcecuq335Zef91cHgAA/BzNHgDAN7hc0tSpUp06zr5nnpE+/thcJgAA/BjNHgDAdxQsaK+5V6aMXVuW1KmTtGWL0VgAAPgjmj0AgG8pW9Zu+MLD7TopSWrZUjpyxGgsAAD8Dc0eAMD31K0rzZjh1Dt2SB07SsnJ5jIBAOBnaPYAAL6pc2fpueec+vPPpYEDzeUBAMDP0OwBAHzXmDH2sgxpxo2zh7gAAIBLotkDAPiukBDp3XfthdfT9O0r/e9/5jIBAOAnaPYAAL4tIkJaulQqXtyuz5+XHnhASkgwGgsAAF9HswcA8H1VqkgLFkihoXZ96JDUqpV04oTZXAAA+DCaPQCAf2jSRHrrLaf+5Rfp8cfN5QEAwMfR7AEA/Efv3vZXmrfflv7801weAAB8GM0eAMC/jB0rlSplbycnS9Ommc0DAICPotkDAPiX8HCpe3ennjJFSkkxlwcAAB9FswcA8D+PPSa5XPb2nj3S8uVm8wAA4INo9gAA/qdSJem++5x64kRjUQAA8FU0ewAA/9Snj7P93/9Kv/9uLgsAAD6IZg8A4J/uvts+wpcmPt5YFAAAfBHNHgDAP+XLZ1+7l2bmTOnMGXN5AADwMTR7AAD/9eijUliYvX34sDR/vtk8AAD4EJo9AID/uuIKqV07p2ZQCwAA6Wj2AAD+LeOgljVrpJ9+MpcFAAAfQrMHAPBvDRpINWs69aRJ5rIAAOBDQi/nwb/99pt2796tQ4cOqWDBgrriiitUs2ZNRUZGeisfAAAX53JJvXs7R/jefVd69VUpKspsLgAADMtxs/fll19q+vTp+vzzz3Xo0KELbg8JCdGNN96odu3a6dFHH1XJkiW9EhQAgCw9/LD0zDPSiRPSqVPSnDlSv36mUwEAYJTLsiwrO3dcuHChBg8erG3btsmyLJUrV0516tRR6dKlVbx4cZ0+fVqHDx/Wb7/9pg0bNujcuXMKDw/XI488opEjRyo6Ojq3v5dclZSUpKioKCUmJnLkEgB8UZ8+zimc11wjbd5sH/UDACCA5KQvyVazd/vtt+ubb75RjRo11KVLF3Xs2FExMTFZ3v/cuXNauXKl5syZo8WLFytfvnyaM2eOWrZsmfPvxkfQ7AGAj9u4Ubr+eqdetUpq1MhYHAAAckNO+pJsncZ56tQpffTRR7rvvvuyFSAsLEx333237r77bv3999/697//rW3btmXrsQAAeKRmTem226RvvrHrSZNo9gAAQS3bp3EGO47sAYAfmDtXeughezs0VNqzRypd2mwmAAC8KCd9CUsvAAACR9u2UqlS9nZysjR9utk8AAAY5FGzN3LkSL322ms6d+5clvf56quvNHLkSI+DAQCQY+HhUvfuTj15spSSYi4PAAAGedTsDR8+XM8++6zuvPNOHT58ONP7rFq1SiNGjLiscAAA5NhjjzlTOPfskZYvN5sHAABDPD6Ns3Llylq9erVuueUW7dixw5uZAADwXKVKUsaBYmnLMQAAEGQ8bvYeeeQRzZgxQ3/88YduueUWrV692pu5AADwXO/ezvann0q//24uCwAAhlzWgJauXbvq448/1vnz59W0aVO9//773soFAIDn7rnHPsKXZvJkY1EAADDlsqdx3nnnnfr2228VHR2thx56SC+++KI3cgEA4Ll8+exr99LMmCGdOWMuDwAABnhl6YVrr71W33//vW666SYNGTJE3bt31/nz573x1AAAeObRR6WwMHv78GFp/nyzeQAAyGNeW2cvOjpaX3/9tVq0aKGZM2dq7Nix3npqAABy7oorpHbtnJpBLQCAIOPVRdULFiyoRYsW6V//+pdOnz7tzacGACDnMg5q+e47acMGY1EAAMhrLsuyrNx44nXr1unUqVNq1KhRbjx9nktKSlJUVJQSExMVGRlpOg4AIDssS7rhBmnjRrvu1YthLQAAv5aTvsSrR/YyqlOnTsA0egAAP+VyuR/de+cdKTHRXB4AAPJQrjV7AAD4hIcflooUsbdPnZLmzDGbBwCAPBKa3TtWqVIlx0/ucrn0OwvZAgBMioiQunRxBrRMmiT17Wsf9QMAIIBl+5q9kJCcHwR0uVxKSUnJ8eN8EdfsAYAf27hRuv56p161SuJSAwCAH8pJX5LtI3u7du26YN/YsWM1btw47dy5M+cpAQDIKzVrSrfdJn3zjV1PmkSzBwAIeNlu9ipWrHjBvmLFimV5GwAAPqV3b6fZ+/BD6c8/pdKlzWYCACAXMaAFABAc2raVSpWyt5OTpenTzeYBACCX0ewBAIJDeLjUvbtTT54sBch15QAAZIZmDwAQPB57zJnCuWePtHy52TwAAOQimj0AQPCoVEm67z6nTluOAQCAAESzBwAILr17O9uffiqxHiwAIEBlexrn7bfffsG+3bt3Z3mbZK+z99VXX3kYDQCAXHDPPfYRvoQEu548WXrlFZOJAADIFSyqnk0sqg4AAeTf/5YGDbK3S5SQ9u6VChQwmwkAgGzIs0XVAQDwS48+Kg0dKp0/Lx0+LM2fL3XpYjoVAABedVmLqgMA4JeuuEJq316aO9euJ02i2QMABBwGtAAAglPGQS3ffSdt2GAsCgAAuSFbzd6ff/552S/0119/XfZzAADgNbfeKtWs6dQswwAACDDZavaqVKmiZ599VgcPHszxCyxfvlx16tTR5MmTc/xYAAByjcvlfnTv3XelxERzeQAA8LJsNXsDBw7U+PHjVb58ebVo0UJz5szR71msS3Ty5El99dVXGjx4sCpWrKiWLVvK5XKpdevW3swNAMDle/hhqUgRe/vkSWnOHLN5AADwomwvvbBnzx6NHDlS7733nk6fPi1JioyMVHR0tIoVK6YzZ87oyJEj2r9/v1JTU2VZlq6//no9/fTTeuihh3L1m8gLLL0AAAGqTx/nFM5rr5U2bbKP+gEA4INy0pdku9nL+ORz587V559/rtWrV7tdixcWFqaaNWuqcePGeuCBB3TLLbd49h34IJo9AAhQGzdK11/v1KtWSY0aGYsDAMDF5Gqz90/nz5/X4cOHVbBgQUVFRV3OU/k0mj0ACGANG0rffGNvd+wovf++2TwAAGQhJ33JZS+9kD9/fpUuXdprjd62bds0dOhQ1a9fX6VKlVJERIRq1aqlMWPG6OTJkxd97KRJk+RyueRyuXTo0CGv5AEABIGMg1oWLpS8MIUaAADTfG6dvRkzZmjs2LGqWrWqhg4dqldffVXVq1fXCy+8oAYNGqRfL/hP+/fv13PPPaciaRfaAwCQXW3bSqVK2dvnz0vTp5vNAwCAF/hcs9euXTvt3btX7777rvr376+4uDjNmzdPgwcP1i+//KLpWfwPuG/fvqpatSpTPwEAORceLnXv7tSTJ0spKebyAAB8Q2KidHlXvRnlc81e7dq1Mz0ltGPHjpKkTZs2XXDbokWLtHTpUsXHxytfvny5nhEAEIAee8yZwrlnj7R8udk8AADz2rWTbrzR/hDwxAnTaXLM55q9rOzdu1eSFB0d7bY/KSlJ/fr102OPPaa6det67fXKlCnj9lWtWjWvPTcAwAdVqiTdd59TP/OMdOyYqTQAANO2bZM+/1z6+WcpLk5avdp0ohzzi2YvJSVFo0aNUmhoqDp37ux227PPPqvU1FS99NJLhtIBAALGgAHO9tatUqdOnM4JAMEqPt7ZrlpVatbMXBYP+UWzN2DAAH333XcaOXKkqlevnr5/9erVmjx5st544w2vL/tw4MABt6/t27d79fkBAD6oaVPpySed+tNP7SN8AIDgcuqUNHOmU8fFSSF+0Tq58Sjx8ePHvZ0jS0OGDNH48ePVq1cvDRo0KH3/uXPn1KtXLzVt2lSdOnXKszwAgAD38svSvfc69RtvSLNmGYsDADBg3jznVP7wcKlbN6NxPOVRs1e2bFn16tVL69at83YeN8OHD9fo0aPVrVs3xWc8jCppwoQJ+u233zRw4EDt2LEj/SutEd21a5d27tyZq/kAAAEoXz7pvfekq6929j32mPTtt+YyAQDy1qRJznbHjlKJEuayXAaXZeV8lmjVqlW1a9cuuVwu1apVS4899pg6d+7s1TXuhg8frhEjRig2NlYzZsxQyD8Omw4YMEBvvvnmRZ+jcOHCOuGlqTk5WakeABAAtm+X6tWTjh616yuukNatk2JizOYCAOSuH36Q6tRx6jVr7P8f+Iic9CUeNXuStGLFCk2ZMkVLly5VcnKyChcurE6dOqlnz56qXbu2R8HTjBw5UsOGDVOXLl00a9asCxo9Sfr5558zvY5uwoQJWrVqlWbMmKFixYp5bd09mj0ACEKffy7dc48zpOXGG6X//U8qXNhsLgBA7uneXZoxw96+8UZp/XpnaR4fkCfNXpq///5bM2bM0LRp0/T777+nH+2Li4tT586dVTiH/0OcMGGC+vXrp5iYGI0aNeqCRi86OlrNLjIJp2vXrpo9e7b+/vtvlSxZ0qPvKTM0ewAQpN56S3r8cadu396+lsOH/scPAPCSo0elcuWk06ftesoUqWdPs5n+IU+bvYy++OILTZ06VYsXL9b58+dVuHBhde7cWX369NH111+fredIa9ay0qhRI61ateqSj6fZAwB4hWVJvXpJ06Y5+0aMkIYONZcJAJA7/vMf6Ykn7O3ISGn/fp87m8NYs5eQkKApU6Zo2rRpOnTokFwulyzLksvlUrt27TR58mQVLVrUWy+Xp2j2ACCInTtnL8vwv/85+xYskNq2NZcJAOBdlmUP59q2za7797fP7vAxOelLLnuxiJSUFC1cuFB33323rrzySv373/9WVFSUXn31VR08eFCfffaZmjZtqvnz56tPnz6X+3IAAOS9sDDpww+lihWdfY88Iv38s7lMAADv+vJLp9GTpN69zWXxEo+P7CUkJGjq1KmaOXOm/vrrL4WEhOj+++9X7969ddddd11w/wceeECrVq3SkSNHLju0CRzZAwDol1+kBg2kkyftOibGntB5xRVmcwEALl+7dvYHe5LUuLG0cqXROFnJ9SN7aUfxXnrpJUnS4MGDtWvXLi1atCjTRk+S6tSpo8TERE9eDgAA33D99dKcOU69e7d9Kue5c+YyAQAu37590uLFTh0AR/UkD5u9FStWqFGjRvrggw+0e/dujRw5UuXLl7/oY1q0aKEZaSNMAQDwV23aSCNHOvU330h9+tjXegAA/NO0ac4yO6VLS15avs20UE8etGXLFlWvXj1Hj6lRo4Zq1KjhycsBAOBbXnhB2rRJ+uADu54+XapZ032JBgCAfzh/3l5iIU2PHva12gHAoyN7OW30AAAIKC6XNHOmdNNNzr6BA6XPPjOXCQDgmWXL7CUWJCkkxF5uJ0B41OzNnz9fd9xxh/bt25fp7fv27dOdd96phQsXXlY4AAB8VqFC9vUd0dF2nZoqdezoPskNAOD7Jk1ytlu0kCpUMJfFyzxq9qZNm6ajR4+qXLlymd5erlw5HTt2TNMyLkALAECgqVBBWrTIOd3n2DGpZUv7vwAA37dtm/T5504dIINZ0njU7G3cuFF16tS56H3q1KmjX375xaNQAAD4jVtucb/WY+tWqVMn50J/AIDvio93tqtWlZo1M5clF3jU7B05ckRXXGJNoZIlS+rQoUMehQIAwK/ExkpPPunUn34qPfOMuTwAgEs7dUqaNcup4+Lsa/YCiEffTcmSJbVjx46L3mf79u0qWrSoJ08PAID/efll6Z57nPqNN9x/iQAA+JZ586SjR+3t8HCpWzezeXKBR83erbfeqqVLl2pbFhehb926VUuXLlXDhg0vKxwAAH4jXz7pvfekjBOrH3tM+vZbc5kAAFnLOJilY0epRAlzWXKJR83eU089pfPnz+u2227T+PHjtW3bNp08eVLbtm3TuHHjdNtttyk5OVlPPfWUt/MCAOC7iha1R3inndly7pz0wAPSnj0mUwEA/umHH6R165w6wAazpHFZlmV58sCpU6eqb9++SsnkAvR8+fJp4sSJ6tGjx2UH9BVJSUmKiopSYmKiIiMjTccBAPiyFSuke+91hrTceKP0v/9JhQubzQUAsHXvLs2YYW/feKO0fr29hqofyElf4nGzJ0lbtmzRxIkT9f333+vYsWMqWrSo6tevr969e+uaa67x9Gl9Es0eACBH3npLevxxp27f3r4+xE9+mQCAgHX0qFSunHT6tF1PmSL17Gk2Uw7kWbMXTGj2AAA5YllSr15SxjVnR4yQhg41lwkAIP3nP9ITT9jbkZHS/v1+deZFTvqSwJotCgCAr3C5pAkTpNtuc/YNGyZ9+KG5TAAQ7CzLfW292Fi/avRyKvRyHpySkqKtW7fq6NGjmV67J0m333775bwEAAD+KyzMbu7q1JF277b3PfKIPbGzRg2z2QAgGK1cKW3d6tRxceay5AGPm71Ro0Zp7NixSkxMvOj9smoCAQAICldcIS1dKt16q3TypL2I7/PP2/sAAHlr4kRnu3Fj6dprjUXJCx41e6+88oqGDRumqKgodenSRRUqVFBo6GUdJAQAIHDdcIP9C0ZsrF0vX24f6YuJMZsLAILJ/v3S4sVOHaDLLWTkUYc2depUlStXTj/++KNKlSrl7UwAAASezp3tI3r79kmpqfb0t9GjTacCgOAxdaqzJE7p0lLr1kbj5AWPBrTs2bNHrVu3ptEDACC7QkPt6Zxppk61F10HAOS+5GT7526aHj3s66oDnEfNXnR0tJKTk72dBQCAwNajh5Qvn7198KC0aJHZPAAQLJYts8+skKSQEPcP3wKYR81ehw4dtGLFCp09e9bbeQAACFxly0pt2jh1xkEBAIDck/HnbYsWUoUK5rLkIY+avREjRqhMmTJq166ddu3a5e1MAAAErowDAb7+Wtq82VwWAAgG27ZJn3/u1EEwmCWNRwNaatSoofPnz2v//v36+OOPFRUVpaJFi15wP5fLpd9///1yMwIAEDiaNLHX2Utb5yk+Xho3zmwmAAhkGRdRr1pVatbMXJY85tGRvdTUVIWGhiomJkYxMTGKioqSZVkXfKWmpno7LwAA/s3lcv9UefZs6cQJc3kAIJCdPi3NmuXUcXH2NXtBwmVZlmU6hD9ISkpSVFSUEhMTFRkZaToOAMCfHTtmX793+rRdT54cNMMCACBPzZoldetmb4eH20NaSpQwGuly5aQvCZ62FgAAX1G0qL3uXpqJEyU+ewUA78s4mKVjR79v9HLqspu9LVu2aNGiRZozZ4438gAAEBwynsr588/SmjXmsgBAIFq/Xlq3zqmDaDBLGo+bvR9//FE33XSTatSooXbt2qlr167pt3311VcqVKiQli5d6o2MAAAEnptvlurWdepJk8xlAYBAlPHn6o03SvXqmctiiEfN3m+//abGjRtrx44dGjBggO69916322+//XaVKFFCCxYs8EpIAAACUsZPmefNkw4dMpcFAALJ0aPS3LlO3bu3PSAryHjU7A0bNkypqalat26dXn/9ddWpU8ftdpfLpVtuuUXrMh42BQAA7jp2lIoVs7fPnZNmzjSbBwACxdtvO0OwIiPdr5MOIh41e6tWrdIDDzyg6tWrZ3mfmJgY7d+/3+NgAAAEvIIFnSlxkr0WFMsWAcDlsSz3UzhjY6XChc3lMcijZi8xMVFlypS56H3OnTun5ORkj0IBABA04uKc7Z07pc8+M5cFAALBypXS1q1OnfHnbJDxqNkrU6aMtmzZctH7/PLLL6pUqZInTw8AQPCoVk1q1sypGdQCAJcn48/Rxo2la681FsU0j5q9u+++W5988onWrl2b6e2fffaZvv76azVv3vyywgEAEBQyDmr56CNp925zWQDAn+3fLy1a5NRBuNxCRh41e4MHD1ZERITuuOMOPf/88/r1118lSfPnz9cTTzyhFi1aqFSpUnryySe9GhYAgIDUooVUrpy9nZoqTZliNg8A+Ktp06SUFHu7dGmpdWujcUxzWZZlefLAH374QR06dFBCQoLzZC6XLMtSpUqV9OGHH+rGG2/0Vk7jkpKSFBUVpcTEREVGRpqOAwAINCNHSsOG2dtXXCHt2SOFhZnNBAD+JDlZqlRJ2rfPrl94QRo1ymik3JCTvsTjZk+SkpOTtXz5cn333Xc6cuSIoqKiVK9ePbVq1Ur58+f39Gl9Es0eACBX7d8vxcQ4n0i//769NAMAIHsWLZIeeMDeDgmREhKkChWMRsoNedbsBROaPQBArmvfXlqwwN5u1EhatcpoHADwK3fdJa1YYW+3aiUtXmw0Tm7JSV/i0TV7AAAgF2QcJPDVV9LmzeayAIA/2b7dafSkoB/MkibUkweNHDkyW/dzuVwaMmSIJy8BAEDwadJEql7dWR8qPl4aN85sJgDwB/HxznbVqu5L2gQxj07jDAnJ+oCgy+WSJFmWJZfLpZS0aw/8HKdxAgDyxJtvSgMG2NsREfa1fEWKGI0EAD7t9Gl7ovHRo3b96qvSU0+ZzZSLctKXeHRkb+XKlZnuP3bsmNatW6e33npLzZs3V1wQr1YPAIBHYmOlQYPsX16OH5fmzpV69TKdCgB817x5TqMXHi5162Y2jw/JlQEtGzduVN26dfX++++rVatW3n56IziyBwDIMz16SNOn29u1akk//ij9/5kzAIB/qFdPWrvW3n7kEWn2bLN5cpnxAS01a9ZUq1at9OKLL+bG0wMAENgyDhbYsEFas8ZYFADwaevXO42exGCWf8i1aZwxMTHatGlTbj09AACB6+abpbp1nXrSJHNZAMCXZfz5WKuWfZQP6XKt2fv+++9VsGDB3Hp6AAACW8ZPp+fNkw4dMpcFAHzR0aP2dc1p+vThlPd/8GhAy+7duzPdn5ycrD179mjq1Kn65ptv1KFDh8sKBwBA0OrYURo40P5l5tw5aeZM6emnTacCAN/x9tv2MCtJioyUOnc2m8cHedTsVapUKX2JhcxYlqVq1arptdde8zgYAABBrWBBe6LcG2/YdXy89OST0kWWPwKAoGFZ7qdwxsZKhQuby+OjPGr2HnnkkUybvZCQEBUrVkx169ZVq1atFB4eftkBAQAIWnFxTrO3c6f02WfSPfeYzQQAvmDlSmnrVqdmybdMedTszZo1y8sxAADABapVk5o1k1assOtJk2j2AEByP6rXuLF07bXGovgyzgUBAMCXZRzU8tFHUhbXzQNA0Ni/X1q0yKlZbiFLNHsAAPiyFi2kcuXs7dRUacoUs3kAwLRp06SUFHs7Olpq3dpoHF/m0WmcVapU8ejFXC6Xfv/9d48eCwBAUAoNlXr1koYNs+upU6WhQ6WwMLO5AMCE5GT3D7169uTn4UV4dGQvNTVVZ8+eVUJCghISErRnzx6dPn1ae/bsSd939uxZWZbl9pWamurt/AAABL4ePaR8+eztgwfdT18CgGCybJm0b5+9HRJifxiGLHnU7P3yyy8qV66c6tevr5UrV+rMmTM6cOCAzpw5oy+//FL16tVT+fLl9csvv2jXrl1uXwAAIIfKlpXatHHqjIMJACCYZPz516KFVKGCuSx+wKNmb/DgwTp27JhWrVqlRo0aKd//f9qYL18+NW7cWCtXrtSRI0c0ePBgr4YFACBoZRxA8NVX0ubN5rIAgAnbtzvTiSUGs2SDR83eokWL1KpVK4VlcX5sgQIF1KpVKy1cuPCywgEAgP/XpIlUvbpTx8ebywIAJmT8uVe1qr00DS7Ko2bv8OHDOn/+/EXvc/78eR0+fNijUAAA4B9cLvdPsWfPlk6cMJcHAPLS6dPSzJlOHRdnX7OHi/LoT6hq1apasGCBEhMTM7396NGjWrBggcdTOwEAQCZiY6WCBe3t48eluXPN5gGAvDJvnnT0qL0dHi5162Y2j5/wqNmLi4vT/v37VbduXb399ttKSEjQ6dOnlZCQoNmzZ6tevXr6888/1bdvX2/nBQAgeBUtKnXu7NSTJkmWZSwOAOSZjINZOnaUSpQwl8WPuCzLs/9LPP744xo3bpxcLtcFt1mWpf79++vNN9+87IC+IikpSVFRUUpMTFRkZKTpOACAYLV+vVS7tlN/+610yy3m8gBAbvvnz73vvpPq1zeXx7Cc9CUeLaouSW+++aYefPBBzZgxQz/99JMSExMVFRWlm266SV27dlWDBg08fWoAAJCVm2+W6taV1q6160mTaPYABLaMR/Vq1ZLq1TMWxd94fGQv2HBkDwDgM2bNcq5XCQuzFxguWdJoJADIFUePSuXK2QNaJGnKFKlnT7OZDMtJX8IIGwAA/E3HjlKxYvb2uXPuE+oAIJC8/bbT6EVGul+3jEvyuNlLSUnRm2++qXr16ikqKkqhoc4ZoRs2bFCfPn20bds2r4QEAAAZFCzoPokuPl5KTTWXBwByg2W5n8IZGysVLmwujx/yqNk7c+aM7rzzTg0cOFC7du1SRESEMp4NWrlyZc2cOVNz5szxWlAAAJBBXJyzvXOn9Nln5rIAQG5YuVLautWpM/7cQ7Z41Oy9/PLL+vrrrzVq1Cj9+eef6tGjh9vtUVFRatSokf773//m+Lm3bdumoUOHqn79+ipVqpQiIiJUq1YtjRkzRidPnnS77+uvv67GjRurTJkyCg8PV5kyZdSkSRMtWrTIk28LAAD/Ua2a1KyZU2f89BsAAkHGn2uNGknXXmsui5/yqNl77733dPvtt+v5559XSEhIpssvVK5cWXv27Mnxc8+YMUNjx45V1apVNXToUL366quqXr26XnjhBTVo0ECn087ZlbR27VpVqlRJTzzxhCZNmqQnn3xSp06d0gMPPKBRo0Z58q0BAOA/evd2tj/6SNq921wWAPCm/fuljAdw+vQxl8WPebT0QkJCglq2bHnR+0RFRelo2ir3OdCuXTsNGjRIUVFR6fvi4uJUrVo1jRkzRtOnT1e/fv0kSfPmzbvg8QMGDNDNN9+sV155Rc8//7zy5cuX4wwAAPiFFi3sKXX79tnX7E2ZIo0ebToVAFy+adOklBR7Ozpaat3aaBx/5dGRvcKFC+vw4cMXvU9CQoKKFy+e4+euXbu2W6OXpmPHjpKkTZs2XfTxoaGhKleunE6ePKnz58/n+PUBAPAboaFSr15OPW2aPZ0TAPxZcrL94VWanj3tZWaQYx4d2atdu7Y+/vhjnTx5UoUzmYhz8OBBffzxx7rrrrsuO2CavXv3SpKio6MvuO3IkSNKSUnRoUOHNH/+fH366adq0qSJChQo4PHrlSlTxq1OZcoZAMAX9eghjRxpfwL+11/2aU///wEpAPilZcvsMxYkKSTE/UMt5IhHR/b+9a9/6a+//lKLFi0uWF7h559/VosWLXTy5En179/fKyFTUlI0atQohYaGqnMma2tcddVVuuKKK3Tttddq1KhRatu2rd5//32vvDYAAD6tbFmpTRunZlALAH+X8efY/fdLFSqYy+LnPDqy17x5c73wwgsaPXq0rrnmGoX9/2HVIkWK6PTp07IsSyNHjlSjRo28EnLAgAH67rvv9OKLL6p69eoX3L5w4UKdOXNG+/bt0/z583X69GkdP35cpUqV8vg1Dxw44FanrVQPAIDP6d1bWrDA3v7qK2nzZum668xmAgBPbN8urVjh1AxmuSwuK+MCeTn0+eefa/z48VqzZo2OHDmiqKgo1atXT48//riaZRwHfRmGDBmi0aNHq1evXpo8eXK2HtOpUyetWrVKv/76q4oVK+aVHGnNXmJioiIjI73ynAAAeIVlSddc46xH1a+fNG6c2UwA4Iknn5TeeMPerlpV2rbNPpUT6XLSl3j0J7d79279+eefatq0qRYvXqw///xT586d099//62PPvrIa43e8OHDNXr0aHXr1k3x8fHZflxsbKz+/PNPLVy40Cs5AADwaS6X+zIMs2dLJ06YywMAnjh9Wpo506nj4mj0LpNHf3qVK1fW888/7+0sboYPH64RI0YoNjZW06ZNy3Qtv6ykrcV35MiR3IoHAIBviY2VCha0t48fl+bONZsHAHJq3jwpbem28HCpWzezeQKAR81e0aJFVbJkSW9nSTdy5EiNGDFCXbp00YwZMxSSSUd/8uRJncjkU8uUlBRNmDBBklS/fv1cywgAgE8pWlTKOMRs0iT79E4A8BcZB7N06CCVKGEuS4DwaEBL/fr19dNPP3k7iyRpwoQJGjZsmGJiYtS0aVPN/ccnk9HR0WrWrJm2b9+uRo0aqV27dqpevbqKFy+uffv26b333tPWrVsVGxurhg0b5kpGAAB8Uu/e0vTp9vaGDdKaNdIttxiNBADZsn69tHatUzOYxSs8avaGDx+uhg0batq0aerRo4dXA61bt06SfV1gbGzsBbc3atRIzZo1U/ny5dWlSxf973//06JFi3T8+HFFRUXpxhtv1JAhQzJdogEAgIB2881S3brOL0yTJtHsAfAPGY/q1aol1atnLEog8Wga58iRI/Xtt99qxYoVqlWrlurWravSpUtfcF2dy+XSkCFDvBbWJKZxAgD8wqxZznUuYWH2wsS5eOkFAFy2o0elcuXsAS2SNGWK1LOn2Uw+LCd9iUfNXmbX0GX65C6XUlJScvr0PolmDwDgF06ftn9pShty8Mor0tNPm80EABfz5pvSgAH2dmSktH+/VLiw0Ui+LCd9iUenca5cudKjYAAAIJcVLGgf2Utbpyo+3l63ivHlAHyRZbmfwvnIIzR6XpTtI3tLly7V1Vdfrauuuiq3M/kkjuwBAPzG9u1Sxv9ff/KJdM895vIAQFa+/FK6806n3rxZuvZac3n8QK4sqt6mTRu9//77bvvmzZunBx54wLOUAAAgd1SrJjVr5tQZPzUHAF+S8edTo0Y0el6W7WYvswOAv/32m5YsWeLVQAAAwAt693a2P/pI2r3bXBYAyMz+/dKiRU6d8ecWvIIT+AEACEQtWtiDWiQpNdWebgcAvmTaNCltmGN0tNSmjdk8AYhmDwCAQBQaKvXq5dTTpknnzpnLAwAZJSe7fwjVo4e9XAy8imYPAIBA1aOHlC+fvf3XX+6nSwGAScuW2euASva04IwfTsFrctTs/XPRdAAA4MPKlnU/LYpBLQB8RcafR/ffL8XEmMsSwLK99EJISIgiIyPdxnsmJSXp+PHjKpd2TcA/n9zl0h9//OGdpIax9AIAwC/9c6z5pk3SddeZywMALA9zWXJtUfWkpCQlJSVdsH/v3r05SwgAAPJGkyZS9erS1q12HR8vjRtnNhOA4BYf72xXqSLddZe5LAEu26dxpqamevQFAAAMcrncx5nPni2dOGEuD4Dgdvq0NHOmU8fF2dfsIVfwJwsAQKCLjZUKFrS3jx+X5s41mwdA8Jo3Tzp61N4OD5e6dTObJ8DR7AEAEOiKFpU6d3bqSZOk7F2yDwDelXEwS4cOUsmS5rIEAZo9AACCQcZTOTdskNasMRYFQJBav15au9apM/5cQq6g2QMAIBjcfLNUt65TswwDgLyW8edOrVpS/frGogQLmj0AAIJFxk/R582TDh0ylwVAcDl61P164d697QFSyFU0ewAABIuOHaVixeztc+fcJ+IBQG56+217EqckRUa6X0eMXEOzBwBAsChY0H3yXXy8xDJJAHKbZbmfwvnII1KRIubyBBGaPQAAgklcnLO9c6f02WfmsgAIDitXSlu3OnXGn0PIVTR7AAAEk2rVpGbNnJpBLQByW8afM40aSdddZy5LkKHZAwAg2GQc1PLRR9Lu3eayAAhs+/dLixY5Ncst5CmaPQAAgk2LFlK5cvZ2aqo0ZYrZPAAC17RpUkqKvR0dLbVpYzZPkKHZAwAg2ISGSr16OfXUqfZ0TgDwpuRk9w+TevSQwsLM5QlCNHsAAASjHj3spk+SDh50P80KALxh2TJp3z57OyTE/UMm5AmaPQAAglHZslLr1k7NoBYA3pbx58r990sxMeayBCmaPQAAglXGQQlffSVt3mwuC4DAsn27tGKFUzOYxQiaPQAAglWTJlL16k4dH28uC4DAkvHnSZUq0l13mcsSxGj2AAAIVi6X+6fts2dLJ06YywMgMJw+Lc2c6dRxcfY1e8hz/KkDABDMYmOlggXt7ePHpblzzeYB4P/mzZOOHrW3w8Olbt3M5gliNHsAAASzokWlzp2detIkybKMxQEQADIOZunQQSpZ0lyWIEezBwBAsMt4KueGDdKaNcaiAPBz69dLa9c6NYNZjKLZAwAg2N18s1S3rlOzDAMAT2X8+VGrllS/vrEooNkDAACS+6fv8+ZJhw6ZywLAPx096n7db+/e9iAoGEOzBwAApI4dpWLF7O1z59wn6QFAdrz9tj2JU5IiI92vB4YRNHsAAMCeyJlxYl58vJSaai4PAP9iWe6ncD7yiFSkiLk8kESzBwAA0sTFOds7d0qffWYuCwD/snKltHWrU2f8eQJjaPYAAICtWjWpWTOnZlALgOzK+POiUSPpuuvMZUE6mj0AAODIOKjlo4+k3bvNZQHgH/bvlxYtcmqWW/AZNHsAAMDRooVUrpy9nZoqTZliNg8A3zdtmpSSYm9HR0tt2pjNg3Q0ewAAwBEaKvXq5dRTp9rTOQEgM8nJ7h8K9eghhYWZywM3NHsAAMBdjx520ydJBw+6n54FABktWybt22dvh4S4f1gE42j2AACAu7JlpdatnZpBLQCykvHnw/33SzEx5rLgAjR7AADgQhkHLHz1lbR5s7ksAHzT9u3SihVOzWAWn0OzBwAALtSkiVS9ulPHx5vLAsA3Zfy5UKWKdNdd5rIgUzR7AADgQi6X+6f0s2dLJ06YywPAt5w+Lc2c6dRxcfY1e/Ap/I0AAIDMxcZKBQva28ePS889ZzYPAN8xb5509Ki9HR4udetmNg8yRbMHAAAyV7So+y9wEyaw7h4AW8bBLB06SCVLmsuCLNHsAQCArP3731KNGk7dt689sAVA8Fq/Xlq71qkZzOKzaPYAAEDWIiKkpUulEiXsOjlZattW2rXLbC4A5mQ8qlerllS/vrEouDiaPQAAcHGVK0sffugstH74sNSypX0dH4DgcuyYNHeuU/fubQ90gk+i2QMAAJfWqJE0frxTb9okdekipaaaywQg782ebU/ilKTISKlzZ7N5cFE0ewAAIHsee8y+Zi/NkiXS0KHm8gDIW5blfgrnI49IRYqYy4NLotkDAADZN3asdMcdTj1mjPT+++byAMg7K1dKW7c6NYNZfB7NHgAAyL78+aUPPpCqVnX2desm/fCDuUwA8kbGo3qNGknXXmsuC7KFZg8AAORMiRL2hM6ICLs+c0Zq3Vo6cMBoLAC5aP9+afFip+aonl+g2QMAADl37bXSe+85U/j27bMbvjNnjMYCkEumTbOXXpGk6GipTRuzeZAtNHsAAMAzzZvbi66nWbtW6tXLHuIAIHAkJ0tTpjh1jx5SWJi5PMg2mj0AAOC5p5+WHn7YqefMkV57zVweAN63bJl99F6SQkLsD3XgF2j2AACA51wuaepUqW5dZ9+zz0rLl5vLBMC7Mg5muf9+KSbGXBbkCM0eAAC4PAUK2IMbypa1a8uSOnWSfv3VaCwAXrB9u7RihVMzmMWv0OwBAIDLV6aM3fAVKGDXx49LLVtKhw8bjQXgMsXHO9tVqkh33WUuC3KMZg8AAHhHnTrS9OlO/fvvUocO0vnz5jIB8Nzp09LMmU4dF2dfswe/wd8WAADwns6dpUGDnPrLL6WBA83lAeC5efOko0ft7fBwqVs3s3mQYzR7AADAu0aPtk/hTDN+vPvYdgD+IeNglg4dpJIlzWWBR2j2AACAd4WESO+8I113nbOvb1/pq6/MZQKQM+vX22tnpmEwi1+i2QMAAN4XESEtXSqVKGHXyclS27bSrl1mcwHInoxH9WrVkurXNxYFnqPZAwAAuaNKFWnBAik01K4PH7ZP7zx+3GwuABd37Jg0d65T9+5tr6kJv0OzBwAAck/jxtK4cU69aZPUpYuUmmosEoBLmD3bnsQpSZGR9uAl+CWaPQAAkLvi4qQ+fZx6yRJp6FBzeQBkzbLcT+F85BGpSBFzeXBZfK7Z27Ztm4YOHar69eurVKlSioiIUK1atTRmzBidPHky/X6WZemdd97Rgw8+qCuvvFKFChVSTEyMWrZsqe+//97gdwAAAC7wn/9ITZo49Zgx0vvvG4sDIAsrV0pbtzo1g1n8msuyLMt0iIyee+45TZgwQS1btlT9+vWVP39+rVy5Uh988IGuv/56rVmzRgULFtSZM2dUsGBB1apVS82bN1flypV14MABxcfHa//+/Xr77bf18MMPey1XUlKSoqKilJiYqMjISK89LwAAQePwYaluXWnnTrsuUED63/+k2rXN5gLgaN/evtZWkho1klatMhoHF8pJX+Jzzd4PP/ygatWqKSoqym3/Cy+8oDFjxmjcuHHq16+fkpOTtXr1ajVq1Mjtfn/99Zeuu+465cuXTwcOHFBIiHcOXtLsAQDgBZs3S7fc4gxpKVdOWrdOKlPGbC4A0v79UsWK9vRcyT763rGj2Uy4QE76Ep87jbN27doXNHqS1PH/32ibNm2SJIWGhl7Q6ElSdHS0GjVqpIMHD+rgwYO5GxYAAOTMddfZU/7SJvvt2ye1aSOdOWM2FwBp2jSn0YuOtv9twq/5XLOXlb1790qym7ns3DcsLExFixb1+PXKlCnj9lWtWjWPnwsAAGRw//3SSy859fffS7162YMhAJiRnCxNmeLUPXpIYWHm8sAr/KLZS0lJ0ahRoxQaGqrOlxj9+vHHH2vt2rXq2LGjChQokEcJAQBAjjzzjPTQQ049Z4702mvm8gDBbtky+0i7JIWE2B/AwO+Fmg6QHQMGDNB3332nF198UdWrV8/yftu3b1eXLl1Urlw5vf7665f1mgcOHHCr086NBQAAXuBySVOnStu22dfsSdKzz0rXXis1b242GxCMMi63cP/9UkyMuSzwGp8/sjdkyBCNHz9evXr10qBBg7K8365du3TnnXfK5XLpk08+UalSpfIwJQAAyLGCBaXFi6WyZe3asqROnaRffzUaCwg627dLK1Y4NcstBAyfbvaGDx+u0aNHq1u3boqPj8/yfgkJCWrSpIlOnDihFStWqGbNmnmYEgAAeKxsWbvhS7v04vhxqWVLe5kGAHkj4+/ZVapId91lLgu8ymebveHDh2vEiBGKjY3VtGnT5Eqb2vUPCQkJaty4sRITE7VixQrdeOONeZwUAABcljp1pOnTnfr336UOHaTz581lAoLF6dPSzJlOHRdnX7OHgOCTf5MjR47UiBEj1KVLF82YMSPLtfL++OMPNWnSRMeOHdNnn32mm2++OY+TAgAAr+jcWcp4ucaXX0oDB5rLAwSLefOko0ft7fBwqVs3s3ngVT63qPqECRPUr18/xcTEaNSoURc0etHR0WrWrJmOHz+uG264Qbt27VL//v1Vt27dC56rWbNm2VqqITtYVB0AgFyWmiq1bm1PBUwzeTJTAYHcVK+etHatvd2li/T222bz4JJy0pf4XLPXtWtXzZ49O8vbGzVqpFWrVikhIUGVK1e+6HOtXLlSjRs39koumj0AAPLA8ePSLbdImzfbdWio9PnnUqNGZnMBgWj9eql2baf+9lv73x98ml83e76KZg8AgDyyc6dUt64zpKVECXt5hkt8yAsgh3r0cK6XrVVL+vFHe1kU+LSc9CU+ec0eAAAIYlWqSAsW2Ef1JLvpa9nSPuoHwDuOHZPmznXq3r1p9AIQzR4AAPA9jRtL48Y59aZN9vVEqanGIgEBZfZsexKnJEVG2kOSEHBo9gAAgG+Ki5P69HHqJUukoUPN5QEChWVJkyY59SOPSEWKmMuDXEOzBwAAfNd//iM1aeLUY8ZI779vLA4QEFaulLZudeq4OHNZkKto9gAAgO/Kn1+aP9++ji9Nt27SDz+YywT4u4xH9Ro1kq67zlwW5CqaPQAA4NtKlJCWLpUiIuz6zBl7Pb4DB4zGAvzS/v3S4sVO3bu3sSjIfTR7AADA9113nT05MG1a4L59Ups2duMHIPumTZOSk+3t6Gj73xECFs0eAADwD/ffL730klN//73Uq5c9bALApSUnS1OmOHWPHlJYmLk8yHU0ewAAwH8884z08MNOPWeO9Npr5vIA/mTZMvuouCSFhNgfliCg0ewBAAD/4XJJU6dKdes6+559Vlq+3FwmwF9kHMxy//1STIy5LMgTNHsAAMC/FCggLVoklS1r15YldeokbdliNhfgy7Zvl1ascGoGswQFmj0AAOB/ypa1JwoWKGDXx49LLVpIR44YjQX4rPh4Z7tKFemuu8xlQZ6h2QMAAP6pTh1p+nSn/v13qUMH6fx5c5kAX3T6tDRzplPHxdnX7CHg8bcMAAD8V+fO0qBBTv3FF9LAgebyAL5o3jzp6FF7Ozxc6tbNbB7kGZo9AADg30aPllq2dOrx493HywPBLuNglg4dpJIlzWVBnqLZAwAA/i0kRHrnHalGDWdf377S11+bywT4ivXrpbVrnZrBLEGFZg8AAPi/iAhp6VKpRAm7Tk6W2raVEhKMxgKMy3hUr1YtqX59Y1GQ92j2AABAYKhcWVqwQAoNtetDh6RWraRz58zmAkw5dkyaO9epe/e216pE0KDZAwAAgaNxY2ncOKf+5Re7AQSC0ezZ9iROSYqMtAcaIajQ7AEAgMASFyc98IBTZzyNDQgWluX+3n/kEalIEXN5YATNHgAACDyPP+5sf/ONtHGjuSyACStXSlu3OnVcnLksMIZmDwAABJ6GDaXrrnNqju4h2GR8zzdq5P7vAUGDZg8AAAQel8t9xPycOdLx4+byAHlp/35p8WKnZrmFoEWzBwAAAlOXLlLhwvb2iRP2WnxAMJg2zV5+RJKio6U2bczmgTE0ewAAIDBFRkoPP+zUkybZQyuAQJacLE2Z4tQ9ekhhYebywCiaPQAAELgynr62caO0erW5LEBeWLZM2rfP3g4JkXr1MpsHRtHsAQCAwHXDDVKDBk7NoBYEuozv8fvvl2JizGWBcTR7AAAgsGU8ujd/vnTwoLksQG7avl1ascKpGcwS9Gj2AABAYGvXTipRwt4+f16aMcNsHiC3xMc721WqSHfdZS4LfALNHgAACGwFCkjduzv15MlSSoq5PEBuOH1amjnTqePi7Gv2ENR4BwAAgMD32GP22nuSlJAgffqp0TiA182bJx09am+Hh0vdupnNA59AswcAAAJflSrS3Xc7NYNaEGgyvqc7dJBKljSXBT6DZg8AAASHPn2c7Y8/lnbtMpcF8Kb166W1a52awSz4fzR7AAAgONx3nzOG3rLcF54G/FnGo3q1akn16xuLAt9CswcAAIJDvnz2tXtppk+Xzp41lwfwhmPHpLlznbp3b+f6VAQ9mj0AABA8uneX8ue3t//+W/rwQ7N5gMs1e7Y9iVOSIiKkzp3N5oFPodkDAADBIzpaeuABp2ZQC/yZZbm/h2NjpSJFzOWBz6HZAwAAwSXjoJZvvpE2bjSXBbgcK1dKW7c6dVycuSzwSTR7AAAguDRsKF13nVNzdA/+KuN7t1Ej9/c1IJo9AAAQbFwu99H0c+ZIx4+bywN4Yv9+adEip2a5BWSCZg8AAASfLl2kwoXt7RMnpHfeMZsHyKlp06SUFHs7Olpq08ZsHvgkmj0AABB8IiOlhx5y6kmT7GEXgD9ITnZfJ7JHDykszFwe+CyaPQAAEJwynva2caO0erW5LEBOLFsm7dtnb4eESL16mc0Dn0WzBwAAglOtWtIttzg1g1rgLzK+V++/X4qJMZcFPo1mDwAABK+MyzDMny8dPGguC5Ad27dLK1Y4NYNZcBE0ewAAIHi1ayeVKGFvnz8vzZhhNg9wKa+84mxXqSLddZe5LPB5NHsAACB4FSggPfqoU0+e7Ew4BHzNjBn2FM40cXH2NXtAFnh3AACA4PbYY/bae5KUkCB9+qnROECmVq+2m7s011zDKZy4JJo9AAAQ3KpWle6+26kZ1AJfs3u39MAD9qnGklSsmLR0qVSkiNlc8Hk0ewAAABkHtXz8sbRrl7ksQEYnT0otWzrDg/Lls4cJXXml2VzwCzR7AAAA993njK+3LPcFqwFTUlOl2Fjp55+dff/5j3TnncYiwb/Q7AEAAOTL574w9fTp0tmz5vIAkjRqlPThh07dq5fUt6+5PPA7NHsAAACS1L27lD+/vf333+6/ZAN57cMPpeHDnfr226Vx45xhQkA20OwBAABIUunS9hCMNAxqgSkbNkiPPOLUlSpJCxZIYWGmEsFP0ewBAACkyTio5ZtvpI0bzWVBcPrrL3sgy6lTdl24sLRkiVSqlNlc8Es0ewAAAGkaNpSuu86pObqHvHT2rH10ec8eZ98770jXX28uE/wazR4AAEAal8t94eo5c6Tjx83lQfCwLHuR9G+/dfaNHi21bm0sEvwfzR4AAEBGXbrYp85J0okT9pEVILe9+aY0c6ZTP/ig9Pzz5vIgINDsAQAAZBQVJT30kFNPmmQfdQFyy3//Kz35pFPffLO9/AeTN3GZaPYAAAD+qXdvZ3vjRmn1anNZENi2bpU6drQXUJfsqbCLF0uFChmNhcBAswcAAPBPtWpJt9zi1AxqQW44etSevJmYaNfh4dKiRVL58mZzIWDQ7AEAAGQm49G9+fOlgwfNZUHgSU6WOnWStm1z9k2dKtWvby4TAg7NHgAAQGbat5dKlLC3z5+XZswwmweB5Zln7Gv10jz9tD0cCPAimj0AAIDMFCggPfqoU0+eLKWkmMuDwDFjhjR2rFM3by699JK5PAhYNHsAAABZeewxZyJiQoL06adG4yAArF7tvpbjNddIc+dK+fKZy4SARbMHAACQlapVpbvvdmoGteBy7N4tPfCAfVqwJBUrJi1dKkVGms2FgEWzBwAAcDEZB7V8/LG0a5e5LPBfJ0/akzfTBv3ky2cP/rnySrO5ENBo9gAAAC6meXMpJsbetixpyhSzeeB/UlOl2Fjp55+dff/5j3TnncYiITjQ7AEAAFxMvnxSr15OPX26dPasuTzwP6NGSR9+6NS9ekl9+5rLg6Dhc83etm3bNHToUNWvX1+lSpVSRESEatWqpTFjxujkyZNu9127dq3+9a9/6dZbb1WRIkXkcrk0a9YsM8EBAEDg6t5dyp/f3v77b/df3IGL+fBDafhwp779dmncOGfwD5CLfK7ZmzFjhsaOHauqVatq6NChevXVV1W9enW98MILatCggU6fPp1+348//lgTJkzQsWPHdMMNNxhMDQAAAlrp0vZgjTQMakF2bNggPfKIU1eqJC1YIIWFmUqEIONzzV67du20d+9evfvuu+rfv7/i4uI0b948DR48WL/88oumT5+eft/evXsrKSlJmzdv1hNPPGEwNQAACHgZB7V88420caO5LPB9f/1lD2Q5dcquCxeWliyRSpUymwtBJdR0gH+qXbt2pvs7duyoMWPGaNOmTen7oqOj8yoWAAAIdrffLl17rfTrr3Y9cKDUtKn3X6dAAaldO6lcOe8/N/LG2bP2keA9e5x977wjXX+9uUwISj7X7GVl7969kvKuwStTpoxbnZqamievCwAAfJTLZR/d69/frj//3P7KDa+9Jq1bZ58+Cv9iWVKfPtK33zr7Ro+WWrc2FgnBy+dO48xMSkqKRo0apdDQUHXu3Nl0HAAAEKy6dJGionL/dfbuldq0kc6cyf3Xgne9+aY0Y4ZTP/ig9Pzz5vIgqPnFkb0BAwbou+++04svvqjq1avnyWseOHDArU5KSlJUXvxwBwAAvisqSlq2TJo40V4k29sSE6Wvv7a316yRHntMmjWLyY3+4r//lZ580qlvvtleqoO/Pxji883ekCFDNH78ePXq1UuDBg0yHQcAAAS7hg3tr9xgWfbRw3ffteu335Zq1pSeeip3Xg/es3Wr1LGjvYC6ZJ+Cu3ixVKiQ0VgIbj59Gufw4cM1evRodevWTfHx8abjAAAA5C6XS5o6VapTx9n3zDPSxx+by4RLO3bMnryZmGjX4eHSokVS+fJGYwE+2+wNHz5cI0aMUGxsrKZNmyYXh78BAEAwKFjQbhTShsVZltSpk7Rli9lcyFxysn1d3rZtzr6pU6X69c1lAv6fTzZ7I0eO1IgRI9SlSxfNmDFDISE+GRMAACB3lCtnnwIYHm7XSUn2kaMjR4zGQiaeeca+Vi/N00/bp+ICPsDnrtmbMGGChg0bppiYGDVt2lRz5851uz06OlrNmjWTJP3xxx+aM2eOJGnz5s2SpGXLlqUv09ClSxdVrFgxD9MDAAB4Sd269lTHhx6y6x077GvCPvlECvW5X+GC04wZ0tixTt28ufTSS+byAP/gsizLMh0io65du2r27NlZ3t6oUSOtWrVKkrRq1So1adIky/uuXLlSjRs39kqutGmciYmJioyM9MpzAgAAXNKgQdK//+3U/ftLb71lLg9sq1dLTZpI58/b9TXX2BNU+T0RuSwnfYnPNXu+imYPAAAYkZpqL8i9bJmzb8oUqWdPY5GC3u7d9hCdgwftulgxae1a6corzeZCUMhJX8LFcAAAAL4sJMReiuG665x9ffo46/Ehb508KbVq5TR6+fJJ8+fT6MEn0ewBAAD4uogIaelSqXhxu05Oltq2lRISjMYKOqmpUteu0oYNzr7//Ee6805DgYCLo9kDAADwB1WqSAsWOMNZDh2yjzCdOGE2VzAZNcr+O0jTq5fUt6+5PMAl0OwBAAD4iyZN3Iez/PKLPeY/NdVcpmDx4YfS8OFOffvt0rhxEmtBw4fR7AEAAPiT3r3trzSLF0vDhhmLExQ2bJAeecSpK1Wyj/CFhZlKBGQLzR4AAIC/efNN+yhfmtGjpXnzzOUJZAcP2qfLnjpl14ULS0uWSKVKmc0FZAPNHgAAgL/Jn9+eAFmlirOva1dp/XpjkQLS2bPSAw/YSy2keecd6frrzWUCcoBmDwAAwB+VKGFP6IyIsOszZ+wjUH/+aTZXoLAse4mL1audfaNH22seAn6CZg8AAMBfXXedNHeuMyRk3z6pTRu78cPlefNNacYMp+7YUXr+eXN5AA/Q7AEAAPiz+++XXnrJqdeskR57zD4yBc989pn05JNOffPNduPH5E34GZo9AAAAf/fMM9JDDzn1229Lr79uLo8/27bNPoqXtpxF6dL2xNNChYzGAjxBswcAAODvXC5p6lSpTh1n3zPPSB9/bC6TPzp2TGrRwv6vJIWHS4sWSeXLm0wFeIxmDwAAIBAULGgfgSpb1q4tS+rUSdqyxWgsv5GcLD34oH1kL82UKVL9+uYyAZeJZg8AACBQlC1rN3wFCth1UpLUsqV05IjRWH7h2Wel//7XqZ96yn0hdcAP0ewBAAAEkjp1pOnTnXrHDvsatORkc5l83axZ0htvOPV990n//rexOIC30OwBAAAEms6dpUGDnPrzz6WBA83l8WXffmtPL01zzTX2chb58pnLBHgJzR4AAEAgGj3aHjaSZtw4e4gLHLt32+sSnjtn18WK2QvVR0WZzQV4SajpAAAAAMgFISHSu+9Kt9wibd5s7+vTx15DLoTP+yVJP/4oHTxob+fLJ82fL115pdlMgBfR7AEAAASqiAj7SFXdutLhw/Z1ewsWmE7lm8aOle6803QKwKv4WAcAACCQValiN3ihfMafpZ49pX79TKcAvI5/9QAAAIGucWN7EMmnn0opKabT+JbKlaWHH7YXpgcCDM0eAABAMKhTx/4CEDQ4jRMAAAAAAhDNHgAAAAAEIJo9AAAAAAhANHsAAAAAEIBo9gAAAAAgANHsAQAAAEAAotkDAAAAgABEswcAAAAAAYhmDwAAAAACEM0eAAAAAAQgmj0AAAAACEA0ewAAAAAQgGj2AAAAACAA0ewBAAAAQACi2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIACFmg7gLyzLkiQlJSUZTgIAAAAgWKX1I2n9ycXQ7GXT8ePHJUkVKlQwnAQAAABAsDt+/LiioqIueh+XlZ2WEEpNTdX+/fsVEREhl8vl8fNUq1ZNkrR9+3ZvRQPS8f5CbuM9htzGewy5ifcXcltevMcsy9Lx48dVtmxZhYRc/Ko8juxlU0hIiMqXL++V55GkyMjIy34u4J94fyG38R5DbuM9htzE+wu5La/eY5c6opeGAS0AAAAAEIBo9gAAAAAgAHHNHgAAAAAEII7sAQAAAEAAotkDAAAAgABEswcAAAAAAYhmDwAAAAACEM0eAAAAAAQgmj0AAAAACEA0ewAAAAAQgGj2AAAAACAA0ewBAAAAQACi2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCavTyQmpqqsWPH6uqrr1aBAgVUoUIFPfnkkzp58qTpaPAj27Zt09ChQ1W/fn2VKlVKERERqlWrlsaMGZPpe2nr1q1q3bq1ihUrpsKFC6thw4b68ssvDSSHPzt16pSqVKkil8ulfv36XXA77zN44siRI3rqqad05ZVXqkCBAipVqpSaNGmi//3vf273+/7779W0aVNFREQoMjJS99xzjzZs2GAmNPzCiRMn9OKLL6pmzZqKiIhQyZIl1aBBA82aNUuWZbndl/cXLuall15S+/bt0/8fWKlSpYvePyfvp/379+uRRx5RqVKlVLBgQdWuXVvz58/3/jchyWX9850Pr3v88cf11ltvqU2bNrr33nu1ZcsWjRs3Tg0bNtTnn3+ukBB6blzac889pwkTJqhly5aqX7++8ufPr5UrV+qDDz7Q9ddfrzVr1qhgwYKSpN9//11169ZVaGioBgwYoKioKE2dOlWbNm3SJ598oqZNmxr+buAvnnrqKU2ePFknTpxQ3759NX78+PTbeJ/BE3/88YcaN26sEydOqHv37rrqqquUmJioX375RXfffbcefPBBSdKaNWvUuHFjlStXLv2DhvHjx+vgwYP69ttvVbNmTZPfBnxQamqqGjVqpG+//VaxsbGqX7++Tp06pffee09r167VM888o5dfflkS7y9cmsvlUvHixXXTTTdp/fr1ioyMVEJCQqb3zcn76ciRI6pdu7YOHjyogQMHqnz58po7d66++uorzZgxQ926dfPuN2IhV23atMlyuVzWAw884Lb/rbfesiRZ7777rqFk8Dfr1q2zjh07dsH+wYMHW5KscePGpe9r3769FRISYv3000/p+44fP27FxMRYV111lZWampoXkeHn1q9fb+XLl896/fXXLUlW37593W7nfQZP3HbbbVb58uWt/fv3X/R+derUsSIiIqy9e/em79u7d68VERFhNWvWLLdjwg99++23liRrwIABbvvPnj1rVa5c2YqKikrfx/sLl/L777+nb1933XVWxYoVs7xvTt5PTz/9tCXJWrp0afq+5ORkq06dOlbx4sWt48ePe++bsCyLQ0q57L333pNlWRowYIDb/p49e6pQoUJ65513zASD36ldu7aioqIu2N+xY0dJ0qZNmyRJJ0+e1NKlS9W4cWPVqlUr/X5FihRRjx49tG3bNq1bty5PMsN/paSkqGfPnrrnnnv0wAMPXHA77zN44uuvv9Y333yjZ555RmXKlNH58+d16tSpC+63Y8cOrVu3Tu3bt1e5cuXS95crV07t27fX559/rj///DMvo8MPJCUlSZLKli3rtj8sLEwlS5ZU4cKFJfH+QvZUqVIlW/fL6ftp7ty5qlq1qlq0aJG+L1++fOrfv7+OHDmijz/+2HvfhLhmL9etW7dOISEhqlu3rtv+AgUKqFatWvwyhMu2d+9eSVJ0dLQk6ZdfftHZs2d1yy23XHDf+vXrSxLvO1zS2LFj9dtvv7mdtpkR7zN4Iu2XmJiYGLVo0UIFCxZU4cKFddVVV7l9+Jn23snq/WVZltavX583oeE36tatq6JFi+qVV17R/PnztXv3bv32228aNGiQ1q9fr+HDh0vi/QXvysn76cCBA9q3b1/6/yf/ed+Mz+ctNHu5bP/+/SpZsqTCw8MvuK1cuXI6dOiQzp07ZyAZAkFKSopGjRql0NBQde7cWZL9npPk9ulSmrR9+/bty7uQ8Du7du3SsGHDNHTo0CwvSOd9Bk9s3bpVkn12y5EjRzR79mzNmDFDYWFh6tKli2bOnCmJ9xc8U6xYMS1dulTFixdXhw4dVLFiRV1zzTWaMGGCPvzwQ/Xs2VMS7y94V07eTybee6FefTZc4NSpU5k2epJ9dC/tPmFhYXkZCwFiwIAB+u677/Tiiy+qevXqkpR+SlRm77uM7zkgK3FxcapSpYoGDhyY5X14n8ETx48flyRFRERo5cqV6f/va926tapUqaLnn39esbGxvL/gsSJFiqhGjRpq2bKlGjRooCNHjmjChAnq3LmzlixZombNmvH+glfl5P1k4r1Hs5fLChUqpIMHD2Z625kzZ9LvA+TUkCFDNH78ePXq1UuDBg1K35/2fjp79uwFj+E9h0t55513tGLFCn399dfKnz9/lvfjfQZPpE0M7tSpk9uHnMWKFVPLli319ttva+vWrby/4JGNGzeqQYMGGjt2rOLi4tL3d+rUSTVq1FDPnj31+++/8/6CV+Xk/WTivcdpnLmsbNmyOnToUKZ/qfv27VPJkiU5qoccGz58uEaPHq1u3bopPj7e7ba0C9MzOw0gbV9mpw8AZ8+e1cCBA3XfffepdOnS2rFjh3bs2KE//vhDkpSYmKgdO3bo2LFjvM/gkfLly0uSSpcufcFtZcqUkSQdPXqU9xc8MnbsWJ05c0bt27d321+oUCE1b95cf/zxhxISEnh/waty8n4y8d6j2ctlderUUWpqqtauXeu2/8yZM9qwYYNq165tKBn81fDhwzVixAjFxsZq2rRpcrlcbrfXrFlT4eHh+u677y547Jo1aySJ9x0ydfr0af39999avny5qlWrlv7VuHFjSfZRv2rVqmnatGm8z+CRtGFlaYOlMkrbd8UVV6hOnTqSlOX7y+Vy6eabb87FpPBHab8sp6SkXHBbcnJy+n95f8GbcvJ+KlOmjMqVK5f+/8l/3lfKhf93enUhB1zgl19+ueg6e3PmzDGUDP5oxIgRliSrS5cuVkpKSpb3a9eunRUSEmJt2LAhfV/a+mfVqlVj/TNk6ty5c9b8+fMv+Jo4caIlybrnnnus+fPnW1u3brUsi/cZcu7IkSNWRESEVa5cObe1pPbv328VLlzYuuqqq9L31a5d24qIiLD27duXvm/fvn1WRESEdeedd+ZpbviHAQMGWJKsl19+2W3/0aNHrTJlyljFihWzkpOTLcvi/YWcudQ6ezl5Pz311FNZrrNXtGhRKykpyavZXZZlWd5tH/FP/fv31/jx49WmTRvdd9992rJli9566y3deuut+vLLLxUSwgFWXNqECRPUr18/xcTEaNSoURe8b6Kjo9WsWTNJ9povdevWVf78+fXEE08oMjJSU6dO1caNG7V8+XLdfffdJr4F+KmEhARVrlxZffv2dVuKgfcZPDFlyhQ99thjuu666/Too4/q3LlzmjRpkg4cOKCPPvpId911lyTp22+/VZMmTVS+fHn1799fkjRu3Dj99ddfWr16tW644QaT3wZ80B9//KGbbrpJR48e1UMPPaRbb71VR44c0dSpU5WQkKAJEyaoT58+knh/4dLmzJmTfhnDuHHjdO7cOT355JOSpIoVK6pLly7p983J++nw4cO6+eabdfjwYQ0cOFDlypXTe++9p1WrVmnatGnq3r27d78Rr7aOyFRycrL12muvWVdddZUVFhZmlS1b1nriiSfcPtUELiU2NtaSlOVXo0aN3O7/66+/Wi1btrSioqKsggULWrfeequ1YsUKM+Hh13bt2mVJsvr27XvBbbzP4IkPP/zQqlevnlWoUCGrSJEiVrNmzaxvvvnmgvt9++231h133GEVLlzYKlKkiHXXXXdZ69evN5AY/mLHjh3WI488YpUrV84KDQ21IiIirIYNG1offvjhBffl/YWLadSoUbZ/57KsnL2f9u7daz388MNWiRIlrPDwcOvGG2+03n///Vz5PjiyBwAAAAABiPMHAQAAACAA0ewBAAAAQACi2QMAAACAAESzBwAAAAABiGYPAAAAAAIQzR4AAAAABCCaPQAAAAAIQDR7AAAAABCAaPYAAAAAIADR7AEAgt7w4cPlcrm0atUq01FypGHDhqpVq5Ysy8rxY3/++WeFhIRo2rRpuZAMAOALaPYAAAHF5XLl6MvfGrw08+fP1zfffKPRo0fL5XLl+PE33HCD2rZtqyFDhujEiRO5kBAAYJrL8uTjQAAAfNTw4cMv2Pef//xHiYmJevzxx1W0aFG327p27aoiRYro0KFDiomJUaFChfIm6GWwLEtXX3218ufPr02bNnn8PD/88IPq1KmjMWPG6Pnnn/diQgCAL6DZAwAEvEqVKumPP/7Qrl27VKlSJdNxLtuKFSt011136eWXX9YzzzxzWc917bXX6uTJk9q1a5dCQjjhBwACCT/VAQBBL7Nr9hISEuRyudS1a1dt27ZNbdq0UbFixRQVFaVWrVopISFBkrRjxw61b99eJUuWVKFChXTfffdp586dmb7O4cOH9cwzz6h69eoqUKCAihUrpubNm2vNmjU5yjv9/9q7m5CovjCO4z+5FvYyDkpEMxES5aL3IbxaKpEQFFiYQtiiYmCcIIwgImoRZEG1qBAiXBS1GMI2Uo0t7IVELJiKQoWgpgLfCrEXK4NSLKdFNP2nO436L1Mv3w/M5nnOPfc5y4cz59xz5yRJpaWlllxvb68OHTqkxYsXy+FwyOFwaN68edq8ebOampos40tLS9XR0aGbN2+OqAYAwPhHswcAQAKtra1auXKlPnz4IJ/Pp7y8PNXW1mrNmjV6/PixcnJy9ObNG3m9Xq1evVp1dXUqLCzU4OCgZZ7ly5fr+PHjmj17tsrLy1VcXKxQKKRVq1bp6tWrw6onEomovr5ebrdbGRkZlty6detUUVGh1NRU+f1+7dixQ9nZ2WpoaNC9e/cs8+Xl5UkSzR4A2FDyWBcAAMB41tjYqBMnTmjPnj3R2Pbt23X27Fnl5ubqwIEDcXPBYFDFxcXR+LZt2/TixQtdunQpJn7kyBFlZ2fL7/erra1NKSkpCesJh8N6/fq1NmzYYMk9evRIoVBIGzdu1OXLl2NyX79+VW9vr+UZ0zSj6wQA2As7ewAAJDB37lzt3r07JrZ161ZJUnp6uiW3ZcsWSd8/bfBDc3Oz7ty5o02bNsU0epLkcrm0d+9edXd369atW0PW09HRIUmaNWvWb8dMmTLFEjMMQ2lpaZa40+lUSkpKdF4AgH2wswcAQALLli2zXFzicrkkSUuXLrXk3G63JOnly5fRWCgUkiT19PTEvS302bNnkqQnT56osLAwYT1v376VpLiN28KFC+XxeHTx4kW1t7erqKhI+fn5ysrK0uTJk387Z3p6urq7uxO+FwAw8dDsAQCQgNPptMSSk5OHzA0MDERjPT09kr6fi0t0Nm4437v7sWvX19dnyRmGofr6eh0+fFg1NTXat2+fJCk1NVVer1dHjx7VtGnTLM99/vw57m4gAGBi42+cAACMsh9N4bFjxxSJRH77O3jw4JBzzZw5U9LPBvJXaWlpqqysVGdnp54+faozZ84oMzNTp06d0s6dOy3jBwcH9f79++i8AAD7oNkDAGCU5eTkSPr5d84/sWjRIhmGoXA4POTYzMxM+f1+NTY2avr06bpy5YplTDgcViQSkcfj+ePaAADjC80eAACjzDRN5ebmqra2VufPn4875u7du/r06dOQczmdTnk8HrW0tKi/vz8m19raGvcbf+/evVN/f7+mTp0a972SVFBQMJylAAAmEM7sAQDwD1RXV6ugoEA+n09VVVUyTVMOh0OdnZ168OCBnj9/rq6urrgN2a9KSkr08OFDNTQ0aO3atdF4S0uLSkpKZJqmFixYILfbrVevXikYDGpgYCB6hu+/bty4IcMwVFRU9FfXCwAYe+zsAQDwD2RkZKipqUkVFRX68uWLAoGATp8+rfv372vJkiUKBAKaMWPGsOby+XyaNGmSAoFATDwrK0v79++XYRi6du2aTp48qevXr8s0TdXV1WnXrl0x4z9+/KhgMKj169drzpw5f22tAIDxISkSiUTGuggAADAyZWVlqq6uVltb2/++XKWqqkrl5eW6ffu28vPz/3KFAICxRrMHAMAE1NXVFb2ApbKycsTP9/X1af78+VqxYoVqampGoUIAwFjjzB4AABOQy+XShQsXordpJiUljej59vZ2lZWVyev1jk6BAIAxx84eAAAAANgQF7QAAAAAgA3R7AEAAACADdHsAQAAAIAN0ewBAAAAgA3R7AEAAACADdHsAQAAAIAN0ewBAAAAgA3R7AEAAACADdHsAQAAAIANfQPgpdWrbHWBFwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.title('Detected frequency drift')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Overlaying this traced function with the Dynamical Powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAKOCAYAAAA8vlEoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADc80lEQVR4nOzdd1gUV9sG8HuW3kFQUBQQxF6wd7HX2HvvRpPom2iaSYw1Jl8SY4rG2E3UaGJiS9TYewsae0MUERWVotLb7vn+8GVfN+zCAodlkfuXa6/IzJkzz+zOzO6Z0xQhhAARERERERGZBVVRB0BERERERET/w0IaERERERGRGWEhjYiIiIiIyIywkEZERERERGRGWEgjIiIiIiIyIyykERERERERmREW0oiIiIiIiMwIC2lERERERERmhIU0IiIiIiIiM8JCWhHJzMzEypUr0blzZ3h5ecHa2hqlS5dGcHAwFi5ciOTk5KIO0SitW7eGoig4dOhQUYciTXh4OPr3748yZcrAwsICiqJgzZo1uW6nKIrOy9LSEm5ubqhUqRL69OmDhQsXIjo6ukCxzZo1C4qiYNasWdnWxcTEYMyYMfD29oalpaXBdPoUh89Ro9Fgzpw5qFy5MqytraEoClq3bl3UYelYs2YNFEXBqFGjijoUszdq1Cijr61/b/Piy9HREeXKlUNwcDCmTZuGkJCQwgu6GDp06FChXytZ+3jxpVKp4ObmhpYtW2Lp0qVQq9WFtn8iopeRZVEHUBLdvn0b3bt3x9WrV2FpaYmmTZuifPnyiImJwfHjx3HkyBEsXLgQ27ZtQ926dYs63BJFo9Ggb9++OHfuHGrXro2OHTvC0tISlSpVMjqPvn37wtHREQCQkJCAe/fuYceOHdiyZQvef/99fPzxx3j//fdhYWEhNfZx48Zh27ZtqFSpEgYMGABra2sEBQXh0KFDaNOmDYKDg826EJabb7/9FjNnzoSbmxt69uwJBwcHVK1a1aQx+Pn5ISIiAuHh4fDz8zPpvul/6tSpg6CgIABAWloaYmNjce7cORw5cgRfffUV2rdvj9WrV6N8+fJFG2gJ4+DggH79+gF4/iDy5s2bOHbsGI4dO4Zt27Zh+/btsLTkzw5zN2vWLMyePRszZ840+KBPURQAgBDChJERlTCCTOrhw4eibNmyAoDo1KmTuHfvns76Z8+eidGjRwsAwsnJSVy/fr2IIjVOcHCwACAOHjxY1KFIcevWLQFA+Pn5CbVanadtAQgAIjw8PNu6+Ph48X//93/CxsZGABCvvfZavuKLjo4W165dE9HR0TrL09LShKWlpbCzsxMJCQk66w4ePCgAiODgYIP5RkREiGvXromkpKR8xWUKLVu2FADE/v37iywGX19fg5+xEEI8ffpUXLt2TTx48MC0gRVDI0eOFADE6tWr87zNzJkz9a7fs2ePqF69uvYafvTokZxgi7GkpCRx7do1ERERUWj7yLrH+Pr6Zlu3c+dOYWFhIQCIH374odBiIHlmzpyZ43UmxP++74io8LC5o4m99tpriIqKQrNmzbB9+3Z4e3vrrHd2dsaqVaswaNAgJCQkYPjw4UUUacl07949AICvry9UKnmXh5OTE959911s374dKpUK33//Pfbu3ZvnfDw8PFC1alV4eHjoLH/48CEyMzNRpkwZbS1eXvj4+KBq1aqwt7fP87amkvXZ+Pv7F3Ekhrm4uKBq1aooW7ZsUYdSInXo0AGnTp1CtWrVcOfOHbz11ltFHVKRs7e3R9WqVeHj41Mk++/SpYv2e+z3338vkhiIiIojFtJMKDQ0FFu2bAEALFq0CNbW1gbTfvPNN7C2tkZISAgOHDgAAIiNjYWNjQ0cHByQkJCgd7u0tDS4ubnBwsIC9+/f11kXHR2N999/HzVq1IC9vT2cnJzQpEkTrFixQm+ThRf7Ke3btw8dO3ZEqVKloCgKzp8/n+OxXrlyBTNmzEDTpk1RtmxZWFtbw8vLC71798bx48ezpZ8wYQIURcGXX35pMM8333wTiqLgk08+yXHfL3r8+DGmTZuGypUrw9bWFq6urmjVqhV++uknnWO+c+cOFEVBcHAwAODw4cPavhUym7V17NgRAwcOBAB89dVXOute7G9269YtDBs2DGXLloWFhQW+/vrrbGmyKIoCX19fAEBERIROv5BRo0ahTZs22Y7p331UDPVJe3H5yZMn0blzZ7i6usLe3h4tWrTA/v37DR7rmTNn0K1bN7i6usLJyQnNmjXD5s2bte+1se9rVgzh4eEAgIoVK2qPISve3PrU+fn5QVEU3LlzJ9u69PR0LF68GC1btoSbmxtsbW1RsWJF9O3bFzt37gTwvz43ERER2WJ4Md/c+qRt27ZNex3Z2NigYsWKmDhxojbfF734Pmk0Gnz99deoUaMGbG1t4enpiTFjxuDx48dGvYdZHj9+jK+//hodO3aEn58fbG1t4ebmpr0m9HmxT1NaWhpmzpyJSpUqwcbGBuXLl8ebb76JpKQkvdump6dj/vz52uvP29sbr776aoH7ZubEyclJe7388ssvePDgAQDgxIkTUBQFtWrVMrjt+fPnoSgKKleurL0/vPiZPnv2DP/5z39QoUIF2NjYICAgALNnz0ZmZma2vCIiIjB//nwEBwejfPnysLGxgYeHBzp16oQ///xT7/5f3FdsbCxee+01lC9fHnZ2dqhduzY2bNigTXvs2DF06tQJbm5ucHR0RNeuXXH9+vVseebWJ+3OnTuYPHkyqlSpAnt7e7i6uqJWrVqYNm2a3vMyP+rVqwcA2fK7ePEihg4dCm9vb1hbW8PT09Pgd0S1atWgKAoiIyN1lv/xxx/a6/Do0aM6665duwZFUdC0adNs+UVEROD1119HpUqVtN8Nbdq0webNm/Uew4v3kF9//RUtWrSAi4sLFEXB06dPAQBRUVF45513UKNGDTg7O8PR0RG+vr7o2bMnfvvtN538XuyT+c8//6B79+5wd3eHg4MDmjRpgl9//dXg+5meno5FixahWbNmcHV1ha2tLapVq4YZM2YY/G0AAMePH8fAgQO156OnpyeaNWuGzz77DCkpKdrjnD17NgBg9uzZOve5WbNmac/RLP/ui5jFmO+z3PqlGvO9dPjwYbRv3x4uLi5wc3NDr169cPPmTQDPuy8sWLAANWrUgJ2dHby9vfHee+8hPT3d4HtEZE7YONyEduzYASEEatasmWtfszJlyqBTp074448/8Mcff6Bt27Zwd3dHt27dsGXLFvz2228YPXp0tu22b9+Op0+fomPHjjq1dBcuXEDnzp3x8OFD+Pr6omPHjkhOTsapU6cwfvx4HDx4EOvXr9cby8aNG7Fs2TLUqVMHnTt3RmRkZK61TAsXLsSqVatQvXp11KtXD/b29ggNDcXWrVvxxx9/YN26dRg0aJA2/euvv47ly5dj2bJlmDZtms7NHgCSk5Px448/wsrKCmPHjs1x31lCQ0PRpk0bPHjwAOXLl0fPnj0RHx+PgwcP4ujRo9i9ezfWrVunHXxg5MiRePjwIXbv3g1PT0907twZALLVWhXUkCFDsGHDBhw9ehQZGRmwsrLKFneDBg3g5OSEVq1aISkpKccarpEjRyIxMRG///67Tp8QAGjRooXeYwKQp/5cO3bswNdff609B65cuYLjx4+jc+fO2L9/P1q1aqWTfs+ePejevTvS09NRq1Yt1KxZExEREejbty+mTp1q9H4BoHPnzvDz88Nvv/2GpKQknT5/Xl5eecrr3+Li4tC5c2eEhITA3t4ezZs3h7u7OyIjI7F7927Exsaia9eu8PLywsiRI/XGAMCo2st33nkHX375JSwsLNCqVSt4enri7NmzWLp0KX755Rf89ddfaNy4sd5thw8fjq1bt6J169YIDAzE8ePHsXr1aoSEhODMmTOwsbEx6nj37NmDt956Cz4+PggMDETTpk1x//59nDhxAkePHsXp06exePFivdump6ejU6dOuHDhAoKDg1GlShUcPXoU33zzDa5du4bdu3frpFer1ejZsyf++usvODg4oEOHDrCxscHvv/+OvXv35lhYKqgOHTrAw8MDMTExOHToEIYMGYJmzZohKCgI58+fx7Fjx9CiRYts2y1ZsgQAMHHixGz3oKdPn6Jp06aIi4tDy5Yt8fTpUxw9ehSzZs3C/fv3sWzZMp30a9euxYwZMxAYGIgaNWrA1dUVd+7cwZ49e7Bnzx58/vnneOedd/TG/+TJEzRp0gQpKSlo3rw5Hj58iKNHj2LIkCHQaDSws7PDoEGDUL9+fXTs2BFnzpzBrl27cPbsWVy5csXoe9auXbswYMAAJCYmwsfHB127doVarUZYWBi++uor1KpVS8ogOPHx8QCgc55u3rwZgwcPRnp6OurUqYPg4GCEh4dj69at2L59OxYtWoRJkyZp07dt2xbXr1/HgQMHMHLkSO3yFx8UHThwAC1btsy2rm3btjrx7Nu3D3369EFCQgKqVKmCbt26ITY2FqdOncKhQ4cwffp0zJ8/X++xfP7551iyZAmaNm2Kbt26ITQ0FIqiICoqCnXr1sWjR49QsWJFtGvXDlZWVrh37x727duHtLQ0nXtzllOnTmHixInw8fFBx44d8eDBAxw7dgwDBw5EWFgYPvjgA530T58+RdeuXXHy5EmUKlUKjRo1gr29PUJCQjBv3jxs2bIFR44cQalSpXS2mzt3Lj7++GMAQFBQEFq2bIknT57g2rVrmD59OgYNGgQ/Pz/069cP+/btw4ULF3T6fmZt5+HhgZEjR+LHH38EAJ3PQp+8fp/lxbZt2/Ddd9+hUaNG6NSpE86ePYtt27bh9OnTuHjxIiZNmoTdu3ejTZs2qFixIg4dOoTPP/8c0dHRWLVqlZQYiApV0ba2LFmGDRsmAIgxY8YYlX727NkCgGjZsqV22datWwUA0bp1a73bvPLKKwKAWLdunXZZUlKS8PPzEwDEV199pdPX6t69e6JevXoCgFi5cqVOXln9zZBDvxFDfdIOHTok7ty5ky39jh07hJWVlXBzc8vW/6l58+YCgNi7d2+27VauXCkAiAEDBuiNQ58GDRoIAGLkyJEiLS1Nu/z69euiXLlyAoD4/vvvdbYxpv+WIcihT9qL7t27p0178+ZN7fKsfgAAxLhx40R6enq2bQ31FQgPDzfYJ8SYYzL0OWYtVxRFbNiwQbtco9GIN954QwAQbdq00dkmMTFReHl5CQDiiy++0Fm3detWbf8UfbHmJKf+YLn1jTS0bdb10qZNG/H48WOddfHx8WLfvn1GxyCEEKtXr9aecy/6448/BADh4uIiTp8+rV2uVqvFO++8IwAIHx8fkZqaql2X9ZkCEIGBgeLu3bvadY8ePRIVK1YUAMSPP/6oNxZ9rl69Kv7+++9sy8PCwoSPj48AIE6ePKmzLuv8ASCaNm0q4uLidLZzcXERAMThw4d1tlu4cKEAIPz9/XVif/r0qfZaz+neok9ufdJe1L59ewFAfPjhh9ply5cvFwDE0KFDs6WPj48Xjo6OwtbWVsTGxmqXZ32mAETv3r1FSkqKdt2pU6eEhYWFUBQl2znx999/i6tXr2bbT0hIiHBxcRGWlpY678u/9zVo0CCd+9ayZcsEAOHt7S3c3NzEli1btOtSU1NF69atBQAxa9YsnTwNXf937twRjo6OAoBYsGBBtj64165d0xu/Pjn1SdNoNKJx48YCgBg+fLgQQogHDx4IJycnvf3UNm/eLCwsLISlpaW4cOGCdvlvv/0mAIgRI0bopK9Vq5YoX768cHV11fmuFEKI3r17CwA61/H9+/eFq6ursLKy0rmnZR1z1jX+776vWcutrKzE7t27sx3nrFmzBAAxadKkbOsSEhLEiRMndJZlncsAxNSpU3Xe/3379gkbGxuhUqnEP//8o7Nd//79BQAxZMgQ8ezZM+3ylJQUbZ5Z7/O/3ztXV9ds9zSNRiMOHDggnj59ql0mo0+aMd9nufVLze17SaVSZbsO2rRpIwCIGjVqiGrVqomoqCjt+osXLworKyu91yuROWIhzYQ6d+4sAIj333/fqPQ//PCDACCqVaumXZaeni48PDyEoijZOoI/fvxYWFpaCicnJ50C0OLFi/V+uWU5e/asACDq1q2rszzrRtipUyeDMeZn4JAhQ4YIAOLPP//UWb5hwwYBQPTt2zfbNg0bNszTfg4fPiwAiFKlSon4+Phs67N+DAUEBOgsN0UhLTU1VZv21KlT2uVZX2ru7u7ZBv/4dxpTF9IGDhyYbZvo6GgBQFhbW+t8Aa9Zs0YAEHXq1NG7rwEDBphFIe2ff/7RniNPnjwpcAxCGC6kZf1wmDdvXrZtMjIyREBAgAAg1q5dq13+YiFt165d2bb74osvBAAxatQoo2LPTVYh4O2339ZZnnX+qFQqceXKlWzbvf7663oLB1mFyF9++SXbNhcuXBCKohRqIW3QoEECgJg4caJ2WXJysnBzcxM2NjYiJiZGJ33WffLfn13WZ+rk5JStIC+EEN26dRMAxJo1a4w+jg8++EAAEIsWLdK7L2dn52zxZWZmCg8PD4OFTEMP8Axd/1OmTBEAxOjRo42O2xB9hbSMjAxx7do17cNJlUqlfQCQ9QCyffv2evPL+pzHjh2rXRYbGysURREVKlTQLnv8+LFQFEWMGjVK9OzZU1hZWWm/+9RqtShVqpSwsbHRKVhnPRT5+OOP9e77999/1xbIX5R17b/66qt6t3vttdcEAJ1CQ06yjrF8+fI6hfEsEydOFIDuQ93Lly9rH9q8+EAnS1JSkvD09BSWlpY6Dxpq166dpwc6MgtpOX2fFbSQltN1AOh/4NurV688X69ERYV90syY0NNPzMrKCoMHD4YQAmvXrtVZt2HDBmRmZqJ///46zQl27doFAOjfv7/e/dStWxeOjo64cOECUlNTs63v1atXvuJ/9uwZ1q9fj3fffRfjx4/HqFGjMGrUKFy+fBnA82YQL+rbty+8vLywbds2PHz4ULv87NmzCAkJQdWqVY2e6+fIkSMAgN69e8PJySnb+mHDhsHKygq3bt3K1nevsGk0Gu2//92kCgDat2+fr8E/ClOXLl2yLfPw8ECpUqWQnp6OmJgY7fKs937AgAF68xoyZEjhBJlHf/31FwCgT58+cHV1LbT9ZGZm4sSJEwD0Nw2ytLTEiBEjADzvN/hvVlZWaN++fbblVapUAQBtnytjZWRkYNeuXZg5cyYmTpyI0aNHY9SoUdo+M/++LrP4+PigevXqRsURGRmJ8PBw2NjY6G3iVbt2bdSuXTtPcedV1nX24jVmZ2eH0aNHIy0tDatXr9ZJ/2JTR33q16+P0qVLZ1ue0+eQkpKCzZs344MPPsCECRO098CsPjaG3uv69evD3d1dZ5mFhYW272nHjh2zbRMQEGAwDn2yzn9jm48b48U+sVZWVqhWrRrWrVsHOzs7rFy5Ek2aNAHwv3uEoaZyY8aMAaB7PZQqVQp16tRBZGSkts/RwYMHIYRA27Zt0bZtW2RkZGj7pZ0/fx5xcXFo2rQpbG1ttfnk9n2Y1XT71KlTetcb+j5s0KABAGD69OnYvn270XOd9uvXT2//9GHDhgH433sF/O8z69Gjh94mzvb29mjQoAEyMzNx5swZAM/7yV28eBH29vYYPHiwUTHJVJjfZzldB1ZWVtr+2PrW5/W+SVQU2CfNhLK+dB89emRU+qxBAf7dv2DkyJH47rvvsHbtWnz44Yfa5Vkd/7N+8GW5ffs2AKB79+657jM2NjbbiJNZPwzyYsuWLRgzZoy2Q7U+Wf0UslhZWWHChAmYM2cOVqxYgY8++ghA7j+e9MkqeFWsWFHvektLS/j4+GgLaf8+5sL0YoHm3/0GgPy934WtQoUKepc7OTkhLi4OaWlp2mVZ772h4zCX47t79y6A//3ILiyxsbFIS0uDtbW1wfMsa8RKfQ8MvLy89M4tlfXw4cX3PjfXr19Hz549DRYOgOzXZZaczoF/x5F1HBUqVDDYf9XPzw8XLlwwKu78yLrO/n2Nvfbaa1i4cKFO/9djx47h8uXLCAoK0hYk/i0vxw88H6RhwIABOf4YNPReG5rfLevHrr71WeuMPR8K4/x/sU+sSqWCs7MzatasiV69eul8j+V2fzZ0PbRt2xbnz5/H/v37ERgYqNPn7MmTJwCe90Pr1KmTwf5oWd+HufWJNDS4jaH718iRI3Ho0CH89NNP6NmzJywtLVGnTh20bt0aw4YN0+nb9SJDAyhlLc8a1fbF2BcsWIAFCxYYFX/W51yxYsVs/Z9NoTDv9zldB15eXnrnIs3rdUJUlFhIM6F69eph/fr1+Pvvv41KHxISot3uRfXr10eNGjVw5coVnD59Go0bN8a1a9dw9uxZ+Pn5ZRvEQa1WA3j+9M3NzS3Hfep7OmdnZ2dUvFkiIyMxZMgQpKam4sMPP8TgwYPh5+cHe3t7KIqCDz74AJ9++qnemsJXX30V8+fPx/Lly/HBBx8gISEBGzduhL29fa4dlIuLc+fOAXj+ZaHvCzqv77cp5Gc6An21hPnNq6BerL3MYig+cyPz/erXrx9CQ0PRq1cvvPfee6hSpQqcnZ1hYWGBPXv2oFOnTgYnpy2Kzy2/hBDaEWhr1qypsy4gIACdO3fGrl27sH//frRv3x4//PADAOgMVPFveTn+pKQk9OnTB48fP8b48eMxadIkBAQEwNHRESqVCsuWLcOrr76a7/daxmdRGOe/h4eHwZH6ZGjbti2++uorHDhwABMnTsSBAwdQpUoVeHt7w9vbG56entrCWdaoyP8upGV9Hw4ZMiRfhRZD92eVSoUff/wR7733Hv78808cPHgQJ06cwNmzZ7FgwQLMmDEDc+bMyfP+9MXeqFEjVKtWLce0WYWjor7PFeT7TN99+0U5XQfF6X5FZAgLaSbUrVs3vP3227hy5QrOnTuX4wiPjx8/xp49ewAAr7zySrb1I0aMwHvvvYeffvoJjRs31qlF+/dNuUKFCrhx4wamTJmCdu3aSTwi/Xbs2IHU1FT07dsX8+bNy7Y+LCzM4LblypVD7969sWnTJuzYsQN37txBUlISxowZk6cmaVk1FllPHv8tMzNT+4TRlLVoALTDaAcHB+utISnuypUrB+B/T3D/Td8w+AWV1VwoMTEx27rMzExERUVlW541b1ROtUoyuLu7w8bGBmlpabh3757eGpms87Qwz8Xr16/jypUr8PT0xG+//ZbtKXNO12VeZR1HZGQkNBqN3h9MhXEeZNmzZw/i4uJgaWmpt4n0G2+8gV27dmHJkiUICgrCb7/9BmdnZwwdOlTK/o8ePYrHjx+jfv362UZ9BOS+1/nl4+ODGzduIDQ0VPoItrnx9vbG9evXcfv2bTRv3jzbekPXQ6tWrWBpaYlDhw7h7t27CAsL0ylYt2nTBr/++iseP36MY8eOwdHREY0aNdLJo0KFCggLC8OcOXO0Td9kql69OqpXr453330XmZmZ+O233zBq1CjMmzcPQ4YMyTaqrqFpDrKujxffg6x7R8eOHTF37lyj4snaJjw8XO9owkUpp/s2gGzTLRCVNHzUYEJVqlRBjx49ADz/kZCRkWEw7X/+8x+kp6ejfv36evujDBs2DCqVCr/88gtSU1O1w+f/u6kjAO2w6/+ep6WwxMXFAdDfPCgmJibXSZxff/11AMAPP/yApUuXAsj5Cbc+WbWJW7du1TtvzPr165GRkYGAgACTFtL27Nmjnf9m2rRpJtln1hehvrmcCkPWENiG5vl5ca4nWbIKhjdu3Mi27uDBg3qPPas/w+bNm/Hs2TOj9pOf99LS0hLNmjUDAL1zkanVam3/0qx5+gpD1nWZNVfRv23cuFHavipUqAA/Pz+kpaXpnXfq8uXLuHjxorT9vSghIUE7ifWQIUP0TtPQuXNnBAQEYPv27fjkk0+QlpaG4cOHw8HBQUoMOd0D09PTDc7FZUpZ539RDEWedX82NDdfVn/Bf18PTk5OaNCgAaKjo7Vzbb1YU9a2bVtoNBp89tlnSExMRIsWLbIVSkz5fWhpaYlBgwahVatWEELg0qVL2dL89ttven8L/PzzzwCg0zImK/YtW7bkWsuUpWzZsqhVqxaSk5Pxyy+/GLWNMfe5rPe1IN8rOd23r1+/bvBBH1FJwUKaiS1ZsgSenp44ceIEevToka2/Qnx8PMaOHYuNGzfC0dEx2+AgWcqVK4f27dsjNjYW77zzDiIjI9G8eXO9TwYnTJiA8uXLY+nSpfjss8/0tsW+evWqtB8OWU8Kf//9d53+d0lJSRg3blyO/dSA51/MNWvWxM6dO3HlyhXUr19f2ynbWK1atUL9+vURFxeHKVOm6HwJ3rx5U9uXz1QFpYSEBHz55Zfo0aMHNBoNJk+erLdTc2HIKoSGhYWZpKDWv39/lClTBufOncPChQt11v3xxx/YtGmT9H1mvZfff/+9zgTPYWFhmDx5st5t6tWrp50fqV+/fjp9BYHnn9m/J+vOei+vXbuWp/iyCg1ffPGFtkM/8Lw5z0cffYSwsDD4+PgYHMxAhsDAQKhUKly+fFln0l8hBObPn59tIuCCynrfp0+frtOvJj4+Hq+99prBpn4FsW/fPjRp0gTXrl2Dv7+/wX47KpUKkyZNQmZmpvbHfl76vOYm6x544MABnR+gGRkZePPNN3Hr1i1p+8qvqVOnwsHBAatWrcK3336b7Uf/9evX9U6OLcP48ePh6OiIffv2Yfny5Trrtm/fjnXr1sHS0hJTpkzJtm1WoWzJkiVQFEXnPprVUiSrH/O/mzoCwNtvvw0nJyfMmjULK1eu1DYhzCKEQEhISK4PE//tp59+0jZlf9G9e/e0fS+zau9fFBkZiQ8//FDnejh06BBWrVoFlUqlfWgJPO/q0KNHD1y5cgVDhw7V27/90aNH2d7TGTNmAACmTJmCgwcPZtvm0KFDOg+qjLnP5fde+KKsz27t2rU618SjR48wduxYowuiRC+rl6+tlZkrW7Ysjh49ih49euCvv/6Cn58fmjVrhnLlyiE2NhbHjh1DcnIyvL29sXXr1hzbnY8cORJ79uzBokWLtH/r4+TkhD///BOvvPIKpk+fjq+++gq1a9eGl5cXnj59ikuXLuHu3bsYOHAg+vTpU+Bj7N69O+rUqYMLFy6gcuXKaN26NSwtLXHkyBGoVCqMHj0628hq//b6669ra8/yWouW5eeff0abNm2wZs0a7N+/H82aNUN8fDwOHDiAtLQ0DB48WOoPsyxvv/22tnNyYmIi7t27h3PnziE9PR02NjaYP38+3nvvPen7NcTX1xd169bFuXPnULt2bdSvXx82NjaoUqWKwcl0C8LR0RE//vgjevTogalTp2LNmjWoUaMG7t69ixMnTmDKlCn45ptv9I5oll+DBg3Cl19+icuXL6NGjRpo3rw5nj17htOnT6NXr15ITU3V26xozZo16NSpE/bt2wdfX1+0bNkSbm5u2s+sQYMGOk2Ee/fujUOHDmHo0KHo2LGjtgnu//3f/2Ubje9F3bt3x7Rp07BgwQI0adIEwcHB2smsQ0ND4erqil9++cXoSanzo3Tp0pg4cSK+//57tGnTBq1bt0bp0qVx9uxZ3L59G2+//Ta+/PJLafubMmUK/vrrL+zduxdVq1ZFu3btYG1tjYMHD8LJyQk9evTA9u3b85X31q1btc3B0tPTERsbi3PnzmkHS+jUqRNWrlyZYzO+MWPGYMaMGUhJSUGLFi2y9V0riHr16qFr167YuXMn6tSpg3bt2sHR0REnTpxAXFwcJk+ejO+++07a/vLDz88PGzduxMCBA/Gf//wHX331FRo2bKidzPrSpUtYvXp1nia9N1bZsmXx448/YvDgwZgwYQKWLFmCatWq4c6dOzhx4gQURcHixYv1jgDatm1bzJ8/H6mpqQgKCtK57vz9/eHr66u91vUV0nx9fbF582b0798f48aNw6xZs1CjRg24u7sjNjYW58+fx6NHj/Dee++hQ4cORh/T5s2bMXLkSFSoUAF16tSBi4sLHj9+jKNHjyI1NRUDBgzQO1n9q6++im+++Qbbtm1D/fr1ERUVhSNHjkCj0WDOnDmoX7++Tvoff/wR3bt3x8aNG7F9+3YEBQXB19cXqampCA0NxdWrV1GmTBmMHz9eu03//v0xY8YMzJ07F23btkXdunVRtWpVPHnyBFevXsXdu3cRHh4OFxcXAM+vH3t7e2zevBmtWrVCQEAALCws0KNHD21roN69e2PhwoVo164d2rZtq/3OW7FihdHvWatWrdChQwfs3bsXdevWRatWrZCRkYHTp0+jTp06aNasmXZkXKISqWhG/qf09HSxbNky0bFjR1GmTBlhZWUl3N3dRYsWLcSXX34pEhMTc80jOTlZODs7CwDC1tZWZzJKfeLi4sTcuXNFgwYNhJOTk7CxsRE+Pj6iVatWYv78+SIsLEwnvTFzoBlK8+zZM/HWW2+JSpUqCRsbG+Ht7S3GjBkj7t27Z9QcLGFhYQL/nfz335Ne58WjR4+0cVhbWwsnJyfRokULsWbNGqHRaLKllzFPWtZLpVIJFxcXERAQIHr16iUWLlwooqOjDW5vzPuSn3nSstYPGDBAeHp6aieTfvEYc5uPJq+TRAshxOnTp0Xnzp2Fs7OzcHBwEI0bNxa//vqrOHr0qACeT4ycF7nNUfbo0SMxevRoUaZMGWFtbS2qVKkivvjiC6FWq3PcNiUlRSxcuFA0atRIODk5CVtbW+Hn5yf69++fbX4ytVot5s6dK6pWrSpsbGyyzY1naJ60LFu2bBHt27fXTqbr4+MjJkyYoDeu3D7T/JyrarVaLF68WNSuXVvY29sLd3d30a1bN3HixAmD+eW2n5yOOTU1VcydO1d7/ZUtW1aMGTNGPHz4MNc5kvR5cQLgrJe9vb0oW7asaNmypZg2bZoICQkxOr8WLVoIAGL9+vUG0+T2mRq6JrOOvVq1asLW1laUKVNGDBgwQFy9etVgnrntK6fr0dD5ktvnd/PmTfHqq6+KihUrCmtra+Hq6ipq1aol3n777WxzcRqS02TWOTl//rwYPHiw8PLyElZWVsLDw0P07NlTHD161OA2KSkp2mtv6tSp2daPGTNGABBubm7ZJuh+0f3798W7774ratWqJRwcHISdnZ2oWLGi6NChg/j666/F/fv3ddLndv85fPiwmDJlimjQoIH2HlS+fHnRrl07sWHDBpGZmamT/sXzPyQkRHTp0kW4uroKOzs70bBhw2wTbb8oIyNDrF69WrRr1064u7sLS0tL4enpKerXry+mTp0qjh8/rne7gwcPit69ewtPT09hZWUlypQpI5o1ayY+//xznbnkhBDiwIEDonXr1sLFxUU7p+GL53hycrKYOnWqqFixorCysso2b5ox32dCCJGYmCjefPNN4e3tLaytrYWfn5/44IMPREpKSr6+l3K7bxobF5E5UIQohDYnRAX0ySef4KOPPtLWutDLI+uzff3117W1wESmdvfuXfj7+6NUqVK4d++e1JpdotyMGjUKP/74I1avXo1Ro0YVdThEZIbYJ43MTmxsLL755htYWFgY7E9E5u3hw4c6/ZCy7N69G/Pnzwegf5AbIlOZPXs21Go1Jk2axAIaERGZHbMrpN24cQNDhw5FtWrV4OLiAnt7e1StWhVTp07VO4z2jRs30KtXL7i5ucHBwQEtW7bUzo9CxcsXX3yBESNGICgoCNHR0ZgwYQIqVapU1GFRPpw5cwY+Pj4ICgpCr1690KdPH9SsWROdO3dGcnIypk+fnm1obKLCduLECYwbNw6tWrXCqlWrULZsWUydOrWowyIiIsrG7AYOuXfvHqKiotC7d2+UL18elpaWuHTpEpYtW4aNGzfi/PnzKFOmDADg1q1baNasGSwtLfHuu+/CxcUFy5cvR6dOnbBr1y69Q9eT+dqxYwcOHz4MT09PTJ48GZ9//nlRh0T5VKtWLUyYMAGHDx/G4cOHkZiYCDc3N3Tu3BkTJ05Ez549izpEKoFCQ0OxcuVKODg4oE2bNli4cKF2sAQiIiJzUmz6pG3atAkDBgzA//3f/+Hdd98FAAwYMAC///47zp49i6CgIADPR9OrUaMGbG1tcf369WwTOxMREREREZkzs2vuaIivry8A4MmTJwCez7m1fft2tG7dWltAA54P/z1u3DiEhoYiJCSkKEIlIiIiIiLKN7Nr7pglNTUViYmJSE1NxdWrV7XzSnXt2hUAcPHiRaSlpaFp06bZtm3SpAkAICQkJN/9XsqWLavzt0ajwdmzZ+Hk5MTaOSIiIqISSgiBhIQElCtXDiqVedZ3pKamIj093WT7s7a2hq2trcn2VxKYbSFtxYoVOiP7+fn5Yd26dWjZsiUA4MGDBwD+N+v9i7KW3b9/X1o8Go0GFSpUkJYfERERERVfkZGRKF++fFGHkU1qaioq+pXGw0eJJtunl5cXwsPDWVCTyGwLab169ULVqlWRmJiIc+fOYfv27YiJidGuT05OBgDY2Nhk2zbrBMlKkx//Hkny2bNncHV1xcwhn8LWWtIJaCHx7VdnystLNtk1jyoLeXnJft+sJH6mGsndRdVqufmZMwuZ54jk903m9SDzWgAAoZGYl+TzV2Z+Ms8PyRTJP3BEAb4H9Wdoxt3Yzfk7VWZsGrn3JMU6+++o/BJpqdLyAiD3finx3E1NT8Xsn6fDyclJWp4ypaen4+GjRERcmQJnJ3mfryHxCWnwrfEt0tPTWUiTyGwLaeXLl9c+nejVqxf69u2Lhg0baofvtre3BwCkpaVl2zY19flNIiuNDFlNHG2tbWFrbScnU3P+QpGJhbT8YSEt/1hIyx8W0oqcYiO5kJZpxp+DbOb8nWrOhTQ9D7vzSwjJ3/dmWkjLYu7dX5ydbODsXPiFNCoc5tmQVo/atWujbt26+P777wEA5cqVA6C/SWPWMn1NIYmIiIiIXnbChP+RfMWmkAYAKSkpiIuLA/B8HiYbGxucPHkyW7pTp04BABo0aGDS+IiIiIiIiArK7AppDx8+1Lv84MGDuHz5snbkRkdHR3Tv3h2HDh3ChQsXtOkSExOxYsUKBAYG5ntkRyIiIiKi4kwDYbIXyWd2fdImTZqEqKgotG3bFr6+vkhNTcXZs2exceNGODk5YcGCBdq0n376Kfbv34+OHTvirbfegrOzM5YvX4779+9jx44dZt9WmIiIiIiI6N/MrpA2ePBg/PTTT1i7di2io6OhKAp8fX3x6quv4p133oGPj482baVKlXD8+HG8//77+Oyzz5Ceno569erhr7/+Qvv27QsnQAtLaR2AFTt5HcRFUpK0vKST3VnXnAdJyZAYm+y5V8x5MA2ZneoBueeI7Ic9UgcOkZcVAEDmxyr7upd5/mokDpACSD1WkSR5NEbZ56/UAVzM97pXrK2l5QUAIiNDan5Sybwe+HDcrJiqvxj7pBUOsyukDRgwAAMGDDA6fbVq1bBt27ZCjIiIiIiIiMh0zK6QRkRERMZRVArKBLjD098dVtZWehKYcU2aOccmuyWD7NpbmWQeqzkfZy4y0jLwKDwGj8NiIWRPgVNEWJNWvLGQRkREVAwpKgW1O1ZBpZr+sLK0Zj9smcy5ACmbmc9FZipCCATWSkfYldu4uPv6S1NQo+KLhTQiIqJiqEyAOyrV9Ie1FSerJSooRVFgbW2DSjX88fBWNB6FxhR1SAWmEQIaExScTbGPksjshuAnIiKi3Hn6u8PKUu4AF0QlnZWVNTwrehR1GESsSSMiIiqOrKyt2MSRSDJFUWCpr39nMST++zLFfkg+1qQREREREf0Xn32QOWBNGhERERHRS0YDAY0J6rlMsY+SiDVpREREREREZoSFNCIiIiIiIjPCQhoREREVWw2a10fvgb2MTr9x00Z4+ZXB8ZPHdZZHREZg1PgRqF6vGrx8S2PKtDcAQOffxsVTD70H9jQ6fWHROR6/MpgybXJRh5QrQ58N5Y8w4X8kH/uk5ZXQPH/JyColVUo+zzMz4wvESvJplqmWl5cZv2+KtdyhtUWqxPPNwkJeXoVA5nsn1BLPNwCQmZ9Gzr2oUJjzOSL7ureQeI/TSD7fyGj/mTYF165fxX/eeBNlSpeBn4/f/84VAZ3z5ouFn6Nm9Zro0qlr9oxE9vRFQe/xmIHjJ4/jxKnjmDDmVbi4uBR1OIblNHoIRxYhE2AhjYiIiEqM/n36o1f3XrB+4WFOWloaToecwpiRY/HahNd10t+5fhcW/3rosOCbLzGg70C9hbTjB04U+dQIOR1PUTtx6jgWfPMlBvYblK2Qpu+zofzTiOcvU+yH5GMhjYiI6CUR16sTkJlZ1GHkztISpbbuNukuExMT4ejoCAsLi2yFruiYaAgh4Orimm07W1vbPO3HxsamIGFKkdPxmDN9nw1RScU+aURERC+LzEwgI8P8X/koSN5/cB/jXx+HwFoBqFTTH8PHDsOdiHC9abP6YB09fgQ9+r0C/+p+GD52GIDs/Z6mTJuMBs3rAXheQ+blV0Zn/Yv9ue5G3oWXXxkAwK+//6JNm7UM0N9HLmvZzbCbGDp6CAJqVERgrQCMnTQGjx8/yhb/1WtXMHB4f1Ss5odqQVUweeobiI2LNapvWU7Hc/zkcXj5lcHGTRv1bPcGvHxL6yzrPbAnGjSvh4ePHmLi5AmoUqsSKlbxwaDh/XHr9q1seaSnp2PRD9+hXZc2qFjVF4G1AtCxewes/HGlNrYF33wJAGjUsoE2ti8Wfg7AcJ+02LhYvD/jPdRrGoQKgd6o1zQI7894D3FP4nTSZW1/7MRRfL9sMRq3agifyuXRrE0T/PJb9mN+2QkTvkg+1qQRERGRWXv27Bl6DeiJB1H3MWLoSFQOrIyTp06i7+A+SDHQ3/bCpQvY8defGDZoGAb0HWgw7xFDRqBm9Zr4eO4MdO3UFV07dwMAVK4UmC2tu7s7Fi1cjDfeeh1NGjXBsMHDjT6Gh4+i0GdQL3Tp1BUfT5+JK9euYO3PPyExMQG/rN2kTXc7/DZ6DugBjUaDcaPGwcurLPYf3IfBIwcZtZ+cjic07KbR8WZJTk5Gr/7dUb9uA0x/90PcjbyLFauXYdS44Ti096i25is9PR2DRgzEiVPH0bpla/Tt3Q82Nra4fv0qdv61A2NHjsWIISOQmJiAnbt3Ys6MuShVqhQAoHrV6gb3Hx8fj+59uyH8TjgGDxiCWjVr4fKVy/hx3RocP3EMu7bthqOjo8428z+fj9TUFAwfMgI21jb4cd0a/OftKajoVxGNGjTO83tAVBRYSCMiIiKztnjpIkTeu4uFn3+DwQMGAwBGDx+DGbM/wvLVy/RucyP0On5dtwmtWgTnmHeD+g1RpownPp47A9WqVke/3v0NpnWwd0C/3v3xxluvw6eCb45p/y38TjiWLlqOnq/8b+RHlUqFNWtXI+xWGCoFVAIAfPrlfCQkJGD7b39oCxRjR47FhNfH4+KlC7nuJ6fjyU8hLS4uFq+9+jremPi/Gjz3Uu6Y++lsHDl2GG2C2wIAlq1aihOnjmPKa//BB+9+qJOH5r+DHDWo3xDVqlbHzt070bljF/hU8Ml1/4uXLsLt8Nv4dO5nGD18jHZ5jeo18MHH07F46SK8N+19nW3S09Pw1/Y92r5tr3TtjsatGmLVj6tKVCGNk1kXb2zuSERERGZt155dKO1RGgP6DtBZ/sYkw03/alSrkWsBzZS8PL10CmgA0KJZCwDA7Tu3AQBqtRr7D+5D3Tr1shUmJo6fZJpA/0WlUmHcqPE6y1o0bwngea1fls1bf4eriyumTpmmN4/82rl7J9zdPTB88Aid5SOGjIS7uwd27t6ZbZtRw0frDD5S1qss/CsGaN9nouKAhTQiIiIya3fvRsC/on+2QSU8y3jCxVn/MO7+/gGmCM1ovj6+2Za5uT5v7vfkv32rYmNjkJycjICA7LFX8q9UuAEa4OXplW3wFDdXNwDAk6dPtMvCw2+jUkClPA+0kpvIyLuo5B8AS0vdxl+WlpYIqOiPu3cjsm2j/712w5MnT7Itf5kJABoTvFiPVjjY3JGIiOhlYVlMvtZNEKedrV2h7yMvVCrDoxaaakq1nKYGUBuYg1SVw2iLwkznGjX0XptrvET6FJO7OREREeXG1MPam4qPjy9uh9+GWq3WqU179PgRnsU/K8LI5HJ394C9vT1u3co+cmLY7bAC5+/m6goAePose41ShJ4aqbzw9/dH2K0wpKWl5TgNQV7nkPPx8UXY7VvIzMzUqU3LzMzErfDb8NFTa0bPmWrkRRZ9CwebOxIREZFZ69yhM6JjovHr77/qLF+05LsiicfBwQFPnz2Vnq+FhQXatm6Hcxf+wd9nTuus+2H5kgLn71PBB5aWljhy7IjO8pAzf+PsuTMFyrtPz354+uwpvl60MNu6F2uwHBwcAMDo969Lxy6IjY3B+o3rdJav27AWsbEx6KpnQnGilwFr0oiIiMisvT7xDWzevhlvT5+Ki5cvoEpgFZw4dQJnz51BqVLuJo+nft36OHrsCL5b8i3KlysPRVHQq0dvKXm/P206Dh05iMEjB2HMiLEoW7Ys9h3Yh9i4WAB5r4l6kYODIwb2G4T1G9dh4uRX0axJM9y+E45fNm1A9WrVceXqlXznPX7MBOzdvxsLv/sK5y+cQ3Cr1rCxscGN0Bu4dTsMm9b/DuD5ewcA8z6bgz49+8HWxgZVqlRFtSrV9Ob7+qtv4I+d2zH94/dx6col1KxeE5evXsbPv6xHJf9KeP3VN/IdM5E5YyGNiIiIzJqriyu2/bodM+d9jE2bn9emNW3cDL9v2Ix+Q/qZPJ7P5n6O6R+/h28Wf43ExEQAkFZIqxRQCVt/2YbZ82dhxerlsLGxQft2HfDp3M/QuGXDAg/MMWfGHAghsGv3Tuze+xdq16qNn1auw9oNPxWokGZtbY2NP/2KH1YsweZtm/Hp5/NhY2ODihX9Maj//+Z4a9SgMT56fwZ+Wv8j3p4+FZmZmZj2n7cNFtKcnZ2x/bc/8cXCz7Fn325s3LQBpT1KY8TQkXjnrXezzZFG/6OBAg3yX6jPy35IPkWwF6VR4uPj4eLigk/Hfgtba0mdkdX6O+mahQI8qcumAEPv6iXzfZMcm2JlJS0vkZYmLS8AUHLoI5BXsmOTTub5K5vMW67s8zeHAQLySmRkSMsLABSJI8aJ9HRpeT3PUOJnmoe86veohco1s0+4XGzIvk5lfg6ybyESQrtw6QI6de+AD9/9CJNfm1LwDMmg0Ms3cXb7JYPrU9NTMH3NW3j27BmcnZ1NGJlxsn6z3rwzBU7O8r77DUmIT0Og37dm+34UV6xJIyIiIjIjKakpOqNTCiGw+IdFAIBWLc1n7jcyb0KYZuRQVvcUDhbSiIiIiMxI+65t0bxpC1SrWg3JycnYu38PTv19Cj1f6YU6teoUdXhEZAIspBERERGZkU4dOmPvvj34bcsmqDPV8Kngg/emvY83Jk4u6tCoGMmabNoU+yH5WEgjIiIiMiMfT5+Jj6fPLOowiKgIsZBGRERERPSSEVAgTDDyoin2URJxMmsiIiIiov/iQBhkDliTRkREVAxlpGVACFGgyY2JSJcQApnpcqcQKSqcJ614Y00aERFRMfQoPAYZGZLnfCMq4TIy0vEoPKaowyBiIY2IiKg4ehwWi7Art5GengbB9llEBSKEQHp6GsKu3MbjsNiiDkcKYcKXTJ9++in69+8Pf39/KIoCPz+/XLdZu3YtmjdvDmdnZzg6OqJmzZqYO3dutnTPnj3D5MmT4e3tDVtbW9SoUQNLliwxy3somzsSEREVQ0IjcHH3dTy8FQ3Pih6wtLZCtpaPsptCyvwho5L8nFgjcSBwlez3TWZe5vdjsrgTAshMz8Cj8Bg8DouF0PA9LkoffPABSpUqhXr16uHp06e5ph8zZgx+/PFH9O3bF8OGDYNKpUJ4eDgiIiJ00qWnp6NDhw44d+4cJk+ejGrVqmHXrl147bXX8OjRI8yaNatwDiifWEgjIiIqpoRG4FFoDB6FGmieZWEhd4dqtbSsFCsraXkBgMjMlJeZpez3TWIBUmZhVDZzfihQAhXXPmm3bt2Cv78/AKBmzZpITEw0mHblypVYvXo1fvrpJwwfPjzHfFesWIGQkBB8++23mDz5+ZyD48ePR9++fTF//nyMHj0avr6+8g6kgFhIK0oyb2ayb4yKzCeckm+yZtxJXqSlycvMnL/sLCTfOtQSf1wBgEriDyzZjcIz5f3Ilf0DRuqPXMm1JCJdYt8r2T9yZRaEJMemyP4cJNYwmXVthczrFJB7PUj+TBWJ56/Uewgg93tQZsFb8OdzYcoqoOVGCIFPP/0U9erV0xbQEhIS4OjoqHdApZ9//hn29vYYP368zvI333wTmzdvxi+//IJ333234AcgCfukERERERFRgQQGBqJs2bLaV2G7ceMGbt26hWbNmmHu3Llwd3eHs7MzXF1dMXHiRJ0aOI1Gg3/++Qd169aFra2tTj6NGjWCoigICQkp9Jjzgo8CiIiIiIheMgIKhHh5J7O+ceMGAOCXX35Beno6PvroI1SsWBF//vknli5dihs3buDAgQNQFAVPnjxBSkoKvL29s+VjY2MDDw8P3L9/39SHkCMW0oiIiIiIqEBu3rwJZ2dnk+0vISEBABAdHY29e/eiffv2AIC+fftCCIEff/wRf/31F7p06YLk5GQAzwtk+tja2mrTmAs2dyQiIiIieslkDRxiildRsLOzAwB4e3trC2hZRo4cCQA4dOgQAMDe3h4AkGZg7IDU1FRtGnPBQhoRERERERUr5cuXBwB4eXllW5fVJ+7JkycAADc3N9jZ2elt0piWloaYmBi9TSGLEps7EhERERG9ZIRQoDFFnzQT7EOfWrVqwdbWVm/B6969ewCAMmXKAABUKhXq1auHc+fOIS0tTafZ499//w0hBBo0aGCawI3EmjQiIiIiIipW7O3t0bdvXzx8+BBbtmzRWbdkyRIAQNeuXbXLBg8ejOTkZCxbtkwn7ddffw1LS0sMHDiw8IPOA9akERERERG9ZAQUk4y8KHsfa9euRUREBIDng4Kkp6dj3rx5AABfX1+dSavnz5+Pffv2YciQIZg8eTL8/Pywc+dO7NixAyNGjECzZs20acePH4/Vq1dj6tSpuHPnDqpVq4adO3diy5Yt+Oijj+Dn5yf1OAqKhTQiIiIiIjILK1euxOHDh3WWzZgxAwAQHBysU0jz8fHBqVOn8OGHH2L16tV49uwZAgIC8OWXX+Ktt97SycPa2hr79u3DRx99hA0bNiA2NhYBAQH47rvv8Prrrxf+geURC2lERERERC8ZU428KHsfWSMyGsvPzw/r1683Kq2rqysWLVqERYsW5SMy02KfNCIiIiIiIjPCmrS80miev2QQQk4+AKBIflKiUUvLSrG1lZYXAIjMDHmZqSV9lllUEp97yDw/ALmxqeWdHwDkn7/qTImZmfFtUvb7JvGcUyzlvm8iU+JnaiX5M82Qeb7JJWRfqzKZ8z1O1vf8fykSYxMZEr8DAQiZxyrzMwDkfg6ZEq8FmXkVouJak0bPsSaNiIiIiIjIjJjxI2IiIiIiIsoP8d+XKfZD8rEmjYiIiIiIyIywkEZERERERGRG2NyRiIiIiOgl83zgkMKvj+HAIYWDNWlERERERERmhDVpREREREQvGY1QoBEmGILfBPsoiViTRkREREREZEZYk0ZERERE9JIRUCBM0F/MFPsoiViTRkREREREZEZYk0ZERERE9JJ5PrqjCfqksSatULCQlleWFs9fMmSq5eRTGFSSjhGASE2VlpdsipWV1PxERoa8zBS5Nz2pn4OFvPOjMEj9XGV/DhqJ173k2KDRSMtKpKdLywsAoJLY8CMjU15egNzPQQh5eQHyzxGZ8ck+Vplkfc//l4AZH6tM5vyZlpRzl14aZtfcMTQ0FB9//DGaNGmC0qVLw8nJCUFBQfjkk0+QlJSULf3JkyfRo0cPlC9fHnZ2dggICMD48eNx+/btIoieiIiIiKjoZfVJM8WL5DO7mrRVq1Zh8eLF6NGjB4YOHQorKyscPHgQH330EX799VecOnUKdnZ2AIC//voL3bp1Q0BAAN544w14eHjgypUrWLZsGX7//XdcunQJ3t7eRXxERERERERExjO7Qlq/fv0wffp0uLi4aJdNnDgRgYGB+OSTT7By5Uq88cYbAICFCxfCwsICJ06cgIeHhzZ9jRo1MH78eGzatAlvvvmmqQ+BiIiIiKhIcZ604s3smjs2aNBAp4CWZeDAgQCAy5cva5fFx8fD1tYWbm5uOmnLlSsHAHBwcCjESImIiIiIiOQzu5o0Q+7duwcA8PT01C7r1KkTTp06hZEjR+Kdd96Bh4cHLl++jGnTpqFatWoYNGhQvvdXtmxZnb81EjvUExERERERGVIsCmlqtRpz586FpaUlhgwZol0+ffp0PH78GKtWrcL69eu1y7t27YoNGzbAycmpKMIlIiIiIipSnMy6eCsWhbQ333wTJ0+exPz581GlShXtcgsLC3h7e6N9+/bo3bs3SpUqhePHj+O7777DoEGDsG3bNljlcyjuqKgonb/j4+P1NsMkIiIiIiKSyewLaTNmzMCiRYswYcIETJ8+XWfdqFGjcOLECVy5ckU74mPv3r1RqVIlTJo0CT/++CPGjRtXFGETERERERUZYaKBQwQHDikUZjdwyItmzZqFefPmYfTo0fjhhx901t29exfr169Ht27dtAW0LP379wcAHD582GSxEhERERERyWC2NWmzZs3C7NmzMXLkSKxYsQKKoltKv3//PoDn/dX+LTMzU+f/REREREQlCfukFW9mWZM2Z84czJ49G8OHD8eqVaugUmUPs0qVKrCwsMDWrVvx9OlTnXVr1qwBADRs2NAE0RIREREREcljdjVpixcvxsyZM+Hj44P27dvj559/1lnv6emJDh06oFSpUnjzzTexYMEC1K1bF+PHj9cOHLJ+/XoEBAQUSn80RVFBUeSUbYXMIrKQPEWAJnsNpdkQQl5WGRnS8gIAKGb8NElmbCrJxyn59BUyp8zQU1tvNiReCwAAPQ/EzIViZysvs0y5n6nU+4jsz1Ty9DGKpcSfDZLnMhUJCfIyk33Zy7z/Sv6eUWxspOUlUlOl5SWb8q+uMQXKy3xvlTo0UKAxQS2XKfZREpldIS0kJATA8z5nI0eOzLY+ODgYHTp0AAB88cUXqFKlClasWIH58+cjLS0N3t7emDRpEmbNmgVnZ2eTxk5ERERERFRQZldIW7Nmjba5Ym4URcH48eMxfvz4wg2KiIiIiKgYYZ+04q2YVNgSERERERGVDGZXk0ZERERERAWjMdE8aabYR0nEmjQiIiIiIiIzwpo0IiIiIqKXDEd3LN5Yk0ZERERERGRGWEgjIiIiIiIyI2zuSERERET0kuEQ/MUba9KIiIiIiIjMCGvSiIiIiIheMhw4pHhjIS2PRHo6BCyKOozsrCR/lGqNvLwUM66wVWcWdQSGKXJveoq1tbS8RKZaWl4AAJXkc0QIeXnJ/hzsbOVlliH5/JX4OQiN3HNEJKdIzEzi+QFAsZX3mYq0NGl5AZB+/gqNxPcuMVFeXoDc+4jkc0T25yCTSE+Xl5nse7lG3m8RmdeWSJd8nRLpwUIaEREREdFLRggFwgQTTZtiHyWRGVdxEBERERERlTysSSMiIiIiesmwT1rxxpo0IiIiIiIiM8KaNCIiIiKilwz7pBVvrEkjIiIiIiIyI6xJIyIiIiJ6yQiYpr+Y5Akr6L9Yk0ZERERERGRGWJNGRERERPSSEVAgTFKTxj5phYE1aURERERERGaEhTQiIiIiIiIzwkIaEREREdFLRiMUk71k+vTTT9G/f3/4+/tDURT4+fkZve17770HRVHg6Oiod31aWho+/vhjVKxYETY2NggICMC8efOQkZEhKXp52Cctr1Sq5y9zk6mWm58i74JTrCSfZmp5xypkv21WVtLyEmqNtLwAQHFykJaXeBIvLS8AUCwspOYn0tOl5aVYW0vLCwBEmrzYIOSOqSX1a1ZjxuN9Sb6Hi9RUaXkptrbS8gIAaOTeR4QZ/pDRknk9SL62ZJ5zip2dtLwAQCQlyctMJfdeDkg8f2VeC5KvK9L1wQcfoFSpUqhXrx6ePn1q9Hbnz5/HV199BUdHRwgD1/DAgQOxbds2jBkzBk2bNsXJkycxY8YMhIWFYc2aNXIOQBIW0oiIiIiIXjLFdeCQW7duwd/fHwBQs2ZNJCYm5rqNWq3G+PHj0aVLF8THx+PMmTPZ0uzcuRPbtm3D1KlTsWDBAgDAuHHj4Orqiq+++goTJkxAs2bNpB5LQZhhlRAREREREZVEWQW0vPj2229x9epVfPfddwbT/PzzzwCAN998U2d51t/r1q3L834LE2vSiIiIiIheMhooJpnMOmsfgYGBUL3QtDcqKqrQ9w0AERERmDFjBmbOnAlfX1+D6UJCQuDt7Y0KFSroLK9QoQLKlSuHkJCQwg41T1iTRkRERERExdKkSZPg7++PqVOn5pjuwYMH8Pb21rvO29sb9+/fL4zw8o01aURERERELxkh5I+BY2g/AHDz5k04OzsX/g5fsGHDBvz11184duwYLC1zLtYkJyfDxsZG7zpbW1skJycXRoj5xpo0IiIiIiIqVuLi4vDmm29i7NixRg34YW9vj7S0NL3rUlNTYW9vLzvEAmFNGhERERHRS0YDFTQmqI8xxT70mT17NpKSkjB+/HiEhYVpl6ekpEAIgbCwMNjY2Gj7oJUrV85gk8b79+8bbApZVFhIIyIiIiKiYiUiIgJJSUlo3Lix3vWBgYGoUaMGLl++DABo2LAh1q9fj8jISJ3BQyIjI/HgwQP06NHDJHEbi4U0IiIiIqKXjKn7pJnae++9h2HDhmVbPnPmTNy+fRtr166Fi4uLdvngwYOxfv16fP3119p50gDg66+/BgAMHTq00GPOCxbSiIiIiIjILKxduxYREREAgOjoaKSnp2PevHkAAF9fXwwfPhwA0LRpU73bL1q0CBEREejXr5/O8m7duuGVV17BV199hWfPnqFp06Y4efIkVq5ciWHDhqFFixaFeFR5x0IaERERERGZhZUrV+Lw4cM6y2bMmAEACA4O1hbS8mPTpk2YN28e1q1bh7Vr18Lb2xtz5szB+++/X6CYCwMLaXmkWFpCyWWIzyJhbSU1O8XaWlpeGkc7aXkBQGYf/SPz5Ecd13vS8gKAQOs70vL6I7aOtLwAQPOr/mFn80OlcZKWFwBonj6Tmh8UeZN3isxMaXlJZyG3s7bQSGyzolbLywsArOTddxWVhbS8AECkp8vLy8DIY/km+Vilkt1GSiXxepB4D5FNJCUVdQgGKZaSry21xPuvzM/UjM+PFwkoECaYzFr2Pg4dOlRo29va2mLevHnamjlzxiH4iYiIiIiIzIgZVgkR5cwiJQ0+e86g1JU7sEwr2BNsR0u5T63TVPKeqNfNuJBtmcbaCk+rVcC9Lg2gdrCVti8iIiJ6uWigQGOCmjRT7KMkYiGNig8hUCbyMqpO3ga72PiijkYvjcS83BGtd3npkFD4bD+Fm2M64mFwrWLT7IKIiIiIjMNCGhUL9vExqBqyDaUf3CjqUMyCzdMk1PxqC8rtPYcbr3ZFkk/pog6JiIiIzIgQCoQwQZ80E+yjJGIhjcyaKjMDFa8cRMXLh2ChMeMBHIpIqUt30Pg/P+BuzyYIHxgMtZ28AV+IiIiIqGiwkEZmy+P+dVT7eyvsE+OKOhSzplJr4Lf5BLyOXMaNcZ0R3bQqm0ASERGVcMV1dEd6joU0Mju2SU9QNeQPeEZeLupQihXbmHjU+exXxNSrhBsTuiClXKmiDomIiIiI8oGFNDIbijoTfteOwv/iPliqM4o6nGLL458wuE3+HhF9W+BOvxbQWPMyJyIiKmk0kDugWU77Ifn4643MgtvDW6j+9xY4Pnts9DZpzva4MbQD4v288r3fQCfj92cMHyt5TTOPPgvU+dvhXgwq/bQPNnGJuW5rkaGG/8bD8Dp0ETde7YLY+oG5bkNERERE5oGFNCpS1snxqHL2T5S7c97obYSi4G6HBrgxrD0ynOwLtP8M1wJtno3KWkjLKz7WW/fvyt543KQq/DccQoU/TkOlyX1f9g+foO7sn/G4SVVcL9sLqQ5u0uIjIiIi88XRHYs3FtKoSCgaNSrcOIlKF/bAKiPV6O2elfLGpfdfwbPA8oUYnflS29vg5thOiGobhKpLdsD1eqRR25U5dR3uFgtwq3Z7RFRtAWHBS5+IiIjIXPGXWh6JjAwIRdLbJuTVuigqlbS8ACCuubxBJ9LcdVsre9y+gyY//4pSkfeNziPdzg7nenVDaKvm8DycAqt/5MR2JcpOTkZZ+SkVpeWlcrcwuC4B5RBSfSzKOZxH4KU9sE5PzjU/C3UGKp/bhTJR/yBkwAA8CixAE0hF7vtWZmvuTTjzRObolhKvUwAQarW8zDIl5mXuMuRNwSEUM37fJJ9vEJJ7i8iMT/YotBqJxyr5O9WsY1PJ+xxEhhn3J1cZ/k4t0rwKkRAKNKxJK7ZYSCOTsUlMRL3NfyDw+Kk8bXerSUOc7dsDqc7OhRRZMaWo8MCvHh6Xq4rAy/vgHX4WCnL/AeX68BE6fPsdwhvUxz+9eiHFxcUEwRIRERGRsVhIo2wUjRreVy7A5VEUFAlP/9T2AhYZGQg8dhI2SbnX+GR5Us4Lpwf3x+PKlQocw8ss09oe1+r1wH2/eqh27g84P40yaruKZ87C+/IVhDVrhkwbOZNgC5UKzzzL4F6tWtBYWUnJk4iIiKikYSGNdJSKCUe1a3vhkFx0E0hn2NjgQvfOuNY2GMKieDQpMAfxpcrjdNtXUf72GVS6ss+ovn7WqamofuCA9FgSS5XCmX59ca92Lel5ExERUe44mXXxxkIaAQBsUhNQ5cZ+eD28XqRx3KkfhDP9eyPZzbVI4yi2FBXuBTTCY+/qCLy0B+Xuni+SMBzj4tB62XLcq1kDIf36IcnDvUjiICIiIiqOWEgr4RSNGj53zyAg7Dgs1elFFkd8mdI4PbgfoqpXLbIYXibpto640rDP8yaQ5/+EY7zc+eCMVf7yFXjdCMXlTh1xtV1bNoEkIiIyEU5mXbyxkFaCuT6JRLWre+CUGF1kMWRaWeFSlw640rEdNFY8HWV7WtoPp9pNgk/YKVS8cRBW6aYviFtmZCDozx3wP/03/h7QHw+rsSBORERElBP+Ki6BrNOSEBh6EN4PLhdpHJG1aiBkUF8ksilcoRIqC0RUbo7L/Zuh/pYt8D13vkjicI6ORvvF3+NOvbo426c3UlxdiyQOIiKikkAIFYSQPGWDgf2QfCyklSRCg/KR5xF48zCsMtOKLIxE91L4e2Af3KvDQSVMKdnNDUfHjEHYtWtouOk3OEcXTQ2q3z/n4H3lKi527YLrrTk4DBEREdG/sZBWQjg/i0K1q7vhEv/Q6G0ybGwR2jQY6fb2Bdp3pv1/5+5SFCSUdseDGtWgseSpV1SiqlXDHx9+gLLXr8MpOhoqSZOsWqWmosrhI7BJzn2aBau0NNTfshX+p07j74EDAMiZAoCIiIieE/99mWI/JB9/Kb/kLNNTEBh2BOUjz+VpgNSIOg1wvksvpDoXfKLjNHd2KTU3wsICD2rUyH8GBk6mG8GtUHfbdlQ6adyE5W5RUej09Te4X7YGbgYGI93aIf8xEREREb0kWEh7WQmBcg8uofKNg7DOSDF6s0QHd1yr1hG3+zQrxODoZZXm6IhTQ4cgrGkTNPplE0rdv2/Udt5RV1AmOgw3K7XEPe86gML27URERAXBedKKNxbS8kpRnr9kZCWxyd+T0W7af7tERKH+qq0ofeOO0dtn2ljhSp/2CO3WAhpLSzjvkzcKoMWhohn+3ShmPKKkJvaJ1Pw8D8nLK93LOcf1avjhVI+p8L10DJVP74RVRu59IK0y01D9+j6UzbiGixO642lg+XzHZ79One9t/03zNF5aXgCk3T8AQJHcn09kZMjLTOJxSqeS/BBAUpNhAFDs7aTlBQAitej6H+dKJbk/qpDYakPiZwpA7vWglnd/AwBoJN6TZE+zIvFaFRmZ0vIiMgWze1wdGhqKjz/+GE2aNEHp0qXh5OSEoKAgfPLJJ0hKStK7zY4dO9C+fXu4ubnB3t4elStXxhtvvGHiyIueZUoagn76Ax2nf5unAtq9hjWwa8E0XO/Zmn3FSBqhssCdOsE4PPQD3A+sb/R2brfuo9X7S1F76XZYJRpfC0xERET/I4TpXiSf2f0iX7VqFRYvXowePXpg6NChsLKywsGDB/HRRx/h119/xalTp2Bn978njbNnz8asWbPQqVMnzJ49G/b29rh79y4uXrxYhEdhYkKgwokLCFr7J+yfGP/UP7FMKfwzuiei6nLeKio8aQ4uON9xOCKrN0bNI7/B8UnuNauKEKi4+2+UO3kFV0Z0QmTrIPm1H0RERERmyuwKaf369cP06dPh4vK/ASsmTpyIwMBAfPLJJ1i5cqW2lmzfvn2YNWsW5syZgxkzZhRVyEXKPikO1W7sg/v+CKO3UVtZ4lqP1rjeszXU1pKbJhAZEFu+Mo4MfBcVLxxCYMgeWGbm3qTWJj4J9RZthu++M7g4oQfi/bxMECkREVHxpxEKNCaYw0wjzLh5ezFmdo+mGzRooFNAyzJw4EAAwOXL/5uAef78+ShTpgymT58OAEhMTIRGdjtyM6VSZ6BS2FE0O7Ua7nHGF9Ci6lTGX1+8hSv9O7CARiYnLCxxu157HB4yHQ/9axu9nfv1uwh++3vUWL0Tlilm3MeGiIiISAKzK6QZcu/ePQCAp6cnACApKQlHjhxB48aNsXLlSnh7e8PJyQmOjo4YNGgQHj16VKD9lS1bVucVGBhY4GOQpXR0GJqfXAX/O6egMrKjdHIpFxybOhxH3h+DRC+PQo6QKGepTm4422UM/u42AUnO7kZto9JoUOmPE2g7+WuUO3aJjeCJiIjopWV2zR31UavVmDt3LiwtLTFkyBAAQFhYGNRqNU6dOoU9e/bg/fffR506dXD06FF88803uHjxIs6cOQP7Ak7EbE7sUp6i6o0DKB1zy+htNBYq3OjaElf7tkOmrU0hRkeUd9F+1XGkfCVUfLILgVuOwsKI0bfs4hLQ8Ktf8HjfGVwa/woSvUubIFIiIqLihZNZF2/FopD25ptv4uTJk5g/fz6qVKkCAEhISAAAREdHY/ny5Rg3bhwAoHfv3nB2dsbs2bPx448/YtKkSfnaZ1RUlM7f8fHxepthmoKiyYRfRAj8w0/BQmP8ELKPq/nj7JieiK/AfjxkvjSW1rgxqB3uBQeh1vI/4Xn+plHblbl4C23eWoSbvVrgZt9gqG2sCzlSIiIiItMw++aOM2bMwKJFizBhwgRt3zMA2hEeVSoVhg8frrPNyJEjAQCHDh0yWZyFpVTsHTQ7tQaBt44ZXUBLcXHEqdcH4uDHE1hAo2Ijqaw7Ts0Ygb/fGYwU95znYcuiylSjym+H0XbKt/D6+1ohR0hERFR8ZE1mbYoXyWfWNWmzZs3CvHnzMHr0aPzwww8668qXfz7RrZubG2xsdJvxlS1bFgDw5IncyYBNySY1AVVuHoTXoxtGb6NRFNzq2BSXBnREhoPcCVGJTEJRENW0Bh4HVUKVTQcR8McJqNS597u0j36Kxp+tR1SDqrg8tiuAoqn1JiIiIpLBbAtps2bNwuzZszFy5EisWLECiqJbSvf09ISPjw8iIyORnJys0/csa5CRMmXKmDRmGRSNGj6R/yDg9nFYqjOM3i62UgWcHdsbTyp6F2J0RKahtrPB1RGdEdm6Lmov/wMeV+4YtV3ZM9dR5mIYwiu1wp3A5hAWZnuLIyIiKlSmmmia43gVDrNs7jhnzhzMnj0bw4cPx6pVq6AyMInt8OHDIYTA0qVLdZYvWbIEANC1a9dCj1Um1yf30OT0T6hy85DRBbR0K1tcqdYR++a8xgIavXQSfDxxfM5YnP1PP6S6Ohq1jUV6JipdPYCm+79HqUfGD7JDREREZC7M7jHz4sWLMXPmTPj4+KB9+/b4+eefddZ7enqiQ4cOAIB3330Xv//+O95++22EhoaiTp06OHbsGNavX4+2bdtq51aTSfEqDcVWzoiRFcfcBwBYPEmGx7LjcD57PU/bP+tSHTHjm8HaxQ6un8ZKiSmLylVeczFNpvGDnRhF5iMb2fPqGXigkB+KjdzROEV8orS8rNKNr+U1hmqna47rH6Mp4roHIfDsLvheOwHFiHPAITEW9Y//hDv16yKkXy+kuOa8D0M8N8XnazuDJJ5zQiW5H4DE8xcWcp8BKorE/GRfW8nJEvNKkZaX2TNyChmjyTznJH83KFby5iUVarW0vGSTHpsRzd2NpVhayMtLIy+vwmSq/mLsk1Y4zK6QFhISAgC4e/eudgCQFwUHB2sLac7Ozjh69ChmzJiBbdu2YeXKlShfvjw++OADzJgxAxYWZn4RqTVw2XEF7itPwiLR+Al60wI88Pg/rZFao2whBkdkXjJt7HCtWR/cr9wINY7/Dtfou0Zt53f2HLwvX8X5V7rgeptWEOZ+XyAiIqISz+wKaWvWrMGaNWuMTu/h4YElS5ZomzgWF86xkagweRNsbzw2ehu1vRViRzfFs561pD+lJiou4j3K42SPySh/429UCfkT1mm51zxYpaWh4e9bUenkaZwe3B+PKwWYIFIiIqKio4ECjSj8Wi4Na9IKhdkV0l52lmnJCLywG+Vv/g0lD9P/xberjJhXW0Dt7lCI0REVE4oK96o2wSO/mqjy9w5UCP3bqM3cHkSh84JvcbNZE5we1A8aiU2QiIiIiGRhIc1UhAblbv+Dyud2wTotyejN0n3c8HhKa6TULV+IwREVTxm2jrjcaiDuVWmEGsc3wznugVHbBZ44BYe4OOx/YyKbPxIR0UuJozsWbyykmYDjkyhUC9kKt+gIo7fR2FoiblgjPOkXBFjxRyRRTp56VsSJXm/C5+oJVD67C5YZuffxLHc9FA03bcHfg/qZIEIiIiIi47GQVogsMtIQcHEvfG6cgCoPo1gltvBH9GutkOnpVIjREb1chMoCETVb4qF/Hfjd/BP+IWdz3abq4aN44l0WN1s2N0GERERERMZhIa0wCAHPiIuo8s8O2KYYP3x3ellnRE8ORnJjv8KLjegll2bvjGNjRiCsWRM0+uU3uD58lGP6xht/Q7ynJx5VrmSiCImIiEzBNEPwgwOHFAoOESiZfXw06h9YiTrHNxhdQNNYWSB2RCPcXTmUBTQiSR5WrYw/P3wX//R6BRnW1gbTqTQaBC9bBccYuXMNEhEREeUXC2mSqDLTUen8bjTb8TXcH4YZvV1SQx/cXTEEcSMbQ9iwYpNIJo2lJS536oBd77yJDBvDBTXbpCS0WbIclqmpJoyOiIio8AgTvkg+FtIkKH3vKpr/+RX8rxyESqM2aptUexdEzeyCB5/2QEZ518INkKiEe1reG8dGDc8xjduDKLRYsw7QGN9/lIiIiKgwsJBWAHaJcQg69CPqHv4JdklPjdpGo6gQXq0Vjr8yFYmtKgEK2/ESmUJkUG2c69EtxzQ+Fy4h6I+dJoqIiIio8AihmOxF8rF9XR4ld9cANumotP0oquw6CIv0TKO3januhwvjeyKhgicA4PZcmW+/cTV4xhIqieV3yTUTSg79i/JKpOU+VHueSCx0i/R0aXkBgCJxPjCRlCwtLwCwiMyQmp9j6XJ6l4dX7wiPm1GocO0fg9vW/msvUq3L4V6N+v9dIvnLR+aEMhnG33+MIvOhkVrudS80Eo9V8rUFmffLksSi5LxvIkPiPa4kTUol9TtV3u8k2d/PRPqwkJZHHpduofGGvXB6EGP0Nqmujrg8ogvutQxizRlRUVIU/NNtCByfRMPtYaTBZPV3/ozEUqXxtKyPCYMjIiKSR/Pflyn2Q/KVnMdYkjT5fJ3RBTShUnC7SxPs/+Yt3GtVlwU0IjOgtrLGqb7jkOrgbDCNRWYGmv6+HLaJz0wYGREREX366afo378//P39oSgK/Pz89KZLTU3F8uXL0bNnT/j5+cHOzg7+/v4YPHgwrl27pnebtLQ0fPzxx6hYsSJsbGwQEBCAefPmIUNmbbckLKQVkrhK5XHos9dwcWwPZDjYFXU4RPSCFGc3nOw7FmoLw40J7BKeoclvK6BSS25SSEREZALFtU/aBx98gAMHDiAgIABubm4G0925cwcTJkxAXFwcxo4di0WLFmHw4MHYvXs3goKCcPDgwWzbDBw4EHPnzkXbtm2xePFitG7dGjNmzMD48eOlHoMMbO4oWbqjHa4M7YyIdvXZT4HIjD3xroh/ugxCwz/XGUxTKioCNTR7cKl6F9aEExERmcCtW7fg7+8PAKhZsyYSExP1pitdujTOnTuHoKAgneVDhw5F3bp18c477+DMmTPa5Tt37sS2bdswdepULFiwAAAwbtw4uLq64quvvsKECRPQrFmzwjmofGApQqI77Rpg37dTEdGhIQtoRMVAZK1GCG3cLsc05R5dhd/dEBNFREREJIlQTPeSKKuAlht3d/dsBTQAqF69OmrWrInLly/rLP/5558BAG+++abO8qy/160z/NC2KLAmTYJnfmVxYVwPxFX1LepQiCiPLrfuDueYKHjdumowTeVbR5Do4I4YjwATRkZERFR8BAYGQvVCJUVUVFSRxKHRaBAVFQVPT0+d5SEhIfD29kaFChV0lleoUAHlypVDSIh5PZBldU8BZNjZ4OLoV3Do/15jAY2ouFKp8HePkYh39zSYRAFQ58oOOCQZP6orERFRUdKY8GVOfvjhB0RFRWHkyJE6yx88eABvb2+923h7e+P+/fumCM9oLKTlU2SLOtj37Vu43a0ZhMT5p4jI9DJt7XCy3wSk29obTGOpTke9i1thlZFiwsiIiIiKh5s3byIqKkr7KgonTpzA1KlTUadOHXzwwQc665KTk2FjY6N3O1tbWyQny50DtqBYSMujhHIeODZzLM6+ORBpboaH8Cai4iWpVGmc7j0aGsXwbdE+5SnqXP4Dikbu5PFERERUMGfPnkW3bt1Qrlw57NixA7a2tjrr7e3tkZaWpnfb1NRU2NsbflBbFFhIy6Mj815FTC32SyF6GUX7VcHF9n1yTOP+5C6q3sw+rC8REZE5EVBM9ipq//zzDzp06AAXFxccPHhQb7PGcuXKGWzSeP/+fYNNIYsKC2l5JKw41grRy+x2/ZYID8p5CF6f++dR/v4FE0VEREREhvzzzz9o3749nJyccPDgQfj66h8nomHDhrh//z4iIyN1lkdGRuLBgwdo0KCBKcI1GgtpREQvUhSc79gP0RVyrjGvFrofbk8ic0xDRERUZIQJX0Xk3Llz6NChAxwdHXHw4EFUrFjRYNrBgwcDAL7++mud5Vl/Dx06tLDCzBdWC+WR/dok2NrIGcdGyJxLTS23j4yIeyIxM7lXrzDQnjhfZE9QLPNYJccmZN5FNXLHcpL6mQJwuhZX4Dyu1OyDxrHLYZf8VO96ldCg3q1tuPndMKSXdTE630ffOBQ4tiwiMUlaXtLJvrZKygBNso9T8rUq9R4ne0g4ITFD2XOdyrweJH+nSs1Pdmzm/L5RoVm7di0iIiIAANHR0UhPT8e8efMAAL6+vhg+fDgAICIiAh06dMCTJ08wZcoUnDhxAidOnNDJq3fv3nBweP69261bN7zyyiv46quv8OzZMzRt2hQnT57EypUrMWzYMLRo0cKER5k7FtKIiPTIsHHA+caD0OjkSlikZuhNYxmfCr+ZWxH29WBo7K1NHCEREZFhGijQmKC/mOx9rFy5EocPH9ZZNmPGDABAcHCwtpAWHh6O2NhYAMCsWbP05hUeHq4tpAHApk2bMG/ePKxbtw5r166Ft7c35syZg/fff1/qMcjAQhoRkQGJLl64+14XVJy93WAauzsx8Pm/nbgzsyegKvrO00RERMXZoUOHjErXunVriDzWkNra2mLevHnamjlzxj5pREQ5iG8eiKhRzXNM43LyFnw//ROWcWbc/JCIiEoWoZjuRdKxkEZElIvHgxvjSXCVHNO4Hg5F1TGr4L7tHKCW3dmGiIiIShIW0oiIcqMoiJzWCcmBnjkms0hOR/nFBxA4eT3srz0wUXBERETZCWG6F8nHQhoRkRGErRXuzOqJjFK5j85oH/YYgf/ZgPIL98AiPsUE0REREdHLhIU0IiIjZZR2wp2ZPaCxMm6YdPddl1B1zCqU2nUR0PBRIxERmU4JmCbtpcZCGhFRHiRXK4c7M3tCbeSQ+5bxqaiwcC8qvbUBtrceF3J0RERE9DJgIY2IKI8SGlXEjeWj8LRlZaO3cbgWhcqvr0OVK3tgmZFaiNEREREBAorJXiQfC2lERPmQUdoJETO64/b8vkgr52rUNopGwPdOCJof/gFe9y+ztzURERHpxUIaEVEBJDTww41lIxE1ohk01pZGbWOTloTa57ehwan1cEiIKeQIiYiIqLgx7hcFaYm0NAghqWyrMeO5lGSGZiH5NNOo5eZnrtSSj1Nmdop5N23QxCdKy+vRV8b0PbPGQwQjrEltVL22F6WjbxmVd6m4CDQ7vhyx/eoiZmhjCDurPMV2d57cz0GxlHetiowMaXlJJ/n8VWxtpeUlUs28KazM906Y83eg5NgsjBtsyBiKrY20vABApJjxOSfxc1Ac7OXlJe/jLFSmGh6fjUIKB2vSiIgkSbF3w7l6/XGubl+k2DobtY2i1sDjl7MIGPsTnI6G8duOiIiIWJNGRCSVoiDaszLi3P1Q8fYJ+IWfhsqIGgOr6ESUn7MDiQ198fCN1sgwsp8bERGRPqYa1IMDhxQO1qQRERUCtaU1wiq3xonm4xBbytfo7RxDIuA/bh2c910vxOiIiIjInLGQRkRUiJId3XG24WBcrNMTqTaORm2jylDD+/92w/GEcX3biIiI/i2rT5opXiQfC2lERIVNUfCwbHUcbzkBsX2CIFTGNQ0p99lu2IRz9EciIqKShoU0IiITUVva4PGkYIR/PxjJ1cvmmt4iJQPlP/4DFs9STBAdERG9VIRiuhdJx0IaEZGJpQWURsTC/ngwrT0yXexyTGv9MB7ec3YAGSVk6gkiIiJiIY2IqEioFDzrXAO3Vo3Ak641c0zqcPE+vBYfYsN/IiIymjDhi+RjIY2IqAhpnG3x8K12iOteO8d0bjsuw+2PiyaKioiIiIoSC2lERGbg0WutkBRUPsc0nosPw/5cpIkiIiKiYk0oECZ4sU9a4WAhjYjIHFha4P6Mrkgv62IwiaIR8J67E1YPnpouLiIiIjI5y6IOoERTWcjLSyN5UAGJ+SlWVtLyAgChzpSXmSL56Y/M/Cwknh/mTi35/BUauflJdHd9zrVljxuNQ5Odi2CZkaZ3vWVCKrym7MKpbpOhrm7cvGvGsgyLkpqfVFYSv67Ucs8PkZkhLS/FSe5nKuITpOYn9b4k+7o3Z0ZOu2EMkZYuLS/pZH+nyuyH6+ggLy8r1hxR4WNNGhGRGUly88LFVkMgYPhHgOOzx6h95GdAY76FUSIiKlocOKR4K9CjyevXr+Pu3buIiYmBnZ0dypQpg1q1asHZ2VlWfEREJU50heq4Wb8LKp/daTBNmXvXUOXvHbjRpLsJIyMiIiJTyHMh7cCBA1i5ciX27duHmJiYbOtVKhXq1q2Lfv36YcyYMfDw8JASKBFRSRJeszUcnzxEudv/GEwTcO4AEkqVxYPKDUwYGRERFQumquZiVVqhMLqQtnnzZnz44YcIDQ2FEALe3t7o2bMnvLy8UKpUKaSkpCA2NhbXr1/H+fPncebMGcycORMjRozAnDlz4OnpWZjHQUT0clEUXGnWD/bx0XCNMTyiY61DvyDJpTSeefqaMDgiIiIqTEYV0lq1aoVjx46hZs2a+OyzzzBw4ED4+PgYTJ+eno6DBw9i7dq1WL9+PTZu3Ii1a9eiR48e0gInInrZaSytcL7tSDT581vYJsfrTWOhzkT9v1bheN+3kOboatoAiYjIbGmHyDfBfkg+owYOSU5Oxp9//omLFy/inXfeybGABgDW1tbo1KkT1q1bh/DwcIwbNw6hoaFSAiYiKknS7F1wru0oqC0MP1OzTY5H/b9WQZVpxqO+ERERkdGMqkk7c+ZMvndQunRpLFiwIN/bExGVdPEeFXCl+YDnIzoa4BodidoHf8H59sPkD4NNREREJsUh+ImIioEo/7q4XattjmnKhf2DgHP7TRQRERERFZZ8FdLmzJmDL7/8EunphpvWHD58GHPmzMl3YEREpOtmvU54XKF6jmkqn96JMuGXTRQRERGZKwHFZC+SL1+FtFmzZuG9995Du3btEBsbqzfNoUOHMHv27AIFR0REL1BUuNhqMBJcDY+Wq0AgaP86OMZGmTAwIiIikinfzR0rVqyI48ePo2nTpggLC5MZExERGaC2ssW5dqORbmNvMI1lRhoa7FoBq5REE0ZGRERmRZjwRdLleTLrLCNGjICPjw9effVVNG3aFFu3bkXz5s1lxmae1OrnLwkUa2sp+QCFcH0IjbysMjKk5SWdkPzOaeS9b9Jjk8nMB6ZQLCyk5SVyaNadvwwLnkWKozvOtx6BRvuWAmr9GdonxKHThW9g+3VTKJbGPY/buqBewYP7LxEr+X3LyJSXlxmfvyIxSW6Gso9V5j1OthxGQM0ztcTzDZB6/io2NtLyAuTe4xRbW2l5AZB6viUOkHctpCYqwOfSsiPSq0ADh4waNQo7d+5ERkYG2rdvj40bN8qKi4iIcvDEKwDWb9XKMY3mXAzSF14yUURERCWDdUJyUYdgFFakFW8FHt2xXbt2OHHiBDw9PTF06FDMnz+/QPmFhobi448/RpMmTVC6dGk4OTkhKCgIn3zyCZKScn7CuGTJEiiKAkVREBMTU6A4iIjMnVXvirDs45djmsytd5CxOdw0ARERveTKnL+J9lO/KeowqASQMgR/9erVcfr0adSrVw8zZszA2LFjkZHPJm6rVq3CwoULERAQgI8//hhffPEFqlSpgo8++gjNmjVDSkqK3u0ePHiA999/H46OjgU5FCKiYsX6P7WgqueRY5r0ry9BfTbaRBEREb2cHB/EoNHCDbBMldycm0gPaQ24PT09ceTIEQwePBirV6+GnZ1dvvLp168fpk+fDhcXF+2yiRMnIjAwEJ988glWrlyJN954I9t2r7/+OgICAlCjRg2sW7cu38dBRFScKJYq2M5riJRxhyEeGGiCoxZInXYKVkMrwWpEZSg28vrsERGVBFZJKWj62U+wTkpFsSmimaotIts7Fgqpk1nb2dlhy5YtmDJlisEar9w0aNBAp4CWZeDAgQCAy5ezz/+zZcsWbN++HT/88AMsJA4YQERUHCgu1rD9v8aAfQ7P3TI0yFgTipRhB5B5/KHpgiMiKuYUtRqNFm6E0wN2pSHTyVdNmiaH0XYURcHXX3+NoUOHIjlZXsfKe/fuAXheY/ei+Ph4vPHGG3j11VfRqFEjfP/991L2V7ZsWZ2/czpmIqKipvJ3hs2s+kh773SOTzXFg2SkvXsamS29YP1mLai8DA/lT0REQM11u+F5/mZRh5FnQigQovBHszXFPkoiqTVpL2rYsCGCg4Ol5KVWqzF37lxYWlpiyJAhOuvee+89aDQafPrpp1L2RURUXFk294LVxOpGpVUffYiUIQeQ/lMoRAYfQhER6eNz8CwC/zhW1GFQCSRxUpHC8+abb+LkyZOYP38+qlSpol1+/PhxLF26FOvXr9fbRLIgoqKidP6Oj4+Xvg8iItmshlaCCI9H5l/3ck+cpkbG0mvI/CsSNtNqF35wRETFSKnrEai7dGtRh0EllNGFNH9//zxnrigKbt26leftXjRjxgwsWrQIEyZMwPTp07XL09PTMWHCBLRv3x6DBw8u0D6IiF4WiqLAenpdwM0GmRtvGdWhW0QkInXKCdQsn4DQWp2QbudU+IESEZkxu+inaPLFOlhkqos6FCqhjC6k3blzJ8+ZK0rB2qjOmjUL8+bNw+jRo/HDDz/orFu8eDGuX7+OBQsWICwsTLs8ISEBABAeHo74+Ph8FS6JiIozxVIFmzdqwrJ9eaR/eQGaa0+N2q7svUso/TAUt6q3QaR/IwgVB2IiopLHIjUdTf9vLWyf5Tw/r9nj6I7FmtGFtPDw7JOhLly4EN999x1u374tNSjgeQFt9uzZGDlyJFasWJGtwBcREQGNRoMuXbro3b5Ro0ZwcHBAYmKi9NiIiIoDi6qusF3aCpl/RCD9h6tAQu7zV1pmpqHKxb9QLuIcrgW9gmfuPiaIlIjITGg0qL/oN7jeico9LVEhMrqQ5uvrm22Zm5ubwXUFMWfOHMyePRvDhw/HqlWroFJlH99k9OjRaNGiRbblixcvxqFDh7Bq1SptfFKpVM9fEoh8Tvitj2JtLS0vABBpmfIyK2CNarbsJB6rUEtuxiAzP+nTSUj8HNQSzw8Aiq2t1PxkXlsQkh8RRj6SltWW7xobmbIJrNolovKF3fAOP2vUFk7PHqHR4ZW4U7sJLrfujnT7vDWBdPg7Pk/pcyXx2lLsJJ9vqWlS8zNrMq8H2fc4IW8AHOnfqRLvSUJy8zvFykpeZplyvxvgLu93nONvxqXzv3wQ5fVM9/Si8GqtgLDiN9ojFS9mN3DI4sWLMXPmTPj4+KB9+/b4+eefddZ7enqiQ4cOqFOnDurUqZNt+z///BMA0L17d3h4eJgkZiIic5dh64grjfvivn8DVDu7DU5PjZsrze/iKZQLvYgrwd0RHtQUUAptUGAioiJVJvIyKl3en2OaR+WrI7x6MPDHShNFRSWV2RXSQkJCAAB3797FyJEjs60PDg5Ghw4dTB0WEdFL4WlpX5zq+Doq3DyFSpf2wjIzPddtrFOTUXf3L/C9eArnO/XHUy82gSSil4vTkweodWpTjmkSXL1wuXF/QFM8BhMRMNE8aTJb6pCW2T0SXbNmDYQQBl+HDh0yanvWohER6SdUFrhbpTmOd5uKKB/jh94vFRWBNmsWoM6eTbBMTSnECImITMc6NRFBR9fBQm24WWq6jQPOtRwOtZWNCSOjkszsCmlERGQaaXbOuNRsEM60HoMkJ+MebCkQCPjnKNr8tAB28U8KOUIiosKlqDNR59h62CU/NZhGo7LA+eZDkOpQCGMdUDaffvop+vfvD39/fyiKAj8/vxzTnz59Gu3bt4eTkxOcnZ3RuXNnnD9/Xm/aBw8eYMSIEShdujTs7OzQoEEDbNqUcw1qUWEhjYiohIvzqoQTnafgcvAryLQ0bhABp7jHaPr7clikl6BBM4jo5SIEqp3ZBreYiByTXavfA0/LVDRRUBIJE74k+uCDD3DgwAEEBATkOgjgqVOnEBwcjPDwcO3Agzdv3kTLli1x6dIlnbRxcXFo0aIFNm/ejEmTJuGbb76Bo6MjBgwYgNWrV8s9CAmM7pPWqlWrbMvu3r1rcB3wfJ60w4cP5zM0IiIyFWFhidCmHXGvWn3U3r8Z5W5eynUb10f3UH/nevzdc7T0UVyJiAqbT+gJlM9lxNuIyk1xP6ChiSIiALh165Z2nuOaNWvmOJ3WlClTYG1tjSNHjsDb2xsAMGDAAFSrVg3Tpk3Dnj17tGk/++wzhIeHY/v27ejevTsAYOzYsWjatCnefvtt9O/fH46OjoV4ZHljdCHt2LFjeV5X0MmsiYjItJJd3XGq73h4hV1Gnb2/weFZXI7py18/j3iPv3C9hf45K4mIzJF71E1UOb8zxzQxnpUQGtTVRBHJ97ySyxQDh8iVVUDLTVhYGEJCQjBmzBhtAQ0AvL290b9/f6xevRoPHz6El5cXAODnn39GQECAtoAGABYWFpg8eTJGjBiBnTt3YsCAAXIPpgAKNJk1ERG9nB5Wqolo38qocnIvAk/vg0UO85RVP7YL8aXL4UGV7NOiEBGZG/v4GNQ+sQFKDvP+JTm542LzwRAq2XOWvrwCAwN15jaOiircCcGzRoRv2rRptnVNmjTBqlWrcPbsWXTr1g1RUVG4f/8+hg4dqjdtVn7FspAme8JqIiIyb2ora1xt1Q13azZE4y0r4RJt+Au3wZ9rcdjVA888vQ2mISIqapbpKah79CdYZaQaTJNhZYNzLYcj09rOhJEVgkLoL2ZwP0XgwYMHAKBTi5Yla9n9+/fznNZccOAQIiLKUWKpMjjZdwLS7BwMprHMSEfT35fBJinBhJERERlP0ahR+8RGOCTEGEwjFAWXmg5CsnMZE0b2crh58yaioqK0r8KWnJwMALCxyT4tgq2trU6avKQ1F0YV0h4+fFjgHT169KjAeRARUdFIdnXHqd5joVEZ/tqwj3+CxltWQlFnmjAyIiLjBF74Cx4Pb+aYJrROZ8SUq2KiiKgg7O3tAQBpadlHGU5NTdVJk5e05sKo5o7+/v6YPHkypk2bhjJl8vZkYceOHZg1axa6d++Ojz/+OF9BmhPFygqKlXFDVOdGpKdLyQcARIbhCRjzQ9YxAvJjE5kSfwAqkiuTZQ6Wo9HIy8vcST9WiZ+DkBybMNy3K89ZRT2WlhcAqCrkPKrVE+9KuNB+AOru2Wgwjce926j716+4Wbmr1OtBpBhumpTnvJLM62lpcaLoeQqdX1Lv5YDc8012bFJJbluWQ7+sPLM0uheNUR43kzfSXtDSnfC7cTzHNPfL1kSEew0gJpc5INNTpMVF+VeuXDkA+pspZi3LasqYl7TmwqhfqFOnTsWiRYtQvnx5dO/eHWvXrsWtW7f0pk1KSsLhw4fx4YcfwtfXFz169ICiKOjVq5fMuImIqAhE1GmGW/X0T7uSxe/SKVQIO2WiiIiIcuYRfhvVr+3NMc1Tl3K4Wq0DpxMpRho2fD41wsmTJ7OtO3XqFBRFQf369QEAZcuWhbe3N06dyv7dlLWsQYMGhRht3hlVSJs3bx6uX7+OkSNH4uDBgxg1ahQqV64MNzc3VK1aFU2bNkXdunXh6+sLV1dXtG3bFp9++inc3Nzw008/4e+//0bt2rUL+1iIiMgELrfpjce+OTcHqnJhF0o9CjNRRERE+tnHxSF4xUqocmjFkGrjhPO1e0Ko5NYEUuGqVKkSGjRogE2bNmkHBgGeDxKyadMmtG3bVjv8PgAMHjwYt27dwh9//KFdplar8d1338HV1RVdu5rXdAtGn40VKlTA8uXLsWDBAvz888/Yt28fjh8/jtDQUG0aa2trBAUFoXXr1ujTp4/eITGJiKh4EyoLhHQfheB1X8HxabTeNAoEap/6BX+3fRXJTh4mjpCICLBIS0PrFcthl2h4QCO1yhLn6vRGuo35TGIsTTEd3XHt2rWIiIgAAERHRyM9PR3z5s0D8Hy0+eHDh2vTfvPNN2jTpg1atmyJyZMnAwC+++47aDQaLFiwQCff999/H5s2bcKQIUMwdepUeHt7Y8OGDQgJCcGKFSvg5OQk90AKKM+PDJydnTFx4kRMnDgRAJCRkYHY2FjY2dnBxcVFeoBERGR+MuwccKrPeASv+wpW6fr7i1llpCLoxHr83WZC8R/KmoiKF40GzX5ej1K5DKt+uUYXJDh7migoMsbKlStx+PBhnWUzZswAAAQHB+sU0po1a4ZDhw7ho48+wkcffQRFUdCsWTNs2rQJderozt3p7u6O48eP4/3338fixYuRmJiI6tWrY+PGjRg4cGDhH1geFbhe18rKSqcqkYiISoZEdy+c6T4STX5fBsXAo1SHhBjUOr0J51oMkz9QDxGRAbV274bv+fM5prlVsSkeeVY1TUBFQSjPX6bYj0SHDh3KU/qmTZti//79RqX19vbG2rVr8xGV6fEbk4iI8u2Rfw1cCe6RYxqPRzcReHGPiSIiopKuwvnzqPPXrhzTPCodiFv+zU0UEVHesZBGREQFEtawLe7WaJRjGr+bx1H2zjkTRUREJZXbvXtovn5djmkSHEvjcg2504QQycZCGhERFYyi4HzHgYgr65djsur/bINLzF3TxEREJY5NQgKCVyyHZQ7z0KZb2eNcnd5QW1qbMDKivGMhjYiICkxjaYXTvcYh2cnVYBqVRo06JzfAJvmZ6QIjohJBlZmB4JUr4fjE8ETUGkWF87V7ItWOA92R+WMhjYiIpEhzdMbp3uORaWllMI1NWiKCTqyHKtPwk24iojwRAo1+3YQy4bdzTHatagc8dStvoqDMgDDhi6RjIY2IiKR55lkB/3QZmmMa56dRqHFmMyD4zU5EBVfl8GFUOn0qxzQRFerhvndtE0VEVHD5KqQlJBieFJCIiEq2B1Xr4XbV4BzTeN27gorXDpkmICJ6aZW9fg31t27JMc2DKlUQGtjGRBFRSWJhYYGhQ3N+MJlf+ZonrVy5chg8eDDGjx+Phg0byo7JrIm0NAghqQJS5qhCkp9IC7Vaan5mS2jk5qeykJeX7NhkzlGlkXt+iBw6eeeLzGtLJbnBgUpebArkjkxmfylKWl523wcidWYEbI/eMZim0tUDcB+kQmqrirnmd369vLmMVDeTpeUFQO7916rA05fqysiUmp3Ua1X2tSXzc7CQHFumxHumxHsIAIhMeeeIytFBWl4A4HEh5/PN/lk0mv6xBqocPvskZw9cbTAUmgdPAUm/bUrMbyTKlZOTE3x8fAol73zdhcqUKYMVK1agSZMmqF+/PpYtW4bExETZsRERUXGlUvB0emtkBJTKMZnL/EOwDIs1UVBE9LKwTEtB/b2rYJWeYjBNhrUt/mk/Bpk29iaMzIywT1qhq1u3Lq5evVooeeerkHbr1i3s3r0bffr0weXLlzFp0iSUK1cOr776Ks6cOSM7RiIiKoaEvRWezOsItYutwTSq1Ey4fbgHqieGf2gREb1I0ahR59A6OMRHG0wjFAUXgociybWMCSOjkua9997Dzp07sXfvXul557tdRYcOHdChQwdER0dj1apVWLFiBZYvX44VK1YgKCgIEydOxJAhQ+DgILfqm4iIig91WSc8mdse7lN3QsnU34TX8lEi3D7ei9ivugFWEpsME9FLqXLIDpS+fyPHNDcadENMhWomishMmaqWqwTXpD1+/BidO3dGly5d0KtXLzRs2BBeXl5Q9HS7GDFiRJ7yVoSQ14h7//79WL58ObZu3YqMjAw4ODhgyJAheO2111C7dvEeUSc+Ph4uLi74dNRC2FrbycnUnGe6lxmbRna/LzMelFRmv68S1CdN+ih/7JOWP5by+kPVej9G52+7P6/D9cujOW6T3K0Knr3dUu/nJ7dP2j1peQEoUX3SzPraKil90iwlP8iQGJvKVe78Y+pSjtmWed8MQa2jv+S43b3ABrjcYqDO+aqEP5AWV2p6Cqav+g+ePXsGZ2dnafnKkvWb9a2dv8PGBJUlaUlJWNi1r9m+H4VJpVJBURT8uzj1YiFNCAFFUaDOY19Gqd8GAQEB8Pf3h7OzM2JiYpCUlIRly5Zh+fLl6NevH5YuXQpXV1eZuyQiomIg5ZWqsAqPg8PvVwymsd9xAxn+pZDct6YJIyOi4sL10R3UOP5bjmmelPHFlWb9zPtBuMko/32ZYj8l0+rVqwst7wIX0tRqNbZt24alS5di//790Gg0CAgIwHvvvYdRo0bh3Llz+OKLL7Bp0yZYWFjg559/lhE3EREVM/GTmsDyzlPYnL1vMI3z4lPI9HVFeoMSNOEsEeXKNvEJ6u5fA1UOLTlSHFxwru1ICAvJNdJEBowcObLQ8s73WXznzh0sX74cq1evxqNHj6BSqdC9e3dMmjQJHTt21KZr37492rdvjz59+uCvv/6SEjQRERVDlio8mdkWHpO2wfJ+vN4kikbAbdZ+xCzpCXUFV9PGR0RmySIjDfX2rYZNquGRxNUWVvin/Rik25es5nY5Yp+0Yi1fja47deqESpUq4dNPPwUAfPjhhwgPD8eWLVt0CmgvatiwIZ49e5b/SImIqNgTzraIm98JGgcrg2lUieko9cEeKAlpJoyMiMySEKh19Bc4x+Xcp+xiq0FIcPc2UVBEurZt24aBAweiTp06qFSpknb5tWvX8Pnnn+P+fcMtSAzJV03a3r170aZNG0yaNAm9evWCpRGdzbt3745y5crlZ3dERPQSUfu64unH7eA2fTcUjf5HsJaRz+A69wCefNpJ/iAORFRsBJzfC687F3NMExbUHo8q1jFRRET/I4TAsGHDsHHjRgCAnZ0dUlL+N6VMqVKl8OGHH0KtVmP69Ol5yjtf33zXrl3D/v370a9fP6MKaABQs2bNQm23SURExUda4wpIeLVRjmls/74Hp6V/mygiIjI3nncuIvDcnhzTPPStibC6+ltxERW2b7/9Fhs2bMC4ceMQFxeHt99+W2e9p6cnWrRogR07duQ573wV0qpUqZKfzYiIiLSSBtRCcqfAHNM4/noJdn+FmigiIjIXjk+jUOvIhhzTxLuVxaVWg+VOMUOUB6tWrUK9evWwdOlSuLi46J0frVKlSrhz506e885Xc8dNmzZhyZIlWLt2Lby9s7f/vX//PkaMGIHXX38dffr0yc8uzJeiyBvWVebwsNKHmpU5F468rKST/b6pJc5JZCF5LhyZsUl+3xR7SXMP/pdIS5eYm+RjlTjqmJD5mQJAmrw+YJc+cTMqnUrdHQ1cNsL1meH+Js7/dwylOtbA0zJ+coJTyb22FBvD/evySqSkSssLgHnPu5bHOYNyJfHakj0HoZB5z5Q8953i5CQtr9gm7lLysUlMQLNFv8IyM8NgmjQrO5yr0hWayBjjPi2Z8+jJnv+1sHDgkEJ38+ZNTJo0Kcc0Hh4eiImJyTGNPvn6+bxixQo8efJEbwENALy9vfH06VOsWLEiP9kTEVEJobGwxPk6vZBqY/iHokqoEXT4J9gmPTVdYERUJFSZmWixdgUcnj4xmEajqHC+Rnek2nIkRypa1tbWSEw0POooAERGRuZrku98FdIuXbqEhg0b5pimYcOGuHgx546eRERE6TaOOBfUG2qV4ZoQm9RE1D20BqpMmbWkRGRWhED9rb+idMTtHJNdrdwOT105kmOuhGK6VwlVp04d7Nu3DxkZ+mt9ExISsHfvXjRo0CDPeeerkBYXF4cyZcrkmCa/VXtERFTyJDh74XKNrjmmcY57gJonfpXbbImIzEbl44cRcOZkjmkivOviftmaJoqIKGfjxo1DeHg4Ro0ala1GLSYmBkOGDEFMTAxeffXVPOedrwbcHh4eCAsLyzHNzZs34erqmp/siYioBHrkVRW3EqMREG74R1rZiItIdPXC7drtTRgZERU2r9BrCNqxOcc0MW4+uBHQykQRFX8KZPeqNryfkmr48OHYt28f1q5di99//11b9qlevTpu3bqFjIwMjBs3Dj179sxz3vmqSWvevDm2b9+O0FD9I27duHED27dvR8uWLfOTPRERlVC3AlrgUZmcR3wMvLAHZe5eMlFERFTYnKIfo9nPq6HKoZY8yc4VF6p3g1CZ82hkVBL9+OOPWL58OapWrYro6GgIIXD9+nUEBgZi6dKlWLZsWb7yzdeZ/vbbbyMjIwMtWrTAokWLEBoaiqSkJISGhuK7775DixYtkJmZmW2uACIiohwpCi7X6IYEx9I5Jqt1bCOc4gyPCElExYNVSjJa/rQU1qkpBtNkWNjgXM2eyLSyNWFkLwFhwlcJN3bsWJw/fx6JiYm4d+8eEhIScPnyZYwfPz7feearuWPDhg3x/fff4/XXX8d//vOfbOstLCywZMkSNG7cON+BERFRyaS2tMa5oD5ocvonWGfo/+Fmqc5A3UNrcKrLFKTbOZo4QiKSQdFo0HTDGjhHPzaYRkDBxepdkeRQyoSREeWPnZ0d7OzkTCuU7zrj8ePH48KFC3jttddQv359BAQEoH79+nj99ddx4cIFjBs3TkqARERU8qTaueB8nV7Q5DBJrV3SUwQd+QmK7PniiMgk6uzcinKh13JMcyOgJWLc/UwTEFEeNWnSBB9++CH27duH1FS581wWaObHatWq4bvvvpMVCxERkdZTtwq4VrUDalzbbTCN2+M7qP73Vlxp0lf+5PREVGgqnjmFqscO5pjmvld1RJSvZ6KIiPLu4sWL+Pvvv/HZZ5/B2toajRs3Rrt27dC2bVs0adIEFhYW+c67QIU0IiKiwnS/fB04JkbDN/Ifg2nKh/2NBFcv3K3WwoSREVF+uUfcRoMtv+SYJsanIq74tePDFzJrT58+xcmTJ7Fv3z7s378fJ06cwJEjRzBr1izY29ujRYsWaNu2Ldq2bYv69evnKe8CFdLUajVu3LiBJ0+eQK1W603TqhWHSiUiovwLrdwWDhkJ8Hh402Caqmf/QJJLGcSWq2zCyIgor+yfxqHl2hWwyKGZcrKLK44NHwe745xvtyA4BH/hs7a2RnBwMIKDgzF37lwkJibi8OHDOHDgAA4cOIA9e/Zgz549UBQFmZl5a5qf70La3LlzsXDhQjx79izHdIYKb8WWEPImUpU4IatiL6eTYhaRIrFdrezhcs35nLKQWDktNPLykk3yZMJSzzdAbnwyP1MAQmabddnXlsT3TUg8f4UCHBs9Fu2WLoBTXLTeNIoQqH18Pfa9+jYSPcrkmJ9rnNwR4kRysrS8pN/Lkw2PmJcfio2NtLxEWpq0vP6bo8S8JP/stJB4rWokfzdIPNRS5xNyXG+RmY6G+5fBNtFwOrWFFS40GQb7WwqEudaimWtcVOQcHR1Rt25dPHnyBHFxcbh//z5iYvL3sCFfvz4+//xzzJw5Ey4uLhg+fDgqVKgAS0u2nCQiosKRbu+AY8MmoN3SBbBO01/QtU5NQYv1S7F/wjRk2NmbOEIiypEQqHH6Nzg/yXnqjMuN+yHBrZyJgnrJmWp4/BI+BH9cXBwOHjyorT0LDQ2FEAKlSpVCcHAw2rZti3bt2uU533yVrJYvXw5vb2/8888/KF0657lsiIiIZEgo7YVTA0ah5bqlUAzU+jnHPEaTTWtwbNhETnpLZEb8rxyAV+TlHNPcqtEWj3xqmSgiooKrW7cuLl26BCEEHBwc0LJlS4wbNw5t27ZFUFAQlALUuubrGywyMhK9evViAY2IiEzqYeUauNixZ45pyt68htp7tpkoIiLKTZnIy6h0eX+OaR6Vr45bNduaKKISgpNZF7oLFy5ACIEOHTpg+/bt2L59O6ZNm4a6desWqIAG5LOQ5unpmefOb0RERDLcaN4Wd4Ia5ZimyvEDaLBlPayTEk0UFRHp4/gkCrVObcoxTYKrFy437g/kMC8ikTl66623ULt2bezduxft2rWDm5sbunXrhoULF+LChQsFyjtfzR0HDBiALVu2IC0tDTYSOxETERHlSlFwpscgOMY+hkfkHYPJ/P85Be9rF3GpQw/crt9U/kArRJQj69RE1D26FhbqDINp0m0ccK7lcKit+HuSip8FCxYAeN4vLatP2oEDB7Br1y4oigJ3d3e0adMG7dq1w4QJE/KUd76+sWbPno2yZcuiX79+CA8Pz08WRERE+aaxssKJweOR7OyaYzqblGQ02L4R7ZYvhOuDSNMER0RQ1Jmoc2w97JKfGkyjUVngfIuhSHVwM11gRIWgVKlS6NevH77//ntcv34d9+7dw4IFC6BSqfDbb7/htddey3Oe+apJq1mzJjIyMvDgwQPs3LkTLi4ucHV1zZZOURTcunUrP7sgIiLKUaqTM44NnYC2KxbCMsPwk3oAcL93B+1/+AK3GrVEpEsjZFrJHYafiF4gBKqd3Q63mIgck12r3xNPS/uZJqaSiKM7mlRSUhKOHDmC/fv3Y//+/bh06RI0/50yw8nJKc/55auQptFoYGlpCR8fH+0yoWekLX3LiIiIZHlargJCeg9F01/X5JpWJQQCTx+Bj81ZhFZtjyjvmpzviKgQ+ISeQPnbZ3JME1G5Ke4HNDBRRESFI2vi6v379yMkJASZmZkQQsDOzg5t2rRB27Zt0bZtWzRs2DDPeeerkHbnzp38bEZERCRdZK36UGVmov72X2CZmXONGgDYpCWh1oVt8I48h2s1uyDJiSMVE8niHnUTVc7vzDFNjGclhAZ1NVFERIWnTZs2AAArKys0bNhQOyda06ZNYW1tXaC8OQM1EREVexF1GyPGLwBBO36H942c52LKUiruLpoeXY7/b+++46uo8j6Ofye9hw4hCAEJHSlSg0jQUJSliCKKIiLgsiL72B4eUVC6ZWXRFVZ3KWJ3RVxhF1BRQAQBESmyQigSEAiIQCAJpN55/sBkjSkk4eRmbvJ5v173xYuZc39zbu6ZmfubM+fM4Yad9UN0d2X7XNkJFajsgs7/rGu+erfQ5xhKUmpode3qdqdsL2831gwoG4899phuuOEGde/eXcHBwUZjX3GStmfPHu3du1cpKSkaPny4iToBAFBiqVVraOPdv1fE3u/UbsUHCkk6c9n3eNkuNfxhkyKO79beFr31U51m3AIJlIJPZprabXxDvplphZbJ9A3Q9u7DleUX6MaaVWKMSStzzz//fJnFLnWS9u2332r06NF5ngGQk6R98cUXuummm/Tee+9pwIABV15LJ/HyMjeN8y+DCU2wLxZ+UCwVk1e4XNnmYklmf0AZHzdpMJ7B9iHJ6PTjlrfZK6C26ecuGmwjVpDhHxPZ5j6rfeGisVjGZZnd76tuv3zClSNNkdpy/R/UMP5LRe3bKC/78nUJSEtW22+XKrVjfZ16sIcy61Up9vYOvRBS7LKXY/pYbgWanSDFTr/87aTlJttcm7NlOFG3DR7PDT9K4qdeV367r+VyKfZvf1Nw8s+FlrFl6bt2t+iCd6iUWsxjl8nzIBdfUMYSExO1Y8cOJSUlKTw8XO3atVNERESp45VqT9+7d69iY2N14MABPfTQQ7rpppvyrL/++utVvXp1ffDBB6WuGAAApeXy8dPBljdqU9wDOl2rUbHfF7z1iOqPflvVFm+WlW744gFQQbVbtkyRe/YUWWZfixv1c+3GbqoR4D5HjhxRv379VK9ePf3ud7/T3Xffrf79+6tevXq6+eabSz2XR6mStKeffloul0tbt27V7Nmz881YYlmWunbtqq1bt5Y49r59+/TUU0+pS5cuqlmzpkJDQ9W2bVvNnDlTqampueVs29Zbb72lO+64Q40bN1ZQUJDq16+vAQMGaMuWLaX5WACACuZCaA192+0e7eo0RGkBxZsC2SvTpepvblX9UW8raEtC2VYQ8HCNtmxRi7Vriyxz7Ko2Otyoi5tqhByW7b5XZXXixAl169ZNq1atUoMGDTR8+HBNmDBBw4cPV1RUlD7++GN1795dJ06cKHHsUt3uuG7dOg0ePFhNmzYttEz9+vX1ySeflDj2okWLNG/ePA0YMEB33XWXfH19tXbtWk2aNEnvv/++Nm/erMDAQKWnp2v48OFq27at7rjjDjVs2FCJiYl69dVX1bVrV73xxhu6++67S/PxAAAViWXpZL1W+rl2tK7es1b1f9gsy3X5XxV+iecV+cS/lNKtkU6N666s2mFuqCzgOWr88IM6v/dekWWSqtbT961v5nZDVEgzZszQsWPH9Nxzz+mRRx6R96+Gg2RnZ2vOnDmaMGGCZsyYoblz55YodqmStHPnzl32HsuMjAxllWKcyW233aaJEycqPDw8d9nYsWMVHR2tmTNnauHChXrwwQfl4+OjdevWqUePHnneP2bMGLVs2VKPPvqohg0bJi/D924DADxTtq+/9l3TV/q/KNV6aZ0CdycW630hG39Q0DdHdGZ4R529rZ3ky6x0QNDZs+qxcKG8ixgLmBYQph0dhsj2ZjLx8mH98nLHdiqnFStWKC4uTv/7v/+bb523t7cee+wxrV69Wv/+979LnKSVKoOJiIjQnsvce7xr1y5FRUWVOHaHDh3yJGg5hg4dKknavfvS1Mo+Pj75EjRJql27tnr06KGffvpJP/30U4m3DwCo2DIa1dDRF2/ViQlxyqpSvIlhvNKzVGPBJjW4/10Fbj9axjUEnM07PV2x8+crMDm50DLZXj7a3vF2ZQSYm1gHcJrExMTLPqi6Q4cOpbrdsVRJWp8+fbRq1Sp9/fXXBa7/9NNPtX79evXr16804Qt09Oilk2Lt2rWLVdbPz09VqlQp9fYiIiLyvKKjo0sdCwDgMJal5D7NdXjx3Uoa0Fp2MS8E+x05q3qP/VO1Z30i79Opl38DUNHYtmLeflvVjhZ9sWJ3uwFKrlL6me1ggO3Gl0EpKSmaNWuWWrdurdDQUNWoUUMxMTFavHix7N/Myr1lyxbFxcUpNDRUYWFh6tu3r3bs2GG2QkUIDw/XkSNHiizz448/Kiys5LfLlypJe/LJJxUaGqobbrhBTzzxhL7//ntJ0pIlS/Twww+rf//+qlmzph599NHShM8nOztb06dPl4+Pj4YNG1Zk2ZUrV+rrr7/W0KFDFRBgduphAEDF4goN0Kn/idWP825XWtNaxX5f2Of71GDkW6qydIcs04/LABys9SefqMFlfgQfjO6uk3VbuqdCqFBcLpduuukmTZ48WR07dtTs2bM1adIkZWdna+TIkXr88cdzy27evFk9evTQoUOHNG3aNE2dOlX79+9X9+7d9d1337mlvt26ddMHH3xQ6KSFX3/9tZYsWaLrrruuxLEt+7cpaTF98803uv322/NMK2lZlmzbVlRUlJYuXap27dqVJnQ+48eP19y5czVr1ixNnDix0HL79+9Xly5dFBgYqO3bt6tmzSt/9keO8+fPKzw8XM/c95ICTD2E0cnP/3Dyc9JMMv2cNJPPDzP4zB9Jles5aQZZIYZv1aksz0kzfEzyqlbFWKyocYU8yynbpfCV/1H1BZvknZJe7HjnQ2tpT8s+Ole13hXXzU4r/naLwwrwNxrP6HPSDO4LxpkeQ2XyOWmGnbolqthlr9q5Uz0WLiyyzMk6TbWzwxAjxwD7fOG3U5aYwWNSWsZFTXztIZ07d65UPSRlLec362MffCT/4OAy3156aqpeuG2Qkb/Hpk2bFBMTo4ceekhz5szJXZ6RkaFmzZrpzJkzSkpKkiR16tRJe/fu1Z49exQZGSlJOnbsmJo3b64uXbro008/vaK6FMe3336rmJgYuVwu3XnnnYqNjVWdOnV04sQJrVu3Tu+++668vLy0YcMGdejQoUSxS30U6tChg/bt26cVK1Zo06ZNOnPmjMLDw9W5c2cNHDhQvr6+pQ2dx+TJkzV37lzdf//9RSZohw4d0o033ijLsrRq1SqjCRoAoBLw9tK5/q2Vct3VqjH/K4V9UvTY6xxhyT+p8+Y3dbReG+1vGqtMv6AyrijgflWOHVO3N98sskxyWC3tbjeImRxRaufPn5ck1a1bN89yPz8/1ahRQ+nply5kHThwQFu3btV9992Xm6BJUmRkpIYMGaLXXntNJ06cUJ06dcq0vu3bt9cHH3ygESNG6M0339Rbb72Vu862bVWrVk2LFi0qcYImXUGSJl2avGPgwIEaOHDglYQp1JQpUzRjxgyNHDlSr776aqHlEhIS1LNnT6WkpOjzzz9X69aty6Q+AICKL7tqkE5OiNO5m1qo1kvr5H/odLHeV+/oTtU6Ga/9TWJ17Kq2/FBFheGfnKzYv/9dPhkZhZZJCwnR9o5Dle3j58aa4bI87BlmnTp1UpUqVfT8888rKipKnTt31oULF/T6669r27ZtuflAzrOYu3btmi9Gly5dtGjRIm3bts3o/BiF+d3vfqcjR47oo48+0vbt23Xu3DmFh4erXbt2GjRokIJL2Zvp2DlRp0yZoqlTp2rEiBFasGCBrEJOdgkJCYqNjdW5c+f02WefGbvFEgBQuaW1rqsjrw5VlY92qfriLfK6ePlb/fwy09TyPx8r8ugu7WnZR8nhZXsVFyhrXllZ6rFwoULOni20TLa3t74YNUrWD8679Q/uEx0dnefRV4mJxXvMya9VrVpVy5cv1+jRo3X77bfnLg8NDdXSpUs1aNAgSdLx48clKU8vWo5f3/pYlo4cOaKtW7fKy8tLHTt21F133aW77rrLWPxSJWnTpk0rVjnLsjR58uRSxZ86daqGDx+uRYsWFfqss8OHD6tnz55KSkrS6tWrde2115Z4WyVmWc68OmpyDJkkK9DcOAY79YKxWI5nchyZ6XZmcAxkKYeyFsoydHt0DruIq70ljmV63JfJMZpOHjdjeDIN+0KasViHnivp7Yjd5N/xGjXZt0YRJ/YW6x1Vzh1X502LtS/2Om0feJMyg4q3zTrLi9drV1x2EVOkl4oTz385jNbN8DEu0NxEZunRxZ/gpjhq7CjieGnbarlxiWr98EORMfZ0GSw7+SpZF08arZvJsdRG24eHPIPXsi+93LEdk0JCQtSqVSsNGDBAMTExOnPmjObNm6dhw4Zp2bJl6tWrly5cuPTb0t8//+/VnIkDc8qUhccee0wvvvhi7u8hLy8vPfroo3r22WeNbaNUZ/gpU6YUui6nx8u27VIlafPmzdPTTz+t+vXrKy4uTu+8806e9bVr11avXr2UnJysnj17KiEhQePHj1d8fLzi4+PzlO3Vq1expuwHAKAo6QGh+u6agToW2UbN96xW8IUzl32Pl22r2dov1WDbDn1z20Ad6nyts5Mc4DcafL9BV+0r+HFLORJaXKejTTu7qUZwsv3791/xxCHfffedYmJiNGfOHI0dOzZ3+Z133qlWrVppzJgxOnjwoIJ+ufCVM0bt19LSLl3UCyrmxbGSevfdd/XnP/9ZlmWpWbNmsm1b8fHx+tOf/qRrr71WQ4YMMbKdUiVpa9euLXB5UlKStm7dqr/85S/q169fnj9uceXcY3rkyBGNGDEi3/oePXqoV69eOn36tA4dOiRJevnllwutJ0kaAMCUM9Wj9FXMSEUlbFWjH76St+vyMxQGnk9W90VvKXrDJm0ZdpvO1eXZUXC+6sf2qdnXy4ss83PdJorv1N9NNUJlMGfOHKWlpeVLdIKCgtSvXz/NnTtXCQkJuROLFHRLY86ygm6FNGHBggXy8fHRypUrFRcXJ+nSM6L79eunBQsWlG+S1qNHj0LXDRw4UEOHDlWnTp10xx13lDj24sWLtXjx4suWi4qKMn7LFQAAl2N7+ehQo65KjGihZns/U61TB4r1vjr7Dqr/tD/p+7hY7fpdH2UZnh4fMCXo3Cm1XfumrCJ+Z6WG1dCOnnfLNjzcApVbToKVXcDwkaxfHteTlZWljh07Sro0Zf/o0aPzlNu8ebMsyyqzYVC7du1S//79cxM0Serdu7f69++vDRs2GNtOmdxU27p1aw0cOFCzZs0qi/AAAJS7tMBw7Wh3q9aMG63k6tWK9R4vl0utPl2jgU8/o+oJR8q4hkDJ+aRfVPvPFsk3o/DxuJm+Afo27j5l+fO4CZjVokULScrXYZOUlKRly5apatWqaty4sRo3bqwOHTpoyZIluZOISJcmFFmyZIluuOGGMpt+/+zZs2rWrFm+5c2bN9fZIibYKakyG/lYv3597d69u6zCAwDgCEfbtNLyKY9r1829lF3MB70Hn01Srz/PU/jxE2VcO6AEXC61WfeWQs6dKrSIbVnaGXuXUquYncAEZcB248uQhx56SNWqVdPjjz+u4cOH69VXX9WsWbPUrl07JSYmasaMGfL+5Tj70ksvKT09Xd27d9eLL76oF198Ud27d5fL5dLs2bPNVeo3XC5XgROW+Pn5yWVw0qwyS9K2bNmiwMDAsgoPAIBjZPv7acegfvrX0xN0vHmTYr3HLy1dPectkH9KahnXDiieplv/rZrH4ossE9+hn36+qrmbaoTKpkGDBvr66681fPhwrV27VuPHj9ezzz6rq666SkuXLtUDDzyQWzYmJkbr1q1TVFSUJk2apMmTJ6tx48Zav3692rRpU6b1LOzRYCaVakzakSMF36KRlZWlH3/8UfPnz9eGDRvyPN8AAICK7nyd2vrsoT+owbYd6vj+RwpKOldk+bBTP+v6vy/WZ38cK9uHsT0oP5H7t6rhf9YXWeZodAcltCp8XgI4i/XLyx3bMenqq6/W66+/XqyyXbt21eeff264Bpc3e/ZszZ8/P8+y8+fPS7p0N+FvWZalw4cPl2gbpUrSoqKiiswgbdtWdHS0XnjhhdKEBwDAc1mWDndop2OtmqvNvz5W88/Xy6uIW2Ai9u5Xx/f/qa+H3ebGSgL/VeVkglpu/KDIMmdrNdB/Ym7jMRKALiVkOUnZbx09etTINkqVpN1zzz0FJmleXl6qWrWqOnXqpIEDBxZ4vyYAAJVBVkCAtg0ZpINdO6nL20tU6+ChQss2W7dBZyMjlKz8g9GBshSQkqR2a16Xlyv/bHo5LgaHa/sNI2R7l+pnI1ChmBx3VpRS7W3FmSIfAABISfXq6tNHxyluziuqs/9goeU6v7tU2zrfrbPVG7ixdqjMvDPT1e7z1+R/MbnQMtnevtp+40hlBF3ZQ4oBlEyZTRwCAAAucfn46IuxI4ucqt/L5VKbb5Yo8IK5KZyBQtm22q5+V+Gn8z8M+Ne+6z5U52vUc1OlYJQHzu6I/6LfuqRcrksvE7wM5sjZWeZiSbJTC7/tocRMfk7J3N9fkoo5XXZxWX5+5oJlGf5ODcczyXjdDLY5y9ts+zV6LjO83xv9u/n6GoslSXZGhrlgBTwk9Ur4nyrucSRcG4fdrxv/9mf5FvJ5/DIvqs2upfryzoeV5RdwxXUL/I/p40imsViWZXjfMthGvKpWMRZLkuzzhfdUlVRQnJkkPuq9L1R3/44iyxy8upt+CrhKXsdPFyum7TL8a93g+d4KNvdMN8tyz+1uqNxKlaQ1atSoVBuzLEsHDxZ+qwcAABXZuTqR2jLkHl339oJCy4T9nKj2K9/U1wNHSYYTGUCSan61R1e/va7IMidrN9HBxt3dUyGUDXf1ctGTViZKdfR3uVxKT09XQkKCEhIS9OOPP+rixYv68ccfc5elp6fLtu08L3cNtAMAwKmOtWijXXG/K7JMxMHv1HzjSjfVCJVJyKETavnnfxZZJjm0lna37s9MjkA5KlWStmvXLkVGRqpLly5au3at0tLSlJiYqLS0NK1Zs0adO3dWvXr1tGvXLh06dCjPCwCAym5PbG8dad2+yDJNtnyqyD3b3FQjVAa+Sam6Zvp78k4v/LbVDN9AbW93q7J9DN6+D6DESpWkPfnkk0pKStK6devUo0cPef8yrsfb21uxsbFau3atzpw5oyeffNJoZQEAqBAsS18Pvktn6l5VZLF2n76jKieOuKlSqMi80jN1zTPvK/BU4Q9Yd1le2tHuVqUFVXFfxQAUqFRJ2j//+U8NHDhQfoVMkhAQEKCBAwfqww8/vKLKAQBQUWX7+WnD3WN0MaTwqc29szLVadl8+acU/sMauJzqX+9Tl3F/VZXvi07497Too6RqRV84AOAepUrSTp8+rczMomd4yszM1OnTxZsNCACAyuhieFVtvGu0sn0Kn8crMOWcOi9bIC+DMyuicgj4KUnXzHhPbae/q8CTSUWWPdygg45d1dYt9YKbMAW/RytVknb11Vfrgw8+0LlzBV/ZO3v2rD744INSzwIJAEBlcbp+Q20ddGeRZaqeOKy2n74r2fwawuVZmVlq8P6X6vKHeaq5Jf6y5U9Xj9K+pje6oWYAiqtUSdrYsWN1/PhxderUSW+88YYSEhJ08eJFJSQk6PXXX1fnzp114sQJjRs3znR9AQCocA6366Q93Yv+kXzVnm/U+Js1bqoRPFXVnT+o8/hX1fjNNfLOuPxz8lKDqmpnm0GyTT/TFOXOcuML5pXqOWkPPvig9u/fr5dfflkjR47Mt962bY0fP14PPPDAFVcQAIDK4LveA1T1aKLqHPq+0DIt1i9XcvU6OtmopRtrBk/gdzpZ0Ys+VZ31u4v9nszQQO1oc5uy/ALLsGYASqPUl01eeuklbdy4Uffdd5/atWunRo0aqV27dho1apQ2bNigl156yWQ9AQCo0GwvL23rN0LJ1WoXWsaSrWtXLFbo6UQ31gxOZmW7dNWyzer6h7klStDORdfV1j+NUmpIjTKsHcoVY9I8Wql60nJ07dpVXbt2NVUXAAAqtSz/QG0ZdL+uf2e2/NIuFFjGNyNdnT6ar/XDHlVmYLCbawgnCf/+iJq+slKhCSeL/Z7MkAAdvOdGHevdXvL2kpRRdhUEUGpXlKRVRpavryxfXyOx7AxzB0ZTdcphZ13+Pvbisgzf525nZxuLZRXyGInSstPSzAWzDN/l7eNtLlamufYhyfxndbmMhTK5n0qSDO4Plr+/sViSzP7dLjMDcIk5eLxMta3mZjJOaltdGaG1tOn2+9T9zb/Kyy74OwlJ+lnXrnpNX979gGzvwvftlLurG6ubJNVYcMxcsACz5y2Tx/P0OqHGYknSoxN2GIv18tSm8k1PVZP4tYo8uqtE7z1W7xrta9pTmQnB0t+zJWXLzjC4r7rMnZ8lGd3v7bR0c7EyzMUqU+7q5aInrUyUuvVnZ2frpZdeUufOnRUeHi6fX00fvGPHDj3wwAPat2+fkUoCAFCZ/NSoqXb2HVxkmdqH9qnNJzyPtDKxXbbqHflW163/W4kStOTQWvq6y3D955rfKdOf3lfAE5SqJy0tLU19+/bVl19+qerVqys0NFQpKSm56xs2bKjXXntN1atX1/Tp041VFgCAyuJAp+sVfvK4Gn37VaFlor9er3O16upQh25urBnKQ9qeszr5p+1q8Z+zxX5Plo+fDkRfrx8bdGD2RsDDlGqPfe6557R+/XpNnz5dJ06c0OjRo/OsDw8PV48ePfTJJ58YqSQAAJWOZenbm4foVIPGRRZrv/J91UjY76ZKwd2ykzN08k/bdXjkGqWVIEFLjGihjdf/XkcadiJBAzxQqXrS3n33XV1//fV64oknJElWAeNJGjZsqJ07d15Z7QAAqMRsHx99dft9ipv/goKTzhRYxsvlUrf35iupTr1861yBJR9n6PLx0ZmG9RTfu5vSqoSV+P0ww7ZtnV91RKf+8p2yzxZ/DFRqcDXtadlHZ2o0LMPawSMwJs2jlSpJS0hI0IABA4osEx4errNni3/FBwAA5JcRHKqNd9yvGxb+WT6ZBU9k45d2UbUM9qbV/S5eTVZv1K7b+mhfXEyRk5PAvPSD53TyTzt0cfvPxX5PtpePfmh8nRIadZbtxfcFeLpSJWnBwcE6fbro2awSEhJUrVq1UlUKAAD817k6kdoy+B51+8cCt23T72KaOry5TI3Wb9XXI2/V6cYN3Lbtysp1IUs/L/heZ987IGUXv3vip9pNtLd5nNKCqpRd5eBxrF9e7tgOzCtVktahQwetXLlSqampCg7OP0vQTz/9pJUrV6p3795XXEEAACAdb95Gu3v2U6u1K9y63WqHj6vvlJd1oEcnHclsr0y/QLduvzKwbVspa47ppzm7lHXqYrHfdyGwiva27K2faxU9bhGA5ynVSNI//vGPOnnypPr3759vmv2dO3eqf//+Sk1N1fjx441UEgAASHuu76MjLduXy7Ybf/G1rvt6sSKPfyfZDEIxJeNIso7+zwYdf2JLsRM0l5e3Djbupq+uH0OCBlRQpepJ69evnyZNmqQZM2aoefPm8vvlAZIhISG6ePGibNvWtGnT1KNHD6OVBQCgUrMsfTPwLoWcOaVqiT+6ffN+WWlqte8z1TvxH30ffYOSQ2u5vQ4VhSstW2de36szb+6TnVn8CV5+rtFQe1v20YVghpTgMpg4xKOVek7WadOm6dNPP1X//v0VHh4ub29vBQYG6qabbtInn3yiSZMmmawnAACQlO3np/X3PKijzdvKLmB2ZXeocj5RXbe9o2b718onq/gzD+KSlA2JSrjzU51etLfYCZpPzUDVndVZ33a8gwQNqARK1ZN25MgR+fn5KS4uTnFxcabrBAAAipAZGKRNQ0fJJz1NIWdOFXolO/OqgmeDLEzw6SS1e+/fCjtx+VkFLdlqcGyH6vy0T/GNr1dirWZSOSWNniIzMVU//XmnUtYnFv9N3paq3tFYNUY1l1ewr7SBvzGKiZ40j1aqJK1hw4YaMWKEFi1aZLo+AACgmLL8A5QUcVWh6zMalqyX62zDejreppmar1ynVh99Jp/MrMu+xz/zgq7Z87HqJe7W99E3KDW4eom2WRnYmS6deXvfpZ6z9Oxivy+wbQ3VntBW/leHl2HtADhRqZK0KlWqqEaNGqbr4hHsjAzZMvT8EYNXHG2X4csYPuaesWJnZhqLJUnyKvVduvnYGSW7ynxZJq8iu0r+ENoimRzob/A7kGT+s5r8HgxPkGAF+BuLZV8o/ixwxeLkZ2GZ/B4M9/a4ks4ZixX+TfF/wBfLf0rX3n7SddrUq4Wabl+pWol7i/WeaklH1e3bN6WhTaR7W0hBRf/EWHaiXanqVpg7I742FusfJ809xLvGdwf1bd8vFZJS/GeepfsFa3/LXkqs11p6L297tS8kG6ubJFn+5o5Jyja7b9nZBvcHp8YqY/S7eq5SJWldunTR9u3bTdcFAAA4xMXgatpx3d2qeXyPmm1focALSZd9j5VtS+/Ey/7siPQ/baXrIyvtLZD+Z5LV8vVVqvflrmK/x5b0Y1RHHWzeU1m+AWVXOQCOV6okbcqUKerevbsWLFig0aNHm64TAABwiFN1m+t0ravVaO8Xarh/vaysy/dqWj9dlJ7cJLtzHenhdlK9EDfU1Bms7Gw1XLlFTd/7XL4Xi3+76bkqdbXnmpuVXKVuGdYOlQpj0jxaqZK0VatWKTY2Vr///e/1yiuvqFOnTqpTp46s31wtsyxLkydPNlJRAABQPlw+fjrQqpcaTg6U/edvZX3zU7HeZ205IfueT6R+DaUwvzzrmpfg9r/iyAw5ZixW09SkUr3Pkq3aW+MVfvhEsd+T6Rug/c1v1LEG7SttryOA/Erdk5Zj+/bthd76SJIGAEAFUj9UmnO97DVHpZd3yPo57bJvsTJc0j8P5lveVHuMVu3yU5wUX1PtMxitcMeuaqv9LW5Upn+wW7YHwHOUKklbu3at6XoAAABPYFnSjVdJXevIXvi99MH+S2PRUGzJYbW1p/VNOle9fnlXBYBDFTtJW758uZo1a6YmTZqoR48eZVknAADgdEG+0vg20k0NZM/+VtZ3p8u7Ro6X5eOng01j9WPDTrJNz5IL/BZj0jxasY8Qt9xyi9577708y/7xj39o8ODBxisFAAA8ROMq0ryesp/oKLuKwencK5gTkS311Q3jdOTqLiRoAC6r2D1pdgHPqNm7d6+WLVtmtEIAAMDDeFnSzVHSdXVl/323tOygLK6uS5KSI2toX/2+OlOzUXlXBZUNPWkejUs5AADAjDA/6bH20t9vlN2sannXplxl+fnq+7t66Ys/P0iCBqDESjVxCAAAQKGaV5Pm3yh7x8/SoXNSAROLfHe+ntFNXht+2Fisb5OvbEKPjJBA/dS+iTJDg3KWXHmlAFQqJGkAAMA8y5La1bz0KsAPJ9oZ3VznCHM/aQ6d7GAsFlBerF9e7tgOzCvREe23D6uulLy8Lr1MKGCcX+ljuczFkiSXc79ry9u7vKtQKDsz01gsKzDQWCxJstMu/zyjYnMZbm+GWT7mfqyZ/E4lyb5w0Vww0/tCdraxUF41qhmLJUmun8+YC2Z60gaD+4OdmmosliRZhs8Nq2dFG4sVFGoslCTpoxNRxmIF+CcbiyVJrgxzPWmWv9nJWYyeGxy8bwGepkS/ZGbPnq358+fn/v/8+fOSpPr1C74twLIsHT5s7vYDAAAAAKjoSpSknT9/Pjcx+7WjR48aqxAAAAAAVGbFTtJcdDkDAAAAnoEp+D0aU/ADAAAAgIOQpAEAAACAg5CkAQAAAICD8Jw0AAAAoKJhTJpHoycNAAAAAByEJA0AAACoYCw3vkw7c+aMHnvsMTVu3FgBAQGqWbOmevbsqS+//DJPuS1btiguLk6hoaEKCwtT3759tWPHjjKokftxuyMAAAAARzh8+LBiY2OVkpKiUaNGqUmTJjp37px27dqlY8eO5ZbbvHmzYmNjFRkZqWnTpkmS5s6dq+7du+urr75S69aty+sjGEGSBgAAAMAR7r77bmVlZWnXrl2KiIgotNwf//hH+fn5af369YqMjJQk3X777WrevLkeffRRffrpp+6qcpkgSSsp2770MhXLEMvX11gsSbKzsozFsgIDjcWSJPviRaPxjLLMdfrbaWnGYhln8HOWBdvlKu8qFM7L5F3mzv0eXD+fMRrP5HHETk83FkuSo/cH+6Lhz5pt8NyQaS6WJMnbwT9pfLyNhTLefk2yTI+icfCx3BN44MQh69ev14YNG/SXv/xFERERyszMVGZmpoKCgvKUO3DggLZu3ar77rsvN0GTpMjISA0ZMkSvvfaaTpw4oTp16pirnJsxJg0AAADAFYmOjlZERETuqzRWrlwpSapfv7769++vwMBABQcHq0mTJnrrrbdyy23dulWS1LVr13wxunTpItu2tW3btlLVwSkcl6Tt27dPTz31lLp06aKaNWsqNDRUbdu21cyZM5WampqvfHx8vAYNGqSqVasqODhY3bt315o1a8qh5gAAAIAzWLb7XqbEx8dLksaMGaMzZ87o9ddf16JFi+Tn56fhw4frtddekyQdP35ckvL0ouXIWfbr8WueyHH3BixatEjz5s3TgAEDdNddd8nX11dr167VpEmT9P7772vz5s0K/OW2l4MHDyomJkY+Pj6aMGGCwsPDNX/+fPXp00erVq1SXFxcOX8aAAAAoOLbv3+/wsLCrihGcnKyJCk0NFRr166Vn5+fJGnQoEFq1KiRnnjiCY0YMUIXLlyQJPn7++eLERAQIEm5ZTyV45K02267TRMnTlR4eHjusrFjxyo6OlozZ87UwoUL9eCDD0qSJk6cqKSkJG3btk1t27aVJN1zzz1q2bKlxo0bp71798py8FgBAAAAAJfkdMTceeeduQmaJFWtWlUDBgzQG2+8ofj4+NwxaukFjNFM+2VM/2/HsXkax93u2KFDhzwJWo6hQ4dKknbv3i1JSk1N1fLlyxUbG5uboElSSEiIRo8erX379uXerwoAAADA2erVqydJBU74kTPO7ezZs6pbt66kgm9pzFlW0K2QnsRxSVphjh49KkmqXbu2JGnXrl1KT08vdMCgpCtK0n498DEiIkLR0dGljgUAAAC4le3GlyGdOnWS9N/f/b+Ws6xWrVrq2LGjJGnTpk35ym3evFmWZenaa681V7Fy4BFJWnZ2tqZPny4fHx8NGzZMUuUYMAgAAABUFoMGDVJoaKjeeustpaSk5C5PTEzURx99pCZNmqhx48Zq3LixOnTooCVLluTmBNKl/GDJkiW64YYbPHr6fcmBY9IK8tBDD2nTpk2aNWuWmjZtKkllPmAwMTExz//Pnz9f4G2YAAAAAK5c1apV9cILL+j3v/+9unTpovvuu08ZGRl65ZVXlJGRoZdffjm37EsvvaSePXuqe/fuGj9+vCTp5Zdflsvl0uzZs8vrIxjj+CRt8uTJmjt3ru6//35NnDgxd3llGDAIAAAAVCb333+/atSooeeff16TJ0+Wl5eXunbtqnfeeUfdunXLLRcTE6N169Zp0qRJmjRpkizLUkxMjJYsWaI2bdqU4ycww9FJ2pQpUzRjxgyNHDlSr776ap51lWHAIAAAAFBqBseLudPgwYM1ePDgy5br2rWrPv/8czfUyP0cOyZtypQpmjp1qkaMGKEFCxbkm0q/devW8vf3L3TAoHRppkgAAAAA8CSO7EmbNm2apk6dquHDh2vRokXy8sqfS4aEhKh///768MMPtXPnztxuzZSUFC1YsEDR0dG5M8SYZPkHyPIPMBLLzsg0EudSrAxjsUwzXrcC2oNTWL96pseVsjPNtQ9JUna2uVimnz/o5W02XnaWuVimP6vLZS6W5eBLpKb3U5Pt1+R3IDn6mORkxo9xtsH9wd/XXCxJlsE2Z3yv9zX4UzDL4H4qmT3+mmwfHsKy3XOacPKpyJM5LkmbN2+enn76adWvX19xcXF655138qyvXbu2evXqJUl65pln9Pnnn6t37956+OGHFRYWpvnz5+vYsWNasWIFD7IGAAAA4HEcl6TlPNvsyJEjGjFiRL71PXr0yE3SGjdurI0bN+rxxx/Xs88+q4yMDLVv314ff/yx4uLi3FpvAAAAADDBcUna4sWLtXjx4mKXb968uZYtW1Z2FQIAAAAAN+JGegAAAABwEMf1pAEAAAC4QrbtnglTKuGkLO5ATxoAAAAAOAhJGgAAAAA4CEkaAAAAADgIY9IAAACACoaHWXs2etIAAAAAwEHoSQMAAAAqGvuXlzu2A+NI0krITk+TbVuGghls1ZahOuUwOp2q4bp5G4yXmWUuliQ7Pd1cMB9vc7EkyWXu72YFBBiLJUlyuYyGs13Z5oKZ3rdMxnPyfm/6O802G88ky8fcqdTOyDAWS5Kz70Ny8L5lX7hoLJZxXoZvgjJ5HjT8nRrdt7INnhdMfwdAAUjSAAAAgArGkvHL5IVuB+ZxKQAAAAAAHISeNAAAAKCiYUyaR6MnDQAAAAAchCQNAAAAAByEJA0AAAAAHIQkDQAAAAAchIlDAAAAgIqGiUM8Gj1pAAAAAOAg9KQBAAAAFYxlX3q5Yzswj540AAAAAHAQetJKysf70suErGwzccqCl8n83fAlliyXuVhGP6ckl8G6GQwlyexntc1+p7bpfcGyzMUy+Z1Kjv4eZJncH0w3YOdeqrUzMswFM31MMs1kmzPa3iTZptucOZavr7FYdmamsViSzB4vTZ8bTH9WU0yfF4ACOPxsAAAAAACVCz1pAAAAQEXD7I4ejZ40AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQJg4BAAAAKhjLdenlju3APHrSAAAAAMBBSNIAAAAAwEFI0gAAAADAQRiTBgAAAFQwln3p5Y7twDx60gAAAADAQehJK6msbMkr20ws2+ClB8syF0uSvA3m7y4HX2Ix/XczyWWoneUw2N7sbMN18zJ8vcjkvlWJWF7m9gfbZXbfsgL8jcWyL6YZi+V4LgdPu2b4GGcFBRqLZbyNmDzXeBv+6WYbbCOmz6kG268VEGAulsd0Hdm/vNyxHZhGTxoAAAAAOAg9aQAAAEBFQ0eaR6MnDQAAAAAchJ40AAAAoKKhJ82j0ZMGAAAAAA5CTxoAAABQwVi/vNyxHZhHTxoAAAAAOAhJGgAAAAA4CLc7AgAAABWNbV96uWM7MI6eNAAAAABwEJI0AAAAAI504cIFNWrUSJZl6cEHH8y3Pj4+XoMGDVLVqlUVHBys7t27a82aNeVQU7O43bGisAzPrZOZZTaeSV4Gry24XOZimWbyc0oyOv9StoPbh2R2f/DxNhdLkrINtjnD7de2nHvdzk5LNxbL8nHuqc/OyDAb0Nts+7V8fY3FstPNfaeSZKdeMBfM8N/NaDzTbcTkucbJt735mWu7sjPNxcJlPfXUUzp16lSB6w4ePKiYmBj5+PhowoQJCg8P1/z589WnTx+tWrVKcXFxbq6tOc49UwEAAAAonQrwMOtvv/1WL774op5//nk9+uij+dZPnDhRSUlJ2rZtm9q2bStJuueee9SyZUuNGzdOe/fulWW6I8NNnHvZFAAAAECllJ2drTFjxqhv374aPHhwvvWpqalavny5YmNjcxM0SQoJCdHo0aO1b98+bd261Y01NoueNAAAAKCCsexLL3dsR5Kio6Pl9avbZxMTE68o7pw5c7R3714tXbq0wPW7du1Senq6unbtmm9dly5dJElbt25Vp06drqge5YWeNAAAAACOcejQIT399NN66qmnFBUVVWCZ48ePS5IiIyPzrctZduzYsTKrY1mjJw0AAACoaNw8Jm3//v0KCwszEnLs2LFq1KiRHnnkkULLXLhwabIgf3//fOsCAgLylPFEJGkAAAAAHOGtt97S6tWrtX79evkWMaNsUFCQJCm9gJli09LS8pTxRCRpAAAAAMpdenq6HnnkEd18882qU6eODhw4IOm/ty2eO3dOBw4cUI0aNVS3bt08634tZ1lBt0J6CsakAQAAACh3Fy9e1KlTp7RixQpFR0fnvmJjYyVd6mWLjo7WggUL1Lp1a/n7+2vTpk354mzevFmS1KFDB3dW3yh60gAAAACUu+DgYC1ZsiTf8lOnTumBBx5Q3759NWrUKF1zzTUKCQlR//799eGHH2rnzp1q06aNJCklJUULFixQdHS0x87sKJGkAQAAABWOJTdNwW8wlq+vr2677bZ8yxMSEiRJV199dZ71zzzzjD7//HP17t1bDz/8sMLCwjR//nwdO3ZMK1as8NgHWUskaQAAAAA8UOPGjbVx40Y9/vjjevbZZ5WRkaH27dvr448/VlxcXHlX74qQpJWUj/ellwnZLjNxyoK3waaRnWUuliS5DP7dTF9hMfh3s0y1sxxe5oag2hcNf6e24Ut9JuOZbG+GWQVMO3wl7CyD36vp79Qgo59TcnQbMXuNW7ILmEWtIrL8/IzGszMyjMZzLIPnGUlG9y37fLK5WBkXjcUqU7btnmOxG7YRFRUlu5DtNG/eXMuWLSvzOrgbE4cAAAAAgIOQpAEAAACAgzgySXvmmWc0ZMgQNWrUSJZlKSoqqsjyq1at0o033qg6deooODhYTZs21WOPPaaTJ0+6p8IAAAAAYIgjx6Q98cQTqlatmtq3b6+kpKQiy86fP1/333+/rr32Wv3f//2fgoODtXXrVr344ov68MMP9d133yk4ONg9FQcAAACcwP7l5Y7twDhHJmkHDx5Uo0aNJEmtWrVSSkpKoWVfeOEFRUREaMOGDQoICJAk3X///apdu7Zmzpyp1atXa9CgQe6oNgAAAABcMUcmaTkJWnGcP39e1apVy03QctStW1eS6EUDAABApWPJ9PyuhW8H5jkySSuJPn366PXXX9ejjz6q0aNHKyQkRFu3btX06dPVo0cP3XDDDaWKGxERkef/LkdPsQwAAACgovD4JO2ll17ShQsX9NJLL+nPf/5z7vKRI0fqb3/7m7y9DT9rCgAAAHA61y8vd2wHxnl8kubr66v69evrlltuUf/+/RUUFKRPPvlEixYtkre3t+bPn1+quImJiXn+f/78eYWHh5uoMgAAAAAUyqOTNJfLpb59+yorK0sbN26UZV26K/a2225T9erV9dxzz2no0KGKi4sr55oCAAAA7sbUi57Kkc9JK64NGzboyy+/1K233pqboOUYMmSIJOmLL74oj6oBAAAAQKl4dE/asWPHJEnZ2dn51mVlZeX515jMLMkyFNMyOB+ObfhKiWUwnsnPKUleBscZZhtuHwbj2a787fqKmPwevAxf37EMxzP5vZpuvwbZmZlmA5r8rL6GTy8uk8ck09cnDQ7IMP13yzJ8HDF4/LW8zX4PtsnzvelzagG/U0rL+s1s1lfKTk83F8zwJGuWr6+xWMaPl0AZ8+ietBYtWkiS3n77bWX+ZudbvHixJKljx47urhYAAABQvmw3vmCcI3vS3nzzTR0+fFiSdOrUKWVkZGjGjBmSpAYNGmj48OGSpDZt2ujWW2/V0qVL1aFDB9199925E4f861//UpcuXTRw4MBy+xwAAAAAUFKOTNIWLlyYbyzZ5MmTJUk9evTITdIk6Z133tGLL76ot99+W0899ZRcLpcaNGigiRMn6sknn2QKfgAAAFRC7urmoiutLDgySVu3bl2xy/r5+WnChAmaMGFC2VUIAAAAANzEkUkaAAAAgNKzbLPzwBW1HZjn0ROHAAAAAEBFQ08aAAAAUNEwJM2j0ZMGAAAAAA5CTxoAAABQwTAmzbPRkwYAAAAADkJPGgAAAFDhMCjNk5GklZS396WXEZahOJKys8zFMs3L8APFXdnmYvka3gVcJmMZ/JymuUx+UMnsH84wL8M3HNgGT2amvwdjxzbJssz+3Wwvg58128HtLcvwfm8ZPM9IRs81tu3cfctOSzMWS5LZ78Hwfm/5+RmLZaenG4slSXa2wf3B5LHc9HkBKABJGgAAAFDR0JHm0bgUAAAAAAAOQpIGAAAAAA7C7Y4AAABARcPtjh6NnjQAAAAAcBB60gAAAIAKh640T0ZPGgAAAAA4CD1pAAAAQEVDR5pHoycNAAAAAByEnjQAAACggrFsW5Zd9t1c7thGZURPGgAAAAA4CD1pJZWdfellgmWZiSNJ3t7mYknmPqMky9/XWCxJsi9kmQuW7TIXS5IMXk2yfAzvngbbiJ2WZiyWJLP7gmT0e5DLuW1E3obbiG3us9oGjyHGmf5OTTK9L5jmZfDarunvwWTdnHxMMlw3Oz3dXDDTv0VM/t2cGqssMSbNo9GTBgAAAAAOQk8aAAAAUOHQlebJ6EkDAAAAAAchSQMAAAAAB+F2RwAAAKCi4W5Hj0ZPGgAAAAA4CD1pAAAAQEVDT5pHoycNAAAAAByEnjQAAACgorFt9zx421Me7u1h6EkDAAAAAAehJw0AAACocBiU5snoSQMAAAAAB6EnrTyZvIc3O9tcLNMys8q7BoWy/P2NxrOzMs3FyjQXS5Isk8G8vU1Gk1wus/G8DF5/soz+5Qx/VsNXLy1zfzfLz9dYrEsBzYWyL1w0F0ySvA2eSm3D+4Kj269hBs+plp+fsViSjNbNznLuOdXwmUb00FwhOtI8Gj1pAAAAABxh3759euqpp9SlSxfVrFlToaGhatu2rWbOnKnU1NR85ePj4zVo0CBVrVpVwcHB6t69u9asWVMONTeLnjQAAACgIvLAXq5FixZp3rx5GjBggO666y75+vpq7dq1mjRpkt5//31t3rxZgYGBkqSDBw8qJiZGPj4+mjBhgsLDwzV//nz16dNHq1atUlxcXDl/mtIjSQMAAADgCLfddpsmTpyo8PDw3GVjx45VdHS0Zs6cqYULF+rBBx+UJE2cOFFJSUnatm2b2rZtK0m655571LJlS40bN0579+6VZfq2bzfhdkcAAACggrFs220vkzp06JAnQcsxdOhQSdLu3bslSampqVq+fLliY2NzEzRJCgkJ0ejRo7Vv3z5t3brVaN3ciSQNAAAAwBWJjo5WRERE7su0o0ePSpJq164tSdq1a5fS09PVtWvXfGW7dOkiSSRpAAAAAFAWsrOzNX36dPn4+GjYsGGSpOPHj0uSIiMj85XPWXbs2DH3VdIwxqQBAAAAuCL79+9XWFhYmcR+6KGHtGnTJs2aNUtNmzaVJF24cEGS5F/A45QCAgLylPFE9KQBAAAAcKTJkydr7ty5uv/++zVx4sTc5UFBQZKk9PT0fO9JS0vLU8YT0ZMGAAAAVDS2bfRB6kVup4xMmTJFM2bM0MiRI/Xqq6/mWVe3bl1JBd/SmLOsoFshPQU9aQAAAAAcZcqUKZo6dapGjBihBQsW5JtKv3Xr1vL399emTZvyvXfz5s2SLs0U6alI0gAAAICKJqcnzR0vw6ZNm6apU6dq+PDhWrRokby88qcsISEh6t+/v9atW6edO3fmLk9JSdGCBQsUHR2tTp06Ga+bu3C7Y0l5e196mZCdbSZOWTD44D87M9NYLEmSt7lma2cYrpvL4Hdq+OGLtsvcQdQytQ/8wjZ8gLd8fY3FsrMM76cmP6uDjyF2muG6mdwfjD/Y1OB3avrHjstlNp5Jpr8Hg3872+SxXJIys8zGc6psB39Ok+etAhIGmDNv3jw9/fTTql+/vuLi4vTOO+/kWV+7dm316tVLkvTMM8/o888/V+/evfXwww8rLCxM8+fP17Fjx7RixQqPfZC1RJIGAAAAVDy2jF5DKnI7BuU82+zIkSMaMWJEvvU9evTITdIaN26sjRs36vHHH9ezzz6rjIwMtW/fXh9//LHi4uLMVszNSNIAAAAAOMLixYu1ePHiYpdv3ry5li1bVnYVKickaQAAAECF46FdaZDExCEAAAAA4Cj0pAEAAAAVDR1pHo2eNAAAAABwEHrSAAAAgIrGdl16uWM7MI6eNAAAAABwEJI0AAAAAHAQbncEAAAAKhomDvFo9KQBAAAAgIPQk1ZSLtellwGWr6+ROJJkZ2Yai3UpoMHLIpZlLpYkZWeZjedUXoavoRj8u9kuw9+pl7fRcMb3h8rC5L5quv06+ZhksG6Wn5+xWJJkp6cbjWf0vJVl+Fhuss1lGq6bt8GfW6YnafCuJH83V7bBWB4yUYZtmz12FrUdGEdPGgAAAAA4CEkaAAAAADiII5O0Z555RkOGDFGjRo1kWZaioqIu+54333xT3bp1U1hYmEJCQtSqVStNnz697CsLAAAAAAY5ckzaE088oWrVqql9+/ZKSkq6bPn77rtPr7/+um699Vbdfffd8vLy0qFDh3T48OGyrywAAADgNIxJ82iOTNIOHjyoRo0aSZJatWqllJSUQssuXLhQr732mt544w0NHz7cXVUEAAAAgDLhyNsdcxK0y7FtW88884zat2+fm6AlJyfLJqMHAABAZWa78QXjHJmkFVd8fLwOHjyomJgYTZ8+XdWrV1dYWJiqVKmisWPHFtkDdzkRERF5XtHR0QZrDgAAAAAFc+TtjsUVHx8vSfrHP/6hjIwMTZo0SQ0bNtS///1v/e1vf1N8fLzWrFkjy/QzcQAAAAAns13mn6tX2HZgnEcnacnJyZKkU6dOafXq1YqLi5Mk3XrrrbJtW6+//ro+/vhj3XTTTSWOnZiYmOf/58+fV3h4+JVXGgAAAACK4NG3OwYGBkqSIiMjcxO0HCNGjJAkrVu3zt3VAgAAAIBS8+gkrV69epKkOnXq5FsXEREhSTp79qxb6wQAAAAAV8Kjb3ds3bq1AgICdOzYsXzrjh49KkmqVauW2Y0afOaEnZ1tJI4kWb/0KppiX7xoLJbl62ssliTZWVnmglmmr1MYnOLI5eB7vA3PoGp5mR03apu8/pRpsL1Jkre5w67l420sliTZGRkGgxme7svg/mD5+RmLJUm2wfEYdnq6sViSJF+zp3k7M9NcMC8HXyc2/HezDJ5r7AzDxyST50HTcwBkmzzfMz8BPIuDj5CXFxQUpFtvvVUnTpzQP//5zzzrXnnlFUnSzTffXB5VAwAAAMpPTseCO14wzpE9aW+++aYOHz4s6dKkIBkZGZoxY4YkqUGDBnkeWj1r1ix99tlnGjZsmMaPH6+oqCitXLlSK1as0D333KOYmJhy+QwAAAAAUBqOTNIWLlyoL774Is+yyZMnS5J69OiRJ0mrX7++Nm/erCeffFKvvfaazp07p6uvvlovvPCCHn74YbfWGwAAAHAEdz1omo60MuHIJK2kMzJGRUXp7bffLpvKAAAAAIAbOTJJAwAAAFB6tm0bndioqO3API+eOAQAAAAAKhp60gAAAICKhjFpHo2eNAAAAABwEHrSAAAAgIrGXc8wY0xamaAnDQAAAAAchJ40AAAAoKKhJ82jkaSVkBUQKMs/0EgsOyPDSBxJstPSjMWSJCsgwFgs03WTt7e5WNlZ5mJJkmWZi1WZDnomv1NJysw0F8vL8A0HBqdDttMd3H5dZqd9toKDjMWyLxo+Jplkur1lGm4jBllBZs6lOeyUVHPBLLPfg62ynwa91EyfB00yfW4wxfR+ChSAVgYAAAAADkJPGgAAAFDhMAe/J6MnDQAAAAAchJ40AAAAoKKxbcnFxCGeip40AAAAAHAQkjQAAAAAcBCSNAAAAABwEMakAQAAABUND7P2aPSkAQAAAICD0JMGAAAAVDT0pHk0etIAAAAAwEHoSSshOzNTtmXoz+ZymYkjyfL1NRZLkuz0dKPxjDL4d5O34V3AlW0slFd4mLFYkuQ6n2w0nkl2WprZgF4Grz+ZbG+SZFnmYvkabr+ZWeZieXubiyXJTsswGMzwVV+T8Uy2D5XBuSHLXBuxUy8YiyXJ7H6fbXBfkNnvwTZ3mrnE5N/N9L5l8vhr8nN6CNu2Zbuhl8sd26iMKl+LBQAAAAAHoycNAAAAqGgYk+bR6EkDAAAAAAchSQMAAAAAB+F2RwAAAKCi4XZHj0ZPGgAAAAA4CD1pAAAAQEVDT5pHI0krppxnQKRlXDQX1OAztSzb7DNd7MxMg8EM77wmnyPkZfZZTkafk5Zutm4uk23XNNNtpLI8J81luP06+Dlpksm/m+EHTTn5OWkus6d5k89JM87ovmV2vzd5jjZ6fpac/Zw0kwx+zpzfgk5/PlhahuFnkJbzdioby3Z6C3OIo0eP6qqrrirvagAAAMABfvzxR9WrV6+8q5FPWlqaGjZsqBMnTrhtm3Xq1NGhQ4cUEBDgtm1WdCRpxeRyuXT8+HGFhobKMnylE+UnOjpakrR///5yrgmchHaBgtAuUBjaRuVi27aSk5NVt25deZnsiTQoLS1NGRkZbtuen58fCZph3O5YTF5eXo68WoIrk3NwDQsLK+eawEloFygI7QKFoW1UPuHh4eVdhSIFBASQNHk4Z6b/AAAAAFBJkaQBAAAAgIMwJg0AAAAAHISeNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0VFj79u3TU089pS5duqhmzZoKDQ1V27ZtNXPmTKWmpuYrHx8fr0GDBqlq1aoKDg5W9+7dtWbNmnKoOdztwoULatSokSzL0oMPPphvPW2j8jhz5owee+wxNW7cWAEBAapZs6Z69uypL7/8Mk+5LVu2KC4uTqGhoQoLC1Pfvn21Y8eO8qk0ylxKSopmzZql1q1bKzQ0VDVq1FBMTIwWL14s27bzlKVtADDBp7wrAJSVRYsWad68eRowYIDuuusu+fr6au3atZo0aZLef/99bd68WYGBgZKkgwcPKiYmRj4+PpowYYLCw8M1f/589enTR6tWrVJcXFw5fxqUpaeeekqnTp0qcB1to/I4fPiwYmNjlZKSolGjRqlJkyY6d+6cdu3apWPHjuWW27x5s2JjYxUZGalp06ZJkubOnavu3bvrq6++UuvWrcvrI6AMuFwu3XTTTfrqq680YsQIjR8/XhcuXNC7776rkSNHas+ePXruueck0TYAGGQDFdTWrVvtpKSkfMuffPJJW5L98ssv5y4bMmSI7eXlZW/fvj13WXJysl2/fn27SZMmtsvlckeVUQ62bdtme3t727Nnz7Yl2ePGjcuznrZReVx33XV2vXr17OPHjxdZrmPHjnZoaKh99OjR3GVHjx61Q0ND7V69epV1NeFmX331lS3Jfuihh/IsT09Ptxs2bGiHh4fnLqNtADCF2x1RYXXo0EHh4eH5lg8dOlSStHv3bklSamqqli9frtjYWLVt2za3XEhIiEaPHq19+/Zp69atbqkz3Cs7O1tjxoxR3759NXjw4HzraRuVx/r167VhwwZNmDBBERERyszM1IULF/KVO3DggLZu3aohQ4YoMjIyd3lkZKSGDBmizz77TCdOnHBn1VHGzp8/L0mqW7dunuV+fn6qUaOGgoODJdE2AJhFkoZK5+jRo5Kk2rVrS5J27dql9PR0de3aNV/ZLl26SBI/xCuoOXPmaO/evZo7d26B62kblcfKlSslSfXr11f//v0VGBio4OBgNWnSRG+99VZuuZzvu7A2Ydu2tm3b5p5Kwy06deqkKlWq6Pnnn9eSJUt05MgR7d27VxMnTtS2bds0ZcoUSbQNAGYxJg2VSnZ2tqZPny4fHx8NGzZMknT8+HFJynPlM0fOsl+PR0HFcOjQIT399NN66qmnFBUVpYSEhHxlaBuVR3x8vCRpzJgxio6O1uuvv66MjAzNnj1bw4cPV2ZmpkaOHEmbqISqVq2q5cuXa/To0br99ttzl4eGhmrp0qUaNGiQJI4XAMwiSUOl8tBDD2nTpk2aNWuWmjZtKkm5tzT5+/vnKx8QEJCnDCqOsWPHqlGjRnrkkUcKLUPbqDySk5MlXfrhvXbtWvn5+UmSBg0apEaNGumJJ57QiBEjaBOVVEhIiFq1aqUBAwYoJiZGZ86c0bx58zRs2DAtW7ZMvXr1om0AMIokDZXG5MmTNXfuXN1///2aOHFi7vKgoCBJUnp6er73pKWl5SmDiuGtt97S6tWrtX79evn6+hZajrZReeTM9HrnnXfmJmjSpV6UAQMG6I033lB8fDxtohL67rvvFBMTozlz5mjs2LG5y++88061atVKY8aM0cGDB2kbAIxiTBoqhSlTpmjGjBkaOXKkXn311TzrcgaDF3QbSs6ygm5fgWdKT0/XI488optvvll16tTRgQMHdODAAR0+fFiSdO7cOR04cEBJSUm0jUqkXr16kqQ6derkWxcRESFJOnv2LG2iEpozZ47S0tI0ZMiQPMuDgoLUr18/HT58WAkJCbQNAEaRpKHCmzJliqZOnaoRI0ZowYIFsiwrz/rWrVvL399fmzZtyvfezZs3S7o0UyQqhosXL+rUqVNasWKFoqOjc1+xsbGSLvWyRUdHa8GCBbSNSqRTp06S/jux0K/lLKtVq5Y6duwoSYW2CcuydO2115ZhTeFuOQlWdnZ2vnVZWVm5/9I2AJhk2bZtl3clgLIybdo0Pf300xo+fLgWL14sL6+Cr0sMGTJEH374ob799lu1adNGkpSSkqKWLVvK399f8fHx+ZI7eKbMzEwtW7Ys3/JTp07pgQceUN++fTVq1Chdc801atKkCW2jkjh79qwaNGigsLAw7d27VyEhIZKkxMRERUdHKzIyMndykY4dOyo+Pl579+7N7T05fvy4mjVrpk6dOumzzz4rt88B8x5++GG9+OKLeu655zRhwoTc5UlJSWrRooXS0tJ06tQpeXt70zYAGEOShgpr3rx5evDBB1W/fn1Nnz49X4JWu3Zt9erVS9Kl59t06tRJvr6+evjhhxUWFqb58+fru+++04oVK9SnT5/y+Ahwo4SEBDVs2FDjxo3LMyU/baPy+Pvf/67f//73atmype677z5lZGTolVdeUWJiov7973+rd+/ekqSvvvpKPXv2VL169TR+/HhJ0ssvv6yTJ09q48aNuck8KobDhw+rffv2Onv2rO666y5169ZNZ86c0fz585WQkKB58+bpgQcekETbAGBQeT5JGyhLI0aMsCUV+urRo0ee8t9//709YMAAOzw83A4MDLS7detmr169unwqD7c7dOiQLckeN25cvnW0jcpj6dKldufOne2goCA7JCTE7tWrl71hw4Z85b766iv7hhtusIODg+2QkBC7d+/e9rZt28qhxnCHAwcO2Pfcc48dGRlp+/j42KGhoXb37t3tpUuX5itL2wBgAj1pAAAAAOAgTBwCAAAAAA5CkgYAAAAADkKSBgAAAAAOQpIGAAAAAA5CkgYAAAAADkKSBgAAAAAOQpIGAAAAAA5CkgYAAAAADkKSBgAAAAAOQpIGAB5uypQpsixL69atK++qlEj37t3Vtm1b2bZd4vfu3LlTXl5eWrBgQRnUDACA8kWSBgAOYllWiV6elpjlWLJkiTZs2KAZM2bIsqwSv79Nmza69dZbNXnyZKWkpJRBDQEAKD+WXZpLmACAMjFlypR8y1588UWdO3dO//M//6MqVarkWXfvvfcqJCREP//8s+rXr6+goCD3VPQK2LatZs2aydfXV7t37y51nG+++UYdO3bUzJkz9cQTTxisIQAA5YskDQAcLioqSocPH9ahQ4cUFRVV3tW5YqtXr1bv3r313HPPacKECVcUq0WLFkpNTdWhQ4fk5cXNIQCAioEzGgB4uILGpCUkJMiyLN17773at2+fbrnlFlWtWlXh4eEaOHCgEhISJEkHDhzQkCFDVKNGDQUFBenmm2/WDz/8UOB2Tp8+rQkTJqhp06YKCAhQ1apV1a9fP23evLlE9V24cKEkaejQofnWnT9/XlOnTlWrVq0UGhqq0NBQXX311brjjju0ffv2fOWHDh2qI0eOaPXq1SWqAwAATkaSBgAV2KFDh9S1a1edO3dOo0aNUrdu3bR8+XLFxcVpz5496ty5s37++Wfde++9io2N1apVq9SvXz+5XK58cdq3b68//elPioyM1Lhx43TLLbdo06ZNuv766/Wvf/2rWPWxbVtr1qxR3bp11aBBg3zr+vbtqylTpigsLExjxozRH/7wB3Xq1Enr1q3Tli1b8sXr1q2bJJGkAQAqFJ/yrgAAoOysX79eL7zwgh599NHcZffff7/mz5+vmJgYTZo0qcB1y5Yt0y233JK7/J577tHRo0f14Ycf5lk+c+ZMderUSWPGjFFCQoICAgKKrE98fLxOnTql/v3751u3e/dubdq0SYMGDdI///nPPOuys7N1/vz5fO/p2LFj7ucEAKCioCcNACqwhg0b6uGHH86zbPjw4ZKkatWq5Vt39913S7o0xX2OHTt2aMOGDRoyZEieBE2SIiIi9L//+786efKkPv/888vW58iRI5KkOnXqFFomMDAw3zJvb29VrVo13/Lw8HAFBATkxgUAoCKgJw0AKrA2bdrkm1AjIiJCknTNNdfkW1e3bl1J0rFjx3KXbdq0SZJ05syZAmef3L9/vyRp79696tevX5H1OX36tCQVmHC1aNFCbdu21bvvvqvDhw9r4MCBuu6669ShQwf5+fkVGrNatWo6efJkkdsFAMCTkKQBQAUWHh6eb5mPj89l12VmZuYuO3PmjKRL476KGvtVnOeV5fSSpaWl5Vvn7e2tNWvWaNq0afrggw/0f//3f5KksLAw3XvvvZo1a5aCg4Pzve/ixYsF9r4BAOCpuN0RAFCknGTumWeekW3bhb6efvrpy8aqVauWpP8mfr9VtWpVzZkzRz/++KP27dunv//974qOjtZf/vIXPfjgg/nKu1wuJSUl5cYFAKAiIEkDABSpc+fOkv572+OVaNmypby9vRUfH3/ZstHR0RozZozWr1+vkJAQffTRR/nKxMfHy7ZttW3b9orrBgCAU5CkAQCK1LFjR8XExGj58uVatGhRgWU2b96sCxcuXDZWeHi42rZtq507dyo9PT3PukOHDhX4jLazZ88qPT1dQUFBBW5Xknr27FmcjwIAgEdgTBoA4LLeeecd9ezZU6NGjdJf//pXdezYUaGhofrxxx/1zTff6MCBA0pMTCwwkfqtwYMHa9u2bVq3bp369OmTu3znzp0aPHiwOnbsqObNm6tu3br66aeftGzZMmVmZuaOUfu1Tz/9VN7e3ho4cKDRzwsAQHmiJw0AcFkNGjTQ9u3bNWXKFGVlZemNN97Q3Llz9fXXX6t169Z64403VKNGjWLFGjVqlHx9ffXGG2/kWd6hQwc9/vjj8vb21scff6zZs2frk08+UceOHbVq1Sr98Y9/zFM+OTlZy5Yt0+9+9ztdddVVxj4rAADlzbJt2y7vSgAAKpfRo0frnXfeUUJCQqkn/fjrX/+qcePG6csvv9R1111nuIYAAJQfkjQAgNslJibmTgwyZ86cEr8/LS1NjRs3VpcuXfTBBx+UQQ0BACg/jEkDALhdRESE3nrrrdzZGS3LKtH7Dx8+rNGjR+vee+8tmwoCAFCO6EkDAAAAAAdh4hAAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHAQkjQAAAAAcBCSNAAAAABwEJI0AAAAAHCQ/weWvEzNa8iH3gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)\n", + "plt.imshow(dps.dyn_ps, aspect=\"auto\", origin=\"lower\",\n", + " interpolation=\"none\", extent=extent, alpha=0.6)\n", + "plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')\n", + "\n", + "plt.ylim(15,30) # zoom-in around 24 hertz\n", + "\n", + "plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')\n", + "plt.xlabel('Time (s)')\n", + "plt.ylabel('Frequency (Hz)')\n", + "plt.colorbar(label='Power')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Shifting-and-adding\n", + "\n", + "Shift-and-add is a technique used to improve the detection of QPOs ([Méndez et al. 1998](https://doi.org/10.1086/311600)). Basically, the spectrum is calculated in many segments, just as in the dynamical power spectrum above, but then the single spectra are shifted so that they are centered in the variable frequency of the followed feature. \n", + "This technique is implemented in Stingray's Dynamic Cross- and Powerspectrum. We can apply it here, using the `trace_maximum` functionality from the sections above.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA20AAAJeCAYAAAAna+19AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABjpUlEQVR4nO3deXxU5aH/8e9k33cgGwlLAMO+BAQURYqKWK0bWGvV2rr+LF63et2KS116a71u2PZW61KtesVal6IWAcEqBBBZZCdskgVIIPuezPn9wWvOnUkmG5Jk5uHzfr3yMnPmMDnBIZnPPM95jsOyLEsAAAAAAJ8U0NsHAAAAAABoG9EGAAAAAD6MaAMAAAAAH0a0AQAAAIAPI9oAAAAAwIcRbQAAAADgw4g2AAAAAPBhRBsAAAAA+LCg3j6AnuZ0OlVYWKjo6Gg5HI7ePhwAAAAAJyHLslRZWanU1FQFBLQ/lnbSRVthYaH69+/f24cBAAAAADpw4IDS09Pb3eeki7bo6GhJx/5yYmJievloAAAAAJyMKioq1L9/f7tP2nPSRZtrSmRMTAzRBgAAAKBXdeaULRYiAQAAAAAfRrQBAAAAgA8j2gAAAADAhxFtAAAAAODDiDYAAAAA8GFEGwAAAAD4MKINAAAAAHwY0QYAAAAAPoxoAwAAAAAfRrQBAAAAgA8j2gAAAADAhxFtAAAAAODDiDYAAAAA8GFEGwAAAAD4MKINAAAAAHwY0QYAAAAAPoxoAwAAAAAfRrQBAAAAgA8j2gAAAADAhxFtAAAAAODDiDYAgPH27Nmj++67TytWrOjtQwEAoMsclmVZvX0QPamiokKxsbEqLy9XTExMbx8OAKAHjB07Vhs3blRwcLAOHTqk+Pj43j4kAMBJritdwkgbAMB4W7dulSQ1NjZq7969vXw0AAB0DdEGADBec3Oz188BAPAHRBsAwGiWZcnpdNq3iTYAgL8h2gAARmt56jbRBgDwN0QbAMBoLSONaAMA+BuiDQBgNKINAODviDYAgNGINgCAvyPaAABGaxlp7ouSAADgD4g2AIDRGGkDAPg7og0AYDSiDQDg74g2AIDRiDYAgL8j2gAARiPaAAD+jmgDABiNaAMA+DuiDQBgNKINAODviDYAgNFY8h8A4O+INgCA0RhpAwD4O6INAGA0og0A4O+INgCA0Yg2AIC/I9oAAEYj2gAA/o5oAwAYjWgDAPg7og0AYDRWjwQA+DuiDQBgNEbaAAD+jmgDABiNaAMA+DuiDQBgNKINAODviDYAgNGINgCAvyPaAABGI9oAAP6OaAMAGI1oAwD4O6INAGA0lvwHAPg7og0AYDRG2gAA/o5oAwAYreXIGtEGAPA3RBsAwGiMtAEA/B3RBgAwGtEGAPB3RBsAwGhEGwDA3xFtAACjsXokAMDfEW0AAKMx0gYA8HdEGwDAaEQbAMDfEW0AAKMRbQAAf0e0AQCMRrQBAPwd0QYAMBrRBgDwd0QbAMBoRBsAwN8RbQAAo7HkPwDA3xFtAACjMdIGAPB3RBsAwGhEGwDA3xFtAACjEW0AAH9HtAEAjEa0AQD8HdEGADAa0QYA8HdEGwDAaEQbAMDfEW0AAKOx5D8AwN8RbQAAozHSBgDwd0QbAMBoRBsAwN8RbQAAoxFtAAB/R7QBAIxGtAEA/B3RBgAwGtEGAPB3RBsAwGisHgkA8HdEGwDAaC0jjZE2AIC/IdoAAEZjeiQAwN8RbQAAoxFtAAB/1+Voe+KJJzRnzhwNGjRIDodDAwYMaHf/1atXa+bMmYqOjlZMTIxmzZqlDRs2eN23sLBQV199tfr06aPw8HDl5ORo4cKFXT1EAABsRBsAwN91Odruu+8+LVu2TIMHD1Z8fHy7++bm5urMM8/U3r179cgjj+jhhx/Wrl27NG3aNH377bce+x49elSnn3663nvvPd1888169tlnFRUVpblz5+qVV17p6mECACCJaAMA+L+grv6B3bt3a9CgQZKkkSNHqqqqqs19b731VoWEhOiLL75QWlqaJGnu3LnKzs7WnXfeqcWLF9v7/va3v9XevXv14Ycf6oILLpAk/eIXv9CUKVN01113ac6cOYqKiurq4QIATnJEGwDA33V5pM0VbB3Jy8vT2rVrNWfOHDvYJCktLU1z5szRkiVLdPDgQXv7m2++qcGDB9vBJkmBgYGaN2+ejh49qo8//rirhwoAAEv+AwD8XrctRLJ27VpJ0pQpU1rdN3nyZFmWpXXr1kmSioqKVFBQoMmTJ3vd1/3xAADoCkbaAAD+rsvTIzursLBQkjxG2Vxc2woKCrq8b1elpKR43OYdVgA4uRBtAAB/120jbTU1NZKk0NDQVveFhYV57NOVfQEA6AqiDQDg77ptpC0iIkKSVF9f3+q+uro6j326sm9XFRUVedyuqKhQbGzscT0WAMD/EG0AAH/XbSNtqampkrxPa3Rtc0197Mq+AAB0BdEGAPB33RZtEydOlCStWrWq1X25ublyOByaMGGCpGPnnaWlpSk3N9frvpKUk5PTXYcKADAY0QYA8HfdFm1ZWVnKycnRwoUL7YVGpGOLjixcuFAzZsxQcnKyvf2KK67Q7t279dFHH9nbmpub9fzzzysuLk6zZ8/urkMFABiMJf8BAP6uy+e0vf7669q/f78kqbi4WA0NDXr00UclSZmZmbrqqqvsfZ999lmdddZZmjZtmubNmydJev755+V0OvXUU095PO4999yjhQsX6ic/+YnuuOMOpaWl6a233tLatWv10ksvKTo6+ri/SQDAyYuRNgCAv3NYlmV15Q9Mnz5dK1as8HrfmWeeqeXLl3tsW7VqlR544AGtXr1aDodDU6dO1RNPPKHx48e3+vMFBQW655579Mknn6iqqkrDhw/Xf/7nf+ryyy/vyiG2y7UQSXl5uWJiYk7Y4wIAfNPUqVM9puqHhYWptra2F48IAICudUmXo83fEW0AcHI59dRTtWbNGvt2cHCwGhoaevGIAADoWpd02zltAAD4AqZHAgD8HdEGADCat4VITrJJJgAAP0e0AQCM5m1kjWgDAPgTog0AYDRv0cYUSQCAPyHaAABGI9oAAP6OaAMAGI1oAwD4O6INAGA0og0A4O+INgCA0Yg2AIC/I9oAAEYj2gAA/o5oAwAYzel0dmobAAC+imgDABiNkTYAgL8j2gAARiPaAAD+jmgDABiNaAMA+DuiDQBgNKINAODviDYAgNGINgCAvyPaAABG8xZorB4JAPAnRBsAwGiMtAEA/B3RBgAwGtEGAPB3RBsAwFiWZcmyrFbbiTYAgD8h2gAAxmorzog2AIA/IdoAAMYi2gAAJiDaAADGItoAACYg2gAAxmorzljyHwDgT4g2AICxGGkDAJiAaAMAGItoAwCYgGgDABiLaAMAmIBoAwAYi2gDAJiAaAMAGItoAwCYgGgDABiLaAMAmIBoAwAYiyX/AQAmINoAAMZipA0AYAKiDQBgLKINAGACog0AYCyiDQBgAqINAGAsog0AYAKiDQBgLKINAGACog0AYKy2Volk9UgAgD8h2gAAxmKkDQBgAqINAGAsog0AYAKiDQBgLKINAGACog0AYCyiDQBgAqINAGAsog0AYAKiDQBgLKINAGACog0AYKy24owl/wEA/oRoAwAYi5E2AIAJiDYAgLGINgCACYg2AICxiDYAgAmINgCAsYg2AIAJiDYAgLGINgCACYg2AICxiDYAgAmINgCAsVjyHwBgAqINAGAsRtoAACYg2gAAxiLaAAAmINoAAMYi2gAAJiDaAADGItoAACYg2gAAxiLaAAAmINoAAMZi9UgAgAmINgCAsRhpAwCYgGgDABiLaAMAmIBoAwAYi2gDAJiAaAMAGItoAwCYgGgDABiLaAMAmIBoAwAYq61VIok2AIA/IdoAAMZiyX8AgAmINgCAsZgeCQAwAdEGADAW0QYAMAHRBgAwFtEGADAB0QYAMBbRBgAwAdEGADAW0QYAMAHRBgAwFtEGADAB0QYAMJZ7nIWEhNifs+Q/AMCfEG0AAGO1FW2MtAEA/AnRBgAwFtEGADAB0QYAMJZ7nAUHB3vdDgCAryPaAADGYqQNAGCCbo22qqoqPf744xo1apSio6OVlJSkqVOn6tVXX5VlWR77rl69WjNnzlR0dLRiYmI0a9YsbdiwoTsPDwBgOKINAGCCoO56YKfTqfPOO08rV67UNddco3nz5qmmpkZvvfWWrr32Wm3btk3/9V//JUnKzc3V9OnTlZaWpkceeUSStGDBAk2bNk0rV67UqFGjuuswAQAGa2t6JKtHAgD8icNqOeR1gqxatUpTp07Vbbfdpqefftre3tDQoFNOOUVHjx5VWVmZJGnSpEnavn27tm3bprS0NElSQUGBsrOzNXnyZC1evPiEHVdFRYViY2NVXl6umJiYE/a4AADfc+mll+q9996TJI0ePVqbNm2SJA0fPlxbtmzpzUMDAJzkutIl3TY9sqKiQpKUmprqsT0kJERJSUmKjIyUJOXl5Wnt2rWaM2eOHWySlJaWpjlz5mjJkiU6ePBgdx0mAMBgTI8EAJig26Jt0qRJiouL0+9+9zstXLhQ3333nbZv3657771X69at00MPPSRJWrt2rSRpypQprR5j8uTJsixL69at667DBAAYjGgDAJig285pi4+P14cffqjrrrtOc+fOtbdHR0fr73//uy666CJJUmFhoSR5jLK5uE+VPF4pKSketzmPAQBOHkQbAMAE3bp6ZFRUlEaOHKm77rpL7733nl566SVlZWXpJz/5iT777DNJUk1NjSQpNDS01Z8PCwvz2AcAgK4g2gAAJui2kbZvv/1WU6dO1dNPP62bbrrJ3n7FFVdo5MiRuv7667V7925FRERIkurr61s9Rl1dnSTZ+xyPoqIij9uuE/4AAOYj2gAAJui2kbann35adXV1mjNnjsf2iIgInX/++dq/f7/27dtnL1TibQqka5u3qZMAAHSEJf8BACbotmhzBZe3dzObmprs/06cOFHSsUsEtJSbmyuHw6EJEyZ012ECAAzGSBsAwATdFm3Dhw+XJL366qse28vKyvTBBx8oPj5eWVlZysrKUk5OjhYuXGgvSiIdW6Bk4cKFmjFjhpKTk7vrMAEABiPaAAAm6LZz2m677Tb99a9/1T333KNvv/1Wp512mo4ePaoXX3xRRUVFeuGFFxQYGChJevbZZ3XWWWdp2rRpmjdvniTp+eefl9Pp1FNPPdVdhwgAMBzRBgAwQbdFW2ZmptasWaNHHnlES5cu1dtvv63w8HCNHTtWTz31lC655BJ736lTp2r58uV64IEH9MADD8jhcGjq1KlauHChxowZ012HCAAwnPu5a0QbAMBfdVu0SdLgwYP12muvdWrfKVOmaOnSpd15OACAkwwjbQAAE3TrddoAAOhNbUUbq0cCAPwJ0QYAMFZbS/4z0gYA8CdEGwDAWEyPBACYgGgDABirvemRlmX1xiEBANBlRBsAwFhtRZvEeW0AAP9BtAEAjNVetDFFEgDgL4g2AICxiDYAgAmINgCAsdpaPVJieiQAwH8QbQAAY7UXbYy0AQD8BdEGADAW0yMBACYg2gAAxiLaAAAmINoAAMYi2gAAJiDaAADGItoAACYg2gAAxiLaAAAmINoAAMZiyX8AgAmINgCAsRhpAwCYgGgDABjJsiyP0TSiDQDgr4g2AICRWk5/JNoAAP6KaAMAGKlllAUFBbV7PwAAvopoAwAYqWWUBQYGKjAwsM37AQDwVUQbAMBIHUUbq0cCAPwF0QYAMJK3aAsICGjzfgAAfBXRBgAwEtMjAQCmINoAAEYi2gAApiDaAABGannOGtEGAPBXRBsAwEiMtAEATEG0AQCMRLQBAExBtAEAjMSS/wAAUxBtAAAjseQ/AMAURBsAwEhMjwQAmIJoAwAYqWWUBQQEEG0AAL9EtAEAjOQeZQEBAXI4HEQbAMAvEW0AACO1jDZJRBsAwC8RbQAAI7lHmSvWiDYAgD8i2gAARvIWbe6rR7LkPwDAXxBtAAAjMdIGADAF0QYAMBLRBgAwBdEGADAS0QYAMAXRBgAwEtEGADAF0QYAMBLRBgAwBdEGADBSR9HG6pEAAH9BtAEAjNTRkv+MtAEA/AXRBgAwEtMjAQCmINoAAEYi2gAApiDaAABGItoAAKYg2gAARiLaAACmINoAAEYi2gAApiDaAABGYsl/AIApiDYAgJFY8h8AYAqiDQBgJKZHAgBMQbQBAIzkPv2RaAMA+DOiDQBgJEbaAACmINoAAEYi2gAApiDaAABGYvVIAIApiDYAgJFYPRIAYAqiDQBgJKZHAgBMQbQBAIzkHmWuETaiDQDgj4g2AICRGGkDAJiCaAMAGIloAwCYgmgDABiJaAMAmIJoAwAYiSX/AQCmINoAAEZiyX8AgCmINgCAkZgeCQAwBdEGADAS0QYAMAXRBgAwEtEGADAF0QYAMBLRBgAwBdEGADAS0QYAMAXRBgAwUkerR7LkPwDAXxBtAAAjMdIGADAF0QYAMBLRBgAwBdEGADAS0QYAMAXRBgAwEtEGADAF0QYAMBLRBgAwBdEGADBSR9HG6pEAAH9BtAEAjNTRkv+MtAEA/EW3R9vRo0d11113KSsrS2FhYerTp4/OOuss/fvf//bYb/Xq1Zo5c6aio6MVExOjWbNmacOGDd19eAAAQzE9EgBgiqDufPD9+/dr+vTpqqqq0i9+8QsNHTpU5eXl2rRpkwoKCuz9cnNzNX36dKWlpemRRx6RJC1YsEDTpk3TypUrNWrUqO48TACAgdynPxJtAAB/1q3R9tOf/lRNTU3atGmTUlJS2tzv1ltvVUhIiL744gulpaVJkubOnavs7GzdeeedWrx4cXceJgDAQIy0AQBM0W3TI7/44gt9+eWXuvvuu5WSkqLGxkbV1NS02i8vL09r167VnDlz7GCTpLS0NM2ZM0dLlizRwYMHu+swAQCGItoAAKbotmj7+OOPJUkZGRm64IILFB4ersjISA0dOlRvvPGGvd/atWslSVOmTGn1GJMnT5ZlWVq3bl13HSYAwFBEGwDAFN02PXLHjh2SpOuvv15DhgzRa6+9poaGBj311FO66qqr1NjYqGuvvVaFhYWS5DHK5uLa5n7+W1e1nJbJEs8AcHJwjzLXqpHuq0fy+wAA4C+6LdoqKyslSdHR0fr8888VEhIiSbrooos0aNAg3XfffbrmmmvsKZOhoaGtHiMsLEySvE6rBACgPYy0AQBM0W3RFh4eLkm64oor7GCTpPj4eF144YX661//qh07digiIkKSVF9f3+ox6urqJMne53gUFRV53K6oqFBsbOxxPx4AwD8QbQAAU3TbOW3p6emSpOTk5Fb3uaYslpaWKjU1VZL3KZCubd6mTgIA0B6iDQBgim6LtkmTJkmS8vPzW93n2ta3b19NnDhRkrRq1apW++Xm5srhcGjChAnddZgAAEMRbQAAU3RbtF100UWKjo7WG2+8oaqqKnt7UVGR3n//fQ0dOlRZWVnKyspSTk6OFi5caC9KIkmFhYVauHChZsyY4XW0DgCA9hBtAABTdNs5bfHx8fr973+vG2+8UZMnT9bPf/5zNTQ06I9//KMaGhr0/PPP2/s+++yzOuusszRt2jTNmzdPkvT888/L6XTqqaee6q5DBAAYjGgDAJii26JNkm644QYlJSXpd7/7nX79618rICBAU6ZM0ZtvvqnTTjvN3m/q1Klavny5HnjgAT3wwANyOByaOnWqFi5cqDFjxnTnIQIADOUt2ljyHwDgj7o12iTpkksu0SWXXNLhflOmTNHSpUu7+3AAACcJRtoAAKbotnPaAADoTUQbAMAURBsAwEhEGwDAFEQbAMBIRBsAwBREGwDASEQbAMAURBsAwEgdRZtlWbIsq8ePCwCAriLaAABG6mjJf4ll/wEA/oFoAwAYqaORtpb7AADgq4g2AICRiDYAgCmINgCAkYg2AIApiDYAgJGINgCAKYg2AICRiDYAgCmINgCAkVg9EgBgCqINAGAk9yBjpA0A4M+INgCAkZgeCQAwBdEGADCOZVmyLMu+TbQBAPwZ0QYAME7LGHOdy0a0AQD8EdEGADBOyxhjpA0A4M+INgCAcTobbaweCQDwB0QbAMA4bUVbyyX/GWkDAPgDog0AYByiDQBgEqINAGCctqKt5edEGwDAHxBtAADjEG0AAJMQbQAA4xBtAACTEG0AAOMQbQAAkxBtAADjtBdt7ouRsOQ/AMAfEG0AAOMw0gYAMAnRBgAwDtEGADAJ0QYAMA7RBgAwCdEGADBOyxhzP4+NaAMA+BuiDQBgHPcYc4+0lreJNgCAPyDaAADGIdoAACYh2gAAxmkv2ljyHwDgb4g2AIBxGGkDAJiEaAMAGIdoAwCYhGgDABiHaAMAmIRoAwAYh2gDAJiEaAMAGIdoAwCYhGgDABiH1SMBACYh2gAAxnGPMUbaAAD+jmgDABjHPcbcR9Ykog0A4H+INgCAcTinDQBgEqINAGAcog0AYBKiDQBgHKINAGASog0AYByiDQBgEqINAGAclvwHAJiEaAMAGIeRNgCASYg2AIBxiDYAgEmINgCAcYg2AIBJiDYAgHGINgCASYg2AIBxiDYAgEmINgCAcYg2AIBJiDYAgHFY8h8AYBKiDQBgHEbaAAAmIdoAAMYh2gAAJiHaAADGIdoAACYh2gAAxiHaAAAmIdoAAMYh2gAAJiHaAADGYfVIAIBJiDYAgHEYaQMAmIRoAwAYh2gDAJiEaAMAGIdoAwCYhGgDABiHaAMAmIRoAwAYxz3G3BcekYg2AID/IdoAAMZhpA0AYBKiDQBgHPel/FnyHwDg74g2AIBxGGkDAJiEaAMAGIdoAwCYhGgDABiHaAMAmIRoAwAYh2gDAJiEaAMAGIdoAwCYhGgDABinvWhzXz2SaAMA+AOiDQBgnM6OtLHkPwDAHxBtAADjMD0SAGASog0AYByiDQBgkh6NtpqaGg0aNEgOh0O//OUvW92/Y8cOXXTRRYqPj1dkZKSmTZumZcuW9eQhAgAMQLQBAEzSo9E2f/58FRcXe71v9+7dmjp1qlatWqW7775bTz75pKqqqnTuuedqyZIlPXmYAAA/R7QBAEwS1FNf6JtvvtEzzzyj3/3ud7rzzjtb3X/vvfeqrKxM69at09ixYyVJV199tUaMGKFbbrlF27dvl8Ph6KnDBQD4MaINAGCSHhlpa25u1vXXX69Zs2bpkksuaXV/dXW1PvzwQ02fPt0ONkmKiorSddddp507d2rt2rU9cagAAAN0dsl/Vo8EAPiDHom2p59+Wtu3b9eCBQu83r9p0ybV19drypQpre6bPHmyJBFtAIBOY6QNAGCSbp8euXfvXj344IOaP3++BgwYoH379rXap7CwUJKUlpbW6j7XtoKCguP6+ikpKR63eVcVAMxHtAEATNLtI2033XSTBg0apDvuuKPNfWpqaiRJoaGhre4LCwvz2AcAgI4QbQAAk3TrSNsbb7yhzz77TF988YWCg4Pb3C8iIkKSVF9f3+q+uro6j326qqioyON2RUWFYmNjj+uxAAD+gWgDAJik26Ktvr5ed9xxh2bPnq3k5GTl5eVJ+r9pjuXl5crLy1NSUpJSU1M97nPn2uZt6iQAAN4QbQAAk3Tb9Mja2loVFxdr0aJFGjJkiP0xffp0ScdG4YYMGaKXXnpJo0aNUmhoqFatWtXqcXJzcyVJOTk53XWoAADDdHb1SKINAOAPum2kLTIyUgsXLmy1vbi4WP/v//0/zZo1S7/4xS80evRoRUVF6YILLtB7772njRs3asyYMZKkqqoqvfTSSxoyZIgmTZrUXYcKADBMZ0faWJwKAOAPui3agoODddlll7Xa7lo9cvDgwR73P/HEE1q6dKnOOecc3X777YqJidGLL76ogoICLVq0iAtrAwA6jemRAACTdPuS/52VlZWlr776Svfcc49++9vfqqGhQePHj9enn36qmTNn9vbhAQD8iHuMuU+HlIg2AID/6fFoGzBggCzL8npfdna2Pvjggx4+IgCAaRhpAwCYpNuv0wYAQE8j2gAAJiHaAADGIdoAACYh2gAAxnFfFbK9Jf9ZPRIA4A+INgCAcRhpAwCYhGgDABiHaAMAmIRoAwAYh2gDAJiEaAMAGKez0WZZVpuXoQEAwFcQbQAA43Q22lruCwCALyLaAADGIdoAACYh2gAAxmkv2tyX/JdY9h8A4PuINgCAcRhpAwCYhGgDABiHaAMAmIRoAwAYxbIsjymPRBsAwN8RbQAAo7Q8R41oAwD4O6INAGCUlhFGtAEA/B3RBgAwSkfR1nL1SKINAODriDYAgFG6OtLGkv8AAF9HtAEAjML0SACAaYg2AIBRiDYAgGmINgCAUYg2AIBpiDYAgFGINgCAaYg2AIBROoo2h8Mhh8PR5v4AAPgaog0AYJSWEdZyif+W21g9EgDg64g2AIBROhppa7mNkTYAgK8j2gAARiHaAACmIdoAAEYh2gAApiHaAABGIdoAAKYh2gAARnFfWKTlSpEuRBsAwJ8QbQAAo7hHmLdRNslz9UiiDQDg64g2AIBROhNt7ttZ8h8A4OuINgCAUboabYy0AQB8HdEGADAK0QYAMA3RBgAwCtEGADAN0QYAMArRBgAwDdEGADAK0QYAMA3RBgAwCkv+AwBMQ7QBAIzCkv8AANMQbQAAozA9EgBgGqINAGAUog0AYBqiDQBgFKINAGAaog0AYBSiDQBgGqINAGAUVo8EAJiGaAMAGIXVIwEApiHaAABGYXokAMA0RBsAwChEGwDANEQbAMAoRBsAwDREGwDAKO4R5r7giDuiDQDgT4g2AIBRGGkDAJiGaAMAGIUl/wEApiHaAABGYcl/AIBpiDYAgFGYHgkAMA3RBgAwCtEGADAN0QYAMArRBgAwDdEGADCK+zlqRBsAwAREGwDAKIy0AQBMQ7QBAIzS1SX/WT0SAODriDYAgFEYaQMAmIZoAwAYhWgDAJiGaAMAGIVoAwCYhmgDABiFaAMAmIZoAwAYhWgDAJiGaAMAGKWrq0cSbQAAX0e0AQCM0tWRNpb8BwD4OqINAGAUpkcCAExDtAEAjEK0AQBMQ7QBAIxCtAEATEO0AQCMQrQBAExDtAEAjEK0AQBMQ7QBAIzCkv8AANMQbQAAo7DkPwDANEQbAMAo7tHmPqLmjumRAAB/QrQBAIzCOW0AANMQbQAAoxBtAADTEG0AAKMQbQAA0xBtAACj+NvqkU6nU7t27dKBAwdkWVavHgsAwDd1W7Tt3LlT8+fP1+TJk9WnTx9FR0dr7Nixeuyxx1RdXd1q/x07duiiiy5SfHy8IiMjNW3aNC1btqy7Dg8AYCh/Wz3y66+/1t/+9jf95S9/0f79+3v1WAAAvqnbou3ll1/W008/rcGDB2v+/Pl68sknNWzYMD3wwAOaOnWqamtr7X13796tqVOnatWqVbr77rv15JNPqqqqSueee66WLFnSXYcIADCQv02P3L59u/357t27e/FIAAC+Kqi7Hviyyy7Tvffeq9jYWHvbTTfdpCFDhuixxx7TX/7yF/3yl7+UJN17770qKyvTunXrNHbsWEnS1VdfrREjRuiWW27R9u3b5XA4uutQAQAG8bdoKysrsz+vq6vrvQMBAPisbhtpy8nJ8Qg2l8svv1yStHnzZklSdXW1PvzwQ02fPt0ONkmKiorSddddp507d2rt2rXddZgAAMP4U7Q5nU6PaKuvr++1YwEA+K4eX4gkPz9fktSvXz9J0qZNm1RfX68pU6a02nfy5MmSRLQBADrN/Rw1X4+2iooKj+NlpA0A4E23TY/0prm5Wb/5zW8UFBSkn/zkJ5KkwsJCSVJaWlqr/V3bCgoKjvtrpqSkeNzu7RPOAQDdy59G2kpLSz1uE20AAG96NNpuu+02rVq1So8//riGDRsmSaqpqZEkhYaGtto/LCzMYx8AQO+wLMtvzi32pyX/3adGSkQbAMC7Hou2X//611qwYIFuuOEG3Xvvvfb2iIgISd7n8bt+ebn2OR5FRUUetysqKryeawcA8K6kpERvv/22HA6HfvrTn/r8z1B/WvKfkTYAQGf0yDltDz30kB599FFde+21+tOf/uRxX2pqqiTvUyBd27xNnQQA9Iyvv/5aJSUlKi4u1pdfftnbh9MhpkcCAEzT7dH20EMP6eGHH9Y111yjl156qdX0mlGjRik0NFSrVq1q9Wdzc3MlHVuJEgDQOyorK+3PDxw40ItH0jn+HG0NDQ2cew0AaKVbo+2RRx7Rww8/rKuuukovv/yyxzkELlFRUbrgggu0fPlybdy40d5eVVWll156SUOGDNGkSZO68zABAO2ora21Pz906JAaGhp68Wg65k/R1vKcNonRNgBAa912TtsLL7ygBx98UBkZGZo5c6befPNNj/v79euns88+W5L0xBNPaOnSpTrnnHN0++23KyYmRi+++KIKCgq0aNEivzn5HQBM5B5tlmWpqKhImZmZvXhE7XOPyqAg77/mfCHaGhoaVFVV1Wp7fX399zqXGwBgnm6LNte11b777jtdc801re4/88wz7WjLysrSV199pXvuuUe//e1v1dDQoPHjx+vTTz/VzJkzu+sQAQCd4B5t0rHrbfpytJWUlNifJyUled3HF1aP9DbKJjHSBgBordui7dVXX9Wrr77a6f2zs7P1wQcfdNfhAACOU8uIyM/P76Uj6Vhtba3HOXh9+/b1up8vjLS1PJ/NhWgDALTUI6tHAgD8k9PpbBURBw4ckGVZvXRE7SsuLva43Zlo662FPxhpAwB0FtEGAGiTt4CoqqpSRUVFLxxNxw4fPmx/HhoaqujoaK/7MdIGAPAnRBsAoE0tz2dz8dUpku7R1rdv3zYXsiLaAAD+hGgDALSprYDwl2hri69Fm3tcEm0AgJaINgBAm/x9pK0tvR1tlmV5nNPmvsplfX19jx8PAMC3EW0AgDa5R5v7aFBRUVGvXpS6LZ2Ntt5e8r+mpsbjenLJycn254y0AQBaItoAAG1yj7aUlBQ73JqamnTw4MHeOqw2Hc9IW2+sHuk+NTIoKMhjpI1oAwC0RLQBANrkHhAxMTHq16+ffdsXp0geT7RZltXjlzBwj7a4uDiFh4fbt4k2AEBLRBsAoE3uI23h4eFKT0+3bxcUFPTGIbXreKJN6vkpku7ns8XFxSksLMy+TbQBAFoi2gAAbWov2kwZaZN6PtrcR9ri4+OJNgBAu4g2AECb2ou2o0ePqrq6ujcOyyvLsog2AICRiDYAQJvcoy0sLEyJiYkegeFLUyTLy8vV2Nho3/bXaKuvr+/xc+wAAL6NaAMAtMl91Cc8PFwOh0NpaWn2Nl+aIuk+yiZJffr0aXNf9yX/pZ6NtubmZlVUVNi3W57TZlmWx+UAAAAg2gAAbWo5PVKSz57X5h5tsbGxCg0NbXPfliNtPbnsf0VFhcfXi4+Pb3WsTJEEALgj2gAAbeoo2goKCnrlOmfedPZ8NkmKjIz0uO2+mmN3c58aGR4errCwMIWEhHhcvJxoAwC4I9oAAF41NjaqqanJvu2awuc+PbK+vl4lJSU9fmzedCXaoqOjFRsba98+cOBAtx1XSy3PZ5Mkh8PBYiQAgDYRbQAAr1qGg2ukLSIiQomJifb2ngye9nQl2iQpIyPD/vy7777rlmPypuU12lyINgBAW4g2AIBX7lMjW44EuQfPnj17evS42vJ9oq23R9okog0A0DaiDQDgVcvl/t3PuRo8eLD9+Z49e3zivLauRlv//v3tz3typI1oAwB0FdEGAPCqZbS5GzRokB1xtbW1PnG9Nn+cHtlWtNXX1/fY8QAAfB/RBgDwquU12txFRER4LEiSl5fXY8fVFn+YHtnQ0KDq6mr7tvs5be7L/jPSBgBwR7QBALzytty/u6ysLPvz3bt398gxtccfpke6T410OBweK1gyPRIA0BaiDQDgVVeiraCgQDU1NT1yXN40NTXpyJEj9u2ujrRVVFSovLy8W47NnXu0xcTEKCgoyL5NtAEA2kK0AQC86ijaUlNT7e2WZfXqKpItrxXXmWhLS0vzWFylO6dINjQ0aPPmzVq5cqW9zX1qpES0AQDaFtTxLgCAk5F7OLRciESSAgICNHjwYG3evFnSsfPaRo4c2WPH5859amRAQIASEhI6/DPBwcFKSUlRYWGhpGNTJE/U8VuWpaNHj+rAgQPasWOHdu3a5XGhckke17qTiDYAQNuINgCAVx2NtElqFW2WZXmMXvUU92jr06ePAgI6N5EkIyPDI9q+j9LSUm3ZskUHDhzQgQMH2p0uGhERoZycHI9tRBsAoC1EGwDAq85Em/t5bVVVVTp06JCSk5O7/dha6uoiJC4ZGRnKzc2V9P2mR5aXl+uFF15oNZrmLiQkREOHDtXw4cOVlZWlkJAQj/tZ8h8A0BaiDQDgVWeiLTo6Wv369dOhQ4ckHRtt86doO1ErSG7bts1rsMXFxSkjI0PZ2dnKyspScHBwm4/RcqStt0YtAQC+h2gDAHjV3sW13WVlZXlE2+mnn97tx9ZSR9FWV1enr7/+WnFxcR7nrZ2oC2y7j9JlZmZq8uTJSk9PV3R0dKcfw/06bc3NzWpqamo38gAAJw+iDQDQimVZ7V5c211WVpa++uorScfCp76+3iNAekJH0bZkyRJ9/fXXkqTIyEgNHDhQ0om5wLZlWR7Bl5OTo+zs7C4/TsswrqurI9oAAJJY8h8A4EV9fb0sy7JvtxdtGRkZ9vlZTqdTe/fu7fbja6mjaNu1a5f9ufulCdynR+bn56u5ubnLX7usrEyVlZX2bfcQ7IqWoctiJAAAF6INANCK+9RIqf1oCwwMtEeuJGn37t3ddlxtaS/aampqPC6cXVxcbH/uHliNjY32NM+ucB9li42NVWxsbJcfQzp2qQL3cCPaAAAuRBsAoBX3aAsMDFRQUPuz6d1Xkdy1a5fHKF1PaC/aXEv6e9s3KSnJY1ri8UyRdI+24x1lc2HZfwCAN0QbAKCVluezdbSKoXu0lZWV6ciRI912bN60F21FRUUet0tLS9XY2ChJcjgc33sFye6KNpb9BwC4EG0AgFY6s9y/u/j4eCUmJtq3v/322245Lm+qq6tVXV1t3+4o2izL8ojK77OCZG1trcd0S/cAPB6MtAEAvCHaAACtdDXaJGnUqFH25+vXr5fT6WxzX9dI14ngHk1Sx9HW8s+4h1ZXp0e67x8aGtqla8R5wzltAABviDYAQCudvUabu3HjxtnTKCsqKpSXl9dqH8uy9MEHH+ixxx7Te++9d0KO1X1qZHh4uCIjI+3btbW1Ki0tbffPfJ+RNvf9+/fvr4CA7/drlZE2AIA3RBsAoJXOXqPNXWxsrMe5bevWrWu1z+7du7V+/XpJ0qZNm1qNkh2PluezuZ9/522UTWp7BcnvE23f93w2iWgDAHhHtAEAWjme6ZGSNGHCBPvznTt3qqKiwr5tWZaWLFnisf/xLPzRUlcWIXE5EdMjm5qaVFBQYN8m2gAA3YVoAwC0crzRNnToUEVHR0s6FmmuUTVJ2rJliw4ePOix//79+7/nkXZ+uf/MzEz786NHj6qpqUmSZ2wdPny41TXq2lJYWGhfjDsgIEBpaWldP/gWiDYAgDdEGwCgleM5p006Fi/jxo2zb7sWJGlubtayZcta7b9v374uXdPNsiw7tlw6O9I2atQoe+qk+wqSLVd8zM/P79SxuI/KpaSkKDg4uFN/rj0s+Q8A8IZoAwC0cjzntLm4L0hSVlamPXv2aP369Tp69GirfSsqKlReXt6px62urtaCBQv029/+Vps2bbK3txVtdXV1Hl8zIyND8fHxrf5cZGSkEhIS7O2dnSJ5os9nkxhpAwB4R7QBAFo53umR0rFrtg0aNMi+nZubqxUrVti3R40apZiYGPt2Z6dI5ubm6siRI2pqatKHH36okpISSZ7R1q9fP/tz96mYwcHBSkpKUp8+fext32cxEsuyuiXaWPIfAOAN0QYAaOX7RJvkuSBJXl6eKisrJR2bPnnWWWd5nF/WmWhzOp3auHGjfbupqUnvv/++nE5nmyNt7uezJScnKyAg4IRFW0lJicff0fe9qLYLI20AAG+INgCAh+bmZjU0NNi3u3JOm8uwYcM8rpfmMmHCBCUkJHQ52vbt2+exEqV07NyzlStXthlt7uezpaSktLr/+6wg6R52iYmJioqK6vDPdIb733VjY6O90AkA4ORGtAEAPLRcPfF4RtoCAwM9FiSRjk1RPOOMMyR5ruR45MgRVVVVtft4GzZs8Lp96dKlHvHVUbS5j7S1tYJkZ0baumNqpNQ6kBltAwBIRBsAoIWWoXA8I22SNH78eI/bp556qn05gKSkJEVERNj3tTfaVl9fr23bttm3zznnHPvP1tTUeKwm6Yq2+vp6e3VISUpNTbW/rmuRFKfTae/T1WhzH407UVMjJaINAOAd0QYA8OA+0hYaGqrAwMDjepyEhATl5ORIOhZTp512mn2fw+HwGG1rL5S2bdumxsZGSVJISIhycnL0wx/+UNKxFSXdJSUlSTq2CInrUgJBQUH2CFtwcLDi4uLs/V2jdC2nR7Z1GYLGxkYtWbKk1aqUJ0pgYKDHpQOINgCAJAX19gEAAHzL8V6jzZvZs2drypQpio6OVkhIiMd9GRkZ9ghaeyNt7lMjs7OzFRISouHDh2vUqFH65z//ad8XFxdnB4/71Mh+/fopIOD/3qPs06ePSktLJf1ftLmHV3V1tUpLSz0uAyBJu3bt0qJFi1RWVmZvi46OVmJiYrt/B10VFhZmRyrXagMASIy0AQBa+L4rR7oLCAhQYmJiq2CTPM9rO3ToUKtz6aRj13nbt2+ffXvs2LH257Nnz/aYGhkcHGwvSuK+cqRraqSL+3lvrv1TUlI8RhRdI3+WZam4uFjvvPOO/va3v7UKtosvvtiebnmisIIkAKAlRtoAAB6+z4W1uyI5OVmhoaGqr6+XZVk6cOCAhg4d6rGP+zL/sbGxGjBggMexuV8PLiIiQq+99pquvfZar4uQuHhb9j8oKEipqan2uWq5ubkqKCjQrl27PEJNOja1c9KkSZoxY4bHddVOFK7VBgBoiZE2AICHEznS1p6AgACPc8laTpG0LMsj2saMGdPuqFZkZKSqq6v12muv2RfeltqPtrZWkPzwww+1du3aVsGWkpKi66+/Xuedd163BJvESBsAoDVG2gAAHk7kOW0dyczMVF5enqTW0Zafn++x4MeYMWNa/Xn3a7S5VpR0XchbOrawh/t0SOn/FiuRjq0gefToUfXt29fjHLby8vJWf2bixImaOHGix/lx3YFoAwC0RLQBADz01Eib5HleW2FhoRoaGuzz39wXIOnfv7/XBT/co839fDeXfv36tVr9MiQkRPHx8fZiJIcPH1ZkZKRH7FVWVmrIkCEaOnSosrKyFB8ff1zf3/Eg2gAALRFtAAAPPXVOm3RskZCgoCA1NTXJ6XQqPz9fAwYM0M6dO7V582Z7P2+jbI2Njfrqq6/s26eeeqqGDx+uxYsX29taTo10abmC5LfffuvxvYaFhenKK6/83t/f8SDaAAAtEW0AAA89OdIWFBSk9PR0e4XIFStW6IMPPvCYnhgUFKQRI0a0+rOffPKJDh06JOnYNMjzzz9fKSkpcjqdWrp0qSRpwoQJXr9unz59tHPnTknSmjVrVFtbq9jYWPt+94VMepp7tLHkPwBAItoAAC30ZLRJx6ZIuqLN2/XaJk6c6PU4XnnlFfvz8847zx5VO/300zVy5EgFBwcrMjLS69d0X4zE9f26n9OWn5+v7du365RTTun6N/Q9MdIGAGiJ1SMBAB56ciESyXPVRheHw6Fhw4bpqquu0jnnnNPq/sOHD3tcWPvnP/+5x/1xcXFtBpvkGW0u6enpysrKsm+/9tprnTr+E40l/wEALTHSBgCwWZbVo+e0ScdG2hITE3XkyBGFh4dr3LhxmjhxYruLf7zxxhv2Uv1JSUk6//zzu/Q1vUXbj370I0nSfffdJ0n661//qkcffbTVQibdjZE2AEBLRBsAwNbY2Kjm5mb7dk9EW1BQkG688UYdOnRIycnJCg4Obnd/y7L08ssv27evuuoqe8XJzgoJCVFCQoJ9SYHx48dr+PDhiomJ0QMPPCCn06nCwkJ99tlnmjVrVte/qe+BaAMAtMT0SACAzX1qpNQz0SYdi6j+/ft3GGyS9PXXX2vLli327Wuvvfa4vuaMGTMUGRmpIUOG2GGWnp6us88+297H/by5ntJyIRKn09njxwAA8C2MtAEAbO7RFhAQ0OURrJ7gPsqWk5OjUaNGHdfjjBw5UiNHjmy1/Wc/+5n+9a9/SZLef/99lZaW9tp12qRj4dZT8QwA8E2MtAEAbO7T8cLCwuRwOHrxaFqrra3VW2+9Zd8+3lG29lx00UX28v8NDQ0eX68neIs2AMDJjWgDANh6ern/rvrHP/5hX8MtNDRUV1xxxQn/GmFhYR6P++qrr57wr9GeoKAgj8VPOK8NAEC0AQBsvh5t7ueYXXzxxd02bdF9BG/t2rUe59B1N4fDwWIkAAAPRFsvsyxLH330kb755pvePhQAJzmn06mdO3fat3viGm1dsX//fi1dutS+3fLabCfSxIkTlZ2dbd/u6dE292u1uVa4BACcvIi2XrZ27VqtW7dOH374of75z3/a1x3ypqampt37TyZOp1OrVq3SJ598okOHDvX24XSosrJSK1eu1JYtW2RZVm8fDtCKZVn65JNPtH37dntbZmZmlx6jvr5eu3btUnV19Yk+PDU0NOiOO+6w//30799fM2bMOOFfx8XhcHiMtr3++utqbGzstq/XUkREhP35Rx99pI8++kg1NTU99vVhtq1bt2rz5s38PgL8CKtH9qKGhgatWLHCvv3111/r4MGDmjt3rmJiYuztR44c0ZIlS7Rt2zaFhYVpwoQJmjRpkn2i/Mlo2bJl+vLLLyUdC99p06Zp2rRpCgryjaf03r17tWTJEq1evVqrV6/W1q1b7WW7hwwZorlz5+ryyy/XyJEjfW6hB/ie+vp6HT58WIcOHdKhQ4dUXV2tc845R3FxcSfsa6xYsUJr1661b2dmZmry5Mmd+rPbtm3Tiy++qNdee01Hjx5VRESELrzwQv34xz/WrFmzPEaNjkd1dbUuvfRSe0VHSfrFL37R7Re9/ulPf6p77rlHTqdThw4d0rvvvqsf//jHPfJvdvTo0crPz5d0LKjXrVunrVu3aubMmRoxYoQaGxvtD8uy1LdvXwUEmPk+bGVlpXbu3KmdO3eqpqZGKSkpysjIUEZGhsfvSl9SWVmp/Px89e/fX1FRUb19OLadO3fqP//zP/X+++9LOrb66q233qq5c+d2+O+0ublZL730kv76179q9OjRuueee7r8xg48uaK5N18HOJ1Obdy4Ufn5+WpoaFBDQ4MaGxvV0NCg4OBgJSYmKjExUUlJSUpMTFRcXJyxP2t8ncM6yd5mqaioUGxsrMrLy33ih31paanefvttj9GiqKgozZkzR0lJSVqxYoW+/vrrVtfpCQgI0IgRIzR58mSlpaX19GH3ql27dulvf/tbq+19+vTRhRdeqP79+/fo8ezfv1+FhYUaMWKEwsPD9dBDD+mJJ57o1DuYGRkZuuCCC3TPPfcoPT29019zy5Yt+uqrrxQdHa0hQ4ZoyJAhHUa80+nU9u3btXbtWh0+fFgJCQlKSUlRamqqUlJS1KdPH/sHsWVZ2rZtm4qKijxeHDY2Nio0NFTR0dGKiopSVFSUYmNjlZaW1uEvnebmZq8vshsbG1VUVKT8/Hzl5+ersrJSycnJysrK0rp16/Tb3/5WlZWVuuKKK3Tddddp0KBBnf578qa+vt6+9lVzc7P9byshIaFLEdDY2KjFixdr7969GjZsmE477TRFRESoublZAQEBbf59WJalt956S//93/+tfv366ec//7kuvPBCj+uTWZaltWvX6o9//KM++ugjHTlypNXj9O/fX//85z81evToLv4NtLZmzRp9/PHH9u3k5GT97Gc/a3d6ZH19vd555x39+c9/tt9A8SY2NlYXX3yxpk6dquHDhys7O1sJCQmdPrbS0lL98Ic/1MqVK+1t06ZN0yeffKLIyMhOP87xOv/88z3+bmJiYjR27FiNHTtWmZmZqqqqUkVFhf3hcDjUt29f9enTx/5vcnKy+vfvr+TkZPuNpcbGRq1evVpLly7V0qVLtXbtWp166qn685//rKFDh0qS8vLy9PHHH+vo0aNyOp1av3698vLyFBQUpOjoaPsjKipKSUlJOu+88zRmzBjFxMScsEs1NDU1ac2aNaqtrVVERITCw8Pt/zY0NKi2tlY1NTWqra2VZVnKycnpUqTk5ubqzjvv1KZNmzR48GCNGjVKo0aN0qBBg1RSUqL169dr7969KisrU0VFhaKiojRu3Dj79158fLz69u0r6di/G9fP3ZCQEMXGxiomJkaxsbGKjY1VUlJSt1zCorq6WgsWLFBubq7279+v/fv321Nag4OD9atf/Ur333+/x+hpRyzLUnl5uQoLC1VYWKiCggIVFxcrMjJSaWlpSk1NVWpqqvr169epn1tHjhzRI488oj/84Q9eZ+z069dPN910k2644Qalpqa2uv+bb77RzTffrDVr1tjbgoODdcMNN+i+++6z/0xtba2WLVumjz76SPn5+Zo6dapuuOEGBQcHq6ioSKWlpUpMTFRGRkaXpl9/+eWXeu211/SnP/2pze+3uLhY27ZtU3l5uf1zvr6+Xg0NDUpMTFROTo4GDBhwwgOpublZkjr9+6O8vFy7du3Srl27tHfvXoWFhemss87S2LFjezzejh49qvfee89+g6gzQkND1b9/f2VkZCgzM1NpaWk+84a5P+pKlxBtPqChoUEfffSRvv32W3tbQECAgoODO7XUs+vFt+sjOTm5wxczTqdTpaWlCg4OVnh4uP2C0fWL4uDBg/aHZVlKT09XZmamUlNTu/yP07Is7d69W+vWrVNBQYHi4uI0YcIEjRgxosuPVVFRoT/96U9tThNyOBwaPXq0EhISFBISYn8kJCQoNTXV6w/Empoaff3119qzZ4/Cw8M1YsQIDR06tMNf7ocPH9bixYuVl5dnP87ixYu1ceNGr/sHBAS0eZHcwMBAnX/++brrrrt0+umnt/uC/4svvtDnn3/e6r6+ffsqKytLKSkpiouLU1xcnKKiolRfX69vvvlGa9asUVlZWZvfj+sdtT179mjRokXaunVru9+/u6FDh2r+/Pn68Y9/7PGLy7IsffbZZ3r00Uf11VdfKTg42D624OBgBQUFKTU1VYMHD/Z4If/dd99p8eLFKigoaPW1pk+frhtvvFGXXHJJm/+PmpubVVpaqpKSEh05csT+KCkpaTV1z7Is1dbWKjExUWeccYYmTpzY4fOypqZGb731ltavX6+CggKVlJTo6NGjqqqqUmFhoWJiYnTttdfqP/7jPzzeRMjLy9PNN9+sJUuWeDxecnKyfv7zn+unP/2pVqxYoQULFnRq4YuIiAi9/fbbuuCCC9rdz+l06vDhw8rPz1dpaamCgoIUEhKi4OBg1dbWavny5bIsSzU1Ndq7d6+qqqoUFxenn/70p5o1a5bH/9P6+nr95S9/0RNPPNGlX/Qtv99Ro0bpiiuu0I9//OM2FzwpKirSueee6/Gz8Yc//KHeeeedHlsk5b333tOll156Qh4rICDAfqG9Y8cOVVVVtdonPDxcTz75pG6++WYFBASoqalJr7/+uubPn9+lv+/Y2FjNmDFDP/zhD3XeeecpODhYR48elcPhUEBAgP0RHh6uPn36tPqZs3XrVr3yyit6/fXXuzQFPT4+XnfffbfmzZunyMhI+3lVXFyskpISlZSUqLa2VqmpqXr33Xf13//938d18fD09HRNnjxZ2dnZnX7XPygoSNnZ2RozZowGDRp0QkYLli9frl/84hfas2dPu/ulpaXpmWee0WWXXeaxvaGhQbt27VJISIiam5tVVFRkh1pnphkHBgZqxIgRmjlzptfXNPv27dObb76pJ598st2f/+7Gjh2rs88+W+ecc45GjRqlRx99VH/4wx/a/P8UFhama6+9VoWFhfrss89a/X4ODg7W6NGjNXnyZCUlJUk69rs6JSVFAwYMUFpammpqalRWVmZ/VFVVqbm5WXl5efrss8/sv9958+bp0ksvtcO1trZWW7Zs0ebNm3X48OEOv7fk5GRNnjxZI0eOVGBgoA4ePKh9+/Zp7969OnTokKKiouzHTktLU2JiopxOp6qqqlRZWWm/SXPkyBEdPXpUR44cUXl5uRwOh4YPH64f/OAHXmdAVFZWau3atdqxY0eb/55SUlI0a9as4xq9bGpqUlVVlerq6hQfH9/hqKllWdqwYYM++eQTNTQ0dPnruQsMDNSAAQM0btw4nXLKKV5/f1ZWVurIkSNKSkrq0ps6zc3N2rNnj8rKyhQTE6P4+HjFx8crODhYTqdTRUVF2rdvn/bv368DBw4oKChIw4YN04gRI5SZmdnq37hlWaqqqtKRI0eUnp7uE7FJtLXDF6NNOvZEWr16tRYvXuz1B2N0dLSmT5+umpoarVmzRpWVle0+3sCBA/WDH/yg1eiN693azz//3OMFQ1BQkMLDw9XU1OSxelxLQUFBSk9PV//+/dWnTx8lJSV5fffSsixVVFRo48aN+uabb7z+soiIiNC4ceM0YcKETr3z7nQ69eqrr+q7776TdOwHxZVXXqnNmzd3aiGXmJgYDR8+XMOHD1f//v1VUlKi3Nxcbdy4sdU7j4GBgXrvvfc0atQoTZgwQePHj9fo0aMVGxurqqoqff755/rmm2/sd3U3b96sf/7znx6RnZycrClTpqi5uVnJycnq27evysrKtGXLFm3ZsqXNXzAjRozQueeeq379+ik5OVnJycnq16+fEhMTlZubq82bN3f49+T+C6a5uVmxsbFKTEz0+s6m60XV+vXrO/Xcas/w4cP10EMP6dJLL9XixYv18MMPKzc3t1N/NjExUUOGDFFZWZnHeVVtcTgcioyMVHR0tGJiYhQXF6fQ0FB79CwwMFDBwcGKjo5WQkKCEhMTFRkZKYfDoerqau3evdv+qK6uVkZGhi688EINGjRIZ511lkaPHu31Rd23336rX//611q9erUOHjzY7jEGBQXpnHPO0RVXXKEVK1botdde+17nRQUGBioyMlIVFRX2toCAAM2bN0+PP/64wsPDVVlZqdLSUpWWlqq4uFj79+/X6tWrtWvXLu3fv1/19fVKSkryGAk6dOiQNm3apF27dtnvGrtkZGTouuuu05VXXqlPP/20zVgbNmyYrr/+el122WVatWqV3n777U69IEhMTNT111+vm2++WRkZGSotLdWKFSu0fPlyvfvuux7hfuWVV+qVV17xGJXsbpZl6Ve/+pXefPNNFRUV9djXPfvss/XCCy/o5Zdf1u9///vvfT5zamqqsrKylJmZqfT0dI+f2fHx8crOzlZQUJC2bNmi119/3WOq7PGIi4vTrFmzNGLEiFbHnp+frw8++EAlJSXf62tIx36uDxs2TOHh4QoNDVVYWJjCwsKUkJDQ7pTR4OBg+828sLAw1dXVqbq6WnV1derXr5+GDx/e6kWf0+nU/v37tW3bNn333Xf6xz/+ocWLF3fpeMeMGaOJEycqLy9Pe/bsUUFBgf1vLjQ01P6dmpSUpISEBMXHxyshIaHDF+HBwcE644wzNGXKFO3atUvvvfee/v73v2v9+vWt9o2NjdVZZ52lpKQk7dmzR1988UWXnl9nnnmmtmzZclz//7KyspSamqq4uDjFxsYqLi5O0dHRCgoKst84sCxLe/fu1YoVK+zf9y59+/bVTTfd9L1HpCIjI+V0Ott9vSMd+5nb8mdie4KCgjR58mSdfvrpCgsLU3FxsVauXKlNmzZ1+nFGjBihkSNHqra2VtXV1aqpqVFNTY39u8314Qq1qqqqVqHsejPf9dojNDRUgYGB9t/zihUrtG3bNo8/M2TIECUnJ3u84V1bW2u/+entTc+WwsPDNXr0aI0ePVrV1dXas2ePdu/ereLiYknHfm8PHjxYo0eP1imnnOL1jVfLslRUVKSNGzfq22+/9fomfVRUlD2Vsy2RkZHKzs5WVFSUx5u3rtdpN954o1JSUtr9fnoC0dYOX402l3379mnhwoX2P4yQkBCdfvrpmjJliv1Cpbm5WZs3b9aqVas6fNGYnZ2tGTNmqE+fPtq9e7cWL17cLQt3xMbGKiQkxGNKQleEhYUpPDxc4eHhCgsLU2RkpDIzMzVs2DBFR0dLkpYuXap///vf9p8577zzdOqpp0qS9uzZo48++kilpaWd+noRERHtntR/5MgRLViwoNV217s8rl8YDodDDQ0NrX6x5OTk6MEHH9S6des8pkmOGTNGCQkJamhoUF5enj799FMtWbKkSwsMhIWFKSIiQtHR0QoJCVF1dbUaGxvldDrV0NCgqqqqNqdmRkZGqn///kpNTdWhQ4d0+PBhlZWVtRkSERERCg4OVkBAgAIDA+13/l1z3tv6/5yYmOh1St/xGDx4sNLT07Vx48ZOv1PclpCQEEVFRbW5Gl9QUJBmzJihU089Vf369dOECRPs0eV//vOfeuWVV7R69eoTcvJ+ZmamwsPDtWPHjjYfLyUlRTk5OcrMzFRkZKRCQ0PlcDi0ZcsW/eMf//B4ETBlyhRlZWWpoqJC1dXVqq6u1uHDh/Xdd9912wIagYGBmjt3rm666SZNmzat1QupsrIyvffee1q2bJm2bt2qbdu2tbl8fUBAgIYNG6bt27d7/fuYN2+ennnmmV49l+LQoUPauHGjNmzYoPXr1+vIkSOKiYnx+GhqalJxcbGKi4t1+PBhHT58WIWFhV5fHAYGBmrSpEn6wQ9+oL59+2r+/PkdPsdnz56toUOH6vDhwzp48KCKiop08OBBlZeXd3rEyuFw2FM2AwIC7JGdtl64u94gcU2Rbvl1goOD7ZkhLV+Yut40cbEsSwcOHPD4f5yYmKhbb71VGzZsUH5+vn3+ZlNTk5KTkzVw4EANGTJEKSkp+vjjj72GiDdhYWEaMGCA0tPTlZCQoNLSUhUVFamoqKjVz6eoqChFR0crMjJSzc3NampqUnNzsxwOh4KCghQVFaWgoCBFREQoIiJC69ata/X/avz48UpPT7eDJDQ0tNW5oscrLi5OAwYM0NixYzVy5EiFhYWppKTE/nusqKjQpk2btGXLljZfFwQHB2vq1KmaOnWqx4vlvn37Kj8/X6+88kq7rylcIT5s2DA1NDRozZo1WrlyZavndmBgoAYOHKj4+Hht2rSp068HgoKCFBQUpICAAK+/E1NSUnTmmWdq6NChbUZbnz59NHDgQDviXbG7cePGVr+nu1NERIRSUlK0e/dur/fHxMRoyJAhGjhwoDZv3typNyq7S2hoqGbPnq3Ro0d3GMM1NTXKz8/Xd999Z58a0pWodRccHKyhQ4cqPDzcI0gPHjxoR153uuyyyzRy5Mhu/zodIdra4evRJh07xpUrVyokJESnnnpqm1MdLctScXGx/UvI9cu75Q9I1y/orrxLHBkZab9LY1mW/Y/zeKaxuAwePFgjRozQ3r17tXXr1k7/Q09LS1N6errWrFlj/4LKzs7W3LlzPX7ANDQ06Ouvv9ahQ4fsd2Bc51x09I5gWFiYxo4da5/wvmnTJr3zzjtd/h6Dg4M1a9YsjRs3zuPYAgMD9cMf/lDjxo1r9We2b9+uxx9/XMuXL9eBAwe6/DVPtICAAI0ePVoTJkzo8Dw7y7J06NAhLV++XDt27Ghzv4yMDJ1++umKjIxUXV2damtr1dTUZI/8evu+R40apdtvv10pKSkqKipSeXm5NmzYoDVr1mjHjh3f67nYkf79+2v27NkqLi7W5s2blZeX1+bXGzhwoEaOHGm/qI2Li9PevXu1Zs2aNqe/nXPOORozZowcDocqKiq0fv16ffPNN6qoqFBQUJBGjx6tH/3oR5o+fboGDBig+Ph4j3Curq7WK6+8ovnz55/wlRrj4+M1d+5c7d+/X//617+8BlRgYKCuuuoq3X///crKyur0Yzc3N2v//v3avHmz3n33Xf3v//5vhyNxDodD8+fP14MPPui3i/ZYlqXS0lLl5+frwIEDKioqUkpKiqZNm+bxeyg/P1/XXnttq+mz0rGRsgULFujiiy/2+jWam5v11Vdf6dNPP1VlZaUOHTpknzdzvM+RpKQkjR07VqNHj7bfPHN9raamJgUGBiowMND+/1JZWal///vfWrduXaf/fU6YMEFnn312q5GkIUOG6MILL/T4utKxv8svv/xSzzzzjN5///1u/TnQWQkJCfrRj36kjIwMe1tMTIyys7MVHx+vzz//XC+88ILX6d7HyzUzIDIyUu+++26bcSAde1N1+PDhmjx5cpuve/r27au5c+fqwIEDev311/XRRx9p79699jm6U6dO1RlnnNFqlLu+vl65ubk6cOCAoqOjNXToUA0ePFixsbF2LH/11Vd68803tXfv3uP6XseOHavbbrtNEydOtM/vKywstF/rJCQkaOTIkRoxYoT69u3b5s+JwsJCe7aK+/OmX79+GjhwoPr376+Kigr7a7R8c881cyMqKkoJCQn2DI6EhAQdOHBAy5cvb/cN2MjISOXk5Gj48OGtjnPPnj369NNPOzXFsz0Oh6NLbypmZGR8r+tdNjY2av/+/Vq/fr22b9/e7uu6ro5augQEBCg5OdmemurO9fp2wIAByszMVGVlpbZu3ap9+/a1+/cQEhKic845Rzk5OV0+nhONaGuHP0Tb92FZlnbs2KGlS5e2+06Fa+51ZGSkamtr7Q/p2A/vlr8opWNRlJ+fr/379+vQoUP2eTzt/dKMjo7W2LFjNX78eI8fCtXV1Vq/fr2+/vrrLo+exMXF6cYbb+zSOS3l5eXaunWrtm7d6hEICQkJmjx5ssaOHWu/89jQ0KB//etfevPNN7Vt2zYdPHhQJSUlHf6wGT16tH72s5+pvLzcY3t0dLQuv/zydgOosbFRK1as0N///ndt2bLFHi1xTX2orq7u8uhOaGiokpOTFRgYqAMHDnQ42hITE6PrrrtO8+bN04ABA+wVC1t+tPUCsLCwUMuXL9euXbvsbZmZmTrzzDM9Tv5OTEzUqaeeav+dW5al7du3a9GiRfrkk09UVlamefPm6aqrrmp1YrdlWWpoaFBBQYF27typoqIiHT582B7ZqK+v9/hFWFNTo3379ikvL6/VL9OkpCSdffbZOvfcc9Xc3Ky77rqr0yO10dHRuvDCC3XHHXd4BHp5eblWrlyp/Px8NTY2as2aNVq8eLH9hsnMmTN19913a8iQIUpKSlJ4eLjq6ursqVkbN27UkCFDNHTo0E6NKG3ZskWzZ8/u8B3koKAgTZw4UTNnzlR6erq2bdumzZs3a8uWLSoqKlJwcLDOP/98XX311Zo9e7b9Anrv3r166aWX9PLLL+vgwYPHHWttOXz4sP785z/rj3/8owoLC+3tMTExOuOMM3TWWWdp9uzZOuWUU7731/IXTqdTf/jDH3T33XertrZWDodDN998sx5//PFOrRhcUVGhf/3rX9q1a5f69Omj9PR0lZeXa+PGjVq1apVWr17d7sW6+/Tpo8zMTI0ZM8ZeYCgoKEhhYWEdTkeSZJ+vsnjxYi1btqzNn5upqamaO3duq+8pJCRE5557rsaPH99hpO/du1dvvPGGDhw4oPLycpWXl6usrEwlJSXtRsyJ4nA49KMf/UgXX3yxGhoaZFmWBg4cqOzs7FbnUDc1NenJJ5/UK6+8orq6Og0fPlyjR4/WuHHjNGbMGEnSwYMHtX37dvtj9+7d2r9//3G90E1KSlJ2drays7OVnJys6OhoJScnq0+fPurTp48SExO1fPlyj5AKDw9X//797Ws1NjQ0qKioSMnJyUpISFBTU5PHCKRrKmpYWJhCQ0OVmJhonz6RmJjo8f03Nzdr0aJFWrZsmb1Yi/uCLd6cdtppevDBBzVz5sxWzwWn06kjR44oICBACQkJXXpDp6KiQnv27FFISIg9i8Gb2tpaHT16VGFhYYqKilJISEi7X6eurk5ffvmlcnNzPUatExISNHXqVI0ZM6bdqd1Op1PffPONvv76a9XX1ysiIkKRkZH26K5r1ovrwzVd3jVK7JpmWlJSYq9J4Fr8xfX/zvX/LyIiwp7GeaJmL9TU1Ojbb7/VN998o0OHDik4OFgDBgzQoEGDNHjwYCUmJmrv3r3atGmTtm3b1uFrktTUVI0ZM8Z+U1Q69u+orKxMpaWlCggIUFpamtfTPqqqqrRt2zZ7zQHXCpiuj6ioKJ95E9Bvo83pdOrZZ5/V//zP/2jfvn3q06eP5s6dq0ceeeSErRJmerS5OJ1Obdq0SZ9//rlHRKSmpurcc889Ycv0Njc36+jRo/Y0Ddd0BNdHdHR0u/8wXD94a2pq7BGYuro6FRcXez1RPzAwUD//+c+/14qZFRUV2r9/vyIjIzVw4MB2j8+yLDU2NqqiokJbtmzRxo0bdfDgQcXFxSkoKMgOKde7niEhIfYL9ebmZvXv31+XX355p0+8PXjwoL744gsVFhZ6xKxrsYysrCwNHTpUR44cUVlZmX3elusjPDxcKSkp9jucru+tqalJ+/bt044dO7Rjxw7V1NSob9++9vly/fr1U1paWqfOFXL9InPNDy8uLtbevXvt6M/Pz9fu3bvtd76kYwE5bNgwjRo1SllZWT3+w9KyLBUWFiovL08FBQUaOnSoxo8f7/HLqqioSDfeeKM++ugjr48RFham7OxsjRs3TnfddZfHhZfb43Q6tXr1asXExGjEiBEn5PtxV1ZWpp/97GdaunSpYmNj7f+vffv2VVpamqZNm6bTTz+9zedgWVmZQkND230TpLGxUbm5uRowYEC3rM7a2NioTz75RIWFhZowYYLGjRvnEyeI96Y9e/boww8/1BlnnKHx48efsMdtaGjQ+vXr9dVXXyk3N1dOp1M5OTmaOHGiMjIydODAAdXU1CghIcE+t8p9iW/Xz0RXvLlG21yjwO7/tnfv3q3PP/+81YuzhIQEzZ49W1FRUdqyZYuWLFmisrIyZWRk6KKLLurS6qJtKSsr05o1a5Sbm6vc3Fxt2bJFqampmjBhgv2RnZ2tqqoqFRQU2B9HjhxRaGioAgIC7PNCy8rKZFmWgoKC1NDQoEOHDtlTOk877bTvfaztaWxs1Hfffafdu3drzZo1ev/997Vu3Tqv+yYnJ2vs2LH2dNLMzEz757C3sGlubtbixYu1evVqr48XGBhoX07H/Q00p9Mph8NxQn6OV1ZWqri42H7zyvUaoG/fvn57SZyysjJ9+eWXqqys1NixYzVs2DCfWiK/uy8zYFmW6uvrFRwc3OaKmg0NDdq+fbt9frT7z5DQ0FANHTpUffr06Zbj8zV+G23/8R//oeeee04XX3yxzjvvPG3btk3PP/+8pk2bpiVLlpyQJ/3JEm0uTU1NWrdunb777jv7RbO//BB0vdB2Dw3Xala+rqKiQkePHlVGRsZxP28bGhrsKCotLVW/fv18dsTB6XSqoKDAno5VVFSkiIgIDRs2TMOHD9fAgQP94kW4ZVl64403dOutt6qsrMy+3phrtKempkbDhw8/aX6ZAD3BtXhSR2/y4Zj9+/fr/fff1z/+8Q/l5+frtNNO09VXX63p06crMDBQ9fX1HY4Kufvmm2+0aNEijxG9tLQ0/ehHP7IvpwCge/hltG3ZskWjRo3SxRdfrL///e/29ueff1633nqr/va3v+knP/nJ9/46J1u0Ab3Bdb6Lv74AKysr08aNG5WTk9Mj1wIDgN504MABffDBB6qpqdHpp5+uyZMn+9ToEGAqv4y2Bx54QI899pi++OILTZs2zd5eV1enxMREnXnmmR4XOD1eRBsAAICn7p42B6C1rnSJz8xXWrt2rQICAjRp0iSP7a5V/U7EkrkAAABojVgDfJvPRFthYaGSkpK8XkAyLS1NK1euVENDg9cL8bWn5YXzfGF5YAAAAADoLJ+ZsFxTU+M12CTZy3l25QLEAAAAAGACnxlpi4iIaPOigq5rykRERHT5cVteUNo1dxQAAAAA/IHPjLSlpqaqpKTEvsK9u4KCAiUlJXV5aiQAAAAA+DufibaJEyfK6XRqzZo1Htvr6uq0YcMG5eTk9NKRAQAAAEDv8Zlou/zyy+VwOPTMM894bH/xxRdVU1OjK6+8sncODAAAAAB6kc+c0zZq1CjdcsstWrBggS655BLNnj1b27Zt03PPPaczzzzzhFxYGwAAAAD8jc9EmyQ988wzGjBggP785z9r0aJFSkpK0rx58/TII48oIMBnBgUBAAAAoMc4LMuyevsgelJXrjwOAAAAAN2hK13C8BUAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAH0a0AQAAAIAPI9oAAAAAwIcRbQAAAADgw4g2AAAAAPBhRBsAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAHxbU2wfQ0yzLkiRVVFT08pEAAAAAOFm5esTVJ+056aKtsrJSktS/f/9ePhIAAAAAJ7vKykrFxsa2u4/D6kzaGcTpdKqwsFDR0dFyOBw9/vWHDBkiSdq1a1ePf22YhecSTgSeRzhReC7hROB5hBPFH55LlmWpsrJSqampCgho/6y1k26kLSAgQOnp6b369SUpJiam144BZuC5hBOB5xFOFJ5LOBF4HuFE8ZfnUkcjbC4sRAIAAAAAPoxoAwAAAAAfdtKd0wYAAAAA/oSRNgAAAADwYUQbAAAAAPgwog0AAAAAfBjRBgAAAAA+jGgDAAAAAB9GtAEAAACADyPaAAAAAMCHEW0AAAAA4MOINgAAAADwYUQbAAAAAPgwog0AAAAAfBjRBgAAAAA+jGjrIU6nU08//bROOeUUhYWFqX///rrzzjtVXV3d24cGH/TEE09ozpw5GjRokBwOhwYMGNDu/qtXr9bMmTMVHR2tmJgYzZo1Sxs2bOiRY4Xv2rlzp+bPn6/JkyerT58+io6O1tixY/XYY495/dmzY8cOXXTRRYqPj1dkZKSmTZumZcuW9cKRw9fs2LFDV155pbKzsxUbG6uIiAidcsopuuOOO1RUVOR1f55L6Iyamhr7d90vf/nLVvfzXEJbHA6H14+oqKhW+5rwPArq7QM4Wdx+++167rnndPHFF+vOO+/Utm3b9Nxzz2n9+vVasmSJAgLoZ/yf++67TwkJCRo/frzKysra3Tc3N1fTp09XWlqaHnnkEUnSggULNG3aNK1cuVKjRo3qgSOGL3r55Zf1wgsv6MILL9SVV16p4OBgff7553rggQf0zjvvKDc3V+Hh4ZKk3bt3a+rUqQoKCtLdd9+t2NhYvfjiizr33HP1ySefaObMmb383aA35efnq6ioSBdffLHS09MVFBSkb7/9Vn/+85/19ttva8OGDerbt68knkvomvnz56u4uNjrfTyX0JFp06bphhtu8NgWHBzscduY55GFbrd582bL4XBYl1xyicf25557zpJk/e1vf+ulI4Ov2r17t/35iBEjrMzMzDb3nThxohUdHW3l5+fb2/Lz863o6Gjr7LPP7s7DhI9bu3atVVZW1mr7/fffb0mynn/+eXvbnDlzrICAAGv9+vX2tsrKSisjI8MaOnSo5XQ6e+KQ4WfeeecdS5L1X//1X/Y2nkvorHXr1lmBgYHWU089ZUmybrnlFo/7eS6hPZKsa665psP9THkeMbzTA9566y1ZlqXbbrvNY/v111+viIgIvfHGG71zYPBZgwYN6tR+eXl5Wrt2rebMmaO0tDR7e1pamubMmaMlS5bo4MGD3XWY8HE5OTmKjY1ttf3yyy+XJG3evFmSVF1drQ8//FDTp0/X2LFj7f2ioqJ03XXXaefOnVq7dm2PHDP8S2ZmpiSptLRUEs8ldF5zc7Ouv/56zZo1S5dcckmr+3kuobMaGhpUVVXl9T6TnkdEWw9Yu3atAgICNGnSJI/tYWFhGjt2rN88WeB7XM+dKVOmtLpv8uTJsixL69at6+nDgo/Lz8+XJPXr10+StGnTJtXX17f5PJLEzylIkurq6lRSUqL8/HwtXrxYN954oyRp9uzZknguofOefvppbd++XQsWLPB6P88ldMa7776riIgIRUdHq2/fvpo3b57Ky8vt+016HnFOWw8oLCxUUlKSQkNDW92XlpamlStXqqGhQSEhIb1wdPBnhYWFkuQxyubi2lZQUNCjxwTf1tzcrN/85jcKCgrST37yE0k8j9B5L730kubNm2ffHjBggN544w1NmzZNEs8ldM7evXv14IMPav78+RowYID27dvXah+eS+jIpEmTNGfOHGVlZamiokIff/yxFixYoBUrVmjlypWKiooy6nlEtPWAmpoar8EmHRttc+1DtKGrampqJMnr88v9uQW43HbbbVq1apUef/xxDRs2TBLPI3TeRRddpFNOOUVVVVVav369PvzwQ5WUlNj381xCZ9x0000aNGiQ7rjjjjb34bmEjqxevdrj9tVXX63Ro0fr/vvv17PPPqv777/fqOcR0dYDIiIidPjwYa/31dXV2fsAXeV63tTX17e6j+cWWvr1r3+tBQsW6IYbbtC9995rb+d5hM5KT09Xenq6pGMBd+mll2rixImqqanRvffey3MJHXrjjTf02Wef6Ysvvmi1yp87nks4Hr/61a/08MMPa9GiRbr//vuNeh5xTlsPSE1NVUlJidcnTEFBgZKSkhhlw3FJTU2V5H1o37XN25QAnHweeughPfroo7r22mv1pz/9yeM+nkc4XqNHj9a4ceP0hz/8QRLPJbSvvr5ed9xxh2bPnq3k5GTl5eUpLy9P+/fvlySVl5crLy9PZWVlPJdwXIKDg+3X3ZJZP5OIth4wceJEOZ1OrVmzxmN7XV2dNmzYoJycnF46Mvi7iRMnSpJWrVrV6r7c3Fw5HA5NmDChpw8LPuahhx7Sww8/rGuuuUYvvfSSHA6Hx/2jRo1SaGhom88jSfycQptqa2t19OhRSTyX0L7a2loVFxdr0aJFGjJkiP0xffp0ScdG4YYMGaKXXnqJ5xKOS11dnfLz8+2Ftox6HvX2NQdOBps2bWr3Om2vv/56Lx0Z/EFH12nLycmxoqOjrYKCAntbQUGBFR0dbf3gBz/ogSOEL3v44YctSdZVV11lNTc3t7nfZZddZgUEBFgbNmywt7muYzNkyBC/uY4NukdRUZHX7cuWLbMCAgKsGTNm2Nt4LqEtDQ0N1sKFC1t9/OEPf7AkWbNmzbIWLlxo7dixw7IsnktoW0lJidftd911V6trR5ryPHJYlmX1bjaeHObNm6cFCxbo4osv1uzZs7Vt2zY999xzOu2007Rs2TIFBDDoif/z+uuv29NFnn/+eTU0NOjOO++UdOy6SFdddZW978qVK3XWWWcpPT3dXtXt+eef16FDh/TVV19pzJgxPf8NwCe88MIL+uUvf6mMjAz95je/afVzpl+/fjr77LMlHbvm36RJkxQcHKzbb79dMTExevHFF/Xtt99q0aJFOvfcc3vjW4CPuPjii1VUVKQZM2YoMzNTdXV1Wrdund5++21FRERo+fLl9jWQeC6hq/bt26eBAwfqlltu8bgEAM8ltOX2229Xbm6uzjrrLGVkZKiqqkoff/yxPv/8c5166qn6/PPPFR4eLsmg51FvV+PJoqmpyfr9739vDR061AoJCbFSU1Ot22+/3aqsrOztQ4MPOvPMMy1JXj/OPPPMVvuvXLnSmjFjhhUZGWlFRUVZ55xzjrVu3bqeP3D4lGuuuabN55G359LWrVutCy+80IqNjbXCw8Ot0047zfrss8965+DhU/73f//XOv/886309HQrNDTUCgsLs4YNG2b98pe/tPbv399qf55L6Iq9e/dakqxbbrml1X08l+DN+++/b51zzjlWamqqFRoaakVERFhjxoyxHnvsMau2trbV/iY8jxhpAwAAAAAfxpw8AAAAAPBhRBsAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAH0a0AQAAAIAPI9oAAAAAwIcRbQAAAADgw4g2AAAAAPBhRBsAAAAA+DCiDQAAAAB8GNEGAAAAAD6MaAMAAAAAH/b/AWewXFlSyCHrAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "max_pos = dps.trace_maximum()\n", + "f0_list = dps.freq[max_pos]\n", + "\n", + "new_spec = dps.shift_and_add(f0_list, nbins=100)\n", + "\n", + "# Let's compare it to the original power spectrum.\n", + "plt.plot(ps.freq, ps.power, label='power spectrum', alpha=0.5, color=\"k\")\n", + "plt.plot(new_spec.freq, new_spec.power, label='Shifted-and-added', color=\"k\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].html b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].html new file mode 100644 index 000000000..5db9ad338 --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].html @@ -0,0 +1,667 @@ + + + + + + + + Dynamical Power Spectra (on real data) — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Dynamical Power Spectra (on real data)

+

Here, we use an RXTE observation of the LMXB 4U 1636-536 (e.g. Belloni et al. 2007). This source shows strong kHz QPOs, and this notebook will demonstrate how to detect and track the QPO frequency.

+
+
[1]:
+
+
+
%matplotlib inline
+
+
+
+
+
[2]:
+
+
+
# load auxiliary libraries
+import numpy as np
+import matplotlib.pyplot as plt
+from astropy.io import fits
+
+# import stingray
+import stingray
+
+plt.style.use('seaborn-v0_8-talk')
+
+
+
+
+
+

All starts with a lightcurve..

+

Open the example file. It can be downloaded from here

+
+
[3]:
+
+
+
events = stingray.EventList.read("SE1_7ceb190-7cec25b.evt.gz", fmt="ogip")
+
+
+
+

Let’s create a Lightcurve from the Events time of arrival witha a given time resolution

+
+
[4]:
+
+
+
lc = events.to_lc(dt=1)
+
+
+
+
+
[5]:
+
+
+
lc.plot()
+
+
+
+
+
[5]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='counts'>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_8_1.png +
+
+

Let’s see what the periodogram looks like:

+
+
[6]:
+
+
+
# Note the use of a power of 2 for dt. RXTE data can behave badly if we don't do that.
+ps = stingray.AveragedPowerspectrum(events, dt=1/4096, segment_size=1, norm='leahy')
+ps.plot()
+
+
+
+
+
+
+
+
+4296it [00:00, 13627.62it/s]
+
+
+
+
[6]:
+
+
+
+
+<AxesSubplot: xlabel='Frequency (Hz)', ylabel='Power (leahy)'>
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_10_2.png +
+
+

A QPO!

+
+
+

DynamicPowerspectrum

+

Let’s create a dynamic powerspectrum with the a segment size of 16s and the powers with a “leahy” normalization. We will use this to see if the frequency of the QPO is stable or it changes over time.

+
+
[7]:
+
+
+
dynspec = stingray.DynamicalPowerspectrum(events, sample_time=1/4096, segment_size=1, norm='leahy')
+
+
+
+
+
+
+
+
+4296it [00:00, 15818.78it/s]
+
+
+

The dyn_ps attribute stores the power matrix, each column corresponds to the powerspectrum of each segment of the light curve

+
+
[8]:
+
+
+
dynspec.dyn_ps
+
+
+
+
+
[8]:
+
+
+
+
+array([[2.86142014e+02, 2.21404652e+00, 4.49974561e+00, ...,
+        1.67625425e+00, 6.00745863e-02, 1.56656876e+00],
+       [3.08720461e+01, 3.72558781e+00, 1.50197819e+00, ...,
+        9.41301441e-01, 8.74504661e-01, 7.77072089e+00],
+       [6.55459927e+00, 2.47765550e+00, 4.84945565e+00, ...,
+        3.46383838e+00, 4.50184348e-01, 2.24257145e+00],
+       ...,
+       [1.39660007e+00, 8.01728092e-01, 6.49434961e-01, ...,
+        1.77991810e+00, 9.01248772e+00, 2.23014832e+00],
+       [6.64803568e-01, 3.67539077e+00, 8.14022349e-03, ...,
+        1.67739661e+00, 1.29050497e+00, 1.82808498e+00],
+       [1.56362131e-01, 2.62837187e+00, 3.48806670e+00, ...,
+        2.44281615e+00, 6.93147056e-01, 1.79838829e+00]])
+
+
+

To plot the DynamicalPowerspectrum matrix, we use the attributes time and freq to set the extend of the image axis. have a look at the documentation of matplotlib’s imshow().

+
+
[9]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)
+
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=1.98, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(0,2000)
+
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[9]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_18_1.png +
+
+
+
[10]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)
+
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=1.98, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(500,1000)
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[10]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_19_1.png +
+
+

Mh. Can’t see anything here. Let’s try to rebin data a little, to get a better signal-to-noise ratio.

+
+

# Rebinning in Frequency

+
+
[11]:
+
+
+
print("The current frequency resolution is {}".format(dynspec.df))
+
+
+
+
+
+
+
+
+The current frequency resolution is 1.0
+
+
+

Let’s rebin to a frequency resolution of 2 Hz and using the average of the power

+
+
[12]:
+
+
+
dynspec = dynspec.rebin_frequency(df_new=2.0, method="average")
+
+
+
+
+
[13]:
+
+
+
print("The new frequency resolution is {}".format(dynspec.df))
+
+
+
+
+
+
+
+
+The new frequency resolution is 2.0
+
+
+

Let’s see how the Dynamical Powerspectrum looks now

+
+
[14]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=1.98, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(500, 1000)
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[14]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_28_1.png +
+
+
+
[15]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=2.0, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(700,850)
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[15]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_29_1.png +
+
+

Something appears! It looks like the QPO is changing its frequency. Let’s now try to also rebin a little in time!

+
+
+

Rebin time

+

Let’s try to improve the visualization by rebinnin our matrix in the time axis

+
+
[16]:
+
+
+
print("The current time resolution is {}".format(dynspec.dt))
+
+
+
+
+
+
+
+
+The current time resolution is 1
+
+
+

Let’s rebin to a time resolution of 64 s

+
+
[17]:
+
+
+
dynspec = dynspec.rebin_time(dt_new=64.0, method="average")
+
+
+
+
+
[18]:
+
+
+
print("The new time resolution is {}".format(dynspec.dt))
+
+
+
+
+
+
+
+
+The new time resolution is 64.0
+
+
+
+
[19]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=2.0, vmax=3.0,
+           interpolation="none", extent=extent)
+plt.colorbar()
+plt.ylim(700,850)
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[19]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_37_1.png +
+
+

Now the change of the QPO frequency is clear. Erratic, but clear.

+
+
+

Trace maximun

+

Let’s use the method trace_maximum() to find the index of the maximum on each powerspectrum in a certain frequency range. For example, between 755 and 782Hz)

+
+
[20]:
+
+
+
tracing = dynspec.trace_maximum(min_freq=755, max_freq=850)
+
+
+
+

This is how the trace function looks like

+
+
[21]:
+
+
+
plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=1)
+
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[21]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_43_1.png +
+
+

Let’s plot it on top of the dynamic spectrum

+
+
[22]:
+
+
+
extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)
+plt.imshow(dynspec.dyn_ps, origin="lower", aspect="auto", vmin=2.0, vmax=3.0,
+           interpolation="none", extent=extent, alpha=0.7)
+plt.colorbar()
+plt.ylim(740,850)
+plt.plot(dynspec.time, dynspec.freq[tracing], color='red', lw=3, alpha=1)
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[22]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_45_1.png +
+
+

This method is, of course, prone to errors in noisy data. We’ll try to get better methods implemented in the future!

+

In the meantime, a Savitzky-Golay filter is often good enough to cut away outliers:

+
+
[23]:
+
+
+
from scipy.signal import savgol_filter
+
+plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=0.5)
+plt.plot(dynspec.time, savgol_filter(dynspec.freq[tracing], 4, 2), color='red', alpha=1)
+plt.xlabel("Time")
+plt.ylabel("Frequency (Hz)")
+
+
+
+
+
[23]:
+
+
+
+
+Text(0, 0.5, 'Frequency (Hz)')
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_47_1.png +
+
+
+
+

Shifting-and-adding

+

Shift-and-add is a technique used to improve the detection of QPOs (Méndez et al. 1998). Basically, the spectrum is calculated in many segments, just as in the dynamical power spectrum above, but then the single spectra are shifted so that they are centered in the variable frequency of the followed feature. This technique is implemented in Stingray’s Dynamic Cross- and Powerspectrum. We can apply it here, using the trace_maximum functionality from the +sections above.

+
+
[24]:
+
+
+
f0_list = dynspec.freq[tracing]
+
+new_spec = dynspec.shift_and_add(f0_list, nbins=500)
+
+# Let's compare it to the original power spectrum.
+plt.plot(ps.freq, ps.power, label='power spectrum', alpha=0.5, color="k")
+plt.plot(new_spec.freq, new_spec.power, label='Shifted-and-added', color="k")
+
+plt.legend()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power")
+plt.xlim([500, 1000])
+
+
+
+
+
[24]:
+
+
+
+
+(500.0, 1000.0)
+
+
+
+
+
+
+../../_images/notebooks_DynamicalPowerspectrum_DynamicalPowerspectrum_tutorial_%5Breal_data%5D_49_1.png +
+
+

Ta da!

+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb new file mode 100644 index 000000000..e0513bb3b --- /dev/null +++ b/notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb @@ -0,0 +1,812 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Dynamical Power Spectra (on real data)\n", + "\n", + "Here, we use an RXTE observation of the LMXB 4U 1636-536 (e.g. [Belloni et al. 2007](https://doi.org/10.1111/j.1365-2966.2007.11943.x)). This source shows strong kHz QPOs, and this notebook will demonstrate how to detect and track the QPO frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# load auxiliary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from astropy.io import fits\n", + "\n", + "# import stingray\n", + "import stingray\n", + "\n", + "plt.style.use('seaborn-v0_8-talk')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# All starts with a lightcurve.." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Open the example file. It can be downloaded from [here](https://drive.google.com/file/d/1frt_3ETYA0ehgHFiOhroBHUs3-mgw9OB/view?usp=sharing)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "events = stingray.EventList.read(\"SE1_7ceb190-7cec25b.evt.gz\", fmt=\"ogip\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a Lightcurve from the Events time of arrival witha a given time resolution" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "lc = events.to_lc(dt=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5EAAAJ9CAYAAACsI/byAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACiHUlEQVR4nOzdZ3hU1f728XvSC0kooSUEQui9B4ggRRAUEVCRP2KlqUdBBFRUUEQsz1EEAStgw44Vj4AICihdBFR6L6GXJCQhdeZ5ETJmkkmyZzJJJuH7uS4umT1r71mDKXPvtdZvmSwWi0UAAAAAABjgUdodAAAAAACUHYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYW4XIvfu3atnnnlGnTp1UtWqVRUUFKTWrVvrhRdeUFJSUp72e/bs0cCBA1WpUiUFBgaqa9eu+uWXX+xeOz4+XmPGjFF4eLj8/PzUrFkzvfXWW7JYLHnams1mzZw5U40bN5afn58iIiI0YcIEu30AAAAAgKuFyWIvQZWiSZMm6Y033tDNN9+sTp06ydvbW7/++qu+/PJLtWzZUhs2bJC/v78k6cCBA4qOjpaXl5fGjRunkJAQzZs3T//884+WLl2qXr16Wa+blpamLl26aOvWrRozZoyaNGmipUuX6ttvv9Wzzz6rqVOn2vTjkUce0ezZszVo0CDdcMMN2rVrl+bMmaOuXbtqxYoV8vBwu/wNAAAAAMXO7ULkH3/8oQYNGigkJMTm+OTJk/XCCy9ozpw5evjhhyVJt99+u77++mtt2bJFrVu3liQlJiaqWbNm8vPz0+7du2UymSRJb775ph566CHNnj1bY8aMsV731ltv1Q8//KB9+/apTp06kqQdO3aoRYsWGjRokL7++mtr2zlz5mjs2LH65JNPdMcddxTnPwMAAAAAuCW3G05r3759ngApSUOGDJEk/fPPP5KkpKQkLV68WN27d7cGSEmqUKGCRo4cqb1792rz5s3W459++qkCAgI0atQom+uOGzdO6enp+uKLL6zHPvvsM1ksFo0bN86m7ahRoxQQEKCPP/64qG8TAAAAAMokr9LugFHHjx+XJFWvXl2S9Ndffyk1NVWdO3fO07ZTp06SpM2bNys6Olpms1l//vmn2rZtKz8/P5u20dHRMplMNoFz8+bN8vDwUHR0tE1bPz8/tW7d2qatM2rWrGnz2Gw2a8uWLQoKCrKOnAIAAABASbJYLLp06ZLCwsIKXL5XJkJkZmamnn/+eXl5eVmnkZ44cUKSFB4enqd99rHY2FhJ0sWLF3X58mW7bX19fRUaGmptm33t0NBQ+fr62r32unXrlJaWJh8fn6K/OWWFyIiICJdcCwAAAACK4tixY6pVq1a+z5eJEDlu3DitX79eL774oho1aiRJSk5OliS7QS97tDG7TUFts9tnt8luX1Db7DbOhsiTJ0/aPI6Pj1fFihV17NgxBQcHO3VNAAAAACiKhIQERUREKCgoqMB2bh8ip0yZorlz52r06NF68sknrccDAgIkSampqXnOSUlJsWlTUNvs9tltstufOXMm37Y5r+kK2VNYg4ODCZEAAAAASlVhS+zcrrBOTlOnTtX06dN133336e2337Z5LiwsTJJspqFmyz6WPX21UqVK8vf3t9s2NTVV586ds5nqGhYWpnPnztkNnbGxsQoNDXXZVFYAAAAAKEvcNkROnTpVzz33nO655x7Nnz8/Txpu0aKFfH19tX79+jznbtiwQVJWpVdJ8vDwUNu2bbV169Y8wXDTpk2yWCzWtpLUoUMHmc1mbdq0yaZtSkqKtm3bZtMWAAAAAK4mbhkip02bpueee0533XWX3nvvPbuVgSpUqKD+/ftr1apV2r59u/V4YmKi5s+frwYNGthUVx06dKiSk5P17rvv2lxn1qxZ8vLysm4hImVtJ2IymTRr1iybtvPmzVNycrKGDRvmoncKAAAAAGWLyWKxWEq7Ezm98cYbevjhh1W7dm09//zzeQJk9erV1bt3b0nS/v37FR0dLW9vbz366KMKDg7WvHnz9Pfff+vHH39Unz59rOelpaUpJiZG27dv19ixY9WkSRMtWbJE3377rSZPnqznn3/e5nXGjBmjuXPnatCgQbrxxhu1a9cuzZ49W9dcc41++eWXAkveOiohIUEhISGKj49nTSQAAACAUmE0l7hdiLz33nv14Ycf5vt8t27dtGrVKuvjXbt2adKkSVq9erXS0tLUtm1bTZ06Vb169cpzblxcnCZPnqxvvvlG58+fV7169fSf//xHDz30UJ7pspmZmZo1a5beffddHT58WKGhoRoyZIimTZumChUquOz9SoRIAAAAAKWvzIbIqxEhEgAAAEBpM5pL3HJNJAAAAADAPREiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBAAAAAIYRIgEAAAAAhhEiAQAAAACGESIBOCQj06yT8ZdlsVhKuysAAAAoBV6l3QEAZUdCSrpunvO7Dp9P1i1twvXakNal3SUAAACUMEYicdVIyzCXdhfKvF93n9Hh88mSpG+2xio9k39TAACAqw0jkbgqvLZ8j95YdUDNwoIVUy9Ufx69qGEda2tA6/DS7lqZci4xzeaxmSmtAAAAVx1CJMqFr7cc149/n9RNLWvqlra18jw/+5f9kqS/jsfrr+PxkqQ/Dl9Q3+Y15OvlWaJ9Rfl09lKqUtIzFVE5oLS7AgAAUKwIkSjzziWmasKi7ZKkX3afUfdG1VQ50EeSdCo+RRUDvO2eZ7ZIJ+NStOD3Q/rz6EWNvjZK/122R5UDffT2Xe0UXtFfkrTrZIL+jo1XrybVrde9WlxKSVdahllVKviWdlfc2roD53T3gk3KMFv0wqDmGtaxTml3CQAAoNiwJhJuLS45TT/+dVLHLiTn2+Z8rimWF5JSJUmv/bxXnV5aqU4vrcz33Nd+3quFG45ox4kEPfL5NsXGXdbfsfGat+agJOnI+SQNmLtWj3/1l+77YLML3lHZsenQBbWbvkLtpq/Qt1uPl3Z33NqclfuVYc6a2vvykt0uu+6xC8n68a+TiktOK7wxAABACSFEwm1ZLBYNnbdRD336p258/TedS0x16PzZK/dJkuKS0/Nts3j7CbvHv9sWK0lavuO00q4Uj9l+LO6q2tZi9sp91mJELy91XTAqjzYdvmD9+6XUDJdc83xiqm6c/Zse+vRP/d+7G66qrz0AAODeCJFwW4mpGdp1MkFS1gfztfvPlXgfUtIzXXKdA2cTteyfk9p5IsFtw8C2Y3Ga+fNe7TiRtWb09xz/3qcTHAvwKLr1B8/rUkpWIN196pLLwilcJy45TX8cvuCynxMAAJQVrImE28odtR75fJu2Ho3TpBsay8+77BTDWfbPKT3w8Rbr46n9m+rea+qWYo/+lZFp1ms/79Ufhy9aR9Pe+/2QNk/uZej8pNRMTV28U/GX0/RYn8aqGxpYnN29quTeksZN7z1cteKT09V75hqdvZSqTlGV9fnozqXdJbeXlmHW138eV4CPp/q3DJOHh6m0uwQAcBIhEmXKB+sOq17VQN3VObJUXj/TbJGXp2MffGat2Gvz+OVlu50KkRaLRZO+/lvLd57S7e0j9OSNTRy+xv/+OqGl/5xS/5Zh6tu8hn7acVpvrjpg0+ZSaoZOJ6QYut4Haw/ps01HJUkp6Wa9d28Hh/sElEW/7z+ns5eyRug3HLygpNQMBfq67ldq/OV0pWeaFVqOilrNWL5H71xZb56QkqG7OlGACgDKKqazwmG/7jmjJ776S6v2nHH5tZPTMpScVvC0vS//KL0iLwPeWKuMK2skf91zRj1nrNJdCzbqYpJt4ZOk1AzrFLfdpy7ZPJeSbjvCZNTe04n64o9jupicrnfWHNSFJMeKrZy9lKqHP92qH/86qQc/2aL4y+n6accpp/qS7b21h61//2W3678eAHeVlOvnlCv3TN1w8LzaT/9Z7ctZUavsACn9u2YdAFA2ESLhkPjkdN33/mZ98ccxjfjwD8Vfzr9ojaN+23dWraf9rNbTftaavWfzbWe2WLTjRLxueXOt7nlvk85cMjZq5oikfNaf7TiRYA2Fz/+wUwfPJum3fef0ycYj1jbLd5xS62nL1Wbaz9qco+BKUeWu0FlY2M6WkJKuX3ef0d+xcdZjFou040S8fi3ijYD0TOcCMYD8zVqxV+mZWaH0v8v2lHJvikf2KC4AoGxiOisMi09OV7vpP1sfZ5otOpOQohB/+/swOmrG8r3WdWAzlu/RwpEd82378tLd+vNonCTXjgBky/4AZ88rP+3R0OgIHTyXZD22fOdpPdyzgSTpvz/tUXqmRemZmZr58978LlMiLBaL/u+dDdp5pUBRTnfM21jguaEVfPNUxI29eNml/QOQ14aD/958Ohnv+ptkAAAUFSEShv3v7xPWvfDs+WX3aX247og6RlXWg93qyWRybO3gtmNx1r9vPx6fb7sdJ2wD0W/7SrZq6+q9Z7W6gJHS/WcSrX9fd+B8kV4rNu6yzGaLIioHOHX+xeR0uwHSiBB/rzwh8vjF/PfrLGnpmWZ9teW4vD09NKhNuDwp0gEAAFAiCJEwxGy26Olv/7H73Ko9Z/TF5mNa+k/W+rrVe8+qY93Kalenckl20Wr7sXjVquRc6HInP+3IqupqsUgzh7RSWIi/zfNHLyQrvKJ/gWHd1duJVArwsXmcWcBNheJisVg09vNt+iHHHp9xyWka2TWqxPtS0i6lpCspNVM1QvxKuysAAOAqxppIGJLfyFtaplkPfLzFGiCzbT+W/0iiUTfM+s2p8yYs2m6zpUZJ+DvW+fd75HySBryxVn1mrtFfx+Osx+9fuMW6rcMrdtZF3TFvoyYu+svp13VU1//+oq//tC3yUdDIdHH5blusTYCUpNdKedpwSdh5IkHRL6xUp5dWav5vBws/ASinPt90VE989Zf+LmDGSlmVlJqhH7af0M4Tzs0gcVRahjnPensAMIIQCUN+3nXa7vGk1EyHqo3+sP2Epv2wU3tP21YsPZxjfWG22Djn19+t2pP/dFOjvt8WqxkGw0lRBvze/PWAth+L057Tl/TKT/aLaJzIZ11U7lAnZX0oKGrBm0PnkvK8p2MXLjscGs9cStHPO08rPtl1BZjm/rI/z7HkNNvN3i0WizYePK+tRy8W6bX2nLqkNXvPukUBoXfWHNDlKxV//9+y3aXcG7gDo8W1ypMtRy5o0jd/64s/jpX4zcKS8MjnWzXms626ee7v2uXkUgSjDp5NVMcXV6j1tJ/13u+HivW1AJQ/TGdFkdz+zvpC22RkmrXtWJzOJ6VpzGdbJUk//n1CPRpV08GzSRrXu4HNekh38cjn20rkdb7445j170Vd3/n7vnMavfAPeZpMeu++DooKDXTqOi8v3W1TOMiof2Lj1Tw8RJKUmJqh6BdWSpLqV6ugnx+91uF1svYcOFt4vxb8fkjTf9wlSZo1pLUGtgm3ed5isejLP47p7KVU3dUpUiEBeYtDbT58QUPeWS+zRbo3JlJTb25W5L4XRc7vkYIKP9mTaba4zZpRi8WiN1cd0Ipdp3V7+wgNja5d2l0qk5746i998ccxRUdW1sKR0fL18iztLpWI1Xv//RlZlBuN7mrFrqyK2Rlmi77aclxTbmpabK/13tpDunjlBt/LS3dreBfH9y8GcPViJBLF7pnFO3Tb2+t1/8J/7xqfTkjV55uPadPhC5r87T9KTs0s4Aow6tXle5SclqlLqRl6bbnzUzxz721p1LT/7bT+ffG2f6ec7j+TqDMuKOl/KaXwEc3f9p21BkjJ/lTXb/6M1RNf/61Xl+/VlO/tr/Vd8NshZQ+8frDusN02+89c0sgP/yiVtaFGxCWn6ea5v6vpM8vcZgrs/jOJeuWnPdp6NE5PfvN3vtvplGfJaRn6YO0hfb8t1ql1y4mpGdabT5sOX9Afh4s24l6mFEM1blcymy1a9McxfbzhiFIzivZ7Lc6FMzjsyXljKq0UZlucT0zV7lMJMrvpz08ABWMkEoWKjbusTzcedfr8ws51ZsSrrEtKzdCPf51UWEX/whs7IOeHgvUHi1YZ1hmbDl1Q5KQf7T7nis9+2VvAFCT3lOCjF/JWlF2QY+rW4u0nNHtomzxtjhmoRPvcDzsLHT22WCz6eedpJaZmqH+rMHl7lty9u2+3xuqvK+vGpv+4y+HiQ2azRUcuJCusop/LRrpyjx5dSslQoO/V9avo+f/t1GebskJgptmiW9rWcuj89FzfBxdZ0+Y23l93WM9fuZl2/OJlTbqhcSn3yD3tOXVJA99Yq8vpmbr/2ig9eWOT0u4SAAcxEokCmc0W3f524VNW4ZgWU3/S41//pTsXFLxXY3ny1ZZjhTcqonX7z1lDU0HiL7vmDr+R6ceL/jiu0Qu3aPyX29Xtv7+65HWN2n3SuRHlbA9+skU9Xl2l3q+tMTQKnJPFYtG4z7eq/fQVeuUn1nDmlB0gJemd1e4xQgzXmL1yn/Xvb68+UIo9cW8frj9sXeP9zhq+B4CyiBCJAl1ITiuX606Kw/oD5w2v7XRm9s6jX2xz/CQ38uryvfqnCFVsC5OakakRH/5h97nsKYPpmWalpJfs1OmZK/6dTnsiPkWHSmjk/fC5JJv1to5KSc/UTzuyCmodvZDs8HrdJ77+S99tO6Fzial649cDefYcRZYzl+wXzcpPbNxl/bzTfqGz8u58Yqpm2ymslZ/SmCrtqhtU5d3Bs4mFN4JLJaSk69Wf9mjOyn1FnmoNSExnRSF+/Ouk0+empGdq4qLtLuyNexs6b4PLrnUmIe8Hy/wqtBbE3W4AbD58wVp4x9XiL6db72znduPs3zWlXxM9+MmfupyemWda7OebjmpIhwiHCv+szKdicW4nc/1/23EiXnWdLHjkiLGfby3S+bnXeTq6PuvLP2wrByelZii0gm+R+lQUp+JT9Ommo6pXNVADWocXfkIhZpbCtjJnLqWo76w1upTiunCUabZo69GLqhrkqzpViv/rsijeX3vYUDuLxaL/fPKnlv5zSl0bhOrD+6Ll4SaFpRyRaS79qtAoP15ZtkcLNxyRJJlM0sM9G5Ryj1DWESKRrzOXUvTs4h1On7942wn9rwgh9Go1dfEOu1t3OCOpDBQsSs8068s/jsnDZNLgdrXkVQxrBnedTNAd8/OfOjzpm7+VlJapjnUrq2nNYHl4mPIEzZwVTnedTMh31NOoTLNFO08kKKKyvyoG+OR5ft2Boq1pNTKt92ryyOdbtfHQBUlSpQAfXduwapGul/vmQElYveesSwOkJP132W69s+agvDxM+uL+zmpXp5JD5+8+laCVu86oe6OqahZWPDeIsi2yMyV+w8Hzev5/O7XjRILeuaud+jSroTOXUq17F/+275z2nL6kJjWDi7VvxeG7bScU4OulFwe1KO2uoBzIDpCS9PrKfYRIFBkhEnbtOBGvfrN/L9I1Vu6+OqdcFVV+lUDLq7m/7NfrV9YRXUhK00M96luf230qQc8t3qlWERU1vnfDAq+zdn/RtkfJLoZxb0ykJvZppH1n8p9u9cvuM0V6LUmauGi7vt0aqxB/by19pGueIktfbXHNjYTy4LkfdmjRH8d1fdPqenVwqwJHlfadvqR1B86rR6Nqql0lQIfOJWnA3N+VkCN8LdpyvMghsjQUx1Ts7PVoGWaLFvx+UO3qtCv0nGMXkjXywz90Iu6yLl2ZMvrGr/u16eleqlDCRZIe+2q7jl3ImnFx/8It+nx0J4WF2H4v5d5Htiz5dONRPdGnsd1tiABnObpNFGAPayJh1wcGpw3lx9G1KO+tZaPjosq9HtPfu2zsG/d6jkIUM5bbVlbtO+s3rT94Xm+vPqBvtxYcqh79wjVTpz9Yd1jjC1h/mp5p1mk7040d9e3WWElZ03A/Wn9EZrNFp+JTnNryoTSt3HVaXf/7i4a8s75Y1j1eSErT+2sPKzE1Q99sjdWe0/kXC4q/nK6Bb6zVs4t36Ja31iklPVM9Xl1lEyAlaa+TW9gU5JY316n7K79q3YGi3cwoScdyVS4+aGAPVkma/9tB7Tl9yRogpaygduS8c+t9zWaL3l1zQI8t2q69Bfz/tSc7QGb70uA64B0n4jVx0Xa9v/aQ3e+5TLNFpxPc4/sxhfVrcMKFpDSX33j6ZXfx/rxH2UKIhF0HirjofY4DxQ+ksn2n2B1YLBa9mmtrCweW95WYjQcvFPihLOcyvPRc+5a9vmKfSsryfAqXnLmUos4v/aKP1h+x+7yz3l59QFFPLVGnl1bq3vc3223j6j3j4pLTtOyfUzoZn3fd7LJ/Tur6mWsMXWf6j7t07MJlbTx0QQud+HfJbyuVSynp+mnHKe3JFfgK+nfYdTJBSVd+lpxLTM13Su/+Yijqse9Mog6fT9ZLS0q+Em2iE1Nck1Iz1H+uc7NNllyZKlpUqRmZSs3I1M+7TuvFJbu1aMtxXT9zjZb94/wyCKN7Do/5bKu+2nLc7jY9SakZ6jtrjTq+uFKPfL7N6b4Up2MXkjXth536aP1htwi6cC/v/X5IbZ//WdEvrNA+B2/MFOT5//37897VvwdR9hAiUSxKY+Piq9VXW46r9bSf9Xuu6ZzJaZlFvhngast2nNInOfYNzR0UczLn+mDkTGEhV/t+64liv/u6eu9Zu8Eut6JUebVYLBryzgY98PEW3fD6b4rPFcwmf7fDcFGmnP1wpmro4LfX6+a5v+udK9sh7D19SVuOXNR972/W/Qu3FFiw6tC5JG06dMFaBMjoZ+mISoXvz2o2W/IUFzLibwcrEOde4+joVipS1preBxZuceicPacvFctm9plmi+HN4xtNXqZmz/yk+3P1/YGP/7RW78zINOu93w/pjV/3GwqI55OMfX/mHHVdvtM2FP++/5x1Ovvi7SdKvKKzEY99tV3vrT2kZ77fYV3/mdPltEyt3X/O4eq/KB9eXpp1MyshJUNvrz7oshsNRf15j/KFNZFAGVdQBdzJ3/1Tgj0xZsbyPbqxRU0Nm79RBwpYd7huf97CMsOLWMymKLYdi8t31Cy3N37dr7a1K6lzvSpOvVbnl34ptM17vx/S8wObO3X9i8np1mmhccnp+nzzUfVpVkORV6rGlvQ0pb+Ox+uv4/EK9vfWk9/8beicLUcu6PZ3NijTbNGornX1dL+mssixD0qpGZl68cddOnguSeN6NbQWlfnz6EWN/PAPmS0WvXNnO3WMcu7/oz2r9561edymdkXr381miwa9uc6p6y7bcUqnE1JUPdjP5vjFpDQdvZCsZmHBNkWrHPlQmWm26Ms/jik906whHSLybbdqz1n93zsb5O/jqQ+HRxsqZpORT+DccuSioqpW0HtrD+lFB0Z3Nx++qIvJaYbbS3lvPsTlOj+/PpamDQcvWP/+xeZjurFFTZvnh3+wWesPnlfFAG+tGN+tVCsjo+TlvJH/9Z/HteFg0Qq1wVam2aIZy/for+PxGnVtlLqVwTX2rkCIBFCiLian6+stx7XrZEKB7f6ba3quJG03uA9ncZj83T/qEGmscuUrP+2Rh0l66sYmeZ7bfybRJSMbmw9fKLxRPnIHiJeW7tZLS3fr7TvbqW/zGnbPOWxnvdtxg6HaqOd+MF4Nev5vh6wjhfN+O6Sn+zV1qBhR7uJhZy+latm4ayVlbd9xISkrSMz4ea++vL+z4esWJvd62+xtZd74db9esfM174jcFYVPxF3OGmm+nK7+rcI0Z2gbh6+5/sB5m9Hgg2eTdPaS/ZsM2f2/lJqhG17/TYdf7ufw6+XmSIDMlntWxp5TlwqsOmu2ZO3D+9OOU7qtXS01CytblVxz/39PzcjU+iuhIS45Xb/uPqPB7fMP/yj/3G27r7Juzd6zenNV1uyZnScT9OeU3rqUkq6zl1JVNzTQoe3CyjJCJIrN32wxgHzMWlH4HnuFhcyStutkgqoGGb+bb7ZkrRfMbdaKfVr0R9Errzoz1bIwD3y8RX2b2Q+R7645qInXN5KP17+jWXNW2q59Luo09pR04+fbm877zZ+xhs/PvcZ2d461lznXyG06dEGJqRn6eecpRVYJVJvajm2Bkdv5pLyjZBaLpcgB0p4ftp9Q/OV069/9vT30n+71rSPORoz57E+bx45Ujz56PlmbDl/QpZR0p6pOL/jduYJrl3OtsX/q2791Y4sa2nz4oqYu3qHwXNOZD5xJ1KYrN2U+Wn9Ej/Vp5NTruovcI6uOFroDyrvf9p1V/OV09WlWQ95ObCuWvV2UlFXA6PC5JPWf+7supWRo9LVRdm8gl0eESBQbd1jDBveUVEYLKa3JNRXRWa64K7zvTKIupaQryM+29P+ZSyl6Z/VBp6+7bEf+RVNOxl+22ZD+i1yVMPefSVSm2aJ/HFwXWFwKGq3Nr3iSPRO/3K5lO07JZJK+fjBGbYsYJHMrbGbp7W+v12tDWjl83dzTkr/847iOXbisz0Z3cuAajk0NzWnYgg15qqc64v8tdV2Roh0nEvT8/3YqNu5ynu+/hFzrUHOHUHuS0zLk7ekhb08PHTibqH2nE9W1QWih58VfTlewn5fNSEVccpoe/WKbzQdTR6w/eF49Xl2lPs1qqFNUZZsbPQXZddL1VYqLKjktQ2/+ekAWWfSf7vUVWMJbxsB5aRlmrdl7VjVC/NQ83NiesRaLRS8t3a2fd57Wbe1q2WzxVVy+3xZrLZh1/7VRetIFge/TTUet69vfXXOQEAkApSE90+zUncGr0Ws/79Wz/ZvZHHs2n0IbJeWrLce0clfR99HMT/YWkbtzVW2d/1ve4Oyq0b3sYG2xSJ9vOuryEFmYTYcvqMv/+9Vw+50nEnQ5PcNuOF3vwNqoohbjKEqAlFxboM1ssejoBddMv/5ua6wmLtquCn5eenFQC437YpvSMswFTpm1WCwa9dEWrdh1WjH1qujjER2t+51+vOGIft2T/w2q7cfidH0+MwSyHTqXpLdXH9DbVwpUGVEcsxmK6vWV+6w3wdIzLVfNh/Hy4NnFO/TZpqMymaQvRndWdN3KhZ6z/0yi3r2yV+0rP+3RnR3rFPueqG/++u/3yDtrDurJG5soLcOsD9YdUlqGWcO71FWAj2PxqCiF7soyQiQAt9Ls2Z/0bP+mpd2NMuH9tYfzhMjSDJBSVp9iLxbf+htfb0+71T/tTR0uDhedrGi6/VicXl3u+imrOQ2dt0GdoqoUujZ06d8nlZpRcEBb+vdJPfjJnwW2KU6PffVXib1WYf8Wub28dLcyzBbFJafrPzn+jbYcuZjvOSfjU7RiV9bo97oD57XvTKIa1QiSxWLRkr8L/p4d89lW7Zl+g0N9dFcn4y9r6uIdNoWBcso5i+JqGtEpq7JvNJlMJn226eiVY1mF3woKkdlFzXJWa5ekn3ae0pmEFN3cKly1qwQUS58P2Vnf/+6aA3p1edYymwtJ6XqGzyCGECIBuJW0DLOe/tb9qsqWJ0UZgcjINGvmir3ad9p+Zd38igbduWCjJvdrqi83G9sMvjgdPu/agkBGTPn+n3z3rXSV4xcvGyoulF84zB7dzTRbSjVAFlVBWwfZk3vEtbDzTyU4vlQjd/Gby+mZmrF8j+b/dkiXCym0lZph1uFzSQ6tZc1p8+GLWnvgvFqEh+jhHvWtI6CutO7Ktig3twpTpUCffNu9tnyvftphfCq5xWLR0n9OKeFyuga2CZeft6crugsX2Hf6krq9skrJaZmaPbS1zXMncm1TZbFYdOhckqoE+iokwFs/bD+pD+3sM/n4lZtH3/wZq5UTujldoCYtw6zvtsbK38dTN7WsWeh1ZuVYI//e2kOESIMIkQBQxlksFj3z/Q4t3FDw5s/Ld5xS76bVteRv5zZz33DwvPx9vPTGr8anzGU7duFynv0AnXEhKVVPu+HWNTk9+/0/Gn99I4X4/zstK78AeTktU8M/3FxSXStU5KQfNahNeGl3o0i+/jNvkHbkxsHXuQo0xV68rEY1gorUp9y3bTYePK85v+y329ae3/afczpE/njl+/3nnafVIjxEPRpXc+o62SwWiz5af0Rbj17U3TGRslgsumP+RknSil2ntXBEx3zPXeRABeXs9tnBYvepS5p6c7NCzih9e05d0jtrDqhe1Qp6sFu9fEP7/N8O6p01B9UhspJmDmktX6+8AfliUpp+3nVaTWsG211naDZbFBt3WeEV/Z2+OWCxZF2jZoi/PB24Rob53ynid8zbWGDb137eqzm/7FeAj6e+e+gaLS9g7b0kHTyXpAyzRd6ezr2nGcv36J0r02TjLqfrrk51Cmxf1G18rtY9MwmRsCvJwKbOANzD4fPJhQZISRp9JcQ5u2fcE1//rUCf0h0J+O+yPXnWQ5a03PsI5vbh+iPy9PAwdDf7bzcpQpTTt1uNV7l1R/aKAU1x4MZD7oJEiS6obvphruq0LzlYNMjeFG5n3PfBZr1zVzv1KWSNZUH+OHJRzy7O2o5n/cHz6pkjlOasbOwKb63694bVB+sOOxwi956+pINnE3Vtw6oOr3Nz1oRF2/RPbFZ18ajQQN2Qaw9PKev/Z/YU/CV/n9KgNufUu2n1PO1GL/xDmw9flLenScvGXat6VStYn8sK7xu04eAFtaoVoq8fjLHZC9aoER/+oV92n1HjGkH67qFrXDLam/umWfYNk+S0TL2/1ljV5T2nLun4xWR1a1hN/g7+3skOkJI095d9hYZIOMctq1e89NJLGjx4sKKiomQymRQZGWm33eHDh2UymQr888knnxhq37y5/U27N27cqF69eikoKEjBwcHq27evtm3bVgzv2r3YK0MPwD05WsI/94dkh16rkMqVh88n61IxbilQ2gHy552n1Xraz4W2e8/gByVcHZzZ4qS4PPO9/UA96eu/lJpR+A3k33MExdMJqfpsk+0U9ReX7HI49G46dMFuIaeiVLLefSpB/Wb/pgc+/tNajbMkZAdISVq8/YTdNuZc7/Xg2X+XB+RcErD5cNY62/RMi378y3YGyZ9HL1rXlm4/Hq99ZxKVmpHpUEGsM5dS9MvurEJou09d0rjPt2nG8j3WfXKLwx6DP8NvmvO7Hvj4T01YtK1Ir3c6wfnfd8Xl6PlkDZu/QcPmb9DRUlhe4SpuORL51FNPqXLlymrbtq3i4uLybVe1alUtXLjQ7nMPP/ywLl++rD59+uR5btCgQbrllltsjlWsWDFPuw0bNqh79+4KDw/XtGnTJElz585V165dtW7dOrVo0cL4mwKAYpCSnqmrZF/jMquoVU5RvAqb6rrv9CW1q1NJJ+Mva8KX20uoV8XndEKq9p/Ju6b5883H9PnmY5rcr4lGdo2SlFU902yxqGF149N5311zUL2bVleHyKzCKslpGfp049ECt+u4/Z31eryva/fn/OqP40rPzPreK63phrnDYkHSM8267/3NWnvgnP6vQ4ReuqWlzfPJV27gbT16UV9c+X+V09urD2jJ3ycVUdlYQZoftp/QmM+22hxbtuOUlu2Q1h84r68ejDHcd0ckpmboz6Nxhtsv+fuUnvr2bz1zU9NysyZ25oq9Wrs/q1L2rBV79dqQ1qXbISe5ZYg8cOCAoqKyfoA1b95ciYn2CzgEBgbqzjvvzHN8/fr1io+P12233abQ0Lz7NrVs2dLuebmNHTtWPj4+WrNmjcLDs9aI3H777WrSpIkmTJig5cuXO/K2UM78p3s93dqulq6bsbq0u4KrWOMpyzT3jjal3Q0UIPuDLMqmV37ao2+2xmqTk/s4ulp2FcyieGlJ/tWMp/+4S8Ovqasl/5zUw59mhYz/3tZSt7eP0JlLKTpsp7plbgfOJFpD5MtLd+sjO0VUcvvvMserF3+0/rB+3X1GQzpEqG9z22mjzlZSdqVTCala8PshtY4IUbs6BW958eeRi/p9f9Yo72ebjtndv/BiUpqGvLshT6EmSfp+W9ao58GzxrabKOiGyB9HLurv4/FqUcvYfo+O2JtPUbaCfLrxqFqEh2hodG2X98cZ+RWQMyrnkoFvtsYSIl0pO0A6a/78+ZKkkSNH5tsmJSVFZrNZAQH279js379fmzdv1vDhw60BUpLCw8M1ePBgvf/++zp16pRq1HB+XYG7MpstRZrudrVoWauizfoEoLQ48+ELeb275oB2nEgovKFBZy+lqmqQc+tP4T7OJ6XpvBsEyEyzRW+t2m/diqAoVu4ueC/Xyd//o/UH/t1T9PGv/lLd0EDdMW+DwzdFjARIZ+w/k6hnvs9am7lm3znteK6a241UbT8Wp+3H4uTpYdLyR68t8DND3GXb0GsvKO49fcnucWcUtg9r/7m/K7SCr5qFBeuNYW312cai37woiie/+Vszlu9R64iKmjO0rcPrJF3pt3357+t6NXHLNZFFkZiYqC+//FJ16tRR79697baZMWOGAgICFBgYqIiICD3zzDNKTbUNTZs3Z1XL69y5c57zO3XqJIvFoi1bnKs0WLNmTZs/DRo0cOo6xeU/blra3der3H25Ai7hqk3Ur3YvLtltvZvvCs5WwQXseXbxPy4JkEZ8uvFong3Ux3+5zaEAeTktU8lpxbc+Ouc6wkyzRQ9/+qfNek2jklIzijyyVJhMs0UrdxVtSm1KemaJ7wN8LjFVq/ee1RNf/6UXChi9zs/Gg+f1y27XTSU+l5imFbvOaPnO0tsP+UxCig4UMtq76I/8t7IqyhZb7sYtRyKL4osvvlBiYqImTpwoDw/b0OHh4aGePXtq4MCBqlOnjs6ePasvv/xSzz//vNavX69ly5bJ0zPrzsaJE1kfJHKOQmbLPhYbW7Yr2OVnWSGll0tLx6gqWrOXuz+uEuTnpUspxfcLHrjanUtM1Zur9muxC4Mprk4p6Zn6eEPpjgQdu2C8yM3UH3Zo0jd/F/k1HRl1W7HrjNbsPaetz/QucP2lzTk7T+vBT7bIy8NDHw6PVnTdgqec2mM2W5SWaS50FDRnAP/yj8K3OsnIFdhLszhT7qI+RkRO+rEYepLlsa/+Ur8WNfXubweVnJqpEV3qFrg/6fP/26nujapap1gXxfzfCy+a9thXf2n3qUt66sYmebZNyXnzo6wrdyFy/vz58vDw0H333Zfnudq1a2vlypU2x0aMGKHRo0dr3rx5+vzzzzVs2DBJUnJy1p19X9+8U5H8/Pxs2jjq5Enbb8aEhASFhLh+3jmKl6932R4ZXTupp1pOZV0vUFwc2QcQ5ZPZbHFJ4avirJZZHFLSXTPlMj/5VX9NyzTrXGKqAn29tDKfETCz2WLdU/GVn/YoPdOi9MxM/XfZboeLyXy3NVbjvtgmSXp+QDPd1Tky37Zbj8Yp02yRxWLRU98WHrA7vbSy0DZXq7QMs+o/vdT6+OiFZA3vUld+3h5qXCM4T/sFvx/SgnzCn731wVuOXFCrWhXtbpnylcG9Thf8fkjXN62ujlFVrMcyzRZtcIOp8a5Stj8F57Jz505t2LBBvXv3Vu3axhffPv3005KkH3/8965J9lrJ3NNcpaz1lDnbwD01D8/7g2RI+whFOblhc26uuKNVmoL9vPMc+2J0p1LoCQCUT1FPLVHdJ5cU+TrZBVeudinpmbrh9d8U9dQSzVyxr8C2cbkK65yKT1GfmWvU8rnl+nZrVhDYc/rf7Sb+OHLR4f5kB0hJmnJlfWZ+Vuw6rReX7LI7JfhyeqY+NrDXL+xbvP2EBr6xVn1n/VbgVFJ7cu4pme3Wt9brSReMpO87k6i3Vx/Qve9v0i+7T+u5H3Y4tGetuytXIXLBggWSCi6oY09ERIQ8PT117ty/P6TDwsIk2Z+ymn3M3lRXlI7H+jRSh8hKNsdeGtQyT7s6oQF6vG9jl7xmBTvTZXy8PFTXRSE1P2EhfsV2bRN7RQCA26lGgSZJ0uyV+7TrZFbxq+z/5nYkny1bPlp/WHtOX1Jiaoam/8/x9X0/7Tilhz75U99vy38pU2Hr3fIbDZu1Yp9+c2I9J/J6c9UBl1xn0Zbjavv8z1q4/rDT15i6eIdeXrpbq/ac1UOfbC22IlOlpdyEyLS0NC1cuFBVq1bVgAEDHDr34MGDyszMVPXq1a3HOnToIClru5DcNmzYIJPJpHbt2hWt03BIpYC8I2fZalXyl0euANSkpv19rfo2r6FhHYunTHSVQB/9MqFbsVw7W+vaFYv1+gAA9/LrHuoBSMYCwt3vbbJbKGddjmqz5x2cHpyYmqH7F27Rj3+f1COfb9Op+BS77Y4Y2P4ExSt3QaiiuJCUpmcWFzzCXJCMHDcVLhdz8abSUG5C5OLFi3X27Fnddddd8va2HzbOnz+f55jZbNbkyZMlSf3797cer1+/vtq3b69FixZZi+xIWQV3Fi1apJ49e5bL7T3c2a1taxX4/G3t/n2+be2suey7n+9rt+3Q6NrKXuscU6+KPrivg96/t4NL+lmWRvNcNbUXAAB38fz/djp97uW0TFkstiOKuSstHzqXZDcwlqfKm8hi4X9pvtyysM7ChQt15EjWkO/Zs2eVlpam6dOnS5Lq1Kmju+66K885Rqayjho1SgkJCYqJiVFERITOnTunr7/+Wlu2bNGAAQN022232bR//fXX1aNHD3Xt2lVjxoyRJM2ZM0dms1kzZsxwyXuFcdc2rKpPR3bUHfM35nnOz9tTN7aoqSPnk3X0QrIe7llfkuRtZ1G0JDUPD9FXD8Zoz6lLuqF5DVUMyL+qV3k2sU+jArd0qVXJX8cv2q/Id039Ktp98pLDd3QBAChOnzi5p+HrK/bp9ZV7Va9qBX15f2drxc8Pc1VGHTZ/Q76fLwBHxV9OV4h//rPt3JVbhsgFCxZo9erVNsemTJkiSerWrVueEHns2DEtX75cMTExatKkSb7X7devnxYuXKh3331XFy5ckK+vr5o1a6Y33nhDDzzwQJ4tQWJiYrRq1SpNnjxZkydPlslkUkxMjBYtWqRWrVq56N3CETH1Q9WrSTWt2PXvRsmhFXzVKaqKvD09NLFPI8PXalu7ktrWrlR4w3KssF+Cc4a20aA319l97pORWUV47n1/k1Yx1QoA4Ma2HYuzeWxv+5CZK7L24dx3JlHfbYvVfdfUlSSdTrCdvmq2SKkObD+Csu3nnad19EKybitkRpyz+s3+TSsndJOvV8HbxLgbtwyRq1atcqh9RESEMjMLn2s8YsQIjRgxwqFrd+7cOc+2IFezL0Z3UoPqQWr7/M82x1c/1l3dXllVIn3IvefOivHXlsk7OM5yxXSZ1hEVDbXz9vTQ/7u1hZ74Ov8qZa/c1kqfbzoqs+XfX8A59WpSXSuKuMkyAACuNMvO76ucnvthp+7uHJnnM0dBzl7KW9E/t9yBFK7n4+Xh0B6jhRn10R+SpE2H8i6Lc4XjFy9r98lLamXws5m7YCweDukYVUWV7WzoWqdKya2tG9Tm3ztBrSMqlshU1Ja1QpwOqg78/jHkpx1FC2StaoVoyk35j9jnNqB1wVWIqwb5asx1DXRz6zC7z4dX9FPjGvaLHAEAUBqMFOnZcSJeGZlmnUs0tmzjbTvbReTW/dVVhq4F5/kU01Tjon7+KkhyWtkrvEOIRKkaGm2sSuqILnWtf7++aXVNuamp7uhYWzNuL/5pxV0bhGrxw10UXdf4vpATeje0/n35o9fmeb6KnSCek5+3h3ZO6yNfL9d/i37/cBe1q5P1Xvy9badOOHLH1ahb2xXP9I/S1KNR1dLuAuAy79/nmqJiQHlzPjFNjacsM9x+zV6WdrgDcxmshvPpJufW8ZYmQiTcXueoKprc79+RMw8Pk0Z0qasXB7VQvaoVXPpaXRuE5vtceEV/w9cZc10DrX+yp3ZO66P61WxH4TrWrawtU3rrmvpV8j2/RrCfAny8NG1AM8Ov6Yy2dSqqTpUAa7/sjTLb82ivhoU3uqJlrYrOdM2tjeoaVdpdAFymvot/jgLlxYRF2222aUDZUJxVcnNX7nWVH7afKLyRmyFEwu2FV/IvsW0zgv3yn7I6rGNt+XlnfcsYGUGtGeKvAJ+sZceTbmgsKWtqa3bl2Ls6RVrbXt+0us252esqqgX5Ge+8EwJ8vLTskWu1ZGxXfTyyo6Fz7upUR2Ovq1+s/TKqtEYES2sblyY1g0vldQHganSB6uNlUnEWPbqYnF5s1y5r3LKwDsqmbg2ranU5nsrRoHqQVj/WQ7Fxl9UyPMShc++/Nkpd6ocqyM/Lun60T7Pqev3/Wuv4xcsaGl1by3f+W6woe/1l53pVVK9qoA6cLb4NjP19PNU0zHg4qVc10G32wswO6cVlaHSEPtt0rFhfw4jujarqwW71FBrkq+tmrC78BAAAgGLESCTyqBhgfzSuRnDBo2L/va2lHuxerzi6VGIKy0bVg/3UtnYleTm4aNtkMql5eIhNASKTyaQBrcP1UI/6eaaRNrsSUv28PfXl/Z1tnruxRY0C+z9tQDM91MO9/j9UK+Rrxx11qR+qh3s2UM2QvH0vhqWjBRrXq6E6RuU//Rkoy964o21pdwEA4CBCJPKIqWf/w2r2lExJ6t/q30qc2esIqwf76Ym+jfOcV5bc1LKmw+c0qv7vmsd+LRw/31H9W9qvgipJHiaT7u4cqcf6NFZTN5r6OPyayGK5bkTlgGK57ry72+vjkR3zXQcbZWcNWf1qrCsDnNE713R+AID7I0SiULe2raUtk3tpYJt/t3oY27O+GlSroMgqAZp4faNS7J1jvAoZQrq+aQ091sex9/PkjY0VXtFfrWqFaETXuoWfUIza5NhjKLtfjshdrTXAxzPPv1l4JceDW/dG1fTZqE4FtqlVybG+Bvl5aWh0RLFUsC2MvS+j9nUqlXg/yoviKseOkvds/6b5Pteylv1lAD6l8D0MACgafnKjUI/2bqAqFXxtjjWoHqSfx3fTqsd6uPXmqB4mKSo0awqpyST1aFSt4PYeJj3Uw7GiMd0bVdPaST31/cNdVDPEsSCUU3Y/pbyFdowwmbKqwmbr2qCq1k7q6dA1aoT46f86ZAWzQW3CVTc0UF6eHhrbs778vD3UrWHVAivYFqRzPiPcjnqgWz2tGH+tfn+ip+pUCZRfruCb2zX1q2jDk9flOd69UVV1ijK+bUtOHiaTwnJNcy3OdaKRVYpnxBVwtebhIfn+Tujk5JTsnDNEHNlqCQBQfCisgwI92quhajkx8uQuTCaTPrgvWt9vi1Wb2pXUoLrjm943d7CIjrNevKWFZq/cp/rVKujm1vlPWbVnydiuCvT1tFlz6ayXb22pl25pYROKxl/fSI/2bugWBXXa1K6YZ9uUglTPp8Lt23e208cbjmjDwQsOvX7z8GBVDPDWhOsbacKi7ZKkFwY11z+xCQ5dxxG+XgUHZcCddKpbWduPxeU57uyU77l3tNWA1qe19/Ql3dauljq+uLKIPQQAFBUjkSgRhU0jzalVrilPRR2FqV0lQGOua6AuDoygPXlDY5lMWcWEhnUsfDsPV+gUVUWfjuqkaQOaFxoack4La1i9gpqGBbskQGazFxZdESCjI4s+itCzccGjybnd2blOnmMf3NehwBHMJjXzD6mfj+4sk8mkW9vV0uKHr9G3/4nRHdG11c7gdNbb29cy1O5qUoeR1lLl5enam0P5VU2+sQhrxns3ra6HetRXdTtFun5/oofT1wUAOIcQiWI38fqGusvOB/n8jL++kUZdWVtYNchXt7WLKK6u5ev+bvW0/dnrtXZST7cciR3fu6G8PEzyMEmP9Sk7xYxubRee73MNDIxSTLy+obxzrZ/LfX9iZJd/16V2qR+qtrXzhjuPAgJxlUCfAv+fV/D99wNyy1oV1aZ2JZlMJvVrUbPAwkxRoYF6/94O+u9trfJtkx9/H8dHIh/o5nyF3vu7RTl9rqNqVfK37p2K0lEj2M9aUK2FC2Ze9GtZU952gmlxrX2tVSlAVXJVuAYAFC9CJIrdwz0b5LsWMfcHjcY1gtStYVU93a+pNjx5nX5/oodq2NlioSQE+3nLs6T3cjCoe6Nq2jKlt/6c0rvcVDa8OybSqfNub297k+GmVmFaOCJac4a20fv3dZCUdTOiWlDWul5/b88CPyhf38y5f09/H0/NLWCrghdvaaEeDo6iStItbfIP3gUZZOc8o9WHJ/VtrA+HR2vuHW00pL2xmzhVg3z1bP+m2vFcnzwf6AsKpWN7NmCdWykzmUz6ZGRH/f5ED33/0DVFvl79ahX0nQuuI0m1i6kCMwCgaFgTiRLRpb79qaTXNqiqj9YfsT6uUuHfD5+lFR7dTe7KhZWufEAP8be/n6c7MTK66EzbnG5tV0vvrDloc6xrg6o2jz09TPrqgRit3H1anaKqWP8Ny4Kc3xOOsDfYGm6wAq7JZFK3hln/hntOXSq0/R+Teyk0R/GtOUPb6I75G411FG7BZDK5dNZFszDXrCWfcH1Dl1zn1ra11LleFU28so65MC3CQ/R3bLxLXhsAyiNGIlEiPDxMWvNYD5ttHB7oVs+pkZmrTZCft4Z1rC0PU9aenEbX3pW2EH9vvXRLC4fOubeQ0chA37z3vSIqBVi3JvH2NOW7hrZ2lQDdd01dNcmxf6Yz00RdrXKgj775T4wq5xNsC5p66yrNwoIVdOXftnujqoW0zis0V/Xm4vRE38Z69652Dm/Fg7LjhuY1tHJCN62c0E0DWhc8El/Bzs8Ee7w8TLqtXS29dnv+08n7NqshD1PWiH1NbmLCDZWFm8e4ejASiRJTu0qAfnu8hzLMljzr2lCwFwa10LP9m5Wp/dQWjohWy1oVHTrnwe71dOR8ki6nZ2ragObaePC8pny/Q1LWnpXXN6uR5xx/H099OqqjftpxWj0bV1PFAOMjdz0bV1Ogj6eS0jId6qcrBfl5qW3tSgry89KFpLQ8zzs7Xdnb00ONawRpd46RxM5RVfTOattR2yBfL704qIVqhPhp3+lEtY8s+k2K0CDbUBlUyAf9SgE+CvDxVLKB/w8Pds9a61kzJF6v/LTH+U6WEVWDfHX2UmqJvuYTfRvr/y3bXSzX7li3sjYe+rcicu5CatnqVc1/ZsI9nevowyszWN69q51Dr39L21oa/6X90ci372qntAyzfLw8dP/CPxy6bnkwvndD7T6VoCV/nyrtriAfm56+Th1fXKm45PQSeb2RXepq/u+HSuS1rnZDo0u+/kdRlZ1PpCgXTCZTngBZPfjfD5xd6js+CnK1KEsB0lnVg/30/n3R+nx0ZzWsHqS7Okfq76nX6+0722npI10VXtH+dMw2tStp0g2NHV5bVzPEX8vGXVtgm5PxKQ5d08garpyDi9nrM+/LMQpbu3KA7ulcRzMGt1L7HBVtHalyXKdygEZ2tV2L2KhG3qqzW6b0VquIiqoe7KcuDUIL3Xczvw/9OTWoVkGjr41S3dBAPd63kYILuXvu5+2pD4dHF3rdnFrk04+378x/XWpZ9MuEblr/pGP7vTrC3prXB7pFaeGIaN3atpaiqgYaXhcr2X79P9E3b9GvVwe3srbx8jBp/PWOjyhPvqmp3ru3vf43potiriyVaGOngJYzsn/Odqzrmn1ty4r61Spo7HUN9J/uFLlyV83CguXr5anAfKofu9rkfk30Hwf3zYbzyuJWXuX/Uync3rP9mym8or9i6lUpk3diULyC/LzVt3kNl25hklOEiwt3TLmpqcIr+ucbeKWswjWS5OvlofuvzRpZu6NjHY3pWV9DoyP02ehOem5Ac93aznY7kIhKATbbuxTEw8Nkc4MmW+5RQUdvTnz/cBebx9WC8r6GyWTSUzc20a8Tuxv+UNohsrIGOrg/qj19m9sWD3JFtdHS5GEyqWaIsbWsOX39YIyhdtkjuzmZTCZ1bVBVM25vpV8mdNf/u61lgdfo2iBUg9qE681hbW224LBXoTWicoDWPN5D25+9Xn8+09u69tYR3p4e6tm4us0evv/pUc/6tezMVNTca7JvbVdLzcKCbY69UUDhrPLCkX2RezWprreGlf9/k9JWp0qANjx5nf43pkvhjUtA13y2S3vu5mYl3BOUNkIkSt2NLWpq7aSe+nRUJ4emIsK95B4kK4m1fO6od9PqWjupp764v1O+be7vVk+/Pd5DG5+6zjqi5uPloQnXN9JLt7TMN4B6eJj09YMxWjH+2gL3L725Vf5h7I0cH/p6OLH+UZLuuybS+vcxBrbnqGFnbz9XuKuT/a2Dcq4v7VzPdkTJy8OklRO6FUt/ClLQ/5Pi0K5OJe2dfoOiQgu++RJZyPPZGtsZxc42rGNtzRzS2qF9IEP8vRXs57r1XW1rV9LGJ6/Tb4/30Por/3XEjFxrJUP8vfXj2K7qHJX19VMzxE9dGxrfa7isMbq2NKdhnWrrhhY1tfnpXsXQI2S7NyZSNUL8XLJXs6vsf+EGzRnaxuZYQcUQA3w8Hdon+o6Ote1WGId7IUTC5bJ/6UoyPGqCsq9WpQDrB9ZalfzVoLpj1Vbd5RdkSd3IiKgc4NRreXt6qH61IN3dOTLPcz0bV9Pkfk30/MDm+Z5/bcOqeveudnrqxsaacXtrh19fypqmOLV/U71yW0sN61j4HrDXNqxa4Miss8Ze18Du8SdvaCw/bw9FVgnQPU5uHeNqd+YTeAtjb5uhG5rX0PJH85+GnR2ifbw89P9ua2m9RlH2/xzXy/6/tSR1a2i/QFrOIlY+nh4OTcd2RqVAH+vMAkdnGOS3fvuD4R303UPXaPmj17o09LqbnDeGjHj7znbWrbuqBvkqwA2KlJVX1zV2v228vDw91CnK+JTv5LRMjeud/8+Q3F4c1EIzh7R2omcoSRTWgcs92ruh/np/kzItFk10Yr0LyiZPD5O+e/ga/XUsXi3CQwzN7/fz9lBKull1QwNVs5hGq4y4vml1Ld95Wj5eHrq1bdm4+9moRpCWjO2qG2f/Zj3Wr0XNPFNg7bFXoMgRft6euveaug61Xzupp37dc0a/7j5js61PUVS1M5VWkga3j9CgNuHy9DC59ObEhN4NNWvlPgX4eMrDZFL8ZePFLcwWi+G2LWuF6K/j8RoaXdvuGtVGNYIKnLIZ5Pfvr/YOkZW1Ynw3nUtMVdvalfIUVjKqb/OaWjauq1LSzRr4xlqb5/KrctwpqopGXxuljYcuaESXuvJw0313C+Lr5anWERXzfd7H00NpmWaXvV7D6hW093SiQ+dUDvSxW5TLqP93awuHR8r7Nrf9GRJZJVA7TyY43QeUrCVju+qhT//UoXNJJfJ6DatXUH0nt/GC+yJEwuWi61bWn8/0lsWiQot0oHwJ9vNWl3zWS9izZGxX7TuTqOjIyqX6AfP1/2ujtfvPKapqoKJyVYUce10DzV65T5L9IiSlyei+j+6iR6Nqal+nktMhsqApvLl5FVABOqJSgFNVT+/rUlfDu9SVn7enPExS3SeXGD7XkSm93z90jRJTMxTkopGvuqGBqntlloCvl4dSM5wLPY1rZI0shlf0V2zcZUkqMGB5emStjXWUm0xKKNS9MZGadENjNZ6yrFT7MfH6RoqqGqj/e3eDU+cP6WD8+0rK2golt//0qKeHP93q1Ovb07tpdf2887TLrod/tatTSU1zrfctbg/3bKBqQX4a37uhXvt5r+HzwkL8dMLB4nalbWh0bX226Whpd6NEMJ0VxcLXy5MAiUJVC/ZTn2Y1VCmfPRJLir+Pp3o1rZ4nQEpZlSrvvzZK98ZE6okb8labLO/cYTuebg2r6t6YSLt7Q97U8t91eJ2ijK258fHy0OKHr7G7Z+DQ6Ai7e3b2aFRVFXy9FOjr5dQIZ8UA73z3As2pa4NQmUymAgNklUKuU9DrPNDt30I6/VoaX8OY0+N9s/4/eHqY9Gjvhk5dI7ecay4dWVtZmrw9TQ7/nvvgvg7F0pdOUVWcKlLkjIFt8o5a3tQyTJ+O6uiyQjuTbmhc4LR85G/i9QV/T0668nuspO7VRIUGWke6x17XQK8UUKirZoifnh/wb4GeovzOnTE4/z1hXcVINfbyjJFIAChAgI+XnnRiNCX3ptDFsSawJFzfrLpmrtgri0VqWrNk717/9ngPhQQUXIBlTM8G+ic2XqkZZoemz9cM8be7Z+BLt7RUVOhBvbBkl/XYT+OuzVO9U3J86uGbw9rmO1o0qmtdnbmUqnG97H8AvKF5DS3955SqBPqoT/OCpyOP6JL/VONR10bpYnKaElMz7IZyIwa0DlenqCry9DAptIL9KcWOenVwK721+oDqV62gG5qXjRCZzZHppN0bVZPJJDkwu9mwQN/SvXEbU891hYe8PTw0qE24pnz3T5GuUzHAu8T2VHQXD3avr4jKAfIwmTTmM9vR4Sk3NVWHKwVuBrePKLb9YHPKXdws9+Oc1j95nc3j7J81s1fu0ycbHRvdq1u1eCq6Z3vyhsaKDA3U/Qu3FOvruDNCJAAUgyA/b712eyt982esrm9W3eVbiZSUxjWC9cnIjvr7eLz6l3CFUSP/Zo1qBGnVY8YrcTaumX+V0fxEVQ20O9368T6N9egX23QpNcPQdTpFVdG0Ac30zPc7bI73alJNT/drWuC5c4a20a6Tl1S7SoBC/L11KcX2g/GUm5rKJKlasK/6FTCSV8HXS9MGFH2Ep7qL1zA3Dw8ptS00oor4YfPxPo006Zu/XdQb51V1UaBvFVFR24/FueRauTUPD9Y/scbWTlbw9dLdnesUaQ319U2r68s/jjt9vhFeHiZlmIvhroAThkZHyNPDpAGts9b25w6Rt+SoeDq8S6RTIdLRatuVchWQq1XJsd+F1YP9NH1gc3VvVE2jPvrDoXOLU61KAerTrIZWTeyunjNWyWzJGknt1rAq01kBwNVy70lYRpY+Oe2WtrX08ciOdiuplgTPXFMuTU7+i8fUC9X93eoprIyOpj6aY3RvTE/jFQIL06tpdW179nqHzqkSaPtBP7puZev0soJ4eXqoRa2QPCPc2YJ8vTS8S13d1DLMbSodlxVPOzHTQPr3w/D/RdfW/8Z0UWApVyh1dG1jfiZe31D+3p5ObfuRny/v76x1k3rqf2O66vqmxquNuuKGR3HLr1Ly7e0LL3JWGD9vj3wLiNnzfAH/Xnd3rmOzdMTXy1OHX+6n/S/coEd7NcyzL2p+7upsvNK0r5eHBrmgWJ3JZCpwm6Hi9Pno/LfrkrK2SfpweLQe7lFfHw2P1nVNquleN6kKXtwIkQBKzDX1Q60ftBrXCFKgCz+kIK/mOUJHRGV/VXPgw0hpKK7wM6ZnfX0ysqMWP3yN+uQqCmJv24ncawoL6pWnh0n/18F4waVujapaqxTe2raWvry/s+pXK50PR8haX3pdE+OhZviVqsS1KvnbrMdtHh6ixi6a7m10bW9uriqW0rVBVW17trf+nNLbJdeTsm6WZN+EutfB7UTcXX4/t5wN9Ydf7qeFI6J1b0ykPhreMU/14/xmhEwb0CxPQTE/738f57eNjZenhx7p1UCLH+5ic9zeCP24Xg3yvU5uft4e+mnctapnp9ZAWdIpqoquLWS9cdcGVTWxTyM1qB4kb08PTb25mXzcoJ5AceMTHIASUy3IT/8b21Xbj8UV+kMZRRfs563/jemiLUcuKqZ+FbffYqFPsxr6dmusJNldg+gsDw+Trqlvf73Wf3rUt1bfHdA668NZrybVrRVI+7cKK7DSq5S1b6a/j6d8vTz19uoDBbat4Oul5eOu1bmkVFULKr1tbZDF18uxD3rP9G+q//Sop4r+3oV+XeTmb6AIT+Mawbrvmkg99tVfCvT10utDWquCn5faT19h6DVua1dLX20p+vTN7C2a7upURws3FG1Lntx7UMbUC9Ubd7TVQ5/+WaTrGlGaBf5aR1R0aPpuTl0bVFXXBvZ/Rw6/JlJ/Hr2os5dS9XCP+tp2LE5VKvhoaHTe0Dp9YAvNWrFXzcNCCpzmLmXdEHvu5mZ6d81BRdetrC71qyox11T9nNt0BPt7ycfLQ2lXqj3n3sKjZ+Nqigw1PlW8pNbcH365n8xmi6KeMl5d+4072qjF1OXF2KuyiRAJoETl3G4ARZP7Tme14LwjjRGVA8rMeszrm1bXhN4Ntef0Jd1/bb3CT3CB0ddGKT45TUlpmdZCMyEB3vplYjedjEtRnSqF/9tVCvTRs/2zKgoWFiKlrFBLgCw9tSsH6OiFZElSzybVHD7f2WJC4/OpZPvIdQ30+sp98vHy0MiuddWyVkWtGN/NqdcoTLCflxJSjK3hlaSn+zVRrUr+emlpzrVzBd+M+k/3enpz1b/fB0/0zTtdu3Xtiob7kNu9MZH65s/juqF5TX3xx7EC2w5sE+6yfWkd5elh0nf/uUbHLl5Wj1dX2TxXlHWU1YL99OX9na2PC9ob+LZ2tXSbgb2Ds90TE6l7ck7FLGAXJF8vT71zZzst2nJM3RtWK9KIY/VgX0PT+nOa0LuhZuTYLsTIv2n21GBHb6gG+XmrU1RlbTh4wfA5he0f26Z2RW09GudQP9wNIRIAyih/H0+N6lpXH647os71qqhj3fyr3rmL3FuGhAb9O3XUw8OkMde5bs2iERV8vfScnXVEvl6eDt1FR9nx5A2N9fhXf6lyBR+N6hrlsuu2q1NJW45ctPvcxOsbaviVqrmVAmyruY7r1UD9WtZUpQAfh9a/OcPX21NyIET6eXtqRJe6emfNQV1ISpOXh6nAvUEl6bE+jTSwTXiB7ye0gvPbOk29uZmm3px10ya/EOnjmRXI29aupPl3t9fIUirI4uXpYfem6erHe+ial38phR45JiDXVNrIKrbvpUfjaurR2PEbMQNbh+m7bScU4OOpJWO7OvWzNsjPNsLUDQ3UvjMFV8t2dv2zKzSpGaxdJ/Mfla5XzNVki0P5n7ALAOXY0/2aatfzffXh8Og8hYvckZ+3p4Z1zJp21a5OJZduC+AOxvSsX9pdQCFuaFFT2569XqsmdledKq774HZ35zoKr+gvb0+Trsv1wXpw+6yqmVLWSF22Ie0jZDKZ1LB6kNMB0tHqsg2r/zti1LFu4esvvTw99Omojhrbs74+HtlRNUIKHkU38n58vTzVK8co8NT+ttWJcwcER+16vq8evzIC2suBQj723NmptnY810ft61Sy+3x1OzNAcouobFuULMTf29Ash9Lm5+2pVwe3Urs6lTS+t/HiO4V5ZXArLXqgs36d2N3pm3VNagara4Os3x/9W4UVOkPglwndNLBN0Yv8OKt5If92JV393BUYiQSAMs7Tzdc65vbCoBZ6ul8TBfiUv19BD/WoLx9PD+0/m6jvt52QlPWB2JWVLlF0xfE9U6tSgH57vIfSMs1af+C8Vu4+Y7fdPTGRyjRbdCklQ6OudX4ktEawn25oUcO6759Rj/VprAc/3iJPD1O++5Lm1rhGsBrXcO2atXfvaq8NB88r2N9bzcKCdSE5Xct3nNKgNuE2VUQd5e/t6dL/v52iqijQ10tTb26mm+b8nuf5AB8vDWgdZv1+l7LWVec0umuUpuTa2sfIGll34OiUWCO8PT0c/rrNzdPDpIUjOio5LUMBPl4ammsP3txfAQV9TbStXVGtIirq/bWHbY6X5M/tigHOf82XFn6rAQBKXHkMkFLWnfvsKbm9mlTX7/vO6bb2tRwuwlKY3KPOZXX7leKUs+hHy4iQEnlNDw+T/DwKDgfenh66v1vR1/wuG9fVqQ+eva9sTeNhKt3vQw8Pk2JyFLwa37thvutG3UEVO1Nwe14ZcW4fWdkmRP73tpY27eqG2q4X9PY0aVinOpry3T/F0NOrS35fww2qBynIz0uXUjIUWsG3wJ+Rnh4mPdu/mfq3CtPYz7bq+MXL8vIwafpA999ipjSVz9/iAACUsv6twoptipKvl6cm9G6o99YeUkz9UHV0cluI8uy5m5vp1Z/2qEnNYN1cBqeKFSdGxl0j95rBbLlHGTtGVVa/ljW1dv85jbimrny9PDWkfYROxl22KUKE/OXeSaWwG3MVfL20+OEuWn/gvLo2CM2zHt+etrUr6fcnetp9ziNXB/x93H/5SHHjpwgAAGXQmOsalHghorJkaHRtu9selEX3dK6jD11QZdSVW+dcbbK3PXGGt6eH3rijrc0xHy8PPd63sbYfj9Pa/eclSZ2j3L84WmkJC/FX4xpB2n3qkiIq+6tJzcL313VlNfiKAd42j4s6Hbc8IEQCAAC4sYd61C9yiDSZpAe7l8zWOa5Ur2qgDpxNkiR1yWe/15JQOdBHt7QJ1zdX9rJ1lTeHtdOnG4+qSqCPBrd37drD8sTDw6SvH4zRP7HxahIWnCfUNw8P1vqDWWE896ilPfWrVdD+K9Vc+zYveA9Ne4L8vAtvVM4xFgsAAODGqgX76fX/a+3UucM61tanozpq6SNd893A3p093rexvD1N8vf21Lherhl5zx2mjVa4fW1Ia5vHJiNppRAh/t56sHs93d4hwiXXK88Cfb3UMaqKgu0EuLs7R6pqkK9MJumpGwrfymPazc3UslaI+rWsqSEdIlze1/tzFM0acWV7n5y8ylhBPHsYiQQAACgHWkdU1FdbjlsfB/l5aXiXukXaCL609WlWQ9ueuV6eHib55V5rWLeyNh4yvgF8th6NqumtHGsRH7mugT7ecESbD19UrUr+On7xcr7nZk+plKR+LbJGsMpDICjrIioHaP2knkpKzVRIQOGjhDH1Q7X44S7F1p+x1zWQyWSSRRY93KO+pv2w0+b529tHaPPhrH1lo8vo1FhCJAAAQDkwoHWYftpxSrtPXdJdnepoZNe65aIScmA+hYAe79tIj36xXUcvJBd4fqUAb11MTrc+Dvb3UnhFf8XGXZaPl4c61q2i/i3DFBt3WX7enurwwop8r/Xa7a0177eDql+tgq6/sgdll/qh8vY0KT3ToqjQQPl5M9GvNHh5eigkwD3+7QN9vTTphsb5Pj+oTbiOX7ysYxeT9VCPsrm/cNn/yQIAAFDO5V4DZm/qY5CftxaO6FhSXSp17epU1prHeyhy0o8Ftnvv3g4a9OY6SZKHKWtPz89Hd9JPO06pY90qqhHiJylrNOtCUlqB12oaFqyZuaa1RlQO0KIHYvTH4Qu6oUVNpqWiUF6eHnrUjbe0MYIQCQAA4OY6RVVW5UAfXUhKU6taIQrxp7CHUW1qV9L/xnTRil2ndV3j6qrg66UKvl4a2TUqT9vc8c/I1hBS1lTi1hEVi95ZuKVuDatqyd+nJEnh7MsriRAJAADg9ioG+GjZuK7aeSJB7cvoGqrS1Dw8RM3DQwptVzHAWw2rV9De04kK9vMqs+vV4FoDWodr06GL2n/mksaV8RFEVyFEAgAAlAHVgvxUrZFfaXejXDOZTPpidGetO3BerSJCVCnQp7S7BDfg5+2pGbe3Ku1uuBVCJAAAgAtF5tjg3NPDZHdLArivSoE+6tfS8b0DgauJe5QwAgAAKCfqhgbqhUHN1atJNb1xRxv5+3gWfhKAcqtbo3/3aC0vayoZiQQAAHCxYR3raFjHOqXdDQBuoE+zGhrRpa52n0rQQ93L5pYeuREiAQAAAKCYeHt6aMpNTUu7Gy7FdFYAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGFuGSJfeuklDR48WFFRUTKZTIqMjMy37b333iuTyWT3z1dffZWnfWpqqp555hnVrVtXvr6+qlevnqZPn6709HS71//oo4/Upk0b+fv7q3r16ho5cqTOnj3rqrcKAAAAAGWKW1Znfeqpp1S5cmW1bdtWcXFxhs5ZuHBhnmPR0dF5jg0ZMkTff/+9hg8frs6dO2v9+vWaMmWK9u/frw8++MCm7cyZMzV+/Hh169ZNr7/+uo4fP67XXntN69ev16ZNmxQYGJjn+gAAAABQnrlliDxw4ICioqIkSc2bN1diYmKh59x5552FtlmyZIm+//57jR8/XjNmzJAkjRw5UhUrVtRrr72m0aNHKyYmRpJ07tw5TZ48WR06dNDKlSvl6Zm1UXCHDh1088036/XXX9dTTz3l7FsEAAAAgDLJLaezZgdIR1gsFiUkJMhsNufb5tNPP5UkjRs3zuZ49uOPP/7Yeuy7775TcnKyxowZYw2QktS/f39FRUXZtAUAAACAq4VbhkhnhISEKCQkRP7+/urdu7c2btyYp83mzZsVHh6uiIgIm+MREREKCwvT5s2bbdpKUufOnfNcp1OnTtq9e7ehEVIAAAAAKE/ccjqrI2rUqKFHH31U7dq1U2BgoLZv365Zs2apa9euWrJkiXr16mVte+LECTVt2tTudcLDw3X8+HGbttnH7bW1WCw6ceKEGjZs6HCfa9asafO4oNFTAAAAAHAnZT5EvvzyyzaPBw4cqDvuuEOtW7fWgw8+qH379lmfS05Olq+vr93r+Pn5KTk52aatJLvt/fz8bNoAAAAAwNWi3ExnzalBgwa6/fbbtX//fu3du9d6PCAgQKmpqXbPSUlJUUBAgE1bSXbbp6Sk2LRx1MmTJ23+5Ay6AAAAAODOymWIlGTdW/LcuXPWY2FhYYqNjbXbPjY21mbqalhYmPW4vbYmk8naBgAAAACuFuU2RGaP7lWvXt16rEOHDoqNjdWxY8ds2h47dkwnTpxQ+/btbdpK0vr16/Nce8OGDWrUqJEqVKhQHF0HAAAAALdVpkNkUlKSdWppTlu3btWiRYvUpEkT1atXz3p86NChkqRZs2bZtM9+PGzYMOuxAQMGyN/fX3PnzlVmZqb1+A8//KCDBw/atAUAAACAq4VbFtZZuHChjhw5Ikk6e/as0tLSNH36dElSnTp1dNddd0nKGm284YYbNHDgQDVo0MBanfW9996Tp6en3n33XZvr9uvXTzfddJNee+01xcfHq3Pnzlq/fr0WLFigO++8U126dLG2rVq1qp5//nlNnDhRvXr10tChQxUbG6sZM2aocePGefaaBAAAAICrgVuGyAULFmj16tU2x6ZMmSJJ6tatmzVE1qhRQ7169dKvv/6qTz75RJcvX1bNmjU1ZMgQPfnkk2rcuHGeay9atEjTp0/Xxx9/rIULFyo8PFzTpk3TpEmT8rSdMGGCqlSpopkzZ2rs2LEKDg7W7bffrpdffpmprAAAAACuSm4ZIletWmWoXY0aNbRw4UKHru3n56fp06dbRzYLc++99+ree+916DUAAAAAoLwq02siAQAAAAAlixAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwzC1D5EsvvaTBgwcrKipKJpNJkZGRdtulpKRo3rx5GjBggCIjI+Xv76+oqCgNHTpUu3btytP+8OHDMplMdv80b97c7mts3LhRvXr1UlBQkIKDg9W3b19t27bNhe8WAAAAAMoOr9LugD1PPfWUKleurLZt2youLi7fdocPH9bo0aPVpUsXjRgxQmFhYTp48KDeeustffPNN1q2bJl69OiR57xBgwbplltusTlWsWLFPO02bNig7t27Kzw8XNOmTZMkzZ07V127dtW6devUokWLIr1PAAAAAChr3DJEHjhwQFFRUZKk5s2bKzEx0W67qlWrauvWrWrdurXN8WHDhqlNmzZ67LHH9Mcff+Q5r2XLlrrzzjsL7cfYsWPl4+OjNWvWKDw8XJJ0++23q0mTJpowYYKWL1/u4DsDAAAAgLLNLaezZgfIwlSpUiVPgJSkpk2bqnnz5vrnn3/yPTclJUXJycn5Pr9//35t3rxZgwcPtgZISQoPD9fgwYO1YsUKnTp1ylA/AQAAAKC8cMsQWVRms1knT55U9erV7T4/Y8YMBQQEKDAwUBEREXrmmWeUmppq02bz5s2SpM6dO+c5v1OnTrJYLNqyZYvrOw8AAAAAbswtp7MW1dtvv62TJ09qypQpNsc9PDzUs2dPDRw4UHXq1NHZs2f15Zdf6vnnn9f69eu1bNkyeXp6SpJOnDghSTajkNmyj8XGxjrVv5o1a9o8NpvNTl0HAAAAAEpauQuR69at0/jx49WqVSs99dRTNs/Vrl1bK1eutDk2YsQIjR49WvPmzdPnn3+uYcOGSZJ1qquvr2+e1/Dz87NpAwAAAABXi3I1nXXLli3q16+fwsLC9OOPP1rDXmGefvppSdKPP/5oPRYQECBJeaa5SlnrKXO2cdTJkydt/uzbt8+p6wAAAABASSs3IfLPP/9U7969FRISol9//dXuNNT8REREyNPTU+fOnbMeCwsLk2R/ymr2MUdeAwAAAADKg3IRIv/880/16tVLQUFB+vXXX1WnTh2Hzj948KAyMzNtCvF06NBBkrR+/fo87Tds2CCTyaR27doVreMAAAAAUMaU+RC5detW9e7dWxUqVNCvv/6qunXr5tv2/PnzeY6ZzWZNnjxZktS/f3/r8fr166t9+/ZatGiRtciOlFVwZ9GiRerZs6dq1KjhwncCAAAAAO7PLQvrLFy4UEeOHJEknT17VmlpaZo+fbokqU6dOrrrrrskSUeOHFHv3r118eJFjR07VuvWrdO6detsrjVo0CAFBgZKkkaNGqWEhATFxMQoIiJC586d09dff60tW7ZowIABuu2222zOff3119WjRw917dpVY8aMkSTNmTNHZrNZM2bMKNZ/AwAAAABwR24ZIhcsWKDVq1fbHMverqNbt27WEHno0CHr6OLUqVPtXuvQoUPWENmvXz8tXLhQ7777ri5cuCBfX181a9ZMb7zxhh544AF5eNgOzMbExGjVqlWaPHmyJk+eLJPJpJiYGC1atEitWrVy5VsGAAAAgDLBLUPkqlWrDLXr3r27LBaL4euOGDFCI0aMcKgvnTt3zrMtCAAAAABcrcr8mkgAAAAAQMkhRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADCNEAgAAAAAMI0QCAAAAAAwjRAIAAAAADPNy9kSLxaL09HT5+PjYHF+zZo2+//57BQQEaNSoUapdu3aROwkAAAAAcA9Oj0ROmDBBwcHBiouLsx778ssv1bNnT82cOVMvvPCC2rdvr+PHj7uinwAAAAAAN+B0iFy9erW6d++uihUrWo9NnTpVwcHB+vDDD/Xyyy/rwoULeu2111zRTwAAAACAG3A6RB47dkwNGjSwPj548KB2796thx9+WHfddZcef/xx3XDDDVq6dKlLOgoAAAAAKH1Oh8iEhAQFBwdbH69du1Ymk0k33HCD9Vjz5s0VGxtbtB4CAAAAKDOOXkgu7S6gmDkdImvWrKlDhw5ZH69YsUL+/v5q37699VhiYqI8PT2L1kMAAAAAZUb3htVKuwsoZk5XZ42OjtbixYv1v//9T35+fvrqq6903XXXydvb29rm0KFDCgsLc0lHAQAAALg/L09TaXcBxczpkcinnnpKmZmZGjBggPr06aO0tDQ9/fTT1udTUlL022+/qVOnTi7pKAAAAACg9Dk9EtmqVStt3LhRH330kSRpyJAh6tChg/X5rVu3qmfPnho6dGjRewkAAAAU4nJ6Zml3AbgqOB0iJally5Z69dVX7T7XuXNnffvtt0W5PAAAAGBYo+pBpd0F4Krg9HTWnj17Wkch8/Pxxx+rZ8+ezr4ESsmSv0+VdhcAAAAc5udDQUegJDgdIletWqXDhw8X2ObIkSNavXq1w9d+6aWXNHjwYEVFRclkMikyMrLA9hs3blSvXr0UFBSk4OBg9e3bV9u2bbPb9sSJE7r77rtVtWpVazXZRYsW2W2bmpqqZ555RnXr1pWvr6/q1aun6dOnKz093eH3VJZUDvSx/v18Umop9gQAAACAuynSdNbCJCUl2VRrNeqpp55S5cqV1bZtW8XFxRXYdsOGDerevbvCw8M1bdo0SdLcuXPVtWtXrVu3Ti1atLC2vXDhgrp06aIzZ85o/PjxqlWrlj799FPdfvvteu+993TffffZXHvIkCH6/vvvNXz4cHXu3Fnr16/XlClTtH//fn3wwQcOv6+yonKgjy4kpUmSalcOKOXeAAAAAHAnDoXIo0eP2jyOi4vLc0ySMjMzdezYMX399deFjiLac+DAAUVFRUmSmjdvrsTExHzbjh07Vj4+PlqzZo3Cw8MlSbfffruaNGmiCRMmaPny5da2L7/8sg4dOqTFixerf//+kqQRI0aoc+fOmjhxogYPHqwKFSpIkpYsWaLvv/9e48eP14wZMyRJI0eOVMWKFfXaa69p9OjRiomJcfi9lTXhFf1LuwsAAAAA3IhD01kjIyNVt25d1a1bV5L0+uuvWx/n/FO/fn316NFD+/bt06hRoxzuVHaALMz+/fu1efNmDR482BogJSk8PFyDBw/WihUrdOrUv+v7Pv30U9WrV88aICXJ09NTY8aM0YULF7RkyRKbtpI0btw4m9fMfvzxxx87+rYAAAAAoMxzaCTy7rvvlslkksVi0UcffaSWLVuqdevWedp5enqqcuXK6tmzp/r27euqvuaxefNmSVmVYHPr1KmT3nvvPW3ZskX9+vXTyZMnFRsbq2HDhtltm32922+/3fr38PBwRURE2LSNiIhQWFiY9bWdUbNmTZvHZrPZ6WsBAAAAQElyKETmXAf40UcfadCgQXrmmWdc3SfDTpw4IUk2o5DZso/FxsY63Da7fdOmTe2+bnh4uI4fP16EngMAAABA2eR0YR13GD1LTk6WJPn6+uZ5zs/Pz6aNI22z/26vbXb7nG0ddfLkSZvHCQkJCgkJcfp6AAAAAFBSnN7iwx0EBGRVDk1NzbsNRUpKik0bR9pm/91e2+z2OdsCAAAAwNWiSFt8XLhwQe+99542bdqkixcvKjMzM08bk8mklStXFuVl8hUWFibJdhpqtuxj2VNVHWmb3d5e2+z29qbFAgAAAEB553SI3L17t7p3766zZ8/KYrHk285kMjn7EoXq0KGDJGn9+vUaOXKkzXMbNmyQyWRSu3btJGUVswkPD9eGDRvyXCf7WPv27W2u/cknn+jYsWM2xXWOHTumEydO6Oabb3b5+wEAAAAAd+f0dNaJEyfqzJkzeuKJJ3Tw4EGlp6fLbDbn+WNvdNJV6tevr/bt22vRokXWwjlSVlGcRYsWqWfPnqpRo4b1+NChQ3XgwAH98MMP1mOZmZmaM2eOKlasqBtvvNGmrSTNmjXL5jWzH9ur8goAAAAA5Z3TI5G//fab+vXrpxdffNGV/ZEkLVy4UEeOHJEknT17VmlpaZo+fbokqU6dOrrrrrusbV9//XX16NFDXbt21ZgxYyRJc+bMkdls1owZM2yuO2nSJC1atEh33HGHxo8fr/DwcH322WfavHmz5s+fr6CgIGvbfv366aabbtJrr72m+Ph4de7cWevXr9eCBQt05513qkuXLi5/3wAAAADg7pwOkRaLJd8tMIpqwYIFWr16tc2xKVOmSJK6detmEyJjYmK0atUqTZ48WZMnT5bJZFJMTIwWLVqkVq1a2VyjSpUqWrt2rSZNmqQ33nhDiYmJatq0qT7//HMNGTIkTz8WLVqk6dOn6+OPP9bChQsVHh6uadOmadKkScXwrgEAAADA/TkdItu1a6c9e/a4si9Wq1atcqh9586dDRfvCQ8P18KFCw219fPz0/Tp062joAAAAABwtXN6TeQzzzyjJUuWOBz4AAAAAABll9MjkceOHdOAAQN0/fXXa+jQoWrXrp0qVqxot+3dd9/t7MsAAAAAANyI0yHy3nvvlclkksVi0cKFC7Vw4cI823lYLBaZTCZCJAAAAACUE06HyPfff9+V/QAAAAAAlAFOh8h77rnHlf0AAAAAAJQBThfWAQAAAABcfZweiTx69KjhtrVr13b2ZQAAAAAAbsTpEBkZGZmnkI49JpNJGRkZzr4MAAAAAMCNOB0i7777brshMi4uTtu2bdORI0fUvXt31alTp0gdBAAAAAC4D6dD5AcffJDvc2azWc8//7zefvttffjhh86+BAAAAADAzRRLYR0PDw89++yzioyM1KRJk4rjJQAAAAAApaBYq7PGxMRo+fLlxfkSAAAAAIASVKwh8sKFC0pKSirOlwAAAAAAlKBiC5ErVqzQF198oebNmxfXSwAAAAAASpjThXV69uxp93hGRoaOHTtm3UfymWeecfYlAAAAAABuxukQuWrVKrvHTSaTKlWqpD59+mjixIn5hk0AAAAAQNnjdIg0m82u7AcAAAAAoAwo1sI6AAAAAIDyxWUhMjk5WSdPnlRycrKrLgkAAAAAcDNFCpGZmZl65ZVX1LhxYwUFBalWrVoKCgpSo0aN9N///lcZGRmu6icAAAAAwA04vSYyLS1Nffv21erVq2UymRQREaGaNWvq5MmTOnDggJ588kktXbpUP/30k3x8fFzZZwAAAABAKXF6JHLmzJlatWqV+vXrp127dunw4cNav369Dh8+rD179uimm27SmjVr9Nprr7myvwAAAACAUuR0iPzkk0/UrFkzfffdd2rQoIHNc/Xq1dO3336rpk2b6tNPPy1yJwEAAAAA7sHpELl//37deOON8vCwfwkPDw/deOON2r9/v9OdAwAAAAC4F6dDpLe3t5KSkgpsk5ycLG9vb2dfAgAAAADgZpwOka1atdJXX32l8+fP233+/PnzWrRokVq1auV05wAAAAAA7sXpEPnwww/rzJkzio6O1vvvv69Dhw7p8uXLOnTokN5//31FR0fr7Nmzeuihh1zZXwAAAABAKXJ6i4/bb79d27Zt08svv6yRI0fmed5isejxxx/XkCFDitRBAAAAAID7cDpEStKLL76om2++WQsWLNDWrVsVHx+vkJAQtWnTRsOHD1fnzp1d1U8AAAAAgBsoUoiUpE6dOqlTp06u6AsAAAAAwM05vSZy0aJF6tmzp2JjY+0+Hxsbq+uuu07ffPON050DAAAAALgXp0Pk/PnzdfHiRYWHh9t9Pjw8XHFxcZo/f77TnQMAAAAAuBenQ+Tff/+tDh06FNimQ4cO+uuvv5x9CQAAAACAm3E6RF64cEHVqlUrsE1oaKjOnTvn7EsAAAAAANyM0yEyNDRU+/fvL7DNvn37VLFiRWdfAgAAAADgZpwOkddcc40WL16svXv32n1+z549Wrx4sbp27ep05wAAAAAA7sXpEDlx4kSlp6erS5cumjt3rvbu3aukpCTt3btXc+bMUZcuXZSRkaGJEye6sr8AAAAAgFLk9D6RHTp00JtvvqmHHnpIjzzySJ7nPT099dZbb6ljx45F6iAAAAAAwH04HSIladSoUerSpYvefPNNbdy4UXFxcapYsaI6deqkBx98UE2aNHFVPwEAAAAAbqBIIVKSmjRpojlz5riiLwAAAAAAN+f0mkgAAAAAwNWHEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMKxMh8ipU6fKZDLl+8fb29tQ21dffTXPtc1ms2bOnKnGjRvLz89PERERmjBhgpKSkkryLQIAAACAW/Eq7Q4UxS233KL69evnOf7XX3/plVdeUf/+/fM8N3PmTIWGhtoca9euXZ52jz76qGbPnq1BgwZpwoQJ2rVrl2bPnq2tW7dqxYoV8vAo0/kbAAAAAJxSpkNky5Yt1bJlyzzH77//fknSiBEj8jw3cOBARUZGFnjdHTt2aM6cObrlllv09ddfW4/XrVtXY8eO1eeff6477rijaJ0HAAAAgDKo3A2nJSUl6fPPP1etWrXUt29fu20SEhKUkZGR7zU+++wzWSwWjRs3zub4qFGjFBAQoI8//tiVXQYAAACAMqPchchFixYpISFB9957rzw9PfM837JlS4WEhMjPz08xMTFaunRpnjabN2+Wh4eHoqOjbY77+fmpdevW2rx5c7H1HwAAAADcWZmezmrPggULZDKZNHz4cJvjFStW1OjRoxUTE6NKlSppz549mjVrlvr166f33ntP9957r7XtiRMnFBoaKl9f3zzXDw8P17p165SWliYfHx+n+lizZk2bx2az2anrAAAAAEBJK1chcs+ePfr999913XXXqW7dujbP5Z6aKknDhw9X8+bN9eijj+q2225ThQoVJEnJycl2A6SUNRqZ3cbZEAkAAAAAZVW5ms66YMECSdLIkSMNta9SpYoeeOABxcXFad26ddbjAQEBSk1NtXtOSkqKtY2zTp48afNn3759Tl8LAAAAAEpSuQmRGRkZ+uijj1SlShUNGjTI8HnZlVrPnTtnPRYWFqZz587ZDZKxsbEKDQ1lFBIAAADAVanchMgffvhBp0+f1p133pnvVFR7skcBq1evbj3WoUMHmc1mbdq0yaZtSkqKtm3bpvbt27um0wAAAABQxpSbEJk9ldXe3pAZGRmKj4/Pc/zYsWN66623VKVKFcXExFiPDxkyRCaTSbNmzbJpP2/ePCUnJ2vYsGGu7TwAAAAAlBHlorDOiRMntGzZMkVHR6tFixZ5nk9MTFTdunU1cOBANWnSxFqddf78+UpMTNRnn30mf39/a/sWLVrooYce0ty5c3XLLbfoxhtv1K5duzR79mx169ZNd9xxR0m+PQAAAABwG+UiRH7wwQfKzMzMt6COv7+/br31Vm3cuFHfffedEhMTFRoaql69eunxxx/Psx+kJM2aNUuRkZF699139eOPPyo0NFRjxozRtGnT5OFRbgZwAQAAAMAh5SJEPvXUU3rqqafyfd7X11fz58936Jqenp6aMGGCJkyYUNTuAQAAAEC5wZAaAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAAMAwQiQAAAAAwDBCJAAAAADAMEIkAAAAyix/b0/r39vVrlSKPQGuHoRIAAAAlFlP3thYnh4mVQ/21b0xkaXdHeCq4FXaHQAAAACcdXfnSN3atpb8vD3l6WEq7e4AVwVGIoFyroLvv/eK2tauWHodAQCgmAT6ehEggRJEiATKuSf6NpIkeZikR3o1LOXeAAAAoKxjOitQzt3VOVKd64XKz9tDtSoFlHZ3AAAAUMYRIoGrQP1qFUq7CwAA4CpRM8SvtLuAYsZ0VgAAAABFcmen2pKkyCoB6tusZin3BsWNkUgAAAAARTJ9YAs9cl1DVQ70ocjRVYAQCQAAAKDIqgb5lnYXUEKYzgoAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCMEAkAAAAAMIwQCQAAAAAwjBAJAAAAADCsXIRIk8lk90+FChXytN2zZ48GDhyoSpUqKTAwUF27dtUvv/xi97rx8fEaM2aMwsPD5efnp2bNmumtt96SxWIp7rcEAAAAAG7Jq7Q74Cpdu3bV6NGjbY55e3vbPD5w4IBiYmLk5eWlxx9/XCEhIZo3b5769OmjpUuXqlevXta2aWlp6t27t7Zu3aoxY8aoSZMmWrp0qf7zn//o9OnTmjp1akm8LQAAAABwK+UmREZFRenOO+8ssM2TTz6puLg4bdmyRa1bt5Yk3X333WrWrJkeeugh7d69WyaTSZI0f/58bd68WbNnz9aYMWMkSaNGjdKtt96qF198Uffdd5/q1KlTrO8JAAAAANxNuZjOmi0tLU2JiYl2n0tKStLixYvVvXt3a4CUpAoVKmjkyJHau3evNm/ebD3+6aefKiAgQKNGjbK5zrhx45Senq4vvviiWN4DAAAAALizchMiv/rqKwUEBCgoKEjVqlXTmDFjFB8fb33+r7/+Umpqqjp37pzn3E6dOkmSNUSazWb9+eefatOmjfz8/GzaRkdHy2Qy2QROAAAAALhalIvprNHR0Ro8eLDq16+vhIQELVmyRHPnztXq1au1bt06VahQQSdOnJAkhYeH5zk/+1hsbKwk6eLFi7p8+bLdtr6+vgoNDbW2dUbNmjVtHpvNZqevBQAAAAAlqVyEyI0bN9o8vvvuu9WyZUs9/fTTev311/X0008rOTlZUlYIzC17tDG7TUFts9tntwEAAACAq0m5mc6a22OPPSYfHx/9+OOPkqSAgABJUmpqap62KSkpNm0KapvdPruNM06ePGnzZ9++fU5fCwAAAABKUrkNkd7e3goLC9O5c+ckSWFhYZJkdxpq9rHs6auVKlWSv7+/3bapqak6d+6c3amuAAAAAFDeldsQmZKSouPHj6t69eqSpBYtWsjX11fr16/P03bDhg2SpPbt20uSPDw81LZtW23dujXPaOSmTZtksVisbQEAAADgalLmQ+T58+ftHp8yZYoyMjLUv39/SVlbefTv31+rVq3S9u3bre0SExM1f/58NWjQQNHR0dbjQ4cOVXJyst59912b686aNUteXl4aMmRIMbwbAAAAAHBvZb6wzvTp07Vhwwb16NFDtWvXVmJiopYsWaJff/1VHTt21JgxY6xtX3rpJa1cuVLXX3+9Hn30UQUHB2vevHmKjY3Vjz/+KJPJZG07atQovf/++xo/frwOHz6sJk2aaMmSJfr22281efJkRUZGlsK7BQAAAIDSVeZDZPfu3bVz5059+OGHOn/+vDw9PdWgQQO98MILGj9+vM0+j/Xr19fatWs1adIkvfzyy0pLS1Pbtm21bNky9erVy+a6Pj4+WrFihSZPnqzPPvtM58+fV7169TRnzhw99NBDJf02AQAAAMAtmCwWi6W0O3G1S0hIUEhIiOLj4xUcHFza3VGv11Zr/5lESdJbw9rqhhY1CzkDAAAAQFlnNJeU+TWRAAAAAICSQ4gEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYRogEAAAAABhGiAQAAAAAGEaIBAAAAAAYVqZD5N69e/XMM8+oU6dOqlq1qoKCgtS6dWu98MILSkpKsmk7depUmUwmu39effXVPNc2m82aOXOmGjduLD8/P0VERGjChAl5rgsAAAAAVxOv0u5AUbz33nt64403dPPNN2vYsGHy9vbWr7/+qsmTJ+vLL7/Uhg0b5O/vb3POzJkzFRoaanOsXbt2ea796KOPavbs2Ro0aJAmTJigXbt2afbs2dq6datWrFghD48ynb8BAAAAwCllOkTedtttevLJJxUSEmI99sADD6hBgwZ64YUXtGDBAj388MM25wwcOFCRkZEFXnfHjh2aM2eObrnlFn399dfW43Xr1tXYsWP1+eef64477nDpewEAAACAsqBMD6e1b9/eJkBmGzJkiCTpn3/+sXteQkKCMjIy8r3uZ599JovFonHjxtkcHzVqlAICAvTxxx8732kAAAAAKMPKdIjMz/HjxyVJ1atXz/Ncy5YtFRISIj8/P8XExGjp0qV52mzevFkeHh6Kjo62Oe7n56fWrVtr8+bNRepfzZo1bf40aNCgSNcDAAAAgJJS7kJkZmamnn/+eXl5edlMOa1YsaJGjx6tOXPm6Pvvv9dLL72kI0eOqF+/fvrggw9srnHixAmFhobK19c3z/XDw8N17tw5paWlFfdbAQAAAAC3U6bXRNozbtw4rV+/Xi+++KIaNWpkczy34cOHq3nz5nr00Ud12223qUKFCpKk5ORkuwFSyhqNzG7j4+PjVB9Pnjxp8zghIcHutFwAAAAAcDflaiRyypQpmjt3rkaPHq0nn3yy0PZVqlTRAw88oLi4OK1bt856PCAgQKmpqXbPSUlJsbYBAAAAgKtNuQmRU6dO1fTp03Xffffp7bffNnxedqXWc+fOWY+FhYXp3LlzdoNkbGysQkNDnR6FBAAAAICyrFyEyKlTp+q5557TPffco/nz58tkMhk+d9++fZJsi/B06NBBZrNZmzZtsmmbkpKibdu2qX379q7pOAAAAACUMWU+RE6bNk3PPfec7rrrLr333nvy8Mj7ljIyMhQfH5/n+LFjx/TWW2+pSpUqiomJsR4fMmSITCaTZs2aZdN+3rx5Sk5O1rBhw1z+PgAAAACgLCjThXXeeOMNPfvss6pdu7Z69eqlTz/91Ob56tWrq3fv3kpMTFTdunU1cOBANWnSRJUqVdKePXs0f/58JSYm6rPPPpO/v7/1vBYtWuihhx7S3Llzdcstt+jGG2/Url27NHv2bHXr1s2m6isAAAAAXE3KdIjM3q/x6NGjuueee/I8361bN/Xu3Vv+/v669dZbtXHjRn333XdKTExUaGioevXqpccffzzPfpCSNGvWLEVGRurdd9/Vjz/+qNDQUI0ZM0bTpk2zO9oJAAAAAFcDk8VisZR2J6522Vt8xMfHKzg4uLS7o16vrdb+M4mSpLeGtdUNLWqWco8AAAAAFDejuYQhNQAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGEyAKYzWbNnDlTjRs3lp+fnyIiIjRhwgQlJSWVdtcAAAAAoFQQIgvw6KOPavz48WratKnmzJmjwYMHa/bs2erfv7/MZnNpdw8AAAAASpxXaXfAXe3YsUNz5szRLbfcoq+//tp6vG7duho7dqw+//xz3XHHHaXYQwAAAAAoeYxE5uOzzz6TxWLRuHHjbI6PGjVKAQEB+vjjj0unYwAAAABQigiR+di8ebM8PDwUHR1tc9zPz0+tW7fW5s2bS6lnxWv3qQTtP5NY2t0AAAAA4KaYzpqPEydOKDQ0VL6+vnmeCw8P17p165SWliYfHx+Hr12zZk2bx+60vvJ8YlppdwEAAACAG2MkMh/Jycl2A6SUNRqZ3aY88/QwqWGNoNLuBgAAAAA3wkhkPgICAnTmzBm7z6WkpFjbOOPkyZM2jxMSEhQSEuLUtVwtolKAHrmugTxMJsXUr6J6VSuUdpcAAAAAuBFCZD7CwsK0c+dOpaam5hmRjI2NVWhoqFNTWd1d7SoBerR3w9LuBgAAAAA3xXTWfHTo0EFms1mbNm2yOZ6SkqJt27apffv2pdQzAAAAACg9hMh8DBkyRCaTSbNmzbI5Pm/ePCUnJ2vYsGGl0zEAAAAAKEVMZ81HixYt9NBDD2nu3Lm65ZZbdOONN2rXrl2aPXu2unXrpjvuuKO0uwgAAAAAJY4QWYBZs2YpMjJS7777rn788UeFhoZqzJgxmjZtmjw8GMQFAAAAcPUxWSwWS2l34mqXXZ01Pj5ewcHBpd0dAAAAAFcho7mE4TQAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGGESAAAAACAYYRIAAAAAIBhhEgAAAAAgGFepd0BSBaLRZKUkJBQyj0BAAAAcLXKziPZ+SQ/hEg3cOnSJUlSREREKfcEAAAAwNXu0qVLCgkJyfd5k6WwmIliZzabdeLECQUFBclkMpV2d1AGNGjQQJK0b9++Uu4JUDC+VlEW8HWKsoKvVRQ3i8WiS5cuKSwsTB4e+a98ZCTSDXh4eKhWrVql3Q2UIdnf1MHBwaXcE6BgfK2iLODrFGUFX6soCQWNQGajsA4AAAAAwDBCJAAAAADAMNZEAgAAAAAMYyQSAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRIAAAAAYBghEgAAAABgGCESAAAAAGAYIRJwscTERL344otq0aKFgoKCFBoaqpiYGH3wwQeyWCySpMOHD8tkMhX455NPPrG5bmpqqp555hnVrVtXvr6+qlevnqZPn6709HS7/fjoo4/Upk0b+fv7q3r16ho5cqTOnj1rt+3GjRvVq1cvBQUFKTg4WH379tW2bdtc+u8C92PkazXb0qVLdd1116lGjRoKDAxUo0aNNHHiRJ0+fTrPdePj4zVmzBiFh4fLz89PzZo101tvvZXnmpJkNps1c+ZMNW7cWH5+foqIiNCECROUlJRkt89LlixRTEyMAgMDVblyZQ0ePFiHDh1yzT8I3JLRr1OLxaK3337b+nOvYsWK6tu3rzZs2GD3uvxMhaudPn1aDzzwgCIiIuTj46PatWvrkUceUVxcXJ62e/bs0cCBA1WpUiUFBgaqa9eu+uWXX+xel5+pcEsWAC6TmZlp6dKli8XDw8Ny3333Wd555x3LzJkzLdHR0RZJlscff9xisVgsiYmJloULF9r9ExISYvHx8bGcPXvW5toDBgywSLIMHz7cMm/ePMvw4cMtkiz33HNPnn689tprFkmWbt26Wd555x3LlClTLP+/vXsPi6rM4wD+nRlgAAWEUIQhEBAMMCJlzEumuaYWmouKWpqJgI+kGWqmWbuSrZpGUhSV4KWVzVq1vO2mhYVUJnlZvF8SU0k00USUgFHwt3/4zFlPZ9TBcL30/TyPj/Y7v/POe+b59TIvc877NmrUSCIiIqSyslKVu3HjRjEajRIcHCxz5syROXPmSHBwsDRu3Fh27Nhxw94rurnsrVURkezsbAEgbdu2lTlz5sjcuXMlKSlJDAaDBAUFqWrKYrGI2WwWBwcHGTdunGRnZ0tcXJwAkKlTp2r6MXbsWAEgcXFxkp2dLePGjRMHBwd5+OGHpa6uTpX7ySefiE6nk+joaMnKypIZM2ZIs2bNxNfXV0pLS2/Ye0U3T33qdNSoUQJAunbtKpmZmfLaa69JcHCwODk5SX5+vqZtjqnUkE6cOCGBgYHi6OgoY8aMkffff1/GjBkjjo6OEh0dLb/++quSW1xcLF5eXtKsWTOZMWOGZGVlSXR0tDg4OEheXp6qXY6pdKviJJKoAX333XcCQFJTU1Vxi8UiQUFB4uHhYdf5AwYMUMX//e9/CwAZP368Kj5+/HgBIBs2bFBiJ0+eFFdXVzGbzVJbW6vEV61aJQBk+vTpqjbMZrO4ubnJ0aNHldjRo0fFzc1NHnnkEbuum24/9anVsLAw8fX1lerqalXuSy+9JABk+fLlSiwrK0sASGZmpiq3X79+4ujoKIcPH1Ziu3btEp1OJ/369VPlZmZmCgD58MMPldj58+fFz89PAgIC5Ny5c0q8qKhI9Hq9JCcn1/s9oFufvXVaVFQkAKRXr15y8eJFJa+8vFx8fHwkNDRU9QGaYyo1tOeee04AyOLFi1XxxYsXCwB59dVXlVh8fLzo9XopKipSYufOnZOAgAAJCwtT1TDHVLpVcRJJ1IDWrl0rAGT27NmaY2azWfz8/K56vvU34WvXrlXFhwwZIgCkpKREFS8pKREAkpKSosRycnIEgCxatEjTfnBwsISHhyv/feDAAeU38bb6otPp5Pjx41ftM92e6lOrzZs3l4iICE2e9cPNF198ocQ6deokrq6umgnn119/LQBk1qxZSsw6Cf36669VudXV1eLq6iqPPvqoEsvLyxMAMm3aNE0/unXrJu7u7nL+/Hk7rpxuJ/bWqfWbwo8++kiTN3LkSE2dcUylhhYVFSUuLi6qCaDIpW/TnZ2dJTg4WEQu3YlkNBqlW7dumjamTZsmAOT7779XYhxT6VbFZyKJGlC7du3QpEkTzJ49G0uXLkVJSQn27duHF198EVu3bkVaWtoVz62srMSSJUsQGBiIRx55RHVs8+bNMJlMuPvuu1Xxu+++G35+fti8ebMqFwA6dOigeY327dtj3759qKystCtXRLB161b7Lp5uK/Wp1Z49e2LPnj2YMGEC9u7di59++gmffvopXn31VXTp0gXdunUDcOlZnP/85z+4//774ezsrHk9nU6nqVW9Xo927dqpcp2dnREdHV2vuj579ix++OGH3/2+0K3F3jq1WCwAAFdXV00b1tjlz0ZyTKWGZrFY4OzsDJ1Op4rr9Xq4uLjgxx9/xKlTp7Bjxw5YLJYr1gjwvzrimEq3Mk4iiRqQp6cnVq1aBS8vLwwcOBCBgYEIDw9HVlYWPvnkEyQnJ1/x3H/+85+orKxEQkIC9Hr1/5rHjh2DyWSyeZ7JZEJpaakq1xq3lSsiSs61cgGo2qY7R31q9a233kJ8fDzeeustREREICAgAP3798ejjz6KvLw8GAwGAEB5eTmqq6tt1pPRaIS3t7emVr29vWE0GjX5JpMJp06dwvnz55Vca9xWLsBavRPZW6eRkZEAoFmYRERQUFAAAPjpp5+UOMdUamiRkZEoLy/XLKC0bds2lJeXAwBKSkrqVSMcU+lW5nCzO0B0p2ncuDFat26Nxx9/HB07dsTp06eRlZWFJ598EitXrtR8y2g1b9486PV6JCQkaI5VVVXZ/KEAXPoNY1VVlSoXgM18628yrTn1yaU7j7216ujoiICAAMTFxaFPnz5wdXXF559/jgULFsBgMCAnJwfA1esJsF2rV8u15jg5ObFW/8DsqdNHH30UERERePfdd+Hn54d+/fqhqqoKc+bMwa5duwCgXrXHMZXqKzU1FStWrMDAgQPx5ptvonXr1ti9ezdSU1Ph6OiICxcuoKqqqsHqyZrPMZVuFk4iiRrQzp070bFjR2RkZGDUqFFK/IknnkDr1q2RnJyMgwcPKt/cWO3ZsweFhYXo2bMnAgICNO26uroqt2v9Vk1NjeoWLuu/LRYLXFxcNLmX51yea6vdy3PozmJvrep0OvTq1Qu1tbXYsGGDcqvWgAEDcNddd2HWrFkYNGgQunfvftV6AmzXallZ2RVzrTmX/81a/WOxt04dHBywZs0aPP3005g0aRImTZoEAIiKisJrr72GCRMmwN3dXTmfYyo1tM6dO+Pjjz/G2LFjERsbCwAwGAxISkpCZGQkli9fDnd393rVCMdUupXxdlaiBpSRkYGamhrEx8er4q6uroiNjcWRI0dw+PBhzXnz588HACQlJdls18/P74q3lZSWlqpuR/Hz81PitnJ1Op2Sc61cwPatLnT7s7dWv/32W3zzzTfo37+/5lkf67nW2wU9PT3h4uJis54sFgtOnTqlqdVTp07Z/BBTWloKb29vODk5KbnWuK1cgLV6J6rPmBoQEID8/HwcOXIEBQUF2LVrF7Zv3658q3LPPfco53NMpRshPj4eR48eRVFREb7++mscO3YM77//Po4ePQoHBwe0bNmyXjXCMZVuZZxEEjUg68BbV1enOVZbW6v62+r8+fPIzc1F06ZN0bdvX5vtms1mlJaWqp7pAS4943Ps2DHExMSocgFg48aNmnYKCwvRqlUrNG7c2K5cnU6Htm3b2r5Yuq3ZW6v1qWm9Xo82bdqgqKhI8yFm06ZNEBFNrV68eBGbNm1S5dbU1GDbtm31qmt3d3eEhYVd46rpdnM9Y2pAQAAeeugh5TnJzz77DHq9Hj179lRyOKbSjWIwGBAdHY3OnTujWbNm+Pnnn1FUVIQuXbrA1dUV9957L4xG4xVrBIBSfxxT6ZZ2E1eGJbrjpKamapbcFrm0V5mvr694enqq9hkTEVm6dKnN/cou969//euqe5p98803SqysrExcXFykXbt2Nvc0u3yvKhGRmJgYcXNzU20sXFpaKm5ubvKnP/3J/oun24q9tbpt2zYBIFFRUZrl3q2bu3/yySdK7J133rninmYODg5y6NAhJbZjx46r7mmWm5urxM6fPy++vr6aPc22bdsmer1eEhMTr/u9oFvX9Yypl1u5cqUAkKeffloV55hK/w91dXUSHx8vOp1OvvrqKyU+YMAA0ev1sm3bNiVm3ScyNDRUtU0Ix1S6VXESSdSADh8+LF5eXqLT6WTo0KHy3nvvyfTp06VFixYCQLKysjTn9OrVSwDInj17rtp27969BYAkJibKvHnzJDExUQDI0KFDNbnp6ekCQLp27Spz586Vv/71r9KoUSO55557VD8sREQ2bNggTk5OEhwcLBkZGZKRkSHBwcHSqFEj1Q84urPUp1b79++vTCRnz54t77zzjvTp00cASPv27VUfrC0Wi7Rt21YcHBxk/PjxkpOTI3FxcQJAXn75ZU0/xowZIwAkLi5OcnJyZPz48eLg4CBdunRRbQ4vIrJkyRLR6XQSHR0tWVlZMnPmTGnWrJn4+PioNnanO0d96nTEiBGSkJAgb731lmRnZ8uwYcPEYDCI2WyWM2fOaNrmmEoN6dy5cxIeHi5TpkyRnJwcSU9Pl7Zt2woAmT59uir3wIED4unpKc2aNZOZM2dKVlaWREdHi8Fg0OwTzTGVblWcRBI1sOLiYhk2bJiYTCZxcHAQNzc36dy5s+rbGquSkhLR6/XSsWPHa7ZbXV0tL730kgQGBoqTk5MEBQXJtGnTrrgZ8MKFCyUqKkqMRqM0bdpUEhIS5MSJEzZzv/vuO+nWrZs0atRIGjduLD169JCtW7fW78LptmNvrVosFpk1a5ZERUWJs7OzODk5SWhoqLz44otSWVmpabe8vFxGjx4tvr6+4uTkJOHh4fL2229rNuEWEamtrZX09HQJCwsTJycn8fPzk3Hjxmk+mFutXr1aHnjgAXFxcZEmTZpI//79pbi4uGHeELol2Vun77//vrRp00bc3d3F2dlZWrduLdOnT5eqqiqb7XJMpYZksVhk8ODB0qJFCzEajeLp6Sk9evTQTAqt9uzZI48//rh4eHiIi4uLdOrUSfLy8mzmckylW5FORORG3zJLREREREREdwYurENERERERER24ySSiIiIiIiI7MZJJBEREREREdmNk0giIiIiIiKyGyeRREREREREZDdOIomIiIiIiMhunEQSERERERGR3TiJJCIiIiIiIrtxEklERERERH8YM2fORHx8PIKDg6HT6dCiRYt6nV9WVoaEhARERUXBy8sLzs7OaNmyJRITE1FcXGzznGPHjmHYsGFo2rQpXFxcEBMTg6VLl9rMPXjwIIYMGQIfHx8YjUa0bNkSU6dORU1NTX0vVWPjxo14/PHH4e/vDxcXF4SEhCA5ORk//vhjvdrRiYj87t4QERGRRlpaGl555RXk5+eja9euN7s7duvcuTPOnTuHoqIi6HS6ep27fft23H///cjOzkZSUtIN6iER0fXT6XTw8vJCmzZtsHXrVri7u+Pw4cN2n79//36MGDECHTp0QGBgIFxcXHDgwAEsWLAAFosFhYWFiIiIUPJPnz6NmJgYlJWVYfz48fD398fixYtRUFCABQsWICEhQcndt28fOnTogNraWowePRpBQUHYuHEjFi1ahB49emDNmjX1Hpet1q5di9jYWISEhGDEiBHw9vbG7t27kZ2dDaPRiJ07d8JkMtnXmBAREdE1AajXn/z8fJk6dary79vFkiVLBICsXr36utsYMGCANG/eXM6dO9eAPSMiurr8/Hy7xtyDBw8q/46MjJTAwMAGef1NmzYJAElJSVHFJ06cKABk1apVSqy2tlbMZrN4eXmpxsq+ffuKTqeTDRs2qNqYMWOGAJDc3Nzr7l+PHj3E0dFRTp48qYrn5OQIAMnIyLC7LYfrmsYSERH9wUydOlUTe/PNN1FRUYHnnnsOTZo0UR1r0aIFxowZg8GDByMgIOD/1MvfR0Tw8ssvIzIyEr17977udiZNmoRly5YhMzMTU6ZMacAeEhH9fsHBwTek3cDAQABAeXm5Kr548WKEhISgT58+SsxgMODZZ5/FsGHD8Nlnn2HgwIEAgPz8fISFhaFjx46qNoYPH44pU6Zg4cKFGDp0qOrYunXrMHv2bGzatAk1NTUICwvDM888g1GjRqnyzp49C2dnZ3h6eqrifn5+AIBGjRrZfa2cRBIREdkhLS1NE/vggw9QUVGB1NTUKz5T4+3tfWM71oDWrVuHH374AbNmzfpd7cTExCA8PBxz587F5MmToddzCQYiuvNcuHABFRUVuHDhAoqLi5WfE4899piSc/z4cZSWlmLIkCGa89u3bw8A2Lx5szKJtFgscHV11eRaY5s2bYKIKLe0ZmdnY9SoUWjfvj1eeuklNGrUCHl5eUhJScHBgwfx+uuvK2307NkThYWFePrppzFx4kR4e3tj165dmDBhAsLDwzF48GC7r52jOhER0Q2SlpYGnU6H9evXK7HDhw9Dp9Nh+PDh+OGHHxAXFwdPT094eHigb9++ynM5xcXFiI+Ph7e3N1xdXfHYY49dceGDX375BS+88AJatWql/JY5NjYWhYWF9erv/PnzAQCDBg3SHDt79ixeeeUVtG7dGm5ubnBzc0NISAgGDx6MoqIiTf6gQYNQUlKCvLy8evWBiOh28fnnn6Np06bw8/PDQw89hN27d+ONN97AU089peQcO3YMAGw+a2iNlZaWKrHIyEjs3bsXP//8syo3Pz8fAFBZWal803n8+HGMHTsWgwcPxnfffYeJEyfimWeewfLlyzF27FjMmTNH9XPjxRdfREpKCpYtW4bo6Gj4+/ujV69eCA4ORmFhIdzc3Oy+dk4iiYiIboJDhw6hQ4cOqKioQGJiIjp16oRVq1ahe/fu2Lt3Lx544AGcOnUKw4cPR9euXbFmzRrExsbi4sWLmnbatGmD119/HSaTCaNHj0ZcXBw2btyIhx56CKtXr7arPyKCr776Cn5+fsotWZcf69WrF9LS0uDu7o7k5GSkpKSgXbt2WL9+Pb7//ntNe506dQIATiKJ6Ia4ePEiTp06pfpTUVEBAKioqNAc++3Y2RDat2+PvLw8rFq1Cq+99hp8fX1RXl6O2tpaJaeqqgoAYDQaNec7OzurcgBgwoQJqKmpQd++fVFQUIAjR45gyZIlSElJgaOjoyp/2bJlsFgsSExM1Fxvnz59cPHiRaxbt05p22AwwGQyoXv37pg3bx4+/fRTTJgwAevWrcPgwYNx4cIF+y/+up/MJCIi+oMLDAwUAHLo0CGbx20trHPo0CFl8Z309HRVfnJysgCQJk2aXPHYp59+qoo/+OCDotfrNfFjx46Jv7+/+Pj4SHV19TWvZe/evQJA+vTpozm2Y8cOASB//vOfNcdqa2vl9OnTmviZM2cEgJjN5mu+NhFRfV0+ltrz50rjdEMurFNaWip33XWXjBw5Uolt2bJFAMgLL7ygyf/1118FgDzxxBOqeGZmpnh4eCh9d3JykrS0NDGbzQJAKioqREQkJSXlmtc9bdo0pd0hQ4ZIUFCQVFVVqV7vvffeEwCSk5Nj97XymUgiIqKbICgoCOPGjVPFnnrqKeTk5MDLy0tzbOjQocjJycH27dsRFxcHANi2bRu+/fZbDBo0SIlZ+fr6YuLEiXjuuefw5ZdfIjY29qr9KSkpAQA0b978ijkuLi6amMFg0CzSAAAeHh5wdnZW2iUiakjNmzfX3Omwfft2PP/880hPT8d9992nyb/R/Pz80L17d8yfPx+ZmZkwGo3KojWX37JqZY399lbXZ599FiNHjsTOnTthsVgQGRmJJk2aICsrC76+vnB3dwdw6S4RAFi0aBF8fX1t9sm6iFBJSQk+/PBDjBkzRjOWx8fHIyUlBQUFBXZvzcRJJBER0U1w3333aRacsX4IiIqK0hyz9UFk48aNAC7tQWZr4Z8DBw4AuLTv2LUmkb/88gsA2JwQRkREIDo6Gh999BGOHDmCvn374sEHH0RMTAycnJyu2KaXlxdOnDhx1dclIroezs7O6N69uyrm4HBpatO2bdubtjdvdXU16urqcPbsWTRt2hS+vr4wmUw2n1G3xmJiYjTHjEajKr5lyxacPHkSiYmJSiw0NBTApQXcfvte/Jb1Z0ddXZ3mmPX228tvw70WTiKJiIhuAg8PD03M+gHoascuf2bl9OnTAC49d3i1Zw8rKyuv2R/rb6Zramo0xwwGA7766itMmzYNy5Ytw6RJkwAA7u7uGD58OGbMmGFzafjq6mqb314SEd0uSkpKUFVVhZCQEOWZxBMnTsDHx0eTu2fPHnz55ZcICQlB06ZNlfgTTzyB9PR0rF69Wtnmo66uDm+//TaaNGmiWs3VlpqaGqSmpsJoNOL5559X4gMHDsSUKVMwdepUdO3aVTPeVlRUwNnZGUajEa1atYLBYMCKFSswY8YM1bZUH3zwAQDAbDbb/b5wEklERHSbsk42Z86cicmTJ/+utpo1awbgfxPT3/L09ERGRgYyMjJw4MABrF+/HnPnzkVmZibOnj2LhQsXqvIvXryIM2fOICgo6Hf1i4iooeXm5uLIkSMAgJMnT+L8+fP429/+BuDSXo+Xr646bNgwFBQU4NChQ8pWTjNnzkReXh5iY2PRokULiAh27dqF3NxcXLhwAVlZWarXmzx5MpYuXYonn3wS48ePh8lkwkcffYTNmzdj3rx5qlVRd+/ejeHDh6N3797w9/fHiRMn8Pe//x0HDx7EwoULcc899yi5/v7+eO+995CUlITw8HA89dRTCAwMxMmTJ7Fz506sWLECe/bsQYsWLeDl5YXU1FS88cYbuP/++5GcnAwvLy9s2LABH374IUJCQuy+lRXgJJKIiOi29cADDwD4322tv0dkZCQMBgP2799/zdzQ0FCEhoZiyJAh8PHxwYoVKzSTyP3790NEEB0d/bv7RkTUkObPn4+CggJV7C9/+QsAoEuXLqpJpC29e/fG0aNHsWTJEpSVlaGurg4mkwnx8fF4/vnnERkZqcq/6667sGHDBkyePBlZWVmorKxEREQEPv74Y82WSt7e3vD390dOTg7Kysrg4eGBzp07Izc3F+3atdP0JSEhAWFhYUhPT8fcuXNx5swZeHt7o1WrVnj11VdVz4K+/vrraNWqFebNm4cZM2bAYrHAZDIhJSVFWX3bXpxEEhER3abMZjM6duyIVatWYcGCBRgxYoQmp7CwEFFRUTY3r76ch4cHoqOjsX37dlgsFtVy9IcOHYKIKAs0WJWXl8Nisdj84GF91ufhhx++nksjIqq3rl27KovNXM3le/deT2737t2v+Qzib5lMJuTm5l4zz8fHB8uXL69X2506dVK2VboanU6H5ORkJCcn16t9WziJJCIiuo0tXrwYDz/8MBITE/Huu+/CbDbDzc0NP/30E7Zs2YLi4mIcP378mpNIAOjXrx+2bt2K9evXo2fPnkp8+/bt6NevH8xmM8LDw+Hn54eysjKsXLkSFy5cUJ6RvNwXX3wBg8GAvn37Nuj1EhHRzae/dgoRERHdqgIDA1FUVIS0tDTU1tZi0aJFeOedd7Bp0ybce++9WLRoEby9ve1qKzExEY6Ojli0aJEqHhMTg8mTJ8NgMGDt2rV444038Pnnn8NsNmPNmjUYO3asKv/cuXNYuXIlevfujbvvvrvBrpWIiG4NOrHnO18iIiL6Q0hKSsLixYtx+PBhZbGd+nr33XcxevRofPPNN3jwwQcbuIdERHSzcRJJREREiuPHjyM0NBTJycnIyMio9/k1NTVo2bIl2rdvj2XLlt2AHhIR0c3GZyKJiIhI4evri3/84x/K6qo6na5e5x85cgRJSUkYPnz4jekgERHddPwmkoiIiIiIiOzGhXWIiIiIiIjIbpxEEhERERERkd04iSQiIiIiIiK7cRJJREREREREduMkkoiIiIiIiOzGSSQRERERERHZjZNIIiIiIiIishsnkURERERERGQ3TiKJiIiIiIjIbv8FIb+RManGWVkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see what the periodogram looks like:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4296it [00:00, 13627.62it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4AAAAJ2CAYAAAAOiOznAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACnhUlEQVR4nOzdd5gT1f7H8c+uS1k6CKyAIIKIlaJgAZEiiNiwoAiKgCKi14ooIoJ0KyIKXFTEq9grFtQrIKIICtjQq4idqoIiRcoCO78/5pfdJDtJZiaTZJK8X8/DQ3YymTlJJjPnO+d7zskxDMMQAAAAACDj5aa6AAAAAACA5CAABAAAAIAsQQAIAAAAAFmCABAAAAAAsgQBIAAAAABkCQJAAAAAAMgSBIAAAAAAkCXyUl2AdFdUVKT169ercuXKysnJSXVxAAAAAGQhwzC0bds21a1bV7m5kdv5CADjtH79etWvXz/VxQAAAAAArVmzRgceeGDE5wkA41S5cmVJ5gddpUqVFJcGAAAAQDbaunWr6tevXxyfREIAGKdA2meVKlUIAAEAAACkVKxuaQwCAwAAAABZwncB4KpVqzRy5EidcMIJqlWrlipXrqwWLVpo/Pjx+ueff2xto0OHDsrJybH8t3z58gS/AwAAAADwJ9+lgM6cOVNTp07V2WefrYsvvlhlypTRggULdPvtt+uFF17Qxx9/rPz8/JjbqVmzpiZNmlRqeaNGjRJRbAAAAADwPd8FgD169NCwYcNUtWrV4mWDBg1SkyZNNH78eD322GO65pprYm6nYsWKuuSSSxJZVAAAAABIK75LAW3VqlVI8BfQs2dPSdLXX39te1tFRUXaunWrDMPwrHwAAAAAkK581wIYydq1ayVJBQUFttZft26dKlWqpJ07d6pChQrq2rWrJkyYoMMOOyyuctSpUyfk76Kiori2BwAAAADJkhYB4L59+zR27Fjl5eWpd+/eMdc/+OCD1bZtWzVr1kz77befPvnkE02ZMkXz58/XokWLdPTRRyeh1AAAAAAQKpCluHv3bkmRp20IZDGWK1dOVapUUW6uN8mbOUYa5Edee+21mjJliiZMmKBhw4a52saHH36oDh06qFOnTpo7d65nZdu6dauqVq2qLVu2MA8gAAAAgIiKior0+++/q1q1aipfvnzMOfsMw9CuXbv0999/q6CgIGoQaDcu8V0fwHAjRozQlClTNHDgQNfBnyS1a9dOJ598shYsWKCdO3d6WEIAAAAAiG3r1q2qVq2a8vPzYwZ/ktk6mJ+fr2rVqmnr1q2elMHXAeCoUaM0btw49e/fX9OnT497ew0bNtS+ffu0efNmD0oHAAAAAPbt3r1b5cuXd/y68uXLF6eMxsu3AeCoUaM0evRo9e3bVzNmzLAVIcfy/fffKy8vTzVq1PCghAAAAADgjJu4xotYKMCXAeCYMWM0evRo9enTRzNnzoyY67phwwatXLlSO3bsKF62ZcsW7du3r9S6c+bM0UcffaQuXbq4iroBAAAAIB7xBHJeBYG+GwV06tSpuuOOO9SgQQN17txZzzzzTMjzBQUF6tKliyRp2LBheuKJJ7RgwQJ16NBBkrRgwQINHjxYZ511lho1aqS8vDwtXbpUTz31lGrWrKkHHnggye8IAAAAAPzBdwHgsmXLJEmrV69W3759Sz3fvn374gDQStOmTdWqVSu9+eab+v3337Vnzx4deOCBGjRokG677TbVq1cvYWUHAAAAAD9Li2kg/IxpIAAAAADY8ccff6h27doJeW3GTAMBAAAAAPAGASAAAAAAZAkCQAAAAABIgnh633nVc48AEAAAAACSxE0g5+WwLQSAAAAAAJAE5cqV065duxy/bteuXSpXrpwnZfDdNBBwr7BQ+uGHkr8PP1zyaL5IAAAAAHGqUqWKfv/9d0lS+fLlY07ubhiGdu3apb///lsFBQWelIEAMIOsXi0deWTJ34WFUpkyqSsPAAAAgBK5ubkqKCjQ1q1btXXrVkmKGAQG0j7LlSungoIC5eZ6k7xJAAgAAAAASZKbm6tq1aqlbv8p2zMAAAAAIKkIADOYh4MFAQAAAMgABIAZhAFfAAAAAERDAAgAAAAAWYIAMIORAgoAAAAgGAFgBiEFFAAAAEA0BIAAAAAAkCUIAAEAAAAgSxAAZjD6AAIAAAAIRgCYQegDCAAAACAaAkAAAAAAyBIEgAAAAACQJQgAMxh9AAEAAAAEIwDMIPQBBAAAABANASAAAAAAZAkCwAxGCigAAACAYASAGYQUUAAAAADREAACAAAAQJYgAAQAAACALEEAmMHoAwgAAAAgGAFgBqEPIAAAAIBoCAABAAAAIEsQAGYwUkABAAAABCMAzCCkgAIAAACIhgAQAAAAALIEASAAAAAAZAkCwAxGH0AAAAAAwQgAMwh9AAEAAABEQwAIAAAAAFmCADCDkQIKAAAAIBgBYAYhBRQAAABANASAAAAAAJAlCAABAAAAIEsQAGYw+gACAAAACEYAmEHoAwgAAAAgGgJAAAAAAMgSBIAAAAAAkCUIADMYfQABAAAABCMAzCD0AQQAAAAQDQEgAAAAAGQJAsAMRgooAAAAgGAEgBmEFFAAAAAA0RAAAgAAAECWIAAEAAAAgCxBAJjB6AMIAAAAIBgBYAahDyAAAACAaAgAAQAAACBLEABmMFJAAQAAAAQjAMwgpIACAAAAiIYAEAAAAACyBAEgAAAAAGQJAsAMRh9AAAAAAMEIADMIfQABAAAAREMACAAAAABZggAwg5ECCgAAACAYAWAGIQUUAAAAQDQEgAAAAACQJQgAAQAAACBLEABmMPoAAgAAAAhGAJhB6AMIAAAAIBrfBYCrVq3SyJEjdcIJJ6hWrVqqXLmyWrRoofHjx+uff/5xtc2ePXsqJydHRx11lMelBQAAAID04bsAcObMmZo0aZIaN26skSNH6t5771XTpk11++23q02bNtq5c6ej7b355pt66aWXlJ+fn6ASAwAAAEB6yEt1AcL16NFDw4YNU9WqVYuXDRo0SE2aNNH48eP12GOP6ZprrrG1re3bt+vqq6/Wv/71L73++uuJKrJv0QcQAAAAQDDftQC2atUqJPgL6NmzpyTp66+/tr2t4cOHa9++fRo3bpxn5fMz+gACAAAAiMZ3LYCRrF27VpJUUFBga/2lS5dqypQpevbZZ1WlSpVEFg0AAAAA0kJaBID79u3T2LFjlZeXp969e8dcf+/evRowYIBOPfVUXXjhhZ6WpU6dOiF/FxUVebp9L5ECCgAAACBYWgSAN9xwg5YsWaIJEyaoadOmMde/99579cMPP2j27NmJL5yPkAIKAAAAIBrfB4AjRozQlClTNHDgQA0bNizm+j/88IPGjBmj22+/XY0aNfK8PBs2bAj5e+vWrZZ9FgEAAADAb3wdAI4aNUrjxo1T//79NX36dFuvuemmm1SjRg2de+65+uGHH4qX7927V4WFhfrhhx9UsWLFUqmcAAAAAJDpfBsAjho1SqNHj1bfvn01Y8YM5djMb/z111+1fv16HXnkkZbPN2nSRGeccYbefPNNL4vrS/QBBAAAABDMlwHgmDFjNHr0aPXp00czZ85Ubq71bBUbNmzQli1b1KBBA1WoUEGSdN999+nvv/8ute7VV1+t8uXL6/7778/Y1j/6AAIAAACIJscw/NVONHXqVF1zzTVq0KCBxo4dWyr4KygoUJcuXSRJ/fr10xNPPKEFCxaoQ4cOUbfbsGFDVapUydE8gnYE+gBu2bIl5dNN/P23VL16yd/r10sZGusCAAAACGI3LvFdC+CyZcskSatXr1bfvn1LPd++ffviABDR+Su0BwAAAJBqvmsBTDd+agHcskWqVq3k73XrpLp1U1YcAAAAAEliNy6x7lwHAAAAAMg4BIAAAAAAkCUIADMYyb0AAAAAghEAZhCmgQAAAAAQDQEgAAAAAGQJAsAMRgooAAAAgGAEgBmEFFAAAAAA0RAAAgAAAECWIAAEAAAAgCxBAJjB6AMIAAAAIBgBYAahDyAAAACAaAgAAQAAACBLEABmMFJAAQAAAAQjAMwgpIACAAAAiIYAEAAAAACyBAEgAAAAAGQJAsAMRh9AAAAAAMEIADMIfQABAAAAREMACAAAAABZggAQAAAAALIEAWAGow8gAAAAgGAEgBmEPoAAAAAAoiEABAAAAIAsQQCYwUgBBQAAABCMADCDkAIKAAAAIBoCQAAAAADIEgSAAAAAAJAlCAAzGH0AAQAAAAQjAMwg9AEEAAAAEA0BIAAAAABkCQLADEYKKAAAAIBgBIAZhBRQAAAAANEQAAIAAABAliAABAAAAIAsQQCYwegDCAAAACAYAWAGoQ8gAAAAgGgIAAEAAAAgSxAAZjBSQAEAAAAEIwDMIKSAAgAAAIiGABAAAAAAsgQBIAAAAABkCQLADEYfQAAAAADBCAAzCH0AAQAAAERDAAgAAAAAWYIAEAAAAACyBAFgBqMPIAAAAIBgBIAZhD6AAAAAAKIhAAQAAACALEEAmMFIAQUAAAAQjAAwg5ACCgAAACAaAkAAAAAAyBIEgAAAAACQJQgAMxh9AAEAAAAEIwDMIPQBBAAAABANASAAAAAAZAkCwAxGCigAAACAYASAAAAAAJAlCAABAAAAIEsQAAIAAABAliAAzGD0AQQAAAAQjAAwwzAVBAAAAIBICAABAAAAIEsQAGYwUkABAAAABCMAzDCkgAIAAACIhAAQAAAAALIEASAAAAAAZAkCwAxGH0AAAAAAwQgAMwx9AAEAAABEQgAIAAAAAFnCdwHgqlWrNHLkSJ1wwgmqVauWKleurBYtWmj8+PH6559/Yr5+z549GjRokI499ljVrFlT5cqV08EHH6yePXvq888/T8I78A9SQAEAAAAEy0t1AcLNnDlTU6dO1dlnn62LL75YZcqU0YIFC3T77bfrhRde0Mcff6z8/PyIry8sLNTy5cvVtm1b9enTR5UrV9bq1av1+OOP6/jjj9c777yjTp06JfEdJRcpoAAAAAAiyTEMf7UTLV++XE2aNFHVqlVDlt9+++0aP368HnroIV1zzTWOt7thwwY1aNBAXbp00VtvveVVcbV161ZVrVpVW7ZsUZUqVTzbrltlykh795qPv/xSatYsteUBAAAAkHh24xLfpYC2atWqVPAnST179pQkff311662W7t2bZUvX16bN2+Oq3wAAAAAkK58lwIaydq1ayVJBQUFttbft2+fNm/erL1792rNmjW67777tH37dp1++ulxlaNOnTohfxcVFcW1vUTyV9suAAAAgFRLiwBw3759Gjt2rPLy8tS7d29br/n222919NFHF/9dtWpVDRs2TMOGDUtUMX2BPoAAAAAAIkmLAPCGG27QkiVLNGHCBDVt2tTWaw4++GDNnTtXhYWF+uGHH/TUU09py5Yt2r17t/Ly3L/tDRs2hPwdyLUFAAAAAL/z3SAw4UaMGKFx48Zp4MCBevjhh11vZ/v27TrmmGPUqFEjvfPOO56Vz2+DwJQtK+3ZYz7+4gupefOUFgcAAABAEqTtIDDBRo0apXHjxql///6aPn16XNuqVKmSzjvvPP33v//Vjz/+6FEJ/c3foT0AAACAZPNtADhq1CiNHj1affv21YwZM5TjQee2nTt3SpL++uuvuLflV/QBBAAAABCJLwPAMWPGaPTo0erTp49mzpyp3FzrYm7YsEErV67Ujh07ipdt3LjRcmTO3377TS+++KIqVaqkI488MmFlBwAAAAC/8t0gMFOnTtUdd9yhBg0aqHPnznrmmWdCni8oKFCXLl0kScOGDdMTTzyhBQsWqEOHDpKkp59+Wg888IDOPfdcHXzwwSpbtqxWrVqlJ554Qps3b9aMGTNUoUKFZL+tlCAFFAAAAEAw3wWAy5YtkyStXr1affv2LfV8+/btiwNAK+3atdPy5cv15ptvasOGDSosLFRBQYE6d+6s66+/Xm3atElY2f2AFFAAAAAAkfh+FFC/89sooOXLS7t3m48/+0xq2TK15QEAAACQeBkxCigAAAAAwDsEgBmMtl0AAAAAwQgAMwx9AAEAAABEQgAIAAAAAFmCADCDkQIKAAAAIBgBYIYhBRQAAABAJASAAAAAAJAlCAABAAAAIEsQAGYw+gACAAAACEYAmGHoAwgAAAAgEgJAAAAAAMgSBIAZjBRQAAAAAMEIADMMKaAAAAAAIiEABAAAAIAsQQAIAAAAAFmCADCD0QcQAAAAQDACwAxDH0AAAAAAkRAAAgAAAECWIAAEAAAAgCxBAJjB6AMIAAAAIBgBYIahDyAAAACASAgAAQAAACBLEABmMFJAAQAAAAQjAMwwpIACAAAAiIQAEADgub17pSVLpK1bU10SAAAQjAAQAOC5Xr2kNm2kVq3MYBAAAPgDAWAGow8ggFR56SXz/++/l95+O7VlAQAAJfLiefHKlSu1evVqbdq0Sfn5+apdu7aOPvpoValSxavywSH6AALwm7//TnUJAABAgOMA8L333tNjjz2mefPmadOmTaWez83NVcuWLdWjRw9ddtllqlmzpicFBQAAAADEx3YA+Morr2j48OFatWqVDMNQvXr11L17dx1wwAGqUaOGdu7cqT///FMrV67UF198oeXLl+uOO+7QpZdeqjFjxqigoCCR7wMWSAEF4AeciwAA8A9bAeDJJ5+sRYsW6aijjtJdd92lnj17qkGDBhHXLyws1IIFCzRr1iw9/fTTeu655zRr1iydffbZnhUc1kgBBeA3BIAAAPiHrQBwx44devPNN3X66afb2mjZsmXVtWtXde3aVRs3btRdd92lVatWxVVQAEB6IgAEAMA/bAWAy5cvd72DWrVqaeLEia5fDwBIL+EBHwEgAAD+wTQQGYxKF4BUIAAEAMC/XAWAl156qRYvXux1WeAB+gACSDUCQAAA/MtVAPjUU0+pXbt2Ovroo/XQQw/pbyZ5AgD8PwI+AAD8y1UAuGDBAl100UX64YcfdP3116tevXrq16+flixZ4nX5EAcqYQBSgRZAAAD8y1UA2L59ez399NNav369Jk6cqIMOOkhPPvmkTjrpJDVr1kxTpkzRli1bvC4rbCAFFECqEQACAOBfcQ0CU716dd1444365ptvtHDhQvXu3bu4VbBu3brq37+/Pv74Y6/KCgBIAwSAAAD4l2ejgLZr106zZs3Se++9p7p162rnzp164okn1LZtW7Vq1Upvv/22V7sCAKQRAkAAAPzDkwBwz549evbZZ9WxY0e1bdtW69at05FHHqn77rtPvXr10ldffaUzzzxT06ZN82J3sIlKF4BUoAUQAAD/iisAXLVqlYYMGaJ69erpkksu0ZIlS9SzZ08tXLhQX331lQYPHqynnnpK3333nQ455BDdd999XpUbEdAHEECqEQACAOBfeW5e9Oyzz+qRRx7RBx98IMMwdNBBB2nw4MG6/PLLVatWrVLrN2zYUL169dK4cePiLjAAwN8IAAEA8C9XAeDFF1+s3NxcdevWTVdddZVOP/105cRoemratKnatWvnqpAAgPRBwAcAgH+5CgBvvfVWXXnllTrooINsv6ZXr17q1auXm93BJSphAFKBFkAAAPzLVQA4YcIEr8sBj9AHEECqEQACAOBfnk0DAQCARAAIAICfuWoBlKTvv/9ekydP1tKlS7V582bt27ev1Do5OTn68ccf4yog3KPSBcAPOBcBAOAfrgLAJUuWqHPnztq5c6fy8vJUUFCgvLzSmzK46icdKaAAUo0WQAAA/MtVADhs2DDt3r1b06dP12WXXWYZ/AEAshMBIAAA/uUqclu2bJl69OihgQMHel0eAECaI+ADAMC/XA0CU7ZsWTVo0MDrssBjVMIApAItgAAA+JerALBNmzb6/PPPvS4LPEAfQACpRgAIAIB/uQoAJ0yYoMWLF2vWrFlelwcAkOYIAAEA8C9bfQDHjBlTalmnTp3Ur18/zZgxQ8cee6yqVatWap2cnByNGDEi7kLCHSpdAFKBcw8AAP5lKwAcNWpUxOc+/PBDffjhh5bPEQAmHymgAPyGgBAAAP+wFQAuWLAg0eUAAGSI8ICvqCg15QAAAKXZCgDbt2+f6HIAADIEfQABAPAvV4PAID1Q6QKQCpx7AADwL1cTwQdbu3at1q1bp927d1s+f/LJJ8e7CzhAH0AAqUYLIAAA/uU6AJwzZ46GDBmiVatWRV1v3759bncBAEhDBIAAAPiXqxTQDz/8UOecc462bt2qa665RoZh6OSTT9YVV1yhww8/XIZh6Mwzz9TIkSO9Li8coNIFIBUIAAEA8C9XAeBdd92lChUqaPny5Zo8ebIkqWPHjpo+fbq++uorjR49WvPmzdO5557raWERGymgAPyGABAAAP9wFQB+8skn6t69u+rUqVO8rOj/x/kOzP3XrFkzWgABIAvRAggAgH+5CgC3b9+u+vXrF/9dtmxZbd++PWSdNm3a6KOPPoqvdACAtEMACACAf7kKAAsKCvTnn38W/12nTp1Sg8Fs27Yt4sigSA4qXQBSgQAQAAD/chUAHnHEEVq5cmXx3yeddJLmzp2rxYsXS5K++eYbvfDCCzriiCO8KSVsow8ggFQj4AMAwL9cBYCnn366Fi1apA0bNkiShg4dqpycHLVr1061atVSs2bNtHXrVg0fPtzTwgIA/I8WQAAA/MtVADho0CCtW7dO+++/vyTpqKOO0vz589WtWzfVrFlTXbp00Zw5c3TWWWc53vaqVas0cuRInXDCCapVq5YqV66sFi1aaPz48frnn39ivn7z5s2aPHmyTj31VNWvX1/5+flq2rSpBg4cqDVr1jguTzqj0gUgFQgAAQDwL1cTwZcpU0YFBQUhy0488US9+eabcRdo5syZmjp1qs4++2xdfPHFKlOmjBYsWKDbb79dL7zwgj7++GPl5+dHfP0nn3yim266SaeccoquueYa1axZU19//bUefvhhvfDCC1q8eHFGp6aSAgog1QgAAQDwL1cBYCL16NFDw4YNU9WqVYuXDRo0SE2aNNH48eP12GOP6Zprron4+sMOO0zfffedGjduHLL8jDPOUJcuXTRy5Ei99NJLCSs/ACAUASAAAP7hKgU04LXXXlPPnj3VvHlzHXLIIcXLv/32W91zzz1at26d4222atUqJPgL6NmzpyTp66+/jvr6hg0blgr+JKlz586qUaNGzNcDAOJDCyAAAP7lqgXQMAxdcskleu655yRJ+fn52rlzZ/HzNWrU0PDhw7Vv3z4NGzbMk4KuXbtWkkqlntq1ZcsWbdu2TUcddVRc5ahTp07I30VFRXFtL5GodAFIBQJAAAD8y1UL4IMPPqhnn31WAwYM0F9//aUhQ4aEPF9QUKCTTjpJc+bM8aSQ+/bt09ixY5WXl6fevXu72sb48eO1Z88e9e3b15My+RV9AAGkGgEfAAD+5aoFcObMmTrmmGP08MMPS5JyLKKOQw45RG+//XZ8pft/N9xwg5YsWaIJEyaoadOmjl//0ksv6b777tNpp52m/v37x1WWwNQXAVu3brVMWQWAbEULIAAA/uWqBfD7779X+/bto65Ts2ZNbdq0yVWhgo0YMUJTpkzRwIEDXaWTvvXWW7r44ot17LHH6vnnn7cMVgEA3iEABADAv1wFgGXLltX27dujrrNmzRpVqVLFVaECRo0apXHjxql///6aPn2649e/8847Ou+883TkkUfq3Xffjbs86YZKF4BUIAAEAMC/XAWAzZs317x587Rnzx7L57dt26a5c+eqVatWrgs2atQojR49Wn379tWMGTMct9y98847Ouecc3TYYYdp3rx5ql69uuuypBMaOAGkGgEfAAD+5SoAHDBggH7++Wf169evVEvgpk2b1Lt3b23atElXXnmlq0KNGTNGo0ePVp8+fTRz5kzl5loXc8OGDVq5cqV27NgRsvzdd9/Vueeeq6ZNm2r+/PmqUaOGq3IAAOLn48GSAQDIOq4GgenTp4/mzZunWbNm6eWXX1a1atUkSUcccYR+/PFH7dmzRwMGDFD37t0db3vq1Km644471KBBA3Xu3FnPPPNMyPMFBQXq0qWLJGnYsGF64okntGDBAnXo0EGStHz5cnXv3l2GYah///6WA9FccskljsuVjrgLDyAVws89+/alphwAAKA0VwGgJD3xxBM6+eST9dBDD+mrr76SYRhauXKljjjiCF1//fW64oorXG132bJlkqTVq1dbTtnQvn374gDQytdff61du3ZJkm688UbLdTI5ACQFFECqPfhg6N8RegsAAIAUyDGM+NuJdu7cqc2bN6tq1aqqWLGiF+VKG4FpILZs2eKLQWYOOkhavdp8/Pbb0mmnpbY8ALLL9u1S5cqhy66+Wpo6NTXlAQAgW9iNS1y3AAbLz89Xfn6+F5sCAKSxzZtLL9u7N/nlAAAA1lwNAoP0QB9AAMlmlYZOAAgAgH/YagFs1KiRq43n5OToxx9/dPVauEMfQACpRAAIAIC/2QoAi4qKHM/DJ0kedC8EAKQ5BoEBAMA/bAWAv/zyS4KLgUQg/gaQbLQAAgDgb/QBzDCkgAJIJQJAAAD8jQAQAOAZq8wDAkAAAPzDVgA4efJkFRYWut7JihUr9N///tf16wEA6YEAEAAAf7MVAN5888065JBDNGnSJP3++++2Nz5//nxdcMEFOuaYY/TZZ5+5LiTcoQ8ggGQrKiq9jEFgAADwD1uDwKxYsUI33XSTbrrpJg0dOlTt2rVTmzZtdOyxx+qAAw5Q9erVtWvXLv3111/67rvv9Mknn2j+/Plat26dqlevrgceeEBXXXVVot8LRB9AAKlFCyAAAP5mKwA87LDDNGfOHH300UeaNm2aXn75ZS1YsMByaojA1A+HHnqoJk6cqMsuu0xVqlTxttQAAF+yagEkAAQAwD9sBYABbdu2Vdu2bTV9+nR98MEHWrRokVavXq0///xT+fn5ql27tpo1a6YOHTroyCOPTFSZYRMpoACSjQAQAAB/cxQABlSuXFlnnHGGzjjjDK/LgziRAgoglUgBBQDA35gGAgDgGQaBAQDA3wgAAQCeIQUUAAB/IwDMYPQBBJBspIACAOBvBIAZhj6AABLNMKQBA6QGDaQnngh9zqoF8LvvpB9+SE7ZAABAdASAAABHPvxQeuwxac0aqV+/0OciZR5ccUXCiwUAAGwgAAQAOPLpp5Gfs2oBlKT3309IUQAAgEMEgBmMPoAAEiFaqnmkABAAAPiDqwBwv/3208UXX+x1WeAB+gACSLRo5xluPAEA4G+uAsDKlSurQYMGXpcFAJDmaAEEAMDfXAWALVu21DfffON1WeAx7sQDSARaAAEASF+uAsChQ4fqrbfe0ty5c70uD+JECiiAVKIFEAAAf8tz86I//vhDp512mrp166ZzzjlHrVu31gEHHKAci+jj0ksvjbuQAAD/CD/VG0bJMgJAAAD8zVUA2K9fP+Xk5MgwDL3yyit65ZVXJCkkADQMQzk5OQSAAJBhogWApIACAOBvrgLAxx9/3OtyIAGoiAFIhPAAsKhIys0teQwAAPzLVQDYt29fr8sBj9AHEECyBQd93HgCAMDfmAgeAOBI+I2mfftKHtMCCACAv8UVAL722mvq2bOnmjdvrkMOOaR4+bfffqt77rlH69ati7uAcI878QASwSoF1OoxAADwH1cpoIZh6JJLLtFzzz0nScrPz9fOnTuLn69Ro4aGDx+uffv2adiwYd6UFLaQAgog0aIFgNx4AgDA31y1AD744IN69tlnNWDAAP31118aMmRIyPMFBQU66aSTNGfOHE8KCQDwrx9/LHlMCyAAAP7mKgCcOXOmjjnmGD388MOqWrWq5fx/hxxyiH755Zd4ywcA8JnwU37XriUtf7QAAgDgb64CwO+//17t27ePuk7NmjW1adMmV4WCN6iIAUiGP/6QCgvNx5FaALt0SV55AABAZK4CwLJly2r79u1R11mzZo2qVKniqlBwjz6AABLN6jwTWBYpAMzPT1x5AACAfa4CwObNm2vevHnas2eP5fPbtm3T3Llz1apVq7gKBwDwH6sAMBD4Rco8oG8gAAD+4CoAHDBggH7++Wf169evVEvgpk2b1Lt3b23atElXXnmlJ4WEO6SAAkgEqwAwcL6JFOgVFkq9ekmHHy69+27iygYAAKJzNQ1Enz59NG/ePM2aNUsvv/yyqlWrJkk64ogj9OOPP2rPnj0aMGCAunfv7mVZYQMpoABSIVYLYHDQFzxoDAAASC7XE8E/8cQTevTRR3XYYYdp48aNMgxDK1euVJMmTfTwww/rkUce8bKcAACfcNMCCAAA/MFVC2DA5Zdfrssvv1w7d+7U5s2bVbVqVVWsWNGrsgEAfChaH0ACQAAA/C2uADAgPz9f+Qzx5jukWAFIhGgtgJx3AADwN1cpoCeccIKGDx+uefPmadeuXV6XCXGgDyCAVKAFEACA9OCqBXDFihVaunSp7rrrLpUtW1bHH3+8TjnlFHXq1EknnHCC9ttvP6/LCQDwCTfTQAAAAH9wFQD+/fffWrJkiebNm6f58+dr8eLF+uCDDzRq1ChVqFBBJ510kjp16qROnTrp2GOP9brMAACfYRAYAADSg6sAsGzZsmrfvr3at2+vsWPHavv27Vq4cKHee+89vffee3r33Xf17rvvKicnR3v37vW6zLCJO/EAEsHq3EIKKAAA6cGTQWAqVaqkli1bavPmzfrrr7+0bt06bdq0yYtNwyH6AAJINKsgz+kgMC+9JDVtKh19tHflAgAAsbkOAP/66y8tWLCguNVv1apVMgxDNWrUUPv27dWpUyedcsopXpYVAOADXrQAXnCBVKaM9N130sEHe1c2AAAQnasAsGXLlvrqq69kGIYqVqyodu3aacCAAerUqZNatGihHJqhfIEUUACJ4EULoCTt2SONGSM9/rg35QIAALG5CgC//PJL5eTkqEuXLrr11lvVrl07Rv70CWJvAInmZR/AbdviLw8AALDP1TyAN954o5o1a6a5c+fqlFNOUfXq1XXGGWdo0qRJ+vLLL70uIwDAR6K1ADoNALlpBQBAcrlqAZw4caIksx9goA/ge++9p7fffls5OTnaf//91bFjR51yyikaOHCgpwUGAKRWtBZAp6nnBIAAACSXqxbAgBo1aqhHjx6aNm2aVq5cqbVr12rixInKzc3VSy+9pKuvvtqrcsIF+gACSASrVj63KaAEgAAAJFfc00D8888/+uCDDzR//nzNnz9fX331lYr+vwZQuXLluAsIZ6hMAUg0q5tLDz5oTumwb5+zbXHOAgAguVwFgIFJ3+fPn69ly5Zp7969MgxD+fn56tixozp16qROnTqpdevWXpcXAJBiVq18Dzxg/n/yyc62RQAIAEByuQoAO3bsKEkqU6aMWrduXTzn34knnqiyZct6WkC4RwoogESIdm754ANn2yIABAAguVwFgEOGDFGnTp3Url07VaxY0esyIQ5UpgAkmtN+ftFwzgIAILlcBYD33HOP1+UAAKQJL7MLCAABAEiuuAeB2bBhg7744gv9/fffqlq1qlq2bKk6dep4UTYAgA952QIIAACSy3UAuHr1al111VV65513Sj3XtWtXTZs2TQ0bNoynbIgTfQABJIKX5xaCSQAAkstVAPjbb7+pbdu2WrdunRo2bKiTTz5ZderU0YYNG/Thhx/qnXfeUbt27bRs2TIdcMABXpcZUZBOBSDRvAzann1WeuYZ77YHAACicxUAjhs3TuvWrdPdd9+twYMHa7/99it+bt++fZo0aZJuueUWjRs3TlOmTPGssACA1PM6u2DjRqlWLW+3CQAArOW6edGcOXPUuXNn3XzzzSHBnyTtt99+GjJkiLp06aI333zTk0LCHVJAAXjpueekrl3N/720e7e32wMAAJG5agHcsGGDevfuHXWdVq1aaeHCha4KBfdIAQWQCNu3S716pboUAAAgXq5aAKtWrarVq1dHXWfNmjWqUqWKq0IBAPzl119TXQIAAOAFVwFg27Zt9dJLL+mTTz6xfH7p0qV68cUXddJJJ8VVOACAP5BdAABAZnCVAnr77bfrrbfeUrt27dSrVy916NBBBxxwgH777Te9//77evbZZ5Wbm6vbbrvN6/LCAfoAAvCKmwAwL0/auzcx2wYAAO64CgCPOeYYvfTSS+rbt69mzZqlp556qvg5wzBUo0YNzZw5U61atfKsoLCHihSARMh1kS+y334EgAAA+I3rieDPPPNMrV69WrNnz9bnn3+uLVu2qGrVqmrZsqXOOeccVaxY0ctyAgBSyG0LICN8AgDgL44DwNWrV2vZsmXKzc1V69atdfHFF+viiy/2rECrVq3SU089pXfffVc//vijdu3apcaNG+uCCy7QDTfcYCuwfOGFF/T222/rs88+0zfffKO9e/fq559/VsOGDT0rZzogBRSAV9wGgHZ89plUt67z7QMAAOccJfUMGTJEjRo10oUXXqgePXro4IMP1q233uppgWbOnKlJkyapcePGGjlypO699141bdpUt99+u9q0aaOdO3fG3Ma0adP03HPPKT8/X40bN/a0fH5HKhWARHBzbgmbJjais86SmDUIAIDksB0APvvss7r//vtlGIYOO+wwNW3aVEVFRbr33nv14osvelagHj16aO3atXr66ad17bXXatCgQXr++ec1fPhwrVixQo899ljMbTz55JPatm2bPv74Y3Xu3NmzsgFAtkpkAChJffo43z4AAHDOdgA4Y8YM5eXl6b///a/+97//6ZtvvtHbb7+t3NxczZgxw7MCtWrVSlWrVi21vGfPnpKkr7/+OuY2GjRooDy7uUcAgJgSmQIqSWvWON8+AABwznYAuGLFCp111lkhLWqnnnqqzjrrLH3++ecJKVywtWvXSpIKCgoSvq9MQR9AAF5JdAAIAACSw/blefPmzTrssMNKLT/88MP1xhtveFqocPv27dPYsWOVl5en3r17J3RfsdSpUyfk76KiohSVxBp9AAEkQqJTQAEAQHLYDgCLiopUrly5UsvLli2b8CDohhtu0JIlSzRhwgQ1bdo0ofsCAJTmJqOAFkAAAPzH0eU5JwXNSyNGjNCUKVM0cOBADRs2LOn7D7dhw4aQv7du3WrZZxEAMgkBIAAAmcHR5XnixIl69NFHQ5Zt3bpVkjnwSricnBz9+uuvrgs3atQojRs3Tv3799f06dNdbydb0QcQgFfcnE9IAQUAwH8cBYBbt24tDvjCBQZp8cqoUaM0evRo9e3bVzNmzEhJ62M64mMCkAi0AAIAkBkc9QFMljFjxmj06NHq06ePZs6cqdxc68FKN2zYoC1btqhBgwaqUKFC0soHANmGABAAgMzgu8vz1KlTdccdd6hBgwbq3LmznnnmmZDnCwoK1KVLF0nSsGHD9MQTT2jBggXq0KFD8ToffPCBPvjgA0nS8uXLJUlTpkxRtWrVJEm333574t+ID5ACCsArbs4nEe7dAQCAFPJdALhs2TJJ0urVq9W3b99Sz7dv3744AIzkvffe0+jRo0OWTZw4sfhxJgeApIACSARuKAEAkBlyDIPLejwCo4Bu2bJFVapUSXVxdNxx0v/H0PrPfySLGBoAHFu5Ujr8cGevadVK+v8kDFu4GgEA4J7duIQEHQBATG6CMwI6AAD8hwAwg1H5ApBKnIMAAPAfAsAMQx9AAIlACyAAAJmBABBwYNs2affuVJcCSD43wVwSZw8CAAA2EQBmMO6+e+v556UaNaSmTaUNG1JdGiC5aAEEACAzEABmmOB5t6h8eeuii6S9e6Vff5VGjUp1aYDkcnM+2bLF+3IAAID4EABmmOA+gKRfJU5gqg0gW7gJAHfu9L4cAAAgPgSAGYYWQACJ4OZ88s8/3pcDAADEhwAwwwQHgLQAJg6jrSLbuAkAO3TwvBgAACBOBIAZhhRQAIngJgCsXl166SXvywIgsf73P+n446Vu3aQ//0x1aZDuvvlG+uSTVJcCwQgAMwwpoMlBCyCyjZvzye7d0vnne18WAInVo4e0dKn0zjvS6NGpLg3S2eLFUrNm0gknSDNmpLo0CCAAzDCkgAJIBDcB4K5d3pcDQOKtXFny+LHHUlcOpL9+/aR9+8zHV1yR0qIgCAFghiEFNDloAUS2iScAvOEGT4sCAEgTq1enugSwQgCYYUgBhZ/9+qv044+pLgXccJsCKkl33y09/rh00knelglA4nHDE/HIJdLwJb6WDOM0BfTzz6XataW6dc1OurCHC6JzixZJhx5q/nv99VSXBk65CQBvusn8v2xZMw2ofXtPiwQgCbjeIR4EgP7E15JhnKaAXnCBtHGjtGGDdNlliSuXVzZskMaOld5/P9UlgVM9e0qFheZx2b17qksDp5wGgBdeKJ1xRmLKAgBID9xA8Ke8VBcA3nKaAhqcjpcOQ/T27m0Gf7m50rp10gEHpKYcnNCcW78+1SVAPJwGgPfdJ+23X2LKAiB5uN4hHrQA+hNfS4ZxkgL6wguJLUsiBFr+iooYmQxIJqcBIMFf5vvqK6lOHfPfihWpLg0APyIA9Ce+lgxjlQK6caO0Zk3pdXv2TE6ZEiWVJxXuiCJRCgtLhsxOZ3kW+SX8bjJLnz7Sb7+Z/y65JNWlQaLwu0U8CAD9ia8lw4SngH71ldSokdSwofTSSykrVkLQwoBMM3OmVKGCdOyx0vbtqS5NKKctgFYBIPxrzRrp+uvNY9Dud/3llyWPv/oqMeUCkN4IAP2JryXDhKeADhxoViSLiswBXyQzjfLdd1NSPE+lsoKZzndE//pLmjFD+v77VJcE4S6/3Gz9+/JL6d//tvcawzAnbd6xI7FlIwU0s/XuLT34oHkMfvxxqksDZLaPPpLOOUeaOtX5a7dvN2/WXHml9OefnhfNcwSA/sQ92gwTngL6+eehz7/2mnnSyQRUMN05+2zz4lO1qjmqan5+qksEK+G/3UiuuUaaNk067DCzH1aZMokpTzJaAAP7mDlTWrZMGjJEOuQQ59uBc4sWlTx+4AHpxBPj297GjdKuXVL9+tKWLeb5ulKl+LaJ1EjnG55+FZgT9bXXpE6dpMMPt//au+82b9ZI0t69/h8PgQDQn/haMkysUUDPPTd5ZfHKtm3mtAHNm4cuT2UAmM4XxI8+Mv/fssW8+Pzyi3lT4PLLzc8a/mA34Jo2zfx/5crEpnknowWwqEj67DNpwADp4YfT83wF80ZEoOvBddeZg8QceKD0xReJ3/eGDeax8+uvid9XtvDz9c4wpMWLzetYunr7bWfrjxtX8njmTG/LkggEgP7E15JhYo0C6mYy51S7/35z4vDwUeboYxS/PXvMCbpfe828kNx3X6pLhHj89lvitp2MFsCiIumRR0r+/vpr59vINIWF5l3+dHLFFSVdDx56SNq507zh1K9fYvdrGGZryqBBUps2mTGY0tdfSxMmSD/9lOqS+NO4cVLbttKRR4ZOawVru3aZ/5IpPABcskTaujW5ZUBpBIAZxulE8Ongueesl5MC6o2FC0seEwD6h5ubNYm8weNFC2CsloSiIn+3NiTD33+XVI7mzZOqVzdb09KphSNS+nLwoDGJsHGj2RIumfOOLluW2P0lWmGh1L69NHy41KVL6m7g+vk3OXKk+f+OHdJtt6W2LMmwYYP71376qdkaf8AByf1thAeAbdpIrVql342tTEMAmGGcTgTvxDffSBdfbPYPSeaFKNLFJ1NSQLdtM3P4UzGKnp8v7HDOTwGgm2Mr2wPABQukunWlBg3MdMkuXcyK7Zo10g03pLp09qXqOwzfb2FhasrhlaVLzUG7JLMFMB0G/EildetSXYLEevlls0+tWxddZN5g2rJF6tHDs2LFZJUC+v330ltvJa8MKI0AMMM4mQjeygcfRH7urLOkZ56RbrzRzLlPtKKi6O/Bzy2A//uf9MYb9lKQevUy+zy1bp34C3x4JT68wpTNlW+/SfcWQDcyJWvBrW7dStIlw+fVe++91JTJjVSdR8KvCemeAhrrfJ0s6XJdMAzz95Op55EePeI7pn/4oeTx6tXxl8euSH0A463vGIY0ZYp5rvzf/+LbVjYiAMww8aaAnnlm5OeC+yD85z/Ot23l+efNSk/44BVLlkj77y8ddFDk6Qr8Og3EqlVSy5bmaJu33hp7W3PmmP/v3i09+qj9MkyebI7gec459ivnsY6JdLnQZ4N166S77pKWL7f/mkRWfJIVAGbzgAG7d5c8Dq/QpFP/bb+cR9I9xSydvnM/WLzYnEe1Xbv0/+4zSaSb9Xv2xLfdZcuka6+Vnn5aOuOM+LaVjbL4UpuZ4m0BtDsKpBcVzW3bzJSEd94x5ygMnsfs7LPNVIW1ayOfyP3aAjh8eMmJzWmfOieds2+4wVz/tdekuXPtvSb8e/NLRS3Rtm2L/2KTbB99JA0bZlZm7P4u/dIC2K2bu33EmwL6229mpcBOWffskWbPDr0r7mfpFAyk6rwS/hklsgVw61ZztNFkjGwakC3n63gtXmymS/qVH3/LRUVma9qQIWZfWi9FuqkXb4r2k0+WPGbUX+cIADNMIvsABvPiwho+Yldw5+ZNm2K/3q99AAN9NpLp22/trefHC0+izZwpVasmHX20eVMh3ezaZb8y45cAcNYsd/uI57zy++/SEUdIxx0njRgRe/2BA81pJpo3977CkwiJ+m4Nw5xQ2kupasVNZgDYu7c52ujxxyfu+Al/P14eA4ZhphSWKxf7RmU6Bp6rVqW6BJH5MTX5zTfN1rSJE825Zb0U6XwQ703ZbKzPeIkAMMPE2wJo11NPJW7bdvl1GohUXCzt7jNT+0ZEc/nl5vv+7jtp0qRUl8Yduxe6RAYJTvprlC1rvTyRo4DedZe0ebP5ePz42OsH0th37DAHtvK7RH238+aFTr3hhWSdAwsLpb59pWOPlT78sPT5LZEV7UDqfmGh9O9/e7PNb781s18GD7ZuHfHy/L1woXljqbBQuvnm6OumYwDo5+DAj9fh4cNLHr/wgrfbjhQAxpum6+fvOB0QAGaYZE0DsW9f6u9i+bUF0M99mGKdMNPxQu9EooehT7VEXBCLisx5ti66yP5r3P4GrM5ZhYVmS8vJJ0cfunztWnf7lNJjTirDMLMLgvsJ2vXaa1KfPtKiRaWf++ij+MsWLlnnkVmzzDSwzz4zj4/w4z9Z/cC8Si/v3t0cPGzSJHPAtfD34+U1PTBdRrw2bjRTYZmDz75E151mzpSOOsrejbAAJ8fWxo3mOXnYMHvdVhLVAujHQDqd+LiqCjeCf2iTJrmrLNhVVGQOU/3xx95sz2mlwa93f/wcRPmpD+DixWYK0mOPJW+ffg7O3UhkiljA7NnmoExORLo506VL9NdZDQLz3HNmBfPDD6VTT7VfhjlzzNHh7Iye6effbMCuXebAWEceaZ3KvHixdN550vTpocs3bzYHinrqKbM/afg5oFw578sa6fP0+nN+7bXQv5OZApoIwQOeWQ0Ilqr3E+17O+20klTYdJ92I1kSfXP+8svNQaRuv93+/KFOjq0bbjDPyXfdZfYbjCXS8WM3AJw/X7rsMun99+2WEHZkWHUIyazgvv66edI/8UTvUwbsSGUAmKktgMl08slmCtKAAfYH4tizx5xk2u2NjXSo6DuRjABwzRrnr4n0G2jbNjTVKJxVCuhzz5U8jtaHM/x1Z55pjg53yimxKxrpdFz8+KPZTydcu3bSq69KV11lpjsHLF0aul7wYFtS5HTdeET6/r0+N8ZqIUu3ADBcIlsAvThX7N1rtr5KZoq43cHIFi82b2ScdZa0fbvz/b71ltlvMR1a7q0k8rgMD8K/+cbe65yU6ZlnSh4PHRp7fbuDwCxaZKakBx+bO3dKnTtLjz8udewY+ho/1WfSkY+rqnAjmRWZ4IlEe/ZM3n4D/Prj93MAGKsFMPD3+++bKX+JHEkt+ILzzjux1zcMc5LsY46J3ZIUSTxpgn4U/n0m4jdRvrzz10RqAczJkcaNMyt+VqwquF6kescaVMoPAaDdipokffVV6WXBn93bb5c8Dn9v4cdIIgLASJ9nos+NsVJAf/9d6trVDJa9HP01WdeiwHf855/SK6+Y80UmQ6TvM/x9270xd9pp5vH+5pvO+99+/rk55P/NN5uDlkTit/rB9u3mezaMxLQAfvSRdOed0vr17l5vNwB0M3efnT6Ab75p/i67dDGDvYDwVOV160oepyIFtKjIDIBfe81/x5hTPq6qwg0/Bx/h4v3x+LUFMBmVSbcTBNvpA1hUZN5pe/55M8i3MyJrvOz01bnhhpKyfPhh5Pkho1m6NP1P2sES2UIQ4CYAjHUeilTpe/rp0seyFwFgOnznF1xgf91YlbXg4yBWAJjMFFCv+207bQG85Rbp3XfNloZ+/bwtSzIUFZnvuU0b6fzzpU6dzOU//2ym/U2aFPoZPP+8GfAGt6J7yW2fy+BpbZxmD91+e8nj4GkA/Gz3bnNu4COPlK6/3vsWwI0bzVay225zf1zbLZObEULt9AEMblC4/PKSx+HHVPA5JBXn9QcflC6+2Eyr9/NUI3akUbgAO7wMAA3DbH63a/Vq6fTTzX4owcNi//ij1KSJdOCB5t27SPzcB9DJvuL5Drya0N3u66w+8/C7uJ98Ym/bf/4ptWol1axpVrKcsFNxePDB0L+dzJkYLJPmC/JrC2Cs33KjRtbLb73V/Q2UaK9Lh8GPnLQAxqqsBb/feFsAv/nG/l3/wLZTlQIaqw9gcMCQiMFvEq2oSFqxomSKg88+M1t8evUyB/4YPNhMoZPMFqeLLjLPxb16lU619OJc4UXKrdOBQNIxrfe550panB96yPsbdQ8/XHI9DB/oyes6hZubCXYCwEitx+Hfd/Do76kIAG+8seSxk5t2fkQAmGG8qsgYhjkiWYUK5l1TO6680kw9evXV0H4+V15pnvzWrTPvWnol+Me/Z495N+Z///Nu+5H2JaW2BXDXLvMi4oabE6bdQGvCBOnTT83KYteuzvbhZrS+VIwC+803ZrrzhAn+GIEsGX0AE5Ei6ET4QB+RxPO7+/BD70ZFTIaiIvM3E6ny7KQFMNr3O2GC2Wpx2GHSb7/FLlegP1iyUkCdBoCJ8vTT0ujR3s8zatXCGf6e6tULvUkXuFEW3nc3Vl/eaOeOP/4wRycNKCw002m9GHXVqxFUvfLOO2bgbKdbgl3BcxxL3h+Xbm+GBkvkbyWeUUDDj6l45rreu9esnzq52ZbJCAAzjFcX2GXLSk74995r74cWfMIMHsFs/vySxz//bP6/fbv1KGeS9MUX9soYXKbrrzdTCFq2tD/qlRNOKvvh30H9+t4GpsOHh96FcsLO+whfx+7F5b//dV6eADeVALfzQMYTKJx1lpmyNHy4/QEPEikZLYDJvsuaiDT2WO/h00+lZs3sn3u88uyz0nXXlZwX7Vq6VKpd26z8W/UHjNYCKJmZHatWmetFSwEN3MjbtMnsXxTLjBmR9yklvotCqgaB+eUXadQoM009kYqKYt/4cvueY10bzj7b/H/PHnPwtwMOMFMO4913tHP/p5+afb67d0/OgC+7dkndupmps926Sf/84+z1RUXmZ9KtW8nNEKn078HL4FLyJohO5A1NNwHgyJHW040Fn9vsXJu2bzcHDdq82TzXnnde4uqJ6YYAMMN4dYENT5Nzc3LYtctMCbXSt2/pyXMNQ1q+3JzU147gH39gW3v2SGPHOi9rLE6mTwh/bu1aczh6O4I7OEdy//32tmXFTktm+Dp2A8B4jj2vWwDXrDFb6q66qvRz8QSAP/1U8njmTPfb8UoyWgCTnXKViBZ0O5/Lnj3S1Vd7v+9I/vc/qXdvszX/vPOcvXbzZvPfxo1mf5Rw0c7Xe/eaFfimTc33W6aMvX3aSZ0O/Cad9AH89FPz5lH4d/TNN2ZK+SmnmC1QVmId/07OK999526Ai2BPPFHyeNMmd/2Ug1m1AMa68eVV94BIXn655EZJeF9etwHg6tXmwBrhQV63bma3kddfLxn5NpEZNuHXX6ff35w55o2Sd94JzYIJL3P//u7KF0m0QMruNcHOd/ftt/a2FS5S3SBa2caONbM/wssVfJzaeW+nnmoOGlSjRkk9sbDQHIwsYPdu58F+JiAAzDBenBxPO630nXA3F5XHHw8djS7YK6+UXmYYZrqo3X1F+vE7uVO4Z4+ZEhDoUxFJPC2Akv2Whcces5dq5Vb4+wgf4CUwCEwwuwFgPMeemwCwb18zyLP6vK64wmypC58TTfLuJokf+o3F0wL4++9m5TvWa5I1mXa87Hwf48dLBx9sZjVYSeYosY88UvI4npbHaC2Au3aZ8zgGe/31ktdMn27/mLHz+QaCE7stgIsXS61bm9ec4KktvvvOTD399FNzHsdbb7XenpMU0EgZJ5I5pcBhh5lB8fr15nnx/ffdH/tr1pjbOvTQ0n2Xwz34oFRQYD2ipVWLZqwA0O736fbmUbTW6lif19tvm0F9sG3bzJu+F19c0sr46qtS48ahYwk47Xvm5mZYeH9np0HB00+XPA6+tib6WuFFC6CdANDOMWol0jU31udyzz3xtQBu3Bh5DtvNm83j9YYbzO+9UiVzJNJI/vrLHHwpkxAAZhgvKrf//a/Z9yOYmwAw2gXXSlGRsznHnJ7g339fuuOO0EreoEHm3fcWLcw8/Zdesg5a42kBdOruu52/xu0ooP/6V+x14gkAP/jAvJDHmrbBTUXro4/MIM8q7SpaOqpXF2M/BIBuRwH9/Xfp8MPNytjIkaHP/fWX2acosK1kB4CxPle3rZx//FEyMXKkfs1+6NfpRqTjINDCGCx4hL3gdWOZPTt09EYrsQLA8OVXXllS9ptvLlkePrhC8LDwwZyMAjpwoPU2gvf9559m2mvz5uZIyH36RH5NNLffbv6OJLN7QjTXX28em1YTalu1fsS6xicqBdTOerH2ffrpZlAfbPv2kmBp4ULz//POC822kEredzzn3W3bzBsgkVp6w9+bmzkKraR7ALh4sfmbDO7OE2zBgujbdlsv3X//6C2AsY7ZaNcuwzBT1idPLlkWaXoiybx5GCmYTFcEgBkmUX0s3FS6oo34GWkfTjozOynTH3+YwySPGRM6Z2EgjW/nTqlhQ/Mkd/rp5h3IYPG2AEZi9R4ipTt5IVF9ADdtkr78svTyDh3MC3lgZLpICgulF180LzROPf+8s/Uvusi61cQpP0y54rYF8K67zDugUmgqzI4d0tFHSyecYN4ckZKfAhprgCO3Aamd1j0773X6dLPf3KmnxvfZeFkpjHQchJ/HrDg5j06aFP35WCmg4b+ZSOc6u79PL1NAA/7zn5K51NxOn/Ddd/bWi/XZh3+vgWkgnLzG7b4iibadRN4schsAfvKJmar6119mS3P37ub5zer9hi/bscPZviJ9NokOAGMFOnZE+/47dDBvjkcSPIWDFbfXyho1Sr83Jy2A0Z7/7TfrLiKRBA+ClCl8UIWBlxJ1oknGnfGiIvsTyUrOKi6PP15SWYsUZBQWljw+7zwzEAz86BPVAmj1HgzDrGT26uU8iHazv2A5Oc5bAHfsMO+Yu9lfwAMPSBdeKLVta3/aCbcWLTIrAvFKZgvg5ZeXrizv3RuaciTZ/7wjtbQHV34DLfjJbgGMdbyF3+3et89Mo4tWWTcMe5+N1Xlu797QFoOrrjLPFXPnxjcPVCIDQCfnayfn0Wefjf680wAw3pF8nc4DmCyxPv8VK6Rp00paCSOxav2wG8g5bUn3IgBM5Oft5lj57TfppJPMQdPOPLPk2v/DD+ZASuHCy2+VArpqlXnjeMuW0s/5MQC0Y/Xq6K2dsVoYYx3H8QSATz0VusxpH8BIMq01zw0CwAyTqFaJZASAhhEahMXipN9M+IkiViqTZKaCnn22eXJNVAug1Xa//96sZD73nBkQOb0L6XR/wdz0AezduyRo8IJVWqrXvChvMgNAwyidGjxyZOlJeeO92/v776WX+W3erfBzxAsvxE6zcxsAFhWZd79r1pSGDSu9fjwtycloAbTDy4GDApX0SOfA8Eq81wFgqqaBCBdtv5s3m4Pw/OtfsadFCv9eJ092/ppI3PYBjDXAUKI4rdsYhjnoR6BM4RV+qzmOIwWA8+ZJlSubo+42bWrekDv3XPtlSVRae0C89b5eveJ7fSxuy/fOO6UzfOy2AO7dG9qHNF5+6PLhNQLADJOoANDLC2mk/mBOg8x773XWZzBY06bWlV0r27eXfv+JbAFcvbrk8c6d0scfx96O3X3a+YydtgDanafNLq/n0kqUZF8Qwkd/tRqW3+0AENGW+20QmPAA8IorYr/GMNwd+2+/XTJh+F132SufXX4JAL08tzsdBMbtVC4BsSY3T9Ucc9GOtSefLDmnBvq8RRL+3TzxROwphRI9CmiiA8BIx66bFFCnqZHhn3fg5muXLuaxFnzj0Krfm9sWwEif6cKFZsAfPLqs0+1HOxc884z5v5uuF07YGQTGah2rwfmitQD+9ps5UmlRkdS+vTm2g1cIAOF7iTpIvawERuoP5uYu2IgR9tYL3/aGDWanXruvTWYLYHhZgyu8kUYlczsIjJ0yeTHJbCZKxQVh82azb16kVtJsDADtTFTvtgUw+GaMV/btM/vM+iUFNFIAaJUSFlxmq+DKaQDopAXwt9/MY3/MmJKpA8LTxcPfd+DYjSeDxc1ro73GySjV8ezbaf8ov6SAxgoAvdhWJNFGnIxnf7F+65E+tw4dzBHT+/WL3ofZ7fFtNYVMwN9/m3372rd3t+1gdr47u99vtADw0EOlI44wW2e9DmozMQCM8/4b/CZRLYBXXpmY7QZzcxKz24pnxW5H/ZtuKt3aEm8L4CefmKPqXXhh6eciVWKk0il/TiVyIvhsk4oLwm23SQ8/HPl5t5W4Zcuk+vXt3RUPd8UV0qxZyTtOwgOPaBOZB5x2WuypXiRnLf1uGIbZF8nriaDjGbwi0vcbawTMc84pvWy//cx9R5ozMJ4A8MorzREcJbNP9yGHlF4nUgtgPAHg3r32bjIEi/absdvPfeNGdwFVIGPEaYqnFymg0cob780pL0YBjSWeGynRxKqX2dnPokXxvd6pe++Nr49zMC8DwGgpoIGuPYHzhJciHXfVqpnnorlzperVvd9vItECmGESFQB6dSKIxk0LoJ2+fPF6/PHSLQHRLkKxvoOdO807e3fdZY5MGi5aAPif/0TfdixuB4FJZipVIiYzT4RkB4DVq1vPaxjM7mcXfoE87jjzzmn4nIpNmphzpEXTpIl5d7pSJfPvfv3slcEtNy2AdoI/KfF9nT//3PvgTyr9mUycaH8Os0gtvOHzB0olx9e+fdJbb5V+fs0aqWLFyPuKJwU0+Jj95RfrTJJEBYBORduf3QDw++/dt6ht2VK6DNGmxpFK1v/888jzZMZqSY9WXrvvJdL2N20yr8NOJ2d3sp/wMjr9/L1sAQz//qLdLIl2vLm9ngYmTfeCnRs9dm8GOZkGwkuR6nVbtphTm9xzT/LK4hUCwAyTzs3Ubn7MVgFgIj6Ddevs7yPSiaJdO7O8ixaVtJZYjZ7lZijzPXvMwViaN4//TmH4Oi+9ZFayb7vN/HvHDnPerIEDve1knW7iudmyZIk5HHnwJNGxLtR2Ux1jidRSt3mz9Nhjoct++MFMl45l//3NkQ3feCN0gvNEcBMA2uX0HOS0chVPxkI04fO2Sva/BzcBTqTXTJsW/XVeDwITLtLNs3hSE70OAJ20lDsZ6CzY1q2ly3DTTaF/W6WAbt9ujpoZaZ7MWAFgtGlC7H6Okbb/88/SQQfZz9xxs59oc8653aYdI0eWHu0y/POK1vczEYGQ0/650UYstzMvqJtuLMm8WRyrfO+/n5RieIoAMMP4YW4ytxLRArhvn5mOZFUBiHewlkgibXfRImnqVOfzMdmpvMyebQ7RvmKFGWhGYud9RFrnzjvNsj30kNkq9Oij0uDBsbfnVDq2ABYVmd/BsmX2Xtu2rdmicf31JSNJ2mmdjcXOZxdryG63Dj7YTG8sUyYx2w/Ys8dsAbr/fjNATWQA6GRaGqttzZxp/l4CQavXAU9A+ABBkv35MZ0ER4Fj0G1A5fU0EOH80gIY7fNxEgBajVRpR15e7Pk0wxmGOW9ktPThoqLon2Wg3+jXX5ceoM3u5+hVMOMm5dVpABhrH4H+nnbO3X36hO4vvCyjR0d+bSJGu3UaAA4dGvm5SPXS4M/Piz6AXrjyyuQ1LKRaGocLsJLOAaCbE3+sC2T37uYE71aDxTg5eTiZBzDad7BwofMA0M6FM/zuU6R9uJkGIlhhoXTrrSV/h9+1DBapH1C6iva9jRpldjw/4QTps8+cbWvOHPP/WN9NeHpmrO1Gks7nCMlMuTn+eLNF4+ST4x9JMljwd7Bzp3TDDe639eyz5nDx111XkkabqADQit35NK0qj7GOI7cVzvDzZqJbADdtMm94xFNBdvP5WN1I+O4753Pdui13UZE0Y4bz18S61sQKACWz5fnoo82Rtr/+umR5vC2AXvMiBTRWP8vevc3/7QYPwftz8t1H+2zdBtROz6tz50Z+zk4AaPdckOgWwEceiZwCHU263LgOluZVAYRL58rdBx84f01ubuQf3i+/lFSu4xV+Mo72OUc72btJ47Nz4axXL/TvSMGCmz6AwZzcvY52RzAdhfeDDT4Gxo41/y8qMiv8TgQufF5cQFIRACb7zminTtIff5iPN2zwLiVMCv2dW1Wgwz/faO/9kktKHg8fbv6fzADQLqvzS6xzjtuRYb2eBiJc+Pfz8svmuTHSyNN2WL1XpwHySSdJhx1m9o91EgC67YflJnC0E9zt2xf7vQcGjNu5M3S0Yr8FgFactgDGmn5lzhxpyhR36Y1OfmPR+ugnKwB0MzCeH1sApZLreTBaAOF76XyQhvdRsCM3t6RyFc7uIAh2OAkAoz1Xrpzz1BQ7F4LatUP/DqT53XOPOShD377m3276AAZzUnmJNcdVJH69k3bBBaF/R/qtbdnibLteBoDRvrt588yK6KhR8e/HTxKVAvrTT6WfT/WEzYlgFSzE+p37tQXQ6vvZtSv25OnRuAkAw3+Hy5eb/ydrtFw7349V65Wd9xVtnfABgALp7ZL9gcS8PP9H21bXrtIpp4SWy+kooHY+52uvTXwLYHi/6GDJCgCrVIn8nJ2MJD8FgFZifYfpWPf24eUI8fBjBSORcnOtJ8T++efYJ4d337W/H68mgrcTALrpAxi+zp495n6GDjX7dDz5pNlJO54+gJKzyouXFfNYunRJ/nQVdjq225Gba1YyvZi3KNp316WLOam5l6O7+YGdaSDscvrbdCpdWgAjBYDx9gEMl+gUUC94EQAGczJFh1tuWwDtvK9o7y38uc2bSwa6SnYLoJ3tvPde6MA1TlNAY7UAOhWtD2A08bQARiqz29b5n34yJ5gPnkc00j6eeMK8OVNY6J8U0EhiXdf9euM6miwLFzJfNgaA4V58UWrUKPpgKE6Fn4zfeMPstB0+oMa2bdH73tiprLodBTT87/Blv/4afwugkyDL7WAgbk6k8+aZQ98nk93JrmPZbz+pVy+pY8f4y5SOF6F4eRkAxuJ0brVwfgwArSqasX7niQoA4z1+E3H8e5ECGszLzJRI7FwzrEYBjbcF0Op9X3+92RfTrymgga4Kf/5ZuiUt3hTQADcD4DhJAY3WAhjrtxrpeTcB4PbtUsuW5gTzwXMcR/tOX3nFvEFt98bpsceag2vF2q4XvvjCHAV97970bOGLJcvChcyXiQdpNNEq23//7d1+Hn+89LKnngodXGbfPnNwimjDISczAAyvxNlpfdy4UbroosjPOwkA3d5BjDR4zIEHRn/dK6+4259bkY69WL/B8ErDzp3mRcYL2RgAJqql2ep7tKoQGobZsrp0qdk38YYbIg+H78fzs5MWwOB5AN0If//h54h4A8sTT4zv9VasPp9YgUFg9EcrfmkBtLqZEavf9r597iaC//Zb/waAktmNpGZN6bTTQpc7DQAjsZv+mooWwEjfi5vr96xZJcf+22+XLI/1nb7zjrMbp5dfbm+78fjuO6lVK7Prx5Ah/jx3x8vjLthItWxrAUzWjzJSf7Zp08ypHSRpwQLzQheNmxRQOxfO8HUiBYB2LljRRrF0EgDGMzjH7t2lg2U7n9v27VKFCu7368S0aVLPnuZIlMFi/QbDv6sffvC2XMlWo0Zq9+/1QCLRWFXKXnih5KZJxYrRW3gSMVx7vFLZBzD8u9uzJ7nfpx1OWwB/+SV6kOd2agcn3KaAxrpp6jQFNLg8yZ4GwgmreTQlewHgokXmoCEnnxz5uEi3ALBcOee/Q8MoPX3CsmXSWWfFnv90zx53dddEBoDDh5d8B5Mnmy2PmSbLwoXMl20BoJ/er53BP8qVM+d/i8ZNH0A7LYBly8Z/woxnXjQnrCZVjVX2L76QKle23woweHDpic+dat++dGXP6qbE779LHTpIxxxjztUYLJ2ny6hXr2So81RJ1E0gO8PES6Et5rHS+1JRuY3FTQqo21FAV6wwU8QCv4HwFFC7FeVkchoADhkSfXt+aQEMZ7d7QLT3Hm2wj1S0AMa7LTt9ANu1M8cTuP12MwvASrQUzfDt2d233e3H2o7V91K+vLsbMUuWhP593nmxgz/JWR/AYIk8n4aP+p2JLYA+qj7DC34KiJLBT+/XzgmiXDnp4YejrxN+0brlltgDhNhNAY33hJmsgVbuu690EGi37JEuwuEmTZIGDHA/WmnAp5+W/nvEiNCJkIcONffz+eelRyT0Y6tQLMccI334ofTll2ZlIZUScRd41y7r35zbwCfAjwGg1XuK9DsPnOOizfkVyxdfSNdcYz5OhwDQ6TyAwXPfWUlGH0A3KaB2js09e0JH9nRSHj+3AEbiNAU0MD1NOLvHdfD3lqxpIKxutubmOg8At26VZs8OXbZ2rb3X+rEFMBwBIHzPb+kzieblHGDJ4KYPoGQO3x/tghB+ASgsLF2JizZnol3JCgDnzZNOPVX68ceSZYk62Ufq92IYZp+GyZOjV9qsLgzjxoV2gn/iiZLHq1fHfr1b27dLnTubLXPBfTC8lpdnHpP77+9+G14N3pKIALprV+sbCeG/QaffnZ8qtwFW55XgmxfBvvnGPLdcfXV8+/zwQ/P/8OuV3ZaSZNq71zwXnH22GbDec0/0c1GslOhktAC2bu38NXbOrxdc4G6+XictgCtXOt++FcOI/9xaVGQOYBOJ3XOPm+A3WSmg555betnmzaVvbCZSJgSA6dj/ngAww2RbAOgHQ4bYP8G7HbDCMCJP7i7Z6wM4blzp4MOpZE61sGeP+dmuW2cGg3ZSSdyIdNf29delSy+NPqiHFPnC8PHHZt+S4OGwnbzejaeekubPl9avl04/PXHppV6U+b33pKZN49+O10HVunWRK7nxBJvff+/P1l6nZfrmG+/2neoWQDuVtr17zePhjTfMY23o0Oivq149+vaSlUYfi5sWwPAUP7uctAAG3ziLV7yV8j17pOOOi/y83XOPkwBw0yZzPAEn19p4UkAjScaNioA9e9ylgPopAExHBIAZhgAw+SZOlF591d66iRoGPvwCc8EFZv+0YLNnSz16xLefZM+1t2KFOYx4PClnsUQKLM85p+Rx8Giv4aJdGIYPl267zVWxPNGzZ2K268XFsE0b827/5MnxbcfroCraIB3h6W9OKiB33OHPFkCnn98XX3i371QHgGeeGXudvXtLD9QU7Xt86634ypQsTic9j3dfdoOgdesSVw6n3n/fnFM4Erst1naP6507pRYtpE6doo/G7WT7fjznhNuzx/k1ZeZMc/TlZGEiePie27nXEJ9nnrG3Xjwn42iVTasLQCKCtWTfvf7rr9Kdsb0W753OWKkrDz0U3/bjEW1Oynh4ebHzcvJkL0Qrz6mnut/uli3+rIw57dfoZcAdHgC2alV6VN1Eeusts9U8mr17rUcrTUc//VTy2OtJzKNZtkzasCFx20+UWNkbdq8ddo+Xl18uCYC//97ea6Togagfzznhli+XVq1y9prLL09Of9qATEwBpb0ow9ACmBo5OfYqxU5O6uGinWDiHZzCrmS3AHo5l2OixBsMpeOdQz8FgF63ACbqQp6b68/KmNNzRyLPNX//XdI/MFn69In+vFUAmIypHBKhcWMzm6Jz5+S2AI4Zk7htR+LF7zjWucVuAPjvf9tbL9r8kdFECzD9mHaejtLxOh0LLYAZhgDQ36ZPd//a++7zrhxuJTsA9BOvBi0Jl44XFj8FgF4HJNkWAD7yiLP1vXoPgwdLTz/tzbYSyWpuwnQNACWpSxczfS48MPDjsRmvRGcX2D0O7AZhbruIhM+/FywTv9dUSMfrdCwEgBmGFNDMlcpUwoBsDgAj9Rc64YTklsMNr4MaP10Mvb7DnagKU25uZtyN9+o9RBtYyU8KC0sHgOFzeaabyy83BxoJlo4pbIkWa+AxrwdKScQN/MD5zO70SMgeBIAZhhbA1Ni2LT3uZscrUwPAVatiTymSqGGxk1Hx8jqo8VMLoNfvzcn2nKzr1xZApzIhiHVi167S19V4B9Pyg/AAMNu+Vy+kQwC4b595jk1m39pM5Kc5p71CuJBhCABTY968VJcgOfwyhLnXDj/c/P+NN8zpE6wq6r/8kph9xzs1hx0EgPY5qQg7GYQgN9ecniPdZVugsHu3VKVKqkuReMnqR55J4unSYSVRLYB79mTutTtZ/JT14hXfxbSrVq3SyJEjdcIJJ6hWrVqqXLmyWrRoofHjx+sfB1fbt956S23atFHFihVVo0YNXXDBBfo52ni+GYIAEImUqS2ARUXmv7PPNiv1LVokb99eTXwcTSYHgF4HJE4qwrFGCQyWkyP961/Oy+M32RYA7tqVHe+ZANC5d97xdnteTrESEAgAER8CwCSYOXOmJk2apMaNG2vkyJG699571bRpU91+++1q06aNdtrodfvKK6/ozDPP1M6dO3Xvvffq5ptv1gcffKC2bdtqfSbcgo2CPoBIpEwNAAP27TNHrAuf7y3dJXNSX6f8NgiMk+05bQHMBNkQDAXbtSs7gqNMCxL80GfeKbvTSTmxb5/9+QoRWSYGgL5rL+rRo4eGDRumqlWrFi8bNGiQmjRpovHjx+uxxx7TNddcE/H1e/bs0bXXXqv69evrww8/VKVKlSRJ3bp107HHHqtRo0bpEafDnqURWgCRSJkeAErSPfekugTeOvTQ+KYfsZLJLYC//WZ/3WwMADOhH6MTtACmp23bpA8+SHUpUq+oiADQC5ly/g7mu7fUqlWrkOAvoGfPnpKkr7/+OurrFy5cqPXr12vAgAHFwZ8ktWjRQh06dNDzzz+vPZl2qysIASASiX4E6cfr4E/y191QrwOSoUPtr+skAHQ7xLvfDB+e6hIkV7a0AGbie/z441SXIPUIAL0Rq26djqPopk24sHbtWklSQUFB1PWWLVsmSTrxxBNLPXfCCSfovffe06pVq3TkkUe6KkedOnVC/i7y2e1QUkCRSNnQAojY/NQC6PWF10mfTCcBoJ+CZtj32WdSjPvOGSETA0BIGzcSAHohU27gBfNdC6CVffv2aezYscrLy1Pv3r2jrhvo41evXr1SzwWWrVu3zvtC+gQtgEgkWgAh+SsATCUnfSvffz9hxUACzZkjvfpqqkuReBmcGJXV/v1vZ4NVwVqsa1463uBLi3Dhhhtu0JIlSzRhwgQ1bdo06ro7/v+KXK5cuVLPlS9fPmQdNzZs2BDy99atWy1TVlOFABCJlA19YRAbAaDJyQ2RNWsSVw4gXrQAZq4nn0x1CdJfrOtUOl7HfN8COGLECE2ZMkUDBw7UsGHDYq5foUIFSdJuiyvzrv/PXwusk4nspoASKMKNzz9PdQngB14GgD7LonckEf0rgVQgAMxcGZz0ljTpfJ2KxNcB4KhRozRu3Dj1799f023OuFm3bl1J1mmegWVW6aGZwm5gd/HFiS0HMtPmzakuATJNOqbOAJmGADBz+XkaoHRBAJhEo0aN0ujRo9W3b1/NmDFDOTZrCa1bt5YkLVmypNRzH3/8sapUqaJDDz3U07L6id0AMBMPZgCJ0a1b6N9e9ikZMKCkg/3JJ0de74EHvNsngFAEgJmLADB+mVhn9mUAOGbMGI0ePVp9+vTRzJkzlRthAo4NGzZo5cqVIX362rdvrzp16mjGjBnaHlRL+fLLL/X+++/rggsuUJkMHirT7lvLxIMZQGIkchCM2rWl996Txo6Vnn8+8nqDBkn/P8YXAI8RAGYuAsD4ZWKd2Xc9waZOnao77rhDDRo0UOfOnfXMM8+EPF9QUKAuXbpIkoYNG6YnnnhCCxYsUIcOHSRJZcqU0eTJk9WzZ0+1a9dOV1xxhbZu3apJkyapVq1aGj16dLLfUlLZDQAZzAOAXeFjanndh/jkk6O3/h1yiFS2rFSrlrf7BWBiFNDMtXNnqkuQ/ggAkyAwj9/q1avVt2/fUs+3b9++OACM5IILLlB+fr7GjRunIUOGqFy5cjrllFN09913Z3T/P0mqVs3eegSAANxK9iBSb71l9hWMkAwCIE7XXpvqEiBRCADjl4l15hzDSMfBS/0jMA3Eli1bVKVKlVQXR5JUoULsH/x550mvvJKc8gBIb4YhnX229MYb5t/z50udOiVmX1bdvYOvUgwaAwD21avHSKCJ1rq1tHRpqkthshuX+K4FEPGrVi00APz5Z+ngg0PXycS7GQASZ+JEqXp16eijpY4dU10aAIAdBH+wQkJNBgqfl75hQ+mss0KXZWI+M4DEadJEeuIJaciQ5LbC3XZb8vaVbf6/6zwAIMsQAGYgq36A4X12aAEEkA5uvTXVJchcpNMCQPzSsTMdAWAGatas9LKrry553LIlASAAewYNSt2+y5eXKldO3f4zHYPqAEB24vSfge680+yrI0n33GP+f8opZh+eSy8159oiAARgR69eqds356nEogUQAOKXjudSBoHJQDVqSKtXS2vWSIcfbi7LyZEGDy5Zx0nF6rrrpAcf9LaMANJDKluJCACdadFC+uIL++unY6UFAPyGFFD4RqVKJcGfFScVKyoJsOu001JdAngtlQEgg1U54/Tz4twOpJdkz8GKzEUAmKWcVBToJwK7ypZNdQngtWT//vfbr+TxKackd9/pzosAsFw5b8oCwHsVKqS6BMgUVO2zFC2ASASOlcyT7ABw7lypYkWpoECaNi25+06Wzp3dve7AA6M/7zQAtEpbOu88Z9tIV9l0rmLezsxBAAivEABmKfrWIBFOPDHVJYDXkh0Aduwobdxo9mM+9NDk7jtZ7rgj9O9evaQBA6K/5qOPoqf1S84DQKv1syUwmj071SVIngkTUl0CeCU/P9UlMMW6GQX/IwDMUk7uCEarVDz7rHTlldKFF0qXXx5/uZDe/vWvVJegtEMOkapUSXUp0lcqUsDz8zM7nTi8H09OjjmASzR27vx70QKYjoMZuFGmTKpLkDzZEtRng0QGgFddZX9dugalP77CLHXLLeZ8gJUrmwGcWw0aSNOnm1NLcEcIlSrFbslIpq5dpe++k7ZuTXVJ0hcXeu9ZBYCxKuk5ObGDMy8CwET7+uvk79NKugVFdsrbs6f71yI9JDIAnDrV/rocU6HS8cYZl/YsVaOG9NlnZsX4zDOjrxvtwA4esCEdfwDwnt8uDAQwzgT/piU+v0QI/4xzcmJ/znYCQKfnYKv17f5+W7Uy+2j27etsn35peUu30RSXLIn+/MUXSw88YP2c387JcC+RAWAyjpN69RK/D7uuuCLVJUgtLu2I+aOPVqkIrrQQAGaOo45y/9pkVzbq1In8HNMIOBdeQScA9F6iWgCd9u22+n3Y/e3n5ZkpY//5j5lmbZdfAsCWLVNdAmfCbxoEu+8+6amnpAMOSF55kBqJHqX31lvtrbd3b2LLkQxenovS8SYLl3bEPHAvvDDyc34KAM86y193l9LZihVmOqcbyT4RXned9OKL0v77l34u1cekFwoKpE6dkrc/AsDEGj3augXQLymg11xjDjYTqzxuW9D8EAC+8or1+SJYpHTKVLEKABs2lDZskG66KfprU1k5rV49dfvORInuG233WMmEANDLLIB0rGtwaUfEH3yFCtJdd0lt2kR+rZ9SQO0MpIDSCgpKL8vJcd96luzKRpkyUo8eUocOpZ9L9TGZjsIvigSA3hoypPRnXFSUmhRQq9945crSl19KmzdHHyzMbSCX6gCwSxfp3HNjr3fdddbLCwpS09JmdXxUrWqvLKkMAEeOTN2+M1GiA0C755A9e9xtf+BAd69LhHRLA/cal3ZEvDi8+qo0dGj0i4efWgBzcqKnycBapO/X7VQhqapsWO03E1JAk/27Cq9oEgB6q0KF0uepoiL/tABKZpBWtWr0u/zxtADec0/J3zfeKJUv725bbkTqJxcu0qirt91mDi6VbFbXNrvpgKkMAN2ePypUkI4/3tuyZIJU30AJcBsAtmvnbTniQQCIrBfp4mCn4hlvwHXbbfG9PhgBoDuFhdbL06UFMJpU35TwSjLfR6YGgE6Py1hz7sXDqgXQTvmiHQfXXuv9KKDRtue2IpqXJ11/vXT//dKUKdK99yb3nNGggb31Ir2//fZLzW8iN1c64YTQZW4DwFq1vCmTHU6vyccdJz30kPTxx0zfYyXdU0D9VEeLFgCOG5e8cqRKhlzaEY94Lr7Br3VaSf3uO2n8ePf7Dpeb66+TS7pI9wAwcNxZXZAyIQBM9nsIvyhm62/qoosSt203AWBRkfWxMG6cdPXV0rBh3kwEHyxaFkA8LYBly5otf//6l3l8JfOcYTd4ixRc5eWl5jex337SCy+ELnMbACaz5cPpZ7X//mY/1KOPtn/uszNHZqZI9xZAP11PIn2WCxZIN9xg/Vym3BCVCAChyCfZ4ItGpAm+4wkAvZ43MCcnPZr0/dYpPlIAmG4poFYXpEAFt2nT5JbFa4n8TM8/P/TvTJ0GwulnGKuiUrGi1Lq1u7KEb3vfvtifc6QAcPhwc/6uOnW8bwFMVApoKtmtgDZqZN0KHG8LYNOm9tNQg+XmSvXrhy5zGwAmeiTJYE4r/G7OdQcd5Pw16SrVv5+ATG4BLF8+8m880vI77vCmTMmUIZd2xMNO4PbQQ9K330Z/rdMA0OsTQU6OOTdVog0ZYn/dGTNKL/vkE+/K4kb4qK6RAkC3kh0wBI47qwAw8Ny993qzr2SOxhkska2A11wT+nempoA6Fev8lJMjzZ0rvfSS8227aQE0jMT0AbzkkpK/w89tiWgBtPpck3nTyO51JzdX+u9/zb6Qwdy2AM6dKz3xhPTBB9KgQdKoUc5eb7XPM86w99rwz9frm6+SVLOm9fJknD/WrEn8Pvwi3c/Hfip/pGA62ryskc5VXbp4U6Zk8tFXAT/LyZEOO6z08ngCwMAPLPwC61ZOjjkvVaLdcov9dbt1k449NnRZkybelsepSZMSu/1UtQBaBbKBY9KrviRezB1WrZqz9ROdAhpesWQUUFOsSr5hmOeu8BbUaE45xXrb+/a5SwEN/27cBID3329O5j5woHT77aXLFYnbANDqffoxBVQyW9zCs1/cBoD160uXXirVrm22wN1xh9S+vf3XB8r9zjtm6+Q550iXXWbvteGfbyKuQQsXWvctjKcFMNq5r1o1c90pU5zdlE136X4+9lMLYKSyOA0Ahw1L7kBWXknzQwle8KqCefbZztYP/Pjeeqv0c2XKOE/by8kx+wLYCdD69nW27WBO+hu4SctKtLp1U10Cb9lpAfTqouPFdq6+2vlrEhkEhr8nv6eAOgm44uF1a5tkTpouedcH8IMP4itTUZFZaf/Pf6SHHy59My5aAOhlKloyjzGn+wpf320KqNXgHU4C38DvsmtX6ccfzVG6naSABjI/cnO9T1c791zpiCOkX3+VVq4MfS7aZ5WXV3pQHrufybJl0s6dZoB+1FHOypvO/BRAueGn8ke6iZWbG/k4tDqeJ0zwrkzJ5LNLO9JNcIWkTRtpzBj7rw38kNq0Me9CBysslCZPdlaWwA82VsXkkUekadOcbTtY2bL2RlF76KH45tNLV35qAQx89m5bK4YODf07FcFQslsA/Z4C+u9/m9/LjBnR56kL5/S4jNUHNvh3vWiRvW0GUu/Cj0e7fQAbNw5d1rZt5DLZEevYSkQLoBU/jRwczqqFPBUBYDy/w5wc6bHHzN/ORx+ZfebeecfZNj7+2ExjtVKnjvl/fr45j6RdW7dKP/3krBwBZcqUBMB+CioSzW/nY6f89F1FGlE1WgtgKuYATZQ0P5TghXgqmMGvzcmRRoyQZs92vh2rC2GsE91dd1lvI9brrrgivlHD8vJC57GKJJA6ZLdSFk9Q6lTwZ9Smjbfb9tMgMPG2AB53XOjfXlx8/TYyafh78nsKaK1a5m//8sul0aO92+4FF4T+7SQADA/EYnEzD6BhmCN+BlKIrVK5nR5bXg0Cc9ppzvYbzm8BYPA50aoF0M35JN6BV+KpOOfkSJUqmX0PA1NJdO3qLGvn+OMj9x0MPk7CP69o3225cu7fV/B+/HaOcsJpRoOf36ud79JP5Y+Utpmba/6zGgk0Gd2MksVHXwVSxesKqVcX82jbmTevdBpnYH2v7zDNmVN6P3beY2AduwFgMk+MixZJp59uVqTD+yjGy4+DwHg1YIUXx1as31uyR4lNtxTQYF6mIYaPzOgkAHTKqgUw1jFaVGS23Hz3nfTNN9aVE6cj98bTAhjcr3bkSLN/bM2a0qxZzsog+ScAnDhRGjBAeuaZkmWZ0AIYiVcj4wYHgMl6T8Fl8VOrklNOP4NEvdcrroh/G3bOx376riI1BASO4UmTpK++Cn0uHfv6ReLjSzv86PjjQ/8OH5baLauKSLQm+FNOKX2hCazvdv6uxx+3Xt61q9S8ufn48sujl82KH1NATzzRDGyHDvXvDQCnok0D4faik4hgKNLnXbu22R92xQp763sl3VJAgzkJAGMdl+EtNLGCqXi+l/DPdO/e2Gnlgf3Vrh15kvpkzQNYtqw0eHDJ37VqSZ99Jm3cGL01MHzE2QC/BICDB0uPPho6rYDVDRKnLb5S/BN4x9sCaCXSb/vmm52tH3zuddICaMXu+pnSAuj0e/XyvZ5zjjl6Zffu3szJbOcY91MAmJ9vvTz4GAykNwd4PWp6KqXxzwZecVKRefnlkjsg06dbj2gYfoKyM3KiVRkiVT4C64ZfKAJ/N21qDrfdv3/paRjGjYtchkgXnv32k5YsMTu3P/qouSzdA8Bg4Z99eD8jp5xc8F95Rbr4YrO/pB1WI9EGRBsF1KsWwERWNMqVM0eNtUqzSuYgMH5PAQ129NGlL9CRxDouw+/sJrIFMNzevbH7ltgJdp0eJ24DwOXLI5c30m9t6VLpwQetn/NLAGjFKkX6rLOk3r1LrxtpvlzJ+vtLZh9AJ9ts0EDq06f0cjstgHYDwHinogjej5+CCideeSX+QYniUb++9O67ZrcdO+MaxOK2BTB8ICA7IrXEde5sfxuRAsDgzzi8lXD37sxpBfTxpR3J4qTSUK+eOfKWYUhXXmm9TvgJ/+mnzYFXatRwVoZYd1qiXWguvVSaOVNq1ix0nXr1Im8v2sU4P98MLAPrOLlw2/18401nCwwx71R4+V57Lb5yOJkr7+ijpaeeitwyEO6ppyI/l4g+gMlsAYy07US3AMZq8fNzAFi2bOkUHbectgB6qbAwegDYuLF0zDGxt5OsieCPPjryayKdx1q3jnzetHM+nTgxNDUzWaxaAHNzzetaeKV5yhT724m3HE44DQBzcpxl5QSfe+1eG6dOjbzvgGjHZ/Dn4edzVDStW6c2AIznHGc1krqdOkx4+atWNefbdGrdOuvlTkaEjZUCKpUO9goLzRF4A+u88or9/flNmv5s4KVIJ1m3d2XDX1e5splf3qJF5NcEd4QOTFNgVaGXIrcA2plgONrJ08n7bdfO/rp2K2U1apR00HeiTBkzdfD1152/Vir9/R95pLvtBHTtar+jtJPPvFkzc/6rSKKNApoOAWCq7mKH79fJb8YP9t/f/rq33Rb5Oau5+ZyYPj368RzphplkHruR5kPt1cvMQLDzPXgdALoZZMfNjSy7fap79TLT1pIp2iBJ8d6cSXULYLTlVu8t0jnKaQrojBnOp40KF60F0G5WQLgyZUqmakmGoqLE9QG0cw22Ol/YPSatAi03LYCjR0fP7Im0jUiDKkUbuCqcnRbA8M9j924zzX3FCumLL8wpUNKVzy/tyASBH1O0i2XDhtLzz5uBYuBuUKQWwMCdw1ijF1qt41UA6KTvo91RNg0j8jDb0bz9tpk6aGdk09NPt96vl3JyzBFNFyywt240b79ttvJUqSI9+aT1+vEOAvPpp5GfS8QgMJH8/nvk55KZAhrO7wGgE6NGWafp3XNP6WPLaQB45ZXSn3+G9h+TzKH3R42KPnJwYaG5f6s5US+80H56ltcBYP/+pSeHjyVRAWCgH3ayj8dYKdLxcDMPoJf7cTLZdbT1ow0Ck4o+gNdcY6awnnSSs3lvf/zRXSaNnW4uVuxM/xLO7nFgZ1Rxq3NcPNcaNwGgm1T6aINmOQkAIwWR0Y7B3bvN/486quSclK4y6NIOtyL94N2eCCLdAYy1vQsvNFNFA3eWwgPAoUPNk9p554VuNyCZAaAUPW89uG/khAnmumXLxp4io1IlZ2WQnF2w/v3v0ssSFVyEf56rV5f0oYy0TrjTTpPWrpV++cU82Ub7/qwCwEA6arSLZpMmkZ9LZgvgP/84W98r2RIA5uSYFZTwNL0HH7Qe9MJNxaR69dIDIVx5pTnxdvComeEC57pu3cz52oJ5/fnXrl3yOFpWhmS+l7FjnW3fTeZIrKCqoKBkzsdkt5SHf/7B328yp3RJZh9Apy2AXbtG3mai+ndGGwW0UiXzhuGHH9pLnZbMFvj69e1/zuedZ/5+Tj219DzGdrkJAL08H3jdepWsUUCnTYu8LycBYKSyRDtmGQQGiCLeO4AB4T+0O+800xoCJ0Cr+ZlilcXLANDqAllQYKa8Bqdj1qsnff+9tHmzOdpWLOFBkpesgtZkVWLy80tX9Ox85rVqlUyNYPX9RWoBbN68JOUvWgUz2gUpFdNAeKF2bfstN+HfQfgxkikBYLDgdMszz7Rex6s+gHaO8eBzXaJTcAOjJDdsKN17r7fbdivaHHk1a5o3j+zO8+q18N98vKN5Bkt1C2C05eH95yOV4cwzS0bHjrZNO/sNF+1cGa0F0M0IoYFzQqT1w6eDatFC+vxzM2OpfXupYkV7+wlmFXDGKq8X16BTTpFuvTU0cA+IJ2AvU6ZkoL1I4y2Ev7/Ad2xnPsSTTjJvSF1+ubkdq5vfTqaziPRZhy8PbkXu1cv+9v0uAy/tcCrSSTbWqHSRRAoAnVZ8wwPAWIGlnRbAaCdPpyc+qxaC1avNodDD+wiWLRs7RTPw+Vx+uXUqWKJ4FZDYSVOLd4ARJ3fmvvjCrDxK0b/3SGW4+urktgB6tb4kvfeedMst5pxmsdSpUzJAU82aZitUsEwMABcsMAeKmjVLOvhg63WSPQhMQKIDwAcekL7+2uzDEm1QrGSyCgAPPti8079kSWjQ5WUL4EsvlTyOlJ0RrQUwkW69NXo5nHDaAiiZqdJHHWWuM3269fpPPCG98Ubotc1OC2C087jd63C0FsDgv6Ndd6+7ruTxI49Ybysg/PoWXM6cHOmDDyLvx8qLL5rHffj+unWT5s83R1y3CsLjPR8cfLA5j/Kdd0a/oerGjh3S8OFmxs7KldbrhL/fwP6efNL8F63uM3GieWMz8Bt8/XXz+Fu82LzW/fvf5sA6dtltAXzrLTNAvfNOd1PA+JWH2exIV1Y/+O7drU8+btjpA2ilfXt72w2w+jEnMgXUKgD0onKQk1O6Ep5IXgWA4Sduq88z1oAjsbi9YLlpAXzgAenLL2Pv348CA/k8+mjpqVCCvfSSWQl54w3phRfMKTl++CF0nXR5z7EEH2stW5qV12gKCtztx83n5VUAeP310uTJ0dfJyXE+0FO/fiWDY0ya5Oy1dlidN+vWtR7Iwsvj8fzzpU8+MbfZqpX1OuHneTcpoGedZb082vmvYcPQv+2+7wcfDA1sou0nWgpopUpmC9fu3SWtW3b6byXrfBH8nqLVBaL11x8xwuyucdBBZiqn1bYCwm9ShG830oAikQRar7ZsCV3+998lXRfcDMIUr/AxC8qXl3btsvfan34y/w/0gz766NKjNEcKACtUMPttrlkTefvh302FCiUZHCeeaK+M0coSaXnz5qE3izJFhlza4aXVq+Mb2tarFNDDD5fuu888UVoNjmKnBTDeFNBoP3qvU/mS2Z/Ei/2GT/cQqQIVvJ9EBIB2OEnzlMy+EWXKlH4uUmuR1ZxZkbj5vBN1bATSbtq0MQNeq7unfp6jzQk77+Omm8z/999fuvZad/txMwhKtGH0nRzzd9zhfN923Hef+XmMGGF/hF8nrFoAI9208TrAOO646Oeu8D5FTm7ylSljfifh/ToDoqW+uv3dXXWVOWWRnW3FWp6XF5raGCl9L9o242kBtJsCGi1T49BDI2+jZk0zyLrsstgpxmXLmlkVklk3CU8FdJvN8uefocs3bSp5bBVgJ3pe4dNPly65xAzinn/eTHG1mu/ZzjUpPG1WihwABkT7HL3u/xvpOIz2u8wkBIAo9QOsVi2+i6zbQWCs3HSTma5gNbmnm1FAg3/wgcqeZFZurOYvjJaX7vWJ2O7nM2JEyeMLL0zefsPFOhlbnVzjHSDAbaUoUmXy9NOtj/VI00c0aGCmuASnzu2/v7PvIRkpoPEIrzxmCjstevfea05Y/s030ectjcbNKJFetQBWr25/0Asn9t/fbFkaMyYxlSMnAWCyB4EJTwUODgBjnY/OOMMcATZSenygv5SVeM51V19tb1tORwGNVXm32qaXN5AC1+OhQ0OPj2gtgBdf7GzS+UjHV7ly0l13ST//bI4cHX4jwG0AGK3sVp9vpHpHcH/eaPPqxrqe5OaaqfG//GJe104+2Ry/wA2r1tdYNxGifY52P+OHHrL3mmwPAEkBRakfYLwnbK/6ADrdj50AMNiIEWZqQ1GRWbEJb2WMNsqnlLoWu3btzBP0d99JN94Y//bcvo9Yx0n4CIPVqzurHATutgaLlgJas2bo3dNgkS7qgb4tkbZpdWd53Djz3z//mHc4TzjBrBTY5acWQCvHHGP2p3jlldCbDelo8mQzLTInJ3bKp2Su56QPiZVUBoBS6s5L8bBqVUtWC2As4QFgcAuv1Wfds6fZciLFbpE9+mjzBue335oj0Qan2rlpSQ5wM5WCnde7aQF0KrxvXbAXXzRby8OPl2gtgPn5ZppveH/XSCN3RmsBzMkpnZobqayx2BnMLvzYmzNHWrbMenvXXmtek/75x/nULcmUjBbAK680j5O9e6Vffy2ZOixctgeAtADC0Q/QjUSlkLlJAQ1Wtao5JPy0aWarZ/i6sU4CVlMqJMO+fWaKxtix7lspgiWqwli5sjmPX//+5nDceXnOUkDvvrv0smjrP/dcybH7wguhz1lVMEeNitw/JHCXNVrAWrGieYe0QYP4KmtWggcRCm6pTpZHHzVTk264Ifn79sqYMWal6N13zQpgrD7FXnETAAb/BrMxALQ610b6TfmpBdDKtGnmufnVV2NPsyGZXRyuuaZ0H7Lzzy9ZdvzxtosryX43DKfXZq9aAMOXBc9PO3Ro5P3n5Fh//rHGA6hbt/RcfZFuntrtA2j3dQHh8/IFPoNo9Zjw1r6OHSO3AJYrZ95wuOee6FPOJPL8MGxY7HXiCQDtngvLlDG/35tvjj6YV06O9M47pZeXL29vP+mOABCleN0CGPiBe33icTMIjJPRx2Kd8OOZQ8eqcmP38/F6dEK7qaxWE2jHctpp0syZ5vDNUvQAMPgunVWfTyl6C+App5gdzr/4Qrrggtivi3YsRGoBjPQdOQkA7XzPTzwhnX222Tdl8GD7285WwSMmnn662XI5dKj5HXfpEn+rXkBwyl6k6VrsBoDBQ4uffXbJ43hHyvUDp+cKq3NtpEDvu++clyceTvsA1qhhtsCcc46z/YSfFypXNkc3nDhReu01Z9uyGwAmIgXUTR/AmTPN3/DTT4f+Vu1eE+2M1uxmdNFgsb53tymg4dff4HKGP7fffv6+wdO3b+x1kt0HcOfOyM/l5JhTYYRPz+XmJl46ypK3iWi8bgFMVgDoJgU02kUg/GRr545fy5bmSGlOLVhgnix//LFkWaoCwEhefdUMcnNyzFEi//vf0Ofd3CiIFgBedZU5KXvlymZapZVY+zziCPtliXacB74LOylPkrMLhp3v+eCDnVf6stm4cWYrSYMGiekDF3DTTWawX768OTKmFbvHwuuvm4FfpUrmADwBmdACOHly5LQrK05SQBcudFcmt5ymgLplta0WLey1IoZLVAAY6doevs6RR0r/+585SuNpp0Uvq2T2z73zztLLjz1Wev/92K/38iaJ2xbAWNem8OMosH748uB6iFUA2KuX2cKcalbffayprqTYx1C0z9FNABhtqpvAdx0tCM9kaXhvEV5LdACYqFGr3AwCE034ROJ28sDdflZt25YeHtkurwPASJWYc84xg9vPPzcHM/Cir2i0gDzQWhMp+POanZsBdio8kvcpoHBmv/3M4zWRwZ9kBn633GIOsx8pQLF7LBx7rLRundmiFTy6bCYEgPvtF9rCGUv40PNS5M/x8MPdlcmt8BbARLXIevm9JSoADBepzHPmmCnYCxdaT5Bud/vDhkmHHGIeT08+GXk9O9+J3X1GWi/W7zpWGSLVs5wEgLm55vH/+OPR9xVw5ZWxy+Elq+86Fif1Cje/vVtuMQexksyuM8ECqZ7JnPPVTwgAUUq8dz/C+zK4nQcwlnj7AIYLn0jcznDf8XxWsU5mjz1mrlOnTujyZAWAknn3uXlz87EXgXy800BI5qAeXrCTAmq3BTDRAWA8v50rrvCuHNmmZ8+Sx2ecYe818aYPZUIAKDn7bQ8caE7HECzS53jffe7L5EayKoepCADj7RsYqcwHHWSmYceaGiiW/fc3R+T9++/oU+3YaRlykgJ62GGll8f6HUZ7/ogjSt8QidQCGPyZRmqZ6tfPemqGcFOnmt0pgn9LkTIXvGCnBTBcolsAq1Y1RzT93//MwfO6dDGX9+hRMoZCoqfW8CsCQHjeAtiqlXnXTjLTsgJ3XxJdMYm3D6CbFkAvA8Dwz+eyy6Tt280TV7BkBoDR1vM6BdQuryaijnacO20B9DoF1Ev33mtOXQHnJk0yU9g6d7Y/6BMBoMnJbzs/X/r449BlkT7H4AGSgrlpfbAj2vnWy8/ay0povC2Ado+5ZFScy5Qx06Sj8bJVNifHbMGMNn9gpNdF8v77kb8TJwGgU/vtZ567Pv3UzKw577zEDiqW6NEz3X7PlSqVdA956y3phx9KRuqVaAEEisXbApibKy1ZYvYhe/ddb8pkR7wpoOEtgIlMAZXsfc75+aVHpPL6ZHXAAfbWC75wnHaadNFFJX9HG3UsmBcBYPhr3Fb87LQAJiIFNNI2Ro+2vw0nqla1nm9s1qzE7C+T1KljjmQ7d27kEWPDEQCanP627WR0SKVbGUaONIe+f+ON0OWrVpXO4qhd21mZpPRsAQznJAAsX770oBiRVK7sbXncsnNdcbLPRo2kFStK5g+8+OLYr4n0O5082XoeSDd9AK1eb0ezZmad7OWX7V+rnXr9dXffa/hxH62Vz4sRgPPypMaNQ78vAkBkLa/nAZTMOdnOOSf0ZDNqVMljuxcYJ6xODvGkgKa6BTAgvCLk9cnqlltK0kluvjnyeo0bm3dG77hD+s9/zM7oV15pjvAZadTOcOHv2e0dzh49zP8rVzZbSt3wWx/AkSMjP5eIymF4fwh4I9UBoF/Eex2xOxH8rl1mUBj+OdWoUTpYfPNN5+WoXt35a9zwQwrohRea/faiBQmBydgPOKD0aMt22ele4UQifiPlyklffmlOYWR3DtFgQ4ZIzz5bMil7pEyr8Gug3QDQLzd6As46y93rwt9j5cqRBz5K1LkwWwNARgFF0k4kp55qTrz9/ffWk3zHy+oOfTwpoHYqcjVrxl4nErsVpEQHgLVrm2mmv/winXhi9HVPPz10zqZIE6lHEl55c/teZs0yWyBbtjRbuNywMwpoolJAL7rInLcw4M8/7b8e/kYAaIo3ALR7UyUwzHt4sGc1ZL6b6UAGDTLnJN2yRbr88tDnEj0KqFtuU0BHjjRH8IzmmWfMlMbmzd3Pl+Y2WIjETstQ794lk6jbnT+3Ro2SKYyc6t49+muTkQKaDqyO+7lzzYHyVq0KXZ6oOUCz4XO2kqaXFngp0ClWcp/SYUdOjtlidN997lJxrFx3nfn/iSeGvo8AJwFgeAugnQrM3XeXVPiitZ5ZcTsqmZOgKdD/UrIeaS+gbl3z+UQPf+xVAFi+vHknulEj+68JHzrbTgpo+J3wSMetkwuTYZh9y8480wym1661XyGB/8XbupEpKaDxsjN9gFSSAt6qVckIoe3amVkNTqaFiaR6denrr83uDA8/HP/2IklFH8Bwds5jZcuaN3MLCpyXKyB8oLh42bnOX3mlmfVwwgmlpzRKBTspoNGuj4H01ExUs6b1YDWJuhkWPI/sKackZh9+RAAI1axppsZceaX0wQepLo0zDzwgrV9vpq3EM/mrVDoAtOOII6Tly6XZs63nMXLCqp+AFSfv6fXXzSDmgAPMUUVTLfyiFatzv5eGDo38XHjKSaASX7WqmcqTm2uOVNiggfXrI12YWrUqPSG0YZjfxxtvmCm10eYpQvq57baSx8ETvNuVKQGgm5tJc+earXTXXSd16xZ5vQEDzP/z86Vrry3Z3+LFZuX+nXfMZQ8/XNIyaCeNL5IDDzRvMCaqBULy9nuze+PT6wHg7EhE4GLne8nPNzNHliyJf3RSK7GO9/Dsmnj7AD72WMn7fvBBe2X0o5YtrZdb/R4S9fs77TTp/vvNOrDdKTYyASmgkGQOcW53mHM/yckpPU1CsHhaAO1q3rxkqgSnBgyQZswwKz0dO0Zer21b6aOPzIuYk34XbdpImzaZ7zve1DQvHHigdMMN0qOPmv+7Td90IzylLPjYePlls49jwF13lTy+917zXzSR7mgHUo6OO67k8VVX2Ssv0tOhh5ojzX36qZk+6FT4OSubAsDOnc1/sUybZqYRHn546PD61aqZrVMBRx9tdjnYvt35qI7JlsgUULv7TGSAG2mfXkiHNOm6dc3g4pVXSjKXJPcpoMcdJ33xhbR5c+SRcf1q5kxzULn27Z2lAyfqe87NlW68MTHb9jMfVAmBxHFywkhFS8wjj5iT3R54YPSyzp5t9r3o0MF5mq7fJimfNMm7qRziEVxJatRI2rHDnGz40EMj35WMpFw5s4Xx7rtLlgXflX3xRfM9t25tjsjmlF8q9bCnW7foLVhOZFMAaFeZMvZbV51MSJ9K6ZICGq9EHJ/JKLdTVu+zX7/SqY3x9AE86ig3JUu9/v3Nf9FYHbN+/J7TWRrcNwHcc1IJuewyqWFD83FwGlci5eSYwUesfkM1a5p3Dd0ED7AWfjHJzzdTQKK1xEZz113mgBT33WcGe8GtPwcdZKYr2xlOPFHcDtiA5Io3LS/89TNmlDy+4QZXRXIl0f2JM01wP6ROnbzdtp9SQBPBD+V2e7xHSwHdu9d9eRIt0TearLbvh+85k9ACiIzmJAW0YkVz7p/ffpOaNElsuZAabdqY/YTKlk3MNAjlyydmol0vLravvGKmeRuG9NJL8W8PieF1ANi3r7Rtm/T332Z/1mTJhgDQy0rw0KFmf/bNm8254+JhtwUwU1JA/dAyFD4Krd35dcMzdIIDQLfdUjKVH77nTEIAiIzmtPJUuXJiR0JFar38sjkYRMeOyZvfKxEOPNAcVODFF+2/pls3s8/Ivn3OU1yRPF4HgHl5yW35C8iGANBLVap4NwCF2wAwGS0smdoHsGJFafBgczCRSy+1fxN5ypTQFt/g/nzZOj9dJH74njMJHyeySqZXSt54o+Txq6+mrhx+dcAB5p32445LdUnis2aN9MILzl/XrBnBn99lSlpepp9r/czPLYCJ4JdyT5xoBm3/+Y/913TsWDKqbe3aoQOQZbNkjgKarWgBRFbJ9ErJmWearTyGUXpqA6SvdG6thDNetwCmSqafayX/fNbh/BwAJqMFMJXHnpsbNo8+ag4att9+8c8jmsmy4ZySTGl6bxGwJ/xkXK5casqRTM2bE/xlmrvvLjmWb745tWVBYhEAIl52A8Dw62G6poCGv79q1bzfR6Ll52dm8BecCmu3X6SV6dPjLwtCEQAio+Xnm3PoSeZIjOk2Xw4gmfOZLV1qDt5y552pLg0SKVMCwGTO8YlQdgPA8Ap5OqfYXXih+f/hh9ubSxLxad3a3nrPPmsG5JUrmwOR2bX//qF/X3ml/dfCHgJAZLy33zZPPEuXpvcFDtnt2GOl88+Pfgzn5LjrGwj/StcA8KGHSh4PHZq6ciSSXz7rcH4OABP1mT3zjLR8Odf5ZAn0XTz4YPOzj+TYY6V166QNG8yBy+y69NKS47Nv3/jKCmv0AUTGq1xZOvfcVJcCSLyVK82J7JE5nAaAF18sjR9vPo4n5SperVtLH35oDlh0wQWpKwciB4DhXQXyklAjTFQAuN9+ZrCB5MjJMfsu2hE+RYbd16xYIX3zjXTSSc5fj9hoAQSADJCTQ/CXCeJNAb35Zumss8zRXufM8a5cbpx0ktSrV3ICC5SwOyjKUUdJV19tdpW4447E9ZE/4YSSx6mYkgTpqVYtqX17WnQThdMyAAA+EW8AWLWq9Prr3pUHkU2bZqaqSdKgQaktSzAnA/BMnWpOPJ/IIP2pp8zAr3Zt6frrE7cfAPYRAAJABvBrfyQ4kynzAGaD3r2lv/6SNm3y1+i8dvsABiS6hbZx49A5agGkHgEgAKSpCy8sGfSF0UEzAwFg+thvP3+2aDkNAAFkHwJAAEhTDz1kDnJUtap03XWpLg28QACIeBEAAoiFABAA0lTt2tKMGakuBbxEAIh4EQBmnpo1U10CZBouLQAA+AQBILxGAJieXn7Z/O7y8szHgJdoAQQAwCcIABEvWgAzw3nnSf/7n1SmjHTIIakuDTKNLy8td955py644AI1atRIOTk5atiwoeNtbN++XbfccosaN26scuXK6YADDlD//v21bt067wsMAEACEADCqRo1Ul0CeOXwwwn+kBi+bAG87bbbVKNGDR1zzDH6+++/Hb9+586dat++vT7//HNdeumlOvHEE/Xzzz9r6tSpmj9/vpYuXaoDDjjA+4IDABAHWgARr3btpObNpS+/lM4/n4m0AZTmywDwxx9/VKNGjSRJRx11lLZv3+7o9Q8//LA+++wzTZgwQcOGDStefvbZZ+ukk07S7bffrhmMnAAA8JnwAJD0PTiVmystXiytXCk1a5bq0gDwI1/eWwwEf24tWLBAktS/f/+Q5W3atFGTJk303HPPadeuXXHtAwAArxEAwgsVKkjHHJP4Sd4BpCdfBoDx2r17tySpQoUKpZ6rUKGC/vnnH3311VfJLhYAAFGFB4AAAHgtIwPAI488UpL03nvvhSzfsGGDVq5cKUlas2aNq23XqVMn5F+TJk3iKywAAP+PABAAkGgZGQBeddVVqlChgq666io9//zz+vXXX/XBBx/onHPO0b59+yRJO3bsSHEpAQAIRQAIAEi0jAwADznkEM2ZM0cVK1bURRddpIYNG6p9+/Y68MADNWDAAElSlSpVXG17w4YNIf++//57L4sOAMhirVunugQAgEyXkQGgJHXo0EHff/+9/ve//2nhwoVavXq1Xn75ZW3atEmSdNhhh6W4hAAAhGrWTLrtNunoo6Xnn091aQAAmSjHMPydcBKYBuKXX36Je1u7d+9WvXr1VL16dc9a7rZu3aqqVatqy5YtrlsVAQAAAD8KH43Y35FDdrMbl6T9AMGrV6/Wjh071LhxY5UpUybqurfddpv+/PNP3XfffUkqHQAAAAD4hy8DwFmzZunXX3+VJG3cuFGFhYUaN26cJOmggw5Snz59ite99NJLtXDhQv38889q2LBh8fJjjz1WHTt2VJMmTbR7927Nnj1bCxYs0MCBA9WvX79kvh0AAAAA8AVfBoCPPfaYFi5cGLJsxIgRkqT27duHBICRnHjiiXr99de1du1a5eXlqUWLFnrmmWfUq1evhJQZAAAAAPzO930A/Y4+gAAAAMhU9AFMH3bjkowdBRQAAAAAEIoAEAAAAACyBAEgAAAAAGQJAkAAAAAAyBIEgAAAAACQJQgAAQAAACBLEAACAAAAQJYgAAQAAACALEEACAAAAABZggAQAAAAALIEASAAAAAAZAkCQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAACw9MILJY8nT05dOeCdvFQXAAAAAIA/9eghzZ4t7dgh9eyZ6tLACwSAAAAAACzl5Ejdu6e6FPASKaAAAAAAkCUIAAEAAAAgSxAAAgAAAECWIAAEAAAAgCxBAAgAAAAAWYIAEAAAAACyBAEgAAAAAGQJAkAAAAAAyBIEgAAAAACQJQgAAQAAACBLEAACAAAAQJYgAAQAAACALEEACAAAAABZggAQAAAAALIEASAAAAAAZAkCQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAABAliAABAAAAIAsQQAIAAAAAFkiL9UFSHeGYUiStm7dmuKSAAAAAMhWgXgkEJ9EQgAYp23btkmS6tevn+KSAAAAAMh227ZtU9WqVSM+n2PEChERVVFRkdavX6/KlSsrJycn1cVRkyZNJEnff/99iksCxIdjGZmCYxmZgmMZmSJTj2XDMLRt2zbVrVtXubmRe/rRAhin3NxcHXjggakuRrHAl12lSpUUlwSID8cyMgXHMjIFxzIyRSYfy9Fa/gIYBAYAAAAAsgQBIAAAAABkCfoAAgAAAECWoAUQAAAAALIEASAAAAAAZAkCQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAABAliAABAAAAIAsQQAIAAAAAFmCABAAAAAAsgQBIAAAAABkCQJAAAAAAMgSBIAAAAAAkCUIAAEAAAAgSxAAZoiioiJNmjRJhx12mMqXL6/69evrpptu0j///JPqogHKycmx/FepUqVS63733Xc655xzVL16dVWsWFHt2rXTe++9Z7ndLVu26Nprr1W9evVUvnx5HXnkkfr3v/8twzAS/ZaQ4e68805dcMEFatSokXJyctSwYcOo63/yySfq3LmzKleurCpVqui0007TF198Ybnu+vXrdemll6pWrVrKz89Xq1at9OKLL1quu3v3bo0cOVIHH3ywypUrp8aNG2vcuHHas2dPnO8Q2cLJsdyvX7+I5+uXXnqp1PpOj88nn3xSLVu2VH5+vgoKCjRgwABt3LjRq7eKDLZq1SqNHDlSJ5xwgmrVqqXKlSurRYsWGj9+vGVdN1F1iYypbxvICNddd50hyTj33HONRx55xLjxxhuNvLw8o2PHjsa+fftSXTxkOUlGu3btjFmzZoX8e+6550LW++GHH4waNWoYtWvXNiZMmGBMnTrVaNGihZGXl2fMnTs3ZN3du3cbrVu3NvLy8owbb7zReOSRR4xzzz3XkGTccccdSXx3yESSjBo1ahidO3c2qlevbhx00EER112yZIlRrlw5o1GjRsb9999v3H///UajRo2MSpUqGStWrAhZ988//zQOPvhgo2LFisaIESOMhx9+2Gjfvr0hyZg5c2apbXfv3t2QZFx22WXGo48+alx22WWGJKNv374ev2NkKifHct++fQ1Jpc7Vs2bNMn799ddS6zs5Pu+//35DktG+fXvj4YcfNkaMGGFUrFjROOKII4zt27d7+I6RiYYOHWpUqlTJ6N27t/Hggw8a//73v40LL7zQkGQ0a9bM2LFjR/G6iaxLZEp9mwAwA3z99ddGTk6Ocd5554Usf/DBBw1JxtNPP52ikgEmuxXWCy64wMjNzTU+//zz4mXbtm0zGjRoYBx66KFGUVFR8fKpU6cakowHH3wwZBvnnXeeUaZMGeOXX37xqvjIQj/++GPx4yOPPDJqpbl169ZG5cqVjbVr1xYvW7t2rVG5cmWjS5cuIevefPPNhiTj9ddfL162d+9eo3Xr1kaNGjWMbdu2FS+fM2eOIckYPHhwyDYGDx5sSDI++ugjt28PWcTJsRwIAO1wcnxu3LjRqFChgtG6dWtj7969xctff/11Q5Ixfvx4m+8G2WrZsmXG33//XWr58OHDDUnGQw89VLwsUXWJTKpvEwBmgMDB/8EHH4Qs37lzp1GhQgWjW7duKSoZYAoEgLt37w6p4Abbvn27Ua5cOaNTp06lnhszZowhyfjkk0+Kl7Vt29aoUKGCsXPnzpB1P/jgA0OScffdd3v7JpC1olWav//+++IWkHCXXXaZkZOTY2zYsKF4Wb169YzGjRuXWvfJJ580JBnPP/988bKLL77YkGSsXr06ZN3Vq1cbkoyrrrrK5TtCtrIbABYVFRlbtmyJ2qLh5Ph89NFHDUnGk08+WWo7jRo1Mg4//HDnbwYwDGPFihWGJOPKK680DCOxdYlMqm/TBzADLFu2TLm5uTruuONClpcvX14tWrTQsmXLUlQyoMRLL72kChUqqHLlyqpdu7auvfZabdmypfj5FStWaPfu3TrxxBNLvfaEE06QpOJjuaioSJ999platmyp8uXLh6x73HHHKScnh+MeSRE4ziIdt4Zh6NNPP5UkbdiwQevWrSs+nsPXDd5e4HG9evVUv379kHXr16+vunXrcowjYapWraqqVasqPz9fXbp00SeffFJqHSfHZ6zfycqVK7V9+3aP3wWywdq1ayVJBQUFkhJbl8ik+nZeqguA+K1fv141a9ZUuXLlSj1Xr149LV68WIWFhSpbtmwKSgeYJ9ILLrhAhxxyiLZu3aq33npLU6ZM0cKFC7V48WJVqlRJ69evl2Qes+ECy9atWydJ2rx5s3bu3Gm5brly5VSzZs3idYFEcnLcOlk3sP4RRxxhud969eoVV3wArxxwwAG68cYbdeyxx6pixYr68ssv9cADD6hdu3Z666231Llz5+J1nRyfsY59wzC0fv16HXrooR6/I2Syffv2aezYscrLy1Pv3r0lOTvPOq1LZFJ9mwAwA+zYscPyYJRUfEdjx44daXFAIjOF3z2+9NJL1axZMw0fPlyTJ0/W8OHDtWPHDkmyPJaDj+Pg/6Md94F1gETy6rgNXzfwmGMcyXTXXXeF/H3OOeeod+/eatGiha666ip9//33xc85OT6dHvuAHTfccIOWLFmiCRMmqGnTppK8OycH1ndyTg6skw71bVJAM0CFChW0e/duy+d27dpVvA7gJzfffLPKli2rOXPmSCo5Rq2O5fDjONq6gfU55pEMXh23VufqWOd2jnEkQ5MmTXThhRfqhx9+0KpVq4qXOzk+nR77QCwjRozQlClTNHDgQA0bNqx4eSLrEplU3yYAzAB169bVpk2bLA/KdevWqWbNmmlxNwLZpUyZMsXHrmQex5IsUzcDywJpGtWrV1d+fr7lurt379amTZssUzoArzk5bp2sG1g/UirzunXrOMaRNIG5AwPna8nZ8Rnr2M/JySleB4hl1KhRGjdunPr376/p06eHPJfIukQm1bcJADNA69atVVRUpKVLl4Ys37Vrl7744gu1atUqRSUDItu1a5fWrl1b3HH76KOPVrly5bRkyZJS63788ceSVHws5+bm6phjjtHnn39e6kS8dOlSGYbBcY+kaN26tSRFPG5zcnJ07LHHSpLq1KmjevXqFR/P4etKCjluW7durXXr1mnNmjUh665Zs0br16/nGEfSBFI/A+drydnxGet30rRpU1WqVCkRRUeGGTVqlEaPHq2+fftqxowZysnJCXk+kXWJjKpvp3YQUnhhxYoVUeclmTVrVopKBhjGpk2bLJcPGTKk1BDLPXr0MHJzc40vvviieFlg7p4mTZqEzN0zZcqUiHP35OXlGT///LO3bwRZK9bQ+a1atTIqV65srFu3rnjZunXrjMqVKxunnHJKyLqB495qHsBq1aoZW7duLV7+5ptvRp1n7cMPP4zznSHbRDuWt2/fXmoofMMwjM8++8woW7ZsqakanByff/zxh5Gfn28cd9xxlvMAjh07No53hWwxevRoQ5LRp0+fqFOUJKoukUn17RzDMIzUhJ7w0rXXXqspU6bo3HPP1emnn65vv/1WDz74oNq2bav33ntPubk09iI1brzxRn388cfq2LGjGjRooO3bt+utt97SggULdPzxx2vBggXKz8+XJP3www867rjjVKZMGd14442qUqWKHn30UX311VeaM2eOunbtWrzdwsJCtWnTRl9++aWuu+46HX744Xrrrbf06quv6vbbb9fYsWNT9ZaRAWbNmqVff/1VkvTQQw+psLBQN910kyTpoIMOUp8+fYrXXbx4sTp27KgDDzxQ1157bfFrfv/9d3300Udq3rx58bp//vmnjj32WP35558aPHiw6tWrp2effVbvv/++ZsyYocsvvzykHGeddZbefPNNXX755TrxxBO1ZMkSPfbYY7rkkks0a9asRH8MyAB2j+UvvvhC3bp10znnnKMmTZoUjwI6c+ZM5ebm6t1339VJJ50Usm0nx+fEiRM1ZMgQdejQQb169dK6des0ceJE1a9fX8uWLaMFEFFNnTpV11xzjRo0aKCxY8eWqtcWFBSoS5cukhJbl8iY+naqI1B4Y+/evcZ9991nHHrooUbZsmWNunXrGjfeeGPESbeBZJk9e7Zx6qmnGnXr1jXKlStnVKhQwWjevLkxfvx4y7vN33zzjXH22WcbVatWNfLz8422bdsac+fOtdz25s2bjX/9619GnTp1iu9QP/TQQyF39wA32rdvb0iy/Ne+fftS6y9evNjo1KmTUbFiRaNSpUrGqaeeanz66aeW2167dq1xySWXGPvvv79Rrlw5o2XLlsZzzz1nue7OnTuN4cOHGwcddJBRtmxZ4+CDDzbGjBljFBYWevl2kcHsHssbNmwwLrnkEqNp06ZG5cqVjby8PKN+/frGpZdeanz77beW23Z6fD7++ONGs2bNjHLlyhm1atUy+vfvb/z++++JeNvIMH379o14HFudlxNVl8iU+jYtgAAAAACQJdKknRIAAAAAEC8CQAAAAADIEgSAAAAAAJAlCAABAAAAIEsQAAIAAABAliAABAAAAIAsQQAIAAAAAFmCABAAAAAAsgQBIAAAAABkCQJAAAAQ0e233678/HytX78+qfs1DEPHHnus2rVrl9T9AkCmIwAEACRcTk5O1H+zZ89OdRFhYfXq1br//vv1r3/9S3Xr1i1e/ssvvygnJ0cnnXRSxNcG1mnYsKGrfefk5GjMmDFatGiRXnrpJVfbAACUlpfqAgAAskPlypU1ePBgy+cOO+ywJJcGdowdO1aFhYUaMmRISvZ/xhln6KijjtLw4cN1/vnnKycnJyXlAIBMQgAIAEiKKlWqaNSoUakuBmzasmWLnnnmGZ166qk64IADUlaOPn36aOjQoZo/f746d+6csnIAQKYgBRQA4Avvv/++cnJyNGrUKC1dulRnnHGGatSooZycHP3yyy/F682ZM0ddu3ZVjRo1VK5cOTVt2lSjRo3Szp07S23TMAxNmTJFRx55pMqXL6969erpmmuu0ZYtW9SwYcNS6Yn9+vUrtT+r8oVbvXq1Bg0apIYNG6pcuXKqXbu2LrzwQn377bel1g3s959//tHNN9+sBg0aqFy5cjrkkEN09913yzAMy89n6dKl6tmzp+rVq6dy5cqpTp06OvXUU/XCCy9IklauXKmcnBx16dLF8vWGYahx48aqWLGitmzZYrlOsGeffVY7duxQz549Y67rRKx04PDPN7D/xx57zNNyAEC2ogUQAOArS5Ys0Z133qmTTjpJl112mTZt2qSyZctKkkaOHKmxY8eqdu3a6t69u/bff38tXbpUo0eP1nvvvaf58+erTJkyxdu64YYb9OCDD6pOnToaOHCgypQpo9dee02ffPKJCgsLi7cbj+XLl+vUU0/Vli1b1K1bN11wwQXasGGDXnnlFb399ttasGCBWrVqFfKaPXv2qGvXrlq/fr26deumvLw8zZ49W7feeqt27dqlO+64I2T9Rx99VFdddZXy8vJ09tln65BDDtEff/yhZcuWadq0abrwwgt12GGHqWPHjpo/f75++uknNWrUKGQb8+bN008//aTLLrtMVatWjfm+5s2bJ0lq06ZNnJ9QqPD3FjBr1iz99NNPqlChQsjygw46SPXq1dO8efNkGAZpoAAQJwJAAEBSbN261bL17LDDDtNFF11U/Pe7776r6dOn68orrwxZb968eRo7dqxOPvlkvfHGG6pSpUrxc+PGjdOIESM0ZcoU3XjjjZKkxYsX68EHH1Tjxo21dOlS1ahRQ5I0fvx4dezYURs2bNBBBx0U13vas2ePLrzwQu3atUuLFi3SiSeeWPzct99+q+OOO04DBgzQF198EfK69evXq3nz5po7d67y8/MlmYHRoYceqkmTJum2224rDmS/+eYbXX311apataoWLVqkww8/PGRba9asKX581VVXacGCBXr00Ud15513hqz3yCOPSJIGDhxo670tWrRIVapUUZMmTSKus3r16ohpvX///bflcqv1H3/8cf3000868cQTdd1115V6vnXr1po9e7a+/fZbHXHEEXaKDwCIxAAAIMEkRfzXvXt3wzAMY8GCBYYko0WLFpbb6N69uyHJ+Pbbb0s9t3fvXqNmzZpGq1atipcNGDDAkGTMnDmz1PqBfR100EEhy/v27WtIMn7++eeIr7njjjuKl7366quGJGPo0KGWZb7xxhsNScbXX39dvOyggw4yJBnff/99qfUvvfRSQ5Lx1VdfFS+75pprDEnGAw88YLmPYIWFhcYBBxxgFBQUGIWFhcXLf//9d6NMmTJG8+bNY27DMAxj9+7dhiSjSZMmls///PPPUb/T4H/hn3G4efPmGWXKlDEaNWpk/PHHH5brDBo0yJBkvP3227bKDwCIjBZAAEBS1KtXT2vXro253nHHHWe5fMmSJSpbtqyee+45y+fLli2rlStXFv/92WefSZLat29fat2TTjpJ++23n51iR7VkyRJJ0k8//WTZsvXdd99JMvvnHXnkkcXLq1atqkMOOaTU+vXr15ckbd68uXjZxx9/LEnq2rVrzPKUKVNGAwYM0Lhx4/Taa6+pR48ekswWtj179pRqVY3kzz//lCRVr1496npt27bVokWLLJ/75ZdfdPDBB0d9/TfffKPzzz9flSpV0ltvvaVatWpZrhdovd20aVOsogMAYiAABAD4SqQRJ//66y/t3btXo0ePtrWdwEAnBQUFpZ7Ly8tTzZo13RcyqEyS9OKLL0Zdb/v27SF/V6tWzXK9vDzzsrxv377iZYFUynr16tkq08CBA3XnnXfq4YcfVo8ePWQYhmbMmKGKFSvq4osvtrWNQFrqrl27bK3vxm+//abTTz9dO3fu1Ny5c9W0adOI6wYG+AmUCwDgHqOAAgB8JdIgH1WrVlV+fr727dsnwzAi/gteX5J+//33Utvau3evZWtSbm5u8fPhrPq0Bfbx7LPPRi1T3759Y7/xCALB4rp162ytX79+fZ155pnFg8G89957+uGHH3TRRReF9JuMtc+yZcsWB7he27Fjh8466yz9+uuvmjlzpk4++eSo6wdaJGvXrp2Q8gBANiEABACkheOPP147d+7Ul19+aWv9Y445RpK0cOHCUs8tWrQopJUtIJDyGDywSsDy5cstyySVpIImwgknnCBJ+u9//2v7NVdddZUMw9Cjjz7qePCXgKOPPlrr16/Xtm3bHL0ulqKiIvXu3VvLly/XmDFjbLVKrly5Urm5uTr66KM9LQsAZCMCQABAWrj++uslmYGMVave33//rc8//7z47379+kkyR/0MbsnatWuXhg0bZrmPQP/DRx99NGT5V199pcmTJ5dav3v37mrYsKGmTZtmGaAVFRXp/fffj/7GYghM/zBmzJiQPo4BVv0qTz31VDVu3FgzZszQ7Nmz1aJFi4h9KyPp0KGDioqKLAPfeAwePFivvfaa+vbtqxEjRsRcf/fu3friiy/UsmXLiKmzAAD76AMIAEgLp556qkaPHq077rhDhxxyiE4//XQ1bNhQW7Zs0c8//6yFCxeqX79+mj59uiRzgJJrr71WDz30kI466ij16NGjeB7A6tWrq06dOqX20b17dzVp0kTPPvus1q5dq+OPP16rV6/Wa6+9pu7duxdPuh5QtmxZvfzyy+ratatOO+00nXzyyWrWrJnKli2r1atXa8mSJdq0aVNcfemOOOIITZs2TYMGDVKLFi109tlnq0mTJtq0aZOWLVumqlWrasGCBSGvycnJ0aBBg3TzzTdLku3BX4Kdd955mjhxot5991117NjRdfmDLV26VJMnT1b58uVVr149y4FzOnTooA4dOhT//f7776uwsFDnn3++J2UAgGxHAAgASBsjR45Uu3bt9NBDD2nhwoV69dVXVb16ddWvX1+DBw/WpZdeGrL+5MmTdeihh2rq1Kl6+OGHtf/+++vcc8/VhAkT1Lx581LbL1++vObPn68hQ4Zo7ty5WrZsmY466ig988wzqlGjRqkAUDJTTVesWKGJEydqzpw5mjFjhvLy8lS3bl116NDBk8Dliiuu0FFHHaX77rtP77//vmbPnq2aNWuqWbNmGjBggOVr+vXrp1tuuUUVKlSwPfhLsDZt2qhZs2Z66qmnNH78+OL+kfHYsWOHJLMVdsKECRHXCw4AZ82apbJly+ryyy+Pe/8AACnHCO4xDwBAlmjYsKEkc7qCTDRv3jx16dJFAwYMKJXSatdTTz2lPn366PXXX9dZZ53lcQlj27hxoxo2bKhevXppxowZSd8/AGQiAkAAQFbK9ACwa9euevfdd/X555+rRYsWrrZhGIaOO+644r6AkUZoTZSbbrpJjzzyiFatWmWZsgsAcI4UUAAAMsRXX32lN998U8uWLdO7776r888/33XwJ5l9CR999FHNnj1bv/32W9KDsIKCAs2aNYvgDwA8RAsgACArZWIL4H/+8x/1799fVatWVdeuXfXvf/9bNWrUSHWxAAA+QgAIAMD/tXfHBAAAAADB+rcWxNbCBQAmfAABAAAmBCAAAMCEAAQAAJgQgAAAABMCEAAAYEIAAgAATAhAAACACQEIAAAwEVaH+q9QBk42AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Note the use of a power of 2 for dt. RXTE data can behave badly if we don't do that.\n", + "ps = stingray.AveragedPowerspectrum(events, dt=1/4096, segment_size=1, norm='leahy')\n", + "ps.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A QPO!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# DynamicPowerspectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's create a dynamic powerspectrum with the a segment size of 16s and the powers with a \"leahy\" normalization. We will use this to see if the frequency of the QPO is stable or it changes over time." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "4296it [00:00, 15818.78it/s]\n" + ] + } + ], + "source": [ + "dynspec = stingray.DynamicalPowerspectrum(events, sample_time=1/4096, segment_size=1, norm='leahy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The dyn_ps attribute stores the power matrix, each column corresponds to the powerspectrum of each segment of the light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[2.86142014e+02, 2.21404652e+00, 4.49974561e+00, ...,\n", + " 1.67625425e+00, 6.00745863e-02, 1.56656876e+00],\n", + " [3.08720461e+01, 3.72558781e+00, 1.50197819e+00, ...,\n", + " 9.41301441e-01, 8.74504661e-01, 7.77072089e+00],\n", + " [6.55459927e+00, 2.47765550e+00, 4.84945565e+00, ...,\n", + " 3.46383838e+00, 4.50184348e-01, 2.24257145e+00],\n", + " ...,\n", + " [1.39660007e+00, 8.01728092e-01, 6.49434961e-01, ...,\n", + " 1.77991810e+00, 9.01248772e+00, 2.23014832e+00],\n", + " [6.64803568e-01, 3.67539077e+00, 8.14022349e-03, ...,\n", + " 1.67739661e+00, 1.29050497e+00, 1.82808498e+00],\n", + " [1.56362131e-01, 2.62837187e+00, 3.48806670e+00, ...,\n", + " 2.44281615e+00, 6.93147056e-01, 1.79838829e+00]])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dynspec.dyn_ps" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To plot the DynamicalPowerspectrum matrix, we use the attributes `time` and `freq` to set the extend of the image axis. have a look at the documentation of matplotlib's `imshow()`." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAJ9CAYAAABXWMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d1xUR9f/dwtiA8XuiiBVEcUVpOzaW1YxMfYSY69gTEzypJiemGaqibFrNCYaY2KJiegaa1TAgq5YULqA114RBQT298dl5s7ce3ch7/O8+Znn3S8fPrs7d+bMmbnTzsyZczR2u90OF1xwwQUXXHDBBRdccMEFF/42aP9/M+CCCy644IILLrjgggsuuPB/DS5BzAUXXHDBBRdccMEFF1xw4W+GSxBzwQUXXHDBBRdccMEFF1z4m+ESxFxwwQUXXHDBBRdccMEFF/5muAQxF1xwwQUXXHDBBRdccMGFvxkuQcwFF1xwwQUXXHDBBRdccOFvhksQc8EFF1xwwQUXXHDBBRdc+JvhEsRccMEFF1xwwQUXXHDBBRf+ZrgEMRdccMEFF1xwwQUXXHDBhb8ZLkHMBRdccMEFF1xwwQUXXHDhb8YjJ4ilp6fjrbfeQkxMDBo3bgwPDw8YjUZ88MEHKCoqUsQ/f/48Bg0aBC8vL9SpUwddu3bFnj17VGnfuXMHs2bNQosWLVCzZk2EhoZi8eLFsNvtirgVFRX48ssv0aZNG9SsWRMtW7bEiy++qMqDCy644IILLrjgggsuuPDo4vz58xgzZgxCQkJQr1491K5dG23atMELL7yAS5cuVZtOQkICzGYz6tSpgwYNGmD48OHIycn5H/GksatJIf8f8eqrr2LhwoUYOHAgYmJi4Obmhr1792LDhg0ICwtDcnIyatWqBQDIyspCVFQU9Ho9Zs+ejXr16mH58uU4ffo0tm/fjj59+lC6paWl6NKlC06cOIFZs2YhJCQE27dvx+bNm/H222/jnXfe4fh47rnn8PXXX2Pw4MHo378/0tLSsGDBAnTt2hW7du2CVvvIybAuuOCCCy644IILLrjgggp2796NDz74ADExMfD29oZer8epU6ewatUqeHp6wmazoUmTJk5pbNq0CcOGDUOHDh0wdepU3LlzB/Pnz4dOp8OxY8dgMBj+GlP2RwxHjx613759WxH++uuv2wHYFyxYQMOGDx9u12q19hMnTtCwwsJCu4+Pjz04ONheUVFBwxcuXGgHYP/66685ukOGDLG7ubnZc3Nzadjp06ftGo3GPmTIEC7u119/bQdgX7t27b9bTBdccMEFF1xwwQUXXHDh/zM2bNhgB2CfN2+e03ilpaV2g8Fg9/HxsRcWFtLwEydO2LVarX3q1Kl/Oe9H7linU6dOqFevniJ85MiRAIDTp08DAIqKirB161b06NEDRqORxqtbty6mTJmC9PR0HD16lIavW7cOtWvXxtSpUzm6s2fPxsOHD/HTTz/RsB9//BF2ux2zZ8/m4k6dOhW1a9fGDz/88O8W0wUXXHDBBRdccMEFF1z4/wxfX18AwK1bt5zG279/PwRBwJQpU1C3bl0abjQa0aNHD/z00094+PDhX8pb/9fZ/f+DgoICAEDTpk0BAKmpqSgpKYHJZFLEjYmJAQAcPXoUUVFRqKiowPHjxxEeHo6aNWtycaOioqDRaDih7ejRo9BqtYiKiuLi1qxZE0ajkYv7P0Hz5s253xUVFUhJSYGHhwc0Gs2/RdsFF1xwwQUXXHDBhX8e7HY7CgsLYTAYHukrMMXFxSgtLf1b8goODlasjf/KfS41FBcX4969eyguLsbZs2fxyiuvAABiY2OdpiPrf0eyx549e5Ceno7Q0NBq8/KPEMTKy8sxd+5c6PV6PPXUUwAAQRAAAC1atFDEJ2EXL14EIEq4Dx48UI3r7u6ORo0a0biEdqNGjeDu7q5KOzExEaWlpahRo8a/XziIgljLli3/I7RccMEFF1xwwQUXXPjnIj8/H97e3v+/2VBFcXEx/Hzr4vLV8r8lP61Wi8aNG/9HDypWrFiBWbNm0d+tWrXCDz/8gK5duzpNV13Z479OEJs9ezaSkpLw4YcfonXr1gCA+/fvA4CqsEROvUgcZ3FJfBKHxHcWl8T5nwpickn+zp07qF+/ProgFnq4qabZnH6K+x29ZArqXLKj3o9HuOeDg9sr4svDBge3x7X1wWg8Kp2Gq8Vh8x4c3B43NgSi4YhMPBgQgVrbUpyW0XNnA9x97Cbq/+GFVb5/cvRZ2mphjn6r8eaIZnXDq+KnrrUhvvfbx8W5OT4KDb474rT8HF2NBrDbsTn9FDp/PgVNlh5W5YOUjYQXvBwN708O/+XyOyr3zXFRaLCG51uNdnXrU60edduaoXzAZY6uGk219uoofnXSDgmNgP1hKf395PinoE2S+sDacykY0yZCUSZ5+QCg4/rJaPWW+vvVBfmjPCPbYfrBwe2hDWsD7fXb+HnfH5RP8uzO6CjseXclV+cd9o2B/7RU1bLK6Q+L6Ybym7ewOf0UOq2agmMTV2BwcHsE7XfDJ82PO20bGnd32EtKVOvvUDHQuaaybZHnMd9MwbDR+3DIJBpKyns9Cj4fHOHe19S8Lji1tQ2afy21bwJCV+/ng5+t27gwAHjweARq/Z7itA6uTY1G4+Vif+j/7ARs/3o1jVfetQN0B06i6MlOqPPrMQBA5pcRCHxeOU7d+jkQXsMznY57au2vwtQehvdzcLn3PdX6LbGEw916HDNs6bhZXgejPW46fZcE1vvusNQuweDg9mh/EDjVxfnY1WfOJHhsPOq0rbCoub0JivtfpekzHxbhpdAYh32frQdHuD0mCnvfXumwj+a+F4UTo1Yq6nfokKHYuGmjal/P+rwTAtY/wOa16zE0woSNKUmInTke7n8c5/IuHBoJj42SVoo8b72vN37+YzsAvi9XNX5FrJ4Cnw8Pc3mROOTdysOjE0tx2FyDhnX/YDL2vy6Vu/aORrjf77pq/lUhMvEhjpodrwcGB7fHw94d8fviNRgc3B72qHbY8sOP3HsElGM6mwYAKsxh+HX1Woe8XZkZjaYL+Xnoob0cI1obq5wrSvt0xLZFa9DnjUnw2MC32cxvOiLwmROqaQnfAFDW3Qj9fpvDemDjsnk7eiYPc/RM36I5yi6Ka7XFZ5MQ11Y8Abk5IQoNVivnh4JXouE9T2o/moi2sKecrRbPLMrwEAeRAA8PD9XnjwJKS0tx+Wo5LqS0gqfH/+6p3d3CCvhG5CI9PR2enp7/MbqDBg1CmzZtcO/ePZw4cQJbt27F9evXq0z3V2SP6uLRPfesxJtvvolvvvkG06ZNw5w5c2h47dq1AQAlJSWKNMXFxVwcZ3FJfBKHxHcWl6X5nwCR8vVwg17jht2XzkCvEb+7RYVDr3GDp4cWw1uH0/+0l75Fw/UnaNzhrcPh6aGl6Ya3Dse4y/1h+u4ZSpOk3X3pDJqPzuHisnSGTZpEn5F0uy+dQdORF7D70hl4JKRyz9nv5P++pRClQ7ogwxrG0ff00NLvbJ5sGPubPGfrgORB4rPl1mvcMODMA+g1bhjdbzCXT9HYrlx8tbQkH73GDRW7AlHc7y7Nn9A58fEq6DVueOrcDY5PvcYNjRObcjzrNW7YLZymYYZlx7lysmUkv+cWRUCvcUOrT4+jZHgXGs7G2X3pDLKXdubqi61PlifyrMn3J6DXuEHbNRLC292590HqVi09+e+8QmxLBR90U203eo0bdobvxu5LZ3Ct5n0uXE5zeOtwGHfEQ69xw+3p3RTx5HXDpn3mZg9FW9eV2bn3VyP5HG5ubQ+9xg2X3uiO8SEx3Dus2BWoqCNPDy0S0BCBb5+Au1cj7lmNuvXF8v35m6Je2fTXfg3DH9aNwKUbXH8jnw3Xn6B1Tvps8PQ0Rdsj/+7t2kGvcUO3VDuGtw7HxbgwWub0Z7+Fp4cWbjXrYkmwDUMnT+LaY/YqE1d3eWtEWuFbZ3LtaHjrcMzvEI637kUp3nnu/K4Y3jocLRccx7HJETQ845lV3LvpuugZ3O57Hy0XHKf1wo5XJJ1ulUbRjvUaNyQuX0PjDJswUTG26DVumPT8HlpHh1atoTRKh3aB+8Gz0HaLQr2tJ2n8C6PWcOkJX8e7/Kraxhy1OfK91q0yXO9Tghod2mPkuVvQa9zQ7y2xDd9/qivq7DyF3ZfOYPFL4/DrqJ6KdlujlociP08PLVZ0DEV57WLoNW5I68qPgW6djNBr3JD/UwRNV9KyNl7IylLUoby+chZ1QY269bHNuJeGRaeOx5x2XcV6q/2Aa4fF1tb0uxpNNizls1VcvA6HpuHqlg749WIK9Bo3ZE1dxY8PY8fD00ML7Zkc9MkcyY0fpByt/3US+mPp6DF/Jv5IP4zhrcNRZ9cpNDzUjCuX1yYbdl86gytzunPvp+yJztBr3IC8K7R+A98+4XAcYX97emjh/9FxRZk9PbSoYQzDwdXfK9JmrzAjpXMdGja61+M48bFY7sKJ4hhZ2v+OYoy88Fk3RZ3Kf+d83RUnOtd2WP+EltDfg353f6hTzBXs3Eno/PnDD1zZ9278Eb0+mUnpF1tb4+qWDvR5i0XHuTZpPjMWT7WJpHTV1gCE/oHvxby8frZJ9Vk5lvruqq0Yb+R9cfelM9i/fq2iru6P6Yr8j7th1KCRtGzoHcPVs7xPkzC1OZ/w5umhhaZntEhPuE6fBXt5ivPav7rjh3cXqaa3N3Dn+NQdz8D9p7oq3h87L7DpX8rKFMMqN+P/CddUxDrT/S///++IKd7e3ujTpw8GDRqEd999F9999x1efvllfPTRR07T/RXZo7p4pAWxd955B++//z4mTpyIJUuWcM+IeUhWpZCAhJFjQi8vL9SqVUs1bklJCa5fv84dMxoMBly/fl21oi9evIhGjRr9x9QS5bAKNlgMRvp7x6/fI3N+DCwGIx4+1omGkzhsXIvBCKtgo78fdL8C7w8THdJn45Kw/DfM2PnzalVeAGByXhfut/y5xWCkYbU3H0bqi4sU/DriXeflxdHKf8Os4Jt8yr+z5bG2E3dNynIucGWo90MyLAYj/KyTAQADwi0cDwVzzFz8Gn0vQA72+YaQZory3+p8k6vX5XkHufdiFWzcc/a33dQBAJAaLnqUsJy+i7BXTuLSi2I9lPcI5+oreMYRWAxGXJ1p5uqEq4vKT4vBSOn8sWE1/FfmAgDC34tTrUMWl5834/o0EwyfJsIq2NDqjSRFHJYvi8GIeN8uKOkfCQBYcOEQAEDfrCmXR9BzyajoYkSTtamq+cqx4MIhFMwx44rpLlfvH+ZIu5MX3jPRZ02ePAerYEPLDxK5erAKNuwN/RUAkPdze5T1jqDPVrUWL+yW374DALi0JQQAUFFUBKtgQ/jcOADAi5lnFO0XAJoPSuPC7aYOMH4Uj/QVnWAxGNHwkBc6vRWn6ANalYHbKthQfuY8rIINv3/VHVbBhjPPLOLKYjEYYS8pgcVghPagDX3TnqDp/X+w48OcIyjb5YMHg6LgN0o8dQt4Sf39pUWUAQAyFkTTsMDnk+n38rQM2l5tJSUo2CipXpx8ZRH3Dv03T4e9s1QPVsGGkp2tUN5T4Npmx/fj8cDqx7VdTdJJMe99E2g8ANgeWh96/1YAgMg34mh47U3iLnRpfTcufu+zAxVllPdXUh5H/YYtk+aueBJWkXoOG0OawCrY4PGTWD+ePyZT+m67UlCeKfmTITQqiotx/bdgBT8j0i5jVEszF57zsdiO7SlnEHGiAoGzxJ15XWhrNPsqEQNqF9O4/XyjYBVsmJjXFVbBhgsb2kPn5YWgmYdRUVREy1z8eBR8hp+i/Ixp2RkWgxHCv8S86/aTTnpbHxgHTcdQRRu/+1QM+vcfDYvBiJCl8fS9BU86hlPR6zDUOwZWwYbHho2HVbCh74gJ0Hl6wrrle/j/Mh0AcKTjzyjvGU5pEn7uPC2mbbw4iRuP7nS5oXhHFoMRhv1FuDnRhOInxLvc+5ctgxzy8Vb+jIXez1cx51kMRlScTFO0GwAInnoUBa+ZofcW1w5lFwVK12t1EublHKY0WDjqfyyCnkvmynt3tHjvvfQPcXwKO65R0KqwKU9fSHqLwQivQw3QNMkTsT2HQVu7NjeONFyZRN/FobBNMAw+S9Oycy8AtBhyhtIO/SZedRxUw+NnbiHsyGhUVPpivdbRuUIWyx8AGD+Oh1WwoaKLEZ7rkuE3JwnlaRn0+dhFv8Eq2KD3bsHV3c2JJmR8HQ19S2/F3Eug8/SkdHT7+BNYq2BDl1nTYTEY0fzzRLzQykTnajaO36viuzhT+oDS9vxRfI/3hkfTOnTEw/MnRjitv0cRFbCj4n/97+/xsBUWFoaOHTti0aJFTuP9Fdmjunjk/IgRvPPOO3j33Xcxfvx4fPvtt4pLi/fu3UOjRo3QuXNn7N69m3s2d+5cvPXWW0hOTkZ0tLioID7Ebt68yR0pHjhwAN26dcPHH39ML+u98cYb+OCDD/Dnn39y+qLFxcVo2LAhunXrhu3bt//Hynr37l3Uq1cPPfCkuBNTCU1ke9iPnlJMGM46a947ZqROXQA3jU4Rl51kvJPr4lI/HWBoioRdG9BmRRx83+InCDZ+xuoIBE1I4Z6x/KgJbfK4sWG9kZAqviv/PyYhu++3CFkWD593eGGxrFcE9HtSnNJkcfEVM1rMk2hYBRvMz8+Ax0/iIDgqpxfuTm2E8rPpVdJi+aVlXxiNoJnipJq1tiMCxkjqFBVdjPhjw2ouvlzYtRiMqLW/KR50v6J47ix/gqrq99KLZqS+uEj1uVWwoX//0ShpXBt71qzkaDmi6ez57bEm1P9efSGRcPE4YluEV0lfng/7XVuzJiqKixXv4NKWEKRG/cjF79+6KyoKC6H380VZjlJoBgD3/c1Q0v0yTUNo3h8cjdqbeTWkrLUdkdlzFY1jFWx4+1ookju4IfenMPwcvQwvtYpRCHUsn87K2uP0ILg/lqsou87TE+V371bZp9Tysgo29Jg8FbUzrnOL/7+Kh30i4LYrBVd/bYMTketVeUhfFolfH1uAl1rFcGmHpl3FtHqCog5IHbN8k7LKodYWynuEQ7fvODQRodjx21pVIYrQVaPTNMkTa3z/dNjGAWlMcvb+ip+IQs3fjkDbIQQVJ9NU47Dvbn2hFxXo9S29UZZfUK3y/pXnauHy+rg824xm8xMV6QDg+cw0fBkYovqMRc7HJrrAdJSvGsi4U3EyzWFZrIINHT+Mx4nXFnFtbeL5C1j99OOwH5XU6zK+iUadXB0MnyVC16ghyq/fAADoW/mgLDdPwZuzOrUKNvScNBU1dhxVPI9t3wslHfyg3+Nc9V6eDhDr3Tu5Llb6iJtvFV07QnvgBBevOvXmqD2zuDXeBK/vkhTlInA2F3c7NRh/tt9c7UV/8RNR2L90mdP6dNZWL7xnwrkpi6ucEy5uCqVCnlo9BK2Jg/+rSQ6fs79vTjShwSq+3T6w+qGWJUc1DVuWkKXxSJvObyCzcbXt2mD7zvXVmkMJ9L4tUXYhX7XOSgZEwn2b1BZ/Pn8cXsHZuHPnzn9UFe8/CbJmvZHu97eoJjYMzvlb6qNDhw7IzMxEUeVmgRp27dqFvn374r333sObb77JPevduzeOHTuG69evw81NXa1YDY/kidh7772Hd999F2PHjlUVwgDRTP0TTzyBffv24eTJkzT83r17WLFiBYKCgjirh6NHj8b9+/exTLZrNn/+fOj1emoeHxBN5Ws0GsyfP5+Lu3z5cty/fx9jxoz5D5VUifX5iXSHnwhhZOcbkBZHmwt4HWUyCKdNW4THW0RwcQnoQFKnDlb6HET57TtUOGl2uIyjo2/WlEvfeE8N7rn/H5O4gabfuQH0++R0fkHYLlmsL7LgsRiMCBp/HBaDkQphLJ/6PSko7xHODYJWwYaSAZHIfV+yVEN36ObxNCwGIxK/FE9QO74fj4ufBaH8bDp9/mzmOdW6IxiR3RudU4fAKtiwsSAZQTOlxSQrhFkFG7QHbWib+DSXXr5Atwo2pF1uqlgoyXfHSBipI/l7l/NKvjf/PBFdKvlVQ8XJNLjtSlFMAPKJjPyrPSdxboUCD56Mwq3xyvfw1a1AcQEW+xQ2FCQp6Mu/q+2kVlQe7fv/PIPLm5w0WQUbsueJeRd3bgOrYKNC2MCzNyhtq2DDwz4RVAgjeZB8DixcquAnYMwJBU/JHcTB9HzXNQoBRE4TEBcA6UsjKV22TokQBgD7HkhjGhHC5O+cBfucLWNsm25w335UIYSROFpjWwCgp5O6+vWgCwmCvnkzLr7bLnHjY2nY97RccgRPO4qwGpLV2YyvxPq4VFqf8sW+50tdNIo6IkKYLiSI4zN0QTxNRwXUfcfhtq857ClnVPlpu0g6kbm7PYDWkWaPuBtJhLCsT00o7ReJ7Hkmjr/AdTPogl4Otiz7l4pzxvbtPzqMm1Z6n5ZzUW4PAMCdMTGqQhhbRuFlM/dONR1D6fe7T0ntTd5/dG2DFXViMRjRa9xkGufky4u4tpK+NJL+JkIY+1ytjxIhTBvWRsF7Vdi+/UfFgpT9vr7QC02+kcZui8GIrM9jsKq1LyeEAUDQM4dh+EyMy76zbYlbFXXgiEc2rMaOo1yZqfB/4ybdBJRDLYxoPBDaBTH3ENu+FwAohDDTyaEAxD7oiHZ161YuhJG0r1zhx49Si6RFk/eW2Nb+bL+Zy7doqHQC/kWucpONtH+18uu8vFR5zv3ARNOcm7KYhsvXJCwfp2PWomyXj7Kwlen8mQ0BtbbP8nj0g8WKfGpZcnB7rEnx3lkeAMDn3UT0mjAFFoORznNRr8Xh1gTxe8Xpcwj+c5wqn4CoWSMfD7cl/cbxyfL7x7IlyPpUaYHvn4Bye8Xf8v+fxOXLl1XD9+7di9OnT1Or64Boz+HcuXPcna/u3bujefPmWLFiBe7dk+4Lnzx5Evv27cPw4cP/khAGPIInYgsXLsQzzzwDHx8fzJ07VyGENW3aFH379gUAZGZmIioqCm5ubnj++efh6emJ5cuX49SpU9i2bRssFgtNV1paCrPZjJMnT+LZZ59FSEgIEhISsHnzZrzxxhuYO3cul8+sWbPwzTffYPDgwYiNjUVaWhq+/vprdO7cGXv27PmPmhUluwu30v0xvHW4YvIiO/7yxT07qPXzjaLGCoDq7b497BOhOCX5K1hw4RBm+XbmwjK+ikHQc8m4/lswGj2RzvHiaBfLKtgQ230INYJAwjO/74jAscodRatgQ2y3wUj4c7OC3vvX2+BAGO+iABAXfuVpGfQ32eXWeXmhnPEbceVZM5p+neiwPi68a4bv2/zpm6OduexPTPB/WbmbDPADcfdp0+B+qxSaQ+Kz4sejUPP3I1yaAVEDUFbAH4XnfGRC+vjFqpObfCeP3UVW40H+O2RJPEoCilHrfE2ceWaRgp7awqFkZyvsa7eFC++aWowDYTW5etF0agf7MdEfYNhxDVXFVKNZaumEGtZjXNlyPzCh1evK3eD+/jGoKC5G+pIo5AxcxrW5wlEx8H4mAxv8dyNoTRymDNiFPe3rqL5nuqCvPJEm0LcwUPUjAvbUQb4DztJjweaX9akJmWPUd4vJ7zsJgbiZ2hjp4xZzdPy2TUXOgOVo/W0cfHY8gNuNIpSnZUDr4QFtndoouyyewGZ+GUNVDAnN2+NMqL8mSZEXixtTTGi4Iol7Jo/3VvZxvOcfDsvpu1QlWB6fLbPas9bfxqHmdQ2tx9wPTDg/cbGCH32zpii7fEW1niKPj8DR8A30BJMFW/+OxjiWZr2DDXGnyw1FuBz6FgZsO5qgoKsLCULC7p8V6W7+Hoyj4RscjrfysKzPYhDwL/G95f/SDi2HnYZVsGF9oRdGeUhjlv/OyWjxqx6FLXWwvSrt5NvNHaBJPAlHUDsVswriiYDPu9IYt+jCQQS4if5yBpiewLak32DxjgAqyrHgwiEEu9URx5ggf/ivu4iMyBJFedh+Wm6vwKESLT7wV5ZfXpdyaOvUwfaMQ6rx5PPM1ZlmNFlYvbFaPq6x9LPWGRHwlE2VhhrvZH4qz8xBxppwZPf5VpVXAIht2x3pr7dVqCs6mjPV4sjzlz/XNWyA8hs3afi09Gy88cPT8HlP/bRUzmPUnDgc+ajqEy21ZxVdO8LtaiHKz2c6rTs57cwvYpA1aomiTM7SWAUbOn4Qz71zEl5Qdg+TfbrQ+GW7fKDvkwfhZTMMnyRCFxyA8vQsRdlZqPFxeUsImg1SnpKrtbW2i+Nh14DWO52bRsYg8cslNP4/6UTs6nnfv+VErEnrC/+x+hg8eDAuXbqEXr16wdfXF8XFxUhJScH69etRu3Zt7Nu3j/omnjBhAr777jvs3bsXPXr0oDR+/vlnjBw5Eh06dMDUqVNx9+5dfPnll9BoNEhJSfnnqyaSgjtC9+7dsW/fPvo7LS0Nr776Kvbv34/S0lKEh4fjnXfeQZ8+fRRpb9++jTfeeAObNm3CjRs3EBAQgPj4eMycOVNxMbK8vBzz58/HsmXLkJubi0aNGmHkyJF47733OCdu/wnIBTGvQw1wq7M4cN4ZE4PkT6X7caSzZiyIRtCsw04Ht9j2vVB+4yauxpvRZFGi4nicjeu/axKCxh2nv9m82HgA8HRuD1wz3wYAaNxqwP6wFLlzTWj1ZhLc9jXHwx6XYBVs6DdgDN7btBpR7m78QmWvAddX+8LruyTMzEjHwiD+3gSbn6OJEwCCjrpjR0YIN0myfJPfo3J60foEwKmlOZv85ZNr20XxaPl+ouokwPJHPtfnJ3J3P9TelSHZA0JMofqCddBY4Ai/M6wGNdU8NaG9ontH/PGjpHp38VUzWnysPE1U41dXvx6mHU3B4qBALh9d/Xr0PpWjMrK0NR1DYT9xBiX9I+G+Xd0fn1WwoVvcNNT6lT/1vfy8GSdfWoS00vuY3Uqs1/w3zGj5Pj+xqeXrKB/2ubM6aHjIC7ef1FLV2urkI1fDc7a4sgo2dH5uOur+zKtLXn3GjHvm+8josZpLe2dMDOqtTYYa1AQ/ed5qdSXvJ3KaXZ6djjq/HFY8u/ycGSdf4VV55GUmuDHVhJhpx3HghwiEjz6FVT4HELRvAvwr+/DKvIOY7MPfQ5Vv+BCaRP2IlHf+rVaY7ZVb5YKxXYoWpyMqlPxFtYd1y/cONxpIfFbFlC1Xw+XiYlrf0hvbDv9eZV0QQYHkFZo0Bt5Dz0AOZ4Iwi7x3zAo174quHfHHT6scprm1LQhHOiqFRgLhZTPutS5F8ORjqs8JP2RBS5CzPgx+o1L5DRi9HvayMhrn+m/BaPKmHvYzmbA/LOXGKe3+E5Q+QXX7NqGzPO8gpla2JTa+rlFDhO68idNda9P7SgTZn5gQsKGQbhSx/aXtwnicnblIwQct354WsPe6qAhXe2dFQ6NRZ6Ny/naUrqq5UK38VsGGTm/H0XYp7/sRJyqQ0lGrSvPZzHP4OlA6BR13Ph9rWjt2sVOdjQWCsl0+uLnFm56GVie9XFBWi/vG1fY4atQ55BGQ1k3VxY3JJhybq9wUInkSEN78fp+K4GnKee3SlhA0H+RYTReQ5tIy+0Psw6//CEHs8nmfv0UQa9Y67z9WHxs2bMCaNWtw8uRJXLt2DRqNBr6+vujbty9eeukl+PhIp7KOBDEA+P333/H+++8jNTUV7u7u6N27N+bNm4eAgIC/zNMjJ4j9X4T8jhjdyWobrLjXJO+82g4h2L79R8UgpbbwIs9YkDtPJJ69sxGaQzYsuXAQM3ylBdGGgiSM8ObV0dYWNnQ4OKsNOFoPD2w/f0CVD7WykTAAsLToCOvFE04nH0d0HfFTVbyqnjlbJKjRYE930pdEoW7Te/RStFwoClg/A4EvSKcY8nwGn72GzW0bo/QPX9Toe0FRflXBzskCNePraAQ9WzlBaXVARblDmnJeWJrzcg7D6O4uCl2yE6WbvwejwePpNL5Gr8eOvGNOJ2D5YsEZ5PXE3u1zFN/Ru65OXlWlrW5bapxYH9fMt1XfUd7P7eEz/BSX5uqvbdDkyXNO87AKNvSaMAXjvt6Kn3t34k7yhJfMOPW84wWl/LdVsCHs83ikvrgIsT2GcjvHanGr8x0Q39Hdp2LguS6ZC7MKNvQP6gxN3TpI+8AHwVPUhQA1WAUbTC/OoMYz2Lwd9QlHZanObwCItJWrLgCrEhbUnrG8xvYchvLzmdXmQ34vxlEa+efcnKN4J2YAUF6O8uuSei+BvE3+O22fhG8sSEaf1KeRbPyFxtN6eKCisJCL27/fKNxtUx91NySr1pn5ZCn83K9inOd1h3MHuUuqxgtbx1WVRVunDiqKijjtCnk5yQYTzbvfKFSkKlXh2ToldyGtgg3tksc4vCeV8V04svt+67BPVVcQIuHkRDT3pzC0Gpmq4I2cIgHghGOC0ecE/NjGgMwfOiLw6ROKcrHQBfkjYf8mGv7A6odNbX/AmJadkbEgGtlDl4p1XLMmlqfv4k6vqkJV8bS1a2N7piT0qcUl2iuEVt5bZqcnho7WAn9ljXFvhz81kMPGdwlisrz+w4LYo4hH8o7Y/1XIfYWxQphVsKl2/vMv1KJhFoOR+y7/VBuoWeMEAKh63JRJz3FxR3jz9yssBiPGeNxA5hfKewz3RsSoDkhkMnQ0QJFBnP0nfBMh7E5CoGKhwMYDxJ1JXcMGHE8sbRKv1v6mHC1Hg6dGr+csOLL8suXM/SmMywtacXGWsVDUwd+7agWNGzzjCE5Fr6M8ESEMAPysk6kQRqzzWQxGfHi9NeV33n7xTh4rhAGiWpRaOQLWz3Aq6AY9exgXNoh+TawFvKEUYq2x83PTFeXmygvgFT/JOtSOX7+neVgFGxo8zm8q2MvKYDEYceVZvm7bHxadtpcMiKRCmNo7l4evLWxI+QFA7/bJ0wJAwWtmhWDAxjOfLOV4J7i7PYDmQe5ZkefpyyI5/hzVNcvj3dEx+KHVPi6MrU+f4afQ61QR95wIYWwYy2vhSLH/ue08hh/biOpzbN6nnpesQgkvmzk68v5Cvqe+uAi2khKUp2cp+owadIF+ijZStssH93b4c/Tdb5dzcQgqioqQcGIngqccc5iHnAdt7dqwGIxI+py3sCsfC0ka8lvXqCENe2zoeC5tz0lToQvy52gR665WwYYbk02qQhi5w+Vsgdh15nRFOVheE/b+wpWv1v6muPqM2WFfYE8H5eXVRLZXbV9WwYbZc2Yh4cROqrpM7uvRsbeSrzlZqartWuNWAxq3GrAKNkxLz4ZVEDcBWCy5cJDSLBwZg86fvYB6sZlcu9t+/oCiv1WknkPdDcnQuNXAmruNJKEtTLwfmtihBta28ebosOk/vRmA7ecPQN+8Gb27yd6Dkgth8rol71Hbrg22ZxyCVbBRIezmJBOdkwj2rVwOjV5P664i9ZyCZoxtGK0LQLLSZzEYcTpmLQAg58cO3HsCQO9VkzDTv6R7tHll9xT8s+/p6q/KO34NdPegC/KnQtiVZ8UxUdshBBaDkTuZZoUwTad2AIAJnqJvusCn+esDfdOewNycozAki36wrk83cUIYAPzZfjPGtBRPuWNjmDVCcTHNN7bbYMihbyFarENMmGo5iYVeFtszE+n7IMKe/J2QKwSkfln1QYLuqQ8UeWoiQulvR/OJZg9vxdFiMCLju3AcCtukuq77J+F/32Ki+PffDpcg9ojB0QLujavSRHrhXWnhGjT+OBePHTiuT+cvgMoHCHailcfR75asRhEhZNt9/u6VxWBEg1MaBd91NyRD79+qygWbnJ+8d8zcgBmwe6JioCI7qOkrlab8C14z4+WsUyhc7I3yGzeR/6YZaaX3FfEA4P6QaDzofgUWgxEaxopm62OSCWy9n2j5zF5WhpbvJyoGWvKdmME/33UN5bf79GmwFqQg6/MYBM08jGszTFz+ahMmCQueKNX9S99MBSA6490fVouGB8cd4d53u+QxsBiM1JyvRuZskOjby9sIy5PviFNc2yD1ThYK9ZMKVOsAAKJfFc266xo3punlC3FAescsDXKvhYCcErpvO4rVeQcV9W0VbDC/MAMPH+vECdhrWrdUXZCxfDyw+gEAvD9MVH3uc7gOXeABQJ8xkzjeAupJJwbbUnZwbTN42lFFe2UXaRaDER4HGkl9rJUPPH9Mpgvfiu4dKe/9/KQL9OQuGwtNZKXTUcYkM6lzYi2U0FJ7F8SFg/6eGOfiJmlBQczOr7nbCACQ+UNHWAxGvFLJE0trfaGX6nsmxkOsgo1u1uj75KFuv2yube1bsRx3R4uC4+XZvEDOxiPluTciBulLoqANa4N3s1NovJuTTKi4f191/CR9+uozZu4ZoUlOgQL3TUD2LA33rMaOo4CeF7TKb90ShY1xk9FwpdK4weCz1zjjQOSzaAcv0BH16KvP8OrLgHg6xJYfEN2RNPkmUfE+2bSOFnTkZJrQ33hPMtfteb6Q60dnZi1SfacfBYSpzk32h6WwPyxF9CtxWBbsTzcBiNBtFWycdoXHT8k4+fIilPaTNi5ImcI+j8enNwNwNV6qk5uTTNCEBmKc53XKY0XqOVgMRrp5JOeV4KUGWeImwCXxgv6iCwcRWqMWjUtMzDtKn7BrAwBg+871CP1G7KdD064ifUUnNPhWfPfJxl+49DvyKrUeKjdm5GNSvVhJ+Ls+XdzgLGI2KADAb7R4ty+1tJimJZ/0va1LRv4volA0lRGa1OZadvOGIMrdjbuXTe5GE8ugjjZA7MdOqz6jgk7vfES5u0GIKUT6ik7QlDneBAFA7xSysAo2lGfmKMb+souV7i+SU7nwy8+J7YWoMBfMkdqP/J1WFBdXKfiozQ37w2opBXVB/QSZXVvZe11E0L4JtNwXN4VSoVqNv9XnlM6iXfjvhks18REAOeYNePVD+M07rnj+YuYZfB4YqpJSHaTDE5Pp5Pe09GwMrXvX6aBYFU1HaQpHxcDr8CVsO/SrYgHxV/lmcefpGNT7IRkTz1/AR4tG4+Qr/CLh6jNmnHhNeT+F0ApJ0VP/SFXle39INA58s1SxACR0tca22J6wTnUx4mhhRPhi6XV5djoOfr2U3uEjeCv7ODrX1MJiMKJoWDS9j6M2KcgXqGo8EcjzH5bVB351blAjGSxujzXh8LzFinRq5VUrH6kn1qdN/ptmDBpyEB82TcWyOwZsDGlC6QSujVNcVFczAsPmK68Tudl8Nq7G3R32khKMPidggudVRL8Sx5nfJ/FubQuC14AMqMHZ++01bjL2rFlJeakOrIINz1yMxjctDsNvxxTk9FtB0+Z8ZILfHJ6/yDfi6KKPIOtTEwJeSnL6fqoqi1q8gtfMVEiVPyNGZFiT7FbBxqkrknSZ82MQOFv9Dhur9izP58ZUE469u1jR1lkz8442EljIVa4ByfjI9/mHMLZyN548J+b7AeW9RxbyNg8AEe/EodGyqn1DQaMB7HaOJ11oayT88ZOiXS+53QKb2zZ2yEPY5/Fo/rljH5EsrdiewyA81gS2OUqjOwTkDgtRTZeXlfzuO3KiqkEaOfT+rVCWneuQP6tgQ+DeiQgYcwJXnzGjyTdimwv+cxz8Py3HPb+63H1EtbI5G4P0zZtR4UvOA1smR/RZs/gFc8wK4VQNVsGGDp/Ecy4D0pdEIXiGtLDW+7fCtoNbnM6R+a+b6V20pkmeuGLi3T1YBdEEvfbrRtTsuVWwIej7ODTpcAWHwjYp2pOz8lY1f8nTk/jsHc2qaLGGZ+TxiHEcUs+O8nPEX/v58dz9REf8qM3pjuiTMNao0V9dK8k/K3a3hLZ3PheXGOFh8U9STcw/1+JvUU1s2ebiI10f/y5cJ2KPEFp+fBjjzucrjtflQhjZWbObO8Aq2KDp1A5WwYaMNeGwmztwO6jpi6Lob7kQBjhfPJJ8nA1sBIlfLEFZzgX08xFPqixDRPOud56OwYX3TAp6gGiqP3euCd/nH+IGrZIBkdLu4Q/i7v6q1r6iEDZoLHRMZyQ+aNhysDutRAhLuHgccRnSfQu2jATEMSwgOnsGgIiUEQCA69NMVAhjy0DM/BNaxLknqVvybH2hFy3j9TCx2xEhzCrYsDLvIDrXlLpjvcOShcTYsN5cvuaTpdRMNcnn4ivK04Sek6bSdP5/SCc79/oUcpYK2fKwQhj7ydYV+6ztonhkLJDUEQGlY1GfnheQ0lGLtoviMa2edFfJYjAic8xiBR+zfDsr+EpfHKVYeBE+5EIYeX4nIRCFT4qnTBM8r8JiMCp8oJE0XgMyuLYgL3P2x2IbTrjIG7QhVkctBiMubQmBz+E6XFpd0yYKmhaDERmRohNmIoSlrxD7DSuEAUD6wyKFEAZIjlzV+m/gWvF0Un4qKi+XXKgBxJPComHRqguTmr8fwZhzBSjLL0D64iiav1wI8zrUQFUII3nN8O2C69NMND0Jtwo23GxnV8R/7UoYyq/fgMUgWuZj3/3r2TaurZCxJnB+GaWv920Jq2CjFiDHthTbV8FGyWHxO8tW0vw0NaWT/6FpV5E5X/Qdl744CqmlxegWP43SBqAqhLEOcykqhTC2fOVnzqPH6UE0jJRtc9vGsAo2eqrEwmIQHcsSWjkfqms+AECnt+JQfj4TTRckKvoHAGqSOzVKNM2vOcT3O/m4/8dPq1TzSV8SxaUjQhgbZ+d93polUYsnQhgA+I1KhT3lDOr8cphLywlJzZvR32GfiS4MWHVRACi7dJlrF/JxQ+0krIg5wSNCWPrSSHh/pLwrJH+3GWvCET43DidfXsTFyRnIu8vZdnAL7lWIp1xkrpSj5QdSfmpCmMVghH1JE+xbvpzj3yPkJieEAcD719tUe6OmomtHaNzdkb44Chc2tKd15WjNIBfCyDOrYMPzmdKp2p2nRSFM7X1aBRuEe6I5f99KAzjVEZJIPIvBiFOzF6nSvjciBgOiH6fuTuT05G1cF9oao88JXFj9NUm0f5GypS8Rxz41FUc2rfxTLoRZBRtaDjuNa1tbK8rmwv8tuASxRwxrWrdUWAhjkf+mpF7zoFlNbLznCfux07AYjMju8y0854kL+PKe4r0e1JLuYHR6O06VpjyMfI96LY4OdlbBhux1RvR+ejInnN2YaqLfC+aYJatYyalUkCJ+RNiBySrYMKbX0zg/eTHGtuzM7Ryxzg3l6XDkFLVER/jMf92Mgo2SsEocdVoFGy5saA9dkD9iW4RTi3/yiUNNsDz/kh+sgg2NnkhH7gcmxWKLpCEHys9nin6uorblKGgVbAzFqta+NI3vW0m0vBlrRH9p3X/5F8cLOXEIOFqT85tjMRiR2KEG7jeVjLpYBRvnS4387/12OeWDVWG1l5Rw9Njy+22X7nawZdDVrydNWG2D6bOW7yeixi2tol4vP29GRRfxQrK910VMTs/B2fhF6B9oxouZkmU4tUmLlIvlLefJZYo8WKiF14vNRN0NyfT5/cHR3HNy90fe9lnfOyRtxrjFyF5nRGyLcBrG9g2rYEPzQWnIiy7i0pVfucrRYheFlPbX0dQgRfrKTtxzR2OBsz7sv+UBsj41YUflYpOoLxHcmmBS1DcrDB38eimsgo0T7kn8dWPEDQq5aiyL9X57cGOytPmia833O11wAO1PbBu2GIwIek4S4Eh81lgLUaUiz7vVFD/9d4l+Dc9NEf0HpT8j9o/NBUeQNdmby4OkPWNaS++xfOAvtbVtx63i6RWAafUEBM5ORuQbcch5UnToXWvLEY53tu7J94r79xVtMnueWO/kbg95TiwwEl9vbPnIZX5C9/p0E25MkRaWuqZNkD5BffPEYjDi2HtifVC/cVHtuffW6OhNLo18kav2fokaGKuqLhc4WFx6UYz/eWAoN3eoCYaEB/aeMQBUdJG+EyGrvGc4mn8hCnEZc9pwNEl51YQJvX8rGN3d0eqIpOoNAAfDNgEAdtyXNjCCpx+l/LI+rlbfbcLVTXafb9F4cRL6PzaKK5NavdbVigt41oKkvJ4tBiN0oa3hCEStNWOBNKZ5LvFE+LGRXLyHduX9RUdjqPbACezIOYzguCPwHcGrsjri87Fh/J1KQn9BHwusgmg4h2ymsumtgg2ZX4rvuE5lGy/vKajSYvNmxwtAVFvtO2ICYnsOo2GZP4ibb3U3JKMsvwD+r0ibVs7aXMIfP+HHNgZFGUn/IpuswTPEsY9VcZSXDwAnAJINFbLhxsZrPPA8x9Mv5x27nHjUUAH73/L/3w6XIPaI4sGTUaq7QWfjxB23p3N7wPLOfiwLlhaTnd6OQ2HX63Db1xy6veLCm9w3yn1fVPlxtHiQT7pWwQav1eKO1+q8g3g6twf8n7JBvycFMS/NQIdPRX35hsuTEPGOKODJdw7lix8A3CXu8oxsbLwnnm7d3R5A4xcNjYbf1mnoO2ICACB7XWX6qPaUNzIxm16cgZYfJHJmn62CDRbvCFgMRrRcoOf04Nk4el/J4qN3cl3KMwBkjpb8eqBCWVcECSd2AgD61RaFG3K3iK1jOW8siMuAwBeSoa1TBzem8rt3WZHF9HfUa3H0e721yaoTqnzhwX5PXxbJLbwzv+9I0/ltnYYjJQ85M9Vsm0g4u18q864N3DMiaJOTAwBo9mUitAdteM5fNPfeq5aAsM/jUXH/vqqabcND0l2j+IsxtPzk7hJbJ/L/rHXKtpv5Je98+fZYE2605RclCfs3KRbnFoORGlUhYeQzo8dqAKLaGyA5S5ULZISHied5QyrCv3jDGIBoLCN7mCj4fJ9/CDn9Vzid3Mn32L7igovszrJ0NYdsyByzGJPzRMtjDdbX4eKQfs2GLbsjXoJnhQQi3JPL+VbBBnsKb16d5DknK5WrK3J3ymIwUh9C5H/BH99RenKBkKU55pzkDDmn8kSSGL6R1w/pRyR90PjjmH+rFQZ7R+HclMW4OrNyA2u3N403+1InznXE1ZnM+2FUCK2CTfVU0mIw0hMlv9+nArvF+3qRr0v9lDjUBoCGqeKC4nK3Cmjc3aELDkDRMLE8z2aeQ35fnaJcbN0DQKOlSWi4IgkPBonvvfzKVXQ4MlqRjuXRYjBiW8oOMeDIKa69lp+RFoEkftSJ4dyiV45mX4ntYkDtYi4dFbQbNhCFo4XRiG3fi1OhlPcVtXE16+E9HJq/BFbBhpezTiHsuAZr1n0DANQYCAAIZulEgli8I+Uvu3SZ411bR7pnWZadi86pQ5AbJRlfYPPvV7uExtW3koSv3W230vdJTtjlbbbitGTNVI02AAwwD0Tf0RNVhVwWCX/8BEDUKmHpEEH8Vvl96sLGKtiwb8VyNB54HumrIpDxtdiukju4cfVCxi5HvEW8EwerYMOlF83UGInP4TrQBYtGimJ7DqNxrYJN4aeO1nFuHiwGIya+tZXLw2IwUifmxLchgS7QT6LrVoOGa/R6mpbQIeNVg2+T8MeG1UjYK1nfzOq1iuPl2gzlibFVsKHeQdFIT+77/HNHgupL+7dzceTvT9/Khxu7M8YupnkdqhTyWQuwFoMR139Tuu4Z1rqDav4u/PfCdUfsEYDcfD2BVbAh8McZCHiRN2OuNgHI4ci5LCCq2aW8s5gbNFqvjEOrN5WqBoUjY+DxkzRgsvcnNhccwWDvKAUvjoQWAArfWgREL15uetoZrv7aBici13P5yoU/Z9/bJj6Ns+YfKL0BXQZx9xrIPRMASF8eieCpjv1eAeDuscgh/MsMw2fO73Q4os2WSd+sKbYdtyp289hyDcvqg8Ku4sV21keTI5pWwQa/HVPgdcQNjZdIC85LL5jR/AvHfsbk9FhH1JTfFgZc6+sLr9WVdKPaU99ojsrP3pOSx2F/58414fxk5X2ilXeaYUNIM4fvnuDiplD80PFbaoSC+GGqKp0zZK3tiMyeq6i5d2f1xd4ZsAqiI9206c7TOPqtBrX+AIj939mdJp2nJxLO/alKP3ueCRlj1f3qqNLaa0B5T4HjQdc60KHJcNYXE1sGR78JyF0audsN+bsE1E9/5L/7nC7EoqM96EYWcaNATKw76g8kP8IPMU3OPifpJqfnYERd6S7atvs1cb7YAOuVtrCGKP2Q/RX8O224qrRqZXeUh8P3FxOGe+/c41TpiG8tQNQi8B56RtUJNpt/9jqjYnxT40HOb/qKTgheVgIcOUXvL7G8Fj8RhdHztmHBD0/C+0N1P4UsdI0bo/zaNS5scnoOVgb7OawvNkw+Zwqb2+JU9DoAwEuXO+LTZie452plZGk9NnwCvevH0urn04k7iaOICeMMYADq6wS1vkLCWVcbLNTuZDoTVNXaX0n/SOxbuVw13u2xJqpy7mgNIOeVDY94Jw6tx5/Djc6iEZ5upwajliXHYdtVKwMbj/hWJfEuvGeC71vqbiWsgg0Doh+H98YbSPqpI8rNd9BsiO0fc0cs51xzePwv3xErLKyAX5tLj3R9/LtwnYg9YmA7d7dTgxHwIu8/hd1ZYgcD+cB2168mF84+b7QsSTHQtXpTHChi23an8a5tbU0tsKUvjoImsj09GVmZdxCDvaV7ImwehDeLwYihaaJq1s2JJmTPM8FLV1uV35YfiHcYPH9UqjHI66dgjmjCucmTouWsgo2h1OIcyV8+0d0bzt97sRiMaDnsNFef7L0GqyCa9te2E80kEyHs2tbWSF8kCZ8Vu8VTtdj2vZCz2ACLwUhPKdhysEIYoa82CatNUGxY2eUrivcuf5e/BOyi8dUWKWyZyY5c8KRjOP7WYoQdlxybs0IY2/YaHvJS5ZEIYSw8NhTzJzAyIYzUBVt2+T0pAvkESNqsnJfJ9S7j7lMxNC57T4utS+3BelQIA4Ba4Te48hTMMasuGlh+5e8uYMwJtFnOC2HyeCT8j5DfuHL5vCvWN7sDLre8Js+fnOKw4Z/m8hsZbNpa+5si5Z3FXBp9S29qWRAAyu/e5crNWnP0fyWJowcAV2aZFXwBogXKO4t94LavOZeGFcLkdUuEsMuzzYq6ZctC6pT8P9VYXMD7udXFW9nSPT55nye/747mT0zleKlBFoInpsBuFnent+a0R9HQaCqEycdfOa6Y7optbx9/p5CkKxwZg5XBftxY+XVgG1jbeQK9C/DpzQAu3ff5SrPcBOmrIhR1JS83AHqK5nWogUNajspDkPlFDFeP8jwIDfIfsiReNd789UuoBU1AHFcPLliKsl0+sAo2nDGthVWwYW37VRgQ0U+xCH73mngyRU6p1Xhn+x3JJ+8dMzSd2oknE5VjETEiYTEYYTeJ77vmb0ewuW1jzrqq3Gowi3NvSE5cSfy+tS5RuoR3YXNbLozEtxiM6PeEaPnW40AjnIpeR+OkhtupVVyLwcidFsnr1SqI5uNZgyvECq3FYFQIYVbBhrLeEZj5/S9cGMCvEwgyVkdw+RlPiN+vPmOGz/BTqLW/KUcDAMa27Iwx5wpgFWzoN/BpWt5nhUhFPbC02e/u24/S72W9eB4Oz1usmpalYTo5VJW2xWBEo2VJWOe3l4ZfsklqrWrzbMxLM7j08vLuuHAEej9fmp5ojACAx4FGCt7K8guQG/UAzT9PRHGeh4J/F/774RLEHiHI/Yi9H7QZ6Ut4IwVysItqdtA4/PFi1XgEcmGAIO1jSS/9TqYXvcAcHHcEO379nsYnDhcJLZYu+7n80ydhN3VAg1VJqjvp8kWqM56JioL3R/zF8zOmtXC7ek9VACO/6/4sqXBYBRv0LURd8Pxf2ikWEbHnY+kgy6qaWAUbGg88j+D4IzSNtnc+LAYjym/cpLuBr3TbRunp6teD/y/TOfpq/FkFG33XQUfFOwqtjtRCn9OFioUP+97YcGJCPnRBPOydxTT6Vj5OBYdGT6QjtuNj1M9QaridU9Vg4+f+FAarYMONzrcgh1yoshiMgFaHW51vQtjcFt2nT1PEl38nn8vzDtJnxo/iFXzEtu+lOvGy+U9/axN9nnBiJ9qskNTFACD9205o/kUivSd25+kYNHv6krh49vTEuAvdqKqtfPHPLggJ1udLbfLcVKV1OrV2L/8kRjLq/SCdgOc8Ll7Iv/uUuuDQZKHylPWlVjGKuiF40P0K9/uhvRxl+QU43+mhaj/MWBBNfQiRcrPqclbBhqYLpMVqvYMNab5DGx6DXQv8HrydPte1DebK7eh73X6ialngj0r/dzovL1qnUXPicKb0AadO9p5/OBU25LTJv+ePyeg7YoLqwswq2PDiJfEuoCbxJKyCDadj1tLTGovBiMaJ9Wm6oh3+nNop2zatgg2Iaq8Yw1ktA4LLz5upULurnQdXbnKiIIdVsCF4YgpXjv6tu+L3iym4tS1IrK9KtTJyt+1W55tYdOGgglbm9x0xINyCkENjaVhe2T2O78AXkhXtJO9npQl5i8GI2LbdkTZjEeWTfOZ8bMLsVmI5i5+IouOqxWDE7rZbMTmvC6Uxy68bp2a48o64SE7sUEPRLmJ7DOXqhRVyCZoefgj7Md5KHQtN0kkFvyQ9q4rJomRApOrdRi9dbSrwE3rkZErOZ8nOVlTtt7DrdcV42mLIGepP8IHFiLiMTGR9qhynLQYjd8rO5uFoY0O/OwULg6R+6UjV1WIwImiC5FoltbQYtsr9T2Jw5U2f30QBfBkvgK9t443W38ZxdX++00NlZQKK9sWGNU3yhH5PCvfsSMlDVYEIAPU35tk/C9oOIapzoBwZY8W104ILh7i5qayXuOFRby3fB9YXetG5lwrth36FVbCh9YFxHG+FXa87LbNcXdOF/xtwCWKPEAYHt+cmjW41Ab9fRGMbagt3OdQW5wRWwcbtVrGLDhbspevAF5JRb+J9buFJ7lUtzzsI/1+m00v5QfsmwG/bVIVg2ODbJHRcdBIbC/g7TWw8tUUW4fPBoCh6P8ReVoY2y+M5P2qERsLun1XLHrQmDsVPSCd35Pm2owl491pbajrWKtio5S1yaZidgCwGI/y2T6Fh5AI6W78ExOy0xWBEwtn9yB62VFFukoZdLJBLwMSvyt5dRrzUIIvG1+yRLDJSniv9dlkFG26FiOHeHyVS62dEV5/k3SV1CMeLVbCh/MpV3GhXl05S5yctpsIgi5fDdqq2LY1ery5wVIhtd0HYetT8TVJZlNeXvA0SnzjsIp+lfe6dIIeCDbks/2MbAw23GIxocNZOywyIJ4B5b5tRnpGNhIvHUe+HZHoS1HxnBbVWRi5+Q6vjeJDn3/Wbf6kKh2oLBPl7b31gHILXxHHmum+P5S11ea7jF3pqwp0jkPda58/Givp30+iAqPa4PNusoGcxGBE06zBHw2Iw0sVUbPchivh3ukiGZb4MDIHH+mSOV+KXSV4/AHB/sHRqTZydBrzIjxvXZpiQcEbavfb6LgkvtDIp6uRW55vcb3mdZ34Rgz82rFatL4vBiNMRFYp0bL1dM9+mcev0y4ahfx4Xn2vTlScvVb2vZl8mwjZHElxK7OoLVTmvBOTksqKwEI+3iKDuGFirlgTxjPsA8h849gTKLl+hG0p2UwdM9emCLrN4x9PyuvAZfkrRvq/ONFMVduJgnCB9XKUBEf9WdFxg6RXEMM6JK8q5xfOGkGYcH8RCbszJh7Sc8nrRtmtDTxTdt4uaDTd/5zcE1OZTXcMGqn2ZxCdp5MalyImVxWBEnUul9LvFYOT8AxK8nm2jBluEf5kVxm0I9rQX73rWunwfg+rcQ+aYypOgGKV/NzZPAuJAXC7AArzD53uF4smfX8IUDDwrWivVdhAnl6Kh0fRklWz4sDQj3GvAYjDC5x3lBlGrN5IUYYB055bw1O/cAACgawsWa3z/VKR/00+0spz+bSf0nDSVo5X7PDAiTXRjUHEyDdGvxDlch7AQNrdVuFDR70nh1kIEozxucRvf7DhzvusaRRnMz8/g2l3hSElY1zVtotiQf5ThMtbxn4FLEHsEwU4KXT9PVoSRgeDZTPG0pqx3BJeeOAiVLwrku+EAv4NrFWwYYB7I5UV8sZCBp+yCuNs2tVV3BD17GA1XiuoL/k/ZuDtUpf0iaRpbR6CuVlLrIOakiYEMQFSZsgo2lN+6RVWrLAYjam05Ar9Xk4AY8TTG9+1EPKxXAatgQ+Z8aSIgAoZOpkPs/2qS6mQPiLuqpf0iaT2V37qFmJekQVK+4AiefAwWgxF3R8eg+eeJuLBBskAm38Fk61dtgQsA5hdmqL5XEub3Gj9x7WizDXr/VujffzT0LUWjA+XXrqFkZysAQPr4xdSMtBr/AKiFKhZWwYajHyzmeGWdbBKeyCKIuE0ARN9MeXOi5CS5fCfunaQQXOWCOIn7sI+460hUO+TlsAo2KhywYQVl4oloxelzisU3AHis53cxNZ3aIW26aPZYp9FCEyEZBSELQQAIfLrybkblgjD3pzDoWxgU5SCGLVie1MpLJl0CXcMGON91Dfxe5Q1oEDcC8ralRpuoLxaU3YPfVunkkcTr/fRk9Jw0FUXdrnGLBFo/R05R30dsPbDjApumomtHFA2NRsL+TYp3JE9LnKKTxZCj+IBkCY48ly98AaDxEqW61ONnbiF3romeAI0+J9D4RPVWnibwhWRcKrvHhVkFG3VxQRB7Ppb77UiY0o0q4Z5bDEZcn2ZC/0BedVTt/anBYjDil3vNaDoAChcV8lOt1p/xbiPUaBJjQOy45bd1mqJcWeuM2LlRNKpSZ+NhVZ5JGuFfZlqX2tq1YTEY6UmtxWCkp39WwYb4i5JqI1EFtxiMGHOugPJC0L/fKPqcbXssiIXc5A5umJaejXYp4pJmfq6kVr1953ruRLHhIS80eDyd61ukLGTTrp9vFOdeBBA333I/kDZIAGDgWWnjgeDOsHD6nb0fqPdtyVmsJfl2YzQeDZ8lImHvL0j/VjIExPJgFWzUSjL5L25Uk2tX8k9SxgMLl9Lfl7aEIPuTSmfSQ6Opw2eLwYjAsaL/veApx7C1rWjQgjh5rrPxMOxaSX0dAHWqnfe2cjNHDsITed8A6D1sUgainkwM/hBH7BmrI1SFKKtgw4DOTyKn3wrOYnLJgEi0GplK5y2rYEP975MU9aOtU4f7PSSzL1XnZONq9rTgfpPv3eKncf0eAF2bqNWHx0/85hLpHxaDaGV3cHB7RRoX/rvhMtbxCEDNWMf9IdHo9fZBJHdwU01DDFUA6qcs8u9qv9XCNW41sOPCEUpXLhzIw9QWYI4GY2fP/ko8wks/n07YkXeM8uK3bSpyBixXTF79HxuF7TuVdcUaNCmJjYR7giRIyoUZOXRNmwAPiqkpfUc8Oqpvv+1TkNN/BY2j5gCVxGVpaDqGIr9/PdUL5OSydJXvZ8g4IDkVBRtDcca0lvKQ82MHpHcXF19B+yag5bc6uN17COumNRw9Z8Y0HIXJ64XkefEVM1rME0+9BkTGosnGQlx5spbC7DuHyovl8nxKBkSi1r6zqCgq4p5lrAmnVvVy1ochvdua/xHPjtKQ5x0/iEdJA9GyaXXoa9zdqYn5NsvjqUpj2HENTs7qgJ0/r1bNV07X/5fpCHr2sMM4jniQ92l5XkU7/Kngvjb/EIRyHV5qFYOM1RHIfmyloi04y8diMHLGC+RjFBsWdNQdLWvexNpVfVHncoV0GhjVHtYt3/PxtTpoa7qj4v59rkykLBq3Gmi0vzZ+aLUPfZ6aBLnhDDU+2PSO6tDZOKsWd96NICzb1RtBLx1TN5YgAxmbSJ2x44Oz/g2IDohZC7aO4g9Nu0qdq7NxSdnn5hxFlLsbl0Z4yYx62eWY+P6vnEEc1iE6m493cl2s9DlIaTqrtzsJgagXKwrC1DiSg75O0vd7Ygx2/LYWFoORGo8iUDMeoUaHONXVtQ1G+dl0h3FHnxPw7v4nETxdabRJ3n/YOg9/L44zgqTGj6ZjKHZsW8vlt+TCQUya/jzy++g4YyJqc3HuT2E433WN0zbpqG076q9VzcOr8w5iQuUVhar6AiAZrLIKNhg/ikfTBYnUObxVsCGt9D5CatSm6UNS9NQPqKN6UwNpi46Mh1RFyyrYENuhL6DVqM5DRUOjcXDBUlgGjaWn3YC4KfmwjoZaFZXTZg26yNsaG/fn88fhFZz9SBunIGvW9LSmf4uxjuCQK490ffy7cJ2IPUJ42Fva7au96TAnhFkFG/LekXZEibXAq+VFyFgdAb1/KwDKiYAgfXkk94z860KCuMHd/rCUy5MdkOW7Po4GerXdOQDoMWUqF1cen/w7WtSwE5DFYMSD/uHw+20qbm0Ty0BO5C4/Z+bosKckLFirkvtWLOeeyYW5aenZKBwlnWaUX7mK8rvihfyrM80o6x2By8+buTKEJo3hysXSJmbKSf3atRoujr55M+434cV+4gweNK1QXTizKkK6+qKTzJyPTdRBuFWw4cPrrWHdtAZWwUaFMAK/0ScpTf+nbHDblQIkpyomZbLwzvnYxOXvyO+NvBwsWsxLBLSi2e6LQ1phlc8B50IYwC3M2Pp133YUFUVFtAxWQTSDnN3nWxonvdsaVZ4sBiN0rQNV69xiMCL6lThFm2b7gcVgxInXF6Gk9QPVtiZf5APAjpzDNK3v24noPm0arIINqeF27Px5NdfnCPqcLlTQrnVJR09IWf7k7Y597r6/mYI2W58vZp5BnX6SqfAxLTvjpVaie4KgCdKdpPTx/F1Utl7kv+cuG8P9zlkvqVSFHRlN88qILMGfA9ui+ReJSPpsiVQmxtALRUU5PHaK/qDy3jFzdWYVbLA/LMU1821YDEbsWie2g5ezTmF+rninj9wRtBiMGHz2Gvr3H831y/5nbiv6Llu/xCk0G4cdA6yCDXll97CnfR0EPp9MhbBb400O3w0gjU0rg0WT3rcjeLVyQFS7BiQtAJKvmgNitt7JySERwrTtJLW0DkdGU77f9ItUvEtdMdDv7f14f99AjqbXgAxEnBDVOQdExtJyrPQ5SOvz5kSTQpAgDtJ1Qf6oF5tJn+UMqByPk1OpE29AVJe8MUWsu61FtakQBgC1tbwRC3YRLhde2Lo/a/4BVsGmWBjL0/7YxkD9igGiVUH5nEXU/0k+A0xP4Phbyj4iH0PsJ85wdaNrHQg/t7qoseMoNSaihvbzxbtYrUamcmUj4Sz8f5muOqY4glw4YT8BoLm+LuTo+EE8Zmakq46jxGCVxWBE0wWJuDXehLL8Auq6ZnYr/kTNkRBGaKjlAYBuCPgMP4Vx53knyuSaAxtfTQhNOPkHyq9chVWwUf9xNyeJ75vcFZWPRw1XJFEhjFxzYGnf/K4e/c62NcITiTsyq4/Dcrvw3wnXidgjAEfm6wF+sMj52IT0caIK2YMno/Dn4mUOd3TVhCSLQdrBJr/z3zQrdvA1ndqh5cIcLG95yCkt8klM2lsFG/x+m6rYMbQKNoR+E09PccacK8DaNt5cHBLmaNFDvocuiIf3R4nQhrVBReo5RV3KBbmw4xp82uyEqoD6+8UUPN4igqtngnk3gvBKwwyHZde2a0MNeTjKWx7e53QhvfPF8tO/dVdUFBZycYnZ76zPY1A74A6aD0pT0CVgzaBr69RRnAgBoqn2Qf6pOGpUOvi8NsPkcMeWLcOAiH4ou3SZ27lmn7NQ21F1NvGxMJ4Q1VnVnjmqY0D060V8gMkFaTbNwz4RaPvRaWREliDh4nHEtghH+rJIBE+T2u3yvIOYKtvtraqc8lNNNi1JF/VaHI58uBiWtMeB3gUcLXn8rUW1sTAomO4aP5t5DgNqF+Pda22pvzqShriFyH3fhPOTlEZx9H6+KMu5oFqH8nydtWECR+OPIxrO3huLmxNNaLDKsaln8l3frCmK1tSid2uqA7Ux0irY0GfMJLjn3qD1U12e5eOgVbAheE0c/F5Ngkavh72sTBFn8NlrmFH/olO6F181o8XH6sKUWpsiZXkr+zje8w9XjQtIYyxxEeCwfLu94VGjGIVdr0Pv3QJlBRcd1oe+hQFlFwXcmGJCwxXSvKILDuDubFkFG0bl9MKtzjcd0gJElfa93y5X1KvFYIQmsj3sRx2fcI05V4AF84ZTNWuOz1Y+KMvNo/EvvWhG6ouLaN2p8dQuRau4K+iobu+MiUG9tcmqzxZcOKS4b6SJCKXGOeTlBMT7krU3H3bY/tX4uVdRjKHeMQg7rkFquJ2Lk/VZDDKfWsKlYXlwCK0O1gLROIb/zsn0JFwOtfe5oSAJI7xNyPu5PdI6f889J6eQcoSk6DG/+bFq5dH/zG1sD60PXWhrZL5Rk24kyuOSPq7be1y13siaJevzGN5/qIN8rYINMS/NUBjtcMQz+8xZ/yUosz/8x5ivP/c3nYi1+S8/EXMJYo8AWEFs9yVxYPwrCxwSX76YZOP8lYWRd3Jd7p4Mid8/qDM9cZDjzpgYJH+6RDHIVLXoVhO8+j0xBvaUM8j4Lhwttrih9ubD6HWqiF5WJiB+vnLWh8FvFO8DxVGeiy4cpBfVAWnBzeLybDO9M1MdnuXltQo2xHYfQh1Jq/HjaIF/p+IBRnjzl5T1zZqi7PIV1YUfS+Py82Y0+zIRwstmGD5RLuTk8bU1a6KiWLQEVt4zHLvWfsvRjTn5EO82ltqjalvU6uj9qf/J4lutnVSlpmkVbHjjantOqLQKNqSUlOI1vyjV+GplINA1bUJP4RxtZPx+MQVuGh22FNXF4qBAZHwVw1lKc8RnVQKOszyrU38ND3lhnd/eKvvZuPP5GONxA5Yh42DdtEaRn/lkKRXuWDp5Zfc4gbSqMQgQT4+Jo/myXhGclTOFQDcoilrzIxiRdpkzygBAdJYc8jvNxyrY0M83ijvBJ9DsaYEdbbap1t3l2WacfHmRwz5IfmcsjEbQzMN42CcCdwJqoNFS5+qXaqju+8/+xEQdErN8sT4b7yQEItn4i4JGab9Iei9GLZ+mSZ5Y4/snpRv0fRy1Clfdvkng6P0Dkh9IR3HTF0UhOJ73MVjvYENs8N+N6FfjUH+NY1VnQLzrlxKxoVrCPIvsdUZE+l5QWHqt7saA277meNjjEq4+Y0aTb9SF479KEwDdyMtYHYGgCSmqC/TqLOwBoHvqA+wPq0U3sKrih8wn1eG5qjnH0RWJv4qEi8eh02idjoHOhBpHfBPoGjZA2txA5Axa5rBeLQYjdF5eKL8l3jkl7lHIZgMbT+7DFBAt8QZPEh02D027ii1d2iDh1B76PPL1ODRIK6L+2rTGtqiwqdzrbN4Qu4Slj7Tg4RLE/rNwqSY+QnjYu6PTwZh9dn9INMp7htNwq2BTCGHZ85RWh1iwE61VsNHfciHsyixRZYAIYV1TeTO+VsGmEMIsBqPqzo88bxKPHeTJLl3Q+OP0grFcCAPES75WwQa/UamUHpvXvR2SSovwkqg2GOBWlytrvyMzFPwVN7Rz5VArA8uzfNCffakToJeEhNHnBPqdmAYOWsOrupH0rBCWtbYjrIKNTpoE/fuNUuXt5EviQujUbGlBZBVs9AI7K5Q0TfKkQhgA6PYep/TIZ3IHN8W7YWEVbLAWiIsIuZEXR5C3ObXnRAgj/tgISP4LbvlSIYyt/9f8oqCtKd18D39PVN1691pbp4tIooIiz4dA17ABHm8hXhQfVEfsG0QIU2t3LJ17le4fCO4PUVpNsxiMMD8/QzWc8tC0CTUbD4j3gKDRqC4wH9pFa5WsUZUxHqL1s/SJ7or4MzPSFUIYyV++SUGskrHpV95pRuu3e+oDLAv2p+/lXgvp5K68ZzgtU+kfvijvGa4QwgAohTCAOjiODe1JeSNCGFv3d56Ogb3XRcrP3dEx1ChB/pviBgvbznM+VB8jg2YeBjQauO1KQaOlSbg7OgYad3eFUP9W9nEaxqr4zcs5TPs6iU+Qvoo/hfd/OYmLQz6Jz8YFFw6hXmwmLAYjHdMz1oSj4SEv7P12ueo4QsKIEEZA/MCpbQKx3+VjeOg38U4XvsbYNMq7xWCk7jMIPSKEAaK5cQDY4L8bABwKYSwvTd7Uc+MtG8fZ/OL/lA1p10V1wTlZ0mYdySckRa9Kh3x/2OMSbkw1UfPsaiDhfr/zqvdEPU0NRJsi+7GVHD/ku9xnmXy+ZMP2h4mqufOaiirFVY3D7HyiOqYLNuga8r7m2n0VT+OzxsCIkQ+/bVMVY6GcD0e/rYJoMMnvV97FydWZZkW9ELBuMhyNvWx5ym/cpEJYxjfRsAo2ZHwVo1hnld8Sx9PzkxfT8XPb0QToQltzwijxYXr1GcnfIRHCAFHtN+HUHsT2HUnfWYNVSZzTbFYIY8tQJlxWlOdRRTnsf8v/fztcgtgjBLfdJ7gJsKx3hGKQmZsjOjasvekwXTzrW/nAb/sUGodOQq+IE5zpxRlcOLFgZzEYkflDR86iGTs4Nk0Sdx8WPv8N1X0HgANh4iTRPfUBTUcGsrX5h/DY0PEcz2qLYIvBiPSVnRTxWGe2VsGGiHd4/xxysLSv/xYMi0G8iwAAdSsNDdx5OgaGTxM5PskncerM0q99RbQKFTVHFJbIPRI2T/Z7+Nw4Lk5aRBnK0zLo7x/bGOiCrdmgNFgFG4I+51X75HQByZoUi5IBkei77ogiLvveTP/iF/VEvYbkYRVs1Dy7+37xLlrWZ2K9x5xU+pNKX9FJsQjq9FYcdf5tMRhRlpvHpSEOlQmy1xlp3InnL8AqiJYO1cpNypEzcBn1naPpKFnz+z3Ui8ZhBUUA2J4tnVIdf2sx7o6OwQ/W7sj/pR3aJY/hfO8QlOxsBYtBVFeyGIwIOMo7Q2d3NS0GUS2Y/a1xq6FoE1bBBm2dOjgUJvkzA4DJH26mtOkC3sND4Vcqd66JOpf1OVwHCSd2cj54vD9KBOy8SX6Cx1uI48bOX75TtPfg6UcR9rl0f8RiMGJgHd7QhbMF58T5m1HSP5KG7X6gw+R6l7E+PxH9W3eli0IAsHhHcFbKiGoQANToewGF3u70/qKj/MgYRLGpFseftl0bxLbphqJh4uKK+GAjZbsaKQo6HT+IR8u5iYoFN2uZtJ9PJ1gFG57PFPso7HYa1/PHZOzIOYy2C8W6u7hJvBv2nn84fd93QusDAAafvYZX/KJxMupHRXkAiI6iO0tjUcbCaNVFKnk+y7cznQvIaVbQuOO40fkWYjv0VbzjlXkHFWOuw40UZnHpaDMi5uUZVK3cEe4Mc+fSEEMz/rsmKcpGzI0P6DKIC5cLYWy52EWrxWCkps1J/y+YY+Y2OVhaRFj4KCCMow9I95Dkwin7veFy/rSSoGJ3S2jDJOHb67ieW9jbW4hzJrEcyqLVkVo0nlWwIevzGGq9DwC+DmwDy+m7kpC3lRdS9M2aKgSRAV0G4fNA/s7i1ovqGjLeyXWpUN/wkCQwknpIOLUHVsGGM6XiHE+swloFGz0Z5DY0Ku/0OWpDbFnZ39qaNakAFhzHWzeW+0hkaZ44JLkfqEogY/m0CjYEPSPezc0ertTgYdNpEk/S9OVnziv6GQDFKal8IyPhj5+qFIzV2pYL/7fgEsQeIcy0SZ1d4+6O3d9L+thkoUwmMXbivNSvBXL6rxAXfx1CaKcmu32eP0rmUQGg+efS4BH49AnOvCs7ga/x/RNWwYb3/MM50/elf4gTC1l0lcSKC7PynuFopKsDzfs3VAc2kgf5DJ4s7iBlMxdoWWe2AJDyzmJUdDGq1pd8N6vRE+Il4QareFPgmnJ+oI0N662gZfw4nsYhg6vXd+IirTwjW7FIIP/zcg7j+JuLFWqIupAg7vdbU3gfa+XXriF0gbTLqLYQ+zRXMnP7sI94IrNv+XJY23niWpxkhpqATBrEyhw7SRGXAWx+D6x+KOkuOkslF8LJKRhJf/l5M3JiV9A8dt53w42p4n2QhLP7HS70PNclQ1e/HqXh/5SYd9fUYozyuAWLwQhvfV3FZB344wyuLH8ObAtAvMyuNlGxi0kAMP2LP+Gsc7kU/i8nodkSdzRZUgsBL0m77+TT/bFcWAUbvTOyqIVYF31HT+Tqi6DWr5KKlVWwoeYufue7rLf4rhrv0il2Zid4XqU0SXhFYSH1AQUA+pbe+HTUd9S5bF50kUNhlfBFdsJJvL6jJ8JiMGLrxaNcWa2CDc0/T0T0q3Fce5B/suVlBd61bbxRc9dJZH4vntZ+EiD6PhzV0kzvOVJalX7k+g0YQ2kPzOhH+aj/fZLi7gzLp8VgpBsGhKfyngIsaY+LVkshniyU371LfbCR9kZo+G0VT83YRR1bPmJYQGtsC3tZGSwGI74MDFFddFkMRrT8QKRzOmYtrjzLG+e51EdU0WX9CEIjmfrueeZJAOLmBxFUrIINQTMPI/IN3uE4m2/6kijkT1U6rb0x1UStsF2dKRly8pYZUWAX444We+T9qrUzMiZbDEbcmGKCvoWBOp4mNLel7FDlP7uPpO7M/neePYOefGd8HU3pEBP98vFWTpeYNidobHuI2psOw+NAIy6cGC1SK/fDPrzbF1bwIUZE5PmyfGl756MiVTIEJb9nW3H6HKyCDf1+V+a91DsJMSclP3H1zmsUav/Wdp7SBkqlj0nCX8ZsaeOP1G/mpOY0bIBZNKYysEUk1Yhg4x/Y1x7+r4jz5OEjkpEln8N1oK1ZEyOye8NiMOLpT19UpLUKNu4kiB0fyH/Oxya6TgCAjO/CVTcDKoqLERx3RFVIcwaNb5EinsVgpBs3VsEGTaS6GXjdXoOCl6Dv+f5X/HgUpUP8lloFG3Lfd65lpCZ8sv320otmpC+Jgt3cgYvDrr3ujFZ3B/Mootz+9/z/t8N1R+wRgCNjHRq9HjvypOPuLUV18fbCcfT+EmsONX1xFILjjqgOdiw9YrVLdbdUo6G77ASOdlLlg0fHD+JVd7DkaS5saA/fEZJ1P9OLM6ig6Ahf5CYhtEYtbrBm83eUl/wz720zfN5NhL2zEZpDNoflU6NFjDqQMMIDwcaCZAz1FoXljIXRyB68VHW3Tc6XnI5VsCHgpxkIfD65yvKxv9XoOJvc5HXDhg+IGkAv6GO3NzUq4YgmG+6/cTrnBBgQTxaJUMvymvWpiROMHJWV5d0R347SVafsutDWKK9TA5mj6iDwhWR0TS3GG42UljYd8UIu1stRMiCSOnvN/SkMrUZKaikc/1HtOTPILC6+aobPxsuq9w1fz7bh4wHDudNXR3yq1YMcJJ7f1mnwPK9Hsy+Vu72Rx0dQH0xDMvtiU+AfHE1yQb+q9+MMjsyIO6Kpdl9DzndV/Yj9rmvYAOU3bqKsdwT0u8X7bde2tkbjgecBSPfe2HoemnYV0+oJksB59gb1wUSwPO8gWuhqI7aF+qJUFBynIWegqEJ1d3QMkj5XGg9wVib2OeFNLR25nyVvI/L+PKDzk7hpak6tV1bFi7ZdG2zfKb0LbVgbbN+h/m5Iuns7/Kn2AuGjc+oQ1K202ulsXPur4wKJm1Z6H7Nb8X7Zrk8zIeWdxQo6aoah5PlQc/vMcwBIf1hENxtujzNRNUw2TnXm16rGe7UyqrXtvxKvOvNrbJ8RSNi1wSG/d0fH0PndkOwBIUbarLk604wTry9C8HdxSB+/GCFL4+HzrvJutrM539ncR74/Nmw8NIknYRVEY19nZol3RNOXRCF4hlI1GgDiMjKxOCgQrY7UQm7UA9X89M2aYttxq8P35yyMzAdqd43/SebrU882+VvuiIW1vfpI18e/C9eJ2CMEuUd14iMLEDv+oDr30Gy+pKtOhDBAOtbfcK8e3RW0CjYIL0uTDbHiRQeFmDBKW4wgCWFWwYbWx8TTEb1vS+S9xU9aLCwG0XQ3Scci4zveihcRwshO0fDXd9Lng89eU6S/Nd5EhTA2P0LjzhjeQS4ArC1sSJ1AkviaiFA6yLNCGAv5bwDw3zgdVkHUYbcKNmR8F87tcpF00y70R+EoUec85MN8tF4pqVSS+Cw/5LPDvHhF3oHP8yeYVsGGe8N5tRurYIPHgUYcfZaf3mMnAwAe2sthMRgRslRpzpjNAxANJ1gMRpQViBbVNG41OCGMTSMvj1Ww4c9iUCGscJTkuPXIR7z5ZhKfCGEsH8RhKq2LfRNU+SZ3hdTeGYH/ZnVzzfIJPeGPn2Dd8j2yRi3B3dExOBBWUyFwsjwCQMY30VQ1s8JNo8oHEcIAUCGM3fGnaVTMslsFG3SenmjxcaJCCCPxPvA34nZYQxp2a7xUdyyv5A6XxWCkppKJqigZDwrmSP0lZ+AyhRBG0ODxdEpfLoQB4h1H8u4B0bQ6yUMNVsGGoKPu3O+EXRto/IuvmhWLPHldNXnyHPqdG0DzkdejxWDE1Xiz4rnFYITXIfEuTPpD6TSCOPLV75aELSKEAcDuH1bS7xaDEbfHmqgQZhXEnfiZ9SWz2YTGVJ8uVAhTq4eQZfFo/Yx0EpP0+RLVOiP5Omv75H3rPD0Rl5EJXSOxnUS/Io5Ld7qIdwY1bjVoHYV9Jp3QA0Dk8RG427EZPWG3GIzInWuCZk8LaGvXhlWw4cGTURwvxF/j7xfFumNPjByV4VDYJn5egqRWzgpD3sl10XfEBBQ/EUXLx6ZTaxuZP3SkYWz4qVLx9Cjnxw70WaNlvLPwrLViWiKEXZ+mfhpiFWwInnqUOvFlx+RZvp0pfVYIk9eBVbDh0pYQ6nAbELUP2DiA5DA7cK94Wq/tEKJo7/I0ZJ5kNU/kKLV0Um1T+W+I45V8niX9MndwI8W8RrQarIKNCmFWwQYhplDsH5V3XcnGrd8csd7J/JyxkL9Hy75rNSHsxUvhivjsd7ubFlfjxXJ4f5RITwtzBi7j0lV070hpLg4KBADkRj1QnQesgnh3Wy4sAkDwfvFqRqlFunoR22cE1z5bjUxFzscmTgi7+Xsw7af/FFT8Tf//7XCdiD0CYE/EtF0joT1oA6C+QwXwA82ItMuYXO8yF1Y4KgaJXyxRtcBHkPFdOHDHDcEvnqCX3llrZdXZYVR9xpygAMCnuckIqyEubB8MisKfi5aploktl1WwIXj/ePiNPsntRl6LM6HxYpUTlMo8HdWXvM6qKkvDQ14KIwj3h0RD6KJB1ihpcdTPLxr2khIAwIV3zaibZ1eozACi+tPCoGDcmGLCsfeUO66AKHDebgPOOW5Z7whOPZXFhfdM8H3Lucl5aHW4OypSVVWR/AakiYWY3q4K+a+bqYoWKbvv287vkMih9m5Yy41sPLWdUbd9zfF78Hb475qEoHGSWeKK7h2h3X9C0X7ldNgwYu1KvqAjeWXPM9H7loC4ODH2T+PaiKN8/LZMQ3D8ESzPOwgfFb87JA+1vn15SwiaVbotCDhaE1mRxZRuxLtx8Bh6CfvabcGau40wzvO6op2QE0dnfVgONT4cxWPLWxIbyfnisxiMuLQlhLpdUKv/SFs5Z/mSNdteODIGpXU1SHjnMzTR1VF9L4DYLz1OX1eYSmfjETPXjurh8nNmNPsqUbV/VFUPL2edwicBvAqUWt+s6GLEHxtW01PEtovi0fJ95ybq5a431MpHylgdXtk4t8eaUP/7qvu6PJ2+hQHbjiZIeVVaTXWEOVmp3N0sFoPPXsPmto0pfdbBtLy9dJ05nZ46q7UlQLLc6KgestZ2RGbPVQCA/o+NokKjfHzJengPI1InISVig+K5WvuQhxc/EYWavx3haDoae9RosfHJs4A9EzGgzWmc7ySpMxLz8yytEWmXsXbWANEHZGXacnsF1eZwBDW+wo5rMMYrGa/4KQ0MqbVBRzQd/VYLl58QkXzaJY9BiyFKU/skra51IBL2Kq2KOkP6kih6+pz5Q0cEPi3dydZ6eGD7+QN/adz8K3mz6QC+ffRuHvqPMV9v+5tOxIz/5SdiLkHsEYBcNdEq2NDzzJOo0fcCpx5DcOkFMx56AmnTnPtByfwyBlkjlzicqHM+NtGFt9qgKfeV4WwCyfwiBoEvSAMo63+GwG7qgJ0bRQMCGr0eQ04JdOIFqufPSs6rWrnkz4l5ZBIuN6nNYnXeQeqoMvqVOG6xwtIl6kssiHpKeY9w6PYdF3fE/nUNNfoq/TexJnHV6DsrOyBezC7LzsW9ETE4NH8JOr0ZR4XAjQXJqKuVrG7JBRK56feqeHjwZBQC5qRhlc8B9I99il6cV/O1ZRVseDq3B55vvhOvjpvOOc12VqbqTOQsKrp2pLSdLW5I+Z1B790Cb/65FW/7S3dG5MKlowUVi5u/B9MTo6ri330qBkmfLaFqM45QVfuuTnw5P87SX59uQsrbjs2bO9ug0XQMhe/SbCz1TkLATzMwufdezngHwd3RMSj01aLFx4m483QMvYNU+ocv9ob+Ki6sQluj/Mx5Lt29ETHQlNtxcIGk9sv6TBpgegJlF8STKGJ2XF4nd0fHoMHhy9h2cItq+Yj6slUQVZrcsi9zVubYcVGOgjlmqvYkr7P+j42id4bYulWrRzU1c/I9a50RAU+JJyiDMizIX+uPRsuSOLqsf0QCy+m7sLaTFjFWwUY3Mchvlq+/guqMwfI2k/eWGT7vSf1LLuCp9eWIlBFo9EQ6tB4e3H1EZzw5a6/EzYej/pDxXTiy+36LTm/F4UZ4OWf5UV5fcjcCaiDmyp3xRCDfHCB+Av8KWB6LhkWjtK4WXquV8+u8nMOcsMW6r1HjsaR/JNy3H+Weyf0KAqIq4iofFWGGEd5ZgY74GmVVve9uD4Bnf2mThVVvZPN/PjMNXwaGqNaBxWBUuLSo7njodE6OCeOsIGZ9HoPWn+YorBwT3JpgovXvSJAdkXYZ69o0dAliDP4vCGIu1cRHDHX+bAyLwYi9ob8CAHZ/L6nBFD8hXuJs/kUifN7hrQAC/CT6sE8EVXGTPyPwe1WcwIlne/ZSqsVgpEIYyYedQNiBLP9NMxXCNO6imlFZwUXc2sYbrCDGBwBRTXJaPYEbkI6+uZB+two25L+unHic7cSV9BcNmfQZM4l7fvjjxdyAes9bMqktpz3BpwuNd3ieUqWupH8kKna35CzpAcDVZ8z0jsCudd8CAGpYj6FG3ws0H2JW3CqIJnHleTubDNg4FoMRZdm5sAo2HJovCtrsSdxQ7xh0fWa6wqIaSS/3v+WIB31L0cF2rV+P0Mlve8I6mkZu2lzn5QWLwYhr5tsYtuMZaA+coObb2Taj7SBOmES9iX3O8qNWH5deMCPSVo4/flpFw7rF8RbF2LaptkBkv1sFG7Yd2Ya3/SMgvCS1N/kJH6Hltq+5w3dFhDC1vAN2T8S9Hf40f891oiEWuRCWsUZ951re5+T1Ji8ba32U5Yftwyx0bUUrZH1m8ObNM7+Q1K0IHdbIAAv7iTPIjXqArs9MRy/zKbzW6LwijlUQ1ZVafCwuMq/0KKPPrtzxQM+JU2AVbAohzCrYUHdDMieE3R0dg19sksBBhDBANDtOeDZ+JBniqXmzDGXZufDbLuZDjH4QECEMADSJJ6n/PsIDOy6y9QIAZ2aJG2PXtramz0gaYq7cYjBSU+DkN3Z7c/SImrna2B5QafTGYjDi0gpRCANE8+IkTt8posGait0tafoXGkjqrWSOIUKYPK+y3rwQJ4ejMVheT+xzNs3DPhHweS8R6asiaB2VXRRUy8uCGGPafv6AKj8r8w4q8pd/smCFMLX3md1XHMePvbcYOYNENbbr03lrjYDom9KZEGYVbMj9wORUCJOPS/ITWkdC2OvZfDoAaJxYX1HmGnfL4VYkKnkVjuTHhlf8JKudc3OOoiDmHtd25WOz+/ajuLChPUIOjaU0bo4XDQrdHS2NF0JMoWrbuDFRMoTBvh/vD8UyEyHs5kQTJ4QBoOqNJI1VsEHv25IKYVbBRg3XsPSJSwsA1DS/s7bBplebM6yCjRPCrIINAS8mo+zyFeiCAxR9BIBCCCZtiORfa39TrHl5oCovjyoqoEH5//J/BTRVM/IPh0sQe8Rw71UDAOUpBgDsXyrpNMsXrWw4ANTKvkFNzrODB/nXN5PM0ZPBzvdtcSDsMXUqN9gRkO/hx0ZyeZ6NW0TpElU9APAaIBkRsAo26Fv5KAY99je5h0XCW36QiILXzDCe4OOrLSStgg37VoqqUbq94gKj4SEvhSBpFSRdfblQGXl8BJe/nNcRaZfR8+ND0PbOV0xQTb5JhNbYVlEmAGib+DQuvmKmZsXlkxMAPDZ8giKMnQzlIOF+O6Zw6QKO1hQns02HUX5NeedOjQaBfEFSll+AviMncs/l6dlw4oMFAHKeFNsqa76d0K84KaqrVdy/j3ZfxysmxHoHGzps3/5PZuH9JqekCbazkVrFdDaxOmrP7Hs2fMqbN1fjgZyyUETxamnCv9QXTIFjT6BuP9H6prZ2bQBA5vwYxfsmapbyxUZEygjKJ7nPwZZD/p014w4A0GhoHV3Y0F7RBolxDFtHqdwFr0kbLGwerGVN1pQ9oXfgm6VY3lI0Sz8zI51a+JTHsxiMaPm7Fu9mi6fTLYedRg3rMcS8LN4xIe4x2PyJKw5AtAab02+Fgj9AdApO6q60vvS8hlU0fuRxRnQ5QBx5E6tuANDx6CjVPmoxGFV98rHPLQYjvU/W4/Qg1bbodk+qg6x1RqB3gcO266z/shtFxLw4IC6ULQYjtL0lwZQtT1E36W4xQe5cE7o+Mx2AtPnnLG+15/JNH3n/6ecrLsDddqUga21HBE9McbgIJhhzroDSfPhYJ8X4T1yVNE3yxGSZ4/FbE0yq84Qa5PUvnwcIzcJWUprM+THQN2+GALe6XBp52S0GI1q9Ls05uR+YnM6DjuY3tc/xO6cp4l4z38bDPhHIf8OMnhPF+cFt5zHU/VkUcLZ+9jnnDoTN/92ugxT1LK8bXePG8B1xCjUSPQCIJz1EbdDzx2RO0CObx2QDp59PJ7ppyNJ/+FgnLuzmJBNn/Vhep2zdkg0YEkbunqn1pZL+kbg6uDX3non/P2KdOWd9mKLfk7hVCW/aDiEoT89SfX5rguM7err69bAlyIr9S5ch82vnaqQu/PfBpZr4CIBVTbyy2UgHNUfW2NjJxmIwIn1VBIInSjrhgPogJA/LWR8Gv1GpUIOcDs1reSRyBixX7OaR3zemmPCwjgbNvkpE/htmnI0XVXUy58cga4SkJmn8OB62VxfhqZyeuNH5FnTBAUjYt1GRp1pZ1J71OV2IlxpkKeKrlVvXqCHKr99wqqKomi4kCOVpGQ6FI2eoSqCqTlpn9UHijbvQDYeS2zq1ukjiElry9qSrX4+appfTkMdVo/c/BUs78McZCHhRutsm/+0sL7mw6+g7S6Oq98Dy1vm56RD6VCB4Om8l7VBxBTrX1Kr2vf79R1MBFBAFBXKqycbPf92MV8duwPohvTjLgWr8qNWBWjly3zeh1RtJVH1ILZ28jOS5JiIUmnI7tiesQ9vF8Tgb5/gODlHXZe9eVAckvweDolBry5Fql606bVONlqN4fr9PRc7jy6vVDgD+3h4g+mds/nmiIk9d60CUn8/k0srvTmk6taN+4h72iUCNG8WwnxDngYLXzA79eBWOjKE+6Ei+XWZNx8EFSykPbL5yVXdF36/kVa285E5SVXBUv876GuG9+7RpqPn7EUxOz8HKYD9VulWFEbU+R7wB6uMeACAmDDkD6yB9gqSe+7BPBL1zxeLDnCN4za96psYdjZvkWbuv4tFiHn9C12/AGFx6u4L6nqxuuwSk+0+hC+Lh/ZHj+49kLiyYYxZ9E1YBYmlQTVBRK6v/L9MR9Oxhh+VnLRirgVie1XYIwfbtP9K0V2eaYdiUjbJLog/UwlEx8FivnPOc1Xv+m2a0nCuV+c6YGFWVY5aOnGbY5/G0z1sMkgVQtTGIgLWMqoZ/ktXEY2eaou7/smrivcIKdAq98kjXx78L14nYIwb2QmrtzeIAxvpGWZ+fSE8pLAbxzoDvz+Jr1HYIQcD6GbAYjHg5i7fAyC7kyScrhMl3nsiOGAmzGIzI+dBEhTC1HTurYEPDFUl0EiRCGAAqhBE0/VqMs85vL6yCDeXpWWi7iLfsR3nQiqp0Zbt8AIj3OOT87Wrnwe3iqZUbENVXrqwST1y0r191uPNoMRg5K3RWwYbL3RvRZ2xcOdhwSi/tcVgFG4amXVXwx8ZVTcvswqm9R/LdYjCi4O1gzuoioan2ftl0A8/eoLTKb99xuvPHCuVsOdj8NhQkURUQmn9MGHI+cmx5jM0z4MVk3B8s3VsgQpgcN38XVerIrubGAj4eoXl5tpmrO4vBiCDGImN1hIbsdWIZ7/rpEDz9KG5M4a0UEue+clgMRmzfzjv33XZwi+ri4MWnN2FtG2+UnxXVsIgVSXlbk7d/tXKQ8FZviDvQtX49QtNlfR7jMC23UEo5Q+8EkkULm4ZVfyN3JoNnHHHYR0afk+5Fsm3RKthQa4ukkqfWL9gwzZ4WqnnofVtKi7V4s4IWIPmH6/fEGK5v5DwuGRuxCjZ4HWpA1Z3ZOiK/iRCW95YZGwuSOf+MbJ4Je3/hyqkLbY0etXhbYPZjp6HzEv3R7VmzEsLbFZS3Vt9K6lmXt4gqWLk/iUKc3BE4AKq+KR/7rIKNCmHyOu3yrHgadn5GI9U2YRVsVAiTj1McNBqaJrbHUEU+Ok9P1T4SNScOFoMR+5eJGwVECHO24FcLy/u5PZ1/WE0Ktt+TNM8KkcoFc3Iq0icspvFK//DFtZkP6PjCghXC5GOsI979EqbQMPK+LQYj7ocWK8ZA+4kzaDYoDUPTrnI8VmfegbtoLZcIV8Fr4rh4hF75dXHclwthNyeakL4skksDSP7M1PoVIPbL9YWSX8WgZ/mNZHm/1hyycY6sI05UcOW4ZBZ9oWa/Jrn1ASpPvWpK1lY91ifjxlQTQg6NVa0f+VhhFWxUk4egwRFpbiaq3WrrA/YdsX0e4DVA2Ph+CVNoGBkfCW3WaiwADA5W93/mwn8vXCdijwDkxjqyPotB5lNLENu2O8pv31Hs6sh3C4t2+ONg2Canu4VWwYb+/UZRC4Rymu77m6Gku7i71DTJkzpSVVssytOyfmDkvsjUFjHyQQoQBaTJMsMPVYHEZXeFAfEk8cDCpQ53whyVRY1HZ+nk70deXnL5WF5WYlXr1ngT9a9VHf7YPIifnYKNofAeekbxvO3CePitzuUMgphPlqKnx1l84M+XtzrQ+7bEtqTfnKYhPBDfMfm/tMNZ8w9cHHldO6PDgr34zbb/OwmBqBeb6TR9zvow+C7UOTQcYhVsiHwjDk32XERZbp6CjrxttPs6HqefXUSF0eCpRxX13/vpyfS01Tu5Lo5sCsOp2Yuw7I4B0+oJivJTQXpjKM6Y1irKr2/pjW2Hf0do0hh4Dz0D88lSJHaoQZ8/fKwT3HYe4+i1WRGHc1MW/6X+JOdLLY4j4ZytI7WyyX8/sPqhliWH898EiNYeM8csVtBzlMf3+YcwtmVnh+MdsRCoJsyyUPPp8z+BVbCJGy8hvwMAYjv0Rfm1a3Rcl5+OVknLYKSWStNXdELwlGNcWdnT1QGRsQojQH8lHxZy4xJsXEB6D7FhvVF+/QZaH3PD14aj3PtJXxWBHIt0zzn82Eg0HngeXoca4Fbnm07HWpJPx/fj0WSRtOAt6xWBSyZ3PPAuo/fpuqc+wGuNzlNak9Nz8NFXY9BkYaKir1TVPuX5k7I2TqyPH1rtEzcy1hkR/MED3An1QsIXXyqsExNLnQAQc/Ihkju4Oc0LAHcqJT99vPprGzR5Upy7WR911Z3f1OJeft5M3VRURcfZKeOlF8xI/Zd4P7LPmElwz7hCDXU5Wz84+s2G6Zo2QcKJnQ7LUFVZ1eZPefzq1CGgHK/3PdDSDRVn+RLIN5LsvS6q0i6zP/zHGOs4fKbZ33IiFh16+ZGuj38XrhOxRxAB/xIXAwln99OOurEgmXbsEXXvcPHrVN49AaRB4/nMNK5zWwxGKoTdGxGDNivEHbL+/UYBALYG7aDpiRBG0rF0SRg7eJGjeADQ1qrF7dqRnbOqBmPvSkuFFoMRISl6Gk58jrDp5Hw0m5mFwlGSXnrtzYcdLgiJn5a3siWT5/eHRHM8qi065DzEhvZE+e07KImNhMVgRKsjtWja3k9PFncjP5TuHLGnfcS0sTMhTD5AszzF9h1JBV/voWfoc7d9zZH5pejD6ezMRXRBRnhI7FCDCmEWg5HbJQWkXXY2DUHZhXyHu6C6Rg25uib+j1oOO829fzbtgMhYLp+BZ2/AKtjo7q9VsCH7E2lxw1rfYjchiBAmf0+T03Pod79RqVQIk59wEL4bfJukKoQBoKfMgFjPxMQ6AGqgRT4Rs76mCsvccb95BSwGIzaGNIHFYETrlXEcH37bxZ1yIoSRZ6R+bnbxBiC9b3ZhCYh3QEhc80nRHcXCMcs4WrpQyYjEjckm7h2r9ZVrM0ywmzqo1u+NydK7mZyeQ99vr1NFXPyVeQcpD8TwB0Eti/iOGi1LQkHZPczPFeuVCGGhSWM4fuR9lOQxtmVnGlY0LJp+375DNE9O7lKx7TDmpRkcbQDIHr6E1olav2fjyutO1zYYVkE0HACA3vuyGIxIOPmHWK6nRK2Aa5H1VWk7A3EXMabTYWoQgbzPsuxcGk9NCJOXh+UbGg2u/xYMi8Go8DO1PWEd/X5ta2tKJ+zIaBpuMRiRNjcAAKgQBgDDsvoAAHcPzGKQ7s+t99sD4SUz128Avl2RZ6wQBgD6PSk4O3MRtSwJgFrnXF1psGNlsB+aLEzEgyejkNihhsN2zuZjFWwo7xkuukMBFPGIEAaIRlPKz5zHoflLOCFsbo64KUPcJQDinUpSd2xeVsHG3Sn1/eUy/c6ePgLAicj19PvWtg1V6bFg54/Hz4h3d4dk9uXisL4Czc/P4NIBwPXfgunvIy9/hXoHG0LXuDEyFoh9jPj7av6FZDhMt/c4Mmf4UBrTC0zQRIRyZZZDPu6wQkz5lavcc/Kd+EOUrzU0EaFcvZB2KIdVsGFqvjRuEFx81azgMezIaAT8JNZPzofSu/4oIIwbk9h8LQYj0ldId+3YPHLWh8He6yK9My8vv9yfrAv//XCdiD0CkJ+IAY53iQD1HWtHuzbkLpazXSRndz9Y3WsAaPd1PLoNPY5FLZSX+KuLh491AirsCr17eZnZexNykFM7wle/gU9zcR3tSMnzuD8kGrU3ieoTN6aacOxdaWde4+4Oe0kJLr1gRvMv1HcDrzxrpmqWANAuRYvTEZLaEfte5Hm3S9Hi8+bHFXwSvX5H9eIo7MosM/TFdhx7lzc/7ogHOa9y2uTz1rYgheEVlmeLwYi8n9sjrfP3SCu9j5AaojGK6QUm5EaJBhcyVkcgaAL/vu+NiEHdDY5PIOR8E9P5F94zoaslFXmmYmoGOe9tM0q9KhA4O9mhWX22TLqmTaihhqrqtSrIabMo/cMXNfpewO1xJmokho3HmuF3Ro98vz3WhL0ffYXB3lEomGPGQ0870seLbZa4TSDQN2uKsstX6B0jXePGnBN4Z2V2ViZ5PEBU87OnnKEnhMQEu1pcQi9jTThnuc8q2BCwYQYCZycr+lVV/DqKI+//7LOsz2LophcBa4LeKtgw/1YrerIBiE5f3c5ddNp21PrbrfEmHPlocZU8qdFk41UFZ23HUT7O8r5fUYrB3tW7ByU34V7VSZBVsGHN3UZY1yEAO3LEMViNj8zvOyKrt2gltfXKOLR6s2oXJ3cSApFs/MUhTatgQ/vDT8Ew+CwXrolsD/vRU4q4BISW/JQNgGhg4luRN9Y8P5k/8n5uD5/hEm21zQ+LwQh7ZyOyhtdE4Oxk7n3ufqDDJ2PGUGt91embjsY/EjYqpxdudb6J5zPT0K92CTdmA6DuJeTtkL0P2WXWdNTZqH4PzBmPavVanXKxd7kmnr+AVa19Fb4/HY1far9J/lbBBr9fpynGLQL2zr7ezxdlORcU+cjvjVaVJ0HRsGjU+UWk/U86EUs80/xvOREzh156pOvj34VLEHsEoCaIAdIiv6rBrKqBjh0onAkGgLg4yu4jOtX1OVwHX7XYi8HDpgDJqarx2cmHLDbVfKqwzqKJ406rYMORkod40y+SLuCcgVWP6JpajANhNVXjqe0U9jzzJPVRJC+HLjgAC//4DjN8JXPsq/MOYkLlYr7DkdHUsa5aHmr5A44XABaDETcmm3BsrtJfk7NdToLg/eOR3v075wu3tMeRdbylwqHvgguHMMu3s9NyqE0czwqRnDNRYgDCGdTqoc6fjVHU7RpVX5THl/tuI2BVfQDxorXa5gHxoUTKoOZ/R14+UpaqFr1aY1ucm1EXwTMc+xOSw3hCtEQIKI0uVFcAcjSRk3wrunZEjQwBZZevUH9Reu8W2HZkGzq9FYeGK6T6vPtUjKqDb6tgw7CsPvglYBcsBiPnS8gRrwSsI14W6YujkPOkeCrHqnURekFr4uDvwI+hHPJ6ltdTdRY71SlLVXGILyC157qQICTs/tkpj/Iy0N9aHawFKWi7MJ5zlu6s7HJe1cYOtXhXnjVzm3PVnV8cbV4QIytVgfUZJ4fGrQbsD0sd5i0PB9TLJvcn5ci5slUQjetMPjYe57p8j74jJ+KPn1b9pTpmQVSDdSFB6L7Bhm1v9ETtbcdhLysDYsJg3bSmWnWslm9snxFI2LVBNc6NKSbav9XamS7IH+UZ2fS5/88zOPXbkgGR2Ld8OUIOjaVC4qILBxFfOReqtb3YboNRnpnzlwV8Z+3s+jQTGqQVO/U7SdJfn25Co6VJimcsn4DkY1DtubwtqqVnHcGTZ+x31uegvFyZ33dE4Fj1DTYCYixNPs/fLaz4xxjrcAli/xm4VBMfQVgFG6yCje4Iy3dRyXPyTJ6W/Qz7TFSJ6x9oVgwoaoNi0Ljj6BY3DXlvm5EXXSTuhianQhfaWjV+g2+TKD9kx1/Np8qGkGbUZC4RwgDguXOiaqSaECYfoFgddbkQZhVE8/ikfAQBG0S1svtrDDR8UIaFS1eenoU+G//F0SNCGACFEMbmofZeLAaj6jtj07EmfNnnQT/EKd4v+e/wifgu/Uaf5NIRFSU2vjXkd8U9GwB4NrgXhJfMXB4E+ubNFGGkPKwQBogGIO6MiYEuOEBRNyTdgMhYxURMTGcnfb5EUT8WgxH1v09C4cgY3NoWRHm8MsuM2V65HP2WcxM51TUCuSNbh05QKw3A5L9upgKls8V5+tJIVNjOckIYACy5LRmNuPtUjKJebR2BrRfFtk2EMOI/jc0v723xnTw2dDzlhfgdk7el2L4jEbognoZrD5xARSMv0QR7pdPesoKLGHehG0oG3MHafNGUvC44AJ7rkqH3bgEACn9WhV2vU56IEKZvqa6mxfLz9XeDxC+VJvLJc3Zn+Zr5NqWR9bmoPkuEMEf0NXq9anskdXJpS4iqoMPSswo2Tt3NEdT6Khuma9wYVsGGkkG3HfJbniadGmet7ajIw2IwIrbPCI42pfNHc3Hza54kNMjHEzlPxOw/waicXlxech79d06Gxq0GbK8uQsDuiZiWno3cuUpT6o7ml4QTO1EwR9mfWCFMre4I6v2QDL2fL0efxmvH+5zk6j7IH71OFcEq2JD3s+h6ocT+EDMzKg3avC++33vDo/FlYAhuTJXUbtu8eUocIwP9YDEYET5XHF/7+UXjPf9wlD4QXTH88dMqBO6boFywj1H642NBfG+S+5nlaRnY074Oav16BDvyKu9sJqcq0uXOVapgajuEqLbj8rPp6MCog8b2GEq/s5sspN4IvYzVEUjYLxqP0ESK9UaEsISL4kn0vuWi8a262+tC+Jc4BsX7duF46DlpKi6+apb4ycxR1AXhW63tkLD0h0UcnywaLUuiviF1jRpC791C0U4IvUZLk6Bx408j1cbuT5udcLhOSv5EnH+IATC19EQIsxiMeCqnJ403/1YrAKLPQRL2wOrH8UpOcO3mDgq6BMRYGttXLQbjP8pYR4Vd87f8/7fDJYg9Ysj5sQN6TJ5Kf8uFJ/nEzEJXvx7Xof8sBr1EW3H/PkeHTW83deAGxj8XL0PadDEd8cVVfua8YqAlUFskyHH9t2BqjpmF3GGjvMwEV39tg+czladS5NNiMGJb4lakr4qgYVbBhsDZycida+JOWTITJOGB5EH8JakN/I74I3fL2Pjy3+SOm1wgkYM8939ZcqhLwoiT7GbzExWTW+TxEfTdyGmzefY+KzqKtJeUwPBpooJXq2BD2aXL8NshWncibUKtDsgdlXprk5H2omgZkSz2Ca1eE6Zg29EErr2U2ysclp+Fx0/JONJRPFmwpD0O2xyxLS64cAgLLhyi8YiREkA8mQUg3vGA+sTK1UulSuPZmYs4nkj/mJOVioyvJUenIZ/f5Mqib9YUVsGGzW0bUyevSZ8twcLbLbHyTjMuv4EtIuF1qAH9vT0zUbHgehj8QGwvjNPze9ubwWIwcgs00heJ82BSzorT56gDWiIcXzHdxf0cT4xp2RklAyJRni72NXKRnvU9JRdEih8X1dHK8gugDWvDxWEFn9I/fKlzZmKkh2035LNoaDR9pmYBU61N2MtEZ8/3dvjD4h3B0bw604zmlRskJNzv12nUMTWBxWDEurc+o05ec9aHcW2j3sGGHA02Xbd4yVF4wsk/YDEY6aaMVbChrFcEF59FwJgTqm2QuCRQjOG9C7gyy8cAeT5WwYa5XZ/gwm51vqnIj0XQhBTsuCBabAscewJD697F+cmLFfEGmJ6gND/M4d0JkHZHeGBhFWzw28I7V5fHK8u5oFjAA8D5WbUUYxh5Vp6RjVcaikIuObUZ2CISC4PEu20PPcX7l8RPFquaTdTsckc2BwA0XizOA8TfZdD44/RuYvCsPEV911ubjLJeEarvEgB83xHpkfbNQp5GeFkSYtl6J+UlllXV8iLt7uKmUNqPWaQvi4Tfb1O5sOzHVmLHfXeszDsI+9FTcN/fjI4hsS34cbLBt0kwfJao2t5q7DiKpkfE+tI358c2eVx5myVjQf/HRiHYrQ4Xl4UutDV2PxA3xxJSd+PcR03Q4ZN46tvOf9N0Wk/XZpgUp6fO+HH2TN8njwsjPMuxzm8vfTbbK5f6Gkv/VvR/JqQ2o+kHRD+OyOPihovulHQa6WxOcuH/NlyC2COEzemn4Df6JPatVPdlYzEYEfDTDDROrA9A7NwlO1vRk6CEs/tpXKtgQ7eaQNbDe5wAV/x4lGIBvnOjqOam8/RUDBj1azxA+LGRDneWACB7nglbi2qr7qwCQMnOVmj0RLpCSFATTsinfEe5yZPnEH/waYdCDAkn/tRY+uydAqtgw+nn+MVEzo8dOFosTfmCmY1D7papDbL9HxsFq2DDjq2S1UAy4cvzYMsth1Ww0fsTl5+TTjXJIvFo+AbYTR0UC1857fxjLTiaAOglbpb34EniLi4RCEjcvHfERURpv0h47cmm8XOeWC5O7G9KJ4oWgxFuO48pJmZ28pe/fzm/9Blj9CDYrQ6nVsnyfvR9cWFDnHk/sIoGPfJ/aQdtnToomKO8hM3Wh5yXjwLCEPSsZPTFXlPcOe/4oXiKVHb5Ck3TaKmkqjazfj4m17usyOMbH9HiJOl/uuAALs+egekK/sgJsNz0vSOQ0zR2odbmK1Hoct/GnzjLBS+LwUg3MQCg5u/SKcf2Heu5vsB+1uh7AQBg+pdk/ELer7M+j0GdjdIdoFr7m6rudl+fZoLW2FbRJw6FbQIqyrm8idPW9KWSie3guCOc7zUSd5ZvZxpf7jfxThfRfDfrPJqAnPQQdxkEbvvERb2aD8L+/pKTbm27Nv+jBZi8bgBRFZstV/zFGGw7moCC16TF/Yg0ZbsDRJVJQLyzxeZB+pWuUUMuftmFfGq++zW/KEXfUPtOfucMWiYtvs/cxs1JyhM3tbTBk47hVvl9aDuEOKRtMRiRsVpqo6RuiJ+qkp2tFBtiGr0ejw0bj7MzF9ENpMC9ovsCXVNRnXZ2K/H9Jpzao+iDj5+5hVWrv3K8eWS3wyrYcCVKy/FkFWz0hInA8Im6hUK2P8nLBoiOowFR1a7FkDO4NzxaES942lEET5eMpZDPLwNDMNlHVDMs6X7ZYR5yWAxG5L9ppvEKXxQNeF1e5smlu/y8WdFWyXqELVPF6XOcoEgco9NNujPn8UlAe5q33a5Bs/mJOPCN6A8ve4hoBbnOn43ReAk/nwPifeM7FXwfJv0o83vl6TR5lvWp0um3Whtnw86UPkB6tzXoeHQUnS8DXpLUQ8vyC9DgcXEc2n7+gCI9IDl3lq+J/mkoh+Zv+f9vh0sQe4SgdiRNOidRrwl8PhnXzLfpM/fHcqm1N/kAEhvWG/G+Xbjw/cuW4cVM6WSqb5q0+1l+965i4Dm6qCMaDxTNAsd26AtDsgdNSwYR771lWDRqMMd3xmppF3Ffuy0cTV2jhlTlCQBq7W/K8W0xGBEw5gSXByDu6LJliZojqfGRdCWxkYqBVXWBD9EHksVgRHr37+hzdlEinyBZulefMXPx5M8rTp/jngHihA+A25kMWD9DQcPRBNk4tZjG+3PRMlrmnRu/U03Hvks/lbs4s7z43Wk5DULfKtjg8464iNj77XKUX5H8rZA45N5MwAZpQc6CLCbkAoCcX2cLV4tBdAxOTr+sgg3a2rVxYwq/2Lu1LQi6L0V/SGfNP2B7xiGFnxyrYIOucWNeIKxUV1TLl1gcvdOm3CHv5FON/zGV5tWJgHOpT1OORl50kaIdqW1+qC0MSDxN0klFGcou5Cv4LX4iSnWDgWxisFbx5O/jlSvidz/rZLoxcH9wNJI+W4LyHqIfNZ/D/M535uglnMXGLUFWWk8XXxUXwQ8GRaHphrPUZ5laWcln/EVJXYw61Y6qvjoPWZCz9bL6bDS1uNh15nSubogKEsHDHpcc9teKYqmPkjGgZIAkLGZ8F07js3wAwIX3eHU1q2DDvBtBKNrhjwNhNTk1uQvDReub7J3DDSHNkPklrx5rFSSVyXcbn1G0m6vPmJGQuhuAeMJPUO+HZDwYFMXVkby9jDlXwNEifF8qE9Vavz7Wi94fvj84WuHjT552VEszddqrdgoLgBr80Ya1oXVE2ui+dluQw2w8AkBxgjc0iaIqt+ePotGJiofisifhxE48fKwTPsyRNh3kfXeW1wX4VFr0fT3bBq2HOP+RhTRJ4/8KryJoMRhh+CwRIUvEjRuiPimHpqNo5a/zbN5qIds/s0aIVmiJqt2hr5aqjg1sevaZo/GEfJKNBQqtDlbBRv0GWgxGaqyp0RPpovDeuDEA0fIiodM5dQgAoCw3D+U9xbGAaHMAYl+1CjbcGm+iRqJIOVkrtwCQ3edbqsLMlomotsvLWHdDMrVeSfySWQxG9HlqEr2rxdZV/0Bx3Al4KYmG578hCZXLK61vEjVutu5Ca9SCxWDEicj1El+MtVZ5fPY3+fRaLanDO5vzXfi/AZcg9ojB0UK04coketeEdaTrbGFLJlgA2FokWrKzGIz4PDCUftf2zodVsKHP6UIAoDuOhFaDVUko2ChOFuXXruHqU0pBZe+3y2FPOcPlTyZMNUEmIXU3yvILqPnbB92vcGUmA5NaXdjNkholsUI2wCyq3VlO34V7guTHpiQ2kvJ5+TlecLIKNmh753O0+w0Yw9WZI1gFG263K1MdPOW8kzsELLYG7aALUblKJLuQtwo29Jgq7iJmrzPS0x75oB7bcxi6zpwuCpXLIpG+opMiXtanJtwbrlSlZOuEzZtMROSZ+/5m9DtLVz7xB85mDEGcltwgZI1YopqnWh1eizOhz+lCOtmzCJydTE+/LAYjKu7fR8MV0j1F7PaG14AM7P1WPFUelGGheYYfG0npDMnsS82K07qqVFeU1x37GfQM76CUfU7amGYPP3mT722Wx9O7b575ZdSxMDmZ1FVeRCb89hv4NACgoouRC5eD6zsFylMalgerYKPGC/r7Swv7y89L7ZSo/KUvF10zeCfXpc92fCcuVoInpqDZV+IijLiLIBYb86KLFO+VqM/KBdVaV0V1xlpbjnAn+mq8E2RFFtOyEIfe1i3f03gXXxF5JIsjeXqyICdOvit2t8TD2zWp1TJSHkAUnOTp2d/sZgX77P6QaFpe9jQyaLxoJTXzyxjKh967BR5Y/XBuymKahny+0jADByudxNZbm4wx5wpgFWycqwWWH9aZO/t59RmxrEQ9zmIwIuyzeDT5hrl3+81SKgxaBcnBtpqZb41ej7VtvFX7L7lfGzT+OL1TdmDhUgz15jdjsj8xYdx5aQzuf+Y2jB+LggvZ+LAYjMBub5wpfcCl5Z5XwmIwYkblxiMJ39dui2JzjcxNFoN4ck8cM1sMRlWH8OS/W02golCcJ8lCWg2cEF9pOZE1bGQxGOnp5Y5torsKYj1WLlyy44t8jHa0eJePWWTcsxiMnGo3IKoEPuxxiU9fwG94qo2FCSf/UITXGy8K4N1TH0C39zhujzXBXlICvW9Lrr94rUnmTqAtBiNWBkt3rDRuNUQhqVKFucO8eNX1ATQaOmYC4olv1ucxqCgqou5syJjE1lVZrwh6VcMq2FD8hPj+z8Yvoqd2UytPEcsKRF9f18uLuDLIQcYONq+7T0njq6O5jqD32MkOnz3KKIf2b/n/b4fLauIjAEdWEwHlgvniplC0GKK8ayWP+252CmJqirvj7MQOiLtwO7athfn5GUj8cgk3sAfsmYjtXb9RqIBlLIxG0Ex+sLEYjLgx1YTGR+/QnWwSfvepGCR9JtGWO4RUE7LyXzfj7EzJmpe2Zk1szxYHY+IcWb5QqQryeGrpSFjuXBNVY8z4LhzBX5dwTjXV0mv0enqvgzjhJHw749Mq2DAksy+Kul2jcS69aEbqi7wlwNezRRVTNVpZazsiYMwJhbDLxlUThB09d5S+W/w0egLHxiO02LCoE8M5U/fyOmO/N06sj2vm207riIRnfhFDhVZn8dRoEQubas8uvGuGtlT00+SsLuRlvfCeSeEsWV53Jf0j4b79KDcBy53TqpWB/CZ5ku+d3o7j3CuwFktZPHgyCn8uFt9Xzscm+L2a5PB9O8pf7bmcnwW3fPF7qJei7CTe1XgzTrwhtedrcSYcf3Mx9656TJmKfSuW0zTO6oP9ratfD+W37yDh4nHEtghXPE9f2QnBk49h3Pl8rGnd0mG5qlv26ow1bFzy6XGgEX4J2EXLVx1aaibUWfqEFpvfhzlHEOFeQ1Fn/Xw6wV5Whg0FSRjhbYLP4TrIiy7ClVlm2OYswitXjMgpakhVNP9qXdz8PZiqYbH4IjcJL7RybiSF7Rds3bDW6qo7djvC/NxEbLjTiZqad9anq8Mj65ZB1zoQ5edFP4bamjVRUVxM6Wd8E42gZ0SVyQ6fxKPZfKnP9zldiF3tPGjfdFSOCxvaw3fEKRQ/HkVP0km8gWdv4KutjyN9HG+Q6Y2r7XHUqMPGgmTU1dZU1C0AlFo6oYb1GJeXs3HB/PwMePykfq+TbYcR78Yh5W2lJWAAtH12i5+mamFTXs/O4MxKJzdnfBmDwOeTHZaNWEAlYOdfXaAfNUoip03c2vwVVDXuss//Sebr95xu+bdYTezVLv+Rro9/F//9ouY/GNyg8oOo59xiyBl6f4ruDFWi3dfxsAo2ZH9swtv+EXT3LOcjEzf52E+IKipyIcxiMCLw6RPcpVqSJmjmYVx8RdzdbJeihcVgxLT0bDRcnkQdf7IWuIiJbAJWCJPTJp8tP0ikd5+sgo0KYQA4FRwAiDoxXEEv7LgGL2aewYaCJKSvFE+FCD/3BysvUxOQuql1VUPzDhp/HBcer0fjEGMU/j/PgC44gPJMLWMB2PHbWgBQCGHEUABJQ+5NFHW7Rp2pAkDzz3ljHAAcCmEAkNlzFQ1nd33ZuGya2D4jVMOdTYI9J02lk96VZ6VTk36+UYq4FoOkwsLugsbYhnF8kXAihAFi+ybOTa2CDSEpekp/RNpl+CY8VLQXeftnwYYfCKspGnxg8iZpfd9ORHHrYso/+9xZXfm+laRafvbTfbvk7Jn8N1mUSGmQ0+fLs5Wnpixti8GIDp/Go9Hxu+gzZhJNLxfCyN2RWr8eoelZIUxOV56fLshftT5JejlPB24Fqpa9x+SpyHvHjEL/Ci4NK4SRuOQEGxCNcqjlDQBr7jbieKu5VVxYEyEsqNI5ORmjcvqvwN3RMfjoTD+H7YRctJf3OU2kqOYoH0MA0VAAy9v1aeLvZzOlExqiogmAs0Qpp8XmyeKyycPhM/Y9kPdSNCwaEe6SFTmSbud9N+zIO4abk0wYMHs2rIKNnlY2XSCOp7aOwAb/3Rx9loaufj3kvS3WKXuvkdQpEcJI/A9zjqBgjhkvtOLv3sjfAaFF/tmxYbZXLjLWhHN1pSaUsfQ8DjSCrrXYHm9NEPN+MCgKs1uZ8XZjdXVXeVnJ9zp/NlaMiSQuawmUCGGAOObnvWWmZcgeshTQ6mAxGHHyZd4g0EsNxDucRIiq82dj1X7p95445tX8XTSYonF3p/G2tm0Iv1eTON46zIvHUaO4+TrUOwa9zw5UpSsXwkakKe+OkX+yTrg9lncA/2muUpOj5uAr3PtkQdrnn4uWoWI3vzHC0iB8ZH1qUo0DQCGEkRP79GW8plDWyCXU0BEBUVsElKea7CaoXAgj/AGSoRf5fASI7n/UIH8PRFVVra50nh5w4f8WXCdijwDkJ2IeBxqhsOt1+tzZTqB8V6q68WJ7D0d5WgZ0bYORNrsegqcdVY1L4vcPNEPbpBFViVHL1xlPbNjDPhHUmXPuT2Fo9EstHPpqKZem+7RpqJuSh0tL66HxwPPcYOWojIDkv6Oq3VPVsmo01PKbWpo+pwvpJCpPOy/nMIyMPjzxtVLWKwL6PSmqdVrVzh+J43WoAW51vomSAZFw33YUCRePQ6fROqxzR3QAdX89JA4gqiHlRRcpnqvhrezjeM8/HDkfm5A+bjE6fBqPZl8m4sosM0ZM3Y3XGp1XLHYsBiMyFkQjaNZhRXhVbRkAVuYdhLe+rtN3CwDpS6IU/r6qUz/V4UHONzmZqk5fZE+RCHSNG1OrfI7SRpyoQEpH5b4Zjaviq4jlERAXXJPriYsuTcdQ6O4UYdvBLfR5xoJohHx4AWWXlEYfqjvOOPrNhlkFG6JfjUP9NUp/XGw/v1pehB1FvljbRrpPqttrQHlPQcFf3ttmpE1fpNoXiKDm/2rVvuJaHamFpd5JinbrLI08HhvXKtjgt3UacgYuQ/h7cWi87AisBSl4OrcHvevrCLkfmNDq9SSkr4pA8MQUpK/ohJzYFVJfrtRssBiMWJl3EJNlTswJSmIj4Z4gbgoQB+JsvPw3zDgbz9edVbCh68zp1IFtdTA/NxGzR0yHdcv3Yj+XaVEQOPIBWdWYWJ3nX9z0h7WdJ+6OjkHS5+JGI3tyRaA1tuXuI/6VfAj0vi3pHUzFM+8WyHjGh9sIubs9AE/5HMMsrwtcXGfjeOb8GKru7Yg3tk2nL4pCcPyRKvujWn5q74t9ruY0ObbbYOR+XAdnzT9w9Cu6d4R2v2NH9VkP7yHATVJ5VuVVq+OM9Cy5cJD6+tR0agf7sdOwCjYsu2NQ+DG0CjaEz43D8TcXU02C2NCeKL91y+l4L+dFLQ5bb7X2N8XJdB/kDBBV4Qs2hsJ7qKRFc3m2mTsNldNTC/v5/PF/jB+x3ad8UOd/+USsqLACvdvnPdL18e/CdSL2CIIIYezkfmMKv0PE7uwRsOaW5YMKO5CYX5iBsvrinbGEXRsAu0Qz8/uOil0ai8GI7ZmJ2Ja4FZe3SM4y05dF4sZUkyIPduBWAxHCAKDVyFRqdvj7fEl/vebvR1DRsD4aDzzP8SEfwIKOulN+Sy2dEDw1jRssHwyKglWwwW7qgNarJOMe5ESNo2fnnT/KB+Bd7Tw4HiwGI67+KlpGe8UvmgvPmCreqXImhF39tQ29R0XyJPrqhI5VsFGz1OSuSWyLcC4vOZ+E1tV46T4IsUZnL5fuQRFLiFbBhp6TpsJiMCIvugjmk6KglvMRvwsKAMJmyardO+NFvfb0ceJJx8mXFiHju3A86HIP+8NqcWVufWAc2s8X739kD13K1QPb3sidEovBSK2asZg0aqaiDZCdYpbP1rNsXBy1ic8q2DD6nACLwYhWR2rRZxc3hXJtiI1vFWx0l5XQPPr+Ys5yJUmb8Q1/CmsxGDHL6wKlQ+7yORPCCjaK9zm3/CI5G9eGtVEIsEhO5fgkz4gfQUA05kBoEyGs+zTpBLqW4R7KLl2m6dkTUPZEiuRpFWzUf47amCEHWUxZDEYqhJG82Tjkf2zLzpwQBgCZlxsr0gCiQQ02T3IKTWgSn2UWgxH3K9RNX1sFG5KEVrQs12aYOH7U8pWXV96eAdANgcZLkug9xKsvteLeFTFwwoa1ej0Jev9WWNp1DXReXgiecozms/XiUarZUDgqBt6VBiU6Hh2lKFNJPR2lyQph9B16l9HfbRfG03LU3nwYur0GriyRtnLIQZ7PbmUGjpyiPKoJYVbBRoUwed8iJr/lz8inxWBE/utK5+zcZztPZHwXToUwq2DjhDBy2km0ONi0BN3iptGwiecvqMYBgG1Jv0Gj1yPzC97oilWwofzKNap2SODZPwu/h3op2hTAtx/23hMx1MGezqoJ/SQ9sVrJgswp7BgWmjQGD56Moj7JrIIN2YOXKsrIplvntxdWwYZLL/I+xeRCGAAqhJE5Rl7GALe6qn0rZ30Y2n9ROWZV9hXy3M+tLnVPYj92GtqaNWExGLEim79GQdI0XpwE/52TqTp3wpm99BlxW8GWz2Iw4qGdb98VXTs6fE8AsCXIiuCp0qk+Uupx9d9sfiL3O32J0mp1vYMN6Xsddz7/H+VHzIX/DFwnYo8AyO5C165vYd+GdbRTRrwbh0ZLk3BpSwi8X69A+ZnzirRquzW6vQaknfdG8AxpZ8zRJyDu7G1L+k0RXjQ0GnU2HlbdwVHjQdMxlPoKk+eT+74J5yctVuQhL4Pab0e4t8MfdftlO42jtuPVelUcWr1evcvWcj4+zU3GS61iHO6q5X5gwvmJUjmX3G6BzW0bQ9+8GT1pkJdPW7MmtF71sS1lB5cnrVdm96/9l/EwfMrvsM3MSMfCIN5/0l+pE7o4r7x3I393N6aYcDcASB8v6f9PS8/GsmB/pycRBOU9wqHbd7xa750FXVxUnrixdeGoPI7KygoRAOidGbW08rhqfcZZfDYsak4cvL5zfA+kunXg6J2p0amqTKpjQLOmKLt8hcbP/thET5BYWnlvmakBAjn9XhOmYM/qFRwfsedjuRMsMkZU552phRP8lfGCLe+t8vuOnXxDVG08/dwirgzjLnTDGt8/sbawIda0bon0JVHIGcjfmST3fvTeLaiftury54jfqsKreucAYDl9Fy80yIafdTK1iqmGy1tCcDLqR9W2uL7QC6ta+wIAMr6ORtCzvID1+Jlb+D3Ui3s/avmp9RNAvBtcL6cCnuuU93mc/V504SDiK09I5PGc3SPSNW2ChBM7/9I7UYO8/pOLy/G2f0SVbRsAeo2bDLddjjfpWh2phdyoB9C39EZZfgF91mvcZOxZsxJr7jbCOM/rirGtOmOMnJeq+g4AhCaN4U56HNLWaGC9KPrQIye68n57Lc6EmEkncPqDMNTackRxys3216vlRRhbaXHWb+s0TssBEN9l+ZWrirT5r5vR8gNxnCL3FdXqSRfamjMkBIgq495bdEDcNdSy5Dgc/8nv+bmJeO6pOGgST3LhcszLOYxX/KIV7YZ8J1oc/6Q7YjtP+f4tJ2KPtb/wSNfHvwuXIPYIgFVNdG9iQPm1aw7jVmfylS/mAvdOhKagJjLGSk4kycDS7qt4uvAgA4WmUzvq/6rXhClw23msSoGO5cXncB1c7KtD+V3Jap6jBScbNvjsNWxu21hBU+/bEu7fF+NUQQv4P2VTDOwsfWeT0qUXzGj+hdKJbcDuidTEbaStnOrZk/TCy2YUN7DTXXVH/OtCglDuURM4on7RHgD0fr4oGNhCcWeOE4CHRaPYS4uGy5OQ/m0nBE86hqx1RgQ8Zavy/au9j/SVnTCuUxKSO7hRgyTVWbzKyyeHz+E6OLamA263L+MmyOx5JoU5Z2fCrTw/wtvAszcws34+X8eVwiJb1ttjeYfd8roAgLLeEdDvFheG8smbVf9h07AbC+TuUYt5iYq6cdYeWRDjJCxIHunLIpHz+HKn6VmMO5+PMR43YDEYUTIgEvuWL6cGbdj0cl4rdrek1kL/ijBUnc0Sq2BD0A9xWDlsMb3bCAC9ThXhlYYZToXK6owPavyxdR/+XhzutLYj8Plk2E0d8N7ab/HSi/GwvLtfVRWOpUUW0Y7qQP49cG0c9R3kiF+5MQA5DQCwlZTgFT/H91fltKu7eFZ7V2HHNUgNVzrdBkTVTmKm/8YUExquUG4e3BsRQ637AZJRGL9fpyHnyWXceySqtHJ+rz5jxonXeGfkJJ9+T45F4dwi1HtOi4S9v9DnmwuOYLC3eKrjzPgKy+uVZ81o+rVYHn3zZlh3dDPqaWs5bYNV1aOubTDKz6ZTAUMNmo6hOD+1DoLjxfHwTkIgyn9prFBdludBPln1O2f9k/DCCj4O24ZGgztjolHvB3VjR87KnD3PRNcNf3XjBADy3zRTM/jycbKqd3Bjqgl2LdDsj0soy85F+redUDuzhuK+eFU8qEGj16P+fk9R5b/SqBIg3rMlGjpqtMn3jQXJ+OWeD35sYxDpudXAvYEdqb9ER33Q3tkIzSGbKm0ClyDGwyWIufC3wJnVxPTFUXSSA5Q714ByMCeLdvbZrW1B1JBCwRwzzsxapDpQsAMDEczUQOKVWjph76oVAJQTa2zv4UjY/XO1JjkA0Hp4oKKwUJWXazNMGDlzF15pmEHz0gX5ozwjm5uACub8P/a+Oyyqo/v/s7sodsXuUqQrYllFkF01dhfRGEvs0VhigTRTTE9MeWOK6QV7NBqN0RiNUeTaokaKILpiQekiXnvvysLvj2Hmztx7d/H9vt/f+5h8Pc/Dw9650++Uc86c+Rwb8xlF0/N3Y4S4b9jgMysFPmm1sMhvNwJ/m8ocR9L0vZ6YBI/tmTCFheDoq3VQ0HcRExLWtxIdodI0Ee/F4cojtzWIhuq2X5xgRf3F+qclrtIBQODaqSgYPA+hu8YhYGSW2zLu9e2IKpvFy9lCn7duyfwdAdwG76Ieo47KGF/nrNtNT09LCbhnHu/GRKKkuwdCPjkq2PHz5Z96yYZmn2sF6UnFXVASTaCTQzI8sX19BNv8ASAs0wPZEaU4+4wNTebtFe7ISbIDXZ6bipq/7hFQtvj68nUYmn1WuI+Q92U08kdoQW8AEN9WnFBefWcTdPQ6Lphm2c0WhrapRzSO3v2MqDfi3MJo58yNgtn/vO6psSQ7ELBuinCfRE9Q6Pz8VA1jopcX4F4IVccFCPBNyPP6zCEdh6bwFjj2Wg0Ej92PK4nBSLP8qpkntGx6SquuD0Wfo/Hbpo9iEP2VERUozv7eEo0fO6ob5/wUKxa/8SVGz3kRh55PQLepU5iLAFeCph6p49yNiUTVpAxNO9XxJdmBmP5j2Elj7zETsXX5Dy7XDxq+/mQGBnpHQk2v5B/Ep0FtSL6PjmFjU52eP5EClPlpalAfiQe3s7r1j+qPjekb0f3QIHj2LWLxafnu1j69d/QeGE+84HU/a6m6T/iTa1OdOm6ViJTuxEZix8IFlZZ1P0qvyhQTenR9eDSSv6q4B6dacykZtnujvKdyQlsZUi2tQ/dJk1HlZim2/LxYUze6T9OwoJXTEPximjC31XlTheL9tI+Ps+Z6HcwPDUTRL23hPyJLE0+vLDVRBFW9NHw9TA3qw3nhohBG7xKaggOQuGstoh2Po25snqaelIKXx8F/4x3wsPnqsq4kBuP84UaCIoenvHfbo2jmmw+04EF51k1ZAf8VQaxf28IHuj/+U3p4R+wBJH5ih8alCwvNxn0SAAVFEdAuREHcqRF9x0OK885t+bIAoO/QJ9lvV0KYh68PW4D+XCyaIvHlOrNzWTz6d/ZpG94p2IeAxKdYfid/I/dg6OKut7A2mpuK7W1qwm62sDypEEbD1G2jtCqM3Ncq/FhBKgIUJMaS6OsI3TUOxjsGzaLpsZ2cojizc5kQBoAJYer+A4CG81KZQ2r1Qs0TFcLUxNuRq8lutiDkaeLnKOeRpQAIs0xJXZZaCKPv6X9eCLs4wQrnkRzhO6qJF8L4eJLswPDs01hUvFvDEPDfxxVVTcpA4GupcF5ShA2PQH8ARKsqyQ5BCAOAoF+moeXCOJREX4dHU+IU/DvvPUwIo3MkO4L4fKuXd08jhAGA/Ah55n0wxbbpKdzVoJRxNQAR+8vYM01D764I433dMqEfb3U7ozmZCcv0QHnmYXbPRP19qPaVF8IM271hN1sEIYyi9vEUOi0dyRU+qNTU5bmpTGtPvw3/jeg3o0KYul7qMaKnkeffF7+j9A/9UwthfPzErasAEP9j+b0WAwDSLL/qxqflzQ8NxPXh0cJ4k2QHjnZZJsRvNigbhohwIa9T68IgyQ4B9UySHQwgpfFjR3F5nBYJEAAazk/FDP9oHHqenPTwQti3l5ozR8k8Epw8Q3vXST1H5K4ewrO7NYGe3NrNFmxd/oMmb/qOz8NTpfQ7P5W0r1d15Z5MeeZhhGQQEKI+IyYI6eObd0Hhz+3YM52fzgsXhTHlPEdM6Dz7FuHka6TdN4Z2wkDvSMwqTBfGjnrdsZst+KJI8RNoN1uYEEZRQgHA8VqCpl/UeamfTfUIKm6bL+NRbbQCUJN4dJeAQusqPY/4ydfXVXyAMPYAmcNxuXkwtQjWzDv+v3qe8b/500k9xRcAJoTR+75Gg+JIWU2Xx1qRMy8S1pem4UKbKkwI4/0Yrj+ZwfZpSvkj5+Je345sfFH/iDwVxhBlLd2r7IPGMgTDE2/adPsKIHMagEYIq/1XQ9jNFnScGadJw/NGAAQhTL028f3gvHARpoYNhDAK6OLMK4TdbNEIYXwedjNxEG3asY85JLebLcyvJI1XNzaPCWHltnZ4Old0/7B/1CLdvnhI/1x6KIg9QLQ25yAk2YGXTokQqJJMIHUBZTK38ZUhv2xjl4/1tDN6xC9A/GISPWMaAMCQqtg5U4eoQRnVhHw37tkgapIqFi9XDDf/rvH3KXg/sANCn9rL8vQeQjS5Ji9yz4Bu/OHfxrM4OXOJacor+Qfdat703kmyA+1mxyPgtVT0tz4KACjvbBHiB4zMYg4kj69q41KraWwX5rKM0q1+7Jl+FxpHT7ihYBQ0b+rYN3RaOqIP3GPxCle2ZflQoZUvO/lrcsl6wOFLsA8ZJ9RZkh0o7RUhbAz8+/wVSv1rnBMvR/P1lde2Eutep47wvWPb9MTitx5joAE8STIBS+GZNr04PDPW64lJDNHP94MU3e8R/EIamr9DHJ3TU+LYNj1ZnOAn9gttUJ8utP2MOApV33kBgMSD2+G8epW5F6BpFvgmY1YTkSmwmy048nSCJoz+p2mpMMLTxq2RGHD4EoJfTMPVUdG6jBh1hEupvOdJzXj6Jph837xlIhPS93FFscL3L++AVP3OWJvAJ/NjWN0uPh1tY4tFcUI4T/ReGQ+i4YrBvFHhagAgiJJ8H9L565OmXPY31qjB3id/NVcQlPkxSn8bPDxgOn9VKNO5h4AoFPT+gdVnzXVFEJdkB64GGDTtBqBx2m4KC2GM6YZwL9T4bQ9j0miZ6nuedrMFhipVhTDe/E2PwVfP0zub/Vm9wlPHsLpYPiLgBx8UKo6l1XmOOiqj4bxUIZz+z428A0l2YMsvi1n8248SEKSAUQdQGfE+l7w/Ju3e/S1Zs94IiNIwtXazBXc2+7M0z+WNQOiuceRbV6xjAFBr9R7W9l23FUAru5lYhejth01S67Aw5+Ur6JP9KOoUOdldIFoX5/kLmn4K3Kw43VXne314NBYU7xbCaLpLzpuo/VdDGDw9UeY4QtbDnifx5Quj4TyWJ8C503z5dqqVHK4ETEFYrQgLyyTCfMDrBAn0jJWc9KkVEZLsQL1lqQidmoGbjY244edk+Rh3K2sNPcFUC/e8wo8Cdejteclfz8PZZwioS9mNGzC0D4fvhynCHtk/IoblXfQvqyYPAMw339735gjhkuxA8BMKWiPlG64PF9dQ+m0ooFWLvVVwYZIVzvMX0HafAfmfkfgn3iLvqeIkJyGKObrny1Q/U4fj9Fvz7yh5NPdFSY+a+D4kFHf6RbJ3fyewjjIYUAbj/+c/Q+UV+ZvTQ9PEB4DUpol0YtOL0fxEN1SpiqTj6cIm7I45Atwf3d94vBN2fzMPAeumoHDQfE18vfwBYpZC4Wf1mATeCaRePUwhgUjc+ZsQ1nafAbOb7tdtmyQ7ELRqGrvLU25tx4RGVxezJdmB1mljBAfYud90QsHj89z2ibu2CwJoJZe++e9gN1t0zWeoGRCle70jsH3pIo2gXPhzO+R0+xEAWLqZuY+hJmd2RuMbItsg6fdlLG2VHc1wr/sp5MyLROGj+qY0kuzA4bu3NE5Y+UvPeu0DiP86ymC56jdTaBASd6xhTBI1nXXXb67KeyRuCnNYTOnG451E4SK6LfKH1tQ1/1CPKz3mxm624NqIaNT+JY2ZYOXMi0ToVJGZ9QhojqJR3vCZlcIu1qu/e2Vt4sOpuRGtg159qZsAAChYYUFu9yUsvt7cV6cHFFMsV32hris141XTrMJ0vBEQJYTxZefMjUKdbA8ceDXhvtrviigE+blpVjSa6x6G3tU7vbbKa1vhYKcVbuugrqPaUTWjCrhtV2UByl1FGsaD+9xv3QEITn7dxdP79ur86RxfU5KGoT7RDKSJ3vW80y8SOxYt0K3j/eSvVy8+fo+Jk/HnDwuEtHx83jF6zNH+SGq50eWYdTeGK6sHn65b1i0kD2yBjSnr3Y4Nj0B/lBYUucyHmrTSd7EtHxHMHimZGjaA8/wFZvJO3Qz8T8jV2KO/i9+1we9drQN7dRv08gMUIJ9LT1oFIKLANVOZWxJ3RM3lK5v76m856qiMXyJb4LtDmxC7bAb830oVnDC7G/uu+udsvI35dqRhxnZhKDuQjbtbmqNqn+Mu+5O/BuHKrUZlbdOjvxN8/casQNSsbfr/WtaNa070b/tg98d/Sg9PxB4gutubnITRRYVq6icUdwUAdMu6hfJ7d9kEzp9tRewjgwEAHt5mlo/dbMGFSQR6efbFIBaup1n6eva3AIDQ+HSm3VJrvNRpy63tBB8garIPGYfavxCbca/k+rr5OnNFAQIAu0hOqV+wTYDQ5gEVDKkHWH67EuYLedHTLoCctpkaNmBlhDy3R1MXPZJkBwL+mMyeh2af1SzIzjNnEduuDwDltIPPt/2seBSubMvSUCHs2ghFO8ebAQEE2l9vUwkYdYD1oykkEJ8GtRGEMED5VuUZB4W097qfAgCNEHann6LZu152W+OE1dSgPo48ncAcZlJqnWlk5dnNFtzwK9XtS+F75+Qj5lGipc+rEBz04tN8TWEhQhjtD7vZguq/V8CBp9RjaWv+ShQWhsg2MIW3ANKy0DD8nAC3r0fqzZAfqylfEoEovjnxz0SFML5dpYXH4TOLbOQU3cxutrCTHFfluJpf1NyoxQ/K6ZI6HyqESbIDVQ/WgN1swejCHpBkB3qPnohJOYXo8uxUlk6d/vDdW0j/SLyAf3VTkEtmRpId8JmVgq5ZxPG1qUljVt83AqLwSaHCfBk8iCPugA2TIckOFA6cjwOvJiC25SMo66ac1r2eL54quiJavvNYHiTZwYSwgPVTYDdbUPCJFUW/tBXmH/8NAXJKWPSh4mZjVUkqwuaTUyIqhKnHyIDDl1jYWafoV69xQoqQJvebChO5MmUuu/r2FDDGbrbg/BQC+sC/j31kMOxmC25JAXB274DcJRF4Jf+gZvxcbOUh9A+lwNXThHh8PcPmx7O+oWkBMEVLLSMxm625Zg9OvGVjIA2emzKENZPPg/6npmL8O4AAMPU8eIN9K1O9usLYt5stqJqUIeRXPNMm5EGFMLvZAtNEk7L/Ldea5/P/+bWD/ld/a3V7KO1sWx2lRcUumWU2/yuEsJO/hQvjzm62wCOgORPC6LvEo7vglVxf+G7np1jZCdzT9QiQjvGv/ezUkS9Tkh2QX9GerOsJweq5TH9nT+HAUowKE03j9xynnPwBQGyfEeIYqwCt8voxVXD1EfbpSTRJJYzynVjRuTL/vH2Jcqf831mbf25pRtm1a4hv3gX+b5E6qM3V9dKry5h1vgULUwthALBp088AgKp9RH9v6jypELbhZCacPWTdb5W/vD1MrdwjGp96STTN/DudiDlh+K/8/dPpoSD2ANHGBHLiwS8Mho6tsdjvL5jq1cXOttUhyQ7cjSGLWtCMVDjzClH4czucerS5kFeDRWShmlE/X9HGteoGSXYwnzUAYaRcaZHUiztdXK75V9fddFm835aye04rA7YTZKeKvEYX9hDi88f8RR9aEbBREX425aUw4YVftNWbC30+9SLZoG42UxwrA0Bi1jZNPakAxTOHtH2STPzp8Iz3lLqy7qZGES4DvjqkqU/j71JQ5UAtIV8AqP1Lmi7Ty9dDL4yGJ+78jfkFo3R1dLQQ99J4K9ruM8AUqgji6o2v/+zt7Ddv/nZ+CjkVSzxI3pdEXxfSfd5MuYgMgJ2k0jCeGdp2S9noyzMPo0lqHZcbZNJNT4XxzlZAWdTxFhUTX1RqBEK72YLyjINwHj6G3CURqBubB/PgI5o81H2ek0DGatdnprJ4abedmu89NPss+61ug/o58cAWJf+5Wj8+enXi31FGQ00Jx4n506Xx5BsdfjYBkuzAhc6XCKO6Yx8WhQYwtxNqkmQHXvS3Cm07+3tLVPu6vm7f8MzlWw2PMgUE395JH09n8ctLSwEAoVNE5tp59SqqHClh8T4KaivUyRXRPE782lpQKoVOS8eyE8kIfDUV/iOydCH1ab3zey2GrZfi8qCusTr83k1BaS+Ckpj3ZbSGcX/W6zgre6yv6KdIkh24s9mfpVGbthoi27ht0+AjZM1oOJ8IlfSuDAAk7loLAKhuL4Rpxz4U9F3EgDP6Hb7M4pk/VdZFWg+Dp6cu+Alth//sA7rhes/GUjEPOi7DU8fg6qYgnF6nmGjLr9hwret5rCpRTipzvyfC6bR6J7G9TU3IM2wIfDUVzstXhHLUJtwAGHqjum6S7ICzoaIRDxqzH63mKH7y1IIXX857BZma9p6fatV89z7Zjwpx7vUWkTTVdaV0KHq55l1p4XHduJc6XxTWEDoO+LiG9uGo9kc6dtxSWDT6jn57Svyam7+8Pfz21ET+bGWOF31o1aw19K6eVJKpycNYKipEnYePsXfrTyoWAZLswKHo5ezdsek+eL0ZccGyY+ECIQ/qUNzdvLhr7whJduDiRNEqI+axsSytqV5dl2aG/QKjWf75s0W4+puDOzFlzc62is9IeqeUr5seP6SuNx92+G4pDJ6e6HVkoKZOeT0Ws3vXrspo9rnW9P4h/d+ih4LYA0RUE8JPytM2wrhSyG672YI/f1ggLAz1N1YnzkKhXehoXqYmjdkmuMA3GTmLI1h8SXag8COy+IUujUPRByKoBZ9ntylTkPr53ErbwsOZSycV4AoedAAACvsrC7b/m6kInaws9LT8K4nBwjNPOQkKk9vsixS0+GscM1Hj4889vltoh/PcOdjNFmbPTuPTP94cj2d2JNmBnB86aupBzU3UGurDzyrax47vaC8W65HdbGEMAc+cByQ9BUkmLgfoJWJKdVaIDJjXklRkdSiHM4cI4h7+fkKfSDJxUA0QRhwgPtLsZgsy352jEchdCec5c0RB3m62sDt+gHLiRxmapc13uWz3l8Gio2RaXmz3oUTICCEXtyf5ddFsbDxJsgMFfRe5Fb54ok5Qa/ymAFNQKPO8r8imnzM3ClPqyrrlUXo6N0cQPigzys8FB3dfht/MG6XUY3cj9NpFn+Obd8HZZ2zwWpLK+urVM0rb1Cfj6rzUYZLswP7IlYJpGACm2eYZB/U8oHSVfBZ0y7ql6RNaXu2/GiLxwBZIsgMv5CmIhTNOt9ekkWQHE3rp2PN9/BBm1M8X8qT+hXjGTa9+drMFcjQBGDC1CmXpPbYR5pxHylTXm+8DAGy8b2i1Urc8SXagPOMgYls+wgSuSxtDhLzXtiL3fYMyyAlU2Y0brI/4MbG2JF0YT9O9ilgeN5ICWd60j27GKHcw+TrT35tykyudNzTc++MUzbwGgMPW5ajTLx9NB2Wzuh6cTpQBw30Uwab+fqOQjr8Tx4MTJP2+DGVd2wMGg6YO6nrZzRaYSs6xsLtbmuNIHFlfi9+x4ZmTCnjHndhIYezyrgloHemdOGe5AmBBXTvc6UeUnVW2uva9Ruvh7reHvx/7nfeVKPDzwDDq9YkiYFKFhR4DD4Dt4zRO0Jj9uOWswkyyJdkB/zdT0esJcsp1pz9pl/fHKfDbU5NZ28y/Ymb9vHWFCPbC508BXiz7tQqpoJfSiFNvuD7tUq/vQdsVYI+qEnFYXv8HUvdlJ5JJX2QoyLPOy1eY1QCff8nrNpTdvo1PLpC5FjQjFaE/xrE4NdbuEZQ1tA484MnGm1oXF4/ETRHiq9cVj6ZN8GpAJ1xZ5wOP3sXsHbWE4ecv3y98PufiRMHz70TOcuN/5e+fTv/8Fv6NyBQWolnMKRqUegGwmy3I/bEDJNkBr7VkocpfrniBp6dDND6PqmQ3WxA6IZPlGbRtAgJerzD5eS0V/m8r2viSN2zCIrJz/nxhMVFv7GoNEs/A8USFGXW43uKdZvkVtf9qyJ7pZmI3W1A4aD7a7lPQDim6knqxm9a8i0vmSi/M1KC+5j0ts1Z2VRafF/C+KFKYY3rxnj5fTwpkvnmoTypan2sjozX12RL2BzaczMS2Wyb0OPwYjDVr4uVoCXazBd6fKBtK7pIIXQaAN8mzmy0oLSqGHpX2jID5acKkzvCPxsWJ4mkJz3zz6Fk079A4ImQErVJMonIjFWGD0vali3BzcCe3AtHwbIJcdq9vR5S8roxfZ04+rg+PRuLO34Q2uRMQ7WYLej0xSdOvho6tAQB1dyuoaGHJY4X8+DoGTydMeui0dLd1B4DvQ0KFcRfy9B6U29oJ9Ruz4AVh/tDfP/nvQOkp0cUCT7Tse70j0Pg78v3pCcQnTZQyS0/Kuv3hTtDgvzFAhJUz1qu4EyteSqdgK1FvxAn9RX3G0RN7gNzZ48u81vU8K+vL4DBWx6wO5Zp+Df8uHh9nKBf2aVy72YKyru1hP3RVGAfX/AH/9Oo4+apN+IaS7MCd8ntCf1A0xpwfOroUStT9xdchNC4dx1e1EU6Q9da3xKO7mMCV3n618I7mnR95G3azBTeSCOQ+7SNKNYxVhfh8PahZsld/xT9b9d/TNfODnyN69Tz1ktakU11PSqefF03iTvzaWjdPAGytA7RrKXU+T/Pf8stiSCf3o9zWTjc/PoyiBtvNFhzPbsriZE9LYOvO9FMdGaKhnmBH07P6GQgbFJbpwUz1qF8pRLd1q3xh+Xm31+2Ho8+bWXjDfUTY7Bc7GgAQMm6fEJeWc3p6BTDEPcUk1tXaU2hfJHzf1/OzGDw9n85jO9nvPTcSM8/SnhFo4nkVVSuOPn96bYDuXk3zyZkXKbxztCfvcn8kwqTtBdEkli+brV19FQWm6U+iMAp+Yj88fLxZuMGDmNyW9owQTqL5cQwQ9En+2eejFOR+HY3tbZTT5YDXK5AJrWTd4s0jeaKKHAp4xH/v6r+nY8Kx45pwShQkqk6/fBxfpZzuBozMYu1gbW6kAK71a9GV5ddojtYf4UP6v0UPBbEHiH79/Tdm46/eGPlNmAoAIU/uI5rQngQBKa/HYjaRs17WwvnyVPShldwj8Ylg8NB6GlDzX7eYZgoAYvw64s0Ch8v4lHaR6yRso+dJkh0InbhXw/Dk/tiB5cObudjNFoFJqfaScinWbrYId8sk2YHCWVbdvuNJb7Ph61MWYGbvqAaXpjn4AtEA59+7Lgh44VUVk4ek4+nCxlMrpgA588hG8Fv8bKEutVem6dYx/Y4Bvao7UbXPcWzKTdb4LQv9MU6A1OfbRk3yeOKZEtpWj+2ZKC1RUJ2o8iloG9FUzq0whbObLTDuJmOy6AOrJu/g6WnIWUyEwnJrO42gYTdb8Nf381g9+P6kNKkuEcTKDYobAhqn1qo0l0wfH49nrr3eU2z8qbBrvEYG5pUuF1g8v2FEkdFy91hNvmoGIGbgE6SMaKKpDtwyUdMmvi6bfyXmxtQklwJe2M0WTCrughO/ttb0BZt7abU19amyVVGg1DVWR/DyOMQc7e+yP+7aFYWHnsCuDje1CsVZWwPcfjSKmRNRogh5XktScW1EtFDnktdtQl/V/FW5i0khu+1mYiLE15GePPCKHZ9ZKRomleZr/Gs/tvUPF/q4+Tup2HwoHN6fpLC7X7RN1swnhPSUCmMWavqcPp+b5lpDLckO5pPs1qAoAcWU78eoN/Tv+NE+yl2iMGg1Ywp0v7/e2k+f70fAsJstCNo2AeXWdjBWq6aJL8mKSwhXCg1JdjAzL7UTet/HDwltUqej5LxwUVNPvsx26aNgN1tgSDnATvpoempGT9dSigYJKPd91fX/qpnosoPWR0/RyafNjigFypwsvPgdG6Tflgp55X4nunRh7S4v1+076t5Ckh2ol0MEq7xRdTV14PNq+lUFEM89rTLQlUKFjofu1fXh6SP2l8FutuDUS0Sxuu2nRciwmDDPhwgBu+bMh5r470rN9HmhJHjHeIQ8SeZpypdzBRNISXYggVNSSrKDIStKsgPOHjJD4uX3n6RiEocKjgBRPqnH/KbEFUJ/SLIDIc/rn2xTUC9+PePzoidw9LnNV/EwtiZCmalhA4ysfUnIDyCuE0rWkLlPT7TousDnxbeDN1cvu3bNJV+yNuegJvxBJYKa+P//759ODwWxB4gGh7ZByPNpuBsTqZmkcbl5uNNfCQ/gwDKq/ZEODx9vt4yqeoEKsh0nXuDLnOg2ZYrwjt5Bk2QH8odVxVMFQ9m78tJSfBioaJxdMQUfBpLwrJeIQGiqo8AGqzdqWlbIk/tY+HAfq+Y9UOEvqa/o0FpNh5/8DgDxi2JoL8L0moIDdBdrY7Vq7DcAlO89hFMvkk1rbj+7ABpCmaznC4cJG4G6XduXLGTPJWvC0WIBMd0KrVKThVMTLD3qXM3I6tNh7whNP1ONHy2f1v/KE9E4+3tLBk0PiCZrAPDt8WTYzcRHjCQ7EOkgJoQNFhIBeGe3b2E7cBfTOIetANmYjk1SIINL3lD6JXQCMeMxpB4QhAnaLy3+GqfLCJkaNRI2/T8XL9TEo3/8HQU9QdNutrA7BL8GbYXdTJx8G5zk5MVw+46Qn8DQ62yk9D0Vosv3HiJhaUTjSRkRGs/Zo4NQF/p7RcCfmrmyyG83jth+0p2zYfPjIUdfc8lwe/gTVwlBM1JR3vOky3lfVVKYUrtZ69OGH78A4DySgwYLU5kvLIAwHep4r/zrJ/accHw3cxBP3xfOUsybqRlt3hfR8JouapcpEANfJ0p67QaA0uMn2HvGKE7ci7jcPCwc952QV6OBxwAo8NOx3YZoylJ/l0Zzyck2L2TReDRdXG4eqq9LZ4is56eIygnq4039/WhZIeMzXQKWqPua0pC8PkJ48J+ivya9/goeux+G1AMou33bpeBJmU69erxxpi2CZqTqrtl8XlQxIYS5oAXFu4Vv3nRQNiSZ+HCrGVMgnJwXdyLCS0l3YhLnM1R0fC7JDkGo5ankddGag/q1BAAYDJo6UkuL62VEWUNN2QLWKftjyDOK+TI1LQUUH3HqtUWSHewe3OlosmcHvkrW2FFHFYWi3rpIT47pOFGvKbwrCBre4/BjAIAGyV4w1qjB3me2N0KSHbhhuSXEt5stuDVIMS/3aO4r5MnXy8PfD4tbNGfv8rovgSQr9yWDbORe5clXSb8HVSEuJjwC/XXHg3nwEd29WL0eUPNQfsy6++9qnALEl2jOfC38vIe3cnJ5cHoCyg6R+7CJWdvwyMHByJkfiTfOKKejyV/Pg89QYj7Kn2hRmlpCxgMFceHrSMsExDvqlP5OYB0P6X+HHgpiDxDd60EWEfV9DQCYExKMHQsWaLSPtwaRO1K8VgnQ18LyGzyFWq27uwGqbUgXFi++/BonTbjT7bRbTaLdrKCkqRm8rs8QB46JR5W7QQOPXCDa8SHKhhu8PE7TNrtZuW9Ew/vXuI3yUgWlL2dhR1aeJDsQ/OcEDPAmG3O9ZanM0SmlxF1rdTeFstu3mekAza/ZFxUOSvMKETtB8RHjtSQVLRfG4V73U7CbLczvUYNkL6FPKPrUB4UZOGxdjqT1P7E20nhT6iqbsdpWnGnfhkejyXCyyfV9/EndjYZvU9qnc+Fb77Lg2PuK1Rf9+o1ibXu2eWcUv2ODMZkITT5VL7J3drMFk/y6YPWK7ojYX6Zo9wKaC/51AODwMwkaYTR3SQTylhFTHXo3x262wH9EFuxmC54o6s7Sn3nWxu7rlXfWbsL0d9+hT8JutmCgt755SelWP/Y7+au5Qnqfj1KQ/PU8SLIDP+5eiTXX66B12hi3zCIlr+T6KPjEChhcCwZ8uOlPUTCLbdWNPeu1rcuzU4X+o0SRzdRp6XNpUbHA9LljPvh31KeNui4hO8Zr+oOa0NZarT15mBMSzOLFq4R1AAh4I1VTp+AX01B0yYuFU19GdD6oFTt8fejJelm39syxsnqtmRMSjM7VyJbW+9A1didTkh0wz07B2XgbnLkFKNvmS5iv5r5Mq03rwSsHqJCl7l9JdmBQTRHAJvNdopyICSAnJsUzFfNjeg+Oj2+0tMJHQa7N3vTW2xuPkPtRbb4k6IfUabxef7nLT02U6aT1pfHtZgvzmSfJDiy52li3DEl2AGlZynetUpWZAAPkhJEvf7IfsSKgfippudSHW50DiqJtViFRCAS8oTC7x98X18mCvooDXPW8d0X03jKt/6Li3fC4QZRRBaUVJzg7msFutiA0nuyPp9aFsTQjC3siP/I2e84bM4eNY7XAQFFsm36VIvTzp8seZ/Fult3V/UaSTE651N/3i4uBaLb1rGZdoEh/FzpfQtnNm0I+drMFwWO1kPg86jBVcvBpaH9T83a+DTGPjYVn3yIAYDwFNZ2n9aXIkgBQ9C+isKACiN54cqUkcqWgqCw9pSo7miHgtVSETslA4UdWnK9AQ7WbLSg9KWsEaPodd7VZi9ApGZjVJIu96zV2EoIyqmn4LFrmPB+y/nkPOcyUeABg8vIS6lTSo7rwXFnbHtI/kx76EXsAyJUfMX7By0mIQmg82ZR80mrh2OXG2N32N2HRoKTHpKgXPPUCrk7X8+ANwd5anbe7MgEQDWlalkt/N67yVdePltVj4mRUTcoQ4hk8PQVnoZXla2gfjqJBddF8pr4PFUNEOBauncecEnd6LQ71lqbC2b0DTDsIg134sRUBr6Xq9l9lFJLhyZyjBkiTmH2/3jfy8PXBxj0bmMaS95M25mgJlrf00e0nV3VSt/eFvGymceXj9I+MZfeM+PDYHo/DeSxPk5+pUSMkHtiiGRP3+nYEysqZTzQAzAeUml7KO4zPg8MrHcd9h41HlYLTKD1FTBhtB+4ipV1VTX7Ubxqfh6v/9Ju46ic1qetEfwdlVBMYM3fp3IVXVv7JV2049Lziw2pKTgHmhwbed76Xx1pRb5loinM/89nYtiWOvVhTYHpp2sooZ24UCgcSZq/D3hFoNPCYbj/mLI5A6IRMXJhsRYMF2nHSLeuWgHjmlVyfoLK6qEdlbaLPZ56zYfcrX7B7X0uKd6OZRy10eW4q6uzIY8oHV9++8Od2gmNj3r/Q3OO7mfUCjZ/7TSe0bVeEW90UgePfHQcuqcKXGe/fyhWpy/AIaM6Q/iqLq/c+xq8jMy3T6ydG0W1R0qMWO0Xl4515zgbHayT8zQIHPgxU0iae3AeTwahZM/+dcay31t7v3FSHqZlmPi7vX8/dHmw3W3BpvBXpsxRfcjlzolD42HyX5bjLy9X+HLG/jAkSekT3e4/mvtiY+oemjLIuxDQdIMJE4uE/2V7xSeEevFqhgFC31SetFhb57UaX56bqOpGPbdUNzstXdBUB9Jn+fu9cK816T9vp7NGBKcH0+oMP0yN3+0TvMRNZ3q6+JUBO3SkoDZ++3SfxGrNeStSnGkCUTc0+T0Fp+T3swO8PtN8syrOuPtASNf4/+xG7ec2JYe2OPtD98Z/SwxOxB4hK1xPm2m4mzgvpZM//LJpBhEuyAyXR19m9AvXi4pNWCyE/xTHP8Lx2jpLe5qQO296mprAB6MXhNUBqOmWrBWPNmtg5f75uHKrppJR+557L+gFAmYcBprAQFl4804akwj26daR0r29HYSEv338Ygd8psOjDs8WTvvLMw3hq8FRMP0XS1VtKmMGqMkGsDMqohibpig0+37cfFOrbn9NnQASxoEJYSIYny4dPc6mzImipnVX/HNECxauJ+cKM0+1ZWupbSZ0XrS9ft5gaWgE2ttcwJoStKRGRqRL//FXQSNL8qBB2fqpViL99yULmE42SK2TPz4OVkxG9Ovc8SDSXhmQHjrynmM6ktKvK8qJ+xwDiN03d/3azhZkPXdoYwk6i+G/in14dlo/IHaO43Dyhv3iiF81p/QYcviQIYTQNny7oF+Xup14b1c9eycr9EAoIczcmEt6fpAjfkhfC+DIFIapmTfZMhTA1uVPcSLIDZVlH4beKMMHrb9QQ3vGkN/ZDp6Wj02vkdIqaCvL52weRu3kUQKjBglTms4wnXggDCAy4Xt0l2YGzz2j9+rlivh2vJQjgG+MrTmxq/rpHVwhTl0kdrQPEhJUipUqyg5n2Bq6exuoR8tweXJrdnD3nLCAa8ytPiAAg6jbxdVf/ptDf1JeZc6GynlIy1iZ3Dk0hBBwkZFmcgGBZVru6W7h23hWGuny72YLy0lLd8Vy2zVeMn5aF243L0L+DHZLsQOLJfey0noJTAYp5O00X603uEJvq1dXsa/Q33283hnbCrPMthPr0ixmJfi26CvWhvjhdEb3jCADdpk5h6exmC9p+TtaLwK0ThbEW4VkVFyco5rl6a3Lw8jjcfjSKIaBSCo1Ldzsf6W8KnsL3rytBI7O9UXh3/g/Ft5UkO5jSdWPqH5o8PHx9YNytrGnOS8RVxtQdOyDJDoxYMV23fEl2YJEfsSSptU5En6QnYhQNmk9bUGFSz39Tu9niUgj79niyIITRNJLsQLcpU1zOf/qfn9uxbXpq4vJ5q78l79ONRwbleTMqhKnn8slXbaj/dhGm5BRAkh2IHHZ/vhUf0j+PHp6IPQCkPhHjSU/46Tn+Kdyp54Faq9LuS+NDw9WaZldpeW0OULHJ2trBkHJACBt45AIDkFCnp3H4Zz7MXfkeAc2xMfl3zeZ1P9osSt0PDWImE5LsQOS+4cjosMptHgNy+mFD6CaXcQDAWK0aym6LTDcV6ibVPc3SmurVhaFuHeE+i7oNp160odkXKUL99YRr+lz0S1v4j8hiz8Zq1XD06zYI+/oKnEcUSOjjq9oA2bXZyV+vJybBY3smjG1boizrKACCzEUvhbsaN3rv9OLyYYaIcJRnKiZdPLkrQ/3eWK0aTkzvAO+Plc2N19jr1YvmQd/xpz/qOKaQQJTLZxh0OH0f22sY82GmRytPpGCkrxaAhtI7Bfvw9pTJqLI1Eyd+bQ3fxw8Jdb0TGwm5qwdynpyD6FemIe3TuVh+rQHG1L4gbv5hITgZ04g5b6Z067EoJH7/jSA4uPt+7kiSHeg+eTJDUqMaZ0l2IGbgEyjfe0gT3936QunCU1a8/spyzNg8CgVD5sFutrg8xVXn4e675i7twMzX+HUjts8IOA8fY2mGZp/Fl4d6IbvzMjZP6JylJ1QtF8ah+TtkbHj4+jBn3HQeUy04fxLgqg/5+l7dFITUdmsQM/AJJK3/idWVn4eu0rrq37JtvtgSpmWQK5uLlO70j8SOBQt08770pBU7Pvwag32iNHm4/E4+EUgo3ImgKrUw+2IQc4Phrg5nf2+J/ZErYTdbUH1nE9zqdgZnn7ah8ffi+D7+ng3NZ+qfHlwbEY3av2j9pLnqx/vZd/KXt2cmnv8OnXjTBt8PU9i+OO7YCSxtoQhExTNt8HsvxWUf8mG0PvkrLAga7WCn6/S029CxNZLW698l1SNX42LlNS92x4uGxQx8Aqe61GF7gV4e9zPvXZ3M8/H0+oKnayOjUXtlmpDmftr2P6KKk2OAuMepG5vnts2W/QQp8t+pQ2Xtbp1pxKGIMk26v9OJ2EpHq//KidhIy5EHuj/+U3ogT8Q++ugjDBs2DIGBgTAYDPD399eNV1RUBIPB4PZv+fLl9xW/devWumXs2bMHvXv3Ru3atVGnTh3ExMTA4XD8f2i1QndjIoVNRJIdeCWfAAlEvhmH7UsWCv4vJNnBLiarmV+e9r43R7M5mRrUZ8hUeowzXTwo+hsNB4Cn653QpKGoTGoNHgszaBFw1AtbaaHiTNVutqDD+/r+t65uCiJC1ptxLC49zeKFMLvZgvoDclj/0DrzvoqCV0zDve6ncPjuLRam15dqIQwAPHy8sSqsqZC/8/IVZuLB94EkO5hvKiqE8XFofam2U5Id6PQquT9HofkBIP/zaJTdvo3CRxcwSO6zv7eEJBPQCcrMxIb3wIXW5J7d5db1WHn8xsuPm6ubFK23egwaIsLRcWacECbJDrx0SvGHwwthwnfXyY/foNSMyqaCNEEIAyAIYa1SnhDy7Pz8VGHMSLJDI4TZzRb0mEgchifu/I0JYXw9ErcRqPHT60SzzePvke/hZaoh+IU6+ZoNpT0jkPcF+aZzTvdkl8uP2AgjPvNcOCvDMzEDAa8TDXjap+Qu29IWvpo+cmbnaoQwgMAp1zJWw/UkkelxN+/13kuyA5aP4uG5MYO1fWYjAqpxqvQ6yvceEpyi0v4Ly/QQ8uDvRdKwve/PwdBaV9HyDcXXFBXC9KhRSj2XjA0f3lhSXELw7eGFMIBAcfsNO8jSbipIY+NtWgC5sxf4kwKSQ4UwAGwe5w/3gCQ7UF5Fu0XqzVkaltpuDexmC2Oco2dMY33HC2F67XBVhrHXCZcCl6lRI5R3Ju9yl3bA4/m9GQQ7Jc+NWij3MUdJm71+TMVgnyhIsgO3HyXCWJfnprL6qevT68hAoMyJ+Aq0WLUQpk5H0xqSlHFyq9sZSLIDjb9P0ayzzWemCHexhH5w6uuM1XMnttcwAMDKa17CugsQ4JmAxKcAEIfO/D07eq+PH/OuyPdDUvfNv/6I60mBTAgzNagPSXagYZZTWAMBIPdrskbE9CfIjwUfi/46g0aT8ujpOhVszkQRX6Iegf66+9K4Y4qyj5ZJkX4NkW1w4tfWCFg3haH/8fGS1v+Epl+lwMOXzE9TWAjyV1hcjk29sc/XVZIdrJ18PPrfbrag6F/KHT9TQwUJ+PrIK0IZav97NI9Fxbvdfhv1PpO/vD0k2QHTn2blXYUQBgCX9olgUXydKX3SxCG8U48R9Xcp+qWty/xovEMRZSi3tbuv8faQ/tn0QJ6IGQwG1K9fHx06dEBmZibq1KmDoqIiTbwbN25g7dq1unk888wzuHXrFk6ePImGDYkPqqKiIgQEBGDw4MEYMmSIEL9evXoYMGCAEJaWlobu3bvD29sbzzzzDADgu+++w9mzZ5GSkoI2bf530G34E7Ftpw671XK60xRRarkgHkcnKyYesb2HCycm95OPenOzmy3w8PFGaclJGNqHM4eTevHo7+Ad4xlghFsNa8Vz3k/tEfzEfpd1+6IoFS/6WzXpAODc+hZoNPAYjO3CsGnTz241VnxatRaOEp/+ubyjSOjeC6UlJ11+i5fyDqNvjXuCMOWqbD7/CceOC1pKNZka1NfAP994vBNq/roHEfvLkNleX5fiqp56wjaLM2QcFq1KwCQ/LfhC0b+s8H9LMS20my04Pd2GA6+Q+xwnX7UJ/s2apNbB0ua7hH6gmnC9MWY3WzCrMB1vR/bTAIJU1p+utM30Hb3j56rtevm5Ggu5P3ZgSImUyjtbYEhW4ksycULtzMlH3pfRDML6fttE89y8eolQviuhXU0e/n4u/capy9Zrp97Y4fu16AMr8zU4NPssptQlZtRzj+/GtObE2XbA71PQZLcRdZenafLh847tMwJ5Y+oLYAz0Xeu0MQwwwx3lft8JIU/v0fSHKSQQztwC9D50TRAY+Hht9xkE9xeV9Rn9PyWnAENrESfusS0fERy607zpSZw5rTZDwJx5Lhxp7aogZ2FHhD61F7lLIti9O8awV7SHUt4X0Qh+kQiT7T+Mx/43E4R2ri1JF060XNXd1bvoGdPYd7rfPOJy8zCo5nWh3pQKPrEidywBL0m+XYb3AzvAFbkaF+rx2WpOPIx3IawxenOd/z+ysCdylrXAvnfmuJ1r9G6iXjvV+apPvgBiWho6mSg07to7oqq0V5Ou3NqOwajr1dsdSbKD3a1U10uvjjnzIxE6JUOTh6v4eu12lVaP1HeYK9vnCz61IveJOZp1JW9ZewSP3Y/rSYGoFVPATqP5tHdjIlE1KUOTpyEiHEl/LIfdbKnUasEd0b2Vz1+v/ZW1UZId+ORCiO49e0r8nsrT3+lEbIWj9X/lRGy05dAD3R//KT2QglhBQQECA4mGpXXr1rh+/bquIOaKUlNTYbPZ8Pjjj2P1asWZJhXEZs6ciXfffbfSfKKionD06FFkZ2fD25vAPp88eRJhYWGIjo7G5s2b/612uSJeELv4TDdcaeFEyHNaxoK/FM6/ey7vqOCMkIbz5oT9WnRF2bVruDzOCu+n8vBb8Jb7WnglWTFfUr+jzwDQbnY8lj3/BWb4R8PUIhj579cQTnD4C73uynP1HhAXvcST+5BwOQDPeh3XLJbUBJMP401j3JVNL8yqSc1QS7IDvUdPBGXwY9v2gvP8BVx60gqvH8WTGOuBoajTL99t+/T6NOaxsUj6fRk6vh2HBou0C/a9vh2xfclCTd+4YiYA4jDz2IJ28F1nEnzHVCbMuNt4QjI8cXRGOCigyb9LNO9+wTZsykvRlOdOacCP01Ol1zG+QoisTMDQe6Z0IymQOcylyoHcbzrpzklA3FANHVvjZPc6OPhiAq6X3RZMCN2Vq9e/rtrpiom6n3nUPyIGpadOY9RRGT+3NGu+L8+UV1aGoUpVlN+767JN6nSu2qeO3252PA7MSHCZHyV3TFBlY9ZYuzbKrl0T5vWVMdGVCiSUyaVKKYGMJkglmZry1HVQt4N/P7soDcOXvoCjT81B0C/TkD9iriatsUYNARGPkiGyDcoz9H0Q3e/Y5ylncQRaJNyFSb7AUOUqG1/0fYNkL1zofEl4F/jrVDaH+DaX9ozA3XoeKOlXBvNmI2qt3sNM+3i61zsChjLgo0Vz8XaAiJ5qahUK55EczTgYXtCL+Qzk6+iqLeOOndCYCavbxofRdrgal+p4xpo1cfTLVqhzuAqafp2CixOsqL9YXNtd7UFqUqfN/bYTCoYSU+BLT1oR//oa/NxScVuiNxZvSQGobi8UwC7eKdgnCM+8IoBP7054ZsqIinmmHu+UaLwrY6Ix8o0kbAqvh+LVbdDLP4cBWyXd9GR3mnPu3UBolZosravvYjdbUHNXI4Y0yrffVRvUeaj7in9HFW167/i8XzrVAUeH+WHj7nUsPx6gQ48eCmIi/V8QxB5I00QqhP1PaeFCwpw+9dRTLuPcvn0bN3U2M0p5eXnIyMjAsGHDmBAGAN7e3hg2bBi2bt2K06dP/0f1VNPanINo/H0KCh4njm/ViwCPzMUTFcLUaQwpB1gYXQzrLU3VXZzUixS/ENE7JHp1spstsJstODAjAT9eIE5dncfymBBGIeEtnp4sjxZ7q7hcFPn/d/opJprUIS6lWO8O2BBOTE88mjYR8lALYZLswP7IlbptppvW7CLCgJV3uay7aeSPmKupMxU87GYLO8VRC2F2swV1+uXDo2kTFl7yuk0TR10nACjPOIie458ShDB6MVuSiYNMGjf3m06a9HxdJdkBk5cXyktLETohE9V/T2ffrvdo0Slxi0VxLA/6v8P7cZp8Oz9PTJi+896DogFVhTz4vqK/DZ6e0COab9nNm8LmSsOpc2mPgOZCftQ9AI0/njvJs5stOO+8IdRZr1/0aHfb39jv4CeI6VLIc3tYGr5tVzcFCVrNe3U9cbsx8VlWy6j4GaL1VH9vCqXO553zA3HJcGVMtMu0vZ6YpJmT9J3e+M39kTBWpacIQM34OmeFsUL/84KIuu+ujRSdOCcdT0f+59GKcFOjBr4qEhlIV/2vBsoBgBO/tsaOW0Y0/VIBJDF4eAhxaHibL+I185GOL3WZvCkUfbfp2F8AIChX0mbPBaAVkviwegfIHV7BCbq1HflR5tRlyhddacry4NczOsb5+o744UUcfWqOUDdJdiD/s2hU2dEMkuxA2c2baJ2p3bqTfl+mW2f1WqgnlAHERJSn0AmZKM84iI0ZiSzM9KeZgdWoy+LH34qAP4X3AX9MRsHj8zRjXZId2PbTIvz13TyETs5ArdVkntH7VXwbqmzNhMf2TI0Q1iDZC0ukxbpr3/n3A4Q2uiNJdmBM7QsI+H2K5p3eWsF/O/63uqywefHs96bcZIROyUDTr0n7asn3NGtm1ksJDCxIr46UeCFMkh0IeVY5RU3/aI4ghKnrSKm6vRCACEjxfmAHoZzgF9NYegDMPFmvT7yS6wvhZ0crDus7zozT9BctJ232XGwKrwcA8Bt2EN9578HAI2RP/XroEJbu2eadEbhlombd0uNfbjxyDstOJDOQJn6+VTYe7GYL2nxBvtuNxztp5tKF6MZCfL39LmxuPA5FlOH011WFPqFC2IJiAmRybWS0Ju3fhZzlhv/K3z+dHkhB7D+h69evY9WqVWjevDn69OmjG+fzzz9HjRo1ULNmTfj6+uKdd97BHRUMekYGOQGyWq2a9NHR0SgvL0dmZqbm3f1Qs2bNhL+QEGILPTi0DWr/1ZDFoxvR2pJ03ImN1Cw2FCmLMQIAPHc2FdLrkVorODT7rEvmXS+fdwrIou3h64PidxR/OXoXT53nzmnCjnW8p5uvenHdsYhcMD9895awsQv1MpqwcZ/kMg/6W71p8v+9fkzFDH+yGHotURxlUyrr2h62F6dpylcTzzjciRWdRvJ15P3bqJloNVV97RTOTVPGoLHXCSEd/Ya8pllDFXdGEg//qfmmkuwAL1ACwLFJc1hbcuYSkyc14qEkO1Av4xRLF7roAiTZgcA12vslQdsnEM1moX4d1QyUeizm91qMsm2+KC08zuKuKknFrUYVrh58FKS3E2/ZWN3H+HbW7Q5aB6ok0BuHfFjud2QjNgUHCPWTZAdS260R+mTbskUIfCVV0w6eAc1ZEIlWc4ggQUEY+HHQIo6calChyG624NtLzYX8PLYrJy/USTONS8N5/zUhT+7TnRPUiS11EK2mJqmKBrL2yjQcf0/pX7vZgqwR37D3ZTdvIqxqDaE/1MJi9IF7MIUGicA2dergwlNWHLH9hBcODRfS8j4D+bqbP0tBn1GiQ2PelQX1VSjJDgQtJffBCn9uJ+TBCxS0PfwdSb4eNK+GWbeEd6Vb/ZjJmYeP4iybr/NnPw8RlAuS7MCFzpd054Lf+ynYdovM17UlirKkXraBuWQAyP0SNfOnJwTylJMQpfuNaVjqHkWhV9orQsi3eCa5++vsITN/UXpl0/oGrSR344ztyH2v0KkZwtikTn/11mt6h5a+p4orSXbgzQJtn12Ka4LGpprMP2HhSsW5dJXNipkgAES9ofVXCZA7t7S8wscUhGJKdF+mYQ2SvXS/n1rYuToqGn7vpWDmOYIMS4UyWoeq0l5NH9jNFmb2SZUIpT0j2Du+3IsTtb4nX8rTXm9Qk94+wCt+3O3/f+zqyH6fn2IVvv+lzhcFn46ZM4lSofDndhoFqbrekuxAzvxI9ry+VQNYPo7Hpk0/AyAWIpLsYKbhRb+0xfk/Ql1+BwAY69sZQTO0Pg1d7buXxiv9GfAosYqo+ese9Au2CXWvt1TrwkY9x6lD8IaP5ugKan4VbnJSvlCUvHazBWtz9E+1H9I/l/5xgtgvv/yC69evY8KECTAaxeYZjUb07NkTs2bNwrp167Bw4UK0atUKH3zwAQYMGACnU7nAKcsVzgm50zBKvJni/zZd63peozWqYayKHQsX4IuLIlT1n4sXYvPNKti85kfGMNzpppzSqRlBvQVfkh1Yd1qJR+nyOCuL1/fxJwEANweTUxdqtlB6ogR+SddY2ZLsgD17gCYvfoHi66ZekOliRAUP+p7eCwMAU5PGYjvKnBiYGwMAMKfVhkfTJgIDSPPVW6zpJXdJdqCsK4FEoidFLfYq6JVbflmMlC/mahZttdaSwscDBJShrIvSvtgej2vKp2XfHhCF0y/oMyblPU+i0Vxl0U84rlxUfiWfABLQy9qMsQ0OwO0BRIC6GxPJNPXRr0xjcaaf6iik4YmH8A2dlu5yo+PvITmzc4lA+OweQTAAgPyei9nvfrGjSfpDyp2ayshutjABlFJdY3XU+TmNjQH6jX0/TBX68dZjIhqcoWNr9i7xwBaXfUDjS7IDIc8Qh8bOvELhnd1sQfh38Sw9BQFwRb2ODAQANPG+BN8PUlyWq+cbb0O4l7BZ83OOOmmm9aL/Q6dmaMLU7aWn3byDaJ7OTTULYc1nknovvUoY08E+UcK8cMVc07zT2lVB4o41Qpjz6lU0WEi+W+PHjmrWC7vZwpxL8+0w7nSNdkfRXAGw8niYeUlWnNrza2OdfvmadWrW+RaQZAe6PDcVW35ZzMrvbxsIj95kDtzrHYF1e9bj4kSrpr/LqpZr+oj+p4osSoYqVfFpELl73OON53HqRfL+bl2iFR6Uaxfi0zyjXlcAi/hw/ttRP5Q0zrfHk4V8gl9IQ7mNCKse2zKFfrlbT1Gy3Rqk+MdS7yvUjQU9RSk7kK2ph91swaHnFYh/u9nC3H8YIsKRP3yukL/PRylsPPB+xej7sqyjCNo+AUcXE6EvYGSW0M5eT0xC8buEkfZaUnGKVKGcopYKeaNImfTUl7p/ofW+1vW80NYLnS+x37lfR+PihlAh/uWxZBxcfZw4tE9rR/YTv/dSAKMJ9iHjwBO/Tp2ebmN509P2bT+JTqtp/Ra8/ZXQVkl2MHcganInsNjNFl2zXLWA37/LIHZSO/jIOQx9ZruGn/DoXczGEQ2j1jzqNU8912oWKPuuJDvQ5BvFVJ06xgYIL+I/IgsNH83R5SUAoOgDMhYvTLbqvs/7SXQqffZpG243MLC2rg9JYnF5aw1AdDXB19+jua+mXdR9iN66SMGO1PP270JOGP8rf/90+se1cOHChTAajZgwYYLmnZ+fH7Zt24Znn30WAwcOxKRJkyBJEiZPnoytW7di5UrFfI2aLXrqmFNVq1ZNiPPv0qlTp4S/3FwFLtudlm3zeJsmbMahx2E3WxDbtpeG8eF/u2L67GYLanjchSQ7GFqVJDtQL4cgyuX80BGGlAMk3lrF9MEUGkQ0j+kHhfqgVwmujRA3Mf738VVtkPut6PyR39Bzl3YQFkP6nvpvcZ45q8mz9DGipc693Ailp8/oLsxqIQqAALBg/Gs/7m5RQDO+MRPGoElqHSG/7ocGsThzQoKFuqy1f4slFeYGkuxgF40BwHksT5c5spstqLYhHQdmJCAnIQqlvSLY+wuTRGCSO/0jGVrZ07k5+Hzg45Bkh3B53G62IHHXWuycT7S61Ak2ANT9STF1+qpZhRPJF7UMLgUH0WPc+d8UbRNGE/K+IiZqA49cQHnPk5o2Lr3aEHazBWWOIyieaYPUuo6ugM7XRf0HAJtvVmF5Xh/WSSgDAAweotnrrfomSLKDmX9QSHF1W/j28vXixw3NY1VJKlr8NY4wibMU5MvQp7R2/3wfUqa9bqwiwNvNFiC6rXA6x9ffwskadrOF+TRqP4sIgLHt+jDGGACG5PXRtM1VO9Wk9y02JZF7lcbWLYXwcXXOs9/0hFyvDJ75oH3J960eA6I3HniQBldrWWV1oKas/04eAPFfZjdbUDvxoFDnjSnrWZwqWzMxwDsCV0KUtrb/kJx+HJs4h/m+yv1OGbO5SzswrTmlpOPprI/qLU1lyKrNvkjBqZdszAk0349vFjjg9aNrJ/P8b3ltKxbv2eadhT7Kn21l6LiGyDZCuuAXyB2hO/0jGTCDen4A5ARELaBVtv8AwNsBxOKjPPOwZsxQovnmft9Jk2fwE/vZiQtfn5LXbfDYngm/d1XjpwI1j1oq0HZQ4Ka80XM15fc4/Jhm7pz9vSVCnk9D/QE5QnvORxDh22eoFmxGKskE0kSfUfx9XTWUvB7ljSanKPTedc4PHVmf0JNffj2be3y3WyG996FrYh258VX0LytCfySCfmlBEcq6EhTCta0aMd9+twZFCUIbHUce/n4I3DqR5ZszP1I4MePrkLesPQ49p4CMtfkqHqenk/0ptvtQIf5f38/TpJdkB0whirLa/20yHvScw59b34KZnVNq/H0Kmn2uKMiKS6+zdxRRlL5L+1TfjLn0uBZJmneRwpPdbMHZNwM0+87g0P8dELiH9Pehf5QgduTIEaSlpaFPnz7w8/OrPEEFvfnmmwCAjRs3srAaNYjTUrXJIkDul/Fx/rdIfSStntBJ639CfoWzQ0pNB2UT7a4KaS78O8IEOHsQJ5gevj6aTer4KjLhD+4kjpK9FtZWNri0LBhr10boRMJc0sUXIAiBzpx8QfM4KaeQvae+XvQ21ObDD6JJqgHF79p034eM2wffD8XTArvZglr7CXMf6XAK4YDiFJICLKiJbg5qUyaeCZFkB6r2Oa5JW/RJS5x+3gZTA+Jg17NvkS5jazdbYPH0RDOPWjg/1Yp+MSOFOvK/h+T1wfk/QtnmRd+FxqfDY5tictZgkchc7ViwgD1/HxKKxC2/oF+LrpBk4r6Az8sdo0nfrylJQ+hgBU2zf6cBmji5SyI045A+F3e6AXmGDcbq1VDd7xoRECtcGtDyjTWJY/DlLX1YOnr/g2fiqCBHKXDtVF2Gndf21lq9h5ktUY10+b27AsNB71FQBitw8ySceMuG0+vCNAwJfxKo3hz5PDr+9CKOdV0qxMuZEwVTwwYaxpSmLfjYqpl/jNKykHhgCySZ+Ajkv90nTRwCXHOZg0DM73+DMCzOc+dQfV06NpzMRPFMG248cg6SrJzw8sTPN71w2l69Oo74dbsmzCOgOW483gnvB3Zw2W4AzPyRvudPVPT+q+uxpiRNNw4lQ0S4EJ+OCfU8oG4FKFG4cj0lDTWPo3Q23obVOduFOvTvMggAYPLyYvECXleYPgrPHvpjHAqnh+PyOCv8EstYHiHj9MFtLB+TtfvyOCsTxCXZwQAcJNmBtNtOFH1IFDWPVNMKO3x/eDRTzNVr/FZXt0xJdiBoRirri6Tfl2nGgt1swY4FCzTp1GucWsBW92/ud50Q0zxKyF+SHYh4V3RTov4mNN8ql4yIbfmIy/HD18fnI/INrjwRLdRJjwJ/nSqURS1AKP0Z/rumjxs/dlQ3r+DpIrATTyE7xmve8XVzVb+I/cqppLqPQycqJo6Bn5UKeXZ8Ow4BVWpp9ge7mZw0S7KDoYoWfWjFvb6K6aGHtxnHJs5BwOuKkGv8a79QdvHqNqi+Ll1YX5gw82UtxIYpwmjolAymkKJjw9SCKDSDx+7HuOPKdz04PQEHXkmAJDvwZtJq3TGuHnuJO8n93sKf27FTT75PqQNzikAp9HW0YtIKENNB+n7nvPm66xs/tukpmbu9l+0Xi4mp6dYVP8BZXuZWWfEgU1m58b/y90+nf1QLFy0ix/fuQDr0yNfXFyaTCefPK1pes5ncH9AzP6RhemaL/wkNDm2jWVgA4iCVTtSg0Q7cGhTFNDR8PH6h8JlFNm3Tn/sw+Mg5lJ4ogd1sQf8ugyDJDpybZkXz4UTwOzaRaDGrbUgXFpaya4qWrMt3ymkYzwyvKSEbzoLJQzQbLl0AT0+3MTOA3G864cKjtwQNJUDABPgNVb0hlZachN1sQYbFNUIPn/5ujHih2262wLhzP+tLnkFQMwvXh3VifVp9XTp8BxfCeeGipm30P78od5syBQ3npTLHyXp045FzaPhojgD5S23jefLbo5g0jDt2AgGJT6Ft+ij2vr9tIMquEQHo8LOKqY+rjZx/L8kODPWJxrWuypjfuGcDALATSwAo6LsIrb6PF9LzY9Q8OwVlN27AewhxZ9B5+jRxDN24IfQPQHwYqTcyyriYWhGBisJ30ztfroi2++OwNboMNV9ubMtHEDI+E77/SkHTQdkI2DhZeM+7CXAltEiyA7nj5gjx7GZyr8R5/gIubgjVCHIAkDtOC6F9Q+ULzG62sIvcOQsV01Efj1ou20bDqhhMKKtazp63/LKYAV3ojVs1GWvXFtpD4waunobh2acxvs5ZxjwsKK7Qrt8rZVDPABC6JA6FHylmxBQghDLvNG867h+JJ6fc9HRP3ReUeORJPWblRN+6Qr3pHUxjheWCqzZTVL7eh8gcKlhhYf6UgqenCem8hxdiqE80TKFBsJst8PA2MyQ0eveS/tH7PHSu5Dw5B9lTErDn4znwTMwQ1puzz4imiXazBU2+ScF7BZmotzQVjvZagdJutmBmYAT830xloB3dJ01m73mGu+WCeGzMTGJh9ZalCibu6nmoFgzo/8IKn1e8EAEAAeum4HpSoEtBWZ2PJDsQ9MtdQWFC3zecr73LA4CZ4VEKWnIaOW+Hs3R2swVFHxLzsyF5fXTzSPt0ru7ayNch5CfFwkWSHajxu3LCzZvE0/d6a4MpTN/3FV92YIW/sAnHjrsd9zTNzSFkP3LlqkSdhvpypM8NFqUyxRYfDgCJT3+KRVeaIieB8BPHJsxhIFCS7EDpSWK+W/CxFTF+HTUCo91sgd8w7Z0muraZBx9BbuQdGNu2BKLaMKGYJ95ahHd5EvFeHAbk9ENM/zHoXM2I2GOxQpvtZgsuPKW9I5ezIBIBow4wBFO72cJ8jX4ZTBRw3x5PFr6hJDvYKaVaYFX3MV/WC3nZCP2R3Ds80+se7vVW7iurx9rZ31sSwbNhA4ROyETO3Ch0nzwZJoMRdrOFgYo8vCP2f4/+MYLY3bt3sWzZMjRq1AiPPfbYv5W2oKAATqcTTZooyHaRkYQxTk3VHmunpaXBYDAgIiJC8+5/g9QTeO/7IhO3K2E+qv2RDqOllRD3StktIR11GHm+lDBZkQ4nai4lTAcFXwCA/lH9Wf45iyN0BbuZjY5owiXZgVrGaih+1wbjzv26m1zLBfFo+lUK8nuSuxUhz+1BTrcfkbtU9C0T8uQ+9I/qL6TV6w93TDmf5s8fFmjiSjJxNsvH5dMEbpmIsq7tMfOjH4R0/CX5Rin1BA0zFZLoxlRtg9afCkAc/1Iq69ZeWOyvJwUKfl/ouwW+yez3mNoXEPrUXjQblM3ilRYVo6yLRbNxuNvcY3sNE57zl7dn97XafUIELh59y262wPfDCqFexYyo22g3W5ijcTXzwRN/OsbXr+3n8SiZpQjaud91wpH4BPTvYAeiRHMNNcP4aVAbXQ0pXw719fROAXE5QH3/8HQuTrnjw5vQmEIJiEPQtgmsj/XaUH+AAqGtFtLVDGWND+oI6Q2RbVjbQp/ay4QjV+0BgG8vNWfvjk2Yg403q6Hj2wSdrLy0VEinTlvyug05c6Mw6qgsKF348kKeT8OqMDLeqa+lyRXolBvTNwp5BryRioDXUzG7KA0v5GUj5Ml9OPWiTTOX6d+uBGKO1fi7FKEPaTx335Jfg6jgpW5j2e3bGiWLh78fmqTWQb/Dl1m8ra1ro+R1GwJHO7BxzwbkLtGu63QNuNKuISYcO47Sk7JmDbGbicNwj+3kflWLv8axcH7M8O2ibefbVNa1PWYGRqB1prFSpcqhiDLYzRZ4bsrAqRdtuD0giimEAOVOn9C3FWbB1NxUkh3I/bEDixP5lnjfzBDZBgGvkf2CChG0XoWD5qNWTIGuwEXBbXiymy0w/rVfeAaIOxL6zM9tSXYgb/RcmBo1wqmXyBpadkJmp3eUPK6TO3S/BW9BwHoF9VA9B9V94ZPGgTOlHxQQ9qSSTFYX3iS+cGVbjbJFkh3o/PxUOLOVawaA4ghebw4sbtGczXmKhkvj8kAtf303T9OPlHgEXgCIbdVNd8xQxZb6nZ9HLawKa4qWL4r36vjfdrMFuePmsPUEAKaWEMFXXttKN99b9zzEuZh1FNK6ZbCbLWg8uUgzL2lZnZ+fyhQZmTPn4F73U0jaSPyDOXvILD4F1WiwUOFj8j8n62vo5AxNfeovTsWZ55RvEVqlJkP95cvX6zuPgOa40y8SobvIfDa2bskUul8Gh7FT8EL7ImxfukgzfgGCrFq2nVjVGGoRk/7QaenMLRAABM0g+Tx/UquUfUj/bPrHCGLr16/HuXPnMHbsWFSpUkU3zoULFzRhZWVleOuttwAAjz76KAsPDg5Gx44dsXr1agbcARAQj9WrV6Nnz55o2rSpJr//hKgmZNdtgroHiBvJewWEEaLPZY4jwmSva6wuat5eS0XO4gj81bYaJNmBDIsJV7pcYMfzNN6pR/3Y77DPrmsWR/53v8OX0XvMRCHM790UrDyh3fABwggYq1Vj78q6tYfdbMEzHXawOJLsgLFaNQYJTfOYfKKzLkOWM0c5DexWgWKmZor7Dn1So72j7+xmC4p+aYvoA/dYmCQ7UNDnBxj/2o+41Cc0eQJA2/RROGe7jNJTCuLbxQlWLG3hC7vZItiUSzLx3UbJ+2PCcC0q3g3jzv1Cm04dE6Fw1QybJDuYjb4kO9jdqKujo2Hc7WBtoheFeVK3IXHbamETzOuxGFsHkTsFG1/6VAAYUad1njnL+pIqAexmC3oeJDbwJ97W3jdTb3AUhZEnuvE2+zwFzSpMbSXZgaRHv4DdbEHp6TOQ1inQ3HraaFd1pvGuc6dP7wd2wPobollxwSdkY280R2HwtrVS7gAVjmyC81OtaLLBUyhD77eewCTJDgS9nCYKBUeLhROR8oyDDPFMkh3M5YQek0DDNoR7CWHfBLdk7g7U8e1mC+xDxjGTK5+PUhA6LV0Dc83TzSHK6ai6rXoCKQC0rVoNMTWIDyDftSc1aQbk9BPWCvq9+fuR9B1FIlSTniLFlRKCH++lRcU4Y72K6V5FAAj4jSksREAyDRmf6fIb11q9x60D9rhvVrHfvB9Fms8j8VOENtKTJoraJ8nE9MucVpsJWTwZ27bE2afFeUbzu9H+FlME8QohgDjRLbe2E8ouO6QAo1AkOrvZgtsNRLjopN+XCWi+NB7fL/7p1YU62c0WnIpp5qqbBDJEtkGst6KYUzPodrMFznPncMeLuDwtv3NHI3Tf9VLcoYZOSxfqQfPhiaYviRbXbO+dWtN3/j0ggoHw8yD5ayIwya8o36f5TP37XjRv6vfN2OuEYE5cw1hVt2z6O+/LaEEJUbqV7OHOy1d09+3eh67BI9BfCOf7p6ziugUvXPL/1WtQURTZd82Dj7D3QRnkBDrvi2gGoqEn2Nzpdhqx7frgxFtEScPfcU3+eh48trtGo6b18FqinJ6+kn8QVzcFIegl0fWG3WxB8eo2LF6Tb5RvMet8C+YqQd1O9XcvLTyOHYsWsO9edugoU47LL9uEMUDzWFui3KOUZAcMqQfgrPBmwoNc8W2SZAdyFkSiuMdtl+1/0OghWMf/Dj2QDp2XLVuG48fJfZ1vv/0Wd+/exUsvvQQAaN68OcaOHatJ069fPyQlJeHIkSMICwvTzXfIkCG4evUqbDYbfH19cf78eaxZswaZmZl47LHH8NtvvwlIiykpKejRowd8fHzw7LPPsvqcOXMGycnJaNeunW45/y5R53jdOr2JKunHKmU0+XeeO5sKSImmRo00kPHqNPyic2GSld1FCl0ah4DXUnUX38CtE3XvNEiyA90nTYbRWS44KdTTeJ18zcYEEld1c9Vmmoe6btThrrpMvTxdMbUxj45B0h/L3dZDXQca9/TzNjT9WtRq280WFH5kRcDrqTB5ecF5SXRsanthGmr/kibkYwoLQeK21ULb9OrQcvdYNB9+EMOzT7OTCvrurbNtNKab6r4w1q6NTcf+0vSlXp/lft8JBYPn3ZfQoxfn5pBOTJur9/7KE9Go+1MaG7Ouvl+5tR2DCJ9VmI4IT+KXpeBTKwJf0Y5XvXbzZOjYGuV7D+nGUYctKd6N8X5ddOeQ3Uzgzqmz7puDOwmANmrK/zxaYBba7jNgdtP96Jw1BMkVvsvapY+Cz7SLKD1NQBkubghlQAB65KrtNCz/82j4bbqHKlszkft1NEKe1yKjya/YYP5UO4b1vsfQ7LNYEyYqDjya+6L0+Am8kn8QU9PGIWiMcuJx194RVSURxMRVX97d0lxzDydnQST8/c/iBf8t+D4kVFP3s0/bsP/NBE0fMIpuC6Rl6fYTX77eu5I14QxsQZIdCF4xDUEvu3f4rJev7cVp7H4hQEx/+VNnSXag5cI4NH9H9AtFnW+r8+TXML32XJxoRca/5ugywq+eseCTJkp7c5d2QEHvH1zOA701orJ1Q68faBxjtWrYVJBW6ZqiXqftZgtMoUEaJ7oe/n4axpbSuTgrGs3RXx8o5X7XCSHPkG9xp18kPDeRE4ryzhZsXr3E7ZpS2isCHtu0QoM6nim8BUKX5iM7olQTDyCgFHdrl+PYJK35Ml93j4DmggsPdVnq7xO0fYIASHF1dDRu1zci7fWvMdA70mW/uPrmj8RNQe0DpzX97W4M8I659eLdjYnE2ck3cdi6XPPN9eqmLvPfHX/XkwKR3PY3Ia0pNAiJO9bg1TMWONoD5bZ2MKQcuK+8AXIPuuzGDU2dvihKFRCf9WhR8W74VMDY07L+Tg6dF+yL+K84dJ7cIfOB7o//lB5IUXPRokV4++238fbbb+Ps2bO4fPkye6b3wHg6ceIENm/eDJvN5lIIA4D+/fujtLQU8+fPx9NPP41Zs2bBw8MD33//vUYIAwCbzYYdO3bA398fb731Ft5++20EBwdj165d/2tCGE+GPYcAuF58ACD8W+J/iDp9vdPtNC5OtLKTofzvmgkOTIdnn9bdTOxmC648Ec2053azhZmf8NodGr+gNzHX4yGPKXluyhCEsAQOoYm3Kz/0XIKgyZRkBwKSnoIkO1B9ZxPcD6nr1imgSLOh2M0WmIIDBHj5s/GKltIUEijkc2xqDd1NgH+m8a+OVjTXAJhjTp6MtWszcwXnpUu4PFZ0KMuDmVwdTcwpKPy7HkNNf9vNFnavb1Ld0yxckh2IfDOOCWGuNjJJdrA7ZcdXtdEtj94DAsCEMHU9+ProXbB3difa7Rq/7XHZHkBBcVQrDtTjnwphkuzA45ufZkJ9RGdy4TpwzVTh+9E7fnraWAAo30vmWZs9BEqfgh7w8W88Tk6C1EKYui+S2vzEvgFF8nLV3qCX0pD/WTReyCOnflkdCLIaZQziT0aj6aBsJoQBiqkjQOYyndvDs0+zvqJttajQ3CXZgbxRc3GphSdyFnVEwbC5wjuaLy+EAeQekKlJY8SGi07UJdkhCGFnniVz6sIcT+R+HY1e1Z1MCKPogFWlvUJZMJoQsH4K81NF2wAAVfto78yETs5A1T7HMT1lpJhPBTX+Xqn7xYlWeDRtgtuPKiA4Xp+XCGseQO5q0PbwfQgQU10a7jP0MFrsrYLcr8mcp0IY77Sauo4ARNcS/JipvVK8b8YLYZR4IezOZn8AwMbMJKGefF8xmxFrUgABAABJREFUJvJPM6bkFLCw0y/YUP8H5VSXto0+q++cUSFM3a/q9HQfUa+1/SNihDYDyr1hdV4ePt4ou33b5VrLl0ffdX9qMvr1GwVDRDgSd6zRpCktKsbNIZ004TeGdsK+t0UzdL0yW8wlQE+XxlvhuUkxaTMkk/411qzJ7g3azRYBEXjbskWI2F8mtP/CJAUqfWg2MWd0Hj7GUGr58mP6jwFA5h8VwtRjnPZHi71VcCmqmaavaVnmtNqab8a7DZFkB+qsSEPj71Iw0DsStx8Vfco9nasoe1qnjWF16Rc7mpVV/fd0lBYVw9Swge630wsLnK8PoEUdwVdNyoDPUGIFQE/GaP2d5WXMybjeXkjj8u/UflgNHh5CO/XMaJ05xGXFzlMENMSQokDtu+IH+PCyGzdgqlMHoUsVH3WS7MCL/oqZ+/mpVhjah2vS0/u/rI4Gw9/qjlgZ/v87ddZ6p/3n0QN5IvZ/jah2oTseg4dBa1YZl5vHoNLVWhdDx9ZIWv+T7iapJn4B+/Z4MkKr1NRovdQb/d2YSKyY/yXGV9wLAYh/jirhV3EoejlCfopD4CupMLYLw6ZNPwv5XB0djTorKtcg8+X3mPAUqkp7cS7Oiuu+5N4JjcO3zRVzzMfJ+aEjQ328Hy0bTydftQmQ2TT9IwcHY1ebtbp50DjPnOyE77z3sLKujo5G6mdzNX1N39PfrebEw/eDFN3voS6HDz/xpo3d4+Lroc7j2ohoJgTydHV0NHzjc3Gli2K6W9atPfInGBEyPhMfFGbg7QBiKnt5rBX1lpFvknB8N+KbdxHGIED84FAI5osTrLgWoDCaZ39vKfiK0iWDASgvh2U/YRwB5RSLp7q7G+BKlwso+tCK8qAbCBiZJXznmIBOzIxJrz/pc9GHVhyboGijaX++lHfYrU8ePQbP1Xwad+wEczNgCg5A4q61unPuZtld1DBW1a1n7o8d0PKT63Ae0T8hK3ndhlLLdV2TuMrGkd54zLl3A88274wTv7bGEZuyxsR2G4Kcd+sKJ193NvtjR+t1LA+AMEXXup5nJxN6faWuT2y3IXDmFuDyOCvqLU3FlcRgBvfvrr52s/bEQG89q2wsuFtD1WneKdiH9wM7wHbgrnCHlifaDgDw8PVB6YmSStdpY9uWDOzHXT0rW8ck2YGgldNQs8SIZl+kwKO5Lzam/qHJL+r1OKR/JAott6QAnDrQlDknBwhgB1XWueoTPvzVMxY0q3oZm8LruY0/+Mg5rG3VSDjtpmQ7cBcp7ari9fwsdK9ehqSbnvgyWFG23ni8E2r+uqfS71r4czvmy+rEWzZ4XibIo2pmO/l2GTpXMwpj3ZlbIORF/194yircUQKAghUW5HZfohl3xavbwG/YQdx6LArVfxfNRvXy4esPKN/lRlKggg5csU5KsgPZd29iuj9RjLyQl42YGnc0bWs3Ox5Nv1ROp6JfmSa4NNGbj3azBXlfRDO/cHpx9cazek09/p4NzWcqe5vakoeSsV0Yyg5ku53DL+UdRt8a93S/s17f0bpVNkZ4yv2mE0Ke0ypM+Dw7Zw3B+yG/4/kFU1H9bDnq/yCucUzgO3RVcNeijqMO/zudiM3bF4HqtTz+v5Z163oppv7DT8QeCmIPALkSxPgJemljCLz657JwAIjtMwKJW35B7LFYTPPZoTHdOflbOLyHaP2Y/CfkbsHmnwvvXUdAFXLkHrRtAoLH7r8vZsddufeTxtQiGM5jykmYHoNJn509OsD05z6cWhcmgGBIskOz4btqd79gG251D0e1bVmCI15JdmDXbeDDQAuKPrDineGrsLSFL85PsSLz3Tm6C7BeWe42DXcbC99OV3m33WfA4ZGBgrkPZWzUfUeJmgcVzrIi8LdrGuGIp9KtfuyelV57SntGMGADu5ncHzTu3K8rWLr77pW13xUT7uqbWj6OZ/cJaF6hS+LQo7cDRVG3CPP6RhxzDqse1+o+4/OOPxmN/MjbyP22E1q+mwvnhYs4/YKNMUju2uUqzBQWogEJcBc/Z3EEA97Qi8O3J2THeAbQ0PPgDWxvU7PS/nZ27wDTDtGMWZId6Nd3JDZtXolOr8ah3jJiMtb6m3iNubI7Kt3qx+Cv9dpJ10lJJuAJoS8dgRxNgEhGHZXxc0szSt6wMVRZgJyCBY3ZL7SLH/tNUusIaG56xJtI0nQ0j5iATsj5woKQp/e47Wu98BZ7q+BYx3v33T/qOau35vK/l59Ixhjfzpo8+kfE4OgMf+SPnKsoKN6y4Uh8giYPALoChju6MbQTdn9LTtxLXrfh8LMJbueku3XyfveGnAWRKOyvIHj+O2W5Kltdj/+p0Fz8jg3Z0/T74JYUgOp24h5GzzzWVT9IsgOxjwzGuUeaotFvR+C8fEWI2yf7URh7ndBtN12rEryJGamHt5khKN7Z7A/PvkWQZAd6PTGJreG0bCpM0XxoOF9G8Ts2+L2f4vI9X48lVxtDvuvFfJZRKutiwZZVS4S2ByQ9hdCJe932/aijMsbXOXtf394Q2Qano2ujybeuzSs9mjVlJsQ1dzXCc97b8FFQW7xXkInoaqb7HgOU/k6C2Jx9kf8VQSyuQ8YD3R//KT2Qpon/V8kQ0UoAorCbLQytjTIXPDkPE9MsZw8ZA2tqnUvzQtjtAUq+fD6XnrQKzxcmWzXx9BhbSXYg+sA93QXGbrYwIQyAIITR96zNFQ6zeVMlnviFmvrmkmQC4c/775FkB8IyPVA4srFeNkLdKJn+JMxiVtTPrE0AEHsslglh6j7nw1p/HY+ymzfhmZjBhDC+vvNPd0dYpgeOTZrDTkMazk/V9Nd7BZm4a1d8t6iZQeo7TZId6DV2EvutZv75slt/E6/ZWCXZge8v++LyOPLNszqUC0KYJDuYdnlB8W7k37uu6QMaP+CNVHbPio8jyQ7m1NqjdzHsZgsZx00aC20DoLmUbdy5H4UfW+H7YQqDAS5YYdH0h5r4McmH0fABOf2QMz+S5RP5VhxuDYpyuTE2+SYFJi8voT/v1Xdink8qlp1Iht1sEYQwdZmu8rWbLciPJEh+Ic/uYXD5Tb9MQcka/ZO3kjdsMFTRXtyXZAeKfiF+b5zZ2rWBUvzJaCEdoKAf8mNO3Q7aPx7HajDTrO1tahKUTZ35zvf3uLnrYfrTLPjispsJOET3yZOx5xNy+tI/IoYJYRS5k3dirkd6QhhFhy2eaWPKKrvZglqr9zAhDACWTyWorFQIk2RiEh00Zj8KPrFqmFlqdre0+S6hvOPvW5lpOKXG3yu+D/n+sZstSCrcw1Dr1MSnoWV3y7rFwnkhjCL6qUndV+r5QtcKviz6mwph6u9feuq0cApS8roihOUvbw979gChna6EMHXd6Ng9387I0vt8lIKzTn2nt7TuJ97WurGgfdYvpDPsZgss+8H8PfJll23zhSQTlNT+Uf3Re/REIb06T1d11yubT0Odzc89vlsI59cn6lIBADNzBAC/91N0xwIAVLcXsnC1EFbwKRm3FPhC7QsSC+6g8aZCGGqKChS72QJjrxOaNvBp8yMVM9LSkzJrg2ffIpyeTsqjazifnp5o0fDQJXEwVBFPOrOnJQhxzj6jRVel78bXOYudbavj/BSRN6FAVT5pxLwvbG48QifuZYBHeu2SZAd+bmlG36FP4sJTVuR+Ha07RimVZxyE91qCV0B5KH5eyTNsKD11Gi/lEV7rxiPn8FEQWZejq5kEAK/82WTfpWBpemW6G3MP6Z9LD0/EHgBSn4iphRvetA1wrWWSZAf6d7ALd0woqTdaGrbqel0sCg1gz+40UzSungaO11QbW7fEps0rEbB+CgoHztetZ7+QztiUS+6b9Rk+HsbdDqjJVT34Nlx4yqqB92fasd+noPCx+ewd1YgDwLn1LbCv4y8k3h+TETpVhDKXZKJRp8hKxmrVGLIUXzdqBrLymhcWt2gOeYYNB1/gNJve7QHVFJNkB6JnTEPd5fdvtqn3GyDCIG9CCRDTN2ce2bxzEqIQGp/uViOnJ2gDxM/T9aYm7HtH9Jvlqm6tUp6A7+P6J2SGiHDBv427erjTHKrbsfJECqKXvgT/N1MZ+Ie7cUxpwOFLAuIgQMBJKMNc/K5N4+tOkgl6Je+09z8ldR31ngEtc2Y3W2Dw8MAj+64JmmJJdiDGryPKS0thrFYNPfeew9bWtQVQEXW+AHBumlVwaaFmCEYW9sSlzheFMHf9TEFq7kcT7O67F3xiReCrqZp8eCCN8s4WGJIdlfalXrn8+3t9O2L7koWa+XZ7QBSqbdDOIVrve+VODPCOcLleuapD0b+s+GTEMo3Zuas+uZ/2AMDMc+F4r9FhTTv4tUmdhoapgQfyZ1sRNCOV+E3LSGRxwzI98FWzvfj2UnM863VcKIu3htBToqjHjOlPM5w9ZPik1RJQDCmdfcbGYP7paQygjNlGKfVwznaZxH3aJtwbpFTaKwLbli1yOV4paBUAdmKqF+/8FCvzd2Y3iyZ2hvbhKN+vgLvofStTk8YMCt/VPk6pYIWFnUbr0a1BUcwnHzU75/PJmROF0DitgOxuvvHfKeK9ONQfXgJjrxO4ExuJYrtJF+yHB+G6PjwatVYp9eBPiwDig3D0Cy+h5po9wqno/RK/5iTd9MTHz48TIOAl2YF+/UaxEzkAuqaMxmrVkHBsK6Y178Jn73JNM1SpivJ7d4U4ABH8ef+TtP8mFHeFHH1Nk586X348BS+PQ9CMVJSub4Qdj855oE+AKM/6XWan/8qJ2DMRex7o/vhP6eGJ2ANG/EQttxJAkDor0vDqGQuLw2s0Y3sNE8I37pOEvPTS8GFUCKPPevWhRIUwvp40jUfvYpz/IxSS7EDZIXK/IXRaOsJTx2jyspstMDZpxNJvWbVEKIdq3uxm8XK0ukxJVvyC8XSqQgvFb0In3rShW3Xl4nCjgcdYXo911PeBlvz1PBg6tsb14dEaeF+6qM6YPwl2swWLWzSHJDtgnk00m9QPjFoIo0SFsCuJwZp2S7IDx1e1wb2+HVk5prAQ1m6Dhwcy7xCHqN6fKOYdd/qTe1xUCAPAhLDn5EgYPDw07fz2eDLrB/VGcXHcDTSam6p5T6nP8PFCXmohjPdxk/THcqH/eDKFEIewsW163pewCACmenUhyQ6M9LXh2AQyBtI+nYvCWcpleXV96W+PQH+NEAYQcBIKeJE9JQFds25j1FEZ5Z2VOuU8qR1vAPFH5OzRQfcdT/QUy1Xb9BhxtXaXrQ+lpdjZtrowbgAgqZjci9xUkIatrWvDFBqE1HZrSPkfWDXzCABS3/7GbX14IYwvi6fimTbc60tOinghTP0NTCHElUDhx1ZhvPFln3nWBst+6AphAJgQBgCbVy/RrY+6bL7u+Su06yF1ZMunH559WhDC9NbUAd4RuDm4E9440xaS7MDKE8qcDNggOlpedkIBO/J/KxWDal5H7tIOyJkjntAOzI0RypuSU+Bybqjrk9auiqYdANjapJcGIE7ly26Qk6n2s+JhrFYNQTNI/5eelBHz2FgWNzuiFHazBUkxbYR62s0Wxtyq68DKSVBOFkp7RSCxRSIkWQslT2n/G4rJJxXCJNnBFAfnbJchyQ7cjYlE4+9J31Mo+FMvkjXo7DOKj0298bb3A2Ve0xNTPSGy4fxU4d36EMVZNhXC1GXwxPsji35lmjCneeAXSXYIQljXrNuaeUf98EmyQwCAomGhceksPvVnRtcfu9kiuKbgiX6rhvNSsSXsDzJnb5ch5Pk0wW+YsS0BvaFCmCQ7BCEMUABn6F7QLekFeMYRn3w11+j7NqNhNPy5vKNC3QCg06tx+DI4DNXO3BLSxLZ8BJs2/QyAOAIfdVTG58HhaPNFvJB/0asdNEIYnw+L9wuZ01QIo/7LaDy1EEZ92NGTeFrfCcVdhWcanwph3SdPRsj7h2CsWRN4VHGX9JD+b9BDQewBI7vZgvwVZGMzpB5giwIFLaDPFJkucdtqmOrVZe/sZgtbIPlJT50O621CesyqISIcL+UdRvdJkzV5qYUhSh6rG6Cwwpwt8s04tN1nYAyTOk1pQREAYobTe8xEjfaWPqd8OReXnrRqGEc+XuCaqcLC3awCiYgn/1/PCuaSfD6UqVDT4bu3kLT+JyR/NVfzjrbJ/GkK/PaIZh+S7MBgH62/LD4d9ddV/yXFZ0/HmXGsTc2HH2RIlHazhd0BkmQHyktL8UYAyT/vi2hWrufGDF1ntAAxcaIMOv/Nnm1OTJPUzlejXo9jpq1nn7bh2shoVpf82VZE7C/D9CUrhTap6fCzCZr36niFK9uyy/B0U1MzHHraRN5fDv+fgrsAxJWD3WxhzJjdTE436NhTk91M4ItpOX+1rYafW5pxzlKDvbebLcwfE1/PkujrzNQVIAK23ry6d9sDtx4TzY9p29Roc3w6PYFCXXe72YL+1keFMFNwAEMFAwD/t1NZedQflSQ74FlxEg8oArbdTAAwXM07vhwA8HsvBVU27xWYcvqfV6TQ7127QDsu6P8m36awNc9VmylNPtFZ6Me7WxQ/X3rj0m62IEjlmFhdxpUx0RiafZahk/Ljr+QN0Y/XshPJqLF2D1LOEQFzpK9iZtXqnWIWr/eYiejz+QxNmUNb7xeYZkl24E6308J4nx8aKKSpbDzQ5+vDtIiCfDkGT09m2hk6JYN9p8bfpTDlE61D0u/LoCYKPsILY3qCMz8mCgfNZwzrpRBistZyAWGUPyjUOlmneTt7dIAhIhyfFO7R5G83W1A1iaSdfqojtvxCEAO9E8icNA/WB1Oxmy24MJnsL7zZIK0v7RtXY48fd3xaQ8fWAMiplDpt16zbMLZtSVx3cKaUS1v44soY0ek7pb/aVhPmHe3j4+8riidqEq6nSAn6kTD3/iOy0HMcMW+v8Zti7UGpf0SMbvnUBNE8+AjyfiLmyRRQhlLkW3HCtz/5KpkH+Z9FM39noVMy4NG7GJLsYH4v9b5L9Ixp7Pc3wSLKKQDUW5aKs/E2dkeZvjv2fiuWX97oucwCxvwZKf9uDIHtp5D6NC2/PvH97D8ii/2OdDiRPkuxvlHzQHazBaHT0hGQ+BQA0Wfm6Z6Kf7oGyV6adntuzMCmY38xRcjfhcpg+K/8/dPpoSD2ABGFLXXFJADAymtkEtPL8HazBYlHdsLQXrljwiNu0f/U6TBPekIZXYSS/liO91+diB2LyOVmvz01NWnUz/WWpjItU/3FqcjqQE6DKFw0T3f6kQVxZ9vqMP25T8O8UQr+cwIw/LymnoDi7JXCQce26cnykGRyqpR99ybZxI/lCQwhQFD31Pny78KrVhcW5QnHjgt1o3HP3VYEvPzl7TXv1Wkk2cFMMZ3ZuTi1jtxHa7BAa/Kmrpemf15ME9pU+4CnEt9o0mzK+feuaxiH0+vC2CkafTf/3a8Ig76zKRp/n4LaK9NgatIYkuxA3pg5yGxvRP8aiqkmPb2lZV95Ihqtvo932QcUhp13jsrXk28z/W3PVu4/UJpVKJre5Mwjp4Kn1oUh8cAWSLIDzb5QNl21o9u8Lwjjc+uxKKGPJdkBRLUBAI2pkyH1gGbD5r+BJDsY0h+9x0jjhTy5j92nuZEUyNJsvFkNQ30UJiwg6SmWjt6f0BNIaZzClUTTXXr8BNqlj2Lv+NNRSh4+3rCbLez0QC1YGXc70D+qPyTZgY3Jv2vS86QWSIX+q6CLE7SKFEA5XVh5gvTv7KI0TV40P/qf3mvj77wu8E0WGKmqfY6zuvH/9UhdV0p1l6dhSl1Zd1zSE5Oc+WSsjfXtjOvDOsGzb5EmP/Pv11m9TH/uQ+NHT7B8qJPx2U3JMSx/wnzqRZvLutH8PincU6lAlvy1YvpFocA7zoxj7Sm/cweBHBLivXLCMMozFGETBoPQflrO1dHRut+dxivvbGGCjN1swZsFDvY7dBqxGKCnWkcnE6VNlGcVTVn0eevyH1CeeRgWT0/ddtOw7IhSWF+eBkl2CObklHK/EU+Cql4lyIP5M8naXdZNWcMjux7VHbsAcCc2UtP2G493QknpdZRVJWtvaFy6RkiV3u2GTUkryb7EKZ9uSQGoer0MOXOjENttiNCmO/0jmdN5vn/2TPwChT+TtZciG6vrK8kO3PFTBL4qWwm4xukXbMj9thPKbt9mjuV5M0L6LamARetCfZPRuUjDI+P2C+vhTTMBHg96OY0J/Xz9S48rc6Hc1k7Iq+7yNGG/9kqur/kGjRNSNAJU8HRS1vKKk2f1uvznDwtgN1vgt6cmcr9WlIuuFAf8/19z9IVu9X5VGLsQALEIomGb8khdbz8ahQudLwnx+fXNEBH+t4Kvf0j/O/RQEHsAiV9YAjYqpi2mhg2YCZyaeLMINdGJbnJhX+uKoay5Zg9beIo73WDvqH8UGp8CMei1AwAaPyZqznpMeArF/Y0uFz+A3Nc5P8WKoDH72QV8AEi6qSzmG9M3CmmcFy6iYIWS592bVRFWtcJH2DYCOBDxbpzCCA0oFRZBGAysvVd7iXcVbgzthJG1RcfMNO2hErOieRyjbEb9o/pr2qW3SWZF/YzBR85pNg1WL1X/GGvUcMms3rUpdukoc2ryCKo4Fcy8c5eVdyDqZ5haBAt5WTw9YTdbBIjhxP2bhfz4fKmvLxpe96c0hny47ESyBrjB/y39e1YXnlLAY8KSxwpzQQrboGn3M28+J/RP3gDiy+uZFjuFOn5VJPp7Y0xFBSCBLthA+kFcTwrEuWlW3TlHTUEptfkqnpVJ601N9Hi6UcGA16zwaSPJDnwT3BKmsBBWt9CJe5m2nN6PUQtjfL5jwvbiTr9IPJ2bg6aDRMQyNW1M38h+8/O+bfoolu/G9I26DArPiPDCqN1sYf67JNmBwNWKRrv+4lTBJI8X2gFygnRufQvM8I9G2/RRuswOfaZ+yeI+Xy0wYTyp506n1+JYeOuv4zV9w/cB/f1FkTI+S9aEo+QNG/J+ag9TeAuWNnQKOYEp/MjK7pLy+QFESOTz51HqeJ9Gpgb1mXLGbrYg62UimKy7UUuoL1/HVwM6uXz3r/Oi8kuSHThnu4zbj0YxhY+xRg32Pvd7ktcAb3Kibp7NoYZWmFer+6zOijTN3sGPTUOyA4GvKQ6VPwwUBRLet6N6bKvrDoD5LNRbQ9VjIPWzuYht14c9U3NYAAyWnOZ7YxQ5Xad3P407FbcMR5eJpzF07gLAjoUL2G9j65awmy2o+eseTPLrAkMKUdZ4NPdF4SzlVM1utkDuYlDWNLrWzY9HdXshqv+ejtBp6XDmFqBfCLFW6Jp1m1g7jJ2j6ZvhPlYEjDqAk6/amB8ugDiRLvjUivcKMmE3W9Duc62Co+mXKUyJSdcYvq30N3UOzl+DAMActdO+d3wmrkshzyv+86jQ74qo764Wi+ME01WaVn0/lb5Xj4WybUTh3NBUU1ibJuUUCnGLO92ARxMR4IxXHKqVCnazBUe7LBPaS99fGxHtcux2zhoCgFiY2M0WrPz+C929nVJ55mEMDm3jsp8eNHKWG/8rf/90+ue38G9EdALyEzR0suJkMjFrG3vP31uh5Gpzog6FE4/uYnlRdDIAyP2xg4a56nH4Mc2CQe878E5dAdHuXY/UTGNVaS8KhsyDsXZtoe78Ahfy9B5mP32nXyQLb+5xSZMm/zOFyad29VH7hyFkfKbSJ72ICQ3VwgPAZXuYULfhR06xfMvviH5YqFDKl03rxPtT4qm05CQAYOlVxcnkK/kHYfrTzNLazRYEbZ+Ata0aCX2g7j+eym7eZPHUpmN+ww7CbrZgwGEiALRKeQJrStI0ebzdd6SwyYxbv03zndRl8/XLXRKBuzGiIOKKxvp2RvB0IvBQra5a4Lw03orj7xN/OrQMv2GKZjDvq2jBwfDtAVEwbPdG6mdz4RHQnNUv1puM5TVhjUVGp2oNVp6pSWNdAfc8h9xG09aKKWD35Pj4kuyA58YMJJ4kp7n9bQNxcHoCe0/Tm1oEI2xuvJD23oomQl/3C1ScevPztviplkJ5fL3S79wTxuDMRkewY9ECwYWFXhv1wvO+IuatWVHED2D/LoOEvNWkN0YBoNof6SisOHFVX+ofy0Gk80I7JQqcw7uRcFU+ACxu0Vx4Dlol3rfh18d6S8k6ErRyGrtTqdcGvs2DfnkRALmr9mq4hMPPJCD4if1wHj6G2B6PAyAuRexmC4L+lYXSnqJJMHVQryfk8eGU+JMR+l6SHWhX9bQmfsnrNuR+3wl5X0YLzGb4t4SRPD/Vir/aVtMwkgAgdzGxfMpu3mRl8qiO6m9Pzaj1GE0aj5oB03h8fS0fK8IvH77/rQQhD7vZgutJgaycnAWRQn1uNzBAkh24uCFUSJdz74aQN/2deGALWuwlJ2zOfO0pqd1MzEwPRP2MixOVdYm+uzxOBLABoPjwUtGmzSt1w0uPn0DAG8o928ST+5A/kpi6l7yumLD6vUvGZeFHitKn7MYN2M3ERBoAvrgYKLQBAHOu7P1JCqqvU05gnIePIfCVVMwMJOPyUEQZ7GYLc1RvN1sEx+S2A3fZb7vZgpwEcmexX4yyT/Dm8Xr/6T212EcGY0heH5YXQHxL0riJJxUTbvV48n8zFaHxRCkWtGqa8E5+RTQJ1lujtoT9AT0aXos47j43TfnOASOzgGjlzq7vh+QOpefOpkI5TPGy80ndOtf+JU0z9mmcWjEFMNWpA68fyTga79fF5fpJ8+6XoRU6H9I/mx4KYg8QFXwUqTEnA7QnEFTbqH5P01FTILqIlHkQtCm72YJ2n5JNkSJElW71Q0GfHzTMWdU+xzULRuiUDE2Y3WzBtZHRrCz+1K0yoWLTsb9cLur0t91sgeemDJbfdH8CCNC/82MsXtDLaUIfSLJDF+6fp7PP2JDyJdkQ6UnAqrCmmniVLZrqZ1OjRjDVq4uh2WdxZ7M/Pincg+UtfRij9mlQG1ye5ydsJNTUw125fYc+qflGtx6LQmmhwmDQv4sbQhkYxRHbTxjqEy2MIUl2sHs6NJwytup4vJkb396Q8Zn484cFLJyaHUmyA7OLXN91olpd9ZhOnzWHOX129uggvL+eFIjg6WlwXlJMOqptSEdSS3KyQ/uA7zteOFeTK9Sy7hlTUNa1vUuNpalRI1Z3+i7Wm9zVLC0q1rTJbrYg8c9f4fd+Crv3mXbbiStBBiEP3nyKL/PQ8wmsvO6HBgEATvxK7p68HRAp1LN/RAxKSq9jVQnpw7q7G8AQIULiUzNMtVCWP1y8A1laUORSIOcZk+vDFBOv0xXmta7uYVK6a+8ISXagW9YtIQ7PvNA2q8cBALyenyWE2c3EbxkV9Gl6iqIotLOCAdZzy0DpSmIw7GYLAl8l/djk2xR8P2uYsL5QP4Xp7VcDIAyz2hXDuhBJeL5TrsDQ8/eA9AQ0/rtOa95F6PNV1+vi8LMJCHl6D4JfEOeZ71YCENBwnggoQanol7YM/ISWzfcBDxYBAG0/J3vFllVLhPrxZvA0zHnuHMuT/a8w7XW8liC0jcaJ7TNCyAMgjCul0MkZQp7U11j9ATlCumebd2Ymlep2M/j/MidzDUP3RwA4/ExFnj8ofUbfXeqnnJjE9B8j1MVYowa6Pj1V+Fb83U+9/axwlhUmgxFh80i/+m65yuJIMvHJ1Wh/Odr/K16TDwBIretoBfjzF9jvK09EC+PUFBIomOgBYD4iAaKcokJHSjviIoMq1woHESCQsqyjKPqAuGug9/f01jmACHN2swXOvEL8FrxFqGfTr5RTfbpm8mmpoMZT/vC5QnvNnyqCo3qeqNdsdT9R1zcUAZj1029LhXiS7MCxvwJQ1kVRcDDFQLcfXSq0aFp1PSTZAefVq8A2H7f8CI1rN1uwKbK+23gPEjlh/K/8/dPpn9/CvxGFfn8SRT+Ha5gSQLx7xC8A6jsyADEFovHsZgtqyfcY2lTTr4jmjZoXbmu1Xle44sumxISthg2E91Ez9ipM0dWrLH7PgzdYfu0zRuouYjFH++uG9z50zaUQVGXzXmxM/l0QPtT1VzM4ABAgTWK/eXMvehLAt1NNRR8STWXHd+KYCYha82s3W+A8fx63o0KwJqwxdrRex8yHtv20iOVde6UiOJ6fqm/2xof17/yYANxCy9o1Z76gwQWAXkcG4tbuhhqBIWdhR83G5Wpj4MObDsrGomLRLw4lqoEHiNkRjfNa+35ulQkxR/vjvYJMVhZf/7xl7QXQCwBIbvuby7zobx7oQpIdyBs9Vzeu3uZJ30eai7Hll8Xo38Gu6R9JduDkmBCEJY9lYRTswtU4pe2SZAeCRjswurAH2lZ1ovlMMgfP/0E0+/kr9NPzTMCO1usAEGRKvk0UBXFjZhIm+XXB8CEEBOFKlwsozzwstI8KInazBYU/t2PvKMMd46f4xpp72ZvFpe1IOL5bqFPy1/NY/KbcSdaGk+TbGiLbCHkA5DTcbrZgZ9vqDKGSb68kO9Clwpxn6/IfNPOY+uhBNEEzO/maDaYd+9gFeJqPulz6PLsojZnn6q1z9G4fAOZHrN7SilORCvNmPeLXIv6707w9DVXwSSFhgtNmK4Kv3thR14uP8+mno13WoTyDnIZTH3hqgct/RBZuDCXr0Sv5B4V+GnD4EsbUviCkafZ5Cjq+HaepDw/RLskiOAoAFK+uQFJct0zoC3rPh/4lbvlFM8f4PpBkB87FiSioPPHxqUklJaqE4OPQ+1oZH4ruOAYcviSkDcskcNwBow4g54eO8AhojuIBdYU6bMpLQY21ioljzrxIVP89nZlg631XejKWPZUIpuV7DzG0TLvZgtPRnqi1Kg1XWpQJ3754tWiqpqe0AAhqLN9eZ24B8xMXeyxWUx+7WTE9l2QH7vSPZIAnfP2dNcpRGLMQbwcQIe3qpiCi7FApemY2OiLk7Y42nMxkljqS7GCCmpqEfSSqDVNE8aQGmpJkApbCpy3LOooWexU0UaPKr9q3x5Mhv2JDbHgPPDM4kZkJ6wl49HeTVO1Vjx4TnhKe2dwJ2yD0ydO5OS73yIf0f48e+hF7AEjPj5jjzh1YPD1ReO86A8CgE7fl7rHMXhnQFzwk2YErZbcw3Icsdpb9CvLiewWZmPFyPP76zrUPD34DVW/EPcc/hSqX70BaJ6JoBa+YhrzRc9F90mR2iqXOzx3lfxbNHFbmzItE4aMLdNs28MgFrA9vCJSXC33Fx8lZHEEc1xoMkE4qHB/NL/DXqcJdgUG5dtyxXxEvd0e1AdIP3lfd77eN7uKU29qh8BkDQt+6zJD93MWXZAf6DhuP71Z8z9AP+XeU7GYLym3tcKlFDdTLu80QxVoujEPzdxR48Lb7DFi3JRqBr6bi1mNR2DVH9AEnyQ707zKInZiEfxePw88kIHLfcKalNlSpiqTj6bp1dteWon9ZcWziHJdCNE8ezX2xMfUPIlxwY4Yvg7a/9TfxOPScopGvrE5qYfV+v2f+59Ewet8ECmsKfsb0NKShP8bBMfZrDPaJQuHHVuSMI4xh98mTBZ84evW7n/rzZdF2BO8Yz0CA3JGxWjVcGmpB2uy56G99lPWzq3Jr/9UQ17qe123n/TIW6rXGFBoEZ04+XsjLZo7VXbXZ3fejNOHYccGU8fqwTrhTx8isAiqrr6s+VccvnmljaGxXxkQzgevfmQt8/oGrp+n6baosj+LVbeA3TFm3ro2IRsqXc3XHyf/ku6nXFr10HoH+KD9/UVDMVZb/v7PO0rL1/OP9u21Rr3H9QjozX2p8G9VUuLItate8jYaP5gj58Wlc7aPqMNuBu5jZSIvsqLceGWvUQNnNmy6/ISVTSCASd/5G5lRYCDMt9PD1wcY9G9ymPft7S83d7vsdK+7a/D+h81OtaLLrPBK3rdbtH7tZ9GOqR0Ozz2quVLjqv9wlEQgZr5xwv1OwD52rGYU4avp32ufs3gFbVxArpJAMT+RGinfnSsvvYQd+f6D9ZlGe9bO9Xf4rfsRe7rj7ge6P/5QeCmIPAKkFMTXRSb6keDdDRqJEndgCRMuzKTcZ/fqOZL68GBkMyPu8EwMnAETGgS9H75n/fX6qlZm/AASm1vuTFBjahyNp43JhcQP0mdp7fTsyeHZK1JkoLY+mpXQuzoorIeVCG1zFBcgdDgr0UbDCgo87/obV5zqyi7/yDJtwKZ1vK92M3ZEkO9A/MhalJ137/XDFuP07DHbOoo4InUT66my8DY0TUhCXm4c5IcGw7AdW74pGwbC5upsUpftlSAo+tSLwlVS8kn8Qvao7dZkHAHjrbBtkWEwo7RUBj22Zuu3J/aYTE3YBoN/hy5juVeSWcebzubpJ8X/FmNPfpiLkGSVPd22RZAc6zozD3vdEh9+882Ia98TbNvh+oB0Lenmq31Gnw+q4eukBsD7jKe/LaI2pmV5expo1kfNBG80cAAh4SGWCnKu6Ae6ZDL33NDxg01Mo7LeQhd8Pc3Z1VDTq/Kz4HDq1LgzNBmXjTr9I7Fi0wG1deCXK/dD9MuSBmycxBoyuT7SN0Y7HhdMyNRWssKD63hoorQn4fiDeQ+Md8xZ9aIWzKuCzvVSjrAKAM8/ZMG5KEqTWdYR+p45yqeCrpuvDOjHAEIOHB5KKyclj0YdW+L+pD4wjyQ60SoiH779IfWedb8H80rH+qlBk6a3pt6QAVLcXsviXx1qx5xPF9IvPh35fAFh/MgMDvSOFegBAyE9xCHzFtbN0U3gLOA8f04QzpRvcj2W18937pcrmUPE7Nvi9L57otNhbBTlWA/M/RdPx46gyQUYvPOD3KczVgSshR37FhoPTE9zOIeH76HxjmtadQBbbrg9G/rUfy1v6CPkef98qKPj0aEpOAXPJYGpQH4kHt/+PBLXTz9vQ9Gtx3aaCamWk7sPppzoiO6IUgCKsWg8MxY0tTZD1coJuf+v9LvjYijLPcgS/kKbpg4j9Zchsb9Sk5Z9XH9sHr9CCB1rwoDzrpxld/yuC2CuRfz3Q/fGf0kPTxAeY+EXx9LowNPPQ3r+gQhigXO7VvThcXs6gzinxQhii2+KR+CmasnMWKuZKud93QlnX9mg4L1XIx/sTkk/5/sOEqa0wH6Bw8kEZip8SmrdaCPNo2kQQfOxmC/pkPyrE2ff2HOSPJOYXV54QUfjU9QbAhLDTz9uQ230J5ocGCuhLVAgzRIQLedjNFlYXHlAEUW00zAgVws5PISZi/HtTi2CWL93kileLebgiGl+SHQidtBcevsTGnF5wnxMSjDPP2eBoD40QZgoLwfWkQPQZMQF2swWRb8bdV3kAEPo1uW+lFsJ4f3J2swX/akyANLYtW8TCc5dECG1TM8ubwusJeeoJYTzV6Uf8X1GkzH4xI+G3sUz4JpLsQMJx0X8O3xcNFqSi57hJpO/fsSFvWXs0mpvKENuCtk9A4cdWxjzrMQ9FH2rNo6hJIABBCFOXL79iQ8HHVqGNV/yrasYKL4S5E6A35SYzIazf4cuCU1YqhPHpWywi396jqQIeEZerL1AMzT4ruJrg+4P2oZrsZgtCJymmybS+pj/NuNdbMRcL+H2KkL5+qgxJdqDNl/G4NN7KmHTPTRma8VBlRzOWLrZdHxQ8rphETjh2nEFvq4mvP1+2uh3UjxKvBd++ZCFrn91sQZrlVyGt+n9u9yVo9kUKjsQpp6+5SwlwTCDnjqRqqyvw3uVkQpgkO5gfyLBMDzheS8CWJxTztvBvidlo8ldk3eOFML4OtVbvYe2lQljO3Cj4v5mq+90ST+6D3WxB70EKGBQVwnjQGsqgU6L9IckO7GqzVsiz3jLXQlSzQdnwSiZ3XwZ6R7LxSL9PxHuKEEZN3+l7SXYgYn8ZnIePsWe+7VQIo/Xj01I3GQCQeHC7y+/Hp9F7Vq9Xwj76vtas7lh8S0EIo+RKCBt1VNYtT5IdzG2I3WxBaFy6pp0AIL9sY0BI5k9TNHXkSS0k80JY6K5xQly1EEbTR70ehztt/TCujjIeO7xP1hp611ddx5xFink87xcv8eB2Id6FSVYYW7d0WX8+/MCrCZp1v3PaRd3vaApvgdzvlPXSbrbAaGnF4lIhTJId2LhnA/qMmoDUdmsYgqk7IZ+SKTgAtY8D+SPE03CaNrO9sdIx93dCTXxI/zv0UBB7AEmSHbg2Urx4eyDqZ/ab+gyi6FGSTHxmAQS+FQDRclEm4btO7N6GehGhvmyk35ZiV8J84Z3dbEFh7ELkzIuE3WxByNN7YPxLHyGQJ9/HiZNF54WLsJstyI+8jX7BIlQxrTel0tNn2O/CjwmTuyXsDwFimWf26v4kCpVqRpnPn2rM1GXSZ3qXRs0cn3rJBs8NNZTw9Io7GBUw4zw1nE/s/wN/nYpT6wga48lPqgjl2M0WhgRIN77j77lmInn0utITJQCAju8oQlWTb5R7bjSNJDuQuG01asUUwPjXfkiyg90Z5PN2xZBQwVLNfHluytD0D32Xt4wAXBT0XSSk4/3eqMvhvxcFCbCbLfjqkj/75jRuTI07kGQHSr2qw3NTBsquXRPKV9/5oWnps8cN4qZg8fhvETyWjN9m28gdyeAn9iOA86NkN1uYvyVKesysz467Ljdk/t6f+dMUAcLbbragwSIFhbHc2o7dOXQlCKr7jf7eFF4PtZ89IbwHgIA/JiN/hQV5X0bD61g5cpdECPNrUM3rwvcIXk7uAa0Ja4z9kaISp18MudtZZauCQErv1OjN48tjrbg1KArOHjK2L13E3qkZSApu4rs0D+mzlDs7ADmpB4CA9VNQbmuHe91Psb5xnjsn9M/I2pd0obfzlrUXBEP1eObrTM2Rzzxng6FKVRR8YsW2Wwq6IE9qJtbVf0l2IGTcPs23NOyuh2p/KPd67WbiB/LMczZ81YwopzYlrmDtrXaxnJVH3SPQ/PXK5gWlwoHzNe2l/2O9O8Cw3RvHOt7T9BO9V8QLsQLjrhqjfP40rxO/tmZxqHPjyz0Vcz9+PAIVACMV/sooAMXFDaEsv93vioo3ve9KKcavI6ujxw2SJ3Uu7C4d35bTzyv3P9VKBr30GqGhwqRdHU6d/LZYrKzjkuzA3XIPlm/IT8o7u9kC55mzuuXxfW7+LEUDxAIQJ8Su2qmud6fX4hAwMku3b3g0RwDw+jEV25YtEvKhVgY1dxFQI6qcZHn0W4gO78fh2+MigIi6vAaLUlF26CgLV/urAxR3BHazBe1mk3lRbiX3XpPHKvfpy63tmP/PxC2/oGDIPKXvotqgzHFE+Lb82Dbu3K/5/nr7H//7zc1rcLPHdQRungRX5GrN4Pvk70Jl/wWgjrL/A2LKP7+FfzOiE/FmY+XTqDeQnEeW4l7fjmgwqIAtHPTOGPVTg/JylibkmT0Y4B3BoFsBwqjkL2/PUKrUGw2tS/qdeyh8lKDjLakAbeCJd2pJqfrOJiwvqu2lNu2S7EDBp1bmDFLd7ik5BQh4jTCqbfaMRtnNm7i0MQSS7MDVTUFC3LafxwtQuPRd16zbrE00TM1AqcP1yCunFDGNDmnCE7et1oRR7X/B4/PQbFA27GaLAGAAAJ8U7kH+8vbCt2yWek9oE0/8PTEaf+/7c1D8jgIFTC9OU9JjGN4pIH1U8oaNtZnG2XizGotHSS2o0W/mihGhwg3fl7nfdGInRXpMI/97aQtfVs6m8HrMrIT/Znazhfn3OfG20n5JdqD3mImaevPlUKATCuUMACdjyX2Bon8pJ5k0zTnbZQw+QlDg8n5qr8kPgMa0kP8GDecpgta93hEwbPd2yfgZUg8wBYgec6Tuq+vDo4W8jh5vpqlf6NQMBI12IPiFNNT9KQ0h4zORu1RBKuMBGOxmC0I/EVHo+D6kzuH5dm4I9xKUP3zZ9Zalovo6ImhYX56GwnuKPz699UWPyaQn9aHT0nFqxj2WVq9/+LTLTySz+i/tvEgTV+2Qna+H3WxBk29SUH7vLgJfTcWnQdrTb0NkG11BmcajjtlpfHltK01ZzT5XzKj4/Jt8k6Jh+uxmCxrOS0XQ9gkAwNwj0PypHzt6omesWVMoa1CuXVfxQcs3TdQXNnmiea66Xpc53XU3lylRZRxAQCkAMJcgPAn+zlS3JK5kKSdju+bMx/mpVth9Ilj91UIHpaTivejfiTh/XzttNgwR4cxqAwDmHt+Nkje0QDt8X/HKO70yeHohL1uIR4Gd9PbU0GnpOP28DVWuGlD7LwVUid5fylnYEYGvaN1lUKIoh67WE576R8Yiw2JifaVuA1/HUy/acHvIZfbO2aODEDfnyTlsndWjmEcJqqSpSWPceIQoSzLfncPKoWU3mpvK7jPzQn6/fgo6b+HP7QT3E9RfHVWA2s0WhvoryQ40/bLCsiX1ADpnDUHZgWy0XBjHwha3aK4Zq3azBUgXHSefeJOMidMvKG4FqFLYldBYc1cj4blzNSMCJhWx03VJJu531OlM4S00fag3Xh7S/w16eEfsASD+jtjdoV1Q4zcFREJPgFCTWqCwmy0o+qUt/EdkCfFuD4hCtQ3pQhpKFPTAFaNhPTAUdfrla+pUWd0olbxhg88srQkHBSvQy4Nvj3ohHHD4EjaEe+HihlABztgdyWtbwTz4iCZv+WUbzJ/p3w9Sl3s/7dXrG5pP67Qx8B5yGC/kZePrQYO1d/l0ylSHNUj2woqAPyvtf1ebh147bj8axTT1rrTfemWVvG5jsNKu2q6mcls75sAz76toBp8e22sYLkQ2xJ6P57gtU5Id6Pv4kzCkHNC8P/mqDd5/Xvu3QFb4em3+9cdK+5OSnlAPEFPXm7Nuorq9UPe9JBPHwpQ5dPWdKlMcVCaY8Gn4uQ8AZd3aC45rBTKamDPwwUfOYW2rRvrxXNT12oho3KlrYIyYRogN9EdpQREujbfCa4l4Wnh6XRi8FtTCjgWu74lRij5wD2ntxFNnSup+ujm4k4By50qY0pu36n529d09/P2wMYWg0J5+wcYYRBqPv09asMKC3O5LiIKhWjURJMgNuVpb7nefUNe/sjgezZriyAc+aDVTxsaMRLdzw12fuqNVJakMVIrS1dHRSP2MmFzzwEHqsu6nDIOHB8pLS++rzu7eT8opxPBaxPmzqUUwc2PAj7u26aOYme39rj9eyfWZyXzu0g4IGacoFw0dW6N87yGX41Ovvu7Gw9qSdPR65TnUWaG/1/NEQV8AYi7YYJFy78sjoDlKC4/Do1lTlJ46XWkbabrBR85hWr2TQrmLindjkl8Xdj+UtpOmo0TD6J3009NtOPCKqJxwNS/eONNWczdLr/3qe4jLTySzE+LK2qb+TanoQyuOTdDncYw1amBTHlkn+sWMRFnW0b8VWMes9B6o9v/5jtjt66V4I+rPB7o//lN6KIg9AFQZWAclPcZsSF4f3HjkHIrftcHvXTKhC39uh4BRBzQXbdki6uON0pKTwoJ0p/wePA1VdBk9SgUfW5E7zjWT7Ioh5Jnt+VfMmFJXdsnMAIApNAgnBjWB+dMUeO5sijvdTjNUJFOLYCT++SvsZgvu9ItEjb1FcJ47J+RBQTj4MH6D65Z1C8mPtdT4n1IzurQdfD6Xx1rd3oWgVPQvK/zfSsX5P0IZqlZQRjUkeFegQt67AfvW5xkIh7r/9PqR0pnnbLgWdQvBT+x3yQCpN+SwufHwe9+1M1uarqT0Onw8alXKQNANih8rdXc3wJUuF4SwM8/Z4HhNK6iZvLyQePhPl21Ut4WSqUljwQ9Yu9nxODDj/lERaViLv8bBf0SW2/5olFIPP/nvcMvwVrYJu9v0WV/Uqwvn5Su4NSgKuxLmu4ynDgOA2PZ9kbh/M2L8OuL6Bj/sroD6dyXAqfMxWlqhzKHATptahSJx6ypN/KubgvBdy58R4VnVbf6UQneNQ/M5Jmz5eXGlY+n0dJsGvrqyfv2fklsFQWcL88/Ij2FTwwZIzNompPNPr46iqFu4OaQTU5xRMrZtiU1JK3X7XG+NdPV9+7XoirJr1/7H7XenRFLnyYPzSLIDa67XwdBaV2E3W7DyRApG+uqbUOvldb9CYsLx3Qiq4nqtuZ920zaG/hiHujnQmGGr49H8WuytovgYU73Xa0/A+im6pp4xAZ2QVKh1hq1Xppom5RRiUagWep1PU31nE2QVeSPkyX1Q0/Xh0Uj+igir/Lqo1/b7WWPVZX9VlILp/rb7Hn/uFFWUin5pi2Ndl2re6QEYSbID/QKjUXb7Ns4+bcP+NxPQr98olB0ggi7PC1DB2D+9OtrWKsH6VuI9Q768Jql1cMZ6FRcnWnHd18BO4PX6gf4ekNMP97qfuq8+uB8lAR+PX0Mk2YFezcIfCmIc/V8QxB6aJj6ARCew+r+elujGI8SEKnuKcmk1YNQBXHrSiv2RK4U87GYLchZ1RMl3dTSLExXCaDn8O4MHmWiBr6UKvobUCwxNp65n8PQ0Fj6lrhZhkF/wJNkBZ04+M8Ohfk48ehfj5G/hghbSc1MGEg8ojiNpHhSEw262MAeVIeP2odzaDqOOytjZtrpLP2RTcgpYXScVdxEWZ0l2oG7eTVYW/Xs9n5w8no23sbz830pFo5R6TAiTZAfyIxWTydAqNeHtfZGZNNJy+P7rM3y8UDe/PcT3SZNvUpDfczGiD4hmjeqNsOUC5U5J9rQEzTc/+Zpi4pf/OTF5m+TXxSXjyBMVwnqPnsjirwrcxpzw0jBqcgUovuEk2QGYG8NutiBsbryQr155kuyAh78fACD3hSAWbjdb2KkDX2f5ZaVdegzuuhu12Gkx/209AgjEOfVvdc52GQAR/vgyXDEleuH3w2Q6L1/Bvb4dUX2dPuy/qzC72YLE/ZthN1tQXlqKcc3ThL5XrxsR74r3UgCgzHFE6HPnEa2ZYqTDiTr98vFGgOLzyFClKovXZ8QEFj8g6SnYzRY83/ZPdscCEO+z8j6eJFn0ISTJDuR+34msVXOihHqox4Z63J94yya8czV2ATCzMD7O5tVLhLbTcp3nLyD2kcFC3Hk+qTDVqaMRwgAwc04+vvpb6DG+PNnNFnYXkv+eN5IUkANja8Ws76uiFKW8Cn9n6rHAl9Mn+1EMPnKO9cHnA4awOnXOGoL5oYEsvpdJvLPJkzshjJKhwrUINe2k8eKbKwjAVzcFCSAyl54UTaHV9zb5suxmCwJeTxX8g/F1fTo3B3azhfnLAxRHz5LsgEezpkK+Iwt7asePqRwdPhBNeu1mCzO35Pu6rGt75H8WjdjwHkIbjG1bCu3XE8LsZgtzOA4AF79ojoI+P+i2q9YqxR9lZUKYeizmLI7QxOXb0C3rliCE6c2n0y/YcHq6TRjHWXfFawF8mSfetMF/RJYwJilR0Ceeeo+ZyE6KL7cmJ5pUCAMA57E8pf0VfEFR1C2sb9UAy1SOrHk6YyUuFWqeKtUIYRtOZmr4H7vZgg2hm3TXH3drDN9OPq66T//6bp4mzd+FnDD8V/7+6fRQEHuAaG3OQZx5zrXmkZJaa2eoUlWzuKV/NIctKMXv2NBxZhwkmSDwNa24w0RpeEEvIX96F4A9lypoQuWlpZpFRZIdyP1RsSmn9uXqOrnTrKnb1Hn6NPaOluE95LBuOvrfbrZAniH2X9UkBRXMkHoACfndhPiAgu5oN1sENKeS6Oua/Dev+RHGti2F9NTJbOOEFKHNP/nvgE8aAZKIfWSwpr41YwpQZSvRAj4nR2oWdeNuB9p+Ho/ehwhDVtzpBqJeJ98xZuATzCyL5ml9eZrwTB0Hq/t8+Ylk5M+2wvtjhQEO/ukaStaIDjr5vNRE67p1BWESLkwipkVqZ8w07tqSdGxtXZulyx1HENTUiGPTT3VEuVUZf7SfS4uIjxge+IJSf9tA4fngi9oTMkkmDpTtZgsG1bwuxGdlVJyQOpS73gibHy+cwKnHfWX9AwA588U7AhcmWTVzwzNZYTAoupzeJn9zsIL6xZcvyQ7BT07rTKPwrrRXBBrO10fQU7eBPufPJvXMsJg09bkVo+RN/dJJsgOhE8kJL6+RBoCMDqtY3uWZh9lvNZMIACFPE+GGwnTzcSlRp7t8fX3/JTJV3SdP1rSVvs9bFaoJ02MeKTnzCjVCjfPqVeY8+dLGEAbEwNfXbrbg3DT9+5V6Y8doaYW8L6M14TR+zZgC5H0ZjcKf2zF03LtbmmO6P3dvMmwDyrq216QVyul1AmtbNWJ1vNxO+V68A3XegS6fx/VhZBwG/zmBlVu2zVe3TeV3CNgOdTit7gNJdiC13Rq8mDKcpfH6URyrP/nv0O0PV4wwX4/vQ8i35u/n8fFKT50WxiI1E+w2ZQr71qGTM9Bojv78AchdOoOnJyTZAeNf+xH0chpudQpm7yXZgeOP1nf77WlYzMoZkGQHwjI9UP13UTlDwZro+sPv1deHk3FDFWwAYPduj9MVdxf5uhsvVWF3JvlxnbesPe7aO+KNhscEoV8t1EuyAwdmJODAKwmCUDHDX7nDSgFPKNUtLANAzKL5fqH5UwUaJbqX5H8WjdCnldOyvC+jBeFG+CbbCLrw2ApFoV4/S7IDiGrDAKj4PhjgHaH5xjk/EOVzjF9HnIuzomRNuMu8+bDcpYpSMuqNOM2Yp+9ePaOM41PrwrA256Am34f0z6aHgtgDRIND2+B2A224mqEseV1csHiYXL2F3u/9FI0vJZoXAFzpckFYZB9dsAP3+opgGvTyLL+AmOrVZb950wnTn/vYAnnj8U4sbyps2M0WVN+pwBfraYZrrVLgvGkZHs2aCgsgPamQZAfsh65Ckh3sNIwnHm3Mq38u0+YzhurCRbY50LrwmxkAwGhi78qyjmo0jOoNgdaxJJow/c68Qg0TDxATGQAMvQwgppmUsl5KwNbWtVk6rx/JRe6k9T9p+qzuqr1CGfR9aa8IYSMd49sZrwz4Xahr0sbl8Bl6WEjrjtSMMUUC5NtWPFPRqA72UU43ABHyfXaRgoCZHVEKQ+oBoSx1m9S0MWU9+31rUBQrQ37ZxhDbALDTSXcMHEBg4fM/j4azewfhpFktOFDNOaUbjytCUti8eFbnpjvI2KEb+t4P5hDlxRJFK70pN5nlRRlBdT0l2YE6+5QTZdrOodlnWdyLE4lAfCiCMD2FFdD51NfbwNwY5CzsqBEE+TIolTW+I4Tz35veJ+THgZ7ihf/Pr1uS7MDx961COvVvSh7NfTVh2RGlmnVRvY54bszAqZcUAYVSvxZd0eRb5SRV3TZeyNbrJ5rm9fwsOC9dgt1sgVf/XIROSxfyaJDsBQAMTQ4AchaQE/q6uxvoriFljiPIHzEXK0+koOBTK1aVaJ2DB7+QhoBRB1jdqvY5josTyXduP4uMO4qYSokqSlxR7ZVpmv6TZAeO2H7SxJVkBS4/aIwC1MOAolT0XkGm7pxT93PIk/twY2gnTT0GHlH2JxjdA4zkzFPAo6hgrC7X3TgVxviGdFhfmgZJdsAUGoSro6LRY6Io3FP3EWU3brDTsTPPknWv9usnIMkOXB5Lvo3vh1pBkKdrI4kgFfgqWUspiiYlSXZg7/vKvcuw5LHsniyg7Jm8gg3l5TgQ9bNGiRD8YhpG1r4k5G03W5DfazGqSnuZ0M/3Bw+jz//R+qjnLu/fCyCgGwDY3VTGR1Ts41SBpp4XQS+nAWVOPHOyQvh/IU23DgCAXiVsrLVKiGfl0Dw9fLxJvIo7xHw5FFhM3Y7QiaQ/yktL0WhOKhosq4nl1xRGjXfTAQAhGcTdSkHvH1je/F1YdZ14xV+9JbX/VvD1ZeXG/8rfP53++S38m1HzmSlo8UMcQ1qzH7oqvLebLfD5KEWzWNB3gD5z1enVOLxZ4EDxu6IpQf4KiwAzbjdbsCHci/n5uvIE0T4ZkomdPF+G8/IVpjHlNfU0H7vZgrq7i1j8b8yKA9N1IZKw8Xkl19c1P+FpY2aS0G56UmE3WyC1rsPKyZ9tFTZX86fkZCjvC7LRld+7i5q7Ggl50c0hYD3xpcZvZpLsYOAFaoaNhsW266PRGKoFE+vL0zQM3rGO9zTMojMnX2AQPQKaY1HxbpcCBHVBUF5KmFO68VNS294DwG/jesHZnZxcUmH54gQF7YuiUUqyA0/nasFQ+LarNxhadvbUBE06GofPh9ei6hE11VFrFPXyo4h9OXOjYP4sBeVGYtYw67wWpUqSHfigUNGK5iQQxm1TeD3kjZoL0459rD0rT5Dx0HafAbF9RsButuBS54u4U67cM6n56x7IL9tweZwVxntK3SjqFz0tYozn+EyhTXrfV90vI6RUjdC/JqwxLjxlRd9h41H/B8K4v5JPtKoUmp9+1zvdTiP0KYXBs5stmpNQqqjglSt83dT/KSOlJrWA5vORMqf6Dn0Szd9JRf5ssvZcH9ZJaBf93+nVOJQeJwz+LSkA5bZ2Yh9VQJ67Epqafa6cClMTuRVHJABAv8BoYQ2ivotcjUVqog0A/WJHs5PwW49FCfFo+Rc6X4KaWsy/DUl2CMqvq5uCYDdb0PYzhXH0MtVA7hNzMNxHi+opycQn3p3+kcwvUsa/CIPOQ/lbPlKUAQ0WkXFwdbRy2qZmRPn8vZLr6zO60M4/ysDSsPNTxf2EopX2GTGB7CUeClS7ui411+zRfMdfXu+nPJc5Xc59u9nCEH4BoHDgfOR+Q9Y2usby+eq1S009XiH9mbhjDer8nIaqSYr/tytPRAumqYZIwkAbysHmmt1sYXeKc+ZGafqc/g/L9EDKF3N16yPJDhg6EncA/Vp0ZX45DVm1NfWmyH/qdpqaNGbfklqN8PsT/R0b3gNzj2vRkc9Ns8J55ixiAsR9nm/PrUFRyPtKe5pLy52SUyCEU5+FvFllwadk7MhrW2nm4nfeSl+7EmYpUUflfB0AoLTkJPr1GwXPnU01wqnz8hWUdbFoMwNw/o9QoijZ5ovq69KxtIUvy3f70kXI/Vbpl++896DkDYK86NFUQZDm+1uSHXjrbBtWHn1XfV36wxOx/4P0EKzjASB68dHny/fR8kUR6ZBe5OQXS7vZAg9fH+ZbCtDfXPQ0vXazBbOL0tC2ajXNQuSOyq3tsHnNjwjaNoHBlbsqZ01JGob6aBfk68OjUWuViNZ0fqqV+JDRacOEY8cFrZ1eHWlecbl5+HbaCF2hg8Z7oqg7u/dTGfELvfWlaajzcxoLD9j0FAPZ0BNICu9dR4DOJXT1NwQIwlztXypHsNIrS50XH0bjqdHy1OXkzI1C6LR03fx4yv2mE1rOvcTuEGnGW3RbFA6siYA3yLdcUrwb4/26CHno1Y8vr3imTXAyrqdBVDNpenWmzzyymbrt9PfFCVZdP2sR78Yh8905uuXR56SbnvgyOAxqkmQHWi6Ix9HJ+iAip9eFoemgbEiyAz3HP4XtSxYS5rsCPe3KmGjUXU7GRPQr0wSn7QBQ1sUC424H9OjSk1ZUuVmG5K/nuZ0vADHxyR8xV3ecAgoCXOtMIz5vtk+3j9V09mkbGn+v/YZ9RkzAll8U4A5jzZrYlJus6Z+z8TbsfyvB7VhUjyOah6vxFf3KNNQ6eZed1NvNFuTMj0TYl5eR/XJdFPZTnDffiY3EjoULNN+93ex4eB29hx2LRDRHY+uWKDtETsgD/pgMlBngKxGFwPDs05hU97SmDeoy1PTt8WQG8e2KaL3GHX8ECb6bhfWWtrH3oWuYUT+flcODouitW3SdExj4BvWZw11X65mr+tF3t6QAnE1rhilDk/Bi/QLdNBRVV5Id6DluEqpsJSe4ITvGI3C0VhBV/267z4DZTfe7HTfO7h1g2qEoF1wJdHrtuPCUFQ0W6gOBXBkTjbsjLqHRQAVt7/I4K+ot1Z5m3k9/AcQf6JawP3SFVXUbXSEXuuMJau5qxO6X65UPAKYG9eG8cNFlHFffhKWvUwfOq1d101Hi08cEdEL5nTsu83NX1/vZP+9s9odn3yKX+d14vBNq/rpH9506rH9EjNDnN4Z2Qs01e5D7dTQKhs0V5lXU/mHw6p/L4j6dm4OBNW+63L9XH9sHr9CCBxqcgvKs7+zpjWq1XAPM/W/Q7ev38H6nrQ90f/yn9FAQewCIDupLOYGoU9uoXdD+NMPZQzFJMrQPR9LG5QBcL+yA64WS/q6+swkOpwUKZmL0PaVtt0zMpw5NL79sw8EXE4Sy1Qy/uzpU39kE60Ik2M3k/kSjuakuF1K1gEDRyvQYCUp6ggkNy19hQdBoB3K/64SQZ8RFlwq3J960oetj+4Vy+LLsZguMtWszRDMKS63XhpwfOqIwRmH0XPWNXpjnzqZYH5LkUgihFLxiGjHfUOVx6iUbsl4Sv5Mes2qsWRPHX2wH3w9SNPH06nY3JpJphvn68PE3nMxEFYPJJWNU2djUI0l2wHHnDiyenhhZ2BOXOl9kZYf8FIfAV1I1DJNe3sbatXHs41bsLpK6X1xtkK7aWvShlTl9puGnXrQh6+UERGQOFwBb9Pqhw/txgvmamtTw5m33GZDVQVm2KfJhZcI0LY8ikd21d0RVSVEo3M83UOcFAHfK72GgNzEJuxMbCc/EDN247hQGPBXOsiLgDRHWXv2bophJsgOhu8Yh5xEFic3ZvQO7u9j283hkvSQKxJX1DyVaVtdnprIL9Xy63CURsIXma5Q715MCmX9GV2X8O/17vwzpLSkAu9qshd1sYQouk5cXnJeIMivx5D7Eeit3eQ0eHjA1aSysXTQ+/40CV09DyPNpmrLVdatsnnsE+mPj7nVCHIpCy+d38rdwHIpe7naMuCqz4BMrAl9Nxbk4KxrN0e5rdrMFhohwlGceZs8la8KZWba7tlRWtqs4MY+NRXnGQSHMbrYI7huy7t7GDP9o3TEPAAG/T2FO0WkeNF5Ypge+araX1eX8FCsaztcqNyWZnHjdD1otTdty91g0H649oeHbTvtc/Z4nu9nC3BS42+up4omm7zn+KWado1f+/2Pvy+NrOt7/38kNse/rIZHdziUSyUVptS7RKtVaqpSqJSna6q4tre7VRWlRqpQW1YUq4ShFkUQiXDvZZTn2XaxZfn+MZ87MOefe6O+zvPTz9bxe93XvPWfmmWf2eWaeeT/G9kGuUeh9q1RvbqZdFmV+EoWMx80bU2J6L2QcQI9KNxGeOgCp4cvLLMNza0JRs3d6mUqsmId/Enz9XUXs30N3TRPvIOoX1tpy54iUsNj0DBT82hKluw/Aqdjd7jK12eUFVXOh46vsYu+xieyYnMx6KN7KUFUaQFVN33kMXcwul34crDttpeN35ZMERLkelS7Mi0pY9oeyaYpPg/pSGle7nuAy7Jos+xqyGsDJCbKqubhyJOY9dBHL57niK5YDIz07/qwDwY8z/lmPfM3Tou+e626Zc32fh5zIqzwufcR01x7Zyv+vSYmX0gHYDtmQw/ncvtyp2CUTLop7+bGOEsoffWd9GM1NW6zyQ8+dih3BLybhzCi5zAGgsN1V7gyW+L503OyguKSwkCthx5+X78apmgvnh8l3ecqvS+FgAGJ9UfsB2KVn8b14cZvynv2B+Y6QGMbLx0e68+FU7HglkJkaifeonIodQS8nwhYWjJ1TZ5sW0+kzOkrplFy6hKx+X0tpieVJ35SfwNWjJH5GeY1KGAA0/IyVZ52H0lB9W23YQoPgjkgJo/SMZWr0MSUqYarm4vDzlP5X5/2k98Z8Ej9RCQPAHaYb41rJRbT+SjmuhKmaC1/NmmGZdtgiHWTAqdhx8fEoXpYXB8un52nDzWOCU7Ej5Acd9ZGUMABcCTsZx9rYhiXfotUMZpZHSphIMW2687i5P+n3McQFkdgOrJQwVXMhq8d8yxP26k9cMD0z8vdUpmKeRbreK0J6b/wW/dbV3ncFqubiShgASQkDAK9WYdyvGREt0u0f6vdqSQkjeafnJFj2A/E/OboV67AoK8cUZ8dHrL/G3NMPqdfZXedGjxyQyl/kcX5YNGx16yJtdiRsLcJM/EIXnoaqubgSJpYPX6wLShgAHIj+QeLRZpc1SlvOO/oYe3oMM/8emZZtGRZRbfhPUsIyf5DH3uT39XbepnwFU37FuQcVimFroQPM0HPfLQ1wKLwIEa/r/etGdS+3bZnag7u1g/FZkwH7TG2VHCsTpQ/V0Sq1lxymtKm9k6+4OefZPS261iCGF0//nYod5dbvxM0eHdz2E0B3Jg0A63/+jj1rEokbPSO4EnZhiDzGkHmnyDf4xSSpb4rkVOw4/qwDL8wdBadiR52H0hDTrT8PN+AQOx0jYC2iunEyiqRR6bJSyP5Jpol374j9e+juidgdQEY/YkZfVarmQm7RZYzy72zquE7FjgtDopA0zXonB2CD0EnnDWTd/y2Sr99EpK8OVR+bnoHZoTq6k9EcwROVdrJj/U8LTUoKOVwEgMlZuzA1qD3ODY/Gqc43Efb0Tmk3i+L0OnCe3c1Z3A6Z3ReY3rsjT7trMc3uQfHFi7i8LgjntzRA4w/0+yJ0+kWDX+Cq0Qgbm4yqW+vgUpfTnAdRTLseQFERis+ctawDovQZHVHhlA1FFUtNu/qAfrppLANPPG1hwShOy5R4kUmUMc89D/fGumZrpF3Y2ttrmu6rWJWbu8lOlKtnnyewbtX3cCrMlGPbDLZIjdz9GJLb/WSK446M6b+e5cKHDw4AbhYBp8/xBUPmtGhkDJGBZlTNhZZfxnEH4ZfXBeHy2ga40qgUQS/LO7PF97aXTNJEHmQCRQ69s5bYEXRLUc9e1gaBg3Q/Y+QjLf81B7/r5KkOxXQ6TI7FzqmzEdP9MRQfSke5zQ25T5qyeNB/agPuKG1eBMJGySdRIk/APPlbtTnjaY6xnRl5WcoyNwJho5ksoi9Dnwb1UXT8BA83+LCGpc0U5L7lwKHRTGGKeWCg5FC1LFI1F2K69ef9I3DNKF4O72cnY/is57Dvef1UWPR1Z5UHGv/OPRmNmt+xtmSrVg3xh/9yO84Ernsa2T2/kcqyZeIQVFlZDTs+mm1ZB5TOffsK8UrtdP6OwgUvH4vMAXPctgn7h3GoP8Pa95qnOnLXvuj3X9eA94LM8azSKKvtExnnGKtFrjv5ACD/l5Y4EP1Dmem4c4wtxjE67L0dKvi1pSViL8Duxx15qzlCnpNPDNNmRSIsLtlSXjqlEetpctYudKrgzf8b4x1924EmUxL4abFVHtt8GseRIW+HjBsDYnpkOaJqzArhFcPdMJF+yU9CFe8KbuvFU50ZZQhdFIugV937gvPUvq2UmrbJg9Gg7yEYicJGuIqRYrdhQsZh9K50TeLfesfjUPodtIynai6ELB2L4BdYvYtm8ORA3GrMdtf/xOf/JNPEN5J6/FdOxN6NWn9Hl8e/Sv/7quY/jI4/5zA5DHYqdty//RnLhVPe6w5U/yHJNADR76Lu4ah69BpCh7E7Ho8njJYGgg+mDuW/fRrU5/cBvKsyqHG6/KtqLqR9LUOse23X5ek2ahRUzYWmO8th/7NsUWVr2ZRPLjUXJnKQAHGwI1rbsgYAILM7g8Imv0NinjjikQcSB+niiwzoZHubX+EfLysixfVr8HBRL4/liGf7toQiILkiD+dU7PjhUm0UnzhpUsLEvFC6oRN2wO+dBKQNn42Lg80gFPFN4/kJpRjf0w5Z/OZfTHlcu36ZqQwBoPS+AgCAzzRdmTzT6RwPS6dD084Gm+Ja7cYC4P61nIodZ966wZ9X/nkHMm8yiH+ygRfjibvRouy2sGB+ikkUOy8O6U/WRnF6lrSLH/yS9aRM90kA4FhaXTT4IoErYarGLlUDOgSysR5Clo7lrgP2TWTIiMGf6r6FSAlrP5W5Czi8goF9HBjP2rYISW78Fsmp2LmpZPxGpqiKPmmM9S/yIBAHVWO+9UTYZ5KTvsNGMdARW2gQR+YTZRD5im4OluXJLg6q9MxC1ofR6HXgPACYlH1RZnK1oWoueFeurMsyOgXZH0Yj591o1HtYRxgtOn5Cknl4NXZJ3/8tHXyIFsmqZg0SQ5Tzrg7IQ0rYsaLLvBxUzYVJgZEmFNXlQRv5b3E88bYzcIDiM2fhVa48V8JUzYXii8yxsZTmvfrpEoGwiOXTuP8BroTRM7EOaLPrz9aV+TuqB6di574X8yeZ3Zk4FTsabjnH5TN+9+ytnxCkL2pvitv/0EleRsaF7T3soIC/N/K3Grfom04XK26pL8XLuVGHp09hD924YioTkb8YvnH/A6Z0rca+tVlJpmcA0KvHIP67+MAR2DYppjSsftP//VHyiRkAnIplpzvxB7cgc8AcqJoLFwdHIf81B6480hFhcTqqKFHmD+1gq1ZNUsKIpga1R0z3x9zms8kU1o5FJUzk4VTskhKmai6UdrJzFFWRV9qsSMvyE+tsVOvtvK6slDAlSUfy7d/YGmzJncKU+5aDW9cY55z0Yda+4EQ+Vu0GAGK6PsLjURhSwkjevDeZ7zOKT645ZoQ0M/VBpd9Bkwwx3R/jMgT9cpU/Lz6SwcOSix+vwqtcngvxbCOiuLSE+/kjPmI/OjHegZjxT5rydpf+fZSWlobJkycjKioKdevWRdWqVWG32/Hee++hsLDwtniUlpZiyZIlcDgcqFOnDqpWrYqWLVti6tSpuHjxYtkMDHRXEbuDyBYahAbTE3ClH0MQowUwAA5XbBzcyDcHkVFJ8NmYCu9tbBB27LmBjHsXSIMLKX2q5kLR8RM4cIMNHiWXLqHjK7E4+Ix+vyJsDNtpzl4q+xkDGFS0U7Hj8PgW/FnxgSOWE6uVskG/6XmtB5kTzpPj9EGzKL/AlK7Iv9/BU6aJDwDCFsaiZM8hDDh0nJdh6c79HCpZNIc48tRs5D6ll7uqubCoqR8q/1UX+a85LBcCxomBEPaqLU2CrXkonIodad904PkjszWiv67J5WI1Sdpq1uTpGNO79qCO2nYhPgROxc5PXIwTe+gEdi+KIPHFfBqJL6Bv+ddSNRdqPSiDdcQ16Sy1ycwlLL3sZW142qLT5q/O+6E4LRNBrybi2kP6guDA+FkIeiVRcspLJJaJUREenZbF8ySGzzgqm8PSN/ndCX4hSSpzp2LHut9/kOJEvzAWdeck4tCNK6ad5rpzEnFVDcTx5xwcWVRMh5DhVM3FTagGZTN/dW0/YuVBSG7GHVKiar0ypf+E7CnmM+fHNtL/rzYs4idCYh8T5SMYaYA56xXbdM470UgfNhvP1cyBFX10hpkl9eo5CPVnJKCkCzMbLrk1gVGaacNmQ9lWZIpvHJ8AfVFrfEf+n4ykai4EvJGItsmDpfZN4DBUn952NhbF3PuoKU2nYufjiaox887eETGsjdy8IbVpcg4b8Ia+CN7wA7uDdv/jT0HVXNyflru8GuW3Iqt20Pj9BF4/heuCeD2tXbuUxzHOCd45urlh6LBdpvTI35xxbBB/G8cYK9mMY5X/Y+wE/mrXE5hySve1tLZlDZOMzctXclsetAkg0tHlrZE7Re8v7jY9jJT2TQfk9a4lpVF8ryY5l3YqdskEGmDADgDQYUqsacy3tQhDUUUvHH1bn5vmX2iAxE/n4MD4Waj57FHJ5JUoeMhuCbxCVMABoPhQOi+PLnuvIXRxLHp37ivxUDUXN3O2misK++sKjtd2F0fTFMeCsLhkU92LZddsXhzfIDCSqrHN2QX+WwEAPfs8UaYiayT/txIQOn4Hf08uAIxhF160RmMVw6bN1eutOD2L50n0RalqLmhR7D633zsJaDCdbT75BPib0jWuS3pH9mbxV7CxhDbTAN0MUox7aWAUvNs2h1Ox4/iD+gZm9Rh2WhbTqD3QnVnikGuKbvv78nCu12YhfqbM906m4lLv/8rn30nffvstPv/8cwQHB2Py5MmYNm0amjZtijfeeAMOhwNXr14tk8cbb7yBIUOGoGLFipgyZQqmTZuG1q1bY8qUKejRowf+rqHhXUXsDiIaSCqtYBC+tAAWyTg4iosqkYwLQ6dix5S68l0SMSw9mxgQzRdGRvNIosDBe6Q0yAGpqrnglbgHLRLY4Ey7cWJ84+TuVOzInBYtwSqLdLOK5WMTHX/WgRUt2L0EnwZsR5Z83JCJ4PLmsh+yyr/ok4EoE50CkHxp33RA4T2nuGnjuIKOJuVALO9BfvoETQN32NM7LSc2ALingp4WQQsbJ8fic+c4pG/RBn8pbd+z17m8P7daaLLhB+R7eyJxmQWfWD39dR9yVosxUbbLA+TdULqDd/OSL392aKzuiyv+vhb8N/miIn6nx0TjYBxT/OsnVrOc1Ft9EYf0L6K4PKIDbpHEU4oLJfq9Qq8E1nZLurZD1EtjTXlSNRd6t3fCqdhRbWkSTsVGc2e5R9/WlcT+h06icr8T2PPyLFT/np1eiHezyAl6i9lxGL6SwaXTvbY9r8xCTLseHFpdJLEsvSvrpyXGcqDvkNcu8vs8qubCWEExNiqaAEz9jJ6Hpw5Am0/iEPBmohTeuOnwZ+vKcO6/iLXrmDNhcuZslM+p2LHp23mmPIny0+9db7rfBf8hb7v07PjK5mj9OcsvIU+6W/wRgAmZDKkaczxvq1nTVAaq5uJ3PY0yD/XrZHpOccjFAY01Ytm7yxPxIGfQoq87kcQ+O/1cAPfr5FTsCF0UK42pxLPz+DGIP7AJTsWOC0/o/YTuxFjlT/zvqT0ax3Bb3bomPlf7RuLo1GjubJ4opu0DbvkaeRgVNyWpKgKHZ0qIqiIZZT43XC+3mqnl0KbPIYRsHi6FEZ1LA0DYGN2NhU9gE/j2yEGbXV6oPS8RPg0bcFmuPRiJ4oNp2PviLNSL0je7ljfXw0z1/40rpUStUr1R+GhHlHRtZyrrVl/EwUhb21RA0CuJKMrK4c/IrURxehaP+3j2vVI5VP5lB9K+sR6/jWTVBjKX2Pnp2337CrlbiZFp2cj6OBod3oyF33v65kDpzv3oFfO4ibfVfC++I1+ZTsXOXQDwDZS2zaFq+om5yE+UVdVcaPHBSUtlzytxD45NlDf1nI3ZveWraiCcip37nxRlvDQoSuJHmzVkoljW5kTVH5NQsoedwhEatDHvRARcYkRy/Cf5Efsn0qOPPor8/Hz88MMPGD9+PMaOHYsff/wRr7/+Ovbu3Yv58+d7jF9UVITp06ejffv2+OOPPziPZcuWYciQIdixYwf27NnjkYeR7ipidxCtSNtnWlhkLJZBEawmepFsdfVL0uKiwfjMioinO7QpkRfRmisVEPKCvAN/0MHuEJFPI5GPyMu7KjuVCX4pEYmfzJHSoLD7J8xym1exrN4ZtxCq5kLWEjuKjjMwEHIobCW/OFFE7BrAHTirmgvPZ8g25dkxDPUw68NotEsZxP2ZOBU7rveK4Dw7PTtG4u3j15hNLJUqlVlv5GOmRqbur8zYFvZ1XML43p8r5SfnwUqcd2OfKvD7Lt+kHKbdMvmgZ2SyROmQknBmZDSuOVmbExf4IlHaeW86uDsCMZyquaT7StTurjzSUboj5F1J3hUXJ64T0cwcjC5Zf3SGnSw2+igBoc8mQUmq6rYsaSOB+A5oHG3aPfbeshvVf5AvhlM7udSxCY+7600d/KPJFH0BMrq6hrUZ7D+Ze65qYfbG7tctF6/8OVDvW7d85Ym+c0QikAMAOPxZC0tFg8r/7VMtsGbbSrhe1U+t6dI4Lficih39DjKY6gslV5H4CfNV5LulgVRGdR5KQ59hW/l/QG+/RhIhyGNa32d6b+zHIlEZO55n5pE9mzAH3NT/nIodqwtSedght5QgKgfvP2pCmaYrsJ7GM5FIaQh9cheKz53DmVHRkmxUVtEvMLlu/NFEim/sT8aNEgA4MyraMu/uyoGcQZfu3I/81xzcdx/ATvHShultj0y3iarkekl86QSg8i87uNlv0sesrjM+j0JmxDUetub2WlwGUjIAhsZL8oqn7GIZqZoL5TY3BADE7/mDPyd+f82aiyaT2cZX4O86yE3xqVOW/dWqfYtpAcD2P1uh5MoVt/GN/2su1MeRi8GlONPpHEKftjZzNdanU7Fjzfbf4OXjw0FxzncJ4HncMncul69qbKnEg8KQKZ9oFvrbkTao/PMOzFk0U8ojotrw+9RETRcwJduoFFy7vy1Pg8xPz3Q6h5s9Okjpi34CjfIZ5z9Vc6FFwhM8bEa3hQCYErb4hwdQ5Sc2180PC0TQy4ncH52YHm14iM+cih09D/fmYS8/xsqExjer+67UFg7HVeGypn/F4oW/HWsK61TYZrUIpgSA+xYkyxPeT2/5AiVQm3timc9Qr/CWnGfVZWxTbfNVtjQm/2u0QSqmL5KVUib+pvwDwI2eEXgwrZdl/v9pVAovlPyHP6WwBs/5/6UOHTqgevXqpucDBw4EAOzfv99j/Js3b+Lq1ato0KABvL1lFUpRmNlz5Vum+rdLd8E67gAS4esfa9pemuSNiwWrBYi7MMZwRqqfWA3lvEqQH3VZ4uUuTs6PbRAwcK/HcMbFh1FOq+dEtpBAxP+1wiT3yLRszA8L5Dx69nkCpTvlzmJVZg8ceggNK13AoiZ/Sel6ksNq8eSuPDyVs09QAArnAJtbrUSvnoNQsvcwT8+7TTP+f8qplni77gFLOejZ4rztqGer7FaWsvIBABMyDmNGSDMMO5LHnVECDDWOdm9z3o2WzK+s+Bff2x5fL5yBCZ0HSX7spuUk4aWAKCl8zjvRCHhT55c2LwLZvXX/ST4B/ijKybXMg1hHlA9PbbOsd2JZqJoL66+UQ49KN/HXNf1EEmBtvOL2KnC9OsttmyHQDXdpZr8fjbThsg8y+p05Ldp0780K7twIu0x5aP51HD8ZUDUXYu59FPGbfrYsO3flU9Q9HD4bUzH4sMZ3nd21KxFa3yewCVBSwh0sayta4GpGdVTJ80L9GQke60CkjM+jEPD7Tfj8mWrZh+iS+4gjR7HooftMQDVGGcX4RmhyCtMrtBM3nwSYouq9ZTe8/myEdc3W6HXcOBw3erTHpm/n8WfkgsArojUHwAlOqYDMiGuW5a1qLrSdFocGn8ugLuQfTpS7t6OP1AdEcAFPY6zV+O9U7EibHQn4lpjurXmK66nfBK4cze87ebdphpiliVjdsuZt17UVT9GlQ/YH0Qh8LRH9Dp7iFg0m2aLaAEnyvHPz/nCU25CK9O/ac8fjVv3c+cgwHH/1piVggxXRGPj/mz9L+Q3/6TvvTYfkMiRtQTjCRuh+MJWkquhYLctULiJd7RuJr6dPR/PylXhaRvcW2NgYPsNKOEImgZrc7phJ4UQ/j42TqmC+/zamDHUPx8bF803jnaq54Dz0INTmq2973hKf9z90El0qZuC5AIcJcKrPwTPoUimdzzllUVlj4okJDmlD63qvCPiuNbvhsOLlzo8bAFwcHIVqS5O470gAKFwXhIvrG0hXFGz16/HNuX8SfP2rib3g+x8G67h++SY+jF6LevXqSYrPsWPH/q3prF27FjExMZg8eTLefvttj2G7deuGrVu34v3330f//v3h4+ODzZs3Y9y4cejXrx8WL178t9K+q4jdAWRETayfWA0novULf1aKA/2+uDYY1Xq5R1Mz8oC3DWo+G+xFXtEvjjWZOVo5VHY3oLX6Ig6/xX2MuCad+TMxniQD2H24+C2/8v9Nd5bDkQ43PcpPvE7GOVBvlnlXXFvRQrpga6UcZX1UFf6P7eOyiMqArU5txO/d+LcmDYk2Nga668rJhSeiUP17NgjviXR/p8NdWp6UEaM85Muq6L5w+PxpdmpttUgReQb/OQIhT8h3kI4/60CDL9yjcJVVxyKJvm3cEaHoEY/RaVnc9NA4EYvIgwA89gMxr4SaZ5RfJKvy9WrH3EaURWUtLq72jUSVPw9zIJk+B8/gmRp5cl0KGx4iiUhs755uhq1tdHMzdxs0PR4bDq/tLumZU7FjXu42jO43xqS0GMnWPFRSOq3GIJGOP+/gCoiR3LUnd8q2u7a+OG+7ZC54u4vmzE+jkDHYPRIhUcy9j0rmjEbytAFFCHNlyeSuvsRnP+RtRx1bZcsxo6yFpfQ/qg2OTizF/A7f4Z2mUVh3VHc18nc3Nmw1a3KI+y7PjEGlFTs8On0GgBX5yejXWD9h86RUW413Ytj0GR2BGjcROmyXFLcstF/iE6iO5MqOrXko4jf+5FEO1/XreGLO82j0EZtvIifFoubCRKR928FS2aVNDnfkzkfa/4/iR3Eyvm9nGrs98XbX9tzJkflJFIJfTMLMo9sRVs767hjA7o6ndf3O/N7LCygthU/DBliTau0X06kwv5dloT4a5cz8NIrf9yX64VJtvtmoai6ELo41uekRZWye6oOzNypJay6AnaIXnzolIah6qidCro3ac1MyzdVWtMC+jkukOgf0umm6IBYBr+vy/ZMUsZcSev9XFLFpjjX/UUWsuLgYXbp0QUpKCvbv34+mTZt6DF9QUIDhw4djw4YN/JmXlxdef/11TJ06FV5ef+8U765p4h1GqubCiWh2oZc+1PHFAcCp2OHTSOGLTxHd0N3iQdVcQEkxnIrdxKvakiR03auj/ADAgqZNeFjjIGIcUBp9lMCVMPG5GF4ceIvTs6T37pSw4m76CSGF3/2G7hvIqdg5ItG+jkukSaZuQg3kvqWXS1FWjsl2vygnl8dxp4RZ5QXQwUDov9p8tRSHQEAa9D3E43+Wk2gqT1Vz4aNsZgIyL3ebVN/GSdPdZEkD+cbv56NwXRDyfm7FkQON8hMF/TqG87KayBt8Yb7DJJLYNtK+7YCjy1tz+eiyO/FKfWu21DaN7VTVXFwJIyIlTNVcXAmj9yL8u6q5OLCFV4TZvj636DLP/8UbFXD8eYfHfgWwS/o+TVj5lXRpx5UwVdOBOER5CIzFiiitK/064q9ZcxF/+C8u96oWtaV+oWouBAzcayqbYy84uBIGQFLCCIXTqGQDgPd1dlft7Ihoqez9faqgNPUA0r9rb4oDsE0YADgySje3LHy0o2VZ5f+im/YoG8/ihtO6LPa8YvbpJfZtY7u2qp+TcQ4M9evEy6qoezicih1d9161bF9k2qpqLgS/wMyOluUlYFWhbs5rTE9EQCNzY6dih/3DOLfjYODvzL+QiDBnFY7kav1ZnKlP0n8y3xri1wkPDNZBQCInMfOsG84OJv5WxPkn7UWTAfswNag9Sm/eQNAfT+Hep3RzLltL86LDqbATPHEeAoDjAxm6XODK0ai0YgcbywUFyEqmfo0jTeVMsh2dGs1N6wBmNjkqrxOcih1efzaSwtqahiB0wg5k3f+tKS13SpgYJvD3Uch2zud9mMAxrPJO368EdsT+Z5l5fOfxY1Byq+tn9/zGVDYAsHHxfG6GZlUW7hxV0zNjmxGRSe/ff0nyJUdxaew2lnFvRx8pnPjOOFa0ez8OquZC7/CeJpmDX2Tz2PgmnaQ4afMiJJktlTAAagGTj5QwUSbx7qKohLVKZUtTbwsTLzGfohJGPEWLDwDMwfeqpjjztBkU6HpMBA6FF2HXMT/MOrpNikfmtMkf6Gb97d6P46jKxroic3zj/ch6VXWLI6u115ERwtz4Nxfw/5coPT0dx44d459/Jz333HNITEzE1KlTy1TCAMDX1xeBgYEYNmwYli5diqVLl6J///5499138f777//t9O8qYncYORU7cic7TB3W2OlVzYWiAo0/93tPtocu7WTH/Fx9YLHL62wTnVrVFJPqMOhoGozFNI9OjTYNICL5+DFI1oDkitKiw10eCx/tiGV5CaaBluKQs0ff7FN45YRdem8czKvHZEgLuqBf2eLp+4DN8H/LeofNamfZqBwB7F4Y/Z+QcViKGzxkt8cdMgB4IUM/RXn7VAu0LF8RRfeFo6h7uCQLLeBG+esnikUb/OFU7Hhg8AguT+4Uh8f0AKByzyz4Pbof3t3zpImS8jcyLRtOxY6sR742LSzFNI6tbM4RD42LDmN7zO75DQ53XszT8e2RI6XrVOxYWVjFcnEt/je2e3pmCwl0G0+MW5qyD1kf6XUGAP4+OuLLumZrcLVeKZyKHVW31mG7qkvspnRrz0vkJngiIEVM10ewLncnrveKQPrMjmiXMohNwrfuZfTu+KBULiSXqrmw9auvTfJSOPFOl5Gcig5NbVTip+ck4HKTEmRMj5LC8/K4ZcJba4G+AeBU7Ei9zpAB6270tUx3QdMmUDUXQiYmcV6Vf95haiuq5sKVs5V4mLXrlqG8yoBpFgrjz9W+5jtHk7MY0EXGZzqoBFHJRj/L8cP3YolUDnT6sKVNRSkfqdeZm4WkaXNMvNuvfRZfhYZJmwWUF2PdbP9Cd/wtml+qmov3k9O/h3FEWeIjUtoCua87FTuUT/RxiZyj0/vCe07h1Cq2GGg/XR9jquYxh8dUvk2/1e/NUJ+WlPBWzSQ58l9jGxChT+5C+XUpuuJ54IipX6uaC0nT5qBXz0FSeZCZalhcMk7Fml04tP5MBp4w9gEiyl+TyYkot153a3Ku01nM82Molc2qn5B4TV//nZSWSLSJKKYphnUqDPWXyr+0qAhe7VqaFBIAmHl0u4mHU7Fj28yvuSsKsS8Z58UqP+3gdXZ+qD4WiQh/rXc8jmWXZNAYq7yRuRzAkG6N5nK0+XRuDQNo8glswsfpJj9Z30MFdAh7Sm/3JGaKTSZ2RkAbKo82yYP5s7BRrDwXXaxjkr3q1jo8HtU9fYtIr5kR1yzXOZ82ZCeep39sxPnFpmdIZW6cX8Q7xwDQZa/uU65unyOo/U0ipuWw8Yw22XzjU6C95ECTiZfw7rFeUDUdTVHkDQDt34lFvS8TkBN51dRfrNYOtMGwscUqqZ2J5a5qLnR/YqTOo6CMhdodRiWlXv+Vz3+S3nzzTXz55ZcYPXo0XnvttTLDX7lyBQ6HAxcvXsR3332HQYMGYdCgQfjpp58wcOBATJ48GUeO/D1fhXdNE+8AMt4RE8m40Dd2Yqci38WxGvicih3n1oSiZu90bgJo3EUiJ4RlKRYiFa4LwrY2v5rkEWWlNDzl43bySeRU7ChcF4TKPbNMeQTYySAppSKvOecbIapilkfHlMTHnWNQK1nc0Y2eESi/LoXzVJKqQou6JKVzalVTXC6sgKntV/GFb1l8xfTbpQzC7ohlUhzRYamxTAccOo7lzRtYmnP07txXQugS6erDkaj4m4xwKMoj1sHp0dHwvVCKqj/KZq4nf2uGohJvDjjirp1Y8TTm3/iMnDaXFddWty5OPRiCWgv0vkLpemr3VpNtWX2EHEK74+ep7bujE+MdWPrCJ3guwAGviNa47F+JI38aeRl5zsvdJin5nurQih+ZiaqaCx2mxKL2vETEF+yCzcu7zDqy6svGMYqeueNjCw3CkcnV4ZNbAUdGzMbMc00s7yqlLwzHNMdP6F/loqk9lXRph/z7Klqi7xnlinp5LAe7MMp1tW8kKq607g9Gfsb4ZdW11XsyOza+L8t0GGCAOgE/nnALjmBVL1ZhxLBkqnX14Uj8NXvubfcbMZz/jsrI7VhoCm8sq7AtT3KUXgBI+zqCIxwaw4YsGctPb+y7AVc7dopb+ecd/A6au75M85/Ir2efJ9D525389Jmc/1qVV8bnUQh5nqWd/WE0Ai2cEntqK57aiNh3Mz+JQsPtpXxTRwzvE9gERdlH/1Yb89QG6H9g/NMIe3qniS+Z9b+dlYoJU8dJIClGfhQ3/YsohD6bhOPPOdBgunU/tGovZO6nai6Efh/LfUZ6yiOl7b+jMub5bef8Lg+IQpXl1mjTACTzfitT06NTo3H46dm4d8TTKK+yTYT0heEIHW42SfVp3Ahnuvmh+vdJlmszklFK/x9kmvjC9gf/K6aJn3Za/R8pj7feegtvv/02RowYgfnz59+WSeGiRYvw5JNP4ueff0b//v2ld7/88gseffRRfPPNNxg5cuRty3H3ROwOIoItJeRDovDdJXwnRSRyzCoqYfQtdvhTq5pyh7tGE0BVc+Hi41F8EuILn2rV4NOgPtyRqrlQuWcWcovYsTvt+l7pxxQd8v8VuGo0bDWqo8djw6W4YjpWk8EELQLelStD1Vxo+zEz44mcFIvS6Lao3DMLlf+SoZPTFzETRvJ7dvw5HeWoy7gxWNGirkkJsypTAPwiM70TT1icih0xLbqi6Xy2Gy36ehOp3CVWziSjUQkD2C5d4OA9XAmj3bfjzzos5SJ+FL/kz1rSf0B3iEthKR+qpsP3kxLmVOzoHd4TYQtj3SphAFA5+yKXvd178o63cdKsMzcRVX9MwtWH5ROQeg8f5nbyolxiGYk8Rd5W6YlEShi9n56jgySIYYtPnTIpYcY0AcC5/6LpnfReaKtHp+omfxcH62Zw5BDaiqwWPllLdP7zc7dJcel3/ZkJeC6AtY3SlH2o/Iv5hMo40auaC0ffdkingt2eHuU2jhWpmgszJg7iaT0ynt0HGp13j9s6EuM6FTs/fRLLkuI23TrM1CaMfIrTsxAydDcqaV7o3elhxD9u7iOq5kLo8FS899kQy/r648cFJiWM0jTKRWbFYl2pmgsFrzjw+5dfAGAw2FZlZZSd6OxT7ASJrAdapXoj/Ysot+2Env/+xCf8P7mZUDUXeg/fJoUTqfje9vgsJxEHY2dJYCdE2UvbWva7Yy+4H3tstZk/LtuNUqiaCxV/S5bKp80uL1MZGNsWyW5Uwii8sf5FVykALJUwCktKGMCUMIA5nQeAFS3q4p3sFDwwYLgkU4/+zHluafvmprS1rtWwtU0FXl8pdhsP0/1gH85nztFtCHk+CSfHsTkn8NVEiZd31ap6P+gdgbMjomFrESalRZT5aZSp//j7VIGquXB2RDSCX0xCpRU7JP9iFJ7c3XQbqffvzE/MPg6NSljUHn2uapM82JRHftrf6WGpzMmsf0pQOJLf1833RN5inwKA0Gdvmet7UMIAoFeQPpauKkjhSphTsSP9idmmuBTWavzI7VgolSkpYdqL+hrBVl/3WSaCCIlKGD1rMjkRvcN7ory6E6fGsrUBKWFnR+iIvYMPayjKL5DGEuPazKnYJXcz2stmP5p3MhXD+7/y+U8QKWFPPvkkvvnmm9u+11VQwFwaFBcXm94V3VpHFwmbOrdDd0/E7gASwTrKV6uFrG8CcaTLItMO5LGJDo6042kni0AnxuRHIyfSbLLx2dkgqK2qWU5oRF33XsWGiZ1RboM8EBnTpHQ9LUCsBn93aZ9dHYaU9svhVOzIe8MBv3c9D9hGPqrmQtuP4vhO8TPpaZJj2LRvOpjgfW3VqnHwBFVzcZRDibxtsAX5ozgj21J2VWP3PvZNnGVZHuKpDVH6wnBk9TCjTVnl8++UQVnxPdUBPTs9Jhp1vk5EYf+OqPzLDmR/EI20J2dj81VvTPxkjMnFgRj30sAo1Nh9StqFVzUXRuV1Qm7HQnanaGd1NP4gARcfj8LJXtcRMnQ3LzPH82NNJ2pllcftkJjvnoEdUXqd+V+jvNk/jMOFZkUIi0s27YRK9bmxMUcCOzbRgb0vzrIsx+bbh0rAMO7yURrdFl6Jst+RAYeOY2T145b5LdrgD5/7c/X4jrbcPxoAZC2xI+iWPzeRovbcxLZTwVJcdzK5a18nf2vGT2GDfhqLVvYcXO8qI4Z5dWiFhl8exQL/rTxem11emNZgt8e+b3zu2HMDCW3LY9bRbdxx+HPHOuBQeJEpHlFZ7eN2+8TzGYew6lw7ZEZcQ/4kBw6Mm+WxfChtd+Xo3H8Rz9bM4CeI/0pbprglG/1wcrUf9rw0y8TzdspY1Vx4YPAIyVH46d/DOKKhGOdkcSHqCcAhIu9hR/IwpOoZy/Losvca3qhz2CTXiQkOzH3+C0T6lruttqBqLnQZN4b7nPJUNpS2u/dB60cidHgqtwxwF65nYEesy95hWaa3U38Fv7ZEo0eswXDE9tYycQgORP+A0O9j0WhLETbPs/a/V1Ze+x86idHVNY/xxHSNaVjJWXFLfVztesIyPXe8PfEzymDVbmO69bc8wRXjkwWHT1AAzkU2QMJn+uk17x9d2+GPpQs81pllP27UDtqL0VCm3f6JHQDL9Yq7NI2yijTn4FaEND/xjzgRe257n//Kidj0Tqv+reUxdepUTJkyBUOHDsXChQtNMPREx44dw4ULF+Dv749Kt0xff/vtN/Tt2xcxMTFYs2aNFD4mJgZr165Famoq2rdvb8XSku4qYncAUaPuXmMo1h9idzm0lxzcX440SN0/AMUHzROls1E75P/cAgeifzANPLb69RC/e/1tL+oBebClxSY9VzUXms+Jg/9UNugsy0vAID9HmZOTuGAS0zCmWdZAfTtpGCeE203TyKvll3Fo/H6C9OzBtF5YHbaWKSyjo3Gjmheq3X+cQ5DPOboNY28Bl3hXqoSSK1ckvukLwxE66waQLAOHeJLf3SKvrDwAbPdbNO/xlJb4boIW4RZEhUwtjSaYYnwjGpT4LvX6DUwKlJHUjGXtLu+q5sKkE23wfv29buV3l9fgH8dyEyJVc6HT3kdQ9cFck1nS/49CTOhi7t5bPfcqVx6lN294lFnMd88mkSi9ye53Bf42GmGxyaY4xsWIuNAuKz/eVaui5NIly7TbpQxC/aqXONy7O56q5sIDA4bDe5uLv7cyfT77VDRqfZuI80OjUWNxIi4+HmVCbn0tcy8+CNbvlBhlv9mjA/5c+A2X9eRvzVDvYcMmipuysXqX9XE00p+Y/beUpbMjolFrQSIfs43k3bY5SvYc4gqzqrkQ9MsY+K0vRYXfdQAWygMgbw5Z5fuFjAP4NKSl9M5dX3RXDgA4oh2VvSellsy+3Y3jAPB2ViqmBOl34sS0yC2BlSw3/miC8g8ctXzn49cYRXn5lvMUL49j7bE/vEQK485E0LIcAG7aZ6TglArY+2FbkxmwFQ93bcv+YRzqz0jA0anRaDJZlkksM6pXVXMh+MexyBw4x8QfkPtl7/CeKDp23ON8WZactzvGuVPkPCkXJ8c5UO9L9864y+It0ukx0UidMlt6J7r6EOMa26LRfNCqHYvynFrVFHX7sPuT3Q/2sdzA8pQfqzyJ+SJ3BWdXh6HWg2k8fGTCg0jtP/0foYhN2Pbwf0URm9H532eq+dVXX2HcuHHw9/fHO++8Y1LC6tevjwceYA7ohw8fju+++w6bNm1Ct27dALCTMIfDgeTkZHTp0gWPPPIIAODXX3/F1q1b8dhjj2H58uV/S6a7pol3EBWfv8gvvirTErhJnEjxG9xUcGkpGveX/VHR7+ITJ+FU7Lg0KIr5mYFZOTEOSkSq5uJKmBi+pJyuv1spYVaX7Z2KnX/sH8jOgimutqIF/+1U2H0wqzxRXPpYvbdKl+KJ4Qr7dzTxpXiiYpDxPQNUKHq+Fn+W+tZsKJ8kYHubXwEw32xjBQh/oxIG3DJjEJSwtNmRKOnaDtqLOkiLmKcejw1nC+F39TLLf00Ou7ogVYrXOEk3RRPNe9xdRDbmvfmcOK6EnR5tbodkarnp23lQNRdulhZLMocsHSvdaxH5OxU7JgWyy+LHVzbnslBZH1vZnKP2iZNjaXRbqJoLrT+PQ51yl/HKCVl+Aico+LWl27aXOXCO9LxKzyyuhNmahpjyKcqQ80601N7u21colblRCRPjuqP0j/Rds9wpslmKWD/pM5lZLSltTsWO7IeZc1kyB6Z0CNXx1Kqm+GPpAohEZSk6mxXlK7l0ifOnd9pLrK3Ve/gwSu8rMOWBeGZ8347H9d4m903R9Jmep7zLTIxqLE5E4aMduRImIqkZlTCi06NZXYhADwCwO2IZD2f8FuuCnBoTUfygl9lG2Mi0bDTfPtRj3RGlvMfyITqaFqlkzyGomoufWjoVO0IXX8GWr3XnwMa+GH/4LynfxgUvLdbp3ck4B8qvS5HyYiWLtNCMjQZKmZkhlb0oi7H8SAkTZe34ig4Y4uXrKy18ySF43husXcdv/gVnRspjSeTuxwCAK2Fnn2LvRfAN0V+hKI9TsaPzhDFwKnbsDy9B2jcdJLlDPmUuCFYVpPBnhBJqRaSEGcstM+Iats382iKGXNbulBmnYkf9GWxsIyWscJ2OCBtVwYbMJUzuHpVucj4hzzOUz8sDZCAeXn9jmalr7pAgU3rGebUspcs4Tol9112eAH2siWnT3bJMAJiUMCNvY7r2D+PQ/Os4lHTW0yXQLFLCxDiiv8VB2czB/PGVzXlbtIXeKp9CHe2WKOinsbxMz46QAclICXMq9ttSwrrsvYaWX8rgVmL587qLYmMauVGo9WAaz0+LhCdQtX92mWndpf9/Sklh42Rubi6efPJJDB06VPq89957HuPbbDZs2LABr732Gk6ePIlXXnkFr776Ks6dO4ePPvoIS5Ys+dsy3T0RuwPICNaR97qD33W6nd02MZzxP+3q0LvgjSMQMpTtkNtahJlO19wRpW3cvQF03zlWPN1NTuQw8XZ35lTNhaCfx6Bqps2tLyKKR84Zy+Jrq1kTXlUq84m+uFt7bFjCoJGtdvYAs9mXuOMVuHoUKuaW4+YJ7urLXf6M8haXliCmkbBwiGwtKXAUh0xgRB9ZAKRTVQDotPcRbDeAq1wuuYb+jaM4r7w3HDgYp5fd+9nJXGkSy2R0WhYHRLg0MIqbEl7vHQHfNWygEy/Ae7dqhpL9hyU+Me16oPjESanNZi6xI/hW+RrTTJsTibCxyaZ3MV0fkXzSeVpAuCv3spR5d/HE/xTXUx2L5OnSucjDeAnfHX8jDTh0HEtjY6Q2fTvy33B2wKYF33BfZarmwv2PPwXb5l1u0xZBctydwFqlXVZejq1sjoa34eCYZHfHW/x9fX0AfHvkSDxmHt2O8U06mdqDU7Fbnmp7GosBIGTJWGQ8PseUvqfxTkzT6CdP1Vw4XVyIIX6dpDgnf2uG9vXzkR+lQ2QX/NoStRdURoXf5dNSq/JyR+7K+szIaJxtw5YMdN/HHV8CVQJ0h/Lu8l/WWPly5j58HNza9FxMs1WqNz5tuKvMPhjyQ6zkVN1KBluN6jj8RTB3Fi2GEx0YnxsezUEqPsreUSYYFMlqTJO+rz4cifz7vE1lS2a64vhqVVbG9hv21zAOGjQtJwkvBUS5dejsbW+BEtdBqR17arO3M5f5NKiPouOyaaPIm3wjGq8QiA7T3fE2/i9rDC5rrLHvBj6q7zLVa8ErDtTILEbln3fwMrrh7MCBOgpedaDUC2j8QQJGpmVjQJULUjqV/6qLwntO8f9Wp78i/ZPAOv6JJ2J3It09EbuDqF9Ya6gaA5zwtAslUkyLrpYLybRZ7OSrbp8jyLwFBBDTrT8yu+s75KQwGQdI438xbaMSBkCafEpz8jHsSB4PY5SNaPN83Q7+yiMdpUHUuFtNz0Mn7LBUwtLmsLzm/8J2ievPSDAN1uQzi9JRNReKz53jJi8AYNu8S9pxtBrI07stlP6L8mU/OA8H42ZJ6VjlQ4xr3DkTyyHy7Wfk3cKVi5H2tdmPTP1q7BRjedBGKS3RtNWp2FGlZ5ZpkdlvEAN8af0Z8yPj965cduG+5Xl476pV+bu5YfpJZcLn+imT7xp995lM0VTNBfiYh5riEyclCGxVc3ElzNayqTSh+m5pgOw+c015dyp2FKdn4dHM+7lLALEOedlZ1IdY7vRNfqOswpd0bWeKR+HEC/JOxQ6vDq0s03cqdsS0vBfRL441XTr3aaSY+AMwmUsZ83ZpUBRKHW1N8n7//EOwbd5lGcfqP5X3pgXfwKnY8UYd3cSP+ATGP205XpASlvlJlFszWPL1FfTzGEs5jHyDUypwJYzIWK50MkzxrcZIgkoHGODE5lYrAW+blC75SBLbA5WHqISRjyh6V/BrSykv9BFPR0lG43holFdstze7HeN+msiNhVEJA9gJ4Hz/bcj+4BZoTGRrNHrkAFfCiu4TTLNunaq2+sLsw4z6qaq5+MmycYwCgNrzExH6bBLKXfIyxRPLD2BuNLyrVgUAfNWebebENLuHxxtx5CgvDzrJEMmpMDTDnHei8XFwa9NYSWHSbhZC1VzYH17iduzOeYedqFwpuYHgl2QwDbFu6PQ//uAWSQkDgJ5NIhmi3sZUzv9yI/2CP82D13tH4NJAdool+tgT2xTA7n4b5f1r9lxkPTbHBAI1pS5TkEgJE8v92oORlmsAp2KXQIMe3jAOADgisLHvrY1fYoovUoRLBicQ+534IVlUzcWVMGMc+s7uOxeq5sLE34ZxXueHRXMl7OQ4h2VduSOnYsfNHh2w7oqvPHdarEWMfLa/25GHEREg9z87CzcrsvmrxHUQAHMhQfEbfZiAxh+w8W9+WKApnfRVofwUDIBHJUzVXFiRZr6ycKdSCbz/K5//dfrfz+E/jGgA9IpgznEHHNIvwlstgIrPX+DxRAqL03dDM24pD3kP1+fxFudtl3imz5CVobR5EVzBMaZpq1kTvXow/zI9D/cGAOS8yyawkitXsKipH19IW8lmfLb1S2b2UW5zQ6TNisS5Tmc5GpFxohefEWX3mYuWiUPQuL/us8uYFvnMMqZPEzTxXZi7Db5bGlguQqhuuuy9hlJHW9Nk5U6JUzUXXsvci/xJ1ohkVnIBgM9VebJzKnZ4FeldlupnY4tVPK5XufIm/sbyIp5Nd5ZD+UzWvvZNNDvbFfPkVOzcbA3QTVLExYS7/DgVO99pdSp25L+mOykl0A9jWcb/8SN/PjlrF45sDTQpP+LvS11Oo+E7mSbHyvS7d6eHTb6GzhVfkcpmVF4nVPlpB7zCW0qLCXKiSnetjPk7+VszvrFAvNat+p6bYYmLMACIP7AJJ6JKEbJpBE9jek4Cigo0FveKL7KXtpX4EQ/ygyMiflVdlsTN3sTwdF8IYGhcvQ6cx+2QVX8lCnt6p/T+7Oow6b2VeSbx3NKGOUINnWANuGBc2GVGXJPyk3azkPtFIzowfhZHqxPj19xei/+v2+cIr8/iM2fZ73z9rojVglJ8Jz675G+T3hEYA8Cg4o+v1NH3KG7jDxJMPD0RhSU/TWQWpWoudHyVmQKeipWd0wa+loiWiUNM9059/kzF5KxdODMyGqHjWbnvf1bv6zRuEy+nYkfJ/sO4f8hTPM0HBo8wyRzwRqIpnlOxc9NCIrpv6FW9Gts0uXXvzanYsaCprmyc63RWyjvRq0d2IeDNRJMClv2+jlYaVq6y2zLNnczG3CMj2aZHv8aRUrmJefBu1Qy2G9anLgAzCyZYcyLagDj+nD62+65J4RYCjfvrYB3GNkCOgsW49M5oJimOH3S9gP7nPeDN/086oS/4jSSCVBnL2agkEl18XEdx3P4qUy6D1jNYbkL7M855qsZcCRjJKpy4cZH9IZtLaixibevaQ5Go96W+MVjStZ2lIm78XW79TvSsdF1KO/qFsW7Dq5oLPn6NTXcAs5fpZbnjIzNSo1UbMZKquZjPwCTdlYnRPBfQ53KnYufo2Xfp/w7dVcTuQFI1Bk8NgEOOG98D8kBCFLx8LP9PducUbt/zbALuMm4MhvrJO8D9Osk7bWGjUrgZGMDMTK73imCT6blzKNnPkLDWNWOoMa8/+pMkY/wfP/JdQQDwbtMMmdNkpYeIZLjZ7Rj81rNnLYYd4u9eONZemiRo8CaoV6di50qYcVElpmE1WB4ZOVuaIBr6VJFQ4CgtupMCAG/UOWxa+Bp/i+RU7PgguI2EvCZ+u4u346PZproO+V4318juM9c0ydMdollHt/F4bZMHcyfdopwzlBTuwJPXwf3hkjwRrmIOBy8SmRzW/E42rfNu2xx5rzskCHZxp9RWozoOjGflELJ0rOXiV5QHAKYGtecLP+OOq1OxI/NT1s6+D9gsLTbSF4ZzPkXZR7kiQPEG+cn37PZPb420OZEoTT0AW9MQ9Hj0STgVO1eyvO0tpPKjb3v9Ai6zWK+15+tKJsD8T9GpRNajXyN4yG7+7rkAB5blsXJ+46On+KmSsb28FBCFc09GSw6BAZjukzoVO98pdyp2eDnOYW3LGvw93VEhyvg8CnUTasBI4vhhVVfVKsgOWcV49G2rW5ef9nlSpumbIMWN+QkrV9n0vG+6U1qs0cbAuU5noWou+O+oLLUVAPwuptUYIealNLqtSeapYxeZ5Kf3B2NnYXP4fMs8GnnTs9AUX6kcjAvNtDmREp8aixLh1aGVhFrabRQ7jW3yBuv79+/XN0wA1n+oLRrpyFP6AlN0LG3btAsx7XowBWXLbqR/ZXb9YUW1vmXp3LxfP4mLadEVa3asluKKrlFi7h/Af799Su9jquaS7ggCguI5KRG9HX34M2P7p/gD+m+BU7Gj83h2CvtRtvUmgKq5ULL/MGouTLRUmjyRqrnQYLrZCoO+xefiCS59U1zROoDuw4qy5L3hYPfFKsgnU6IZ4/v1ZbcZ12N0CwpRpj7pPS3XFdROL98aHxI/0a0dNn3LxsGsHvMBAPEb9TnfqODUTWXf1O8BSHfdRDo7gs2tacNmI/1LvZ0ZgWy8t+yWykPVXJb3esUy927DzGGrLdXL6GaPDqb6JcsYMS6ZdIpzBN1Vo3QAhlZJRDD4xKPlzDjumoTCU1+k/1F7bvK5vLjb7SPt3QlUXOr1X/n8r9NdRewOIjqSdip2pC0Ih61ObcsJwbgwEgfBkOfYBd/MadH8JEyM71Ts/AQKAB48cA69eg7iF14pjHH3vHLPLGyeP8/tBPxDs8b8N4Wp+qOOwlWy97Bklx/4+yiJ16QTbeAT2AQzPp8JADjlOM95kWw9Hn0SquZCxnQ2oCsf64vR7A/MC1GrhY/VswtPyJehHzxwzrSYqjM3EffEjpbiWikaRt5iWPovnloRD/8d5kWmcZdS1VwSzLkxP7W31+S/g8tV4XH2RC7Fw3+anQtbyfvnInkh+W69fWhevpIkqycq2XMIfu8lYKR/Z3QZN8a04I4/uIXz3ztwBs+Du0UMKS5GmUUZMwabHe9eezASVfb5woqcip2bmBEPp2JH4qdzEDaWTf5DVm3iCHfEl8xSjLIQcIlIVopGxePXUP2wzSSrU2F34wb5sY2F2vOsHaPS75rfJXLz3fqJzGY+6BUW594DD/NwFVazvJwaG42qS6pLfEq/1f3maC85EPJ8Eu9zxjRFOY1tRjytET9OxY6M6Ww3PX7PHygq0ExjmX03U9yNdUpt3LgQNS6QVc2FlaGqJG+dFHZHMvv9W0AGt3wIiYrXvomzpEWnu37slbiHL+Qo7OzQEA4wI1LmEjtX7sU89nxoCP9PprPklwoA0iOu8/THFTDTqHPD9bHs8ENfSQoHAH4qSPHIXK34UDpUzYU/O9Q15cno10+Ukch7q46uqWouFJ84yX+HPrNDSjOm+2NQNRd69tbzJ8YltyfpMzqi+PwFU7s59EYA51V8MA2XBkbh7FPRSGhbnstlpQDZ6tfjeSrKyeXKMrV/gDk+Jx5Jbdn9FTrtIPNBAt6h026j/GK7WF2QKpUnEZWpcey60TPCkk/TrcOk01FjH6s7WzeZXP/Ldzwuffu9m4Aqy5OQ7ZwvxWuzy0tqu+LY6BufIvHxCQqAU7HjetfjCIx/2pR3ikcIwLzNddJ5/nK5milvABCQXJH/JsWHTvkzpkfhRF/5hJt411qQyH+HjpPbmVOx49yT5rkdYKdcxUcyMDlLvsdH83TLL+NQUqEc3j7VAnmvO2C7db+o3Hp2qm80c6ayOz/UrNQDzG9r0KvmsfmX5vXgVJgrk/jd6+U20uwagh5ndRP10licGhsNW8umUj7erquDrNF93rv0f4vugnXcAST6EfPx0h0XZi9ti7Su31kuUq0W+VaDY8w9/RD/1wp5wq1cGSWFhbDVrIm8bxtiX8cl6Pb0KPjGp0g8PaVDJKZrjOsuvkhXHumIrV9+LU0exsUXwC57965kvfsuknHRRovc4MetlSVRVoIGt+LpVJjtOaG0AexS/NWcqgiZaDbH+iFvOz461Rl725ea+Bh/p8/siKz+X7stS6PM2R9EI/A184TQecIYVP55h9t0PPEUn1OZ9ArthLXp29F19GhUWJ1cZnwrXrlvOeD/lnvo4qiXx6L690mmNuwpneMrm6OB4e6QlWyq5kLka7E4c/81ZHZfINWhT+NGKMovkC6Te+JjVTdW1OfgGTxTI89tHjyVPeB+990I7U58vCJa89NzRLWRTGBUzYWYNt0Rv3ejifflAVH48/OZ8PVifpwI4Cam2T0YlHwQP97bgZ+WinThiSgkfTwHrXc8jq6NM5EeIZsAGReXt1Nu7tpoT/8OklsBkWz160mKgrt0+BjwQzsED2GKRoSrGMs2djL5kHLX9m6n/j29Iz+QZcUzgoLkvenAwVjZR5iq6f74MqdFS5tbxO/+x5/C1XrlUWNrDoqOHcfRtx1oMsW6DxJpLzmw73n5brLXn40klExjHk8+40CDLWexdj3zKyflf2NjoHu+KZ6xnauaC3tvXMNLAYL1xK1ysCrTrnuvYkubim7nGJ/AJliz/TfLPqe97ECXx3ZZgkC4y6O7dList4AvxLhpsyPhU/0GB3XyNKaJ/0s62/HH8oUYmduZg68UvOpAow9l8KeyxhR3YBChKb6m/upOpm6jRmHzvHmWcuf93AoHHd+bysSnYQOsSV3ntg+qGrurHTpuh6lcVc2FbiNHwXctW4OUdG0Hr5slKKrkY9ocdLfWEXlZ1VWfg2ewqkVt03Nj/mxNQ1B8JMP0PnL3Y6jZOx0Z37dDyBO7Lbgwuto3EhVXyqBSVukBgLNxOE7GdkTNI9dx9MkSZHZfgIuXSlAzLOuOBqegNeuYv/r/V8A6vr7nlzu6PP5VunsidgdT4OA9HgfcyVkMxaztRwwyld7Rzo5TsaM4I9s0YJUUFgIAis+dg9LvIHr2eQK+8SnIft/6TguRyN/qW5xknYod9x54mD/zvuUMT8wLALR+Tc6jKGvgav3UbEZIMykdeh7hKsbpMfI9h6BfdDAAAAh+3MV3SUXqf+iklId7Utl9u5Nxwh0mwVyL/BURNXrkADIHsdMYMlsjGuLXCXvbl1ruAHI43VvPSQkjOawAOcT6IyWMl+0tEI3KP+/gcawW9ueHRZveF64LspzMnIoda9PZPUI6WRFJ/J/1UbSUT3GS9H9Lvh+zMHeblE717+XFcFmKDgAoU/R0RN5WSnzN7xIRMlQ3ASy3nl2yLspnC8yDU5pYmsxYtcnAVaNN5UDk3ZadkpAS9kx6msTHu21zqQ3QTj7dKXIqdkS8HstNSsU8qZoLj7++1pSmqjETZi5Tknzq6VTsKD59RsoDUZXlSejTKILLQ/DaxRcvYli108ibXVPiRXJU/56duPvHnZUWdca+33z7UDgVu2TKYwxLp8BWde5U7FwJI1h8kYpPnETuZAeOP+9Ai9lxJt58DFnJdscz7mUgRS9kHMCuAWGSEmYlh1UfslpgGjd+cn4039GpnuNm4R/ZWuJpRGYkJcwoQ27HQvg0UlBrvwzGsThvO5yKHbbNu7B9+hysSV2HtDmRlkqYsR0r05h5nHhab+WqgMpK1VzY/fosrF2/zLJc0D2fmwG6m0eIXgpgqK222rV4OZx8Rh6vSV4yL+7VtIvl+6LsozhdXGiyJqmfWA3KxwmSEmZsKyRb5b/q8v8vHGuPvTfMG4AUh5Qw8XlYbDLSuy20HIOl+u4sz7He29g4kB91GVceYSd3+yfMMsUta1ODlDDj+PhlI6YAEQgMhXEqdvg0biTJ67smxdQH6DcpYUYqOqY7oCeTW+Kf9RE7oaYTL3GNwtNcq28Ee2/ZDa+EPfBNOORWsQOAmCMxnE+bT+NgJDH/n6m9Lcfvwkdl9zXFRzIs20bN3ukAwJUwK162GtXx1yxmZnh9fYD07oWMA7BtUqBqLrTfOZClWVKMcpdLUW5DKp+n7t4R+79HdxWxO4hEtBxVc3F7Y6uFMsBs/52KHXtemWUZThxMWiaaTUiIyNQlbfhszt8Tr4uDo6TnNIGKz2hCcCp22DYpWJuRYJqQVM1luTtJA2vYaBmmV9VcSJ+ho5YBQIrdhtQpsyVgkdDxOyR5Vc2F+jMT0O3pURKvX5rL9tw/LGW+UHa/obsOOOU4b7nLRshi9G5t/BJuqmKryRaxs45ug1Oxw7tCBbiuX+eyFKdnSRPQIxnMeeCJCWzxkf3QPBx/XlcGjSROjl7lyksgGmIZGsugxqJEKS4ArGu1xHKC9ypX3lIJtNrhSx/K2k3FLfXxYFov9AqV7x+Gp+p3QIb7d8bFtcFu5VU1F5qn+khKlbEMSvYcQvOv43Df8KcR/OcIk3xWZFxsEYXFJqP6+kMcLc1qAg5IrohevQYjYKVsPHD8WVZHXfdeRcke/U4jALz3zpMSL3qvai7k/9KSm9816KsvNE5HFksmpQAQ/nYsnIodq1vKipGYltXC7Hpv2Twq4/Moy3Du+NWqdFUywaM+SXKtSV3H3xnR1FTNBf/H9uHSwCgEvZpoqkdKJ7djodv6EinzvgWWz7988ms0+DwBfu8kIOfHNqbxZUV+MgctonefhrSUnAoXrgvCPL/tuKoGmvi3mMUWdqI/I5HEhSQA9Hx4KAIGMmVY1Vz8XpX3lt3SRpStzq1deQuH7hRXlFl8pmouZC6xo7SwEMkfzObgEarmwtC0gVA1FzI+i9LHUOGer8jL7RjfJtSUnqq5YAsN4kogxRfHB/p9alVTzDzHQDheCewoleu54WZgn/bv6H7Iis+c5entfl1XQFTNhXtHPC3JZTXmqZoLp1Y1RR1bZRSfPgOnwlx79Oo1GIua/GUaS4zlS+8K7zmFjOlRODo1Gp823IWXAqIwMk327dQi4QlT3FYzdDTKNp/GSWVMiKsieW9zme4PEVX6dQfvw/Te1rKpKRzddzSS6I9T5O9U7BwERiyDgRt28DVCzrvRuLwuCLamIXA2DufxnYodAckV4WzUztT2jWWbHnEd8PKCU2FO5YNeSbRub6LMLzugveTg91en5ySYNifENKflJCG+aTwfUxt+moC0r9nm0muZe03tnPyyidQ4qQq2zTD7iHMqdsDbBqdiR9o3HRC6mLXTX/KTTMipYj7IDNep2OHbI0dKr0elm4hvGg+nYucuhQBw0JbMT6Juazy8k6i01Bsl/+FPaen/vppy1zTxDiDRj1i1qt76AnZ3CVLbeVsufomsJu0zT0fDq5jZXrsLY4wvkrsBHGA+NRp95N5U4szT0aj9jTldYx6MfD2FrZtQQ7q/IppriHKUlVdjeCuZjOkm7GqK0HE7cPx5Bxp8ztIs2uBvcvCY82MbHOmySMrDoOz7OBqYp7TF3z6BTVBy7AS869RGUX4Bz7tPgD/WJKwqczGducSOpm+cR1FWjpTWgKzuko+x4886JFcAmUvsCJjnDdumXdyPlEju2o67OnW34Pm7pGouxNzTD8UZbCFE5ZGxuB33h2clS1l0Ms6BerMSuKldj0eftARgiXg9Finvzeb+90amZePLlwdy0xMxbXffAMqsP6P8PgH+KMrR2xiZG6maC87G4fAKb6GbJN4iMkGzNQ9F8aF0t3kX0xqdloW5YUG3FdYd2XcDrnZy/V/tG4ni8t6osjyJ86F3Ivk08UPR0by/la6xfMkHGMBMnSv9yjZiZp5rgvE1j2L9lXLoUYk5J++09xFU6ZllOWaQfH+nLbnrz9POBmNDq6q8fdG7jO/bIfO+BSb+7saD/x+i/HR8JRY1FptNF8X+eTvjIADuV0l8NzItG/PDmKLlbW+BtfFsU2fAoeNY3rwBj3tsogMNP/NsGinK7WmesnpXcUt9rAxV4VTsaJ7qg0PhsjnrpUFRqLosCWefiuZgIu7yvDB3G4b7d3YbJqZNd37KLJJ32+Z8s8XI09N8Q3lyV+dWz8V4lx/riOob0lB87hx/F/zjWGQOnIOI12P5GsAdUX+xovQvO3IzQvL5aJTJ+M6dzLOObkNck86WeVM1tlFc+fdqEmy8FRl5U90CQO5bDhwaPeu227T4PPen1lgdOdutjABzRWBEZqb3t9PGjeU27Og9OBHNUERFv4H/JD9io7c8hvL/YdPEG5dvYm7Xn+7o8vhX6X9f1fwHUb8w2VQltZ1ePcadF+N/kXZOnY2U92bjvn2F/JlTsaOwvwxQIL4z7nABOrQxPT+2srmkhBHFdOvPf9f+JhHeFSpIfNJndrQcFJ2KboZH/2/26GBaIJES1mUvOz0jc43ct9iJRMuZcVJ4Mb64syvm1xiOyNY0hMf7PmAzN6Vo8HkCNz/zuT/XVP60Ey7mb1ngnyY5jGnb6taV5CjKPoq1WUkoqV2N590WGmS5iDfmLevjaAQ/7sKabStN+b3Q+Qw/cbOFBaPBFwmSr5rgx12wbdqFs09FY9OCbxC4arSUXtosht52/DkH8l9zWE5s4n9jPo0yW/3nu+deXlJ5kRJG5QEA70WulOJ3HW1tNkimIADz00W/681iJpO0SCYljNIkuWkhQ0rf/LBAVFyZjPm526TTWU/tCwCKcnJN4URyKvrlcVVzSUoYoPuecSp2oKRYMklUNRdy3onG4VGsXxBogwhxb0yL4vavcpE/F2U7urz1bSsE+/s0RuW/6krlVnFlMlfCxHS92zTj/73KlUfR0Tx02XtNQrMzus0wlplTscPLVwdiISUMAF9UOh8ZhtUtayLmnn74NKQll41ACES+oZuHc770LQJmEBE6Z1l1DQAbWlXFkMP53PSWxgA63bPKEwBU3VrHY5mXdG2HE+NluHOejxRfnB4TzfNKShi9P/O07LdKXLDSqV/G9+y0g073Ka5RCQPAlTBVc6HEdZC/MyL9NvxMN0/WXmayk38osQ2LMhnz1nyOftrkVa68hAZIShgAHApnvgvPPhXN+dNCnZQwyj8AvJapj9tp8ztwJYzIVlcHPnEquqnvhXgZrc+ohIlptE0eDID5MBPzJPYXsVyzP5RN7Y1tJXISOyX3atcSce/+zJUwCk8nPzR2iXDpIq/rvSNQ6dcdKHjV2gw0dNwOlHRh7UFUtEjW9BkdTe/ckajgqJoLtbfX5HzapQxC4/4HUHNhIvocZOV7bKJDahtGii9gAB1UtwDg/1aCZXnaalTH9HMBJh5ie57SZrVHJQwADkT/IL23bVLQdQwzfRbbOBFZTFhR22lxSPtKRwgVnbf/k6gYXv+Vz/863VXE7kByN0HRoGy1ELBSrP5szez5ewZ2hC0sGGda2ky7cM3mxaHc5oacr8iPIMMJ7Ut0rupUdESwzj/vx+XHmB+y9BkdUXLtGtLmd+BykP8auo8kphE2hpkfXlwbjJx3o/kdHvLTJdLWNhV42j5N/HBoNFt4kjPF3tEPwamwHXKxHMRygrfNNGCKYcRLumL6wSkVULLnkFRO5Jh2QsZhZrJhUGidih0X1wazhV3xFVM9AUDxqVOwInFif27t75bKJV9IPcKcYf7w2AyJx70jmPPdwkeZwkD3gC60rQOA3acwmr9euOUWSjRpin5xLEKWshOFBtOZ80qrdieWmbjbmfeGjCRnbNv0u6KTKVxqAbOVJxNPVXOh4pb6UloLmjaR4ldYnQynYkefg2e4b7j079ojvmk851FUoJmURadix1U1kPuts6JePQfx3yTDSP/OCJ2wg5vRiPVuXECQ/xufhg3cLrJVzYXSnfs9Kj9Gn11iWSrbbkrjg1OxQ/kkweOGDfGw4tdkADtto3uFnqgoLx+F9+jtuOAV8yKKeF/1q8rDld68gX4HT2FrmwqwC4rV0h6zedyb94dblse67B36ZsYtFDIpzaS9CE3xlZR4d0SgCiIlv6/LQN90r0wsZ9oMsmrTIpKsU7EjpvV90thgVDhUzYWlQSp/nrYgnD+nZ95bdsP1mmyKzhfGEddR52tZ+RKJLBXENB8YMJzx3eaCrUZ1fv/lr9lzJd7u2pCPX2MehpwX01goklOxI/2rjlA+ZmNHvS+tLRoorBGZ0n+qHr705g1cir0ghadNsusxzDRNVLpUzSVtAIgkwuOHjdxpqsfh25Ml2eh99RjzPSK+4RMUAID5+8paYkeDvmzeqORd3pRXY/0CQOAtZL78STr6o3i3Nvn92fAJbILS3Qfwy4my4c5rz09ESWc7Bh+Wxz9C2xTvoVF6F55gZnIikqaRQiew0zLjpoWYhneFCjx/oSm+6HXgPJyKHUsCN/H813v4MM//qhbsbl/DzxKkjQJj+7N5uV+60nxHCn/x+QvcdYequSTXAEQ0nxC5S1es6/im8RLEPq1LKL++F9wbmzX4PAGTpiwypZP2bQe3ce7S/y7dNU28A8gdaiIAbk4hDgh905242tUa6Q0AN+WyWtTZatZE8blzpgGAT+YLwxE6PFXiF72nP6r1yoQVGdPw8WuMorx89D90kt/BUjUXuowbw3erxTjHn3Ngz8uzTHIOPqzho2WPmhD33C1UfRo2QNGx46bFvVVYy3KxQEoCgOPPO7DnpVmmyZP+nx4TzRc/ANtV9S0ohyaT5R1kEV0LAHLei0bI/GMoysqxlMnTgvx2SdVc6N25L9ZsW/n/xduqLK3i0jOqe2OYEUeOYlBVedeW4gUvH4uQ58xogO7S6bT3EWxv8yvnU1ZejO3bKm9W/5WkqtCiLrmVJ31Re4QO02GTRcpaYjchptH3D3nbMcRPP8Eh+QLXPY2wp6wdrnqSU9V0Mzixnx1f2Rx7IpeaFtKtkoZgf9QPbnmqmgs9Hx6Kdb8tvu32592mGUptNpTuPgBbtWrcaa+queBs1I4r1p7qytO7+/dfwku1Mv9WPRff2x7lTxai+MARyzxS2L/bz4z1aezX7vKiai7kFl3GKOHEZXHedrx7ohuOdLhpWvD16jEIJfsPS/zSZkciLNb9nS/x/yMZDyAtPtSEuOeORKQ3K/69mnbB2iNb4ew7FEjex/m1SvXm7kWs4hEZF9Xuyv7kOAd2T9Lv6HrKJwA8n3EIc7V7UHjPKXh1aIV1q76HU2E+9AjpleYGgIHkXAitxJ0Ge6LrvSPgu4Y5RW/+dRz835aVRysZz4yKRu15ifDfURnz/Lbz99qLDiifJGB+7jaM9O9siq9qLgSuHoWw0boT9rYfx6HBdOv5T9Vc2H6tBJ0qePP/ItqiVZmVdG0H7y27LfuCVV7cEcXPn+TAtbolCHk+yVQ3Z0dEo9YC8ylqcEoFHHmlJXz+TLWsTzJrLelsh/c2lynPAOB4fiyq/pgE5/6LmFhLhtk/Pyya34W2Wt+I/MR24a5/jDhylDsez53sQJ19xai0gq1jqm6tg0tdTkvh3fUjvpZ6Yazk08xIPk38cPPKJWw8+c0dbYpHa9YRmwegfJXyZUf4F+jG5RtY0G35HV0e/yrdPRG7g0j0Iwawzlvr20T4BAWgZxPdOevKUNW0i0YDiVOxozgr1+1uHZkxEOoUxaEdN1LC6N0rJ+yo1ivTlBZ9nIpdOvEoymOQxb80ryeFISWMTB2IyJmlKKequfDx97oSVnRfuDSgirLQjrTomFhMV0QBI/5hi2JxpV9H7lQ0d7LDEq4WYDtXVru79J6UsLTZzJQnbOROHH56Nox0dVUDXO+lo1UFvJ5oqYRZTdBEdMnf689GUlkZF3EAO8V0KnaTEka8RTM9q3wb80k8RLlUzcXRsAAApaXwbtPMJPuCpk14O6N3dGoZ8lySlOYrJ/R0jPI5FbukhInOP61I1Vx46Xg7U/6Nk+6ZUTKIgKq5JCVs2JE8kzwN4s2TD5WJqITRd8jSsQAYmuYcAzIiAIQ9tdMyv8E/jpV4EV3vHcFN5Ta0YqdMQX88ha1ffg1VY77j7tnXT+LlVOxo9Ih8x4Heib8L7q1aptIj5m3tumU4+lB1AEDE1jP8OVsQy36alufLJzYvZDB5YprdAwDIXsZOKEQHwqSE5b2pjzNWZeVU7Dj9Ozs1tG3ahfg/frRciLWdxszc0uZE8ucib3d5NfIBgLVZSVI/NLYtb3sLHn+UwextqF8nbF4SIY3d9Dnykg7uQW0vLFZGL732YKRpwUn0a8gfUP5iwBrHVjYvsz7/mjWX/06f2dGU55JLl1g6KxdLedwfXmJK21gOnsZPCp/xWRTyX3NIzrmNRPFapXojwlUMVXPh85Dm/DSWlDAA2DKX5cdWuxbfoAOYb7gdH7LxOeP7dpIcBKhCz3zXpGBaThK6Dx2JQ2Nm4XqvCD5PijJmL23Lf+98ezZTujsWIurlsfz55RBmMjnyVhugek7/qiO0lxjgBilhTsWO8NQBaDCdnWhfGqSDY3UfOhK25qFwKnYO1kX8jEqYWGYFrzrwx9IF0rOZR7ebxmXKv3i94OQ4B7I/1JFxKf6BcbMQ8rx+SkwneAC4EpZ8/SZHgASAWY2S4FVaarl5AAAjq7N53HubS0qvpKsOEJLwOUMqFpUwanNGBbv1ZzKS4slndHATo3sOqzXTfZXy+Xv/qQlcCTs7Iho/B29gL7x007mKK80IwyQjACR+Okd6Xj+xGko2+vH/RUfzUHzS2krmLv3v0t0TsTuAjCdiRvJpUB9rdqluJyifAH98vPlHtCxfEeGpA5AavtxyEW1c8DsVO86tCeWwrPQ8ZOlYk48dkcTJ30qmtAXhCBuRisJ1QajcMwuXBkah6o8yvz4Hz+Czdb3RbOYxFGWbfZ4QXR4QhaFv/Y4VLeq6DeNORkCeMG84O6C8utM6wr9Itvr1EL97vdtFv3EScxcu+8NobppiJHfxuj09CqM+/xVDqp4x8V+ctx39J0zE1q/Mfso+yt4Bu69vmYqKmI5vfApy3otG8ILjOONowBc1Rt6q5kKgOhJhI1JhRe7aDlH+aw4cGG8+KQXM4C1E3lWrAsF+KHEdNMki+ipSNRfCvouVfLF5UoZ9tzTAqtB1fEHgvcVsrnNVDURFZza8fH1Rep3Bunu1a4nCwCqmy/C2FmGI38D66Jyj2zC2SWdLkAFP7UQkOgkQZbZq/1bk00jhTlc9pSE+VzUXxuRHIyfyKk/npePtMK3BLT9dAkjAR9k7uBPdki7t4L11t4m/J0XHSN72FibH2qqmnyYAQL+DpzC2RkGZvMrKp6cw3q2aoWT/YVM5p8/siOAWGry7MwCSXgfOc7MogC0E632VYFkG9P9UbDTqzk5EznvRWPL4F5gUKCtc4reXjw+y3ongbbnPwTMILn8Sn4c09yi/p3xSnsivky0smCNNWo1nRPmvOdD4gwSUdGmH0y9eRVGJN/Z1XGJK37tCBazNSjLFJ3omPQ1fhYbhZo8OuF7DB2daepsg+FXNxf0bWs1H4rOQH2Ilf2ueyqTovnCORFlWWCtyN84PPqxhaTPlttqWJyK/gWSJQaBDRjr6tgOHR1mPn6rGUCjLqztxdnUYUtovt5Sp5vZaWBb4Jx4YOAJ//LjAFEZ7yQFlGkubTiCNeaI24WnNoGqyDzHxuTHs1Ycj8dfsuZzX/Y8/haLKNm5m6S6ep5NWK/Ik7+nfw3DuXBVk3f+t274AsM1Qn43m+c9yHTY8GvWG5+DSJ37w+X37Pwas48lNg/4rJ2Lf3bvsji6Pf5XunojdYWS1u1h87rzlwoW+i3JyMTGA7eqnhi93y9up2JGxmMHoPjB4BPJfc6Bm73SkfyfbmWcMnmOKa7VYom/ybH+9F9v9DhvBzA4q37oYX/XHJFO+Zh26B5mD5mDg2u38Xfqi9rjySEe+uwUwf0djaxSg4pb6XA5Vc5kuS4tyvpOdYrnLJyphxKdVKusCZ59idu50wiaSuCMplkXez634s+ITJz0O8PfEjua/jeHEHbG0YUyxefCAbspnnNzF3UqnYsfmb+ZhUVM/U734NPHDUL9OqLSC3afJnBYtTQCvBHZ0KzMBexCFvx2LyofYpeyA1xMR/9cK1FiUyOM33VnONLmQEmarWZPngaB/O0yOlerZmNfVYz827ZwTfR+wmYdtlerN7erXHtmKtGHmgfqNk625EuZdmd2bTHtyNk9f1VwIjH+ahzeWyfWuuvkKmfaIdN++Qthrs53THqmnYKtdC+lfRKF09wFU+nUH0mfKJ3fFB9P477G3LogTyADRM+lppoUxNup3jkQq3blfkvnSwCjLfBhJ1VwmJcwTifzynPp9Tadix972pfy3iNRGShgAft/EqTDTMZHo/pTYJlYXpPL/p38PQ+4UB2b9NtdSruwH5/F4K1rUNZWdET68rEUwpdviK7NvIgCSE2OxnfrUvcqVMACSEubdtjnqfSWbt9FH5FF3diLyX3Mg4PVETAqMROG6IKlvi+2ktKgIaU/q99lWtaiNnpWuS3k8tybUsp+J+Tf+dirMr1P+Ly0lJcwYXnxGd3X/+HEBasyuKilhYriSa8wvV9iWJ6VyoN+vfjccJ8Y74H2jBFWWJ6HJlAQ8nyGDYTgVO1/4/3CptmUe6F5Y8Es6gFTRfeGIemks3BGZzKmaC/fvvySVt9VYRG4v6D2V3bQcGSp9aTMFOe+w8Td3isOSl7vxUPSTSUipdb5OxDvZKVwJ43PorbFGVMK8fHxMMpZX2Ql8rQfTTP2A5Dj/rMLWDE/apPcUnpQwANwM1MiL2oSnvuZU7Ng8f55JBqdix+kx0bweCx/tiIq/JUt9wbZ5F061KWfiB4DfcwOA3ZNmWbZFd/VgnEupTJruLIfU8OXIuv9bvHGytTQ3i2OMqrm4Eib2c3dlUXNhIrQfA3Cj6t0l+f9Fulvrdxg5FTsQyRz60WJ4XfYOc5hblPZNB9M7QjEMf4uhK2FjY6iaC8efdSBk6G6+oKSdqqwHvuWDRNh3sZx/lsEcgcg4YUwNYopc6FsH+Xt3i2iiA9Hsnsqctx5F8zlxUDUXQoftQtfJCZh2Nti007QyVOU+Vy6XXEOFr8x+lQDgkYwH8GYgUwhXF6SC0NWMgzBNmHS/oc4yhpoX+OURjs54448m0F50SMhMlLeTzzjg9+h+jxOq+O6v2XMRsmkETsY5EL5bN+fJeS8a3t2Z6RuZxhTdF47xNY9yJdG4wCi5dg2q5sKNP5pY5o2o6GgebDWq8/8ZQ2abJiEr+Z2KHfVnyChQdb5OxJrtv0HVXLg0UPZJFbxsLHa/315aVIppxB/YxP9X+Ym15Z1TZ8Op2LmTZFtd+cSzsrcXiu5j5pWEkJY72YHMT6J422i+fSj2h5dwsz6nYkfIRPNOe4qdLSQyP41CSWEhnIodEW/ESmHCnpaVdNGsDwCOFV22XAyrmguv1E7HkQ4MzERtVQ3FZ84i9NkkpC9kIDcEViOWudXih55V3VoHX4XqwBw8bPd8tN850NLcVoxPpjv0zruqDpAxLYdtikzL0dv0zR5sDDn5DFsgBq7TlVJ3RPdMRTo6lS0Yex04j5NxZmQ/sb3Rwo3oyHTWlh3Ps0WyT2ATPNhId1Zc56E0+L+dwBVX4tlmlxf3cSUqcmRC9sCA4Xgh4wBXoM+MkpFgSZ5Tq5pyvsTLqdjh954ZJVaMb/wfOEhGTxV/r127FJcGscXhKyf0NHp3epjz6HXgPADgZtvLPC/bbpnjGuWjhaFx5974v2bvdDgbsUVi2pxInB9q9udlRarmwoHoH6T2RbyzPopG4Cp9c8krojVez9JBMcqvs3YIfLWvroAHDt5jKiOnYoffuwmoPzMBts1sg+/M09H4PKS55QLaqdixqKmf6bmquXDFvxpP99yjLL+FSjlU/yEJ+ZNY+7QyEwaATs+NxR+jO6O4W3s+h1r12Tpz9U2HMfnRvN3Txo8YNuBNZq7n/zYzv4xp010ywXUqdqy7wuYrGjvuH/IU6nyt3xH3aeLH+UX6lpMQEQEgq//X3OT2+HNs/VBaVISmO8vBvts8lxAvnwYMDCn5+k1ez+RfNOzpnZbz//X1AW7nPzGc+N/dXEXPRR+SXn82glcJsHYd2/So/PMOeFeubJq3Doy39qNKzufTZrE2512pEs+bmK6xXRG6pciT4sxQUvh/mlcItIssJQhN0rjWEPNOc70oS93ZiahwVraKuEv/N+iuaeIdQEbTxLw3HfB7x2y+cmFIFKr/4N5kUCSjMkS/ewVFoeTaNWT+0A4Z97r3Z2McNMVnVottd2EB5hD1j+ULuRxEtuahiN/4k0lO4iNSm+TBuHSyCrIfnMfDF5eWoNW8cSjxKcWRp2abZKDf8y80kPzaGGX06tCKTzr0LP2LKIQ+K5e1u/yL7415tIpv5GWMQz6yjOkU9u+Iyr/sMPH7JT8J/RtHSc9EKuzfEdtmfm3ZHjwtyKzkLSvPVpOttHEwKxLNv7rAQRQAdm+oundFU7we/Z9E9Jyd2PlgIL97COjmaS9n7sPHwa1vq13eLrnrN0Tu+gZdxgesAW/cldHt0Lk1oUhu95PHPna7PFuleiOgwhmTg2h3iyRjedIz+t16ehyUjxPctv3ibu2xYcm3Jn7ulNHejj4oysktc0yhvNBGyrEXHGj4qWdgH/G/rUUY0ofVRpDBDNhTH8/6MBpBr5p9aX078EGU7j4gxfdp2ABrUtdJeeg6ejS2zJ3rtkxzf2oN/8f2uTVpspIzbW6EyfG96GPPaMplVeaUPr2n9D31eXru07gRivILLHkBwPXSm/D1KndbbdMIdCCa+RrlvVByFXZ1PMJG7pSei36+bnc88FQuZPLq5eOD0iLrRTKZqZZF7swIAWDI4XwMq3Yar5yww9VOB4EiU8SMz6P4fSyj3J7kbzstDnte0lERy5q/PNVT9W21JV+UPF/POBA9fBdmNUryKI+neeHvkDHfR5e3xp5O36JPowi3cQhUx6pNtH8nFnVn6+OAd5tmKNnrvj7LGn+tfO6JYYo2+EPb1hj+b1mbKHdv2PIfY5o4dNPg/4pp4uJ7l97R5fGv0h15IvbBBx/gscceQ1BQELy8vBAQEOA27PDhw+Hl5WX5+fnnn03hr1+/jsmTJyMwMBC+vr4IDg7Gu+++i5s3b1ryX7RoEdq1a4eKFSuifv36ePrpp3HKDeT4v4NUzQW/d+TjfBq4kqbJJoPebfVdQtr1LmuhTZfLA2eXoleI2X+IU7FjRX6ypZLQu3NfKewz6bqJlXfVqlJ6Yrre2/TdVFFG0eksvbfaKXMqdjTsewjZD+rmCyNyuyCmUXscGj0LPoVecCp2vJypg52kzdHvVXSppJvW2EICTXku3bkfXu1aSmmHPpuE/Nfk8rHKm0jt3ouT8qhqzLxFzPPFtcEmHuLv0WlZCJzvJdddFAMw2Dbza4kXvScljJ7Re5Kh8i87MPeCwt+HLYo1lYEYnn6LeVl0sQ6yPo7m/0WTHKsFs61+PTgVuwn6PSwuGfF//CilP6BxNI+Xvqg9iktL4FTsWP/Ld3i77gGOxEg86I6QqISJcuROdkj/jfl0R8YJVuQ76UQb9GwS6TYuQcV7t2mGrs3SJH70aZ7KTIQ6PTvGUhax/EWq2TvdcsI3tiGKr2ouKElVJR70fH94iaSEWS2ejfy92rWU0gGA4B/Hst+l8nOR55DD+aBTDWP/Fhct9Oz90025/zQKeyE+xCSPLSQQy/MT8WlDHbWy4acJKOxvBpkQSSzD4oNpkncaWwv9BPJ6rwgp7Jyj26BqLq60hWwezi/ozw8L5EqYmP81qesAsLtBRORigcKcHREtlYv/Y2z8MiphlwdEmdoF8RFR9ogyuzNQBu8KFSRTLlE+sR6M5btx8XyPi/tReTrqZ1F+gSWvQzeYu46+oV152Lw3HRKwhZGMaHNh281ojMR/QONoZPcyO52/d3MOl1WaT6La8Lgnn5FBX+4bzk6ARf9dxM/rGlsirct1f7fYSglTNRe0l9jpWNbH0fDy8eG+C1XNhZNx8tzyXT4DkfhlA5Oh/i3QGzJFNCphaV/rbdTZWAezuhAfIs1bIthUyObhUluh+VvVXMj4XD7BM+Yl6+NoXOh8Bs9nHJLGYgCo91UC9kwztyOAASGpmgsdX9HnHGonr2fpshAV39ue83Y3XhvnuPLli7gSZoxHv0uuXcO1hyJNbbrZvDjselM37R18WEPJ3sOmPIq/7x/ylGX/qL6NmcjWXr7HrRLW/9BJ+Nyfi6BvjqJ+YjXLMareRnnsvkv/+3RHnoh5eXmhVq1aaN++PVJTU1GtWjXk5ORYhh0+fDi+++47LF682PTunnvugb+/v/Ssb9+++O233/DUU08hOjoaiYmJ+Pbbb/Hkk09i4cKFUtjPP/8cEydORNeuXfH4448jPz8fn332GZo0aYLk5GRUvnXf5F8lK7AO2oEra5eKyF3HNz6nnbcWs+MsT92ITv7WDPUePmziR0AcPoFNLEE2CGzCuCDytAt3T+xoVPwtWXpmjOcufy9kHMCnIWyheHFtsASzT2Hu21fIfaqZ0t7XD3+1XqHv8Ar5Sp/REaETdpjihab44stGuh8jdzIa06J3Vx+ORMXfknFsogMNPzPvkKqaC20/ikODL+T68VSGVruNVuGL722PmQu+RPPylTzyNT4bcOg4fnE0l8wMO08Yg8o/yy4JrOQ18qq9vSbOdDoHnwB/6fRDhAomMu74i/DooqyUZ6tnabMiERaXjNO/h6HOQ2nwatdSWjynf9ceoU+yRX3agnD0brUf6RHXJV5OxY7To6O5KZKquRA5KRY1F5YNg03UdGc5zFBS/r/7M51mi+9z33Lg0OhZ6BXaCSWFhSY+ItACABS86uCQ5kR5rztw8JlZlv3NXR3mve6A33vW7ZNgvz3lxanYcWpsNHZN1k+yi7u1R/l9OSg+c1bKn9XOsRVfoswldgQ/7vrbYycBC/z/UNSem0hqK99VKe7WHqSIAkDmD+0QPGQ3nPsvQm1VjadLpx5W7bjyX3Xxa8gfcCrsDsofSxfAMXEsqi5LwttZqYiqYCtz7DHOJfR9YrwD9We6z6/VuAIwRSy3o7mtWcW/XHJN2ihy1xYAwBYahOL0LMtwRMZ5yVNYT+88yXG7YYruC0ePL/7ic8vt8AzfXYLUdky5e/DAOb4pcn19AHLT6iPrka89jp/L8hIwyM8aPbSstu4pjz4B/jg7uxw+CFvBfatZtUcjEA7Fn5aThDblK1jOKcZ0c96JRsCbiWWGy3vDAb93rYE+VM2FwJWjERYnrxtupwyeyOmGsw95I37fn6b8WYVff6UcPg1hG7VG+Pkue69x/6ZWoGTSvC+c+J4bHo3k9/Wx7+b94Si3IRVp33TAni5zUTMs644+AaI16+N/Pv5fORFbct+SO7o8/lW6I0/EMjMzcebMGfzxxx9QFOW24jzxxBOmj1EJi4+Px2+//YaJEydi/vz5ePrppzF//nxMnDgR3333HRIS9Enp9OnTeOONNxAREYGNGzdi9OjRmDp1KpYuXYqDBw/iiy+++Lfm2UjGHThb7Vpud3sA8y6RU2EQ5QAzc6B3w6qdxpj8aPi9kyDtNht57o5Yxv+nzdN33wiIY8323yzlIMQ/2vXqPIHZT/91zXwi0XQnW7gYlTCrgdmp2DE9h9VPwav6RDT9ob78d2LbXyR5KO4rtfWTNyKCLBeVsHeyUyTl0koJUzUX0p6TnY3eLC2W3ov1YKwvVXOhxIedeO19UXakSeRU7GjwhfmSs7TDC3N5AkBMux4AGPCJU9HvnBDZNu3CcwEOvhAzpmFMS9Vc8PFrjOXNG3AljMJX23valF9RRndt6yv/NQBgMkEzKmEApFPQK/06Iv7wX0ifwe5ViDvbVjuL9Cy7LwN4qPMQ2wEu3X0AL2fu446ff+/6FY8XNiJVUsJE3qlvzUbWx9Fc5uT3Z+NGT7YTWzehhmV9iM/oHhk9z/g8Cpk/tOP/xbIUy5/SI6Q5kfzfYjvepIRlfM/40T0yUQkDgAZJuiIHML9KpIQBQNvkwVKenYodiGqDwNWjOI+c96ItlTD6NiphdA/QGK7uHAb24t2mGVTNBdvmXSg+cxbay6x92qpV4y4sxHaV/0tLHH/WgZj7B1iWefDjLpxdHWapRBhJfHdg/CwOr298Z+zL4vusj6Kxap5+8uMVwe74khKmai5kvx+NjHvZSZXaqhrPE6CfelCb9a5UiadXeM8pnvc/ljJT8qrLmFXDlKBwt5tUALiTcjKpM/YRo2NoSvP80GgUbfA39eUH03ox5fiWEuapXCkOKWHkGJxk+OjWvWdRpuL0LFP7B4AbPSO4bLsjliG+QC9XAPz+mxW1nxrLw9IdxozFDAqdQKasysbdMyJVc6HUx0uaW6zqgL7tt4BWU9t5I30Ru0+7uqUOYuTbIweh43ZIPN442Vriq2ouDPJzcCsLr4jWvM04Fbt0cu2ubsQxRQyTFtsIJ7Lq4IPgNvBpqJvxG/sQAeGkzdPNAM+MisaY157jYXOn6ONywasOKU9p8ztwJcxYZvSb7hmKSph3W7MLBlEJM/JyR07FjlOO8yg+cxbRL1q7BjGG71HpJv9dbWmSVHakhAEwKWFGmSquTObAOTUXJkrvym9l983Dnt6JfmGty8zHXfrfojtSEQsKCvrbcUpLS3Hx4kWUlFg7lwSAJUuWAACee+456Tn9//777/mzlStX4sqVKxg/fjxsNh016KGHHkJQUJAU9t9FK9L24ejb5sWxqrkQv+9PeUD7toPbgYcmsaICDe3ei5McDjsVO75uzP5Xj8lAxnTZ7EVagN36zu49j8sBAJuvepsG0JFp2SY5ym1uiG0zmDnde0H6wjg2nfnsOtLhJu4bNpLzNipeYv4BYNjUF6BqLjT6UDe3EM0brchKcSl1tMXOt2XYdQAc5EOUh+jsCH0hsf6nhZJ85bxs/F3wnyMwIKs7/y/mhz7VDp93m0fxu6Sz+b2VWaFTscN3C5s8CUKfnA2vbVkDZ0fcUsSj2kiTsHE3nNK42aMDv/DtVOzcNLD9zoFSfg5PqGPKm0gnf2tmWadD2j8MI7lb5Dafq6PWEfojKciEQOdU7JIvFyMvKwX2s649EfJNPrQXHWhZvqLbuES9DpyHU7Ej6OVErpQ4FTs2fTsPJ8Y7JDh9Y3+yhQXz52JZZA6cg+AhOpKgsQytlEuA3UkRierz7FPRqPEXWxiU3rwhhSm6j13+t23eJSnM63/5Dq2n62XcoK+MTpf+ZUcgaa90Khnwur7ZIspGH2MZho3VzeN69H+Shzs2kY11a9ctk3gpHycgvmCX6eSzb7oTANC4/wEUdrzC0ScLH9UBDyjtcxfkE3BS3gHwhawoO30PaBxtGouMGwti/lYXpCJ96Gycb38DBAxEp1tivLThs6WyWZi7zTTGnBzHTNlKrlxBp72PwKnYkfe6+80SkkXkK8p9ra7eJ6pvqw1b0xCoGvOtZ8z3yd+a8XrZ8dFs+NzPTESD/xyh5zVsrbncbgFLeVr4A+BOdlXNhatqoISm6S6OU7Hj8rogbPp2ntS+Yhq15+9VzQXcMuqZdXQbct6N5iBHAFB3jt5Wm0xmMtD926lB7aU6KEthN7b3Pxd+I7UJY78X+7OrnR6GxuasJXJ/t22SN51T7DYszmP+FvNfc/D8bn6IofWu+435dMv4jCm7pbsP4Jd8a7cAYpkaPwAQ9EoisvqxuVr0ySnmhyj7w2hk957Hy6T2vERUW5qEvJ9bIe9NBwcjAcBP3223TjKye30jlRUBMYky0v0sES30XOvqfB4z1sWEDGvTUDGdzE/kU1kAqLaElVWf9J6Wyqn4W1zfWM11FDZtQbj0jG/W3NrAE83MRf+r67J3mHj+E6ik1Pu/8vlfp/+ZHFavXh3Vq1dHxYoV8cADD2DHDvNpRkpKCho1agQ/Pz/puZ+fHxRFQUpKihQWAKKjZbtxAIiKisLhw4dx+bLZgeLtUMOGDaVPaGgoAKBfWGvUdRVLYR0T2V2MTs+x3RsajMOeki8pi++IVM2F3a9bn7rQINFoUwnC/hpmGoQA5venz8EzpoV0t4o66p+quVA3oQYGVLkg8QaAm92OSRPVa5kMUWx2qA49X9iwvMRbjE/5oe9a3yZaDoDXe8uDuVOxc1tzozIEAF4JezhPCn/D2UGaCOdfaCDJXmtBIpblsUllZG5nqJoLeW86TJNCyBO7caHzGbeTu6q5EP/Hjzz907+HQdVc/P6RKCsBnIg8RB9jYt6udz0uhbs8QJ94Ut67ZQKRtNe84I9qg6IN7OQ4+gXWxsqt34nsPuwUiRatnZ4bi10ddAe5J39rZtrBNdYbnaoa81As3LG896lRUh0by4tORIiHWK5S+NJSNN1ZznIBTTKJVJRfgDWJv3OADWO4tDmsPujUVoQhF5USp2LHpWB580eEPI9Nz0BxWiZ8AlgZ+/g15gsHMc/uFoHdnh4F+4dxUp5L9h+GU7GjsH9HSeZa3yai/CWzpXnWx9ESLDeR/cM4LLxYj4NtGGU4NzwaoeN2QNVcfCElhhmdxszIqF+IVPhoR1PfUDUXvBL3oOBVB4rvbY+Gn7k3jabFtpjmylCVP8votpBvRlU9fMGkLNHpEz3LevRrjkJLDrDF8MZyobpJ+zqChzOm4VTsKOfFTAPDntqJm2sY8py2ooXUxyiPPo0UvkkzXHDsSyQ6MybH5X7vJXDF22ph7O4bADc9B4DlQRtRfCQDToW5Guh/6CQKfm2JC0PYOCGa+xEPW4swhDyx2/RcouR9btuuGIfKwKkwKwQianc57+kbXUE/j+HPq/TM8rhAFd8Fl6uCX5/4DI6qGZJMWR/qd1upHmO69YequfDRmVBpngHA0Wgpjru8iydxVpsQPo0buZXXqdi543ei+KbxpvBbrzYEIMPAk9UGpRkykZ3SBCRXRBXvCtIYSXOj2B7FTQmr9YNXeEv+zqpuA19NtFRG/B7dz++3i3R6dDTfVDH2C994NpaeHKcrmmlzInHD2QFXfqvPeSR9PAdFfc9JchLNCGH9o3FSFSkvHabEosszzCIn+EX3IGerQtdJsp0brq/5vP5sBKdix/ww891y+k6br2+Ki34zxbx6FZnHmpqd2ZztLVxxUTUXVqTtcyvrXfrfpH+8ItagQQM8//zzmD17NlasWIFJkyZh586d6NKlCzZs2CCF1TQNjRqZB0cAaNSoEQoKCqSw9NwqbGlpKQ/z76RKK3bwy+EAkPDZHDYhLWcDiXHhEvadfEIiDvT0IYCIVQUppoml4m/JSLtnEY8vDnB//LgAz9TI489FxYXi33vgYaT82ZwPjovztlsqS07Fzm3PAX0Xu8ZiWbFQNReHcxafBf3xlElG4rt53jwpz6rmgm3TLlN4nwb6wE7hQ5aORe5kBzYt+AbF9+r1ObL6cX6Bn/JDtvn5UUwB93uHLZxOj4nmLgJEuawWmcbFVJ2HmB8X8QRD1VywhQWbFle0mAeYeZaYNyJSAqosT8LlxzpKsojE/yftxcYWqwAAiZ/qYDCUJi1aG01Il2Q33tMYcjgfkZN0MyCRB5lIka82kQjm2qtDK1PZiL7UyJxILJOQJbI/IOP9K+PEZ7WQFuG/RQoby3wUzVDMYAhE9DzkuSQMOZzP+R58Rt/86FuZwZCvSVgFp2LHmh2r+cJBlMXIly7Pb/5mHurP0Bdh084G83QJvAVgCpuquVBtaRJ8GimSzOlP6Ke/Yh+pPyOBO5k15knVXKiTfIbHs7qXNzeMWS4M8nOgcF0QW5TcUo4q/8yU9D4HzShr+yfM4v3TqIxS+rbmoaZ4Md0fk8agsKd2wicogPv0OhVrbl8kq1NhLhkibm10OfdfNL2n31UKirlsYWN0GPY2n8oKsSj/mZHR8Lk/FzEtukLpp7vxsNWojpiuj6DpznIoKtAk1DlKU/SXZuQL6GAQxnZsbJd0gm7V143t7Jfm9dDokQMmACiSIX1hOOI3MJ+U1bfVNm2AiOlQmyKQHCOv7PejLfulGJdOWQFmEm610HfXTsU8TgyIxtww/STl0qAoCRmTwpHJLt3vEuu//AO6eTo9pw0ZiYTr9eRaxanYOSQ+oUlmfRiNM0/L/saI+h1km1K2puZrAgDQv8pFKXyEq5i7JKH5jOaKnMirXIYRR47CqdglM2E6fQqdsMOtkjUytzPe/Indt285Mw6Rux/j70QQEKv4xv+22rUAMJNu8ZloZqhqLhS86kC9L9mmQdDPYxA2Nhnl1Z0cyTD9KwYHX+/hw7xfhL9ttgyheZmobsoFVFph3pAXxxynYkfLxCFwKgyBFIB077f0vgJTfOJBRMidnihwUiLfbGgxOw62atWwvc2vcCp2rE03r5n+KVQCL5SU/oc/EqzS/yb94xWxDz/8EJ999hmGDBmCvn37YsqUKUhOTka5cuUQGyt31itXrsD3lvmIkSpUqIArV65IYQFYhq9wyzmkGP7v0LFjx6RPejozryt4gS2cyVcO7UJ3G8VMoYwLBlVzIfA1Nmi8ky1DGPsENuHhCMCiT6MI02JW/KbfqubCzKP64DDsSB7WXfFFrx4MAS/CVcwH3fIPHMWRp2Zz2R55bqJpkHYqdpPvo20zvnY7mZK/KvpMOdUS8zp/x1GJjPlrOVN2umpcWJNPqKLjJ6SyA4DgF5LgPzUB66/oEy2frAXHu7Y6tU158mncCLlvOWC7Dlyc3xgtv2T+0C6U6BOimL9zT8r3JMT0xG9xoRCawtpfy5lxWJPAFKb81xxo3P+AKa9ORfd7BADbv/ia35F45YQdAcm6CR6R6IjZqdhNZm9EdMonpkcTi3fVqvihWWMkvz+b3zsUFVG6C1Tr21sT65dMCSefTmmzI1G6c78J1Wp8TX1BREhwV/qxPjL4sCbtcl4aFGUqbyo7q3YOMHAAurcV9fJY00KC8rHsErtQf3KcNYrm+WHR+KFZY5621UJTlMt/h74Daqtb17To7PLMGIQ8z3a5I1+Tx7ANrapaKo60swwARQUa5xea4osOU2IlMxhVc6H513qfERU0sazE9q9qLnyWkyilLcpQ+dbJBZ3UE61qUZufuhjrgepffBbT+j6omgvxG39iit2sSO5bKX7jT+gV2omNJ382Qv5rDqzZthJOxY6gDU+hwebTJrkAoOfDQ/nvF2rvwLGJDn5Py6rOyUWE6IPv0cz7USOzSOprALhj+Z3vsDGw+Lx8Ohey4QqK07O4/yG6tyum/WCjcH4aLVLQerPZtrF9iWMZnaD3johxu3lAca48Yn0qQnKL7hcudD4jpe1ODv+pus81MWzgpESP8rgjrw6t+O/jz+l3jUjxMM4boiz0qbklx5Q342+jAmxFT9fZanomKvPp3RYyZeA1B5+/Lw1i7T592GzU/ob1HWpT3vYWAICxNRjqZPGRDEl+I5G/sRS7DcXnL8CnkYKi4ydYXMM9UMB833bW0W3Y/I1+39ap2NF6epyUX+1lB/KjLiPvJptnrwTdRM3euun/gfGzTMo30clnHKayK21cH8cmOqRyjt/3J0r2HJJ4iOBBlfNtuin9LQp9ZgdsoWzTZ/BhNraJ1y0AIOgXGYlW1VxYG7+E/wZguhNIbYjmUqMbCOO4bSRqd9NzEvh1CyP6pIjSfGQEU0gPxs7iG1szjzLT01JHW6iaC92Hjrx7R+z/IN2RqIkitWrVCpcvX3aLmuiORowYgYULF+LIkSMIC2MnG1WrVkWLFi0szRYjIyORn5/PT7keeughrF69GleuXEHFivIC9uWXX8a0adMk3v8KiaiJWQuiTYsZwHzKYlTK6Pf1XhHYPH+eNFEB+qAioqZRvM9yEjExgA1+rWbEYf+EWTh04wqeC2CLt7T5Hcrc9bHadfUks1U8q/f0/J7Y0bj01EVLxCyALbbobgbxMKKnqZoLUa5HUT0mAxcHR3H0I1vTEGkiBMAR9jzlpyyZiZyKnaPMlVVebZMHY0/kUh6PwhVt8Of3NspK01MZ03/7h3G40KIIYWOTEV+wCzGN2psUrb+zS6dqLu5TypNc12MiuNJQP7EaTkRfRMGvLdHokQMe43m1a4l1a5gT8MJ1QajcM0sK1+HNWOx8Z7Yks61ObRSfPoPspW0ROHiPqTw8tUdCIwSAZtuGosmAfSaZTo+ORupb1v7rAAaYQSed2cvamJz9Np8bx00veVxvG1CimyfnvBuNgDcSPcoMMGfVwS/Ip+buwlpRxvQohDzn3nzHqg1ROQBAzo9tEDBwrzmiB35BP4+xBMRxl7YoQ9qcSISNlS/rX3sw0uQo2l0ZlHRth3L7j6L4zFm3YW0hgSjOMN99NfIHWDmsyE9Gv8aR0jvjYu526+Vmjw4ot36nx77+d55nTotGvZ2lqLklm29IiXKRbFakai58djYIE2tlmcLdjhye8ps/yYHG71ubqNo2KSh9vgbWxi+5rTTdye4pX1b5EZ/576jMwUlOxUZL/qY8pWnkayWLqrkQunk4gh5nTtdLLul3F0VfVmlzIpHdZ66JX/oXUWg+LY+fvAEMKMP/bTamXHgiCtW/t7akMfLJemwOf+9Vrjyu9rSjwu/JbuUW6e/OE2WVy+3Gpf/nnoxGze8SpXK3tWyK4gNHcGZkNGrPtwbgEWVXNRczNS1jOWwci7I+ikbQKyztXiEOlFy5gvSZHZHV34x+aatbF/F7/iizLReV3vzH+BF7bOMwlKv8n0VNvFl4Az91X3RHl8e/Sv/4EzF3RL7HTp8+zZ8piiKZH4pUUFAgmSESWqNV+IKCAnh5ed02ouPfobCndpoGC6uFSPhbsaZ3AOC7lpnSkOmauHP1cuY+7J8wy8SfwApod8qp2NG8fCVdJgslTNyNpLjkM0R85hMUwNN3Kna8nSWb4RgVRvJ/VNKZKS90YlDxt2TsjlgmmbeJ8UTkMVVz4cQEB1fCWsyK4+YxxT/XRdaH0RIEbc57FSSZACA1fDlUzYUbfzSR0inpykzk6A4aAJwZKef72oP6yQ6dZpISdvI3830PkYxgCRROVMJEOvN0tFTexkGekLTEeFEvj4Xr1Vn8Hpjp8rsQ31guxm+RSAmzmuxILvHkJvdSLVx+rCMaPXLAkl/Qz8y+f1pOElfCAKDa8zYpnFOxY+c7sxHT8l7pOTl2Tev6nds+ZcyTU7GjpLMd/m8lIHL3Y3AqdlTeKN89oHKqM1c+IRKRBVXNhbRv9B39Rgvkyard+3GocFLOAwBJCQOAI0/pZoWlneymPFDajTeweHlvOND24ziZpyGO8XeEq5grYfUT//5Ep2ouSQmz1a3LnxNQiTG8U7Gj6ausz6bN7+BWNoA56aX8UJ7JdFSkCquTEb67RHouxiG+M49uh/eW3Sg+c5ajTFJYADi1qikAIP6vFSZZrP5TvH7+0chepkN/8zF7/0U4FTu6jRyFE+MdfPww8iE/c6rmwp8Lv+HmuKrmgpfBMsOYL6MsxIc+Tzn/xOXG3mi25pT0DgAHTHKXR6dih9qqmml8sUrP6rlIRn+Xjd+39pkJAMX3aihxHbRM09M45E4+q3dWvLs9rVug5HYs5GkYlbD0L9npfMZiHfnUFhIo5cU4ttB/MuGne2KiEgaA+7Kitm5Foc8mYU3yGs4fALzb6He1q2VelfLlrqxCn02S3pfevIEKv+v9i97RfeERuV142RnLr6SrNYKlqrlw8rdmiDkSY3puRTd6Rli2eeP/7KVtUfO7RGR9KJu/Fh84AlVzYec7ulkk1YG7elcLdsOx54YkU+5PrU3hAKBXKPOlR0rYueIrKLllISUqYQWv6CeC4t3o0WlZuPh4lCRH9vvWptV36X+f/mcVMTL3q19fvxcUERGBgoIC5OXlSWHz8vKgaRo6dOgghQWAxETzDlhSUhKaNm2KKlWqmN79O+hyiQwxTQNh744P8jB15iYif5J+wdWpMAeJ5HDxQPQP0uCa/5oDHwfLcLhOxQ7tJQdafmm++yCSOJmIMp0c58Dyy7r5Tu15ZjCNoqwc/vvlzH0cchkAWn9mXjAu8GcmIEcfrAi/9xIQv+cPiR+ZtxnjibI6FTtcr87il3eLqpRy85hzLUulOwMA0PgzfWEvlo1TsaP8A0elMvbewhC36I7LA4NHoN5vadLkW2F1Mg/vuyYFPgH+ODWWKUx0oieWaUmXdlCSqkrpeFpoifmu++N+OBUd2l+k4I0jULr7gKmcop7fCadiR29HH0kWY/7F7149BrldVADAnPNsE8OrXHnTQkTVXBySm+jYyubA9LqorF1H+ncMaj/nR/0OIQBkPcomNNE/DcBM1IzkVOwoPqffKWuV6i0p+8awxv9iOO9t7N4CmeWU9j4LIzkVO5bnJ0rxqqSVk95nPfAtz3N5Vd7MqPdlAurNskattFr4q5qLo3XOy2V3UESggdxebCj3ezcBDaYnSGVvlDtqjw7HDDBzJwq3qMlfSJtldlxttZAT2wgBE6iaC8WnTvFyOd9eV8qMRAuXcqfKSfyMdUYKNQD0eGw4HhgwHKrGgBZUzYXMT3VzoNR23pb1K8r6/D26k/GQJ3ZzZEJCPNvV4UfYd8vthBah13vpwECizCxDxQgctFeSn5QYgG2SEVKpbdMuHmbwYQ2q5sKhcBlmPmSojqg5dr/5xNiYT1Vz4eLjsnN3UgAXrbwPDT9NwP7wEi5f9ydGwqnYUW5DKox0urgQ03OsQVwoLav2YKVMi3KWXLpkql8RCt0qT8ZvY/kaw5ZF1L4zb93rEu+iqpoLlfcdk3i7U+bI59dDLXRwheKsXPj4NZYW/Fbj5lC/TjIzb5ul4kbkPPSglL/s96MlfhS2cX99U8srcQ/ndWlQFFrM1s2RxfGBTECt+o2Xjw/nT/eFt25tBSPlve7AVTUQ3lt2S/zFKwn1Hj4s3cMW5zoxDsDuDpdev86fu6Na1dlpZdCriTi3JlTKQ6+mXdB8jmyCTbyMd/JIloS25aXn5GSdiICJCsa2ldq36NtNTKfRR/rmZPaH0XjhGNuAmRsWxFEbKWzgpNv3SXmn0H/8ftitz/86/aMVscLCQly75eBUpN27d+Onn35C8+bNERys78gOHsx85EyfPl0KT/+HDBnCnz388MOoWLEivvzySxQX67vUv//+O7KysqSw/05SNRfaLn8OgDwwOhUGIy5S+EP7+QBy8fEovBdkx+chso8rAm8QUZdEBDRlWgIOjJvF3xkn06yPdcSpwPin2cS9mSE51Tx8HfPDAm97AuxeUS9Hp2JHFa0Ex591oPb2mlL6ALhTaJLHtklB8HL5HoXVQC6W2Xz/bWyRGHKJy5gxeI4UX9VcWP/zdzx9d+RU7HwHVCyjF+Yv4QvFnv7yzn7FLWwToCgnV3JcS3buXLnbuhv5r4TASBT+9Gg26dJJg5gGLWxGvjpRyhMADtMsUsbnUXzBtyZhFQof7YjW0+NMSjbA7qjwdPYfhrPvUJMieHwla29jaxTg5cx9Jth04he7R66bhn0PYfM38+C13YXQJxmkesDAvfwelqq5kHazUJLHSJ7a3drsFojp+ojHxZSqufB2Viq/r0F3+AAGu0xtv26fI1J6BCld3bui1PZEBMYbzg6mdFXNhZrbzf4AjTIZ+71TseOFY+15mxnlz1A7RaAB0cQve2lbtN7xOFrveNyk0Kuay+R4uOi+cKmcjP55xLxbLa4BoLSy+f4hAPiOZIvamG79pfypmgurCtjpaNqw2ZKMMe16mBbequZC+syO8Dl3Bd7bGA/y4UR9es7RbZIiIsor5fdoHlTNhdLotgCAgJn7AQD1/tQRXF3Cxn63kaMwK+E+lp+1KVL/p++sJXo5u1NIrEjVXFjaTLFcBK8u0BUkAn0xkrGt0OJOJN+1KbBd9TLF6fHFX/zZc8c6SAApj45+jjt9j2nT3dRmqV3SGGfkbbUB4o7CRqVwCHaRpPQMvsLojjARuRchorFywKHjnBfFofb9YFNW73MX9Jba9Zodq5H9gbXlhfiM8icq0Gp+qjRPi3OUu7FI1Vz8JNwYhoftnq+3q8jW6NfLekNS9CUmvq+6LElC0RRlKt25n4f1CfCX8ltaVASnYsewI3l8wyD4JfOdP7/3ElDRmc3G7VuAPU7FjnVHk3l6dKJPd+tEuV/L3GtZLmWtLZLsP/OwNXunS/1y7ZGt8J+agLzXHab+SFcRTsbp7iFup8+SwtXoD/PmnEhG5dKp2JE2bDbW/moen5yKHT4NG/A076Im/t+jO/KO2OLFi3H0KLuoP3PmTNy4cQMvvPACAKBJkyYYOpRdvna5XOjVqxf69u2L0NBQVK5cGXv27MG3334Lb29vrF+/Hp07d5Z4092vkSNHIjo6GomJiZg/fz6eeOIJLF68WAr76aef4sUXX0S3bt0wePBgFBQU4NNPP4Wfnx9SUlL+bSdi4h0xHy8ZNAJgnXpe7jaM8u+Mko1+8O6uIxm6m+wmZ+3C1KD2pufuFlJWdP/+S3ipVqblzpEVX1G5uN10HHtuIKFteRPfExMccL2qo88Rz7bT4tDgc7ZIDnqZTQgxR2KknbYrj3TE1i8ZolzvyN7cfOOva8A9FWSZcic74D/VPYy2SKEpvtzZL+Wvt6MPinJycb13BHzXpEj5D9vyJNK6fifxPTnOgd2TmANdn8aNJPt+d2WZ/WE0h61Pn9kRoeMZ6lWbT+Ikp9DudpM91ZeRvNs2R8meQ6i5vRbOdTpr4iH+Jx73778kQYIb82Alg61lUw7jDzD0sLE1Ckw7vJ5kBeS7V8Zys5Ln5DiG0GVVHi1nxvENi7Lar5iGrWkIzk0v5aA4XKE4EoP4pvESD1tIILKGNcDhp3WTQ0Avd0/pAMDN+8P5CYaxjDu8GYse47bj/fryoqbgFQffmaV7a2W1d1VzoVfM4/h21VwOtQ6wfkkojsTD1jwUxYfSoSRVxYmnGnK0PbEubud+zd9ZvBNd7x2BzfPmmeL1OnAez9XMkZ5fiA9B9ZgMeFeogJJrutVBWf3DXbsyKiae4gPAxqs2fBzc2rJPLb9cnW9qWY2jFL6sdlncrT3IVxwABC8by+HNrWQ35suY3rEXHGj4qXl8NP4/MzJauqPZZpcX9rYvdRve03PxmbaiBUehdCe315+NOLqdp3nI+IzK3IpEGa7HRMD39DUg2XqBbNU+xHnaXV7pf+3tNbEkcBNbrM+LQNioFP6+XcogvN1iFeY4OnHTtrRvOiDsaXbCTvciVY3df46sd5QDEHkaD63KE2D3xWb2XsiRXb18ffnJlDEPYtzrMRHY/I3eDy8PiEKV5Xq7O7WqKRq8WGQJLFJWGzj+rAMNvrh17y0+BEn2n29L4Vc1F1rveBxKv4M49oIDl5re5IAc6V9EIfTZpNse58V0bvSM4L7tfAL8OSIuhY+cFCshL7ZK9Yb6U5QESuIurc57H4Gv88g/5o5Yvz9G/FfuiK14YMEdXR7/Kt2RJ2Lz58/Hm2++iTfffBMnT57E+fPn+f/58+fzcA0aNMD999+PTZs24a233sK4ceOwevVqDBw4ELt27TIpYQDw008/4fXXX8eGDRsQFxeHP//8E1OnTsW3335rCvvCCy9gwYIFOHv2LCZMmIDZs2djwIAB2LJly3/MLBFgkymg71oBwKhbiyFRCQsVnPu+nClPEjuuhLjd1TFO8MSP7i3QO1pci7tMTsUumS6VbPSzHAy7jRxlGrCt5Eloa92JlR8zpPyXdLYj9PtY7HmJKR5BLwtOZQfclPJR6dcdCN44Ak7FzpUwQHYqTWEJ6ausRSkApEdcx8XHo/BZjp52UQ67u0UwweJOJilhqsZM8wDdV5Btk8Jli3AVw74bJiJeou+w0PE7cN8+dlLU8LME3BM3GseKzP7srCZMVXOh6lbdCTPVtbSLuJYBhZzrxHb8jhVdNk16Yh5VzeW2nQDsPhqdhgA6ylzxgSOSvCta1MX1Ut1kzqp9WpEIgGGUCwBH4KJ3pISJsqYvYqdNytYrkvzdh46U0rXKHwAUH8lAYttfAIDDVN83bCSK79VM7ao4IxtNJpsdIhsvibtLN7dnOV5nFL/zhDFwKuyenFEJUzUXGn2km5gZTyyN9U/kVOxYG7+EK2F5P7eCqjHIe+PihZyqa1GXJCVM/N71pnxXw1Ne3dU1UcZnuhN6cl1hJKMSBjAH9gCwNks/NRLDVP6rruVzcSF2aaC8o+1u3OgV4jCFIYsAsQ8RGRUCY/qiDJ7GKttm3S0AAIRMZHmNesmMymjVX4i/U7Ej/zVdCSNSNZfpbouquVD5ZDGOFemndqISZiRP84EoFwAo/Q6ydttJzr/Y/o1KmEgPDByBcQW6vz2RhzslTEQ1zZgeBd/4FKgr2SZt+sxbaJNRbUzxxHHSu3se0r9rb3pvlWdSwgCgZqoPNx0GmDnfV6FhOPZYKLzKsQ1Ln9P6Zi2B03R4MxbVYzJwpMNNji5s7INW/c51/Tp6R/bm/S7rsTmSe43S69ctNxyMZS0iMqoac7fTZa9urbSrw48oTsuErUZ1iZ93pUpu5SOE3AZfJCB9ITMbntF8qRRWlCHt2w6w1awpyUpKfMNPEyRUxKzHZFctIoKrqrkw/5b5t7EMAWY2SVSUk8vr9dRYdk+t5kK2QVw3oQZUzYX94SW6EubNrkHkvGu+D+ZU7Nh2y3/gXfq/RXfkidj/NRJPxDYeM9/psRp0+EC4sTGK363H7ywZw6qaCz0fGoLS1AM8zrk1oUhu95M0MRW86sCN6qW4WbvIBOMKyGhMquZC9s3LGNuk8//3Tqf4rHdEDNakxJvyuLogFQ82CjcpFbezu+cu3PHnHWjweQLSZkciLFY3waITR4CZavn8ab434S5Np2KHrX49eP9ow+qwtR5lMO7K0vuPsnfglcCOuB0y8k1fGI7Q4amW6V3tG4mKK63Rr4z8LgyJQvUfbi1SI1sDyfvwfMYh9Kx0HTFHYlA6vhr3aQSwXe9pDXYj5t5HEb/pZ7d57nfwFFa0qAt3tDB3G1/wq5oLIUvGIvjFJKmsrHZha26vheH1t+PlWSPx+TNf8zuQRsr4LIovSMXJvl3KIAmFU0zn9Oho1JlrfYJz9eFIVPwt2XO/vE1SNRcC1z7NAXG8WzVDyf7DnM/R5a3RZMA+adffXTqq5sLp4kIMuXX/JP81h3TC525coTwcf96BPS/NMoXz8vXFuuwdUtjbJe0lB/Y9r/O0NQ3B9PXfYXwT+Y5M3psO7gxW1VwI/T6Wb7Zc7xUB37X6mMQ3hG4hJ5bVTgBw1FFVcyH1+g1MCoyUkEiNdLVvJP6axZDq0md0lEw/ibf9gzh+58unYQMUHTsuyZrzYxusi5qFPrtGS6c6RrKSO7foMvx9qrjND8U5taqpZDprhR5bFp0aG81Np+nEvnd7J9bsUqU03cluDGOVNllo3HB2wKYF3+j1UsZYa5XvZvPi0GSK59MFkXya+HFzVGP50Wmup/RvlhajnJfNlE9juNudBwGg/6GT+KV5Pbdhex04j7UtayB/kgMHxpn7pLHN22rXQvGZs6b0Xs9y4b0g/b+VlYsVT095tYpH5KkdHH3bIdWb8b2n+duopPVNd+JqVx3901azJg69F4rsvnPRecIYVP7ZjMZKPL1bNUNhSDVpXhTJ01rj2EQHGn5mHlPFsgtZMhYZj89xW5YUtm5CDZxynDfJePFSCWqGZd3RJ0B3T8T+vXRHnojdJZ3EHbzMT+SL2ACA7vmwbWKmKEffdkg7prmTHei2vy/W/f6DFCe53U8Sb1VzodGHCQh8LdGkhPkEMtTAQ2NmSc/JV4rVLh/xFXeug1NkwAXxZIb8HhkHvYcCdL9bxkGaUCEB5jATAAJ/G225g0UyqZoLDT5ng2hYbDJ/diE+BKP8O+PkOGZL/spc3cF1/iQH4OWFtG87mHaGxXSKT5zE6rC1PB+l0W0tZSA/SU7FLp1k2X19LXeK6V6D9qJ+d2rO+UYYfFjj/8nnjxX9NWsu/915whjTe1vLpoje0x8DDh3nSpiquYBktpj7PIQ534xvGs8VBJJvb/tSDMjqjuIjGaZyp/pVNRdXwigufchBaEMf+XSZ/IORM1GnYjc51waAI6fr4fOQ5tj74iwUlugIW6KMquaSlDCqH6dix9stVqHm9lq40TMC9+0rlNoZKWFZH7ITNXKemjaHKWEAELJkrKmOiUfaHHZqbLxDc/IZB673lsEJwkbuhFd4S2R8FiUpugAQ8DgzV8zY7WdKR8wvwO701bFV5nevDoyfhYW3dnYBwLlfdg4r8vAJCpCUMCrDc2tCUXr9utQ/jf1dDC+WPQAo0+QFc/GRDK6EieGqO/RFlVOxc7NjAFyxEfvcyXEOjibnVOwcjRAAd2bb89bGhqq5uMLlVOyYFMjqRtvWWJI/7dsO3BlvxZXJcCp2XHso0gSxH/QrO4GsP/PWaVFkaxQdO85lJQfmAQP3YmyTztjXcYmpvEQS66FXTwYkMsq/symMeAeV4uzq8KP0zKiEqZqL+/uj/8b62zVZP63cPWkWejaJRNHxE7zORR90VrL3Cu2Ewv56WfeOiDGF61SBLTUItEbVXChcF4RTEzz74qR8ZH4SBVvLpnAqdtjvP8zzIN5hFvMofq9J/F161+fgGfR8iN3xLj6Ujja7vPhpKPk4FOnBRuGmfm5MS3z/S7584uoVYd4g8i/H7hVfGhSFki7tTIv+52rmQNVcaPx+gqnfEdDEhIzD+vxz5qxUBlf7RkLVmBIm9kvRhFwsJ+8K+vzsbu4sfNTzRqHVpoGquZA/ic2rRuXZauw0ykBpi8+dip0rYarmgk/jRog/sAlhcazPLv70U8t27lTsuKoGomT/YVRcqW+ktZ0WZ0r35Dg2ntzs0UHicbWefm7R7BvdIsmp2JHzHjsRy3hcPm0L2vCUxIPanqiE1d5eE70OnIdTsf+j/IjdBev499BdRewOJe9bTqPFxSGdEhCJA6lTsfOBjha4/lMT4NsjRwqvai60mM0Gni7jxiBtfgcOD21cwAJAUfZRtE0eLMlmVL467X1ESoNPnoP0ASkz4poU51IX3fnqffsKpbS77r0KVXNh3dFk3HB24GZ7eW/qF2vJCaOquTgKYvbDutIh5qH/oZNwKnZ0Hj/GNDgD+oXf3ZNmYfNVb3wa0pLLc7NqKVBaiuyebBc3+wPd1C3v51aw1dGdTEe5HuXpEmKVKMv0cwGI3/cnLx9SQKi+rJTaNdt/AwAOBOFU7FjRoi6WNlMkRdoq3xSeaNuMr01hig8cwbthKzGy+nH+jtC1iLequdB1zGgTP1VzIWVfsGWbpPoVebT+PA49HxqCbvv7wqnYcWD8LBNP8XflGdWhveRAqaOt5FyYiE6znIodZ4ur8EU0Tdaq5sLKwipQNRdGp2WZJvevQsNwrtNZlF+XgnurHJTkJUofxk4KyHkqQf4D4BOuMf9Oxc5Paq52PSEBCdT7KgG+a1JwVZXNokpTD0j9hWRdl8sWrsEvJCFtTiSurw/A0bfNjqVJIXcqdvRpFIGXM/fBqdj5SaNTsWNirSwpf6JiumbbShPPBwaO4Js24nOrRamo4NJ7I3CGsayI0uZFoFqvTNP4Y7VQi3Ax8z4yMe114DxUzcWVIlVz4Yu3B0LVXKa7LT5+utNtAJIPt97RD6F+g/N8g6npTmb+Rb6URD6BKxg4A5m00qYFUd05ifDy9cXVh83ok5cf68gBW7x8fHDyGYeU55K9h019jGhd7k54tWsptWOrxbPxd91wtmjVXnRgQFZ3Uxs3LoDJfFXVXEibFwG/d/VTPyOpmgslhYXcCbZTYRtrRvmt6rJyzyw0vOWuwzjviDTnfCOUu+zNzZkvPuLD+ZHCTnl68MA5LLxYj/Opm1DDVEbP1MjD1J8XQtVcyPwkCnvbl6LwHnb/qnaqt6Xc6TM78t9ZH5kdkYty9xn+DAcdKrovHI1myr7oVM2F8bfm1KrLkpDzYAVpnCR3B+42eYqPZOCFjAOSCaGXjw9i7n2Ux6HTnprba8Gp2DkSMwCELo5FzjtyHkquXZNMKUV5ppxqiZh7H7U8ZRLLwOq/U7FzZTL9O/nqg9W8YfxtbJtG9xpOxY6ifHa3OHcyK/PAclWkeCK/ik6zX0DanBXDl7vEFK5y63fixh9sM9RWo7qEuEz3fFXNhevrAxDweqKJT9qcSIQO2yXluTRVR0AltNkznc5h7hLzBsZd+r9Bd00T7wByB9ZR3K09Nixhd9eMk3PguqdRO6Ecdk5lC8X0GR1RWqEEYaNTpAnaSO9kp2BKvydR4rI2lTFOQKrmwt4b19CmfAVEvTRWN11zE4fSNjo1FMPSM3I4qWouhL8dizpfJ3LwDpEvUa+eg7iTy7Jk6PHok/BK2MPTI8eOYvr0+/ywaOz4UAZPABiQyJS6uh8bW7VqKL54UUp3VUEKfL3KmerHarFk9d7ds9j0DMwODYF3q2YY+POfGF6NKZNd917FljYVefjSTnZ4bWd5JzM2gEE0i+h3thZhJhAFgJlAibvvI9OyMaDKBS7L+WHRqLViv8nPjZHExZCYD6/wlqj2xXFc6HyGg46IICV5rztw8BnZ9Ibqg55dXheEKrccOHtq25xumVWKYY+vbI49kUv5Yj7FzkyN3slOwZuBMiS5MQ36X9KlHby37jaH8fLid7zE53k/t8L1/CrIHDDHUmYxrK1pCDfvLIuMbV0kin/m6WjU/iYRJ8Y7cM+TKTjS4aapXX50JhR/tq4smQWK1CrVG/vDS9ymb0zTamNA/H87eRP5uPtPZoDGOGELYy0hoFXNxUF18n9pySG+xfZKMnYbOUoygzwzKho7356NVklDuNNxW4swaWNAlO++fYUczdJdvrSXHWjU8yjWNVvjtkysNlPclaO78YZABSjO362Hv01RbYCkvfgsJxETA/SFPpkm5/7U2gQHLjpMNtLy/ERU92ZonMbxnChtdiTfgAtdFCstlMmMzKo9Aawc0uZFILu3XkZGEk3yLw2KQtVlSSYe9J/KOOL1WNRaYHYibDU+AsC1hyKx5WuWh2lng7HldBhudmNoo7awYBPARUByReREXoWRRN5Hp0ajyeRE0zzgTiYxL/bdwEf15WfuSDQ7dzc2G59f6dcRlVbssGzjxjjebZuj3IxzuN5V7u9WpGoutHs/DvW+9Awu4xXeUlKGrNJ1V7+e0nZXv+7ei/m/WVqMBxuxe3CF97dG4h9T7mhTPFqzPrR+5H/FNPH3HvPv6PL4V+nuidgdRF7tGBQ47Rq1+GQf39mRdor7DkXYUzu5EgYAoRN2cCWM4J/FnTuiNwMjcLR3DQDgO8TpMzpKO1WUDtFLAexydvUfkpA7mTlZVjXdXEvcfWqR8ARUzYXQ8TvKHMRr7TrL49f5mk1cCW3LI21+Bz5gibzXrltmkpNkDfp5jDTQeSXskRwr156faIpDVGNRIk+HoMxJFjF88cWLUj2omgu+XuUQ9dJYt5OKuLNoNfmRDyOnYpcAO2aHMlCLteuXSfDWk+ockSeV7Xq6TQbsQ6tbO7o0+VI6tHCkeOSTjqDQKez8MNkhaY1FiRwi/3bJK7wlD1+aegAXOp9hu4PDmLK7JnkNf0+OrkWqsShRkp2UMCLRaS7AELAk+QxKWN2EGpKj7BS7Dd4VmBNvUsIyPpfNfo31aatdC3/8uMAyTMZnzGTn2kORUn0fdHzPHSVTWDIbNPIgOGUxrPjbVr+e1H6cih3vZydLfURsd4WKF/InOVB/ZgJmKDqQjMiD4N8J1tpYx/vDSzAtR954MfZLY1sv6Wx+J/5WNRcuDIniv8kVAAD0OcjMtYL+0E15rBY2a1LXyeW0kfltGv9wPApeNZvRORUdVIdO0gN/Gy3xdip2BP0yxnQXrfa8RPR8SFfCAL0vKUlV8Ut+EgJV3SGyUQmzGheUjxMkJcyqbzkVOy6UXGVjmY+PFN9Ws6ZpPAHA3YoQlV+XIpVdi4QnLBUSI7mbB6zCqJpgJp7EgHNICVM1ZtpKC3X/x/ZJcmf+0I47TBZdc/Ay2DuU/xZdjFyPieD8w2KT0eoLZuFh9A+598VZ8Gnix/Oc/5oD6V91lNpj2KgUqR6MJy6ltlIuLylhJIdTYW5jjItsUsJmWZzQi+VfN6EGAHbqSmE2tKqKkkf1E0krlEFRCXM3rzSZzDYdrZQwCtt96EhJPjolI9cNTsWOC/HWoF+U7ooWdRGbnmF6T3OAT8MGmKBFSO2l0oodqL29puUYYsxLyZ5DWBXK+vvN+9l98bSvWf37bpFPaJ2KnZ+UG8dwkT8pYfQ+f5IDxfcKwCpRbeBU7Fh2qabbzQuyzhHTzl7a1jLd6+sDpHHGOI47FTu/gwgA5S+YXcDcpf9tuquI3UGUPpzt/t0Tx8zACIYWADpMZvbITsUOdeVi3HB2ME3kmT+0g1Oxo/gEOz1JH6rb/otEi981O1YzpWnCDrcLJ+JPaRwaOwvFp07Bqdhx9j5mXnXyGX1QunrJF6GLddtpkYwTEZ3QkFKnai68kHGAAxeIJMrUO/ohqJoL72ezSSbqpbH4rJd+D45MLAjW18hHXEwa5aOTQorXdEEsbDVr4v3TTXl88bvdu3FImjYH4akDpHhWZLXTRnWhai6+CylS4O+jTDyi9/THnKPbpAUJkacTDDH9ojzml8a7jW7eIpYHIaN5UtCtFplOxW6520jvCXXMnZIupheyebjJd5pTsZuc5oY+m2SS1anYYWsaAlud2vg+YLMp/2uzkmD/QHf2GfJ8kik/x1bqPvmODWxmmYaquRDyPFugkRmbse+Iba1PI1Zn4p03Y5laTebFJ06iV9Mu0vNKXkW49lCkSdE/GcdcMjR+3zOgAclEKHGi3GQ6+VKAGSWQTGlJXvHbe5v+35iHo8tbw6nY0WB0No4/y+5gDPXrxB3qrmrBzHxDn9zF70aKMtFiydgH0Z35bVrdsiau19ANPLx8fSXZRAqLTTaVc6V8G/odPMX/xzwwEADc7p4/XHs3+jeOQtgI/Y6msTyslC26y0vPO74aaxm/undF1NxeC6VFRfyZU2GOy60Wr8UTqsOp2LkpFREfax7db9lniU6Md5jGaCv5aSFMYUm5pWeEcOdU7G5NW4+vbI6Me/8fe+8dXkW1vY+/KRB6r5NQUiGQwKGknAMK0g4EVIogSJEOib2iWBAL9i69CoKKoogQGKQKJKEEDjWQHpIMvRNqyu+PnbVn75k5gfu593t/3HtZz5Mnc/bsPruttdd6FxNstJ8Sy6HZRSKYcqdiQ/gXcTx/n3jGLH91oSkA5jTXK0hX9RX7vjAnF2nTmaDx8DMzEPyUNYiD/ypmX7y4yd/SuyZvJ1r2AT1b+W0jimtiRm0G2C0XAL4unZ0gC0zJLyVnvEMCob1ibafnbh8DZORO43slqSo2LpkvhTd9yyysrB7D7H/TvpHtw8RyZwYHwbH/FpyKjdsGlyQz0LHCEyfxjbLbVMdzHS7AiqzGHv3ftHg+nIoNIRPY9z+yS1bvtlpziPxXjUfad1HSGk75+k1L4GBnTsWGrOdZmsFVL2D9tXKW+R2JnWEKS+1k7Y+05Nt6vH4AELxlpCltwC8TeRyPXYdM7+9Vum8j9q+h+6qJ9wBZoSaWtZFLEz26FW7V8JEgVYlUzYXA5RO5VJ5UR+idu8MwUeDuCsiIMDvMBoDsD+yocNoD+yfNQFjSUITUOc317Asei3KrT65qLnQeO45vpsZ3xsNRWXW0aoNVv4lxhhzVuJqf+E58HnEsF4ubWcPyl1UWwMAcsh6Zgx4DR/LbKikf4RuI+Wy57okPA1tJYcZvX1adVY05QBbR6MjfjNivMd0f57YW7vIFZPUvVXOhV4/BWLv+Jx6HfLuIeffqMZgDehAZ20DqcO7aSc/nV4dgd9vld/X907+IRsZgpv4nokSWlcb4bPXe6rd3Iz8U5uZJ7Tb2342HIy1ti9zF/0foTvX7v+QnEuUVuLsCNmcHI6XDEsvyrMZ+Wf2Z9n1bZHZfgGlnm2FynWM8raq5cKLwquSrjNKNyHkQnWqkYnloA8s8ywpTNRfWXfNBz0oMaMTo14iQLymu44WJqPpzkml8GNt4pz7I/rkVmj5+QHp3Os6BejPM/unI/17qgvYIGS0Ln64OjEKVX2SkRnff2bthA6xJXndX48ArOABFGTlQ85LdtosQ/cR2igiRVlRW/cpay+jZ1CY/X6zZxW4NSSX8uuqPjvUykNyGyY/zXnegQdc8joZJedLae6e9gMIi9g5CrT7sltOrZTMUHT6GzI/tSBs+U4rvERGOkt2yamXe6w4cfkZXrSZV8budl+7WSmNar/r1EL9vPZyKDd7+TVCYlWNCIRT9BRIin4e3Ny4Obo+kT2a5zf+BAzfwZp2jpm8U0/1xydfj3eyHZc3L4+84ELAwF4U5uUidEYmAFUXw3nj3iJlZH9rh/7rMLJIKJhH5F/UMa46i6hXcfgvPypVRXCCrxBYMiOK2jmLdVc2Ftu/FchcclJc7H4bkr9A41rsPGgnP7S6QbzZ347+w5PZ/jB+x3urYf4tq4hrnvHu6P/5Zun8jdg/SoJSTpsnpVGxoMT1OCqu6rQ7U3xaj/DqmkujRPgwAW0CGHGVIhBmDZuG9LPaeGIDCLjIKlFGKS8/EhJEESXx/bNRM7J/ENqBD0UvxW9BfPG7lX2X9bwA4+bwundsyb66ldNG4OUt9sNGPvyPVNHqf8bmumtZjwJOmfhOJ1PzKkvwubtbIVB+iC0/KRs5OxcYl770OX+RIbqLKoJRP6TcwGkt/GNiKHXhK1RMJkYnqaTzEi3RxOMsrpFxlqJqL3xyQ009RslhrroxOR/m1+UAeW6INjlOxofjQUUmaSA42nYqNS6MJ8Y/yNfZ9mw/isCm8sjTezhYV8OduT4zmz5Vm1+Dpa++oiZMvOODh7Q2v0GCpXgDQt9Mu/myEJFY1F/erI6axGvPie3onMWEN6qMwN0+KZ/U9UCLPGauDgNiXxnpcHRiFs3+GwIqcig3w9DJt4oNSdKbZmF9ZYZS+9Sc6ctjZCXZkRNxA44EHLestEiFAar/rKr1iedTOBvHl4VRs2NqqIpyKDc23D4equRC6YzhGGtRjiU7ZL5uYMKoDIUCa+h7MBgUAR/wEgB1fMSCUVp/HwSMiHH/P1EFXnIoNCV/OMrVPHMMEnpS3goFliCiNIh17YLFpzhITRkiqlO6VWkztjJgw70b6GseZMA8PqJoLrT+Og1eIDowjIhmKc9XYJ6S+RWHxW3/jTJjY5+K3Ilh1p2Lje4XrdXYDQGudmOe1/tZoesUdbfAox7778Sm6Crb/yvGm8Ud5eDdhay8BMABA0eXLyFhmQ0VnFqbV1wWJfh8mSO4HqA0eO1z8xtWp2NBqrwcvyzgHHho9jjNhAFBYg2mlBEwy2xqKTBjl431DHjMiA2gcm8ayxXFiHEtGQB7ScgEYgJaquXB0nHwrQ0wYACSkslu3ksJCVP8hCX3TnPyd/SV2+5I6k92mb2ulIyaKdTL6erRisqzeG+c/UeN3EjiCZUjcLs6EnRtjNqGg/MRvRkyYWK7IhKmaC2nDGLNUfOgo34NNjM6GxiYmTNVcnAkjAA2nYkP6l0wzpO7MRFM+J6O8pTCqV5LtV6ntpIb51/JFUDUXdwUifnerM9Z/At2/EfvX0H1G7B6ik0+zq/MVj3UCwCaqd9PGUDUXUue1R6MPGPoQITJdeeCsdCBct+oHntfIaqd5eKSPDCYh+m0RN2DLQyUsmCI3YRQu/qcyGnyV4HbjoXK96tSGU7EhptsgKS0AqKGreRrRia+quRD4ElNN63P4Atav+N60IdDzoJSTllKoVns9+CI4+RRjiF5IT7FsR83v2cJPTjdfSj/M0dmer5kNAJyhMJJYn6ZvJeLGwwxVLf0HBl98tfgGXG3YTdbRsTMxI2c7nIoNZ8fbcb1vJD+AUp3G5bLbrxpL5EPDiad1aRtB+9NvETJX7It9b8xwuwmEJnuz71OjuqlPACD+79/dbtIEC01lEHmGNUeL6XHouOAV/p6c0ca06YGts+dwFaDRE8UAAQAASURBVNNzHS6gwZcJuNa7Lff5Q3XyrFRJUse0Ohxc7WuuV9g3cYjYO8j0fa2YJ0pTeFJnYsU07afIqrjkZJXKD1yuq50AQImjNX9nnHPL8xJR5ZedqPOwGSWS51FchJgH+wEAd2mxPLSB6eBjHOv0P22x7Gi29a4haPCVfmOTPGUmV4Vyd6jsFdwBTsXGHZkfjFrmlmlzKjZU/VlW4Trakd20EXiDsY5GRtXYB2pYNUw+xQQy3v5NeLpbPSNQ6XfZPpWcqQPMsWvJ7oNo+a0seLBay47/Es7LL77BUF8P25dC1Vwo8TQfNFXNhaVXaluubQBMSKpSezQXVxeWqKQETsWGBl8n4GTXevy9t4DVkDojUkoX0/1xDpm+KngdcpaH83KsyKnY0GxBrGV7svuU43EAs4NfAKj0m7U98F/LF3EERtH9CcGMi2kq/cYOp4U5uVIeZIcc+ETpnPTT1R6t2gEwFdYGXycg/Ss2N1avNKMc0rNRk8Rjhwvaqw6cjpPVR63KUjXdHYoYz6nY4PQzQ95b/ab2EV0YyepKTJaqudB0V0VT+RFvyOqsVwbrdpcAUOmoj1Tv651O8XFW7Uc2F0NidyHwZ93R90vpug/T/NdkNVXvJkxDJHUGY94qbq0v9c+pZx14NUO2zXUqNuT/ptsLn3hJX1OuDtJVno3220QkRBBVsrM+0r8l7dEAY56cio2bELhjgtO+iYJ3t+PwbB0qxRHnKQFJAWaVdaK81x0SE0h50H/xmdQwac0kom8tprEa1/fpv5/uM2L3ECU+Ow8AgxSnRXNNwioAQFbMPB6PDFKNBxWaxL2j+vDnvNcdeGg0szNKm65LLj/O0m+tjIsn/Rffn/6jOX9X3KkNPNrpfrzuVlImvvOyuGIuOnsO/Y6cQdGRVKga2xCJegU5cLMXk76nztN9e4h5r25Z07TREp0tKsDy0Aa8XUOP5vG6fNpgH64W32ALef0DcCo2PP07Y6ba7Su2zC+pNTug9KjEGDLyowMAXlv2WvbBoMyuUtjW2XNw668mCBq2Dw88NQED/KJxaVg0smIYVD7ZGCS/M1O/6QmrxvMW0cbEhdxvgL6hzh8kq1OQrzQiI1NgJFVz4auGe+BUbCi6eMnEOKzOTzaFiUz9iZmBlv23dv1PuF21BLfqFEnpAAA1qsGp2JDZfYEUXvGPXTg7nrkPSGlXCKdiw9r0BDgPXeYuEKiMzof6InUhO7TljGebc+rsCP7e96ME3Nxcx9ReohbT49wzAYZ5V3tuommMU39mfmRH0PNJUphHgn4gJ3uhrNtX8cCBGxjkZy0dJuKHzXQGw0w+1wBg+dXqUjzxoHRmoh03+kTCs1IlVEirwON5N2mEkm01cfI5/cYC0P1/0e/2U2KlNpNEWQwTb0s4bZQh48mu0Z3Qp6izDnEtMqpin1OdSEWNXDyomotrB6iaC5fXBsKjXHkUX7sGp2Lj40HVXGj8zX7L8q8O1IGLxBtBqk+rz+I4Y2R1sCaVZvLdVbxRB4sQb3PFdgQvtrapBSCBB9VfqCN2NvxcZwDqJ3hKfVNSzku6vWkyiLXjwThmB/V0vtlOs2FCoeU3EV0qGOtdFqNiFGTc6YAp5uFVn93IZS7T3UbwPIqLLNOK+W9YytYNUslv/K6sUnmrpxklVSTlkwTUm2nNHAA6sA9fU0tdEJDfOgBAcZEpXwLPUjUX5l9iTAa1j0Bmai6SIdABYLaf+Sao1sJE6TtU/UlmGHw/SjClMa4J8PDg9q0AuNsWADj07AyZOcnJhVOxcSZadKYMAPW/ScAngeGmMeTbn+1Fl4ZG48BLugqnZ2GJ5bjh5OmFm51OIn1JGxRfucLT+b+mt7tnpZs4PsUBj4hwzjxtbVURuW9Y31YDDNRM1RgIiFOxIXOZXt+gpTJzS+H2lydK8+vS0Gj4fWitpnspPohr7ADyOae4QN6jai5K5IBp/6l0/0bsX0P3GbF7kKwk2U7FBm9fhcfJ/62l28Mz2bAAgN+HCSi/bjdylodLhsqT/PXN2N2i1fEZ3QFwvUd12x/PrftQknxY8pPjjgGi9ogHKwAcBt556LKUhhC2nIoNB5/XF+4rvcKxZf5cnIm1c7sncbG0OiBTOADU8aos/V7anCGt0UF4gJ+MfpU+dCZUzcUPeyS5VDUXrg40q+JUXrGTO2MVnVeL9bnU8ZypXptbskNkpd934lr/KFT/IYmn/SpbPgyL6cS2Znzu3l8TOfT0atkMquZCve8SpHHlkbCfl/NUmvUtzK6bt6U8xfoQ5K7Y3qAfJ/K+rPajfkCgA0zPh4diziUFAa8l8jEpblDxm3+V2km0PC8RFfuf4vGuDioFFAmrxu3OVM2F86Ps8OmRzUEUHnt8KwCgamo5nHhRZ+49ivS+EjdMp2KT0BxpTHi2DrWUXNIBn8h/3Vieb8fOh6Q8jEQ2Hv7lqmBbqwqW7fasXNlkrC++J+fe80P8Te+oX+vOSsTWOXNwfIk/Gr2nj4E1iX+i4ecJ3N6P6mqkPVN14J8SR2sO5kFxHxo1lt8Mp94ugGfrUDZPusqqnFvmzeX5zLroy9tV2KUdbvdoj7OtKkjx6dlqnTIewMVx3eqzOCS2XoF1OUyAccvZno8Hp2JDcUEBB9gR/Z1V+WWnZVlEB17Wb3bEfn49Q7b7bLidAWz8Fao7E04dWxtWZET7ozURADzPXMT1R9ktxM0Hmep5WNJQqWxxzVA1F9bGL+PPYjg5d//O12y/S9+F4hc/wICfol/Rb0ys1h5Vk1WKjZT7lvtDsZiXGCflg8Zw7L+FgCf0/NztKR4R4ZYMcVlEkP7u9gpVcwElJbi8NhChyd6m/IJeSOIO2wHwm/6SmzeRvqSN23JJ3dGp2PgNNv0+9Kw+rp7IekhqC5U/6VTZ7TKOW/ptXNdv9YzAsOzO3OWG6HTe2NZXTrYxrScXRzCGkoCexDRnJtot+7/AVz9qOhUbv0UV8341Q7C/K2W4g4brUMIlHcz5pkyYgXV/LJHq1+iDBNO3dXc+EcdY4CuJfFz1tj+sM0xqKpyKjZtXJH06y3TW6HSAXVEn2X6F/+ADuDyErSnxR//m9bKiNTtXW4bfp/8tug/WcQ+QOz9ixo10UGZXDgUOsAVFSaqKhY23mRY1+u1UbMy+KnQ1Hho9Dj6vaijpki8xHVRG4YbGXOfe6r2xTvx3Sh+cWtmYO1UFgDa7B3OHuydWhuJA5I9o+14sGmw4hZY/Z+FA27sfdsYyz4+yS35ajPFUjan5DfAzMyhW+QEMmSp+ywpT33mUK4+S27eQN9mBw0/PkL4HxbXK88rj0TjpYIh+0ftvY2rdw6b44m+ia/2juJoO5Sn6r/K0teDIjpnLbAh4woXf83ahnx87GOS/5oBHoe4Auiw6O8GO5CnMIP3cODtqz2V9mv2+HcdG6wdvp2LD6T+ao+B6ea4WKva12I7UWZHcTs44hqzSjEnNwvwQf8kQ/uTzDux/dYaUpuihtrhWv7wEIS0S+RqjvAN/nihJe8X6iETf10hWcY1h5NPNioxttb80EYmfW/sT+7+QVf3KCoenFz/ciP1vdUCwanfnQ33h0yMbt3u0R7n1e0xlWT0b63KrZwQqbDmICwNslv4IRaqfWA2n7JdN4cZyrOprpOuqPyo6s+DYfwuhFfM5w2rML+unVggan80PT3eTt1V/P3DgBhKGtEb8Xz9LeRjjenh7o6SwEJ0OXMfaKZ1xvZYn9rxn9mdodai06mOr/nA3jqecaclv9UW63aM9Ni3StS/yCq9iTOOOHATBXZ7XH43E3zPnIPzLOH6bWlad7iasrDaIRH6vjP3s3aA+1uxVpXyN/eW6eRM2Hx8eJoK4GMu3qmPO8nBU9LnN9zpjXQl0RdVcko864xz8R9eFWTnbMbFJR3jVrInrUUGSiiUBCgHA8bcZgqqx7p6VK+NCv3BU/4HNw+V5iRjkZy+zLhlL2yD9oYVux59Id3ovxiHyaNMS69YshVNhmgQkoKBn8t9XVt+pmgvN5sfC0f0QtGhr35eUZlDKSZNKt/g85KiGvFu18GYd3fZZ1Vzwjx8LzwpFyOjC+kKcG8Y8zo+yY/cHM+/YV5Q/8J8F1tE9fsK/Bazjr5jZ93R//LN0/0bsHiPvhg1Qe0dNAOZD+/KAjTw8cOMoqJqLLzZX1wXAqdjwwFMTTAsl2VeVX7cbJV3ykftrmOUmKBo+03unYuNQ0sYNicfrmof63yag+nbdPoI2ptQF7dGwL1MD2PvWTMRv/Q1NK5yFV3CAqXxSPSQiVUpjmUYmzCix6zx2HKp4VpDiZP3Ymj+3fVcHwuBpvTxN7QaAktu3oGou+E1LQMyD/eDZOpS/dyo2Sc9brEfVn5MQ/Bzb5IgJE8nd5kRMGMBuGQDgr58X8rzXxi/jz72bsduWfn6RPMz3owSJCbOSYhMkfJ3Zibxva89N5DDiTd/U+1f8nv6DD+DMRDsuDY2W6u+/ZhzPO2TiLgneHNCBR6isUccfQLOFLIwOxaJUs8FXCabvsGHpApMzVZF2tPpNkl4bdfuNmy29q7a5qiwJL6Vm20ZIQAeXh0Sb5gw51jaWI9bbqdgQljQUiZ8zFS/t9xZI/yIap//Q3QaI6cT8rOrl7rdHm5ZSuQATrPA4eclSP4j1M/6J+aqaC5H7BmJL2EqomgubFs3Dijz2HU4XFVgeTsW807/QhSGbF8xF8Y0bSPrUrO4mUv4khyUTBgBRk3T1IarvyZWhpj45+YI+Bv8O/x0AsDo3TGLCxHZefzQS/oMPmBy2A+DAKScFdwaUDtCN+4m2tarA0eas+oVuUwiWfnKdY9g2fTb2vDeTp6G8SWWU0vduq4MuWM0DChcBNM6PZmvU+VF2ns/UusyptbefL1RN9wVGTDbRmFI0y4BX9dsCsX70v+Ifu9Crx2AcfIHd7Ihw8lYU/qVuo0fAGkTay7J9otgux/5bUnjqwnbc7xWRU7Eh47NoFJ48xfvz1YyD8G5o9js12fmEVLYI4iLGs3pWNReaDDrI9zp6L/aNiHxZ7OMhxTOucSIVd2rD8xDLo7+B7zLb2qILF7g6LsURNWJILVMsT9VcOPpZSyR9os/DQX52aC+z75D9s65a98ABBtgVuLsCZ8KuDoyS6y4AaRn7wUrY427cluzTVerFW+K0Uv+T3Zbr4FM9j/YGoO/lIjV9KxFa9JU7rqVHril6G2BmDH9srmCbcENP70PG7kHQsH16XUvnhth2IqMKqRUZ5/zvqQct492n/166z4jdY1R44iTOdbgAVXMh+339kD/roq80WenK/tIwdkCs0jOToYWVrvXiwsEZstK0X9h+kX67k9LQ+wuRDe8otTs3zi7d1hGFjNbVCCn9qha1Eb/1NwTv9pHK3zJ/rnSoCX5qp1RHqwOvmL5XzBN4/kR7vPj1Uh5G6nD+Q/ZjRs52FHdqg71vz0Twbh+EzmL2Huk/tEH8xl/Q8+Ghlv3AJVX1q6N4f4r0/nYV1uGLL9cxMc5EYUlDpY2QGE4rZlj8XV7dI31DSkPPuz6VbeVEUAJj34hlxe//yxRH1VxY3bKmZVqR6s5KNN1miE5RAUj68yX21ty5KOWpRV9B0ojPATCVNHdl3akuAKSxtXlxpBQujns6MIh5qZoLlzqes8y76eMHsCp4HU9LKpbGw2hM5wH82bthA6lMzhz3P4wOz0+EU7HBb0gmPuj9M5rVOY3jU3R7vS4jx1rOR6sDhHGcORUbSvbJzL6qubCxxSoprLhTG55WRO206k+xnNpvlJMYtbE5MQCAEf6d3K4dREEvyk5w3R3kAd1ekdDfrOZ7jSWJUlpVc+H6jXKI6TxAqoMIokDl1eqTiosj7JZ9WfGPXbjxcCS3TxLnWZXZNWDbBzTom2KZVjTuN76zIroxpjYY56gYtn/SDLmsk6e4arT/H+ORcusazyvwp4k8bqGPjhQYPIaplZd4AdqrDoQle/L2EUS834DD0ne3qr9TseGh0eNMdaZ0a9f/xOsf//fvprwonu0j+daMEFgBBuhAgqTm24dLbXcqNiS0Li/VLWRUMkelUzUXVzMVbSdVzYXPBjwuueMge62i1AzTN71bxsE4T3/KTcC5MXbLvnEqNlRcuQvXVX9uX61qzI7Rijy37oNXaLBUxpQzujkCAVzQHEi9XWDqK3d1dyo27kdPpIMvsrFGyJ8AEyp4bVaQ1UUH/Nrx9Wyp3SKQllX/RLyh25cWdm1nikfIq6rmwrV+zEazYJ0uqHUqNhQMiJLso9c1XwOA7UfuyGocU5hX/Xr4vOFe03qnaroaP8BuHo1j4otsmfHKf40xsOdH23HL2V7Kk4Qg1D5AV+k0MooxLTq5HWv36b+b7jNi9yClfR2NXr2G8JsJp2LDxBr5psOLU7FJUq1Kv+9Epd92IvNjXbpFcSP26kiEBOts3CT5QlGpEpyKDUuv1IaquSTEM9qElaSqLG5lZpsT//ZnvE7i4ncpPoiHeQgqIE7FhrQIGYGr9cdxpkONO2mV1WF1bfwyfNVwD15YM4K/I/U0VXMhrklH/PXjQrR7JxZpETe5tJBUDEqSD+NMrF3qZ/FgLULSExFwypRt/SzrCQDlNjEQhSuPMzs0n7U6oICRSTWSVfjyPLYRGNX0iq9dK3MhtzogWMW3qg/d/N1ytjfFF/MxHmrWr9CdXIpxBjdyIGeqA96bku948BHHJpFo5Ozu0CoysarmArrm4dwYu2TrJVLQMnaQjU1LBwDEhHeRvj/lLaYrSs1A1kfs8FV44iTfUAGgqKQYWdNYv1VZzr7V2swkLHzyYew8GITGU/UDaLn1exD9ykSpn6adbWY5TwFwcBkjidJs43wp9vbkedQ+zFSDsz7UAQQuxQehzQdxHJGRpytVhaV4Fzqch6q5cGyufstsJPF70bgXHWQb5+/UzGQOYmI1J5yKTbrVpjD7SxMR9NZVrlbsrh6U186PZkp9LMarlHuVw4SL37zC6l34uD4TjFmtOyQAsWIc6b+SVNXEoJfFXIsk3oIBQJWca/wwHVq+Ek8T9KJuKybaZp7rwBxA156XCOWTBKT0qGEq926p/Lrd6DpsjNROcV1pu+dxdBtqRo2luuS97kD9bxKA6Fam/gCAAy/ptlJHOy4xpeckuHBY5r+ZB1dblmTqX6di43ZzVNeASbJwSMz/wdjxer08PNyum0Wd20p9MLiR2YEypSWAqYrOLJQkH8aglJNo9VkcqvViLgwIYl/MP36j4Aw7upWlKimtDaL/SBN56HmnL2lj2e8A4P/nOClPoqKHNBRfMaj5WQi1RDr9lANpXzOmePcHMxHT/EGceMkB743Jpv7cMle3T9w2fTacig2Ve2ZK+RG0vJiW1lYi45phNb8ovOTKVRPTyvMdUJvbYU5s0tE0TlqWZy44vFqEQNVcHBilZso1bF44T9pzai1IRIm9tVRO8YGjUp70v+jiJfynUQmAYnj8P/37X7Cdus+I3UNEV9JVjnuieH+KaXGzWmTaTY01LaoBkxK5VJHS7G67HO2myip5RpUavlBcY1LWoVXNtwXHC69C1VxY2Hgbi1uKntZz2stS3kRJtl9ZvI427j9DrH/nsWzx115xSJJRIxk3yxk52031pmfuwNqibU7Fhjpz2CZMSIdOxYbcX8Nw6hkH6s5MRLOFMpSz1WZj3OyzerPNZOqZFuh26AoPPxNr58xa1Z+TTHk6FYaYZ8xfPAxSOKF9DfLTD4TkW4j+Il+PNeVF8cRwyl+sB6lMWR1Ud01j6iH5D5UzMSZWafj3HTNOapNIojNSY92swlTNhdQF7RnTIzhVBgBs9DPVocOB/gDYTQvFqz0/UZpbqubiTCZJ0WcGB+G9rN0oOneel+1UbBJ6FoV7tQiB/2uyhJQ21BjftvCfLEuunYoNSDrAb0XEOtNNY9QkNv7I/owOfFJfXatnmmteIYE49sBiUx8Skd8ep6KjrCl/F/Kw6jHpqDc9gSMyXhnMGCij7zz6T+AXvE6aCxmfRaNlIrtZJlU4EuSQinKvwxdN+U0JMEvKjeQ/ZD9P80Yma3e1H5NQlJbJy/dLqlJmHlZjm697riPw8PFBsz3lTHHdHThtH8ZhbTobx2Ffy5D4Yrr934eZmOpeQdYHd3pf0oE9G90mqCuXWMYnujDSbOtz9s8QXnca1wCYg3mhLeK8MOarai7kTXYgc5CXqX1EdR85Bq/Ne9Hx2QmWeR1+ZgZTXS71pyjWXzzAUhorxlTVXEBxEUYdZ7DmBCbUZeRYno9XjepumUyrcPH7/j1zjh6npMSScXEqNmxYtsC0D4g3VSKJqMeq5sKY6ifR8Av95pdspkW3Ck7FhoxlpfVIOgDPsOZSHmWRCCCk5u+DZxhDPc7ouhCdD/WV+p1UQUMmyPZrIpnW/FIQHgAIWRzLvxUhg9abnsBV8wEGzkVIn8a+FAFhjEIQd+1VNRdSR860FDy9kJ7CbGLLIDrjiHmTu5RNYz/haI/GvFt/GsfTFB1JlcbN9z9Pl9L8dKUmVM1l6baC+v/K49Z27Pfpf4vuM2L3EPULYf5eRGhigAEKEDkVG2wfxfEFi8AWjDQ+VZYoORUb6syWoXEL8/KlxVXVXBx61bgRki+PcY07Sos4qVnsfWsmT9PuHdmOAwA8t7t4WN5kdltXsC4APvHsdqjBruu8XJFUzYXj78g+TQAgsFwVUzxxUXS7gZf+//hcMLZ/O5szH40eOwTX68yXVtM3Ek1prCjCVWQ6LCS0Lo8NYVXRq9cQAEBxOVnSafXsX9oW43cUD26q5jL5vAGA+C0r4FRs6HrkETyW0Y37ORPzKrelIYpSM6RwY39eGGlHlUxvqWwi76a6rRHBB8e06mpqS/spsSZG02ftblwaGm15mAEY5LkVwyuOS+nwP1q3YXEqNh0ePVRGn3IqNuxo9RsAYP2v3/Pwn3ITTG0nyGg6gEe4ihDpU47XxSskEMffdqDasiQEbRkpVN4D8RuWS3V3KjbE5+81jQuxHWL7jOMWAHZ+LM9p8q8GAAG/sEPLgCqXTeOlKDWDhy3J3SHlSc+kGjQtizGCnT5yL/ygG1caU+6IhAH+K8cj8OUk7j6h1kLzrYOqubi/PSJ3TI74W3QPceIlBx6sYD1O5jfejpo7apnyBpjDdbqVcyo2DjsuUsnNmzjW/raUPvMTxlAeG82+C6mUOhUbKp8q5mUcem4GtysUy72u+qPuTPOawmH1Z0dYrjPrf1kE74CmUv2NeYvplKSqqLi1Ph/Pn2brB+E6D6eaxgsAIOkAh9p3vT5DGsfiGKVnv2kJeLPTKjYvmgWZ6kB0ZuB1noeR0Tr8jH5zLab9WBDUEYl5GJliLZrBmkf6MOGQCDISf4QhpZ54yYH0H9pI6WfkbAciw819UZp3wF+jpXKM78U2G5lrAJKvx6KH2uJMrJ0zjWIaykdMK/YNwPynEZHqpxWpmgs3e0Vw1VoRIdSp2FB8SAecIHtPSqd8lsC/sc/WBmj/tiywPbky1HLMpc5ke6f/a4m83PiNutmDKNiz6keyay8q72G5VqqaC+NTM7kvSjEOCRybPq6jldI56cugUKCY7c0zcrZzDQcxf6tvEfwkW2dHNu4o+W4T69/gS2a/HDpbZ8joGxod0y9sxvwbivaaRsZd1Dby8Nb33/8Uug9f/6+h+4zYPUYe7cP4My0AJbdvIa/wKg93vTaDO5z0XzNOiks0JyTAdAgzLgIi8YPF31WQOifClN/aY9ss05QkHzZtkHXmJGJMahamZe2yPFwdfpptNqL6wV8/LrQ8lAJA8EOZpjBxISwoXdCtFldyQkzqY/R+Uu00dB02RrLXENtg/G98Trl1DbttXrzOfdOcvI+9GzZAiwXMF1z9b9hB92rxDWnRprr29GeGzwRq4FWzptROr9q1eNnuGEyAAa1ceeAs7xMx3u3OJ/izWIcBKad5WM1FifD9y1o1ojD7uGkjLjp7ztQnhLooxgMY3K94YHEqNpwbY4dXixCU3LyJZ9N1xDFKE7BhNFTNxaH1RcenUvtKJbMdntftYwDGVFl9w8GNHIjp/rgJUAQAXq/HVJx227yktEWpGVyNtWvQMbyXVSo5ztcNtnPf0PPz8vA0fefUuRG8TKdiQ6vP5dsHABic1cVUJwLKIQp+LkmaJ07Fhpvrm5rSLbvc0hTmVGz8VmyyPzskJbUuV6awQew7UkNOnRUpgUgQkx8SJ88lMX1ZZRjjWh1uT0XqW1XDz9lhyH/leLT6LI6Ph1t/sb660IHd+NRNqCHlv7ZlDX4rp2ou1Juug8J8daGp23YXVi/E1Ez99q/x1ASeB6mcEoVVY64Eqm7TfdRVdGZJfWDsk6yH58Kp2CQ/jxSvMDOb//75/Z5QNRdW5e+W4gDAgJTT0KKvcP9OTsWGVuUr4NxYWX1LtDtOnc1u2Ju+kWhiCMS8xf9PpaVyf4xFx9gBt3dkbxjJ3c2scRzQ+/zfWnKXKkbiB+Uf2E1x9P7b0H5vAVVzIW16FL+RMa7VOcvD0fDzBHjlVpDmY2C5KsCug/w3wZIT0YE8dU4EdxTsVGxYfLmOlD/55zSut2qYjuzmtXkv6s5M5MjGZVFZc0Ss//G32d6f/oMMLe+zdjfi962/Y35iX7WbGstNEZyKDTc7nUTtefp4yCu8igZ9U3g6Ck+dFYmQWDbfvZoFcZXej8/pdm3GvdVYJxKU1VqYyB11EzAOUc6tOvgt6C9Wv/4juKPymt8nmvqTXFWIFNekI/pWttY4ASDdMlIcVXNhtl8in8OU7vWMAzj1LBsrpFYesGG05Rkh9bYOZLTtO2ZTNy1Ltsuz7QPmHt+OS8PY3l9SWHjHMXKf/jvpPiN2D9HvqQdRsueQKdwzrDn8vOUboHoz2EIQMs58S2Lc8L2qVeOOSD3DmqPzuHFskZ2so1XRIrvvzRkIGa/n2fZdXU2v5Xey6o1xo855V9/kB1W5xA97Rmo+N07avIwHr4zPZYS6m51O8t+hyd5QNRdSJsyAV+1acCo2VH2tguVBAgA8Shmx1FLkJZER8d4kq1aVdWgwvnu+KVuQyY7ueicdoavwxEn8qUZJaQb4yW3q9sRoNN8+nKtrEqhB0YUL0gH+2JvyxgQAN/pE8vpZMWhOxYYvzptRKSk+1WNFaD2cG6szqEbAB3dE8ece19VDxTpcXRdgqs+5MXacG2Pn8WrPT+RQxN8ENTcxF5ndmFNW6meCoab3xu9hPBAfa38bN9c3lZDSMpayg0vR4WPw+1D2NaNqLkmieX60HfOPb2dqLtD7cPcCG97yN99gTBu52BQmtilk3G74fZgAcnpMzAT9lThac9sr8aBOzorFg73/6nFSOT49smGktS1rmJhB438rRpXeG8eUR7uWSJvDxmLIxF2SGrE7AYpVeT0GPCmVR2iPT6WlSlJ0SpPzLhszZNMj5lkl0xsNv9D7sXz3HKkeh5e2sPwmVvR8zWy3dc96eC6iKzDmXBQIiH1F7SO/g78GbjCV51Rs3I+dcbwD4D71CLyAqOAxxqCQ+4Muzz9tasf46owBTJ3XXqrP9XqyNLnpm4lAZDhUzcVV0bI+tEvjhMa82Eaq4/TgEFO7CvPy4e2rlLleGtMAQNo3uvNs3/6HMatU3fzp/CjLMZk2jN1IJrUuh4NRy9g3r3sN/q8lot+RMwCAMalZvJw6y5ntnv/ruoCod1QfOBUbRh3LwYUn7Yg5FoMGX5lRZq8/GonQSelYs2sN8iaXrvXN/STtFPJHZtVOyof8Exrnh3EOZizT1wIrgZs4VkTbZuN7qzSn46xRKAHgguOmpKYHgKMqq5qLo2Ya8wyZuIupiR+6zBlyAJi/upsU71p/9o0fOHADWT+1QudDfQGwcdpt6Gi9P0pRXeu+o9vBORUbiqDb6CHpAEp2H7TsH6s+sNoXjUQ3hcZ4TsWGKw+cRe6bDmSUmg58GNiKC1bJ5pP2KePaEVKusml+T/aPlL77x/WZhhG5ECAa0FcGHrqX6f6N2L+G7jNi9xAtvlwPWR+Z0cyKDx2VNkp6vt2DGQBbLdrHf9FVL4ouX0aj5Tk8L581TB2wXvItKb3xgBu9/zbqztIlT37T2CKU97qu0pOxtA1PS+h49E6E4OVl+LVDkym6JDpwtwwzDwDpQ2aZNip6Thvoh1afM6aSbB3Wxi9zK0kqzD7ODhJ9dQSuKWf02wJxY0z/oY0U7lRsSJ0TgYzPmWrd2fF2SU0PABY3a2R52BVtgwBw2xWq54ZlC3C04xKp3uJ3JHuHjMcZGAshTAIMPMCqb0R6sVamxHSKJB60SfopOucW63L8HfPNEb1rXCocMDJ4JOkU+6X2/ERuPxHyNwNTudEnUpKyAkBMmx487d1IkM/EWrsP8IgIx5awlRxAAwACh+o3WGKdrfqo1oJEjGncEV+GhPH6AGaULlIn6Vv5KmK6DZLGLdl6iUROjwkKnb5D19lm592hO4bz55Nf6zZ+WX30A2BxR7099J8OjmLbxDb2TXMDge7hIdVf/H4lyYeR/hA7+BES2J0OQ+JBhJ4JvIVo3ZqlAIBHKpcCUEzcBe+mjXn8o2NnmvKhthDKm0hi/enGS6znQ4cfxdnx5jXWON7o2f/PcdKYKTx5CtrvLeBZoYLESFuVb0UNv0jAgJTTeDB2PA/zDGsu1dFnjS4IOzvejsq/ykAF5HSaypMY/rEy/LzfNF3g4Fm5Mny2NsDNOrrD+XJbGiL1SSak6jqcgXD0rHRTcnxu1Zbkm7LvvZq/XJOYCK/NCgdTsNpfbjnbo/oxLymMVLTJ4bQ4pimeZ2vmquDN0+E4N86OJoOYXfXvLZj62qAqlxD2NRP0FdT3ktID4LalC5s1wa4PZ6LoIU1qB7Xh75lzuFCM9j0A3Ocg7Xtiu0idTfw25A7BOFfi8qOlsMAn9DXZ8eJE6XacQC8ASCiLxrEnoix6Vq7M7cT2vWmtCurdyA+Z3RfASI0e04XBQ4/mSWkuP6GrmYeM3oNuVY7g6sAo7hJFZHoBcMfNy37uAv/BB+DTIxtbrnsiZOweeG1mKtwnn9eBxa58cF1KvyGsKn9WNRdEVXaRjPuv2D/Gdpe1bhnnVaP3ExDXpKOpDFKLFdO5Y/ro5tkYTi4cxP1Y1VwoPiI74L5P//10nxG7h+j39vVNhv8itdo1RNrUjD5fxMnceOBBKZ81u9aYForyqp7++BT5wK1qLu5rRtVcXOKpai4OT65qLlRJqiilERcmz6370PXII/KCmJcstWGGr4zISOHuGJTCzGwJWUs8aBr7rfgBtlkuvlwH2HUQnrYWAMDRpwgFjfIIGrbPVF7I+N0IfImBbNSZk4g1CatMcajO9J902sW+zYtmUjWCxqU20gZmZAbKrdeh61PnRCAt4uZdHfqMfUjvMg2qmcb/ohNTsS6bRn8i9e3N9U31Q/U1M6iBsT7ixkZETqGJoRSp6NRprmIGgKsBiiS28ZfXPuU3CGI91v2xxMSAiO3o1WuIZf8BQO6bDsw9vp29L3WC7K78ksJCXkb8huVSn9dYYlafIdusBn1TcPwdB4+/uU11qY6pMyLReOBBnr5q6iVeJoVl/dQKnttdyHmXfVu6SSbV32v9ohD+VZypb0h9zXR4KSnheVv58KPnWgsS+VwyxhH7iG5yRHIqNq7eY1wvKI/CbN2pfLcndAQ+et/y2zhL5tlYvtU6Wr57DpLf0Zm7MalZki9AMb1Xndr81sipMERAAFD6HcHaTGuH1E7FhuKONrdjS9VcWBFaD3nddaZ3ydr5lvMkZ3k4CiuzeOLNrtVhUwx3x6QVFxTgZqeT8IlnbbrdrZ2ktuy9MZnHb/ilbNNm7EujtsMZx0WpPkUPafCfnIjYtHR9vJYyZr0dj2DzwnmoN53tI4TcaRwLMa26SvXP+siOtWt/RIvpcdht80LtuYn4KVe2cXQqNhx6bgZnxI39YYwrkscmX17eqOMPmNpPmgiALtTh+6N/E2RHXpf63Dh3xP8ZETfQU1DFLLelIX9f/dBFrl6rai4OeqFqLo6ySHaZRFkf2VGUksZ/FxcUSGA6VuOxMDfPcu6mf6UziUubyyBI1ZYlSW17pWk0qvyyE0VnzvA4F4ebhWONPtC/05pLMvqpeCNZpWcmUudGSOsHado4FR3wy/jtnIoNhV3bmcK9gvzdfndi6gEGqy+en8R5NSaVqRafLiqAVwuzhooxX2MdaA2hvZ5IdOHQYrq+Tv8n0f0bsX8NeZSUlPwvoEPe00ReyjvjUXh76CAB4kHSapMlMi0+IYHcbkPVXOg6bAwyH/fktggnXnRwxCZjWQBwtqgAQxvJcLjGg88bmS48WEGuj7tFhL+LbsXRstzFudMBK+91h8QIGsv32doAq4LX3bFeYh94tA/DulU/SPGyptn5rRblA7D2pi9pw/24mdpYVvtLn1vtGoLBAXs5Kh7A1HQGPrDT5JzUXR5WZbmLI/btums+6FnpppT+5PMOvhl+m7MDvf5+GhldGaT/qWccqP9tAtJ/aMMZ1TuVGbzbB2kRN3mc7A/sODZqJtrsHox9ET/hwdjx3HGq1UHVyFjezebkjikN+GUigp9LwuUh0aj2IzvQiN/+3Bi7hHTW/q1Y/rusfrSak0TeTRtLzATF7TR+vMR89jl8Ac/UzHH7XVNnRaJC7etoPFB28KlqLkw+1Qo/bbfjjW5/YMaX/TD9te8wJaCdKY8X0lOY8fpd0p3GWcGAKGz/ltk8PH+iPVLaFd5VngAQ8Ndobn9zrX+U5LxcLM/q4ETvrgyONrlt8KpfD5e+r4JzlyvzG5K7HTdW5Zf1Toxz+o/mqPfoUXjVr4eiU6f/oTKsxpC757upHwC8nbkXS885kBFxA562Fjj2fEUEj5TVr6dmJnOESnGcuqunFXls8kVJl3xTPKu23ak/T7zowJWQQiTEfIGRpWpwP+UmYHAjBwq7tOPq469nHEDnisU8/Z3WP6uw/Ncc8P2I3RB2HjMOPmt3W6YTf3s38sOanavdtudu1mIxzEh3m9/d0PEpDjSemiCtdVb1AoDJp1phWn0duVJ832J6nMQ4EXU6cB2T6xy74x4j/hfPIkQfZ+20tAdMndfedKN76lkHXK/NKLNPvH0VFOZruP5opIR4qWouvHKyDUekLIvczbc5lxSsCK0Hr+AAjs5aZvq+w3G1SSXuyDt1ViTqJnmh2BuoPc8MeiSug9RnhSW3sQV/4NKlS6hWrZopzb1AdGZ98M84eFf2uXOCf4IKC27i74dn3NP98c/S/Ruxe5RoQXCVqjI5FRs6j5OhwN1J+o4+JxsVb/xhPkIm6E53r7SU1UqMZdbxqszD3ElZiQn7IjsR2T+3stxQTj/NVBi5dDHpgCRdNTKTtBAtMtgeiUSoUmKdxPSiPZkYJ/2raJ7fzd4RaPiFrrJDdnmq5kKEi92A+E9mN5OiITeVETR8H097tdTxJJVDapui+pPxYNWwbwom1zkmtS342Z34+9NoU3sBcDUoAByG+G5J1VzoeuQR3rc9K+kMEiHRERN24kUHxrzwIoKG74P/WuZgmJAkM7ostHROaTw4q5oLaRE3udNKADg2it1A1HuUqdiKTFjRQ22ltMZxRr9FR7zG8oyHl6uDonn+BG6R+DlT8Szs2k4SQohMl9O3Dfa8N1PqP6uxJP43btwAkD6GuYVIna/7XItp0wNb58yR8iYH2iWO1pYHsKxH5qDxwIM4s6qZqd3JbTwR/MxOLA9tgOR3ZmJKQDt4tmoufQ9Vc3EmTEyb+ZGsMkYOxo3UbNsIHo/iTvt0Nm93SrtCeAc0ld6L+Z5+SleRBIDM7jrct/8rKTwdoa8FbBiN3F91VVD/VePRImGY1Df93pSdkQPsFrVKz0zOhIllGudT6gKzHzyKQ2ivquaCd5NGPPzUs7rqFD/UT3Kg3qPMvkQESBDzFO2mxBtGq//03GXEGP68qkB20G411sTndwPaIrs7OxQVu45ITNjJ59i6FF1Bh/UWhQWeFZiKOKHmEnn7+Zr6cF3zNfI3L1VpdSo2fJuzQ2pb2nf6gft6X/1Gifqz4RcJCJm4izNhAAPUUTUXNv4wn9evc8ViKV+r9luti2KYXykYUe+IGM6EnRtnl1xsAMwumvItzNVh2q3KbT7P7C7E2F9i/ag+D8aOtxQ6hCxm+fU5fMHUFnfzjJ5vBTG1PtGHHADTDbRTsZmYMNHRshUTljorEltbVUSrz8wuGiif3Lccpm8Qv2UFPCtXhqq58G0OQ3K1+ZgP7sUbG3EmjECBRh3Lges1fb/P+Cxa6gOqc2E+Uy/9c/rXvHxCNBaZMFVzYXW++ZZQ7BeRhmV3xopQ5ibEigmzTL/roOTwOmTiLtRclMhNAIwkCqP+rwz4/590/0bsX0P3b8TuASLpQtP3PsCYvgnY2qoiVM2FsKSh8O0vAygcf8eB8G7HcKnjOdPEvpNkzoqpskp39s8Q1HlY11NWNRdafxyH/ZNmlCnNFfNpt68YyW08TeX/IxLAEy850PDzBFx+IhrVliUxdKZj6XclNRTrdvopB+pNT4BHu5aWKI90YyPmeTrOwQFRqDzPVs2ROrIGB9Ywlue/diyyes2zlGjfqR8yPrUj8BXGFORNdmDEkL+wKbyyKX7OVAeOjjNLCKm8bk+MxoZlC8osy6o+p4sKMLxRhzIPNSefc+/rzat2LcQf3ISeTSK5HcWlodHcN5axHvS74tb6XFWOwj8+F8zbPijlJMZUZ8z1mYl21Eu+ytUOxb7r2XmvdAs3IOU0VoTWM5V9YU0wavZOk8oT23sm1s6hxsVx7u5gb+yn9C+iEfRikpS287hx8FmzG1MzkznoA8BUbpq8LZd1N2SUHFvNx4LHorhtkVXenpUqofjaNWS/b+eO4435WaUVywqdHSc5pS6rHca+zPrQbrInMcYXqax5ZPyGuW85cCRWnyNp37flN3F3288Uj25nrNpnlPZbzfmgZRO5fzpj/vaXJ6LaMvP8OPWMg0PJW429YdmdcbbTNT7PrG7kyvoO4V/EoaDVDQSPMPdJr8MXsbZlDQBsLux9i62L6V9EI2PwLLd91+3QFW7Po2outPw2jmsuGN8TXesXhUq/74SqueB4YSJ8LhVh84K5slBlYBQ/2Lrrj5hugzjwjzFOpwPXueaBu3lsTOPh4+NWBY6INASM/Xx+dQj8a5zD8oCNPPxGn0iTGjbtZQD4/kR1Ct0xnN+Cq5oLkZNjuUsCq/nY8ZkJqLxip9SmXsEdUFxQILerXHk+ZqzGxxfZiXixqXsnyVb9W1Y843PqrEhkPcJurOonVsMp+2XL/eZuy6n8d10UPHiGh1M+dzvHRe0aAGi6qyKyI68j9w2HJTMKMFAhAqwx1kuk3vaHUZiTK4XRzd351SGo1ScVl+KDkGT7FSm3ruH5prpLjP+kG7GOq576t9yIbX9k+j3dH/8s3b8Ru4eo6Vu7+KbhVGw4FL0UL6UfllC0UsbPwKWOOnQ4/T2rmaXaquZC0FImYSu3pSF6PPYkQhbLAALkvFgMS2633GS7REwYAPQYOBLTsnahw4H+kp67SK5ONSyld8Yw4wKsai5kljqxrHmMqT0lfjYLXs2CEL/5V95uorTF7EZFcmBpkHDVm54Az7DmKEk+bEoPAEFz8/kCTn/1ZphR9YoPHEXGYHaz4hUcIAElLLpcDyFjZB9XYjm92zqld5Q33TIREwYwA/tN4ZUtJWgi0AmRV926vDyvLXultojPIkW8GSv9jlr3vFRvsS+ojQ2+Zn1iBZcef3ATnIoNHZMv87DL/XTYYLHN9D/9y2jJXolAJibVTuNxCCpb1VzY+/ZMeF66ZhozYt9RGDFh1CZVY3ZXNXunIfsDu9QfvTv25Yb2dWfqkstFl1ker5xk+qJ0Gyn+Gcs1MulOxcbBcaYEMBsGx/5bOLOqGWfCKJ4VkRNvqtOtv5pITFiXg8yhes5UBx7L6IaOz04AAFT+VT+YBQu+z8idw0+pG5G2qB2avilLai88aZfq0mPAk/x5amYynIoNHu1awqnY0HhqAr/RVDUXrg40o93RO6dig2cl/Yan/YNHTXGsiPezhwf/LcbVXmZS+N5tndB+Z3Zrjd6T50jwk3stmSR3JL6j2xmrA6PIhF0cYTeNCadis2TC6F3iZ7NM89SrZk3U/zYBkZNlp/JiXyTubI6S27fYmF7QHkWnTpva82DceP02PzKc22c5FRuUzxLwUnt2s0i3kXSzT2ibAJsLVH6jDUVuhT8AA1Wg3/5/jkOn/nul9zM3djetp5V+128Dqv6chPLrdpvKqPLLTrhuMlXqc2PsGJfbATcejpTW+CIDuIE4RjY928FUV4ozLLuzaTwBOqBOz0eHS+88IsL576Bh+3BhpN1U31p9UnGp4zkpnJgwm6DZHb/5V26/tO8N2XdYSoclSFvE1Iw7PD8RtX7cy8dJ4MZRpnZUXiHfqjgVGzzr1YGRHt5/Qopn7BdiwsS137iXAMC6az6mtJH7Bkp5W82vkIm7EPD7BGRNs+OU/bJUX6KymDAAiHY9xvMmJox8JlJ8qzMFjf/zq3XUT5EJA4CdSxiqbrEPu5tw7Jc1h1TNhZQb+g3x1XUBuDowCm9n7uXt6HigP2OmDEwYAKzZHQ8A2N2W+Z5sWYsJGAkZmOo97ZDZdvpepZISj3/L33873b8RuweIpAt+M6egedxh0yK0Kn83fDx0YASRpmXtMhlOU/o3Ml34IMDm9ibJatEjXeg7LYj5rzlw6FlZTdAoZaQy/FeOR1ZfWXfbqdgQm5bOfXy42+TpNgGAZGPm1bIZhv62AYubNbKs69WBUTgX5gX/D/dibWaSpYTuZq8IbJk/17JP6DbnbqVrxrzvlsQ0Rsmpd0BTFGZm8zhvZ+5Fhwqe6NXsAaw9tg29gjtgbZq8CRnzpne5bzjg+/d1nHBU5MbsgHz7KfbjI2k9cbPTyX+oDUaGy1297tQPgPm2gSSod8ojcnIsdk2TbzfTFrXjalqq5oLTtw1QuuyJ5Vp9P5IiL83dIansiu1010Zj3lZxjeGeYc2xdv1PZc7Tmjtq4UKH8yY7TQBwHroMNazaHetWVn2tDq3u2nU34SJlTbPjgS4HMb/xdh73gQM38EtmGzTom1JmHnf6VgAQm5aObyc8bnJNAQAr8pIwwI+pN/X0j0LJzZtYkrsD9Uq/67NaBLYtiOBCGOOaYrRrOz/KjloL7+5Gs7BrO3hvTMaZVc1Q95FjAIDMT+wckh1goACDqly6q28glmn1rY319/DxQcnNm0idEyG5JwGAmzERHMBD1VxYVVCJo1ga+5zml7vyRBs0QF/TAndXwAzfJMt23PqrCcp3z5HCbvdozx00/6Nrat6KlvAbcBhp30Qh+Fn9e3kF+aMoPeuu5saMnO0ILFdFanvHA/2578tFx7djTLt+HKTCKi/xtjnzIzsCXrO+AU6dFcl9bqmaC2Ffx8H3Y51JuLw2EFe21EeTpTkozMt3uzenLmgvObyn/MS21t5RE+c6XODvaF95N6CtFGbVJjGs4tb6WBmsWsa901ygOvXsPZSjpt4p/p3Gv1PRbZPF8M5jxvE93mr9MOZNGhNiv9G892rZDEWHj/E0n2Yn4ZWm0VJ9xLZEuIrwfr2DUhilzVjaBs3eOMfVg70b1EfhSSaU/E+6Eevwx9P/lhuxHY9+d0/3xz9L92/E7iE62HUJAPOi1P+BgWj5bZwknSISmTBVc+HtzL3o+QizqxiznElVS3I1y3ytFiLShTYerOmGzDugKQDA9yPZDxKlcSo2RE5mty3pP7SBU7Ghxbs5lgvpzOAgk0RMpG8vNIHPmt24OpD5IiEmLGuaHUWHj2FoVf1mMOsjO3durWouVPllJ5Y/+QWKb9yQ+kc8uBSX95DK9gry5++TPp3FwwlqnPIAGCMIAGnfRpkkvcbnfkfOSOFGondb58zh8Phpi9pJTBjAbEC6Dh+D4isMOre4oAAxD/ZDi4RhUn6EJEZ9e3JlKOp10uC5bZ/EhKmaS2LCiNZcq8CZMGN73NkTUXliucGLY01xvKpVQ+Od8m3f2QlMsnx+lC6RLUrNkOKUxYSR3U+LGXEo8jEfECUmTLHBoxTxr+aOWohp/qC0gaqaCyde0m0qyEno0CYPuh3vxn4CmGNu47hu+54Zzp7ySfuW3SwXHzqKL87rfthW5Mmqazd7R3BENSMTlv2enTuTdSo27v+GqOmuitL6QePE6tAf09nal40VczniGJP+tptq/t5G8p+cCE+PEqne21pVwP7IH5H+pW7HeTdkXAsBtqaQbZGRqngyOyinoqOvDW/UAU7FhvCdT2BzbjDqzUgwuVWgMkSjelVzodZC3V0HQb+L9RfrViGVHbLqPqLbhga8KqNqzg/xl5lqxQZn/xEmxix/koxwS2kyBdcnTsWGs+MFH4Gltzyi6wOqu088u7H1bsQQ8ogJI1qep9+a1lyUaLlmP5bRDarm4oAxALP7IcGSkQm7Mlj/1lMD/zD1lxERGADXlCDy2qzb4C3P05mcw3Z2uP+0549S/KL0LKl/KC25FhEprklHOBUb3svazeNV7pmJ42+zvh/ZuCPSvvbleVmRqPLbMElHXyUbKIC1OesR3XbUqTDUR5Gq9cqA78cJHPl46pkW0nuqn5EJo/zE+i3z3yy9A8CZsBOCSw2xf1TNxW+dAKbqS34zVc2FXgFm22ZVc/F2iu/IGXX4l3FYt2YpnIoNxwuvQtVcOPWM2VWKWE9xvovrUPeUh1m9InR7enpPtoBiuFXeALtZ29XmF850U3ya9/F//QwAuFrMzhStyleA9qpe5+bzYqW6WjFhRJ65FTB6/RYeTn4y73btu1eoGB7/lr//drp/I3YPEEkXLqQGYGCztpZx7kaKZ0WelStjbdoOvqiI0k5j3lL+nl5AcRG8alRH0cVLZcctDY/pOlCC0BUXS686tVF09hx/R7d89P6RI+fwVI3cf7h9d0tedWqj46Y8bn9nrD+RKKXO+Dwanrc8LG1ZrA6kYp4RriLstnndUbJYFt3qGYHy68zw7XdDRokfIWpZxbmwJhg+82ph2/TZ6DJyLIq9PeB5qxjlNui3Cqnz23PVS3cS0Du11bNCBRTfuMHDLq8NRLVeGXg2/Si+CWpumbdIqTMjkfUou1n1Cg5AwLJ8fOe7E2uuVUDvSjfuqk7it6+bUIPDbovve7d1Ys1eXdrb8dkJqPzrTsvbZ5EyPouGsq2YuwIwjgt3bbvZOwJXG3hjz3szLccUpQeYzdz8d/oi4ctZkl0fvSe7yrL6UdVcaDEjDkfiGFN+frQdtRa4t9dylwfl79GmpSTZvtP4tvo2JG0GrO30rMo1HhjFeJ62Fih2HXFb57upk6q5MOuiL/dRBQCNd1bG8agCt/EJZQ2wtslxV2fRLqWseSSmuxkTgdNty6HR+9b2LMb0ANB57DjOeBWVFCPGl+03WR/Z4W+4sbkUH4TqMcyOKXr/bSxxRVmqeRrrLN76iUR2t8Y+a7YgljMtZa3No47lYHDVC3f8hsZn+mYAYwTIIbKRvspOwEtteqPowgV5bIYEotEPGrIjGRjGyRccqJpbxNV/nYqN37YBOlJp2tfRyBw4C12HjTHd0N6pD8mmjuL1CoiWNDus2kv5qZoLK65Ww4Aquvofxekx4EmsX/G9ZR9Sfl0OFmDFZ91Q8/vEO85loy2qsU0ALG+OnAq7FQocuo/bq1rVxaqOVEbxxkbw7JpbZnyrd4SECQAxLToh/shWAExFveTsee777U5E9pSvZxzAh4GtpLLEMkV787KI0vwn3YjZ/3jm33Ijlvjot/d0f/yzdP9G7D+AvGpUt5RCiiQ6mBSpuKCAP4vSTrIVIQraPApOxQZv/1IfTsVFUDUX8hYpAOQFkOqRulCXfgLgTNi1fjJCGACJCQOAR3wjpPerWtQGwA51VN7NmAgp/9N/6I5P3UmO3L3Pjm0m2d/RYkl/5ABblFIHvpTEmbCyJGkA0CuISfo8NjEpKTFhIt3sHYFZOdsR0/IhyzoD4BJXANi8YK7p/celkvzjbzPblctD2AZ3o0+kSVooHUam6oc8j3LlpTY4GmSh0u/M8Wa59XvgE78bmxbPh9dm9u2X5O4wMWGidJLogacnWLaJntdmymheia1XIOOzaHwT1ByXhulIh3wMGvL50TmTo4gWpWVi7bEWcCo2/H1FRgukfFTNhYdGj0PeCt2Bt0g/NN0ilcE3wpOn0LNJJM+n61vMpxgxYVZtB4DAl5NQ8Y9dUDWGGGpJpbZO2T/r6HS/z/oateezcTfkKLu9nnNJgVOxIeD3Cfw7XR0YhWlqX1T9mR3Ihpe6mBDbLvrYE0nVGDLerZ4RWHy5DmfCTrzkwO73Z0LVXEidE2HZLjEPgNmlORUbd8Zesu+wtC64YyaJxLFJDuzj//qZxycmTCSvIH8pb/FZnM9E1/yq4OQLun2XO4ZcfD65MpTb1GYsY3mKTBgAfqB3KjZprlL+om0iMWHwNDsWFvtI1Vw48pQZDVbVXDi5MhSpC9pbtrvyAU1iwsRxKf4XyyUVRKdig5eHJ48j+q9UNRc8q1ZF9Zh0pH3PGLWk1uU44An1t1fduvBu0ggAuxEj2tv+Z1iR6FhY9A0l2ilSPa3m7MJmTdBlxJg7tlHMB9C/GQA0fjdBWisBxkyomguh5Suh6MIFeFWrJu9dqRmY7afvAw2+TDA52SYmLDYtnSOV1glie97dMGHpX0VLvwnYhPq6+MYNxHR/HKrm4n1Htqun/2guzYFeQQ7MCQngYSef022Q1q/4Hv7xY6W6GOuzKbwyan6fKIVJc6u/bhe+/RsdIdB4RqmfyFSkY48+gW6HrvB8/FX2DQOHMqO54mvXTN/U3VlHbCcxYV7165nmNuWTOifClNfkrav073aRqQJHvBmLNdtXInyrzoRlfmz2LygS2VMSE5a+pI1pft+MicC+N2eY1kKyWTO2TdVcuP57E9O7+/TfTfcZsXuI+oWEwysk0BRedPGSafMwEi1qgPsDEABpARIp/aGFAIDCrBxcGqofihv2TeFxgnf78LwD/hqNkFHJ6P74KJNkbtt0fXH29m/C05BzXncHBqdiw9m2umqVT/xuvmjf6hmBfRE/mdoB6I44xXCxPlcGR6PRe/KBhSh85xNwKjakdFiCBw7ckN6/kemSDgxWtCIvCc0WxnKJ3rrma+DVLAgAEPTjRMS06MTz2zJ3LiY26YiiCzo08YmXZMjfxu8muP1+qubCJH92aKiSy9S7qv2YhOz37ZbOkQG2GYqqME7FhpLbt9BsTzlkf8Da9lVD5jxahJp2KswpKwB+4Kdw+lYRb8iAAlZQvMYDep/UXlIe6U8wFdDqP+igBoVZObxvnYoNWdPsuP5oJKYEtJP8z2R0YWN2+d72UpniWNi8YC78BhzmwCpiPCuitCW3b+FWT8aYTK17WHpvJRQxjuN63+mqu12H6ZDkZJvW9PEDuPAk638ChACAH5sz5pcO9MFP6X1aOf8Ggp5PwtkJduRPkkEk7tQ2OsxVSjnJnbQCQMPPExDTujsAprZmld4otJl/yIG8FS2REXEDXsEM5OGF9BTefqvDlJE5nX+JOSg23sJQ3EvDopG3oiWyStUr08c0wIAUMyiFVdtT50TgZLQXGnyZIL3jh7OF7dA/vbtUz/Av4uCxqSYCX0lExqd2pHdeZFmGWH7KxBnS2Laqm6q5oOYlw3/VePQK7iDFofFBf5efMN8aNOibwlXOPMOaS3mv2bXG1P7Wu4YAAAI3jTKNVeO3dSo2NN5Z2fTeqdhQfOUKvKpVk1wOiO3/IjsR8fv/4qAEVx44K+VrRaIA5+hYs5sIcez4DTgsMdEAsyUstyHZsr5imV4tQkyO4MU2VFi9S4q//ZvZKCrR4fGLLl9G2jdsncn/raVUP6u2iXnPDA5C4YbGUDUXdrX5xTI+hYmMfNDzSdzliXFe0+/4v36GU7FxkB+CZq/36FHc7sHWwIANo5E5ubWkStjg6wRU/rsuLztk7B7LeVrW3BLJHeR6+g9tpHVw237GIFbpmYlXamXo5Y9KthyLxv4ddYztA+T6gfIlRpDKIrCaEy/qDCflJ6riEk2c+TRUjfl1JKq1gAnCft2iz8GASWYQKCuivhV9i1Jcn/jdUn0o3MpHKbW/Yj/ZXvJepvvw9f8aus+I3WPkce2G9Jsm6dY5c6RFysjIiGS1yJVFxvcEOQ6AH7Scig1pETf5gpLZfQEA4K+fmeNfupETFx2AHarp91v+ETyO6C9HXIBF57oA+KJdft1utJjO7OS8QoOldpd0yZfKJKLfQ95aK/2mZ6dig9LvCH/e1qqCVJcPAtimR9J4Y96q5sIAv2g0fSMRZ8fbeVpCd0wfMgtpk1vwQ5ZYR7JDavh5Ai6vDZTyFA8YJ150SL/pP4EEAOASZavvfMp+GWvTdiA+f69U92Ptb+PYqJnIf83Bv1nw07INjFVfUvmqxmxkrMZk3oqWbsfn7c4n8Eam+WbAqpwBfmxT9J+cyNX9jKRqLoROPo5me8qZ+k8kz+2MmXd3MLJiHsqv243nT7Q3xbWqrziOjW02SsQzPmVjpeb3iTg7QWb0y+p3j4T9AIA6sxPh+7GMDEjP3g0bQNVcmHa2mamdVwdGSWhequbC+dUhKDpzpsw1wii0uV1QDo2eYCprZFP6ZVCo6eAfm5aO2juYr7ReQQ7sm6zf+iwPbQCPiHBeD3HdcCo2JH0yC34DDsO/HLPf8X89EStC61nWU9VcyPqpFf/+IeN3o7CyrnEf+PNEqJoLMa27o8vBAoSMSsbZz/2l9MpnCaj/DROCBL6ij+vs93XJtVG6XtY3ezb9qBQn65E5KC4ocNvPqubiUPZiOl72vPZYu14XRGUus5nGmqq50KBUcBY0bJ9b5lAk8bZIzAcA4o/+DYDBqRvr9WJTM2Kgqrn4NzXmRdS7XU8T43StX5Rp3RPHBIVva8VuYC8/odsktdrrIZUxPjUTi9SFWHxW90sm3jZdHRQN70Z+AIBXMw7ycuh2kDQOCOTDt7/Z3QnAmKjMZcylhthOVXMhd5evqW9ICyH9q2hepqgiqWou1Jmj30JxocJ8/TbUuBaJRDZ1md0WoOmbiVx41uvwRQA6wqBITsXGgItKKXSO7iOsrPOFGD4+VfevRWOO8s56ZI4ls3d1YJQpHytmf3BVJrAUhVFOxYZt3802jSGnYkPDLxK4nRtvn8UcVT5laycJL2vuqKW34YUkeNXWfxv3PauwggfP8HFjtXeSb1KK7xUSyONkfWjHsOzObvet+/S/QfcZsXuMyCDXOJndMVe0aXn7NwE2+t1x4aT/4s2bcRFQNRdez2DOl4tqV5HCVc2Ftu/GylJ+yDdyYr1UzYUSR2tTXcptSMYtZ/t/aAEiG4qilDTTokj5EAyzmC85zjVu8GJ6eg7/UnZYeWlYtIS0RXDzlAcZGC9/41Op7fQ/4FW2uVZbloSr6wJ4HfzidQCPar0yLOulai7U330dmR/bTd+VbikI3EMkp2KDd0BTOFP6AGAuCkQ1JKpDb/vD8P3IDNjQq9cQXg+StFp9o/SvoiUoe8r3sH2paXyK+X8Q4P72oMX0OKk+Vhu0qrmgJOmqO0WnTuMbRZc8nh9lt2TKRHs7gmAX6z7nkqyGCwAp7QrZuCq+YXqnai60+lwfL212D+Z5pc6K5PWguPScPlS/DUieMlPKz/hsOpAvcM8YqpoLhScYJPLkOsxGxzNMV+e9MUJ2Ehv+VRxq9dGhv8tiik8/pQsEQsbuQcnNm6b6Tr/IEEzPjWXtnhkcxBHaiq9dQ+8Oj3JVNwBY98eSO85/YgLEskiVjMKdig3+gw/AqdgQE94Fl9cGIuPxWfBsHQqnYkPQC4zBKTpzhvunq/jHLolR8apZ07J8EnIUd7QhZHwpqEUpYJGxXjEtOgEA3jwdbrJ5tGqj6CyeiNZlY99mxcgIggFP6OPbatwAzIeWU7FJzKRIqubCS+mHTeHi3HUqNsmnFTnwBpiqtXEer/tjiakeIq1JXmcKG/C+alm2sa4Ac9WR+BnzZ5b/W0scaCsDv8wJCcDwRh2QsKAtTxP0vM7gVlmexJ00fxIYLpV3Os6B2DeeM5VLYEii0+OUiTPQaIEX6s6SwUucig3+kxPh1SxIqhepqQY9n4Qejz3J60aqnUYADiJSCXcqNjiqpqG4UxvcXN8UXqW2MqrmQtrX0Zbrhaq58HzNbMt8+T6Tz/btASmn0fgd2Ubx/GjGbBu1NsT0A6pcdvut3Qm9qvyyE0Wd9XUg66dWcCo2tN3zuJTOnaDDuEeqmg4iJWrwWNHxd8xzjsCPqJyic+fdrr/u1qtJ/lHocrAAvSN7S+PBq05t7LZ5SXGLUjP4e//XE3H84xCd8Z4VCQ8Lh9f3Kt2Hr//X0H1G7B6iaw+3N0kB3R1S0ha3ReoMpq7oHz8WhVk5UENX6/GjdRuUwg3ssC4uaCI0OG3mJ1/Qr/ZJ71l7sArSvm8L76aN0SuGqfHVnZWIClm6KopxoTRKjNb/+r0JwQ0AyqtmlCftZVaH3lF9TPlmvy8fbAEgYP0YvjgWdm2H6oPPmaSrFF/VXBzdSyQx7sEXZBubpE9mSb+NoAb1v2Wb12OusaZN0Pi8o9VvPIyYSXd9R2PAc7sLAZMSTeOADIwLs4+bNoezf4YwxMVQZpAsOqsW/1v5OlE1FzIH1oBX7VqMYbZAL6P0Qc8nYUvYSimt0c+N2BarskQGxanYuK2Muw1Q1VwInROHhY23MWnkAN0ekfKqu+u8qUyvOrVxKT6I/17351LTWCJ1QOOYAdjt3M3e5hs10SZLVJ0NmbiL3xiSn5mYNj2gvepArx6D4VRsODfWLtXbqp/oHdnQxXf5BgDwdiYDTfCsUEHqZ2NfOX/WDfyNTtoPPq/bLihJVaWxeGJlqFQX0eGs1SHFqdiwqkVtOBUbas8zj1eA3Y7TTbo7wYMxXeOBB03hlX/d6XZ9jD+4CdV6sYPO2rU/uj0kFjymj5vejkdQdOECgxhfb0Y/7OkfhVs12Y1GTJseHM0UACLe0JHS6Obw958fkPpFpNR57Xne+1+dYWr3r5t+hHfTxnAqNhR3krUMxDpZ5W0cP5PrMITGpm8m4sKTZmGOU7Hh86CWXOXRSmgg9oVTsaEwM5uH+azZLa1hxvLFcSiu10YiB9JEub+GmdpKJN7e+vY/LKnDieR5S18Tbjn1PrciYob2vTkDiZ/J632z+bFo9NghpH8VDe+N+s22U7FhwDfrpbhfZOt7w/kvSx+EfZhugjwS9vM20BqcOIYxjqkzdDAgQuYllflBVS7Bc+s++PTI5oASYV/HIXOg7Gjbs1VzHH/HYfoWVsSFK+V1lNzOY8dB1Vx8rzvwkmzjVD+xmim9sRxxTBjL9ihXHl5bmIZGr4BoeHqy22sRUbSsPIzjzanI6IhW7e3ZeyhUzYXXBy93G8+4nnm0D4ORnIqN+2405rO5bU0UX7gohYu28e72+zM2b372ynpkDn47aL3n3qf/XrrPiN1DVOlPHRDBOGGJQSGqmlwBIXHsaj0rZh7f9Eh/+mKwbhfk3e04X7AejB0v5ePdRPfDRTYVVHb0qxOhfJIAR3AmCrOPo9h1hNct70vdOau4wKiaC9Gux3g4AITOjkNck46Wm4G0gYQ1h/IZO/AV5uaZNhLPZldNB7Dgkbq+uffGZFyPCua/ReAPp2KD/6rxuPLAWXQdxpi36P23GbPT2gzbS4uw7UP5hkxsp6hyIB7CjdQr5gmpzk7FhhV5ScgwwDGLRKAfJLGkMo2HYPEQR++MB27je1KTSfsmypTfSyfaoumbiSg6d17qf4KbNlLKLR3t6s3T4Qgavk+C8nZH4iZqPMyJbbV9FMfDj//CJNiN32GqJUOOaqi8Yie8G/lJ7cztXVsqS9VcKDp7Dqfya1r2obsN0niwJMfM4vu7IYKHLjp1GsonCSg+xNTWas+TVZGs5r1TseHBg/1Q/QcGdDLhueeRM9WBdwPa4s3T4dw9Q2xaupSG/j9fM1vOUzgYAkCHA/2hai5o0Vek9oiSZZFZuFO7reb4uTF2PJt+1CQgMR6CyOm5sQzjOmA87BnDAea4Vfx+xvIIbAEA1iSsAgCkjZiJzB5m6Pt1WTtR8YV8ALo9CuUr+hEjavpTvtuDr+J3XmqTcYxV8izPfQt5bt3H2+Wxiam7jcvVHRQbx/H849t5WOW/60p51/zemjkGgLXrf4Kq6Teaxv7uc/gC77/UWTJqaO4b5tsSq7kjrtdiPON7VXPhiOMHKYyeVc3F7a8obkaXhZbt2vOeftNMAj9383xN4p/8Pd3IEzV9i33fjEGzTOkIYIqIHCID4GiTSDrAy9zx9Wwpvmh7WbLnENuLbupHMvJZ9WYdtl50PfKIqZ1GFWUAKD5wlN9uEVHbc9/SXXOIY4gEr07Fxu2aiDqNH49evYbwdIub/K23Ichf+nbuxgIAFHZhN4oikmjxjRs42nEJj58lCGyt8r3Zy1q93GrdFMNK9rGb36XN2V6ROlc3k7gwUlcv9W5Qn/dLyZ5DUp5LS+3uJtVOk/L2rFQJToXZXhcXFOB2t3ZwRx0P9Oc3q6rGXBE0npqA/a/oAsh+IeFu099rdN9G7F9D9xmxe5DETazE0RqqxmwYiFTNhQZfJ3BwBXFh2vbdbKiaCzWW6AcEcdH4eybT2z4dx4z9jTYjYn7ew04DYOhyquZCWLInr9v+yB+l/MWFjzahnOVsQTHCpgNMxc94kLr46W1TPDEOSceN4WI9yqt7+LuSfYeRM1VnYButZZDw3psY80YgDMOWr+ftTvsmCteKb/FFuP631s5dnYoNu21eSP/C7NDR2B/FriOSPyiA3bAUXS5vakOXkWPZJtBFd9xZ/EAb6XDjTorXq8dgU/9ZHT5Kbt+CqrkQ/OxO0/tD7Yqhai5+4wJPL1wcbkfVn/T6i/GfGfU0AOajilQwskbcvUeM0GRvqf0AQ6uitpLdDgD4T8yX6vBjcwXVt9fmqkYUT/mEjbc3MtnvpVdqQ9VcCBmnqy+Gfxln2Y8Zn5aNlGU82Hd/XL8B7DxmnCm+qrlw6lmzOkxJBxt/TvtaB8ehm2Dxu3p8pyP3VfxjF5pMYX0iInPODNZv+8SyjQdiOhhSeJW3zb5+jIc0Y7vhKSOCisAITsWGyn/XlebCnvdmclU9qzrSf3JoytttYW9kZK7EcunvxEsOSeXS2AYrJsmYt7Ht537QGQB3jCHAxhyBzViVtaPVb1I+F0baUdi1nYnBNM3ZLmzsz22kgzAYD6RjGjPfV+lfROO3oL8s8zL2KeXjVGwSYyH2sajaLfq8AoAWPVMZo1gq3LFi5IzPquZCxme63Vb17azcqZlmJ9zGem5sscokuFE1Fy6OkG21xPobQZjcjW1Vc6HRBwnSjU+5LQ2lOMY0Utgha9hzihsT3kUKz5xjVisnNVqigPVj9P2423HL/EVSNZek8moU8IigVVZMkxVVWL0LxftTpDlCcQkt8nYPM7LnpWEyEqQ7/34tv41D010VkTY9ituEiiR+H6ubL3HMudsbVc2FThPG8/Cs3gzE4+IIu+SgvPDkKbT+lNmiizfFqubC0EYdTOPr4nA7B+qid+T25cbDTGNJtAmr3DMT3huT4Vm1KpyKDVPqHkHO8nDL+t+n/x2670fsHiDyydAZj8Lbo1yZccVDfm/7wyjMyYVn5cooLmC+bXo+Ohwluw+a4qfOa4+smHlupaLe/k1QmJUD74CmXP0k9y0HjsTOMDEhRjJ6tCfy8PHhjkQBtlGpYdV4PPK9omouRLwZy1UhbPsAlwGNn3wdFXZpB+9NyVA1F64V30I/v0gT4+OunlYMVVlh7t67y9fqt7evgjW746X3mR/bTYhM7vITny8NjZaAVIo7MtVFiieS1WFIzLPlt3Hw+9Dst+jEylCTnr3YB6E7hnObEYAd7Nb9sYS/j+k8QFJ7LavfrN4b6+rRpiWXZhKdG2vnt0nuyih6qC28Nu+943d1V5+sD+3wf53ZB60qqITpwSFl1tvbV0FhvuY2b88KFfB92kZuRO/doL7EeBjTdDlYgD+ndpF8FUnk4QE1fx9iWnVF/IGNUp9ZxSc/cO42eorvVb8eik6dhvaqA8onss8n8o0nlnH6KYektijm5a5tvE9K/QcZv4vjhYlI+HIWz8vdGIlp3R1FZ87A09YCa+OXmeJ6tA/jAhVVY/7hjMze9Ucj3QLBnBtnx56psm+3oC0j0WzSWRTm5sGrRQiKjpgZPpEqbq2P651OmfrB3ZqR/YFdUiUmynnXztHyVM2Fzof6wqdHtmWZYrutqKw5aRzH66+Vw+dBMpT83ayJFA8wr0X0m/aN/0u+Yj+GzonjN0Cnn3LgZi3gSKys4pz2TRQyH5td5lpjlb+7sOyfW6Hp4wekOAWPRWH7N7OlNlx+IprbtInzx1i+Z9WqKL5yRcqP/C6665sSR2us//V7t/1Lz0+lpWJ6cMhd7Y/k8+zykGhU+7F0r4kMB3YdlOL6JVXB/Mbb4VRsfIzT2iHu31QHj3LlsS6H2WW+lH4Ynwe1xPW+kai4ctcdxwn9Dv8qjgvZiBrvrIy5jXa4bdOS3B2IeedlDgKWt6Ilqq2oyoFxrMqms5DxXGGMd8vZnt+2pn8ZzZloMU/yzyfm1Wx+LL9ptaL/JD9i7Va88G/xI5Y84Mt7uj/+Wbp/I3aPE0ljjBJAAFiT+CdUzcV9hTkVG2fC6AYGAC6MtCNkrK53bDT4B4Dc/kwVTrQBsJKeGaWJAExMGBmHt066iVPPOJD3OpPQvVgrU0pL0rSgHyei1oJErM5nkqSP68v5qxrTV1c1F0egcyo29HtsrFQ3ej473g4yeD3xog7zLcYj3yrG9gGQIOepv6edbVbmIVZ8F/k6g3XPmepAYb6GkL9HSO/Ths/k7ep35AzXD6c4HZ7T/XGJ9RKZMFVzwXO7WbJLf50OXDeFi7/9PmSH56wfW0vvas2RJZJivzkVBvPvERHOyy3ZfVBqv8ftQgDggAZlSfrSpkeZNlBjXYkJUzUXBwYhJozybPteLP9Nfri8Nu812Um4ewYYAyKG+7+eiFczWNseqWx2Ngro9j4AUJivuT1QAEDxjRsY3qgDrj/KVLuIIVA1FzwrV0bnMeOQ8Zl+u7opvDL30WN5yCgpQYcD/TkTJpJV/KxeOtiD1R/ZphSdYrfgB59nB1nyqwUA79c7CCPte2OG1M80FqjdZR2qSZKcfPMW0hbp6jxVBbs248FSbGPRGQZ4U+w6YnlwLtlzCLlv6navTf6U0R8BmJiwtzP3YkbOdgBA7bmJpnoEPuHiN7BGJozcVgCAz9YG6HTgOq53OiWNCwJZsO8fIKWlcpq+YY1E2uTtRO6GwqnYJCZMAj74yI6SPYdQdVsdAED+JLMqmtX3iHAxv5G3G+u3r5NO2dCj0m3T3A3/Mo7byYjvxO8+K2e7ZTniWvGd707TOwA4XVTgdq0V4xGJanj73pgB7wIWh9aFrGl21DzsydPdjIlwm7cxf1LJNpZ57IHFpnRkuzj3uN52EQmTbrArbq0PAPjpig4Qs/bYNlx/NBK2fXo/Ft+4UaaATbQ1M74Xv/OsdjrgkjvhE72/8SpzZs2ZMADqyiX6mjef5ZUXrZsJkKAhft96qJpLEqJGvca+AfepB6BHJab58veMOfBoHybZWVI5EW/o6w7VjdYk0c3K8agCaUwZ+6ueV2XOhAFAv8ADkh0g9YmYjm60xTXNqu9EG3fxJlOMR+45xLzKYsLu0/8m3WfE7jESFwSyibFigsTFwcisATr0NwDsmjZTksiEjDZLxkXQgVczDsIvSUZLJBIXGYJdp3CqQ9M32ULzcX0X6n+bwG9eAAbBa1zQ0ofMQuqsSPQYMxGArkpm7BfjAUX9jW2GBesCpPd15iTym7iGXySYFnkA2D/J7PiW3hvhugFwZ9Digm91WPAK8sfFUuTwJlNYuwnRTWyHqrnQdfgYTKyRjwZf6jcPOcvDUeWXnZYbC8HsBu/2QY+BIwHICzyRZ6vm2NqqIlJnRZrqaczXf8h+ZH2oq+PdriwvCSTJFX8T80X5NNtTjv8mSeKa7SulfjJudgCDJXZXPyMZD5/i9647U5c4kh8ugB3Qrqv+uK7KUOVWfXv040bcfx5R14pFXIWE4md9aEeXEWPQ0z8KoV8yCfZcwTYHAIyoV2di9f4l1WDKr+uRR1BcUIC8YYUIfDlJcpbqVGxS3Y11rtIz03RIMDohPfGSQ+p/d/1L9qYnn3NI9Qt8xexsFwCWX63OwxqtL8CSXCaVTvs2itfn4nAd4pwcmBJ0uEjtfMpz2yGxr2Me7Gdint0dTK3qCEByeJwRIbsGIVI1Fy6MZKrSz017Cj22PSO9M+br1SLE9B4Ad1sBAKuC1/E1I/qViTy86DJDmavWS781NtYFALxCg6VyTz7v4AI3Y3wCPlA15phZe9nB/Xr5fpzA8xHHya2/ZKexdFPjkbif5/VxfZdpjwGAOgdvY1N4ZalPaIxR3IlNGHx8+Bdx8PZVUBYZ52M9r8rSu6uDrO1TqV3G3w2/YG0OeCINAHN/UWe2fvjdMm8ujyumF31vEVX9Kcly3ojjLvs9ec419q4itUd8dio2rAxmKJELmzWRyvd59gTvc2M57hgoAisSn43x44/+jVHHcqS5J0K0i1SlZ6bl/kv5GW/Vb/WMkOI4FRvqJtTgYTUWm5mOj88F470spiZesucQt7MsGBDFx4/onsUoQCA3K8b6WZ0RegU5pPrutnmh56PD3aanuNrvZhRLd2tn5jIbbDJotOl7FXZthxJHa+7Y+r+FSv4N9mH3URPv07+Vfk/VD7gXnrRzmygj8wUwFQyizuPGoWfvofy3URpdlmTSu2EDLvkn+iQwHHnRV7nRqdUBSNVcSGy9gof/nrcLncaPlzYoMvAV6/RVQx2Q5HYPBl8f8MtEKE3PYvMCtkEubtYIvZqZkcfSFre17ItLGxtIdfOsWtVUrjvJobgA0yZyfIr1TYpY5lcXmiJ0dpxpkyhKz0LqSLNqkVVe3huTpQ2kpIMNTQYdtIyvai785L8JAJDuKIHHDtau1IXsG51YGQqPdkyFaO06BhzS4v180/cXHXBTuP/ridwQucov8ianai5JHc14KHEqNhxrr9v2efs3kfK26kdjenF8uRtrIt36q4nb/gUYOASlq+jMQkVnlqk8Y90ye8xH9aVJ0m2xU7Gh+CozHs9+nzEV/q8nYtPi+Si5eRNFh4/Bo01LNPaugvZTmFQ3++dWXAhA/bz3rZnwrFoVF0fYETorDoE/TeT5k91H4NB9cB66LDlLBSDV3UhG5++qxhA2PStU4N/pwEuy0+GYVl0B6EhxRmrwNRNcRL0Wa9lPROU9GHOeOq89PBL2c5XL4Gd0fzpkp+rt58sdmK7ZuVqqrxVRv5HasnG8HLhl9rUo1rHclob8NzHJdyqrzh9H4VQY4mPQMP1UZdX27P518G3ODtNB26nYuD2gU2G2WqrmQvWl8mGe8hRtB03rSEqaZK/Y4Ctd/ZMc11JexraRPbE7oVHqzEhsbvmHZX8Y203pyBF7+lfRkhuIwVnM7mnNtQpSemJWlc8SsGZ3PLwb1HdbxrcXmuCWsz16BURzYBCRqixPkuqf/b4d9ROrcUAlco9i7AdiRkWBoVXbVM0F7RUHhjfqwG8sicTvKRLdDDkV8w2HMS7NOeN78vFFYZ5dc6U557OV+QQkH51EqubCx1k7EbhpFCqvYMKsXjFPoPIKfe4R3XiY3XQvbNaE3+QCDKKdKHLfQDTdVZH/XtysEcK+jsP51SG8LudH6WPxgad1jQ1xLJAQ54zjouV8azMtDhmfRWNS7TS85R9hGpdUfyLjbaToC5PaaVwbxPY7FRuKr12TwmvvqOnWxYJTsfG1+WDUMh6H/Nx1eH4ijHR1YBTSOi8ymVIY6+a9MRl1Pj2ODWEMnVZ0hXCf7tN9Ruweota/jwYAZH5kR83vE3Hj4Ui3jBTZZaiaCzmPFXMVLq/atXh8gqEFrCVr4V/FofDESXwSqBtwi5tTheRMt0xc1KRYKb9+fpHYOmeOdKAo3q/bGnV8doLpEFxu/R44FRuCn0vi0n0iUV+e8itf4bYUBjDJsfJpAtpP0VUZ1h7bJtVV1VxAdCuTtIyk4B0P9OfvzjguovHUBNyMiZD6AoAk2V3bsgZSJswwMRJinxjT03PeCsYwEfQ4xV//yyIA4KAoVhuFt68ioU6FjEqGV0ggGvZNwbo/lwJgql7X+0aiMC+fp6VNrMTbwxSmai68fVI+LFx5XN8Ez/7JNuTAnydK39DYri4jxvAbMfG9O2mu+D/smziuwkrx+xy+gPmlaj6iquXmln9w/2ZESTeK4NjP+oVUUcQ+JOAOYx2MdQwZrQsKAAAlJVA1dsub/lU0Lg63S45PS/YdZgf4uYlI+y5KshuhPMOShqL4yhXUWJyIxu8mIOhFpsYiApV4BflDDdMPgVbSdJoH5DOnKDWDtzn7A/2g1GHXRbdMFMEpk1qzOzJKslXNJTEAfSszBjVk7B7LujoVG0doW7NrDX8nCoyobgEbRkvprZh3UfDUqnwFy/lGdLvzCf5+XCmABcURoaeprEEpJxF/eLNUf5E+zZYBFBq9n4BnmnSwnAeu12bAs3JlqJoLQS8mSd/BWM/63yTwtUBcR+iWQfQ3R3FUzYWGXyRIY7f5PHktFkkUulCakNhdUlyvYOZ7kb4D5ftYRjcer2S0Dy48aec+uSgOCYeMftNEtc03T4dLqrhOxYYBKUwF9twYO1a3rIny6h4U37ghAYMQAEj+b7LPv2OjZ+KU/TK3gyNH58b1nRBCE1uv4GHefr7SGCXH28qnjHmNP/q39D3rf2NGJQR0/15GmpWznSOEEhWdPWeuG8B9fNG+Yjy83+zEfAIGDt1nGu+T/KMkgYGIaCyO9a2z50hlWlHN3mnIjrwOj02+uNaP3aodem4GavVJ5XmKN1RGYRHlTUKc0087THNjRV4S6n2XgPQnZln2J8A0PcR6ireRToU53bbaE41EY11JqoqLw2WfknmfBPN4vSN7m/qG1mZx3lb6namcVlkurwMAE1wa6yCOLzFv8qnoVJgQtuihtnDsv8WdghMV9HXvuPteoxIAJSX/j//+/27kv4Hug3XcAySCdWw8cdi0aBsXtXbvxCL5nZmmiR7TqT8utalnWjCMh03K07tpYw6V/I+QsU50WE9utxxOhUHob/tuttsF17ipuDtUUd6q5kLPxu1RUljI3406loOFzZh6TerMSITE7uJppl9shKdq5Ep5EfgAUeGGxvDupvvguvJ4NKr+bF5opf5t+RCKg/wkMBRjf1iFtdrrgQNtSyzjetWti/j9f5n6E2BS16xe8yz7hBuf9x0O7DoID29v3HC2wZa5c+FUbIjef5ujQlIfimWcKLyKkY07mvIdcSwXi5vJtyXpX0ajcp4nGn6uS9qfzo+yBGgharevGPtGhaHYdQSADtwiflNjm/mG2ywIRcfS3fYrtclIZeVtjNciYRgaPXbIFIee+x05g99b1HVbnvSdZkcg62HW7zNytiOuSUdcHRiFSqdv4a8fF/I0JFk2qt1QPtW318aljoxRqr2jJs51uGCqv/j72fSj6F3pBgZlduXpxHgx3R/nENhiG5rtKcdvMd31T5tpcaj3nT5f0r6ORvBz5vmxIi9JUoP2qlaN+zgy9mvYN3Hw/SgBl4ZFc/987r5TWf1uDFc15mS+7qxEyzEAAJmf2BHwaqLb8Xo3ZARUMJalveLgB3orIA+rsk+uDEWDUnCcstZF4/pnzJfSeLZqjrXrfkKPAU9yNUNj2TV31MKFDueRucyGhsvLo+JKa7ASAHghPQU9K91Er56DUXzgqGWZRHmvOywBgKzqcGGkHTUXWau9AkD6kjYIGm7Q97pDvgUDorD9W7bvpH0bxW9njenoOfNjO9KG69oLIlCJ2Eaqn9Ve3PORYVi36gc0nxeLJm+bx5fxUF7WnsiZXntr6du5iyv+pzLcxY85FoOihzR4+/lywUhZayiRd8MGKDxxUnrf+uM4+P51Vh/fnl5AcZEpvSkvQ/9mLLMhvfMi9Bg4kmt4uKt/r15DJMEuhVPashi0f2RfcCo2lNvSELc7n+DhP+UmoKYXc9fT4UB/VOmZaZnubsjdvifW+T8JrKPNry/Cq9L/W7COoms3se+xL+7p/vhn6f6N2D1KJC03TlqnYsOAp5kU0ttX4WFOxYb4rb9hx1ezLP1TWS1AhdnHufrM6TgZMMJIS3J1VRz/VQwGlgzhASC5HXOU6N20MbZ9x0AGyC7Eqi7iwuVUbOj4zATT4UOkdcdlyfvgqky6pL3q4EwY5UWOZUUyoi1tbLGKxwcYQIBRIim+B4D4w5uR31l2fEv9eWJlqGU6VXPht7913f1m82UjZJEJA4AeA57kzyFj2I3houPbkfumA2cn6DY3wc/uRPfHR+GlZcwHUNbSFpwJUzUXklrL6JvG/iYmTJQWnh1vNzFhAND3wV1o+HmC5K+LmDAAHBhgVs52rkaT3MYTa+OX8fyJCRPrYNWPAFB0LB23nO0tx4Nx7BjbYCQKEx0WOxUbGj12CPm/tTSlo+eJNdhtYs/eQ02HLzEeAFTIL8frGlgKv3ymrSf++nGhqb67P5jpNh+RmVrmv9n0nuqqJDHV2+ntmU2FkQnLe51JpIsOH+N5iPmIqqRGUjUXIl+PlZgwAAh+LkmydaPbigF+0ZJvImLCbvdojwfjZJ+Fvh+xPJM+mWX5HSkPoilndD+A1GZjOuqTurOEGzwPD7T+OE6K4xPE6tXb/jAvw91aI74T14TiK1csvx21k5gwAMia6mM5dinsel+mMkZMGN02GvuE2mtc/9zVv/jAUXx6PhDlcs9yQKK072RQHLrFCnjChcrZV6X0qubit0Sq5kLPSjfx5ulwru4MDw+pXmI9Dj8zQ5pjxnzF+DUXJZryAdj+AQAZXZkAwwpu32qdBiCp5hmZMGM90ha35UwY5bdmd7yUH9UtcrL1jWNM5wG4VasCnIqNI1qKcbocLJDa51SYoEvVXEhfIuuyielEOz1j/eHhgdafyL7OKG3mR+b99sKTbM8oeoiBCRXmMXX1lolDTXGz37OjZ+P2UnlrktdJ/e1UbGjwdYIsZCgughWJ3/vUsw5T/wY+wb4FMWHe/k1gJP69hlc3vWPh5fmz2M9W9bBa563G0eqQtbzNqubC4EYOnv+OVr9J7hDEcU1nKWP9rb6jmM64nv2eagZFulepGB7/lr//drrPiN1DJE7AbbOZegpNZPJ7pGoubG1VEU7FZlrYADapA59wSWkXX65jeVgtsbdGxmB2KKo3QzfqFokWj+GNdFWcrEfm4MxEOxq9z1QRMpaxRarnw0NRmM2cRw/O6oLUkTOR+Yl5c6C6bLxeaiDePoxvokaG8avsBBy+dV3SSweYwa+quVAlt9gy/5ypDmkxtWqT8R0ttu6YMadiw8EXZkh5kG+ShoJUW9VcKLG35m0Q1XnInkDVXFiel8hVPClMlISSDdDIxh3R6P0E1JmdKB1M/vp5IT4PaonQHcO5SpxxgXf3PcW2dR8yCouOb0edOXrdpmXpzO3nDZkK45qdq3n/XHlc9xFDthj+5aogcOg+U/7GDcdqLDbfLhtQi05YjXT6afnbUhnFGxtxuxECOyBa2Hibqf2+/dntc4nd2sYEgASdL9bfs3UoL7/xu2Y/edUyrTd++l/c0cyIPpVmvkERidIubLyNMT0XL0HVXLjeNxJeQTqoh3gr4a5dVuWoGnNrUPP7RO7wVHy39y1dVU5EQRPRVSluufV7pJsWp2LDI0fOlVmXzFIBUubHdvQYOBJT6x7m31eLlo3cVc0Fr5o1saqgkrmNJSVo8LWsvufbn33HwhzZDofmkzumyanY0Ga37p+PHIxTGlVzIbcXu+3O+JwdxEYcy0XjgQdN453yBWC6hWr4RQKSbhRZIlDSs3FtEuORM+a079tiQ1hVrNm1hgMSBT+90zIdAH5jLb4Xfb45FeYvkc/7QVGm+Mb1xtiXL6SnSAxPWYfgwuzjUhyy57EqC2ACAeM8s2LUjc/BI/ZKea275iPVUawfgV2J9On5QBSlZqDcelmV+dUMtocXDIjCpvDKMNJ7Pw+CU7Ghyh7dJotQht31iUQlJdj/6gzT+ulUbAh4zQyMUfN7a4S+dkouL4/KbPpWIvJejjTFff9sczgVG86saiaFG9cvq3dUTysVTzHN7W7tkDnC1/Se0gS+bL6NP/62AyETdU0Yin/HPgRQ/ABjhCn/mjtqmcax1f7pVGx4s85RaK86pPcZn0XzsxTRuTF2rjYszmOr+ollL7zcwPT+Pv13031G7B6ifiHhfKLSodip2NBt6Ggonyagd7ueuFR8XVp0CKHIuDCLDhZHVDtruah4JO5HzIP9LBcGj3Yt4d3IT9rEyM7GqdhQ6+hNDptMjF9J8mGe14UOzBg44NVEnHpGhlCmulwsYhvVulU/8HIp/Ssn2UIZWr4SdlwPRKXfdF1s70Z+mFQ7DU7FJsHsEjkVG0cstDrI3y4pkhbaM7F2CTnQXx1j2SfXVX84+4+Q+rLCn2a1HqdiQ7kTF6S+uzjCzttEcap7VkSNJYl4PeMAD8t+z84NrLOG1IdH+zCoGrMbUTUXjk30kfIAwP16WX1jq7pR28iR7I1a5dGwFOmLDMgn+0dKjigBYGUBizPlTEvJz5NI7phfsXzjgc2pMJAS+r06P9l0Q+vVshkyl7E0+ybPsMzHs2suSvYcglOxoSglTSo3pvvjABiKG9WP7I5OTbplaovxMEfQ5FRW8f4UU3+L9dkzdaapHyr/XZfH+2v5IsleCgD3VUaAJ0Yyzh/K6+8Zc7grCOMBCGCSezFctLcS82o/JZYzceTwFJDtBcs65BgPydH7Zejz6csedisccCo2BJSuIwGTEuGxQ26n1aGv6MIF3mfNFso3zSKtLKjCmTwxD1VzoWQ3G3eiY25je+o9qtv81P9GVr1z+rVD/b+ZQCl9CDuILW7WyLKf3B1WCx5jYADRFbzQ+B2zTzZVc3F7JwDIf03/fmnfMMaIVLEzuy8wjRHKR3QRYOwHp2LjoBdks2J1CK36cxLOTpCdJwPgggkxXdFDbdFqrwdemj+Gh7sb10SpsyItGSexriKRc3p6LwJbpM6KRIuZcZZlG/P55pFHpXiq5uLw8lbjcENYVSk9vSd7awLRAJh9Iz3TzZmI2hvw4QETI2E1Bspiyt0RufwQ8wGAU/bLprYB7NbaOG62tWK2zGF1T0h9YPWd3P03Us5UeX0vtyEZKRNYnxgBUggExLi3iAIwaofIUIn5i6RqLnhu24chR9ktoUf7MOzdZmYyVc2F4+9YawqJGjaq5kLgy0mmb1J7fiIa7rgt7VVkjynWkUC2KK9V7XUXEvfpf4PuM2L3ENGNmHFCe21mNxKFJ06iumdFPqlPxzlQWOLJ04hEkrq8wqtuF0NVc+F6YG1TmKq5UJJ8GGt2rpYW3Q8C9A1hw7IF0J6+ZcpTrHuvZg9A1RiEvbGOqubCnJAAUxqiTxuwm5W/bwArQuuhz+ELyH3TgdT57VGYm+ee4YhuxfN6aNRYePgwSee5sfrhoY9vO5wfbUdJB1Zu3ZmJ8H9dvw3Kcs6HU7Fxvz200VR0ZgFJjGkq7tTGXLZAaxJWSX1SY3Eib5MYDgDPHBjM6xf6YCaquJgefeOpCei6iPkV2rxgLlYVVEJWr3lQNTPqktWGQ4eSC0/auVqhWC6hNjZ8KR2hs9iBZW3LGjx9UWqGtFETQAOpPYpljjqWI204TsWGLiPHmurk7jAq1quPbzt+Q0txig4fQ8ATLsvv3n3IKB7PXf5Fh4/BqdigfJaArNtsTtSbzsp4NZT5vyGfSwA48iDVq+hYOn+mOmivOEzliO0I+Gu0VN+CB89IeRpv2ziDLPixud2jPS6OYGPDf+1YKT9SQbaaP2I8+o4U3nCp7CCb6l97rj4HxPSiXy8rxgjQkek8w5rzd0mtdbcGnlWrotH7CRITCDA/V07Fht/zdIGGeLA21hEAWkyPY4eaUmS+jKVtcGzUTCYosRgfM4ODkNZ5kSlfsU2e2/aZyhQPflJ/dm6r/y4uQtKns6RDNB0yKY+Y1t0tD8/EiFf+lWkDhHwfK72/8KTOEH31ky746DZwF69X8LO6JsGleN2PmdV6EDwy2XKOOBUGjEF+qUQ1T4qfurAdT0dQ8GKfXPczQ7Z7bd6LA21LJPclxnIBSKp2WY8wcIlvc3aYxlrUpFj0T+/u9qDtVGwI+K6Yh4dM3MVva1XNPbx7t0NXuKqdyIQubNakzHlF+RZ2bQftVfNawBn56ebbIP+VTJPCu2EDZL/cmscXmWgrRtgqf4AxwkZSNZfJ6ffhW9dN8yAsmZ0hsj+ww9vPF4G7K0jviUTmzatGdagau5WmepNAkdIa05OvRgAmQWnqLCZ8PPtniCTsAHQQEGObjWWomosLgIms4lPY/Mn9AICBvpQq1oggXU7FJglG/JKqYMhRDaE7hrtdo4zfTPQ1pmouxG/9jccpt6UhcqY6UJJs1rr4T6GSUnj5/9d//+10nxG7h6hfSLhpYhNZLb71ZiTwhUfVXCYfFarmwhjBFqjqtjrcmSQA9Hx4KDYvnCct8F1GssNe5id2Syli78jePPyI4wdYkVOx4am0VBRfuWJKL2427g5adCOQuqA9PghgNlKrW9bEkbgZ+P6hechZrqvnkW8U7hcn6QBCtjI7q80L53Eo8drzEuFpa8HrU2tBqdTdT2doxE0QAIoLCvBCegrXpxcX379+XGj5rahdLRKGmdpltcje7B0Bpd8RKMOz4NGuJVYGq5i8VWfiNoRVhfYy2+RJ+g8wJop06qtv123iTj6vS/AIbavEE5i94yfLvgaYbVLKRF3l0qnY4OHjg26HZJuYmyW3TZsZ/SbgFCKvIH8uDDD2j/gs5kM3gWL9pl9shM5jxgEAR1oz9qPn1n08POzrOEumSKSJTTpKqItDq56D/x/j4fuxvumuzWTMx8dZsloXItnY8woJlGyCrA5JwU/ulQ4L9P+FdN3ovKy6Fj/QBpsWzUONxQwEgJDa6KCU3nmRKW1ZG/lX2ay+pNJIf70OX2QH+WHs5otcHFB+J593IG+yw122AMD9Yq1d/5NlHdYe2wbvRn4o7n5BCq99mAFQ9PNj375nk0g+h3pHxJjaBwCNPmDtqDH3DB/nXFAikHH9Mh50iay+AYX1bNzeFG/DsgWmcgJWTODPR8fNkN6R42n6TaqwRkachEFEpFamai4831Tv/5R2hXAqNvQK0sMGpZxE9Zh0t4d4ojXXKli+M94spf+gq245FRtCRiW7ZcJVzQWfNbul319lJ3BGOevH1qbyxDwafCXPI1Vz4ZkmHXjYtxfY2lJjSSIKHjyD8akMLOHyEKYeLaqteyTuN61PlK8Ij07hNx6OxCu1dJ9udWcl4tw4XTvC3Tih59afxuGb+d9xZ8PL8xLRfkqsqY8ABsfOmdnd7Ba18MRJjr5rLM9Yf6JBmV1N79eu/ZGHxefvxahjOYh56DEAwKVherkvNrXjodFsPc26fRWPHDnHVc+bvpGINbvWICNCdiRttS6Tr82iC/p8/jCwFYYezeP1pTqTSmPRqdNu51rIRIbkWefhVOl9xqd2yz6wCrtdogOGiAjHHpuYyuPSK7LQWUR/9N3K7Ga3zJtr2pecig1BS2ORF30VI6udltSORbKaF1b+xcjP5O3OJ3B03AxcfzSSx3d3/rtP/910nxG7h0i0ERMZFeMGQComaYvaMcSi0vgbwqpKABlx+TqaWc8mkbjywFlc73QKY1KzkDo7Auv+XMoXlNw3mWSaDs9pw3R7kMINjXkZBIl+q2eEabMT6ykyDQCwKn83jxMT3oXnR2HiAaIwKwdDj+ZxKHEClnAq7FaOfG2pmov7RinfXYdNT+30vZQ/wNSr0odUNy+WecncqN3IXADAl0Gh8Bug26pQPHcHHYp3xPFDmQyYt38T6QCzKngdSpIPo09qL7wb0BbeTRrhZm9mp6N8loDnT+h+a5yKDVMzk/nNCYE1qJqL+xtqtWsIj19rYSLGlMJ4A0xdxVinzof64vLaQDgV5oh3XdZObAirKsV7eOBYNN8+3NQPZK+X/Z6+aR6Lqw9Vc2F1vlkKb/XsVGxczVNk1Fe1qI1r9RhwzYrQetL3EW0rKNz34wT07tj3jhvapkXzeJqYboM44IvYNlVzYZJ/FNrsHqyP8ZXMZqUoVT+8WZVFYQ8dfpTnuaqgEno2icSXQbr02jjP6dlrswLPbfuk707v6KD0rCbbcRGJjlvFQ/XzTR0YcSyX50d/xSWe8LS14EiGntv24aHDj/L0+1+dgcNPM7uU4287cPxttlbMPb7d1Ga6WbXqi6ITJyWEwLTvorB1zhwpHtmeORUbCvM1nla8zSBa5r/5riXIVgdccsRrnPdif647rgsTymJ2RXAIq3VEpPUrvkfjnZX5+3Pj5MNmj4EjkfVTKynNijxZBbvE3hrF167xdMtD786u5KsxQ+4cCUDz189IdRfb0mx+rNQHLb+LQ/Z7dql/nm/q4LdM/kP2cyGAOxLnwORTulZDvyNnsLplTan8aZ8Nhaq5uFq6eKBWNReHJZ+WtUv6FiJR+NbZc0zfc89Ufe8zMg4EykRp9r8yAy3LV0T7t5hq7CA/O79ZNlLVn3Rb4TrJjIH5Pc99HcVyPFvpdnsiOI9xTKbOa48Y37ZY2KwJ4jf/ClVzocK5IqmNFZOzoWrM6bYR2IrWmdYfx/HwE0/clOp0/G22Xybf1Jn3ThPGQ9VcWNpcXnsAoO4jx0z1pXzEfVVMRyp8ga8kmt4bhQ3EyPTxbYfMj+x87aC81jVnKJGLmzVC6Gzz+gSwmyuruhAFvpKI+onV5PelLnHcpXEqNnxc38V/hyxiYyQ88Zb0rSv+wfYeYpz/k+j/tTNn+vtvp/uM2D1EZCNG5O45eGQyAKBmQnmOWESHdnKcmve6Q5JsiRLPd+cP5XDbRI3elzfKHgNH8mdyOst/+yrYvGAuz2/XzdvwbtjALfMIAP2j+sKp2NB90EjEH9wkxaN04mYrLugixaalW+ZvJWkT31X9OQl195ZYLuqivr6qudDxmQnSb4pndbAyHlZEqTttVGI6+r9mh+xQleq1OmQte5/4J2fSjk9xIKWdDF0dXUF3smxFDfum8AO4qCoFwKSuompMhYVuNWos0Tc/yv90nAMeCftR0ee2FK5qLmwKrwynwhybOhUb5h/fjloh7Ka2j28702blVGySqqTVIUncFHd9OBPFndqYvnHTN3X467zXHfD/g6n7FGZml8n8imVk3b5qCTMull/v0aNlSqzFcU/vw7+Iw+W1gSjfPYfHe6TyNazL2YXUee1N6Skt5RXfLB4e5cqbvrtIhH4o1smzVXPJcatTsSGjiw6hv7hZI+6nivd/WDWsjV8m5UP1Fsmp2OBlu4TG7zJmv7F3FdOcSJk4w/RdqV1G+PXgp3fCmdJHyt/dgbnyCrO/Hqdik5BbiVTNxe2YrNpA/+ca/HSJdTX+ie0BdIe+Il3vG2kaO5ROXD+cig3Ho3VHs7XnJkq2uut/WQT/wTL4ziBbb6ms9Su+ZwfmT9nB0qslu3Ugv2QE9CPWOfcNBzy36j6pjv8Sbtk2p2IzqX87FebkW9VkwCEA8JuWgGNjZvJ4RlI1/UYv7bsoUzxVc+HB2PE8fO38juiT2gsA8HuLukidESml8Xr0rFvm2anowsLJ/ux7rMrfjcWX60jxxXaJbTkz0W7ZBqKGfVNMexeg+y5UNReCd7uH8+bCj1JXAHQTTO8yP7bj/GhdjZ6+o+g6AABXmydfmJw89LbQwX7L/LlSP8Xv/4ubDVA5Nx6OlPIRwW5IsEntpfk/2V+356vw564y93/j7zMT7Wj8rq5yePbPEGl+FKXJEPFl5fX3TF2YkzZiphRHXFPrJ1ZDk9WX+PsIV5HlmkO/T64Mld6fsl/G1XWMQbw6MIqbKRjXflXTb+TEsURns08b7JPWofOj2TcsOpZ+14Kl+/TfRff9iN0DRD4Z/N/5AOkTFqLno8M5WpRTsaGkg03yleFusvpsbYCbnU5KYdIG1bUdNi5h9k8Zn9oR+Iq13xP6fTMmAj7xu6Vwq/gAUyFb1aK2KQ+retyJyqrT3cQvK427uK0/jUODL90Yygu/KX70qxNR/Yckk98kMZ1VPzkVG7J+asUPWmXV707tTlvcFsEjStVKdlVEdqTu9NiKQXPXH8a2WfV9452VcTyqQPIVJL6n/x5tWnKVq7K+Y+qsSI54dWloNDwLIflxq7i1Pq53OmXZB4Vd2uFiUHnUmZOIJbk7MLxRB7d9lfZtFEI/ycfV1gq2zjFLv71qVOdqNmUx8wADH/DavNfUZ5eGRaP6D3rd4/P3Isa3rZSnU7HBw9ub37BYjRFjP6kaQ0tVPk2wjPtS+mH0qMSMwVPnRqBGvSscWEKKW+rn53a3dti0eD5/5+3nKzn9prJjug7kYCdp37dFZvcFpvFhNW7Edon9aLV2nB9tR60F+uE15qHHuB2eu7WCj7GIcMmXX95kB/ymJSD7PTuOjZkppfP2b8JvjgFIfWD1vW/2ioDP2t04N879zcb/hay+X9qidsjsMb/MsWBFt3u0R4WkVL7uZE2z80NeWeURFT3UFhuWsm964+FIS8AhInF9M+ZP5G6dA5j9lRHYoixSNRcmnbLB1ebu1v2Y1t256ucrJ9vgQNuSMtc+d3leGhaNW4MuoO4jzO9e0o0iTAlod1ffRdVcuFR8ndtvG9/dzT6U8akdVbM90GDRfhQXMKfjJ15yoOHnCfCqXw9Fp07zdNSeu60bkVNhLkoICMyzQgUU37jxD+05XkH+mL5xCSY26VjmemnM0xinrH556URbHGpXbJlWXEtafxzHGUZ6L/qGoz3Lo11LnGlfjds2iv1ZVhnu6upZoQLWZiYh+eYtTPZnjHRR57bw2rIXZ1Y1Q91HjuH4Ow40fsdwC+zpBTUvmZflrg/+k/yItfz5lX+LH7HDj396T/fHP0v3b8TuIWryDpMqrftjCZyKjRtvExPW8lv5Wp1uPIo6t4VHm5a42ekkX1S8qlXjE50m++0qXvw58BXzIePk8w5pMfJZxw75pIIkLrxGidNTNZjK04hjuZh/qQGPMy1rFy7FB0n1UDUXsj60c6meMW/j4mQltbWKX/yAfGtiJOO7Ey/p0nSRCRPrSr8Df5oo/aaDd/zRv90yb6Qmalzo3TFhp+MclodcAJgvqIGpmgveDRugdq2rXIpITJiquTAg5TQbP3/rCI/uNtey3ol0PIodDozQ6KJkT9VclnDvRK13DeH2blmPzOF53KrmwZkwClsZrLrdqLw3JfPDxPBGHaR3xjGS0v87FObmodLWFJ5XSQc9T2LCqL70Zxwr3n6+nAkblNkVtg/ZXDy5MhTVf0hCxqfsW6fOjYCXh7ys8nILC9HjsSfRs/fQuzqgORUbt0OjOokw9Z8HsduPjM+ikdV7Luo9epSrywBMHVjVXGiXzG7Oym1IxrcX9FtBcuwqUqfx4zkT5pdUBcFP7uW3LmI9rOaIWO/Wn8SZDhv0+4EDNyQmzKnoYChifxnJqdjgHdAU6/5YArKzANiNTP5rDn4j+1V2AmblsPlSmKWrLOe8a5eYMLGctK+ZGrfPWiZ4qj03kc8tK0qdEen2Xcbn0bxt9GfVpuCRySa0RlVzceASd/lvWjRPYo5SR7JbANHXI9HyvERTmNdmHbq9wp+7pHqK9T79tAPef1YyhQPyvK+bUMPUTvptZMKMdRHzpvxcpThI9J3cpXEqzP6O0HwPtNVlyjQeezV7wDROrepxuakn9rb/mceZEtBOqkNZ5FRsGORnN7X9TmlESh86E/vemMGZMAA48BK7XRaZBuM8o/LoRtRteaU3z8nvzIS3H7OZEpmwky9Y24Aa21KUniUxYXTTCIDfBFoxYQATmKQtKpu5dSo2HGpXLI0nirs8T1ZTbPC1LBDMn+RAwCQ9zvGoAtRNqIGS5MNInqK7ILCyVbMaI+JvUpVMnd8exTeYHzFiwgBmN6pqLj6GiAlTNRe320ZxEU6UgqdlfGp3Oxbv0/8e3WfE7jESF6nUJ2fCf9V4PlGNNxFBw5glqNeWvTj2bAUpn6LLl6WJ7pdUBRX/0DfdqwOjJOkSAHhfK5HrUKr2OK7UvoiQngD3ku93Xb2xPLQBVM2F9m/H4o3mD6B6jC7ppjT+rydKm47VwkzQ7aSOKJLVJu25jV35k3GwcYG7WSKr1TX8PAG3u7Wz3NjOjdFVPir/XRcZg2dZ5iku4j17D0WnA9d5GEmpjQu91cFC1VySLzcydKe4Yxp35PF6Pjoc3TccRa0+qZabBtlSGRk+zwryGAHYjUfjnZVRsE6G1aVyg5YyYcDJlaGm701ofiJ5N2mE4287kP1zK1NbG/RNgfKZ3kYqq+5MdlhMnac7ce565BEOSS5+59s9mMNRApYQqWBAlGlD9fFgCI9rj23jSJfrf1nkdvMblHLS1A9pi9uiMC+fz4tLHc+h/reMcSebJxJsZPVmKr83YyIs+9MjYT9K9h22HO/km8Z4KBbbE//377g6MArnR+n2TQSdDACrV+hqiI8+MhIAc65N+axuWdNUtliGaLM1vzFjZhp8KUt2xfQ0T9K+ZSpnxESIAAxEp55h7Zuf3EEqU4Sypm9krOPlIex7X21RD07FxkF4KJ8mP+fz36HlK8G/1LE2AAQtmwhVc3HocMpfXGuDn5MFAQDQ/u1Yy77K/MSOrL5z0Pa9WFMab/8mCHwpiZfhVGwIWcziETLcxRH62uK5bR+031tIZZC6GpVNrhzIbsy4ltBv0ddju+RBTGhQyiCUxRyIAghyGu9UbKj3XQKKHi8xzSljuWccFy3zM5K431BdyM8SUc0dtbiza5Hhein9sPQbANK/ioZj/y18ECCXJZax9tg2Ux2Mz+fG2NF01jHLOGWROF6tmNTV+cmmb0VEfvoKu+gMnxi35o5aPHyuQQh3ZiIbP9kf6GsAOW831o/n2TUP8fmMAadb8FHHcpgt2KHL2P/KDKnuIlkxDFTfpc11Fzff+eoInkZGyqnY4DctAcEjk9EiYRhu9tLRCa36m9J4+OiO0Qf5mUFUyLbdqdgksCUiGptOxYbO48aZ+gdgWhFEHuXKWwoeMIcxX6EBGq731QGFiF452cZy3DsVG3y6n+H7G9m7B76SiPSvdLcgpvL+Q+g+auK/hu6rJt4DRNe8nfEovEsPjkRedWqj6Ow5Kcy44IvhxgNG/msO+H5kPhSdeNGBAy/Li2/umw4ciZthuRjnvGvH0bGyHcD1vpGouHKXqVyreogqYCJprzgk9DmxHaIKEql/lSVNM6YHAO1lBz/8n3zOIaky3E1eZeX9j8a1SsvDPDyg5u+T6kXqDkYJo1UeeYVXMWL0cyi3gYFj9Oo1BMX7UyzLaranHLcvsqpj5L6BqDGtMjx2uCzrLj5n/dga/kN0J9R30w//SDx35d6pT4ykvergvl/cpV2VvxuP+EaYyicSyxBV9rxCg01+ywAGqy46uDYKPu52HKV9G4XMAbPx0KixHA45bXoUgp/SQQqMdRfLmHt8Owa++Qp2fiSr7c09vh3PZ/fjsPru5gSFlThaY/2v32NlQRXMDGZQ6alzIhAyfrepTx86/KilnZmYZ0zr7jj5WBDqzkyEh48Pzg5ri9rzE3FxhB01FrtXtRPbVta3N6ogWeVT1jc4M9GOYU+rUMPuTh3mH1kbzk6wo87sRHj7+eK7HT/Dv1wVKa13QFOs2b6Sh10eEo1qP8rrn5JUFVr0Fcv+sPye0a0kuxbjWEz/MhpBL5j9MgLA25l78W4AU7c9P8qOWgsTy+xLd32hai403z5cAlxy12fGdtn3D0Bi6xX8vbhvlbS+wv0pivn+nreLM7bu5jIAXOsfhW3fzb6rPVWk6ttrS+AZ7trhjiGLadHJcl8U622Vh7efL7KHN8HhZ+Q93KN9GNat+oHXuc0HcdxNB8BAgIoe0kzliWrOI47lYnGzRm7LvhNZ9VnuGw4ceWqGNObmXFIwvrrG6+9uDPklVYFrQTiS39HXr/eyduMtf3mtvrw2EImtV9xxXShrjTOuzarmQsTeQajVJ9VynmV+YkfasJnocKA/qvTMNOV94+FIVDl8GmcebIiai2TbSnf1+09STWzx06v/FtXEI4M/uaf745+l+zdi9yCJEpnf96+TfntWqOBW4mi1AB16doa08AOMgboSyhbdmM4DePjKcZ/Cqdi413mxPt7XPEzlVlwp2xYQcpRTsUF72SHFNW42VCeyfzE6mQUg2YGQKmBZG0LjnbqqIyHqKZ/pUjJSZbjTxi8+Z3weLYUbJWFiXI+I8DLjGsslyH1VcwElJej++ChU3FofW66zaem1hamGdjjQ35SnMV8/7yoot0HXP/c8d9kkcaS03yhM/cqrRnV0mjAeBY/piHQxrbujZu80zoSR02djPs+mM+PxB/wz0OVggVtJXrdDZhcG9F8Ez0hdYIYJVzUX1l1ji7x3k0ZSPsZNk9DMRPJspfu0Eh1wuttwjUyY+J5oQApTa8nsrkOY32xYzXLs+M8skX5TXjSPhhyVD0QiTLSYLvgZBlQh+qQRmTAAeMQ3wjQmqLxxjTtaMjbjGnfElTf88FSaDBlN78V6dzt0hfuZIn9yAJDVhzl+jnnoMaiai7sFEEFKVucnS+2hPIvOnEHdmaxe67J2csCDGosTMTUzGVakai6cLSqwfGek9OcCYdunlyvemBoPXkQ579r5vKw7KxFqWDXLse3dtLHpm/d8dLgpjNYEY3jyFCbUKszLNzFhAAOcEdfmxM91X2VEl25V4GHi2DL+52Un6TfkHUvXlAtF1xDTohNUzYWgF5JMty1ExIQBQK2Fibjdg91eky89sV/pVtlIHj4+CF4Si6Mdl0jhxr6h360+K/UXFxwAp2JDtV66X0OxHxq9n4DGAw9yx+NiXiIzQ/UkVwOk3nppaDQq/cbmmIe3N1TNhctrA6X+NgoBiPKv6ki8xnfpX8g3HkSdx42DU7HBf/U4SybMqm+M8zJvYBN4X4OpL4gJozT1pifg3Fj9BlZkwsT6vp/RB4suM00Ko0NyGkN9Dl8wpaP6kAaEWFfpG31gcISuMM0Nq7ErjgFVcyEv+ipnwshli8iEOfbfgrefL6r1yoB9/wBpbpN/tzvt4c3mxwKeXqb+dCo27G673HKeqZoLacNYvXa0+s3UJ9f6RaHCn7tQmJktMWHuzm//iXT/RuxfQ/dvxO4BKutGTKS7kUyJEq8zq5qhRZ1TOOO4CK8WIYjfsBxOxYbb3drxQzvAnEoWnjh5RykSGUOLYUFbRiLwCfnQtiR3B+p5VbbcvKwkqKrmQtg3cfD9KMEUfjdSVkC/Wbsw0o7z4SVcPUjVXOjteARrElbxg4PxBs7D25sjurkrw6ouPQY8CY9EdhtERrpie4OXxKJqNvhh00qiZlWGqrkQ8NsEZPafbeqzETkP4tzg6ijMyeVhw7I744zjopSn8QaR/me/Z0fTtxJxdVA0qixPksomupNEEWA3qg2/kO3FIt6Ixe4P2MbkWaECrvZqjW3TZyPmwX6AlxfOdKgr2QZRWelfRSNjkO6w1l2fW9VVJCq/Z++hkq2aFamaC73b9UThCetDozGuuzF5N2kBc7t6R/XBmp2r7zjWSxyt0XPONrxYK1PKx6oeoiG++D77AzuaviE76XUqNjj230JC6/KWbVU1F7oNHc3t4oxj4ovsRDy26CWkjLe+QReJgFesyjGWadUH4vrwj5K7vIkIMAMwH7bd1amnfxRXjXTXJiKv4AATAtzVgVGo8stOy7oNPZqHEdXO8rhOxQavmjW5vyaKSyA1Vm1UNRdafxLHXVkYyyirn52KDRmfRyN9yCz0Se2Fwu7nuEuBO7XXap2n8BbT49D4kz1Yl7PL1Ef/yDqvai4EbxmJgCdcd4yf9nU0Mgea1xUjeQc0RWFmttSGu5nv/0i9iQiAwxg3cHcFZETcQHGnNvjrx4XS9xBv3N31OcW/UHQNgxtZ23t9lZ2A55vKkPFdDhZgU3hlt/UXwz7O2gmbj89dtfmn3AQMbuTg+w3AkDyLUjPczklv/yYcTfhu+9yqH671i0Kl33ea4txNXq32epjOOLRvEhCQqrkQtDTWZGcvtiva9RiSbL+6rWtM98clddKq2+rgygNnoWoudG3Y8j/mRiz0x0n/lhuxlCEf39P98c/S/Ruxe4jIj5hR4kT/nYoN3+bsML1Lna1Lh0SJ1972P/MDetER3Z6o4rFT3P/YLWd7zoRZ0fI83c6JFiiS+DgVG9I7LzJtXt2+ekVagNruedySKTsTy6SuS6/UtjxkGRcx8XdxRxuvx7kxds5c1VyUiMCXkpC2uC1PQ0yYqrl4PDIwBxiIQq/DF+GzVffFI/Y75UN+sjI/YvUmCOkluTu4ke65sbrefsCkRIkJcyf9E99zJu7pnejVY7BJOnfKfpkzYUQP1TQj5dENYtt3ZRsMgpkWmTCxPsb/Yn9wp9kAZ8IorlOxweu2bk9SfOMGtk2fjYg3YlGUnoWiY+motSBR6k9qb4lXiUlKqGoupNy6JvUR0RfnA6Q86K/WQmaonedkOv/FGxvBHV0tviGNe/qf97r5EGPFMJC9HY1BI4lzhNKTkXz4l3EouXYNAb/IADDGMlXNBY+E/XixViaciuzA12o+ERN2668m8F83lr9r+oYOPCGOkyl1j0j1FZ+dig0bli5A1o+tOaCEOD5fbGqH//Kzpm9m1Qe3+t829Y9TsSE02dtt34ltdCo2HHpWdzgupjk73i6lUzUXbvaKwOW1gaY8cpbrN9Zkgxk8Mln6Ru32FfPfdNtjrJPRPk18PvGig9ejz+ELnAkTbRqJCYuapM9N8oUk2ty02jUE2e/ZEX94My+DvoHjp5elvjQyQWSjZ3XgdSo27lRcfEeMf+BLSWj3TixWh6xF+odtLb9rWWQcyxm3r8Kj7SUTQ0fgIsb4gcsnwh05FRvSBEfmVuUBwLc5OxD8HLOd7N3hUVP9xTa4Y8LE+MZnqz6xmpPGONfrlfAyzq/WIdtn+LL1mJzTUxxVcyF+4y+WeRasCzB918GNHFL7xHR9l7xkap87JuzCk/o+5pfE7C0n+UeZx1rf4aY2ps6O4PUImp/P45PvRXd7TGFWDmJadDL1o5WNeP5r8txskTAMPR8eCgASE3an9UXVXJh/fDu6HGS37CITRnE8ypWXXDY4FRvSS11fDD2ax/PzX6W7YKgek84dkee97jDt80abvl8DN1j2yb1O9/2I/WvonmTEPvzwQwwcOBABAQHw8PBA06ZNLePduHEDc+fOxaOPPoqmTZuiYsWKCAgIwJAhQ5CSkmKKn52dDQ8PD8u/sLAwyzJ27tyJbt26oWrVqqhWrRp69uwJl8v1L2ytTv1Cwk0LqHHReqaJjhJHYSETdIj56ttrm94bqTA3D95N2SH1Wv1ybjeg1IXtUN2zIv9NagHGxZ9+H3+HLTgNP5eZqrqPHINnq+bc8z2lIyaF9NFpkfIox6T0Y1Kz3G58fy1fhMDlE+FUbHjoqSSEJctDmWDd3UkQzzguSuHP18zGzU4nTf0dsGE0j0OobAGvJSLphu4kUzSS3/PuTMt+dyo2XBhpR4mjtSncKCGk9GvX/yTFzf3VPEadig3LQxu4PQTUncUO4d0fH+VW4kn/nQpTOcyfZC1RFW1+yEG3mI8I4U75kS0JqYhYHRqDn2EH08yPZZTJ0PKVpDS8rhY2O+J7OrT/FfqnZTsAoM+EZ6TfP12pCUAGxCFBgVhXahchZxnJKziA+5oJ/Ln0QOnphaxpdm4k71kIFJ07j+DnkuDdpJGkUmXsG/E3OfBVNRfOj7JDe8VhigMA5abUQFbPeQjf+QSPf7X4hjS2qB3khyho2URepjgH/Ifsx18/L4QVGf2vGccg5SX6DSQfZgDwVcM9lunFfIyHpuhXJ0pjuM4cncmk8nzW7uY+8cR8AuI0jMh50LLu5HdsWn2mvpc6IxJ1DpoZSOP3EZ+dig0Nv0hA0o0idB43jjsiBnTBiFjXGkt0IdfMr7825e3tWSzB8VMfBPwyUZLG/6OMEcAc1b+R6TLNrcJKzHk6qYL5t8k3pXWXb9DSWARuHCW1U9VcCCxXBU1fviq1IX+SQ9KaABjK7PnVIcgYNEtKD+hzUdVcaLYwFgUDoqS169ucHYhw6ftLSDnGYBSsC5DcF5yJZWAkpN5q7HOnYsPxX8LxabYMuCLG8ShX3lJwQvTVhaZu+ytgUiLSvmdCwjqD8kxj3l06qmv3IXr/Vi61SbparK9FpGZMacg5tqrp/t8A3SkztT+mVVe8kJ7CHYfX/F5nPPKir3IhEuXN+77Uwb3Yj81nXOVjvDBb9kFKca0YWVVzcVXNos66+4+ZwUEYejRPik/aM1ROo8cOYd2fS92en4xhr2cc4M9jGnfEpnDmYD002dtU33U5u5D5ic6Ypn8ZzfuABCeq5kLIxF1cfRNgwEgA8MkYXY39ROFVWJH4jUkgf5/+d+ieVE308PBArVq10LZtWyQnJ6NatWrIzs42xTt69ChCQ0PRsWNH9OjRA4qiIDMzEzNnzkRBQQHWrVuHhx56iMfPzs6Gv78/+vXrh/79+0t51ahRA3369JHCkpKS0LlzZ/j6+uLpp58GAHz33Xc4ffo0EhISEB4e/i9pL13zXkgNwMBmbS0PzABDYSrn4YUHnpqAbdNnS5NXjF/UuS02LJN9/3QdPob7EBMP/jHdBiGvVx0T8yTGITIuavQ+9XYB3/jcbShGiaH4nHq7AE71eWT1mSvVDwD6HL7AFzSrvOj3oMyuWB6w0bIOl4ZGo/pSayP0surmrjwirzq1EX9gI8KShsK3v6wKNyY1C/NDdKhxY39SfgSyYGTG7kTGOgPASyfa4vOGe3G7pAjlPHRXBQQaQWlEH15eQf4oSs+S8ktd0B5ZPefxehp9dYlxP87aiUn+uo2ZWB9Kb9W/Vt/wbvudwo1ANMa+JUCE/0sZad9GIfgZJln1ahaE+M2/um0DgdYY6dPsJLQqXwHdho7mfpuM6cX63k27RSJADGM+d9NOUi21GkdWdfOsVAkF3cO481R3DD0fc59Hc/VggPkkrJR2DhlP1set+oUIGbcbVwZHo+pP8rz0atnMEgEOYIArFc6UoNZC99/Uiimh92RYb1V/Y1p345Yo/7eW8O1/uMw0gLVapkikwkXkUa68W1VAsZ7iNyK/WyIVP9AGntv2mRMb8gDAVdWt5iaVYVR5I/VFd3P4+C/hHDxD1ZggSKzP9UcjOYovpTH6y/zifADUsGqS7zea83OPb0dj7yp44KkJqPT7Tu7v7E7rZ1nrzt2uvZY+okpJ9CEIMFTEjT/MdzsfpTKjW0H9bTEPb/92LBfs5b7lQKP39DLJD19Za4UIqiOGA+bxf26sHbXnJaJ+YjUsbvI3YroNsnR0DwAh38fC/3Wz+5vUmZEIid11V2vKouPbOYKg2B9Wv93l5y6tMdxqjrp7dse43c24MsaNTUtH38pXEf5VHJRPEuDRPgwlew7BKzgAx2LrIehFXTgT8NdoBD/J1MD/k1QTmy177d+imnjsiY/u6f74Z+mfYsSOHj2K48eP4+zZs6hYsSLq1auH8PDwf7qzMjMzERDApMphYWG4evWqJSN27tw55ObmwmazSeFHjhxBmzZtEB4ejj17dKkrMWJTpkzBO++8c8d6REZG4ujRo0hJSYGvL5MI5efnIzQ0FNHR0Vi/fv3/uY0iWdmIudsUy1qQRBLfH5/iQOOp1k5h3aUjcrdJWS1yxnTSZt+jPTYtmlfmphe9/zY2nmiGyj1lmwoAOL86xBK5SKwjUersCHhWLkRGFybJj3mwH4rSs6T2UZrTTzk4qlRZB+O7Cf9HmCl3DK7RWW1Z5Nk6lCMj3ulAkf5FNF/4RRpyVMPIaqfv6gDijqw2IXKyS0TOwRvvrIwkrQkORi37hzdX7RUHDr7AbruSb95CLc9bmNikI4x0N4wf2WqI5Yt1EON7hjVH8aGjbvMi2weAoYORYfrd9NedyKotN9c3hU+PbB52tfgGBvhFS3Ho/+UnonEuzAOpI2dazpk7jdk7rUNiPMeLE1H1pyTL/kz/oQ13t+EuD6tyr/WPQqXfdrrtC3qmsqzWpeSbtzBw9TN4rduf3LWDMX3ArxMQ/KxZpYkc1Xs3bIA1yevKXG/Fd7d6RqD8ut24/EQ0qi1Lwrc5OxCbNgTlep/CuqydZfY/OVzu+OwEVMm5xv1KipQ6NwIh4+RbaUBGiTXW7W7mBY11K0RcAPwbS7TRD2oos3cktL8BKacxvrp21/11twddETlURMnjefi2AUpK7orBUjUG/DK0DIfwXiGBiN+il/FqxkF8EmgtgBXHnOiInSimRSfEH9kKoGxBQOcx47g/O2O+7sa48d2tv5qg0ugiFOaym6Qrj0ej6s9JlsiwIl140o5dH5rXijsJKdy1ae7x7RgnMFziWLE6OzgVG9/rxfaLZbWYEYdG7ye4LTf31zA0euwQPKtWxdEvmyFk7B4pDxI+AkD9xGrYubElmr5p7bz99B/NmX9Gi7oQedWuhaJz59Hr8EWsbVlDiudubSprXvwnMWIhS/89jFjq0P9uRuwfVk3ctGkThg4divr166Nly5bo1asXhg8fjsceewwPPvggateujcjISHzyySc4e/bsnTO0IGLC7kS1a9c2MWEA0KJFC4SFheHQoUNu0964cQPXrl1z+z49PR27d+/GwIEDORMGAL6+vhg4cCA2bNiAkyfvbOj/f6G7mbAUnjNV1j+2iiMyYe4YJ3HBoL/wnU/wd9MvMiQlVXMBHrrOLpUhphPr7u2rAAD8pqYidFacqX2q5uJ+hKbWPWxiwshuS1yYnQoDeBDVlN7L0jeukAm7ETRsH38X//fvbNMVfOQQ7XtjhpSvVX9TeNp3UXoflIb3bKyj/fV47MkyN32A3U6tyt/ttixiwsTv5Nma+fA6/rZDCjfC0wPgvriMZQe9mAR4epnGyshqMry3VX5imVbPxm8OgDNhFMcnnn2fvAlNoPQ7Aqdik9Q0Kf3J52VjcrG+yqcJvKzJ/pGWTBjlBTDkTHF8inU/8NIMUxoxTuex4/hz8aGj8KpT2y0jTkwYADRMuim9N843ahvldXyKtRqoFQ3L7gwAEhPmVGycCaN2iP+rLUtCv16Jlocn4+HKu6HZRpLiP5H1kFSmkZyKDSc6F0P7vYXl2BaZMCsSbfPEelU8xfrz9FPunZ3T79SFZp+ANFYyB8zmTJhVepEJo/dOxYYl03oDAApPMLVlL8NBgOrT7YnR8AoNZmN4ZSg2L5gLVXOh2jLGtDzTpAO8ux1Hyc2bCP4hVioHG/2kPL0270XPR4ej8q87JSZsWpZ+65rVe65lfx18UR7XYlu7DR3Nv7uxnygPUoeuuHIX0r6NkuI5FZuZCQOArnkc6ZVQCj/a+DCcis3kI43KEtd/kb7INqtcinOmvLoH+b8xR+ai+inR2xk6cqyYViSvzQouDmeqZkMbdZBUzYhW5e+G9nsLiQlTNRe6Viwy1Q0Acpb/f+x9d3hURff/J9lAgBB63fQOBMKGkLIBpLsQiiCKIIIgNVGwN1AUUKxgQSA0QZAuRZTAUqRICgll6WTTSbj0ToBANvn9MczcmXvvbqKvX3/6vpznyZO9d9qZuVPOOXNKK2GcXK+Vq/bHpJN7YNIbELhynND3gAxib+qXNAomvQFnnilTjRWtxykiVPVN+P7S/1W7FzAmDADcVxMBCWXC7vWOwoUJonqiWbKg7g9yQOS4sK7CvqHV3pkPyLr86HIzAWf6Nza4m9AGuso4Keujv/mznm+Lwszhi4QyX+eLWhFeTxG6r+zWLcaEGY8MQNa30VhWmMyYMAC4YLzJmDCKIzXByPomBjDXQ0VweqYvAGCRlZxduvr1GM4hi9SxBmma++8NhG9QbmwNk97wSDXxfxAqzYitX78ezZs3R/fu3bFy5UpUrVoVTzzxBMaOHYt3330Xr7zyCoYOHYqIiAgcPXoU77zzDry8vDB27FhcuGBfNeP/AsrKynDu3Dk0btxYM33GjBmoUaMG3Nzc4OXlhcmTJ6NE4QUrI4MQjkajOmhtTEwMysvLcfCgtovlPwv8AqSBgSnwm2VZewPK25FN6PRoMTaH8qCl7zu8OFZoi+a7MUTbxW5ARjUci17Bym9qUV/OVy665dYCWt/mjCQAZMPzniobkPNBKn0+sO9WvqTjeYbrnIJ9aDWTMHM5AxMFu4v3/UT33VqMZePdl4S03BUG4dlRfwDiQENJZJaXljK7l8LusuGz8nvRbxQw5DAGZPVVjZNZsiDnC9nN8NsXyHtd3brYsmUlTHoDTo2z76GOvg8eRaTFpV0jVGkok+3aevYYpGpfCWbJguBRB1RECgAhELZyzmnhxcpnEVU6a2IUnFKOCHlMeuJkgK/HHsGoxMcpPFT1zv+Towy3viev2CXOtIhC16QMIQ8fyy/q8NMCTroWstG9y86DqLK7qZCuNR4UTo1VE858/2j+e32i8KPvbs26eNsYgMR50gXJwiwdyoT8yr5bF5O5wnuQVH7zFX67hLLK/QYA8vrOh77/SaEOgAgfeNDt0qvqobZ5ZR3lwKguHnoWRoHeWmvNRTb3R6jd5NNnWs45rBmUoPWd7m/3QdaSCNT+MQ3nX5WZRNvNm5plXW6UIGnnWjKH+51SrY3iAbL6btZzc4Vx042voerX9WA5FAeFCFfZwyWfPyx9sKqf/JjTfFEzD2gyyXw/eLyp7SZApP60D8p91qlKVXwSIAZwpx5f6XzQIkSV7ZolC17zNWp+X/4dVQOn76hNq0lvwFT/NrhvaiuMB0BiytF3ts4S9n82lz3nPCOGBjBLFrg6VWECIx4P3mEOjz+Ni0aBqhRS3O/0lx1dtGibL3yHnMh7MEsW5MURdfCg4QdV9dP/5QflvtsTSgDAsEzi0IkS+sp81X5NR+NvZQYm9zOjqh6t+KWF74kCE+8pKTj7dix+DyOhFKjAita1JVe8IX/QLUIoT/EaY80V3js6k78KFEOVvOJLcHJ2E20O+XpSW69D0IT9aKRTrytlH6lNYXfjEcB0VajLeGSAqm6qUkjnuu3KVZglEvg9c+RcTLwQhshJ8bA8pDGtiVEwSxb8FLADlnfmsLl305/Y4/cP/mtMXv4OKC//O1zY///u5f89VIoRe+yxx/DUU0+hSpUq+PTTT5Gfn4/CwkKsX78ec+bMwUcffYQZM2ZgyZIlSEtLw82bN7FlyxYMGDAAy5cvR3BwMDZt2vR/3RcGiYmJOHfuHJ5//nnhvbOzM7p06YLp06dj48aNWLhwIVq0aIFp06ahd+/esNlkgkaSiPdB/jaMAq+m+GegadOmwl9QUJAqz54w2UkGL5ECAOd9FjglW5D3qWzAHNf5KYHpoF6AaHrNXEJA8BIuAEj7IlHIRzeXnEhiANzjdC+Y9AbkfBljl2i3xxzwaVnfirdJ3i41hYMKADNiBoCSbb4qAj+gSk2mdmPSG9DzxHWhT8p2GXH8UMJly8xmacVb/eH/rEWFAwVbZ4LLpU0hLI06YaBQ3o7gVXUrYdq9p6QI34Di7rxPrPtBp3PCM60/4E355mL9KVK37do1mPQG3H5aJoL4Py2gDIHWe4C47N6ydRUjWEx6A+LCH0feKpmYqr6nsV2CqejdWOQNcoKTiwuca9SwO4Y80PJlxcUw6Q0IHpdeIeNL409RnHI/lYmF0FkJgjeq8sMnVPOwrLgYfluJlHlTi/qEAfxevDGk5Vt9nSDgefFnmWC//bQ4d+v2kl1JmyULknasEcry37eHTxRjzPj2+HFxDmvG5hL/noc98+YL72YVJOPuE6TuDINOyFtvcSrue9RhzwfD1ds8v59QBoYHs2RBwCptr478mlTOdWUdAISg1gDx7MqPg3WBrCrFe40rPUv24Kxvo3HnSdk5gxbjTNszSxa0/SCe3cTzzIlJb0DZ0dNCGRcPPb7OT1HVtSv0Z0YQN/lKJliVc0EXSvaHrZuXC3hEWmxsbCI+jIfbOvnGjd8jAOI4hOL3ejYhtJ3K7AsMKHR4iQjXmvY7xeJ6UcjuvFjYP12aNGbzoGii9i0s9QZL26KxIPNWtobtylXsmyWG06C/yx/cF76Ni48YDJjH3cXfV3jPQ9+sHjBLFnQ92Vez70ow6Q1o9VUCPD5LQdZseX7cffk6Sec8+l3t7o/JuYfYM+/JV2v/snfWbclWCw11IYGqd37mkUJdVW+Q8CgBv42Adbda48ceg6zEodvxW6r8WkzLgleehHVxBCP0KVCBFV+mpPwBsobORdZ3oq0vTefHyesjeS3EZcYBADw+k8fEdvmK8M35skNOFzFbPwBEjfRhG/OD/TXL+W8byfKcf1m8wet7UmQUy4pFByz8OuP3AHtMnnL886PuwqP2DZbmt3GMKqB4yTZfoSz/3/8tctN2MNwZJXWdMLH7IMJw953PbpB53NK+SMSlTSF4BP97UClG7M6dO/j1119x9OhRvPnmm/D29naYv2rVqjCZTPjxxx+Rl5eHUaNGwWq1OizzV0FKSgpee+01tG7dGhMnThTSvL29sXPnTowfPx59+/bFyJEjYTabMXr0aOzYsQOrVsle6qjaoqurWv+12kPX1Y5UG/8M8JIQs2RB9tfqAJWArKLi904q/He8QDbAzGxhg1kzqxsQ1QomvQFji4yCGpty06Aew9JLHggblUlvwLcBazAtLwMBb6Th4oui2tjOuzrW3tUXxJtDJaEUNGE/dt4lDiT4YK18fUHPk4My71MjU79yxORRfWwAzIOic40aAgFi0htYbBIeRvjIBwqVxvEHm24XwaVh30w2Jt+GiF4MqbR+WaE6pACtr/qexsL7kl6RqoNAeQib9AYhTg4A3PLWCXlNegOaJ8uERmWICPq++RTidryq+QB0oQ83/tru8BskB3zlHQwoD+4T4+cgeNQBXHs2EmXcGtAixB1JNpXEj5LB7O0Rwd6b9MRbJQBMyT0Iz09S4PlJCqtjSu5BzTY+ardBaC/4BXJj6JteXcBZ/3mKMG7ULsAsWVBzLbkJ9ft1NKvLuWUz1ToCCFF28SXZhXT5g/sY5fG7Ci8eyo6ehvT6AwH/u/2ihDEx6Un4BPpuvE87VP85nTF9ynHesYJ46nKKCLXb7uTcQyw/HxYDAEIWxyPwNVGazXsaUwJ95/SbLLjqMnyUZrvxWdnC2D3e+rjQVwqXfyEu5qtd0KGoZ5myGhUedF3UX5CK0rMSe74wPla1Juj/zRlJTKLuqG4KdC6EphJX2bYTmawdW3kZq5dnjg9+OFezrpwZMUBMmPBuRiD5XqkzEoX3pTu8GV5MePDuEZZeZdsB1i8lAQoA15eQm4BhmYWC7SYPdH1RoEKvoHevYVqeeEOsa64WHtL2N6f+oknwmvQGbN63EWfWtsLEC2GqMd4URGzwdrbYpGL8+brqJtdjv2k4ktz+svOq2nEP3Z2ny7dUaZ8nol01Z5aHhhvhQWs987+d2rZkzC+PDxXw8fsXL9wwSxbkPtyqA587DJ8PCONf2jXCoTBKt0vPcGDz9c0ugkfB+snEkZV1XiT8t7/A3rtuycBX7VfjTOltoQ/Od0pUfe3rEUnohI6/Ce1PyrXg8aeHCzjmfCGf8/aCQ5v0BkzPI4I2998bsLb40AxmycI0a5TjTuvKWxUm3A42+Ya7wVthwIt1CjWFMcq5w+MFAI8d6y88K/Pxzw86nWO/gxPShTbMkgW7W26EEqjgl7bxWd5+NJ2ZAlt2HsI/JkHK6Q1yaZcIoWzDvpn/KtXERwGd/xqoFCN24MABxMXF/akGGjZsiBkzZuCNN96oOPN/CAcPHkSvXr2g1+uxefNmxjBVBJMmTQIAbN68mb2rUYO4zlaqLALEvozP80fh3Llzwl9WVpaQTjcI6sZXKbmLcK3KNnzeTXveA+IadVNxDdwMBDuI5nmSA9bFxwvWRELgzcxPRd4n5IaBepaLcq0i6KADxLaBRrE/PGkOIwhNegMzWjbpDcj4SCY2Lo0TbbEiDhMiiub/wF9ty2GWSDwPAPBfd1voN09c8MBvnoGvEKKx7M4dtH2f6GWXxEXi7DuxqnIAsEoifXJu3RwDat6ESW9AYsE+hhN/+Du7u8OkJ7YmynYB4r5+CadqSWFK7kHc7XhBwN91s2zLZtIb0PHoXVWf+EOe/m46IwXG18X4OtQrGQDmjvnOk7JUU8noUKCqF257GzIPdU2XqtWHzZIFLk2bCFI7AGj3CsHD5dkLAvFBmRu+fT4GlbJu/j2VBJpO9Ua3IS+o8rl46NnvmGo6zCpIFsbnA/8I9Hx8kKoNGhqBrwsg0k4lE8jjbZZEdUYACB6Twezayo6fFvBfc7s2I8oafZcijNncoEC4NG0CFy9Pzblolizwfo+4Ss//mBA6e+fMZ+mzr5M++K8mrpHjuj/DyumCAxjubnsbqtbV1l/EmxoA7LaIEqaUsaO2KgCEANAUJswm3526vlbCjaRAlHeR4wZR5oBvn44HD/M8U6EL8hfGzCxZcDCC3DSefHEOs4kyS8TWk86R8xuJmhK9MbPOiVLh1XiWGPMOAD67EoTsH8OFea1VVgvMkgUnjMsFhhsAWn/7EmuD1TkvUlWW/gW8ngakOWZu3fY2BAC4dDujWjNUa6H4KbLmQw5Ugd/m0cz+id9HHqwkAiG6HjYUpQs34Fp7Dn0uzT+DocsnCHn42FYFU8gee3ur/A2V/eBx9376mHBLywsb+PhQF18kv1vtf5bVYdIbcOGOu4rg5n/T8dAaTyVO/DulDS4g2y6aJQvKDxzH79+Jt4LKvin7T9ugjNmAUxdZXpedB+0y/IDI6ABE+OO6JQP5fYiKasj38bjSjmhM5PVZwFTkaLtzgwKZowyzZMGZta1gy8zWbNMsWVhMMQqPVZOFjTQPjZ91a5AYcqPNNNEWKsK1KkaeaY9bHYifgA1FoldZftxc9zRB/mpRIAFAEAzy5Ux6OZYcTyM4YmoBMMa3ukm2EVOuKX5sqMt+/t3Smw2EvHHdBgrttjzorBL89t9O9oXbA2NweNIcxqg12zcULr/JNo203n+TauIj+GvgHxlH7M/AoUOH0L17d9SuXRu7du3SVCm0B15eXtDpdIJzEb2eECta6of03R9pozKgFdCZ37AKJ4k3UsqDxa9KTUJAut1h1+I8lBYUouoVIql9zdeIB7VtuD6MHNoFa1phYG5XlB8UXTK/mn0KhT+1RMiBKqw93/dTNTc9w0OtooaJpO0FZ/Yhe2YMdn+mdiii20UI65vPyjZqni4kcCQ1UDdLFmakT0F5+PNg0htwaVMI6i8i7bsmZTD35lmzyOFMb6icuxIdenpTWNIrEhklHqyNl87KqoBbMn8X2tbCZ9izLwlpZsmCmGo6u/kpaKmg8v3hv3/qjERN5sEsWZjnrxrr90PXIlhwehFxuEyzXPFjlxihURRzG7r69Vi7NA+1GzJLFkQeGgiT3oDrz9yCWbKgZo9cgfiY55mKgqnizajz74fxRX4a04vXGgNAvnl07nUZul2HhLE26Q1MTY2+G+/TDoZPiHTxzfNExaXsOImBRtXFeKDPV0YaNb8jzaMLklVkNrWoj+wfw4W6qF2brkF99v7s27EYWJOosOR9asT5V9R2GaXnzmPz/l9V7bl4esCkNyBpxxqY9AZkjhDdq5v0Bmaf6Z5IbBwp82zSG2Cz5rAxKn7skuo79wyMRd6nRjYXzJKFjWWM5SlWj1mSg8rywI8RdXdPbT0p8UMFKPQmwqQ3CDcmPJGkFHJQvD7cttrud+HnGBUc0TnSpN8pNu9NegPy+s1n9cQe0XYDb5YseLt+FnK6LGbt07IABOb2ymgjks7K81EXTAJFR02MR6PvyDi0mRYPs2TB8ZfloNM0WHc9jbhEtL2yDmo7LrNkwbmNzdk4rQ/cLpTTWkNuPxFbrsy2DxA8OoPZP/FzqO4PqZiZL8dc6+8ZBb9BR+Hs7i7gQMuUdRRxUzo04AlHauNb7fO6qrq0GB4AkDa0UH1vs2QRwlFQu0De7hAgjig+uyLPL12d2vLv4ADs+3Ye66ezQXQWcqe/tp0bADavqX2lWbIw20WtvYLHn9oRdjlWLKS1/CZBKDemtmS3feVvAMiaHc321LLjp2E6fhNe24iao+975HvmzIgRvrUWM9zjiaFCOAEAKB4QDaffPDDkdBHiOg1geS+MFxnS8OlyH+j3dF+VhrdyjrF3h94nc44KiUx6A4pibrN6qBMXvn2T3oCZ+ako6Xgevs8cFdooWhfKgpzTd1lL26jmn3IOKYOBh09PYHmouj79PlrzkofN6ZtVDN6wWjKNWPxUNGwnrYh7rD+r93hEGYJ/iGc3h2bJgrzexHGP18tWcpblETvp0+2XCWNC2/lX3Yj9TX//7fCnGLGpU6fiyy+/xP379uOd7NmzB1OnTv3TiP0ROHToEAu6vGvXLvj4+FRciIPc3FzYbDbBuUdkJJFkpqaqGZq0tDQ4OTkhIiJClfafAJWEKKVt9Nnr4xRctBUjZ4UBXYaNVJXnN2CqvsGDNTGKEXpmyYK8fvOx/9O5gLMOPgOP4Ub7K6oyKy5Fo8YWd2S2fcDK8ThemBAL998bAAA+aywSWN4uNZEzKBHuq9JUfbJ1JqpD1KuYst8PukVg1a26sHW/ptmuzwcpjMCkQazNkoWpnCg3WJcGxCBaGdPHLFnQwy8aNVKyWdyvsBkJ+M5jv6oefuNXgvM+eXOnNwb2GDD6Pm+6yLR0eHGsw8OhZ5AcOJoGY1W2owsNge2kFWVV5PcHw501cTdLRM2QAjUypnXSMmuKiO0a9WZ1wrhcIJ6cIuV561zipOrvm74xyOsr3/D0iu5NDtYlRELp3Lo5bgyJgVmyoOzePbtjYNIbcHks+ebFA6LReFYKrIlRONmnKaxzo3DrmRh4fJbCGJVmC0UprUlvQP1FqfBLGsUCl9JvFvDbCDSfn4CkPeuFdZTTZTE2Fatvvq8ulYlOj8/IDdi50ttYOvA7NPlaDjaqNeY8EfDmni0MN0dgliy4Nomop8VnZbP31OMozaOsp+zOHViHiUGBqa3FrbuudsvZm+daQAUofN+Sdq7F1V+DhbpNegNKd3jDpDegVzSJ2Ug9qdJbd3v48EBtA7UYE75cSuuqAuGt7JMWwQoAP+9aw97XX5AKnZO8fqgXvbpLyLkQuHs4Dr0vBnE36Q0Iepnc0DeYn6rZhlmysLhaZsmC9kefZGWPRq0U8DNLFtYP5Z6iRVCa9AZk/6gILAYifOPXrYuPF7Zk/q7amwFg+8rFKhzsEfm0vp0/LmK/lfjw+QDgWPQKoXzzeQma+ZXlgIehUB4G4DVLFuYSPuubGEEwYdIbUGY5KdT5++x5qnaovQ5iiLpk0p71qvGgOPivG6saF0C2I/ytlZswRsdfnsPsugCgzdR4oW3l/H39nGwnfWtQDHL7z0OtiMvo1b4f6W/LWjg/StbSMekNyB6cqJrbPOTMiMHWn5ep1si+WfNQ3uUsljfzhM2aw9LpDTLt3+GJ5IygaxUgTJzSjb9ZsqhiAGp9e/7da75qkwZnd3d4DjjBYhbS97ndvlfVxz/7/TwGOQMThbaodgK/Tvg/e+NG611zu7bwreJadWHBpWvtycWlTSFCHE6zZIHfu6ks4Drf1rV2suMP5Trinx/diP3vwZ9ixD788EO8/fbb6Nq1K65cURPvALB7925MmTLlP0KuMnD48GF0794dNWvWxK5du+Dn52c3rxauZWVleO+99wAAffr0Ye8DAwPRtm1brF27ljnuAIgTj7Vr16JLly5o0qSJqr6/ApzCQ9F9sLZK1/NBXRHwrAVVdhxkEk4tWOX3G5wfqk5SnWiXG8RG617vKPFQLbNp1gEAS332orGZqMXkTTcyl/YAOfhutr2HnwJ2sLoCV44T8BaYhBbBwoYF2Cf4quVfxeIQHzTtd0pVDy3j904q3rvYSmAge/rHMNsSs0Q8FgKA3+Aj7J2SKCsvKYHt2jX23HSGaC/U9aTs5VCJs1IqZ9Ib4LH3nqqPPZ4gRgKtP09gRJLfRJHJr7FhP1p+m4BhmbLu+8UEmdCmxsgAURsxSxYUvh8rHDJJ28nNArWdAIDLY4zCGNL/YemDGZ7UJbTycJogRWKgJynPu5sv6xjOCJfyjGNwbk1UxE6+qPYCaF0QKRzi9GYo93FCuJUdOYXay9M054VLE9HzaYN5hLDdN4tIvfP6zkfpWQl5T8xHylfiIewzOVX4NjStxfTLqOlcTUgLfO4wvD9MgckjXLDPAoC+brIdHL0tqR2nVvEZ7t0eH/hHCO3x9bR7eSziug1k80TXIpjZCgAkTlqX4aOE8af2oCa9gTmy4FX76G2EkmBUMkB8nibfEEbxhJGoLbaYK0rttYCv3ykiVHNcP7os2s1ltFmjqsOl2xkAQGlhEcySBY0zZAGPSU9CGvCEP03L/dzI+sXbBvL7mHVhWwGn86/GosYG2fNf0O7hKOkVaZcIo66me3tEwCk8lLXd+nPZkQuPk1myIPuhihRfF1X/pnlfzLIKfVSGmDDpDdgXtt7OyANdh44UGAglLsoxvr/dh8VQ1AJa9lZ4U1ZH5KGBwnjOvCrfCvF9UfaVhl/g8WH/j99UlTHpDZicewjR78Qj8tBAln5qrLZHWOpYhE+jKq98e2ffiUVjLgLBvd7aaqbhGUR9uUff59i7hO8f3qI8VBON6/ikgC9VkTTpDSzIOwUtnHWBfkL6jpbyrWOjDLXXTX7sZjSVHYos+WwGTHoD0sPXojQ3n81ZerM1+DRxeuO3dRTiWnQE8FBg87zI3NDA2ya9Abr69WCWLMKtX5djxRhjzWX1D8ssZELB1twZcb8uMTFo+W0Ccz6jtQ/w/5V9pe+/yBcFYQCYPVnZrVtCubKdXqq1d3MwuQXscPQeyxccny58D2p/ZZYsCJ+eoPmteJyc3WTVTLoWqKYDAKy6VRdJx37Dr5fJOWi7dAmH2q5mbuf5ccibbhTGgh+PgFXjMCmXPOd/RL7VIg3Thn8D/BttxKxWKyZPnoyYmBg0bNgQ7u7uMBgM+Pjjj1HM0VgVQWlpKb799lu0adMGbm5uqF27Ntq0aYN58+ZVXFgBfyqgs7OzM/z9/ZGbm4vAwEAkJSUhMFDU+58yZQqmTp0qeCKsLCxbtgwFBcSOZdasWbh//z5ef/11AICPjw+GDiVEbUFBASIiInD16lV88MEHCAgIUNXVv39/uD1cYE8++SRu3ryJ2NhYeHl54fLly1i3bh0OHjyIJ554AuvXr4ezs8ybpqSkoHPnzvD09MT48eMZPhcuXEBycjJat26tau/PgDKgs5LQBxxLiWkAw8u/BKNBHyu+yE/DG4PHYtu6H2DSG3Du9VgWN8negVqZ91qgDNxbGaD1X7YVo4HODd0Hj4DznsOItNiQYdAJzBr938vYB6UFhap6+HwjMguwOMSHpcW16Ajb9RsOiQktoo9JtjaPRl6vBULa6MJ2OPtcY9iycjVxqGj8HH1He2mOymiNhbLtC+Nj0XiWOgCm9fu2CH7hAM6/GosmX6XYnXeV7Qd9d2WkkamHAoQQnR0UXOnytM0lNxthZTO9w/wAMPJMeyzy3md37HqGdGDqpTRP0bux8PyE9JkG/Fa2QZ/PrG0lqPVsLK6Jfm63Ga4fXArFlIYnNIl7vr6y9gZsWJWIVltfQl7cQiFtUq4FYw4MZW6wrXOjkPfEfHQ63g+7W26ESW/A1ReMqPe9duBRrTGMODgQDfqonSRpzVV7Y2vSG5D1TQxyn05UlWk7OZ656dZaBwBR1eRv5ABCINHbE2UZW+c2zFGOI7xzvjAie8hcdBk+SmWLxsO0vAwW2kILP3ugtQcBQGjqEHgOOCHk89s0BsHj0lV10ODsyjGenHsIU/3byOtllBH1TtyBU+oRob3WnyfgyFtzhHFn+2FsX5Tmn0H2zBjkDErUHEvlmF3aFIKGfTM105T91TVuBNsFMcYgn986NwrB8em4PMbInJHwdYX8PkxQNwMAXcOGsF26xOqxFyS7MucPj4uTqyvKS0rIWu7+DGwnMu3uF/Nv6IV4csq6Bpy6qBn0WysvABRv9Ydbj1y74x6QUQ3pieE4ME09Rnz+/icvYUOLhnbbcYTDzPxUdrMkbWiBY9ErsO52LWb77KgsBaffPLC12WY2B9q+H48D0+S13TOoHcqKi4XyLv6+cFt6S1OTxnAYsHCXslV2N1V5C1ZCRcGmaVBqLeDxyv3MCP+3U4V3d/pHo8aG/ZplKjrjKqKTAneNYJ5hleuInq1a+Ea/HY86y1JR1iEc21cvlutuWh87pHn/6ADGlGb1XzoRuhqV88XwZ8F25x5yh03/y8bjnXfewezZs9G3b1/ExMSgSpUq2LVrF9asWYOwsDCkpaWhevXqDuu4f/8++vbti127dmHIkCGIiYlBaWkpsrKyUL16dUyfPv0P4fSnGbEPP/wQ3t7eGDt2LGrVqoWNGzeiXbt2LM9/woh16tQJe/bs0Uzr2LEjdu/eDYDcunXu3NlhXXl5efD19QUALFq0CMuWLcPp06dx9epVuLq6IjQ0FMOGDcO4ceMEJoxCamoq3nvvPezfvx9OTk6IjY3FJ598gjZt2qjy/lmgk/qa1R8Dn3semeNcETxSJi6UG8XVX4OZtPmPEMhaz/kfGZH5wlzYyssQ59EGhZNi4fUx2Tica9TAgtPb4PnQ1bwWOGqvbnI9rPL7DSa9AcVPRTNbBiWB0/mF0ai6NUNVV/bMGBKI2M44aLWZdPYQej41Ak6pR1ibzu7uggoOhasvGNFlfKpwYNjrmxK3/I+NyBwx1246hVvPxKC0mhPSP5lr9xsoy2bNjkbQi9qHxvLCZDTQuQll7Y0JAFwZZUT9hWr7DqeIUGz9ZbmqHgr0/Wd5+/G2XzRrf1ZBMsb7tIMSKmIi/yhxBZDYWdV+kT1V8WVn5qeihpMNflVqIq5FRxYstaL5f+61WDSdmaKZpmseBNupLNzrHYVqv8qEdcyRB4iokYfEvr1YrKi8T43w47zMVfQdLv7cTPDEaA/XrCURzFNYubE1E6ZolVESJlo4lPSKhOvmDIfzTWssrIlRCB6XjnOvx6LpDG1CwtF3pPD4gOcFBkN6I5Z54+PrqL2vPiPolP1wRAjZ6wefN391mMAU6JoH4ZVfNuLxGg9YPkdMCQ9jrLkwuEpI8GnP0nufuIZfQ2VVVemtWOg/T9Hc6ypiAu/0j4b76auwnZJDJFRmLJRj4qgtfjwKpsSyW1VH9VRmrB0JS+j768OMRB2e68MfZY7PvxqLalfKUW/NYbuqzNk/htsNIj7SmocvrCbU623V7J+ueRDOmhriyFuy8NLF0wOlRaK9OC0j7AUxYUDa0UqNhVb/eKjMmChx4Z979hikCtegBLrulN+Rx8ER/cD/puNglix47Fh/wSlG1tI2zLHY1RFGXOt+FwGcZ+BlhckY6qU+VwAAzjqYiw6i3dEnkRy2XsCFF2pQfJV4KvEdVvAYLhjJzSQv3Ho1+5QqRpmyLvffG+DW/WooflDVIQNur+20ezaMnjMex14jAhbnls2Y4ycKazMPoW5w7r+DEfvhb2LEnv/rGLEDBw4gKCgItWvXFt6/9957+PjjjzFr1iy89NJLDut4//338cknn2D79u0V8iCVgf+IEZs8eTJ27tyJAQMGoKSkBIsXL8agQeTq/z9hxP7XQHkjBpBF+/hTz2PbTz+whRyQUQ05kfdQ2jUCFyJdcXyCGMyZ5rvxXAxq/5gmEJQ0T6/YvticsgnR78SjzlJRul4ZKRy/SbeYk4CTCWqJLYVhmYWC1zqtdrTaPPt2LItNUlFZvt/0Xa+oXigtOlvhwUfzf3S5GQtIScH4xjjUWpGmOqAqIgSVbbr4eqM0/4xmuzxoEYFafePz2/tebnsbMscN/K3InyEMlTg7IlazfwwXVKLs9UnZL2Ub9tIrw+y1mpkA1+vlqJNdwly4a5WZlGvBx/4ifvbacfScMyOGqf44wsukJ7ZZvAvm0q4RqnhvFX13Cia9AWXt1THq7OFgDwqmGuEzORXO7u6CSlBF5VifXollNnGdTzyBqo+fEQK+jzjTAVLMLbtzL2tWtErdq6J+JBbsg1+Vmph/Q49P03swb3GO8L0+1Ig6y+zfJlaGOa0MftKGFirnEvb2ELNkQeJ1D3YTUpn9xVHbWu2YJaJNsDn1F5ZfWWfxgGjsmyW7fz/zQaygKqicG0oo6xAu2Lvx7Sj7QM8we3snfdfzxHVsCa2DMdZcpNwKxIymhyq1xioas/isbEG1t7LMT+4K4qlPC+euJ/sylVuAqODbTlpV+bTqrr6nsSpUSEW4AERlu/T8BThVqYqtBeSMT7zugXlZHXA4chVMegO7kVXCmQ9i4T0lBRdfjMXhSXPsCkKt37eFzzon5unXuWUzFAfUQvWfSXs84xJz5AHSWleBU3gorhhqodP4NHzR5LDDb3ZpUwgOtV2tuddpnYEC7TE3ASfjyRzN+i6aBRD/I+uFQt7K1oLpAk3rf/ISxtU5C5PegML3Y1HuBJwap9Ys4uHm4BjUWine2rn4eKG0oNDhPmDSGxiz+vWJvWjZ4uIjRuwh/NWMmD04duwYwsLCMHbsWCQmJtrNV1xcjKZNm6J79+5Yt24dysvLcfv2bbhzjo/+KPzHXhO7du2KlJQUNG7cGEOGDPnDV3KPQASzZGELVncoU1jw1F3xzmWLcHzCHAQtkw1/O44Zw+KB1f6RMBA8Exa4i9icbU4hMVrqLE3FxQRiX0SdXdhjKvhnk97AvAT5rhEdXyg3zOXt5Gdel9sRE2aWLHaZMB6o10RleZPegNOfNBKeab1n1xPbFj4QtklvwO9h1VT5eScifJ+yv47RHJeyjuGsPrrR3hgSg80pm1j+bsdvqQ5aHn+qLw4AW++4avat0/F+aPfKOIcER/Fjl1jgYuoCnJavva8+OaTbtmR4avVHC/j26G/63zOtJgKfO2z3m1CIy4xzyGTwaS6+3kI+5fziy9Lf+i9TcGDqXE0mjM//sT/p+91+UZr40rzUY5murnzjQY37zZIFox/fyfLnrQpDWXu5bMjvw4R6KRNG4wOei3XV7D/fPj+nADlenlmyYPuaJWScmjZhwVjzV4exb2qWiHG51vek706PmgvEhGFL5u92iUAahJeCc5hsC9bka9mwf1foz3B2FR2ASDG34GxooZovNE/Q+P2ItIjCOorHhGxZUtx5hByTbJxPe7KH6YoFl90AVB4zbZ2JtFzJhNE8DVPqqPACiIda3p2/Euj4Ug+ZnUaTGHOUCZuZn4qbg2NU5fh2ugwfhafc7cfXdCSs4P/4saUhHOi7zXeqobSgEL2iegEA7pTdF+oBwJgws0SC5irttahaL3XFr4whxjNh3QeP0NwDqH3wmAZ7VGtZS/hAY0QOqHkTxyPkGHI0b3xWtqrvAHHpbm/MANm+0ixZ8KBbBMOVx1lrT6RMWNgh0V7FpDcITBgAFuBdmY+vU59GiLaNQWbNM0GL+eDxKj1Pzt7yB/dZ/nF1zrJbdwBMLZb/AwDvKWTN0nA0u75fwNoGAOt8osob/MIBIdxK2fHT2DtX9krK3x7VcCZBvS9OKUW9xak49AbRGLrfI1LoB98f6ikXAHqfuKY604L3PK86c+if1zRiJ1o8IBr63XI6D9a5oqdG5TyjewPPhAFgnpw3tJDDgXhNS8GpcXNU+/OleNEer9bKNNV4n5zUhPWN2thr0UDuB8l+4/HQ+dG/Av4O+7CHNmJBQUFo2rQp+/uroaiIOGHhnfZpwe+//45bt24hIiICL7/8MmrVqoVatWqhYcOGmDhxIkpLS/9w23+J+/oWLVpg//79aNOmDd5//32MHDkSDx48+Cuq/p8DutCbJw9laheAWlJm0huQNVT2gFjt13QWD0y5eZv0BgQMEaVTZskC/eZCmPQGpppglizIXSET5/YIalt2Hkx6A27PKoOp31CxzahW8DOPhFmyIOnoTlbPew1ktSwtqVf/k2rX21q/aZnTo9VOISgEDj2Mwaclof7up/rA40lixxM0t0g1rkrCV6vfABD0wy2W70bZXZafOlKg9YR/nIDay9MQ8n08zpWS+G6JO7pr4kvxdCqT2+pRQx2/DgB2t9yI5K8TVd+S/w+ABS5W9oWqf5UfOK5JABU/Fa0iGvhYOgBwe6u/qu1F3sTY+OJLsmG7FpNBY+Notd3yoLPwbnPKJqGsEui74L3DBOIlxvIUTHoDc76ghIGnzrPyfLwuihc/nj6TiXMQ6szFLFnQqXoZK787UhZi+A06iu1rlmDJTSII4NXhaJ3l7QwIfIUw+ZSYsDcHdc2DVAd24CtpyJodLRAEpefOI+il/cj+OgaZHZbCpDcw9962K1c1iTpa1m/TGJjXL7U7xmbJgqk7CWEZc4QEnabqTlr7zJbcNOjq1oVJb8C1zUEwSxZc+Vj0uNrlWLHwvfjgxy6+3uz9t4HNYJYsxCnQS6KTAwCYtFF2HETLJG1fLcQ00u3Svkmh/b/U7oZqnpolC7w+TkFO5D1h7JSBWk16A7sN3L1ggVBH720TGFFmD6psO4AGOjfNNFpucu4hWBe1VeFu0hvgt2mMkBcAtmxbJTx/G9gM2T+GY3M6iZHJuxFXMjEmvQFNvknRHC8AyOtD+kjVJpVg0htwtn11mCXiTIHOCbNkge0kcd39tl+0JnGttd8rg6bze/Ok78man5x7SChDXborYeddnfBs0htQZYfszpz/r8VI0vYL79aFEnK+MGKMNVfzXKP10jh5FM53seFGUiDLT0EXEohNZx/eQLWWGZ0bz8UIcxGAKlSIlrBDyWhSl/M8nia9AV2OEScFJXGRcMupItSh3Jd6xj2r6h+NQUZtEF1+O6hi8mh5WrdzWDPm+Tjxx14qvPwGH3G4fgDAbd1+7PtWvs11btkMqwoJoxkcnw4XHy9hHHgodxI9/NI8SiEsj9eFCbEo7SLHQY19gQiCqNBQ2UeAxJ+kz8rbcvo+Z0aMoC3xCP5esNlsmDZtGlxcXPDss886zJuZSeb4119/jXXr1uHzzz/H6tWrmdnSyJFqj+YVwV8WR6xx48bYu3cv+vTpg8WLF+Orr776q6r+n4RT7UiMCXuHFE3j//NxafiNj5Z5N+coTHoD7j5BbgGUzi9MerX6hen4TeEA5Nvf22oDbga4CTisWT+fBa8EgObzE4SNvGdIB1WbZsnC1HOUBy8fOJLWEbzneQBgns3oe0J4EecOU/b1xcUEOdYYjRtmlizYnPqL0M5bOcfY5hl1+Gmhvh4+hHC5UXYXPUM6oPzwCVZ2oKdRGKsWc2TPTIcnzYFZIvF3hnu3h655EAJfIZ4Bvfe7Cd/l9WxSZ6mbrCVM0wumGpE9k4wBvcWyd0j6/TKa/R5plfXzHQGtiwZjpjF4eFDG0qnZQ+2oBCDe9GhsJR4K3yfMGY1TpixH4eTIZlh0Zh/7jrS9K6PUBAd/20ADf9L6aDwr3/dTcXugOH8u/xKMNc2baDKC/CFK/yhjqUUQmCULtuSKh7ZJb8DwWhdV70x6A67+GqwKkAoA7cfLYQuca9RAaOoQADLBS4M8U8jtPw/XhoueMAGw+ZUzI0YIzqrVV/ocPC4ds675CN/jrln0+naihKyptNYigab8bZYs+OJqAMq9iESx/gCy5uq9V1Vo9+36WbgyyiiM6YTs04i02ATmm9Yb9HIau9nly/i/lYrzr4jxBE0e4Wg4VzTUd0TM3XhWDP5rb26a9AZsTv4Z1rlRmvVFvyMy/cFjiKpXwln1rRgA5jWNtqklAAJI0G3eXlhoY1w6m1uvZ59geCrryemyWPM9IN52Ks8Z3mMrrVsJfJkzk2NxL4RoPtRaKYYsoQxA7gp1HUpg55nCdoZvnzra4Z2eUE0Hre/3eUAr5HKaENb56kDb9oBqOwBgLsh5CHgzFQNqqgUFfJ22rFzhuezOHeZ5lQ9jYsvMZg4ryo6cYn2pOlTWPqHj4P9NJq6OEPcGAJiSS87fjkfvCu9d/H2Zy3llf+l+4ZqUAY/PUuDi78uCpVMcYt4ch8tjjNiStILsVW5qIcKV0Wp8GF6XxJhuZUdPM0c+9Izh+6hFL9gTWtHfZcdPY8rFxwAAYYecUFpQyASJt7f6o6xDOFtvlFk06Q2YlpchtANnmXHnPUw2/jaFBWEGgO88SPxCan7Qs+dgFV5K4IV9tJ2A1+Vz5JH7em3IysrCuXPn2N9fCa+88gpSU1MxdepUhISEOMx766Ga9tWrV7Fz507Ex8dj4MCB+Pnnn9GpUycsXboUp06d+kPt/6UBnatXr44NGzZgwoQJuHv3bsUFHoEAG6xElSAowxVxnZ+Cc1gzAPLhauusdhBCr/4BWUVEycxQoJL86j+ni5vBw7zOLZuh06jRQv2v1ctVbShmyQJdaAhMegNSZ4guw2s7V0fhJJk48v4wRSACqK2B1kZK8eUJx5SZibA+KIazuzt7b+34A1rMTUD54Yfey5x16BkY+3CMyI1L8KgDaDQnRXXgUFzMkgWBu4cDgHA41e2VJeQrf0BUeaIWv8Zw5xm8S5vkRev1EWnvUryRlafu83kp8gKvZAw4dZHh8XgNctOQPVjWS6Z4+0xOReBraVhwZh+2bvpRGDd+7E7dv4PgsfJhQmOiUcj+SiYIqcSQnx/5UXeFflcEtO2spW1Y/vKDJ4Q89L3XNDIutitXhfdKJqjMchIjvduz70j7qHQ2ApDg1rqGhHkv3eFt9+BL/jpRmE9aXgQpxL42TmboH6q48YylWSI2aPSmTdle3qowAQ/ebfmIzALU622Fc40ayPo2muF0e2AM9s2aB8OnxEV62Z07zK08zeM7SY5FpWtBvE9Wvyyq810bLjM2/KFO8SztGqFaC1QtjzqaoG1QI3uXpoRhXRlJCLKKiGiT3oCdz8eg7OhpxqTGPdYf5YdJkPiQxfFsfOovTBXm3+w+ffBRo2OaRDQPt8vuCen1TpPbtuIBhKFyDg0R+nJpnBF7Za1oJiGnQMMmALJKEv8N6fqm7zy3OWkKQqgDCrNkQbmxNYomxqK3tafqVo0CVY2luAb/IDJyWmuEB2WA9BmBolBqSu5BYY9Q7vcUNu/bqGoTAPx3vMD2Tyog4EGLufeemsIcMkzIPi2093lAK5glC7IeuvundWjVU9IrUih7aZwRLp4eKtxpv+h/6jBDuRdcHUHWhv87qUyYldf74e1epzZsz2uZNoThRP+kN2JRYKqmwhEA7pvaCvj38BOZ+rhQ2YhfyTDwNyh+E1ORM0NUeS+aKAZV3ttqgwqHpGO/od7iVGT9INMFZsnCQmjsCasuzJHS3HwAYILY/NVh6GXso2LAAaA0Nx9HHsazo5D2RaIQF+9Gn1aqcvUXpEIX5K+p8vtBQ/E2KOuHNkK6lqCo7Jaszu8UEapaFwGrxgnfQBccgE3JpP9H2xDBJmXyavbIVdFIFIb+OEF4piF9zJIF07etZG1QJpemKespO2I/3A6PJ0t3EDro3wDl5X/P3/8lvP/++/juu+8wZswYvPvuuxXmpx4VY2JiVEzbsGHEHIE6FKws/ClnHZWBjIwM3LlzBx07dvy/qP6/CniviU+HiJuqSS975TJLFvSK6IHNB7ci5PdhyOywFG+eD8fRNuXQp7njjSbbEFq1uurgd0RY3+sThern7qD8wHFVmlmyoNVXCdB/oe0BjNatbEe5QTmSDtkDXUggbJnZqnZeP9dGZTPQecQoVDUf+FPtTMq1YPKLo7F70QJVWXv1DT4tYWUzPW4OjkHqjES7/XYEuZ8a4f+QcLj5bIymYxD6mwdnQwsWpBQA3so5BqPrXbRe8TJK3W2o63EDjd93ZgcCxYsCrW95YTKGeLUjRNulFkhpXRVn14fC48kTdr+fWbIgdFYCk0bz9dE8eZ8YYX1edntsfH2cynjZ0fxQzjMKhT+1xMnYH1mb7r83wK0Ol+VxqVYNW3LTEP5RgsCAO1oLtA3ecxafT8trp3INVDTPzZIFzRbGw2cyqZ+GmKBpt8vuYYCnzACk3bMxQspeH7TGHSBEpW63tut3JU60Dt41P19f1g9tEPQ8qevC+FhY3tV2ykPL560Kg/UxouLY+cQT2BX6s+ZYtHt5LJK/mSeM37nXY3G7VQnzFvlHwCxZ8PU1X2wJraOaR7SPyn6HzUhA0xkpDuedvTRlnXx6zvJwBAw57HA/tM6LRPBY2TFC9tcxyBmYiNnXvdDE5Qa7WaH5H3SLYCp0WuAc1gxlR08zpw/5HxnR0FKGG/46HHvFviOlcxubsxiNjsDRnmYvzZoYxQK4V3Y/tHeumPQGwZOovXb5ciVxkXBNkse43Nha8NypLEOBTxtpzcOiYD+YJQsCV45jwg2tti+PNaLBvFSVkw7qnn/mVX+YW4pOBrTq4b2kanlprAgqOn+U6dnLwhE4lDAm1EtqZeq3t//x+QD1ty/rGI7tKxfDb+sopjrvCHTBAcge3ghBswtQelYS0uy1/W7OUSE2Y2XOZKUTpbBDTjjaprxS/XW01h2Nj0lvwK1BMbjSygm+k8jZ8Hr2Cbzz5SjUX7wfv91b869w1uG3eBKc/4+ddZTduYe8ER//n4zHhx9+iClTpmDEiBFYtGgRnJwqjlm2evVqDBo0CAMGDMBPP/0kpG3duhU9e/bExx9/jIkTJ1Yaj7/0RoyHyMjIR0zYH4T+wa0EaRxd/LzEuvQcsW+pXfMuTt2/gy+aHEa347cgxdzCa76iqpxJb4DfxjHsma8bAHQN6qPaL+mCvVBZh3AseBhc0KQ3CIGBz74TizZT5duAr6/5st/Kdkt3eAvPSqmQEicl2DKzWVm+HB/wko5RVbO8qRe9G4tzr4kqNTTvnIJ9Ql1myYJ33x4L1y0Zqvx82wVTYtHzxHVWpooTkWLVWpmGU/fvaPZL2bbyRsKfc31OddLpODZOrYXgJfFCeQqUCaPvula3ob9nFPzfSkVwfDoa9s3Eli0rVfPIpDcw5y5myYIhXu1gXUCC237Q8CRuDImBx5PkRquXsQ/umv00D9QT42XbPC1ppvV5+WbApDcwJswsWdjtrfJwClg9TqV+CABZ38k3RydjfxTmGc+EAUDZvXsqKT4PtCwdE9c9TRheGR/NVeUrN7Zm8ZkoPJXTjQVDd0T0331CVF/zmZwKaUMLmCULGvSxovihjZ1Jb1AFlqZMGEDi0/D9aPmNOigpfS7tEoHS6jqGj9Y6U5YBIDBhNM0sWeBSVZYIV7kte0E0Sxa0nzCW5Xc+TJwOWB9bysauavcCVbtZ3xHboJpr97P26f+jr8+Bc1X7kmF6E2dvjVEmLGKK+laJBnmmzya9AUdfn6OaIz3jnsXFn0WbpIs/N1PVx+9lFDYWE+N6GkvIpJdt9JQMRl6fBULb1F5w+ZRemB/sL8xxs2TBb0sXCe1RdTG2Xz+8faSe93zfS4XbT/uh/1wOEWCWLOy2hqqOKZkwrf2Z/i5Yo7750Hp2cnHBhQmxKiaMv4XkHbBofU8toYOSQW+2byizo+LLGV8ngZkpE5bzgNjmOqUeYXmU6+Dxp4erzi9A1igw6Q3CDbMSP7NkYbbZtpNWYe2VnjsPk96A1+rlCn2m3//M5Fghv1PqEXk9P2TCtNYyvWnPWxUmvO8+eISAmxKUfQwcehhjrAQ3+s14UM4FR8yXrmFD1XmjBOc9xE49r8dChyqMtF2bNQf+kzNQelbCmbWy1kr1PY3RYnYC7veIFOgMAPgkIEwYs8oIApS2WV80OSz0U8mM8aBF+/C/qZ2fWbKwW2yax31VGmPCzJIFb389Gg0TU1F2T9s+/J8I/8aAzhQoE/b8889j4cKFlWLCACAqipirUOcePNB3jRo1UqU5gv+zG7FHUHng3dfvPHcCfr+ORvAY+aDRkhLy72kan7+ykkian7p819WtiwtLG6JBH6tw+1KRpIdKdu1Ji+1tjLwbXqoG6KgfxU9FC8a5NJ+y7oo2Yj7gpL1YSTxQyX9F/VHifu15I+r+oHabrfx2vAtpZb9Ld3gLnrnKOoarnIPYw0WZrqy7ImmfMm/ElHhGePB56BiaJQuW36qPpSFeWHJmH5o+jEFX2iVC0K2n4OLpgVPTG6OKaykC37mB0rwChnPMm+NQP1lCaZM6QNpRVdlFZ/ahQ9JrCB6XzspsvlMNvWrI6mAuTZsw4YUWKPsovRWLPoP34WC4M4oHRMNt3X7NfB2O3mMOaPixpb+tc6IQvPSeKqYQzRPX9WlNpwf21u67OUfRqXoZTHoDdC2CmWc2/ttFHC7D9MZH0fqzBIG4cLQf8Gk01plyTtj7z9fBj0Phe7Hw+kjdvr01U9IzkglD+Dhj2V/FoLrPLXg8eQIbitJRw7kqK6sV+NksWeC/4wWmHscDf+tsb5042t/Kdnphe/NfNPuh3J8fH/A8u9lQQs4XRgS8Ka8fXd26sF27hvumtsKtvr11yj/zbSpxOXX/Dl7xjWXrUhlglwfrgkgEj85Q1cu3S12e03AFDx5vSwJpOzlVSnfI3rd3JNCgaZEWG3Po4ty6ueq2f4IUiW/1GRWOj1mywH/dWBYuwdEYao09jQ9XGbgy2oj6C1JxKd6IhnPJ96b7NqvfyQl3n4hE9Y2yd2PqCt/Rvu5oLlC42y+K1UuBPzeU9Qh1RrXCxUh3NJot9rWy+wgFZVgECjnLw5HdWQ5zkl7yAFGuVVTfgQ/DYtLbd8dfe199LPHdgv6eUap+IP2Y8I7eftF3VLuFgtNvHijvchb504zwfV/b1tTeGHQ7fgs7WrpXOFbKdF47xsXfF/dysrAbP/8rbsR8v3/vb7kRy3/ho790PKZOnYoPPvgAQ4cOxZIlSzRjCAPAuXPncOPGDXh7e6MGp57dvn17pKSk4MCBAyymsM1mQ2xsLA4dOoScnBx4e3tr1qkFlWbE/P39K86krNzJCTk5OX+43P8aaMURA4CbWwJQ82N3FivIEWEEACGL4wUJi3KzHltkxDzPVOE9VW0BiAvZ8XULYNIbYOvUBjtWfC9sQrOu+SCyei4+8I+ocFO61zsKN31d0NR8Hkl71msebGffiYWbVM7imbn4eAmONCoCXf16sF25CrMkB6+kKo1BGa7Iiiz5Q4yHFvAqPHnTjfCbqD2+Lv6+TAdfK52+o1DZPp7f2BxHolaqpHHK8tPyMvC+n+wqWMk00Dhpyr7X3lcfL+l34rFqcp00MGfRu7F4YiBhSig4ubhg65kDDoUCAAQVxoDV4xD4KpEq39/uw25MKiu1pO1473fDmehizbKOxpu+1wX545ypCUrqQIh/x5enTARlDpT10hhW9trmVXz49+dei8XRN9SqYs4tm2HLtlXoOnSkEFNMi0gySxZ0G/KCwICYJQsjurXGTGv+dxo5Gq5bMrDkzD4M926vOV6M+AkPlW0xNcZZ2tACPXxOwXLNkznE0QItfMySBXHNHoPt5k1VOv1PGSh7dSrx5dMCV4xDwBtpkN6KFdT07AFVb60s4WXr3AY7ln+vOY8cjYF1UVuEBpyF7aXaKDsu2lLx/XHUtla9/LO9so72w9ZfJKDJVyloedCZaR4ocaG/lep2Wt/ixSwrEp/ojaQdaypkLnUNG8J26RJLu/prMBpNuM9s2OyVO/9qLDwWHYft5k3NdEAM2qscCwqWkhIYHoZe4PvZIuU5eD11XLNeAFhwZh+8HwqbHAEty6sDAnJwba1vxrc3LLMQQ9yvIGDnCAQOPaw5lsFL4mEdPrdCxq20SwSqXiwW5h7f5+R7ZZjq3wZZs6MR9KK2IKrlQWccjygj7/sNBdKP4dpwI8qdAfeiB4RJt9O+8p0SB8OnCdBvvwTbqSyYJQu6DxyOq6HV0WBequY4ZX0bjaAJ+yt9pivB0T5iL79WnsJJsTj54hy0mJ0Ar48JE/t69gnBfpPuZzcHx+BCu3IEvSTGUDRLFty8VfavCejsu+j9v4cRGzntLxuP2bNn46WXXoK3tzemTZumYsIaN26M7t2Jh+vhw4fjhx9+wK5du9CpUyeW5/Dhw+jQoQOqVq2KCRMmoH79+li9ejWSk5MxefJkTJky5Q/hVGlGzB7H6LByJ6dHAZ0rAXRSt+v8Ac6OrIqcrovRfsJYuP0kL1LlZhGWPhhN+51i7/02jkFwArkZ8Nsyyq6nLSVoEbQdXhqL378Tb2fMkgXrbtcSbBjsbbA9QzoITjkqOhi0cDLpDUxCz+oNaoey4mKHZZT9AsDsyq4NN6LuEvFALtnmC9fH81l5nmAuj20NpxSi1kLtDJQwxpqL+cFESFHaNQI7ly1i46MFlChYU5SKgd7tBaNgR4xERcTWH5HA0edekXHYnJGkwpfmdfHyRGlhkcOxtYcfhVezT+HVZSNZ7BpAHnMlXlqHLD3wAWBDUTr6e0aR26YEWdqrbLt4qz/cqtyHufmvQn29T1zD8uk9kfaF9s2tsk9KyPvUCOuwuUK6WbLgsYQxqL4xHWc+jIX3h6IUmUp1eTwrEg4o05W2X7efjkbNdQeAMptQ5qKtGEO92tkdFy1wJJhQfo+SXpHYvWCBkN90/CYjyOm7aXkZiHKtgk3FNTA7KBhZSyKQ+/giu0QmjwNtT4lP0tlD0Dk5O5xr9D29ZaKga9wIlxbVQcPhV5B0VI771v1UH+jeqYOtPy9D88QEeE91fIunNVd7+ESh/MF9hByogqQ9EQj5qlBQKzPpDchbFcY8e158MZbdNFTZ3RQPOqm9fyUW7MM4H8IgT8k9iOHLxkOffB+/LVlod72vKUrFVZuNlfsj+4NWGr39qUw5s2TBwNyuLDSGVj4eKiJ45xTsQ4JPe+Fd/sdGZI5QMxlabbX+IgFH3pxjt53zL8fC86d8lJ6VBNxMeoPq1qiitnr2HCzc0FHbVX5s/NeOQ+7Toi1x0I/x8H9Lmzm0hze1W4OzDiiz4caQGKIxkH8GV0YZUX9hqqo/dM8ExLNKCVprGyCCuiO7g+Gx+75gq2iWZOEnj/etQTFwXyXa1QLEe/KpMXIw5F/PHoRh9nh47LmD+x9cV50HZsmCuNbdkXRku8NvfnNLAGr1tC/s59eBUmunIgaMt5PlIW+6kTG89s4yvn1H+M8qSEZwFTcBh9LyB/+eG7F/ISNGmSt70LFjR+Zswx4jBgBHjx7Fe++9h7179+LevXto3rw5Xn75ZQwfPvwP41RpRqygoED17quvvsKsWbOQm5urUYKAj4+P3bRHQECpmkih1dcJ0H+eAqfwUJQ0roGqW9US+kiLDSPrpgpSerNkgZ95JPJMi4R2lBuCc40a2JItx41xdnNDWXExa2NZYTIa6dxYes6XMQh4I40ZTztFtsLWn5chcMU4ZD+byNpedasuBrlfq/SGx+eZeCEM0xsf1cQXAFP14+tR3lTxZflnXf16cKrpJrjtp30xS7LTCi1wqlIVWwvSBeKMbyd/mhGZI0VCQRcaAtuJTDi7uzPvT0qCmx8Xvk7hQOr8FF7Z/DOTrJW3M2Db2iWaRJa9wyDG8hRz6w4Aulq1BCly4aRYeH2sTXhpMUg0X9lOLyE0gNY3u/VMDNxXk8OZEsmVYRLObWyOo1Er0f2ZEczb1ZTcg4IdFW33QbkNzXePQsCQwygeEI1rwTqcGK++9QKAM6W38dyE11Dj10Oq273sr2MQ+Eqa5phWNM48ZM+MQdDyW4InSXozqcQn5Pt43K9vQ3B8Otx/b4CfAnag06jRcE0i6mIuHnqUnpXgvd8NqRtaw+NTtcpQp9Gj4bo5Q1B/AqCaZ0XrQuE5QO2QhdYzKK8Lrr+sZ857nGvUQNmdO5p9tLeuF5zZh3Fdh8GWpQ5zYNKrHa3w9bG96GG79sb52nAjSvpdR7X1dVBnaarDb6S1Xh21XZk06niAvi/d4Y2dLTap8tFvx9dDCbzmB11wKsJ+8E+tvvDMvlmyYOKFMOHG2t7+x79TOvxx1E/eYQ0/npGHBqJebysWndmHkRq3qs3nJwh4ao3tzPxUvOZrVJXV+o5tpsXj0PsVM2JafaJA67WVlyHOo43m+FoXtkXwKCLE5NXWsmZHI7e/qGZ3ZnKsXea9on1Ca0+1NwbUiZIjGJZZiKUhsi1e49RauGC8iYsvxaLRdyma9VbEOPD5Yl8bxxgse+dWXGhnId6i1t77bF5nXGl3Ddbv2wJO5SzUTUVttEh5Dr6T7jHbcUDUiFHiU5l+0dtJ6c1YZgtvliwwHhmAdwO3YHZQsGoc7LWjdbZrjTEtF/vqOJQ7Q7ChpvWtzTz0r7kR81n49zBiBaP+OkbsnwiVvuby8fFR/dWtW9duGv17BJWHDVbivtn4xjiY9Aamj15++ASqbiVEGV3cdOFmGHRMCkoXvElvQJ6JSKBNegOS75EbBVrGLFmQtyoMZXfuCJsEvW2ibQz1aiekB7xBNg1qPF2eQfANeEOMGUOZMH5zoekxb41jbscBQpjzcDDcWbVxObdshgvjieoVZcKoa2CzRNz/zsxPxYTs06wtOkYmPXFLHJBRDbYrV1Wx03Ifl2+wVq3rJBwsFK7+GozyB/dh0pPYKT16DRHG+/pQI5xLZbfWNJ6b7QQJ/EdvB/kxAoDn8juxNpRp/CZuy8zGjMBQhptTsgVrbtdmTgz8zCOFepR9MOkNqB1HPFA6VamKTWczUPBSSyHPyReJA4O47s9ojkHodwlw/72BCl/KhJV1CFfNTQruq9OY2/U2uy4L5QEIZQqmyCp2TfudwoNyG7avXszy8UwYP796e0QgYMhh6FoEw23dftyvS+RLvU9cY8btdG54u9RE9Y3pjAnj8akTIMYJ4g9Sk54Y2Je3M8Bv82hMz0sX+mqWLLjbj0ifA19LQ/nBE6xvZsnCmDBaJq77MwCAzBfmIjie3PBl/RQMk97AHA4AQOlZCYXvxeJMdLHMhHFxbgDAdXMG8laFwXnPYVwZSYjbNgeewb0+cgBfs2SB5wCRoFMSqqv8fhM9qDo5ac4HewTbvT5R8HapyeIm8XsOzUOZMD495IAYo2xLthi7DgAuxctEe90lqTgStZKpNfPf6Ow7ZA6FLIqHs7s7++400DYFGt8OAHpFxqlwohAX/rjqHXU8QMvwTBj/zflbF9p/KmU/FVEKs2TB/e3knCx+KhpZs6I1ndrEdX4KZsnCbhUoHL0hunU36Q14UE5u2WnAX5PegJg3xzHcLrWtDQAsUDTFtdm+oVBCrWxnlsekN0AX6AeT3oB6vcma4pkwHgfn+6rXKgitWh3V9zRWleX/07FzxITxc4z/DxAhh7JcnIfsmbhspxzwFwDy4haytJXN5bFt/kmRqh7KhNkj/nn8+HkVlCGrQM4p2Cek0bnKBw2mnmxvb5Vvswrfi0XhJHn+8kwYAFwwEiHbV68mCvXS39b5kZr4Bqwex37zZxDPIJn0BgSuHMfy9Ix7lpxT3C20sm7a/pV2RAgX/MIBBI84KPR72sckpICzu7tQR8tvEuD11HHBi7JZsiBrlrcYR9BZJ/RTubcVPyWGFwgcehjZy8Lh0ytPyFerZw5mBwWz8hdtMl1k7xsH7Bwh4Bzy+zBVEO/ydgYMKyAxzor1zqi1Mg3W78UQCLrGjR7FEfsfhP8zr4mP4I9D/+BWuJgQi1or0tD/5CUhjSeolJuN9Fas5gZBF/hU/zaqjVgZBBcg3t7oO76++CxZCqWsW4tw4fGkcGU0ieVyqQ1gu3SJlbFdu4aynV6qPvXoIzM7Uvd6aDxLvAW439pPwDO0anV8G9iMBV+k9d01+8HjyROY45GGlgdlooLvJ+2D99QUAYeks4fgbGiBer2trExZcbEQ1NksWVDrzD2cGksYmZJekfD9UoxVVd7OAC2Y7LFZwKfZQtmroZa0km9zYM0b8H+WlOMDaPP5rItlN+i0vvIH99HXIxKe09VEhElvgO1EptCuPo0Qsnc9bKpbDLNkwZ0nyeFW7OGqCjjNzwvq1vmjRseE+WSWLOj+zAj27POBGPutt0eEgI+LHyFacz/T9rpF28l6jhBuydcDsONGqJDni6sBwjhJb8kxe6hreSVDzM8Rp2QLgkdnYKJflICbSW/A3jlq72MmvQGGTxKEsb423MgYdb6OpntvCOUAos6mdH6hpdJK13T9RanoFd0bh9quxp5589k30dojlGuUetakdZcVFyMurKswBmZJ9pyo3Feq/ZKO1l8kqBhYJYGdNStaeP+tPkPwcDjlUgs2XtPz0uGZVpMFalb2WwmUWfV9PxVvW5LZ+5XN9Kz83X5R8Jomj+nmjCRS55PDVPUmHd7GiGMK5xTeC3kBiNZ4X3uezFe/LaOEuuM6P8VsJt1+2o+oNllM84FfB9O2rtDcDx50Oqfaf3t7RODSphD4TJbtgatdl00EaFw+Xn3dpDdgn5EQ7S6eHjBLFhRv9UejOeK+m/9MU+GZ4pn9YzirBwA8p6tDSCjLmPQGbAwyI/urGPbMe1i88VwMK0/ruPVMjFDP9aFGNqY0T3rJA5Yn8wVRlZgHk94g2DWq5hSnLFRadNbuWcfvd9eHEc/FvPBHmS8rsoTNlwQfEjexh7fIFFPHRtSbrElvQM0esuaR10cpOPmiyJRTuDWIjFFJr0gWOxSQz/dL44zMGVj9ZFkQapYsCHw1TehjL2Mfzb7yniSvTVc72aKQ94lR9U7rW5Tu8Mb4w4PJnvNQcEnLeXxG5iCN+Ubr8H/WgiZfc6F1itTn4KpCkp61tA0z9eDbz+m6GA86nYOLhx72YHhYb+H5weNtEfdYfwAk3lv+NKNg9wcAmR2WwpaVy9YSAGxbuwSXOhOBbpOvSJ/yeiwU5rftwkUMOWTf1vYfB+V/099/OTxixP5hUOMSOTA3tGjINkmzZEG1X9QxPugGpPTkdGYyYczS7tk0pYQ88ATE3rnzVcyJWbKgn9ttoU0emu0bivYTxqoOKeXv+gsIUUDVXPjNsKTUBQA5IGha+cETLCgk3bR4nMudZVejOVyg2aQ964W8NDitSW9gtka8pK/oXVmqyB9KAJGcOl+RbeJm5os6/TTIKLUpMOkNqF54CzuOthDGwCnZIpSj7/steFMYh9OjZKLBpDew26GKDn++Xv45eMRBFP4kM0fKuXCnfzSrx+k3dcBUAJBiyKFIjbaVfaixnrx3X5WmikWnRYCZ9AZ8M34weRHVCia9AdtXL2ZMqFY5/v3m5J9hlizwf1t0OsPP1/umtqy/19pdRWbbB0I+3rMVALgXlNltk7brSBrKjzkN72CWLMRr10NoPCtFWFd1l6Qi6ewh8p3XyK6ZqWMM/lsdnjQHbnvlW2Qt4k4JpYXEjW7nE0+o5o+tcxvV2C0vTEb7cRnIGiqGHwAA2+UrqnGgRI3Wmqf2OUr8+D4Fjd/PxqJxai08/vRwphIGACmtq6KnPyEoJ/pF4bdDLSC9FSuEzMhb2VqFgxK+6NZH8z3vqQ4ATKd6k++zfil7NzM/FdeHyQz/zh8XwTo3CsUDotHfT1Sf5vdNZV9NegO7yVfa7lJVKzoW19pdVdVrliyY6BeFnBVk7PM+NeJiguicxdapDZyqVGXtHmq7Wkh33ZwBp4iHAomYMLHvD9uadZV4naM2bm4c4U/zUCcEMUcesL4dLLmPoOGyN7v8aUahjBJMegNs5WWsvK5E1iagGgtXRhuR9nkiSsofCLhSFWdaz/7P5iKv50JhvKNcqwhlAHKDxONkTYzC2fWhQh5eMEOB31OVewB9rwsOYO9oYO++bnJYE5PegK5DZa0F/j2t40HH1kIbupBAADLTTM9GR+cshZSZhKF23Sy6+L8QSW7RD02ey8pdaUdusWKOPNBcs6UFhUKbWm1TbQtlv8ySBbUfyiTtnVerbpEz16XbGRaiBABa7X9W2IPMkgW63YdU/b3zZLQgFFKOzyAv8i15T6p8ntBZCQCA4jDtgOEAmCo9LVtl2wF8uoM40PKcngLf90WzCL4sHwvOpDeg7N49zXw8LG/jpXr3CP674REj9g+C3hmXMfXThapNUmvz1wK6wVCViQ/8IzQ3V5r39lZ/1aZA8/XsMUgoq9Vu3qow+Aw8Bref9qvqd0TYUnBuSeL07G21AWbJgoaJosT7B5/fAAADTxH347mfk8NIFxKIVl/IjjMCnhWl77efJrc0VJ0RAG4kBWri5/lJCus3VZs4s7YVikpvE6KkUI4V8ZqvEZd/CWbPyk0WAFYlLWauoO2NG817MkE2XqZMCe07QG6H+Px82oPH2wppX+SnaX5j3uOXsv0aG/az91ubbRbGXvnHCwWU9SjfZ30rqoAARPWs3cvkwNz1PYmlZI2X7fFowGO+Pq1Dn5+jfPryW/VZ+q7FC1X4nX1bHVuOpvPEnT0cqJTZLFlw9ddgIR/fDp3D0e/EA+nHHK6LHoNGwixZ4PvsKVUaLyww6Q04Lok3EUr87O0LWjG9cp+qovqOQ7za4Y2Gu5nKLz93bw2KQWjqEM22lIyILjhAeEfVBGne4gHRwrNJb8AF4000+0atMlneSo7F9WW3VdB/noIWrvKa8xt8BA8ebyuMm9vehgy/RWf2CeEQeHyVcHmNF8vXM44QgW+1fwr7P5VV4kx6A/KemI99s+YhrXUVpipp0htg8oxgv3UN6msyZQAR9piOy7aZyrFQvqP/zZIFAc+S7+33Tiq7qTr7diz23gN0uw8x9Wkl0PbLDz68yU9TM5GrClMwpeEJ9OwxSGgTILauSkhrLbsbn+gXhfLSUlYXdfut7Dsgr6M4D1kY4PeO2mlF/QXknSvnRdjeXsqPnXIcqcqp10fkZoSqQgaPS0f1qg/Y7dnFl+Rb8WOvzKmQ+QJk1WKblTiLGJjbVXXemvQG3OsdxTyiKplfOobUyRMF3hYKIPsKnJwYPnw9ZkmMi8jju+1OFSZszHxhLnzTq6v6pGvYEMt3dIAS7I0BBUcCIfpcb7F9222TnpgxaNXRaFZ1VX3ZX8Ug+AcxVmCN9fsFp2YV4WmWLBh5pj06jyC3qPVPkXnruiWDMb/Kc9DZzU0YcwAY8cmrqnYAOZ5aRTD4tFSpfP90+DfHEfsnwSNG7B8E3xzqis8DWqk2ExpgGdDeaKh0VLlh5n1qhHOYHJT0zpPRwoZYs0cuK/N6tkwIOUWEYsGvC4VNnScMKVBVKECbOKNqCcpNTHqT4Evd51IcHnSLENrROTnDLFmwpjk5ZEprk00zaddPyBpAVAkujTOqiPbkb+YBAFNnXHRmH9IMcgR0Pi9VGaLQbGE8TrVbBk87Lokb9LFqbqBUlbS2c3WBgVHWce51kTClcCHaXXVYUXDx91XV99uShdA1JjYvnmk18aZvjKqs3yY5mLcWA6PsR1xYV1Lul9FC/u6DR2CF3y6W/+KLch+o2iUlONYVpTFXwjS/NTEKmW0foOZaWTXEpDfg9OOJggSVglkiXsV4fF86q2bu+D4sDfFCXLPHkLUkQvO7lbnI46D1/bTePZYgj1/KzESZCTYTW7klZ/YJ5Zxr1GDP1IEE/6eEC6+TeGeUiFXiY9IbmL2X9bGlTPLOzwVHAg/lmqXPuf3nCe1Q3EZ6t0fSiV1C+2bJAvdVafAc8JCId3JStSm9IatGJ+1eJ7R/fAIRNvQ+QYQcbutkoQ21hQKAtxrtEsbIpDewmEEmvQHvbCCqyo/XeCDkuxRPbh4os1D82CWY9Abc7ReFMTkDNee68luYJQv2vP8VG88tSUQNsLTorENG+tD7ciBwqioKiDeIidc9hPG/0u6a4PadhzMfaocg0IUEqgh8Ch6fpeBjf/Lu2nAjIwTpt8tZHo6278cjb7oRDx5vqzkPAeDxI8Nh0hsEL3isPycycWGCiJt1nmjHpsVg8EBv4641UzsWETM6qeqiv+NadBTKnflALVy5tClEKE8dpZyZTPLSwNdmyYJ6va0s5Eej71JgPDKAlbPHfPHvk7aTW8flhckYkVmAW6Z7qjVvliyo9mu6gJOy351HjIJJb4DrniaOifOHqpL8eqPfuqSjdqzEGYGhODFeFvjlR91lafdNRJhnu3QJAa+nqdrufqqPw/7zafkfG1Xv274fz9JbzEkQ0kO+J2nR78SrypkloprJj9Xtp6OR80wi/N5VC+yUYNITGzhlnTRvUcxtFrOPVyWnzC/tY8ybxFZ/S1ayqu+NUmUGEgCsc4maerm+gd01QZ9zHtzGymZ6u3PsEfzvwSNG7B8EAWOPaBIJo73bqwgJs2RB4MpxMEsWQY9f16A+++33TirKjhJmxymyFWqs38+u4gGZOLImRjFnEGbJgvKDJwRGxCxZMCyzkG3MPFzbHKQiCrNmEaL5QUMibbQmirY01EMRAHR9biRuDyRMBHWPyx/mzecRe5Pa++ojeKx801SaTwIcN0xMVR2cJj2Jz9T8oAuRgHkTPfyLPzdj6XQ8abBl+szbVSi/A18/AJx/hRzuWd9FY+OQTircKega1Gflj74+hzG9/OFgeVc7ztHZ9aHYvG8j0ktE1RGT3gDbhYswSxYUxdwW6qN1Bo9Lx4tZVhUjwBPofJ22y1cQcqAKgsdm4OJLMpGzfeVitDnwDMtb/4QcMHnb2iUs357581HTWfagxBjyvvJhl/u5EdZEYqtw5P7DG4TGjfBUTjfmPMCkNwiunU16A7IiS4RxGWOVhQi0b0mn9zJHMlV2NxXGhHqEBAhjSdP4NqidS9ZS4lHN5baN9eHo/XuIfY0YqDeeReoarnBUkP+mLJ3P+5QQJhFT4hGwc4Tq297pH42jUSsBqO1e+LGrv4gwdN0Hj2BMjklvwJvnwwX8u57sq+qTi58PIUo426ucB7dV350fQ/r+Ttl94Znhd1YMCAsAnQdlqMpToHXPWdMLHV4ai+yv5JvFaslyQOyR3u3RbcgL7BsAQN+TV1i9/m+nIn91GEx6A4L3PM/y6PsT73+2E5nsW1/8uRme/tiMzCPeWHO7NoKWinZvyr3CpDdggKf8DYT+Sha4+Hip1pDWPg2QecenbWihLSGfknuQrQNannoZ7HniujB2tsxs1S0sAJTHthae6y5Jhe3SJaF/AUMOo+a5UvhNTBViO/HtmvQGZLRZI7yndWQvI/Os8bfynu3cujny+iwQ8k+QCOFL1fr4+ZA33ci8h/LhHdhc6x8tlykvJ3tC8yBhDAqmxMJ2ndhP+m0aQ8ZrSgrum9oyLYUXs6xo2DdTk9k5NY7sr05tWwr1miULsyumbtA3FBG1Vep4hx8rrW85xKsdFof4CKFV7DHwlzYRgYGLrzerkzIFJR3Pq4hzrXP/2GsyY2VPsAQAqwpljYpzr8Wq6jpjcsH1oUac+TAWTq6u5Nx0c2N5nLsWqtaLcjwiDg4EABa/lL436Q2ov0g+S0salDFmGAB83yPrUqPxAAEAAElEQVT5qbMdfpxMeoMgfAZk4apZsiD3UyO75VMyOfR3Xu8Fwnvluay1XynH2z8hU3O/MEsWOJUSM4dpeWTvC44nzHbZkVOsHi3cACDBp73qnUlvgHVB5COG7H8UKu2+/rHHHlO9O3PmDAoLC9GuXTuNEiSO2J49e/4zDP8HwF5AZxpwlV/UxDvgM3DpdoblM0sW+K8bi6DxajsenuhWgvK9cnNaVZiCuroaaD9+LNzWiTHNLCUleNsv2uFGrQXxWdno53bbbpk7/aNRY8PDtpycBIPpkl6RcN2cgbtPRKH6z+SwPPtOLML6nGJqnMqNrMNLY1FjvayCd+r+Hdwoc1W5QOfB3iathfPdJ6Kwd+58zbTcFQbmUINC1tI2iAnIw5HNzXHipTmMQTwcuYrl2XlXh88DZLshk94Ap4hQ6K4VY+iWPVg4tj9yn6qiCgbJw8BT5zHnq/5oMF9mNIOWxiNrmKxqRV01K92q833u1e4JbE7+2e78CfhtBAKfO2x3jK5tDkLdXlksHRAZwcrMHz5P0bux8PwkRTOP39ZRCH5BDCQKALOve+HFOoWs7cqALjQESdtXqyTPWbOjcfSJb/BU/9HY+vMyln5jSAzSvkhEm6nxgoqtVpu6WrWQdHqvigHig73S9zRwrtY4sblRpSoKJrZlsdrsMUV8GS3QSju/sTma9DslvNMF+Quu6e31k69XmW6WLEg4G4OcyHsoN7bGtnU/CHlyPzPC/+1Uh3VUFii+he/Hok5WGa6FOAtx7Wj9WoSTcq7y75Xl+Lrimj3GvjEAfJa3H2/7RWN6Xjom+okEPkC0GpSOMfj6lfh1PvEE7s9vgppryd7W43QvbG222W4ftPpZGeDbb7YwHqdHVexC3rllMyFYMF0TtL7Hnx6OrCFVEZyQDtc9TWAb7qraY5Sx8wDCxDTsm6nZ5pWRRia0YAIgLu6f/4axCHpRHfS3ovUwQYpEZtsHQj4XHy/B+66yjpJtvqgx8Bps1284rJ+vx1E8LBrPUdnWjaRAFpKksme8o/f03avZp/BVYHPVmqtoDSrnKGUuqKq+c1gzJhim9dijQZTpmnUnRiF4XLoqj1kiGhRZkSUVzvesH9ogt/v3ds8iHlca8kULF0fjwe9l9F2XY8X4rRVhehec2YfR3u1xZZQRB6bO/VcFdPaePxnO1f+P3dffvYczY6b+o8fjP4VHAZ3/AWCPEaNwaZwRhybPFYNAPgzqWLzVXzCq5jej5HtlmOrfRqhLSxJjliyIa9UFtitXVfXwvx1tRJU5+Gk/ACLB39likyogJi3TaeRouG6RjY1vPBeD2j+mqeqkQIMvF0w1quyNACLF3bJlZYVEROH7sTgZL0scDYeBzxpbHPbr9sAY/PTll3jqjTdQc422vZE9vP8IYVzSMxIP3HWqNioihp2qVEXutAhYh8212wcl5H1ihPV5+x7HKoMvD8VPReNSa2dm2AwApuM38cOiHoIzlo5H72JPmGgfwNdbPCAa+2bNE+acSW+Ai6cHrhs9UXPtfiH4tkvTJig9d16oa/4NPdY1J2qdyjhZtK3sH8MR+NxhuHh5YvP+XzUP3vyPjah7qhy1f0xjwcdpuuEwYAnXXm8AUZWiUvr7PSJZeAqtMQWAwJXjBE9ljr45j2PW7GhNRyv25oGS2LIuiERerwXiu4cEkFZ+rb1B2tACSK4D/ZcpKgbLXp//CHOua1AftstXhHfWxCiELLyD8gPHoWsRjKQda9DmwDN4K2QbC6/xoFsEflu6SLPvZskCv5/HIO+J+cK7bkNegGveZXYjT+GL/DSmHqwLCUTSrp+EdEfrYt+3D+NT7fQEuhahvJ1BcPCjHA/r3Cg0fzeT3RBp5VPGBTQdv4nX6uXaJTid3d3xtiUZnwSEEaHN7uHI6rTE7rwofC9WsHGNtNiQYdD9IUbP3jnCC6LsjQEFfr/n69hYXBOv//KcEAONx/+P4PRHyv8RqIghqehcoP/PvxyLJt+QPZQydNbFEYI3XSX+3vvdYHA/gxfrFKra8U2vjvRzPmj0BLmxvjLSiAPT5LPAN726oOJoD18lbcDWa6Afcj52h+8zR1ke7/1uOBNd7LDOrB8ILUMZJ3tQmbEUzg4HjPWV0UYcmDKX9aPVzATov9SOj2eWLDhx/y5e8zXandv21h+PU9emof+agM6PGLG/Bv6jgM6VgUexxCoGOqkD3pkO68vqTYY/5AGib88HiqWgOrDnRTIVErYJPiQSTHqDePuEig8bnrikeV7PPoHHazxQlamyuykedDon1B24YhwC3kjT3JAq2qw0CT6PcJjPkng+pV0jsHPZIrnsk8OYUTqt69zrsWg6Qyb6nVxdUV5CVN4ujzHC/P6XGOLVrnJtU0L3hzY42nUOU8njy7n4+2Lzvo346HIzpHT1Etz2UzDpDXDb2xDrA7f/R4c8P24Ba8Yh8BWZAOk4Zgyq/ar2uulUpSrKH6gD/pglC57L74Tcb5qpHFlUlkAwvj6OBat0lFfreVpeBpZc7oCcyIo9TFXIhLq4oLy0FOuK0lTqZxVJNm8OjkHqjEREvxOvUqHRwqGi70dvuLXa05r3uiB/nHq9gcD00Dw9Hx+ELdtWOWSAlL+d3d2xJfN3Ia2Hd1vkfRiJ6hedoCspR4N54q3C+VdjBUZZSTx+dLmZKkg134+LL8ai0Wz7gcJNehKbypadpzkuWmCWyE3tqSn1BW9oFZXh66WBbu21aZYsML4xDqlfJgr90doLKPD5lPuiWbKgVxsTSs9fwKVNITjUdrVmm0tuNmJBhJUQn5WNuUGBFa5BHhceV631fv7VWBx5c45Qhq+bBlAX5mWd2kg6uUc1f6n2gT0wSxb0ioxjdlsAUdG73MED+z9TC33s9fPOk9FMy4HvJy1/dn0ojscsd7iHa42Fct3EvjoO7qvTVGUBICCjGvIfrw7btWtC0G4KztWqoezePbtjoQV8+/TGhH939u1YHH95ToVEPf+Ozhl7uGUtiWDq3LSssq8UqICL1p//sRG+k1LhXKMGi/vXdnI88/ToaH81Sxa8fcEAy0NNZCqMGpFZgElbnoFzo3sovePCPKmyvSI4ADZrjkM6waQnquG1M0VnId0HDofzPosmg208MgC1eubApUljXH/MTyXspBoPdGx4WkKJQ0BGNWw5EMZiQyrTqeDI3phfX+eBA09+849mPCjN6jXvg7+FESscO+UfPR7/KfxHAZ0r8/cIKg8HXlio2lTMkoUxYWbJgqzvolmg2Ngj5CDRPZyc/OZy7vVY5PVZAJPewDYss2TBjdYNmATq99my0X7BVBL/JPG66MaVNyBfe7SNalOZERgqHIb0P8+EXZhAjItpQGiTnjh2cEQE82k0ne8HAGZPAAAuOw+KdaQdFQ5o7/1uOPo6IThoDKqteftR0pPYNjSYn4phXYYKbWvhQuHWMyT2TdDzhzDAM4bhR8EsWVCamw+T3oD3GpyG7RJx5tFsQYIqL8+EFU1Uu6y/Mprg6xQeygJg03QnV1cVc0eZMAC4bCvGDX8XaMHWAjVzljedzIPCT4KR8lWiULfWAcb/pmkmvYExYWbJgqsvEPyvjCSSwiq7mzLX5HzZNUWECXjfLxI7t4az9roMG4m4zDjB3TRfTosQoUAdYfBMmBaxoUW01VpJPFHWWZoqOMrgIfbIfRUOulq1kLVEVn0t7UII2RfiRsEsWXCvdxRaf5YgzOWi0tsqPG62bgjfjbKcjB/fLduIKit1/qLqy8OAz/z7slu3VGuuvLQUmS/MReNvU9BgXipzk0/xokT6nf7RwjqkdfNM2NURRiHNLFnQaLa2uh0ALLpBnPBQJsweCGv+IZTmFSC32/fCe6e2LVkwWF1IoCaTXhJH7DBq5z5AzpdkDXcaPVrGy1m+1am1QgxUz/+n+U16EtyWT8/5MobtiwBh+gLWjEPpeeIogqrX8QGldXVqw6Q3CEzY69knWB9cfL1VBLVyLdD2eVxMegOyviM2WMGposzVM60mmnyVIpZ5chgbb7NEAqivKxI9stqu39DcB2qs3y+EbFCCSU+cZ+QsD2e2ZKX5Z1BnGSGW234Qr/nNlH2mzJ49Qpxnwuwxzo6YMAqUCdPCIyfyHnNrXnpWEmyrAGBLrrwHZy8LVxbX7Bdtxzo/kqmt9Xx8EMPZ4zM5zmV4htq7pRYTrpwzAAQGUcmEaZ1j1L6Mqg9TpynULqzszh1Wpv7CVNwYQtZVq6/JHnd9qJHhdHtgDKrvaQyTXmbCANmT7iD3awh8JQ31N1cTwllQoB4qTXpiR6bFiJslC6zD5jImjL6vknkWJT0jhbng9zNxyETVQjcfMiP5a/HcA4Day8n39F87DmUdwwWBrnJ+5ETeY0zYg25qEwgnVxLQmzotM+kNiDw0kKXXfDJfVeYR/HfDI2cd/yCgEdV5g2ImhaxVCya9gdkFmfQGfNDwJMySBUmn97I66GbqfsbG4nvR/ACQ/DWR6pyJLhY2MaresaFFQyw4sw/XNhNj6VNj5sDFyxMAEPQ8iXuU+7noqdDFQ/YA1DerB8ODAjX0NksWnH+FbOp75pOYZS6eslcx6oCBL0+fOxy9B13duipCj+ICyBubEkx6AxZ4JbMyVDXKpDeg2nbZJofavSjx12I0xk35CT17DFJt2Hybyt95K1sLAYspPm0OPMPy0kDLPDRYTNTWyg+fgO2aHNLg8lgjLj3fRhgz5aEwxKsdLO/M0SRmeaBpfhNTMSH7NItbx9fXbIHs6IWfO1qECp+v3veEwaq/iIz7g07nBEJlWh7pX21nWSUxc+RcZgj+29JFSApJgseTJ4R6aZ+uvmAUninomgfBxcuTveO9eDoaB+XhDkCQwtJ8AIl3pWvcSGjbdvOmQOBQD2Blx0/DpDdgz/z5OPL2HGF9j3xoC0q9nJolC/Z9Ow+7vl8gEOxKBpQKF/h0s2QBykgMQdpnJZj0BjROrcU8YNJyxY9dQuCuEap1VmODGKJCiwngCR/lOGqthzXNm6Bgqoxf3ifkO/Iu7qn3M758wOpxqncAUH7gOLZk/g6AeEDj06nb9N0LiXBq98IFCHiDMBg03pL/tpFAmeyghToWaXnQGVnfRctCoSeHCe1nD05kDh8AMIEThVr5pYJwBACCl8bDaxrZC6xzo5B0cg8bN4AE8uVv1KgqJD8HTXoDY+DsgVmyIPdJInCjtk5n1xMPhkUxt4XvaJYsTIuA719N52qq9aB8Zutv4zIhj9Y+mt15MYt9yefhVcAoWBe1Zc5LeJzYt1Awncr1Sb3y6XbpNdMptP5C9OqnbE85xgEZ1eBsaMHelxUXszrPrH3IjD6M1xY49DDK2ovlad4v8tVaA8FjMiC9IXsWpmOSNVt2akLVBrX2/Jzl4eydU2QrTW+cSnBp2kRI23RWdozVdKbIrNO5qoSYN8m6pDdH9BvXWZYK1z1NYNIbkPx1IjYGmVX4KL/flVZOAj5ae/KYAfFY8pAZU4LyO5slC7LeDITrlgwWt9GkNyA4Pl21N/V8nDC5Sq+cJr0BQS+nYfvKxRWuBwq/LV2kync+sSbMkgX6L1LYPK7X2+qwnn8sPAro/JdApRix8+e1XaP+Ebhw4cJ/XMf/Cmzd9KOwIF089AKzxQPdvJQLOPmbeTjXnriazpod7XBDAwjRSjeF0d7tUbdXFvJWES9lpYVFuD70YQyvIH/4v5WK4B9k9+KlZyW8m0MOcOpG16QnAVfLOsje3Z7L74Qjb80RNt3SorMsfX6wv4AnD+81OC0wIfR/1nOy3RP1xthsQYImoQhAFVhz6xkidWv5TYIQ3Nn4+jgV0cvXubyZJ3P1TN8p2+SJXIDEPVL2zaQ34FDb1dA1lAP2AmCHAQBsLkjHhOzTmJRL6inrGI7SLhFoMC8VDeanCgeZFigPOYqTkoGjXty+DWwm5KMQMDdHeEfHpHirP2PW47OyoatbV5NQ03o26Q0sAOtnV4KEPA36WIX8518hN6vU4xjt0wM3J/b8bF5nhpftVJZg30Vt3nJXyN+y70lRRYSWVY4V9Ub6avYplGzzFcbBduGiMB6DT4tqSnw99saDvqNzqre1J+vfkhe+YeV7+hNpc93kekI99uaq0t0zBaeIUFww3kTokJOsDhq+AOddVXgp+0Df+W0cw25ctNIBYgdlj8DwmZzK4vf4vZuK8tjWzDGQWbIgeEyGTFQ+dIG+b8CXLN2kN8DWSbaDpXkFZm5hW7ivShNu4SmcWduKrd3cx0WiKfBVQiQfjyhD0EsyI2pevxRBGeIYOd0VvXrSW3cqdOLHxiwRiT3FP++J+cJ6AIDGO86q9hzrHDX+F5Y1ZvuMc+vmuDk4RjXPlPsNFWjQ9qUNJAB9x7FiuIvmB10EnCgsK0xmt4g07cyHskt1XZ3aLO812x2BaeLX1oNuEfDfNlLou3PLZkJ7eT0XYktoHdX8CUsfjB4+stOTxIJ9wh5M66AqxQXbfQHIGgcUbg+MwaVxRjT5KgWFP7WEPehyrBhZ38QwD6Q5kfdQ2KMOAPXe7/30MfiZR+Jqc84D4T4LE7Dy+IVVFVXazZIFLl6e0H+Zoupzbv95bPwGnJL3HKpJYNIbUB7bGtmdCaOQu8KArT8vw6kxc1RzggL1Ulp67jyaJw9lOPT1kN2/K4F+RyqooIw9vTVSzhezZMFHPhvt7gHKeW6WLMgaNlfFvCr3OqmDO55/5kXhnVb7Z9eHYt3tWsy+3mfgMSGdFwa5+Hoz5lfp0Ie2E/PWONU7rT2S4sL3z6Q3oEEfqzDnlbTGhXjtUC2P4L8XKsWI+fv74+2338bFixf/cAObN29GZGQk5s2bV3HmR4Brw4lUmAZWNUsWWMeLKp5Unc6kNyBneThm5ovEVsgBEmwz8JU0XHveiKAX96PVVwkIXCFLkpUSxaSda7GxmLisD8iohrPrQ2F9bCkhQuvUZuojtqxclPSMhMceMfbRJwFhDF/632/wETj/fpi1cSn2uqZEUkko5KyQn7UkfnxZ6t6eSvQAEgiZ3+icqlRlfaaBNfn2XPc0gcdnKfD8JIVJInn7JiXj0eOJoVCCEkcXf18cnjRHlUZjvinL8vZjZsnCVM8AEvz028Bm+NjfAKfwUDjvOQyX3w4K5Wk5WkfRRNldMWWw6PPtrf4w6Q0ofioazjVqsLQme5xRvNVfVS9N33zIzL4HnYMA4NYjF6WFRSg3tsbcoEDGMFM87I2Tkmj6rZUbVt2qq8rXfgIJBN3ka3Iwbk7ZJNRJ48UBchB0vr0bQ8QYa/4PA4DnrDBgU4v6DBclMczXYbt8BY/Fj8FXgc3xjv8WTcaX1rGymV6Yo2aJuEBXjsH97T6qfJRYe9DpHLJmRSN/mhFRrlWYi/uyeyR0wLV2V4UxLCkX42sp8VLCmR6EWK5V5R7DKenoTpgli+AUhEL95Lqwzo9Ufb/ghHQEvSTHjVPORZPeoAr4zs/zYZmFLH6PWbLAKUUO1K4EqpJN7exMegNh/HcfUvXRbZ2MU/CoA7i0KUTTTtL7aTlWmfJ7Zn+ttimkeWk4BbNEHAvR4O6eaTUBEHf79gQkWsyRi4c4Z0rzzwgqgSa9AXn95DAQul16OIWHokEfK9tnyo6ccmiXqQS6N3qNIsIz5S34qQg5SDNPTA71agfXzRmwLiB7QN6nRjiVynVSJyLBe55HXR3ZX3q176dq/8bLt9jNMW2T3/eUuJolC1w8iOpm036nmGq1028e8KtSU7V+cz83wje9Ou6a/eA5PQXnX4mF53SZwZmSexDJXycyj45eTx2HWbKgYUod1Td7u34Wgl5OE2yWPD6V3cPzfwAQPOIg6i0mc+Dca2QPvBlQk9WnJbCgz9RDonKO8P+psyGzZMFAT1kjYNtPP6BXGxMAIHB0lgovHm49E4PA5w4zXE61W6aZj8f36ghZq4AJKmKWC3m08A2rWg0mvQHdhrzgsA0e37vvkcDnswqS2VqmeQIyquHoG3Nkb6seavVPFx8vmPQGDAo8iAE1FUHUo1rBpQkJ7s079yp3q44Xs9S3U/zvtM8TVd/GHj2j3Bdtndqo9iqqAk/zNp5r387ynwdOf9PffzdUihF77bXX8N1338HT0xN9+vTBsmXLkJOj7Wq1uLgYe/bswaRJk+Dj44O+ffvCyckJ/fr1+yvx/q+FuktSUTe5nnD74/+OyGjtXiTHcAkYchihVYlKl286+f+tXo7rQ+Nk6b9IEVRm+M2iJI4QWFSfPCfyHttcW36TgKSTe4TNw3XrAez6nuBw/mVRtYnfgHmCi//Pt8+r9ND07E5LVPn44MQ9+gxheb2nEKar/O5d9i5rluhWnx7YFCen30Q7OD4YJo3RYpYs7PZMybjSQLM8fjTt5pYAfH3NF6W5+UIbZsmClgedcfi9Ocj9nBxmOTNEuyVaV29rT8RYnkL2TNGOCgA+Xf+9UMbeAdC8pxU9QzoAkON40fSLFnIAuf20H1uyZbWTWivTmAfOK6ONTOpass2XEVJ0LHYvWqA6qOihyOfjVS35wxQggaP5NAAY5H5NNV/cfhIDRPeMe1bVd+XhyX8XKqkVICYMAc+KdfDlNxSlo2BNK+R/LKu+7p1LxvGrwOaa/aFt6tPccaZUju1m0huwOfUXYR4BQNXuBSrBRPmB4wCIWlzQ+P3My6T7anJYW7+Xg/Ke39icle/rITJJPPGlbNcskbhqJXGRyIm8x4hbvkz+6jAh/5V21xA8Rvbs+Hr2Cfb9zJIFPfoMQfj0BM3xpzdePG70/9IQNYOqFHzcNfup8lDgbWB4fJVxhhr2zRQC5rL9Z5ceHceMYeVogPJrw42Cwxt+fQJyjKbmyUNR2F3H3tOYfrcGxdgl0HgcqP1k6VkJJr2BqekCskqgFiNt6yyh/PAJFZNEVcDyp6lVUs2SBQNPiR5Eyx/cR6D5liofDzR+pIoJH50BxITB751UeH0kqxpSIY3f4CNsTtH9kK/jYIQYu0zZ7v3tPkLf/LeNFJxi0LrKu5DbQ+mNWLR9X44Z5/9WKuZ5pqK6idggHnlrjjD2H/hHMKKer/NH391Qgta3K29nYLEkzZJFFdSYwtE3yJnCO/7QAuV+ygskeRx44LU/aJ7S8xdg0hsEdUktUNrAKf8nFsixvOg73vkFtbek3+ixY/0BEGGE1tnk7OYG3S61cx0eB7NkgXVhW2QtbQO3HsRUIbiKm4qhzIkUHaHQuHMUzr0Wi82pvwAg2jTKtYj0Y8xmkwfbiUz0dbvDcKZlOrw4FnkrSdy+nj1kbRV+b+D77GxooRLEmCULdLsPCfXqAv2AmDBV3kfwvwWVYsQ++ugjnD59Gs8//zx27dqF4cOHIzg4GHXr1kWzZs1gNBoRHh4OHx8f1KlTB126dMEnn3yCunXrYunSpUhPT0dYWNj/dV/+K8ApIhSr/H4DoGZc7G2qvaJ7AwDmeaaqNixAVpOhoCRGXJMyhIOE3xg9PpOlfgVrWhEVOs7RJnWbq9pEYsJUhKDyIF9TlApbVi7DJ+2eDVd/DVYdegCY5ziASMZvl4kb8anpIaxc0HgigedVZCiY9AYU7BZvGJ0NLXBhgky4WRe2hUlvwM5lixBz5IGwSSoJWkqw0rZr9czBltA6cPrNQ+iHSW/A8QgSBDLrubk4t7E5Al5PY9+G5rXOjcKDTudQOy4bOYMSVfjT2G0AMLqwnWpM6fOtDpdRdusWytsZ8PYFOU/O8nCBsVdu/AVTyDjUX5CKMbUJ0bO75UZs3rcRrT9PYGUYg7x1FHsXrBE4N+msePDyZYPHZkAXHKCa1ya9QWAy+H45ubqizHISLeYmCGtidlCwcCCW7fTS7B/7fg9tYUx6gxBclebv7xkFn4HH4DtJO8A3APhtGSWsN4rLYu/fMZq7tSlvJ64N5Vqm9kt8npxnEjHSqnZiEfzCAZj0BozILMCRhwGhATAnFdaFbVXjSftFbfwelJOQIq5JhOjfnJEEQGYuzqxthcwOSwEQtR6t/s8IDIVTKTk+ekX1QvnBEzg8cY5Kvc2kNyBp10+wzlOrOtljgk164kmU4n1/aWO7Zfj+9ewxCBuK0hHXbSA8P0lhTgUoKAPmFj8VjaSQJFT7VY5FRN3G112iDjRL/5slCwZ5xeLqC0YcjV3C1il/6+m+Kk3IT6Fxai32LntmDLOfpPC+Hxmn0i4RqrnFrwf612pmgtDO3VKi5ps5cq5qnHr0GYKRtQkjdjEhlpXJbEts0egNAW3n+jAjrPMj4dy1EHnTjQKebBw5p0hDThfBpDcIYUcoVN/TmOGuquMhtD/6pPDONe6c0G9edVRJ6JslCzoPymB2qABQ1l5N2CoJYwCY40G+lZOLqIqpxQTTYPAA4JRsYbf0AJA5Qh5zs2TBnf7RIhHeQg7KTcf+8i/ByP5KVielN98mvQEBD2NQKvvJ51Nqf5T0EtdZ36wewnmlxSBppZklC8ZxgYd1DeqrxsI1KUNou7opjwhBYtSOhwCoGEOlgIP+z4tbiKBh8i231h6ufJ+0Q2Tqj74xR6j37DtqTRSzZGE32PbqBciZXOvAWVg7EkHjlq2rBNxpgHmT3sC0N7YkrUDPQNE0gdq2lnUkt3c3B8cQR0VpR8n689D2lvqPhkc2Yn8JVNp9PYWbN29ixYoV2LFjB5KTkwXbr6pVq6JVq1bo1KkTnnzySRiN2hKiRyACH0ds57kTbJOm7pMBToJbqxacGtRDaW4+sr6LRvoTMzHESzugdtghJxxtQz7vjSExqpsBp8hW0BVexOZDZk1iK3+aEb7vawenLd7qD7e4AqDMhsJJsfD+LJ15qKOxm6rsbopfg7cI5RyBMq4PD0pGjn/vqH6zZEHr9ME4EqUdQ0wZ12jgqfNY01wtOeeflbjc6x2lqfbkCG/rnChB1WhQXhembsa31+HFsUKIASXQGEm0jaJ3Y+FyFwKBwEPWD20Q9PwhgWkx6Q3MJbQj4PtinRvFPENJG1pA3584jqGx62yd20C365Bm/+2NibLv9phMZZ7a++rjRnvZ1kuZn7oqV/bZER4V4WgPaMDpa5uDkB6+lrXz2ZUg5glNq60Yy1MsOKsWHlr/e0X3RmlhEc5tbI671joIj7Vijf9Oea8ICWRqf/bajWvRUYhHxY9rzpcx7Ba9ZJsvXB/PZ/n4oM6OQLl3XB5jZEHGK4K8VWGwPra0wu9AA2TTNmi7fLnGqbVwwXhTwMneXODfAUDorAQWRNwsWdDu6JOo2UPdd1rOujgCfiud8NuShZq4561sDb/BRyq1Dvh0GvNucu4hTPVvI+C5/FZ9DHG/IvQh4uBAwc5SC66OMCLjY9l1PO2z//YXEPS8KEShrs6n5WUwhlEL7vWOwp752kHuKW60vcqC1vzXqsO5dXOUHTnF5ifNH5This0HW6sCAMeFdRVciQOArXMb7FhOwshMyT2ImGo61Tmg1TaPEx94vqLvnPupEf7vpOLB421RZZvoKdBR2cL3Y+E1zX5MK621MCH7NL4NbAazRFTsaVB6Pk/d5Hq41u6q0NdW+5/FsegVMOkNGJZZKNxkO8I3Z3k4AoYcVuXpl2XCpdlqN/H26gTU4134U0ucjP1RlVYwJRY+H4jjYm88lPjSc4tvl6+fBl/my9kLv1HR+cJD5HvxuNzhPoJHHETm561R+Ob7/2h37cx9/dwP/x739fEf/qPH4z+FP+w1sVatWhg3bhx++uknnDt3DiUlJZAkCdeuXcO9e/eQkZGBL7744hET9ieBbhp+m8aomDCAeGSjah7Brx5GAx0h7ujCrp9cl+WlTBhADGmpG12atzxDvJ5XSquaRp9j7Y88017A061HLlBGJOteH6cwJgwANh/cCrNkYS7saZ94advMfJnBy15GHHpU2XFQJUFWEk0PukUI9klaG92vZw+yso8ljEGTfnLAaLNkQc7ycIYPH/EeIJ7clHWbJQu6Dyae5HiD/3u9ie0Vz4QVvh+ruYHz7VsToxCcIDJuyltQWo4yYbzEkh9HXhJolizw/CQFHstkJyIU7vaLglmyILf79+yAyJpFjIKL1oUKTBit/+ZgInV1atsSARnVmCtlXeNGCI4nBE3OlzGMCQOAF796CWbJgh3Lv2f9UH7PigiwgJ0jmOE4j4+uMbGLoAbmtJ41/jsBiHOfb4PGi1Km8bgpD8aKcDRLFtx+WvZiRsufGD8HwzILUbdXllAXZcJMx2+q2op6Nx6147I1cVESEfz/0sIisk6ftCLrubm40f6K0Cfe9sosWTAhW5wXJr1sz3Mjiaj4xbXoCMMnRN2pCefufHfLjbg+jOzpF1+MRdKe9cJYaK1ZANh915m1patbFw3mpyL7a9GhBG+XyNfhN+io0B/qFZV+/3MbiYpo0um9MOnVtx88XDDehIufDxtLR3mVY+7zfbaQVrNHrsNvxQfS1eqXzxxnzfLKta0krMvu3IEuOADtqjmztUthaYiXkN+kN6CTXpsJv/10NBqm1IFZsjBVM+X82thR9sZJ8Wo+ieznjpgwgOyHjz89XNVvHjeT3oDSLmrX3ny+e32iVPuhSU8CcWt9Q7NkQdmRU7iRFMiEBCa9ASOteciKLGFaFfQ7tTv6JG52UocE0O06xOqOqaYT0nqGdBDapd6FzZIFT+V0Y2lBPWTTDdoef2PK95VqKFAmjN/nlfsnD37LJZbfnpBSWXZ222iGU3nGMXGuP/TyuMrvN+hCQ4Q6KRMGkLlmDyeah97YdQzIgjWRfEeqrtdl+CgULfMXmDB7+wetU7lXmyULvJ46DpPegAmSOB/rZpYJZZXjQ9+5/95AeG9dHCGoTirnmFN4qKDpQHGxZefZHQ8ezJIFeatkzTCT3oDwj4hmR73vU9m+EfCm2m3/PxYe3Yj9JfCHb8QewV8PVLpwzeqP1rvGIa/vfBZg0CwR+4utvyxXbbbSm7HQf5GCrKVtkNvte7R7ZZxKwqS1SfMSHCUoGZ8WcxOY1A0A5hTsQ4IP2YwKphrhM1k2Si+YakRZFbWntiGni7C8mafd/pslC9q+H4/6i1LtHiqOQIvxoe96xj2LLUkrhDSazj+3POjMVAeV6WbJgrjQzoITinMbm6Npv1NMSk2h94lr+DVUZgh0oSGwncgU6tTqo1mywFJSgrf91B7oAKBnYKzQzh+BrFnRCBovMlq0/Ys/N0Ojj6sA6ceENk16Ejwzafc6h+OW84UR2UPmInhJPPwmioE8lXnLY1vDKeUIrg03ou6SVCZw4NVOlW1EWmzIMBBiaE1RKnq+/ipSvkrUnCPK9s58EKvp+SpnRgwCXk/D69knMCOQePy6+oJRUBOrSKppb845xCuqlWqc+Tq0CK+oifG4HF6O3KcT0eHFsfh99jzVHOfb1AX5C0ySMl2Fk+J5WWEyhnq1I3HIHrrAN+kNwjy+PtSIOsvUa1W5HzhqTwnW+ZEIHpOhmc/F15u5b7+5JYDF/NHqEwAhEDPftqP1p4Ur3x/A/nfO/jEcgc8dRlnHcGxfuVjIy+NVUdvT89Ix0Y8Id7JnxiDwNdmGx5oYhby+8i1T7xPXML5ugd26lPuQFi5aY6PVv9zPjYJ3Wpqn3ctjUXPtflV+qhFRUdta6Y6+S1l7A2JnZ2BKQzGMhb3y9Jzj32d9E4Pcp+W54RTZClnPuiHwVe2YYcp3zu7uKLsl2tTxcH2YEe1f3o8ZTQkzV5nbWmV7NG9lzkJ7361+cl2s8NuFXu37ador8/Xe3BKAmtNrYfvqxZrtDTh1kTkHsVcP1b4xSxZZu8NZh5zPohDwpijsNOkNKJwUi1GDt2LHM5Gq85H+jgt/nHmkrWzfrQsiie0igEvjjBg2fgu2hNaxW4fb3oYofuxShXsDjzsNUg8A901tsWvxQpZWEheJqjceMBVnpVDqk4Aw5KyQ1U4p8EG2S8sfYDd+/kffALEbsTl/041YwqMbsUfwN0H/4FYIHkfiWvDExtZfZK9E/MKm7tqDhhEpDo0Rdu71WMzMT0X+NKOwqRRMNcK5Rg0k7d2Aiy+KNzcUqBRoeWEymi2MF5gwAIwJQ1Qrgei63yMSPpNTGRPGS6+WN/MUcKeuwClEfEiYMKULd2U9AOAc1kyoK3umOpgy348yC3HPHTElXpXO1zuj6SHmVODmlgCY9AbEHrnP+sczYWbJgpS2hOAqu3NHcP7xa2hdtDwoLyt6yNA2J+eKxrr8Bm9wdcXdJ6LYTRTfry3ZanfGALFLufGc6PTjbj9CzFHX3JQJ46Ws9LnRE6cZcxCU4Sq0abPmVMiEZA8hBJrfxFSVFJeWvbaZhEagHvEoE2bSGzSZsLjwx9lzhkHH2hvoaWROK7TA8GkCq6OsYzi8p6Qw5wfxWfLtQPZgsk4oEwaAMWFa80iJ369nD7Jx4r+lVl4KLk0aA+nH2BjNvOov1EHLF70bKzzXXZKKoJdJn4tMaplZu1fGCe3YsnKF8lq4KN/RYLQRh8sw1Ksdef+QCWP1cvNYiwkzSxacHkVU3EJ+H2Z3HOhzeWxr4R11BKJcG3mfGlGaf4a9o8IpQAx4TMtes90RAjGbJQu6DBvJ8M3/SNbUYPtR8yDhmeLA72/K/YJ+R7NkQeBzRPXKec9hYU5ozQu2Jp4nePCu9ykTBgCBr4k2Zl5bxXo2nQ9zON+0mDBaH1+u8wjZxpPP4+Lnw+qMbEecHbj4+wIAGqbUwabiGqi5dr+qrFmyoJ3ZfoBuezibJQuaJ8rrl9ru0PQL42PhvM+CKQ1PaK49gATb5YEKG/nvEfSyKKgszzjGvP9RW1rdLtlWR4nv2TFywGrleWyWLKizNBXHI8pYm7abN4V0rTr5dL5fvI2R1hoCgLjMOOhq1VKlX2l3DSY9cZLiaO0DZE1dfP0ea5d+Zwpfr+jHftNA9RRX6jqfat9YHxTLKvZlNoEJo30r7RqBky/OgbllLWFfUY6RFhOm1ReaHwBjwgAgfPgxbO/dGmbJgmvDZft3AFhyhoQ7KH7sklBeYOTr1xPqp+NDvZQCwNbvRQHF7oULsG3tEs31/0lAGC6NMwq2fzRWWdm9eyz/BqvoXv8fDeVOf8/ffzk8YsT+gaDjuP7A5fEqYo3CpU0hbPEG7CRGxPnTjGg6IwWv+RqROXKusHGdHjUXZS0DkHjdA41mp6gOMgpmyYIhXu1wetRcFmOGAvO69ZB4b548FNeeN6Lq1gxWlgceb0bgX77CNqr7PSJx9/FbuDLSiKQj2yuUAG7ZukrYFANbF6naUh6OANBgnnhLpyS6ACBp108AgMtHSIDem6XVNOsEgAGeMczjY3mXs7i5JYClzWhKGGMXX2+VMfBU/zYCrv5rxRgi1X9Ox53GzkJ7NG+PXkNUeJQWFKL2j2m4a/Zjh93eOSRYtvfTxxxKYfnn/icv4TsPIt2mQYV5BwvWRW1VZfhne98dANLD1+KLq2qnHGbJgiq7mwrEmNYBrCRstb6vWbKwwOEmvQHOe4hbZqpG1c/ttmY5/rdJLztqoe9pGg0RYdIbsOiGt+b3AYjXOiWY9MSTmTDnWpI1bnhoPnHutVg86BbB7Ep6nO6lwpMKaR48LjvkqLlGmzE16YnhfuDyeIE5VvYXALZkJeOzK0E4GM4dB1GtNIlme8Qkv759n5GDAjtFtkJY+mAVw0qZcr5/PU9cZ85iKPi9I4873/7g05LASNO6BnmpwyXQoKpmyQLf91IR1/kpoQ+2U0SNtNVX6qC+Jr1BcGOvZFjoMw17wadRr6X0uW5yPSbsSf+E7M263aIdlpLRo2WrbxQFFs5dCwGInu2UdfDzhP5Xehel0nwKNCbZ5uSfWZ4Vfrtwv0ckum4i3/Xa0zUwOyhYKEfxjQvtjH3tG6vSaJwx/nvnrWwtvPOeKttxUocPFCzvqkOB0Gca9LtR0GXWHiW8+XwA+U4mvQFwIsQdjX8JALdKiWTf1pmo/N3vEakav6YzZMFkjIXMo0iLze4aUzLyPCgd2Jj0Bqbq+NHlZtiSLQpBaZ3WxCgsukH2mVNWD9hu3tTcsyhsLK4pPGsJFqKanmFpyhs0Gnhc1zxIFW4gfP0rQt/G+7TDssJkoW4KdO7tXCbagVfEKEobWiBraRtVnopohaKY2yjNI7fG6dPnCmWGe7fXLJ/LeapMOkbMBZSMKQ803prWvqBFtx2aPFeok9fYoHm6H+/jsF+P4L8PHqkm/gOAXvN2azwauEhuXqjRcUVgliwIXB6vkjxRiM/KFlw88+VMegMQ1QrXQ2qyOGHKOuwRXs5hzVB29LRgYOxI4nevTxSq/SIbSpd1CMflN+6SG5mHoE9zx/lxXih3csLWzcsFHOjvsENO+KLJYVU7pTu84dLtjIBH688ScOTtOSp8SnpGshAA9PBUHgxabfO/cz81ImvYXM00rWcl0PScL4zCt+vpH8NUFChY50UieKzaE9nVEUZm42GvjfCMQWj0xGncHBzDYgzx30lXqxaT2moxp/QZAKzft0XwC7L+uvJ7K8tQFTaA2O319pBtQkq7RMDlt4NomFIHP/ruZnXEHrmPlNZVNftj69QGut2HsLwwGQ10bpp46kICkbTrJ82Dnr67+mswMtqsYe+c3d1xYUhLFk9ICbcGxSBlZiJaf5aAJt8QRxxXrtVkNyFabdDxyushq61ozSVHKmSdR4xCVbO2vUB5bGts++kHTWZJ2YZSRTOxYB/G+Yg2n+dejxWITK32lDG+itaFwms68WIKAOuK0lDTuZrQVzYuTw5jHvb4dF491CxZEPvaOLivSsOAUxeZ186ecc+izHJS6CMAHCy5jwhXMlcMnyag8bcpmuvO2dCCla+on1rjx6vHujRpjNLzF1CyzRfVJtZk4QYubQrBobarNde8vb2AvY8JQ8y8g+jqfgIf+xsqLKdVB+9YpSKgTpgAYFhmIXPy4eLvy25QTHpyK1aaV6C5zu3tdfac/uiCA2Cz5gj5lfV2OHoPv4dVU80RrT5vu1NFxYhr4Ubf0XZub/VH7edv271t4R2zOKpXiaOuQX2V0w++7ZZpQ1ggbSXkrw6D7zNHBUcayv5Tpxe8Kh1A1HBrrcpQ3WDb+1Y8+KZXZ56WeaCmDjzweeg6p+8dteHi74vW63JxMNy5Ug5+nMOa4XZgbejGXcDulhsr1Q8qAFBqrVS0diqT9/JYIxrMS61w34CTE1BeLjhI06rfLFngv2Esgl7cbzfP2sxDqBuc+49WxWOqibOn/D2qiS9+8I8ej/8UHjFi/wDgvSa6OFXB+Vdj4bH1EmynsoQFyhME9g4ck96AWQXJLPZGZTckmu/SphC46MqQHr4WXU/2ZcwNzQNoM1r84THrmg/G1y0AAPivH4vcJ+dVelP8I6ALCYQtKw/mooMIWRwP30lqQlrXIhi2k1aYJQt6+ESh/MF9zf6cfyWWeRq0d9sBqL0s8nWZ9AZ2mCrfax2uf+SwsAcuvt4swHFFjB/N47qnCTYFba2Q2DHpDbgUb0TDuanMNtAsWdD9VB8mkeeBZ7ZmFSRjvI/am6eSCKM4mSULog4/LTi5uGv2Yy6R+XwV9VXZZ6XXO2Vdyvp4GxddoB+S9m6oFFPN/zYcBizqGKOaZSpTn1myICx9MJr2I84I0gw/qcZD17Ch3VvlM2tbseDFWmDPy6XW/KVQWSbh9tPRKHNxEgQBJr1B5SWuYUodXIq9rtmuIwg75IT1e6KR84wc7oEvQ+057fVHa16NseayILCdjvdjRCGdk1pCEFpX3nQjrMNFCTwAlO300lw3FKQ3Y1EcWsJuHSoacz695bcJOD5hDiIPDURGmzWq+QMAWbOjkdv/z+/FlZ2zAAmFMMgr9i/Z9/j8rnuaoKTjecFTq//acXAqA1MxdISvFj53+0Wpbhz5/IB6rmvVnfeJEX7vpjqcu8pveX5jc+bRN+RAFWS2fVDhGNx6Jgbuq9NU7yvqs716W8xJwAP3cofnmqN6eRtOrTI3n41BrRVqG7w/MraUIVKma+V9NfsUi/XICx20gBdQlvSMhOuWDCSdPYQ4D/UNHL8//RGoUBCj+P1vshHz/O7vYcSKXvrvZsQeqSb+A+HIm3OYuozxyAAA5HqeMmE88Bs7fR7v005z81TmpSC9JauNNOybyYhhl27ENoP+mfQGgTAYY80VbBwAsqn+GlqX5Q16SS0dpfUp8aJxbOizWbIIgRr598BDr3BlNpj0Bk0mDABsJ63Q1SU3DvaYsFuDYtD09xs495ocS4yqhJolMVCn0stit+O3WBkAjAnTBQcI7+l//5/GqvquNRY07skcDdWj3ieusbybUzapvkvOF0bNOulvPp5S8A9i7K/C90m7/usJng3nkv5S20CT3oDsgoeqR05OAv78jRdlwpRzjp+Pyt/p4WuZDQIA7G21gaXZystUZZT902qr49gx8PyE3JS4eKpju9E/HigTZpYsOGdqapeYMksWpl7Ft2mWLLCEk4C0urp1UbrDWyhnD8ySBY1TxYOGzZsdL6Bpv1MwSxbUfccFvdr3w+VfggX8bZcuwX/HC6rxKImLZEyYUoWOAvVySeHMh2pVOwAwfJIgtJn/kZF5Mb2RFKjJNNRcux/10s4xNTA6Rr8tWYhZBcksfhNP5Cj3Lb7eVYUpcG7ZDF/kpyFrdjSOtilH4Ktpmt/z5uAYxoTxbSvbUZabH+zP3rs+ns/Sqpvy8G7OUdzsUQxAHE+TnqgfWofPVdVnlixw7loI62LZxgYAquxuytR+j706hzFhY6zyzUHAmnGauPPxizw+Jarm9XpbhXy8bWzQi/s118/0vHQBJ3vAl+UDQyvTzJKsIqo8h6hNLw/29ir6TPM7V6uGko6kXX3/k6z+ZtNzUd3nlsM6bg6OUX334q3+eDX7FKpvTLe7D2vtDzyU9JTVF/3eTcXNZ0n/zqxthV5tTJp94ev0HHeV/eaZMKdI2RbNOj+SjaNZssB9dRru9ouCU5WqMOlJ+A6a1mX4KLt7Lq9iy6d5fZQiMGH0vFTm4+vl45VRQSDfR/671Voh2zve3+6Dsg6y19ucB6IKqlL4QAOsUyYs9zOjw+8BAD1qlGDTWaJBQs0z7M3tWivTWPpNH7IPUSaMtxUEoGLCtM5xZTtnPojVxNd0/KbwTfk8ukA/Vf5H8N8Nj27E/gGgvBE7uz6UqTEopSYAhGctaVhZewOc91nstsfHFDNLFjRPHgrvp48J9d0cHINivbNwHX/5l2AWl0bZtvvvDXCrg6yjDwAmj3Ah+LMST3vSNs+0msxGgMZjUeY591osms5M0a6z31AMXmrGymbyRtrlWDF++qobMj5SS6qV/bH321H8lOyZMcgZlGhXemhd2BbBo0S1Pq0N+r6pLQqeLUNudxLHptzYGk6pskrY/e0+qNq9QFWHU5Wq2Fogu2d2rlFDsDEw6Q3MyyYF6hUOAMqNrbFt3Q8sr6Px6GXsg82pv2jOSz7vrUExLLCt1twFgB5+0dB5NGV2CfakpFp42CPoKnpvlixoc+AZNOxr31CcAq8GaevUBlUv3ILtVBa6Hb+FHS3dVThKG1rgWPQK9uyoH0qiQzk29B0fk0irHl6SXtYhHM6/q+P22GNA+PSZ+akIrVq9QkLH3j5kb05TkN6MBcqBY69p2/towaV4I2r1P8dimNk6t0HuU1VUqj25Kwzw54zgA3cPR3anJQCAo/fvIaxqNaE9F08PlBad1cT5fo9IZvO6pigVAz1FQ//K7h0PukUgv58L0wjI/dwI/7cce4bl04omxsJzurz3uXh5orSwqMJy9ghxZbtXRhpZAGSaxnuEc9QGAOGc0krngb/FcfH1xgOPenBKtghjetfsh72tyO2zrkF9oF4d2KzEOQuNp1h7X30WK08577Q8apolCx471h/VTWoHIjy+yrhjfJ4WKc/B66njFe4/WvUWTorFyRfV6vH2zm7+t3Jf5X/bKwuQgMHOe0S16Zg3xwlxRM2SBZHvxSPjIyI04L32XR9mRJ2lZJ62mJMAr4+0VX4d4eG93w0LvJJh0ouxAysaN9pH5dzSyqus5+qvwbiT0kBYM/ba09onGTz0GGsP3H9vgJ8CdgAAAncPV3lApGYYSnMALTyoyvfg0xKG17oIk97w77oRm/U33YiN/+++EftTjNitW7fg7q4mQh7BnwMlI8aDI+KJvlMSCCMyC7A4xEe1GZ3f2FwVU0u5OVBbKz6NBpy0RzDaIyYdHRrKQMR8vjv9o1Ht6n1sX7kYwT/Eq9zhU4i02FDD+T72hFUHAEZEOMJLCxwdMpVhhCt7QF8bbkSDzdmwXbrk8BBT1k3bVNpZKcsUvheLmkXlqLtEHq/7praCnZGjAyoowxVZkSUVEgk9eg1B+WH5kEw6ewhTL7dCWusqmvVSV9yOxqcyRK6jd4AcZNpRHx3NB12d2kg6uYcwrW/EQv9lCiMO+dAQFTEcNJ0y38Vb/VFa5swCNpslC/zMI1XxppT16ho2hO0S8ep1+ZdgHIxY45CB06rDLBEPjdQ5iBbo6teD7cpVZH8dg5yBarfv/O/KMl329i2tfBX1xdGcqWg8tPLTUBW8YIlCx6N3sSesOsySBY8/PZy5oQa01ZKv/hqMer3lOnhctdx+V2Y/Aohn2aSjO1neyo4F/6wVrFiZV9e4kWAvpWTiKDhas3x6ZderU3go20P+yBrn3/OhVChkLW2DoGFExZa3y+Jx3XlXh88DWsER0DXBA1WP0xprQD13W36bgOoXygUVVpo3eO8wWB9biqh345H+CREOUvtIgAgKNqdvFsY1dFYCylyBU2PmaK4TqupL26Cq+Mo5quyPPs0dUoz6RtHeN63seVeZdEdQvNUf5483QsAb2qEFAFkwaZYs2HsPeKwaEPdYf+YxU7dLD1tniZW/82Q0iuJsyIsjwdbzV4chs4M6aPxnefvxtl/0H6IDKBS9G4ugHjm42/EC4OSESTmH8bE/CQ0yIuZplJ6VNMeICtAfMWIi/C8wYn9KNVGv12PMmDHIyFA7EHgEfx4a7STMLV3o14caEZ4xCEFL44X3dOHSxW/SGwQVs8UhPuw9//9I1EqWR3ngFv7UEtPyMnDR7CmUAUjAyfsmtTc5JQ58Gf49zc9varaTVvT0V6tKACSIMY3H4/duKiblWlT4AsS1+cQGmSzt8KQ5cIoIRadRo1V9pxB2SHaFWvRurN0NXkn8KPtbUTn+j8ILb21ihLVJT2Kp2AOtsazipBPqXHVLVCHx+igF92s5oTyWuOxdXpis8opm0htwbThR7ygeIMcsK+kZiWTJD87u7gJRC4je5LoOHYk+y/fi9lZ/lien9C6L7cOXpf8pE+YUEcrSHzzeluXJ+0RUN1ESeGfWtlK9B4iKGgBYFxA1GZ4Jc/+9gZD3xnMxKG9nUM1hAR6q+gDyrU11Ux5MegPmf/4VK1cRUUoheNQB6GrVgluPXMaEXRlF+ppnWqQqb9Ib4NyyGXtOOrIdiCIhCBr0sQpzOtJiU625kANEiHN2vcKbYMta6Hb8Fm5v9YezQfaCSlVgKMEZ+ApR77v1TAyca9TQZMLCp6s9Cyr77+zmxnDj14N1QaRqnFqnD2Z96jbkBabqx4+zPUJOmc7n63/yErDTUzUXzZIFW9eRfedgxBohbUNROmPCAAhMGABkDZ2r6m+93lYWIoHHWXojFmNqS3Dx9Sbe4px1DEd+jTiFh2rOnXMDQ1j+isaitEuE5nueCXOqUhXFT8nBfOk3STq8TSjDf7duz74Ak97AVCMp0DAjfF6+/9eGG4Ug3cr9BADOt6+tStdi7Gyd2yAow1X13ixZkODTHteHireVITPusnzHY0jYl54nrjOV2q5DRzImTHMPwEPm9OGa4PPwTJhZsqBonbzOlPvec/md4PFpCuotJo4e+PFpkfIc/AYdRfhHCaj7Qyobw5SZidDVqgVdoB82p29mddN6PT9JgfeHKWwMsn6QPfBeHmPEb0tkx0Bx3Z9hGhLD/bU9BjfeSzRYquseCGnKfUUYm4YNkV5C8p/5MJaFDFGOlT2GXlentmrczZKFeRPly7v1yEX2s4lCeWW9lAkz6Q342J/gnbR3A0unTBhA6KmLz9xFw31VWP98nzmKXu2eUOE5kQuhQgNdmyUL7jwZDZPegF7t+9nt44nxc3C3I/GSaz57GI9VI05sGuncUHpWYqGDlAydIy2mfyw8cl//l8CfuhELCAhAXl4enJycYDAYMHbsWDz77LOoWbNmxYUfgQr4G7Gd504Im6CzmxsCdpciK7IEAJESufXIFRYx76mnMtKqs+/EwuNTBx6AHJStrDTMLFng/9NYBE3Yrzpg+cOMlwIqy9P89Plc6W00dSFzrGdQO5QVF2NaXgbe94sU6hyY2xU32l9xWJ/3fjecvNYYyWHrK5TYafXzyigj6i/Ulo4qn3u174fN+zay90qj7CujjWiw5KDKhs2kN5BDIO2o0Ae+H84tm6Hs+Gmc+SAW/kvPojSvwG4fePgjUsqK+giIAbG10ku7RsBlp3wDZJYssJWXQeckyoL6ZvVAScfzducMIDsFUUorfdOrI31JOAIGW3Grw2UUTImFzwcVz3PahhaMtOZhUbCf3X7x5e2l03fZX8egrGoZghPSsa4oDQM81YIIJT701ubiS7Fo9B257aXeFKnHzZJtvtjdcqNQTmuuOOqro7Wsla+sQzi2r16MVl8lCOquAjz0JOaoHfocabHho0bH7I5jRTgB6n5d/TUYDZ+/DNuVqxXuW2bJglb7n2W2R47yf5a3HwZXV/SK6CEELlbiwd/YFKxphZrbaqL+wlT4pldHftTdSvfPUb+VONJ9yV4/K+qb8pvx6VnfRTObX/peqS5Jg6Ur66Wq4fW+t+84wR5+Lb9JgMdn2mrofptHC7GjlHkcqUcrgarXz8xPxWu+Rs08yjYiPoxnanda7VMvko72UK2zTksIovUfUJ8nAGA6fhPmlrVYvrxPjfB7Rz6vsr+OQeAr8ncqiYuEa5IsUPDf/gKCnpdDKyjxL/ypJVPXtDemWrjaG0dH+6Zzy2bYso2EraE3uBXtxW/lHEPX6jZETInXdPKh1VbIgSr45UC4ZmxLe+X23gM+9he/i9Z4mCULxhYZcXC+AfUXpjLtE606uzYN/ffciH079e+5EZsw+R89Hv8p/Gkbse3bt2P+/PnYtGkTSktL4ebmhsGDB2P06NFo27btX43nfzXYY8TMErHfOtVumd2DkzIiFOjBw+e7mBCLRnPUB5kWUJUsmk9LJYv+p57YqAcrLdA6cABxo6Ku8M2SBa1mJkD/ZQqWnNmH4d7t7ZYByMFZ37VYk6jpeeI6XqmbrzoI6KbeaeRoAIDrFvkQd7Th8u1XxIDaI06vjDai/gJRTYWqXir1+isC3pZjTVEqajtXt4tf3eR6uNaOEKOdXxiNsipO2DNvvurg4H/r09yx2Pt3oZ6CKbE4PXqOqh0tIoMPHWCWLAj/KAGN5qhtDagqmD1YcmYfmrrUFMpkfxWDwFfTGHPyR4HHgbqY5+unqjwVEQgVEVf2DmZdSCBsmdnM4+Vjx/pjb6sNqtAFjuY+n863s+pWXSwc1x+6XYdU+SncSArEpdMN2E0lD7z3UHvt2Jv7WqEytNZOizkJcL2OCr9dRYST1n8ezxZzEnDXs5QRVpNyLXismmLvqVEDZXfu2K1bq+2PLjfDew1OOyQu6yfXxZV213D2nVhUuQWV3VVFTAEAXPy5GQLqXSa2tzs9YW7+q4AbtXP7I0DL2jq1gWvORYc2Zzx+lRkXPv9Iax4G1ryBniEdkPlxCwRN2K+Zj4YDqKgvfPsBv41Aw3q3UDsuG2bJgp49BrHzg8eteEA03NbtR/3kuljhtwtBS+NRs8iJCTQqYvb5PVm5Fh2V5131O+oHXz7rmxgEvZyGkl6R2L1gAdodfRI1e+Ti9tPRSP5G9nRJ7bfsAc+o8PjStsM/SsDh98i+vOjMPoz0FlU7Ka1A8dPt0iMpJEnVjr19jk9T9bvfUBZ/1LogEsGjM2CWLJh93QubWtRn30tZrtmCBCZQy14WjsChh9k+VW5sjevBNVD3B8Jk+v0yGnl9FlTI+EVNjGcq/Mpv4dKkMWxNGwjq96q+VIIW0DUPQtLOtfDbNEbF3PGQ/7ERvXvsZ4LMf5Nqotc3fw8jVvjyfzcj9qe9Jnbv3h1r165FUVERpk+fjsaNG2PBggWIjo5GREQEFixYgOLi4r8S1/8JiHxPVjE06Q0oL4dqozNLFmw6SzYxngk7s7YV6pgzVZsD3VgBIPvHcLuSJADw+iGLBfUEgOSvZdWA5HtlQl7q4IOXImvVaZYsyJpN1GJO3L+rap8/RCkTONxb9tLXKzJOc7P7KWCHwITxbW7rEszK8Jvmlm2rYDwyAKVuzqhyp1RVpyPg6+fBydVVeLZ3Q8AzYRSo/RtVxdQ1DxLauTRO9IBIvUjyhN1AT1G1z2/TGADAhGwSo+1aO6JmY9IbUHVrBqr9Qg6F8y8Tj048YUDrOddBltb5phNGiTJhhT+1FOaYktH22zQGt8JLhHQqCGiZNoTlNUsWTGwgOszg6zFLFiHwpj6NqO4GvkoEDUpC/vwrsTAdvym8O/e6qAZC8bk1iNxGUSbsbr8olk6ZsLaT41XfXDkPqcc7mqZFYPO/AzKqEW+fAPN4WVjQACa9AWX37sEsWaCrXw8AENeqi/B9+LEBgM4vEBXc5gddWL7FIT6MCdNaj2bJgtpx2cgZRNb1SGsedHVqszSeCeP7QvuQds/G0sySBfdNcv/nBgWy8aDpJr0B/hvGCmPh9VEKDk+cAyVQdbbCSbGaa42vk9alCw5QEba07L3GNoEAojG6BpySbaLK7tzBsEzZpbz1QTGr+/IvwTAdvwn33xtgRKYcT0uLCVPie6Ud8Wx6fMIcQWDCj0NcpwF29xQAOBy5Crc6XCZ5uhap2uQZF76eiMPiPn2vtzy3g5bG42JCLMpcnLB5/6+4MURbPXzpTVm191K8EbGvyp4bqSc7CgVrWglzZMjpIiwK9oPpVG9syfxd0Iow6Umga/q8+ZAZiAljfZlVkIyQA1Xg5OKiSdyb9AYEPneYqfr2fHwQrrWqg7KdXqrxoUT9lXbXyDx8J1Wcd1GtULLNV/Mb3OsdxYLChxyowvqn3PMo8HUomTCzZMEX+Wm4/XS0XcFV0MtEKLJ7AYlvWfOh1kvyN/OEuvZ/OhdnPrCv0n7jh5oq/Ph102hOCsOBZ8Io/offEx3p2DpLmv3W2hf5vSrmiHxDV9KLeH2kTJhZsiCv1wKWvqlFfQDAvlnzVPucSW/A6dHyNwscShjjI2/NgVmywCn1CMp1RPUPAILHZgg4WhPJ3Ffu03WXpLL1aNIbUNolQpiTWzcvh05B9Dva28+/HCvkM0sW2E5lIWRRPILHpbOyuZ+qb1rd88CYsEfwvwn/sfv6hg0b4u3/x953h1dRdP9/khsIvdcbIKRSQrkQUu4FpKkXAgIiRUUQpCb23kUUsSOKUqUIYgERQQksiPQkJAQuHdJJyNJ7h9zk98dwZmd2994gr19/76uc58mTu7szZ87Mzs7MmTnnc15+GZmZmVizZg0GDBiAvXv3YuzYsahfvz7Gjh2LXbt2lc7oDmFpxm5uupH7A7NLrvFzRSiqCx+eYgtwGux6B0RJA0JR10jsb78A7jNs0rmiaBCo4qBZJqecdN/SLIzzOZ7ggPvECex4nQ18F4uvwmm14fgTbGHUvpwvl4EmcP3ikwY+gk0meQnlbNPlUPg1CADAoN8pwrzTaoO6tDmTqXk4+98kFL8VphucW4mobLMB0swBnWSp0iMbFX/S/NAAwLbDy06eySQ8+MBhzrfk2jXDYl8s12wRrZfXabUh88sYuPdnwmll8cgU1YXa05P5MwBw789E5vy2nJ+lenXkfCgra7T47Fnhqke5nFYb6n3uJYDvjetcPlJ26bph/z2mC5HgpWOQMTcSzd8/wmG4AXBIfADced7TgoYoY0YUWn/M/A/u3nMBFx6MhRp7ARNzNT8wANz3BgDqTU7i5jhEu55nyuPAnG7SfTJXIqWV4ghRXweAbe9MM5WPfGQAIHyEORCKeD05T2vn7CjtxIt4h49O45DRTqsNFzuwUyURLMBpteHZrP0S/3Vz2GJmf6SwoXDTp8xMMVFUFxzPjoWiMsd/AJgdHgT32XOSPOL3ou8744IZWEzYAhbeQR9wOnzENkP+sMfZQvxajygOy23Ge3Orn6GoLjR8jy0WN17V2lVsB/E6cf0Sfj93ol36TsOe1HbXK2+qxfMtHu2U+M5v0pD/Di9TkSvz6ZGLoLSogp9CfsfcJoHaOLC/F88vynLjbhlIRy/vwAbyd+rOyEauAN+d+UWMx/HsSt9oHFqktZ2oTIr9TlFdmFh3F5xWG7ImsTH6qJ19I1kL2iBz6DSca1KMMr+nw2m1cSQ9Unz8GjeCorowtMpJzvNs7DWOeAjIvnMXBsUicOBuefwpe4z9uKk8XhikQdafHWpHxrRQOK025L17c1F6M9C3orLQKwfb3UBJURHPk/l5rKGvUL1Xrv4BVRemwLdbgeF90O8T8bIfGW/b1N1S0GDR16/cb2w8aDorAQfb3YC6VPOtJPILsJq+K70MTqsNLzaORaXF7Dvo3ogpBY6dmil61uRYaa4xU0LpuRicXd8ufl8yBVpUMsRvQuRDlPklUxAtoUH8/pU+mvLu7tLWUE7zqQmmm7pUJvkMA5pyafYOKb+lSaipgqP/DTDfYBofFNWF673PosLPW9FycgJOjWTvmvz3aC7M7cH850ocrQEwxGBCQ11yOAV+f6Qb1jLu8+f5WkWUo3itETmZ5tIRGbk8raK6cHCEjNIc/Iq2GZP1Gfs+t72j+Z6eGmnH0gzP8R7/66jkb/r7h9NfCl+fl5eHmTNn4uuvv8bJkyfh4+ODkpIS+Pj4oH///pgxYwaqVav2VxX3jyEz1ES/4MYoysnj/gRmE7vTypD0eoffhWLd6SOZGFTdXBPnOpzCwoItGNyQxXY690gsqn7rOfilfkFJZdEzuvbx90fJtWvIX9zSYD7ZZW8fDrMOsB2p3B5fmw7cpZKPD5TCHdwvDGCLnjK/p6PwZQcCPkwyyA8APZp0xMqDmzyWaTaJmpGZOYiiuvD8kbbYE8l2n9df8UXn8mxXK/LteKS/rQ2uzacloOG7RtMkM2XG24TpqQ76PgHA4B+lqC7cFT8aFZVdkvmbSNkf25E1mCkf+W870Ohtln/owQIMrnyK8/YUUgBgE3j5ZZqylPu+HWGf52DFdsVjXS71j0HFn7RF8/RDmzH4pRf44k8MekokokEqqguh341FyAss/cWBsabmtHoS4ZvN2tPb/x8KktBv5FMoq2xD/lsONHrH/CTp8cwM9K54mecl09tbIX2ZpaUTf4ttoE8DsFhB7jNnTPmRCSrA+m6j91Nx1/YLXk1I9TQ5LwnPNDbfuVdUF4KWj0adJAuqzU9GxowohI+RTYQB4+LWaWUB52v3PnjLbSPSS9m7DWh5nsYARXWhyaahaDxol3RP3876Z2bjkEil5Qe0IOJ6uYhfzw59cbVxTfhdvsH9R814inT0aQd2viyfQt7b/1H4JGmhMc4OsaPaAs2PqOLG2vg5dI2pDPp7ZubY3trC2zujgLqK6kLIj2P5CfjaKxZMePwxHlrg6NMO1Ps8CT5RLVFUsQws640ByfWyKKoLcRFdUDCnPrfkoEDoJFfBmw40fDeJo6h6k9fSJBQF99VBg2k7kfVWK2QO0cYTvwAr9r3ZwKtZmn5eF8sRA54rKjOnS51oDL+in6f9AhtiRfKv6NnWiaKjxzh8vLf+Qc98/PywKn8b53VxVTAqdc8xlcesL/u0icCqFQv5tadwK96IgjCPzsjB9BEPYM2Pc6XnTqsNlogmcO81Wv/o+2fhKw64ywGN3vYOaa/P5xPVEhU+PYpLd50oVV4yyS5tPaGoLow7EYGU1mVMnxP9T5kmTv6bTBOf+WebJv7Hipjb7cayZcswY8YMrF27FsXFxQgJCcHYsWMxbNgw7NixAx9//DHWrFmDBx98EN99913pTP9lZKaI0Ud9V/xolF+WCt/KlT0qFeIAE7YgXpoMxOdmpKgubLlajHeCtcDM5Gcmxi/Ke8+Ocsd9UO9zbUC7fH8MKiyVnbePPelA3SnyIv3V7F3oXL7Y6yIE8D45U7wNSh+RPBgNHvAcZ4SoqGsk1n47G04rMzW6tL2WKYBDxux2/HRDP8l07/0IVi3/1lThIf+44QcP4cHK7DTyrZztvD2Jl7tLW/y+cA5f4Fwd4IMrtkYoq2xDxqwo5PZkdu3kRC2RENfETDn2RlS+6IxdWlq/xo1QlJfvceLK/DIG1vVAlX1npBAE5O8BMF/D3c8JMMvRLYFULVadpVpVlDSoD58Tp6XTSzOiuHK+FSui+NKl2+o/RBSKwcffH/kLw9Cw/x7k/djKdMHt6T/n9aGdI+l5U6ppIUTfhic6vqwp6vQ5wP0j9XT4VQdqHHRLzv+eFPGJual4LUjb1dY/p7bU15fSkCJu1t8u3x+DTV/NMG1v4pUxIwrh8duBYjePUWS26BTbiTaPyAcQAI780owHsjbL23JyAqwfaeMNtaFIPmXKouTG9Vve6KAyzShyRzHS22iGJH9WIVRUF8LnxyPoFXM/H0U1ghyJ/Fuk+2JvrJ8E7CPS0Wcc2PnSVIw/0RzJp4JQ0rXQq5x0fb17FNbN0XxrvG0UiXGhbqW+TqsNGXPaIfwxbXyl2Fzkp0Tp8he3RFF2JWQONZ5G106qhm8br5fmHm/KMd2jNtS3gxnRs6BfR0mbA7dL5J8rlq2Hkz/0jh0HRk7z+H7iDsZJEOz6etD/1qkPSRtWYt0t1arCffac6bd+apQdvjcghT3xRqIcGV+341Dw3pRKAp36M2M1KX61k6oZginriWJ33c7mVeYXMcjpP8PQ7hRihNJSHE5FdeGeQcN5HDKRV4mjNVb/9A0HkbmV/qm/9z+liH327t+jiD375n91e/yndNuKWF5eHmbNmoW5c+fi2LFj8PX1Ra9evRAfH497773XkL5fv35Yv349Tp8+bcLt3016RczbIHJoUUsc6LCAX/9yqZLkIF9zS3Uc+rwJtkyebuDxYe5WPJM5iAdHJTLbHdcrPj3iHkaxSwbkuNXFB6Wdd76OFGTZLA0A2N5PgOtVOVaKfsI2y3urymdpz7O/s/EgjZ4WuqVNKJfvj8GpFhY0fFfeiTNDidTv8os0OiMHM8ODoSf9hHNmmB3V5xljvR191oF6nxlPDEvdEfwjgC/i9IFoizvYsGbRPH4iKPKYec5qiJ3kSXZP157ykHzib7/69TBo3TYsbNrAlJ8+uLn4bGJuKiL9y3qcuPWbH2ZpxHayVKmC/PgWEsKbmE+v1Ij8TsTbsf1Nc1NI4hExJcE0sLNZWm+LbqKM6dHcf6H902NQafFWrjCLpFdUAcCnXQuUbNtj4EnO/U6rjZ80dB41Cv4rPC9qRdRXkcQgs6JcPpERKEnfy4O6K6oW8FcfAN1b+zTaWhH5MUyxbz41AVcCbyB8VBosdVn/dR87LqGWnn84Fid7XUVm53mGPiFuWtE9MWC6t3fRe98pHLxcD19Y00zTePs+SnsGAG3fjUftabcWUPdWxlZvJMa+I9IHsxd56oGeaGxp/8xY+LhLUHGJOeIgKXKlyUrXYsD74KVjEPb4Vhx6x46gD3ai+PJlKR8p22L8Q0/leJofiPLfdvC4X4rqQlznByQfMsrfY+9ZrIyoZiiH0AnNygeAoN9GIXy0+WmyeNJMwCOK6sJrx1ohvY1vqX0hdGE8t5BYWLAFXdNH8g0Ks3r/GaXjz8wBUS43lC86SIibt6rQeeLr7twWv3/HNkbv33cCS5vXLpWnPiYnYB5vTmyboMSRCB+5TbJC8iQTnfLdUcRk+jcoYrflI+Z0OhEaGor3338fAPD6668jNzcXS5cuNVXCACAqKgrnzp27fUn/BeTJNlhcwAUO3M0/YqfVhplRkTzNwP1Hcar9GQlgQ8z7clAM/O/N4wsNepa4d52U/uLAWKz+6RspryclLO89ze/h7FC7Ic1DB1Qu6/dNmU09pfcLCjQsTp1WG6rl3DAoPCME8A6672lXU0wnykLpS5uASAnT89NPInoeFC8GADZ9NQP1kzTAixJHazitNo5oqb6o+SJtb/ejQaa8H1sxxcZECbPUrCH1AQC4XNdHkqvR1ooAgJ0vas7XVF73ngwwg2zUxfodXsLiGok76ZP7zZXKWrOILUTJLJP+nFabVyXM00Snf9f636J8FwfESHlWpK/CwqYNGBzwN20N7ei72cX8EKOZSRqBMSiqiyth+vbJ/pS1S/EFOcipfuEAAOdnav4C7vPnmRIW20qSP+RHDeige2C04d0BQO1pyZoSHCnHAau5pTqcVptBCfPWXiJ/RXVJccHonmgyVWnxTdNQQQkjnqSEjc9J5++6ZNseXoZYNjn3A8DB1xiQhl4J03+Lu9qW4FqPKMOzlTnawkX5ZQG/f/pmcOr6k5K4DHQ6snrJNx7bRLz2LVcOnwVoAZP3JUzlMOjuY8e1U9qUXTzeWpXvUlCilpPaMXwe84UV302LlMFQVBdXwgAWZFYkkcfy5jVxsN0Nw/vxpEzr+YjfoP57dFptqD2NbaJkzNV82FqkG6f+W1HCKEahorpMeVCwekV18ThXpISZjtdbqqHq5pr8GW2aVFqUwsE2zMYLX1/z/WOn1YbsT+RxrXFqeaw6lMq/Q/JXPjByGkfMpHY8/Vs4V1KyH5wu9dMSe2sehy9q+0BJNmrrusmsb/q0awGABV/u6ejN0+iBPCj/yohqpu0jQsQTXb4/hpdHSljG1GhYIppI81L4mDRkTWZtseb7uSixt4bjubGYWJd9zxHJGnCS+J8o5MVk3i6DG7Y3nEw3S/cztIG+XuL37LTacH5liOn862m+npe/Gcu+64gac7RNxqmHNhvmX7GcB/YfR+YX8jyhBzixrN/On90o8YOlbh3O09O4Wq7wosRDUV0GJUws0/78WISP3IaTo+2SK0hcRBf+m8ZUAHDvNQJX/dfTHR+xv4RuSxFbs2YNOnXqhEWLFiE/Px/vvPMOGjRo4DXPfffdhzlz5tyWkP826hnZnf82W0zQQJb9sZ3bsAPAiKpHDUoCDSwXHozleSmIJz27Z+AwHkgWYJOgOCg5G0RCT/Ts4HBtF5/8qMSBd8qkB6R8cXfdz/Ou2LJMGkwLfmKTl/+KNIlHxY21JR4t0n2lfEd/aeZxESHKS/ci0wdKzwgIw4woX85HdpyIZ0pnkDJCSuNXry4U1YWA38/Ax8+P31+7QAva65O0Ez7+/rxc68dJphMXUeNBu0wnJ4CBOBS8oU0slrp1EPChzC8/RkN/Iwr+iaHXESwv+V4Qah4ANHhgr0GuJ9YMhSfSK6j6Sd1M+fW0QPb2Dum/COVMeRTVhS8DtiLnnjmmbdZ6SQ5XMJ4MbO9REad7Ic+nSPdOxNsNstO1PkaRorqAFPndZQ/SNkbIRE7fBs3S/TQlJ10zuc2aFItT7c/wZ78VaiAoTiuLDyS2A8CANMT6O602CaL96DMOnp4c9cU6UABTcZEPMKCOr84yxfNyvxhcGBTrsS0BcPNCRXXh+ppAfn/tFQvPQyAqFEbCbIPDabVxRabgTQdS359mvqiHcTFo1v+cVhtW5rA4biIfvyBNRrp/fFlTHLm3Pk6NYu1MfohEGcNkWRTVhTJrq8JptSHnQ21jyp2VK+UTlRizhV+PHjcDXfcdwu+fGiGjo36YqykqZn/6dgkfrvWdn1MZYAQtjAHmIyoqcpZ1VgStHCn1gdU/fcP565He9OPtqs5ToCf992P9JMkQ89HTuCcSgf4QWM/zWdo3Q++I8s1owBQKsT8C7KRwQcEWft3tkRHcZFDfjk6rDauXfIOVicy1gpBVRdn8N9TDMft5ZC9swzcqAKAoLx9572l9QVFdmJ2/2VAnT/XWKwfkDuAT1RK+FSogf5wD4QmpfCEvylUxXwPY8kneiesVteC41sllpe+CAHxEWTKmRRu+KSICCSKUV1FucZ0iUpUe2YZxRQRconutP2IBuOv7VUKd9GtS2SFljPFqF12syp8vaVbHEL+UAE7M5qXfIqpL5vFOKwvvoK9v8Z4Dhj5u1jct4SGsrt+noOCnFgYzXveZMxxFOracBXE3g0cfX8bWYJYw4+brHfpn020pYvv378fatWvRv39/+AkLT2/UokULPProo7dT3L+G7g9nu/YFDwfDp0xZANqEYLZ4JbMBSif+11PlH1LQ+sME9Oj+IJxWGzrtusIHSt/NDH3KLL/TakNRZyNPa0plOK02tPo0wbCQEBd25CRMpF+QiAMymWBkzJIRIX8OXSPx2BNZjGNPOniaejd36vSDrKddt1r3ZUjPwp7Yit8K000HVaLgl5JxIZDx6Ng0U3pGflErV34vOToHLRvN20NRXbjeSYZ5BpgpjtNqQ8ddVyXZ9fUR+WR+Houae92cB00i+veQOUVWMHP6zzDl6T57TkLJArRFHgCEx8vO5nF3DzSU1dPRG12HjvDY5mIfNlNqSuyt+XXB6w70jO6JvPfsHvu3fkKkP9qFF9tP9Okxk0lRXXzRfOgdbcFU+ApTdre/OQ2Zn8ca8uiJKz0dbIZnIgUpcjuVWV8fk+tr/YbIUrcON42i+pXxsYisEHTT303MmzlkmtS2uR/Ii8B6nyfjxHK2ex72xFbj96Lz5RBlWt68JnpndkeFn7ei8o8p0jOxTS4OZEqOX3BjOK02rItYxp91K++GorpwYqwd5zqcMvQZ4iXeb7k4F3ERXTjojdNqg19wYyiqi6NSelOuPclJ98Pnx6Mo9xCuO9vxsrO/s6FOnwOov+EUto3XwHf0/Nu9JYccqfMVM5cMfjnZ0E8U1YXDrzqwrjCMX6dfuy7lB4DzH7LF58k2lbg8NWdrG12ttvvgwPV6pjIB4Kd4ZkoeoH3Tya2XoM17bAFOJyD05+6iGgCW9N9f49TyUFQXfCtWhNNqg6VWTZ7mycD2hrbSt4P47OSv4ciY005KQ888js03fWc/DY0wjJlOq41bIhDCoShD7WnJGNKwPb/n9wdTVMtvqGuQgfLSaQZdR+8YwNNGVmN+tVldNHAJ4t34ddlsfESjDrhxbzt+71pPLQyNyF+s9+OZGdJ1SdpuFF++jGs1iiU5xXLp1Jjub3tXWzP4btohlUEATABgqVYViuoyjP16GlXQHom7/zDILcqgpzOP6jaPirW5zGm1QX1Bi2XotNqQ72Rrofy3HRLfWfmbubyzw4MkBbCoa6TpN0/34rr0x8WBbEyvvEkL1QAAGTOjYFkvx2E8/JoDV++LltpLPMUnOvq0A+6MbI6eaGZWCgCVMy3a/Htz/q47kOVxZ+aY5rlD/1y6LUWsSZMmf7Ucd+gmKaoL9T9Nkpyx6YM9M8wO+052wkST5bnEUMNCnfIQcYXl8yQes0tEQPOJjDAMWgT5CwBrv52NBQVbcPox7d7cRpsAAPU/ZScx8ZlZfCeHJlhvE+g9g4Ybdh2JyESI171BpMbL14JGWysy0IO17BTWr349TD8bYKiDt7bQ3+8VECnJIsYVKe7UBgBQ/gTbTTxmZ/DWkTuKNRnN6hGfiovFV3m5hDglEpnibGpVjqfrsfesJKued86A6RJIiqK6cPxxTTGdlMcWVCJ8txmf8Seacx7ll6Xi3CNsYno2az9eDoqBX2BDTD3Edm79AjTfPve+DENdi/LyUeZ3tpA58yhToObpdn2dVhtOD795spCmmXgpKjMpo+uG7yUhb2ggQmdp5pF6MnuPh5dEIOxRDTkt6o14U8VNz6dn+z4IfjkZJ8Yyp3lKG/CBthigOD++rZtJ7WimsNA7PTXKDt9y5QzKGzmAE/0WvtLwbjK/aYsz8yobdovN6lNy7Rq/J/bF2TcXKhlDNSXCabVBKdyB2r01M5gue/sAkMMMUDnnHpFPjRTVhWudjpp+WwDbzVVUFz9VL8rJk8YmUb7tbzG5phzaYuAltoVPmbJwtQFutGostcEpez04rTaP6IxmdGaFFgaE6KEDKoJeYQvlsso2/oxMlN17D5qOrZYmoVhQsIXDT+vlF2Wl8AQAEPjzcWxv9yO/JlAVcSFJcaRqzUiWyibeo2puZjHjwoLhW6ECfCIjpDS04SX2F0/9VoxJ6GlBr//e6TovmsWFJOAX90ntdMvbd+u0Gk1t0yMXIfwxY/gDsf+IkO+K6sLRZxxe273aRyxg9Yq0RI91obAAAHBFCULeTyHImMUW2csvVZDykC81XU9o8guXJam1tnlKY5/YnlPOaCeuACQEQv8Vabh6X7RUX327fRUWDgAIS5PjVoY9nYK4Lv35dfSr8VK5Itw68R16sICf+oTPZxsJYpwz99lzpY6dfg0C0L6qtikpbqDyDYWVIfykLfs7tk6o/o12QtR+Vz8D30FD/5CuyT+50dtJiN15g8vT88uXDHmpj9/7+UYATKHMmBpt+IYS1/3EUWUvdDzJ7yuqS/K5IwpcfBTHI2VTTP+VaYb3RGBm6ZdkxVBRXdImX73JsgWLorr4OP4/RXdME/8Sui2wjsWLF2PatGlYsGABAgICDM8LCwsxdOhQPP744+jXz/ih3SGZzFATRdIvwMwmU0+kqC6ErB3OAyF6SmP7IAF1v5AnRnKKF8shWH0zomdmE4mnRVbmvEiEDWML07hO/ZC44Wf+/MPcrXg5yGg2KE7MfFE2yi4FTC7qFgm/temGPASvTvD3Znw9kf75rPzNGHUTQKTNewnY8fpU0/x6efVtYalbp1TkQDMix3biQ07mZuWJcuW+b+eBpD3JePwJB3a8ptXHt1VTFO86wNPmF13EqJt+e5ZaNU0XYMSvX9Y9HAZYLEeEchdhks346OW8FTL7bm41v5juurMd1s01hl4Q0xS+4uCKm15uMd3h1xxoMLH0dOJ35u17clptGJ2Rg1e390XQg7u81tOsPek9TzzZBBtalefoagCw9HAqKviWRdj8eAS/4h3++tzgWKR8PN20LnoIf1GGI887UP9TuT2IKE3uRDuCXtPKp2+bwEAo3cUBMUj8bDKPD+Sp7cyIIMv1VNypDbIe9kP4GBkB7VqPKKyfPcuU96302yPPOXCpzRU+LnuT01s/8ZaXvnO/AKshFmNpPDzNOY1Ty3NTvyt9o3n8PTOZ/+x3RpQ3wY7g93fhasfmHKreNI8HJD49z+WFaegd4PnEyaxf6tNZIpogcc2PXscAogf2H0dAmdMovFED60834abFnuQDmHL1ZcBWOK02RLncSLPJJ9/e5nqz74Yr3nvO47kaOYYxIfeHVgh6cJdHPt7a5ErfaGycOpM/8zb+eyJ9e7TdNkjaHCLyC7BiRVqixM+T4m3Wh7v3GYKSNNnvVZ+G5qFb+a7o3pHnHdj1/FSsuuyPz0Kbee1HR5924HzL62g+/iiuhtdF2VNXUPTpBR77Tl/G/xRYx6d/E1jH8/9ssI7bUsScTieOHz+OHTs8L+4jIyNRt25dJCYm/kcC/huIOvWZjGBUqcz8nwjJ0NugJioCNAjcM3AY35EXP3LfypVRU7FwGFj9AEAoiaUNxqUtGDwNiCI/8ZmlZg0k7v7DwFNERBOfld9QF1c6HZPuH3vKgYpH3Ab/IUItM5sEaTF3bXVjA4okoEH4e6u/p4W+mN6sjYjMBvmgVSM5zLNZPrPFwxn3ZVS3VEDElwkYOGg9xtXeJ6X7OC8Frcpqg2XwmscQ9qhsevFDQRIebKidLHh6z97esad3bvacFBdFdaFHqEPyYfJrEICiw4VSueNz0jEkZQRHrCP+PWN6IXdYI2kRbSb7tbgoVNx3DEV5+fzeucRQVI3L8vhOsz+JRdbD071O9vq2Eetsdr80JdkTmaUjlC2zskQ5Ct50YF/8VK/vC2BO8AmBnpFJLWHBpmYz3r5vgAU5nR0eBOee81BaVDEN70D/z6wIQ/WemVBUF8K/iUfGo9NM+7y38gAt5IG+vqQ8UIgGgAUzLikqMvC41YWZKIuZXPrflMbsWk8Zs6IkC4HzD8WiyveanxohX3qSV8/bW3+ruaU6TrVnJz7ewheYyWhd7WsYfxXVhbi7B0ohLiQkTJ1M+jkPAFKuunkQcZEurQpG5Zf9Ubxzv4T+KZYf5XJjQp3dHt+Np7Y4lxiK8mVuoOw9h7yOYyfG2lF7uhHynWD29fliXf2RYvvJ67gqEn03AEAxO0mejBuX0H39k9I47tcgACVVKsK9L0Piw9t3ndUAg++JirpF4ngbf0lBEd9L0KqRyO3+tWk7ijFDFdWFDk+OweYpM3h7eOqXQb+MRniCrNhf6xGFIx380Ph11s4vZe9Gt/LuW5prRd5EPYJjkf9cW3w/ehIeSBqLYBNgrtz37bCEXsQ1tSK3hNDzEsvstfcMfouoDj2dXxmC5NZawHlPY5hIxR1s+GrGF2jW/Ph/teLBFbFP/iZF7IU7ipiBrFYrevXqhZkzZ3pMM3bsWPz22284fPjwfyTgv4GoU3et8CB8rxRxaGiAffg9o+JwPaiOBMNNAVP18Nx6Km0n7s9O1mcetUumBZ4WK95if1DgUL8GASi5dJlPvvoy8xe3RKMBMpIkQb0TnR5uR425Rth2T3U7/Vs4/P2KUPHm6UtpipVIiupCm4kJqPOleTBjPuFVqYLEAxtN2+XZrP14YdYIA8S5Pp03Euulj+kj5v84j00iLzaO1bMotSzxWc53NqCgPIJfZuWIGwAkh0gD9x/Fomb1TKF99byJR7tx8dKJJt0PWTscZcsVodGA3aYKmsiLoLO9nTCK6cUg5+LzuE794M7MkdL61a+HoiNHTeXX19+x8zqW5LaWYlHp0zVIqYTZjTTTzbbvxqNqzg2UVZhpFgUFf+ZIO+yPLDJd8NM1hS4Qy3k1exfeD2llqFv3wGicGB7J+4yishPLY5crSyeSpSlXnkh/spTznU1a7FiahMJ9MMsgl9Nqk+LQ6fuWpXm4tMCkuHhmiple7hv3tsMf875G16EjDKfgenJ3bgu9f4goo9k9x87r3CzNU9rYnTekQK6exisxvIU3RTBjbiQH31BUF1p9miCdLFL9e7Z14kJsID+5omfXekZh/axZPB3FTPImH8BMc33PXkTRoQKeLmxBPPeHK208EePCGZS2ll35eCG+V5KD8lA8J5Ey57dF2FDtvRX81AL7HN9KZZTfUBfnrpeDf6+jpZqBUQBsMT+FAjGrG8moVwo9KX2K6jIE1BbTRr0ejxp7L+L8+Muo0iMbGTOiYF1rMQ1Lo88v/qb4baKM4iaYnpdoheJtvUC89GSpUgXu8+dNZaLvRH3BgYaz90shc251jKF0Uw5t4T6I3sbjo89o/ma3Uk7lTbW4qaK3b97svZq909LqQUSbfq1SH8LmZgtRPTznv1rxuKOI/bV0Wz5ip0+fRp063mMF1apVCydPnvSa5g7JtMSViozp0Vi1/FsAwKmRzNdmRVoifDe7pEGwWdkKgI8PN03TT1zk4yV+7JHj45H1LfN3uriK+XJEpg80DDb6RbKiuvjftfvP8nvqSw50fGKMlLblpARkTI/mShg5Pp8brKE2VluQjNz37Sg6XGjYAQXAHV2vX5OBYBTVJSlhUw9tRo25yRwiv+nmITj+hHaqE9f6HuipRq8MVOyeg+trAnFF0RzaTyxvgu69HzGkF6mn/T7seG2q6aQqUnF4I2lR6Fe/Hk//WWgzXK0jx946OYa9K58/ND838mWhNJ4mwHEvsjAD5HgsPmtVtpxBCTs5Rgs3oH/PIol8MjvPk4AHRgmhBJxWG06MtXNYeUV14ee4GCgqg/YlOGeRerZ1SuU4rTY0eCTHUEen1YbQITuwv/0CWJqEYkXqCqlNrnePkurgPnECV3tFw33suGmdxHsl9taoZanI7y8s2MLLdWfmSD6SiupC0ZGjyDFBKDSb1FN7hxgCAot5FNWFw7EXeR2dVhu2vzmNx6hxWm1cUSJkMkon/iae1ecl4+Ro+XvXK2H0rOTGdaS/PY1D9DutNly66wQeDUwxpPWmhGVN0vpV7vcMaMW2AwbzvuCH5b6buO4n3gZ6Kjp6TGpXp9WGa6sbs3y/L+L5FNWF9V/PMshq9ltRXdwXh5z+ybfTjEgJM1ME9OS02pAxNVpSwgCg61ANVZXkHV97ryEvwMx6xe87adJ0fu1tXCalyVKNocXVS7lsSOe02rDvnUbYOHWmVMZDB1QppIDTyhAVfdrIYRPMqHjnfq6EUV7aoOlpv0+qN0GnizLRd2HWnu5Tp+Hbqil/Lv6JfPVKGACEDd0u1fHKqfIYnt+RgyCdWRGGCn7XUfaeQ3hwZy5PRyFHFh2WT7bqfW40l6VQIFMObZHKekqN4n0tt/dMZEyPRuxLYyV+ZhsotGDPWtBGahOn1Ya096YBqbtx4eb8GT4mjYelUVQXph+S/W/1/YV+N3+HbUj1z76b3xN9X8UxCWAhbsqsry/xoOcZ06NN3wk9t+2ApITpefy0sDN7f58kcSXMt5xxEZ8xPdpwT6yjorrwZGB7ZH4RY6qEZc7TQvqQEkZhB+i++C7E3xc6nsTlfhrfa6sbw1KboTZb1ll5We3eikfhyw5DO5BVkb5d9aTPV+Y8s4Sq33c/B237n6ASn7/n7x9Ot6WI1apVC1lZWV7TZGZmolq1arfD/l9L94e3RPjYVP6R1vxaW/yeeyTWuAC8eZhpNmlTAM+To+3w38DQtUp6nsbo1mwAr9Sd2Y3Xui+DxxUTSc+z2xCG9LYz+nsuw8XgIlT4WQ64WeI4x3cEAXAzwuPO6xK/oFeTcfSXZojPzILTakPQr6P4MzLHyO46V4IX1teRzKiGVTkOp9WGwIG7Yf1NO4EV/UeAmyc7N2ldxDJsbLmUTyq1ex/kCrAZKaoLF9rUh9NqQ5fhIxm/D+04O0RbsPM22KbFflGXNkdJtcrwa9yIpwt5PgUZs6LQLN2PvYMZ7F2tarqC56veM1PiGzk+XhrUqazeFS8jaOVIVFqUwiHQ9WlEorIU1QVL83DuyEyAJD6REciYFQXfypU9KoD6yaX29GRUWrwVJ8ewjYOLLeryvnrMft4wKYkLbrp/pdMxg6xiue6DWYaFht5/5LqzHcr9pu1GP7D/OE6NsuNyvxiU2Fuj/TNjOY9jL8tIdXQydr17FFssDMoztF/wK8lSHrFOYluJpwX69jP7VrMWtDEseizVqxvuKSqLFXjhQXmBq6gu6VT00KKWHhcCVL4I0Q8A3x+WfWgAoLijJtfl+2NgCQ/hcoQ+l4LMeZHIm2BH0EM74bTa4Gqj5T3ySzMAzKdIrEdE8mBDG3Q/0BMnlpsDQJHZsNh2emXLrJ5iXXmdX2RtlN7Gly/iAEB9kS3GReRQ4kuABmZlKKrLYEoFgJ+6Ufpd169K9f0wV0OqdJ88xevTecQoQ71EPl13X0L2p7HSMwpf4nvdjevdBRS3m0BGVXdrp3BUzukihsTYM6aXVIavekJKCwDZC4WXCpj2K/q9IvlXfu/uwY8h9JmbMRNfcJguTkUeHZ4cA0V1cT9Uooxp5otyM3lI2VBUF8LHpEGNvcBBkC5tqc3NLmm+AMBPEQc2sKPH3rPs22sSKrWB2CakBIjXB9vdkPpmbu+ZPG6UmXJEdOQ51u9EP0F93QI+SEJRt0ien3iMDWSbYRQbzmysB4B9r7C5//T4QK7wmdUprnknXv6Nzke4MgNoIB6iCazZ9+Zqw05+PdHuZ4w+1CtzUgx9Kbf3TFTdXJNfE4lovYrqQk7/Gab1Dhumnez6BTdm5dwMO0B1dlptOPyaBiomoiZX+HkrXjvWCmeH2LG+xS88Nl5iE83NpuacVMmqRRzTiH/BGw706P4gAGYlIpIloomUd//YqYb63qF/D92WIta+fXssX74cGRkZps8PHjyI5cuXo2PHjv+RcP9WooGu0VYGCTzpdDCqfpvCP3YR9rdHj4dMd7aITrdxY3nYKubfsa4mXq6ZKZUBaPDnokKmn0AoJhYNMssvVUBub800lRaHAf32wlKtKlp+JsckCf+cmYK4SzSkwXp992NaGJv0yBlebAOn1YbES0GGwbb3vlMelTPRB0hPookU1SNrUiz8Ahvye/fvY4sROrURyyn/SyrcndviWnV2Upc5ZBqqLUg2nQyI/+6Y7+Den4mivHypfcNHpfHTDoDFhGmTxkILiNDxVD6hp4n3abGe2+NrTDm0Bb8dbGEqi75vkGzufRl8Iem7YQcU1YVVvy5EwCpfrDy4Ca0+TeDpRV5mZfi2aIr0cQxxsNyvqTyfu3Nb08WlGQ9SxkV5izvYDH1aDCor8isY6kbR74047yXN6qDmrGRs+nIGfJJ3YstkLUBrvb77TXd1LzRkyvGNzkf4fYrrF+VyS2kBIHjJGF6+qBQsL9TiYunl158SikA61L76k2Liv6hZPZS94ObPTo6WY0tdi4vCgQ4LpHyivJ3GjMasfONuetl7DnHUNiLfTZpcFZZuhTuDxQCK3jEAiupC2LB0HHyMIQZeW92Yh9wAgF3R38OnTQTyolmYjFMj2YZFgwe0kyEqK2NPA37STfL6tm5mSKcnsQ94+gb1zxSVBVMvf9TCr+mEpfwybaEJMD8py/rtcHeRYwrlfmD3+B2YyfVi41hkfcYsAmbnb4btZrgB2tAh8l+ZZso35uV4RO4oxh8tK6JquGzqyzd/0nZLGxNKs98AAHWnJEl9EwAHbyjxLyPJSfPAxFzWDl0eG4WQwbIfeNQb8VK59FuUW1FdKLv7EIq6RSL4pzFY+dRHcFptCF03HOdXhhjmK0V1oeISBlRR+LJDeibCpzsD2MaAiO5JFPzzGG5S1ir1IX6fTjMaTEyCb6umODvUbshLtDKiGt/0AVjsSD3p+5RZH4h5hbXRu7ky+q+eCFqeEBqJzg61S+/MDHSKKNc5W3qmJ5qjy/yeLo0z5x/SEHKdVhtHSbzWMwpX+kRLykylxVv5e/LU751WG/LetSOldRmeruAN7V1ei4syfIeUj/5EZXZRsBZsndKf+dRt2IRRVBdXGlt/pK05iFZs/kVKK8rQYGISjv7CgDYINZkovY0vqi2QN94k+Q97fidU/4YTkrByFQsLtKiZHGoicY2GmirW3/aBsQ7/zeRT8vf8/dPpthSxF154ATdu3ECHDh3w5ZdfIiMjA5cuXUJGRgamTJmCDh06oKioCC+88MJfLe8/mpZmaP5QTqsNsxpugfqSA0qLKvyeoro47K+iulC8U7O396tX18CTJjJ3Zg63b8/+xNxnSG/SpaguPJV1wHSAJxQ0kov8GgDg8GMRfHFD8Zli5rBFSFyAMVCiWGcAfDF9dqgd3zdlsOmi6cj3+VGm+YnI3MRptWHJYXnnn/ymiEKfS8GK5F95HZc2ZxN30c1FiX4h7Ze8l9fVk9KjX4ideZQt3PTxvhTVhcxv2kJRXcgYWgFft5oPAKZIkfoyaLFO9GRge4Q8LJetqC4U/NQC0a9qiyfx+ZW+Gmw2nX48nNsFFZcwRZB2iwF2ajA5zwi5S1S85wCmnAk0PD/c1R8nxrI+UNLeqJSQXABTxin+C6Xz3ewyyO2TtBMLL7B4RRQ8EwBCBu+A392yIk5tdXaoHT9cqG54Z6I8Qw/dJfmpEe2byJBhJ9TZLfEEgLAnt5p/HwFGKGci8ZTQjI496eBlUCgDkfxXaLDJoq8XAPgnagqgSNSG5X5Nlfz7APBYSBtmzJTa+vRv4Sj6XTvJpTzVe2Ya6ra+xS9SyA2n1YZVKxby3zW/TuYmgXrZwp5i/Y3GLxrX9LIH/zxG6tviAgYADo2XF+hmC3an1Ybdz07F3iemahsSnTXgEFG+Rm+z/m9ZJ/uMBb2ibYroNzkUlSG1ha4bLt0PfZbB+Y9o1IHnJX9AQD5J0G8yVFuQjJ8Osjy17mOxpAp/ZmaEBIuvH3P045ZeqRfT0u+uuy8hY1o0jrrZfFN2VRqOJ8htmDZBg+rXlymWcWh0E/itTUfYU1sx4mZ/+zzme1TpkW1oZ7HP0SkDheCQqKQERV0jJfNXyhv2xFZuLlu/734suGlqTKcZiurCylU/YOsHDPzl1exdkrwAA7sQ2yv4JfNNNjMS0239gLXRm0E6BWuIHVmfGefe3J6zpOuGo+Q4lXR6e7kfO5nKmKmdfIrltpmQgNyJmul5zkfyJo3YRwnwpXsF2VfOf0Uayi9LxfFlTXH6MTv8GjZA7M4bksIkEvE89pQDB0eweveM7A6n1YaGE5JwVzyLpUnjkv7d6/ul2W+i8p9pgBjBi8dq9byXKaNkhijynH++Fr8XpMgmwwBw4WwFqf/R/ZO/hhv6hz6NXlafdi0AAEGJI6W+LZpxe6sfANT9IklaB96hfwfdFlgHAMyaNQuPP/443G634ZnFYsHUqVMxcuRIk5x3SE8iauKAJmxhHvviWFRdaETs8TYxEKAADRRdho/ksNv6HUtAHgx67T2DJ6sf4tfednufOdIOk+tvMx3kxTII9SzunkFw7z0oyXDukVhuviHmzfwihi/MxDorqgtBiSMRPnIbDr/qwN4np5rKKaYXZfGWLnTdcGnnV1FdCPptlGk8EbP8JAf9vmf/ffDtxszTbhWxzuydABp6o1ndShytsfqnb0x5nSu+goENjDv3Io+7dt/PzTPF551HjYL/ijQpLb1DANxRmhyzM2ZEIXxMGi4MikXSZ9MN7W8JDULiRmM5t7rIEeVoMzEBO17z/u5PjrFzE0x9WaKCszKimseySpPF7J4eSEb/3FK3Ds7Mq8wXoyLAghlvuj72pAOuV6dK7Xqr/VzPSwT3uZV3IKWJbgmk7vbYV80WVded7bjvm8jLDFKdSAxFcf6hWCR/ag5QcHFgLI8F9Gff2+ElEYbTOafVhsKfIxDQb690r7Sx01s5pcmjvuCA32WgzlRjPzj2pAN1p2jIhdGvxpsCJZnJ5EkORdXANfSkD4dhRn4NG6Co4DCqb6mBM+01YI2278aj9jRzhFpC/8t7z47GrycbAJ/M2oUoc0oMch6Ywa+9tS0BF/3ZvuDt2tP7pjGPSAxLYVYWIbTCxweVN9bEhY4n+bPMr2IQ9vhWQ14iM1RPv+DG2P9sXWkjyNP79jT+exs3PIWO8cQ7a3Issgcav9Nzj8Tinbdn49NQtnFwZpgdqROZMuzj54dV+XIge+JZO6ka9i1oxl0szGQsaW+DzxaXIWyOorrQZkIC/6b+zPdLdPSXZqjXd78Enx8xJQGbEz7h6MIi35L2NqxePA9Oqw2+FSqgz7ZDWNq8tgS8pm87kkMv0/8SfH2jDyf8LWAd+S+/8V/dHv8p3daJGACMGjUKO3fuREJCAiIjIxESEoLIyEg8/vjj2Llz53+khL3//vsYMGAAgoOD4ePjg8aNG3tNv3XrVtx9992oXLkyqlSpgu7du8PlcpmmVVUVQ4cORe3atVG+fHm0a9cOixcvNk177do1vPXWWwgKCoK/vz9CQkIwYcIE3Ljh2Q76ryK9EgZoH2rWZ7E8Oj1RcQcbVqSvwpHnHWg+lR1v0wJIzJsxKwodHx8jDUS+5crhyeqHTAen3PftOPo0G3gyp7AdOVLCJuexRYLocEs7RhNPNkHQq8mIeTmeH8OL/MnUEgCc/YYy2aZFmyphlDd85DbUTqqGBu9rJzOnRmk+cPoyFNWFypu0HTH9QjH/beZsm9VlLhYdTpYCVpMSRjvV+l0wkY8oo9Nq40oYAFMlTE8D9x/leRXVheez2ELQUqWKdNLotNqQ/5bmIHyqhbybJ6Yb2MCOw0uMgbrpOq7zAyjvzDWdoNbPmsXTXuvBdl9FmPTwMgzk4sD7zHyMFiQ+xSVSWxBRcFkAeD5rL448r9Xh2FPapCbWock22beFnlFsM/GefiITlTCx7oWvaLv7pITpedy1+36W4KaPDZkYknyGBdlNB3YA8P+hOoo7tYGiunDsSWNw5MQdq3E2hZ369M++W1LC9PUkmpSXjICl7NvMnWg3tO9XZxty+cJuBmbV8zj2pAMj8plPye0qYYrq4koYfa9iWZceYGNDXEQXiW+Jr4/pJo2ohInyKqoLtZOZWeaFBxlUu6fvh5Qw4v1xXorhfZrV1S8okCthisqAeoKWsZ37gAf28XRxnbQYmGRFQH3v2FNyIGHRXFyUQezXZrJZP0nCjjemSulI1rpTktBp1xVepl55cVrZZoz+eyAAD7oefOCw1H+DX042mMMpqgtrFs0z8AI0XyYAKCpgPrg/BGlBd51WBjbDFYt5st/SwEosLt2rDzAo79T3tQDjZt+wJTSIP895YAaXqbT+KvpJEk+zNtfzcVptuHx/jOnzJrO1b0rkQWPeucGsX+x9YqqhTiKv2Lp57FnhDlzoeBIl7bX6kBKml5X8j1fls5PTzC9i8HoOk2PF5l8Q9uRWXobTasPUQ5tN+72ZPHRf76tEpFfCyHyf+r1th9xOy/t+Zvp+qn6bwpUwAKg+Lxmh3zMgk5KiIo/v9ITjLFfsSV4C8aB7fgfy2ViSk4eCN+ST2x1vaD5Xbd+Nl+ovjkOK6oKlVk1D+fVuInvSOOW02hA4J0sK8SLy8dniwt0PPwYAWJmVhPVnWLuWbNsjmaiK5LTacOmBGIkXgDsnYv9Cuu0Tsf9L8vHxQY0aNdC2bVukp6ejSpUqyMvLM02bkpKCzp07IyAgAE888QQA4Msvv8Tx48eRlJSEli01BJrTp0+jXbt2OH78OJ577jk0aNAA3333HTZs2IA5c+Zg+PDhEu++ffti2bJleOyxx2C325GcnIw5c+bg0Ucfxbx58/6y+uoDOlO8DzOiHZZL/WNQ8SfzXTSzXS/98+49B6Nkh7YYufeBR+GTrMGu6k+mRBjqW91VKo3MduWOL2uKOn0OGJ7/WX5mzwB58BSvicRTDYLTVlQWQqCoUDWV2VM54u6fmJ5g3c1k8FSH8TnpGN+8PYqvXuX5gn8ag5z+cnwWT/WjazEQs1l6kVebtAf5u9DLd/wJB2rsvwa/tek4EW+Xdi5FMmur4k5t4LthBwp+aoGG/eXdQkrn4++PVblb+amRflFh1mZm/d7bOzJrNzOerT9KkMxenFYbsj6LReizpZ/GlNZH9GkOv+bgZnNmdZ6dvxkN/Crx63dz0/BmUJSBJ8XH81SWp4Upl8XHBygpQeYXMdwp3uePAPiOLQd3RrZpXcW6EV9FNUKj+wUFoij3kEluQH3BwWMXUXw5ivlFUNQUpqB4bUNp08NMBgAI+XEsQp9NkdrZL7Ahig4VoOB1Bxq+ZzzJIDn0PCn/6d/CUaOXuY+0p/GX+r3+OcVM1JdLJ856Pp7626z8zRg+7Gms/XY2f545LxI598722D/N5Bavg1ePkPyFRPItVw5P79mBd94Ybhpz8c8SxZATiU4F1ZccsH4kvyexPE/ffvSOAQae3saHW21r8dn17lHcP8+s/8fddT/cWbmmvNs/M1baUBDJr2EDXLRZuc+tN3nEuHj6tKW1U2ltQiSGStGnp7ALvhUqSDEhPcmtvuDA7ufYOHelTzSqPFvA/XL/zLxvltYsVh3R1V7R2DBTC0at56UnaisK3Ezp7hk0nPvQeltn6dtY5AsA5x+ORZXv5Pd/50RMpjsnYv+fKDs7G6dOncKaNWtgtVq9pn3qqadQtmxZbNy4Ec8++yyeffZZbNy4ET4+Pnj++eeltB988AFyc3Px/fff45133sHo0aOxdu1aREVF4YUXXsDFi1oA0MTERCxbtgzPPfccZs+ejZEjR2L27Nl47rnn8M033yApyTwO1H9K6osOSQkjmGkiQuSr+NNWnB5ulz7u62sCAdzcVYxowj/2I8/LDtBOqw2+l65K1/fMknfTwp7SHHQBBmGuqAzmO+LLBK8DpaK6cGFQLP8t/iciZCoqw2m1IX+cQ1r4UxmW6tUlxEN1aXN4I/2uoKV5uMSPftN13o+teJ56ozS/K1LCnFYWQqC4A8tzfU0gv5/xdTutTs3COF9FdeH0PRpaWsbsdvw3KWH6XV51aXNDu9KO67jgSEkJi2t6F8Ke2mo6eZZZX9/Am6jRzUU8QbFPztOgjEXZAWBHFHM0zvwihgM5rLrMgAbqfJmEtQtmQ1FdfOdS9LEgXtT2nUdpqJi+G9gEts8ho1SKdViVy+pGp0Z0X18vs8lN/571afU8ItMHmqah/2a+B6SEURpFdXFUQZE8KXhmaTLnt+VKmJ7i2twLANzHiMoc8t1TnIf9ec1vQkQbFPtIT0dvqVzxfVO/UVQXR2QVN2NKuhZyJUxfT33bjjsRweUW410pqgsrtiyDojJ4c3GMAYDdz03l1yuzkuDu3JYvMOk9uE8wQB3fbgUGOcifBdB8Vehdie1AyJaiEvZq9i7+2/pJErIWtPHYZxpWOSPV22wRl3vjonRN/V7fT0kJo/oTJR7YyNPp+Z9LDDWUN6pRB/j9kc6U5kjW/mHD0jHpdLCpfACQ+aUcM0r/PYXONA90DQDFV6/ihVkjkDRpulQfT+npXYtliOMnBfIW09SdwtrG+lGS4fQm7p5BhrLEOkS+HY/UNovleeyrmFtWwixhwabfr4+fhk4b5XJLICn6d+u02kyVsOWFzM+TlLBW230kf0yAnT6SEka+xPp3RL9XJC03yKkfMykt+eHmv+XA1V5GVMr0a9ela0JmvFZdhhEnfpNOB6PyDymwVKvKlTC9jCSL6HNO9yqu2YMbnY8Y+kZp5EkBWpnD2jRjqlC3aIYkWzHzNJxWG1pOTvAIpuK02tD6owSp/UgJo2vfTTtwfmUIvzYbD8X7PmXK8vcQNj+e93u9EnaH/p30Hylibrcb+/btw5YtW7Bx40bTv9uh4ODgW0qXlZWFtLQ0DBgwAAEB2iIwICAAAwYMwO+//46jRzXY0O+++w4hISG47z4t3onFYsGTTz6J06dPIzExUUoLAM8884xUJl1/+61nqPPbpaUZu1H+uAZJD4DDTJMjqPiBzx/3qfSxfx2+kKchc0BFdWHX81MNE0S5r+Wgi7+3qCzxIlQlMV+TTUNRy1IRe5/QFktkEqBX9Cr/mMLjPNE9UakkOHJxgdNovHEHWlFdcJ85IyEeWu/fZxj4CAZflJl++1y4zOUwWww0HrSLP/cUCNhp1fwn1kUs42Xkxn2tyVvkltKT35miuhA+QvOToefUxkSXzpXnv48+w9q16sIUHuPq7j0XeHvp47UQZUyPlnYW6b++bTKHspO6ZxozJf3iqmDcuLedJN/sc8zkM6f/DPg+dUyakK710MAoaHFTdLgQPWN6Se1PQXjFuEUA4O6ioSmKZYqKOZH+fVF7iPURSX1Jg8sm5/gSe2uetkW6r5S31n0ZEnS5KBPR7PzNpspt5heaCQ+hCvq2agr/DfUkuf0aMlPHoMSRyJjTTvrWrihBOPKcA3WUstJ9aTF3s19ei2MmZUeeY+adB4drZl6efKmIejTpyJUas3Q3Oh8BfC1eeSiqC/mLW+IpNQrlN9RF7gfmKHQUvFj/PYl1Cn0mhbcpIYXS83PFzCSv2M9zDBk+rnzMNqRm52/G7xPYae/Hp0O4v6xeWdL3u/y3HDgzzI73Q1pxCHgAyO4215CW6NJdJ3j5PxQkSQiIlGfszfAaZgtnMxLNcYmPorow5dAWw2LvbJrnOJ4nR9tRkq75vxFKoigD8Qp7grV79z5DTGWkWFeUJ39xS6lNAj5kZuJFvzdi49zGofxZib211B49O/SVlAJLtaoIH7kNPjdRJCkt/dHmG8lz3FFDSufee9B0Ecy/65nJCFJGSN9tzv3m/mbEQzSzp6DuYhqn1QbfJtoCfO2RcN42FKvK7PtxWm0S8EnvgCiJ98f1NKChqptrGvpN2KPbOd9WnybgzDA7Mj/XQhk4rQxxktBGxbEUYDEq6b7fH2xjpNE7SSj3Wyofj6iOkf5lpTYJH54O3xZNsedpbZNAbNPnarBA8O6z5/hz+wtjpbQAkDfBji9CWZw48bSZlDdv445I+u+4064rUlsFrWCbfrl9NVRnpO5mfeYmIqb1oyRE+xtDOxCJQaAvPRCDom6R0kYjAFxerYEL6WW/Z/99nK+iulBy4zpfw2UOnYbwkWw90Czdj2+a3KF/L922Ivbuu++idu3aaNmyJe666y506dLF9O//ktLS2OLObjcuBmJjY1FSUoL0dDboHDlyBIWFhYiNNSLY0D3iR78DAgLQsGFDKW3Dhg1htVqltH8V3R/eUvIDIGhVANzhk5DDxEU0UUiZSvzZtRLm2+S02tDxiTF8UCZb+Et3GWPGiJT86XT+m8poPGgXT095Gk5IkmQQB/S8fkDWtwyNL2NWFLIemi7xA9hOn/4eANyVMJrzM9spe+ZIO+n6rb33QX1Jm+ge2K8hFBYVHEbx2oaGHUKRirrJaH0Zc9pJ9QGAJRerSPeorWtuYWh87swcntZsh0y/S3a0U7H0LGyYFsuk3uQknH+Y9UuKcTUtvZPEU4R65orhTbhiM+XL00TX4osEbGn1M8qs3ia1zYiq2iZG2XuYKZllHTuh9l+pofOFPb4VPlHMBLio4DCPmTb1ZtBRqt/RpzV5Leu2c58tp5X5uhx/nAUIj+vSHwU/teBl69/Xg0OflOQX34eiurgJk9OqnYZYdmlxD/dEFhvez8ZpLOhtrKs/ACB8w6NQVBf3YRvRqAMsN80ixLx609AGKZVQvOsArnU6KsldNI+lb988C+GPbZPylHfmov6kJO4Xara4JCL0sfqTkqR3LLaDnojXyoObpPthaf7GfMVu7reQ/7bD8LzNhATsb78AH9dPwpVOxxD0SjIPwivSdWc7SWEW+77TaoO6tLmkIIk+KU6rDVV9y0NRXfhjvhGeW6+sZw1mmwojGnVApcVMsXixRrbET+RBf51HjoKiutDonSSkTmQ+TmVXpZluBpi1Jz1/sKEDJ8delviLZevHi1bbfVBzS3Xo6WA7zfe4+pYaPD/FrereSBvzDoyaKpVDv3MnaoAVAGBNqWy64aGvW3Z/NnfEvBJveEb5ghePxf72cmgEvtFwdz6cVhuCHtROFX2Sd0rtvWLzL1Lb0sJ9lRBXTawTbb6RPCKiacZsrS2cVhtC1g43PSXUw7s/f8R8viHSm7SZtQUpgABQpQfrZxHJg+FTcNSQViQCj9Cje+rTn+twynQDwCeqJaYc2oL6nyah+rxkhD3NzEFtOzSlOHtQNZ7n5WPsPWdOicGqpiuk9yUq1rndv+b3PzwVxp+LdS/ec0DKJ/Zz/fjr0ybC9KSHQl3Q3G7WRmbfXO2kal7TbGglxyokFEq6R8HuxfLE+lHMTD1vqk/FJVtR+51cFB0ulJ5RgG8+xnfTYq+Jp/WdRrP6rlr+rVSuorqw4mALadPkf4188DfA1///ruTfQLflI/bRRx/hlVdeQdWqVdGnTx80bNgQfn5+pmnHjRv3HwnYokULXLx40dRH7NNPP8ULL7yAxMRE9OjRQ3qWmJiInj17YsaMGRg9ejTS09PRrl07vPTSS/jwww+ltJcvX0bFihXx0EMP8ZOwypUro3nz5ti61eiHFR0djcOHD0NVzf24SqP69etL18XFxTh+/Dj3ETOj3vtOYXlz5lSa8XU7hI/chqPPOjgkvaVJKBLX/WSY9PV0+FUHh78XSb9Q0g8Y+gGqdepDqNd3v4GPnp+eRN8zT4Nf12EjUWb1NkPe0srQy+4TGYG2X+9GehttvyHzm7YIe3T7LdWzxN6a+80pKkMi7P9QghRf6VZlEe+Z2fOLzwmx6cPcrbD5+xv4AOzkiwJn38qCUUwn+jQALDTAwAbaZNU4tTxmNEjmefMm2FHFdgqXt9Ty2Hf05Zi9W6JTI+3Y9s40DMzphnMdTpnKvvRwKir4shOiERm5GFjpnNcdU0/tX9Q1Evn3luXBmHnfKFMWQ/ZkY34TDexCL2/ej61wsON86b6iuhC0fDRyezOod0Lu0vOYnJeEZmUrmMpEVHNLdR5kluh4ggM73piK8PnxCBICSNMiudp8dk//DpccTkEl33Kcf86HdgS/nIwrShDCqp7A4VjZTE6U9eizDnQfmgRXG8/fLVHOB3Z+mmqpVROJu9aa9nN9W4qk94t4KXs3PgppadpGpZHZuEVli7wsTUL5brhIhT9HYE+sBrPvSQaz71mka3FR8E9Mw9khdlRbcBO5r0EkUGyMPafvEwDQbV9vlHxQG2V+Ty+1DQp+asHNer31L0V1ocXnCdjz9FSPdXtg/3EsacZO1zKmRsNy2RdZD2snqxdXBaNS95sbTL4WoNiNVtt9sKttiVQOtU1c63u46Whp/aC0NqX87cbFcyWMf9fdIqX4Wp7awOy+J7kOLWqJwIG7TfN4ks0bzxv3tkOZ1dukevYIa4/iS5dMeXrjL1LmvEjJb+/I8w7Jj/ZW+Ma16gb3yVP8ntNqQ+VNtXgsNn2eJnPi0fgN2Q+Y6rT6chkJkANg7gQZbzRByPMpcO45z0PweJOr/TNjsWUy63uWiCY4GVUD1efJACzX1wRyi5TyG+riSqdj/NnE3FS8FqRZNmR/bOdB3G/lXVKdxPstUgZzFFVvfG513PLU5+/ecwG/t6gMAFh8cDuqh+f8V/tEkY9Y4IcTpFPk/wsqvnoVh+74iBlp1qxZCAgIQEZGBubNm4d3330X48aNM/37v6TLN4+0/QXTBqJyNzsHpfkzaem3WVpKf9nEIfX/gmiQWN68Jv9Nx9q0IwOALzIK3nAgY+7N4IS+FgMvgn032xGkweHcI7EIWslMbYrXagtVMY+ohBGikshXXBRlTI3m5mA5/WdIqFhOK4NpfitHU45o8iJqnKqZ7GV+yWKqiIiAisrMXERzAABY9etCSQkDmImHmMbb4CmClzitDInQd9MOj7upZrttIn/6Ldrz0+kRwE7cFNXF29YMPvj4E+xU6cB9X/F7+eM081C/4MaG8kT5FNVlcCwnmHu6JyphANvJrNErA70GGn2lxLJEv0SzXXeiml+z+DwUtFMkQqe7d8+DPP97Uwd73KUn08Amc+Ol55Q+f6Qbwa8ko6irhuSmqMxUZHDlU4b0IoknwKL/UPjYVCQUMjlFJazbI1qcGlEJo3YXy3g9x8WVMPHbol3zsmcZ2uCzWdp3RkoYwGI8UbBaAJISBrBg4wBQ3pmLP3YycyX9zi+1Rb3PmBKmbwf9Nw8AdbcV83zuk6e8KmGEJCjyuDggBlW+Yzv5ZI7YrTxTVsLS/PlJvqdvTE9OKwP48aQ4EbkPZvH6iLxpkWX2nYpyBP0yWnpGcbyI1n/NduG3fqihB4pKmJ63fvHnd3c+V8Loub4N6Lph/z1wWm0I3zjUdBEp9jeKy2VWt2NPOjC6qraZGJ6QipAXUhC0fDTnezK9rlZGMQskvqttiWm5TquNx+2ia7P6ivnKb5BjXx59Vu4zTqsN28ZPMygmfmvTYQkNwvCDh5A1Kdajkttoa0UJoZDaxex7Dxy427ReABh4jcCX/KTN6kqkV8KcVhtWZsqnxPSfYk1eHMDGs3v7P+pxwU+WE5RfVMLIJ9esr4vfhPvkKcM7+Snkd9N8+UUXJSVMrKvTasOnoRFQVBdHVwYA95kz3K1CaVGl1DnTadX85Sy1asK99yCqz0vW/LxiWwHQLDMA4JcwRZL3tSA5IH3WYM1sW3xX1EbiM6fVhh49HoKeAvrtldqDrGLOrAiDpVpVRLnc8K3Axvrc71vj6n1MXhHJWV/Xs0PsXB66J57g3x/e0pD3v5ZKfP6ev3843ZYiVlBQgL59+6K2sBD4/0EVKlQAwGDm9XT1pokBpfkzaem3WVpKL6b9s3TkyBHpLzMz05DGTKHRD8x813KAtmBvOCEJ4cPTbw6M2v3iTm2k/Bk3jLty9Lzqtyncp4lQyaacCeRyiXyyvm0jBUQWnz2S1xkAs9XeE8nM8IJ+HYXEjUsBaIvnulOS8E4w8xm60lcbTOk/KQYA82lwWm0S/LTTakPivg0GBLVb3VkXFy4ilK2iulD4srkZCQ24ogzi5KSfAEWzhRWXtR0k8WRsZngwT++pDhRDy184OXWXK+Fpi3LyOA/yw7rUPwZNZyUYFkb6vqWoLEacflHR9Ot4KKoLE+qYo6cRHekiwwD73DwlFyccs4meSFFdeCHuVwDA5lY/8/v1JicZ+gT9ptNV8pXSp8vsPA8AuF+EmFc/GYZ+P9ZjOe+HMeCGdm+ytsiOuiqli+vUj6PVERANkQgxDwC5P7TCe8E2/lxs6xNj2SQd8EESItMH4rPQZgZZiQ+dPOh5AECLzxP47/AxzNxu5cFNGH9CBroxUzrE9tH3ZUJq9aS4iL/p9FTscyHP7ef3bP6yaeSXAVu578yYw7I5kVm/IRNKM4AfM+rec7DhG1BUF+4e/BgKf44w7ZdU/9y+M9Foa0X+nE7RiA/997YBoW8nSn/0FxkIQPwT+TutNty4WxtHgh7chVEF7Q1y6N+bp3dcd0qSqazhY1N5/savJ3NYbuJFptiieaBZPRXVxX0jRRJBN858Eiil9xVwImzvJ3jsh4rqgjsrFw9WPoPQ51IQ9Qb7Lv3q1+PpVl8ug/yYS/JmyT4NrEYkcQ7Q9wFFdUEp3IGhBwt4GoKr96ZomrUJ8b/UP0a6V/0btjlFprXkm6eXo/0zY1HS3oboHQOkMYErWPsycPhVh9SHJuamGmQwk4l+6/uLJ5Rd8XtxWm3Y+bK2Mdws3Q/5bzsM7XJFCULWt21w4UHNB/3c4Fgp2Lv75Cnk/cgUr/CEm4iRKWwjzCeqpSR386kJiOvUj9+LSB5skFV8B5ZaNeHel8HlKu7IdqDyfmwlBZEXKXT9MM7zgUrMN7vsnBpI3LcBaTYLiluF4syjdgQ9tBMff/EVMr+KwbVOR+FTpqzUjk6rDb0yeqDaAraeievS3/AuSutHd+ifSbeliNWtWxdFRUY0pb+bCFGxsLDQ8IzuEYjHn0lL6c3SUnox7V9FYvwI/YJZJP2ERIM3paP4WP6nNfORNd/P5WkU1YXwMhUl52FvCxin1cbjjLX6JEEqP7vrXIwqaC+dBhCdcJwFAGy5ygZZS3gIcu+bxZ83fj3ZUJfyv7BFQKxLHqQurdKUFE8LJrFtSBHhci5sI6U3U3bOrwzBItcKFLzhQOzOG1h7xYLv4ieZphchhc1IP0muXTAbrbaznZ1XZj7mccA1W8j9UJDkdbLMeHSalJ5MBSzr2Cnj5i9m4MAobZK01KxhWHBYQoPgtNqwP1L+rhXVhcC32MTRKyASZkSy1PlSVpgoCKleSaX/owraGybzpc1rG/qE+A203TYIR59h/Tuu2wCDIulNGQbYhOu02tC952DuRwgwU0/awdXL6bTagGI3W4TOTjb9HhM3/AynlZk8EhAN0fLmNaU2ID8afd0BoPZ01tY+fn5Ij1wklRH9WryUFmAmLcSHwBEU1cVPQvT9Nqm15oh/doh2Epo/jrVpzodyEHCKY2VGZu3raTFL5R+znzdVECblJUvvMC/6ipSv2UxtI4HiWlVcshXqizIirJgHAHwrVICiumBZZ5XCdVAap9UGy7rtkvmRvk4fnmJoqPkxl7D/+mVD3SKmaLLpn2VNNvok62XcGf29adkieAfxpVOzzCkxcOy8jvyYS4Z8dDIRvWMAR2cT60xIieJ9v/psBz/vPbsU20hRXbCs3y618an2LM5bbo+vpbKnHNpiKGt5ynLJT+1S/xgJSKrcr6mwVKvK09f5SlPe9YoiyeMXFIjWHybwxTwApE1gY2BJlUo8j2gup6jMtNfv7nzTOcRsjLLU1MBBYl39Mb+J7Gesz2/WD1ulPoTjj8ubeU6rDVXTZSCZjruuSvlEXmJ7XnnkDHy2uDjCpNl8oTcffy0oGtedmtLsaQ7t0aSjdC2OAxRP0blHA4nq+PgYiZ8ox/Z326LR20mGNi3vzEV217kcaRNggFTpbXwleRoP2gVFdeFyP7mvlqTtltqn4YQk5D6knT7RBq3TauPWPKKMZI7ptNow/dBm+G7agbND7Lw8kZxWGyx16yDkYeMarOISDbEYKbuQ+j47tX0zKIrHhSu5cZ3zpDVQ0YtaXNPEdT9JPCm2X+Hz3gNp/1dRyd/09w+n21LEBg4ciDVr1ng8Mfq7KCqKddzkZGMA15SUFPj4+CAyki0e69evj4CAAKSkGJ1I6V67dtpgFRUVhcLCQhQUyKcsBQUFUFVVSvtX0d2vPQZLdebE3WsvM1tyWm3c9AxgEe+dVuY3ox/8aLBp9DZbEIvAH6Ki0mzLEDitNh700NIsTOKh56eoLsR1fgAAAwkQy2w5OQH5MZfg90e6xwG+fTnWzQhVzmxhp69Lik0epOiExNOuHi/r6TH8vmUdM0O89EAMRzAEIE1KRE6rDcmtl+CBBrFoOCEJe8/Xx0chLfFiYxk9kkh9yQG/oEBJbgI3EHm2+jSB//64HpOhOEb2d7p/3wn4NQiAorr4YkbcNR7cfbjEU1+G08rMs4iKr16V0unb3H3qtPRMUV04246ZCPXep5nriXWz73zAo/JIgCt6ucz6Ej07OcaO/JhLpv1BXNQ6rTbcFT+a89je7kd+QubenwlnQBspH6VrnFre0AaK6uLmhiU79nKzLKfVhvCx8q6xXmZ9vy6xt+bmsW3f1QAOSm5cl9IfGm+uKCiqC/PO1zEs4OhvVT4DTrk4IIbzrz7PqAQS2qnTauPgCGIaUt7cJcWwhIeg975T/KT0XKgPT9toPGvTsqHnpXZ8rdZB0/cugttYatfmqHueFqTi77jW90j1Le7UBmV8ipH9SazHftPobW1xSXDviuqC9WPjYk+sf/Flhpia2ERDxOUL7Zun37RQFvtik21luCwv18zk5TUrWwGjCtojZO1wLqe48KWg2kTZA40ARYpqPGlXVBfUFzSzPKfVhoPtbvDfEV9qJ5xOqw1hT27lSjXRi0eZ1UO9z2+O/z0zET5ym6F/EVKiSIQwWX9LETZPMSILmo3ZZPFA9HSze3haPm8EtIUae4GDRF1oYJF4KqoLh0fICpMZkQm302pDUe4h1Ps8CZV/SEFc07skWd0HszhSqsjvKTUKNdNPo+LG2oi7Z5DXeYjmw8TdWtDqqnFZyPxKWyBfUYJMxy2RLM3CUL/vfq5cZn+snfKu2LJMyrOpVTnTvq+Xk2Jc6uvniRTVhaPPOLBuLlOar8VFcZ768bH4wgUMP3iIX4vPewewtdba3q348wpLt+Lj0yGmbVn+l1SP3z/l1/dLsd8QVfh5q+Fe4SsOqbz9Y7VNRhEEyLdbAd9goDKpvOOPOxB0E9yMTqjM+oP72HFp3tKnUVQXwtL8Efr9WGmtJuZRVBfeCWbhB1YtW2D6XhXVhfBRLKRBwKfm8WHv0D+XbksRGz9+POrXr4/+/fsjNzf3r5bplik0NBTt2rXD4sWLJeAMVVWxePFidO3aFfXqaR/iQw89hOzsbPz666/8ntvtxpQpU1CtWjXExcVJaQFg8uTJUpl0PXjw4L+8PpV/SoP7DFPAnqx+SFuEjNcWHmTOMzuc+VmRT43+4+46TINT1u/cEfIVpS3OzJV4EGXcuMSvE9cv4fevxWnQu9aPkgwDlTjgEWw4md+IshR3bIOwBWzh0v7pMaUu4IiClBGmzxVVOx0U74kLCwBYN/dradAnHr9cqsTT/BTyO/99apTdUJb1oySs2LJMai9SgMWy63+axBcGVGaDAQckfmOrFaKkApuICSHNvfcgT5O45keeVjRNEsnya3XTdjObXIhEZedIF+b/QYAwF1cFS210Y0kdKR+1CQDk3DOHl8kXuVWqGCZ6SqOoLtyoxE4HaUFK8l7pG23IQ4iGpgunwh34rTCdn5IQ0YlK0HKmxNVOqmaaX7ynhxEW+7J+4szrUwF77QuZEtui2JSv02pD4LgkBC9lmwP9su6BorI4RE6rDd83Zaf0BLfstNow4WRTSa5Ki7ei9rRkbn5s9j2Iu8b6yf1E+yK+IHZnZGN585p8gyJwnBF4pcEDe1FzS3Wp/7RJe5DzU1QXcj6yc6AEp9WGxJ1r+ALDrK30cpEfEaXz3bADX57ojKyHjUitcRFdTBdoxFO8Jyoy9H/oQW0jTf990O44LZRFIgRDs7rkx1xC6JAdpv0pWAew4qnPmfluiZDeAIC1DXj+BhO1Z2b+JwA4gIaiutArowdvs3bjmCKfUKjBnR8RzCEv9Wd+tz3b94F/YprXMYPorvjR2HZYM7k990gsii+z00K/ANavuwdG8+ebvmJjsAgLTu1DPk7UDqaKf16+6X33+fNolu4njS9ijL/uB3oCYO8zcc2PuHTXCX4iJ8pB5LTa4N6fKb07+p9z/wyetrwzV8qrqC6OHkrp3ftllwO9z5KeLg5g5oq+FSvyfucX2FBCgxS/g7iDcQb5T//G/J9ERNR6kzWLCv/ENJ6+qGuklNcSFoy5TQINchH6rdNq48iXVK7o26Qns/H/5K/hcFptuHpftDT/mCk49J+ek3tEwAfGb8e55zwu94tBwxevSM+KjhzlMbwAIPNzNhfX+SpJKrfjrqs4/JoDJ5Y3gZ489Um6lxl1DVkPTZfWamJ9xLUN3RcRZQGg+bQE/E/SnROxv4RuSxFr0aIF8vLykJiYiNDQUNSoUQPBwcGGv5CQkNsSasGCBZgwYQImTJiAEydO4Ny5c/x6wYIFUtrPP/8c165dQ8eOHTF58mRMnjwZHTt2RHFxMT799FMp7SuvvILAwEA8/PDDGDduHGbOnIm7774baWlp+OSTT1C5cmWetmfPnujVqxcmTZrEgzmPHDkSkyZNwiOPPIIOHTrcVt1KIzOlpuLG2vyeSE6rDSEvmENei6iDlG/g/qNSYOHJeUk48pxDMiG7fx/zO/Hx8+NKAVHmPDZw+69ku/Wic65+oUQ23zeqlsW8/M3YGf29YdfLd9MONFhXxBDfFmtH/VRvT4oZ+cCdGcb8aciRF5BPZwhgQd82+nLoed+KF6U0IWnMxK/u7yoU1QXHc1psFDPZ9G3RfCobXEOfTZF2/fwCmd8EKcvhGx6FOyObA22IPDs8qZ3wOa02/DF/No4IYQ3IvLTm18n4+HSIYcAXqbhjGzRLl9FNKV21nbIZVOXXy0vPCWCD6NkXFkl10tef4pyJPn9ie1OgZlqQcqVrKoPfF81KzHYPAWZO5QxogzI+Fux6QdsVBbSJjk66TjjOSqd9ZrTq14XGmzrAGwqEnXETORAAN0XJWiCbv5KsOffPQJn19XHprhNwWm0oKSqS3nH4KG1xRDvjYj1pg0Fsa/EZ7RoDwPgcLXiy02rju6xiHjMZfQR0zlPtz0htXqfPAWlBFPwSMynOe1czY4wczxb7VxQZiEekjDksTh2dppVZr6HHHmzHAjGffzhWKtt95gxXNPX1OL+S7cb7BVihqC4eDJnSdRo9GvObNOTp6VsS6w0AXXdf4otdszby8fc3/a7EtHrwDnpW+IpDem8i+Aql86i0djsslUGmzcvDVvFQChRXThx/w9YPw43OR3g7EuIg+TX6REagfl/NV6/iT2zsLco9hEPvGKG+cyeye+pSzb+w/LJUHOjA5uLQ78ai6rfaPHS2fSPWz29ch00AmCUZlx42nj4DwPFlTaGoDDVXUV3S9yT267NDmDxk0iiaU7dOfQjZQvyxkq6FHsfEgteN89dL2bt5Wn1faDk5weP7B4DiXZqv4pkVYciY3Q6/FTK5zUx8xTKyJseicjx73yszt3B5ViT/iqpxWVIe/m10UQ1z5YrWzAXhywDjqYrTapPiwInBvxXVheOdNeAURXVxUK2EwA4SD6fVBkuzMNNxf/qhzVBUl2m/RGwrbm69YcZMzs+sLcW5gp6X8dHesxjaR1FdeK5GDir8vBXuLPlg4MbdkdxKAQBKyrtN3+0vX3RBgw+2SieOisrArzzNcaJ8nvoFjd204UxpKSQNAPi2boZau1jdLgzybMp8h/65dFvw9Y0bN4aPz60hmdzOiVnnzp2xYcMG02edOnXC+vXrpXvJycl44403sHXrVvj4+MDhcOD9999H27ZGk6nCwkK88sorWLlyJS5evIjmzZvj5ZdfxqBBgwxpr169igkTJuDbb7/FkSNHEBAQgOHDh+OVV15BmTLmMPO3QwQFeiYjGAOaMJkz5kYifLi8qDIjn8gIj3EozBZu9p0PILn1EgO/k6NZ/Bl93rz37Mxh+ya8asasKB6ngygocSQ3gSG+l/rHcMf+UyPtqPk14338CQcHnDCrk6cFT6tPE/jindfd3x+rcrciv+givj/XBn+0rOiRBwDkfGeTAkOLcpmRqDiK/Gw7wFHmzNIX/NQCDfvv8fjcW3liOZ7K95a/xecJKHu+BLWneYbtFe/5/BEA39FlkbhxKS8r5MexfFe5x96zeKZ6ngHG1yBzv6FAyi7E7rzBg/laQoMkvvp6/Zn2Ob6sKQdl8FYnx87rksmWN55mMimqC/c+8ChWL/kGnUeNgv+KNKn99fwGHziM2S/2w4YZM7H+ii/eD2nltRwigvCn+zkf2FHmgg8avpcEX1tzFLv2GXiQDKdG2bFt/DRjvdY2gNLsNzitNmRNikX2g3KA55Oj7Uh/2yQfWFiLGgfdqPCztoDruOsqNrUqd8v9D4AEgZ01ORahz8im4JawYB5vT2xzj30juiWQuluCpubQ5bGtMGL+MtPQBmYbLwA7NbN+kuT129LLcHFADD9pF9P7tm6G4p374VuuHDMHFmC6c39ohYy7jKEPbqUvAsDjmRn4KkxDd8ucF4mce2cj7p5BcO89KKU/O9SOavOTDTw89e9zxVekcBXXekYZAq6LPEprH/UlBxp8sZ3H4DKrZ+HPEQjot5ePJ/rn1JZ68guwoqhQNf0meNvMb4uwodu9yu4X3BhH765vOsdlfN0OIQuLYVm3HRNzU7HobDRq+F3i8wmgzVskt6VuHVRa4ubhN57KOoCeFa6atpXZPbOxRFFdhrAV+vrc6nxQ3MGGNYvmeUxzIt6O2tNYnwleOgY598/w2E+9fZ+K6oL9hbE8HIXYlzzV01NdFFWGwj+e4OAosrdCtZOqcb90QAvVU/R7Ix4sGwCOPu2QgEWcVhsyv4rBmLv+wMs1MyVZM6fEoOIhi7TJo6guNJuRgP1jpnp8ryJvM9K3jaV2bfhUroiinDyUNAnE2gOf/lfDtdOatfF77/0t8PV5r7/+X90e/yndliJ2h/5aok7dGX3gX7UmP00APC/OAeBajygeWBdgQS4J7dBMCRP5iGnoeeuPE1D+RDFSPpqO7kExKLl2rdSFvKd7ZuWLcaMU1YXuQTFYlbv1lvnr5Rcp88sY5PTTJpMzj9qR+v40jxMIwHaY18y1o+6UJNM0z2btl1Dr9HLo78e8HM9jCImynv4tHDV6ZRgGX326c4/E4o8PvsD9DaINioX+HVIsOUV1YdyJCKR2qIHiCxc81hWQF5REGbPbcad7szbvEfewxwUQkaVmDcnvjPOeGYXw0Wnw8feHpV4dfL3pe9T3q4SoN+KRNmGaoS3eON4SaTYLji9rCh+fEsPupFm7m9U37107Gr9ZevwY8bkYy4pIWuD5WqAc1szxPPHyJOOfpfMrQ3iw2IsDYzm0sygz/T/6tAP1Pk/ChUGxqPxjCs4NjkXKx9NNy4/deQPja+/12n6K6kL3Ru34Sbm+jj3bOlF09JjH7+LiwFhU+ikNfoENUJR7yPTbPbwkQkI+BZh/VXApi1D+u+8QXK/uj7LKNozIyOWm2i3SfTlCq6f2MquzX3BjFB89juLLWmBmvcye5BLTeSoLAJpsGsrj0sV16icFgBfJL7Ahig5pJpVX74vGhhkz0b3PEA5WAABHn3FwUz/fVk2lExkAsNSuLSFrmtHRZxxo8GMOio6wYMTZn8ZqsOOqC4/kdca3jdff0iLdW/35hsNHdmQ+Mg092zqRPyQE1o+Z/JPzkvBMY6PfXGnv7VaUE7M8TebGI/jdHUDTYMP4Rgt4s3yeyjAjM/ktoUFwZ8n+3erS5mj4ehHc+zJM8xd1i8TaBbMx/WwAljavLT0nclqZNcvS5rVx3dkOZZVtBj5m12L8Kk8UuaNYCgOjqC6039UPW1r9LL2X/KKLEsIiAEw82QQbWpXXszSQWJfZ5+phRNWjpa4B/syagOaXCXV2w/HsWCR9Nt1rXmqjvAl2Dt3viTK/jEHYE1vh7twWv383x+MaROQ79dBmJAR2kN7FDwVJqG6pgPMXiv9n4ojdUcT+GrqjiP0XEHXqt7d2w+bY6vy+oroQtiCexwTyNBkVd2wDx5epSGldBucGx6LqwhRYatfG/neDeOBZfT5x4BN5iyQGjAaYKcjhERGGkym9PHRS5YmvtwlOUV3oGdkdRUeOolm6H/ZHFqHr7kvcYd7bDlvElATuOH9mRRhS2yz2OGjf6kKZ0p17JJab34h5G6eWR170FYSl+ePLgK2mgy79p53rWy3T2wKEiHb3vLWnp/dvxm/6oc0Yq5sg9HyJzBafPXo8hJUrv5een4i3w6cYqDVDU44oOLFZXa/1iEKrd10SWEFpSqwoY/c+Q7Bq2QLpWXxmFqaFhbL+5egthQ3Q88qYFYXwUdqubvfej6Bk2x4pfWmLUX37xHUbIPmMHHnegZdH/8gDSpvlNTvtNmuvCw/GovIPxr4pkmWdFe4uKn9udgLhV68uio4eQ96PrTioiUinH7OjxhwW2yc8QQsmLu5ce9oRF9vDG3mS37diRR6DyZsynvuBHf5NzsF6v/fNg+PLmqLKrCrYMFMeH+/afT9qlb+IS3dpCgwtmiiNWBezb0q/iMv8IgY5/WeU2mdKU/ABYO0VC4+7disbApYqVeA+LyNVivy6B0Zj1aFU6VlPR28cuztAshbwrVwZKw9u+tObC+I47OlbvhYXhQGfrOKxMqW5pExZybTMrJ1ERRwA8t9yoNE7rD/S5gTPd/OEVVFdmHCyKd6odUCqu8jbss4KjK2AcrPOSf3BTA5vCmLElATsfXKqaRmZ89si5+45/Npb+5p9R+7ObdF/qiIpaCKJwZ9Lm3fFZ7kT7Qh6zfumyOnH7HxDDQAeOqByv1czUl9ywPqR8YTLW1smFm5HXIBs2ZT5RQwPW2KWvzSeeiqzvj5udD5i6Jfi5oBe6T01ys5NfksjS5UqQPlycB87Xnpi/G8FdG484W9SxN74Zytit+UjJtL+/fuxdOlSg+/WHfrz9HT1XI7Ed/LXcMS8zJQwcaLXDyiT85Kw5se53Bys6kK2IHOfOIGoFtno2daJt3K0IMaK6kLGTHPkJN+KzBTDEhqEjruuot5nSTg52s7LTdy3gSthNDDpF+fqiw5+ykW8KZCsfuCn657t+/D8TquN785Ors929chEhPjpB1i+c1hRc1Y/u7uWJBfJk/ORDM+tl19fL0pXc22eJDP9J1CIzCgNQVQMTi3S1g+YQi3GIDOTwWm14VrPKCm/p0mk3ufGWEBOq40HoI27eyBOjrYj/y0HglePgKKy4KFOKzu5AIBDi7SToLE3F5z6d0T39P2mxMHAWCzhzB/0VJtqLG0/Ldhs7WnJSB/H4H19KzOUP2oL/SIga3Is/Fem4ena6/hzEdo85MexkixmbUdKGPkOKaoL08I0h/fcwQ2kdidemV/FIO89u8H0dtXyb/lvs/eq70s97ffxe1d7Mad0veN+/U+TuBImwmQ7rTZEvh2Py/fHoCR9L7I/jTW8A0XVUEwBSFDQZgstAJISBkBSwqiNio4eg2WdlSth51eyd0p+CwQRHp6QCt9WTRG0jPUxQl8FAP8VaRxwxaz/6t+X/p6nfi4qYSI12VaGI9gpqgtBryRzJezEWKO/U+YULfZYud9SDTKWd+aiZ205sG9CYAf02HuWp+neZ4jpuCGOTxkzoxC0hClAYU9tleqvH3+IF4H6KKoLllo1uQ+d+M11u+njIqIo6slpteGZIwwZlpSwuOad4LTaODKl02pD6PphKLlx3aBIFuXlcyWMAg2vPLjJ0Jbib9/WGhiT+Dy4mhb0W5RPzO+fmMZBgvRpRSWMiL4X8t0bWOmc9Hz/2Kk8nljlHzXfNQBcCZt8pjGWF7SUxjJ9H3V3UZG47ieDEibK6UnBJV6hC+PR6Iudpv3ar2EDNFzkx9Pr0xS8aUTh7dnWKZVz7OmrPORHxlzmw533ngYulXPvbP675WcJBn5mShgABL2WjPMrNZ9jCoLs7tyWp60xR/YbHlbFqGhkfh7LkaA7Dthu2nf07S62ZVxAW8nnD4CkhBW8riEo6sMEUB7ySRTLLnhDQ7O90fmIJAeVL57Qit9gr71nsG38NANPfbkAWwskHtgI97HjpvLp8yiq638roPMd+kvotk/Etm/fjpEjR2LnTi3woNvNduo2bNiAHj164IcffkDv3uYBFO+QRqJpop9PGVx3tuNws5Hj4/lJAsAAN8yO7Usjs900ut8jrD2KL2nxaM4OsXNIV6LXc1zIvMZMBogPmUCJfD3tPA3cfxSLmjG0L0u1qnCfPQdL9epwnznD85C5Umk7XIrq4r4St1JvkVfB6w40fM+z3bmndjLj+VTWAXwR2lS6R759liahcB9kTtbnH45Fle9SuJ8EkZmtuphPJNH36lZJ32Zmk65ZmtJ4eXpOddCTuCvvtDJ/DTHwtNNqk3yLDi1qicCBuw18jvzSjIMMAMy/7eychqiacQlI1dJ72+kFGMog+UJ13X0Jtfwu8L7pra7ipNt5T1+sb/GLVOdD79gR+FbyLbWpb4umKN6jmZLRiZ2YR8wrmh174zv4wGEsbNoA6tLm2B3znYHP4VcdaPS5i5vgER153iFtsniT392lLUdeLI3EunQPjEbJjes4M8yO6vOS8XFeClqVLYdH8jrjhOOs13Y3W6wBbMcfF/yQ88AMft+s/bz1e6L4zCz0rXjxT42tZnyKukbyAOIk7/JLFfBVWDj/FkRacjgFDzSQ0W9vRWY+br7qwN4nvfvdeqrT8SccPP6fM6ANICwHxHbccrUY7wSzk4n8tx1SOIG/guj0t+ANBxpOMOetqC5EJA/GtDYLcVc5z3OOpVpVJO7b4LEtOo0ejXK/pZr2KzL/m52/GSM8BDL2Njd13HUV85QuCHnRaBrdadcVbGhVns1fB+MMmyPiKbWnd329exTKrjL68ymqy3BaKr4/ukf0eo6Lt6Gn/pH1WSyyB5mbOHtqC4liW8Fy/ip8LlxGUcFhj/UCgPB58Qh6zWjWT5QxNxJLO0/Fy0ExGHqwAIMrMwWfzNA9yXJ9TSBOrwjgJryW5uEGE1CR3srZzvu5KB/xLvw5ApUXV8bRbkUIH7nNhIOWz2zuFal50iPY5/iWpzs93I4ac5P/t07E3v2bTsTe/GefiN2WInbgwAFER7Ndz1GjRuHgwYNYuXIlV8RKSkrQqFEjdOnSBfPnz/9rJf4Hkl4RI6IPWFz4eFtQAzcX883C4N6fiVbbffBxvR1eF+B8cRzYECuSfzWdZIicVhv3VzFb7N7KhBWyaCym9ZqNT0MjPKbh9WgSyoMetk59CL6rq2PHG1NLHeBKW3AB7NQva0JlHlwXYLvrBFtNPMefaI6k1mUNvjXEl8y1jj3lQN0vbvpr3Fxkk60+pSmN9E7F+nbR16vVpwkIWHsWRZX94btJgydrkFIJh2MvInNKDMKe3GpoJ30dMue3ReiMYvhscZUqo1/9ejjbIRDnH74gmX+Z7QYb8gZYsSItUVt4VKjAIa/FPOTr4O7cFpb18oLfWx9TX3RwnxOAxY8zi4nkbVPiz25wiDQvfzOGNeqAi6uCUam7BkihL8vHz48jJ+p9hf6sMkJ1pGdhaf7S6axeNk+k/4ZLawtLWDAPYk1+Jn7166HoyFGUtLfB91oRCu6tgkqHS/jpZ497H8Sl0CrYOFUzB9QvLD2Ve+Q5B3a9MBWhC+ORNdiz76e+H5Y2xoj17Z3ZHdc6sXha3XsO5gGgRaqbXAXH7OcN9z0p//Rb9NfSp9X/JqXNE/9bJfIJzfwqhiN73sqGitNqg1/jRhwy3qz9njnSDpPrb/O6YSE+0y/qb/Vb+7PKNJmM6fuBaK4IyP5zp4fbkfbeNMP7ADTfO0V1cWXhVuVfULAFQxq29/juzjxqR/VvvIOsiPcAFg8tc0QoV9iyPovlqLxUhtm8qOcn+qACMoiOnvTyexpX9SSa4pc25opgYd7Sivc9vQMzn2yR9OPoPQOHwXezS+KpqC402TTUYKLtTTZShL29S70ZLWAEqikquYH1WPZfrXjcUcT+Wrot08Rx48ahuLgYaWlp+PTTT3lgZSIfHx/Y7XakpZkjMd0hz3T/vhOGj52UsEWHNVMAcYChj53uJa5dDEV1SXFlzNLT//zFLVF0qABOqw2HFrX0qtgQaIDTasMPF1i8oS7DR8LX1hxtJiZAUV1edw1Dn0nhqEhOqw2ZX8ag0y5m3pd7Exq82UxmQpG47ider3p992PTa5Mkvvrf9EdkCQs2beOTv4bDnZUrKWEAsOr3dob2JKCMNhUOGdpEUV2osYdB3rtemYqMuSzG18rVP0BRXfxUk5QwfbuKdPq3cK6Enfw1HIrKYL7NJh+i+p8modi1D0UVZUj62Y1Y3JewJ9niK3zDo8h938751E6qJqUPG7odqxfPYxdrG/D7ZvIWHTmKLZ/P4ErY5ftZDKJmMxMM7T9w/1E5b6HKny85nCKfyvhaoKjMJIv8HX7/bg68kb6PiUoYAL5YEOUakZErfSsA4NMmwvCNXFyl9R2/wIZSW1Af19OwRsy3jpQwsWxxshLDRegXP54WH2S+qy9XHyNPVMLE712vhBX81MKQ7pIQO47GArG+PjdjGD50QIU7M4fLSs7+ZFLss8WFrGfLoMHEJFSbn8zboHjPAZT/hZkDNkhhMfvWzZHNQM1kB7QgznTS4Nuiqek4ox8HxOdRLreUhn67O7dFXOcHcK2T1l/1ShjJccx+HsUdjZCpxJPCG5x7hJ1wvXiUpU3cuQbqS7KpEwDYPtAg0ZtsGgqn1WZQwvQyi/IADMU1Y2YUDr8q+7NQyIOwx7WguKUpD6HrhwEA96HUjzt+gQ3htNq42fjl+2Pg46eNP74tmkqyKqoLWNsAoc+m8HsUB03/TZn9JhNLRXWhVepDkqyrLvvzelEe8tvRt5eohAFaLDtFdaHGXM30GYBk9ksAKE6rDRnDtDhgFMvS01gAAEMEiHLiL6YlJezB3K5S3fXKg/jeDra7geKd+zmv7EGaRQrlm3++Fr8n/ideAFClR7ZURuKGnyXZC97UTPdafZIgya8fV/Xf6rnBrO9PHDdTqr9Z37v3gUcBQEKz1PcfM+XHW1++lFJLeu602tBmYoKB70YGcok1i+bx+GKdR45ia6frV9F40C64u8inY8TjSt9o/r0BQMiisfgopKXUTvpNBAAYWOkcFNWFzPkaX72Z+B3699FtKWLr169Hv3790KSJMfgdUaNGjaQgy3fo1mhp89oeBxgRchiQlbESR2t+j/4s1aoKypzVVIkDgEYDNJ+IwIG70b0Rm/wapFSS8rRI95XyTX5nEJxWG8oq27Ay8TvU+TLJdBDVD9REiupC2PzLHFUp+A0W82j/aHMzmzbfPivxNWsHgDnfZn4RI8Fki0SxTPSyEGyw2eLuhbT+AABLRBNefs/2faD8wnwjM25c4vHNghePNZ14XNfkkwqxHjV6ZfB7te7LgNNqw9oFsw1yUl1D/hjO8+oXs2LMEgDI6PQNBvbYzOX5tvF6HuCYeNACDN0O83w97fcZys+YGynVa9NX7DRGH8za3bmtZO6nr3clX90uWjHbSaQgu/qJVlFdXIG8lQXcdSfrw/p38PLvWpgKqn/JDu2k864E5vdEypRf/Xr8pDgkjUG5d3hqDE9/vbu8CSWWl/8Wm6hPP2ZH8dWrmJzn2eSKYvbwOtxUiIlfUe4hfq1fAOk3H8jPVPx2KfA7AOT92EoKr+C02hC0YhQ+CV/MY3wBbCxonFqeXxOK6vdNrYbg16LsiupCVpe50reip8OxFw2yTz2k9dF7BwyTnh99xiGlXbn6B94Gww8e4j4selnOP8zqffg1Bxamx5imsazfDndGNlqk+xqemykwvpt2cEWLqOB1tnANfoUt6gnYZ1fbEp7f+hH7RppN13x16n6RhMcz2bdPiIpiew09WGBoQ+KX8yHz39qR0Bq5vWZxoCKn1QbfmzExSe7YF7UYiIAWGF4/RofcDO+RMT1aKpP3w0NMnpaT2MK2Us55CV1TNLcFgL3Xr/AxRVFdiN15A2c/a4Rd169Kbar/TikwMSl8Pdv3kcySAeCz0GZeFUv9e8v9vjW/L5bZe98p+DVuxBU9d0a2lI5+x0V04dcUWoZ4UDBnSquoLh7j0Wm18aDC0mbPwFiEbxyKM+1PS/KK39Hpx+ymCpWnudxptWFhU20zrft9g03fI/0+O9RuuK+oLjR8V/M9nhA/j6fx1N6izOSnrkehFdPQ79VLvpHS+LSTN4j0ZerL17+jk6Pt2Jcw1VAOmd8C7H07rTa8F6yNpWFPM5kpoPmLjWNx954LsKzbbthQBIDyv6Ty7w0AD9OhqC7clTDauBkhyO+02gzhFnxtzfnzufuNMeD+W8mn5O/5+6fTbSli586dQ/369b2muX79OopM4I/vkGc6M4SZe9Ju1KLD2kmKfjFDu/T39n+UDfRJO3laosR9LBab02rj9uiXHmAnGNGvxWPymcY4/oQccBQAN5uixRKVL8JC04BrplwRPaVqoCA0cRNRUE6k7sb5h9iipm3adZ7/2urGAIClh1ORv7glX+QAQI9Qc5hjohudjyDsqa241kMrX5TL9n6CoV2fOdLOMFHoFyhOqw3uvQc5z6LcQ5z3k4GaCcoDHbWB9NhTmqwvB8UY2shsIiXq2dbpcTDv11ybtJ1Wm+QIHPyybJrTZW8fTKjDfKjODmETO/nkEO8QIb7a81nsNIAgtIs7aDLRAkQk4hP1Rjy/JpNCelZ5kxE8hZ7rFwF6xZ3SnHCcld6nvu85rTbuhL1u7teIa97JIGtuX22XVl82wCbYuslVOO8V6at4muyoqwifH8/j4ymqi5vVWZqE4tID8kKfduHpRFR0/ta/T5+r1/lvRXVBafabxEtsi+WFaTytvs3cmTm8X4qU9bAG6NF40C5c6xHFT0kV1YXwUWkYFxyJmXM+l/LlRV8xKHUAUJK+l5dJ37J+weTeexCh64cZ+jigBSIWSUQm9Nkif387X5oKRXWhzPr6Uh9wWm14sPIZJP6+yNBfMr+K4fGNGkxMknzsSEYxz57IYvhWrCjxvvvhxwzp7t5zgStaRGZ+p2aKcsSUBOwfO1XiZ3YCRkSALmYL0OCXmdLnk6yBQZQ4WkNRXTyURcbXbENi7Js/SzzK/J6OUyPZWBCRPNjwTTV/TzW8t7v3MJ7Nv0rgcZUIIVUvG+V7rrEdN+6OxNmhrKzxtfdi49SZeLFxrCEPkdNq4xtTRLQRoaguw2LdEzmtDNKd0pXZxUCfug0ZwTdJgn9/DMub10RRXj7q990Pp5WFg9CPDU6rDYl71xkW/vRs5aof+P2g30bBabVxJFFFdZmCjlRalMJjzQFAy60PSwAtgDZ20EJdUV3wq1+PpyEl3owU1YVVvy40VZ7oHRUJ+2EPHVA530WHk3kasX+aKUcZNy7BabWhZ0wvA38AGH5Q20QSiYK3A8yvEgDeXqQpZvr+ZzZPOq02+G+oh5L2TKYa+6+a1lXk9+WPxg1G3woVDH3p9xaVEZbmzzcUKb/eokQkp9WG8r+kGu7NPGfFkec8g3WIIRSqWSp4THeH/pl0W4pY/fr1sX+/MfiiSLt27ULjxo1vh/2/lqovYB9ww3fZAP7wXWyHzmwgJVNCUsAOL2HmVb9cYiY/lTfVgtNqQ96PLMAsDaAVlzAEr+rzkrEyoho/xRJJvxCefKaxYQfO0/WUM4EAgKxJsWhRsRAAcKVPNA+iSnyrLdDMLKt8zxY16W18tR2jqidw9b5o3N8gGo0G7JZk1AMNeNqlE2OsNU96hJdNccPEfPsji9A9KAaFP0fAabVxRDhvROiH3YaM4OiBAPBxPc1fq+4XSR4XC5Q+7q77uWwiFR09ZkhL6Xa1LUH5DXX5dbkzxYaFKNG6iGX8euuH06SJST+pKqoLn3frLsmxZtE8AEDhy+ZQvuKiQSybfiuqCxc6njRMqorqQuhCprzRDr2ZXE6rjSvmIrWczJT7BQVbOL99CcyHcNyJCLjPnoNfvbpSHuJ5+FWHJCchAwLM/CwocaQkP8D8rDKGTpP4UbmJ637CqQdZvzz0DlNMMr/QFO9GWysiY047TfbPEnD0aW1iLjpcaNqmlF8kf8GPNOSP4QblVFFdCEvTzLbEemfMiEKzdD/4r9qGoFfZIi/8G+0E9fGQztCTp+8LYObEYuw8MX3x2oZcwRd5xGdmwT8xTeqv4n/xvYvjS6yrP0c4M5NRryySX1TkDmNcMTMlXlFdHLSIeOh9FJ1WGzfFFHlcGBQr9ZWXstmYRSc7RCKohqKyYLp0aqd/55RXvP981l7T92FpHo4fCpLgk8SUssOvsb5FgAJ6WHFFdeGS1Qd1k6tgr30hACBo2WguV1HBYUMbvVgjG7nft8a+xzU/3XseGs7bUzyFFr+tMr+nY+sH07hpPT3zLVcO+Ytb4vRjdrR7M96rUnXjXm2jTAwlof9WxPopqgtjqxXydHufZAqw39p0vklScsXC+eZ8YMeFB2MlJNrCnyOkjQ+xXp6o2ZtGM3Ya3yy1ahoUPOJlvX8ffgtfaajHjXvbodi1D4rqQvNpCSg6cpTn+Sos3KtMQcoI0++M6lJrZjKyJjFkVuojiupCVd/ypm2rV46OPuvAk4HMBJMAOfQ0t0mghAjK5/3vtM0MAreJLWeRZKXyrig6i4GbVNLehmudjmL14nlQVBfe/ma26bwGMJN/p9WGRuPlTZOjTzsM8QNz32enzZsXaPNS1iRWhxOOs7jcj43t5wbHmrY73TszjM0FS5rV4ebVpEiLaUUe/1OoiSU+f8/fP5xuSxFzOp1YuXIlUlNTTZ+vXr0aGzduRM+ePf8j4f5ttDRjNxDbil8Tshxg3L0loo94r53tfFGsJEKgq/dtOT74qUubmy5C9KQfxFZGVJPKc1ptmJe/GYrqQsWNsinlbxEMqjb0uRSMrsp22Mov0/pJlMttmDiOPmvcKZrVcAvK/WqEnQXY4KefEDKmR0vtIZJtB9Cw/x7DfUuVKpIsJdeuIaAf2+kPj081neBFeU439eMTOynEgPauRJh6s4UqUeLGpbxd9SZWZuS0sgDEVzod49fJn0zn5dqfH2soj66Dl46ReD2VdYDLRzKIwWTp3uElEQj4MMmwkFBUZj4j5jdbUOuVd/rLGswUmzK/p0tp9UQIhUTh8+Ox+xm2qCVfDLHfjq9981TvZuBh2gEn3rVdDJSleG1D9IzszmMNcf4jGRABbWgAQH2/SoZ357Ta0DOyO5xWG/a3Z2aqgW8xBYdglp1WG/JjLiH8sW28jGrZbtT7PMnj+75xr6a06b/HyWca89+hj+wwTZcZdY1f+zXUTJXCx6Rhf2QRlEItHylkALAqfxtyP7Cj194zUnuZkdNqk8x59Wl9uxVI1/RcDCUg5vX07qlOKbafpPurL5eRnru7tDX9/ifWNcZEe6IwxrBhoS9fz8tMYaRxh/rPrutsR/6jkJYoaa+d7Ew9tFmSlX7n3D8DVb5LkXhTmrS2RhNq8q/VyxMwtxAPNnRwmRtMNMZ6FP+cVhv2j52K+YEbeb1z+8yUZBQVYboOeminxHPN93PhDGgDp9UmBREW60h017bHpGfFV6+i0YDdqDEnGTVnJ5u+/x73PsiUudXb0LNDX49Kl6dyRZ73DhhmyB8+RtusC34lGUmTpnNrE/VFBwL67UXvAOPprfitWcJDJL5ivChFdcFSvTr+mM/MzMn0mp6Z9UF9+5dZrbUrbdJ+dVaLP0hmzeI94hs+PB1Oqw2nRtiReu2GlI7aJfvB6QwxUycD7//RLaX0Yhn1Pkvi6U7E29FtX2/T9xH6rC6MgAkpqgutP0qA+qLDkK5iv+OG/ggwf9RGWyuidybbPBQRD8X6KCoz+Rd9s6hMQi52Wm04XMSsgELnnYDTaoPrFe30OvQ5TXEk1N2qC1M8jlsAULlAjoEHaL60Zu//Dv076bYUsddffx2VK1dG165d8dprr2HfPnasunjxYjz77LO47777ULt2bTz//PN/qbD/dPr+Qg0gZZfh46QPuPlUZlLXddhIaXLUL9TE3+V+ZQrFkeccHM5aVD7MFi4f53keNJ1WG3Lft/NFqRhjRVFd8IlkJ3OnRtilcs49wpQnMpED2EkQDeZnHjX6v1FevRwiZH7xWjaphI813xQAAFcbY7soqgvu8+dxZpgdFwbFInzDo4Z8XIF9yYGKGxmAxJU+0ZzP7mfZznDuRE12GpRHFbTniqS+Pvo2v2egtkAwg9Y1M2kgmGI9f6fVhuRPp/OyAKD6lhr8edg3l6V2IPj90ibIy+fLwadNBE53D5N4O602Hk/mtWOtvPISF456ZY3ueTLf0CsUGUOnSeVE7xgglaP/HmgHnO77r0zDieVN4NutgO8w07Pc71tz+X4K+d3j4pzSFwXW8fjN6vNRmk1fzkD2J7Fw78swncTLrNaUNjrtpjJXRlST8ohO4wAzHRPLXbGVmTmSz4oo+4l4u6FOGUOn8Q0VosqbavFdabM6EriJorpwrWeU6bjiqS1EcloZYh/A4kTpn4k8SSmxprATqt8XzpHqlvkl27UOWjnSIC8pqno5nVYbLBFNcHKM3bAoJopr2ZXnCR+bioypTBm7e/BjeLGxtkMumleS2aWel/6eqJSK34aeujw2Sko7q6EWZ81ptSHzG7bgzP2hlaG/imW6bvr96Re5ha9oYA0dnhwjyUHp2r4bz3iWaKBQeRPkcVwsq17f/VJ769v+6C/M54tMIAHmc0blHXy3upQ+50OdSWx0S85zOim+e87zsrIfKGdoT3EDgH6vSP4Vtg8SYP04CceXNTXkEclSpQr3KTOj5tMS4D5zxpivSahh3j6zIkwqh0zgaDyitPnjHHi8WgEidxSjeG1DJG5cCgA8FptYN/pfc3Yyov3ZxsX0ucw0T+xz5x8y+k/yPvGLHCPWabVJscrC57F+UHtaMvK3BfB87d6Kl2TQ8wAYYqXYr3a+NJWDLon36aSa5Crqpp1UpX7XGsvDmAn5u7lphrzi/5y75xjGO7HfN/BjFkXug1nInBcpgelQ+sNLjP6xYprrznb8WvTz1s8PQw/dJc1bPmXKAtAU6/8JKvmb/v7hdNtxxLZt24aBAwciLy9PY+bjg5KSEjRu3BhLlixBmzZGdKk7ZCQRvn7tEc30hGDoPS1arvWMgv8K48CTP87Bj98V1YXoV+MNMLnOPeehtKgiD/CLW0rAHfqFgNNqw4UHY5E0abphUKFrir8i3tMvdMzow9ytkg8VX0x9Houwp1MM/Oi3j58fnjmwGzUsF/FmkLZzKaYRY4d44qOoLsS+OJY7Gpu1OcW6eTZrP957cRjOhFsQ8CFr52s9orB+9ixjnjJluX+Ap7IN17GtoPw8X2qv/2TnjPqJuOggXr6tm6H5nIPYE8lMG4OWj0b42FSv8umhj8XniurCueIr3LQlY047hD/mOd5K7kQ7gl5Lxm+F6SjjYzHtc3R90n0JtSxacG9FdSF4zWMIe9Q8ppWnNvNUN7FMs3hunpQtuudXv57kU0bp899yYP/YqWj1SQI3TyE6/KoDDd5PMoU1NpVLgI03e59mdeV569bhu/UZU6MRnsDec+xLY1H12xRYataA+9RpAz+/BgEoOlwIRXVhzGE7ZjRI9tov9feuxUVJpohEFL8wY1o0wuNTpfwtJydg9zNTcdfu+1HemWtoD2/lW+rWQeKO1aZyBa0YhfBRaR7lBoDQdcMRMniHxzKv9I3mfiDi86g34pE2wRwG3Ww8jGt9D4dQ90ae3rNeMRLLM8vP2+fmeHgrecS8BW86+ImMJ96e7utl5eNPxYoovnQJxR3bwHfTDqk/EtXcUh3b1zblJ81EOR/aEfyyjEirhyI3K1P/rKS9TQrd4XVs1tGhd+w4MHIajhRdxJBHn4JlHQtaPPtcPe5b9G5uGt6+ZyDcWbml8qRQEJ7S6N+LWZriTm3gu2EHFhRswfC7Hpb86yjtlENb8GRge7Ta7oNdbUvw0AHVYL6qL5fayxNR2BGAobKKgEDe6hP6/ViEPK/Nu1SOHlKf549thcJOlfjcq+ct/taHhLmVepi1rWPndSS1ZorSosPJBuC0Y0864Hp1qnRP/C4j0wciPXIRRhW0R37MJXij/yX4+qC3J/4t8PW5b7/2X90e/yndtiIGAEVFRVixYgWSk5Nx+vRpVK1aFTExMejTpw/KlPlzwWf/zUSd+kxGMAY0ubmT+X1rBD20E4rqwl3xo7Fx2kzTQQwwH1SabCuDL6yabbu4COqwqx/eCF2Bz0KbGfJNzE3FsKnPwPpxkmEhqC/LdDLxtUA5nO5xoLvaKxrHhl7BgQ4LvC4enVYbjic4UGdqEtSXHLB+JA+69zw0HNeql+ELolMj7dj2zjSPE5d4ra+HJ/Lx88Oq/G23tNh1Wm3osfesZMZplkYsv6hbJPzWGsEviI4/7sCO16eWKuuJeDuuV/HBnqfltFmTYiVzCgCSki7KBQAXHoxF5R9kRfR2FEBPbWzWBorK/BrJpBYA2r4Tj9rTjZD/9w4YxhdM5xJDUTUuS+LdYVc/VOye86fesSiX+FtcbAMM+ZAW2Z7yAoBfvbrcHNJT+WeH2LH1Q8aLlB9P/DwFtzaTO3zDowic7gvfDTtKTQ8Aee/Z0fh1tkEz/kRzNCh7Goua1TMEbKbFGvEAtLalzSJPVDupmhSs2adNBFat0AEI+PgAJSW42isa5X5jbe7zRwBKuhZKfabVpwmo/2mSod4kz59ZxBKJaahMb2134952/LTyzy7mAHZ6l/R7Cxx8jL1/a0plqLEXDHXxxI9oeWEaHsqOQ+HXoag2PxmjM3IwMzwYp38Lx+mzFbnJqqK60PGJMdyUylvbEAX9Ngrho5my2vqjBB4MV5TPt1w5FF+9elvjgySDrwUodhvuKyoDlKq19aShf3n6RvXvVYwLefg1h8FcU59PP0/0zXTiSqdjyFrQBqFDzL8pPXmLxzUxNxWvBWkm9N7esxjnzCy9p2+g6PdGWNt8OSLTB6LWfbJ1haVaVbjPnpNidon8iIf4DnoEx2JlTopBVv3cYqjP2gY4s6AhqmZfRZk9efxUkAIwA5A2325lftVf0/9Jecl4rrHxJLa0Nj7/cCz3UxPrn1i4HRYfX379Z8gvuDGeXL2Sr608bch4m1//lxSx4HF/jyKWM/6frYjdlmkikZ+fH/r06YMPPvgAM2fOxMcff4z+/fvfUcJuk+4PbwmfqJbI/KYtt8VvNj1BUsLowy5tsfmFNQ3OvkOkj53+Nrf62VQJO/JLM7wWFI3dz7KdHdsHCbwMQkYyW8QceZ6ZPF3tFc2VMEV1SWmJ3P4+fGF5/uFY7ggt0sViNsET6pSohFG5vht2SJOwqISJzrDh8+INeT0tQs4lyr4rJUVFCJsfz/Pp215RXSj4qQXnZ6aEKaoLjp3XEbV9oKH8tQtmc/8qkS7dNPOq8xVzGj8Rb5f4iZS1oA1qT0tG/XtlfxyA2bTrZb4RfkXj4WuR+JISRnKK/0U+Z4facXEA87EhxDwyG8z7sZWhff0CZeQ3agNabL2xu4/0nJQwgiynP1LCFNWFOhUvynX9biyqDr8s8de3mdh2fvXrsZNH1YW41vcY6k19y69hA+brM8e4cHk1exc326J7BLCi/1ZEIiVMUV1YtDNReibKfS0uCoEDd/NvieLUiWkVlcX3clptyOj0DdZ8PxcApNhOol8E8Tr6SzM0fl3z70pqXRaLmtWDorokJezc4FiuhFFaktF/Qz0es5B4i/8B5the8LqDy1qyYy/sL8hQ6ihhEO8bZmqIlquarjC0W/1PNfNSs7Z9sYZ2Suu02nB6uF1COAtSRkB9Qe5T4jhFih8A7oxP151HjAIA/DHva84/5zsbT0PpHth/nD8XidKosRfQ+A3tRHFuo038OclEppki6ftz74Ao/By6hgfMfaASM8GrNKWKpIQ5rTZJCRN5iXL3bN8HYQuYiVlur1k8XfWMG9JcQ3mLr1418BLlA5iSDjCrAAI/EOXyCwqUlLCjT2u+QU6rDakTp/H+pagudN0tA6mYodOJ/0kJA4C9T8inFaK83e8bLPUpRXWh0+jR3Ad3XacpXAYxDfkAUz0BFo+L0ojfIACuhAHAisvlPI4PADBwk+yLp5dPv7Cn535358NptaHWfUaTZ/fZcyj6vZFBCQNYm5GZnNiOxVev4sWjbQzzOc0t+veuqC4cftWBUz80ROrEafDdtEMyzbRcZcAL5x6JRa+ASNPvRH/tSQGlOkeULW+Q5UqfaHR5bJQpT6eVxTFM/kQz4Y+YkoCoN+JxcVUwHj3U1XRdRVD/+vrmfqD17cxR9Q1rK/HdRb6trScu94sptf536N9B/9GJ2B36a4h2F1oOfw915+3Ab4Xp6BWgxXkBGAT5uohlALQPm3Yuia70jUaljLNI/H0RnFbZjNBsBy2uZVd8kJ6IVmXLcb4iiROwt51v/WB5LjEUKTYWjJmixlOaWfmbMUoILssXAvb7JJAIv3p1EfLbaaZQ6iYdQN7Np3sZM6Ok9jCTj36T+UZR10is/XY2WnyRgJi+uzhkvzfyaRNhCPhKvLv3GQK3vwVrFs3zOIGIVPiKA3ue0k6yLg6IwZbPtYCZZnm97R7S8/Bv4pHxKAPCmHnOiiXN6pgq0SKvJtvKQFHa4eDw0k9+sj+N5eYkIllq18b1iIawrN/O/CfOn8eJeDtqT9NOuO7t/6gGbiLsiCuqC223DULt3gdLraMol1gfS2gQ95nQk9Nq4ydMt8Jfb2brafPDrH/dqvz6/Pp7ZmWL6S+uCsaWVj97LMtb3zHrD/q8wUvHcPRBkSzhIXBnZHtsE7Esyzor3F0YcI+6tDmuZlZF8EvGxaA+b5u0B1GnjwYmYzaOeRuzzHj2CHVIqKu1k6rh1N3XDUisf5a3+FxMo6gu9OzQFys2/2LIpz+d7rr7Ev5oWVEqW13aHBePVEJ4gmwKKf4WTxnE0xuSJ+zbeKm96yZXwfzAjVzO0trUjDK/iOFgNIrqwhOFMfgygCHyvpq9C53LF3M+Uw5tQXgZFhaAzJo9lcPr9GMrNB5kBFkR0yiqCxNONsWmVuUM3wf9fjV7F94PaYWMWVGSSarZd0DXPpEROGmrgm3vGsfBY085UPcL7YTQ27islyliSoKEmmmWjq67N2rHw8i0SXsQO6J+KHXMNxt3vI1ZZvdLo1vpHzSHNU96xGCeeKu8LvWP4WFCAGDJ4RQ80MCIvHj8cQfqfGX+PiRTWl8LUFLM/Rn16d2d20KPkCqmazY9gfsZH3negXKnSlDj++04+GUrhI+S1xw0p7d9Nx61pyXj0HgHlg/7mKNLljafLD64HdXDc/6rT4D4idhbf9OJ2Dv/7BOx21LE3nnnnVtj7uODN998808L9W8j0UfMz6fMbU2MZmQ2OFsimsC917jQFa8vDIpF5R/ZItunXQsOF6wfAMlsjgaU8HnxCHqNKUfjTkQgpXUZiT8gDzovZe/GRyEt4RdgRVEhW6h58ikqbUGpb6NrqxtjfYtfDGny33Kg0TtJ0oQKAJceiEHFJVu5aQfJKrZhl+EjsW7u11KdxTqRP9utkig3+UoQZX4VY1gAS+2/rCnq9DlgqPvJX8OlgNU94h6WYpQAkHwiXsrejY8ffBglabt5GT3bOlFSvQpXvKWF/4AYVFqsyXVirB21pyfzPuNpQeStDeKad4L77DmPioGiurDkYhXMDA/2yEdMe6sKnDeFSu83QpS9sA0aLvDj8cP+TJne0oumtZ6UrtJ4AAweO3HXWrx4tA0+rrcD0TsGILXN4ltSJPWLEX0ZZpsx8ZlZBhRE/bgj+rV5ag8zuTzVl377RLXEuXcuI7n1EkNbPZ+1V0IYpHwrLpfDV+1ikDWtMbc60Pc7RXUh7mAcVx69ySltBM1uh7r1z3KTWW/fwoVBsUj6zLhJZkbq0uaw3q99w5fvj0GFpdo3OPzgIcxtwoJ4dxozGhtmyOiH+jqUpgT8mW9Xn4Z8D82IFtenh9tRY26ypKDr5aP/2R/bEfIiUyIzZkQh975ZkqwA0GxGAq4FX0XJFT8O2qSv5/RDm9Fr+ktSEF6zNhH7uKK60L33IxJc/rlHYlFzw2GPUO2+tuaG8VYkT/OpmUwAa1sfPz8paLanfKdG2LnyeKsbF3qeBW840HCCuen6nyFFZZuBfhd9pHAHIs/SeJutI57N2o9XJ43g1jIAA+XJ6cc2Lx/O7YLvgtbBabVJfuc+US35HKcvI3j1CIQNS5fuAd7H38yvYhD+dDpW5WtrFW91KXjdwWMNmr0TRXUh8u141JqZ/L9lmnhHEftL6LZME99++22Pf+PHj8f48eP59R368+S02jgSGn2wV/rKUOg0WND/08Ptps9FUlQXV8LEvBSbhoKskhIGGGO2EH323HTpfveeg1G++VlYwoLhtNqweDELpkuxp/Q0IiMXH4UwWNxR6zdyefRKWO99pwx59XVqOSnBcL+iYP3kW6ECl512tVyvTOX5AWDzFDaQk2mH02rjMcWofcoq23DvgGG8zvRH7R32dAqyP4mV2t8vuDEvR/ybnJeEyPSBXEa3LUwyqSQlTOQlDt71R5wwLJoU1cX9ApxWGzrs6ictCigdobkBDGZ71bKbqFjRLeG02rBiu4LjDjkAc2IhW6CrXeR9m0sNGV+9Epb1bRvePgAMMO1Ur+wbF+E+e47nS7923aDothsXz5Uwykf9gq7J/O75I20N/fvc4FhkL5SBg8T3BjAHd7F/i210aqSGLBgyeIepEia+ZwB4K8d8d3Ve/mbDPUV1wadYe7+iHPoFjKK6DPDOYj0cfxTCabXhuVrM5K16z0wDP/34wd+RLgh3s+nydyUqYZSGlDCxb+v5ujNzpHc65dAWiY8nhQFgCjEAOJ7VQjI4rTbYdgAv/vAdqvTI5vm7936E59crYZRvSn43JO7bwP1vAeCeQcOlvuq02iQFgcZF534WsPZyvxied+0Vzbw3fMQ2yW+ReCmqC02/jse1khs4+gwbD0kJozQAM4M1G7d3x3wHABytrcLSrVJ7z20SyPkQSq5Z/9AvALmMfYdwE+Og5Vr8RH1avWwxL8cbEBXFgOkAAzHiY+wXbIytMZcpVtTGIl8KCk8U8mIyDr/GEBxFJYzkc1pt2D9mKsIe3Y7c3jM5PzHdtbgojA3sYFDCzNqa+njmN23htNqk+Q8Aqn6bYqqEXenD5mez8RZgJ8iAcT71Cwo0pNXLX1JUhJNj7IZ0RJlfxeD0cFkJM0ubeu0GolxuQ36xvIYTtLiXFINR5HNqpGyed717FH8/+rkq6NVkSQmjZ03mauZ5APPNBLRQKiJRGBKArVO6V7iGOlPl2Jw5/WZwXv6WIv7bJqCu5jxQycCbZBCVMLpnNhaLdQh7fCuO/8zCFhBaMD2nNIQArKgu9O2/mceN9DS+m5mM/tdTCeDzf/x3BzXRA23YsMH0/tmzZ5GWloYvvvgCPXv2xNixY9GpU6f/WMh/OulPxCbnJeGZxuyj9fH3x6rcrR53uWw7gA/ret/10ucTkfzENERi/sz5bZFz95xb2l3T3xPNELO+bcN9F8QTNzPACk+8uzw2Cu9PnY6HVsdzZD9RZr1i4m2X91Z+e5Mn/y0HKkSdRK37MjA+Jx1vN3Pw95T5VQzCnkhF/jg7Gr1t3IH9oSAJDzZ0GHhb1lmR2CQRLScnGPzizOi6sx3af7gVaTbZ14vMWEurAyEWelsM65WiW9ldNeNhdl/kZ5Y27107Do7QzIN67T1jgFUXZQz+aQzS7/+Mt62ep75MMk81S2cmc967dix45AtE+5fhz0+NsuONlxbgtW+GwvcGEPChEUyiZ1unFJwbYCaUIoqaN1JUF66V3IC/TxlJLjpR9tSWRN7af9LpYAk91WyMAVjAbYr1JtXDAyIpndKIJIJx6GWhMsM3PMqVJDM5xOsSe2v4JO/02k9zP7DzWGd6nkefdaDeZ+bfWe77dnwxYI7kdO+tfShN5z19pZN48VmPJh1RfOECzMjTuzR7t2by8HsBbSTzK30effvQ/SZz4tH4jdLHAk/39GOoXjbfFk2xcvUPUhqzepnJWdq4LqJkKqoLzv29oDRjIRtEZEqpDmsbQGn2G78+/Vs4Vree53Hs8NYe3uoCMBCko3HXETZ0O7dk8EZi/ccctiMv+opUJiGt6mUh1OPzD8Wiyvcy0nDj1PKcj55OP2Y3+MCa0bnBsRxVmIj40vwsblKRbOHz4w3hRkqj7O9syOo8D9k3LkqhHwCg466r3BzVG88W6b7YE1mMrMmxqL+5hJs6/tl1DN0DPPdXb/OYZZ0Vp+YE4kwzIOi1ZNN04u//qROxNyfC8n98Iua+ehU57/6zT8T+T3zEdu/ejejoaPzwww/o06fPX83+H0d6RexWSVFd+Ph0CHdSd1ptBhja0iby692jpMEz9/vWyOj0Dd443hIT6uwudTGvqC40n5aAffFTpUlTVLa8yXL8CQfqfKkd2ZOvmFlav4YNDLuRt6IQeFO0KL/ZQpNMgn4oSEJ1i3aq1nX3JbxcMxNxnfpxhCyyR1dUF+JadkXi7j9KHeC9LXrCNw5Fxl3zjYuOm35XZgufWyGztMUd2+BsWDnTydjjgo8Wuj+0QtCDuwzpzX53HTqCt7Eov2i2AWh9Qsx/RQnCxpZLeR4zKvipBa6cKm/YOfffUA/XOh3l15bwEGQ9Vocv0EmeayU30LdpV+Q/0dLUhAlgpkuJaxcbZLCEBsHn6nUUHdZQ9zy9b7M+GDk+Hunj2GKFFAyA+YBV6m5EYeu97xSPG2Tmr0dlnVkRhuo9BRPTvkN4XKBb6TuK6kLqtRs8NIRZejO0TbM6eyvPp10LrFr+rVflS1E15ERPsnij0pT/0hZlYpt7U2rE62s9ouC/0niCSia9gPb+PPmeikh8ZKb2n3zzf1bBoDqKz44+7UC9z28Nyp7Mwm51rNa/j4UFWzC4oeZfQ/IAzFfYzKcVgGFuE0lEJTy/MoSbt5rJI5YnykdhKcTnRJU31cKFjifhF9gQBybUwnvRv0gbE56+h+trAlH2nkNS/xDTZ8yIQviYNIMJIfnCGfq4jw+OPWlH3S+SPNaltDVCcac2LHC37jmFtdDTtdWN4X9vHpYcTkEl33KGTZKmsxJwYJRnNGDyzSUZCPXTrB83m5nANzu9bchc6RuNCw38+FpDTK+/1rstiPRubpoUJkekpYdTcX+DaCiqC+2fGQu1e5Fk4aMv78yjdlT/xrhJ1K1+xP+OIvbG36SITfhnK2L/EWqiJ2rZsiX69OmDiRMn/l+w/8fS0gzNhllRXXxAEQcW/SDzYg1mmkMf8bAqxyWe9OH7BcjKWfebttP6iYr8JtJsFtNB7drqxlBUF7ImxfLBQ4wt47TacOSXZgYljJ6JPBXVhTpfJiFjdjv+vOhQAbI/ieVpfdpE8LQrtv6Gc4/ESvVwWm34oUCGVxaJ0lA7OBtEGtJcUYIMCoKiumC9fx8U1YVXjnTjcudOtOPlmszcy52pQaXvi5/Kf5MSRtd579kx+MBhztfbxEf3gx7cZTr5kxLmtNoQpIww5NVfU5DIa6sbG+pN5Ltph0EJi89kJlYtJyUYJhDxt14J01Pd5Co8T9lz7BS26PdGaJ36EG8jUQk7NdKOOl8modV2H/5cUV08lhTRjbuN73Gf41uEj5HBXQBwJYyu3RnZyBg6jd+j+vUOiELxhQtcCRPfGZGohIn33Vm5hkWJmE5sQ+qP+eMc8AtsCKfVxpUwAFwJAyApYWJ5j1fTgG2yHtLMhMVguAAzTZT6W+pu6Xt4/khblEZv93oEiurCmUfthjoBQNIkDX1Mv7AJWz9MagvxnYo8SrbtkdJQfjLlIyL4ej0vkSzVq/P8IullE+9lzmemaL4VK/JnfvXrSXlEJaw05ZWIlDBFdSH7Ew1sQFxkhzyfgkv9Y7gSVvCmAxcGxSJzXiQ67rqKxA0/Y+B+1ofJJ8XsPRD5VqgAS0QTQ7/zNO6YyX1ieRPWTwLaoHdmd+S/LZvDikpY5uexpnz5+NerMpcj69s2UF9wSM+JDr8ql0G/KXbgvPzNCF0YL6Vp/HqyodyMWcwc0l3OxyAP/blPnODlX7jCFpLqi1oQa33b6WUCmJm702rDi0eN8VIvdDwJn6iWuBpaB9nd5kpKWMacdoa+DgDlN9RF2XtYzC8xfIe4SM+9jyFakhJG8r4fopnHxR2M0wQpKeFKhfjd07W3uah7nyE4sbwJrlcx3xw2U8IU1YVDhew7qeSrBdCmsp1WGwLHJRm+XbEvkBJ2fU0gnFabQQnLmKOtF/aPltEwZ+VvRsSXCbws6pvlf0nlm3ti/W075O9CUV2S0kp06B1mkvlmUJTkE0XrEwBcCXNabai0KAUz7vrGtN2IUt+fBkV1cbeTW9mouEP/TPo/UcQAoFGjRtizxzNizh3yTjSQNNrKJiGzATPj63bo8NQYk9xGhW1FmgyTvSpXO6Y/PdwOX1tzKf2Swyn8tzhg+t+bB2dAG4Q+l4KILxNM5bp0sRzPc+xJeSElDjZxnfoBAHJ7fA1FdSHnAzuKO9gQ8oLmb+SuWEbiT4E+X89hfE6NsuPBhg7O17JODkqpH9gKX5QhY+efryUt8uNadTMMwmTS4bTakDFsGn65pNmbi7zabhtkqmweHD4NQ6ucBAAErx4Bp5UhnekVbE8LS3p+/mFZCQ0fng5FdSF03XBDeiIyQV3f4hfT9iBeiupC1gJtQdH3Jjy89ZMkdB45Corqgm+rpgZfL5HiWt/D+dN733G0AS+DnKX97s7Hpcv+kjwkQ82vmXkUQabT84LXGb+FF2ri4sBYUzM5gJ2meVpc3BU/mpdltgjRv4+FTRvgxt2RcPYbyu+bLWT0i4msBW3wbq4cwDgieTD/XXMLUxQajU/CiuRfceZRYwwcPWVNjjVdpOrr8nuLysiYFSWl7TZkBIYfPITXc+T6KaoLeyKLpXtm5N57EE6rjQeFp1AFeuXKbNEa/LCxTKfVxv25nFYbirpGmpbttNqw8yW2c95p1xXTxateuSruYJPgsvV1E9vq3dw03LiblZ1z9xwAwJVOzTnPoiNHvfKgb138bvSLXTFf+HusHcO/YT4yGV+342lEhLjAj7ej8o8pCBuWjk2tyqHZ9AQeHFhPcRFdtEX6960BAMWXL6PW10cQvnEo2j9tPj8Q+TVsgMJXjN/M9nY/MtkLdyDnVE1TE2t6nwRQJL7Dd3PT8GBuVyiqC5167OB8s7vOxe7nzE+RAmcdlPhMykuW+vewRh04cIdekRcpt+csLL9UARunyv5q4rsR+2tAP+YDbP04ydDHin7XQgnoxwf6E2PsiWlK0nbDb60WU1N9iY1hud2/NpX7zMcMcMXX1lziJcrUbV9v02dinfQAKFS2vszMeZGG+Urkcz6kImr3Pohyv6bikbzOBp6K6oJPpKaIdN3NQtw0+tnCedwVP9r0e/CmdJAspJSqLzjQN9PJn4unTPqxYFSjDjxUgaK6kDNA26QyK9PVhuWzVJHNs8lXkWQJfCuZh2xZmZPCQ7/Q5onZ+7i3ghY+QSyb6t+9Efv+y/+SKr0HcUP+Dv076P9MEdu6dSvKly//f8X+H03ioEhR2MUPvPqWGgCAlmGHJbtnMZ3Z4pKunVYbmsyN57/T3puGlYnfSWkr+ZbjAA2GneSSEiwo2IK9T7BFUtakWGk3MfSRHXxgMYs2T+TOzMG1ntqiMXPoNPhu1mQ48pxDuhbz3nVzU6rmrGRYmoXxQaykt9EHQ6xXwIfagiJjZhSGVjkpTWyJu9ZKE/a9DzwKRXUhY7oGlkJKin63vnbvg5Ks3R4ZYXgfOffOBgA0fjPZMImI/0meEkdrOK02tHszngefFAdtp9WGkME7DO9IrwzqJwGRiJ8YtFTk55/ITpmKdx3g/kAilVlfHwDgPnEC+W+xfuB6lfWNgAk+8IlqacgT8rAsh75Oevn2Pc760fwmDVFpUYqU99hTmhN0nS+TpLqLVH4Z8yu0va+BUDitNmRMj4alWlUADA00yuXmMpT5PR1I2YWTY+xS213tpe1+Bq95TCpnfvvZeDMoSnqne+0L+fNzj8jmFdW/Me7qA5DeX/bA6Ybn+jYiyu05S3rmtzYdc5sEYtR38Yb3T79HZORyHgQaQwAnL2XvRsbsdry+72/6yfQdEWXMiIJvq6Yc5IJo3IkI7TsVQAv8/tBiD55Y3sS0HTa0Ko+qm2uaPhPbmcYLuj/7JjiKWfu+GRTFFXp67p+YZug7ywvT+AmRGXkL9isqbO4zZ6CoLgS9ypSJ8JFsQVn4ioODuCiqiwdKLniT9WsCGNJ/Gz7+/kjcu47Ln9FJ24E/Zj+PjLvmc4TTaz2iTL8Ly7dF2PPUVEQkD9Z4+8pBdvfELuTli2Sm2FAaq+UaXIUB2Hv9CmY0YPWtvqWGYeEv8kzctVbi/1xju6HNvSkholy9K142PBfzRb8mg4LoiUCn/O7Ol/jq6x4X0UXj23eIqTz5i5nvn/UjhtYrttuFQbEcyKPcb2xBXuzax9M4G7CNgscz2bhLYFLtxsXjxPImsERo30uLL4ygVUTWj5IMbSmCVIjPWn3CNlgr/5CCjGlsnDt193VDvaacCcSqX1nfODTegZdrMhPoDTO0uKfll6VKgF3ZH7NNp3EnIni5iurip4piP1JfcCD3fTt2PzcVVzod42XTWC3SxQFa3D8Cz/A2RhERT/f584iYorVf2oRphjxbPp+hvbtiNybl3QwZMUnbJCt4Q6ur02rDS9m78W4uOxW/viZQVtSLbgKLCPE8e9z7IO4PN86X/7VU8jf9/cPpthSx/Px807+cnBxs2LABjzzyCDZv3ox77rmndGZ3iNP94S0Nk+11p2bGUHFjbQDAD0F/AGAmV4Ri5LTacLmYDZZZn8Wa7gCLA55oVy9ODCLFBTCzpczPY6W0iurCkIbt+b3Q51Kw+1mjzbe3XS93F8bbf4VmGtk8SUM9c1pt2PWCpsT5tGthyjfzixi492dieSFTFu5JZuYSWZNikf+2EaVInJBze83SJjwPSsDqJWxx4+P2gaK6sPGq1gY3KpnvhNE9vz/SpYklMn2grGgJAzDdIyXAabUBPj7wSWJgBNvenWaog6eJRa/UiUSndpawYClP9S01kDE9mptg6HmaKTZ077fwlTg0Xls0rris+QWs+nWhhsoIFiYAYMAXTqsNN+7VTgXE4Ni+tub8NNiMxH49cORaSZ4rfaI5H9qFJgr6bRTqTpEDA4ePTYX77DmmyH2VxMFPxDrXmpEs5dkwU1tshD26HS3Sffn1O8Ftkf+2cQcaAGJ33gBuMChqfYBmfZn671NRXcj7sZWUftLpYNNy9Lwy57fFwcemSd+602pDk01DUfL/2Pvu8CqK7v9PcgOh97oJgVQIJVwIaRcQBOTSRAFFFEGQmiiKIiqIChbsld4RRRALyguBRbqQBEK5dEhvLL3XQMrvj8mZndndG9DX7/t7C+d57nPv3Z1yZnZ2Zs6Zcz6nrR0LQvx52ltNGYpZ4MB9eCB2JD4ObIGQYbt5vvGN5JNZY10ho5IR+/MqeMfLZs8EQ22cS1Jm60ItxZC78mQ0vBo2QOicOJ5uRYC8UQeAbg0jkTfB3NeUZ5hfOz7mxHe15a4npbTiff81I+DZvAm/7+1RRlKyiJT2ZTSK21oLFmLZ4n8K+kzvlc+HCRhSYo4lphdNvq34LM7PNwlCRMb/WxYw4TyoxFSU0pDZrm+/wzrvRYWmcZg6LUqqS9VcHC0PAJrOjJN4HObXDg37H+TClKq5sNx/k2Vwd4CZzrubt8S2NP86ziQQifc9wptZou+JaQGgzAAGnnMmzmyxoWou7pNnxU/O2w5++iievqq/fmu5jhxt+y3/T2ZvxEfCF7NRmJKuuw5Eh8ljqYitBzOCZUuEmvMSsbfND4j//Qee3udDNl5udytRgJSsLzk/ttDLAzAz24zcKt6v/7muzAqJLREOS+Lshc7WrWBWN6vO0zV8W3ZPEElUfhKJkPQAcKB1MT+hu/kom7+VTxPgP4EpqTKn6uvSg9t1P/HU6ezdPtnOg9e9p5Wn1B537VQ1GXGZTNJpjjzzWxNT3o8yd+LUr6FQNRZIGmD7HyrvSJyMxvxxYAtMbuOEU7HzEz5xPl+csx0oKuRmy0WHSgdyuU//nfSXBLFGjRrB39/f9AkODkanTp3w/fffIygoCJ9++unfze9/PRkX27Lqbv7/+gNnTWlqztd9DSp4loWqudDYrmvxAKDZdH2RPNC6uFQBSeSDeMh4fLZJo2ic5Fz5+W7bQqRqOsz4hqULTWmPOL4zXbv9O7OtFzXowd/qmn2/JkxT1tunBEygBAEu6OUkHB05E7UTqkllkimPkT9je1TNBe+t9Xi64Od2otOQ4Xg/QM/j/00OAjcNlfKIfftcagoCNjwLVXOhR5f+HFqe122x4SEhIO3LaJwbofvhGTcf7p6f1XV6Xqrm4htK40bjYtsLyOw9Fw3fSrRcwBov1DXIxnY6FTv8P9b9mr4OamLim763T5uDK09G8wC0Zdbv5vWJwT+LXEcwr8EOfi9gw7NuNZw/zeok/d82a66uPb0FZL2nL+IU8NvqedP3l1nWMNdWigu691l9dnrsWZn5w/hNTpDS0AY4qWUZFOSdQPY7MQgZao5d06330xJvIl9OxY7j7ZdI91+uIUPDF7VjvKV/pitPbKHBEvIpoJsFH2+/BJmPyJYLXhv38Ge8bZZu3mUlkFMdAeuHcc0+ACzU2vPfp150oPzWujBS1vtskx4yeheix4/GS2lHAQA9WztRZVkS1iT+A0dH6coY4/PP7xmB4ju3TQhyxvQXn7oGW+Mg6XnUe/SoKQ/dDxmRjLXrl/P2vqDpEOw0n1Da9P6zTfHmRD9WsXz6/rlZfen9sDUO4icPRA89MZTncbehTPuS1dPv6BmpbUaIcfFdDRRMRYms5kNxswgA/qEnATBzysJiFqzZdyrrd6/69STgiP5HT5l4bvUeE6BEICZVc+HkrwyVkuJIAgw8Q2y7yMehF2aarhHfFbfVRvGew/g6yLyBNgpIlbox/16KR9XpoNnyhPxkyc+IePKbkiCdPjoVO86NipHquDQoBudGxsBjkw/C9/RHxkf6Mwn7NM40lqn9eQ9WQmFx0T2v0R1GMnNrEnABwe+7iEHVH23LFGHR41kIiMAylXhbrPpI/G8k8osj5QkAtH+Omb8+1H+IKb1YXvmtdeF90cOyHu1VBz+hK/+rGVnVf6JuNbCheWXYQgKROi0KHneYgpTMY1NmRUrlGudp47r14Wh5H0JhCABIweQpvd3bG/sjlyFg5ShpXRXrNPZr4fkLlv3iVOwY4tcOquZC2lOlWzz8u9L/NXQ9h7D/L6e/hJo4ZMgQeHh4mK57enqievXqiIyMxCOPPAJvIY7DfXJPVqiJ4oTRaFd5bt5hpXEjypnswNGR7tGIxHIvPx3N/a3cpQEYMtLNJvW4CY8YfFlMZ/xtxSv9Pj3GgbrTEkztUDUXWiUP4IGKg5aNxoDOOyR4dqJTYx3Y/+pM+McP5yY+Vu1Yd8NbgqAmvkSi4L1W/Spe63TwOja1qHhPi6RV26zyiFDE50bFSKANd+PHqk4ivgkvQQcr7NgaG75fKJXdo8kDKLxyhed5Ie0YZjz8sAmQorT6jOkI4pjgqp2K3RRkmvhz9zwAM9rc3eonSl3SGsGD91reS//ejsCnXLjtbMMVHHej8H1FXMNK5GlvirXx37sd+w89MRSef8iw+EZ+Xko7im4V8u86jtK+iEb6E2yRdip2FDtawiNhv9v07gSljA9jEPC6e3hygIEhDPFrJ8H6i+WuuVHOcpMrUsbHMQh4Va9HRPk0PnN3vIgogVZt6/HQE4j//QfLvMZ2Fre143zz8tjztm5qZPVuGu+54+3PvPvid8uP4rD/NSZUdn3sGbfP8M+886W9P3fjb0RuW272bqyHkFCN9eb3jMDtSjYeM7C0fgIAW906KDx9BtrKpjwW2t3yWN37NncHBpWgJnqEN0PxnsNu0wIspmbtneelsAql1X0v/ZjzlgOeBeDCp1hO6tdRCH5B9/FTNRduFN1GH1+2qb+2LgA7wswBzVXNhZ6O3ijIkhWn7vgy8u4OjdJde0q7brzmWbmyZagFVWOmf8Y5ke51HDECW+bNc9vXWT+E4Xj7JQCADqNGotw/hADcvuFcOdl50DBs/HYBzzf3soLfHmqFo1PrIngwU3oNPJaHpU18TXwAQMrsSCm4t7HdqubCxcIbHA0584MY+E8ofX4UKW+ig7tmAMx8mZTBYh1WeyJ3PBH9J8HXB07816Ampk+9j5poosWLF2PRokWmz4IFC/Dpp5+if//+94Wwf4JUzYWHjj7M/8/xlX1IugfLUL5ERiHMHToVAEkIO1WilSRyKnZ+5F+QdwJlNuzhZYiaS+MCYatZQ7puJLpOfmM0Wa8+oftpkBAGMDQ4KyEMAOp9yTRzJIRZaY6dip0LYQAQuGmoLqA0DuLX1/+42MQ33/R17MfL3tRCNpWz6lcyMTD2gVFTRr9JCFM1F2rNYc/5zPMOt3nuZQPD03jaOEQzBesV+bnYqynPq2ou9KxwCx43mXBAwWNLa6uxPAA8zkzRoWPo2Zo5WO8JX8G1k6KW0qq/6bf32mSszJM1o9S3AHhQY1HTCYAv0lb9lNZxMQBg86L5/NqFZ+VA6Eba08qT9w8F3C3af1TShjoVOx9PTsVuEsJSp8sAMSkL20jjkuiNDBfm5WyHqrm4X13QS0nSe0YbeOLVK6ARB8+wGgNkXhPweqJ0XdVcKOzITqfTvm0FVXNx87jfly0CAAQmlwOidX+LnhVuAdB98kSivgh4Va5HFMLounFcA4CSVJlfi9/6C1TNxZEx6R7lJfAQSn/mOX2eCzCEJPDY4UKVrDu8/qmZu3heD28dMMap2BGYXM568xqp+2xY3TeO3e7dBgAAugx8luep91UCr6fcB6dNZbgLAE75xTFB9bXY+RT/v8AiUPjZWOsgwE7FzoUw0ayT2pbywBK5/SXf3muSORoupRUR+ladkE+bC0+fgaq5cDDqe6nfGi+I5eZyNHbFfCkzmQBT+Y9aUDUX+r3wMgDmM2wlhBmfQfL7s1B4JIWfTFK/57ztkPKI/dEzvBusSNVcsFWvjqOjZ3IhTGz/jb5RyHhsjpSne5CDC2GAjnxKFhYi/ySEWc09TebrCJE5b+tjXNVcaL7Hk4MfGd8np2KH06cVrg6QT2apH4zrvVX9a4//wX+fHCf7PU2ty5Bybc0ao8OBm7j+WBS/570muVSBt+bKCvp7cNGeOQABAABJREFU8I9dUrl0gudU7BzkhMr4ObQO1uxaw+d3AFwIE8eoqjHQmpDRu+BZoYJetqGdTsUuxfJMeUZW1Igo0wAkH3EA0lgAmPny+WH6+yb2Z+bUGKktVE+3hwdK6TK+l/vrPv3v0P9JHLH79OeItAsXUwLQ7e04JHw+G+l3rmHd9VA8Vy3XNKGtyEtEVU9mTtQ37SFusojoMKi/LDEtNqVpeM4850CdGeYgtGIeMU6QO/or+b0a+UnaQFvNGvwYX9S4GttwLxritG9bmZzo6X7HQ4/Cu2uWKT/F8yHt2L2QFS8UYyd0jxeOhheg+o4a8Cl3CZ/V38s26hUqoOjGDZNW2Rjc2tinzb+Kw6EXrRHHKE3Xfs9wv7aH+g+RwE7SvohG4ylHcefnKvDsnFvqMzPGsRFp8PFcDKx8nv+nfGL8Fyv+jTzTaWBpGl3jBoPuL7lSC0ubMMEocmIser+8GZNqHbPMY1V+aXzdjShPaRrZu+U1XjPyanVNJDrpNLal2fQ4vkmI3n/H5IsxMiUDc0OYf6BHm+bc5FcMfAywDXJ+YB1kDi9GeicmmLV/fhQ8bxdL/nHGdhl5FU/w7mU+EoliKlnlo9MAsX6rskV+xNhLXQ5dxYbmlS3rvZvCo/W7sag9K9Eyj7t+sKIzzzmw740S5VlJgGEACJ0TB78p5jkZALod64niTswPlk6crOhGnyica2HjQB9EfY6cxdyve+NieAFCRuiC0595B7wa+OLIBAUhcdYnDrcejuSADWJ/UT0UC42I8odPiUWtOSyd/cM4uF6faXoXRBL5rrmjOs63vWh5/1r/aFRakWSZj/537zqA++e4e4al9VPq9Chk9J0j5Utf2gppDy5Cl4HPYsNSZo1AMbbOrmps8jtUNRceenKo5Wm0kZ8OB25iYq3j6N64PdYe/8M0n1nxqo13QPlENuN98PAjKPtQNtI/jUbaU7NLHQfG5yD+PxsbgxpH80EKv9LSlkZVt9fkvqDu1gQjT2J7r6wNRJXu6eyZBjngUbEi4vf/Xmq9d7MycNce+u3h5YV1ObulOrwaNkBBdi6MVNoYutE3ChV+2Xn/RMxA90/E7tO/lPqEtEDl5UwDHtewnaUQdtvZBj9d9efXSQiz7wOQxGJPETw2ALT4Mg6eLXUNGGlraGKpM8PsXyHWmbmsJReiRqbocbOstKzi76L2TMvuaW+KysuTJHSnzKkMga4gK4d9d2aa7xl7V7kt715I1DqJQhi1l+4TlLuquSQnYAqKayWEichPVu0W+5Ri7BxzMBjf5f6bcCi8iKf1rFeH5xUnZvLNIVp/Q99EOxU7vC/JkO5WvHgk7keHUQwy+PcVi/m95ns8EfRSEgovXeZCmDGvqrkQuscLAFDpZCFvF31TLLJPv3qC8yDyMqzE3l0cR+QDIsbaoTQNZx91uzAZn7+4mXYqdi4AORU7qi9O5EJY9R01cOD2rVLHD7W1YIMf97EojWh8iuPo57wkLG3ii8tPR0t9Sb+v9Reub3QvrF0apIPtiAiiADttEDcaquaCZ7lyuPhMDE7Mq2UptIma2qSWZfgJG1G/SropavHuQ/xe4DvyRqQgNw+2LXsR9PQ+XvYf0+eg3OpdCFoqI86JQA5GEjc44nMkUjUXB44hAAQi0bndSGSSJZYdPtmMhOdU7HAeYm0WHemNQpiquZD+mX6CIs6TxW3tPI1TsaP2rEQO5mGcM0sT4Iz/68wQkOw65/H+8ZuigwYATOCie6kn6nA+rYQwquePGXNwdPRM09hc2bQ2as9OROPn9fh/TsUOz5ahJh6NZZ77BwOMWLNzNULidkltn3GpAWyhwQCA8uv3c96bbB+EKjkFPO2pX0MlIUykWnMSObIiCWFiP1jxRGvb9/6bpevpn7BTiHk523GxsafUNkLVo2sh38Si6BCzxAhO9jbNy6UJEXQv+PmdJn7THlwEf3UYAj/ST9CvrGQIs0MDZcUkrY90Gg3B9cOp2DEh/YBU/9YwpogdtXefpbAqXiNSPtHjY6maC4+ld8GllSXAPK+YFaX53WVTOxqDtiB/5Lwlny7ufXMWNny/EIOP50rpjb/F9YFIfNcutzvP6zHuNcQyrq0LgGfzJqb2khAGsDAOhWfPSnyIvm0AsDR3B3K6VZDqsnoPnIodTWfqQCUUwkbVXHw8i/mshDAR9MyK/pg+x+29f1u6j5r4t9BfEsQCAgL+0icwMPDuhf8PU/Yi2RyMJpdOB6/zl7ysuhvDqp6S7quaCy4hpuT5thdx6tdQOBU7lI8TsHbtMqnMu218AX1CogDPtlo1uSZdXKRsQQxtbV6JaUzqYrZp9fyDLRBFLhYUOfWZGrwN/hN1Qcep2Pkp0OiG7DTFy0cxTYiEgGjFK6GQEW8A0Hi3fBJgXBSoDSlDdDRCAhIhyn3TwfmwQn4CgLC9Hm43MMX5+XC8NJrXfeUptjkvyMgCAA5/a9xQ0r3PgppJC0StOYlod4CBLFx/LMq0UBGvosmHrTZD2jwUXsSfFSFWOhVmgijWfzScbZrK/7ZL4sep2PFT6FK2gZwpbxRFMm5e6peAIhBIDKVxKnq8J3eLHwAeeJzSGQOZGn9fbHsB4xtFS2PUmE7VXAj4eRQ2Nl2Fcqv1vrIy2QF0AZliywBAP1+2GTb6WToVO97NTIbWURe80TlPuk/jCgCqfaubHXuvYdDpHt7e6N64PQof1KSx6lTs8NvmgV0fzMLtfdVhJON4uNMlHCP82pW6IaL/dEJrVV633k/DVrs2T2uPZkGirz7B+iB4jO4fEz6F9ZEYlzDti2i8mq4LTkUd2GQ1JYOZH1FgdJprrMaD8VkWPthamv8AoNZcswJF1VxQm+tBxa3KomuB45P5hpj626nYgSJ5J6BqLhQdOsbbATDzSWN5xvf6Rl82ljM/jDHdB/QA4iJ5NfCVBK70zovQYH0BbzcFtzU+z05DhvN68yaaTZ0H7M+U8hXtl8FLrOYkAhuy6sf5Mx/GsVg2xxcLwE0N+x/kPkNOxc5BUowmkVTW7qyGbvtP5I/yrF27jAtPIgWOT0SXQ1fx8Oev4kisbLI/te4BCaJ/YI+tvMzUiHypHiMvK/KsrQREgB8xX63aVzHHNxEem3y4EK9qLuy4FCilNfk8FhdLz0EM2AywkAcAMCs4yGT6DDA4eadiN5nYUVsCfhmFq+3P8bmc7ok8ae29pLx0vTAtk5+0Bn8bKz2/r9/rD8+wJqayrHgw9pVTseOmqqO3BvwyylIIdip2VOqWgbXrlyN1ehRyJzmksV/avB8yepd0v5atIhq+pc/BzkcH8d/FMS31/B4eaPCerjihEDbB38Ui/Xu71AfkokFEMTUzHp9tinMq8kb9kjZL5v8+/ffTXxLEioqKkJ+fj6ysLGRlZSE3Nxc3b95Ebm4uv5afn4/i4mLpU1RUdPfC/4ep4dDD/LequWBrGgKnYjf5JrnT1ImT3v5IWfjyEHz2yDfEOEkSUhflcSp23OkSjvPDYniMF9OGKC0TqubCiBKTtIyuC0yTLACkPi2DUITuKIm5IpwWeFZgminyQxMnN7/JcrT7onb6ZP7bQ3JAVQA43oYFU3wp7Si/lj3FOthvhwM3kTIngtuf0wJ4JFb2ZQOYH4TIhxh42LgxBMAd27HRF1W+T5LKerlRDKaea4yOw0aYnsXLjdhJCQW+Jdoe9gv7/noOFl+pI90T+9fLn21oyEfs6oBoDInfBFu1qrDdLECbt2PxbmYyfPsd5vkCf2CoWiuumeO0AGzRstrEXhxibRtP19xRfvcIhCyJRY9mD1q2AwBOxoVzfxKnYucbEOPC7O6dsAX5m8IYOBU7qqTovoeEzEmbRCsB16nYUWMhW7C9GvlZbhLp2pv+EdKJAdG0bIYC2eBdGVHRWFZxfj53lBcVEIAeXLxSxDnTxkP8VjUX9+1MmatrtrmiYmGspTBAVHV7Ta71Ld59iJtBAsDV9qxu8hcS6bVxDJSBFDAAUM7vKj4ObAGnYoe2silyHmKmLG8HhJvab8XPhdXmIOK2zbovoHGTLlLYp3HSPav6+P+iQhQeloMKA3oIC4AJRlSf51Y9fp8WzZ5X5rKWlht4AFj99Ze4MDQGKYNnIe27VqZ3iUxtRd4KcplwNjKF+Rl1D26Lsupu3m4Kbmssa9Pi+fyalW/TsiYK/28cPxF7+1v2j9WzoWtXAoo4YIWVEG1s1+ExMxHzymgATCAnChwo+1cSFXZszU/kjO8+CU9GoWND88qo96UZAdWp2KHmsTqbTYtDQsuypv5rvCgW7V4YxfP4rxkBAOjvK/vdUb6xjXR/I7Gs2q+ybzInpTwX216Q8ot5xqUd5tes5luAQdXTveDnWb+LCMGN2rPTZNGnW6SMvnNMz9Wrno5suupEsqSkVDWXFJSeKOA1GWW32reJWLtuudRWq7lS/BbbWPnZfF5fRt85UlqrcRX8/E5JQHInuInfpIj0ql/PNHeov37Lf3sk7tefp+DBQ+sFAAS8mojAp1yYna3HASw8f0F6byhcCgBcuFkBVvSCps/RQbEuyzT/jnQfNfHvob8kiB04cAA+Pj6Ijo7G5s2bcevWLZw8eRK3bt3Cpk2bEBUVBV9fXxw4cACZmZnS5z7dOxlRn0SihZzMhFSNIQ2521ity9S11hMWsI2FcZL0/GMfTo5jwkruG2xh6f7lFtRckCgJGU22D+K/PcqU5flFTaVITsWOj84HS//9Hj/IYlYJpwVFN1gQTq+GDSwXIJEHz+26BqkgT1/kjJstERSh4dsJ6NHsQaROj5LavTWsPDIf1oPgOhU7eoR1hlOxo+mMOElb1dvHHBjVahFQNYbOR2ZF1E6jtnBrWHl4r002lUlEPjzGTbZTsUubKSM/BZnZcCp29D96Cl4BjZDw+WwsCPFH4aXLQNIB7J4yC2/6R0h8B73ENtb9K12Gqrl4P6maCzOzt8sL5h+1+O/qi3WAho/OB0tCaWma0S0L5qHcWQ/ccOjQ4gTQQHnqfZEAv8f10xSfDxPcjnGxn4huBNeC3+QEHqSYyq07TV+8yQ9Je4WN/W5+bUx9nfqNrrwoyGJBVem00UheDXx5PDjitdPB6xjTsK00hj28vCSebXXrmMrym5yAHk0ewNLcHdL1Gr30UAhWwq9TsfPNQWavechewWIU/nyNnQ4df1Z3TqeTGLHvLrc7j1nBQVKZ4m9Vc2FYCpvPqR0AsP1KiOk9uHlV9yE4GPU9Gk2ST4KtxkvEpFh+v0avFP47c7l8MgCw/vasXFmqk4I/1/88wVSPSDHjRpuuuRtf3fyjsGbnakvBsfcR5jPp/+R+qTz6ffPRSHSe8jKS32cKKfK7IyKTYOP7Qt9zQ1i8uKLrOtLhxWdiGKCKh/lU3qpNYpnlt9Z1K1jV6JUijV3jswF0iHm6RrGUzhVel/JmfBxjaotTscPZdzCqxzPT5LcD2Dvv5c8C3opzJJFty14T8qpYJsCEDv4uCWBMVv2y4xZTCotgSWJZLTukYPvXuiAQMkJWwLkTkIwUv2EF8gqu8bzayqamuoz8Hc9n87oIYCPSyZfNZvKNd5fBd4228P8P1GLQ+8UOdqpjq1aVr9VWwh8AFJxiIDJTzjbVw8EIz8y3n64oFuc+CoTsVOzw8vUxlXunuBBlttSXroljIuND3T2g4IQGVWOIhuK8YMUvUcaHMaaxaqtZw9R39J+UOGv2rOPXxb2LuMcxCWqaC2UfypbH+Ecx3JrH6t0navFlHJLsPwFgaNRimq8V5q/ZPGkgVqYcxH3636K/JIi98cYbuHTpErZs2YIOHTrAZmPaZZvNho4dO2Lz5s24cOEC3njjjb+V2f8VsjVrzF/Q6+sCLDcQezuy05qqafrGa+O3C0wbdsC8sSDttKq58GiqU7p/YBwz42jwPlugxtfQba7bjWGxMxr2P8jrKb5zG5ETY3mdRN/m7pA2FeKpHpV3bPgstuH/Wg64KtpXq5oLN/pE4cljGgo6hUv1WG2IqK/ENHzC/N6O+MObTU7VRt4BoPAc21g1eD8BPTo/bpqUxfIJeU+s16nYsXnRfG5WRDwUHdADNnbvNgCq5kLKfD2oMQAec8n43MhUgmJAAeCmHE7FjpT5evDvJ48xTejcqX2wZvuvboVH+m28R9pGIoo9Q3zlzZE3Oh6tmFntazVTTXVYLWgAQ0+r/1kCro6+zK9TmASPiBZuhbiujz1jed1YPgB4r01mQXcrlkfK7EjYqlWVeEn7XPcLUj5NwK78OyguKOBB0alvgp/RT2BoTBWePSuhLnYPYhukgtw8jvZJdVHYA3HBNzp4i2NFbEPhlSuoZatY6oZE1XTlCd0f3bAdr+tYOxZUlsyLQ75h7+zJcQ4T+tiwlEzLjb04tp2KHgS6uEA3lTve5g56NHkAgI70FjyEncylL21l2liJbfFfNZJfv9mL+XXZqleX2uQ/QPdtonJSn2sgQW07FTsutzvP3s2hMQidrZ+KEWV+wJ5blWUyiIMtVFckpH8mm7iuy9wpbdZUzYWlV5nAt6ppTRNfkuDz6y7UnKcrtGJeGQ1EtoDHJh/c6RKOL+ubwyk4FTv8V4+QronPZdcHs5AecQsoLoZTsaPdmFGmMijP0qs1pTnvZgcZuVEUmIgCV4zmv5/O6sjLUjXdF8fY1oElMPNUV+rTusBP/egV0AhIOsCDqBOR8qjowDFTuatOJPO0Vpt6URmQ+6YDhcfTTIKHSO8EMMXKuZHmuRsAVgRsNM1Z4n8yNyMihD4iUbkxTDAPVvocsVzPCSkXYIGSAXbKarWO1f9cPuXLejcGx9vckcrcGlYequbC+p+Y0rXw0mV41qjGyyLKnmJGVk5oWRYpC3RllBXF7/+d/xbj+IlKUYBZm/TyCcfK4NVwKnZuPXGj6DYvn8JNiPNCdZv55EjVXLi+LsB0vcxVD3x5sRET4kv8xq472PpkjOlH5WR8HMPb9vbZZlI7Ow8ahsLMStIejPiy2gMEvKabq4pCpbFO5WO9n9bsWiONcSrrUPRS9AlpYVHCvzHd9w/7p+kvCWIrV67EI488grJly1reL1euHB555BH88ssv/xRz/2t0sycTNMg8BgAqdsuALSRQMsVTNRc3kSDIc8C8oQb0DbLVRrjZ9Djc7HDatDm61SuSp3Mqdg6TXPFnfWMulll9cSIQ2UKqe1CDtvz/3MtMw0caf+NkRvC/4gaHKOyzOPwxYw6GVDmDjd+xuCIEV221UffbWZEHZfSqV1eaPAOekrVePds9CgAYejyb57/ThZlL3emqC0eFR1MtBdvsd9hkPuPNrwFY+3zRf3IQ92rYAJfjg6BqLhQdYAATBMFPddAmyVinRyLzoSlMzYCtbh14VqiA8k79lFmMp7asiYJbD0ei2reyP56RLwp2LN4jbbLYjoAf2aaM/DGMvlG2S9d4OTf6REn3jMIutev4MCaI7wlfYRY6kw+ayjg3km0WCQCCTOeMZBzrQWOTUJiWiZDRu1B46TIuPsPaXNTOzjT5gmN8pDfzLaTYXfQOXFkbaClA1FioP/O1adZ+hACDEjcu5DH7+0l8ivWJ14i6N25vSi/yQ8oTERjHWDZ9pzwzCy+kHUP9z2SzNVVzYUGIv8TnWxl7MSGd+dXc6BuFvAkOU9nie0Wx6fymJCBwxWieJnDgPqiaCx2Hy8IFEcX9AYCyXgVwKkxxQnTh2RgOvEF1psyMRMrgWTDSl1kJiB4/Gsnvz4LfOwmmPhABecQ2FB7VFQmB4+TQAU7FjpPjHLBVqcLbK6KHAgzyv8n8WOSvb+RWyQMAVb5PAnYdRHGnE/DezsyDvRr58fsEfR8y0nwSYyWQq5oL26fJzv79jp5B2pcMIGBJ4wa49XAkejTtAAD8NJMo4NVEy/eGrn3XaAtsTUPQbFqc1K6wz+JwaVCMKS/d79Gqq2leL8jIMglxqubCuVH6JvapzAehagxFUNVcUoym1SFrJd6dip0rAwCgsBzbvRXfuY3SSNVcqDVXFgLEMom8fBR0HCaPWdHcTNVcSJkaxsdI3kSHCU3VSmmUMk8/daoz3XzSb/WOW7Wh0ZuJlnmNgnz8vvWm9jV8m1kGPJrqlPKHDNttWZ8ViUGQAaBggz6OCVSklw/b25D1RFTyEKiaC9krdKHjwO1bprFN7UidwdaUit3M8QUbvJ+Atc2rMyG+BHSFUDurfpdk+WxTn57Fr0+pfVi677Vxj2RyOSlojeUYEa/d7saeZcDriVyZQ2kAoMcDfXhbKv9RyyzQlaxB99rn9+m/i/6SIHb+/HncuXOn1DR37tzB+fPnS01zn2Ra98Vi/uIGJzOfLlVzoTAlXULAExHoAFnrY1yo161ZatKq0f/Dz5tRtQBg69y5UvkHo743TUTkAE7kcUf3/yMgiQ6jRqKgUzhGVmXmBsV1a3DkPeJP/FY1F7oHy+ZbIY+aHcQJbp/+i5PXvAY7UP435p9TcOo011BZTcZrtv8KABhQWYc9LrOBAQiUWa8LNe42Pg3fYosKmfiRX5eV4DG17gEUx7REQXYuqvZIQ4/Oj5vKL9jgJ9VRfUcNLL1ak22OL9eT0p53BmJtmrzBNLaRQDvE/kydpp8+OhU7Gk1KlMpwKnYUHk+T+smp2BH8IhO8UiPyTXXZ6tZBQWY2L6PCSllgVzUXB0JRNRdu9I2S+kb8lNlSH+9myoGcif89k3U/w6HHszErOEjiw9PelJuonXpJBiigE0JVc6H6N6zNnttL2iHY//fP6GyqGwCqdE+Xnk3eBAemZspxcEpbROttOWe6ltjyZwByXC5jvwDMFMmp2KVTn7DP4kzPm6jw8HG8lMb83WruqG7ii8o2Bmd2txFsW86TgQUUFaLCLzvh+0GCFKPJHR8AkN5/ttQWp2JH2cts7TAC6tDpl6q5sLfND1J/qJoLNRYm4uUaGUhZpJuvhsQx5/usd+V4cGMbOXCh1020ftd8Wu+uzdV31LBMI1L9zxJQeOUK98dxKnYOPKFqLqRH3ELDtxJN4THovjj/0vWiW7cQttdDiim1YelC/tsd7wRSRGmcip1bFwAs9lLQWF1h4nmnmJkmA5KwrWouk6khnZgSORU7Co+kwPeDBB4vjPpDVPacidPj+11bF4DC02eQ3yNCqkusR/xNQbcBhoLoVOwSlLvVJt3II2sn29ReGBqDF9KOSWmsxqq78gDmn1hwQuPB5cW5LzZVnyfFfvadmmCaI41KNQDwyPc03RP5DPkmVho3xvurT+yxXEPFtJm95sFIlFYEoyDln5iX4p6pmgup37SWzNEB4N1MpiTYNmuulM+rixyg2op/pc8RAMCxdswnq9PgYQgrW87tOAl+bqfb94A1hs3hnhUrWpZh9R5Z9R1ZmFB6VXPhiyAGfBbyTSz3LxPfOVVzYfPCefz6o7/IZuQA86Wneq62P2eyelFP7JP+36f/LfpLccSaN2+OS5cu4fDhw6ha1ezYf/HiRTRv3hzVqlXD4cOHLUq4TyJRTIaOeAReHmVKXXyJct528FgzRJTH1qwxim0ekokH3RcnGKdix9TMXQj31p2VbdWrczS79KWtUGN9Oez6QAba6Pr4EMsgyIAeC4PSOhU7v+ZuITVqv0780gw+fQ+beHVH93o/ZX4bhAzfjW9zd2BQiQkN3V9/oww+C2pmymP5PzoMSNJNpIhiU9Ms/WqMbbDi13if8nn5N0RBZrZlfnf9YwsJRGFKOk8bM260ZIJlJFtoMOI3/sj/l8abSOlLW0nO9S0/isPV4EJu+inVEeSPwjRZC++uXGo/xRWyun8v48IYG8sqf37xHa5tT/8sGk3bZCG/wynL8qyeQebyMG4uV9TOzoU7p8IQKWvPrwDvtcn8Wvi+Iuxp5YkX0o7h66AmEi/+64Zz8AWRzsbGoN6yI0CdWihMSXc7Nksbs4OP52JJ4waW7UqdFoXgMfr7mXnnGkY3bIewvR4cjAYArq0LQJV+p1F0/bo0RgEG2FJ9cSLGpR1G1wrMTCo2NQ2PVrzG06R/EoPA8YmlvgtWz1SMmUZ1aq86JFMfK+p1+CLGVM82ldfnyFmsbKr7uBjrzH3TgQbv6nG8xHiHxrSO/beR0FK2DHE3Lk+Oc6D+ZwlI/yQGaQNnlTp2S6Nzo2J4vC0id3MMpWn9biz2vqmbCRKlLmmNjC4LpTKMadzN0+6eo6q58IIWwQGTRHJXlvG3Vdqq22vClevL0TX/DLlr173MIwBQtLEBPDvLJvNW82TciWikR9zCpcExqLYkEbedbVBWNb/TxnzunpvI850u4Thr94byqTzu7fsAV6u795+qWcfAE8ljkw+01Q1x4JWZd+0TsfzMZS2R0uEbOBU7CjqFY+N3CywFTKdiR8rsSISM3oVz/wjBnvAVUj0T0g9ICJE5bzlwdLSZl9LGIH3TvGHMc6drG65opWufZCXhscRR8EirwE8YV12vgBnBIVJ+3t4PY1C1+Xkkt15h2U9WzzGv4BoeP/wMqnRPN6UT6T8pjljQa1Nh8/4/jiOWfwtpH92PI2ai0aNHQ9M0REZGYsmSJcjKysLNmzeRlZWFb775BlFRUTh16hSee+65v5vf/2pamXIQiA5zOwGK2rGjo2bCs1w5rpUR8xQePi75IgH6ZEzIiD3CmOZ/3PPsGQUne0PVXCi8eJEj7nnm6kKYOAl57JC1QarmQn6PCGS/E8MFLnGCsYqPIWqUjOTT9zBuPhLJUauIbj4aaUrrrp+M9aiai5vuddw5ypSWhLCU2ZG8nQBwp2sbDsXNy00y+6kAkISwjO/ltrn7DTATlW4PD7S8TydNpS2KzqO9JH7it7CTlrcyWABpoxCWWXJKSBr1+I0/mrSDRKtP7EHjBbp2nGJqAbqpGeWr91WCFE9H1ITGb1uJrPet7edFIp6dvuGoNScRqYvD3WoJrRZnsV7/1xPhWbGidI/y0bjw9mCnMmfiHAgcl4T8DqeQsrCNlM+jTXNTffSbhLD0z6J58Gwq37ffYVQ8yjTNT2UyZMg9rdiUazyNcip2ZHabL7WBqPasRMQf2cqfq/g+SoJcCbIbInWUSSISwqzKJ/j5oTnt4VTs3PGchDBKW6lbBgeL8F89Qio/+vndSFnYBl0rsM136vQozAoOktIEjtdBXYz9KPJDMO/0HMkfRUzrTggTT0BWN6tuKj97RQusbFrbsv/oWoN39fAMBZ3DebxDAj8BmCnSTdUf363rAFutmlId7sZl/c+YcBc4PtHyfRbnUvG/yBsArpyg+ZN8Rnu0fMhUJqXZ++Ysab5NmRMBW3AAggfvleZyK77ovvHUUew3p2LnVhxOxY7jbe5YjrWAX0aZNs4054ppjevDqRcdWBGwURfCNsp+jQBTFBB5+SiAp46MalxrrAQduk7zlMiLMfYiCRzGfprpw+banR8yodedECaWJaIzGvklU1IA2LRkAQ6+PNNUhpUQBgA9OvYzvWtGIcyjTXOp3uJOJ1D/8wTLcWAk4jH+xF4JpMZrEzupu/JktLQ/6d5tAAAgszezuDEKYQDQsXyRxA/B5JOlg1i3cXwZyyo8exZF7ew8jVOxw7ZZkaxdKM/4RtFI6fANfLbq5qy9K97gv0+9yE56j95m1/xfT8T5dBbzzhgn0nnoisRL2xfZmPf1qsStIESe7CWHvgWdwjEsJfM+WMf/IP2lEzEAePHFFzFt2jR4CP4VRMXFxRgzZgy++uqrf5rB/wUynogBDAlszc7Vlho80rzf6BOFCit1TfYDsSOxbdbcUgU5d9ojkbSVTbnpgDvNH10bl3YY4+aOMG2Mzg+PQc35iZZ5MpeHIeWBJXAqdssI9OLESvlIm+6OJzFf6I5B8HucTWZ3urbBjbGXsCHsO1TyLGcSKktbkI1pRUpdHI7gIXuQ9W4M16BRmtSvoxD8wk7U3FEd59tehJGsyrTSrF9cE4xdrXQhqfIftXC1/bl70uCeed6BOtPlZ5L7hgMN3k9Azo8teP8ADMlx7brlaLwgFo3edK8tXZm3C318Iy3rr7itNn4J+t2aLw8Pbjoi5vWqXw/XWzWAd3yyZZ9ceTKaC5Gltdk4ro3l3Et/WWmTo16L5WZXxvuLc7ZjSEkA67En2+BoeAHOjYzh5pPXHo9CpR9lE82cyQ74TU4wladqLsTs7ydpSgGYTqvvpvG2uk55uhy6ivE10k1liadUPds+wgX/P9NPpc0P7vIXbWyA30P/4bZt7tojpi2tbq/69VBw8pSU5uKaYBSuqsUFGSq344gR8F6TLOVP/zTaFOTWWF/uGw4ceU4OccHngOlR7GS472CovyxB4PLRSB8w25Jf//jhaBWSjV+Cfrcsi2h5bgIGNLAOLG/Fn6q54Hh5NCovT4JHmbLcZ8rYf3RKayzjXt4bq/LulpboXt9RK568Gvji+AsN+Joglu1ubXAqdrQ/cIsHfxep39EzGFlVk6572ptibfz3bsv0rFBBir9npVToNGS4ycz9z8xNquZCz9ZOjmhItDR3BwdGEWleznaMKJmX7uXZGflQNRf25N/GRP/Iu/YnUeSEWFT/hj2HL7MSMLaRA1nvx6DRG+7XEquyqJ6s92NwfKj5xLi0+c6psBOw+P2/lzoWRb7dlWW8rmou9OjYj1uZWJVp3CvQWu3VyA/Hn1f4XHIv81zn+s3+Y07Egl/915yIpX78952IpaSk4LvvvsP69euRnp6OW7duITAwEI8//jjGjh2LihUr3r0QAz3xxBNYsWIFmjVrhkOHDv3p/H9ZEAOAxMRELFy4EPv27cPly5dRtWpVtG7dGkOGDIHD4X7BuE8y0aDu3PhlrN+yShdYpsbw4MfuFkivenX5JP1nFkQjSXkiW0D99Vu5DA8PqCf2WfIglgG4nyhLrbMUvqjM/O4RkplXfs8IvoGyBQcgv0F1eG3aw82k4GnD7MytXMNvrHNc2mHJHLE0vugamZwQPXlM4zDypbXhXtpv1X+XBsdg54dsUSrq0ErymTCWZcwr0ukxDtSdlgCvRn5Yk7AKANBqahzqTE9A/vpGJp+W0tpCRGMt4JdREsKiqrkQ8UYsh+q2am/KonCEDN0jXVc1F7p3HYC165e7FYrdCVxWwsfpFxxwvc42yq78fLxWEhxae9WBg2NlcxdbaDCW/b4Ejx4dgLIPZZdah7Eeq/bdTUD5M++oKKQb893+vaHEL/HV/Os4DvX//IkoTPdhJ5UDj+Vhea/2iN+2Em+fbYaklmX42HC3CYnY299kgmPsCyWpMhb5/aHPSxYKlux3YhA4L5fHxqJ3qah9K3j+sc+yT1KXtObx/QDgWv9oVFpR+qZGbMfNRyNR/tdd0v1iR0sO+ELk0aY51q36rtT30TgOjRuwkCWx8H890XS9NEH6XoQPgPkBE0DO3eZ5VXMh6VYh3hw8DJ7bWVgG5dMELpglfD4bPaN68edgVSfxfrHwBqrbKvylceuuXYD7eYrK/yQrCRM69kdBVg43JSt2tETawHIIfm6nZV53ZRHd6RKOTUsW4KPzwabYnCJvjpdG40wkA2sxlvNn2i/Oq3ebw+JP7EUPH+Z/NCVjD4f0v5c2ElnNN6JZOtW9Mm8XKniW5QLUnxG4myY8jQaPHYKqubD4Sh2+9nk2bwL/RVlYt6slgp/b6ba9zabHod7OfHht3GNZfs+Yh3G9eT2+rov3RB4vrglG9Z6psCKx7m6PDEJx8kHLNp78NRT1hdiRTsUOj/BmuNC8CnZ9YDbjteIl902HFDDc1jiI+1iL6cL2euCTevtM88K07B0Y07Ct9BzvC2Iy/d2C2Ouvv44ZM2agd+/eiI6ORpkyZbB582asWLECYWFhSEpKQvny5e+5vNWrV+ORRx6Bt7c3AgIC/vWC2H36e8idj1hxTEus//kbdBg5EuVW7+InVVYbgc6Dhknw9QB4/j+jgQOsTz4a7SrPg8kCDECAYHTdLS50vfDB1rBt3mu5CGuvOHDwZbMN+IKc7fD1quR2IjSWU2r7osOg/rLEMs+f2Qzdy/3Srs3O3o6rxV4IK1sOhcVF6OHTmvuNeAU04jDz4onVvS6SnvamKHIdKZVPsSzRF1ASkOZF8Jg5TsWOjzJ34jX/qFL7nMow3lc1F/xXjeRoeKrmQq+U7mhfMw2zkzuY/KG4sDsoBtW+ZRuEwB9GI+ilJKR+05pDyLtr059RDlild/c/ZWYkMh+dC6dvOFBU6LYMcTG1qvPPjBd3PJeW717TWbVzQGYnLPff5FbQNeY1lpH2RTSPQ0d0/bEoKRaTqrnwQOxI3KxpQ/J7spBuq14dKCxE/LFtUhnR40ej6tIk6US8NEqdFoWMfnp4CqK2B/qikoC4Rj567kjVXOjmH8Uh6636gPNe4v8oXk+dHoXg53dK12xNQ3hsSInnr6LR5M0jiD+2DYGbhiLo6X24+Ugkyv/G3htj31K7eoR15mE2iDKnxqDO3iJU/GmnaTxuvGlD5/JyfDvjOFh+tToWNdYD1qYsaIPgBXew/qdv3L5nRv9Ddyd3RsXXvQo4YXs9sEUL1mPnCSfsdCplReSf5e69Fvtn+dXqeHvFABwf5n4DbmW1AFgrQwBmTicC7NB9ANJc4lmuHNZmJPF6af0VqfHuMtznzp1CwKp9xnZc7xcF2+1ilPvHrlLnmWEpmZiwsy+CBrHYohTWxqquHg8+JgE8EYXu8cKX9XdL735pFjtGIsHMqNAhcucDRr+J3I13MY/4/Vh6F/wUuMEy/d34FdOTL9yFZ2PM812VKii8cgUnXnPA56MEKe+1bmFIWvvWf4YgNv5fJIh98vcJYrt370ZwcLAJ32LSpEl4//33MW3aNDz//PP3VNa1a9fQtGlTPProo1i1ahUqVar0lwSxv+Qjdp/+byhtlh2A/vJ7JDK763Kr2aR5MMpsJtHnyFk4FbtJCKP8ItFkRHCz9N+4YPd6lsXduVh4A2nfMoTGrMibUjp3QpjVbxLCnIrdNFEqnybwCXBeju6DQbFXVM0l8Wm1ENA3BYJWNRds1arqeZMOWNYNAKFz5BhDlGfw8VzTYq1qLlTfUQMeEWYfnLRvW6HwwdZwKnZU3MaAAPImOiSfldEN22F8I4Y218OnNVTNxeHDU0bV5+VRAOPGu8tIPJO9e97PzUztIBMaI4n9Jban8OJFLC7pb7GO0E8uSNfoFIn6z92YMfYv1Uv+AJTmTseT2NSiIuZ3kAPa0n3PsCZcCAP0INOiECa2xZ2ARf5vYlvoXkHncGnhFdtS2LG1KV/moyWbh5KNU0GncNO4UDUG/OG/brjUF0YyIo91HDbC1KdN5sdajlX6nTvJoW/2mjNhwrNiRVwabI4FZRzDANDmTRkRL+yzOFxse0HiWWxDxvfydfGbiJ6T2JaKP+005Sn/2y4J8p+o8OJF3Py5uqn+qktZue6EMOPzCx6z07Tx6hnZUxLCAKBnhVt8HCzN3QFVc8Fjk49Uf3F+PvepFan17iek/1YgNHRCLPYTCWG20GApbaN/3OGQ/0FPsxNvEsIAoKhKgZSeyjUKYarmQsqQWaj4004e9Nep2BH1OhtPFD+Srlu9z4saN+R5q26viczu87H+p2/QM7InD+0R9Xosct7SBa2Blc9Lz8FKCFM1F7pWkP3GnIodZ55jiJPRrsdM6en7QOtiLoTlTHZAG898uBbnbLcUwlTNhROvO1BW3c3jj1ltzKkPnIodixo3xPFhs9BxxAjLdw8A3q7NlKBnY2Vf183NfjPVPzIlA0VXr6L5Hn2Ldb2fENZDUOgU3bolvW+kBBXpyCt6eBhC0HX3LorttQUHIL878zk8E+fA9mlzJDRd45xNtCDEH0GD9vE1qrS6Xl/7k4nf9KWt8I8/2vCyW78Ti22zZDTmU2PlcfJcqh64PXU666uC7Fz47dT9dQmtWdVcKBbMQuk77QsZQVp81qIvXvqnOuqr8fv6Q9fc7hdUzYVp2TtM1636hhSQNRaafULpfff5iK3/wd/G8jLLrTWfFt6nv4/atGljCTL4xBNsXv8zgtQbb7yBwsJCvPfee/8UT3/5RKywsBDTp0/H999/j2PHjuH69esoKGALhsvlwty5czF27FiEhITcpaT7JJ6IbTx52O0mruK22rj+wFlLgefV9IP4OFCPyaFqLjSZF4eGb+t+QqKWtTQBCjBvXh0vjUblH2StrFOx43J8EKr2SHObVyRVc6HZtDg0/PEk1yD3dPTmiGTByd5Ijch3m/du2tN7EQrpf+CK0Qgam4Tb3SJQdp1+AjQ1cxfebO1E/OHNllpGK3IeugK1eZVS2291j0xQxHt0AvXPkBU63cUhMdg1lWnlRIQrW2gwCo+mQtV0czYAvF+MvItlVt1eE+ffagSvTWzhILRGShN/Yi9sHp66QB4cgIyn60ljUqTqO2rgYtsLpj4T6xZJfL492z6CNTt+k64TiUhc7saF6BcJMPANMk0yEuW7qfpjW4uVJo0qaXHFaz2adkCVNTZc6ngNHuW8UXT1aqlj6tSvoahXYjZjVbfxt7s0gFlzbExnHJvif0LoI+p++BLWNqsm5W29+wnU7n3csmwyi+tw4CYPMtvjoSd4rEQjMiOZoVm1TdVcCNo8lCN1WhH5bBr58PJRUHBCD2EgttcdnYlzoM7MBFxYHcIFAbHdEZNiUWOhGQWytLJLe+ZWaaNdj/H5NeOjGCl4LFHKrEh4VCxARpeFvOzUGVHI6DPHNFas6r/RNwp/TJ+Dzkd6Y2PTVSa/JiOJJ0AAYKtZA4Xn2XvrWbEi1qbuQMTe/rzPrg6IRuXl7F16Ie0Yela4ZeKBzK7vdXwTNdk+CA37m8EN3PUVUe5PzXHE8V2pz0JEywSYz2riZ7Old+Za0S308412yy9du/JUNIsdVwqpmn4a41SYKf6QL35DRLlsvNwoRhpb9/rui9eJmk2Lw+ExM92ODVVzocfxHih8ULMsg/I9l5oioQoSaeMdUD6R46yJdXXt9wzW/rRIWhvENF7+DbFmx2/oNGQ4Ni2eb9mnrZIHoM4jx0x9AgAPPjuCr13uyN3a4q5vrebI0B2DcOt8ecnio7TxZDwR9/L1QUHeCRP68H+SaWLIK/+aE7GUTyeiTp068PTUFRsnT578W+tZu3YtevTogbfeegtTpky5a/pdu3YhJiYGy5YtQ//+/dGoUaN/7YnYrVu30LlzZ7z88svIzMxE5cqVIcpz/v7+WLRoEb799tu/Uvz/NBk3/yJdf+CsKU3wd0yTIgphlIY2vLZaLBaVlRBGacUgrQDbvImTT8IXsyWtmVOxI3uKA0n2n/h14yTU54h58+f7QYKkQRYXuvhd8gmFsf1WZOTpXvOl92cBeyn+h1Oxw7N5E4R7lzUJYQALsCqWmzNZCGpbIoSVpkVr/MdgPsnTvSe3juR10z1RCBP7obQ2GesShTA6/dw1dRbCp7CxIsI/UwBbp2KHz4cJXKNI/XJupByIWOyXy+3Ow2vTHl6/EVp9ZO4DUvrC1AwcGzGT81nUoRXrm93MHFcUwqiuHmGdEbxliKlup2JHcVs7tJVN4VTsWLPjN30hb+DL+2xKxh4JDtndAkunzdjI8gaOS4KXrw9y33C4FQDLOzMx9mQbqc1Oxc6FMDF94aXLWO6/CcV3bmPt8T8sefHw8sILacdQ+Y9a2B+5zMSnWE9Rh1Z8zIixo6TySoK5WwlhANOsW41b8TfFdqL2fJXYBQDQ5i09PhfF/ALYieIbGXoZBLVNgV2dip0LYR9l7sTBYU0lnjYtni/1zeX4IOl+2oPmk1SRxOC2YluMQhghuFkRpakzk/FuFMIAoFvPgUh+b5bl2HAqdo5caSSrjZoRlVV830kIA4AGG2U4+NRvWmNFXiJCYndx9EPKH/rZaaksq3E/LXsHTr7sQIVf2CmiV5ccOBU7F4Td8SQKYQBw4mndxLPo+nU4FTtq9ErheUgIAyAJYZkf6sIF+b4a33EjieM14MfRkhAm8pg6SH42dI8+RxzfYU/+baiaC7d/b4izqxpL7c15y8HRMul6lWVJ0nvuVOxcCCuNct90cCGstHncqdhxtf05/l57r03GsiYKXumln8ouv1rdum+iw7hyIO07Oc6oyK//2uHw/SABmXeucX5E4YPiDmYL8T67H77Ey/CPH86vi0IYIYcCgPJJAjxaNYNXIz+oGoP0J+r6+BB4JO6XFXS1a8Op2LEgZzvSvojGmh2/oUeLTiiz3jqotFOxS0JYr5Tu0j1RCHPX31Ruk/n6PCY+W7fvtUB+jx9EyGiziWf2FHnN8CjDzFkLj6RIY7ToHDtJFoWw+/T/hwoLC/Huu+/Cy8sLTz311F3TFxQUYPjw4ejatSv69+//T9f/lwSxjz76CNu2bcO7776LU6dOYfjw4dL9qlWrokOHDlBV9Z9m8H+VxAlSvFY7oZp0LeBV91o/eulFExYxuGbqDOb7c+Z5B2q7mNnIuJOtETNuNArPnsUnFwKlSUYUGADg2IiZ0nUAePDwI6yiSAYTLQZpNQqZ3Xo/LbXFGLRR/N31sWcsrxt5Eq9Z9QXdb/1urGnTWXTomCmvVz0WeHHD0oVSWr/J5hhuVpuXBTnb4VTsaPTEAak+W80aCBm6x8RX9P47yHpPNn1xKnZsvGmD386KlkJZaQKoaOIkosW52+SQidnJArZQ75k8S0pDwXStBGBbrZqSsJkXfQ23f28o8RU+ORZnnmemdZ5bmfPy8TZ3LBUQC3K2I/7ARgQ85TL1NQB47HDxUyy6Fj1+NApy8/hzvJvTu1ivLSQQauhqzkNB3gk0eD+h1P49Gl5g6suLa4It8zgVO1KXtOb3KOg0UXFBAXpWuMU2Y0JIgoyPmDDcPbgtL5NOD7o89SwyHmN+WAR73moqM7ct3nfYkm/6vyK0Hlp+HMev3enKTIk87U0thTNVc6HyUbapIERU4zu04fuFeD9A7g+RyByJlA653XQTEatxmWT/CV0OXeX9506QNv7O/EB/h8L2MmTf8yN0pULRgWMo2ijHVVM1F24+Gmn5blD9lK54H7NcCFg/TEpjq1kSFHqXLiCc+U0XVNofuGXitch1xNR2q3mNTqnGpbEYi8HP7EV/XxlSnsohf1Mj3/Tbf/UIjGnYFgdemSnlJQh4Y153fQIA9b5KsHw3xHxk4i5SymA5NIqV0OeOVM3Fg8zbSk4NxD7r0eQBy/4Uf0/0j4Tz0UHY3Ow304mu3zusTeK6czeeFl+pw/r40BWmIFkcjuZfxfFwCGJ/dDhwUzK5y17RQqpDfGapQ6vxawMq6369qqabq5MPdI2FiQh6ep9bXkOGsTE0uqGOrOjlo/B+I5Rf3w8SeKD5sdWz9PwlIWC8fH2kOgrPnZeEseJ9h1GQxQT79IhbPO36Hxeb9jYUnmKYXzsEvcSEXTphdUf5PSJwsfAGnAozdydytzaKJL4njzzMFDe5bzhM+bLfcR9uhcoVlU70DGlflDKPzceEVmrMuzaDtTXty2hJwfAfRcX/og+A1NRUnDx5kn/+Tho7diwSExPxzjvvoHHjxndN/8knnyAtLQ0zZsz4W+r/S4LYsmXL8MADD2DixInw9PS0hLD39/dHbq61k+V9sqbc16OkRYXIy0fh175rtAVJtwrZhBOtm1uJE5CXrw8uDY6xfLG3zJ/Hf5PgU2d6ArYsmAenYsdn9fci8TN2WrSheWU4FTsCk/WjZysBka4Dgra0ZCNCgBBWG+3i3YdK3ViJtP6nb9xuui4OYRPmrV6yg7OqsdMCYz+kLArncXXEvjP2o6q5OCJlz8ie/N6Dz46Q6sl90zyJ0/cwv3bSdVVz4dfrlVB4/oJp0QWApJZl0GiSGcmqc/lC5ERd521J/TqKnygZ67Xqo3uZ4MX+qO9VyXRf1VzIdC7g/9u+KMd5I4Ff7O+yD8kBdWvNTUSd6frGjQRdIx8ApL6Lej1Wumf1rABwnyLjdQDI+FCOD2TcqBWmpKObf5RprIoLN+XN+FD2x7IFB/D/hOblVOzo0bGfxA8Fz1U1F+p9YTbR5EqSE3W4b1bAa4n4PCsRa1N3cD60V5kwa9uin4TQu039a9VOY7/sf1WHXy9/nI31ItcRKZ4etdup2LlPIwCkfRltEjg7jpDfDbE+VXOhxtHbyHlb93Hz/SBByn/h2RgpvVOxI/tmLbflORU70zhHy6ee/hN0v4xP6jGNc815sslixn4fUz9VOsROD7VXmVY750f5ZEt8L/O7RyB4iOzPIb7X9L0vYjn//UdYOV7X4OP6+ni56CZKI8rf/sAtfBbUTFdGtGqGxrvLSG23mkON80mtRC/+m3yInIodF3fU4+mnZuoWFFa8GN8NkciPhtIFDTKfeBn5cir6Cbc7Aa1HkweYEH/ajl6HL+L8iBjEH9sm8Ri+pz+uPBRqym+sv8OBm7hd3VuqS7zf/Ks4eCTslzbJ7voWAEcQVJuzNTx4yB40733MUrDcGlYeOVEsJt/R2zfQsP9BU5oTr7P3JO3J2Sb+iB+KXRg9fjScip37oDoVO48HCjAALpGmZu7iZdFpsfgun/tHCEectXpmBXknTM/I6LMIALZmjaUyOowaye9xpcAafc4wzuni/3Fph3ksP+/4ZLyqPSSl7fbwQKkNxvh+4lildB/VZf8bvC+bUgJAw7fYfHHxGVkg82rkx3+T0uncyBjpGaqaCyEjzOaRxjUHAILGJrkdW/fp/57efPNNTJ8+HSNHjsSECRPumj4tLQ3vvPMO3njjDQQEBNw1/b3QXxLEsrKyEBlZenDdqlWr4uJFcwyl++SeGny404QaBgDFt0uCpC4Oh1MRtPxCYGGR1uxawyHW3W3GjC/9gdu33Gplkk7qE7q4KXMqDEI+b4IDL2gRUtlWi6BYhlEIEu9ZEeW51SuSa+yp/OqL2aZr69y5pkU3+IWdUh+omovDpgPApDMteNli2+nUhogWHgCST5mquXAkVo4lBABBm4fCVq0qih0tAQBlttSHZwUGAy0Gfjb2F/13KnY+4dP/ova6Vjn4hZ38RIm0omL/ORU7Jp4Ok8qkz9HbNyzrpHp6NHvQ9BxoUXMqduROYoJnpR93Sjwa6dq6ANhq17ZsK98EGOLjGPkiQab8uQIpHR9/JSY0pY0bEpqqmoG9TJQxubVUnvgt8h3wuuyAXZiagQeHDucnhkR5verydonlBS4fLV2nbwpmnNFlIQKeciF7CuvrlxuxzUDPqF5QNfcBjY11Wb2L4jinNLOzt6MgWweoIb8HIn7SLRCZ94pllr1425ROTDN/7pfwm1ISpFUwyaP8BOQR8CPbWK4+sQfrN+oAKqrmQmFHdqr463WmLFiXvQvqL0uQU3KKa+wLq7HhVOwIejlJ6gtVc3GzaeVjdhIqxttL/ywaDxzsA1Vz4dSLDnivTeZluWuv+K1qLknLvqRxA12B4Fnecq6+WHgDHmX0WHIkyBEV7zvM0fS6PTIItuAAy+dr5LHGIl3ZU+7MDfRs9ygASKc3E/0jLctwKsws3WqtoHaOadiW3fPwgFOxc2AgY/+I+T0rV8bBqO9N47d7j6f4f1ofd73eBqubVUfNeYkI3jJEmnv3hK9AxZ9LrCs8bW6fz8Raxy1RFQF2ymZEszP+FttRZkt9/lvsBzK3dip2eFaoYOonABjbyIETrzuk69f6R8PnwwTkd49w289ielJAUZxJANxn9sxvTVDBU0Z7DPcuy61VjORU7JbBlqmuHg/0sWyH1f/433+Q5p+tc8yoiSSw3OnaxiSQiGk/C2oG/zK6gpAEWaKTD1TleXtG9ZIUg1bPWFzDxTpFYREAj5FG6UR3CspXa56OegkAPVp0ksBIVM0F+z5m5UHlxJ+QAagAdtL3HxXQ+V94IvZ/QZMnT8Z7772HoUOHYvbs2XfPAGDcuHGoUaMG+vTpg7S0NP4pKCjA7du3kZaW9qdP7P6SIFaxYkWcP2/WfoiUlZWFGjVq/JXi/2dpZcpBOBU7R6cCSjT1JT4eRu0rwMxtKB3lmXSmhZTfqDEFgG7HekqTz8hJY6VyL65hyF6q5uJmG2KZShKLdO+9Jhm+HyTgeJs76H1En/iMJNbl5c/M1YzoY8YF2IrKrd7FTXmMdDdhUyw77DNmkpVst1kKjfsmzkTWD2Gm/KfHyJOru0WyzPHyKLx0mccrWh2yFmvT5M2zccN0YXWItDiQjwKl+f2HRZbt8tyuLyQRLh2Na08rT8vNd2jZCvyaFS/xhzcDAIrat9KvHdjI/QO8L+p51ySsslzQVM2FSt0yLP2TxHpvd4uQ2mTsy/gtP7M642XgECIx/plYPyEIdjl0lQtNZE5X2qbGf4J7U1/yVTPWd+pFNiZ+XTCNC/meJUEh63/ONnM9Hb0lYTh9wGzeb1nvs9Proo0NUOGXnVIfNnw7QTIXo9hPtmaN3b4jxnFFZYl8E9kaB8Gp2KUNjlX/GGOrEe83H4lE+idsDhp8PBfrf/qG57nTJVxK2/vIecQ1bAev+uzUxSPvNL9naxoi9SmZnZXxsPHYXJT200XMXJYUGtTe2KjHmJCaVBmnfg0FAEvTMlVzSciFnmFNTBs18VkRBY5LQnlnJvx/HYn9r82UynOH0mm81vCtRKlM8TkZn5WquTCggQPrsplQ7NXA11SuSOt++xbxW38xXe8Z3k36/1HmTryRoddxfsodrNn+qyW/RJH7Hkf6p9Gct7bOA/yZGftNpPPDomGrVtV0wm41douuXjXNp07FLoXlcCp29HT0Rll1NzKXM7+ogKdYWc6jvczCkiHcRGkk8kSodlRW1nsxaDZNR9jla1SJT+nqkLXwatgAr6brMasob8fh7MSn+u/eAPR3N+QbdsqfO8mBspeKeR6nYsfpCGZltGXBPMt3VzxxFNfL1BlRpnd/X8RySwGn7toC0xgninotFrYgf17n8twEnq8wLRMr8hK5/7CRnIodXr4+uL4uoFQh1livCNJTmtArkohgvH/8THR7eCAASDHySpsnSTkq9o8I7W+c70SSrgkYCcNy2qHw/AXU+7LER79aVTgVO3a8H8WtPJyKnceNI2q8IJavc/fp/54mT56MKVOm4JlnnsH8+fMtLfusKDs7G5qmoVmzZggODuafEydOIDU1FcHBwRjhxjLEHf0l1ESn04kDBw4gLS0NFStWxJQpU/DOO++gsJBNemfOnEFQUBC6du2Kn3766c8W/z9HxjhigKytAYBuDSNRfOe2vnEJ8gdsNsRv/olPBp7Nm5QaDPdG0W10GfeChH5IVNTOzjf0Yv7MqTFo0jYT+R1OSeUZ6eIzMTw4JJGYLmVuBEJGmp1oxTT2fYCrlbmO2dnb4V+mkmW7KIK9mCftu1bcTt6p2HHh2RiuaXdHZ55zoM4M8ynDqRcdqPeVft2jTXMU7z5kEhpFpDy6fn1dACqWwGaL16k9xvaLCJQAiy/j4Vsf8dtWyn05MxIhcbt4+zKXtZQAOPImOlAls4gH8gSAE685cOhFHSnLiCJXmhB7N22s2A/S2FkeBv8BB3CnSzjKbNhj+czFcihmGNGthyM51PLdyF1g43vhnUhc+NfcKGcZZ8qqDVZ9IMY3sjUNQfwGpmFOX9oKaQ8uMm1Qsqc4OLiOWJ5X/XooOMnePWz0BTrnWbaPYlkZebV6ZwDAq349rNmzztQ/d7q2YUhljw4Cdh3E6RccqPu1OdizVd96BTRCQUaWdI2CNdMYePKYho+WP4ajI2XUNrFsW3AAinJOoDjfjKDa5dBVzEzuyP0rY14ZLaHRXXwmBrs+0M2Ou/UciOJ9h5G6pLWEKjj0eDYWNW5o2UciLwALKu23zMZPwESKTU3DoxWv3bUMd31mfJaq5sIDcSNRIfs61q1Zqqf3tLkVKozlnvmtCeo8cgxp37ZC0Q0vhIyy3txdezwKlX60Do5s+Q6VjD+xjQDQ6v041JmRgNA9XjgaXmAqo7T2E3nam2Jt/Pelbr6Nm/PS3m2xzi4Dn5V8fI33xTrulWonVMNZxyVeBqH4/Vm6W/15Ex3wnWpGICxua4fHDpfbPlE1F1Zdr8ABNRbnbMcQwdTbWJ7xt0hGxMdzI2NQ8Uwhts1kp1vuEHZz3nbw028iGpuUrvGCWAnl9M/0zb22IW+Cg5tAY6Mv0vc2MKEKl1Y28ZD+WTTSnpRRM4msBF0AuDwwmp9WuqvPeL2g+M5/DGpi45f+NaiJx7/4++KIAcA777yDt99+G4MGDcLixYslNEaRTp48icuXL8PPzw8VSk60N2zYgEuXLpnSxsXFoVy5cvj8889Rv359tG3b9p75+UsnYi+88AJOnz6Nhx9+GCkpcoDK/fv34+GHH8b169cxZsyYv1L8fYL5tEIUwgAWu6bweBqcPrq5WtEh80Igasf6+Eai8g9Jlho2sjUX61WSKsN/YiIXwsT7Rk0aHd+TdqlbQ910VdVcyOw1D14+ClTNBc+KFS0npI/qulDQSTftmpDOTC9HN2QxxTy8vXl5lP9q+3MmvikWT8uP4qBqLiS/pyO/Ec+XBsl23ySEXXucmYaRGcn+12ZK6UgIo3amLmb8rkn8B/fpIV4qv14OoXu8TP3WZdsYSWNKfCXZf+L/l+cmoOjWLRSmZZrShcQx4YRMD/2f3M/vNd5dBqtGfYwqy5Kk9jZcKvtqrUmO57/dLSwij0RWGlSnYudaP5H8BzCAkhMPlrXclF1YHcLNKp2KHUWVC/g9AJZCmKq5cG6U7kdkq14dquaSkNycCjNpcyosThHR2dFm/yNKv+JaVdxU/dnm3a8Nvg5qgpO/6n4msalppgVfXKTFsgBwISzr3RguhAGQELLE8kQhTFqUT+rvHm2CxXZSOUYhjIA3Ur+Rta50ukZCmPFZElKZ+itDvK37dQJeSNNBbIxCJ/EMAAUZWfw3nRx7/sHaW2bDHnj5N8SyJgr8JidIbTSOs8LUDEsh7OoT0djQvDI/dXQqdnhfLJTasOuDWYgePxqpXzH/tXVrlgIAggfLwcApaLFxzDoVO7p3f1Lvr/7RyOiyEFsW6L614hxFQpiquXCjT5Q0N4j1EXU4cFPqN6v6iz09cL5VFfleiRBmfF5WZZBAEDRoH1Y7v7bkw8PLC1U3yGs33b/+WBQeiB1pLrtzHvfDFdtYZwYT1I+GF+BMnP6+GYUq+4dxElKieK/IdQROxY7TLzgs+/DcSDOAkdVcJP5P+46d6Ns27zXxQt+t34m1zHs3+q7RFuldqPPIMQw8ZhZSS/svttPIF32LQtiTxzTeDo8dLnhWrmx6j8RyZwSH8HJICLOau1edcH8KMy9nuwnxcc/kWVwIA5ipPj1X8bmJQhjl3RexnNfrVOxo9GYibI1lU32RGi+UYx6KJ9kAEL6viNeXOTWGx1gT23l4DFvDU2ZHAp3zsLCfHrQ7/sRe/JxnHVagOKal1B6jENZqapxpnIq/bbVqSj7LxjnB3Xgrjmxuef0+/T00Y8YMvP322/Dz80OXLl3w/fff47vvvuOf33//naedMGECQkNDsWuXvhfp0qULHnvsMdOnQoUKqFKlCh577LE/JYQBf1EQ69mzJyZNmoQtW7YgNDQUH374IQCgUqVKaN26NZKTkzFlyhR06NDhrxT/P0+q5sLJEtMa4+RKUKiciotNm0KxHCuymjhsIYG4NDgGOW/rC+kivz9K5ZPylt/K/GBOvajDtopIQTRZFZxgC0nR9es4+bKDT2qFD7LgxgG/jILXpj28XDH2EwDcfKglLy/1Kz12y+WBMoQwpa/3VQIeS++C1u/G4q2MvWg2PY6XXe1b2XE/fF8RAGDHVwyBjjbSHYfpR8x5Exx8g0v5gofs0YWyjoslPopcR7iGWNzUkOO6sR/pO3JiLKrbzP4ETsWO8adaceFlTytP2DYr8GjVjPOwLrUp4hq2k8oDgMK61SzrTJ2mB2y2Whxo4y7y4FTYKaOYtvDSZViRU7Gj0RuJUhspX41eKZJZZWaP+aY0ADtpEcurO4AJXV0GPstDDRj57uXDNsv73tAF6Wt+ehmUh/jqX+kyyjuZ0LsuZzfgaUP9kjhequbCrOAgqT+bf6WPJauNJdHxYTLqpNiOYTmyhjpvgkPiS9VceC5V3ywTTH1pQgw9Q0LYKy705GU4FTu0rFomIdQW5O9Ww6tqLnwdxEz3rjwZbRLGrPgBANcEZrpHoB+A7rNiRe7mqpuP6MFtrU7yvdcmmwSRqkuTuGmjWL5TsXMEwxO/mIOiExXt1+O3VVqRJI0XALj1qu77LPZBleQ805jw8PbGkis6gMLWsPKmfjMKPH9Mn4Pr9T34u+lufi/Y4IcuA5/F7d91H14jjXtc93chUARVc6G4oACpE5pwRRGRqrFA3OV/22X5Xm2dKwflbXegr5SGIP8BtjFWNRf8/8Hqrft1AkdKBJgybMalBsj8QJ9L6n5tNt9GZAvUmmt9aiJtfJvqcOqq5jKhBxoFoJuqP2rPltE/qa8JUfitjL240cccUuTBoTJSNAAsbeJr4unCszHoZogLSWbKTsUOuyEknjg2UqdFSfwva6JIQsva43+Y5mxxLBHaqkhGpGJb0xD09omAFamaCyP8GLqiGC5DnHOoLFvgNcvxQmm6N25v6hsAWHUiGYXHmZLr6oBoaK84kDfBgWuPMxPL48/K82eFufq7p2ouTK2r+8n7T0zEsKpMcdV0hm5GmnnnGlSN+b1W/qMWHijHfLGurQtAD5/W6OcbLSkQ8ntG4K2MvdDGM9NNI5Io0b6J+tpC/XLh2RiE7WKKHBH5cVr2DqlvuncdAKdiR+aHsoLhwtAYeOz683Go7tO9U3IyUzzk5OTgmWeewaBBg6TP+++//y/n6S8JYgA72lu/fj0efvhhVK1aFTabDeXLl0f37t2hqiomTZr0d/L5P0P0Qh8Q4gjZmobwSYD8BUQK2PCsqQzxN/2/1j/a8jrAYkBVW5IoabGcip1rf0UBje6pmgu2KlVwswMDXBBN+Iz8pCxsw39X/qMWh01uNi2OayyDn9f9Y+h0ieoCmH+YNt6BlFmRyHhcd6wUj/7F9ACwJ7URas9KxDsBrXH4efl0i6h7cFts+KotVM2FzoN0OGpVY7FcqNzDY2ZaxjbRxjt4vUHLRkv3CGzBuMEWqdNB5nTssckHADj4iMhHjyYPAADif4zBufEMWMWrYQMUPqhh3Zql/HlubTuDl/9uZjKvr3jPYak8oh97TTPxUxzDBN7MD2NQqcS08sRr8vOvsTDRtBiL6JridfrudPA6jwvVbswoqJoL49IOS5sPKxJPWgDwQKM0bowbWVVzIWVBG1OZKUPYok6wzHRvgQAk8FJaySZcMAMzlu1U7PD5KAHpn0Wb+s6p2PmJHf3nyo4SZEXiOS/6mlQumc84FTuu9WdCz7Sczvx+8As7pfTuSOzPkGd3Y0ZwCKL3M0CHzN5zTc9NPHU1liMJGsuSuE/fpcGsjYTMJj7rjA9jeHxDY5wdVXOhuK1eV2ntAGApEHAhp1UztkksAbE585zD1DajAqDOI8fQ9sVR8OnL3ofA5aPd8kCn4/RuUVmVDObGRGt2reG/KW1xfj4GVzknlWPMK7aP6jny3Exk9JsDVXOhsLjI1PaU2ZHY2HQVbJv3YnOz3+BVv56E7kYby+Jk5vjv2H/bhOKW+vQsyZRQ7Dux/2onVJN4E3kn02ur8eM/kc0RZBpp7K9q3yZiVdOaJr9M4/tGCLxOxc7h/8+PiEH752XUVvHk+W7j+Xq/KJR3Zkr3xG9CFD5fWAkVVprNN8uqesDruolVpPZ5hDfj95Lfm4Xi/HwedkbVXLjcpj46H+kNwNoUnyh4DONBVL4WHpcRh4xCkVNhvsYAQ1tVNRcuPsMEXVvNGhJS8czs7UgZWtP0XEjZKPJEcd7EdoppyiZU5v/pvvaKPs9S7ETKT2m8PcroipblSaizLx++HyRIJrMnX9bXHrKAKW5rNymhxPqPPKeHZXj0y1d5up8CN7B645OxI+wXzkvdxMs8vfeaZLwT0Bo+fQ/jYuEN7AjT/S4vDTILt+J7UWNhIlfgiX5jBF6jai7AwwNFh5h5pr8A+pQ7yYEai0p3ofi3o/9AsI7FixejuLjY7WfLli2mtB07drxruVlZWX8pmDPwFwWxnJwcnDp1Cl26dMGvv/6KU6dO4fbt2zh79ixWr16Nhx566O6F3CdLajadaXLEyZUCAYrXRRJ9HygNpe/RohMA5ld0prWHadI9P9w6Vgal89pUAj5QcsDl5evD7zsVO3dqdlvGRqYlDHmWLVzdeg5E9uUanN8hA1UeTFqc0FI7LjbxWtS+FQ6+NBOhk7PgVOx4Ic3aJv/cP3STjJBnd6P5Hk/eL0QkPClJlVF0/ToXfrxPXsVtp7wQUcDIVu/pWjbxvvJJAgofZCZggeN0TbyqubjJGQBsvGnj+VTNxQXjkdX2I2Jvf1xc7CflFeuJP7YN8LTB94MEFG1i/Uc+aWK7UguYL93Z2Bg8+dsYU7uNfTrRn8VNIifvnuHd4JHI/M38X09E9goG/OLzUYKkMaaytt3Sy5/pkyTdcyp23Ha24fdfq5mKJDvzadw+bQ6cPq3wWRDbTIsnPwDQo1VXAMwkyZ2WtbBjaxR0CrdcjDO7z4equVB+a12ODkbIf67XZ0JbqSP2+Xrp/ofdKsgmcaGz2TMnAUQEwgkcx05LCHGOqNacRKmfOL+pGdxk17jpFd/Z8yNiUGkF60vPzrk8vXETr2ou2BoHmfrcShGT1LIML4c2dkah5V5o80IW5mLcJBYAm065RIE44PVEpD49y/RcSKu+/sfF/FrAylESL2nftkL6J+ZnzrX8H8ag+VfM5Hjyz0vgVOz4/YdFWJyznZsXi/1w/TEmTBVs8OPXdnw1h5efPoCZG9lCAqX+ujA0hp+OU/1F7UsPF0H/KdyIyAvdF3+TqbbYf9HjmWDY8uM4tN79BJwKc+qP2d9PqoNQLan8k4/4Sz66+ybNRMp8XfmV0LIsbneLgC00GM6+gwEALXc9aRorxKM4jr5rtAVGEsdcXoGsUKA+F+nzLLNyyYqGpcgmtsYxeuAKCzlQc14iPIqKefBcsTxR0HfHd8Wf7+4bBwDjVj4j3TeuswBwOuaKNH+1WSCjGdtq1cRZxyXerycdHvDqkgMrSp2h9x0BZIjWJXcbf6tP7EFy6xXSterfsL5Pmy7HzYtr2A6B4xMR/epoqTwKqq5qLgw8lseVgGKZxrmIQnGomgv+8cOhai4cfFlWfL6UdhS9Dl80vQdiO7w2yoBkcy8rqP+5WcFL/nFUp3EMOBV2+u1U7KYwIUah26nYecxFsTwAGNCAKXd6HWYncWRJ41TscLys9xulN56epsxvY+Lr4uBonPo1FJETYqX6GrxXEkD+92qm9t6n/276S4KYv78/Jk6c+Hfzcp/AbMKtNlZG5CsjedWrC8d+NmGThtipsMCITsWOkLhdCHhd17aE7XoSTkVHkiOy2hgCLN6PqrH4IQAw9mQbWJFpoeqcJ5VVvO8wavTSF60NzSvzsonaPzfKtBkAdNTAwtMMoYzAFIyTcK2HUxCxV492/ln9vcib4OBxpAAmPAGAFn1V4j9+wwpsXsQWIoJGXx2yFgBQ/7tD0rO5slYPeL1hqR4fykpovvloJD4ObMHv+/86EpVWMKFtQAMHkluvwM4PdV82ImnDUnJKQyeP9Jz6HDnL+4vimtSelcjhxUXzMKMGlcj392L8nJck+SSlzohCw/4HkV98R6pPpGE/xvLYT2Kb6dkRPLQllZjVAsCsFjJCZfy+9QBY3DErzWfAj6Nh27IXMZ/LJ8SEXudU7Hjo6MO42eE0j2W3udlvUDUG3y8Ggm6VPIDnj3o9Vqrr6Gi2maCQBcl2BodNqKEAkPuoIo0LsR/Ea14+Cj/RfiNDf8+cih22unXgVOy49ngUj3flVGQfN6di5zG46B0pPJ5mubEAWCws8T9/B0s2dqrmgkcrXXsvprGim4/owY4XhDBEtbfPsvxe9epKgrrVhvX3ZYugai60+IIJt1nvxSD4uZ1SvemdFyFt4CwTz/Qd8HoifD5i4z+6nI3XMaTEhMrYDxV/YuV7dZERSOk0JXDTUBRs8MPRCdUAAC2+ZCanNRYlmvrzTOvypjnJiseCE5qJF6t+XZMcL/m0OBU7P91v2CeDo9VefCYGVbqnWwqntC7sfWsWF+Bu9GVKlZDhOgrduLTDKLsuGYVHU3nYk3olmvurT0Sj/9FTaPOm7o/j1cCXtzV8iuxHRWZVVPYwwf9I7HMKeaGNd6BZ2fJSf5DlQc5buk+Yqrn4uDL2GeVbEbCR/y7/6y40fFv3N+zR+XGkfxaNhcumA2DzntEsUCTjWDWuuwAQ8Kp5fQSYH52YfkZwCG+DiMTbYdRIxB/YyPrhFdbWoJdlC44bRfr72Oi3Qq4oGdCApc/6IQyV/5BNikV+SNGoai5uki22j6wyUjpYx+JM+ni29F8c90ub+HJla7+jZ9DykzguTBn3CfRNQZ9Fcip2dKuQjzHVdV9eVXNxSxt378nIqhpstWu7Fbbo26nY0WT7IKmPRPAUytvmrVipnDZvxUpKuYuFN/jexla7Nk68xp7B6mYy1P+r6QdRebnuh0085A+/IF0LGc4saK4O0K0ndn0wC/sjl6H6N4lIXdJaWt8KNvjhwkOXTP33b0v/gSdi/470lwSxatWqoVYtc5DN+/T3EL2ULT6Pg1fDBnAqdhScPCVNRuJk0u3hgSg4dRoJLcsic1lL7iBvtfhT2cUJ1d1uumhyFQMtGolMWghAg4h828T6ycnYWJ/xdI14q7ByJ4dqpmvX++mBmUnTS/dXXKtqEtxEYc+p2FHpRDECXk+UzNCIzo7WNfBiOVua/ypN7Bmv6IFUASCx5c+mzZo7Kv+rLjD8er0SMh+di7cy5DgiVptXdyQugqOrnSj1WXtdsknjxbigAcDpCBsqeZbj9wHwTTL5EFg9w4DXEjkipbhhy1weZlqsxWfc5s1Y6drNznLgXMpDPj3GtpNparLdJt1b9G5vrlX27JwrtZnKHdvIIbVDXLAp/h7AhGfil2LcAECvwxehRV9F3cQqUDUX6n+eIPUNxU4zjg3ykVQ1Fx4oB4RsfYbzRsqFCif1EzlVc0lInqrm4qbDZC5VmuDUYOWpUseRqAmmckLnxLlNX/63XUAJxC8Bn0ypzfIXnDptKYR+m7vD9G6REqTRJNbXXvXr4ZMLgVIaylNYXISct3TfubyJsmBKsXqMm9RTv4ZKihJKT+kKy3gg5y0Hgp7eh41NV3EAkAa/nja9H14N2UkCAfcY+9RqDqDfFDfM6jk4FTtWhNaTeCNBO7/DKS5I7/pgltsyRMVJ8JYhqPdlAir8op/2ULmfBTXDqZccsNWtYyqj8g9JWBFaDzUXsBO11MXhHP7bqdix523ZT4dAoYybZ5E/7631uACifJJg4t1r4x54hjWB3zsJlv1nJSDlTXCgZ1tzPDtVc6Fn20dQeDQVFTRPLhhm9p5rAn1xKnb0jOwpzT3GMeJOKBB5qvgTMxu8+aiu5PJsGWpqy9Y5uk+d8qneVlrXAaCPr35KXmb9bpN/daMnDiD1lxCpf9IF0/3P6u+V6jQKKMdGzCx1njD2gVW7Vc2FJZMexv7xM7lQ4lQYMvCaG+VwJs6Bti+OQtOEp6W6xfxiwGWihh/uMfU/AFwdEM3/F57VFY2lzWcN++vxt6hOY5zJmvNlk/qa8xO5Um7uZQXVbRWQ8iCDtNcGBHOlj9gvl5+ORufyhVK5AHDlyWjsavWjiU9Vc+Gs3RoanYMIRTIl7camq9y27z7999JfEsSio6Oxb9++uye8T/8UKZ8moLiC7ndzo+g2nIodrXc/gV+vV8JDTwwFABTvOcwniZQOLI6POBmkfctOyM4PYwJH2hfRqNlFs5zUaFK2fxjHfQpoUuvR+XH+n/wn1mXKJh7cPhr6JLWsiWKpzSOfCiut2pqdq6W0dyroQ5U0bpT2w8+f4v+dip3b7J98WTdbodOmYSWac1VzIb8nEzBqz05EwHrdN0zsP+LNVrMGGr6ViKmZu6T7VoICEfGX+4a+eWx7oC++jn0CTROexjsBzJwxdXqUtDg8+CwTgC8NZvboXj6KaWI38mlV79JcFmsmdbC8kbJa1I4P1U8hjM+D4kFR3BjSKhoX2lpzdCHGf8ABhO31MAnORDUXyKZKcV8wcxrR4d6p2LmQZNVmVXNJQUnPjo5Ble+TkNFnDi4M1U/pxE0X+bpFTJK1/NcFUJKVebtw9YlolP9V928i8AsAGFM9Gzf6RmFJw23o0aW/Cckrfv/vuO2UTVLEfuIKhRINtf+64fz+7ysWm0xpVc2FT7KYGSSdMoh9Yewf+n21uR5Mu6BzOO8znjZSj8FD946Oks2JVM2FM8/rguvPuWyzXjeJ+VQ0ncHMBMl00zh2BjVoK9Ur8klKkTV71mFD88pSndSuHj6t4feOfmJOFgN0v96XCdJYJnPfeo8eRZXu6W6FJq9bRTg6eiZ/t2hcxG/52fRuZA9oIOW9V0qZGYmGb8mgQMbfYp84FTuOjpqJ3DdZf1PQbuO7Tx9C6aM0FE/LSNT/9b5IQOHpM1A1F26q/m7bRPEqRb5UzYWHnhxq4lm8L1J+h1NouetJGElMt3YdQ9DzqqcHPbdSEhGPvh8k4P1NK9h73zRE4q8gM5spRT4zh1oQ61U1ZtXhbu0rjazul/91F6JfLfEzTGU8iDE4aSwZAVXWJP7DVJbVmKD/+8fLcesCKXaaG+Ekf30j1k/NGsOp2PnaLZZJ+Ywn51YCtlOxw3a72NSnFbtloGeFW6gzk/l1HXF8x+/batXE4OO5PE9W76qmZ0uCsnj9xOsOftoEAKdeYvy9myn7OJKlh9VYDNw4FE7Fjgpjy0rtKOzYWnouYltGVmV7ovTx7JS/7jSzSWOjXeVR9bskKa9TsePWw5HIr+bhdlwF/HJN6l+xj4tjWgK7DvLr/0kBnT2K/zWf/3b6S3HEkpOT0b59e0yfPh3Dh5vRg+7TnyOKyXAxJQCPN2abc5osVM0F+wdxcE3QN0gB64eZgjv3OnwRq5tVNwk8FB9Me8WBgy/PxI2i2+jXYzCKDhyT6iFSNWa6daPYCxP99YmO4vVQrC8jUTnxJ/aaAhVakXEj706YuNfND5VBcb7clSvRRl+ooast67FtVlD4oIasH8LQ6And5v/S4Bjs/FCPU9Rh5EicirLh+DCzT4yxLQ8c7IPyzky3G4X1N8rgsyDdVIza0ungdfz0eRckv8/qOLuqMWr3Po6Mj2OQ+rRZyDL2ifjb+G2rVROF587j1fSD3HSS7ifdKsSI/YOg9Dmip69enSMVenh7Y8zh/RxVr9OQ4SwGlcUGSKxTjPnlEdECxckHkfFRDHcut3oedL3H8R6Ib8yg99u+OAo7vprD03qEN5OUEqWNL5G8fBQc/6QO39y4I2M5FOPHeP2ltKPoViHfsg10LWVBG2R2n2/J113HrRvK+DgGAa8mYkrGHkSXs5VaP/3vOGIEvNfoGxwxnp4VH16+PlB+voScqOvS9VNjHdj/6kzL8TczeztH8rwbGcenu/sAMC7tMD5v0hLFBQVSmqW5OzCwQVtkvRtjilHk1bAB1iT+o9R3le4VdA6XfFZyJznQ6MczKDyehu6HL2Fts2pSXo9WzaQTRlFAcSp2+O2saOo3Y51Wz0j8b6tSxeSXa3zHRBLni/zuEah46CQKcvOQvrQVD6UQvq8Ia7KbYX/kMrd9bxy7IcN2m+55b61nijdZ2nf750bhjxn6+yvGDSytT3LecsDvnQTU3FEd59vqKHpEjv23kdBSRhcu7Z0q6BQOr017/vJ7BzDLkOL8fLyR4eLm4aXVfa913Xa2weZF8932hTsq6tAK2c5yKCpbjMBXrOHZrebm0vjtdqwnijsx64vGi2LR6A09FteF1SHcN80oyInXENmCg68Yyy/tfS/tvlS+oayUeRESSM2ffcbuxm/Rxgbcf9ddWlvTEBQeSTGVaatSBbMPxWOEIa4b5fvx+F5UD8n4j4gj1uSFf00csWNf/71xxP7d6C+diK1duxYdO3bEqFGjEB4ejtjYWB7UWfy8++67fze//zMkThaiENbNr41JCAPAba+NizHBg5NZRB/fSBQdOCalMVJo2Qp4bKNuouRU7Ej8dDZUzQVXK3bC0+WQ7lt1bmQMol5jpyTPZHeyLNt4bdX1Cm55mJq5i2uHrLSDKXNkuF1xchWDLRN5NWyA7HfYaaBnuXLIebvkpCx0Na9H9PlRNRdH5jvefgm/HuEqRLUliVIfl1u9Cz5b2UllQadwqW7bZtkZf1uLlaYFDwCHn+9a4Q7Pe3Z0DBcoN7WoyIUwAKjd+zhUzYWAVxkv3YMcCPxBR2u06ldRG0c8ZC4PQ86wxgCAjwNbSPdDvonF2wHh3GwDAFLmRHB/K4BpM0kIcyp26dRIfG7GhY+EMK+ARhzVrXLoBXjam7p97k7FjjZvxqLwQY2nqfTjTlmzWCKEORU7uncdIOWlskR/CvpekxyPtI6L0f7ALX76J9bvbrGnGD9Gfr8ICjW1GQAuF93kv0kIM9YhkvMQ23B3OXTVMp1n8yb8f8aHMQieegQXh8Tg7QDz6Zc47myhwfy695pkyd9l3xtM805x4eg0Pet9dsJYkHfCJEyomgv1vkxA63dikd8jgpdFMZoCS4KXU1oKRzD0uB6Am7f5Lpsk/9XstNjWOAifBTVDcUEBbyeVU8tWEQC4EPZq+kF+ryA7lwMYDTyWZym4cD4FIUzVmDM9QW2vbVZNypu6OBwnO1Y18etU7Oj6+BAAkPpNPNGxqh9gAe75hrLkVDn+2DbLPOL7LX5UzcV9zbzXJgM2T2ROjeFCGADsvdiAC2F0OmJFxG9m9/mW91YFrwMAZP0QBn91mKk94n+nYkeVpGw0m6avM2LcQKvNvKq54LezIvzeSUCxoyUuD6zMr4sgFwkty8IzrIkpP6CjfYq08bsF/PetXpG49bD5pAWQ48eJPAFsLlQ1WQhTNRePZ2ckK6HZWK6quSQhjPKJ94nIlB9g84Xn1n3wn5iIwFeS3NZjHDeAjkZo9V4Ud2L+4U9ndUSjNxKR9oUeziK5NUOsbDpL3jeI3wCAXQel95U+fG4ynPhTW43/K26rbbpGoF/i3JfZc56UTuTl4hA9rqRVPUTpS1tJbcl6L4YLYZSH4pmdGxnD3/eBKzfCVsuMSll45Qr8vOQ5kSj3TQf6hMhm+v/WdN9H7G+hvySITZ48GevXr0dxcTH27duHOXPmYMqUKZg8ebLp839JkydPhoeHh9tPmTJl7intp59+aiq7qKgIX3zxBZo0aYJy5cqhQYMGGDduHK5fN2s0/24ybkwInQcA33iI6URNjFU5Jq12Iz/pPm2yKK1TsZscbqmMq09EI79WETY0r6xvfOYmAiUm0KdvVkbP1k63Gxyqd0ZwCMafasV5p5gp2VMc0kmcU7Fz/xGizIfn8fIvDI2B07dkgfS04UafKGy8aZPqL8jORcO3mNBSdOsW/KYkoMOokVKZBxc0v+vGaOPHDOLeaMqxaQlbyAlhksohYc5YFrWLL34lWnSxrtqzE03jgJXJTCtafKkveEU3biDopSTTwtf+OR3e2aos/wEHcOhF2RTt/AhmfkiQ0mI+sd/dtct4TaSe4d2gai4OR1yQkcXz3UquiSLXESm/UZioucBs5kX3Rd+ma49HmYKbE/LlofAiXv65f4RIm9Y/wsqhzIY90vNZkLOdI9YB4NDQVn0gCuPnRsbA095U4re/r3kTaHwv6FrKgjaYtpMJDBuaVzY9W1Vz8TaqmgsBryfi1T1/oPpi91DgNG4Lj6ZK44/8XcT08Ue2IntFCwQN2oc7XcLR6A29XM+Wuh+omKf27ER4x+shE/a+pZ/Wim1bs/1XAMCixg2lTZgx7QtpxzgCYdheD3gFNEJmr3kYejzbBOPN+212pNRHHmXKYsRa2WqD4vssbeJr6n+PNs2lNp16ycE3eFaUuqQ1UmZGIqPrAgmdzamwkyiAIbwZ21Z4JAVOhSFYWr0rqubilgeq5uLzsZWSQixX4m2xGVG0ICsH/hP1ueWm6o/iTid4uWQOadusIz9mfCz7uTkVOwc4eDX9oDSWAKa8Ip87d+RRpiwKTp7C2tiPTe0xrmtivSTMeiTsR0FWDr9O/qwAU2wVHTiGtM+juU+Z/yo237/wxgoeRoLIqdgxIf0A2rwZi61z56LcP3bxuj28vLgPMc3v7uj5E1EccTdlEev7l7qsNbUJYAHiqc89K7CYkVMy9nC/aWo3rX1FG2XEQ7FfVM2Fgtw83o8bmlfGzUciTUGw74XEsUpE5Wa9H4PnUlNw1nEJ/Y6egUcBW/RbvxuLoKVMEXskVl5PJp4OM5Un8m8cO/EHNpqejZUwf/2Bs6Z0h8fMlOYZ+r7TtQ1mZzMz6D5HzvI8NFd2O9ZTymMUEAMH7uO+ngDzbRXr6X/0FDZ9xuaIKo9rWP/jYqiaC0saN8DNZZXcCrZiGarmQuCmochvfBP36X+P/pJp4tatW+857f9lUOcDBw7gwIEDltc/+eQT9OnTB7/8wmJATJ48GVOmTMEXX3xhAhoJDw9HaKi8uXjxxRfx9ddfo0+fPujevTuOHj2KadOmoX379tiwYQM8Pf9yCDYT0TFvRzwCLw8mPNIkcDY2BnvfdG/2RuRO6HK30bEqb0VeorRZtFWpgvhj28yCnI9iiQyW+nUUgl/YCc/mTbB2/XIp3+Kc7RjiZzZPEstYfWIPQ33a6At0znPLa/r3dpMZmaq5EPxtLFIHue+rnB9bwO9xdgKzIGc7fEu0UpQ+/Xs70jouRvOv4nDoxZml9rnIl1EQNgomnQYPQ351L1T6cadlWvGacWPoVOwobssgv438fJmVgBfSn8Dvof+Q6nXHY8g3sVLMHlv16tIJ193aeW5kDPZMnmXJKwA8l5qC7hWuovOhx7gJZovP4+D3Qw53/jfSTdUfeWl1EPzcTnjam2Jt/Pe8LZkfxsD/dTngKpFHeDOs+8dSfu3nvCT08402Fm/dFg8PKcbL3frf6lkD7IQw8+F5paax6kd3aeg6td+Y1lalClLeaopK2Z6S/8KfecfFe2fiHFIAXgBI+zwaNQ55cAAWVXOh4/ARGPPlD+hX6cpdywzb64Ffj7WU/JW0Vx04OHam23FjNP9N+64Vgp42+yB7eHtD+yFACrRtfNdK6+M7XdvwU9v07+0ov7cClE8TEJhcDukRt0z1xaamYVZwkOk6ld3jgT5A2TI407YmR7q8F1I1F7oMfBa2zXs5jykL20BRLvAYZWQyTOnJNBwA7nQJR5kNe3BtXQDqVriK6w+cxcmXHfC8w/xajO9GaeO4tHEiUocDNzGx1nHLPFeejEaVZToSoFV5FbfVxvUHzuLLrAQOliPy0rPdoyjIyDKZkol9VtpcaZXW+P/88Bicd9xBZjezSbCRn85HeksQ88tzEzCggVkgt5rH3fFcWv8ATIFEIRPE9GQGCOhmoff63ErrD89y5VB0yzzuia4OiEbl5XI4FrGtRE7FjvweEfCON/hwLQpHpnMB6/thMai5IBGeLUOxdi2LkdpsWhyPnXg3ujQ4BtWWWJuulza3GvkkvkhRcK/Pxki2IH8UpumhFqzqMT5/o6mzkXi64jvYgt/+rU3xaM8a+vy/xjTx6PT7pokAgFWrViElhdm7dujQ4Z4//5cUFhaGp59+2vS5fJk5kg8bNsyU59FHHzWlNwphhw8fxrRp09C3b1/88ssvGDFiBD7//HN8/vnn2Lx5M5YvX/5/2q47XXRNZu1Z5sC5IomaG/EafVPsJPG6u7QkhA0+zo7dSQgT01x8JgYFJzReTuAPekDUJrOYpnnCquWmfKIQdupFGfmM+OHQuwYhzNjuwKdcqLlDhpNt9V4cAl7TzQYpz5nndVQ1D8Hrc/W1xiatYuBTrD6KmSUSlXmjb5TbCduovetxvAecih3l9ufwBTbzzjVT2rYvspOrpVfNQAyq5pKEMLEvxjZywLNzLhovjJXaLSJFielJCBuZwjZ78Yc3m9ogagMpHZEohJGm9k7XNsicysbNjOAQlPGwSYFSlU8TLIUwVXOh6vaa2NZiJddmF7mOcCdrAEgZPAuelc2BQlVNDlANAJU8y0n3jUSmIwAshTCqQyTjJurEL82k50BCmJE/zv/CNuh3lIEjhGx9Br5JTPC/3S3CNE7FOi03A9FhKLxyBYGvJJmEsAfi5NPdexXyjELYmeccqHnAA8nvyWEUvOOTMTckgPPc/fAlAHoAcrH9n9Tbh4CnXFLbDo7VteS/Xq8EVXPh/AhBw1wihFF6oxBG19dl7kT9R49azmNOxY6jt29whEORcic5ULSxAU6OyEf4PnYiGvgUM9cGIAlhad+2gq1mDQDgQpg4rig/AMRvWwmtSy3UnKfHjfu2BCDHyP+E9AP8fXIqdtg275Xuhzy7mwthANBhcw4PDO5U7FwIA8BPbXeE/QKlPDNfrf95AupOKwGq0FlEytwI0/h2N+bFdhrH5taw8lh8pY7lnDz0rVUmdDoj/RL0OwA2ZxnJqdj56biVEAYAzb9mJ96t3o/jPKR+05rzkfOWA4gO4+XRyZTYpprzExHy7G5JkSISmTMC4Oh12sqmUDUXqtsqSGnFMSjGwlM1Ft+Q/r+VsddybjCWA4CbWjsVHe7cqdhxfCh7H+flbEf5zLKW5UxI198hArcgCtjwLIykai4uhBEPts0KUmbpKJBGIYx4S1nAEGQfTXVi4ukw5E5ymISw8yNiEDJ0D2/77ndZG0520BEXD4+RT8/uhQJ+HF3q3EbfZGIe+IM5faZTN0W1Wlfd7bPE78K0TNgaByFzuT7mxG/6LZZ1rgVDmCaQMGP59yoE3qf/PrpnQaxPnz4mAeSHH35A3759/3am/hm6fv06li9fDl9fX3TrZh1768qVKygwOHiLtGzZMhQXF2Ps2LHS9REjRqBChQr47rvvrDP+DVTYsTU2LVkA7VWmNWy8Wz4hE5EAAWvtC/0HgDObfExpizq0kq4Z8y5pLG9mKKgtAFT/RjZZE03iCo+mAgBOFVS11AYSURwsgMXIMZLIG5l4GO8ZnbTFTaWYft/EmZyHBo/pUc+dFY/z34HJ5aQ8ZDtuJKdih9ZeR0a6+kQ0j/9kRWSa6FFRjz/Ua/co00Rf6UcmiFC/i3G/rHgAmPkNlXP8WbbIvaCxTZd31ywA1gsKAMwN0RECs34Ik7V5fQfzBZc231QW/X7o6MMc5a7M+t2SqZNx06FqLqR9J6O70H0xJtDAY3nw3loPQYP2QdVcmJLBFvGiq1dN9VuNh75pLIh8xscx6N6N+YcVt7VzuPOpdeWTc0L9DP5ORk808inWVbXCTSkdBWfmfVeS1tPONm+Z3ebj51A2PsqVv4286GtQNRePSUZ5lufKcfTEd5hiACHpAFTNHCzXqdjxxNS10jXarLqjittqwxh2AgDqzEjg5jrixsvYHwRSQT4jZO5jHCtOxQ5EtoBTsSNyIuvnWcFBcCp20wmSu8DyVK6qudDT0RtF7XSeSGFENLaRAwXZ+rUuA59FsaMljsTNxO+h/0CDLzyxp5WnScig30XtW8E7pTyKr98AwALDU/35PSLQeFEs9rSSES3rfq37CToVOwY1aCvxVLSRwZR/EBjG3zvx+TpeMm8UVc2FTS0qAr3Ou1UudA9maJSpEfkMdQ16vzeYnQWAzSOZvebBo0xZKX+33k/j7OgY5PzYQipbnK+diu7v41muHC4/HY0hVc6Y1otVJ5Lxc2gdac4pbewRORU7Tr/AxvZii5Aixn469ELJpr1Y5zP4mb287/zeSeDx0QCgrKqbcjZeFGvqYwAIGcXeQwrGTABWTsXOBT8x3qCRf4AJL8HP7dTnBL82sG3Zy/8TMq5TsSPtC/3EnpQZVA6Zv1K+ysvNpuYj/NrhSJw1FP0HgboJ4P7xsoATMkwHr6Ly6H0883xJuISeEYhvHI+Q2F2W74Y4rwctKYRny1Dk97iGPa080ejnszwtpRGVE+I84np9pqldIqmai5sRikRhRYJfTDKldyp2PDhUNj8us4GdPAW9lCTN47d6RVq+b01nxvHrPR56wlR/9yCzAqHweBr8B+gCcGmClKq54LOQPQfvNclImR0pr7vC3Hmru9kX8d+W7vuI/S10z4KYlQXjsWPH8Ntvv/2tDP2z9OOPP+LKlSsYMmQIbDab6X5YWBiqVq2KcuXKweFwYO3ataY0ycnJ8PT0RGSkvNEqV64c7HY7kpOttXb3SvXr15c+wcE6/LVtC9OUvjmcmZZ8rciIP/U/T8AnFwItF4bluTqUc/cgh0nrRC/+78sWSf8B4OKaYDx/Qo4KT3VQUFunovsGGMsUy+pf6TI6P607a9O94piWUjovXx8u2FEZBLdLRNorcVI3amwpbpPVxCYuAuL90QKK20wfeXKnzeiXWWaziaCXkjjwR+Ufknj8p8IHZaRIsa6CrBz+/3AMe65XntIXZQoaSWlCRpud1o1lFu87zATVORHoHsw2f8Nr/SHx4FTs6N7jKVM5RKGz49DoiQO8Tz3KlIX6yxJTXcZ+/z30H4CnzZTOipyKnZ9wiIt62xdHSc9lcJVzHHHNqdilYL0UdLj/0VNSff6rRqLbI4NwfkQMrj/AYs0EvJrIN1ReBzM4oEbnQcOksUrCr1XAVi9/s++SqrlQqVuGtLEQ4/2IRL5uD8Syk6rcNx04ELmMt03VXGg3ZhQGZz8AAFzbHpzsDVVz8bAUz5+IkgLWOhU7tn89x1TfqqayQ3idGXJcMyK6dv2Bs6b4SsZ0f+b6yqa1pTRS3SUIaUbfNYD1abGDCRFVM29L40HknQIUF2TlwHO7fn1g5fP8FMRq87hh6UJ4JOzn5a7/yRzaQ8zz+w+L0ODdBH5SUOthHfHMOz5Z8pOjcZD5gS5AevkoEh9XB0SbkNWoflVzoemsOCR8weLheW+tJ70fxvoBIPUbfY5Zm6qfvBVU9ELumw6eLyfqOpyKHSGjdyFgw7NYl70LnY/05nN38e5DqD07EX6PH0Tmh8wnVDzpn5B+AFMy9qDBu0xBUHTrFqp+p8+RTsWOtC8ZUAPFGFQ1F648FW3Zt2KbKC3ANuW5kxyo71VJ6jd636027HVmuldaiN/ib3pu7hQtvSsywTt3kr7Z5oKfUL9VflK2URpC8DSOZVVzIf2J2cgoif9FyoyUORHwtDeF7wesXU22D5LqEHmik3SnYkf4viLOjxgehZRx0fvv8PppnhL7cddUpryrM53Nj1vmzbPsb6diNylLf1+2CM7vE/kYLDyaaqm4IaWepATwM4cyEddZp2LnazP5Q1M7AEj7D1VzoXsAOzkkwfuB2JGWyiP6XW61LmjSvgEAGryn81B4mClpz/zGwJCW5yag6MYNqSwCMRL3JReejcFbGXtNikc6xROBdkJG7zLx6VmxIpyKHeXWlu6LeJ/+++jvc3T6N6EFCxbAw8MDzz4rH8dXq1YNI0eOxLRp0/Dbb7/hgw8+QHZ2Nnr27InFixdLaTVNQ61ateBtoTX28fHBuXPncPu29Sbsn6GVKQxRaOzJNlj8SFcA+qRIzsYAML5GupTPqbB4VgMa6Bv6ohs3TKc1xt/SxNzqR1y4XUG6b6UNOxjFfHiaztBPyaw2fOTYXPhga7Qbw06B1v/8jVTWml1rcHlgND7K1H2n4n//gbfh1sORkgYWYJpD4p3uFZ7VHXe9/PV4LeIkbuTx8yzzxjBvgoNPiAC4L4OqudCztZOnu11dN3OjSVc0NQKASWd05CNVcyF0bpzU51W+T+JmTj4fJaDVVF0jl/6JHmC6w4Gb0gKZ3z1CakvIqGQUlQDIjG8UzYFYKF5K84VHkTJP3yyJ5PcOW3yyVzBei1vJQjDFM7IaN2qejCgnpiFQDvqcHyY7+5MgRKh5Vps38T+BmQyrygIUUxDfkNG7UJx8UNK+iu0kmO/A5HLw2rjHcqOhai6kLmktXV+zQ1cuUR+I7VQ1F7Lek+OU0YdMEZ2KHWcGshO0Bu8ywSjtcz1IacWfd2JJw21S4PLUCAZ5f6eSFwBgus9O0zO7m5BkVEaIyJ3G5wSwsBdiHlvjIAaA46Yed4K3WAcBDrhLL84rJBxt/FZXuDgVO1pN1eeXP6bPga2xbCZI8YlShnrzssR2i23VXnGYxpiquZAz2SHxYiW8ikTzw9nYGJ425ZlZyPmRhX2ggN0AAxESTbusiMYFAKwKXsd/p07TFWLimA1+Zq9pLlM1F8psYEKTSGR2FzyYnRp5dcnhYSho3inY4Af/19m7U+GXkgDFqj/eGz6EK0Ks1g9VcyG9/2ypPqcim08a+5E2rpSWno+4AY7ef4cJDiXv+5Uno6U84m/juyx+T0g/wBH9jDwa+Uv7rhUvT+TFnSKDiEzSxHefKPudGFx4Vp/zRN7Id5JMrkNGJSPXWY3nPdbuW4m/Bu8lcACZsut0peyeVp683Abv68Lp8TZMAEtqWcbEM1H3w5fYuzPPbCJnRUZlqVNhp+JiHzX+Y7BZGC45oXT2HQygBAnYYImkai6TuaqoSHEqdpTZUp/fU/oc4fExnQoD3yI+VM2F8r/tkp6Hu3mR9g0A0KNDX1MaALh6nVnKkG+g2JdBg/bh5iMyMFCtHw7gnYDWWN9+mlROxuPsXaE9nMgfWTg4FTtfx/+T4ojdPxH7e+i/ShA7fvw4tm/fjk6dOsHf31+6N3bsWMyZMwfPPPMMevfujfHjx+PAgQOoW7cuXnrpJVy7do2nvXHjhqUQBrBTMUrzV+nkyZPSJzWVmfT1CWFmPEfDC7iWichKgyLep8C3o/L0TQKd1hgno269n0bKQtmG3qnY8b2/7jN0djRbSFLmREgbUCrryHMyQpFxwif+bJv3ouLPbJF/LL0LT09lVV2ahNf8mca795HzEr8EZ+xU7Dj5K4MENzr3Bm4ailMv6drggsxsfo+uLb1aE07FjlXXK/C2vdwoxjRZ+36QgIf6D0HR9etswzU6Bp2fHoaWn8Sh4NRpXm7wGB2hi057HPtv49bDzNzg1IsOJNv1EyOnYoff5AQOQU317mnliZzJbJKvMz0B49LYBiRtoO6LtTWsvNRe77XJiNjbXypHJDp9s21hG7BP6u3jfhfUToLzLr+VBVJt2J8hnxG0MKU1ImD1aKr7fBoFdYmHk6f4mBh3sjX3DzASoeapmgvp38tlPJeagpnZ23FhqPk5vfvcYp7ObycTmtu8rZsf0UkUkfHE07NlKGzVq3OznODBuhDtVOzo3rg9Hnx2BFTNxTfLxo06IWedeU5WDFBQUAAoLvaQgtWmD2AhIMhXDAAKcvNMwcS3LJjHeTFuCE+PcVg+d0APkGyk0uaN1c2q8zpSv45C4fE01Fikb7zodILyOhU7UmZFWio3qK6MZxtK/wFwBElxDjHOKxTGQdVcqDNd31yeK2QbFBojd7qEs9MwsI2syB9puXm9LUNx8GWzL4r/6hHwm5yAR1OdpvnRyjT4Rp8oPvfUXyefghxt+y3/TYoZsQ+pbONmUKxT/B88Zqe0wadP5T9q8bTGZ5r+mQxUI/aLmM6p2OHqUA0AOBgF9e/ZVY3xRIPduBTobbmBFXk33jd+03O81Yv1ZXrnRVJZ3YMc3LyayiLhgdpLACDu+DDSmeccuLI2EB3LFyG0VbZlGuOaRfP3md+Yf9iUDOvTCFVz4eoTeh+TSRoANJ0VJz2PY8NnocZCNj/c7hZhyTuZXANMEYfIFgheos9hYnliSBb6zu8hC1FWQibAzJAzPo6RhK61zarh/PAYvi6kzIuwnCPSv7cj521rf24jHW+/xPJe7iQHF8gqnSy05LGoQyvpOpXTo9mDUDUXVofoVku3f2+IWraKJmUE8Uf5xXnTVrs2v0bKP5EKU3XfTZECn7Ke4y6uCUZhx9Zc6KO8RdevwyOiBQLLVELq11E8sDeVS5YuAzI7cfPHij/tNLWlXyvZ/Pw+/ffTPaMmenp6YvLkyXjrrbf4NYodVlhYWErOfx29+uqr+OSTT7Bs2TIMGDDg7hkADruvqiq6dmWnUC1atMCZM2dw+vRpU/r+/fvjxx9/RH5+PsqWLWu6/1fICjXRSNfWBXBn7tw3HChzDSgsD/h8qAdffeiJofj9h0VovCDWFMgU0IPnApAC8wLsyF+MGUVEAVCB0jffVtdVzYXZl3ywsmltaYIV7zsVOThi9hQHGr5tNgm02sBZ3SfkxtLyWvFZ2n/jtVUnkuHtUca0SRbz9D5yHj/mhXPfidQlrfmG36p8oryJDhx+vnTERmM7xPLOj4jB7imzTPyU1jaidzOTEeldRr4fHcb9k4hc+fl4zT9KCsBqq1YV8Ue2mupVNRf81w7nAWCtNp6l9XVp/FqVR9co+GhpZMx7dnQMas9OROGDrbk29m50r2OH6lE1F5w+rSTAkNLy0TUKeG3Ft6q5sOJaVey57o+P6prvAUDXx56BR8J+Xqb2qoNDlZdGYvBtI1+q5sLFwhv8JN6p2OFVvx7W7FlnGpfu2lhaH6TMikRI7C403l2Ga/rTP43+0wFqASC/ewS81yYj7+dm8PQsNs11FNT3bryV1gZVY8ikKc/oyK2p06MQ/PxOy/T3SlZ1U/Byut/63VjUnmWNMEoBru82Dxrr8/JvyBVbUzN3Idy7bKl9QNdzJzmk0yXjfXf/3QX7Jbr4TIzko/xnxtaplxzcd0psg7Ef0r5thaBBTDj7JCsJ4xtFuy37/LAYXA6BFIi+7djRqLRC9kuy1aqJ+AMb0a1hJDcTXH1iD8p46EHXPcOaoOjAMT5/i/UZx9C9PkcrVFR3fXW3/qT/g4/nYknjBpZl3OgbhT+mzzGNkeuPReFisI2bXzoVOzKXtYT/k/sl/gmNOXr/HS6UL8jZjofmv8qtNwAg84MYKbzKn10fAOD0Cw6U734aYTU1ZEXeRP+jp7AitJ4pv4eXl+kUDwDKb62LWy/XQvGew8hf34iv8wALB3R86Cy3/Xm33/9RqIlx/yLUxJn3URM5eXh4/F/x8U9TQUEBlixZgpo1a6JPnz73nK9Ro0YAgHPnzvFriqLg3LlzyLfwozhx4gRq1ar1twlhIi0/zjbqFCxZ1KLuCPuFp2vwfgLqfZWAhsv12CFOxQ7PP9gC0ujNRPQ/egq2kEB0OXQVYXvZcytO1k88SAij/GS2IlKxoyUKsnMlTZhTsePts804f4Aec8Y42bV/fhQXwp7O6sivS5NvA194ds7l14xCmNg+VXPx2DiUnrTXVDcJYVaaLFVzofGCWFPfUnkU98coYBnb1tsnAq13PyFp34x5nquWK03OwYP38lNGq/IJnevw8zNN/Fm1g0xDjQtRzXlmlM3L8dYQ3GeeY9pOz5ahUDUX3vSPMPGW+nR5qJoLPVo+xHl/zT8KxTEtebwdACi8dBkPPjvCNAZ6pXTnQhjlF9N0HDECtqZybK7SBH5jPxjLUzWGUFjc6YTbMWAUnukaxb2ybZaRzsgn0Pih/Onf351fcXNy9rcQzgshnFnlE681XJcvXRfvORU7+le6DNcFX9NYpP8eCfulMpWP9RMnq2/6bRTCAOBkgW49QP5tVC6dhlr1ffAS9u5lvRdjqlMsg66FxO5CxocxON7mjj7OKhVJcb2M+cksNuYVHc31ypPR/JTR9yNPKB+UxBnc6IuUhW2gauYYUWIfiEFuxbbFn9AVK0T+ExKlZzOz22IAzAes8h+13L7TxnJUzYUTr7kfGzk9qkp5SAgjujogmt8fWAIg4lTsOPG6A7bgAMtyjbyREJb1fgwWnHvAUgijQMq1E6rx+w3eS+CxAsVy77bRV3/9VvpP6xbAToJFEzkuOJWcQDoVu1uQJQCo94WMhNtkfizPJ14nIQxgpt5WfBPVXJDIlSOUptIKs5IgeyQz+S6+cxse3t7Iei8GvXxkECrya7UKgxD8/E7kviGb0dJYcip2NF5oBhw68ZoD+ybN5OvKtf6ymSelc+y/DSWpsvTuieOcPmRNQifR3Ru3l/rCFhyA0/2ZGX37A7eksir+tJOfJnfzZ+PF/0l9PqK61yTHQ9VcSGpZhq/r7dePRYVTstKqoL7sFiIGqLci4zgv2tgAdb9OQPF3tXG9gFk+kRBmXB/W5bC1y+gb/2uwyhUh3l2z8HMee+4p89tIvqQiqZoLqdOi4L9mBL/WbDoDVlqQs73Ute7flTz+RZ//dvpTJ2JVqlSRJNIrV67g6tWr8PHxsczj4eGB7GxrE4G/m1auXIm+ffvixRdfxJdffnnP+SZNmoT3338fGzZsQOfOnaVr27ZtQ/v27XnaW7duoWbNmnjggQcsQT7+KlmdiKXOiJKCVAJAzmQHjo7UtXoAE4LiG8ebtCqq5kLYp3Go/3mCNIEXdAqH5+1CyeldpJuqP06cqYZ3IldJ6InutHDipNWjYz8UpqSb0gAMzS71abbRpVMyALDvgxS4VCz3blo7r0Z+KMjKwa1ekZITbo/OjwMnTnMfoStPRaPK90mlClcXno2RYicBQI8H+qAwLVPq09A5cfCbkoDCjq1RbPPgcUFK08xReU0TnpaQG91tQlt+HId6XybgxC/N4NP3MNdCltYXRP2OnsHIqrLp1MiUDAkp0bihXHKlFpY28bUs81avSORX9UTVpaX7uxh5Mj5/d8+TqLC4CD18Wt81rVWbKX3K7EgJ6ISuu4uXJtZTWiwkq7qb7/HkwaGJjDF+ijq0gudWGYr9Rp8oLPnyM4xu2K7UMQMA49IO47Mg3TQwdXE4godY++aJz5S+IyfEovo3iVK6/J4R8F4jm615+Si42sYX5X/bZdl+kTwrVMDatATTO2pVv7EMz4oVcfXnuqjYLcNcsKFN7t6Nu9WRsqANmr59EgV5J/gc6tGmOYp3H8KpX0NRT4hBRmXffDQS22bOBSDHNjL2t7FvbM0ac8d++z7go7oyP412lcfGrXZUCL7EYfedCvNh+iAwDNfXBZTaFyKJaU+96MD+16xPze82pkpLX9o7e6/lqhrzpxVNue/GH8VFK60eup72ZTSCxt7bXERtKW28lJZPrNc4LjsNHmbiWdVc6ObXBmdXBnCgFeM4znnbAb8pCX+KFyM/YZ/Fof5nuiWM1btozCP+B0o/WaY4i1anc0S2piEoPCK3kdLdVP2xrcVKNP8qjpldQn6uzfd44rP6e//UOCWiU3KrsXn9sShU/MlsDUNkpQgwfs/M3o64ErAQunZhdQiSW69wy+/FITGWYEQUn9Cq/88Pj0HN+Wxutn8QB9cE/X3+TzoRa/ovOhE7cv9ETKcrV64gLy+Pf65cuYLi4mLpmvjJzTUjRv1f0YIFzNnbKnZYQUEBjy0mUm5uLmbNmoWaNWvC4dA1eE888QQ8PDxMAt28efNw48YNDBw48O9l3oIy+swxCQ5+k9kGSHRkJ9QmgIE8EDkVO+p/rkMrr7jGNKhem/ZwIcyo/QGAMh/VQNCgfdz8AIBkG29FTsWOJtsHcSHMVqumNOmcHOdA6tOz0PWxZ+BU7PhlxEP8HglhYlknX3Zg6jl2OnVupNwmkQqymI8DCWGkXTv6UjWOUKRqLhR7Qrrfo2M/hO9hflYVt9XGtOwdPHYS1eNU7FLARrr+09DPoGoubPh+Ibw27sHVJ2TTFdKcGRcAp6LD59O9wB9Go3u3AdICP+lMC+x/lfnf+fRlGjejQAwAYZ/qY0C8/nNoHQAMPYtobkgAvOrVxRsZLljR0iY6YITId1GHVtg6dy4Xwq48FS1pScUP5SdkTKOm2bgIimmcil0SwroHOSTQFbEPrYj4Dm+WYSpf1VwovHgRd7q2kXg1bqxEfxRjPVZCGQlhqubCwGMsTpp48qdqLi6EqZoLBRsYiMofM+bAvwxDiQufrGuyAQbMItK42SN4fltosEkoELXW9Lvlrif5vXKXCvlvAqfxEKzIqS0FJzRsmzUX1XfUkNrLofOh9ykJYWI62kyI15yKHXkTHPAowywHUha2wTfH1mO7cLIv8mCch6gM8RlR2e2fHyXlv/5YFE+T2X0+CvLYaWhGH4YwuW4VCzdCQphYFgBsmzmX/yfzKQDI6LoABZ11KOkra3W02sHHc1F4+DhP62oFOI/24v30RoYLWZE3YbsNjph54DY7KfggMAwebZqjYgkKp5GM7xUAlP28Br9X76sEyzGpai7E7O9nKg8AvAIaSWWmTmcnE6J/otjfXJnQjtXTercO6U0xw1TNxe+LtGavyn+fHxGD9E/l9SN1SWsOXQ/oUOMAsCf/Nq/fq2EDDm1P7SUhTOwb8fe7mbI/bMrsSMvxmrIo3JRX7AfxntVcvmnJAtb+Dq2kjXxxQQHebBIPeHgg/Xt9fqM0R0fNxLe5O+Cvsn6PP7GXPxsrSHOrefTAON0/e0SubnJq1RZje+hjFMI8K1TggDhkNk1CmFW5R5+vxvp3juxfBgDlnZlo83YsfLrmSGMJYMqlY73qWI5fgCk3KA+Btaiai8cFq3KcARn1TXsIK/N0pRsALoQR+JLY/gWXdbPDwgdbm8YEfcc1bMfBoKjttzfWcssvICPC0mkzACjel/jvo7dv8PhyAFBzfiKfW+pOM8ct/Y+h+2Adfwvd84nYvzNpmgY/Pz+Eh4dj506zPf6lS5fg7++PRx99FKGhoahevTqOHz+O+fPn49q1a1i2bBkef/xxKc+YMWMwffp09OnTBz169MDRo0fx9ddfo23btti0aRM8Pf8+nBPSLlxMCUCrtXFI7z+bv5gr8hLR39cMWAAAnQ5eZ/FmSujcyBgedFckyttkfiyODZ8lLRxW6eg62T6rmgtN5sei4VvWR+6U12rTBOg+ClZp71VTCehaOKrjwO1bCCtbzlSfsR6r/6rmgis/H3Zvb0uNp1V5VbfXxOV25y1PQ6zqM1LFbbXxScOVXONmzBO6xwstKuRZ2qoXx7TE+p8ZwlzgD6MR9JL16c2J1xyw3RJitXl4QBsf49Yf6F6eQeU/auGnwA2m+1a+C62SB2BfxHLLsdV4YSyOPztLegb0+8xzDux7w6zlpzRpX0TzNgPMFOqs4xJS5kVIQWBT5rdByHB2KrXqegXMCGZmgOR712xaHCYO+cHytFfVXDh6+wbGpvfnQcWteKHfMa+MRuKnsyWe075rhaCn9+FyfBCq9kjjaQHrMbX6xB40XhmHjL5z+P3luQno8t441Jpjft+KOrSCx50i7u8lliu2o9m0OJS5BlPwZy60Tok1lZ8yOxKNF9zkfqSUp+tjz0jQ7xJt9IUautpt+4x1i3R+RAxq7buK4t2HTOnJbzTjex1pDmDx3yj0AFH60lYIHLiP1yH6KDkPXYHa3L0W1d17n/69HYFPueDVwBcFuXmmZ9+13zNIHV4Gmd3nW45nYx0A0LO1E2nPB0jvAMCQKguPp5nKKO3053a3CAlFz13bqE3Byd5Ijcg31WHc+HtvrSchOAJA5tQY+E80Q8AbN+lLrtTC4CrnpPsiufPDS50WhYx+elgGq/EsklOxAx4e8ChbFgP2Z2JZE8U0j3mUKes2vITV+gMA3R4ZhHW/fWv5DE++7OCKTUAfh6qm+6N2OXSVx1cUybNCBRS5AfdSNRci3ohFjUW6n5nj5dGovDzJ7XgCwISFjhcl5QKRLcgfuY/WR4XTxdj5ke4vTOVdGhyDaksSceZ5B4evv1f6M2u3Z/MmKDp0zO06nDPZAb/J+ungS2lH8VXfPli7brnbOrzq10PByVN35e9eeHeXBkCpbdRecfBg8KrmQpu3YrH7Hff7KiverH5T3Z3rN/vPORGL/RediM26fyL2b0+LFy9GYWEhhg8fbnm/fPny6NevH3bv3o0PPvgAcXFxWLp0Kbp06YKEhASTEAYAX375JT799FMcPnwYzz33HJYvX44xY8Zg9erVf6sQJpJjz2MIGpskvZT9fdmJUNfHnkHU67IGfd2pptIiVU9lm0fRPp8C1zoVOxq+lWg5WVAZd4qZuvzUr6EAwIUwyiumNZJYrrHsgYYgp8bF1fhf1NyKdRYeScG5kQwVMtr1GMY3ikbLXU+Wqq2yVavKr/Vo+ZB0/zV/M0y0FT8A2xRdbsfs490KYb7h0v/itqzMWw8ze/frD5zFE++Nl/gU6z0aXoAVofUs2+6RuJ/3rSiQEK+U7tCLM7H/NSHoZ3ExDo41o8YZ+1jkY3kuW2SurQuAqrlwtf05yz4hIYw0uY0XxmJfhBz0XdKIBl839TNRnRkJ6HjoUVNeqpcCcxKddVwCAEkIG5d2GLZLXvz/jOAQnocAUHw/SMDAyuZAufQdWrYCF8KM90wby6cumK4FPb0PmVNjkGT/SconpnspTTePK+Nhk4TZ9M+iMaCBA7XmJCL3p+Y8HUGte27dx/29qGxVc8EjooV0zfeDBNSdloC8n3V/Tv/fRvL7c1//SmobANiueSJmvm5uxTe1CftNbSAyCmHGMXKjb5R0n9J0OHATNeclWgphqubifqMBAnKZqrn45le85vudl1RHg/cSkLKg5ARUEMIoH6GXAkCLL/STPHGMp3VcDAAmIQwAIibFYv3P3yBk2G5+vTimJc+fMtP6ZKPg1Gk0mpTIg8NSmmuhNaS0ABPo0/vPdjvfUlBwd/ev94vi9XY5dBWpEfnwrFjRbXqufCuJ5UchJwBwIQwAP8F3Kgw9k6wcnIodg6uc0+eoZaOlNqqa7Id3abCuXAwes5Pns5qHreaMK09GYV3mTsx7q690nfKIQpilIAeYyhWFMGMeUQjztDfFjq90wfHCEnbavaF5ZR5zS2z32jSzsNPp4HVeb9lrbD0h9MWEz2eb+BPJsf826n2ZgHol5q4ipX4dhfhtK6F8moBaf8hgRdQ31ZYwoU9EJiWyVavKUQzFezcfkX2xiewf6r7KxrLWrl/Onx+hZ4ppGvx+Qyrzi6BQrF23HA/1HyJd50JYvbqlCmFiYHAjL14+zI/d1jTE9Iyt3lWxHKeiWxScHsOEMHFurzk/0fJZqZqLIyG7UyoY2+numf+7kkfxv+bz307/FYLYxIkTUVxcjBEjRlje9/b2xvz583Hw4EFcvHgRd+7cwcmTJ/HTTz+ZgjYT2Ww2jBs3DsePH0d+fj5OnDiBzz//HJUqVbJM/3eQdxkdnUecLFTNBY+E/Ty6PL3M5EhP/9ck/gNORTdJVDUXdnzFNO0EROFOOwUAvXyYIGE04VE1F7RX9OP6G32YKVDGh7JztKX2ssRcx0ihc+Q4ZMZFkf6nzG8j9UWtuawP6LTBd+x1no8CioqLQuElZpJ6dnQM4vf/jsCNQ6X6nIqdx/IQyf8fI3gA1ZS5Eaa4OcQPffdo+RBQpNt9ORU7PHaw+zl9dMGNnLHdLfj8nqfNrXbNGNjYuIm0Kp+Po5KYNJ0GD5PSeTZvwtO2T2bvUaVuGYh2PQYAyFzWkpdNYDJEFFqh0SS9bSIvFD/lePslsFWvbtpIE3l3zeJCK5HxWVkRldG1wh2TyY1TsePLLDnAsdhf4lgTr6uaC40XxVq+LzmTGWR97WGXoGouPJcq+0qkDDEjZon0RRBTdLjy83l9/v9gfR78zSUADHUzP7cSr//oyJloMi+Ol0WxrIjv4uSD6DxINsv22OSDwzFLeZqQWN2UZ6J/pNQ2W/XqCHwlCQkty0p94Y5UzcVNocX4OMZn73lHXkVtocHIKbhmCssgktiuM781MT1/41zhvdZ8MiSaiRrLDRmu31M+MZ8YUtqUuRHw8PKS+2GjL/clpTwA+Gl198btERK3y7LvaFzR6QilKf+r7ptHFPT0vlKfgXHsGvmp+LMOWrSheWVcWB2CouvXpTyXBluDBzkVO2ouMCvebNWrc1AJAEAxpJPZJVdq8VtpT+rCxNlVjU18VluSWOo74m5epHAfdBK948vZkuBrBUzU7ZFBpmvOQ1egai5ujhuYLGv1S5ufi1xHpHFSfTETbK6tCzD5ZBrXcVtNVt+mFrpQTEIdBdB21x90LaFlWem++DvjMf1kfU3CKtOcRmE5rPgD2Hpp9GsFwP1HjVT3a8bzxNNh0vNM/4TNTwG/s3iuuU4dcmFPPhOSaX0EGCAM8WXlv65qLku/Q9EUcIhfO7drBcX4i9+wAqrmwoVnY0xpzzwvxzNr+YkelmB816ehai64JszE5YHRprFL/XenuJD/dyp27uPrKgF+MyoMKN+NPlG8rPv0v0f/FYLYfwtVeyzdNMF26/00nIodWT+E8etWQouqudAjrLNUXsQbsfxe7d7HUWZLfZ6XbPSNE5bVwt90Vhw/ip+ZvR0VVjINZsDr+mKtai6szNslLeqq5gI651kKaEdHzZQ2w2KbRaJNU2HH1pa8FdSrxn8TIAf5PbR6n21cm2wfhNqzGa9Ft7ykxUfVXJKDL9+sjUpG8DN74eWjIGRksuWGh67NuNSAB4dstKs8zsTpE/q07B3I7DYfgL7xUTUX0j7XfcuMi2+xoyVQVGh5D5ARnkSy0uZtvGlD63di+T2KSVNmwx6pH4oOHeP/ffoehqq58HNeEpLsPyHjwxg0mO/F+TEGFBd5NC40ACQAjez5Cv+d+6YD+cV3pLIIDp/KMFJB53BTn7jboFOaEceetizPOC6NghqhX9GpMrUvv3oRVE2P0/f2l0MAMOVCYHI5RLwRa1m+SKrmgt1bD0ZMcZ+KDhyDfR+w9J2eCHqJnY5TfK2Gb+sC5d43zbHZCDiGqLjTCcsxRH49Q3Pa8+vuwEyISPg+P5yN4Z4RPXi8u8zec3k7jO3eOofdK+jElDzxG3/E8CefB8AAci6s1hEkreqt88gxSVFiCwmU6rLit7RNvVNh8QrJtxPRYfw+bRCJQkYmY/xxtiklPyfjCaA4h6mai8eHorlFrLtnVC84FR1VDtBP7B375brPD4uxHDvGMS+22d18AgDJrVeYyvIfdVxKn/q1WSE197L+vsYf3iydloTEyZvzkLL6Rll8Pnvb/OC2Le4EDuPaQN9+k9k61L1xe369fatjPD0p6ERa99u3pmsv18iAU7HjYlt2qp0eoSP93e6m+9eW9g5TeqKq3rdKzeNU7Cg8fwGq5pKsVqzSWc1V4jN3KnZ0P3wJEZNiTddPjXVIfQcAU88xYbjsutLXMqtr1BbPMBZrDRuZT3H693ZcGsTmg6l1D0hpA8ezubPJh+x9EE1PSQlE6T/K3In6OwruqnQQ+5Ri6mnddDP+7Cms3XQqCQA5P+qWAtkrWvB+pDhvYpn1152U6qz3BRtrjv23Eb/lZwR/G4uAX0ah6tIkKa/4bMSQBCKR9Q3lSZkbIeWrsFLfg9wP6Gzx+S+n+4LYvxFZvYBkutPoiQPcwZiCEpI2r9NBpuksPHde2gCQ3Tm97Hc6noSquTAlYw9crzNzNTI5KI3EwL7PHB2MgcfyuFAB6BNRBc+y3DlfrDdvokOanFTNhaRbhTi7qjEHnTBuMPi1jQzNL/1pTykdp6QD+Chzp5Q/eAgTMurMYBvXhv1Zv7Z9cZRkytajS38suFwPF9cEo8yW+qZ233a2QcEJDba6dSSeVM2Fbbd0XlY1rcnvZUXeRJ2ZTEvo5aNgTMO2vE07P5wFj00+ePtsMwS9nGTaZLT4nPUFmZ7Z9wFbbnpaLkRWQpd4r+I2FsSyc/lCjHxhldQup2JHfk99s9HuhVEwklOx4/HQh7jATZt8p2JHwE+jpDqN7RDNbobmMJjjJ49pDJGu32HO+5HY/8fee8dXUXT/4+/kBgKEFjo3BNIhhHJDSLkXEBDhQkAEUQRRpEOi2FGx915QlCpFEEQUQYXAKlUhCYTAJfT0QFh6r4Hc5PfHcGZndvcG/Hyfz/PjeT45r1de2bs75czs7MycM+e8zzQ8o3ZBRRS6lJk4nfqdbdi9S9yGTTBBBzdMrWvIH5wyxiMynX7DZ7aBclptqHK5TDqZDX8qHf2y+/Dnjb5JxVUlGM3fSkVe7DUpmK/+PZ0ab8fxiQ7DfZEnVzQw7QPNdPDQK178ungyyxv3smymfOQlh2Fj4en9/Ll0PgBATbgo3VdUF/rtPYvCd+ST7kNvOLD2eCSKl0Wh/resbW5rfSS8MIHnd3c3OsiLvJBZWuI9g7kmvN7cNDSayDTFLefJ7QG0U1hRUZKycZmhfUS9g42ChH5Dqagu/Na6PlK/YCcqK5fNQ+8WbA6kDSJBvwPAu/n9AAAHh7I5kDT8REVvOdDmy2TTzaz4rQDAqq0roagu/N2uGueHTuzfaLgPoUsm8LTb35F9KfWBqvXtT+z5EH/Wc/+9Eg9m+RTVhbOdzvBnTquNh/4Iz/CF100lASGwhmf44umjHflpScKkCYbxNSx1jFSHyIPYluLJbKxGfKeFEhHHi9Nqw5X74xG+MEkq6/BrLJ/6ggOrD/4NRXUhe1YsFrT4C8eedkjfMoWF0Lddf4/KHrjvJKu37Dr3vRNDS+iFW33buzw+HvvzrFJ7xGun1caDmgOyqaNegZT/kfz95d8Mj6Gv82n/QtTffQleMVFS+iZTjOAP4gm0omrmueJ7Es2bnzvKvmc67QeA1WuWMJCXm8pV3901JB80+h+ZqZmHuw/mI+ereN6HiW3vNqT39XLDNyXDdO5SVBdaT9fMhxXVBb+/GuJiF+aL6JqsmeGTokoMc3D9iB8vp8Xg3ZJSRz/nE0KyyB8AbiXQqP1x05iAiurC+wUaYJh3m1aGNGKdAFPyVPS8kv5v0X8FWMd/OnkK6HxmpB0Z78mab0+aK/0EQpDN+nREnhzEzco+PyxBgi+n4MTkUH/i11ZodB8zWSl+2YFmH6RBObKzwknF0qA+3KdOe3zuSfMrLraWiFCkbFwm3auoPHp+4eEElAw5i4b9DxrS+bQIRGnRYVwZGC9pqRTVhZCfJiD8qXSpz83eR+jSCZKTvX5TAsAUatcT3yFrR/Fg0LfTvoH7TvLwAGL9TqsNR36Jwp6ERTzt2cfsqHbeLSHHpRzZwVEMPdUTtK06CuOuQlFduFR2DTW9jaY9+YttyOk237ApASAF8b4dGnmwCPNatoCiujCk4G6+iTRrv9m93M8TEPZsuukzT0oAs3fsqR4xvyUiFO7sPHi3aYXVfzDH80trQngswPiXkriZsRndqk4xMLtIRUvbIiRZ5d8V5ZtatAURVfwq/MYBwCs6CuU793rky4yKX3ag2fvaplIEF3JaWdwqCjov1knktNpweqwdp2NLDZsT301NuM8SABT+2A4vtPvD4EfZbc8AHrPPU98RQAHATvc29AiF+/gJnB5tR/05abf1vvXP9HMEoAUdNhtT+vbTM5+QIJTmF0rPl12qbQg5oS9PH67BE+V/aOfWC58XpuHZILvpOBbromdmcOFiGgI1UVR2+v5xYR/Jx1Jfh9f6AKxptUpqiycgEQDInheDiJGZOPKiA3ue8hyQme4TAERFbTKjvM8SEPocmx/EAOKAHKZALA9gsfFEyxA9b2Z1mvWBJ7KEBaP8+CmsPvi3x3Go56vV7GS0eCMVZ0baJaUQUVmXaB5z1IxvsX3i75g3k7hrgL7O4NVjuDnw5LwsrDjXAdmPhiBlrXYSezvjDdDC9FQ0n9/ufQDsJOtFjW9a4z3l5fsLXdgTb1trlLn24fhEBwdBqmh+4PeaxUhuC2Laorcc8L7OYsMqqguTjkXjNb9M+Efk39HgFLRnjRr/PixV/5fBOq5fw96Z/91gHZWC2B1AekHM08d9q8WE4n+IpJ9ks+d2RMSo7bcuyyQ/0e1MhnrBia6zp8WhYIC26fcJao7i+5qhyZdsIur09ARYSsoMNuknklmASirHses6t5XvG9MbqzLXeOwnfR/26T1E9nW4SceedqDJlIpRpGhDX1H/VYRGpe9Hs/cr9pcY7+VWmzv9fWt6LX7qUVHa686OqKrIPjVFb9sNKJlmi7Ona0DbpOgRzF7P34G3Qzp43AC0/ySZm4V4apunvni/YBteDo4zTVfRBik8wxdfB2zlCGgA88XTI1j+E4G/ojQiT3q65cJutXHlx6HXHQiZW4TS4iOGcvQ0cN9JTKirpXNabbA0bgT38RO3FEbFPIrqwvmyqxjczG5Ak/PUTqKitxwI/mAHyq5d8/g+fJo0xqodiikvF1aHIq39Mv5sWtFmhFapiYj5SRKyn9k35bTaTBVAx590oPFX5m0o7REDn3WZFZZpNvYjvktC8GTPwrZZP4UsG4/8QTOldpPSSz9OxJiNIjn3XMCz9dgJMJXzZO4BfBWmaelv93uq6Hu53XXJbE4zm0d63zuMB8gFhNhiwppmNq8HrxwrCfBimqEHVPwYE47VOVtua63zxLulbh2k7NtkOkapHfkf2VGzyAuDJqzH3+2qVfhdE/ouESml/onyRyRSqt5qjfbUPgDInh2Lgr6z4bTa4O3nh7LLl6W0ovACaEiaet66Zl01+H/eap3o8E4SD0juqa2eEDfFcm41Hi1hwUj5a3mFfXO9dyw2zGXB33vuv1dSFt7qPVTZ2BS/hq+Cxcv7tvgh0iMC/yfFEasUxP41VGmaeAcRmSbSR3tqvN3jwkUkTfgehDCAaeEt/v6IGMU23OnX3FL+kxNktKegbdUN5dBfrb8bIHeKHBumoomG8p1IdnC/AqqntPAQF8KcVhtqLk2XAssCDHWw0TTZ3EIEFdAjKVGfKaoL3u0jDfyUZR3gZYv9R/G7RNL/plMVfXu91gfw9E1/urkoeltMy6L+AIDEVndJfOuvQ59PN7x/fXmKyuJHUTwruicKYYrKfB/EPIrK0PaqKtsN7TwwxuiD5GwWY8pjs/SahvtOqw05w1kZJIRRHW+HdPDYnr3Xr5oKYfkf26V7AAu4TddLi9OAhHaSEEZ1kKmW02pD8bIoUwEoJ5YBZ3g/pAmMohBW1jUaiurisaD0fJttvMzu6dstflfiuPBE9LzRfQeQPSMO+ydMw6ptq9B8q2dEPKLlrRtK9Sgq83PL/0hzXK9oAynyVsebzQ9ZzzPlCIEoiPnjJsvmhjOKNuPA2Gkou6b50oj/1eeZ6ZmZEEZUu08eRzoEWNyfATlOvinU013J46QNbkrWOkOa0hqQzI/FetctnONxI6Xn/8r9GlKhmRBmaaCZMJuVEz5xK6Lfk0GM8u+Za0g39WwLuLPzOKopwMzXAOb7pEcf/Sz5EaleT22h+xQ3UvxOcr5jihOfACsOv+owjGGAKdX086ooWOjzHP65DWw72bUohAHA+gUsLqi4ppkJJ3ohLHKG1n8/tLJKQljp3Zp/qd4UXQT84PNL9wfYmNEJYQBQeuy41KYxiWvRaFoqNzut6LteGrKO1zH84GG+2Xc8w0xTe+zrL9VlNl/Rby9fX27ZItYrzknk+yeWcVUJ5vUpqosLYQC4ECaWsSrtd+memRCmqC4uhHkSCvXCSY99/bkQpn8uvg8SwnK/jzYdY2b9VfCB7Gfpzi3Q0np5SWUQkQ+d02rzKISJpqJi/hvdjiIxoIPpOBXrMuwpBETgW83hdxpVoib+a6hSELtDSVFdPM6PfqLpG9Ob2yE7rTYG7gB2slG2TouPJOaruyBNOmZPqGbhaRTVxcEsiGY2M06OxNfPoWu56R2hKYp0ZpTdkA8A953SU85U2beDL4TRvQAwAAcCGDBblOi+GOCRJtMrgca4LiJvZpti0Va+88TxEoy4pw03mZoAgPv4CfTtPEAyR/AkTLsvXDCUSwKDPo+6vLXpoua02rAr7gdDDB99mRvmzjZsDsjETc+XmJ//LzbXSM5pvllOd4sFUt8nV8quI3chC4waVbU6v29pGcbLCHmBLfwkSDmtNmlhreNdHUjPkurjwriwoDYbtNd0A0H/U3b9CUtEKPrtlcEr/vxhHpxWG9pVrWbaBmqb7cNk0z78J0R8mwmqT+ZqSgQyS3Nabahb5YrH/iUigBiDEPqo7OdxeU2I9NvsWs+bGA8IYGin2z6Q0SMntOiMtlsf9vgdWT9NNS1bvFfSJxbWT+R5ZEW4FkCY0NroeXEPL4/CrSUyHIrqwqdj5nDgFSJqS6vZyRyNUj+uRV+YvM8SUOOXrYYyLGHBuPAwE2xICAxOGcPLIlAOLmB/I/sOmW3qJvozH+EtQnBsMdaab69CqQ+q/LFd4tuMxP6s9aMxRmH4YzvgtNqwKiMF+5KnGcaZorpQWnjIkK+iegMf2ANXtDk/ZnkM85HqQuF7mgLRabVh/wSmGDj/iCZMttvBNt20mVdUF250Y8AMg/afwOHXHBLSJf0nAeePK1VwdIWs0COlAQC8lZ/J43lSMGAzvn2aBRg25mI8w9QvGNKkzz2HTPuEkPVEHtcUaOEc6J53rVrS2Ml/YKbhnVR3FvD6zL45AIh5M8n0WyTqfe8wvF/A5qBB+08YhCzxPYmKmktrQvjz0ilG4ClLRKjEk1hW2COaSaV4X/+d/Ha5BoInM2ROM99hlJcjZ6rmu6aoLpx71M6/VaL6W/yl8gvfs/NvzWm1MbCpBAakdnlQvIEfT+u1GEJDpIq+0Ur676VKQewOooERbQ2Tav5HmlYnZ34MLA0bovToMZTtYaZ1p8fYObhDVWU7/ozUNFci1fq7ASy1a8NSu7b0TETKejKXoU8RShxgroUUyyc0xaK3tImW4J3FiVhRXSj4kG2SIr5LkhYN/6CzhgmrtEeMZDJFAAP03EwjNShMO10iqrbSCCXtExIk/b7em8FUU1kF9zHY8KScXPgt24rABzRfu/45vTlsvygMUx1dxzEob9HngwREfd9R34v5ySGdQC0AZgYCANaB+9jvD+1S2yfnZXncwFYkCHgSaBXVhZz5MdI9PV27Nw6WqJbSc6fVhrxF0RVuosye1fCuirBH2QJLyHIAJHMbRWWBhe8L2W3g3Uxo0delqC6uTRXvE5y0yJ87Ow8ro/wNZXm3aSX1c8438YZ+92TiVhFvZs/oefHkmxs7b4bG9VVYK2n8E2V1KJfKNeuTsGfTcc+wUYYNjv7b8+udbxgbiupC6drm0u/LD8SbjjFFdSFiDIuxtejwFuk+jWE9pLiiuqTQBWZlAuBQ9Z42YYTWRhQ+kQlHOfPZae7Gqxroj3t/DpxWG74Ii5Q3guEhvMwWb6RKQDWK6sLZEex73Dif8Vtnc32EPpdu4Dl0/UgcfLwxR3OlMqlvAHCY+IpIL9iL/w3veLF2ymGmbPBpKm98K1IaOK0MmU8cb5Gzkg3lEh+K6kLEpsf4s6XF5qbN+nuXB2knNuK41o9xs/kt7OsCwz0AONFTO4Wnb4Oei+Usi2yEoCXHpH7JW8xO4PM/tsP2QTJ61biBrLgf4NOkMc9HSgMAGP3tRJ7XzLSdCx3FR6RvT78eUJw/ABycRSyD/BGzZ8canollEXKnWb8Q6d+//hoA9wej/YAIXgIA5Zl7OcDNsshGmJyXJY07aV65V1sDSYHgtNpwqJ+RP3d2HnyaNDZ99yRkEr98vdIpc78Jj+DXJx3nuGIte5bWdzQ3UP/VXZiG2otlN4DTnWSFHCHpEg/9A2K5AtBv2VbDO73Ri8UzzJ6mzW2D9x+TQmgAwCOF3fj1fxRqYiX9S6hSELvDyGm18ZgTiupCaOwhPHGEaVrCR2QiZdefUnpCMSOi+Fz6CeFil1NwX7gA94UL/LmiujhSFgDuR1A7+4JUpqJqMYMor778ch95I6jXaMW8lYTgm07NwZPT+IJXdvEiGtybjZbbNZASn5Agw+ZHv5BEv59sWFTJ5MmMLHXr8PJK8wulRX7D3Nk4NSKW1xX0KtOkDfC7hHK7Fj/LabWhpOsxbnJX6l/dsFmovmaH1C+K6kIN76qGjafTakP+AxqkLyFqEULliV9b8fzZIzQzwdCMarwfAeZ4/UGoFtpALMus3wo+lN8jkX7RI+RJPc+Uttrv25Dy548A2EmLZQNDDAsdJsegyZ4Xw82+PAmF4kav9LAcTFkcQ16pu5AZbZyy7to90GP5FFjWabXx2EwipexebxjPFE+GeCJTLVJ+0LPwx7ca+k38L24UKhKIRSp8l72fwfuZuW2zD25u7Mq0+DTHBO18RUJvaQ8mTB/5RUNVs2zYIaXTf8eK6sK0os2mm+2xgX/ze61TH4Hfz1vxev4O3sZghZ0cRX2tnQo2sPjBp0WgYYNWnrHb0HcPfKhIv8WNuSgoiPlezzf6T4n9YmlQn8+dANCtepn03Cs6Ckdekk8x3DnMx+rC0AS0ydTG26D9J9DrgcfgP599f42npmJyXhaWhrCTrtbfJMO2Uxs3YY/s5L4f665aJN7JZNqTwGTWFvG6zZfJhnQAkPuweTBg+k1m3KabZavNYLK3Oqoucj/X4iYREIbTakNJn1hELNDMT/uEJCC763c87eBmxjiTZnVunsrmwdB1I+G02jh6pNNqQ/+c3gCAU+Pkky+6XpW5xlCmoroQ/tgO6b5esBHTunPypX4JfdiFkBfSkPPIdLgma6ARTVZoflMU/gUAvhg12+N7XKhTRJjVT/kK7pvF76fs+tM0vSWqJUf+pZMeUvRRWTnfaCcz+hM6cV4VBWizNAADAKr501a0nJuEXZOmwYycVgZj/0FoO+ndiM+nNDXG9VNUFyImbAMhdNK9S4MTuOmnSCeSGVqmWC5R/qCZUtvEuJcAsDLKH7lfJHhEK1Qnaaizud9Hm75LopI/gvh19gwj6vTJCZqp9/r5LHQNfDQ/Rz3Y0DO5+3HScY7XPzCiLf5jqBK+/l9ClYLYHUgTXn0KANBz6EiU330E61fESIvYkZcc0sQhUvO35KCQXJPk58fTiJNM9jxWdtFSdho3tWgLynbtN2wmQ1ZchdNq4xHqiQhenDRFRJKGuX49bmYpbqxCBXOag+cbc9jo0vzCChdOAGj0tdHM8ep9cR4XO/e587CEBUt94LTacGEoq5MEWnED6LTa4JW2y1AepSnor/kD0IS85pBsBtRhO4OVXvPrQlPhgqjMtU96TiiUerLVPCTlJfSrk0naRqXMtc80r9Nq40LchdWhhudUv6V2bZwZZZdMrwDwvhLLA4C8ITOQ0jLFtM6IkZlwHz+BlnOSELJWg/7WQy7rhep7hmlpxXE+/OBhqW4A+KvtcsMGjbTshISmL8eMnFYbll6qw4FW+sYmwmm1IfWLGYZ8VFfX8ePgXYuZv5b0jcX5lDDDe9Zfi+bDud9rtlmkBACA0XVY0O5B+09IZTitzAy1IqK6zodUxdlV4Wg22Ij4pteE93h0NJYcZlr+0Cpy0Hoqb17LFjw9nRKL/n4Fzjk4Nc6OZu9r8c6cVhsPNA+wTYy+f+i32SkkwIQ+AOj50EgAQO8DffnzTtW8DelzvtG04ylZ6xD9fjLX5vccPII/G7T/BNasWoSAD41w3wCQ9tkM7Ikp4zwui2zErQ+IxM1n4Hup2P48m08Jmp1ONJ/5Zjzn8cSvrVC2az8vo2BJO9M+KVgix44U31nAR7IfpU9QcymdPrAxz3szBpSeaD7Ye5CFCzk+kfFdti5QAicSefBdnYGu3TVz4PzvIgz9+ELebqiTNGFAUV2w3HS4p7L6dh4AAMjrMY8JsM9qp4uEmtlgluaTlD0jjn8LBHEvkp4HRXVJCkyz9VFRtWD39HzO+SbSOC5OuMTLEE++Pwtj5tKRmT4oWtpW4qGRxY+fupvxFbqUhQGgGJwEr66fDwEmiIjojScd5xC+cQQGNmPrXvtPkpG/2Ibwx7WTmRt+QJ/eQ6Q1zduP+ZN6ValqECDPPaqZ9iqqCwc6sxhsQa+mIWSZFoqh+VY/6QS77kJ5/XdabXgmd79pPxfc0PpRUV0oLynBoP0nUOvvBnBamZ/40AMq54HWHb2fuJlQ6W1rDUV1Ibvrd/CKlteYvIdmGPqf/ls/0cyi8+6eBwC4OiAOp36PkHgHwBFaAWYeTvd9Atm31XBGmoG3qnXkgM5UnqK68EVYpJS28kTs/x5VCmJ3IBFUvPemnWzT855s7lC7oEyaOAAg/2PNhLFP4sOGMkUUJEV1YeFh5sQcMTITffaew4HOC+G02jCxRScpXZ9ebBKn2D+lR1T+vP++08gbPAOnx9glE6+itxzSZO4+fYY/M9OYnR+WACVyJWot0TbNN5YwXxxR40SbayKn1SYJFNV/3WZaPt1z5xbwZ8eeYoJs7R/SpQ2GoroQum4k8oTFQk+K6kLXceMQOomdnFkiQvmELE60sw9t5hD5vfsOM2xkqmxsivAMX8OkLfLvtNoQvHIsz7MsUgMVmHOeadbK7e25w7NegKbgsaIWzxIZjrT2ywz1LLtUG1cHxCHlwF+oNzcN+2NKpXbX/kEWagjQxYxvPR0cPR3598zlYyJvcG32/m7a5Fs2WGXhfYMM10/liz4VVF/H15mpK/krOK021D5wDlfuj5eEDqfVhuFFRvNVRXXBJ5gJGXMigpH/kR3ZczpiVUaKlDd7RpzB3OrCmAsou3gRiuqC76oM1EnMNSy2+vFFPmtePj4GnweAmQLR9bg6qkch0Ex4EPmtPzsN/vfmo7y01JBOX45vRg6GBMqmR7SRqoieyd3Ptc9Oq02CtxY3scTXxjYrOJ8ir/S74H07LP7+PB6h02rDPsf3bMyM9cLh1xwc1ZIriW7G6qKg0y1+L5N4aPR1Ktfme29mdZ5MsmNZZCOtDxPaYegBbW4DNOsC/Xd9z56LhndC/NNJPp3604nmsJGaILAzdonEX/CQLCS26yGV57TakH3XAsO9mJ1l3IdPpNLCQ5yn4JVjUSfRA4pej2IpH6Wp3YchMEaMZ2AFjaem4tQ4O47+yb63xJ4PmX7bswO1E5/rZ41ogR+HtoX1E3n9cl+4gPAMX8TtfBAAsGrzCs4jBZAmfi0tNYGS7nmVevH+DnlRBmkRr/Um9rEudqqc8AITftpvGyqNQQr3khjVHYrqwtKoAC7g6InmU7G+/TGlPGYlPXNabXz9o3tnRtqhTmJrZNjTbP2p4c3Ge0UhTRpNk4VvRXVJ/kpNvkhFyMMu9Nl7jqfb9/g0lGUxl4Pw75nQSgAmIpItlUEClSjckDlf+ETNAuBQ/GVsmjmLnyYTP9nzNEAUEjDafSb7zU5o0Vmqg5QcFBsMYEAr9L7FdUekwfk9DPdWpyzm5Z6LYgqyMysjDPMQxYUUT/TFfrBEhqP6im1ocG+2QUlyerR20ps9tyPPv2rrSt4XdG/gvpMAgINdFuD0GLZHm39oM+cxbANTLolzz3/SiVglWMe/hirh6+8A8hRHTKTrf7ZA1Z5F0qZAD3ta1jWagwoAN80xGvojZe1SwwbdE3l6Lk4unsrST3biMw5HLNCMos0IrlJTKpegzc34Iaht8T7FuTFLr+e5orZX1O43TkYhvX0V0zS1/m4gLSD6vGYxxcx40ffZpQfj8cYHc/FZWBQK37Pj4MjppvxZNljh7s4263ePGMMd86lMPbxzRTx4ottJZ/bO9eRdrRo3Hz33qF3Sonqq49gzDjT5IvWWPHsai6aU0E4C9ridvHqhwdMYI4jkPiEJKLt2DZcHxeN4nLcUxwYA/P5qiMt3naywDWLsKzPK/8jON6Kdsu5HTcG3KzhlDIKXlKPw0XJupqXnl9pzbrgdWz80H19mZPYuLg5JQOrnM0y//2v94rBp1ixDnwEMafDvr2dW+F0SUZojv0Qh4H5jvDN93DF9XURnVkagXr9sj+k8jbULQxMMm8LJeVmYsGi8FOrhn84zJX1j4bvK/Bttt8MLK3+zS2AoZuO1pPwG81e5RV1072SSHTteu/U758JEtw6wbNTMroNTxhj8XAB2Atjsg1SPfXCrecLLx4crDl7Jd+G9ELmdtztGPRGFA1FUF+ImJ5nGfNN/63Tt0yzAECbC07wgkqV1BI+ndTvzjP5e7sJo7kNrRnoofT0VLGmH4CHMfyvkz1HSfACwMCebN7bh8dD0RG3sNnos99HU86nn8Vq/OFxpZEG9uRXH6BPJjPfC9+wGa5sbvTpK69ytqHRtc6xr/Rsvf/6hzRjRvLPEx22vHTqitBRjzGw8UEgVs7Ev9k2PR0dj3cI5OHuhFA1aFt7RcO20Z2075t8DX7/720r4+kr6/4nILh4AqvZkSFniYiHCnnrXqgXvTbIPzLFBYch5rD7uStKcgPWLjX4y7NNriCkv4sSSPT0OeZ8loOdDI3FxSAIcu65LZeuvFdVlEMIAIPimCdQLebt5etHUaHS27IidsvMP6bd3m1awbpCHsNNqw3VnR4kHs0mV/GfIH0if5uhz2v309lVw9b44aWH2imWmnD+HrpXyqS9oZjhOqw1NW2mmZeIEL5ZltvBv+XImetVgQUWD39T6zqeFdiKkqC4uhDmtNsPi5LTaUNBvtlSHmPdS2TVYWobBEhkuPctbrGlBxYVC/LuqBEt5SMMnamPd3eWg0KIPX92FsibbbEOS92kCmnyRikM/tZX6jcymchZ0MLQLYAJMn/BOyLsJ6U1pDr92U3v7i/GkgUh9gWmqRx4s8rhRMBM26H/eY8ycidrqt2yrQQhTVBcu33US/fedRtHStiyg7Vca8AX5ldRdwPromA6xjSjkxTR4dWwDp9WGmr212FFOqw0RY7Zj/YI5yO85l9epH38t5yTxejwJnmbUcm6Sod9qLdFOlnvfO0wqRwTMIbMyIhLCiD89UXvueXgU93fZk7DIlK/i83VM8yuqi5t8AUBGh6VSGrFfRmcXmL5nwFwz3616GQ/1IPaxmE8EvhHrpDS+qzIM7ScesjqUY/842TdH/66cVhv6B8R6LINOF8V7FQlhV5Vgw3hZu1iG0SchTP/O6ASwovHkqd7iyQ4uhCmqUQiLnMVOpq71i5PepxjagtJ6Gk8khDmtNvh/J5/+AEDhO3IoB5HX0uIjpnO2p/FCRIrQRRfrS+BYRCuPaGiOn5wxmoyHPbrTdP6m/ySEifcB4MTj7HsJHpLF+dMLYYrKwpyExhmRGumEmdq4cQ5bS4686JD66PQYu0FQrLZyGwftIrJ9IJ8siv0W8uco0747OFLzj6bnemUjkejHLpLPPYekOWZE885QVBcOv+LAtX5xpt+TvmyACYV078iLsu8duQPoxwMALoTRs7Iu0Ya5wmm1wWddJs66r+CBlrJ/2x1NlT5i/xKqFMTuIBJtgxXVxc18COXv1HgZaCF7RhyPkVR28SIDYrjpA6CoLux4fTpCXkxD8xez+T0zEu+X7TnA7dz1aWhiKbhvFnKHzoD33ztRa0k6j+l16HUHTyce3/MNQXQUsmfEwVK/njQxfRzalvPQp89Q+DQLAOLaYk5EsEG4ExfAsj0HsGXKDGlRGpedbxoXS08UpNXM10xRXWj6mWYGcvg1B47HWnCtHzOTzJ4Zi/KM3Zx/srkHAOvHso+eX+98HPklyrQO/YRN986ukgWj8hvX4bTacGlNCK4HNeBpyfbfabXBu10rKKrmG6K+4DBM9Pr3UdO7GtwHc+Hen8Me3IytktttPj9FE3kUyyC/LOKFrldH1eXXZF7o6V3oBTwAPBSD02pD6PPpKPjAjuYP7pbqck1mG9P8e+aaCtt1F6Rhdc4W7oNIzwgIhcAARCLH991PszTzWrYwFbhE3s0o6DVZwDyRzBbs8k6srJz5MYicxUx1fmtdHy0G70ZObAnCn9zK31Mji59UZpMBmomgCBIAgJtTAeyUEQB+O6Kdrnj6fkRefUKCpPtmShoCuwHA/diGHlBhaa2hkwFAzFtJKM/cK9WbtyhaK69qmZSe0n1+JsRjnwKAZeMOeLkhCeV6XskM2IwuN9Ji+nV5YrxHwWBwzfNS2TGZg6VyFNXFodHFOczsG8v+liGmhY/IlDZeJ5IdPF/D1Lq41i8OCy40MG2/+A2LcZ8Admqub4eZALSmSPNjOfyKpmDKntPR8G0efsWB6s4CXpboByT6Nv5TCl4xjtdr1kZF1cw4xXTkY/fGySgOFFJt5TZs/koDOqp+zEsqj3g3GycAM+nW108U9Jq5aS2l++ac0TRaUV1szdK1TzSvBZhZNYFjie+1X0AMTzepXp7EE5mu69uiH2v01zr1EVjCWXw5CoXgv6Wex++byiFzX5HWtqkl+bA6rTYcftWBgI+0Nc5pteF6v3Omc7x+7qx6odyUD0ALj6C/b7ZueXoeOsk8lqCn/Psen4ZqK2VrGj3fuV8koOADNq+KQiH5aOrL9CQwi+m8/95pmDcoHZmHV9L/LaoUxO4gMrMNVlQXR/lrMDNN+uAjJmzjcPUAEPxSGpTIlcj7lKFchfzMNhwnHecAyJMW+R3Fvcy02zTZAECLwbshIhlZGrJAsMUvs0niUtk1OK02DDtQzONsAEDztzVn2tNxpdImW1FdWLNqESImbIP79BmejoQUmoxWr/6BmX9s04RSMXi0fuKjCc3SOgIt5yRhVkQIECdv1sS8ngQiURjQ/96XNA0HR03nk3bBvbNl4fXyZUS/r9nBd3pqvFQumVFVtKiIGwf/vjmG9ABQs3c+vDfthLefHxNEb9r+A8DqNUsQvjAJdRJZ7JvdT2toX542JIb+KC83pBfziRtPM8FEFCCpXHc3FuBy9qHNpouwvqw/fv5OStP1bmZSU1J+w5De08Zdv3nSv9e8IUanbfEbOfG4Q2qvyK9ZGyyCuUSVjU0lvsivg3wsw0dk4q2HF7Ex6+9f4cZBbCOla/xVKj/x9ftLBrQhU086HSEimH1P5ZfmF8JptcGnRSC8bSxWXftPkjH1bAueLmXfJqkvFdWFH1pZ4d6XjXJHey4EllbXNsXe7SPhtNrgLtFiFhb0/pbn5+V5W6C00frQ0jrCNOBq46mp2N9poWn/9GnZhaensAokRDitNsm/psYvWz2OcbG/916/igb3yiaMTqsNx7uXSnXTNeU/PYb1hd50j9LvfFU74TrpOIeau1QsamUE0RD5cVptPL4XV6T8tFX6hgmwx4woHfkbK6oLEaM1GP3iyWzM1zsoxz7cNHMWL19cazyRp41oRPI2w32Ku5TY9X6P47P8pvz8/W45tIHY7qafp5p+lxReBJDf1cyPZJRVT2sFAPQJc2BG0WYsuulT/VtrFpQ7OoMpwey7BsFptWHshk2GMk4/GiN9LyKPyUcSYAkPQdzLSR4FC0V18UDzZrxRP4inM4EP7EHKpl+k/jnb6UyFbRTry54XI/WN6MMKAIHvagIIIeVmxf0g8US+eXSP/LH9v0vjCNBm9Yt8iX2S/5ERfZOei4A2egFVbIc+P8CEewAoeluLe3psBZuzSHnU8t1sKTj7N+cCDWOt+VYjEJoeTp9QcG8171jTa/1HgXVU+oj9a6jSR+wOIDMfMfrY7c9P4LEtRPIJboET3ayoNy8Nx1ZEImD8aY9BSfW0tDgNg5vZpQXN0wQBGDWDYtn0f3nxNgbT3ncY1qzSTIc85QGAKWeDsDqqroFXfh3XVhLIiMo627jT/flHElDne61/vGvV4uAJwcpoRIzMhFd0FNasWoQ1V3zRu0YJQtePZAuMlxcXPrQCLECZG332nuO8HX7NAZ+Ys2g6QAYvqGjiF9up13x56nO6N2j/CQ7KYalfDym718Px7ASkfi5DU8fsLMP7jbOw5KI/5rVsgeu9Y1F1TQavNzG6FzfnXHapNgbVvCDlN+O7d3A8yktKDPy9kLcbH4e2NaTXt5XI/twEj07WlH/VlWqYNH8UAt9NxenRdtOYSsMOFPNNqlmfjcvOx/RxD8CycYf0vNze3hTx0lO7zdpA90884eAnp576LrPkumSCIpYtluWp/ktl1zCoWYJ0X59+5ZFMVPGyGL6pvvH9OOx/RTR4/zGMrnNM4i/xroEcxIbIUrs2Ug78hT+uVMFnYVEmJRn513+7jdNq47j9gmn69h8lo8mXqcieGYuI8RlSW4895UCTL9lmr/TuGB6E1xIWLIHtxL2cxGHk1UkOAyCEvk6Rv7wbl5DcorPHNLeiJ3MPoG+Na7zdh19zIPAdGUhBP57od5/wThwsQUzbf99pvsm/XZ7E55bateG+cIH7+4n1UtrRhzpLyH9mVLq2OXzuOQSv9QEov/sIqmxsihvdjprOW4d/boN9ju8lHs8PS0CdRZrJfN/OA7Bq8wpTxZO+Dfo6smfEoaC/BukOMNRL780uQ9+a9U2Ht5PQcEbFfk9m6xMANEuvieKESxIPNG7NKGdBB4QPZxYAFY39kYe6QE1gJn95nyUg9Ll0U5/HitaWqWdbGBBGzdpEZfgENkPp4WL+27tWLQ4Db/Ze9HX7BLfAqi2/8nsnHneg0TfafJj/sR05j9yev+FbJ1tzC5quWVexqV110zlT//0kdn+AB9gGmBJqnPUv9K5RguwblzGxRacK/RMr+pZuZ20W6fRYO+rPTrtlOoBZA4QO23nLOsTfpeU3sBG/3tE+UbRnbTfq3+MjljX3v9tHrFIQuwPodsA6AOaXVJ4hCybVNzXG1a7H+e/bnYQU1YUb5W6+scueEYeICUat5T+ZoDifMVEoz9QWFkV1oa+jP0oLZTv0nKnxqNr4CkdstNSvZ0CY0k9WANAnvBNHgTRbyL1trTHt11kcnUkEPRh5sAhDap013SiZ1RnrcmPd0QjU7pMHx67rfBHxxKN3+0isXq1pCL2io1C+c69pek/9aQYKYPYOKirryEsOBHzIFqWIv4ZzPwHqC3HBy/kmHn4FFlg/TUXXrKt4ucFBOK02tMn0luC7K9LmlSTGwjfFHHDA02+AIUs296nJeTFLd+hNBzdLMiOxb064L6ORxU/boN4EM9GX6+7eAWsXzZXqJKpojB9604GgD3cYYtbpNxAEBKCnnAUdEGw9BZ97jD4Zt2rfP3le8IFd0uReHhQP9b4bCB++47a+Y08KBbE+uj++2I7CuKumZTx3tAM+a6ohk7X5KpmPS7M5qf22odil07DfzpxjtrHW56dr2gDTvbuSxqH6r9tu2U6n1Qb1eQesnzL+RUFVUV2I+joZe5+YZjrmC39sh8gmx7EnIxihz1esoKiovZaoljjavT4PsWBpGcY3qJ4EQLPy9cLvrhenGdJbGjdCys4/EPNmEjLfnG5ol1iHWB6B8pwab0fmG9N5mrt3X8aL9XNg+zAZrpeM9QHM7Lvg3tlSuZ7aQgJF6NIJuP+urcjqwEzfeg4diZBPDhjGZMqRHUgM0PxWxXEg9g0pA+i3pW4dHHksyqMQZkY5XyYg/Cmt7GNPO9BkSioO/9yGh36gOh/IuwcXu5zC0ecckkm8noYdKMbw2qduuSb/k/XaU5rDrzr46ZeefJo0Rumx4x6/ucIf2yHooSxDW+cf2oymPjVN6yPB95/wWtojhrsYOK022HYCrmgtLQBTUJkzKyOQ0cEcwIy/8/r1AC8vuE+dvmU/+m+phyXB6//RXkn/rfYJSUDxkx1g/Tj1P0sQG/lvEsTmVQpilfS/TDSoz2aH4MGWHXBVCUZ1p6b9BeDxIxc3lGaTmX5CEJHWOmfdj/PrmnBtslh+yE8TpIWEiIQRRXWh7daHYR0ox6zS89vrgcdw5fWL8LsJJmCWTk/P5O7HF2GRyPvEDu8bQPaI6dJESXQ7GzQAuO7siKqKNhnnfh+NsEdkLVVijwc1X6mb9YT8NAH5D87g9VjTa0FNuIgbvTpi/fxvTesnBCtPAghdX70vjm/+zNKabQIrEsL6hDlQduUKAEBd3lp6L1xAbdMKq/9YgvAFSSgPvAavI9UQ8oJnVD7K5xXbFmt+XWhsr7cFw/YVGTYHt0Oe0nr5+ODj3M2YFJRgzATg0uAE1FxqFFKJbrd+ACh6y4EWb7Cx7xPYDKe6BRri4VTEe8vtVXCw4w2PCoMKFSI3kRsNJ7rtI3mMKbNyLK0j4N7nGfFPj5x65CUH9jw5Dc5mMVCKjUG6iT4pTEe7qtUqfI902uypTwAg5s0kCcL+dhRD4uml+C6p7YrqQnHpJYwWkM4sDRvCffIkTvzaCo3uO8Dnmj9+/s7jd6Ovt6yzDXnjvFH9QDXU73qUz7lmvJq1w9KwIfKeCkPQq56142bfsZ7E05QK+6mTDX/8NF+6J27eK0KTE8sanV2AORHB/N7FhxKQ+oV82q6oLnR6eoLhWwOAoysiuXXA/2Ts305feSpTfcHB/Tj/uga8F6L1bbttQw1mcv9kPhDJ28/PEPKl5ZwkyYdMrOPJ3AP4KqzVPxKC9KSoLrT7NJmbWgavHoOI0dtvq++I6LsQyatjG8mXVPzGwhcmIaTjYaBHsem7o9OfY884sGvSNI/vdcnhVIN/k0/TJig9yuIhtv84GU2maPuMNunDsCdhkaFdpLhUl7dGrSW1UevHdANfSw6nwt9Sg/dz+MYRHMZf30aRXxG1V0/37LmItW1q8d/0jZiR/psOXjMGEaO2G57rr0Ui9E5AU1xT2kpBTKZKQayS/i1Eg/rxvwfg4F0+FU62FS3oIoSsOFnMOm/FuDoqwr9P4iYEPkHNsSr1N573drRrV8quY2Az2VZfJE/CB/3WQ+dSGtqI0W+fACtQxQerUn8z5YeITPIA8A1Z7sJo5PWYJ/Ej9hktsBX18eVB8bC9xOzz9bwWvW2XoKqJvKpU5XFZ/P5qiF/C/qyQd+KnIsGi01PjUfMnY1yZY085cKH1Da459tRWABLstL6OihYL2tSRqZG+7EWHt2BYYCfT8szaQmPonodHQYTB9vQOxFNVPa9UXrsdXvikyc5bbnxuZ3N0coIdO17XtPdiHxjKCIiGcmSn1C4xn09IEErzCytsY+G7dhwcZTTnUVQXImcmo/lbRm20orrQ7rNkvvGmss+MtKPePCYMnHVf4ZsU0czvdvvlyIsOtFhUxGG6z4yycwjq1qmPGEzRiMgEx+LvD/fZs4Z6uo4bh02zZvGNphkVL4tCs0FGWHoAqLO5Ps53Pu1xLAAsHMaEFjIsdYd3krDjtelot22owbTYrC/01CXrGv5uxzYah35qi0z7HD4Hms3FnhQrpr8F02t9OjLLpDo6vpFkMIcSTcwT2/WA+9RpQz1iejI3zP62IwoSv0XE/CQEvyzDi4vtUVSXJFjbdgIfNfasDKK8FX1vt5p3PD33rlYNfn/WxMUup26r34O2VZdOxG4l/N0qnZ5K1zZHtUevc0GD8lA4lXHZ+cxf+Tbalvt5AsKeNbeA8ESi6byoUPKUt6J9w8UhCag97rAE2CHylPNdB+T3nIvE9j0lIY/mBk+k54PGnb4PknJyMT08TJvPPJRrNsZEpYK+fRXNFbcqV8zbb+9ZTPTXUKvFMDpXBsbj729mehzvtyKfoOY447DiclNvNP0sFd5+frh+6dx/jiA24t8kiM2vFMQq6X+Z9KaJnrRsQMXCj54qmnzENP9jrWG7ViitUx3ef+808Nj6m2TJMdyM37xP7AidlGbKh6c84jOnlYFAjG1u9Pcgv5nbbd+tBLPNUxlKF/m1KaoL4QuSkDN8Ot4/1RJL8jug6YD9FU7++R/bKzyBul1+9M/1i4e4AXVajT4sABhAgu6ExNvWGt4nz6H0CIPEF01Ab6f+w685EDy3EKsyUqR2E51MsqPh9DRDfCzyFaiorYdKL0nveeC+k1jeuqHpOHF364C1i+dKm0uisMUTTE3DPG2SRmcXYHDN87ys3n2HGUxNIzY9huChu6R7xI9PUHNukqs3F9TXH/zbOHzQ/SeuXLgVb7dD2d92NECNR01Nxt6JGmCEfhNBfOr7jtKa8U73IzN9MKXpdqlMM5Pegg/tCL4Zt6hoaVtunizyeatNlKK60H3vfTi8qylyH55h+lzfttNj7Nj+9nS0/Hs4gh7K4qfcwK39Ec3egyU8BO6cfNPv/sXjNqxYZUfQq2nc18j2QTIaT5W/xZyp8Wg55yKHwBbLIusIukf+sWTGfSslw+U1IZI1Qtm6QB5QHNA206Iiyawsd/cOUpB1aa7x4ItVkYAnll99U2OsCGdWBF4d26DgvlrSyZPZN05lkPmjpw04lU15Cz6wI/sxz/5MYt68xTaOvGpGdJJJMT4BcHNuT2NY3w6RRKFfIm8LSrvZUOfNQ/gl7E+en8ocX2zHzGYsBAX52pJi0lPbFNWFxIOJPPyJnlexfP3JnKc1TvRhvZXgq6iaX60Z6fN3zbqKVe9296i0vFR2DTW9q8lKhLeSDGPDU/n6tgBGXzCKaWa25zBrn778rllXUcfnisEX9HxKGNJtP/P0L+zKQK92RXe04FEpiP1rqRI18Q4k+pC/Cmsl/Raf05/ZZglgCxClEYnSnx7NNKmOZyfwe2JZ4j1PdZRlHcCM76ea8r/v8WnSxGbGLwlhlCZ3YTT0ZDaJdnpqPC+LJkR9/6zauhLZM2MNeVOOaKcxXbKuoegt8zhiF4ck8DL9lmmnUiSEOa025Axnk/zLDQ7iSl4dXg71WfCKcdLv0I6HePwyIkJTutVCfWVgvOG5Jy0gwOIERU1NxsiDRVwIu95b64/S7jZDvatTFmNVRgpv3+WeUaZjQ6xTvB/4TipKj6iIm5wkpRV58oqJ4mACFCZhU7vqKLebx06xhAWjTfowjL0Z+4VoeeuGqLKxKefFadVQGy0bmU9SeIYvfx71dTIbYw/LiInljvaGRfOs+wq8YpjvjxhCIfi3cVwIE3khIWxpsTE4rNf8Gzxd9mMaiELp3TFSHwBAxIRtmNeyBdTlrSUeRd6cVhvyP9RQxLKnGTcyIm8Fid9KeZ1WG5p9kIoT7stS2WIdJCzOv9BIyhfxXRIKfjC+J6eVoZa+ku/C/phSw0bkjYb7DHm+eGAeZhRtBsBQWp1WG4YfPMzzhfw5CgAzK9bPY0VL2+LxnGw4rTZU7VlkEMJabtf8bPXz2Pa3pyN8QRIOdmGx5EgIA4DhtbXA7G0/T0bzrX6GeUW8VlQX3DlMyKEYVznfxOPF44xfV7QG9R8xgcVSq3+fDKqiqC6ET9yK1SmLcXWA8V2eWa+NcQD4c+l8AEDBxFaGtGKZ9Lep7c/SHC4KYQD4yQMJYQDQ45HRhnLWLprrsS92vD4diuric6s+jfj+xHGRPTMWBR/YcbXrcTitDP1vzW/fG8z/AIYyuOqKtuGj/m8w05hWrOveRruke2aKkI8KtprOpXohjPrCK5Z9s2ROSkIYAO5Tqx+z4m9x7lYnaeZ8rzaQBSdeZ3Em1n0/BztzWUiNu0eMAQAsulifCQhxV3nZ9eewOYiEsKQc2X+QKHj1GLi7qxwRmZ6V29sb+I4YvR1dsq6ZzhVi3nGHu/HriE2Pedw3UD5RCCu3s3n4zEgNwVCkTe2qY8sUNnd/XsjaWNYlmtc/qFmCga8GM+X4iJ4EeoCdMIb+OEFKT0JY54kMBbnOTc8F8mkWaf6hzTj5W0ueP2zjCF4+1bGpXXWDEAYAdRJzsfSSFh4ktprFkOZOpUrUxH8NVQpidyiZaZwSdt3wqPnTkwjgQWmv3qdNfIRQJwZi9VQW3T8/zOi3Q+hj+rx6wUtRXcj5Oh6hSyZIk5M4OYpBIT1psQBwc70+4Z2k9BS3hyhiPAOPKHxX27gmBnTAnEOb4bTa8He7amjxRiosYcFSPkV1odYSoxN38JoxUj859/fjdYtO33wxugnZTH2xptUq5A/2lspd1rm19BtgSInib0V1ocZyo4miWR+JQm+zD1L56YqiulB1TQZq/d0AiuqCz7pMnu6FvN2GvF6xbVF9xTbTsaGoGkQ45Yt1uTm/ZiAVROWZe3HPMLbJfqkd01RfuzeOm6ZS+XTtzi0wwP8rKgso7e4tg64Q7D8RQT9b02th7xPTYPH352VQEFWvVKNv0pBAhwQ2Q89FMBv92AaA82VuwwbsRrejhj5QVBc3OzvQeaFhw0L+ffry6X/OcE2gE2HBTyQ7cPGhBKmfujw+3vC9HX7VIQGa6JUtiuqCpWFD/NDKKvEVPDnN9OTvzEg7UtYulfx1Eu8aiOqbGvO+onhqh19l/78Ka4UJLTrzsQfcjLP0PYPzJhNm0beTym4xeDe+CY8w3TwDkPz2zP6abC3z+O0QWT9NxVoXg/L3rlEDHxWw708UgkVq/mYq3srPRPjjW/HTLhkCXLxe1/o3KZ/TakPxZBZX7K9pMkIgAJT4a7sQCltB9Yk8mwk6yUcSYPHyxj3DRvF7p35ncd/yPtXm8pyvZSWPz/pM+ARYTfsO0GLuUb10PzGgQ4WKOz2fEeMzJOVEwEepaDU72TTftIB0rpjUlzX6UGeD8oL6YWlkE4+bcYDF3HsxWG7/0uI0nB5rN+Th8/ivC3GjV0dYGjbEqfF2w3s2e+9EpKQinkS0z1vN5+SHtH4+U64saBmInC/ZezwqBH0X56YBfpekssu63FR2lrHwEDdaBkj1iUizIj+mJ3WQ5yZSaiiqC8FDdzG+91yAorrg7efnMS/V67TauIm1mEb/nT8bxN7Nnz8yFwRLZLhUXsPUujjxhMPjexAh76nM1VF1cbdjN69PjJvot4yFidj2/nSce9Qu9cvhVxwYnV2AEc078ziGiuqSYliKY16MBSv2HcUvrOjbqaT/XqoUxO5wEj/69PZM00ubXr2w5hPMNt3hGb4suDO0icxptaH6r2xjTQFJxQnbTMBrk+kNp9XGg1WeD/M2XWg9TZyK6kLv+x7FiSfYRuP3flOQN2SGQTuoP+3Rkxir7Jiw4Bz/QY69Q/bn6iSHVH7Qq2mS4NDMp6bEox6+W+yLaUWbeT8V9P6WXyuqC+jBtNuF79pR628t0LKiMkRKfT85rTZEjM+A1/oATdC4iRI5vOguXrZocqTnRyRFdcGnRSA+KbwZX+j+4awfPrBzPhTVBf8t9Xiei11OGTbgBEtPv0dnF6A8Yzc/bTEbG+69ByUeXeeaGcajxd9fyk//Sbs+ojazs6/2u4zW6bTacPdwppWnAOVUFtX5V9vlKLt2zaMCIWhbdZ5eTbjIeBZ8l/oFxEgnsOK3oKezj7FvqayrFphYUV1o+0Uyz1vSN9b0dBZx2omXvh+cVhv6xvU1CG9iOyld16yr6PC2dtLYf99pQ/pG01J5rCnKRwK802rDpQdZPLHAd1OR2PZuqZ62XyTj2FPa6XDKrj8N/WA2nocdKEbGe9MNbTt5VxNkFbB3lz0jjsfxCnxXDnguBnMHgJAX0gzjSN9/nn6bPaMy6ORbUV0Y/O4aUJzE3M8TcKOXMbAxAA6tX3blCt+sh7xkbkoNAG+ExCB3SgIixu8x5U/MY2nciMdsIjNRM6GK6js33C4hxXoS0sUy8mLZKYYYWL28nG3Aq530Ru4Uduof/sRWqRxFdaH0CEMazZ5hPKU76TgHRXXhyEvaaY7TasPCw1sMafX86Uk/F7V4I9W0fXrFh1heccIlA2iU2dgo6Rtr+NYo5p54b3AzZpImUv5i7XmHd5JQ5Y/tcJ88KZ26mK3J0noBTUl1qw13Rf0m8kqAWnr/R09rh/ffO5H3aQJaTmPAThQGRl9vRXRmZYTpexHrVlSmeFXa1EbH15OwOmcL7t59ucI9B93vNegxj+01u5ey7icAQOtvWCzP74M2otHXqYjOGCKlt+8aBAAIaSTPnQDz8T4Ur5nhX/qxnmndlwbIYQkC30s1gHp4WkucVhs/wT092u7xHfV4bZQhbyX9d1OlIPYfSBk286Pr0gJmIpETW4LQH84BkDUyFAC2zvfpkoBGlPeJbBawJ6YMz+Xuxaptq6CoLg4gMOVsEKbdNCsS05tNPuUZuznU8rNBdsPCC4BvFuk3aY3c5czM43Sns5zXJsKC07D/QVONmahlVFQXfEKC4N57UOL3Vps6SxgzSUtuwUziPjodDqfVhrfyMw35g15N407kdL9fQIyhzMOvsY3LqcXNDWVQ3JnEboNM+RH7R+S5tOgwnhn1OLuRziDqgyenIXjNGF7H2U5n4InEeig9LSwFA2bh8KsOWBo2xIWhCYb0AANYUFSXdPJDaUjwoXfku6mJ9FwsqyRRNiOtsjaTC7uK6oL77Fk8mauZ7lS0CQfAHfUrSieewJ5dFY4hBXcb0igqC0Ta6anx8N4kBzf9ZPwcfu27SoPulxbibbvhv6Uesud2NOWhtPgIFwqOP+lA7hdaP5f8EYRDb7Ix83KDgxKYyN01DvINkf47vrQmBD5BzSV+AO0kmYT9Opvr82cLk7/gwB4k9Ipt0ddRPNmB4086OGKm2F8AM3kLH8FOHfVhMQAGHEFlO602ePn4sAcJ7Txu1PR0q03+qXF2XocIZrAyyh9rbp5w5Q2ZAZ/LpR7rqmhTZUZhT6ejvEQD+XF378DbKJblPn4CESM16G1RcQJoczGRPuSE+A3lfi6bZWV/29HQDjLjupzFNpgBH6Uib/AM6R2Y8RkxYZtB8KF69zw5Tbo3ZOSThr4RyzXrPyr7rPsKv/fWydb8mciPWblEiurigbQ9kfiNEqnPawK6WJaeVxGVr+H0NKgvyAiB+rY6rTa4u3WAd40anG/6zolIyDUbX3uvy/NXwi5m4mwJD2H9NcK8rSV9Yw3l6dsW+ny6FOuThExP+fTvv14/GbWV3p2iulC6tjnnO/wJ9o3V/5YJq/OX9ZTaJJL4nsk6wrtNK8Pe4pju5E/8H/heqvRtEJoq5U9rvwwAJFASelZ+4zoU1YWSctbPhKBKaxbV02zQ3tsSoqU26oLTK6qLWySJ33TZukA4rTase2duheXfUVT+b/r7L6dKQewOI0V1watjG27KY0aXB8VL6dttGyr9VlQXynbtlxZ3RXXh8l0a4tGMcwGGCVEEzqAJguLkiGnXDO+E5BaduUaXyGm1YXyxdhLnSZjQP7vu7CjVQVojivmiT6+oLm4mqRdozCZJQrCj54deZ33r5esLp9Vm6vfizi2QJsn1bZlpxRshMaYLlsgjad4+KtiKe/Zc5OmbprINWv1v5UlYLM+dnQdAPgHy1C66t+77OYZnX3ZZ7DGfGXnaiAS+m4qQlAuo/UM6mm/1k9I4rTbstS8yLJaAuYBX0pX5w8HbYhgbG7+dbXiPfUISpH59atsQ6Ime5Xwdb7px0G9wzchptcG/bw7OdjrjsR/M0Ct71yiB7YNkyeSXNiPiRvFspzOIGLUdRW/LZin0nIQC10vTUPOQN7/v26sQzd9MlXwh6NnTQQ7U65ctjX8qs2bvfA4Qom8PzRfHnnKgRY0zyPk6HrlTEvBicDzODbejpE8sUvZuMGiu9e+42QepcL00TRIiKC0AXHow3mOfO63MTPfKwHiev7y0lPkYpWehw/aHDO+A0mXPiJPMsMRnIimqCw0zLkjjx2x8Oq0MEl5fnliOWfk3enWU0kjXN4VJRXXBsmEHnM1ipLKIRIHJabVxnx+vjm0QOkn2b0nKyfUoFOYNkf0eyS9QbLf330yJUFuIIiL2wTEPfWo2j4vv5PGcbBx9js2nVdZmGvqa8r+Qtxvefn44PVrwb5wRx8eWv6UG9xlMbV8VTqsNl8o0qPH4F9lp8KE3HFI/iLzU/zYNh1/xvG6KRCZ61k9l4JTjEx0e+1msz/qpdoooWnSIfWXZuAOFk2xciVVeUoKydYE8HSkozNZJMr+jd/BWQyYAuHPy0XpaMg9mrqeNs2dL+ah88k2mtnUdN47xuMGKnG7z4e7WwVRYHpedb/r9i31EsPVOqw0F+5oaeKL32vzNVO4LVtG6RmWV7WGKN/K9OjvCLiliiUjA9TTPu7uztpHZq35tENs973yQlPe38DX8Wj/Hifc9rX0AAB0entNqw+kxdl53eSeWvuw95pM7MKItKun/FlUKYncQLc9mTuvl2/dwUx4i8WMnm2X6kEWzBL221NMiKiLOvZWfKT03yyc+I/+ZiJFyPkV1eTyJ0E9i4gRYVdmOx3OyTTdTZhQ1NdkAqW62QNDv3O9lE7TmbzPzlzU3nbSzu35nWlfr1EcMfHjiKeSnCdxUp+Q3NqG+GByPtW1qwWm1IWe+FnwS0Mxk9DyTkOk+e1bqI08bHDF/zjfahoB8aMy0yScnsEW+r/1efs9dXiYtTHR6l/+xHRdK2UK3+VCIaT+bLVCK6uJgKeIJi6K6gDK3BIaibx8JYfqYL7nd5kNPVEbY4muIflczFRTL1W8kbtxj9OHxbtPK8G7/uFIFfTsPkO7lfWKXyms8NRXVf5V9x8gPaMGFBlIftXg9DffsYX4U+69fMbybqKnJuNqoXNoEi5to3p497PRU9GMRn+t/Ew997ffCabUhK+4HNPkyFVkdyhH+xFaEPc2+pboL0uC7OsMw5szKy/08QbrHBeL5rG/r/l3InyuqC+5uHaCnWvtO48iLDu57mRjQAeEZvrh0xdd0kxS380EU9J+FpgP240avjqZziaK6kD2PnUaX79xrOhZEvkTyrlHDY3spH51EkJ/OsuJ0Qx3eLp2AXMzmSVHAhJcXR7MkIWNBy0AoqgtHX3XzzTsAXB0Qh+nhYR75NnvnRIXvyD4tnmDBmwzYbzp3iu03M1X+JjwCWc9pJ2NHfomCJTLcMDd9HNoWZZcvczAJAPi25xzpPYuhBwDgwcie/HndhSwfWWWI5WfP1E6BAt9LxfU/mYm+VxUNqVPfZ+RflDM/Bu+fasn5bDw11TCexLzLLt1EbStz456HmQlZjeVbPYINNX8rFbV/0MaIHixFz19Faw2VYe+X5bEMcb7r+dBI/mzdQqasO/ErO2WqtpKddLq7q3BabTALcQIAg2pe8Chk6Medurw1wp9kSqWcrzRFTHAVzRWAfMHMvsOgbdUN6xwA7nu17X1mEaA/jSRFFpV77CnNP8xp1UxzD4ydBq/YthiQ4zTMLYrqQs/BI7DolX78vrhGi3skUUlqVo6ef7M9A50SAoDlIlvnzBSqdzp5lZf/W/7+26lSELuDSNSEiB/vkRdlZD9FdWHgvpNwWm0cdIDuKyo7UaP8IrKc+F+khGoWeTOd0A6v5Lt4meJiXJLIFj3xyJ6Iyh6Q4zQ8I5+pqUVGPwIA6FvjElrOk9H2PAkhzT4wOjiLmwiaaInCHpFNyih9RUIOAAQ+sAc+IUGGDR/VlfeZdmIT/lQ6Aj5kfPUYyza2z+Tu52WFj8iEpXEjXpbvqgxps936m2QMP8gW6TqL0g0TvMi3fpLnPDy+FZbGjfj9XoMek94fLSCWfsxG/tBDgbycxIAOUp/sS2KnHSEvpOG4nS3G+ztpEOPk8Gy2qNKCSmApom+W08qCWddako4+IQk49szN08mbmyYqTxTCFNXFNeH9c3ob+kRRXfBK3YWdr06T+oaeAQw6n6jK2kzoibSv4rvuVeMGSvMLeRmF79qRO2w6fy4KTCJRGYtaNUOfPkNRsKQdTzupXh6s6bXwdJARrbPZB6kc1a31NwzlsU36MEN7nq3HjjXIj8VsoVdUF0fJdFpt8PurIUqLDuPUeDscz04wpK+IqHwCJuiw/SGEPZtu+G4AwPsU82MtPXacP3NabVi7eK5UntNqg/tgLgI+SkXEqO2aIBdbguy7FpiOKwJjOTnBjj/nacAW+s2hqCAiOvG4vHm7MjAeIWvZRrr1NOZbQgHR9eS02rigrj+JGNQsgfP3UcFW5H5uVCA4rTYUL4viptQAuJbcabVJQcSdVht2xf2AtM+0Uy4RxEOvVBD/372b+bhcWqPFrzo4WgPDUFQXvKpU5YigAIO3p7FJlgEXVoca+Ac0YBj9/CP2f8D9e+HeL4PmmM1jhe/Y8cy08dJ8qqfVB/+WvvmeQ0fydDlfMnPMQ687EDE+Q6qjas8iHHvGISFB8k1vQ2aeTyZo4SMyeegMs7Wkd4s46bcYG0wUXo6+oKGjikSmxQBDOL3+Zwt+gia2uXffYSjrLPeFKFTxMuZ0RHHCJZ7fEhEqpZe+RZ0CB2DmeqRMoHt99p7j89iMcwGIzGSxTAlYRyz38M9ttMata4a8T+ywNGBIgLvjF/NH4U9u5eXn3bgk9Qn5a4ptBCDFfQMY3LtIlM76sRwWRz++mnyZarhH4/TgqOocpVMcu06rDVWy8iVQrI2zZ+PiQ+z7fiNEczVI2btB2guYkdnaQGnJfxlg6+jqNUsAAKE/MiCz5dm7UUn/t6hSELuDSPwA6aP97UgGWiw5DKfVxicFgJ1oXRiagH4BRrOXNb9pQVdvdDvKr8+sjJDqEycjcbJVflmAiVlDJT64AJHCNtdkZmY2GVLclpI+mt9PFS/m1zaxRSfDZsLSOgIWL28EvWKurT01Tls4RIjn9wu2YXKeUTuYsybUMEHabq5JpC0V+8Ds2rsdQ+hatXmFNKFywWl6MnKHMh+LwfuPwSe4BU+T1aEciurCF2GRUpnuxVWhqC4UT3YYFtt9j0/DgpaBSOx6Pwp/bGe6ydUvHnqeAeZ7Qmn+WPYdE2o6szQkEGV0WArAuKCZ9Yso6Il1BQ/Jwqor1UwXm8K4q5oGNFrb9BFd82djoezaNeyaxISnNUXaqRLlLXdoUMpN09im6vynzfkzffv1wrXYVztem+6x78hXw+yZmEcMwEynpU6rDQ8XdDfVhALA6tU/IHhIlsTfiYeNEMYGJcDNGHyEGKkfL/p7IhgN3dswVwv4ffmuk1BUF5r8oSL18xmmAiQAZM/SvlmC6aa+JGCCqj5unsYSEYpZ5628rNDn003LJTREKk/fbvG3mbJBfK8NZ6Th9yu1TctQVBdXaIin7Dtfkf2ZynwY/LiiuhD4bqoh5IJPUHOp3LI9B+C02iQhhsBbiC+bry8Pgkv9e3yiA0d+0QJVm7XNjHo+NNK0vwBwpDyn1YbCH9txxReZT29p9wuf6/XjuPzGdSlQul9vLQYaId3V7pNnyhOBAol8i+2hDT4BF5m1T1FdsD8/AUGvpUknaWYbWjLpnBn8MwDgzx/m8XThT6XDUrcO9k+YZlpPky9ScXyituGn5ym7/kTO1HgO0kGkD3XitNpw+YF4Lszp5wo96cFCiAjdEgCiWh9G1Z5FqPHrdmlMWxo3QvnOvfDerM21Pi0CpXKon1f2mIor98dryozsPDbHCyaPBLoDGIWZvE/s8J+fhgsPa3uJ1VF1Ef59EpxWG5a3bshDUAS+m2oYr6+3XQXgZn/2KMbcQdORkrXO0G4xT7LupFP019SnFa9JQDb7RkgR7UkJRf/147TJX95cYRHxnfzNnx4QJZXntNqQ+oVs9pv3mdFX2mzOgpeXqWAPQFofg4dk8XRhz7Dv6z/KNLHSR+xfQpWC2B1EAyPa8snjWj824fcPiMWqtN9hiWrJEdHafcZMsGr/kM7Nk8SPnj58WrC9Ylm5tAE/OUFD1aO0IiQxADS5GZyY7Jc9kdNqg/q8JlgQmAUA+K7OwDO5zGyy5+ARvC69c7B7Xzb0JE6gjdK1E5XqK7QN+8vBcehWnZnUkb/JxYcSEHgzrktpjxgce5otSq6beyaK+UL9CzBhQb8JL8s6AK+ObQyCqNNqQ9spydiXxDYA2TPisDSyCQdKIRMVsw2XErkSzx3tgGYfaE7F+vfnzsnHw622e9yE6fm5el9chVo5AHjpu4USP57KFElRXXgud6/pc5+QIFwckoCvwlrx2D40nhTVhcOvsdOr3IXRhuDHAKRTBSq7+8gx0j1FdXFoeYCZgp0ebUfN7cz3ySt1l8f2ECW27mraTnGhzvs0QQKTEN9Z260P8zyT87KkegIf2MOvT3c6a3gvVJaoGbWEMRAUvc+iXtA4/HMbg/CvJ1IUED356wr0bm4OCCK2P2ecBksuEtVR0O+m8OZtwZpfF0p5KU267Wd+352dh3F1VEM9hT9qENGjswuQ88h0bgqrqC7JDJDK/byQCXrFkx1o82WyVB6ly/2cnUKLpnr6b7eu5TJO/R6Bb8IjpH4t6cs22znfxON4vJfEs/93MmR5aeEhQx+dnGDHL7/O4+/rYqDsmyK+a4CBGjWemoqA+40O/qRAMhNKnVYbvP/eiXdPGWOFKaoL+Q/O4NdBD2UZQpU4rTbU65dtELbFb/TIS5ovlKukhM/zZgK6orLT/0lB2uY9cob8fhTVhW3vM2XHxS6neL7o92U4eqfVhtqL0w1t1/No2wmgjAn8I27GENT3b8q+Tab5iVyTjYKe02pD+MStBqVMxPgM1NnMFCSXH4jHM7n74fczSydCmZsBz4g+oma8EM83uh1l7+99OX3Kzj8kPl/Jd6G0iCkTREAPp9WGqKrVUeMXGdwK0EweT4+1c9AdQBNmiMgPnN4BUc4j06XfeQJK5KRjmsJhXssW8FofgJjMwQCA90K0/Yb+O9QLNWK/6J8dXRGJ88MSPM5L+vlweeuGhnLpmciPXhFR+4d0rG/L4gMGT2bfPM1VdRd4jjtGFPqc0RLAaWXhXsS9l+gXVvJHkOmaa/adOa22yhOx/4PkVV7+f8AA8w4nilJ+NjsED7Y0AlTQB5t8JAF5sbLZi9f6AKxpxbRU+o/dU6T706PtqD8nDQUf2LUAl15e0uShn9DMSFFd6LZnAHx7FUr3Yl9NwksvLZLMOBTVhW5jx3KTPH3Z1Mb7c3vi8l0ncewZB3ZNmnZLHgAWd0sP+U7X3rVqwatqFQ4TH57hi5zYEiiqC316DeEmafo6zH47npmADZ9PRf8AY6BokXK+TED+gzMq7Dc9nyV9YyVUL59mASgtPiKlKXzHbgh2alaW/pnF31/yObvVO9WnWXR4C4YFspht7xRkIM63CtvUfx3PkbE8lW1Wl7iAeXoeviAJIS+l4fCrDgS+m4rsWbGIGJchpXFabUjKycWzKY8g/Kn0225fYuuucJ8775FX/f2cr+K578Ot2uWp/uwZcaabOJGGHzzM/YRePdHWgI5qxm+vBx6TBFZLVEuEzC/El9Y0j2A3eqLNuD6e0nVnR2yYpwE/eHpv+nZ72oCJaa8MjJfMgMod7fHHz98Z8tyKd7OyFdWFYGU0N1F8Jnc/vgiLNJSn55v6XywPAGadt2JcHRWJBxPh7q5WyJO3nx+Hmf8nPJvdK3rbjhavp6EkMZZbIgAMQY9CmRAdn+hA46nGk4a7ksfhZHsf7lvl5evLUR0tkeFw78/BySQ7Gk7X5pVjTzmw68VpBr5yvopHi5QyVF2TIfHp5eOD8tLSW7aTyFN7AebDtDN2iemGOP2aGwnVLOiw/SHJzJPe4aHSS3jkyWfx17RZFX7XJx53oKznWeyK+wFxOx/Etuif4Copgc3XF+23DcWuuB8M433kwSIek7Eismywwt1dxZEXHQj4KPWW6Q28PeFA0+/3wn3uPFMierHTPZEXgH2b1Q+dN5iBAuxUu6DfbI/97Gme8q5VC2UXL0JP+nS03vLfjRvBffyEIb3X+gC8FvQ7HksbjdBhOz2Wlz2nIyJGb4elbh0uXFc0RgA2X4jz3u2sKbea6y8+lMCV3RV+4+1aoaxaFWDbbiCuLbzKgTW/LpTSTylM5ebnPk0aY9UOhT+/0asjqvwhK1uPT3TANZl9c6XlN7ARv+L8+fOoXbs27kSiPWv0sPdgqWoeY+5fRe7r17Bz0St3dH/8v1LlidgdROKRdGaJZt/eNzYRTqsN0wLS4e4uO70TFKuZhoXMAWlSyZ4RB0XVoFODJ6dxTZNyRPaj0k/Y5HukTyMKYQBwqPQSnn5xqSSEUVpCdPI0wfWN68uRHZt8odl5m7XtsuAHkbJ7PQCg932PGjRnqw/+zZ8DzAfl6gB2imQmhHk6BXJabaj1Yzr6B8TCf0s9vJIv1yPyV3e/l8Sz+IxO7sh8qv3HDHWPBFRKT0KYyAv5e4jp9FpIgMURE39Pdf3usR/5+xfui+9dUV1oYGEmT8eecuC14FhkXWfKgPz7Z0JRXRwQwKy9ZgsigUaI9ZT8ESTlofhJge+yzQwJYfoNyfTwMH5C4LTa+OmmJTKcjVsBKITSVCSEmfFMQhjVTb4T+rZ6gr8HgIbpRqFKT2/t7Mvrz7BZDGnEd0IANOLJIADsn1gHObElsHhp6IviqcShn9picl6W9M4TJk2QhDBFdcHLxwdVFea75bTacFUJ5tfUV6/n7+B86fnUK1jEZwBQY4UslNKmykyQU1SX1Ociie0Q31/EaK2M3jVKeFoqTwT7oP/DajHfySv3ywLpgiKmqW9c/aKUXlFdBnM9MdZXRaTnme4VfChA7r/OvoGN387mprgnk+wGIUxRXbB+t0cql9pafcU2NH8rFcdWREJRXSgvKeFpKP5Sw+lsHbj8ADN5E09UTjyhwbuHP7mVC2EA0G3PAADAmkPbDW0Wr889qs1Ht9ogN7rvAMzIabVxPx0Cb6DyKG7k2OadeRB6fV7xf6NvUjk4iX/fHES/mwybry86vpHEhLD9/Qz8zmvZAiMPFkl8m8137u7sdFgvhJmlNeXt61Sc7cOUBk2mpKLJFzI4CdGGed+i8B0NDl9RNd9wUWElPq9oPQWAY8Nv7j8E1E+zut2nz0h+XuKJHqXPmRqPNa1W4e2QDpIQJpbnbWuNaUWbUdDnWyiqC+5z55HY8yE2f5vM2yLRfEF8is87Zd1vup6Zled4ZgJPUyZ8VhHfJUluDIXv2ZE9i5mzlmUdgLLiprXAtt0GIQwAF8IU1QVYtH0YAFT5YzvngfKREFZJ/zepUhC7g0g8kn45WDNJWJWRAoB9uIQAJFLwr+P4c5HoQ6eJN2KCcZESSb9YPH20I5/ERI2XmEZ/PbZ5Z3z17mB+//PCNGTPisWFoZrZwYXVobA0qI9uY8ZKZYrCh1g2Lz+uLapvagwA2NzuF7yVn8kdnAEWs0xss6e2Vl+xTeL5fJlmRz/+7+FSWou/P86M1KCEAQZHfpegBNLX1XBGGr8v/geAv7+ZCUDb9F0KKsNf02dJ6XrrTibEejz9JrM3AAjYeEMSsPrOf8FjGZOORUv80zUFZxWf0QZtUlACCt/V0APplE7f72IfzzmkxZ3bN7mpYXEkgZ78kkQy25iLZmRiORQfx70/B9k3LkuxzERqOUfzDxB5IeRLs40KpQl8NxV9whw83+eFrP0VxWsTzTE9fTvkS1beyXyjRDw4rTZYfNySUEQknro5A5iw1ujrVGBdMyiqC80f3I0PQttJ8wKBw4h16E84/mq7nF/TBvztkA6mfIobuOh3k82F/5uKn4tDEkzzite9+z+CwHdTkf+x3ZDGabUh+n2tDvp/ZoRs0iWS02rjmyEvX18Df2T6BQBtv0iGX28GjqImXJTqySy5LpnrOa02lHWNluqkb5DM10zfa4IGfBP8UpqpgoUEbhKa9O1xX7gA/y31uDmj02rjsOFHV0SiyYD9iPhrOH+WsOuGoQ77yxoYx8vHGU87X57G+Tn0hvZtKKoLVxbdBIIa8CgsEaHo02eo1OeW+vWgqAzxUC9wKqoL3u2ZD232nI5SuBZP87bZOAKArU9N4X7EZukA4NLgBI/5d77KNsE8iHOPYtN0+hOxvjEMRIRAXxTVBUu4rIAk8qTk0Y/3kj+CJKAWfRnXndqaLJpHO60MbdmTsEX3ufLkpv8doeMCTEAFAKRn8fcPMFN0/fcl+nlJ61DLMCiqC/mDZt5yr1Hm2sf9x/q07AIAcO9lJ51kwaHPI9KF1aHSd0b/a/bOl9o/53wTQ96B+5jCt9aPmiVFne+107DgyWmo6izmv4NeSUPEuAzTNjmtNkPcPwA4/wjb81BwdMpb+CMTdC0brIb3r6j/YWAdlT5i/xKqFMTuUBI3M06rDZba5s7pAFBw3yx+f9iBYkMammjEzTnF+dELLorqQmJ0LwDgTruAjKSVt9iGGecCJG2UpBW8qahzWm14NsiOiHEZSPuMAQScGm9H7T55cJ86jY3famACTquNIfF5aycHFNuET37bdnN/CNKQ/rl0vtReSXDTkQhWIk6oDwV14XkLnDKErPvsWdSbl2Zop8gXBdkU662+qTEU1YXs2ZoZI2lufZo2wZKLTOMX9nQ6LzfnO3baWV5Swp2CzchMo+nOLUD+R2wxEE8ynFYbDoydJjlni4tXVgfzWe6utAkaX/M1QBiK2XKjdhkPwls8Wd6g6esBgNGCn4deISDyc6hXLX5fL3CJ6be/Jfs0lK5l4ApjD3fi9yKq+El5RP5EE0+RFzFIrX6hFPkqu6IFoH2laICBPz1ggb6cDm8nSXWLz722GIUHPZHQViGJVuc9ihG8UlN8EE+Jre4yCA4iEepb62+0U7WNbVZgdHaBxH/xZM3niO5dHRCHrqNl/zt63jeOnf7VWpIufVPif3qX5dvZhpP8WFpPT5bKpIDxYt56c9NwerTddJyJvFzr0Q537R5oeE6/xeDweh5jfKsa+utKIxYD69TvMlgGhThI7PEgv88DEN8MxO4V2xaWyHAktjWerAKaX1aHd5J4G2J2lvHnS4LX4+92mobo7lXPQlFdaHrT31ccM+ntq7D5aU5HLsRkdSjnc0ZmtDefr6acDQIACTreabXB/zv2DVnOXUHKxmXwvngVlgb1+Thwnz5jKng4rTZEzkpG2S7mPxwxeruEeOoT2AwAO73V97lI9Htgszj0e/wvnv+sW0a/PPSmAzWXyuFOcqckmJZLvJc72ksB5MW1k9KVHj0GRXVx0Jfo95Lhzsk3rEX0WxR6AAYIo6/bt1eh9C2K/txX74vjc7sI3CX6i4r1kS953id2fu/tkJsWNWVMkUO+zg1T6yIpJ5eny4zWtoal+YXSt13yhyaYUVwwgJm6pmz42dCnevL7qyF//mQuA8FZffBvqR/0Zej3MwCQ1n6ZtId542QUH6uIa8vzL400IjyL4Xs8jSuUuQ1KEU/7C/K9E9PVW6OZjYprdtBDzN+YQgfQc/r7jwLrqKR/CVUKYncQiR9g7I7BsnBz4QK/po9Xb4Lm3N8Pi1o145MHaZABGCadmj9tRdjGEfyZoroQ62KTs/v4CQM6VO0+edoi1m0+lrduaLqAAcD2t6cbFiEiCtYs8qKoLuavNiSLT36ABg8sbvT1/z1N1mZtPl3gbyqwkfZfEvp0pN9kDj2gARS4c7Sgl1QmQeRGjNVg6nc/wxa90qPHuHZVUV08oHX4Y9ppZ+hz6Tj+pLZwD95/TGqXfuNc2iMGIS+mcXhmsY2tvk1C7cUsILN+MwEAuQujDX3SYvBuXk/zpd48fXlJCZYcTkX4k1t5v1E4gYr6TyRPgrLTakPge7I/RP3Zmjbdu00rKa1IVSaxeG2H4mX/HL1gKAoOx55xGMaUuDB+E7JUeqf6NOK71td59s0WhvIAht7ptNr4qalZmYfedHCB11Nb9P2g36g4rTb4NAvg98rt7U3NO8V55eQEJri8X6CdGDd/MxVnRtkxbdQMKd/gmue5IA4Aeyeyse0c8Ci/99e0WZIyp81XyfxaPP2OfjcZR37RAsdTPeK7pBMcx67rCHwn1dBes2sywaZTgNNj7DyMwV27B6LruHHwTcnA5V+a4P0C2VRSfOeEQpf7RYL0jEhd3ho+AVYAWuDvzJil/LnTaoNPIJuXRXMymieJyjN2I2XdT5L/jfi8+dvsOyN/LhKYPPVBRPI2w/hTVBe6ZmmobQV9vsWFEC2fOAeQEKoM9awUAsCR+1ZtXgH3qdO8PrPx+kDePTiZZJfQBCk9HxuHmTJxf6eFEj+KygBv6Pf5YRpf6e2r8PxDAh1yv72Zipz5MVIdYU+bo3vSvfzHvfFVmAyWop/f9HOLHplT7HtFdSHwnVQpb0VB1+kb3vH6dF5v8f1svi1Y0g7+Gdp6UJYlm9hTvVnPTcONe2KQO2y66TwmxgL8PmgjpoeH8XQURJmoS9Y19M/pDa/Ytg0MGeYAAQAASURBVNx6QVFd8ErbhYQXmHmfe39OhWsA1UvuBwAMfWxGPk2bGPYaJYmxCF03UmrXgnQHnva/yduKhXghz4hCTeTt5yf9PveoXRpPRKQwE4nKmlKYajqGcr5i7gcimiS9G/07EInuvbrbPKbbnUhe5f+ev/92qhTE7jCij9FvWh2PixmlIx8vTjdNKihfyAtGk7FT4zQtcejDLv4cgAQOEDGBbcZO/R7B60i8hwmHoetHwqtjGymvorKTNHGzFjXViJgltlEkAg0xE64IZTB4hWyCSe3Ux7Qy23wAgJdb893iwuyHxhMXsW76z/OsY9raH1pZcfg1h2GjYPZfbM+0os2874hIywnIm4vNL3zOg1eOrqMtvGJ5fVp2gaK64LOOAROk7PpTKttptXFfk9MlNQwL0sojmQh7dCdPS/0jmtgQUAC1hzY6he947jsi/Wal9O6YCtNS+rJ1gYYNCvn0eVerZkgvojOKJI4BMf3eidPQ5ItUjC9mbWj1LVtwi192wLtGDSiqC48njsaxpxwVCucAE66WFssKBnof9FtRXchbbOPonfpnRLGvJqH5m6koLykxPBPbUjxZFtacVhtHOqN07iaan4VXmowyKbap9fRkqM87uHD4wPpk6Xm9uWncnBEAlhdvQ8ifo7hvkMTbCnOkRUV18Th79Juo0TQZWVD/3Sqqi/tFvdHQHCZcPycAWjytTtXYMlf/2zTseI2dqlV3FqDaSiZ83TMhjZuCU31ieWSSG/aMHN+PTqh2xy/GoaHslID8SvRjhoSLwAf28KDeiy7WN/SR2UZfHLdmz6i+Weet8AluYRg3PkHN4d0+kpe/qV11FJdeQui6kXCXlyFn+HRehtNqQ/hNBR2nm4duhECr56Ei3vV0scspCRiEUHXPrgrn+c4PY2aExIf4LlL+Ws5/11mUzsMtLDqsxacsetsumR4DQH4vFjyazMypPHFeoDYsu1Qbud3nGb4XLgA+YtywU15L3ToGoUH8r04yxg/UX5vNN5cejEd+TxaLr+5qPwl51VN7oqYmo8raTAMPlC7s2XSOTmr7IFlqL/nhEf3drhpKuh5DecZuQ5+kfzwD5Y72hr4E5HAY+nb5btJMBl2C7+KhNxw49Lo21qovLTXk903JQMR4xmPH19i71seT+zi0LQ+pQDTtprnu6pwtUtq6C9OQ/olmEkq80Jyob0PsjsF4OshhOubJp9hptXGXAX3fmwlldO+D7r1QSf+3qBI18Q4gETXxZLUr3G766oA4Dtd+dgSL/6Ff8G6HJHTEm+T3V0NJMyUi6/XuOwze167DXasaQwaCcUNN9+ha5FVP4sSjz1s82YG9E286qsa1NdTX134vh/LlE9b9w6H8ssBQpm2nBlNvJgQBgHeNGjxwq56v2+nbitLcKr9+wu2UdT9q3vQ/0ecVEZwAZtai16jq6/q8MA1RVeXgpJQ2/qUkbP2QaUa920cib0hdZD8ma0op36E3HQj62GXoJ7oOVkajwDnHUL+lfj1cXVKLhwjgmxMdyhZR4bt2HBylbQLFskV+9PXfM2wU95U88bgDjb5hmsm7ksdx/7/EewYjZe1Sw3gz67dbvVN9f5r1idm1Pr+nsvRlmpXnu6mJFLvPbNzS2PZu1wqr1yxB2MYRCH3YJaWbcjYIq6PqouCH9sju+p2BL7FuS1gwUv7SfMM8tcF/S70K/eM80T/5Xv5JvlvV91Z+Jt4IianwvQFAnc31cb7zadO5T1+mpUF9pGStMwiRYp8GbavOYwh5KkdRXVh1pRr61rjmkbeuWVcNsOQAC+i8vq0fM4v8vT4y35wu5Xs8JxvfhEfAu0YNFD1j47HqzMbsrb4V2uh/NnoOvgiLNM1zPiUMdRJz2fWwBKR/oiHJEhrqoTccaP5WaoV1HnvGgSZfpCJ7bkdEjNKEf0uD+vwEDgAOve6AzzUtPqInvv/J2MmeEYeC/rIPr1mfAQzGnkxQAQZGsTplMc+rPu/A7mc9gzL8kznKbOzSf/V5B5qmXsYfPxu/b09leuqX0rXN4XPPoX/Ub7fzXYvPRYTg/wndav5tOTcJB0dNR2LX++HOyffIh99fDdGq1nFkRnvzubT/vtP4rbUc91E/7gCg3Q4vZLzW0SMgGSHQOq02CQXVbC6/cLEM/hH5dzRKIO1ZOwz596Am7lhSiZpYSf8mGhjRVgp++Ne0WfyahLDQ9SMBwBDwUa+JEolOziiwLwD8EiafnIjR4st37oV7fw6UFQt5efEvJcHxzASD9k5RXQjP8JWEMJEHjq7kbZEWhZ4PsXaQWZuiuoBtu3kb7nmYOUCXFh3m90gL12xKvulEn/amptUWNYuiv9XqXG2Rtj83gV+XO9qjT+8hhjKProhE9uxYaTEjx2+xv/WLgUiK6oL6AtOekcM8wAKvIq4tCt638/dKeWv9mI7fjmhIivuSpkl1rbniK6UHgGeD7FK7xb6gGCmK6kLZrv3Ifmw6Qn4Zz9N0zrofTqsNOd/Eo/mbqVwIo/zidcTITKmtZesCUfiOHe7TZ7Ah6ldDvpTd6+G1PkDi17tGDQS9KoOahC6dIJXdt9N9/DmZ0TitNvj8zXxdcqckcCHMabXxMei02uDelw2n1YYuWQzhsU+YUZuvqC6cGWV+qje1aIthA0N5smcw1E2KL+S8fzjyFslHXYrKTE7176PVZs10r8/ecwDAfQNDl0yQ6hOvS7oe8ygw0X96Z2SqJAphlG51VF1MzstC8FAN+tlptSGx1V1S2QBwsW0jzr++LpGWBK83nXcASIHO9f89fS8iX56EWnh5GfJ6KodoeNFdOPaMA2+ExBjaIrab6Hxnzcyur6M/QteNhLetNfrtPQs96TdmxLvY/ztm2LgvHcBiGZZ1jcaxZ9g9Lx8fOK02yVxLRKcjMgt069MsAC/Wz4F3tWrIjFmKOoXMlPPQ65qZ3jfhzG+t7MoV7HucmdF9XpiG7nvvw9EVkaATVv07vnZvnOnYa/ZBKg8LILabiIQwAEj/ZAZ6H+jLfwe+y77b/eOnSe1wWm0c2IfuE3w7CWEF79txYXUo3KdO8+9XUV3YP2Eadj89Dd7tNZ7EtUN8Fzd6dTT0oZgHAC4Piuf+rGZzqj4/gS4RrU5ZDKfVhruSmSWH9dNUtP1CthLRE5lQvpC328AbnXhbwkMMY1c8ibN+mipBu/91TeM35ysGBOXt58cDgYvtEQPDK6oLPvcc4s9FfiytI6R09IzmMjI1LusaLflmK6oLrWYnS/lWbVuFY88YkWj1/8kVQ98vxPuZlRHoPHE8L5dMGoNeZWuf3n9PT5fvOslNfWkuJSFMbCN96+IeIKtDOXxXsRO5dtuGGsomIQwwWpgoqovn+SdKgkr676HKE7E7gEi70A33Yd3RvQYtlqK60H3kGFRVNJhg/QalpPwGBvZ6hKMOEd3Oh222MTLLZ3a/vJMNXltc0vOK8ottupWG8VY8J/Z4ECnrfrotTZ8nrRnF6iHKnh6Hgvu0ODTetWph9cG/PZZxaryd+72V9ImF7+qMCtviE9Sc+wYQWaJawr334G33A2m2KT1g7NPrvWOxYa4xloyeFNWFF4/LJnMVvSc9XXg4gQcHFdNeHRCH0Jf2I2teG2S+MR0RC5IQ9lkusl8MRejz2klfzoIOCB++A8uLt2FgM/PAqHp+zfg5+VtLHlvoVuPKU5qKxm9FYyp7XgwKnHPQN6Y3VmWuue1xrO9nuqZnbb5MRvM5B/lJS/5HdoS8yMba5LwsfBDazqTU26vXabWhcVptHLdf4Pe6jhvHzfUAFg8v/Cn2rvSnEVz43dQYK8JZjBw6Fef9MjsWBX09j0GxTynWl6K6kNj2bqTsXg+n1YZx2fn44JNhqJtbgrWL5jKBpWMbDuDhiS6vCeFoh2J9RBXNb2bpzMaEt58f8l5rh+CX0gw8KaoLCZMmSIiUt9MP+ntFbznQ4g1jHCnT9ggWBdnzYngctVvVR79fz9+BTtW8K/w2KqLbncOProhEtRV1TS086HfO/BiEj5D5V1QXQtaOQvjwHYb7VMap3yPQ4N7sW/IAMDTA0vxCadwCch+LceHE50dedGDPU9Ok8dFz6Ej8+cO8CvvLp0UgVqX9fss5iWJ95nwTj/DH5RiGZnSrvj/xayspNMDKI5noF8AUElU2NsWNbkc9lqOf+6gPPP02mycB8zioFfHuu6kJfgtfI/WnV2xblGfs5v1iNn76xvdD6eFi03KP3UQQpbSxOwYjowOznKAy8z5LQPgrLpRdu4Zx2fkYVPOC1EaAnT6nTO6OU2190OwD9n0GrxiHtX0/l5TpVE/v/o/w+eH8IwkSQqOe/x5No/5j4ohVnoj9a6jyROwOouXZu/lHSVo4chAnIYye0SkNfcj9A2L5Zt5MgwewjVXu99HwbtOK+ykpKjtl02vYAOa8f+JxDShDTGOpXRv99p6F19unDPkMdd/UXjue1U6gQv5kJ16WBvU9Tv7if/19p9XGnYNFGrT/hCGdvnxxoRCFMACISGIaUPLVKrt4UWqXaPM+OrsAb0+ax39vnGM0SyA+QjPYZHUtpKGkSbvwcALKC4v572/OBRraTWiIlObddx+DorpQZWNTfsKiX/SqrskwbCpFrZ543xVtvkkVyyx43/zkiIQwkRTVhb+mzcK85n+jwUymjQx+KQ0pu/5E7sOyHT5tqkQhTM8z/ScwGTMSYwuJZPYuglPGcJ+SaUWb4bSyIK9mYyXnm3jT8eMVE4WW85JY39w00zzpDDZsUMR3rW8XoeMpqgvhC5MM7yvgo1Sc6R3O75MQBgDdqpdJZZldE4mIq0dedKCvoz8AcCGMaNMsWaNPQpglIlQ2CYtqiW/OMR8+AqUBYDBNbjnzKkdbTNh1AwBQfwvzW7NssCL5iAYpTicrTqtNMmOdFRGC+rPT4Jut+UiaCWFnRzBkOHV5awAsvAX1B/2FrB3F50azeUU/94qO+k6rDdnTZEXB6pwtyB7OADfW/PY9L4fS11mULuUXn4v1mhHxeGDsNCk/wMyWiV9prhfMuiNGZpp++5Sv8EejEM8R9Tz0iRnf+nlDP9ZFtF2AnUQ1HbAf1c66cc+ei9K7UFQXfrtcAwC4EKaoLg7WBADlV3yk8j4vlKHxCSQl79MEjr4IAMefdBj6g/ysyPLErI1lly9DURmAjnPAo+jddxgAcCFMfN/em3ZK/ZU7JQH5i+UySQjTv/ewDcwigtAQCWgmf+BMzovIl55PgPlEmj1TVJckhCmqiwthAHCj21FY02txvvV1if3Sp/cQw/rgaWwQURozIUzvLy2OhZKux6Syi192cB81Ek5FCxPyHRaFMP2822TAflzrF8f5qtcvm9cX/vhWHHvKgdyhMwBvtjWeFcFOH7vtGYBx2dqJ2ov1c1Bt5TZkPfE1ryv4F7ckhPkEa+EOaM5SVBfqfJ8ufYvtdnhJfZU7xbMf9Z1GlWAd/xqqFMTuIDKDLQ17xrjRBYCIsRnSJEhw2foF8tR4bQMd/lQ6wh7ZibI9B1C+fQ8+L0xD+21D4Wy5X16Yb8a1aTgjDXVztcDStMkBGIrjyih/KeaKPgYUodxRzKBaSxhUO7y8EP7YDvTfdxruU6cR+2oS/P5qKE2YTquNBwIlUlQXN+3QCxV0vSyyETq+nmRYJIuXRRn6kEwzzDYV6Z/MMCxIAHBPew0sYHDN8+hb45qhDLNN97gGmwAABY+VY1uJFsMn7dMZXOMKQLJHn33TRCfkxTRp0dv2AfP9uNHtKFoMZgtTrwdH8Lbq2+LTpLFh0TT7T2Z85fb20oZ1y7UyBL9sjIOlqC4OeazftEVnsAWb4t7Q/e6jGIR6vg4kRXzXCS9MgKVBfYm/YGW0BCZjRp42IcWTHRJ/ja3nMCyQQaOHVqkJ9XkHj6Ej9h8tzmYL+prfF6HaCQb+QsJzw3XMl/HYikipL9p/lMzHpEgUaNxptXEhy2m1IWdBB542/WMmuHYbPda0jSL123tW4p/MjFIO/MXvBXyUitLCQzwenydSVBcG72fmkO7sPJnvP3/Eb63ro9XsZFwdEIeCH1iwYZ+g5sj/SAtIvOa37zkK5lsNGRjH6U7MrM/dXcW0gHTT8SoCpPD7XtpmReSR/vvPZxty68B9hs0jACQeTET48B08cHj8SzKYg9Nq40hq9K4bzpDBkAoGzGLfcnY+zyN+U6K5lsifXohXVGY25eXri/gX5XEhjjOn1Yb3T2mmYk8ciYeldm2kfiHHmaI8lgb1ceFhDZadAoxTea1TH+H1Bz2UxeMZieW0Tn1Eql8/3gigx0xA0wuHlshwpLVfJvFA8dv+mj4La9vIoSpKym+gv98VQ50iKiv5axE9G8T4oVhXxE+zdW6s2rqSp3O9JPtm9dx/r0dh3Owba/5mKtx+VTgokKi0EdGJxbJqFnkjp9t8w7pGZvpiv7R8jX0XqV/MMKQ3E2zMfvu9VQt9wrXwHfrxR79DftIUot5+DElXTWAAMtU3NZbK7/TUeBx72oGjz7E5tCzrAIK2Gf2QqXz9GlPSJ1aKQ6ZPv+a373lMs4tDEnjICrFsisfV7H2j7x+FZFBUdoLVN76flN9M8UKn/orKwFtEnpt8yYDByq5ckYC8fHsVYlZECO55eBRGHiziZSYGaHN1lbXaCa6iulBaUMR5eDL3AHwCm/G0fWMT+TWFkCEew542P8mupP9eqjRNvANINE308WLoYGabCaKpRVsQUcXP40RIdD4lDOm2n/mk4XhmAvw3H+IBBsX0nxemYdykpzn88q14UFQXOj01HjV/YuYBHd5J4mhYJX1isXHObGmxEvOVlN9A/4BYaeHTa9k81W+2uRHp+JMONP5Kdv7u9NR4bPlypoEPT2UAGliGmO7co3bUXZgm8aCoLrT8ezjq/1KDg2uYtcEnuAWe+jMFdS1XEOdb5ZZtpHt5n9iRO2w6eg4diRPPXONmFZSu2+ix8F2dAXV5a+yOX1zh+zJ7RvfJDAQA5l9ohB9aWQ1pvXx9UV5SAv8t9bAkWBMi9CAp+raR6Z7TasPkvCw8ufshHtsIAGIyB0vmRAUf2hH8knkAZKpTUV2Im5zEYxmJwAA+TRpj1Q6FpwWY4BfykobMGfz7WIaytecCnq2XL6Wl+oLXjEFB72/Ru0Ucym9cl57p+1I0cXV364C1i+calAH68V5/iz8XTAAWh8e9P4fX07fzAAkdjQB7RD7CFk9A6PPaOLWEBaO0YW14pWk+ImI/inx7AlHxWh+A8rtv33k+b1E0crvP8zimzcaeaNIMABeGJqD2D5rSicx8AXaqUrsPEwYL3rdzpYDYnzFvJSHzDQ34BWDmlAW9v+Vl6nk49pQDu16cZuBbURkQBQkAIunHogi4U1F79c8aptbFScc5w5jQCwMVzVFmPMW8mYQGs4wxjcQ2tv0i2RAfzRPf4r0zo+yoNzcNOV/HI//+mYb8FfFqBuaUPSMOERO24dCbDgOcvVhvSd9Y+K7KMDynOsu6RMP7752m9SqqC879/ZCd15SHbyj8sR2CHtJiqolmpVK9ibEoGlSOiNHbpTKv3RuHar+bhzsgnsz6ss/ec1gdVRfHJzrQeGpqheOESG8C6akP9KROcsD6ye3VIZbV+75HUZ6xWwIHoue3U44n8qpSFbU31OLgN3cPHy0JLhXVI5pVmu0ZiNzdOoBC3pi1zWllAde9N2ljZVx2PmZFGINwt9xeBQc73uC/Lz0YL+2NABbvbtXWlR7nuncKMvBacCz0VNEeR1H/s0wTYwb/e0wTM5dWmiZW0r+J+mWc4vFmAKZhnVIoI+UpqgsTW3SqcFKk/CSEAWwSqvVjukEIOz3WjrxP7Hg2yI6aP22VTrUo2Kuopc3+tiMvjyYmp9WG95+by9OREEbPRApfmIT+AbH82bV+cQaNMcAcb/WaLJ9mAYbNssXfn5/UXV4TgsZfpeLymhD0HDyC56v501YDH4n3DDbtM69odnJGQhhB4yqqC16CzkIs72CXBXjhXWaaVNqDOVtbGjcCANwzbBTqb/FHaUERPguLwmvBsYb2jjyooQzqN2IUA8Z7004uhF14WDNN2jhnNhTVBetAGdab8iuqC941anh85rTacPQ5h2QGQkKYorpQ9JZm0lNeUgIAONvpjKRF/KixrMUX39mxZxwIXVCO4DVjAAAfhLbjQljI8vFwWm1cCOMC0EuysEHl6rWtJIQBMjBA6TEt6PeVgcw5nYSwK/fHo9egx1BwLzMjfbZevlSuWJfXRQaeUH7jutQ+p9UmxXUDwIUwRXXhRi0fg0b26gBmDnO9t/b+T3c6K7WRhDDeDh1E9bb3tbhTT6qsnNyHZ0iLuTu3gAth4rd76cF4DM7vIfWr+/QZwyl23qJolN99BIpqNEf1qlKVX4t8hw7bKWniRXoudy+iM4YY5hGvLS6pDAr4TkRCGAAuhCmqC8Evy4qQLlkMXZBMYEUq6P2t9B5EvhXVxbXfRE4rM9lzWm0GIUyd5AAS2hnea83e+fBp2sTQJ4fecOD0aM9xHPctZKaY9wwbxe+fSHZg7/WrPP4RfUtiv4mkL9NptSHzTW2MtNxexVSJ4XtOm8eScnKlZ5T+6n1svEa/p8GaZ7zLBN1XevyKLo+PR7exY6XvUqyrtEeMdMpthqgbMYHda/5mqtRO/ebUb5e2Zom8Ep3oWB0nftUATsTTXqfVBvQoRsS4DB73ThTCANnUVRwnH349AwV9vuWmbHQaeD7YR+KHAoc7rdqJv1gOpVsdVRfnhyXgfJQMx07xIsWxSdeiCaTZGIiclYx2O7ygqC6EZlTjaUjQ9iTAiXWJ5LWbzUGklDPrFzGPPr+n3+U3ruPSqLq8rPUL5hjarK+H/otmlU6rDeWd5PFG/9cunmvgQVFdcA54lJcrCmEADEJYux1eOLoiEvf575DK2vIlUzwQHD3ATCCdVhsHXdK3m4Sw3ClyuAOnlfljmvWV02rD8uzdqKT/W1R5InYHkNmJGJEnLSXAPugphamIrMriQ1Xf1NgQXBYArgyMR43lmmOrvszsOR251u9W9YmaMkvt2nBfuGBarqe6rvWLkwABAOCVfBfeC2F+N+WZcjyhlCM7kBgg+y6cXRWO02drIuyRnQaezbSEFbVpzRVfDhKgz2dWtln7KqwvoR1u1KzCFx6zOioiM42Z+HvoARU/xrZE2cWLFbbXf0s9BFY/i0+aMD+Gss42/Ll0vkftohkf/5T/s4/ZJWHJE296Sth1g8eNIsr/yI6cR6d7HF+e3h+drBC09O28z9vtE0+kqC68f6qlAWJ8SmEqng5yIHtWrBRcuU/iwxxh7fKaEGxu94vhnZu1Tbx/ItmBna9WrDkncloZyMzVBl7Y9/g09O7/CNb89j1azklC0GsygIK7WweUW7ykuGj5H9vh3eKyYUNrVl+vB0dIYD5iO/4nfXzpwXiUjTqFDyKW3zZYiaK68NzRDvis6Q60/yiZxwXTpyFe6m/xx+LgDRKvlCZyVjL2j9MC90r8r2sGdU1z6bTJrI0+TRqj9NhxWFqGoWBoI9Tb60bNn7bCp0WgFKrDabVh0P4TWBbZiAmhK8YhItk8RAgADngz9IBqeqKtp0trQqTTvKPPOtD0c8+ngKE/TkDeQzOk9lCoBLp3dEUkmupO7ddc8UXvGiV4pLAbit8J9+hLq5/DxTQEiqRX+FQ074tlf3Mu0ABD/k++dUU1AoXczpqhv6/nvaL2OK0aWItYRsSmxxA8dJeUntZ4fV16/sg6wazOitpldk9/qmvWXk/9euhNBwL/kCH29fzkfp6AsGdl14zcKQkIe9rcXaMiMltHqT1mfBa9bUfQ2xlYVbSN7z+8OrZhppT/w/VB/32L1HPoSHhv2onilx1o8t6m/6gTMZ8q/7snYqU3Kk/EKun/B/I0iRJoA9336tgG9899nqcxE8IU1YUay7fC0jKMTyCRM5Ol56LpRfDvYw18iDyIMNruC8zZv+NrSQjNqOZxIb08KJ7f0wthisqEMAAoz9Ts76ksUQijMvz75iDskZ3InqE53Yr1mQWSJk3euUftfBJ1Wm0cJKCvoz96PDpa3328bIKfJx66771PKoco77MEfHQ6XCsgPQtV1mYidKkM/U8+UmJf6R276Zk+WLCY54dWVi6E6RcXkZYEr0dWh3JNM7jZhXVXLSheFgWn1YaYnWVSHvV5I2y2WLZe60gBmMX7eiGM8oukD7gJAG813MvLpfKmDJpnuKcvz2xh3DhnNvI+S+DxfUT+xRAAvZt3lMow60Mi8n2kvBdWh/Iyn8ndj+wbl03jPEVWZYGio1sVSjx7n7/M693c7hc8UtjN0Eazton3G01LNeXZseu6lNZpteHK/fFoMDMNge+xPHQiEPSaHE6AyGddJgrf1carV+AVHOyygJ+06uvs8A7ze/rrGrDix1mGtnjqV0V14cLQBKlMfdqaP21F7T556FadjderSrChDP1/p9WGz5rugNNqw64XpxnGEAD06cVO7S4/EI/FwRsQ/5LRp89ptaH5m6ke3wd6FBtM/sI2jOQnY1TnpC0sdIj7YC6av5nKte0UquPavXHoNegxAMznleoO/alU4vvQT22x5LBWHwHe/NDKamhj/mLtdJiozrPsZOfkBMbf3cM03xn6L244RX/lkj6xeCZ3P8qyDkjzPglhFLhdnGNPOs4h9I39Uv/pfbvEb0vsY0KmdVptCF+QxP0wice+nQeYrj+URy+EiT7RtxqTnL+LmnLIy9eXt4PyWqJaetzwUz36TbzYF7wPBPh9EsLEcrK7fielpzX+tyPaKbL4vYtjQQwPIpYhthUAOj09AcuLtxnKE9OddJwzbWdJH83ihdIO2n+CX/sEWNH8TQaxn3X9moEPorBn0w3vxZMQpk9HdZGPPJV/PiXM0B6zupumlqK8tBQWL7ZFfr9gGxfC/ikpqgvXe8fy75usZsT6//yBrW/N3k/FqTG3Rg+upP8uqhTE7iCiI2lP2iXRoV9RXSjfvgfN35a1ZQADWyDgBbqfsuFnHqOk+VupODdcnqCIIsZrsav4wnDTif1kkl1aRCjdjZpeHBGJ4pnMOBfAn/stY5q6E08YTTDEskr6xEoTqtmCKj4j0xaKc3N6LONv70SmsX6/YJshb92FsnBAKG6lhYckrb9IiuriQUKpnA1Rvxr67tyjdoQ+l44X6+dIeRXVhbCnNT8eRXUhZ7jsz1LaIwY53ebzfAm7NECPOt7GTb1IXjFGIJLE6F4AmIkntVFPH4e2RdOpvrhxTwzeb6w5Pd+4JwbWT40bSv0CrqguWFqyhc27x2Hpvth+8b+eyOdJJKfVhshMH2mx+iqsFZxWm2TK1W/vWcNY1dfltNoQ+hxbvC89yDaiFC9ODERbXlrK85Kpa2K3Qaa8n7XVlepNa7+M19+7RgkmtjA306M0l+86iaEHVK5IIKduou+DNla44Jv1qZlwDACp7avysijW2ZwvPjekE79DS7iGvrZ2MTM5pphvANsIrrhck8fa0ff9jtfY2H4vxIaBzTTTY/0mtG8HLY4REfmJOa025C2KxovHzfuBxkZ1ZwEaptYFAI50aja/eNp0UdqyPUyg2PwV8yWtu8CzjyLFcEzs+RC/J5ohipTbfR5HwKO6RcTL/I81cBNFdaFP7yGo9vs2Ux8/y4YdEv/7Oy3EkEBNYULxzU6PNcYTzOk2HzWWb8XUoi1wd+uAksRYXGzJ5oUdr7P3tT+m1PDt6Inu+a7OwBdhkSjrbDMdQ+u+10zPxPdQnHAJb+VriI6l+YVcEQQAq/9YAkCO+6fv/5CX0riZNrVz1eYV/PkfV6qY5qO5TVFd2NnpW6l9FX1v9Izg0gFmpi1+czlT4zlq8eM52VKf5C5k352lfj1YwhiyqqVhQ6mOJ3MPIGc+E17Ldu03CFDi+CWkQP0zMvknEk3SzZQKZuvr8KK74LTaUHNpuoRkS6iT9C7N+o7KoxNPkb9lkVpMQnKPAIB2VasZvlf6rT7vMPBtto6I44vMNKleEuAV1YXITB+k2342VcToqeoa2Sfx5eA40zFCZYkxWsXyW25n/uBieesWzqlw3Wr0o+xmcEdTefm/5++/nCoFsTuICDXRUrcO/ygn52UZtGyAPPnRBpPIK20XXm1wQJo0nVYbwkdoC6C40SB6JZ89a/tFMvI+1aClp+1jcYIaTmd+GIQSRTw0+VKz8XefOw8AmFD3iMRjyzlJaPS1ud26ojLnXXd1b2nj5bTaUPietsHRw0cTAtr6Gcxcpv7sNGmRGPfBU7x8s00ZAJztcZXDQQPAmZHGDZV+ofHUBr2Qh7i20ilb7CsM7jzsB3Y6Nv8mKiIAVN0ix49Lb1/FdNHL+0Tj7/ArDhRPdkgniYrqwonHHUjZ+QcurwlBRoelON3prOlpn6K6YNm4A+sXzJHqMHOiDh2203Thdh/MNWywK9rUpBzZYboQphyRbfKnNJVjVtF9y4Yd6H0fg+xfGeVv2FBQEGX+PldG8OuaP22Fd7VquFG/hsSzorITPSLrwH1QJzkMaIEAcHyiA3W+l9H+zNrtSaFA9Y2ofYIrEsTnUWkMHvvQm5pv3q02HxRgWuRBz4tP0yYIHcZMefstfl7ixysmCu5uHfhvd44WMD3+RQ1dsGxdICJnJsNptWF6eBi/ry5vDYu/P9pkevPxeiueLWHB3JcPgIRYSP/rrq/GQWAIgp98l0RKy2enYid6XeflU2gAKku/2dMLh8RDRcIH5SfzIvfeg/xkm4QtoqlFWwx5RQGXeAp5QT7tpmDcYl94ovbbhkrlrYzyx9ADKurPln0sC5Yw37YLDycgooofLBt3wDclA39/IwNuUN/svX4VADMt1n/bep68N7Nno7MLpPti/+r79I2QGMS+KqNWZkZ7w929A+JeZieR3o21MB9i3V6xbQ1ztFdsW+k9fhYWhcIf2yF45VjJx9VpteF0FDsFr+FdVSpDUV1SUGGi7iPHSGki5sshDYi3/EEz+b1vwiOQ2L4nzxP2KJs73afPIOWv5VBUF1J2/SnV81VYK0PctN79GcpllY1NeVmK6uJIgVS3/5Z6ALSTKKLVucb1VlFd8GkRiOzZ5iASYlzBE09ofdf4K3YS3PnJ8QCYCap+Xus8cTy/Fr+zyEwfqQ4iCgVD/Nmf1wLaDz94GLufZQpVOiFsuZ0J2HSqJZJPADPFJQRC/Xh1Wm3YH6P55un7xNO3pheIxftiWd6b5b6g5yLgB/kJA8CqK9Uk/hK7P8DzlF28ZMpLJf33UqUgdgeS+9x5/lF+ENrOMKmI106rDJoBMJQxp9UG2wfJuDjE6Ch6eozdtCwyEbR+korQ59Px6gkmGAZXqSmVkfPIdClvRVoyuq560UtKP6UwVZqwq6zNRI1ftsIVDWlTfHDkdJxIZguk3j/Ct1chAGa+WNY1GorqkrTiDWal4ep9cdLm8NDrrCzSFpZdu4ZaP2ob63rz0qSJl07xAGDSsWjTSVkvKPP3tWIhP2VTVBdKq7M+yB3KgAlGNGcxR3wCrCi7ds3wTu5KGgcAOPKStiCGTtJACQLfS+Wnf+J4aPQN61sxoO26hZqPmp4q2jSZEZle6mGJrzs7SvxTmdIG3EverPOFKEATBMT/4jWNC4olY6ZVpHh7/H32y5Y2aWXXrsGyYYfhnak3y3ZabfBp2gQ17z6Owz9rMW4ov2sy6++uWVcNdYtpxTqdVht8QoKkNGaCnKK60GwQE8jJBE7s36K3HIb8AAM9uDogDj0fGimlJ5PWqKnJKD2qmRRnP6Z9vwCD4tc7ulP8p60fTUfv/o8AYKeezd8yotvtjl+MlL0bsCeGnWrkfMm+wdNj7bCEBcMnwGpopzu3QOJ1dc4WqdyIBUnY/s50HH6VjX0yg/5r+izDd5J3NzPrCX9Me68pu9fjjytVkPNdBwSvHoMe+/rzfhM3oZb69TjAwpn720l9oCexDTnfsfGaM3w6B/iR+K/iJ+UDwAVc8a8ioucFS9oZTlAU1YVdcT9wQZrSjqh9QsqvqC5k37UAiupC2qczDN+V2Nb2HzGTboKEJ9Ni/Vi2+Psb+mhORLDh3tEVkfykS2+CXG9umhQ/SVFdWLtoLvznp8G7fSSuf2uMk9fl8fEoz9iNevM0QVNRXXw+EPkMeigL3lcskn8VoMGT3/PwKGn+cVpt2DVpGrzbtZLasWHet7wup9VmGsaD8ovkPnmS3z/ySxQiZybzMrqNYSAnpHzwRKMW/w4APNgyADxc0N3Qz4RgS8BNIr9EFGMLYLHMfugxA3EvJ/H08w9tNrSBFKci+f3M9hpZN8ee9GyZMfD0+ZQwLgApqgsFNy7x9d+rahkiZ7B+sdSujZNC+KwFLQO1eX8XO/1sXUOF02pDuu1nqQ6n1YZVGSlSu4897UB4hq9hjJsJYPQt3r37Mg6/qs2xp8fYkfdpgpTPk3LM032Rqq/YxuuisDdOqw1nR9iRsuFnj/nuZKqMI/avoUpB7A4iSyTb4Hr6yAHg2NMOwyRLRCdGhDLWeGoqai3RbKoV1QUvHx9sf5ttxGgDIU4y4uLkKW6TWHfLuUlwDnjUkEbfht1PT0PO1/Ho9cBjcFpteDrIgTqb60tp6bTHu8dhfq/3fY9i56vToCen1Qbv9pGcXwqm6TdSxT17NOAK8g0CgPRrbm7KWXblCmr93cAwgYp96xUdhUZfa6d9nzTZCXd5maHvabLXxxHSCziNpskaStoQkqmGKKA4rTZU/3UbvP38EPBhquEdiXXkTI1H289lvzh9W8zGi9Nqg0+zAADa6aKYV/x/fKLmI0eml2RWFLStOhO2dUHHzRal2Fc0FEr9ZrS0hzGQJfnNOa02/Bn5u4F/M54H7z+GK/fH83sk9Iv03FEZAEaMUVN69Bhq98lD4APMdyp03UhDP5r5gC0rTkeH7Q+h14MjMHDfSemdiQiI+s2wt601vNu08viOWs5JwrV+cTgwdpr2TuPaSu+o+optBghvMmklYV0vFNN8YSYU0BzitNpMAyhbIsOldyjmp0DQ29+ajp83/ojSIyriJrP37hPcwnRsiOVY02sh+CWmcAh8V/aRMVP4mAntoUsnoFeNGwh/bAcK+nwLn3sO8W+noO9s7TtqUA8b5jJTqkuBnmOVETojUX7PuVr/7NR8GrtmXYWiupDY6i4pEDHRqd8jDPeoHJ/AZoA3m3O9fHzg5eMDRWUnILSxF3miazoRp3LM+hYAV6yJZYj91+TLVFga1MdvRzKksaWfC9xnWbw68XSSTInF+rLifoDrXDO03F7FEHZBUV1YN5ttcglJlPJ1WriTmzqL5elP8MQ8+j4BgLzBMwz3iCwbZTPPx3MYcqt4Ikl10MmNSBTbSqSLQ5hlRcESWaAPuH8v9o/X1jDfFGamRsqHo8/eHCdxbTFHsJKYE6H5P54bzk4nFwdv4O+Y/vp2HsB5FfkW313ZNTmY8hshMdj2/nSejpSCRC3/ZuaPHd7RTgBzv9CUuuI4M9uvEC91EnNx7GkHzg9j/RVcpSZf/8NHZGL/hGlIbN8TKQf+Qvi8c1IZeppQ94ihbpEf8dmuF6YhJ7YEOV/H82d0agYAnxTKVg2K6sL6tn7SfFP/2zSEPp8u9aXZeqqoLh7oG2Bjo7yTDYdfc5i2Qyynz95zpub5lfR/iyoFsTuILrzHjrHDfpiAu3drQX7FDVSTKcZNJdE9MdqGgMigRbe14te0gchdGF3hpv2tk615uZcGyydsB0dNB7ZpcKsXVofi9Bg7ghWjKRxqlsIrdRcPNHu+82n07eDkG4TQSWnc34N4KLfImyNRM0yaMpHfw9sDsLZNLX6PNuRLi9PwRoi80b/Y5ZTUN2IfvHy8nRS8k/4SAzrAEhbMF1vqF6fVBve+bJwZpWl+629hmmPvNq04TLjYxxFjZTt0Myp6pr3hnv79hE/cit3PTkP+h/JJJ7Vp5MEiadHMX8w2F/kf27Fq2yoA2umivg7633iqJkTqF6G/ijRTkaEHVIkHvang1XsvSPVcfkAzqxV99LxiolDeySYFRDUTvN4pMPbhlwe7o8YvTDsbvGYMng5i30Dxy9q3sCemDBeGJkjv3IwUlZkWEeV+H83v0/+B+9gmeVCzBDTsfxBeW1xY3rqhoSyzshXVBbV7XSxZMw9P5h4wPAcYiMamWbNkPm9+c+WO9lJap9XGTxr071BRXdz8B9BOmCmv/5Z6cFptHGhBz6f4l7Lupwr7jYj8TOh0RQxyapZfUVlwWXEMkYkWADj3XDDkEb85OjUlp379vKYXHEXTWrOAsfTs73ayKZF+I0rXc//ozsq9cEESgAE2HzR+9LjpCZqiulAaUA9KMfsGvCNCcOOu9h6F8w7bH5KeDTtQzK8vlV0zfDNOq01SrHnq+5SsdegfEIvg38Z57DMqW1Ry6f3LDr/qwCn3ZRz/oQUOdrxh6Den1cbjTpIgTP1IfS36pVIe/Tg0aw9dHyplJl49Hh0Np9VmanZOZX8THsEDszutNi5EK6oLLWdeMfRXne81BSc9q7WEbdqDh2ShaGlbQx7iP2ZnGQjsA4CGVLltN0YLApHYvroL2NoYvFKDx6e/0vxCw/um3z2HjpR4CNsw0lC2KGwRESJqw+mahUj9iNNSmqOll0znT72g1GRKKia89ovEn0juk0xpVbZHjhUm8imajerrpDQpR3YYTvby75/Jn5ceUXEyyQ7v9pFIeuFpzk/0+8kGns3KNxMA6T7tFQA2Nv74aT72JU0ztENf9srH74alfj2EbWDWDHmL/8Pg68v/TX//5VQpiN1B5Hd/IQBmuvZi/RyPH69Ior30tiXtpbSK6sKNWgxdzCe4BRTVZYr8QxvNaUWbeT7xf2r7qrzc9pO0Z6/n78DUsy2ksk6f90P9b9MQMVKOMg8A+b2YeVxZNS0Oy6odCjJsFm4y+H3QRj7xN0ytC+WXBRK/7pMnJfQv/UQX8uMFqd9qHWAO7IObGVEKAflkRFzoM6PZpzEuWw7WCgApfy1H0FeaqaXIH8XaAcC1l2V7DmDNrwslW3lL/XpS/xBfltYsfhrFISMNXdHbdim/mBcA7h4xBm6/MsMC4rTa8F2H1tLvkIddKOg3W/JPoXLCM3ylPrrwMBO8RQGLzDUurQmB02pD8wd34/Ig9k5+aGWVNltFD2smRgDTDot9RqYu+o1VeeZeWLLyTBcyEZXrteBYrDwi+1Zkxf3A80SM0sIy0EabzFJr/5BuWr6+/8RnFDJBbCNpag/91NZQBgBE/DUcjdNk2F3K67Ta0OSLVAxuZsdXYa2kNMQbIRaK9+j6TOsa6BvXV7pPfhJe6wOktjmtNpzoU8LTnRonb0zPdmLBnR/6ZrV0nzYqTqsNkVseRWL7nlJ9l9eE8HponIgb9+dy96KsazQOv2KOxHnq9whD/4vlr/nte/782Xr5hrSXmmkO+n9G/s7jPXkiM8Fev+E348XdvYPB1zLlyA6prbkPz5DGxrGnBVOnTmdRMLs5ynfuNYx3ALj+jmaSnrJ2KXzWZxrSKKoLcw5txo6OP0q8LWrVDAD7Tgc1S+A8kD+v2fg26w8qj/wX6bmZgkd8nvNlAkJ+Gc/vB76bimGBnbD81U8qrLf+Fn+DoExlkE+jnrhS7GAiFNWFkr6xvDzxPY4l0++bCp5689KQPbcjFNUlgVU5rTYULW3LkRUV1cXjyDmtNunEsaK2EEIfABzovBA2HfuEvJsZ7Y01BVul70/fnwAw41wAv+ddowZOOs6h1oEqhrReHTUTan0feW/ayZFIAfDA6+K7JoFY3x79uPDvq+1JZh/ajBHNO/P3dT4lzLBvEImQPEU6Nd5uGEtUH1HbKczSY9ckTagJ3zhCqiux7d3IWxSNxIAO/GRP/Ab7xvfj5e14bTrKdu1HzaWaIL3zZVlhAkAyGxX7ymm1SRY3eqWVfiwDwJFfokzbqajMR9t9+gx/L7nd5nOsgEr6v0OVgtgdRtnT4xCdMYQtNO17mmpdiRTVxVGAAKDMxJIw4tUsJkD9UiBNDmIZRMktOhsmHX29q7Pa8GedqnljZZTsL5B91wKP/DqbsUmr5hTmpE8w1wDQ/O1UwwbupOMcnFYWtFUsS4yXIpKXr6+kmQKAq1/eDEI8QgYYofL2xJRxs5SSPsxEJkyY6AfVNGrgnVYbvFIZqlnMm5o2cVrRZnTfex/yPpNPDRXVhRvlbkxpuh2K6kLR23a4T5/hz3o98Bi/du9jvLiPM1+PI78w7XmL19Mwpel2U0ELAKr8sZ07jIvPjk90AMGBvF8t4SG8DeLpJvnJ5MSWSH1UezFDe/yhlRVn3QwlL7FbJgrfsaNmb21T7Ldsq/SOnFYWtoBMuPT9J/JJ9/SLFcHy/3ZZDkjtu5qZTl3vzTZgVbws8K5VCwA7HREXYbNNN6H9eSJFdUGd5OA+M2ZKEDMliSiQUprStc0RPCQLx+0XkD1TQwXt/OR4w/cBQApMSxS6+DScVhsPLEtlKyoznykYKStDSKmxptUqiT9FZad7xcvYmGowi2m76eQAAFYeycQvj7BTnRPJzLRG9BVp/uBubianqC5kf9uR+yI6rTYuiAPgJ4WfhUXBe9NOBL5nRHgFgFB/TdMu9jX56OnHhv59NH9bsxJwWm0Iei2NC6FOqw2X1sggGdIc4OVleCbOXSV9Y/nvot6+8FmXKfEhhteIfpcJrD4tNP+WJlNS0Xyrtqlr/uBuaZ4Ty6ras8jQRj0/TqsNo29ugAHwYNLEP/mIKaoLXceNQ8gLaXzDP+xAsemYE/nI/ZzNCaTg08/JdE8UugBmjpp//0zD/Dr0uecMfS627XSnswZ+Wqc+AkV1oeADoxAplpPSMgVOqw2+qzJMv3eztpJipu6CNH6aDAAtBu/mArzZ937sKXMzM96m/f2Q+YamhHNabRxohoiQd4no+9PXuewSU9osb92QKSNVFwfeaPq5bBETnDLG1HQYAD9h7/4Cy3vsGSYIilYIZm0hfsQ+pDFIdY8VTu56PTgCdRLlwOBmfQgAiNOEDDEkgUgEdHN8ogO7n2bm2ISiqaguhDzsktqRsns9crvPMwiCVG7p4WID/2J7nVYbsqfLIEBlly8b0lG5k+ppIE4+62WF8/U/5bkYYMpH4ofKuHpfHIJ/H2vgK+Tn8Yb8lfTfT5UBne8A0gd0LvkjCL69CpHzZQLyH9Q0rN3GjsXG2bOR2L4n9r8bhIjxGTj3qJ2j9YmLkdnCR78B4+SnqC5suVaGt0M6oHRtc5R92hhV12SYLoKUvvX0ZAS+wyb50rtj+KRkVqeeHwo6KpafWXIdLwczKPo+IQkGu/aKyBIZDvf+HMP9Iy86EPCRJuR5dWzDF67PC9PQT3kSqFqGAucc0z4zm7zF+zE7y/B+4yzPCw+AoG3VURh31bQ/iLx8fCQIdU8Lhtk1YHyfR15yIOBDI7CC2Xvx1Ma8xTaEPszivpAfG9XX5YnxqPHLVpxZGYF6/bINefVlFr/sQLP3U6X3PfVsCy7Idx0/DptmzjK06/MzIaji5UbhtfocDOJW/eMpTfFkB9d0V0hxbYFtu6X+AVgfU5/o6dBPbdH8QaNJiXf7SJTt2i8F5jXr64IP7cgePt1ju/T5chZ04MFlj7zkQIPdN3CyXRWpfXMObcbo5p0l/vVBfMU6yh3tuYKB7lM+Tzx133sfqvYsku7fLpn1b1nXaHhv2smDX+vJK7YtyjN2o1l6TRQnMNOo7BuXMbFFJ8Mm/FbjISknV0J/pDSnxtmR+aYcPDwxqjvKr1+XNmjX7o1Dtd81887OT46H389bDe+M172uGdCjuMLxe/6RBMnszayvPLWP2t5uhxc/FTWrK3t6HCKStsG7Vi2u7LDUrwf36TNQVBfafZqMRjuvobSGBb6rZNPfJ3MPSCe3ntYcor7x/VB6uNiQ3lP7KiJKY/YNOvdcgNKmNvIWRZsivFLf6Mc/pUs8mAh3d1XiI+e7DsjvOdd8bvzEjtxh8vd66E0Hmr/Jvr+rSjD+aruc8bsoGq0CjkmgG8TnrdrqSQgVfwNMYUDvKntGHPb2+xr2T59GkykVBy/XkyU8BO4c4/ygrw8A4OUFlJeb8gpofVr4nh0HR06Xxol3jRoou3JF4uXyA/HcQgJgfVjdWcB5oEDW/xMya/Pr+TvwdkgHj88BYPjBw1jQUgMP07c1amoy9k6cdsuxS3kTez7Ewxx44u2ngzvgH5F/Rwcwpj1r7MB3/y0BnTOWv3pH98f/K1UKYncAiYLYuqN7cbT0Ekbc3EA9cSQeObEl/Hr7yUBUnVkPf02fJU0IWdev4aXYe3FkWDiaTNE2vEsu+mNeS01LQx/9J4XpmBSUYMINcPK3ltz0BTBubMTr9wu2ceGJ0urr8kTXe8ca4nUQHXvagSZTUtnGK3MfUOb2uNG6nU3Xb0cycH/He5HzRSMEDzEPCQAwU7zai9PhFROFc5G1UOd7Of6X49kJqHH8OiwbdvA8oRnVeBw1kVKO7OAogQBQ6+8GuNjlFBcG9YvsosNbMCywk8c29ekzlPvFeaJbCZG2nYArGrjWL07yO6KN76XBCai5NF3K+3r+DnSq5o2S8hvw9dKCmla0AZOEhq/ikTNoutQXnnj1dE9fJu+TxIdR5tLirpStC5Qc/T1uIkx4ADwL9LfaQHrXqGEKFw0AZV2icXhiKQ50XoiWc5J44GSxjGWXamNWRIjHOi+sDkVa+2WG+m9HYRCcMgYFiQz9rev4cVx4EPMtOrwFsWufRMTITI+CQvyLSdj60XS02vwoWgw2Cp2Whg3hPnmywvc1pOBubgJJ9/RtEensCDv856fh7t2X8WL9HI/jxxLV0rDB0detr0dU+Eht9rYAZW4+FvTtoTmPlGAtt1fhflB6/nq3iEP5jesGfmJdbmTYLHinIAOvBbNTty5PjMffXxsBKf6pgCuSV3QU1qxahNGHOqM4gZ18Who34ifuAAOLID+lf/q9EOkFNICFQ3kvxFyYAMD7WZ3kwO5npqH3vcO4GaDZvJJ4z2C492WbzhF+fzXE5bvYCeywA8XcVPNW363ZO4ucmYz946eZflu3KzB2eCeJ+1dVtF5dvS+Or+X6MsT+EvOUd7LBa4sL1vRaUBMuYlrRZiS36Cyl86pSFWuK2HfeNzYRpUdUAy+8X6N7IWXnHxWOtVuNCzPKnhGHiAnbcOLXVmh03wHDcy9fX5SXMIuVkr6xKPf2QrXft3lc57O/7YiIMdsN5fTbexbT93fBPsf36DZmLHxTMkz7ndY2sU30rPhlB/Y+cfsClUdB9uY85O3nx5U29bf4m578mpULAD2aRmEjfr2jBY9KQexfS5WmiXcYOa02yc45J1bz6ciJLUGdxFwkf/yTNMk4rTa0q1oNXjWqYdcLGjpT+4+SMbDmCZR3MmqrJgUlSPfo+tKaEDTsfxBdxzNn7W6jx0r59AvKy8GekdecVhu8q7GAjbEut1SGorq4k7ZIPsFMaCRNXnnGbqDMzcvz1GdUJiDb1lN9/QNiUXr0GDedTHA9YGi7orrgddOlKe+h2kj/eAbOjLTzep1WG1I/n4G8hy1S3mkB6Ya+VFQXEgM6SAvez6FroajMT4/K6z5yDC+/gUWLpST2Mf0WhTBLg/pQVBeu3heH686OhverXyy8q1VD3qcJ+KgxS1dtpQzUQKcPtQ+c47zR87dDWDsoYCi9az3KodhPIoU/uRUWL2/0Do7nSHDEX/acjqZl0LUYnJbyiQt1mWsf3i/QFm9RCBN5BViAUP17cjw7QUovCmF6cxUxn57f1bmphm+A8/T3TrQYvBtOKzObo/uiKdSsiBBkf9tRGovi2CEhjOow+97EeHiEwBr82zgUJGrBa8WNjjhGhgV24n6dYr1iO+suZEiGohAmlkVCWEWbmW07ww3lmrVFUV3wbh/JEcU2dKzH74vj56MCpkFP+fNHQ3767xPUXKpHUZlfkdNq46fudw8freW7Od8UPtAQJycYgyPTnLf1I2aKJgphxNv5R5iSi4SwKYXyaXCGzQJFdeG1YA2Rr8YvW+G02tBz/70AgDdOGlFtb4fU5zVwmvKdLBwCCWFeMVFcCCvtwYIbc7AIExL70dOz3C8SJCGMTF8pHAq1wTAuytwIzajGwqUsmYDsEXKYFOrLd08xRFEy2xaJyrx810m8ns/CFyxq1UyaI67/2YIHSzbjX7x2Wm08RINe+CjrrLUhe1qcIX+dzfXh3T4Se69f5X5X+jmxrGu01A/Vf91mOvb1c55IOY8xZZiawE4zn+z6MGJ2lkljcE2RBpVO1gwUoF7Pk/v4CX7dN66voZ8orTgvUGwzovPDEqSxoqgutHyCvY+dsUuktO7u7BSKhLBLa0LguyqDK4jGHu5kKhSSEFZulwGsVkb5I/CBPXBabZIQBgB9wjvxdFumzJD8WUX6fxHCpDnwpjJIDMdxdnxjKY0Ika9/v/9Thcv/b1QJ1vEvoUpB7A6kKwPjOVgDBWsUJ8Ehtc7ye0ROqw2r0n6XJtkmX6aif0AsvLa4pHRm1+0+Zf4wNXvno/qmxqj2O5vIN86ZLdVvlt9MCDj2lANnRtlRdo3BPr/baLeUT1yYy+3tYQkLxqE3HCgtkBH+6L9+UXQGRHPodf2z5a0b4qOCrcw/yqTNiir71jmtNuROSUDnJ8dzuP+QF9imU4xZc3UAi0kWMZZN9hZ/f9ONZNsvkqXfZPOv7yNFdaHq+esc8lrsY0V1wadJY/MNDICLXcLgtNrw1/RZqKpsl947b9NCzUnh4MzWHIqX6tcvrgBQVkMOdKqve+xhbWHzWZcJp9WGs4/JYBKKagwy7rTaUF5SgoMz5f4q6POtaT0A4BPUHPVny34U9CcCY9DG+J2CDMPCdur3CFhaMvOz63XLDWO21pJ0w3g78uLNuHVJmrDqaYEUeVNUlxQGQMyTMzWeb0Ao7cHR03kZiupCxBjz9yi2nQQPgJ1CiPWnfqHFiaKTnIgJ2wxlmbVJ3wf69l7/swU+KtjK4xKK/WyJaimNXUtEqGlfAUD4E7J/J5Xh7t7BIGiLigfatOkFqheD4w1lAcAfV7ST29LCQ4Zx8dKXC7j/JSAHMae0ge+kYsfr03k+AnigfGZjgu5R0G+fFsysKbJqDaRfc+PsKi1Eiae52LvHYTitNqS3r8LR4hTVhV6DHmObvZvjKO9TQfAO06DOKRCuaApMbSrP3Mvv+azLRMc3kgzvXoTiFucHEaTg1O8R/Fl5FW2nlLswGqX7axuEffL3EklRmRILAMKeTUf4RDY2yE+t5RzmfysiVh59zsHDpejHCymMxL49O8KOqj2LED4iE83SNUHP03emfy6OmT+XzufX+piWTqsN5zufRtmu/Xi+bS8pr1TGD/MMfQAAOd/E8+vg38fyZ2bzf8Q4ZkVCwv6q1N+QGe0ttT3shwlSvVcHxGHp+kUAtBiBoRlavyqqC5bwEJQWH4EZ6dGSb3Q7yssftP8E0j+ZIT3feNUbp0bGmvJP1iSUX/Q1Lu9kw+xAYzB0opyp8fBK22Xat3Td6lshCP3lyxywxmm1Sf6sekG3ysamuDIw3jCuRCKefDc1Qe4U1idn3bKJpZ731X8sQdgixlPfzgM4ABel6z5yTIVrTCX991OlaeIdQHTMezY7BLVraeZbhT+2g6NFAdd8EXm3a4WTcf6o/20aTv7WEg37V2xz7InEdHTt3a4VVq9hGqzEuwbiaO+maPR1KsiMQC8wiGUNyHHiatfj/N6xZxxo8kWqlPbUeDssJUD9pbtQ2iGCR6Q3K88wgUeEwp2dx5+PL7ZLvlfk83BmpJ0LUEVv29HidbaZn3QsGp802YlW3yahxevmSFG9HngMf/z8nbSQi3E+KtKImfFP/718fbGmYKuhv+l//32n8Vvr+oZ3QuS02jDyYBGG1DprqL/obTuu1yuD5Yq3hIQIAI5d1znqpRmv+sVGvG/fNYjHkzIjRXXh5ePtkBntXWEfmBGZrXhK6ykvmVbS88OvOdD840y+UVdUF2wfJqPxV6mmbe3d/xHJub2i/hbfEd3zrlEDhd+Fcn+witp4/pEEpH88w/Dcu1o1XOnZDmcifWD9ONVQj8gzwE6JCfZd5NuMV3oW/X6yaUBWM36PPeVAtTPl2PqRuY+anp/Cd+0IejWNxTJbsdC0rwCg29ixEpBC3mcJCH0uHZcHxcNv2Vbu16Mnn6ZNeABqp9UGd/cOUhDukj+CsLHNCs6Tme+foroQtnEE9yUS+SNfLgAYnV3A4zV5epfUpj69h0hxpvRCuKfxeztjW+Sv2+ix8F2dccu8nky+AGB58TYeOuCf8iC2jdonkleVqii/cd1jGX3CHBIgjmg2CDCz810vTEOrzY/iQOeFHvspYdcNpLevIvVNyB+jkd9rDuzPT0DtxbIv3eU1IfC7uamncvTzDMDAICa26CTd8+rYRkIUtrSO4CdwXbKu4dUGByTe9OboiurippP6/tD3odi3fe33orRINqU264+Kru95eBQsG5lwQ35Pon+VPg+ZpurL6dNnKNrMO4CsDuW4MjAeNZZv9fhN3IpEs0OzsffWydbSulQRmeUHzL87T/kq+radVhsOvenA/nEyeuKtyiafdrNnAJDYuivc587fNo9EpeU3/mNME+Pu+/eYJm77tdI08Y4nLy8v07+aNWsa0h48eBADBgyAv78//Pz80KVLF6xfv9603PPnz2PixIkICAhAtWrVEBUVhenTp+N/U3btsP0hjdcuCzCv+d8AtI/73KN2lGUdgH8OWwRICKPnoikdxeQy0+wAwF+CW1PU1+xErCzrANcWuXML+GZuTYH5pEyaI6fVhqtdj0t1NfkilZ9GEDWYmQb//4+9746O4ubaf+w1mN7r0tzBFLNgjL0LBEJbMCVAEkhCIPTihHQSQnrvldAhIaGEECCEgGHoBLANxrB0cMc2Q8d0MG6/P+SrkWZm17zf9345JD/uOT7emZGurjQaSffq6rkL4lF086akhBGKnNnERRS7TTsj0+ajGMxuKCsdRddY/CFxF4sULqfVhs/rsaDPpJiJRAFJCayAnldfYEwrPidyZ1F1Wm2Yn7UTXmXL8nsjT5w0pCfo5ObTYyQeTqsNAb9NQM5rDkSWY5ZyQqNTVBeyl7dEk7fiEfzMbq6Eie2on+zM2pXK0Vv0yB3OXf2dVptbJUx/raiauxbA4LEV1cVdLJ1WG/oeyTXwei2NxbMhiGpXGwbRTc8bvR/H+ybxqfudecwzp9UYnLhPeC+ce9ohpRffnXhfUV0ounnTFJTDjGruOAWnlYE/qK9o7ihFt2+j3J97cOj5Geh95LK0oMjIv27go1fCAGYkEUmsZ5+OA7B/6gzT99Y/pRf/XTee7VzU+zZOUsI8LcIB4PMhPwEAvI9lwmm18R1ESk9/2+bORcOESpxH4Ets4bxzGovtIyphXj5aaIaC02ek8jYt1oInK6oLvj0z+e8XUo/hyCRW16LObAeYdodS3cSgE0MmeFLCzv3RDOlLtPqQEibybL3ncdN2IvnM+OqVbJHafBSDYh8vXH08ipd9fX2Aad46Dx2X3pVXuLbDJyphWe/IoCf6BaqiunBxrN3w3N3ikc4e6RVv+k0gDHS9MmgjUr7Vvv0Dr8xA271DuIur2E6KypA4ASBxcKhUrtNqQ/AItgtPaK4nl2k746fSaxkMAnolTFFdErALUfHew1J9SaHKeseBHWHl4LTa8PAxDZGS3NFF2c1cJ/VtQ/WgskQlTJ/eabVxVE/9OHZhvJ3fJyUMAJ7/4Gkoqgv5Rdq4fH6ihj6pqC4Unj3HvTlEnkUHjuHzegxApMLvu3HjkUjDOyY+KT+1le7pY+OREka8xTZwWm2Ia13WwNey1Sr1G0V1GQKpU35xbBbTA4BPvboAILmdm9VDjJuoV8IA5tadPMvcPd1ptSHcV66D/ns/8zgLG7P4GpvbvW3NpbS83iVzoLhDf5/+/6J/hSIGAJ06dcLChQulv/nz50tp0tLS4HA4EB8fj1deeQWff/45rl+/DqfTiU2bNklp79y5gx49emDWrFkYMmQIpk2bhqZNmyImJgbvvvvu/0kdBoa0khQr/UCpqC5UW8gUgwutygOAwd2JlBCAxeQS49jQQDE/i8ULe2fCGCTPb4f8nu14jCV3ShvABib9YOO02jDnioZ+GLJdg2IHtICpogxmVHH5bj7Adj7IdrkIfjfnNSN0MCmIisp88921mVim2TNLtaoA5ICkTqsN/mvHSnn1+UqzEor5GvpUwpikA8iLjsDvOXuw4Mm+pvIqqssU4jv4uQQcmTQDE5owAJffm9fmeY86FhnK1i+izBZL7t4Dvd/cpzSF/nTBdVTdySYLS10Z+U9fh2dTj0sLwt5HLvM0hAZHZU/LbYLYg5t5/jUtShYH3hae5uPAMLb4XqsheP7SzCrJ67TaEPLXcKker6driyR93cT7BafPoM70OENafZucn2g3vHNL0yCP/YAWWbXmxPOdL6LkH9oh6pUJWNeimlTOhCYdTXlaatZAyyRvnJ/IFmCFqRk8HS20eLnpmYhu09N08ZHX+Qyva9+aB9Ainrmhbb4lB/tVVC0+k16e/hXZbgch7jX41Bhk/uS7DCqbziaJRDDvIhUXaN9fUUdj/QHz7/vroFDe373usHMysX/9blCq9e1Q8a/aCNn+FAITy+HUFAf8148BwOIHKaoLC7N3oc5DxxGgQ+fTy1BvwDGkfiWfjxEpKc8I1CH2tbW7/oCPX2P+rM73cdg+ew6q/JKAgCdYOkL582nA+v3CbO38iSiLCHQhUuN34qR26PakFgstv7gQrrw81Jwbb7q41b8nRXUh4o2Jpm0BgMf2Eo0XTqsNxb4y4mnt/idw9fEoU2NJRvQ89D5yGbFbl/N74hkvUr5afxqDgHfvcFkzBswxbRc9mckNaPERRaIFOgCMq6pKvMU+duPhSNPxg5736TgAyT+0w/nVTbn7MrWPaMi4WXRHll9n9KUyCPodAPJ7amdLc7sxxUX0ZNj35kzD91CYm+tWXiIRwVBPwU/tk/JT2JgrQ7U2FJUYUUF217dim8YiunUPBC2ZwJ+TWyrxeCH1mHStJ0V1oeDMWXyasRtxX80yKMAU2gMAPmu0GgCDoHdabXhw1FgpfciEPQiddsVtWfo51mm1IbpVV/5s35vM9ZxQF73SNfTQZder4vzqplh8rSafAwnm/h9FxcV/z9+/nP4VroleXl546qmnsGDBAo/pBg8ejBUrViApKQk2mw0AcP36dbRo0QLlypXD8ePH4eXFAvXOmDEDTz/9NL777jtMmjSJ83j44Yfx559/IiUlBU2aGGNG/E9ID19/t6S3/jmtNlwbEoXKv7IF74Ksnajvo1mkxQko+3WHtOg/90czbGn7A6pbtJhNZvnMfrub2CiNnp+lRVPEbvyVTbpLw5D8gBa0WXQ/tGy1ovBB1cCv29H+8OnOzn2ELJiI5BGyS1XKd5Eod86Cp4Zs1JDWdJDkntpT/9tTutLo3DMO1Pk+znQgt30cg7rT4tzyM5uw9PfcvQMznmb3vHx8AIsFxXl5BiTF/6Sensqha6+IVqjz3UmctV81Te+pHe6mLiJdiQ2SYtt4kpP6kf9UI8qZGRqforrQ4eAgvkA+uayV5GLlTk79t+BOyS+NiGfKtEiUP23BkWdmoOcjT8Er7oChXUQkTiIR4Y7XU4cWada+KQvCETwiyZDG05hA/3sfuYznq2fCadVcFN210d20A7XdtlveeO67CTjw6gz0Ce8l7aZRGnKV82nSyLADYTaGpkyL5OeV9GmO3bnJgW0swQGI3b7SbRuQa7ZZeaXJUNp3rqgu5BXncwAdMxIhzQEgeXYEQsZrLo9iWU6rDXnREfCNTcTpVaGoP0BGZ1VUF0J+mgj/1zQFwB1arKe6mt2n668y49GibHnTPBX/qo2ca9VQvU+KKQ9yS199KpG3SdoXUQh8+e762fnVTfFQk0MGN+4W38cgvN9hPmaNPHESPzZtcldjNiFW0nVpfdvsHVNeM/6KKrvn/2/G6+hmDyD2+F9S+VlvOdD4PdZ/m+4tg++siaay6GXUy2kmm5ms52IcqDPDOB/OzdopxS1zVwdJlhJEzsa7KyIr8obkvhya5IONy9tL7syhST44Fl56+JibgyJRYaW5gupduTKOfxqKjAFzMCi1B3fHFeeHu2mHf5RrYv/3/x7XxNVv3tPt8b+lf82OGMB2sa5fN1pgAeDGjRtYvXo1unTpwpUwAKhUqRLGjBmD5ORkJCZqk9aSJUtQoUIFjB0rowY+//zzyM/Px6+/yihd/w36PdmIRiYS7fwQmQ3WcV/P4lanPh9PZguLErcQSnPmBU0JU1QXLo2yY3/EUjzWyCFZzhTVZdiaNxvonVYbPwA8McW4+HVabfjqEnOvufpEFAqPnOB8/B87KNW3OEeLtRLbNNaUl0/3LH7tPzVeGuwBhtLX6IM4bGlVEQ/EMPRH7DnEdzBSppkHtBTrRr9X5Mi7OPqBs+rOmpLLnZ7EczqRr06U2rfutDhkfKQFIDZbmFNZaV9G4dJI7dCx+N4vjjHu1ojkzgKpqC6sz9rLXftEJez0iw6PC43Srk9N0XYxncf6srL+WIh9q1qa5hPrRa4l4n3KQ7ul7hYE72ckIuc1B6pGp8KrDFtUEagLUfbrbCHdZbRmARWVsGtDtPepV8Io6LcYi4gQEekdiu9S/646PC+7yzitNvivY7sxhQ+2xe1+7s8c6NsjeNJuvpNNLrViu5x72iEpYcTngxQNGY3SE7iHKOvvOTKyZnrP+TyNT/16pgsL+q3/v65FNf478KUEQ1mEKmimtIpE6KvUdh8HhqHet2zHZ23SeikvpaHzSu7cwMS0ACQlTF8XUsIU1SXFW9K3gaK6uBKmqC5kfGIMFuy7vZ6Bv9im9Nu7HHONO/us/E32b8Bg73NeE3ZUBkXyMkUl7E4vTQnTl0WU/ywLrC0qYWJbBv3Azv96RbSCorqQFnFbyk+/C7toXhp6qryjFhuzBFdIp5Whp8Zeb+l2HLvxwHlU75Ni6Bfkdklu6aJiKiphVI5+LGy8uyLGJaejea2z2Dq1gyF9w4/i8HOTv/g9MRQMoHmkiHmcVhvOT7RzxEoqN3QOczuncYnI3fgs9kn6XujeLcUfTqsNme1vafPeookwI3Huyn7TId2z7WflxB5ndSzqpKE6+s/QvHNOtMt3K587pUWflohc60U5AGD/G8YzWgDQ2KeSoR564rIcY94mKCrEzYGRyIq8AUV1oX68ZjA4Fl6Ahh/HwdKiKb+XHF3DVFZLTXafXJBJCQvfXyTVQVFd8CpbBhkD2Bx642Ut0HqTwYdQWFxk4K1Odhjq6m7cu1fJq/jv+fu3079GEVu+fDkqVKiAypUro06dOpg0aRKuXLnCnx88eBB5eXmw243oTVFRbOFFilhRURH27duHNm3aoFw5Wdtv3749vLy8JKXtP6X69etLf8HBDElrYAhzuVBUF7ocHsB/E914tIx0z5115d3zzeG0alvj6Y8y5YxcIvRW2ho/MCsnDS40WAOQUNfcDRKK6uKuEGKAVEAYVEvOg5Bvv54oXdHNm9ydUpw4CbI25zUHLg+3I+MTu/QcAPzXaJHqbw1gC9ryq7QzAuTqQgutC+PsuOOU4dP19HBDWYl1Wm14PV0rc1nAZiR8Nstj21C+agvjUX67rGT4T9XOsPF3uZnFwPHa0oC7UgS+lIAaP8Yb3nfmh3bsfW+moXwxXfMZMdzthtonXVgY6hfNANxCWuvL73hwkHRN/Bqt0WJFoVsOz9vg0zjk92wn9Sn9InbtPgWKylAp9WVvDysv3dMv3t/0j0DDj+OQ85oD60/ugU/DBli7Z63UPkefZhO+7zpm4Q1ZMFGqW+VfEySZACA40RcAsG3+XPg0bOB5MWCyOCGqtCzB8D1l9Gbw8pat+wzw8qJct/uyPj342BnT52KbKKoL9X89IZ1No3RiPDJFdaHx7oqm9aFzRnrlgJSe7Dcd0jeol+tuFk6keJKCI559ydvgZ8hL6KtmBgC9YkhpyKXPjNwZG/z2lIeiMrcxS/MQt/lbfRXDAtuCwcWLsohl+E8xggOtDmaKY9g+dg6I0EcNiq03m6ZdU2ZIC3IACPlruGTZ18chI3koVIhZ3yJe+kDHd3pFSAYGUjyLE9k76HroBno1aW/gK55ZEhVuRXXhWqcLAICac+X2CBm9F5NrpJW6EH1w1FitXaC5DprNhfo2EPMRbUpqgTkhAVjkt01SXOlsMyHlXh/M3E9TpskuiGI8yWJHa17W5ZaaK+bJ99hcdWxcyblNby9JBn1/dVptPPyEmEb81kQgDj5uNbsktbf+OcDO1Ir3XG1k/t47tGDYsQc3m74PT9+1orrw6lmbab0yP2T9+/fmtfkzgssXv1/xWi+/2bVU55K5pqhzG+yYPhveNrYWEvskUezGX2GpXRsAOHiJnj7auw4Ac0EGGKI1ACxf1wGLs3dJ42LhxUvodbwPLq0JwaUWTHlM+Y6lj24gK+yK6oL1c+Mc627euE//bvpXKGLt27fHO++8g+XLl+Onn35C165d8f3336NTp058h0xVmYtbgwYNDPnp3qlTDLo1NzcXt27dMk3r6+uLWrVq8bT/bSIriW/PTADaIui1tIMoOH0Gl9ZoiwL9wsNptWF0coZ0ELZocyM+UPj2zDQdpOneR3XZ7lTdxHyu+IiDnLsB0Wm1Ie1zTcEla6e4CCReABDdYwjfQTOzntX7Jg7TTu5C8jxtwU6QtWWvAdV+jkfy8JmSDNlvOhAyji2sh598gCtgJD9f9C4NQ2gSAwaoNSceJ/vIMcHE/yeXtZIgwonPA+W09Nx6uHqcgY9Zm+kBTYjU34WDvKFrUDe+Coq7nsKxCTO4X7yiunD6RQcv118ZDb/X46XF1IU/QyRZAeBozAxuHaZ0KSXtp6+3orp47DdqL4r9JRLBUe8MW2la13UblhoWlHRYecuCeby84J/NrbhOq83tOQZ9OrF/0u+GH7NdEoJjpmc+jRoaFgikDIv3yGqd9kUUqu6sia+t2gJm7Z61phPm55maBd6nvmYRdWfI0BsSiKJbPMh/0460orIdSy9fXywLrYeoA/mwfRLjlq/TakPswc3S2TS/PbISS2nnNtolKVmK6jIoL1J9vS14LKMrjk6cIaX5ZH8vaQd9bHYHLM02nh8DWBwmAFJwaafVhlqz4xGwfDwAoGhGHa2NSpQdcczz1DfEb5PiKInPxLyZHzLlL/PXMABA4K8TkNn+FpxWGw4/N0MCYSAgCSLrF3H8DENUf/eB4qk8Mf4SpTvYloVVmPrGQtO60I5en/BeUj5FdXGPAn2d9d+e/r7YftfXB0BRXbj6uGasCZ0Tg7LrNcRLsUy6t6VVRRTn30HOihZSmgUlZ5DF7/KjDPcGPTOlUFFdmHZyF/S09Ye50vujvuKJ3PUTRXUhJGaPwaAAsLPNgGbI2/UNQz8NnrQbvaOfgNNqw+pTsjGWXIMBIPhpDdxKROh1Wm0cyGLWyZ0o7sDqm/ZFlFR3MZD4RxnyN0L3I1yFksz72v1qaEMyuFFeAsUR8+m/h/U3faU8egWXrkPnxPB89F04rTau3OnJ73WjMUIcn338m5j2X73xQU96GQHgXNvy6P7EKKyLXWJIf+2xKBR1tKH59BgUntd255xWG95NT0La52w8OPusAzZfX4xOzgCi2FnlHdMZ0JD/1HjUslTk5RLgk/eQO0hsuww1fmQeFsHPyrvrPv5N4NOoIVomDOV1E+tZtLmRaR3vWbofR+y/Qv8KRWz37t14+eWXMWDAAAwfPhxLly7Fhx9+iEOHDuHbb78FANwsmcx8fX0N+WnXi9J4SkvpbwrwvP8pnT59WvpLSdHOZjScdch0YUWgBTX6JhueAeDuVIMrXUHa4jb8mVmAW596LMDg7b7tDZN3ys9tUXZ9IrziDyC6xxA+yKmvaK5m+oW7orpQ4bRm5dv7Llvk0yJQP9AXHjkhBagl4mk2N8QLHQbzAI4ikasfHa6nPGTpA4Cfm/yFok5toKguPHjkIWmRmfzAz9wXHABCv5EVI58AP0Q3ewAAcynQn6WhP3GB6bTakNF/Dg+kSmhNtxQNkU1RXXwnzWm1Ia93BJZms/ZJ+zIK1oFHpQUJucM4rQyQgKj+V3EI2MAO24eMTDL0lVr9tP4R8NsEWKpUYf2gcmXTBU/KtEhk5F/H6hsV+L116Ql8wi+4UB6W+vXQ8xEGwnJ9cBSuD45C8lPsXF6vfmxCaZkkDyX6iTFlQTiKXEcBAK6SMAi9ez+OgCnxSP5BW9ya9X090eF0r3YtTRfl7ng0mzcRBdk5fGGjX1yKRPDcqU/MwpWOF1HGS1PYl11nAC/nYmRDw2Q/bSFLZ5VExDqSUyyP3FVFKsxlcQLD35nIUd8ozfqSOGIJrcvANcWI9GX2jdJzQhl1WjW3Q4nat+LpPSovRYXI7XDJsGgKeEKOW5YVeQOPNTIC7QAMWEG8f2qK1k7Bz+7GuOR0nA/z0fgXF+PyMLaoTMpj78Y/dozUp+m/2CfMyu42bDQbC+YwNzYyZvgNYUpN0AuaQu202iSX8JAxe6GoDPBC5D3yxEnMb7zTUBbA3LFJvvwup3l6opTpzGr+4q4hhrwiFZw+g6lnwyTZAOYuK17PzTKXQ983nFYbMj+wo1KvdLR7ayIqjNbeeeN3NMODWM+oyRPQfv+jEs+GDx+ReI5o3FHqd6dXhSLuZrDhXYn1MHtXeoh5MT3x0C90SabuQ0fx64Dl4xGeNJjvWOrLbfS+8QwvXZ9a2QKK6kL0g4/wezSO9W8QgZsDI3lsPX3dnFYbd23LetuB3r0ek8rwL1MJG35bAEV1SW6Uvfo/KcknQqQvFoBaEm0Wt8oJUcrwmdJ7X5+1V+JNv51WG86vboqGCZX4fBOwaZTUFj4NrLy89E/sqLO3gF9nRM+T2k5RGeBNQdfwUmXM78nGfzN0WFE+cezUr0E4tWdeRd75gGXbPkPZiupC5aUJ8N4pA2MRvR0QjtShbG775cUvEPjrBIasmnBQmv/1PAnwqfD8ecO4SGibAAPnKcjOwcZ28s418d0Y+qf7hrpP/1r6VyhiZjR58mSULVsWa9euBQBUqMBAKPIEWFWi27dvS2k8paX0lOa/TUXXrhkmpswP5LNBFPCR6PIwOyr/moCizsy/O/XBH+G02uA4ICN2Ec+CM2fhtNpQbg1bNFX8S3MVSO/+A09feOQEl8H6mRyEUCSn1YaDLxtdRNxNvGJdTKlbDgpyThkG2cAtI/nvjF7zoKguhCcNNuXt+z5bCJftcVKSRU9rd66S5Fu7cxUKr2pgEurvzQ3ye1esaFhgOq02WL+I4wM9AFR6WnvmtNrwYYDGx3ddIqpbmPJDZ2Z23ZaRxYj/0mx5URQ4r1CqkyjH6VWhPH8F1RuFV68yS1tJvyroGi7lCZ60G/5lKnEkPHGi6TxuHP7s+w3W7l6DDcsZZHmlZQk4O+A2zhXeAMCQ2oo62nA4vEiS4+JYuySftV4uf0ZBeNet+wWA9i4BBmBC5fvUq4vcp+wS33HJ6diygLnyiZDT1DadnhnvVsHKr8JMa/rYL2b9M2VapOmkCwDzQ/wxN2sn6swwd98kUlQXX9CalaeoDAUVACzVq3NZbw5i7k+15sQjr3cEKv5V21RO/TeU/EM7KY1e/tU3KuDCODaWVPAua/g+KSYY7bqKdLPoDpxWG7y2yF4CiurCN5laHcmVVv9tKKoLPgF+2r2Gcj9s8Il2nkpRXZgTEsCBAihw6u5PZyJvgx/CfVkoiIzoeaZKqL4N9PL4bGaAIxl950qIhd6VKwMAd5ckA8GygM0AwOvutNo40hrRj02bIPpENPKK8w3lxX8hB7tVVJd01oh2T0QgFAC4OIa9K3FXY3It+dwTwNxlReq8+TnTsUG/QATA4sEBqDkvHj7ds+A8zMa+7DeMLq0AUHVxAva0+Y3zNuOpL6v+gGOYVJ2F7LDUrcPT6GUzW+ACMhIfAG7wor5CMORErXY/IbkMpj8yG7X6JfMA14rqgteWBpL8+joE/cKMaQ0GHUHL72IQu3U5f562REtX4ffdmPHxt6Z1B4DYQyw0zrHxM9B1SaIhnVm986swA7Do3ZD2JXONHNqoA5xWG1f+aDeT2srL17ibpX9H7ublfe1+xe5VYdrcMHwfbg6K5OlE40zAlHhsnzMHxfbW8hgk7IwNa9QB5Y6dMjWSpfysueqV2bAXp16VDb3uFC2xTp9maEjLPP0qtqtc5/s4VN/FlGBREXJabW49dehIANX3eT8HN8ooKttdFM+G6euh53dyGTNsNS5z0dDmI0rAR6Lb9JTCC/zT6P4Zsf8O/WsVsTJlysBqteLCBeaTbrUyVxszl0K6R66I1atXR/ny5U3T5uXl4cKFC6Zui/8tUlQXP9wJsMlS/JBDxidKHy0t5jb+8iNPA2gxpBTVxV3fzCa7Gw+cl/ibTd4Ac5kitz4RerjzwVtuB/ugbSNMy9Xfo9g/4gC87Za3JE+Tny2G/EnhywAA1gS2iJpxklmD87uclmQhPvqFG127A7w4FLkE6Z/IgBpFN27w8r/KNMYZo+vC1AzoSQ+1L76XDuW8TWV9rJEDPgF+8G7ZjC1AJ7Ldx+tFzIAQ3e1RXmb9AcfQ4fkJGHj0PA4/x5TjPm2dvByfLWyx1+H5CYZ3rZ/0yq3Zg7T8mnBabRidpaFWBT7hwjABBOJkdHkuL7l3UZ3of0Xd+RP9AmHBVbZAqztNW5AXnDmLPR/PlNp0TkgAS69zfyI+FVbulu6R0SLl2yikDRYWxN5aXxLBDkgmOkdIbeK02qBO1tI19qnkduI0+xborID4THzefQdbqKZ9GYUKK7XA377rEvn3KfYN8V3R2bHQT3Kl9tUvxqcHhyDpnZlS+WIaKrP+V3Ho1WeoVCc6L1bc9ZRUvtOqAVgA4MqT2cJ87c5VWpsVFbpNJ5KiuhD0vOZWSzHE9GlK4+W02nBnYxMpj9NqQ0FmFr9ed2IHFNXFz+ll9JqHxrs196P1zdby/BYdepeiulD4oMrBInoHdzA891RHuke7fgD42c8A4XyZ3gBkpnCFjEyS+Ja2wJP4lZzlXTL6a9O0+d3DTe8TXRppl8AY6Dul+sXu3wAASJ4bYTreinIfvMPGt6qLmaGKYlVZv2B97JtcPzitNuR2uCTlr/N9ealOobNipOdJeXdQ3PWUWyUMkAFlGnwSJ313gU+4cO4Zrc+TYcnsXUQ/+Ajnv6llZbf1tbRoiuSZ7Bvz2cI8HWr1S+bfaeBLCVIfifuKjWW7wlZKY0mxznisf/f9U3phQIrTNI3TakNeNbbqTfme1em8jS0Rr8QGmfY7r/gDUvmiF4uiMs8AfTsrqgvBw/dJ32ODT+PQp+MAKCpDcDQbJ6X1Qu3asJUonUWdNF9Isb9Tv6CwA3T/0POyS3Wftqw9lNA1hvqJbRMwJR5Jbbyx+pTmshs8fJ80X4vfMoE4TevYBQ9MZEcXxiXL82Ds/g2oPTMet/u1N1XK79P/H/SvVcRu376NnJwc1K3LwBFatWoFX19fxMcb/ZQTEthE364ds+Z4e3ujbdu22L9/v2FXbM+ePSguLuZp/y/IabUhukFbaVARP9DhJ1hgX4qzBWiTV+b7dglsg6hxzCXDIk5v0dSXpR94Y49s5W59VX7RLLN6AAWxHqldFgAA5mftlOrQ6aCGYqSocuwfAGgxLQafZfXCjZJgptlvOFBmw16prskz2/P0FPg6pokMc6tfABEiHx3ibby7IgBmEQaAPo7+mHFyJ1849+nwEMb13YDUhWy3UXSHUlQXXvTTrFkpP7U1DKaZ78vgMFc6MmSyyCnsbBS5JJopJ+Jie+3OVXhqBQOxSH3wRyiqCwOeZAuMwmMpCNzMdguTfwxHpWUJmFDtFHfPKThzlpdz+iUHrj4ehZ6va66P4h/Vhf6mB4dAUV1u3a4U1SUhV57o9DMAoHJ2gcTLUr06Lo0yAuUQibHBALYbJ8onnsEDmEXx4lg7/P8cizMvaP2dAAYor/9vRch5zYH0R2dxxTfjIztQpJ2vKPKV+79eISWyfh4nfSNUTmCiDOgjxu6jtOmPaK4oV5+QgVOcVhuUllXgXaECCisxufKiNfQ3szEgI/86l6Hcmj24PMzOwz7oFy5NfzSP+0TXVXfWlO6nfRnF4wLdeMQcYbTjpPGSbGbtpR8/nFYbBqd3k9qFiHajxPueeOeuDYazYbgEQuOOqJ1pdxwAOj0znp+X+SYzDoPTuxkWjE6rDVmRzOgiBmFXVBffaTari6K6sC5FjvXVx9Ffkoms8jcHakFzex+5zI1qogwXxsvfjX6sNlvAOa02LL1WXZKNzvFeH2zeZorqwtV1gXBabXhy9gv8/lvpWsyoLT9rsTn14wUA1PgxHr83Zzu4eb0jMLrtQzi/uilPR7KHjGW7Q6OTjcYqShNWthw/H+u02uCdqUr1nHOsI+442+HcH5r7OMB2PMU2IuMA8Qn31VALs96Rd2Iylobh4WMMuCFghba7TiiFdL1/qryYN5M/9ZsoFJ5I5SAV3oIXjX6Mid34K0Imau7CIX8Nd9v/qy2Mh/8f8nioJ/HYgVhWXuczuNX5LE+X+b5sgAyYwsby4GeYIer4GGa4EUOBmI0j3mGyC7+iuqTg9ATkQ+0DMG8VsY4F6ZkAIHmkmNW/sEtbNFp7nfPx3rEfgOw5opfVTFHi5Z45a7ivl1WcE0/kF6LV1zGGtAALp0FkqVaV8y//B3u3c0ICcGVoFNI/Ze0esIKNo2T8UVQX5h0z7nrfp383/eMVsYsXL5ref/PNN1FQUIB+/foBYDD1/fr1w7Zt23DgwAGe7vr165g3bx6Cg4PRvr3msvT444/j5s2bmDNnjsT3m2++gY+PD4YM8ezP/z8lEVKVSBwEABYgUFFd6FNBU2bmX2HgAH5vxmPaCHaglNxunFYN2tmdhYlIPNBPz73aMVjhwM0jPS643C1MAGB0yVY81WNHWDmpruLECTCwhdimsdhZYvGrm6gF7uQWp8BznKd+cDWThQZFQPPzn9toF97PSOQBi9fGrUZMk45If2Q2Hj+uoiDjJDa1rIyQL1hbi77wxDdgOZuw03v8IC2is99w4MTomfwsithGNfbJuxdEohuO/l09Vllz7wOYDzxRcAPWFmQNB4BNizU3Uyr34EszcLOutyFejiiL2eLObEIS872WdlBKV3Z9Ir8O+mUCYo9s5eicZv1OUV1InhvBeZZboy1Krq8PQEb/OVL5AENey+g3V0IBpXKJymxK4sAdAFN8Rah6ABzNjL/PDaOldqffp1eFSu1FNKMBs573P8rGogOvzDAEWSYei7N34WIrLw5nTnR5uB1FN29yiHHfWPdQ406rDROayN8TLeAV1WVYaNMhebLKElHwWDIOEFGMr5TvIrHzOyMKn9Nqw85psyW59N8vpRN3ArN+ayWVRS6XgAY/TmSmfIrP97T5DUpOEgJfTuDB1/XpqG1IaRWpwsrdKC5gxoLQshWQMT/E8C3m9Y7gPMiVUEzjTjbRos/vFxdLclk/i0NenwjsmD6b81rXoprp+Jr0thFYh4jGC0V1wadJI8k4J8qsqC4ETmb9oNKyBClAstNq426thH57O4y5Kvv4NcZ7AW2luncdMcb0XevJd10iCi9cRO3+J7Ry5kTAf432vuaH+BvyUVqnVTsfq6gufnaSym70yGGUVfbi6rXybmVQVBdyphrdyBXVhbOTHFKwa6fVBv/HDmJcVabwBU/Sdtf/avW7xIOCDovliOV3GTuW7+SeGDkT45LTOegKlUWBsZvtHAanlcUd42VkVpTSiuUAAMpqHjMUBgEAN3ZtnzNH8mIw9McSOjF6pun99CVam3Aex/ri4li79M1TmqKDx/lv4uVfRoOdXxZaz7Qcp9WGpnvLcF6dnmGKCZ0b0/ME2Lw3u2G8FCpn1Y1K6LhnrPSNKaoLHZ4bz3lkLA2T6mPmCeGuTHFOnOwXxY1y5OpN+eksPwDA19e0T1ZdnICAV9kclP7wbC4r8R8T6j4czj1H9wM6/1foH6+IffDBB7Db7Zg6dSpmzZqFL774Al27dsUXX3yByMhIKRjzxx9/jKpVq6Jnz5745JNPMGPGDHTq1AmnTp3CtGnTeDBnABg7dizCw8Px4osv4qWXXsK8efMwaNAgrFy5ElOmTIGfn9//SX1iN7L4ZLRTQ2S2GBMH12Wh9XB+AhsUPgtsBaeVud28my4DOugHQr3iJwaHpLTFew8DAIKG7ccDhwYa4qDoB2a9+wr5VSuqCz9frcXvU4wm+0vapHbqVXMI6LLKXkQ37yzJLyJLinXTKzBzde4xetnf9I/AlY4XDc9/aWbl7VB0gFlmA35nSpdPE4ZulDPVwXc7KP+kb37FzUGROBozg00AfdkZjtRFWoyWk+/4YEWOESa96mI5bhkRtcey61URtudxNvkJCEvFXWU32sln2qDpjuGGNnFabaj3TZz0fsW2MKPWn8dIFs1Zl7WzMvQnTkAi348y9iD1cbYbJQJX6MlptaHODhnRi2Qk9xu9nNQmtwa0N13AUprgRF8k/8AAPgjYQHxOPKk8/VkdovqflDF8d5Q3aPFErG5ek19T6Ah9XR6OeQHJT81E9SMM+IB4Vfs53pBepJTvIt32X9qdsoQGo8Nz41FpmebKJ/IhqyzRoIfYLmr2m+aAGsHPMhfJM88Z35vZ+zBbMAY/qy1mC9I0d05yIRZj8DkHDJN4uuuPYlk5K1ogo89cDiZDz6hv9GrSni8IRdLXt8aPsqeE+ooDvusS8dLptlhxXXND1L97M4WRLPqKygJ/A8Da+D/R9j05TILv2kTDTpk7+fTPqI40XgDAsfdrc3AhvWz6vhA8IgkPHnkIaN8Ko5MzEDpZc5kCmPsxGaZEHnnRESizYS96He8jLSBLk5vShoxLRMg4zchAkP36vCnfRUptrO9v4vgV9OR+eTwrcTsmmRt+pClbFPer9Wcx3A2ayLtcOVx5Mgr+sWP4vcXX2Dfdu+djUhuaxSgj8mnYAL5rmfsanTN8uJK2y0M8yDBV3pedK6S4Y4rqgv8UzcuA5ltLkD+/FzJ6L/Ki2e4/hUFwWm2cJwDkRF03yKZ/V2bfLsCAd/TyolsOas6VjVjiO6MzWcTP7Pvt+Ox4ozLYLh+K6oKXry+P00XIuu7IabVhZrDmLjmg4nUcsS82yFTpt914JY2FWxBjliqqC0cmzXCrvFMZhJaony9TfmbeL7XmGBF3eV87ew4+jRpKRg+zOVdsqxsPm3sg3Kd/N3kVF/+z1c0//vgDM2bMwOHDh3Hx4kVYLBYEBwdj8ODBePHFFw1xwI4dO4YpU6Zg+/btuHPnDtq2bYt33nkH3bt3N/C+fPky3njjDaxcuRIXL15EYGAgYmJi8PTTT0tK2/+WKEp5FzyEzafZYJzyc1ukd//BsOgUf5tNgp6uRydnmFogX0g9JiHzeSK9lchSvTq3VI5LTseckAD+POW7SHhVv4OgYcx1wNKiKa4HV8VfM+aYDoA83/eRSB8027S+ALAnLx9v+rMF9elVoTwAqad2EUnk2zzuSTR65DB8t9dDXuczUjqzRZa7dtAv6PWypywIR3rP+R7TeipXUV2I7jyIx/JRVBeaz4zB0YnaZOJduTKKrl0z5XN9fQB2ha1E1OQJ/MyFu/L1eTPft8PnphcafhyHiSmphlhx/1siGU6/6ODxy06tbIGGHwLpj1aRYjApqgsBK8fz/nFpTQgS2y4zbUN37fpNrh/ffdC/D31+RXUhyvUIpgSvl+qdM9WBI8/MkNow+Yd2CBllRPp0J4u7e6W9m0sj7QbF4W7KNKOMpWHwf+wgLEH+/Eyj8/BVKC2rwKtNC+6i6FO/nrSrrqgu9Oo3FNcCKqHSb9p5OnoOsHNA5ILmqZ6lyXu3z9yNkf6rxiFjwBxJNn1+b1tz3PCrxOHKOx+8ham1TpT6joiyl7fEUcciRJ+IRuGDKn9+aU0IR7r19K2V9q4+ytiDqf7t0Xh3RRyYEYbqP8UjbJ8XDrY1Tt+lzQPu0uv/Ow7c4Tvna04loYyXhQXM7ZbD0+RMdfCg4iKdfNeBJm/HSfzNyj1y5xZe9NNixzVMqIScqOv/0Rh+N9/W3KydqGvxlQI+3xwYiR3TZyP6gYG873uHNeO7O0TJM9sj46E5BnnW3iyHPhVulzqOOq02+Pg1xtq41aWOtZS+oGs4P8/riRTVhYjXJyLxw5mm3xSRu3FOlNGd7HebVmyPjzL2INy3LLoNG83BcfRkCQ3GgJW7sCK0julzfXn6370DovDBsb84eI9YP0vdOojdvwFOKwPnOPS8UekifleGRqFG4nkUJqd5XGfpn7V/bSL2fDxT4utta47Ux6qiyfo8bFqird/UVxwc8ExRXQjb8zgaTczFDVsj+K6Tx8iC4nxswx+4cuUKqujOot4rRGtWe+/34FOmXOkZ/hdUkH8b8eveuqfb439L//gdsYceegiKouDUqVO4ffs2bty4AZfLhalTpxqUMAAIDQ3FH3/8gcuXL+PmzZvYuXOnqRIGANWqVcP3338PVVWRl5eHo0eP4plnnvmvKmF6clptOPe0A8HD9/ED32YLxotj7Oj25GhDXgCwhASa8vYrw4BLyJ+bePeqYI4OSehUdKhWLJ/Kij2yFVfXBUJRXZIS1nh3RQQ/u5srYQDQ/ddE/DVDdvUkEqGFyT9dDDos/n91ohY/6dqZyog9tY8/17eVWX7KG540GEcdi5D+qV1Swszqaalbp9TFgFjO48dVKU3D+jLctyijyFfkNS45XXpGShjAztA1ej+Ou7cA4EoYnSmJbt6Zl1mpVzqcVptkQQeA4IUTDfUSZfRuHQr/Dlk8aCy3QnqxILRiPDgzPmZ1JLr6RJR0/+DLM/h1g0FHcMta0RAI12nVzi8AQI2+yegT2RcZv7Q2fef6e23fn4h1LapJacT3Qch4hGDptNqQYFuOARWvw6tdS3i1a4llOfGSlZ0oo5cWH00vMxGBu4j36LB59Ilo+AT4wWm18aDXJ5e1QsGmxpynT4CfqRKmb/+uI8aYptH/9n/sIK4MjZKAZV6sURK4dz+DJbfUrMEP3YvfWHHSEa6E+dSrK30DAAxKGJUZ5XqkVAOA+FtMl/OauZuZPp0kR4x5DCtxrFgXuwTlV2nBtEkJ0/df/VhCY89RxyI4rTbENo2Vntd8x4hOKfIzG68ApiADwLlnHEwpLEH6zIq8gT0fz8TnmQlcCdPLSGfD9G2hqC4eUoPO1gHMIyH7TQeiJk+Q0ovuy59fLEGP7ZYj7ZAeeUY+K0UyNHk7ThrTxf4p1pXO2FKZp4fV4ddiOv/V4+C02hC0dSRC3MQeJOp1vI9BpsY+lSQl7NqQKOyYzow5hakZHEXxatOqvFzayRCVMPFd0tEAigE29HiOQZbeQQ4UdWqDgswsHhZF3wZOqw0dnp+Ayjtq8XLOTbqFzA/sOPusuRcBtWevfkOR+OFM9E3uzXkB2pii/ya/yfUz8CnNCCC+OzFuW8pPbaV6iEclpvqz89s+m5OQ/hlTtPP6RHD3bUVlsdLq+Vw2/eb1yqn+OQAU3b4tIeCKdS08y1z1Uxe2gfWzOLT6JsbwjVHa3FAv6Xyt2bdutgar/lO8oe2KXEcRMCUeeuj8Q8/P4GcZAQaqVXD6DHzXJfLQLzdKEDB/Tz6E+/T/F/3jd8T+DSTuiPl4lTFNIw4AV5+IQoUz+dxi5lOvrscDp/r8IqV8FynFYkn/xI6AKWyx2H7/o6jeJ4Xnp4Fo8pk2ONi22NT6ZmYdrLmrOg6sCUXDj+Nw7bEoxH3FXNUy37fD7814ib+lVk2oTzRF3e/iJD7pn9lRudklft6Ant3tDo07y9r/NG1pPE6/5ED9L+NM26jLmLHYNo+5K5pZ6QDgdMF1Ho/HLJ2ezHZjPFlAezw+Et7b9xvka/V1DKyfx0lp3cmon6CiXI9Ih7rdUcpPbRH81D5TXiLpF6503TLJG4fDjVD/pbVRsaM1h+GnPF1HjMGWBfOw/qYvvg4KNbRHH3s/FJyUY/GRddOdAutOrruRkdLp619aGuJ9ZWiUpGxfGGeX3Gfuhj/xol3ic884UHduEopL4r95am/x/sUxdg6Co3+uqMxNeXGzhtL98tvrSmACntosv2c7rPtxprTA9vL1xYXhbXksQ7N63s07uTYkCpV/dX9oXsx34c8QJIUbd2U9kaf+kTw3Ahl9zMeHccnp3M3N7Ptw9269K1fG3CPr+FldMR8AFk6gBMDGXT28wlugOOkIz9fx2fGomHMLSDAGlfbxb4KCjJNI/SYKQc8neOwv7upSGpmNrQDQN7k3j9fmMZ+3haN3uuObuqgNgp7cL+2KJc+JQEbfuegT2RcF2TmGOqR+FYWgFxOQ8YkdycNnGupycbQde9+f+R/VWeyPv+fs4SimRGlfRvGznZa6dVB49pyBZ373cJTZlITsNx2ofrwQ1eKyDfECAc872VPPhiH1Rm3prKe7OcJd/6T74tqj66EbeLVmCjNClcgpkr7vOa029D2Sy8MiiOUA7F0MPnYGy0LrmX5jZjJnfGxHxRwv1Jku7/CmfBuF4OeEPry5IZTQNXfdRx+IGYeKmdfhffYSjy/p6X3/o3bEev1NO2Lr7++I3ae/ifSWELJqKaoLbd+byAeBKksSsHkRQ686O8nBASjow159KpHnI8op0BCMRKLzTXQmTYRK3tPmNyiqCz4NG+DBUWN5GQfbFmPWyZ2Gid/dwHKxQy4afqzF2HJaWRwUUsKIFNWF2IObUfc7Df0oZwU7wOzV6CZq9z8hlaeoLrx9pJ+hPNGCR2S20Ndfn3vGgWJHa6keZoM8wKD86To0yYfvDAHApxm7Uf/LOH6Gi9K1/I7FyNo2by5vL3eLeYoz4qldiTI+sfPdGCqvYFNjtN07xG3etIfLGurntNokJYwo5btIeIWz95D2ud20fZxWG1fCzNo//TPtLEjwU/vg5ePDJyPiEfaFhkRFuyYAcPI9O9ruHcJ5n7+jnfkRy9dbj+nAOcmzYflPcFpt6B3k4HkoJhm55hIgDclGSljKt9oOQrkLxfAqU5bLTn9mu1C9ez9ukFUkvQWY0jmtNrySdogHhJUWmkdy8VhGV8N7UFT5zJCiurgSpqgu3BwUCe+wZhxchlOUFnLAUluLKUi7xHW+j0P+2rq4NMp4UH++EDyYwisQ1V7EdsN9GjU0tTIPr3LB0Da3Op9FUUdjOxGsu4i8WWbDXq6EEf/ivDzUnBuPPXn5El9KU2ZbfQBAxi+tpef6c6+Vf03gPMP2eUnt/0raIYkvwYybfcti2SKJ7SD2t1fSDiGjjzY+XB4mx9F7uNJV0zFBfC9mshRdu8aVsNwRGtIr5+UmnAClU1QXXwhTup3fzZaUMDF/QcZJVN9VQwo9YEb6uhCMN5X7Taa5wUOUTeTjtNq4EpazooUhnSRLkRaPMXt5S+k5xS8MepL14ZCJe3i7hoxLRI/BI7gSRgHCiYJeTMCdXhF8N18sW1FdkhJGO6oiiefm6Ps/1x48NMiPVwMNbZL6+CzOn3aD9O1Eys3RiTOw69vZWJsYazonmilh1C5bvnC4VcK8IlpJafV59URKmKK6sKWVdiZeROYkmve7DBr0bOpxrGlRXeortxR/dB86Ch0nsXNopISJshJg0YabZVDQLVx67v9aPFfCCHlaUV0Ifk5nkOmWYzAAvJJ2CIrqMngjOa02lF+1B0Wuo9y12117EN3fEfv/j+4rYvcQDQxpxT/slO8j4b1D27GoPatEaenG3B+cVhssTYNwJSzfwKd/gwiDhXR0445wWm3SwXx3iomiuhAsxP8qyDklodEpqgsTmnTE9RJoeW8bi1FFwSWj2/TkvCzVqvJ8ojyVlybw2Fb0TD8pK6oLDR9mZ+b8Hz/Ag+yKVK/kfBigodoRP0AOuCgufui/pWYNLlOd7+PgFachauqJgtACwLGPgnl9joUXoErvNAw9ziZmiitTdugdXqf0z+xo8Im8Q6anC+PMY5mJio3+v0/DBvhg0BIpX+/oJ+DTPUvaPQSA0y86kPI9a8OA3/OlhaZYFgBkva0pK8HP7sb6PxfDabVx5DUxfcbH8mIxYPl4dH9iFL/2qV8PAa/I57yKCwoMdaWg4KTU0fMmb8XzuvQOiMJZuwaGYKlSBYrqwo31AVyBBwC0b8UPnNM7CPplAgofbIurfdwvGIKG7WftI7jgAED6o1oMsho/xOPan9pODpE+vIKiurBu3S/SO/O0INen6Va+EIUXL/HndH9Ni+pY6r9FKj/7dYdbZYDk2fH9bBQdPC4tgADwxbSiulB4/rxpfp/uWUj8YCbubGyCoMUTuZwNfTSleN2GpexHiet20W3mqlSQnWNaP1FeEZzIe6cLqQvb4Pr6AJ6v+i+J6HzwlgRGoOdFwcoBoL1vGendZr3tQHSrrlgTsg5Oqw3JnX+S2qo4n6GynnnBYZDv83r7Jfk/C2T9hwxeRJ4WV2bvhlzEnVYbegweAYABLbV9n7ne3RwYiWoL46WynVYb0j+VA8CatacnxXDPR1osOTM+9FtUEPV1E8cxAl5J+1JGe8vtcAmOA3cM+dz1UQAom6uld1pteGjJS3BabbjjbCfJBGhgN2ZyA0DDh2XFkeKQmX2DjR45LN2vcfQ6Vt+oAD1RnVNH+fDrjAE+hrhyW3/QdjQ9vYv+jocMcwLFTgSA8z8xcKvAlxLgN+QgTk1xYEjl4wheyPrIxTF2FD7Y1jCOiCSORwSGpTcE6NMBLDanHgiJzhcD7DiBWN6d6r4GYJ+me2UPH0pPwE2K6uKhSehZ76adDHUYrfMOIVCaFTmaPFdulYNl6z5UXLFbqp9opCDAop4V8uF7MAstpsVIaxQA8G4diqMT2VzU8lujS6OZUk8AaeTiaDZfi22V37OdaZ/wbtnMcO9epvsBnf87dF8Ru8eIPtbKaRbJj9+MYrcuR8i4vaYLdXcDc6P346SBiX5TvBzKE/AEe/56usyXnltq1sCZC1XhtNpQ5GIxqnaFrQTA/LOp3MLLVwxyX32c1cs68CjnrZ9M9bIrqosH2RXlmHZSi9ezyCYHtFZUFjiS6N1046Hh2ENbDAsSgCktBtkEN5aMh+SzborqwuJmDSVea/cp/DkpIvpJWbyuNSceKQvCOWJY8oz2PI2ZEgkABTmnJAAWRXXx9yHWSVFdKPQF0gcxy6IIbb/+F7tUFgA0fjdOyh/dY4g0KYtyJD81E9GdB3G0suBnd2PTEo3/o1vZOyjoGm46qYk8PS1arg2J4ot7IkKoo4DRPO8ezapI9wJfSoBl6z52rsnLCz7+TfB6ugvOw3LcGqqDSPrvqFIvGWXOLG34uxP5704Hb6PVNzGGhY9Z3hbfx6CgW7jHvtJ53DhEuAo5/0YfxiHCxfqnpWmQIZ/4X/8OxQW3SOmfMgW7/WvamZyyPU4idehMg+HEstWq5Xfj7a4fc0QZDl9i1uvctcHwatMCQcP28zYmxV0fr1DkpaguCdxAX5e8GkUovHjJbf8i2Ta/+DnPe21IlCkvSk8GLzOybLUa0ov/AUigEN47te+g9sx4+Pg3QYXfzftgyjBZkeLvoGmQJGsfez+pvJRpkW7lBYA2H7JFZ8W/avO27fgsM0hkvy6Ph1TOxbF2HruRdmXEer5d+6ihDk6rTdqVE/nNWfw9q0uVKrBUrw7/qfHI79kOZZW9PD+dh6LdX7P+ZEYEPCOmoRAFFK+SZFr/x0JMDw5xyytk1F68lb4PXr6+SH94ttu4crQrJ5bptDKQq5ypDvgulMczfVoR6AUAGnwSh6GNOiBwKSuv5rx4+GZcMBjDxDYV/zf4NI7HsKR2o7NreuVMjbqG8quM5ysDVoxH071lDCAtZTbsRb1vZUTeE+3ykbfBz1DHxu9oeSk0CZEIOJX5QUkMtnLlTI0BEXNe5DLX+8hHekZ92R0Vnj+PI5Nm8DVK1m+t8FVmPEdIBlig6ahXJiC/ezhsHxtjh10ebpe+bbEfDjx63lThBcA9MQAtrh8AFB0+joEhmqHwPv3/QfcVsXuM6GOt93WcBJGrqC54hZe4WpS4EjmtNqC42LBQpwWEniegufjoJwb9PaIPA7R7Ip/Ci5eQ1vVHg9VUrzyZ/a5wLp/f01tczfJEuAo5ZDoAWJprE2Rtb203Z7JfFOcpWmL5oiAgnO/+XH+U7Vp1GSPHIPJu2QyK6uLofWbWYLpv9l8EDvFknbzdrz0WZ+9C6qI2PAYcAKT3nM9hw0NiZLhxCk8gDvwEK08uLKKSLcrhtNpwZNIMtN7zuNTm5yfaYf08DiExe9D7yGXO+8xzDolP4ZETKL9qj+lh7ytFt5Aytq7k6iNOPBSsefOi+RI0NMn3122Nl5lCQM8q/5oAr3Yt3Robog7k899dD90wlQUAUr+OAoqLcadxDXwYYIPS0uh37k5ZWpGjhRcQXdTMFEyK/+S02rAjrBwOPS8DG/CFtQ6qu+FHcdi8cL7ES3RRqxtfBeXW7EGizSLxW/89WxDHbl0u8QcAm4aZY6rgOa3sbEbyzPYcpCBl2EysulEJ1X+KhyXIH+3emmhoFx+/xkie1w6FD8pnTS4Pl/uqKI/4juk5xa+q3icFlz64Iz3jikYw23G3hAQa+Ab+yoAmaIEv0tUnoviOpsiTvn2xj9SyaDtzcV/PMvDS9029MktU/HxVQzqn1YboVl3ZDcEdlGIREfnUq4uCjJPSPfI60Msgjckn5POZa+P/5L/PPuvghiyqq49/Eyl9nenMSHfjAW1XtOJyFn6g0Ydx3DWVv4+QQH4WT7+b78mgAgDVF2iGKdsn2q5Dj13PwFKzBmKP/4XC3FxkfGJHmQ17cfI9FrwdAE5fY8G/izq3MYwZPg2skhwEGOJOlvzKFkQ/+AgqloAZ6ecjAKgdV83UsNWhnDdOLQ30OH/ezqosXfPxNDcXOyd+gRsPnJeMCXoil0lKc2kk6yvr1y7mvFLHNkDwjGzTOR0AB8i48CebN3d/ou24AcyYJXpFnJ+ovcu0xW3wUQabh3ocY8cAgiftxnfWkniHQgwzfdlUH9+emfx3+e11DWnNFCwivzfYefWi27fxVabm6knvSQzWLRrfnFYbevd+nPdlT0YnKq/xo4fQomx5Q/qqixJQZlMSD3cgPtv9ieZmGt15EJrNjUHlHWwX8/fmtT2Of4rqgpePDw838o+kouK/5+9fTvfBOu4B0oN1ZH5ox4mRRvcR/SK7tI/c3T3xWfIP7fj5Ij44RYVJ7kql8d5wswy+DNL88YnEdCk/t5V2pwDgzKpQHGj/i1x2CXnbmvOgy8Sr+9BRsGyVebhbuIvt4xw0HLfqlUOZa4Uou+uIYVfFjM/l4XYUezM3Hn2d9XnEZ3l9IlD+1A1J9rslLx8fFBcUmE4Ub5xrhUSbxfR96KnY3hobVvzktl30RAAqgPliWaSbgyJxsYWFu26Ypcl+04GJj63lB6mvPRaFykvZZJP1loNPnorqgv+6MQgZvRe3HmrP3UYU1YU+4b1QXLE8R/PTL8rFg/CZv4bh0ab7kWizoKijDd47XW7rmjyrPUImaOXcTRvpZRPzVN9VA0v9tV1V77BmiFp4EKHltZ1K8Tsdn2NHZvtbUn0KuoVLEM/lt9dFh5qp2NRSW8QRlPzi7F2oZakovadOz4zn8XdE2HCzdtOPGWIfju7yMHetEfOLi2o9n159hqJ4/xFYEypDjboGMzLjoed3x8niLW39cZ7pdyZS6z2P40D7X9Dp6fF81+jOxiYo2+Mk6zv2flwJMevPPg0boCDnFPL6RPB4T5TWu2UzFB2W4cvN6qInr3YtUbz3MAdN0Ncv9esopA2ZddffpLuyzO5V3lELywM3aQpSrZoovCAH6QaAp1OSMT2YBa52vDgBlZcmwLtCBaxLjcPBO7fx1BcvYv9U+bsW63FxtB0158cb6gawM6C06383Y5RZfZruLYMT7fJxp1eEITA7APg0aYS18X96nI9EuqX4o7wzQ0pLlPlrGLyPVkK48yjOOy67lQ9ginyVJcZ3CjBl9OQjdVHuYjGS3v7PADiyl7dEo0cOeyzbrEyzep97xoE7VYC3RyzG/BB/t9/53ZI+vfp7cxyKXCLxOve0A3eqgofxSJkeieCndxvKBhjaKZ0T99RGpcntqR7JM9sjZOIehO8vwu6LfqhZ7gZOfxnE0TH145BYTmnzBlHmh3bkN8zjYFMkU4fnJ6DSMvM+QkShQoiy33RI4Wcs1aoi9uh2dKvf4h8D1uHo8e7fAtYRt/Ht/1p7JCcnY9GiRdiwYQPS0tJw+/ZtBAYG4tFHH8Xzzz+PihUresyfm5uLn3/+GWvXrsWxY8dw4cIFNG7cGJ07d8abb76JRo0aecxvRvcVsXuA9IrYjJM7EdPEHDHvxsORqLhCc1m5PjgKu76Z5dYC2T+llyE+lkgLs3dhWKMOODXFgQafxKHmruq42CGXoxSJg1fLb2PQ4FPZHSHjIzv8p8ZjQdZO1PepZDoAXR5mh+/VQvhezsfGX2T3wfMT7Kg9K9508CbSD6CuvDx+DoueA2x3yzc20ZDPHVlCg1F4LEVK32znMDT6zoKNyxbwvGeed6DBunPSToMebVIvi9Nq4+hT4j2KzeOpvkR50REc2KO0+pS2aFNUF5wN2khuY5bQYMRu/k1eWNSujdgDG92XWaKkDz2eg6jyJzGpSQfzdIIM0Z0HIXb7So+yEzmtDLCAzuGUVlfvcuUkxdqT0aG0ct2VIb6/mwMjDS5j4nNajACaYl1aHdyVKSE2CsYRPdGYYMaT+pBYT5K3w/MTsOubWdJ9p9UGeFug5CSZtotPA6sp0hqRiIQKAGmf2/m5Qv341KfjAKzduequF4iEwEe8KF/a4jaouLc86n3NFnrNp8eg0YdG0BlPZPa+Hxw1FmXXJ3rsQ9V31UBuh0s8X8CK8Wj2+jHJVU3k+/mlQEyukaYpaCUIe1TGrQHteSwzS4umiN34q8TDney9+j+J4r2HudHgbhbed2O0o3v+a8YiZFyix+8qfYlNCgQslhPd4kEeb5IoeX47yQhTmsxXH49ClV8S3H6bUnndHpXGdrRvBew55HGhLNY/eUZ7ySNBL9vtfu1R7s89PL4ePaN4b5TeUru24dylorrQ+tMY1PtW7qOFD7blhkZ340OHg4Mkl13ejxa2QYPlZaR2zHrHwV0AKcYnGXQozbSTu/gYbkYiD4Ap/VnzglH9J/dIrKIi7U4pL+rUBt479uP64Ki72hESkXZFYxrAvFjWbVhaqrJKdOHPENTqZx7bj66vPhGF/IpeuOYHnBipGWOpjpJs30fykCp3891FuArxQZ1Dpu2iqC5cvVaE6iHp/wxFrPvfpIht+u8pYlOmTMH06dPRv39/REVFoUyZMti6dSuWLVuGsLAwJCQkoHz58m7zr1+/Hn379kW3bt3QtWtX1KpVC4cPH8bs2bNRtmxZxMXFoXnz5m7zm9F9ReweoNLg6y3BAVIg3+geQ5D8enkEmkx6nshskDi/uikHQgA0y6Z+IhLzp3yrufp4sl67W5jTM0V1cdhwkXJec8hR7zc3lIKImtWFBmdSkP6TBbie782iOxweuPHuirhRUBZL/LeaDthkhbsb63VRRxtu1/HluxcAO2NRc642qYmBpWkSv1srYnSbnig8e07aERMX9KT0ijzc8da/J/rfq/+TgOu4qYLxStohfN68HYrzjHHpfJo0MsDA60lfJv2mZxT8VZQzbJ8XB1Mwq9NXmfE8j5jPy9dXgmOnZ/5rx7pFDRPzG+pXEkJCTONJOdXXDYC0w+OpPE8LZz1vS7WqhnOaItR1afVyt/i4m+88YOMoBD+1D5YqVbhiIqbtfviatOunV9QCt4xE0JP73S623ZXryXAh3gtO9MX3DZgb8NXHoxD/pfmOlbuyPO08l7Ygo90p2pEi8jRmRU6ZiGo/y2AlZu/ca0sDFHc95ZYPpZubtRNjS5AU76Y9AabYi8YuStN53DiUW7MHpZHI79zTDnQYkYSUiDzDu/fUp+/GyAIwmPcK3mU91ouMJbSL6BPgh4L0TLflBCaWQ1qEZvjJWBqG5Ad+luS72/p7eq6oLkTsG4wafZPd1v9KbBASbMs9Kgme+DutNm5IuNv3r6guzL9SD6OrnnH7DsR7NP6I5T5zKhIZg2qjINsYd+3Uqw7J2MvfU4kC+Xq6ix+XuJs5FwB6H7mMdS2q3XUbEVXdWZMjRNaOq8Z3TsUyCrqGo2zCMRTdvMmfmZVBUPqlyQr8s+Dr/4mK2N69exEcHIyqVWX38TfeeAMffvghpk2bhmeeecZt/szMTBQWFiIwUEbI3LRpE3r06IGHH34Yy5cv/49kun9G7B4k/aQkBvJ1Wm0oPHLCoIQpqovn84rQ0BcV1YWs37TdhYePadC2LZO8Ubi5JgAWYwkAaicVI3x/ETIGzJHkkBYwzzEIenFiEAcg8RnAXN8oXcCmUfyZ02rDt63bGerf8OM4aXIhJcysbYhCJuyBd4UKHI5flFufj+SLmjwBPvXrGdIObNie1+nUzaq42CHXMGDSdcjTRgAQgFmz9e3jvdMlKWEAuBKW352dy8nrfIYHBo09sNF0Iow5FSVdkzwEW+wVf0CaJEkBop1HcVKMfJWd+6GzZlGvaEFd9ROt02pD8d7DKC4owKcZRoXhs8BWXLnRvyfxvIo7EvuNWOdbDzGlmBSqGSd34vNL7JzQ4VGhHhdlohKW/YaG6GWpXYuXI8pL8ZsU1QVLi6Y8/UcZ7i32iupCvy2aixHx7PnoCP5cTCvWT+SpV8L07SCmp9AIZulE3gXN/Qw8A19KQOGDDE30dr/2eCn1iJTfu7VsGHEnQx9Hf1ODAABMPtOGW7Bjj/9l4KOoLkyuwdwgLdWrc55iH2j2GttJaPMRAznxrlxZKl/klbqwjVSGj19jQ731Y0FKBDMYLM7ehSq/JEjPALZjQzzVV4yBdek7M+PvSakFgOc2PYm68VWwLjUOG24yhEfx/KWZYiIqYVV31jS886LOrA1GNdwp9WnxXI44ro5t3BG3+2nxqE5NMZ6nclpt8Anw4/dpd3XkCfkM2/Y5c3gaQtNVVBfez0g08AMYEEqd6XH8HYjvPmDDaOhJr2woqgtjszuYzgfiOK5/D5YWTWGpXRv+a8ei8o5a3BX82CfMjXjtzlW4OTDSMO4RT1EJA4DkB342zHd6OQBmXNTfF58vzN6FzzMTpDJr9E02gIiI8iTYlnOEwdKUCzo7KfJ/K30f380lnt0PX+PlLM7WgLDEeaNHxVR0e3L0XSlCsUe3G8r9vsFuFGTn4MYjRq+Whptl4CTKR0ArT8+MMTxzV7aiupAyLRLrWlRD2uda/TM/ZOdtCS1Rj37q49cYiuqSYPpJCbs+OEoaXzcvmo+imzcNfVz/jkUlrPvhazydT0Pt7LuY/j7931G7du0MShgADBnCQuQcPuzZXdjPz8+ghAFA9+7dUaNGjVLzm9F9ReweI0vNGtJgQpNgaSROBsWJcpybxo+yQ6x78vKxIrQOv384vIijHHkVFMESEoi4r2chqY3WLW73ay8NcDmvOQyDRfOZMTzOk0g0eFdemoC0L9gAlt79B6i/N+fP1qWwwd5Sq6Yhr75+Zv8V1cXjrZFVCgCcg4bDp349fHShKdxR1cUJKDh9hsev0i9snFYbByHQKxf8txB/Rxx8C49ou4z6el0aZUfyHIbWlf4JmyDEAJYfrHpUkkFP4mJATFP4YFvTRU/4/iIDj+BEXzitNtys5wWn1cYniqqLEpC6iB2C92kix0ETSXQNFcsyk1vsPy2TvN3yFNtYVBbL/7FHat+YJh25exedxevTcQDUl42LZZGOxmi7rAU5pzi/gN8mcJkfPPIQr4P4Dqf6Gxd1RNFteuL35jI6l9Nqg9cuF/+t7z+ZHxoXRmbk7jvw7pZtmk//HszCMViqVOEuUOX+3IOeFbQQGIoqQ+4DLMi7Wf8vyMwylbdhQiXs+iySL9bNlBXxXtG1a3xhqKgurjhkD2bKVNX+Kk+nqC4MP/mAxAsAnm6zHbf7akpFQWaWod2dVpsBuRIAB+gQjQ8AEDJaC0dw6PkZPJYe3bvypGZgovxmi0EiUZ6gJfk4a7+Ktu9P5O2/rkU1Q1uaGTXye7bDlY4XDd8LBWgfXOmK1MYUINvMCFDuT20Xq8EnRjACgCknYvsAwI9Nm0j86P78K/XgPZt9Cxn51w1hBIjv8++zs8HnJxpBXdJ7akA1KT+ZQ7M7rTZkRd4w8CawDkV1SUASxP9Ww8qIPbARIWMTca3TBc4rZMxe/u4Kxl3Q+G5uKI1FZqT/Lsz6+JFJM6S+4VO/nsRzWKMOmOwXxdF6iZe9ToZhPC3uoCmthDDoTimyNA0CwM46k2wExvNeQFtYatWEorIQJE6rTdqh7v7ZZIMCDDAF3mdLkqGfiDKQ8dWTskRAMGK64r2HPc47h17QAI/0yo7TakPyDwwW/sbDLEwLAdSkDtUASvxeZwYN2qkj9FPiQ2OHXgZFdUlulPr+KP5Py7+Os5Mchvp725rzNlZUF5+Hkue3423zT4oj5oW/Ab6+pKzg4GDUr1+f//23KSeHGcDr1q1bSkpzunLlCq5du/Y/yn9fEbvHiOIGvZJ2COcn2pHbnk0mZlY0d+QubXtf5vY48sRJ44J9zyHEblshDRzB20ag3J8yfK3kMlhCjd6Pw752vxrKpMkir08EUp9groznCm/AOvCoZAHN79mOHy53q/DAOKjTvY2//sivw98pgdpOOIiC02cwtZZRIXorfR+Ha1dUDSFRUV0cmcusHFEmcVH1bKr54f5ZJ3fytGL+Gj/EI6MvO/sVMCUeL6Qek+qaPJxNGiJK4qySWD1Oq9E6T/ksW/ehj6M/v0f3k9p4GyY8skQfemGGYUEX9CRz9bvkaGBYnHqHNZMCJ6d8Lytk51c35RZFfdslz47A4fAiJM+Wg/ASNZsbY7ro0qPKYXNDdDvaX7pVkJ6JQy+6BxBRVBdCFkyU7j2S1p2hyQkBO8v2OKnPCp96bGBdKFiIxQCwhWfPCe+AIUSmLbHxGDqE9kVt2WPwCL4YINlSpmvIiYQO2PngLY8LwK8y402/dX16/TdFO1REZko03Wu//1EETImH/aUJ0rsxW6jwxXjjnfDNLcCPTZvAEqxZ9M3KAoDiggLc2dgEb48aA6fVhlXBCpxWG+p/yb5LQl0rv70unFYbztqvSt+g02qD0pIhSZI8F8bbkTItEn3aOqUyrZ/JysazaoShLmYKnNNqw/SVs9Hzkac4rwJfL8MiPTqsGxTVhcIubQ28RH5lTl8GwKDqqfyT78lut30iouG02gw7P2U27EXyjPbSe6D/i6/JO2WeyOxdiO3QO0hDTq2+q4bb/Irq4rtxy0Lr8Z3dCU1KYle+7jD0QQKyqT0z3qBESHPQUzI4kygfkbiDS+cXnVYbVgev5+npPdypYjHlQXkU1YUXAjfhXEzJGCcE7xWDs5spoZ5I/65OPRIglUn8xLkIAA62LZbqAIAbeCyhwRJ/kSg9nWsW0wWPSEJeHzYG07zr/5o2HkW8zsZJESWQ5Hz8uPF8qFgvkpvAn/TjEqWlsVGUm5RG8uDQtw3dS/lJiw2q5xEyai+cVhsqn7hiUBCdVhssLZpCfdkhyayvo6K64BPgJ/Ubn3p1PSqeAAPkUVQXst52IKZJR7hek1FyFdUlgXiJ45dvTll+fR++/u+nwsJCvP/++/Dx8cETTzzxP+Lx4YcfIj8/H0899VTpiXV0XxG7hyhnIZtQFJW5edWeGY/KSxOkAUH88G/3bc9cF7wtKLa35gOz2aAsWh4fq5yL3r0ek57r87WYFsMPXot8+aK6RJG59VB7Q7wMAJJysm3uXC7/sEYauAOVu2XBPPg0aohPM3ZLC0HiZdlq5ZCwgIawBrBzVyIlvTMTb6Vrk7deritPRuG9gLao63eJp7k5MBLpnzCLYPksNkGQ65e7CVt9xcFlpOCS+kUzLUREWnC1jiQPAH5GTr8YovNcTqsNEwTwFutncbg4lr3P33OYRTtvA5s4CjKzeFwscjMUeesXjvq2dlptHPqd3LU+z9QUlaKDx+GawpQ3vz3lkT5oNt/dAYB6w89wi+LTKex8w7k/WPuEjE/k/6nM8xPtQFQYFNXF0f70E2/SOzLc8tKQZfDpnoXM9+1S2YDWL0U+VOfkETIfsoh7IkV1oeDMWUPfPepYZNo3Ch9UcWmUHYFPuHCiHdvpeNFPhvb23slgi8V3kD5wNk9TmMKgtM2MCKJcIl+n1QafBlbDGCEuQjwpawD4Dg/A0C0BoMyCGvDbU573BQDw8vV1KxOVVVZhOwy4dBkAoE7WFuOK6jK4BJftcRJlD2Twupgt4MSdnXZvabGQTr6rGQao7lUy8xE8aTeOf+E5nhe9I8qbPKs9sLkhmu0cZvh2Y5p0lHYY976voeQ5BwwDwBa2TqsNlm1sd49c0vTfWWFqhuEdNHlL+94BIOdRPwDApgPGg990frfmruqSnD83bSTxEMlptfHYlO6UezFv0c2b/DedIxJd24mP02qD93YWH8GrTFkALD4XUaMP46S6h+5ibWUJCeTlUb8QjU/6OlDYEn3/LjpwzLBgF/OL/yv9ttuUh/gtzg/xR9nrxYY2EuNL6fuonsyeifdIySFezXYOk9I6rTY+V4jySgaVzb/x3xSORZ9er2gQD9+1ifDy9UXyrPYG3jV+1M4RU5w14kGhSPR1OrMq1NDm4rWiuriCtzQ7jsPfi6QPvyDK3/dILi8r+Kl9SP6RxVmkeZAo7XM7Gu+uCK8s1XQdFLvxV1i/MAfyEdu2ID1TqgvNAfrxg/6nfBfJUVEbv8u8jCikhrtyxPJo7rsbpf6eouLiv+cPQEpKCk6fPs3//pv0/PPPIz4+Hu+99x6aNnXvReWOli9fji+++AK9evXCyJEj/+P898E67gESwTo2n9aCTioq26GhBaxeIXs6JRn9K96U7uknAP2HTUhVIj8A8K5cGetO7IDTyiyYnlDHrgyNwtg3VhkOnxIR38ePq24Hbr0yYEYECuIprdmEfbekqC50nDSeo1Dq29edAqyvy/qbvuhVIc+tbHrFgoBQLo2yo8YPMvqUmRx6IoAQMe0dZzts/VEXhsAN39LapM0HMagzI44jaZ572oG685IM4Bb/qdyUhkicpOdcsWJFaB2Pba3nXWxvjdzXb/Ggp/p0ANBjyEh472CLxE4Hb2NHWDmervsTo2DZpint87N2YnQJeAGRV5myKM6/Az1ROZYWTQ1uqGeec+DAq/LOsR6YQk8FXcPhsyWJoy7q+4bY//sfvYinqzGrcdMdw3Gi088e3+vQ4zlY3KwhAAbdvnbPWnQ4OAi7wlYi8tWJ2P3pTI/59e8kwlVoiGGmqC4k59/ApCYd0Hh3RWRF3pDyPZt6nBssAGb9vtqyJv/2ym+vi1udz+L6o5F8scwVsBIY8mU58RjcUHZl0y8ixWtXXh5svr6mdSOQBQLAoPzN454sFVK8tPYR7xHf0VkdMb/xTo/jiP4ZgW6U9t3e7XdNZYi/c5+yGxDwzNJHt3gQub2bchh3UlpF9Dp333/GJ3aUueplCAB8t/XIetshBZj/b84BIo9e/pEcaMidQYP+r8hJwMMNo9xwA9K+iELgyxqcOWBUTt7PSMS73R7l4CBmMpnJAACnX3Tw3TOAKb4TvlmOH5s24WnFMqO7PQoUFiF22wr0Te6N/C7aQjb9EztShpuPASkLwhE8wvwcNC+7JAxE9psONHpfhqh/Nz0JbweEG+riXa4c1qUnoPWex1FvgKbg6r+FjI/t0m6dSJ0P3sL2sPKlzhmGOk2LRPAkc0Avfbs5rTYOHrbqRiXMDA4ylUVRXehxrB+8u2UjfH8RPqp7kPPJ/NBu8IDQv9eINyby8f63E/v+MaiJHbq9Ax+f/2OwjoLb2LX5nf+z9njzzTfxwQcfYNy4cZg9e3bpGXQUGxuLgQMHIiwsDJs3b/4fyXh/R+weI/8/x0qTZUY/GXpa/D89OMTtwndkVicDb0V1GZQwKoeUMAAGJYxbfaZH4vV0F6ouTjBVwnwaNeTyKaoLvzSzchAKkfSLAXeWRQIFoXROKzuwT5Zm0apOdCVWGyhFvjcHRaJocyPY9suDrRgKoHdPbZeQngOA/1rNXfHiGNli67Ta8HWQBhjhbuJ1Wm1oNpedRSNrdo0f4hGcaL67cPpFzX1CUV04/aK2o0AojeI7LKvs5enJjVGUZcZJ80UgALyWpsGiO6021JkRhzLb6uONkewcR53pcVifsRvJPxrfpRm5szbTM3p+5gVtt4DOLjqtNn7mz4yn2F9yXirkShjtjIrp2r4/UXJbJSUs9Rt2XtGybR+urgsEvLzgXaGCQQkDIClhdFbq1MoW6DhpPAAW6FqsX+PdFXGrXrGhrSfXSMP8LON7IfLZkoScqQ4eh+d2vyum7VZ9Vw2sbq65nzWtd84tTyJSwhTVhbV71sJptXEIbFLCxF1mkZ/IV1FduDkwksezEym6xxAOgz230S4uM71/UsLouvBEKiqu2M13s2i3a9e3sw1ufeWdbPeIlDB6pifxntNqw6v+kW4XWhTPhwAwbB8zt9ijjkWm9a8bb5xcye3Skyz0PyfqOv/t00A2Tj2R8aCpjIR86LTa+JkbIgIfEOWkvql/Z6IciurCtlve/LrW2mQpvz4PjTGFubmSEgaAK2HqK9q54ZRvowxjof+UeDT8KM7QZ/RyOq029j3q5Ckqq9mKiXfj3Z5j/ZBHhsjn95w9pm1DpEd7PblMcxFzWm0c4AaApITR7p/I7+VoOY6dWXlv+kdICI0A8z4Rx3Z6z3oepISR2/S2+XPxWGUtPACNF8TnQmQtfvQgv8tp5Pdk3/v5iXYETGHusSKYEZVjpoQlz46QgDwoFl+j943xCyd+NYnLI9Z/XTqb2+u/741ie2tTuXNec8D/tXjTfqOoLmwPMwZfVlQXnIeNCK1iQHsxsLkoq1j+qZUt+HM6jnH0VgOeturOmlJep9UG727ZUFQXktp4S2VXP6r135TpMkAJudUmfjCT8/onuSb+n58PK/n7v6J33nkHH3zwAUaOHIlZs2b9x/nXr1+PQYMGoUWLFtiwYcP/WFG8r4jdY0S7X0Rmk7xXO3Y+hZSKFvFD+bkcGkjUqGsercV6/voJQ52sIWg5rTZ8mrEbwU/v5tCxAPjERPzM4GjLbEqCorr4IlQs96/bGpqUfrAlf3EA3J0G0A72N/w4DmuT1hvKqxrN3BsyPxTcwaLCUGHlbnh3y8bel8INdaXzD2IgV3FRIsKZVz9+C9eGMHkIdUmc7N0pO4rKXO/0igmd1dLfr/9VnOFaz9tptcESEmi471+mEroflt//I64xiD0lB6Ek+jgwDICmGAFAfpfT3LoKAL0at0PISDYpZ/4aJrXPmlPmMafu9Ipw2x5Oqw31vtas3AXdwjlP2sEyWzRZggO4RbrRI4e1PCXBOC01a/D0b7240JQPxaICgPjWK4DiYhTdvIneRy4byiOXXgB8wdJg0BFJgaeFw+PHVWRF3kDyUzMN5TqtNoxu3FFqN5EU1cV3DJxWGw5FLjFtN3IRo3R5nRmMdHTrHgbZAbaj1/ngLUkOSkNjxZpTSSh36rrpuNBltGYYclpt2DF9tlRnInFXkPIW21vzMs4948DElFRpoSV+EwBbhJKC/FLqEYmXmcHGaWW7MsS3oGs4wvZ54W5J7JvieRgzOmu/ityn7BIgjohmS2Om/jvW81RUlyEOmxkqKxGdRaQzN0SBk+PxVWY8d/Ojdj0ctdhQdl50hJTm40Dt+z3ziNHdz2m1sR0UExLTkRtw44Xp/FnwcwlS37o83Fx5pjR6pa9Kb4akebPoDqKbdwYAFAfeQO7aYOSOsPP0WZHMfbrYwfqYl48PAODSSFae6C5OvPUoivry301P4mfdug8dhSaDD3GjlqVpEDYt/sFUsfJdl8h5EBDG781ro+au6m7b78J4u+EZABQeS5HKCJwcz909RSMWlU8hM+g+ISRfGGeXlJHqC+RdpS0L5kFRXag9Mx7Js9rj9EsOlLlulNOMQsYnYmijDkie1Z63AaE36ufB/VNnGN4xyZX+iR3FSUewYcVPhjJojhfzAUDDhEp4IGac27VM716PQWlZRVPmprI5zdXGOOaSG6xZXcXvKGLfYADA9rDyPC0hKnY5PICfJ8tZ0cJQB4CBghEASUL/rzAttwlvA7276336++idd97Bu+++i6eeegrz5s2Dl9fdzx0AU8IGDBiAZs2aYdOmTahe3fi93y3dd028B4i2eQMWTEVgkxtSDBhxMNVbec6sCkW9AceQM9Vh6vahT+/uvr6MgOXjkf7IbNNJx4zf5WF2VFvILFeRr05EbvRNNKqdC+93aphGq3dXvpm8NwdFcsh3d/UxqwPAlIfiggJYtlol9EOxLE/1Sv+EWQv1ZVTeUUs6X5QyLRLlzlrQ6AP5jJOn9iNeZgEt9XWxvzwB8V/MkuQudrSGV9wB+O0pj9kN4xE6O4a774h8osO6ofDCRXyasRsXiyrgs8BW8NtTHhuPNkfwiCSPbQqw4JdJ4cvcvh8ici1TVBdCdw3jSJ0iXV8fwHdizOpJ7XPuGQfqfF9i8W3YAAU52vdw9YkoVFliEgDU28IRLEsjT/2PZDBL5+meu3z6RQj9n3W5AX5vXtuQN+c1B1+AlCa7WT1GZ3VETtR188y6PPoAvJaQQBQmp5mmV39vjkORS9CnrRPDtu/Bj838gOJiHpBYn/5uv9XgRF/E/dAWtWdq3xkF+NWT6I4lthv1CUV1wfHCBMR9bYwHZqleHYW5udJYQHzC352IWrPj4RXRCuv/WMj5ujNgmdVP/wwAQufEoPE7sqtW6qI2CHpSM8+ffdaBut8Z63S3fdQdifnPxThQZ0acxCN01zAc67BQ4kPusOrLDn6OhvKkfW5H6lD3gW0pHY1H7uad/im9sDp4vdSmT2Z2QfyeZpKBBAB8/JugIOOkxP/ssw7UOngbokux3gXe07wHsEDmNOaW9u3ezfdPVGxvDa/4AxJfkbc7Mvtm3I0h7upk9vzkslZoMpiNw9eGRKHyr8Zxk2L8uZNDHI/O/dEMtrqn8GPjHQCY8kVIpmL5mR/a0ST2Fjb8toDfK+5g49fi+AcAZbbVl1wl3dVNDHYOACk/t0V69x8MbXa3Y4/+nv6Z7/Z6OL7LH8kjStw2TeYYse6W2rURsj4Xx8ILpOfvnm+OuNZlTeUxk++fFNC544N/j2vizq3/XdfE9957D2+//TaGDRuGBQsWwNvbfE/q9OnTuHLlCho3bowKFSrw+xs2bMBDDz2EkJAQbNmyBTVr1jTNf7d0f0fsHqLGI45IStjZZx3oE9mXX9Ng4W1jh7frDWCHlPVKmDiAZb3jQOb7dvjUq2uwCIl8ye3MabUh+NndhsFKtMYRH/pPShjAXJ16Bh2HT/csroQpqoujySmqC52eHm8qi35iT1kQznayKlZ0u/ABwKHx9XzWZ+1F+qd2FE+qwvPQM3FB0bvnYxI/+h0wJR6pX0fh7CSHVOflgZt42qx3HAietBuNPoiTrL96Gan9RIugompwuBX/qi3JeOHPEJ63ypIENJsnI/5tWM6siJntGbJeteQiFHVuY4jvld+CQYCPe/d5fBbYiuchJcxMVpGSwpeh1TdGeH9xlxLQXMucVhsaP3pI2l0j/pV6pfP6A0DAhtFSexB9/YKGuEVKGKWrsiSBTYg63igq5JZ/rzYyzPjlYUaIbPFa7BNOq427oXWcNF7aTZqbZe7eKX4bp1eFGvqi2bckwt07Bw3nv49MkpG29PL6r9HcZMOTBnPXPmpDUsLM3q3Y7xTVJSlhAAxKGKLCuOzWgQztq+DMWbZTWmK/M1PCeB1zzAP8iu3xfYPd2PemBqKiqC5k9zOGWwCMiHLEJ/4LbbeIFptZ78g77YW5uSjs0hZFr7AJs/Huijg/ke2a15rNlMDixEPoPH6cVBe94iHWT+Qv3uv+xChWxjtxWJYjKyUVKsrub3W/i0PW2zLYCPUhM95PZnbh5Vpq1uDvkv5SvtVgwyn/tQ6sD7efOpGXRYYSSnPyPe1MIqGPinxSh85E0x80gBSz7+DmwEjMbmh+3ozKyet8Br17Py61aUKmH4KeTzD0WVLCLg+zczmqpeRj05IfkPGJ9k3/0syKWwPaSy7WdeOrmH4DTqsNlZYlSOOO2dxhVgez52IZpIRROj1v8T1lva3NKYHLtNiNZnLo+yHt5IgUsHEUbxOAAWI0GXyI5zEoYSVjKClhp151wP/PsVBUF6aeDYN361AszY6TxqM6Dx3Hj413oNU3MWge9yTWndhhkFVRXVg59CtJ6QKA9EHl5LFBMEKREqaoLhR0ZeuQ5HntDN9a+VXMtdSnXl3U3FUdwcP3mbaZJ4VV/yz9U/fuzgUxVTUlDOBKGKEGZy9vKb2b2AMbcSy8gHvMEE9RCdOvnYiS52rgNv8k18R/Ik2fPh1vv/02GjdujO7du2PJkiVYtGgR/9u4cSNP+9prryE0NBR79mhz2d69e/HQQw+huLgYI0eOxLp166T8ixYt+o9lur8jdg8QWRdykwPwaFPm7ndhnB215rgHchB/03+yZDoPX4XSsoohHx0I9WRt82QRJIuppWYNDrPvTj53Fjh9Wv/V45DRf06pFiy9LMk/tEPIqL382nHgDnZNiJAmQ26hjAqDsvJnQz3d1duMTq1sgQaDjpimuzI0Cgmfz3LL6/xEO/a9ORMPxIzjFj1aVIeMk11RU35ui+DhRshmotpx1XhwSbEO9LvZ3Bg0eTuOW9qLOtpwJqoCs3BHhQEJB5HxsR2NIk5Bza1qunMlkr4/rL5RAdODQ2AJDkDs9pUeLbnitVd4C6z/c7GUzt3h58vD7dj9yUxeN31d6br15zG42vIO4MVgi836iqd7Il//1eMQMmGPx7oYqKQ9iUfEGxNxwV4gubISH39lNDKc8w38RIuz2cK7NHJnoJDyb24IJXSNR55m+XofucxjWykq2+2uttD84Hxpcpk9o8P9PvXrYW2SvEsy/OQDEkw9ANx4JBJX/CxcUeg6fDTKbErClaFRqLpYHmuKOrXBxl9/LPVdelesiKIbN0zl63skF2tayO4mdHDfE9/S+h/AUE59e2aaprHUqimF83BabQjb58WhzE2pfStgD1t4t/4sBvW+kY1zJ9+zo3rEOcS3XmEqL5H4zDusGYoOHucyxJ7ah+gGMnR4aST27xvrA1CxxBhj9i6yl7fk7sal9R36Hd1jCD+nWVr/Nnue/EM7NB3n4oGd9WmGn8jG0MoX3SrGd0uG+UsAXNITzSdiOZamQQxVUBhzzMZZ/ZzQ63gfrG+21rQP0vWlNSES4JFe7s23LPgyeqApqqGYjsBOXko9gi+DWhj6Na0fSvtmzO6LMopeEu6+L0/Xnt6jpWYNxB7aYvrMndz6tPp34K7vXIkN4kcpiAITy+FEu2vYhj/+ETtinbq8/bfsiO3Y9u5/rT1GjBiBn34yusMSde7cGdu2bZPSbt26FV26dAEALFiwoFRkxP9UrbqviN0DpEdN1A8seves0gatuyFFdaHH4yPhvX2/wW3AHY9Lo+xI/GCmYdAJ3DwSQcP2G9KvOZWEvg3Y2R89OpJeFsD9olt0ESzN9SVo2wgEllj6xbpkv+FAow/iDAPyg6PGoux648LZU/uKyG7uyJOyC8htqagu9A5yoOjmTVhCg1F4LAWW2rVReP78Xcmlf37lyShUXZTgdvIBIKFF3i2ZlW9pHoLCo9qBfyKq14Mjx6DcjqNSsO1Trzpw+Dm2mC3Y1Bg+3bN4/oN3bmOyX5RbC6Y7OUqjO70iUHZ9ounEfX6CHfvemindT1vcBis7zERY2XJ31eae5NKX6S6PpWkQYrcuv6vJXsy7IicBlbzLIbpVV8Qe2vIftw0A5HcP50HF3ZWX8Ykd/lPcK2IGhUJwe/JEd2sYItIvxCh9zV3VcbFDrml7t9//KPa0+c3A2+z7J/Ju2QzrNiw1bYvsNx0obHmdI1Zy5fINBw8c7qkPe6L0z+wIeMWDwuttgZKTVCpfMuq463+K6kKXwwOwreWqUpVJsR7uFr+lUdbbDhwbL6OJmrWRXtkV0356MRhbWjGgjqKONnjvdJnyuPZYlBT6RU/u2uT8BDtu1/LC0RgtJqGlShXEHv+rdINHyf2mP0zEV4/9iO+Cmt21UumJ9GWJirrIZ0HWTtT3qVRqeWZK2/+G3PE597QD+19n75HGl/Orm6J2/xNSPgDo4+iPgswsbewI8kdhaoYhHZXzUcYehPuWNZU967dWONZBczEmEtcjj6R1Nw1f4k6hFcs2Sy9et/40BvW+1QwhPg2shnOhZlQ7rhoW+W1Dt/ot7itiAv23FbF7ke67Jt5D9HvyIf5Rix83RV+nbXR3A6fpAs7LyzCQKaoLY7M78NgvG35bwO87rTZ4RWhb43RoHmAof0fu3DLwIyVMH7y1b4NwXHmSuQ3m760ubb8Tj6y3HW4nOEVlk2zAFM31cYNLC6SbvbylYZAMfEK+JhKVMLEMcRGmj2ujJ+JX6bfdXDYzEsuh2GgDUpz82aU1IajxQzw+uKAdKCdFpfBYCvt/4YLE35NSpZ8IEz4zov84rTbprzQlbOhxDXjFrLw7znaYmJKK/NoVYaldm5eRV5zPD247rTZkPuSNops3kfq1Fr+owaca8AgpYZR+sp/mWmXWL0RZvAWfbfH+gqydhvT0ns2+Hb0SBgCBQ/djsl+UqQwieVIY7jjbGVxsLo2yI+A3Y3w3QI6jo+9fet6pi9rAabXh1kPtOYJb4cVLcLzIeOuRJ0V++n4FgCthAHOtE8u78QgLNu0/dQ9GnpADXiuqi9/TL/IKr141LVNPz5zSkMT0751+n33WgdAkBsggGqVEutiBocZ1HzpKygsAtcdpu17uvn/xWcYndqQOq+62H/rPTeNKGKEgKqoLjT6I4/WP7vIwf0fuqOau6oa20Sthhu8vJ8ntM/F+evcfeD0JOOfUqw7pPYlKGH1Pqd+w/uQ4cAe3FH+JJ+UTg+IC7JyPqawlebJfZxD0+n5M7Sv2E9pB86lXF2mL5X5MSphXRCt473Qh8wO79I6IT+WlCZz/3ZDTakPK95Got/ksP+tLeUkJ03+P+jIVle18+70Rb4gtGXVAi1cn8tDTXB2olVgWlRN7cLPp/DOicUdJJjMFxl0diMzymY0XLZO8pf4gzteUps507X1v+Xk+AEhKmFj2iY8YyFKLacwNPvav36GoLi2wNoC3z2tIhnoljEC/AODVVopp2/ZtoB2/uJsYkuK4bdZWYhqAgVg5rTZJCQO0IOPXHoticQpLiAK4Ey3y2/a/Vor/dir6m/7+5XR/R+weIHFHzMerDL9vtrhTVBd69RmK4v1H3Kah+0Rm1ksvHx/JHYN2efTpyF1E5Kkvz7tCBWnHg0AZ3FmVzHjo5TZ77uXrC+8KFVCYyxZc3pUro+jaNQAMMKNCg+s4HLVYypvxiR3lznuh/pdscFyQtRMjGneUDs27K5Os2/Ts95w9qOBdVprszNp21smdmNCkoyFNz4efwoYVPzFlN7wFipOO4OS7Dgk5zl27+NSri7X7zCcYs7xULsVMud2vPcq/cIqfQfSpXw8Fp8+UapU1s/jp6+yOh3e5cii6fRvjktMxJyTAIw+iSyPtSPxwJo+7RPW68GcIavVjO29nJzngek17LwBze9oZttIga3SzB0x3Ze7GGsyts7VrI/bARp7+buruicQ85/5ohjoPHfeYRiQvHx8ExPtgRoME6bsK3jYCKV0WGBaH7voL3U/73I7AyfGG++7SE6AFXVuCA5A6si78p5q7HJnxoV1fEYzBXXmKqsW1czcemn2PLb+NQYNPPYOe9HpoGIoTzV1z9e1nVvbtfu2xbub3fEwITCwnvRdP70JRXTh25yZCy1aA02pD7tpg3M73wcH2v3j83hZm70IdC1NGAlaM51DcRZ3bcMOaSD4NrMjt1JgrJp7qSERu5XfzjZRG5JLc5qMYDsAjli3yJ7AYT/3IbE4xSysCu/Q9kovpy/sgr26BFPfMHX+n1cZ31Nw9N5PFaZXdWRXVhY7PjkfF5ca4gKXxFeskuggTmQHa6PP5NGmEgpMs3iC58pPMj2V0RW4H8+MFxCv8nYn8eMTVJ6L4WUznsb7I2N0IySM093FyOwVYjD4KD0Ey+dSryxEeAXaesMLvu9H3SC52X/HHIr9t6B3kwLrUOMP3Y0a5a4NRvU8Kv6a5xtPcoqgudB4/DuX+ZC7oXUeMQZkNew1pux66gUU/9cChF9lunqVaVRRevuK2nR7L6Iql/u49ERTVhUGpPbAyaKPHuhHoWkFx/j9nR+yBv2lH7K/7O2L36W+iO93bSFYl/YQMsEGveP8RNEyoZMg/X9gJABgIhdNqg6VmDTitNmT91grZb7JDwsUFBZwfAFMlDACOOhbBJ8CPp+0dJB+CV1SXpIQpqosj44lWJNGq1Du4g6Fel9aESOlEyxr9X5+xG4W5ufzZuhM7tIXopN1oMEjbvTu/mkVH958Sj/pfxuH0S0zukYFdoaguCblMbAeAnd8AAMttuQ5m8Mf6vJdG2TGhSUcOp0x1Scu/Dq/4A/y6OInJ2uRtz0FOqf40iZlZK5vHPWmwhDqtNniHNcP+gd8AALbPniMBwaxNWg9LdWbxvzkw0rS9RfnF+2aLBkuLpvBqI8P3Ft2+DQBcCfMJ8MPNgZFSu+mtrTV+ZBP/lkOhPA0A3I6rxdPVnRZn6CcVdWiMxPfpfXukQ+xiPcy+L/33p6gug4todOseKOrUxvAuAC2uDwDJ+qkvl3as6jx03NBuehLLKS4oQFrEbbkfNmgjKWFUhpkBhJ7R/dShM6UYO9NO7pLyDD+RLeUlxYXaqDAlHf5T43FxrB0PjtKARHwaNcTF0azdKd4fyRe7mbkIikpYxb9qm/ZtAKgzw/wbye/ZDlGTJ/AdKXGR404Jk8ZRN0rYyffsUlvq8xLN/f5rdHr/OXR6hsWUE99Lrz5DeTp6F5bq1aXyn/fTdpWq90lB5SVV0eF5tqN5u5/cd5rtZDD1313UdoxJCQMA7+37oaguXBsShYuj7Ti9KhSZH9hRcErlLnqe+oJPAytQAt9c+dcE5G3wk8Y+s7GBfov9PDBRXpRZzjCjmaiEiW0SsHEU50NgMWb9Vmw3p9WGzPeN3iFinvpfxXHI8DUtqqPJ23FcCVNUFy6OsaPY3pq3i6VFU2lcozbTyxC8SANNclpt6PnoCEkO8Uyh02pDxeXsHdHZKJGnCCjjv24MFNVl2CUBgOerZ0r1U1QXV8JEnk4rc/Wm+6SEAUBGr3lYfSoR/uvHAAAuTW5kKEdP4hn1KkuYgSF0VgyU0DXwn8qOB7T6iu1g7QxbCUV14fqjkVwJE0lUwgCgwu+sXda0qI7zjstsTBTWEc2nx+DG+gBcHG3HtSGaq/qdjSykyp42v0ltebtLK1PlXj9nlfuTtVuv431QZsNe07SrcsK4EgbArRJGeXM7XDL0Q+L1eSZrtxsPnDfk1X9LpQU8vxfJq7j4b/n7t9N9ReweorUzGKBEdJue/B59rF0ODwAAWFowBSMn6jpHNaPBu6GPppw5rTYUHWYHrQlYo/Gjh6Sgi0QUs6tXv6FSmcSHgk4C4IOlmbWp7xH38XAoTfntddE3McsQgJcO4urLJmWBrmlAFf9E/lzR2SDDidb/Mg4X/gxBcf4dUxl9t2vBobe1XAVFdcH6RRxH4hNlo/+ECifeJ6sn7TamfM/criY+8YwpD4rBFbhsgqlcXlsaSO0h0rXHmOucGE9LdCsrOngcQwK7SGXmTHUg5ae2cFpZkNbcEXZU+H23NBlxBeRBObCuKIOiupC2uI22uN74K9avXSzVTf+7ID0T66Z9K92jRSzxHno8Bz2O9UPI2ESmTJYgZjb54wLnp59cST7/1eP4AtL2SQy6Dx2FPhVuI3m4hsp3pgSRjpDK3LWtnsRyCs+fh+P7PYY8F/4MkRRmAv8wU/yuBGgL1pw3NR5maaNbdZXKMSjKp/bz9GdecODMczJipT6vuODs3ftxfFpX4zepSQepbBGoQFFdGHjUuKDwDmuGmnPjuZuforpQkJ2DN6awcxq08wqAI74CkOK23XjgvMFaTMHtiad+gV5mw15UXZyAglOqQTHOfl1rA/rGqL0ASIGDAUjIhU3eipfS6vMS9Vr1Eia/uBQVVu6W+uSFP0O4x4JYRuyRrdK1niotS+CIfmS1BxigSJPBh2BNqIxEmwliqCBf5V8T0H7CftQfcAx+b8TDUlcLlG5WH4pDWHBKhXJqP5efgETEtIrKDEr69sjoP4ffS4u4zX/3PnIZBadUt8YcAHgsbC9//nRKstT/zRQhckHzueUl1Sd5fjvpWlFdWBv/J7/OfsPB4x86rTZc7XZTAnbKeESbL7irbQmaqSiT6DaqqC547ZLrIz673ZfF2UqZJrveUtrG72gukCGjWTs0ect4/llv8AtcOsGgmBKRq7fZvNi/QQQyes0DAHjFyTD7evlJwSp2tOZowOdiHGj8XhxGZnXi6Q69OEMah/Vnp8PfnYgVOXKoAH070X3f7fVgP/Awrq8PQKMP41CxVzpqzo+XQL/K9jhpOhe9/P1CU8MBkf6+PkSQOO5QLDt33ylgHgcueX47qbyT79kx5IcXYaldG3m9IwzvUW84u0///9J918R7gNy5JhJV/Ks2zn8dwK1I4qBBvzN/DYPfkINanKXNDYFucoBlry0NpAHIHYn8ze4rqgtNf5wIv9eNLk0khz7PyBMnUc47n6Pk6RdW+kXYfyKjd8WKWJeyS4pr4rTaEOEq5AsXTwOzvmwzObzatEDxfoaa2Dv6CayLXWJqjaV7Wb+1KhWR0IwswQEoTEkvVR6i1K+jkDZERtgSZeL3BFQ1s0naHZkpBmZpHC9OQNxXDDny9EsO7gpqRgVdw+GzJcn0WfK8dqiQVhZlr7FgoGYLMq5odmqDk33KwXLbiy9qxDqlfhPFYxOVVm99P1BUF6JbdUXhxUvoeugGXq2ZYngfYjw5swWkp29IzNPjWD94d8s27YtEg4+dwbLQetI9ci+tvquGRzcjIjEmH5VPSGd6uQI2jEbwCPN3pK+HWBei9lMnGoLIivno/7k/msF7bXVufc8dYZfymb2XFtNi8N7IRXft7uqODwA8MHGcacyyzA/thvGN8hBaoyfyadIIx96rjeCnNATUt9L34b0AFhA6unlnU0s7ldHtaH9sCF0Fi5c3+kREmx72Nyjkqgs9H3mKL7LdtQG5QOWsaIGGDx8xTUMxkwjZkp6J7mM+9eriVlgjvrNAabqMHsuDHIv3nzkViZSIPKk9A34fj+Cnd3OXZLOFtNm4JpLTanQJ9DQWmj0nAIyUBeFI7zkfbT6MQZ3pzB227XsTUXuWdk7ZabXhjrMdzoWXRcOP4mBp0RSxG3+96zns6rpAVOltdMHUX18Yb+ehFczGDbM66l2xPdWbXIQB8Pnhf0p3M08Q2I8oR+PdFTG30S5JxutFt1HJu5zHtjH7ngN/nYCgF9wjNYsx+2ievbQmBN6/1kS1hfHw8vHBjf4sZM7FsXbUnBvPjzAUdmkLMXbd3czPZ15woN7X7uO7iv249ecxqPc1628Rz4/Avl/fuKdd8WjN+kCnt/4W18S/drx3T7fH/5bu74jdY2RmWVsZtBEVftcAIswWp6T8UGBTJXQNAAbHSuT1wt11YhpUyMJD5eYV58O7JTuEfGLkTEN6RXVxORTVhYePnePPfmzaBLNatoBPQ22Hp6iztqOSuzZY4qOoLmS9I8fv0stI94pu3IDTauPnxejZB3VKglk+FoXApfIOCKDtjpjVnyzJROvXLuZt/8HvC3g+AlDxXzuWl2upWQPHOizk8t3Z2AT5PdtJdRAtgUWd2+D8RDufHMQ21f+OPSVD2+uVMEV1IXlGe34vd4SdlSNMsmLZlO+bzDjcHBQptbc+jTsLodNqQ+WlCTydV0k8Sypb5IWoMEkJI2tpQVeGZhUyZi8afhyHOt+zxV5B13Bu6Qz7MkZqC+8d++E/JR6N35FjMfG2GayBlph9M0S3+7Y39AOn1cZ3kgkgQN8GYjw5yuOJaJEhpg/YNAre3bL59fVHI6X2tgT5Q1FdGF31jIFfwWl2L7fDJVwcbYclNNhj2RVW7sbJ9+yYdXIn78vFeXmS7HTfnRIm9gkxXg7dIz6kTFH69zM0sBRx4bI/Yim8+2tQ7dUXxEt9ULQe03XDj+PwcCX53J+ZldlMdv139dfMOdJz+i8qYfr6vTSL7fyKOx3e5cpJ6dfG/4n0Hj9AUV24MpS103sBGvR77NHtBv4kX8CmUVgf+jssXt5wWm1YmxiL649GGtI/kfEgnFYbmu0cxvNSfEGzecRptSHjYzsKbWycFJWwZTm6XcCSmEl6DwryiFBU5i4tKmGU33ddIjMEQu4vKRFyX3NabUgfOBuKylySpT7YgM0NQb9MkPiI/MT+pg8zII05QpnJP7STyiEiFMK/un4Lp9WG/a9r8bNICRPL2/rjPO5KFrvxV6kcsznr2VTtHGh86xWmihXAXHotVaoA3hauhOVFRxgMPBRPUP+tFF69agA40bcLwJBruRIG8PnBTHZFdSF1URvDPZGcVhtCtj+FnBVGN2tKmzx8Jgq7tEXEvsH8flbkDcM3qVfC6H7al+w7ujDeLvUhoqAXNHfS9E/sSP6hncSj7nfaWezY7SsBAIltl+G1txYiwlWI4oICbqiqOZe1ffAI1i6Wbfu45xAAJOffYKEEwMCBbPu1PkdlkBJ2aaQcx5LeZfg7mpsrpXVabajyqzmK6z1JxX/T37+c7iti9xjpF4zi4C8+d1rZ4XAxfX73cMPimWJinHtG80cXBwtLtarSfQDodJAtFjN6z5Nk6N8gAkWHj0v8KZ+lWlU4rTacXNaKP18RWgfqZG2BXJyXxxHPnFYbUp/QzlFV75MCRXXh6hNRiHI9AoC5brib2MwUBrN2U1QX4r6ahVr7vaRngBYQm8jL15dfF54953Yyf+7lSVBUFy6OtSPgVTZgZ/SZCwDwjx2DE6+HyJN2iz9QZsNetIgfiiuxQQZ+3tv3o/bMeK6EmS2i6L8+jo/eSggAITGaW1P1BfGGSZz+FmfvQspPzEL/vJ+DT0LioqPL6LH8PIa+vc1IUV048CpbxOz5aKZUnqK6pLhbxR1sHPHPZ4sGx316FTsfduPhSGxeNJ/z3v78F1JZFCQcABq/awQ80fdRfTvQswo51w339W0KMLhs8b26U5YpjVd4C+RMdcCnUUPcWB+A+Vfq8foSiTHjzk+0Q+1RJLVxYWqGVKZZvweAve/PRNDCTACQ+pj+XR0fMxMTmmjoagXdwk2VbqIzLzBjiHj2jSju61ml9gfi96Z/hOEe5avR3z1AQ2GXtjytXlmk3zfWBxjyuVs0eoW3kPKLZfaJiAYAzLlihY9fY/7c/rJsxLlcWBGWunWkM1oiUIBYT6fVhqqLE/h5JUV1wX/9GJ4udFYMTx/d7VEArE+U8bJIvHZ9O9sg7xL/rVBUF453XIiYUyVnxwYNZ3I0DJdkpr5fNRk43nEhl4UUvKre5aEnS0ig4d1W3lEL0c07G8YdSrc4exdboJZ4Y4jv6dTKFoY8+vmN7uUp7CxQ4Esy+qHTakPrT2N4WvG/WFdpzBHSLOoyx6NCMbpxR6m9qNzWn7EyUxe1kZ7TWeA+EdGm4w/d61PhtlQ//Vj0ShpDTC7IzmFoowIypm+sjPia+5QdGX3nGsoiChy63+33TOUefs4YOP6t9H2msgNA0JP7MSi1BxTVhXHJ6Tzdmee1+T1gxHFJudePuw9MHIdNS35AYttlPI0YUBlgO5Ni2TNOaiiSqY+z8abW7Hhk/aYhO4tlEDpxwJR4PBe5CVV31oSlRVMEJpbDC6nHDO3ltNowoOJ1fFDnEF/3iHxPvt6e10NEtQ0pUxFIYEZny9Z9cAm6ryj/8BPZ/Nyzfmyos1j2HPI0jt6nfzfdd028B4i2eR/0HQzLnSK3ixJL3TooPHvOlIfZwOuODwCcXNYK3t7FaPTIYSTPa4eM6Hl4MrMLcj4Mhu/aRIP1xmwRJFJRpzYYO38lBle6gjfOtZJcAp1WmyFwatWdNbEsYDOP46OoLu5aKJJ3y2b8rJu+3BuPRKLi8t3SQGzmNni3REGb9WTmSqdHbRJJbLul2XGobqlgkOf1dBfG/xyDxu/E4czzDikAK+Unt52WSd74sr42SZJrEaV1V1f9eyMyUzbM3nO7tyeizs4LsuW0FHInj3jfp0kjrI3/E06rDVlvO1DjaCFfaOrlC0wsJ507ofwFJ7Pvqu4Xx9hRc57m6tZ4d0VkRd6Q2lAvn6K60OG58fy8g7v2cae0/ad979OM3ZgaEc2t8infRSL42d1u+4VZGXfz/d/Nd6wnd+MABXX3atcSd6r5YsvPWrDqvD4RfAxxWm2IOpCPhNZlJH7+68dIQbi5TA3D+W6MmSxOqw0vpB7D10GhpdbzbusoxsITkeYArb94agt35Vx/NBLV4rKR37g2vOIPSOleSD2GTyYNx7b58oJaz8t3ez3kddZ2Q70rVMC61DjJnXXymTY82LOiurAnLx/tfct45GtGZsYKfVuatbVYDgCOkpr2ZRRXpDzJUFo/Jf63+7VHzpB8DAg9gC/r7zOUK5btqW5dxozlyg0gtHFJ4PO+yb2R3+V0qXIDRjRbknfOFSvGVVXdt78QC050q6y5qzqW+G8tdR4vs60+1oSsYwafNi1QUM0Xmxb/wNORS52n90bX555xcDAVT3Ut6mjDxmUL7urbEmN/iiTmu7OxCR5psA+dKqTwsCUAc2FMHs6MeFeejMKdyl7wuWXcZQfMx1p3Y7O7fquoLu5uXNrYQfmCF05EwKvxWJy9C0MbdeDPors8jORxtRH4suwiGZrkg2PhzFUk42M7kp8yhkwBgJSf2sIVNQ/VQ9LvaVc87prY4c2/xzVx1/v3dHv8b+n+jtg9RN7+zGpqGDC8LcwiU7JLA2ixXoiuFN2C02rjABIiH72lRVFdaDL4EIelDxmzFwErx+O84zJ812rWN6fVhtSvoxC253Gez4ynorrgvWM/fniiH5xWm3SgnNKLSpiiurAsYDOcVhbHx7s1W1SREnZxjObStm7DUkO5V4ZGof/RiwYlzGm1IXBumscJQrQ8KapLOkhMShg973zwFgC2W6NvQ9rBA7SdSDOL1u686mj6o+aCQOmy82vyc00HXpkhPe/lH8nO6DzNFIHD4UW8jorqKlUJEy2RYn0A2VpHyJtmC0sA2PvuTFxvKrv8AHLMFn2d3fUPUc6Ck9m8zNvWfFT6bTfvb/p6HP6AuX+IbqoFJ7MxMSVVqsulNSG4NNLOr6ObdwYASQkDgKzIG1IbmsltNmEDwLLrVT0qW6+eNcrv7lr8/ap/JAovXNQm+WfZe6d+oS/TrOzS7unr5bTacO4Zh2mfTf/M7rGegLbTXrz3sOG8lGjIUVQX3q2tGTfoPRNogF4mFBXyvOmfyTuxTqsNl4fZuRJmJrtYT339zdo/ONEXhUeTpb6F9hoC29xGuwAw17Jl16tyhcCsfEV1cRc/gCHRFpxSOSjEtltsuk2e2R69KuTBd12iod+LfRqApIQBzDXQabXBu1s2fBpY4bTa8Hm9/VL+N/2ZK5sZsIZeXvE3xbcbkOKU2vDqukC3/aDL2LHodrS/dG9OSADUyQ5JCQMYCJX4Hq48qc1hYn8BYNo3y/25B0FP7sfh8CKpTiJPvcsqkVgfUsIoz+rg9ex3yS7empB1AICMj9h3EPLzREM5RAVnzsJptSGvTwS8w5rBabUhYMNoSQkDgD4dB8h5iwrhtDLXa1LCckfYscR/KzqPGwcAHHSHjA8i5Xc5zfmvX7sYlq3azvqV2CD4z/My1NvdPHDZdsfQTmbkvdNl4ENEnjBEeiXMbE4q2+Mknq6Wjcl+URJP/ymaF0fCZ7NQe2a85LJM34woi/hfnCvd1ctptSFwy0hcfYL1QYpz5mmMJfRpp9WGgFfjkfJ9JFfCKE/sthUIfFlzkaQjDsfCC/g9/9fiEfH6RD17AEDwU/swMKSV6bP79O+l+4rYPUSFx7Wtb3LPosXJ6CzZZYJACIgGN2SLlgreZd3yJxh6kShgYvAzTKmx1NLQo9I/tSNtyCwcbP+L4RxNyF/DUdCVub90GT0WiurC+tWLDPxv9zUPZvpAzDgeQLTowDH0fOQpZP7KFt0158VLg223J0cD0AbZoKeP4+lq2VyBE+n7BtouBgAeBJZIXPg4rZprnNNqk1zwAGBqrRNSvvMTjb7egBYMV+RL7+nroFC8+8hSiQ8A/NyUKd1PpyQbBv31GbsRPCIJGR/bJZQ5kXJH2KVJjRathV3a8vIpOGjrPY8bF7woQd4USJwsnVYbFl+rifKrmGKfuzYYWW+zxdHtukU8vZnScu5p+byWmIZcYb0rV2aLorPa+zFTLAlI4dg4GbiDQF8ofY2+yahy8g4mn2E+IoWXr+DyMLs0ISuqC17tWppO1Irq4iikgOwKRpDPgytdcbtQUVQXXG2ME7hYjtk7uDDeziGZxec+/k1MLaZm/MX/Ff9iwbVPrWyBtC+jePndnhwt1Te/Zzs8Oo4ZQyzVqkqL4oBX5PM6ZnUl2fJ7snMY4rkPkfQLJnf1oLwimmHKkzMNbVf9qLbQbj49hj+vvqsGl0tESTRbPFM6vz3lJfAILv+eQ9xNke5/F9QMgysxcI3ts+fwZ/rFHo3DBvK24ONANr5lPDSHKUpfRBneX9O9Zdg7qW4M9KyvDwF4uOuTMU06csQ7Mz5640P6o+xM5a3OMtQ4ochZggPgtLJgzkS+axOloOx5fZgLqvVzzVgEACffdaDw7DmELJjIy626SJvDnFYbGiZU4s/ojKhYP6q7orrQu+djsDSXQ57Qb7N2I0qeGyEFqzfLT79rtmFnnP2nxOPUFIf0TFFdUnBz37WJKDp4HOdiHKhQ5bZBSShIz0T0g4/w8Zyeia7Xj768AQBQbg0b88TAwGR8uDiGvU/vitq5VafVhvzu4Vq7RqfCsm0fb6t30+X5icqn65Axew1tpr7iwAJdcGkxZIDTysCKiFeTwZ6BPvQGB/E+UerX5mdOK++oZZjr9YqdmQKl7wv6sSCt648M2EyXVvwv/qYzw0TBz8gIkZ0O3jbIofdgIn6iu6JeRu8KRjfhe5W8iv+ev3873VfE7iH6PVkbzOoP0Cxgiurii2Y++HhbkDI9Us/C8GHfWB/ABwWCoZcWfNEXpMVO7MHN/NmzfWP5b5ocTk1hk7D/Ywe5u962+XP5oOkVzs4BZP4ahsz37Si3Zg8sNWvgpdQjUjl/zZiDdalx6HzwFlsgxx3gQB8EDUsHhC+/cA2W5iFc7vOOywCYAifWW1QiKS25A9wN+b0Zbxjcizq3wUcZrO61Z7LB0/YxOy+QM1VbkJgtkOnej02bGCx29Ht6cAg/40LPols8CIBZzopcR6UynFYbluXEwztfHp0IVtmybR+KHa0BAI1LwhnUK+lLZovrO852Em+xHqQsAixuS+N32eJINAKYWR3rTI8z9EMiQoojdMvAH04Z8rtVXLy8pDT6idNnS5K0O1BtIWuTkAUT0fngLQSsGA+v23J/EMtKHygvbohCRu013APAFXP9s9OrQg11MJNXUdl5hy+CfoOe1u76w6gggCF/ie165A7bte0T2RcAg4G3VKmCBoOOIPVxhmLZ+rMY3KpTBr0D2EIn7csolNmwF9vD2IRfePkKqi5KMCwI5mfthNNqwwMTx0FRXejT1ikZNp7M7IIyG/bCO6wZDz9htqDVt4+7hXKf9n1Q/clcqS/q+5ElV9tZvxWohaIQUSP7NjCejwKAn6/Wku5ntr/Fn9P5UD5WmqAUivycVht8t9dDwu1C02/fcG5NcLek9IEvJ8B5jL236O5MkT3RLh8AUJibK717AmBo96amyJDynDzTaOyaX7KIrvaztjNhqVYVES6j2ycBYkjzQsmZQLHtCc3V+oX7GG3kUSHWVVFdPF7izCFz+Lk0fV6a40gOxwHt/ZKS1nwmA+wpOnycu5OKlDKdgd1kfCQbzYgy+szF4mYN3coPgJ/7IlANRXUhv3KxYaz7sWkTnu/qE0yp3v/GDDQYdMRUSSg8kYoi11EoqgtXim4Zyp5cgym8ZmfpiGiHX/QwATRjoF5Gp9WGqHLaMQGzsdXMoGb9LA4jSs7LUZ4TozWALkADK3JnHNKDB5191oGzzzpM4eydVhtHPHwtTTtHPC45HcsDN+HGZ0zJEcNSiNT3SK6hfOJL5+OJKO6d+H4yPrLzvtrH0Z/fp3tOqw3nJ9gN/Yko8wM7doSVc6vEifzo3plVRuXSabVhhctz0PH79O+j+4rYPUTilrTZAhcAops9AK92LaHkJKHaIe315XcPl9JT/tPH6yB3hOzic+0xzfKU2HaZ6YIpeVZ7rGlR3TB4NPhEPrOiqC68dFoDkLgaVBmKytATT4yeyS1JPSvkS3zowPfUWifkBUD9eqg1Ox6dDt5G0JMsPlKtfskoPmkOuy/mjT24GWOzmatA2hclIBAmIAOiJVOsBwB0eprFtSq/vS6zTm3fj6n+7XFL8efp605jwBD6M0ZmchV1biNdi21Av3eGrcT5idpE4FVN84MmcAGRqnqXx9kHjAs7og3Lf+L89YtrSk+/yyp7TdOIZDZREx/ipaguqK+43wkz49k3uTcKMrMMk5bbfMJxVrFf6ttU/+0kj5iJ7WHlETxpNz9vGP3gIwZlgYBX9PVcfUpbXOY+ZefxiEgxP/WqQ6pD2T+rmSq94qQuyj3Vv71p/3FabdwoQXmt689Kbd6ibHlkLA3D+a6N+P0JSXtxebi2Y1rvmzhUXpqA5Hls4ieXsZTpkdwKnTw3wlD+6MYdoagseKzTagN82DkH4rvIbxsU1YWigxoi3OBjRnTHC3+GGHib9bOCnFP4aO866Z6+bxakZ0JRXbg0yo6MXvNwYZy84FZUF9TJDtx6qL2Bx+JmDeFdrhz6tO/D71NcxuK8PIPSTPkujbIb+uWZFxzI63xGWuSK9TMLME5pUhe1weeZJcaMbjlsjDyqxVH0imgl8XRabRyAoeZ8rY8mfMbAC0Imygs3RXVx0AmRYo9u527jYl1SH58lpVNUhoioqC44j/XlcvQ9ksu9E0T5aIep/Wvm7laU9s7GJvgssJV09lKfhi/ia9bA7sdbAgAuD7dzJU2E0jcjcuf2n8raiYKMu0tPQZUB4LEMFq+vuKAAzsNX0XX4aP4dnhg509BvxUDi+p0Vat/zE+w8UDaR02pDxMIX+W9vW3O0/jyGl9Vg0BFuVNSPUWZtRv89jdNpX0YZ5nIzOjXFgcXXNIMm8bRUqYKOk9jcSMZWcRwyk6HwWIr0vO53caj7XZzkhWJWr48DNc+EuUMfQt/k3vir1e8AgEYfauiCYl3E0AUtvo+RntX5ns3Xzaez+xTf8fqjDCW4YFNjJI/QlMyCTLbDW9xBfpf73jL2ASK/N+I5kMvi7F3o03EAB+LRtzn91xtIARa37R/lmlhc/Pf8/cvpPljHPUBmccQsIYE43aMu6kzXFvtFndrAewez+HvbmqPowDHceigCgVOO4cfGO6RJQBxAFNWF8Tl2bgG+MjQKCZ/PMrVklXav5q7quNghl9+/PjgKu76ZJZWZurAN0rr9CKfVhpRpkQietNt0ktCXJcK360k8wKvPLx62v/ZYFCovlS1u7gZ8M14AUDuuGhb5bUP/lF6Irn0IvzevbSqTmNcnwA9rd67ifKjeZvXVK0TN5k1Ek7fiYaldG7EHNqJ3cAesS2FnU9493xxxrc3dTU+vCsXB9r/Ii6pvopA2eBZC/hoO/8dkVCaxTH27iHTyXQeOj51hKq9IqV9HSXFbOh+8xRXrkSdO4rHKxgDfnhSttC+iEPhyApJntUfIhD1SepKh25Oj3cYg06fVfwf6tGZ10tOdjU1QtoemuCuqC70at0NxgbyzNjo5Ax8f6439EbIbqqf3Tr9HJ2d4dHt0V09A7vtEYgw7MwXPo7IrkPgtAUbgFLEcAhgxG3+8y5XDwP1ZWBFaB4rqQsypKM7nbmXRvy8zEJzYU/sQ3aAtTk1x4PCzM6T0evJp1BBrd69B0OKJCJwsgwB4kidtiQ2BT7hMn+nHKCKvdi1RvPcwr6vYv/WUMj0S6QNnw2m1aTEhhTbo0+EhrN31BwCg87hx3FPBK7wFipO0M65Oqw03B0YaYk9SHYeffACp3zSXguV6Isqf8m0Ugp8z39EQywjaNgKBT7h4PKbLw+3S7tz1wVGotCwBa04loW+DcEM/WJi9CwNffBGVfjPOHaXJGLbPi4OXeKI7vSJQ4bCKtXvWAoAU282rXUusX73I7ZzqqXz63XncOJxr5yPFOHSXHgBuDWiP8qv2eJwrT68KlbxlzNL4NLDyHd283hHYNn8u8orz0b+BZmzJeosFZ9bzANi7JDAe8Vla/nX0n/0Kjjxj/m3p5b6+PgCVBIOECHwDMMCqN14cJ9WZYp3qv0XLVitOL/fjsd3EZ2K54tpGBMi4G7qb9wsA/spoZDg1l1K9HPr/r6e7cK2oHL4LambgqR9TFdWFq9eK/jFgHZ3tb/wtYB3b4z+4p9vjf0v3FbF7gPSKGF/cC+hyehp49DwWv9GXQ47ndw/Hlp/n49OLwXi1Zgp6NWmP4vw7Uh4x8CQAKSAtT1MS2NKMzAaqF1KPIf5GkISKRmnEAIoApMC4gYnlMKNBgtvFqqg4wssLWctaovGjxoDEpckHAKdfcqDB9H0oun0b6u/NYR3I3P3O/dEMdR46bkgPMB9562fugxLr+R98aYZh8gTMJwtLaDBaLUmRIG8B5n6jd0HVL9772PvJiIFRYXDM3ou3ax/lacyCxd7u254v2vTy3M1CR1Fd6B0QhXXpCaW2vxnv/8l7AxiYwvcNdvPn1M97PjoCXrtcbuui50kIm57KK+rUBht//dGQ311fiDqQj9VzOkvGEqJTK1vgcNRifHShqbbr6yZo6t0u9O4mrdhfbjwSCbVvAYJHJMFx4A7iWpeFd8tmWLdhqem7N+O9IifBALkPsDNm+kC+gUsnIOhFbWFfsKkxfLpnGb6FvA1+8O2ZCYApHsFP78bZSQ64XnOvPLlTkkRloPmMGNwOuS2FBBDzFXQLh89mpsTrFQMxfWkGI3dkqVYVhZev8DyXh9lRc81xxB5hKHipX0VJ7eOpjP+kXICN7YVHTsCnSSNkDGuERh+wPpn+mR3Hh07nYS/0fE+/6MDBl2eY9ge9PIRwS9ciuZP1/Oqm2NdOm3Och69CackWU94VKqDo5k3DWAcA9pcnIP4LY4xEus5+3cF3R3gbBPmjMDWDG8EurQnB601j+XlSsS76fn5hnJ0FFffyAoqLTcdfd+RVpqxhrjWbWxXVhejugzk4jCclj65PverA4eeMc4u7MSB5dgRCxiea8ku4XYiocha8e745FsR35DtDel6jkzMwP8SfB4rn6xH/JijIkL1JRHnot769zJ6Laczagp6/m56EtwM0Rd2nYQMU5JxC8pwIhIxLdFvG86fbGZQwcf2hl99MHoB56KxNWs+fm9XvtbSD/Pzn3Xy3PvXqouCMfA5TnOcKivOxDX/c04oHX7NG/j2K2Lbd/25F7L5r4j1IfTo8BPVlB0eXM6Pfm9fmSljBpsYos4lB4e64GASn1Yb1J7UdBRo8Co+cwOZbFpxf3RSK6uIThZhGPCNGz4i6PTkaoUk+HIxBUV345LnhXAnT53FNkVHfxMC4aRHawVb/1eNw5gUNIarltzGaEgZAObWfW94pj+hfXdSRxcQi8g5rJtXp4EszUHT7NtC+FQ5FLoGiupD1tsOtEgYAh543xlnRk8gfYAAURE6rDZ9eDOZpEm4zV8K0L6NQeExTwkQ5RfAM/cKEzsgVnMzGuRgH2r43keVd+TPiWpeV+smZx5pLfBXVhXJr9hgmQf1iSqTk2RFSHZ1WG4pus3d2+kU50LZ+ciLe007uknh4IndpUiLyOL/MD+3Y8vN8tEwYCq9dLh5jymm1wadeXWkS7B0ku0nu/M4Ijy+6mwIsQLRYByLrZ3HI6xMBRXXx84IA8G7tI7jW4abUFmefZeU2GHQETqsN28PKI2BDiTvXnkO8vfof1YIYSwuhKOb2aGkaZNomlPbBIw+ZtpvTauOyV1zOQF8U1YW41mWhqC4UHT4u1c1ptSFnhTG2FskpKmFiWeUyLhnKJiXj/ETmykcgDiQTpX/efxPnT65kLz69TGp3d3UXSex3TqsNjT6IQ+CcInhXqGB4BgCbF87n+XZ/Ip93ofv676LV7iekNOQKaUb5rQIkOastjOdnvRTVhbTHZhnQbk+/5DAd4921Q/oSdn/wsTNSv0M2g1svOJnNlTBFdSHglXiuhL2Sdgg9jvWT+NX/ip3npODUoizktkl0srcFehLbVy9r7bhqqN3/hPRcaVkF87NYQPGimzdxc2CkgZfTakP8F7PgHzvG0FfpmpQwsczC1AwA4J4INfomcyWM+lvtuGqm33itOSWofIISJqapHVfNUJ6iMtRdmmtFEpWwvGhtJyp20zIDfzrXdu4PbcfEabUh5ae2aPBpHD8/SGXq+4t4bjNkfCLSFrdB7yA2Rhd30NJGlWOx6f442QoZ/WXAmW7DRiPjY/bdzg9h4yKdu3RabcjrHSEpYfq5JMJViJdSj0htdm1IFAcDE2XXy++02pC+xCa1CclFShjlL8g5hYyP7Gg24wZu99NifOn7CSlhluAA0/WHWIeQBZpLbe8jl3Hszk1+XXD6jNROZvJ/HBh2Vwo70U1bY8M9mufu0/+fdF8Ruwdp7a4/cOhFTYnRD/56ElGr8ruc5gNG8gyGdNj9iVEAgKtPROGzwFaShRJgg0err2V/ZvGZorJzFz5bkpDsrMp3AJxWG3zXJuLmwEguV4tpjE9e7wjDZCYudDI/0A6+hkzYwyPLK6oLDT7VLJ0p30Wiy9ixhjqTf7WXry+8d7ow9OEJvJyig8cN9VBUF5RVCxHxBht0GyvXpWciJc+JkPIT8qOiulBzl+aL/sChgVI7eTWsJ/GZvb0rr29UORaCIPClBFPlRS8rALjy8ngasqIqKjsQXntWvGlep9WG2rPicaHwBptAo43vQU8tE4ZqbUTvRLCqKqoLltqae6ZoQddPTOLEGFKmorS4ckdBiydKfQQAst52SIesu4wdC7/XWZ0PRy0GAGxa8gN/XnDmLJwDhnEe+kUe3U/7UlsI+35QDQBQ+GBbeVFrQr5rGdT4I8ozAJgbkdNqQ9EFX6ktXFNm8MUykVeuZqigtKub1zS3niYcxBMZD6LwRCp/VnWnfGaj1/E+KNvjJEfFTJ7fzpBOrIu7tvepz/prXgYzIGQsDZPk1L8TkU9hSrp0Lf6uPVODn9Yv2DI+sWNmcJCB/+JmDbH6RgVTOd0R8bDUrcPL8d7pwsXfGsiLfzftEJrkw9vMnZHiUOQSfl9RXUh6h517JcVfzLfx1x8l/nqeTqsGdCMacYafyJZkVVQXkue1M1UMA0rcIn8b1p3XJ7rLw4g9/pfEV8yrqC54V66MzwJbYWPon4Z0AGC5qS0FSJGO3fgrvxe0bQR3SRTrlPK9rEgB4FDrdIZQ3ybdfp7MZRNdJy+NlMFvQsbslQCpfOrX4/VJ+UkzwpiVoa8ftT8BPVGgYDrXqv8WfbfXk+6fd1w2lNPjWD/NUOFtVFI5r1g5JIwoFxkjCru0Rbt62VK+4KfYzu7pj7V306uJNhcRL/3OT+DQ/Si6yZQJr10s3AuV7benvKQck1w+m5Pg/5r5nAIwQC59fxbrkWiz4Os2spHhVi1v1JlhRL/U/waAlC4LDGXq89F//6nxyG1RBdtnz5GUNoCFmSCyNA1C7PaVhnL1Z9z8p2rj1fPVMxFatoL0Le66XSR9T2K9Rb6vp7tw8j3Wh+m7EPlQHtpVBgD1dw1FM+1z92Ag9yzdPyP2X6H7itg9RorqQshfw7lC03XEGDwwcRx/3sfeT0pr9uHSgBESwyx1Pm+xbfAqSxLgU78eH5gIKhpgcMPiIEO/yZp36AWmGIpuiwQ3v2P6bF5mw4/ZwOu7TnZhKdjUmF87rTb4vRGP0F3DTGUH2CAKsJhKvmsTpQW0SMUlygrtNlwfrKVzWm248XCkpAwkflByhiPhINI/Nbduk8sDyb59jmY9XOK/lacr78yQJsTYzb9J+dIHsV2YiNcnShPGgyPHoEW8pvzoFRmiV/3lwZxkMFt8+O0pz1zfStJTfBMxcKltv3FxCEBC+aJ7oiXTabUh9sBGU3lFOv2iDPGsX4zrDQp0XeuADMIBAI3fjeNBRgFg21xtIfBNrh+8K1aU5KgbX8Xg9keLPOLrtNqk2EbeOxgAgmXrPklmUVaaWInobA+da6hRAphD9ekd5OCLZeKRNkQDQ6i5q7r2ff6kWWL914/h6S920BDAAOBKx4scLcxptaG4KwOuGdu4I1uwjmYugokpfjwPITqeetUc2VNRXbjViqHHBb7M3E0Dnjwqye0uHxFB1yuqC2eec5i+Z6eVuUgOPHqeLXpMgrxSnlkREW7HNIBZq8X/BLpTeJbBjF8exupcvU8KasdVg6K6cK7whoEP9YXjE0JxpeNFqe8rqgvetuZwWm0497S8WyWOI3cWlzV8i/q+UxoRoNDPTRtBUV3oMWQkACBg0yhkRM/zaEChM2cAUJjMYiem/NSWG29EmQN+m8BjNJK8TqsNybMj+LUIVJNXzctgPEnVLZSdVhvez0g0QHgDDGpd36aUx/7yBPi9oUF3i/9r/BgPr3Yt+a6zorpga6WdMVqbtJ7zbLjSh/PtNmy0tHunl93sfcQ0YWAm7jwfKH6b02rjYD3E06dhA9SNrwLvbtmaZ0ZRIQ8VoC+PQBzomV4+gKHdlrfc4Yi3Ig/Rc6M4/w789pQ3zAFiDEX632weG1+qLtbGPNHTRAQq0ZPZ3GimiIj1KLp2TfoG6DxX1m/mIGR0feuh9ph1uQG/J+5oi+UUdtEMZlUXyy7y9PuzF4bzsDjvrP/F0E6K6sK5iCp8nHFaGfR/2ucyNL/YN98LaIvAXydIc59ZWzxQDjg+hhlqxO9Cz1MkOiYBAIGT3SvC9+nfTffPiN0D5O6MmP5ArdngF76/CK7utRB7aIs0yZ5c1gpNBstnqoYez5Gge834EVlCAlGYnCbl95QeYAAVhwdOQwVvzVXOy9cXxXl5SP06Cv6r78CydZ/BuiSS//oxyOg1D+3emmgIxmsmtyeZctcGo3qfFBR1tMF7J4OUrtgrnceyEs9RRbgKkWiz4KvMeLzox5DxCE5fLFds49Svo5A2ZJbUPtzK9sc4zOs5H58FtpLqaSange9XUbBHHefWWwA487wD9b6J4+cqqu+qgaX+WzwO3Hq++vtmaedm7cSE8IEoPH/elN+Do8Zi6w9zeV2obgHLxyP9kdmG8szeT+qiNgh6cj/ckb5/6NvXXT309TVrd3eKpCUkELHbVsBptZme+eCyDBgmKXzEb37WTgwf9Ry2/Dwfm29Z0K18oUE2/1XjEBKzB5atVhQ+qBp46MsLf2cikt6ZWWode/d6DOvWL3X7TkX+Wb+1QnCd83yh6U6JuJsFgZ6/u3NXROmf2k2RKaks/bmP0sgSGozCYynS2S89T0V1YVpuE6xpUR23HmrP49KJlPZFFFKfYN9xp4O3sSOsnCkfwFzZOnbnJp73k12wors8jJMP18WRSe7PXz2dkozpwSFuy6LyPI13dB06JwaNY68ZjBGevnV39XJabTj5nh159QpQTi2DSieLUePHeEM+p9XGwTiICHzA3Xd2t5TxsR3+r2kgKk6rzfSeGdGz3BF27PnI8/djxiuvTwQq7D2JwrPnkPWWA8cmzEBWwXUMmfKyBJ4CMETNGj/E49TKFmgw6IhpOYDnMUw8W/ls6nFMa9Ea3oFNTOH5AeCjjD14ZEsMymWX5fEViX7P2YNHHnwMhSnpHAjFrG301yJQlneFCvCuW9vgiqhvtytDo7iS526uOfOcg8dDc5eGQDxypjo4EMjam+VQ0/sG3g6Q5dfXQQSIckeWpkEoPMFitJ5ZFcq9aS6OtaPCuULTMQFgSLIZfeaafj+A8Z16mp/M5qQ2H8VIxkZuWKjf4p9zRizi9b/njFjih/d0e/xv6b4idg+QGWqiorrQO7gDjxfSMskbh8OLDB998twIhIxNlBYcnkg/qTutNiT/GM5RgNwpCiKVNsF6hzVD0cHjSJ4dgYx+cw15aNFL973LlWNnuADpELa7ydbT4kJRXQjZ/hSSO/8kpTn3jIPD2JrxzPzAjqqpQPUF5gtFRXWh/WsTUf2neJx91gHXlBkeZUtfYkPQZ3d43JiOk8Zj57TZCNgwGsEjtJgvhAL4n9TVjNwpe2b3vVs2Q9FhZmV9PyPx/7H33tFRHEv78COtQOQcB0kok8UKUNgFDJiwIDA2YJPBYKKEc8YZ4xzANjYZjAkGYxOMQbAYDNggCYRgyaCIkDTkHAUK3x9N9XTPzEr4vfd3P3wvdY6OdmY6VPf0dHdVVz2Fmp75CCpTybBonB9tMwjDZosNlZ27ohl8+h0yfaZ3OteXc2mYDdUWJRoWLEqT9m0UMvvOKnVTpaf0ReEIHqYJfbceicS2WbPRIzCajzl9+8T+0iNDuqN74eVeNmWDszrxE7GSNosljWM6cbjXPORsrlfemNVv3Qt8WteFmA59+cZNTPdR1i68ESDHtRIR2Px3lZe08iXxaalbB4Wnz8CpuvDnLaZxpv4raQ4Q0WUJQdFM8Mh7zS6ZQd8L/V8FjKxPbNJpYGnKCpFOvmhH/Snu5y7Plk1QtO8I6iZWwWnbFbfli3VcHRCNhKkaGEbzFE98WX8PWu0egNq9jyH9q2g0+jjTEJAWMKJAApow23Z/XwkpT0xPvJT07ZWmTCjpm3GqLgzMeliKKSemC/8wDt6XiqQTIoCZQftNMu9fujfyWDaPG2bG16CjKtTb1XlsPpG8AhoifbQC/zfvHRxGfz/tuyj4bihGud80gA0RRMipumB/cTwuB3jC5+MEZH5mQ9pQI9w6XT8UNxZXFS/UmW5ETnTl53NrDDO6F57vRVAW05DSVE+vZhzAZ0FGOPfCTq1g2bIHHmXK4syKANTufUyaW8Q6UvJv8znJqbq4spf6w6xdr2YcgAXFeOXDcagx3/jdlja3kgLa3XN9f7R5N5YrNP5RYB0PBLF/Cz0wTbyPSAzo3GRWHBfCst+3YefHEdysUPyoQ8doZhNiLA09UUBQs8W5cewhtPw0Tpq0xf/WT7S4HFGvx6Josy9ud9fAHJyqC1mfaKYRFFcodBzzq9FPQFebyYFVi27d4nkPT5gOp+rC2rwUU36u9Y8ucYPR7XEmhNFz8jsw0zwBQNZSZgpy7KkZBiFMT9V/SMTFdSEcCVJ91Q7PcnIQR+IjcLCLB2MOXDUOFVcwRKT69WSzM70QRv154SnNVEKknLfs8PDy4unE9tOfmeAslkNCGAC8HRCBuIbtELB6LE49r5m/AcDu942ABkRO1YUr64Oksg/ZlkjPqSyP8GZo8CkzWS3obISqvtY/GtWPyKZT+rbrTaD0ZYj+JWL9wcP2Sn1Vfj0zQzTbCFKdVG7q9EhJCOOxn8A2x/p8ANBiapyh/83GKfH/1XHNJNj6SZxkliiaIVO/0NhwJ2z7v5UoC8cT3QcdJ/o4KAyelSu7FcLEvJ/WZffFMBPiOxNjohG/hec1YA/aKF0ZFI2idlYDXyLgDQkBDsWKDwOtsO3rx9PS/+nZ26X2n3nazn21st+3ocEnCQj8ebzEK+UVhbCcN5lpJZmREe9m3xKR2XMzuvVIJALf3WM6T9Bv/bshM0uAAWoAmv8t5Rt0VIVTdaFo3xE4VRcWNvxT4jPzM20OCd46Ag7FivyN/gCAhKkzpfniYOsiAEDt3scAABn9Z5oKYQC4UCW2gcxb9UKYmN6putD2+fGGby/zE5uhT0rqd7EPHIqVfzM9YgZjWcAf/Jk+XZ3vEiQhjNIcGcdOYch/mO7feiSS1ysKYXp+jv8UhhFVzmBbWHnTcbNux6+mQpi+HLEPHIoVlqbstPRGHxbSoNxv8snNgeenS9965WVJ8PmYzSeBryYavl+HYuXmk+VX75KEsLQF2smT1dvblNc+h89KPHtWrChdm80XllDN/UF81vvwedbGEAZwsyvcGNTeqbokIUz8fsiypvjObT5mRSGs2+NP8v4kIczLh/mOhj61m/Ohf1f0+7OgFvhk4BDUmJ+ItG+YUKoHlimJivPzeVlUr75tYlm7J80w3H9A/zv04ETsPiDSLlxMDUSVyp7GRfmuyY9TdWHN9QrcnKU0KkkL8/nxJISVZZoMs02deM8dpL0+rTvNGJFDseKdzD14P7AVSqLr/aJQcQWLH/P5hSBsal6Za8AAtlkrunrVdIN7r3QvGjv99fHJNvi/nYhn04/ymCAEmUzpSoN4d0ce4c2wYd0S3pYbfaM4KqaeNwAI/SEWARMTWTw512GcG2tDvY15PBhlSRq7e+03ikFDaUSTvQtrQ1GjFzOdsdSuzU0ZnSpD4Nq8aB6iXo/Fzk9moNvjT2LjLz+Y1mXGp54vp+pCz3aP8WC+DsWKK+uDUKUHM51tMTUOyufmml2rtwamcXa8DRfDC5D1iNHcxB1fem2+O42vR5vmSB1REV5XPREwUTbjylgSjqAhe6V8TtWF4C0jeaDeJrPj4PeeuVaeTGpLoj6Hz+LPi6HYt7YJ34yVpJ2mExB3gu+99A3AgvyubVYd2OwDdM41Tb8oZwfqWCqalp/fMwILZ0yFn1clw3Mvfz8UHD/Bx7ilZg102XYcc5d2N0CXm53S1E2swoUT6V2ZmJ6K7XL37bibM5yqdhKTOrcN9++ift2VfweR3mUQnjyQx5mjcrwC/VGQeRwAi+3Up892pIQb9aNO1YWFV2phSWMfzMzejvEN2/HyZ15qgPHV8kqMiXav37wIKa9PL35zJfWTnqZnb+c+WZTmTJzd9DSmpDlC7Fu9GevZWBv2vD0DLabEodAbhvGRtbQlAgbtMy1bbCPVddMZwIMI30sb3X1DYpw/ypv1iQ2F3sWSWbsZ6evqf+QUulZMxxi/dkid3wahT+0udf4srU/d8V3aN+BuPE1IS0Xvijf+Vrv05FW/HkcrFNNefzwK27+ZJa3FTtWFJrPi4DfJaEUjuheYzYeZn9kQ+KosIPc+fB4TqrlHqwaANXnJ6N0gAifetePIOKNljL6umBYPc9cRs76IORaDwk4q79N/kmlipzZv/EdOxLbs/ui+7o9/lR6ciN1H1O6L0aaTquh3sfxspDQJOlUXim0tpeuSNlaEaGUmhInXYjkkhOm1faImd8hRbRPmaKA5JzsUK1pM0U7U2pYrfchVXMEEkLi8aGxqzjTkJISNSs1CwepqvOzATU+h48HHeF4RaY+cdkUq7NQKlipVTDcoIs9EIcnefOE5NopprXpW0DS68X+ukvIRxHtJZKbxLd57SNJQlySEAeC+EuvjGapbrdmJKDhujNkk8kb1Uj1mfbAkZwecqguZn9qQ3Yfl86pXF5bQIL55daouJLdiMMy5E+2SEOZQGAKXQ7Gi2kKmld34yw/Yf/uWoS5xUae/pjPiDJpph2Llm1W6X6VHBgAg6I+RHEhGpA5jx+K1AAbUQlD8e96ZwU9pS+pbkUgI0/epfjNSvPsgQr+/htQn5VPEM0/bubCVO1EDf3AoVqR30lD2jow1Bw049Zwdpw7W4Tx6eHmhqJ0VNx+NRNo0Da10fLU8nG97ET4fa4imZnxTOXQCQs/DP4pDfo8IeG+rJ7WLQHPKbK3P84rlrW1WnWm97wphegCAs+NtGObbVuqvnLe1NFvnzOGgI0TZ79tw+lk7VyrQyfKJOfXhbF4FhyfIfeVZoYLhlAYATtuuSN8UkRjaQ+wT8d2UdP/8aJs0ZrPuXOPmcKGjd8OhWGFppCFDRnqXQfsJ4zjogsiPOK4rR53Fvl6aDy+BIREPX099AgAw/q5QQ+VTwHkSwkReqZ7INxhgUNYdhhZ7pws7mT79rF3qh6IbN/hphX6OoG9OX4e+nwAm7FLIh7iG7aTwIk7VJQlhTtUF9WX3wBFULglhI49lS4BKTtWFi9YCdD/aE/b+eyUhjNoWMGgfjn9gfmruUDTkzUbzY6GuaoryjizD2DGbI/Jek/vvyiAZVMrMzyvg9UQEv6Ap6/x3Gc0ZxXYTLW9SD72/eBVO1cVPdQD2jQEs5p8+nzi/AkDq95pFwvnRNtPvg1AFiZyqiyPSit/Ca6eNa4iZEFZ9Rw1Du8z6MnUmO7kiIUzflu3fzEL33kOR+akmhDkUKxfCxPRO1YXAD43KFkrTYf9NhE7JNMwBa5rWlAB+0heFG3j1vus+4jcpwfANnHmazfHnftOU5aIQZjaW4hvFG9r6gP636IEgdh9R7dna5lv8YC+O0Ew3mlY6ybQ5n7J7PYLtsBxkE8rJ1U2kxZPy019RO6sB0YpiCBF5lNHQwMyEsrBdg9jmdl4bfq/Y1hJLGvto9QqHrKlz20D5gk2UWR+5j8FjRmLEeaL+lS6jTL8r/Dpk+B5sbb6a87L3DQ32f316gtT+s7E2WLbsQeGVKyUKq8c/1PhMi8iX0uo3HGZ9LV6L5FWvLgAgpmkH6Xl+jwj++9QLdsPiSWn1G8LShEh3z9yVCwC17p5cBL6WCEtFBotccOo07tSvAvVlOwYdVSESbfypfBI49OW/4i9vUEQhrGfbRzEwi0H9H46dLtnkA0D6lGhYataQxi3ANhXBQ/caxqlPUiVsmz2bt5P8FPVtp3h4+mcerZvxMi/HM0HkxM8tTN+tU3Wh9d4iTM/ejg2/LYGeyCTWoVilvqJ7+r7Tvz+fNXkIelnbYBUXFMBzuwvlf92FkGd28nhi7jY3JW0ixTx1vk3A1nlzOIgHUeGxdDhVF+50PIlRqVmmiiIC9QGAX0d+LuWvPTORv5d3z7INnu9k7bs0G5NHR89A1UwNkvvyEDZ2CAxB30cE1W3WVrPv3OwbcSgM3VH87sQxStdO1cVNdmksiqdTvE/uggNQOkLwNOs/ouo907AuOZ5fV9wim36lvCsL+WJ+sR9vOgMM7a6+gL0HEuIo7qSZr+vuK/4AgGJ7SwOP5bfVddt/kmLizm2cb1KGp61l0dqi/14dihXXw9z7axa3tUrv4uOZg3iazkNHwaFYETouGcUP5+F45E1Yatc2zNmWalW576Seb0BD3jz21AxU/qmKoW/1/UnXZHJNf1WWJvFxNDY10/QdifkBZlLnEdGCo4GWRHW/SZAx/kA6AAEAAElEQVTWB4dixZ53GFKfPvC6mIbyhMwt5M9F/19xTSpOOcTT5/zSnP1evcjAixgLU1ybxLbdfCySB4XWh8cAtDABlkbBPMC0h5cXTj1nPjdvWLMYga8lovXeIpgRxZZMulWIov1H4VRdeDXjgGHMvlHrGNbtcRr4daouDPNtC6fKQiSUTSvP81IoBX1Z4tig/UetR1Lx8IHrUt9bmjUyrOG5BddKnZvua3oAX/9voQemifcBuUNNJCpJaNBvZhyKFT0OXcL6ZtUMz0vL5y6N/nlRh3B4btuLm49Fovxqc8Qhs3pEVDW6f6NPFIe/J6r8Vy1cbX+uxHZL5GkBigpLTOLl0wAFuXn8usP+m9g2OpKjjOnbatZ2d4tqae02K7+0dGZlXe8XBbUDODrhv0pOldnSl1Ev8tM0d20vrY2WunVQEFgfHon7eD81mxZnED5EuvikDdV/MEdjK6kf9O9BRPwiujIoGlWWJnGgCP3GjH7rzS8RHQYk7ceFkTYkfzjD7XcR06W/qbZbz6O7MRAT3o0DUdzru5TS6kwB76XfiMisxx3KoVN1ofWkWNSaVTpQi7tr/TvyCmgoobCJ6W86A1DekVVq+wENPZTeE8AEZ9v8vZhQI5mHbYjedwdJLcuYbqDp94rcJAyI7oeC3DzJTMlSvToKL2q+el4NfVGQnVPq3OBQrHgh/Qi2XG3CfenEZ/r+IpAN8X6TFC8eFyp1XhsemmBNXjK8PcpI+W//3hBbmv0Kh2LF2TWNuK+Mvn+JPCJaoDj5AP/vjqjP4vKiJWWYU3VhxbUq6FfpitSnZkSmgvr+onwl9eHt3xuibFcjYp94HbIo1oDAaUaeFSpgfXpCid9E1rIwpD60sMT2iCaGeiIwlZLoTrc2KLORvcvYtHTMjoxA/CEWCsWhMIj81jtH4GD0EnmMVKyI9Wk7DH3W9Ls4Q1BrMd+K3CRU8izH5kcBLAdgisZ7AQ4RSUSsNCOnykzwxHr+r3Obfu7Ift+Ghu/I+wZLs0aI//0n0+/KDJWX0mT+aEXAtGJ4JGpmqtnLWyDohfMoyNPMAwm0Rj8X/F0qbT7W/w5PHogavQ/8c0wTW0/8z5gmpnx8X/fHv0oPTsTuM7r+eBSfXNKnRsOputBsmmbaR+YqRA7FyoMYxoR3AwCsb1YNqfPbwLNCBR41Xq/ZNNPCVPyztpTW4WOEvgWA35cyk6rCMh4AAPUVu6F8QAPCOD+Gnd5VW5jIYw9ReRVW7cS0iw2l/L8EbZI0eSLdekRDP6L/Z8fJ9+i3eH3kVR/peltYefResBUAQ7VyR+cEMwVR81kaORSrxCvl6REzmPcLpdPn07eFxsP2abMQ8qx2anqtfzRPZ6lVkwMO6N+F2bs5/Qw7efNI2MdNwMT6rm0IhENhJhzuyhJ5Lzx9BhtX/CC11efjBK7xNKNdH8safkutmnAoVinWFsD80cT69O/gfLQcXNepulBlKQucTRsDh2JFq90D+O9Pz4fAqbrgvV42VXSuXAgAXAijYMli2x2KVfL7EEnPo9nYcihWxO/dKPVV+/3mJwK3f28o5eMkCGHpi8Kl/tJ/B/rf/m8nIvMTJoRRLKvcN2RQj1qzEg1ta/TXcNPxBTChQC8kizyv2/GrIU+jeWxuonh89JexJJz/vvmYhsDoVF1osJSdNJ0Nr8jvb/htCRJalsWQu5psAFwIcyhW9Gzdncdh6xnVi6ep5FmOK2dEXxHaIBMPBdk5Ulv0/8mKYFHODnw5YhD2j2yKxzO6mG6QRSrad8Rwj4Qwp+pC6KjdvIzeDVjMLzG+EwlhAAxCmPe2eoZ6SfgqTj7AzcDMiMZuRsQtPv6pL2eHBqLDuLEGwYj+028SwsT2U7mp89pIY0Vc01bkJklCGOXTzzvlQrXQI+7GOwCsTzf6oYk8AUDAwP1wKFZ4hjU2LauoQzjiNy03LR8Arja5w0+zzEzZAHAhzL7vNmaEBCP+0BaJB2+PMmjQ95DhnRVdvy71X5MULzgUq2Seq58Po/fdQT8fDdQq/sAf/NnNRyO5EKZ/b/q1R2xH6pMzuGmnZ1hjfp9ivkW7Hv/bQpg4XjqNHC09u1akmfiTEEZtBYDCQ8cM44vKIiHMrB2V/yoPj8R9WJHL1ofy2+rC2iAPBXnM0iPw5/FwKFbU7n2MrR8XLxrKcbfGpi8Kh55E3vSKCPp9ZXA0N2ndG7FMAm2776kYQNH/47//gaOiB4LYfUYVf9kJr0B/OBQrgl9IQsCG0Tj0zHRcfJIJM/4D9uP8KDYhTkhjm0ECjiCUK6fqQlb3uSi6cQMBbyS6nRQzfpQXuOsPabGjTj1n56dMgRtHATBuKHZ8PQv9jzBTpg7jxhomJ3KO3j1JW5RpQQr4bQw+OseCcD5TPRsOxYqct+2GhVJf5rZZs5H1sYYa58rPR+0ZiRibqp2IiEKcly/zuch8fBbaPj8e8LRgclYyrvWPRnxXZm5WkMXqT1vQWprcnSoLjOyTVAkA0Gh3GUMf3unSGs1TPKW6AWYXTyhXjr7D+bMi12FTp3E9ER+eLZvwa732r9Jyzc+g8Nx5HJ4wXUo358R2WGrWMNXI1Z2mbVC8Av2lOp2qCzvCVgIAh2P+KIvFvzIri9ocsHYMvzfzUgMUbfZFfodTbDzeNUtRVzWV2ni9n4ZEVXjuPFJnRXAUNKorudVynsazXDkpPwBUWyTDC4vPxWvarDpVF/5oYQ4esfWmJ+9jrwYKP5GgcngAV5M6nKocUByA4RSIKGjzSJ730nAbvt+vbbDFjZF+U2q2ARDh+Vu9H2to18MjRhvmgMC7UOpk9tiouxE6mtL3OsTex7H2C6VNH/33aqCYbp7F8dQjUFMaBCWzd3inWhG8Gvry9MOzH4JDkX3nKHA28V9j1W14eHuj9gxNUGz3zDi5bzwtPJA7wHxO6PRg3c61Uj94WrXx6K79ZkR15U60c9/JYb5t4bndhfXxP+KXoE2m5VXdXhOpcyIM9wklkfxzgreOgJevj2EMi6dA/NvvxMyxPJszQSI+bw8Kh3pxPsU/IgpMrm+PId0oDWGOnp/oCVi2KFI+s7bqidKGjtqNW70iEbSMbXprVLnO81TyLGfgxWz9Uvoclp5lfiKjzIrryL0ozj7K2oWi/UeltHwO3rbXbXsGHVWR1XMOt0AJHsbSnhunBXcW+zShZVmpDP23JJZNJAY4JkHdbIPv5esDz+aNkdTSuE5R2vK/7kLWsjDWbw2Y0Bi46SkDT07VheCtI6R7/m8lAh4e3OQP0FBSq8akS3xLirLRrC8swcxkNnU2M8XvGRHD05V17pbaojezBFioFT3R/kNfJzwt6DhmjLQXAIBarhtYm5fCBdWbHU5L4Q5CnksytMGdQkHfZ+I8bEZkmk1E9dQfn4HEL7VQEn1CjXD9D+i/mx6YJt4HJKImPtFIQxQkE0BAi0vhTqjSx5q5V42Uu7TiZHR1YDQqLzNOUGZlAXIAxU+zduJUYRVMDW5imrYkPumZaKpCJjotP41Dw76ZBp8WMe/Dw0ehzKYUpH8VjeDnk6TFraSNgtliXlo6d23w8PbGrc5h8I5PNk3naW2K9fE/apvaenVRXFiEwrNneT2EPqjXQocsjkXaUO1USQwA7JNUCbnR1wxauC6Dn4Jl6x6pnK79R8Bzu8vQFkuVKog/+qc0RpblJGCgLztdOP5TGN+ci+XpNX56ujI4GtWTzyB+28pSN7v6skT+aCyY1aPfIJb03KFYEb3vDibVPmT6Tp2qjMxlxmNp90Ryh+b3d8q4HB+MqjHp3CyTkDzd5cv8xIa04bKp2JwT2zHGr50hrWflylh/7C9DfztVFzof7g2vLu5BYSgdPXOqLjgeGwbn6kXc3EdfJiGApk6PRGicLCC8lH4IXwY3k8qmcrs9MQIbf14Ah2I1BMnW86HPf3loNKouloPREq3K3YU+PvKJkVhW2sJWCBm+R3pO5n76sk783AJ+Txww9ImZ2d+Notvo46OBMdleHo9yFwqxZb55UFm6R0FqKYBv/kZ/bG2+2rTd7kh8ftvRBmWdu93mezPThYfKuR+7vQ5d5Mo1d/WYfdNp30Yh5OmdJZr6nRtnM5jM3msbS+MFAOwvjkflZWxc0LpHVDuhGhb7b73nOtytr/e6NgPu15jciXbJ7Nts3B1puwhBy8YjY+BM03JKW3unXAiEs3kVKZ19322DMFnc1orsHuVNffCcqgu5Bdcw9uFhHF1Y/1zPT0lrSJ/DZzG+Wp6sTKlYEUXXr5siDZfU9+5+Z3wZjfRBM3mekvZTImoy0fUNgdgeZlzb7nV/kfFOOLImvXlfm+LRnvXh8NfhZfl/bJpYeAt/7P3kvu6Pf5UenIjdR6TXhJAJIAC8fYRNcvqFg0i/cJlNGqdekE3X3C0SYhke4c2QMGUmmqcwWP24PKapuvko26iQRkrkK37LL7yM1wKiJCFMz5tDsSL3DaNpozgZi9p2MtHZ99p0gxCm5/2PhSxIdUZ/Nqk2nRGHHo3aI7fgmmk+0nRZqrN4bDeKNNSlsD0eUtmlbWqINmTt5EKY+IzeA6EeEhWcOo34fb9LZYhCGJ1OAEDFHA90GqkhbdaarcWOyY2+xnkFAL+d7ATIsnWPoZ88t7t4DDGRCq9ckbSATtXFhTCP8GY41n6hob1iue7GapUfk1CYlml4TrHTnKpLOsnLLbiGQ7dv4sR7dqnfaSyI5Yjv8qEDfQzvSv+u6dmk2logagDo/sgQ/rv9hHFcCDv5khGIxKwPhhzNxelnzZHgCM1PpIwf5WuxTSLKINVFGujCNAYIQEieXQeMlL5x+h/4utHfSxTCbv+umQeTEKYnh2LF5qZrDFpms3RSXasXwaFYJfM5p+qCxx8svk7AxERYqlWVhbBodoL6ZXAzeHh5IX1ROAo2+Unj0WOHiycv7KRySwGAnby2edd4Ohj1WiycqgsXet7EqefsSJ0RiaRbhVJflSSEAQwg6OwadprvcTfmkjufK78nDiB9cbjUXw6Fmf1ZmoTw8h2KldfrUKyYdrEhEr+YibIbNHTA1Lmamaw47uo9xkwcezVgiHje3Y4bvi39OHWqLqirmsKpurgFBtHxPuxUeHJWMl45ZTS3eqgcEPZlnHRPrGvhFzGG+i21akp8xLTsCodixefH2am+da8WK5AUimJ++u1OCMuPiXA73xBRjDg9iXNBwhRtA05C2OWhbM1L2NvI7Zh3NweK8Q3dbbwvPsnSeAX6S+V0f2QITryjxXakseZUXahwmunPLcEBUpl0Euf3BAOoEIUwkR4+wE4hRWATPe8khAHs1BuQT/TIQsRjh0sSwujd3XQy3kb5tePCSpMUL0NdRIG/jJPaYjbHrGpam79n4o3irVZYudPQllaT2fe+KncXhh/LkcZIQPxoXo54P+glDRxJrH/4sRwDz3ohrLitlYcaEXkp2uxrKE+8PjdWW/sCVlwy654H9F9MDwSx+5D0ixAAKfaWQ2Fxpo5/aJMW1pLKA4B6UxOkj99sI6nfeBOsOsFdT2+QhPweESj/K9s0LW9SDz0OXZJMssTJJudtO/JjIpDxRbSBR7r2+YjxJQaVbP51nFTWm5la3uz3bYYJWt+WK4OjDWl8Jyeg6OpVPPHaywC0BRAA1JftuLiO+Q2Rc24fHy2g5+f1ZLODK+uDDPVa9xrbv+xqdalfxP5dcKWOlD7tB/aOHx4xmt8P/zBOatcz1bN5v6W8/i3XXItpxD96diLqOpyqC7Fp6QbBxKm6GACCcM+MxMXqllJBagvAYtNdLGQIduRvaLYJoDLOxMmCFaElOhSr5G8wyq8dmpUt7xbiHQB6dBto4JF8j/RtkK4PXoGeqm6vieIUJpgVbfZFhVXaAl+xy2nTDZW4OWi3vy/e29QPrtenS++CEErNNpjpHRdIPNC4yvzMBt/J7N14RDBFTfsJ46Tv3qFY0XE0Mwv1/IsNwq6DRhr6Q1S86PuhbNdshC6M5c9TZ2hCAVFxW+23XqGgJ7PNlF4w2NB4Hb9XeOmyXM5dIA4AKC4oQPCwvdjcdI2hnr7pXfnvmvO0zeCBqB9Rc47Rz23np0ypETBoH/a9Nh2hsbswaGOsoa0AgMgWhvtkAl279zHk94xA7vNM+LHUqulWqRU8dC+uDI429EHhkTTzesHCAsy81EB6Hjp6t6G/O4wbyze8+vodihX+u8pL6cfl2pA6hwktB6J+RNvnxkkQ+gCQ1Xs2ABbsfX+rYtNvqP6XRsUfCTrr3v8C2Owj8SKGQAHAQ1684s/WBZeJjKRvC5HZmAt597CUjj+P1JSbIoCDlz8T6slf12wM0z3LUGbyHzLBeNpiRteeYObW/rvKo8b3idK3IPJP60/1HxIRtscDBZnH5e8t5RCOjGdzyNWB0SjOz8f07O1wKFbUmM/GthjD0sPbmwuqooBB0PwiD6/VTDMdq7zNd8NWUBryoRLTfKMkS/dIgUnfPIUAENOQaaVImXeVUCHPyoKUu/41m8Oo/TTH3XYwpUXtGaw/+vhEYmEjZgZNvqkUamLFtSpSW8XfYj9Sfnpveph/AFw5pJ/3fm/yGwBg5DFNqXw2lpVj33cbbUZr+YoOmoPC3JdUjP8AauL/3438f08PBLH7lPQfMv3RpHrrqYs4NpIFsNTnM9uI64lvuO5qWSmNCN0evGWkYYJ2KFZYbhdJ99c3q4ZKyzUzH6fKTlicqgu+kxPgHZ/MfVH0mzGRQkakAGAbzgafaohQ1/tF4cNArV2i867IV4SrkF9X+VEzKaF65pzYDgDcHvuaDzvl6jpoJJQvElC9Z5ppn3s1UKT7AHhMHbG/P61r3GR/36ihtEG69YhmerS0sSK3/8k9gKcFhd5aUO+9bzLhg8AGqE6HYkVMA004179vd5vfGSHBUp36BY1ieInlir8dihV5r9vhvY4tws2/0cbfK/7RqG5h/gyivyEAKa7Kkqs10ePQJUMsIT3pN1xmGwcin3k5pvy6awvAzEJfrME21uEfaALv5XZa8HLPzjlSvotXK0i86QUih8I0oqTdF+mQbYlBGBcpv6fmO/TpeXZaEvhqIo5/wBQudOpSYdVOQxne8drJiUOxwnPbXoMAVhqlDtfMXENjjT5EHju0NpoJWmLakoj4EeP/ERW1Dze8d/08Jj4Tx5n4Tto+p2nXU2dG4nb3CNROqGYQTAEmeNBGTiwr59ViqK+y767Zt2yczw4NZPkjW2DrnDk4+Bzzyyw8x2JviTEdxX4R5yMAEliGu/6i+GBUljiPTM5ip+zlftuF24vqSqfFp5+x83KPR96U+m2WTyJCx2hm0tfrWQAwcyyz+SPji2hDv7v7rjxOsf7rNP0VXJ/RwLRNlJ7anzozEkGbmdKg/La6vKwug5+S4rWJec3GwYkoDVSJ2gAA2MXMQk+8K58qFxw/gWnZO5Da4QeeXg84Q2VUMgmmrhd6ASB9ajQ8K1RApZ/Zt388UgY6SvuhlTRPVP9BE5r2tyqW2kTWGJSWTueCylSShAOR1+L8fG5VQPmcqotD84vvz/byeABMIDbrT3ItcKouDD3eUXruUBjaLN0rs7U+HD6tDeiCNOeLghHAECiJHIoVgYNd0rXZvsXdfubaE1E8hmm7ZA3AhRSUZuVQDDIqr1+lK9K1OFbM1lJ6b6Sss+jM5apur8l/LzixHeEfaWvL94008CUSEt+tfRinb1aR6nhA/1v0QBC7D8mhWFHYiU3a6qqmfDLYlX+HA3LU6JUKh2LlMboAWXvTvfdQ/vFT7CeKV0Ufe/b7NoSO3i3VTYhKJ1+yS07zVFbdxCo8YK94P29lM2nS2vfqdLTb35eVeTdgpbg4AIClWSNp4vGqXw/pX0Vjw69azBKHYuUBnim/aGLiUKzc+TjZauH1Z08ymjuO8Wsn3SMHfvLDs9SswftRnLxFbaBI+o2LfmHW99HFETZsmzVbEt70m+Qzq0KwbdZsAx++H8oQzDm/NDfURX9kSiPWLfIrOpLT/4zP2T06lcp7XTOJ0S+ADT5h/fZmpov/dqoudDl4VXrHuRM1U9iU1ss5guLCRr54vvpxia9d+Xe4eZ6Z8EUnXvS8w7ixmHJcE8hpI+Z4bBjPE7n3CWkRdShWpH8VzQFQKFCwU5UDzOpJfLdH2y3CmJy2hvt6Ejdc9Hen2BhiQRwjJNx6Nm8MW0UNPMOzwIOno1NTfV0i3Xw00jCGHYoVd7q1MSga9GU8nRdlKPPMrxpKGjwthjzuhGjP5o2luvT8kAkdpXEoVnj+tdfQrw7FipnZ26VrPYljz6FYsePrWbzc0PG7UHZDMs7aL0n5naoLRe3D+fWGLE14dihW+D5+EAeeZ4oQn48ScG6cFs+RzC2JUmdG4s1MFzxvFeB2d02gdrexCm+qmTQFrBlr6DsyQdZ/C07VhbBdg/B2QATCP2DCYdXFSfB7TzPnc02cLqUHwM1A9fXUncbyBb2UJPULwDa5ogLNTIHQ78gZfp0+eCacqgu3mt5ExV/MT48obej4XWiS4oXQ8bs4yMHNDqcBsLXE8uc+1JybaNgIOxQr1Jft0jwj9hFt8o//FCbVSabFdK+wUys807CtVAaZwOv7SVQiiaS+ogm8DoWBax2dKpySCN8KAGR2nS/xQGQmCPXxiYSlShXOG524AkBP2yOIek07xaU06qt2JH8wQyqHzPDpW6Q8pBgQ04Z9IVtfOFUXPjjXGIv9txraTmizk842xZ2OJzmwlwhmVOsRdrLT/Os4lHXu1vq1uBgjj2XzOGv6d0gkzi/6cRCfx3w0qx68gCWNfRC4chzeqnUUGT+az8niWBDLy/jRirAv47TyN/vAbxL7JrI+sZnm1VPR6sr899jUTK7I63P4LEb4teOxxcz4oXJp7AP4h6EmPogj9u+gB4LYfUqWLXuYoNXnML/3dgATpCjy+/HJbKK41UvTrtJk8f7PmhA1ogoT3kSobodiRcN3Eg0TYd7KZii2t0T9LxPQaL52OuJZmU02p22y9ogm+IPRWjDbptPZBiEvpyYQ2ULSDNIkWLTZF4WHNJ+RfkfO4PC7fgh+Xj5Z05NXQ1+EfnKTPzu1ugmHH6Z8ANDwXWPUe2q3Pi3VRTC/Yh+ZbVxFk0azzaw73u/0uQiHwsy+9BtNgJ2I1Hn0qJRHX75DseLEO3b4Pn7Q8JyIQAjcCQkUGFZsZ/oQ7TTEoVglAcsdfRjI8ltCmZnmpubagtRofix3Jqd+PHaqjlSm+E7eDohA2bIFvI0XR8iLYNFBuV/K/bYLL/qzNCScOFUXnKsXaZrLnpowQ239LOZHFO07gvQpmrDa/Ou4e9ZEOhQr5vjuQExYZ8Mzg0AkQK8DQBkPC4fiF8msrdS3AOD3niYkZnadXyqv5X/dxecB9WU7sj6y4cLaUI5Y6q5dDsWKtIh8fk311HlUQ5MrsrfgvJptzMWy6J25++ZOrm4Cjz/YyQlp3UUSvyMKRKxvO13/EaWFSSjs2Mp00/T5cflUigQ/OgkT20G+N4A2x92oxwRiM9Po0PG78GGgFcV7D3G/LoCdMJ8dr80XxNfeDD8AQNq0KAnBkHhe20wz89LzXP+xIwblgV7wF4VfS5UqkhkoAIRsHcG+syfltsTn7eHXdLIjvmv61qmssVWNSqqMzt9LacT89G4A4Kv68nikdA36HnIbFzJ1XhsoXySYzufHfwrjMPP+A/Yb+k4ky5Y9hjL044X8gkmgIKKTM59pezjPXr4sPEroOMFcLzfFtG4zwUvfluh9d1B45QqCfmLIkqhbiz8vyM7hSLERrkKe98Dz0w3vf5RfO6TOiJTmT+4b6KuZjzoUK/a/PF0aNw7FigUHbNDTqtxdSPuGKWzIZ6z8troAgHp3xybA4oa2338LoT3TeKBlAIjf/DMGVr6IhKvBCFg7xjA/iKb5VFbaD624KaBDscLiwbauhUfS4FRdCHl6J4KXjucm3k7VxSHhzfo5dVYEbjvaIL3jAsnM9vxSDcU14HWjP6JD0ZB+Lw27a6nwsBaflGLsAdqJttk4FN+Rnr8HqIn/e/QANfE+IDGg8+aT7LhbrwWk34ErxyH0+2vIeQPw6XeI3199vRJe3vUE0jt9b5jo9QKJftEpacHSB3JMnduGn6KJvN0LiemvDI5GlR+TcOJdu4RGZ8YzPC1w5qYY6jJrA69DCPgqooC540tfBl2b8qNrj1N14WLhDVS33PWb8vCAM2+vIX9J/eXl64O0Cb4IeD0R6VOi0fgbFYW5Kjac2G36/vS/za4fPnAdf7So6LaN7gRVd33krn96NGqPoqtXSy0DAM6PsuFWzytss6Wrm/JeGRSNc+EeCFx5XfIVar//Fv4KK1fyey+BSnoXZv2a+4YdPh9pY5MQCsW0aV9HI+Q5eYNPRMiGZnWUdE3/CfkSAAo2+cGrywlDPkvdOrhqD0CFVWzT3GH/TR5ywKxMd3UDwPEPbDj2FPOhSvuhFTK7zmdC+qJwCZr5zAQ76nxXcgDbkuop7V2V2VofdzqehFN1IabxQyi8wjY3qTMjJaHlzK+NUefRo6bjQU8eXl7wDAlA/OafeTqxb8K+jEP9L+UNvhhI9l55D0n2RlpEPi6uC8HVXbVhyQcOPjsdjgbhkmb3zNN2KOvy3IY3EOtrNTmWmzGZ8UG/T71gx75X5PhS7njW99nlIdGouoSNYzEAcPMUT+4fLFJB59bw2pzidl7Q13Wx8AYG+toN68/f+X5z3rZzf0mAoab2bmA8fXQoVgw5mos5b/STUPRKGov38n2IdVA9sWnp3NybkAr/Trv+Tv0XnrIh+QPzIPMUwN6jdTNs+E0OCu0R0QIFFcuA0HLvpW3UhkmZKXg3UPPdrp1QDWftl1Dxz9q4/tBZFNtawiNxn+l4vLguBNV7pqFuYhUcWNwcdb5LcDte3PUDUcHDreH1RwrPF/ZFnARQZqlZA+kvN0LAxESprDdOhyEl3JPXteGGtwE8DAAmZuzHx0FhPG/e63aujHRHhJ7qbp8l9qO+fWb/W0yJg/JFAn4+tgfVQzPva5RAjprY8jV4WbxLz/AvUEFhPv7Y9+l93R//Kj0QxO4DEgUxr7tw3PkxEdzvg+jNTBfXlDtVFui5UY80XH/oLCzVqqLw0mX+jOheN9ZmC9RLJ1vh0ep7MC5lGPyeOOA2rVegP4qvXAXq1OSBbkuqU+Rv+bWqmBcaIKWz1KrJnbtLKwsAMj+zIfDVREO7z/0WyrWZfHM90Y5Dz0xH8I/jkT54ZqmLn57Oj7EZQADMBK6m0+Pg+4E53PnDI0bz0wmzctq8E4vd75svuADzF6OYYR5eXigukB2g3b1//eQ/5GguljT2MbTdy6cBXtm2Hh3LFxlgts+PskmgCABwbUMgKnXPlPrAq4GCgjxVKvfikzZuX3+v/HYcNQbe65NRc0d1nG97EZ5hjVG03/zUUMx7/Kcw+A/Yb1AkuEtvStFhcK6U4fknZyXjlWcn8BhxpQl3PYLt8KxXRwJEUF+248CL0/HwiNH4Y8HcUvlI+y4KmX1mISasM25EBnIUzoDVY5H1GDN1PbW6CfZFLpX4uOkM4IAldD9kYayEoGi2AbreLwqPvPeHJMS743HQURU/5Niwpdmvbvs09fvWCB1pfjogUknzlhmfTtWFUSfacWHVrCz9HEf37S+MR+WfZLM7jz8aSNptd0Sb79I2j7wtB6/gxRqZUpq0aVEIeWbnPc05NGeVOk6+jQKq3EFmF2YCJ6Y/uboJ6j9mDCANMCH1/LAI1PhejjmZHxOBrXPnSH0IMH+5Q09Px0OxY1H+112lCtviex11oh1OjmqAr+Lno/tvLyLkaQ2goWe7x7Bu+2o4FCuubwjEjdtlsKfNT4a2+CRVwjy/7X9bwDeje1XglPSeq++oIcWi0hOFVhDzkxKByo9p2gHxh7eZbubFe9f6R6Nq7AlDeWZpxTAGTtWF5deqoqJnPo87qm+jmJ/2F2+PWMr9nPXluxM2Tj1nR72v2drX78gZrGhSB0OO5mJ4lXOm61FQcjl0rnoYs0MDpftEuRPtuF29WAq67o7uZW4v7Z0rSZXxvR9Djs15085dGEi5e/PRSFT84wiKrl7lAqlTdaHR/Fg0XH+Th9RwN2eZzUkiP/8oQazFf0gQO/BAEHtA/4/JTBC7/XtDlHulIo8xda+bR0rXO6071oRsgEOxQn3Vzn0diMzKORtrw563mQCgj1tWmuAm1m1Wvme5cii6dYunoxglAANNuPLJLR5EmOrbeKOMIYaQWPa9bITEPJeG2aTgv/S89aRYpLxrFHzuVfNf2mZcvL8kZweG+LYttUwxb2mU95odB5/T3u93l3yxpmlN07QZn9sMZohEdOJjxndp77y0jfO9aHz1lPZNFEfScihWKb6TWfnnCq/zvj0/xiYFEhfL0/MgCohcYF/RjJ84u6OrA6JR+ack07aIC7ilenXEH9pSan+a3VNftnM/UHcbnxM/t0DDwcdQfOc2LHXroPD0GbyTuUdCWgWYiV2v5TukseFUXQhaPh4Z/UtXSpT2Tr3q1UXBKc3XwbNiRaxP22HIo+f/XjfyDoUB8iRbLfe0odGXBwCh255EaocfShx7GUvCkd7pewSsHmuIa0ZlNZkdJ5mMAuzEjhAHHQpD5KPg7dnLW6BhfwYc0aNRe9MQAWbt8KpfDwUnWVD0Xqk9UNQvn59WcQGyTFkURTaV4PzdkbsNtbv3Icaay/rYhrWDv0BomYqG/D0je2LdrnW8bKfqQrtnx+F0pCfShrpXKolU1D4cl0LKocrgPH76K/Knv771SCRXiBDVTqiGtBlNUG0REypb7R6Ai3lVkfXo7FK/N7MxKtLy3ET095FN9cy+SfG3uzXTo01zFO8+CEuzRjjZqSbqfKuNJXrn+np6RsRwf+XbjjbY8v1ct+Peo3UzFKccQmGnVrBsKfkkzF37W0yJw4EX7+2EFQBy3rKbKh9PvWBHvanaHNYjMJrvBdzV726tEe8XdmwFCsfiUKymygbqh5LKAZjZ8iv+0bg6IBoJU7XgymJaS7WquNytiQRMJvaLu7LpvmQ1o0vr5euDghwGOlJQfAdb8et9LXg8EMT+vfTAR+w+I/q4y3bNRpHrsDQZvHWmhSHdtQ2BUn6HYmWbgN+0+z7Oi/w+pREXEKfqglN1ofYMDWq3OD/fLY/6iYf+9M9EKrp1C6eeEwAghBgl6+N/RKXumRKPKfm3uRBmtth5tGnutj2e1qam/J5pX2AoD2CxaRyKFT0OXZKekSmFmMcSGiS1FwA6jhnjtk+ClzJ0Ktu+fgCAIb5tDWWKJN4L/Hk8/31puBFgg4iQ2+iPNtqc52aNeFoSwiitWM7kjcv4dc9WDp5O7Gs93et9d9cnX9Qc3qnuE+8xEyYSwtpPYAh4FTzLSuOsSYqX9H2IAm7NOYmG9mU+PgsfZWkbN+Jh18cz4FmunHTPp98hw3vW09WGntJi6hnWmKf3/VAbO4UXLyJgw2iEJHtL/IpkuHc3jhZthAybkE6ar82RtotQfIehrHEwH89buPVIJNKnar5wRQePmgrowc8nGfpKErAa+sKpMg25yAchEzpVF86NtWHdHqdULsX30ZdrNhZK6uvIN5iv6p0urbHlQ7vEA+XxrFyZ3zv+oQ3qy2xcRe+7I9WT2uEHNPpruNu6nKqLm3eHxu0yTedQrBwcg8gjvBk3myQ+CJEPABr2P4ALa0PhUKxSsGzxeyalAD0r6NyaC2EOxYq1oesRf+APw2b/xOttShTCaidU4/HvnlUjpGd1EzW0Nr0w5lRd8POqxJEgAyYmSgAXYr51u9bBoVjR7plxvOyKv+w0PcXoffg86+ev2Nj028lOXj3/2osa8xNxY57CyxbrOf6BhggIANtmzeYw60Rn7ZeYsu0uUEbt3scQGst8Jr38/Xg6p8osPoj0/lL6NgJAVc/yUrxFp+pC90eHGdZWfT9mv2/0syrezXx8Cw8d40IY1UNCmNj+mIf6cAsDANjy/VxelkOxcnAloqWr5wAw+sKJ9Yi/9e/foVhx4EV5XdGn15OZEAbAYC67PjOpxPhqfA9ia2n6nEgUwgCg/mNHMPxYjsRjjqMq/60v52ysFv4nrCyb/yv/JIPWiHUe+aSRJISZzWXu5haHYkV1SwUE/v4UAOD8aJtUz7qda3m+fxJYh0dx8X/k77+d/tGCWGpqKt555x1ER0ejdu3aqFy5MqxWKz788ENcvy7D2b733nvw8PAw/fviiy8MZRcVFWHq1Klo3LgxypUrB19fX7z00kuGcv/dJH6c2ZPkSf/Hv4yBXc2gdc/G2qB8oYFVFO07grRpUQaNlyUk0JBXJA8vL16PQ2FIjgB47CWnymCiaUJafb0S5pyQTUY8Wjfj9ZG5gn4jYbYpbe1dlvMnTtBFHRhiomf2aeRv9OcTrFhGkeuwYTJ0qi5k9WKL07obWiR4ypf2XRTWN6vGeaLgjT1bOfgmxhIcgMLUDCy/VhUOxYqCh+8GUF2XjNRZEaYLCgWHJLh7r/r1DAKk2cTtt7Mi9z1yqi7s/GSGlIfoVq9IRLwZa8jvFejPf18LrirxJvZV8I9M2Hsz04U3AhiISOqcCBT4acAaG9Ys5r/pPwXhpnskZBPp37F4T4wpR3b+Il8BP56Wxgb5P+k3SBSTRmyPZ4UKiE1LN918OBQr3giIhPqKhqhJsN/rM40oYnr+9fT26CU8Bg0AFO0/is8vBBnyOlUXsrrPxfod4UhfFG4Y7+J3xr/NYznI+NxmGCvUB5Yte3DiZ2OcK6fqQvltddGkbAVsmzUbwS8kSc/0bXTXPjFtQTb7Fnw+TpD6k8AcAOByCENdI6q+owYvv0e3gRKPadOi+LM7XZj/Sbtnx0m8OI704sJo9QVMqC6zKQWVfmbQ/QQWQP3hWa0qsJkBJlRscYEDOiS1LGPYbPYOYcFuCU1WJCrvpXTZV1fsF7OxXbzX6PPYo/tAKU/toadNN7xU1qjULMl012tzioEH/ffrUKyS3xTABC/xnZ61X+KABMfa3JHeoT64uF6g6Nm6OzwS90nlq69qUPk9gmXBePu0WXCqLrR/epzUTyKtaVoTDsWKjP4zYWkaaoCer7JUPmUmXhq112JmEcVv+QXFtpa8j52qCx4RLUyBMtYlaHHomn0bh4Oti5D5KRMI6DSCqP8RTRgS35cYb9GhWKVA3qtyZSUP8el93oOhwt5FpsVmH4NQeHGEDa0nxcKrfj04VRfOrmkkvev4P1chdVaEoU+IfL6QlQbkj6fnBQB25WvKicCV43jb9LE3HYpVgp0XSV8m9X3mZ6yNYngGh2KFV/160nWN7zULhB4xg03noKxHKxju0fslSsm/LT0fUvm81EeHntYQRPVEiuczT9vRo1F7AMCSnB2Gcdv7MHOTIEVL6uwIrL5eycAXYA4SQ0KnQ7Ei5EkmPNacm4hRqVmmvD0A6/jfo3+0aeLrr7+O7777Dr1790Z0dDTKlCmDLVu2YPny5QgLC0NSUhLKl2eO6++99x4mTZqEqVOnolatWlI5rVu3RpMmsgPnc889h2+++QZ9+vRBjx49cOTIEUybNg3t27fHpk2b4On575Nh6Zj3YmognmjUSlqEACBrWRgCBh3gzt734kha1D6cB3cVKe27KCkwpZkgpHeKF4lMKvTkTqDSbxKJzCbGM0/bJRMNyn91YDSPo2JWj1l9Ht7e2JC1023akqiktoiT9Il37PB7P8EwcVP6kSfaQ41mIBYtP43jgig9795ziLSBM6vLTDvnEd7MNN+1J6JQ6ed78zsRycPbG80S7uDL+ns4T+42UWZ8evk0QEFunlve6T6VV1r73NXVs+2jKMjKdptfX767ckurKz8mAhUyLuJklzpQ4ksHVDg+2Qb/t0sHdXCq7FSJ0CTN2khtEEkE6iB6NeMAPgsyIhiWRLUTqnEoarF/bC+PR5Ufk0w3bvT7ctFNDAjogNSp4Qh5eqc0j1x/PArbv5kl8UB+Mdf6R2PHVzOlOvW89wi2o+jGjRJ5n5SZgknN25eajgOsCGA9F0bakPzhDMN4/Ltzg7v3k/p9a2Q55pmWpx+r7fffwlu1jvJ7jefGSoAguW/Ycejp6dI70Ptikblq78Pn8eWubggZwUAzsu5c4+iSADsNnFT7kMRX3cQqHPnWoVhhqV5div/kToFh1m+Ts5IR6V1Gep7xZTRXPt3+vSEsH9bEph/n31N5ADspIP9Yp+pCkx2yfzKR/jsnf2B374jSZnwRjaCXk6T3EtOsE4ob1ufhLAy02QfozAQ18n3Vk+ijqa+T/ovrhUNhYViCh+51O2feK+nnu5imHbi/ON2jPqG0l4dGc3RdM14LOrfG5kXzeD6zsgD2ncc3ii9xTd6VfwdvB2hxx/RpvQIaGubY1HltEDrKPcCWO77NnpEfV+5EOzr3S8axNnfc8pI6vw1Cn9qN/kdOYXkTJhR3f3QYipMPSCA2lmaNEP/7T4b1zGx+F82L3e2HRLPTdw8koH1z9b42xaM9a+dmr/xHTBM3H/r8vu6Pf5X+0Sdijz/+OHJzc7FkyRI888wzGD9+PH766Se8+eab2L9/P+bNm2fI89hjj2Ho0KHSn14IO3ToEKZNm4a+ffti5cqVGDNmDKZMmYIpU6Zgy5YtWLZs2f+T9vQJbWHQMgFAwMD9QHEx5pzYDqfqwsFnmZaHoLDFeCZEp17MN2iZCju1koQwQJ5kCd45dPwuSfMrlrNhzWJ4lClruB+8ZaRUrl5wEevrOGYMh7vNWBKOdzKZDXudbxNw6gU5mCIAVF7GFk6vBnIAZJEiXIUcNt+pulCcn286MeuvxXYCDJ1JP1lmLAlH2K5BholUXFT1dTkUK773+4v/FoUwuicKPCI/VJao7XP0Hc5/i0JYzR0M5rr34fP8hMKhWLHghBZ3yWxMif+L8/PxZf09nCcqw6z/6I9irADgviFElpBA0/4AgKJ21hIXzpKoJCFMr8klWnPdqFWl5zlv2tE8RZ4CQ5K94R2fjPgtv6D+pjO8zpw37eiw/yZmZm/n45BrQd+WwVsuDbfB+nGcoa8b/TWcL9LiM3EM6gVLAJIQRnDvncsXus3z1XGjSS0ALPbfarphophC4jvX/45OHIviO7eR2ZfF56J5xKm6eMwo0QyysJOKRTk7EPHabsNY+iyoBdK+jYL/rvJwKFYuXF1YG8pjDurHQnQ5C9ana30nzXXiaSypFQW0zRrfM833qdVNMO/ud0FjiOYegJ0KE+nrSJ0dYfpNAEDoyBTT9ybW41CsSPs2Cqu/7iT1KwlhTtWF/B4RqHm4QMrrUKwo/6usFDvwIoMZX9O0JkJGpMDL3w8OxYrxDdtxawUAmFT7EE4UaEAmXg0ULoQ9PHwUACD+0BZTvkUeAOBMnN3wnY35+jkEbR4JS20t8HT6oJn8d9mu2bBs3eP2OxXLJ6LYYUQkhAFA94Ao/mzOie3oGdWLW1wQKBP1mf79Uf0U60x8B4UXL+KGTyWexrD23RXCnKoLBXkq7nRpbSi/3mNHeJlp30ZJ89yGG95wqi74vZ+AE+/Y+X1RCDPrCzH2F+fFhLr3HsqfdX9kiFshDAAmnWXQ9aIQJj6n/2KsUConbVqUgcf4RvH89/GfwkzrNRPCpDXXRNFFQphnBfNTMQDSKZv+WdbHmjXByuDf4VRd8Pk4gQth7vKFPsXqXd5EK5vimoq+mWLoHbHvfD5OgFWn/856SrbsIfh7ABiT0xYRe/pLwv3bzWXz4Qf030//aEGsTZs2qFq1quH+gAEDAAAHDxpPbgAmzRfokOZEWrp0KYqLi/H8889L98eMGYMKFSpg8eLF/3emS6HBWZ0Q+ifbdOsnwjF+7dBiqhZ08c5GdrJXeNfSTkx/IOpHfk1+OHntNejvW49ooAf0/9GNz/D84oKmX0gXZm5B3cQqUn1BQ7TZh/wzRHKqLjSZyTan3uuSeQDDoCF7UcaDxUK58JSNO/Xq8/YIaYuCPNUwkdP/ZKsF3heM/SBS96M9pWuHYkXYrkFwKFZ8fpwJe0UTz0n1Eo96J2CfpEpSXdKmbY5mpjjvrvAsllk7oRr/HfSHJsCKGz2nyswzeb6VC03bdL4t02br/cJG3HWwv9NFFiw33ijDAytTnanT5bhmFExc3w8OxYrwZGZmFvB6omHxpnQi4AdtWiid53bjBknkhZ6Rv5U+bfiHcTgzwW4Yk5Tfo40c6Lp3RfkEhcpL+6EVfD9M4NDcFOcmLYIpMGZfVuBxRzN99P0wAdvCymN8w3ZYlxyPos2+bjeY1RYmou60BEP/HGu/0JRn+t9+gntzLqfqwgvpRziqn0OxwvpJHDwrVuRpZl5iQtrz/tpmz6FYkT3JLgX5FvuBfpcmBPs9cQD9j5wybHKJz8Zz4iQzSADoOOsVrNsUIZVNm6eQp3fieORN6VmNXqk85qB+TDkUK+LyzAOVk5Kj/f5b8NGdHAKaqV6dL8thlF876VnbcszP7/KQaAmRlr7FMxPYXEZmzfRcP//kvGVH2g+a356lmrYu8Q35I1NQc16iaV87FCu81yfjz+kM7ONGX7ZZIxNpfZvF/ik4LgBbNK8ipfHz0kyoCvJUXFgbiu49h6DMJma612pyrMSPu/l171vGoLT1vkpA8HAXCs+ehX3fbQOPYv4VubLvTWxauqGenLftfF7V8+JUXdxv2aFYMcavHdbtXIvilEOGOs3a4VCsCFkYaxCmqewTvYt5Or0SQizTqbpQZlOKlGa6EGwcAKocs+D35Qt4HoJLV19lJ2JiuSUpo8TYX5eHamaDpKwAgPweEZKFih6YQl9+QsuypmuW/jet4eKcHPKMpsTN3+gPADhRcE2a34rtzK+rZ2RPbtIvzf8tm5jypSen6sLFJ23SCTiV0z+zM0783ALrUjYYeCd+AyYmSibQ7hQldK/j6DF8LBRt9pWeu1Me6McR/XeFy3MEgTbRve3TZvH8J6Kuo0avVCn9P8lH7EFA538P/aMFMXeUm8s0WHXr1jU8CwsLQ9WqVVGuXDnY7XasX7/ekCY5ORmenp6IjJQDspYrVw5WqxXJycmGPH+H6tevL/2FhIQAYB/g+bYXkfqQvOl2qux4HAAOvKA579f9hmm+yUfAqbq4nXqLqdrpUP0pLN2R8RoE8rZZbME/UXANi3IYslnoWLldfFN8N5hz58O9kbeyGb481xanbVdgRo6DV6B8kYAA5yhp0mvzTiyvX5y0nKoLkd4MKbLGfG2TQqd8ZJ+9Pm2HXM/ddgzO6sTLos0CLRKeFStKdW1ovE5ql1N1wXfCZXiWK4fXHUPhUKwo2zWb81XSBEyQ2Zmf2Axps3pqkM8+XpUMizmZh31wrjHXiookbgRPvmTUROvJbCN1ZTDbtJbZxMyWzo+xIWtpS3wZ3Az5HU5J+bIem82vverVRdlTV93WsTdiGb/OWtpS6kv9JsehML8e6ydx8PL3Q+4bdtPTMpHoGUHUh38YJ92v812CWyRLp+oymM3qF0saf5ld50vtohg7lGdFEw1ynsYDpe0RGA3PzjlSmQAY3P3dTeap1U2k8vU8mPFYYdVO08Wd0nSvwDaiZybY+fdP34VTdWF8NQ16/dWMA7yshu8mcA24XoAy25QCWpBsMc+Uw515Hsp389FIXoe+nQGLcxH4mmyySUAE5B+hb6dZu+kehVGge7krmsn53u3ATy8ATZi/MLw62wT+tddQNv1VXZIES80a0vtxqi7Um7fHwIfZpq5iXjFCntTGkP5UwvHYMDzTsK1UVkn017dsszakcslhPMT5VE+ezRuj7fMa4I9TdaFGr1TpRJ38ZBrNi5XGhkOxoszW+qbCH5XlVF1AcTGcqgvv1jaa9Yl91c9HFqJf+HMgCjq3lhQGvpMT+LxKykMAHBDDrO1Uj/qqUfmnn48CX5eFYPIDA4yCdt1EBiZFPk/670YsZ1TcC1Je10TzUAPKZwlu35W+Ta33FvG0Nx+NRNXFmukwKSsAwHt9soGv3BWaX7ZTZWbF7ihtYSspPwB0GDvWbdBseldbm68GAIzxawen6kL61Gh07T8CHgkspti6Xeuw/6Xp0pwLMH91Kkf8y1vZTLrvUKwSkq3I4/LAzdJJqZ5/+i0Kjk7VhTcz5W+3yUxtbfGOT4ZDsSJo2XjTuT17uQyUJs6VYp1Bm0ea9hnAfGgdihXRr7Jvsqgd6xfxtP3K4OgHPmL/g/RfJ4gVFhZi8uTJ8PLywuDBg/n9atWqYezYsZg2bRp+/fVXfPzxx8jOzkbPnj2xYMECqQxVVVGrVi14exttXxs0aIBz587h9u3bhmf/Kg3I6IL0r6JNF1dyCm41WQZmENM6FCtHllM+T8CZp7WTA4dihfVjNvGcXN2E3x/j1w7D3MCpU5r1x/5im/QuJ3D7WBWDxgcQJqe7aIhZjnloNi0O9hfYpFNzbqJUrsjzjltF0jMAuNaY9S+d9IgTrbiJq1/uMqZl7+DPlaTKfJHQo7aZLY4FeSrU2FYoPKYF3jXTmookXge+nmgot7tfG4NgQohfIh8UnJj6w4zP+l8moGnCUH5d0smGeF3t8BV4+TTg5dWck4igj/OlOlqn9AegnaQ4FCsKTp1G4ZE004XtbKyG6NZ6UiyH5nZHVFfdbxJQdP4iKuUU89MysfwlOTtM341DsXKhy2zx0ws1JW1Kbzva8AVQrL80TSmlEd/lAFemtGFIncsc2unU8rGK11BPOEHVl6Nvg9l/kTc91fkuwaDQ0I9Z0XSR/reexE4EWnylgWp4lCnL84YnD+T3+zQ38nHItoTfs2xh5pl/zphtyqNDseLkN+VhacqQAuHhIbVtXmgA5/vQbW2jKPLsVBninDvhx6ffIXTYf5PfJ1AXgJ1QFe1nvljxf64ytMXL14ffu34Xebbw/AVDPUW3bpm+E+qz7gFM607gA6I2/eKT7Ju/U1wI7DogIe65IzNlhr7dZnkAwKLzn1i/cRlHeRPTERE/TtWFY6O0kBbnx9zl+25QbbPxKo5l+q0kVTbtK/EdEYWO2i0FhBbrcaou7H9ZO4ETATFEEr9B5bN7CzAe06wT/z2q6inTud6hWDmICaE+ljRHl7l8hyskHIrVsEbr0wPgKK3u3mtKuCfPo//GxDxByeWkZw7FCp9+h6RxKkLu0/ikdoYMZ8oDMi8987QdV30sPO/J1U14fSLSX0zjhwCAK3GDX0iC53a5LfoxoudfnFcb9D2E4x9q5dfcUZ33d0x4N5736sBoqW3u+kVsE6V9SOgqh2LFrQAjMvThAdOkNEQUesLsmaU6cw/waNMcGZ2/B8CCj594V1ai1p+SgMvxwai5jSmLqL+Cl2jWWWQm/o+hBydi/xb6rxPEnn/+eSQmJuL9999Ho0aNpPuzZs3Ck08+id69e+OVV17B/v37UbduXbzwwgu4dk2zpb9x44apEAawUzFK83+lkydPSn9paWkAgJ+CNiH4ee1DpA2euBjveXuG4R79JrtoutbD4romssVNb2bnVF0obsvyEKSwU3XxhVoss7B8sTSRutukAAxljYKmejX0lSYvh2JFq/fZgtW2nCduPhqJc+M07aOZoy5NzPNCAzhS1m+pLRBapiJy3mRCpxotn+ZwnvoO51D/ej7FGCf3QmYb5KsDWb9dGRQNz9/rGNL4vyVr98SybvXSFnGn6oJHmbLSpqT+dG9+bWbbr+/Xqttrosh1GAW5ebjdndmbFzzcGus3LINDseLcWNbP5Fexqqm2YDlVl6ldvm1fPz72AAb57xXQkPPcanKsYSMoUtHVq9j56QzTPhji25bzJJJTZT484mZPEjYO9+a/r+vCODybrgVLBYCyzt2oujgJ+TGa/b24idFvtADmbzEhLZUjdZL2cmljheeZlr0DWTFz+XXIolg0+j5WKhdgPi1Ebff3NR0HIh+AIHRHh0lpydzTrE+Iz9dOWw3jvNYsNgZp0+pUXRz2HmCnnQ7FivRF4dxk06m6UGZrfeT3iJDqKeyk+TScH2MzbKSdqgu1ex/D6U/vJtIvptFhcChW3OgThRf9tXcvorACQMN3EuF4bJjUX5fjg/n1trDyOPmSXeo3QIPS1m8CiQgl79QLdlTsrpnSEnXvOcT0nRDR9U8ZW6U2/97kN56GNPqtk5kihRD3yMdWX5Z+o68XtMXfhEp5dk0jnq7wimyl4FBYUHsimtuJ6n0l+7h+cI75JO2eJMcZFN9H0LLxUhli3+rnXqJtYeUNafXt0s9hXLgMCeT9cjbWxttAQgGlE0OWmI1FovhDW4DNPsj4Ipqftrtrz72S53aX5MdXe4amdJycpVmZiO2lOFru6itpXRXzZETIigKxvWfH30UwnK2ZB3t2zsHIY9nS+Lr5aCQKz57FtSeiUOfbBFyMvMO/sfqC7xspU52qi481vRLXTCkU0+lxOFUXF4xEAU0SKr9K5/l/DNjC01FIDgActIuX/VAft99p4dmzUlq9MBg6MkXzL93MFDO9G7j3z6L8hJjI90R3wW42rFnM7/lOTsCRcUZz3iTrLyiuUlHi03ObEVTtAf1v0T8aNVFPb7/9Nj744AOMHTsWs2bNuqc8kyZNwnvvvQen04lu3ZjmpUWLFjhz5gxOnz5tSN+/f3/8/PPPyM/PR9myZQ3P/y8kBnTefNLc5l2cxD3KlMWGbNmBW685pevhx3KwsJGvaXBiKpOi3pdUjp4Hs2vxfscxY3C9rhdqzDfGkRHT6esANAQsM0pfFI7gYeYTV/qicGR0/l4qL/MTm8EkpbTFr+OYMfBelwynyoKorg1db8hHbV+VuwsVPMuaav4oQPK07B14pmHbEvvLXb+KfXQ5PhhVY9LdlqNP/1L6IXwZ3Aye1qYc0t8sX5/DZ7FiXDcDyqa79xO2xwOf19vL75ffVhdZq4M0/767iHVmG0h9G/9umt6Hz2NN05pwqi4cuX0Dz/u7N90U76fOb4Os7kxgmnmpAcZXy0PI4li3wWYpb93EKljY8M+/tUFLnxqNw/2nmS7q7t5tSe0fcjQXSxr7mKYBmE9i6JhkZL9vkxD4iBwHr+DFGplSX54ba0Ot2Vpaut/j0CWsb1YNABPeNy82ogGWxPf5UTZU6H8Kf7ZYZfpNmL1TAMjvGQHvdcmG8vXp0qdEI/jFpBLHTWl1AQwEYH06O1m88JTNME9RnvLb6uLO8LJYl/gbHI8NA3bJCH5/Z1xc7xeF/KqeSP5AHnOXhtlwtaEHDsdNd8uvWKe+Xn079fmr76iBi20vaPUNt6HawntD+Sypfffy3TlVF3pG9TLAw+v7r6Bzaw7Xfy91ePn7oeD4CeOc2yQEhUfS3PJMdGm4jYcEEfkw41/c4Jc075o9c4deXFK+zM9sCHw1EUXtw/H7T+yEpd0z41BxhTkirp63YltLbFxhDFrefv8t/BWmncSZzb+2ff14qBW6x1EDm4ai8HCqlGf4sRwJMv7U6iao99gRCQmRgsy7+2bNeLkyOJqfDukRHt2120DRYaj8uYqr7c/BqbrQeE4cjo6R4exL2xfQ8/YTxqHpxP2SWah+DtVTzi/Ncdi+WGqbpVEwsvvWKRE5t3P9Zv+YgM6dG730n0FNPPblfd0f/yr915yIvffee/jggw8wcuRIzJw5s/QMd8nf3x8AcO6cBtKgKArOnTuHfJOgxnl5eahVq9a/TQhzR14BDaVrcZIgIaxHMNPm9AiU7e/FhWNhI19YQgKx901NO+NZmZmQOBqE43b3COTermnQYol1UlkRb8bi0jCjiR2Ruqop4vOYqYP3umRTIUyv9dWXkTvRjpTWy03zAeBCmFN18Vg/dE1mAWI9ga9rpiWlbZro+dY5c/j1nY4nDXnFBaOPjwZ0YdDI3TXDIyEM0GKKpE8xBx6ga32ATgAGIexG3yicmWDHhLRUw4LiVF149Zsx8KxQAeetVfHpXSh/cqYW+2jx271Q8M4FDjBATtZm7fYsV44LYVyj2uG0fKqoE8KylrZ0K3yI5TsUK3f61z+jfCSEORQrnvfX+shSq6ZBw0r5Lz5pQ1b3ubw946vlIWJPfwS+ajQrpTJ62h4BAG6i1OWgubafyKuhZpIW/EKSW81qwIbREn8UOJuuRf6JShLCnKoLoWOY0kAUwixNQvhvEsJEWvvW57gcH2wol4QwAFwIOz9KPq3Ujwv6HZ+3BzXnJXIhDABa7NTMw8V6qK30R0KYWL5+EwwAwS8aN2QOxcqDv1I9InUexhAClaTK/F7RjRvoOGYMANk31am6uHk4AKwOcSJ9zN1gv3eFsPLb6rqdTy6MtKHmjuroc1jTxlPZFVfsxO2qHoZ81RYlwveDBMN4d6ouCYkOYAGZxW/p9LOy+Xnq/DYI3DgKHq2b8dMkEsKIj2oLE1GwyU+6V5IQJvaNSCFbR5iO14Bfx6Lqdi1weEFOrpTOrE69EEbt148TXuZdgBJxfOS8ZUfhkTSp74kmZWrln/i5BSKe2cPfIfGR80tzwzdG6JKBK8eZ9odo/q3nHQD3S3SqLlx4ip0cW+rWYevVj8Yx5FRd3BzS86+9iOk6AA7FioorNLNbEWyJ6hbL0cd9I8AZMoU3+w6JSAgTY3hy1MDDRuXowka+0juq99gRZH5q40KYU3VJJ1p60s/XBD4kmuiJ/q0iyIvYbrNxiKT9OBIfyste/uQUOBQruvZn45YQh8X5JmMJs37wCG8mPauwaidm+cj7GRLCMj+zSWOU/kgIo3KcqgvxW36RhDBxXeHv5Tf36NAP6L+T/isEMYoR9uSTT2Lu3Lnw8PC457xkFigCe0RERKCoqAi7dsmnTrdu3YLL5UKbNuZBDv8dxDWEJpCuegEma0EQHIrV4McglpP1iQ23G1STJtyiq1fZ8+JilN+Zjm1h5fmzl9IPobitVTJBobKSP5yBWe9/BUAOGHxlPQtiq/Q5jJgGraTJUVyUzCbPzE/kTR4FjTVrj37Sfjp5MA/OKy6qlI5MxPT1i/doYtcToZWZTfBiQGgA6HHoEjftFBclostDo/FQ7Fg4FCuu+7CxGfxiEjK+0ISxCFehVCbFiXMoVgT9ZHwXTtWFCit3os53CfguhPnhnBtnQ0zjh3A5PhiN/hoO1+vTsT49AdUXJMJ619T2dlUt9IBDseLT8yGouGInynbN5gADH8dqQBb6Pi+6dcsgRInvWa/ZzH3DjtQOP7BNS6A/HIoVXx03R8YEGKrX6WftsAQH8BAHrXYP4OWdidM2niLF799set+puqQguQCw/FpVJLdajgU6REuxTQXZOdKzTc1l/xf95nRdomaSJt4Xr52qCxVTtf5P/yoaBadO8+usj21o94x75MQdt4pMvycxLaESujsVWH6NCdsj/Nqhagwb+wFrxko86umd139A+mLNPNPd/5gGrQx5lT5uYjMBhm/Wo3Uzw3Pxv1hf0+lxEq+0+aQ+8fijAV46ydA/Ny+aB6fq4jH9CHzoUmAZU56Cn0+SyiazYiqfEF9F6Huiee9Oxfm2FyVzX+k9FsntEH/r53eHYoX/gP38fsCasQb4bdfr06WyQp/ajWUdZqI45RBXBJkRhUQwEwREk2MxjX7uTOu4gN8T/d9CY3fhcjsZZETMa7Z5Lmpnxann7NyHSVwnzL5rkV+im4FMiUOgNdf6a/NrdDnm93R2vA1+TxxAWkQ+V3ZamjEXBt/HZaCfky/ZOdhRyNPsNEpd1VTii+InilDqY3LaSjz36MZ8L+kktPD0GTgUK+ZGGZFwHYpVUtLF//6T1FaHYsWakA3SmDGba4jOj7ZJljDuBJfTz2rvz6m6pLHT/VHZNNid0E73A19LNIyd1O8ZMAuZeevHF7VDD8olUtBP4/FYReZCMuWCZopuaRLids/h83ECcieytr3iH40rg6Jx551LTMHU9qJBoUToz/rQMhfXsTquDpDNewFIfoT6P4AJ/gWdWxv6zqm6sKm5phzq0ag9q/MRY5y6+5U8iov/I3//7fSPF8Tef/99TJo0CcOGDcP8+fNNAy0XFBTg8uXLhvs5OTmYMWMGatasCbtdm4gGDBgADw8PfPXVV1L6OXPm4MaNGxgyZMi/vR1EJ1+yc9S/koSR3Il2HG3HNFXTs7ebTo4AEPB6Ijb9OB9O1YWHDvQxPKc4MpS/W4U78DqcjZAfr/F0ltAgnua1u87pqWPr87Kq9MiAZ5gx5gmVGdP5CaivahtoUdumNxsU8+o3K5Sf2753+AHK55omecjRXGlR8H9TmyCvDoiWJuuA35g2fEZIsOki82OP9tBTvyPMvOKbYLmtz1c/jo0/L3C7WFVdnMQdrg/HaieTQS9rWr8P6hxA1seyUEo+VwQLLi4wDoUFCKXrnLfsuPzQLRz5OgRVY9LhP2A/d6gGwLX/3uuTeR6vBgpeq5nGr8k3jdrnbkzpAUP6ZzI0vcbbhxny3a6mTaKEQkjmhPC0GDYSTtUF1+vTUZiexTe8tXsfQ9q3UfCIaGEKow0wvysznvXonQADinAoVozwayelJ9+rjTfKmJblUKw89EBJQoK+PoK6dyhWNPgkgfu3eF3z4OkdihWpT85AxRXs5PLNTBfOjbOh4p/ahv6jhx+DQ7GiR49BvI5Tz9mRtqA1T0OBQwHt1FX8luaFBvC0J+8iOz5sPYyCTX6SUCS24buQUAQP3Su196NzbPPa6v1Y6dsU01BIAHeCpUgOxWqA3jYTVoh8P0jAVxf9TcsBgKd8tnM/N3FTFNPiYRRdZQJZ3Wnu/cj0CgUzvt4PNAqeYWXL4cS78qbWqboQlFwOl4dGo97XRuQ8/VhSX7ZLabhSrbcG2kDPuwx+Cj0j5bAcbwdE8FhFIv8LrtTh/Nx8TEYEdqoufJS1iwkXd5WAK65VkQRXSifyS+XV+yoBxz+0Selo80lQ/GIe8Z1cGm6DR2Ex9r02HZ6dc0y/I3dzUeDvT/FnFAOK6igU5GyHYsXNRyNRe6YmVFM7RWGHykpb0Br1v0yQynMoVoNigdpPaKAAMMeXCRN1E9n87XlD9gcj3l97b5x0TQiGGQNnmn4zDsUKr/r1TIVUUQARn9ecm4g1eUaTX70gVPcbWVgT30Fx8gEcue3eJ35XvhYgGWCgFfr1O3QkO5Hs9t2fUj1m8wbl8wxrDE9rU34thsdoWPYcv5/nkJUe+vaJJ1BVlibBu9txfk2K4NyJ8jfn2bKJxE/NN7wAAAlTza2teoRoVi/Xnoji+ZyqC0faLsLmRUYT75iH+kjt5QryB/Q/R/9oQey7777Du+++Cz8/P3Tp0gU//vgjFi9ezP9+//13AMC1a9fg7++PkSNH4rPPPsOcOXPw8ssvo0WLFrh8+TJmzJiB8uW12BwtWrTAhAkTsHLlSvTt2xdz587FSy+9hBdffBEdOnSQ0Bj/3VT/ywR4dzvudhPwWBozZRJPjuIatnO7uIvX5/6qDz05FCumHJc1WIUXL2LDmsW49gQL4FiYyswV1JftfCOaNnyGrNHcf1QKJgpoi3ZW/9ocurduYhUpzpRTdaHxXPnkKvCXcW43dwD4YiqivwHMhMuhWJE6z3hiSaAhANDp0KOY+vBS9Dh0iZdNdZNpwrrtqw1lrGhSx62A2HhurLQ4inHaau6oXuoESxtxynOnWxvEH2WLVlF7TYso1u/3viaE+n6QgKAhe/mCBzDn/f6ZneFRpqzB9Mv+4nicjmmIJrMYpO7xn8KwIXsXL89vZ0XpHXx+PInXnfTZTKkPTn/CTmYb9tf8Z/i7vGv+17N1d8PGypmbIvVZYScNStmzXDkMOqppBkOe3oni5ANu+7/s1BrSPSKzYLviSaRIFFvpy2DtZIZOOgFgYsZ+nLVfMs2rH6sinwSHTLT7ffae6aTFTKh7qBwD17j+0Fmkzohkm7275lhF+47gz1ss/b7XpiOzGwtcH73vjlQOmfGJ71HsGwLtmee3HV5dmL9NxpfR0mZGn4eu36jFAprWnpmImBYPG9IAwJrF5puWvNeMgop4TaaQDsWKs7E207IBzYzywlM2rvWmtN+9OACnXtCUP3TSQkFZ3c0tqdNlAeWFdBnYSCQzvhyKVXLSp37MiLgl+bmIddLGDWB+ZMoX2sZRr3zRb9AtW/fAZ6Xm/0VEsYrE/EsbKzxf+dVGH+M3Atg4i953B07VhdmhTGFGqLlivVnLwgztIMUX3aegwBVWyjDi+v/VFiZKPk36udLSrJFpXztVF0Ke3INzY7UxkjozkpvcVl2SJKWt+Ad7l2SmqB97UrkjUrh5rzsFC/FK/BKQCL0nCvFSkHncMN6cqgvVFsknrSHD9+DyEO37M6u34OQpXOsfXaowL+YjM+mYh/pIwYYdihXHJ9sM79Zs79GkbAWpThGRkMLPUJ4NaxYbeKGYXuIJkEg7bhXx/iZY+aL9R1HkOsx5EvnqV4n17bnfQrHvVfa90TrpVF1InxIN+4vjpX4A2MmWeC9tOJuLDz0zXYqpt379UqlfCHbfHRXfvoMNN5jVyY6vtThhojUHEe0JCtOzeDp3Y/EB/W/QPxqsY8SIEfjhhx/cPu/QoQO2bt2K/Px8TJgwATt37kRubi6uXbuGWrVqoW3btnj11VcN8cIABoP/1VdfYfbs2Th+/Dhq1aqFAQMG4P3330elSpVMavu/kwjW4eVRBpbgAP6REmV8GY30QWxj03HUGPT+fDOHihc1doYJ+kgvOJushUOxwiO8GTas0yCoo18db+oEy8nTAhQVIuctO3w/SDCdoEXSb/gcihUXR9hQfUGi27x0P3V6JELjdklOvvo0TpXFRHl8UByuvXEFQVXP46z9EixNQhC/+WepfPu+20hoafTjO/5TGI61X2jYZAZvHYH0u6Y207O3I6hMJYzJaYsTUdcNfPQ7cgYrmtRBn8NnmQmSh4cBFe7C2lDU6JUKS/XqHFVJ3yaAaegLz1+ApVGwBKGvTye+Y31f6/uIBMGTQ24h9aGFaLlrEPZFLpXKdSjs1EUP6euO9PW9mnEAnwW1MNzXAwMQZfxo5f1rpu0tah+Os+HlUf3YbZR17jaMZz1vF0fYsOujGXAc6SXFjjIjz+aNeXBUsz4U7918NBLlf91V4ngV+XGqLjj6DgeS9vM0xW2t2PjzAkO64C0j0dTnJI/jZla2flyK150OPYqyXeVvg0ALAKDyX7Vw+Q1fKV4W5X8p/RC6VbhjmCtsL49HlR+TcG6cjaMqAiwGX9H167g8NBpnooqlmDwiv2FfxKH+VzuBokLDcyIRHILqLr+tLm52OG0QzilNTMuuKDx7lqc/8XMLQ+wgs34zuwbY6Vx+jTKSUFAamc2p+vFCdHa8DVWz7mDL93NL3NDOObEdY3RBpSndkpwdqO5ZXjLxvJe2ifc8vLxQXFAgPSfQID439IrEttmzDeX2Te+K6w+ddVvvneJChE97Bl7XgfzqTBFklo5ozfUK6F3xhlt+zcZ4TJf+KDyciglpqehd8QZWX6+ExypeM/0Wz4+2oebcRHiGNeZxB80ov2cEBn+xDiua1HHbf8+fbIMjrQv49eWimxz2vbS56OyaRqjd+5jpWNa3OXdFMzR8I98w19/oEyWFX5DyTLTj0DPmQC5O1YWYDn2l91vSPKIvv+PBx/gJUfrUaHgUeCDoFSOQS+jCWAS8bg5MYdY/hZ1aYdOS+W77AgB69BiE9euXmo6fkr4hAMj81GaIUQgAa/KSDf65Zv1Bdej77PKQaFRdkiT1ubtyzH7n/NIcjwXtR0q4p2m+gk1+2Nx0jdu1Nu91O+p+vO0fA9bRJeSF/whYx6a0qfd1f/yr9I8+EVuwYAGKi4vd/m3duhUA4O3tjblz5+LAgQO4ePEi7ty5g5MnT+KXX34xFcIAwGKx4KWXXsKxY8eQn5+PvLw8TJky5d8uhJlRQR022Cio5NWB0Qh6KYlryrbOm4PNj7Cgf6Im7MQ7dklD51CsQOdcPtFQIE9Kk/TZTB7PBDDR+N3dXPl+kICzaxrBoVhhCQ4wpJ13YjsyvmCavBt9ZJOY6gtkrb+Yj07cnKqLBxU2840T25NbwJyYq/TI4KcT5A8jlr0ggW12mqR4SWX5D9gPM0rvuICXEdeQ5SUTE4CdBhKtaFIHhR1bYXy1PFbnXSFM1GrV6MUcm0kIK24rn5JRewrPX4BTdZkKYQCD/nUoVqTO1EBBRB8CsTwRdr7cb7sQ/ByLk9Ng3Hle38PDR/E+f6gckHSrsEQNLJF+4fgsSB5/lCd1USOYUbrgT+JQrAhdIMfa8fxrL+p+k4At32tQ8PRfvxkOSfbGro/uIp51zoVHhBwAk94D+S4WHTwKp+qSghyLdQRueornIxPSxzO6aFrTH2QTNF5GJKvXuXIhPP5owAEKSAgTeXEoVqR3+r5EIax7Q3YiQaa33f20k92Yh/pgS7NfUXV7TakvSAhzqi5cbX+OI7QRDDwRCWEi/y2mxnGn+JR35dACFIMv6bOZ8MyXfW5FE7T9L08vUQhzqi4JnQ5gm6XTN2QIaJEcihXwZHHHAtaOgVdDXxxpu8ht+VRG6vfMFG7S2aZI+y5KSmfZugcVVu5EztvMBGlV7i541asrfbNiv5a0+b5WdMvAR+0911DWKYfcMAukqxfCRBri2xaPCHGuqF6n6kL+Rn9YmjWS+CBLBvGe+qyJUjEtkwMTAEC5tbuk7+9OF9Zv1x86a/rtEx+9GrRGg08SUHdaAvzeT5Dg8PNWNjPw8l1IKEIWGWNqEcV07IekW9rYcShWxG9aDqfqwnchDGRhRogGKKOn3e8zq4yi/Ue5uTtP52nh6bbOmYMVI7u43dQHL4nlQhhRVc/yhnTEo0hO1YU9bX7izwqLi/g7c6pacGWHwoCSfPodQvyWXzifHhFMmSUKYWJb076O5tYvgGzORuXGb1vJ69e3UdwPmLVFNNMLfiGJC2GiSaBDsboVwsR6Q7c9yU+zLFv2uK032sXWtKJ9RwzrjkNhsfn075v2QpSOhDB9ut4NIpC+KNwtr936PQmHYuVm9GIbZmZv56eoohDm7psQ83r8wUBbfB8/iJRwT4PAR2uDV5cTUr+kT43mz5yqi/uGP6D/LfpHC2L/rUTR6Xee8IdDsaLysiTDh71ux6/8mJ3oyHjmuO3hJQsfVwZpQaJjHuoDp+rituYUz8RM01bxz9ocWKF2b2aKVJieZUg7yq8d0gez07oKq3YaJi4R2EPMV27cSV6WO42d/vpFf3NTJX3+0Fh2qqFfYEXK/EwzgYpp1gkOxYqBWQ/D0ihYEgCcqgvKFzKIyKYf5xuEBIdiRfsJ4yT+vOoxwAmPHS5smzXbwGvuimaIadkVAKC+ogl7qTPZhooEtNDxu3i5GQNnwqGwkzux/wiOO+dtVk783o38/8gTzOdtyfyvpTzR5SxuFxp3G1Sz90Jt2vOOvOmemLEfqbMjpL4EgNQRcrrofXd4cFC9wEp9RtffNpA1x8XJBwy8Bq4axxHAiL8x6zTEQtG5noKaiuPwl6BNPG/Ik3t4uQSc4lRdwK4DPM+GxuuwPHAzL0df3r1Q8Z3bcChW1J6ZiLfOtMCGE9rGvjA9Cw7FiuWBMiiJO413pZ9ZH4nmimR2S2PrwAuyCZ34XyxX9GUEgKAfNCjqocc7SukJIEHcKOrL7N0gQno3+rYAbMw6FCsa/sqAU8TnxL8oLN18LBL+Pgz5NqFlWXjc8YD6qt1Q9uHY6WgxJQ59fCI5UIr1kzjeVpFvd3NTJU9NecXjw+06gKxPtBMUAFIgXXF86r8fsfzCS5d5mnO/hXIevLsdR+GhYzxd3spmeNGf+RqKsR/rJWkn+KKgRHGZiALe0DbWZJIr8tror+EG3vVpMvrP5GUejF5iKgiIpxYiEAcAFKZmYHKHR6VyP78QJI3FrGUs3lzPiBj+nokcihWN5jNzssK0TB6r0qm64MxNkb+NpP2m3w0AwwmQfsyatctdWjrNpPs+/Zjy8+rAaGz85QcpHwBubq0vk/571ZGDYcf/ucowLtu8w4RdD29vt/ONfn40G4cebZprihjXYUNe/W89pXb4AX7vJ3Afd4AhO2fpALmSrL/ghfQjmJa9wyCEAUBxfj5avycL8IReq2+TqWCtC2/T/RHNp59AfciMnt5t2rdRCChTifdL+Edxpu2ltujrLX44j6cnn2C6dqouXG533nTdDH4hybBurEo1P/m/L6mo+D/z919O/2jTxP8WEk0TvUNCEf/nKsOHfrt7BLbMn2O4nzonAnX+8sLOT8zjIenJqboQ/ON4pA+eaZqeJjdL01DEb1rOJ6q3zrRAstUCS2gQClMzpEkwa2lLeHgWc4Qv/SImkpmZmCFddBjS4rxQrdp1vNpoI75vpEH5lxa7Q2zHxcIbGOiroSp6tG4mAQLkvGnH4QnT0WJqHJTPZU3U+TE21Jyj1fNC+hFMDW5i6CezNqYtbIWQ4XsMfUHUo1F7FF29augjdwsLmXFRmiY7hhnMtNzlNXtWUtp7ee6OTj9jh2vi9BLHlVN1ocuQp2DZYkScK6kvUmdGorbvRVTv6T5GkPROGoTDmbfXbXmnn7VzB/XUmZHI6i2bakW4CvFBHdknTd+HPSN7oiA3D57lymF9ZpJbAcmroS8XJvS8WqpUQeGVK9w09++8K6fqQqv3Y7HnnRmm44zqF80AS3o34vtbcGI7Rtw9vdG334xHff+IZNmi8ADQWUtbImDQPkO+0nhz1/7SNp5Bm0eaxh3M+NyG9CHGOVMs8/hkGwI/O4jrnZtwnyqzMUpmty2mxkHZdhV3qpQ1CDcl8a83hxX/E+n7SPztzkzrXurW1+GuL0p6x2ZjbmLGfnwcxPzIijb7chCOmM5PAB4ePB6VaBJYGq/3wodDYaZ89RNvwbJ1j+E55S1p7HiEN0Pq897I7Drf7XsgOllwDfW9KiFkYSwPlWKgzT6S+fS9tMEd6fOS2Sk96/b4k/BI2Celp7TX+kej0vIk02d6utE3ChVW7sS1J6JQ6eedJfJcEunHWUn5o/fdQVLLMm7f098dq2ZlEHm0aY7i3Qel/KXxp6cLT9mQ/IGsUDSrT13VFAeifjQt+2ysDXveluehguI7/xzTxKDn/zOmiRlf3df98a/SgxOx+4hWpR7gvmHiZNI8xRNlNySb5snqOQfVFhrjId3uHmEohyaI0oQwL38/FB5OlSaVZCs7OSHgDjF/wKB93OQvpkt/fp/SzLkLE742L4WbidHzadk7jLwk7Ufo1Hxu8jExYz/XLKW8p4GEWJqESBq13Il27vDrUKwY6KvFwwLAhbD2+9kpoO+H7ARJL4QBkIQwp+rCM788JT032zDxvr7MFhPrx0yrlrUsDO3uovoB4EKYWI7Ip55ICCMiMy29ppFAEHj/1KopPac+bPucjNZVGhna54bqTktA+EdxkhkUkajldSeEPatGGBZhehY6fpdBCDsTp514FDzcmqd1KFaguFjqz8CftRAAXj4NsP3VKQCYL1/oeA24gOpMtloknomf2442/B5BV4uQ/mZCi/5EBwC6Pf4kAAaoAgChcTJ4AsBMTc02F1zIWDYetWfK377Ic9gXbPzd7HAa58bZ+LPeh43Q4k6VoQhSmhE6EzqxjiO3bxg2O+LzmdnbpbwkhAFMa67P525DaKlbx3CPkBivbQiEo+9waYxYqlSR+t+hWBE8bC9y32Dj5Nw47XsJeiXRMMb0fBwbNQPrj/3FhbCz422I6dKfp824w5BlgwazfPk1ipE6uhz+WDiPl2lGVwfKoA7lf93Fr8X/YjvE+3TCTJQ2bEaJISHE9onlAkCT2XHSewBYSA+/nRV5WgI9Mdv8ijyKY5WEMAD4vQkL7RCyOBaFR9JweQoTvGI69EX9spelskQ+zZAduz86jPNKJ7xO1YUzvzaGQ7Hi1PPMt8eydQ88ypSV8r52Wm5D+lfRUn2t9zKUzeK9h5DZdT4Pf0Jt69m6u9R3APtObC+N56AP+n4GgOztfvw+jTGxryh92rdRpQoC+vegD1EgnroRwFJsGos/KQphALD1pqfU74C2NlZYuRNp30Rx4AmqW2xb9nLZJFyk1JmRJQpOZjSptuw6YQkJvKf1Uf/d0u+gP0a6zUdCWNqC1sidqI1vJakyJmclG8YjmbmLddaYn2h4H3pezsbaTIWwmjuqo+KftVF7BiuDrED+cVRc/J/5+y+nB4LYfUR9Qpm9eMfRDGqcJgOCYT502+hzoN9MUPDGshuSpUnh+uPaJF/SggoA6xLW8PslTX70X5xwMweyzX/a1xqyk58X8wfp1aC1YZF6pmFbqTyigqrMzGLxyWh8HBRmykf85p/5b4dihc/HCfwe8UUBpkce03zPVn8t+2GYtUnPE2k7xQVVrBsAuj0xAgAQ8gyDIK87jTmzBwzcj4rdMxHgHGWoS8xvxosZxXQdAICFJiAzRABo8CnbjHV6io2fwnPnob5qR7cnRkjlkdlax1HyOKPf7t65Q7Ei5017ibzV+TYBH/rIMbW8Av014bBmDemZOPaOtbmDZolDDDzpNwD0vM70BP4uvP5IkRbF9KnR0nsMeS6Jb8wKcvO4eRn58rn7NgAg7RvN71HvB0R10EJKvIobLrNNvl5rTeW0fW4cvy66cQOeYY0NbXcoVgw/loPgF5MM7w4AbPv6AQDqT2HjIe27KKS8yxQYHt7eWNO0Jg9JoacbfaPQYb88z+iFwSZlK0jt0lNAGXM/2sJOrQybFiqfNtXiM7NAsHTKUal7JizHcqT3Vti4oangeuhpZoJJYCQi35Q+pmM/OBQreh26yMNG6DfMtWcmIn7Tcv6MfEmprICJiQgdm8z7JnDlOENbAaDyMrYhLrO1vmFDPjN7u4E3fT+Hjk2Wrh2KVQsJIZB+LDsUK27/3lBK5/deglRf3ut2zAgJlvxj972imbCavW8zodypanHhiA+Kt1T1hbtKvbRMvFYzzRB+xaFY8WnWTvw5nZlyk+m2Q7GiOJlZAgRuHMVjPgEANtaAU2Uw+pw8PaQyXXeHGJnPBj+fJL3jj+oyZSKZtB4bKQtXympNgdbiqzier8pS9j7TvpYRD6lfjo6ZLvUDwALAH59sk+oPedocEOfqADaXUdBys2+eyhfnylf8Wb6JS4abzmsdyxcZ7r9VS7NWCXl2J3/e6RAzISWY9tvdI3j4HLMxQcotd3sN8drdekIAJCKZKQTMvnmHYkXGw9+7rZfuZXabx+HtnSqLNfh2QASa7JBDsZApNW/fQtl00qEw3zax/6/1j8aet+UTM6LzbS8i7byGPHnZ34srE/9RpokP6N9CDwSx+4hWpTJTqK1z5xgmVQBoVrY8h2kGjAKUQ7FKwRtF2v7NLCmPGeknePITMNsYiHUGbGC+N9nv29DwHbbYlj/FhpZHmbJIyb8tpXcoVljq1pG0rj26DZQ2zpate9Dn8FlknmPgBLQ43ii6jd5p3aWyxHwOhQXEpGcxDVrhTrc2+L6RtgGpOY/xSHFeiEQeF5zYLl3r05ktCB477vbf3fhYqfPaSItylmMed+AX8558yS6VY/aOKHisQ7ECOSd5OjEuGQCcedoOtb3mI6h8lgCPHZpQELhREwbFmGL6PjDbrDpVFz9FdKouPhZJW0jpx98Np0DX67av5k75BE5Czx4eLsf5OmRbwsEg7kUbavadOFUXMgbMNLy/4ju3uRN/yNYR3JdhwV0/H3fKhZBnjY70FCOJqLCsvOm7l80C/Q7cOAotP2cBisufZaAaLb6Kw5mn7RwNTt/GhY1kfxvxt7hpODPBjpAJOzlPxfn5jN/UDFi2KFLec2NtqLThAIemJ/LyacB/F7e1GurMeUsevyJJ37TuJFQsR9pUC886HXoUTtXFYeTF8igGIu+XXUZzXb0AbKZocKouFFVl8Nxrm1VH/NE/OQBM2ndRUp3iu/38ONuAx3R6XObjLv8UBFjfF3RSfacj+449wpvxcp9+aBAAFh/OXV+J117+ftK9iyNkv7Q3M11S+pz95iFMKL0YSD4gfrRp3Z4tm/D7BPRhVmZxihAUN1I7PSGEW3qmF2gB8HiVAFB49ixXhjhVF049b+chG6iuOt8lIHjpeOn9Fufn8zKnHNcsHCotN5oRW6prIUYOPD9des/0WxRODzw/3TAuQp7TFCMOxSrN9dReKrMgOwfHRmmb9LQfWhl8u6msyj8xfo8/UgHe25hv9/XHNeUQT/dXLQBA82/i+NzsUKzwey9BKg9gLgJmc0fIYlnAoG9oS7NfATAQH4dixZUJl92uj2If3OnSGr0OXZTSUZkn3rOj3TPj3Jaj7zuABf42E+bM8rdO6W94dmaC3XRt01P9OZq5ndmaSOAlomKR5lYij8JiKW/GF9E49ZymMBkarFk51Z2WAK8/mDlzn1D3J433H/0nTsP++0/EHviI3QdE9raRj0xGlbX7+IR9OT4YVWM0ND2CcE5fFI6Mzt8j5lgMN/sx23AQ0f2q22vicjvZLInyiflvO9pwCPHh2Q/htO0Kf147oRqSdjSR/CvEMvQk8pT2dTRCnpPNI0RfHT0vIcneSIvQJjeRR/3v5klD0KDvoRLTfpS1i8fKEfki23Siin/W5jDOIvU+fB5rmtaU7ObdTeQiH+2fHofLw69gf+RSqZ+6B0Th0uPhqLokCSfes/MFU+S5y8Gr2NS8stS3jefEoeG7CaZtdMfT6WfsPICtWAeR/v3py6ibWIXHxdGXYbbRdceH4X50GId+p2dfHU/gGn5Ke/JFO/a/bIRwTp0VgaxH5vD73fo9iY0rfkD3nkNQvPcQLj5pQ/UftJMQ28vjkfjFTNN+e/dsMyS1LIPUOREIHZNszq9JG1PntkFWzFy36QC2sbZ0Ps9hrs0EMyKz/jMTiokeHj6K+ySRz5k7cqounCm8jmG+7CT6wkgbanwvm+E6FCvKbK3PBQU9L5eG2VBtkXlICv09S5MQFB5Jg/qqHcpnCTjza2PUefSoafq0r6OR+cRMQzvN2kx9FPjzeMOcQhDUlKd7QBQ2ZO00HY9E50fZuIJGpNoJ1aTYceJ7cPeOPr8Q5DZektiGjDvXeAxIh2KFVwMFBXmq236levX37+U7E68t1aqi8NLlUssorUyzZ07VhciJsdj1ccn+d+7KEInKiwnvhse2HsSKJnV4uh49BiFswRG4ws3zpS8OR/DQvfc0RjM+tyHoFeN4FtsU/mEc6nxnhOu/060N/lggIL1Gh8G5cmGp/fR/udaPgasDoqX4mGZ1ienN2vV335FZ/vQp0RxACgAPewMwJdeozsOl0y1xrXEoVslvlOhOl9Zu/SxL2gfcyzgW6eK6EG7yriRVhhp91ZDGqboQsH40Gj97hKPJmqWJdj2OqjHpJX6TC6/UwpLGPrz9D8WO5abJRKmzmuDE2Mn3tU8U9xELfBZenv+PfcSK8rEp85v7uj/+VXpwInYfUYXf5PhJJIRdGcRMDPyeYOhwRdfLwKFYEd8oHsC9CWEADEIYwGC6RXKqLm5+5VCsXAijZ4v9txr8K/SaQ/1vyhvyXBIurA2V7pEQJhJtxvXoeGI+vTZPL4R1GDvWwJ8ohIltWjO7g1R+/pMVpOcAg9qfUI35+pBpn0OxGvyyRB6orgord/LguXTPobDTiaTP2cZTFMJEnsUNHeXTm7qceMcupRF5yfrEhiFHcyUhTOwX/XtyKAyhTGwDACxs+CemHE+EVwN2imIJDZJ8tIguF92U3o9eg2lYoJL2o/y2utItMXgo/SchTN9GEsLovkfiPiy4UoeHatj18QzpXRBcu8iPVwAzaUuYwKCPh0TIgXf1vLTaPYA/uzogulQhDADqfZ2A2r2PwVKrJvddoDL03wxp552qC+mLw6W0et4dihVlNqXw4ORFN25IaTytTQ08DfNty9tS43stmHvaNM18+fCJ+vykS18vBaKl+57lysGpunD6GTtiGj8kpY3f/DO6HLwK5TM2/vZGLJN8SxyKFWnfMu1+9UMevE1k6jnvMkO3PD9KM+Nafb0S57nMFRla36m6pEC+ANNUl7RBuzogGpeaaiEoRNq7tqmEZupQrOjaf4RpOcRfiPdpwzNxDDoUK3raHuEnQcRbQZ4qXZvxQ/foFNqsXdnLW5iOFaL4w9u4365+PtTXS0FyRfIKYNYF4qnwkqs1eVnVf0g0bYO7zSkAwEN79/THv6FlXjwGGJVTtO8INzXUt9OpurhZGl2Lc5m+fjMhTF8mCWHNvmV+l+W31YUlOIALYQCLJyaiM14YaTOY+bZ5Vztx0tc55Ghuie9t9fVKWHNdC1GSMHWmaZuIYsI6S0IKpU3Jvw2vBgoeHj7KkMfdOxLzU592GfIUKv9VC8EvyieMYjiLEX7tJD82h8JAs8R3nNrhB0M7ymxKQcU/a0NP4njV91/g75oft+gvKuYV/wOAXxV2WndlcDS+9/vL7Tip/VcZLoSZPY/pOgA3NtfhbdSXQ7+HV2HIrpFvxKJ7w0hJCKM8gWPNQ+zcl/TAR+zfQg8EsfuMaGI5V3idf7xVlmoTnUOxInT8LilmlEOxIutjm+Twqd9gp85tYzqBBFU6h+zlLThcLOVZlbvLMPkS9T58Hre7a5DkaQtbwYycqgvpU6O5OZNTdaFGr1SpXPF/6/e0yPbP+2sCjn4BWH29kqEekRyKFdtmz5ZME8RnIm244c3NOcn8kWKZfZTFJkmfpErcabmonVWqs8Gn5kFN9f1PcdYcilWC1S5pg0h1VN9RwyAsieT3foLpc6fqQurwGfipo9E3z90C7lRdXCsf0+JhqdxmZcvzZye71EWd6QkGXqp6lpc2dhcblS9xAzYte4cBjKRr/xEI/ZP5NTRPGiK16doTUbx/qU/1i96IKsy36OSLsqCY+4YdOW/bDRvPgqxsOFUXPLe7EDxsLz6oc8B0QaZ8tXsfQ35PBoZDZkOiMCzyq6fCc+cRPFQzw3OqLmT+KI+Vy121WGyU1mx80W8AWN+sGpyqiwfzvfkomwuKXIeN3/DdTa+eVzFoc8jwPTgcN53HNCuJMr5n8a3K9TiD+KN/Ss8cihWv1JD9Kxr2P8BNRJ2qi/vG1JqtCYXbZs2GU3Vh5md9YN0L7J48Azlvsj6eERLMefZ/mwmF5BvbanKs6bzlbmMEsA1t0EuaWZlTdXFY+kNPT8eyCV/Cqbq4CavndmPZIlHsKz1R+py37SjIzoFnuXK4voHFv7rwlA0X1oa6HXOUl+Iilvta9rUU6Wi7RYb2kuAFsE3gGL92BiUAEdXn1UCB5197oSRVRt3EKuxeQ1+s2/ErmsyOg9dm7cRiYSNfw5jXz9sAAy4CmAm1NI7z9hraTkRWH5Q27Wvm4zXvxHapDH1fEYnPPVs2kfhxl8eMugx+Cj4fsbXiZofTHFiL8lKIF1HJoTfzFUGgwpMHSm2+UGj0rRTf44yQYPSueIPf149tcfxaatVE/P7NUvmU/o2ASKxLjpdOnI5Plr9z0ZSTQgqEJw/koWgcihWblszHL0GbTNcWs3tUP4FmieskvYcbfTWT1JXBvxv6Q2yL/p2FPKmZPscf/ZO977DGUh6xj5wqi70IgFtJ6Mt1qsxnn+KhuqNjo6uj/pcJUtsdCgtET79FHqovSMSGbE0IK2qn1f3AR+x/jx6YJt4HJMLXe3mUMU0jTmzNvo3jC8LlodGIfD4FCbPaoOYctpEJ+G0MQsfJKItp30Rpvi4m5mDu6jRboImXmZcaYFXT2iWmPTfOxp3kS6tvwYntqO9VSVoc9QsO/SZTJzO+AJjm0bfNLJ3Z/6A/RvIN8bUNgbi0rR58Nl81+KSY9ZO+DaNSs9C/0mVT/lLntUHoqN0Gns3g1TlFtjD1jTHbFDVLHMLj2qR9G8U3wCX1UUD8aISOZiekWZ/YuG085Sm2teSxWUqqu8vgp6CHky6JzIQNh8J8YKovSIQlJBAdVh7AHy0qGvKeeNcOjyIWM0rk5cr6ICS2XIGWn8ah3tcJ0nih8qneZTkJmHu5BaYnd0QVlzfqfS2PNSJLtaqIP7yN53fHv0OxGkzC9O1t/nUcF+wBFmi6ON/CzSQpXdvnx6PS8iTpHbrrO4AFYPZ/k723y/HBOJ1dg8fZ0/Mt5qf/qbMiEDpOA/85P8qG3ZNnmH4fZvW7I3fftvicyB2P9HvJ1ZqYN+ExjljoUKxovbcIKeGyrtHSrBEKDx3j31RK/m2DubLZdwuw2F3iyTvAECLHC+aFl4bZcDaqCK1aZvBNnlmb/o4AUFo/lZZWHHfic48yZflmsNFfww3hRwAwf9fcFFOeU2dE8nF0L+3Q0/V+Uai4YieyloUhYKB2CsAFwfr1UHBSC4Be3NYKjx0ut/V5hDfjJ+GXh0aj6mLNPLXFzsFQ+rDYWEHJ5ZARcQuTs5Lx5oix+H3p97y82783RNmu2YayqRzqB/19/b1FOTv4ybP4jEy8m6d44sv67oMeE93p1gZlNu42fVbYqZUpAi3AlKWZN2tzoC89vyGLYzl4CmD+LkXzZDGvPvyIu34Rn+vnRn16d2P81PN27Ht1uiGtGALmyvogA5iGvn6i0IWxpsGp3Y5h3V5Jz7e+jpBFsSioXMhRcEvrGz1ZggOwbN0KVA/NvK9N8bhpYsOn/zOmidnf3tf98a/SgxOx+4hWpR6QJg1A/pDpYyYhLOsTG5I+m4ltucGSpi3rkTmwhATyvHUTqyDz8Vk48d5dR9EkDQ5eP0FY98LwjMo5WXBN4oWEMDN+6bceqUxfJgBmV6+6MOKulpbqEP+LmyP7vttQPkswlKlvy40+7uGAHYoVkROZ9vzk6iaGMkQTkjXtNECMLvWP4dAz0w3Cj2WLYmi7fvFwqi7MCw2Q7rV9bhwsIUwrHjpqNzy8vOB4bJiUxnLNEx3GjpXq45o3N8IgpQE0GPT8WxqcMwEJ6IVYp+qC386K/H5WjGZ6E/JdDs6PlgNqi0IYYL7gOBQrLFv3SHUAQMaXTLOdPlULPOtuXBJVX8CUDYVpmfijRUV+EkJk2aLgVoM78J2cgACnDARS/SULPj0fwoWqbo8/aapZdaouDPS1Y1PzyggdmcLTi88BID5vDwovXTaU0STFS7qOeo2NJVEIS51hhHcm1EsqL2T4HkkIezb9KNvsB7Fp2+f3YjhVl4ScCQCRE1l9k7OScXyyDcdGzuCIkUnWX6QNV0kbJBoXWY/M0fq3aShqzkuU0pAQphcyiK73i0LuRDuuDI42tNmpunDiXTsvj8aCp7Up58+haEHK9eODIOknreyPPxbOQ27BNf5ML4QBQPzvP8GputD4xYNMWPMua0jjbj5p0PeQxL9TdWF8w3Y8ZIZTdaHaokSEPL0TV9ufM8zllqahUp+LaKZi2i4HNT+VrI+0sAMi6mRJ64T+PcYf3mbg26m6eABxh2Ll4Ucov1N1IXrfHS6EAUD2JLtUf9ajWoB6L58GHAihJBKfV1zBlAh3bpSV+HIoVjx84DrWpWzgZpDnR9uw8ecF/HmZrfUN5ZIQ5lRdXAgj/kgIA4CMCAbR/nZABDy3sViDBLxCQpjIp6V2bcP3Ij4P2zXI0E7ywRTJM6wx97M92LoIPUKMacR+AMCFMP37A8CFITJTFU+xJlTLwZa5UYY8805sR8vP4iQhDABCYzWUQ0JqXRu63sCbQ7GibM5Fwz2HwuIQZnzOvsevjifg+E9hOBOnjZkr64PgVF0I3KSZEIrfv9kY3ffqdHQYJ699DsWKoqtXYalWFU7VhSo9MnjeVbm78FK6/J2K84gohJl9e2LfA+BCmFiO+NyzcmXpWeBriYZQJGb7ALEe+u8R3gzxf676h4F1PKB/Bz04EbsPiLQLF1MDMejhXtxXAGB252TyALjXHMd0ehyFx9Jx8iU79r80HZ2HjYLX5hTTjU/LT+Ow7zVZy0TaRoBBvVMQZbfCE8w1g4B2UmYmjDgUZsbl9765z5JTdaHxnDhTyN+S2m+2AQGA/J4R8F6XXGJ+s3a600BnfWRDwBuJps8A4M1MFz4MNC9H5M2puhCwbgwaf3sNRfuOmPJekkBiRvp+bDYtDoeeMQZYpnQxHfsBFk8Jxcxd/fF5e2Dx8DQtSwQPEesXyV0/uCPPihVRdP26aTBkojtdWuOPhfNMeRf5C1gzFr84vsU7tkewbo+TnygRWapXR+HFi4a8PP+6MSWCd5REYnpPa1MUuQ6XnAHaqU1pZUbvu4NJtQ8Z2i/+vjI4mvvFXR4ajaojc6XgsrUTqmGx/1ZDHSW1saQ+cPd+xfv5MRHYOncOvy5JiLiXss14K7a3hEfCvhLHhXjfUrcOh8t39x2UVpb3tnrI73BKenb6WTtcr09HyNYRqL6xPHZ9NIOfyJbULu9t9ZC+MRC+HxoBfMx4dEfVd9TAziOB/FTb3Xx+r2PaqbrQ5u1Y7J48g+crrRw9QAvAFH6f1nW5zeNUXWjzTixqzjVaU+j7q/JftXBzaHmsS/zNbTumHE/Ei/428zI8PGCpWQPx+zfjTOF1PJ3dG7v3BnNT3ZLGtKG+u0AVYp+ELIxF2vAZpmPKrG0x4d2k0A1iWnHt7HXoItY2q17q92j2LGyPBz6vt9fw7HJ8MHr5HMRfYeVMy/Hy90PB8RM4N9aGOov3oejGDakOd6A3ADNDHxv7PLzjtfWYvjv9NyaWefOxSPw5fbahv7o3jGRIuNDAPczaSyfZBAJVUr8A2gmbU3Vh2dXqhr2Q3nLl+oZAVOyeeU/fZPUdNXCx7QWpHQCkNv98bM8/50TML+4/cyJ2Yvp93R//Kj04EbvPSBTCAPCgxkQhi2OlSR5gH3HhMYbWU/9L5rdDQphDsaLx9mHoMvgpfm22CSAhzKm6+MSjJ5pkYjr05b8JvlXUGJIQpq+Dfh8ZL0OuA4CjQTgPUNzwXe1kgPLoF8Pr/TRt37SLjN++6V3RI5Bp1KtuZxDRW+fMwaKcHUhfHG7oN/E66nXWr5batRG8JBap89qYTqxfPPED3JFnuXJ46O761WH/TUNe/QagdeMsSQgjR/DMH608Td7rdgmwoSQSNbYA4PNxAprMZGWeesHol3bk5RooPJJmWAD16QAgpkErdB00Es+ma3FmKE3DdxOQv9EfH5xrzJ/peRHTl7TJpv/r0xhUtCiE6bWVp6K8pfrEdG9matr10PG78I69NwpOMV+0SsuTkPe61h8khDlVFw8iTHU5FGupQtjwY4xHS9NQDDmaC+9t9Uz7sKiclz6rIfCpU3Uh/vefpGvxj8pM+y4KSS3LlLrwV/kxCVkfsw1o1cVJcDZZi/yN/jxEwFn7Jf5OqCwaBwTM4tGmueHbEYnGlv69F2zyk2Kw0X3v+GRDfSJR/eKYBYCgzSNNN8P6/nGqLh6nTUxffQebq6YcT0RP2yNSGeLGV8yT8WW0xGeEq5Dn0afP73DKMI7rfsPm48DBLlQ7dgPhyQOx7zV5/jP7JvI7nMLhCXL8LjGN+FsPdU8BtU8/a8eygD9Q5QA7cfJqoLgVwiy1asLD2xsPHzCiwoltcihWfiIq8vDQgT54KG6sIe+z6Ufxi3Wu4f6Kw+Fu5wLiyUwIo2fiXHW1/TkUZOcYyjr1gnZC96K/+5AYad9E4uwjDERqmG9bLA/cLPlLAkDnYTKwhfqyMYwMANTdURFX1gdJ35ReCBPrnpyVLF0DQPzejbDUri2lbbSbuSyICsy1zarDo03zEucAszkYAD6vt9dw/7ajDarGpPNYYjSHiuUUHD+BC2tDUWt2ItanJ3BrjoJNLIwCCWGWRsG41UsOUvxMw7a4UcdLqpO+O4dixajULASsG8Ov6Zsuv3qXYdw6FCsXwgAYhLAT72nvx/JnVQDAV2c683uzLxstWIhICHMoVgysfFGqM3VmJEJHaWBmTtWFqqPzpT4yI8+wxrgw0oZlAX8Yvj39PPjk8Q7GAh7QfzU9EMTuQzr9jPu4UmlDZ0iLif6jNhNaGvY/AMvWPYaNtphGzCPGotFPLp2eGsNRkJyqC4XnL0jPqZzuPYfwvF0HaRHu9YuvJTgAMS27wpm3F6nDtbaJvObeNYkUyyezFqfKYv8AwPWHzqLoFjM7udzuPNK+Y5vAYb5t4V/vvFT3hadsUnnVFrLNRfy+35E+ZAZCR+2W+pM2hd+FaKiPDsWKjB+1tlDdAAxO2maTNPmQOBQrns6Lgs9HCbjTrQ1C37qEwk4MAOXgs9M5DHNJm2FqiyhAAMCR8SzezQvjfjGMFQoMawkOkBYD0axVLNtz2158E9zYtD1bm6/GX2HlTDccD8WNdbshoOvSBAozophmeoHdoVjx/Gex0hgqOHkKXr4+aPkpE0wbfKKd4NFYAAC1fzDs+24byjVrMz2jmF72ZfuxpLEPPxUR21nQubVk5kLPQsfvksqVNpmbfaR7DsXKwRo8b3gaNsh03Su1h8RjwMS7poQeHujZ7jGcSK3LfcZOvMM2qx4RLQyb3ZyB/nCqLhTvPijxSEGnqe56U42ANQBQZmJVhDzLTGApdpa+XwAg5y27VO+tRyLhUKy8XKLgYXKsMVHwM9vUO1UW647KmNVwHYC7oDOCgO/uvV57IgpBL8kIjMlWBjLSccwY042cviwCTfFJqgSPxH24fFHzaVyWk2AoQzRxNhManKoLuW/I64PedJZ81lyvs9Nwek5AO1TezEsNeLnx+zdjQ9ZOU5/L0sihWFHekYX8KqxvRGHum+DGHB2S6PiHNkPcOGqbu+uuA0bCqbo4yAeZvN3oG4WTq5vg3FibIW/NQ7dNx4T+2w55ZidqrzkGh2LF5SHRhjwORVNsEg8HXpyO6FfGAwBiwrux78TeEgsb/sn9lYo2a7H+9IoC+j1w3dOmG/PCs2d52iFHc/GNkoy8lc0MfVa8+2CpfQewPYXY5u5HexrKEtGSAeDDwLuCpA6Mq0avVJ4ufttK1j9dTvA4ZgBQeCwd5dbKiIAAMy0/+aIdC67UMfA7LzRAMsUWebn2hKbQEZGXxbIdipXH/RNRiAsqsDSzfDQwoEcqpprWQxS0fDzGpmYaxkpW79mGeXfdrnXQU+Zncjy/9RuWocb3mgLD3Vru1UDBlW4XTJ89oP9eeiCI3UdEtsEi1Lj9BTbZ6xdfmhwIVQ5wvxkggYQmjtSZkW41dACbLMUAnACDgwWALfPnSGXpBQQqp8LXTNNVc0d1XAwpx9PRRpKoMD0L8ft+N9UM7bhVBKfqwigT3zF9fZa6DN74+AeaD5PHHQ0dzqvLCSlfjfmyVtcSGoSxqZnoGdnTsAGiTaEZpXdcwPuD0otBVvWbfT3/1/pH4/gHNqRFsOCjZTbuRkHmcWxaMp+nz+/BEPrCkwdK5Z4fYzP0f8AappW+PCQaNx/T3vPSxlrwXj2/8X+ukp4VpmWaCiGk9TQjd5tGACi/epfEY49G7Q18iL/Jt48WX5HohI+I/GloPIZ/wJ7XnqlBUpOPR0FOrgF0w6m6kPyBFli17rQEJLQsK/G14IoGnW2myFiTxzYPojmPXjDZvGieIV9JgrVDsUomhJT2SOsCTM/ezkNImJEY/0viubgY67avRmbfWfweIW4WJx8wCLR0uk5pLU1C4FRdqPTzTul7NNsEpi1sheJk5r8YsG4MCs+dR/b7No4OJqb1/UDz93SqLpT7zRxIhPu4in2k6x/9PCKa5vb3KR0Bkspy+LTmSKn6uRCAZO4s8iIqA5yqC3/OYH5U8/wYwl/IiBQe/mCgL5vTMz+z8U17YSfVIJiL37hDscLnowRYjXIMr5/87PTvRv+eyMc3KLkcmsyMu2dliH7OIaq2kAn3JMypr9gxM3u7gYdjI2cYylBftiPw5/ESnyL/nn/tRZt3Y7H3DfY+977FTgspNEit2YmGvGU27nb7jenHFwWaT/rcHBL+ymBNQKvzbQJ62nvzMAlpU9lJI53CWkKZz9bvTX7jdTWeo/Uv+aY6VYYYajaOnaoL6V+x97iksQ8cCgvRMiGNCRCWRsFSevF3sb0lLz91bhsAbF6j523390Xxw3lwKFZMzNiP7g0jpTLyXpeDHmd2mW/oO3GcE2VdqmFIZ/a//pQELG2sGMY1pTk/SlsrLw1jvylkDAAkt1ou8SGOk7K1bxj689DTbMz0bOXgz0R/dH0/WrYoyOg/E7NDA/m9og7hXLlM+VZcYxD5tpfkcetUXdwHTxT8Mz+xGdoLaEjMgNEi6r6nB/D1/xZ6IIjdx+RUXbiueGLJ1Zrw+SgBM7O3SwuzU3VJKF56bYuXLwsc+HSH35Hxueb03Xj6FcMEbmnGILOn3zVrye4lQ+nGH/1Tmnjpf9cBI0210QQ9e77tRdTeraEEHmldYGhnlyFP4eajzETr8+NJXHv+fmCrErWJIv9HP2Xwyf5vaeYswc9r2mwy7xM15IAmYBamZuDV+MEoyM0zLDBmRDzq+8OpulDsXVa6vyRnB2rMT5R4J7jgCuotzrNegFmVyzSK3uvZpu92gYXX32nkaA7QItZFJyxJn89E+dVGp+GvjidIixeZ1Yn1mtHZ8TaDMAsAlpBAeHh58fL1G+WspS3hVF3oGdWL11F+XTmc+VU7WRP57xkRgwqrdqKwUyv8PnUaAA3yGgAs+fKCt6l5ZRR2bMWv60xngtbkrGRtk3VWC85Np73695Y+JRohCzWAFvFdjKhyhrdNHBdzTmzHud9C0Xi9lo/I+kkczy9SSX0sxlyLTUuXQDgi9z7B8weVqSSV5U6o07eR4pOZfa8if+6eky9h+iL2LZ0fYzyFoPpChjNwlszPbAgdw05eG76TCM/tLnh4M5NS0XyI8lG9T+dFoc9h9t4ISt7vvQTDNyISmZWa9YEYz6l1Sn9DOkO8rKJCrQ92GUGU9EQnXw7FahhHVbfXlOZm0efXoVgR+GoiPDvnIKbT427LJ14I3vvTutoaoN/QBr+QZHj3+g3g5XgNYn96gyT4vZ+A1NkRKL+tLrwCmKk3Kc0cihWeFSuWOCeaCQTK5wkYf/c0jEIPnLwLpkJ/o1IZBLxHERDyXJL0jTlVFyadbcrLqzknER+dayS1I3V+G7c85fwim+2JZQ/O6mR4p+6+DafqQuIXcqDxdQlreP60jgtgqVaVP382fq08Dx7pxc3tAaDFtAOGuUT/fhyKFcHPa+/Rs3JleFauzC0yyBVheLYWt4/G18ZffuAne1kxcw1C046wlTzPx0Fh3MTv7BoWhqLBJwmwvTyep4l+VfsNAGFfmgvtKa2XS9diW+h3/kZ/3l7xvlN1IectO8K+iEPNeYko7NQKTtWFnZ/OgDtyKFa03d+X/85aFoaj7RYZ0lAdh9+TXS70axVdi/FZiTy37UWb7zWLhqDkcpgdGgiHYkWVpUmG9hJF7NHmmrThM6RyuZJhu1bPA/rfpAdgHfcBiWAdTzSSzQDcTRb6Sbzds+Ow/ZtZphOkWR4A+Px4El7xj+ZpxEnR7LdI6YvDpaCZIpSuuNF3x49pmVOjEfxCktvnpZWt55tI31cfnGuMt2oddVvHjT5RqLBKdtQW6V7bRr/JWdgjogU/JXBHqXPbIHQ00+R292vD40KZld2zlQPr9jjR+r1YpLxn9EMojag8gn3Wb+wfHjHaFDrZrE8eHj5KiksDMIfw/a206cVM+1naeDVLc3yyDcdGzTC8a4fCQBo2/vKDaT3uvp2Sxgw9L7a1xMYVP6DrgJHw/MuIEnh8sg3+bzNhu93+vmhU7Qxyo6/hxHt2bibT49AlrG9WzW17O4wdi3Jrd6GwYytcCvZGzbmJpuPJXXvMnpv1ETnU69MVdmyFjP5eBtSveyWz+qNej8XOT9gGpGdEjKTxLWmecfd9A8Cyq9WxMCoM8Ye3SWlEYKO0ha0QMnwPrj8ehYq/mAeGd1fXvShi3LUbANo9O85tnctzE3msvYkZ+9GxfJHbd1ZSPZQm8xMb90EqKTyCZ7ly3HTarL2Re59A9Z5p/DrsizjcqlNsCvUNDw9kfhqNFf2n4hX/6BJ5n5a9A8801NABS2rfs+lH8cZ3TxlMXZ2qC0m3CvFuYGspvTTOXovlgcYBFgPyxWeeRrm15qer7tZEMxJh9N19U0Q5b9rh+6ExNMaKa1Uwrz1ba0V/xL9L9/rti3P6git1sLSxgtvdI1B2QzKK2odLc1hJ87GHlxeKCwuROiMCoeNlU0OHwsJ8VLdUMOSzBAfwOGul1VPSvJX5qQ2Br8lj8F7fHZVjaRSMwmPp8ApoyGOEuktLdPoZu2SZVNLaJZZbEm9O1YWug0bCc9teVP6rlhTeYm1eCno1YOO7oPgOtuLX+xqcgoN1NBj/nwHryJt5X/fHv0oPTsTuI3r8kcfgVF3wrCjb6Yf+ORwA+5CDt47gH7kYLLDiLzsNH79o2tU0YShud4/g107VhVf8o3HqOe2EiDRn9JvKFhcV+h08dC+aJw1Bl8EMivZ0RDm3k5CZ5lF8Rs+9z7Hh+Octcw3rvWxS6HfotidN0zoUK/dlyvzR+DwouZwkhJmVYalSxbAY69t4fjQ7LViRm8Rhr4uTD5imF/ugR8uDnM/iggLuF2DWHwWnTsOhWLlZjlnwXSpb/24X5ezgbSDYZ9Iennma+RP8scDoZE99Qn8Zd67h+ZNtuBBG/o1XBkXj83p7DYGORf6lvo3WTr1ELabYz5Tv2KgZaLFzsMQP0TVftsl9PKOLVJ74OzYtnZenf+ZQrGid0p+bi9D490jcB4dihedfeyX+HYoVZ2NtKBJQ0LeHrURu9DU4VearUDeRLR6iEEaBUQEgIH40AHCfCsvWPXjiuU2m/Ik8if1Ufltdw3ORKG3qjEjuUK/vY8vWPQiN22UYM2JZ/rvKG8oW+yN1Xhv2fzYL+E6+lw7Fioyx/lI+s7YBzPH/0/MhUtqLT9rQcfQYOBQrvm/UkIcNABisulOVT5rInKqy87DEIwAOsW1Wt9n1iXfsuNEnyhBygMrV9+P2b2bxZ06VAcfQNQlhALgQdjbWZihDJPH0OH1xuPR+g36+wtMVXrqM1LltOACMU70LQa+6sD5T9nXTz6kkhFE9+1+eju5ddkvvf9BRJkR71a2DtKEzEFaWzflNZsVJm2ixj0QhDNB8vczWmm+CG2PfK0a0XIdixaCNsYYxKfYZCWFevj7wCvRHa++ypkLY2di7J+JHepnO4Wbz8rqUDQCYMGs2VqTvY3aa9PzT8yFwKFbMDg3ELylruRDW+/B5mJHIS/oUJrjRCSUAbtZa2pgV53QySz/hYBYVJISVRNT24oICXB4ShdDxuyTeeoSwGGkDfc2h50UhTCTP5o2x7Gp1KW3XQSNN11qn6kLaMOOJGJ9PhPWbQMMoH6UD2OkhAJz8WkaCBBigDRGZgua8KQthYp3iNe2dCrKy4VRdEkgLUdgeD4knz22s7/UxBkkIA/AgoPP/ID0QxO4j8ph6HQ7FivVpO6SJLfBJtsFo9+w4BA1mE+SZCXb4PcE+WNFESMxX6eedfILzffwgym7Q/Bpo8qz3NTP36RHMJqSFV2ohpmkHhN41ryFzJiJKlz41Gg36HgLFhyqMvHJP2kWRR6+GmjMzAFQ+wU5P9t1saChrVGqW6QaTytNvAgIGaahp4gIy8pimEQsc7DKURzFmzkywo6e9Ny9D/CMzTX35YluudmUO6/185BhZZptlcfKm+okORi+RyiUiFC+x7tozNc2hZ8smPF9KPnNa7zxUQ/6iODeEziX2XZ1vjZpAgMW+0vMR17AdvqqvnZrRAlZlKTOrqXWwUGqn/cXxcCgaCphTdcGzcmU4Vy7kZehR+t7JZEAzIVtHwHtbPbTd3xcHon7kZV4eEs03KOXPsY3ntIarATBttp5mhATzvHpyqi7UeiSVmdC1aW6aruWncchdwQTkRTk7UFjOg2ttxbSdRo6GU3Xx2EFO1cVN2Iqv3+DpQkfvNmwKzUATPs3aadhkHP+JCbA3O5w2jEOHT2vDBkkM5CzeF//z/Hf/7C9qPhDHI28a0krl30UUy+o1x/CMQlK4y+8V0BBp30ahqNjD0P7qPyRi69w50jglf5nqx4rcbkyLrl6VvrvUeW0Q9IqsYRfBicz483s/AX99NwuhsbsM9QSsGYu0HzQrBjPh8qFysgIDAE6+qG1ga88w1/hTW+s8epTfCx66F5ZmjXCnmKE3bvhtiZQ3K2YuN092KFbsjmmIbv2eNPDlaGBEkRXJoVjxjSKjW14qrAAAWLfHKY0Pv0kJUj4SyPVteTb9KDz/2iuVKc7dlJ/8ggBwVL6s3rMR0+Jhnq93WncAMCBrrtu5Fuu2rzYqGUICUdixldbXgv/lvMsyyinxYntpPOfVqbow6chfPB3x/WnWTgRvHYGrA9nJYGFQfV5Oo/mxeK2mJpj18Ynkedc0rcl/m70Hh2JF8IvMOmTdjl95zEVR2SDyUhLxsfNCEvJ7RkjP3M2B4juimGwOhUG1A0DRdRld051SRX+v6OBRzH6mH06t1tYniuVmRvr1lcYDwPyzyZy78PwFnB9jw9nxNqksUh6cG2vjfUfozCd+boG63yTg1PN2dH90GIKfT8KNvlHw/4n52Kqvulci0t7p3bMagIrX7FqG9IROqR/zAAtnArDQQSL9o+KIPfAR+7fQA9PE+4DomLcjHkX+E+0ksxZxEsovvgNvD/eQ1WZaJbNnYiyseyV92ZamoYjftBxDj3fEWfulUvM2+ms4Dxqa/b4NDd+RnVlPP2tH3W9k/yXxP8VDWpW7C318mMY3pmkHbp4kpo94MxY363jg4HPTpckvYO0YhI5NdssjAMNk6TjSywCaINYHMC1f0cGjhj5y1xZ9fzhVF7r3HsoRsEQ6N86GlHc1MzzRBDR9SjRfrEXe9WTfd5sDUDgUK3ofPo8J1XJ4HrovxlLSk1e9uig4dRqpMyOR1VuL6XL8pzDeDoD54mwLK29ahtgvIr+XhtlQbVEizo+yocbhG9i4gpkW9ug2EEUHj7otg/KLpqQSzwENsW7Hr4Z+UVc1RWFKNRyOm27YBOqpYJOfwTfOs3JlFF29iluPRGLbLK0vRBOm4z+F4Vj7hdpGsFZNxO/fDACI6ToA8b//BNtL41Flqfz+zMYQPSNzI7M+ILqwNpQ7s7srT3+/tPFTWtoIVyH8vM9jZQtFMqUlEr93z7DGKNovv1P9RvKhuLEc4EW/YadvzR25a69Z+6kd7uZNp+pC77TuEgqmGOPJqbrQccwYA3CHWb35PSKwdd4c1oa7MfKapHjhq/q73dZN/Il0u3sEtsyfI90/M8GOOt/JGvz8mAhUSEjlpor6906xj8zo0nAbNyelPDFhnRG/f7Mpr14NFMnk1FKzhoSma6a0cjcv2vb146iDZn3iUKw482tj7I1YZhiT3Z4YgY0/LyhRuLj2RBQHfhDnT4dixbUNgagk9In4DtO+jULI0zvdjhVKv//2LW7uL9Hd+GJ6WnBiO0b4teOmtPryaK5wVyfAzNoe7fgERzMmIpO8EimyBbCLKXSX5SRwAJlp2TtQzqMYfl6ar3hJPOj5FtPmvmGHz0cJfJya9WFJc9C9zFUrcpO40pPS610vACCm0+PosmIPnM2r4PwYG/ezLq0tzVM88WV9phBUX7HjwAvGEBREp56340rYbYQ+tdvAu0NhJuCbfmQn9j26DYTH7TsoTGWQ+eEfxGHbc9/+c+KIKeP+M6aJ6qz7uj/+VXpwInYf0arUA6ZCGGlTSAgT40o5VRcKNvm5ndzISV0SSN7QYFzFesTf1/rLi4l+Iiw8nAqHYnUrhOm166LQcXT0DA6wELwkFp4tm8D7EtMHNJsWZ6rho6C0JIQ5FCviD2+T6jj+IdOG1fg+EQ0+1RDfLE2YeUjo2GRkLW0JgJmZ6IkAJag8h2I1Ra6j5+d+Y47TtDHU97+48SBTLbpfLrESzo3TgCM2rFls2u5aszR0PEvt2rBsYSeQuW/Y0WiuttmhulrvLTKUsWxlRwAssChpYx8eMVrKC5Tsu1Bw6jTW5qVwbTuZhfgP2M9PhwBgW1h5nB0voDl6eBjKEvup2N6SmxXVnJcIj0TtJFPccOv7RizDTAgDgIKsbDSeE2e4fyDqR/h+YDQ9Eevim7u6R6R0TtWFoqsMqbHcb3J8m+ICLcaUKJwC4JtYh2JF4aFjuFNcyIUwup82LQotpsr8Fhaz0566iVW4ECaedjpVhpJH/BK0tL5dFDdNL3hQvD0uTN5F/BT7mxziRV4r/qnFCky2WrCiSR2kztfMSwEWt8upMpAOAoVZv2EZcn5pLvWnWL9DseLP6bMNAhPve2FMrM1j5rBr8pLdbtAcilU6Bde3P3t5ixI3mGKAZodiNXwj3uuSTb9bfZne65N53XSaQMBF7vKLZaR9zd5x2Q3JhrFKm1sAyPiCpfOOT0bhpctuwWm2C4ANeh7InFTkJW9oI1MFAaDB4vO14fwFA+KpWL9DsfIYU6mzIqR3QkIYARURfXVcQzutVem6YXPbK7UHPHa4EPDbmBLfB0fCBBD8IltTrB/HoW5iFUkI01PI0zulcrzq1cWZCbJZv0OxmgthgKkQBjD0PgAGIYzqKimwO9VbxsMiCWH0zuO3/MLT6L8jfi0A0ZAQBjCTUj+vSvx90TuitJbQIP5bjBcmflu1E6rBqbrg8xEbn3vflM1O816zS9+tQ7HyNZHKyvjRahiLMS27Gvqhn08054/Si++Cyo/f8guczdlmfvckpmwgoDB9H6V9y9B71+al4GDrInQPYND4yudanNPW78VKeQCg3lcJCH1KsxJJmxYlhUXwPqZyfooOHkVhagZSp0ciZHEsB5v6x1Ax/gMnYv9/N/L/PT04EbsPSDwR8/LQTLbow815y47DcWwSC1w5ji8KAFDYsRUsW42TuEh6Ie2mMwCVnrVwbZkZ0Ib4++rAaCRMmVnihoW03qT9MttIATCULf4W//eM7ImC3DwAgJJUGWr01RLbKLZ10tmmSGjJnHYsdesgfu9GAMCks03xbu3DUjvOj7ah5txE3Hw0Em99+T2+DG4GzwoVUHSDmY7RKYeXrw/W7Vx7z1rB0njsETMYRa7DJWrml+TswBBfo6O72aZTfBaePBA25bjBzJGfhHpa4JdYDnN8d5TYHnea7HttY+qd6wgtU5HnI8ALs7YS9Tl8lsNq69sGsEDeFEOOKPX71ggdmWIQlM3aINZZ8c/aWBn8u4GPi0/asOvjGVI5iA6TzCdL64ezsTZuBpU6JwJZPeeUmEcE0KDym6R4Ye97rVDuN9lJvtX7sdjzjuY7YdZWMb2YTuyD9EXhKJNZniO6lQR0Ipan/1ZLGh/ueArbNQj1H2NC7uSsZAxd9iwCJhq101S+eBqoL1M/BxIwhVN1odH3sTxmGsB884q9LChMNZ66xOftQUyDVjjztB21U65zpQAAeFaogPXpCVKbLdWqIr91MDYvmqcpS+6CFHj80QDFDzME1pBFsQh8LRFn1zTCnjbG042QZG9828Do4+uu7wFwywB3/aUnjzJlUXznttsyq++ogYttLyBraUtu1i3288URNhbW5B7q0j8z+wb/P/auPLym4/1/kptIgiDEkhuRPZYQF0kkN5TaLqHWUqrUTrRUqbbaUkurm9JS+1pKlSpVwq1dSWK/drJL5Nr3LZHl/P44Zs7MOecm0S9+6Pk8T57cM2eWd5YzM+/Mu2SMM6LS4TzO1xQbFwCdP4pql8JwYZQRHt/LbgvbhMFp0wFcfteIMcOXY2GQL0cje3spp8lWfwCALrg6UsY5ofy6ktSS3p03IuD6W4KiHQDxcMTz6zib+dmC2WqB39Z+qjdohc2tbDxbdVmYsQf9HzGHivoF+ePMJ+WQ2mqhIj0Lsqaq0UZw540IOOQUYPeseZTmoJ9j6Bxgq80B8QDG0U7Ud4sOaY78q9eQ+akRnnseUB0sW/VUw+0eEbS/Hidd8tQIpHSX9kWJi0JRpvw9HA3/FYm595CeWw6tSuaq5sOWIf82XyhjHR6D4WBfougE/wPyCh5i6wXtRkzD/wPYj9frC8lxLcuEAaKCPTtpJc1siMlp4uImP+UhcDGlUSbMbLXQWxYACB8TozgZcl0pTVJE+ZR9D4CKHrFM2Krzkt4M+ctt0QBJSxqIGxn3Csj6I1iaiB8ZJTHpDZQJA8AxYQsfmbKW00j+m/QGKoZntlqQf+kyLTuubgnF4kMWDJc/9+P7gGDxxPq+pL9DRM3yMs8jaInSTHnWR7wc+c1ekTZpIzDpDbgd6Ir3k09zp41y9PSKwoxzvL7g1cGRNA0Lk96ABkfE25NKHc5glievnA9AEkctyEdGw3uo+91Qjr6p6SIj4FClMs2TzT+6bksIkXUV+bJw8PWm/TDMOwrRtZrQfAgTxuYtr/eQclK/k3fE+afZakGpNfsUbRrUl7fWaNKLBjnYZ3aT4rJLrN+9VySz9tX2lYKupmggYv9XsxXjhDhjZtteTjt5zvy9Ng6PnS3RN/CAor8AwHGnB41DmLBasyTT0Js3hMP5r/3U2MOd7uKpasU58dw3dW6CdNslBxvv/BgjFyel+WLE95tCn1O7uCjqzT5njBPTJ/3UEFHHOsOuXjDXn9w4ttdR3VV5nuFHuuJY+K80bKxvmCoTxqbt99sGLizqvcH0WbfzMBocKaDf/KbUBGqM5mxfXtk/LzWdY8LYOTLaU7ylr/RTHBWPBURR1uzGtWDSi9Yx24a3FeeWm7coE2b9QOwDYqTg/N/elNaSF8Q5s5b7JdVvPSksR8z7txB0Oy3ON8SUuFpbAED3lPaKfCKOKjd997qIp/jERLkchJ6VvtsBgGPC2LFOmDB5melf8vOdnWMJjtbUb/n5ivyvNjEOu+bNU+THjtcgx1Ko96XkBkLuMsRsFY2RyOkiv9O/jMSxUbwImdlqgdOmA9AF+qHST3HoVvqWYuNNbi/V2ipxvqRj1fidwVy5+SfPwueNYyh1UWpr19940WOT3oCkJaJhhhPDRdpSvouErnIlmPQGZP4u6scSKRe2PklL61ODEGo3aCydausJwYwb3opv0qQXzb+XshMdxc955MYmNksqJz8xBYF9DtlkLG5sFOfPCgviUTle9LFFXJu09hVvSDNW10HWR0bYFQhwWcfrXCa+PZu7wZWvc+fHiN9YO88G2HjfGcHxPZF/VTR6cuqdWdjy62Lc6a68BQNEFxjEHyehl6AwJmzJo/2G3Km12WrB4W7TOPqC+h1ElY6n0Ta8LYZ5R3FMmNlqwfwM0acecWBP+kntgOSFgaYj9kSgMWLPMVadj4eDV1UA0obB1saeILXTXHziK/m0Uds4FnbalNPpJlp17aOYyMM+E5mQlmV4PSaT3qDqDwhQd6DquPUQDjWfgQdmX8Qe28b5QfPtLolz1TzkQI0lsDST0zqC+Rl7FIs8IPlxImKcciVlgsbHxFsjsoGQg20HNb26E+/N4uKVW6YU65HTBgCl1xzEtIBHImYnbqsyV/lN63NWx0x6A9znxlPHkLpaQXCo6knfT67Mi8PJ68H2v9lqwdHRs7gyR/qIm6a8i5dwe5M/LTOvubhxyL9yhd4S2Fro89LO8Zv90bVofHYcEst17KaBjZM4Rzrt71PmMo1bWN3Y/IlBDha6IHET86DJJRqvTfSbMFstyGh4D7HbVuNu14Y2y1EwZwyInz6z1YKypR5w/em400M1P+J4maBVl7c5kUlyU/XKIylaciBC6nu3WwQWZuzBmYGzbJ5ys/+rfhWnmEdYcST/UUrXEWw9q00U6UntPBd7Q/7A6N9XKupUfbE4T2R+2hAV5kvfQphFEs1ya5tEw4koHcGNjYF4YPZV5LvyYjj1gWe2WjgRM0Ac+2ybV9KVUt3cyNtE7SDEbBX1TwkepJRBySTRypnP2Hjknc+i+bYNiwYAHB85C/mvSps19qajyg/i7198dtIyWRrIb583jmFVzSowWy2qRhlY5DS5SOkmm9eEuo6KcVlqzT6uPHldiSNpW99h1YTSsI6Wxoh8bjvbdzb2Zkvi0JvP7adihADg96FtMXj52nS7h7iJtnMUD9JePdmB6r6Z9AY03HaByydo19u0zia9gRo9IHn6fBqvGMvkOT8pVcFsmq0Wut6yYOMEDTxAmYtff/xe9VthDzblbQaAu1EyWy3wHx2P1Bni4dAp4y8w6Q3YVmu9gubA3oep6CYrwqdWDumT+50aKuJtCHajDAvb577dj9H5YIi36PC4XXRPbr6wVafopl3g3ucmjZcyTTy4EPLyRLctOTkAxD215zdx9PtN+S4SQpS0T7HF8JutFpwcJjHVbUtmo2oXae9A/Mu57btA0955Q6xj0k8NMSK9E/XHqUY/G+63tR99ZkVH2T1Em9bd0a1qJHWszdJMDpHl30q2YAeT3gCvL+KQOEtSsUj9Rlw7WIfPGv5b0Bix5whrE49D516BTnxl7V2Ql3mefpzEfHNhpydqmwp20+HgUUWxEWA3kVU6nsabC0WHho2GD6bh5ReJE+T3AcHcST4gOlq1Lyla1EpcEMqZ22Xp7HHGitqH7NHdywgXk3hyfGV9dUU8QNSfEA6eUJ2Qde4VaPwu40fTOhInyQBg7HUY1f/pjZRmi8VTUJlCPWnDJX83BSBuIDg6VHSbCJKmKxc3Nl/2NzGDrohTIFkTHFme101YnrkXF9fVBBG3IjQRpsvvY3GDkX8qkbs5JH2lNpmzm4noJp0VjJ983JRpk0KfHbYdgoGxeDzj3F6uLFvj7dzESPh8Gk8ZHhbJPcWbCqLXJ28fx3LZHBN7rb/Ytzo30fQxuR0CgLYNWqvWU15/uTiaSW/AptgVXDlkg9Dt9EWbTDTrvJXQm9xzNh1T8XXX0HCAZ7gKmvD6naQdH5pCi2RyWboNXw9FmVM30b9aIxjfH8LROCgxVbERNFst9ESZPaAhTnvZcsmNISAaCDJbLbT92c3rt/51RGX/R+EX3zdSMcBTMbyFxAMGHUcLCff/IIGj3a1tEnbXWcvR71ClMo5mVMUIH6OiT9QYUHYM3O4RwY1TW33atr4JgGjC2qQ3IP/mLXqjl/zmHOSlpkMOs9WCjQdi6TMr3k1AGE1b36TZauHmZOI6Qn5wAoBzP8Lm4bYknh442drQqY0HADh/vRzHdGa3Ey2jEotu5yPuUp0YeT4EE/3qc/0wwkdi3OwcHBR982GKqJfU5fRlLh3Rmdx8TrwpKdFS1O0j1nU/ryi5IjDpDfDtcZSjx26v9FttTlKbFwqa1EPFuHJ0zGR1qkbfXR0k9r/x6EPO2bqQlwez1aI4FGTb1dYBgPydSW/A5XeM8O52XDE+bc1lgKg7zNYNEI0I2TUQ9XVJn/wzcy51Z8DSEjdVclAtP4xgyyw4elpaf6pI8wKL3FahiN25BvlXrtC4pVdJt0yXxz7EykxxDBGHy5vvO6HJsQdI7jkbdnstuDBSHDPEJU/wjKEwHn2oaDvyLG+XT9zPwqQ3cH7C4qbNgRBZF4Hv7sO9V65wusyAKNKuBuL6Ql72zvnzadimzStR0KQexm/+VZ5c9RsxWy1UTB8Agobup5ap/T4S10i/j+NRfXHMi2W+vqDg2fy95NB0xJ4DEHnb+t2+QPnVFu6dfHJ8aArFjsULuDDitFRtgiJhaha6iKVCufW3H9Lj6GJKyp963Y8qucrz//xKMCZUPGnz9FEtDUu//F0bvwgE7snH2dBcxXu55Th5eYW1AYGuZiBit63mwtqfukZNCrM0EjrZPGzVzXAEsNQTjWrkX7miSpcanbbyy/rIiGqt05H/qrXQ9nzQMRwu6/Zjano8Bn8wAllt8xTiemptsSxzL5okDKFuEGzFr7m3F3IfOsC/Jy9/b9IbADs7WEdH4viIWTbrQ5xXFtZHiQtDUbLcA+6UExDNU1eZptSjuDIkEofHKUUI5fkSq5MEtuITx7gsWFqTf4hA9fk3OOV51gIbmydbjq1+q7avFDIaikYbLg81KpS0zVYLoo51Rv6ySii7PAGOOz2Q2/SC6jiSl6dWvv8BZ4XOIADceisCN6rbUWfUtsaYHEV932rtnPZrXSQ2kXQEg2cMpafcASuGwP+DBNX0tvIERPPxrKPZouhRpXtbVdiZLtINdt1vhsLzlzPIv3adWssrrF7FaQM5qh905Oa3xDnhqvUYl3oYUc72RfaL2SpZhb39ZgRyytpRHUXSVn0zGsMacQcfphxHc5d8mPSSZbk7b0Sg2vBE3Ii6rsjbwacaEod6wu/DeK684szvulpByD/FG5AZnnwGbUuKBy3EYqqt9Gq/600eSl1skHa7uK4mqjzSObz4nhFHPxLnowujjMgvAZSIuI5KHc4USbvcAXVR8eVgLc+SdDo3N+TfuGEzzzEpx/CVf4jNski9WQvFrF63PJ3qbzu7Yol4FZWPPMxv7WDUnHKRMkAOVSpj42Ez/H4fjMDh0txY0KQep79VWLks7nSPoJIAujJlkH/7tiLO/c4N8c9Pc2HSi34S3b1u4kD9VYo5EVDOi2arBTXnDcXpQbMK7WNb9JG8o+s0U1gKZcesvPzCynihdMQqDXg2OmKXFzzX7fG/QmPEngOQQR34y8fw7lW4udnkHyIQMCLB5gdui4GQT6DkvZ2TEzan8YriulqiNcD8U4mKjV3G50b80XcKRvhIFo+im3dF/mnRXwphCtQ2inJayMRa2EQpR3EYGFuwxQgIxrqwizsKXaAfyv98nbME+WHKcQz5fRCSes1+rLJYZL8WzhlcUKMlcVY4goYqN2KXhxpx5DNxkZCbnCabnJy/fXB3lQcqLIjHrHN74O8oWrvK+dsHTq3SFeakSfl+f/dHYJ9DNje5gO2FY9a5PRjq3QiJ88KQ1q5wQxTycn3/HAS/wIvULDwpL2BHX47Zk7fTDzd8qFPknmfOo3eZqzYZu8eB2WpBq659YLfXwpVX74uhqDQrDjFJyZgdGKDYPLP0sdDVDKTfAwDYhdWB98xkfFx5C4Z4i6foiQtCETTgIM1jzk1PDCmXRctuefo1bKn5F5evre+4sPcmz3qKDZjZasG2BzrErB4E34/FTXDSkgYI7KNk3gkjbm44GwOZG4DCNsu2TtcBUZH/bjVJpxQQ/dMFxah/H4mLQjkLZLaYoaLGsK5MGcw5EcvVQY4L62rCo+NpLs/oVzpRva+UKRHw/yABFePKFeqyo9vpi1hVswqu94tEhaO3IRxSHhyp1VVOu616tWndHQXHzqDavlKY77WXxgUk1wrFQXHdmNjXrYmCo6cV4YUxDSxNJDy6aRc89CxLGQj7UqWwKUkyGMQatlDLP2OckYrH6iqUR/IH1RW6hfLyCSNLngs7DAKA9EmRhR5KEMMKNzYGck6wbdXbwaca8tJ59xdmK+8GwVZ92bCi5rii+oKg5tyh1O9bu5M3sCHYrdhM9fqsA2jvGcbFZw+jrg2IhPuSA9iccdAmzf92ri7ugZOt+bE4ZbY4cQcLTkYpLN4WRkfaV5F0DDr4+XA+7GzRBQDX+0aiYmwK8vw9YBd3lMt39dnDL475eo0ReyLQGLHnAJwfsdcbodSafbg03AjLx7OeyISWNL0hAocrncECol+fTZtX0nASJ8LyOq7ecKUbYzat9UMjdwOiBnKrVtiJkLwO915viD3T56rGZdPI37H+T1x2VcaNKd5w/mu/zTYyWy0wvj+Es2ZVGNNX2OZCHkb8aNnaiAL8ia0tqNHEWleS5535e214va70Q2Yrr3/7Lq9ZAzhsP4SrgyOpeIytuMVhposCictuaGy1LYmb3S6cWmO7viGIM+lutlrQaNhganlRTktuiwbYvnRhsehTHCwwN6FqdSXWP4s6TCisfmw4eW5dLRSbMw7Sd7a+c/vrd7Bx/0bVuiX/Ug8pzRaj9Ws9sfmv5aobnqJOdwclpmJekORw1Wy1oGn/gQoLdLbmAHl7smWzlkxvvRVBncwCUFgjtHXoJMf/+l2oja3C5jdAPKgiluJs1V8Nvc9mYml1UUTPOtoI/Xeivlxr73BO2Z/8twutjV/WzkVPryhRR+fA8ULLkt+wFKdN5FZH81+tD8cb2ag69xy97ZWntdXfgHJc1/1mKKr8qG7OmxyOkPi1Zg1VuKQoqnxAeeNeWFwWF0YZsXb4t+j8w4f4cMhvWFrdS1G3NtUbK5hiUrfolm9wt+uPMw+U2l2RGhpi58eMaaWh73RKtY1Tv42k+nry/G72jkS5pfGq6Yj/TgUe3bARGpsMHsRJ1ajVa0LqIUxs0IK7HSSHH4C4dhIRQzku/1mD3mgWBbbdkn+ph4C3lJIc5H/GeCOqjZf6/0GHcLj8uZ9aRNz2QEdvj4sLbt6ycTBC4viuG4S0jvPQLrENlXho7hH84tyIVez/bBixKwuf6/b4X6HpiD1HeP3QBeyZITIilafH0Y/f19yfi2e2ig42AWBquu0TwZ5nRB9Yvn9KTlYbDRuMS8MkscOCY2dg0htoWaFjY2DSG+D6lSt3O8HGyXMWnWcS2JeSZJ8BUaa+ZomS3ITEpidlm/QG6AKljdue6XPR8vRrqnFZBO7sQ8PNVgvcdFJZD5pcordP8oX9TvcIuO0tD5PegMsdsjk6SF7vJ/Mnvw5eVWk+Jr3oz0mtTQiIM2PyjpRNjFMAoJsLIhevVke1iV9u+YykyfzUWCgTBoginQQfpkiiiDX29FKUnzhLMvaSNIPXh3tYVtQpOvT5bNpm8rIK2/zK49oCUdw36Q3Q7dBjY5yovK6rGYi2jTrSvDNW11EwC4tmTqX5qPnVYs3fy8cZy4QRf2hqdKsxDbFHtxRa38XV/qFlJs1oWCjzaovxYeOTZ3ICTd5VXxSDsE95/zabNq9E3vksfHG1hip9Kc0WAwB3e3P+E6OCFrUxD4gn411KS2JDJL6aBToybnqcsaLR8MH0WR6PLXtTsmSog2XCrvWPRMX2jzZvj/TV2O9ZTu+DjuGUBrU5hsxlau3P0gUAB+qvouVkjBfbqsJeN5tjBoDCUpzappjgTndRv0xXK4gyYQA4na3N59QPnDav/4W6vhAOiN/7J5dCuHYh+jgAr99mtlowIVVyB2Grf+69coUL27p8EQospygTZrZa8GmqBfoEV5sMNgBqGZGFSW/gmLDs16R+A4BR+7rSdwMzowplwgDgs8vS2GBBmDBiHMhsFZ0oA8Cqu2VpPNaYk9lqwT2vAgx+eziqTItDT9drqBxfRsHEFNy5Q9uOrbPvXwMRu+U3mt/1fqKe7MV1NRVtYNIbcH5NME2/JGMPsrvacXEA4NTnFaHvdEq1jgCQ9NZs3H4zgqORwH3bOS4d29dqTJhdWB2Ys45w3xfxqXhxhLS3kK+tn/s1UIhoEiYMkPS8Lg/ljX8lT41QMGGFrR9s/Vkm7EYfSRc+eIY45k4PknRZrw6OhMuf+3G9XyQCRiYgLfcuvvXn/QzK17yiaCJM2L3Nflw4abegoWK7yQ03afhvQbsRew5AThduJPqhjKs9Wp5+DfbNMyVm5ZGoU26rUDj+fVCRvrCTO0A85dk9e55iQgGUJ+iFbQ6Lc1Ioj0/yddpVBRd+9qVGP1jc2BiI/fVW26Qv5fsI+I9SOZV7BFb0L3FRKNJaL1Cl02y1wDd2ABUJu7CuJhzM5aguBSDd+BDoE1yxuNo/NutLynjYOgwlNh/gwuS/2ZPpkClD4TE1jqunvN6FlUfiRY0YQhWjzVYL/FcNQcCIBNU0cno9xibjWhS/MKqVR+ixC60Nu7wCFFhO2aRL/ruoPMlz43cG43KoPXw+jce5CUZ8/eZSdCx112ae7Ekt0cFw2VUZ6wLNNpmYx4HZaoGvuX+xdO0AUbQvtdXCIr+T/FfrI2LaARww6JC6wgC/N0XjM7HHtlE65W2pVg9b48RW28tvTM1WC764WgMhLhmYGRhksx1Y0UC1vFkdjjYnb1LRUbW4RMRN7btkn3VB/ojduabIb8BWmFrbEN3Sgsb1YP+PtDnL/MxIN/HydHL/QmxZJB4pN/23EE6kyWy1wH9bXwT0Ejesn12ugwMGHcxWC5r36o8S8adx+beqcH8tkdN9Sf6lHqqPyKBmuYuDoublotq7uOmKeme2itYm82/esp2WuUl53DWEwP+AMy5nl8bh1GoIfPswF0fuByvscDd6GJM4OxxpHeahbVg08rKsAJQiuWyfm63i7fmeGXPR2rchtfzH0ljnh6HwWnTWZn+RekxNj0dwCZdC60zKLx9vxf3qlaguOAE33zzSXSxs3Oc1b4C0XqDzUkxSMjenFge2xpb1AyP0U5TML7lZVyuDqEEA4k1Q0ND9uBUbgLLRkjpG1kdGeH4Th7ub/bD3kdPxotYVNrzTqStUxJu8izzaBfF1ZfPJI7+QavufV2IGweXP/dSvYlHtZf3AiOMjeQmXxFnhSOs4jz4XZz0EgOi6LZFz2fri3Ii593s2N2JXFz3X7fG/QrsRe47QKUg8fbFvnglA+niJvkmJj/lTE7VFij2xIf9d/tyvmAhMegPaRr5Gf5NJaNsDcbNArC/J8weAebf0qqc/WR8bkbgwFPUnxijyPZ7qidEfr6Bx12eJTIuDRxUFE5Yx3ojAX2JoWGFM2KXhRjj/tZ+aHQ7qx8uns21h0hsQNOAgtYbl0fE0Ks6Op22W+ZmRY8IAqDJhanUvsfkAWpzgxc7ym9bnaGDFgzymSmaZSfzrG4Lob9Yyo/xElS2j9KoEpP8WQt8FjEjAysw4arpXbUNzbUAkdiyaT5kwtj5qG3+SXjh4gnNCTbCQcSEgXywdd3rgzhsRijosve3OlVdy7T5qcc/78zjMDgxA0/4DuXJYXy7OfS9Qk+ixJ3cAEG9DW7ftScsAgPoTY7DwVhWajvUvdn2DxICYrRZq/pqkJ06izVYLdOXKKsYSi2q/SQYV2P8kzcX3xFNe3Y7D1IKg35viu/yr17hxIO8v9s9stVDfPmrMWsOP+JswQNy4njL+Al2QP/WD1OLNfvgnxBkzA4NoHdk/YjUvrfUCLi9iHZU8sz4GNwWXg9lqwb3NfuI46y/d7pitFlUmjK0vyTM/MQUJ2fmQQ22cmq0WCJF1uTzVvlfhyEmxXv8c4fIp7CaFWPHTBfhyZbJ9ReDzxjHF+EhpvhgOfj6IDn6VMmEAsG3ZQmxKjsOhBquQMc7IGSAIeOsIt6knVmXNVvF2Sa0N1A4eWKy5W4Z7L4+vlp7tp6yP+Zv7Wz3Fm5UrQ5Qm1PNv3qJ5VttXiqZ5aAoVIxRx7kskPOpMHUrzkY/zlLBs3Gl8FREBaTQOQVWH0hz9hAkzWy0IitmPbqnNkZdlpf7ViI4sQfz3c2j86JDm1Py/nAkDgJMPH+D4iFmIPbaN3uIQ0/ZkLrHk5KCgST2M9IlE6NgYdDoliS4nzlVawSzzawLy0jNQwnyQmw/YNjBbLQh8dx+u9xVveHTB1Wn6Yw+zabuXuHIPP0T9CpPegKt/BWFOrVpcWfbOzjYtExKoHQzpAnyhnxKHwANOivgBbx1Bq659kPYr72/SbLVwbRg0dD/uvBGBstHJXNme34iHk6Vbpyq+M1vMTHC8ZGJ/ba2KHK0puXdRpk2KMm3CMWl/sa0v19ZXQ8Q+tIs7SsPJGguIexaSPwDop8QpvqGgofvRukMvWoeUFeq0m60WzLghWpmeet1PIdqu4b8B7UbsOQCrI7btwkl8dMmAeiXPobvrjSJPY8ruqYBbja5xG+62xvYKBeHCLCuSmxpAFJMovyged7tFoPQqpV8hAp/9LkgPfwAAikU9aWl9CHn2COp3EGarBeFjYrD/q9movjiGmjNX20SS9IWFE6tUZqsFrauFUktncmY0dGwMKizkdZiIkrt1bS0cb7hCtTxbJ8vs+/NjjKj6lXSKbtIbcPnPGugXEA8/p0vUIph9SA0UHJNEKj5NtVCfUHJmsbinwya9waYlQVvp7BoEQzh0Enlbq1EDGQAAex3M5w+p0mC2WvBqv4H0lu/agEjq/LowOgnU8jw3wQjvzyWH3ykrDPB/xIzYhdXB5j+XwaQ3FGpEgM0zaWZD9Gq0B9smNUKp3/cp4sjHWev2b0E4eAIbsg6hnWcDSm+r19/G37//TOkurH5Fnc4SYzoEF0cYqR8pNbB6fya9AWGWfGxY2BiVZ/Dji6VBTieJUzWhNM5H3KXhKcvrwb/nkSLHFwDO6py8DF1wdU6f5Zu0fRjdazDs91iQ+Xtt5GSWRsD7Sn1Lebn2hlrcbaqCrvA6wP7jNt/Pz9hDjW2o1akoy2xqIHUN+jkGiW/PpvVm8ydGJOS3APTbf8eII5/OommLU6ZJb0C7kzcwzO2czTmA/SbkdU6eFoGA9/n5OedvH+ysvc4mDRmfG6mhBmLIh2BC6iF87iea81ab32yNITsHByxN24Vej8Qg5XNAUW1w+R0j9RUGgOoyyev7byEfy2QeI+GNhg/GnulzbZZzd7MfSjMGklgIUQYk93BStapptkp6yHbbPSE0y1L9dgmuxETi8Fj18VdU/Ux6A9VNloebrRa8MnQQ7vW/CfxVAe7zbFuoLA4oXXZ2gJ09UJCvfPcYUDOApFreIyQuDEVQ/4MIOWwHy42qsG+eCeuHRui/VR+v97o0hOvGo9iUmkDrqTanFjXH2orXdOBAhWscAHTtL2ovweLynzVwJGwlbt8peHGMdZTv+2xuxK4vfq7b43+FdiP2nCHwlxjEjw/H4uriKcnVv8RTe9bJKasXdqvRNTzc4k0nmOAZQ7Exbj23IN7uEYFS50WmSY3RIUwYACo6WHpVAtqfumbztJUwYQTk5MfBqyoCex9GUL+D1D+L801R2ZXceJj0BmT9EcylM+kNaPFmP1UGjNBgtlpwzSQ5Ghby8rg6sWkOTpJMkZutFrTs0ZcyRccbrlCctsnTs6fbJGznA3sEHnCC7qEYnrgwlMY9ErYSG4LdMD2gBg1jmTAA6Psn7+/J1gRNnKwCou81eXzChOU1a8CFX1xXE7oK5XF9g3jLUf/gG+JJ5CO9H5YJM1stQEE+pbX2j0MVdSZMGABUWBBPdcvYPrLVX7oKoi6eXZiom/GgQzi8P4/DrHN7aFzChJ2bYIRw4DiClsbAbLVwTBg5jT8/xojznxjR+rWe9F3gO/uQUNeRY8KqH3TkFltCs0lvgHBQFM1ztNNxNBPxE1vMrBBZF7DX0fchh+24uKzj8ZRuc5C4KJSmPfrhLKrvJm8zs9UCIfchWpyQlLkPGHSocEo6OW79Wk+ujaPrtlSMT0ILYcLIt6JmgdIWqjC6Gia9Aaaqko+d2C2/ceV95NsQ9nvEZ6/XT1AmjKRlf7PpyG2qzfGzn3ejYOrcm3smTJiDj+TryWy10O+FZcJIvrfeirBZHvttJ749Wzq9fuRX0cFTj4vvGRE3TbwlOT5S0idh68o6HQaA2KzDSPpZur2V15m0y4ZgN5rGpDfg/CfSzZNDVU8IB47DpDcgaQn/nQOA584CxSaPMFZmqwXjUpWGN04PFuk/vyYY5Z15YxqECQNEx98s/fKyufGbl4deXlFcW5r0BkQd64yHW7yR+ZkRd7s2VIy98DEx+CE9jrYdec+ayFebHx+aQml7Ovj5KOoIiO5D1NobAD1MInmX+n2fom5mq0XUg7KKNzOk/eV1sNtroUwYyfPCKCPtF2IMSmgmOfhVW38B4PDY2dx7tfYmuNkrUhE+P+EVDEoUGcYL62py+bis249DDVbh0HjePYcaTWpzBBtO6RIEyoSZrRZkjpV8/I1KPgld9QAkzVT625TnzzJhxMk0QfpvIWj5Rl/0PXtOXG8XiExYXrMGOFZfoJJDhAkDgLbhbbk8Sq3Zh4LsbNWxRGhpOnAgqh90BCD66pOvBXYODrgSI+mXXRsQSdvCaeMBmK0W5LQJg3VtLWkNf7T2s/k0O36PhqmtNUfCVsKkN6BTUB3FOw0vNzRG7DlD0luz4TjsIn0eHCBuXD/xFx2Hmq0WlLTjxXaI40tAXESj3hvMfehlfk0AEnjRGfa/HGSSIn615BP1tQGRsHOSxBJqzpE28XmZ56GrHgCz1YIrxpswWy1w+XM/x1yYrRZ4dj6p2BTpdh4WN0XzwrhyLw+VjAbs/mo6R7/ZKjmqZfMiaZNmNIRJb8CWXxdziwn5/c0jmXX55MguZESU8Sv/EPzkuQ8e34uiCGltFsAutLYira1TsEqPLHS36vK2WrNTulKPedI0fcpc5tqfOIg2Wy1UjDJtpaiEX6XjaeRfu059qOTkOijoktNEaPX8Jg47H9jTZzZd3lZx4/utfx1FXmxbmvSimXAAOP2dn7iRmSqK04aNE/WMKusc8PkVkQkPOWyHnDZhODNQ3CD6PnJUTbD2/H54fi0usieHzcLJd2dRptJstXAbJELDdP0Bji6WZhKXZdTUFkX5Js4u/ih38nusviREkDIlAsLBEyKz9ig+Eecjeec52ynyZGncWtuV6+MLEdK3JRzi/fPlX7lCRcPYvNQYYjlsMZpq6Ul9z68J5g5DbB1eyPMDxBsdOZ0krwvraiJoSQw3fhT5JBxTpTEvPYOjg2zI1OpRbUiSTebQpDdg3b3S3JgwWy3wHy3emORlWXH0o1kI2sV/r0T8jIVJb6CO7qM96yO15SJ0O31RuYGFJLKcuLgB7GtLxlOqTpY2lBv3bwQAzDm3B7Ma/UIZAwKXP5Xm/llaJvrV58LZ9ycjl+OPgC2K92mTJVHD1JaLoKsegNZn2qqOrStDIrmxZ9IbxBv2R3FLt0lDiZbn4JZYgNKr9yn62e3neM7xMwBMSjuAG28rDeQAgC5QFHd12i6JlBEn25ff4fNhHQurjVvTiduKMHn7lfxecuie2mohAFBxahZyWj2+5xnL5F/qqTI47Hhj8yKOj1nRPjmdxO+aSW9AnWmiCGfQoANYbI1Cp1NXqAsGAvtSpVS/W2KYhtCx9La7Ip7OzY2jVw0mvQFekyR95+8DghG743cEviNK4LAGuQrLJ27qHO6dzxvHYP/PESyuLh40Bw04iKuDI+m6pza2885n0d/s+8QF4qEpORwmtACio2bCEK5bMB35TetT1QkAuNuhAdUjN+kNlJlnv22nTQdwvOEKNH53sGrdAGBtZl2OViImTtrf8JXYl7d6hNvM43mDIBQ8k7+XHRoj9pzBpDfQmwuT3oA1NSvBbLVgWkBNGjbEu5FiEmcn270/zsXN3soFjZ2A9mYXoE2bHvTd3c1+WJa5V3UjLj8Rq7AgHpvTxEn2TvcI+P4mMgtEryn/bDJNR/JhfSIVtYkMGnSATti3e0Sg0qw45DcVNxbtug+iiz5J/6C6Un6f5Bk4jGe0zFYLsj6WTu8+7jZAtZ4siDiH2kaU3LKcX8Pr1LG6AGarBX6/D6ZK4HbxR7ny5BtFcsPA0kye73o5K+jz75eMNq27i3k7OdE0xDkyYRJY2OoDk96A7NfCuXZwaJGBG29Lp7AmvQH3Cx4q8jJbLdQvHNHV+91/K8xWC040ECfT0vbOSKgrnj5+V+WIqlU9gpKPRB6GJ/OWPZ12iTL6aj7QACCnbZjNzX1xGIrCGDNdkD/3jjghtos/qlpmQZN6OPCl5INOV7Eifcda8WLp8/qSF2XMa96Ae074bo4qbQS3CpS31fK47U7e4NpBbVPKjiESx21veVWGXl4WAGz+cxkXj8wPiQtD4dHxNBL7SCf0xJqhPB/rB0bMu6WHg0cVqQ3L8JZL5fMTAIRMETc1rg45lEZ5HLPVgj+uSjc/0bWawG+NaMXx5MMHSFzcACa9Ab49jko6TuF1cPXtMDQ59oDfVC0K5SyfmfQGrKpZRZXR1+0Ub6uC+h7C1TA3yMHm6+tYGq1L5iDxXUdurABA2GcxirTysuSHDvL5nf2f2Gc2l3/+2WRsrrFRdfN8eNxsNDhSQNPmtmhAb9gBUF0wYkhITpva2jTWNwxuP4uHMZmfypirpFSYrRZOjJfkw4o2cpvyrdVUw821yyjaKXSs2JZLbleCnZOTwjw8ACyvUZVLc79zQ/ouY7yRG18knLXaR7AwYw9HT8Zq6cCCuGHx7XEUqd/wOpYkb/aZtaCZ2/QC1taqSOPpyolWHwvuSbefxHqv2WrhwgGgd5mrivKI/m1uq1DVcUDiqq1j5D/pOxJ38PlI7lmehsDB11sRx32uJFbqu4HXIWbjymmp+WkGctqE4Refndx7s9WCBhOk76hb1Ujodh6Gk50jDSu1Zh9n9ZjNV94eJf/Yx1lmJRIdDzqGI8HwOy03t1UoggZKh4YmvYGKo2+fsFBRloaXGxoj9pzCbLXgbrcIzM8Qb8SSfoxAyvJ69J18k15w7x43CZVbKt0u2Lu6AngkQmUnmr6d6Fcfmzb9SsvbG/IHenlFcROUfV3JnK58Q0GeXVcmUMYrcPg+WNfWUsRX2/jmv1pfdeFiYdIbKPNCNi9U2b4gH4nzRDGCAfX30HLYtGptatIb4Pm1dHpHDWicuM3RQepB0rGbeHtXV1zvx0/MJyOXc/HX1qrIpQscLukRsLSY9Aa8n8yfYJLfiYsbKMJIe5j0osiS2Sqa9g75WRSFIArRbfwkMQ/C+L3abyCX3+b7TlwffOUvKiQTU8RsuSXuSZsuQGSS2M3tjbclpkLe7+T53CreFHB0c8kEtRxse08P4E2u5zS5yNE2nzEWYtIbVGX2Wdrlm/eiwNIcu3MNANFqo614AzOjaJj9riNoEyjpz8Qe3ULLdVsSj26npZP36CadVWnKLS2KUuY1byC1r50dd+NEYLZa0K1qpCJMXo9ph5pz/WS2WmAfUoPGY29H2HxW+m5XbKjlY8X6gZErL3GWyNiTbyCo/0HuvUkvik+xtJDf+ilxWFOzEvIuiH2e0yYM+bdv49NUKQ7JhzX9/jBCFPc8H3GXxsnIk0Q30yaL4/VSpPjdp6wwIPbULnzYfAMAYKRPJNJM0oaooMQjYyz7j6PCwniFv6OgfgeR9ZFRtT8A3n0EuQUzWy0ov5g/XZf3lUlvwKGchwh8W5z//Lf1hd128cactUDb4FA3zniC2lwoL8Ns5W/Y2W+10bHOXNvWnCeZmL/3ushQH6onbR8ctx5SHbvJP0jfia1NPAAqwkzAHkaotQlLs608OX1YiFYTzVYLah+yx8Mt3tw7ok/8aw09hJwcJP2kFKsDQNdEs9WCf36aS8drtfFxiG75BjWUoUa3fd2ayG4XTq06kvY+HbVMtS5+H4k0sbePBLaYWrPVgquDxe8g9tQuLtykN8B/tHSzkxMtSZ6ore+stIcta80sE1lY/7J5p4c/QP1JMVw460qBpNu4908AwCvHO6nWPWiQNM+zxjDUysy/dBlOmw4gasQQBa0scydHyneRuPyOEck9+UOKc6ukG+qYpGRuvXJZJ7qUWHO3DN1ruKzbD7+t/Wh60p5qDOkLJZooCEDBU/77D5ix0Bix5wj2tYK4SaT0qgQMrNYIJr0BZc/aU8V7gJ9s1CYeNs6ms6L/IuHgCZizeN9gar8JWEaNzY/8VnsmvkxsTWwknm7HYZv0Ary/n/VZB5D0U0Pqo4SkS2s3HwCoA2U5I8Ba9ZIvdCHfD+XCR5ZPRdKP0qaBOMYk5ZG0tWYPxaaz/6D8IonRJSevl9810kVQno4ti/zX1QwEALQuKTJPZINDF5q+hxR9a7ZakPqtWAYxS2zSG2Cpx7dzQbbkJ43ksWPRfKStDKGiUaRcAnLCzdJLwOphEXraJbah9XH7WWlcQ77Rr7iSt7iXfzrJ5jgx6Q0o2OZlc8PBbsqI7hAAegrMHlSQdBXjyinKKQ4zJmeeAaDcn8eRsboOp0uTOEfc6M332sulJyfP8o0kAKyqKVl0jN31h+p3SMTQHLYdgu/GgSI9goDZv8+Gg6ee5smOL3m95M+BvSUdItJWBcfO4EGHcKQsrwffT8TxnfO3D1d3dr5RY7oBIK80UGGvdNOT1nEeR5faocPFdTW5MlgLopmfSbcjTpvEzdcrznyZJr0B+76ejZQp4jfs3U3SNyNxqjmUpuWxeog5f/vA/00xL2J1zWy1YON9Z0ojcRC/6ry0kb00nHdYf+K9WfQ5earkB89stSClh3SLt+nvldw7AMgV8jlaWXziK90W1hh3neocse13qMEqJIXlIPMzSUfpdo8ITv9QbcNNdP3k5e4J4cci6/S20vBUVTpNeoOCoQoYkaA6HuXfAtFTTv1a/eaBrSsbrraRvZwv3fSw82daB3EcnmhQgB3BfyriAMDKTHHjTHS/5GUXHD1Nw303D+DaM//kWfrtC0alJc+Co6epo3mT3kC/kVf7DlDMc2arBWNSRNHcinOksSoXwweAtg3bocGRAqozl9vmJvKaNyhyfQ/8vPC1esTK1TZvqsnval2PK8Ll87TZaoGuciXumXUZA4Ayo2pwMaVxz1kfGxX97v+mhetrNi+iWgAA9yvac3HU5mT22X90PO56i4yA/6ohNF8yvyy97Y7ZgQFcPrktxANU4tzepDdA5+aG1BaLaHrC6JN0Iy6EFmst0vByQrOa+ByA9SPWtXp9mxaQAHC+QGxthNjn630jcc/TDqeGzkL4JzFwW2Lb8p2tE0Y1JP0YgcD3JKtdZqsoY768RtUiTypNegO12Eefi6BJnmfmZ0acGjpLtc4sHppCUcJ8kL5LnBuGoMGSvy+C9fdKon2p+zbprjN1KLzWX0J+YoqiLLPVgqhjnVG6dSoS54QjaMh+RRy1OhELUIXRr8Z8yMued0uPNTUrqeZT0MgA+z0WajlRjY7cFg3guPUQKsaVwxXjTe5dxNFcJNR1pHSk5d7FEO9GXD7Ewqa87DXnE1Da3lm1rizk5e7NLsDQ6e+iyg+ShcUrQyJRcU68oo2ItTG1drM1rtTatKh08nFoa9EnaYk1xMLKVxvXtsrNGGeEw30o/NXYQruTN7AgyYj6Vc7D+uh2SBfgi/zkNPUy7XW43yEUJdfyN7fyjWhx5wdAdD7bR2bl8HrfSHoLxNax8buDUfIPntm/MNJI3TywSP8yEgELrMhLO4fsduF0c8uWA0hWGtkw6wdGlGhyFYcarMK2BzqFDqFaXS8PNaLSrMIdBsvT2xpXZqsFkaOGUDPpxLJezzPnqeibrXmdWMhdnrkXPWUGMmzhwrqanNPcwsZbTpswyuiarRbU2NOLY2hJOCnz34wJlgZbc7stWm3FL+x7JsgYZ0S1iep9WJzyi5pPCmuDxPlhCBooGnWIPhuN/Fet3Hu5pUgyJmxBThfA1zv9i0j4fCbmR/yNFYYxKcfwlX+Ioh7V9pXiDpXIu1HJJ9GqpKhTVXv6UHgvS6d+2Vhc7xeJA1+Ic/Oq8/HcTb2tNqscXwaXInkdPrI+sTg3wYgzA5Vzodlqge9fA+kaL39X2Hdp0otGxDw7S+ukQ1VPXG/spepPkKQnPubud2pI50/u/SNrvWr9BijXgTwh94XxI9a8bC842D1lq4nCQ2y7tey5bo//FdqN2HOETkF1cH5NML3hAcQPltXHIacv5MN90EGp2Jm4KBS+fw4CABz4cja8vhCNS3z0yXL4H5B0jMxWCxV/u/VWhGKSkJ/QsM+pXecoTpTkTJjLrsowWy3UIhGJB4DXJygEaidWZqtFwYSV3VNBNb8SZl4MSs6EkRPNmYFBik0162dKPyWOMmGscjgRUSMmjoOG7KfWq9j2JH/X+0Yi6GdRLMO1Ai+jz5bf+6zo0Lv6P71h0hsQuCzG5iZoUFkrGh/LVuTT/tQ1euK9+a/lXL+araKsPgBsX7oQZquFMkMAcP6RGBfR5wKAlj36osenH3BtZLZaqJsDFmarhTJhZqsFNabdpeUSsSDy3LfyPxztUc721OQ7acOKc+KR+o1Sp6ri7Hg0690fchQ2tkify+NcHRSJ5m/xeRFxJrWNY/WFMQiz5CvyS5scqcqEycccAMy56cnFaX/qmiIuAFSbGMf5qyF/bFy2DzYEu+Fo+K+wLKuDgiaiwYDY3WuVjOyjW2Pz+UPcJsKkN9AbIQBoGxatWhdbc0TSjxHweOTTia0HYcISF4Zy6eRMGADkuAlI+qmhYryd7TsbeWmigSKWCUteJl4L6xNckbSkAe76uXJltzhxB5UPZePPuosAAM1d8mG2WuD6j2iEYXkmf5MJiBvZI5/NUtSTpafxsWzVjRUgijDZ1RMNnjw0iXo2hAkz6SXLeqz+Eds/bF6r/LbBbLWg5yNT8WQcXRquvCUhtLFMGBtutopiZWw/skyYSW+AU4k8xThjx658vZictl/RTinfR3DjlX3vGyvq5xI/f+Sd3XZPm8yGLeZM3m7W0UYu7ekhs7hnFvJ54PabIs3VF8YoymDT1z5kr5qepQ0ApwvEMmGkPeTm+l1/S0Di7HAuD3me5H/0K50U7UGYsDtvRKgyYWarBW1O3qR5xN0LpPSxvhQzGvLrU/LUCHyYchzfBwQjulYT1Ip7CyeGz1JlwsxWC5UaMVuV4tJymlO/FfXGlnrv5t4LxrqUCWOtKhIDTwQO3pIxsMq7dVQvekOWxMDVmTaUa0+2X8PHiH3NMmGAaPyDfK8kDYuoY52pvjyZP5OW8moXRI+8tS8/l8mZ/B5nrDbnGQ0vN7QbsecArB8xBzvHYp/EFQW1fOydnVGQna3I9/qGILh/Yo9Nm1fS8IdbvKkIhxoNIYftcLJVeeRflfyYZX5mhNcXcXDbW57TJ3lg9uVEDNQW1JrzhqLa+DjkRIfBKVZcvITIulTHCRCdKRJ9ETYP4ictaUkDVSMOahOgLVrU2pGkS1wUil0tfuD8GbF5ktPzd5ISMTMwSCU3Hvc2+6HUIybOFh2s7xv5hqDege6o1EHyV6KWh7zuxJ/ZrYIH6FZVUpxu26gjtURWGD2AuPDlneOt1XVMMuFBk0tFpu955jx+axmBjfs2cD7vxqUeRpSzPVr07AfdjsPSmC1VCpuS9irqJ297FinfRVJ9iMIWP7V2I7+vxEQqRGjY/Jr36g+HbYdUfeEUl042Hnty3rZBazrO5eUSyP0FDkpMxbwgP65OLd7sB93Ow6p9cW5iJM4MmK34Th53vjEcARWNladPnBWOoKH7FWkc/HwwZfsKheW8wsaxGmzFZ58vjjDi6Ie8ny95nxBfYew7ADiU8xBd/xmC8rudivSjl9sqFJfrlaBOaeUHJmareLDi88YxRR18/xyEoJj9NutN8okYPQQJ380pdH3QVSiP2OPbAQCRHwxBmRX8ab6t8cjSHLK/h4KJS1wYirQ2kkVQkk/wT0M5i4+A6ER8lqdYbu2Enrh3sRQdB8m/1EPAW0foN/pv52b7UqU4gxNFjRkyJ5utFrStb8LGw2aY9AZYPzSiqvkGFTtUyydxXhiCBoki8nDNpTp78nYjdSA+7WzVjaR50DEcLuv2I3OsEV6T4nBlfXVUbH9WEa+w+pFwt73lcSPquuKb+CE9DjVLlLQ537H5EDov/1kDlTqcUS33cb9RNVofJz6hia4HtWvgzHBXTkdMja7i0lnY+kB+E6kTtf5wqOrJWWsEgDBLPg4YeDcphZXP5tncI/jFuRFz7flsbsTuLH+u2+N/hXYj9hxCPqmzcNpVBWarRfX0RLdDr5ofG4/oDpFw8u5A/VUKv1c7gv/kTkDl+R2rLyD22Dacm2BEhOV1AMCHb/0Os9WCG1HXuTRyOW/fvwYqaPP9UVwInWIP0HDWwiAAfB6ntL7o4KnHnulzgW1VEdiHF2FgYdIbUCvuLZitFhiOiE5RWfPRLC6MNHLpSJ8E9TuId9Nep23nu2kA119HPhM3fDMDg6jpXyIPbl9X1IO5/GcNJC4SZcKv3CqNiyOMir5kIfd9w9KEv8sr3tnKi8T50k9MW9Ze0q0z6Q3IS03nxgRbLxZmqwV55zIVC9iDJpeQ3S6cS89aCQTEW4flvdsgL/M8AGBj3HqaZ5SzaBBh6/JFXJqCe/ds0sIi62MjUh8pbRMmjNDB9iHbFvL/LCrOjqftIVfuN+kNcNwtim2dDc3laLvXRVL0Z9uXDUv5/pEOEeOviz05D90sMbmBB5y4fGh/pWdQPUOz1YJttyRDOQSECVOD32/XFe3KPhfW3kQXy2y14JvKfPr8V+tTtxBk8y3Pa+OedZQJI21MjAPI68CmJ4rxbHlsHHn/mq0W7naV3H7J+4QVBWPb+BPfcAT2Psw5AZbjVmwA0n6tC8e/D6JcMq/rxY47k95AmTDSb1cHi7e8n7+6jsa5NpAX4WLrlPDdHPj/NoSjlY0DAPnXrtPybTFh7PO5VbxbCpPeoHqTFtT/INdu5L/XpltcPF2gH1LCsmmcExHLuXEQ8JbIoBADCGx7y6E2Hsl/YqCK/LHp9Qnibah9qVKoHF8G1/pHUias0bHOyLsoHRjpv41DwdHTuN9Z3UAHIBmGSO08lzJh5yZGKjb7hAbi046EEau2hPboeq0AgBqpeVhGgNlqweHQ32zW36Q3YMY56dY2cS5vHbaS0x1V5oM97GD7jriJUfv+ha3l6Ttbc4L8UIP8t3d25sak2n/y+5tHt0lyvJOUCEA8aCTlhH8i3lpt+nslypxyVKSp/k9vRR3lTA7rj5Wth3z8yZmtQWWtuNuNN9AUdrgbAOBaUy/IwTJhRGpGrZ5pX0nf+u1N/jDpDbjTNUwRT8PLDY0Re06x8o6k7H75T5FZcNpVBRWcxBNA1r8UIOrK5L9qRcbnRurnhmyK2EmGndTlmwTyP22laD3vwiPxtKuDIvGwtTQ50HIfmZBf2vtHlI0WLSf+WkNkBq+srw6T3kAXK7PVgi6nL1PLbGmviYY2olt0o/neaxSI95NPI3FuGEcvO4GN9ZXoIOFUNKL5eRouX9TppuH1EzDpReMWAe8noODEGcVm1Gy1wGNqHCrGlVPd3E2sJt0Sshbg5ItW/o0bAEDFQ1K7lYNJb0ClDmeoeXefN47h6IezVDfrJJ/5GXuoIQg5WNPNxqO8OByJX2OB6K+JNXpAaCZlpk+KVG23+pNEkcjJafyG2tb/XfPmofE7g1HzkDgGY49ugenEbZpfT68o6rhXvqmTL5xqfWjSG6gYirzNPL+Og98jJ9GsVcPK8WVUDzbMVgvudlVuvtjNbeCyGLT2DkeJlueQOCccjY9l0/ebz+3n+ok4Gt4zY64ir3MTxQX3naREmPQGVN3+yC8Z45+MRUJdRzh4VYXx6EMkheWoblLNVgtn8IRsfsmBjFrbknQAgEtX6fv3k3mHzrrg6vA191fdgOncK1Cz/fK8xfIPw8D4GVTb/Kv1LRHhUasniU/0Y23lLc83+CfRKE+TQYNgtlrwu/9W7j1xfMzWM/WbSDh4VIEcJG/WgAkAJBh+R2KTnwGIpq4BoO/Zc/LkHE6/J87v7nMla30EFeYXfojAOtBm48ih5tNILa53t+OqDCwB+Z04l98gXusvMpHCEV6cKz+JF8026Q2wN0iHBEUxXwQO3l6FzuX2tWtQS7DyODn54vxTcO8eDv1VG+VP36d57Qn5g4tLRMn/+Wkul5dg5P0+ldpdURoD0WHwHhfP1YcFsQJI0m/avJJ7fy/Mh1q9NVtF33VsP9/owxt9IvkM8xbFUnWBfggafICmyW0VirOhuQp6kn+pp8iDIGjQAW7cs3WoPEN5q2vXIJjrM/mY8ftDHG+bUqW5octpcZ9S0Fiio+nAgTTNR74NubwI2pe6DwD0Vs4utDbclsTTNYzoD7Np1W6a5cyViymNxr+xUTrEMlst1Co1m55F6VUJXN3LtxOZxbK/8Dfp5D85lCyzIgG3e/CqH/SbeluSSCjTJgVmqwWuq9Wt/mp4eaExYs8ZyAfa3fUG/WCPhK3ErdgA5DS5iMXV/lFdwIgIVbUJcRDy8mi4boe40SC+iHzXD1Ld0LPw7S5OaETR3n1ePHYsmq+MWCDqWIz1DcPKzDjqILL64hh6skcWKwAYVNaq8DiffyqRPu+aOw/TAmoi7bX5lMa2DdsBEJlCNboT54dBF1ydPquduhUGEueLqzVwu0cE5/CR6EyxG3NAWjwAwD6kBrcg6aoHKPqGwOdTXrTpfmdRZrxdYhtFXLaPB1ZrhLT28zh/J3I0PpaNuLolaLr030Io3d7j4nG3WwS8vohD8g8Rqu3iM1akjXW8DYAawui6ewili6VPXtdXYgah5Np9+MFDZFCb9RmAkeXFjQ45pSaQM0Fmq4XTS2JBxhYAJMVI+jRsXXqfzaSWNe9Us6fvLkXeVo1v0huw90eJaWJBNxcfxVOGK2jIfnzmfoaLw/4VXBYZm8bvDuYWXZPeAO9x8Uj6qSE9lXfaKG2CiEUxAl2AeGq7cd8GxNVVin28k5QIB1/RySnxHxh+pCu9pZIbA5DXiSD/6jVq3Y/4KaTvTp5FUN9D3MaO+PXJv3qNi5vdLlzB6LHP7AbT1sa6qO+VzYu4lpAz7SQf1mS621mR0XXesF91vE70q091t0g+fh/FI+/CRZv03FnjQeOS//lCARy8pHFJ5m+2jizS2s/j6qzWLvL6h0wZimZ9RL0q4pPth3R1H1qAut6d2WrhLO/JN+iFMc1Bgw/QG0UAqDVAZMDuvBFBx5GtAxpiNEUOVu9HjrxzmfDbIpr8Jgwzi4ITZ1Bi8wHF2AOAa1FS+598dxb+/v1nmq7BeMl0utlq4azbkTzMVgvs4o5yfUJ8iwGgovO2+k3NmiB5Tl5WD84b9iOwzyHVg4zTD+9zRrXkB2hmq4Uyu4Bo7ZY1h87Wo9RhyeiXGjOmNo+z45qNIzf2JAc5cCTzn3VtLXz3ZwcAotsZkh9xL6J2OGYLxNgF0Q03Wy14N0v8BqJrNVEdw/IDG3l4Tq7IrNfd3wMmvQH+PY9Q1xtsve+9LvqL07lXACCqE6jR3Dm5JVcemXOu9Y9EmV8TqJsatr3J/6yPJIvQaxOPy7N+fiEIz+bvJYfGiD1HuNdBUmCXT4513bNoOAHdyNXkT3YWPvI9BgBJS0QGzDpEdITpkunA5UFONdVARObUFht5eHcvIzYliWITZ/uKm3f2Kv/VftIpWJuTNwGIJ2ws2E1f817iaTwRYevzyIy/4lRv4AHknzyrungQJ50EDh5V4LNfaY3SbLXgnxBnlPk1AXGHq0MNzXr3VyxWZqsFBcfEGzXHneLmjPhUI/mrgbRdyT/2waQ3YEPQJsVGVJ62We/+9PScwl6HQYmpiM06TBkE9nSQzYMY1EjpNgfGkUNoefKNoH3zTKiBiOPIN9lsewCSqXWT3gBdhfLYvmQBTHoDwiz51HofSbv3x7locuwBkqdJ40TuM4yg4N49Op4Se8+m+eQK+TS/pdW96Emp59dxHJ1FLcoknLgfUNvks/HVvoeC+/dpv7L5k9+B7+5T5AuIPm5Y5CfzYrwAqCgjIIq9Eh87RDzLrW0Skt/klcqLcxCR0l1dEZ2I5rL0EgMZ8nqzJrkJOp26ohgnaoyQ2jtbm0Xy7njDFYry2LhCOUlUdM8MydeTXWhtGq/CXjcahxj0AYDbPSTfjbZAvkPCeOnc3KCzs0f+5SucLza1uZqlUw42Tv6r9bl3Jr0BHlPjsH2JqKNFfLKpiZ2ZrRbEJCVDDSa9AVW/Un4b7B+dC0qWVKS/0/gqLSPrM3HdKZN8h46j766LDs8jLK/TfD5M4ZkStu6uKwu3DpjaUjT5HeVsD7/VvA8otr2Cdvem8wFb1/NjjIrxc2i85EgcABUhJ/nlCLnFYg4uv2u0OWbl9SCwD6mBgF6i2GLmp0ZcWCcegLSNfI0aphnhw4uqs4apbmwM5Ghbe34/589NTo/HVHE+vLvZzyZtxP8cW2bGeCNis5TMLxtP3kZExHXD9B8AiC5g/D4WvxW5U3q3veWL1caFzR9JYaL7lfybt+i4TZwdrvrdqc09VR6J31bpKPnx1E+JU5S7Z7p4WBd7bJv4LLtRJSCMurwc4qNuWkBNxbv0L8T1hri+MFstL5YfMQ1PBBoj9hyh1J8HbW5e5lZVGh4gz/mnk7i4xGGkXWhtariCnNARR5kkn4OTZkNXPYDLj6DKD3EIWDGEo+mB2Zf+XnK7EnWienGEEROu1ILZakGbAHEh2fvDHDq57Fg0n/7eFFwOZquFO2HLaRPGbfoctil1vWydPgKiqXS2zVJWGOgEaLaKVpnyLlxEevgDyowFLuWdSrrtLU83y2xe1g+NnPlcsniytGwI2sS1n4Ofj1SXKpUpfVPTeREU9oTszbRXuXIBoKCJKC7Blk+YPhTko0vp24iu2oDrI2IxSr4ok2ey+THpDTB17KWoixqjxUL+jljlkyP/2nX4b+sLAPii0nHq1JbdkO0KcUHvZrylLHk55D9hJtn07Tz5BV4tH/k78l7n5qbo6zLn8ujviyOMeLjFm4tzY2Oggq7EBfyNCvkvb3e5pUA1yBlj8tvlkr1ibKltiIgFPfnmU15P+W/yfmWmaCyHmI0n79X8FxEae5/N5PIw6UV/XGr5ExAdMrPVwvn7k9OnYGA869nMk4hzDai/R1FHk96Azet/oemuRd3gvkGz1YL0L8WT64GMw10SX21853mWR8qUCCqCvDltH73xL4zxIu/aNmwnMjyPbjX9V0q6X0SSgcQlt6Qs1GhK/1I8WJsdGKCgnf3Pjq9r/SOhT3AVmas/pMOxgpAAzgl8tX2lkPRjBE3rsO0QdAG+EA6dxLtZIhOxtbYrbmwMRNnoZNq+3/qL1hnlPsYIPeyGX+73rGWPvrT/UrtK1ibZ/2arBYmvLEWjY525+SDnbx9U+/FR+z2SVJBvyE16Ay51FZnntsb2AID2nmHIGFe43q7ZakGln6S1lM1TV7kSdZTN0glIIopmqwVeX8bhWPivyG9aH3nnMpHaWdzws/OE2WrBunul6W+3tkkcHVFfj+DGsHxNIeUTq76kTyrHl6HPhKEBgPTfRLUEXTYQ7SkeBlx8TynSTqwtE7oA4EyjZQCgsJDos9+FW891Ab64EXWd001kwd6SFsbosmGkzmkd5tmcQ+VpSdjld4wYdaG+Ii/5/Er0/Ex6A9e/hY0TNTpZnO03W9FfLxKEgoJn8veyQ2PEniOQK2mT3sCdSN/r0hDBM4YqJnx2Q68GsvFgTzkJQvb3EN917IXYHb/TeAnZ+Vx+rmnSEDFbLXAxpdF8fq2hh12+qGRc5Yc4KhpXcF+U7/b7uz/dXBBatz3Q0WdAYhqcNh1Q1IWlWz6pyifLLlUj6PU+IDp4JHFr7OmFpLekU1DC1JLTOgJicSol9y7VkzNbLdB/y1sEOxb+K33H0goAvhvEjQuxPnh5qBF5Fy+hS1VxcRnpE4ncVqHIbRXK9YfZasH+BOk2jpRPlL7ZeIobNEGg7VH3m6Gwiz9qc/NIymzZrY8YsF8Sg2DTyNvebBV1/Ng8CFgazVbRkMytnmJ9yemvSc/rkrC0EfG7zN+lGwu1cgDAOFLarKoxIiSM6LR1S22O5GVKRtGkNyD/xg3FQr1j0XzYhdVB1kdG3NcLKNGSvwVya5ukGKdBA9T9o8npSmuzQLVOhY15Eqb/No6mzUtNR/qkSEX+Jr0Blo8lU+vy9pFv1madk25+yPfZ3ctIxa4AoH9iGmBnh5PDZilEgE16A1x2VcbS6qI4K9nI6iqUh9lqgXW00SYNv96UxFJvRjyk8Yguibw92LFOwIorm60WXK8tfge7QlzorZa8r8xWC1p1eZvm2cYvgtbd59N4pH0VCV31AFz9SxQhvRUboDq+JqUdABKOwf8D8XCgztShCFgxBOmTIrn6qoH2Y+Z53Hg7kkoSBIwU82IPu0iZBW6lVXISDYWwcX0+jaeuLMxWC+p+O1RRrnzT96CyHRZX+wcNP46h5rtTVhiAhGMosVkaCxkN7yHwPV5Phvil+8lTEoNkmQW2HLtcXh+ybZQotkY2/AAwunwKV2+rkRetUwOpT6nWqTBbLVS3zKlVOjYli3N37I7fba6T7vPisSRjD2eBtNrEOK48IkZuq3wW+ZcuY8uqJVw92ka+RiVXFmbsoWJsJr0BW1cs4urhscUB0a90omGzAwO4cf7QJDJql98x4sgnvBsXed+arRaq62znWILGIb665PB54xhanLiDE8PFecS+dg1U+ZEXfzVbLQjqKzFWcmfk8vknPfwBlz7f3RXtTt5QdboOAM7X8/BKzCCOLlPHXop5Uu1Aif1t0hvwsDV/wMvlqTfAzrEEKs2Mw4kGBeIc/XUkl55A5+bGMdHELYw8HqGx+VuSfm3byNdU25rchgFA2tfqOtoanjwSExMxbtw4REREoGLFinB1dYXBYMCXX36Je4wV1qIQGxsLo9GIUqVKoXz58ujatSvS0pTSLMWBZr7+OYDcfD2BnPmQf6TnPzHi5Luz0LZRRyDnoao/D+LQU5/gSvXLdG5u9BSXBSkjeVk9pDRfTMPVGCESfvWvILi/lqjcFEeEAAnHaPw2AUZsSo6zOdEUVddCYWcHc9YRhHw/FB7fxykmbFu43SMCuSXt6M0ZWzc5coV8ONrxTKSc/iaDBmHXvHmoPzEGFecondb6mvtzC1hhJ3Zy+tXaRI25kL+3Vf92J2/gh8PNkNJ8McKPdIVb2yRFfNZ1QGF53YoNwPc1ViHCid9Uyem4OjiSE6+0r10DSX3K4ceOSzDh7Gtwa5uExAWhHGPDlpv8QwQCRihFmS4NN6LydH6zUPeboTj6kbhJsa6theMNV6jSn9e8Ae5XckSZXxOwPusA2nvatlhFHFfL20JXuRLyL11Gs+P3sL2OpMvW/tQ1rK9Vgcvj9iZ/lGmTAjlu94jA1Xp2SHpLaU6ewKQXb596ul6DSW9A5lgjTsXMQrPe/eFy4jxnCS5jnBGnh6g7fyb0p30VCd8xYn+krjAgqekSfuMcVgfCAUZf4dE3rcYAFwZ5/AujjDg2ijcnn/pNJPw+Yr6ZbVWp8Z1/i8eZRwiNhq+HovL0OI5mnXsFtNmVjA3Bbja/w9be4ciLqo2tKxahztShOD5S8nOkdqBU2BzFlnG3a0OUXs2LtHY5fRmLvmiPssuZb8FeZ9PwCyAadyB6RfI6XOsfiYOTinaKLq9DYXELGtfDlt8Wo2WPvtSM++PMTw+3eNNDEF1wdeSfPKtIwzqgVjMhXlhZCzP2oKpDabTq8jb+XvOzaj3Z5xwhVzE3mK0W1Jw7FNUmxMFlV2WsCzTTdLoAX8TuXguT3oBbPSM4lwOJs8MRFLOfK8vWoZLamuvg50Mt3Jr0on86Il5Lwlhn6oBoYId1MyMff/LxIXdJcG5VHY5xskVv81Ptsa3WevqOjbcscy96eUUhv2l96Hbyou5VE0rjfMRdmteE1EOIcNYp8o9u3pUzUKS2Pt7YGIj99VYjuuUbdNyotakcN3tHotxS3qcb7OwAQUD6l5FUx/vqoEi4z5OsqPquG4S0jvO49pSXRX6nrDDQQ2IC4qidQKjujW1nvn+uzbWTPWszlzeeifn67Q9+e2Lt8fHHH2PmzJlo3749IiIi4OjoiB07dmDVqlUICQlBQkICXFxcCs3jjz/+wOuvv466deti4MCBuHXrFn744QfodDocPHgQer26BXNb0G7EnmOY9AZ6mqW2YScTZV6q5NmeWKszWy24NNwIj46ncfvNCFgj7tA8Yk/uoCdbiXPCufLMVgtSmi+mJ04mvSQ6w8Z79WQH5ESHwf010djG3QLJLD4AyoSR+AX373MTs5yJaPzOYFx+x1j05mlbVS692WoBBEE8Sfw+Dg2OFHC0F4YyvyYomDA2LXsyRpgwQBTFIyI8D02h0NUU5faJcu6tIPFsgxijMB59CJPeUCgTxpYZ9mkMF0++eC7L3MulGZgZpdqmg89HQlehPBfmtEu0Brch2I0y2/vrrab5sY6h566cqWgzNYbx2vGKmOhXn2PC5PHMVotCx63gxBn4f5CA6QE16Ck6YcL6J6YpxkrACN5xtNlqwbWBkRwTNi71MEx6A2XCAFFXwRYT67DtEMr8Km5onR4dgpB35yYYOUMapVeJ8aLrNKNheVurIf/SZZitFmyvUwpJM6SbnvW1KlBxOZKn6yRJzIitS5lfE6hjVxYmvQHRLd+g9C+t7kV/e00S6+249RA2HjYDEBX3zVaL4kSfIPN3yUR8flWpr8tvdlF8n8KB43w/PvqmSXo1U9Bs3dTGAAB4fB9Hx67ZasG91xtSJuxel0c3DwwTZkv09cIo6QZcPlYSFzco8uACgOKWl4wl9vvPreGF9UObUbEttQOQjI9DsXXFIoy4EAqnmwJN/821QHEzx+C79AQE/RyjmKPkYzvzUyMEnZiW3DqYrRbMT2nEMWFrz+/nmDA5fbogf/y183dF3QGRQSNMGHGCzNaLzc84cggQEcLRnPa1OL6nXvfj+qDqd6JoYsZQnjlk48jzJ/+v94vkbqLZzTRb9s6FkgEp4e5dpH8ZibvdlMaI1Pq9/yOdY8KEsTR0TDLhdg8pn+i6LWGI66fI06Q34PTgWUB4HTxoconLJz85jT6XXc7fIpbMcKD5TL0uGQpp1eVtZHyuvEUmv0l+K3b/yrUfq+NI4vSp1gh3ukdQQx+ECYscJUmoRNd4haaL3SXqPRGdupPv8g6TfScrxxdbJ+I2xKFFhuK7I5aRez1yRE5uANk8/Ete4fL+3I8XOdcF+aNtw3YKNQyShi2TSC2w48ZstVBjGyyI3vG5iRITxuHRPQVraMt9nvg7YrSotlE61UGxZxCipP5i6UtuuoSjCQDHhJmtFvy+fq2SDg1PDK+//jrOnz+P5cuXY9iwYRgyZAh+++03fPrppzh27BgWLlxYaPrc3FwMGzYMXl5e+OeffzB06FCMGTMGZrMZly5dwvjx4x+bJu1G7DmA/EaMnHBdGGmkuhqA7RNJtYlbnkYeRuLntA1DRrQ9At/ZV2j+JHx3tuiHijhAta6tBX2nU6plZb8WDue/CndSWn1hDLXYR8A6Q25x4g5m7XsVerMD9v4wRzWfwupaWDh51/idwfhn5lybaQlMegOGJ5/hDErYais2rdoJZHHpZk8mi3t6WljeLB3BM4bi5LBZHL1sXNaRcmF1JXkee5iNkBLOHG1smrRf68K3x1FFepauwsZqtX2lkNHQtuhAxuo6VBeSxeV3jQp9DrPVAr/VQxD4ntLPEkvD9Q1B1EwxS89Hl0QXCPRUdMNApLWbz30/+U3rY+uKRYX2U2Fjk9zAyek26Q2oHF+GWoMktyZFgS1r1rk9GOrdqMh4amG2xjK5GZTTqxa3sHJHJZ/E9wHByFhdB6ejlsGkN+Bmr0iUWxYPXeVKiD3yN5en2qEGO26SfoyAfcVsTlxZ7ZvwWzMYqV14E+ZmqwUtu/WB/R4Lnc9IeOSoISjza4Jq2/huHIiggQfQ5fRlDCpr5ei01b6WnBwYnJyKnB/YNm3jF4GC7Gykfh1JRa3NVguM7w9B3DR+vrQLrU1dBJA82rTqjoITvP9ItfYkYJ2Xm07cxpZITxTcuYP8pvWxYtkMVNJJN8Ik3e1N/oivu8b2mvVIoqGo8cHSY+fkhM1p+2y2JyCam2ctHbLlErxyvBM1aV7UPKdGBwt2fKjFfdwy7J2dsSk1Ab7rByFoyH7VuGprDPm97l5pqisox/kxRlT9ihe5l+crLxcQDW1tCi7HpYk+G438V61wqOqJG1FecP0tAX3PnsPi6rzvxcepf1FrQ26LBpzetLwcQLQQDYcCheh4m5M38cvUNih/+j7+/v1nRbtPSjuAsb5hyH+1PnQ7Ditu69ToLQoX19WExxupdMyy7eP6jzvuNL5Kb3XzhNwXxqFzM6duz+ZGLGfVU2+P48ePIyQkBIMHD8acOXNsxtu6dStatmyJiRMnYuzYsdy75s2b4+DBg7h69SocHZW+7mxBY8SeA8gZMfYj73nmPJbXeGSd65F4gRyFLRQXRhpx7INZqgtW+qRI+IwVr9gnX62OT9zFE6TCmJbC3svLLmqDVBTzUJzJ7v3k02hdMqfQSX1D1iE42ukw44Y3NgS7QVehPPKvSQ6n1cQurubfg7tOugnsdvoiVtWsgvudG6qahSbpSN0Asb9ij21D4NIYTh/NOtqIHr22oazDfXy/IxqCYwHdxBPIxRXYMlp17QO7veJJWxu/CGxKTbDZXqlfRyKpt3jibVOMFIUvfA6eemw8EIsZN7wxzO0cffc4i6laOxE8znhjw9qcvIkRbukcLdcGRFIH2IXlk7ysHtVfu90jAgUOdii3jBdLsbUBDlgeg+SesxX5zTMuxbf+vAI6YU4IU8WKCBcHRR0iFLZZ6XHGyvmnkqez9V8eV56vrfzIoYw+wZWzkFkY/avulkW30pJDYLWNmtlqQdSIISi9KgGBB5zwk+c+ND/VHg4tRJ0eu3rBEI6chM9+F6r/qTbvyPvy3ayG1FABqWfQrre5wwI5BiWmUnPnZqsF1RfHoEwyUH6xNOau943kngFR1OpzvwY2vxEHr6rUQqyDp14hZp44KxxpHef9T/2jFsaWWxTYfMjmERBvLFk9UXtXVxTcuQOXXZXxoMklLj2htThzvFpbhX4ew/lZk4vZFzSph4Kx1+jYYBlUeb7y/P0POFNffMVhngDxVnh3nbWqfVpYu1NGuHV3auBFDrLm5LYKhePfBwul6eJ7Rk6Xi0XayhDqkkZXM5DeKtU+ZI8TDWwbQrB1+AIUPmez75JmNkTgO7bXS5PegKSf61OrvIXlBdhmdgvL38GjisIdhbwdE+eEI629+vdVWF/WTuhJ9SoJah5ywOkGeVy8lXfcsLi6N/cNqMHe2Rm/HY2DW1Cqxog9AmHEKlWqBHt7SYjvwoULT7ScTZs2ITo6GuPGjcOECRNsxvvqq6/wySefYMuWLWjRogX37tNPP8XkyZNx4sQJBAcH28hBCU008TlCzjrRISw7+fUuI5kLJuZTAd7ZJDuxE5A8PKZKIkryj5/cRJn0BnziLpqAN1VtgFXneXE98mfSG1QnEKIETGhYeKsKR5frP+6q6eSbRmJi16Q3wHTiNhUB0+3Qc/UjhkwAoHVJcSN1rb8kAta2vomjx9FOlDWfuksMJ0wYqdeZRstoXFJP90cnu8S08eRNHQGIvnmIBUS5DxyT3oCQKZJyfP7Vawj+aahiI6D/Lg6fuJ/F+loVkNppLoIGiYZKkpdJhgoIE1YxrpyijL9XL6G/ifNM4pQ0cR6vx8CekhMmjG134hdI3j/sGMzLEk/0f/k6mosXPiZG0W7kN3lOXSEadCCQL0Rsmhnn9irikPfEmhoJuzooEpuCyynyqfjLEY6mrD8kJ6TsGAr6Xhw32e3CUebXBJRbFm+TNrZNTHoDdb7qf0DyeRbQ6wiauyjFsMjtzd4fxBM2OROWMV4yysMi5Tve6IP8PXkn/zYdPKogaakoIvpbWHWuLcj/Gnt4S5ksPeRbJnF9/+SV5tl8zFbRAICvuT8AUQQ06ccIyoTJoTZHLQzyRdR7gznxS7U0pP2SwnIQPGMo1UMxWy0QjpyE2WrB3Krx3JiR101eNmstjqRLbPIzLr8rue1g6xqbdRhdSvNGDnw+jUf5xfFcWPnF8Qork0TUiu3PBx0ksfCN+zZIvw/EYlTySa782a14EbpOpyRT2Sa9qHvCthfbfia9gTqEl68ZakwYG0+eDwFhwgDeWE/i/DAU3BH7/0GTS5wFQLZv1L5/8r/HGZEJnXnTCy1O3OFovvFKNhc//4bkb9NstWDLr4uxrdZ66g9KjQmr/SNv+IrkxTJhau2hNpaI8Sri9gIAWlcT65yQbVtnj7QFMQBxva+YnvgCBIBVNcV1lDBhgHirKR/fZqtFYVCD/e/b/RjytlaD2SpZWAaAEw0KcPGRBWCz1QLY61TnGTW6zVYLtejLlsXSVnZPBQUTxjFDjyz2skyY217R0E/ZPRUU64nZasGuufN4GsPr4PJQIxeHpIk82gUAKBNma24wW0Ufkbb2KBffN9p8J2fCzFYLTjfIw5UY3iF3d9cb3LMcua1CYbZasCk1Aa+HRyneP7cQBEAoeMp/T/+uKD8/H5MmTYKDgwPefPPNQuNareL85OnpqXhHwrKybOurqkG7EXsOwN6Ibbtw0ubmIWOcET+9PVdx6o7wOsDBUzCfl67qTXoD7A21UGBRFxu0BbUJ1Wy1oMaCGHiPExe179ITMNpHWjDUThIvDTOi8gyleV9y8hTdtAvyE3kLWfKFUe3klPyXK9ZG12vF+WMi8WKzDqsakJCXKRjrwi7uKLL+CFZMromLQhHUTxRvYMUm5TQH7OiL5FcX0zCnXVWQ0+SiIi4L64dGapUx649gVFhUCs4b9ivqaysPWydsaV9HIrH3bNTY0wve3Y7jTvcI3Khhj9ODRNl/IjpFkNesARy2H8KNtyPh9vMjpeS/gnCowSrFWCDlma0WtG3UkVqIpO01P4zLW053cepUc95QVBuvHD/FGcfsLTJBygoDkmXGKOac24Mh3o1onnc3+2FvyB8wde5NjVLYKitpRkNUjrOj+mVq/SWHfGwVVRe19+T2gbxrfCwbn7mfUe0jQH3RZ2+sHKp6ImVqee5GuCjabL0j4eQW8OL7RlSZJvZh5u+1ccooWnEN+zQGB76crUpfYX1ta6zU2fcm9J1OKb4FXcWKyL9yhYtLoDbXqNUneMZQhQhXYWhx4g621uYdlycuDEVamwXcLd7loUZUmlV4vg5eVbFx3wZFe5xfE4yqXZTOdW3N3QTs+HTbWx43oq7jcWC2WuAbOwBBAw6q9sWo5JNoVTJXUZbZakGr199WFQP7t7A1NgobmwDQum1PznqrWn6sMY3ils+WQVBYXa2jjdB/pxSXVktzJSYS+jfSkdtUvAH4IT2O8x9niy5bY7uwMU8gvyll09zsHYl9X/PfL3u7Vtg3nPO3D3bWXlfk/F/cuYdVfyCIDn4VsSd3UPrYNGmTI5HYR5RmkBt/MlstaHqiI5xapSvKBACTZz2YsyQrwATyPUbmp0bOTZDaOL3dI4KuHXK8UKKJJbpyBuaeBvKEXGx/uPqptsewYcPw008/YfLkyRgzZkyhcfv3749FixYhJSUFfn68f75Fixahf//+WLt2LTp27Fjs8rUbsecU7MmO2So6I602MY5jwqjvrP3HgYJ8euIT9plo7GFT7ArFxlmeN1feI0XsBoe60XLtQ2rApDdQJgwAho56j0uXEpbN+X9ZmRlHmTBSNkFae9G6UH5yOg1zqOqpmHjZE1N2MiPPcutGsUf+RphFUmiPGC0qJTcaPRQRR3O5tmTLoO0bJ4ojyZkwAAjqd5DGa1/qPmfghM3Lv6ek55D6bSRymlzk2l8Os5U3jW+XUJY6x5W3g9ri1O7kDe6Ekq1b4iNxxHmhom8X15UJOD1oFo2f1lZUdLd3dUX+q/Wx7ZeFMFst+OjT5bQ8YoiFRXSTzhw9G/esU7bXIybsoSkUFePKFbqZtsXkESaMfae2qMm/EwA4ft9L0R5EP+jcRPGkMvMzI4Y80pGq+514i1muzyP9M8YohXxzRZDaZS7iv5/D0a2GjHHShsmz80k86BBOb7sKw4asQ4oNFSDdPpB3/4Q4I7pOMxoncVEo7WO19IB4KweIluk27t9I/f+wcdkDCrUNJjHTLk9ntlpg3JKBjM8lJgwAvF4XdZMaTIihYnu2+p7c7nZPe3QjXisIaiDjgeioyuub9KMnR/uhnIfc90LSyNM5+HpTAxsnh83i8mDrSW7LWYwun6JoL+K24Hv/1TQty4SpjR+z1YL7wR6qm1TChJF0rJ8nNn7inHBFevJcs/RF1fKJcQc5Qg6L7UH0beTfRk6bMHwfEMy1J/vfLu6ozfEoB/vtIXJkrAAAQK5JREFU2jtLt85rzicoxqe8XoAoxsnCjtG727xxuaI/5fOKnAlj449KPknLI65XSBz5d2erbgAoE8bSbitdxdnxyG16AY2PZcP1H3fO4bOttrz8Zw1Fe18bGMnRqZaHrlxZAFDclLL1KreU94Vp7+qKQ+MaqO415HUiTI7ZahG/M1m7mK2irqTZaqG+866srw5doJ8qk+my2cLVCQB1S1JjgbgPqr5IMn7l+0k8/H4fDABI6TZHsR9g6ZPXnxgFk7edzo7fRhMmTK3+QUtEWsja8aJDKBCeyd/TxNixY/HTTz9h0KBBRTJhAFDykaP7nJwcxbvs7GwuTnGhMWLPKeSTGVGyJrBrEIzS9uIiJZ9Qyy+SNjpsPm0btlOUQ961iX6TbkAPNVhF3xPRCQB04uz7xZ/UB0at2eImlpwCm/QGtP5kFE2TNFOyIsfRxNzeEbPD8smbPEe9NxhLHvkFsrVpMekNOGDQ0d8J34kTXfyUOfBwvAndDr3qImmLQWL/AKDOtKESE/OImSRpdTuUejjEb5m8LrktlA6IyXuWKbNF58URkijbPzcCuPf1J8Vw7QGIhlXUNhvkt30ZV+h2HKZ1I/ovtjYHa3f+RsNJnmw7tT8l6bWVMB/ELz47uTpy+UXwVui4vMJFJ7CT0g4UuVFh830nKRHH6isXTADYnQ14jxPFyLy+kNqaMAx3Iry5Mi4NNyJ8TAySZjak1ifNVgsKGtdT3dCz/0l4tYmSKXTrB0a4/Lkf/qOVjMjktP1cO8odVX+XLm1C2TplfWxEbm2JbnJzCwB22z0Rm3XYZruVaHlO8U3I46rdYpitFpztP1vxjZC8Vi9shmoTeDcSpI/c58aj9iF7Ls+U73kRXzIGiV+/LJMkPsvm2ax3fwUNLOTm+D/xVR6gEKT/JlkDzEs7h5u9IhT1vr4hiAuLPbkDdo4laNkfphwvdI75yFeaC23NY2yaa8GOijB5X+U1a4AqP8bR9iVWTy+/Y6SGFpoMHsSlS1paH59XPKVattcXcaiw1w0FjevRdk2cFY7vqhzh2j+nbRj3HDKJ7wc15hWQrNSpHaCQ/+FjpI1zQXY2FZ/uUjWCmyPYdMRaqUlvQNBQnpG6+pZ0W2HSG5CSe5ebE9nybDE2JPz7AFHv43rfSETO4U3GA6AMvElvwLhU3ik3APQ+J1oq/DDlOHLahmF5piSObWscE/wT4ozf/bcicU44XjneSZU+QseRMGndNukNSP8yEhXmx6t+62xY/k1JX9MWkqY/smz6yIJxwZ072Dl/PmrNHCq6UXiUZ05bSUxe3seGr4YiL02cf5J/iMAnl0KQuCAU0U064yPfhjDpDYjdLVoPrNj+LGJ3/cH1Pfm9+ZwkUnjj7UiuPHJ4fLaf5EP0/eTTCBy+D/Z1a/Jz+CO6C7Z5qTNhANZnHaB5m/QG/JDOO71nIc+DPPt+Eq9YB81WC1K/LfpwTsOTx/jx4/HFF1+gb9++hRroYEFM06uJH5IwNbHFwqAxYs8Z5BNl9cXqi4Rw6CQ3kRIdgauDIrlJL+JoLp1sNu7bwN1csRNRgeUUdDUDadr6B99QLPx5aaKhhlU1q8DnM3FCORXDm7kFwBk9sKWoW2fqUEWYSW/AhNRDNC2hrfTqfehTrRF1gizfAMsnaLYdh1vDsLZWReS/Kim/k7TEvHzNOUNpuDwP8lv/XZxisSOIrR5LzcKzdSHIa9aAMsFZTcWN27UBkYq+ltPH0kR+57lI8W81usYxdhVnSxt8tQ0RIIqlsXnmZVm5G4cupy9zacakHIPhiJQP8aXD9g9L/zvlMqmuV8Z4ddl6kkaXdlFRd9qf60RreWN9lQ45SZ1v5IsuEdoERtG0MwODkDg7XLTEZrXAdFo6fHjFWUk3+3/3LMkXDABYPp4Ft5/jEfjOPqpXaNIb4HhGOi2WfyM69wo2mV79lDib/TLmzYEw6UWT0mobgdE+EYqxDQCeX8fRWzJ5us01NqqK5aoxVrZg0huQ+al0S2IXWpvLQ40mljEgG++gnyV9wu89eMV8/1EJNmky6Q2UUWbb1Wy1wHHrIfj/NgSv9htIw6Nf6aQ4JCDx2d/y8s42XspXXJDitW3UEQBQ7uuS1IQ9bZsPJMfsrLTC/U78AZS8Tmrj45NLIVx8YuafpLUvVUqxWXfYfoirzz8h4uHc3aj7NJ7zX/uROVa6RQnsrWTO2ecVvjuw5TfJj2TQ0P2Kft4yT9y0+MYOAACcDc2l9VqWuRc7H9jjwxRJ3JW4YSFWQNUOLoJ/Eufh/V9JhnB+SI+j+mi2Dj1MegMChynXGXIodF9vB/vaNeD3t6jLONS7EbduuP2s1A+Vo214W+65/OJ4TKjIS0+kfR0Jc5akozpo/rs0T6IDRhwpf+tfBzvnz0dPL2nuko8Lks+GLH5NDBqyH7vriEzKm2mvcmPdFoN/tu9s1fBup9VvRs1WC+52bYikJQ1wbWAkR8eKdo8s7TY/z9G7e8h3QEE+zFYL0idFYuf8+dyaqnOvQOuo/1tSIyhptYelWQUEDTiI2F1/wGy1IOsjI9pUb8zVWw3s+HH7OV45t9vzvsimBdQU9ztHTwMQjbkAoAfD2T9JB7Y6NzeuTYh7E5Lf2tv1EPDrEJt0sfOmLZC6+X0Yr9p3zz2eun7Yo7+ngPHjx2PChAl4++23sWDBAtjJ3IzYQliYuAeKj1e6O0hISECZMmUQFKQuxWELGiP2HIJ8kNYPjJz/Cvad/KP1f9MCvzWD4T5PmoxMegNdLMjkMrp8Clr7iidarB8gs1VU5CWTTMX2Z1U3MYAocma33ZPmKUTW5eI+6BCOu5v9FIsKm4d+inQjQW7aHnQIVyi1s3D8m/eXwubLLqz3Xm+IMSni7d50vXiKpatYUfxfoTxMeoN4o/jI5PfpIbMU+bL5qyHnbx8uzfrAzRw99ztLGzGH7Yewcd8GcUHsJ24yKm9IVc2XLU/n5oaWb/Tl+rPqV3G0DLPVgu1LJZ8XaZN5BWH2N8ljcbV/4Lt+EFe//FOJ9PeampLfLLPVgq/8Q/BNZSVjwT6/EjOIezfMW9xcyMUL2TiZY43UkIXZaqEbFUB0smyLSQVA69zdS9xcbkrayylHB8XslxR8m59H4oJQxUbLd90g1bwBcEroBCR94qxwTu+Ixb3XGyL/quhsme2L1G8kQzJseUTB32y1UMfZsWd2c+Wx5V/9S9JNlL+/36mh4ntTY2501ZXmrOXxEueKCw0RZfL6UhpzwsETCkbHpBedyrK0kXdk4+07Jp6KPKvhxkbxEKigcT0FTSTNK0MHcXW7MMqIgPcTUGKzpI+Yn5wmlrd5AM2HbYvrG9QXyDZtekBXPYCWte8biRnIS02H4Qhgv8cCnzd4X2oloySjFWzdbvvoFGGX8+8h6UelnytAPLQ4VM/e5vwesDwGm5L2cnUiUGsr9jbQbBUPzGwxpmxadi5l8y3Y5gVAvJE3Wy1wtNPB+qGRiiqarRbRnxmARnuG4iv/EDR3yaf5XTHeVMytc87t4Z6rTo5TjNsRPkbogvwV9bRVBxbvlMuEXWhteE2Kw6a/VyKwD+/HkdxwEF9/BPa1a9B8yXqh5izad+NASpfZaoHugXQbBoDqFpqtFqoTKe+33BYN6FolrxvJh/iwVJurrkXd4Ma4GoOtNj4IiEEQef4mvQGlV+9DaquFODhhNhLnhKODoTUA3scXO68SA1cmvQE+Y+MVtBCLzz+kxyH/bDIN138bRy1fEno9v4lDwZ07GJ4sWpRMnM8boVKjV/7bpDdQ/3q2xonfxxKdF0YaUXKtxNCz1jjNVlFflMUn7mfhP0pdz8tsteDUO+K+wvqhUUEfoYf1Geq/va/CAJiGp4OJEydiwoQJ6NWrFxYtWsRZY2Rx4cIFnDlzBvfv36dhTZo0gYeHBxYsWIC7dyW3BkePHsXOnTvRtWvXxzJdD2iMWKEoKCjAtGnTUKNGDTg7O8PLywujRo3CvXu2fRn9L1ibyJtQPz5ylmJhHpql/qEWNBJPBYkOjElvoM6NSfoHHUXRHCFHNPe+u85aOHh7Yc3dMqonarZOoUqYD+LiOskU699rfkbbsGi6GLj8uR8lvyqL9C8juYlaviCQhTsv7RzMVgt2z57HiWoUBfniY7aKxiPuu9vjnQXiSVV0SHOYrRbEHt0i/j++XWyDQ9JppkkvWvaTM1/cpiC8Dke/XKGXnfxNegNK/rFP0ZZs/sQBr63yzFYL8m/cgP0/vE4QEaEamBmlyNP3E97apa56AFqfaavoAyJayeYrx7WBkXRMqDmYJnn6rR0Mlz+LZ0646cCBNJ3XpDgqWgaAszy3bdlCaUP5U0NFG5H/GZ8baZ0qzlaeKJK6RdZMUdQzYMVDLj+WWWX1sMghgUkvmvomYk9q9OyZPhepKwx8X4TXgd9HSnEUAnk+8s0qWxc1q5ckLbuBsBXHpDcgdgfv2Pf2mxGKeEGDxQ0qayacbR/yzLY3cSrLjkl2bF5830gNv6i1w/56q2HSG9Bi1h7FO5NedEvgsk5s+7aRr0FXsSI8vldn9Gec20tFNN32lqfWV016A8q3S0TLbn0UaVLeKIfYHb/bPIixMLx5QSPp3YH6q+jvt9Kb4of0OCQvq4cq0+Jwfk0wV9deXlEoecGey9vBzwcAcHrQLIxJOYY1d8tw5RMQS51yxhIQ/f2xbUXeZ6wWb+iGW8PQvFd/Ll+1fmLTsxCMdWHfPBMAUOWHOHo7dHwEf4DVqaq4vhDz/+yBjxp8HUtz6Qnk30R+YorqdxLdtAtadXkbsVmHqRgggV2YWHci0q/2PbX3FMUr3ZbEU71qQHQ0T9qBrBdq61Fa2/n0e//hhg8Kat1Fw4+km99zq+pQHbc2rbvTcllaHLceQlMX6cTf5rq3jTc+RPIgFiZNevHWjaQnurwkT7VxAwAOPqKl5uzXxL5LWV5PkQ4AgobspwdQ8vXKvm5NLu65iZGwd3WFLsBXtV9H+BjpIY/awQP5ffvNCHz+lXgQOSxStBitZl2V3TMQ5l6eV2HjkNB+7APlfotNV/WrOGR8bsTKTF4kUa3P/FcNoW2u/zYOSzL2cHmTOYh1c5HSbDFcV6ozdhqeHGbOnInPP/8c1apVQ4sWLbBixQr88ssv9G/Lli007pgxY1CzZk3s3y/tcRwdHfHjjz8iMzMTjRs3xqxZs/D111+jVatWqFixYqGm721BY8QKwfvvv4+RI0eiVq1amDFjBrp27Yrp06fjtddeQ0HBk78u7RQkLh4mvQGtX+upmLSj67ak1gkJzFYLrg2MxKXwksgYZ6Q6MAAwufIxGsekN8BlnShi4rZX1Hcxvj8EeecyMS/IT1Ty79iLllk5XrJOI59MzVYLKk/nzeJvPBDLLeL2u47A51PlqRjJI18ooAs3ycOkN6CnVxTMVgvaBBhVy2Yhf2fSG5CXmo7D42bT08jYY9vQ2juc5r/yjptqXum/+6PaPulEjy4ytR85b96vdBRstlqQuEAyzyxEKU+q1WiWM1DRNV5RlGtr4SAiVBkN73ELmbwtGr8zGPlnkyE0y1LdhKgtfGx/3miSTU+i2cVCnpct0VMWZqsFF9bVhNNGUd+LiBY6bj2k2ODLaSxvseee2bapNkHp7DyVMePt4CVuXk5ekdwpENjv4cszW3kxHUSE4NyqOlQc12y1UBPjpKxbb/H6LuvvlYTfmxaEjpV09czrlnFlkz7LFfLhPjeea3O27klLpFNnVqldDSa9qGfBPhMQ8+Ek7ELeXa6t46fwcvENxsfAwYMXs2XrSPqB6AipbUbMVgul51ZP8X+VaXGq/Uzim/SipdXtdUpJ3xyTb4UF8bjZW9y8bYz/CykjAhR5EAzzjqLtfCPqOmKPb8ftTf6431mUBLDfY1HQ6/OXKObKGvwhrgUIEmeL8xU7dthxecV4E6NCWiOl+WKYrUqjGmarBSeGS5u92tOHUoujJr0BX/mHUP04Art6wTBbRTcMZNNPyiT5FDw6GCTPxIXG6Shx7J0NzcW2ZQsVRmJYSQZCAwD4b+tL8zfpDdSQEUHeeX5OscU8+P+Wp7rRJrhbkE1dlrA0mPQGtDhxB9UXxSjGHSnX9R935CemwC7+KKI962PUWOm2IuW7SAgHjmNgpngznzlW6kc5PU2OPQAAPCyjFEsqbPN+vW8kgpbEIKnpEjFuqVPweeMYFcsHAO9ux6l7EeIrjJRLdE5ZYyRs/Uyde3NhqQe8aLwbb0sM1/IB0dAFim144EvpFjc/KRVZHxtV+5fNNy9dtOJJfHP59+TFnAs7QCLhBUdPc9/2nr5TsOnsP4jdvRa3eooi1elf8mOP6KvJ+/WBWWLe4qfMQYWFj9QcapeBPsEV+SfPcmP/ypBIehMHgBpgktN8JSZSMQbV1j1bfU7oPD14FpXEYN/JETAiAbqKFem7GdeMVIQeEOeQ7HaiSwmiDnC/4KFq2c8zXkRjHQcOiAeNGRkZePvtt9GrVy/u78svvywyj65du2L9+vVwcnLCBx98gG+++QaNGzfG3r17H1s/DNAYMZs4efIkZsyYgc6dO+OPP/7AwIEDMXXqVEydOhU7duzAypUri87kf4Bw6CSyPjaif2IaDcu/coVbIAFxEqgwPx4eU+M4wwAA0DaqA43DYqWveMrn+ptkACCt9QK6aQSApd6iiFTiIn4j92rfAdyka4sRIP/pwhNcnb436Q3IQ36hp2EFj66C5XHU4rKbEwLiWyQ6+FUIudIEV9/5PEcvSVN5RhwyGt7j8gPE01F5WcS4gElv4ERz7PYq6bA1sZM4QUtjkB0RxMUnyukAYDxa+ORsi4kpc+QCkqfxjIL8N1kIWBBGJuCtI4jduQb1JosbHHJyL69TUf1C4nt0PE3fs+KUcrq/S+fNwfcdKflX+uJqDQW95HnjfXFD4/emVCax/FWFKdsWTHoDVtWsItUt4Rhn0l1tkU74dg4X3r6UOGazK9pRXSJ2nKUsl4x8tA96hW6gAMC6thaXd2CfQ3SzRphBkp+8fRNnh1MzzOSbI9YO09osACBu3px2VYGHQ2mR6RluVGzqzVYL3OfFI+/CRa489j/5vXP+fI4Gk96ABx3CaZ4p3UQGr+zyBFRfGKPIj5zAs2HE0ur1etJhiUlvwIOOYr77vp5N20+u86L2nbVp04P+LtMmBTeCdFx9LqyriRnn9sKkN+DvNT8DAGfwp9p4kXnsfVa8DSrMpDlph9gzu+G7bhDXT/KNHnn2/Fqcr4nhIzafpKX1cbN3JIQjoi7wiYjl8HvTgvAjXbn5iTC6JOzCSCM92Zf3GTESQ/D3mp+RI+RCV7EiZjE3CSnNFyvaU+07J3GMI4co4iVPjaBGgNi4bJwuVSNQunUqN/4IRpdPga9RZBLSvlYaMrg/pAKEKCnPssulmwT/0fGYc24PMhrewzdp++A1SWxn+5AaeCu9KaXnQYdw7ApxgdlqQZUf+NvV9qeucW0475Ye9iVLUhrLL45HhXqXaX/WLFGS1s2kF3Uj7RwcMPOml2Is3O4RQXVOCx5ZWat9SLYVS+DFFVl/kG4/x6NtVAd6qJCflKpoY0AcX2w4aWM7BwdKE7kRk8OkN2DjfWc63ti+6ZvRmOaZtjIEt3pGcG0Vvn0YTHoD/FYPof1i61A2eSpvFMfJIY9rR7Zs4nKj7rcS011xju3DXlIPs9WCvu+KB8VEoqSwdQsQxQQB2JTqaTR8sGo6Bx/RX5udYwnkX7lCxdwP1bPH/VeDaT55zRpg1zzRgfSampVg0os3yrYONTQ8OSxZsgSCINj827lzpyJu06ZNFfm0a9cOCQkJuH//Pm7cuIHff/8d/v7+/4omzY+YDXz22Wf48ssvsXv3bjRu3JiGZ2dno0KFCmjSpAliY2OfSFmsH7Ecc3WUai1OrGarBa3PtMXmGhth0huwMGMP+ldrpFgMHXd6wMGuAA+aXFI9wSLxR12oT319yN9HB7+K/Bs38H7yaUwLqAmHqp7YuH8jnbSM7w+hjJut/Ak9tlBtXynM99qLJbcroU+Zy/DdNABB/Q9ycbLbhStMuF8ZEonD42arbm4IdMHVkX/yLBd2v1NDrJ0+Fe66Ulz8KzGR1LDFzV6R2PdN8XwaAUCbwChsStrLxSW+TORpCFg/ZCTO5KvVsSvEBbogf86fmlq5hf22dWLJ4tzESJwZINaxTevu9HS2sPxtQR6/wYQYHPpcOom993pD5PW7hrLRyarpzFYLAn4dguQec9D6TFsIzZS6F4XRweYz4UotxNUtoYhzfk0w8k6Xofp4avne3eyH0q2VenpqZadNjqSihleGRKLKb2eo/oCtfnDw1CMvy4q8rdXg0CJDEY/9X+9AdywO+Rmd17+HwPcSbNJBwOYJQNF/XU5f5nT97JycIKiY2lWre3SdZog9vh3N3+qvMAQhp0ntWyS0Jf3UEIHv2r4ttVU/tfZcdT4e3apKm/Gkn+tzTmALyzP/1frQ7eDj3ooNQILhdy5uzUMOcLLP40QQ5Xm3PP0aenruQ58ylxXlpHwXSRkd+cFQhOV1lJlUiuoBqtHKPjv4+Sh888nztZWWg50d1ZUktLyV3hTX+7pzOjoEuh16xFYX17Tizi22UJy0xHcjG7+w8XZ1UCTc58Ur3pmtFvQ+9wqWeu+G78aBSGs7X5EH8b8np684a9f5MUacHDarWHMj63fOVj+x4dc3BKF8O8lNyIVRRmwd8R16eRXu1De3RQM4bpWMeLRt0Jo7QJGXySLp5/pIbbkIgLLODlUqU7F5W2OM/d3k2APsCnGR0vv5UJcmJr2B+stj/YpW2OuGa1H8/Fn9oCPOhubi4gijgikuTp0I2Lm6OOtIcd7ZGiPFXYPl7xNnhSsse7JYffYw3IJSXwg/Yk3R4Zn4EXve/ar9r9BuxGzgwIEDsLe3R3g4b/LY2dkZBoOBXm/+G3h4eHB/AQGimE0ecuFkOotLfeph9dnDaO4RjNxX09HcIxirzx5G3+pNcbVHPTT3CKZ/eUIuVnhsxJ1XzmP12cO4facAeUIu8oRcrD57GHlCLpp7BOP2nQJY6ufQ8IdRNWm85h7BWJmwDavPHsZ3/gHIE3KRnZlO8799pwAuK//BvbUeuH2nAIKrM1afPczl39wjGKZ6zRRl9z18mj7vnxuE5h7BWFa9Im7fKYBfv3gan/yVSLmiCHObvZujpc6Efopyck6cQJ6Qi6knd2PssXisPnsYJf7YgzeqhiNoej8aL0/Ihdus3fR5y2czubZk8yXtTn439wjGw7s3aVzyzmH9Xq4t5bT59Y2nz8b4mwgZ1w/b6jhg9dnDyDl7BnlCLu60DVHNg+3PFj71FXHY9+yffruOlr//jZm4fadApP/ocS6erbJIWraf6Vg5c5D+LjdnN9cesV/ORqk2p7kykr4w0DjWW/fhPfIfBM7oh9xX07my1GiSvyc0NvcIxvvOYp8vOC21f+bw+qjS2YKqn+5WtA37fHlvWVzuXY97f2ZaiGp7HuwyE6vPHkb2n5XhNns3Hvq6c7SS8ZEn5OLKW2Kev27fII7LO+rx2Ofy7Y9jlE99+A7/h/um8oRcDD5yQtEGmVvc6bfOtj2h/bcablzb5WbfVR0javNEztVLaO4RDGxLUPQF1y+hQYrvZvXZw0DzFOQJufB9Z49q/91fV6XQPmbbh7zr7BlKx+Hqs4fh23sffQcfD6QuDqL9e2ZaCJevsH2for5/+6/ClPMeHF0TS+/HQYNExxuHUhV0FTRLRWe7ixxtmcv9kSfkwvsDaU7ZduXR/NG+G5p7BONCkgvy4w7SND+fTsDtOwVYffYwkifU48bmmRm18eumP3BvrYfiuyBpSPmX+tSj88LNjnUh+FeVvrkFNZBX8JDru+YewbgQeQU5Z07TtiTf8vxTe5DT9BzXp99lelIazn5tAPTuira09Werf8n/L47vQf7eg4r4pI4DjpzkxnaekItyc3fjfvM6dD7JDatO02ZFXENzj2D4DYjDH5ccuHwFXz0Kdu5XzGNsu6jNfeR3lcm7KF1qcdj+qTJ5l6KM/PqByBNy8UlaIHLDq3NlbQtcKf5eXxHwroKKU3ahh1dD3G0dosif/Tv3ikjP+RV+aO4RjGxrpvgOeRyN7BpGwn177+P6mX33665N3LzC1oVdC8mY2FbHgYuXnZKE23cKaB3Lz9yF1WcPY/e7P9GyUi6WVNB3ssF9pC4Ogvu0XYq6yulvVT2CPuf/5c7VwWvMbi5vtTzOzKytuk6z6Qqc7Ll+ZetE2p0877n6QJVmtW9h9dnD8IvZW2j9zFfEw5MX4Y4kD8WbD/6nP+T+f1fzqUO7EbOBOnXq4PLly7h06ZLiXbdu3bB69Wrk5OSgRAnliXxR8PDw4J7z8vJw9epVG7E1aNCgQYMGDRo0/FeQmZmJqlWrFh3x/wHZ2dnw9fXFxYvKW9ingSpVqiAtLQ3OjE7lywSH/28Cnlfcv38fTk5Oqu/IYLh///6/YsQuXLjAPRcUFMBqtcLV1bXYvgzkCAwMBAAkJSX9q/T/JWhtVXxobVV8aG1VfGhtVXxobVV8aG1VfGhtVXw8y7YSBAF37tyhjoOfRzg7OyMtLQ0PHz4bAyMlSpR4aZkwQGPEbKJkyZK4fPmy6rvsRwq2JUuWfCJl2dvb/88nH8QPwssqQ/skobVV8aG1VfGhtVXxobVV8aG1VfGhtVXxobVV8fGs26ps2bLPpJz/Bc7Ozi81c/QsoemI2YBer8fVq1eRo6LknpWVBXd39391G6ZBgwYNGjRo0KBBgwYNGiNmA2FhYSgoKOAcuQHibZjFYkFoaKiNlBo0aNCgQYMGDRo0aNBQODRjHTZw/Phx1K1bF506dcKaNWto+IwZMzB8+HAsW7YMb7311v8jhRo0aNCgQYMGDRo0aHhRoTFihWDYsGH46aef0KlTJ0RHR+P06dOYPn06oqKisH37dio3rEGDBg0aNGjQoEGDBg2PA40RKwT5+fn44YcfMG/ePKSnp8Pd3R1vvPEGJk6ciNKlS/9/k6dBgwYNGjRo0KBBg4YXFBojpkGDBg0aNGjQoEGDBg3PGJpsnQYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iMmAYNGjRo0KBBgwYNGjQ8Y2iM2DPA3bt3MXnyZNSpUweurq5wd3eH0WjEkiVLIAiCIv6yZcsQFRWFMmXKoHTp0qhduzYmTZrExdm5cyfs7OxU/9q1a6dKR2xsLIxGI0qVKoXy5cuja9euSEtLU4179uxZdOzYEW5ubihVqhQaN26M7du3/++NUQSK01bp6ek2607+li9fzuWbk5ODcePGwdfXF05OTvD398cXX3yB3NxcVTqWLl2KevXqwcXFBZUrV8aAAQNw5coV1bj79u1DixYt4OrqijJlyqB169awWCxPtF3U8DTaqrD4tWvX/p/rb7Va0bt3b1SsWBEuLi4IDQ3F6tWrn3jbyPE43+CmTZvQvHlzVKlSBaVKlUL16tXxwQcf4NKlS4p8b926hWHDhsHT0xPOzs4IDg7G7NmzVb/rgoICTJs2DTVq1ICzszO8vLwwatQo3Lt3T5Xmx/lenySeRlv9l+crABAEAXPmzKFzSrly5dC6dWskJCSo5vtfna+Ax2url3W+unTpEoYMGQIvLy+UKFEC1apVw3vvvYebN28q4j7O2H8Z56un0VYv63yl4TmFoOGpIj8/X2jUqJFgb28v9O3bV5g7d64wbdo0ITw8XAAgfPjhh1z8vn37Cvb29kLXrl2FWbNmCXPmzBE++ugjoX///ly8HTt2CACEQYMGCcuWLeP+duzYoaBjzZo1gp2dnWAwGISZM2cKkydPFipVqiR4eHgIWVlZXNzk5GShfPnyQqVKlYTJkycLM2fOFAwGg+Dg4CBs2bLlibcRQXHb6u7du4o6k7+yZcsKJUqUEK5cucLl3aFDBwGA0K9fP2H+/PlCv379BADC22+/raBj6tSpAgChSZMmwty5c4WxY8cKpUqVEmrVqiXcvXuXixsfHy84OTkJfn5+wtSpU4WpU6cKfn5+QunSpYVjx469cG2VlpYmABA6deqkiP/XX38p6Hic+l+7dk3w9fUVSpUqJYwdO1aYO3eu0KRJEwGAsGjRov/3thIEQZg3b54AQGjQoIEwdepUYe7cucKAAQMEnU4n+Pr6cv2fk5MjhIWFCQ4ODsL7778vzJs3T+jUqZMAQPj8888VdAwfPpy27bx584T3339fcHBwEF599VUhPz+fi/s43+uL0Fb/5flKEARhyJAhAgChadOmwvTp04Wvv/5a8PPzE0qUKKFa///qfCUIj9dWL+N8denSJcHb21twdHQU3n33XWHOnDnCu+++Kzg6OgoGg0G4d+8ejfs4Y/9lnK+eVlu9jPOVhucXGiP2lBEXFycAEEaMGMGF5+TkCL6+vkLZsmVp2IIFCwQAwtKlS4vMl0wUixcvLjLuw4cPBb1eL1SrVk24c+cODT9y5Ihgb28vDBw4kIvftWtXwd7eXjhy5AgNu3PnjlCtWjUhKChIKCgoKLLMf4PHaavC0r/++utc+MaNGwUAwsiRI7nwkSNHCgCEvXv30rArV64IJUuWFMLCwoS8vDwavn79egGA8OWXX3J5hIWFCa6ursL58+dp2Pnz5wVXV1ehZcuWxar3v8HTaiuysVFbmNXwOPUfPXq0AEBYv349DcvLyxPCwsKE8uXLc2PzSeJx2iooKEjw8PAQHjx4wMX99NNPBQDC2rVradjMmTMFAML06dO5uJ07dxYcHR2F9PR0GnbixAnBzs5O6Ny5Mxd3+vTpAgBh+fLlNOxxv9cniafVVv/l+erIkSMCAKF169YcLTdu3BAqV64sBAYGchvb//J89bht9TLOV++9954AQFixYgUXvmLFCgGAMGnSJBr2OGP/ZZyvnlZbvYzzlYbnFxoj9pSxefNmAYDw7bffKt6FhYUJer1eEARBKCgoEPz9/YX69evT97dv37b5UbITxd27dxWbIRZbtmwRAAgTJ05UvGvWrJlQpkwZ4eHDh4IgiDcoTk5OQrNmzRRxJ06cKAAQ9u3bV3il/yWK21a2QE6NN2/ezIX37NlTACBkZGRw4RkZGQIAISYmhobNnz/fJjPs5+cn1KxZkz4nJSXRU2s1Wuzs7IQLFy4USvO/xdNqK3Zj8+DBA+5EUY7Hrb+np6fg7++viLt06VIBgPDbb78VSvO/xeO0VZUqVYRatWop4pFNzN9//03DoqKihJIlSyq+vd27dwsAhG+++YaGEeZk9+7dXNwHDx4IJUuWFNq0aUPDHud7fdJ4Wm31X56vyI3Vr7/+qog3aNAgxbj4L89Xj9tWL+N8FRISIri4uCjW/vz8fMHZ2Vnw8/MTBOHxx/7LOF89rbZ6GecrDc8vNB2xp4zw8HCUK1cO3377LVavXo2MjAycOXMGY8aMwaFDhzB+/HgAosxwSkoKjEYjJk2ahAoVKqBMmTIoV64chgwZgrt376rm/95776F06dJwcXFBUFAQfvzxR4W894EDBwAAkZGRivQRERG4ffs2EhMTAQDHjh1DTk6Ozbhsfk8axW0rNdy9exerVq2Ct7c3WrZsyb07cOAAPD094eXlxYV7eXlBr9dz9Smqrc6cOUP7oqi4giDg0KFDxav8Y+JptRXB999/j5IlS6JUqVLw8vLCuHHjkJOTw8V5nPpfuHABWVlZdAzJ47L5PWk8TluZTCacOnUKo0aNwunTp5GZmYk//vgDkyZNQpMmTdCsWTMAov7E4cOHUa9ePTg7OyvKs7OzU4wre3t7hIeHc3GdnZ1hMBgeawyy3+uTxtNoKxb/xfmKfDclS5ZU5EHCWP2n//J89bhtRfAyzVc5OTlwdnaGnZ0dF25vbw8XFxekpqbi6tWrjzX2X9b56mm0FYuXab7S8PzC4f+bgJcdbm5uWL9+PQYMGIBu3brRcFdXV6xZswYdO3YEIDJiAPDbb7/h4cOH+Oyzz+Dr64sNGzZg7ty5OHv2LLZv304nHEdHR7Rv3x7R0dHQ6/WwWq1YuHAhRowYAYvFgsWLF9OyrFYrAMDT01NBHwnLyspCcHBwseM+DRS3rdTw22+/4e7du/jggw9gb8+fL1itVtSqVUs1naenJ86fP8/FJeFqcQVBgNVqRVBQ0EvZVvb29mjWrBk6duwIb29vXLlyBatWrcKkSZMQHx+PzZs3Q6fTASj+uHrcuE8aj9NWP/74I+7fv48ff/wRU6dOpeF9+/bF3Llzad1v3LiBBw8eqNbHyckJ7u7uXH2sVivc3d3h5OSkiO/p6Ym4uDg8fPgQJUqUeKzv9UnjabQV8N+er0g/bd++He3bt6fxBEHArl27AACZmZk0/L88Xz1uW72M81VwcDDOnj0Li8UCg8FAwy0WC27cuAEAyMjIeCwaX9b56mm0FfByzlcanl9ojNgzALF82L59exiNRly/fh0zZ87Em2++iT///BMtW7bEnTt3AABXrlzBli1b0KJFCwBAly5dIAgCfv75Z2zevBlt2rQBAERFReHPP//kyhk4cCCio6OxZMkSDBgwAFFRUQCA+/fvA4DqpEpOx0icx4n7NFCctlLDggULYG9vj759+yre3b9/X7U+gFgntj7/9baqVq0atm3bxoX1798fgwYNwvz587Fy5Ur07NkTwMvZVo6OjqhWrRo6deqE1157DSVLloTZbMaiRYug0+kwf/78IutD6iQfV4XFJXFKlCjx0rUV8N+er9q0aYNatWph1qxZ0Ov16Ny5M+7fv4+pU6fixIkTChr/y/PV47bVyzhfjRgxAuvWrUO3bt3www8/oHbt2jh58iRGjBgBR0dH5Obm4v79+0+sPiT+izhfPY22Al7e+UrD8wlNNPEp4/jx4zAajWjZsiW+++47dOrUCf3798eePXtQpUoVDBw4EPn5+XBxcQEgnooQJozg7bffBiCaVC0M9vb2GDNmDABg48aNNJyIdMhFNQAgOzubi/M4cZ80ittWcpw6dQoJCQlo2bIlqlWrpnhfsmRJ1foAYp3Y+vzX28oWPv30UwAv97gqKChA69atERcXh1WrVqF37954/fXXMX/+fIwePRoLFizA1q1bi6wPqZN8XBUWl83zZWsrW/ivzFcODg7YtGkToqKi8NFHHyEwMBB169bFkSNH8PXXXwMAypQpQ/P9L89Xj9tWtvAiz1eNGzfGypUrcefOHbRt2xbe3t547bXX8Oqrr1LT6WXKlHli9SHxX8T56mm0lS286POVhucXGiP2lDFt2jRkZ2eja9euXHjJkiXRtm1bnDt3Dunp6ahatSoAoEqVKoo8PDw8AIBetRcGHx8fAMDVq1dpmF6vB6B+5U3CyLX448R90ihuW8mxcOFCAMCAAQNU89Xr9Tav+7Oysrj6FFV/Ozs7GudlbCtb8PLygk6ne6nH1Z49e/DPP/+gS5cuCp0DkpaIR7m5ucHFxUW1Pjk5Obh69apiXF29elV1Ac7KyoK7uztKlChB45JwtbjAi9VWheG/Ml9Vq1YNO3bswLlz57Br1y6cOHECR48epafgNWrUoOn/6/PV47SVLbzI8xUgfkPnz5/HkSNHsHv3blitVsyZMwfnz5+Hg4MDAgICHovGl3W+Ap58WxWGF3m+0vD8QmPEnjLIx6V2O5GXl0f/16lTB87OzqofKNEJqFSpUpHlJSUlAQAqV65Mw8LCwgAA8fHxivgJCQkoU6YMgoKCAAB16tSBk5OTzbgAEBoaWiQd/wbFbSsWDx8+xLJly1CxYkV06NBBNd+wsDBkZWVxugWAqGtgtVq5+hTVVtWrV0fp0qWLFdfOzg4NGjRQr+z/iKfVVraQmpqK/Pz8xxpXbP09PDzg6empqmj/vIyrx2lTe3t71K9fH0eOHFFsVvbv3w9BEBTjqqCgAPv37+fiZmdnw2KxPNYYZL/XJ42n0VaF4b82X1WrVg2vvPIK1ZeJjY2Fvb09TCYTjaPNVyKK01a28CLPVwQ6nQ4GgwGNGzdGpUqVcPHiRRw5cgRNmjRByZIlH2vsv6zzFcGTbKvC8CLPVxqeY/x/mGr8L2HEiBEK07CCIPpF8fDwENzc3Kj/F2K2+I8//uDidu7cWeE/5urVq4qysrOzhaioKIUJ1IcPHwoeHh4KPxcWi0Wwt7dXOIt+/fXXBXt7e8FisdAw4uciMDDwqfm5eJy2Ili9erWqzx0WGzZsKNQvzz///EPDLl++LLi4uAjh4eGqfnlYvySCIAihoaGCq6sr57QxKytLcHV1FZo3b178yj8mnlZbqY2r/Px84Y033lA12fw49f/ggw9s+uUpV66ccPv27aIr/i9Q3LayWCwCACEkJERhbpk4mV2zZg0N++mnn2z65XFwcBDS0tJo2LFjxwr1y7Ns2TIa9rjf65PE02orbb5S4s8//1R10qzNV0rYaquXcb5SQ35+vtC1a1fBzs5O2L59Ow1/nLH/Ms5XangSbfUyzlcanl9ojNhTRnp6ulC+fHnBzs5OeOutt4TZs2cLX375peDj4yMAEGbOnEnjnjt3TqhcubLg7OwsjB49Wpg5c6bQtm1bAYDQu3dvLt/Q0FChffv2woQJE4T58+cLEyZMEAIDAwUAwrBhwxR0rFq1ivP8/tVXXwmVKlUSKleuzDm3FATR34qbm5tQqVIl4auvvqKe33U6ncLv1JPE47QVQevWrQUAwqlTpwrNu127dgIAoX///sKCBQuE/v37CwCEt956SxF3ypQpAgChadOmwty5c4Vx48YJpUqVEmrUqKFw4rl3716hRIkSgp+fnzBt2jRh2rRpgp+fn1CqVCluon3SeFpt1alTJ6F58+bC2LFjhXnz5gmTJ08WGjRoIAAQOnTowDlTFYTHq//Vq1cFb29voXTp0sK4ceOEuXPnCk2bNhUACAsWLHgyDaOCx2mrLl26UAbj22+/FX766SfhtddeEwAIERER3GYxJydHaNCggeDg4CCMHDlSmD9/vtCpUycBgPDZZ58p6Hj33XcFAEKnTp2E+fPnCyNHjhQcHByEJk2aKNr1cb7XF6Gt/uvzVb9+/YS+ffsKP/74ozBv3jyhd+/egk6nE8LCwoSbN28q8v4vz1eP01Yv43x1584doWbNmsInn3wizJ8/X5gyZQqtk9xB9+OM/ZdxvnpabfUyzlcanl9ojNgzQHJystC7d2/B09NTcHBwEFxdXYXGjRtzJ8YEaWlpwptvvim4u7sLjo6OQo0aNYQpU6YoJr6vv/5aiIiIENzd3QUHBwehbNmyQtOmTRUe5ln89ddfQsOGDQUXFxehXLlyQpcuXYTk5GTVuKdOnRLat28vlC1bVnBxcRGioqKELVu2/G8NUQw8TltlZGQI9vb2gtFoLDLfBw8eCJ9++qng7e0tlChRQvD19RUmTpxo09Hk4sWLhZCQEMHJyUmoWLGi0LdvX+HSpUuqcePi4oRmzZoJpUqVEkqXLi20atVKOHTo0ONV/F/gabTVggULhCZNmgiVK1cWHB0dhdKlSwsNGzYUZs6cqRiDBI9T//PnzwtvvfWWUKFCBcHJyUmoV6+esHLlysev/GOiuG2Vk5MjfPPNN0JISIjg7OwslChRQggMDBTGjBkj3L17V5HvjRs3hHfeeUfw8PAQSpQoIdSsWVOYMWOG6qlmXl6eMGXKFCEoKEgoUaKEoNfrhffff1+xWSZ4nO/1SeJptNV/fb6aM2eOUL9+faFMmTKCs7OzULt2beHLL78U7t+/r5rvf3m+epy2ehnnq5ycHKF79+6Cj4+P4OTkJLi5uQmtWrWyuUl/nLH/ss1XT6utXtb5SsPzCTtBkHmn06BBgwYNGjRo0KBBgwYNTxWasQ4NGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNGjRoeMbQGDENGjRo0KBBgwYNzwRfffUVunbtCj8/P9jZ2cHHx+ex0l++fBl9+/ZFSEgIypcvD2dnZwQEBKB///5ITk5WTWO1WtG7d29UrFgRLi4uCA0NxerVq1XjpqSkoGfPnqhcuTKcnJwQEBCAzz//HNnZ2Y9bVQXi4+PRvn17VK1aFS4uLvD398fAgQORmpr6P+et4cWEnSAIwv83ERo0aNCg4eXE+PHjMWHCBOzYsQNNmzb9/yZHgwYN/8+ws7ND+fLlUb9+fRw6dAhlypRBenp6sdOfPXsW/fr1Q2RkJLy9veHi4oKkpCQsWrQIOTk5SEhIQK1atWj869evIzQ0FJcvX8bIkSNRtWpVrFixArt27cKiRYvQt29fGvfMmTOIjIxEXl4e3nnnHfj6+iI+Ph5Lly5Fq1atsGnTJtjZ2f2rem/evBlt27aFv78/+vXrB3d3d5w8eRLz5s2Dk5MTjh8/Dk9Pz3+Vt4YXGIIGDRo0aNBQDAB4rL8dO3YIn3/+Of2tQYOGlxc7duwo1reekpJCfwcHBwve3t5PpPz9+/cLAISYmBgufPTo0QIAYf369TQsLy9PCAsLE8qXLy/cuXOHhnfo0EGws7MT9u7dy+UxefJkAYCwbNmyf01fq1atBEdHR+HKlStc+Pz58wUAwrRp0/513hpeXDg8a8ZPgwYNGjS8mPj8888VYT/88ANu3bqF9957D+XKlePe+fj44N1330X37t1RrVq1Z0SlBg0anmf4+fk9lXy9vb0BADdu3ODCV6xYAX9/f7z22ms0TKfTYdiwYejduzdiY2PRrVs3AMCOHTsQFBQEo9HI5dGnTx988sknWLx4Md566y3u3datW/Htt99i//79yM7ORlBQEIYOHYohQ4Zw8W7fvg1nZ2e4ublx4Xq9HgBQqlSp/6H2Gl5UaIyYBg0aNGgoFsaPH68IW7JkCW7duoURI0bY1PVwd3d/uoRp0KDhP4fc3FzcunULubm5SE5OpvNTdHQ0jXPhwgVkZWWhZ8+eivQREREAgAMHDlBGLCcnByVLllTEJWH79++HIAhUPHHevHkYMmQIIiIi8Omnn6JUqVLYsmULYmJikJKSgu+++47mYTKZkJCQgLfffhujR4+Gu7s7Tpw4gVGjRqFmzZro3r37k2kYDS8UNGMdGjRo0KDhqWH8+PGws7PDzp07aVh6ejrs7OzQp08fJCYmolOnTnBzc0PZsmXRoUMHqi+SnJyMrl27wt3dHSVLlkR0dLRNpfZr167hww8/RPXq1empc9u2bZGQkPAMaqlBg4ZnDbPZjIoVK0Kv1+OVV17ByZMn8f3336NXr140jtVqBQBV3SsSlpWVRcOCg4Nx+vRpXLx4kYu7Y8cOAMDdu3fpjduFCxcwfPhwdO/eHXFxcRg9ejSGDh2KtWvXYvjw4Zg6dSo3X40ZMwYxMTH4/fffYTAYULVqVbRu3Rp+fn5ISEiAq6vrE2oZDS8SNEZMgwYNGjT8vyAtLQ2RkZG4desW+vfvj6ioKKxfvx4tWrTA6dOn0bBhQ1y9ehV9+vRB06ZNsWnTJrRt2xYFBQWKfOrXr4/vvvsOnp6eeOedd9CpUyfEx8fjlVdewV9//fX/VEMNGl5OFBQU4OrVq9zfrVu3AAC3bt1SvJN/s08CERER2LJlC9avX4+vv/4aHh4euHHjBvLy8mic+/fvAwCcnJwU6Z2dnbk4ADBq1ChkZ2ejQ4cO2LVrF86dO4dVq1YhJiYGjo6OXPzff/8dOTk56N+/v6K+r732GgoKCrB161aat06ng6enJ1q0aIEFCxbgjz/+wKhRo7B161Z0794dubm5T7yNNLwA+P9WUtOgQYMGDS8uvL29BQBCWlqa6ns1Yx1paWnUoMeUKVO4+AMHDhQACOXKlbP57o8//uDCGzVqJNjb2yvCrVarULVqVaFy5crCgwcP/n0lNWjQwIH9hovzZ2t+eJLGOrKysoQKFSoIgwYNomEHDx4UAAgffvihIv69e/cEAEKPHj248OnTpwtly5altJcoUUIYP368EBYWJgAQbt26JQiCIMTExBRZ74kTJ9J8e/bsKfj6+gr379/nyps9e7YAQJg/f/4TaQcNLxY0HTENGjRo0PD/Al9fX7z//vtcWK9evTB//nyUL19e8e6tt97C/PnzcfToUXTq1AkAYLFYsGfPHrzxxhs0jMDDwwOjR4/Ge++9h23btqFt27ZPt0IaNPxHUKVKFWzZsoULO3r0KD744ANMmTIFdevWVcR/2tDr9WjRogUWLlyI6dOnw8nJiRrCYMUPCUiYXGxx2LBhGDRoEI4fP46cnBwEBwejXLlymDlzJjw8PFCmTBkAgPDI+9PSpUvh4eGhShMxTJKRkYHly5fj3XffhYuLCxena9euiImJwa5duzBgwID/oQU0vIjQGDENGjRo0PD/grp168LenpeQJxuakJAQxTu1TVV8fDwA0VeQmjGRpKQkAKJ/II0R06DhycDZ2RktWrTgwhwcxC1lgwYN/t98Bj548AD5+fm4ffs2KlasCA8PD3h6eqrqipKw0NBQxTsnJycu/ODBg7hy5Qr69+9PwwIDAwGIxojkbSEHmbPy8/MV74goJStSqeG/A40R06BBgwYN/y8oW7asIoxs5gp7x+pSXL9+HQCwZcsWxQk9i7t37/5PtGrQoOHZIyMjA/fv34e/vz/V0bp06RIqV66siHvq1Cls27YN/v7+qFixIg3v0aMHpkyZgr/++ouasM/Pz8eMGTNQrlw5zsqiGrKzszFixAg4OTnhgw8+oOHdunXDJ598gs8//xxNmzZV3HTdunULzs7OcHJyQvXq1aHT6bBu3TpMnjyZc/WxZMkSAEBYWNhjtY2GlwMaI6ZBgwYNGl5YEIbtq6++wscff/z/TI0GDRqKwrJly3Du3DkAwJUrV/Dw4UN88cUXAERfYKzVw969e2PXrl1IS0uj7jG++uorbNmyBW3btoWPjw8EQcCJEyewbNky5ObmYubMmVx5H3/8MVavXo0333wTI0eOhKenJ3799VccOHAACxYs4KwVnjx5En369EG7du1QtWpVXLp0CT///DNSUlKwePFi1KhRg8atWrUqZs+ejQEDBqBmzZro1asXvL29ceXKFRw/fhzr1q3DqVOn4OPjg/Lly2PEiBH4/vvvUa9ePQwcOBDly5fH3r17sXz5cvj7+2tiif9RaIyYBg0aNGh4YdGwYUMAkoiiBg0anm8sXLgQu3bt4sLGjh0LAGjSpAnHiKmhXbt2OH/+PFatWoXLly8jPz8fnp6e6Nq1Kz744AMEBwdz8StUqIC9e/fi448/xsyZM3H37l3UqlULK1euxBtvvMHFdXd3R9WqVTF//nxcvnwZZcuWRePGjbFs2TKEh4craOnbty+CgoIwZcoUzJ07Fzdv3oS7uzuqV6+OSZMmcbpx3333HapXr44FCxZg8uTJyMnJgaenJ2JiYjB+/Hiqe6bhvwWNEdOgQYMGDS8swsLCYDQasX79eixatAj9+vVTxElISEBISIiqo1YNGjQ8GTRt2pQasCgMrE/BfxO3RYsWRepkyeHp6Ylly5YVGa9y5cpYu3btY+UdFRWFqKioIuPZ2dlh4MCBGDhw4GPlr+HlhsaIadCgQYOGFxorVqzAq6++iv79+2PWrFkICwuDq6srMjMzcfDgQSQnJ+PChQsaI6ZBgwYNGp4raIyYBg0aNGh4oeH9f+3ZoRUDIRBF0UlqwKC2BDqkBmqgAUqhJKKjNmLPxNyrvxj7zlxX7L1jjBFrrZhzxjknaq3RWovee5RS/n0mAHx5nV/+yAAAADzmfT8BAADgSUIMAAAgmRADAABIJsQAAACSCTEAAIBkQgwAACCZEAMAAEgmxAAAAJIJMQAAgGRCDAAAIJkQAwAASCbEAAAAkn0Ajm9E1ypG9PMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)\n", + "\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(0,2000)\n", + "\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAJ9CAYAAABXWMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3xURdf/d7MJoSXUQNiEkJ5AIGwIKbuAICALAZUuRRGkJoq966OiiGBFUaqIUlQQxEbgKig1CYTAEgglPSS59BJqAim/Py4zd+aWTXh/vojPu18+fLJ3ypkzc+fOzJk5c46hpqamBk444YQTTjjhhBNOOOGEE07cMbj80ww44YQTTjjhhBNOOOGEE078X4NTEHPCCSeccMIJJ5xwwgknnLjDcApiTjjhhBNOOOGEE0444YQTdxhOQcwJJ5xwwgknnHDCCSeccOIOwymIOeGEE0444YQTTjjhhBNO3GE4BTEnnHDCCSeccMIJJ5xwwok7DKcg5oQTTjjhhBNOOOGEE044cYfhFMSccMIJJ5xwwgknnHDCCSfuMJyCmBNOOOGEE0444YQTTjjhxB2GUxBzwgknnHDCCSeccMIJJ5y4w7grBbH33nsPI0aMQGBgIAwGA/z9/R2m3717N/r27QsPDw94enqif//+sNvtmmlFUcS4cePg5eWFBg0aoGvXrvjhhx8001ZUVOCNN95AQEAA3N3dERQUhJkzZ+LmzZv/nzV0wgknnHDCCSeccMIJJ+4Ujh07hrFjx6J9+/Zo0qQJGjZsiPDwcDz77LM4ceJEnekkJyfDarWiUaNGaN68OUaMGIGCgoL/EU+Gmpqamv9Rzv9FGAwGNG/eHF26dEFGRgY8PT1RWFiomTYtLQ29evWCj48PnnjiCQDA559/jtOnTyMlJQWdOnWiac+fP4+uXbvi9OnTePbZZ+Hr64tvv/0W27Ztw1dffYUJEyZwtAcPHoyff/4Zjz32GCwWC1JTU/HVV1/h0Ucfxddff/2/VX0nnHDCCSeccMIJJ5xw4m/Eli1b8O677yI+Ph6+vr5wdXXFwYMHsWzZMnh6esJut6NVq1YOafz4448YPnw4OnfujMmTJ6OsrAxz586F0WjE3r17YTKZbo+pmrsQeXl59HdERERNu3btdNPGxMTUeHh41JSUlNCwkpKSGg8Pj5r77ruPS/vCCy/UAKj55ZdfaFhlZWVNTExMTfPmzWsuX75Mwzds2FADoObZZ5/laDz77LM1AGp27dr1P62eE0444YQTTjjhhBNOOHEXYM2aNTUAaubMmeMw3Y0bN2pMJlONn58fJzPs37+/xsXFpWby5Mm3XfZdqZoYGBhYp3S5ublIT0/HiBEj4OPjQ8N9fHwwYsQIbN68GSdPnqTh3377LYKCgnD//ffTMKPRiOnTp+P8+fNITk7m0gLA008/zZVJnleuXHm71XLCCSeccMIJJ5xwwgkn7iK0a9cOAHDhwgWH6bZt2wZRFDFp0iQ0btyYhpvNZvTq1QurV6++7etLrrfP7t2D9PR0AIDFYlHFxcfH46uvvkJGRgYGDhyIEydOoLS0FGPHjtVMS+iNHDmS/vbx8UHbtm25tG3btoXJZKJl3y7atGnDPVdXVyMjIwMeHh4wGAz/I5pOOOGEE0444YQTTvy7UVNTg8uXL8NkMsHF5a48K0F5eTlu3Lhxx8oLDQ1VrY9v5z6XFsrLy3HlyhWUl5fj8OHDeOmllwAACQkJDvPVJnf8+eefyM7ORkRERJ15+VcLYqIoAgB3GkZAwkpLS287LUnfoUMHzXJ9fHxQUlLy/8G5jOrqapWw54QTTjjhhBNOOOHE/00UFxfD19f3n2ZDhfLycgS0a4yTp6vuWJkuLi7w8vL6Ww8rvvzyS0yfPp0++/v7Y+XKlejRo4fDfHWVJf7PCGLXrl0DALi7u6vi6tevz6W5nbTkt1Zakp5NeztQSvFlZWVo2rQpuiMBrnADABQs7YSAiQexPvsgTTcktBPWZx/EsGgLqi9fAQCszz6IIaGdOHokjI3L+6grgp7bq5lemU+J/PdiEPhK7ad/hugOqMk4rEmL1EOvbBZXH+yK3z9YRp9JnvXZBxG1Ywz29/hWVT+2zKZ/NMPF+y4gb04MMod8xaV59sAh9GhQw9Fm6ZDfXXZVYV83oybvbPsOPJKAeg8Wq9r846xUPLDlcQzpsg8Huzt+T+T3sMiuqC6vQMBWd3xs2kvLvDQyBp5rtNu//XYXZF9uhdXBAowGF0rP4O6OmooKh+2sVy/Db21QM+iEikctnB8Xi22vL6VpjOHBeHftKrzcMU4zv14/yP20C4Kf2kefzTur0alhMb58eQjcf993W/2ntnLNO6vxZqss+szGadX38vAYbJ71lcPyld8pGz60QxSu2TqjwYaMWvmsax308pE0kT9PQOaDy1Rpz64OwY6oH2ttR2XfjFz/GIJeUvdBkq7exta4MeBUnegpw2r7NnLnRiP46QzNuPPjY9H86z2q8EsPxcBzdboqPGirO7LmdET9jRmAwYD1xzI5Hti059YEo8XIXEqjy87RaPfYIRXNwhmx8H+T52F99kHcM3sitr+8FAAwfOCDWLvhZ9W3VhPfCYY0ue+wdQSg4m3o6IdQk3EYpc/Fweej3XSsA4Az34fCa1S27jtgseaYHSPDzHVKq6yv3rirxPnxsbgUAOwfvZSry4fngrHL0kC3LPGZOJg+2a0Kn31oN17uGIcKWxe4C/swZO8prO/aWpPGxbVBaDo8j+ONnZ9Yvh3VLe+jrsi8X3susj0/AcKHy7jwyyNj4LEmXXPeVraRMTwYVUdzddtBb3zW4pM8G1t5IfttHwRNs6vo3egbhXqb92OaPRsLzaHIXxKJwMmZKH0uDnumfqmqIwtXnzYQB/mh1SL+veTO64Lg6ftg3lmN9Dej4bZlv8Oxo2hGLNrd+laMYUF4Y+1q/GfKBPz8jTSnI7oDxi9Jxtdd/KVyvVvjh+2b6zR2nJ0Ui5Zf7tFsR2W7nZ0YC8+iSmyY/412ff3borJQPa9rQetbzf0kGgcHfq37vmrDpYEdsW/Du/Dw8KhznjuJGzdu4OTpKhRl+MPT43//xO7S5Wq0iy5EdnY2PD09/za6gwcPRnh4OK5cuYL9+/fjl19+wdmzZ2vNd7uyRF1wd5571hENGzYEIJmZV6K8vJxLcztpyW+ttCQ9m/b/B0TC/zX7KFwNbthyIgshk6Tfnh4uGBHWBSPCusDV4IYRYV3wR/ZuuBrcUPThPTTc1eAG1z8DsOVEFkaEdcGWE1no8msSpRf2/AFKz9Xghk+KMrDlRJac9xZtV4MbTvynJw0T3+yJ0Fft0rNLPWw5kUXzDcy6ztHY/NsPcDW4ocUub8rDmZ8jKW1StrJc8t/d2weuBjc0+eUArbOnhwstc0RYF+QlfM+1hXtYOOp16gRXgxtG90qAq8EN6zruxJYTWQj/4Sblg/LcykBpkzjyl22DzO71uXZh29ny9RM0X8PBJzkaIyNi4Wpww4sd70H4UwdxpAfftux/Tw8XoE88Lk6T3qNLRTW2nMjCl2H7uDLTP/0argY3XJx2D1wNbiiY153S2HDYAsOgcxgV3hWeHi74tXQ/XA1uMN6opnVi67+yeDdXV/JO7smsob8vrwmhaUiY1v8tJ7LQasV+eHq4oL5fgNR3HvRBTIvGqvZUtuXv4kEuPPzpg1y/+CjoCL6LDkajPw6iXAjjeC2ZeQ/HgxZfyr7Gvu9n2qXT74qk7TP7cY7f89Olb6DPwUo0W2fnytcrz9PDBTuMDVXveHPxAZT7NaJp3WKiVO3j3rK16n0p247w7Gpww6ihozX5IPUMe/EATTv+lA31fdthy4kseI8qVNFly2XpsDwG/W5Eff9AOZ8lmuO/OuE89y62nMhCUk6xZj8K3NOUy0v+1g8IwpYTWZicLdKwLSeyEP5MJteH2bj97y3DlhNZcLknlgtvvsYO97Bwmv7amB5wNbhhcdg+NN4k0XOFK81DxhmWz9YPFWHB8T20PYI/d9WsT7NSaayob2oLTw8XFHzRHSPCusD+7jKMCOuCYvcK/L79V67dSX633dI4f/JVecwl8SQNO04Z9+UgcE9TtPt4H1wNbrjS7wouPXYPTr7aE21GF+j2T2XYmPAY1A8IQsG87prv39XghuLV0Rw/frub6/bL1imtVGNNq2/2I/it/ar5a8XR3lw6Ja9HXvyKeybpXu8kjXuNfpfGjl9jfLm8Dbb54ebgbnA1uKHliOMcr5vETBj35XB1ZNuXrcuWE1m4ObgbtpzIQsAf8tjBphsR1gWevx5QhTf7wU5pW796QtXHyf83C7JgOFak+w1WD7ByfYDlrd+hG9z3ydL//cBWhCVm4ULSPVx5F6fdgx0rVkrzS1QEXA1uCJ1yBK4GNxx9/itajyGJkzX7jUvZdRx86yuOpqvBDeFPSu/iUA93NPjzEOXzxjDpXfWc9wTCXrbj0oYIbDmRhaC39mPLiSy4R0TAkH0c3Vs2QL20o3L77MvByugQSh+nzqvGXfa9svO799L9mv1J2YauBjccmLkMDbcc1JyXt5zIAopOUvotdnnrrl3YMZflJ/zZTM11haP/XN/ccIhbG96tkPqo8Q78/98RU3x9fdG3b18MHjwYM2bMwDfffIMXX3wR7733nsN8tytL1AX/akGMmIhkVQoJSBg5KrydtCS9VlqSXutY8v8HZMfEZjJrxguinYvPHbuAj2//GzrMT0L2smjYTGYEvZjOpSf5ASCyXn2uHEG003jPwmpkL+0KAPDtWUzjhNL9fJ6OnrCZzHBt15aWI4h2lHU/R9O0GXwE2fNj0THDhcYn3DOE4+fUdCveyN+H5P2/a9Z1aomFlhv441QIoh0l66Qj36rsPGz8/XsYmzbBjZVuNI/NZMamX1dxz1pty4az7eMIWdPnc3TYvDWVlbXSYetWP/8MWi5KBQBMyc5X8SiIdkq/5aJUnH7Civzhi/BLqfRuCx5cjONvWmn6EfeMVPHFvv82ro25Z/L7Ta/DNP3uOQtUNADAvF/NP0FlcQmMEWEwvZ/CtbceEny6qNrJZjIj70Pprmb3zKE0/Momb648//+k0ryBa6cCAArftXB0SNqQreMl/npH0zjfW21A6m8zmdF8WSrHT6vPUwAAr7Y8BgB4JS+Ta4ug9PpceQDQ5+GJGNiwXLON9r2xgD7X7D2E7eVyvQXRjuSDf3Jt1vGzJAiiHc/kHqFp2PiqrGMwenlxNJT9hmD/EX9UlooYENZD1eZsPq1vhKR3/TMDlUXFuDpcOukUflyuSkPah9B8Y9nDqj54ZUQcjsddhSDaMadgN5c/4IdTqKi5iWVh7VTtp9WnSFhU+ii47NjP0RJEO6qy82haz+/SuDitb0yrjFC3RrCZzMieH4ua/Vk0vmOafM+4xRKp71SekIxC5Q9dxPH+rL9Fd3whYb7vpdBnrXRs/uNxVwEABd9HQhDtaL4sleZ3REOJ0vt9kT98keq9B/wyBYJoR8CoTBS+a6HtI8ZfVvFN8p3rdoGjoVdPAAh9bC9t6wbbWnNxnT9IUvUjZX4CY3AAJhwrQu7H8RBEO272OoEGP/MnIn67G6GmmxmDfKK5cEdjlM1kRoOf98BmMqOeIGkmgFkQC6IdJa9adfkitH3mpHB9jv37bqCZC4t9JRGCaEe3p6TxzO3SDRWP5PefnRppfscAkNBXGv/3/WcB1w/IHMP2Iy0aW1YuVbX9kuM7UX31qsM5UhDtOPmUlZbR8Efp2ybjaHqXNVw/qzqsfXIriHYYW7agz9nzY6V88ZGaafXagfxm25A8GzuEar57l87tKX8srTWBW2iadVek05gLG0JgbNoEr5/uBJdbC+6C7zqj/H6JX/dt/JzF8nvxEYuKf61x+N+AatSg+o78uzMetiIjIxEVFYX58+c7THe7skRd8K8WxGJiYgAAqampqri0tDQYDAZER0uDcJs2beDj44O0tDTNtADQtWtXjnZpaSmKi4u5tMXFxRBFkUv7d4BVZ1AuRJSLBxLXZGcLLr7tzBSETsiQFp7Vav1ddmGkHMSCVk+DINqR9v5CFAz4EoJoxx/tf6X59AbxyiK5fdg05Hdo0h4ciq5G9iLpXR19vTlXbut5KZi44glNnip+90dh7HUAwLyiXQh5YjdsJjOyLKu4MqsullFeXcwdVLwQKAdq9m9CZB/dtCxsJjPmFOxWLUZIeT9dbaybt8nOFtx7zB8n638vDg3E8Ly+qjxaAoK7wY1OKKYdFZSHyvxCGEMCIYh2DMi6qBI4CD2t/kTCgtZMU6UTRDvsUXxaZVsm/7FaxXvvg9Ki0XrgBpeW8KtE7piFAIBG/fNpWu+5Kap0AFDdMwohT0oT/rEJC3Dip/ZcGU12tkDgGKks1z8zVOUGfzsNBbN4AU4P7wVFwhDTCQlR/QAAeTHleCb3CNcOrn9m6Ar2StrsQgwAOs9J4tL6zJYE2v4N+R03g7s7LbPqzBnNcaK6ZxT3HDo1HdnzY7Hx2A7NMUT5HgXRjqp7u2guVhut3a3qOzaTGVdGxqvCfd9LUX0HTexnaLqXAuI43rf8Fo0HfGI4OsbQII439u+5idK7a/XgURhi5E0s9ls0RMk6+so4rbZTlkXSHnzgMy6Pz9AsTDhWpKLRa+JkFX0lSP2sB26oyraZzLANfkRX8GTTZt+zXE4TK6s9Rc1KUtUHAAzRclsIoh2t56WoaAqiHQUPLKbh/q+lqt510QyrrtBP0giiHcb2ISreWZyabsX1nqe4OO9PUlRtqtUWRi8vJG9fj2Vh7dAmpYaLr94ibwwej7uK33/4mvLpiG8WLpHhfLqaGi6976wUTMnOx8DYgbo0AMB2ZBA3hir7hiDaEfF5Epp9I7Xzrk8lIf73td9QGjf7ykKkXpuQ30TAsZnMML8nCbU1ls4wNm2i25+UNE9XXeX6xWS/7qo8Wjjwkrx4VfZ/rbnm7FT1BoVt8CM4+kYwDSsYvBiCaIfLNXn+SOjQEy7mDrANHYfoGYmwmcxIuHe4ip8AYSLlY8jhM7QspRBI0lQfOAJjcIAmz+T3sMaXAADNBuag6mIZ0s1GbMyV5qeA0QdQ/1dpI6Ci50lKW0mDbHSy79CRkOvEncX169dx/vx5h2lqkzs8PT0RGhp6W+X+qwWx4OBgdO3aFT/88AO9QAdIl+l++OEH9O7dG97e3jR89OjRyMvLw6+//krDqqqqMG/ePDRt2pSzljJ69GgAwNy5c7kyybOW9cW/E44mcvL/0r3yLuXII7KZftc/+fsoLg0bwmYyo2xsPA1TTgrhcwq4xQpJoxyQtCZGQqOqVxd0+iQJrm19ucmGLAgBIL/fUhp3ZUQcBNGOdm+m4NR0q4que79CAIAxIgzT23XTXMQrF03VdvkegNYii4VrW1kQuhofhCubZLcJjiYdsojUwoKQYN28Zd3PcW0e8MMZLj7rD/njXVG8S9XeeR/Ip4PJm9cAALaslO5g0HeQIwkxGyOacvVgBbLu06dybXJP4hRZQHk6TbMfAMCJZ+VdT61+oWznPzs1AiCduDl6d+xv5S4haa+iNfJi02Yyw2Xbfri2kb7thA490WYwf3p05aY719Y2kxmG6AjkfB4HY4dQBD2fhoBXU+VTHoaXK5sCYXB358qvST9IT20F0Y5Pgtvrfg+kvNFHpTHJ4OoqCQZdO3Lx5K/3pymabWEzmXHyp/aUD3Lvj13YKdP/8d0yToged6wYMEo7itkLY7n0ylMpm6+06Htj6VdcXZQLCnJyKYh2GFxdEf7sIVW9lL8BqW/e99AE+szufqdP/hiubby5flSVnceVfX1wLKXZYqk8Cdakq+9Z2Uxm1OzP0m1XQmd9yR6O13cK0lV9eZhvPFeX3JVRWBbWjqbLXiJNzO4beS0EtlzlO0vpXI/Gh6xMlBPvUddFa0HHjd+38giiHbjvPFe/AcFWqe9kZHH1V7aHsl3yvpXb4OQzVlqWd9pNqjGRvTiGpjeleeC1fDsKvusMm08Uqo7kcPyz/wFpAw4AXH19NIW5vocuc2GnH7fCK6UpAKCmXD5S3vnZIi7dH+1/RenL8olVn0cmYsnxnbCZzDRcD6Qu1ZlHKU8fnA+Cq48JAwLjuTSLQwNRWVKKS6PjVXToGNb+N/k9hEkGAOZe8OfGjawn1LvvbP9x2yxvIinbSWteO50kvSv7K/MhiHb8vu4bVF0sg+3QJYd1J3ikbTeOj+uDY1Vpxh6VDJXNyOfXGVrfFzvHsnRbr5bmhPAl8iYU9hxE/nDpfZa+bKV0Nm76niapulgmzfFpmfSkL/mvtZQuQeiEDPSaJG2MrO/gpYon/LK8VuUWSBG3TkAF0Y74F6epvhNjWLDmt6Ts4+w4okxfvFaeCwTRjriXpFPRGHsVtyl/N6OqpvqO/f87wbq0YvHXX3/h0KFD1Io6INl0OHr0KHfnq2fPnmjTpg2+/PJLXLlyhYYfOHAAW7duxYgRI+Dm5nZbPN2VgtiKFSswc+ZMzJw5E2fOnEFZWRl9XrFiBZf2008/RUVFBXr06IG5c+di7ty56NGjB6qrq/HRRx9xaV9++WW0a9cOY8aMwZtvvonFixejb9++SE9Px4cffshdjhw4cCAGDRqEjz/+GJMmTcLSpUsxadIkfPzxx3j44YfRvXt3/J04dENWa9LbvSK/yfOmInkRsaa9N4YdOQ0AaLZLPnUSRDvdtUn7YKEmrfaLk7Bhn0DTkzjyu3xQrMMdm+gZ0kLCuHUfTB+koOMvJSpeAaDzntHoPX4SndR2fbqIltN6XgoWFu2EINqx9brcLQXRjqosSUXs92tu0m7rrZ2rx3OypQX2rUuTWgMf236RH/InD6dsbRH0562FoQHYFfmjZv0ILdd2bTXbIfeTeOQs78KVTxbfLApXRyIhqh9KKqWP92pQM0pfEO3we1t6TzmfxeGRtrLgmT/HAvFFK4JeSOUmD+UCj6hJKBeSJL7ZruYQRDsa/3xrAr014bAqPcp87P/M5+cj/MtEzbYlv4nwAUiqJSSc5ankFVmgU07eSuGPhLUbeRCCaEfx2o60nhsyNgEAkg9vo2Van5FO9KruFVX9ryYjC/lDF9FdUUG0o9Ha3Tg3SRJwL2yQdvF3Rf7IGTvpsCCJ8lLZO5rjO3+ORbXpQH6P9zyN+BemYdNxScWpZq8ssBhbtwIgLTCVbcG2v/fgI3ANaIcJx3tw4UoBm/wmIGHLw9rC5ZoRNpMZodPk8UIQ7Rj5/dP8u6mugs1kxruBcptp8Rb0fBoNr6msxFK/nSoB29iiuaYQ9Mdq2fhB1dlzNG6YbzxV79MS5mwmMxr8tAdXh8U5XJDqjVNa46og2tHQpR73HOvuRoUxJS8AABcjgh/ez/Xb0MnpHA02Hym3YkCMLo+BL6aqwk8+IwsNWoI+2ZRh303/Bx9BqwePcn2w+to1mn/uBX8artceAJDzeRyCxsjx3p+kICp9FGwmM7YuXYLQiXshru+A0CnpEEQ73La2wanH2uDdQDMCRh8AanhVIpvJjIGxAzGg3yhVmZUlpaq0gmjH5o7yXCyIdrT6IgVZKyVth2s929Nwtp3L75fGG5/ZKTRuy4qlmOzXHcYOoTj05Hwc/0HfaALb/jGvJVI+KktFbMxP00yb+tFCLsx/TwOujucmS+ND9WVJsHy6WaHD8ZOlLYiyCq8yrZIXkqfV/BTc99AEVf8VOnrSZza9st4EJ29pGDT4SW0AY1W4JFy9GSirfGuNQS4NG6KyWNu6dNXFMmlcf/OWxgOjfpgQ2Ye+QwDoNXmyKj87zyjrRP6W3uOKdSVqDSg2jVJ4EkQ77b82kxlNVqZx39iljUGoOpbLlVk2Np5rb635l8QRtG4ibzR0+CIJTVdIY0C62Xhbhj2cuH0kJiYiPj4er776KhYtWoRPP/0U48aNg81mg4eHByc3vPLKK2jfvj327JG/Azc3N3z66acoLi5Gjx49MH/+fMyePRv9+vWDl5cXZsyYcds8GWpqau6MAuZtoFevXti2bZtmXM+ePbF161YuLDU1Fa+//jp2794Ng8EAq9WK9957D126dFHlLy0txcsvv4yNGzfiypUr6NChA1566SU89NBDqrTl5eWYOXMmVq5ciRMnTsDHxwcTJkzAyy+/fNsSrx4uXbqEJk2aoBcelC6oQn+hpYUrI+LQ+IfdqjydP0iC9yfSIFfdMwou2/bTNPOKdmF6O3nny1EZgmjHvAvtML1ZEQB+MMldGYW83stU4QDgldIUZ6wXOdrZi2JQcP8S2ExmFL5rgf9r/NHu9cGx2D5/MX1mhQw93mpLUxvYQdLYsgW3OOz4aRJ85qSo0vecOoWqIegtaNh30eeRiXDdIgk/T+YexWfB4dCC1oCtrCcBeQ79JhEBr6Sq0vcd+xiMf+3D1eFxONvJKE940G43QbTj6RNdcSS6kqNV9LYFRyctwM2aKgzyiVbVlzyffsJKVScBSRBl78xpCRpKOgsv+mB9By/dMpTtoPxG9P7qtTH7O++jeOSOXqhdjm80hJIMdP1PIva+s0BVrjEkEMnbfpR+hwUj+a+1NM0Dh8/h8abFtJyC7yMRMCpTxZPNZMaZaRZ4LZTe5dlfQ9Hy/mzdd+8IpS9ZuX5L8s4404E7idHiwdHvukAvvSDaMa7oHpyyXNJMx9ZzaomFqiTr9Zmrw+LQaJ3aup7eN2SIikDN/ixVur5jH8PJ6RU4FL9KMx9JN7m4G5a03aX53Sh5qwsIjZM/tYf3rdNcR+kASU3NbbN8CuG3uxG9M6bXnnq06spfVa8uMG6VLZq22NUM57pdQPbSrgiduNdh/oFxg1BZXMKVa4wIoxtr5ffHcuNo1LtJaPWFtAA3v5cE+yvzHfZJ8vf8Yxakz1yAgdH9sSFjE2wmM57LzcJHwbw6Zp/DD8C173FNXgHt+YbErbrcAmM9zumm0evzWu+g+5NT0Wituu86giDa0e3paWhUWo6Lr15Fs4E5mn295BUrd2dwVsEevBqgPtVS0mbp6M0Pjvo8G98+wxXCr7E4MmU+R+e6EIDSM03R+jd3eHwvCUhlY+PR+/kUZETJm6+FqyPh/xA/RgKAIaYTd/pd/LoV/qtPUi2QknUR8B2Wpfs+yPxO4qt7RMFlx37N8kiavG/NyO31NVffq8PisHPerfuV8ZG4ENYIzb5JxTsF6RiV/ARCHt8Ng1s91Ny8wdFy29oGN3tJFomNYcGoOparWeYPx/ahWWg+ysrK/lYrgX8XyJr15DG/O2Y10Tvs+N/WHmvWrMHy5ctx4MABnDlzBgaDAe3atcN9992HF154AX5+fjTt+PHj8c033+Cvv/5Cr169ODq//fYbZs6ciczMTLi7u6NPnz6YM2cOgoKCcLu4KwWx/0tgBbEtJ7IQ8XkSfGepF//KgbFsbDyarEpTpSG/ASB026PSDiUT1unjJJg+5FWhAn6egtBEXrDQG5xZWgQsz3kfWLiTm+TSfUjw6aKioUWzLgLXfSPHw2WnVH7+HAsCX0rVnBiMLVsgOXML7kmagu3zF+tOLMq/p38OR6sHjyJvVRSCxu6ndJce34mpscNQeZI3061Xh6XHd2KiX/da0zqaxNk6KZ9dGjZE9bVrUps8NIEaLFCW477Nm+qs6/ER/+I0pL2/ULf9AX7R9EzuEXwSzO9K603OWmH/U6GZRfayaIROyNClub5kD4b4xurGExg7hCJ585paBTgCtk59Hp5I1YAdLXyPv2Glp50AYAwJpIsHLdp6ZZ+abtVcnDr6jly9W6Py5KlahdNekydj+iersThUUs+9/mAsrpiM8FrAC/l5H8bTEzEWNdbO+H3tN7QMItS7dAzHxt+/1/zuje1DUHUkB4boCM64DtsOZHPGZjLjxh/tUO++ojqNFXqwHboE4bFuEH5aobu5cTuL7driLo+KR8rH8qmJo2+979jHsHnVV1ya3LnxyBu5UNUuWvz1eGIqdny+CEGrpyH4mTQ6Bo08chITm8hjQF3HXAAIW5pIDeTYTGY65rp6t8aR2b5wL3SH31va9ziV9JTjgs1k5r5TFq7t2mJD6q9cvTt8kYTKRjUIeDWVo1nbOyc8A8DNfl3x59df1joG6QnujoRbQbTj4/OB9PRJK4+jccIQ0wnlLetTFVcCY7NmqLpwQZPPuo6nxf+xAtXA4cel8aPq3i4w/rUPMfYqpJuNlNbW6y7o1aCa0jw/wYLmy6S2U6Z1VO6FRy1o9o36Dk1dcbsbCwXfdebWOgPCeqD68mW4dG6PjRu/AyD1n7bvpqhoZS+Ooae7Wt+GcjNCk5/YTnRMISCCX8m6CGRZVqn4tx26hC0PRKIyv5ALr6y5ia342SmIkfL+ZkHsboRTEPuHoXUiBgDi+g4wDTmMU09a0foz9URXm6BEJqiZZ8PxesujNC53bjy8U4DGa9K4tBUDYuC+Md3hANsz8zq2RTZA/vsWNDkm3dMQn7fC9GGKqty6LmIIemSWY0ekbI3u0ph4eH6bxu0+Kem7+vqgsqQUOV/EIeRxxX2XW+n6+3WlqmEAkNBzKF0EK4VZJb9v5O/D24HyqapL/frYmJ/mcPdTEOUTMz1hD5AEpF9CpN3b4rUd4Tc6GzU3b1D+11xpgqWhAfT0kq0X4asugqUWzPuBHw52wQ89FiLavZ7Dd6OkQ3ZcSV9g04UsT0TOuAW69G726wq33/fSutw3cjzyRrkj5Al+d1iL90FZF/BbRDNVOtImjvgnp4PZX3VF+KdX6cQMAGHLEmG8bkDbmfwJUrx9OJokyDuW1VvawqWPbJimxtoZ33z/Bcb7da/ThoIWr2y/VdbdEU1H77Z4bUe0HX4IBldXHFtoRkECv+isGBgD9w3yd1440wL/16WFdv+jA4EBZ1U+6IhfurpunJD49guTOAFUM098JJCWietCABrYClR0Rh8VseyFwbjayogWS1Nx/jELmn+lvcAjmyha7QXwAszlUfHw+D4NuZ/EI/gZ7Q2tVcW7MJa5M+OIni62+AJ9JPWsmm5mGHbZddvD0Ziul0cLgmhH/4FjqSChPCGtCwTRjgEJY1DZuB7d+FL1TaZuyhMoADC2aI7kg38i4d7hqDqWSxf67wVJamjZX3ZF6CTtUzWlpoejtsheGEvVbtlwJbKXdkXjo/Vw8BnpXpay7TMqbnCnR4JoR/SMRLRclKpL09H7yF0RheBHpA2yohlWNIw6B68HjtU6Rlf3jMK5DvXhtSCVS6vFsx5Pgb9PRJNmV3HxhKeqbZR04GLUNO6lled2+2T5oFhsW7y41jx1FSgF0Y7g76Yh6Dl+/cLGd30jEXvf5jUX7kmaolKzFEQ7Zp0N4+YxJU2tjae6bgC4dG6PsvAm8FitnV8J418mVN0rouyBzkj/+T93reBB1qziMd87JoiZwkru2vb4O3BX3hH7vwjlBU3TEOkyq1II01t8kufjb0mXXC88Kt0hYIUbAMgbuRC75i7E6SQrl0/vojlb5vdf95EG+RdT0WKpNEnEjzjAmQdX0ngjfx9sJjOMoUEQRDulxdIFgNdbHqW/y5KD4fmtNHg1WrebM2fO5tmwZwMAcEIY3cW6ZfmtprISwX9JOvM2kxlVOfmUBhHCBNGOSxuDsK4kDcWvW/HmmQi8mHcQHi43uDKry8s1JxRl3YkQxiJynwE2kxnii9Jl6oqeJ2metsMPUTUGwufSUOkenJeL2pcIKxwqyx8QGM9NFMo2N7ZoDnsUkN/3KyqEsdailHVjFwGAZL4fgGryspnMVAhT1p2ACGE2kxmTi7vhjzVfU3PfyvqQ3+T5t4hmOPNLGE4+LfVbYpWNnWyVdEhZm1dJxifqNbqB6gNH0H/gWCwuk0zQHpuwANd9KzkaNpOZE8IAcEIYABhSDqCNK28h0+CmL9SS98rylz9kkWY6g6urqj0ujLeo3nXfQ5dpPWssnQEAh60rAUiuFIgQxvJIhDByOdz/9VQcf1MaM/LS/bCJuZPSM1NSD2SNhGiB0Gf/2kxmTggj+VV9Iy0THxemooGtQLPffBduwuloV2qco6Kp/D2IL1i5MpVCmEvDhhBEOxKOJah4J6pRRAhj+wt5Htu2G7X8CQBzC9VW/SLmyfdOlfznzo2nggoATgjTag/SRwTRjrC9btw3zCJnXhxniZTl/+RT0rs8P/MGsr+UjGoceko2CJHzeRyXBwA1elP4rgVXh8nWLDcmfwuXneryaV6mbv5uF1Vt8GvmZkw43oOqYHV/cip6Naim6UIn7YWxaRMVbQBo/MNuygfbVq4B7XDyKSsuj5Iv1Bc8IFnXM4YFc3lYXi+OsyB04l4qhClhM5k5IczYojlsJjMy3lyAsmS1ASYtoVlZ/0Ye5fQOaLs3U+D1gKSSObDbg1y6Hpnl3PMf3y2jQhjLX5e98vUJR0KAzWRGyPgMtHrwKEKn7cENm9rCMzfOlmTAxYO/k8fGV9TclOgeukTfw7UhcZp9EwBn4KP+b3tU415dNxOuDVX3VZvJjNzR8glz+4VJXD6byYwWX6biviP3c+HslQcAWFgk3Wv9+YPeHH1CA5Du8RIhjK2rcp2j1w4bN34Hj9VpeCNfOk0j1l2V5QFA9pIYJIclo+QVKxr9rK/y68R/J1xrT+KEE0444YQTTjjhhBNOOAFU1dSg6g4o1N2JMv5pOE/E7mKwO6ZK9QDym40TRDvV19/z3gLN0zOy69pqfgq1PMTu6GidopD8bT5OQfjORzi6S9ruoo4gCc5OkXfvyekNcbBqM5lxdqpFxRfxXwUA5y42BgCEpLvj3GQLGvXPp7toyrqw6PHEVJrO+Nc+ykPQ2P24/qC8S/dEaRz89zSg9bWZzPAckIfGLvVxOGk+0jq74f2gTnjBX9511Tvl0VS1Ar9TbjOZ8YH3fhhiOlGnx3q7aCzEF614NH8opRHw8xTVzlzCfbyRGfbULnwn75NIECXnwSTvmIJ7IYh25L4j32lgT1gcqU0REIeqWrucyjpe2hhE604MHwRsnKQ6SWHbbct1I302rm+OAy/OR/aCWFQdyUH3J6dyfBW9LfsFA4D+A8fi6+M7AQAVCTHwfyhTqtv+LATVO0XbhuyoA5Kvt9reC8sr275d9pTj1JP8KY0yjzIvAFT2kU6Uzz8m8b/p+F5O9cVmMqPRWJGGXXhU+r42d/SgNAypB4DYTrCZzKjeIln37DVpMm0bFjaTmVrpEkQ72vWUDPEEvpTK9ZVtkQ24ExSCvA8s6PHEVI6e8i97YkFATjOV7fGsvwUuHh60fsQ5LElDxjRBtKPNx/KplOkD+cRNebokiLK12JoB57nytBD1bhJHg9Rl0X7ZEfZzkf1VYxDxl+bSqJGKZvDTacheqG9xVu+bsZnM+MzEq4n3yCynfIVM342UzvVwJlHqL1eHx8FmMqPv2Mfg/emt8T/qB4ROkk6gLc/JYytRA34tX6Lt6uuDyhMnqfGknfMW0e+IlB3w62QIoqTmTcJZvo3tQxDqpnY0nODTBWL8ZWqqmzVQQTUXLpZpto2yTUhbbNj1M7w/TaEnmhwthfEDFrtnL1B9d6yPLmXfqTp3ntJWno4r+SLpCH0S1mbwEbT6IgVhe924PJUFRZSH4v9YqdaKsv3YE1IA2Nd1NRfH8iCIdpjSpFMt4rMTABDbCfWEvXgm9wimZOfDZjJj3RVP1ThLrDqS537DH6XP7oZbp7OM5cUdX8iOy186JdMqfNeCjq/xhi/IuMbyzULrOyDPxMIuQdEM/tnvbbW/QgDUryjp5wDvKmFaO0mlfPecBZiYXaA5flSdOk2tHyvfBfs36PtpXJxrQDuuDicrm6Lvocs4HyGtayYc76Gqb8HAJQDAGVpx4v8OnHfE/mEQfdsL2YEYESarnBWv7YjD1pUYaH0AlYXHUd0zCn98p22hkB3IyL0pZfyogt44Pi8UEc8cpItgpdWq2hbetxPWa/JkbF0iDS4JUf2QvP93edF4y6KeFv969VL+JtDlRUPv3XrgBt70OsxNmgBw/rdQNB+UDRcPDzohmdI8sMxvB1dmwc0reOTIOOpwmMWljUHwHJBH79zUhrrUWVmvmH0j0XxQdq3pSBuQ58Afp3L3sG7YuqKesJdrL0fqInVVJek75jEoLzXroWhNJxztLruiIDwkdOqN5IN/0ufu06dy1vG0rG3WFVp9vN+wRyUhpo75lfzWpc3Y32Vj4wED0GRlGr0zR0AsnOkJvVp0511oh28+TkCLpam4+IgFTVek4vJD8fBYncbdgRRE2RqhINrRec9o3LjpCr8Rskp0wWwLAl5O1eR9TUkqRvpaNPlwxCMxjqDVZkoa4vNWHHxWVh2j40VUBDZtUF92r0u/vPxQPC6OuIK2w2XXAYJoR0JkH2ohVUlLSbdglgXZ4yW125NPWTm/b7WVz6JohhVHJ8/n8px+3IpWX/B3bB3VzX9PAxTGXlcZuVBaMWTzn5pupX67AODChhA0G5iDk09b8dBjW6iaMbmHWZd21SrHUZgybsnxnfBzbawa04l1Vj3UWDqj5LkqqoILqIUgvXGRhP9WmkHLYC3ZsekHWu5HZVExCmdacOyxBVx+QHJZkveQvhGW/PctCHwxlavvZMV9UmWbEAw5fAbrO3jh3EQL5y8PkC0gE+Qs74KQcfKYy9Iid/CU9yBrg6O21OOb/Z3zaTxCnkqDS2Q4qjOP6uZhwwDtb8m1jTcqT5zEL6XpeMAnhjOi1TPzOl5teUy1gXJpdDxSP1pY67dE4vofHYhN4Rv+R+OLsg569XBEt/THCPgMzaJxly5X/yusJhYdNd2xO2LtwsW7tj3+DjgFsX8YSmMdShOtYXvdcKzrzVoHhXOTLNwFVYD/4Iv/Y0XbdxzvtmgJOxHzkpA1fb6KLoHNZFYJVuTSKZkA6jKgE1rEkpoj/m5HgACALdeNeD+oE5e/pPKKyqrhyaesOPCSeiGoVUb2wlgUPLBYM40efznz4hAyXRYqSFyNpTMMqQdwJtFCrdRpCQ3s8+M52fgihPfe7mhCM7YPQfKWH3QX98o6A6CGFPTagA3Pn21B4Msy7wOCrahmnCCSMgYkjKFOtwXRjsC1U9Fmh+xTTos2Z0jmyCDkHPJF/oiFDtuHfb42JI7u4IasTIRXRg13gVrZboJo5ywiaqVhDY/UtjFBvmkirOulA4BfStPhzhjtUcYTgzEAsO6KJ7VyePxNK/xmyAt6YiChNuj11aD0+siLKdfPqMDVTYFo1D8f14UAnP+rDXxmp8AYHECdpGq1saP3R3BtSBwarleb+h6QdRFPNyvkwmpbkCvL0vpL6Iw7VowvnxqKepvSOf6V5WjxXry2IzwblqNJQu5tLeYcQblYY2mem2hB0/wKanGxrkJywXedEfJamcpqGyAZWaj/m7RJd/wtK3cqSfDSKTPmtJaeHS2u9dqboCIhBlu/XKI7lgatnoajI7+Am0Hyh8dustHNps2PcQIJGxe8dTyCxtg52koeWOEMkDbWbq5thRYHrwB7Dqq+L7bOWjRHHjmJNe29Ve2q10aAvksGrXyO+qAjYU8rTmmUik3PukioC08ExogwJP+xmpZZVVONB7oPQWVBkSov2XTu+GkSDj01/3/0vXxcmIqIeg0ctsHlh+KR8olj68CAdPq8fWocDKkHHH5LL+YdRJ8Gku/FsrHxePftJXg/qBNyP45H8LPyumddSRqG+car+CK/VxTvon5DbSbzv8ZqolMQ+/vgVE28S3B5eAyMzZqhJv0gBmXJpmr/+FVSM7CZzNS548Rs9cX2vW8voL+1Fnlt35F2cYlDS5KGGD3QQ9b0+UjoNYwLs5nMsJnM6DRXUr8j/qLI/6p7JZXH2oQwLQGg6kiOqm5akzpJz9K+MoJXo7KZzOg+fSreD+pEn8nFZS3T8t6fSmqDw/P6cnSV/IsvWtFhDm/Gvv1iXhXRZjLjxHNWbtANmb4bJesiuHRDDp+BW/FZCKId37/8IQBpEiP5jBFh0AIrhJ3+OZwrl60TQdWRHM04QbTD+qykWvHFxbZ8/C0h7NLGIFU+gsA/HpP+vpzKvSeiFsbmsZnMqLYf5lRTQ57cjcY/7NZdOFx/MJYKYQCAPiWyEGaQDTew7UycqpI8ZCFvM5kR+GIqPFan0b6q1W42k5lTt1V+TzWWzjg1VTJk0eWdRI5vlo+iGZKaYk265IyaFcK+vtSK45HwQ4Qwm8mMbk9NpepnBET11GYyUyEMAPxm8Kc0VcdycWG8lDe5dB+MoUF44PA5VN0rLbiIig+hJYh2RKSOpfTm+/BtxIKoUgqiHUYvLxhiOtFT4u2d1uPQk/OlcYARwkg5Ri8vSkcQ7ajuGYV5RbsQ/O00rq3JbyJAK/F0s0JKU2s80PsOSJyxZQvYTGacftzK5bGZzAjb64blYW3x11dLVHknF3dD7oooFT0AyJ8ttXfb4Yc4IUxZp9KXeNVLQbRDfN6qWX8AKHnVSoUwZd0AyXpt1Ef7dTdK2P9smuye31AhTBDtqEiIoWUSIQwAJ4SR/A8X9oI9Sm4z4mSd5Zuk7fG4pMba+f0kLlwQ7TjxnBXuyekqQZita/inIgb5RMvht4Qwo6esYkeEsNxPeJVYm8mMhNAsGCPC0Gi7F1XlVrYV8ZFI5sPUzuskg1Q/Saf2Fa1k7Yp7Dg7RnB/YOqwbKjtgByR1XrZ9lPMYAOyct4iL14OyTynrw7bvyaettKyKhBjNPkKEsAnHilQ0WD91roH+XL6+hy6r0hMQIYwgwacLKguKVGOqINpx2LoSNpOZMyqjHBfJc+nL+urNnXaP4foQMUJDwsjm2+nHrQ7beEdk/TppSfRpUIUnSuOQ95GkefDEcqmf541aSHkQRMlZvVZ5pH1aGRtxz0rDbXcrqlGDqjvwvxr//WdFTkHsLsFVbxe0FcqRvTAWv0U0w/E3rGid6kl34QDA7O4OxEfiywnyRCC+wC+oAHniUw56A/qNgt8IaVE494I/AF7wsZnMeDwnm6NnM5np/S4lTdP7KdRCUqdPpEk2OmMkl46dNIhQobXYYAeqHo9PxcIi6W7P6SekhVL2/FhKr/THCNUADUinKlybbgrEznmLEJQuW46sJ+yldWcRviSJ0lsbtFnFI/vstyIf/9nyIzfRHJkyn6ZpsK01AKDNR2oVpizLKpqneG1HTGtaisqSUthMZupkmzg8Jb+N7UO4dsxeEsPx1OpBXv3D6OnpUABmYTOZ6X2L1a8M4MIJPAfk0fItz0/jJuWQR/fRNrKZzLg0Jl6Vn13sA0DLRWoH1Gz7/laaIQs9LgbVomVg98FSQo3D/M5zkqgzYHZBQkAmZ0LP4MY7OFYKaFqLQ0PqAfgOkxbG5ARTuaFhM5nhWSDzt71cpm8zmfFduImmc/VurbmQavzDbuz7j7zBcuOPdipexx4tUfFInpt9LQnHCT5dkLx1HX7p0AJuZyTfc+3eTEHR27wlRu/58ndiM5kR+wovZJK0W1YsBQBEv5WIqjNnuBN80q4brtXnaD+TKzktTj7wB8ery7b9mN6uG7VO5mgDRBDtqOlm1ow78ay8QJtbKAsOL+YdRMDPU9A61ZPrB8mZW3DxEQunFkjwmSmdWoxU9oHN+yOoSXIlGhdLffXSxiBOCCO85nwh3eViTckPCJG+eeLbUeub9Z2lfQ+G5Tuzi9zXbCYzd8+OHcuJVUSX+vVVZbknp2NAWA+uLEG0o/z+WOTPsXACxxnrRQDSPV4AOL3aVxoX2rWlZZ14TuKBbIR4z5XqbXB3hzEkEDaTGW0+ktsiIfweAKB3IAFJrbKyUHLC3DFDWq4YWzQHAFRduiS32a27uawKXvbNqxBEO451vYnHf/4ZFQ8ZcSa2OQpmW3QXxux8yMazbiaUbha0xgyi1WFs1gzFazsi6AV5zCPtoxToo2YmqfqA1jzH0lDOn+ydKsuBYbTNBdGOrV8uQc7XarVPQmOUxwXNuguiHR3mJ6Eyv5ALf6F5noovth2IZU+byYzKPtFc3ZSbH1q/teD36zmunNDt4wBI99AOxn3L5Tv8dlsVLZvJjFZfpHDtx9ZhyfGdeDHvoKoNlPUjtHJiKqgp/SNTZbcIyo0PpdDNgh239ayIOvHfDacgdpfA+/PdWOSbSg0H+L2dglOWSwD4HTThx+VoOqeYDgjshXWSjr1Iyw4GG3//noZvjGhK831/WfLPlP1lV3wREqoanJQTDQAMjEkAIJmF9U1rDNMH0uDW4Bve1xObhwgY3Z/kL/qT/30emYgLG0LQcP1uepm21edS/UKT9qC6pzRx+QzNQuDaqarBTTnQkV36+T7yPRkAtO7k+eqwOLR7M0XFT3XPKE4IEEQ7il+3ovLESbwZGI2c5bI6B8vLsdOtAEAlQJF0Dba1hiDa0Xb4IZpnQNZFyfT0oUuq9rsc3hyCaEeviZLxhcYteVURQbRj6fGdtJyqS5d0B31ux9DHxMXN/GSxKt2wI6fps81khue3kh81dicdABLuHQ4ASP1woYoGW3f21NLF3EHVvgDgZpANdDzwzmbYTGbkv8+cDFXp+7whxgoIspfEcPQrT0iObUtfsqLG0hmbitT+hxwtCLQWRQBQNNiLo1G9pS32zJJVhWdH30vT5nzTBYaoCGQvkgTqDfsEVVmknAH9RgEACt6zoN598o41aY+j100qHtmJ3WYy44HD52AzmSU/VhU3MLCLDQDQ7g1pcbjklkETImARoabZN6m03eYV7VKNJy0Xy6qogHSXizwPbCid3OWtkr5Z4gBcyRsBWbQDt+7RKcJIXsMu7YXp5dBKGva0v5yvT4MqFDy4mBtLr4yQBKLdcxbA2LoVxwuh8WrLYyx5Gl/wwGL6LIh2PJl7VN4QubXAS+28TpUPAOeugI5FObu4vqYcK9i0WlD2GUA6IfdZfkTVxpW9o+mpS3V5OZeHlL3x2A7VQnLbosXUITJbliDakfGJ9H5b3p8tCeCpv9K4zU9/QNMT4bSyTzQ2FezG6Z6tVXWpuiS9oz3vyd9N63kpMHSVjH181EYywBQsXOZ4F0Q7hB+XI+eLOC6cbGwJoh2fBYej8sRJVA05j4CXU2E5wGt5ANJGx4RjRdz3H/1WIkdT+ZtAa5wAAEPDBtz9RDbe/Zh0N69ojaSx0Wq+1H86ZrjQd/BwYS+OH9K2SoGKpCHuRQDQE3i2f+X3W6riBQDOJFo0x72C96TwtjNT0PfQZdXGxMyz4Vx9Sb6xR0uQYnZH4WpJQN6yYqmm4MPWCQBcPDyQP8eiSkPoJv+xGnkfyaeerX6Q2rD5V6mqdxA6OZ3vIw4EWgA4N9mCB+e8yGnQKPns+FmSKszYPgTZi2LQ5R3JJQgxmvTSKbPKQBEANNrupQoTRDuyb15F1cUyDAntpIp34r8bTkHsLoJKsDh0CcX/4f192UxmlHU/h4HWBzi1Na1FJEHO53GqSZngt9IMLAuTdtpDJ+3FiWelE6g55+QdfpZm+aBYVG72w4b0ZBpXEn+FDnCN1vJOOLUmLdZ6FkGzXc3huiUDNzbJgxSt8y3hxGXbfkov5En+rhX7lwXL++IyE64Oi1NNGkQvX7moIZeic+fKpzwrJs6laULG7dMUWv1GHIRvWmMYrkv+l3aVV3M8Xe95CkvL+PsDGyOa4sBL8/Fsc0l4NERFUL84Q96RThG2LpVUpUxDDnP1ino3iVO11Fu4CaId16pv0F3sylIRgmhHwSxpUf9uoPTO/HY3ou9vXftWQHwk1zZEOCPI+SyO3kfSEowF0Y6C7yQ/V7s+XUT5I3fFSBrlgnRWwR5s7uiB0pet9OI7AFQW8T69AKn/ALLvKEKzfol834rsngqiHYeemg9D6gHVwuLqJlndL3uBdAo7KJs/KdRa/BJrV5TeWy25byD7VVl9NOTRfajZn4XdCXNhM5kRvHU8nbCV7Uc2T7IflU/GACDnYWmxmhHlwvVB5aZJzjdd8EuHFhiUdQH5SQYcH+qN+/88xC20/Vwb47ncLMpv5vO8ipDNZMaQhS/QRSqL4z90omGbNqyi/og6fCEtWJ6P+p3yQ061AanPsu3Hnh6nfbAQrr4+9LSE7c/ii9qqSex9TQA4O1VeWHZ5O5FrW3FAFX2uOiX15ZFHTtIw9v/xN6yIfisRvmmNaTzLDxE4WXXDe7MehM1khldKU45Xkpc98dUSoskGCXlHfcc+Jr3LL+RNjIoBMVw+lqdWja8gOesvjrYxOIC786jMW/G7P63zx4WpXFxA8iT67Ordmmsnz29lFVblHPQI4wz7+sbWWHOlCVy3SDwQVXpBtNPvbOzREkqbjLkAsOmXlRzto09FcG1HwpXO0QHpjjM7DhFfXuSUn0W9+4qw8Onh9DnglylouZj35+UIRGAk/AiiHZWlIo3PXcmfgLWdmQKX+vVxtPsKuvkAAIei5fmCnDxW/O7P0WYFKlZ1XG/eJXXtNXEyPT1k4/b9ZwGMLVvQMHIqFPCKvNnyQnNJsHuiVJ5DX295FMVrO8JmMlN/ogCwKtwXQul+HOuxnBvbs25cV42f7Ji68dgOznorALx5JoL6VrSZJD9ipJ4ex8ocvh+iHaRcG7XPkOgRX4wA0GJJKj0hZ3lj26nxPfzcZzNJp6ihU9PhtUDi23CzGoJohz1KOgVWbRrdrM+HuUh3H8nGwb8F1bfUBu/E//92OI11/MNQGusA1MffbBj7HPztNAQ9r76HxVpjU8Ypn4mhDWX4vKJdmN6um6pcRxerWQiibJHu5E/t4T2Y36Gt7hGFwkH1EfhSKq6MiKPGGpQ7tOxfAMheFo3QCRmqsrX4UPLOplO2cWJOLhaEBKtonZtsQYslqbW2ox4/rMUqQbTD5hsNVFdxfCT0Gsapfyr5J+g9biLcNqsXU0pDLXrvRIu+zWRG9qIYFNwvv9MrmwLRuL/s+LrrG4kcfdImLA22TKOnJ93d1qpL5EdJaPNRCkpfssJnjqySdX1wLBr8tEczn1Z/EEQ7btZUIfqj6WjzsfoeS/bCWIRO2wOvlKZ0QaOsO4EhOgI1GVmoCwpmW5A9TlpIBq6fqrkAJMj5Ig4hj+9Go+1e+DH4D/T368oZtsleEoPQyZJBiB6Z5Xi95VHVu7syIg6Nf9it+V6vDY1Dwx/V5QuiHQEbJqNg4JLb6gstdjXDtwF/AZDa/PTP4dRRMiAZOwl8kV+oE9T2fejFhe11w2cm9T0hY7NmqLpwgQvToyM+b+XU+wTRjlWXW2B5WFvNsbMubaIsS4sHR+nrUp7uuLLFl3OYTOC+zRsVPU86LHdQ9gD8FroRAND1zUS0WJLKGV858VN7tLk1Hnd/cip2frYIA7s9qGlIQYvX6w/G4vTY62g3UlJzj39xGpqslOahgTEJ2JCejP7tYlFz80ad3l1d2kovvH2GK45EV2qmMfzpg5repVzc7Y7jbJiyHizNAf1HqSwEOqKpfCbfuEujRqi+Kmk8uLZri3ML3Kn5fO7b+MuE5DB5MxSQrf+GpLsjJ6ZCs3zyt7J3NLasXCqP2SGBqMpRWwOeX7QTSe26q8q/3e8BAM7+GoqW92dTa81abaIEiScWPbVgO3QJ69+4Dx6Zp5G8fT3fB9zqoeampCKZ82m8ysgTII27333fG+7x56igzqK2/uCoLcjahk17tuoqxjKbFEpDav8WYx15R73hcQeMdVy+XI2g8JN3bXv8HXCeiN2FYHf62DD2zsaE4z2QO2ah5mDGmsQmH//pJHnHnfWVRIQwoloGSLr4ZHeG3UUSRDu9WK2kD4DePwCA/g88TC+8eg+W7odsvS51t1kFe+CyYz8CX0qFb1pjzlhDh/lJHP1nco/Q5xPPWqkQxtaXGGfQAuHv8kPxeCN/H0K3PcrtwnXPHApBtGNBSLDm4Lp3huR/ZkDCGACAS0f5ZIOUX/aw+l7Ux+elk5XgZ9L4uz23hDCWP6UQVr1F1m1n//+5XK1WcvIZK91dzvsontJWTmpzCnZr7pJWDJCEMBaN++ejsk80wr9MlBbnX8oqaoJoVwlhBIR+8tHtKj4T+o6kaTOfk05cDj01n1sgbJ+/mMtD4oh60Liie1RlDvKJht8D8p0Nls+WvhchiHacsV5E3ofxqvqzIEKYINrxToHaUh77O+DlVPpOlEIYKZukb7PNAGNEGC7M8pfKqZQXjaefsFIhDABaul5W9eOKATEqIazg+0gIoh3535rxy6efqMomyE1YxPVT8p/cA1XWCwDOdbvAffNtxstGaWwmMyeEkTD2L6GZcO9wCKIdxg68ZU9jcIBqI+RY15scHfI7OUsWCFkIop27sySIdpg+TMGN/vIpkc1kpkJYzylTVAumwpnSKXDBexbc7NdVsy1i7FVcHmUdcz5VX8J3tChrsrMF9yyIdlTU3NQWZhVCWPFr0vj9S8gmFV0l7zd7nYDNZMaE4z3otzrfJw2R+yTjNm1ujcf9A+LQaK009m7Y9TNHr9F2Lwgif+eI8LZ9wWK0GynfC0x7XzZOQDQliBCmbDeWFpmTWP71hLCg76epwotmWDG3DT/XEZS8YqVCGFFPJsheGIvLo+LpPTnlN6ssm9A+ckNtBZbUceOm72kcMWZDYIwIQ7en+Hvbynru+nQRDNER2Jizi4ZtSP0Vaea1qj5YNjYeyWHJqrYlrk2UQphWea5/SqeyJ35qD0G0awphAPDoc8+p6Cjfq1b7ke+LqCuff8yCjOg1AKAphBHaCZ16c3MeALg0aoTpzaRNAqLdw31zHT1R2huoyi1Q0Tw2vzNNywph7PvbEVkfvrNSOD9tSlwbqvanaDOZkf1lV90+Loh2TUNU887Hcs+HE+fjudy6bQLeTSAOne/E//92OE/E/mEoT8Rq2zkTRDvybl7B9NihqDp1WjWwG1u2QNXZcw7pCKK0Wx46OR1+uxtRv2Jsmhh7FdLNRo5+7sfxyBvF7yideM5KF9YD4wZhw+7fOFpnEi3U4IDNZFb5RnklLxO9GlTzE+XiGIRO4RfDegOd3g6lzWRW7ZKzaLCtNa735C0fjj4q4rtwEwZlXcD0ZkVce2mVLz5vxZKkeXgzMFo3Xc/M69RPj8HdHTUV2juVerjwqAXNvklVpXdt440NGfyiTPkO9X7rlau5INSA6pSvlnbSo6+3A+qxoyXWBm12SHdOwW7JeM0tZN24jidyRuGvCGlBmXDPEFTlFqj6j7KPGEODqCDMlkPcA9Awg4EaB9Fqyy57H1Ltpmr1XWX5Wu2XuyIKwY/s1+375v2A/ZaWk6t3a1Se5PuxElobDAMt92ND6q9IuGcIzn9m5JzWavGmRUfvm9Sr87WhcTgbaYTfW/qGKWrjQRnvKMwYEoiI1QVI/sFCXXDcLt/WZ6dRYzZaPBHfb47oEFweFY+UjxfiROUVPHb/ZFQfOKLim/0mhuf1rfU70IKjviWIkssIVrVbmc9Ru9S1T7DlKduD7bNadSf5An6djNCp8kYFm96U5gH7yk5o9bnUl4JXJSLohVQUzLIg4FVJgyFkRSJyHllQp35Gfo8puBfnul3QTQPIpyxsuLF1K85Xpla9PyhMwwv+akfndeFNK1wQ7ejydiK8FtbNr6Ig2hE1Mwmt5utrDxAQ/11sWeS002YywxgRhqqsYzT+ysh4NF7j2Epy5WY/bOnwC+Ze8MfGiKYo/o8V/p8foafeT5/oiiPRlTB6eiL56Hbd75X40nPUxxy1IeFdC422e+HqPWe4MENUBGr2Z6FkXQSyLKtUrllYuHq3xoZ9AoK2TOCM+hA/f4WrI+H/kOzwWuub+beciGUfaX3HTsRC25+6a9vj74DrP82AE0444YQTTjjhhBNOOPHvQPWt/3einP92OFUT7yJo7d4Mzb1PFZ/Urju9ZE6OxcmuUNXZczScxdIyb2Qv7Urjku/7FCeeteJ43FWaduFFHwDSvbF0s5HLn/N1tHQa5iNtxRPzyOQ0DAAqi0tgM5kRvV/6dG70j8GGVz7g6Ox9ZwHl9Ub/GHR1v6biNXRKuqaqCKtOcGH8LdWkWxePBdFOfVrZTGa8kpeJg8/Ohx7Y0zBSFjEp/ltEMySVSjuXrgGSWuHlUfGq9AefnU9Pw5Rxxa9L7bMtsgENq6mooPSIOlTotkelcm6Zg2frfHVYHPa8x/uHi9wzGoIoWf+LmplE3/8H54NU/Yf9fd9DE+gFZWXc6SQrl7f//bI/Ka1Tq7cTfqB10tsBB4Drg2NVp2CsGgf7zPJTdqOBZj1ImYJox2vWB2lfBCQ/MsSq4Nmqq9SHFaH9wGHt70LrNAy45aft1iVqAEBNDfUTpWwbm8mMsrKG0IPb1jZcXdiytHZ0yWmY1skDAOpEVxDtqDx5isbNyM9QpVXWmbRHZVGxNA5sX4+mQ4pV9WH/suGE37CliTSc+IW7LgSo3iXJl/1VV+z4fBFMO6QTYdYACgFxfcCW3eOJqVx9yG9i9c7Vx6Tqi4BkVKgqJx8feO9H1vT56D5dvrTPji29D15FWXKw5m66zWSG5/r9KvrsO3s1IBalP/K+AQmfpS9bOd7fmLkMNpMZ4/26o/rAEc2dfPZ7YE/DIvcZaLnGW7vCFQkxtCxCK/9bs+r9sb/73z9W8zQMAMK/lFXfCb3QryX1ZHF9B64NSHzwt9O48q6MlNW0zYyVf8Lj+pI93AkuqRPxhdh7/CQIoh1BWybQ07AZ+Rk0f9xLEo+n+rtQi7o2kxlBL6Ti5E/tUe1/ndJWWnpk+SaqnixvW64b6WmYctxijcSwd99I2qpTp2k7XNgQgoCNk3CzRjIKQ1whKE/DCI3cufEw/OnDjW9a4y7LD/nrtVA2JrKieJeKdxbtdz1CT8NIfkO05AqmRYY83wuiHTWNGqjKqiwVpdOw9iHcaRgA7Jq7kLqc0eqXiI/Elg6/wGYyU0fsbd9JoadhNpMZc9vsldqSsfpL+seQw/IpVZror3saxtb9Zt9o7hvIXizxlfwHr4J4bpJFchIO0NMwQZRctAiiHTX7JbVB32GSQSPWRybbZgCwYZ8Am8nMaTTkz7GgYMCXAMCdhgHAgAGjcf1B6UTd+oxa/daJ/xtwqib+w9BSTez/wMPY9MtKTTWR0K8TEfCq2pRwyPJEBL6snnimZOdjcWggjMEB9CLryaetaH7kBuoJe3UHbVJ2Va8uMG7d57AOjtQRSNy1oXEoHXyTWhok6ckFY5KWQGnAoi5lsM9sHZSTKiDdIfB9j1eRclQGIDnGTfCRTdYLoh33HbkfLn2KuTAlvetCAPU9w16ad1SXioQYuCdLAukDOf1R0fMkV6/C1ZE41mO5ql5smjUlqRjpa1GFC6IdtqHjgLRMleojSdvn4YnYsnIpomckIuNNWRhcd8UTwxrrm8fXqkttbcwa/2BVYjh+iXpM3CBUFpdQWvdmPUgFMC3ajsomqqhP5h6l1u9YGJs1Q3LWXwhblgj/13iDLeL6DjANOazZ91SL1a3jETTGrtsmWrydfsJKF5paIKrDAJC7Igp5fZah34jxMOyyq9JqtUvx61a0nalWEdTiX+vZUVuvKN6FVsZGDt8F+1zdM4paKGXjACB2/wg0G5ij2w5Kft88E4G0zm66aery7CgMkNujYmAM3DfwqnMA8E5BOqLrGVFYeQ1Jt9xwkDzZC2IRmrhHRY+kIeprxHiM1til1QbB301D7uiFGNjFpquqyvLBGuQhqop535oR+HkNDCkHIIiSz0DPb9O4/AMC4xG7+zLXxsp6KOuk1361hQO8cRL3bd44VGiivguVdXJUX63n/NkW5IxTGznSe191odsxwwU//xVL/eLp0SWIsVdhZquDkhB7y2CHXr202vn1052Q8mIcrrVypQZT7p0wCfUE2VjXoOwBuNnrhMPx2Ng+hPOhNqbgXnwb8Jcu30q+On2SBNMH6vm03/BHYUg5gOtCAB722415SwfD9KH2uEbyflyYimf95XlrYPfB2LDzJ2qcjKBjhgsORVfj6+M70ca1MeWbCNM5y7sgZNw+PJN7BJ8Et9esNxv2S2k6+k5/Ajs+X4SEiHtRdYFXUWX5zL55lRoz02obGh4fCaRlquKj91djVutMmuZmYzcUjHRB6JR0jMgowNQuGXetKh5Zs2YdaXXHVBMj2p++a9vj74DzROwuAvl4a/Zq+x0JXiUJYca/ZP9PXx/fiQEh3dDrXuljJ357yIC6OFQyGsFeZG0y4AQVwtidJ/Z3wffSSZOWEEZ2ulgDICR8VoF0EdcYHCCfWgFo+ONuTggjBhGIEKbE9S9kv0B6bSWIduSuiFINhMpJctM1d1V41vT5qLq3C8f7wG4P0t8EZcmyJcXgX+UdK5Lmj/a/0hPAOQW7OYeohHYDm3RXqdF2L4dC2NVNgXRyIEKYzWSmCxH2Hfk/lEmfo2bJvk1ImCDaMdJX7Y+F8pWWCVOaBz1xI+1JyiSXuTPeXIAnxRiajxXCWNokr6ocDbBlAYDX94fo78oTJ5G9iL9cz/bLymLegXH9B89AEO04N9nC0Qaky/zEwI2S15JXrRjveRquvj74LDicW9yQNFUXLmBycTfcaCabOycwDTnMhRliOnGTO0tLKYSRfKw5dwD02wHgUAjLXhKDdLMRJa9K3x+5i8AKYezlcpvJDEOM7JtGEO1oO1M+TWBB+HfpGM69ZyIEs/wXvW3haPZ5ZCIE0V6rEMb2M4B3S8G+W5vJzAlhLpHSqUn+t2YVTUDaXdYTwpQCDVteQuf7cHaKRTcNIAkubHsJop0Tws5OkdviPwExSPDpQq3NsXkKHlysqiMgLSAB+dSEGI8haWwmM4rWdFL5/hNEydkucSrLnpBqtSl53hX5IwCg/aIkhDy5G1Oy8xE0xg5DygGalghhJH/8i9NQXV6OPWM7adJV/h4YO5Cmq+4ZxZV/+aF4zXYgEJ+X+nZFz5Nw8fDAjf4xqOh5EiGP7qNuPUgZWuNQ8etW1TjV8bMkzqBL4MupmryzYQUPygaEiLuY8J2PcLzaTGYEpUvO0I881A65Yxaq2qfG0pnj5+QzUv3SzUZYnpfmFSKEkTx63wTLY7rZCLff9+L8QNkB+cUg3kn9b6EbIYh29B3zGBfusUN2sZG85QeuHYnRnty58Qj9hnfszp4Oku+L+DO1HRnE8WtIOYDKzX5oYCvAuvat6J1tvXlJEO0YsVQyEGJsLfnjrMwvhM1kxhMDNnF5iZn/Nq6NMa7oHgT+8Rh3vy9knLR2eTxtjG5ZNpMZ/nsaoOreLnjAJwYNf5SMa7DWWkk92bysMTMWym+ixsXAhZNTfyqEAUBaJtw2Z6BBsTR2fdfFV8WvE//dcJ6I/cNgT8S2nMhyuGOjBJumzyMT4bolQ7XgIdDbtVHGa5Xrt7sRjsdd5fLRBai7O/pknMX+Mj/VDlrO8i7I7/tVrTt79O+tUxqt+nWam4SDT8ue67O/7IrQSXu5tIvLTPjq3QfQZGWabllabaHVZgNjB+LE/X7wWsA7rdXKbzt0CUJHTy7dgH6jkPtqfQRqLMKVvC0t88aa9t5wbddW00fW9Qdj0eDnPZrGUrR413p2DfSnTpi1oPVOlKjsE037mDKtINqREH4PtZhoM5lx8ikrDrw0n6N18qf2OBD7nYo+OQHU481mMiP+wE260CZhSsMqbJyjb0ev7nr5iREcNk//drEw1HOj5qaVYF1DKOkrn7dcN6JPA1ng0+qrLD9FazpxlutI3KUx8dwC2vrsNFwIc4HfjFsLJaavKuvPQqvdXP39sCHlF12elLS6PT0N099ZjVEeFxx+c0oIoqQVULNXEtAjP0xCm49rP70mdXdp1IhzlAxIDrwPPTUfu8qr8XagfKp98ikr5wRcrz517Uda6ZSGDRDbCdhzkEtTMTAGW5cswYABo6kRD5Zm9P5qZESp9021+CXPV4fHUZ+NJJwYDbgdkJO/S6Pj8fmszxDtLi30Hb0LALgw3oJmX6ei4D0L9UcFSNZdieBI8hN6eauiEDR2PxfOlqWCixFCSYbm907rvDgGBYOWaNI5N8mCFl+mcmbOld+/1um0o77IPpNT97mFKXja30oNSLFm6vVoCaIdUemj0OpBfbP4Wvw64kcrfW20WYM1emUD4OqkBUN0BIIX5qJt/fP4s1Mjmh+Q3ssDh8/hlw4tKM2y5GC0mHwNlaUiqntEwWXHfuR+HI/gZ2VeZuRnqK4H6NVbxU9MJ2z6eYXDflwbjeruZvyx5msEfT+Nm5u15sh3CtLxn4AYXB0WR32XAkDhuxaqcQEAfdpE/CuMdWQevnMnYpEd/rtPxJyC2D8M0qkvZAdiRJi0QNDzlaWEI99HWgt0y4FhSO28TkXv7BQLWi5WW+YjA0TfQ5exuaMHspfEoGAgb+o8IHkSQifxp2vsAoBMdICkbrX/VVmY0uJZGSeIdup3iqu7uzs2FezG8cor+K4sSnNgZ5H/rZkKRUq+tMBOViw91mKdVvritR3Rdrj2iaajAd2RMKBVH638HT9NQr1LNZzw6GhiMfzpA5cp9ajKqiDaEbR6GrWIOCDrIp5uVoiOaWPhM1TdzyhvtwRoVlBiVWFrW0DX1j7El1VtdbIeuIGUzvVU4XrtpdXW/YY9it/XfYNekyfDfUO6QwF17NESLH1hKLYtWoyt113wXlCkw3IIlH7f8mdb4HbZgLbvpsDF3IFzdE1oEB7OTbZg7wwNS3BbfCG0lyyWagnsZ6dYkPGWtgW5klesaH6sivNH1iOzHDsi69e5/wHSDvvlHmcBSPdegp/mF2+sryKtxaCqrW4JLKxlQrIZgPhITFz+M0Y2LtPd4FDyreVrTJlGyYNSXYykd+ncHtUHjsClfn1Ul5dzAm7B95HIvmc5R7uufRGQLXYS5Hwdjfx+S5Fw30OquzkXx1nQdLljP4dsfcuqr1N1ZUBfvVJZXz1exRet8P1sH6rLy3XrWfpjBHyGZtHxRBlP2lIJVx8TKktFzW+Cts0t9TNHvLsG+uNk3zaac1z2l10RtKoaxr/2YVbBHqy5GIvmrlfpfALI8xbdlGndCo3XVaGsu7QxQ1SbtdpKK0xPWApdnogAjesFynxKmkoQ4UAvzZlEC7wWSH0mcP1U5A9ZpNtPaxM4WfVVti85Eva06iKIdvx+zQ0fBUv3LU8nWbn7bLVB6SuSXD2o3OwH177HaTjZHCSwmSRH6VPv+RMvtcjheM2ZF4dGRUZ615zw2X5REo5Mna/7XlnaWlC2jdHLCwaPRqjML4SxQygqsrKcghgDpyDmxP86SKc+dLgV7k9+CUEvpOpOouRvRc1NuN9y/sx+7MbQICRvXYd7EqfgysQyeD0gTdrdModiV+SPmrs17D0iLXAC1qZANGIc/TrafTvxnJUTnowRYUj+Y7VuvZRlKcsYEBivmuyVZefOjUfeSEktxPLcNHh+l4YBWRexMaJpnXb/bgeCaEdCZB/UmLwcOvJk09dlt+3CoxZ4bRexYdfPXFs4uvuhRY84zXSUjvzVuiemR7emmxm///A1Ejr1RtW583XafSUnfoJoR/iXiWj3hrqsmm5mqlqnpFHwXWcEjD6giquLgEdA7nTp1Yss+giuDY3Djs8X8d/XLeESUE+y7K6mzWSmpwFaqG1xYjOZ4errg8qSUtUOMFl4O0KNpTP14UdML3N9Y1Asti1erFmPuvILSEY6vPZcwqYNq3QXiWemWah5bWK23NF7y59tQeDLqbiwIQTNBub8jwR3gsJ3LPD/j7wpEftKIu3nJD8RpNgw923enL8uR/1byVNt6c9OtaDlIn6Mz14Yi4IHFjveNLm16VYxIAYlvV0R9AJ/Uq/Xnq6B/tiw8yddvmpb2CvpseMpC7b8E5VX0Ma1scP6sE5slWP98corSOz1MDbs/AkDYxJQZmmLRmt3q/pN1zcT6aZEXRb+ynon3PcQjr3SEMEPa99P1KpbXb8XQH3PGZA2KXd+pi/4KHnWOsHWS6vVBuTEqMnOFlgTuAWzzoZRdyqET+J8W0nv+uBYNPhpjypcj4ewrxLh/7p2v9QCu3GjFKQAfhOktrqTu+bK9gUko1E1LgZuo8klMhwbN30Pm0nyZ7f/9fmq76FiQAy2Ll2i+342XKuPgQ3L0X/gWAQvztX036aVj+CFk1HI7KJefv9bzNfb76AgZnYKYk78b0JprIOAHRAujY6H53dqv00sBNGOHo9PxY4vFmnuzOR9GI/cMY7V2pSqgQR6O5ZKGh47WuLsrAA0zDlLrdYZw4JRdUzyUXTyp/bUuTNbx3j7cKSZ1wIAAv94DPn3fYXe4ybCbbP6VJD4+WBV0uo6QZLF3e1CS/DUmvTOTrHAo7QSW5csQcDGSWi31qA5kNsOXcKzzfMpTWUdlWWWrIvAF+bv8F6Q5Mj3noNDUP8tT/y+7hvYTGaVX5WysfFI+2AhnjvRBR+12cfxuap4F1oaG1Ha7AkfKVPLOIiyPeq6ONVKU5f0cwtTMGzJ8zj8uDRBsqcZhKfs+bEITaqbsMnCpWFDVF+7RlUH9Xgk5Th6N3p1ITuyBKxvHAJXfz9UFh6vU7lXRsRh16eLVOXo8aWEUv2FpU+E67rQut3FqCM++98/lhqk6Dl1CrYtUgsjJP2V6nIM8+Wtzg3KuoDfIprp8lCyLgK+w+STXEf91tE3ruTl/3dDh9AgQhkAGJs2QfLhbZq0j79lReDS46gsLoH/ngZY5JuKXocGw71fIU3DCrx6/Aui5Jh+Y/K3XPj5CRakv7vAYX9mQfw8smn1TqZYfvRAVK8JjC1bIDlzi67gGLJ1PALH2Ok7C9sxTmWNzvCnD1xGllN14pNPW+E9l/efRU7q9PoBABx/wwq/t/VPZgTRjt7jJ8Htd311z7p8S8fftFL1YeW4ptyUYPMZmzZB1cUy3TZeU5KKJi6S4MX6ZXPf5o2LH/uhwc97YAwOoPO1o2+EnkbXgrqO9VpxZJxXpnH0TerRBuQ2L78/FlFv7UPOA624DTflOikk3Z0TqByNYyzIxhmbL6FDT7yz/w/Oz6ASVzYF4uThVpwGw6P7juGRqIN3reDhFMT+fjiNddwlWJ/N3xmwmcx04PH8Lg05n8fRcCUEUbLic6WNbG571tkwml4Q7cgdsxBd3uYNF4R+LZugTujUG0jLVA08ZxItqD5wBK5tvHFqulUVz+Jyj7Nw35hOTw0AoGBmA/r7QOx3ACRrdPnvS4Y8+t8/Fk0Scinf4TMvAgAVwkgdSl6xwhgRRs3L/hbRjOZRTqIGxtEvABTMki7ik8mMpC16W9uYBYkn/9kyWJ6UZWe8tQDuG9LReU4SCgZ8CfeN6TT++mDG6WtHTxXPrJsClu7FRyzIsqxCrwayN40GtgIYUg/QNIt8+R32JqvSMDB2oCSEDR3HxfXcM4X2LYA3hU7C3vT7RcWHZt0PXdJNw6L8/lhph1UI4CZULRAT8U/7W3H48fkISJ6Eyw/Fq4Qwo6enrhBGkPdhPC3Lb3cj+j6rr12DINqx6fhe1UQMAOOOFdM2yl7aFTaTGTH2Ku02YOp+bpLcn7z3SJO5INrh6uuDqkuXVPxVFh5Ho+1esJkkQwyEHqGZEHEvDNERWFW8Cy6VfJl0IdY+RMVTjL0KpS9LF+pLXpH++r+WqspL/hp22XHfQxNU9YvZN5I+F//HCiVOP86H5X3Im59n/ytpm2cncQYplEKYIEouKsoelt7hgRv1aNsSQw6/RTTjvtEPCtMgviDzxAph5ydYMND6gOb7BoDID5NU/dJmkjQGCD/KPCyvxAgESefSSNrsyPlaur9ibCYLjIRGq28kIyUGd3dUXZRULPPnWLgxCgCaZ1Vh0a7vIYh2FMZeh81k5oSwV/Iyse8N2bJpQmQfFY9GT2nMqbYfpuWf/01Sf0x/V85L2kA5/hE3AcYOofiu70IVfWKIiW0TFo22e0EQ7Sj+j1VVv4bidVqWwdUVVWfPodekyajsHa1qd5tJVjEnfcv/oUzc+KMdpSmIdtT0LkXV2XOo7C21PyuEdXt6GgTRTtWtSZ1L1klqcf0D4mDsILWNIyEMAJ470QVuv+/FmV/CaBgx3sRCbxzN+Ua6jkCEMEG0o2DwYmoIx9iyBTdvERDjMnpCWO+D0l2tmJXP4r7RE2AzmbE7YS4to6LnSTT4WTIORIQwAkG0o2C2RH87Y1tqy4qlHB/FazvS9Eq4+vvp1putvxJECCM0JxfzRjGUeU48Z+XSs/2FTRv82mEcia6kQpgyHd1QUJxqkbjMG1JDsOMLC6UQBgDlsSEqZ+/Kb6Rx/3yVGvmgRvr37Jz474TzROwfBnsi5t6kBbdgU05C7IBbMSAG7htl3X72ErbWDh9Lh01D4jt/kIQGZ6qR9v5C9A+IQ01FRZ13hOuy0zwyvw/VqRdEO/oHxGFTwe4601fyzyLn8zjkD5XVES48asGe99RmiVlE7jPgj2UWtJ6XoplGz+Qt4UMZHvdSIpquSFXxSlQmtHb22HRlD8fjz9mfYYhvLE1D7jwp3yExVCKIkrnuPd2bo/ryZd26AtpqHtlLu1L/JlptPiBhjO7dDAJji+aoOndeFU52zQ3u7jB6t8KXO75DG9fGiHk9Eekz1epEr5/uhHSzEad/DofBUAOvB45xvGi1u1Z9lepojhYCJP7FvIN4P6gTF8ft8N8yCKDVTnXh8XZxaWMQPAdIKk1XRsaj8Rp9U9jE2MTlh+LhsTqNnoZqlR9/4CZmeGU5bD9BtKO/X1fupJCNIyqyet/FlZHxaLw2Ha7tfFFZUKT57bInVSRez/2GkkdBtMM2+BHcaOaOesJeTMwuwNLQAACyOWutvCoaDD+ugf6oPnka1deuqerjCHrjs1bbhO0YR91NJPQcSu/KKaE02FN+fyy2LVqM/g8+gpp0ebOOPeFxiQxXqUcbvbxQdeYMHOHk01b4rs5H5QnJKitrREMQ7Xi4sBdW+m/VbTe9Z722zn/fgpyHF2BgFxuOPxJELe0RQxYs6vLe9MZSLTrsc9iyRAS+sx8ID1SNb1puTUg+vTK0oMU/OXliw8T1HdD2tUpUHc7WzF/ZJxpbVizFwos+WN/BS8UP4WnI4TNY38ELN2xdqel6vfqTZ3L32xGURmIEUfuqw/HKK5js153jjVWDdAS2LkvLvDGxycla1wC3syYg88vMVgdhfWYaUj5Z6DAvaaPCmRaqaqmHnM/jEPLEblT16oLN38qGyZRrEJbu/KKdKrcW3xenoJlR8kX5bzHWse9wazS+AydiVy5Xo0uHU3dte/wdcApi/zBIp+64+nl4jypUDdzE4AEAVPeMguFGNb3/QeBIYAN4NSll3Gv5dsweNBJVh7PxXG4W+jW8eduTHQulrjeZfFx9TNiQnlynicwYFozkv9Zy5QavSlTdn2P5y/0knhqZ0FoU53waj5Cn0jQnSK12UeJ20guiHQEbJ1HBmFgN08pz/C0r/N5S77q6eHig+vJlWpe5F/ypI8za2vDyqHiVlStdAXrwI9SCm5awqJz42Hs2BIUzLfDZfhNuv+/VL6cOi1qbyYyCWRZkj9c2KgFIJ4tXWxuR8aa2oK3XT/U2JBzxokThTAvczxuQ+fx8h++elFFbvfXePUH2smiEfVZO72DplePi4YGNx3bANnQcDJXVnPsL1opi1b1dYPxLOrkgaoFKeizvPR6fiobrJeFd6yI+5XNRDFV5WlOSiujvn6EmvJV8iy9aYXo/hbsjVPy6FQErirEh9Vcu/dLjOzGRWdyROBdzB5zs3hStPk9RvW+2T88p2A2zu7vDd2D8y4TksGS0X5iEI9OkS/kDgq301FRvTDWGBqnu/+i9b72+p5VeS51SVT/mNxkX68KHVv7umUPRqL9aKKxtvL/dzQY2fe7KKOT1XoaIeUncvETKY9POKdiNlwLiOFrGv0w4csQXBYMX647ljngnWHJ8Jyb7dacWNdn0pS9b4TM7hQo4SpD3pFf2PYlTOHVLNo7wVvyaFW3flb//GfkZeKfH/fTUxrWNNzZkbELezSsIcmusqhMpe/RREeM9T3PzJSD3Yzato9/sfUmCBtta46cQweGYLoh22HyiUDArHtmPSuNyjbUzfl/7je73o4TWnEOMiCnzsndgCVrsasaZrq9NOH/1VCQyolw436DKb1pZLrvpczsgd2MBSVunpqKCM4ak5PHfckfMKYj9fXD9pxlwwgknnHDCCSeccMIJJ/4dqK6R/t+Jcv7b4TwR+4dBdhei1z2NZsNLaDjZKXGJDMfVDyqwvdN6JET1Q9Wp05q7KG5b2+BmrxMOyyKW4AhsJjNyV0ahfoMb8B2WhYuPWNB0hXp3laRl+SJ/2YveSow9WoJV4b5qVaCAdpxVQCXqopaiB+UJ3uAcG673PEXj2Ev/jk5Patu5JmHZC2MROk3Ste/+5FRqsUnp50mPR/N7SbC/Ml+3noIoqYNt2KfelWTrQMC18y2LaSRMz1iKZt5bhiQIiKohIN23ab4sFTAYAI3hQ6tdSVj/Bx+B4WaVymCAFmgeHVU5R3lI+8a8nojmX0l9mpxAKdv42pA4NFyvtsrGptEzE+6ID0enWOR0CgCuCwFoYCuAEjf7RnMGawjq0m4FN69g2i2HwgCA+EgIPy5X5T3xrBVtPtb3o6VVJ712Yq2PadGqyxilBVaVp/Oe0VwfJuUQKHlXGiIhpuD1xjOtOmvRrrF2hiHlAPUJRE/e58UhZLpjS2+A7D7DtY03Xt2VjG71XTAwuj9yPm6NgNEHIIiSmWxyd4jlh6iHXtkUiDP21gh4WeqXodvHIWBUpqpObD/SQnV3M1x22nXjAcmgRvmUC9gT9YNuO9lMZtzoH4O/vpJdnDgaRx09s+rXpC6dPkmCd+o1uOy0QxDt6Dv2MfoNudSvD3FaF3jPlb7vgA2T0Wq7K1okH8Ny+68Y27abZpmO0PugZMbebWsbFAgByJqufxKevSwaoX6ngD4lt12Olp81F9N1TUuxBKz6Mneq1bAhLq5rg0vX6tOT1cuj4pHy8S115fhIapBL2U8Kvo9EwCi1sa4bf7TDXxH8fP1BYRpGLn8G7d7QHxP1vi1iIbdohhXt3pT796knrWj9mfxs+NMHNb2lu1d6vClBjNaQOgO1n0IreSYI2ToeOb2ksUN5FUQQJVcnhtQDlKZvWmOUxF+RDWAZDBBK98NmMqus8mq1E8EPx/ahWWj+XXsCRNase7Pu3IlY14j/7hMxpyD2D4N06rd298HOePlCtyDaEbIiETmPSBep9RY31T2iYP18D9I6u6FsbDyarEqD0csLR94J4Ewia6lvEWgNTCefscL7E8bqW9MmKJkYofLnpeSH+PfSo+tIjUQQ7RgY3R+VJ06ifYYrjkRXovfBq3ipRQ6XRmuBy6q5XNgQwi0YHKn3OAJJV/ZwPHUSzeYl1gpD0t3xuc9uzQGf/K2L2XGtfI741XKYrKfiUxd6C4t2YppCd11Jl0BrITtgwGhs3PgdF38m0QJDNah1OEG0I+7lRE6oYcurGBCDyHfsONb1pipeKWRr8dj/wUc4J50AkJiTiwUhwVL/sj7ACZhKWtlLYhA6WVbBI46F2fS1LSaV7ZPQZwSqjsjWOk88Z8VLU1ZjeVhbzTa2mcyaPgK12otVQ9V7r8a/TKi6V5Q3dzSsoBL1mcLVkSoLdABw/jELmn+VSi26EVqsvx89P0JseziCHv/EQTOho/cOCmZb4B5WpnJToMTpn8PhucQT2xbz4+M9B4egZYMr1CAQIAuBJA1bF61vivwl90tyPotD/vBFtfYZR8IvgdLpt6P0NpNk0Kbq0iXVmEDQv10sNhXt4eIGWh/Aqb4+nI9FqvpaR8GCgB2H9b7lioQYjPhwE+fIl4B1skzqpuRBqS7GWjkk9yZpvlt+6QTRjplnw/F6y6Nc3Vnaxr9MwLSGqL+kjOsPWnzoPZN5iQhwynQ5y7sgv+9X9LkuAgKbpqpXFwyfL2iqTgLSpkPIeG1/pHrzBCAZtwp41fF9zfOPWehdX0B2XK0HopKsR0/rmVUbpHX6LA4hT+7WzV8bTSXI5pCyX7L3FpWbMecmW9BiSe1zOSAZyUGD+qg6dbpO6QXR/q+5I7Y7y/uOCWJxESfv2vb4O+C0mniXYGtcY1VY4Eup3AByYYNkIY0MDIJoh8uO/dSJ7tszlgIAjrzrj9Bpe2ia7CUxmgPRmitN6OBD/gNAk50tUP9sDTcAVV0sQ+Zz0h2K+UU7KW2Wrt/uRppCGKUT24mGh+2VTfWzAyC5OD63jbQb+menRgj8YRoAaVfMZjLD2LKFqi7sXQPlrm1CxL2c8KRckLB8sm1L8qS9vxCCaIerDz/RLPKVBmOlEMbCZjLjudwsTghTls2W+aQYQ/OxfLB5XDqGAwC8P03hyj07VbJEaTNJvpDYOrHplPRImmntuiN7QSy/IAkNws2+0ZhaItPWW2BXHzhC489Olax+/fXax2i5KBXjjhVTPnbPXoDqLW01FwGVDV1wrOtNVRuSvzPy1UYziGU0m8mMmvSDCPhlCle/BSHBctrC49TaF2vdjKRnhTCbyYyavYc0+wpb5rnJsh8+Un/22WXBFS5v5nPzqRCm7G8kb87DHlw8oaVsL4/v02CIilC1CZsvOSwZV4fH0XgihJ2absXJp6TFBrnDoBTCCJ30mdKGkNceI272jaa0WKerNxtK00nOvDiO14ROvVX0DK6uyF7alQuPejdJThMfSX9vzNnFtY3NZMbxN6y4/FA81y7Z4xZoCmHV3eUxDgBaPXiU+lEDpJNSQLJG+mPwH7RcQbTTkziSd2B0fwBAUHp92s/Zd0IEIHrJv8ZA44jlSZvJjOLXZeMUAwaMhiDakTOPvwtF8Oopadx7P6gTIlLHquKzv+yKGmtnysfDhb0AgAphbNtNPN6dPtfcvAGbyYzQ5Yny+Ft4HHvfXsDRr758metbuSuikPN5HNcuBKz1SKWrEGU7CaId7snp+KWDejwHwAlhpjQPbtwhf5eGBnB83Ai5TuNTPpHG7Y6fJWFidgG9C2szmbEjsj4AoEPKw9wYS/5X3Sui6lguJ4SRb6XXxMkqXg2u/C0PQlPrFO3kT5IRKNbcv7JPuDRsiLwP9McVAKhyd9E14AEATdLdVeFsWynHk3OTpPKC3ub9qrGItw+HINrpeAAAZ38NxXfhJs3+QMo8+PR87llrU0NZD6PBBecm8j5ODw2dRy3CAtLcrszPttO1ofI3peRPEO30hJ7tlwDwnHkABNGOjwtTuXkPgEoI06s3ACQf3Y7k/b/rzvl6z07834JTELvLYHCrp/ooyQCgFDCC1kgCiiDaYQwNQr+G0ilC6JR0fF+cQvOSxSUAagYfkCaxWQV70D9AWjiFfi2Zt7/0dBs0XZGqGiTJM7k4TEAGouNxV+UBy2BQD7Y/raB5yInH4BwbNxkQs88sQp6Sdvyz75GsjhHfMGz7sGVxu45fxKHqgnyJt3hAA44nAq+UprCZzNh63YXnmVnIVJaKqnBl+YC0UOEWxWW8Rb5XT0n+wFrsasaVZTOZ8ZlJFgSUcSSsyoM3z0/CL98rm72t6HlSc/JW8i6IdnSfPhWAJOD5/mHgJpaq7Dz8uXwpjt/r4nCyYOkVremEjDeliZo4C1ee/rj0Kdakt3PeItVCAZCMygBAfH0jV2cAcP2TV7sKnbZH1XfZxdZh60oIop1aA7OZzHiilJ+wB/QbRU1ED+z2IFfPwtWRuPC0JFwZunbE3hkLVAtEltbNXifgGujP1eu5XNl0NvlrbNmCpgl+Jo17T2wdlNi0YRUASeUHkE71WERnjESjtbtV7dF6Xgq8P1WfcCvBtt2eWQs01SUBUKucIdN5NU/i+JvUs/RlK2qqa6jFTgAIWj0NrdPK5DZJk1XstARMv7dTqPUzkkdvM4RVuxNEO05NtyLu5UREzUqCINpxZAp/YrGuJE1zw2FgtwfpRtF8H2lMYo3GEPqs5VsydgFA23dSqOn9tjNTUPyaZMr9ZjNpcyh/2CKujoJoR1JpPDKi5G/Pd1gW+g+UhLFBWdK4FrawHIYUyZ1F/rdmnOl+mX7DUbOSuLYoib9CaROajY7zwqLemEFQfdOI/KGLaLv4pjWm8fU2pdPwnK+juf6tNZ8ov08W4voOlCcx/jIXp9zsIM+hH1UguXQft3j2mZ2CkY2lvvX1cXkTEQDct3qqyiXP0furabqrmwJx4CVJmNi6VFa9vDRGcq+w6fheVCTIm2g2k5m6lhBEO1w8PChd78FHuHYpq5aEx8NJEv2c5V1Qfe0acsfyAjHLNwDOOiKhtb5ENhBy0XxT1T5KoYLF3relcSz/9Sjc7ButORacEptyeU8+ZUWr140oXB2p+a3qzRlkc4akSYjso/rebSYzzsVVcnSG+MbCZ7Y8ZpG53frsNK7ck09L39mpGBd0+iRJ1Q6OIIh2HHuzPWwmM571t9Sa3hFdrfYWX1R/Y+z4c3Z1CP4NqILhjv3/b4dTELtLULqyPQDQXUrlh0o+UnY3KPhpebHW+KuLAOQPelRb+WMnA1nBLAtCnuDvL7waEIuaCsl3RvZ4aSDe9MtKLo2eQKY1yRJ/LqipoWG5H/M71yzd6z1PcfSrr16lcWFfSTu1BldX1cIob1UUcj6V/Ratu6J9ZJ0/ZBEabfeikyJral0Q7TD86QNBtFNLj+8FRcLFQzbpq7djR/wuaS28233Dm/tlTWoLoh2zWmdiV3k1Z+VJWR6bnvwlccRiFDtBnZpuRdONaiFWqw6kHQlN9wuVsJnMqD50FKUP3sSW60YuDQB6KsHyolV3m8nM3Y0j/mSU/Bgjwqh/GxYDAuM1y3k30Ezzak1syvejJ8jqPRP/MSTf5xu+ROsfJNWlyoIijkf/hzKpeX2itqik5xrQjuOnMr8QgHQfDAA+Co6AINqRPV/2M1N19pycv62vwwXxzX5dUT5IcnUQuPkxAJI/MEG0o91PfD9qeX82zk6xcO1BkDuXd5KstUDQ+s77HuIXxkpoCU8EPrNTgOoqmqZysx+Cn0mDS76oGh8AyaR761RP1WJ9zjl5oVv6shXP5B7hyit5xcr1A/I/fNRRNF2eilafp2iOteQO6fE3rAj+Vl7gbdj1s+7Ckv2eHIF1Vtv2Xan8009f5+o7MCaBPhOBr+fUKbScmv2SEL/uhX4AwKnOBo6xA9WS+mLQnxPQ6vMUOk4S3o0RYdx42mq+bH2SWLIckHVR810AQEH/L7l2I8KdEvn9lmqG20xmOi50nz5VdzyZFyn5Tmv7TgrgYsSl0fEI2DhJRa/g+0j6u9p+GAk+XSCIdpxOstL3EjFPErrH37LCSfhv9blUX+JTjdSpLDkYGVEu9Plcirdq3hNEO7VICgDuyZIQamzdShLIj+TQcogFXK3+QzarCE3ik+3VU/KpMNt2JEy5+SOIdjR0qUfTshuweauiVGUXvMcLGeFLJF96/q+nwm1zhubcV5DAuzvx/jQF1QeOwP8h2Qcp2UzWGjfIc9W586gYEIPMG+WwmcxIztyiqkvO19EoGLTEoYBHTpE9vk/jvnV6V/CVVOomwdi0iao+LE3y12YyI/iZNFzdFKiKd4kMV7W7HpTv+8U8aV58d/LXmulIHVs+xJ8kO/HfD+cdsX8YRN/2QnYgRvcfgg27fkZ0xki4rmmB3XMWqCYodkCaW5iC9vUaak7+TXa2wNXhrng1ZSPeDpT0rAXRjoDfJlOjCyTMZjLDpVEjVF+9CmNwAKw/HsGOyPo4O8WCjLd4Z59sHuViV3zBioPP8KoY5H6BMj951jPcwQ5Megsclg65kyGIdoQuT0T2OLUBEeLHRo8uWy82nJgRZqHH7xv5+9CtvotmW9lMZpTfH4v6v+5R5WPB3rX5n4Dc4zF2CMWp7i1wzduAisAK5PdbSs3PE/9UekZFlO9WC8RggTE0CMlb1yH21UTsmbVAciLNGIYgtAaE9aALEq13kDs3HsFPp3H3cj4uTMWz/tLJVNDqadRFgTKvMoy4S2DrIIh2dPgiCW3fVRvsyPkiDm4XXXBswgLNfqpXnqpcxg9U+aBY1P/NsdNppR+2s1MsaHimGg3X70beR/HIHb1Q1UcTeg2jZpYdfRtafVsrHakjuUsGyMYAVPdsIC1GjiZ6IjRxj4ru9cGxaPCTdv929L4cQe89hO11g/2cLxrYClR0yKV9Nn1dDGmMPHJS5cdoQNZFbIxoCgAwxHSidxD1xovsxTEIW3BN5XZAqx4EpG8LonQ64LK2nsqwCSmn5FUrfGfpuz0g92tJnoQOPVF1sQx5H8Yj6Hnp+8n71oygW46R9b514guJQFlXOnfcunOopNNsV3Nc6HZek75embV9YwmdeqPq3Hno3UUWROme8YaMTbr9fe4Ff3xbGKNSnVSWXxsvbNlaafM+sCDkrUy6ucht1LT1xZXOJu6eIgvWvQOBq3drzmiTuL4DTEMOS/O6MBEFtqUIW5YI/9d4f5aCKBk6IQKJXn1ZXNoYhNTO66RxoUMoqg5no6pXFxi37lOl1aOT82k8wt86hqoLFxCUXh/zfdJqnXuVv0k/1aLPmv8//bgVrb7gXfQIoh3Xqm9Q4ZTkL37disNJjl2Q6MUNyrqA6c2KNL97ZX52LcDyp1cm4fHfYr5+5yHTHbsj1r2jeNe2x98B54nYXYIhoZ1QWVAEe0UFMqLXcKqByh2hvA+khWli0lMA+Amd/F4TuAVD/zqAcT9Jx/LGptJ9sNCpe1VpBdFOL8Mnb1+PlHtaAwBaLk7lyldOPsrwiePVfsLI/QI23aZr7vRZedpAoNxBO/6WvLsJSJd22XTkTobNZEbAy3LbkfszgminQhih0W/EeNVOmLJsANykTupC7gsodxXfLnhAmrxuncCRfAP6j4Ig2jWFsOotvNre2YnXuGe9HTi9XdHQJKmMqsPZaLk4FX5vp1BLccQHGHESTIQwQbTDzFwNGJQ9gJsYlbt7AFDwhKQyQISCZl9LtIv78qqrpM2I02lAmuiVAr0lVjqBIvdyDK6ueH7QBBpPFqosXSVovyoVsfW6i6ofkYlbmTfk8d3wzJXDje1DNBeOWnANaCeXyzjjJUIY+26UdJIP/smlabk4lfruCnouDdFvJdJ4otbWdBnvQFurf+htMACSOiWbjqStuleEb5r07jwH5EEQ7ZwQdnmUdLKycdP3CE2U6jaqQL7/BYATwopft2qOGyxIPMt79sJYVX3Y58AfJVXaz0zp2N5pPeXv/GMWmmbfG2oBgqj+AdICr/RlK4YcPsPRXtPem+MZADZGNMXpn6V7mZt+vqVe7WJUjRckT+iUdHpqReDqY1KN4+TZZjIj7yHZwlty5hZqQCC5dB+lbTNJvqf8vytVtQkgj0Vz2+zl8iQf3gYAVAgDgKc6/8Wlof0+WDZ80ewb/n5M9Za2CFw7lebLqJDucLGGX4jAW/KqlQphLH1lX3CJDNcM14LNZEZlqDRW1lRUwGYyI+4l+fugaU5IgvSZaRasKUmF+Lx8Mho1MwkbI5qi2cCcWr8by/PSaWj+bKldC2bxY72yb3ulNOXoBb2QiuqrV1ExMEaVfsPu31D/N0mFOjEnV1VXIoSxvCkt5xIhzGYyI3SCdILl/5p6zp5xpoNKCCPfnJ4g4Tkgj6pkE2fTekIYKU+JkKfS0DK5CoJoR0WVtqckY1gwOmZI47RLx3B6v5Qgt9fXHF/sX9YHW6svUpD9VVeuvQLXT8UQX2ksGVd0D3K+kO41+txbjPaLeZVdlq7WRokhRrpeML2ZvF7Rmh+MXl40nN0AHzb1T64scr+VLTP4O6m/rc/WtrbsxH8vnILYXQbWAakg2rn7HiQ86AVpgnRPTlcNgOzzxCYnEfq6dPk++fA2uHq3pubGBdGOyD2juYmW5M9+rQOlkRAlqb+Qu1t6i0rboUt019jRohUA+jesoL8r+8j3CIxe2tafAMDvLVmNqGCWBfnDF2FQ9gDKh0v9+poCqXJBJIh2bLgmpTXs0he+WNhMZvQ9dJmbSMndmsB1vIqW0P43aQG15QeOj+rMozSNa6A/V+ZJQVpcnH9Mmuh9hvI8K3ffroyM5xY4bL07zeUnGOWEe/mheN33Y48Ccj+JR+tUT1SPkM3Fs31EEO30Qn7gGDuXhkxCbWfKRkSIcQ0lL54D8lRtv9J/K4wtmtOwTcf3YuPv33Nls0I5IC2SlPUh9N4LUqv2EFVAEnbiOZlW82WplEfy/oJXJXJtwNaF/K0sKIIg2jEg2KrbtnoLTeWz8rtquTgVBrd66D9wLEwfSu2aviucy6+k4ZvWWHXRXxDtqKqRVGSVViDZ3+/5CCgbK6sSs39ZJ+HE+MqFbpJQePInSbXaGBpE07T7RDbtnLtSUo0qGxvPtd2wI6dV/ZgYGlJufgCSxcP8oYuokMfG9Z6eqvoe2D5H4gpXRyK319fwmZ2CaU1LaRkVA2NU74ncuWn14FG8kpdJ6Zx4Jg4VCTF07GEhiHZkL+3KvZdrX7tBCUG0Q3zBiiY7W3BpE/qMoDwQNTsSf/jx+TjyrDcujYlHwSwLpyKd/ShvYZdA+ey3uxF+i2gGLVTlFnB9kCwYAeleJ7FYZzOZ8WpArCq/INrhkWekJ3b3jZ7AxRODLI/nZMNmMmPjpu8BAF3/k8ily1nOW8sj/Py+7hsufPcc9T0qAq+FqWji0kD6bnyk/mdKVpuXV7bPL6XpmJKdD89v03DiOSsqW1Si5BUrZ0lQSwhf6b+VhrF9cOsS6U7Z0lv308Tn+Q2Khe0ldbfcFVHUIJeSR0G0Y9bZMNX4MjT3PvjvaaCqO9vvUzrXU8Xl3byiK4QR6G2SKtM5Ctu5R1pLLPXbqSngJP+1Fh+1kQS86kNH6f1SVx8TTefaxlu1RmHLPDNNmgOIyiwAlI2NR8jj8l3VHYfCEPacdI/SpU8xPnxYtlZJYDOZMSU7n9Jl+a1JP6gSXPPnSGPsmUR5rDXUl+9vE74BUOMwBB6r01R1CXpOChsSyt8pv1vhvCP298GpmvgPgxzz9sKDcDW44YatK/5aJulhR89IpGa/AW21mbpAbxEoiHYMCOlGVScAaPoSey3fjpwKb0xscpLSKRsbj7QPeD8dejtsI4+cxJr2khU/Y9MmqLpYBmOzZqi6cIHmKVkXAd9hWZo0lINiwn0PoSrrWJ3qzdJiVRn00rP1cUTzydyj+Cw4nAvLXhaN0AkZMIYFo+qYtMt5aUw8PL9NQ+mPEZyARUzPE9hMZi4fi/gDN6llzLpC2WZKYU4vTW209OJJHZRgTWjbTGa4BvrT+1IkzGNHS1zucRYAdFUlT/zUHm0Y/1GGP31w8au2aJJ9lVpDU/Kixfe1oXFo+KO0mOx98Cpaul6mfdNRXdnFQ69Dg7G1409cnYvetqh86ujRcukYjupDsmBOzOuzedi82Uu7InQif5KtRZf47RPXd8DBuG9VdEpescLvUzuqr/Enriees1K3FLXxz/o/qw1sXfq3i0XNzRu4MN6CZl+n4oPCNETWq4+HC3vhjPWiw3ZXLuDIc87X0cBlV3rSxdbXUT20ykrMycXgRtqL09rqx6KydzQ1HkP4/eVqQ3wREkq/BRbrStI4v4Z15ZmOm69YkTV9PtcutfFIcPoJK1p9fktN1yeK8wnItuOu8mq6u0988f2dIK4ail+3ou1MbdqCaEdE6lgsiFqFe+rrzznGpk2QfHibblv0nDIF9X/bo9mvFl70wfoOXlh6fCcm+skuCxx9D2xYj8xyfC3ci6AXUlVxPTOvY1tkA2n+OpbAuZMAwLmU0HvXN/rHUGMoSh6Urg3Y90fCCF7Lt9M21OsfuZ/EI++hhbp9p7Y5AfGRMF4qh+HyNVQWa/tWoxsvXyci4NVUTV4ByUfb+l7z8VJAHMYdK8ZYD+kubeE7Fvj/R9+P2Y0/2uH8Bh94z711R+yWiqUe3sjfR/s5yx+hXfpjBDx+8MDJPpUInbRXg4KcT2vuZdEh5WEctq6k6YhvTkH895iv33bI546pJvbsWHrXtsffAeeJ2F0GYgnJZjJzQlhl72huwVj2MH+0rYWiGVYUr+3I7Sax6TMqbiDvdenUYOzREgiiHY1O3eTSFb5jwbuBZryf2Y+j02SVbFlsXtEuh3ywfBM1maMzQ4F4ydLSB4Vp2Bwjqw2xO+YsyKBWlXUM1T3ky8c3+0qmxMcdK+bSE17JLj25G6TFq7FlC9120sJnweGUVtDqadKOnE26nM4KU57fSqpdRAg79aSkXkZMz7MTSPJfa1V1d6lfXyWEOWof8pfQvTiOPxnRoxG67VH6LIh2aqVQCUOUZGQiZ3kXbqJi2428j4VFO5F8dDtX9oadP3H58j6Mx7WJTSj9o91X0J1GQq/4dSvaDJbuoBAz0ZvCN+B6SxcqhK0pkSfk/gG82ipbT+LQXBDtWD+7j64QpmxbUkebyYytHX9STfxHJ0mGbp47wbcLSyu5VLqEX33oKG72k9RoSl61cub1lZN22dh4hE6SF/Z6ixkAGOcpCbNECFPC970UVF+7BkG0UzVDAIgcxpt8F0Q7Tv8czvFPytm86iv6m5zg6n0r7A52zc0buNmvK/bMktopsp60Q0yM5MS+wp+IaNFU9rP8fkvpnS+byYxBWRdgM5lxaYxUt1kF/MmaVvvlfiKlXRASXOtmQ/uMW+pVtyzCJvQcChcPD8rra/l2JK9YiGtD4mg5NpMZX4RIhiCIEMZ+e8N8tU+o9YSwV/IkDYfe4ybCK6UpddvB9htiEEarDiyIoQqbycxpSrDl20xmbnHa7j19x9B6ZbH11aor8ZenFMIuPsKPXb7DsnBPfaDfcHmsAoCC7zpT2lUXyzS/YdKGSiHs8qh4+p7I6ehEv+6a3zD7Tl7J4x1nC6IdOyLrc5YObSbZ1QoRwmwmM72HSXDyGSv1v1g2VuKncLV8mk/KrbcpXbevvB8ku4a5OM7CvT9lv343UAorv1860STuUIjVRwAI+EUyGmb8y6SpOulonhREO4Qfl6PqcDauRrbR/O5a7GpGeSMnjVq8AkDohAyY3aWTpuVhbWkaIoQN6D9K8hGnQL37iqgQBsChEAYA3erzloGV443P0CykfrTQoRBG8gGSZoLWe7CZzFQII23TfJncBp9k1c1H2T+NKrjcsf//7fjvr6ETTjjhhBNOOOGEE0444cRdBqdq4j8MpWoiIKlXDNhVSK3zEDhSB9CM2+IL9JHVAsKXJKHdmym4NDoent+l0XBA3sUpXtsRbYcfohbxAODKpkBc+81bVmPROHanp09eXsh5LhiBL8vqGXk3ryDIrTH6P/iIfNmdKVOPf0dqIcpnopalxLlJFrT4Uu2AsbbdbwCYe8EfTzcrpGmre0Yhd7wLQifwu8KsOmfO53HURQDbtjnfdEH+fV9plttkZwuUdT/n8LSjqqYaRgPv40xZl/xvzdy9LS31FK13VjjTgmOPad8v0WorV38/VBYep89E5ZO11qYH1qqgspygNdMQ/HSaRi4euSujEPyw2umosp5a9SFgVRT1IIjSvS+iyueo3yitYSphDAlEzgxP7v1oldc/IA7iE9Fo81EKtRjJlq3csQWkkx9yX0epfmPeL939u/CohRpqUZZJ6IjrOyCg+Xn8EuLYQqgWDQCIf2Ea0j6oXZ2Ja0cXI67fH41qNwOapIvYkPorhuf1paqqSlT16oLN30rfUfaSGM5EtxI3bF1VvpZYfmP2jUTzQY53yfXqAUjt0mJXM5zrdkH1Xmobz/I+ikfQc2kO+6nW90vCu+x9CF4PHOPi3La2UVlanFe0C9PbdaPPhqgIem+W9Fnle6ltjB99VMQX7w9DeUsDTO/zp1gTjhXh41mj0OybVFXesofj0WRlGowhgajKydcdl7TCSNkFsy3IHrcA7RclwW+GWp3WEaru7YKZS5fgzUDpxN4rpSlW+m/VrLMjHrSgF59cug9Ggws67R6Dg3HfIujPCaiX3QB+b6stt+rRqt7SFudX+8Kz6CYe/fQXfBdu0k2fvSCWGtIhYFWPAUnLorq8HIBkhKLNvEKI8Zcd9sXCdyw4NlG2KJv7Sbymr0NHcPVuTR3HK9U4yboDAPI+jEfuGHkcKZphxdHJ82GenYTWn91SM2zZgvoT1eJbyVfhuxZqEdfRWoL9ffIpK7w/1V7z6EEvLVs/rfQnn7HiwAuSJcd/i9XEPw+1vWOqib07Ft+17fF3wHkidpeBqFf8FtGM+6CL3raoBgBX79bc8weFsnAliHagTwk3SPn/JDm19PyOXwCwE+Bhq+RDjAhhp5OsKNvqzauxgBcSBgRL6nYnf2qPqjNnOCHMZjIjyE06oq9JP0jL6z2e9wejXGTqhZHne5JkvzqCaMc4z7M4/kMnFW9731Zf5tZaIAG8zyubyYyNEU0xMCYBTXZK6iUu2/arhDBBtNML47lz46mjU0Ij/EvJF1rIo/tofZ7JPcLxeGViM9RYOzucSBJ8umhOAGyY3iJfqRbB/nWJDOcsTgqinVqtY8NY9aLKwuMo/o+VPh9+fD4E0U6ttZFwY/sQztcbAGxI/ZXGs39tJjOCn07DuclqdTdlH2i8twHyvpXrfbNfV816sn2VqEsSWrUJYYTGxtwU7nnCMfkC+7AjpwFIBkP0hDBSXvK2HxE4xo4aa2eH5W0q2I3M56Q7PyMXPUfjBlruV9XL1dcHABDtLl/GJ0IYKdceJYUTIUyr3U//LKnZmoYcVjkCt5nMqOlmRvZXXbl8Sr4B0Dujem0ASKpXCX1GyGHVVWi8MxfGihoqoF/ucRbDjpzWLMu4VfqOnsw9qhLCSHriL2j1l59ycYJoR8XAGMovEcJInFZ5bBz5H/S97Fvs24C/VCp0Dba1Ruj2cRw9Q1QELffjwlSVEKbXrmQcsJnMtO/YTGbqx459V6/4bVDRIEIY4b3Gfpg+1/91D1wD2iHwh2mUFlvuxOwCjoeJ2QXI+zAe4z1Po/lXqZwQdm2opA68LKwdNXnP0gtKr48mK6X5KXnbjwCAgdH9uboSPFzYS3fBG3BrbiFCmDKvVjuWvCKNVZtXfUWFMEG0w/5zB0R8Ljv7ZeldqS6n/snKHo7n4otmyL48CRIi+6BwpkX1fSX4SGqdpiGHpTHu4f3we1ueS0PS3Tk6SiMlgGQkpeXiVPy17EuM9zytircNfoT+VgphgmjHlcAqlL4k81xdXk75q0k/CDH+MnI+j0PUzCTNtjz/mHQXi8QZw4KpGxHSP8oellRsc76R+F9yfCeqeslq2q7t2iLnqUDAIBleSH0glAphAKiQIoh25I5ZiPa7HqF5veySz8HWn8n+7pR+xxxt/giinVqT1ErLzhNhSxNpHnKHe0D/UQCA7C+70jwundtrjhk2k5leP7CZzFR1+bB1JQzRETRd1b1dsKZEatNG273g/UkKvrgoGe36t1hNrKkxoPoO/K+pcRrrcOJ/GVonYoC8EGcvx+vtzrGDkbF9CKqO5CBynwEfeO93uANE/rq2a4sNqb/qCiiENvE9VduOodYkKojSiceCQUupM1u98mwmyXBF8l9rAQCd94yGy+/NsP/1+aoytAZCZT2VMAYHIHemBwJGZdKwsL1uONaVvx8340wHpHSuh/gDNzHDK0tV9vnHLGj+VSpOPWmlO3XEEAPZjSdpakPlZj+49j2uGaf1/iI/SoLPlouo9HCHyw75dMg3rTFK4q9Qn0nKdlLWIWd5FwQvqoZhl71WHl3beONi93a4NOYyTEPke0XKfqKZ95ZfLyoANmxI7yuxeYYcPoP1Hbw0fdY46mPiC1bORPPVYXHYOY8XilletfpeXXd2tfD18Z0Y79cdVzYFonF/2fKWsiyDqytqKishiNIdo6qc/Fp5UNab0CR1JHEh6e7UMbUWb3pQfsO1tYUxJBDJ236EzSRZE93c0QOubbxReeIkarqZ4VJRieJ+nmhcUoPds6VF+YB+o3A12BPb58t+k5TGB/TKPfGsFZnPz0fwqkTkjnXsB5BArx56Y9cDOf1R0fMkBNGO/gPHqqytAkDrVE+cslxShWvRZPkzenmh6swZzbTK38Swhx79uuLKiDg0/mE3cr6IQ8jj8gm9Ixp0Prh14q3Xfk+f6Iq5bfbq9lUlr0rDD3X91hx971o0zk22oMWSVFU/OP6GlQo/ALj3cX6CBenvLlC9D0DapKrOPApBtFODEnXlf0XxLjzStpvuuyMn1HWpF6HxpBiDnInB1KgHeypFytCaF5X0iI9A2h63Tii1oORfb1xV4uI4C5ou5zd/9Mbcs1Ms1FWOo7RsuN47OP9bKJoPyq51fUDC7xs5Hi477RxNQbQjbMc4+D+UyeV1xBsxluLoXU7MLsDSUP7+JmukheDfciK25aAfGt2BE7Grl6vRp9Pxu7Y9/g44BbF/GKwgtuVEFgb0G4WNv39P47U+7NKXrfCZnQJDTCfUpB/k4tjf7OKUjT/5jBXen6j9irBlEYeSrGNJ1tEuyaPkkUVZcjDSzJIwRdQi2XxaeZWLweL/WLF1ygdoZWzksCxBtGNg98GozC/UHXxZFS7loMg6ONWkzTgJrU3oJGAFtLrg0sYgjPHbq2tamuWnLgsq9hmQ28ErpSnOTfGmlvtcGjbkTn4sB4ZRP1IslBN9wKZJCH1sLydc1GUCBSSz8EEvpFLn1YJoR+yridQXmVbeBtta46cQgQtjYT1wA296Ha51kVRj7Yzf136jSpe9MBYFDyzm6Od9YFFZQdPq9/mzLfDeXY0dXyzSnYwN0RHIe8gTVd4VyO+rraZKEL2/GhlR/CRHyp1wvAeW+e24LWHS0bda8J5F1/T5vKJdeHzs43Sxokc7ofN9MNR3pxbSCHpkllPTzYJoh+W5aUj9iLe2SsCqTCnrpPXNlb5khc8cqd9OOFaEUR4Xbuu7IKp8WmVcHGdBeQsDVRcqetuCo5P0hUBH5SjBqn07giDa6beopOvoWwP0N6SIQ1o2HWuplNBgF6KCaIfNJwoXH4lHg7OVcE+WhGfWyqsgSu4RIr58Akcnz8fH5wMhdNRfNBGhSQlHlhOvDotDo3X6QqUg2mEbOg5Ik/g2tm6FqlPqEyS2nnrtNO5YMZaHta11rtIKV9ITRDtmng3nTJhfGh0Pl0dP000bZb5ZZ8OwLbIB3bCaX7QTQW6NVeUR9VxH3wkLoqqst7mjDA/f+YimFVsl7d4Hr+LPTo0026GuIBY5a3s3bHz5oFhNp9h6m0vEyTjAb37mfNMFIY+qrcFqjfla7do+wxW7T7ejTrD1+FBi9FERM1Lv5zRt/i2C2O8H290xQaxfp6K7tj3+DjhVE+8i2Exmuji2mcy6H7TPbGmi+u7HRZoL3TEF98LYtImmECaIdlQ0q6H5BNGOCxtCVIMEEb7aviMPjA8sfJGqeL2Yd5DjUbloB4AmCbk0DRHCKhJk1aC+Yx6DINpVkx3xLSSIdhxOnI/h058BIPmk0SqH5KvML0T2smiOL5a/aPd6tLyRjcu4/EFj7FybsL9tJjM2ZGzClepySlOZhoD9TYQwQbSjYkAMl0aZN/7ATTQdeZoTwvJWRenW1RFsJjN9T6yfJoKjy9pzwv4k+yGuvYgQRvJptScAhD4mqSLWVFbq8sWGEdVZm8mMoBek3WD3Dek0jAhhrANU0tZXNwVSIUwLgmhHSud6qm/Gta18b3DkEenEo6KF7KsvZ3kXvJYv0Sf+q1homaJm+SIIfDmVE8K0FhMNPzmNNilVCBm3r9Z3OKu1vBt7/C1Z1cVmMkOMl33XsRbNtIRvNk7JM0HAK6kY0G8UbCZJ/QyQTJsDwFMPTobbabm8C4/KqqNsHavOnMGG3b/BY0dLrgx28WkzmeH5XRqi3k1S1V8Q7aguL0fYXt5CqN7iUhDtOPTUfBq2LKydLEQxqoJsWyjLJPep2PCzv0qnUbtnL6CbVa7+fvDbdK3Wd8byfG2IpKrXaLuX6lsnQpirr49q7Lg6LI6jw55csOXbTJLDYuCWGf9bYTGvydYnCe0OC5Lo8/RmRbAcGMb1h6PdV9C0Ab9Ohs1khv9DmfQd20xmoKYGTZenwj05nfpaqjqWS78xm8kMo8EF7d6UrMHqCWHiesmv1PWWBsoT8YMliHYcTpqvmQ8APYk5+2sobCYzXAPaUSe9hM8zr1ZQWlfi/elv5X+byQzz7CRNQSv3k3gqhNVlrCUoeVVW186eH8vF7YiU/VyWrItA6kcLsSvyRxrv0rAhzRu6fRxebSmpnpINMrIBSt4ZGd+Jeq5yfL7+oFR+jbUzV0eiqsx+TwnHEnS/s6Pd5TvdWvMdAJx+3Iolm/rqxrN14+INvMqZoVLmjeWjeG1HdM8cStOxcawQppyzBdGOgTEJXL2IEJb7STxc+x6neZRCWG2CFzv++e1uhIMvdEZq53VQgn0v5yZJ3yuxZHxxnAXfhZvQ4XX5Xuf3xSn/GtVEJ/4+OAWxuxB6AwsbBwCj2vK66tU9o6QPvtsFVF2UBQ2byYzCd+XFydFJt+5NbZEm0GYDczg67EA6q2APYvdLdzp830uB2+YMCKId7wdJ97GIsOBowmIHLbKbajOZ4ZZ2GKHbHkX/gWO59Ovat+IEAaLO5LJNUrVU3o1j+S2wLaV3vZQ8aQkWLLo9PY37LYh23PeQLPzd8+4ztDxHdMTnrTg32YLC1ZG4NEa6X1A0VOYzYl6SarduhlcWqi9f5uqytcc8Vf3O/BIm/TCo9abJQgAA3DZLO2zr2rdSpWuxJJXj+41lD9P2IajLAkQ54Wo9s/crIuvV11xQ5yzvgisj5btk5ISMpbfz1qLFZjIj7qVELq70ZbneyoVVZXEJCr6PhCDasaa95GBTHH0Dv5VK7RMybh+8jVfR6NbOtN7mgs1khvg8Xw7bBjXd+L4Qs2+kqs1+DP4DDX5SC3vKdmPbIufzOPi9lYLSHyNoOuJwWRDtnOl7pXCkVUbgj1O58h44LF14J4I5OSUmd0Kr7YdRlS2fjjb7JhXGFs01+0fQnxNwucdZzTiSv+reLmh+tAKCaEdyqbT4IQvr849ZqHowwZwC/i6fnjDM1mn3nAW4YesqCyLzpQX3yWesXHry2xgRRmm2vD9bVc6GlF9gSJGcU+d8KjtTV5bLouF6ie+r95zhaLHpK0tKVW1FTnwIWH5dzB3g2q4tspfdMjaxUNokCBmfgWa7mmNGfgZVswOke7SCaKebaaTNWOGOwGaS1JQL7l/ChWn1o2GNZfXMn642Ru6UtjQ961xYazwgKs3E7D4ALPLl7++o3lF8JEcnI3oNAMnhcMjjuzk+yd05AGjws+y+IGR5IjdmC6IdrT9LQfyL0zg+n8vN4u4/sXwBkisUYi5fyeu40X8AADqmjUVo0h56t1hJw/0PT7RfnITJxbIRFVYjIWBUpqrPNNruxfFDxncWLC8NfpaMsHz+3XzdvkrqkByWrNoQsJnMgItRd07oOXUKzdPqixQEvSA7U7eZzLg+OFYSSJdFU2NHbH5BtEMo3c89k5NQ4uaD5Gk7/BB2Rv6o4p+8y3MTLapw8pdVh2eh9Y5V9deoN1suwfG4q3D9MwP3TpiEgdYHVPTMt6pJjIbtnr0ADxw+hys+0hxeWSrSulm/fB7dP5qkonE3oqrG5Y79/2+HUzXxHwarmjjiyEVMa6qenAHJT9JIX96/ktYuFgE7SSgX/ezf4z90gt8IaQemaE0nHO2+QnOxrOSJqALdO2ES6p+6hpPdm2L/q9qORfV2FnM+j8Oke7ZiW2QD2RrW4iSqnsDmYR2f1oU2e4+FxdlfQ+lii0XBbAsCXtbW2f/pamOVs1dBtEuXpPcchCDaESBMROiEDM0dVkd8ArJeO+EvI3oN+jwyEVtWLNWkwdKq7Z5NwXedgcKGyH5UWqB5pTRVOdClvxVWNmubpK4NicOOLxbRd8aCdeKthMqJrW80hJIMJET24Sxh1bUfaUFLIGHVUQktQ1QENm1YxbUre89LeX9ST9BxxJ+Wyl1d62AzSTv/lQVFDr9vvbxaPLEWvAiN7plD0ah/Pk1P1NVIfP+AONRUVGD0UVFltU2JvFVRCBqrtmpJQO4xan1rWmOUMo6ob9e1LwBAjL0K6WajKryqVxfUE8tQla1W/1PyBQDVPaK4O5ks8mdbkDNuAeJfnIYmK9MQuc+AzC6S9kGnuUkwvc+Pa6zqcuHqSNWdFD2wNMz7gTXpMWhY4Abf9/St2gK1b67oqWfTfnjL4imh1+PxqWj0awY9EVc6KhdEO2xHBtExBQDct3lTq5yq8Ufxm1hhFUQ7IveM5hy6P5N7BP0byvchb+d7JHFKHgAgodcw2hf0aGUvi+bGekft6ugdCKIdowp601Oa2vq93jzP0lt+qSW1Hqz3fTn6DUjXEg4nSgLciWetaPNxClcmW66Sv7Kx8WiyKg0v5h2km7V6qLF0hiFVX0VX6x3pjWmU99etOJw0n4snjstZutvLgXtuHdYH/jANIU+loSIhBlu/XILMG+V4wT9e834+AFwfHItz7V3pZkLu3Hhq7Vfr3Sj7QODmxxAyTl8N8t+imrgxM+COqSYOiCy4a9vj74BTEPuHoTTWoTfY1DapKtOXvGJF1vT5uunY9K5tfVV3OwiWHt9JHVxq0VLyokzn6mNCZamo8lqvBCdcKMxOay3QIj9MQpuPte8S6LVRZe9obFmpLdzUFVoTEqFR3d2suktD9N6VNJRlNtvVHN8H/AmbyYyOGS44FF1N41YV78LYtt249Kd/Dkc/v6OwRwEu5g6oth9G2dh4pH2wEP2GP0rVn5QT7sOFvagTXfYivxay58ciNGmPJp3Ij5Jg+nQPwneDLpaUdVpYtBMBtyxmsu1GTMIXzLLQC/BKsG162b8+Gp68SXeByd1HYtBD+b6V/Sd3bjwC11fgj++W0XR1ee85n8Uh5MndVJDSWwBp8a387SitINrRd+xj2LzqK92+OfZoCXXYXJf+62gx1/vgVbzUIofG53wdjfx+kjPy8C8T0e4NtTqm0dMTVZcu/Y/HgdrCCYjJfkG0o+t/ErH3HfW9rNtpV+XfoNXTEPxMGprsbIE1gZLltYROvVF1Tl4MR81M4gwDEdzoH4O/vloCm8lM73mZ0jw07+sZW7aglt2UPJAw1zbe6PNHNjb3CkB12WXU3LyhalNlu+rVUQvXhsThamsXenLGgpiuL3zHAut9hzh1VwCYW5iCp/2tDtuSfS+nq65S4xSx+0fAuKoFPL9Nw4mf2nMCVF2gVffTSVa0mi+NoyWvWuE7i1e7P/24Fa2+4BfbevwqyyDl6LUluymhFX8m0YJLgaDq1mwaY4vmXN8CgIR7h9O7dYDakJFee/Qd8xh13cD2I0cC4W+lGRjkI1uKvO/I/cCbLTTvfAqiHb9fc8NTKybDb4Z6M5R9Zt1/1LZ5oawHG06MWRn/MiE5LJmGx76SqOluQ0lf7z1W1VQjwadLrXMcyydrjOfJ3KP4LDicix99VMR4z9Po3y4Wm4r21CoYszg71YKMNxc47JME/xZBbENmIBp5qDe3/m5cvVyFgZH5d217/B347z/z+xfBekDyZq91Z4t9rm3QE0RJjVAZpvfhb9j9Gx1MBNGOIYfP0LiJfrJuOiAZ7CAmam0mMx1QlBMDea4sFVF1bxcqhLFxevXTEsKUafWEMJav0UdFyWLXBxbkroyC658ZsJnMMHaQrZL1G/Yo8m+ZQmfbgIWSZ0Kf5W9Kdj43uZnSJLO1RAgjd3m0JhBBtFMhDAAORVfjuiAbEiFCWP5s+X5OqwePYk5riUa1/TAE0Y4mq9KkBd4ZWcXR/F4SGm33oqbWV/pvpXRZa2qAZKaZfS4YvFiX58zn5mN5wTbObxj33vtEY9qtew2CaEfw1vG03YiqilIIU7axINrhstOOJivTqEqsS8OGOPiMdPJKrCoq+0c9YS9OTZfVCPNGLsSF0Pq0/PO/aVulI7g4ThIEQp6UrE5uzE/DlU2B6Jg2VvP7cYmUJmzEdpLjmd+CaKd9jPS964PlOyQ2k5nuvLI8sWWtCvfl+h0gGRSYcaYDBNGOknURXH6t8YL8/bNTIy4+ZHwGpU3Vlm+lJ2rAekIYSUfeFzH5rbVIYnkgJp5JXQki6jWg6VosTUXUTPkej9biJf9bebxRLvRsJjOMrVtxz3kPSYZC1gRuoXyzC2V7RQUqmqmFSgCotymdhhtSDqBn5nWk/NERgCQosOmrzp6DzWRGwC9TdNug8sRJPNs8H8mZW6gQRuqREHEvlxaQTrdHHjmpCtcatwTRjobrd2PfG/+Pve+Oj6II+/8mF0jovS2hpAOhHISUO1CqHARUEKkKgtTE3huiYBc7ShVBkWJBFCVwKAICSUgIHB1SISRLJ3QIab8/hmd2Znfvgu/PV9E3z+eTT253Z555ZnZ2Zp4up++gMpRuoawSsP37doZ39ZRjtOl3L44l9bndtpFoaKmGjI+ZGXKd/hmouZRpCHZHLcOsI1t4216VKpvSqh+fF0/I5ojEhM06sgXFHS7x+xQCf+dLsm+Zfs47Bo6SxonevTh3eV+9vLgfz/HH7DxYhdl+OjV7BxrMTuJMmNif7LdtSNjzu0STQ7Fy3zoqW5yvenyfc841hUOxwvfIGYlWqrPqclW3TE+HOY8A0NwWrHXy8Ou3i3DtzihD2e4TJuD94HCeGoBwPpRhjEKoT/9h9g6nZafxZ23TvNn38PMEqVzq62x+lvRQAQBB68cidFGclG7DbD/WtyWOh0Ox8rQBZkyYfj5TugtiwnrvvSgxYccfY/N81lvMt3LtkRTck3kHGiTWltp3B469FzgTdmFNEGszNMj0HAD8e8LXV8BfBz7/NAEVUAEVUAEVUAEVUAEVUAEV8O+AEnihBP/7Ob7+jjb+aagwTfyHwV0esZsBkqCIpmgEltq1UHLuPJOuHorlEiexnl6rA2h5jsiPg6Btmjfeb6JFeyNbcH19fRsiGMwcbvhYie26k7pnv21D4PNJBtr17Vfa2AT7dzfn2gxPZT3dEyFrqRWZ3Rch9o5hSPj1GwBA/y53Y/XWn+BQrJh5ZCseacHMcsjeXA/v5GzDcwFaRLTyaHNnbuJUXQj6fSyyei401xC8Y0Pgc3II+Ckn23H/GKeqmSdSXTPfEPIHEYF8I9zRS7/NcoC56/fNvA+imbR5ZnXF39cdnbFh4ecGvKKppVk7VwdGScE0fJo05ikLglL9MKtpMro+OgnVvmdSVr1/ngiUu4hMb8jUy2w8Ym8fhJLMHI0ewVfPHZjND0tIILyKS/i8JMh6LwZBT7M5aeaLlD4/Est6zcFLEybCZ732flumVMHhqKsGUxqviHCUpcl5tvQSc/Fb8fRtEYipMcq6WKW8dscft6PxR3LqC2pr+cU6+GrQHTyRtUjLhZExqLk0GXkv2nEl6DpCx7nXtJM5sCctEMH5+2N4cmIAOPqSHfsfMpoy6ttxqi60nhMv5bR6KCMdn4WEGsYYYBrP+2qckWig59nv2JAxajb6DH4A61bIqRi8a9RA6UXN1JBMlqlMUe8IrmE26yOlcXDXn3YfxEN5L9E0B5IIZGZK9V45FY4Nr3TBpx99gmdaGv19qVzkjqFSLijykXRXXk8/3ddrEwNG7DK8j8/ONUNCbEcc/agadkctc7u2xIb3QElBgWn7/foOR+nugxI9HV+P51o8r0qVJY2nQ2E5OU/dc4XnsjSbd5FT4tzmoDSbL3rwigjH2p+XuH0u5vrS4yWg+Sk+B+T5KIK7tvT9M6Pdq3NblG3fK5UvD5dIR8SrcUh7VdYA69/nXfvPYFWbeigPKD8i+TqXd0agNm6PnyjtIe7mpwjkWgCwqIn3+kf+K0wTV+0O+ttME+9qn3XLjsdfARWmibco8AVOFzEq+11tYyOVODFhFMHwfEKwFDVRtL0GAEdTZqZAIZbFRYIcr8mZntp6vwk7WI89xDbE5BnMxIfCsjtVFzI/0DZXESf9zvhUDs1MgS6cqou3u+C8eYCHwOeTeD2HYuVmdCL+9AWd8UvoGmTfO9dAg2hGQGZijr0XDIu5makAMSkl+w7x9ussOY/YO4ahqHcEfr2smTFUy5c/qTJ7BwDAcwHROP5ja2lhdihWbkJHphv6PoWk+hrGIvj+nQbTG6KdmLDSrtrzVKtFapd8xByKFd5tWyHsmZNSfwFgddLPUpvv5GwzMGH9owdIZaj+b0u/MNBMzx2KFV0em4SzD9pwKs7GGMEZNgOO8wnBUp1T9nMeGWqHwhLnApCYMBoXp+oyZcKoHQCo8iOLNLbk6FY4VRdKmtbnz/a+wb7Dat9rDL4+SIr4v/l05mNBB6nHW9qxMi/FUM6hWFGSmcN/O1WXxISZCTSo7LzzWtAM72rVkLDpBxTnHDFs+sSEOVUXWg7bjdLbOkq4Qyek4pXACM6E0XgdjrrK2wKAezLvAACs/XmJRJ/+QO9QrNK3kvGV7BuaPifKUI9yJAHAlMWLJNyNP2L5DEVa6PfCsBamTFjB6hDUXMqS3fq/mYjJUZsM4yeC6JNJz/u2MJpvAUDyu3Mk+ogJc/euCPq2iMKBybNw/DHme5X7qh0vzxojzWWRrnfmDnN7gKPvnIIdiG3ro6+KTFjm1x25ryW9H4diRd4LWkTJgB/ksdC/X+U9NrfXrFlmoEuMYEdmpqVdWRvTGuxDjTQV7StrKQ2cqmauSPirzqktPScmzGxtbp8yQhp7p+riIfIB8GjBASN2cfwA830GgFVt6uHIcH80GXjA7Vh/dq4ZSgoKpNQK+c/Z0SipJhyKFaW7D8ISGiS9x4azEnF6Imu7rOg6nytE69aP5pgyYQEJ4/k7qftFEq9nCdPWQ7Ef9H15V6smPXeqLoOwRA/b3p5d7pz9LCQUR75lQTfyfwiHQ7Eitl1PiY7Y7oN5eS8f2cjKqbqQO9XO6R2Y4ZBoz/xI28eJCSsYYzNlrJ2qC1lLOpp+Kw7FypkwcV5TXYJVbeqZ9lm/Hv3WtgYA4NvWjVHcM8IUlxkT6h2v5a0reMAm0eEOiAkDgHsOjvBY9laCiqiJfx3893v4L4GV6XsMG95DGek8OSU9C3xWk2BR2GV6TpHKasUyf6Qrg6LReusoY2NlLJIXhVgGgNL1LG/KoP2neFvRz8dxWuj/wrAWAIAO77LcNL5rtMNo8JPswEd5fMRFyKFYEfKw7JMkhselhVCMtGe26NH/Wl8nGxbC0HHb0WFGvHSP8J+yn+PMSUb3RQCAeT840HlqnFTWoVh5aPNxuSxIybGn7IbF9JT9HEr2HcLvXy3Aqjb1+Eb6xoRFbOOsXYvRJ+ibG5ts9o1mMqmpeBB0qloems1fR/D7OW+ycT32lNG/xqFYceD6FZx8iB2o9M7Y1O7VgVG8nlN1Qe1dF8X5Rm2p/rfVV2MIGyTWZvh8NGlYbK8hhsOo2SEdAM6PuITU12djx8ts4yT/ClG4UCuW+VHEtu9l2g+HYoW3tY1E58ztK9F8G/N/Ip84wjezoIUpLdQOwJjmfmG3ob6F4Sjbvhft32c+SlV+TJHaLg+cqgvhM+OlMWj74yOG9ikdgX6s6J6ntibW0t5b6eXLhrp6IFy/frNQuhbLU54wepd037qThWIXD416uLQ2kOcfE+uGjN4hXYdOTjEcUO44cCf/fbsfq995ahxva3/cLPTee5HTVmUT811rneYj0U84a79eVaJ1/WSmsSYmlCDvBZleSShVdJ0LbswOYl0fmWQqPCEQ12cAyHyLMaS7npuFLo9NQvNXE3musoxPouEVIfv57X5ai0LbMqWKgb4uN3IrmR32UgqLpDGh38H37zT0AwBa/HCS4/h9kSzIEOufmaDNj5Cv4zDzyFYJ3/bXZhvexa/fLuLXxUfzDGNJjAoAeHdoDb9ftLDz7saXfjcZeIDTuCqf+fApg/Zzmlu+ZK5R8vfRGH/Ky0kgjrNTdfHD+8Y8TWjT9J1E7DvdGJYbEvqS9Cw4FKZx2XjVG07Vhfrz5LD85fXFoVgROl7T2orPKLiH2XoQMnoH//67j9d8sPTvTr82E01m66J4j3zkmt7DGLuSM2fhUKyotLEJACBh4wqOiwSqXpHtOD7SAPu0aIar3U5IuJMGv28I80/5JC3hYTg7lvnr2nYxZs8sGqsZ/Wb9BICp2XIORxISeWKYfH7XBJCOAwNwalWYwY+faKgymGmwLw2JNgQboTXGHfPrVF2ofIe55rcC/ttQwYjdIjAotJ30YUe6SnBXtStYcpRtdA7FCkudOkifFcWvS/ZpOVP0ByeA5bI50GWx6cFJbCtrqRXevY7CoVhhr8o2lPT5kdxsQdyY2u9g9rpkKqTH51RdqL1YW4BE6aSh7dIS6Z6nQ6c7KZgeGn/IgpQUxmqaOgLvLS6eswgAvIq9sH26ZspAZQdGsUNhXgwLWb/7KfdJRsVxtz09mZtxlJw7j6gX4jyG522UpKnZnaqLHwodipUHymj8cSJ8AlrgwogYpI9hDr9N3tfGXhz3EyXVsfMlOW8MSVOpb3/Mmoej37fl4y2+x7TC69I4c8YpIZgfMgBgXvN1AIDVW3/idUsOZEj1zj6oHdj0QBu6/pnZIYAiz1GgEnG8Sl37kf2uDcnX2DwKqlQdudHsQLKidUOU3taRj8GH23tJ74oOlOJhxStxF9YckiPgiWNtBt12y1oj8b//W4mYlKfRHfLwNkOfKe9RSmGRNOb6QxMlptYfqkz/R7WT6rr79un+yXgmaPDy8UGdL5NM58CuGF/TA098fgwvt7X9D2j4aSK8Orc1fbdmh8KTP7UCAHj3OiqVBSB9mw7Fit/a1uD1rnY7AQA8WIy+Pa+kXdK9dd8tYu1s3in1Qwz5rj9YkeYuo/siibmgcltmzpVwiQnYnaoLT636nq2lX3QGAGSOnMPr14jLk3CGPLqNazD0jAwAHI66iv6dHBJ+SrFgBi8HRErj7e5bI0jY8L2BcfNu28pQ7tGnvuO/A59Nwv7rjCEO+mayYXz0bYtj5VWpMi8rHsT1po7Hn7Dj3CgbLg7XmTJ6eXFtNuG/q6m85gd+x3KEXRzG6oramtAv49zuNw7FipIe2gGd5sfuqGUcv1N1IS3iW5RcYAEeVuQxIeSqNvXwVlB7t9+x+NtM8EJWJekLOkv0ACwSJ0FRH/ac1jEC34RUnk/SoVjh3aG11Aen6kLWezGGuUG/b9t9TWoTYNGGCciCY2r2DtOE6ARrf1ps6J96ZzND+du+ehp7fg0zZRYTfv0GdRey9ahmvyyJTsrNVWljE9Pzjdm8d6oudPHzlp5n9/5Cem7GJEn3euWhwV2HUPcVX+k5tUPa6OrfbTPgcihW5o5RTnv/FiiF19/291+HCkbsFoGCUYzBOvoy02g8U59JjetbqvGPtaSgAKHxKfBpwbRXZPYmgrtNEAAuD46GU3WhYIwN/fadw8mHWVuif9AzLVnC0tAJqRIe+k15cfTP6JraIzMOZdB+KREuwDRmVPfCCLYpROws5QtT4bqWAIArpdeR+50c0cu7alW3m5sEZdp4iGVK1tXn9Q5MZkxL6zQfaaNanZogLZKeGESxz0nvzUH7HV78+not4wIijt0J2wWpDTHJqXjoWr31J9Rclmxghvlh9iF2kKYDgIizx767kbCBHQjPjWKmEs3u3WsqnXsxIApPZcrmLKVdrVzDSrb1g/yNJlvEeNG16NtQY3N9Q3n9e9ELEsRxBTTTVP0YBj6bhFcC2UGBEvc6VaaR9N68kx/2Qh7YIR24t0/TzFjE/6OP3G6Y3/Qs522jCeWm9lVgCQvG5cGa2a0Ih6OuGuaPfs76+DfFywHaIdKMMSg+yg7uhWVFEk3iWPE6KXtMBRcEhf0ikfOWjY85+bJ8lrXRUJZoLSssND1kp32iMR+Ej0yMgjeOMfSXhCSEp+HdWt4ps7ER79OhSyynn8f0P+Mz2QxapN3skAxAMu9yKFYELS+W6jhVF9fK6fE6VZdBWk95lEIfZFoOUUNa1jPftN/6eS/SWHz8hDQ/9FBm7yCVT/+8MxwKix6rhzPj2VzWR9sEWDoTh2LlSb4BYMbZIADA24uHSrRSQnFKkKtfN4t6R/AIhGJ/xFD9FMFSD07VhcYfJqL24iTUWM4sILw6t73R2TIkW783PcwSrmfvYPn/Ej+cg7wX7CgrLkZxrwjkTrUj4IUkg8ksAG42KkYxNVurxP9O1cXzIqbPizTg1OPRf9sAE1gOSO+HrOHM7DWn3+f8GWn+E3avh08TZjFSad12PJSRztcxEcTQ/sTYijRnjpwDp8p8qggWXWgIANjc3g/f5iVJ40oaIafq4hYcFAWZNKI+zfxN101yZQBYknjCe2EkG6+WLyVB2czWlmnZaW73Wv1a7Lqx7Hh7laGsCxvPO4aNNawF+rnRem68YTzoTKF/L+QWIL5ncnGgNU58rr+m/4MPnMSxJ2+cgXRrs1jXjKGsgP8bUBGs4x8GMVhH2R0x+P2rBdKH71CsuDg8BjWWs42OEoqmz45CaFyKhEvcoCkH0plxNgx8bAM2t/czlDs3yiZprzyB2eYvMi8i0D3KF+UWvC3wbhPCk4Ba2oRK/h4ikOO92KaYvFKkybZrMGr2yzLQfGFkDJLem2OQELpb/DMXd0TwKO1wdfwxOxp/rDFLt+2+hs3t/TiO44/bsetZzZwoIX8HD6NLY9TffhfuTEiTEnefHWtD6htaviTKPXZmnA31FrD3Q8lhPcGRaXYcnGAeNMAdpM+JQuhkLVcY0e5uXM5MsKHefG3OUJAVqh/1Yhw3LXHHyIpJQunZhRExqLlMDnLiVF1Ycakm5oUGcly97h8nmYpQudhu96AkI9t0TjoUK8+V5+l9i/jclSnuGSEdTMzKZXwWjexBc2/qPYg43P0Wr93dN8MLGMfe7EDpqZ4n/Df7HXlaOzyVNetrp+lxUl4sWhfM8PS334Xiw7mmuMWkvPp+9L7vQUM6gawZNpTULeIBP+bnbsGEG6k9LKFBpkmAKfiAfk7qfwNM80Nmiu7endgPEY+neVYerj8D5c1Bs4AY7nBYWodwLboIMw4ncx8yPQ4KUHIz/TajmXCajR/lgLyZb/BmIPe7dgh44RIPwkPgqf7FYTFI/HBOuW1QQnY9Pefvj0HtfRexdrXmw6kfK0/rgjuGU1+G9id9++nzIhE60Tx4kQiUo0vE6QmojBhERqS3+4QJ2Dh/vkR//6j+KM6ThR2W8DAk/PoNQjc9wH0G9W2IcP3XFtgQ/pPUXlkXK9euU/kr90Rj86dsvT89yYb6c5Nw7Em7ZFostiPe018f/b4tmgze+a8I1rFiV+jfFqxjcIf0W3Y8/gqo0IjdQiAyYQQZn0ajxvJkrMhjTAiZ1ohMGEl++gUyKdP1vpEIeZT5Y9VbkIQtEfLkpTaICUufb5TiXRoaA6+OTFpKph1iW+LC5VCs6PrIJAl30DeT3TJhPoEtGY68NJTuPcjxERPmVF24MEI2RaHDljg+S1r5c18RAJiYzkx1avbTDkWidIxwlLfZPJvF/PWICaOcXruek00Uibltn8IcbBt/lIh55xWOM7ZpJ1hCg6R2Hly3ESvbNJDau9ZA1pz16s8O+mWC3/OMxjulOgQFYzTtYhfHbkN/0udFokFibYOUkK5DJ6cYxqPO1rpSO+LzevPlfDkiE+ZQrJwJ67bbqAkiEHPAES01lyUjfXaUVM6hWDEvNJD/dihWrP96gaGuQ7FyJkyE2Fa3cxooVx5tqlSWfG/KmxMEPr9r0ebMyjlVF0IeMpogDthXIJU7GS8ny9XjMzsU6Q8LZGKkB7Fc6fpm0jMax9seniT1m7QWDsWKvgHRhm8cAA/uY9ZOx9fj+T19GbP/N3OgNTus6JMTmzFhVLb4cK7Ux/42zQ9Nz4Td9tAk/kzPhAFA5n2zERZwDAP2FcCpujgT5lRdEhOW+107RLpK4NNU4VJzsa807gBwx7Cx/H7jDxNR2D+S00R0XVgTJI2pfzJLkB65YyjHrZ+/FBSGcJGfY2FspPT9J+TLvnsiDj1OAAhPuk96DkAyQ03v9iWnidY9PY47RrA+h36dI+Eal84YlmdaaqauALh1BMAClJh9B9QWIPv8ES30X/ymtl6TfXJFn1oqc7LkskR/X13UW6fq4nkB9ePVfMgeKQiPfi4DMATgqPFNsuG70K/XANDsXjavxDkLsCAya1cvkfos/jcbB31bDsWK3vc9yOtcHB5jWAtKK5VxXCJtOQPmczykXbYEBxja6l/1Gppvq2agTV/u7C+h0r3WH5zh5ZdcrMfr+65ORYcZ8dK3o2fCAGbqWFByhQsLCC6tDYRDsUoacafK/LUeVSOlvnptdRneZ9UftPW+8U9sH6I9zmwdN3sfhKvZvXsxase/w0+sFN4o+Rv+Sv8PsCn//R7+S2Bl+h7DYu1QWIALp8pMHxyKFZbgAKmeuECuyWaHkryePtLz4XsOmzfqxRgAMzPErR/NwenOjIFL/HAOZzb0CwlBtRXy4TP4CcY4UtAEvrnF2/Hj5hUAwKOSmeEk7Yh+I/Jp2ZzXgZcXfgxx8nLzQgMNB1uzTYn+LHXqAACPtkfP3w1qh45vamZEVRw5uDAyRtqIxT7V+bwGv7eidUNuFlXSvRNK0rOQRVEabzAW+oVZeVeWhGdEFrKDU20vwyYomnUBzLGZ+iymG6BxCp2Yiq9bbuRl+vUzRmVyKFZcHhyNiDR2uCvoctYwZvry+sOQvkxBcVV4W9tIc9rscNdmdjwvExqXwn2hqI6ldQjr24t2jD50VMKnxy3C7uvXUHLhAjeBcUcrmQ7qDwRmTJC+vr7c7fETTQ/GAPBLOJtrJx5lZqQ7p8wyHUeRBoAFLxD7K+KlaIgE139tAXjLEkrR94rq9txzmR8eqG3vESe5D6BohpglJDu/XoNtF6cn2dBzzHhpHCpf0kyWfQJaSPOWhBPu3hklTBXHVoTgJXHwbt8KmV/L0R7p/5wbCYNFKFgdwvFdKmV+L2I6BpEWh2LF5s/m4si37TDhaBcDLipT1jMfv4TXwR0H7jR9xwDwSvtfkGq1IPbXPcj4hDG0p1YxH5ju4yeg6g/beJAPvb+a72rjOkxCJbpH3/h9AZogTj93b3/1MenAvfspNtd8E1Kl9S+2aSd8daG+4TsX10/e7gt2+A9mZstByyfz9kQTLQ7eFiRsXGHK4J1qzyIpHogoltq5zS/f0A8A8O1zWKpPvmVimZL0LL6Gk8+fHgr7awdqh2LlpnUOxYrhOT05PodiRYBzHABgVLMuEk1lhYX8N+Eh4aH4LZFPFflH6/cjuia/PLpHfmFO1cVN/QLXjZO/0xvrAQB4lTKGKC7DGMiDcJ7+ORSWOnVM1zQRWn2uBcaxbNihMYfLkw3j3fIlObiSHqdDsaL08mUUjLGhuAE7Q7RMqcLLdXwjnvvyEpitb6mdvkXUziEcb0l6Fn/+VVgziabGHyYittcQlHa14toAWaAnwvBmWrRLqk++lhTwRBzvQ52LJPr0oJ+zxcdPwNG0o+GZvq9m0C+ErT33VL/glv4K+G9CBSN2i8Cg0HbStU9gS9NyJZk5hsWP7Px/vMwiQXWwMZOPw98wn6ExNU8a8AAAdFap+kNkvflJ6LfvHByKFU0GMltzcVMRrwFN6p/5QQwGH2BRuL5+Xg5xvnPKLAxoysLBin4CIkw42gXX7pSZNL7J3ZByE/1mzIJ+ATz6fVsDrQCQsG8DAKDk1Cl4+foi/wc2jumzo7DzRdmsoObSZGkjvnYni2pY3CsCvmcLOX6nyjQiAGDZyDY00QdPlNoBkBhrfR+avpNoYBI2fs6kjlU2NeLtEbMh9pFMsvQbyJo1y0wZ32ortiEt4lv4tJAdqglf/nPmkmYRxPGd0XgnSl37PTIwwUvi0Oy1RBT1juD3i4/mSeVLDmSg+96B8H8zUdp8233ENDAnS+QN3aFYEbOrCM+0jIFP40aSxoTaz3vBLtEianwBICBhvKFPx4ovSX3R/879rh2q/JiCI9OZ71Xg95P4s+bbqvGADY0+SYT6jB0d3pF9FfRA72jNmmWmhxQAnDGhdjaE/wRnXhoezo823ewDfp6A1mk++L29FjEu5y2mCavZLws/t29kqENz16FYefCe+nOT8PuizyWfudpfJXGai3OO4I4Dd/K+rWjdkOOgQyNdO1UXGn9sfnimfgU9k4SCt4t5xD+RqXOqLky+kX9MhDr92RoYsbOU++8QPnfj2WLoHsMBkeqIQMwt9Zfmj1N1YWFYCzybtQer2tRDvcACOBQrGtzFQvlv/Hw+nKoL1VYw4VrGZ9GwPT1Z3xwApg0Q1zaHYuX+m07VhTXhtXlZS5tQFJRc4WWvNtQ07GbfulNlIcUbJdXE6JqnAYBro/XMMv3e98gs5CxjPmjBT7LDeWk3LRjOdUdnrZ3SEsO6/G0emzvkY+Tt54fWW0fh7IM2nBlnQxMhiiHV44KDMeN5O+KeIdJZcuqUYQzF97Zx/nzDe0yfyzSEBV3OIvttG+xPsndBaTryfwjHqnyjqZ2eqRF/Wxo15KbLyiAWlrznaMbYUbANd3tWTr/P+Ziv3vYLAKDlUs0f+OjLdpTuOsDbq/ITY8Znh2jBmMQxCXCOYwFFbuQ/M11DPmAarxZTZR9c/ZzRM5EOxcojFOv3ChqfOouS4JW0C0HfTOb5CAFg50vG4Ff6b5rupXT8DledAaaMH/mG0bOXVn8D7y0uHnVTfE9ikK4TNo3RoXVYLJvzFrMyOfGoJiAKWj6ZP79yDxO0nr8vxnx/y2frVMEYY8AqnyaNDcwb4SBGUH8WvFWhInz9Xwf//R7+y4A+ytVbfvR46D0zQTNJ8x+8D/36DOeO0xdvY5srJW6VFi/RoftGjjL9YuJQrPygK2749FxccMWF8JfwOnyjXtG6IZyqi28WZocB+k+/PzjMJG250Zfh93OK9EysYyY5nXNki8F06p0cduAhUw6iVYxOyMelsBB7Y5htvd73Tg8Xh8dg01wW1dBnfZqUTNuhWLmTL984TMaZIOGPlRJt4rjo+yiWu9rthMQkis/1IOKlQw0BOWYTFB85ysuL95u+kwhLzZqGzVxfzowOGoec5e2lZxS2nvIauQOSilM79icno8EOxvyS1Fo8cG6Lqo7S9c2weofTFJ8YFMWhWFHjG9lkNXT8dulgAABjmnc1HFDpb+0VXzQfwkI8HxzPnOfFXHa50ZdRrfZV3ublFiXczFV9VtvsL98bbRhPh2JF93ET+G9xXIPv3yl9E/SXEVmICUfZuFy9OwpPZDIhSqvPLjJNRL4WwjzgBfYO2u/w4mamAPDRYffRIqn/6aNnc4EJ3Sd69Jo4+qM1iiD29kGcfn1ZANzkOdn6Pa/jE8BSaFDESk9MXFpH4xbnSVItCjUALUqc+F16V6uGTtO1QAd1kvOlVByTVk6AU3Wh7gA5v1nYgjhEpGnBLoKXXON+ryJtDsWKugPSuWadxuP94HBeRqxTsj8dw5tp82jfw9pBV4wOKrZxYPIsnLBd4LhozSMhhNkYBYyQI1FWOnaB01vZud1Q3qFYMTE9G6FfxmGoP6Nj6IHjAIDSa9fQfMgepL4+G/UWMCb+yDQ77juYhwtrmKlh2ObRrJ112zk+EmiYHYD1Y9jffhcAxnDpvx2n6kLOnfP5dcbo2TwgCOHeG7OER2LU4xfxxHbsw68Tdq4zlKf1reT0GVPaMz+MkdYUut/l8clS35u9ppm7ieDTzB+9Ro0z0Bg6Nk3C51RdCFg1UaI99EWZuTFj3DO+lIOaOFUWdbbKyVJ+7el9UCAXEbKWGplCh2LFyjw2D8UUONVHnjedj8XV5JxlFBFRxNf55Tg4VRcaPc1oPf6jplF0qi7sem6WYeyVzSxIz9UumoXJJ3ct4s+r/sAErWJ+PsIn9j/lTS2QCo1h8bHjklbT7FxU+nNTQ18r4L8NPuUXqYAKqIAKqIAKqIAKqIAKqIAKYD5if4f/Vin++/EEKzRitxBcHK45KjsUK2J73AtAlsbS/3qfJ0taFIo8SEA5bfTSKlF7Q8miSSqT+aFmYkN+SwCz7/YJbInbdl/j0qOMj2MMkjT6b2nUULpHIGoYxGdhXzDp8pMtbYayrT6Pk669OobDqbpQ1kXGHVCpOqqu3IbDb2gS4PvmPwGHYkVQqh8fg8gdQyWNiAjlSQYJr2g37922laH+p023yZWSdxukf5fWBqLGZs0/g/oXG97D0J5DsXLJtj6fTvRzcbxMUe8Iw1wJWj8W9icm8/6IyVoBYKi/FsZc/26oztW7b2g9mjWRtKAA4DgwwCB1FdsX8QUM3+22LTNwqi6kf97ZcL/G8mRcaVSJ+/jp2ysrLIR3r6Pc1wNg5ojit5DxVSdTiayIz6FYuRmKvpzYzw+DNT8uAMhZLqcRyHvBjgY1NOmqmE9MeZeZ5VkaNIBXqUbDoP2aqZWYNB0wzzGkBzKxq/JTCjr7Mp+/0t0sME5JWSlK1zeDQ7Ei7wU7+ndyYHenMslE8/GWmoaFfJwoNDd94w7Fik1z5yF8pmaiJM5nd+Mmvv+EP1Ya5ky/QG1tGfFagtRPS4MGKM5hzuyb2lfBiye0nE2UsB1gWjP9+xTbNaMNgEFD1WimZh5M9UsvX0aDOZomufjIUSknYtDTydL794pkOSJbvpyE+nem87ZoLaZk1scfl9N8kInzcydY+2IaCACS2ZxTdeHYj63hVF3oFzuS39enafjgcBK/pkAuIq05sZ/D0iYULVOqSO9S9J2jsSQ/MNGPUHwOAPNCAxHwgmb2VslL07qS6TzBwQmzsKSVP/eLO3TbV9BD1VpXJdpIc6Kfb07Vxc2zQycZzQvFfZauc1+183uWOnX4s/P3s++CzLbFMXMoVpScMDf9r/ZHA+ma3A3030i90DN47oQ2Dgn5O6CubIPqkzQzbXeWBwBLbeGz3tyqQHwnDsXKI+SmL2TuAeRXblaHIOQBFrzmyDRtfOrNT0KtJVoALf233+feBySa9Wt+ZvdF0rwjIP/G2ou176vkjOyzTCBqC3uP1AKMePtpEaLrLUhCv34jeELsxoKLBdFMqRkIyPy/5TBt36Yoj2ZjRL/XXvHlvoj6stl3fMHXJ9G81GwP8r7TGGikAv7bUMGI3SKwMn0Pahxmdv58ATqkOeGKB2CHYgXKykwXZn4Av2+n5GelrmxT7mGETAj0C+ThqKsozj6MKfUPwqFYsSh3C7KHzOEbjR5fyYmTphvjlJNyolkA6DAjHi2naBu1/qBOpl58421TAw5FDiGbPieK1zs0Vivv/2YirDuBrMhrvE0yF7LUlJMpl/dbD+ozdgMDLJYnHzJxzMXNqnrfbFy87bT03NImVLLnF/9TyPgay5Ox/qqFtyemH/j9qwWwPTVZGr/gUTuR+CHLTSPmVgJYGGF3/RTnwJnRN/xmTpw2MF1nlzQzPSSYMWf6Z2b39Qxc6PjtBtORnLdtSJ4xh4+Vfk4TDoqMlzvVzplvh2JFYb9IhIzegTsO3Mnz8pjRUmNzfW6G4m4u9I/oK9HgUKwIGC4LOPzfSkTlO45wHMTcUcQ1h2JFyalTvK2eY8ZLkTXFfvXbd46HUDcDPZ0+zfxxXzPtEO1QrLB4eXPTQf+3ElF8nCVHTvxwDnLetnFfT8JFPk5iaGo6fDoUq2mABL1QQ/wtMfK6tcOhWFF67Rq/ptx1fE284Qu07grLU0imhyU9OuHXbxdpzNENZk1sh9oNSfUtlynTHyL1AggABjOvGYe1Qy35rwDAZ98bk8aLuH5t/TMA8NQX+u+JciaRyTk9u6sp83Fqvq0aHIqWcLjUtd+0L07VhfDKVTgOalf/zZXsT8fhKM3s06FYOWOvHzdH046SHyH913+PZBImphsh03l30K/PcE5b/64DATAzfKINALa9M9vju6T6esGd/jkAHJg4i+foPDpeMx+r9TV7r2KwF+DGtxQaZLhH8EPwrzxQBgAUZx82bbdO/wz+jgEWbVcZtB/opTFiIm4KqgNoPsbiPf37PDPOhpTCIqlcjkOLPktBu8Q6fA7eSA7vVF1o8Uqi9E3Qf6fqwqk4G4p/a87vr/v+SwOjK9Knv+9UXTj+uB2FdWT/RqeqRWDU9w0Amm+rBt9NjfHbUi0xM60fVHbNGvZdiHnjxD7+1pYF21qQy4L+6AXgZm3r5zgAfBjcGr6rU3k5MhflDKIQmVM/Dv9GKCnz+tv+/utQwYjdIjAotJ2kobrZg614wMhaKi8Ofj+n8GfN48/CoViRUlhk2DzEjd+yQQEAfFTQUnomLrx3fPYsAODy7acM9enaDFKtWkS3wN8ehFN1SblzxEMKBc7Q05k8Y47hfs5d8+BUXQj87UHDwrZ7bBv+26FYAS8WibDkghyZiNrvH9VfLi88p0hs6QsjoMyQIx3qNxfyIdPjAbSkn/pDGUXgKunRyXQ8+QJfpUTCK/4XEz+LdQDwsOqnJjP/QpLy0RwibaKeboqWVnL6jISvX9htqPtFktSeKI1313/Rad3TAV5/WKdrv1bnTOucmmx0jnYoVjSfnghLSCC/77uGbZbevY7iwJQWpjQC7OA7LTuNPz/5k6z9TJ8ThdVpa/n12bHGxLVmdBLDVbI/nW/+Yr3fFzGn/aMv2Q31H69zWCrr7lvjh78budP089TdISPg+SR8/7wD6fPk6JzX7ozieEp6sAONd40avO6Ms0GGeSpqIfXvUE/D1YFRpu+gpLtRczlgXwH3lyKwbNgB267Bbuc+gUNhPnRiueOP2w006hlGsT6VIe0C3X+mpaZR9NqqjXlQJS0Qxdorvoh0ad+vOxo9HdBCvo6Tvvnc6MuGb0WPT/T9Evun75cIZgdFw8FaCPjkbi4CgP8jF90+M6PBqTIhl0Nhmqri7MPI+DgG2RQg5sY6Tv3IedPGU0IAQMDqCfz58qOJWPfdIiaYvOGv692+ldQmlS0+wiKz7nlilkRLca8IU5oTNrIIwL/ka7kFRSgpKHD7TvT9FaP3iuBdowYve/rnUKxqU0/7FjNzoD5tx6o29XjgHf6O9rI97lyvqzxhPAk2dl/XhB36oF3iuFoyNGawqE9nw/uncg1mJ2F9m1X8WhxXPdMmQnGvCExMz4ZDsaLxR4korgK0TvOR1o3Sy5cxNXsHb0+MJDu/2VasCmFr8Kk4bf29a78W6n7jVW84VReye2vMmv4bcKoujGveFU7VhbKjLAF6yMYx0jvqND3OsC+33+Hl9jv2WZ8m0e3pTCfirID/e1DBiN1icPRlOZCE/nBD4FRdcNwzml87FCuCRmoL3ZlxmsmGQ7Gi+Bhzko7yrcTz3lDZ1ltHcTwJYcwUiIJ0hH4Zx/ETTRTNTwSR3pKyUuiBnvu0bA5LWDBCRsu5eijKGtHU9J59Uj2Aac8cihWlt3WU6hJtepwAsCZhKS/j499UirToVF2whIdJm8fqlNW87kMZ6dIBp07/DLbp35AmEh4yKdUzk/RffUY+UJNmoW9ANByKFbftvib107JhhzQWFGBDv3BTVCaCku6yU7U4PiLsmDrbdPFv+ZJ5cm96nvGJHDyg9OJFfiin+zTensDMaZ1ywOnp9ooIl66dqgtNBh6Qxid9LjtkkLkYRckUYeZvRjMngDGn+oPC2V9C+fNXAiP4/eLNdaW+UnJRgEXDqrvQqNkFgHHpcs4k8fe45l1R8IDNNALX/odmcWaGynd4l5kB+jRV+JwVc5Q5FCuOPWWX2nAoVp5jkOjNLb4k0eNQrAhexrSpfj+nIHRiKtLnRyL3OyYRJ8GCQ7HityXsQFN68aJ2r62WwoH6LmohxWf63w7Fij9mzdPGdVkHXqbyjkx0eId991fuiYZ31ap4pI6WZ0ccG0riLuIX23spm0ndxdyDCfk70PgjRuepVWE48m07A41tPzHmSPPEKJn1z6m68Et+Gj4Mbs0EUjc0DVQmY1GEYc0X+9g2TduqM+6fze9T2bYfx0s0Zc3Q1gbv9q0QOn47coouSW2KB1exLcKZVXRJemYJ0VJvXF6rCTYoSJK7MXEoVikaKrVDjDwA5L6izVmv35tKuJq/yt5P9pA5CHz+xjcmrOMAEPBiEhrO0kzOQyek8nGnQCZ+P6dwYSeZ6boDqpvxCVuj1y9eYCoccygsyMiAphEo7dZR2gcCfpoo4aT77gQoJadOGZ7ROkuQFvGtoe6eJ2fB0jqEm4C+mXMjamDbmnCqLmR2X2SggZJm68GMkaQ1JPeOSlIZwiWaXJoxG/rviTTJTtUFn/VpGHwjXLtTdaH59EQciCjm9c6MY0JDSjfwbV4SSncdkHA7FCtL9D5bW3+J4Sx4wIa3gtqbCjeKe0XgVJxNWg8cihVrMtk88vKSGVT9vulQrNjdScupRn0QfxPdTtXFTbgJzObTvwn+jhxi9PdfB6+ysrL/vifcLQyUpbw77oaPVyVE7Czl5jbq03bUzirB5s9YBLZH1Ugc6lzEPvamHbl5on4BFK/pd/8ud3NzHQI905CzrAPPOK9/Ru1YwsNQsu+QoQw9H3FQxZiaJ00P+g6FmXKQFNGhWOHTzJ9v0vpFzOy3nn6xbXEMcosvSUlXxb4AzN5/ddLPBjr7R/XnySDN6nmiQRyLRRcaYsa+O7g2SYSct2xIf2C2RPvNQHn0iLgsjRoafBemZafhlUAm2T21Kgw7On+D0D9GI/32rzzSkL6gM0LHbTf00YwWs/EAgPRZUQiN9xyNsvm2aqbhw9310dM9T/c94c34shOy7/jCUO/4E3bsekaTkovPw7ZX0r5Lk7lAZY9Mt0lhot3RAQBhC+LQ8mX3jDHhLIyNxMbP57t9JycesfOQ4frvRQ8l3Tvht6VfSN+dHt+Z8TbU+9xIl9lB4mbmqXgv5Ks4BD6fhKNT7Gj2urkfp36MXzzRHm82MiYyN20rqh2cPy42rCue5olXpco8ZLq7OW/ZoKCkh4rL90aj2vc6/1ABvDu0hlf+SZScPoPSrlZUzjmJ4nzVtG83Q6NTdaH7hAk8/5jZd2o2DicftqPhp7JGn549lbmPaxt9WjbH6kSm5XD3/Z6eZEPaK7MRG96DmwoTHJluw5z75uKtoPaw1KmDkoICXBsQhU3z5vG9YlkrxbSf1f5owC0u9FDYPxKXGvug3gLjPDz8hs0gUNKPndn3Sf/PjbbxNA3/E7iwJgg1+2XBu30rlO4+aHj+UEY6PgsJle7Rfp79dgwCn0sypTf6+ThO16OZBw0+S2fG2fh4LMjdwrU7sb2HomR/Oo4/YefWJ4a2y9nfAJYMnUwzPe1D7vCdmWDj5vUA85ssS91jqCfWLxhjQ51FSdLz0ts64tdvFvKy/fqN4D5XDsUK302NkX+hJurfmW5K67lRNm7O70mwYgkNQnGDGlj33SLp2ZKjW1HfUq3cs4k7KG+vOvGoHfU+3oSN+Annz59HTcGF4lYBOrMu2tkBVWtYyq/w/wlXLpZgTMddt+x4/BXw32c1/yUwNI0d/t9spNnNK+8lYvNnc+FQrGgzKx6HOhehqM8NR/0yWRIjSofEawBo/148Vm/9SWrP7OAUMGIX93Mwk2QBQOb9daXFTSzjFRGOMTVPovPLWmhnp+pCzLOT+cJZkp4Fh2JF7O2D4FRZ3qiCB8xNytwdKAjIyV2/sDkUK2fCRDpFSV7xkaOIejEOF4fFcAm8Q9E0YrQwtvsonvvC8aAVAh2hi+IMbUw42gXLWinwH7zPIPVyqi7OhAHAHUPHwBMce1JOdqvvh77f1AaFUa6zVdPivDJca4v8fsQAGnrg0lnvMnh1DJfeo/7dR+ws5TSItBKenIHzZJwm7Wz7poMpHQB4omczWqN2DpFwiePhDk6tCpPqUFmfyiXSfcLnjglDTHt8oqQa7ovjQHiICXOqLmS9pwXGEYHG7dA4pvXIWxHuUVp6qkMlqa02n2lSV6fqgusFRvfJeLtUDmAaEbGPlo1GjbJDYb5yV53MF4WYMJGmS2sD+e/uEyaY0uluztI9h2JF4PNJ8GnZHM1eT4SXr6/bckSXQ7HiWGEtaYwJMj5lWpqANeO1dlP2QA/6g5ElPAynJ2maIpEJcyhWxLbrKbWTPisKJT1UlPTohGrfb5Oe6Wkq3XWAa4O9t7iwOjVBosUTUyjeu95XCwgg+qSQ72Dgr8xEO2d5e06DOEbEhL2Ts03C7VRZiPz855kWtvhwLk8fQN8vlSNtWv25zDQ5Yd8GHH5d1rC1mJqEt4KYKSBpVogJc6ouKb9lhxSWaJ4CJ4hMmFN1IWtJR95P39WpOC/wMk7VxZhslfkIzzmyhfV57wVeJ/MD7XsT11H9erLt7dk8fxSZIrv7/iwmh0IKNFK6+yC3bhHrfxYSCkuYnMLBoVhR8EswMkZp/s0NEmsDAN+biAnLfcWO/lWvIWInC7hDuEWm1N+nOu9bwm/fAtDWL711hkOxGlI2mK1Jq5N+5tdhC7UAWjlvau88+20bn0tnxmvpdZyqS2LCAKAsdQ/OjtXKmAkgiAkTn3tv3in5Xqnd6/B6r+WkorDbcaRFfCvVE3GST6H+mb7fB1+sjZMRVQ3fYreUiabrPMF1hxZIyWzeUD8aJdXkrg5O1YW+LdjZQll7wlDnVoXSMu+/7e+/DhUasX8YRI3Y+mOy9qRfsB2lV65g+dFEbl6R8Wk0su+ZKy1ch79pL0X4cSjMf4VHSJoXCZR6SaZUBGKd3nsvSiZGPo0bcUd+M/Bp3AirdzhNcZodKsw2PodixawjWxDfoiu8IsJRlrYPF4fF4NnXvzYkqsx5y8bzHrmT9prRAQD+ydWRF3NJekZ4b+aeSK+I93rfSDz36VdS5LyIaXGokVfMJdWeaLyZ51kzbMi8b3a5fXR3P/85O/Y+NgsOhSX/3mdbYmB0LcEBSPhjpem4FveK4FG59JvlzdBU2D8SRwYyc6H2O7wwo7GWmBdgmrrXcwegqPsxCU/mBzHIGs58AsflduXvT/+enKoLgb8+aNBk+TRpzE1yzWg7f38Man2d7HHszeZEv33nsCa8NlbkJWOwfwwuD45GtRWaJqTe1jo404UdPPsGROPEhAjsfHGWW+GCu3HTP+vfdaDk8K+nT4+7uFcE1i9eYPq+Srp3QvbgSsgePBexHftIAXYcihWW1iEoOZBhSp+Ix7tGDW46ZaaFLa9vtbbUw/muZ/hzr8h2WPvTYqmdvBXhkma5qE9nVFrHND997n2ABwZw197U7B2YHtgJ+T+EY2/MEn5/ZV4KBvlHwQyoPmkSBu0/5TaACo2Zp/6KYxf+aTx6DEpDQoqVm8ZSWetOFpwjZ3l7HvSlvPVO1DaY0XN5bSCq9c2GU3Uh6sU41FmUhH77zuHTXd0RNNKFqwOjUOXHFAm32MbVu6NQNcGFtUdSpGdm79S7WjWUXr6MGpvr8+AiAHBhRAwee/UbLAxrwcYg6T74D96Hy/dGo0b6eW4qqMd31RmAKo4cWIIDUJIpm/hy4UlTBatTExC2eTRaDtvNgxJR1Ek96NtRV7aBMogln08pLEKULxNuqM/apejBergyKJoLSs3G3tO3qaeHnllq10LC/k0Ymt0L57uekcodmW7DwfGz3b4Dd/OkuGcEKm87yBMGuwP99+EOLg6PQY3lcrRF/d4u4tBroahc0DeTkTVsjqG8WT9abRmFFkNlQYpTdWFghgNXu2lnFEvrEFz6qBhVHDkwA0tIIE7e3khiXEWawr6Ik4KH5bxtQ8Dzcq5NPYi0ZiyKQMgYYwRLsY3YDneYJiCncr2ahP8rNGJf7Oj4t2nEHuy085Ydj78CKhixfxj0jJhDsRrMiQDzBfzKoGhUXbkN1+6MYvbvYE6qZB8tgh6PJSQQJRnZOPakHU0+0Dabsi5W7miuXwy7PjoJlxtZsPOlWfxZmb0DUAZ4JTGTRsfeC9w2XU9z6fpm+LX1z+jXZziPNuhUWZJJ0fFdrJvxaTRCHjZGrvPE6Im/fTc1RmE3+TAu4uozZAxOdazKD8ru8Oh/i9cD9hXgl/A66LnnMn5vVw1O1YXzpVd5ElMR6PAPyMyhaPJJcGlINKp/Jx8mSnp0Qv5tfmg+XXtnZjRmLemIoPt2mvZbX5YOaClvzvbYV8B8Hhqee3mh6I4IKVS+U3Uhq+gSgipVNxwkRLzumPULI2KQ9L6cQNPLxwfo2NrUxMUTePv5YU12stu+3gw4VRfap4xAWWId7Hl8FqfTqbq4CbG+vNnhWGQ8ACDnTRu+HvEJonwrofXceDSflmhaH2DamNQ7P5RMZcT2RJrE53EZmYbEylRn3nkFK1qz9BOnJ9lQf67xANU2+T7uw+lubG6W0fyfjP3hN2w4NHY2gpfEwasUCHxO0AboBC76tsjEyx0trefFc58kS82aSDj4B1uTH7XD53IZP8Dp6/v4N8WhdxpK35ylXl0eevtmmX399ynej+01hDPHVC7/eTuavu05+TbhMHtmtp49lJGOu6pdkZ69k7MNzwVE8zIxu4qQ3KESvyYzsmt3RuFMGx80fUebt08d64T3mzC/1zlHtiAuaxjKeroP0U0H/WsDouD3C9sXSrta4b3FhfP3xfCw6Z76XFhWJCVjdqpM61BWdN3tmBT2j+TCM33/3LVDOMV7sT3uRcKG7w2Hez0ur85tkf9SKS7n1UD24Lkev4OLw2J44nlqhwS1eqaMzCP1tBJ+0XzTbD/I/CAGZZXKEPKItu/2HD2OJ6ame+IYitcnf2qF0g11ue+lHsQ93YxGkSZRGKen89hTdlQ5VYbaXyVxobFTZYnTyaJA/36oft/mnRGcZJFSzbgbf5EBNgN331HW+zEIeioZZ8bZ0OfhrUjr6M3XfbGsvv3isqIKRkyA/wuM2H9f5/cvhEYzE2FpHcKvzRaAwv6RqLqSLSKb5s7jH/Sn39zJyzhVFzf7E/E49l5ASQaTkBITRk75675bZFic6brUx0tiwgAWppaYsAW5WwxMGNV3qixKnUOxSiHfHYoVKx0zJZo5E/ZxDEIe3mZY9Ol/3+ad8UTmAbyWI5uGiTiK48zD1FN5r60u7HxxFmKemWwYYxGnV0Q4HIoVT2QewJVB0ch/TjP1WvF0HzhVF35vV43XGepvg1elyoa2SQMDQNLwcCYsRjMnIiZMpNuyYYfEhIk0ir/pQEh5Tcwkev36jUDbNG84FCtS3pwtOVGbbSy0yetBLP9tXhKc+TtRad12BKwdL9EV36Kr9A5z3mSmLEVlJYZDJ/2m65/ffV/qh1N1IX1Be4kJE/vvToLpVF0ovXbNMFdozAEYTIfc4dsdtQzKuyxwTf+IvhwX+YsBQO5UZubV/j3ZUbta32zkvWBHWeoefHupFr8f8GISj3DWfFqi9P2JwRKcqguh8SmmTJh+HByKltsPAJ74dSR/RjmSLPXqwqFYMbGW5rNUf24SC3BzA1qmsNDnxISZjYl+7hTGyvOPrwU3QlKbBTRQn2VjRuaQ+votX2LmcJn3zZaYMAA4dndVt3QFrJ7gkQkDgKIQLTQ6MWFO1YVGnySi3oIkXB2opQQRaTrZpzkyeyyU+mjGhNEzMUIezXP6Ld4XwUxD2fRtbY64AxEPpUwwK0/liAkTy4z84gmpjJ5JITMyv59TsPcx2Yz3/SaayWtApeqcCaM5QMGXaD6StsXvlxTU21oHR6bbeOhvYsKy35EjlDpVF8/T5FCs8PWqJL0fh2I1HMgBOay9aOaZ3KGSoaweWn0eh7VHUrAod4sUtGjwj1v4uKQUFiFo0XFOF9EDAGXb90IZtB8hj7Botr33akE59O+nxjfJhv5QUAlx7pR264ia/bKw+OhW+AS0MKX75/vfAwAe8W/EQVXCE/xkMmfCCH7/aoF0Lc5ZAJhzTguwUljkY2DCxP6IgtWs941mkbTWES3SdxDTHm0/Zmtpk/cT+fcsWu60fJmtD73232VgkvlcKC7m0VPFvohjTDDi7k3S/qYH61vx0jmHIHPEHDhVF8oGnsGbjXaj+bZqEhMmjuOfFUbdClARrOOvg/9+D/8lsDKdHSjpQ05Y/x1/Jn7gTtWFjEURXHJ3/v4Y6UM+MEnbBAHAq0z2DwEAZ1vGnDgUKz90Nh+yh9/TH+IcihXwtqCkkhyqVTzEAuAOwlR/ydGtEk6n6sLlwXIuK6fqwnMB2j3xUJw9xBiqXnxeVlyMD4Nb84OrWIZwU0h4ABh95HbTMh3fiOcbvP7QRP8z7qsBp8qS927+bC5afKlJHH3XpGJSnlH7JW4C/SNj3eLvc+8DWqXk3Xy8GiWx9yT6QB1/3M6jJZptGgTkG7Zx/nypvyKsWbMM7zfZAafKnLopDYC+rPiOkzqsMOAR+0VaQKfqQuiD2z3SGfAi29QGNGUBRCiUu35jcihWznC0f19LHtx62lkejhpgZiQEQb+PldoVN3yRDmrnUqnGnCVs+B5nfwk1bKz6eiKNJadOo3/XgQahQfPpjFHb/bQcDtupurDvkVlwqi4MrX4eAAw+Nvp2SjKyDQd2s/dKUR+prqV1CLy8vKA+a8epyTbkDNTec/K77BtL2PO7AZ9TdeHJTWv59Vz/JES8KidYz1sRzq/Jh9KpunB6IuvLwtkfAgDuGDZW6kvpZRZyPTQuhY/ZdQcLj+3/2S503zuQmxeJc7K/TRM0ORSrIX9SyYmTBsaa6odOSDUkTeZMU1kpHIqVCzDM5ggAHLNZDPcdipWncaA1T8Sv/94dihUJu36FGYjtHn/c6Ncn4hSfuTvIGZg5YT2kZ2KaBLPvHwCavSZbaBDkP2+Xkq6Le4KYJsWhWHFlUDQi0obycmQqlzNZK0PzkeBMlwLJt/LaADbHAp9LQvocjSl2KExj5lRd6Lb7KqJelOepuzEh6w933/nWa8YIwAREVxOf6vhtyRcaM1+mzZGXAyKR8MdKj4LV7BsJsUW3AJEWs7ns7j0d6cuiIY5q1kUKzhWfr61/oZUYA7y7Ewv2RQFTCL++bYdiRegfWoRmAtEfSjTbbXbvXgnXohvrutiX0q7snfme8ZbKUt9IUCz2OX1OFJw/fIUSX6DKpkZuhQnUhk/vXP67MDbS8A0RpM+JQmG/SBx+zbj+AsArDbS8fLS/FfeKQPa77DdZL1H7FM2a5iUlcTcLRKX3pauA/5vg808TUAEVUAEVUAEVUAEVUAEVUAH/DigF/pZky+5FIf8dqNCI3UJAUvlrA4zJTUXpZ3YfZibgVF3c34iuQ77WJIEAi7ZU2JPl6UifZXRMT9jwPS9PWgO9VN+punBlYGfucPvVhfrI/CDGVMIk3ruvWReDZmPLzLlSHb2GTd/Xwv6RpmOhvycm3KSIa3rcp0fXl9qhMg0/kyVaYhmn6oLtqckIfjJZKkOmEFTucJRm0iQCRbksbVDbQBOnN3EX/+3TpDF/fsJ2Ad7tW6FO/ww4VRfOjLeh8UeJ3AxIj0uUnBZ0OetWYijSzbUt+9PhKryR6FbQMmXMlHME6bUNZNImvo/PzjXDgPR+Upuk7SAos7NoYHOObEHeinD0C+mCcUKkSwJK/kzQ5H1NMl+cfRjOH7T8YAEvaO8o+P6daDVf054FPZUs5d4ioH4M9o/h5k4OxYorW+vz35kfanPd63dmqndxuPyt5D0dheLsw6baGHHcvDqGcxocihUBP07kz8iPBAA6vBMv4aBcZGLOGzNJvlN1oe4ALXTzazmpKDmQgeLjJ6C8m4gGc5I0TVn9eiyBeUx7aUzIjNGhWPFuUDtp/NNeZVHHAtexyGUURKPdh/Go8lMKr9dgBzOzmtyCacm9N+9E9ts2SZKvn1OVndtxalUYSi9fhm+fw4axc6os2qnYb9EfVr/WUB/F+40/SsSx4kuGOsG/TJL6OeFoF6y9okVudKou5D9vN5hC6jVy9S3V+NiItOvpW3W5KvRQ2E/T7J+ZwL51MoUU4YOzgViRl6xpF26Y9p2Ks+H8/TFSPkGn6oJ321aGuSLS0uwN4/pHv8u6CGvMen/D86ZvJyIn9nOcnsTebYcZ8fwdU75KqlN15TYe0U5chxrXOw+s9zf0k39bL2gJtzfN06I35tw1z1A25tnJeLH+IdRZlITY3kMN+4So5RH7QZq62Pa9pGdd/Lw9airEb/mPa+x6cm1mepn+eWd4W9ugf0RfYBbThmQsMiaGDhxp1HrRfxH/yJwepv0R3zflEtOPS1bkNQmnSP/Jh7TE62LuOBo/p+rigWMIh1N1YcPCz3nOspYpVQzj1HX3PfDu0BpNfJhfcMjiON6XX79dBADwf1MzrzTb50V6yY+8+fREXO12gt/vGxCNadk3/Ne8vDgup+rCgPR+TPOWkCrhiu01hPfj934fwHdNKg6N0/zA1l3RTFNvj9NM9gHmu+2zPg2Bz8lWNPxbT94tlRfHTH9d7/Mkt9rsCvi/AxXBOv5h0OcRA4zmLOKHmj47CqFxWoSrzi/HmeZToXqU40h06tYvmISfcsi0TfPGb0fDsCtqGSbl2TDXP0kqJ+JonzICVX6ojYhHdiIr8pqB9jsO3IlfW//M64uRGcWyFInOrM8AkLWUJaw266Ona4J2H8XzCFhm+EWm0KFY4RPQAsU5R/j14W/ao6TYgqD7dqJgdQjq9Jf9NfS4CMwWWbP2AWDG4WQ80zLGbRk9Xspt5VBYMIuay+QIgFcHRuGPWfNQUHIFw5vZDX0U8YpBGjz1Sz8vTzxqh+t5LVhFeZDxWbQhUpwe3AVcEPPKiDSJQDg/OJyEJ1vapOh/+oO92fj+cQ14I9B8jMIWxqHlS0mG92AWLVDMj/fR4UQ83lI2ibt2ZxQ2zZ0njacn2jI/iJGEAS1TqmCuf5JUXoyUCrDgON69jnoca4JTk23wvVCGpPfmuGUeRDoBYMrJdiw5sfDM09j27+RgAowb+by6PjrJkHcrfW4kQielwgzM8HpXq4b8yR04g25Wp9ukidJY6/Glf94ZoeO349LaQFS/4cPhaQ0GgNJuHeG9yRgMpzx66T7gXihC17Hte6HkNIsoebLkMkY16yLhEfOGORRmFnlfsy5SuxTsQN8XMWgQotoBKXvcrp/u3ilB1gwbgp4xj2ZLkfEcihWF/SLhu0Z7t0em2dHilUSP8wZgwXUu/Kjwd0NwaWgMqn/rOXBHeUBtFsZGwjchVbpX3hwgOD3RhunPLkQ978s8AbxDsfK8nFOzd6CLnybz1uP0tB8RUO638uYUYPwuL6wJQnGJBXUHpPMgTl6d22Ltqq/d7p+e+pv/nB1N30nkOeTEPomBw9z1hzPquryFAHD4NZuUP1EcIwDo38mB1TucUptimbafxGPvo7Nwe/xE/DFL/uYbJdXECdsFw5jdMWwsfv1moYTTHZgFi6m0sQk+CPgej7ToYuirO1CSa2Bh881wKFYelIvo+bdETZy9IxJVqv/vG9VdvVSMuE6pt+x4/BVQwYj9w0CTuiA9EEPCmGSLFnCn6sLtcRPxx2zPYef1ELa9kpTbSFyku+6+B1OCV/Nw6yK8mZOCMbMehzIj0bAA6tsyXWy8LXDmpbldhK4NiMKJ0VdxsOtit2UI78l4OxrOSjSEEHaqLtwxYiwK61TiIZfPjLdh+3RjVCNPB4vywMvHB2tzt5d7CKFnIiPprozYvhgS3gxOPmQ3BEYxg1NxNlyv6cXD0xPoD+4Ay0FDUfhEugA5JHF5ByNP4OkArx8Dp+rCj5erS2kKOk2PQ4M5xlxVfYaMgddWdn0+IRi1YjMl3F1338NDdJu174le/YYuhvMGgLMP2pD6evnzS4zc5a79c6Ns2PYOwyVG1TPDd+TbdoaQze7oDt30AFrM8XbLHOhxU+Q0p+rCtFNt4F/5LL5t3RglPTrBskELrtB+hxd2dyrjOABtbM1C3IvQILE2TtnP8ba9OoZj7WpdeGwvL6CsTIqQ5/V7U5T1zJfmTPv349Hk/URDv4kedwIeff/drWfUpqexE8Pme5pf7r4fJbkGEn9ri0MPsvevJNeAGnPR0Bd3+AhW5adiRFYs8j8PRu2vkjAxPRvzQgNx9pdQnD1XDcH3a35utz08CVV/2OYWl9g2AAT8MgGhE5n2oMO78Tzogkift58fSq9dK3ccyhsfeFuA0hLDfafKorjW33babQoF/Teqf68kgASAvBftXPNiRgvVEe9RWPTMxR0RPMozw01AkYjN4M2cFLwYoPlQenrPlgYNpPDmZvuY2TdQ/FtzrG+zChFpQ3lCY05b7VooOXcepyfaUH+euTBLnLNO1YV+gTFSdFkC/d5i6M96fxQsboZaWddQae9hnuhbZLJ+yU9DJS/LTe+v+mv6TwK38urp718YGYOaS7X9jvqfkL8DFi9vfv1nwCewJR5Zt0ZKZSPi0dPujsZ/S9TECkbsr4MKRuwfBrM8Yu6kcemfd0ZOrBYSPOu9GAQ9ncxz3Yhlxd+eFnKARa3y3rxTKt+3eWeUFRcb6BXrFvXpLIUoF+HkQ3Y0/CzRsEHejBTQnWQu+x0bNw2i+6fibGgwm927NDQGWz+aY76A3pD63uwYmfVb7IPIGLjDSUBhsMX6r59uhc3t/WDdCfw6z4YdL7PDGaUuMDswlneYPDfaxqNIdXw9Hg1nyUwXwborlfB+cLjbvurrHLh+hWt0bmbT9HTYK0/i6qmPevwis+yxDeHde+prefPgqcx96FO1iLfhrqz6tB3Ke+VrX93RET4zHvse0fKOdXwjXjKfvVk8NzPH/6eHaU9tAWx8KO/fn6WXYFp2GmL8jMExbnYulQeW0CBuPgcAR6fY0ez1RJz9JRRNa5zH1W4yU+3l48PXRBJ2ie2apdpwKFb4tGjGE+LGhvfgB1PfTY1x/an6Bs2E2Cd3ffPu0Bqluw7Aqcp5iar90QA/BGuBQPRjJGpqxfsAuMbqZvcNgiPftsPBrosNbfJx+Swa2YPmSs/FEOqAFp7dLHelT1MFxfkqZwBLuzLTNtNxqVoVjlTVVCgmhkKPeWayFKDJjG5381r/3Km6UFRWggFNI9zOTVFrTvNaXOfMvhd3dLijIWD1BIROSDUtR3uDO7zXf22BynccQXlA9Mb2GoKE9d9JbYjCFCorCtbE+tRnAIb8oPoy4noKsMiFtbyrGN5X9ts2BN7I+dXptThcaqYFhNLjdihWqM/Y4f/rOVyvVwU+69Nu+ixwcXgMEj8wP2e0TfPmqRrEPsfnxyAr8hoKHrAh5a3ZhnbE3/8WRuzTtOi/jRF7OGLbLTsefwVUMGL/MOhNE90tAvcdzMOSVsyOXlyoAG1Bq7G5Pr4P+k1j1G6YjFAd8eMncxw9kLmLvo7Yjgju6P3ocCJaV64qtUkJdp0qS8Ab2uwE1rZaXe4h5GYOkiTh0ifX1dN+9Pu22G//mt+72cMpMXw3e+iTDnC+vlibs83QF5EuM3rdtUUMgX6xF/FREk09juKeEfD53VwTV17fzj5oQ90v3EtTzYAS9oog5sm73jcSldemut2U3EHBGBtS3tTMYsScV2Z9upnDDAFt6GZ4xD4DQI99d5d7gDE7fIgHef2c+PZSLR5JMXTTAwgYwXwIz461oe7Cmz+oPZF5gEtnScv+PwWzeUv3spZ05KHb9f3U4/D0zNG0I1BWZt4fLy8482XNRHlzpNvuq9g4KQZeSbtM58HRl+xo9kYi0udHInRCKixtQlGyP93t+irC4TdsKKkMvr5mfNUJIaN3oMzWgafzEOHYU3bsfkrTWh/+pj1aDmO+JMRouAM97aJGQp8H8vREG87dfo1pxW5onJyqCxGvxiHtVe0A2K/fCM7IeVp/zfpPAkACcW6560vuq3aUecHUFNHdN6pve2VeCqp6VzalyQAx7bn/6J9h0km7SCCZcN4Ap+pC9HNxOHVHIUJGa9rj9C8680ixnuBmBQmPZh5E/6rXpGfps6OQczezkPFu3wqluw9ySwcx8bm+DUo+fzProVfHcJTtLD9PoL4NS726yB/VCv4/5qH4cK5URzTlFd0kDr9ukxIo3yx4RbZDWeqem2Kiza7d9csM3NVzqi4E/DwBgd+UGvZUs3HOfseGjFGzDXRNO9UGy37sjoMT2Prw3aEdqBOafcsyHhWM2F8PFcE6bhFYmb4Hhf0ipcVRXBhEJqyorAQOxQqHYsUdB+7k5UQmzKm6+CEBgGHD0zNhGV8ys8hPu33N64t1HYoVPo2NIWM/KmjJaRWfta5cleNptWUUAHAmzKFYEfLADqxttRo5RbIvED2/NCSa90Vc9Kkd7/atpEWu5lLmH3WlgbdEi0PRQp47VRcPrSu2JV7PObIFwUvi4F21Ko5MZyYP6Z935lo3d+BtbWN64HaqLpTdCILhVF0I3jDWtIzZvfBP4xHpKjGUeT84XKL72JN2w2ZBgVXo/sl4ptHy+T0NZbYOODqFXR+ZJmu69MExADCNEoC6XySh1pZ6Ej3jcrsiwKkFJxDpdKoufBu4HgAzRaEcZGKy8spr5Rxw4u/8H8Ldbo51FmlBJwCW88oSzPJOiXnAzOaQQ7Hi27wkKMk1pJDr9FxkwvTzmurT34bwn0zpE8eCHOCJlm/zkgzaFMpnFPDjRAytfp7jJxPl630jkfrGbO6YL34P+nmkrmRzUTQ/DhixizvlA2zO6Psn9vP0JNncJ2RxnNR3sd2g+3ZKY6LHJY6bmFtOLOdQrMANmeC4XBbgg3L3AUDBL8FwKFYsutAQDsWKK6XXUbiOrT364BT0f1P7Kli34kvkrdDw9O1/Hy9LQSpCJ6Rifu4WHtqd+hE+M57XK7N14PVKb+uI602KJCEXHciJ6SM6vCLZt9Pk/UTpfRMTBgCFoY0N9APAlUFyoJyQxXFsDXkymacN8BaMFsal5+BqIy94q34Mj2D2V39ekvQtrFmzjL/DhzK04C75z9v5++2QMkITJv3elNMWOvck/13SvRMCRuxC2Hbm30xMWEn3TlJfmr+aiBavaIEZ9PP39EQb/rim9UWcSwSD/FkQq0dVOV2J2TcqpgHRl9Vfi4GeBle/ID233H/SUCfom8movTgJIaN38KA9x39s7ZYJ039f+u/E3Tfzxktj+Fg5VRboJzQuhZcv3c3ycVLKGmLCqA0RBvvHIOPLTjyfofi8f9eBUlliwnJftUs06embWdBCwlNy5ix2PTsL96xJMdTz3rQT9x3Mg1N1we+MJvsnJszsvQw9cNztMzF/pEOxIv+HcJx9UEudomdeed+EvHFmIH4j4lpnBqFfxiF0Uioqp2pmoOrKNgY8RBNZ81Ta2ESiM7FDZbR4RVsfvr9U2yONtwqUwutv+/uvQ4VG7B8GUSNWKaoT0h+uhJAH2KaeO9WOA5NnGRZtd1IgAqfqgmPgKLcO2Gb1jv3YGk0GahLSE4/a0egTtnHOPLIVj7ToYlr32FN2NHk/EdcGRGHTvHke6SNtlVN1wfb0ZGycMRN3NZU31RV5yaju7fenpJgiXaR1A4CcN23cNKG8unq/I0DWjOglXE7VhTaJ90uMnRnuaafa4JejbXkkO/FZ5JQ4g+/R5bWBUtJH0fRSP/7kv1C6vhl+bf2zW6kg/SfNhUOxSv585UkLRTzRz8fB52optn48F9HPxaH24iRu7kRSful9tGiG4iNHTXFGvRiHK3ddkBIEU73jj9sNSUGpzF0ZfVHY7Ti/l/VeDMLeP8zfu6cxAG7MkRYN4fzhK8msSw8+zfxR1Lw+zzUkfocbr3pjyrMTuPb1Zr8zkZ5Lpdcw2D/GUAYADx5A31KAcxxCxxqlrn0DolFWWCh9c6IJHWlqxMNEh5QRaDzwgFvaCMwc0wl8NzXGqpC1vE2zcQY0rRPdF30zxHYJj36MzHCarYP6MmfH2hA24QBO2c8BANIXRqD6Pl/JxMldu1fuiUbVH7SAMnqTPYDlfqJod4Rj8IGTUsCb8tZr07nZsrlBm1BeHfp93dEZlZ2yNYMnPESTT0ALpE9WEPicrEEvjI3Exs/nl7sWm9FC/oNelSoje3oE0h+QzbEoGBLB8cfsaPyxuSk1ALxzJgS/t6t203R4ui9ee0WEoyxtnzSu3SZO5CZ283O3oLlPdV6Xl5k0EX4/p7gNBiR+g3ow03SJdI04qPLcXp6+BXe/3Y1F8W/N4dPbfG65C0DVfocXZjTeyfsl4hfHgyB8ZjyqnC7D9mlGn1paC/RaxvK+c0/XItCzq3dHwVJYZrC0IPBPro4FzbfwNsNnxqPqiTJUHnoCATXPSn6tBHrTTi6U+CoO6aNZX92ZYovCBvLPozVGBCp3ZHEwMu5/+5bVANGZ9ZO0mL9NI/ZoRPItOx5/BVRoxG4RsG4pRVnqHoQ8sINLwIgJK1itJYM0WwDNJG7kE6NfhEQJm7iQNblxMKPyxIQBQPyYR5D/nB1dd9+DGYeTpfYoWhkxYQDw5ukwqR0qS0yYQ7Gi5tJkJF3z5c+o3GB/Fiq83tY6ANhhUOzb2EPa5p01w4bTk2y8XUvtWig+dhy99zIH+IAXkwyLNeGy1NSSWgNArdhMniCUQG+eRuWvOgPgUKxoXrcAT2RqB1qn6sKloTHSe0jsUBmpnb414MktvsSTwIqwpf0PUn9FTZx+TC2VmMTbu9dRXkfsryiVc6ouKVnt4elMupzxZSd02j4MF0aaMwR6PLW/SkL175iZJWndio/m4aGMdIkJIzpO9jQ3p+098kHUWZSEvTFLAAAZnzDpf43NLGx807sP87IFY2xS/fMzmku4gp5Oxuq0tVIZs/dOuIuPHecS85JTpwz1nKoLXr6+KD6aZ2DCaBwe2zNMMoHVv5slF000i5DHkkyF9DQ7VReP4Bb9PAv5TEyYWMahWDkTJtJXVlzMy4WM3oHXclKldokJu9430jBnxGuRCdOXKex2HKdLLiP6uTjDnLOEBPJyYmj0gjE21FyazMO0U1sOxWoYX7P/4vOrzgDDPREabD6Or1tu5NehY9M4E3b+/hhex+wgqz8gbVww33DotWRUNbSrjzpq1id9v+kZjaHIhOnXz/LwEBMGAK+fbiXVAwBLAy3proinOOcI7uljjIx7ZKD54VsPVKaodwRu3zMIAJCw/js4VRfKiq5zJkwsu3or0yQPPsD8pogJs2xQeDnx77l67oPCiHR4GjNxvKZmM2Hn2p+XSDhSCoskP6cJzbuaMnd+PzOtz4HHa0NJrsHb6bHvbgBwy4QBwCfBrTiDr6d/7KEjWNZKweADJw3ftfqsHfPOs/ER08fkftcOJWWl3LoBAM6XXjW8L2LCaA8Vn7uLAkyBekQ4M05L80H/28xi2mP/txJRb75xXxPXAjFpt7vv4GbAoVjRfe9APkeobpWfUgyWFk7VhdL1zQAAx0fIKS3830pE3S+SUL1vNhfcOBSrZC2iZ8IcihV3ZfRF+ujZ/F76A7Ol9ARdH5kk9atxAht/S0ggX2OcqgvpCzpLtDa93ygkuxWhpMz7b/v7r8N/v4f/EnB1lcPbOhQr39RokaQPte9d9xsOZPoDsPif8oNRDiL9wYdAX5fgtyVfoPmqU9jS/gceXt2+67rbg8am9lVgqVcXANAvMMaw2BK8FdReqi9uome6FMCpupA8Y45E10dZvVDYLxJTs3eg3h5mkpb/PFswE/ZvYvQK0dNiuw+W+lKwOoQdwC9cwEeH5YhgFPpb33+6XpC7BQBQxZGDy2sDsbaVMfqkPljIuVE2w1ifWhWGCTdyZrmT6sXnx5i+D/Hdpd/+FTsUNmqIgF8mwKFY0Wn7MInu0xPlTbPDu2zDpJxVIQ/sQIO7DklaipvZDPXM/GchobydjE+i0XvkgwDAfZr0m+xvS7+Q5myli95wKFZcvO00AKCkh4qcN204OsVuCFl/tI9sqiAe5sXDFjFe1P7F205j+dFEnidNPKhV2tgETtWFzlMZ49N/B9OuUR4qbz8/qU1iZty9m/tqML84Mpehsl6VKhvG8sII82/kZLwd296ebSivH0/x+xefE0x67zHD+gAAldemwvo2mw9XUyZ2ygABAABJREFU7zbmLnQHVK6+pRpqL9YOXUGpfijsF4mSDBa9svfIByUayadv44L5BhrFue5UXaZ5pQDmXyjS4VCYppfqFvZnh9uEP1YyprBeXcN81kvjCcgUy4zpEU3AHYoVwd1yeNm+zTtzXAP2FRiYVvEwKNINMOk9lbl2pyYI8q5WzXSdFnH06zPcLaO0ub0fz/EHsNxwJadOIfMDWbBF/10djTj6dWTCPDKDDFo/FmW2Dqbrg1N1odJvaajiyOH0hXylmbO6Y46IeXWqLoRtr4SqPtcNuMXyZn0VIeAnlvMp/zm74Zk4nq936Gb6zb0cEGmop69L/Qn5mpmmqTEXOT1m/qLuxou+g+x3bPDq3BYAsDCsBQB5XKhN5d1ErGjdEL6bGiP4SU0geqDLYsQ27cRNPwFgqL9x3yGgNjzBiUfl70ykJWbyDgPu/fGzPOIT50DH1OEG3GZttfuA5aSz1K7Fn9H34lSZqWbVxyqZMt/0W3xGAsvVW3/i+fF4+7r15sLIGGk8CYclOID3JbbBHoPAIGQME5h5+fig2optUJ+xc9qL81hUVn1kTUpB8WeY0Ar4b0GFaeI/DKTmbTf2DTRatBO/5KdhQFMmVaEPs8e+u7kvCi0CFGaY4OrAKFRPP4eE375lh04hso/ZYSC2XU+8nZaA9pX9OF4RxA3AU5hq/QHwfEIwkq3fs8OrENnLoVgxP3cLZ0DENvrb7pTM13waN0LQL2clPxqxHTH0NmdK5kVK42FGH/0mx+HinhFY//UCtP0kHtEDd5vmrtKDO0dmp+pC37tHocTXYojopR8jgvzn7dj7qGZ6emlINLZ+zKKLmfXbEy7xeeiXcUh/gB16KT+YnmHQ4wrbXglOZ2ccGlt+mPas92MQ9JTRZM3SoAGuhzeDZeMOWGrWRMmFCwbTyj73PqAlsBbCVztVFzptH4YGdx0qt48iXWJ/LMEBSPhjpWlZh2Ll4eBvBv+C3C0Y17yrgYHxNDZ6ocjNgFlZd8IVPe5LawOxtf0PbtvyNHfM5oO+buDKSQh5aJvhGUUbdDcmYluWDQpKejC/IXVlG1zLqIXAZ8s3F+6YOhwN7z4o4TIba309T/T0C7aj9MoVfq9BYm2c6X1duvc/wS0+F8s4VRf6dx2I1Vt+NNTTp5Louecyfm9XTWpbXdkGl45VR2i8JiDS918MCS6GWid6Qr6Ok8a7UVJNfNVCjuDqaUzNIOOTaIQ8qkn0H86PxqdNmZb8hazd6F6llOOZeWQrQisxpvLCmiDU7Jflth3eJyGQibsyTlWLPKv/Puj3C1m78VZQex6Mxd08ovIAM1U8ba2J7a8Z10HRXL+8dVlPE0VCFdsya58Ye9Jqd0wdjp2Ry8td883WHU9rltn98uBm5gftYTdjtu8O1+V7o6X8ghRoRF+PIjOb4Tv6sh3NXrvxfXlbgLJS7oOqL1/SvRMsG7WgK3o6W8+JR/PpDNexp+zwO1OGust24NCn7XmUSgLa0zu9FocGs5NwZJodq8bMMOQY8/Ru/i15xN7b3vVvM018uvOWW3Y8/gqo0IhVQAVUQAVUQAVUQAVUQAVUQAX8zVChEfuHQZ9HzJP0ykwy7k5a7kni5G1tgzUJSxF7+yBuwnPyp1ZcAk31Rx+5HSdvv4ayoutwqsxsq97nTLpaZ2tdLA/4nYecBrR8WdRuxqfRaBh4hgfBsNSvh4xPmiFwpMtAkzt6zRJQzjqyBfEtuvJABAB4gk8zCeP/RJp++A0bJt3thLOtJoHJfteGj+5ZKDlajz50FF+FNePO+576Y5YcVB8SXtTaiPTogfBfvTsKVX5KMTxflLsFTXyq37S2hGB+7hYMmfIMN4nTz7FV+anw9aqEmQUt8Et4Hbe4Lg2NQfVvjUEZzN5BeRLy8ua6u/KecIswNXsHpgd2uqny9Fx03i5P0+ROem6pVxcJe37Hm6fD8GL9Q3AoVhx/wo5dz8zCqstVcVe1K7xe4bqWOJLTAKGTjFrfJzIPoG9VLTKnwz9CipgntulOm+mp339GK5sxMxohjzBp9qlVYWhw1yH+jBLrUn0xWbS+ve7jJsB3Tap0D2Bj6lWpMsqKNBO2S0OiUf07Y9CUy/dGY8snc8t9nwQUEOXPaDsmpmdjcPULN9WGvsyi3C0YI2hdCTIXd0TppUrIuXseQr+Mk3IsLTm6Fc/lO5B3uTbQK4/j33f9Kp5saUPuK3ZUPgdcDC0x1WZS+WPFl9DEpzrCP43Hvoc1TQ21c2ltIKrrEqS7C7zjbpwA8DQp6tN27Hmy/AT1lDyd2qSQ8E7Vhdg7hqFk3yHT7/vanVHw+1k2LXen9dKDJSwYCRu+l8pnFV1CfIuu5WqOAeClbBdu9wP6R/XH6hQtHUtJ9074bekXPDm0SK+Y+9O7alW3Wlkx1Yd+HaQAJje73h19yY79D7F3HfjbgxjZPhWpVosB98icHjjTpcAUx82sj0Oze/GUJTG7ijCtgXyuSZ8Txd0AzHCK7+v4j62lwEL0rO9d96NsO9O40R5YZVMjQ+4/M9y0dzlVFyJ3DDUE0qL34VRdUnJsjutGEnqRHoLy5jdppD2ttRUaMRn+L2jEKhixfxj0jFhByRUMbybbt+sXE71ZS/rCCOQ4Fng293jNhkPjZt/U5uRUWUS7lDeN5hkiTpFJMlvwPjgbiCfrZktt3jF0DDfdozoD9hXgkTpHTA/RQ7N78RDokvlG//s85jq5GbjZQzf9fvxYZ2yeG4m0VzW/HTNGAWDBOCY07/qnF2qz9j0dDPmhvk4dnii2vL7QwUHEmfOWDcqWYviuNo80Rf0I3fQAvLKrSqahZoyIWN9dpLw/axqjr1ueSQ4AfpB1R9vN0HIztF4cFoPED82TfDpVOUF62zRv7I0oBQDkvWCH/1vG6JAAPEZeM5tzYZtHo27Ny6jZLwvefn749NBviG/R1bS+Wd/E32LEUIpg6Z9cnZvvUr6l4z+2xq6oZegXGIPSa9cMeKT+RIRj7c9L+LPXclLd+uQAwJs5KXgxIArn749B8rtzMCC9H34JXeOWERfbPvugDdWGH8PGtj/CoVjxTs42PBcQbTpXyHyPnqXPjkJonFG4QTD0wHF827qx4b7ZWFKkuD8D+nktCmtyp9rRfHqiaf+v3BON6unnsWbdcgAw/Sa6j58gReMk6B89AGU1qnLT9vJoI7CEBuFcpwZSglv9OIRsHGMQvtF6ZSZkKa9Nd8KOD84GSoIzd1Bm74B1338JAAj6fSzLuWYClnp1UXLmrMdog2Y0OlUXj1oMMB8wfURKszXM+lY8Gs3U3i0JEsR+ikmTb4YBK+1qhfcWF09m7e7dnplgQ735SXgp24U3As3LmPWVmDtiUNLndEbopFQuoAS0fIZO1YUO78Zj17OzDH131w9LcABKMpk/JkWZdcccO1UX+kcP4AnLqS6BT5PGWJ221lAPYIFmfv9qgUSH7enJPC1Ol8cnS/7fIp0kUDEbJ4KvLtTnKYg8jWtsj3tRePDAv4IRezf1tr+NEXs2cvMtOx5/BVQwYv8weNKI6TdLAodiRb995/B4ncPSPVoc9Ak3CSjJL+EOWDVRClDhTiqlf3bVGcCdsskHxGxR9a5RA6UXL3pkJOi6v/0uFB/O9cgEmDE9+rLV/miAy7ezSHhfXaiP0TVPux1DgCWwbvXIfi4Bc9fG/w/jYNbn9M87Iyf2czgUK3LetiHgeXPGRoSiPp1Rad12A079RjblZDukWi38QHkztJf3jk7/HIr6d6a7HXdPuAAYGEUvX1+UFRYa6jbfVg250ZcBsJQKu6OWlctocmb0hu/SXwGNkmrihO2Chrt1CBLWf+dR0upJyumO+RPTPrirU2ljE/wSukZK7qyXrN7MNxa4chKyB8kHO32bC8435kyGU3Xh20u1sCA0AAWrQ5DS8TuE/jEaAcNl/x3yB7yZfosgSvv1dUgz4umg+We+SXHelq5vxh336dm6K5XQp2qRwfdWakeXVNqUgX3Xxn2y3K0fD2Wk8+A2ZmXS50UiZ8B89B75IH5b+oWhnaI+nXEusBJ2THXvz3llUDSqrtSi1M44nIxnWrJDrLsk5JQkF2AWDwVdzhr6J0L6wghDSgUCYgAA8zQIntZ5Go+bBRGXu7QXYtnXT7fC6re7I+k9+WBN7WZ8Go2Qh83TUlAKFgA8sbbZmvhn1oPjj9lR9WQpai5L5s9JYznjbBB+a1vDoxCJ7jtVF/r1GY7SvQfhDjI/ikHWUCNDRtpp/V5C4Onb8+RjZVbeHUMKAO0+jIcyw/j+9EyVGV7y/SZc43K7Sn7fTpWljFnx6gzJV12P58LIGAx5cR2cbWvyFDikJbM0aoiSE1pEy6BUP2RFuhdAudvT3b3PwthIrPpw7r8ioXMFI/bXQQUj9g+DyIj5eFW6KSnXzYDZAmAJDzOYdujbuTgsBjW+YRuCV+e2XP0vljn5kB07X5olLaChi+J4uPhXToUjuUMlCT8gLzrPZu3Bu0Ht4NNU4UlAyQzFXV/Mrs3GqHBdSy4JF8uQNFl0uga0zbX4t+ZY32YVp1Ucwx5jx2PDws+lPot9yvg4BiGPmedcMgOJYa1WDaWXL/NnGZ9FG8yKpPG/YUZqxiylRWih8vvFjkSpa7+Ep6yLFV5bGf3PZu3BjOEj+eHLqbrQv5MDZXVqSrlxqA3RBAwATk22ocGcJD5n9IcCcXzcjUFsm24oOXfeo5RzxaWamBca6BaPWPZmvpfyDvXiGImQtaQjmi324aGR/0ybnsqfGW/D9umzDePmDre7+5b69ZCwez2eOd4RMxrvRNTOIUjp+J3H90G49IcpfRtmAXviMjIxOyRYuqdfdywhgUjY5DmgiBld7vpLv70i2+H89CtI6rDCMFZPZe7D+8HhBhyrr/jhs87RyJzdkjO0+nnnVF2IPRTLA4x4olNsM31BZzRqco6bYXv6FkTtaXnzR13ZBsog7RsmBotg7KEjWBjWAk6V5bbaNHeegU4zes36ZCaAcgdmZdJnRfHAInqgAAxnx9pQd2GSFMRFTx/9z5ph40mz0+dGIufO+RKtANB6bjwKA6+h7KqPW6HinCNbMGDOs6aaZ2l/1OUEE83fAJb2oN6mPK5x0YO3tY1hvRXB3X5qRhPAxlavFXdX78w4Gw8wYrb33wxjeHSKHc1eTzTc/7PgVFnAKJ9LXpq2TIezPNxm54gnMg/ghQ/GoeEsjcaMT6ORfQ8TLo3M6YGlARvgUDQNOCALGPRtBK4bxyMd0j3A8/qb8Vk0Qh9Lw9pc7aziqS+iVtwdExrxahy3Lvru0I5/BSP2dmo3+P0NjNi1S8V4PnLTLTsefwVUBOu4xcCTlNCpuqRrEXLesknl+0fGAgACVk3k90v2HeJtUDn9wkBMGAAc6W+c9JbatQyRihyKFQEvJiFmVxEcihXTGmgmgz4tmvEy6V90hlN14dHMg+hVpQR1ttZFL+dB5P/ADk05fT837btDYf4kK/IYbSdLGNNyZoIxRO/hN2zw7XOYmancGC/q74HJzD6+0SfM/MPHvykAcAmnT+9cTqsIDsWKys7t0n2HYkX/6AH8OnvIHLfvhvrijtlYk7FVeubOt4PgqquuhBdgGjayZe8fPQAOxYpS135Y6teTyq37bhGvO2XKBJSlyv5oxcdP8BxAJx+yS3RW/24b5t8I4f9QRjoazGEbBzFhDsWKVvPjJXzZb9ukvnt1bgun6kJQqh8m5dmQsH+TNI9IyuhUXTj2FGt/cPULUh8AFrnNqbqQs1xLgcDH50aOqZBUX+m+fpMV8fW9exQvo2fCFuVuYTTft5MnCTU7xIr33c0Fsw17+/TZ6PxKnPT82p1R+PZSLUaPjw8mpmczie+NsOYUXlpsr+T0GcQ8Mxm7O5XBoViR0vE79Ln3AWl8Ccal50jt+WadNPRL7EPJgQxkfs1inGe9xzQrIhOW96JmTi1+cwNXJXs8pBBdow8xDdXpn0NxdIrdUAZgGnaHYkWjpJpY+9Ni1OyXBYdixYq8ZAR+P4m3/X5wOKe9uFcEp+eF2Q+i5Nx5BIzYhbGHjhjmXfocFsJfzyCI4FRdSJ/DQmj3t90JAJiWnYaQL4pxPqUhrg2IwpnxNmm89WMvMmEERX068zQGYluXzlWR0jDUOFSAjM+i+fXwGgW8jU1z5yHi1Ti3TJjZ2N+b1dswzkQv5drybstykl0cpuUafPxYZ2M73szs1qxNioJXd2ESyrpYkRCWYKBJz0QEPaPlgdT7RjruGQ2HYkXzaYkIeWAHQicb/YMJJrfoCv+3EnnqA/06vDKPMXAJ67+T6olME8DSHuiZsKsDtZQDnpiw9FlRKNu+l+fYM9vnRfofP8b2Sr1psn7eUN16C7Q0Ej3GjpeeSe15W/i9awMY7f3CbkPrNB+3TJjY3oB9BVKZ4p5a3qwRB7XvJv2B2Wj6x1UDDnGOmUHOsg78d3IHJpiOdDF/1w+DW6PhrES8lsPmQs7y9gh5eBsKy4oAgDNhTtUFq6+29pel7pFyG4pATBitp+K3an9ysimNrd/Kw7UEf16upKzU9J3Qf0poL/Y76/0YaQzqzzPPeVoB/zegghG7RWBl+h4UxhoTPOoP/w7FaigHgPvBUHnSMpGUcNEF82SjevwAULq+GWNcJs3Cyjy2wdFBp/ovPobyBKL0imB10s/wacZso0nbRQktC7qcxepHe6DpPftMpU/iIj6j8U4M9o9B7lQ7RjXrwjaf+XKSxfRZUTg09kaCxbY1MfrI7bA9PZnnzqFFumAMOyhRXg8RB8A2TbP+6RdK2pSdqgvjcs0Tf+o3ffHAXmtLPemZO6BcZFfuYQewgBVneR2qFzpek84RXb33XkTC7vXI+Fg7QIljmvT+HMM9uo49FAuY6MonNO+KOlvr4rOQUDhVF0+4TThavJIo9SXw+SR0ek07HJZt3wuHYsWspsk4HMU26v72u6T2ydSjyfuJppuTU3Uh5FEWLls0k6PxJbPZjEjZ9LH73oFSH6m8l48Pui7QEoBmLu4o1RtjktRVL+UV74k0H3uSbfC5r8g5qpyqi+czcyhWaS4DLGHsCyn3wKFYUVZcjHmhgfDetJMz7a7ntQAL1x3aobjWkmT+vTkUK7wSd2nM3YAozpgMrX5eor/4aB7CFsShX+xIACzvFI3Po5kHcW6UjfvSBD2dbOir/5vaIU5cWyh1Ah3m3cHPp1l+qsaPXZcOhNSGU3VxM2e9s3t1bz8eTl08zAPA+sULeLndT83i+IbXKIBDseL44xrTFzo5Be13sBx1JT204C2El/6q5Pkgq+gSio8chVN14ZXACHhtdeHAxFnw+yUF26cbc7+ZzeMVl2oi+nmWELvSuu2ouczItIaOTcOZa9X4dcJv30qCGv36LR7oTq0K48+WX6yDNon3G2i4eNtpPr7ioRoApgd2wvEfW0PtxXKxkZDOqbpwIIIxCJRjjMaPfB+JHjPBxLrvFrE1pts9yJ3Kxj99HtvTujzODr+UD8yhsAAzTpX5mnE8ybJ5rBnjoB9z8r8S4cKIGAzyj5Lq60HP/Ii//5g1j+dqNCtD/3MGMk1lwqYfDM+o7bAFbC6UdbHy8QWAggdsvA2iR0+fCJTYW1zjqJ2CURrj6PdLCv+uDkSwcPktU6og45NoXq+kRyf8cU2jlYJcOFUXol6Ig8/vaVyQuqyVnIy70hkmMC1c19J0bRSvLXUYXtJUOxQmxHMoVh5QhMq/HMAS0QcM3w2n6sJdTSM9Cj4ALXfXbQ9NQultHQ3jRsJZsZ0ay5Ol9WHBDYFccV4+Nrb9EcW/NWfvbdODUj0vX1/D/uBQrMj4SltTgp5KNowFwaDQdqb3bzUoLfP+2/7+6/Df7+G/BAaFtoNvgiz1o6TIgLyA6cuZwYURcuLO9w/0lp7X21rHUMcngJm4ePc6yhezQf5s4aaDzvmuZ+BUXeg5ehx67rlsurA6FCsyv+6IxUe3MoZHkCKKC5R3+1ZY//UC6T5J6vV9puek1TKTDIbGp0j4T9guIOm9OZKTcozrXilBcMbHMVzySzhD41PgE9jSMD4OxQr1afNEoQuab+E0E13Z79oMB0OHYkXv+x5kjOjzzfg9Slqp7zcAbHtnNhbkbkHVH9g7WLN2uaGcU3WxaE4CPFOXaQyyh8g+AaVdNVoIx7NZe3gZS5068BpZip1TZhkODedG2bA84Hdev9aSZC5ZPRUnHxbUZ9lYiXnE6P8zxzvy6+LDzBE+9o5hPPk4we17BqHvXfcjIX8Heo4e51HySO3OOrJFek7PfPsclsbh/P2srbLiYmxuryVsDh6108g0gZks6sESGiQdMhyKFQHOcfxekw8YU0HBdfqFdNHmw43DpLsN2SyIgEOx4uH8aKlvGxbKmmRRQCD2YdO8efBZn2Yq4AGAli8nYU3CUnYAO3FSa+/X0dj2zmwJn+WGiUiPBydwPO4Oqw7FikqfnZOEEPpyExpvwtorvijOPgyAmcHq6XOqLrT6PE66BoDWW0cZxshMAGJ20Nb7E1EUR8sGbU0o6tNZorfZ64l46J5JhrbM2qFn6UWXDeXmhQai9ldJUn+8bkjyRTzcn2u9v6HvpPXVz9Vuu6/yiJXEeLa4PxOWOmzdpzWA6Ony+GT4/J7GE2J7W9swxnjgATT+OBH9bXJCawL/wftM52/6F2zM+tz7gOk4Aexw3Hx6IqZm70DOAJbcmCKtisFSMkew9StwpDy2BWNs8G7bio+Vfm6JY0Vrgn7u64VRYl0zXADQel68dF+M6psxM1qqT/+77x3ID/UOxSpZG9B/CqZFGvmYZxlTWufLJIx6bI2hfyLkvWDU9pH1AsFtD09CnS+TOE2WmjUNa9fhqKuSUMOyYQcP3uFUXUjI38HHsM6XrN9N72EWMKcm26R5eHhQfThVFza2/dEj7QBM/X8DnzdqiYh2Wnf0jGb229oepK9rCQ9D1ZXb4L3ZuK52231Vesf0u/FHiTj7C/PnLBIEkw7FCp/euTj6sh2W7CrS+16bI1u0EK6Q0TtM1yFxHszP3YLMTzoZ6KuA/zZUMGK3INCiWnKGaT6uDoySFkz9pnt2rLz4OFVN20GwJ3qp9HxpwAYAzJ8CYE6ixTlHTA8r+nsbr3rj968W4Pd2zEzKq2M4jv/YGpaQQDgUZmsefP9O9Pz0GQPNgMZsle4+iB8vV5f6siA0gJf77FwzU1pEXMQYiTT6BLbkZfoFy+Z1tWIzpfELeSwZXfy0z4DKHnmvmjQ+ADuIK+/JGh/qm0NhQVJECJ1zzFDOqbowc+GnOP1zKHdmL+tihVeVKgYaRNzjbjgXO1UXYtv3kjZ5jUBtp7i8NlBa4MVy+oTTAPDuiJEc/8l7WqH42HFehjbf9FlRqL1YOzgefoNtvCRZ3fEy0wSQCZvyLjvkWtqESv0CgBmNdyKrSE6g/dovi7mkkMpe+b4xyrbvRWzTTvj9K8a007ygPmV81QkOxYq2ad5wqi4p7HTMM5MRvGEs9OBUXUh+lx3wSrt1NDwnes+M16TddEAS309JehZ8AltKffu623xTfMeKL2FNxlbD/ImcEmdaXk+vU3VBfcaOjMhCU6nvbbuZJpFMKc0YLrP1w6zfpKkA2KGYcBEOCs6hN9UkvHraVoWsZXOo6LLh8OdUXXg3qB0+DG7N71f/bhtnfMkkzqFY0WJqEqw7ZcFB8yF74NW5raEP+v9evzc10EbScXdQGBvJAuSs94dTdeG2hyfBqbpQlrYPz2btkdoQf4vjcWS6DS18KqPDu/Fux4e0mBTARo8nb0W4FK6e/pPWV+ynQ7FiU/sqBjpKr13jkQq9t9x4Z1HtcG6UDdW/TUb6nCgeNbXUtV9aN1Yn/SzRfG6UDZcHa8yyvq3QB7ejsF8kj07ojhF2qi5MD2Tf79kHjZolMnk1m6t1FiVhzbrlBgZYbKcwlmlL9NFDPTEFGV92MuARofmrMvN+9W7NgoJSN4j0xHYfDN8+h9H4I23vaPhZInwCWki06JmKWl8zpvT0JBvWhNc2p/WzaJwda+PJoqmuU3WhuU91jve1nFR0myprrUsuXDAwx3Tt07iR9F07FCs6T41DbFONSbjeNxJ5L2qafjF4jEOxcv8w8V7YQnmt63uwPwDg0cyDbvdVgO3D4jsjP11xDRmbexuP9CrWzbnBnJFrhhnQ92IGFN4+oJKWDoa0zQPv2YJDD2oacGqXLCEAIGJnKY4/ZjynmK0VE5p3RVzMBre03EpQAq+/7e+/DhXBOv5h0EdN7LL7HlTvmy2VMZNEAkyjVLr7oOlC7lCsaJlSBYejrvLyOW/bkD56tmHjEtuRGJqmClanJvB7FOJWD+7oc4fXU3l3G7YIZrnFLOFhSPj1GwBM60UMF/W11/3jmMS3XyQ2LpiPgDXjkdPvc6mtJUe3or6lGgKc49ymAxCh2+6rfAGn/E/UL099pHwnlP8p5tnJqPW1xoAU9Y7Ao7O/4T44YoRBTwcaAv1Ym71ns7JiebN3Rtf99p3DmvDaKIyNNGhnPdUzw0/vw91YASyK1ROvLsPbB/tKeanM+lTeO/NEK92jqJOAHF4+8+uOqFL1OpcA/xUg5sLT09Ev7DbTqKMAM1ciibTYFz2DbjYXKSiBU3Wh6+57UPPhMpRk5qCwXyTyelkQ9HSyYY7o8cZ2uwclGdnwadkcxYdzkfuqHc1fTcSg/acwO/12NB54AFnvx3Bthr4PVF6kXwQqS0F93M1Lmj/u1rQj021oMTWJB+hJnx+J0Anug62IdPQcMx6/L/ocA9L7Ic5/Az4JNjevNIsAKgZm0OOmUNbUtj7YjfXteCmYkCda9de3PTRJCuZh3Qm4BF4z0lWC1xvuMdQLWj/WkOMQYAdkfb/drUFmuQPd9UGPQwx3blYHkA+unvYOd3NJLEOBq9y1Qfc6vBuPevuvo9K67W7b9WncCMXHT/BgRpY6dZCwb4PpQVvfhp5uffudXovDjpdnu33v3lWrYumh33jKm8EHTmJFa+aGIAY48WncCKt3OD2uj2X2DvBK3CXl99PT5uXri3cPbcIzLWWhY85bNu4eYdY3s3sfHU7EU/3HmgYQI0jI34HYpp0waP8prGzTAJbwMBTX8oNXIjNhpGBfZvVrbK6Pi7edlqK6uguq5VRd6N91IFZv+VHqrxitV2zDXU69elvrSDnYzN7ts1l70KtKCRyKFfZd15HYoTIvP+KgisVhDf4V4etfS+n5twXreDnq91t2PP4KqGDE/mGgSV2QHoiaNbzRbdJEnpgS8LyQOVUXwmfGG6JBmR3Cuo+bAOvrO/FRk+1SMt6eey7j93bVcDMg0kKLNoE+3DSVX3elkiGCmQiUo4VwXxgRI4Xx7bR9mOnh26m60D+iL1DFD2fsjbn0UD8G/SNjub+ceB8wSqTE666770G1GwlN9Qup/vkdw8YazB2cqoszhPpogwT6cOtmhwFKiGo2D4ghoshRDsWK7HdtyLhfTsb8Zxheuv/B4SSMevtJHpADYHmKyDxSP8fOl17FUH+bKS6ze+7+6yFzcUdk9VooCwhMNsHDr9vQcgqjlQQIaYXX8eDHj2PXs5q02NNhzqmyKI4J+zdJ3074p/FSIuLS2zri128WSgdmEg74bmqMwm7HDfNFbNvT+JiNEd1rPScezacbo2/p64ggzSUP+bFEGk/G26XIZGbfx8yCFlia2xk1+2Xh2JN2boIp0nUqzoYGs5Ok/GNmICbUdkeTWZ/1ZR2K1fSgRd/or98s5Pj043Sp9Bqqe/sh4tU49JycbJpo+mbB3fsTaRcjuTlVF/rePUqK7KavG/JVHJf2i6kUKJGxvnyr+fE4OMF9AmVPh3/AyJBQDjfxmdn7SS+6jNjvn0LmCNkio7zvDmAaY7N8TGZjQiDuH3q6KZw5wAL4fNlqMSa36ApLcABw+ixKzjE/yd57L+K3tjXctiHm1BOBUqWYQf7zdjR9u/zgF7fHT0SVH7VvUkxW7uPf1ODHLIKIUwy5Lz4nMJsH3n5+KL12Ddnv2LB+xAyuQev8Shy2T5OjuD6cH23wuXUHM49sRd8Nj0rRCAkyPolGyKPbkP+cHU3fMU8zQP263jdS0nxRP25m7npaK9yBU2UpfRputfA0P57oA7QUBu5SOZCQxoweYpRFcChWlLYLwu+737llGQ86s07b1vtvY8Reif7tlh2PvwIqTBMroAIqoAIqoAIqoAIqoAIqoAL+ZqjQiP3DoM8j9tHhRDzekpkZePn6Ym3ONrdSIOtO4J1G7qWu4j1uWiBI3MQyBGL9jK86Ibv3F+VKd83uzc/dwpMmZn7dkQceEPOUFfeKgM/6NI946F6PByfgrVlzMGJdnBSqmGjWawT0tJppCT399kRP7lQ7qkaeRv070zEtOw2vtrbz95TxWTRCHk5B7is2gy8BACw/msjNSETclg0KEsIS0O6jeO5b5QmuOzqjyzvbDBGleuy7GxvCfyq3D5So8ma0MgQ3o5kww2F2X8RnVvbwazbuvA6wsMmkxTWjMfD7SUgb9CEfWz1OfZuitLy8uU30LL7/E0T5VuLPz0ywYcqzi/Hil6PhXQQ0fSfRgKt/JweKj5+QcLlLTmoGTtWFwrIi+HpVkugSTfbEfol91d/XP//gbCCcbWuWq50s6h2BSr8Zpb2WNqEo2Z/OcVIdym0lwrUBUfD7xaiNE9ukhNWeJN5cI2/rAK+kXR7nKSVK17fjUKw4/oQdjT80/85y3rLhkyFfSD5r5WlvnSoLyCDmLxSfkZmpGbh7l+VpUg3ztmlHyU9UX0c/PnQ/7Is4tJxS/lrg7l552grvtq2wZt1yqYxZv8zoLG9dtzRqiISd67SyBwbA2foXAEBshztQcuqUsQ/r/eFs/Qu/PvtLKNZ1WOR27fA0Hp76AgAXh8fgeOx1hIzewfM/egKx/5PybNy1gNoUTaXF+7nftUPzIXu4RYlIo95FQYSzD9pQ9wv32h8Cs6TchJf2ZzG/ItEW+lUcd4e4WchaakVm90XIKrpk8O27bfc1bG7vV+4e1DbNG3sjSpH5UQyabCnj6RP+7DmG7gHu56unfcyyQcGZL1qgoDUQ8KLRlNyszr8lj9jUbb3hV90YKfuvhmuXijC9QiNWAX8XOFUXWleuyq8PzWqH2Pa9AMgbGP1/p5F2nbEogn/MRb1ZiOoj021onzJCPsAUXYdTdUm4HIrVdPEJGb2D339U1ULmm5lY6A9DzX2qw6m6kL3UiqyeC7XD31uf8TKemDCn6sKAfQUISvWDQ7Gi8tpUxPhZEDo5BV4dwznNgd9NNoyL2YJJ5Uu7dTRdAJ0qM0szo+fMONnkrvn0RNS/Mx1OlYWuJiYMALIHzQXKynBg4ixpPOi3uNmLbZf0UOFQrFDeTZQChNC7unJPtIbP24LKzu3YcjKIOwET6Jkwffv0v6hhkYEGsUzkS5pTdeC6cRJOs7ko1ncHVIbehVj+nTMhEq6WU7VQ3pmLO8pMWFQ7iXaHYkXIo9tQx6J9O+K7zX3VLs1xp+rCr8sWSv2h+7fHTzTQvTIvBS1fTsLLAZHSONSbn4TZIcFo9noimr6TiLNjbWgzS46odrWtvwEfMWHU34vDNX8Lyhkljg2FZybIfcWOXlVKeBvumLBuE+W+XB0YBfUZO4Zm94JDseLJutlS//XjQUBBUgDAP1kLrlOyPx1FvSN4HerH8BoFhvng90sKLBsUXteyQeHviAIqpHf7kuMyHIii2knXXklamGuz/wA4E2aGU2TC9N9p+gOzJSbMHY6MRRHSc31UTrE++fpRX8RnSZdDAAD9u9xtYDrcrbV6cChWUyZM/00SfjHtBJn0ingpkIQIp+Js6LfvnFTW3fcs4qKAGnSv1edxiHHdC0toEPKft2tjdGNt7j5ugvQ+naoLsa1uN6xBAJB3X7Bc9gaD5VCspkyYU3UZgp4UHKorrcsEFITDE4h9F/vv06QxAKDG8mRk9/4CALAzcjnyn5OZvcJ+bF89O9YmjaVDsWKuvzx/vf38pKAcIp7mQ5hZK5n1i/0lZgkA0hdGSPXqfpGEoQeOG/DRf6fqgqV+PSTPmAMvHx8pMi4xd/36Dsf5lsxELWuGDWW2DpyGgOdZcKfm26ohawarez4hWBorS4MGUvtBI1lSdZEJy/gkGt5+fqZMmH7sleQaPI1C8OPJqJZ3FVlLjeXF9yZGqBbHAACinzfm5qN6gT9o+QvTF0YY9saEsATUXpwkMWE0Nu7OK/aPxqMC/m9BhUbsHwZ9sA7y37LUrsV9VSwbFGBIIRJ2r/9TkqVjT9nR5H2j1Lf9Di/MaLzTgGvx0a08RxfgXsoHmDM94uLmiRmgQ1uN5eaO3SKe4Tk9UdDlrCnum5VausNdnjSMbOjdtQ2wUMZmmi+n6kLgykkIeWgbfAJaoDjniCntXp3bou+XW/BAzf2mmjIRXstJxXOZ92rhrAEc/b4tms6sxLU7APNpyPAghXRnz27WP3dj2N9+Fw87r38W22sISg5kGJ5lfhiD4CfM3/m1AVHYNG+eYXz0Y0FO5wDwzPGOmNFY9s0r7/swOyy666slOAD5dzYxHNqp3JwjWzC5hdGnhd43wFJQUPRTp+pea0F4Mz+IQciz21FWXOxxfpuB3i+F8AYviUPQM0mG+4Q7fXYUwuZdRtlOJgBIX9AZYZNYMlnycfDy9YWlaRMUZx92O0/K++Y83df//vFydSlh9M186xQEx1P5jM+i4X3Ni/swuWtf36ebXWvczSXRTy7r/RgEPZWMFXnJqO7tZ8pI6+8NzHDgxxBjsAVq+9RkG/fnvNnx1vefAn2IfSZw165+rMgnuKR7J1g2siA0pMWgerHteiJhz+9uxzdseyUc6lwk3TsVZ8OOl2ejX7AdpVeucDpEXzsRKBCSQ2FRfWlu3yyYHfbFfupp1vs6izjIl9fduOnb1d+/mXXg/P0xqPV1MnKWdeC5uPTthS2IQ8uXNc1n5uKOpgFaPAkfACD3u3bw2l0DzV4z3/faJt8nBTTSj5clNAjZ9zfEwfFatMHy1n3as5yqC0HfTkbw4+YBN/7MeqlfNzydLQz0zI00JBlXV7bBnuilcChWKWiHU3Xhs3PNsKpNPX4t9jnSVcItWzI+i0ZA/JZ/RbCOKcl9/jaN2Osx627Z8fgroEIjdovAynQWyeqX8Do4/rgdJefOY90VNskTwhJwdEwY/3Apx5UoCRIXT4LiqvI1haTe3anMsCE7VRdGNesCwLgJOFUXfFoYI1qFLI6T2o3tcS+vr5dSERBukQnT94PKdB8/AcsDfpfuuTs4Fa5rKfUnaPlkCX/+83L42K6773FLG8AO/GuykyW6YnsPNSyiLX84K+EQn1Pi1UOv1zXgJyjbvhdrwmtL2hyHIocPJ3g5IBJlZXIo12b37pVM7EYfOorAG1LIggdkTd7ioywZcNin1wy4816w8/eWs6wDgjeOkcaX+kX5o1YnrjL021KvLpNE34jIJ46HU3Uha5jswC/C1XoWaXz63q3lhhLnUfHxE1xiTPOY6vULvpE8+bt2hnoEVF4/j8zeTcIfK02ZMKfKtM2TW3RF3gt2qR2n6sLqrT/BqbKE3SVnzsKnZXPe9owcY24ceuZUXcgaPgdlxcX8HuE0G089EBMmlncoVti77jPUEXGHxqWgbKcWHjp03HZOA0UDXJuzjef4cihWVPujgQGXQ7FyjRnlMTz+mN0wtnraj/3Ymv8++yDLvTewmhzcQz8WPk0V6Vn+D+H8MEX3LK1DDG1lD5rLIzk6FCu8O7C2wxbESfj0h0Gz9VJPGwBkFV1ih9yv5bD4eTGXeB1iAgf7x0h1KYGtGRMkMpj69wsAO6YaD7V60N+n6zPjWbubP5sr3dd/JwBw38E8/lvMzaUks2AXfaoyTbtl4w6udSMmrFESy1tVcuYsHIoVT2Xug+1pZtHQL1DTCn+ipHJLCGqrqLoXHIoVazITpf6v/WkxLGEaw07aHdJoekW2w9rVS6R+6/cm/RwxO9CL120/iZfuOVUXfHrn8nv6dyOGnhfxmM0ph2JF+/c0rbq+jhn9AHiwKpEJ0+MgJgwAJqZnI2h2qdS276bG+OhwomHO66H5kD2cCSNaaF9wKFbsjZHHW4+vJD0LLaYmSWuxvj/6eyQ4dChWVM/xNl3/Qv8YzWmiVBX693xuNNsTxXWJvi0zOoJS/UzHInRSKrytbfj1VWcAGsyuysvtPqHw9h2KVWLCLpVek/C93lATJEzttdLQrwr470MFI3aLgJhNnZKMUrRBh8LyVxGQVHrG2SAA2gI+4qAKEfbHyeZxYsQ1gOUBERfJnGUd4FRdiHSV8Dq0UK5O+lnC7VCsyBg1G21mx3N8CRu+B8D8wPSHW7OF8+TDMnPk06KZxMT5JqRyPJRnR2xf3PB8+xyWcAU/qUVeBNghVVyYKeIhAG5eJULu7HqMmSm5wvGW7E/nJnSUM61090EcfVnTZMW262lczO/badp/fX8IR87y9jxxtdgHS82a8O1z2C0D7lCsUghoMbw5ADS0sLxvZWmatLL0to44+6CN+x04FCsCRuxC0EiXATcAJBz8g7+TnOXtpecJe3437ZdTZQnAzRiLoy/ZJVppTqz9aTGvf/ueQW4Ze4I2iffj4IfhcKqamY5DscJ3U2OpnCU0iOeVEelblZ8K7xo1eA4/sc8Esb2G8G+txVRGr/9biYi9fRB8/JvyOlTvfNczAFjCaqK9fWU/CadTdeH0JM0sqc/gB/izS2sDDTgdihV37T/Dr/UJsEXaC1Yzk7cTNpYvyDFwlFuhh1l/naoLr+WkSuNEQNHi7E/KAg/S+pCfSuOPEw1zVX8wU17X/BxTX58tPRPrHntKMzFdnZog0UoSeLEPJQcyDHNOz1yU7joAgCXT9QR37T9jGAezAzyZUwXfv5Obnemh03SN6aP359UxXIrMRzRaQgL5vb7NO7s9JLs7NJvRqC9f73PzsOPimBEsaeWPDu/Ew6Gw3Fz0bGHzzYY1v9aSZHhFakKRE7YLUhvvB4ej5lJmgkyWB0TbrKY3cmiVXAYAKDMSpecOxYrDb9zID3Uok+P8tjX73mlvK0vdYxib2A538HsX1gQZ+m62TonQ9O1E5E61m44PANyb1RsA288yF3fE2ENHpOeiQEdsr8e+u1m9K2WG8gDTwgBAm1nxUpsvZGmJ4SV6vbxgfTteekZjN7j6BR71mO4XdjvO/dMJ3OVY1K93FB6+cF1LOBQrVuTJQkz6OzLNbjqm1J+8YlkAc+UeLXk9QeOP2V6V+6ps5hkwfLfGoLdazWm7OjAKJx9ma0ftr9hc3/WcbOJJ9Wi8+PoaqQktaS3kY+Paz3+vDf+Gpzi4NDQGl89VMRVkOBQrBvvHGISkVGZZKwUr040a3gr46yA9PR1Tp05FTEwMGjRogBo1asBqteKNN97A5cuXbwpHWVkZli5dCrvdjvr166NGjRoIDw/H9OnTceHChfIR6KCCEbuFgDQWgLzwuDt0/9a2BhyKFT3GMpviN1cONuA0Ozg4FCvGpefwZKwAC4ZA0jQxAASgJS8U4diTbGFr9loib+OOoWMAAIkfzjHQTQsSSZgAoOGncoJJYvZ6jB0vLWARO0tRfDTPdAEn0G9CSnIN04OfQ7EifT7b0OxPsEOkGIiA6iiD9sOpujC8mV0aQwr1n7DpB16epIMBznFc2kvlKdm2nintFxjDygj+InOObGGM0PDdUt/2XWe2+AkH/5D6UdwzQsLr1TFc6gOgSa31myLADvpn2/ih7n7j4iMeFswO6ACkjc/d4cKpunDHiLHSGPe59wH+vNkbsnnLh0/IJmMAUMWRI0nM0+dGMmb4RqJoAKi3pBpCJ6Uaxrmw23Gp36c+sCDg+SSuCaG27moaiTWHNqP56rPS+B1+3Yb5uWwM6WBPuIihm7l+MVanrIa3n5/bw1mrLYwJ6jNkjIH5qT83ieOlABRO1QWfz+pDD07VxaWrANOuWGrWNP026gxgufSyllrR9677gRR2KA1YNRFO1YWh2b0kvAA73DhV5kPkUKyI8tVMT8wEK6JmW3ye8Vm0gXkT64lQtn2vWwaj3YfawUg0s9YfcOj36Yk2ZH4kM6dU5rkTMm79fNXT5lBYknD/5OrSmFPbfe7VmOZTk20G2jcumI+Xsl0GOndMnY30BZ3hVF08gfna1UtMx6ogsiGy3mNrRWl0W9O+6+udeMSO5UcTTcuKNB6Zrh0Gzb7foOWTTdcAOsR6V6vGhQUiFPaP1A7EgkCF7g0+cFJql4Da+CU/jf/uNvsZac0S6Wj5ksxAnpmg9afy2lS0TvOBU3Xh+BMyc5Gw61f+O6nDCrR/P15iFvQMn56+oQeOo/n0RP782gDZl+xaCftmri3wQvUa17AwrAW8O7R2K4ig+2RyLqYMEcuFTmL7dbPX2bvNf86ORkk18eb9oyQmi49pWRlcz8+S3h8x9vo9kfy3xPdReltH/LpMTh1CzymsPmkgvdu2glN1cYFodW+2z7ff4cXbcChWhHbPNhUaEN5xQvoCh2JF1R+2wVKzpqngofmriTj5kN1wX4+3yo8p0lkDAIZm9zL93hp9ksiFd/r58HJApFRH/P6qelfm47z1ozkIm7QbIam+bunSC0nFMqJQ/laGkjLvv+3vr4QvvvgCH374IYKCgjB16lTMmDEDYWFhmDJlCux2O65eNQ9sI8KUKVNw3333oUqVKnjllVcwY8YMtGvXDq+88gr69OmDP+vx9a/3ETtx4gReeeUVrF69GidOnEDjxo0xaNAgTJs2DbVr15bKHjp0CM899xw2bdqE69evo1OnTpg2bRp69uxpwHv+/HlMmTIFP/zwA86cOYOgoCA8/PDDmDx5Mry8/rpM32IesSFhndwmCgS0zZIi7JltkvqDhUOxwhIcgIQ/VmqL8Y0Eh/Q870U79j1szLUEMBOGwdUvuJW4iglpzQ7vYoS49DlRyLlrntSOU3Xhroy+/MCsj2YHAF0em4Tq320z9LU88MRMWGrW5Nodp+rCogsNsayVYhqdTwTKHeNUXdzfhyJWie2I70GMlEjg1TGcm8xQnYLVIUjp+J3pZqLvh/jbu1o1BGwsQVbkNeROtXPNp+ibQHWCN4xF0H1ytMB3crbhuYBoQ19X5afirqaRhvbiMjK56ZhIV4PE2jhlPydF06O6884rPNGo2aHKE+h9nwrG2JDyprkPnDuGkIB8adzNDf0Yh30Rh4AfL/LkvJfvjeYRuESIy8jkPk3Utt6f5dRkG3ZMnW1Kn9huUZ/OXLqq74NTdaHbxIk8AiHVC0r149Jbp+pC9HNxUi4cd7jMxkgEwu9tbYNS135DHfKHI39KszE0+02JWOm+7anJqLksGbmv2FHlRJn0jgA5596JR+xoNFPO3ybi5+PfbwTXeLnrF8CSQvuucZ+YvKhPZwS9dgAb/mgP/w7HUGXQKZTqJKfqyjZceEP1FuRu4QfLI9PsaPHKzSdp9vRuPK1rAGCpXw8lp8/gyHQbDo4vP2KdT2BLoLQUxYdzcf6+GDSceFjKhWc2VwlG5vSQEtjS83YfxkOZYZ7zDjAmANYnwnUHIq6zY22ou1CeJ1nvxSDoac9Jpd3BQxnp+CxEE+64m7ueaPJUVn3GzsekvLIEYlJmM3r00Ug90XJhZAyS3jPmd7syKBpVV24z5Ab1RJ8ZLRRddVV+Kny9KqH1vHjU21uCGgl7sCYz8U/PZafK8nqFTk6B+rRdsgq6GfAJbGnq03oz78qMzqeOdcK5oqpSTsSMrzrB4lOKjO6L3H7HN7Ofi/BviZr4QlLfv81H7C3b2r9sPLZv346QkBDUqlVLuj9lyhS88cYbmDlzJh5++GG39YuLi1GrVi20atUKqamp8PbWGMX7778fS5Yswc6dO2G1Wm+apn+1RuzkyZOIjo7GF198gYEDB2LmzJm4++67MXv2bPTo0QNXhENQVlYW7HY7kpKS8Oyzz2LGjBm4dOkSHA4HfvvtNwnv9evXcccdd2DOnDkYNmwYZs6cibCwMMTHx2PatGn/K30ZFMrCFxMTlrmYmQSYSQOJCRPvEay+4ofwpPukj1xkwgAg84Vw6TkxYQaJGoA5EwajX5/hbukOGb0Dq/LlQ4zYVvDyPN6H0MkpiO1wh1TGoVixKmQtL//rsoVI/7wzp6HH2PE8GbK4mFrq1OG/AeBkvMbokITSbIzI9KzkwgVpMfzysbsAAI/UOWIq9SIgkyyHYoUznzE0eiaMntO1WUQuch53KFbctpsdYOv0zzC8z2NPyaZy1+6MQv4P4VK5Wfud/BBOJo1O1SU5iBOUFrFPPnupFUVlzAR18VmjmURJ9064q2mkYe4BwLyYKENfAeCU/RyrKzBh9PzrXMboXRwu+8WI81uk852cbfyazEoJ6ixK8ihVFWnSv0uSNpsxJHRf7HPLKUmcCQOAat8zuijKllN1wbtGDSmwBIHIhAGapLv4t+Zu2weASuu28/bNym2ax4QZDRJrc3qzImXTrtqLkwz9MhsTujfzyFa34wFoZjj6NaL0BPseiAm73pcx7ken2KE+o83dQftPIXDFJH5dnK+y9a4X0+pStLfm0xK5vxO1fWSaXUp83mhmInrvZaHgz7XS5IgRr8p+XqW7DuDEo/K3R75b4lhsXDCf9ydjZrRhPlZatx3rt7dF0DNJ8O1zGKWXLxvm7cTQrRzv+QQ2F0ZNfIK3e3DCLFjq1+M+KiKdltAgOFUXjr5kR5vE+/laItJo9k7E92CprR0qSk4zM0ryw9HPL9KSExRnH0bx4Vxc/7UFai1J5uuxfv0kOtZftSDoG6YtWxqwAWZgxnCI/Qh4IYlfWxo0QEO/iwY6j0yTTc/0tHgXa+NBz/VMmB6np2ciE6YHaoNM5L0qVTbFLfmnejPLkovDmUaz2VeZhvKEl3C9k6OFWQeAGocqSe+B9j26JzJhlTY2MXzjdH15cDRnwvRzq+pK1qYZE0ZwaaisZdavk07Vxa0eSHh3YOIsVPt+G0qvXNHWqRnG+a/HR207FCtCJ7P+ERPm3aE1rt0ZJZUTzScvDmN0WkICcaJHE6kNMzD7Psz2/4hpcXi/yQ5DYvrs3l8gcKTLLR6xbdJAB6wZj6EHjpvS5fV7U7e03mpQBi+U/g1/ZfjrFB8A0LlzZwMTBgDDhg0DAOzdu9fwTISioiJcvXoVjRs3lpgwAFAU5rtcrVq1P0XTv1oj9vjjj+Pjjz/G0qVLMWLECH5/2bJlGDlyJF577TVMmTIFADB06FCsWLECaWlpnFO9dOkSwsPD4efnh4MHD3JN16xZs/DQQw/hk08+wSOPPMLxDh48GD///DMyMjLQooUxvO//BPQaMQCGBe5mpDnuJKhO1YX+kbGS9LlvQDR3wteDp/YK17XExrY/Imj5ZGQNn2Na7tiPrdFkoLkUWixL/9MXdEbouO38uSjRpGhX1LeYZydzp2SqT9omT5InDt4WOPPSJLpv3zMIVRw5UnnxP+VycaouhC6KQ/qY2YZ+6xdgEcfhN2x4afB3GF3ztPTc07h7us/HTYgipcdJZShnXOG6lty37Gakf6TdUZ+2Y8+Ts25aYijS4VRdGH3kdu4XQtHNin9rjtOXqqHxwAMGes6Mt6He50lov8MLuzuVGb4D+m2W16o8SafZvHb3zQAsKMGSVv5uv4ebHUt3beS+YkfgoqMoPnL0pnDdDB29917Eb21r3DSdlGvHU5uxdwxDwq/fIOqFOG5OY7Y+mY13yMYxCBzpMuAUwR1tTtWFDu/GY9ezs9y2Yza2ljp1UFJQ4HE90D8jrb53tWpYk7EVDsUKnyaNUXxMDuutx6Fv29MaHLx0MjJHGs1uAVnLevRlO2qnl+J4vyI82GkrptQ/iAXnG+Pb1o1Nx1iPz7tqVXgFNEPCr99Iz8qbYyKuU6vC0OCuQ4CXF3w3NkLGhkDTyLAAkPFxDEIecx/B7sg0Ow5OYO8w8+uOqOqqAuW9RAM9+vxYejyLcrfgtm+eMUT/1EP6/Ejk9J+P2+MnosqPsqaIQJwD+T+EY2/MErT7MB57nphleLfljRutVXrwimyHopqVsX7xAql++hedEfrgdkN5MeKnnmZP801/HXsoFiU9ZF9xd+Bpvva9exROvnwdNebXwqa58zyOgVgvwDlO2pfM8OvbNhvj67+24Kaa4nNx/PRrQW7xJfSb8yz832TzSD839e24y8NqxkCRT7Co+ddH4xTrPZW5j/v4m7VN/b89fiL+mDVPGqfisqJ/RdTE55P6wfdv0IgVXirC27Y1aNiwocT4HDt27C9tZ82aNYiNjcXUqVPLVbh0794dmzdvxptvvonBgwfDx8cHGzduxMMPP4xBgwZh8eLFf6rtf7VGbMOGDahSpQqGD5c1NsOGDYOfnx8WLmS5gi5fvoxVq1ahe/fukrqwevXqGD9+PNLT05Gaqml1li5diqpVq2LChAkS3scffxxFRUX45ptv/tf6JH6wR6Zp/knXHZ0NixVdP5SRzqVch79pbygjMmEOxYq1grZBbFdse8C+AsOBh/LkBD+p5XiqsqmRhGd31DJDnyiSGtGT8xbzp1CftiN03HaJlqCnkzktotbIoVg5Eyb2XZ87St93L1/NTtuZlyaVW3GpJmfCRJwSI3WDCXMoVqSPmS3Vp/LtPornNOoZs5YvJWFJK38JNwCDM7PYB8feC4a+iEEkAPDNjtrUj4FTdSF7egQW5G6RApnQ2OrBEh7G65F2h5gwEWdZF9aWPjKhQ7Ei+VqJhFN0zqcQ0z69c9H4BqMeuG6cVL7e50xKPqPxTkPf6PeloTHwKpP7CgDhM+VIY/R8XHqORL9TdcH6VryE36myYB0iPmKc28yW84JRmV777zJtTw+iH5ZYpvm0RK797j6erTPeVavCutNcIktQ1JtpkCgIAo3PyYfteKZuloHOjVe94dPM34AnZ1kHAxNGZSgq66rLVXGhdW04FCu+nPY+LMEBUpvieiHOLYrAGXgj4EtR7wiszEuBT8vm0neiX8/SF0bAJ6AFcpa3h0OxovFHiYbvSQQzHJduD5Ho0Ud3FGmmvGcho3fAqbpQevkyL7M6bS2cqovnCjN7J2YHTOneDY1IbO+hCHo6Gf27DjStI5q6NnstEYkfzoGXpRSb27PIgRSAovfIBw3t67/90itXULLvEDq/EsfviX0efcjc7N2hWNFz9Dg4VRdjwgA483eisNtxt0yYU3WZMmGE7+yDNrR4RTNJ86ty3ZQJK72tI/zfMgZ1yVikBVFq4lMdh0ZqOShFGsT3EzqB+YlW+TEFg/af4uXSiy6bzpe9MUvgUKycCYOXl1SO5oPo70NteXUMl5gwp+pCSQ8mTPXOPcHzZHp1DEdQKvMfzen7OS9/+V5N+3rk2yAJjziOZr85Db835dYgDsWKhLAEqM8aLTAAY140sZ8NEmtLz8pS92BH52/g93OKzOgLkQLF93Xd0RkA25dOPGqXxk9f3rH3Am/bJ6CFtJ7Qn5iiRawvMrEOxQpLm1AexGdC866cCct+x2aYm3wtiWFnJJcQh0T0I9TPEWLCnKqLB5VxqppfZ+aHMch/TjurFTxgw0ex5vuD+D0G/MiEBfpAVv+WYB3/Vh8x076UlOC1116Dj48PRo4cWW75JUuWoGfPnnj++ecREhKCgIAAPPjgg3jiiSfw1Vdf/en2ff4nRN8qUFhYCD8/P4PPlre3N6pUqYLs7GycPn0aGRkZKCwshM1mNMGKiWGbcWpqKqKiolBaWoodO3agU6dO8POTI5xFRUXBy8tLYtoqoAIqoAIqoAIqoAIqoAIq4H8HMjIy/tc0hI8//jiSkpLw5ptvIizMGJxOD76+vggICMDo0aPRr18/AMCKFSvw+uuvw8/PDy+99NKfav9frRELDw9HQUEBXC6XdN/lcqGggDn+5ubmQlWZRqhpU6P9Ld3Lz2dRgAoKCnD16lXTsr6+vqhfvz4v+z+BJk2aSH8hIUyCS5FyHIoVS45uRdtP4nFwghZ+vrJzu0H6BzAJimjbfntLJhWP2ClLu32aaGG8RUkY5Qcbmt2L3xt84KTHgBXULsBycJhJyEXIi7nEpc8AuJP2nieZP5OYnV6kz0wKbdAe3Wjvs3PNTKVvZIKZPitK6rdTdWFeqBbxS13ZxlRbRG0cf1wLnf366VYAWMAPS/162PO4HArXjP7TE5kWkCKGDfaPkfCL0npn25o8h1xa4XUA4BJjh2LF5cHRvB0luQbyVmgmEEQbjfO45l2RvpBJlnPetBmkj5YGTGOgN2XS94dLYLey/2KIeK/ObeFUXYjxs0h19CCOR/rcSISMMTcvdChWngdO/z62fjQHPuvTeM4yKqNsuYqMLzvxcq+cYmPy3B9DDBLuRjMT0e4DTdPVIWUE7moaKdEcvJS1r09aSmOxvo2WR41ojO0+2DBP9/8S5vH7cKosTQPAfMpcHc2l4NRupd+YJpQ0jBSivv6eq4Z6lvAwbLkciuKjeYZ2S9UqBvqpDXJwf+7rMVxb83hLOw+6A8jrhf673ffILOn+2da+qOpdGSV1WK6psw/aUGVTI4OmMnRsGopzjqDmb7J9/fCcnhL9x35sDa+O4aaasio/pWj0+Edwn05xXKg9n2ul0n0zCBmTZqqZNStvfUsLFQ4AKGUa4oTfvgUAnoeNntMaLc5beqZPtOtUXbBs3IGs92NM55Ae6s1n/mEbr3rzMk7VxdNbmK1zlX5Lc/vdOlUXzoyzcR8f0kLo36GIu+4XSfAWfCX8B8spBqic92bW1/sPdwcABK6YBKfqQnafBdK6aPHyxuHX3fsYifBQRjpWtmnA23ikBcuReW60ze0aDwDPZmqh4I9+r0WpzIjUTPmJJtFsnu5bNrDAVSUnTvJ7ZTv3ISvymrTOO1UXqn2/jV83/ExLr1JYVmTaJ7GtwrIihrtnPhrO0oKihM+MR/OlR2CpXYtHhiW8f8yeZ8BD16fs5wzaU6JNjCK4JmGpYewBdj65Y9hYAECjTxKl+noNsrOtdpj+cONSjvtK6XXDGIl49HsXwPyRxWiqDRJro6R7J2SMkq1X6PzhUKxAsvaOHQoz4d/1jGz9IdbV0x+wlkWp7teXWWIFP5GMpu9o+3OdL5Mkn1aviHCpPv2f0HUTw/PRRqZt69YRnV+J+9dETSwt8/rb/v434eWXX8ann36KiRMn4oUXXii3/JUrV2C323HhwgV8+eWXGD58OIYPH47vvvsOw4YNw9SpU3Ho0KE/RcO/mhF7/PHH4e3tjaFDhyIhIQG5ublYs2YNhg0bhkqV2EH2ypUrPGiHr2CmRkBaLyrjqSyVv6Jzwv8rQFRH39esC5q+nYgJR7tIZcRDQPrnnXH53mjD4pQbzRzJ0zpqr9apulB87LhhgXOqLpzs6Q9vaxue8wgARtbIlupKcEP7GP5pvOGZQ2F+ANTGiUc0dX+N5clSecrD5VRdyL5nLrLftvHw91SOrvVtUEho0fxmVZt6sGyQk7yKEBqfgvznNBMOh2LFfQfz+HNl0H7Etu/F8ekX/8YfsYU2LiOTJygtuXCBO8aLIf71Y+xUXUh7dTYyFkVgReuGOPyaljfK3eJP9uURvswp/MLIGF52y8y5vOzmrGDss2kJNIk2sf85jgUAgIAXtUAV9Jew61c4VReC1o810OBQrCiMZQE7+vUdjtjeQw3vA2Dhx8XcPCceYT576so2BnwAkLXUitBJmlZZPADwg+iTmlnJ0ZcYvtGHjqLL44xBKjmjJdJ2KFb8+s1C1Lph/gMAyR2Yk3voeGbKcvXuKAn/nic1IQf5q4n0BD2dzPLLxcimvuL46ekuSc9C0PqxUr6ZvY/O4oyyQ7Gi3tY6UjtRL8hJ0c2AwrHrN3Kn6kKd/ix5NkUapdQMAFCy7xA2PNEFYw8d4d8M1aOkwoRP/44cihUHJhlz7ZCZo7hemI2POE4U4ZCihNbbfRE/hjjhUFgKBrEOoOW1Ipra19AEXw7FiiYDD6Bs5z4DI1DaVWvXqbo4I2T2faUUFsHnUon0rRbGRkp0mwl29L8pqBIA3k+zehRkgcyy0z/vzNfokAd28PL9AmVGixK7U5+CntK+C8IJMFNTqtcoqSZylrfHpSHReCuovSmz4lBYbsb85415ncRrCgzkUKyotyCJ+2jtfkoOiy7iTyksQp2tdeFUXWi+oVTCq2dceF/q1+PMQMgj23jKDhEcCgueQ3j0c5baeCgjHXdVu2J4BgDb3pYDwejf87tB2iG4Se0L0vzSj4875sAMyFzQjGaHooXA7xc7Er5elUzHqtf+u/h9Cogh0uRQrPB/KxHFefkoOXeeRwxt95GcG8uhWCWzT7ENApFxqVnpGv8t9ldkMHruuQzvzTtx7c4oTjetufr3I47fIy26cNoH+UdJ4+NQmPtClU2NDOPlTnDydcuNsGyUozgDQOIHcwxl6Zl3Fdny6eyDRmb/0pBoTnvo+J1wKCyHqNnaSW0TrP15ieGZl48PXqzPDuuUhujXZQuxfZrnfIYV8NfCq6++itdffx1jx47FnDnGOWIG33//PTIyMjBkyBDDsyFDhqC0tBRbtmwxqeke/tWM2G233Ybly5fj4sWL6N+/P1q0aIE777wTPXr0wIABAwAANWvWRNWqzI+o0CRAxbUbjpdUxlNZKk9l/idw7Ngx6S8jIwOAphETtRu50ZfRel48/9iXHNUim4WO384juAHy4uRQrBIes82SoO7CJOT1qS0tHIP9Ywx4/x97fx5f0/X9j+PP5IaY5/EKkZEYr0Qi96Jml1BVSqlSakw6VyeddZ6rrZqVUrRaVW2FQylKEiFcM5klcczzmMhNfn9sa5+9zzn38vr++ulLX++sxyOP3LPP3muvvc+e1tprUFQXO0Te8u0iursHBEnuw7sRspx51HJNMd4UEbgzsrlHQKfVhuCXkuG7VatTUV1Yv3whzx+8/lFex7vBDE/tuclcNx0A3N1UHqdMjGUDAJmfxaLRh/LtxqhqZ/jiempVc7jPnDX0Y9W/6vD2Oa02zAwLRVEfDTcxSGRXIQazJjwdn56Evn2H8xsgffBYkemjTU2kvdfwMahx4KIp8ya6ojfbEMyeCUR8egl8+ix2MKDbmuxXysN9MN1gZ6CoLvhsbAT36dO8fjqQ7uuwVGofABxd3tpjsGhP9DV+l9mZfDekF6oslxl6EUe96eYukgFgy8w5UJ9zGPra08EIuBVfLkWOlaaoLnycm+KxTOjI3Yjxlz2dBQw+gDFHmDdO0UW308qkp2Y0i20MfdrYZvGQITHd/eZK5f02pGFY1fO4p4K5UOXiCHbg6me/1+MBV3zW365RAG5vIPY3AMkLpd/GNOk76OsDgM1ttNs7CuKrqC7uJY7w0/oBAB1ekj0oir+dVhYfrULeBYQu025eaaybgadxZXZzBQA5H9ilb0QORIKmJOOFrH3IiZtnOo7XZMvOBSgUhaK6WLiMW78ttWvBfV4bS1WrXOeB5U/aLyFo2F4e8sO3VXPTw3BxfgEafaDFw7r6QAdun0dAgbIBwH9zA8O+IK4HPlHslvK1oGh8H7QRTqsNswOSsaLAaNsrtv2xjHT4VNOczJxa1RzPNrUbxrd+bIp0hu3w5+W/Dgs3MOm0npnVr2cOiEnx65nnkYnVp224bjHFDQCl9rZca4LozviaaTVMyWLrS4XfUxG8YiJKXAd5nriW3SQ8fj3zAAD9ovog8zOjF0PAKBAEAOtHRhu/IW3TDHSK45UEp4rq4t5w9flK0w7wZ4qvKdqUiTdw9KffX8X/ADAmrzMA5pRDUV2wfpKE611OciFL7tty7DsA3JOlWX9QwHT9GgMA1+7vAL+GDbgHZcpX6xvZs66iulDlx+0anSWyLbR+bTATUCiqC36NrHBabRiU2QulxcUGmpxWGzo9ORH/FnDD9x/7+38Bb775JqZOnYpHHnkE8+bNu+OwVKQR53a7De+Ki4ul/3cK/2pGDGAcaEFBAXbv3o0tW7ZAVVXMmjULBQUF8PPzQ2hoKHcpaaZSSGmkilizZk1UrFjRNG9hYSHOnDljqrb4dwGpbwC3FpqWzE2z02pDdOLTfEHLWMTUWXodulfKTxM7YPAB/pyzrK004ScfZ2UHZjihqC6+SYh54ro9wAPn0sJytuN5aSOcf1HemKdmM0Yj9GntoDrmyFEJt/i/4afsEFDqaCu3GdqGVdKZHT7CHtklLW5nx7IF+c8F8+C02mCpwwKukhv3TXPnSvlDn00x3G44rTbEdXsATqsNm6IW8HTR5fXlzme4q2yCP7/RcOvjslT9wWggXGV5CtasWWZI9/S8sXVlaWNYv2wBSvYc8lrGadUCe2d/aNysCF7P3oX5eVuhqC7Etehi+C5UttnjmpTeabWh6YNMnUNU/aJ3vsNv8jFC754/od0UxGdk8neBQzWVRoLMz7XbvpbTmfSWAoWKULL3MC9L4/L6wBhDPn3biTZShTU7VH2Wm2zoK7Es5XVabXgp+l4D/tvBgmbMKF28taUbGDOaqc7spTZkf8AOpdcHxvB22z6Q1eDof/i38bx89lIbRKC+5Uzosd2oviQF2BCA4qP5PN3sgOCpb7wxvwDg10CTZpsx354YYTPGrKRLO/hd8eF5bnY9biirqC7kvm1HjUXeves5rTZ2gzlZczyU8WUHjuPCKDs//FHwZTOa9Ew6hfoIeikZwesfleij/9+ddqDPfSM991uM7IiFwy0hmNNqQ+K+jVJb0qKW42C8JvgS+3XNuu9ND8OK6pKcL3zx8VdIv0czNKdQIwQU61GELTPnwMffnx/MnVbmcVJs8wdn2DhPOCarYxONX4eF48cty/m7evcdltoAAGPTcwzMlwjTG203vBNpCJ+UihNPGR0y6A/NffsM4yqR3sBptSHnPW2d/SiktWGMEPgk7zHgy75/NnLfsaNrxRLE9RwKRXUhe/BsKQ8x7/p1rPj4CUljgN4BQAOdZpXZ/AIgqUDHdR1syKNnmryBmKcwLpqrS5sxWrdbK9VYtteKTk0AwHcr6wdRiEl4i/ML0GaXj5RGv0Mmp+DsOLshqDcAVFq5HcXHTxhoKuoTbXCzr69T3xaztY3S+Xe7FbIj61wdKKoLeT+2NvSvWYzKMvj74a233sLUqVMxcuRIfPPNNwY39ATHjx/H4cOHJS24Fi3Ymvntt98a8lNadLRxb/cG/3pGDAAsFgtsNhs6d+6MevXq4cSJE9i9eze6dOmCSpUqoXXr1vD390dysnFzTklhC1r79uxmxdfXF5GRkdi9e7fhViw1NRWlpaU87/9rcFptPEaVoroQPnEHXxzJ05dvj3xYU6oaNhQRgobLG8GnDVlZsu8S/whKsnJ5IEn9wYikvcsjGuDVU635uzeCo3B2vCaxBoBhVc/ztpjRqKguXG9Qgf+m9+6ut7xP/SVLnAlqz5e/pfvMWY+LIQdBN5yXO5IJRXWhuq8mda//ZRLqJ2t67KQ6oN/UCuOiTQ+NdBvXZHtlqcydHNgpT5e9mmqOyHgQ9Ivpx5lRoqe8wtTwMkbONN2AFdWFt4IjMbZJJzitNhxNaCl9F0V1IfhFdkNTWlxsoJduT/Q4yR5CtBtZt0iTaJMXRrNvoqguhD6jMe7k9Wp5hHaYIzpyvm/Dfzefy26KyfUv5RP7KWwRY0pybsrBpwFmBykecEQJvAhBv04wpLlPa7HkxHkjbroEfk2byGUF19J0AyOqE+pxBT/kQsYo9j23zJjD63O9ZGQq4zMypSC5out4sW8N0IOp6JJwBwCCV2qSWU9ri9lcBrT1AQBW71KQOS0WF0ba0S/SKeUVx93wwyq+OrqNl1t4iQX/Tp+tzTHfzbsl73p6yPiCMfRNX5NVG/UgxjcT2xL2pHYI2v7BTKxfvhA579mR01c7FFoiwvg3oJum+XmaGsqadd/z39m9vpHqeD17F05PskONvYy1qxbj4ohYaQzmvnNrDKayNf9mT019jPq64GWH9Kx/bwkLlp7FA7XTakPvIaOlvheDdL8cJMdnKphbx7SfCMju2PeWGj/djurd/u+wMdtREpKZ4bo/QL6xqp9cTWrD/PAg07XU0zcW+47yNfhCtl0Sf1NdpG6mL2v23CBVk4hbalQ3rAVi/ibbKxvSm76ajNjnJ8F9MF0qK4KIj7yreqPLfUCzTTHDV9jXqNKYuGkFrg3qIOG73X4laueIa65/4g7U7JchzWXCZ9ZG8sQq5k2f1/6O+kMECneSPq89zkyQzyC15yXjStR1A60i8DRfC8qv3YHAdkwQ77Oxkel4UF9wSOkiXcXdo6TxFddjCK4O1vq3wcBD/GxnqB/413hN/LfaiH399dd444030KRJE/Ts2RNLly7Fd999x//Wr1/P806ZMgURERFITdVCYfTv3x8xMTFITEzEPffcg2nTpmHatGm45557sGbNGgwZMgSRkZFmVXuE/wlGTISSkhI8+eSTcLvd3HNJlSpVcO+992LTpk3Ys0cLWnjlyhXMmzcPYWFhiInRNqHhw4fj2rVrmDNnjoR72rRp8PPz44Hf/k6gyWe2uIqLUs1tLJCs/2btoLqgyV88v9kGrd+0mi3Q1Hb0h1dKW300VVpcxA1r64hPeN5lGzui9eeavVjtudq1vv4Ap/9d2I8dsv6aPlvKq6gunIqU9bb1fUIQ12MIT+vbrLPXvGLd6XOipXbrN56T9ksotbObRFJrEfGdeNphqsrktNrgv3oHejw8FnkdrprScTspo6K6sLlNRX5TeHas3bAxrU5dbWBGqaw3CaT4TAdzM8ml2XP1JUZX1f3T+/K8NysLh5RpSfCJagmf6Nam38ATo+gJFNWFoGF7+XcKfIPRTjdDhEvEF/wS659JgZ04DnKoMKG6ysbBrBh+M3jqMQeiXbK6QfikVJyZaJfGyo3+mi0DOVqgft92Q3aSU5ybJ7XLL0iLP0jp4ePNVeL0B0b9/NGPqZlhoR7He+47Whv0831sOnPCETZql3a4rlEERXXhhax9CFozjucntUxP9KbPjkbI0vP80Oi02hD6dAr6PLcFxSdOms4Dp9WG0dVOYdieR3nasuZWKKoLOfcyVUsxDICnwxi5q6b0gmI5+Cq92/eM8eZIfBYPjfse+RKROx/kz+5DGbxMyX52c0OCDU+HR4KOFXylgOLVl6Sg1ZcJWJi3FU6rDUce1RwMtJiZIMXKozppzvr4+xvWbKfVBndGtpTfabXxw7eiuuCzTWsfqRq2TB7B8TgDBJfxgu2k2bgiu+PEw1sAALtfZv06P28rji5vLd0y076l72s9/ZQmhr7Ql9HvR2ZrnlnfEZwfbTfMJRGImRXpEoGeq2zWxoI7vInp2KYwH3kdrhrcul9+MBa1dsjOZCTwtUBRXfj1aiX2vW7tN2fH23H612aI66WdQ1p9mXBHwhL/NTsM751WGyr9zG4Ujz+r2QwGrZrABCC3TDHEMbXsUgv+3HyutgZT2hOBHeG02rhdNgBkfczWoNg9N3la4paVaLPLR/r2OXHzoD7nQM77dmn8Oa02HrhcbNeVIR347+FRqagzx7gvhj682zBHxfZQ+BOlgKlskhpoafdjUl7K/33CpwAgqYjmv8q+L6lbv5C1D2/n7EDihh9RbpImnJDG460QFyTYAfCvcdbxbwXyep6Xl4dHHnkEI0eOlP7effddr+UtFgv++OMPTJkyBadOncKLL76Il156CefPn8eHH36IpUuXei1vBv/qgM5XrlxBTEwM7r//fgQFBeHixYtYtmwZ0tLS8O677+Lll1/meTMzMxETE4Ny5crhmWeeQbVq1TB37lzs27cPq1evhtOpSWuLiorgcDiwZ88ePPnkk4iIiEBiYiJWrlyJV199FW+//fbf1gYKjtcV98HPpxzSZ8YgPJ5x34rqwtPH2+NQlKxvSovSpeGxqLYsBUV9olF+LYuD5DzUH+hRgKylNgTN9OE3SvqNDgCazY9HdI9DcP3aAo0+0Lz++G9ugMIuJ1B7W00sDfoTwK1D1owYhCekwhtYmoUi8c+fPB6wxfRTjzuw+2VjwGBx8ytY0VJS1/SUT3z2bRvBDZW9gbgQlzraIue+Sgh+MdmQR7/Z898xrYFUQXoV28bgkQlg9lbhk1K1zaR2LYNqkTcaPUlwFdWFZgvicWTMTMS16WG4FbwdbjPIfduOI2NnImjNOB5o2xPT5O276Z/p9/nRdtRcmHzHOMyg894bzCmJjw9QWsrL3Ogfgwq/C+NTF8D71KrmXO3JJ7o11q5ajN4PPAKfJE04gw0B/IaIgL6fGRT2i4b/atnxCGDe78d+bolGgw5Ibcx/1YGDCZ6DFgNA+pxodG1zmKvtiOCpv1YWpPJbBoAxUG3KVzCOYbBDfWlhIU487UCDafKtmV/DBsgZG4zG7yTxueitjWb0Ud6Mrzsg7LHtUv0UOJmCKt9p+wiKu0fBb2Ma3N0iuce6rI/t3KmEb9WqWHPkL47D3TUSlk27OF3B6x/lzjIurQlBctsV/BuIge/FeXWtpAiVfMvzw9Oadd97Hcc579ulm0rbbjmGEeGOa9eb3y6b9QNgLuDylJfyE9zs3R7l1u30mkefTkFrzQRWd7LGK6oLz59ohyfq/IXxTTp5HONm7dSnm9VH66novOd2jBoFj9avrf3T++Jm1+Pwa2TFwTcaIeK1o0jcve6Ox3mzb+I5Mw0A751pxu0b/RpZeTxPb+3St01RXYjYNhJNhuzDZ7nJeLapdtuz7lo59K508z8aC+L5wlsZs3XCW55RR++RmGdv3wsArg3qgEo/y2p4YhlLeAgSN62Qvp/6gkOytbsdiPguPRSLaks1QU2Hl+JxyuFGzgCmZTA2PQcLBvVFxRlnDZ5WRTx+DepzgdKrp1pj19Bw7iHRbA6IY6zr+PHwX73D0HfNt47kKvuK6sKlyyWoGZ591wd0fnLrff9YQOcvO929Aa7/DvhXM2JFRUV45JFHkJKSguPHj6NSpUqIjo7Gs88+KzFWBIcOHcJLL72EzZs3o6ioCJGRkXjzzTfRs2dPQ94LFy7g1Vdfxc8//4yzZ88iJCQECQkJeOyxx+7YqO9OQM+IedrQCO7kvdPK7LXeCDZ6RhJxOK025P3Ymqs/muHU17ckfxtGNO5oyOO02nDiKQf2vDgDB4quSxsGAIRtGo2Mrgs9SjCdVhvyX3Gg8btJUjk9PcdecqDCmVLuWU0Plx+MRdLns7z2XdyROK4i5lOuPEpvFpn2jRmItGctaSc5ywCAfpFOFJ84CYC5SiZbFbFc9od2ZIycyZnGNWuW8XfnH7Ej9X32LiClCgpirxjKm9EiPtP/05PsqDsr2esG4andd8IQEQw4eBa/tqhtyjSKuEUaRhwuwKhqZ0zr80aLorow7XxTPF0z13Szux0jaPbODMT3p+Pt2PXazNuWn3F0K0LKVTEIPMR82R/ZEfxCskRzi5kJBjf5t6PrTugXD4L68r5tI5jN3a3lX1Fd6BMYg9KbRZh1dCsmBXYy1EHMUvYHdmSMkr3PEROsPxRnfN0B2ffP5nmfyTyEz0MjoKjsBru0eVOsXbWYv492ubkqm0hz7yGjse7HhQj/Nh5BU7Qx3WXiBFT4zXiwVFQXgtc/iuxe3/AyvP2N2mHAgTP4tUVtr31slia+y/wsFqHPptzRwZXg12M7JI93iupC78GPwCd5jyFv7J6bmFr3APrF9ENxgWaz3HnvDbxaR7aX9Fbn9YExqPiL1keU//hkBy43u4mc/nMlXHq8ZmlX1gZDabWUh+Ew6ysACNlRAWvS2ngUZJyeZMeu1+Wx5A2fp7ZeG9QBlX9Nw8kJMdyduxmekI1jEPqwubq7Ge6a22rhfMdz/H34ongEvZQMv8DGPCA7Qcb0DrBuArZ+Odvj+EmfG43w8Ttu+83UFxywfqQxi2d+C0ede9MlfKHLJiFkcgoyFkZxR1D/KRN1u364OrgDKq/QhCd97h1h8AJoVh7wfn4R34kCXjq3ZHzZQVIVDtvhj4zoQhT3iOKBssXxGb4wHkEvJ5ueTwhEYY1z/yU8WyubM7m+bZpzG2RFdSFiTgIOTWACMjNBnCU0SArnIT4TXVkf21E11wf1vvY8Hs32lB+P7PpXMGKPb73/H2PEpndaedf2x98B/2rVxPLly2PZsmXIycnBjRs3cO7cOSiKYsqEAUBERARWrVqFCxcu4Nq1a9i6daspEwYANWrUwPTp06GqKgoLC3Hw4EE8/vjjfysTpgeaiPQnegSsvKUu/03vz47TDEpXFrCFIuSHSVBUF2fCFNXF/8iglXAAkPSUzQ7OwT9O4vUBQB2LHONHhAZfMMP9Z5vapQXXabUh+CFt0ek54lFD2fyfWnEmTE+PT/tWPG3/kzM4E0bG9b8eYzcSzv2XUPWHFIR8Pwl5b3r25ubupnL6iAnT00tpiupCxtdMv/uVbG3hz3/VgcxumoMPKrd6l8LTyFWyoroQlaa5fs8YOZOrAJETDkV1Idrl1rzo+figIPYKp0FPk9g/eqB0YsKItsidTJWFQgcQvprbaiHo1wloPs/oaU6sTwRKU1QXvvrxXl7myczDHmnt9MREOK025L5tx5LmAeg+ehzH1yLpYf67b9xDhtANIp41LWvw9C57r0sHRNGLG7ltpnLpc2RbLLN2mUHdmRrTr/8eANAqjS2jCYFMRY3GHvU71RO75ybCv2QqL0HKWI6HmDBv9CiqC7k/yK7InfsvGcqIz8SEZSyKNBymS/YcQu73rVHaUcNXerMIxT2iuCrnPfGyfRzdWAW/JHt6VFQXv4l0nz2HxzK0A2PYY9ulOfV5aASvb82Rv3BkbEX+DADv1NuHS8Nj4RfYGHlvaHN43Y9MiEMMldNqQ5/AGJxp5eex38Ie2YVOT0yUGDen1YYTK5sbmDB6nz43mjvcENPFfuf1+YL3H+W9nfDi20uBPC/l1zNhhJ9CMIhMmKK68FebClKf6kHfH2RHmbVUbkPDT5OQ0192amR2iA9eMdHwvS9saYAqvkx9PP9Vea0V82ZF30DOgDlQVBePWSlC3VnJ6Bcdd0dM2LGX5NhlYlsr/bwdaNsM7zz7jdc5EfrwblxZy1QPTyUY9wh9WWLCqF2W6z7IWdaWM2HiOhj2+HYDE6YfPzn95hoYXL9Gtxz4xGo2sPqbH5EJI8gcPovVK8Rj7PboLTsyX+bFkVQjCe+Mo1u9MkhUJz0TEwYAEbMSTF2xm5U3q4McYOjLhyekck+VLzzL9iCRCct5z47pjdhzny828XSKPxr84yQemoWYMLN9y/KndhP+bK1stP4sgZ9/iAkj+iq0O8fpJG2WD3O248QvTIiUuGWlhDtxy0pDfSHPJ6Ph9xpe/bg9fkt1OusT2fa6TDXx/x78qxmx/yVwd25rWLz+XKAZif8cygwIaZFUVBd2vjUTOR+wxW1o5n0AgKwHZ0l5xAPE3kjN65YexLRXT7Xm3vOyh2heAfWLLtkAiGU/y5Vdv5oBSaVEOOj4jv/Wxw0hd9crC1KlTcK/4TUoqgv+Pkwq82wtZh8R+mwK6qUZ3YfqDxw37o2Rns/8Fm5YTJ1WG8Ie247wRfG4p4KWVrHDGVPdeIAxhuJzXMtuho1UKdCketSH79QT7AQFD2n6w5GeYRY3+4yvNH15SqPAsbvas6DNH69n8Zx8otmCf77jOYRPSkXg6+a3jH0GPCw9X78vBnFtevB6yV4LAPpVkmPOOK02fHwuBAB4/LOmryUjY1EkKkzRVHUaP7Cf4ytxHZTs6wif2TPFYmnxNfsW5NVRUV3w63hO+g4RL2YacJgd4vN/anVbJlcstz9Ktgtr8maS4ZsB7GBNh+rM3rKbeX0bFdWFvgcuSO/IcyXBs7WyDUxvq5QREg5FdSFs1C4E/zhJrmv/JTR9cC/W/bhQykvSZgA41lXeHvQHCU+HYjHAvPiewlWI5cufYQfGs+M1d+/VlqVgdfJvUhwzqosOLQATogS8nyTRoaen8ortuDaog5SnwcBDPH6ZorqQ8VUHfH2BMQnh43egZP9hU4ZbpDvjqw4IfTqFM4hiXvKGacYQrIhgTkgobp/ojhtgjKC+X4mxPzveGJCd+kYEEkgcfeuWB9S/RrE6H3LxuGfivgCABxHWM+w+fn4Ie0I7FHcdyw76Ae9pY3zthI94WVEQIuJyWm0oPppv2ierdyTyZ3HMi32qqC5JfR5gcdSkfSLtAD56ehSazWeH+bm3nKjo21p9OPNGWG+G7PilX8f7biugaTI1CUHD98AmXKrp91kAmJYr477Zuz18orSYbIrq4g5xePtT9qJvWEcJjx78AhtL+4Ce3vJrb6lJ33KxfqjjYom+kHJVOM1U7vt8o+dT3sfhITzt0CRj0GP92NcD1aOoLoT8eEUKQyPW03QpExJvmTEHlpo1JW+4wa8zJ2VZS21YuMTJ8YY9zsblwntlz8Vi/5itWVSv9RO2b/U/cJ6/J9gd/b1hTXkxqAPK+7kNe7C+PrEvRO0AEZxWG0bfUtUNeS5FwvVvAXepzz/2978OZYxYGZRBGZRBGZRBGZRBGZRBGZTBPwxljNhdApa/9kgSGPpdblNDg2SGYoc5rTYEvcRupX4PX8PdqdO71dcqGKSK3oDe77BZEPBnMS/r7hppkMIBwAudhxgkYWQbdnqSeRwO8jiX+0MbXqfTaoNz4Eje7utdTuLYSw4eBJfy3R8QI7WhyZB9aJs6HABTuxFp8WQ3IubZPFv2ipkWtdxUTQcA0kfJNkJ17k1H4Bua1LP76HEc/4BG0VI/UTwYALDUruVRejYww8ljF5lJ+PXPehyK6kLYE9sNZdLa+Ur5WpZn6mBrVy02lfiLf06rjd9IEt6Kq1INwa+zPo01tOfocnbj9kerqhK9ANAlPAOJzRI1WjcEeL2ForhiIm0A0GnvIABA43eTDH1DjjkIxAC4Zjc59L+oyI97+1qcv83QLrM+I0m+orqQ96bmecxTm+IaRZpKbUU6SAVT/55UqsxwUwBevdQ27KkURL8aD59yzMmE0qqaQUKsXyeyHpQlzeL7X69WktYEPT0izfEZ7Cay4afsG5GXQIC58AY0b6tmN1FdJk5AYV82p0TpsV+D+ob2m32nv6bPhl9QoPTOb2MaivownGFPbMdjNTR7H6q/xcxbt6yb6xtwhj2xHRdHxBrafPIJzZtq1k3Na6NfQCOpX7J6LEDWzSvc1T5wy1bGxH7o0IQZUh8B2g0woIWVEPu84irthptuUs9MtCMqKA9mQFoF+u9ZsLyZNOf817DbiUsPaTeTTfzYLUu/Dv1RcZXmaMpsfFKaz8ZGhvoAbcxnfhbrtTygzWex3ZvnzOF9SnSJ64VfcFNpHRChOOeooQ49fgCI2l0CVzvgxFMOw5whiCjPPB32GjoaAFBu3U4eAJnqIMc1Yn0lV68a8Ikqne9u+slAn0iDb5vmhne0xpjd3AFATQubyzYT0znREcWoo/cg7w2HhI9wmp0t9DeixztVNcQD5eecW05knFYbEg/8Kdk0lt4KjhvykAs36pcg87t2DIePDxTVhXeDtfYTvuwPZDVIRWU2sGKdmdNiYalbF7+3rAlFdUnepPV9RL9r9U83tA2AZCYiAqlpe5sP4q2jp/3iboR/q/v6uxH+1c46/heADB/PpwejWlXGF4uLh35iWqpVg/uS7NqXnGQ4rTac/rUZKpa/iW1tfkbE7AQ0mWpuKFo3qQZOOy7gmcxD6FOp0LgA3PJIR3SIdHmizVO6oroQ+8IkVP9Odi+tN0K31KgO94WLpvR6g9x37Wj6SjIQ0xrHuldFow/uzPGBSF/U1HjUmZ2MUkdbrPuJBeXz1D6ABcctKQdD/+qNjC8Pi0XSZ7M4vtO/NkPdAUdM+4k88Imbm9Nqw9GpDhweb/QuaQaWls3gPiDjvx1TYNbG0GWTkDmcqbnOOroVQeWqoNPeQajcJ1vKWzDFgcCfTsCdkc3rLFofiD9brjKtU0+LorrQN9SBkmvXYGkRDvdB843r7ZwdeC3IGCRR9MSnB723SrEuPT0LL9XD6Gqaxzr9HKy4uT6udzkp4b//4GlcLqnAGU0C9XkHrB8n4fhkBxp+Ko+PzGmxPOA54X4y8zC+DNUOUKJBOoElLJi7JjcDfX/d6fzUj5Pbee7zNIZED6vXSopgW/QU0kfLThgoDz37tmoOn+OnPKrv+FatipLLzFPklaGxqLI8xUBDqb0tfJL3wLdCBVzu3xaVf9IEER2fmogqP3oOkEq4bvaMwsZF8037xSe6NUp3aCrDcT2HorS8H4+/JZZ5LycVw5Y/xT2vZnzVwSAYsX2QgPpfGtcnszlKHiHJEYCn/h966ATGVj/hdX6T4x5PfeCJBrO86fPbS7HVxLVqeUEyhgbYUXlLXfwcut50/psJoQAYvJ5mTO/A1c/E/Po19sa9MZJQTcRL9Hhqs6c0T3nsz01C8idsPY98Kx67XtcEdIV9o+G/Zgfm5m3F+CadvOIyA7+gQBTnHJXyk4fHS2tCUK1v1m3bYQbkgfCN0y2R0tboXEHCE9sGys+L+Dci5yQijTeC6sBvY5o2R6JactuxU487UG96Ei6MtKPGYu9B1c36HDCuvWb5rpUUwfnkEyiu4IOiqj6oM9t7XbcDcZx4Gx/0f/hhFaOrnTLMHbG/RM+1TbZXRl6HqwY8YpsL+0Zj0/y56NGwJTbh7vUSSGfWiVsG/2POOmbfs+Ku7Y+/A8puxO4SuD+8tSS9AmCY5AA4EyamUaBKRXWhQdXL2NbmZzitNjSZmoSClx1SXvp92nEBADOeN5NoKcdkb4DSO91C9WGOtil6kvqkfDRLChjrtBqN0PVMWNH6QOgh+0MtHlLhuqZQVBdjwgAgdR/2PzmD46ubVEMqa6lZ04CPIO0NdmgkV+YDMvpIbb/Zu73UvqaL81AUpgVdJprogPBYRjoyFkUi6bNZiOs5lJerO+AIx6PvW3KDHrJ8Eg9KCTAbrDtloiig538qWSNa6NuGTE7hNPZZ/DycVhsq98mWpI4AEPB+EkrVk1Kdf7ZcZRjLhNs+eZKBNmKMiAnT05SxKNKUCQOAGvuNdkxUrvpBPy1I7i36Sq5dM7QVYHGrAOBQ0TXTb6NnwgBgUo1j+KNVVZ7Xtyr7bf2YzUe6ASInCQAQ+nQKt90hILs6n/atoKguySsY/SdG12wuUzvoNjXrU+02wRIRZshHcZIU1YWw72QHLe6TpyRpt74uM8hYGIULY7Sb3oey7kXQy8yhR9sPE/iN0tmO5zldue/aUbL/MNxnz+HiiFg8k8nCTdAtl6K6sObIX/x3leVa0G+ACS0AwCeZaRKU3LiBrV9q3hmdVhuq/LgdBStawtIs1LQd9J3L/ZEmjUmxv8JnHubPD+d2hftgOkpcB6X20/so//KovU+TaxITJo6/+tNlxszSLBTpM+VgxiWdmR3Xhu/ms29/yxubOC4zp7EbqcGHTvHg54rqwtlxdtPvpmfCzJgu6jd9nuI/WFDyoMRxSDy2C+Fjd/J8/aL6SHh+uswCL1+95zRPM3OKAQDHf4mQniv8nopLa0J43dmDZvPf1D5aY8U2VvgtFYMye5muOeLhWmyn+Nx931XDXvvLVXablvGF7BWSXKA7rTbUncXG+JmJrI5N85nd55BXnseZCXb4bGyEM7+FI2yxNseOPyvbSYqQO6wREo/J9tMB77O1RM+EAUCXCSzOl5kTFLEOd3oWYp+fhKl1D0hjm0Bqe8peabyKTBjAbg2zh1r4N7l2fweUph3gN3/1pjN6ayyWvfVW3FyfByPXjz31Bdm5kZ4u/X4R13UwWq18AmpnHyR/MoszYTSPzPpA32YAeDJT05gYGmDn9o2emEO+H33dge8X+n5MHzWTp4nhQ8yYMD3QbfO/BUpLfVHyD/yVlv7vsyllN2L/ZdC7r5fe6aRgdZNq4Lumm0wld4rqwt6iG4h/4WkuOe7bdzhK9hyCJTwE7vSsO5IE6sFMYtrzoUdh2bRLSvNEkzfpuwhm6f2i+mB12lrcEz8BW2bOMaWdyiqqCwXFVzBWkESOOXIUC5ppXsrEOo4XX+HGsnr6vbXfabWhpEs7+G7ejVeyNbUIgEmwr9cth6o/aEFvJ6RnY054MHz8/FBaXAxLRBjg4wP3wXSPfX87mnwrVMCabDmwLuWdn7dV6gM9Lp/2rQB3Ka4EV0HlFdtN22d2aNF/x/DNjyBo+B7pXdansQiZnIJfj+3AOXchGt5SDRLLkntz/bdzWm2S5F/fLjPhhKexHLKjAkbUTsJbwZGGd2b5Pb3/T+F2dZRsaIyTiY0Nt2RmZT3NFU95xLR+He/jalbpc6IRPoHdstKttLdxR+nkZv9O2+yN/nO/h3OVHn3ZRZfqYEnzAK+0EPg1bcIDZFOd7XYMM6ig3g4PpQPyeIpKGyqpJ+vL6m9s6L3+BsSnXUusXb2E09i3zzDJK1tJ53a4HOjPNQQAIP81hyGEgb5vvY1RT3mqb62Ni53OSunkel2f18ffH2tzthu+Y1yPIUjc8KMBvyd6aK3T5ynqE40/v5lrwA8Y1xlva6D4juJRDT10AssjGuDiw7H4+u0vEeVf/j+a2572I3oX9OsERHx6Rrr5B5hgMPjFZEzJ2ov3Q9pIZcQ4XxT7kNyr573p4O7R74RGaiflE8OciHXebpzcSR8EKWPR/POruB5QlavZivjTZ8Wg2hE/7Hledt7x/6VuRXXhoZxuONuRqYuK7vL19QIsBl85Hy3Exe3qzlnWlu9TANCnSXuszduJuK6DDXHKPNVJv8UbekoPXjcW2b3no+PTk/i5S4wL9v8Fiktv/ituxCZsHoLy/8CNWNGVm5jT5ce7tj/+DvjfZzX/JbAyXZu4RX2YtDe57QouBQSA75pu4nnEBYhsLsa//gwuNdXUGymo8aXWdXB1cAdpsaFo9E4riycj1uPuFmm6EZLESgyIGpQ4znThVZ9zGNL7NGmPJzMPS+5a9VIwMb34OLMLqriKeUusn6xNQkv9ejxfQAqL3UQMCHkDHFb1vGGhpkV1dJNOuDKkg6Fuv+CmvMyJpx3cBg0Acm7ZfPhu3g1FlZkwRXXBb2Makj7X7GoW52/DnPBgKKoLpcXM5i5zZB18nPgthh9W0c9+L69LlBbOv9hA2uBu9oyCorr4bSAxYdT+ruPHo2QDk4res2qyVybXcvYySncfQOUV2+FbubJXCSRnsARbF0p/oPlu3peZ05h9WOZw1nZ/n3IYfetbEI5Se1vkvGfnamhEu0gruQTWjwn1OaNNlL4spV0ZGous6BsGJkwE8t53J4cgcV7cDpxWpl6iTyOYHLgO1i9SbyvB1pfTfw+RHrI9EtNJvQkAwifswPWBMXBabfzg76mtYp8SE6aoLiwvML9NoTLkuVWPi/KKdhX6skuaB8BSt65UVmIaAhpp7crNk3A7rcwOkN57+05jjhxFyYbGUv/q+6HOvem8D0o7yu8V1YXNc2SbUnqvV0Nbu3qJlEdkwgDA96/d/FsMOHgWABA0z6h2ajYfxTZeu7+DxzIEIhNG/bw6+TcpD+EsLdRU1H3bamEG3IcyJBp8/PxM6wKY5oDIhIlQfq1R4u9NIEDvyPuhWbm/ps9mYzSiAc6Ot6P6dyl4OSjmtmuFCOU2NUTErARe53n3NcDXIpUPn5TKVYPFeZ4xkmlSEBMmjq9PQ1tyHH+1YS53KfxLkzeN8TJFGhXVhcmZmk3Z9drMzrdfdBwAaGFOoM0reu79wCModbSV8NFNoycQ+9y3XAnWrP0em+bNlbRYACBzcTuET0pFg8+NoWaq/lXHMGf0c9NszT7b8TwTUAKodui8oax98iSe39WO2bB7E06JEDR8D8/jtNpQWlzMxnR6Fjv7/BLhkQlTVBcurQnh74kJozr6OQYgbHQall+pjuOdtfuMwKH7+E1qxtcdDO3R06n/LZ4F72Zww+cf+/tfh7Ibsf8yeLsRA8wlt3E9hxrUuAjOTLCjzhw5YOztJFWK6kLM7iGo2S/DtG6xfkp3Wm3ovu8qXqydYZoHYDYhJOkyq9MTPWRHo6gujM3rhPlNtvI2DM3ugYudzpqW0wNJEc3a4hPdGmtXLebBVHN/aIOmD+7F1Qc6oPJP5nYlYl8SnjuREHvCEb1rKPyW1EK1ZSnwa1Afj2xJwdAqF+G02pD9oR2Vml1Ag4GHTPHWT66Gk/ZL0juy+/NGc6cnJ/L20Tsff3+UFhYCYDdqAbqbLJ+NjVDa/RgU1YUOL8ZLuv+OPUVIalselj+tOHywscFeS1Fd6HO4H0q7MzXUE79EYE+MFsBaDEbqrZ/N3otgZjsJMIFDlR+3S4FjAbaJircrZmAmwZfadd9IlO7Yh+77rmJja8/x9Ty1TcRb8LIDAe8xVUYxIPrtyovjmoIbe+s3EfRzuteDY7D+hwVwWm2GuXu7byLiF+krcrZHeWWnty4xzCE9feJ78ZYbAHyiWkpOEO4UzGhVVBfiWnaTnEDcydi7k7rM+o6C++rz0Pvhh1WuAqWnO3RJPEKeZ/PQEhaMow80QMD7TBX9wOMzJFy+rZqjZP9hqR4z8GscgOL8AkbbgiiEjzGfl57ozfnAjvRRM/FwblecdlxA+rz2CB/n/dt766v5FxvgiyPdsFdYL8zg5BMOuKawNutvpszarKjajb63fFJ6o3ZQju2+4/W98pa6uHrPaZ4GyHPmyczD6FfphpR2fWAMzrbww4HHZ6D19odgvf8gjv3ckjvguZOxZ6lfT7LxNAs87bWdt9L1Nqm+lSpJtrX6/OR8hdZ5/u6WrblZH5jRcf4RO2p+e2fnF79GVqzekWi6DxN4W6dE8LSXx+65iZS25Tyue5ZmoXAf0cKiZH9oh99VHxyaNMMU753Av+VGbOzmof/Yjdj8Lsvv2v74O6CMEfsvgxkjJk7cpqkVMTtAi83laVLrVR3MgMpefDhWUosxywMwafT15g1Q7g+2Ifs1sqL4mGrIZ7YIelrYTj7hQP2vkkw3R1IzUlTmLGJYj21cBUGEE087sOeFGQhKHOdxo1dUF9Ze8+cBZD0tpKUdbfDZ5jLtVzGNDtv/CbPl6ZmADLEB5tEs7Y2Zpn16Ozxi+8Q2WurWhfv0abi7RuKPpd/IzHzzeyTG5cnMw/j63nu5CtKd1KfPd3FELKovSYFvq+ZYs+57OK0sNlta1HKp7O0O9GT07g3MaMtYFImwUbtM32UttSHkIdcdMQYEUbtLkNZOVhrwtbXAmsSlHsd+rwfHwPev3dI7PT0eHeToIPPzWO650Gm1odTRltswmoEnRiv7AzuCXzLG/BNhYd5WjG7Siavd6vGuvlZBcihiBqTOSPUQc3w7AYYInpySUNm4Xg8icf0PpmX17SztaMPZVhW5/adZvZ4YstsdVD2B2QGy7YcJ2PMiO5j1fuARj9/wP5nz3ubP7egbn9/REKeP6sn5vg2Chu011FvYLxpFVSyo+kPKbfsJ0BgCdWUL7OuwlNN6p2sKweL8bRh5K0ivyHR7wnNujB11t5+VnP54q/tO+jHvdQd8i1nsNH3deschisocSZB90JW1wdxmW18vCYPMQE+XnnZyIuNtPN9JO836RK+CJ+Z9+WQbw5pI77qOH49Nc+d67OvcH9rgSOdFADShEachIAoocUNRXegxciw2LJ7Py825aMWqXu1w6L36PKj8iMMFpirNgOakyVO7FdWF8+5rqGlhni1z3rfzoO93Mp9EYQfA4oYOaCRrQng6E3miSYR/CyM2ZtNQlK9S/v95fUVXirCg6/82I1ammngXAgXLPfmkA7kx1+G02uC02rjr6Y9zZe+D+a85UOugFlQ27w0HMr9rB0V1SX808clORMSR94bRiLi44BhnwhSVBd683Qah/60/HNb/KslQHgCCf5zEbT2cVuYsgpiwbJ3qU4Npt5xXFBuH79mxmtvaPpUKTekS205MmP4dAEw735Q/080f4VFfkNU5AeDU4w6vTJiiunDmt3D8emwHhh46gYD3k7jL4Dqzk6Vyy69U93iwpmC0ue/KXp7EejK+jYT7NJPI/rH0GwT9OkFqHx2QCb4MbS6pIOn7zFKnttRv4rvIt5gxeqmvDwqmOFCy/zB/T+pewSsmSjQSfkVlamAi6Jmwoj7RhvFKgWVF+LnzTE6bT1RLrl4FMNfHiurC6vkzcHWwUaVLxA0wpxHigaMwjtHQ6ptDDL+/v6GPnFYbKr+jIvM7Y9BcETc5yNHXCTCX/5QW+kyK1Gf6A/ypVc2hqMbAzyKUOtqiV4/d/B2pwMKHqXtcGRoLv6BArkpKTJiesffEhFG+yw/GcnVGoiHx8Bbt2UdWLzFr//f5SUifUN/QJ36BjdGvQ384rTa4DxwxXVcAIFhwLEBzm4QbfYM1dWg9bLkBhOyoIH0vM9DXK6oGepqrTquNO1MC2Dc0W2/0//UgurgmvE6rDZmfa84klhckm+LJf1V22ESOAwDg0nCmVkyBhNPvWQSfctrhivJtmjsXVX9IQcEUh6GfKNSDWIacvlT+qZph3pu18cJIO8IWxSP9m/bSukpMGACs/U1W+fStUMGA60rcFc6ELcnfxuu21KyJkOWaipt+fIvpE9JlQcChSTP4bTVB9a21AYAzYeK+eO/hBwCwNaRKH3NPp06rjd/Iiw489KDfuwnWrlqMAQfPymu0EBpFj6P53AQJH/02G+siE0ZOdCivuCYSns9y2d7lv5qpnpZ0Zu7lL4yS9+2mD+5F0Cq2D4nhZVrMSIBSwM4ZEbMTsGHxfN4Op9WGFRH1UFxwjDNhAAxMmLurpkKZM2CO9D3EeUvt6Lh9As8fNCUZRc72hn4QQTSLICbMx88PiuriTBg50NGDngb9M9Hvae6Xwf8+lDFidxHkv8IWZPcZpnrnemmG9L70ZhEA4Pmm8qHiYPwMVFmewp+bTE1C+CeFWHetnLSgEfhsbASn1YZTj2mb6qGJM7xKavSbr54JESGtsMhQrsvECaZ56b3vTXaDc6N/DEYdyYflT6vXOgCg/l/a8L38YCxapfmi9nztMKZvh/5g7I1pnJu3FWta1eRtDVo9XmJqax+4aejXWgcLpf4RgZ7r3JuO7y41xrcvDYCiuvBhfZehnYrqwvzwIJn+DQH8nd9Gtmk1jc1H+oIoOK3sllNsywvRilQ/SQjp/YmnPcfAoTSRrmMjmnmUspJHthqLk/kNnz5P9uDZsNSobhhjTiu7kSQ49bjsWQvQbEtqb6vJy5GHMjGvzd8fLb9iB461vy1ByZ5DyFgYxfM4rTbcHxBjMAYX+0VRXbgwyo7iEyclGjbNY5LevZFMgYBUOfVwvctJ+ByvYPpO3y6xToLAofvM599+o7fUevcdRq9D9+LpmrlS3wBAqy9YP/gk7cGMRilYmLcViurSDpS3FCG2TZuF3E+qSHjT50SbMjuK6kLIjgrSM+UTbSNN15HSUsN4s9SuJeEf1tiBzBEzDe0vPprPVeaIkXRabTjxlMZgeGOEFNWFyuuZum36rBhDvnsqAFnRNyQ84vj3dGivtHI7sj6248xEu0fmkHBtuG4xzWPG/JnVR/GcyAsm5aEbU0V1obpvRcy/2MCAr/E7SejTbwRPL1ofyGmptoztGxS/ymm18X3GjD6a3+dXhyH/Fdb/1XM0IaA4JgCg+hJzp0JiOxXVhe0fzkTwS8l4wMY8WA7McPJ8XfZex6WHjHHF1mQz2i+MtPNx0WSIZl8zonFHTfB0/jxXdyc6Mj+TD870bnCVS6bfUuyL5cEbpDIibX492S0XrSGe5hKVa/iZtmaS51Nx39aXH3OEOeL5tUVtnjY/byvcZ8+hYEVLU2bLLPyJHq9fUCBK7bJtGQkzY16WY2yJbX62qZ3bfX+cm8I1Amoskj0nKqoLFVU/dHhRw3VtUAc0fieJ03JoouzABGBhbcz6DgD3EkrOw0S6xLxOqw3qyhY8vfED+3k+v+Cm+HPBPHR6YiIAoP8BY7zJRYFb+DOVI3szAgpLoqdBTzM9h3+r9UO5CzcMZe52+Cc8JtLf/zr877ewDMqgDMqgDMqgDMqgDMqgDMrgLoMyRuwugsbvMml1yYbGplfqAOBbubL0DJirABb0rIFPQ1saJFKAZlBb7+sknPhF845FfxnTZdUtM6mf/jZIlG5H+Zc30Cjqg4t4fz/GbndCnkuB+/RpbJ4zByOqnkVis0ReR/BL5m60SdpKEvn9USWm+QBwdTGAGdiKUjdR0kl9Ob5JJx5vCQDCx++Q8m2aq93IEByN0wxXzSTd9Hts9RPcE6Q+36nHzW+qlIjfDfjQowDhY1hgTb1b8pWtGkj16r9hpVMlUh2K6oJfUxYvqGBFS8ONgqheZXajqAeKByWWcV+46FEiTrD7ZXYLfK2kCCJkfRLLnUeozzs83i6QxJ7qMXMEQnDuUbsh3Wm1ocYi2SZTUV3o16E/y3NLxU6UOotxqgAg5HlNEkxziegJWjvOQIfTasMr2S7MvXVrRV4/RdqeraV5bKOyfsFNUX40u2miYMr0XfY/NQOnVjXnZUY36ST1PanyhGwYgwP2JdKYC5+wg6nqDRol0eC02pC0WI4FaAaebnfEd4rqgvvsOTitNlhTqspjXXXhZk92k6l/J9rpNPgiCe3eTTClgcoUOdvDabXhp5A/8F5OKg/wTaqlRBPd9OnHtnPgSI/tVFQXMkfMlILJ9u0zDADzPCvi/yiEfdMBGX0M/fN6tizNN5Om05ggG87W2x/ibZx/y2uu02rD8gg270/Hy/GzSndrDk3K92I3Ki2/SvB4UyP+NrsdqtkvA0175sJptaHKchayQgT9Gkb/c9+2I2LbSABAvw79DXl/SmFqXn6+zF7o2v0dsLlNRVxtYFSJo2+1/cOZ0rgAwDUECDep3ovzJ/RZdqPm11C7RdTfQnmKPem0Mtf5evCtVMmQT1FdGJDRR6Lf0xzx3cp+i7EGiXZac3ZcCTKUJ4/BAYMPwNmoHRzPTpLaT//bpg73eFtTnHMUPsmy+nObT9n8qrkwWcpradkMXfZex9UHWB+EPMf24uebxpre6CqqC45nJ6Hx20mSsydypkV59fulorL4op5upXe+NVNap3OWtQUA9A01fu99HZYa+k1RXVi99Rc4rTYezmVtb83bpdPK3PXr+1E/T8gkQn+LnvOeZioh1t3n3hFIf0RzHpX5gqYO7NNOjq9XBv/7UMaI3SWQ94oWTHB9hOZeWH8gXpOxTXoW84nP1k+0gzOlb7tRYlgo9sQsAwDu2lhRXQh7fLtmS3KrnBk021mO15u4byPXc/Z2UNcvtOV8jPFAzA4jYh6yo9GXMTtEEPjlVMCl4bHIe8MB95FMHmTUG40UZ6Tj05M4vjF5naW8hXHRvD7ajAhIzcTsIENp5TY1lNLrTWfM+IqCFGnRp98lGxqjpHM7g+qJAX+BzIBQ/+S/xtqd/InmBIL+yHA8YDAL/Dn5eCRu9ozyeBAVhQJiG9NnxaD4hBzkGQBXrxTbL+bx8fPjv+8PiIGiulDqYBuru6qbl6OAyQSkxiTitLRsxn/n/9QKPUaONdBT6xt2IDj/iB1phUXwbRvBDl8tm7HDb7uWvG9Wb/+dlRV8GxEu0WuW/l3Y47INSU6fefybrSjQVKXuqaC5Qc++v4oBl3SgeYYdsoqzc7F6+++Gvrwwyo6cm1ewO/p7AMCxlxyGPKTKEzpyt8RwEWRF3wBS9hq+bf0v5QOvSJ9+/lE7Tz3GxtyNe2MM+X3KlceCJn9J65zTakNe33Io6hMNNfYyexcjM6eUv97XmuMf/XoAgDtmcVptXEDktNoMqqUzGsnMBMf5y2KpvYrqwtnxxsNVxlfsQHo9oCoAwPKnHJiXynespcWFLOlkQ+Tb8XgrOBKt0nx5G64MNdqalO5gKnd9BjwMALDez4JK/3K1ihQ3kA7Gya9+CQBwl8oCFxFIaNEqTTsGOK02LggEgMJ1TdFx7yCpPDHJ7m4qT3sk18nLi99BxAsATV9LxqGOrE9Lr1/neYNXMhvSpmFs3Xi9MZtvlVay+dPwM/adLXVq8/bkfGCX6hDrP9/cR6K5yVTWVtEWmoDCpOj7KGTDGMmDJgGN7eYv7pfqfybzEA8Yr58fhV1OoMve64Z+0feZorpwfLID3fvu5niaTE2S1mkSOJr1MwCgtBQ1k48Z6ACABgMPGeoWQT+XzGIeHp3qQOL6H7C5TUUeRF0sL0L6DDbn41p0QdXvU+DbprlpXvFcIv41mx/P6fTZ2MigTiquG7b3E9B4HgutIHp4vGff/aZtpTR9+uodiTjxSwSnT3T8YdbnkW/FY+fbM6V0+p8+eibS50YbypemHZD6OWCR5pnx5x9k51Z3K5TA5x/7+1+HMq+J/2W4nddEs4mvf2+2wHycmyJJpzwxR5R2Ot6OXa/NxPeXa2JBs0DTw42enrzXHTg0iel0iwFJKc/qaxXQr9INRL4Vj7qzjF6JTq1qzh10cDp+bYa6A44Y2mPWZj0+8fnsODtqz9Mkb3pPSuEL4xH0skzTrKNb8VjMIG5oDgChSych/ONsySWwt34nII+I+nxH37Lj8DijHYxZWwgofcbRrUgINA9Crd8Axb4KXTYJIZM1JjF9ZgzCH0vjzJqnsaan6fhkB/ZONtoaKKoLLb5OQON3jV7F9O2j/3rvfIqqBSA3w+HuFgnL1ZtAqvcYK35BgTyOln6MkKths3cFK1oiYPABFPeIgt8GjYkl72R60HtLI8h7w4EmU5Nw+cFYHtib+rXdewmoN91zH3kDfX7R1bhZPvpfsKKl4caLwNsYLJjiwIEnzL2wnhtjR60FbO6ELY5Hh86HeNiE7/OTMKyx8bBLwYLN6jYbC4Zvr2NsPEH6rBjkDJhjqOO9nFS8HBRj2u83e0ahsKYfqvyo0TfqSD4WNWtsSo8++LK3dUgET/nI422fwBjJPus/AW97Br2z1KkN95mzHufniivV8Oqe+9BkyD5YalRHztwmKJ9UVYoZ5W3cesJL4OmdOF7N5qZ+rHtbX8zaT54gKdQGoAWfF8uafR9yIy+CX1AgVm9b5ZF2gvxXHFzLxdP+a9YXZm088YxDCqDsabyJIVvE96F/jkHICDbH9GucHnwrVcKazCSv65O4/vH17ZbX41eyXbinAtAmdTgaCoyffiyE7fDH9EZaAPFWab6SVgsFcPcEo47k443fhyBkcophLIV8Pwmhz2p7nqK6MCizF34OXc/r+zg3BW3KV/D6bbx9M5/2rVC6c7/pO0vLZoheuh8pbYUz3aBRUH5edNt9+8cju1AzPPuu9RJIZ9aRfw7/x7wmLu627K7tj78Dym7E7jIQJWOAucRm1oVGhoVHUV1In8MkL69n7+JMmFi2095BHuutfLIEcV0H8xg9omSn24H7pLz0rslb2mJ9MH6GgeYvQ5vDabVh1+szTRc0kQlbcplJOne1/8GUPmpns53awkZA7SfPgAA4E0b5cgbM4bd+TquNM2EiTArsxJkwojXkuRSU1mdql1lLNPVGs8VUlHiJTFhJF+0GK/D1ZEM/ZH9kR7v3NDWh7A/t6NtnGO/H4j+YymBCoBYkWdywzcaK2LbM4bN4QE9FdSE8PhUocUt00G0FjZG81zUVyRNPsYM1MWH6vndabZwJE9PNDmFx7XoDgMFFOgCU7DmEYy8Zgy0rqguWP3chv1dVqW16OgB4ZMIi0vyQ+OdPEm6n1YbTk9jtRsBgproluk1WVBdnwgj/5QeZRFY8hIh0kOT9dKQmxaPvMnLSWkOb9ThOPsnan/em7MVU/131B1NSa6TnLcz3BAIGH0DvwY9AUV0ot6khp0VcNwDmKp/qOLWqOZp8uUcaH6R6rKgu1FqgCTiCX0zmTJiiujDnQlvTNl54oJ2EL9ql3XBSgHSxvwAg62P2bc6H+UttJ7jZMwrxGZnSu/BJTOX343MhUn5iwsyg3B9p2PbFbOn9F+8NNdBDQExY7tt2w3tFdaFfTD/TuqT+rFZNW0ffZOvo0aXsFveFrH2G8vpxJqYTZCyKxJkJsrpt/mvaPE7cu4HTUfCyA/cfPC3RNic8GDV/YiE63BcuosmQfWjwhTEOowgUSF6/vpNHSXG8UUB6gK2l4jiksuTU6cOzYRxvcX6BYZ0zW4M8Abnjf6PuQeS+w/qHDu/6stfvi5Fwkut9sb7inKMSfpEeRdXU4wI/1+g1o/tGf7kuM+aS8u95fgZmXWCxukgdV0+/orrw1/TZyP7ADp8oWb3uUNd5uDiCrV3EhFlaNkO5TQ15HYV9owFfC2fCCL/onRdg+4EohCLa6913GOnz2+PdYPa8N2YZzj/Cvrm7a6Rh7Uk63hROqw1fHWVaPuJN3+UHYzkT5mnsjah6ljPThLfLXuZlmpgwsezPoeultOebxuLDs8z5zUM53Qx9TnhFEG9U1/76neleBACJ63+QmTCrjTNhgw/JQt3jxVf47+yP7BjS3Yl/A7hLff6xv/91KLsR+y8DSRfOpwejzxsJSPpsFrJuXsHaqxF4rEa+YSFYXpCM6r4VAQCDMnvxoJGIbSNJW/QSNjM49ZhDUu2hcmKZy8NiUfV785hjBP9fyuulXZbateA+e07CYdYGb5Irypu5uB1CRxpjIQFA1/0D4d8711CeJKQUU+ROwIyWE0850OCLJESk+eFQVDFqbquFRhUu4NOGu+C02nhgTD2zoJdS6vu01RcJ2P+UFiTSjJbegx/BuhXfAgB6DR3N7Q0AdtBuNvUQbq6oBt8e+V6/2elJdu4JUQ+jjuRjRFUtoDaVm5+3VVKR8oYf8Hxj6OmwJeJadKkOljQPgKK6EPNyPAY8+yderXPYtIwZfm903Q6ojLc4Nrcrq0/T02qWJgLFh9O3peX0BG4rQ4FIRZiQno054czuUZTm5nxgR5Bgh+nXOACFIfWQM64UWd0XAAA6Pz4RvkWl2DxnjmkbzGgV457dyXokQtH6QJTvddS0nP6W0hNukZ78Vx1o/A7rm577L+OPVlVN6/U2JhTVhci341F3ZrJpGU/9YAanHnNg9yu3bhw3BHAb0IjZCWgy1bgmA5ACo+sD94pw7f4OONPagiZvycKR+w+expwvB+B8VLEhkPSdgl/jABycYkV4gnmcphv3xmDz7Dm8H6i/qB4fPz+UFhdzfFQ+amo86sxm+WwfJMD10gzDXBBBpFsffFx8f2VoLKosTzEtR899ew8zBLz2tm7oIWN6B2QPmi2Vy1rSDpndFqDniEfxxxIWw7FwXVP498411fpQVBd6DR9jGsPPwKzuvY6X6xxB32adsebIX9I48TT+1Ocdkkq3orrQ7cB9KN/rKLI+iUXmQ7O8jgP9dxCfT8fbUetQIUjd2Vteb1B9a23ujdLTnqCnSWzvpTUhqNY3i33TUAd8KldG4p71Xuu9XWxGT+2h3z5+flibt1OqwyyItr6cHsSbzH9LHLGHNj70j92ILe2+9K7tj78Dym7E7iIghiUhsBMeq2GcyABQ3bcil/6EVDkDAEj/pj2QslfKJ0rY+OE0to0k8an3dRIGHzqFz84FS+UIjr3kQNXvtWt/AlEK5Olge/IJJjlK+mwWzGB10q/shw/T5TdjwsK3jJLph/fFnMqFjtT060UanVYbLv/EbLJEGyIAKKnA5BHEhOW+a4dvBWbA7xcUiDO/hUttFusTgZxaHIpih43zHc9hf1QJp5t01/VSUr2qiNNqQ/d9mkvpRh9qdgLkzldRXSjposWsIkNrp9WG33+YK9EW+kwK3Bcu4uzVSlL9iupCnyDZ6LzhuuP8t15CuKiZZj/iPMSM7efmbUWAn9GuCdBsVkQciuryyIQ5rTZ0HTee44iaGm/oZ2KAnFYbKp0sxl9tNJfqotQVAPpFaUbyIl30m9w9i6CoLqTPZNJqvetkKr+keQC+z2ffOn1+e15Ofd5zTCBiuPVp4mHCEsFuAuJadzfFoaguHh9Of1AlJszyp9XAhAHAnPBg3OzNaCUmrPKWuqicL0scV2//HZZNuxD68G42DkeNRaWft6PC76k4776GzM9jDX0GAAXFV6R0fcysjk8x99DWFOPNJjk8OTORSd/JoQS1TQQ9EyZ+bz1QHQcTZvDnP1pVRf6rxjAJAAsYLdrH6teeKsfZTZ5P+1ZSuiehgdhGQIuJWO9rNp977r8M9CjgZZpMTUKpva1hnDqtNpR2P4b7DzIGPHH3OkMd535na1SlldvR5K0kXFkbLNG1skVd7Hp9JsLH7zAcLgv7Mm2Kylvq8vyvZGu0n1rVHH6NrCjOL+BMmEgb5avwG7uRvDSc3bAS00p95FtV/vZU3kcwQ67/ZZI0J/Q06vv8bMfzUj8HpFThZUQmTGyv+Fyy/zC/2bsTRtq3DYvfZ6lfDwA4EyaWDxnB5o7lTyaAy/nAzgWApPWh30vMtAQIn33PYABMRXFzG3YGKLnM7CcvjpC1X8xot36cZBijNMfm3a8xzudHazeqZAtpqVvXdI5Rmbozk/HH0m8k/M+faGeal/KIzr3OjrejyfbKWB68QarjxNNsHvYaOtp4lhHa6bTaUNQnGsltV/DnkmvX4D59Gv1i+vH8ZmuWKCgSnSQpqgvHfm7J5znVlT4rBn2atMfKglRcvy9GEirk/8Tyrk7+DYrqwvDDzIay/4Hz2vreshk+FFS0iSZ3eXYOotAE/wYoc1//90HZjdh/GUQbsapbAnC9y0lY6tTG6QHh3JmA/uBvJmnyxBAR/KeST4DZJIWUq+Jxc7odzjFHjsJZ6RiPYG+pUR3uCxcNOMQ29BnwsEe9a4DdsHli7m4n0Zt8PBIfNdiJZ453wJdWJhFuPS0B1o+ManVmDAL9J91/ArJLWlGQgsEB5rFpbveNzo+2o/bO8yjZf1iyZ8v9oQ2OdF5kKJc+rz3Cx+30WlevB8fwmC5i2aylNh7gWKRL3z71BYehbwhPr0P3wreHd6mforoQ9l08Mh6eiW6Pjkf5tbIUXszr16A+jj4SgkYfGhk0M+k/5SHpsNm3V1QXwhfF89ses+8asnEMsrovuKMDGAAU/9EETaqchxp72RQf4Pkw133fVWxsXdnQ/pzv28ByuAqCZ2Wh+MRJZHwRi7Cn2AHSky0Y1Rf1ZjzqzNFuHPwaNkDx8ROG7xC0dhzCH91poOvoVIchxtB/slZYWjaDz9kLWL1L4YymN/sTAKi4uT5+CVOkOkRpNqVH7S5BWjvf29JzJ/TmveHAoYkzEPzTRINtn6fyYrq7WySyRvqicaOzqPRSJckL4Z3SpE/LnBbLYw/5+PujtLDQwCCJZYdm98DFTmehBxHvmYl2pL0xE3E9hiBxw48YkNEHhV1OmNKT96YDTd40zjdvYLaG64Fu/b3RCQB+DRvgqq2xIYC7/rAtljvxlANjJiTityd74KHpqzG2+gn+rtTeFqUWH/hudSH3bTua3ZODwi4nTGk0W4v19J2Ot6PhymzueEi/PymqC9tulKBjBd/b9l+0y4136u0z1KmnR/z+dGtNN2hm3+nE0w40mCbboZ1yX8VIIYbaf7rvA95vXO8Ect+1o+krxptjgjs9q5j1U/N58ShtdhU+PqUIHMrUeHsPGS3Fo7zTMW327RXVhYsl1zE0wG7I54lOT3gBIGyHPzKiCz2Ws4QFw52RzW/S/i03YsM2PPyP3Yh93+O7u7Y//g7432c1/0XwSxgLwus+cxa1vkk2Xbj0IC4iGV91MF0cRFe4BG/naIfiE085kD43mttQZX7HbJrIJonq8bW1MN0krytBHBeBorow87khcL42mdOTeHAz9zIo4nBabbg6mN2crP31O+l9k+2VJZxVv0/hZaLShsJpteHVU629Lrrk3XF/VAksPr740roDD+d2hdNqw76nZxjymzG6Yh+QATYB2QwQE6aX3OollWbf6Er/y1w9Rgy+fKTzIu4pjcr52lpwJuzkkw5DEFACYsIoiC29C3lIbpe+3QcfY33iiQlzWm2mTJgZzoyHZ6Ltxwkov3YHl4iK/aGoLuS+wwIodxy82xSH++QpU492AEyZMNGttKhyt+hSHU4Dfb/Qh1mdH+emSHiyP2RzpnBdU+lb+/XMgxp72UAn0SQxOctb83eK6sKLtTNwZa18+6yoLhSfrIRDE2bwA1/YU5r9it4WTASn1YY6c7QbBwASE2YJDeLvwh/dKeUjfIFvJEnjUuxbn+jWvE7yMqoH94EjKD5xkrfFb0Oagc6jU7Wyzv2XcL3LScM3q9Y3S6Lv6FQHThdVNaUZADrvvSH1AyDfUomgqC7caMgk1/VS2e3fkvxthvIAuGc7MT1rqQ29vvwL4Y/uREVnDtauXoLSjjL9euAMXNdIwzvq55Afb/D2kBdH/Rii/E6rTWLCFNXF13B6BoC0N5gjIPehDLR7J4EzIuIhn/I3eVML9aCXxOvzAswDnpkgTZxP1wfGmDJhYp8cf9YBS53aKD5+Agtmfc7fiza89KdnUPa8OANrWtaA34Y0LI9oIL3zSd4D362MlhJ/wBelWF4gCzP1tADgAYb146zuzGSs3qUg8zPtxkm9Rz4IvhUsf199PQR/vSZ7eCS7zewP7Nx2S1xDFNXFGT5SY9R/QwCodtTN06j8yMYdTdtJt+FkDyzSq/+OIhMmpt8O3N0iUWpvi4+HfitpE4htE2miNol/Zu/F58PjZqLpg3sROHQfTyMmjG7b9SCt4Y2NKuVOqw3F3aP47x5vPGvoVz0ub2cO8V1GdKGhDSK4M1hoktXJv+HfBCXwQUnpP/D3f8BrYhkjdheB2cFOTC9ytsf8iw0M7188yf6HPbFdMjpVX3DAt20EdxAhLnavBUVz3HtenIGcfnO5yhOpJOUs01RkJqRnY03iUtOFsaIzR6KzpDNTS6iUfwU1FyZzNUCn1Qa1k5+0wJGq1uLPPjUs0orqQl6Hq1JdYt117k0HAOywWTz2qaK6+O2XiOe7ppuQ857R/bE+HwAce1E7SJa4DkrvqA6RLv81O+Dj72+6gfkFNzUwegDQ+IH90vPkzAO8ntKd+7nKlkgDwNR4RFswcZMlGBRtvDkzY6gj0pjr33viJ0j0KaoLheuaAgDavZMgvfOGt82tmDW9R8rMgqKy+Dw0hpu+eksdNOa6VF78PaBRNFcn87RR19xWCx/npqDSz9tNmd0lzQN4Wo+DA9BlwgSO4/mm8k1m8IuMJsuHtaW5AwArCtgtxsWHjV5JAXD344FD9wEbAqRxXaVPNv99YST7pmFPpaDr+PFSu+OOxBn6tW9wLM4/YpdcK5t9B8I/a+Nij/0pAsU+0s8/UQVw96uMOScHGgTktt2sfoLANwTblFbaQVZRXTxWHzk4EMvQ3Dc7xLxa57CU/8wEu+lNunP/JbaWDWDqVykfsdv0EcJhVVFdyPqUfbPNbSpK62RpR3Z7/GLtDJ6/b+9h8Nnm+XAqpls27TI9uNHh0dv6A7CbCcqTubgdp9NptUlruJ5pUVQX/2ZEE2dY/f1lgU3bCAyrKttY6YVGZ34LR3hCqmHcOa02fH2hMeJ6DAEAVFqj2dscXd4ahf2iOT0Us7LhZ0lwn2FMZVC5KhxXtV/cEm7Cr98LCZ9vWzneEheuLIlH8AvJ+DJoBeyzJ0vlo3bLrt9z3rejxuJbHkB3aE5hxP6heGNEux7035VwpC+IQtNUZs+9efYcHtut/4Hz8ElmznCCX0pGLZfc9/DxkXBOydLMDkT88RmZ3L2/2d6pH1sbF87jtFT9qw5OJTgMtNOzJ2GiJTQIea/Lcc3ob9SRfFj+3IV1K77F12HhHpl2fZpZPZ7WN0V1oePeQfBt1dyQDgALmvxl2nanlcUDU1RNuLUkfxuaz4vnZTd8N5//rj0/WRpz+a9qIUB+uVrFQOPtGNXgHyd5fW9Gcxn834Ey1cT/Mpi5rxfBbIKKad4msP4AoL7g4DdA4gZH6kyeyt0JTZ7gVIIDRdW1mDUEostqwndqVXM0eCgfhfbmuFa/HFI+nmVop6K60OfeEVj72xKOS0/L1bXB2NrmZ7b4zo2WDNPN8iuqC62+TMD+J+XbMf2mcKd9Lr5bnL9NklBSnp4jHuUuue+kP0UHA5T/9exdklrM7fB4em82njyNO8C7JFDMR3nNJIpm0l2n1YZymxqiZ91DWNOyxh2Pc290iPXcSfkb/WNQ4Xd2I6mfF9fu74BKK7cb8JGxPoVEIIct3iD3HTtCFp5A4paVBrquK0FcuKFvt14tFmAMnRgkVVE1lUU95Cxri/ZN8gzODf5TOPGMA1cblSDzIS0enQjkjEWEOxl/IpwdZ8fOt7Sgp3E9h8J9MF36rs3mx6Ppa8nyN4lpDaTug6VObSTu3eDxu6svOFB7/034J+4wvNN/49x37Cjf8qLBlbmeflJTBoDMz2IlF9qU9574Cai4KtW0vD7v2LxOKIi9grHpORha5aJEE+Vp82kCGn6ahJAdFRBU8bRhnQBYeIavbcvw3PsTpbAelK/lVwncbrNv72G48fl1lO91FFeGxmLbtFkIXRLPA5XrmT5PtEfMSjA4DDHLJ7bpTuY5zUMRx+1oybl5BUHlqkjvz/wWjq7WTMlbH5/TX3dA9v2zPdKiqC60mJlgCNlCkHLDjTeCowzlzo63o/bcZMkp1O32+NuldRszDuWVnZyGV0+19iicVFQXnANH3jYMiJgfMI45Mc3dLRILv/1SshPWjxEzHGb7a6m9Lep8koelQX/e0R6rqC5E7nwQu9r/oJ0PgjqgtKgIyjFNLd/bPnAn+5++La+eag17lQx8GdqchwgRgY+jLzug1L8EOffORbNv4tH01WT4to3gYVrM4N+imjhkwyiUq/z/XjXx5tUi/Nhj0V3bH38HlN2IlUEZlEEZlEEZlEEZlEEZlEEZ/MNQxojdJeBTTpYskPe0B7J6eiyjqMxpglk6YJT8WD/SPO/Re0V1ofj4Ce4BiiCubS8Amn2RNxr0v0nXWlFdqDcjCQeemCG992nfytRD1O7o71Fy9So2LpqP6ktSTKVU666V41HpzVQZAKByn2yEbRoNAMjpNxcA8+wHAOHfxvP8Yj81+sDYN9R+p9WGyLdYOVFViODUYw6OT3/TU89SWaKP8ogBasU2cJr2X5LKPV8ry9BOug1LnyHbgBFcGMliuJB9j9lYAeQxJrb//CN25L/mkN7p68j7sbX0TPZZoX+OMa0LAI/3Ftemh4RbUV242fU4nq6Zy9MV1QXfSszZy6nHHVL7AWBlQSpXBQRg8MpGuEOXTcLHuVpsGbNxC4DfhgHA6rS1UFQXLHXr4pnMQ6i0cjuWFyQb+iHscRaUNH00u71ptFr2OgkAFxNDpXqOPDoT7swcU6nvltYrJdpFXL9N+MhAM6lW+WxsxNPS3tRuksTyQcP3mN6GmfUHebwkqLi5Pn+35/kZCHlOi+Ejwme5yYbbsOyPjHaqgBxPS6xfUV2oPS9Znuenzkr1Oa02fhvW8qsEOK02Zq+aug/ZH9h53Cxx7vlvbsDrsX6UBP/EHVCf18bV+dFarCuRrqavJmNfh6VcnVQ/DimNbsMyFkXiaeca6R3hrPzHAcP4tNSpLbUdAPYW3UBBLIsx9PH7D6H76HHo02+EAefeyWx9TZnfjq8ThDfji1jk/dgaAYMP4P2QNtJtWM4HWhw0ug1770wzlOw/zD3qbZvGtBJCnpfVi/X/4eOD6/fFSO2k27BWab5S28hDIeUzuw0jlUa/RlZDX9Nt2AtZ2q1O3usO9GnSHnognJMCOxnGWZ1706UAwk6rDXmvs7EQ9hib06IXVFKtpLyN306S2uu02hD84yQ4rTbEVrBIbQaYWnrtuWy8iiFSaO1TVKbOKKadetyBnPftHm/7nFYbyiua/afTajPchqXPjea0xLXrDeWXxfzduUftUv/Sb/KYSDgV1YXMzzW1WNsHCbyM5c9dCPCrgoRjsRIeM60HPZx/RI7F55PM1iexT/T9KPaD02rjt2H0XFpYCJSWctrPuzVPxc5Bo7zS47Ta4NfIKtVxOt4u4QeAd+rtw5ehzHsm3YY5rTbMv9gAjmc0NcSwJ7cj5965bK26pYJPt2GK6sIzmew3mXMAwMr0O7ut/G/DP2Ifduvvfx3KGLG7BHLnhEnP7kMZUFQXomscNSyU4iKxPsJo4Nk2dbjXuvSHAADcHTJB4h4W/DB8UqrhkEBlLKFBcFptnMkJXjcWAOC3MY3jVlTmOU8sp3fIIS5yfo2sUl0AEDEngb//NLSlVJaCI4qLfrOd5RD8kEvKN74J24iDpiSbbmoZizSja6fVhvzX2IacM2AOAPC4WqIRc5tdzOXs7lfk+F70//KDWpBc+3OTpHo/y002MAS0cXyWmwylVTWDmsTVtcFwWm3o9ORE6R3ZbujHSe21mXBabag3IwmW0CD49siHu1skz0eu2y93PiNteAQ1v03mqjdL8reZbqpNhsibxl/TZwMAd99M7RLLkjMSOiiL7Rf7qE9QBzitNh53rd70JAOuSr7lsW2a5kWz5LLmzVD8xpnDZ/Eg58ErJhrqFQ9ZYrrTakPinvV47b1HoaguyZMWYJxLb+fswKFn60ppAFA9LlMaV2aHKkV1wcffH32bdTbFP7HAjpByVaSgouL70u7HOO7uo8aatofKeDsgUR9X/mk7fNq34k4Urnc5iQeyekJRXfywIbaD7BifG6jVnfl5LF7I2oeMh5kTCQq3MDWbrRHuS5dMD4Jm/UN2Re5ukVI7iJEAwFU6g1/SGAdxHJp50bN+nARnQBQsLZuh5kKZ0S61t+V1Oa02bP+QMbi9ho/htI7J62ygObvnN/i9ZU3+3PlxNuZyPrCj5Kpm90owbKsWeoLwTOn8AH9fa0EyNi6ch8J6mg1b0Npx0jetO4vRfrN3e05bxZO+fI5SGrnVTh810yAgernOEdP9wRucetyBjC9isGWmeYw5YnaobeofjU3Hnyi82TSXHV6Lj6kGYQRBj4puhO3w50zf2jzNFrbn/svc/bmeHvhqTJJjT5GEk5hHShPdvm9p/40Bl9Nqw7RcTeiQPURT1aVwAn0OMxfqxdm5UFQXhuV0l+oQ14PwMWnSu3rTkxA0JVnqg2MvaYKDjOlGG01yjkN7KanmO602JO5eh+CftfWv1jfJpt/4UpAhCaHPaGq29b9M4g6NCNK+bIe+fYZJzJue0Rbbq6gupL4/k78np19m7dKv54rqQsb0DtxuWAT9ejKssSDAE8L8GNaaGCZULD6mSvO+7ixjHFSn1Ybsj+wI3TRaom1Fpxao+oOW/+QTDt5Wy59WA57PQ5m9r+9fuzkjfn94a0O+MvjfhjJG7C6BwDEHpIWKQDQSNwOzTarBQE3/uMNL8aabHgF5bNIfcMVnOjCLC6yiuuDOZIee8bcC+YaNTsPZcbLLV4B5zhPTnj7enuMgz0pFTibNpI1XbBe5WDY7sP1iD5MWVEWVnXNsucFcB4vgtNr44ZJveEp5XB4Wy29UUGK++Kd/o8WM2htZanrwIKj6g+b9rtpS7YavuHsUnm1qN92kTsfb8WxTTUppqVlTOxj3yeYHZD3T57Ta0OoLTUrZ4+AANE28zPHQt6K4NiTJ83TQonI537cBANSxVOZ59TclIohjRIRmC+RxWHNbLYl+AEifzSS35DxirRBvRV+HeAiP6zJIottptUF9zmFIo/9hT2j9ZwkPwWMZ6XzOeGJSdrwzEzk32e1E0fpAXHpImzcivBYUjfCEVFwYZX5zQoyt+E4cv2tztqPkMvPKKBqkX1oTgtwY5tGvydQkxDW/R3L8ov+/cdF80/lCefR068c5Z0R27udCGQD4KeQPOK02VP0hBdcHsptYOtiPfHIN/IIC4Xv+Ms+f9eAsfBSiHSzWL1sA3woVJPsZcQ6Y0UbfhNpQ/mABVhSkGPKS57/T8Wz+NN86UirP+yFGPuhYqlUDStzAKS2WIcG6Fd8i8/NYaUwrqgunb8VyOjPRzr1oKqrm1EbMf/IJB050YFttkMAgivWYBQcvzi8wfLfyyk7ebtETZt/ewwAAOe/ZUW6dxpAEvJcES1iw9E2XNWcHwsi3jTH69Gu8NaUqfz82PYfnE/ui3vQkhD3J5pSvrQWmZqdJY1oPAe8nGfoTYMIbgNlu3Y4BpPZkRBfi0kOxODOBzbespazcH62qosE0rR7fChW0Pihxc9pWf97FdC7o15hLw2MlIcyE9Gw4A6LYftZUZgaoPbX6p8NptfEg3AAQsnEMznc8x+tRX9AcZujnQdDacRI++k3aGwC7jdcDOcdZvSPRMHecVptURsR9494Y3u7iRrK7dbptFDVkgl+UbTO3fzgTJXtlJzpFfWSHMoMPnZLaS/Wlz2+PLa1XclopNpvZOKA6wx7fjvIX5X4jvBlfd0D3fVf5O308SconQeo+rolEMTkBAKWlhj4EgOAXknkYGAKKh8rreFTzTOruxtZJOiOZrd1h89z/ohuxsjhifxf877fwXwI0+RTVBftzTNrc4aV4w8FWv3iI0k8zqJ51nZcnr1AijupLNOmNeFgVN276H7vnJn/W00FqS6LqC+VzWm0IvaUqCGjBjgHm0v7c7+G4UcuPp4kqM8MPq8ha0s70oJj/mgOJBzcb+kd8fjdYU9WQFszTp9HzoUelfqj6fQqabGC06R0iUJ0Ui0lMp3otNarDPnkSfNq1lNJjpmhMiKK64LdRdvEtbsYUAJXKJh74E3rQf296phhcALChxa/Iir6hSRsFtSH6f1wIwNtyeoLpNw8aJgcKV1QXvv30UwmXt/FHeZq+onnuzHvdwQ8jVJeiuhA+kTHQJdeuIWNRpHQYmn+xAY696IBvm+a8TOvtDzGBwC33vyId+56dIeEX/4v5EjetwNdhTHLt2FMEp9WGkOWTTA+nQeWYMXr5XkdRbalRSmoJD+G/ayzSvqN42zotN0mih/q8/4HzBhqt87RAv2KwUkV1IfHwFi5hB4CML2LR98AFA01ieynIuj6d039LPdlptSF9ATtkps+IMRwQCSr+kopLa0IwutopKKoLa1rWQHHOURQf1UIbmB021mTLQeL1ghRK089pwuE+eYqHihDxLGgWCIDNIafVhsOdFmuH2t+0IOGkmkVlEw9vYXhveY0l8GtQH85G7fhNANGw5HJtuKbMgKK6UGd2MlcvclptPGiv2FeXmrm5F87YPTdvO1/07RJ/n/s9HLOObjXgoNAXQS8bHXHkDm2A987IAewBba0JWT7JMDfSCosAgDOZADA/XLuxoG+19po/T7s2qAPy+tZAwkePG9ZrEq6IjIE+D/0nb7gA+O0vCW4AdrgXx0q1pSmoM4d9czoY69elkhs3pPoIai5kzASFfhFpoe+dsSgS1ZbJ831OeDBQ4pbWKLFvzCD/p1Y8XAZB+QulUp1ieX3ICUV1odOTEw356XeXvdcNeKJfMZ4h9OUpREz5C2x/dzw7Cdm9vuH5ghLHYW3eTuS+Y5dCq4jfUP+bnsXYkYrqwoqIejjxS4QhpE742J3SHHdabbCEh7D9MrCxlPfFkyzfiWccqP+VrB5KEPbYdmxszdrVZpcPio+fwNG37FBfYONJVNck5gtgmkgiOK02zM/biqBfJnj8rt761iXEtaZ0vbMcugnMWmqTYqGVwf8dKGPE7hK4P7w1l1DSIU88zJkdIp1WGzYunIe2HyXAE9DEJukh4dBvVmaHA31aSttyGHXEPH6UGBtIj1NRXUi7Zyano35yNelwVat/OtZ/PI3jSh81ExPS2eF6WXMrMrstMGUSboQUGphGWuCdVht8/LVDAqWJbbZs2sXLkY727ADzIJTiIqxnRPkB8cJFVFuWgrWrl6Dde7e+yYYA1PxW/o6/H0uTFm/rR0mm/W9Gu1gvxTKitOGHNTWeuBZdJPpFL21UpqGfFqw74L0k9Bo6Wiqjzw8AEbMTkBDYCek3r0rpnjYi8XfBy4zhbPIWa6/tfW3c6pmTsFG7+HOLpIexPKIBGn2YJElcq39XlW3Yt1Rn9Ru5SIP+YE/p4u+ktsxOM2voLNN2edqIj/3M1GXd6VlSOuHP7skONZnTYiXpuciAi2psVNf8JltNaQbA3S5TethTKVjTsoZUXqS324H7UP8rJlyISPPjKjMnntJcUZParaK6ED6GjdGcgUw199hLDtP2J7ddYehrS4tw+Pj58cOOHtq/Ho9+Hfob+oralj6vvWldF0fEGr5lXOvuUp6Mb28xvbfUz5xWFh+ImPwTz2jtdVqZ3aG+LqfVhpz3WGw7mDgVXtSssdS/fSrJtwcAEL4wnqeJNxA/ZrTzOI7MQDxE/34sDbX6p3Pvf8cnm6uoAkCbTzR17sbvJqFVxXzTfIrq4kGlKT8AvByk3Y7o6b20JoTnFdv+1/TZCHg/Cbten4ni7lEomKKFm6DYYufd13ibpuVqgYjN5m1pRxuaTGV5nm64nr+nw33ID+YuwZ9UoxGxbSScVht3V09tVVQXbvTXhFKIYTEoxVvylBuyBgXNX09rtLd1RwQxRMnr2buwoiBFCsauBzPGsPJP25E5LVbSAqDvtLlNRamdiupCrQVs7xH3nIV5W6X6CsYyRmf9DwsAgMfqDNlRAU6rjcesbLSFMWoZiyINNDutNm3uwbhWiuO4wcBDCHzdaCNHEPzzRFjCguFz+SpCN42WBDsAY24U1YUXJv1g2l8iXFkbjNgqbF0OfD0Z1o+SUNKlnaSueb1JdanfCEgwFeBXRQrdcGUIY9r1MQcV1YXsD40hcUYcZu7yu+4fyNNIRRtg6tRL8rcBagUAKFNN/D8IZe7r/8tg5r5eUV3cVTM96yf37Q6VYn4ff38eMNTdNRJ/LP1GKgswRoQCABPc7BmFS4HlsfPtmR5x6+slvJRuRmfEtpHMbmFDANCDLVK+lSphTWaSVFbfXs40dbJh/fKFcFpt8AtohOKCYzCDZzIP4fNQZvtzdKoDh8fPMND+3plmmJt8Dz+o6RdzkZ5fj+2Av0+5O2q/9P5Qf95OMX+Xvdex7sV7sGn+XNON2Kd9K5Tu3C/1Jd9ML9XDsuZW0/r7dbwPq7et4umXh8Xi6beWYWGMDe7mgTjbujJmvPwlj0MEMFuerAdnYfmV6pLk26ydIpwfbedSZU/9Zla+sG801C5+CP3wMBIPmLsqPvGMA0WOy9zG5dhLDjT6wLM7bH0dltAg5DzckAeuJTj5hAOuKWwsFK0P5I4JRBz6/wR+TZtgddKvXsen2fNXR7chvFxlQx7qKzPIe9OBQxOMYzZ611DU6p9uWkbfhqDfxyN8wg4pPfcdO5q+muzx+1TfWhsP1d+OmWGhHttjBmPTc/jYofwFK1oiYDCLiaeubIGiA9W50bqeyTVjes/9Hu61rWbtJjj+rIPHfTLD7an/zfpFUV3o16G/FGBbDznL2iK9y7emfbq8IBk9X3sWO96diZCNYww3I57qBZga3JzwYPhWrmxqX+at7H8K534Px47I5Ya129uaTG7677Q/AWYzW21pCqZmpxncvOvrcneNxPnJV6SbMj34NbJi9Y7EO/6WTqvNNMQCAOS+a0fd3SWo/BMLVRG0ejw/uJvR5ynd0iIciX8sv+NvoajMGZXeDvpOoG5SDZx2XAAA+GxsJKlD6usgEPvCr0F9FJ84CUV1obD0prTPKaoLLZNH8Hmsx+dtvfSUbgZ+jawoPqZ6nKu3K38nedzdImH5c5fXkD3eaC5aH4g/W66S0mcd3YpJgZ08nnkIf6zrAVSPyzTQ22xnORxpf5M/l/j7YuON5Xetu3Y6s9637tF/zH39qt7f3LX98XdA2Y3YXQIr0/eh4GVNwklMmI+fH5/cooRMlMIBQN9mnQ2LCf0REwZot0DiglFqb2tgwhTVhY2L5kuBDc1wmx2gPNFJAaKbDNnH8vTQDjVHPmxtWPx67r/MpU5Oqw3nV4fh9exd8N2q1VtccIyrq+mBmDAAnAnT07a5TUWJCXNabegX1Ueim/77+5RDXK8HDUyHWfulbxHxOxTVhanZaRzXqVXNsblNRfiv2SFtNr5tmmvfRWDCAEg3SGTnof82EbMTsHrbKomupM9mYX54ENwXLkL5eRFqz03mTBjlCX2GSUHnhwdBXdlCaoNosyGmA0DVvCJed2qhprqq7wtKy1rCJIH+a3Yg6KVkuM+fN2x2BVOYcXWDz5O0sQLwOG9i/d33eQ74nfdAQ25fKEL9rzT1wD9brsKpVWz8LLzldIbofS8nFd0eHS+NmeLcPNj3DDbgFKHNLh+pvwDgicCOHg8J4s3t2bHsRvfoVMaExfV6EIV9o6XxtKKN5jRAvy4A4KqVTqsNOf3nSv0DwCsTBgAXO53FwMrMHu7kk4Kh+y3bKrHtGQuj+DPFuRJpCxis2b5a7z9oYMLEtchpZbZOIl3FiXV4G3PftuPocqO0WFFdKFjREk6rDQvztsIviKkoNvxMti0dlNnLcFDSf6fct+2GOUVANluevn3Q8D3Ss9Nq40b/1X0rotYCtpZ6Y8IyvoiVGAUAGFyFeVAtuXoVj2WwfeHkE7IHUW8HVjGf+HvwoVPSs6VlM27XRDhJfVt/qBTLhb2wk9dL3vQU1YWi9YESHccFhzjJnzCnFm8ER0n7ibin0F/5PTnw+aU2Ou+9IbUh921NvU3v1MOsL/TrEnmK1PdP01eSORMGMGcXfsFNDXj04LTakPUJ+37nxtjhPpgujTdRBQ5gNlkA8xBJ4I0J87bmfNd0E5YXsLmlZ8IU1YWjy1tDUV0IWxQvjXv6v3qXwp9FJsyvkRVxLbtxJixrSTvAR/Ni93BuV8M4FPfjFl8neNwv9enEhHUfNRZOq41rXYh0imX1385ptcESEYabPTXGnhyKUL6zEezWSWTCqGyrL7VbZLN5dPQtO/ym1uRzgurXM2H6sxmlrWm9iNPh26Y5z09MGEHJjUKUwf8tKLsR+y+D/kZMUV1o/1q8dAslgrhA9D9wHrMX95NuCRTVhaBVE5BzH1MporwjDhdwg3ARh1/jAC7lLewbLd3OmEl2CJqmVuTOAzzRZ/YsphH+m6Vu9G/kXSpKeTu8GI/tH5r3jTfQL5QiXLu/A/762hi888rQWFRZrrk8b/deAupNTzLQ3+3AfdKtCuUXbzX17QhKHIecuHk83aw9C/O2YnQT4yIvMXkm7VJUF4JXTkTYY9ultov168uL+fwCG2N1MvPG2TfUwdWKCL7PT8Kwxka1qNsdBvvF9OO3l3q6LWHBcGcwZyRxXQfDnZ7lkVnwNsYU1YXegx+RjK3N8gf/OAlhT2kqWRlfdUDYE9sx/LCKZc2tyP7IjuAXGMMyscDOVVbNvpNvm+ZwV/GHT9Ier7Quzt+GepbK//HYNYP0+e0RPnYnr2PLDeAedsbg+C3168F9kh22u44dD/81Owy0pdxwI7aCxStNvIyPj6mqHsAOaJndFhjGp2/Vqtz5iBlO/bdJnxWDnAHM+961QR1Q6Wdj4F7CmT4jBo0Vo9otBb0OSKnC3b8DzCmH+5IWFiIqbSjq3JsuBcSmWxJPY2zwoVNYEVHPdIyL+XyiW2PtqsUGHHG9HsSZj0pQaUYN+K82DyRNZa4+0AGVf9ru8f2xn1ui0aADUlrG1x0Q9th2JB7bhbhGkR7Lmq3tZuuKN/rMns3gdvWa5SeImJWApr+c4yrJ6gsOWD9i+51vq+bcNu5O6SHcY/I6I/dyLb5ui/vjnYDYjvOj7Uh9b6Zpv4g36Gbrwp30h75dd9Lnd4LHEy5Ko7kQtbsEae18YQkPQeImpop84hkHGnwu22fl/dja4EWX8FEeRXWhy4QJqPB7Kgr7RZvOAYLCdU3h3ztXKn/5wVhU/SEFV4Z0QJUfjY5K7uT7O6025P/UCo0f2A+AOfcRbbO9AZUv7Sjbc51fHYaa/TJMachYFInsnt9I32/a+aZY07IGnPsv4dlazAyj7UcJaDAtCT8e2YWa4dl37Q0QnVnvXTf2H7sR+633/Lu2P/4OKLsRu8vAabUZVAH1h+fM79itwheJcWj0AVsMi3tE8QUg5745klRGUV18kxFjryiqS1K1OdeCqUbmv8IO2R+fCzHQQZK12QHJ8ClX3iDdMttwxVsLSjv6luY1UGTCyDBXv5jSs8iEmUna9P0llrfUrIngnycaaNYzYWRzdD7MV8JVb7qsxkL0l+91VKpXUV3oNmYccPaClJ+kYE6rDTlx8/hvcUMWYfQtb5Si9FIvcfPEoIU9th1DD52QJLl6XGagqC6sTv6Nuzhek5mEGUe3SnnG5w4w7Qf6zvr20G+9CunxyQ50Hc+cKLgzsnGzZxScVtt/xITp2+K02jgTVtiXSZpFj1lUXmTCFNWFykctUFQXvm/VBAA4E+a02rD+UIShTvK6CQAlew9j3U/fAmCCjVdPaTdHYr+MbNyRp/v4+Ul9pI/jx9OrVWP2AwKtACQmzGm14d1gWQo76+hWJO5eB0Vl3gM3zZ/LPL3pxkl6Uf07OtQpqkvyHkYe9Hz8mJOdkBG78aQaLY1PRXXhyFfhBtrFZ/1czhkwB9GvMvs3YsJ4m7ewGEDE2IUnpKLqLlXzdHorb6u+RwAABbFXpDpFV/lOqw3llzIHEMSEAcCBJ2aY0tUniNmFTKiu8vL0bsDBs7w8lSvdsY//vj4whsdlch84gtR2P0oH0Ig0P6k89fHWL2cb+o5wnn/EjnsaZ/HbCXpPwheRCSN8hLvi5voSLhHMGDP9/kM2Yvr8NE4pf/ZHdgMOp9UG56BRsNSoLuH1CwqEorqkNdJpZfakJXsP87zEhAHAmnXfm9JvaSar1Orfb7tRAjX2MmfCFNWFUdXO8DzVt9Y2Hat6PNR2Cnmg7ydFdWH2lqU8jZwLieNLxAOAO+0RvVVSPoCp2+q/W7Od5aS8pEVS6mC3sZYa1XmcUk97DQE5LFJUF4//mdaOHRPd6Vmsf+vWRYPP2Xeg+H0AEPzMOQO+34+loX96X6kdm+cwIfGmuXOR/YExHMj3+Qw3MWFiH5FreGLCsj+wG9pjqV3L4/cjPAcd3/H0Xa/JXp3pjKMvL363dT8uZPXfunEjJswMwkbtQutp2s1gv5h+3J5XaVWN0+W+5yIU1VVmI/Z/EMoYsbsIhh4yxrihRcjH359PZFJtCX/3IM+3YfF8OK02RKT5eWRUAlKqoEdFt+EQT9DwU6ayFfgpc5TwRyvtgEN0BA7dx3+vPZrKpUPeJJ4bW1fmhuX0vs5eZkRd0knLBwDFR/MNh3iKFUL1urtGwlKtGiLfjpfKihs4gRiE1n3+vGQ476kfyF3/wcc0z3txLbogfVYM8t7Q4oKIZVp+JTue+HPBPH4QBoD5eVuxZu33vE1if4luyOnwQgc3s8MQPZsdDsRg2ssjGuCpdau9HrRDNrLYPU9mapJlp5W5OO7XaSCcVhsSAhlDmD6fuTAW446JbtrFUAtUJzEhcd0ekNoR17IbGn6aBP/VO3BtEDvklvsjzVCeQAwwagb6vvjq6Db4r2GHXVJDUVR2uyUCHaKtn7CxX1pczPPyb9JLjh+UPisGiXvWw68hCw7sW7UqbO8ncMHGDptF+m4v1s7g36vX0NG8HqdVi18mxqcjyPgiFu5LlzCicUcpaDXB2zlMrZVi7og0UwBbcc7OCZfdmAOy23RLWDD/7duqOV+P9Iy/02rDG9+xwMItt2vOEI60v2lYB7J7z+fv6V1J53YGAYSIv873ewzMNcA8eOq/c3F+AdYc+YvX2WXiBFzsZGSMKDSCWGfyp7MkXGZrl9Nqw2MZ6ch8J9Kj0OTXFrUlHPr1q+Ivqdg5daYkNBHVuzIGy/GFzNaxRZfqSJ7man6bjKzoG8h5j42L4D80D7BmQhCxbtGxkhnNIg3iOKbf1foag8sDwIhbggYqF/r2fslpCIeUvUg8uFkqS4Gw6eZLUV3Ifcd4yCbwC2zMcRKT4dO+FU7/2gzuI5odjtNq4x4bCTpWkAVs+r6+2OmsV2EP0Sf+Dkipoo21mTG8zNgmndAi6WEATDWX6kpfEGXwfvleTip32qPGXjbdx8nmkeD4sw58aWXrAHkb3tymIq7d34Hf0LsvXETpzSKOi75Pznt2wzdOalvewPzogbyLKqqL29gpqgurU1cb+qd/oyj8Hr4GbVKHo9TRFjnvy3VSvD8RaloqSTh828oxHhXVhZ77WWiWjFGaYJa+gd6FvH7NA9i30TstsdSvx9fL8fkdcXUw25cyP49Fux3DELpskgFflTwWS5TUZi+tCUHfME3gRv/3PT2Dz1Gxn4gWAGg0iKl//nvc15cFdP67oIwRK4MyKIMyKIMyKIMyKIMyKIMy+IehzEbsvwykb3s+PRhDmsk6/fEZmZgZFmoq0RGlZAeKrvMgwN5uP/Tv6Tn3hzZo+qAxXhQABK0dJ8XOCl0Sj5Dnk3HilwiU+60Gas9nKlx9AmNwo2dbyQ6F/ru7RsKyaRfHnfeGA4cmstumORetWBFRz1B36LJJCJmcYkg3o5/+k+cnsz6icieecqDBF0kGHN5AUV3oOm48/BM1dSKfcuW5lFGE3LftODJ2ppTmHDgSSPWuOy/q3Es3Fvnb8PDACVj72xJJQmpGs/6m7Xa/OfhaoBSkoW/vYViz7ntZcu8BN2+bDtd1JQhbWq/0Wrcn+vPecKDJ1CTmKn1ICvZHldzx9zG7qSD6LM1CkfjnT177QFFd6Lh3EKrcCpot5g1eNxZho7XbuuOTHWj4aRJOT7Jj1+tGj6LXB8ag4i+y3ZIIOe/ZkT6albPUrYvEPetNb4f0txn9ovqYevoS26p/R2k3e7fHsC8SsSKiHix16xpiZlGZzo9NRKWV2/kczByu3RrxG8KlNgQ/xPCfSnCg3gzPnixF3LcbVwDzlLnn+RnoPWQ01v24EH3DOnr0FAiA24uZjTNLRBgw4yow6LrkmdPw/WNaA6nMKUzQqgkIj0+V8h37uSX2xy4x0G/2vZxWZltz4AnNOdDzJ9phbyTbZq8PjMGWGXPQr9NAFGfnmvaDWR2ePC1K7b01zomm/2Tu3CmQfai3ckQz2QLpYXlBMoYGyLddRG/fPsNw+KkqXPVWD/WTq+Gk/ZJH+nhfhAVj6G9bMbraqf+oDzI/j+Vx4xTVhaybV7hGwNG37JLbddN6a9aE+/x5U9ye6vSUrzAuGv6JO+Bra4ESF9N+8W3VnK/RBOkzY7g5gogPMK7PtbfVxNmO5+ENTk+yo+6sZMN3LOlkg+9WF8/n064lbtaqwLVx9HW3/TAB5a6UovZ8rc/0tuXd913l8b5ut1eIHlTF9KsPdMCpSF8eQ098Z9stx/Lya1Afq3cpcFpt6Ln/sqT1AwCd997Agg1dEfpMimFtNtszPJ3LnFYbfNtGoGTPoduWiUjzk2KrFpfexCasumttoujM2nft+H/MRmxNn7l3bX/8HVB2I3aXgJle8MDKV3BpTYjXQ6bTapOYMPE63Cy/JTSIq5m0mJmA05PsEhOmLycyYU6rDSHPswW6wcBD6PfkFp6v9GYRZ8LE+hTVBZEJA4AmUzWvdWRzobeZ2TH0MwM9ZuoFS/K3IeR7pjJATBhXe/hRDlTq18iK1x/TdMM9qb0AzHudNaUqr4eYMEtEGBTVJal6EJx80oGmryXz70J/Pjc19S13t0gU94hCl73XJfWPPc/PkNpI9I1o3BGlaQcMG9THudphQUwXf5ttxuLvjOkd2GH1VmDSkv2Hpffv5bBDlKVFONp8ylSMmqayWDUfntU8gGV+pqnNuefVu23dTiszYteDuwI7rO5/coaBCSP1O//NDaT+AcBVf5xWG4+pJ/at+0imYQ6R/YRIZ5U+2fz3CcHDW9joNKmfG37KGI+6s9i3JpuG1ELm/WrLjDmGtokQ9HIyeg1nKqH6jd5ptXF1WqKf1HpXp601fG+xT0VwWm3cpkpRXSi3bicXeAy75SHVjJGrtHI7/y0KQiTG9CGtXPkrpfgsVzsApc+OlvDqmUkRzBiOBp+ztcFnG3tXcvWqodyFkXZup0T2YmaH3ddXfw93N5UfjCmej9Nqw3UlCFeG3opLdivAs9NqMzBhgKYyRDZ24ns9/Yqq2dYQTmLCABYEO+5IHIqzczk9+v4hnFOy9sJpteFA0XWPTJgYj4iEDfq+rptUQyrzfX4SLg+Lleo69bhDagPAvChKfR/TmjvpoXI57zF1ON8KFaCoLq5C67TaJCaM5quiujCsn+aJ0VVYKI3hNWu/h085bb0EIHkT1jNhZvudorqQuPlnLGtuNfRFkbO9Ib84dkKfkd3wExP2Xk6qRyZMxJF44E8Jd6svzGN8Oq02WGpUN5RXVBem5bL1ZNM85vGUmDAABiYMAMLjU3k7RdpFnORhkpgws7lIaUW9L0k46DuKTBgAlO4+AL8NaVI91wZ14OWqHC/BjX7a91JUF3Jj5KDTG1tXlmgmFXkz5kcMYyGmV/5pO9JHz+R1OK02bsPraid7wy0+oanlztp9j9QXiurCX20qIOtBJnxynz5tWF8p7+lJsoq7SBfl1TNhADD5eKSh76c11Ox9FdX1r1FNLIO/D8oYsbsMLC2b8d+d9g7i+vjiwrO8gB0Az0w06tCbSWjEPO7MHJ4nvGcWdr0uG6qaLTxOqw2dnpgo1aGoLqS0LYfzo43unk+5PUuw9Rtn8E8M79q8nVLdJHXt/NhEDD+sorh7lNQOkVHJGibbehCe7CGzOP1hm0Zj9Y5E7gqa8pkd4ACg9vxkqLGXOeNF4D6UIfVN9KuanVr9L+WbNoK1q5fw35Y/d8FvQxr+ergdO7jOay/VS4b0YjsAcDfYFMjz+aaxuK4E8TxBieN43oWX2IG7w4vxXhnzsMe3w30owzSP02pDlD+zF0j8YzlnPmYHJCP2hUnY2Frz/he2+DIvT0bUZgdU8X/m2EYAmGt8Sg+awg46fe4byXHQdybbvhtTjP1D3q8AYM8LctytzGmxsIQGIX1WDA9y7bTa4JO0B5mfxUp5385hzHbm57HYE7NM6isxH7Xh3KNsMx7W2AHfSpXwWlC0xzGln4frly2Q8Ir99UuYIqXvnawx6Z4OBuRgR4SgYXsNaQDwzsohAMCZaxHP2PQcwzjwxMgDLOh8y/IV+TyLeP4InFYb8t7Qbk0U1YWsJcZAxuJz0K8T+O9jP7dkApyaNc3rXJyM5LYrAIDbxejxKqoLT7z9OPJe1xiHJc0DoKgu5LxvR0VnDqosT5EYF9G9eOiySYY5Myc8WOorMbi9J6bY7MB7fm4TIKY1lqodcLOntq7pv+mYDWMBgAvazBhc38274bTacHVwB8N3onb1rb1PKjOssQNJn2lrZvZHdux+WWYeM6fFInH9D3BabZyRU35ZLM1jRXUh6GUmmCu5cYMdvm/1qch4ifT06zRQOqC+GNRB6h+n1WYIoLzrsS/4+3KbGhr6gEK8AECLmcx5RJ/AGAknQXllJ087M8H8MK0HRXXh5SAN38kn5LlGNmg03hddqsPfNfrQ822x+wIL93DqcQ2f02rjQd/F8aAfIwSiC3898yWWCZmeJaU7rTYcneqQnqns1fMVTfcLAk/vnFab5OW036t/otGgA/j9GNMmiHmZ7ZXXSoyaJITzy9DmEt3ieLu6NthQLv8VB/oeuACA3RY6rTbcuJfZ8F58mAkF9J6Hsz9ifRY6cjdi99yU5m1xjyiELdb2dH2dlJeEcCKQ4xGzOU//90eVGNL08/aB+wbh3wBlNmJ/H5SpJv6XwVNAZ7PDnF9QIIpzjnpclEWoua0Wznc0ejEi0NchPouLll4yNeDgWfzaoraBBkV1oduB+3BycyMcTJhhKKevx9s78Xfuu3Y0fSXZNL9vq+a43qSqpDI4+NApTKh+K6bMLZUjT20GmOt6ugW4HZ3iBhb4RpKUZlb24ohYnHKUonzdawgcus80jycct4P0WTEIn5QKRWVBQD+YNIo7u/A2PsS6zj9iR+r7M/lh67umm/i7zntv4K82FUzLN58Xj8PjZiLlhts0GKu+bv3GKrb7vPsahjV2IOvTWAT9UoiT0RUlg3TxO5i1Sd935x61Y8c7ngOQryhIQRXfChLO/ul9cbPrcdP8ANAqzRefNmTx966uDUblWzdnBBQktNymhhzPxcRQHrwz87NYZA2b5fUbm9Xr064lSncfkN5nLIpE2KhdJhhkXIDQV7dUT0X8rdJ8+a1j2HfxyHj49uEyzCD7QzuCX2QMNKnrKqoLfeMeQonroOk8OrWqOerdd9gjTn3dZoGtveXXg+i2Xp93xtGt/NbjTtp8J2uvPs/ZcXbUnme8TbmTNcDsUGpWhn4vyd+GEY078mcxqLUnuDDKju0fmLtf1wOFO7mT/cOsL/Tv81534NAk829L+UiVt2/f4SjZcwhZS9ohZAS7IUyfE40Puy43DUIv4ukz4GHk3lsNgW8Y1b89tVdRXYiZEo+a396Kz+VoC5+kPVBUF1p9kSAxWd72C2/fVp93ZUEq7g+IMRzm272bgN2vzEDf4FiU3LghlSX364rqwoor1QxOeTK+jUTYI/KaoQ9/cbvxDhjXb7OylL/dewnY/fIMNPtrlKRx8/uxNO4l2bGnCEltyyPj20jYgvJx9R6jurS3PvOtVAlZr7blat7ZS23o0DQXpx0XPNJp1tYTv0RgT8wyaY5Rez31z9mxdknl0gz8AhoBxcWSuQSghZg48UsEGgw03pr9W9zXO9dM+MdUE5W+c+7a/vg7oOxG7C4CvdRT/448S92uTM4Hds6E0bsLIzXJWdgOf+kdLTTDD8uumc0W2F9b1Eapva1B+gYA5XsdReN3NLVD/Xuz/2YLn1jnkTEzob7gMCySBS87ULL/MPwTd3DVFUV1oU9lTX2BVI70+EXvY2QPI9IFAGPzOhn6gH4HvpHEpXzeNvSUj2ch7LHtCByqBSW+/+BpKKoLzf4aJeFVVBfU5xyovrU2Zh3VVClEvOJzzgBN/e3T0JYGj4OEM/+nVrxc9kfy7WXq+zPhHDgSiuriTNiTmYdR2tGGv9owVaOTT8rS3+CVExH4ejL6BsdKTBjR54kB048J+k2qTiGTU7D+hwU8CC/AAnq3+jKB4xXHk1n/K6oLtb4xBiCvva0mxzk4QLsFowC/N7seh6K6ELW7RBsjQuDgQ6O0m5KtbX6W2gawW05FdeFm1+MYc+QoHHuKUD0uExPSGcMW+mwKHM9Owu1A/73Xrl6CYy+y/unbexgszUI9MmH6NSDoNxYW4NSq5gYmDACXzALMVb/Zd7swio2Xq4PlWwsRgl9kB8BSe1uurhu9ayjif/yFu9o+M0Eed/XuO4yiPkyFUVQ7S58bLeGmMk3eTOLj2dv6aCZpB4DEw1sMaYQvIbATD5nhTYhAKoBm7yxhwTg3xvPNRO15yTzILLXhlWztYHhlCOvf4896js0n4vb02/KnFXUslaV34nxSVBd3bZ4+K4an6Zkwb7B6++/IfVf2fGdGi2+r5jg73i71hfhefYHdxjR5KwmhS2TvtwTkpS599EyEfxvPb9Iyuy3gdYdP2GHOhMW2AcBUyVtPS0Dpzv04PF5W/9bT5BPVUhpjTqsNNb9l49vHX4sT2DfuIcNNV+8ho3kZ/bej/5W31PV40Ceo5FteemefzNTrG25kanIlN5h3vriug3mZujOT8Xo2ExTRra1IR+lNX8O8ISbszEQ7+jkGGOjQ0+i02rhXQUO/tWtpWOvrTWdztm/oQQmvGKomqS1ra9gjuyQmTFFdXBUdYAJXMyFEybVreHnQCrRNHQ5FZSrTpx0XDG0A2FovMmPinGgw8JDUrr7BsYbxDGgaE4rqws63ZTtwAEj/pj0U1cVVy1enrkbxiZO4dr/m1RbQQkwQE6bv93+L+/qyG7G/D8oYsbsIaBETFwtFdcGvcQDCFrHNykyKpl8c00fNlHACwIp3P+ZlpjfazstZwrVYYaOrnTLUUdKlnVRHkbO9FCxXpFsPtMBEbGOH/bYfJhjK9IuOk/Lq63dabTx2TMS2kTxPwyQmFbS0CEfAe5qUM/FKM6mOa4O0RZD+SNff04YJsBhE4mamXyzL+VgM7QWYakzJBjkWmqK60Lf3MADApBrH4LTa0PRB2RW302qD9ZMkXOx0FkHlqgBggaIJ+sX083iAEEGP0ydNkyBVbX5O6geAMavi9+tX6QZ8tmlMFalblnZk72kTIamsN0Za/3z/QVniycd3UKCUn/4/XytLClY+JWsvp0vf//xQrIvHpagunO14nuN8IWsfivqwA7+4+TutNh4vBwAOd9LUsNwHjki0TUjPRo+RYw1tn5abhGFVzyOpbXkUrmvKJdMAUPV7zd7qVIIcykFss36c0YGvZP9h7pbb7MAU9MsE/s5ptSF8Ijs01LvvMILWamqrZ8dp6jPF3aMkBlE/H2osSoaPvz8qr9jOmXoRbvbW1Gp9kvfw71mrfzq+DgvnNzFpb8400PznNyxwfMB72s1y+HhmY5q1pB1y37EjPkNzQ252EBNjEDmtNlTy1eIakrrXtfs7mM5jS4twnl78TalHIUL7N9i6e6ZVRc686MepOyMbtRYkS3Xo6S33Rxqvo9n8eLwbbMPZcXb0i+mHKj+y9Xjvc7J6IOF550xzAECLrxOQPisGGV8wlavzo7X2h+yoAHc31XQcie1/uQ6LsRY+KZW/M2NySb1ZBFIjvhlQKLVN32ZFdWHNuu9Re675LaDlTyusH2kCuybrb+LiCGN4hpDJKbzPSG2ZoG+wMb9YB1LYWuE+lMH3D2pnwRQ2Ns6O11Q+S7q047a4ZutYaWEhfxZttgjE4L5UD8XYI5qu3nPagHvwoVPo22cYbpa6eVkK1QFoIRbch7TQIBcfjoU7XVY1fCs4En4NmNq23iYwfNxObpOqhzqzk1Gcm+dRwEE0ZX9kh/vkKUkVmAQ0a1czRzZZn8aiuHsULLVr4dzvbKyQ/RMA3OgfI+FNnx2NKVl7kb3UOP6yB83mz2bx4giWNbcabrMuDZcZqStDY/laf3VtsDTmKZ8YcoD2Nj28FqSFwDBbKxqv8oXTqoWH6PkQs4UkjZu0wiLkvmOuSl0G/7ehjBG7S+B6P1nFiyZ7XNfBKAqsg4xRM03fiyBu/orqkiRVY5t0ksqSJJqC51L6jf4x0qJ24mltAwI0HXsJYswDIDqtNgw+dApNhuxDXLveaPBFkrQIAsDqHYkSzeLi2ObTBIlxONRxMU49xugmByCJfyznZZpsr4ylUxjDQpsS6azrmVyK3TXmiHbLSPYa4gHTUx83n8cOaCQlI4cFB+NnwLeHFgtNUV14+WQblOw/DL/Axoh1PWA4pOlxU/qfLVfxdDEYsqV+PfQNNdoEiWVv3Ms2FvLeBgB1BxyRxk2zb+INGwrF+6JnRXUh44tY+Gxz8ZtUsS6n1Qa/oECOhw6+ZrCyRV0JL8HqbatMNz5xszwzwY6uFbUbq1+uVjGlRYzHpT9cA8CUtyag/NodWvw6IZ6TJ6b70poQKW1OeLDBSF1RXXi6qRZs1b93LqfrdLy8+dabkcSd8OjrE+eG+F4MWmwG4QnsYB3X60EpXVFdyOkzj+Pc+RZjilZfqwC/jWkSg2gGrx1KZk4jAqJQe2llfogFgI0L50l06n9nTos1rEmFcdGGfOKz02pDtarX0PTVZAysfIW/j341Hp+dC5byF1dzG/qOGGL/80ztkm68xX4FAPdB7eYcPQo80lN7LmOw6n2dhKoZfrAIqjH6cZJwLBZH37Kj6/6BHoUmiupC09fYWlF7XjJKzrCYZ35Nm2iMXbdIiQa6nW78bhJyBszhwchrLtQESjMayd9xzkUrMqdpzEqXiRMQ16ILnFabwQ5QrIvwLWtulZ4tLcJxI6kOnFYbV3M7PtnBNS30h1un1caFInrGNLFZojTXNi6ch5tVtHlIN9iiIxKRFrPDMv2m2zp9m8R2BrzPBHcio+i72dwZil8jKw8MbwaK6pLGOe2rTqt5TEICuv2dUF1Fyd7DkmCJxpzZHg8A1b/THDWJ70kF7rummwAAQb+P5+/IJtVsna24ub7HugiCX2B9FfSSJnCovGI7rt8Xw8uFTE4BXj4N99lz3LGGiJecfqgrW0BRXfCveQPvh7RBRteF2Ft0g9elpyV4pWafLubhvxtpt9WK6pLiAyqqC1WWawx95VtecfVrAjnp0cMzmYcM+xXhpbRuj7J+rrgqVbIz/WMps3UkB2kvB8WgdZcMXp6Dj3zjU/C8Zw2EMvjfhDIbsf8yiDZi3fa5uV2OpU5tJO7dIB3Gmi2IR9NXvOslN9tZDg3KX8LmNhVN39MCcE/CBGyZYXR5S4tT8M8TpeDHZi659QfG/FcdOJigqX/MOLoVjz72rOQ9K+OLWGQPYfYy5D62zS4f7I2UpdIiLWYMS4+RY+G3wWgTZdsNfFhfLmupX48f0PX49Auy/l3XseNNXfLry5v1hydIPLYLcY0i4RfQCKtT5YDL5BrcU7udVhu3gzKjN3Lng6g74IihTqJt8vFI7I8qMdjpvJLtwj0V7kw6d/4RO1fZGZ/fEXkdNOcs6bOjkXPv3NsymfRM4QvU5xyo4zwGv6k1Je9cZv3gE9USpWkHDM9m36ZPYAwPPK7HaYbbDDyNDafVhvdyUhHlX54xpLrvSe6n9fX4NW2C4tw803rMJK0irfQ//xUHGr+r3QQX9ovGprlzeX6yV/PWxsJ+0fBfzQQJXfZe97hmmEH+Kw4cfGzGfzwXvNHj7V3GwigeQuDiw7HSYZTqofKnf22GugOOQFFdCFscz9UnxXwA0M9+L4qP5uuruuN1yBuI9ZnZVYl49xbdQJvyFXh+T7jo/dnxdvRISIarnZHWdu8kYPer8s2auP6ZtU9fL733bdMcNz69jvK9mLCKbO0U1YVuY8ZJQrk77Z8Lo+yosSjZENLkTnFkfRqLzOGyvaX6vAP7npmB4BUT0XxqJty3mNtXsl14N9jYLrO1yGllN5RVjhfzOXG7/gHAQwb0HPEoV1G+VlJksPO603mgL3PiaQcaTDO38RNxZH9g58JafRsVlQkD09r53nb+eaLVLN0b3ZfWhCCo2jnJS+N/Mn8AMPXSFNnh0PHJDuydLK87/Q+cx+8ta2pr46sONH5Hu2knmjKnxSL06RTD+mHWX317D0P+WxYetkLMS6Fm9ODJbuw/2WecVtu/xn19z8SJ8Kvsf/sC/39C8dVC/BE3+67tj78Dym7E7iJ4tc5hLmkhJkxc4MhphQiUn9KPtL+JzW2Y16P0b2SPfIC2mFb8JZVv0vqF1mm1Iezx7ZIk35NL7i4TNG9n5KSD1J0SAjth85w5Es1hT6Xwev5oVRWK6sLHDTRppKK64FtBcxLRc8Sjpm0gJuzCSNkO4cP6Lum2SFFd0iGE+lTfj/qFsrAfk1j6r9nhMZ+iutDt0fG4rgRJEkzCT7d3IiiqC82+ZyqadGin/L6VKnHX4OK3V5+X8Yh2UJY6taX2DA/Wwg2I6ZSfbIN2R8vqHiITVvWvOry8SDcBGa87rTbMbbxNqid84g5p46K/fh36o+X0BG4rQ321IoKNv33PzkD5XkcNLpKdVuawRaxfZMLoWdzsCtc15WV/yNls+LZdx4+HHvwaNjDMJQDw8fc33USbfcNuRF8OiuEuqosLjkltF53IEM70WTEGJuz0r804vT4bG0ltJ7VCcW4CQKOtzNbnQBFzB71p7lxsuu7L39/sehy+lSsbaPe1teC/xQPn0qU9kPemQ2q/fo5YwkN4euN3kwy46dknqqU0FyhND+QhlG6l9eudSEeVvf78OeUjJvFWX5C9y1H5HVHL8HbODtjeT0DGSHY4zStmqsZ0E+602iQmTN9m/80NPPaD/lkP9L7F17fm+fbfDXlEmtuUryCtYQAMqnr0/u2cHag9NxkWsHlMoRsoT70ZmtYB4XOfPGU4KEek+fE5E9dzKN8vzo7TbpRK9h7mt/IAuMMTp9WGPxfMM+Cktpv1F92C1FjE9jC6LRDzdHxaVpMl1TcRZ8jkFGmcKKoL+55h+0724NmcCVNUmQkDgJjdQzitotq302pD+txo1J6XLM0JALA/Z7TtFL8Thcaw/KkxlaKd12fngg3zhLv8r1TJsFbr53mDaUmSSjDlvzRcHh/uKiWIa9dbolHEJapdA+ymT/xOlmahvAzdvos06fc98b9IL/2v1jcLOdOb4dzv4VBUF9p8koBSe1upTPqMGAMe8dnvxAXDO/LeO+bIUX5z/ETNo9yeVVFdaN9vP9dqEdeh0KcZ80Xrh55u8XfJ/sNoNOiAtD/Tewo1I4Klfj1TuzE9XLu/AzK+Nt54KaoLXSZMuO3aUgb/m1DGiN0lQLEjnFYbHj+m2TXoDyfPn5DVNWJfmCQtIuLBO6fPPJ5PfyinZ/GmSP+fPDHpFwdR/aLC76lcBdJpteHqAx2Q9Nks3Lg3BsXdNXVL3zbN+QFZBHGh7BvWEU6rDWuy2YJZ9a86+GOJ7MpY/7vGYtk2w2m1YU0mW6zDFsUb+o/qNAMx3X/1DoOkjOoQ08qv3YGKzhypLLWp3teaVI7czzutNoTPO8t/E809Dg5AybVrHEfNbbWw5DJjsp5+9GeJzgujNMaEDh6E749WVQ2bC9EcvGKi1E/6viS43PmMQYrn6aAV16634dCtLxP8x6Mozi/Agcdn4GY1P0O9VL7cpoZc1VOEI2PkDY4O7iKOvnEP8QPE+TWaWlV134rcCQ3lp5sjEYqPn8DQ7B6GfiHbELEvCqY4sHSE5lLbzEW1mD+uxxD+TLY5hP/kkw7sav8Dz1vaXVNBBYCq+41eqY5PdnBVo2ebaoKI90OYg4JnMpkReM115XldVJ+ZfQvAYreRZ0JPaw/ZpcS+YLQrE38ToyyOIUojpwbNdpbD9S5MlWpBs0Duql7EI/Yh2ZulL4ji6WRnJLrwBoC4RpF4OGUcfItLed7xt1xYr976i1QP1TUspzuv02m1obDLCcPhjODh3K78d8EUh2FOULnG75qHs9CniWs64aq+RI5nRb9j/Jln3aYVzgAADjq+42UzvvSs0kTqUwSHooo53vOfsjiC4Y/uRO15ych5X7a9E+HXYzukNopwKkFTzb1yy+13YRwL6bCvw1KPOKltVZbLtxRkm+hpvdYzCU4r87AJANGvxPOYVASp7X7kv0UGU1FdyOlnXBPO/R6Oaks1waH4ncl+Ub9v6tcPpVU1Q76gl5MR/PNElFy7ZrrHAEDO+5r9mviNKf+WT76W8oc9vh2Ju9eZ0mRG380mdaW63UcytTXi8mX4b27A82Z8G8mFcwSi4woz+gGg2rIU7IhcDoDNX5/kPVL/5Axkwt3uo8aazo/i3DzTb++02tiacYv5dVptqLEomQueFgVu4WrTVJenMSTmua4E8d/if6fVhvBv4znjpy8nnqMGH5Jvnqk8QaWV29GmVa7Ub0Tf5jlzbkvn3QRlzjr+PihjxMqgDMqgDMqgDMqgDMqgDMqgDP5hKGPE7hJ4oFN3RMxmqiwZ0ZqDDJKWtJjB3u2NlE36SNeZoLD0Jv9N0pWzY41uhPWSxLF5nZD5uabu0D+9r6laAgAceFy7mldUF0p3a1f4lX9iHsA2z54Dv41pvHzJ3sPcgYFYVpQafXt4nUTf5c5n4ByoBfcV+4N++zVtgpAfZPURp5V5S9TrzOul1t5uhhKPadI2kV5vN0lietgOf+6x0Wm1we8SMy6/MqQDfC5c1ug41B8AsKHFrxKe8x3PYVGzxnBabVgx+B4Jf41Fsh66GIBSzGcJDeL1O602hD0hB1vW94OZqokotfMLCsT8iw143hey9klSWOegUabSxOye3/A6TsT4YtSRfFOp+M2ux/FmdB/4+PmhYIoDITs0uxnKf2lNCBY0k70sAuymp+Qy69c6/Qqk+snxwNcXZG+WTqsc1PRiJ+2m0uyGL/8VB349tgNF1Ut5gNemqRVNb41FSNzwo0E6TTS4XjKquYj9J8aAKtnQGIrq4gGe9XkJPg+NAAAsDfpTak/snpvwBGIfH53KbjbS50abSmirf8duayzhIejbrLNHWsgjKqUrqot7lzvS/iZ82zSHb1tG6802TQ10+FatiuIe7FY9fTajJXyMFqbh+GT27aoIZl5UNmj4Hox6fA1Pz/wsVnoPAP06DeTP5zsyj6Lps2JgqVlTckwjrh+l9rbcRbaiuhDwvqYKKK6fIpjdqolAa7q43t5Oir8iop4BZ9iT2zmdisq8StLv8mt3mKpKO602VOubJaUFTUnmgbCJLoIBjaKlOkSoN0PzTljlVqy9TfO0myb9uqOnAwByf2hjuCUqmMLGo0+58lI6lem+T7NRPTSBzY2S8nJwYACS6mPL6QmGG4ue+7V1GQB2RC5H/wPnYQYDK1+RcOcVXzHkSV+ghSzQj4Hwp43hRugmMq5dbwRNSUbbjxP4O+d+LQ5ev4734b42vZC5uB0U1cVvp5xWG+La9uL912PkWFPaFdXFPR/r+5p+F993nXslrbqrAi53PsPLAkYPgmKYFDGfOJ71N0CUvnLhdPZ9/f0N416PU1FdyH1Xu7F9L0fTMFiTsc1wZkmfGWMYa3rcVGZL65WmeyHA5oR4A0e0RMyRPUHTvKRnfX2K6sLnTVfAabXxc4uY79r9Hbh21N0OZTdifx+UMWJ3CbhPnUaTqUYDU5qkZHwqvtc/K6oL7ac9Zciz8+2ZkmqB2aGxIPYKQp/R9O8pMC2BuFjEHWEHrGcyWfyNqN0lhjxmQHrbispiNkXulD28jWzc0YgnlcXg6rL3OmcoRZqKc/MQ+kyKYQH9a/psqa1mDKW3g4HFxzg1xAOSmJ/cr4t4MqILucfGKVl7uQv0bV/MRvHxExrSHkYjfhEyvuwA98F0nqdfp4GYkrVXomdc3B+G8k6rDYlbVppujmZMgb7/9IcUp9WG4pyjWB6h2c58FKLFO3FabUDKXtNDZ8e9g/hz8EvJWNSsMfRAdbvPnEVpcTEOPDEDWdHMk5ZfQCNeZ3LbFQCYK21rSlXuVp/eZy21YUOLX003019b1Mb5RzT37YrqQuAbSaZ9b3YQbvxuEgY0ikbwSxojfORNZr8R13UwzvwWzvFeGRor4SFcJRsaGw4/qYUag3TsJXYAvidBc0dP4NvDyMCKfSe2i9JFSGlbznQMAEDmYk09zqcFO5CGjzeqiYp1utOzUHL5slQf2c4BQPExVcpvGKPLUrBmzTIAmlc3gAXdBpiKlO/Lp9gh9V6j6tjeyTMQ63rA4B5fUV1In9cea1rW4Gmhz6ZI7wFwNUWR/vBJqfCpVBEZ0YUSw0G0i6E79O0JfUZ2IKKoLpQ62krPtFbU3lYTXSZMwKnHHYbvpaguxLXtJbU18u14nodoWphnjDfID+5WGzJGzZT6vd7XSYbvbrY+AECVglLTfcJSp7Y0rigGmifwxlSatZvCeoj5A96/FULjZhHCF2rjq9TB1L03tq5soLXaUeax8EqJ5o1v2zTNNujA40wN99yjdtx/8DQi5iTggars2xJD5rTa8ERNzauuft3v23c4tw8l1VcRSGhgtq6uzdMcnRStD4Rvm+ZIf4SNYxJuiQ4hnq2VzcuWVKsE99lzCB25G06rjaurAoD7tBaSY8Pi+RLtljq1kfe6Q+pv6mtSaz3lZkztBWcEgl9KRuvPEtDgiyQJD/WR2BcHHd8Z1jXe3tg2Ut/p992hAWxNLi0slN6ZxRV0Wm2SrTwJxET8GdM78PfkDVHE5Wks6mmMfiUe7q6RpnOG8jZ509yRiqjGSOV7DR8Dp9XGw9PQuUWk66+vZ/9r4oiVwd8HZYzYXQRmkimf9q2keCT0Xswf/aq2SVs/lhcGWjR+CvmDL7Z9wzpK5RXVhfT5RpftTquNu0AWF4yTV9hCQpJ3V/faUn1iXgrcCgDl1u3keNPa+Ure/STp4htanCWif3ObitwjEeXNWBhleugUN3KnVXZRX9rRhsvDYqW8+t8UgJEksPo2AcyLJJUpzjnKY4dR3utKEHzas0N614qMUT07zo7WnydIePSHDv0mEfbkdljqavr8xdm5eD+kDfo268xperF2BtJnaxJKv4BG8Ab3xE8wtEnsLz1jaJbXbFOtm1QDiurCV0e3wdIslKeTdFzfbk9g+dMq4V2duloqo6gu1Lk3HWrsZaz7caFEd8hDLvSLjpPwf5/PDqDRLrfkaERPh5imH08ExT2ipGdyyJG4aQXSopZzPGTvoj+ErY/4zdBeki4rqgv7n2QS/QbPabcUFBMr+0PZVbhInyfpqx7035kgdKTmMKfJkFsSWSEsxfICz95axbqD3jQ6KAGYXR+5Aaf8a1rWwLTzTQEAtg+0eTE4QHMHrv4hM+2K6sKFkXZuj1Q9LpP3h8RQjdtpaL/TaoNfwwaYWMD68cOzYYaxDsghNZxWG/r2GcafvfWp+KyoLnQfPQ7rfvpW6/OBI1Gcw9aisx3Po8LvqTzwrR7cp09zN+6KqtnrivWNFg7/zXaWk9qgqC7Ete4O+PjwuHW3g35RffjvHe/MlMbKigJ2aEzcu0E6iG77YrZHfPwwvCjeND3r5hW+t1lq1jTth8X52ySb0KCXtXG47qdv+W992UtNmDOSKr6a46cWM423YLW+ScbKFnXR5M0kfkD+o5XmrMKTkKZPk/ZYs2YZGn2YJOEkQYoexL4M2yE7APqz5SosXf2NxEQrqgud994wlK+bVIMHtvYGerrp2zV5K0naV6musCeZ0JCEobM+nAZFdcH6ifE80XxePPZckuel3qmQ1M86z4emQGtNTGtePnw8s9Mm+9Hfj8m3iHq6KD3s8e2G96JQyVK3Lm9/9a2aYMGvYQOe5/gvEai1IBl/LP1GwpX1aazpOOW4m4Xiwig7/ljyDV+vCcqdYTbgQWvHIWMRY9T0jqO84b7boOxG7O+DMvf1/2UQ3df7+ZTzKD0UIe8NB5pMlaWbVMbSshlKLT4o2XvY8J5w03/R9TbANkP3eaaKkbWkHWqtq4DU92dKi2vvIaOlw68I1wZ14LdAVAelmUrKdM9Oqw3Hfm6JRoMOGGj1BHf6Pn1ee4SP24nF+dv4ZkPv110rh09DWxrKmD6buNQFmPH2zLBQqQy1T7+hm20iZv3iFxSI4pyjpuU99Y8lPEQK9mmfPAnVlnmOFWWJCEPiBs2I3RttImQtaYeQEbt5nrYfJuBymBvZg2Yb8ltCg+DOzLkjvNT+qKnxqDPbsyvg2333nA/sCHrJe/nC0psY0IgxB1mfxqJF+1wUdjlhKKOnl37nfN8GQcPYWCjpZIPvVu2AU7CiJerOqySFPojaXYK0dr54MvMwV5siWoLWjkP4o8YYfafj7Wiw7CBQrw6P+Wc2Nr2N2VFH8k1vIQEg46sOCHtCm585N69gUmAnHlKC4MraYFQbfBIlV68a5u750XbUXJiMyZkH0LvSTTitNsRnZGJg5Ss8T9bHdoQ8n+x1Lph9U0vdunCfPi3Vqb7g4EF6PUH/A+fxRM2jBnz3HzzN49mZ1Zn/mgON39bCAoihBvR5HXuKkNRWdqbiaVwen+xAw0+TkPWxHZkjZnodu97gzEQ76syWved6WmMoT+Tb8dj1mjHcRcaiSGT3/EbCoc/jaZ329B0V1YUn1WgcaW9Ug/WES//bLG/1rbXhyg9A0HDtRvJOwVO77mQdAdgttm8P2cOm2TqZcCwWWdE3uIv+Imd787ibunKevptI882eUTht8zcwRrbdMIQxMGuzoroQ+XY86s70LFDx2dgI6u+B2PvcjNv2iYg/Z1lbpHdhAofi7lHY8N18U6GF02pD+qwYhE9KxZnfwpEWtVyqZ0rWXu5wCADyXnfg0CQjLd7GIP2ndUNf5mbv9lwgTGkf56bggeSJ8MmshKavsbn169VK+Dos3Ly9H9hRvdVZ7IhcbtpPZt+xoPgKhhx4RFID9jT2/i3u6+/5LeEfc1+/5d4Zd21//B1QdiN2l4DoNRGQJVknnnJIk/qGlW1yHZ+aiJZfJaD76HEISKmCvDcdcB84gqwpbHIkHItFswVa0F79Af7lIFl/uiREu0kJGbEbNb9NxgNZPWGpX4/r4ZONh9lCW+nn7VxVjGj/a/psKKrL1I7LbPNvNOgA1OccOFB0HY49RZq0KlA7SPqUK48J6dotC+E485u2cFK602qDb9sI5MQxL0pjOg/n7+h970o3GYMF4Ojy1lKfHJ3qwMWS61pbBSZMUV1YXpAMS53anAkT8RKsu6apjuhBUV0Ymt0DADA1Ow2zLjTiZUl6HrppNM/fKmWE18MDMWEEYnDLMUeOcjVSgNkwuA9lwGm1Ia75PQj+QwsVUH1rbQkPtYsgZMRuXHpIs7vZ8+IMZA+azb+zmFdkwrI+1m51xHziOHBabQYmzNNhSvwT08XAo2K6OBeICQOAzOGz8GvYWlNclF9PQ/o9i3g+crtP+QIGH5CYMAD46y3W9i9DmwNg7rTJbbTIhJFtoaKymxD3hYtS4HWCablJiJmi3YaLID57YsIU1cXtBqnMpMBOKFofyOP6EVTpk82ZMPpGhIMCC38a2pIHlBaZMAAIeV67iSzqYwzqrD9UubsyiTEdpsS8xISJY4fccdPf7y3ZDYslIkxqBzFh+a+Y31w0fkcbd4rqMo33RvBG3YMS7muDNG+3iurioQgU1cXdboc8n4wWM4234hcT2fqRPovdtNOttoj/7FjGhGVM74DOjxuD3FJ+cYwD4Idvp9XGb84BILvnN9K3pN+kaWA2D7qOH4+sj+3c1faJpx1IKywCAPj4+cFpteFI+5v/P/a+O7yKovv/k9wAgdBC55KE9ACh3JAeer0QEKSjCIJISVREURELiAVUVFCQKkUQUBRBhMClKC2dwKVDekiydEILEJKb/P6YzOzM7t6b+P58fXnfb87z5Mnd3ZkzZ2ZnZ+bMnPM5DKmUJ8q/YLw4BtB8qrTnB7Jy73S+CY9nTmp+79T/T4syNhlYufYdWrOA3EaXQGzJi4fRJRCXZkcIfenyDLFv0FNseqK754G4+KTmptSUmkL0VzcdQ/bH4cjcJNaNUYhogsbPz/x7AYBq+1PwsHkplGQOkPNS2paXhD7nn1Lxpsq4kkwSCRhf1jMfzb8iJ7SF5aiXi3NihXS0nSJ7j2TyOsfUAkDM8XRFFkEWZV2yBhGkxEZPcQHVQTaEeCUMAM5PVfvPpm8IENrJvk4dlHY2MPnoM8v169A1kucw6jtfbe8xlHYmffy9a6T921d3hMczJ+H+fjwz3fzWx1dTIaZzC0WD1CJevh/vkXFooltn1O0vjuGdTg0V+rODqwsAoOBnbyucnyyqOhH7+6jqROw/TPyJ2IHLZ9kHP/L8FUysd0U1QWXND4fHLHFnGajcSQv/vG2KPbadDkBm39VQEh1IQmdGof6GeM38JsnMgvEqy6E8lFTUP1gVl0spq11QW5QdO6NaAGvVbcEtL2ZGouSjzCO9GYHmcQ+w9+d17PmiAnfs9q/PAtveHxGK2j+ThenNSeHQP5clnJBoyUFPhirakdSSMe+dCJx9eSk8dkxmsOb2jo4ofUQm9IJdPnAekIbC4aFw+kVeMNsFt0NZ8mmhTOVOvy2ZraUxSSQuWvU9ySgYH45mE8T61zvakAFaWONjrc5asijfVcaXYWgeW4ZWM8/gUmghCzptksx471o7fNzkdIV9vjLPxlzIw8ZWLrgWHYEmS+OQ9m0ofF6ST3L5OlA+l7e3xqkQ4s8U+6gUnRztrfZNAMLOqy1SnizyZSvrkv1JOPOPUG6EdJ42RegjADFr3rPjB6vtkDUvHB7vxAun0ADgd2Qc3EeJGw4DOg1Wnc7SoNKFezxxtP2vqnfjdWACM3lULmoq0y95Xnzev5JneEZv/OJFfCjdEp2wyjVW4JG6KlgwW2qd4oDzgSWoc6QRAyhQ8q1Mn3v0VAgcf0/SfE5l6/LyFNT6NRFpS0Lh87JoNeDQ0pXFOdPqF6XdArBv81qhLa9PDUfj5dZPPCivgan9sdN3N+nXMyLQwCgJQEpXXo3AyZlL0fmVKXDamohbE8LRYK3aNFLJFwA8t05B5jByKs73bZ50f+oR4xdj81uuaCyhaTqfGoqin5qiwVr1xo1Rb0BZeAfBr09rfqCnoEy+hg1guXmL9W9bZG1u2vXAkW24aFHmZ+HwnKkts/IeYP2bubXTFw0Gpv5L3wglai3C8x907iZ2tGmI7E/CcXHCMpvvSimr7+FxqL/bCXPeXyu0ga18A0IGCHE1+XqwvvXrFPi8LI5x9ETfFn97Qxvsjtn0l8aOivpdZJ9RsJwlrhV8gGdbdVS9uxfC0WBNPFvT0XR375XC2TfziT0BomvWzjte+sdOxI4O+vaJbY+/g6pOxJ4wmptJ7KCpEkYHIRo02GNWPKS3IlSDFCW6O6ec9JUD6ZnAUgxqR+J6UHQz5e4oVcJo0GSejHqDCrmLxg0z6g1YXe5InrZEduamJwRKmWkek2TGnh0/CLuCvMzK9LwSpqtfT1VPSqVdAqBfEAe7WHG3eLpzNkySGTV2EbkeNiKfQ+ryEIx6dS+GNj2u4sXLb5LMSO+xFjvzU7R3dDUmVX5Adl9PTKf42FJXXiQnAYV7PJEUQND2box8IPDhFVVKU+vnqwI/82XR9gGAtzJOs+d8mxn1JC4aADivi0dRtyvizvMPvqh2sDly37PuB2HUG1SnaQCQ86FsL5/xhXySZpLMCPiYnBB4zUhArV8TcXG+PyZczEGTwReQ+Rnpe8kGndCeC7ITNN81X2/+PdHfi7LjsLEV2XlssjQO87KSUPeiTqiDVts0f/o8urw0BUa9AR96aseToQiMANl55csHAPsOrbEhN1bIxy9Uaftp9XUAWDF6hXB6QNMb9QamhPFx2LSUsNIDrgzNjfrbnAnbyPj1GzxWUMLofXo6y7cPXaQ69cvUfBfeY0/Ii6h9L2DOdX9BdmtjgZL4PIDaiZ8S3960XagSlroqGJdCC1VyKgFJzgcSkAdeCRt5Xt6M0BqT7GvVEp6ZJDMOrSA7/0POXdf8zox6A0odyE6v+/YS1WZWSU4uSva7Cel5sj90Ar7fR5FFYdchAKBSwlKXhQjtS39TICaTRE7qcnIbwSSZkfY1+S4tNUmZTltJn0r+ZBnzyTPqDbBv20rgx5Pfm2RO2ZmfIvTt61HhuDGZjAGWHvJpmZ2Dg/C9Rpwkp2sBH0dbnePoveDjI+HUL5MpYVrKiF38Sc37Qj/+SDxhtdy8BQCoxgEhKsc8rQDlfBlaSljqd8QPu/eZe0wJ478BrW+Iv8f/vj2WIGI2GJgK+/athOfFvQPBE+VP5wdle/q+eAwRJx+j1SrZh25HGzKGu78bb/M98GXQ/pHadT0anLqLAbUeCfn4b15Zb6qE0WtlvY16AzKHygBcJsmM2ZnHkTmM3Lv7jHXfLa3Yidb6lJJ0Pp7s2eN9MiiX5exFXJ1GxnuPpzNU+ZSkNa43WENO4KgSRum/BayjrMzuH/v7X6cqRewJoW2pp2EcOg5zPGVlhv9/uN02AGRAOD19KewdHTXT8Qsm5Ydf2oXYMUS2J6Zw5tkE/tZju3zKQRW5rE/loMGJn1k3aTBJZhRFBiPnw3A4/JHC7k906wwAqsGzosWzUW9A16jJKBweKtynKHJa+QDAcvuOcM3Xf99PMiJb7i9tNfkY9QYUdLAAIEF397etg/XTBsHe0EaQXWuSGNhCnPioKYrWgprPW5KXj5ng3YkAAQAASURBVNRVwWxSN+oNaLKE+KfQxa1Rb0DLkTKcrUkyA+WH2Ea9ATjgwn6ffm0pK3N25nGhLNo+WZ+G43Ovdhh2/ppKWVHSzvwU+K2WHe2d0x6juPtlhuBpbWK+0/mmSmEt08l91OsNMVgthb2enUkU35o7UrDWryXS1gUibazY92i+N93DNO/zMlFQGloOAEx3F82Q3vEIgV2JzCd1TRALLG6SzAxwBSDBOJX8jHoDc+CmCIyU/4CIQQCAZ7N6AABKT55X+Sfyv621J30236s9ykpKVHU1SWamnLw/SjYv1doIsO+ViyyjeApu1BugTyCbGmXJp1V5lJS6UoS19ztWDalrgpicaUtCVeOSz/PHkdBBNNFVKp4mySyYZSoXa/TaGprjrgfimMjn852UjJwtMhCA8r9WPSl0/sR6V7A85yhL87hfMB6aPOCzIQq6Rg1R+uCBarFPZZhaP9/qQpYCulTbL4+b3V+cxGQ+0GaHzX7hMSsekd2GwpKeBV1j0e8NIIhxfPuyhfKKYER2k5FMfSeSk1ufV8l32eJT8RTIqDfgQXMZYn/33h9VZb2cT945Pc2vZqcTnjdeFo+C9mrTuotLOgoyxnUgAEl0TACADp9Fi21wwIVsznDmYff3eLL6OLTQA/bqzRVeZmvKD4VGN0lmNPta9sM+Fy2ayRXXU/c1W2MpQBQeAHizgbxw7zxtitVNCX5zUfk88TP5lGr3nh+F763a/hTofL1YWvqMAnkxJTWordDuPIKsFim/aUA7zItRb8CdVnWE9FRZtMbHWhuYJGI2qZWvk6O8fKV+0Hx+pcmi7k+9Sga+nJ7jJgrXAGBJy8SVV8kmxFKfzSxv2tdhaPpNHIznB7LA9ADw1S1PgQdFFdWqFwAMGkLeSUnPQExMFf2oq+j/DlWZJv6HiR7zFqR6YoSfCHlq1Btg7+Qk+Gbwz9ssjWaL4ivTI3DyLetOtvm/+uNM2EYEpoxESuAWnHr8CO2rk8mk1apoeK3MZnDT/A4l5Se9FYHT09X8U9cEIavfd8JiQ2tyUj63tQvI5+3wmQyfa5LMOPjQHvO92lvlo6XsPd7XEtX75Ah8lTLS6+yf2rMTAV2jhrDcuKlKozSxNElmZBTfh1c56pbnz1Ox5+kv8UpLedENwKrzduO4+vjB/aBVmWaknxXAROjzhEcWvHD8ebgOP2OzTg4t9AwJjm8rPp2ufj1Ybt9R8eHboNuph9j4Yy88av0Q3mNPYEb6WXwx7lnYxYkO9CbJjOIyi6CgKvsUXw5/r59bEMpKiGZEQSCsEc+DAg9Y608uCbWRFybG+tG18RVCA2jxpdc8WevfJsmMd662h7lbfVju3hXy8Dwi/Xsg5uyfAr/0hWHIGLVc5m1nB1M+OVEImh2Fht9pmwjTtCgrg32H1ti9ezN7ToEdbNHqS0fZpgnlPzC1P4q7X1YpF1qk9f1NyQtHdshDlbwOLfQoyZewIz9Z8M8DAEv3jtAd1D6BVn3P/YLZya2WDABRFn0nJ+P22HDBvJrS+ruNUFzmgIn1riDSvwduDfBjMRlpmQ1jndGrwXkWssGol0F/rJWrlLlwWCiOLl6h6vN/heodbYgtngeEvA4tXbEr/nfN8q3JZpLMGNDRiJIrV1XpAbkv8N/j1vt1Maz2XZvfB0/3R4Qi9usViGzfS3Ps1KK3Mk4LoTCs5dECeACAOzHecK93CwWdyEnWQ5MHDrfbhpBZUQwl1SSZYWwRwDax+DLofwrKodV21OxTV7cuYi4cVj2n/Dq/MgUPnr+N40E/aY5vf+VdWWuz1NVB8J1ITtzbfBuNepmlgiJiqwy+nMrMnQA5zaR+humLwpAxcnml+jHldy06AknvLmbzgVY5SllKegXC4YCMkkjNqJV5c7a0YxuVyvGOT0vXUfT+gE6DcX5GM01wKZrv0s/tGIIsvXd/jydDAdZ6r+suHcX48vFUq56Fw0LZSbMWD7ugtihOPvFfAdYR/tsr/5hpYvzgxU9se/wdVHUi9gSRSTKjxqFmwj06eCy45YWbL8q7dUa9AR6rZcCKZovisPdBNWHApQ7gAAHB+PhGK6QEbkGvsRPxpnsY2yFtOScOJfkS3BKdAMgxjPr3HQ2TZIZLQm3oP9feLfN94ZhVxYrKqfWcv0+ftU1Rd8eTM+WdSKPewKDg+Xu2lEC7GjVQc8RtALKpDi3XLtBfaC+TZBbMsuhCQlkvamLJl0mVMKPegEWR69H/yMuqHdI/137HfvMmpHyAWPo8sl1Pdo8qYbysXj9NxRzPQLgOP6OST3ldki+pdhOVygU9MROUMB9P1gbGM3exKT0IZ19eykzOvvT2ZxDSOXNlsxejXn1KuOCWF+OvpUTTe/TEJ2OTgSlh1nZKefIZd5zxubXTl6Wh0NfmNe1U+WL2y3DzfBlabalsv2Hnr6meAUBKgD1iLhwW3j3/HRj1BlgKClge/8XELJOP4QcApV3l9I2T5KCyyv5tksxoHFsPJsmM3bs3MzNPAFZRJ00SCcad9n1HtvDm+e/03S2UxZ8s8m2o/L5/zCVjRHbIQ822DIoh74JXwmhAZ93B4/K34ekuyGOSzLg9Tj6h55UwmqbLS1ME2bIGroJJMhMlzI6YtqQWFzJ5N7ZywZbWzdj7oEoYAHhumwKTZMbNTgXY0pqMx61XRiN1WQhTwvQJddB94iR47FCf1Bv1Bnaa5rRVhtJ+UPoYaYtlU21lH7ZG1+bJ5lGUSnJyVWMfz1fZLz/LInLsOm5Spc19j5wS80oYrcdKX09Vn+P7KaWiAeSd3vEkJsR03ODrm/lZuBD2g1KvmhYh7b1RajMzk0RCVmiVXS8yHT96/MGuaxqzYNQbmBJmF9QWRr0BH2XKJuC0fjxRZEStjZbGy+NxJ8YbDzr5qdo2Y2MAM5U+ungFGg+6iNbLo1n+yFZdWVoaGgWQ4dIpPwoasjhH9mPUNZUDBFN+VAkz6g0499JS1N2cgCvTI4R3w49nJon4NPV6bqJq3OXrQSHo+fa9vsNPQFoMD7lgVYlSEk3XZGmcSgnjTagHni1Qlc3HQBty7roQtoCmm515XLAWSZmjttxh42mhHPR7dFZP7Ir9jVnrWJPbbcRpFquP3ott/6tQDyU1d6gtlFvvaEM2FgDAfb18Uqvz9mA8nk4z4va4cJQdO6MpUxX9b1OVIlZFVVRFVVRFVVRFVVRFVVRFVfQPU5Vp4n+YlHHEAMDB1QW7Endq7kTSeEUPhoSi1jYZaatr1GQcXrbSqskAv4Njy1RC2tYG+iHnVHm0+MxIP4sZKyepYvrcfDGcmVIp82T92B6pXdfDqBeRwfi0gHhKQmMQWZOJz9c6diwzJyjuG4QH029jf/sfUNveUfMUhpKtXV9leWnrAuEzPgXZH4WzuCM0Tdo3ofCZloiGsc642akAStLiqRWPqGCXD5ICfmbpKIqbtfrzdO3lCDRZIr4TigDGm1sAgH37Vti950f4rY6C+/vWzdi25SVhiEuIZvlOhxvjV+992nKVm83RutM0Ds2boTDAFTVikjXb5O4zYRWa2yif2TqVtUVaJ6m2EEOp+YlJMmP65SCcDyzBjcnhSPmA+G3w6JuULn0QAbcP1MhaJsmM8JPDhPgyAFQx/rRkVNZVeZ/m6X3mHt5skKHixcf2oqiIf7WdbI0P1vKXHnDFvta/W62btfrwaW2V7dC8GUouXxHSFOzygWVHI3ZKSPl2nzQJNXYli+3yRRi83kjQ5E0p990InHtpKZNNGAOWhBKTp6HjYPp1Pbx+nIqM0WpzLpNkhkfMiwjwzcGv3vs0eVH6MTcOo12tB2bWejcRr09FnR8TYFetOsqKH2u2H41tp+RRme9Gi19FaSlV9hvVksnB1QUXp7myOYHnbW1uMOoN6HLqEd5rpD7RGXb+GibXk4T7FGnPGk/7WrUE30Ctk8me418UkFMr8/0o5dYyJd2YG4sxrp1U6VddOopJilPNyhD/DlOKHuMdj5AK25MSb/65KDsO090jGLprZcvmy9FCadRKp5Rd17gxYk7us9kXlSd3lSnDJJkR2X2YKiyMsnw+L52rHdzdcPFlPRtLKjvO/bfEEQvdPu0fM01MfPqbJ7Y9/g6qOhF7wkjn7IyS3DxhYGfmEXH1WdDYI9+uwPKco8y8oOZvSeJE4uhodeLTIooKRZUwa3mMegMDl/jS2x+np8umg17JxOes4Xcy1LFy8PEYfYpdUx8Ha3LS3/yEq0zPpzXqDSg7Xxu3xxETzmp7jyHB8AuGucimLosLZOSjAeEk1kq/wWNVvLTqT8v1GU9s1y9OVANJLOq/AQBwe2g1oQ2+yiZtcvChvYqvoISVx5ZxHpAmlPmL135BJpNEzC4BEkyabxOlEgaAIdy5jTgtyGV36TKMegM8P1ebRPB9r5Y9kZGa0l15NQI6fz8AQGHX60KdaCykh4NDmJ+T0mzm+nd10PvTI6xOyoUMH/9MqTTz8gl9K+ZFtFkqO/bnvh9htd+HnSxmba1MY9QbcK17saoMSw/iw0l9AIx6A84HlsC+Vi0kzFnC0imVMAA4P1k0seWJKmG0bRyaNWUx/pSIfJRW32mGPs9MENoCADokPcOczmmeNVuMchva69higSphkV2HYFfsb0Iba7U3T8q2p/GprLV3WUQH9sy+V672Rkd5LD/qtJ66Klizb/BU3Jcg0d16QUZ2Lbl8BddekpWW3Hcj4DwgDdveXcDuUb6FUXdYu1OZ0p+V+x7/DVCqd7Qhzr20lPFQLsaoyVPmUGLqTZUwJS+j3gDfF4+x78eoN+DGlHDN+lIlrLSzAZmbtHkpx9y4r5bDJJlRVvxYSNs0vi5LP69puT9s48aqsTdtfUeBpxb1945g6W9OlE3n6RiglKnLy1NUfcTrRzHGpLJeFIXVqCfBdEty85A+Rhx7jXoDwt4U+Sjb5kh7R83+SdF/+fJ5JUzZBjofT6aEUX43psims22/IWMkHzhY69viZXFJICZtNIZbzUNNAQAlV67CJJkZ0qy0rY2mEgYAk7hxiS9H+duaHEa9Ae94kPfWc/yLKoWEEu2rRr0BjxoSs98h564zIKRakohyZ63vaN3nURr5dPy3Rv8oqqhJInHDgo+PtFp/B4+WGJfTVRhPlETvv5tpFtomZ1hTFT+TZMajgaStBp4tEHgWRhYR+bIvCWOJUn67AH/hGSUaU7aK/u9Q1YnYf5h4sI4/7OtiQK07eOriIJT1zFeldUmojfyX3VF27AyLHK8cTPufvY3pztnC9W7/+ixejnKHMXBuFFLmLFMtKOj/4Pei0GANUYQePh2CmtuToCRbO1A+P0Qh7Tnr/G3tYFHK+jQcHm8TGcoiOmDvL9/jhqUQjXROVgdtreuKngFA0PtRaLg6HnefCcNtX3u4zSUKTM7cCLScE2czL8/71k5fJHfcAuPTY4Gk05ppbMlNSem0rEWVSWOtLH63HADy346A657bDPLXWptp7QRqpeGf0ftp34TCvlER0ruvk5+Xg1MY9QYGLEOp95gXoPtTDeRAeSrLp5SxyQCvZ82a9aYAJpXphxQsxVo6rXwV9WlKj41ByHlKJ8TH6XLqEY60d1TxsrYBQU9hAXLiXJbtBM+3K44nBQAHHurwuVc7lbyZmwzw5NoOAFGUygOal3YJgP0RGZ6c5le2OaWHg0NweNlKdh34QRQ7QQQI2FDNvteQYPjF6lgSeTESmOwIS5rsGzvo3E28VD+3wm++ovehjCWlVT5g/STHVpmXX49A86/ikLoyGFkDV6nkcHBpgZI89XivLL8y9aBjgTKdztkZlgL5hF6rPpdnRLDA05RojDnAOqAKf9oLAA7NmqpOcSr6ZkySmY2VSlnvjAlDwgKyoA2cG6UZ7H3d3SbY3EpGxaNWC7Tt+TJvTgxHw9XloVnGhbMAzMp2VcY7o3PoxtxYNNI5qdrPGmltOOzcuhYDWwRqziNKvpUZXx4MCcWRb9XAE1qyWPu+tMou7RYA+0MnVM9NEgkf0GCgHJjZrkYNlBUVVVgnYRz2aIldsb8BgADwopTL2nfGy6OUPfujcJQ5AE/1TcSXzY9X2Ka27vPPTJIZHT+KEnznUpeHwHdqEpPDc/8L8Bl3vFJzBU/b8pLwVIuA/4oTsZBtr/5jJ2JJQ75+Ytvj76CqE7EnhIb4tsPTTvcxsEWgoITR3RO/Y9Vwdklb3CqPnRVzch9uTCa7p4sLWrIBYLd/fRj1BrZbtNu/PgB1vBye+B0x/n/7L6PhfPEhS1dzexKmpV9QLQjbJoyBSTJD5ydGhDfqDUwJ4+tTWaJ193g7HuMuEhNGitA3xrWTwFcJcXvl1QjhuqwTiZFUtNfd6oIWAN6aSXZC625OYEoYALScEyfka3V0rJBXObg2GEgcy5F0Gle2t2ZpaAwerfIfDA0Vdk8XZCfA4UAKHJqpd+R4okqYSTKjcVx9AMR8hd7jnYUpUV50tzwqLR0AMGjUUc24KzQPreegtH6qZ/OyklhdKFAMnbgul7cBALgcKIPXs2ax3crK0N+T7Pq2GHpWeKb7k0xoV16LEMrTqo+Du7xLmt59HbJ/IgibNyeJsfCUShiVVavOfWsVs+fXo0Q+6RsCGJ+bk+RYaUx2bw+UdglQ7abS/9VNx/BWz53C813zuwsyGPXEuZ22iVLeGjdlB/DUruuZEpa1uYOqPJ6nUW9Ar5oWzX6V1n2dcL+0SwBTwgASEiLrU7G+bolOmkqYSTKzE/t5NwjYQaOV4s7343oEdMEaGfUGWHpIiDlEnOWz5pOyd7RpCKOexC3UWrTx5JXsaPUbOhe1VPM+pXYLo1X3ePmVi0F+0UYVgVc7iea7JokAZexK2sWgtfldcpNkJie35XT3WTFkA0BOt/g60bFAqbhTxYaOL/RkO3V1EJxjG2BxTqxKCTNJZqaEAUD14+T9LM85KqRz+4CMjTvzU5A1P5yd4lCi4wJPWovp9NFOSF8UJiCKAkDCguXw3kxOuyggAz9O9nMLwoKzfQS5M/sSsAelEgYADVfHs/z116tjr1G6+60rAOIq4NC8GWBP9qzp3FPRvHbzxXDYO4kK2/09nkh/Wcfg/X3Xy+FBKM92X4l9re+I8ZDeEmOAKceqWtsShXs0nIGuYQN2b0b6WVW70/99Rk3QnMfsD50QyqMhOQI+iUaDgalI+yYUOmdnmCQzyoqKVLJZayf6vyQrhz2POXVAKJu+M1vfGaCOc0qtgdzfj4fHrHicCSwVeFpTFHmeJsmM9IVh7Bvkv2fPvRMFJQwA6l50EOR1OiOHN7A25mjNYUNcQjTTVtH/NlUpYk8I6fy8hOuseWShQQeGi0HFqPdDApLmLWP3m+0gO8M7/Z1ZPrYg7X1JsxzloNZoRbw4IIS0Y9fNvyRBkGFnx+5pBaqkk3XMn7/YrCO/kKxoAaykVdOHApAHZ4rSBRBTkcfBBCmvYDxpt2aLE4UFg12sGXt+24AafbNh1BuESYmXb2TtO6qyad1D35YnzZYjT+OZC5IqrVbeZk+fZ9elZy4IPPl0R5asECaeSbNfI4rUlaso7RZgc6eOtgtFYKTmK0a9ATfbkF0rB3c3Vm7APDLZF+11h1FvwDIfojhRfxFKWjuxJsnMgj17/jqFyUx9C25NCBdONox6A06FbGY8cp+2CPzYf29tJZlSs4Xq+GVK+XbF7QAAGD4l9bvYZT3MRUVouIpMnNJbEaq+p2vtgy158ULATr5NaX81SWYcf19eCAIkaDElWoawAE7PEk6OeKIybGsjmoVR3zgALMDt+x7BqnpTed3mipsE+W+TRVtqt+/hkyzvWK6/2wg6bw9hgW+Yrx04l967tdMXJsmsOv0CgNRxpC30CXVgksy4FEqQyRxauqrqmfNhOBxcXXCofU0AYObDNLbh+SmyvxWltPVi4Oz7I2UT49TnRdO0iW6dhfcEEPRX/j1nBD9C3+HPQ0l8rDi+jnx7nH5tqbCo4v+bJDOyPg1XLbqUCz66KcY/c/04jimZAFB24qyw0EzoUA13niP1rrspQcgPAFfD1dDyczNTUNqZ9FvpDXkBf280UeQGhA6Ey3xSru/EYyjodAu+1ZxUdS+wiPHRKGz71JZyuANKRj1BSqXBaXmZqJmtsk2V6TJGL4f39AScevyIbagU9w2CUW+A59aH8Nw2RXif9HdZSQlchp3V5Emp57iJMElm9DxdqMrP17v5QXtkfEnaiQZJL8nNQ8nlK8jq/52Kr7Uyi/a6o+F38QJan0kyo3a/THg/J5tre7wdz2JxAcDczBTovxAVYrtYM/PDVr5rrTYFyEbt3WfCWHBqk0RQbrflkVObkFlRQnprYxRfVpu451CSfQkmyYxXXyFzvc+0RJS1aIro/DCkfSvGzFLKlfdOBHqNnajZ9gBxFeDndWvKUsiJEUIa6stL+xiNZWcXLCPlKvvN5e2thTwACdJd8LxsYkqRbBM6VBPkpa4Jue/LMSmbLYxDZI/hLA3vsvHmFe2NuNRiGU7f1rz3pFJpmd0/9ve/TlWK2BNCpRnEUZ5+lDxcq3ISM0lm3H02DEWtWrA0fUaOx+XtrWGYr965VdL1qeHCdf++oxlfJJ0mi/cXuTRlZSoFzhZROe2dnNA+6RnNNLROytMaXaOGQhq2618et8tvDZlAauxKRtoSMvDHHPoV911IIFDndUSxLO3UXlgwpC4NEeSevm6SptzXLIXQeXsAkBfBAIk5lfgpWfxlf0TaZnzdaywfXeDyvEySGQGfRKPLqUeabUDTXX49QljwU6q/Ph49x7+IK69GqMxDADCYdq28PD1sQnZyS7IvwegSiMjeI3HiHTJR1OibbVU2JfHvwySZ0WZZtGBSZ1+nDvqMHI/kT0RlhealbeI7gZhO2deqxfj1Of8USs9cUE2+Wsq6lgJN89DftfMt7Leh3JdO2tZGCMNgkszYkheP1PedUM++Ji6dbS7wzCi+L1wb9Qb0OjdIVSZfPy1SLsj5tlDmufliOF5LP89Onqn/YMF4cdfXJJlZbDzKM3UZ6eM0IK9Rb0BacBHaf0HGhI2tXGBJJ/5XcxuThWvTxXGqtubrzE52Fff5E1Ep7B5C345ifHgAHnqv5ex4lOTmsWt6EnGrNdk5Ti0uhN0fLYT2yOy9hvEwSWYWAFnZhiW9Alm+/v1Gs/w1tydh3EUSF4r6c9jFnWTBZWn+PTt+QKdTQ1Xvw6g3QNdG/sYAILLrEPa8xqFmrF9Q02m+vyY8sgjyOrTQE1meCkHIiRHwO1bNqnLCj/U8tL5Rb8C8rCTVO+HLmeMZiPxuxLeQX9TX+ZHw2ZUonsBenSb6UtLfzrpaKrloOcpyAWBWxinVPa021SL+nb7pHsYW/NTPyi7uJDKHaMONK8uk5fAn6NX2p8CoN+CPdk5WF7793IIQt3A5vGaI7W1NdjqumyQzMjYGCM9q9M1G6ndBQj5av4xN4obkU/49WL45noG49rJ1UBa6uUjbK+L1qapxgfpW1rpWLOS9/HoEhriQMSJpvnWod50PCZdA59eszcS/kw+VMr7uNZb+oVsdeNS8jswhK3B3t5fQf2mAdqPeAJd5ccxs1iSZkbo6SBh7SnJysW351wBIfDD79q2QsUD2O6TkPCANWfPCVe/w2ksRQlvv+Y34axvPD1TV9VTIZiYHlbcs5Sycv4+H574XAIinzRRun29r14/EkD6Wi+oTfZNkxqmOsvcP/w290rITK5/ez5tl/d1X0f8uVfmI/YdJCzUREBdvFV1bW0jZorTvOyKzzxpE9h6JmP1b2GBEeWTND4fHrHhhoLKUlUJnZ6+Sg5ZtTcb7I8PQ8KVsAGAnKb7fRzH+lZE97ZtQZA6XbeBvjwtnihGfN3V5COyK7eDzSqImb62FMy+7tUUDm/g0EA5v/O6LRk+lqiaGeTf8cKh9Tbgn1WQBbnlePGnds/aMlzWy6xC2uBbShrWHQ+4NNNl6D1LYPZt8ah5qiu0+JlX59nXq4HGwLxz+SBHq1mZZNFw/ioODpztKMrMrlF8pMyWaXnojAvov4jTlO/BQh/hCHxxp76ip0NCA09ejwnH8fTXaFs/Lf3E0XOary1HKxz/L2dIOFzpvUPWxbcbFmOkRCiVZU8yMegOW5hxFdEvrwT4FstcBpZZKfR+tUxxwPrDEJt/K9C9r30u/liHMj9C+fSvc86knBCVVks7XS4UyVvNQUzzsRvyGqC+S1vu0Jh8lW3UzSWb4Hh4Hj9GnbPLM/DScmW/SNFdei2AnrgAxRyvJzROCxDKFt9wfRIk46LH7RSHGE2vP8wOBXnmMd+qyEGQNXsnqo/P3g+XsRVyfGo7js+UxTatP2moz/v3Z/dFCMHHnUVxL9rsxiwnKg68Lk3NFMHYav8Hr7mQxTH2EiyKDUSOGLEx7n7mH/W3r4O6zYezEztq3xJN7Uk2scBFPMv7K/KVVjkkyMx9fANiZn4JqdroK+wyVobLlad2nVJm6WJszlfPHngc1sNC79b/UNgCAsPYw/bpec6zbXlibWUFQJF1r8yGfX9ewAWJO/8FQdov2uuNg2+3w3jQVTY4B90bdxenQTSx9+Iyp7IR/wsUcrPWTrQ4AEjOuzk8JqvfwV+dILdLqH/T/qceP8OzxiTgTtpHxLBgfDud18XDwaMkQZK9sby1YtADkZJ5uCgEERI1aogAkDuKuo9sFWWdnHseHnh1t1oPe//nicTj7Zj6xPlF0zRq49bV/zEcsZdjCJ7Y9/g6qUsT+w6RUxOjHWBbeAXu3fo9ukyfDcWcSg5XXGlR6jZ2IAxtWCx83zW9LmdMiLZhypSKh5QBNfwPiQG7p0ZH5+NBnlKQ3InD69aUqmVZfOgoXh9o2J71KLzbLJyOtPH9F+anMc1v3luccxb0yB7Sv7ghLWSkiW3RkC1J+4Obh5Ss78dgb2lTo18Xz4p3h+ftKQJfPshIx0yO0wsWKtQW8x47J8J0qB1EdmNofXRqmY3lyN/i+cEzFw6g34PbYcNTfQBR0r5+mwvu1BKR93xE+zx9Xpa1oIf9X+oq169SlIch6eiWMLoFAqcUqD+Ui6q/0jcrKbCtfZdNp1XN0Vk/86PGH5neslVfJI31hGLxfE+HeC4eH4ug3Kxgfk2RG16jJeNhQh+SPRYVZ5+wMWCzM9I1S2JtTUW9jghC+whalLQ5F5rAVKiW406mhqN1PBviYln5B08Sar2c/j1DsyUqssP103h6wpGcJ99OWhMLn5UTxm2vjC8u5VCgp7eswtHr/HGIuHIbXHxPg/dwJPBwcgpq/ke9G2ba0XlrABlnzwtHkeCmcfklU9ccDD3XoVdNiU+H+8Z6zsFBOXR0En9XF2PvL91a/s3EXc7HeTzZFtQazTwFvtNrRVn9uf9wOByUfGRSCC4dBIeS16LExCNVNx6x+13z7/HjPGXO2jGYouFqyaG3AAcDjfS1VJ9MA2cQqvXdPSMvanRtL7B0dsTszgZVL51+e/I5Vw8UgEcXV2rdoSwkuHBYK3eMyOP6eZHOcmZiahVmJQ+E99gQuz4jAqRlLrZYV2WO45klQ6xQHLGp+TPj2bYXXUZJJMmNA+FOq8DaUKFiZst70NyVbyrZWWw7P6K1CKK6svHx6ullz64Vw9XhXty4sd+8if2YEWnwmbkg9eioEDjti/yvAOqoUsb+PqkwTnzCiA8Lerd/j/OMHOLSS7JzysPI0Hf1/YMNq5r9EBx27+JOqgUQ5AQHkZIy/RycBo57E4zFJZlzq5SDwPvXGUhUfp8PEz2Xu9TZIXRvIyt6/cY2qfJNkxr1RYUwJo/coUX8Pa+1j65lSLq0dQQoNfP7xA1avqLR0lPSUzSQpr2CzRZCP/52xgJhHUJ8Ya3ItyE6AR7XaeNOd+B5EtiBtTp3jSzKzWd7znTao8pdFENCFwj2erHzqWwOAQS3zVNrZgOtTwxE0JwoOnu6CbN+afxfqSYkCulwuuY/AE6XsxGeaJNvtK9+VFh96TZWwS7OJyUhx98uY2TANWf2Ir4XShn9RdhzsSstY/oxRBCltUNtTAu/3rokof7YUIo/tk4V7yt/8JN06xUH1rn2jy4EGStV+bYDs40T7Jf17K0OEIO7XMkQzP3UE59uNJ2V7a7W9tbQVLUwAIMw8HIkXPIVyu595WrMv9xorw+K7J9XErRdI/2/1WRYrh8Js50dahG/VqCchNhqsiVfJYCkogOXuXVX6ehvJTrnXm/Fwjm1gte70vs8rRHHK/Fz2rzXqDUwJM0lm2AW1ZUoYBcdR8vLYMRllRUWabaC8x59G0/yZQ1eoFvwx+7cI6WjoCZ9XE1jd/T68CwACuqRSCaPlW27cVPVVj3fimV9T+y+jWf19NkThc692QttqKd1r/VoK7eE78RhutK8l1FmZjyphVBZqzqhsV6qEPTYGCfeV4DfKfKc6lsH5k5ry83zZRFuphNH7tyaEC0qY1jfBvlWXQKz1a4mLE8lieet9eaFH+zdAQoxo9T+qhAHAy/mhSFtC+lRpoSybsnxL1w5IW1yertyficpF59+iAcFE6QTxDzecALJ/as/q47H7RSHf5Rmi8qust0kyw2lrIhx/lwGVqMmyMt1qXw/m+9r8yzihzfj0Rr1BpYQVDSC+rIuaH0Nkq67sHfDhdUp6BqLGoWasz2zNSwDsdarxWMvEGSCKTMzJfTBJZtg7EtPmAeFPqRQuXsky6g3YUA5gxbeRMt3DZ2qg74jxmt9+3jukjSmwTtP4upicSsaW3s++gPt7PFlaOvc1WBMPv7VRWJRN5nq/Y9XYhlOr8s0Fvl2/+maJqtwnlcr+If+wsv8DPmJVJ2L/YeJPxEr7qScQo96AS7Mj4Pah6MBbesAV9r3IQMUPQLZ2F2la+vzH3Dg468hEm/FlGLxmJDAzMUDc7bNGz1yQ8OH+ISSAqZUdpyvTI3DyraU4+NAe871IrKCm8XVxNfyuSiae3BKdsMo1FgMC+6HMua7mjjJPdsHtsOc30YzMJJkR2aGPsHtmi5STN+WV/lUYvF9PwKOBIXDcSQbZRwNDcGjlSlV5lW1/ZXn8fXsnJ5QWFmrDiGvQ9ahwhuRkkswImh0lBNXmy/M+OB7p3dfBqDcgfVEYvKfLJkWUjHoD7B0d2UKBykcDQ/PpvX6aioxR6oC1i3Ni8UpL7Zg3Spn4vI/7BaP6nmRsyI3F+L7jYTmfptmuFbW1IId7ZwJZn7QLRr0BZZ0M2PvzOgCA35FxcB9FlD3lLnvq6iD4TpTjARn1Bs2deOUiTUtW/r7We7fWF6j5jrLO1uqfNS8cxc0fw3dCCtK+74jW71xBSb4MLKOVj5qraSm1ld0ZLovowFBNeVM4h2ZN8bC9K/5Y953q26rM9wIA3gfHayIyUvoqOx6vu4dXCAVPT5xpIHNb9VO2RWSfUbCcvQhADl5rkszo8Hk0mi0i30TBLh8WA5DSjvxk1Cg3O9cqS2tMaP9FNLM6qCitrTpopcv8LByeM7VjM2q9E2vvSHnfLsAfZSfOwjm2AQo63bIpjy0KO1mM5NFt2HdP5aIhRGx9M/Q/DdsCEMAPPqaXUW9A6opg+E5JZqeXyjbgTyUrqjd/HwA6nxqKOw8doR9yDrd2+sLul4ZImrdM6Pu0nMrw1xoXCoeF4ujiFZp9gSdbZQDA02lGPOwmo1wqg1DbksuabJSsnUpaI2q+l7oyGL6TRZRnk2RGz3ETUW2/GJrBLdEJeVNaYuCmI9jRRvYvpyfJlS3bWv/XXA/Y2aHGwaYo6nbFZl4A7ATXvkNrXJxcFz4vySbd1mT7bzFN7PjL69D9AydilsIiHB/+1RPbHn8HOfynBaiiKqqiKqqiKqqiKqqiKqqi/w4qA7MS/reX879OVaaJTxD9uZaYbBWXibF93D6ME47tAcC+V66wE6PcFVQSn9++Q2tkbe6A0a4yyhBFiqKgCSaJoLLR3zzP1FXBuD6VmG2Mr3tNQM6jdPl1GTb55FvEBJGehgEEdvnab60YXy2ZV7nGEhOFy1cQs3+LZhq+frd91QGeAQLly6dT5uN/K/PTuFzer5P2oadhJskMx51q9DLlaYLyv7X09L3RdBT2WOs0LO1rOZ4QTa+EVaenYddeUpus0BheAOA9PUFoA15+6rvA33f9JE7V76j5lEkiSIgAQWKjkNg8f4o4ycuvbLPqe8hu6FjXTrCcTxPKV/KrDL3SshNQVoZdSbvYvTueNRnPi12ID2HgiVLVSZfvxGPAAReYJDN6j3kBJskspOFl8VsdpZL1WrQcz07rJItPq9V37YLaIm7hcna98o5eM/2tF+R2TR2/DL4TCMRyZp81KMmXYOkhOorTvlbUn5idUvAGyjNrHjEZC/hE23xJi3Qn05G6lJhW3exUwNLtOm5ip2F8GQ+fDlG9e74Mvp28njWj2sHmmmlT1wYyQImSvHzVN8eHbaCgBKWnLiCyQx/WFtk/yWOTVv3C3pzKTsNMkhmtq9dC2pJQGPUGdhoGgJ2G5b4rf3eDWgRXePrBx9oy6g2CD65We1j7ZgGw+Ec88f1PeRqmfM7PIXdivAXZaTgEZT8CgD27NsIkmZG23o+lv/QzMSOmKLxabUvRBenzhA7VEHPgZ6FuAInlODtT9BUdEDJAVQ8AQqgAesITeEKOJ3Wo/0JSH27uMuoNaJf4LACg5m9JKO4bpJLZ75gMqKVFRr0BTv0ymStBg4GpiP/kW1XfN+oNeGjyQM6H4Zo8AODmRNnEVvn9Od4qhlFvEORRvkNrxI/fI5rJp19GvUF1GkbjSyrfN8/DwaWFZr/8c+13Qr5h56+pZOBp9qRJMElm1WkYLeeP9SQ2XOjbUTCeIdY0KVddUGo+h5fq5wrfCp2T+HagoRy0yufbjoa44GW/U/pQzldWhh0+ezTzUnowpBzKP5+YeJaePM9QP7XGum6nCH97QxsM8W2nqn8V/W9TlSL2hFD6MvljHtgiULVwA9SL0eW3W2g+t7a4AYCuUZNRevI8Urt9r5mGxm0psDxgwWqVg4zvpGQ0Xq6OF0P5mSQSxFQrL19mk8EyXPmlkvuqdNbqoKXkDAh/ivmU6OrXExYu1ialS3MiNOUfdzGX3adoSCbJDOfYBsyvic+XviGALXSdDpNAmv5LojEt/QJLY01BA4DMz0SfFpNkFiZYk2RGaWeSP2+rP3xeFVGmlAt7vqwm38YJfCituyTHWKM8IrsPE3hotY01oul3pxNFrek3ccIzSu7vxwv+U/wzCj2uVPy1ylIqzXy70glfi0evsSSeEAUE4fklvRakSm+SzECvPBj1Buj+PI5ez03U7H9FZcV43KJY1WZNlsoL6jpHGgl1LuofrOKV82G48P7Kjp0RFmKLNj7NeNPg4PZOTrAvsa7sAyQoNgAEvS8ri0a9AbfaaC8safiM+50eqHha+552p8XCNzpJ1e7KvkSf19wuKx89zg5WLfCU41lx98vCNU1PlU6eaP9wcGlBwjYoZC7pFYiYk/tY4HOPxjLwBU3bZ9QEdq/eRrKwu77Dj8nGL+KV75Ga7yrbQdfaR8jTcxzxuwusoQaCAKDyBarMWO+UK0/rNF6bFimVPEDeQBuZ2YsoRYZf4ODSAsW9SYiA5MUdmc+nkhdtF4oyCYABDx37cJmwsAXIJpFJMqOp/jZLz3/byrpe+iACU5e/DKPegHWXjsKoNzAzVL4daBy9HfnJQj1TAuwZ30luYiw0k2RG0YBgpkCZJBk6n1dAjq4O0uzL/DX1G2qbQt5DZIuOKBwWqlKmaxqz0HK2tvk4AIb+aOnekckx8vwVNhYBYCAeWjwiuw1lGy3XoiOE9qQyrPdztTrWmiQzQ1ZUzi/0+t1Ms7DBZdQbkLExAOmL5M1CGi5ncj3ZPLrD52KYnZfSUhngGPWzA4jpIZXFfwnJk/jpMuwLbQ6TZEbjQRdZWq+fpmrWASDgQXSTOeOLMFX/pWTv6MjMq/m+ONKF1IHG/rJGlG+tbYnCNf9b+d9nQxQOta9J5nnzOWxLFf2Ln1Qqhd0/9ve/TlU+Yv9hUqImUjhgSrnvRcD14zhkbAyA1xg5ECRge9cLIGhkxe3dYX+I5Ls1IRwN1qp9A4x6NXyzS0Jt5IXdV6WlpFV2xMnHmNP4nOazz7ISYahRgz27NzoMDhOuoqZRdHa/v8cTtftlIm1dIDL7rhaeGfXEt8cu1myzDXjkKeWCnZeHhx/X4pexyYAap2vBZb71QMLW+N8ZE8YWb0rSyqMsX5mG903jn+VsaYeWI8nAnTM3AnWyy1TvmM/D5819PwKuH6kXjFpk36E1Sk+eV92n8PHKtrHWr2i63mNegKW6PRwv30fpKVlhXXfpKMa7qQPGUsr+JBwtdz6AXfxJmCQzns3qgdvP10fM4W2sbEpXXovAyTfVqJy8HAce6vC5lwwaEjIrCknztWHwtdqQUr2jDbHF84DNfDxNTM3Cal8PzTry5YScGIGkgJ9VC9RpUjAuBhWrZLLWHynf9XcbYWMrF6uy8f3wrYzT+NyrHaodbM6UIC1ycHWB17arwqKQ52vv6IjSx8VAqQW6+vWw8fRujOkxRgC60Pl44mJUE3byrJSbEi+rQws9SvIlmCQzwt6aino/iD4hyrrxcObKdDxvet351FA4cWiLAAlV8TCpkfDdaJVpi78yT72jDXGnswIB8dNwFpuMUt6sCJQ4lcH9vXjmd6vVLtZIS8HhYed54kNT2OIHAJ7bplj1fSnqH4xLA+yZ0kqRcjssiGbfZs6Wdnh8pRYLT0IV1Gr7ZQX71oRwFp8w5J0oOK+LV5VFr7u8PAW1fhWtNKx9F7a+m5svhjPLAq1ybL1fJWV/HI6LLyyzykPn74eYfT/BqDcg2GzBx01OV+qd2qqfcqPJ2ndOqXCPJ5z6ZQr+2zxpwbIr+V6aEwH3BcRqwCSZ4fnrFPi8nIiY/OOIbNGRKGk91mrWjaL2AmSjRIkEDRD/QRoDUfnN6Vr7MAsKXr7+nmHM11mr7tYUf/psQHAkSvIl3BsVhnc/WYdvvIklT6R/D1gKCmyOuUqqaHw26v974Os7/DIDulr/gI/YgyKcHP7lE9sefwdVKWL/YVIqYqXdApjiNOZCnmrR1GfUBOz7aW2lF180H1C5ybq4b5BgRlSZCSjo/SiseX8hQwWsaFJQQvHbImUah5auIqRtSDsg6bSqjvOykvCef3fsTo+D0SUQpryUCgdAgMRJsdy8VWHdbclLSWu3mh/wAXIS4Dj4OpFTb2CQ9lryWXuPYSeLkdChmiqttQnY2qLRLqgtyo6RoJ15syJUCqi1utsFt0NZsvwOUooeI7BG9QoXohQu29biuTLPeP75MyPQ8mfJ6iJy9aWjmGhF0SvpFcgCjlamr1C6OSkcDVdpw6tryU8h+um9VkfHMmW6orLofQCquqsWRQqQHwqprORfURtTsjbWKN8DTauUFSAnSo0HXVTlH9DRiJIrVzXz8MALAHDnOTLOPK5jxwBqlDTwbAF2+jsDkEEklJT2dRg7XVbWLX1hGDJGLWfxkrTagq+7LarsN9hv8FiUJWvvhvPp7pc+Qm17R6vvofeZezjYrxUDpil4Phwfvr8GC71b2yyf3iuL6ICcV8vgPuqUVSWVb4flOUcxdVQ0kCCim1oLO8GTrn49xJw7ZLM9K3PPWpo2S6Ph+nEc7J2ckBfVAfov4hiozLXfWqHJ4AssbciJESqgFatlcRD0qd8FwffFYwzA5a/KTGNiGvUGXN7eGs2fPo+NubEY49pJM78WeBclWyAjlGocaoazuc2R0VNUiAaeLcCucZ1RlnKWKFFbp8DnFbXbga0+T8M02Joz8t6JQLV7JJg8JQqAZG3eohuBJomc9FnSxA0SW2sOa3KMPH8FW1o3U+W5ZinE2PK2f/RUCEOa5HkK/Lg1iK15g+bj0zkdbozCrtcFWXs19/+vgK+vUsT+PqpSxP7DxCtiBy6frXBxRReLWmRrEU5Pmv4qUR70hMzaok1rwp6SFy7EH8vb6o+au+vi2IfqeC2VUSpNkhnGFgGCh6itRYWtBaatun6UlYz3PYJVPHl0PVrfyFZdYbl7Fz7JNbCkRSJ6jn8RNU/noeTyFcaXDraU3so4jV41ySTe5aUpzIzBcAI4/ZwfsoY3hNtcMkltyI3FWNdOlVYOahxqxtCcsj8KZ4tIh5au2BX/u7hQ/7kdPF+5hpIrV/HQ5IHD7bbBqDcIKGOVJSoDXcDy7Z+6LAS+UfJpHk+8PFemR6DFhgtMEVZSaZcA7PtpLT6+0QrvNSo3ay0PfMwHDKak3MG1FjjaWn2U8lWm/lr3KlNez9OFGF73BLyq1caAzk8zuXPfjcC5l5aqvhUA8NoyVUC8rOymAY3xteuBIwbUemRTNr4OA0IHoiQ3T3gGQHgPFfGp6DfjV4l62CKdjyfOz2yArMjvVDz/KlkbY3i+pd0CsG+z9k7/gyGh7Buv7NgkvRUB/efqU7fSzgbYHzULeYoig3Hwu1Uw6g2C1YOdgwP2XBJ9gCpTR/6e14EJDMqcKQJzItj4VFnFqaJnM9LPYlFuH2BSDcQc3maVZ+kBV+xr/TsmXOpiNVC9Mh/wr79/zW9YsfCmc2v743bYfqED8+u1q1FDiEWXviGAtSV/2qYsL/TtKNRfr35GT5P4+lT0fVT2Of0/Lf0CGxPoPYoESuNV8jzT1neEz7jjSP8qDKV1LPCdlAzpzQjoF2grisW9A9lJZ2XGBC15af3/yvzOx1U1SSROYFlRkUpZ03l7oGCxPer2zyDpBj2HFkuysdrtKH6854x39oyCz6vWA5cz+YaOEzYmKhqfTZIZYebhqL6yAXZ+tvy/4kSs/c9v/GOK2KkRXzyx7fF3UJWP2BNIRr2BfaT8zgkAHNggm+vRj5763PAfds5c0Y5ft6yRKp/Wb+VCGSDw2dRMkV+EhJmH26wDr4SZJDNwrB6aHLzC5HJwd2PPX84PVdVBKaNRb2DOr3w5NI0yr9aCySSZmf36436ysgWQkxydszNCalRT8TDqDUwJo/eNegN6x5GF6ZIWZKFVbe8xQQkDgF+99wnt+rlXOyQ8InGWjny7gj17pn4iLGcvskUOALYzZ2uS4Z+dS/JgdaJKWMH4cKaEZW3uwMrzmP0IJVcIdPGtP5szPmX2sk023yf4OtQ72lCIu0b9y6gSFpMv74T7RiVB5+PJ+iT/R8k5tgGaLYoTTiOVZe/7iSxCmBIGwJSXAgePltjuY1L13ZLMbBx8KA9xp19fytqLTyttayPky/gyTCUf3x4A8NDkIchGedKYcvy9yDbdiH9hteqwr1NH1ZYA8Ec7J0S3JPHz8r6SgURcP4kT+i6VHwBTwvh7yjS6xo1VdaCxpmg8LWtjwI0psr+aUW9Anz1nVOk7HhtFfmjEWaPO8d1OPWRtofP3YzzbH7cT2rjn+BdV74avV8ZGOXaeFvFAMJa0TGRFkpP9AcGRmvWzRRRk5dZOX00lLPi9KEFWasWgxVuphPH1Uv6mdHr6UtyJ8WbXPhuIb5/9UbOQJ3VZCC6Nltu+wdp4pH1LfGzKSkqE8rRko7HUep0bBJNkZgAVNA9VHOj1430thfEpsl1P9tveyYm0zfGR7N690bKvEO8zy1NptwB86e2PGL8YWNKzNGWl9djXmsRAXOt2BDlb1P66gOxzS58pn+f+0rbCPkDnJpo3fMZU+XvfvgEmiZxMAkDtfpkwSWac6lgmgCtRJezus6QN+LZUKmEmSfYhrb8+HkX9g/HMBQlfZcunsVomfVobNMrn/FiaNyvCZt0H1HqEyIuRAm/nASSMAI1XadQb8FIaCSXjM46M896vJ2gqYcqxxaGwBDH5x60qUQ4eJKB4cd8gq3IGJI+2yp/O6UpSxlXdkyUGXKcUc3gb6vbPYPUsO3YGq92IP/Vav5bsBP3Sz+3gsWMyS8ePu0a9QXU6HNl7pHBNQWbomGbUG5Bg+AU1tychMG40quj/FlUpYk8QaU3Ivc+QXb9HI+xUaYx6EtOInq7onJ3Zs5Zz5B3LrM0dmLkCv5hQDkTKSYsOLnV+ksEh+IEvwfCLwJPyzfxURsiiwZONegNc5sch5vA2ln5X3A6WLi24CHmzIkADnVIUMVoe5anVRhtyY8VB9oG4S5O6MlgYKP3mk5PBP9esEni+4xGCmLN/Cu2jRRlfcqiFbeta3XXVuk/vzfEMVD2b6RGK1O/kCcg9qaaQBwCCzRbc2ukL6S2yUIw4+Vgo0+vNeNUk57wuHsVlpI+0aHSbPeu2RZbvzDTZ34SiFirfKy/rnc434fBHCnMCt6Rm4NIHsvIf2aKjIIMlLZP1SQBscULrVtDpFvtd2i0A3n9OYPkLxoej6+khQv+kaTu/MgUlWTnCsyHn5NNHitTJyz83U96RfbyvJU6HkgUGdbIvrV7GnqctEf0IKQ96emjv5CS0T0lOLnqeLhQWwJbbd1DQ6Rb25CRh98Uj7L41OhmyGbqGDQCQUz2TZIaDqwv848cI6ehiUUshvLvbi7S7lfh5fPn8IoG2o87HE41WxAt9j5oHGj6NZmUpzQznZclIojQe4aH2NXF9KlHqeOTBUx3ldgbIJobW4ojKRU8DlHWm/5UmhJQP9SPj68fn439ToJcmS+Mw7Pw1NCgPupr2TajwThusiVfJSnnfmGIdIZCXX0sB3pGfzPgmGH5h931WX1PlB4CswSuR2XuNIIf3D/KJhkkyIzBlJO7u9tIERLqvJz5zxUuawag34I91BOmukAtOy8hehz/9f2OXWZs7IOb0H+y6ZyLZgKJtBgCFzeyZrFTx5+twaU4E7A+dsPread60b8h3SMcBAGg58jTSloRiY24sHFxk4KoDzywg4jqpUVtNkhmuw88I1yPPE7mpEqpr1BAl2ZeEjULnUwWqdz3MhYxhO/KTrfZZAIj/YrlmX7g5KZyh/xn1BtzrcoPlqbE7GZtb6RkaKD++dfgs2ur8REGe6EZYjUPNhH7rMj9OVQ+TZEbIO1HyO5gizjv8t0N/f+vjK6w3KJ1+TZ5HtL4Pu/iTbG4wSWakLgsR+mpJFolbqmWRYZLMSC0uZOakRr0BfmtE8CE6d92cJCvjhcNCBT58ezwYEqqSUVe/HgDitwcA7ZOeUaVxG3FaMPPWkpX/TQO6X3mVzJe7knbBJJmZ3//tsfKmV0rEj1b5Pkn0TwRzpn//61SliD0htC31NG5MCWfwvOlfkUGeAnf47yYLKpNkRu4vbVk+6lsEAJYCEkC1X8sQ9tyoN8DpiDgh8QtsgNh10/v1jjYU8tL77b+MVt3TWqADgCfnZM6biynLVeZ3mR/Hdqre8QhhaYx6g8DTJJnZxGySzOzUyCSZYV+nDhZ6t0b+zAiMuUBOq3wnixOl5aq4qFHKp1RAlG3XMTRNuAeQwVo5MdL8FN7XJJkRGdBXs0xdwwZw8HRH609lp/1De+R2ommTDTokd9yC09PJhDen8Tkszzkq8NRaFAxsQRS/P/1/g0kywy6oLf5oJ/cLvq78PSXPK68RBZDuOvuNIadTDh4t4fZBxQFoAQKy4DyJwKU/nWYUyrg1IRz2h06wCcqoNyBp3jIcbrdN2DygPJ22ktMGB1cXVt7U+uqAvka9AZNTM3F5e2vM8ZRRSav3yWG8VvqSxWfmsBUsnxLeWrnIp2EG+Hf05wvk283+JFxoU6VCrmxvPh09GbzepTki/XugJDcPLsOIn5O9oyP81kaxjQw+v+EEyV+3fwaMegMWZWubCNk7OrK2pIsEnixpmez0jqf0hWFo+o36lI4S/W4BCP2SoqzShaJRT/z5AKDAIocDoG1sF+iv2S7K30a9AZdfj9B8Ronvg/Ska1GBu2bara2bsDLpb5Nkhm/bPEEeZb15pM5GK+IxOTVT4F201509z39bjTpI+2MNu2qayp0lNUMIUeDxG9mNTyl6rHoXD5s5Ct9Jo6dSUbd/BtwcakNJJ94h44h99DWhPKfyUx6BFKeeHs+Ipww8yBTN22wR6Sv0dE9Zb3q6xi/G+Wum1B8i6ZXgTplDV6DXF2+iJC8f90aHweP3SZgj9YdJMmN3Wqyqvlpzz8R6RBGji3/LDTIG89+X5ayMztdhgagIDR40nl0rFVjleMVTw1XxwkYeAGEjjubnrx+aPNDsa+uIxBQwZ6CRwPBTM3WttLnvyaE1ePATS2qGkEc5F7I2KQeqyH1fhoWneSi6qEkyI9gsmizz75iarLf6LkrgofWdGfUGTM8cAXtHR7m+LywTNvV03sQihPfZpXMEJR418ci3K6CkmHOks9FNo+ZPyyBVDs2aCmkpCmr7pGdg36E1u8+j6/Lvin93kQF9WZpd875QyVFF/3eoShF7QmiIbzs0WhGPDz0JVG3G6OXCc7p7bNQb2I5e5ufhmgNsWbF8SqJr1BAn3pNNsvj/lHIGy2aLWzwPQNe4sWrBeWrGUuFeq1XRmkoKTT/k3HXVwlN5zfOn5jT0nrVFKuXjMy1RU/HZffEITJIZLT6LE4BO+PxaO4kUClxLAek95gXh+vR+P0F2gAzW1han6V/Kym3Mib0ASOwjnkfM6T9QkpktmOa0nB2vWpzQ/3zZU1t2FsplC7LB8m4j3aWn+SgoB3+Pwv/SNrgxWQ19TREQaSyiHz3IjnhJVo5Qb5eE2qo2YpNOcgyKP2gKk2SGm9MtIR+P+Khr1BCZmwyai46yTgZmUmiSzCjJzYNJIn5M9B49+aK00teTTap8u7Lyy+OFGfUE9rzNt9GafYxS6xQHzed7fiOmS+7vxlvtE8o69XMLwrT0C6hzpJGQ1vn7eMSc/VO4VxLaGu7vknaiJzX077OmJJ1dAFFkKHiAkoafyFbViW8Pk2TG7otHhG8x9bsgeL+WwGJCKcnSvSPezZTlpP2SJ7pQ/CwrES577wAARrvKAAdUnrKUs0IMK2vfLQAWc0tZB636nXhvKezbtxLAP7QW5/wzo96APa12sWvatnw5W1s3kXmFtGNKPaUafbMZrxafysqHvaGNwIevKy9Hcd8gNFgjfxt2tUqwJS9eUHyp/HVPXhX4KMkkmbE4J1ZQYGv0zVbVSSmPsq0AssPPk9b3DgD1ItOF66xPteNnWVOonbaK473nz1NZmmZfE7/PuK+Ww3dKMta6qU+daR3oH7W4eLyvJTOvpfwvzRbrpKx7s4WiIlSWIqP48SibJsmMNsuiVXy06k3J90XxJKh/39HsvU64mKNSRAEAYe2JwvNeFNJ/IKZupWfUZqCpq8mJH90gORe9VJDr2aweMOoNyJsl17//2dvst0fMi5obCO7LxFNxuwB/NJ/2ECbJjOj8MCQbdADImK0kajq9f/wCeP1EzD91DRsIYxpPlh4SSh89Yu9xYGp/1N0kA+7wSKzW2tvrDZKeDxWitY7SImrKT4nGu2v+9HmUnjyPnLnkxMvhDwIOZldNDkvBf0f2jo6IObGXldtI58Se/bfEESsr++f+/tepShF7gsgkmYVB0NpAQintOQJ6cfdZOYCnatfqxk1hkEkqkiGmU1cQe2qKjseUgpP7hDztFomnYYBs+qicOHPfJQNRHycyOBtOqE9caNBfnnj4YwAIfi+KpffYNUk1GVpbYGgpf8oFiTD4hpBBr/TMBSGve1JNlkf353EY9QakLg+BSTLj/GTZ/ILy0Vq80GfUtyyy21AY9QYURQaz2EfKemnVQ2tBYavu9P/hZStxfwRZqPOxfZSTjs7fDzofT/jNOSfUp9Eq2QfJJJmxNU+EuW4Y62xVTq3QB/xCt9tioqSkddap36kdMUX48tjv8HxWvQhM+zoMdrFmFfKmUW/ArsSd6PLSFGQU38ccz0B2UkYDy1Ly3P+CeuFdHi/MJJlRkpcv+GdRijj5mPFZ1PwYjHoD7owJE4JsG/UG9Do3SMhn1BuQ+16Eqq4myYxVl45iz6VjGFDrEe51uYHukyaxZybJDN/D4xif9IVhzB9pQOenkTl8haocACg7cZbt3mr1meF1sqz2OboA6nF2sPCcLhJ5/xaj3oBrv5FNDN3B4/jEU2wva9/FTI9Q7Nm1EYAcoFzZ1srFu7XFkrJfPt7XUkhL+wDlQcMlKMdMrfGDz0fbsezEWasLRQBAkjYCJk9p60hcLiX4gZInzcebapkkM3yeP45t91syE1YAuD8yDH1GjkdJZramfPzvIcvf1FRgMxaEw3iebGYEzZbNvrYX1pbThbUHQsj3dHImGQt1jeTNJl3dujDqDQicK59ypP8QIJTv8Tb5/svCO6jaylqb8fl5wISC8eGIeG2q0IaeW6cI40akfw/WHs9m9cCsMZMQ+6gU1fvkMPNamt/twzjVO6lIRq15yag3sDAHJsmM/n3Vvj+XflYvuvn5pPTMBUxMJd/q6DoFqrRb8uKBhFMw6om5rPdzZGyYlXFK9d37TiSmv1NbdtasHw3CfvYVedOV37Cg379SiabhS/jvg8buywh+xOq/9+d1qrazXCeIgWMnTYf3awkw6g2IOf0HTJIZqStkl4KC8eHQNW2iaiet2IL0v7W1goMHGR9azo5H5ib13K01387KOMUU9NaxY9E4Tm6Xsgi5D1+YVB6S4UNiDcFvivO0OzPB6rf53xJHrIr+PnL4TwtQRVVURVVURVVURVVURVVURf8dVFZmh7J/wH/rnyjjP01VJ2JPCNkFtoFRb2C7UcpdOK1TEKPegNz3IxD/hQgXXhYhI+Px9tQmyUxg2e3s0PN0IbKeWsWelewXUaIAYEE22XV0yi9F16jJKnn4nTuTRHwf6ClCdLlZ0p9fh6t2mIo6t8HorJ6wRbwZTtaAVZq7knSH0ySZGWiF8uSF/u8f+ayqXVPXBlrdvc4OeYiAedHs2iSZ4Ts1SSiT33E06g1sd9raTjmNfVIjJpndo75390aRU4HLM9T+LtZ2+UySmZlNKk/+UtcEwag3oJ5ZDdaQujaQIXQBxBbekpaJmAuHxXLLESp1bQhyXG17R0GWm50KBFlMEkG24/tq6ndBKIqU0Sk7vzIFAHDgrS7kRIAzM2FUVgaTZGZmdcq2rHbXjqXvsEB8R0a9AcWTbrL+tytxJwDAbcRp8VTjsb2qDytJeT/vnQjEdagO49Njhfv1NiYIO/QA4NCb+MBZenTErQlkB9n1Y/kEgu+bUSHDhH5VY1eykM5j9CnWBi0OlrJn9ORDKTOVgcbl4sujNNJF3NVW9h+TZGb+hLSMK9O1T+ubDL6gOl3Kf1t8d8qTgxu/E7/U1ikOcDMRH5K8d2T+eVv9Nb9lZTn3R4Qy0ASajsrN2qHcbPWzmz5Wx1H+P0CC2/JtpvP2QOdppO9SkAKeF41t1v/sbc0TSED2xQUAn/Epqm97KedTR2XpMeFFzR17k2TG5lZ6dnoAALW3JGDflnVCemV70fx8jECTZEb4DGLq5/VmPNCLtBcfzHiZjzc51ek3miDCJZ0WxjnqVwUAd7aQsSVlzjJWLj2pUdZl79bvVe1ki5TjLgAkzVuGOj+R729nPrE08HklUXif1J8JAG4Ptodd3El0crQnYRcUVLjHE32HP8/K49FhlaT8/qydwhj1BpW5oEkyw22E9dMP3Z96AGCB35W87QL8MdIlXFXW4pxYdK9ZKuShp8YVnfLZPOkFAUChgcZpuWXhHazmo2kCPxB9wJT/q5vIadvdZ2XEWt8psm930rxlsFy9xk7KbJ1cAyTot/IepXPvEXPIrE/DkdZ9ncBD67vtOW4i5nu1x/mpS9k7ux5xm/G2izsplKXz9sC2cV+yewuyiSlk26+jlawFomiQPWdPtJmuiv73qEoRe0KoLIWYhUV26CMMUMoFDCAOGueilgqLFQCwizvJ7tGI8qXdZNMQU/4JnLjrKvA80EZ2TKb3aYDmhAXLGepi6pogIQ0/+Lb4NA5b8xLYRNkw1hlJ85bBoXkzdDn1iKWvtvcYCjqpY0Xxi1HlfVrfzM/Ccfl1tV9CXIfqgizKBVz+B2XwXywOhFnG1VYXKg8Hh6DJkji0P66BVnnmrmrikd6MEKDX6X9lXZQLCRq8OW7hcuiaNmHXqSvVMLwUhIWvo+7P44xvXsl99sz3hXLH83LljweOyDKuxr0uN1T8lQomW2SdS1W3gd7ATFv5dvAac0J4X74vHsPB74jCPyA4Ek5bE2E4AVyf/ACBc2WkLmsTP99ulNzfl32vqM8az6NeZLogJyWqnBr1BgZtLr2pDZww5Nx19Bv0HLI2y2YnLvPKFSlOeefl4hHK2AL+z+OC35tSqTZJZpRcuar5vpXKBwCrwVq35Mkofp1ODRXKs9W2FNDG0l1EuVS+E6PegBZ7y/tMSDtE+vdgzxyaN4PnXrJ4CD85DI3j6uNh24dCfXlfmfyZEWj0VCqMegPOB5bg4HerYJLMcvsCDJiElk3/D8/oLSxqYr9eoUrXalW0IL+DpzuMegNmNkxjbXp3txd7/nCw7GdlksxIXRXMwCrYN5CehaPfrIBRb2CgSHz7dHmdmFZPd85mz/j3FvbWVPYd0XIoOptRb8Cpx48QPUreVKD059rvNMd+rfGXkmF+NB4bxXHaY+ckTSWG5q+7WdxI0CKjXjbrBIBLH6ih0E2SWYhXqWwHa4qLc2wDmCQzHgyRQZiUfJX11uqn1ex0qrwUQp9XGtm7LbWgLLyD8F3m5zbEbd9a8qbKH6KvKY+kysunrKdy4+D2uHCsu6RWtrXaPNK/Byw9JJttUHbiLKsHDwbjW81J1Wc6bnjNaptemiO/R9r+SqLmwxSciI6bdg4OsIs/qa7/mbuwr1ULRr0B6RsC0GhlPDz3vaDFWqC6mxJY2AutfkMVNEDe/Fh9hwRlXnfpKB73I+aMSfOWCQA6/H/fiWRu3PnMFyiwPIBRb0BSUbFQnu5PPbumcc9oX0tdpR6r+frHHN6G1tVrqdZRLT4j4xtVXE2SGdKbpK4ZX4ThRDBBS6z3o+2A3E8K0ROxf+Lvf52qAjr/h4kP6OxgRxDF+EUaP1g/l90dP7gfrHDRStMD4oRVFBnMTmPSvg1F5pAVCJgXjXoZxTi4ehVmXO6IuC9CUHdzAnqfuYc3G2Ro7nApZaP0eF9LVO+TwwJe6pyd2U6kcmLoN+g57Nnxg1X+PJVFdBB2nbTqaq1NtAbz61HhOP7+MtXCU0kOzZoy51xlWq06KRcdeSX3MdGts+p5ZLuesNy8JbwjAAg7WYwff+8K9/dEaOy3Mk7jxxthWOUaK6TXqqct2WzVlb+/7tJRjHfrrEqbujYQvhNSNDcHdI0asgUOffZ4X0v86f8bS3djcjhKq9uhyRJtJD9ejtWXjsLFobZKobbV9++MCUO9jQlWn1urr0kyI7L7MMQc3MqeV6ZfahENfqrVRjT4KUDQJ6kSqSrjgAvQiyhImZ+Fw3NmPOydnFBaWCi0Re9nX8D+TWuEb/vayxFC+9rqC1emR6DZIuIP03P8i/hj3XfoH/ksSs3nWFpaB5NEkFPpRoFWG2q1G098eUY9AQXgT2a02nzBLS8BjU+zvSB+X77fRyH1efJ9tz9uh1Mdy3BzUriApFZ6wBX2vXIFXl2jJ6PmdtuLIL7MtHWByOy7ml3rGjZQBSO/9lsrBrfd5dQjHGnvWOnvU6tNZqSfRd9axZptBag3oLR4pa4Mhu/kZCEdAHQ6NVRQoqzVuzLP+Hs0kLGtcVQpi60xiuejq1sXlrt3hTSRrboK96zKGdIOpu0brLZ93+HPwy7uZKX69jMXJIyvew1f3fLE6w0y4bl3Imqdr8EW3zx1O/UQWQ8b4VIo+Z5bHR2LliNPa/YL781T4TVDHUAYAPqMHM+Ce/PyVWasomkcWuhZeAc+z9VpEWj6TZwmLweXFtiVtEtz/LdVVkV9tLJUFBmMbSu+ZiA/tAzK2xbx6QwngM+amtHm22i4fiK+p5wPw9FytjqoNk/vZpqZT2zOlnbCO0xdFQzfSclCeq3+n74oDBkjlwtyl3m2wIGMr5/YAMZ0zdp688x/LKDz+Wc+e2Lb4++gKkXsP0y8InZ5awBch59hk8tHWcnElBDqj7i/XxeU3rsn8KKDTJu454RYKcV9g1RxOR4NDIHjzsrFwQCgmiCMegN0TZswKPjKLPArWmQUDQhmZllKBcokmTEg/CkWmJim8djzInxfIE7IkW26wXKbILHBXgeHpo1RcvmKJi9+YvBfHI2zryy1uai0VQ9l2m15SahlXx07CmvhWx/ZHMkamSQz/NZG4eKEZSpeStL5+yFm30+aC5rRWT1ZPC4lD52PJzsdU9YBACZczMHoOgWYc90fCR3IhoCDR0sW14UnOsmwybylK0pycoU0fN8AyKkJfRfKCdjSoyNyJpXC81kz7AL8UXbirMBLKWvW/HB4zJInyWsvReDEu0vx8Y1WONLeUZXPltKsuVBdHoJalxyEExo+LwAMz+iNX7z2V6iwmSSC7EWdypVk374Vdu/5EZEBfWG5eg1Fe91xsO32Cr8l/npuZgo+DO3HYoY5HW6Mwq7XceN3XzR6KlXF596oMMQtXC58A5E9hsNyMV2z75R2C4D9oRNIXRYC36gkVDvYHMXdL6Pn6UJVCAQtOf8K0bz2deqw8a2ibw+wvnAXxgQANQ81ZSE1tPKzsc3XC5KxKZou1lYUrSkflFdF6Wla+r1lLAhH+hj19583KwJnX1mKXQ8chQDcRr0Buja+sJxLxbuZZnR1hPA+Q2ZFIWn+MjyX3R3XI26ryt+Zn4KBLQLV80q/0Sg9dUH4Rrq/OImdahv1BsDOjpkta7V9RYqZrbYbEDIAJXn5ch0bNUTMqQNW3y8ABL8bJZw6A0Qx2txKL5ZnrxMg+Omzdl9F4/TrS4UyUpeHIGvQSgCA5y9TkDl8heaYbzgBmANEfka9Aa+ln8frayfC9ZM4ZP/UHu6jTuH+iFDhBFfZdmXhHWAXb33DUagLgMATpUgJEE2s/+o3qJXu4dMhqg0J6Y0IFhfQFn9rCpGDqwtKcsnmUto3oUJ72spXGapMXel3xJdhayyh10VlxRjScQAsV6/hznNhaLCToO7GnDtU4cYBK+P8QKBXHuxr1UL6Bx3g+VY8m+fYeNe2FUrPXMCjp0LgsCMWB/HbE6t40DWr36a3/zFF7OKznz6x7fF3UJUi9h8maydifmui4P6e9o7MpdkRDNmJJ6PegKL+waixW96JERaYawPxXdd1+Nyrnc3FKeWlzE+vfTZEwc7tAVK7fc/SWlsUmSQzOr06BbFfk4HX3tAGpeZzcHBpgZK8fM0yADJw70rcqZoEteqlpMosmvj7ZREd8NNPy+CsI+YEJfvd4ND7EpxjG6Cg0y3WppVZ+HV5eQpq/SrHttqVuBNzrvtjbuOz6jq6u7FYNd0mT9ZUjMvCO2Dv1u9tLvq06mTfvpVgRmTv6IjdmbKfgEMLPR60a4Frkx7gbPjGSk2KJsmMnuMm4o/1q1XPZqSfxZfecuynf3UhrqTsj8OFE0IHdzeUZF8ii0afTrgxsj0arI3HxtxYNNLJwZU9f56KzBHLhX4MAJ1enYLaPydWauNAi+jzG1PCGRKltU0LW/2QKo8A0GZptOA/dnVaBO4GPYLPuOOqRZa1TQVKaesC4TM+BRtyYzG+9/OwXJTNNHlZ238RzVDzlOOJss38l0Tj7MsyUihfXvrCMHi/JqJrUrnafBuNcy+RBW7B+HAWq8ham/4V0lJ6rCneczNTWAD1K9Mj4LJDQklmtqpsW4rZxNQs5qtjqw6VXVDyCqG1emnxV/5WpvH8eSp8Xk1Q7ejTk1VAPumnVOdII6Sc9oTPhiKmCFQ0hto7OjKzdy2Z+c0/mtc5tgFcaxZgQbMTFX5jlN652h7zmp6qsO7W5AQAfUIdXH3KETEn9wlyVjTX8cSffgAQxhuad93dJtjcSv+XFaJLH0QIMRh1rX1gOZ9WYb0o5c+MYCdvynSp3wUJkPi0zkFzokgcM43+b61vdZo+FbW3iKdzAPDoqRA4/k7mLnoCrfwWc9+LYGOcrfEyYF60VYsJOv9QU8HKUkV9mZdNSz5eRmWayt5X0oOhoaj1ayIbr6miaNQbUFJWXKWIcfR/QRGr8hF7wijt6zBsvV+XKWGN4+ojKi0d+TNlO263D+MAOzv09+uiGmByBhN7Whpc0Kg3sICLvhNS8LkXgcv1jx8DgJxG8AOTUW8QeBpdREdlo96AP59ZAFPEtwCALi9PUeWjclKH99o/y47TpeZz0Pl4MiWMAkFcn0p8mOhfSS6BEveZJud1OkycbL2SHYWyTJIZurp1VYPg7Mzj0Fn5cB2aNWXp7OJOCmYOFGiB+rHV2J2MbXmykkQnGK0Bu+aVR+w+rUNCh2qaAzaF+DXqDYISxvO1iyf+fldeld+/NcWVz196+iILumySiK8g/45K8iVU35MMl2GignhzonZsOlrv6nceqxQCAPhk+gQABPaff87/z/xMdCxX/r40W+1zQr8DJne5EmbUG1BaWAjXCeQUZ4xrJ5am2+TJyByxXFUGANT+OZFAdHPvkH+XWnW/+4wMBkH/K5Uw2rZ8fmWQb6oAZ3wRhibfyr5t/CKABkz2GXcc90fI/jJGvQGFw0OFstIXypD5lHzGk0XKWNdOKHKpp2pjKl/zr+Lgk1wDJsmMlrvuML6dXp2iqpPLPHUA2ZuTwlGy3w3eryVoKjBGvUEw90mat0wla9P4ukIeXk6t/5TouMKXxZNRT8xiKc2YKceDa7YoDreDiE9JUf9glfKkxcu+Vi2s9vVA2hI51qES9tqoN6B1igO2FxJz2vRFYp9xaN5M4MsrYRSYxCQR88+KFnHUV5TytndyYjL4vUdOk3c/v4DI+Sn55jxnxjM/n13HTWzcB4B7XW7A/bdSBpxhayFKn/FK2IBOg1UyKy0wUpeGoKDTLaaE8bHolOWNzuoJo96AyA59BCWMl8PBo6Uqf+qyEM22k8LusdNi/n17/DZZlf7mJLVcWT+2F5Qwk2RWKWFGvQE/9wlh46dWG7IyuLrr6tcTlDCTZBaUsLcyZH9UB093mCQzHJo3w4Ohsi9Xi8/IJoqdg4OqPrwSxocKoGa6yrZVvmfeR5oqYQBw4KEO9o6OyPw0HI6/J7H0fLxT+j9/ZoQKqEg5XtL8SrNqnox6A0pq64TnqcvJt0CBhLTmF2WbhJ8chsf9ZEsjpYLovzhakN+oN+DK9tY251/+Pv/MPammkMYrmVhs1Po1Ebd2+rLx2mV+HNonPaPiWUX/N+j/SxG7cOEC9u7di02bNmHbtm2IjY3FXQ3b7CqqmHLfDoWubl34vJrAgoGaJDMKRtTCMh9vtuM1N7PcRye0HUrv3VMtItp8nI/b48JRelKOBn8uSgzcCMjO8BTsgT5XDn5eidWE5wDg4lAbHtXIgqPWr2KgTX4gctLwNzBJZsQc+pVdUwf2xsutx7michV2JZPp0hbyhEDRkQq7tlIppWN3RsFy964wMaauJeY41PdLuRBX1hUgNvG17AkYSI8XJglyUiWXDsIV+bJFpaUL15Uhk2RGs6/lmFaev0xBabcAIQ1FhmMTW/4JtgOubBdb5Rz7aJmwm8k/M0lmlCUTO/hOr04R8lJFMjvkoVAm/99zZrzAd0BHI8tv1Bvg9mGcpqy3x6mDvzJlv6saFdJxZ5KqfJ/1UaxsrzflduH/7GrUEHjTOsd/KQdXN+oN8Fkvx7gz6g2I7DZUs11d3nqsqk9JvoT0Z5cLsvHk/VoC0tZ3ROYmeQPj7GMSHJWCRUhvRbC0yoUML7fDgRTVQotPt6QF4V+WchYOLV1hksyo/XMiPHaoEVJ5HgBQ4F/GNixomqIB1gFHAOCxMQiX5sgbHlfD7wry3npBXAQb9Qb4JNdQtdPR9r8ynnbVqrOAtny66n1yGB9+IwgAYhctR/pXYTi4epWQT+dNTrzaLSKKG43xVPrgAQAgc6h8Mt9iQzVVe54PLMHTTiR+XsZIuc+YJDNKLl8R6jDuomzKGxf6HeuDp2YsFfLxbUEBj2hson4DxsDvWDXmOwiABbSnsaI835bHVYrsGfxuFBv3i/oTcIPqpmMCoEpKkYxCy//nZaP3lObLi3NiVbL7RpPxgbbfsQ9lREV6jwZop+bVVHmifOhmm+EE0G+nGTcniRs7vlFJuPG7LwqHhWrKzY8J3U49hPv2UiGNUW9gCkr+zAj2fj1Gn1KlUyphAEFobbhaPmVyjm2g2XZ8HL4vzbuF9qS8KOpor5oWdp+ipJZcvsKsLgDiG2vUG1D7z/rsHq+o0k1EuqlH360WmSQzQzQFZMWKfw4An3u1w+7MBHi+LZ6q8aTz9wMgg1Q8eipE1RYU+MLaZgylGelnsTznKDOZdEskirDvVKIENj8ibyaZJDN0jRoK3yffX+v2z0D1PckquWl6Pq5qwfNkTGr29HkY9cQiQzm33Jgsjlu87HQ+pETjqgFAg4EieE/zp8/jv4mqAjr/ffSXFbE//vgDY8aMQdOmTeHv74/+/ftj7NixGD58OLp27YqGDRsiJCQEn3/+OW7cUCOzVZE2HXvhO+ZgTFGMjHoDdiXHCB93mGN5ANwEMjkod2BK8vKR+CnZfTZJZjx8OgQdPou2OlhSHtYoI/gRBp5VB5JU5nHwdGeIirRsJVmTISb/uGZdsuaFC/dzPpSvKTmvI4t7qgjwk6XPNHmyonn4QMrKhbhRb8C8LG7BUB7s+fJAN8an+p5kgR8N2Km1awsQfyanw42Ruozs3C3z8UbOlnbCRG5rscPzo9c+0xJZUF+KvMaTsh3vjQpjJ2a23jWf1ySZkVV8n00y/H2j3sDM+5TymyQzHFxaCDx1ft64HhUulAGQnXmaL/9XYtaY/Yl8ikfT3exQpqns8+1T2iVAkEHZliX1iG/IO1fbk7AMB1xYeoCgBpYVFbH0ykWXzpkEr77xuy88347H3gfV4JJQG1e2t0bMoV9Vp18AkDNf9lez79AaRr0BNydZP3Gk5fqMO4607utY6InX3cOFOus/t75rzPfrialZKv7em6cK75HmKcnJZffp4sYkmdE6xUGzr3pPlzdDjHoDBnQ0Mv9OeycnIW1/n04AgOqmY3CbG6fqM5R/gzXxmJFOTmjvlJIFTFpwkWY9aZ61GX+wgLZ8G2iNP1vzEpD2DQlwnjFarQzHHN6GjC/D4LrmIvyXRKNlw1u4NyoMZZ1Ims6vyKeF1FTZ2iaHcrHGPzdJZoypQ4ANbvzuK4QS0Oob9N57jUT487ITZ3ExqBg6H0+WxnPrFHnz4YcoZGwUN2wAMH8qo96AGrtliHDXj2Tz1Hc8QoQ8IbPk4M70v1FvwMo7ehV/itpHlW7+9Cb9hwCWnw+JYpJIgHb6m/XRp8dC17ABvA+OZ5tq5gBgp78zSh3k9qFyN3nfAU5bZcW732ASaiJrHlHa0r4hshxqX5NBpvNtnv1JOF5LP89OmXhSvpvivkHs3rpLR9lvj51ks+5Hjz9UeXySa0CfUIfVs3X1WqTNDj0Po97ATlBafCqeIPHtpPxNAYp+8drPnvHK8RAX8V3y71b5rRj1BpTFNKywX/N9n/5vnSKGpf1972YWugNh7eH4exJTUNMWk/egBWihvDZJZnzp7Q+PanJQ8UuhhaLMKbJfsceuSRgTa5ZlC2mnmhOvR5Extbh3IB4+HSLw4ilp/jJBppLsSyo5G60k31PfEeNVbWSrbpR09etVOC9X0f82VVoR+/XXX9G6dWv06dMHmzdvRvXq1TF48GBMmTIFs2bNwvTp0zF27FgEBgbi1KlTePvtt+Hq6oopU6bg6lW1LXwViTTElyz6TZIZbnPjMDKzlyqNcgFKaXnOUauLgJtjC9Hs6zh4bhNPMHhqm2KPS7PVMN6Udvo7M34PTR4qGehuHYVM52XQIqPegMzP5cXHU6kDhecmyYxr0RFIHS+aM2mhGClNDy+X3Fel0ZpQtXbgTJIZ73jIu3am7RsAiKd19Bnd0ebNlbQGWo9Z8Thx0R2+UUms3S503qBa6GtNbABRcHm5leXEnDvEficVFSP7p/aqetX5KYGdmNG8VPFRtosge7XabJLh05gkMzK+kCGh+/uRmGAHH9qTvlBudkrJcjEdx9+X3yW/+5vxJdnNbTGUOC5fnLBMaIsHQ0PhNaP85CdMrNu4nK7s976f1jJzNBqmwKg34PZYsgBr8wmRKSXAHm+6hyFvvxtuTJHNiHQH5ZNhXjEHCKRzzNk/kTU/nIFf9K1VjLyw+zgZshkA0Lx8x5Rf+PIQ7Lt3b4ZJMuPYXHmThKfSLgHiAlRvwP1I2ZRIqZTzpscFz2ubQ42sfQews8O1l2WTT+czxNSo11jtWDXKPrioucY3Xb5BwcvG+xyVFhZiQOhAJlNpYSH7zSuKWmPWl97ETI9XTmgeB093AXY+a344mjuQxdml2WTRT0/VjHoD7o0OE/r0MJcw7Bq0EADgu16OM8TL4DUjATGnDsBlXhzKeuajzk8JsIslctMFvvJd8PmNegMsPTqqGxZi29ITZSWYytVXIpD1I+nnb14JgF1QW9KGB1yFsguHkYXszUnhiDn0K+ocaQSTZEbmsBWszTzfihfCSdD7yvHqrYzTQp1814kxmEySGc7fy+PA3d1eLP3keiLEOl9Pt7lx6P7iJORFygAZNJ4YQEIxWGtLdi/pNCw3b8HrWbVy3XhZPIvpF3x8JABgd8wmoZ5lycS0L3X8MkR2H4bM4XL7ULr0QQQz23vctBgLvcm3lVRUDL8j41RyUaq29xg7Be675C12P7C1vAFC+25pZ1K/tOAiJOxpJ3wHAODxDLGkyBshx3fk2yX/7QgWtoVvM5NkhluiE65sJxs9pQdc0fvMPSHdjnyyaZA1X21ZoPUtNl4WL2xo2docoPk+ykrG+cASpkhmbAzAoJCBMohKwinGr6DTLfi8kqjJky+rdexYleKnhLbn+3P2R6R+vpOSsd7PFUC5GWjSaSGGn0ky43YrcsySPchBACbRWit8e5vwujMmTLO/0nt2sWKsMK0NLACC4mdfq5YAJgQA21Ktx5Z7koicVv0T8PX/6Zr++8mh4iRA165dcfToUbRt2xaffvopRo0aBTc3N6vpHz9+jD///BMbNmzAxo0b8eOPP2LDhg0YNGjQ3yZ4FVVRFVVRFVVRFVVRFVVRFVXRfytVCjUxKCgIH374ISIjI/9yAdevX8enn36K5s2b44033viXhPxfJh418cDls6qdlsgOfWC5fp2h69D7yh0pLZMBLdMZ5ekLQCK/t6/uqLnzdX2HHxoPuqjiARC4+evtq6HXsGRcDCpWyWNtN01Lbi3+Sno0MAS18u4LcY6stYMWP2X9g80WJBt0UJIyFpOW7Fo74+yUZ2MAfF/KREkbd9jFnUS1g81hibzDfE14eSkpefDogEY9Mb2zP3ICSirtbID9UbPqPoU2VpZ1/vEDZg6j1XY09hsvCw8hnfteBM5FL9WUkaf7ezxRb+w9lZ8HX66SlM91vl6wpGYI8e94Ktrrjhp9szV5Ucr8NBxp45YhaHYUGn5n3Z8BUMPi821gKx9A/J+yR5cx01cAuPx6BJp/pY7Fk/5VGLxfT1Dxpkha9DpnbgRazpEdyQeEDsSuxJ2acmj1ycp8iyaJmKBObSnGuxPqRuMDapTHk7V4fzTt0pyjiC4vh6KnavFJ+zoMPq8mYGd+Cvw3vAyPt2VglN7PvgDdweOISkvHMh9vVsdLJfcxqTxmny0ZrVFFaTO+DIO+7VUcbrcNHT6LRrOvrSO7aY1BANDquyjhVN/aOELpx9w4POPZnfmE2SK74Hawv10ohKiwVS963y7QH7qCQoYiqZVHea3sl1bT2tkBZWUsLqEtsq9TB7svHgEgjktace16THiRmRVmbjLA81mz9neqAVevlFOrfWj4GGtzqTIPDefA86b1oGnta9VSjf/8adeZabJvIEUnVCIg26qHtXpd+60VTgT/qF5X+Pdg43xFPIV8XYfAkp4l1JPWVZnX2likRRRl09Z7sSVXhwXROPlm+bzEQeVrtYnyHi8XjwCpLEMpP+NX3s9ZG7XrifyxrdBskfyNzLxqwCsNSWxMALCUlSKyRUeBFw0T0au5/38FaqL3hlnQ1XKsOMP/J1kePEL62PlPbHv8HVQFX/8fJiV8/bXoCDRZKqL40I+/uHcg/li/mg2GWoMwTf9Vdjxedw+3OlBnzQuHxzu2F6Y6P28htpAtBQQAPHa/yKLWU5qVcQrdaxKn6IB50TjxzlLtwUxxnbo8BL5TZb+vfk+NEezAtejh4BAcXrayQuWT/319hx+OdtyAIS4hLI5LjUPNUNRNjD8GgMWpogoIIA7cWfPDWSBZniqaVLTaYJoUjG/0yZrv5sqrEVYXgjw/GjvMJJkx93obzGl8jvFLXRmMrIGrrE6SlEfhsFBcG/6Imc5oEV04Uz79PcNQ+oigR4bMioLz9/FIXRqCrKdXCnVeVOCO6c7ZQtkZGwPgNeaEqk2uR4Wj8TJ5Qa7VdpYeHRkIQb2jDbHF8wAAoO+w563G59Hq27YW5Nb6fvdJk5iPFE9aQcEzFoQzwJD0HwKQ0XMtApJHs8C/PL2Wfh79ahWxMrXkLO4dWGlI57TvO8Ln+eNWvztK/PuytZmhbBtr4xH9PS6nKwPpUOZTQuEriaa7MTkcTZLusAX6oHM3saNNQ5ZOV78eM/ehebJ/ao+LXdYL8g06dxMv1ScmxosK3LHbv77VcpWxGflnvcZORN9Fh/F7fjs4flZfAEBS0lsZp9GrpkXVLgDQ67mJcPhD3GxL/S4Idc5XR/Mv44RA9FrvgX7vylh8WgtmvgxrdZ6SF64CG7BFfEBrZcgPZTnKcAbK7/iORw00WMOFrWjpius9XAT0zZlXDTjV2UkAKwl+LwoN1miHSaBBvE2SGf0GjBHiOFlTIAAg69Nwthmg9Vwpv5Jo+plXDULMMUpaG0o0j8/6KKSNW8Y2YXhS9oOwt6ai3g/a34/QTxTw+PTZ3WfDUHeTDE+vrKOS7AL9VXOytdiFtoiua6yNK3fGhDE/OJNkxoDAfii5fAV5W/2Z+bdJMuNO6UOMdLG+5mkaX1cACKrMeG+L7o0Kg5NUBPsjJzSVb1u8/Y5VE+Z3+1q1sDudgFX9t8DXVylifx9Vwdc/YUSVMIB81MLO2/4U5JXcR8zhbey5tUn2dXfZV6IoUoZqpf893qkYUc/uwSN5QbAimKX1/HmqZtm+E8mOFl8OVcKMegOaLJFR8Siggxaf9EVhaDP/MuNl1Buw5/eNDKaZJ+obAgCHl60U4Lcp5b4XASXRNI0HXWTOzBS+eYfPHvZ83g0/9h6oszyN/QUAh1asZL+d2hRg1wP1wMTXkZeN/30tOkIYzJUnjDxK4smZS3Fjimjvb5LMWJQtOpjT3XGj3oC4DtXhvVFG+8sauAo+G2QHfF7G3PdkxDCnrYlI7fa98F6p35rfsWqAvY6hsRn1BhhdAlH66BFBswPgeIcsOn2jk4S+ZtQb8MNX/QFA8IdM77FWVS+TZGZ+CzSvFvELYKqEGfUGQQnTeg88T63vgf/PP7/2ktyvDq5apZLHJJmx67gJd3d7AZChoL3elOvi/Rzx4TkR/KNm/oXerdHnmQnsXqujY1VyUiWMtpVS7qz5Mrqcz/PaSoKyTXmlWfneAALAYa0Nlff55+tbHhbu7cyXZc8YtVwrm/DenQ43RqOV8UwJA4Df2zcV6lz2uFhoBwBwH0UAPXSNiMK2Iz8ZuwYFMR+j3f71WR5Ld9HHq+e4iZjdbhcA2TePl+nAhtWY2TANTv0yrSphFGjoc6922PNARILsPmkSLpfcx4EfVgtjnkkyw/fFYwxJsfEyAkx0dVqE6t1kbe7AvneqYCjJqDdgY26sID9PJT0DhbS8EqZMz/uisnYrV8IACCc5Wt+r87p4gSc//uzfuIYpUzRvSU4ukuYtY2OVUW/AZ03N2J0Wy9IZ9Qa0eD4Ti3NiVeU5HW4M+15E6e50aijKTpzF5dfV7Xj3GeJX6HNwPMvrUY4MmLZEDB+h/M6UIQr4uhn1aiWM5lMqYXbVqstz7dvkndMTHuX45LM+Co/7kbm53g8JqvdErz1+k4FRYg78LDyjVHdTgtD/+nvKIRi0+gtVwnR/yoAtvBJG86RvCLA67wFk/NIaayhRJYw+nxm7BwAEJcyoN2CkSzgWZBN/4rx3yNic/ZHsP2ttA0hZRwptXxHV+SkB+35ai3lZSUKf0FLClG2YdK0ljHoZ0Kb0wQOWftAxNRLwk0hl/+Df/zr9S4rYhx9+iC+++AKPH1s3mTh06BA+/PDDf1mw/8tEJzn7tq0AiAusiW6dhXv0o6cfeYfyWBQTLsrwzQe/W4Wwk8WaO9jWFk2AHAcLALKeIgvNjE0G+LyagNfSrUOt7nlA4hMNTO0vKJM0Xg4AFaADjdUEEEQ2iuLGy1xaWCjkMUlmnJ+6FA6uLqwtav+cKDw36kmcJqPegEXZMsKh7+FxyFggwh/zkyst91B7MQ4I/0w5uZwI/hHfeLcS7in58YO0UU/iShn1Bpx4bykWF7Rk+W7t9GXpHwwNxa03CoXyivvfRvpXYhwppckhJXsDgYWu5n4fex7UYEh4e0cv0KyX68eiOR3Pz9K9I3Yd3Q4ASO9TG6a8FKGeulZE6diTQyanmtuT4HesGkvj0NKV8Tr2EVlY3el8U2gnnbcHOh4bJbQTdUZXtjttz7Yp9rgT4w2ABHDdeK+hqh202saoNyB1rbwA1drY6PB5tJCnwPIAOj9vFpDZqDfg4EN7NIx1lpWfT2Wkw7r9M2DUG3CqYxl0bXzxaGCI5gaElmJjkszYt3ktAuYRGXigF0rUCd+oN6Cfh4xQN+c6AWTxmBUv1Dv9hwAY9WQHXOv711o0Gc8QU60ah5rBJJEFsPJ9aPV1rX7Ppx3YIrBCJZhuzgDAr977VDKWlZSw30a9ge0s8+UyZeHGTeTNikANu2rEqmD7BmGRatQbsH/TGqE9qu1PwVo/8m2WnjwvjLsA4PkrAd7I2kwAHyamZhFkTq4uvEkiBYOg5V0JdUBzh9owtghQtRlF4+Pbw/y2bMZGqeSxGF+J/ue/IQBopHMS3kNx3yBZkfhD+1S1bYo9S184nIAT2Z8jJlYUrVTrWzNJZvQb9BzujxRjqvF1t3VN6ZkLBBCEfoe570aw9N4bo4S6Pux2Fb7VZNROKh8Nc/FWxmnEtifhU2hA88dGGe237mby3tK6rxPqYdQb4POyCDCh3KBYm7QVOl8v2LcncwAFUOGp3tGGAk/lHPzw6RCUFT+GrmkTq+3BK6Oeb8ej+p5kLM85qpKJf8++Ueo4mP0GjBHyKL9fGitOOQ8DYIiuAGDpoQZsofkMJwDvsbJJPZUp8ESpkPbmRPXGIv1Pf2/IJWERPvFUj513niN97E138t9lHnm37u+rN5y16mTUG+Cxi6BdUmRkoBzxd4efZv1oPh6F0qg34NrLEar3MPd6GzLXlMc9SzD8ApNEgNmU9d4R1NhqeVX0v0n/kiL2wQcfYObMmejVqxdu3rypmebgwYOYO3fu/5dw/5eIIuUU9w7ExS7rAQClZ8gJDD/wUjLqDQiaE6XaeXnK/QxMkpktHKZJZLcsoUM1lq/fhQHCBH3nuTCBT8EuHwDau6Zez5qhT6iDhd7ywtioN2DQuZsy/1pFMOoN2Om7W+DjMuwsBnQaDJNkxvUdfsLAz8dqsrabq/XcqDcwhZHnp1wsAcB0d3LqdHlGBDxGn2LmYTxPWk72T+1Vg7dhfjRLq1zg8GnpKR19rpxs+bS7kmMAENSvV5xlPxw+xkitXxORErhFqFfzp8/D+3XZXMOoN+C9a+0024meHpzvtAH9ahUxJDzqF8QTzdNn1AThnkfMizDqDbjpL/sSxpz9U6iPSTLDci5V1ScvBsmbACU5cvwkGpNNuUC3pGcJfokAieOifEeUjHoDvmx+HAmGXwAA55a2xZg6Nxl6mBbxPHi/LiVvk2RGs0VxyNwkv+vRrhGI+ZOU1eEz0icCahTiZqcCGPUG2Ds5CX5NDu5urA/E7N+CQytXsjpTuH4eFY/vL51ODYVRbxB8FiP7jBL6k8cs+XShrKiIyZnQoZqKn0kyM+Q655QbVhVAZb82tSUmIUXdrrD7DweHsODYfFwsgIxjtDyAmAEa9QZ2ahDZvpesvJcHdVduXPDfMI3LZS6SzTR5GhDYDyaJjE10M6rv8OeFtJRXy+3X2b3+/UYja/BKFU/lN0spdakcTJnye7vX72QhV26+u9rXgy0I+XL59uCp5exyRbmsTJWOokIOCB3IeGkt0DP7rBHajv4NCOwnpDMXFeHwI5n/vWkVx/08csULGV+QOcLpl0RMvNQZHj+T0DT2R2RURmWbBc2Ogn16LmIXiaECtNqAJ2X9NrciJy7NFsXBwd0Nrp/EIetHEjuOxQQ8P1CV36g3qPxqP/dqp3of1U3HbCqJfmuikDdLtKowSWbggIusxLZ0xenHdRFzcCtKT5F5+16XG+j+IhnjGsYS5OH7U4hy5vs9USDbLI1Gxw9llMqa25OQsSAclqvXrPZB5YmfSSJx49K+DRXu2+p3Ey51wZ5dG1XzklFPkGZpTD2TZMaPuaKysCUvHtfGieFCeHJwaYHCPSQW6mdNxQ1jSvOanhLy0PhrlKdyrQOQIPX8u7ULltFbEz5fDrtANRKwcuzjyb5WLSEdhdLn01supuN40E+q/Nb6sEtCbWGsptD0+z7qAgDIGiSPNXwdKeIjADg0baLJ+0mjfwYxkfz9nZSamorZs2cjLCwMjRs3Rp06dWAwGPDJJ5+gULHZb4tKSkrwzTffoGPHjnByckK9evXQsWNHrFix4i/L9C+bJnp4eCA2Nhbh4eFIT0+vOEMV2aQhvu1QODwU29YtET7Q1O+C2OnWg6GhLFAhABZ8EpAHq4+bnEZk92HsvtLEDQDKeuYLZdT7QQwM6zwgTeBJf1MeUpi4wC3uHch8NPhy1t9tpOKzK/Y3GPUGHA/6CUa9AVemE+Wo87QplRroKL/H/YLR6uhYmCQzW8xqDd5eB0SFwqgXg6byZZkkMzMLcR9FJgrn2AZ4NJBA2ptnyScgxWUWFA4XJz6AmKt1HnCS8Uv9Lkhz8USDxRr1BuS/HYHkjltUC8EuL8shByJbdWXplW1DF54fNzmNz7IShToBBPSCbxOthRxAnPDps30/rUXJfjeW3vdForw1+VY2f1Qu2LUWsvxE6Ls+Cvm/+iP3ffLO+ZhsWkqWcuHGp3swJFSoI5+v/nqysN3fto5YQTvtAZ2asWgR5eupgM+m9W32NWmPsO9msMCp/MmtUW/ArrgdwuKYbyv3d8kChJpNAUDg3Cj2nO7eX54hxxa0nL0Io0sgi2+ltdC5Mp3UqeOxUTAOHYf+fUcL9aGLjImpWSolyBb8Or9IqvlbEvp1J6Z46/1cBd7V9qdgyDlZ4aG+WPdC3FDUP5iBv1DlnfI/+NBeKI9vawCYyZ34mSQzHg4Oge5PPUouX4FRb8BatyMspIBd3EmkLwwTeAGA5Xwaq69d/jWr30OPCS8KbVraLYCZ2PKyXSuuy+ShRE9F6H2lMsh4HnC12o/5axp+oqwTl79cEaDmlrwMW/OImVnJ5SvsxEfX2geGGjXwiSeRf/rlIDQYmGq1/vQky3lAGvp1kxWuvLD77J0pZX3nansmQ8Pv4hFz7pBKUbOlIGjNAfw9ahZefNtR4IteeUI9tOpEy0/7NpTJwJuyZyzQPpW5+MIynH1lqVpR6CUDQpTk5OJzL3VYh1pZtwEAmzzIppXl7EUY9QakPk983Vw/jkPj5WQMKAvvgLCTxQjrRKxNPPe/wHjRANMA8ErLTkI59H6rWaKVirLf8SSF3YNRb8CUPNEqpPeZe/h93hdI/7gOCy0y2lUcH+vZ10TTrRc1+ZokM3x+u8qCriufD8/ozfJNThWBZYx6A7I/Dhfeq3e5iejVVyJQ0itQeAc0NAEADAgZQNwXOOUqZ668IQoAd0ofMvcGk2TGw+1NGJS8oHivJRvcW+7X06wjACy/3YLxAYBbO31hksw4/kN7YSyl4WWcfkmEvYGcir2VIcLTmySzcHJXcvWaqrwq+vtozZo1WLhwIby8vDB79mwsWLAAfn5+eO+99xAREYGHDyv2i338+DEGDhyIN998EwaDAQsXLsT8+fPRrVs35OTkVJhfSf8SWIe9vT0++OADuLm5YcqUKahbty62b9+OTp3kAWLu3Ln48MMPYbFooxZVESElWIfW4KW8R6+HnLuObW3EY+wZ6Wfxpbe/Zj4AsHNwEEx5aJrUVcGq4IqUxlzIw8ZWJABunSON8IvXfquTt7VyedL9qYelhyRMyjR96opg+E6R5aADWj+PUJQVFeHSnAjN43yj3oDMz8LhOZMMaG1T7NHOKQ8rsrqgbv8MAMDczBQ5IDYvj7Mztpzejdr2jprt/LhfMKrvSRYmLEo84py1dkhdHYSs/t8B0FY6+PpbenREfldHOBQCp19fqplOWAwfaoqH3f61OH0UnERLZlv1ob+VxMtGUbBs8VbWx75tK5SeuSCkW33pKDHHtbODKV/e3fbePBXpz6iD8lKy79AapSe1zWeVclC0Qlt1tdWf+fJ0jRrCckO0ErCWX0v5tNW/K+Kj5KWVjvK5XHIfz14cw9AQbfEOf2Mq8x/x3DYFZQ6lwjdaWTJJZjydZsR2HxOMegPsHByw59KxCtvWlny8k7uSlCAmfDv1OjcIDr21ET+V9yjAiRblz4xAg56XUdOYhbQlofB5OVHIn/ZNKBql2MP5e9s+jtbesa1vRskr750IuMyLQ+57Ecy82GP7ZDwTnsAQVG2V2zp2LNxGnP7LfV/FZ0U03ObGwS64HcqST9usd0XU+8w97G9bR9U+1saiypSRvihMCEiurAOPRMuXw7drReXY+mb/anso62fp3hH7N61B//7PoPTkeU3kXL4MW21XmXKNegMaxjrjyhxPBqpRUXr+Hs1/s5OM0uiSUBt5YeqYn1r82i2Khv7zODwYGgq70jI4XiuCXdzJSn27ynta/ebpNCNS93rB9RPrAFgAMenm4+ApaWteAoa5hNkEBamo7aW3IhA7cQmcfTOfWHAKumb1/P6dfwysI/P5eX9bexw7dgw+Pj6oV6+ecP+9997DJ598gsWLF+Pll1+2yeP999/H/PnzsW/fPvTo0eP/W6b/L7CO8ePHIyYmBsXFxejduzd+/FHtcF5Ff42MemIaABBYW3oPIIMXvTZJZkytL/tZ0UGlb61i5iszIPwp9jxtPdnl3nPpGNI3iF7DJkl9LM//Hlf3Bvt9rwsxZ6L+ENbqkPsLCUTK299Tur6+JUySGR0+j4aucWMY9QbkbSXKo3KBR3efy8pNkvhFas1DTYX28V0kB9I8/m4gPjo2gClhJsmMZ0zqIK4myQxLQQFq2zsK94adl3el/lyzSpAFAILeJ7x42G8+Py8XVcKU6fg60me6P4/j/JSlOP06QZfsN+g59ozf3aS7blQJo3x1DRtolgGAnQ6kLSanClogFkzmefLusF1QW2zNk09NqZkZ3x7KyeaPdd8xvhQshl9AKiemdzPNKiUMAPOJRFmZUGb6M8th1BvQZmk0TJKZmf5Q3t1/OCbUS9rWRtXelG48I8NKl3ZWT5bKhQVAfMD4a6r0KZUwrfL4+61WRWNGuow85jaXLPR4UxWt967FS9m+yv9tvo1mdRvv1hl/+v8m5KfmV11OPRLuUyQ1o96AzCErNDdK+Pagf3Qc4vvWw25XWX14JazaweZCWq36UaI+QybJjN3paqWVUrcvyaYMBcrg29Gh9yUVX+qnqnxfVAnj6waQU68at8vwoTdpR+pD1Dp2LEufOXwFkuYvs1qvioiXRdrWhl0PCH9KJafLvDikLQmF68ekTWZc7gjf6CTBDMwkmVnwYmU5jtWLrS5ki/a6s2uHFnpWn9RV5NvufuZp9vz8FLKBVJZ8GvbtWwl9s84ROWCxVpvQYNaUlKfaqcWFTF5Kb16R5zOTZBZMBgFiEcBfK5Uwvj4AsG/LOpVsJsmMc9Fq3zwl0VOYj2+0EuTk+41Rb0DEa1Nhksz4KjseV6dF4MEQ+aRX64STr6/u4HGiMJ48D79j1QQljJbz5pUA1cKfKnFKn1c+n0kyI/eXtiw9zXuzU4FqU4NahNB8thSMTR5/wnhGNoNd7XZUqJ+t70P/OenPjjcfo+b2JFwJd2LyuSU6seDm9J6Sp3Is5+/TMYkqYTpfL6H9eaJKmIMr2ZR+MDRUaLdhLmT8uBp+V1Ufa2Nz/kz5tNEkmVldq+jfR0FBQSolDABGjRoFADhzRo2Oy1NhYSG+/vprDB48GD169EBZWRnu3bPuBlEZ+v9GTezVqxfi4uLQtGlTjBkzBvPmzfv/ZfmX6P79+5g3bx7atWuHOnXqoFGjRoiIiMC6deugPOxLTExE7969UadOHdStWxf9+vWD2WzW5CtJEsaNG4fGjRujZs2aCAoKws8///wP1AhI/IyYLZyZRswhKAIdHbx03h6I7DFcyNO/72g2GNaLJKaiu+J/B0A+8DM9l+PeKGJqwDvPGvUG9Bk5nqXjBy3fdVGocaiZapEHQIAzL3hevQhzHX4GRr0B1U3HkLpSRCFK/oTUr9miOBZnaqCnjIDE0/Kco5qTIgA42FuE65LLV5D+A5mU/1yzCt7PncCtF+RFmG9UkmqyMOoNuPZShEqp2Nq6CfP/offtgtqyfBRowiQRAAp+kWzUG5iNvLKsrGLtXcA7Md5C+f09w6Dz9sCeHT8IMlAfFcavXCGmz3OmtEL4jKkC7/yZxKyNQoO3/lQ2g7O2i5k6Xl48lh07wyYZAIIZqtZOn1FPwFAAgjhXIyZZNVkrlYsJv00V7j96Sq6nFtF0rh/HocfZwWy3lZYxs6FoXqsfck7Iz/fV8502sPv7tqzTRL7k2wqAJpw1W6Bz5jG6Nr7sfsZGNXpYyzlxmLZxkoqX+/vxIgrbAReh7jyfyK5DhGc88deun5CTI4fmzTQXTk1THsMkmXHkRfK9Xp0WwWTi+wlfNuXhs/Iyu6Z/deaTRXTPcRMBEAXq0gcRKl4mycziMEV2Gwq7GjWgRb3P3EPq2kBsbkUWzuFvTBW+WzoOUZnjx5Ox4LF7kVAmD2TEU/yXy1X30tZ3RFF/eSOBL2/K1p1ImbMM871EBEHan7Q2K7SUev4b6ho9GXYB/qIc9gSIg+/D1NdSKW89VwLbn74hAL8eC2TlUjLqCYro/RGhqmdNBl/Q3Cwx6g2ooZOtKKhfq0kyo76Z+B4bGsqofjwP6i9Fed3rckOQBSBgQjS9x+hTKoWXp1daqtE6T3UUN2momaJJMsPSoyNiDm7VVBJoGSX5ktX3pHXvuezuAo9rv8lmqDS+2pH24hiifPd1fiJjsX/1mmj6TRxqbZNP5OlmTt47Eap8AASTZK34nQDQpY5sOrju0lGWV3fwuBDfSktGPkzD3WdFQKjAD6KYOZ/TL4kMsVE5LlA0QL79NmTI/pWAjGjIp6OkNS/ZHyLrluZfysrKKtdYOG1N1Mxj1BtE374DLsyn1ZriZ0nNYO3P98GML2Vgo12JO8k4uWSFUJ5ynLwzJkx4pjUenHlVVu5tKbJPJP1T/mHlPmI+Pj5o3rw5+/u7KS+PjGFNmza1me7IkSO4d+8eAgMD8eqrr6Ju3bqoW7cuGjdujHfeeQclnMVZZelvga9v06YNEhMT0bFjR7z//vuYOHEiiouL/w7WNqm0tBT9+/fH+++/j+DgYHz55Zd47733YLFYMGHCBLz99tssbUJCArp164asrCx8+OGHmDt3LtLS0tClSxecPi3a7N66dQudO3fGr7/+iqioKHz99deoXbs2Ro4cibVr1yrF+FtoW+ppPDYSBKu8kvso6SmjiSkDelrSs2C5mA6j3sB2r3bvVZ9G8h/8EJcQxC3Uhofet2Ud0paECoNG6pogpI5fBst4cVH0uF8wdK19hHvU7Kbv8Oc1Jw6HWw6ML090xxwAzAFqRRAAev02g6E7UR50IP3Fa79QT4DsWtkF+LN7fEyZtPUdVQthgPg9Ke/lvhuBkzOXCvfKjp1h5VH+HT6PZosifkJy6kfid1GfPnp/asvO7DSN510vMp39Lu5NIOBjDm9TtYdvdBIr63G/YHg8cxKZn5EFaM6H4Tj78lLU3ZzA4O5NkhktPpNNt9IXhaEkX0LW/HA0jHXWXBhSsjZhmSQz7o8MQz+PUFV+5YKK7qJaW4SOuZCH/j6d4P2aCL3s+HuSZtkfZalN4tb4bmQ8bdUHEBHSlBMjvfeNdytMTJVPV+nJtN/aKNX7MOoNzEePPrv9NFmYZ38Sjpj9MsiK15gTqvzBZgsuTFqqUlRNkhllpaXQ+RCFPifWVSiDfzc0nIW1xQUAGIeOY793pewh/WdfS3bPJJlRbe8xAo+fRMbDpt/IKKN8ebyMlPiAwJQyRpMNJNoHxte9hvOTl6ram+dnScvExYXap+3729aB74QU1k70pI6S8/fxQvtQGHefcfKJFgCs9Wup2Vd6jZ3IYPlp2szea3Bw9Spcnyr6DwHAMh9vtPlWPF1gPMPaC+2jLMvOwUF1z6gnKKN7dm0U+wkXlJjn2Tiuvqo/nQj+ESbJjIxeazXNR3PfjUDa12Go/XMipDe1fSPpu6a8HdzdULBBRjv12ClvHNCxc0pDOSyBSTIjskMfFU+drxfzj+GVvVLzOc3+pcyv9ZtX4nii8u/fuMbqApfve3TTwySZBdALLd4lZfbCfRp6glcglfnujwwTkDR5GWhapfXI2ZfFEzjPfcRnLGOEI8vL87k3iigLIbOi8K2PL3s23q2zZj2MegNDPza2kOcLfl7mv7FxF3PRaGU8am5PQrvEZwFAMNk36g3yaVvbezBJZmEcpX2Tpt33/AKU9CKbBbnvk7445oKo0PNEAYConADgsWuS5thJqX45uJBJMqN4flN4vRmPB0PleUvpD6v8Zo16A565IMFrRgKeTjOy+xMvdYbh02jVO8jgNlr52Gf0PZskM0NvpnmU5Q/xFX0Nq+jfTxaLBR999BEcHBzw7LPP2kx78SLZ5Fi0aBG2bt2Kzz//HD/99BMiIiIwf/58TJw48S+X7/AvSa1BTZs2xeHDh/HMM89g7dq1qFlTDfv9d1NiYiKOHj2K6dOnY+HChex+dHQ0WrVqhRUrVuCzzz4DAEybNg3Vq1fH4cOH0aIFcbQcOXIkWrdujRkzZmDv3r0s/6effoqsrCzs2LEDTz1FzPsmTpyI8PBwvPHGGxgxYgRq1679b69fFVVRFVVRFVVRFVVRFVXR/2VKS0v7t/nMTZ8+HfHx8Zg3bx78/KyHKwDAzBBv3bqFs2fPsvQjR45Ejx49sH79erz99tto3bq1LTYC/a0BnWvWrIlt27Zh2rRplUIe+f+lu3eJzbFerxfuV69eHY0aNYJTOUJOeno6kpOTMWLECKaEAUCLFi0wYsQI7N+/H1euXGH3N23aBC8vL6aEAYBOp8Mrr7yCW7duISYm5m+vy9ARI3GjA0HsKyqTY7r4L5Z3XI16A/MTo/F8qBmBz3q1/5OSrJlnDOg0GJlDRchN3xeI/0ZJVo6w41R9TzIs59MYkiAAFvMqfYyjaufNJJnhWW7G5fXjVKSt78h2mqgJJT1x4OP5mCQzvJIdkTl8BcpOiIEbAQJ9btQbWEwZPh/dCed3XQHAZ9xxqzurAFAWIe/En3uJ7NzrFFCy1NeI+vVQMw8e0Ynn6767UHW/4ep4dJtC6jrhUhdV3f5Yv9rqDh8NpgzI8U6e60eQmfhYRfaHTsAkmdH262ghQCWFAU99fpngPK21e6/1Lunz2lsSmN8en2dxQUuUdgtAnSONhN1etuvbL1hIP67uDexOi9XcsQ1+Vw5Anf8r8SEMqVENCJF3DOkpI8+T7q4a9QZmrpa6jJjFUKhqmtbeyYmVkbaOvMPcdyOw2leGb27xKXnHzeLJyUTa18RcZ8wFgmTX7GkRFIQCW1ycsKxCc5NkgwweQ2GsjXoDvH6aipgTe1mQXv7dKneAKdHrwmGh6nITTgnpTJIZ1fvkqPpmy5GydQD/7vjyHgxVm7UpZQMAn5eIyRAfM8hae8zOlMEwsp5eqeoPtMzcdyOE/mmSCGQ99autcUgMqhvZeyQb4zpNl012tU57HQ6ksADBQ9PlE52zjx+i8fJ4aJHrJ3HMhFPg/SsJQSK9FaEqx6g3CIBJQXPEk9Z5N/wwLf0Cu+Z37ancDh4tcT3itiZv/qTaJJnhkyxbNbh+EscCsJ9+TT5xUX6nfPuUZF+C87p4vJSWCp2PJwYEnFK9x9bVawmyUJNzvj9YUjPwVVejcEJg1MtBtpWnYsrxg28Tep8P7A1AhWTbr6U8T9ETQK1xbVfKHnadOWQFu8+3I0WRLOh0Szh5BcDidGqdsgNA/dhLQkgDZXubJDOuG6oL93geV16LQGYfEt+O93EzSWbmXxa3kPjNOn9P+iqNH2nNUsAkmeWYduVuHPy8bJLMuPZyeciX7a2x3k8+FT0dugkA4J5UE32HPc/eM50P3UachlFvEMZRZZtMDRwChwNkneP6EfGN3djKBbMyRGh7SvRkvXCPJzl92hgA30nJqr7Szy0IOj9yqld/vOxTKE0mlkVHlqxgafkA7FoyBp4oxfi6xF/81Cl3dj8v7D6zGKD8TZIZ0Rxw1478ZCHwOZVT+a0oY8v9t1BZ2T/39++k999/H0uWLMHkyZMxa9asCtPTQ6awsDCV0jZuHLE8OXjw4F+S4V9SxEpLSzF79mzNZ3Z2dli0aBESExPxxx9//CvsK00hISGoX78+Pv/8c/z888+4dOkSLly4gFmzZiElJQUffPABACA5mSxYw8PV5iVhYWEoKytDSgr5yC9fvoz8/HyEhYVppuX5/Z1UdvI8c9SM5gAgXOaL9twUaaio2xVmTgCAKTsVET8A0A+/JCtHpaDoE+oI18qB/NDKlewehUD2eSkRRr2B+bTx6R1a6JExejn8oi6q5GjxKRmEPX+2sPsHH9ojI/gRK8OuRg1hsKVKiBLpiKan/l1KswAAbNGmpMIWBDXRvlYtlsdyVYS3phPQl97+bOFuksy4NFFEB7U3tMH0y0GsDjQdBUpx/J2YGK51O6J6JwWWB6r3QfNTEzB+cTun8TmYJDP8jlVjphGUZ4vP4lDrjKTipWUWpSxTa0GhlBUgsVJonp3+zrA/dAL3uhCAFwoFzBb/5aYst3b6orSzXAaNU8bzb7BWNjVrMZQo14Fzo4AkgsSmc5YBOng6OXUxjHri+0cXJc4ndZrylxYWYsv9enho8kBm39Xo5xYE10/icHl7ayZ3VBoxG3XcScwlM0csZ4sGW2ZPfqtlRVKpPCjfgVFvwPHZy1ga79cSNHnz78qaQlb9HvmO0r7vKOS7X+63qFwIa5VBZZqWfkG10Kn1a6JqIcnzpfH2KKUE2MPBo6XNRcaHnh2Fxa0yraUa8RPgv/fuE4mJnBR2D/U3EPPoayvdmaJskgg0vlFvwK7Y31B7i2j+qrUp07//MzDqDSjsep0tvP2ry9YdJT3V5lHmt5dqhlMw6g04PX0pa7tupx5qttuxucvY7wdDQ7FtUU8hMDxdLPLvhW6QabUp3SD5Kpt8P2nBRUJ5dg4O0Dk7a+btPG0KHg4O0eT95WvPwZKWibTgIuE+TRvwsehTy7fF1WkRyPo0HLuSY9TvttwnR6nQUr43JpPxmm8TZXvQa6dfiPLv9QcJW1JW/Jg95xVPALg+NVzzO1QqWfR37S2yqZnyXXvVEEGTlDKW5Euq58qyeH8hJb025RdBHvs6dVg+6l+mHD93x2wS6qFsL6PegB35apAuSpdK7qPJEmLWfqo8JIRyzMkOeYjswbUEvkpSjjc0neX6daYw8fnnexGz3uyPxXmaukQ49SObUyPbyOAhWfPCsfoO2YTZc+kYLBfL/eSPmwAAqctD0HLkabybKcsQk38cW/NkpZaXnwLapATYM9l9Xklk9b/2snZfZXNio4YY1CIY7qPUmxbKfHc6yzFYtYB0qujfRx988AE+/vhjTJgwAcuXa7vuKMnFhfhrN2vWTPWM+q4VFBSontmiv/VEjKfg4GB069bt38UeAODs7IwdO3agQYMGGDlyJFq2bInWrVvj22+/xdatWzFpUvlELZFBkD8No0Tv5efn/+W0/wrxzobNmzeHjw8ZXGhAZ62FgkNLV3R6dQquvKaw6ecCgPLxxXqeVgelk7a1EQZQ6ltmjda6HWG/+cWDcpdQi8qKH7MBhQ56dAIuLSwUfLh25qcwPgd+WC0MxnwZZVYCuQab1f4TqctDmH8XHRx/vOfMftNFGwDMy0pieWv/TAba0gcPhLw88eX7jE9h157PihN6qfkczgeWCPmMegMyehEfw3czzcJ9Pu9o1wimCE9MzWK7rZH+BCa15+lCAY6a5r8YVIzolp2Z/wnlWZKXLyjHyjaM7D5M810qF9mev04R2oRNqLfvqBaYtJ9cnCAvMvkFQIOBqQJENI1TxstGQSVoGp8NUbjbTT5ptxQUCPLQ/jmwBVks875/RQ3IQj6yfS+VPG/vGw27JQS9k55UNH/6POP9tNN9lZKgVGSVlLW5A4sNo2ybGxbyfdLTTaqgKxeAvK8KPekx6g3Mb6zn+BcBkJAPvAyXxpM68EF+AaB2+QKG8j8sgyMKRJ9/lJWMb8M6sZNirQWFljLTdHGcqu+UZMkAGVrKCEVA5e9RUAAAuN7RTrUAPrh6lar8opG3kTlCDmvAp3dLdELsI7KB0TSemLjY16kjpCn0kDegam9JkN+1vQ4myYwDP6wW6k/7ea1tiTbHC991UdjyXS/hHVOURkqvpZ9HrV8T0WBNvMCH+nvydeX9TBrH1QcApC0RT4Ned5dBlIRFZkkJPipfoCqfH/1mBWr+lqRZF8edSex3xElZwWn7NVHAmiyNs/p+m34TB4+35Y0VpUx3xoShfnqxanwp3OOJRivjNfseT0p+PMz4S2nqmGf2bVuh8fJ4Vh4fs7EiEsb58ncz59AQ9kyr/gBBPVa2q7VNESWPnwzkm89YQJTH0nv3VHzodfqiMBYrzRrRtINayNYStB9RcnOoDZNkZj5V/Hvh5ePfKwB4JauBSnJ/aatZd8vFdFi6dxT8zk2SGf0GPQf398TN5ZgDPwtp6BxokszweCceW1rLYyRfNgD4TiV99xNP+Vlki46obe+I1LVy8Hkq396t3wvXRr2Bxf7sPnGSELSZl4nNiRx6LuVBTy6NegN6vDBJJSsAVTiZJ5n+WwM6U/rggw8wd+5cPP/88/juu+9gZyXOqJJCQsi8RME9eKL3mjT5a0G5/22K2D9FtWvXRtu2bfHGG2/g119/xXfffQdvb288++yz2LdvHwDgQfnCuoYGGpejo6OQ5q+k/TtJ6aDJDwIlObmo/XMiTr65VHhGP/y0xaGIOXWA5f2jnZOKj36I7BBtkmRUQwr0wA+sDu5uwqA5KK0fAHEHL/zkMNUgkrdVRvv6+WdyanBjCuHvuU0OnFl24ixSVwfhpbRUVLPTCYtb5QTU9ptooS0cXGQF2SSZcSy4pkpB9J0qBl0FZAd9mo+W9Y5HCAadkwdNmkc5mfBkbbFlbWJUvi9AnhDujQoT8tLnNGj2al8PzG1MzCBjzpKgoBQR0JoivOcSMb+79AFR3MsiOsAS4Y/X0s8Lpo13xpCyLakyxL9Wva6+QszBMoeuAOzsbCriSmUi4BOySKOQv7QdaL/g0yp59tl/QXjmOTMead3X4fY4Megn/R3Zrqd68VE+uNbOJfYN9Dvpf/Y2S+LzUqImOAjlzX83jDiIbGWZJsmM1G7fs2f8QsuoN2CMK4m3WJKZjWvRpG0pkqlJMrPdbu8fZE1ph88eBJ4ohUkyI3cIWXDQOG2+U5KF9vB5MRUdkp6B35oo1fugaQDSB5V9lqeQGtVguXETdnGVizXHn8B9fKOVqs9TOShyaPhJOfD8w25XGQIbLaPm9iTGw3NmvPBNW5OBIv/x5dH/l0IL8aEnkZHG+dl98YiQ//BStVkkAKR9EyS8S4o66HdknJBO2c7OsQ0AAB7vxKPpN3EM5h8A6m6WwwKYJDOW5PVkp8uAjDxH0eKo8ggQU0BKpeULFaV5OW27HhNeZPdi8o/DJJkxYfF0XHuJ8KeLQqX8Wv2aUlyH6ox/i89EEy3+27c2NvKKj0kyo97GBNSIUVua0NMPpRxK2Yx6gzCm8PStjy/bzKJp8z6yF75fPo7gjSnhmn1AWd5Dkwd7N75TklXjgXIOygu7r/k9ZP/UXtWvg9+NQuqyEHa/9NEjmCQzvN4UAWm05MoYuZyZVyqfUQp+V3Zl0LX2gVFvwPWI20wGmt7rx6mobZJRFPv7dVHVkVqY0P6QEUzGLXqitSA7Aa7DzyB1hYie3N+HjIO6g8dxuaccD7Xv8OcZMBYADDl33WZdtNpBOfdae27UGwQAIH7jRMk3IXwlALIBRCn/V39VXi1ZTZIZR75dweTRikuqa+Ormb+K/n6igH1jx47FmjVrYG+vrQpdvnwZFy5cENb8Hh4e6NSpE5KSknD8uGzaarFYsGrVKjg4OKBv375/SZ5KK2Kenp5/+c/Ly+svCfNX6fTp04iIiECfPn2wYMECDBkyBBMnTsTRo0fRrFkzTJo0CRaLBbXK4aSLiopUPB49IoMGTfNX0v4rdPnyZeEvLY0sqq9PFncz6YfdMNZZWNAU7BIRC9O+74jMYSs0J03lQpLnS6/Txi5j92n6kuxLwr2iblcE3vkzIxDfYauqbi7DzuLgQ9KlRrqQxXKjFWRXi5otUrmy+n+Hb318hXsmyYyvbnkKZbf4NE4Y5EryyGnk6nJI3msT1RDNtP58W9K6hb01VbVYeql+rjzhle9w0smEb0utHUE+jbKd/dbKPj8AEGYerlqQ1PmJmEvtKKwlyF2y340tvPl6aNWVp7TFoay93D4gCyS7uJPIfBFY6N1aQLejqE6U5/3SRwwqmyfhhIM7ha1oMgTIqZRRb0BJLtkpGp3Vk/ULrUmSX5BMd84WntE2rr8+XpUeACw3b6nSUwNzegpaVEYWZLv966sma2UdLpXICFiqibYXqc+d58RTjYyN5GSr+4uTYBfcTohxw9d17wMC+91kqdq0VtpAlFbl7ijdAeZjzRjPD1T1zd3pcTgZshllXmTyuD9Shl5elC0GPw5/g/hN2QW3UymcWv0cAPzWiP6oNA0fb+tIe0eV4pQ1LxxDzl2HRzXi51q3f4awCULj9Sn7vDU5AGItQPPQNMW9A5nvqLWFGADomjZh/C/PEGH1iwYEi3UrjxFWsMsHnj9PRe2fyXjmPuqU5lhAqaCT2CeL61lUaWiZxd0vw3KbwM/3GTleFdibKo+Zn4YLbbvJ40/Gg6/z3OvER4j6Rd6cFI7IFsQE9NQbS9Hk2zhszI1lZt5l4R2gc3YWIb8VMio3lbQULUr8iTSlyzMiVIpPtymTYZLMyNxkYLEOAaBgvLjA5+NbUeLLbbQinsUTvPtMmPAsoUM1Ib3bDGL+PejcTZXsjVbEq74FLbqa3Ex815YHKpl4OR1cZVNmw6ey6fzFLutVY+rNoFJkDV4p5Ofrzfsu8+VJb5H2bbcwmr1HrXo0WBuPyzMiCLIrd9JEZaDpvV9PQGmh7Oes3LgAyNgKkM0Xo94A4xkSR4ueaFHfON8pySysCQCBL+0rJsnMNn6o3NvaNFbNmzzx18W9A4WwG0a9gflha+Xl0/FlHh+3kLWFgyvZdBvpolb0Www9C6PewDY1tUj5rdD2DZ0pjqNpzzescAPgiSIKLf9P/P2N9O2332LOnDlwc3ND7969sWnTJvzwww/sjx7gAMCsWbPQunVrJCUlCTwWL16MWrVqoXfv3vjggw+wePFidOvWDUlJSXjnnXfg5ub2l2SqtCKWnZ39L/39O2nhwoV49OgRRowYIdyvVasWBgwYgJycHGRnZzMwDy2TQnqPmh3+lbR/JzVeKU9Ml7fLaCsUUMGoJ75XzgPS2Edt1BuYA68W2Voo84OCztcLt8eFo/UK2bdDa7FN6cyrMgQ1NSm68ipZyPAxdazJ1P6LaDYYUUd0ZvbWtq6QlsrxaKBsppT2dRgL9Fv9XpnmxGzUG1DnSCNcjwrH7Mzj8F9C6lbvB7VN+DtXZTNIusMJAEX95Rgp/ouj0XP8izYHSuVk6f5uvHA/wfCL1XdC4YZD3iF+RQ69LzH7dErtj9uhtLN8HXkxEnYB/uw6a3MH+Lwi9yMqq12gvxA7jhIN7EzT1rZ3FKCy7ytioVFZgt+LqnCRYo1+9PhDs28pJ1ra7vQEj17r/iTfp6WHHIqgMnJkzSOLV2qKo3xXwoKyXBmlpjk8mSQ5CKdRb0DC58uFZ15jSDvXiEnGnt824OhiOdYM359/uiFuvPCLpmZPnycbBJxJlecvUwQ5GZXHTOIXjjRN8cNqeCktlZnYpS4PEU5SAMA56SpMkhllyadVcvKbC9SMjl9gKdtO2U6py8VYcB7vxGNbm8ZC+h1tGqr6A5WB+ipplcE2ZrjQEZSq7U+B6ydxqnd87TdySkeBX2JOyEi5zb8UN3xq7EoW+FI5quksDOyCl4U/qafUzyOUwXFT8o2Sw0/wfCmZJAIWkzGqBrtWpvF8Ox4l+91g6dERj/epfe9oPeJflEOgeOyahIarZJNHnx+i0DrFgZ3OmiQz9m79HpaCApVfMi8bP/cU7vG0uomRNY+cKtFTENqPaAyo22PDMejcTWTND8ehFcTf2PNZMzJGLWe8nNfFAyHt2DUf30q5uKXx+m52KoBJMrPTRj49X597y8ji7qX6uao0ad8Sf7/YR6Xo8pJ4cgeAhZlxf080yRvtKsbOuvVCOGhMPLoZ5eDuBpNkRtNv4mA4YWNzrVS8NOoNgj9VzIm9mgox3aR51KiMvUf63C6ordAGLrtvwP1dWenUIpNkRmk3tdk03x7UZO+9RuUx49rWFfo3PeEHSFgTSjvyk1nZ90aHQfp/7L13eBXF9z/+Sm7ovcMmIT2UQLghpF16vRCKgIhIE6QmiCJ2UREUFFEsSAdBEEQQaRJYBaQmIRBy6ZDeWHrvkJv8/pjM7Mzu3gv68evPt+Y8T57c3Z1yZnZ2Zs6Zc17nNQuCZsey02a+PqtkRr+MTuw3/z75ukptT8bDSmqb5+fsY24WNJj4g+gwtDzal9VBfRsBoN2oUdh/vxCRSSMgK8SvtiAvX/d+tOtVlZWJuPpClLp348zcUh+JgF2uTYjAei1ILKfqafKcuqmU0P8bohgPubm5eP755zFkyBDhb9q0aY8tIyQkBPHx8WjVqhW+/PJLvP7667hz5w6WLl2KKVOm/GGenlgQy8rK0v299NJLcHFxMXyWlZWFzEy9WcFfSVQwstvtumc0qFpBQQHCwshikJCgB7RITEyEi4sLQkPJyUq9evXg7u6OxER9zA96r0WLFrpnfyVRx1hA3DAWPXoIuOh9JXii96dfbiBcG6WhZE/NQOXMexjTX0WDtEpmYbPLEzVPAIhJEQDU/UrUtGsD8sqKjZnh1ZulnrCUukbALKjG2RFR/wRZsQkboSorE4WJvv3wkax/brW+jMPvzcNU3+bwmG4csb7RwlhMr3PUcDPBmyCE9jrOTMHc3EWUTgBIfvBQv5gWE7+Y0GCyABGQroyIEvJVW5agW+zo9dHmRXDdp777uAZx2LZlJUvLB9nmqShZRZ2kQgQAQWizSmam0aVUkTML4nmq/q3K4+yc/axsnmctyYoNee+qAUqfO60I5VpeGatrLwCgsFAoU1nvDYAAGDRYIp44OvsufN4Rv326qNP8/EIp5yej/oEKCPomFt0tvXRlUVMsXjmg5QMAWr48RrjmBRsKukN59vhY/SboSQ0VzmXFhoCXyLui5j6yYkPq0lChvfyGrHur3gh84RB6VbjL0lA/CXqdNicC9vQsIqQtFuc0Wk7qXGIepTWjo/TgV2/Cy2J9fLasXgvZCb62bx51IembJLvqvhuaZs888USAjyNEiffx7Dh4BK4PFU1e+T532Ur8RN37ntCVIys25L+tRzgEVNNcgHwTRuOsIP+sbmNY9OABhla+LJzyaMlozigy30Lm0wsM08wtDnB/b7EE0++HUbpzjmASStsiKzZs26gGKg8cdVDoC983EvDbT2JweG0ZRht0/rpC10xhzK3PT4Jrsfm+zztkjggcc5DF/uPHQNUVCdjUuAZ83hZPn6ySWXiHNKYdX3/mKlInnctkRQVlAYgfqKzYcKNQRG62Smb0SO0GAChnzRJ4cm2iAoFQ642pvs1R4Re9Auv3pYvR6iXV1J6aXVN6O4OsJ9W/TcC2LHWO/eVsMrM2yf3AAlsIMbtbd1tVPlJz8oDxB3TrAAWgoHzzfa+df6f1WYVFufuEsUrN/VKXtGB99qhTKOztmjsUxqySmSknHSlDrL6ndM+zp6lAKC71JaQtC0XaMtUXCwDKuJBTys7PDkf8rPmQPotHj/7xqLj2gBDri4KqGAUDN6KT4+ayOsZ6tWJpb7W+DKtkRpm4g9gf/DNL/1C1BkaZLQfRsqwrO+mqqDGN1fb7pEwbApeRdaj6twmoV6xE4y1Hxnu1FMZ44XEisKYOFVF1D04j1kmtPlNNif/J9L+Kmrhs2TIUFRU5/OMRD2nadu3a6coJDg7Gpk2bcP36ddy/fx8pKSkYNmzYn+LpiQUxLy8v3V+1YtQyo2f07/8lNW5MTC+WLVsm3L9+/To2btyIatWqwd/fH/7+/mjRogXWrl3LwDgAAsyxdu1adOjQQUBAee6555CRkYHNmzeze3a7HbNnz0bVqlURHR39/6xNVsnMzPsMqahIsL3v6qXakVMHblmx4Z2aZyArNrSJGc0EFWdCWfrzpbA1qKrwjId25amwOI6Cs/Lu1DYh+LB4pFzpx0S8kn5K0OJtjVvlcAOdtrw5K9MoDW035QcgiyQNvHttWJRuoXKrW0cox6dttjCxOqILUTdZPh75i957xydc4NURLW2gfhOpL1TEoQ9VMAthAwLj/gVEwa7prFghLYXVN9pIWSWz4M8BENhlStVM6mmJrJBg1BQAQNsuWn5gqQrst6sDk1363PMjdXz+0FAS+K70I9no+2wZJeQtyM5l+TM+j2SQwbJiw5kR84SxYbRRcDR2KKqjrKh+PHw5uRF34DE9ntXPl0lp90IiKGR9rL633Mnqpr2wFPGnO1ds4miVzKiwR/WF0PJMx+Gp6fUNN8Cp37Zgp1FWyYws6xLdOGRjdN8Glrfr6e66OmTFhoBxKvphVvRiaMkqmeG7TjWlkxUbrowk39SUTIJYVqYL+X6M8keHdEG17mnMNDJ1SQvmF0aVGsfDxDmCnizRvml1tC86Hb8Fq2RGqe3JQr9cHxqFd3zCkfY12bS57UyG20ARvY72T+dTPR1C0NN03suzDQUS29tzde+D/7ZM/j6G48+tbh0ybp+dL/BE+1JrAnj+FQvajh7NoL/5MnOmWDA/Zx9iizeWVTYdZeVQk1Cet4aLYoW6+L4AyAkSL/zzz2XFxlAHrZKZIctRywEAaHv0HoaeyRMUO308wpkvE0/v+YRhUqYNmcX+cVbJLAg+2voPfKKih2qfWSVyciYrxDeNnhrzvq/2y1dglczMlIwXpB+1O2dYduFxFR0UAEMTLHr0UMcDAIbOCAAFefmYn7OPXbcrV2i4nvRwD2Xv9NTouTj/sgXrG9fCwkBysni7fyQzJzfiscGhUuzaVLOGMJ609S0J9MGo+q10a5tVMqPx+wobX6W2J2P7Kr1VTYv3YnTv0RGdCi3Ag2jR/4uetAFA3G8/IrPLEgQMS0aYzS68SwBw3ZvC+JlRh7xbarqaNT0Kh9+fp1vLjNpMyci/S0v88xPjxTAOVsksKLy0xPf7u2l9dEo+ozpoubcL7xt+j3x79r2mn0tL6N9N/9NgHRMmTED16tXx1ltvYciQIZg/fz6mT5+OkJAQnDt3Dh999BFMJmJm9NVXX+HBgwdo3bo1vvzyS3z55Zdo3bo1CgsL8fnnnwvlvvXWW/Dy8sLAgQMxefJkLFy4EJ06dcLBgwfx2WefoRJ3AvNXEv1A25VT7RKiO/XXPedt71OXqOYGE7xF0wiAaJULb93C7f6Rug+fTxs4Su8oXdCBmLZQp3Etr9EN2+ju0fJqLEnA0eZFbANJJ9LF59TTtPy31RMSfqLNXEXKoHG/6F/TL2Lhs3G0btOpbQ81CbzURhUyWJvOXxD6oajHDVwbRjRuBR1FaGqeJ1545O83/UI1a8j4PFJY+HKmWITytDwHjDuAGVcCICs2uOx0F3yfaFsAwFQcxDD/bQszr6K+MccmqpvEZbn70KU8aXPSA33btfVPz0piQCBMa1qMdhm4PAb2y1cQ8OIBwRSP543vc7+DZQ3RJmm/dTh2Bzfi/CErNrQaT7TJr6af0C2YVHNvRH6vimal/ILOl5O6RH86Q4mHyLZKZuQX3MZqn52wSmZsuysC9Gi/EZ6vjM/VUw6ft9X3Vv68qr6rvIrwO6x+K5gCyGbrThvV8dzRZkGSCepl4Q5PIW3gC4cM+aK/+e+P/x9RI1vHv5YHR7zQOD9WiSB9HZo6D9eHRmGybyjcfLxYubT+zE+ikPkp+Z7sFy5CVmzMNDKr22JU+kidO2XFBhTaBb4K8s8K76xC10y8Xj1Dx5dLSBAOfDIPha1DEPDSAQY8QU+stO35rRFRqvFmT36rx4p1n1WVdHw6bf9o+9qenmXYdwXnLxgqRGgZWhPAI6/PZSES6D0KruE1OZ751qXOD8fWdNUCwa1eXRYvDwAuxlrgNVk1taS+YrQuq2RG3PY1unbx9VLUwVrxVfG0BxGkeaTW3cHlsLyBpyHkutFYalMWSBuqKp3oqQDPk7P8AND6KPHbvTIqioF9UD9jXvHAlwsQH1f+Hh9nz0jhARA0QS3aIv/dUZ4pgAp9Ny6hQULZVsmMWvFVWd+2emkMCrYTMKy6X8ULZVJ4fL4feLTbMy3UOT3u6A7h26V1Xf0lUKj/2vPkWzTVqM7yFpxVMDdnH/xXiqFFrJKZnVTXWKI3WTRSaAFEgUCBVuhz5TV9bD0A+Kj2MZ1Cgl53HDJC+PZlxYayl12EdgJAUUtjxSnlN3WYKsjzSNN8XXzdXbsPYvdoud7vJmB1nqi05MPe0LR7mq4X2s3zacTb055RhvNB47nqPkIL3PaPpaK/8e9fTv/TgpiXlxeSkpIwZMgQ/P777xg/fjw++eQTeHp6Yt26dYiNVQe3xWLBrl274O3tjXfffRfvvfce/P39sWfPHjRrJsZuqFGjBvbv34/evXtjzpw5eOmll3Djxg2sXr0aI0aM+H/aJn4ycPPyZAsmACTet+smxoChh3HRrsLVazen9JrG0HGmSdISDSrNO41TvyKrZEbc6T2G/APqRtUqmdFo5g08d5po4ah5gKwQc6w723wRcLCMsPHxHWjTlZm6uAWOvTIXWU8tRMCKGKzLV+MsvZ0hxuqgfmumq25Cv2gnv7TlzbE1bT+Sps9DdHBHtumkZGrgD6tkxoXxeoHKKplhqlEd0kzSN8PP5MDv1US4hDVlEMO+PxJTChqPyIh2Nq2AvumdUdRB9EmUFRse/uYFv53DWT97fByPlLDVZOORsFkQDnfdc8WwYg2orNjwno/om0HLtEokfkrqkhbwddPD61PYXh8uLh1/iiYrNoY4yPc5D27CIxLSNAsOt0aV6HRYJTMqrCNmN5/7B+neSY8TBJL+xuBI3Vin/+lJQqW9NdFwEUHVpEIBAGR1W6zLF3JwANx8vFDn63jBBI36GsoKCW7qbEPIX/u9mih8X5Tu1iUnPKNTRZOW0xNqoVv0QAY9r124+ev9X86HKdAP52UiiHVv+RQzaXX2/VKESm2fJjYrBe+kcrp6qBmZrNhwfoJ+jGup9LaDCH87hikMKCQ9z4/vWwlY0k81udFuSl32i+3W5ucpa7V6AkPnLnq6WFiWCKu//bgUsmKD66MidDtxHaNTM1k76UmOrNiYiWnFtQeQs6YpZMUG/4nqHKKNSdd+kt7HjCftdxWUMIjMU8WhBLRzbXTnZ3XtNrrW1hntTqwCLo5TT3UCxyaha/dBDGWy4Nx5VPsuAVkfk3kn5V1ROJpcSw16rBUitXzw70tWbAxJzxHv7UaJJ9ha5LdZ2eoJrtEcLCs22IsKhe+Fn2OvjFA3v3uDyXitsSgB5X8+IASqfpI1rdr+6mz+4fPRoLv564gQRU/u3vtmmJDfKpmZUozWRwFUfOKIORk1A+fTXLJcZ7/3fb0Abp2IeeLcnH06vnkzR1mxCSdy9B7//kz+PsKz6j1E4ZHGUbRfuYrWR8lpTP0DFRDr1UpAYKRET6q1bTC6pkLOkdfnsjAy9PmxiXN1eXi+jZRGdP2lJtdWyYx6s+JZXEBq/uySYBx0npbVtX4L9ptHmgaAbr6RQlqrZMa2LSsN15oBnuo3F3zYhQE+WSUzPrrckJVBFbimWrXwy9lkXTnPnVbgWqkSKavYZJGWm/FZJG4OjGTWIiX03yS3xyf5Z5Ofnx++++67J0obFRWFHTt2PD4hCCDHihUrHp+whEqohEqohEqohEqohEroP0L/L2N8aev5t9P/9InYv4kyPm0Ba9+hgtaQIoLJig2XNjXAZF9iKkghsa2SGVmfRGGIZ0ucn2DsaL4yj4ApZMwkWr4W7+sBDnjTCXqPkrbMgPEHUP9ABVYGfe5avryg9aRmZMr6xrCfSsOwyheFcmj9FbpmIi3sASquPYBmSc8h81O9bbZVMiNw5CFWfsWG1/C0h4ri9rFfMEvf4FAp3GtLTIKkpheEdmi1e5mdvmXl0wCMvLassFJZyIoNdWbHC/FTqMaUh0unvl9FB48hfRA5EbCfTIWsqKZZFLqZJ1lRzdWEk6veQ1B+jAsyOizVndLIig1dnhkm5OHRKo20mLJig99qAogR7d4cWd0Wo5qpvENNstYMhU/H+xIama/wz+kz3o+FL1tb/y9B5GQi8VMVPU3bfmrSdav1ZXhNjkfAihh2OgMAnZ8bruO79lOnUZCVgysjo3BivIr6SVGujj4k2uLCtiFOx7/2moc5lxUbOz1+uuJNlsYU4IuAcQdQaDuJ1DG1DdvNk1Uyw56aAelTcipTkJXDxhf/3Wr5SplEzFSjG7fV8bvAg2jGo9uogWcLi8NxWCUz3DpeRtujKrjBg25hQhn0xJFq2LX1z8xOZGOBD5rKt0nLk9ZMSPs8tc1ydm/b3TKI7vwshhWfYLokHBG+6asRj7A1qCoWBvoyk2c6R1gls+Drd7rVCpbv9jMR6HHiGuzXrgn8HjSbGC9WyYxX0gkggalObQaN77v9BQYqcCJqJQK/ixFiuvFttp84A6tkFpBKjfqIz2uVVLPwlElzcSlGnRtdc88x2PlNZ4k5b+rzaigSbblXRorBnR2Na5fQIHTuP4zVXxTVDJdHR6HLM8MM81B0SdbO4jlPVmxIXRiGoNLlhPRWSY1dSXmLdm+OhYHkpJg3Dz/7loX50PJBy2n5OzeRtFeH69cMaqInKzZmtsmHEqBpH3UKxeZIUseJKAJ85PsWOfm41Vwf8fzis0G6ewAQOPKQwN/6/CRdGqtkRqeBL7A0sV7qaTz9v+XAL7pTL77N2u/fnp7F7hudrNKwFABBNbRKZizy3K/rB0qldtUzbB/lnz/tpadNAPleZMXG0Cu1fAprm2aca9uYZV0izGEBLxNrnsCRxad1hSI4m3buKCoQLT3o/3W3KwtznlEaLdGyqZsFTUNPZwFykmeVzIg78hvzA6TlhaYU4oeGkgD7z9fj91oiM2Evof8ulQhi/xDye+MQkEigXdnmYrgKNlGr1xk2UQ3+8BcAxSZ7xXb3tZPvGW7yO818HQCYcFBjcQJ6nFA3HVbJzEwnrJIZ/U+JMcOsklmIQwQAizz3w61uHYHXgjCC0sgHHQUAqc9Jw4lZ+xsA6vY+Bd83VFOW9O9DdP0kKzbUfuo0+81PorJiw9cS2ZQ0XBTL7Lfpc978it6j+V12EpCAoIRBmJlNJsZtm75naQtv3YJrMPHPor4OWuH1+hAVKeriRr0zOoVuBoA1+Wo7tW0JmRYLJB3DnYa1DN8pAGbi1flUT+E+XMmCSP3TvJPKsbL9J6qmWm1Hj3a4qe/87HBYJTOmX26ASZl6AZ22m5rRGLWBXlP7e0p3+0QIeW4XQ2BT0xZKfDmuFSo4XSRpLDxZsSH87Rj89sNSXVr6/NBU0fG7Xu9TsEpmvO5N/Ptcd6c47HOeL2rOVGbLQcN2Rzdso26W0jLZb7/XVIGFxkmi5Zp+l3TvgpZLN//nXtX769Fr+kdjUdH7lL/0LyOxeTeJ/8fHaAKAmj1T8U7NMyxfma1igNqCrBzyzot9E2n9D63EDCi4dFnhPr9h468BoNOgF3S8aceQ9tvuWv4B7CfOCDzz6QJHqCZV1Ple25dGtP+rBUz454nV0XsIABKDDwDsFy7Ccxr5juv/YEL5nw/g1fQTaDorVvAVNCpPVmwIGH+A+eEAAMKd+4PUn6L6etWal4BLm8g8yyuB+rbqJ7x/LXU7cR2Hps7T9akRFSWfgOs+0vbC1iFwSTiC5A/m4de1y1geHpjC0Ua7u6UXAkcToZSaltH8vm8m6PLT3ztWLGHXx19SN/pllVJIfvAQue+ryizPD4miovrSBF1Q5DlBKprsd1NUH3AKAGWVzJiUScAqxnu1hKzY0CZ2NEtnlcwIeP6wTklQY1ECi+ElKzYob4jx5+j/Ph4ioiol067DQlr6O2cKadfg7HaGQlW7EaPYPcsrYxlIE5+G8tEo2Y2lpWEpVubtN3z3VskM7yRVWH7U7hwL7+CIrJIZbceM1pW3654r4ravYdcUOEpbp7ZPqd9zdLunWdq4k7t1Y4rGHOTzdg/vzvJo52EtUeUYP/9r35329+Dsdrr5BgADHaN0a0Ck0B/0Ge9XSeujJpZUWKcIwpRK4Ov/e/TEglibNm10f0uXLnX4rE2bNmjbtu1jSi0hnvLfEQUFCmdKiU7Q6xvXYteUXPeqMLt0ootu2gG2t+YidW44AparKEjjq5FNFdWS8rSmUV3dvet+BGKaj5VTcP6CkMZ1dwpkxYYLUTfViWiHhzA5uoQEIeywCj4y86qfED+J511WbMxhHCCbAlmxITqERCx/KV119qb5rJIZocmkfOqs3iRZHeJ1vyQbKOV1UqeUqAIHFHU4C1PjQNReWI4FoLRKKtzxxVgLCo+KyFps49uewP9WXaHa3KeErWZpAOCNDNGuPXriKwCA1XnxuPpLICLeUoM7pkwiGxDBAbo4tlWzGbHie++Yx/puUqYNKLSj+YcxeFSFAL5kh6sCOq9VpeEAAMB3PXF8d6tXlwgjxWNp+elwtClrvOkHgDd3/yK0if9tlcxoP3wkilJUMBBZsaH8+mL/jOI4K/uDf8amO+XZCQSgBiu9PJoItlvTVA0uLcverjk6Dh4h8GOVzMKJTbnddZjvDx9vSVnfmI1RLd/8Nd30tX+B+MGE2VQfTe9nidLEzdfbcIMTd3qPTrjgHe+tkhlJ0+cJ497eXkGLyTG6/gQIJDMAHH11LuPT1MDfcCOsbQ/lw39CIroXj+1qy/RCg7YdRpuagpw8jEjNYuWXlg/p0miFK4CcUtI+p2isaXMihDTpK0IEAAEtb5mfRDHgGIraCBCQGm3dskKAEQASHJ1/rk1rCvRj17JiYycsVskMeQMxT6fzD09ltpLv83P/IEifkbmFhrbgN2P0mrap1K+H4OZeLHQXw7PLig03BhGF1/kJFiZwAcDNrX7sd61eZ3Rj95xVRCDlN3uyQk6o278wCtEdnwEiiQLh/IZGTgVVWbHBdW+KoZKBAlMAQD6HCCr0eTFMOwBsfuoLHX98v9DrNberGM6vskJOmmec7YZTY8l30CZ2NFM2yQoJigyoQA7v+YQx3imIlazYmBUEAEzzVeu2SmbsmbtQ4C/z0yjdOAaIME7zSJ/GY9Od8iwPr1CSFYI8y1P6LNFfmObzmhyPtDkRzCePB4qwSmZBMVLpx0Q23vh+elRE5qdToeqJECXLvljdPYAEpNeuEe59T0BWbBh0Op/5xNFn9H2U3ZykGz/tyhXCJ04NH/O5fxBL/0r6Kcy+5mWoMKB+z/bUDOHdL7yhfksAiTlIr2ndW5K26HgDYKgI5clIcOP3HpQuWa5j9jUvIR8ATH13uNBn8bPmMyUjpdTFLXSCXvjbMahc8w6uPR+FPh4kTiJvLUQDkv/PUAlQx19CLkVFT4bS7+r6xw/PXFxcDGN8lZBKN2/eRJUqVdAOT8HNpRTyJllwctxc3eRPSTvhaCcS7ebPERVFNcOv677Tpcn4LBJ+r6knJ3x5lLR5+HRu3vVRkJ2L1kfvC8f3f5RomcobFmai5ag9t7f5ospzqnmRo37g++6P9K82n6zY0C16IHqs2otxVfN05V8ZGYUaixN078io3pw1TeHV/xg6Hb+FuQkdkNV9Efx2DEdGx6VCXiOyHr+JidWJk/uJh/cw0Vs0P6JkCmrAThMctfNxdWnzAcSsZ+fyJejWoDWKGnpj28YVTsvoduI6JlTL1o0pozypC8IQOEYVROdc90Tr8mlMSHbEG19e8GEX7FgUiVrzRA08fX63TwTKrz+ASZk2vPXOWMTPmm/4PcmKDRFvqSAVj/vOZMWG2de8dCctOWua4nSrFWj58hjs/2qBbizKCjErjDu527BPXMqUQUTSbUypJaJNeieVwwIPx/HnZufsx3ivljoe+fQr8/az4L5autc7HOU26E2tnjutsE2EVTIj8sgjJDYrpft2/NaMhf8E1fxmdV48C34LAK7BDVF41BhFr9r+6oJJGUAQ2Y5NnMvKbzlhLK41cMXJmLnw/WkMi7nmiBx9l/z/6MZtYb9+A7nvW1B/qvP5x6hs3+0vIGDoYcPNHt83Rv8BoLBtCFx3pyB3bVPU738cjzo2x/2apbBp5ucY5ElOcEIODsCdk9Xg8zaZa/x/H4709qIpc9zZwwzwg1KdhMosHIfRt2jEs1Uy41GnUNzwK42aCxJwe5sv9jT9CSYXoqRbkrsPHm4V0T+zI260IicXbj5e2LJ/Iyvr/MsW1P0qHk+fuoh1jWoLZZ+fYEHdL+NxY1AkqqxUx4ryugXSzHin3xwtT9uPJn8fFC58yICQKu2tiZ/8tjt9j7JiQ6StHxLNPzldI2hfAYAp0A+P6lTGbz8uRXTbvrCnkTk57z0LTsbMxYRzLdCu8mnMCyABmTNXmZHWbhnLPyPrAN70UcOE7LrnKpia0/bkv21hZtkAAQRa8HwfuCSI8SPT5kQgYFwx/PsPzVh8SUdzldE8xLfv4jgLQ2qWFRu23C2Lz8cOYuEkAr6PQdrgeUI5eT81EQJwPyk96tIClk8PCIo5gXdXE+R8FcnVWVuc7ZXcvOsj+/NKzBzVqA/ob+U1CxN8J2VypteuJp2Z5INfvVGmS7ZTfgB17TSqe+2Zw6gWmIkbN26gcmXRwuifQHTPWn/h+3At9+f3eE9KhffuI3f01H9sf/wV9MSCWE5OzuMTGdD/61hi/+tEB/W1VF8806A5Ku2tiVutL8NUozrsV66iUbIbToUWsMmk2cxY1P1CRLGzSmakLW+OgKHGcb948kisiCX196HtmNEou1kNhvpHBJQn2ZBo8wLQTYp8mW1iR6PchqQnFib5Z67ly6Pw7l3ciPNHleh0h+l4Sp0fLgS4pWmosBA0OxbeSzNQcP4CasVXxSXLdYd9ICs2NJ0VK2gpnQmA156PYic3Rn3kqIzhua2xtP7eJ94gGD2jz8elpWJOgGrPf79HOIPOBoDotn2RNrKOYEYEkE1/7mgfFNpOCmX6bBklBI3V1u1oocv8JAppmsCWPKV/HwL/wSlCGR2HjIDbjmSc39AIR8J/cFi2s/7g02lJWd8YUp+TujR/ZDPuSMidnbMfscPGO4zRB5BFmm5yaL4rI6Pw/pvfoVeFu04VIdp7jzqFwm/aaeRG3PlTbdDe07aH3t9zn5wwlNpVj8Vq4st50C0Mbvfthu129J5Y3l+9savJBlglM+bn7MNYr1bodPwWXq+eAf/fh8NvUIouDyXXChVQeEdtu2XiWFRaTYLA8/EHqcKHL4PfgBqRm683CjKzdfffyDiGT/1Uk0Nt+1xCgwR0PaM2uzZpiMLjp/XtCW6IrdvIaXvzD2NQO/EmilJO4OFvXijdOUdXjjb/mvwEFl/rSZUxNF3/U+cNLSactUP72xFRQUxbRuQbYwV/UWdziTbvZfsd1DRVMOwH9o52eODmYg8WsPxJyK1uHZ1FCN+H0c06w37pEky/S4hrQGJOZn8YBe/3REVO2uwI/Nbrc/iVqsh47NagNfMnety8FjQ7Fh4fx7PxJCs2LLtZG8MqXxTaSgUzvqzU+eHI6kVOAPlvKH1FCPyHpDhUVjgiJvw2DoT9ZKrDdNr0zgTA7B+DmeUBpWvDogxP8x3VQYnWFTQ7FifGz0Xn54azQNXXhkUhabq4BjmbUwGCOEv9zbRpqUKKJ35OD095BtW6p7G+0vZBx3pB2IWN/1jBg+5ZPRdM/tsEsbwxU/6x/fFX0BMLYiX0/4a0J2IAp1VdOxYBL5MFggpm/PMBWR1YDCRKRovrwKz2uNJSdEZ3Ro4mXaoN+9q/Icrsrou861V1/lr8hMzbi2vLAYCA72Pg+0YCmiS74nhooS6dlpcLL1lYQF8t1T9QAYs89ztdLAAiiCavDBZiywDA+5mHMdW3uYNcKpn8fVjcIEebnZnZiXjdO9KxEDg3HIGxRAjMe8+Cxl1S8ZPfdgBA01mxDPr3cQuDS1hTFB08JkzuVHC/PCYKNRcYL1hMCPo0Cm53XYQgogAxwzIyS3LEh7P7PLl5eWJLwmaHAr3RhnXb5pVCupi0dPSucBtWyYy7fSNY4E9H9Z/b0AjSFFds27LSId/vXmyKj2ofE+rmNZujUzMZmMDjhAb6u9GCWAbccWlsFGrNT9Dx6KgPGu4bAq/+j/cT0OZ38/FioCWmmjUQd3QHuod2xZbkbTqeL8VEodY89dvj5wuj9hnVm/+OBR7TReHF2W8ATAAq6BiKHSuWOFRs0PuRb4xFle8TsSx3HwPqcMQTz/eTCAL0fqNkN3xZ75CQ5t5T4Si3UVUMeSRWROKmYNZemr9Z0nOo2/uUcK/5hzHsFFZWbAidEoOaC/Tvv6BDKNx2ks1Zk69j4f7J4xU5D4oeoZe7CKTSrdtz2Lr1B6H9Rn0z/7o7M2sHSEBsPnahdj47+3MQ3PuewOXNgajZM9VhX8qKDZGvj0XiTPFE+cvseMEskJbt/8NYdGljYyEveIGF51d7DRD4cboBTlsWivcjN7Pg8Ebttkpm3Yb+jygj2o0apQMk0ZbB/876JIqF/nj4mxd+D9rocL4DgMxPouBbnP5OvwhUPnlNJ8gUbK/PIO8d1Vv/QAV0rnYcSwJ9oCW+Px2tWfd6h2PP3IVP/P1o5wvfX0cgYFgy7vcIx+6FCxH16lhBuGUKBk6A0ZZH67g1IJJZJzjiXXuvcIcnXDvmOSwz9dsWCHzhEGZkHcCdolLCWm80/9DvUShjQRiyei4CAASsiIHvmwl4aG0hmGe7NmuEwiPFwD7Fc3CDb2Nw5gX1xDB0SgySJ6vAOrJiw4jcVphY9zcElS6Hm7cK/ydOxEoEsb+OSsA6/mHEf/gULcitXl3BOdsqmWGVzMxkx61uHViOkHgjnZ8dzsqgf1QIoxMYRYozqttIkOP5+tq/IRolu+FB2/NMCKM88f/tJ1MNF1KefwrM8Xm9wywNb2etXQxsb4nxcSi/smIThLCrvwQKafLftjCkw/zI2zohDACm+jZnZQFkI87zbqpcGbJiYyhVvN+Glh/exwwgixz/nCfPD+OZEGaVzIIQRtM6WgiLDh5Dn5OXYJXMqNY9DQCYfwCd6FPn653Gadm+bySg/gfxuNc7nMVcAoi/IfXf2XRWDNTJ1585IwpXX9D7GfLp+f9aIYz2B41nRccFzVOUrA/4PC/AH75rCfpj2/dFP4mnT6m29jQYcr3epwQ/tS+zxXcfcnAADppNsEpmwU+vTJdsxsfCQF9h8R+eqwYlPzfRYrhBODVGBYw4/P485jsEgAGg0LZRn7jbz5A+p0IYDVJMiSLoaQFPKPHIkXkvEB+jgnPnDTeAh9+bB5eQIHxeTwQPoO9AS/eeUscRfd7v2d0AyPzDv08+P//9yooN+WPJSVF++9KGY1qbv8r3ZA7khTD+O+LHpVG99Def/m5f0n9+O4ejYHt9bDzaDFaJmEFTKrcxSSjn0A9ECNPWdyT8B4EPq2TG4ffmCWn4TRffhoFztrBrKoTJig1ldtdlaa89rwaAtUpmQQijPp1UCGv2aSxrG8/Tr3dLwSqZBSEMAA58Mg+3no1E/1PncWWECgzVPaIHAOB45Eqi0OmpIiF26zJAKJu2SyuEmWrWwARvC5TXLcI7tUpmeMU9QkbYfeS+T57Z24tgBdpxwY9JfhMfMCwZPzQkvnamRgHI+DwSS4r9BVPnh6NrsbkfFcK06xvfBn4t4evlhTD67E4/x2uUz1uqSXrh13VYuqazYnX1AcCRwV+x69I37ShMyxbSZP8YjGpl7uqEU0rUB3qR534sCfQRxrms2BgIiJZXLR+8EKath86t51+x6IC+6P/MLksgKzbme5zw+XxoSVZswikSnc9oGZSXSqtVQKPoZp0FPmla7X4j70pVw30GzZvVdTGujIyCuUwZtCxL+uzKyCjBX3h1XjwaJZOITvWXpDF/VEoUEXXHPRN83yTv+felaszKa1sCsHXrD4wP++UrsEpm1DgunnUkTyZCme92FbQoP/I2Xkp/FlbJXBLQ+T/oJ/ZEJ2Lnz59H3bpPZpLgiC5cuIA6deo8PuF/jPgTMdd24Yj46hA+qn3MocbOVKsW4o78pptcH1pb4Pelix+r6TPSiMmKqMV9HPU5eUm3qMuKDU2/iIU0M55pvXInW4Rg0E/Cl9H147RzjsrpcOwOdjatIDy/tKkBavU6gyr7auBGqysOFzhHddF71JeBasSoL4mWrg+JgteYVKzx3fHYd5P2XXOG1OVIi0q12PxpBM+XNk/O1Ch4ve/cDNLvYFlkhN3X5b0n+2BP0/U64YlP41avLgrOnUf+Oxa8PvQn5jPU1SscRY8eOn139HpNfgKquKrIXfyi3LX7IBSlnHjseLg1IBJVj1yB/VSa0zqN3hM1B6aUMTMKfq8bfwu82Rnve0VPJ7V0aWwU7riDmSXxbaemRTyPV0ZE4dCH8wz7On1WJEO+fFJyNoYdPaf3AcBvx3D4D0nRPQeAMrvrYlPANoFXR/1w7fko2PtdQXIoCVBP67wxOBKJn84X7jkirS+ZEf+Ovmft+A1NKdQhmvE0/IwaMiDjs0ikD3TsP0jvX4y1oPZcvT8TJXqPzhk19lfDKp/f0WxGLI68OVdXXsYqM14z/4a4S03xoO15w/bx6bN+aIbUtt+h9bgxqPJyrmAiSsnUKACnXq6GwLFJuPiiBbW/MZ6fHQm4/HMfeQQChyfrnmnTPe69OsojKza0iRmNPfMWMj607X/4mxfO73UX/PicjW/qv3v1hShU/zZBV1+7kaOwa/Eilkfrl/WkvDtrv9E71J4g/ZmyteVSfyZ6v/GcWJwcNxfrbldmJ/w81T9QgZkwG5Xv5uuNQuU8Lg8MEfpO2xZH79vRM5eQIBSlnICUWAlK5C0hvbOy+ffGp3tcvXw+n42jERiT5LQMZ/n/yNx6eXQUai7U+xlr8xYUPfrfME2c/zeeiI0tORGDr68v3nzzTVy8ePHxiTW0ZcsWhIWFYcGCBX8473+Jphw7BNfdKYIQlj4rEm2P3iMf6HECvWq/RGJOXX0hCldGqdpSZ0JYxueR8EisiJi0dMMJxCqZn1gIA8CEMHt7cryfPY3wIc0kC9aVdeQ0ggphvKZR+98RadtCtWc77qnxfRwRfUaFMFlRESJr9ToD1/LlmUM5P2k+jieeqEP51cYECe/U2Ll42DVMl+7AjHm40eqK080upcDZD3Fuoqgl1BI1JeKFsAfdwljaAVkdMCPrACvb6/0EpC0np32XRxefChbcFoW1fiIKJ81bzkpMMIsszRzyZF9pYvx4l7rMtJVFjx46bANflqzYmBCmHZNWyYxtW1RnahoLT1sGQLSo9lNpunbwCzUAQQiTFRtMAb7sRJKS3+sJhmNBVmyC7w8PgGEkfCC8KWrNT4D3ewm4+RwxVaXw7+ZPiBBWalc9od01liToeM5fR+CkMwaoWmZZsTE4Z/6e9rp7q97CfVPVKrrNS95PTQy1yVbJrBPCeNj77GvVYJXMMDUKYG3YtnGFvh8AJH08j5m38fw9qOrK6uLva/kx1aiuE8IAYm5H09P33W7UKKE/+PmO/rd1VhVJl8ZG6dIvbeDFEPAKyxaxPuPr4cuTFRtS3hVPs+/3DDdMR02ZqKVC3a/i2fPOp3rCVLMG7j0VjvR2yzC26lkmhHU7cV33PfHXSyMIUMfeOQvwS+BWFh+SJ/upNJTLI1r/lHeMYf617XM0ZwcOT8b7marP3/Wh+u9zcHY73T2+Hh75U9smq2TGnnkL2fhIXRDGftM8k30349TYuWxc8/m1m2JZIeErAKD6t/pv3CqZmRBGY2XSUAjBhx8fVPZh1zCH74fWxYekud1ftZygJ0iPOqlx1CjKKs0bNFtEPmw8T7zWtpWCSlglM6JDusBzGhlnWjPru30isDovHrkRd8g3WRwbkZZX2IooLrbs24DC+/eZEAYA3S29HPYHP274ufhirHjSRC0WlMhbWJ+vF4ocCUlWyQxTrVq6+QMg6Jk0L31GrYb4cVI+1439pnMZJVNjYlnT/EPVUkJbf+YqUtaNOP/HKh2SP1BPyrv2HCSsqwBBltUiL/6zyeVv/Pt30xOdiL377rv44osv8OjRI1itVvTv3x8WiwV+fnrzrDt37uDQoUP49ddf8f333yM/Px+hoaFYvHgxgoODDUr/b5ORjxhAkHrqr80TgjprySqZBcdvipD0OA2R8oYFxybokRkFTVEx+IL2GU8uZcqg6MEDdn1uQyPUK/aXoOmfO60w8xFBu+bhjoL8s4blunl6oCAvn13feToCFdYRX6DUxS3UwI4ARqRmMbt4RxMhPUVakrsPIzR+JpfGRuHw+3pHXUr0Pn+y5Kh/n0Qzt+FORfSucBv77xcyO3VHWjRHmjcjAcNRnRQMg6YxypM9LQpnhhufwjhqn07bx/mkZa0Ohs+Aow755099ABIUWeuHISsEFY43f9XyoKWbAyNxoWURQwxzpDF93IIJiEiBj7q0QKlfyZjrceIafgmqhjoJlbHcS4SoB1RHfS3P2nSBu59n3yq/4aExnBy9c0flaskU4MvQ25yl5fvmsSfYLi5AUZGhz5vRe1mRtx+1TcYx4Ci51auLdr+lYXsTNZQELTfu7GE0WfAiO+0I+iaWmQdaJYK0d+QNvT/l+Q2NUL7MQyQ0W2fYh7eejcS1Bq46NERToB/idq0TynPz8kRBTt4TjRktGZ1GOyJZEf0KnwQtls8bsGsYfAfaDJ9ZJTPOv2KB+6p0Br3OP+Ovqa+PNo2zOU97jz8pdURGp5tGZdLf+W9b4L36rGB+S593b/kUCrJycO5VC4vV6Kjf3DzcsSVpyxPPsc7ayftV8b5BfB5A32d0TD0pnX/FIgB0Zawyw2+gzWH5RjxQcrTO0GdG7QaAVuPHYN/sBcKzO9t88bZ/HN6d9QLKX7Lj2rN3dEiJNH/XnoMEgBpZsaGrTwS2ZR3Q8X9rQCQqrf7jQY61Y7Xd8d46BENteyk9feoiRldREN2wDew3b+LCeAvqzNafstITfG0/3nwuEgmfzzf8PgKWxzBAKsN3Ft6UhcmwSmagfh1sz5nzjz0BUk/EPvgbT8Q++Mf2x19Bbk+S6KOPPsKYMWMwdepU/PDDD4iLiwMAVK5cGXXq1EG1atVw//59XL16FYqioLCwEEVFRQgODsb06dMxaNCgx9RQQiVUQiVUQiVUQiVUQiVUQv94+rv8t0p8xPR08+ZNrFq1Ctu3b8f+/ftx4YIK41q6dGk0bdoU7dq1Q9++fREVZezIX0IqOToR05Ks2HCu4DaG1W9lqDHkbd6p3w6vzene3IqC8xd02i9KFNaZkqlaNbiUKY0th2WW3hFfWk2TNr1rk4bY+isJ2pg6Pxz9I5JgC3FeltE1vRe4+3mktv0ObWJHY8/cheje3IqTH3kiK3oxgj+LRb1Z8U6hlp2dLvAnIUba4D9zuuKIaF4eBjvvPQs8P9SDAjyOd6N0Uy41Rnyz0ob92qXf83BLzYf9MjFvuzUgEm73C4V4UU+iJQbANNKO2jjzqh9er56h49GoL7TXtA6KlubsxDDzkygU1Hlo6LeiTdv26D3sDi5nWDfftse9W5cyZVD0qECIJyMrNhx9eN9pzDOKTMnn4f2xZMWGVkf7omrZe3jU7pzA/+RLQUhsVoqdzhnx+1eMS0ekPa0xqrtbt+fYCYFROhc3N2zLPYRuAS0ZvDxATme9J6mnSKV21cMvgVt1/FBUVlrek8wdRs/obz6kBI2FSJ9Hd+qvQ7Ljy7g+NAoHPnEcgsEoH/3/YdZBvOejN2nW8phbcBujHKBGOjvtpPczVplR5nh5ZtJMY4kBwPr8JJR3JWZwNH3mKjMivLMRn9JAB33urB4abgIAO0F1ND9p35sWgc5R+2h5Actj4PtWAtzq1sGWw7KOP96/i4dlf/FsBNLCiCVH5idRKH3DxaEfmLPTImd9kf5lpBA7z2jMnZtoQb1Zar3UV9coj/KaBffqFrIYn0ZUYU8t3GlzyeFzbZtou8Jsdha3a0XefgzxbInb/SNRcU2iYXpZseHNC2bdGp79YRSm9F/NfCv/LGnHhrbvlt+siZUNPYQ8OVOjcHqkHhSH5mk8Jxae0+IZsqyzMQlXE1xcXeCb4Ka+j/CmLPi6kLaYqM+59hn9rbXGcTSWXM2N8TDlyP+Gj9i8v/FELObffSL2h1ETK1eujLFjx+Knn37CuXPn8ODBAyiKgmvXruH+/fs4ePAgZs6cWSKE/Qm6PiQKsmITJj6A+EdYJTNDDuM/YPqbCmE19lfDluRtWJ2nTvDNPo1lcU+skhlWyYzC1iF4SVFt7iutTmR1z8xOhP3aNba4WSUz81E796oKR2w04dA/eg8ACo+fZvcCxxIhjD7zThJBGvh8Qh80UG2wfZ47AqtkZmYhWw7LmNxqE6ySmS1saxrVRe5ki4AGyNej7WdatzZw7dmfg9hv1yYNdZMnf019djJniGOfr0dWbBh+RhRa+FhE7u3yWLl8X2rLccQDAIZ4yAthNG+vk1fQaeALcIk/woQwgPhY7Zm7UKhL+z7aHOtjWPeW/RuFdHzfWiUz1n/UmbXFaHwbtYFes/FajLY15VJjh0KS71sJ+KrVD0IbjMq7uLEh3qkpBrjmKXUe8e2xeoQK9918xA1GnYTKxDS30A6PxIrsfnTbvgguXVZoK/1Nr6kQxrel8JaqiLFKZlTomqkTwgCgfcVTqLCnliCE8f1r1Dd8n+R+YIFLSNATjSf+e6f/pU/jGZqfUfkdT/aC6w1VuOL7npKrnzcAYEPqLtx8ThVYeSFMVmy6mGSUD4rKapXMcPP0EMYqz+utZyOF/Fo+6O8vJs9h97bEbxLS2k+m4vY2EdzAKpnx8DcyHqouTzCsHwDzM+Pz8d8WFcK070LLY323itCSNg+t26VUaVwYT9DyqM+R30CbEGqACmF3+kWgj0e4wD8A+A604ZLluqEQxreRIn5SojH/ACDrh6a6sakVbCiZfpdQWj4kfiPlyzsUwgDyvV/a1AAF5y/Af9cw3XPq3wUApTLVdWbf8lCWtm5SIR42vQtntORGXcYzT7SuvEl6v17/CYlCW148G6Fre71Z8UibrfoEZY0qHmPhetQ86bN4+L2W6NBXTVZsTAhz8/XWrTkA2Udo12lZsbHQHXe2+WJo79EAwIQwvl1hk2LYbyqEXXzRgrSvInHn6Qh4v5eApQ28HM7x9B71eTXikZZv9N9UjfikrmrizdIWtjLDrV5dnB45z3DvQdvrOY2MfbpW8eXy17JiAwrtyJgexoQwWbEBSccczpcXYy1MCOPL4cdut2TSrwUdQ5GzpilZh2LVubXS3poAgDOvlMX1QXqk438klaAm/mVUEkfs/2fSnogZaUoKttfHjsabhPv5b1twYvxcWHsPYZoampf6mtCgvTzx5d/e5ounPWyQm+i1DLzvFQAhIOWfISOhTfubv+bv03g2gOqH5sj/guZbl5+IfferYEpaD1TuluGQr1/OJqOUiwk+W0cicMQhp1pPetLorH2P05ryk/n0yw2EUxlAXByKWprhsl9NDwAPosNQJk4Pqexok+Ds2eP45J+bGvjDfibdMG2fk5cwtupZXXmmAF/E7f6Z1cUH1wVIcNmQ9ROQ+fQClobnTXndwgBgHPFFKf37EGR0WMryUn8nGsvIUb64s4cR7d4cha1DcMurDKp8n8iChhrlofcubmyI2k+pAXfv9olA+fUH2LdK+dBS6qIwZHVfhMA9Q+EzQI1tlLEyBH6DUnBtSwALRWBEfP/QWGD0Ho0ZZpXMQsBygPjtPGh73uG7157QzcxORHDpsrq0jvpRO/619ciKTZir6L0uTz8Pl4QjTucE/rS/x4lrGF8thz1P/yIS/q/olS3OBBuAwKvbL19xyK+j8rQbPV3fnOoBdMzX5XVWLq2/V1pXPGh7nvnEygqJcUdPKxyVafS7oGMo3HYks3ttx4xG2c1J8EisiCX198EqmXFnmy/2Bf+MjoNHYMf3SwwFnpW3amBQpSu68p3NOzTwvNFzAFBet+COlx0BL6q+nNvulkHsluHIfMYYnfJJySg9DWLtCCWSz3NjcCQLmTDzqh+2N6mEO09H6PyjjKhJsisOfByGCj8dEMY2X8eTrA/8c8uRh4hvVtppvWfftMDzq8NMWeXm6YEtB37R1XPzuUhU/iHRkIf0WZFArQfoG2TDzLophrw6+0boKbKskJhyFMzqce2lexRtOmV9Y0h9TurKyJoeBZ93jFGAKW/UB94RrzOyDsBcpozuW/ZfGeMQLffKqCjUWOR4/8PzqA3ePSY/Ctnh9wCIaKzavFdGRKHGkgQUli+FnXd++MeeALETsbl/44lYbMmJWAn9jSRsfosRfNw65eJuIUH8ubSpAWLS0iHtu0fSGmhqqMP/nIBApK8gqqsrI8hpm9+PY1mMrIpdM3VCmKzYcOEliwCAISs2+K26zK5vPxPBfj8JaSdZ7UKu1V5p01dYr/JIwUCoGYIW8WxoThsAgGXWRHQt/wAJzdbpNG+yoiJD9XAPhe+vIxA44hDjR8u7qUZ1AMDU+E3Cs4sbGxq2ieeH15be3uaLDkNHoHH8YFglM3YHl0PaN2JMKIq8eH1oFFz224T4UwCwa/GiJxKyLtvvONTS85pDPg9/TdtDNeoX2hKUuSsjo3TtNBLCgg+7wJ6WCZ+4keweL4QBQH+PKASMP4A1twnimalxoMAbFcKM2isrNpiqVWP3q+wry55dHR6F+lOI6Vyj0uVZPhoXho99ZnJxxZ1tvnDdm4Iq3ydifX4S3O45103d7RuBlLDVMDUORHTHZwAAe+csgKzYsKPxJrQfPlJIT/tfVmwIHEVi0aS2WQ5ZsSH12xYAgPT2SyErNrSum6HLOzO7OKh7zRpC//BIp1bJLCgJPGRVc17QMVQvhGm07r/9uFToZ2pWGTJdjX9ET5ddzY0BkLEtKzZDtFBWDzjt9AYVUXFJLhEGfl33nS6tdiwd/GgeK4MXwgAIQhhFoaPl8X883XsqHHFHd8DNXWLjwtFmkY4ZbTlG5VolMxPCUueKcdeM5gbtuN4UsA1571mwb7aqmOCFMH4cLb9ZU6xX85sKYZTKbiZC+ZL6+9jJdoWumbBKZrjtTNbxSMta3oCgfBa2DdHN09r3S/MokbfQLOk5h3OTNDMemX1JG2kMuq7lHyDzmfmG5VGiaLCmxoGGc5YjoqisFCVSm4+vo8r36niiADIV1ukBJSjdGEzQUF3Ll8fn9Q7j4XA13icVwh7+5sXyG/Wzln/+9+RaJ4X52yiv+4x4Ib7anSXE9d8URGIJmhoFQFZshrG9lDfIN+w/MRH+Q1JwtLmKEMq3mSKA6r7p4v9UCLNKZlRZmQhTzRoYeiaPlZUzxWLYxl4V7gp1nX2LfG/HIlYBIEAlVomY8AJgQhiNj8mPRVrX3aZkbxTdqb9Qp70dQQ9+0yfC8H36vZ6A7A+NrVlqLEoQrHd4ut8zXEBW5BXWVsmM7Bf92TUvhMmKDUVRzRgvNZYUK9X+V85Gilz+vr9/OZUIYv8wemglGzNZsTE4bpdSpZkN//2HpTAvwF/QXjub5DM6klOCGksS0K3rAIzutIMhCVF4XEp0UqvztV5rGLdjLauj4lqiyWx1tK/DBcTRwqjVqqXPihQmxZypqsmTqWoVAEDVFaImiprdyIoNteYnsPIq7a3JTG6OvjbX4UbMKqmBOmXFhoBhySjc4WnIc7cuA9BtD9kcv+MjmgykhK0WFkm+rvC3ycRMTSJkxYb9wT9j5/IlArJUwItkc3F5DGl36W2ELwpTX3BWYfmdaSj54JgAMMizpcCToeC1g9jZ+/wySmh7aHJ/lrfUdrKho/FPaiwW4dU7DXzBcMN1tDlZTEqfL6WrO+891STjQbcw9K94AwBQWE70kfwyOx63+0eiS7/nAQBZn6hCt1Uyo9BbYtf8OKi+VP0d3ak/K+/4y2QjRk9Xzr9MxtHN+2VQbncdyIoNfTzCUenHRJafUp+Tl1ib935DNpH2k6nsG6XprZJZ5+cyPLc1/FeNFcoLnRIDq2RG4AuiAuB4aCHMKaRN5hRyf9zElwEAGRMCWXudbcwAIhhSctuRLGxYlNctuBguohRSHmTFxoKaWiWzcIIw/RLZjBXaiKaaju3S24hwmf+OKtA4E6xkxYbhg8bjyijyPs9taASX0CCBB56skhlj8qOYIErJ3q65kK70TbuuT7KmR8E1WFWYyIoN+U8XEMG1+Ntyn6FHJ5QVG/LeteD4y3PR4didJ9740/uBsUkCFDltl5uXp1BPxJsxQpqTMfqg9fx/+g5XNfNzyoNWmOHz07AUAAkLoi1n+BlV2KUbRdfdKYZzKU/UDFRWbKjb+xRkxcYCLPM0O2c/GYevWbDlsKxrm6PNPjvFyD/P2kTHDU0X+oEealw7Jo2eIbwplnG88mkbHNL7blPo8SrfJyK63dMovHsXVsnMTrP5NpTurJqi03HGr7284ks7Bh2tYfQ5pVfSVcTGMl2yYZXM6LV2H2TFhrgdax2uAdKnBNL+joHpbWhKIQDynZXdnIQH3fRmtFolAFXK2C9fwaBK6onz6VFzEXJwgBAQetPZg7oyjr80VwguTtEitX6U9LSf9pus2ND66H1YJTMyOhKlEjVfpmTadVg3ti7GikoYrdWPVTLj5kAibNNTLS2V3ZzELBOuDYvCPZkE1k5dTPZyVFluNK9RawB+fS+8a1xPCf17qUQQ+4fQ+lRiskPt5PnFc1uOamLk2e+48OECok04P6mcm6hOMrnvW1B49DTerJGG3PfJRpgG3KXkSFvXbtQoRL4xVniWscrMNKoAMU0AVOHOaOHg7eEp+U9MhOWIGvjX630yoRW1NMN+/YZuMZYVG+rMjkfqIn3MFj4oL21L2jcRhm2im83Q5P6oFV8Vrh3z0M2XbCT42DiFx08zXxyAnKbIig0mfx9YJTOaHhho2G/VvkvQbcSMKO0bop1LnjwP154XtXEXNzaErNiQu7apsJAabXYp7LVVIiENtJv1e7II8S8rNqa9/67TIjSeG8u0gTV7pjrc5AHEbK1rr8GkH3Yd1j0P/C6G1XXmhXnsN93UeX6obu7LbFUF4qLkE0K9E7wt2P/lfLjEE82yz1sJuNs3AsNzWwNQ48/w/XC/R7jQdgrooE0HkPhNAFD309K41/aCsKjzf1eHR7HYedqN0aLizRufV3utRN5C+kBRG02h/rX9fHV4FGwhJH+fKkQILv8zUXx4vytqWh/32yVE9cXgx6g0Mx61vyHCx9k3LQj8LgbRjduydKdCC1DYOgQ3BpPvIboNOUExCoBM65uelSTEtns7Qw1fYMSb694U1FhEhPpqSyqxd8/noZtLWbFhgUcC4o7uQP9T6qnf9lXfQlZIPLXzGxoxJca2u2VYWZ06p2DrttW4udWP8ZDZ6VvkvSsqLqySGXmTLEwRFv5ODE7GEmXOzqYqBP/9nuG6tjgiqsTg6+DDkVglM64WH0wazd+UBCH6NcK3qy+Zbx91CsWtASIojHbT7dqkIdbcroLCVvqy608hG/ErI9S5h9fa0xNLZzzSayoI8/GueIACmm68V0vIig3HJupDqGjpobUFXj3XXMhvv3mTXZuu3GK/Oz87HDUXJgjf4SKNIKjdELPfSccw41I73doqKzZ8LR0U0sqKDb/+9B1kxYZX00/AnkoUdePSUsUyOZ5NAb5YVnwKDIhrupYaLo7BpbGiDyYtc/KlIOE93OtNxuMX/o10ab9/v8dj+1dWbHj61EVU6Jqpe0a/d9Ouw5AVG8psPQiXFk0MhTr6R79BAFh9q5ow76SErWZrqVUyo4xLKUQ37SDUOTi7HWoscW4CyP+nZVklM/YGlxWujZQn2jGsjf1Hn7uEBrG4m5VXJT5WEKZlVFuWgD1N18MqmZEVvZgpixzxdCPO/4nmkhL6d1OJj9j/z/QkPmI07lKr8WNYPC3t5orfZFolM+72jUD5n8lpS7tRo4Q4TUYLhazYEPnGWCR+Op/ZeGvLzv3AgvofkM3W42zXtfwZ8chT1g/NkNpWNFPSpqW2/tpnTZJdcTy00CkvNwrvCXkd8SErNrR/YRR+/3aRoKWUFRtCp8SwDbS2jf0yOgmC4OUxURj18iZmtsf7OznrGyP+jNID0LVJm95UuTLbtGifR3d8hp3mGPUDf7/I0gwu8c79eOg9vj2pc8MRGKtuOJTXLJA+E08f8iZZsHrULOaP1G7EKCacUfI7WBZz3Y0XQ56X0JRCnbAgKzZ0HDwCbjuTDb+V6Zcb4J2aZ3T9/Li6jPpAVmxo8V4M7na7xU49rw6Pwk0/IkQ9rp+NrnPWNMXpVitEBQsXL0mbh/6/EeePKtHpQgw06tfGp+fj6D1J+68PiULVFfq2UBRDo3bIig39Mzsi92Y1VIlON+TX2Xhy1DfOyOibiXgrBjHvrMOmi8106HKO3qus2PCg6BHKuJTS8Xnr2Uh2esrz27XnIGzbrAYiN/n7wJ6unkLx6bt1GYAzo6sg4KUDTtuhbZO2Tyaca4FToQXCM9cmDVF43HGsLsrf48Y7TfdH7jmb22TFhoFZ7fGW+1ZmAqusb4zSW6uwk3ej9hvde5Ix64yE/qpUCVvP7IXPhtFoNPuaw/nx2rAoJE3Xo2TybY609UOV6PTH8pXxWSRT0vyRcc3/Tp8ViYwB89mc7kyop5Q9LQqV04HgMceYz6CzOhzR+ZctqPtVPJbl7sOwfjFIH+8G/yEpuPCSBXW+doz+a1SXa4UKcK1aBVnDvZkSxFkfPG7ucDRGCluH4LcfVX9iAHBxc0NRQQFu94/E/i/n47L9Djp88ToD/6J5tb7y9L4z/3GazqgPtPlkxYabtwpRLTDzH+sTRfesHt9M+dt8xPJfnPyP7Y+/gkoEsf+fiQ7qa6m+eKaBGOBXVmwwfxwL29uquYo24CagBpnVTkgUtEN5zYJjE+fibuFDPB09lAXSNFrQTz28i7tFbswMT1ZsiHptLCqvSoQ5BU5h5ynwwePoSTf0T7qw0jJcWjRB0aHjDssVaIcH5Ea/GNZj+l2Cvb2C7B+D4f2sCqjAw1TLig1tR4/G+QgTzoxwDF1N29LmWB+Us2Y53MT8ercUPvdXzWxoWzocu4OfZnXCwWmkjkubGqBWrzPI/DQKaYPnCXU9bjHVCWrFgAVvZBzDp35NheeJ9+0YdWQIpD4n1fTVqiHuxO+kr8uUwfgTR/C1Pzm16zBsJHYuW+xwc0bLePibFzPVcQlriqKDx5A5Iwq+byY4fO/0fvSZaMQ1IDEMW748Bvu/Uh3oaWBzow2hs3Hg5i7hzMza8DMIhqvlgS8n/x2LEFyY0ivpp9C1/AOnG4PUJS2Q1W2xIV9/dkOZ+WkUfN9IwJTMZESWNTmtn15rFTQXx1lQe47jgLhuHu6Q1l1HboTo60cDKxuNv7k5+xDrZQy7rqXHbar5+6+mn8Cshs1QVFAgpFmZtx+DPFsaggu5eXliS8LmJxKyebALAMh71wLvtRdhP5OObieuY2tQVSGvS0gQO6HVCoFWyYz6Byro+k1bpzOBHIBOsULT0Dr4TS+9R+eLB93CUOH4ORTk5TNgGAAITSnElpwgHAn/4Yk2talLWjB/Wv4ZBYPRtt/R/9bjxmDvHPX7vd8znPmxOeuT3PctqD81HjX2V8OVlqqZGyUjBaGzb6qgQyhT0vyZ7w4oDmHx4AEmZdowzVcs43H96YweWlvg96WLHfaFIypsG4Ica1kUli5yCHfvSBB3xG/X091R1OEsZMWGBktj4D1JVcZc/SUQB5uroST48vl7Wgh4vnxn37uz50L5mrJSF4UhcNRBw2dPQo7Gb+EOT7h2zHOa1tQ4UBfyAiDf8PzjcbpQFHz+jvWC/ifg60sEsb+OSkwT/yHUJ1B1nqeThe3BA9SZTUxH6J9WCAOAX4KqwSUkSDcJuu6zwRTgC+kzsrnq4xHOhDA37/q6xdsqmeHl5obQMsULWTgxiau8ikzmPOw8Tz7yCMiKDdHuzdlz7X9K2snQKpkF0At6r6tXOMs7O2e/rs70LyNhTiHxOy7byQaHCmGZq8ysbTwfAk/FZnnaPpMVG+ztie8IL4QBEGIFWSUzyv6SBO/3EoT2nH9Z9Lnw2ToSVsmMPU3Xs3wtj/YV6rRKZkEIAwDXbALbPX9/e1RfqtZRq9cZyIoNvm8kwPenMYaCD98u/rd2UbNfvoKMVWZ86tcU6bMiGSCMVTJj7BfjGWoVJfu1ayxv0YMH6F7+PktPT10oDxQIgR9jskL8Jeh10UFiO+/7purTZbRQ0vudap1m1xXXHhDeXVHyCeRMsQh1OhPyKRWcVQQhjJqwyYoNeT81EdJTcBBZUaHAtf3Pmwi9mn5CaANNEzjiELt283AX8jvi18QtQEZj2veNBKR9FYnJvqGwSmbmh6ctlx9zvBAGgAlhPL9Z01VwlsIalZEbcUeoFwBcCsV+4P2gqBDGp3etUAEAcH6D2le0zvk5+3R98OBXb5Xv4jAaXco/wrZcfcypQZ7E7I1HLQOIALElYTPaHe/tcG7ixyr1qwOAnCkWeH4Uz1BDK7mKsZ4A1UyWlsP/V16zMCHMaP6MSUuHa9myujmLp8JWZkMhzCqZ0WhhLPtN66RzTK1eJEzDriWLkP80MWf0G5TCzKCTQ1xRt/cplu+i/Q4DJ6LkI48AQOZcKoTJig0uO93Zb60QRtvPtwsgEOlWyYzy68Xvt+zmJJame6vewjiVFeJbBwD1p5IxOsk9Dm9k6Df1WiHs/ATHQCwA4LYzmdXjiGTFBriaHI6bogckJlmbsmAhDQzLKCYjodnom372i60sbYU9tbDtbhkAwKMuLXTjhL923Z0C+NyF210XyIqNgdiYGvhDSqyEgo6huvXBSKjhnxd1OMt+UyGMUq1XC9kzN+/6urF4c2Cx6awGMdVonGvrdZTm7M9BGJzdTsevMM/+ASFsdGomS+eI7EWknY6EML5+IyEsYxX5hkcVx4LV8v1/UQb8/0Il8PV/Gf0pQezWrVt/NR//eaI+YoA6GbzpI/pUaSde/j+/EQCAvJ+aAADsaZkobB2i24htiVchtvmy+JgycetV/4D8d8jGrn9mRx3vWdYlDieSx10DYOZSlIezb1qwLSeJpR3v1VJIb6pRHf4TEmELAW60uoKapgpC3/gWb6x9141hGxJ+YdAKJlptVtp36qmerNiQ/kWkkC/ta8fvpWK380IbtdpjANgfTCDdozs/ixlZB3TPZcWGuKM7ICs2ZPVaiHMTxVhOtHxqzsQL6gCBKjdaUPh2UqJCiP/ERPTxIKegUzKTUWe2McwzT7S+tkfv6RZfHmTEZ9Now/6XFWLS6awO4VmTyoh4K0ZIkzNFFTi8JouCBK3HVLOGUPaF8cV+Nk1EBYCs2JDQbB3L79nvuLBxt1+7JvBP6eKLIjw+/f+5vz5WlzZvQf5ZVrdWqOPvxZ3eA0AF86HO9dEN27A8AS+r2m8K+mCk+ABI8FeepEQVvMPFzY399nlHVQJs3foDK4Mvkwf3kRUb84Ny1G6KnkkBHfhN2dhiwe3chkbsPgUfsEpmAeXV0UYtcJkI2MALv7Qsmp9HQmuU7GZYptdk0cRqRV4kzk9Q0RQpZf8YLNRJn3tuIjEctQioad9EoPOzw9G7wm1szdQDxPC/KRIuT1RZdWo0edepS4lParvjvQkibjEPF8cRXo+8oVpWJH0snqZTGuLZEnHHdgrvhAZId7sjopcVdTirU7bQzSoT3jVB2CtwfGnbSQGOCjLJOwo4WIY935KwWcg3YXAMPvVryvx4AGB+juoPpryutllWVOTR506TeSn/bfI87esITMq0MZ61vLn5eKHB0hjI+aoCVLuW3ojzZ/d/D9poOCYv2sXTUKN18VGnUOHbGltVFX7utLnElDylfiVjuVsAWRfv9CN+xp2fHc7q9nnuCLzeT0CjhbGouIa4GdjPpCNtZmO4vXNBx0PTL1W/Pm1f5K8LEmJe0bxM6DiTzsbAFg2yMEB8rGTFhmr7VQHfKpnx4lkVMfjiOAtM/gTkgle88vXw/ere9wQuWa5jVrZoJuisf43o9jPEh3xhoAhWop3PZcUGk4urrm8AoP2JpwzL1lJ6u2XCdcYqs1OeS+i/Q39KEJMkCaNHj8bBgwcfn7iESqiESqiESqiESqiESqiE/h1UAl//l9GfEsRq166NxYsXIzIyEqGhoVi4cCFu3779V/P2nyVeA8T/da3fQpdGq8GlmhwKFiArNh3UvfZkRKuJp7Cr1N9LVmw48SLRph7f2gCdjqsnopdHRyHiTXJKMTi7ncMyeRqXpqLyaZ8lP3gI9xnxhmY6smJD6oIw2K9cFe4Zac1kxYaA8QdQdcwj5Ewl5lWuZcsyuGaeT4rCR+sMeP6wULb/K4kIs9lZnZn9FrD8VItZ0CEUsmJDxWL0KdPvklPzC1mxwX7iDN7q+4JQFwA0nxojnHIdfU0MTsmX6Vq+PNK/iBTaTc2EtMS/+6zVwSxGkpavoT++qLufuiDMoUnN7uByupNV/kQncGySLp+brzeskhm3Wl/GpU0NWGwqo/cOgKG6VV0umoLyp2A0j/akK+7oDgDAq+eawyqZmc/l1l/V8AOtj95Hh6EjdPXvarJBdwKk5c0oPhElmm9Nvl5zy//XvttZV4kJV6fjt4TvtbRMtOGVXiMmWPabN5H5SRRMVavg2jBjMBqeXxpT6Gf/3wAQbbqsEGRH2m7XisR0kMYgzJ4WJbRFWwdA4vk9iFYhprXx/ehvN19vAAQine8jbf/WKzaX4++nLiTlmxr469LzfckHfN1xTwyGTM3uBp3Oh6yIkNSnQkV/M/6d8L/LdMkWTpfSloXi/CsWZsrMpy9qaWaoegVnFVglM4uDFfDiAfz241JdO62SGWZ1ymbzsXbcFT16KMwT9OSKhiehVHsOmU+7W3oha7r4Ll12urNyaUwp7Qk77V/eJE37jFLjfcOQujTUcKzwa5ZbvbrsVIpSte9En75v3A8IZY/KIydARZZmKJ1P1oDkD+YhbQ45WaGnqa7BDSHNFP03X/eOxPWhUfihITmV9PiYzBuZ/RZgmi/5RtqOHo22Y0azdgFAQVYOvCcloOPgEQ5PLCgoB20b/ebSvlJDswzxFK06jNYFirLpbN3gn9OT5SoHyMmZ694UzLzqJ6Slp6XsRHLdAV3AcYDA2Be1NLPy+ffv8fQJ1J5L+mtwdjsAYFYiPK+N58Xqxg3/zq+1vCqsDfz7rT0nHrh+E1bJzCxg+LS0DFmxsdN8WbEhqHQ5yIoN+W9bdGPSWR/SuZL6GWvHNb2XsTKEXVslM7I/itKdAkfVJEA8l0dHsT4ceiYPppo1DE+8aL/wJvGyYhPMyUvov0V/ShDLyMiALMvo27cvjh8/jpiYGEiShDFjxuDQIb3dfgk9nngfMUrdogcKE4PWMV1WbILZIU3Hk1UyI/XbFroJgZ8k3Xy9mdmMVTIjcOQh3SaRpvWcFo/tTSphUqYNZXbXRc2FCTgwYx78dg7HJct1gTctr/T/nIBAHS/0GR+ry6gtWT0XAdDDY2d8ppoPrsjbz+5vSdgMdwsxodmamYhRz2wTJsTpWUlYWn8vpmeJcMIdjommJB/VFv0RaBlZg8j1ju9V80yPxIqwt1dYvy0qhi3m+53m37ZlpW7DXGt+gq7/ja5lxYbCu3eFoLbOBIbcyepildpmOYufxJ5/QJ77vE02RNRkh+93rcBgNPbo/4aLVHMXv9VjRb4eFajt7XUGW+NWsTYFLtfHAjKCNKb5u/lGCmOBIsVV2VdDMLPbPyscK4vHRpV9NRDxVgzjN6G7P9sIdW9u1X0jfH38NYUTt0pm1NhPAHNuDCL8nON8oCi65Yo8YnZzfSi5vjUgUteHsmJjJnjbzqu+n3STSNtI7/u+lYBGO26h2rLiYKcLidBM48HxZD+VBqtkxq57rvBIrIgKPx1gdQ7NaQOrRMJGAID/kBTIig1nhhMztisj9cIV5aHW/ASUiTuI7mHRAIAik6rF5MfKln0bABCIdNq/NJ7Q48jT6zJBICz21aJl8t+TdnxOHz1MKCPu2E4AwMqGHiw+Xe77FkF4t0pmIT6VozFub98cfgfLImBYMot3BIhmXr+uXQYALDSErNichlSg/2fUsbE0dD62SmbARexXraBrNM/TZwXZufB5JwGZM1S/v20NtzAeDrz0pbom1K0jlKPtX/6ZzwZ1XHo/exSBw5PxZXa8bo7geSs4dx4eH8fD3r657pm2Xpfi+GHUz84l/ggLIAwAAeNExMnCo6dxc2AkQqaR90DDaVRdrkLb8/W5hJJvrOwvSSi7OYkF+KZproyMwo7vl7D0Ru3SKjwA1VRYVmzMvJxvGwAhzprlCPHR7eYbqRPOjfICxMd0y4FfWN00CDWflj4zNSAmlOdfJrzw5sgAcLVhOd2cp1XW0TU+49n5UN4g/dRyApnba7Y6BzcvfTxO/jpkWix8141h7Tv18C4A4kdpv3zFsL3hKc+wd2aViJlm5gxVILJKZnh8HC/EUhME4mJXg8LWKtJY0vR5wnvT9rWpVi0iLA1KEe7zIUQoJYe44trzUUj+YB7Oti0PAFgxqBviju5wqpDQ3qNhXe53DdU9/yeSS9Hf9/dvp/8zauKlS5fw7bffYvHixcjIyICLiwvMZjPGjh2LgQMHokKxY3YJGZMz+HqjicJo0vij6YzI2aQUk5aOeQH+hgtOm5jR2DNvoZCHIpbJig0+20Yi8IVDusWL0sUXLSxo7I3BkajyvTHKE8/nNftdDPBUbdaN2nT2LQuOvyQiud1+JkJA2jNqj6N+dMS/ljdnzx9HFBHMUTl/hM+up7sLmywtUp/RZpqni+MsKOh0HcciVrHnH2YdRHiZUkIeWbEh4s0YHaT5k/RbztQoPKhbgMDRB+Hm642CzGyc/TkI7n1Vf0dtX1BYdiPSbgD+zPgHgPs9wrF7IRnTFBHsj7z3dfmJqOhaVtd+WbGh0fxYBjjwuPFCn7t5uDNfMqP2GpXxqEsLHYolpfOvWATB4XHkstNdGEtGAiptn+/PYxDw4gHAxQXy2RRdWY7GtSPB1yqZ8eBXb5Tpkq1rb2HrELjuTRHy9Tl5CTP2dGensG9eMDOhxkiJ4KhOSnzYCaPn2vIcUZ2EyizYvKP3/qBbGMpuP4Kau8vje+9dQhpT40AonWrC9pY6p41IzcKSQB+HCoPurXqjIDPbkPcn+a3NZ/TsUadQlNquRx28s80XFd8tj4KKpUHjUBnNWXTu0JI2vazY4Lt+DDL76Odvvs0+m0chcMxByIoNPVK74VE7AnrU+uh9FmfKqC6fLaPQePpFFGTlGD7XtrtWfFVcslw3fEbncWd0Y1AkqqxMxNOnLmJdo9qsnKKoZvh13XePnRcA5+ONUq+TV3DqjoS0sAeG7XG0DsSdPQyTiyuskhlp30SgTJ27qP/MMaHu9BUh8B+i/8ZNgX7sFNgZTcq04d20PkKAccpT96ie2JKwmdX1uPXKGfU5eQnrG9cS2n1lZBTKXSnErm/mCUjPfJpGyW66U3KKDlpudx1sCJB1vAw9k4flDTzhstOdoUzyfLM53cdLN9ayVgfDa54J6xYu+Z+Ar/f8aurfhpqY9/L7/9j++Cvo/4yaWKtWLbz55ptIS0vDb7/9hmeeeQYnTpzA2LFjUa9ePYwdOxZHjx59fEElxD5SqlHnJyBqnmKVzDAFNRDy6bQ5xeAEfLk0nZHmkX+mnaBlxYbeFYjZaati4Au/H8eyPOU2qidJ6/PJb4pYZpXMeC4kCWnfEZOw1uPGAFA1cfnvECHMJawpbj0bicRP5wt1098uLZoIfFYzlXfYdkpaIQyAgLTHt/mjyw2FsowWeqONDv/74jhVi+qoj+kzavLF33Np0YQt3o7aRLV83cOiISs2NFxMNL18cGv6v6jDWUS3exoAMevjkfoedNOnv/mcGBS29px4HItYJdx7zyeM8UD5bjdiFKquSIBrk4YMGIWngOUxujFFUfNOj5yHwNHkNKTlBqLNpEKY0WZDVmxINP/kdAzz/fQkZFRP2V+S4P87cXx/WECg4CnC30MrOV1Omx0haGlzpqpmgd3GvyyUN/1yA5auSoYa787qHiLwoP3d6iXyvVAhzBQgOpQ7a+POZYtZIGZt+VQIkxUbLo6zsCDFjvqVIqY54pOfOzL7LijOVCQ8174Tt3p1WTn0frcuA4R651wnSHnU1E43jopNrvl5bX3jWggcm8Tuz6hjE8asETnb5FETN23eEalZ7NSIfXNRzRyW70gI48stIx9G0aOHOPJzYzT9kiAhnn+FKJyuflaIOl/HC3mXBProeKYnvlbJLAhh2vq086DRbyPFxv2e4eh18gp7Vmp7Mkx1agvvJm+SBRW6ZuLS5IfghTBaRv0DFdjvAzOMQUMofXnNm+UPGHcAJx6qpqTX7HdZnbTNVAizSmYmhAHA3uCyArAPzXevNwGn+q7jImzZv1FXP0V51BI9GdKOK1mxof6vt4Vr/j9AzGKrrCQKx3WNagvluCQcYeiIjogfzz1OqBD+RuN7U+MaghCm5ZmW1WxGrFBGtHtz1u6AFw+g/jPHmEUFvV/ueDkYkTMhjDe/m+Zr1glhlKeCnDxW16VNZL+T9ei27l1ceElFKU6dT+YxerJIUTXzH1Zn5VKqsTgBe+csQM/OA4R2d/X9GUDxAAEAAElEQVRSLXK0QtjTpy5iU8A2Mm7aXkDWI707zqBK5NvY1nCLUKd2f1WQRdCDz/5MAJ1uDI5EapvlBPHyf4VKUBP/MvpL4ev9/Pzg6+uLypUro6ioCHfu3MHChQsREhKCZ599FtevX/8rq/tX0frUY+xjrbJSDV5rmUiEnqzoxQDIhGE/cUY3wfOCm/aIn5+Ault6sY2FrNiY/4c2nXZTKys2FC6tjfQvIgVTOAAMye6pM0/DrW4dYUFIDnFlPlfl1xObcCXyFoIPuzC/s9Sh5RH/xXxmysYvFDOv+gmxwfiyrw6PAlyLfUBcTbjbJwJvZBwzXJB4ut8zXFiINsxuz5452pRRCF7lDWM77tpzjE1xjHjhtYi0f2kbjfigZG9PwgPkDvKGVTLD630i8PIwvbTMu30i2IJ46ENxs6MNmAwAlX9IxJVRUbr7vNDFt4fyTcva+utqhgbJt8H3LcIj3Xifm2hhvg207Lz3LNgdLC7qRkKtdjNPn+dOVk9HW748RteGUrvqsfyULm8O1N2jZQAE4ju/4DbKlyGLet3ep3D1l0CUlonpdcD4AwI/Xu8nMD/Bu7VcBZ83GjAagBAonRdW+H5NXdICqUtaoMJPosmVPU2EWOb75u0MvbKLDyJMx632G689J57Fb+L7PGcNMZV+1CmUPbNKZrg2a2Qo6Go3HEZKHf53wbnzOqGk8Phplvel9NOI60x4CD7sAjdfsiFffaua4RiwSma2EaP3XUqVhu/PY3TfJc8/P7/xCh+AnBxSPyZte/tXvIFTn7ojdW44q98l4Qh7TjePfF5te11KlRbLLSR+qMcmzoX0KRG6jrxO5kg+ELZ2bhA2+cW+SGnL9OZNWoH0nuyjK0NWbDD9rpqpZ34qzgllNydh/pnWsEpmttG1X7go8OA5jQj6NXvqIbwBIK/VIwDAomKzPEcCPgBsDaoq9NFEb5UfahUh9GlxGJf0WZFw8yFQ8nRcvDfgR5gCfIXxUG5DEt7OOIqJ01RzaPrcxc0NdzfU0fGkTWeVCMLjQ2sLMg7HEKuBHieuCRtwmr6y6T7L71qeKBWnZCaje3h3AGDoiNQXu3CHp2H9VsmM8dVydP1276lwhib5OKUVpbpfqUpA7fug+4QZg5cBIAJJxswouM+Ix6WYKGTMjDIcl6EphdASRXM1Ikfr5eEWP8IqmZkPIJ+WnhDLCkEYBkgIA1mx4VO/pnjUpQVGVCNrUJ+TYhB3q2RG4TfqWgQA23KSdHxQJdu6RrWFfhvr1Qr9T53HjcFkb8CHLrBKZl0oA+28ZZXMTPF4qesD+O0cTvg0cFMpoX83/Z9NE+12OzZu3IgFCxZgx44dKCwshJ+fH8aOHYthw4YhJSUFM2fOxG+//YYBAwZg1apVjy/0P0Ra00SejLTO9LeWzm9oxIJy8kSDTVJy8/JEQU4eXCtUQOGdO8LmQBswlAbJ1fJkNKHwvws6hGLH90uw654rRsQ/zwQPZ/w7Ixr1Xkv8AseXef5lC9xXpcF+6RJ7dmVEFPZM+YpBtGvzGJGs2NC9VW+cHl8X/q+oG+ims2JZbDaeqLkBX3aRpRlc4o8YapddmzTE1l9XC/ec9dH9nuG4N/YakkLWOuTdFOALe1qm4XvRtk3bd2xDWRxo2RFR0zueZ2vfoZB/Xq6rx7VSJRQ6CXfhWrYstmaqiofUBWHo0OwUltTf99g+kRUbfH4ZxU7V+LakfdecKQCMyEhQsEpmVNtfnTmVJz94iHd8wnVpG+0fgvrPHNOV17X7IBZG4t5T4cJpMSVtoM/HjUP++fWhUai6PMHwmXZ8NVoQi/pTyBh18/RAQV6+kK57cysKzl8w/J5bTI5BjUUJWJS7jwUe1aaTEithaf29urEjKwRUyMif1SqRmIH13imCy517zM/HaJwa8dWt6wBs3baa3XerW0doQ+anUShyv4/09kt14+Zx/Zz9URQG9NyDxGaldN+GUV5Xc2NsjSNmuzSItCO+tWVYj9/Exrc6YdGcLzDeqyV7dnlzIJJDif9YfsFteLhVfOzYoO0zeuboPqCa8GWtDobPABVkpOXRvgz63qjtzvrGqM4mya74vN5hw29Nm0crsND7d/tEMCWes/GhvQYAv53D4T9YPGW43zMcXu+cxnKvPfDZMgpZ3Rf9ofnxSeoHSDiDM62Xs7ZQngZnt2Omp0bvkJqAa+t3LV8ehXfvCnVGN+sM+6VLwj2rZMa5DY1wlNsPyIoNHYaNxM5li5F4347JvqFCHsrDuYkW1Jv1ZGbLt/tHYv+X89k1rYuabRqRrNjQYegIXG5WBvU+V0/mASDS1g9VotNxa0AkKq1ORN57Fnh+GG845rR1GtXj6Lms2OCzYTQCY8X52d6uOUy7RKAu7W+jsvhn1NQUIKaNX9Y75JAHej/vpyYCuNrNW4X/G6aJX3z495kmvvLeP7Y//gr60ydi2dnZmDRpEjw9PfHMM89g586d6NmzJ7Zt24a0tDS8+uqrqFGjBjp16gRZltG7d29s27btr+T9X09Ug8l/yI4mhLq9T+nuyYoN27IOIO4smVxcQoLw8e61kBUbE8L4tFQIK7ObnF4UJZ9Q0+zwYL+NtFb8vR3fL0H3sGgcvueNjI5L2XNtW4yI10bR/0ZCGACHk3Pdr+KZEEbpu/dmoY9HuNMJGiCmDpS6PP08CjKz4bNRDXRslcw4NnEuK8fV3JjxzAth9F76GJO4CePq5QEXALJ5d7Sxvif7YPeChajWPU0on+83AIjb/bNQD59mXFoqu8f3Hb3PtIIbVxj2Dc37tIfoTG6VzJB/Xq7jBQC2ntnLeDUaN4X377NyHkSHIXDMQeRH3mblPn3qomFbKFqlVgijabRCGD+mTP4+um+KXlMhzCqZ8Y5PONJniSabVsmMUy3V/pEVgjJqlcwoSlG/l3IbRc0qez/FQA18WyjSlhFRvrJ/DBaEMPqMH8/8+zg1Zq46LvPydeUVnL9g2DdWyYxDU8gJan23isJ9npRIVbi2t2+O7hE9nH6vY/KJVjklbDXsJ86gIDsXADDjSoCON/43377Co+r3UmlvTWw5LLP0rk0awveNBPgNSjH81vi+ov1CT/1kxQbvdxOYEKbtE/4//V1oOwmrZMbqvHgM6TZCN7aNvk1EBpO6m1TG7oUL0WPVa0hbpiIM1uyZyt7jiPqtnM6V93uG657TenjQAi1fkbZ+AIBRUSQuHRXCaB9V1MT50tbh7Jr/XWQhZprHQwsNvzVt/zgSfABg75wFLC89debzAUTxABC/QX6t0QphALB7wUJciCIIfVQIM5qbHLWPxg2jRME+tGWEeuTpygAgCClduw9iz9O+IebO1ASc5qXtLLx7V2i77/YXdEJY51M9ISsq6ihP1Gf0y3OdAaiAVPzcUW9WvMO+AEgcNvq84ho9SJSs2HRCmLa8UtuTUcSBmdL6E80/AQAqrSbl8kIYTcebZ/N1XhkZpatHu07yc0klSVQO9jp5BdtXfcvS0bKbJLsK/ci7FWh5AFRTUwD4st4hBCzXn7Ty+QAwIYyaFZv3DkQJ/bfoTwliVqsV/v7++PjjjwEAkyZNQlZWFtavX48uXboY5gkLC8ONGzf+PKf/IaIf7KWYKIcfrza9I62NVTIzZ9SilBMILl1WmNjY4lKo2t4/aHsepsqVxTI75sMqEf8kfoKjz31/IkhIFH2s4KwCuUllWCUzlhWjBjriGwB+OUsQ66ynejjdgGSsEp9RXgJWxBhOxLSsfgdHs3tLcvfpBAMaXLGgnNr/1NSIasm0ZQNgWnHaHi3v3itcDM3ltJtfAOwERdjQtCR8lbNmCfdPPbzLFl0jQU8rcGZ9HMXQKq2SGaZqqokXj2JpVAZAoHmNhF5Km+6Ux6MiO+7JPiyN8poF3SN6GCoUACJcUuhpV3Nj7Fq8iJVNkRN5R3aa3yU0CDuXqyhm6/ITde13RFb3EMFkz2ijzbcxY8B8wz5NXRDG+KJmw7q6uE2ndmPFX7vsV3lwtKH3G5WNjM8iWTBqh+3jyjfqc/qMBmjl0/itHourL0QJeR5Eh2Hd7cqG75ym277yWxTk5eP18yEI2DVMSEMh0bPD7xl+H9+eFE3f0r833ui4lCkjoFD+5LddKIs/Wabt5PM/6tKC/fbfNQxNZ8XCq/8x+B0sK5RD+2PDnYpCH2r5Nvn7wNQ4EJ2nviooVIz+s/yJROixtyf+N6nPz0PAsGSkftsCt7epG0zex1dWbMwsGlBNRQvGXUaFPQTZ7dxECy6MJ/47LqFB6Fr+gUMhjZo47g4u51T44PPTgO1G/cr7lvLlucSrZpoUbvzLbGOQmu6tepP+0Pi6GrXBbWey8Jymoae/NByAlqcrI6MYerD2fWuFv4Lt9YU0q/PEE6Iq0WoAY1mxMYWltt4rLa9BS9rxQU/Qbz8TofpXcmVkT1PRAVOXtBD4DRgqrktWyQzXjnmG7efnomstr8K1bFnsbGoMpGaVzLg1QFRA0bZS+H9+3Wk3cpSufalLVYG5xXtkLndt1ojlLRSjSgh5tfcowqys2BC3+2fhvVMeaixOEOZto3XKKplZ0PN6xcHkKY2rmqd7NwBRJPDkPyQFJn8f4Z4jZY1VMiNtKFFqFXQ0DunAp6en6j4jHFuj/KOoxEfsL6M/ZZro6uqK9u3bIyYmBr1794YbBxHtiI4fP47k5GQ8//zzf4rRfyvRY94GE6bD86vDugk9dWkoiw/Do51dGRWFGosScKdfBK4PvM1sjVMXhaFd09PEbOhUD7g9X+QQcU07cfFk8vdB3J717Bk12QIIMEXtOfF48Ks3i7NE6Y2MY5hztgN+9v8NA7Pa49CehqibaMfmOV+hims5Vp7RpsxIK+ro2ZOkzf4xGN7PHkXq4hYIHHlIeMYTj5KnLYeSVTLDrW4dXGvng0qriZli19PdBSADR3wAxOSOOpJ3ix6IQttJ9tzN0wNbDvzicAE14oXSc6cVPFUhGwM8LYbvstPxWwzS2BmPpjq1EZfyq26BMyL6zCU0CNs2r9Sl0yKUPUlZsmJDdFB72K9dM3x+4SULKucUoDDmMip0zUSvk1ewqTHZsGbOiELvzok42rwID3/zQunOObjfMxxlNyfBFOCLob/8jgGVSLkNF8Xi9CgVyCXvPYvgt/DlNW9sDapqyAP/+/qQKIb2ZtQ+5TWLofmqUfspGfW9rNjQtecgpybCyhsWSJ+Kmuy2Y0aj7OYk4Rt19s04IlOjAMTtWMvKo3XPuurLIPaFdr9uwbFX5jr9NmlbmyS7ChudX84mo4d7qNq+vkOBxKMO+dXez5wRBd83jU03jcio7/PfseCu1yMEjjkopLNKZphq1jCE2JYVG1q/OAblfyY+fec3NHJooWCVzMwEiv9OnqSNLqFByO1aBYFdMnCvLTnRfCPjGDqWswtt4Om50wrW9G3HzGG1Y4vmc61UCVvP7IX/78PhNygFV0ZG4dDUeU/03QJAg29jdNDejzMPBkB8fAvtTpNQ1FCjjbUjKopqBpeEI0J7z79sQd2vHKPSAgTNcO+nc9DDPZSZjlslM9KWhSKzyxI0XBQrxC7UkqP11Blp+WlwqBTOtHiE/Hcs8JgeD+U1C45NnIuWL48RUH+N6vX7cSzz4abIfXyazv2HwXUfSUtRRx1RQYdQJvg64lVW9OaRjtpHeXxUZEcpF5Ph3PDR5YZOvwl6L/8dC068OFcYy02+ioX7jHhdegCw9h4CJP0xAYeaClPew9+JQdJ0428id7KFKQNkxQb/XcOQ3m4ZrJJZmJ8drfH8s4KiR9iFjf9YUzxmmjjrbzRNnFhimqijU6dOYceOHejXr98TCWEA0KRJkxIhzAklxhKtulUy49rzqpaYCmGyYkO9b1RhouZhYkZY4acDmNJkM3NM9va+yMyG5Ea/MCGMd5zVbkCMtEf29CydFo1SyiSycS3TJZtNHlmfEJ7HJQ/EnTaXYJXMuNLyGioGXUW5jUno7xEFnw2j0WnQCwIfAQf1CFGONGOyYoPPptGGabT8Xx8SBe9nj+LCeIsQF80oz5b5Xzusk7+/5bDMzCaskllY5ByVXW43QVbj43BtjVvFNJ0AsOXALyzf7WcikDY7AtZTPQzLpXlMjYhJ1w8NJQzwtGBKZrLYBhcXyIoNr1fPYPzQYJxGxAthABD6QQyLLUe1n5SCZsci+8MoFCWfQDffSGhpb3BZFGyvD0B1WOf7hC/PKpHTucBlMbBfu+Zws1Xn63jsmbcQFYoDZo+rmsfS+L6ZgBP9vSErNpTuTJzXy25OQkHHUNjTMrG0Afk2os9EC0JYh2N3WOwWem9rUFVRs18cw8hUrRoAMORPZ0IYAEMhLHVpqKBN/eWs+s74MoKTnhPazwthN7f66fpI+jSeaZvpmN29YCGuPR8lfKN8mVrSOpa/mk7qjNuxFh0Hj0CFTNWawSqZITepLLxP+l+aGY9WR/sabvhp3pCDBKnseGihMBZKuZiEcZH9Clefwfer3dT4vqnG3zs/QYwF5VKKOPDTAK00rlPHIWKgXo/p8aiYUQrV9lcX6pIVG+KO7sDt/voTIKtkxt5vFrB7dTXadi2VPpyOMrvrYm9wWdwYHOmwr/h6TI0DUZR8Ap7T4nGv7QWsz0/C+Zct+NSvKToMHYHuoV2F/PT/Dw0lJoRpT3r4Piy8dQvrbldGentiSk5PGAAg64dmDoEH6HijQhjPf8Dzh3XtkRUbHlq5ANWFdrK+bAlw2Gff7P8RAFicO75+Ps+afPX988AplCggRb+MTmpeLi4bACTOnM+UATQeIQBkdiFxIgvLFOnq5YlfM/ixrZ37jPqF/j/TgoCZeEwn/NK5ZOI04vOlNWXuc/ISq9P/lUT2roo6nMWDbmFYlqv622YMUNdbKoRpeQRICBoqhDlSAj7sSk4weSGMBnq++kugYR6rZMaQ7M6GbQfAhLD6ByoI+XLXNmX5ZcUGj+nxurGsjYsp/N5AzMnTlotQ9c6+U+qvCRBAsmrLEnR1yooNyhuqENbgEPHt44M1S5/Gw83TQxgXFFSGH8/OeCmhfzc9mRSloQYNGjw+UQmVUAmVUAmVUAmVUAmVUAn9u+jvMhv8D5gm/qkTsbVr16JDhw44e9b4RODs2bPo2LEjfv75Z8PnJWRMVAtd7TvRxENWbIhu0wdFjx4yGOp6c3KZBmVhoC+LgfJ7EPnPn2bJig3T64jw1vwzLfkdLOtUY8f/p5RabAs9tGGS8LxWrzPsOjA2CabfDwM7VO3QN+4HmAMsr21qe1T1WVPWq1DgSzsvxtmfg4R2AMD86+4CJHnVFQnImBmFOrOJpsq/2HcluvOzrN00L0UAdERGWivqC+csj1Uy477dDT1OXIP/rmGs3iZfx+LM8HmsX3qkdiPays8jUXHtAWQ+vYD55NE0Tb6OZWXLig1xO9YK9VEULGryJZ9N0WnvvvfepXvnvFlE2ldEmzkiNQv36rig4KwitAUgMci81l1gseIK76tQzPz/HY03AQB+Capm2I/MXOgVC+zXriF1GOmPwGWqrx895dXm5/vhbh/iY0ZPcG8NiFTz71DNahosiYG9vSK8Q+ojoX2//LdBEUf9fyMAIhcHqOMy+LALy6uFCzf6tgKHJzNzX1mxoZSLSaiX3q/XWwRboHEFAaBytwzDfti6VY+YWu6KaPLFP5+epSKGXXjJgtKdcwR+v2gWzvLs+H4J4n77EW4e7gKf2tMJ9j31yBXq6h7aFbJiQ5V9xJS03uirhlp21pezyTv1flYEktD2p2v58ix8hVUyM7AbWbHhyBtzhTLPfE3+u2WQb91jBQG9OdumDFIXhgnlHpswF6t9dgrzBP2jAAVGJ7eu5saGcwV/cgYA9ps3sSmAAFfxAex5rTnNR+u1n0wVxlQfj3C4LyfjpNT2ZBScOy/UwZcBkNOLNrWIf1it+KqGaZ+ueNPwtNTnuSPspFl74sBf571r0Z1UafvBKplRWj7EfGbovWrd03Q8m2oR37KVN1og+8dgLPfag8tjooQy+d/9PaLQ+sUxAm9GJ2e3Wl9WG6cJIeHs9FhWbPB5Sx98mkLQa+vh57l2x3sL99i6lbNPV1/uB8Z+oIsG9gIAnU/p+sa1hHT0W16Suw9lth7EsGLkU4Q3JcHWi4meXvHvAQBuPRvJ5nf+ubaNv3+7SKhXVmzMLLJ6D+PQBQABRLJKZlx8UQw/QNdAAMiNuIPUJS1YHm0wab79PD0oeoTzr+jN9Ol/zzVuwjOj8Q5A8M0DwICStP1glcw4NkE1bT/T4hE5wa5ZQyi7IC9fGJPUN5Anmt5U9d9pfldCjulPCWKLFy/GtWvX4O7ubvjc3d0d169fx+LFxk7sJaSnPoFN8bl/EHPG5skqmdkGjsaXYeaHDo6zZcWGh795GU42WlMBfhIeeiYPGWH3hXLos2vPRwkLSfoX6gYxuuMzAIBWFc/o+ODrPP+yBeiYz+5ZJbMQV4vSOzVVAU7qc5Ld/9gvGMF1FCHtxVgL1jeuhZo9xc1KpRwXVkbp0gTJzX7iDOZfd3c4ARsRLfNu3wh2j5qtaNtHicbicX32IcZXy4HfQBsLSOn+iWpW0fLlMXjU7hyGnsmD36uJQln8xO3+iWrqxr/T7I+ihLQPfvVmSGW8UEHzrLtdWbew0rIyn5kPWbGhf8Ub+HDI94aL764li9D+Z/L7UZcWyJoexcow2sg46s8q+2pAVtTgwlbJjPQVIfB5R3W6Lrx8VcjD/6d5KKw1vR8/a76Oh9CUQt3GQluW9pm2jJ25RMj3fvYoq+9oc3UTl9lliZDeZ9tILLwhQVZsyPqhGTwSCQJh+xdGwYgc1QsAVTLuGn7DsqIGpDXaAJf9RRW2tG19x0eNuVXn63hcHGdB+DuqELw1bb9uw7IlaQu+vOYNAOh6urtQHv8OtuUeEt7XluRtsEpmDKxD3tXFXn669vJ1BYw/IJRL/2vHbeHdu8y/6MvseFSynRPKBIhwULjDE2Vr3sM7F4JZ7D1qTuU1OZ4hb6avCIGpRnXdZpnWT827KQ/mT9QguLJiw3ebxY0p5XfXPVeMTs00fMZ/MxTdssOxO0zg0Obh8/n+eld4LivE5ImWmbpQBb8ove0gi69kBC2uVUBoxwtFy9MKQQtvSHjwqzcAwPMjcY7SEv+uqZJEuxbx/+k7Wr2qA7yfPYqQabFInkwUNr6/vcD4aDQ/FogMBgCU//kAi+dF6zKal1IXhAlpXIMbCu0HiAJQK4zzfQUAaXMiGKS8rNjQaaBqev9+pgqFToOS8yQrNoz1aqUba9VOF+rmu9yC28jtKm7QaT4+hiANAG6VCPImb4qHpGNC+/iQLNFnopE6j8wJlX4U44Ty7aWAIeV218E7F4KR964qNNI0fDxKvj7zJ7FCu2p/ozffpmsgAASOIK4YFKzDd+1YXft5/mTFhjIupVDjGAGr8ftRTA/AoS+4tr+9J4m+ptp+MDXwR+CeoYwP7bpkv3xFKJeaSrcbpZ//td/aT0n7dWn+kVQC1vGX0Z8SxI4dO4awsDCnacLCwnD0qD7IaAk5JlmxCWhwABB39rAw0VBfLEDckGs3wi1fHsNOx+hzLVklM1IXq1onWbFhVbfWWGSAcmiVzEj6WAwM7P+KilZnP5WGrI+jMM1X5ceo3oLywiW8k8qxuinxgVm1C6qs2LDK53chT8q7c7EmP4Glp3noRG+VzPDsd5wFuVzfuBZcy5cXNhQXx1mEMgGiOR56Jg9dnxoCq0T8QHh+Xk0/wa7pokvJ3p5sXOKO/Mbu0YCUdRIqs+CSN32IRn9QJREEgPLRfKoKf0vf8eXNgcj+kLSF+mbQdu9qsoHljXxjLHu2KHcf0pY3x8JAgs7m88soh8INACx5yooOQwks98xscWHe3qQSZMWGUr8egs87xppTq2QW0N94skpm3Gh1RTc2tIGuW+8ngWIpolzqfBWyO/nBQ8a79jtIXRgmtMnWtipyJ1tQaW9NQ+GLH2+UZMWGbXfLsN9l5MpC23y2jjRsG1t8XYpYAFD/mGwsqU+QOktvI5v+NberwOoeIuQDwHzIKGy+VTIztD0AGH4mhwXitUpm7Jm70JCHqy/og3NrqcKeWqze2nPimSP6nX4RrE9vPRsp9Jk8kJTLg9RQoum174P+nhfgj+h2T6PGIv0mRzsWbj8TobvPz29aYWFirxewJWGzwAtAhAPXjnl4lF0RySGuLC8f1J0GLfYfkgL7FSL8Uz8bvh00P72u87UoeNQ2qSh0/Aa+XblC9t3xz5ffrGmoFNj1XChqfSuCJPD5aH1pYQ+EZ1bJjG1bVqJ7q94AwARMbRpZsSHt6wjdt8AH62bKmVVmuLlLGFb5orDG0LyjqyhMyBDGwvGbuLYlgNWpfc5TxiqzcPqhTUuVUCmTVBCYgOdJbLJGyW6oPzVe+EZ+X6r6W1slM7o8TXzTefQ9HozFKpHQCPx15iozjkUQRNzooPa6PqQUMO6AcN+0S/WLm+rbXDdmndGNQeSbr7Q6Ubeej6rfigm6VFlLx9iMvs+y+qliiz4PGHpY943yvFglM97PPAx7ewWBMUlI+yZCyE/JtRKZ8ye3JJYOGwJkJIe4wvOjeOFbzJliYeEvbj+jziPXh0ahztdEATn0jIjsSCnyyCPDNanq8gTcGByJgJf1p9FGc02p7eTb4QVNajnh6F042q84upfdrzZ8BhxFYVu9NQ8g+rQBQN0vST+V2aL/JhvPixX4KQno/N+jPyWIXb16FbVr13aapmbNmrh8+bLTNCUkEp1I+InN5KLGsWj94hhmAgg4nthlxYaKaw+wfPTUQms+BYChCdL6CzKzMap+K3Wi7jtUeA4AZ9+0MLAInnze1m+w+N83t/rBe2mGkIeHtabtDhybZKjRpH+N58SySZ5Sfw9RC2dEyR/MY8/4wJgAUOp2kdBGgJjyLW/gicpfKMIzys/n/kHsmi66/J9VMqPlhLE6jdmFqJvMnKTe3ju6evnrWvNVkwha5prgbxHQOhsA4BKmxkKiABk0b5XvE5H2NVmARtVvhXA/kuf8BAsCRx8U6uTh7K2SGfZTaSi1nYBJvO4diXMFt3F9qGoWZJXMWJefaPie6f+4ozvY70bJbliRtx95k1SzEarF5okvb3cwEdLtha5ofuhZZPVayNK84xOOsz8Th2ftaUPg6IOYfrmBysfpPajb6iwzSZIVG+73UIW6wLH6kyOrZMbXvZ5iv5Mnz4P/yhiWpvFUNQ4XT11Pd4dVMjOQHQCIO7mblWOqQ+bN/hVvCGZRlBd68u0/Ub/pkBUbljbwQjlrli4fXE2otLcm+0aqf6uPOaYlCqrDjy23enVR4Sd1c1npRzE0QOGRUyjoGIr7PVTTRVkhptOyYkPVsbk6IYn/bU/NgKzYUGlvTeE5DR9B/yquVXlwRHybaIyxR104IAiu/KPPfSXkowiQAOD7ht7cjJriadugLddorinooJoJ575PFDzUDExWVBPNoZUvC+ONzU3HT6Po0UMHrdYrp3hwJzqHG/ELqDD+mf2IUokPF1B45BRMNWsIeX0H2rDlYBw6PzvckAf+HdA2POoUionVM5m5IS0vulN/XVsBIPCju8jqplrP8AIIn19b5/0e4TgVSiwdXNzchHFM6eLGhgy448An83Q8O9qQp7VbBgBI/baFIZIrAOS/bUGYze5wHGjr4n9TZUfmDPXdVVlJvnlqTWH0zQJA9lB1rYoOao+79Svp+OP5mXXVl12ff9kiCC8AhLUr4MUDyH9bNI20SmZsPbMXABh8PSUa55GW5zU5Hv6riAKw4toDyP6RxM7jYyAub+Cpa5Os2JDYrBQAYkZLiSrzqnyfiEtj9bHCnJG9PTkN7B7RA+XXk/nEVLUKa1ODQ6XYb8oD/V/Q0TjgNUCUYZ7TisMl/LBU1w5ZsbFYk/y70L7PtK+Iksvzw3i0mBzjdBz9I6nI5e/7+5fTnxLEatasifT0dKdp0tLSULVq1T9T/H+SLo0iG2Z6hG2kfVT6PhSurZIZw88Qe/CilmbdAkeJnVq4ivbw9L9VIpDKVCtJN/QABE0jzeM+I17wUZIVG4s7YjTp0N+Vu2Vgy2EZsmKDqU5tuHm4C8/5CV1bDj9JeU6LR8W1B5ymMTUmpmQupUoLfFBbfW0+rV8eT2t8d+jK53nky+P/TI0DmU8Jv+Hl8xmhexm1q3t4d3Y9vutwFLxaHbf7R+KLtQsgKzaMyG0Ft065iLT1E8rP7Eeepy5pgdU+OwGA+c/wGxf7tWt47rRq8qkNZFzPrSKqLk+AS4smrC1Pe4gIcnzb6XXfdIKQdSq0AEM8W6LcpSK1L35eLvgCXnhJ9TEpbK1uEKtEp6NWrzO6jRgN2bAw0Ff3LnYHlxPSl+6cg4sbG7J7uxcuhKzYkP1hlO5boET9cky1SLwmv9fV08eCnDzwRNukPSnSlhmX8usfXmyNNpi6sVRox63Wl9k9emJKg7lredKOQ8p/wbnzLBivo7rcdiQLZo8AWGy2ws7ixkzLN63rJ7/t7Lq7pRe7r90katv+oFsYSwsAK/L2C+0o9eshoT30dx8P/amntl+0vym5li2ra4MRv/S/285kNEt6DrJiQ/2p5BQg49n5rB03Wl0R8hvNmTSuorYfACDj80ghz9Ips3RpjQSls29asHMZEXiW3KiL/qfOw39wCvImqd+d/fIV3drz5TVvhrDXzd8i1GPUJ6W2J+Ojyw117y5u+xrBAoOS/SQJZH1lRJTD8WJU1+6FqmKmqKBAN+5kxYbaT4knXTyZGvgLp13a78EqmRH4wiHdM0oeH8cjYWK4bswCgOXIQxbzkuZ1raQKTPu+JiibaUNEK5MPsw4yawpH8wR/yhV34nemVHj61EWhnWye5cJMUORII0Gd5vP4WA+1rh2rgbufx7LcfdjQSn3Pb2QQePj0gfNZ2WdaLydrYZAK8KZtGxXmUueSb5RaDbg2a4S4oztYulrzExgf2dOimGLZqJ9kxQbT7+TUlPpnAapSDABDp9SSVTIz01l6ws/zvbSBFytvw52KurxGc4JRfwe8rCq56CmiVTIja0nJidh/jf6UINayZUts2rQJqanGDplnzpzBpk2b0Lp16/8Tc/8lqrXoAOztmuPIG3NZENSXFNH8s8JhfRBOGh/JZb9eSMh/2yJ++EMPo7BtiOFit33Vt8wm261TLrtPNbp8HqNJmsK6r7ldxXDS4dNaJTPsFy7iUsf6uuf8BoMGXzRa6Oh9o7IBdRO9LUfcMJbpki04SGsDul4bJmqXefL7cSyr49azkYgO6WKYjpL9ZCrcvOuzdgUlDHKaHhDN7/iNDB8LrrBsaWzbvBIV1ySiUenysEpmVHAjZkraYKO0rMARh3QLdIO9Q/mq8cOwruw3PZGhfLB+nXFDaAO/aaNp+ftHcj2EOvhTSatkxu7gchh0Oh9ldtdFna/JBmBKZjLb+DnahPGLOQ0Ym/lpFFyDCYhKUUsSa4bniW7KWr5Mgo8HfB8D7/cSdG3QtsN+6RIzj6T18gI+JatEABu0m5tzGxoZ1gGQYLGO2pczRXRmv9NPNRui43DOdVG7HDKN+C1RnzgazJ3WXWFPLXT1UU2G+PIpj7/+9J2uXfx/nnjobID4hzEKbwqrZBa+KaMyL3RyR3rxCYSjdG7e9dG5/zCU2Uo2aUPPEEF4iGdLQ77s7ZujS7/n2fuiwiU/bvh3Utg6BHnvWVg4Bgr8AwD3OjRF9jTVF9LRmOSpbu9T6Hyqp9AObb5bz3Lmp8VEn0cefk4nzNO/gPePsd9FUc0w0VtVJtQ/QMwjU+eHs3FKn7nPiEfXXoNxaWwUPjveGWsa1YWs2Jh2n+et8Twyjrr5RmL1x13Zs63patoHReJGlu/bvcFlDQVNaoFB/esotDoA1FiiwoNrlQZWSQ1CrhVcnQnJ9L0ZUdzvP2Fskl6hd/YtvbCpXe8AcnLltjOZpXHhQvnENyvNIMytEvGnLrxF/Lq7nbgu8E5PoGTFhvd8VEWDtl3asavla3QVRfe8q5deAXFtGLFsuPgiEcAfdFf3GdpvQ3u/83PD4dqsEfxGphMQkNoqKAUfz07Lh/3EGeEez/e6RsRKIKv3QmQ9us3SFB455XCt9J6UwPxy2w8f6bB/+GveCoJvF/Vz0wqMALEI4MFYtP0+L8Df6VxAn0U3bMPy0W+TJ1re/Z7h/zMBnV2K/r6/fzv9qYDOBw8ehMViQbVq1fD++++jS5cucHd3x9mzZyHLMqZOnYrr169j3759iIiIeHyB/2GiwfHa4SlkzW6FgJf0jurahdpIIDLaSNJrl5AgbNuiD7zrWr68zkRPVmzw2TIKgaMO6u7z+QtbmVlgSABYmbefRYbX5nHEJ80j8FqqNIoePcTVXwINkZdcy5ZlSH3O+sRo02t0T3s/a3UwUtssNyyDDxjrqCyjsinxC5RP3EhdfDNn75J/bnT/SfqA33Q6CuR5ZVQU7KVcUHuuPjDmtrtl8IV/I0OeHtfvANEezgvwd9im1EVhbNw97l11On4Lr1fPYHWGTI/VOX+vyNuPIZrxlTM1CqdHFgfljAxmAYON2tLn5CVmQsqnuRHnj+rl7iKuQZwun1E5jtrDB6rVvqfQKTGouUB/Svu4MrWUO9mCU2NU3xrbgwd400f0AzEaa7QdNCA03y6AmLjR0xVnY4D+fj/zMKb6NsftZyLgMuIS9gX/7LQd14ZFMZ+1x33L/G83Hy+GIMvndTQ+UxeEoVqKGw6/P0+Xju8Ho755HDn7Jng6P8GCul/qgQtuxPmjSrRqeeKsLeYU4PqjcljgoY91pOXJqF2O1g6j68eVp33ubN7iaU1+Avp7EGVKftfqODZBHxjcKFi2dix07TUYRYeOAwCW5O7DCIoayKW9NDYKteYn6N63oz6ZkpmMyLL6IMQ8ZX0chdTn9eaPjshZv6bOD0fg2CSkzY5A5tMLHPLl7J7P1pEIHHHIYX/r6lzSgiljdc8Wt2DrlbM1nZK23x3xW9g2BK67jdciutbz6fPetQigMDy9kXEMn/qppvp+a8Yio//8J+q7oWfymMnk4+YMmgYARuS2wlzP39HL3TlmwpOMM/p77ZnDqBaY+Y8NYEz3rPU//ehvC+ic+8a7/9j++CvoT52IhYWFYe7cubh+/TpefvllNGrUCJUrV0ajRo0wYcIE3LhxA/PmzSsRwv4gaYWwXfdcdRMAf+3oNwA0nUU0juvzk1BQpYzhRFJ49y7TIvHaJF4I0zqjPuoUClmx4bc1y4TyapoqQFZsuDJSdYg2mvij2/Zlv6ngNuVSY6R/Scxtih49RNbqYBxsrgZT5Bd7I7h0o37Qbp5kxYbZ10Q4dNpmmjZ1bjh8BhhDZsuKGDC2V1pX3NmmN4nL/lH0e+qR2k2ozyoRbSAvhBm94+xpUQJ/2s0hfz9jZpQuPwDhRJVvp+veFF1Z9LrGogTUnqs6YJ971cLyft2yrVCHs37PWh2sS/vZW4OENmv7VyuE8XzJig0uYU1Z+VQIS/8+BFbJjNrfxDNtJs0zpHh80TxvZxyF1/sJSH1E/PLkn5czHrv2Gizw61a3jk4I8/2ZQGNXiU5nUPgA8RWh0OUdho3UjQlTgK/ht0BPOY02vRQdjm+/9p21G0EQuIIP623oadr6U4hpHIUCf9MnAq+mnxDeAw+UoH2PFIiBN0kDiAngS0qY4bj0W62ilU2+RFD8Jk4eB1Plytj/1QJBCAOAlkf7QkvOhDBtG/nnBVk52HVPBNUwmivovayei5jJE5+ejk96vyiqGbtefrMmbsT5O+QHIH65w3NVi5ARqVnodPwWu+bNP6kQxqOyupobI9H8k65cvr18u20hxN+Wv7cyT0Vf0wpMjjaC2nKNro3SPqmwRe/5rRnL0smKDdk/BjM/38Kjpxk6ME1PEXqpEEbLp4BJfH1Fh44zsBUPt4o6fpQ3LMz31oh/7XgGSHgQI4GcT+fzdgK6NWgtlDUjS0R11eY1KgsAGn19Hbe3+TIE0dv9ucDfGt9aR31MhSrtXE3JFCACyFA/PR4MxLUCOWHNihaVLo72HmnfEBCYNhtf1bWPWtfwRIUwagrP70WoEMYTFcKE+bA4hAU9kaM8+U8gpn8UoVdL/MnkoEoqyqF2LmBt4xAoaZ8uqb8PvdxVcChToJ+uHgCIfF0Fzmr6hRqKxiqZmdWMz4bRhnn/sVSCmviX0Z8SxABg1KhROHLkCGJjYxEaGgo/Pz+EhoZi3LhxOHLkCEaONEYVKyHnJCs2jEglMZHalVPhkumHzi/m9BlATJwouZYvD+kzspku71oaPJKTdkMHAOEpz+DFs6q5Ev+cd0ZV1jdmiERGGxyrZMahqfNQ0EFctKwSMaGRFRvsaQRYgfqHAcSMI6P/fER3JuhPPgOOGm7wjPiPbtZZeK4lfpHgY1ppnwFAYGwSu/9ltoq4yE/ODRcTp9oHbc+jQtdMWCUzcwoGVHhzSo/andPxdHOgapLU5KtYQ969J4mabSOBM3VBGFwrVIDf6wk4+vC+roy0kQFCep4azY8Vrrt6hRu+z6Ovqlpp5t9UvPAZbS7ob16gpfcrrCMAMhQRz1HbeJ67difC25IbdbFt4wr2zGfTaLiENUW13apGzn7iDMtn4jRnBR2J8uBjP+I4Pt5LFNCskhnbNhG4fjcfYv9fcF4E47BKZmT2XWDIo8fH8Si0kRAL1EeJxrTKe8+CuN1qPEVZseHO0xGok1CZXcuKDQEHy0BWbAwU4cWzIsqX0X9qpjezrrFGmScKBQ4An/sHCf3tSAvOt1F7cg6oPhY8T1bJjIwB81maxGalYJVIXD/7zZvCHEOFkbIz1e9SuxmicaEM+SoGEtKOv4/99CAwPJ/a39o5xWgs8r6cQytfRpXodGR9rCpA3NxFEIOaR4tYiBGrZMaSQB9sb1KJ1ZffsQKrs8xuYiJY/mdVEUfHE6W075obCgKPOoUi7z3juFPhv48nY3l7fTQ9MFDXtqxPiIna3b4RrM/fzjiKKZnJunr43+lfRur6iM5plB4nPGf0ny9An9OYcS4hQYZ5KEIvPz5kxYbP/YOEa0p8PE0tSZ+q5sC0PD4GGp/PqM+1dfHpqPkhzWMuU4ZdZ64SBSKfzaPQLXogS5uzRvUNsp9MxbV9dVnZpW/aWd7Qeep4zZuk9iEFn4g88kjHM0/0Pl2LtUIzv8Zf6Resy9vtxHWHYyPgRTLHB6y8By15TVfXV0p0naWm8HR+6DToBd26QOOJUurmW+wrWRzCok2MKMhQvnifTCYw1aqFrUFVhbbzAuvFjcT37Zr9LssXMJT429K4p3y7w96NwfuZh3HmfXXdkRUbi82ZOFOdE6WZ4onelvhNcK1Qge0/SlAT/3v0pwUxAGjUqBFmz56NpKQkpKamIikpCV9//TUaNWr0V/H3n6LsD6OQ8eg2QVTjiJ8gKHQ4/0xWbAhd/wq7RzdNjhYRrcBVrXsaMkb4sLRGC43ymgVSn5Mw1anNnv96t5ThJtptp+poHna4P2TFpgOl4H2eaF1xv/2oEwZ4vgtbh+gmTPulSzg30WIouMmKDZc2NcDdPiLCIi+0Gmlyz/4chEaliV04798iKzZm1rYsdx+aJJPPZ/vKb4UyaJv5OnieK69S/a+Ov0wEHXtRIbt3Y7CqHXS2IcjquQiFd8jpTnDpskK7AeBy8ypwRPWnin2wLSdJqMtoEWd9VWgXrvkNEiUeBIMSvdYCrfRK68qeDzqdL+ShgS/XNKrL6rG3b47AsUnYtnEFbnYgY921SUNh7Nhv3mTXbjuSHQr2NHgwAPivjMGpCfUMBWBnmxrtn1UyY8+8hViZtx8nY+bq8ldYdwDLvfYI5VAo8uyeZdm1VtClfKXOD2f+k/S+o42hvV1zw3T0/0OrGL6Cz8sTFWz5dlIyp4h9of1tRE2+imW+aHzgbfqdUL+ZG94moZzLY1RfLQokpFX6UKIabP7bcwkNcjof8nzTjS0tm89zt28EM0MDgIKzilA39ZnliSLAWSUzPD9UT3weTqhh2Oerb1WDrBAgnoDni0FXXEXzuJ3Ll+BkzFzDvqYbxx2NN0Hqe4qlOTeR9C0NTlz+5wPYcKciZMWGduUKMdk3VBj32jHjPyERbvXqCuNl1cefGfKgvTfzqnpiYGRiVpRyQpfHZ6O4wTZSSsiKDZG2fro0F8aLfpYA0ProfZ3ywFEMNOqnqSXLRPXUl47VO/0idOOE/m85YSxDYqRpAsccRI9Ve1l6r/7H2HNZsTGeUpeGovS2gwwQKzlEtZSh/n0AcOAr8i0vPyDybDQ3yAo57ZIVG6KbdjBso6yoIFZ8n2wNqupQ0GbEfZu0/qKCAl2yCd4W3VwhKzZsX/mt7j1LfU6ytH6rx2Jrpgp2AVcTym0kggyPDp06PxxZn0QJoVyUNyywX7oEeztVuXHuVdEvsPZTp7H6VjVUM5XXtT+j41LdverfJmCqb3PUjlMFb6tkRuAK4vPW5lgfVjZPV0YQZQhdx0vov0n/J0GshEqohEqohEqohEqohEqohEqohP44/Z8EMbvdjpMnT2L//v3Ys2eP4V8JPTl5v5eAWK9WsEpmnH1LNJXQnhTxWiSrROLCGJH2NIanR0WquUPh0dM6jXKdhMqwSmYUWZpB+oxo3uwXLrLnWhOnG4P0JisHm69xeKrD8++3RkUk1GrHmAavGGAizGYXnjfsS0zSmiU9p2t3rV5nUH79AdTYr5o/VTOVx6xs45hnVskM975qoOZqyxLQ/sRTjA/Ky7D6rXA8tFDgb1ImKafcoqoAHJvZUEpdoPrYUHQ7gMRMMTpppPxpNYjp34cg/J0Y9pyS6aHeuJpvN88PzZf+fYiA3Kj974j4MSYrNoba1+3EdcPnvCbzQdvzAIAZVwKwsqGIsggAsWdFuG56AmmVzPB5jpy0Fh4//VherZIZD4oeITSlEFbJjIzPIpkPhlUi8PS9WhnDVfP800DI/JgwqrPt3NfR/oVRhiebAEF55PNaJbMQ08qoTFkhcfYChyfrxq3R6YVp12F2zY9V88fENLXcoUyhbx2dYtlv3kTee2ROim7bFz5bRrFybSGq2VWDpTGG33udhMrCN+g+Q+/rwfsVenxMnv/40mesHFdzYwHAxNEpICUe5ptp5ZNPCOmcnY6dafFICNTOp937zQJEB3dEo2QSv4oPCu7oJJiH4uZp25aVOj4BYGkD4ueUH3lbTVxoB09+O4czs3Jd/S4usEpmcnpTVMTS1JsVr6tvXoA/rO4huj5stDCW3ePN6LYkbxPS+pQSYby188qVkVHoc/ISM8+k93unWdG1+yAhz7rb4ulrYIyKfKtt552nVRNeHtiEUp3Z6okRhUffG1wWlzap/qQ5U8kpa+q3emh9r8mqiTrv11dptRpD0bX4ldD4e0+fuqgbAxXX6IM0y4oNmxqrp6QUQVL7Dui3Tk9ZteujrJAA3VVXkG9DG8jbaGzQUxjf9WNYEHNqwq0leqrIl6UdP85OwNufeEpIU2pXPVwZGYV7vcn7sLwyFlaPUGGOckT0++RRfQFgSfZuZjJI0RStkhmBY5OQOnQeqnyvppc+Je/UtOswwmx23Nnmi3qfxwsByM9PsGBApWs6Xh536stbu8iKDThGYuntabqelc2nr7FEXI/T5kRgfer/BmpiCf119KcFsQ8//BC1atVC06ZN0aZNG7Rv397wr4SejOjHl/sBmfTcPzFwSgWEyZyfJPjf6bPUjeuDaD2aDy2z4Zpx7FpbhlUy40LUTQCA60eX8aBbmI4PSjSocJWViTrzHr5ObV6+jIU9Fwl8BM2OZb+1cY1+2NWSpW05YSxutCKOtlo0LUreSeVwpeU1xodVMguQzz6bRgv9MiUzWWjD70EbdRNoqV31AADRbfqwe9N8SZpKtnOwSmYM+OE3HS/8QhY45iC7x5c9/EwOurdUF69xaanst7YclzJl4D84BdWWJQj996BbGKp8nyiYpgFAUOlyhuVU218dAOA/OIUFOHa2uGpJK5hQ2hpUVUgDAO2O91bL5jaWO5tWYDyZghqgcIcnZMWGjLD7Dse6MzJKV8alFJJDyLTn9xoZrxRGPHV+OOLSVD8EXnDh6Wf/33Tt1ArqVon4jv3+7SKWbma2ukjzQhfte1qOs3Z0PtXT4WaA54k306JlWCUS287nl1G4FUECqduvXEXHwSN0dRnV4fkh2cDb0zJ1qKr+nxDH+jPDRdQ4ytdr9X5l36C2LtpnPgOO6uqd4K1uArfGrdK11ztJHc9G45puAuk19UnhyVGfy4oNLcu6Ct/VjcEqaIL98hV8WY8I7vSbyfupCRLv21ket3p1nSoIqGLEmRDM86j9Jv0HpzCzVm3bacDwSj+KIFCOFAOmKpV1z+t/QPorOrgjCm0n2TN+fjJqm/a6xuIEzNjTXdeeDQEyMz+meZ6ueJNdG/WL5QgJdh2e8gwqrDuAOgkq36nz9NDgTNDvvZDdW9tsCWvLtAFEEK56mISk0AIueCQSs02XeH3MR0Dd2FOeKRy7I6GCmrtrnw2r38qhMML3A32WMzUK4W8TxQcF+qJx9jJmRhl+y9pyvQLPszS8iTAAhEwna/DCiWowdC0PVskM/x9Usz+jb5H669E0j9qdQ43FCdgzl7yPSj8m4soIMR5b1qPbhmUBqoKTtSUyGCPqt4L/EKKo5ec+ag5s9P3Iig0HzSbsCyY+vNXfJaEeLm5sCI+12WS+rFNbKEs7Jh0p4QCg4aJYFD14wN4nBUdpNkP0C6e/Tb9LyOxjrFD/J5IL/ib4+v+/G/o30J+Cr//000/x1ltvoUqVKnjqqafg6ekJNy6GBk+TJ0/+PzP5byYKBXot1ReVK7liwrkWSB3sA/upNJYmdX44snot1GnUKF3c2BC1nzotTA6mOrVhv3BRl97oGgAGZrUXNkpazR1fd94kCzynxTud4AESy+d+9VLYN3sBS8OXFfn6WMz/6CuYy5TRLbhtx4xG2c1JQvqg2bFMU67lCwC6t3wKBVk5hs94HmdlJ2Cit4jumP+2BSfGz0W3gJbMXpuV29zKwBvSZkewU5T070PgP1gPlBBms+OgWQW0aLQwlm1oKIWmFDKB4OKLFga9njEzCumDiB9a26P3sDu4HMvzoFsYdi1Z5HDid/Ouj4LsXNjbNcf2Vd/i9fMh+Cm5BQJHHXS4KchZ0xSnW62AtfcQIEn1UWg8L5b5N/H9ZNS3fLlu9epiS/I2dt3ivRhB60fzDj+TwzT+jyO+HiOob/65tp1+B8siI0wPZELz+W5/gfnSaMdK3nsWnIyZK9yTFRsafBsD73cTdHkW3pAwugrxFcpZ05T5fABEOaKNzdY9oge2HPhF4PdBtzCU2XrQ4QbXGWnbbvpdQlyDOIfzRo8T1zC+Wg67b2rgj0uWWqi+1Di4uaMxxI+H7uHdsSVpi8M6nc0r9D//PciKDdHt+8F+Jp09p1DTqQvCmDLDUR3KaxZ2ms8/b7QwFqdGk3drNMa1ROeH5h/GoNY8VenRaP8QnGq5Qsh3dXiUwz40qoe/5ucXo3yUHPUvAKf98s6FYCSHuKJge324dcoVyrgn+6D0J9UE/xxHPDgbl1q+0leEsE2y9jktb/KlIEyppZ5W3nwuEpV/0PvZPY7ezjiKEZtGw/8Vx3lpnX47hxvO30Zt4ImGOOGJF44qZROfIUdluVaqxEA9zr5pgfuMeKFf+fQuLZowKH5n7XnSeaLbievYGlT1iUKFaOug/Gnrzf4xmAVu1pVVHCKEhgt4HN/auaDUrnr4JXArS+coTA7lzRGf/D2+XlOAL+xpmTpeMlaZWRw4I7r3VDjKbUxiZdN9w9ycfYj1aqWrl4Yj4O/d6RfBTlF5XjvWC8IubPzHwrXTPavXjI/gWvZvgK+/fx85b/674ev/lCAWEBCA+/fv4/Dhw6hVDItcQn+O+DhiO86RhYjG7NDSvd7h2DN3IZswcj+woP4H8bqN8aY75fHe3GGo+wV5lltwG6PqtxImD6rdpUf2bFL9MApnRsxDl37PM2d6bfwnWn+n47cEJDCrZIabp4duc8lvIJp+ESugBv2RRYQvSzupmmpUx+kPAlDllAm15x9A9tRwtlm+/UwE9n+lxmK5OM6ClElEyOCFJkrXtgSgWndVEC6KaoZf130Hq2SGa4UKTFCjMc+cbayM2jciNQv9K95A156DkNelChMu89cFwePpE0I+bf67fSNQ/ucDhuVmfxgF/zmZ2HJYdip8G/WpVTLj8uZAJIeu+UPvw1Edb2ccRcbD2hhRhWhc373YFAfNJpbuztMRuOllwtHX1M2wUZtlxYaOg0dgx/dLHqtQoNeTMm2Y5muGyd8H9vQsuFaogKKG3ti2eSWi2z0Ne2oGy0PrpjQ6NRMLA30N+6z/qfMYUeW8IY9/ZuMqbLjCmqLo4DFk/dAM5Q5UQO2Ue3DdnSKkCThYBqkvN8SvP32n28gC5HTWnp7FrlO/bYGsriLsNADc7xGOsr+o5l6O+K+wpxbutLnEnvc6eYWZUvHkKOYfLXv65QaCQsGoPLe6dXRIlTSdq7kxtsatcrwxnh4FuAA+bycYtkVWbOidZsW9theEcmXFhhbvx+BqSCECxqkbIiq80b5tO3o066+0ryIR8PKTCQh5kyw4OW6u4dh2tPF+aG2BsufvYOvWHxyOmcDdzzOTXDcfL+D+AxScO+9UUObJ0fjl//vvGob0dsuclqctx7VSJWw9s9ew/302jzIUDgECQf+5f5AuDwBEvToWCZ+riHPnCm6TQMJQFV7adrt5eqAgLx9u9eqi4Nx5wzodkaNN/eOUCpdHR6HmQrLe5E62oP4U41hXsmJDk69iGUiTs7njxqBIJM6cr3s33Rq0Rs5SL3j2O67Lf2G8Bba356LToBdg+v2wUB5NS+c4Z31gNEa6h0Vjy0ExdqI2X+gHMShzswiVVicKgsYr6afwhX8jh/Oms3649WwkKv0ofnO8MthRvtV58WixdiL8J6pmpF36PQ+X+CPI+6kJPPsdx8VYixAzky/vysgo1FhsLFDLig1W9xB26mzUBm16vx3D4T8kBanftkDgC4cc5vtfiSPm9cm0v08Qe2vSP7Y//gr6U6aJeXl56N27d4kQ9hcT/Rh5IUxWbOyv3AayGaBQ1/W3qVHos6arpghzAgLR83kVjWlU8cLFC2EAUFDOhZVNJ17v9whsukv8EVglM6ySWYge32j/EHgnkU3V9qaVdfkL8vKx8IYI5UzLAQh0q1az64hofA3aD9o8/D37lasIGH8AKe/OBQrtOD78G9LG7fVRca2odao9J57xSxdyvp6kkLUACBKfS2gQE8IyPotE4Z07LLaKVgjj+0JLfB39K96AVTJj2+aV8PiY9EdRSzNORK1ksbAof80/jGF57/cMx95v1NNFbdne7yWg4PwF9uxRF73PA03L/6d11eyZati32mvtb9cmDXX1tCtXyJAOrZJZJ+xeCTKh3qx4YWzw/6npp1Uy48Eb14SNkXYzq6VpvqQcl0KySBbeucN8g+J2rWPp+Lppuc42KGsa1RXy8oiLCG9qyI9VMmPHPf0Y49sLgEHz+zx3BHW/jNcFOXXz9EBa2ANmHmVq4C+UYZXMghAmKzZkdV3M2sj3XcVjYkiFRgti8VL6aR3vvBAmKzaMq5onzEeUDjZfg6KoZgw9DiDCDAD4bBuJ3cGiOWyTr4jJ0/ylqpllwfkLurFJ28abJBpR6rB5mPjUJpbnyij1tJve44WwOdc92f0aixMEIUxWbDg2cS5mZieyvuOF1pc6bRPLPk7M6M6+KaKuAQTRjvriace49jf1MSstH0LhkVO6OcS1WSOWhwphALBl/0YUnDuPi7EiUl7B9vrCfMT/OeKDv+c3UL+pXJOvmlFq+TM18EfhrVuGc59VMjs8oQOgE8Io+cgjUPmHRKE+ar4HgM3dzafGYH1+ErJ+aIZKe2uiIC+frEUGQtjwMzmG3yk/VnghxKhvaHr+u3oUfZ09qz8lXveN8Hma9z6uK5empeFp0leEoMpK0nZTUAMhfeGtW/Dsd9yQr3u1iS+g6XfiH6kNdwPgsUJY4Heqv/GdfqoPHkUGZYLKCD0ybs2FCcyXjQphsmLDF/5k/PIQ80ZrDT8H0N/xX6iCOKWT4+bq7vHkam6MAZ4WJoTRuuj8edLyPQAIQhgARLcnZo1FLUkoHiN6EB2GbXfLAEVFDtcg7T7AKpnZqXDgC4eEfNp3WAJf/9+jPyWI1alTBwUGUKQl9OcpY0aYMAnxpF0Q0sIekOtENVZT6jBx0vio9jGc/TlI95FbJTNu9yc+MWVuFOmeK69bdDzQSeXy6CjUf+YYssNJjBD5rLhZpGWta1Rb1xZTjeq6dDwZTcAF2blCHiMhp2v3QXDZ6S7ce+60glIuZOO/o/EmIX/qItVnrsVkPcBFv4xOLG1RuVIYuFI9XfJ7jSwwW9PUQKlRr6mBSfl6tAsxLeP60Ch0b9VbuGeVzCg9jWwU7SfO4H6PcHa/1rwEdI8iG9aym5N0i5eRFo4SjWmlXRBeSj8tbCLcfLzgu34MzCn6TbCs2FhwVC3V2F8NVsmMrb+uFurIf1sMJ7AuP5E5wkeHdCFKhKnGGmOAbEr5+GsVumbq+svNw13UTnL1Ux+S9OH1DL+li+MsyPqEbNZ5HyNHSgH+XfLt4oE+5A0rdAIP/d+xnN0hrzxfPLmENRXSbjnwi5CfmupdGhuFrj0H6Xj12TBaKJP6QQJAQU4e+52/Lgj1p8Tja/+Gur7i26vdzGvHoUvCEaZUAMDMAanml+8bCtRR9nKRYb9Q4BmangKAaPmbnUO+w25dB2BsVTUcRo1Fzv2u+FM9t3pEuE5dGMbyWCUzXvdWQ0hQkhUb83lkfDchGtrjL4sbQxpbsMKFQodKDf6+1i9TW2/hkVPCtZu7xPpsTX4C21BeH0I2x26dcg0FJr6OxxHPZ9DsWFRxLcfiItH7tI/tZ/RAGY8r0yqZ4eLmJrRZVmxI/4KAPmVZl+jyAfr5rNb8BPTxCIfPc0dwt+cjh3U/6hSKpQ28dGP3/2Pvu8OiOrr/P7Bg790Fka6IZVEpu2o0tlWMGjWaqrErJCamR00ziaaYqok1RqOxxBJ9LeC1xQoooit2upRr19gbC78/xpk7c8uCfvPm9+Z9Oc/Dw965U87MnXZmzvmcs6/ZNGHq3wDZ3KuJpkuNWCaE7797X3ftlWQHc13Br0W0PKphQiHSJdnB/CMKvFSqhEsjxQMHADg1YpYggFN3N+r11ej7280WdrMsyQ5UXrVPE9etDRGca89P1HwLam9r5DaDQszzfOsJvHazBUNOPyaEGc1PZ8fbNO+KHMfZmsPPYdRm7I0zrYV2oAegRdXIeuC214Hopo9pygKA8nHJTLBUvy/tWuLq/T+Gyhw6/2X0SILYoEGDsGXLFty9e7fkyGVUKgp4J1mYhIwGtNFEajcTw3V+0vHqf0xIBxCdc7kHEaL3fjdbWEztZgvM0xJwYewDFKk54cJ7qnqh3pjq8cjzBQCV1rq7nFB//LOR4QR1Zq1yGsxTwPZhONOpOoo7Fwj8LGtqZnGXXCcT70vp5LanZooH44Fu2CgVtbfgeoeLkGRyynq/ajl8PWeQhh+ej2pLk2A7fA8dx5CN7tlXbboLS9pPZFHY9/ksFGblAFCAWQDgFe+trJ0rbNgvtFHh6TyWz+UNwYa8qEmvnd/OPIJele6g4s76jM/C7NMIemkfvqjvEL4R/R7lup1GdLOOQpmS7MBSvz90eaCqlnSxG+AdxTbkcYc2a8rIXCqm/77Lr5h5eg8uD7Nq+joFLinML4DPPnIzSQVqgOjuJ7QiRvcUuZEn91YhaLj0BCrnExPgnIjbAv/uVaviXg9xg0TbiW8TSXbg/Esimhjff5vsHgKPBvU1dR2RK9oP8D5v+PDi5COaeYBHL6NhdWcnojjlGObn7hEEpuDY/TD9odxMZ/eZq9sfvAcQv03p0yM135E3iqdpKRiC0fwUMlvroFxvAyvJDtRaoNha8ch5FHjGbrZgSd5eBCy6wPrI/a4Ksht1zF2USm7zTCoNDXqLxJPdbGFCV8Wd9dmtSfYTBCyIRz+k8W/1U24+PfyUQwl1O2T8GsZ+U7WwKiu0SHfqOdNISOfzr7q7jlBWYYHM4rT57TUWXmNxouab8OWbqlUTyl+SR4TZC+uaoM/xS7g00qpJbzcT4Bm72eJSLVMtxNADJXU7uVeqxBy1U99SfJmZT8/WbRdXc935l2y4Fh+AuOM74bmjoW7c7YvmC880jnsngho4OSvF8LtcfzpK42Rbkh3MmbZ6bYso74l7PcI18xdfDwZ4E9ECQYtidMvmxx79fzc6HEW3bjG1Ob3vZTdbUHlXXWR9aYXfxlHCAUrbD5Sy9IRBSSaqqSFzYnXzL05R1Of5/4Bye2XacVBw2M3fhPHxizqG6YabatbEosa7hPaj6MX8OJFkBw6/rfXVKMkOBA8/wOYEu5nYJTsvEmCvo22KhG9BhV067wJA3Ekt6veVjUFMyNQIqA9Ay9KnR+LKxiDd+faZ7M6I7va0bp0l2YGeQe00acrov58eyUbs1q1bsNvtqFGjBqZPnw4/P79/B2//E8TbiOWvaAPfp5VbLknW6tbrLdbtxo9FlRXKFbzR6aERqdPZzRbBwJqG+68cyxZiI6FJPUnazeT2ojC/AJ9kJ+N9v3DdOvC88vw77t7FUwljkfH4glLVhZLPvsrIjbwp5J211IL0TgsROiMW7vfJqf29HuEotykZ6Yta45PIf+Gjfw2C/9vKRtBUuxaD99VrK5r39WeidJ248rwAwLlXbLhdr5jZr+nVX02uTtBKE59/1rPnUdep+fRYhtppRKaQIAFQprSU/kMksvqLyFC07DfOtMbXDckGtsW3sTjy2ky0HzdGAHvheVaH8eH03Z3eEaiwXjmFpbZY1H6n45jRqLQlFW7lysF57RqL5+Hvi4171gr5Z31hhf87WpCO0nw3SXagR58XNIb31ffUxtX2l3TTu6pnSeXpla/XVkbt5yodQAAL9rSbhcE6hvNG80KzmbE4HqsAwDg7tcZrPy1Fr0p3NIKsKTgABT3ro/aJe8rN7tFreL1WlpD/oBNnmcpo1OH7AuCDJDvw2JF+qGhXVDZvDIrCvSGXUeuJNNRNqIGUgkYov6uqAHPuarxJsgOdRoxC+fhkZHwbhcDXjF1NqPOj/9U2L3x690qVUNg6GFtWLHSZJwVwArTfiv5Pm98WwSMOiO3aLBjO48r4Z/Nck0B2q0XDWh50Q2rr4lL3HUq3+0Zg16y56GXtDWe9GihOPlLqNlKHUWAcdd0AMCAISq9knMT0QKImfeZ1Gxp+k4Cqu+vgeoeL8PAyM+FVr2xKmjIggmvQ+El3nPjQv40Qxqeh9sPq9zxIRkn11ws3GtPq389kd0bLqgWCbSZ9Z3ttLKr+lsT6R2nKokSBckoTt3CrD7Y1Wye0Kf1P7cvpM297qbZhfSPjGCZn9EaVB5oR6vJyV7aAz0B9yHd1uZIsgiRJsgN+G0cJ34SfA/Xm+dKsx3ycKy9amWNs4UCiVQi76ebjFxbf/2eAdUz9G23EJpbZiGmoefPmyMnJQVxcHAIDA1GrVi34+/tr/gICAkrOrIwAAB4+XvB9OlUz8LN7zxPi8ZOBJDvQM9CGRq+mCe/oSU+nUaNYurRZ4kkv1f3WSwcAPr+akDPFKkwQ6tNQ9YmP3gkQQG4vJNmBiPKe5LTtj2HCaZr6tNN/9RgE/0JO7W4WeyLg+UOwmy248qKVnbLxJ2XqU0dJdjDBh9br9pMRSO+0EAC5saGqU+U2kQk4aMhBPFXlLBPC1t2sBFPduhohTF1PyjfvV0bNz/XC8izc8e5MnBpO1EgvjhFhjPXyZ+3vpoC4nv+X1ibLqO3VVOuJNJwbp6hynHmD3OC5t2zKvoPX5w9AXj4k8dzKl9eUxQthfNlDTuXBFVEhTP3NAbBTSoDYEr5xpjUqr1bU/3ji0xf8Hsp44E9/c1e2wM45ZLNKbx+Lk8mCTW0Mbtc2oejOHSaE0XzUQhgA+L+TKNx68DxcHE2+JX9jw6e3my266Ge8EMa3Iz8+6Tt1/6D/6c1cdNdBQnye6KZCPe4oXR6m9EWjzZ1Hg/pKOz+TqhHC0n5ua7hBsZstaPRpgpCfacdBJoTROJTidqyGs+NVbF/4E6ujWgiTZAcTwm4MikJSK0/27vzLpF/zQhgAVM26wQ4iLtj+xIl2i3G1xX24hYXqzilZX4h2MHazBeXjk2GqXw+BryXBo3EjdB84FFOztS4f6G+7mdyqsbniN+2BTZMDZG4sunUL7nscwju9PIPH7keLb2I1fYz/TzfZ/CGMs5q4caLv4v5YhT8HW4UyqRAW3e1pXHuWqJxRmzi72YLlefqHNX8GEq2Dgr6NmO0jzVOvTjwfMekZQhidK/kwOjbmrxDVQV/d9yxuS+RQmPpKu97hIgBohDBa9pWNQZqxTP/nvUfmvxcfjFue36gKos2r3WwBIsiNSOZSC7MfVqfjN/w3Bon+EQve0arYUV6orzNeOFCPaT7Ncr/t+HnL4wwqn09D+x/tH/Ny92DG6b1C26rLov+fr3qJveP9ZPZq/6SGD98qlzVCUKtp5MacF8IAoN4DuWvYqdOCEFbUMQxfB4ai+rP6iM7ulSujwo6qhusfjdfhpTHsuTAvX6hb8Khk3N3sq0lDf7M90b7KmvdGxMep+YvoWoZSfPwy3fAy+t8jfcz5EqioqAgeHh7w8VHAFPQu1h7hsq2MyqiMyqiMyqiMyqiMyqiM/kOJ+vn6O8r5b6dHUk0so7+OeNVEDzdP3Tg3Nvmza/m8STZ43gCcFUWnz92eHoYtvy1Ak/kxurYxVCULIPrXccf+YKcw8ppmMPc7rknj0bgRNiauB6A9ieNJL1ySHZj9pxfWNKure5VPw4q2NYJ7F3KLcnqyDY0/1He46kotgKk3TI9kji2N0urxWZKKBR+2riAZ5d08DdUWAKDP8UtYmd8G5bvnAADSF7UWfFUZnX7lT7Th2MszSzwdU5+I0viXRllxYLLoUNeoHmr6JDsZEeU9xfcPVH/4ejru3sU7fpGCyp+pRnXEHd+pKVeSHfCLH8lOXtXtX1Jbl6QCYvQ9e5zsheLOBfqJDNJSPzfOx1u79KNkxKur+tByJNmhgTx2lY6G6alE8m204kZ1pNz0wxf1te8ABbKZ5im/bROc0BrRvS2NUa7baV2+JNmBK85beKaRjYVRH3LqfmlUR1dtkDYrAsEx+9HkgCdOtSUADJlfRTHAHL30tO7qvKhvtvzVoXB3L9bMdYWd28Bju+jM1qjORnWQZII2l/biLBYn/YdIBL2s7xOstKRXtlubUMFOh/o24+NTon6XSpoH1eV5+DVmPhmnZu9Hm/LlXLYBDc97z4ZGn7qew/WeEdGC+THUI7V618P0rbOv2XD4LX03GTQMEP2dTctJwlu+UYZ5XxphxdVgcktO81GbCADECXBc6jb0aBzBVBU3FKTA082k3Oq0bIqi1JNs/ubLU/eh0n5HNSy7q7YqqT3ps5FaIkDcquz+YY6mj9x8KhJXgkwMyMdutiB7WSv4PXtY4J+qjkYdvs9utufn7kG3n94WgJ2yP7PCb4J+P9Crq177nHvFhoo9z6FlbRk5EbcF9Wae3Dw8mA0jTxV31sed1+ugOOUY7m72Zes8AORMseLUsFmG7Vma3/8U1UTfKX+famLOpDLVxDL6G8hUry4z/FUTrxt9/KWZaPB9AlMfA8hE4777EB4fPgqnRuhDrm7612IW33nlijBR6AlhALAxcT27mqcThXqCUVO4w4lr8QH49GJTQQiTZAfyJ9g0kyMVwgBohDDTg0HHNqSfW9HL2luII2xYn9J6pXc1US/O26srUKlVgfiwZivGaRabi86b7L0kO7CuWW02OafNb8uEsHUFWj10vmzvqQku+VXHB4BOR59k4bXnJbJvlP25FRYO1DLz6yjjvN1NiCjvqeFL+n0RaxO72YJF1+rgHT+iusLbXTn/vKrbN3r4tEV2T6JaZgoJEvoSzVddJ1f1pyhh1H2C3WzBwmv1NPGoEDYiLVupi476DqWijmFo8DTZdJr+OIh248dCkgmISNpsAk7hbmkGD2+Czlk/kfTLXm16CPXl+wktz3H3rthfVEJYQDJZyGac3osNBSm6mwf/dxIZminfzjTP+cF+DGhFb2HfvOoX4fnI+JmQZAfOv6zMNxTVlPJ+/eko/BH6L6Euq/OThLo800icr/Jn1WRlqMeRKwFGj4JjSP+iQtj5l21MCONVovTyV4/ponJErfeYdQncd9XQjD1eCJNkBwPzMOK9sAuxDSra1kiI4zchEc9kd2ZhdAPNl1d+ZwPh+XZfojLOg4QEJSuqwE+m2zU8XGhbDXd7KSiPVAgDgIhDAwW3Cmrnt3qkN9d9u0NxGdCmfDn2u2egDYNOnNXMkZSOx87UfFOa76QsJZz/RvUTqwH7j+C1jBMwopq/JMKjodh2JfUtGq/YXRk3aiAPfrxQISxtbjhDzeTz4an2/EQUm4ohv60gLlIhDADOPgCYcl68BLvZgk2n9zNV9Ce8RIAeCjZDwaP4OYQXwloedGPtZqpRXTPnUkqfHqkrhNH6pi8SwSbUeQjPUS1hNxO/j4uaNNK8p3xW+n2fZtwBwOUmRAi7vCEYdjMxEai2vRK8k6oI60HxrySvyXUVgLERPu0FIUySHUwIo3ycfU2L8sy/b/k1ARzhgbHqT09AYqvVmONN8qJCmCQ78EaGUr67byP2+07vCFbG7Y7ncPljIlTzQlj2Z1b4TtK3IVa3dXE7i24/BIA1acYHEv9RVIaa+JfR/1kQO3HiBNasWYPFixeXHLmMDMl5/gIafaLccPH/+d/8gA3cMZT9vhYfwOyd+HRnX7VBftOmO2Hzi5mHvy8k2cGg4Gn4nd7KBoFHP1NPfH3Syab003pHkNhqNXa3rKCZjCjyll56ADg7XplUPfx9EXdyFzIWK6hK/u8movB0Hu72JJsQ9woV0KMx4e9CjBbtS92O6oWL2rjQidKtbXP2rCaaVo3oZTdbELnjZUQ5ntJdGKmxPAD08QoX0gHEpkm9eS/s3Ea3fdS8AGQhUJ+sAUD1NMDxoOlmnt6DgDfIJta9alVtGxU5hbzVv6mdwZKm3kIZ9Ddv60ARN+1mC079GIZPLxJ7tocB9pBkB3O9wJd1uQNBac2JuA33SpUAAMuaEhhvKqTx7TCoylUWphbgAaDVl7E4O96GLcsWIK5JHAuvsoIIHBmdFiJ47H4k3XGiyHEc53oQVexzVmInQ53oAgTBkxL/fSwq+zo1ZYYTG6lgz8rwdDOhZ89nSfiSMAQkV2D94m5t7WpkNxOQGFdEeXl8+ChNWL0flE1O3JHtkGQHxuSTcVT19C0Wj9ZlgHcUSw9ox3CDJ08wH14UMdJutjB/Q3z8CZmpLK9r8QG6mzuePHteYL+LDymbpS6DRwj1Uv+WZAeDzA7cMRSH39LeOLM50MuMHn0HI3h0Moq2NdIVJiXZAY9tRHDbErIezaeLKJGH8r3RM1CLbkn/3+14FptvebI0lDcKXw8AQ+rsYb95/2f0f505iSi/UTnUKeqgzJE1e6Uztwp6JMkOWD6L1WwOM75T+lG3Z4ch2LOybh2Kbt0S/APSuYdv06DFivsBvm2m+FuQvzqUQfvTNBTOvUclBYVZb/7LHumPqLfGInhRjOadeg61HAIT7Bp+Tfp5/cRquN/pDJkbThDH7MXtLMibJLrbqLtXsdhQz9cAcPUF0lYZz81mN8v0fYeXx8ButqDBk6RsajtqN1tQ4XIR49WoD/JjTj3/pbYmc0DPQBvTQNAjXitErx2DhhzU8MC3XVHHMEiyA9/lJDAwFGqrK8kO4kD9Aam/Pf/7z8FW5nSZ2mVWXLsfteclYr7PHiENnX/59H2OiyBGdrMFHv6+QliDb0WBU11f+u19PipZA8Butgg+7ahfxvTpkcx1jCQ7kPFNFGr20tpI+01IRM4nVrT8OhYpd+8JbdrlBWWeAgC3vSTcrQ2xTf0iW2nfMj9i/3v0yILYwYMH0bp1azRv3hxPPfUUhg4dyt7t3LkTlSpVwrp16/4KHv83iANjoEb3/EaATlDUmTBAnG4W21pBkh1IbCU6qqV0+J2ZMH8leqCXZAcurGvCJtFpOUkozMohC1PnAhRtU06Cds6Zy9LyjlXVC8m6oE0snPLdy9aHvS+2tQJAhAwA8Fs/ivECEMPoay3u4eJ6cnK2cc9ahMyOZf5UKOV+ZEP5+GRcXB+M6JQzTN2j7qxEzSTML6KS7IB7y6ZCmQCQPVUBJOHBFPi0eZP0byopJH3g4EOoHq31o1PcTslDXS59Dh5F3BZccd5i8bb9Ot/wlNdutuBCjLKxVX9Xu9mCGwMjkfypcjMa27g9Bpw4DwAoun4dNwa6Bmrh88z90MbgxNVpsr4kCzIVXACg7mwSN21uOOomejCB3EiwVG8InJ1aw24mrhfUdQt6kdwsmgL9UHTrlsBP7Z8SkTZHCzvPhFvOdxYNa/BdAiqfLWJxa+6tBUl2oGhbI7YRB4hhfs4UK4OL1isj8IVDmrqcXRui6YNqHvgNWNOfYhiKlimnAuIPN2ffxe9dbdkAkPANORhYcr22po0zvlE21+W3HWZgAnpEy6GnxDwanZrXYmsrVlfqWNrNsxwkmdzK5q1qjsKzigBB/Q3x3/K1r8ey/K/frsBgrPUOnACwjU/dhBoCX9sWi5DkRnOAJDuQ0Wkhwj7VwuvbzRbkfmBD/60Hmfr2lhBFJdtutuD0ZBGmnP72+kL8Lr5Pp6Lo1i3hAImmpeXSzR4/v7PTdskP7/uJ/RgAE+7UgCwXxlrhvlv050iBVyTZweYgntQIkQCQOWi2ssbsPAS7t3Jrozd/GY1pu9nC1GgBoNsJ8QDEe8Ax5myYEvUbp17v1Pkfj5mJ6kuS2FhQ88X3MUcY8G1giJDPOes1lje9BblbqxwaTRE36VQFkoIzqPlI+pK4fYnuNEDzvtLvZEN9dzM52ORdvuz9fo6uAMTXxRXRW9OiW2StYLc3US1ZmTRP9eGBEUmyA81T3AUeqDP58b5a8JAevZ6H30RSp9uSH+BOQEvOvqp15VFjsejPjwfE4MuXZAf814zRtMtLNfI0WkLU9Yuawg8qeyYjov7PaLzAZcocpJ7jeAp6RfGlFjI7FhXPK9vmqdn7hTb2fT8RDb9OwEQ/5QBbkh3Y9qu+T7ziFILyailfnvWNshsxnb//cnokQezkyZPo1KkTMjIyMH78ePTs2VN4/9hjj6F27dpYtWrVX8Lk/wItP0lOWbsevQ7n8TTNJptS0U2CBujh6wNJdmDzql80p5ODTpyFKTgAXY9ex1tnFZQ3fgKo2+cUK4PqwlNy75KH7k+9KJzM0TyiDhNVIbYRe+CrSM1nh5fHMIfMdRNqMI/2dEIKHpMMj0bejK9GnyYgeMQB1OmtIECeGKugYkmyA+kL28DnIyJU1umdhm9224UyjTYMlLIG1tRMuHRRubCuiW4aAMJCbTdbcGFdEyJEjTygm4b+pqdeALkp0ts4AMRGr6apkrCAuhJc7tRShHa908i93ysqmlfjyEaZd7JdZeU+hrTn3ipEwzvNJ/2HSJwYM1Pjn6nYSoTq9BcUXXje95bdbEHw6GTUG5rDnvX4vNsrXNhYAsT/jN7mRBDWMrJ12ye79zxkL2slhOmd+vJjgQoykuzAlXYE5cu9Sx7biFO0slPDFEepfNm8DzT1GGjw5Anhe9K+Q4l3JAsAjT9QNrC+kxJZ/6I3CHpE67IoX+xfdrMFga8r9lTF9+8JNjjqfmY0Zvh62c0WLMzdA7fEwyye81QGOcS4f4/FO277VfMNsx440M75lPyvN1NRrfbqf4xt/vTS0HhpsyNwaL3ok4xvP+qc+dpzynx27VnFzsf+5GDUO/AAhnybN/w2jWTxfD5OEFSUWLs9EGROjpopvIsreGDzWXBId7MbOPgQu5EJ7pSFqrvr6PKtHhsV7aRvF7wjbkDjM8gc5DyeJmxOD34gqqJLsgOet5WdC52D7GYLCt61Ibpjf13BhU8PgN2S50yxMvVZNf9080yFY5r2zOuK0LolZL1uGXzY/qmzNP2FquEBYP7z1PMBj2BKhTk9Uo8LOqYBUcVazSdF3jUS+JxpmexZPX7KdycHm/kTFd57+EWiyc8in4btz73Pm0QEInprSn3KfR0YSsbTg0OTHc3XAgCaf0/U8eQ1zSDJxL2Nugy72QLb4XsYltuBodWq5zb6m/pulGQHig8dg3tVglJY0Z4NFDlhCvLHbesNAECH1Du6c4rdbEGF3mc09aZtmdVvjjDO7WYL/OJGouI5cRfO+12UZAdMIcRfl9oli15bFqccY4fMV5+PQpT1pMCPOj59ltc0Y/z6fJyAo68o+5KJfhFMZZsezBqNr/QZkUibp2jF5E8k33V+7h7dsVhG/zv0SGAdTz/9NDZu3IiUlBQ0adIEkydPxscffwynU1FxGjRoEI4cOYITJ4z1vsuI88kw5VMEvedg4fyGsfOQEfDcmoI3Mo4JV+d8PL3n7KlW+E1M1MRxlb40cfTSPEwZlC9KxbZWDEwA0F+caFhIigdOtCEGtDX31sKVdpdZHJrWVKM6nH9e1c2Dj8cbZ1M/JiPSsjE/WPSLZ6pTG86LlzR58eFpsyMQ234btjavqonnimgd1CeYfLpLI6yoPb9kA2VJdmDzLU+hj6jbVP18b0tj/BH6L1Zum8kxqDNHPOUvzXfRi+8qjdF/o3zZJmpFCzQedET3nZrCHU4sO9oWmZ0X6PbfjO+iEDhe68+Jz29e7h6M8mnP4tx8KhKVV+1D3YQauGD7U1P+bckPu1qswbDcDljgs1vI75ucRLzuq2wCXbWbXtu5qq9e+5XU/4zGNTukkEYg265/O+vq2+vxQeujTmeqWxfOCxeQPdWKtKGzYH9yMBMYKTgAAHQ+chPv1E5HxIQYBget1wYfXghlxv4j0rIxqMrVUrWFq3pJsgOBS2KQ8bxy8JD3vg0zh87GZwEtS8wnKLk80sPvltje9F35nQ1wt+PZUo8vV9/baFy9nXkEXSo60bPns+wWlsXpP4Rs7t3cBJvG0vYrnseS1g3dvL3CmIBL3wUtikH6EBGIiC/DvWpVuJnc4fzzquF8VZp2UafN/DoK3tucKHr1Ina1WFNi/T18fXDnJzD/WUb19tzREBuC41l+LfY9x2y19eZsdTtSchWH5h3dsouwfqnj0zlNj3iAHHU7dTvRW7DxNiKajo4D+U0biqxXcbugCrPrtnwWi2vBTmQNIIAf+RNsODaOqBGfXRvCVD359Updz1K1RddBun70eh77E+Nr5uj2Az6/zK+jkPHsbJd9CwDzX0dpclYKPvTXuja5+nwUqi9JgnuFCii6cwfAPwis45O/Eazj/TKwDg3t2LED/fv3R5MmTQzj+Pj4QJb1HSiWkZYcA3+GqUZ1IYwCHHhuTWEnYPSUmFLbD8QTtuiWXQCQiaQkIQxwvVgBxK9LwG/iiVqU4yn2m56ibb5FNj/3u7ZB/mrRJ4/dLNqy+K+5wdTaAC2YgHpD2is8mv2mQhgAJsB8l5PATpQk2YGTU5pq8qAUvCiGlcM7rA56NQkXxlqZXRFft7jUbZp8JNkB58VLrJzsPnOZEEbDmu4ZLMQHtEADy/22szbiTwkpuZUvjwOfaE+M9fixm4mOu3qh5tOon8/t9BLe6Qlheqd1bmGhhryU1N+yP7cKdVX3Ub30djPxxXSyvdYWVa/fXBppRbLFhMzOC9g79woVcG6cDV2fH46bAyIROJ4Y16vt5ihJsgOjfNrjVj9FlbPyqn24NMqKC7Y/BTsnSrtarIH9ycGQo66zcL9/jQYAvJGljBs9ou1sN1vQ9bnhQn1KEm75/3rvJdnBbiqorac6Xmji88Jz8LAUzYZGkh0wBfqV6tvz31ivb0uyA84LxPYrbegDIYe7taM+iwBge4vKeCqzK/Z/pr0B4tuGCmHZU604d78GK69nj2eURFEtWXtIsgNp88htLlUhpPny/wPeShR4b/RJAjpVJGqtpmCtv0yqen1xfTDSw+8K73JXthDagraPe+XKkGSHIISp5zH3ChUEPpoc8CxxvOn1iy8DWsButiA+fpk2/u+LSJriYtTeW5MBitD2WH2jmqZv6h0iqPlq+z5Zq+gt8j17W3h4e7G05qSqJE1xsaYf+b+rtP/1pxVbxceHj8LtJyNwakYwsKayVtCvWZPx2PmI6FvSqI3avTqGvQt4Iwnl45JR0Z7tUtitvIsAUxXm5MKja67wPvId7W3d/U7kdqh5ijssn8XiSORSlpeR0MXzq+bBaO3s2eMZOC9e0qio8vH3TFc0KPhv6dGwgYBSqi7TvUsei2+03np4mVm6205PuLcKgfmrBHgPOMaEMLvZgvozEhA0bh+LS+3Jc6ZYmRAGAOW6ndZ8r/SFbQznRABon9qf/Y7bugKA6BNMkh2ID62haR+7mYCU8HlTW2tKtC+qy+SFMEl2YMz343TX0qRpRCPj9BvGWg//qUTh6/+Ov/92eiRB7OrVq2jYsKHLOPfu3UOhDvRnGelTv+AW7BYn/Ucy+HmAg5C5xLaBngoCgOkPMw58rDzzwkHLr2KFcIDYZxW1txjycFvyQ8biMMEp76ygQAZQQfNKsqwS8gWA76KJPZjn1hQcsy4BoEzcWV9akfAN0avvd/wCipOPwP/tRIbq5+rkECDOONUTvYcvAU7oOHo002WXZAeiuwxE0wknWD7XnhMnyrQhszR5hb9HFsq6s5VbJ36zSSfr3A/JRq3rc8MZSIArQaLxoCOMr2YJLwBQgAb0Fi5JdjDAkoLficA2ODVDM3kbLc4DTpzXvBudliU88xtMSXbg3RdW6G74AODOExGIemusJpyvhx5Peie6PPm9mygs4M7iIpd1o/EqrdlnuOBSdRZKdFxEhz7O2q/ozh3Un5EA0x8HsWeGsgn48wnRZkf93Xf/KKJxdhxLTo/525C0+W2VCPuPMJsnQEEAvDnDG7NP7zGsJ09v/7RYqI//ZtHYW2/jy7+78qJVqI/dbEGtU0StuMihoKR6eJnZRtt7wDEhvpqonZJaNVQttOjVzb1yZdzc5G/IM98H9TZ2kuwQNjd8Oibwxo9kyJaF1YuwIbQmA+CRP1bUeSkaaMNvEvBY7Ghk95pHxvwdhSfa3nz+PE+m0CYsvMVvmRp+u4cdReY0K+47TSyt3WzBhMxU+Aw8omkLgKidqwVWu9kixJXHtBa+EUWVdEUlHd7Q33oC26V2V7Br1lwWbjdbMDfYX/dwR5KJ028jOvAJGZMBz5FyykkHcLupAvyxwGe3IZ8AkPEdQX7lHWKX25SMimv3I2hoCpyPy5q5LO7YH+z39hYiAAlPNJ0kO1BlpRbtkv9/v6uoHmc3W/B74Bb08GmLi+uDNfnt+4LUm64ffDsfbVOE+jMSNN9dHY8+n3lDa6+sN1ZomvhNyyHJDkFNPvMrZU1Uj3W7VxjsZgsujbJiY8om3bYyNQs2FARvS36QZEW1ll+786NuoNnPp4R6uTpEAMBQCAHi0kJdP0l2IGhoisYRNd/+e1r+rgnPjbypabfM+zfYb/ru7rArLufawor6ZgJUnZembfC98o0psJQkE+AcSXZo7BTL6H+LHkkQa9iwYYkqh6mpqfD19X2U7P8nyaO+AsOd1W8OTH+YhQngxGgt2pfbiHJElQfKgD/7KrE7afiNguZE03lsT4H7HiVPSXbg6vPKpLyrxRpkdlnA1IEo2c0WhhTF5xfd7Wk8PnwU7GYLhqzfLvDLL4j+bytGu2uaKfZGjjBxERmW20GTlq8bQHyuyG/amP3ZzrlzhduZuG0rcdum3NSei1T4yS28oTvx1913WeAbUBCT6PPGWxXgM5m0qWnHQQ1IQL/jCqqbqRlZjE21a5G2Of0YGj11VDg5X3itHuxmC8InxQj1a/AdKcOr/zFkfWkVbgXUbZH+i3iKtjqknlC/i+uDMTfYn6VTCxl2swVDql1Exjdkg0OBFyhV2LAf1ZdwJ6JHrwl8SLIDWUuV/C4PJyAiUW+Nhd1MoIVnnt6j2+a0fLvZgmgvUg93SzPDb68nLPL1CR67H/NzFSSu1Ht3YAryR9yxPwwFV0rVlpE63nwqUsOr3mbhaBsiOOavVm43qa+0tTer4OIYKyb9/IsAjjHs1GlUWrMPYxu3Z3y7EsbozSY9SMjqPp/VOSTFQzc9zycFHODDeKQ9djhTIKPiv/YLG0g61nmSZAcDCVDnayTAnnndBnkNuX2LT9+Lyj2y4NG4kZAnAFzZGCQArdA2b/JzDINy58vQ6wcA+QbFFQjUelY/IjxTAJ7DEdqbH4CguNnNFnQaMQrenymotUFDU4S81Zu/uC2/kQ1u2+YMnZS+C0nxwBzvRGQ8PwsNH5zmU74/CyC3cZV7ZME7qQpT7aHlnP9XU03bV+6RxQRMuqGjt2e8AOW4e1eTlucr+zOr0HZ+0gihbnqHSZLswP1ip5DP/e5t4eZZDvfs3OHDgzQUpIW/+efLkGQHTEH+eCWD2OdQbQ9T/Xqacabmhd5g642blgfFDTFNs+5mJRZmJOhT4cZutmD1jWpI/0HZ1PNp7WYLWnwTy3jm30W9NRbFhYXMxpnnm/6n6wdPFNJ/Xu4edEi9Y5iWUsOvEzT8283E75skO/DW2TDh8MxutuCik9wEXtkYBADCLReflyQ7mCoqdYXCwh9Q2pxw3P5e6WfqfkNvDr2+0NbVvWpV7JwdiVfkcJbnrX6RzG60JKIHWnr9VE+1clReO8ODFOfjrdm3o8insY0VFXT6rtYTabCbLbquFe48EYHyV4s04ZLsQGb4HU0foVT7p0TmOocXwgHg9IoWuPpsBP4RVOz29/39l9MjCWJ2ux3x8fHYv3+/7vvNmzdj165d6NWr1/+Juf8lKjyn3GY03TNYgNNOnx6pOzFv3LOWqfLQCefwO4ohKUBOkZydWhtu+uhGW5IdiA59XPPeO6kK0he2YUhRVL0JAJzHTqHcpmRIsgMLmjRmvFGocFenXerTPrvZAjnqukZgoBT6A7nhK0o9CfNXIngGvZ2hbUBh/G8/GYGgV5VFh9r6qCdm57FTmoWNfy/JDnw78jkAxLkujcPzSgVMSXYw9QfnJSLgvVhvLwAgbsdqFmdoNfK9ay1I1P22kuyA/9vkHQ/Z2/ZDRbWSogiqiW6w6vQWQV/sZgvcHsCp8+1PQR2cpxTkR0l24NIIUleqRio1r8YMtyn5P6e0W/Kns9By/7NImjYbpmbBaPBtAlvchp06LZQLKCfElC62ri6oslD+2qQMEvz/0Dz84kcK6Udwtlxv+UbBmZ6luwjTZ3VY5VX7DMeJXnrvAcc08WYFBeJK8yKy4V6rqFE+U5WcrKYtaKP7vc+9QtqCblApVVuahGvPiT7gePXctLnE+Ju6naibUEOosx5qnrpOkkzAbyiEefVfk3Crf6QQx5XgqBZSKDX8JkHrPPk0UWdanpeAHn6RkGQH9oetRHbveZp8fd9LZGp9FA6fAjTwlF94g31P/gBFb0yrf9M45eOTNXWV31b6J4X/T58eyeLYzSLSKkWiPdGmEHazBR1eVlTcAMXFx2OxoyHJDuRH3UB8VhJMdWozng6FL9fUL31GJDbu3yjw7F6rJrbdNgkbzXcetCdP/PjnfTABRPVU3R5q6jhmNJ7waiMgwG5f+BOK799DOekAsj63MtVevj9t2rhEyIcXZpzpWZgeqCDY2s0WOM+d1y1fkokmAvUJqN740zE1rcEhdvBBD8Uq7qyPH4OCNfnRPGjbUIhzSXZgbrA/ij0VJFW+/STZwdYeirhHDzKrL1F8iNHbcb11jOZLaYo/+T3Kpz12t6zA1Ib5MnM+sTKVVJ5/vo9v3EvsplJbFwuHZ/UTq6GOidwE7g9bqWmLXm16aNZt+o76PaPPFXfWR3bveag44IoQnv25Vfj2/H++HYuuX0fteYk41fY+K3P3j3NwavgsXB5OynILVw6v1CBRD0P5E20MbAUgiJL8vGv64yBTkafgG2re+Tnt28AQoc6S7ECFDftRac0+JkxnfCu69+C/c/+MbgJ/g1X+/ah2UONBR1B9mf6+uoz+e+mRBLFJkyahatWq6Ny5MyZOnIjjx8liu3LlSrz22mvo3bs36tatizfeeOMvZbaMyqiMyqiMyqiMyqiMyqiM/j9SGXz9X0aPhJoIAAcOHMCgQYOQk5OjZObmhuLiYvj6+mL16tUIC9OeXpaRSBSB5kqaP6pVdTc8nbz2bBQSv54tnILRuKYmgagy/wpW+BNQifvFTni6mTR5UejsKuXvMZhkSnYzgTf2WXNeczOiVj3iEX5yP7IZOkvUO1miz9eejUK1ZUm6p4bnXrGh/nRtnmpe6P9LI/V9PFG61S8SldbsM8wHIFDZwXPPMD8lar74NLQORnGM6l8aeuLYFYyreVo3jR7frogiQFI+rG+MZW1uxNefQ6yosYi0ZcHvofDqr9z6GJWrvhHhefTw9kJhfoE2vGEDFJ45K+TB8/T8yXwsaeqNKxuDsD9spabc7M+sSHtxlqZcPT5dtVdp0xW8Y9NVt1HnxdcBAC5vCEZy6xWa8vPes6HRpwmIKzjIVDON+AKIjRV1XcGXo0bUjG7VjQFg6PUXHim0aFsjFE2txxwU9zt+AWNrFKBNyiBBxaok8vBrjI17/6WpO6Xbkh+Bun5A2ctbwu+ZVCHOn4OtqLE4EW6e5fB79h7081bsQSjReYOfB+1m4gPM52PRV2LeJBuOvzTTkCdKl0ZZ8d7bizErKFDTVymV1O9LGo/8+w6pd/BenZPYf/c+8xdG32d/ZmW3Vq7yvv1kBCqu3Y+0OeEIHpMsvFP355ZfxTI1dVf8Acqc1tM/CkV3iGrVsXu38c3Zbpjvo6gYj07LwoAq13Tr7BbegvliAwhYhvMKuUFxb94URUdPIucTK3zfV4CkOh+5qdhvRbUEklJ1x5Le3MuHVd5VFzcfU1TE9drx4mir4NvLbrYgfXqk4ASZf3f1hShEjE/R2OI5O7WGacdBIX74ezGo9XOiLm8AcddB1YON5p1PspPxvh9R3evw8hjml0zNGwDEFkQhe5Q/1m78BX28tL7nACDj1zD0b+ZgzqAvjbLiahBQ/rIbvD4X+8XNAZHMcfP1p6NQ9TdlfQ5J8cB3DQ9ovjnlJWxKLOr9KPqnMxozfJu46ueS7EB0i85Ms+TGoCic6ViMoJf2lWotSv8hEgPb7cOpa/WxNkgqcYwCQJuPYpDykYjOCQD5E2xMdZmPz5PenNHkgKem77hqg6Y/xcDr/V3/CNREv4+m/m2oidkfTfyPbY+/gh7ZoXPbtm2RlpaGNWvW4O2338bIkSPx+uuvY8WKFTh16lSZEPaQ1C+4hTAw1QO92jLiq+L8yzZBPUOSiS+fg4mKjccTXiKKEFXrqNvnFOr2OSUIYXxe9fffZUIYfW97baxm0YjPUtQZfT5KwOkVnDpBndrsnd1sQcuvif51sa0V7GYLug8cyupDy+fLO/O6DYNGEoHy4mhRd1x95U//84AlaXMV/XNJduDqC1EC2IIpOABtUojvqv4Z3TDj9F5IsgP+7yYKziL1hMdvckRhj7YNpRb7ntOkMVq4Mr6N0jiYDnc4Ma7maZREPBALn57+bnKAIMdRGP5ere3YdQcawVfdxyTZwYSwoo5hOBqlqBdRWyXaN/k/mh/1L0brDgCF+QXCM82DF8L49+6VKsHDrzGWNPUGQBz56i2gfhNEG4anMrvqtgUAdB46UhhT/H8+b3U5fP5eXyTottfzJ/N141NKbr0CXY73YeH0r+J5sjGiQljH1NtC3i2+iWVpTCFBTAij5dCFmwIgSLIDrfY/y4Sw230V8JJj90je93qEC0ih7l3y4LGN2LvU3FsLa5rVhd1sQZ3eaRoEQb05ib4reMJL09fzJ9jg5knstfIKamNx3l6Wngph/HeosZhsYIvv30Ml93JCGXzeHneLhU3uzaciBX+DNL/jL2ltatVxAODA5FmYFRRI+qTqwKCwSxtW/rV4xb6TBzOi77HNm7URVVXKmaI4i5+WQ+a73S0roEefF9hmm6UH6dPqdrabLbjfXfRPVHEtUV0KHpMstOG1+ABNf274TQI8/H2FfKkNFPXJpP52dH7vNmgoXve14tB5L0WY2OzL7E7VwE+S7MCmfynquJdGWZE2SbHXjd+8HOmLWqPiBTeh3lQIm5q9nyE29rL2xplCBTyB59No3L7bSFHnl2SHAOBD/6d8NAtpCxSwDQBMCNMb30lfzsZ0s1bY3br0Z8EJud1sQa2fExGTngG7Vxgyl1o06/SOefOwOG8vU0+OKzjI1M7TZkdAkh1MOLebLS6FMLvZgvtFJsTHLUUfL3HN4+sR+MIhTGtwiIUfmDwL/m8nCkKYe6VKMDUJZEIYACR8qwB0AWDqtgCQNpMckqTNUXxi8ULYpVFW2E88oeHljYxjgiokT3azBabQJizNtWeJOnbcke0MHOWG2R1BL+1D5V11cavontAelPy3Dme/s/rPgSMM6F3vMCvTyCcj/VaFldyEfnb2NTIP8vajfHz+zxSkgOp8epGs7dPNyfguJwHOTq2FsroMHqEZ/3azRfAl+Z9OZaiJfx098o1YGf01RE8XOqEvtp0hXta/yN6Hd/wUg2H1CRsgbhpzP7IxMI/sqVYELL+ColTR1oSnebl74ONRBSFzY+HzUQJM1aoh7uQulxsXyseKG9XZBt/oVIqP333gULjtFTfs6nRZn1vh/65ySqmun16+0U0fK5HnrkevY0fPEFyN9MKe6cQ/iTmpKvPvlDPFilPDlFuVtJ/bInj4AU0+F0dbkfLRLN2yJNmB4J0vIq3jL4owwd0Y8vHU6dU3eaYgf+Q92QDmafon2JQ/erKsPk2kbRe4dCzgpkDtqsvmn29u8seelr8rvDdvimtf3UO1dyswdD0a/+IYK4O35/OYl7sHw4a9Co9tKWie4o5jVxuiuHMBvsjeB0v58iV+S733w06dxoImjV2m0RMq6XO/4xew4PM+TLB0VZbee6M248vR+83zoOaJz/OevS1y+rtpbjR48vD1YaA0enwELYph4wYgQD0Nvk/AB1kH8bF/a8M6u6qnUTy+Pnyd6f/xZ9rC8UGYBhDEVXsHJFfATK8kTRnBC2MEP4OuiPJ04t4thJSrhB6NI4jzahUP1Iebe6sQxMcvw5nCG2i3/g1k9SPzAtxNSJvdGsGjtd/j7HgbDr9tLNjd6xHObGX1BAUAgt85Ne/Z929gLAcUoOad0rlxNtSfocwNBe/YcPRVRQgNS34G9fqeLLHd+byN+nPtvTVxqZ1oC0TflcRnYec28Niewp7dK1VC0a1bunxkfBuFwNeShL5FSd1H1eXkfGqF73vGLlr01k2+rsNyO8C34iUkDg9Dccoxl+2WtdQi2MMCxHXAdHMyega1Q9HNmy6/P08ejRsxW0m6JlH76JLGpeUQ8EV9BxZeq4dlTc1CXTfdKo8ele7qzo2lmfckmdyASjdC8XqtLE0+Hg3qo/DsOUiyA51GjoLnzULmiP1W/0hBcOR9ABr1MbWvLTVPV4tuY5B36YA8SqrnjYGR2Pv9HOF92swIZD85t8S2CfxjGAKeP6R5d3pFC+BkFTT+INFwrnfb7oVNTTfCbiY+MO/nV2Y22Tzxa+Wpr1oh7433/2NvgOie1f/Dv+9GLGty2Y1YGf0NtCbtCBvE7/hFIm9Vc90TE/XpJQD06asg76QNnYXyM64I79UL0Sif9rCbLTgxmizizmv6aiaWQ8S3Tt57CqoU7+xYveHkKfcjcnO3eeVC3YWQJ34zWdIGgsYxEsL4st6qlYnCvHwBUUmOus5+80IYAIwN36mbX525ibB8Hsv8RpmTqsKjQX1U3V0HdrMFaR1/QXRYdwDA+ZdsTAiTZAfSfm7LeCrqECbkW/unRAY5L8kOONOzmBCmPuGUZAeChx+AJDvw2fpfWDvobTYC3kxCxrPKiaardqrcQwS0iN+8HFV6ZCE+bqnmu/E+xvg0Ph5V0Ot7AhN9tE0RijuTW7B3/CIZb95JVTQ88Pnc60FOgimwDBXC+HagFN1lIPtdN6EGuh69rhkXa5rVFYSwuz2V01se4fL2kwpCFZ9eT5iiqIp2swV/DlF8obm3ChHGpp7Aov5dTjqA7N7zcGkU2WiYataEKVS5PZBkBxPCzr6q3E4F73yR/eZdWQDAtSYExIMKYUbUZEEM8ieQPFPu3hMQC/Xam/Y/Wr/oZh2R/ZlS/55B7bBtWYQghAHEf5I6n/qJ1djvzPA7un2T+j9U80Gfb3Bw7pbPyc3heF8y3xTfvwePhg00c+frvlbc2OSPosPEtUVDjyoIeolzh1DkRPYT81i6VzJOonkKWR4bfKfMr1Oz92vqxAthfJk8/eq7QxMGAOPPtBWEMJZ3VEtNPivenMZ8n0myA0dfJcLhsNwO6Pb0MAb0kfsAvGRyVgr0iEJ9Z39G+t6PfzbSbGKX+v3B+OG/vd68pO7z/p8ph4CSTNA2KZKsuu0CX1M2pY/FjEbA9mEAgHYPfD+ZqlXTtCst99TwWUL59I/GaTd+LNyrVkWPxuIYn5pNbhTlqOtIaFVOI4Tp9T21ECbJDgY6EZ++V6+ZdSl7qhWFp/OE+tA1yW62oGhbI+Hdn0OsWJ2vHKg5wsg7KoTx4FHfBoawdG0+itGMAb59+Prx7fu6rxVSc2WzS7+HJDsQtPESi1c+LhnuOw+xPKgQdjUuEPkTbVjUpJGhcE3LK+fuZH1QL15phTB1Pe70jtCUXWXlPk0/DY7dr3tIRYmCJFEhzK2N6B+18aAj7AaLHx/TcpLQozfxyVjcuUBZA2d6MiFMkh1s7bkaFygcWKb2XlCqev9/pzIbsb+MHulG7OOPPy5d5m5ueP/99x+aqf8l4m/EPNyIStkbGcfwdWAoLsRYUXdWItJnRCJonKI+QQcsf+rEv1Mvqm7bvVDcuUB3g+jqBE9+04Yjr2tPgtXxjU68cn5riVMdFsFutrCTTwA4/7IN9X5QbDpi0jPg63EJE3s8L6hG6pVB81aX64pKOhFUU/r3UQLaIgCkL2qNoCH6KIW0jI6jR+NCmAcafWKsKy/JDky7HICtzavqvtN7pv+vvhCF6r8m6cY3BfnDmS76DFPzZ9QGHVNvY2fLiiW2E38iCgC77hDULzWfepsaPYFEr1+1HzcGbkVgNn0l8eSqDSXZgWY/xqLRlASX8QKSKzC4YbvZgnm5exjCproOlKgtTM4UK3wnEcHhwwuhzKFw2rxwBI/S3q64agP+OfcDG06MVcZe2uwINJl3E5vWL2Fh1P4gd2ULnGi3GNGhjzN7HEYPbG4omUKCmH9Cvp4l9T11u6rjRjfryPwgPsq4NOoPrt7zbeCqDMpLafIzmhOF+ccrDFLBIdjNFpiCA3BjRpFgA0ep5t5auNKO2LdMynLgsQeHx0Y8lN/ZQOPMmb5P/zESQS/tE/Je7rcddrMFb2cewZcBRD2cn6do+vRfWjOEVT7v0B9icexl5UbNqC967mjIHBBr2sJFn+CfeTtdvfmBUpMFMfDZfIfdtFByb9kUp/vWwvEYwm+Lfc8JiJwlle+KJNmBpnsG42T7xaxtors9DeexU7q3tlSDQ68/uVob+TVQrw15ujDWioMfzHJZp7Sf2iLkrUw25vXG3ZUXrfjsg7msf+jlc2NQFKqs0N7SqNuotPMB/63tR69h2dd2JE+ZhdR7d/CWbxQk2YFe7foypEeax1tnw5DauhiWQ1rXNnplSzLxw1V/RkKp+OIp/YdIBL1MeKT2yqVNq36/oSAFnm4mxqdeHFfzK59Okh3o0jD0H2Ej5v/B33gj9vF/943YIwli7u7GF2lubkT/u7i4GG5ubnA6nYZxy0gE6wiLj0XmoNlsUK7IT8Qgb6vuBCsYOMNYfY6mbfpTDE6OnOVyE8yXcXezL8p3zyGL1E8xLnWXjSYVAFiStxfPc1CtriZ0V2RqFgzn8TRWRuq9O2hZroKmPHU5es+S7IDj7l12CuWKf0rV99TG1faX0DzFnfmRclWemirvqotpjdcIvkr4NCEpHmhRKR8rQhpo0hZbW2HzanILFvDbWGEx58sseMcG0x3iawgA4OYG+S0rzF8ag6mU9A2q7q6DVQFbNe/5hYzmFZb8DA6FL9ftW01+jsGp4frgGudfsuHQJGOBn9/AAIqal1rYSfupLYJHklvDdTcrMejq/Ik2HHt5JkJnxGLi0N8MDy9O3LuF8ZmDgC6K3Zc6Hv1tfXMsEr+aLfCc8WsYAl84hKtxgageLdpa6rXvhoIUNFkTi6z+isrM8rwEdP30DeH2kVJRxzC43S+CW8Jh3QWcbbBnxMLzBgQ1Nv59m8kxmvzTZkegyfzbAtCCJDvQ/akXsXnVL0JZjLZ5QwrZYFg/ddk8XRplRZ1D1wX4d1bPbY3g3iVPow52Y2Akc7ZLKXNJGAKeP8TKoCAoANkE8qf7Rnyp2zJzqQUBzzng0cgbhXn5mm/ffcCLSB/pieyeP5VKsAOInWbGy/7CGAAI0JLe4VPGd1EIHK+/OaaqkK6Ir1NQcnnmBsBICLKbLSi/swHWBW0S+MueamVqonobY0qLrtXBkGoXhfc8qdUVKaXPiETWAMWGV68/82Q3WwA3N7iVK4dnDmdjWVOzZh5z8ywnqKeq20Vvzu/RdzA2/Wux7jc887pNADyh/VCSHehxsheKOxeg69Hr2Nq8qiatK7VMSXYgfFIMai1QboBtr49F1eX6IFaUzo63AZ2uoMGTWt9WpkA/5D3ZEJXOFTNH0nx9KRgTPQx9GHqYtVutPq/Og4J80efXMk7g+/79EL9puWEZaoAnI/5Kw7tRHEBf6KMkv2ljLgwk2YG2H8TgwMfG+yo93owEeFr2ylMHUTM46z9W8GCC2PtTYfobBDHnnTvI+uS/WxB7JNXEP/74Q/dvzZo1mDBhAipXroynn34a27dv/6v5/a+mzEGzEfiHogpQ3V25pVAPcF4IA2Bow+S/ZgzsZsUIVD1ZqP3iSLIDl0ZamRAGgOlA02fqXJTPL/tzRUWCknvVqoIQxvvDovGE+M0VZ6YF79iQNi8cnY8QkALqm4vy+ZYvURugPnkoL+r81eGU3vGLROtPYgAAXY73MWxnSiv8t0GSHRoh7LsccbPL14GGSbIDNx+7gABPop6X9hMxvu9l68N4+67hAYyoLi4yC3P3QJIdcEtUjI1rpT446HgAjCHJDpx7hagreX2RgAbfk8Xt5lORkAoOCUKY7qYGQPPpscJ7SXbgtYwTMNWvh+sdLuq2CRXCqOG237rRTDVKrxy6AdUTTOr9mCC802yMn54t9D9qaxM8SgEruDTSiuCRB5D5FQEVoULYsFOn4axQjDOFN+ATd4UJYRR8ge+H431tTAij/oEk2YELMUQNT37TxvoJFcL4uga+QE7xqRBG8xXG2yJFbdDTzYSs/nPQPOl5FvZMIxtSPhRVDgGi/rhl2QK4JRxm+XYaNUq3Pb0/SxCEMHU9eTu/233J9wseux+zVinl0npuXkVsH9u9OkZ4BwDokg+72YK5V83I+CYKpmqK2iF1EE3L5NtJkh34fsKPuBYoqqvejQ5H/upQbAlZD0BRB6PfngphPChMxuOKGo8kO5gQJskOSM2rsXJNfxBVLg8vs6bN3juv3BYAQMCDcq9Gegnx6G+3xMMIHmGMIMdTi+9iYTcTR8e8EEZBXk68XUOTxr1CBea8WJ3vkry9ukKYun1bTYtl7U6FMDWp++bJM6JTZUl24IdBPxnG5/vUkGoX0fX54SwOnRfpt7tf1cTS3Rio+Kijmh5tP4gxzBsAghbHsDTuVargXscWWNbUjIvrg2E3E60Ku9mC3A9t+PNpZYxdGCuqt4XOiGX58muhs4LiJF3dlnfqFbPfAHC9kXL7QdWw1ULYbYmg1boSwuxmC2otEFXbEr6ZLcSRZAfzsUXDDr89U+OgfEQaAeByZmTD/FUC9n0xC4FLSJv2PPYnekX0giQrYEx6QljNvbWEeqpJ3Wb0v9t2LwG4BCDALEbrcubXUUwIo/RK8jOI37QcoYnP65YBQBdlV82f+n1AsiIoXB6mr+ooyQ7c6hcp9G+98gHAvOeGMH/U/kn0A1p7b0323dT1PvuqDWnz2xr2c9q+/YLF+aiM/vvpkQSxjh076v717dsXn376Kfbu3Yu1a9fizz///IvZ/e8lipro7l6EijvrswEasncwAAgoZgBB/6MDPXuqlTnxpWHUuSBVZ6Hh/mvGwM3DAwtz95D3KtheOrmoiZ+kKBKeqW5dNnmYbrsJpzySTBw48pT7dSUWn26I+MmKnqABgNcXCQgelYx3aqfrTug07dmn76LTiFGMR/69Hu8AkHSH3NLWnUUETI+uuYYCGJ9X03mKwCLJxFZlvK+yObebLawOaTMjkD/Bppl0JdmB7GiyudmYsE54r0ZdbOihbFTtR6+xhZsKZ9GdBsBZXIT60xOEtrebLcwuzhSotemj8cIdpB22vzQNAPBCTicW79vAEJz8gKRN/14RSniyHb6H4FhiMxM8VqtvDwDnY22aMJoPv6HmKbplF+GZti3Nv+AdkicvLNE+2+T7fIagCAALmjRG4w8SMdSnPYoOKyfIia0U59pq3iTZgYjXFGe3tJ+Yv0pA9GP9WDj/X903+f+ZSxW+efVWmtar/zHDQwSaT3z8Mk1Y+Y3JsJstMNWuxcInnmsJSXYw20M18ZsEu9mCXbPmsndjG7c3FNarrNwH5+OtYapZUyNYja4uI/D1JDivXWNh93fUEfLp9rRywGQ3W9CugjuqLk9i7SLJDuz4aR5zkp2xWETdpXxcWNcEbomHWTi1xdDre3c3+6L1gacBAM7HZZiTqqKwQNbwn2xRXH24hbdgB01qB9/nY226/YWWbzdbkD/RhtMfKxs+o9vor2cPIuNmhHJ4QPOjqIXRnQbgzFriSJYi/dUxVWZl1k+spplDKS/TXpqHs2tDNO2ifqZzVNqCNkh7bBFDdwSA6G5P4+vAULaW5Hyqv5H1TqoCu9mCrUt+ZmHjfW3w8PeF3UwcW1f8F7HLurCuCROo+Y29AFpUp7ZmPKQPnqXMsdevw3MzcSZN3Sy8ue4FAIDP5ASmvi3JDtSdnchsLCXZIUCQ280WmJoEwm62YMtvC1gY6wthoQAAv3cVYQkAux3T23AXdm6DovYWVHqvCtt8A8Q9A6W7vcJ1+2vGr2Gwmy24Z28rhCd/qhyQqNcyWj613b4xKEoRQt4i81Z8aA0U5hNbJTXiJ6X7XdswNVq9OQ0gt5crblTXzHXFnQuYKqmRAMOnoSBSqfcUQCsKduU94Bh62fpo0kqyg9n28Xnxh7t6NNNL6c+1FiQKY58fu5XW7NPU6/zL2rWLV/NWt4+pZk1mW3mj6A6iuwzEB1kHUdilDSTZgXLXi2G64sHS1txbS+g/PMrnP4LKbMT+Mvq3oSY+88wzyM7Oxr59WgjWMlKIXvOGLHsbXs8RGx/+RAgAim2tcDWwkgA+cG9LY/wRquhYezRuhI2J6wW/MXpIQeq86TPVc261/1mm8mAUV4/03hnF5ydAdTxX76gPGKr6dXZtiKCeoc4nullHxB3fSRbcunURd3iLsPgb1U8d7kpNiKXzbgMUOdkzRYu80zsCFdaTBeTSKCtqzzNG+dKrQ0kTM99eept5o++ijkdpeV4Cnmlkw41N/tjLoSka8ZI2OwLZfeYy1UN12fQ557eW8H06VZOeElWF5Xl09a3U9EbGMcSuHYGAN5NcpjVqL3V7uCpXkh0IPzgItZ7Q+trKnmpF2lCtHxpKr2WcwLeBIRo+7GZyUkw3KXmrmqPRU0chyQ6EzI1lqKh67WOkVpW/OhTeA4iQ5/ev0QiOIf1wavZ+TPSLEOqW+VUUBnfbhYRW5TRj0IhcjVVAi6RG40y92AQ7W1Y0zFPv2/H/+XbrNGIUyseLN0Rp89sKaoM8r35xIxE8kiCjym/ZBIRSo/7C53N5uBXJn4raB8XWVnBLJOqifmtHu0Rio6pqNF/qE4ynjF/DkNlZEQyM2snoPe8PiqrMuVeuzEAljOZaGtb2/Rjmm07gvWVThsabNisCQYvvshtaoS896MdGY+jPIVbs+1xfg0NdR/U3BwiIQuJXs9Fu/FiNbdPDrFnqMkoz77pbmiE+bilLEzExBjUXkra68qIVNX8x9iNGiTcroGqOee/b0OgTrS2rmmyH7yGhVTldPtOnRyLrKbLee/j6YGPCOqH8kuZUU43quN/Kn4Fw0He3+0YwQZrPh/r7NOpHNOzOExGosGG/EFbczgK3vQ6hbpLsQLdBQ+G+RwwHFPtkI1qYuwcNParo1svDy4yNyXGI7joIzuNpum2hJp5XirhKUUtdpeHbevMtT3wdGPrQa9k/RjXxvb9RNfHTMtXERyIfHx8cParV/y8jfar/7Cmsyd8PuJuEwWyqWxduCYex7/NZuBBDTtXy3rehXLfTwmS/MXE97GYLUt+cycLoyaOpZk2Wn3oCoM9tp41D5v0bgmBD86eIV5ToKU7mNOWUL7rrIM3GttvTw1B9j3i6iW3emlM9u9kC+9FrAj80TbOZis+s6e/+CEBR/SrcV1OIS9Pe706u/6kQBgDOCxfY78eHjdQsloNOnMVFJ1GDjC1QTqgBIHB8Ejz8FBQ/9cmZ3WyBlJ/CfI7Yzcois3POXEiyA1efjxKEsLxVzaFHRsKpKSQIy/PIIkDVmiTZgZb7n2XxaLuq25bS6LQs5ruMj5e9rBWuvhCFjMVheKYROfXnhTB1PgABowDAbsJadEwX8pz34MaVPquFMNqG9D8VwuY/UMcM+G0sE6YBYPMtT0gysdvRE6De+3Qkqpx2Z2Xy7afX53OmWAV+5141C3F6NulgyCsAJoTR/sA2+hNF/2aIaCGknXSir8CTJDvYCTDdvALAcduvLJ7PRwmaOgQvikHlXXUBAMXJR3QFS3q7BIAJYZnTrJjoF6FpF59N99kGr2dQO4G/vPeVGwWejOYSAEBUS10/SACYECbJDnbjU9KBAv/Mf9cd8+dp+OLVBumYoemoEAZA4yZC3V9yPxJ9qQFArZ8T8eGFUCFs8+pfcO4VEpcKYep5glJ8hlhmxbX7EZOeIYQFvnBIM47VZDdb2G0g3wdfSk/DnhlzGBrn1uZVcf2ZKMSn74XdbEHQohiWR3To47pl6AlhkuxA/Kbl7LnxhmKNrSLlgR4mTLssqv/SfGosShTiG7UVP475+FQteO93s1meapLfVOZidRsBit8uu5n4iHvnnBJPbyxRKnIcZ3m22v8sE8I8/BozIYznic+raFsjuLVtjn7VlOe93xP7uEafJLB1i8ZfV5CMu5t9BV4+rHtcUFXky6JCGAAU5ihaHi0PEnX28IODUPCuTejnfN6nZohCmCQ7kD/RxoQw2n52M3FUXH96AsvHSAgDgJsNTJq9R1a/CuzWm97Cdn/qRWxZsVC37Xkh7PIGZT+SvZxoALz49Eu6Qo4kO7AxOQ49fNoy8wb12qA3v/N1et2XtDdV91bnT2+Me5zsJaTvXkkBEepz/FKJBw/0BrZMNfF/jzz+XRnv27cPFSvqn3qWURmVURmVURmVURmVURmV0T+Q/i61wTLVRH3Kzc3VDS8sLEReXh7mzZuHZcuWYdCgQVi2bJlu3DIixMPXF/W0odymZEzLScJbvtytjJsbKu6oh9sdxat5PXUK+v+25IdrGxuyUyt1fA9vL2brZaTOsThvL+qZKuve0tDnUXntMK+R6EelpJMfNVF1HTcPD2zK1RrBA0Da3HCUP+uBxh8kwlStmmCPUhKVpBLQ7/gFjK1RYMg3ny7t57b44bFfMT1QC8phN1uAiBaQ1i4WTtrsZgs8GjfC+3+sxYf+bXTzLXjXBq/PE9D16HW8VSuTpdOLC2hdFxjxy9Ot/pGoknkN8fHLDL+pOh8AeONMawZSonfSq1YPo46F9dwATMhMxWcBLXW/ifokVc0fTQsQR9Rnj9RHxvOiilO4w4lP65EbIgozfeYNGxp+nYCCd2zw+kJULfHZVxm5kTcN20HvhNxVXwKAovYWZLzoKSA6SjJBK6RAHI/FjBbUfShV31MbK/y3CWWGJT8DbKkluHygRNVd9agkFRijevptGqnr2NxV/up28l81Buv7fIfQchUNT6ppuBqVtaRvQX8HrBiLwPFJyF3ZAj4DjzDUTHX8wq0+2NZsHQKXjWW3NXrluFetqrFrdWvbHJvW/Qq72YL0hW2Q1X2+br9V81vSuBp/pi1OtCkUwvqk98DdjiIggd1swer8JAzwjtL0QQBYk78fHQ69gJQ2K9DtRG+4dxFtgDKnWRHwlgjURJEKjcadqXYt5MQ2xfEYog7rVr48iu/eNZxH8ybZ0GiKeNPHo8tKsgNdXhgBj+0pyJ9og/dU0o979B2MrNfdUWVXJdSd9XB9uLBLG3hsE1EY0+aEI7v3vBL7vHdSFeRH3dDUuyQy1akN58VLJa4npa1DaSnq8H0ktfLUlEtVjHmiLhDcwkLRfXEiA6zhy6fubHj+ghfFMFs4Gt+9cmUU3byJIafy8HzVkm90jNqFtnN0l4HMdUZp2qS046qksaY3Tq8MtbLbTDWtyE9EdXcyb6UtaINs+/yHnkcBRQXVVK0aMt8KhdfOe/DcmsLixBUchMlNq8VRWHz/nwFfP+lvVE2c8t+tmvjI8PUUpl6PiouLERQUhO3bt8PLy8swXhnp+xGjVNJkdfvJCLw57Vf0qXyL6T/TNKbgADjTMnXT3dvSGOW6nWYb29OTbWj8oehImCeeB7qpBcD02tm7121IfXMmS5M2JxzBY0T7DZp/8M4XEfT2Jby4bbfgJNqo3plLLcjotFARJB/owPPxnjh2BRtCa8LULBhxW1cI7y4PszKEKoD4afL5OEEzUVOKDuuOuEObhfoLAtnsCASP1W6k+XzUi1KxrRVDoePDnz+ZjyVNvYU8qM0fVZ2p1pN8SwqRricYTDzXElPrp+qWzfN0cX0wM3Ln6c8hVmye+g06ff6GgKqltu86H2vDofdmaoRNvv6u+u3DbExOT7bh5CjSpzqNHIXyccaw3ZSXboOGYsuKhQCAVl/GosF3Dw/fX9QhDO67iQG6546GSN/tC9/3lY2K/9bhDHjjWnwALqbWQ/pgES66Z/dnUHT0pJCvJDsQNjWWtS8t22is2M0WVN1dB9c7XIQkO/Bc9uO41O5KiYIA5XtDcDzsZgv+HGxFjcWJSF/UGlldf36ozQxPfF9UU2m/+6ATZzGi+tkSeaA2SUZCHAAMOHEeq0PqPXQ9jIj3ueWKNwC4/kwUEr6ZXaryjA4ewt+LQa2fiUqb/+9jkNV/DqxvjEW1ZURNtd34sUwFDzAWGvj8ozsNQNwOAkbTbFYs871lN1vwQdZB5vBbXafMr6IQ8KaxoGrUHpLswEXnTdThDu3U8fjDLj2BEiDAIcfGzWTjXJId6DxkBDy36jumpvlT6hUejcICma0DlKiNUkl14HmKKziIdu/Eovqv5DsE7Riqcer8qMTW6NAmcB47pQk//bFV4y7G1RhQh/Fz8pr8/ejnLQprVMDSS2c0p/N0Zm0IGhrYZr+WcQKfZPRClR6KvTvNy4hnviyjvuGq3hnfRDFHyXwe1IekKcgfn2xezuxi9fhpc6gIKWHumvZYcaO6Zn+iR+p6ZHwbBff7bvB/W/mO9IDS2ak1TDsUv37RTR8TDpb/KTZiARP/PkEsc+p/tyD2SDZiQ4YM0f0bOnQoXnvtNSxfvhypqallQthD0J+rAnTD1YIR/7xr5lz0qXyLLBwcvDsAxO1YzeJeWNdESFuu22kAQKeK5MSSF8LsZovwByj69gBQPcsJSXYg63OrIIQBQOqbM4V0wYFnNPzbzRaEzIlFWsdfUJiXj0FVrmrqzISdnxT0KF4IA4gOPI+udO25KGwIJdCxtC1onS6MtSJ5yixkLA5j/Ph8THhv/4oCy03L9ls/Cie/JLZsfhv0IcKz+8xl+Zvq1tXkQeP6bRrJwt0SFBh6fsFTC2FwNzEhDICw8Z3YJl7znSjxQhhff1pOjz4EWaz691WF7+LevCkkmdhutNs/kgkJV+MCAQDFRW4sftej11FvZoJQD71FlD6nzY5Q2qlmTSGOOv6d3hHCO0l2oPGHCawMPSGM5sG3yZYVC9nv5eO/MuTNaKGXZAdye1Rgae53OgPf98lmOfcjYmPR9C3iX+ql9DRU65nJUN144lFAKdnNFtT7IQFfZCv2U1QIo/Z7fY5fYnYHALAqYCtDTb3U7gqD0+fzLOyi3LQC5NSbCmEAUGMx2RAEDTmo2QxTJMTSULWemZBkYh+q/r7qfPnvCZAT8Xm5e7AipIFueeqws5/oh/PEC2F8XL0DJb0w9TsqhKXNDYebh6K5bzdbgG3eQlwqhNFn96paP1LqMtTfrdbPykYt6OV9sJstqLYsib2vsiJJM9aNDsto/s60TBa30ScJCD84iD1TIezPISIkOgBBCFMTtTOm5Ld2tFCnuJuNdfmjqJVrmtXVzBnq+N6fkbG+46d5LD29QQAUmz1+zFM+7GYLLs2rBEl2CEKYW3gLjRBmP3oNkuzAM9mdIckOBnHO8xTt1RpJX85m4a6EMEkmCLrqutNn+kfRTem3ch47pRv/5MhZmjD1M83DqC9Q6ucdweLd6xEOSXYIQpheupLmglQOOl+SyQEgpW8DQ3DuSH0A5FDDbrbAf7WyxlLkQ77MJgtihDVWva4ZCWemINLmvBDG50FvaZ3pWYIQFv5ejCav+PnthfRnXyPz/PxgP4ZQLckOhtTL80a/x/1iJ3sOfC2JCWF0rqf+PU07DgrprncR7WTLbMT+9+jfhppYRqUjvRsxPWe5RpOjWh0HIGohKZd8sKP5WmGx0ztRk2QHwj6NRb2ZWrUn9ekR/5vGo6f1emmoQ2qjevBxv8jexxwsp/8Yiax+c3TrfHmYFeGxh5AZfkfI72HUFSXZAb91ozU3WnrtzJ9eqeNcHm4VNlLDTp3GgiaNNfGMeABQorNsHnVRzQOPJEXD3MqXx6bsfegV0QvHJ3qhSdMCFHcucHmCWlIYpRub/NlJJwC8knHSWEWTI6oGwr+jvxfm7sFQH2URvNUvElWyrjGo+ZJOVPXKTZsZgeBY1yfgAEFq3NF8LXpFPoHCPH0nzpRo+aGJz+OYdYlhPwYUZ6ZG7ynRG2S9Mco7XNVrN6N83do2R/GBoyzeF9n78I5fpMu2UAtRfFubmgQit189HH1F5DNgxVhkDlJuakJ/iIX31AcHM+4mhiBK5yf+JoYvM2+SDb4rzsKZTvoVfwPK6uXmBqngkKYP6PWH9IVtEDQ0RYNgpyaKfkippHHgSnAvrRBrlI7/TR1S89/i6gtR7GbGiAd1HdRhdH501X78bSffJ+zebSDlpwjpejSOMHSaXGxrhbu1y6PYRMBIhLzMFoY8SPl7mDbkx+SovHbIjbyJ+13bYPsiRX2MzsvqukY5nkL16AwW3u/4BaxpVvf/9G0pPxGHBqJmL321O1f5jE7LwoAqxDVJ3qrmOG779aHawu4VBjzYwqkdnpc0b3R4eQwq/b5Pt/9oynmIPq43j6jDxuRbkRNxW8hfkhUUSqM+re4vlzcE66LXGtUpbV44snvNY2tl8d27MIUEIW7bSpfzCp8nn6+pbl04L1woMd3DtN8/RTWx7Ebsr6N/G2piGT06Bb1MJse4AnJyQv1eAUR9gycqhN3vTm6PPLy9cLRNEcp3zxEGv9HCYDdbUG+miAYkyQ68nXkEnUaOYmEdXh6jnBZ27M8mJV4Io3nQeN0nvM7yo+/kt21CXPqebhYl2YGgl/Zh/tUGCEkRsWTSZkWg1oJEZIbfgdt28bbVee2acDrP15X+uYW3YOXSGy3PHQ1124gSPb2S1zQT4rh5eKDW83msLFP9elj0ZFchLf+tPBrUF04waTupnWWreadCGF+PsE9jUfB7KDYelJD1heJIW5IdKL5LnLcuTVqFg72/Y7YA6kUYAF4uiNSUF/mugqqmJrW6yZuLhrN3WV8SPnjHv5SoLr5ef3xh2KtC3Epr9iE+fhkKfg/F+ZdsrJ3UCzrl49wrNqT9JKKN8UIYDeN9IDkfbw1ToB87qNi4b4OQb/ZUq4C6ZjdbcHEMuYXikQh5p8UAYGpCbhDV6ojqulO+Ut+ciZb7nxXKrriTnCb/+ubXQlq+jxjlK8kOFB84Crfy5VkYHVd579sgv2nDPXtbzcaAb9+A7cOEfJ2nMjRCmN1sQeB45aYmZO9gZvcjyQ5I+YoqWfDIA3BvFYJ2FdzRPIUsN+4VKrD8fDZfhzM9i6WlQhhPabPCNfW9+kKUpl0k2YGs7vNZXI9G3rpjOm12hAaCnie9jRN/qq8noPPv+OfFeaL9rN435Kl+MhFuojsNYIcttRPO4tpz5CR+Tf5+TR6dh47U8MuPGwDskMpoYy7JDuHmnV8fUOTU9Jfi+/d0+6QkO7B51S+osH4/ds2ci8yvozRtdLthZWGdaPJzjKYNjYims5stzLaz49fiQRY9HKPCFv2dZFkllDFjsYhg6oqMeOoV+QQAYH/YShZPb60t6hCm20/mBvtjyOnHIMkOJoTplaUXFrRjKO5Kjdm7Kiv3afomQGye1N/dbrag0u/7BG0XI7KbLQx5keeF96tnqlFdiE8FHf/fybgJXhiD5tMVBGQqhAGA9Y2xAIBe1t5srejRd7Bun+b/S7JDEMIyl4SxdvXfMlx3fqBCGAAU372LGwMj4TyRrhEWKaX/0pqFN5sZK/RbADj5dSPmK06vHxV2aQO72YKg5PKMB71xc/Y1m+EcX0b//VR2I/b/mdQ3YvQkd37uHng/cOirt4ku6eRFPanonVJdezaK2SLQeBfXByOlzQpNXGqozJe1+ZanANGaeu+OCDKiw9uNQVE49+QdBH1xF7en3cbprHrCzdTDnB7dfCqSOS42agcAkN+2wfwl2SgGbBuGzC4LhInXb8MoZD8xT3cy1uMn60srUzugvs2oPcvotCzMDfZ3ecqozlN9g5L+fRSyBoq2J7f6RaLSGq1PJnX+lzcE44lGRxkUuTqeq1M76xtjkfi1oo5Dw5ssiIHvpER2U6uXh6vv9lJ6Gn4M0rpAsJstKOzcBh7bFQNmvY0M1fU3Ko9tdjqGwe1+EfNtpKaex/5EfGgNw82SEQ/q8uIKDiLaq7XumKL/K+6srwHX4fPpmHobO1tWZM9quw0jWyxJJr6zKiVlwHnlCgAY+uShvJWGau+tyWzPApfEMIAH2r/V+aXNDUfT6deZ+mWvNj1QeOYs0n5ui+weog+vjG+i0HhTIbYvJI7M7xbfRx+vcL54eO5oiPudzgAAluTtxfON2unWfd3NSpq+BABu5csj/YswBI5PYnmdj7WxQyaAqC9XW6qoMfU5fgnrmtUucXw8zJzEx33+ZD4WjO+HcpuMVWrtZgvcmzfFBWtN3LJfZ77j1P2TxtX7rkY8q+O5ik/tV+i7EWnZmB/spxuX2k/qjZe4goN4Ivp54UZbnT5tVgRzp6COQ+e5ksaoUZgepc2MQC2HCSkfaW9AH+bblpbcwkJRfOiY7ju9NVeSic1pxRMVmMPp/Ik2NPpyPwOvUtuTUXLFf2nmfUoXx1hRZ04i3DzLGd50qilzSRiCJ18TbNF5n2G0PLfwFnBW8sANc3mmdvswZE6qCjnquuH79B8jEfTSPs06CpDDmMK8fJd7J0l2IHxSjGBDTsPnXjVj7jd9GSCSqXYtOC9d1sSzmy3MNlHdL3M/tMFnMvmu7hUqoOjOHaiJH6//GBuxCX/jjdhnZTdiGvL393+kv4AAfTuoMiIkyQ7U/IUMeG+PKujR5wXYzcQZLiCeBqrTmerUFsLDJ8UIC/cTaT3Ze8vn5GSKt0WgVKd3mlBGs1kkrvPiJcw8vYfFs5st+DowlD3fKrqHt3wVZC/16R/Nr8qKJGR0Woiiwyewo/naUglhzk6tNWEAUDn/tvAsyQ6kLyS2MudfIidMp1e0YEKY38ZRCBx8SGgXu9mC4NHJwmkb/e3hZdblJ/0FZUEfPn4DAKAo9SR891fEp9+9wPJJu3+TlUNtMiTZgYDlY4V24m2Jim2tEPRqksCjJDsEIYyenOnxltx6BXPK+3bmEVwYa3W5APPtUG1ZEou7Ov+BkfqiGHhvJwtzVv85hptEvXzpux+DgiHJDuSvDmXhzWbFYl1BMjy2p7Dy+f80D7tZ0fUv7NJGtzyaxn3nIUEIk2QHbj6w3QCA+NAaQnyjPsq/vzFQVOtL/z6KIV0BQNgUMj5C5sQiILkCwieRG8XbHc/pnnDS7zqxzimhLCqEWQ4REAgqhFHfMjztmD+PCWEANEIYzVfdhwCC6AiQzQ0ffqndFZYu4C1F8KozNxFdj16H3WxB2w9I3Ty8zMh+Yh7rt3azBYVnCNofj7ZI8/DdcB+em0l494FD0ccrHJeHW5k/IEl2MCFMkh2CEHbzKaX9ozsN0BXCAGBT9j4Ejk9ieUmyg6lbU6q2NAl9jl/C9afJPLVu+OOMf2q7wve/tzOPAAACl44V6sOTun35U/gh1S4yIcyjEbEv65B6h8WLbtYRkuxA1JJUHJg8C42eIn43274v3hDx35Kfn9T9tyQe+fxq7q3F3kmyA9cDnEL95wf7YcCJ80JZRR2J36ctvynOpilPk7PIOI72as2EMKPyg2P2644NSXZg949zNPzzfNnNFmaLZzdbUD+xmm4/5/MMjt2POnMTdddOvn6STOyoXPGu906SHTD9ofgh3LRxiRCHzyPx69k487ron85utiBoyEEcG6fcBntPTUBxYSHjjwphNK+ex/7E5eFWTV84O94m9EUA6Jh626WwBgB15pB9B73pVL+n9qvYRvw4Zi61oPamCoItuiQ7mD2e3WyBKSSItMe/FsN95yF2yMfH/yJ7H+5Gi22u5k+Oui7wVHV3HQDAuXGkHYNe2ofTk22I37wcV15UNB9yV7ZgKudN9wzWjB2+neruFtFKafiZezVwYPIsZH1hRfoPkXBeuqz5pjTPcTVPC7zTcCqESbIDRXfuIG2utr48X2U2Yv979Eg3Yr6+vrh//z7OnCGLp8lkQp06dXDx4kU4nWRCb9iwIcqVK6dJm52d/X9k+b+L1DdibENoYBehR6U91TOKR8PzJ9jYidzkrBRdqHX1KRvVM6fUPMUdWxdFMcNUvTIvjrai1ok7bEEHSndyL8kKZLUrKtzqA4+uuQwpjhIPRQ2AwVFHt+yiue3T44c/DSvNSZseUbsEo7IurGuCun3Ek88zr9vQ8Bt9NwRG3+VhTo2NhCvL57GoP13czIZNicWhSTMR9dZYVF+i/Q7qTYBe/upw3g6OhunVmc9XkglSG9208/VskzIIdXqnGbaJURvxdO25KDz+VgJD0lKn41EVJdkB/9VjEDRuH3uO7joIl9rWRo1F+s5xjb6Fh19jFGYrC7qpfj0BvTN3ZQuE1D+Lm49dYHH4G0dJdqDj6NFsQ3RjYCSKPN3ww5TpGqhrV6R3a+EXNxKzOi1Gj0p3hbh6deFPxilRyP4bAyMhdynWRR299lwUKp27j22Lic0Pj/6qbreMb6NQ6Yw7zF8mCDZhFJWyxLEZ1RJIStXk69GwATambNKko/nNuNJYAIRQb9Z7BtpQdOuWhueae2vhSrvLQho9vqjtp5r/ksZRSVTczoLNKxcCAELmxsJ3zRUUHT5BNqxZVeD/TqKmfKNDF7UA8DDrkyQ7NO4b1HEoSq4678ylFhTdd0dWt58BAG+dDUNqa7KF4dtXj4dW02LR4FstgqrR3FBSOA/RT6l+YjUsarzL5dzyMHOkEfF5MHTUJwcj/YVKKPYsNrxxBAjoic9HCcwFAH1/9fkoVLjiZIiVPI/qgwb+t1Hf5N/xpI4XkuKBfzksCB5xoMQ2528UAaCnfxS7YWLr1mexcEyYacif2u6b0r0e4bq31zzl/NYSTwQeFb471bihPDw+fBTL5+x4G0PtLWms0PL/KTdige/+fTdiGZ//d9+IPZIgdu3aNXTt2hUeHh747LPP0L59e5hMJjidTuzevRsTJkxAUVERtm7diqolIEn9r1NJ8PXWN8ei2tKkUk148ps2mL8ig/76M1Goulwfitho0ufV6vi4vcKjsXLfWobApE7r5uGB4kLiE4eHx5ZkBx470g8V7YrwnT4jEkHjFNUT3/0VsX9hGIND1yMesl237pzBsoevDwpzcl0KJn7rRqNXm8P4wYuglFE1sa5Hr2Nr86qlait1eNr8troLCa/qIckEqvb+muqCv5+HFRIALYQwa6vFYQgcfIj5KPGTRiB4mGKzY7Q5NdWojrjjO3XfFW1rpPFPxJMkOxC4dKwh6lpJm4ybAyJRebWodsnazd0EN08PbMreZ9j/ef8+PO/qZw8vMzYmx5W4ASqJ37Ov2XQ3dG9kHGO3xB7+vijMyhHyy/7cCr93E9lG9HojD1TNL8SumXMFPo2I1id0Riw7MOGJGp+r47vaIPHvcqZYca+mE4HL7mPLbwtKTJc+PRJZT+mD6hjxHt11ELwWFCCk8hlIzasx309hU2NxaKLxHAAAd3uGY8f8ebC9NhZVf3N9GKMWaCkPzZOeh1d/rdqY7rz2APhEL56ekMRTSePXVfmlOTQpbRy/DaMQPDpZN9+SylSHUb9V97u3ZTecfByPxo1wrY2ZHcyVNHfyvpzu9I6Ax00nuyHn4wJAz+jncPHTQiS3XsH8wanzv9U/Ert/IDdqNNxUvx6c584LMO6u2tC9QgXEZyU99DdTh/Fj0ZVgl3n/BmIbE7CiFfmJGPh0DDavXKjJVw8YSY8fSvx3VbvR4POiPOVMseLUMNH9ht1sIUihXfKF/GneancH8ps23Gx5B0FDiF11jz4vCAefJbUZX4aemcPDHgTo+ZpTl3/tuSgkfjUbjw8biT8W/KTJV503XScfHzYSY6avZuBc1JyAxi+NAG40Hv8pYB1lgthfR4+kmjhp0iT8+eef2LFjBzp27AiTyQSA3Ix16tQJf/zxBy5fvoxJkyb9pcz+N9OatCPC4KeDkto0+EkjAADLr5OTWKpa0vnITTaYj7w+E5LsgCQ7UHV5kmYykWQHUyEBgNt9xRPyucH+LC5PhQUy+nlH4OYmfyy6VkeAPgaA4sJCSLIDbp7lkNX1Z6HMSzsbCnGzBszB5KwUtD7wNM68bkNOxG1dIUySHUwNouiOyaDVAMfdu5AKDim85uRq6mA3W5iKmd1sQfDY/ch6sTHmX22AKxuDkHCZ1Htrc0Xl5Z6dgJ9Eh3UXeJJkByZlOTR8ZPf8iaWVZAc8vIiqCi+E9TjZC+G7L2mEGipE88+WQ8SBsdAeHKn9uFAKHHwIlXfVRbQXUed8J3KTpqxOoxQQFqr65fzzKuxmC/vjobh5ftOnK6AqfJ50Qe58RLFzMicRoXbhtXoakBlJVmCj1UIYQNot47sooMiJC6sINHZRe4tm4VqdnwTnxUuom1CD8U7JL04EMSgskHUXWj4/Wh9Kd6PDBTcKANCor3irf1sifmZ4VV0qhPH5Vc0m6jR2swUV/7Uf9X5IQMW1+xnftHwKdyzJDuStas5+h84gxuKVz4hnZwXvEnWkTdlaxDRXmx51W778ZBzKXTKxmz4AyP3QBmzzRv7qUBa/R9/BuPpCFIJeIcKx83Gt6jAdK3wbUF+HuZE3ITWvBg+/xggek4wmC2JQ74cEoQ2yl7XS5LljPrHjrPpbkub7UYASGr5x77808ykAePU/xn5vKEiBm2c5xp8kO3D9GWXzd/czYpcSV0BOzykcN43fdF4smn8fK7Q136bp0yOF/qbHDw0PWD5WU1/6nnePof5mAGAKbcLCirY1EjaCVAjj66jXz+nvoOTy4MFeaFhIige7Ub1V10OTR8avYSg8necShU+SHWweyP7Miv1TZ7G4O+fMxbZfCdDKrf6RDISI5nO6dw0kt16BFt/FIuPZ2UzIlGQHzo4nee7+gRwKtJqmgEI4z50HAMGXlpovCuixJn8/iu7cgd1M4Mt5vvX+03xu9YvUzBHUATaN525pJvRv+n2oEAYAg7ytyO5TUeAvaylJ06uSaFckyQR8yq1NqJCfug/azRYNguvLO14Q6gEAfmtvsLTNU9xhN1vwUnoapJANLK7/7wpgV/4EGzKemy3kYf4qAX1CFRcqxQdPwH/VGJbeVLuWpu2/yxHHPX1PzRzy3hfXjf4Z3UolhAFATm9PId7NpyI1cRO/IrbY5SQReZpvS0lW3BM4/yTudv5Y8BMWNCFAKVOz9zOb7p7dnzE8gND7Nur3euvSfzQV/w1//wP0SILYmjVr0LdvX13VQwCoUKEC+vbti99///3/xFwZlVEZlVEZlVEZlVEZlVEZldF/Iz2SamLFihUxZswYfPfdd4ZxXn31VcydOxe3b982jFNGxqqJGd9EoclHxxF3kuibU59c/GlL9vKW8Hsm1SBnhUpSj+FPltS//eJHutTddm/eFDn9a8Hvu6MaP140jkfDBsyYX5IdaPtBDGr/pEUoouUa8cyreDyR1pMZ+OdPtDEfRm9nHsGXAS00adS/KYKeq7bS40Fe0wzmfsc16QBg9uk9GPvghFPdjnazBZdGWVF7nr5vI0l2ICz5GdTrq5xeGiFYXX86ClV/S0LOp1acGj7LUBWCzxsAghfFwO9dfZslNa9G9Ve/D9wxFAGcs1OKHMXHNVLNMcpXL9wVL9X31MbV9pc0aY3qpg67X+zEE16KPWT5nQ2wLmiTbrmS7MB3V3xZ39Hjz+ik1vl4a5j+0Nom5K5sgXqLKgp2cu1S+6NKjywhX4owaUQ8LxETYlDzl0SG8AjoI3bx+d/qH4mOHyQgpV01xKcrsOt2swVpsyKQ3Xcu7GYLog7fR1IrMlfxdqUAcGmEFbXnJ2pQIGvurYVrQ2vAmZ4F96pVce755qg7WwEFofW9u9kX5bvnlFhH6juK8qeuv91s0agLlzQPAsqYk2QH/P41Gj3bpuLE+y3wx8/kNm5e7h74eFRxOS7Uz6Y6tRGXuk3g1ShNdKcBiNuxGl2fGw7qOsNutsB2+B7ku9WRE3Gb2aeuzk/CAO8ow/wAcqOr5widT8PzZeSDz4iyP7PCb4Iyp6jHFlUjdFV+r/BoFBbILuN8cSkI79RO19h50TZzpmUi6wsrguecwcY9a122MwDYDt/DtrNNsKvFGsZvxq9hyOy8QJM2ZE4sA1ygRNXySpojeaLIlOp4pemXHt5e2Lh/o+4cQ9ObQoLgPJEuvB+V1w7zGu0V4lFVfzXPLb+KFfwa0vDuT72oQaIVbEg5v4EAcL9rG3huTdHwSdUc1fWlqpJGbTntcgDTVsn4LkrXRlySHWjxXSyz1TKivFXNGShOadrdFannc95coKTbOp54Poo6hqFox/5/jmpi+b9BNfFumWqiLgUEBGDVqlW4evWq7vsrV65g1apV8Pf3131fRvpEB2/G4jAEvp7EhDBJdqC6O4G6fjLdzuKXRggDxI0Krxpx+mOr8J7+ps/vnW+B7J4/oWhbI016Ss0XnYLPxwnMWSj/nm0gOSHMbrbgwMezUNiFbHwzfg1DsbWVhg++Pfh8KXLXhuB4Fo/3YdSlouLd3pVQQTfSbmGhuvUyardGoxXnjZRyphABeeCnbwnhQYtjhHwoBK4e2c0W1Ot7Uijr63TFZsvCrZvUPsb3vUSNgJH9uag2St9FP9aP2Sfxdcr8Okrg0W62aPyi6H1T+juj00LcflKxvVhdQL7PKxknYTdbcDc6XMNjUYcww3bgv13mNFKXyVkpun2jpz9RX9ETwijSJq9eQvPocrwPbhXdY++pEEZVsj70WcfiRrfsIrSB3WzRFeB5UqugnH+ZqA5uXfIzq9ulkaRu7q1C4DPwCCptSRXKoD7b+G/AC2Fq1T31po6ir35xKUQZOyohjP82AFDp9334tN4RFN28KajmABCM/6kQBoAJYTSPA5/MAqJaoujmTaHfXGl3GXE7fyff//p1JoTRMgqXEv9pvBBG1WP5Pkv5oRs9u9mCYlsrtDzoBr91o4U2o+rClPhv4l658oMfotozPfiwmy3I7jsXR6a2QrlNyejhQ1TPRvm0150X7hc7hXz4OCc+9xPa0miTZjdbGDCJacdBmOrWZXESWpVDTsRtSLKDIcEN8Cb9/8JY0ZcgpRsDIzVCWPZUKwresTE+5l41o8fJXgCAq3GBJQphfP6S7IDfhETN9+HnEmrLZZSH3WxBYYGMtPmKap+pWjUhz+iWXbC9BfE9dvgtRf3+fCyphzMtE7kf2uD/TqIghKX93JaVoabVizqhoj1b4JcKYTx/0a264cSYmUI/SZsbrhHCjNYQAOh6lKD+6QlhPH+mB5tMPi/6rQrzC3TX6Ssbg1i480S60Ld6teuL3MibmvIyOy9gYXx+Db9JwNUicnA+LUdBVN686heBbwDI7jtXqWCRU+DZc2uKwAfjW0cIy/wqCtMDm+Lac1Ga8UFVCakQJskOwYm8mn+1EMa/9/D2giQ78J3lN40Qy9P9rm2QP1GrRq/ODwATwmh4wydP6NabrkX03b0tjZH+g4IGy/PhvlMUkP+j6e9QS/wfUU98pBuxH374Aa+88gqCgoIwadIkPPbYY6hfvz7OnTuHnTt3YsqUKcjMzMSMGTMQGxtbcob/w6SHmtgrohcK8wtcpnO3NENR6ik2CfKTmxpMQL1Jo4O+V+QT2LiP6IAHLB+LzGdmi+/bP4mNe9biFTkcp9reR1HHMGGiuN+9LSoek9lppnqDoTfhqX8DItgHX5fleQl4phHZxEZ3GSic9qk31x6NG2Fj4npdwUtPkCjVaZi7CRnfhKPh7mLsmSGCEkiyA+1T+2NPy99ZvjHpGZgVFKjJRq8sSXYgt/AGO13/JicRbzbrwtDW9PLQM7xX521UFh92c5M/Kj/Y6Kvf07YK2D5MODUtv7MB7nY8i7SZEch+cq6mTNoGRrzrtXveezY0+pT0U1O1akyYVy+QfD3T5oQjeEyybt5qfiituFEd84P9hPimJoFwnsoAQG6KrvVuhSor92mAYSTZgejQxwW4eKNy1WVTIUHPr1nGt1EIfC1JyMvVt5RkBz68EIqkVp6l+uY8mf4ww/m46xsHvvyWB90YEp1RHJ7SfmqL4JHirTn1/WOU7vJwK6Jf3SUIdbQcALhRdEe47dGLY8SPmufS1Lmwcxt4vneWOUA3Iho/3OFEssXYdpWnJ45dwbiap5mvtZKI9dFmwXAeT0Pa7AiGMFmqecuA1GAuGd9EsTmfL7tnUDsmSNN3akAdHoymcKsPtjVbp+0XD24kKV0aaUXtnxJ1+4R63PPvM7+OQvVTbswPGF+O7fA9wWeiUP6Dfnl2bQga6AAb8XUuTZtS34Bqvp/Lfpy5f1DX7erzUUiaNhvzrzbAipAGLsvl0+rd7rjic/bpPfDzrMLS+/8+Bm7V76HY6Y7yle/BZ+ARIR9Aacd5uXswyqe98N5obqPh1O+gUZ78rXlp8nO1bvHvbmzyR9UJFQU/bZeHW1Hr50TNPET9XuoRz++K/ERUd6/okheA2PferaXA0SOiBbBfbNfSrouS7MCtonsMAI2S3fwPAut452+8Efviv/tG7JEdOr/66quYMWMG3NzcNO+Ki4sxbtw4fP/99/9nBv/byUg18fIwK5KnzBLiupqo+PdqtC/1BMFvQkuaJK8+HyXAlKcvao2gIQcZkt75fzVl6nT5E23w/iyRwe4bkdo5tF7ZfH30FmdTcADidqwucTOmruO156Jw95krGoh4gAhzhafzNM6TJdkB/5VjEfRqyeiVanh9PSHQyBG1Ht/+W4cjaIhWnc2ofnrw+LTsgt9DcTRqCYt75UUrKlx1YtdMRbDiVdmMyvHdX5Gdzt8ouoMq7uJkbDdbkLXUgvROC3UXt5JQGNU07NRpZhj9THZnDUR1ScJnxjdRCHzdGEGU8qx+X1ohl09P4dbdmzdF/OblsJstuLHJH3sfCOyR78boQtoblaF+dgtvgeLkI5p0p1e0gH+szMYVTTfj9F4Ee1YucSPkygmtEfEqwQA06tMF79rg9bnxKbXdTNR1L4UXCqASgCL4U8r5rSXebrkZK0IaCHl0Ovoku0Uzars/h1hZm3c9eh1/dAmA89x5pkZZWkGYf6fnYJ2H0Kf1U5P6HS/Q0Perb1RjwEl6aQAIwpkryvrcCv8H6sjf5CTidV+rbj/my6LvqPqZUbtkLrUg4DkHJNmBbbdN+DKnp4Cwpy7DbbsXNjXdKNQlKLk80sPv6qZJW9AGwcNSUPCODUdfncnSGR3WUFh2V3XSo8yvo5j6ZJMDnjjV9j57p+dImZYbtCiGta26DxmVqdcGRmQK9EPxuYuIP7W7RCGBvms6LxaNP0zA5WFWjYNiAILbDT2++frxz20+ikGdufpq7dR8ASAAU2v/bI20wf6I27qCxSvtYUnuRzacGK0P3lXSHKYOB4hWCnXLAChrvFFatr+oWVM4fHO3NEOR4zjOjbOh/gytax7DvLzbCGqbfNzTk21wvwc0mkI0et46G4ZpDQ6hS8PQf4QgFvT23yeIpX/51wliaWlp+PXXX7F582ZkZmbizp07CAgIwMCBAzF+/HhUptoSD0FPP/00VqxYgdDQUBw9erTkBCp6JNVEAPj++++xd+9eDB8+HGFhYfD390dYWBhGjBiBPXv2lAlhD0lr0sTN1UvvECGD/+MR6QBlcqPv6eRDhbDLw6xM7Q8gE4C7pRmcpzKERYz/zeedtdTChDAah6IibglZD0l2MCFMkh3wnpqAcy9rHQhfGaqoy0myA3Gp21h+QtkRLYR60XddnxuOiAlEzc/y2QMH02mZhguIJDvQ89ifkGSHgCoJEJSkun1OQZId7I+m2ZhI6kQ3WPS93WxB1sDZQll8nhTZyW62IHOQiCTFfz8aXnnVPrhXqFDiNwDAhDBJdsCjYQPDeJR4IYyny8Os8Op/DEGLYliY57PnGGofrSvvrJjnja97RNVsVjd6a0Hr2KPvYABA+gMfQHp12xKyXpdH/nvwtKBJY5iCyMZ0ud92Fn7tuShhI6En9EqyQxDC6Dt+s0EFAkq9wqN1+VP3Mz592pxw0rd3rAYAFB09yeJX6ZHF4hkJYep63xgk1o3G4YUwPrzxoCPC4YbdbEHeJBvGNW6ne0rLP0uyQyOEGfUzPpwXwiTZgUHeD1RJLzQDAEEIo+mim3VkbQEABybP0ghhAAQhDAB8n05lNwp8+opvV8KM03tZON8PaBza5pLswNbmVeE8dx6S7MDNRm6GY1r9bDeTWzMAuDTKioIn72vaaP9ns1h+en2F5jMitz0LP/1VZQ3PA6pcE9Ly+VHK7jOXqXdLMkFyvdObqAhnfW5laXlB4XVfrSq6eg7k3/HqqBmLiTqxW9vmzLE3FcIAoEtFJ1M9M6JNTTdq6pEefld33EuyAzVSiKrw0VeVjXmH1DvYcdtdaGf67sTomUIeL6Wn6earJt6GjRfCAKA4m2za7UevsbR77xSh85AR8OdUvSnZzRY8e1LWCIosv85ExTD6sX4u+ZJkB4Zs3IGi69c1m31JdsAU2gS5K7WOfxt/SMac+hCXkp4QRvlWj5uc31qyOLe63QCgILry9eVvPT8LaIn1J1ogbusKzfdxVVdKW4Z/yeJffUH/RpxP13TPYOGZ5vXGGYJw6v9OInI/UJxcb0xcj/RfWqPizvq6vNB2qLWxWMizyEHswp0VuLksrDuuxQfo8nZ52IN9ECeErSsQ57nGHybgXq0iVm5q6+IShfMy+r/Tzz//jG+//RYBAQH44IMPMG3aNDRp0gTvvfcebDbbQ+NabNiwAatWrULFihUfmadHvhEro7+G6OlCq8FTUPdXff3gnE+t8H1PObmlgBSS7EDAtmEIHKxNl786FMesSwBoNxj0tIz34wKUfHKoG8/NjfnwUsdRq7fpxaH88b9NtWsh7sj2Up0ClpZ3SXZg4rmWmFo/VTmN5k7HeENberLtSrXhYemevS3+WKBA3G8oSIGnm8nl6Wlpv4c6LgV14MPkt2wwT0vQXXhcUbGtFbMRUPNKnX6rBRNJdiD68afYrWtpiKq98rcsaiE7/OAg3N9cB/WnKxv8rC+s7MRzWk4Sgz02qhttBz3iNzquvgslXr2Q+liiRvUtv4pFw28SNHWgv6lfoysvWrH/s1kuy6FqRwCB5M+O/umh+4VeXWgYdYSb84kVvu+LJ/zquABw7hWbxtG33WzBGxnH0L3SfV3e1EAFpeGTB36hcQCgR6/nDW/v+PR6gDx8OT38IhnMeGnnPVpXvfwojcm3IieCLOa5H9jg87FrAAGeLo204sDH2v5gxON3OQkY72tDzb21sNzP9Zzp6ptSdVRXcYzykmQHgn6Ngf/bylpyW/JDxQ+r6jrMVlP+6lB4DyDfU30TylPWl1akvyCqJ6rzvjLUCtPdYlRbRsYlDxTlqg6U0n9pjaxuPz/U+Go/bgxT25RkB8KmxKLejwku6y3JDiy6VgdDql2E3WzBuXE25oRYj0c1IJEkOzSqrnrlXRlK3AS46he5H9hQoc1ldqj6RfY+WMqXF+KNSMvG/GA/l3Mrn7/eeKbqrTQvV+lLG05pQmYqPgtoyfjz2zgKwaNEwYfmQVV+/y/l8fEAbXsYtUPuyhaCmqhePv8Uh85Bb/2NN2LT/robsQMHDiAoKAjVq1cXwt977z1MmTIFM2bMwMsvv1yqvG7cuIFmzZrhySefxLp161ClSpVHuhErE8T+PxPt1FfS/DGwSWs2IDuOGY2dcxRHr+oBX9Ikz8cFiPf3I+NnGqa/vCEYtZ5I083Hf+VYuNW+y4QqmpZunt1bhaDosKKD7+Hrg5OvmNlNREkb26JtjbAlRLTvUpNeOmen1ti69GeE/hCLYy+LixgVdKxvjEW1ZaJK4eZbnmzD6NGgPgrPntO02ZWNQajZK53lx6vHqHnSq1fFnfWxNkiC3WwRUKQGnTiLFSENmPNtmtZnX2VmWK0mU5NAnHitlmgnoqPywBNfX7+4kQgeeUCjomeUprThrt5lTrMi4C1lU//4sb4o1+20kO6x2NGouHa/Luqh3oYQAEM45OunZ38BEBXQPdO1tn2A8ZiizxRtTm9BpaT3/el76jiYnZ627CI4nebTq+vd4ttYjbBoNIaobR1PvPoR72Sa5kOFRD3Sqwug72CVEj24AICLY6xI+dBYsDz/kg31fizZ9iXt57bI7mEMtmFE/IGDKwG0w8tjmONhNamRIHkeJdmBUXntDMcqjXu3+D76eIXrlk+drvP5UrU6I0Eoe1kr+D2rtTXUIx7RbnJWCj7pOkAAsXiYtYS+55EDXc0TfL6Usr60wv/tRN2+VVqBpzR8lhRXr8zRaVmYG+zP5l9XqHzdB7wIt0TtN5BkB9Lu38S4xu1KxaN6LqHx1ai7Rm3VPMUdR9uQm5SrL0Sh+q9JmjQltUPHMaMFlFZX8/tF500834jUjaoo3uofKTju5vmjxJs16JUxNXs/Yj98Vbix9tswCoEBZzHOZxt+DApmcYttrfDhrwvwsb+iNn9mbQhSI5aVur0f5f2QU3l4vuolst9RqXU+Sjk9fNoyv6t2Mzl0dl66LKT/p9iI/VMFMSM6cuQIWrZsiTFjxmD27NklJwAx0Vq1ahVOnDiBli1b/v2CmNPpxA8//IClS5fi5MmTuHnzJgofAC44HA7MnTsX48ePR3BwcAk5/W+THliH0QbP5YSjczOl3oyk/dwWwcO1UPRG5GrzqRePf6Zx+d9qoAcPXx/k9/VGg+/JBqTd+LEw3S1CxX+Jtg/nY2049J5iI0ANtOmp4MaUTYbtpG7Dnj2eQVHqSajp7HgbGnzn+uSaCjKu2u/8yzbU+8F4k0tJvUnUW5wpRDKftrSCEgVLKCnuPXtbjTPL0x9b0fiD0rsX0Ns0UPsJNQT/B1kH8bF/a92NsiQ7dOGpS7OhApRbKb14rjbmQcnl8YPXPvQ42YuBNVCBWV3uoy7oRjypydV4p2HULjP3Axv8fz5dIrAPQGwHx9ZQ4tnNFpjq12NqenzZfFl6ffZq0W0M8rbizOs2lwKdOs/Tk23w++wgiu7cMfweHg3qY+NBSZeXa/EBSGy1mr2beXoPAjyrIHhhDPwmam/y1GXo2abS2z09KuzSBh7bUlzmqdf3g3+JESDdXRFN4796DLIGiIcG1B5X3U8oXLua7Eev4fVaItomhQbnyyvNeCpJkC3NuqQ3p+nNIz16P4/iFOWGkx1ccWua3rzOgxep4zx7UsZvbYIQn773oYQ9dV6mGtURd3ynbh+l9cj6wooqp90wYOx27G5ZQfO9+PqqD52ovaxRe5c0p1B775LWaKP6AUDavHBk9yLuGdRuJwBRcwQgyJt+E7VuWDqm3sbOlqJ6VknrROtPYlB3lv4tPCVXbjtKe6hgCvRD3K41LtvmXo9w/PHzPABAtxO9BTvmkr6D546G+FfQRqbaX9p9G69VQemfIogFv/n3CWJpX01EvXr14O6umE6cOXPmLy0nPj4e0dHR+OCDDzB58uQS4+/fvx9WqxXLli3DoEGD4Ovr+/cKYnfu3EGPHj2we/du1K5dG+XKlcOZM2fgdJIT+qtXr6JBgwZ488038cknnzw0U/9LxAti284ce+SNHo88SFGijE7e9Ihe7euVR4WLEWnZGFTlqrBg8Mh3ADH6L6rkic0rF7IyXW2IJdmBrs8Ph+mPg7r1e9jNr6laNbhVr8YgngFxoTFa6IwWQh7EwBV/9P/C3D1o6FFF1/cMAISkeGDbbxFwcwKpb8xkG8S41G0uJ2/PHQ2Z3zReyHLb7lUi0htrBxX6GqC/+eKfKZVmcVf7FDIqR00lCpnebXCzX1vc8DKh/vQE3BgUhb3fKWhvvGF13iQbfOKuCqprevnrnXwb9QUPv8YozD6NhyFJdqDL4BHw2JbCQCtMdevCeeGCyzQ8j1V318GqgK2Ghxz8rSOl/Ik2HHtZObRwVRYAhogKEDTN1nXyBDsZV5tuehPO2snbC3eCG2g2TXobMErqulEhj/roMZrD9OYUnoraW+C+x+GyDvzYMRKsSpqP1DdVjK/+Q4Ak4l5kdX4SqrhX0AXe0cxfNWviTht/doMOAANOnMfqkHos717t+gr9kQkND/xI0WcKPMG31SfZyYgo7ym05cMQ304UwEioN9d2/M2h0dyiDusV+YQwd1OiBzhGadVE++alUVYcmKyvmmfUh9R+sF4uiGS2bOoy7zwRgQob9EFT6Dwtv2nDkdcVjY0BJ85jdbP6DNSqNAc4ap94lCTZwVBhqbDBk/+W4Vjc4Sfh8IsnVwK3mh5VWHyUdV2PeJXCkvKmNONKY8GvJaC/5vE++Sj6Yu6HNpwYQ77b8yfzsaSpN868YUPDr0un2s74rlaNuSJCVEsgKRWXRlhx4JNZun2xTBAT6e8QxJxOJzp06IDk5GQcPXoUTZo0cRm/sLAQrVu3hpeXF+LjiSul/4sg9khgHV988QV27dqFTz75BGfPnsXIkSOF99WrV0fHjh0hSdKjZF9q+uijj+Dm5mb45+kpQiOfOnUKTz75JGrWrInKlSujQ4cO2L59u27eV69exbhx4+Dl5YUKFSogNDQUs2bNwr9Lk7PISgxv6YDkJxP1BJLxXRSuPh8lvHNrrtw8XjtfhYV7NKgPu9nCJgg+37Sf2rI8PgtoibPjFf8y/GRyaCLx3TI/2I+F2c0WmEKb4Hgs2fSlzSNqOJs2LoHbXgcrk8a1my0obkf+u7VtLuZjIITxdVa3SdTh+5q4ABB3cpdmIfdqdEkoTy1g0LIth7SLe1EFD1Y2/25FfqLAH/3f0IPY8ugJYQBwok0hquUUoeHXCSyN+pTebrYgfZGIXFg0uhLjg7/p2tR0IyRZ8amjdxpLKXjsftiPXoObZzn2TTKX6p9Y0/p2GTzCcBPNk1ubUCaE0Xj0e6vbHCD9ha+vkRAGAFcGR6Dy6n3s5qJG8hnYzcRWEgCcV67AFEhsDhptuY77NSswABVaD3X+VAjTEzbV/9WbXj1Sj1e72YJti4nDYQpa4UoI08vrUE4j3fwpX7wQRt97T03QbUs3Dw/hmbYJL3RV7pGlEcLUaXii6shRb48FAGzcv5HZJuql58eQ3jexmy0Yl0f8JDrLuevOCc1TlBNnv42jAJDNFl+GJDtwzb+iMI9JsgPf5CTibvF9Fo+i1wFAz+jnhDp+kp0s9PuMb0V/e7RuVAijz8NyO5A4SYpfuAHeUdh1RwE64ilocYzQTs4rV/DMjHihDUdXl4Wycwd6aeZyAIjbtlJ4pt+Sb+v3/cJ1257Pj/9PgQ70+nfQq0lwC2+BM6/bWJ7mpKqszHmN9mrKoKS3JtnNFjZ3X39aVIPlhTCef0l2IG0OmUvoHAgA9+qQ+bL2PMXXIi1DXSalwq0+ACAIwXazhQlhelRhw342l6nbL/VCQwCA+SsyJi8PJ2Apq0PqCUKYOq0kO5A2m8CaU7+Z1CfeE2k9NW1J7a0qLbiOFt/GCu0T9KIiwEa36sbSZi21CPX/7opvqec2Nemt0bQe/Pjjw9ukDALcTbr1p/9vDBL3OBSFkT7nfEoAMRbnif2M1t9utmBDaE3hW7dP7Q8A8GjkDUkmKsQr8hOZECbJDtSoewOS7GBCGAAsaUriUyGsuJ2F+Vqj6exmYoZgN1twt6eyvjmvXVPa4MG8cOATBUwl7ee2wjfLmKGPWvwfR3+zH7H09HScOXOG/f2VNH78eCQmJuLjjz8uUQgDgGnTpiEjIwM//vjjX1K+R8lRtLRs2TI89thjmDhxIgDoQtj7+fnh8OHS6bQ/KvXv3x+BgVq/TampqZg2bRp69+7NwjIzM2Gz2eDh4YG3334b1atXx7x582C32xEfH4+uXbuyuPfu3UO3bt1w6NAhjBs3DiEhIYiPj0dsbCzOnTuHjz766N9arzIqozIqozIqozIqozIqozL699H777+PH374AaNHj8aECRNKjJ+RkYGPP/4Y7733Hvz9/UuMXxp6JNXEChUq4JVXXsGXX34JAJg8eTI+/vhjppoIAO+++y6+++473Llz5y9h9GFozJgxmDt3LjZs2IBevXoBAAYNGoTVq1cjJSUFFosFAEE8CQ0NRYUKFXDy5EkmUM6cORMvvfQSpk+fjnHjxrF8BwwYgPXr1yM9PR2NGzfWlPsopAbroHRxjBV15mj1sNWqFUbX+/y7P4dYUXv9Saa+xaPd2c0WXBhrRd3ZSlm8nyhAPPGqursODqUE6ho082Wr052PtaHezATdd65UF+70jijRqFivjQCgZ89nER+/TNNeeioEpeVLj6iKkyQ7EB3WHXGHNmvANPTy1wNaKO335uvQav+zeKPpFixp6m2Yx+PDRzH9d0o9+g5GcfIRl2UycjfpgoN4J1VBftQNTXip8lTV49i92wxim39Hjf1pGABEP9aP6fyvyE/EoKfGMFUwnnifZRSdzYgXI9XBoo5h2LJsgS5ghfqk/WHHphGVFCdtdgSy+xAwn1F57TCv0cPZwrC2fYA6qe6frvodjUfD9YAm1GiQvMNZPaLqWzwP6vIALeql2skuz8PtJyOYjzy98QcABe/a4LMgA85z5zXtQ6k0/ZgHL9Ajap/maq7jgUz02lmSHUzVivqms5uJmxH/B1DynY4+iR3N17Iy7ndvC8/NpbcLvv50FKr+Jt4W+28ZjqxuP6NXeDSyh/kKquiUPHx9sDFhXYnjgD7nrWqO3gFH4QjT8lASr0ZtGDI7VkCo5OMVdm6Dbb/Oh91sEdS8AQi2yzSNqUkg4v5YBUDbZ9TU+chNbG9ROt9D/HcdcioPi5qQW2/a7oVbfeDRNddlfekz76DbaIymT49E0Cv7xHEh+aHw5/qo+luS4bgw6n/qMD0eS/v99OpqVDYAZPwahszOC0rVx4J/iUHaiwagQQ9sD0s7Jvh41D8mpZLWNKO9h6v4/xjVxNf/RtXEb/49YB0fffQRJk+ejGHDhmH+/Pm6l0pq6tu3Lw4cOIAtW7agXDnFmXynTp1QqVIlxMXFoXLlymjYsGGp+Xgk1cTKlSvj0iVjh7wAkJOTg1q1aj1K9v8nunnzJpYvXw5vb2/06NGDha1btw6dOnViQhgAVKlSBSNHjkRaWhqSkxWj36VLl6JSpUoYNWqUkPf48eNx//59/Pbbb3853/2CW7BrewBI+ZBcXQfvfJHFUasF2M0EgENNajWAGosS4bxyhYVHVTCxuENO5eHgB6LPkTneilBmNyvqazNO78X1DhcROD5JKINe0av548PqzUxgPKvfuQozEsLUGyX1s91sQXz8MgBg/tfUEyD/HDEhxnBSnZTl0ITxxNto0Q2dlJ/C2v/iaCsCl8QIk/LV56OYECbJDmR/pvj4qbq7jlBnvXaiv+1mCw5HLGNCmFE9y20iqlbUR5bdbBGEMHX7vZQu6uKjyIlLo6xMVYYSFcL0vj0Nl2Ri+6EOp2XR31QI4999kb2PIa4BwOw/vQAAzoxsVs/q7hUh/b5IU+bVuEBsCVkPywOgq49brBfiqIkKYZLswLzcPSzcfSdRIxr462uatHazBWn3lf6l/lb8t5RkB2LSM1g8/k/NV2ji80I6/p0kO4iaqdmC6K6DkBt5U/PN0+aK6lL0d0iKBxZydUsfrIx9df+ivu5oeNrMCDa2VuQnsnDqRJdPX/OXROF5bOP2mo0izxdV3+rZ/RlIsgPpC9uwPPl25YWw8/9qiou3K+v2YQDYNXOuUB+9+cPr8wRBCOPb+/FjfdH1ueEAgD7HiRBF1TABIJvz18ULYW6e5VC0TVErBRT148z7ZLy4P3AaKskOYk8GoHr2fVxY1wQDTpzX1JvWcVxNoiZbpUcW6yPFcgVWx/LdcxDd9DHAjfhI275QcZmh15fUv6kQxrdb0IvErq2wQEajT4nALb8tqkI782XWvoE7hqIkavSUIoSpv1vwLzFszuVVvPTmDPq/fWp/jZsA/ntv+3U++70hOF6J5G4SAKTof+p6w262IG1+W1x/RucA5oHfy+0tKuvOJx5+jVk/VvMlv23DxysGsTDa7h5dc1E3oQYrI/2X1rrj5tqzUcz1Ag2/OEZZQ2iaoFf2IfOrKNZm51+2oaI9m5XHx51xeq/QxnqClt1MVCzH5FsFfsbkKwdotKxiaysMOqF1HUDfq4WwkBQPoWxa5u0nCQATFcL4PIzIb4Iy/1B/e4weQggDgCbzFfVh/+eUdrCbLbj2rKLSaCTU8vyq37mFhWr6Xhn9PUSFsBdffBE//fRTqYQwADh9+jRkWUZoaCiCgoLYX0FBAdLT0xEUFKSRHUqiRxLE2rZti7i4ONy8qQ/he/78ecTFxcFms+m+/3fSypUrce3aNQwdOhQmExE4UlNTcffuXVitVk38qCgykKggVlRUhIMHDyIsLAwVKojSfkREBNzc3ASh7a8iUxPRMSAduCceW6A7Od7qH4mzr9kQPJwg3qkXbKOJVL2JnPbj0wiZG6spm6Z1r1QJGZ0Wkk1A43Yw/WHWnODQWwJ+QtE7EVLXjSejRZb+7jRylBBXPWl1GjFKs6mlfOyKFnV+7WYL0mZFsPi3+0Zg/2fKhvT8SzYh/WMVgMvDrSw+5aXY2gqm4AAhX/Vvu9mCOnMTkfG8uOFNmjZbePaboAgb1ztcRJtDRbCbLbiwrglrk9p7FZ9KRuTmWU7Tfu5Vq7LnjclxhgsFoCzGPwYFC215b0tj1J6XiIxnRLtL9eLDb6ABoEefF8gpX16+po/S3y/kdNKtiyQ78I5fJACgZ5MOAIAl7z0hlMv3d/VzkmUV1t6sAkcY8YMzN9ifOeXVo9p7a7L0Pg9s/fg24H358RTsaXwafr3DReS9b2NpZgUpqtRhU2NZ+OVhVsBd8StH/SrxdWuTQjZu0Y/1gykkCACQ26cOy2/26T2M5+DRCvR+5yM3YQryh91swXcND2CoT3t0HjJCd044H6vYBBXduSPUNThWASUY5C1uxHiKKxABKWLSjf3JqXmgjrCDhqYI+dM4njsaQpIdaHnQDfX6nkTlB86yaRyaJ83X9tpY5EzRzvt6Y0Ddl8p1O42tS4ld1295xI6DQoUDQOACfZu/U7NbMqflvAPcwq0+CPAk9rvx6Zxdy4Ob3ErJOXgpaCdWh9TT8KO3AaW3uxRZlTqMdV67BhQXa8ZFL1sfTf1vbtJXrZFkB5p/H6sbbjdbYP5SFL4pJDcANJlENC+oU1v1dzz3ik2TH0CcNQNA2ouzMMWfhJWPT8bZV21CvJsDIjVpK/fIYmHUfpcKu7Rcu9mCtNkR4rcvcrJnU5NAlockO7DtNtk/BI84gKrLkzR2rdh/RHzm6gQAd/zqIGioCFxD2+PI+Jk4NYKsCfe7i4ep+TdqsLhUCIabGysjuuljqLYsCbkfKe3YdF4s6szRR+oMeFNB+q33g9aX5Jp8Mq6p83cm2K0PZgcufP1ueLshJ+K2EDbHm5SdPj2Shc1a/iNDns1frbjQoHVT04k2hbr875o513C/oJ6Pv8vR2shS5FOahh7MUroylMwPBb+HCnlT8n0/UZdfAMxfHT/O/hyszDdvZx5h+b13voUm7/z3ld+mQD/N+/9kciv++/7+avr4448xefJkDB48GD///LMAAsLTmTNncPLkSdy6dYuFffXVV1i5cqXmr27dumjUqBFWrlxZKhVHnh5JEHvllVdw7tw59O7dG2lp4sn54cOH0bt3b9y8eVNQ6/u7iF4vDh8+nIXJMjF29vLy0sSnYQUF5FbjypUruH37tm7c8uXLo06dOizuo1DDhg2Fv6AgsqFynlLgiPnNbbSXvuFmpd/3odhNiU8n0FZfxOLmJn/kfEo2SvYnB+ump1R/egK8O+ThTu8IWD6PhSQ7cGZtCOPhs2N/CJPQiQwvYVNQ8I4I8MH/Vm+O6fv6idU0k7vdbMH97m3xQdZB2M0W5HxCJrOgRTEAgB0/KWp1G29V0JRZPj5ZyHNJnnK6pwbvuLelMfOzYzdbsGvWXLZBkGQHDk3S+gvzvKVsbCqlk9Ptzat/YTDSI9KyhTSS7EDTPYMhyQ7cHBAJu9mCYadOC21Df/OTL/2dEkaG5sG2yu3rpXZXhDh8P7n9ZATcLc0EqHj6ruj6deGZbzu1oMwLFXazhQku1AcYbTe9hVGSHWwDTd8XHziK7M+Vk1q9Mk/+HKKpD///tYwTiD+1G/d6hGP3D3NYmVRIBQAPf18Wfr8r4bn9uDFM8Jkf7Af5TRtD9LObLeiYelsod6nfH0LZekKX3kGB3sECn2+jT8RNKw2nbg7sZgtqLUhkqp92swXym9pDrDq9yVzrzMiG8wTxcef1eQLjY2zj9nDjHLHazRbc2OSP7S0qw5muwJpLsgOeW1OEOtLf9Wbqg32kzYoQntVtw9efQjhT4oVPvh0AILpFZ9x5gmyOKeCKHg05lYepF5vgficC1DKtgeLPR5IdMP1hZnnz+Vf9LQm+kxKFscb3zz7HH2h2RLVEdIvOAIDMr6M0fbCiPVszTumtCRWAz40j80fwCMUdxKBl4yHJDoQ7nPDomgu7mdz68W2R8Q05yHJeuIAR1c+y/CmZQrUHSfxvVpcHfsv49FQoeSxmNApzyA1ExjeK0/M9D9Qb1WUCgNcXoip5UXuln+j195C9ZK2h4Da1FpB29/vXaKHdKOiOJBOnxjSv3S0rMCAhnp8G34t9svLqfZrvzLfHIG8y31AYdp7f4FgFDVH9jr8Fs5st+DKgBaZmk/nOd39FXQfBfDsUvKsc4Jlq12JzzbzcPaifSFSqLo2wCsJ12oI27NaSrWXdczT1kgpIf/do2IBpUvh8lIDYAtJXD4z4RsiD//3EsSuGfQYA+nmLY9tutuDseBvq9E5DuxlvaHhRq3/yc0HQK/tYHvTQAQCOWZeUKGSo9xD0xpfmp+4X/ptFIClJdmC8rw3ulSpp8ubnuO0tKgsgOTUXkn7q1V90Ek/nYA8vs8AjT2fesOHyhmBhHr0QWcTK/DKgBRk7HcKQbCEHbW5hilA607KE/ea1PMro30c//vgjPvzwQ/j4+KBr165YunQpfv31V/a3ZcsWFnfChAkICQnB/v3KIWTXrl3x1FNPaf4qVaqEatWq4amnnkK7du0eiqdHEsR69eqF9957Dzt27EBISAg+//xzAETVr3Xr1khOTsbkyZPRsWPHR8n+kenUqVPYs2cPOnfuDD8/ZVGn0mz58uU1aeitF43jKi6Nz0vHfxWtSTvicnGh5NGwAdybE78wDb9JQLGtFexmC+7Z26Lbid5o8H0CKvfIgu97icKpnXpjQUmSHXDvkocK6/fD8S5BCaJOEiVZuZGgcbN7KQKR/KYNXl8om0m7WUGGUk/8fB6LGu9iz+kzItnk5rn5ANpVIF0y4IdM2M0W+L+byDYAND31i8O3Fz3Vo/R8o3boOHq07sJEhQp1m9SfnoAefQez55sDIpG3qjkAIOGb2cqCrdrUSjJBlKTve7V/EnazBY0HkW+6Z8YcSLIDC5o0NmwXvj75q0M1QkmLfc9p0vFtsmvmXBQ5jgt8qdtdXbbe4swvWICi0qNegIz6KZ8HJb93jX083Sq6hysd7wjhgHI6DQDfBhJB7fyoW8Impm6fUyxNYVYO48FzKxEG98xQhDYAggNtANjZsqJGkDIFB+CJY1c07Uv/6wlnlPiT/pLIKA9ahvkrrUPhVzJO6vbnt86GsTrwNiMAUWEDlM23K8ERUG5I1PxRAZzn3ygPv7iRuu/kNc00m1fnpcsM/tuZIR5m8DwsatIIm995jNVN3Y/imsQhc5pVCEufEQk10b4T3WUgJNmBgHIP1BKTUplj1YxnyW316ck2ptak/u7jz7Rl+XVb9SYAoP4MUWAwBfqh9lFygPNpPTIPp/3UFvGbl8NutuDSCHJYxjtZ58c2/R235TeNgMW3o7oteKJCCfXNaDdbEPh6klCOOh8j2rJioW6ZNOxEu8W684S67/DvljT1FsrlD5L0BH1ekKY3neq2ufqCokbY8qCbMKdJ+cpBzIAT59FsVqxhvSXZgUvOyjizNgQ5EbdZuPymckOXdEexmzVx5vC8k95RPu1xaWBVSLIDtecnCm0WPEw8EDHio8NLYwAAhWfOCuEzvchtF0X9o5oDtI6S7GDqrA9DHrfINQQvjNMyAYKSOzWbqEfPvaoVVPj65H6kaATceDC/SLIDd56IENLYzRZEdxrAflOtAJ749SWru6Juyn/jmMMKv1TNk48HAM5KRcL6HflODK49J2r2tOhHUGELC8hBfs4U8YZ3XUEyGu69gVpPpKH9uDEsPOhlra0o7wj61EuKr7Up/sbzaBn9e4hqtOXm5uLFF1/E4MGDhb8pU6b87Tw9kiAGkKu9zZs3o3fv3qhevTpMJhMqVqyInj17QpIkvPfee38ln6Wi+fPJwFTD6Vd6cEJy98EmhScKJkLjuIpL41fSOXEpLfHwm2fOnEF6OjnZ7hfcwjCNJDtQ1CGMbDjPnEXR0QcOid1N2LzqF0iyA38s+Impw9A0z54kE8jyPK06AgDkvUcmyIzFRFk/dAZRReEX6dX5okGv3WxBy4NuuLCuibBZpHFq/ZwoLNL8/1b7n9Us4FkDHmyWH+jn2s0WXBppFew2yuVfNpysaDg91TM1CWQnYhU27NcVfHI/tAn5nX1N2UAXJx9B+i/E50rl1fvQ6KmjQlr1oqQnPDtrEbW2S6O0OvvqjbDdTOy2+MXZewDxJ2dOqor8CTZkfBuFI5FLdRdEvfz1FnU9AZz/rf5WfDqeZ6N4etTvuGJzRYlX5QSAzu++gswuC1hZj8WS03N6Os2n5RdmN89y7D1fN2r/pBYoKQWsIDY+VMBW19WZlsn8zgBgNgB8HL5cvn3qT0+A7bWxLvtqwTs23b4EkEOJNpNjhBsTvtxele6g24nemm+c2roYV+MUtSoa/8zrSr/mN9+S7ICfNILF+yJbMebnVbx4vvWIb/fnsh9HUXvyHDzygNBf6MGRud9x1mbOTq2FvnRphAjSokfl45Nx/ekozfih/9U+1YLG7WPqbr1sfWA3W2CqVg2S7MAVS23YzRZ8GxiiKc9/JekjjT9MgMc2RbWMj8erUQW8oQUu8ls/CnG71iDxK0UFWZIdyI7+ifF8u76bZlxSsh0WBZIf/2ykqW/wwhiBL1fCMQB281YS8X2L56/FNyI0ut7854oHfh4ZdOKsrnBJ7YGMVNn4gxjfSYlwr1BBI1Ty6qOprYtxeZhVl9fVIfVwPGYmKzv9B0Xlkeb3dWAoGj7wyUmJ2jNKsoPZW0uyAw2+066z/mseCFD5BbCbLViel6Dhg/LGq7Sp615pzT4WV70eD8vtwMLjT+3WCEPBD7RK1HXjST3e66TeZLbhemvodf8qaFO+HO53b4vZ3/fVvKf/wyfFwOejBAw6cRZ2swV7W/7O3tMDGDoHXRlq1XVUHjY1VrdP8XMMX68+lclBeeZXUfjVd4cmHUDmBr5PVBx8Bj9MmS7EoRoolO7VI2O+w0tE6Or7xFCmVrxnhuKMXc2rmsfgkQc06zf7fVQE7/qPpr8Zvv6vooULF6K4uNjwb8eOHZq4nTp1KjHfnJycR/IhBjyiIJabm4uzZ8+ia9euWLt2Lc6ePYt79+7hwoUL2LBhA7p16/ZIzPxfqLCwEIsWLULt2rXRr18/4Z3ZTE5s9FQKaRhVRaxZsyYqVqyoG/fu3bu4ePGirtriX0U199bSXZy3/LZAG87pt9vNFqLGt82bTTCf//YUJNmBZxqRzd/lYeJtVV0HmVgCB5PTGu/PtGhYTxwnm0K6qQaA+JxmONj2N117G1qGJDvQ019Z+CXZgcMRBDxj750izcJKVS8k2YHaPyUKi8nGhHUsn+BdQyDJDnh4e7H09CQcIBv411K1Nnz8ROjzsbhhO/zWTGFipHr5FAiFN4LuPGSEJl9KdrMFphrVUXzgKNlchiubtWGn9G/hAGBjchyiw7rDbrYwe5r5uXuwwGc3vD9LQOBrSejRWx+8ofKuugI/NF/Ks5pX0wPUIfXiyv+xOkURB9+By8YK8ShRlTJJJmqY6nzXNFN4o33SmZYpLO61NpxgeRRu9UHFtWRxTpvfVpMftYsClJNz9eI31Ke9pj08GilAJhTtkxew1cIxT4lfz9aEqfni61j1tyTdb0yfLX2PM2AWntwrVEDQuH2oMycRRUdP4m50OPMVSPO2my1w75Knu+BXjyYgIGHJihDX8BvteKbfMHiYoqI1cup4of5UdZja2BjV9ZWMk+x5qd8fKPYgy4l3UhWhPHZwxJGzPIlLN6a152tvTfMmibZEABjSW7dBQzX88GVS2t2SaDzQOYT69AGIM2Z1/LTZEcgaOBvZU8XbFnU8NUmyA+k/ko38hMxUBI9JVtJEtNCMHYD4fOPHs/ymjd3GJrQitp7UHmpds9qauvpNFH0ZAkQFcfbpPQjYNozEi1AO+DKfUfqye6sQgReqPnxxfbCGTzqnH3l9JuNPrz3UApGaXz7eipAGsJstyJ9gg/3EEyycjn966EJV1I2o6M4dmJop9qzqsrM/t6LWAvFw0BTkr8tTVv85gv2Q0bfny2rxrXJ4SbUyrrxIeD79sRVBL+0T0j3TSOvvkfJcY3EiMpdakPFtFC7EkDzUICG0H+V+qOQjR11Hyt17wnue57Qhs1DcTgxTU/cBCihYxKGBQFIqvH/11I3/7EkZVVYS9VDPzQc0YF983WotIH10yuYnAQAt9z/LgIR4P1zv+EVi/9RZQh7079DEmQIfWV9aGQgIrW90l4FCGxW3syD4szRNfpRMtWsxv2oAcGtpQ7QpryDgqUmSHQgelYzCrT7Y/SMRuooPHdMItmrBlRf2+L5Jf9OxxeI3/89DSSyjfz89kiDm5+fHfIj9p9D69etx7tw5vPDCCxq1whYtWqB8+fJITNQasyYlkcmgbVuy8XN3d0fr1q1x6NAhza3Y/v37UVxczOL+1STJDiz3UxxMZ32hnOT5bx4BU11x031ppChYpQ+ZBXRR7KEaf0g2OVV314GpWjXUXX1MmJDyurux33RTdWNgpDBhle+eA7vZgrE1ChiPR6OWkA3uAx3405NtbGKhdgEAWSTZKdAighqY/ZmVOZjs2aQDLq4PFupgN1tQ2KWNsEHm3/s9Q06gNu7fyPIOeIucjFL6OlA8TeXTe/j7MkN2ALjXIxw9fJTvSW3r1t6swoBQqBuB8jsbIO//sffd4VEV3f+f7CaEDgECYUlCOoS6IaTsAoKALIQiRRFEEKQmKHasqFiwV6SDIIoidoTARUBQSEIJLKGn10sn9JpNfn9MZu7MLZv4/t6vr69vzvPkyd57p5yZOzN3zplzPqcvWaxNHdrqCiauCxdZfRFT9uDH4t2QZGKWSPtPkp2CU7PDYoXr1GkUzbJjaD2CqjYxkKDM0Q1hRfphjXbTYbFiRqstum2lPFNighCH1KhHkuxEyKZKYbNS2xf6ZJqQ/sbgWCTcdZ+g0Ww98iByVulgUXM88b9peclHtrN7tSeUszQRExWtoSQ70e+eB2H9SjFF5PlVl69+tn7XOmR/GaVps7lpE432WI9vh8XK3jcluunm21PVBhQAztgvsMDXfHnlqjAf3sl7cDmwcnmuBPFwVy6l5ncfM3zuulP0N6U8N10i8kNNh3kfGxrsll53nzEVn4S1FTc320hgdoqkedal3dRKshMeMR1RSyKnZqMCyOn0jcGxjAeaNuANxZdIPX5+XbPCsA/U7c9aQdaT53Iy2POGX6dpgjEDQOT7Z+GwWDVCDuWLOvafeoRshBvtUAQkuul+M7QTsr+MQug3RIEh/fSFwLua6D3LeynCaazDopg167VLTTnvxaPOz7sR7FUfYWMJ0id2K2ABA6P7s3LKDxwV5k7mOLIJpn6IADDg8AUAwJ43FkCSnYhcnCQEyFWP9byvO7N7F8sVUz5388Mn0wX0KRY23vSZJDsRNEv8ZvNpPFsSIIjkzWuEfg359SGWlppF87y4shSAl4Sew1k5ALDkYDeEf5mI3HdssL6ZxOrz9GshlEGp3Evha5g/UUz5fE7qbP2SGHJDPYb5Z9SPLvR+J9rMyYHvApK3wWrxtJUChgTOFs2snw8W/bz4/nJYrPDY6RTuqQWTTd9/zn77DCRWOt7Je9h+gLca+bqtaIpI55ZeOyWZILWGP0rakRH7NSKmECXF3RtnCLyyb3RlX/MCDACYGjQge6GZqYIvZdbcOOYzS3nw2OmE69x5OCxW5iMXvE4B/HKdOy+EKvFZobXk0eWt0s9TfZ+/pvkpCEvmfOXdLLvoJ6RtsjxVMJ+UZCd+zFRAYP7W9F96IvZ3pH9JEGvcuDGaNWtWdcK/kKhZ4sSJEzXP6tevj8GDB2Pbtm1CkOkrV65g6dKlCA8PR2ysMllGjx6Na9euYfHixUI5H330ETw9PXHffff9H7WicmJXmunVPqfAaYaPT9fEOGq6VFnoJdmJgdH9Yapdm5kqULrc4ywKHu7AtMF0sQifsYstJJ+EtUXm0q7Y+fEiVqaGr8r/1HSHpmv9MvkotFmWyE70+PQOixX1Igl8Pt2Eevq1QPnly0iPXqOpa8sXy5hWXm+DrF6gC2bbsSE3DbmVcNJmH7KZCdxVD2W9o1n5nd9JwvodPwm819mVjdYpXohcmASP6PY4/hCJPbKkdy9NnTd7nkRI5Yd9w6bVmJ6ViQp7Z1bW9srxwm8mqMkkfUddXkvEnYfvZrFdJNkJmMyQZCcCXtMCJQQ/n8pOh/iNBU3Xq0657vuiaWgdo/J6s9/UDyjrkzjd95zbj8TbOcmBttCy5Jl21P5lN1yHiVDEI9KFjlFONQFimknfHzWTiz9wm5mwqUkNqsK/f4+UAwzAhG+Xmkyd2mp47rR7NMIe2M/6jJ7Y0A+1euNA34lHjHKaQE91qBlv7jAyT1y9urC6+P/q33y/qIkC3gAEmITS4UcqQWNU8dvU419NRvfNv4lohk+eEM0D9fLT/t/Sbq3Qr/W+U5zyPYNb67Z/TABxWC582Y52KQ/A3IyYA278+Qu2Sfkonwhb2xeRuSM/bdetn6eg3XU0m6ZBmQMAQDecBwWQeTO0EwNf4Ikvi/p/Ggn7PivI/Gsxl/B9sbs2NpgkO5HTeznCHlfQ6tQChrpun51NhPzq55fu1wKI8CTJCnqi3noJiP5FalILSR5bW2FD+8YAgIxbxIeThikAAHPjRqzck4+SdxY8+gC7R33TABLDK6FTH00/tZuXxPw4+TFN+aDmmGo+HRYril60Y336Rt32UosGo3nAkysrl5UDEEEo64EFyHpgAZzPzWfIpmUnT+nmv95WVKBIshPW/cbziYbFyPlKuZfzFfGjo2Mj+YACFkBPLiu6WTH6mCwAhhi9Z8oHvUfL5UMqxM+cBoeFgPmo38uJJ+0omkUUJPW/3YV2KQ/A70PRDWFV0U6hzjdDOwkCE88Tb8bLv9+Iabt118Syk6c0bSv+vj02HP9D01aHxYrwR3ZhXUm6Bo2TElVu5A1awp5RdGGj72bmQi04EQBMz8pkSiM94vvSaxNR5OYNJWtb6fpwTGx0Erf7Rgv1nrFfEN6XOzeVGvpn0r8kiMXHx2P//v1VJ/yLSJZlbNy4EbGxsejYUX8Qv/nmm2jUqBH69euHt956C/Pnz0ePHj1QUlKCuXPnCjEEJk+ejOjoaDzxxBN48sknsXTpUgwfPhw//PADnn32WQQFBf2ftIMuUvmvEnMEyzspmsWVTlhey0I/TmUnTqL8xg3I8ZeFfNeGx8F/jjbGinohah14VihPkp3okK4dIuGPpqF0vI1taDOXEmjnoFmpKO2m+HNRxC5JdqL53cfYbwBYv08SeOGfAcApm3tbaV6LVF6LnHBlVWp1kw//BgAojLvKTu0A4MBM0cTBYbHCVVqKRf6pCHw1BdmjG2ByUTc0+KMZEwp4kANKkuzE2+fCMS88Apu++1zoM7496v99jgzBvlkLBLAQh8UqmJhSMtWty+rMG7BUUx7lSb3Jo/95fhPuug+l3c6j60vkNK1e/1w8c8rKEK70PkaS7ITf0KNIu+ESPhIHHyPCAQWOCHohVYBRbrNXgbdvukTRMvovJwJGWmcvmHYoH6suryYK/Kr9JNTj/+ID8QI/TFMZFEg2GxnHNPkzKk1iARKQc1ua4h9GBWlazoCE+9k7qdhDNJPUHw0A82ejlD+5gvHG00f5Wif3zu8QMyb+3QJggDcA8IRTNLGBTmwTqqW+5RCFjkv3x2vGgh5Rk8P3W+7Dzhvl8PRrwcZReQ/lVNNoM6l+RlHyzk61IXOpVhAKnJ2CgHsO4eicEDZ36CYlslZd4T3yccJovfQk7+wUMjYW+afi8n2iYz0N0EtPsSmPlM+2O8aiYLYdzhvKyR6lkmftmrkU/JOC9NdzCvlNoeiNhCkAkGfa0WuionmP+H2cJg1PtBx+3aRpPTjLjoZfEaGOjh2jTSSlj/JTNEiXPL80b/ZHShykmBfI+nBpdDyLjTi/YAeeDorX1OW6cBHR+8vJOvFxioYfHvXTc2s6i6PG042W2gDxAGB7iij6pjcu0jyjdQS8noI7kqZoTLON0vumNMaT2YopGQVhmVuwU3e9pn/7n5+P/NdtumUWvmJH3cNirD0AOH2TnNzApMTrLPyW7EsmB3YnQnNlAO6+9z+E0PudmnqpSWr5AbJueux0CidRAAHM4Plh/W8yi9eVZdPA9gPC7MyPjoL58NTy/RSG9AoAR+xfatKMCejGyi9YU7nn8vDAjUGxAkqvkaADEAGd7zdz+zZMiaoeT4dtqzAg4X7okSQ7MXDkRFzseFtQ3hnV67BYsbFgt64yixcS1XkrulkxLzyCxTbVI7VCg5ZvbheBZk+R68IJimuGZ0s/eLb0Q8j3U6uc0383+m+Gr/+7kee/kumVV15Bjx49sHTpUg0wxn+CVqxYAZfL5ZaXsLAw7Ny5E88++yzeeust3Lp1C126dMHGjRvRt29fIW2tWrWwefNmvPjii/j6669x7tw5hIaGYu7cuZg+ffr/dXNqqIZqqIZqqIZqqIZqqIZq6B9OHhUVFX9a3nz11VeRkpKCX3/9FVarFbGxsfDz89NEpvbw8MCsWbMMSqkhALh06RIaNWqEXrgbnh7aYLn8aVFC57vgUa8OiwfDa3F5TQx/zyOqPSr2HxbKjFiZiDEDtiOlM9H0m319cS0mCN7J7gNVm9u3YSZpav74ewBwpfwGRvjHszTR+8sxp0WG0B619kqtEeZpbckeeHt4afKr69XTiNHrkUdPYvflYOTHXsd1KRh1HCJcttu2t2jOkBzd8Uyv70iawhzP1STJTvQeNxEbPl8Ibw8vtN0xFq1HHhTKnZO3W9fu36ht7t4F5W9G9jEMrHvDrdZQrw56z/pWEosB5OHtjY1csFq+D8xtwgTUQ3VZpevDsTvqWzgsVhTMtiPko6NwlZYKabM/iBdgvQECRZ3RpYKlu7oxhKH86ZFHdHtUpItjX2/80N8v5DpZIFlK3tv9EO+Th+2d6kBNZ6faDIOoAuQkuu4PyimKXn+fm2xD0yWpMDVogPNDO6DxF6nIXBirMdtxZ2albsvDJXHIirkpPDOqP+ddG7LHLMDNitvw9vDCwG53oyyvAKcftgtO8kbzDSB+Nsnbf0D4tvEIf+M6XIePC/Pi3EQbg+02aou78ahO82fHLr2fd/sKpo6aDo9U0TcsofNdSD7wq6atZh8fzbjUm+9G885hseLKyHjs/GghIhcnCaZ9evxZ30xCi7kpKHrRjoDXteELKBnxRslUuzau/txSd30zdWiL8kPH/nSb3JG7Ptezduj0XhIyniIn666KciFWptH6FuN0YY/VLNyPnp2omX/qbyFtF72/onAHeu6cjtC3bqH4FQ9cOVUffaMOo/DRUCAtA3PydiPam8QyK+sdjRvNvFB/TZqmDgDoPX4Stq5Y+qf6Sq+P1Dyq+0GSnUhofycWHvgFk1VgREb9RX/3HzwGF167iSZjz+PY+8HI7bcM3R6bhp0fLYTDYkWjHU1xsfs5IT9P1W0b3+9zS1sLvo4AcPm+eKR8uJClybl9BUmtu//ped91ViID9lHzXJ0x2HHX/bAMO4Lrd8ey+KF8mvkFO5DUurumHCPy8KolhFwoft7OrI8yF8cwfzi9vRrP75lEG3wXpCJzSQxCJqVgG37GxYsX0bDh3w+8g+5Z2z4yB2bv2lVn+P8k180bODb3+b9tf/w76F8SxIyiUGsK9/CAy6VvflBDhNSC2Nt5u/BMMDE96n9sIMIanMWnrXZVuQEBiC9G4GzRlltvk+BuQTB1jsSGDV8Li1fYqkRkj1lgWFb+GzYEvWC8IVVvWCXZibBt45lJRpu9Xjje9TYAAqZBY0IZteH0w3YWDLc6ZG7ciIFo0DIB5ePXWCyuSwABAABJREFU9aVEhtTIt7vfiAfZpk3NT3mPKPz6jQK7DgAenp6oKCvTbAb63z2Wmbnp9bvJ2g7lziMsfdSeUQLoAk0Xuqc2cmIUAJS77psgxCdRl6X+QEesTNQ4r/M8VYfU/Gd/EI82UYVw3Slr0mYuj0bks0VI3r9JaIe6zj+7EeSfU4FaL0/O+/G60OLueIiak4TmnypmhfbHp6HBN9qNWHUFAnebBDXlv25D0IupGHn0JNZE+gnPaDmdd49m6KNGGw8A6DN2Ijy3pKPkh/aaQKU8f2pe6QZJnW7C8QIGOFP0XQcE3HMIL+Xuw6shxM8sWJqIiAnpKH7ejsMPz2flDbQNxvrUXwzXDkqDDpcKmzejjTT/f+eNcnSrbTJ8F+ZmTZGcscVwXHlEtUexoxEOzZivyXtpdDzsT+3GoWjigzni6Gl8N/EueKQo68FzORnoVYeYGRW9YMfge1Lwdgsn45nSzJyDeCe0I6vf1DmSgWUYzQl3fVXyjF0wZ60qf3XJa1tLZuJJiSpE1GXfHBADuacnW09MtWtjQ27an66frSNfRCFs7H5BAeO93Q83e57E2Sk2NFucqplTgHYO6I4DX1+Nf7VRWv4ZLV+SnZhY2J2B0JyaYWcKqSezD6Nf3du67/GLop0Yy5nwuePV3XrI2sEpQn1TGuPLoG24Vn4Lw/xjWf6seXHIHUZQ/U4+ZhfM8f/sfqBgTUe0HnkQ+a/bmO+0Hl0Ya0PjL1I1ZbprJ/3v4e0txD7s9tg0jeALAKeT7Nj/onae6o2FvK87MyAeStkfxiPscf1vgfy0HQcfJ4qB0K0TEPaAGCxeGPebgljAbaow4+nMNBt8F4ogLcHrJiNiyh7dPn48+6gQQsNhsaKs4naNIMZRjSBmQNu3b6922r86qPN/G+mdiOltTCnpac74tJToR0yd5vR0O652v4rg0Qeq1B7SvO4W8huDYlF7nVZ7v6xwByYGVl/jpdcGvefuNrhV8ap3ymKOCNWNXcJT5vJoBvetVza9Xl2UIsATV7XJMocFw5WtL0TQe/TjW51N2orCHWjpWZ/1T5s/xqEirx6Cn02FOTJcQJZqu2Ms2vmdxNU7zmjKSyqJx/xWaRgQEo8NuWJ/GY1Jnpd1JekY1EoJhNs/sCsTUEO+m8p80/g8ev2V0GsEXJk5RDjPL0LMvluCVtxd3/I8Vmezple/Ud7Vl30wqkEpe3bycTsOPD1fk/7/d2Os5sF1ZxeYf9tX5Tj/s/Xnv2bDZ2PmMaGG0sUH4tHoyzTkvm1DyDNaRYW6rbzQdWGsDbveXsDebe9xE+G1WT8mV3UEdP4+FbDNzZoy3yOjcTQlMxeLI0I05Vd3XfpXBCWeXHd2weZVn6HUdQ0+5roYGDcIhfcFYtn0jzErOAblPaNg2r7fcENs3Q98+0cccu9R4hSZatdmiLRVrZnq/rvVPwa1NhIt/YVxNjReqWyg+W9GddqY+7YNWWMXaPpzwOELWP1mfzT6UivAASSUB50/f1Y4oMRbKPDt5b8Ns8+0Y2EAHBYrcr+yIqvXCk1ZOauikH2nNjyMJDux8EIr/NjOt8o5p56rM3MOok8d4vubuawr8gZoT85uDoyB93r3Vijq/uDr4GlF4Q6Mr/ze8uSwWJG5IJaBgXTaPRothyqAQHptoekv3xfPwkVU1d7q0vWhscxSxN2aK8lOJNx5D5J/+w7tP01ioR7U9Z2dYkP6KwsMy6En0vR55pIYBnhSviWA+c2NOVaMVW39UR06vy4CTQZluk1DLZEk2YkB4d0YAi3/ziXZiXkXAjC9cRE6pI1hCrP/FkEs8uG/ThA7+uk/WxCrNljH2rVrkZlJBl/Pnj2r/VdDf470Fht6rf4oZX8Rpbu4u+7swj6oFGjAYbEic3EMms9LQWZPBapWkp24I3EKtlwnENkUAYtf0PmFzRwZjotjFOftupsJJHT7uUnCh8rfsz6u3BvnVoO1rHAHi/FE04Xuqc3Sudus0XsUEITvH3X6kmeJcLRu+Ae4MpI4p59Z2waS7GRxrdQkyU6G7MYLYXpE66JCGEDipah5pb/pf1d2npCfIlHxlPzrN5r8Hp6erBy+nS0962PhBSW+WtB9GQh+lmygk7d8i5ubglgZx7p/gat3nNF9zzkxN9DltUSm4XZYrOg9fhJsB0Zo2sxT3zEPwdy4Ebw8zEK7NxbuZb95IYxvl55CgL6bstx8XB8crTFNMuKlqk0CrUuSnTCHBQMA3j4XjpsDY1h+fixnfygChPBCGAD4fUhAdQb01wZiVvMkyU4UzLZrnp9/SBsvifY9AFwdEYeckZ6GmzI+Vpq6nTyZmxG4dYrUaG7RHEGzUllICZ7S3llIhOdntKeofPtzvyJ8rk8lAeV9Uxrj0hByevBjMXGK37qSoNpSZ3zaNgopTd+Hw0LMqQECmMGvfZRCn0zDoMOlcJ09x9rXZnmi7to57+GRGt6N+gYgJtCUFx5qWp3HSBGhJvNv+xD1ehKL5bh+1zpY3kvBrGAy1qgQlhDVT9NOAHBGAR4+t9j9rHlxLNRB90emauIQAeSdqnmj/6kQ5uFVC7veWiAAx9zseZKhSua/ZmOBkGn+6P3l8N6u9EnIM6msTx7I7wUAmJ2bDj/Pi0h7Z6FuewBgeRstyqZef3b4OEnbtsoYYLwQdm6STZgrtIyUzrWQuThG6TsdIQwA6u0hZsd1treA/LQyN4dn38XCthh9W/h73R6dyu5TIezd/DRETNyrySPJTnivV8YaTzzgDf2G0jR3TtD6wUuyk8VP5PuV5su7ezGbG1QIk2eKCIP8X0QiGQMpH+q/Q1oWLf/cZBvGHCtm4C38HCmaJa51vLk+zV/eM0q4R8l1nMRGpKZ+CR17CzwAgNfQM7rvlN6rv0Y8peVRJ019imCOCIUkO7Gqrb/Atzk8BGqSZCfMLZqjyaBMwz0D/U+FMIfFirKocPbMe/0eDDlyDvnfkBida9s1hePoIPz545Aa+idRtQWxYcOGYfXq1cK9b775BsOHD/+3M/W/TALKVnwnSLKTwWjTiZ31Odk05fRZDg9PTwzsPpTl93CBac0BYGOBsvBRe2W+LACo8/NufNCdBDf0+ziF1U/TRO4cqwgPR7PQaJWyuNETE/83KzVW/tFska7/rbjpBoC+9z/EypoY2B1lRcXCQpkTc4PVr7cJo/cdFiuyVnYRYJJ5vgHg6sYQ2A/cwqEZ5LTisSA76q8hGr47W2XBYbHCktYAeuSwkGCVkuxk6GO03GdOWVHyQ3uG4gYQsx5+cW459CiwhWyOKZyvWpCmRD9eFO6bEoWIVi/6FWUKHDAfjwwAPn9tsG5bAOB2uUnoP/WmvtekySytq7bo7+m1aS8aDhBPDvm4LACwedVnQhy1qgSiqj5mfN7fF4ihJBifd2oFCF7Q0qu7wR/NWDoqDD/TNAvbliwRyqb/wx5PQ8LxBMaXusyc94igtmHjal3eARJHL/cdsmE8Nnm+pv1NPtMKO3W2t2Dpzrc1I+/uxbpzYsiRc1i/ax16ZpDYTaYGDTR9W/w82RC5zp5Dwas2Ztqm5/fIX/MbZSOBI0SF+nbGfgGB9x6Ew2JFXRNRBFEkPOrXRIXRiCl7kLmsK/oPeYCVT31aI5LI2mVuE6ap9xGfAgGOO+hFrVmcJDuxdcVSYXPIj8suryVCTUNaxbB25N0UA5LT/OF7vHXnZfrNW7ob6+bzydrY4I9mmnxPZpP4gFmPhwJQBHJhTeSQOvkAwfW+38UC5kqykwX/Td6/CQMGjGZ1LSzYweq8tCGUoCLeJsLdhmyiRPDwqoUfixW/1OMTFwiBkAEgPcoE/7oXdPvk/Hgi4MfXNguKCprmlqOrZm5XpUyhY9RhIXDikqyEF6jopszxpktTWRBl9TjOG7QE60rSdeug6f0+IvVc73kKlncVs+Qfwn6tlgBG+13ve/d0kBiUnea74+AwTZnmsGAiCE1SYijSMumYrCURpRaN8QYQRFA1TwCQ/WWURkClZHlH6Vv612P6VLRZJs4J/h3prdcAQccd1/As5rTIEOp3WKwIeC0FuW8r30m99d20XWVeX7s2HBYrC41yejpBNXWd0yKLNkrI1vCjUZhUYhfQe2ZfX2U/w1nD8HzTcUbzmX18yDypWwc9M64L3xi9/DwfBQ+XC+9gbbumCLovQ+GzTzELYG7Ux39Lqokj9m+jagtiehaMx44dw88///xvZeh/nZr8UhcAiJYoLQPt5iWhYs9BtliWPGtHvUO12YStKCsTfKp++2yJUJ7DYsWA8G6aewAxuXNYrChY0xHr0zdiboH2RAYAAj4ip2WerUT43OyP4oUFxmGxAuUuYTExNxXj42z+6jPth2GLP/uYARACVxt9CCTZifBxSlyk63fHahbpev1z8bLvETgsVnbyQZ8fii7HpdHxWB74h662kk9LNYQ03dstnLiR0xDprxC4/MyFsRrfCgA4c7Ue2ewc/8OtUKK3wXVYrEg+sl3YWCy+qA2kGT5jF84kKh+6hl+nacqi5VGo4ksbQjW8SLIT3sl7YG7YEOcfsuHOB3YLzy+NVmCuKfGOyHx56v/5r9mQtVIRmDyi2wvt4v87LASunO8TmnbccS2c9eZVn2nGxdURcZoNCP9eL/c4q9kQOyxWrLnSiF3zY12SncwHji/zxuBYmBo0QOhTaeg1eTLinffoCjQAEPxsKkJmpqJ8SwB7Hrp1giYdz2tC84OszoA3UoSPP59+bTsSn4sCimw4/ge6vpyI0vXhLFg51SpLshPHJi0QNiplfaJR6rom8KEep3oCGU+S7BQUE+rx1/CrNHYi67BY0fplhZ+IiXtRsfeQbplF33WA63g2ynuQTaXHVuXE99fIX5TEld8nPtA2QHz+Or9LTutp/DqHxYoRR09j36wFmjr5uukJrLrNFAhF3Q8zJ5Gg9RGfk81s8XNE2DzxBDkNu9zjLE7/3Fboy4f3joYkO1l8wiafkRPsvNWdWLl6Qh/Pp2dQIBwWKxqsJkqmeOc9DPbcYbEi2IuYK2OLPxoOyGFrBH1+aUMoKm7fQvv10yHJTpx6hPBLBV1+rFBFGQBMLlK+Kzmv1WPl0fbNzDmIjh+SUy0qQJgbivEhPUOCWNl8Peq+zRuymAlkDgsJUBz+RSJLR4Mo641NLw/tSbpaMO8/5AGh7pFHTwp8qom/12B1GiLTPRUYd65cPmg8L/T83vFHZH9EFDjXygnYwyVrc82aSOl0kniytKF9Y+RWxiI71v0LnHzcjvBt44U03kfrCHEVARK6QpKVOFp8v9yqb0LQrFSN4gIAsuYq1i2Ti7oJAdjVbQOUeIiSrJyoSzIBzOHrBIj/JVVSAMB9zlxIshPHJyzApdHxaD4vRdMvevPBZG3HeO8/cIySvqJCeI+8v6DRen19aCzO/hLByqAhccryCtg6y+fjLRLU3xV1BBJ+DdcbWzX0v0fV9hEzmUx45ZVX8NJLL7F7s2fPxquvvloDyPH/QbyPmG9KC5R2O69JI8lOhH01DeYbHghbUoyygiJ232hTtPNGOTM3kmQnol5PQvP5KZp8VS0GiVnZWBAepvlwqRdEvevwPd5IP0s+/qen27H12fcE8z2e3+ps9NzxWdGNfJz16MzaNmj6Th2YdpDnWZ/GIfxhrZ+Smopm2RHwmmKbzvuA/Rne1GkBoP+QB1Cx9xDLW/CqDa1f0kcAU1/TMiYU9oAcf5k9S7jzHriOZ/9pfhwWK9aW7MGQVjG6dev9vnJvHOp/u0uw+S951o5Wb6WQODaVQYj5j9KTJ7ow8ANA8XXRa6uaTj5uZ0FFzT4+SD78GxwWKyLTPYWAoXpt0yufXud8ZUXo/U7Bd4An3jnbHenxz9+jzuJGH341n4G76mFJwE63fcKDNvDlerb0Q9mJk+we3zbPVhaUlchu53B12kmdzAu/7YiAj8zwzCyB68wZzRh1N34dFisuJoehUUI2PLa2YrGr+HSPnejK3i/v58iXeaLsCsZnjQL6FFdZrxqAZ27BTjzSupvgR+NuAy7JTiT0HI6zH5nhM5DwQpHn1BswvfFHAU6M+lWPRh+TNTGk1HmqO+cpypteegoWo0eS7ESfByayuIwUCbM6dPKnSPhVmsTxqHI836Z69bAha6fQbzyPnfZ54F2//W7bqO5/gJh7qy0N9NBOjeYhW6+PDURFhQc6NJZxKLpc7L8t/kCfYsO1wpLWADu2dUD9yFIGwkTzZn7WFW0fPY7yy5cN5+GNwbGo/ctutzzqCSjqZ+pvZHXHjyQToXfCgK3Y3qkOJNmJAf1HoTzjGAJ31cMfGzvj2GQCpFFnewtc76kNfq1X/vkJNjRZnqpBt+WRCE316jH/KoDEr/wkrK0un+6eVTU/9Nblzu8mCYGsARgCk1VV/tlfIpAevQaAqFih/tOAAir2X+MjlvQX+ojNr/ERq6G/gG7264LVwVsBANbKk3p+4a1z0oTjDy1gQhi9z6fjSf2xp0IYT0abQgBALEH5GlrvCqur7VJ9Pww1MS1azE3Un9MQkuxE83mKEGNJU0yn1OWp27S6iPA9Kk+xD1e3AQA8L1wXrqk2GgB8hxyHaYei5Xu416/MV8Zde2hQS7pwVkcI49vlGdwaT2YrH5gRR0+ztK3n5wjtVQthekT56LL3PjgsViwP/IO11WGxMsh4PYHAXZkA4O3hBUl24vxDNmR9Tk6kaMBQmob6YgDAiUEE5ZK3+ff/MJ1o+orTWb28ppRuYACCbLUhN41dd52VKPadfyuBz8h7jrF36iolpk+DDpcaCmF6RMs3NyMnSCcfsyO71woAiu/A2hLRfNe7Xz4k2Yl387Unjep+NTdWTtSo+Rql6XdtQtanymkNP7f1xn9h3FVDQYD+P/TofCEf1bKWnTgplMULmJfiAlgZHl07CDwYjRNaLl9m/7o3cW14HALvPQjPg7lwnTmDIUfOaco59YgyZ3itdvcZxJ+GmhZRIUydjn+/TZZpke8cFivxj6kUwvi28HyYf7OQMa1CQX2kdTfAZEZE4m5U2DsLdfNl8O13ZeVid9S37DkP/82/T733Stfly/fFa/rVI6ajbp1ft7UIbcn+IB4zcw6ya6ONuN41D7WtJl4Io/luDoxhvwsnEeXKxTHxaHLsOk4/rLzbH4t3a/JSokLYB/mpghDGpy+/elXTb3z/vesnItkBREnC3xua5dCsxWohTJKdGgRfftxQor/vfIiYX1f0LgH6FDNFkjA+KseekcJGjr+MkGdTBSGMtiHiob3YcPwPViZf7rlJ5ISZBhA2+s7Q+6UPKr5y9F7whkksXfYUZbtHT3DMv1k0ZVNaVbSTlR/yTKpwElSecQwAWafo6TYAjRBG+ZxQ2EMzLposJ6dvFemHhWd0jEqyExuydgrlUEGLfUfmkD66MSgWA+sqp7U8jTlWrNs+nkc9xY3fhykCX5LsZEIY9c28ME5rSqxuOwA0G5yJrrMShbHtsFhRUVaGi2OItQmP7FxD/1tUI4j9Tch70z42SZ1R2ueW98jx/OX74jXPwr9UNrEmazvNZki9yJx2XWX3Bxy+oKuJk376AgP6ieADrV9SfAaGHCEa4K4vJTInWkl2ou2SJPZbkp0w/bFf4EeSnYI5YPzT0zQLNDWJyVwYCx8zMdUs/iBck+7ShlBWDoX1pXX5v6n94NNnny/pj+SMLcI9ylv2F1GYX7BDNy9Nc2OQEt8rodcIdp9PV1h2BWV5BXg/rD0DH5jSSDFvK7nWGOF7vHU3v3xZmYtjhGcOixW+Q45j5FGy2a6wdda0lebvkUE+TL0ODWXPzJHhQnspfX+lIe5ImoI9ry9A+IPE5JPXUgJgEP+S7MRdkUehpo15u3Q3ojQPrS/3bRuCRx+A7alpcFisMP9mwd7XFgj5yoqV0xEAKO12XtPOR3wK2GaFggwABOb52vA4Ib/DYsW4gjsAgCHtHZhJBBnP4NYsb4cvZyBzmejP4rBYcffGGVhTLPrMRO0ZJaThP6RZMTeFMqQODZE7XEG+oyaDarpyr8K3Wpig7dDbOPLPGZm0CJN/fLqIpaPmgOZKLSOfl5oW0fvqjb7DYsUL76xA3ted4bp0CQAxkVSnbzE3ReyHyr8dnyxi5dN7eXNsMPv4MIAh/lnWyi7Yt6GdcB9QfCT7HroMh4WgAqp5ACCEV+BNeQEAse0x+pgsQNMXvmzX3Zj3PXRZo2DgN/Nq/gCg98GrmvsNvlGAcKhSiDdBV5fnsBCwjKsbQxD2RBreCe0opKPl8uAnPN9qcid4A0D0K4koedYO7/V7kHDXfQAI2AUANFqVBo+dTux/XlEEtF/3cJV1tq9FNvLhe7xRuj5c4AUgiiqeqG8gTeOwWJkyg1eS0Oc/hUvstxrkIsZJTObjZ5LvzcmfInXnkdnHh+QxEcCh85FemvbwAqCe0Ej5U/+WZCdiXkiE/LTdsI/4tjZdqg+Sw7eZL8fn81TBd0ySidkvQPYI4Q8qvuNlRcUAoBt2hNKYgG6CH7C6TRQEi97PXB6tGVOd3k+CJDshx1+uss3u7qufj8ztAwAIfp70Ue11Ioz8xQfIPun8ugiMa3hW5LMSDOWl3H3Qo4Q+9xrycm4iWTuaLE9F5mdd0XilaMrJ/6fAWVSo3vvaAqwoVPYWOavIRm/arB9066uh/x36U4KYOmBzDf3fksNixdV7xA0ljWlET4oAIGRmKkJXE2f4cucRlpcuED47mwhljOWCQm5o35j9Vgtv5YeOsXJOPkoWXfp/bbumCF09DU2XpsJ17jzLQ7VjehomKpDE7lcWOh74gxKFlKV+AZLsRL3vtY7QqZ2/x43BsZpF0P74NCEd/7zzu0kMkIRvK6Wwsfsx4dEnIMlOzM4lJzzUt4WW43WljJWXvO17zC3QmpDxgTcpglL8zGmosHUGAKyL2MDiw1EqHW9jPhCUaPwR9QduTaQf6VOdOGeU/uhUG6bOkdjW4Sf2rCKviH1c+TGyOCIEptsVuhsKvQ1bfux1TZ0dP1JQzuhpGq3HYbGi75iHAID5DKS+R1C5ktskG24MKT8UiAIgGk76jG5Wor1rMV6Sf/0GdX/Yhag9o+CwWHH657Y4/XNbnLJdEtpD+SrLK2BlZ41dwKCmad3mNmEICj3FgGFo/uZ3H9Pwyz9Xb6hj99+L0z8Tja4t/ZqmvZLsxM6PFUGp89ta1DieCl616fYZo3LRZNw3pTFr15WNCioYFaT4edK/7k1Ne9Sb/g/DIlm8HvUmjb/uNXEyAyqhxJdDEVfDP8mFq7RUOLWh/Lb8xYudUNP7AJB7zyJIshPpF4kwnT+CxPfieeEFZgDwXaBscHO/sgJpGRrTPxqPUT0fnm6So7u2OSxWTMlUHPz5NFs71hPKOPm4HabOkSx/csYW3c0cT56tA5AeZUK9/rlC2g5pnC8MIMQrojQ7V0R9Nbdvo9s2AFhYqYRqtjgVh2bMR/aH8QJyK0/8dd6QxRiS1R+S7ISpntJe9TcFIEoKatYZvm08SteHI+/rzvg+srnQB67j2cy39+wvEbj1a2uEP6woe/SEVUo8yAUAvN6cCLmNviTfGz8VhHvhS5WAEJWn7VJxOkmnMk2bk7cb2zr8BHP7NhpFE99e/hn9vepyUzRZngrLu0qZFfbOzIfbaK0FFGWROyUMADzmkw9zi+aa+ZiYoAipar74dPJTonCVN2iJkJ5vX6u3SDui5pD5GzEhnZVZ+AopJ+PJ+UL5lMYdL8Lp6aKFCX0PlGh907My4Z9WX0h79T5vTZl8eyhqJw8zz+bIpL04+agd3WqbhH6g/e86moXCbxV/P572vraACfIRDylowA6LFeamTYRxueaxAez53leJopGiW07PykToGHLKO77habdz/+9KHn/h3z+dPP9M4vfffx9LlihgEJcqP+CBgYG66T08PFBQUKD7rIZqqIZqqIZqqIZqqIZqqIZq6H+V/hRYx79C5eXlVSf6Hybq+FiaGYKDXtAEVQX0tVc8JZfsQ0KrLkyb8tPV+nBVmDCiPhGUHRarEOyXlkmfuSu/+Dk7Dj8yHw7/aKYlpHRusg17Zy9g5aj5zf+mE4LuI9rp61Iw6jjyhDQD7UNQll8IgKCd5Q5bpCnLXR9Epnvio5baGC3u+opvOwA4b97EM8Hk1DH7o3iEPaYgitE+W3GpOfPTiH0uET6fpwoaQlqfR0xHbPz5C7daR0q3+3Vl8PhtliXi+MQFuvnUZfDvbWHBDtz7+tNouiQVJc/Y0WnIUZzrVqppa9eXEgUzl6r6SK3V5Wl2bjpeDiEmKLanpqHhV0p/8cEqe2TcwB+dCLpn2NfTkD16ITs1oAF29fpQjzIXxDLo9mrzPnwckJah2171NQ1YXB1qkdoQp2yXNGUZ/dcjk7UdNiR/Va320PSZT3kj7AHRT6aqca8eR+3mJSHgDa3Jrpqq08cZt24gceZjLBwETe8ZEsRQXNXlnJ1iQ7PFpJ+N+tzUoS3KDx2rVr/wpBeYPXp/Oea04GCiob/eqbXq/POrG0Owo9MPf4oXgJgj0pOwP9MWdcDXhM53wXXmDMy+vgLam5rczVm9tOo+0UvDB+Gu7lyt7vpL09B1ENAGmKZ0bpINTZem4srGENwfuAerZg80DDRMydy+DZJ//YacVHCBvymNO16EMQ3OsfYbrbn1fvfFD2G/YmB0f6xP30hAO3qXaMZT/8Cu2Fi4V5efoll2+HQ7ifqVp5mOo4OAPsVV9g1P8kw7Dj42H30emIgtXy5TTuvDQ+DKylWAkgAgvhOQluH2dA4gcTz9VXuCTu8lIeOp+cL4UPfRzJyDOHbTgumNi9BmeaIueIWasj+IR9gTaZr75qZN4Dp3HpdHxTPUT1pXr4mT4b1BP+QOYDy/1WnVz3jQH/bs6CBIkevI71ZRkEr2a8aFOTIcyVu+FfrjWvktDPMnrgrhe7wZoqoRz/Tas3UA8/d33dkF5t8UM8lvj++DT0Tu3xacgu5Z2yX+dWAdRxbUgHUAIALVv/JXQ9WjYREdBYANukAMOHwBDotVCPiqPr6mQhg1+Rta7woWR4QIC5FaCOPNG4w2JZJMfK0cFitQ7tIsbE2XpCKh53B2j0Kc03RUCMt9y8aEMFPt2phfsAMOixVl+YXI/ojkCZ9OTE4GRvfX5YWa4AAE3QuA4MhPfTeqIkl24plTSrtn3j+F3eeFMAAYH9idmBNUmg4MjBuE3W8aQ15THw8+KKgRbV2xFAAQvHYKgmaJvkcOixX5rxGzsxWXmgv5+t89lqWd1ro7mhwhJnuHHp3PhDBzmzDc7hvNyqJC2IWxNtTZ3kJ3ww6AxVvRM32haeJrK8GaG36Vhpk5B1FhJ+aWp6O8WPoXmx1jZYU+ScyBTv4UyYQw+oz+p2Yheu8wInG327FKfRV43qUfVrI06k1Fj4enCrG2Hhu8TiiT50PNz9kh3sIzNV+6m6inxPFAzYf59NRpXs0HTZ/Te7lwX10Pf525UISWpuk3TX1HUwdAFDkAWAgJtakOACHAqcNixdNB8dj5kTbgq5EQBoCFe8iaFwfvUsXghAfvKT+kmHtKsmISzRO9R/MkZmUzIYyGOJBkJ9KjTMJmqs8DEyHJTnx/RfyYu3uH9for5oamDgQKnPqf8Hyqxy5vjqheN9VrLP+fCmE0HxW+6H9zZLiQV5KdCNxVTxn3BmWrN9X0f8IdwzQ8UapdQkx5TXXrosve+yDJTjx5oguKXiT9b90v1lHWO1rTVgpyAyjzlOfTa9NeZH8Yj/xvOmHXW8raSgPeem/3w95Xyf36/XOxtl3TKoUwgPgM0+euEHFu1fvdFyvbBBh+AzddI+uY684uKJ0TBIfFimNPB8H+xDRU9C5B1sfKPMl/jZjc0qD1pk4Kal/gLgIVH/BaCgsd4rBYBSHMN6Ux8t5Uvu1GbbK8k4Kjt67B+8QlwdSWxruiQtiFsTa29qnLo/1+dQRRPN53ZJymvpYfpCChE/G/ul3h0s3/TmhH5g9KhbA1xVphjALKSLITOaMWasaYJJPYYJ4B/miwWhknFDDJe8MeIaQOz8vNTUGa+R2x/UGdntPOv6OP+rBrOgayDvkrc6hEQeeMTlcCwnvcvK3pj97PzgBA1h1eCKOm3w6LVQieTWl96i/w6NoBkuxkcV9psPJhEfpmkTX0z6Vqn4jV0P8N8fD1nh5eumlu/doate4qED4+FA6bUnnPKPz69XJlY+frC/j6IHnzGkONmJqMnutpQ400PXpa1tt9o5lmldLCgh0svg3Nq4Z2FrRRLZprgs9SyGm99Gqe3bXdXbtfPtMeaZ29dNM0+KMZLvc4a1hm6JppgnBnxIu6z67cG4eX3/wM74e1R/4bNhyfsECXP/NvFrjuJFDkvcdPYpplWmbwuslCEG93PBhRddLpvXM18VD1F8ba0PiLqk/oKGR9VTwbjUVdqtQW/5m8fPvcjTFzWDCSf/8RA0LiUX7jBq6OiMOpWJPm5Kfe7764escZTR18vUanA5ToiZIkO9EtYzjTtgNAcPIkBK+uQP7YCga8ouaXtufCOBt2vaU/vvRI711cHhWPlA8W6s7/G4NisX3xYk2fAcC14XH449NFbuclJZqm5If2aDX8sCat93Y/3Ox5UpdXns6vixD8RtTpjMbapdHxQvwtgPiiTVs1VUA8/bPrDH8Cpk7XaZ8H1q21IfAV4zkgyU7crLgthJ4wqoveO5Now75ZVb9zmt7VqwvM2/axe8HJkxAxaa8mffFzdvi/mWLYB1WtEx6engzK+4VcJ94IEdtZ3TFqRDnvxSP0KSLE8ZYNPE/quU5/e/q3YgBCeu0x4s/cLgLJmxXYcnft0buX/UUUwsaKAY958vRrgfX7RP8vnvJWd0LwKHI6FvLrQ8J6ACjQ+jSOnZpoG/nTKTWfah5vDIrFteZmFhPP3TePkh7velDx/AlqdahscyC2tFvLyl9RuIP5aem15c+MM5rWZG2HcucR3fEwJ48ESdcb+3zf9Bk7EVu+WAZXRTmuXsF/xYlY+2l/3YnY4YU1J2I19BdR3upOulqjWncVMLhUei/s8TRkfqagu5m270fUHMW533XmDE70aoanT0axPHoLP68t1VuATB3assViYEyCLt/qsh0WK97O28XK9tqcrtHKTmvdXchz4gniPGtUZvL+TQKfCwt2sLg/ANGg0iCOABC5MIml5cs6NUPrIEzT0LIylyjIa2mdFeH48qh4lqa8Z5RGCLt6TxwLmOmwWJEzUtQC8tpXep/XygGA17aWqP/tLrwf1h7XhsUh6IVUHL51XTMuAODocSWIpNemvTj5GGkbDf5JhTA9hDI1DxMzyYklRSoTxkQs0dCZGjQAQIJd5ryvBHjm+efz8sTHC6NCGE3XfcZUgRdKB56eL7w79Xvi28TDzlOiDvgAOSWSZCfTFvPIl2oy/2bRfT8USIXvm3MTbeyeKzsPDosV5Tdu4PKoeNT7fhfeGPaVJhA6FcIk2QmvbS1R1idaKBeAWyEMAGpdUE4vd3YiqFshmx+Cw2JFxKS92LpymWbTpW6PJDvReCU5jaVAOnw6NclPEbS3ou86IGafoilusDpNeEcAGLrr9sWLkdD5LhS9oJyGUNTCue9/ItRH6zzxpF0oix9bVAjLe8sm5LvfbxeWFWrRTtXt2NNljSaNw6JAx/P3+PLVQpgkO9GrTjlav0Q2mxTxj+YrmiWuMxXdrOj22DQGAkDRHXkzRHXdGV0qmBAGEAd/9RrtsFgxpFWM7pzgyz39sB133UcCiKuFMEl2InRPbeGaliHJTmz+6jOc/rktir8nYyQvYSn06PAj4nyl5dzu1xU3NwUh9rlEDf88VZSVsTxzIuNgjgxHyQ/tlTYk2YVxwreZ/82fkAttfEoJl3E2uhwv5e5D5KIkXQUC/U2v1+9ez+7nVAZSNlLY8Dy6jpB3pj6tiX0uUZNP3W+S7ETY2P26cxEATHXr4tEdW1ne7A+0iMrBozLYc/V6IMlOBq3P39MbS/WOnGTPk0rihTRhY/czcA6AIBgaCWE039Mno1j/xj2TqPtOQ9Zc0LSHWpLo8Xt+gk1ARB1zrBiefQuF98QLYZRcdyrKX/W8UP9RylwUA4fFit4Hr6LceYS1n/9OAMDzwYp1Av/9ylzaVajLcwtx+zB7mGpOxP4HqeZE7D9MvI9Yz08exv4X5utqjwHy8a61UbvhBBQfq+poIk2d2qI845hmgdT7TQPmSrITtienoeHXoh03QNDgfAZmkY+d6hRIXV7OuzaEPp2K8h5RMP2x3zAd//v0w3Y0/1T0bTHVrYvya9fctjXzs66IeGgvTk+3Y/8L84U+qC5lfxiPnPsWGmrN3GnU9H6bGzZkKHXVKU+vXTzpnQSoy+H9uow2D2pBgNLzpzohPap6+hoa8NpnZxOsDt5qqCmm9+hpgCQ7Mbe0NZJH21h8GqN8MftGak40eJpfsANJrUWN5133TYDpj/0sCLW6fHfv0IgXSoUv2RH4qjaoct9Dl7G5QwN23/pWElp8Io7hEz9FoqUKva3XpMlw1TYJMPO3fm2N39r/jO4Zw5mpHPXBo/koqfuc+lFGfJ6IVtvL4PL2QJ2fd7ttl/3ALaR0FiHkaTqfnU1Y0Hm9DVavSZOxbekSxosRSbITwT9PYSfatCz+pE9PuDcaS3rt0WufZ3BrlOUVoMLWGR6pB3Tz0/9lvaNxdsY1AWHvzNo28B1CQmXkvGtDy5Ry1P1RRHStznx2l7bwZTuOTlX8dAaExOP44nYIH6cVrPWCEwNEWfL7/MW6/aHHE98u6nOstjgAiB9sxIJjON6VxBE0+/ridptWuBhaB7vfXMAC1ZeOt8FnhaJwSeg5HMnbf9DtF0kmfrJBs8h7j1yYhKPT5rt912/n7WK+vbccXVFL2svSUHLX75a0BkIYlZsJMfBO3qM7zugJNu/XY/ReX8rdJ/h5S7ITdx0dzJCA9dojyU4ktL0Dycd+BwDcNXI8i3upGb9+LXD/9r1Y2SbAUNCp7nirzv3ct2xollEh+ALr8U/zUj9Qz9YBWJ/6i2Z9AMS+Le9uhWkHeVZh7yyEkMhc2lX35JWvn6f4mdPQ6EuFT8+Wfrhob40dcxcJfBrxQv0B1f3wfXEaRvjH6/aRuUVz5E8OQ8DrytqetSIauf2W6c49gMR7e+qFr7AsIpg9N3VoC8c3adjQvvF/jY9Y+6l/4YnYon/2iViNIPYfJl4Qu7cN8fVqtyAJRxLnaxa5y/fFC/bxdEGxPz5NuE/NOvgF58XTHfF6c2KzXZ0NDv+cPqNmEPSjyVPOqigGx2pEH+WnILJWXbK57B+D3z5botFGutss8PfWlaTjjqemC4IhoDji0o97gwIS/6r4+/bwH6E1aeLp9M9tGSS5Oz7UvKjv8c+CdtfBIv9Ut2UY1aUnJOl9eKP2jIJl+mWUFZdU+SE2IiEfZ773Z4QSNd+U39y3bCivXQGPMiD0KdEXwNtDjNPjEdUeG9evInmHj4P0w0rdNtOyASDr8y5M22vEryQrwAd6aTZe88aHYUpsobyvOyN49IFq9+fj2UeF/Or+qGqjNOTIOeZ3waehTvh679/ctAmSDxKBlwrblKhJlLqdFCBH7Vi+pHAHAj3rC/1KlR16psWSTMxpPLekC/f+7IZQkp2wPzGNOeoDQLzzHhbo2V1+dX8YPQfAzIfUdQNAQlQ/JO/fhH73jofHTifb2KvLvZgchkYJ2br1qYF+9PrEXR9UZ/2tTplqOvmYncXLU+c5NcMO7wsV7PT1x+LdDHhAry53a4EkO9E9Y7gAbKKnxOLJM8AfZUXFyPo4HuGPkvf/zCkrUl+JxeeffIBprbszAVFXKGllQVkJiYN1c0CMAOxgatAA5ZcvG/YLbwavHg8OC/HJ5k919Ig+uzgmHmnvav0l+byX7o8XhJkTT9gZKEZVVPCqDa1fSmVANnz5lKqaa+o05oYNkXzsd11+MxfGstAxlHhBld6nSlq99lJlb1U8AUD7T5Nw+GHSF0Uv2nEkSdz7vJDrxPLTPSDHX9aU4bBYUfy83TBQOG230XtUA2W4e99Bu+uwsC3VnZcUvMgjuj2LyynJRPE4rtExNDIpQbKpUqWs4ja24ee/reBRI4j9+6lGEPsPk5GPGI8wpib1B1zvo3Nmmg2Xg4GWKS6mATfKT0m90OvlyVwQC/M1E4J/uomrrbzheO53Q+253jV/HwC2XDfjndCOmrQTM/Mwsv5F3U2AJDsxoN8oXGrXGPXXiJsfXjuqxz8AlPWJhueWdN2TNoCYRrV8X7l//e5Y1Pl5NyuDoiMC4sdNnmmH5R0l39WNIewEw52AQMvRu+fhVQsbCwhYhZ5G9s9u9GjZV8pvYGSfBwCTB0OQAojZjeuKlxCPSK15vOPgMAEBk9KAwxdYXDr1B86IN6NnYV9NQ+hTaSj8tiMC7z3Inp16xI4Wc1OQtbILcvt+pmnfhXE2NPk+A1lLwhF6v6JVLpplR8Brxv4rgPL+JhwvwKgGpdXagPKU/5pNo6AwaveQI+cw91Av9A3ORHKqFeEziCnvaddVjA1Q4gp13j1aOJHhyaNrBxaUWa8eQCvEV4dXd32U/7oNQS8a5+s/eAw2/rJKd2xmLoxFxDStT2dVyiBXry44Y60Nv4+M3x9/oqPmqfuMqaj3nfYkVH09MTNP0FJXR5ikfBtt+rJWRCN8vBZ5kG+vu/ZXZ567K8PDq5YQl62qdl2XgvF7xx81/LnjrSqqThuof5leuZLsROTiJAS+koIbg2Lhqu3B3mfuOzaEzBRN6yj9WZ7pnDB6l1W1w93mfNzxIsyS7kH4DHEcritJx6BWxFrh3fOh7BTdXblG6zLf5tPT7Wg+zz1CKvuebW2Fit6i/xt/os+nLXnGjlZvK+9JjchrVAddt/WeZX3eBbl3feZWsKlK8KGWNu74AJR32m5eEnwPlGkCQeuVDUDw1aZ98GfHPwCU94jCr98sF3ihz6hFyX+VIFbrLxDEbv3zBbEaH7G/Cf2YqWw2JdmJZotTkf8GsXcu60003TTYJp3AwRsnIfcrK8ovK4iBw44Q/xPvSxUIeSYVvy9YjOwPRdtxOvH73fMgqw8Ag43Wo9AtEyDJTkQk7kbok2n49ZvlaLA6TRDCACDkB8Xf5/y6CGGhun53rFC+w2JlQti5SWLA1+wbfth5o5zx91FpkFDPhk2rmRCW+45iF06FsFu/tsYXRTuFQMCmunUhyU6mxdcTwgAlCCX1Q6GCLO33ij3iySL1qzr42HwUfdeBtZFHXHNYrMj6JE65HjoWmcuJb5DDQoIO8wszLZtuoiTZibKCIqH/jN4Vpd7jJwl8AsC8CwQtrL6pNs7F+gpCGACE3u8UAD6u3Bsn5O91aCjqOPJwZaTWH2FD+8aMJ/Nv+zDocCnC93hjbYli8kMDPTssViwp3AFJdiJ6f7lmXFB/Dl4Ik2QnnM+Rd0PNtCTZKQREbbwyFeVXryK71wohn1oIy3kvXnie/WUULO+QNMvbtGYaSspP+ZYAgT+9vj8+UUTUNNoo3RwQg8H1j+JY9y+QFXMTufcoZohUCKN0IPZrw/esJ4TxGw7+vfEbmgp7ZxyfSAKTUtRS+oz6hOqVK8lOBM9O1zyjzx0WK45PqYsPzhPEsHfPhwppeCFMnU+vzhap5KNr3rYPfh+l4LU8Mi4vjlH8E+l/emqi1w900873A183bRsVwvSEGr7sC2O1KHd8GxwWK/M7CR+fjpIflDFP13L1GOKv6X/eD85ozPHPAWKyl7e6E85OJairRkKYuqzi54iPC1WwtPljnKaNND/9M9qEfpRP1lX6/vTaSMncLgIAUPdkBSTZiZz343XfEfWVu13PhB2fLGLPQ2amCkiS9D2oyzA3a8qe8/6tfJqgWamo6KbNX+93X00/8ETREU+UXdE8o3lWtglgQhh/f1ArMh4GtOkhmDK7W9sd/kRwGxg7kJXTbn4S+22qWxem/mcFtNbrQ7Unnek3ydigQhj/bnkhLPdt5dtMBRDKX9OlqUI+vfZLshMt5qYI45sGxM5cGIuKG2bdvnVYrGyu6c0Pfu6GPk34oO/CM7i1W6E84I0UJoSVrg9Hne0tNPXzdYV9msfqo4IoJc/WAbpzlvrJ83Wb/tivWSsojQqoGm25hv6ZVCOI/Y1I/YG73agc14bFwXMr2fxMa91dcAqPeGgvyq57smsA2FbaBgCQ+p5iKpFz30KhnkY7mkKSnYI9tnpxo/RjMVms3CE38ZQ7fBH6jnkIgBjVXpKdqPPzbsOPWdOlqQxAQZKd2N6pDjMdSeh8Fza0b6yBx6eU9YCyAfZPI+ZVte4qwNiAbni+2XGWh/cpk2QnE6B4WluyRxF0nxVBJbI+jdOkl2QnXMezWR0B9xwS+ONBEOiGW5KdwO6DiHz3Ms5NJgv3/pjVQpkAOd2j5fILd+b8WDhaKc7OfQ9dZvn4d0fjlAnta9eUbWQbf5Gq+/Gk5LBY0TDrssCDd798SLKTQZer8/Pj5xGfAnzaaheGtIph/G/8ZRVOTydO95MrHafTo0y6QDC88AAAkYuT0HfMQ5p5Un71Kku/ohKwwTF0rIYnh8WKa8PJO+RNJB0WqyZGFwCkv7yAXd9rSdf9sEuyE5c2hOLKveLY0NuoegYQcJVTD93A5EAFrKbXpMmatvN10P8e0e0FHtTvm4J+8M8zF8Wg22PT2L0B/UfBI+WAIpBWAsrwyhgjXgZG99ds7PnnJc/YkTd4CaQOZAP+dJMcTTozp9E0EnTobz5eGwDEehMzVtdo4qNGAQ/4cqhAoUfq/qL5ek6dgi6vJeLMNJtGONMTyna9vaBKJQh/GnwofhX77bk1HXdOEBUkas045bX2aQ827/SeU2qzXOmHZ4LjEDwqAy1H52vGH1+G+tnhR+bDMygQkuxEQsfeCLovQxd2mxd08lZ3YmE2eIqsVReA8v74uaJuQ/LmNZBkJ5osJ+bbPocJCA0FT3FYrAyEyGGxosE3ogXElY0hgjLJaH7QOGKS7ET26IUo2xyIeOc9Al+9D17Fpm9XCHmvlN9A7ndE0Is/QPzi4p5NFOopjLsKh8WqAYKg3051/+iNdV6Zyq/3pnr10OHjJDF/cToull8XUBwHDEtj5ZVfu4ZmgzNheY8IDJ6tA/D7/MVCGQ6LlQFJ8H2gpxRRo746LFbk3b6CsFWJbvMZKTQcFitch8l3OWLabkRM1aKGZq0kbhpG3yi9vgLIuwCAsrwCIZ2af/pMkp3wGZiF6z1PaXikdH5dBMpOnETQ7jp48TRRHHtta8nSlBUUYUDC/QDA9gwOixXDtkwXyvH0U4Q9c+NGAICzv0SwOs0+Phpe/87kUfHX/f3TqUYQq6EaqqEaqqEaqqEaqqEaqqEa+oupRhD7GxGv/QSA8Id3oeEBoqmhZlLfR5IAv5kLY1G+JQARE4kpXt5bNmCLP0q7nRe0QL4pjTWnXGtCtghaX16rVLCmo6DFGeYvxsAwMkuhUOEOixUXQrw1bes/cAwyF8bC3LSJoXa3btFlePq3Ek4zACWYaer7ysmemhdJdmJKZi6K468Ynlzw1wDgOp6t0Zh5V/rp0XRFs+xo81kibgyKRe7wRQj+ZbLwfEB4N10NJ/1fPEt70snqP5KJpktEjR8Nyi3JTsHX7crGEJT3JKEI8oYuhqljG5Zv6/0EvjreeQ8cFhJA0p3GnjqWC/1RGcxZnY8PPmxkfqJuv5HWnd5rPi9FY2pSViKzwNCU+ECnAHB0ynxsXiX6EqjrGB/YnZ046j2Xu3tATb4pjQXe1XkcFiu+j2xu2J6GA3JQ/9tdQpscFisLI1DRjdw/+loLFL5ix9FuXwhl8GhtRn0JACe7NdK0nV5fGGuD55Z0BuNP80ZM3SOcXqod6Ad2HyqUpT4JAhTtbdkJBZ1z9DGZmZWxdlyo0PRRziolfEbmZ101iKEOixWOQ5fcvlOA+AZG7iTrAj1pp8HV+T6nfkb8vKfvwWGxosfDUzVjuPYvu+G7IBX7XhJh3aPTR2rWqYsPxGvGt967y1zaVfMuAQLBTue1b0pj3BgUizHHinXfa8ZT81le++PThHK6Paq0Qx1rCQBu9zqheZft5iknK5nLRP4cFivyxpCgtq5z5MSxydEyVidvmsvKuGOlJhg93y8s3fxY3ft677nJZ6QtFXsOov1cwu/QCds16Shd3uRnWKbeXF520Q8OixWefQs1wCtbO9bTnD6O8I9Hi0+IWV1zLzJ2adw92ree/q00fHl41WLAJ3rtBPRPzel9AAjf440NWTsFUziaZ6S/TRj3h6LLUfRdByT0HC68V5+dTXTRC9VzQI+P7C+jhGsayFuSnZjWujtCn05Fp92jDb8JfJmlDyomhvS5u3zh4/Zp5hn/boz6VJ1e75ROb9/D9wu9l/1hPCI+T0STQZmQZCcW+adij9UMgMwvvkw+jhgldZgHGu8NAFwXLkKSnWg2OFM5JSwtNWxTDf2zqQas4z9MRmAd8lN2XI+6zpAIL98Xj5QPFXND9UdUDTyR85UVzRpfQZr1O13TFkpnptngu1AxwVNvJs1Nm0Ae0xaXg8t1YdxpOko8QIWpcyRutKyvi45olJ/yoOeErZeO0slH7fD7WOsMzPfRsCNn8GM7X00f8OlPlF1hm3l39Zl9fVF+4SID0tArS93vZZsDcdtlFoAuTifZ0Xy+vhMzQHwoCgc3Exyk+foo8AgABuahTsNDugtlcwGhHRYrBh0uxfoHuqNi/2FIshOrL/tgeZvWDBSCz0t/jztehJVtAhhSZ1nvaGZK659WH3u+7YSW76cIoCM0//prtfFJWFuh3UDlePDwACoqGJy5Uf/waHV6AjhPXttaYl3EBrfzQa8OHlbZKJ8a4ljdVwMGjMaGDV8DAAb0G4UNm1aj44dJsLxr7FCf9XE8cu8lc04N7QwAmQtikXf34mq1h29X2g2XbjiDkmftODRDRHIrHW/D7jkLDOuQZCcS2vWE68JFmJs1hevsOd10ue/YBBNidxtQd/MOIAh0qe+JaxEP9lC+JYDAhZvM8AwKQLl8ksWx46nwZTsCZ2vnFW0HQDay7wSsRaBnfXxUGoTHfPLdtkFdFlWQpFm/Q69Jk+GdrA0/8mfeXVXpkkv2obDsGoK96ld7XeKfdZ2ViL2vad+3+t2MOVaMVW39NeWq0/Y+eBXPNM3SrBt6vKjXCB6lDlCQSavqD/4+GwsARhw9zRSZPI9qPvhwHztvlOPVEGImp4ZHB5S11V2/GpFeHrqeqsm6H3BG6eel7aDkGdwaFbVrwXU0C6Xrw+EzMIvlKS67gnsPP4iGA3L+1BpIf/NhA9T9qM5Lx72a9MaJES8jj57EmkhR2KaAFw6LFaOPyfi6rcVwPFe1X+HT6QVt55/T//xao/ecomhWt28pFX3XAWG+Z/GlX/J/BXx9h8l/HVjHoSU1YB019BcQBeugi4XlvRQmhC0p3IEG36QxDY4kO1mAyF4TyQkNFcIk2YmKblaE3u9Eo4RsLLvoh3q/+xouCvte0t8cUZvn5INb4Xx2PnLuW4i821cETRbPz9yCnQBEgIryA0dxftoV9Lt3vCa9Xp08GQlhFGSBz5f/ug1+HxOtZf5rooO7w2LFQPsQeLayuBXCKLXkILypFg8ARuX1ZuUCQPKBX2EOUAL1XhpNNuHJJSIU7s2K24rmtG8hE8JoOftfJFpvehrEtzVzWVe4jmQKGtGo10V/ASaEBQUyREWa/4si8k5CvepDkp3I/jBe+Ai67pTxQX4qeyfr2vvg1CsuVsbyNq0BABvXfglXry66H7CX9gyBJBMhDCA+MKZORLgqjr+Clu+n4Mw0G/MtMnWOZOV/EtaW9YM5MlzUYFbqh7LGigAYaqJC2JAj5wRNqB6duKw4ww9IuJ+BChSsEQNorisRASk8Ug4woBc98vD0xAh/cVyqx3n5gaOsfeWHjsFhscLyboomkDIAmCNC8VLuPoQ/qmwK1EKYp38rIcZT2NeKH5g5PIS1k/9PyQUlGDT//NCM+RpefFaQ8UHfD18m9SFyXbgIAEjO2KLJT9OGzExl7Vf3DSX1ezPVq6f7Lht+lcbKGHD4AszhITj8yHyYW5BNtqlPJahNuQvrd/zEhDBzhAgeEji7cs14XZnnNwbHMiEMAFYHb2W+jBvaNxbaQNvmrh2Zt6+iUUI2HBaroRBWHdITdCg9mU1gsa+OiIPZw8SEMH6tppRx6wbjcW7BTiGQs8NiNRTCHBYr2s1LQskz5J2/snuIpmxJdmJZ4Q7WP5dGx+OZpiIYEN836vlKhbCmO4mvTH7sdeS+rbwbKoTx3x8+gK8kO9npLUDg7X+N/IVdUyEMAHpMn6qpn/6nQhgAdKttYs/S3iGK0BNP2NH30GVcHxqLUK/6umWo+0WP+g95QNPPYxqcg6lDW+GUTZKdTAjLXBSj2cQPjB0olLt+589I3vItAGB31LfsvsNixcTA7hohLGdVlGas0IDDdL0GiM+y1dub8fR23i5W7qX7tYBgVAms/juzto2mLxwWKwPd4vlQC2GZy6MZ4AUAjG8oBlJXl6kujylbfHxYm+l4p0IYTZ/zfjyKvuugebf+b5J1o/BlbeB5U+3aghBGfVZvDojR5Y3WJ8lOBNxzCDd7nkSnnyZo2lJD/2yqORH7D5M6jhhPdJG4NixOEzSUf579RRSO9V4KLw8FfWjYkTNY8cZgNFqVJqTl8wLKhvHOCZOYyYypcySe+mENfr/SFi29LuDHdr4sxsyf1d66enXB5q8+ExZFow+9Om/Ri3YhUGJ16m6R2hDBdc9htu9hJHTsjeSDWzVBgNWaMVquGn5e/QGtqu7q8HdhnA2NV6aykxx1f1RXs+ruuSQ70X5uEvtgOCwEcp+iPVZFNE+nfR5wzujMAm7q1U1/88E33WkeB8YNwvpd64Q26p0KGrWTviOjOq6MjEf9NWnIe9OGtvY83WDXeuUaXRvdL+8ZBdN2oiips70Fc/amzy+MtTFHc4fFyt67OzIab3rjtcuriRpTOjV9lJ+Cx4LsxmMqtiMz4VQ/u92vK7w27WXxb/jTBAAw1a7NBJzqrgl8OxM69mYmcJSujohDve+161x1ynNYrMhcHo2ICeksDp6e8OLunauJDyGi9w7a/DEOQfdloPj79mi+pC5qbRQFLf4EntbF4itVnviqeTzruooxAd2Q8348Qp/Uaucp3Rgci9q/7Na8W9YXOsGYKfHWBnx8I3W/0DEgyU6EbxsPz8y6CHxFf55mfxCPsCfS4OHtjY15uxDy7TSmSHgtbw9mBYsbUZ7fuGcTmbmfmvK+7ozMnp8DMD7JYGnn2DB64O9I6+wFd6Q+edMrT29s6PVV0Sw7jiQqcdroOCkuuwJ/T/1TSUrmNmFwHc/GoMOlWNfeB45DlxjQDQCc/CkSfkOPInN+LCKSdjPeK27fwqkZdmYySes24lvTT25iJOqNJ75t7r7jAFDyQ3u0Gn5YE0fM3fpKy5d/bAfLsCO6c9Wobf8K0ZAS1f3m0jiKfJw9PeFOr5wziTb4LhAtjvhg5zzRuHj/LfD1HSf9dSdiB5fWnIjV0F9AwyIUrbx6Q/bHvEXCffXzsLH7GQwuPTF6Z/MgfV8gAJmLCYpd7PME9Sji80TBH6niWC7eCe2ItM5eWNuzHQAgZv5jAEj8KYCYplDNpZoyF8UwPjd/9ZnAM689KvmhvbB4qdMEvJ4iwGvrabgAYr5HT8JOPdoaaZ0r0dXOnYfDYmVCmN5Hi5IkO5kQxmvK+LrpfXX9px9WNrtX7o3TvCc+Pd2M80KYul/cfXBM9eoJ6Wn5vOYYgMZXpmLPQbd88UTzZHSpgGmHts38B5SSb8uLQplUCAfAYOodFivKioo19dBTQfX7CNxF2kr9ngCwd0S1q2qi/lDBz6VibfhGTZlGY4BeU0RHvbby7+XXr0ksGHPDhkwI45G0Gn+hoGcBxK8EILGqAEUjy/PGjwF12+j1LQfRVAfdn+1WEJdkJx4LsiNrXpxhOiqEAcBA22CYrGSun3zcjmEf/goAqEgnZqpTGslCP1AhrMLeGXHPENQ+im4HKCefmZ91FfiilHxwK7k2mdm9et/vIn5nBv6KRuN1QJseAIA8xzKY27cB0jJwY3CsZv4a9am6bEl24oP8VCGOI82fuUxBMg26jwQ99x9xGL99tgQACcNBaVpjBRac1rVhYyU6aqX+c2DcIKGOMZXhC7JHi0i3aqr9iyhkdXlNRJCMSNwtjHe+fbyJaEX6YRQ/R8b81XviWBmS7MTWFUtZvqxeKzRCGF9m2BNkPau4eRMOi5UFaAagK4R1f4T4uCX0HI7GK/UD3he9aEfw6AMI3TpBM1/1hOzg51Mx25cISqYObaFHpeNtbpE/+d+munWxsGAHVlVaFlAh7PTP5CT/0oZQBLyWgp+u1tfM3WGvPC20l++r0D21YQ4PwVmbLySZWCIAYEIYTU/jB1IhDFDCmTifJWtmh4+TdPtOT1Cg94NHH9C9T8OpGK1FfPqE41qUW0l2otHX5ISQCmEnH1W+jeF7vHUFO1quZZjij0zv8d819fvOW91Jt71G9+h1br9liD9wGw6LFQWvKtD8nXePBqD4tZqbNgEAeG0mQtvyS6Ga78Xkom6aeyHfT2X1+S5IxcijJ4XnVAhTj4vm31/WbUcN/fOpRhD7mxAfR0xvMVQvrLf7dcWAECKkFH6rCHHZ9xM46vAZBDzg2rA4zeT+o/+HkGQnMzsKfk40A9xYGf8CICZ4AHD4YbLwUz+YVzaPwLlupZhfsIOZxtA8EVMJBHzCnfewhZZfxOlC12q4kk9Iw23OckYqQAN6QpAkO+E6kqnEcNp90HADklSiNZ+QZKKd19ukqRfYgfYhLPYKLTvzs66Cbx4FbeDT8B8Q9UbixE+RkGQnbveNFupTt5f+N7XQmlc6LFaNH5U7clisyFpBPrqv5e3RXfyN+hogfm38GL02PE5jAgOQ+E8AGFS7JDvhGRTIftMNjiZfs6ZwWKwMFpoCqPB9occzha7XE7gAYM0VEeyCj5l1XQqGJDsZkIgeX+qNGgC4Ll1idVEHbsabh4eQXpKdWGEj79lVqh8wOuqNJJjbRUCSnbqxbWpJe3F5VDyu3nHGsE/4uRQ+nZwwefq3MlRkRO8vR1lBEQNm8fswhW0O+fL0Nnybvvsctxp6kI3jR8o8KD9QuYl8aC9OPGEX2siXd3NjgMBT8uY1kEr2I/ujeISuniaEBeDnRdaKaKUuLpi96zCJJ7Z90WK3mxq14PVAfi+hnieCRFj274vJ6U7egKUsjyQ7MZ+L7Whq0ABeI04b1lfyrAJ2AJAgtFQxQe8Vf99ek4//beociRNPKAIv7VPfBanIXKgAK52baMMMmSjcaLgKWobDQqDnaVr/N8mY//aD94U09G9ASLzmG7Si0gSR3rs6QhvaQ70O8uOz3vdknXRlKabsFB6eUsDrJIBz2AP7cbtfV8aXZ0sCuMGbzfF8A2IYBj7dGVuZwBvlaZlq7TC3aI7ya9cwrXV3jAkQAZkaLG8Ih8XKTPyG1tPGD2vymSJcdt49WuiL1OVd4MrKxdmoCsQ+n4imO300Y1VvrvJ9+NgJ0h+87zCfz0jJ4O5+xIR0Ic35dQq0Ov8nP22H605ZUx5Avn8XH1DitPl9TMbWyUft+LSVFtCIpvOIUfYwDouVmYcH/XJd8y3sM3YiEShHZQh5jPpQncZhsbJT09YvKUKR39CjOL8uAqFj9pM1WnViv7ZdU6HfHBYrlgTshMNCzHDz3rTh7BQbwh8R44dR80p1O9T8FT9FTKc9VOP6b0sVf+HfP5xqBLG/IdFJLMlOtqjRj6K5YUPkvmOD16a9KL9xAx7e3gyFbXj2XZoNU90fd2km/MRKnwd+wVQvYjH7Rmo2T5QcFivCHyYbvFCv+uhX9zbkp+2aRT75t++EcukmI3TMfl1NF82Hche7Dvttgiadw2KF2ZcIJFuumyHJTowruENIpxZmASAnRuuw77BYkXxwq7BpDt1K6ox9PpGV02mfB8ryCxHtXUsoM+KhvbiYHIaIFYlCG/jNDL/wDrQPEdrScijxHdq6chnWX6vN8qs3v/R/1hxFayr0mQ6p09Ayip+zI7ffMgDAqHUPs/unk+w4NUOxew9OniT0E6Xm88XgyHV/0AYq1RtTDosVZfmFAIDgDZMQt+1h9owGTQWUmD/5ryubYX5OqMc4TTO+UuBT912HdBNMHdpiWUQw80+QZKcQwLyOI08zT5JL9uF2v644M03ru0CpbHOg5h5DLquowKUNoch92wZzeAjZeFae0vLlRfw+jvXX/hfmo8TRDA6LlZ20qflqsFo5bWi7gyAJjiu4QyjXHBkOSXayzS0fc0hd/9e7xI06/1vdZnWQ3l6HhsJv+3mBx6x5ivJnxNHTaPkB2YzRDafZ15c99+6XT/osqp/AW8MsE8KeSEP9b5Wx5RkSBIfFiv6DxyB8fLoQPJWWRwPFGgmOlNqnjoFnSz+yoUuehDP2C6yMzIVatLvu7zwh5KflUxAcD09PbDj+B9ucq9ceAGj1VorC1xZ/ZI9ZgJsDYoQ+PmxbJeRRbzDLDxxFyw+UzfdzORnMtyZvyGJWZ9NlqTje9TYyF8cwn5XCbzuy8jLvWEnK2xIAzwB/SLKT+ccOGCAi4dHTT37c0LSh3xDfxB1zF7ntb/VaqEdpnb3wZPZhXBkZz9LVXkdO9k5F12LpKHonFfb1vlGUT0l24sJbRHkmP2XXxKyiefw968NkbacoWE6dNhRgfp+vFfL15golv6FHmT+RJDvh0Z+sb7n3LsQZWxnk18PYM1oX/9ujawcAwMXy6+jzwEQAwNHoMjhaKegdvJKCkYfoCwpo/WGNePb0a8EsSdRzyfIuWf/VwjdNQwFNaOBpXiBT80PniasuiYdqbtgQkuzEoFbRODvFBtMO8rz/sYGsjZ5b0tEhbYxb/gGg6U4fXEwOgyQ7cfJR0v8Jd5LYcR5bRaRLyhNFSOTfQel4m8C7w2LFQk4BI8nEvyz4uVT4ZN4U2lb0XQehner2878/+XI+8m5fQUXluK6h/x2q8RH7D5MeaiJdAGxPTUPDr7R+Ap7BrXG6lwVNlqfi5E+RaDX1HFynRE2s3kYAANYUpzLoWz1hhc8PQDeNOu+PxbtR11QL/QeOwcb1ykbCKA8AfFQahA3tG2t4Zb85/xWeyrtbmc/SxQfiBRQrU4MGLDBmsDQRERPS4RHVHhvXr8LGa97oX/cmQrdOIMF7K300BDKZgXIXBhy+wHgrmmWHZ3QpWg4VF0e9fjP6kKr7yyivw2IVfHHMTZsg+eBW2J+YhpQPFMRMgJxizGmRwZANb/WPQa2NyulWQlQ/JO/fBAD4/kpDjKgvBlfV47t/cBwqbt7U8Dcz5yDeCdU3ndXbXNmenKaLPsXnX3+tNp5e8RACXk/BuYk2NF2mPdHjkdn0+mxKZi4WTLkH5m37hOcVts7wSBXBLYz4MGoDvU/RSN3Nk/Sbt/B8cKxmHKvLMqr/SvkNBvZh1NZ1JemCDyhNNzBukGDuaUQjj57ExEYnBf4S7hgGV3aekM7csCGSj/2OTde88H6YFkhEj3/13G2R2lATjJk+7/x2Evw+TkHmohhETN0jtJVHPuXRN81hwYxPSXYi9vlEZt4jP213izypfic5t68w4UkvTVU0I/sYBtZVBJOiWXYEvKaPoEaJXg8I74YNWTs1/TXkyDmmba8uT/xzc8OGcF26hAvjbMwEltZL004s7I7ieO3JDU9lmwPh2bcQHltboaJ3Cby2tWQw+Op1q+i7Djhi/1Lg8eKYeDRapSgJBnYfivU7ftLMCc1ar+o3h8WKzIWxyBsiBiG+a+R4ZiqtbqO6b7q8msjQgPWeq/PyvPin1Udx/BWBBzpu9ShrZReEjyOn/+7G/oTCHpDjyekt9QGkPlXqtEbflrmlrYXTaqM20TI8A/xRVlTMrk0NGmDD8T80aem1um7P4NZYv/Nndu/0dDuaz1PWQ4qGWtX8kWQnZp9ph5TORKDumXEd2zvV0V0z1fMn4c574Dqeza7r/e6LKZbf0b/uTWTevopHWndjSIbuvq1GfFX1bebp3GQbCzlTVZtzVkWx0zV3daiv/1t8xDo99Nf5iGV8VuMjVkN/MTksViS0vQMNv0rDiSeJJsfUQEF8K8srQJPlqSj6rgP8hh5F8v5NTPOkp42lfmMA0MhUh9XB/y96QTF3AcDMCvk0PPFmU8P8iT9Gxf7DgjbaHBnOtM4AGDpZj4en4jGffEPBBYAAIkCfSbITph1OeFQiNzX6Mk1YsK/1UhD5WrUkMTmoYNi/7k0MCLMTIQyAVLKflcmo3IVlhTsE3gKTL6Ll0KPsmr4P9ceC9rnDQsxBHRblRIn14/BxwnXJM3ZkLogV+vX7yOasXHp60mB1mtg3ANKjTHBYFGRD6qPCa3QpP4sjQtB7/CQhf4xTOXUcGN0f0ekjsZFDwQKA0vXhACAIYUJ7LFZkfRKHhLZ3sLrCfpsgCGG3fiX8ZS4lvjV5X3eGw0IQE48kEXPXpsuUWGo57yna8HENz0KSyWkk39+9D16FJDsxov4lUPNHvm2bvv+cpbUfUExJTz4ujnHK84zsY5p7tD5qduqwEGdyWm6DP5pBkp24WH4d0d61WBoaM6n/4DFuP/58fVQI4+Nd8WMeAAa1ihbum3+zwGGxYv2udYZ1UARPSXbi/a+Ga+aZWggDgORjvwMAknaP0Yxvfh3h+0o9j088HcLuUW0+fX7gGfLOqRBGy/YM8MeBZ+ZDkp3IXBDLhDAASP79R+R+ZcWSSvMx3tHd8m4Km0OerSwo/LYjTj+snD6o5ymFGjfqM/r//ENkraJ+U/T+J2FthffKC2G0jUb/c5/rJOSlv9UmT+5InUaSnSw2m5EQ5rBYmRCmfqemevXYvS3t1gIAKnqXYEb2MayL2IArG0MwoE0PVk55d1JuwD2HNBvoRqvSGHLlwO5DUeHtpWmvXvv53/R/xLTdwlx0WBQFHH9PjxwWqyCEXd1IxqPXtpbCOm0k0C0LJOOMnjDScVvwKhkT5srNYMGajjCHhzAhDABO2S7Bkka+1aceIePw0mhi2kmFMI+trZgP4KH4VUIfAoD98WmGipxHfApYev7b6LBYcdp1lV33nDoFpQ/a2PpArTw86tbR7TsjAaEsj9R3ux9Zv/e/MB+eIUEoLiPjiaKh0vTP5WQI84jnjwphkuzUCGHmNmECX/3ueZBd80IYAFy94wz61yW+iBFexI84YNNFoZ/4Po19PlHIz/Ol7l91XgC4PCqe5Wm6RPH9VZfR++BV4Tp0zH7BjB8AXsolY8VnZxNd4fndfGMFZg39c6nmROw/TO5QE9XET1yqbeGfRXyeiMwHF2DxRYuAcAYAq4tSMCpA3IgCgOPQJWzpH4my4hJIMnGenrh+M0bUv2T4oVMvIOYWzeE6dRp5c2wIfl75AJ6baEPbiUdxxn6B3fOIao8TdzRCw0IX6v64C6bOkSg/cLRaGiZat3oDAACFZVfQZ8fDCLlfFEQzl8QgYvIehhTlLh6LnpaKv3/r19b4rf3PQv16PDPtY716KL96Vfc5pepo4fgyz6+LEBAgTR3aInbVQQEpTPjAVb4bem96VibmhUfAo2sHbFz7JfocGQLPvsRc8NKGUA208Z/hlWo51Tyof9913wSciaqDFp+IMZyoJhoAbibE6MJ9A4BnSz+sT9+IgV0cKDt5Smh3nyNDsKXdWiIkruyC3L6fad4r32YA+qejKjJsdyVCH59Gkp14+Ux7zPY9LPRZVdpahvoHorQIelHU6JeuD8fuqG91N5GS7MSW62b0qeNi5VG0L1oPTVsdUpdPT0vos903byNpzgw0XZLKTlAk2YnY5xLh83kqTv/cFvtjVrP8nfZ5YN/5AHj2LSTCQ0U5Elp1qdbYN4eHYMTaFOFEL/8NG4Je0NdMe2/3w82eJwV0OL6f9IRHh8WqGXN6ZTfa0RRrQraQ+5Un6DzCYd4cGzLHGwtEarKkNWAbdJ6q6pcz02y42cQD/nNEQbBHxg380UnRUvMndvw7bbs0Ec0yyrHjk0UCjzPkGHxi2aPpI0ruTiDN7dvAdfg4xh0vwpdd2rK1z2htPT/BhibL3fu2msND4MrKddsfenyq0/OIhHobYIfFioLZdrR+OUUTr8wdZc2LY36YfFma9a9VFFtj8t+w4XbATeT2/YzxMSP7mBBTUa+N7tYOd/O7KqGDzlV3/cdfV3WKF7qnNua3UkJMFJZdYSEgAODd/DQ8HRSvOxeN2jUwdiDbo3R+Nwl+Hxqfguu1n5ZH902Fr9gR3/8gm3tnf4lAs8GZunn4ewO7OLB+n+R2bkoyCcDe4Js0TZw5z6BAVHjXgut4tu4aBADfHt/3XxFHrNOEv/BEbHnNiVgN1VAN1VAN1VAN1VAN1VAN1VAN/RupRhD7G5H6yFySnfAMbi1oTpjWSXUa5rBYkfLAe0iI6iechmXNi0P+N52E07BVRTvhGURABp5okosyC4Fp7ZA2BuPXb8HiiJAqtdT8844bT6N8SwCCn08V+N/72gKcsV/A7Fyilc/6NA4V+w/D7+MUmG6TGDrlBo6pRmY6TBMN4otE+Zgc2B0h9ztZGkl2onS8DXkDickejUXjjCJle2/3M9Re8mXw92vdVVClhpvnv/yqYirC/zcyCzEqh+ezyaBMDDpMzC5vDojBhk2rkdbZS3OCQYn3HTS3b4N54QSRr2IvMS3y7FuIq/fEIXNRDBoOyGH5KWABvdY70Tn9M9Hg0sDRS3/vhczFIlQ1zw8NqGv6Yz+DX6bPbwyKZadh5qZN4J28B6dm2HFtuBaNrewEORnhT8NoOZ59CxmvVOOsJnqyw8xCKyqQuUQJucCT3nsR7nGnYTwf9DSMb39VlOdYxsqhp2H0+vrdsew0jJYpaPwtVuE0DCCwyxTUhudDPSY9Wwdo2kfLZ6dt7dYKbZwVHIO9s8nJz8a261n5Q578DdlfRjENO81/MM6LnYY5LFZ0WPKwcnLcSTkJKHzFLvAhyU5U1KuN70b3FubJ8QnaQN/02drwjQAgxJ/i80qyEx3SRNNRSXbCO3mPZg0GiM8hTbMmRAlaLRWTdY2Hms8cv0DzbigMth6vcvxlmH+zCPf1TiOASpCdSpAj34Wp8J+TIrSp5Bk7fnnvTgBggcJ500l+7JSF3sCOTxahx/SpQnuPd71tOMYACKdh6n5yHT4OAFjZJgAbsnYarmmU1Kdheul5VEUjquqkTJKdkDo0FNb2wjLFVJPmb/0y6U914GhKNwYpayJ9T7nDFumu7ervBG8KP6D/HoSP2yf07ydhbeG1raWGd76N6r2Bev4DylhV51VTzvuKmTGdqzygCCXPln6aMg7Fr2Ltp6im/POcmBsCv5MDu+PH4t3I/Yqk4U/DKN2RNIX9/ulqfQaQ5LBY0f/usQxsyGGx4sDTyrdDkp0CiqiaJJn4R1IKXE62vIGvpODgUgVIgz8NU7eHp7LTZ9n3UZKdglk7n7fBN+SEnPqj0v6o8DQLppb8eDH/t5321KAm/tuoxjTxP0x6YB16pBeQlw8kC1RtvsDfu13hYs7/mQtjETFtt24+PWHFHamDXkqyEwPtQxhaHqWsuXGo1eIajnX/gixCTZsIcLFGm5EB4d10TV7Yps7aDvN/XoxplQsgH0h3wvECjGpQqvmoGQlXMU4XtpyIQMMBObAfuMVs3I14NHWOxIYNX7N7HlHtUbH/sG56o/68NDpeA3RhaO5iUFbJs3a0eotsKiJ+H8dgfmlf8BuSrHlxqJdnhuW9FPTMuI7nmx0nG+V0Ew5Fl7vlld7XMyN0Z9pCaUnhDgRWoq8ZtaXwFbthEFl135x2XUVzcz1F8PvNwmCW+XJdd3bB5lVikHFK7sZ44St2BL21j6HI8TzQvJKsmOepKWtlFwRbzopmkVVQdQR+9fO8N21CSIqrI+Ig330b4eP2VWseq9tDf/P10ftTi23Ij72uW8aTJ7rg/Zb7WPoOnySxcam3JnXePRoHYr+uco6441d9X10Wb0YoyU7ckTgFdX7eXWU7HRYr5KfssLxH+OfBTCTZifafJuHww/N1x3z+N50Q6XcKh/YEI/Qp9yA27tprbt8GJ+5syvwWaUBgPX7d9Qdfz8lH7cxvTxAeWzRH8v5NiH4lEemvLNC0i6+DL48G+j471Yb0lxewNL0PXsUzTbNgfSuJKWHU/GUuikHe4CVCuUZtoaAToWumYfgdu5DRhSj27ho9ASHvHtOMyeSSfUhopZj+qwNm0zZQwBh6bW7cCCUPtjcE6tCjrI/jWTBrgMTX8/soBUXfdUDAPYeEOu/J6YvLPc7ixJN2tHzfuI4xx4oxruHZKr/Jf+Z7bZSm6EU7Al7X58XTrwXKTp4ynHP533RC0H0ZmrauKNyBlgYBrnmT9OryWtYnGp5blKDMvMsB5S04eRIiJu0Vyjm/LgJ7uqxx+x01N20CeHjAdfZclf3os7MJVgdv/VN7JfVcHRASj+IZXViMzP8asI7xf6Fp4op/tmlijSD2HybeR6xhA5PuhKY21QDgGRSIsvxCnE6yo/l8LVoXT+420ID+ppPPwy9apeNtMI08gzTrd1WWeWqGHc5n5+N2hYsFmlaXrfeb/x/88xREJO7WbYfRRtHIzt57ux/Whm9km6LjPVayZw6LVUAcdFgI2MbZjmYEvpqCvNWd0CWgGKuDtwp9pl5MY59PxO45+uhReps6/t6AAaNRfuAoQ7hyR1mfxiF3+CLdccL3Ez9m3PHhjphwW7m5Ut+n5OHpiYqyMiGvydqOxaX6M/X1u3c8Nn27QjftxeQwNErI1tzP/iAeYU9U7eRsqlsXZ0Z3RtNlqcx3UI839QYwaHcdzcZOkhU/J4oWp35uNBbuz7sT57qVuh3XRuTuI6/On7MqCiazC8GjMjRtqm65Swp3MP8O6gt2y9EVtaS9mjk870KABv2PUtbcOIQ/ovWlMeLh6og41Pt+l+FzI9KbEwl9R8J1RPT/AIzfOVUc/Sub2etDY9Fl1j4cjS5D7ls2hDybKqT7s8Ilz6fRZrQ6vNHflrQGWB74R5VjjK9XTebGjeC6cLFa9ar9ZPmyO+3zYAKUXt94eHszFFeaR6//eL84qoTS4wUAbg6MwbYlS+CwWHFlYwjq99c/cZNk4tsUWCk8GI1Xyheg+LMZlcenVfO3tmQPhrTSWhOo06r9YqsivTWfn4t8u0rH2zTfMPpcT0F4ZpqNgaJQwVjdvqIX7Ah4IwVZn3eB7xZvphT9M1TVnPEMbo2yvAKU94iC6Q+CUhi7/14W2/LOw3cz326qvDDai+jVuapoJ5qZ67H9jGdIEMpy8zV88EpfvbXd3botzOv/EkGs84N/nSB24PN/tiBWY5r4N6G+Lz4EQFmw+cnJb6jpydL+F8XjebUGESCLrl7AXofFCoeFADfw9QEEIpheDwpQkLF8VqQyIUxdnnohafEJiRky+DiJmZX9kSgQUB4oOW/eFO45LFYmhPH35acUVLmI7Q8KbYk/cJsJYZLsZH8AcLOn4uR/vMdKlofeq7Vxj1BP3R93IfDVFFTYOiN4VAZKu51n6SXZyYLj8h83vQ+YHlHBmrXVPxrZYxoDAK52asnQqfhyaFlPZh9m8dsAgj55YawN3TOGaz4s1PyDL4fvX4BsdiXZiQpbZ11+aboNuWk4P4GEPJiYmadpZ0VZGUPEBICg3XWwIfkr3fbz+fTqUwthfPvTrN/p5o94+bBhf0uyE9lfElXphuwUBpMfMVl552wj1Z7EGKOB0inpCWEOi5WBTVzzM+nOMYqCqKZz3UqR9XkXVu+5yYoZDh1X/Lzkf/dvHQsPr1qaMvU+9KFj9rPTUL6dND1fPj+e+f+8k31Fb2IepBbCKE1vXKSZe/R3+CO7UN5TjHuk5oX+vjDOhnrfk6CoZb2JIsc3pTHLQ2PzAGAIiXy56o09FcIk2YkTP0Wi/+AxSOg5XJOP/qlP73n+zO3baISkmwmKWevv8xfjaHQZJNnJhDC+HH7TbkTZH8Xj+ysNDTduWXOJORgVwsYcI/Dk5d2tQv+rxxJATCFtB0aIbfL1ZfED+b5gZDKjvEcUM2dLPrJd6Jezv0QI/PFjSW2e3W5BEkuX0UXRAfN9M+hwKXLfsgmhNBwWclrlsFiR9XE8emYoc/LFZsdYGYdmkO8iNRlzWKy4tCGUpfVev4fVQ4UwGrdM/V4nB3bHkyfIKVq/e8cDAApm24X+dVisODeJrI28EKYuj5apJnov5v1HhT7NqTTjU5ezfp+kKUNv7aP32s9N0jy7M4ZYaZSuDxd48lmRqomHSZ+nvr9QKFeSnQIyZfnly8J7PzeJrGlHppP3Ef7gPjRNOSnwQec2Lc9kbQcAyH/NxtBKKQ9Z8+LwQq5SNwAWP48iO/76zXL2jJpxh20bz4QwSVZim9J2lfeIEr6blPh+GRPQDQ6LFYNakbho63f8BEl2sqDTlChqaVX7IzXRZ6OPyYbfsRr6Z1PNidh/mHjTxF9K9mOYvzYekTvNDU+8YMB/iPvfPRYVew6y5zPkGBzvetswL0CQj/gAyPEHbjNkPr16AABb/CFFrnOrCaLXFGELAPLesiFznGLGAigIcfw9SsXft0f5gUYIfFVE3aPEm3mo+09dnh5/cc8kovEXqYZpqrrPP9OrEwBm56YjvrZZ9xlfhtHzD/JT8USQEtBWb2Mb/NMURCTt1v3A0Dwlz9jR6u0U3bouPhCPtHcWutUWqje99H/2h/EIezytyjFLiZq8eES1x9Wg+qj74y7hhFNdvl67eb75+HKUaJ9XVzMJQNCgAkDMi4nY87oodJeOt8FnRSpMtWtj6sFDWBAeJpQx6HApln+aAN8FxmPKcE5RPnx94TpzBpLsRPvUMfAfcdjt+NAbf+q+a7cgCUcS9c3EPFtZUFYiK/Vz87U65O490etGO5riYvdzumn4tJT0+oaaQgHQjGUaY43GIdOrQ90/bXeMReuRBwEPD0gl++GwWBG+xxt597ZgAhpvdsXnvzIyHvXXVI47Lj+lRjua4vApP/iPEBHn3PUfFb4rbt8SntMxLslO9BvxILyKzxmepkuyk8UIrKo+SicftaPVV1lIPvArHEPHCjEdjd5nddoU/PMUDOiaIXxb9MrRm+/qMUmf0ZMzShfG2tj6zcdAdLcOClSJolr4ih0tU27Ba5P29FfIs8UfFz/zZzHUHBYrVhXtxJiAbiL/rQNQVlDEst3u1xVem0TTOTUlZmVjaL0rQn2uXl1Aw3bwfTEocwBu9zqhKYPngVp/VIf0vp2U6LuhMRQBBfXV6NtXnTWhOjzo5VOne/pklCDoA9oTZGo1cn1oLOr8JLpmqNusx9uJJ+0wX1eU4jRN5oJY5N29WOgnI575fNStw5TcBJsGLP7bngDVnIj9+6nmROxvQj9mHsQw/1hcl4J1Fz/15AWIrwu99k+rL2gy+QWA+paFf5EIh8WKTyx7cHVjCOSn9bXJWR/Haz6UaZ29hJhMHXfdz/IwHiOVmEaS7ESFvTO6Z2g1z5LsRPKv37B7wc+mMt4fzybgHeePNBO0c7RMSXbisG0VE8LUPAAQbO3vnDBJSEfjqfD9aI4MF9LsensBsj6OFxZKGhvmdr+uhhtgT78Wus/U7/P63bF4OSRak47XNqpJPRZ4IWxAmPIe5R/bsb6kQpjDYsWAfqMAALlv2ZCzKgrhX5K+bfW2EidLzUujL9PQ/+6xuh9hmMwYc0y78aNlhD2ujX2m1xZKZSdPwcPTE+/8uAx1fySnfryZKd3oqvuVjgm+TD0hDABeDolm+QtmK33mGeCPC2NturxSHxzaP1QIa7NXUUrQuFblN25gaL0rmvata++DfbM4cIl4Ek/q4gPKyZvDYsWAAaM17WJ8nDkDc7sIOCxWtpFX81veM0oYfyXPVp4g+0drNgMOixUBr5GT64xbNzRjj9/wAkBFoXjNE+X17BTlVNRICcHzcbH7OQYuoH6XfNuLy5SNqMNiZQAkp39ui6D7Mthac+hRxUoAAAtkqyeElXcn4Q3af5qEOw4OY2W3HlkpcHD6yU9b7RJOyQLuOQSzry/yXxfHDBPCVPlpey52P6cRwrJWug9Z4rBYUXH7Fiq6WTVj/MST5ITII/UArkf6uS2HCioTM5XA2ABw+b54zXiVZCfqnyiH68wZ0j5OCDvxU6Thxlj93vjyaLq8uxe7FcKMxgwAFI4JYnW8kKuk35i3Cyd+imTpGn+h+MHyMRDpHNZbm3ky1a0LgAA6UCGszbJETR5ax4zWmwUhTJKdGBPQTVM+L4QBEIQwSVZAJyTZicxlxDKCF8JofWohjNZTfm+Z5r5H1w4CD799toT1Ye7bNmCLPytb/e66vkzaTOMv6vXf88GxWF1EviE09IbDYoVnSz+W7uRjYnzEkh/EQPFMoK4EmJF/bIfL94kB7mn+Utc1Ya0K3zaePePpXb/9wrWpdm2NGS+1NBr8+hbhPp0jeu3l6854cj4udL0lpJFkJyISd7sdY2FfTWP3+w8ew/JR3/pvQjfjv4JqwDr+bVQjiP1NaFgE+WDUcSgfyr5jiLlij4wbwkYEADLnx8L82z52XR1n1+bpij0+lvjC8m4KzqxtI2xSHBYrcu9dKCzM9P8UH7Kx7z94DA7GfaUpny5IkuxEl733wSPlAOr1z9XdyKsXt8xFxLznkxiyaIc+nSrEJGN5h4/T/XjyZdH/kuxkZlQUsS/sgf0wt4tAxO9KcOXyedcAEMGW7wOHxYqXcgnAAY034rVpr6Z+WieNL8K3d9Vl4jPDB3vkwQH4/OpyHUcHKb91BBDG/7VrrL2WYVq/rBinCxs2EWSskGdTETpmP0JmpiJzQazuJowfDxV7DsJhsbKA32xclLuwqq2/RvDn6xbSG5AkO3FzAHn3FWVlGr82noSNbmXegTEJAIBeh4ayex/k6/shUF5OP2zHscnKpr2sqJhp0Kdkan08KJoYoLyHt/x2wty4ESuXJ5pGnqnNJ8lOhrTYdEu+gJR1oV0j9jtm30gMjFPePwAkb14DAFhYsEMol9b/69fLhfSHZhDwCIruZ/R+Jrz5OHJuX2HvvUWqgjBnatAAkuxE+eXLQh6+DIfFiujZBNSBT6OeC3w/UHrzqyVCeofFio4fJLF0A2MHYmKleWTWPGKu5DpzBgCEOGUeKQfIXKg0f+QVUep+AgCvjFyEj9sH/zkpqP+wB9Skzksp/w0bBh0uRfKBXxH0oogS6+nXguU9+0uEwIPDQmIAqtdVCqAiyU5kfd5FUze99tip5AEIEM2V1kpQdrqpp8Hu9UiSnVgWEcwUAQCQ8uFCDYKkw2Jlc80zuDVMDRqw/C2HHtXwyK811Xnnet8Wfj3mn9Eye2Zch+WdFHb9RohVqLPl0KNwWKxMaFhxqblQn7p+9X3e3Lf86lWYOitxxBwWKzzbXdKUE5xMlHyfhLXVvDOjevSuaR0tPyACTf/WsYiYqD2F08vPm5XTeSE833uIzZshR84JwkXIM6lAn2LdeiTZib2zF0CSnfD7MEX3m0vv8YjMNH/ZiZOs3Ettialu9kdEkdZq+GEk9B0plHPl3jgGbHUw7iuGOqjeK/iY66LnVAVhkSIlG/FG+VH7OAtp64vKkWURwbrpACDkx6kAgLY7xhLFQv+lQrk8rx0/0JqFAkDoU0RoPzvVxoSv2xUupliPnz9JN18N/XOpRhD7G5F6c2P+bR/aLUgSAnTSdBFJuzHg8AUGZa7Or94I8R9XAMwRfl/XbzQf/adPRukuvOMDuxMNbeXiQTfQtHwKg+2wWNFijCzUzfNnqldPgM+NmpOEiKnEl81VSkAMTjxpZ20QYF0rN7FqWlaobE4l2YnIRcoi6LBY4crMYdfJm9cg8w4FsIP6vmxe9Zlm8e1WWwFQMfv4ABCFKr5O+j/zNnme9UkcVrYJgCQ78UzTLJbWHBaMqD2jNJtFjUDWpxgbr4kbq2vDtHDB9Jre+yA/lZWd+7YNe6xm9LvnQVaHZ3BrANBo7vJWd2JlsQ2fjw8k2YmmR8mmr9fkybofbfXYpfcdFivuSJqCFYWi8JC1QvEP8N4gBtFVk3pc09PJ4LVTUFYiw2GxovbgE6w+elqozk/7qPmnysbCZG0nlD+i/iXS7jDyMb7drysCZ4sIYpLsxDD/WJwZ1k7od3UaioJF6fwEG4J/msKel504ieRjv7Pn1Blekp14N/I7HJ3ZSrdfKRXNsgv36f9L9+v7ZKrzmyOJj0izRakI9VJACc46Kk9ibJ2Z7wffrt03b2vKarYoFTcrFHNnh8WKzM+6atLNLdgpXFOzJofFykIfWN5T+m397vXsd/j0XZr+yFzWFTcHKuuQaft+TX/wlP8NGeOuS2RjvaY4FS9J32rS9Xh4qtBm+j/ohVSsa+8j1EF/UxAFh8WK5vcVs9/05LPJoEwhvVr4yb3rM2E9oP5v9L3w67LrThnhM5T+8Gzph/A9oomeej1h9anWUBqcN3NxDJvL1Mcna05jJoR3fUlroQBA0Orz9dDr0D3k+1XeMwrBv0wWBDaHxYpbv7ZmvoxGAvDzzY4z3i6PMlbWUGjzr9sqIQHUwiEtt/+xgeye2vSz/MBRIY//iMOa8ZSXsFTDM1++3vg78YRdV1jlqeL2Lc13gfZZ1idxQn6P1APoNXmyRnjlic6bte2aGgqBan711gv1Ok9/85YRwesms9+xz5PxkjdkMRwWK3JGKgre5M1rhPLqf7tLt2z1bwCo/ctunJusb8GgbsedEyaxeiTZCXMLIqA33Um+5fJMO1P+qRUEfP/T+7QvW488qEkT//Q0IT2/jqm/lXTdBYiVyuBB42D+jZx0tvxIBCn6u5JHRcVf9vdPpxofsf8wUXvb6X8MxfE7PHUXUkqajTpH2V9EIWysEquELtaLL1owpZGM8C8TkfUAMavyDArE+pS1LK9aIODro8+uld/CMH8xjgpP6s2a+jrk14cQ/uA+TZoKW2d4pB5g156tLICXJ9anrDXUMALA6ss+WN6GCBSnf26L5ncfQ/YXUcjps1zgh+8ziuDlro+vjoiD9VknsmLEDY3DYkXBqza0fkl72uLhVYt9yOv97osfwn51yzvlR/ApUaXr9uhU1P9WuyCffNSOS+1uM5hno7YC+r4EfHvUvylR3wUeDZAvm/o/6JWn1xY6hvre/xDjx9074EMgGAmqnfZ54F2//YZjV82buzRnptmw7yXRR5H33xDKaBXFYgKpFR0ABEQtozrzX7fh+ENahE2qQFALfvRZp/eTNL6P5yfY0GQ5OZkpdV2Dj7kuHBYFhtuI9Pql5Bk7Wq8qYDF7zj9kQ5PPSNntUh7AEfuXuu3JWRWF0DH7Yfbxgau0VHgmyU70nDIF2xcvRqf3kpjWX03F37c39J2ivmTulBYLC3awkBX0eZfXErFv1gJ02j2aneS46ws18Wh8hd92RLptGVsD9dZivXXP8Dq2IzP5U6cr6x0Nz63prI6uLyei6ZJUId2a4lSM9CcgEQmd+sB19pymHj49RbzMXNoVeQlLEbEikcV91BvHkuxE9CuJaLaYrHfW/cDbLfTXDfU8r+p7YtTnRs9NtWuj3q/1cbnH2Wr1uxrl1N365K4cIyrbHIjaY28Jpz4A8Q2KSNyNKZm5WBwhgrEYtU0P8bUqPgYcvoAN7RsDICbWrV+uGj0Z0N83XB4Vj4ZTipgyUs1T1uddkHvXZ0jofBc7cQOUtcGI1HzQcafug8SsbCwID1PWM4Ny9cbYxMw8LIsIrnJMuGt/VWN30OFSPOJTwNKYWzRnsTmvDYvDH/MWGY73qsgzKBDn7RZcbWlCy/dT2P7kvwU10Tr2jb/MR8z5xQt/2/74d1CNIPYfJh6+/t42XTSLgd4Hkl5nLu2KiElaBDP+uvh5Owv8afQRrWrBMvq48o6/kuzEgIT7GWQ5AOTNsQlBntVl5HxlRXavFQCgOMkDODvVxrRFapJkJ2xPTYPPpixciwtBabgXDsycjzsnTMJvy5ci5sVEtpBHpnvio5Z7hbp5qs5H+F9ZYPm86noAor0uO3FSm6EadGVjCBo9XAFXdp5QT/i28Qi5nyCnmXYQPz9qXqnHl/pd/CvtfDtvF6ze3v9y//D1Zs2Ng+mmB7LvX6j7XjQCTyVksZp3+rusdzS2fLkM8TOnMZ8xGteNlmV/fBpSPlSC8VbVjur0kd5c5Mekpowt/kAfra+d0ZzxbB2A9am/AAAGdh8KV9MGKBjYQDfWmrsNSnU2tPz9/oPHCPEBRx49iTVV+CUBBL76yHQxvhZMZkjF6WizLBFBs0QBAx4eGH20RDjR0COef/lpOyzvGq9x7ki9Ebw8Kh4pHyxE/NPThJAE9DkPqa4u39wuQoDJB4hSYeMvq1jaMceK8XWXCJT90hS/Rv5S5VpLBfCG+S6GJEnbrdfOrHlxyB22SPe90nV19DGZ9W9V/USfz8nbjWjvWm43s5TUaagQyK69amFjwW5NGy6PioeprAI7PlH45xWMADnFTd7yrWG/UaoqFIg80w5/qRTlB4iA/lxOBnrVKdfwb9Q/fQ9dxtNNcgzfQ4W9MzZ99zlTrFCBOTlji+Z7y9dJy1ldlIJRAfYq3486LIQRSbITESsTEfxsqqZMep33dWcEjz7A7nV+Nwl+H6YI7aH5lhXuYCbDenWp26RuJ1+vXl4+bXXCurijAYcv4PMFCdj//PxqCU38/NAjSXbizgmTUEtSfPyo8C/JSrxEdXtin0/EuU4VCF91ma0JPC/miFC4MnP+ewSxB/5CQezLf7YgVmOaWEM1VEM1VEM1VEM1VEM1VEM19BdTjSD2NyK1NoiiC1GNyYijp+GwWNm1Omp85kIRfEGSnfCfo6Di0Xg3fF1qTZxGyxsRyu6pny1a9BEAwNSJoNvR2FG07MzxirkX1f68eLojex56v8IDQysD8TdR+wHwCI8Nv0qD6+w5eK/fgwMziZarlrQXUXOSFLOGLf44Gl2m4Zvy0vXlRGStJCeQ6lMCvg080bS3HF3h6d/KMB2lgfYhQv9KshN5c2zCaZg5MtywLr3f9fvnCqdhtE1ZvVZAkp34dc0K5M2xIfzRNHSdlYjMBYopVfR+ReNLyyxdH45rw+J0NZP0jxL1AQSIRvmZ4DiGxqhOy+fPnC+ac/FpaL3hj+xCgzyT4emNWru6fufPQvsb/NGM/QYAz63kxOVac2WJ27h+lTjOPZTxYKQhlWQnMj8jCGbB0kTS9h/b6baHr5/n350JDz0Nk2Qnlqj86PTm3frUX3Dn4bsBABWlF1Gx5yACX1Eg2yWZxOECgMhFBPRCfsru1jwHAApeteG0i/g2tkhtqGkffxomyU52GmY0/qdnkZOhgDdSNO8O5S44LFZ2Gtb9kakMTEcq2Y/xDU8LZWV/qEX2S+hzL/vtv+G8pm1G45nnQ5KdLNRA+9QxyP+mExqsJqdgtR88KaSzP078PypUMQ/58tVBoyXZKWi+AWBVW3+UX7sGU58iVsbZXyIw8qh4Qm59K4mNn4wn52PH3EWsXnftDJ+uEwR7+DicesTOrAxo/+qdjKiJPudPw/h+KX7OTfyxSuJPwwDiA0XTXd0Ywvqnweo03KpnQv/WsVhTTMYGNTWnpD4N+yhf+b4htiNWFO5A1qdxWL9rHfSIgnBYfr/CTsM6pJvwysMTWTl8+/hrGu8PgHAaBgC9Jk0W+o+CxwRKV1i5rrPnhHGr7i/+fVAADL1TJfptlGQnckcsEvIDQMEaBSlybYkSLzFz3ALD0zBJdiKz5+fCPXoadrtfV3ikHBBikk0M7I7T0wmP5mZNNeXxdSR07O12jVWTOm11TsPcfYc3tG/M/IJp7DSanqK28vR1WwtKx2v9jPk6+NMwgMSavLSB7JVoLDvaFvrfZ0Uqwp5IQ0W64m9I/coACH7s/w3kUfHX/f3TqUYQ+5uQdc1EOCxWDMocwO4dil8FQFlkvo9srsnHL6wR03YbbuAA4EpLT937lPzT6mvuuTJzDBe5a+WemJ6ViQ0bV+vWm9D5Lo1w2cjzmu5Ggi50ngEETpffQANgpkeTi4hv0omfIlH6oE3I3/zTFEUAiNR+iB0WKy6Ms8E3pTHqnXQhfJyCOum93U8oSy2YAYCjVRQT+qgfjV46StQPj98EU+GU9WFQY6E/zL9ZhPKuVG5UqiIe+tzrsgfkH9uh6bJUFhi7W8ZwpEeZBF4cFit8BmYxuHg1aT6IBUXIXFIJqPBOCnpk3MCGTauF9JLsZJsrCjtu+c0Dpx4hTuonnqz8ePv4CGVLshPN54nmdep2OyxWdNl7H8yNG2meUf8R2j7P4NYImpWKVluIzxINC8Hna7A6jaU/+Zidgc9IshNn1rZhde6662PEH7gN3+0EWY0iU1JAB37jxpQQCxV/Sj5NQsfeAMDgtnlo6EBPcf7xgi8t446Dw1DrrgI4LFYkH/5N01cOixVNfyHBbI9OnQ+PqPY4+MR83THE3zs2aQHGVvr9rWz9u6ZMvm1GY57vh3nhEZrnVNBT81Dv+11I3vY9AFF5QSnnPjGYLAC4jmaxdOWHjrH7XxTtRMkzdoFf9ebQYSG+Hnw7/EccxvEeK9lz7375ghKgwTdpuDBWCRnxQi4p/8RPCroez+Of2Xg2G5yJNZF+8GxlYXlafJIi8AuAhfYAgOtDY4H4TroKEJr+9HQy55CWgRZzU1D4kmLqpqfo0eNX7xnP1+FH5rO2erayaPIZlUf5rlcZVJny5DX6FCpu38JIf7K2d3ovSSir9/hJMDdtwq4fC1IEwezR9TA+sDvCH96FDmljdOukwpf0A3nXV+6Nw8b8SHhv2CO87zNr22jGf9Ml2gDdFDBn29IliJ6dqFU2/aCAQpnbRSB5y7csWLNef3qGBGHIEcXfjyrSABLoGwBTFghjzENB/uSVmklFdzJeaXpeIcvX7bBYYWrQQLMuUwh//zfF9Zmu166z5wzXBkl2ovzbOkxRVvSigr7rsFgRme6p2xdGRJViPTJusP2KWrik9yTZyUIR0Hs+A7NY+syFsdj0/ecCv532eaDwJTuuDbnE8qj50uPRHB6ChgNyWNmnf25b5RoJQPDBlmQnTj5q1+SpoX8+1QhifxMKfpFsmNdFbAAAzMg+pvkQMyFDtSnSI/UHGgCaLlM+JOoF02GxGkLg69Vh6tQWT4+bptlwSbKTQZ3zcLq0rs0dCOJdzrs2IQ/9ENDYP85n52sFIYsVSwJ2QpIJjPJ3r72ry+PAuEHCR5WnxitTccZ+AbV/EQM43uypaKT5fu/+yFTG/4BDpYzf3LeIo3zPjOvotHs0u8+3iS+Pxu1S88MjBgIEDY1PV7+/Fk5dr54NG75mbfa+UMHCC9CNQn1uwwOTWdO3Jms7tpGSZCcGhHeDHkVM3sPy8mie7RYksfw7Ov0AAMyHoP63u2AqI2qtOmfIfwrq0DPjutBevbYWlinj0nfIcQxJyWbP1HOh7/0PQZKdKMsrgCQ7sWHD15BkJ37v+CNy3tNHE5RkJ/w+SoH3hj1szPgOOY6JmST+1NiAbpjtexhNDlwS8v7x6SLkfd1Zd55GTNuNgfYhSr99Tt6/6xw5vaFw234fEuVB5sJYrL7sI5RfVlCkeU80vIW7PqN9G5w8CRX7DwuCVPFzyumYWlABgLw3bUJ6o7VGr+7HTnTVbPT52INU0Mt7S5n7BWs6CvWvT1lrKCSoN4i3fm2NnPfE07KxAd2E2Hh82ecmkTmb/00nuE6dhiVN2XSOOVYsvD91OyXZKQR5fyPEioSew9Fy6FHNOiPJTlj3g8UZo0L5qUe0m6ysuXEwWckJa1mJLNR9XVJgtB0WK94fT9YZc9MmqPPTbkg/rNRVVlCqN1g8ZfPvWSSM1ZgXyZjs39o9CBMN66FOI8lOdHlVQVJUx56jafQ2pPR91tmuxF7sP+QBnN3TQkiX8dR8oU6vTXuRfHArAOJLzJdNA8gDBAmSLxsgc1A9lut/u4uBxPDv8dKVOhp+eQrZ/BAcFita3KEo5HpN2WWotJBkJws/EaoDud4jg8Crl+XmY2075YQpYno6ynpHY3j2XQx1kPIqyU4E7a5D7lVUoOss8i5O/6zEX9T7pm9bugTm3yxCOZQ2HP9DuB+8QYRSV89Nen27wmX4nit6lzBFWcDrZL1Lv0nWBWq1YlQHQL4RV0aStTviIXIS9Uen2lgWuAOS7MSV8hsavqJnk74ov3ZN4IUnXnFN25LRpQKBr6ag9gbRFyn/DTKXeasFnlxZucLa1/xucf/WM+M6Cx/A83IxWfFPdVisWPToXN3y/5ZUE0fs30Y1YB3/YaKOj71wNzw9vITJTCdr5vxYRCQRwUEN9KDe+ADi5mFASDw25KYZCibVIZrvyezDSPppIgNU4MujCEbqfDw//woZ8SzJTgzsPpQh1BnRmbVt4DvkeLXK/yA/VYA+V78LSXbC+mYSWswVgQEujY4XoMfVmzKgetrm0vXh8BlIYO7NYcFI/v1HTT5a14zsY0LAYwDIXBTDwgA4LFZ4eHoi+/OOCB0jomkatY8SBbVQpzv5uB0HntY/XdFrE49+CCjACFURLSOhY28kH9wq1Oe1rSVu9zoBgMBhm7aTtmV/GYWwlmdYXJxekyaj9lMyKnqX6L6D/G86Iei+DGR9Gofwh3ch65M45N6jmPkYvS89zSs/32g/+X2YggtjbWzzzvc1RcRUb9b4eczXMzEzDy9/NYYBcpx8zM5Mcvn0PFiEJDvRfcZU1PtOx1Tt/2M+/jvKylvdicGVUxSyM4k2FvRaPSYl2YkBA0YzSPGq+qsqnvXqAEgcwc2rPqvWWqnmj6eQH6Yid/iiao0Vmjf6FRKHzZ1CQq882hZKJ560I+NJMjYoOiclh4XERaQhOdRl6/FHSZ5p14RjcJdXjeTo2TqABTQ26tv4A7eR1tkLb+ftwjPBcdUaX3ppslZ2YfHZHBYrK49Pn7msKyImVgI5HbqE717rh5QPyXfNVLs2ym/cMFwf9ShzYSwippFvdM578Qh7di8qyoiQcWlDKBoOyNHwW935k/VxPOK7Hse5bqWa/FGvJ6H5fPI9GldwB07ZLrkvTIf4Mk3Wdli3/ksktNIPNF7VGsjTjcGxgsKTIrxSKh1vg8+KVMhP2XHwCSJwt5uXhIA3yDjj109K9PunrjPnXRuyxyzQ7dubCTHwTt7zp+Y0BYk58aSdIdVSupgchkYJ2cj+MgomU4VhLDMAyPu6MzP5PHzrOtrXIgI+P/d/vwEWFw/Afw1YR9T9fx1Yx/6vasA6aug/SJLsRN7QxeyaQuZSclisyPo4nmlUeO2Ow2LFhlxFQLhWfkujOVLXpXeflvl+WHuEPqUg0DksBE0LgKEQZnRtlIbXoNO6KVF7d3kmMblZv+OnKuuhQphak3h2qo2VfzqJaKrV8af0tM1qIUySnWj4dRriD9wW0vKbpC6vEe1c+B5v5H/TCR5etQQtmEcU8QWkQhgAuLLzWDwynlLfXwizr69GCAPAIO3p+7o0oitCx+wXeKExuIJ2Kxpfh4VA+wMEwpwiC5b1jhbKu9VI7BO+r4ufs+PEk3bWJgDY+ItiWivJzmoLYbQMenpE85vbhDEhTJKdTAirs70FcnovR/HmQFaOd/Ie3H7Dj/FPeSr8lvhPlOeR9oY/TASV8Bm7DDe6PF9q0rtHYxnteptsgj22thLS7fxY8fehfhdqoYKve1lEMBPCJJmc3vGaVYfFiotj4gUfpbY7xmLHJ4pg2SFdu9QPO6KcWOd9LfpK6M1X/r4kO5kGnr4fgAjH5shwt3mpEAYAyfs3AQD2zVqA1ZeJuar65MhhseL79Z//KSWHO+L7jifzb/t0n9HTb75e/nnC8QQ4LFYEr52Cu0aOr1IIA4C7jg5m9TgsViaE3e7X1ZBnahqp1xZKVAgDwEIk8OP/1ZAuGgHSqD94OviY4vei/v6o2+awWDVw+l/u+Ib9NqonrbMXAMBaGZRazSf9z5uD6pWV2/czoe4xSx4HANzcFMT4zRugxACTOjQU0FM35KZp6uRJbcJ/c2AME8IAErB3Y+FeNi+aTFFCoVB+y3vox+rkieYPfzQNzhOthPzFz5G19udn30HWp0TI1BPCbveNFtrR4I9mkGQnLo4hJ0yjj8nCelPuPAKzh/G2kH8n/D6DEg1yDwDbFy0W+o8XwgDAZwW5pqbTc862YUJY7ltECMv+QLRiOHf3NcZH6fpwxkvo06noPV45veN52raUfBf73TteKEuSSUxNfh48l0PWJorU2fL9FM28a5SQjbO/RCDsgf1MCKNlZC6JEdo8reMfcFisSOg1AodvEfeH8JWJwnfujRCr2/H2d6UaH7F/H9UIYn8TMocF62rg6GSt6GZladnHpNLEJ/xRIhx5hgQJeehv+r+uifi4nHxUHxbXYbEiZ1WUsNjym3E+HQU+oAFZaXp+UdPjQ5KdeDdfhIUO3VOb8ZPSmQgpCwt2aMod0ioGhS8pmlm+fAC45ejK0uvxQ6nNH+OUYIrv2HChyy1cv5u0gwYy5cvR6yf179m+h1kbPEOChPb6LiB1ZcXcRNB9GcxZnfJH+1K9GD/SWmse6LBYcedvuRoHaQBwDB/HPiQOixUnVZZQkuyEHE+Cs6Z9JW4EPj5CNsStv1Eco7d8uUyoN7BHoVAW34bDj8zHXfenCR8SGgCWf0+3+iv+CXxZNzcFae7RvPS/63i27ju53vMUIj5PhP+bKUL9nlvS2e+SZ0lnBN5L/CdCniXvxNyiObK/iNLwBABzS1sL7QdIXB2ABGZVvy+9jZUkOxlYQdnmQNYX1NFd7Xdxx8FhAIh5rbocdZ/zz9RQ68e6f8Gur9wbh/db7oOpdm04LFbYDxCFzI/tfAGQOFWZPUVfCYfFiqx5cW4Fg5tNPDTtLryrNlxHiR/GyUftqLB11giYkuwU/HwA4sO4vA3ZFJn7ndXUN8w/VleA0BN4JNmJccfJ6Qv1q1FTWR9xg0qp0Q4x6O3F5DCEPJuqmfNnEhXhzHUnMSnMG7IYph3KO6LlF3/fXlO/qU+RcE3L99q0F6YOWiULAHY6YLK2A0xmXf7VAj0l151d2PdBXeeNQaI/I18O9VltNy+J1afu823XxW0ErZ+ux7H77xXAJygf5x9S1lpzO8XEPfzLRM3c4nmiMeEooIIkO5lpH8+Dw2KFq6KcAVZ598sX2k3TmNtFaL5V6j9JdjKhhjf3k2QnvNeL5uXqPqJgE1RpCQC/fiOCkKjz83wCQMA9h4Q0TY+S07ZAz/oIf3gXnj4ZxfLyfea1mayBd42eAPnHdrjcg8wtul7wMO2m2rWFvNeHxmrGFyV131ByXbioy7/6fUqyE2/niaf12zvVgTyTrKsN2p2HJDs1MdZ4JQ5VXPJzR56pfPTU647HTtI3gbvqsftleQXCuvRmaCdNW02uCjK/v1bWsmaDxTAVtIyIyXvE+d+BnOC4MnMwsv5FAGDrCT9m+bH3Y+ZB1ND/FtUIYn8TcmXnGWrI+EWEksNCUJB4omZ6dbaLdvbqTYTXFaJiuDwqXrNA8icogLgZV5eZc/uKkJdfmPUWcPqBopHsafqcmBsI3TJBSBvspWgd+Y9kk6MuoU7+dy1pL0uXuShG0/bkEqLxPt5jJXpk3EDBbDtCZqYiYtJe1PmZfCSbLk1l/aLW/vF18f9z3o8X2r5+x08MKZCm8djaim3+KC276CcswGqhldK1YXHC9eYODZCcsUXoH0l2QvphJXrVKSebv+fsmNP/G/b8Vv8YVm5Zn2gcmCn64EV41SO8VwKM3JE0RdO/fLwr9YbPYbHiUHQ5Yp9TNlFNl6YK/eQR3R6/fUa0kzyyV78RD2o2SQ6LFeawYJT80F53c+m1raXAf+NOZwVewvd4s+fFz9vR6q0UzZissHdG8v5NQpyiUtc19B9MHP3XtVd8tqifT/iDxOSJD0zssFgZyhs/bgZlDhDGkGdfIsiW9Y5G83kprA/4tpVeIyeVaqQw2q7ct2zsNx1j6g2PWkCp/y057Su/QT78iU3EjWPTJamaPKOPycgdtogFtc570yb4wwEEQAcgm+jfK/cUQS8qcYr8Pk7Bpu8/F/I4LFasv1Yb8/atFXhPCt7O8pWer0/GrEMrBBas6Yi1V+tqhDJKM2Qyzsc0IAAC1K+G/lFtNBXS1eVc7H4OHT9IQuAuMh8aJWRreADICR7NW/gKOZ0I+XEqrPuVdtL//iOIn14Zd2LL1ynJTgK+Ufmbgo+UPGPXTZ8/tDFQ7mLl662FkuxEcsk+RfD9bZ+hGXftdYqAQBVvtJzkNskAgCPT5wvtomkk2YledcqRXKIEjqdpKLIc3TDTMsty85G5KAYXuYPTwsHN2POQmaLgm1QSjxnZx4SyJdkJnxXKWOP9VWmakUdPak531GvW23m7mO9WVbR15TJ4xHQU7ul9s/XWdIAgT1IeHBargASs/rbz9yRZQW6lipGpb38vpM3oUqHJn5il+NKatu9nIEPU78vs6yvkcUW1Eb5jdX7arREY9MhhUSwtACBi+4Oa9ZqWyV9Tc9F+I0j68xNssLxDTvt9hxzXFeQ+yCfvvLyHvvKMN581ejeFcVeFMgccvoDQb6Zp0kuyE1dHxCH1vYWIfT6RxVhT04rCHQK4S85X+vsgdfl0zE7MFGOCDosQx9jflmp8xP5tVCOI/Y1IvXipr4dmOeAR3Z4hAektHAA5IdAjmv5yELlusFrxHUvoc6+wkdTb0Kk3PUmtlYCOBbPtyFrZhdWjl09v00CR4fjNMCU1+hlANpVG7eLryRu8RNM/1O6dfrhbv8yhLHJ10H4BgLkFOzUbSZ5/h8WK0CfT4OHpCc/g1qzteUOJWcYzp8j1xrbr4bklHeY2innemkg/SDIxGVX3Fc/TH/MUEzMjPtT3Dj8yH8vbKCc6fOBtzy3pLG2M0yXkvXMC+UjTjzD/TG/Dx7/TqxtD4PN5quY5/c/D9vLIXsW96yFzcYxmfLmy8/BZ1Apdof52rxNk89CLvFPerBMgp4+sLx5WzKp4kBgKMc33+agAu2BSSU14qOlR4SsiXDdFK4v66TGhfkl2Yl3EBrZBnX1Ggbz33Jqu6QOAmK7SzRKPJkbHwpm1bdhJHgDmN0qpdLwN6TfJaRdFAVUrDgACaKFWMqj7+Ou2FmE8BT+XiuDRB5hpJ6X8121wHcnEHbUVXhPa3iGkiUz3RO7bygnSwLo3EOxVX6hzTAPFkT38QdJnPER0m73EbO1Y9y8YQBCfv2gWWSuOd70NSSa+M5TonHRYrEL/8eQYPo79tryXgsK4q0joOxK5b2vNAdVKmqNTyPgKn74LzigxHf/fs28hemTcYNYNcc8oJkp1ftrNeKXpDz2qAFXwdR6dIipRjNYns4dJsxareSt51i6URcdmzylT0O+eB1n++JnTNPnps66zEpHQqotSzhZ/TfvVlgYRU/cg+DllrWj1dorm+0DbkxNzg5liq9eV4LVTyL0t/pq8ayL9hLbrgfXwvmPqvqG/zZV+KQ6LFedfuaFJRyH09dap1UXKM/V6ShUZ/D1K5qZN4LBYsfACMWvO678UV++Jw1U/L2R9GoeVbQJ063RYrPBNaQwAzBT8g/MhyFygnG5FTNyL0D21UR7YHPmvk3k55Mg5eKQqggY1p5dkJ15sdkyog18v6P/lgX+w55k9ReWL0b6GkkcqWYfVpousL34ja1HRdx3wRJAN4wruEE4UTbUVIZyGlaGU/UWUZr6emmFHox1N2Xjz9bzMkFl56vBJEup9T5RYu+co/qumBg1YGypsndHj26cEP/SHOmjbwZ+msf6LJUBFyyKCMSVTAdOqORH736MaQexvRNQsicZmUX+YfgqXsPGXVSi/dk13MXRYrAIiGW9WJMkKYlrQrFRBYxO6ehqDg6YLVthX4oeXlq8mWnfrl1MQPm6f8MzTr4WQ7vpQxbyo6LsOREvMOXBLshOXRsezNIcenS8soHofOv6+O4EJIIAO6rz8Jk2vjkdad0PJs3a0+SxRKMthsSLku6ksXUVZGcryCoQ0A22D4Ywi17criMDjOq7VsJ9y3RLKpdo1ytPKS82Ecunvgtmiiam6PdXpoz1Ws5C3YKBZwx9fb+FLKkEEwJbrZvQ9dJmhJfK8q0mt5QdIrKm8QUsQ/mUizq8TN9mzgmN03yX9X6u4lMXbU/ePw2IFTGb0vf8hxlfo06macvSE6xNPkFOOtHcVpLIKW2cEvpIipC98udI8+OFdQr8PCCfCDt2gvux7RNMf/Ab7o/wUZMXcVMbqZVFb3T1juCHoDPX3c3kDzweTOXaz50lcvi9eo4nmeTB1aKvZHPKkPsG9MNaGo92+EO4df2gBPsgXTzBylxIFQNZcEp/uaHQZQp5JFerS63OACJPqfip6wY5PLESR0O2xynhe9s7COAt4TTTx3P9iJax6qyhB2KzoptSd/UE8nsyuBJNJy2C80L/84c0Q8owWspzvP4AIA2rKfUdZh1lbPTzwR6fa8NhJytj19gLG/43BsVhdRBRDa68qirYzicoJKI17qDfHeXJYrBjYxWG4pvE8tXorRTfd9sWL4ZGibMwbH7+qyU/TUzReei/vTBON4NF0KXn/Fx+I1/DtsFiFMA5q4vnqO+Yhds9UuzZDvkOfYiHvHUlTNO2m/s0AsKRwh+66eGl0POKfnsYEfwBwXbrEnu+O+pb5qFGlVWStupo5Rk/QqUlm8M/aMULTqtc0gKCrnp9gY+bDDosVOz5ZhMYrUxH+8C4N35S8trVEak4wzC1IqJubA2MgdWiIiMTdQtria41RkX4YwT+Sti1aNlgox3dBKkNf1Htf9F7ID+QbePTWNUw4XqBpX9bcOHR+V1GKSLKT5aHXnkGBeCl3n6YPAGLeSk9lqXnmvhOiEEpP+gFg/e71Qn+Gjd3PeKVCWotPUnCxu+LDSJVA6rqv+5Uzs3W+D55yKnNm0/efo7y2cmQjyU5ccRFrjIjfxykKg9EHtOvf7oOsnMURIZq+q6H/HaoRxP5GRKGpqd8Iv7jHH7it+fjqbaKCOY0vNSuSZCfuSJzCYr7wZTssVuSMErVBkuxE6FOivw89GVCTuw3B+n0S+x3yw1SU3GFiH56Aew4J5dNyKPqgXvv4eii8Os2XubSr5oMmyU4GIQ0AYQ/sxzJV0Fzqm6cuny+j1VspuGW5LW7at/gjfIZ+/C1aFhUyHRYrvDzMzFySlku1nrwZprlpE/gOOS70zaq2/hr+HBYrWr+cojsejPihjto8zcw5KOQNn7FLML9Rb6iOTpsPc/s2wofrt8vthACnfH+q34nfbvLRHH2MQF3fGKyYcIbMTMWeLms0wpG6bdelYAwIIeMx+fcf0Wr4YU0a+tuSUhebv/oMZh/FzHBdSbruu+bHMjU95NPxGmM6julpiBrWuPyqsnHVG79qoZHGQ6JpaBgLmo4KuXqb6vzY6zidZIf3BXFDYL5Voamn3XwlLlP5oWO6wiE1WdryhWiW3PiLVM07jnkhkSGB0fcW8vwV1NneAuGPkPlBwXBoDCFKW66bhTbnvmPD7jla5EDqwA8A9deQ9WHTd5+ze3r9y35XVAiCy/Xm3ixN2BNpeD9M9N+i6YJ/mYyA11NgqluX+bLwZqGSTEwIHRYrIqbtxuxccpKUtYIIr1kPLND0lVSyX1MXBV3Yvmgx27TTE7/ct2zMv9RUr54Q91CP+LnW+hfiq9N3zEMsz9lfSLn8yRAFeuDHPh/PjFLFHrJO0NMWmkddL0D8eIz4bPSlPhCG34cpKJitVdKox6f5t32s7vIbJJYUDbDO5+FP9PXKmhzYHTcrbmvSbHz3Q5TV9cDxriL4Ek/N5teD2dcXl4IUlGNemKVjgq8vInE3Sh/UB1vRG7+AFtyCX08dFgLSBYjgJbd7nUBOn+VwnToNSRb916g5X+aSGNzseRLl3a0M1VaNDAhAgGDXI0l2MqHwsSA78/Fk7Tl0CbkjFsGy+ABL77BYNYJkWX4hXg3RojRKshO/LV+q4YHGV3VYrAwYiJb3QH4vRM1JEvig76WsuAQRv48TyqL9T/3GJNnJAEdyRi5kljqS7GSgHe+Eku9ju3lJWHOlkSaIenoUOYnm/dkkWQEI4/lVr8+S/N9jmlgD1vHvoxpBrIZqqIZqqIZqqIZqqIZqqIZq6C+mGkHsb0bnJxCtSYWtM5w3bzItCYX2pcE11doe/o8nqsX9fcFiw9MTh8WKmwNjNM/4NDwqG60XIPFh+FMNSjzABNWC5YxaiNA10xDy60Oa9LyGqN7vvppnwb9MFq6Pz1GADjy6dkBewlJdvoNeTBXy0SDDVDvJg6RIshM9pk/FlXvjNGXl9V8qMswBV6i1WuqTD3qPwsvf7tcVDguBZ+c1g232erFgper6JdkJ+Sk7+/1Crviu+TrVWkL67LvQzRqe+9TRgp9s/FkxP1OfajksVrgOHxfKPX+7nlCGWnPL9wnVaFO0rrve+F3Df1Une2cv1xPMUR7PPopL92tPbCWZoEQ6LFYW5FiSnRjUKtrQtIfPq76mYQcowiavzZ4S0gsA4NG1gyHvfH3qk2Ra3+PZSqws6mx/aUMoHjtBzIwjd47V5bH5/BQ0+Eaco3V/VMwlJdkJh380gr45qTkVV/OXfOBXgVe+Hjo36bP/x953h1dRfP1/khtq6J1NIZ0ebki9F5DuhYBIUQSRLiVR7FhRRFBUFBWU3qQoooCiBBaVopCEhHKpgXQSspQAoQZCcpPfH5OZndndG/D9+frF75vzPHlyd3fmzJnZ2Zk5M+d8TvL7C4X3nfGNGY70LNzudhEFo4mZ4eFp5NTQa5a46/6xf3vcfjQCpiB/AORElJL5MNA0oQ4LymuTzCiKFscoo9NBnox2m2tuJrvX15+M0j3n/9NvdVt6PPMjCvyI+MqkLohgfp0URGK6HzkJc3ErdToe0P8zs9RTihNT9CAYlPxeVwFg+BNWbR1lxY76+xoI5WT3rAqbZMZv61Qo90aPpEJWRGsHGr6B57U1OU53DyDhDvKtV3UyGI1VWjNwnh+fnm8r6rMLgJmMVjQWAMBy773wel017b74UyvD7woAnszqLjwb4CEiuGZ8Y8ZQTwsaLk3AB1lJTNbs74IhK3Zmbpo10BWO/Hw0WqxH06xoHKP+sxVR4/h6unlcVuwCuBElipZ8NOJb4b5NMuPKWIuu/IwnCFhIVr9ywKRnxBN0LcmKnZnD0j86ztK24d8nRYWlJopyuzqwSWbkDw9mcsmKHaZGDYV3r51f+HtGYxA/pjlSVOTE3LetyLdexWtTvmV5ZMWOvtFPqumVmoyPawdyknh9eBRyIm+h43sxZPw7uUeQhfLXxjTzej+ehe3RypvxqTofXZpI3kWjxXpAJ74uffsOh036F/mIVYJ1/G1UqYg9YJT8fnnsoYQjeM2XKAS7b7vCxY047/MTK6B+yPwfT36vJwiKhazYdSg9smLH7qVL4dbCSzcgn3lP77NBywWArQk/Y8/iJQIvQAWYSJtHFjGXfiYQwQEvJCKz9wodvy7PToKs2NEm/inceigfffqNEMqigYrZAqJ8ErJJZtzydhfq3fqgG2TFjo036zC5tKSdFOngWOdAHgu261JNNWPqF9FPN8FT0xCmZAT4Cmm6Hr0Nm2RGdNfBjP/n2fHMZBQAgr6OwaxLreAS2lYwh5EVO8qsHYQ2kD5RY5h92H+o08ks51FVkS2zqDwoH34S5e+nLg5H9nfBOiU/uutgIS9AAotTWuCRyPreqnLfC5tE/Fu0+Z5LJ+ZwLm7kHfGO4NqJmJePmlXdHhiBk9a1SF2m+j9+FtAaCZ/ona2NFuva78No8temo/6SNOzApXbkWzz3MlGMr4y1oKykhLyzA8cZL2riJyiiAfqJm5+MPwtozdIuDAxA5+cmYUbgFqSEErhqrY8WAKEcZwqmTTIDpQ440jLv2Sb8ddpqNe7UjSeicOuhfPaMr1fLP4nJj/+T5TKUlSFp9kLsu1NaodJU46ckxO3eqONnDyFxkX4MlMkmxmwLqm0nSrxLaFtsOJugk5v3MzKqI5++zjeJuueUct8mfApGi4tZRwEJqBsUm4RBnhF4Of2EEM/PrVlTBDx1WCjLSJF42zdcV18aFsEo/b02JmySGcrHKgiQm58PHNevG37nWp7aRXB0h97IKr4ppKM8qL8ST9rvlG6yZfTQw7ObWgdifE5nXZlG18UwCX2ZKfqfRMHNy1NY0DpOp6PdPOKHdDh8ve47pteXOxXoZHd068jSpHdbxWLYUV/Lm0Oj8HIw2cCiaI5BsUm6NnXWvwecvGyYho2jXEgBWbEj33rV8HtsMfSYTjmgIQwo8SijDb8R/bXNh1Wlm9a3eg0VJEo77tKyMnutEMaoOt8kOq2rW68cpM2PZCaK1CT5wHsLhXdJEX+NvpE7j0Rg/pl9WH+jPjoeeILJdK8xGgBOxixA0Q4fdK2Ri62F1TE0sydskhnb4r5haXg4/OHfkQ2nOt8mwtG9IxovUtcEgWtj2O/gQwSQqWBroK6/a4k+839ZLafp+hNCGq3c1Jx52zaiQIateBqV9H+LKhWxB4zoIMl/7LP9g7E95wB7btqlxv7gB07+mqda3+/HhSkqsMPQWmKsD/pXciYXLVeq8OObzyahqIlD4CUrdgGqFgA+L/AReNHfAJgfFR93gx+IKCBAzU1k95465NKgwkbto6U/vyRKX+rScCCiPWIb7YFNMmNIretwqVYNEW/E6PJQ4oFRABE2vKxIRd7bmrRVyNc3sBOaBKrxjmTFjrg/Ngtp3mxETo4caZmMP/UFouT7RgL+DK7ObPX5+lFnee1CxdQyQAe5bJPMcDW3gU0yM6h2m2RGoVRdeNfnf2wtlEF/u3lIyHpkKXyeUO3afX+eQCbOPZvwTFqqMCFe7dwCGd+YGQ9ZscO1Q2uM8e7M0lD/Fr6cfjXvwCaZUVZSAi1p5eKvD4YS37FZc8nJbtDT5HuwvjRZ108y1oUIiwlKRgs0m2RmwYxtklk4yc2aTRRJ/1dUFE1ZscPrfeKbd/RlcprRYGWCriybZEZhmA8AsBg/ADmBpc+pLx4vl5uPN1FUy0/fimu64uGaREHPe434E7mEtSMKcrchUDa3gSOfKEeWlycLcmqJOqvTNH37DteloURP/QJHHUKPY7fgvd9dCHrL1zd1ZSh8nlD9gvy+n8yed6ruql9Aaog+i27TVZBdVuywvEKUYN83EpD+KUHWLDt4AkM9Lbj2lHgK2uwz8cRNO5Zqx0YjpT9g11h4zSTvl27WZM9U41Xx/6l/2Y1hRI7Uuc2F8i8+q/d5opT7tlVQEvjNKX5MLyxVT3v4jSEt0fAbAIGHv76NnDJmfqQ/GTHqGw/FEDAJR34+JrfojPln9jkti+djk8zoeXIAUWQ+j0Lg6EOI7jqY9NOdHkLaJfJKFoOL7xNBq9V4g/T/8z+OIWNd25ZCmf6vJKIk96xufPD40Di2JM9XVuzIWh8sjIdnJpYK+exvLBDy1tqQiIl1Fd04UtHmBU0DAFvaNGTXrZbFCOOSrJBQJwCZB7XjB+WRPUvd0AK4eGSlDnGzKrgqU+zo3EWff9TULlx3Gz8BRyO+RdYHYt+uqF6yQuLzFTgKdfM8zR84ZT/cPCREvhaDJgvIPETRN50hkPJlVf85CYMPTsTKli3QeMBphv5KT9dtkhnhdlJvHpGSUrWHszHGuzP61byDDX6qwlewNVCn9K9r5YnSrmRsNu06hPzJajvzp/M0NABF5qXjFE8UkISNiRxKJd0U4enyeLXdA8ccFPqt14fOfc8fNKr0D/t7yKWsrOz/SFUfTLp+/Trq1q2LbngUbi5V7pk+3O7ArCbHhAHQJpnh5tsCJVlnEJhcDTt+7wjf1xMMB9drT0Wh7tpEIS9P9F67g644HloKN08PlJzNQ850K1ImGceS0Q7GdMDr8+hIXIisjSZfxmNudgLaVq2hK69wUCQzFzKSo+G++rjciexEd0gajmblwTzzt7QUUORoemWqVYAFBgBT25bMnE4rI/9fW35G8U3Etuisy8O3QfYsC9p3TcONLpfYs+IyB6q4mAwXny47PbC91VaBR9OEOrhguV6hPEbt08/yCGbv+Z7EZYsKBhKPImu2Bamj1fhyw7J6YL3vTqcLBe2723CzLpYH+SJ1QYQOHl37runvKrubo7jbOYFPdNvuzBzQqFy+bC2/4l6hJBDp755Az7Mw1a/PTiPu9d4AgiKYHXG7wnZMXxOCgJGH78mrYLQFSbMXovfwsXDdo8bYa/9ZLI69SMBvivqFM6d4gU9EeyDJuZkJ/baM2oiXpevR2/hhQQ80XkS+6a+uerEFnlF6I143H49koR9MDRsws1j6zbjeBZp9IYIEOXvflEacOotRdS7p7l8ZZ8Hlh+4icMxBpC6KYND/RrydyX4/38C9iPI4M8PKzN7mF7TA1o7NUFZUhPS5UWixvQQ7V+kBASqSwdn99M+jEPjaYWEDh6YH1P5uatoEKR96IWjswfsq4+ooC+qt1oeF+KvjRccDT6DxgNPIe82K281LkTF0kY4PL6f23fG82s2LZcoPAKzJ3YcmJnchvzP5nG2QaGVwVle+jPsl/hvV1qUiXrJiR+DuMfB7kpSbH2MRNpi0fJyNq/dS5Jzx+v/9BrSU8UkUAtbdQNnhE7pn91PelV+CkNxxwz3r57dpEgKf3Y/LT1tw4L2F+OhyIHa2d3c611IeZZYODBTpfsY1+j/3LasQ6+7iT63Q5FHV2uL6Nn/U6ZsBl50eKOshjrkuVaqirFjd8Hjo2CAGnMaX1zZhBDyH6NvNmWzO6PJ4C0Ma1dYl6tXJ2PH2AtQPysS1a9dQpzx0woNEdM0aOvR9uFWpfu8M/59UUnwHBze89cC2x99BlSdiDxDlTCc7qHmb2go7N/zilSphsmLHlV+C2AdPodPTwouQOmoh+7j5AaH+vgZI/HgRXKtXZ2ZvF54Tg0pS3sdDyU7h1qStuBhLlDCeH5XJ98eJQvBkfqesLPkYmnxJJuuXfCyMt6zY0TShDmTFjjIT4dVwX30Cvf+7ihDoEtKWKWEA0GxgCvvNIwvycktz9LHBHCdOMyheypsntkDikPUAMU4aXy++DXymJeAH/9+EwXdGvspfKwuvhFG/PF4JM9WrK8h3fTjZbTdxAxBNuzXhZxYcm8JvUyWMyrned6dOFm09KIW/FcNs3qkSlrEuRCgTIPHC+EVHcbdzjDflG3dil1Au3470z5lSVuU3gkBH/fCoQqfd0bRJZnZqBZBFhqzYkR1xm8WJ0da7ym5yaqGNW+ds4qz/NTFHokpYxwNPwCaZIc2Jx7XS2wCAeq/m6L5TWbFD/nENCgdFwtWsorqlzScnbqb69QUlzKgvA8SPYU9wDWI24+ICm2QWlDCe+ACx1G/TJplxZkN77PtiMZPRcfmKUOdmfXIR+Fiqjl/4NPEkWVbs8E+uzvisH9LTUI7kWQuR+TBBXKx+zg2DTqrmjPx3lD5XD2UOEB8so3dnRPRZ7jQrehwTA7VSHi2mq6clv7StzxSlgJcSsXMV8f1MXa4PHj04vbdh+UYy3xgWhYAXEnUnETS9TTKzGIKOCxeRZVvulJeW6q1OwK3tfgIv+pv2l7zXVf9RAEhdESbI3vbLWDZmHn9+AQJeUDfj+nUeaChL1oAl7Dc/jtkks6CElf7uhSYmdyYbDbYe8UYMCwJ+dZQBnL+mfSi0Pa1XnxakH/B+l86UVgBwrV0ba3L36e4DwO6lxC+qxh4SUiVvU1sWTkVW7CgYY3xa03J5DFPCAKCwmYvAm/Y5Kld0m66wSWYU9yKWHsuvNdPJPDanC2RFNV32SarhdCyUFdWM26he2r5p1F+pHyMApD+5SFDC+HGn83OT2LWpERljPBNrCWl5JQwA/HeOFb5VlxBySkyREQ+8R3xIf5jbi9Vt0Ml8w29KVuwCMq22HVKXqrEm+W8AALNSoNe8EgYAdfpmAADKeuTpyi4rvst42SQz/mi/GbJih6u7uyALr4Rp53X+Hr/Ooff55w2XJ+jympo2QfvPY5H4sd7E/oGlsrJ/7u+/nCoVsQeEzkyPgPcMokQcj1qHfhH9kD9ZNCvJnmkRBqAG/VPZx0wnYko2yYyiHT4AgHXlk1NBpyuwSQT2lwazbTovnk1CRpOcTTKjyQIy6fLwuzRt1sAlzLG9ogUTfU4Hu1puxN/G/QdikviN7y6iQLb+haWnEwY/0BsNctpBmV/s1/6TxOCiAzNfR5tkZhO3m58PMl7RK2suoW3x8ONjdHVpeaAKhmb2NOSZbDbhOSVceKaVTVbshju01FEYIMANFM4/7tQfujbgiZ+gqJkRX54RURNTypPCJfO807vrfT3c+2QK1+bDYhtQ3wBeptuPElONuntFJSL3B2Nwi4rqx5fVxqrK4v9KIoL2jAYAXOt82TBPcbdzuP5kFOLyDrHnvJJOyTW4FUxtW8JUr64gy6Gw79h1xNcvASAB1Pk+d44z/6y5eT9K7WoMscwhRCHSKqpG/aRpQh2UHklR618+ITlTTvhNiOo/Ez+WMksHtBh6TLeBwP937ZmLG10usTah/at6Qakgn00y4/Trbdlvx4nTAk/eH4by8J4Rj8n18oTy0ueSzYOAlxLR7qB+CnqpqyzUb2uhuOtqtGj1mhWPAbWP6NLda0yidQkaf4AtqilRfzjt90Z/33pMNWOtvV6EZe92fCAACCAyjtPpuoUkjTdlJBdflvab49OlfxbFFKPC0rvImW5Fqm0xUu4WsnSPPbFHeI8A0CGJgAOUZGYDUGM7amUEgLC3Y3QLY5ru7JV67Flp1xAUdzuHgF1jUf9rEgRcVuzY/+FC5n+lJcqLWmp4JtZC2/mx2H6GbAaVHTiuG2MBsMDY3Z6eAFmxo/TGDYz06mRYRrenCdjTj4EkpMrxqHWo8WMSXKpVg01SA/ZSeSj5vK1aliAqmJ2sUhnoKQ+FP3dcvQaAbCbJih0bWjfD8py9uPRzEFxrEqAIJeoGAODCIKKYJ69Q54RVmvAqNomYcdskM9w8JHafKdzFt5wqcZTmBbTCXVuYEKNTm94mkThllLIXkQ2r+O3BOnkKxlhwc2gUSnqGCr6AAbvHsDmb72sDTl4WoPhXfDxAN6fz9Ur7gmyorcsVzWODJiRj6vkQIThy8cNhht85f03b3VkbGa0nbJIZpbduCff5tDQNDcERl3dI4E2fr8vdp7t3p3+EsA6wSWY4LlyE9DFRJv8t8PWV9PdRpWnif5j+qmkiIA5e/G9Krh1aswUcJfc/GrOFhdFEmzHHwoLdUno5/QTzT6GDxucFPnik1nHhtIjnyad1pgAYlU/TX5pkQaPFCYjLO4Roj45O6+iMj/Z5v84D2ULD6LlRXlOAL/PlkRU7M6uYkXmQoaM54+WMZ+7bVnjNjMflpy1ouMwYPcsU5A9HasZfkrWkRyjcdh4U7qWuCEPQOBUQxChvRe+HPm+zIBY+i9NQ0MtfiO9Gn7dNGIETlnUV8qbvaEBaHxR1PW9YdlF0OHYvW2rYH+j/59JPMf+y+63D/ZCs2BFx+HH41buMgk5XDOvBm/XR+mwvrIY+NYuc9kt6v/6+Bth/2k94Hzy5VKuGsqIiXHjOihu+pQh4kbRz0Q4fXIiX4P1uvK6ff54dj1HHxyC54wbhPgDc3O6HepNLUJKd47S+NsmMunsbsqCmH2XtZ8iApvr1EXdil+798WWcfcOKKrcA++sL/vL7kBU7+pzqx3ambZIZLm5uxGcwKhjyptX31Vfv9b1dmmhBoyUJur7I55EVOx5+fAwLsGxU1v9PH3N074jf1q1wOlYbbarYJDMy5liQPmLhfcmRPjdKACBIXRaGoKcPCOlLu4TA9c/DyJ5lYSiyRm1hJKezMVYrT3GvUOxcvfwvjTOUd4GjkMVQsx65i+mNTwplVvQO6b2wd2KcjqvOSHnFimMvieb29/O+lVetkD7Wx93i8zq6dUSVpFMoLSwkfd43Ujgt9d0ykcUa05Y3NzsBL/mom55RR4qR2KEKTIF+iNuzCRFvxqD+Kn1di/qFY/dS43GU/83fy/zGDD8KsGPQDhXN1QCwPjcew7yI/3nPkwPg1st43Ml51wrvd/VtZtR+smJH34eHofT4KeH++R9bM9eE+6GK6mCUpqisGNVcqrB01fY0Y3OWUd0rKpORiwtQVnbP76z0dy+49swl7di8LXbjpwfWFI+uWcMem/WPmSYe+GHaA9sefwdVnog9oKTdgeH/2CDqxPlVq4QBENDOBqbZdBMtVcJoGfX3NWDO6L7bn2Yw+C/Uz0Zsi84Mypfm+fGWasIA6HeR3Xy8WVqjyTqr+CYKRhMlDACiPToi4xtx4Mp516pbtNgks3ACIyt2hB4mO/mD03tj694fWR5TgK9wAhP5WgzLl/4Z2bku7RrClDBTkD9eu2DGzvZkt3O6nwp7nj3TgtLOaj36+kVBmWqF38ZJgoyUv9fMeOR83x4NlyUIz+nv2wMjGHqclowWcJSoEpb7Qzt2Xwu13/uJscK1UeDUtC+ikL+lpcDba1Y8HPn5qPMt2e2naHL0BIxXwkadzmX56EkhJZtkZhParcdUBE9qsrd72VK0WqaawWnbDyC7ui3/HKXbudSSUdsaPb/1WCTjUb9fGtb77hTSu7q7o0MSAbPglTDa53h0Q0p0h57/ttb77tQpYXw528uDBTedF4+AFxOR8w7p49duVzdcuLjWro1XLIPRoD8xJex0dLDAr1afTBT5NmLlaNvDJpkxPjVLODE0l4NApM2PhKOgoMKFRvYsCzxnx6PpvHhdn9SOKTwtOKOiaZ5OIzv79PujQERINA4EnFNyE6kL1ZOjUadzdUoEAGStD2blH3x3IdyaE7Mwai5lk8xw8/IU8vJKGE3DtxvPn79/r34GEAAAvj7auml3yilRJezSRHF8p5DwfHkZwxYJgWIpiA3/Ln79biVkxY7T4xYifS0BsrGl9BfemU0yY262fnGvlZmeUlBzRipLld8OouWKGBaKgCdZsSN1QQRy3xLN4ClRJQwA4jsQ2P2+fYYJMqR/FqWTl5qT2iSzgMxnVL7RvWMv6c3to6ZONuTB89EqYbJiZ1DolH77ZgVKC8mJpN+O8SgrKsKln4MgK3b47xyLoMlJaJpA4N2VV61C36IB0gsHR+LKWAtmNCanTI40cipaf1WCYV+stjW5wm/3sQzVPJASb3ap7aum1oE4WEQsV/JeIzLSAOS03Pqmmuyk8/c2WyArdgZ6QSljjgXVuD0uapLJtx8tk64TqBLGy3Uk4lt26q61ADIio29POyYuv9aMPa/mUoUhLQNAUdfzbEw3ol/y1A1QyrNvgJWFGDK1CWJB3AN3jyHP/dQTciqT9chdFHzrye7nvKmetFfS/w2qPBH7D9O9TsSMdqr46/slWbHDNnAkrrxTxBZxlBzdOmLWiqWIqq4CTJjq1QWkpgyd737KM9qB4u89mdWdQQhrF9KFgyNRc9N+Q35a4sEtACAkeZhgE87nc3V3x7a0fbrdKFd3dxabZ/gpBd+FBmJb2j5kFN/EoMMT4Pn0RTguXYZLeHts/2lNhTvZb14IxsEQ/Z5G/X0NUNDpitN2ie7+GByn09mpCOVN0xjVR1bsiHwtBvs/WmjYNnxaU6AfMsY0hc9bomMw5e/o1hG/fbOiwnfrbAcPIHDJVeUDSF0QgayBS3Qya+tx9g0rPGfH48ovQcystl9kfwGpUluOdhef58m3a3TXwXCkZeLCc1Y0nRcv8KJ5Rp3OxeqWXk7L0qY3elbRjv9f+TbvxUtLrjVrYls6UX4uPmtFky/JSdm0i+0F8B4hj7kNtsV9Y1jOqutN8FV6NzIWlO/a8jLQ/6nLw5DVd5lhGwGA/4bJzN/IqA58m7hWrw7vP1yQHXGbPae7/Ubtzr/7qCPFmNH4BONdFB2OanHlpr3l8vsk1cBiTz1SpxHR8s6W3MR4784V9nOAKNku8Udwc5svapWbCfLpUleECRsg2rGP52dq3JghXfKU+bEFfq8mCPnuVY/7IR50g5flbp9wVN2eDDcvT2zd/wuiQx5G3OEduvenBeaoiPi+YfSd0vtpX0Ui8Jn9bBw2+o4oWBLPm0/zWEYv/OD/G7tXsDWQIdvxZVGgqdTiW5jSwth0EQBcq1dH5tshOD12IXqNGMdiHmr58bQmd59Tc0hn5Gwc0/6moDr0fsisWFTpl8/qaESpS8IRNFE1eXfWB2XFjj6PjGBovfR51ocWBH6Zg5Kz6ol1zvftUf8Hd12cQgAMJIPypifRlOhYr62/7/anDTeo7jWWGrVVRXMm/Z++NgQBT90bnCljXQj8RxwW+ATuHoO0bqt06XnrFlmxI2x6DBouNQ6Lw9pjrIXFXuTp1nY/1HneFXG7fvj3nIgN+QdPxDZWnohV0j9M2h08NtkvDtft4PF0aZKF7fhod8tskhlIOsYGRT6vafchVQkrj03iuHoNjpOpQnl3bWGGvHk5nS1kbZJZAN6g5ObbAgCBr9fuVlEepkDiqB6Tlo4FZ/bi0p1aeCdT3W3eHbpSyGuTzHCtXRtXR1pQeuuW4cDL239/20piSllsi85oPjAFjktk540Pbkzr3HZ+LHLeJadfNsnMlLDhpxQhLQXK4Mvn28NxOh1NE+oIKGutl8QKPFJXhME37mnIih1pqwjEcb01CSxkQExaOq6O1PvuhdtJzKj6KeoCm38OANVO5eHHW7XUNo8QbdOVzW10u4p8/yqtSqDJg2KThHfPO90DYKAkNHjt3pB1AMCUMFmxI/t9i17GqGCcHqf6bvA8eXkAIG7PJsiKnSlhpjZBQh5ZsTMljO+/NsksnGzS9C+mpwj86bNrI6IEHgAB2eHfL3024tRZltaob9NnrrVrI+2LKOGe9jsrLVQho5t8GY+Mb0hZs5qoqIyyYkfGHBUW+bYHOck9u5GA//Cnlt9374jkjiQkAO8MTX1ponuTGD5B4w8gOrin7ruldcgYukh3T3tN761P38XQLO/0JydcMxqfMPw2AMD71zus3MQOVYS2ZUoYwEx/siNuC+W/k3lI1+58H7NJZhbgXSuztr4u++yQ8w5jX/AmAATtlX9fFS0qASDne/XbcuTnC3JtPkuUJB4yW0v8qZcRXRlrYZD19L9rdbJIoqAbVKa6extCVuzo8D5ZcNKNEK0SBpC28PrqmG7MX3SG+DJtOJugS2+0IHZr1lS4nzmI+CM9e0REjuR/84i1lDd/faOLiNhJFZTbshjP0XtGPFLuFjpVwmTFjru2MGzLTITPWwScxyheZ8sV6ql96lIypo306sROe436GaAC59A02nGC/93+s1iwMAWuJhRFh6PK7uZ4KrsbDk9bgPr90gy/RXovq/9SFhaD8r451BgUp+zgCfQ6fkOt34Eq8H09Aef6e7N7AOD9+DEhdAVPXu/Ho+2XsSjYGggAOPjuQuE5NZ/WUtC4A5iRKZrUa8d27XjIk9Gcp+VF8yzP2YuAp0hf7zaBjG8Rb8QYtqPPMhcdH78n1T5JQ4DIih0FXe8I6Q7MEOtuJNuVnneEa/qtuvfJhON0OmzSvyigcyX9bVSpiFVSJVVSJVVSJVVSJVVSJVVSJf3DVKmIPUAkK3a4hLVDyCz1VITfUQmalIxbQyKFnZxzP6q26QenLxTyODu5GnQy33DnEwDkswed7uztWrkMfR4ZAZtkRurKUB0Pn6QahjyNeFEqDFLtxbW7qZSobfzCwAD4V6mFK8u88Z5fR5ZnqKc+aGnpjRvY/5F4miIrduS8Q2zLKVoWDearlVe7c86T5+x4eL8bj8Ap4inet60ktsP1UdZ+zLniz571HDnesC1Wt/hDuO/9bjyi23ZnaYLGHUBWNDF5Chyj7iC+UD8bADDQ/SbqrRF3pZ9JS0Wy2QRZIUhk2t152hYl5y9gYWCAmjFJ3PmWBp1EYDLZnaWoYPypxZ7FS4S+Rn9T9DNKFB2SnrgO8CC7ybxJIt2Jprxcq1cXgBuov6CWbJIZfpsmCfWSFTscJ1OFkyVt/fn/rnvVOlPqU7PI0Hwlcc4ilu7CFCseipkI7xnxapv+5s1+r2ulhmJotSxGqB9fVumNG8h8fBHOvyierNkkM0q7hBiegPuX+3Zod9epr6dNMjPHfQq7PKL2ZZz7sTU6fBSLNlsvwG/TJPhvID4xV0dZUNSXgKYAQNyv37GyHJcu63bwedK+l5uPRxq+q6Ge6i52aRV159kmmRnqWP4WNYDvr9+uFOqeuigCweV+e9oxSitTn34j0Km6q9A+Rumc1Ymvr3YsKH44jMU+1PWtwaPESrsSS4OUTuLJum/c0yz/IM8IdlrpEtZO6J82yYyYtHQ0Wpxg2Kb0XoOVCajTNwOyYmdQ3aV37gjy0XAE1zqT95kSSoKqny+fQ7TjH+W97fSfuvaZ3KIznklLRZfPXjaUibafTTLj1YxjKL1xE5fHq+O07xaC7DovgCCW0hM2+vxm6R12TU8/cqZbDd8LJeqDRmNA8TK/4KP6FJV2UQOsUx5V5QMwz44V5NcSO513NSGrH/lOCgdFIrZFZ908YZOISeT14VHYs5icSPZOecRwHOJ/S3PimYVE3JFfsXvZUvwStA1rfXbDJpmRO81qKBvfLtt/WiO0TfXLxUJ9KWqfaZeEqQ0y4OhG5tJ5EhmnGy8iY8jEVBWpU3sayf/2/CAe9fulIW1epE62rOKb7HeZpYOQL6q6SUhr1L/zt7SETTIj4k0x6He9NWS+4IOcG+XvNWIcxnt3Zn7RNIxB0mzx9EpW7Bh0Ml84CTWqLw05YpPMLA6lszHEqG4BTx1G2DvqaVztWQS5uKSHCgL2b0FNdCn95/7+26lSEXtAaHPqMXSbMAFlB44zuHhGnMmY+0bVj8ommeEVIwbNtUlmbD5LTMU6zoxBH281Pg6Fct/cRlV+ZMXOoMVpfu3C5daQSCw4sxc2ycxsyrNsy3UDVfz3IcKERBfxvGw2iSDg2SQzCgdHoqosovtpB1OjBVLddYlCurTVHYW0smJHTFq6bgFrk8xodNyBjWcTGUhCatev4YyMBnZANXvTmlQBQEIHArjxmm8kdnXxVk0afhfNMGZdasVk4hUGWbHrAiGzMiLaO11QAmDxe74KVM3y6H8aP4eX24hskhnX4gLY87RwsijIiVShvdt9EctMc4xI22583QofJf2x9Hcv3Nruh6z1wbrFlW/c0yi9c0e4n15uo9/16G1cfEYEbXEpcREWfjbJjNRlqiM/DSXAm+zwcvF153/z1zTWD68k2d9YgBo/EbMyGi/p9zZbdLwKRltQiwMTM1KsbJIZR6YSXws+Nprrn8SkxqVKVcN3JivErJOX1yVUBaegaejz5gNTUO1qGY52LEPgs/uZaWG91QkobOqmk/HKL0HsXo8xTwv8nC1Aan2/32n/onm1QdxNLmQqokHajZTnoMlJOBrxLbum5fdpoQJ50Hzbt64TlDabZNaHoXDVB13XvhPtol9W7Kiy4wCijhRDSzbJjIzHa2Jwem+Vb6mDPaPU7qCrAKohK8RstszaAWUHjgs8r4y1YGFgAJTNBNiGKk2pC0idO0+ZZLgY5K/p7+RZ+sWnrNjRbGAKProcyO5RSH2bRIJ9a98DzfdVYBCaf6rOVdTclKbpPpb0lznDnsSpuW1wYOZCKK+SBTEfKNommeFbpRb6n1BN14d4qqAG1wKI0u49Ix6XJokhXPi6lFYjJramAF9dPfnfrn8eRuY3ZlwZK5p71lIccGvezDAPf536lbpo/vMrFfKdzycrdqRMWoA7DVyZnK49c3W8taR9l/x3nfFpFLxmkfZO/zxKl5cqt3weWbHr5p7qvyRhaMp5OLor+OhyIEy7Reh1mm9JkJ8gLxsTxpJ3oJ0DAp8rn1OXheGujYy/kzkfP5eEI0y2Krubq3Ojn4/ue6dlNh5wGjeeiELSBwtZbDb+uSOijVBn7fdbLZP4YtKwA5Siuw7GRcctmA+raWmYDSO65Lhl+N608wSVraJ1zIH3FjITcJd9JK3bzoNsk7jSNPH/HlWCdfyH6X7g632SajAHdz6yvXbwcmveDCc/8EDQ2IOGfCpagPMgB9odzYp4zT+zT7C9L7N2gEv8EZYGcL5TxA9WL5/riE+bHzIcjLX5tU7M9Pn5F6w48qrqOJz3ulXnZL48Zy/6f/Iqms4T48FU29MMWwK364A/jOoMAJcnWHSOuc7S8/mcLfzX5e7DCK9Ouja/OtKiA+bInmlh8W2ctdf9vDuA+HgM9bQg94d28HrsuE5mWbGjy7OTmA8fQPwYpDnxOl702m/jJAROURfaFKSDPvf9ZQKCJibjg6wkvOkbgZzv28P7cdHXiW+fe9VLVuwIWh2D1FGknSikMv+83Rex8PhI7QumenVZzB9K55+3otkXItCHti2MZDJqB6N7RTt8UHNoARxXrwnPTHXqwHH9OnTkaoJ89qDT96gti8pz9g0rTkxZcF/57sWzz4CndMoBLzvti8L9iPZAkvPFhH9ydWSE33H6/H7k4tu9r18UtmUmYtJZiwAEwqcH9P3H2XdJ0/JEoc7vNZZR2O3U5WEIGn+gwu+QJ5cqVVlgWQACAI4p0I9ZBfBkatsSjhOnUTgoEn9+tdjp92HU12XFjg4fxwrjJf9M+01r2+zGE1ECeMP91FM79mWsCxHiFN5rvBqfmoWhta4ZpnU2VxjBphvVR5lqxbEX9eEYeOKfZX5kgd9rZAwuLL2Lx8x9mV+xszGeL6+kZ6hOQTKSr7SzmZ3Y80TDvNwaEgn3jfvvOf4UbA1EUsj3iJo6GYlzFgmy0TnAqA21fEMPlzKfaGffkpbSPyfBznn+FIq/orIuTbTg4LsLYXllMhI+WXTf46BNMjttN2fp6W9K/LdEwz/wae41x/K8+fFY28bnX7Ci2efinOMfNwzZ42c9sOAUdM0aPvCfA+tI/rESrKOS/gF6xk52glOXh2Foihi7gi4uZMWOBv1TDRcUsmJHybnzyLItZ/ky1qkmGFd+CYJNMuPyBGPIe6qYyIqdAUZod5h4omVPadEJmZzZmEv8Ed2O3rmXjaFm+R2/46HG589GE6Pj8hVxUG9JzOv4AQ0AU8IorDUAjPfuDPvrC3Q8i7qeh00yo8mjpyrcsaR5Gi5NgEkzKKTNjxTS2CQC+2s0AGvbtpHJXbhPQxPwShg1rzBSwnjeru1aOZ0gbg+MEMqu60rMSXkljOcFAF3fiWf3bJJZUML6DHhKqPOOwioInLIfbl6erAyqhFGiqF6h1apCVuzwfvwY0uapbafdZeR3O22SWQD2oM99X1eV4vqmmuw5dZTnlTAAuoUpAKaEXXzWyvjSMqnJ2PXhUTqZ+Pai35DR+6n2cDYcV6+h+OEwxhMAHNcJAigNrcB2VEsdFX6DylQip6u7O7snK3Z4zi6Hlo9S+33qSjH+ndGurfsfIqy0LaU/U8KcLS6pEpY7jfvGK1DCAGCBB1nApy5Wd9T5dnNWX6OFok0iAepXXW8iICbSHXmaRjuO8Mo1n4Z/r7wcvBLG3+d/r7reBHc/J5DlQePFEy+jutztEw7TLgLlvyyDAPv0On4DLiFtGQCOKcgfjrRMyIod518Qx1FqPlpz835E93ycgRpR/rSvxp3coyvfJpl1C0A33xaYkalX/APXxgj5AKDjK4fxVqZar8cyeqGob7jQJkV9w1E4SP9dUx7p3VciJHkYott0dapY8WUuD/JFn0dHGrap9h1THi1+uqbrWzbJDFPDBgCAPo+MgJunB6Q5+nAMAJhsWt5pI1U3gEGeEYg7+rvQl0KSh1WoGBkpYdo+Jyt2ZPevIVxTomFe9s43PpEDgHMlN9l1Usj3sEnEmkRbn9D1LwIA2sQ/BTsHHHVzqApMRPkcDHEVAktTMppvZMWOnHetDFWVT+NIy2TX4Xbx1NjFjZzMU/TFOt8kov3nsULdrowTw+fQ/2wOLFfCqEm9ls5ubKvLT6H6AYI0SvsZDf9AZTSaI7W86HNhPC6nbuMnsN/aNQsA+IyvPBH7v0aVitgDQr1qkt3QoPEHsKF1M+GZs4UdJWeDg/8I1YaZwoXTUxw6YGgnXptkNoxfVJFyktZtlZBOK+fRl0XFR8vrmbRUp7uw2oHt7BviIhkA4nb94FS29LUh8B12tML6GE3q/KJYm4/KSRfQaV9EIe91KwKn7Ed+jIXxAIgCQNEOKS+K3KTdTZQVO66NIAhX/ERP05yasEAnA71O+yqSpS89fkqYnHi62YzY5fezPMLSx+UdEtLlvk1M/zI/tmDUmYeQbDYh5/v2hm22fctaod0+DSAIfSenEdMTU/36ura7MUyNCUTrEfic6m9H0d6cvSPqT0bvlVk74GKs3oQKAKr/nCS0ITVv4fm5tmsl9MsmX8bj5fQTcPPzYXnLDhxHxhwLC2xtpBTwZa++3kj3DihC2VdL5unaru38WJSk1Rb4GCoex8nJ2eUJFqYQU8RP3YIx8Sjj0ebdizqeWtn5WIMAgJ6qDx/fhulzo3T9ymtWPPx2ED9It2ZNhbpTHxSeTC0D4J5ZBakrwlhfeDYvEkF/jBLkpERR2QCg+GFVyaLpvm1FFodU4eRNnnkyqjdAwgMYpePbq2CMuIm18WyiMO5+20pC1f4XhTS0brzvG1yIKe2uFUtxeQVBjaUQ+mvTI3CtldoPbrZpyPgfeXWBU4XYkZImLG5tkhlX2rjo0jkjm2TG1n0/6QLWy4odfq8mMFNISmnhRXjfT22fG10u4dKEQphaB7Lyqm1Ldmq692oGWWweDl9vuCnSt2UX4Ztk33qyuEhNXRwutMndX0l7UlPessMnWP34d+q4fAVpq0Lx0MoDDKqdL4fWgVdieZ+pXk+OY7/LLB10/crIqsLZe9C+U77fpY1aKMjkmaiP12l0XdolBGO8OwubSRd/amVYpv8rZEw7aV3LArsDwL7P1ZMzvpySPBEdGAAznQWAtHlqjMaUic77LH2/yWaT4F/O4gpy6Y+9QDZCqGlrgxWaU/jytOefF83WqUm9rNjhEt4eNfaQsclzyAkhb2lnM154aQrj0+LnMvY78Y6D8aPzmVHfNFqz8HWl/KptUxFfXYNb6Z7/W8il7J/7+2+nSkXsAaFBQe2R9YFmlyfCuU+L0e6dNq02nU0yswUNvc87zD48ZDQLIqrNbzTAUP8Rm2SG/3p9IExegdQOxmlfqDbuXwUG6epDFYUOc0Q4d/50Rat88gMrLS+jB9nNcqlSVeBDJ5e282N18smKHQ6Hq6GCxqeh9wKfT8Tx58iE03ghmSCoP15R33AEjhEhmil4hVE96p28Idy7/qR4AqOVg15nDloMz8Ra95S58aIElHUyo+SMCmUe7dFR4H8yhkx6aU8tZGAi3o8fw9wrfkK9fbc9bThx9Ivoh6BJyUibFyn4u9G0tdeTBWzqogic/7G1rm+U3lEd9bWKQ95r6qlA9xOPIvt9C1zij+DwtAUCDy25Vq8Om2RGld8OCmlkxY5tO9YjaJUIpvFpQFuUZGYDAPsmKBCGURk0wLlNMuNun3AG1MGn3f58NwAEOECrTBf6FMP3DRVoIzrkYcP+9lIDshhsuJSciqYuI4pM4BoxIDZ/cgcAWxN+BgA8ld1N1zYVjR+yYmc71ACwo7AKMoYtYu+m5Ddv9oyCydxtKQnvjvqg8OOB43Q6PD6KR9C4A7BJZvQ4dgtfeuyH77Cj8Pt1HKJDHsbFn1ph0EmiHPKxk6rsOICzb+o3ZADozLKd1U37LdHgu84W5LJiR9IHC4XxbIinXiGlABl8fjc/HzQecFpNW6Yu8lyGq8qvTTLjSMS3LIB66OFS1PhR9KXi6zAk5SJkxY4rY/VhSwD1tNLUOtBw0aglo3HQJplx8RkrgmKTDPNSmVxC28Jj8Ak88/PPWJ6zV6i/UfqP/dsj4o0Ywz5+ZZwFp74giuvq642EfC+mpwjXQZPEmFlVe58BAJQV30WZtQOrg9HJSOCYg9gTTBSA4E9jUfq7lyAvf6olK6rPFED6NE3nkiCa4jtrY/6+0Vyunav5P0rLvffq6qElWSF+cDz/1GVhTDmUFTt8t0yErNjh5uPN0vFhKtz/aGz4bvInW3T9DACkQSfZvcDn9gsKoBEftxZeQp15k2KbZGbfN58nbXVHSB+rvl5l1g66NM2+iBd8WXme239agx8DZcP503WvXQDgoaAe51+0YrpfKPp4k3HWaD7j+aWuCIP/+snCWAcAllfI+oiHv8+PsaD06Ckdj0r6v0eVitgDQpaEO/D9UUUYsklmwcSnX0cbZuS3ESYGPi29vjFMVXC0SFSyYtcFg5yRr+5kuSQcQYPTd9D/RIGQR1bsQBQBVcDv6gKTj0mWMUy0OwcA84exusHKJplhah2IwOfFkwUAMDVSd3+V/mSgPjJ1geHAT6Pa0/s8uhwAdHp+EptMbJIZ288kQUuyQswGtBOkTTLjdJfVTttaW08ACJ0RI76HLpcAkF1hZxMyAGaCSGn7VhJj6/NsonDW+Ya0k0u48YmUrJA4azbJjLNRN+GM+LzUQRggix6jxRcAtFkQK7TBSw0yhXpn9V1muKCjO8yZjy1mceJkxQ5TgC/OvGdB6gpyopE1YAmORHxr2KbZMy06JV5W7PD4SH1fVXufQd3yWKE0b/AhF0Gmkh6hSF0SzpS7D7KS2HummwF9+o2A75t6JctlpweK+objmnoYY7jIcv+jsRADqur2ZMNNgd/XqGbD2v5DF5SM710RDMJoIyRg9xgEPU0UGb/XRPmdndzlW68KfU7Lc1WOOGYAQFlJCWuzTwPaEiV9PkFIc+uVA0d38cTr129X4uzGtrpFGH/tWrMmsj5UN302f9STpQscfQhxh3fgekY9fBTfl4Ev8G3g+UG8ULflOXsROiOG8ePrdXWk3pSVJyOUR22avn2HM/llxc5QUGk6appptPikCj1PVMa60elOx5cPmpKT/Lt9wjExNVOnQG5s3QQ2yYzk99XTc77PZXxK+ndxo1rCwpimpdemIH+hLbWLyCZfqabJABCwTm1nShTEaV5AK4wvP4lx8/SAWwsvp4vMpNkLmVk53y7JsxYyBX1UnUvC888CWuvK1radmxeZo6ivMqCejNx6TEX2y9/Skp1SN/80Hr+2/lngw59qLb8mWqloZab5ZMWOuVf8kB9j0Y1dvJx8XxLmQM6CgOevfScVkU0yY2626L9MwWHYdTlYytb4LbBJJLZczc0ujP+th/IFhEYqa/20u+yaJzrXOvvOtO9ra8LP4vjo4iKk8/xA3HC1SWYEjjqEjE+i0PnoYMiKHTt++Bo2yYy8TW2FsqvsUM2C+fKNxiP6TFbszJyeT9PsMzLOlJWUCGUYvYensrshaNwBtlHFp6Hz+I3lVVl+umnL9wGjfv3AUlnZP/f3X06VYB3/YTIC6+AHg7zXrDj+vOifsOiqBza3aYxf8g6iv4doatVnwFPYvmUtbBJBJvolaJvhoKFd5LI0UcF465vVzOyEn7CLogm89YC0Pijqel7HCwBq7GmK210vCGX9kncQVVxMSC2+haAqIgw6AMTlHUKbVc/A5y3n4Bf3moTo8xp7mhruelWURzuRsgndz4ctorQL64BvJyN9uN6BOPiQC452LMOL6SnoU7OIPTc1bQLHBdVsiR9w23wVi7dGfYcRtS/rZLiXrPQ3X4as2PHwkNHYsfFrli66bXc4Cgpw5ZcgNOifCuVVK6SP9Sao2rrystJ7WeuDkfrQakMZnQEmULr9aARq/JQE1+rVocR0RLPP4nVABdpyWy+OhfeMeFTb00zX74zaQttv82MsaLwwQfcOjSZqI742yYzsWRacHrdQx59vFy25dmiNjDeqwHeYaiI4NqcLlKgbTtsHIDDcXu/HI28TOWUwqq9Wbq383cdNQNXtRLlz/6Mxbj2Uj0uTLKh2rQy114vhBSoiyvfSJAsOTl+IjgeeYMiG/HMAyPgkipk5Ofum7vc7NronK3Z0fC8GyW9/hWgPvbmjM7r4jJUpEwCBHM8bVIzAUYeQO82Kk7EVA5u4tmuFbTvWV9h37EVFGLL5eQS8pG/bsxvb6kyhnJH2HTvLo33vPY7dws727ri53Q+1+mTq8sqKnaBLBgcypenWdj+49yEKXtCe0Ujt+jUsR4Yw+Htn8t3vu3SWv+XyGFS76sIQFyt65/SbL+0awsIZpH0RhcDnE5HzjhXe7+nHsPMvWtHsM/19U+PGcOTnY0teMguhUVEd6bh0r3oqm9tAGnRSd58HCkldEAGfwAsoWdAMNTeL4BouIW3hcK8C173Gyha9RwFg6L3obkMQt3vjX3ofBWMsqL9KnWf7nrjKQqEsuuqBU7eb4/PmB9BmQSz7LihfCugEAPjdExmHvBD0USocly47LXvBmb3wr1KLPTszw4oW043nHb6+H1xqyU4rnaW5377H2m9hBIJikgzzawGTZMUO64uTBUAaeh+4vzGYEp+WB17j59H0z6KQ8QTZzO7ZvC1246cHFpyCrlkjBsz8x8A6kra8/cC2x99BlSdiDxDJih1b8pKFRZ7HR2qMIvqhU/j5Ki7ErHBG5kH4/TAJNsmMy+1rsw8/83df3S4VJXo/q/gmujwzCaWdSR4kHhVs/2laAKgWRxZ2r3htF3Zw+MGHKmGyYoebhwRZsTM5p7ToJOwE0nSdXo3F6bELYQryF2RMXR7G0jAqByCQFeK8rl3wZRY0cFrndgeJuSGFWdbx5ij9syhhJ1u7k+b/svEAfbQj2degShi9TxUkLT+bZIbX+/EYUVtF3Gr/mWqOyecxUjyCVqsmaXGHd7Dn1FyGXsed2AVT25ZI7rgBsmJnJh4UAITSutx9JL8G6p2vf+pDqw3rbpPMyI64Df/k6rpn9D+Fey+9cwdHphJzQrrY0daXlpkyiaQr6noeg07mQ1aIE7hNMqNvoIo0aaSEXZpkYTuP2om7/4kCFp/M2U4p/e0zLQFhb4uxbPgyqQkpzScrdmzb9i18hx3FmRlWllaJusHq2OOYGhLApUpVBrnv9T5ZqGiVML48+sc/499D1e3JzOxoU8CvAIiDf+31idh8lrwD/t0X7fDRtT9f10aLiV8eDy8PAH1O9WNpqRJGfaD4dtJtGpSfhGj7t9FChpLllclovCgB0R4dnX639D49FTn/ohWFzcqEZzU370dmrxWQFbtOCeP5Unju0uN6fx8ejAYg4Sp4JYx/N1oljH93WuLbjV6fe0l9TxvPisAH9P/O9u4YknIRnwZ9L+Sl8dlskpmY6x08gbGnifmee7nCZpPM8B+fRt5vTbVP8uZhRvKMz+ks1IP67q3PVRfad/uIgCw2yQyftxPQ/NN4XB6vmvPSUCf8PAeAbby47jnMzBQDn0/Ei+kpTAkLTK6Gpgl1WP4WAzMN2zfuCPkOBniE694B/03R/rr9TJLu27o5VG+OeizyG11ZAJgSJit2BMUmYVfbn5jPnE0yM9P+ssMn8OuGVew+QDZP2Jxy9w4uxlqR1XcZ422TzHCkZujWBnx96P8uR4k1wJ1HIpD0wULheVFpFdbnNrdpjJTQEhSXORhMPk8nrapPK3qehf/UBIYUSeny0+Jpe2yLzhiYZmP3eD/n7O+CoSVTvbqwSeYKlTBaf0BvUcKXraWgmCTDtgJgiFob/9kiHbiZ9vuUFTtaLY2FqXUgnFHqQnW9kfJ+e5bPd9hRxivgxURETSXmi/8W+PpKH7G/jypPxP7DxJ+IZX3VGZmDFwsf+q3HIuH+A7Fd5mFUKf3VHUqjAZte8yds9yJ+YZW6OBxZjyx1uvtdZXdzFHc7pyuzot0/Snmb2uJ4FDHXi3p1si5YsKu7O0pv3RLkAQDzYcAeAh3Jih3XSm8zuF5+kn0oZiJq/JQEN08PFrjxfyKz0f17paFwyIC4g2+0yKbkEtoWZQdPON19c0bOJu3AtTFIe2ohll9rhvF1yQJoa2F1FnTVWT1kxY7iMgeC4iYjaEJyhWmNnv2VPmzUDto8c7ITMdUnyvA531Z9W3bBttN/IviTWBx9RfUxo8SHMjB6D9o+kT43CgEvJWJN7j6M9OqEMxvao8VQEZY/q/gmnk57Em69cli++vsaoKDTlQrryMswJOUiNrZuAoDs8l/t6X9fp1xGMOYCubggdXEYQ7XUEt+ON4dGQelRKsSD2pKXjGouVSr8Pop2+GB3ux/RL6IftiZtrfA9Orvv7FpW7Hj4sdG68BmUbJJZOJnmoaO1cNeyYseJu7fx4vDJMN0uxra4bxgPPk1018EMWt6Z/Glfd0Rm7xVC/tTlYcjqu0zoP3yYB5dq1VhgX8q799AxTEYKXW9EzuQos3SAS8IR5E6zGi607/YJx8WQKkyGGZkHdeAdRmXIih2rrzfCulaewqkDT9qTGGd0v+Mrzy8mLR0LAwMqHKO1RE8mKKz7/Y7plPJes+LJEb8LCkNFsp97yYrmc/UngEZWLUbjvTPeADC/oAV+aas3adTKcD88KyJn8pV2DYHrHrIucTW3Qan9ZIUyVzSP8vIZ8aDXtx+NQOu3jmGxZ4JubKeKff/6dnwW0NpwftHOmdmzLPCZRqwmujwzifmLpa4IQ9C4A0JeACjuFcr8jZ3JalQ3bf2MqKSs+F9xIhb5yD93Irb/5//uEzG3eyeppEqqpEqqpEqqpEqqpEqqpEoCUFb+90+U819OlaaJDwhlfBqGwGf363ZL6qRcZbsp2tMwQN1dcalSFdEPDYJ/cnXIih15m9qyGEqyYmeQ4UuuSewevxMLQLczR+nSz0ECdC9fLqACDfDl8URPw7SmIEY7QzbJzFDqnklLhcfgE8wcgJ6GUT6mxo3ZaZjWZGDzqQ7I+ISciqR93REzs5Kxptzsbqgn4R99OhpXR1pYXmo2V9DJSwdiwctsZPbApzFqo75+UYbpaBp6GiYrduE0jOfVzzpAuOeafc6w7tq8rL04MBQeRYzm93uV7C6Or3ue3eNPwyhV26M6rtPy+3uEIqvfUl3a3LeshrJo88sKQfqj9eBjY/H5nPUZnu9UH9V8iO1Il8eyi+75OGySGTsKq6D0xg3YJDOaz43XtaFNMgvO+vwu7ticLuyea7tWmJ5PYtJQ07QmJnfIil04DaM0uUVnuPXKgTKVmCvW3dsQ6313qu1VHjbBqJ9R+dxd1ZOSuCO/omjEFfY90zobtbnj6jVmAkaBfGg8JQBAWRk7DeN55E7TozzW2pAonIYBQPDe8RXKLSt2VHs4GwABdDE6pdRe8/KVdgkR+Ll5SDA1aiieEpfHMdT2F/qf99M88qp6Cprdv4Yu3+iZL2HHxq9Raj/ptN/RGF9a4mM4Bo4+pMuf1XcZM0Gmz3hEWO1pmE0ST+yMTsOyvwvGjEwRxIgnaq7sNUuNGcnDhlfdnowTU1TTsel+oU7Huh2FxJ85dVkY+rSIYCihWY8uQdpqvf8eRZykdG2EGqOKrydPPBIpT7JiZ6dhsmLHNxcI5PqcK8S0nZpr3x4YYfhNpH0VyWLOacGrKFFAki5H7+jkOrOhPTw+ir/naRhP3z33CQAgP8bCEIZTF0Sgv0eorq9SEBujUxxelm5PT4BNMuOXtvV1z3jiv4GQWbHC/exZoumdER9ZsbNQHmwcHEjiueVPtsB1z2EyXke0d3oapq1j9xOP4mKsODfw/LWy3xpC3nGnF0jb1fgpSYivqs2fFl6E2PgRAg9nbSMrdvhMU83XqQ+frNiR1WcZMy3k+fCnYdq69Tp+Q9evtW2hbee0r52bW1fSfz9VKmIPCB19ZKXu3pa8ZLjcLIRNMuPGE+LEReGp6b2y4ruI+2MzFngQaHCPwSdQ/WeyULJJZhQ/dQU2ycxMmviBQYsc2CFpuCBHo0dSGXRvRYM9X15R33BhIuEHI37ANLUJ0vGkgRwHuBcypQwgEyvN/0FWEl5N/J1dUx5UqfQdfoT5rDwefAhv+4bjiVNPCuU4uiuotyZBN2jWTbkqxCnRPm+zUA0uOTTlPPp1etTQbIOn0q0krtTZN6y650xRCvRDyz9HCc/490QRrtjC+vIVXVotb+b7BzCnakCMr6Il7XvTPivqeh7PpesDX2sX1n36jYDX+2Iwy4g3VT8rrbJEYbsBwNFB9SGiAZCpov/wY6MZv4oUNL4cGsvOkUIWXp8GEOUpdVGELr3Roofvv/vPtmD36y++gBmNT+hkcaaQuPn5AACLAXats+pjISt2eD12XKc8aPmsbukllNX0dTFelLYtqCxuvi3wpQdZZPhWIfGI+D6UukT156GBcwEIflTX4lSUO1OQP4NQBwCfJ44aLhozP7YI7aetV0ULpbhjO1XlvHwjKiYtHQCJZxR39Hch/ajTubBJZmy5JcYF4+nm45HCdcFoC/xeT2DvjfrWNVyeIMjW55ERTO7SrqqixSvp9Hl695W4MMWKvE1tdeno72Mv6s1hZcWO0i4hhotRAELYj+zvglFjT1N27fPEUURVNyH80FDDRbCWbJJZCILNl6X9Pydb3QSTFTv7frKil6Gs+C6LsfZYRi8EjlLDFWj5Ul/KxDl6lF1hM8TVBL9XExiKp5aXqV5d1uYb/Egf+K0dib/m+3oCLkyxosaPSbp3kzY/EoHP7Bfq7PvzBGip2f5SAMCfwdVZXjpWGG2wVDT+AMDU7CEAgMaLkxjCcFBsEkxNm+gUrsCFZ3XtIivEVLbLs5NYW1CfbQq7b5NIHC1KXY+KoEkZcyxosiBe8Gf1mZbAFF5allHfKcnMZr6FAICkY3gr045D7xCfs21p+xjKs5HioW2fqr3PoMkC0TzWqJ/Se+4byTurtSGRhbSgfI3KkhU7MnutEO5fHx6Fjy4TX66gr2OEPn51lDGyqk0yM1PbjE/1/oFG491v7es4Hf+1ayBKgaMP6er+oFOlj9jfR5WK2ANCg4JUeHL6UQ/wCGfxf2pcEuGsKTx1xjdm9HlkhG5QorzS55JBt0H/VMHpG9BPgvT/kYhvhXS8XNr8zgZPHrbdJplxtkSFVqcQ+zbJjNKMMzhbcpOlpXFK6PNGS1RFiY+p86ZvBGb7q8AdVH66o8vLQn3FsjOa6uqR95o+EPC27euFa+3geTJmASJfi4Gs2LHqrUd19bdJZraAYOX1JJOr52xVMaELSptkxoIze1F2Ph9N1tcQ+GgnB2e7o0YyAIDrXn16Pl90yMNOeVhfmqybQGlA5Cn7nnQ6adM4Lqen1NCVV39VgqCYa/usTSJBS3f88DWrB4Ujrvn7caQuDUfOC6UMBMCZsmKkjAAEypwneqrjbNI0UhYYchiAy50KdO8FADup0fK97dfQ8L3RoLDaMUBb9oazeuCRuF+/c9oOPI+SrDOGylpxL7Irfyx6vnqvTlWdIgoAdaPT2T1HagaDUKdkk8xofdCNtV/fE1fh92oCTtzVI2kaKWSObh0NxyVejoHuNw2fW16ejNkrngBAYhNSGnXmIYFHre/3s7yyYkfSbBXAIP2zKJRk5xi2p+Pj6yzfr9+SjTMayJamn5mVjA4fkbAPTefH43jUOt2Gg9GmTUnPUJX3dyth/jCW5eFlCHyebFZcftqC011W6xBqbZIZyR034PajEcI97bdvpDxWRNTnkr7Xsk5m4Tk9oaJhO1zC2xt+g3W+IfL3GfCUrlyXnR6QFTuJe3aWnDg0d6tl+E04rl4z7MuUms43jjcZOEVFLHRtR077gybpQ4y4/7Bfdy9rwBL229mcSMEdzIfVdNe3+as+0qUOoc35E1pKTb67avi+XvKxoMUrp3X1/bX1zzAF+OLWY5Fo9oVa792TRMsAGgeRQqnTZzT0hqzY0Ti+nlBHfnxe2bIFkyVjjgUPlbsH0c0lSjbJbHgqqiVetompmYbv0ej7n1wvjz1ztibRzk02yYymk7Owsz2xVqAxGwHAFOCLeqsTnK5nstaTdUZASK7hmAWo4S3S50YBZWUwNW1iWAftN8eXN+rMQ7g0yfKvAeuopL+PKhWxB4Q2px4z3C2hgwONQWSTzDDVV00R0rutQtnBE+gX0U/gR/PzSF7UWZhS3xNXnS7ojRQAI9peWM2wXO1vT7dajC8PLJA/uiPGe3dmz6InizugWjM4Smnzya52j2O3DMuUFTtq7GkqPAuaTFCT/DdMZmk8PlLbxGjhSanTC5NxYQo5zeoxajz2f0SgzP/8cjG27vtJN2EMj3kRAHDuZavhBAMAL8U9xX7HtuiMbaf/ZE7CfH14c6Pott11Soz2XRWMtqDkN2/h3b55QUWoinwtBrnTrLj5eCRDWtx4NlHXF/j35OZDAvdSk4zAMYeZTNpJSXo3HV2O3kFWH4Ly1c86QKhTcZkDXSdNZPlj0kgsJbrbu9x7r+ECsbSwEEETknGq8xpU3Z6MrG87sDTOlBheLlmxo94a8QRgaMp5lobmu77NX9cXjPrGlXHiTjL/33HpMhzd9IuRKr8dhE0yCyZhNomgXIYeLjUcA3iq61oxpDPPU3lFHxS1cFCkrq2oTEM81VN3t98PGi5qjMYBU506SFutmtZ83vwA+72tbT0AwEs+enQzWbGzeGOM1+5DujSUaFBuAGi4r74uTZ1vE3H8eTGwt6zYccGiR0Tj0/C/A15MNKyjrNjh2jOX/De3QZ9+5HSMwpbTPvK2bzhbDFM+G2/WEeTRfrM3hkUJMeZSi2+hWTyROWRWrCAjzddwmX7hSM23bINHMTNrmocqPpRX1BHnceoc3ToifU2IUB5fTv5kC5Quzk8cZcWO6p/oFQyeyg4c17VFWQ+ywHa5cxe+cU/r5Bua2fOeiuPFn/Sm1LJiF+IZ+v5CTsB4NEzKl1cg/H4dp5MBILG+tPMzpYZLyfhyfHALVj8+HIDReEnv02sliphM33kkQkjjWrs28q1XdfXbWlgdjvQsBupF+WuRc50pLfz1Wp/dAg/v/QSNE1AVElmxI33EQnSeQpCaSzKzde8ls9cKrMndp5NVN68eHUzGnlrXDcdZI4XUXm62KysEYZg+S/siCnd/bWH4vZgPAz8GyowH/9yRnqV7J/zJs+8wEs+veJbzWHJnHybjEV1vOS5chE0yM4WckvnDWFyMtWJpzl7dGH/Bch2NFidgUJCIWFxJ//1UqYg9gKQdrE7cvY1+4dGQFTvS5kUi7sQuYSLIe82qQ/k7/2Nrp0oWAPgnV8e2tvWYvwtd7FOe97M7BQBfPDZEkJufULT10e4GAYD7kPPCYi/ZbBLKL+p6XrfIlRU729nc2d4do07nGi6+b3e9gEsTLQK07JsXghHwgjHCXOvFos8GX16tDYkIfpKchFTbe8IwDU/u9jz0On6DxcrRttG5kpu6oNZas8SZWcT0xK/KHWY25igoEPLU39dAuL75eCSSZi+EW68c+P4ygU22HzQlULm9nxiLemsS4DUrHvu+UBE6h3gS/6wXzhEIarrLSQNnl2TnMB8dAKj7ZwPd5EWvL09shmmNTrH7Jdk5Qr36e4QyM1YAWNqjG2ySGTU37Ue/0D7CjqrRpErJd/gR4ZqmLXAUCosM2kZfXfUS0md/F8zQIXneCR026vow5Vdm7cDuNVihnu7Jih0lPUSEOdPuQ043MRZ76k1iD4a4IvMbtdxf8g7q0tzru+yd8ghLK32iR2mrtY20Wdh0EYpfVuxARHudrO2+UH1KXMLb46FjgwR5AAL9HDhK9YPq8FEszwJllg7sJJXmo3kptDuvmDobs7ZlqtDtlzsV6OqfNi9Sl4eH1y/p4dzniZfLaGPHf+dYdq/UfhJlh4k5KrU4iD4djd5Dxwj8aN4lQX5k7P4yUjdu2CQzaq8n5uTzz+yDrNgxpUUnbN9CoMKbLFDNxk2NGwt5teS+sfwUJ/Go7lnZAfUU19SoIRI7qDErh59ShHb57ZsVCBh5mJXFnpWHDmm8KAEeH5K+1c+i9jd+PHjB81eh/Hcy9Qq2ti1SFxHFoyTrDAtA3PfhYez5tc6XhTJoYHhedt6vk96PenUytu77CQAQ3fsJwQ+STxt1pJiZVQKA2zmyyUjN3Sk5Cgoq7EcAWHk8nX9RDWMBAG9kHNW1BaXG8fXYGEktWUpvqPEHaVgCgATR1spT0bV2njRKS+XMibzF3Bl8hx3FtbgA9mzv/MW6OvLvtInJ3fD5utx9rIx9wZsq5MH/zphDNnOGbH4eqcuIubo0R7UwCXw+EVV7n0HfE1eB3z2F+tlDKt5Q1s4zgc+Tb5KGi1BescJt50EU9QsXNhCoq8GxFxcYKo72ELG9m86LR7N9BZhQvvlsRP+aE7HKgM5/G1XC1/+HiYev//0cmdy7TpyI6r+oJlPRvZ9gztnnXrayxf3lCRa2A8eTrNjh9/1kBD6fCJfw9tj+0xoAZLDJn2xhdt10MHkquxvW+uzW7dg+/PgYuOyz63jzg5byihXHXiI+JFq44xfTU/BZQGsGDS0rdgTuHgO/J8VJW8uTv3YNboXSo/o4PjQdAAY3e+OJKNSZlIuyHnko6RmKS+2rMXhqnu70j2Dt6xLSli2qeHIJa6fbtbVJZiivWnHsBbLr7rtlomDa9vCQ0WwX0kjpfPlcRxwPLWVlGL0/65G7mN7YGBxASzQ4srZN+LyvZhzDx/7tnS7ijUhW7NhRWAUP1yzW5XHz80FBRDPUXp+I59JPoV/NO8LzNgtj4TUzHulrQthizkgu/n73sU+jqnzAMC1tu7C3Y9A0Lgsl587r0hgRD9Wu5UffZ8A3k9XYV5p0fJDWNzKOMjPY+yW+HACIfmgQHOlZujSAuAjI/aEdi9fD5xd2xoNbYdt2NcDwi+kp+LxVe5SVlBjWhVLWbAszyXHWJjbJDLiaIJ89aPhNGn2rWvmyvwvG6S4k1tyGm3UxtNY19LM8gpIzZMOkb4AVpYWFQt652Ql4yceCs29Y4VIK4aSaluO/fjIyhumDqPP0XPopvJMyAI0eSRXuF/ULR7WtyUj7KhKut13g/0qiUBdnYyml/MkW7J32BWq6VoVNMuPaU1GouzZRqAO/4Pq8wIedBmrbevdtV11/0rZrl6N38GdwdV0avqyK2sGZXADQbl4sPD4kCp69qAivPjUJLvucn9QEfDuZxU2UFTtaL4oVAilrF/b0XsgHsWjyZcXBe41kfu2CWQg9ov2WjH5r26Si9jF6VndvQ1zrfBm3HovEtA9XMdjz6DZdKwz5YDQGVyRz4OoYpI1a6FTOtzLteN+PXKcuimBWHNp6Up483asPOyOtDBnfmOH/JCkj+JAL5jQ7zJ677PRA/i134fsyas+Kxnut7Od+bI2a39dF3XWJQl5tv71Xv69ojDK6vjzBghu9bsHnCf3GhbM2NuLpEt4eZcl6/zhZsaPb8YEMoMhZfq3s/5aAzlHR7/1j8PWJce88sO3xd1ClIvYfJtqpC1L98HhLYt7TY9R4AZXHZacHtrfa6nRQMKKzG9sKgUSdDZaAfuKdkNsJfeofYwAdlPj4RUZ8JuR2wlKvffD9aSILnhj0dQx8thRix8avdeX07TPMUMm68JwVTefFM5mLHw5DlR0H7ntyNZq46LMNZxMYaqKs2A1jk/0V4nl7JtbSmdXR3xXFJrMeuYv4DlUN69fl6B3hdAkQYwg5qzdwbyU3bX4kAqcQcxY+vtL9kPd+d+RE3qqwTDffFijJOgNZsaP38LEs1oxWFj7vre1+LNCslowWfEZpAtfGCH4P97Nw5dMCJKA3NVOjGxgfvLICfWoW6epZkWwVyUzzXxlrQYOVCUI70OdRUyezBYqRnADZsS9qWKpTLnjK/MYMvyftTnloydG9I35bt8JpGvpuKbns9GCmZab69YWT24oWRfQeX2+ABJtuMd14EW+0QAOA5Tl7mZkzX5ZRu7ZcHgOftxN0aaZdbI9kswl5m9oKAbVdQtti+8/rELBrLByFbsjqt1Tg1+HjWBx5dQG6HR+I3e1+NPwmgz+Jxdrn5gox7goHR6Lmpv26drlrC8OulcsM++7NxyOx74vF+OqqF9JuN8XnzQ8I9ePjo2nznnvJiqOvLLivb4HnCRATSmqufK+FqhGlLopA1oAlTvsD5TnqzEPMnJQvJ+vbDvAdfoS9G1mxCzG0nClqfDluHhK2Jsc5lZvGFwPICWvmY+qpD/8u0teGIOAp1Tyb8jM1aqgLckxl6TgzBo0XJsD9j8Y4vi9A8FP6/6X7Gd94appQB1VcSnGufzWdvFp+GZ9EsQ0rqhwapdW+y5Z/jnKq5NyPwuzseUV5MtaFwPVMdaSOca7s0nv8ZgmlqyMtgvn6zccjmU8p/ztjjgX+UxPgWrMmSgsLncoPkPh8Vbcno9qeZixAOUB806hZJC/fvyWOmKXvP6eIJWz771bEKk0THxCiYB02ycyUMDqAb235s26HSLsY8UysJdzzHEIWETaJmLwYDVw2yay7b5OIOYIWJdGlSlVMrKsAILDRAJC6NFzg83tSO9gkM1PCbJIZvm8kwCXhCJOfnyB5JYxHe+KVsLJOZuxctYzl0ZLRgmD9jfrsHkXzokSVMEqJHy/StSVPF57T+9nIiurXxNPZqJtCWl6mrUlbWf15WGZZsSO+Q1XceCJKmDgo7z+DqyNkFrGDLxxMTK946GqjRUd098fYb77dX04/IfAf0kk9zaO+Ynw9jSCm52aTSWqp1z6hjkYLT2qeY5PMcN1zGBNTVajv/MkWIS/Ns9fAVIWnju/FMORF2h482SQzU8J4uYwUJqP3Tu95by8R6td4kTFP2pYdZ8Zg4806wjtPXxMCm2TGgLQ+CFoVgytjxb5n8yDb/g1WqgAcNokgjlKquy5Rh/Lnv3Os+K3Pjof/K4kMMdCI0rqtqrCf83R5vAWmXapZpVvzZrq8p6Y0Z79lxc6UMAA4/U5Lp7wrGof4fs8rYbJix3IOPW9rYXXDfKuuhgl5tPwpbS2sDp+3ExCXp5pTRvciSIPJZhMAMCWM8ik7WG6K2H2loIS5hLTFQzET0exzYiJFd7+N2rr53HhdaIWam/YLyJ0uIQSNsKp8AP0sj+gURVmxs8XgljYNkRJawupI09wuR0Sl902B6oYaDdVA26zviavMxA8A87s0ek/xcxcJ10Zpbm0nZZmC/FFld3NcfMbKTPuCJifp3jPPg/7Of7gMbi28WN3p/RYLyHLleNQ6lp4PZMyn9f1lAtoljtDx3pocp5OZJ6qEAUDgc/vR5ZlJAt+A3WPI/6fUTSW+7YvWuxu+e5tkRq1zDsiKHbceyv9LShhFiwWcj1/OvntHt47MvJz6EMoK8Zs8G3WzQiWMwrbzVgPOlLDUFWFsPPslj5ymh3ieFeR0phzT/qC8SvoJDZfBp+V9ULVrIUpZsy1o+dpF+L5J2jb98yhcGWcxTN/HN1JUwlwI8qzWh5h+a9rfNc+5QFbsyFnjqwvtIyt2XIsLYGVW3U5MYYu6nmdzwKIze5mFxF9RoCvpv5MqFbEHhHiwDu2AY3JxhX9ydd2kRVGmZMWOs1E3hee8f0lQFdVW+/J4MhBkzeYWheWDECV+4KQ8y4rvst8lecSnoEWLfCFf5pDFuDLOokNAkhU7ivqF6+7xv4+8tgDufxAfiPMvqsrPju9XVThQRbfvoeM3rDbZjXetXRuNflZRpmgMJVmxw7VdK0NFVMuLKoU3nohCURlxcLdJZiwMDDDM7/f9ZMMdOD6t9rSmqF84an+nTnb9IvoJfaHJgni0XB6DmptEIA9nE5PjtKok8o7lFHKaynK0Y5lwrZ2s6q5LxLpcVYmfmZWMtlWJL4/fpkmGyo1W8eGJV+4bL0rQlUfzZJbH0cmdRvoB9Y+zSWY0XpSApA+Iae3LH61jTtXayd6IZIWYGtHf2v7IX1eVD8AmmQW/o88CWuvaibbdobcXMl8gStQ081iKN3zfTGAKFyPOGGHU6VwmR+fZqi8UQBYAAt/yRSDvrwYA6wb3QmByNcF/hO8jRoteWbHjoyyxXzVcnoC7tjCWlzcHpf+pU7qRopDxxCKhXK0shYNExbLM2qHC9DbJzE66bBKJbWdUlz+DSQzF1JWhrL4vpqfo+FGfmmgPdXE3YrMIg0/H1SXXJDIG75IM+3bZ4RPMNI3GvuPb2iiP9tugCgoAbN9KlIwz71lQciYX3Z6eIOShMet4HubZom+r73ASS+32wAjkTLfCkUYWii7VVGAlGk9v9Zd9ETRONQuukehu+C7S5kWi+zg9zLuLm5twTU+zHakZKO52Dk2+iseJKaL/DN8+fL+mQBulN26g5EyusEifkXkQv363EvlbWuqUOVmxY2nOXiFuWNDEZHZqxpcT8n4sOiQNh6zYUbA1kPV/WbEzv2qaXlbsqLl5vwDb7s+dKvNkk8ww7ZLg1itH8Kvk25HC6VPSynbxWStM9eoCIKeadB7cs3iJ0HZ3bWEwtQ40HGNTl4QLbWrafYjFKqM+hEZjvWvt2jp56YYqT0LcQaiou0HjDgBlZZAVO/p7hMJlpwemNP8NGetCdBtXfDmpy4mvV3Sbrjj2AuknXrPide3E+6CWWTvonssKQULcmrSV8Q54IZH58WrTlxUVCbLcGBopPHdGrsGtgIj2ZENj4Eh4feiKIbVEMKCUu4WoG50Om2SGW7OmAr/aeWQN4VtF3TinIGCU/j0+Yv/g3385VSpiDyAZTdoZ4frAkhWZK1ZxMekGQFkhsXEAIHX0QpZWzlNNLPgytbzp8/wYi7D7Sylg11g0WJGgO02zSWbsXroUn2eTAda1enWEvU1ONWicK5tkxq2HiGJ3ZOoC9A3sxO7f6S/GeqJOu7JiR9yxnU5lvfRtczguk2C3udOsSAsvYoMyRczSBoTl24vysUlmxH+2CNVcqjA0MfpsHYcMJSuqky+FV+fbgZJbCy8gKpiVc6uJm5Dm2jIRidLV3R0+bycICEwV7TICYEojNRGjZVEFnudD89AYK75bVETDEV6d2O+3fdU6BT6rInQ56y/OFDVnCjmltFEL2YQ86GQ+svqLgaJtkhlXR1qwMDCAwXnzz2TFzuDAtW3kuHpNV+bFWCtL1zvlEaFtA5/TK7/OlAVndW45xS7co2ilPPlXuYgLzxFn/vW/dYKs2LHozF6BP4VEpic5LvGqP6Ks2GFem4Kkrzoi2kNFfnM2PvDlv+arP1msKh9Av/BooV4UzIYqBzzx34y2TBoXi97nkUFlxc7qQenWY+Xofx7qt0aDszurAy9n0FjVouDtDwjy3cvpJwS5tGMjjc2mVRYoPL+ju6Krm/Yb3Ja2j/GQFTvOvqkPZk5P6G8ONQ7wTqnFOwko2uGDanEqtLpLtWqY0fgEUzyGppyHKcAXTefHM1RAnleNH5PgyoEjlnFoczSeXuOF4oYID3/Oo4JmPraY7ezz7VC4VWw3Z3XivwtZsQsbgVIiUQKaPHrKUEmwSWZEVScnlYfCvhP60i95BxEyKxYTvDujxhSF3T/3khWu1asLPADg8FsL0GxgCmySmQVzfs2XgKgcifhWGCcpMiaFbTciWbGz8YP2EY+PyOZd6oowoT8AYO8/b1NbRNkfY3yujLWg2B1AYxLeotnn8TgydYEg+5kZpJyq8gE4UtLIHFceZ7P4YVKW53ZXw2/eJpmFb0irzFIgEKO258lx+QpczW3Ua405u00yI29TW2xvtRXv+XVEenc1PqpRH4nv/TkAIOXDluybcza30U23HT98LbSr9rum90t+84Yp0E+4R9cgWqIboTy/S5PE2GKyYiehbZKO4dzLViDpGLb/tAY2ycxiJQJATCqJV2qqUwcl50l4CRr3lbfuoeUsf+lzob6VqIn/98jt3kkqqZIqqZIqqZIqqZIqqZIqqZL+uWDLlQGdK+kfI34XpHBQJNvp4im6Q2/2u+Q3b/Zbu7tlRNpdIB5iemCaDYWD9fGFZMWOtK8i4dasqVCOdheVpvUfIYIxaE8HWlclsWdKzUHsZI4GHObNP2ySGdvS9rG8Fzuq+wUZn0YhzHqapes2fgKKosMNd9Ea9E9lv71miT4nNF3cUWKSpEy1Cjz4ndHcaWosMGpuRtOO8Ook7MxR+HHt7jFN023CBJScyWUQ0zbJjAYrSUwgNy8CuVtzhmgmUnqL+HzwULj0xJCXhdLQlPMY4BGuqyu9LuuRp9v5T10Whp3tiWmV13a9yVmrZTHCbqGs2A3NY7oeva2TqaL+SYM/82ltkpmZQU2ul8fKuD1QPRnV2vLzctkkM9x+F8MxaN8tL/fhaerOs2tPYhKlrcflp1W/vvMvWAXePKUuiGD36WlvWfFdZo4nK3adg7is2DHdLxRN58XjwhQrXKQ7sElmTG7RmfG/MMXKdp/5Ey++PgdDXFlg3aujLIbtzefRPtd+QyV5CnuW+0M7eM8g31C1OBX+2yYR4AJte/Dt4vrnYV07acvz/XEiOekcZVGD6ZabOgGinwqlTs9PEvgY1dF9GAmkO+W7p3VptTvuHT4WTcr4Ppu6TO9/RvP5/jSRXfN/7fupJzwlPYi5ZNIH5LR33+eLnJ4iZn8XjIKtgTqLg00Zf7K0E7w7Y0PrZszZnwKnaPu35wd69Ml7vXuaN3nWwnuedLWsR/rk+BwVJCV7pkXgw/+nf7yP1EpvUq/caeQU67GMXqwcGifK//exulNMm2RGFRcTDk8jJm3oeZbJ1nxuPLZlEuuE9LlRQjvT95r7Qzunp6QAMROVFTs7oTUim2TG4WkLmJsAAKzK2YuoVycjaNwBoc6AGvjaY/AJ1I1Ox83Hybzb+OdUeHwUjzMf1iCn3W5uwnuKfC0GpyaoMfI2nyVmjo2WEH4s6P0m8bSZ/pcVOx7tLvroGZ1Aacdqo/dfaj8pmIFqv6nCG9WEd8S3VbfjA4W0NGA373tmk8x4I+Oo7hQ18/FFQhq+XY3qFdkwm5jlRpC1VdeJE/GCjzh287JTM0p6r9HiBAStihHaps+jI0kbVFF5ABD8kne3+xEACetxaSKxHkr4dJGQHgAL2RFaraqujSvp/xZVoib+h4mHr3dzqeI0nVY5+CuUP9nCwAb4/BTF6oVzYUgJLTFcFDijO49EYO68L/Gmb4SOrzOYbL4uAImPRgO9tjxQBfMkvekLQGznm3wZj5zpVqRMWsDaYWthdcwLaCWW42oCykoh54mLv/MvWnFk6gL4xj3NYtQ4I1mxI7p9DzguX2H33Hy8UZKdA1mxY+4VP8jt6gjlllk74G79qqi2NRnpa0OQ0WMlQt+NYRMlAOS9ZmWw3G4eElvoxqSlY2FggK6tjBCqXGvXRumNG8h5xwq/pZkoOXcepjp1cHqBP1rOLkTcr98Z9hMeYpfVydMDV5dVQ60+mUj7uiMCRx9i7+axjF640eWSYftc3+YvBCnVth0AzLrUCgmPtkS1rwtRUFQTTWvewHrfnYZ9gb9HkRzTVndEZi/nqH1apRAwUIoWhyNoEjHtsr44GTUv3oVpF/GfKtrho1voUp4DTl7GljYNcXtgBGr8qIemNqLsmRb4vC0qh9rFn9F7uVc9tPlcg1uhqFkthiLqv36yELTd6HujoRjuRc7K5+9p5dXWiQ/70Mc7zBBSf3xqFpYH+bL7dx6JEOLK3Y+MWpl4WPCK2lHLiy76KgpPwHooBbQAAQAASURBVPM792NrNB9I/M7SvoxkJrqhh0txMMRV4OvmISFldjMhNpVWFlmxY0BaHxR1VeMp5k+2oCC8GEHj9SEdBp3MRxUXBza0JsFlexy7hZ3tjf26nPW5a3EBqBudztJMz28rxBXj2/faiCiG2llm7QCX+COGZRVFh2P3MhXEZGZWMiKqVdG1uZufD0oys0mevuGotk0d8+81t8mKHe33P4n6q2rhpU++wUD3m7r3vSUvGf2fmADXvfYKea7PjccwLysLF2GTzHAJbctAWa4/GYU63+jN1bTy3GuudPPzAW7fwdaD27H6eiOsa+Wpy1vWyYwd369iaMnO+uq5kpsY491ZeJ49ywKfaQZz+8pQZNlIkPBeI8axcW9mVjIzMZcVO9p8FQuv9/XopM7GKe19U6AfLnZtiobLnIOPdDl6B5sWdEfjRQlQXrGy+IZGZQLkPZpaB2L8TzLzv6JlXvo5iEHnp30RhZHd/nTad3m+IbNi0WSB81AK2nrR/gEANfY0xd2n3RG3hwBJWV6ejDrfihtD/Lig5TU3OwGD1r8E39eN10TFD4cht1cV+L1KNrhDXx4L+zdvPbAogXTNau094x9DTYz/dfoD2x5/B1UqYv9hMlLEPshKYgoOXbDLil0YUClVtMCjZJPMTqGD+TTO+EaHPHxf0OZLc/biz9stsLqll+7ZvRag/SL66eDdneXlIc7pMz5empb4vNrFNc/75fQTDNDCGdXf1wCxzXfioerQLQIAVek1ei+FgyJRc/N+jDqdi9UtvXD+BSvqZpWgxk/6WDHO2uBe6XglGAAWnNmL2BadGQ9eVu371yoO/LPzz1vR7It4zMlOFJDfeBhwPr0RyYpdiCdFy3EWa8VZGzi7R2PCmVoHIu737xHdtjvzkauIz/0sqGia3GlWnIxdoHsH9fc1QEGnK4aKSsEYC9sJd1Ze1vpg+A47WmEa2sb+O8cio8dKnQx83CGAvAe6iQEAOd+3x8KO69CtRil7zi+0aRlaBeq27IsatixBrncyD+E9P/3JnFZWw3Z1cdEF6axoHGuzIFY40b5nGa4moNRhyFdW7Ogx5ml2gqAtn4eTB4DORwfDvU8mpMTaUKJuCOmP3r3DoOiN3rszcvZug1bHwPf1BB2vhx8bDZf4I8iPsaDxQr2yH93qITiuX3fahud/bK3zf9KW0fm5Sdg7b7HwjPYdI3npRoYzfvT31ZEW7P9ooWF73Ot7vp+2VKZaIc25/1hlWroYa8XhaQsQNj0GB2YshC2lP9DzrC7d2NNnmK+Ydpy837HjftJeHx6lW+TzPOjvNvFPweux4+y6z4CnsH3L2ntu9mjlZ+3wjBVNvooHooIhb1qte84TH1rCqE5p8yOROWRxhXV1NbfBlz8tgX+VWqwsGpaFD39RERm9h5vb/bAveNN9fYs3nohC7e+IjzEfxiZrtgUeYQqq9ianzNnvW3C3cQmy+i+tsK8bydcvPJohdVaUjn/2b4Gv/7cqYqmpqVi7di127NiBjIwM3LlzB/7+/nj88cfxwgsvwN1dH4icp4KCAqxevRpbt25FSkoKLl26BG9vb3Tt2hVvv/02vLz06997UaVp4gNIb/qSY//SriGCedBv61YIC1762823BWwSgXqnZJPM7A8AU8K0kN9Gi3J6nw4QVAlLn6suOop2+Aj5ZMWOCd6dMaL2ZUQdKSamE8fJ4sBosOr9xFihLIp2BACuHVoDAHLfJjtSw7J6MD6yYod7n0zdZMIHraaQw3w9KP2xYAmTl6I00ucP1yyGrNhR3EsFeuCp4b76KOh0hQXc1LYVQGDO3bw8YX1psiAfAPz5FYlJQxXVZp/HM8Q1rZxG78Pompc1dXkYvHcUCenoRGfEh/997mWr0F98f5nArk2tA5kTP1140nT0FIjPu/ksZ2ZyXEWUsklmYpapoer9FN09wLgN1pSDo8zMSmb3aL+giHMUiICPZcX3Uy1p2zb7O/3pCC1Hi+hFKXVtS6cLy/qrEgTzqOiejwtyFe3wge+wo+y5srkNOk+ZRBC6NG1hk8wIeOowZl1qpas/H/yVysEH1PV+/Bhm+wej7fxYRD80CAB0McpskhmnF4aI30z7zbq2es+vI/K36GHqZcXOIKP7WR7RPXetWVOnhLn5iGbWPPUN7ISTsapJFg8L7XShxylh9D8/HlCHeaPNA2raRa/d+2Qi/fMoKFE3hH70bF4kgqtW1/E3kktW7Bh7+oxh3+Pz0B1zLS8KZlJaxUU3RtgkMxzX1VMDXvmn1EyzU9//hLjItUlmuP+wH2HTY4Tym3wZj4IxFnR8L0ZXn+5NU+ES3l5oV4Ds7vNjmVYJq7anmWE78fUy1atr2Fa0/VOXEzPRO/0jmBJGn72VadfxMyKavskC8j03XErMw+XWvwjPb5bD8WsBO/pGP4mMb9TvzGh84fsLrS+fztS4scCz3UFXpoRp5R915iGVz8CRTAmjfC+F1Na9C8rjkuMWMj+yMHm6n3hU10ebfFXejuVKmLatABVZsayVGqaFL4umC5yy3+m3mbeJbHSW2k+yDUJqEkzDssSd2KWrv3BdjvLsv34yuzXrUiukfd0R7jNqV/gtlnZVzah5pGI+lqjvGwmo8RyJ67nxbCJ83kpgShh9ZzTkQ4GjEGnzIjE3W48CDKjm3fw4TWlG5kEhbWkXIptrdRGs64Glfylq4ooVK/DZZ5/B398f77zzDubMmYOWLVti2rRpsFqtuH37doX59+/fj5dffhkuLi549tln8eWXXyI6Ohpr165F+/btcfLkyb8sU+WJ2H+YjAI6t14cy/wx+EVH7ltWZkbAm5Lxg03qsjDAFQySWFbsCNg9BtWP1GRmcQBB4iu9pQbkpaYlLVfGwOct52aFFd3XpqFE0zbcVx+XO6mL4/afxep2M2kd72dnNO91K44/twAB62LgPzWB2IInHdPlGXv6DIbVLkD4WzEMQtxIvnvV4X52cI3uUz7mD2Nhf52cppT0CIXbzoMV8tDy0vJMKioWkAz5dBXJzNPZN63w/CBeV0bThDq4YDHeZb/XjqCbh4ST73rogt7eq47UREtLru1aofT4KaQuD2PmWrKiNx+lZXQ5eodBmRuVmfe6FR4fxuvyUbr8tAUupUCDFc7NbWgeas4kK3aEzojBwekL0a/zQGzd+6PwLhxlpYj26Ihex2/gt3a1cWtIJNw37ofyqhXSx85luafSocnXNKEOMq81YpsV2nfnWrMmHjuYifF1zwvPjN7pL3kH0d9DvylxP+8SAPr2HY7SIyn39Y0EJlcTUE15KooOR+EzV1G/Xxp7Tk+H+PbRmi7fS8bo3k8wU97iXqFC/MaKeGjfibOxio6xRvmpObhRWxjx56+dkTYIuazY4ffbOJ1pJB/w2ZmMlC4/bWFmZ7JiRz/rANz1agjXP0V/YLdmTVFy/sJ9y1oR3ekfgT1LlhjyuPCclYUU6ZA0HDW/q4uETxfdcwzXjov3SqsNXm2TzJiTnYjXHx4BR2qGLt99fbPlp00V9ZuIw48jKeR7ds+ZrC+nn8DkbeMQOGW/7llF/fNeYzclejplxFvbL/1/H4uAkYcN5x9nxKd5Lv0U3kkZwEwOnZVJ/6euDGXIqABBXqamqJSujLUIc33fll1QeuPGfdXf2dpAm54P/s2fmLY76IpPmxNk22tPRaHu2kRkv29h6ypn/Gi512+Uon5Q5oN/ItbrHzwR++3vOxE7cOAAAgMDUbduXeH+tGnT8P7772P+/Pl49tlnnebPzs6Gw+GAv7+/cP+3335D7969MWTIEPzwww9/SabKE7EHhChYh99v42AbQE4Uro0gQX7pIEQVFFmxI3C03kQRAIKePiDEhek9fCz8n7QLShgANvnSgYDa9/u8RRY3/KmGthztQNzuoKvwnBKVnRJVwgCgy7OTcOxFdaeb0slnVOAEox0m/t7x58iiy39q+YIsyTj+xrDaBbBJBBSDTR4bJqNvn2H3tWCoaFFmNJDSXd9zL1lZGptkRtN56mkKVcK0PLR1dFaW3/eTMXHu80Iefke0jzfZsUstJu/ZzVN1Jqd9SFbs8OqlgqSkfakCtqxu8YcgRz/rAKcTLJ9OVuwoyVMQNCEZfbzDhDzaHUGt7FQJS12kOoKbGjZA6fFTMDVujKDxB4T8Nx4KFPiEvB+L0q4hmNboFDK/MeveTc50Asji8SH5jkyNG0N5RXXerrK7OeZmJ6DhsgQWf4avnynIn/3u9SSBRd/+8zomf6PFZFe9JDNbeBc2yYwvCgIAAL+1I7vK7hvJAopXwigoTOGgSKHdnH0LlNxaeAnvjZrtUrJJZgxJIafapYWF2NC6mSAf/58vp4qLSWg/LZ17WR/sHCAALDbJDJe8i0IbNtxXn11TZ3x6/aXHfpyZYRXuse8pLhn1HyF1ejaPnOhTE72WK2NYHu8Z8U6/1ZzvRUjowN1j4DihxhjcuZr405haBujahJfFaPHU9stY5P7QTuAvK3ZBwQlMrsYADmySmSlhsmJHtT3N0OmFyezaKA6Vtg9o43cBQMCLRHHon9qXgT3U36vfXb/dpMxQRnqPr+vYl8gJkZuPN+nb2Tn49buVQpucf9GK/OVkgdRtwgT0C+2jazNZsePiM/r+cnNolDAeAUDN347iq6vEaoC266sZZGxvOi+exdTcHbocdb5NFPou5UH7Jg3UTdtd28/5PA/FTGTPrw8lZqhuXp7sXnDV6oIS1vXobaE/0Lh+2nkvdXn5OJh4FH37DGP3tX3UJhFIfZqff54/WQTf+TSgLQKn7MetIZFCXbS838hQzZ0pFWwNZGlkxQ5TmyDd9x3363e6fJkfqWFj+PYMGHkY15+MQoek4br688HpeRqW1QM2yYyJqZnoV/OOTgmjgcEBArJB+ZZZOghKGABcDKvJflPZkt8n4XkofD2F569oXXHxWatuHqXPjIgP/j2sdgFLdzy0lOWtuzYR+N0Tp8cS4JuiviqwmNH7t0lmTOCAbyrp76ewsDCdEgYATzzxBADg+PGK/al9fHx0ShgA9OrVCw0aNLhnfiOqVMQeEKJB/AJHHWKTdOIcfWBU7QDNI3YZkeuew04HEu0ESO/ZJDPevGA1zKPd8ZIVO46HlrLnka+pZixzsxOQuiScxdAACNCDqVFDmO6UGg50Rot8WbHDNnAkauxpysqckXkQvYeOcZpPWx+t/AEvJKL06ClsOKvuUqWuFHf/o9t2R/hbolkOL5OW2OTTlZw2NJ+rRyzj/6d/HqXj41KtmuEAreUR+Hwims4n/E0BviwNDcS7PYcoLQNWTQUAlJzN0y1Ipp4PQVmPPFYGBR646FCVdMq3JDuH/c6epZo9afsj/07LSkpgk8xYnrOXPffdMtGwvwEEUAQQA9zSOHGOfDV4+OUJxPSNj0cFkBhBrnsISMvWTl/pyqAL9eyZJL8jPx/HXlqg1mu7L17ysRh+cwAJUmuTzHCtWRO/fbMCAAGcMXo/ut8cuIvRwgkAvGbFo6yTmZmw8sSXkbU+WMhPzT2FBbuLi5rnd09MrKs3/3S2gDNaiLC+vcOH/T76sn4jRVbszP/q3NCWAk/+NHy2fzBuDIsS6nVqwgJWFv3vEkYW4pkfEp/ZLz3Ed17znIuQBwDCp6lIZ5RSOon+o35P2uFSrZruHThOqyAWylQ9whr9f7DoLrvv+UE8vB47jtKuIcL3Rd/17UcjkBZehD8WLNEtBG2DR6Go63nU2qCaRnl8pDd/1daR9+EDiI9il6N3AADF3c5hYcZu8jv6KgC1zwDA8H5/MNkpBR9SzR7fvKCmfaYe6VuZo1WQCQAoGE2+IUS0h8fWC2j4JlEMdy9dSgCEuMC/tD2afKVuJPbtSxbtiq0EIbNihX5XeucOtrRpCAA4aV0LAOhZw8H40Ziaw7ys2Hw2iSEM8/Vp/ikZGx0nU3Ux27RE8/2xcAm75zGYgHZs3f+LLp2s2OHWvBn2BNeA32/j1Hv5qg8hT0HjD6h1O3qK3deOFUU7fJzO1Y0XJaD72Kd1z9037td9r3w/me0fzO6/k0lOaeo/Qk7Lc98mGx+Ok6lC24UeVudzNz9VprSRCw2VRACo800iPF4r1s2NPBgLX9eCTsSSYUit6+jbsouuTfYGb2L3qv+i+r26JBAz3evb/Fn6I6+qAcO1sg3ZEq9rs0VXPXTtZJPMghm3zTOU8b+XYpYxx6Ir99pTap+TW//Cnp8bQ1wHTLsk3WYA/VvqvRf/BnKBCmH/v/pXXl5gYCCaN2/O/v5uOnuW+IY2bdr0f5T/2rVruHHjxv8of6Ui9oATvxjJKIdG5wOFBsUkCQND7jQ1OC3Pw5niYJPMaP9ZrG6hwe/Y8juflChkdcf3YoQB5WKPu4zPE4teRlb/pczuvXBwJOr0zYDj0mW8Pm81ct9S+Zlaq6cbsmLHi+kp4gCYdAy3u15g11HVTfh1wyqhPtpJgEIqGylOwYfI5z3UU1UqKMoUzRN3Yhc7RTNSNqi9u1YG7W8jxYMqgzZJ9e27LfuyoKtXxoo7oDS4qk0y4+bj4i4ohbAGSLDPdvPI+0y5WyhAHsuKnU0w10ZE4WjHMuEZ5THSqxPaJY4Q7vPPeZQuSs+ln2LXqQsiYJPMDEJ9vHdnJjuvZAFAXz91wtKiOvLEl9VwaQKDhnemFE9pocL78+W5mtswcBHtez3+XMWnsZTeOK4ulCnqp7Yso3d/9g3VD+/qKIsubcEYC1z26RcTAATIfArqQdPwi2gmf95h3LWVQ673PGu4UWF0T9ueaV93RMisWPaMgqoor1oNvwkaFBwAmgzJ0fHm61Z7fSJy37Yy3xO/TZN0/MoOHIepUUOGKMY2HH4lZkBNvoxnShGl5FlkN7z93FgdP75uZUVFhotXeq01m+bTPn96GGurBWfIwunXb1UAlR7HbqHXiHHo4xvJ/ECn57cVynJ06wgkHkXrg25C+8iKHWlfGkOmO1sMFnS6wsxxAWByuf8NRXLjfRApyhxPP9hD2bv5oKnav2h51FSe3qv/tWqFELd7I0qPpAjyOS5fMexfNM22bd8CIErKwEm7DdMZ1Zu/lhU7BnlG4OC7Ksy+UZm8kkvTjc3pAjdPD10f5vt//mSL4Vhgk8xYmbSRyD+/GNkzLfD9eQKBSq+AtN+WdqNjd7sfhXuyYheCMFeVDzhtU5rHzUPCB1lJurrIih0vTX+GJCx1wCaZ4TWTvNP0z1TfbwD4oKkKHa893eflp+FWKNFNDJtEzA0B9Tt1RjZJPa3S3nfWVgAYai+vGBq1zafrBgMAhp9SmF/x3C0DdOVo3/Hl8RFI/zwKj2X00o3ltBw3H2/Iip24RUD0jeZ9zorL1E0EnydI29Lg39o6AJUBnf8T5HA4MHPmTLi5ueHJJ5/8H/F4//33UVxcjNGjR//lvJWK2ANCg4La6wbOoZk9ISt2VP80H7JiR3q3VQCAE88uQNSrkwFXE2TFjm5Pk5hLv+QdZI7t2gGdH6S0g440J1436FGna36AaPYZGbi7PT0BGT1WQlbsaLwoQRioqdmArBATMH5A5dHIPgtozfzdQj6IRdzv3wsDXZ+aRUBEe0FuHmhEO/AaTcR7f9c7k9O2ONqRxCi6NUTl2eVZcSGoVU4B4OzGtrgWR8yXjketYzwvj7foymnzVSxW5Yi7WzxPACjpEYod368CQEARaDk0ttjFZ60YknKRLS4BQIku0dWL8r0WF8D8n2jMFKFtyoEMEueoMVlcdoo7hGlfd4TH4BPCwlk7ybmEtoXllcmsf/FhBOodJwvLeqsTdPkosR3DAB82oRspsbQNtHxc99rxTFqqkJ6moWAvtO1pvBaAOIlTvtpJWKdY/K7KNeDkZfZMC9ZCTa4oL7rTrOV5YsoCFi+v3uoEAlzBEY+suDxnr9AeM54RnejpM5fw9vCvftFwoVpVPoCG++qze59nx+OdzEOCrFoZ6aYMpczeK3Swz3mvEb82I2V1c24HlXe5Aqhd6MiKncVB9JoZj9IbN2CTyIms0cLXcekyk5NtOPRWTWppHB5t3mMviSd2wiLSQ9LJrk2jvS8rdhSMtsAU4Mt27G2SGQeLPIT+Z5PMWHTgIfh/lILtWeqYp1WATLvJu6CbXkK7D9afilI5XM1tMDSzJ7LfV03FjP5r8/Htw/dngPgU83MFTZf7lpVtelCigBh9HhnB0i84s9fppojRPX6cjO9Q1bCPOMtP0w5Ms+n4OSP+eY9jt6BE3RAAoijPsHdiWFqKfusoK4WWRpbHj9z+0xr4vJ2AoElkkU83FSjP7Jn6eKCyIoJdLbkmGdbBJpl18fOM3jH/HTua1MfIFS/o+NkkM/Z/pM4hPAWuu8nS6Pi6mthv7TqiJPcsXELbwrRL/y3R+WBX25/uq09Q/sGfipsnPLiGtk6Ufsk7aKgse+93h8+847BJZnzbSmL+1BQUh5arnesLB0ei4dIEBLyQiBtdLunmbCortRKhZQ/yjICUWFtXPyM/W6O6PJdO4g5S66gHnsrK/rk/AGlpaTh37hz7+zvphRdeQEJCAt577z20bKkHoboX/fDDD/jkk0/Qp08fjB079t4ZNFSpiFVSJVVSJVVSJVVSJVVSJVXS/yl6++238eWXX2LixIl44403/nL+uLg4jBgxAqGhofjuu+/g4uJy70wa+q9QxK5cuYJXXnkFAQEBqF69Oho3bozu3bvjzz//FNLt378fvXr1Qu3atVGnTh306dMHdrvdkKeiKBg1ahQaN26MGjVqICwsDN9//71h2r+DNqce0+3MXOt8GTbJjLuP3NY9q7s2kZ1uVIsjQWu/vdFUt6sFiMfvsmJHp+cnGaYBAFPTJgAgxNmh9tgAMY8c9kmckJfndflpvb00TXNpkt4cCyDmRUF/jGJmc0A5GEI5+AZ/omZUrna3ihJ1kLVJZlz5JUioJ/1d6yf1BO/PL419c/hdYs8hJ1gwVJtkhimQOBUfmKnuNtbYQ2yEb/sUY4x3Z9gkM5Sp5JTErXkzrL+hnlJQ0I60rzuydsv4VDVHafJlPDa2biLIzZtQUsr8iLQtlY0nyyuTdfd4KuuRJ+zmV61RzJ6lrVJt5fv4ktPDtHmRwJHTqPNNItrOjxX6nE0yGwbO1PY3arpRevwUSnLPshNEni5PIKaNgu0+V9ZXgUGwSWb0PElMTbz3k/gfFKlvTLlJZHbEbae79Xxf5fuTaZfEoKxtkpn5rGh51NjTlEE/U15tHhZP6vi2GVa7APmTyS55aWGhTh5Knm61hHe+MDBAJ7es2FGWfAyb24gw2ML3WO6XlbokHC/4WPGeX0f2PLrVQ7odcN4cL+dd0mepCTEt853x69g1QEwuaf660emwSWY8FDsRrQ+66XbRAaBfRD+49crRycq3E32X2mdtFsbq7mnbxSaZcXm8RVcuP4ZuTY5DUXQ4bsu+uudGRJ/V/zoBjvQs4dnyIOKjefNx8n1c+jkIQWMPMmd+NrZy5tdh74i+py7h7WFqHQhTwwaGcrReROrdcWYMSu0nscHvdwyJ3sf4a0+vUxdECP1Ze0L7TL1cpC4PY/5V2vq3/4yUN/HJOB0iHT0RLjt4AtHdhkBW7Hiu+1OIDu7pdP7h5ch5V+97R3/T0/HW+0bqZNLKSU3Vp+e3ZTzW54pjDy2LP9FZ8ntPQS6e54H3FqLM2oGZ1gGAycW1wvFDVlQgkm2n/2TlAcDp8WReoKfk9M99ohrLb2PrJjq+gArQISvEz5Cmv/GE6lvpGtxKaN/tW9fBa2Y8AysJWBcjtC9P9H6jeWcRk5ZueDpE1xg0P+/HVmbpgO0/r4OjuwJT68B7jq8A4P5HY3aPtjFfLvXto0R93I1Ofenv/h6hmJ7fFn1PXCWZIohpX07kLRZfT0tGbUJ/03UGn49fQznLB4CFuYgO7mlYXkVETxH/LfSP+IeV//1v0bvvvotZs2Zh7NixWLRo0b0zaGj79u0YPHgw2rZtix07dvyPUR3/9YrYmTNnEBoaiq+//hqPPfYYFixYgDfffBM+Pj7Iy1MDBCcmJqJr167IysrCe++9hxkzZiAtLQ1dunTBsWPiUfCVK1fQuXNnbNq0CTExMfjiiy9Qq1YtDB06FCtXrvxfq4tJ8xJlxY6yTmYsOq4qPvyg2+v4DeH+ulae7HfhoEj2my7s6WCXH+JqOGECQNzhHToZEjoQe/hXM47B/0k7NrdpLAywvEwH3lvIfsuKnYEG2CQzdr49F4AaN6hgtLoI8B12VBj0qdkO5a+dCMPtalo+HZ92aGZPRIc8DABo0D+VtKeFIFtRx/bTC0IQbncYLsb5QbdwUCQDseDJkZapm+DoAiGr31LG69iLxKF468Ht+OVyB53cPApmjXOuhghjlChAC3/f7zUxjgm/8PB/9pSQ36i+PLUYegxXR5KFbOCYg0xGamYV+Nx+bM8hirrnbBX63iaZkbowQuB75j2LoMgCKmqXtvwDMZ8LbXJghmhKQ9NSJEhqVurWi5iILPXap6sLT87qrJ1c7UVFKHu+Dmyeocz/J7PcP1NLx3IlHc8f/H9j/LSKXnRwT2byBKixY7Ty0DzOfIWojyZftrMFFwBk9V/KftPnjuvXdYtkSmmrO8LtVrlylSWaZi0P8oWs2JG2KhSyYseJKaIJYHGvUPyxYAlSQkvQ51F1QU3L4QO3t1yhKiQbb9ZhJm45keK3ZpPMSJsXyfxatM9kxY7Uhary0XC56Meo/X+u5CaqxSWzQNU8XYy1wtS2JbK/CzZcBNIyte1c63uygKtiKjVUMON+/55dH3hvocC3LPkYHClpQjgGPq/3e6TejRcmoNfxGwj5IBYfNCV+X43j68EmmZH5jfqNtZ6eZTg+AyRO11dXvRA0/gAOvrsQpvr1oSWqkG9rW0/3jCcKYFOSmQ3Hpcu6fsT7AbdLJKaM3u8av0NABcfwflxvnsXk5+JvyYodiR2qsD4wzIuUR+N/eb9Lxqd+oX1YGQEv6AMm83K4xB9hi2JtG/Ll0nu9Ux7B4bcWCPe0/7X9dmv8Fqf1AwjaIzX7t0lmBiQiK3Yh/hUF/5AVEo6BlkeBdPyn6s3Dux4VNwjyrVcx0P2mTinWtousEB9Rv1/HQVbscEk4oo4lKSraI1OIyuVKW92RITPeekgFXTJSPCpSeM/92FpQEvlYpFvnPaT2VQ16stG4b7T+4QFteHkotVqmxtkz+r5Tl6gIkfRb4Odh+pvf2Daqb6WP2D9D7777LmbMmIHRo0dj2bJlf/kka/v27Rg4cCBatWqF3377DfUNxtH7pX99HLEuXbogOzsbSUlJFSKpRERE4NSpU0hJSYGHB/GJycvLQ+vWrREVFYUdO1QF5NVXX8WcOXOwZcsWPPIICUrqcDhgsViQkZGBM2fOoFatWobl/FWiMRm64VG4uVTRTWRa4gdKPq0pwFcAbaDPI1+LQZ2cOzhnqQGPD+NxZZzFMD6SrNix7kZDFmyY560dwPjn9D+NI2OUVyurQK4mpoAVjLYg4YOvYHJxFcrSpuN59rM8IgQJdlaOrNix/kZ9FutDG2ckOrgn4o7+jkuOW2hkcmc8inb4MIACZxOErNix704pXpkWizrf6ANymj+MRdN5zmNFGcnK8+b/u+z0wPZWW4X8FS3Atc+0SlG/0D4oOXfeUKbxqVkYWuuaIW+j/uGsTrJiR3SH3og78qvTPkVjzGnl0L6n7iceRdXeJDiueXYsms6PR0nPULj9LkIaA8RB+9tWBJ2q43sxOPQOQf1ydOsIXtEHgJi0dHbqZNQWo07nYkTty+g1YhxMu1Q/Kyq/No+bpwe2Jm3V8cn6tgOKC6sgq+8yoS22F1ZDbPwIZPZaoXvv2wur4bOA1obtzr/LlstjGBCJsGHDycy/E152+tuoDGd1rIiM0tL4P6Z6dYHmTeBISUP6mhAEjDzsNA9/v8zagQU35ulaXADqRqfDpVo1bM8ifma5P7RjQW9lxQ7Ly5OxbPZnOnAVZzIbfesAsOVWTcycPRrJsxbC//exyOi5kuUZcPIyvn+lD6rFGSPFPfzYaEF+WSHogamvVBf4OJNJez9w9xisiVqO6X6qJUHBaAuSZi90+p5ouzh75zeeiEL8Z4vY5tPVABNueTuQOWQxrC9NRvxcMWZXUd9wVNuWbDhHZH5ogd/rCXBr3gwl584b1ifnXStTlozGGACYe8UPcrs6LM38M/sQVMX9vvtkRbwpBX8Sq0O5BUCCB5eVCTxKfvPGrVUS6q5NRO40K7xmiXEY/TdMrlDZo2mzZ1kY8NH9yOu7ZSJaTrGjrFgFxMqfbMG1TnfYN+TWwgswmVCSmQ0ALF7hnOxEBFclsP+3tvthb/Amp3NIld3N8UvQNnadsS4EYT5nGNKhMzm13w+N86i737Y7HAUFuj6olcMZfxpD1ajcK+MsSJ610ClP0y4Jju4Krm/zZ4AffDyw1MXhyHpkqVMZKL/I12JQ7YYDNX7Uh/mRFTuiXp3MrD6M6kHJKG5rSVkxduOnBz6OWOfu78LN7R+II1ZyB3t3vfu3tsd7772H6dOnY+TIkVi1ahVcXY3PpM6dO4dr167B29sbNTmf7h07duDRRx9FUFAQdu7ciYYNG/5/yfOvVsT++OMPdO3aFfPmzcOUKVNQXFyM4uJiocEAID09HYGBgRg3bhyWLxfNusaPH4+VK1dCURQ0a0biP3l6eqJ69epITxfNvNasWYNRo0bhu+++w9ChQ/+WOvCKWNuDNXHi1WAhxhQl+vH2GDWeBR417ZIQ1zLunoMTnx8gscVc95QP3J4eKDmbB1PrQDRacQEXLNfhEt4eZcnHUGV3cxR3E50ijRSrvNesqHqtDI0XVRywkJdDu+B5KGYiQxfj89Xd2xDXOpPdpe7jJmDXiqWs/Kipk/HD7E8YKp8RaeVdk7sPI706VZg2dVkYgp4+INwTqHxyBoAzG9qjxVDj3VujgTzty0gEPrtfeB++v0xAVv+l6NMiQphkeaIyGS3EAQL6kTUK7ATrwhQrms6PFwIOO1OmrEfuYnrjk04XNDOzkvG2L4l/4rvtaRZUWSsDXVhu2/atoYz/U7qXMl/RAprm+/FWLSwMDICs2NFjzNPYuWqZoaJLydG9I35bt6JC5ZYv414yM/7lGwrO3iNdKAh8Bo6E/OMaNU2gH+L2bHLaJqY6dRB36g92//wLVhx5VYXp90mqgcWeCUi5W4jqLqUMYQ9QF24AUNIzFL+vWe60jkb1dXb/mbRUfBVIzIPhaoJ89iDafxYLr1VpcOTnw9SoIeKO/m7YR9+8EAx7j4aIO7ELfVpEoKRzO/y2bgXbOLo6yoJ6q8XFjHaccalSFWXFdw1lvddCnT679HMQGj2Sapie1Y9buBu1G817fXgULndwYcAB+VtaovGA05iReRDT/UKd9suCMRYB1IWnsxvbotFKd1T/5f5iQK6+3gjrWnka1if3LStOPrPAsI/SscUZ0aDlLjs9UNYjD+d/bA2PSZeR/qI/amVDN0/w/AVZuHHWVK8uHFfJplCNPU3xY6CMjy4HopaJQN3TIO2O7h2FTQcqg5buPBKB6j8nIXumRdi8MHrvfJtQgKmKSNvOA9L6YEvgdh1/ozK0beEsTdb6YIaEqR1n+A3Vi89Ymem0kXz3c03p4rNWwUz8ri0Mu1Yu07fT21bdCWC7g64szM3ZjW3hOeSErqx7rReKHw4TXCac1cno94hTZ5nFEB1rUu4WonXVmoh8PQb7P1zIyinpEWq4BnOpUhU5r4UxxZum15L7H41x6yECsNbho1g0+4Kkj7I/pnMdyPzGDL8nCa+hKeexoXUzfH/60L8ioPO/VRH76quv8Oyzz8Lb2xszZ87UKWFNmzZF7969AQBjxozB119/jV27dqFbt24ASEDoLl26oKysDB9++CEaNWqkK+Opp576SzL9q00T4+KIyZ63tzceeeQR1KhRA+7u7ggKCsLatWtZuuRkskNpseh3Q6OiolBWVoaDB8mHd+7cOeTl5SEqSh97hN6j/P5uOh1WDLedB3HlF32ARZtkJrtV5UpY1mwLHN0VNhAEepKArTRf4Fo1lo520HDdc5hB4W9N2gpZsaPjt6dwwXKdyDGeoMzxSpizBS5A4t4cekc0SeTTa2XQDl5BX8cYKmEAcGJrS5a36nax3euuS8R4785CmTQt/U15+W0kfnEU7UpbH759qBLG3+PTD09RJ3ZeCXM2ifPl0Vhd9Hn3sU8jqz9RLulC0SaZceE51aRnaMp5QSYtlfQkE0erqSpcuP0NYiqT/SgZuCbk6uttk8xIXxOC+A5VdfLT30XR4QxtyiaZcejheULZfD1tkhmlR1J093h+Ru3Ok7P34tquleGkBwB9+o0Q0mrT2SQzO+2ySWZcCK2KDnNiK1Twlq6aJ/Rxo3drVJas2FHSM9RQBvNhsFNdo4WWrNiRtccHfHwrm2TWmdrw5rDaxZ2s2OG4fh39Ivqxe0333xLKWOxJzJVe8LHCtwo52ad+a198Mp/xc/v9IMKnxWD3bVddGXxAYdZ+Ee2Fe3zd3lw+Rq1AOXy2NCce5x4PRN6mtnBcuux0oVrF1QFHQQFm5LdBWfFdpiCPqE02aOgiin+P9N1QlMhLo0ORH0Pq+NCxQbjTn5jQXppk0cHf83w6fER8pdI/ixKUMPotKZvbwM1DUpVM7vSE8nDzIspO7g/t2L2ETxchdZRqett4wGnIip2dbjnrl0ZKGJXFc8gJ7FmyRPecJxqEGABG1bmEzA8tQn3oM6/3CeKta7BoogfAUAnj39tv7WpDVuxMAWo2MAWOCxcR3ClNDQqkIf69sTrlqTEw407ugSmAmMTe7noBUVMnY2d7d+a7SZFiTbsOCbKU9chjfq487VlM2snn7QRWLs0XsGusKAfXJnx9jcZLIyWAKmHaehp9u84UtbSvOwIgCpibn48uhAWffnVLL8iKHcW9QnH4rQWG8qXP1cewpM87HnhCuNfl6B1U29MMTfffEOSsKh8g6M0aMjIf/rS5qhxTJYzKW5FSQ01KZUWNT1gUHY70NSFCvXx/niDUhwYApzypEgYAZbeJW8ILPuXotmVA1NTJ6vdaroTRMZHS9jNJTAlLuWvs35s2L5IpYTbJzJQwm2RGovkHQWYATAmTFTs2tG6GmVnJ/xrTRJeysn/s7+8kun7PycnB6NGjMXLkSOHv/fffrzD/8ePHcefOHRQVFeHFF1/U5R85cuRflulfrYidPn0aADBhwgRcuXIFX3/9NVasWIGqVati5MiRzJ9LUcgOMzVJ5Ik3U/yraf8nxAeka968OQIDib+MqSWxG1amWtFk8i3dRODWwovxMDVqCN83RJ8g9CTB6Oig5feqOsHQP94B3r98AKDPks0qTC2q6uF6+QmE+nhREIiWB4iN/pWxIlAH/7/T85NQ1DdcyxYAWF20O4GyYofn7HiYP4wVeNHnNEYJX0deXpq2+OEwZA5ZrJOLUkXKwfUnifId3W0Iu/dtK71fEOVLHfa1imfrxbFqkNNySGCbRCDGjXg1nUcGcJdq1bChdTMhDc9bVuxw+/0g8idbhKDHtNwW75C2Xeq1z1BxoCYt/DNaZwDYvWyp4Fw/66Lz00deNj6Is3aBTNPQ+HjaOvE06jQxOy09rvq5pa4IExdbh0/o2o/60QFg7U3Jc3Y8mn1GFppZ33bQKc0AicOkbW9TSxUww5lSaJPM+H3Nct1GAADYQ9RFOUCCn1NwHJfQtnj48THwfjdeiG+lLS/vddF3kF/c8+l4P6xL5prCc6P09JQitFpVYexpsCIB3Wqowdddwkh5fEBh9k45cJ3ORwcL8h9/boHwjl5MJ3GnmiyIF8JAaJU+QIV9j+9QFW7NmyE65GFB2TFaxAcmVwMAdKpOprgD7y1E44UJyPzYghq2LFxqTxTJmvmlGPfFC043UZp9QRaVAS8mCs/of2nQSdz1a8ryl3YJ0b27ktyzCH03Bl6PHYeyuY1OUTNSyLV9T1bsDBSFJ89EAupCwTwAcnKnVawo7QmuwcqySWZsHf6J7vvkiQ9AbGrYwFABcQltq8vXr6NNkN17vzt+8P8NjReKvnvKq/o68fLxcmU9SVwPmibUEcJvaOuqbUdqJaDlz+cHgPb7n4RNMsN/hKoA7r7tytJeflpcmPN93Gh8M2pTvu2yZ4mAMkbzGCVq7WI6VYuZHfL8aB7qN2uTzKi6+wjmXPE3fL+1s9Sln7a8xgPIusrV3R2yYsefwdVR1PU8Bn69U9d3Ez9epOsPGXNIO914IorFHtUqnTzxGwGA6lcoK3Zm0srnrxaXjICRh5HzjhomhIYPoD63H/uLm0KmenUhK3YUDo7E2WfImP9Wph2mAF/s/2gh609UDlPLAPScmKj7Dun4x5Q4rgwACHxO3WiVFTsyvzHD+tJk9jx9bpShAn6zlCiHdNOzkv73aNWqVSgrK3P6t3v3bl1aehoGkFOyivL/T4wM/9WK2I3yQIC1a9fGrl27MGLECIwdOxZ//vkn6tWrhzfffBOlpaUoLEcnq1atmo5H9erkaJWm+Stp/056fsNPAIiTNL+Ioh/71oSfyQDRqKHOKVqnEAwcaTjo5UQSBS/qSDFSl4XpBgNaXtA48fQl5x1xsizJJicvdb5JxK0hkTgdVgxZsSP5fXFn2iVcHQxrfb8fu5cv1U3k/hsm6+XXTBq8fxWfho8lZLTwpUTN0IzKoL9lxS6ASMSkEROC+tvIpBS3e6OhIkR32WXFjmsjojD1g3WCQknTes+IR9wxMpFR0zQtyYodmR+r/GwSAcjQlulsIU3TDE05LyxOeKWUTSihKtIYReSiVOebRGGyoM71smLH8dBS3OlPQBFMTZvo+hCVR2suarRQKjtAfHjS14Sg2/gJQlpKK2IGCu0uK3YEjTugm8w6vhcj5M96VD0ZkM8e1L07Sr7D9T5HAEEH5fuhTTLDcTrdcHGrvTc4vbfQ5jyV5JLYWmnzI1FvTQJcqpNxpuzgCRZPriKiO/8A2Qg5aV0ryGDUr7SLX17u9bnxQtvwfYueBlHKfcvK3pmW+LpGvBHD4mylriSnERnFNwU5+9Qs0uVdd6MhZvsH46PLKgLby+mqCRMAbD24HY4LF9F630i4NRc3KAAS7B4A0sKLSDneIjIgDQx9YsoCmOrVRc1N+9Hs83jhVJX/bi7GGisKfFu5/nmY/a6aJpqVUmq0hLyDWtWLdP3CJpkx4ORlw/fHp/WcrX6Htx4jC+6zUaRdUyYvQFkn0ucOhm4wXNBTXjTuJAAEVXEXnvNy87Lkvm1F3LGdQjr6u+zgCV36rYdk9LMOYPfo3ENp6nmyYD72ghhwnqancRl5SplMTCUvWK4bjoH9wqN17Wo0R/Ll8HGfpEEn4ebbQkg3218FcGi4TDR/de9jHMC515PjmBJD+6ORTD7TSF88/yPx/6RIh3xabX+gYzFFlNUqA9SsGAC25xzA1AYZLM0bGUdxWyanik3nxxu2Dc/PtakIihKX3x4FDnHtox3nbJKZBTiu/V0iiz2q5c3z1T47+YwKfFLReOv9XjwKRlvgn1yd8XD987DAFwBsg0ch7uQe2CQzam7aD+njeJx9w4qHqgOO9CxDuRyn09GtjmrdQeupHf+cKZfhdgf6PDICfk/aUXs9mU/9doxHwEuJrG6bzyax/EM81RPKGxt9DXk+cFT6D/79l9O/WhGrUYPs7g0fPhxVq1Zl9+vXr48BAwbg/PnzOH36NPMZKyoq0vG4c4fsRNA0fyXt/4T4gHTnzp1DWloaAGBuh3bsQyyKJrsi2sW3TTILSpjRIAZA8CfhiS5IEjtUQdDTB4SBWMdDsbOdVe/34hnqUfraEOEkw30j8Xei6ISU19k3rNj+0xpdPbTyZgxd5HQXkB/kUheoygIvd9b6YEHZMMpvk8xI/zxKuCcrdmR9KEI31++Xxq4HupMFTtyJXSr/lP4sbe7bVsiKHYfeVs2LEucsEtCntApQRvFN9BnwFOOhfb9RUyezk8ybpXegvGrV8eLJtXZtw4mAnqDxeShsMKWygydQXEbM5KhZKG0XU6Cfrky+j+xZsgQtl8fAcUEMJFxR+9skM3o+Nd5Q3oCRhwUlvXfKIywdb6tvk8zo6ye+R0q834lRP+PrQPPSQM9n3iP94OybVvQNIO816P3bOP+8Vag/XxdK5sPAtdLbwj0eGYyWl6FBXQycQhZMWxN+ZvfCp4mQ5kZtJSvkZMSlWjWmMANAwO4xgmz8N8rXnSebZEanJa+g/dxYdp26PIw9p6dBNJ/X+/HYfDYJaV93NJSNUv2vE1i9g8YSJTi2RWdBPqPvnfq17GyvKgcP1yxm6fn35/34MWw9uF1XrxPPksX6ze1+ZCMj5wAaLUkQ3jsbS69eI+aiIKeqfDtRnnwoBr7OrRfFsv6qvEL6zN1fWzDAIm0dad7BXuT/uhtiOIRn6uUK47w2n7a93H8Q/UyXXJNQRSnQtWk/6wC4dmgt8Fm76DOkrwlBXN4hHe9MzQaEaztimljlRsWKDc+HXtOAt0bv+mjHMryYTha6/AZY1FSyMXet5+0K+xigotStyyWn/SV5Cloti9EFUaZ8roy1MDlpf1jpLYa4GSfvMmxzeu/aU+qJhlZhNdWrS/7vPoTSW0Tx9PxA7T/KVL1Sb5PMaDaQnA5T6HbtxsjNxyPZPYo03HCpHg2R5qFjhLbtZ/sHCyihea8RecyzYw3buiQzW+gLRV3PM1RKvqwyawfhmvLiUQS1VG1PM1a/j8rReG2SGTnTrWi9SLWAeSyjl27MsElm9A0gcpS6ARnhd3T8bZIZBWPK+0HiUdgkM0PAlRViaWPUfvw9Z3DyNBSONj1PyWYTXK+JSmvgmIPCGDbIUw1JQMnUuDF+a69H1Kyk/276Vytinp7E7peCbPBEERQLCgogScSUzMikkN6jZod/Je3fTfSDpKhbRhOB9n7qylCnE5awo/mWle3K8kTjmxjJQndWASBlam3YJDMyeqzEmddUQ/+MT8jE5LhAfNT8fhsHAMJAR/+7NSNxzkyNG8MlrJ1u18smmdmOnbaebT7I09XTJpmR+tBqp4OhTTLj5XPEtr6JGIIMAd9Ohu/rCcxEihIvC78oK+0Swsw/ZcUOny/FfPwiSrtIWX6tGWySGbEtOrMdNaOFcd11KtLWEM8oSB+LC2FePlmxw9HOz1ARSpsXqeN966F85i9D5aviYhKuKQ/qg+QS2lbHm/6mDu7ayVfbJrzMNd5RhGu+ThR62SaZ8ZbPVt3CmVJh72DhftYHFkxM1e9M0zznn7di/Y36uncjK3YWX+zU0wuBqGB4fhCPs8+UL9JPnEazL+JRf18DDE05b7gABYDjj3hgqKca74cqddo2pabAPA06mS/ULXmW6Gfp7Lv0nE3MF/m6aPlrd261/RIgsefqZJVC+kRdLPJALDxRmQZ5RiCz9wpdW2qVXFrmgJOX0Sb+Kd3iUvv+bZKZtR3Ny/8HgD4tInT8jdrItXp17AveJKQt/d0LNsmMLkfvYPgp9dTqo6Z25ExXTaG075nW7fyL4jjp/V48eo4cD5tkhvQJGeue8DhgqKDwfKc2IEhty58ZyOrA5+H9g/kxhS7yeV40b+GgSGxs3QRb9/3EnqfNIydmJdk5KD2SgqA9o1l+T7dayOi5EtEeHXX1DXqDbPTNzCJzUNlp8m01+zwebh4Sa4/oDr0x4ORlXdtr+61Re9DfFAmUboDZJDMS55CNubRuq3TvVnsdNJHIOMKrE1zNbcjNMhc2NmnloRYbWn58P1oS5Kcr58wMVfmgSHh8HvqfgonwRP2M3HxbQJoTjzW5+3B1lEXXFlqljv9Oan2/n5VR/+sEIT3Pg+8v2pASNE3qijDG1+Mj8t3b39Cn1cqmLa9pQh0m044fvhbaxCaZ4ejeEUETy9E0o4KFuuW+ZRX85szVquHHW8RX1XtGPAvVAAA3ulzSyTQk5SKLwUjDVBgR9aekpo6x5aBE/Dd3/kWrrs/SeJayYsfn2Xq/wAb91TiRgLqu4an44TA40rN0J7tG4zBPF1bUr/QR+1/2EXsQ6V+tiEVEkB2Fs2fP6p7Re02aNEF4ONmZSUjQf7SJiYlwcXFBaCgxoWnevDk8PDyQmKiHn6X3wsLCdM/+DrrXolY7WAMAykicrovPksFmec5e3UQNkN1sWbHr4hZ5zYxngRVfTE8xnMAAwO0iOXG0DR7FYrzIih3+ryQKMgeOOqSrw6pyf6GS8xdQ2iUEcUd+RdmB47qJUFbsqGHLEpQzyqfkrBp02JlSuiUvWfd8k70jsj60oM634vv0f5lcfxbQmpXj4uamUzjos83fLmRtBABXolsKaV3d3VncIb+Nk4S6bWjdjMlE3xOfd+xp1cTSGVElyiaZ4btlIvw3TIZbSjZkxY4bw0RgmcDn9uviT8mKHe/5kYVX7+Ek/kp0h94YdTpXaFfeB0lrcqT1kdAuRoz6Lb9AKO52znCBbZPMiPv1O3bdrUYpXGvXhs1DH2Or+s9J2F5YjZXn+2YClgT5CeXxfbjZF/FY2bIF82/hFwuUuo+bACQS5/djLy7A3GwyTgw6mY+CTlfYCSMA9Bw5HtnfkYXF7UcjmBkx5dfiHb3zPwCce4m0K/3GRp3OxeR6+s0eXkaeJqZmGn//0AfsDj5kjIgwOL23cJ02ciHqrk3UfWs8ubq7s/po353RJkDArrECry1tGsLrsePCxoZ2bKH3aNvxdDHWyniVFd81VLwoUb7bMhN1GyOuPYmv4bfrezAfT4D4fnrPEDc8KB/TLonxaPZZPPI2tRXaiPoCUqKBtfndfm07UaKgS/Q5lTO5o2hWeLdP+alCk0aQFTumXWwvvC+bZEbNzfvhWrOmkI/6qlBK7fq1YXlaKjlDxgN3lxLU3duQobgCwNbkOFXpyM/HljYNdYq10fvl25TOP5ZX9CbpWnomLZXlNer7smJH6OFSuPl4o9R+kvSh6eq7NDVqCJtkxt1fWxjWWVbsiHxdD2rF1wOuJrSYXr6pWO5remmSBVJibfZt0LGZEr94b7woAaWdzSjJImN8E5M76q0mp1npa0LYCbR2LuzwsT5wuVZB17YtXwdn3wl1O7iXksvzpc88E9WQPatb/AEAKCxVv0leTopcaZPMQOJRlP6u+rhTIBi+D1NEWy1ABvWLzOSsV2gAbFmx49zLVrQ8UMXQTJ4vj86R2vY5MpWcoLs1b8bkoWslm0R8wWi+0INDEbh7jK6dth6SdfdqnCRAZwdmLmR+wJT4vqj9dho9korNqXoU5kr676Z/tSI2cOBA1K5dG2vXrsXNmzfZ/XPnzuHHH39EUFAQAgICEBAQgLCwMHz//fcMjAMgwBzff/89evToIZyqDR8+HBkZGfj5Z9VsyOFwYP78+ahXrx6io6P/mQpWUiVVUiVVUiVVUiVVUiVV0n8l/asVsfr16+OTTz5hcPNz587Fhx9+iKioKNy9exfz589nab/44gsUFRWhS5cu+Pzzz/H555+jS5cuKC0txaeffirwff3119GiRQs8+eSTmD59OpYsWYJevXohOTkZn3zyCWrXrv2/Uh9npwvanUN+94rucNH4HpkltZymtUmqMyvPm9pC96lZhC7PTmLPsr7twH77vVZuErFpNRrH13MqOwD0eXQkuz7/Y2uMKQducHTrKJRvVK+0VaEos6pIdiHJwwCQ2DE0j3Y3kNIAD7J73HXSRGw4S+QNGn8Avq8boDJGBevK55HgtPUK+eZFAMBbc8bBJpnR4OkcIV3prVuQVhDEOer/o+UjK3YcflM1A+l/gvh00CDTVB7eBh0g5i0Tlj+LqyPJrmDQ5CQEvJDIHJDzzS7CbqSs2FmsMlmxM38ZmobGkHPk52PNsD5C2TwYBKVeTxJz09t9rwtlaNuI0sWfWrF07RJVEATqCG/0/vh70b2GovTGDQYFTv/KrB0gK6pJE82T8Y0Ztf9sxO4Z7fbHHdvptN/QsAi0f9Cgv5vbNBZOMmWFIFS62ck3xvvWGbUDv1PcfG48k90mEej1NvFPsefnXyA7r3aNbyotf0gtAlBwa0ikME7kb2mJmHd+YOmuxQXgaMcyQx6bAn6FM+o1Yhz6Rj8p3Btw8jK2pe0TeABA2uqOTt9/eveV6PXkOFwrvc3M2/h0ht9vRHvD0+7UJeG43azMcPefN5ulIAcPPz7G8DSm7fxY9Dh2CwAEnx0AcKQSU0E3D/WUjOV/VhznPQaf0J2aRbftLqTZXlgNRV3Po9081e+mom/F6Jmpkeo/RvsmlfNQ72a69w+AmWoZ8b3X6Ry9z+d5yceCa50v69IAIjCOTSLxnYxOR7Xly4odv35HkIwTPhFR6oxOx2hIgB6jxjOe9PugPD9oepSBR+0orMLyZn5sgeMSkZ8HddLKWW91gnGfpGnLw00AYL8bHi3ExcfqoPTWLbgGt2LInLJix/wz+9gpCr3364ZVQpnUciNg5GEEjRd9tSnKYLPP1ZM9+rzLM+rczJP2NE07F2jb914nkc5O1c5G3dTlHeQZIZycaZ9Tf2PXnrkCP5fw9vD9eYKQ1iaZdTHmKECN3+v603KbZEbzT+MxT0pG3OEdhn2QyhM/d5HuPkV3BAgIEK3D7UcjdHWxSWYENrgEvyftyJ1mNfxuZUW1OOItJajbBk/OTo0BYOBTw3XpH0gq+wf//svpXx3QmdKmTZvw8ccf49ixY3B1dYXFYsH06dPRqZMYuDchIQHTpk3D/v374eLiAqvVitmzZ6Njx446nnl5eXj99dexbds23Lx5E23atMFrr72GJ/4fe/8dF9Xx/Y/jT1gQFRtiXbBQLSguImVXE2tcRZNoTIw9llgg3fTeTUxieqyxRGOJUWOMotduooBiWbvS67WLDRVl4ffHOHNn7p0F8/m+fnn5ypvzePBg79yZM2fKnZlz5pTHHzfk/f8CNDheUVogzlW/zvSYbwyIZlHbaRBP2cdbGWR/YkXA6+IiRgMOUjD5+LBI9336DYf7zVtw1q4uuKOmoD+I6GnVA78J68sWvG7D0WfuBA2Nbm+or5/1QZTm5gtp9kdGQVm10IDTcoC4Bxfy6vrKvWZNdmDR03U3fVtRnsrK8zQpqgOdDz2CWne8bunLXn08FrV/0VQp9QEyZXV9mZOMsGqaa2o+Lw1YaTdb4N6hDTKH1EPaEzOkm03eeza0/Mxh6Cf6O0AZh2z7XEP9Jt/6uLGsNjv00HIm3/pwXrho6I+cj6w4OVYLosnj5unR199r+Fim9kKDlSqqA/cnTECN1cQLVVyvwUjcvNww31xtfhWNqb4/ZX0i+60v7wqXHqcMn9eOJijpelqaj/6nc9s9vDXWb1iG4O2jETRMFD58XdQS68PqIXtpB6R1/clAF1+3KTgAiX/+ZhgLfRt8dtVHUWfj+FYGf+d7+TvlKqtPHzDZFU4+kDwFV7Tog1HL+rTlnhrMJrEiRmXd9eroV/OmS9q6HrrBXNDz0ONwMba298b5P0KBP3yx770ZQjkacNq9Zk3kvmBhMbFkc7ayb0VRHQj7LgHTxs1lqt36MpcTg1nw2svDY5ntFwDkv2VDs4+SkPeuDc3fT6qwztMv2NDkqySkzeskePOl3oMp5L1jg8dNMLtaV3T/nbmTNjMa2Q8R76uyPuLhxsPRgmDG3dIW6xOXsLLqSzYcnjzdZf1/Z42SzV36X33JhqZJxdi4wvh9u8Lpql9KNzeHR6+8v9Vvd/Nd8+89/P0EL9F/Fypbf1vNi8fJsTMQ1/URONOzpOUAciZqXfsM9kW4s7X0oWMXWJw6Cvp5BxBV8NS3O2H7nDkAjH3NB74uiYtiPgBkazkA9Gwahu34/Z4P6Hx/l3f+sYDOf+784J7tj/8E/CsYsf9l4Bmxx1oRhlC/eFZ0SOPz82Uo5L5vQ4t3k4T8V4bGos7SFMNitLIgBbXcq1e4abHDR5sQOI+nC+kB68YjdHwqMr6ORfDzKbj5YDSq/0E2J/VlG2p0OweffukCvX17D2Exovh2u3lWw4bcPQINtf9qYDDeNTVsKMTP+v96gHs/ax9iq5vuKu+1x2Kw6xstPtmVYbGos4QwUG4eHrDuu453Gx5j9OgX3Mo297MJNoPXNldjQkHGCOjfyfDMzdsJf49ahvLXym5ikH+soZxbZBg2/LEYdjO5xZTF6nFVV9qcKISONwZFL1wVBr9HjhrSKbht9WNBYvV1FDmvY0gzG7KnWBHwhuZm2vriJIN9IADkvWeDd365YOxN+6vdNwnwm2o8IHoEtMC6Xb/DbrYg7cdOLMg2fX9xrBX152kCkwlpWYL9Gl+Hq/llCmsF51ESMuHa4FjUWi7SztPU56ERSH/eE25nvJjNox7MKbUxv/lf5JttGwrnsTQBV9T+wcz4nOLOe8eG5h8mA9zWcGGcFb5zSdvWFNfEQ97X7/pwJusHNy8vbMjeLczJkIXxqNfuArOT4oEy3Tyd/EGJpmUujkCrty4id1otFp+sIjrpAXrgsXOYVK8QgSsmotold5x4cobLcjkfWplDiH6RfVisIwDI/NzK3HfzdPHPnd6NxwXrbdTbW034vvVlXB24+TbdzSH9lr0T6r6Rj9Uhiss23e4Vier5l5G4bYWhz0ytgpG4bUWFe9Di/F0Y3qyzlCZX4NHMH+W1a7I5+XcO8cJa5FkN5RGtoKxehE5vx6PW46fg1TvHULZvnyFCXLTGyXVwfkB13GzfDJ6bNY92U7L3sHh6rup8Kj2NfQMXxltx8b4SmNd4wnuFpg1hP3IFSjvjwVFRHej83ETU+tWoOcHXo6gOdPwwHg1nJON2r0hsXThXOh9ke13gyonIGjQL7b9KwOEXprucLxSyp1gx/qGN2NyutjTf1SGxSPpyJrbfcGcu/fk85yZZhdssvTCi9c6RONFF7s2ZQlBqdWRG3WR4n804gW+DWzMhgh5vRe259liMoX/1eRfl70Ijk3el+7Dt4C0kdahmEGpTIZSiOnC73In+fpFSPLJvFACeLoxBepTRO/evJ/fDJzTrnmU8GCPW+e1/jhHb9eE92x//CfifVk38t8H1gTHI+JIceumHS+Pw6IH/sO1mC/sDyIdOP3ZqvBy4UlNrSJ42UwjSS6H7Oy/ggcfHuGTy+MX/+DM+Bnro4TpzMFEDqP7HHuY2/vAL0wXvWPR/2ZETcHbvaGiTzDBf5kEp8aCobtXtyfHShZnS7bm9KWuTR0AL9jv9O+Lc4t1AcTHVg6I64H4nfAHPhAFgTBhAYrgkdagmjIvdTIJq68cKAOLuH8h+u9esCUV1oNF0eYwnGvtGn243W1DSL0rYrPh3fF/o20eZMEV1IG26pm5CmTCAOKqgUL6PqGm12edhYMK8/9Tiz8S+ojmSoMFbs/vNEein7o/1TBjfdkV1QL1SR3gGgFcyD8NutsDHRMYk4A1RDZUyYdc2BCL/LW3ON38vyeBxi/ZXaeRVnHpRDB0AAKXZubCbLQhJ9WJMGN+f9eclC8+U+bjZP9pQh35upf1IjPadR0+yd5QJ49tLn1v/GI8yLw8EjziAoBdTDHmy7rjLV2OvsjT+wAsAoTueQP3+aXgzy4H0hZoHveYfJAlMmKI6WF/ZzRZ2AE3/wegQRgaDal0xpOmDVtvNFgT8fl1gCnkw3SyHKSRQCIJLmbDC1zSPhkEjD6E0O5epEfJzFtDUZimcDyeBnX9r2xDtvklAyLO78fJjv+Fa2U24W9ri8ggS34eqRgNgTJjdbEHpqdPCPA2dc1agX78m280W+M5JRujYvWg0PQmFr9kMYxfxcYKhLD8XXX3LsrX61Is2/DH3e9zoqrnV5yF3OfHQ5rl5H5wnM5jrcB6X82SGsI5Myd5j2COGN+uM4g2BuPp4LNpO1xxNpC/UtE30Y1qaXwDnsTSmvjYm7z4hH+8cgheG6A+25bdv4eybt0nfzk0WmLCClWGM7vUblsFzO/GmnPlFLM5Yr8B55ixznEJxvhEQLV03eXh5+RPsne+cZISM2s+YMFOdOlBfsmHFh1pIFx7sZkulTBhAVEBpDEDPzfsM8yH3A6uQxuOn6vHXgkorZYrda9ZEtctujAmjOPLfsjGPh/UOkVvvT4LCmQMZHm/DmcksL7/HmXzrw2624LOIlZUy2dQNPZ1/3wa3hqI6GBMGAHml16QMjqI6sKYwVVs7Jf1rN1vgHt6afcsjm3U20CRjapM6VENi4X6kPaF5tQWAZQFaXL3+fqL3at5LKf898R541x0g/cXvDyaf/x2viVXwn4OqG7H/MlDpQvsxH8MxZb6w4bpiiGgalebqN32a324m8XRquQg8qa/HlbSJp+Nm/2jsmD3bpbSw3NYBbkkHcUMJYDFLeDw9Rj8Jz42ciknjRoIOddrcTggdt9elpE+2mLuSCj+bcQIHr7fAGw1OGvrubnFR4G9aaD4eZ7m1AzzVi0yVUo+rIgmZvn6ezvMTrNKwA3qJY0WbXMnGllIJMV+PojoQ+OskhDwnv1mh4OzekakG0nL9bA9hXdKaux4bWm9JXBS8LpYwj4W3+kQxm5jpuTuZmq4MT0UwLi0bg2tdZvXkLm+PwLeu4/jzvghN2FPh3JLNeZ5uCsFLJ7FbqLvF9/nFIOGwQ+HznBS83DIWHn5mlBaqhveu1gHavoro58umzYxG6CRNfSrjq1hkPj5T+u3r4fTzNjT5WrwlBIA+D43AhjU/V1jWVR8B5GBCvYrazRZYDgCrE61o+aZrt9SK6kD4Fwk49NJ0dH5+knBr6KoPAQCx4XC/cRtlB49LVYzulva7uamWrdfXH4lBzVW7De9crV+V0SLLR7/PRfm7MLJZZyOCuwSqfVBu7QC3ZDHoOU//D5eaYU1bX2R8GYvgySlCHtneQuFu5pyrb5F/x9Nzt+sDD7f6ROG2tzuLh0nxDD2hMu+aHk0ao/T0GYGeU6XX0FSnQQAAl0ZaUW+RGPhZRrOsDa7e1f6rAVYEbf7b7WPfaItobMjdw9rG4ze1DZWqcfO/+TR6a0VVRis6O3xd1BLP++QYxr+yfV1Rieqr/ydJLvvlbvDR/5nTYpmwiuY9+5QNB96cjinnW0lVfQEIGhCu2ukK0hd2RFaveYSZ1t0UxrwWz2wT47o/CufJDKFsafnt/wnVxK62f+5GbEdS1Y1YFfwD4DtfU8NztfkEbR0Du9kCjxbEFazeWYBscarVh7i9LutiMeSTLXCyA1/Ma/G4+ji5Gam+VlQXDEn1EnDRmCI17NnIff9OjA5/7ZbJc+NewYV+4oGNrC5FdSC7749wdhOlqDy9eikpTb/xsDHg87fBrTFvU3ehXRSsL05iOMptHeAe3trQJ6dWt0HaHHLDRJmwa4NjpQcpt+SDKM3Nl76jgZmzl4WLtEe3R/YUKzJ+jmBplFYq3WswW4wbo6gOFghV315XQJkwHkfgqomMvuI7zjzgUblMRs+EPXD8QWSM85Metii4bfUT2keDcW7/cQ5jwjK+jhWcZjzbTXPykfFlLGujm4cHy8+3iYe5oQGwmy346DwZ04DRmXCmZSJ7wGyB9otjrYZvwW624Ltco4MKCgFrJsButiD0wztx5GLDEbxtjJBfUR3oPuZJAS8AzD2m3cj1PXoJAJD+U0e83DIWGV/GumQgZAcA/ZyWrR36NSR00h68nnmI0Rj8AnHzbqpTh+Gj9VwfKN52UecBfH12s6VCJoy/caagfx5X97RQ3hEBKRMmfFd+EWj6JaGHvzUE4LIPGyfXwWlrLZQdJOOmZ8JczV2ABEXOWBQBd0tb9D9axJgwvTCEB348AODiWCsutjKxtK4TJuCBoWNYfDI6r3mg66cMLz+2Hv5+UFQH3KtXx+bF83C7dyeMbNYZee8Yy/N0f5mTjFubWuDU6jZw8/IS8qwI2gwAKGngJeDg1yi72cJc2PNMmL79iupAnxP9hHJ6nBTm5mlBd2VzKnuKFVfWB8FuJqrA+na5d2gjPPPfJIXbvTuxtGobUuG9crdAMwD8+OZA9psG6ebbRB1Q6dugZ8JuDND2pfZfJQhl9O1LX0D2yVcyRfflK4I2I/iO23RTiKjiC2iBpPX02M0W/HlT0y4JXEG0Yty9vTEg3Q6A3JJTOkxhraTzix+vzKibMLUNRZOvjIKIwE1joagOFK4Kg91swbqE7ojaP1hoa+s5Wowu+tfh8wQDLn0ctOxP5KFT2Pe1NhTFg7TA1x5NNac2erVtRXXgwJtEXdMVEwZoGhD6PZ2m8fOLwqnVZP6FjNoPu5k4H9GXp0wYACRuW8HKUNqq4P8eVDFi9zDoP+DgEcTb3bHXmyJzsfHwri/Hl3ff6WBe+u62zrgIolpRb2Ey3vx4Ac4+ZRPy2M0WfO+3m6XxB0BFdWjxV8qcwsLOe07kabebLQheOgmm7dphv89DIwScc5trG3W/6H4s34Mfb5Ee+oJeTEHaTEkE+yfILVynd+LhlnRQsB2g0HTAcaZuSXHv+nomPjrfGrbJk9CnuRgDhv7W00ENyAOGHGLqJHazBaapFxDwRjIye8wX8CiqA15uni4P4H1qanrlfLBRvt2yTYK+s5styHpkFvsdUo/Y2IU8RcaSBm6dmq2pd5xa3QbpP3U0MMbuPfNxcpzmdINXD6FQ3qMQpsaNWHvWZxglncHPpyDnYyvDQ+PuAEDw5BSGk3q2pOqvLhnA2HD8FU6kdXqPcrT/689Llh72Qj29Dem0DDXeTzy2AyVxUUDKIXwR/SvLQ/9vm/+joa9OdFnE8K0PqwcACHliv/QgqwcZnRUxOWxsU72EtE+CwoW+V1QHnFc01UGaXvO33UI5PVx/JAa+u3xwf8IEw9pDYwGVnTpjOMw9mtnLZbtMOmmnvv8YLRIlDrvZgksjrTBtM0tpPmO9Yjg8ytZJCtQLJ0CCImf2nI8yxzGsDdNUstvO0A6QcQ+ITpyoaivFn/rRDOYBTlEd2DF7NjYtnY+ggURdm/fYSsux9VMCfDqNsVh2kzj5oBoHzT9IQp8HhwvtuzZYUzUOq1YD28J+R2mpCW8cF8ebjhe18XUF+u+YZyL4Pt7Qep2Qzrch7LsENN9NYnKNu8PgBKx/0tBWRSUCseQOKwEAV1to8fLCvicqlWUHjwveOvXzT1EdrH9cMdCK6mDMmWyO6OmvCKgTK0V1YE78dy7nnN1sQbU8Eqvzs6D26NtniPCeBmxP3LFKoENRHQjcRFT6sqaKAdFLe0Ti/upaXhpbrqy4GKtDFAMdzqMnUdojUmibbB/J/dATiko8BPL7d+h3twCA2WZuWjrfYH86efBqhp8yZfx3qRdgUNA7HNNDw8lOeK/cjffPtUWHPUMFu82Kxm7QcaNHQx748xWPp9ewsSz9hhKArM9I3zcdcNxlXfzY84wkLaOoDvR5cDgyZ2vequ9pKC//5/7+5VDFiN1D4G5py37bzRbERfRmH+/VIeQm5vTzNoRO2oOg4YSZ4ZkRfvHK+7U9Wzzof/4QwQMtd2uT6EY98cBG9tyv5k3moU7PeFT2m8LlxGAAgCk0iKWpL9ngEdgSAFGryRgqupmdvWqmgFN/AKHQzPMie0c3JPrc5t0cAy3efbKQNdUK3x9FtQFFdcC9ttwGi/7+K7w6ai9LQXlpKbx2NNGjljJmikoY4ebKDda/zu6qkEffzruRjlEbQBkN+g1Az/TSOuY3/0soW1qowm624NUA7VYkvNEpZD0wD5ZPEgScPCiqAw/5RQk2InazBek/dYTzzFkoqoPZoPD9QqHaZXKwcvPwYHaDAGBqGyr0Bz+n+boTCwkDf3l4LLtpU1QHs7/iD3d82bxfjTr5eqECn0bbRb1fzQgh85pK2ilQOwG+L/R1UDj9nHh7cWmUdqiiQU0V1YGsqZpdSJ8A8dZKP7YeTZsIxuCyQ8798RMEWmTjqqf7XLwVf30/C5eHeAsHTQpUFef0uI6GdzI7T4B4hj3xMZEMqy+R9ob+FC9liPnf9Hb9bIIN9RYlI7FVItLmaePg6hvi56D+OwG0GyHAaKdLAw0fi9ek9nxA8rNP2dB0WhKKB2njw9fRLyoOdrMFnQ89YggpoKgOuEWEGehWVAfSZkWx29qbDxLhknt4a7ZvNE4mjKzljpyrrGsEs+WkOGotT2HPTxcS+po9ekQ4sMvWIwqxjkeFvtKPz2dB2rfEHzb5b8lutiDiI80Ozv+TJOTFFAvfGlVP5+sCiIde+l2dGK/1Pw1LoKgOvB0QZdin3Nu1drkmUqChAGTQ9gdtTQtcORFukcYxYsG37+Cl9mmK6kDElATBCRRf7+XhhDlu8Y52U9JqvqiuJgMmHHqE2OQGviruZVt+nsvWPL7d9AZc9m1s+Xku0uZEsbzRb8Qb6PUfRGx53f86IOBwKy0DAPQ89pChDP29YiwJKn/2aRtOjBe9SNLxl623PB7Zt0HDOyR1qIYmHDMEACE/a23QnyFWtmmE6wNjsDh/F2IP3hbK0RtKAFhbuE8oR4XF7pa2UC/UReAryQLdMhr1e5jsf9qzXgiaIKoCV8G/H6oYsXsIqLtb+iFT26lb9k6ovYxsoAdfEa/s1+1ZhzWFqTCFtWJlAeB4ZyJ9ly38ssXPbrYw1+P6BctV2fLO2m8enytJYYqFeORK3L6SpZm/SMK6nasBELU3fdnxdySkeprjej4mLHZ8LC66IekZSj4NAEw6h0UBv5NDadlV4uDAXRcvTr+Jn59oZW7FS/pGCe/05exmCzb06wC3XWL/0HFzJZ3VbxxPpacZ+kJfb/ex410epHhQVAdePWORzgc9znO2S7CbLWj8XRKj6cowzbEMP+4NjpTCnFIb5ycS1T+PU14wNWyI4CWTiCOIOxC4mUgVfysgh3l6c1heWiqoQPKe/vj20P8d9z4Ou9kCkxtZzuouFm23qGMN/nDHj2Xzxw5LpZX6vpNtpGnziZG2R9Mm2LrgRyFvwNCDFfY9DwdfFT2bFTd1g6kBUfvy/ySJMWCBryYz9cJyXcwxPfBSYX299NBObUy7TpggtDf9G+3mhGds7GYL9r9NPAp6/nyb4bs/YYJQT9qcKBx4c7qAUzZvAeCFjOPwWZCMrEGzYPKtj8OTSblPBi3GhfFWOLtrccvcOrUT6qG361Rd0G62wM980VCn/pDHt4f/LcujD9fwQ0go3L29EbowntHEvz/w5nRcHh4r2B3xdVD1SZntrt1swYZ1xBspve1mzMnEVDzTgth97Zg1G4rqwPoNy1DmOAZEt8cZK7nZXO4gB0gaL1DfPgo8k77rZplB0ECBL0Nd0lckVHAFdrMF4XuGomi0VXBEpM9DD8A8LYrqQODmsaixeg8Chh4U0mm+83+ESukHwDzzUujXZQAAMNVBRXVgf6dfhLLu3trN+LGnpjN6axaYmMdYWvaBoWOwbd4coS8ow2I3W9Do+yT0sz4obXPK56Kw8cI4K45HljJnOK72Xwrrdq81pNE1LHTcXsFBjd1swe/Ht7Hf/dP6sndsvbyjBWI3W7Bnygyhnfz6qW/L+sQlsJstzOU9XyYolXD61N6w0fdJUoaf/vECTvbtRxEmP/C3iUI6T59HM3/hHQAEvnJHMKRTAby4NhSK6kDN33Yjes1kpHTwROa0WLhXJ7R+bvuV5eU9IvY4XIyb/aNR8LoNZY5jyOi2AGnTo5F5+5qhHYrqENaH2FcmCe/08zXkCW3fu9fBreyf+/u3QxUjdo9A0HYv4aPkf1dT9hoWQOppJ677o3jILwqJm34hDEpEb6H86dVtkP49WdApjtPPaepsNO+ok/kCfgqK6kBpz0ihPIWNvy4Q8NCFJWuqFabgAPaudHNzlkcGdjPx7iWTIrl6dh5PNzBGfB2UlvRvY4R6+d8t3hHVHULjRfs3ypDx0ix+g2kwSyu/fe4cl0zoDYX0RWmOuEEBmpc8+kx14XmppKI6GI6b5Z5CeUoXfwu1bd4cZqNE4esc+c0ZH3tNT7++LabGjXC7l7Yh3arlBj0oqgOnrCbkvx6CBrOI6l/Aa8lwnjuHoJc09Tu3rX7I6jUPAAkKSsve2tTCMP/4//Q3r5KpP0Dp6VdUB7vFcJXH1QGOpuW/aTOkKaoD2fa56BfTnwUEBcjY8cyDK0mvKyYgct9g+E1NgvP8BZaHBlQ/+5QN3WqQQ/OV9eRmmdp/0tsSWb/p5ws9tANAxw/jUX2tqIIW8hxRB81/24bQsXuROY0wZtlTtJu6G1011cOiEA9hjELHpxq+T/W3tlKavgpug7NPE1W+9JdbIa7rIwCIt8Wuk3YLApryvUcMAhK+zadetMH7DoMz6mS+0G672YIXT3Vk9oW0DE9Pl2cnGgQfgZvHGuoqKy5G2iiikut+qVh4Zzdb2OFaP5+oF0FaZ7cjAwx00DL0tlvGFNnNFgT+OkmzuVmtqb367KlmoJenTfb85jMTK/029MCPd/uvtfWHHqL13+zwEwVoOuA49kyZ4ZIJm5K9B1m950JRHXD39hbehYzaj7NPG1WxKTR4kHzjl0ZZDfj1z6VZOVBUB7vR1c9VRXWgrLjYMH8AwG8qYSI8tzcFta1z33HA0F80SDvFV5qbb+jLtJnRiAvvKaTRMBFUVdy9nejpk97g61V5AcB+RPRQWviaDXVr3BTSeKbidrdTFTLRsrHPe4e0K+B3TS35w+xU4exgN1uYmrDdbGEeEfVzQo8/61MydiVdTxvelacStVfaLzwoqgMBayagNL+AzRtFdbB9T1Ed7KaM0nDhfG2NAbqDM2PoTJTdJLTODg1k4+7Rsjmra2t7b1Rfu4epGtvNFoQm7EFCiy5os8+D1aGoDsy+bMbZd7Sbtts1tT3T1fdWBf/3wGghXAVVUAVVUAVVUAVVUAVVUAVVIIN/yn6rykasCv4pyOxWsZqRXnr+6FRibMu7PrWbLUydkUp9DkYvRa1sE4qe0CTZNexGA9UlvTU1GL1ka8uiuS5pUlSH4PUHANJHzkDin78xfFvarpGqMnyXu4uphjSdZryxkUmMFNWBrhM1NShTq2CD6oS7tzf6RcUBADNQpu9N24gjCuqpkIeSOGJboL4s3hjqaeBVCyjc95QoUaYqVIOPn0YNe7aQ97vcXYabO/pMjZLf6vIHAOD+w8R7Fw0FMDc0QKCD/m72kWjwXE3Zq9k8xIbj+ZauJcl8O908qxkk8NT2iY+5AwD73psh4KBtDHw12eBdkf+tvmxDeY9CqWrKzflN0WOUFvvpu6IWUlrpbYFbZBi6jR8vleqei9dsBX8ICUXabHLLSKWuANAwqZ5L6Tn/v9nHxtuJBVeIA5J1u9eS25YMooqU3W8Oar6nee/j5wx9pl7y9OopMy/5YV/kcqH+CWnkhiflphONftBUQ+v0JXYR7jvJvH+mRWfDrQr9H9fzMQAQ4oWxPpjh2hC+2YdEhYx6Hgt4w+jgJG1WFMyfJwltpJDzsWbTZh54DFlLtDwrr2lx4Q68QdQRa5x1gzM9i9E+ralRVafhRvEmlm9ztcvlLO3tlIdZXYWv2uBuaYsjkWUIfj5FKEP/4no+Bu8VRJ2Qqj7/EBLKbm554G1GymrXlNJCoc9DIwAQByAho/azMW++2xvb261G0boQA34en36O0DqyHpsp3Jqlze0ERXVg/9vad8l77eMh/fsYYd7XKBRv9W7ZOwnvM74it4imtqHQQ87HVhx+XlOZL+l6WqCZ4lnc2p/l0c+VgceIw6A3AjTHSmXFd2jaopVr9H2SYc2goKgOmBr4ot5CeWBhHih96is2pP/UUXCixDtasZuJ04v+R4sM68Ta0PUG9WA+D+9ptF/nh4VbT5o3dNIewYMnzdPlmYksb9mRE8xrMQCmSp144k9G48UxZK1T2tUhN/V3bq79Pk0SQpfcze0X6zPd7Rp93/wDMgbZDxPHRW5b/fB2QJQBB7WBFnDq6tBD+qgZbI6nTZfPXb1KvEeLZuRW6k5ojrLiYlg+TUCHzxPwfEub9ExjN1sM8S8VlYRiob8zP7ey8ViXtEZKsz7teGQpqy/8iwSsbNMI+zv9wvLxe2Zlt7ZV8H8HqhixexTGnMw1pPEqObzjjcJXbYaNhi48drMF5V0uwecn7QBVNy7DsCGsS/7DUB4ATk22GQ4B/IYSkPgkmg44Lmy8QcsmCXhkB256cKSqIVTVkubjDd15aJs0QvDkxTOioQvj0XXiBJQVF2NdaiLDxy/Azu7EEUXwCM3QmP7f/iPR8Td/Lt/sabtoUNCzTu3wQr3M0XLle49AUR1Y3kZ05mE3W2Bf/4L0gMBvUuPqksNMDXv2XakGAUa1J6qyp6xaKPQD9WymP8QAYPFmeJr4uG98/qAtY4xtkzDctB6q4uo/kxwkbgyINmzM9ZNUgdk7eb2JgLv5bm9y4Lrjxrl831FsnzNH2pb9b4sqUNn9yfgGvqZ9C9T2TVEd6HVEC36s7x8eLwUaZ4jm611TU0GhtoMAhAMFDc2wIW8vM5rn8U+qV4jx+Z2F74kGhn43MBIt99QQvhH6u9W8ePY7/VvxkK2oDiRuIfYOIaP2szR93/NlohxOAzNH89BDYdpMEvg7dKLoWRRb/FFjR2OcXt0GLd8U3TcHDiPzMOD3CaxddrMFcWHdoagO5pZeTyOfRtUqKd7Ylyex39T5jt1sYR4pAaD5mnNYn7iEPffr/DBpwywtALrzuBZwPnHLr3hg6BhD+yl4upnY7/IDhAG/MiwWwUu1tY9fC97J2s8clVB8eTHFsJst2BMhet2kEOVwImRRvLDu8vnsZhK/kELouL2Gsfpz+mxWjs5vRXUg5GlRvYvaJwPE1mrb/B+F+RH8AmHEeXtN+r7lm3Lvozy9HaYmuGSKABJQm0L4tARxTvYsYL/5dP28tZstjKnRr0OKqnnz5MuZP0tCyBP70eKdZBYW5tCLhKl069QOlxOD4bF1H57x0fbj2IO3EZKqmRLEPfC49BBdNFoTflJX6HqGQNZXdrMFO7+bJbyv/Qvpf2pC0OltMi9oQO7Uj7UDvt1sYeFW9H3gai+h74V1oZ0mKAGAnA+t0n51vtMQbhHEMUnRE1Z2ZnAlQGi119PQF7I+oeFG+LTc5e1RZwnxhJy+IJIIwnRnl/wV7eB4bbo0zpl+nPiwPnazBeuS1rDfGcNnCIIaWd/dLncKfXH6Oe281PRLrX79WupqLNYUphrS7lko/wf//uVQxYjdI/Bbmhg7ZH6rFsj4SoxZRW2WaGwr+s5vqvE2if/QzQOPIf2bWGT8HAH3dq2Z8aiikpsh2UJxbpKVeP/6MsmwoMa1vp/cVGzxZ44Q+EUleLLmmQtuRHptm6wdUNJ/IlJ56owA0OKTUbpkhu6K6kCzR4+47MOXHv6dGbHLGBxX/cP/t5stuDw8VlqmrBZZdNeGrse4tGyklvgK+FzVFZRanUlWFdXBXKBfGRYLd29vNpYPHdMko5QW6gGS5il6gkjpPLc3ReudI4V5QCX3Mqach541nALN/GahP/QpqkOwC+JxBo88YEh3teEpqgNbFhGnB3QeUyacp5FuhLRMelQJFNWBKAehmR5e6a1JRe3l5zVtY9qPnbA4n9hSTc8loRDOPkU2z5frZwrl03+Ikc4Tt8gw5HxsFfqpaLTV5TzLHqAdhk3bCXMQ174HEk/8CUV1GNxOz2lGbkwvjzDGSsuJvsF+UxfbANDyLY4BeXY3o4WPEVb4qo3ZOsgYHD4t1UIYDd7DKUAOncPfXUcYsEmiTSU78PQswM0XG+J2KhEWvXuOHNJ8d5HnuJNx6NvpkNAuZ1GRgTGkzzScgp5u+rvMk6wxrmzQFNWBE6/XFuY3DY9AmUg9dPwgXnB2IZPO0/Gn9SR/MVOIWcQfAD8I7Cj9JvQHNf7dR40OC57w7GYLrj4u7gmyYMv8IZjvUzq/W/01ykAf/5vaWvH16uvg/8v6w262wHpwEHvX5Jsk9BhN7FZvPBwtMIX0P7XjbDpNc+QQ9p3mpZXG8KN/R2/dEOijuDK/iIVHM3+W78yzRBuAD6yrZwQAsAM9TS/fewQplhXIe88G+4CR6NOPxDZ8v+FRti4BxM5Xv0ZkfB2Lot7atyrrLwqZiyPY2PL0yfp5eG2yR/jOJW050WURFNWBzocekY4HD/r2UhiTd59Au748TQ/8tUh4pn3ovtOB8gNHoagO7PlkhuHMwNcPACc7EYEV73hH31793C14g4xhi8HknBQ6aQ88qt9mZd2rV2flj9l+NrSV4qNOiShsWr6A5aO28+41awr0lmxsiQlpWYbxSCzczwQyt3sRprDJN+Qs5hFg1OSQjWf4ftFmrPUfTxnKVcG/H9zKy/8PKGDew0CjlHfDw/BwI/E5+vYeYvDyVBHoN9OJBVbkRN/A5RGxqPtzCkwNG8J57pxQJnNxBHOBL8NDn11JcK6sD2KqUXpw69QO5XuPSMsB5GaPHsZleTK/iEXGMGOcKNlBV08/n2dZfhKGNLMZ+of/XxEefR59fwBAXFh3OIuM8dlk+GXlK2ISFdWBRzIeQPH95/BlTjJefHQ8itrWZgEhadn7Dt3EX+HVWZp7u9YoO3ICptAg5tZX1i5TSCCc6VlYWZCCQf6xBjr4cgAQ/kUCvC6Vo/4816psrubQsxkn8G2waHRuatgQiQc34aH0PijpehpF60Lg0y8dJt/6cF64qLXRzY3pidO0s7+3RoMvaxg8w9E8Q7J74GapJ250PYPiQTEC0+IK8t+yodlHSSiJi0LNtPPI+6wmSm56Ir3bAmGcTj9nYxvu3UDa3E7I7vsjuo95EjXyr7BbBTcvL5SXlMA9vDXiliazW+606dEITTAGa+896Al28NaPZfo3sQh5TvQWSX/HdRskzAN9eQqBKyYi5Nnd8P6zIYrvF9eL/DdtTD1TD3fzLdHfACr8pmR4SuKi4JWYanh/9ikbGv0g0uTqu8u8fQ0JLbrAfuQKJtfPQtukEcKBLXRhPNJGzUBcRG84z5xlY1bZmlMRKCoJZFzeg4TZKFgZxjzpVUSrqzozv4hF0Esp8Gjmj3W718L64iTUWaoxfleGxiJ52kyX/VsZfhmYggOYmnlla6Eer5uHBzbkGW/pYl6LZ+qD+SvaodmjRHsgcOVEZA2aZcCT9mMnZMdVPhb6gzeF270ihVt2AGi5pwYTahjWxVbBeG/DUkR7eUrbpW/vtQ2BWNp2IfPwmzYjGnADU5Xj6yh6wgqfn7T10xTWijlskrXvhhLA1NI9mjRG6ekz0m/mwpMkFMug42exsk0j2A7eQlKHarg+MAZ//TBL6BePpk2YcyFavu5OX1zuYgxyrh87V/3Rp99wdjMMkHAS1JMpQOIO1lylrcHnJ1jRYLaoQhq0dQxafXIdzqMnAQA5v4Tj1iUvtJl2Ec60TOR+YGUOtsq6RrC1n46lrA9v9o9G9bV7KqS9svNARX2ifxf65ygEDDmEoNTqyIy6iQV5O4Xg326e1VB++xa+zkli5gK1/2oghPX49eR++IRm4fLly6gjccjy3wZ2Zo16Ex4e1f//Xl9p6U1sT/34nu2P/wRU3YjdI3B1cBQmpGXBbrYg4w1xclOVCgqKSjxQyTYeu9nCFqWUzwgzk3hwE0w+PqwsAMaE8RJdHg//+/0sYg/Bq0vyTJheykaZMIYjNlyoi2fCvszR1FqoF7igl8iNWtwDj6P5buJCeHBWTwGHh78fAHIY4+vn2zO89xOMBr3EUraY3u4ViWuPxVSYh2+X3WwRmDCZtLHwNbLYZn4RK2yeAGD5JEFahjIfdrMFxfefg6I68Pj+J7Fhzc9wc4pyE0V1MCaMwvqNywDAcPjm29MwqR6c6UTKV8u9uqEPKaTN1NQHm36Z5JIJo2pqfD1ZS7T6KBP2dY6m9pl4cBPsZguzKbm5hagnOS9cxOnVbbT+KiRzlbfLeb3NeikTRqGo80Xc6HoGgHZz5N6hjdA+/f9jCUQlySsxFWe7NoHfI0cROMy48Tb5Jom5lqZw/RHyfG1DoIEWqjJW/dQ1OI+lQVGJN8LyDsTepuzQCawN82F0UCas1V5PoU95Joz+Z339mOYCO64DidVzu3cnMkddMGEUL/2j9pS/BhH7U6q2p6jERm5lQYoBDwAsv1YX6d9p6pA0GDJ/yPH+syGrp7L15tRk0Z6RxmvTHwp9j92Ufj96sJstSGjRBYrqwMbRNrx8OgIBL4n2LwF31FUTD2wkB6o7YybDz3td1PeFojqYm2y72QLnu41YOs+E5b0nqpNTtXNap169FABq5bpDUR0ozS/AqdJrGhN2Z32tszTF0EdvnW0vPLui2VUengnjXYPzfRN9gNgfZvwcwdLSfuyE8tJS2M0WDD2h2QqNyOnGBEkAub2g+EKe2W341gAYmDCPJo1Z+RsPazeVsnU7712bwITRIPX8zXLPEcQmNXRBPDK/iIXzZAbeDogyrNd8PbT9iupArT5ZjAkDgGrnTQITxtPk81MyLoy3IntpByiqgzEd+rlGcVP7YkV1oPT0GUP76G+qkvvpbuKOPqlDNSgqcc3O738ACWuh7yueCaN7Ft9Gvt16aLNrJGPCsj61ou5OXzw2aYvQdzwTBgANZifj9As2AX/wiAOsP84m2HDyvoUInZgKZ1omrm0IFOKs8Wv/vtkiI+Wzqz57R73BuqLdFRNGA4zL8lOQzYuAISS0SGYUWZuaetQS8riHtAQAxoSlzY4yxFYcGGqMa3kvglt5+T/292+HKkbsHoHNH83Db+eJ/UjgMIfwjlepoDCqznm2iKTcFFXNcn4JR9DyScIi4ywyGhvTd3azhRkrU/fp1PgXILYpgBiriwf9hlX0hBWIbq+l3Qmuy+elMLml5jiBMnf02Xn0JOY0I2pkdKOg9JYWFEJRHcx5gWyzoDYfeprPxWt18huB5+Z9qPUr2TB45lcmTaPlFNWBC+PuuJy/rdmM0bx+nxLGg97w8X3e+DtRmp/3a3uNzvJyXB4Ri+wpZFysfjkAtBhZ+n5cfq2uSwZSNl4/t9wu5OU33fZfaepA+gMFj5MPeEnz8XXTmyS+/pd6DHN5wKUqLQCEoJx2swX9jxbB083E1Eeo0xIeqCMBV+0vO3hcaKs+H/9MXUjrcVCg7o5p+l/fE6mzLDYUq/8QueXu0yIazT5MAvYcFvDy9S/I24mTnW4b5lz6tzGI3DfYkJ//TW+/PTfuFfBnfCkaubuCOL+O+DInmant0fz3fTqZ0XHj4WiWPjc0ACHPkP44/0cort53Hmk/EiYwbXo0AjY8iQ51teDr/FzL+7W9wTbv0EvTDQIiGfBu7cu2NBP6gf8+qWMeu9mC8r1HEFUrCyh1Yt316oa+kz3TGIEUb+jbRw1MDD+nDkYvZflp0Ft9nx+fMF0ozwun/rwJxFlF/ADgeH06w9PUoxZj6JFyyEAPhVSLifVDzKvx6PC55mZ+8VVfIa+iOtBrmOiqn19Pabwq+vzuuTDceDgaeyJ+hd1M7G7pu+y4Hxkt1JYSIDaZPA672YLQBSQe29kEG0yNG7ncXyis26/gzzse2WkcvOINgUJeisNvh8isvxoQIwiIABLEGCCOaGiIjcqYj5K4KHSYSoLTXxhnFebbyXHEXosyoAUrw9D/KBHYXR4eC985ySwWGqCpxNkHjBTazM8pGQ2y74M6oNCvb1/nJElxyODIs+L3J2M+6P9Lo6wsZilA7G+L3myOxUt7GsqW9owUaD748nRBEMS/azRdpHdX+CoDnTS/749EiOL9Z0MoqgNFnS9K8yqqw0ADTyOfTs8dMjwlfaOQv6LdXY2J3WzB5zmaAItqQ1B6QidoqtEegS2hqA6DmUoV/PuhihG7R2BgaHu2SfEgW2z5hdlutuCLQrvw/uR9C5E5eCbOTxTtVvhyX+Yko8OeoQhKrY6cX8LZlX/A74SZqD8/GbfsnRgN1P6C4tGDW1R7Qernfv22IY/dbGE2Y9Qe6uJYKx7JeMBwIL000ipsJoqqeTOkixh/oKNtu/CkaJANkI2Qp7nhjGQMSNf6TCaN3P+O6BEQ0KRkelr3fkicQoR6egsbGP3tKCmB3WxB+k8dsafktss2NH/sMHuek7cTdX9OQcAbhCGgtlGy+VDe2SIwJnz9Hk0aG/JTuvnf9x26CbvZgt6DnoD5c41BfCdrv5Cfr//Lzr9IN2waQLT7mCeFMbzVJwqlWTnI+tQq5L80Upunsa9MgqmBeEBMmx+JtWE+sJstLlUCFdUhOBKgdBW8Lt6uXE4MZnUrqgPqS0ZHN/zY6NtMn+nh6YdLhAHoF9MfgBg0FCCHrE7vxAtpG3L3GOqgQB2ujG7ehdXLMwIhz+7GvsjlBtroQY+m0UDhfFrwZHIgqLGjsVSowD+n3AgQ6LObLcxjnd1swdmOHrgxIBqhO8its0fL5ghZFI8GD5Ibv+w4Etw6e8BsZPf5Ee82PAY92M0WNH/sMLNdov2lP3h6+Pu5ZMpounvPfOGZL9/Kj9wklGxsCQCY9tEwlBYUCqqyfMwq/vuxmy3wWp/K+mjltToou3rVIMDgvQnqv1N9Xo+mTdAnIEaY97Q+RXXg40AL0qNKMOV8K/Y+JNULca3vNzAIx+LJoTkuvCeuDNNu3X121RfoaJs0AvUWJePgy4QBzPklHMNrXxDWoLZJI7B5yTyBHh5azRXncUoHT9T4fY90XaJeOmV49HMtbfQMrClMxYG3piPxwMYKvzva9o8DtX7r12UAdnIHdf57MW03et1s2fiCYYxdMbL02dm9o5C+/cc5aPJNErI+s8J3brLAUADA6RdsGF3nLBSV3IRSteO6S402if5/EIZNWb1IOs9dzX2+n8qtHYQ5rC/Xphqxe+IDtVP7ZAo1djRmeO1mCzo/NxEdPksQYnxOLBDX7noLkw3j777jAPw/SUJJ3yjGXACAx5Z9xrF1JzZWV4fEYnx+Z0MbqZ2sTMiox1Uy3Et4z/cDbROlQVEdgrBZj5sGa+fB2a0jll31gdf6VByz/Wx4T3Ho16D80nrsNhkgNq/6NU5RHSjNyoHdbPmfuRFj7uv/ib9/OVTZiP2XgbcR23JKU10J+z4B/lPEQ2dJXBQe+2ID1rQVnUTwC5J+ITIFB8CZke0yPyBnrEp7RsJjyz5DPn35t862x0eNiASH2vrIgNoLyPDwtPH0KCqxkcpeFoJG08khMObVeNRblGwoL3umuNzDW7PbiIpAqN/dBJRpHpGK1oWgtlcJPHrlGcrw9RY/GsNcYMsOZPHpGZgREmzox+tlt1hg4/QFkYJr3VubWuDWnKbY9bUYJFY29nwb0n7shG7tTmJ+878EGqltGF9GPxYFr9vg/0kSbgyIZk419Pn15cqtHbBx5U/sOa5tVyQe21GpJFZWP0CChFK3yLL89H/a3E4IHWf07PhixlH0rnnb0C9579nQ/L0kAZdHQAuUV/MUvHAyiA2H/9dZKLAWG2zVKJxa3QZNBxwnN8F3brq6TpiAHbNno0+LaJTfvuWyrYrqQPD20Qi6cxPuqj9MDXwFV9cV4aNpNx+MFryM6sHVt60HapdE3z907ALWtPUVyvO2hh5NGmP8X7vYXKd5Tj9vw8FXpkvrKRpthc8C1/aH+rbR33ob2LRZUQYnHPq20W9AlofaJFGQrTPp38cg65FZhu9Bnx8garvZD81mAqbdU2dU+E2cft4muD4v6RcFr3WpUlunytZBfd4tN0z4LKg9yzfqZD6++WQwfBYkS/s2e4oVaaMrpheAYY2V7kV16sB55Qp7d+PhaNT4XZubjZPrIO2Htqj7c4qhLytqF/8+bWa0y1t8GR4Z3rx3bPA95oT3it1CHn1eaiftu8sHFzoXsbw8VLTXmnzrI/HwVinuu23v3eZrmFRPKujV56U0Vob3Zv9onG/vgaPPTEend+KZaiSFK8NikfyFpi6tx3VxjBX15xu/dVf1VkYPD8NPFGBxa/8Kz0ZRDic+anRYeE/tQwFy02e6VY7ay4zq2BXtgXwfZn5uRdDLYhu/zklCm2o1yVydH4nQMfsMuEvLb2M7fr9nbaLombV75Ov/mI3Ytn2f3LP98Z+AqhuxewR+S9MWBbvZIjBhU7PJwd4rMZUxYYrqQMbXmgTU5FufxSrhwZmh6ZhT3BTsZguCtoouyCl4bNmH/Ldthhg3dPEpeJ1IrlMtJoZzTcgGAMALGcdR1kVkQqi9QMgiTdJEY3rp8dP22f0isCp4E+qf0GK11FskLmyuDj9U4qSoDgMTpqgOmHx8cKtPFHs+/4cuPg7HhAGAT790ZOU1MuDRM1s8EyZr14yQYOGZQk33amyc9PFNtoX9jlrLNfuPrM+MNoOUjuDF8SxfdtyPBiYMAJzpWcz1L69eyM8T/0/I/KuxWjR0pjHFZG0/E+3N8tnNFjgvXYbdbMFvBRojR2N70b6X9cWlkVacetEmMGGUtrR5ROUN0doNbHZfTQ2K/z8tOEz4puhvyoTxuE8mmAUmTJiXKYcwt/lOLMvbJbSdqkPlv2kjTBgA7DnM2kY9gZbfvsVugikNmZ+LnhKDdOrIFGjsMwBwnr+AtLmk/3PfJ1Lq0J+Mkltax8qCFMaE8WNLf+vnqfUl4tn0/ax9LG/6d8T2rTS/QPg2n6qXj4eOXWD9+tCxC4LDl9LTZ9hcpzQpqgNNviYqR7LwHK6YMH4sujwzkd1yUnqc586h7k5tXQydmGpYV6L2DxbwUUFEwcowQx2hT+5l7XJ1kA55ejfrL76N+rk8/EQBY8IAsn7R3+PSiIAsf4XmPe7MM4RR5cFrHWEq9UwYTw/vxh6A4OWN0m83W/DJOHKDGde2KxTVgYWtmrF+lx10y1tqDi30fQoQu8vGyXVQdugEYg/exptZ4rxSVAfOTyBznca9AoAL462MCVNUB7KXhWNhiz+ZXbPdbEH4tAS4AkV1MM90fH2hk/ZI6aTQ9ocEuHt7I/MLMlfbfaOpYVNo/kES6mwxuunn687+xMpU6SkTRt3V6+eOviwF54WLwvrEq7Dp19Yp2aRdHs38mev8u2FO2n9J2keZMBZvTNJHepr5/qX/adt3zJ4N/0+SEPfA4/D9MdkwP5K/mOnyGwIgMGG8B00+RmjB6zZkTbVKaaVzigJf/+LW/micXEd4p++nVIsJMa/GC+8TD2xkz/UWJgtMmKlhQ9ZHeb+2F8aNp49vK8+EefgR9VzKhAFA6Jh9zIPv32E07xkoB1D2D/z9H7gqqroR+y+D3msiUPFH+V3uLoR6eks3Bz7tcmIwUiwr2EJhe2ESfHbmobRQNeT/MicZE15+ntlHVUaDojrQ+bmJqPUrYTo6fhjPgsKW9I3C9rlzXEqLSspv4yG/KKlEqSIJFk0D5AcGADjzrA2NvxVjh3R+biJ2fTPLQEdFi97Vx2NR+5cUId+lkVZ2E0dpUFQHWv01Cr6rarI4L7I2eAS0wHObElHPdB3RXp6VtpE/rGcMn4EHho7B2RduCnZTiupAt3Hj4bU+FepvbXE4ZkmF41WRlNFrRxPGRC+40kiw6aBAPfz57KqPZQFbWR9YDgCOCGM99Hfa/Ehk24nb+tczD+HZw4+zuHMAELlvsOAuO/tTKwJeMwZkpUD7Pfr1eOZ97HJiMOrGESbKo0ljrNuvsLwAMSAPfE2LqxPwx3iETkxlHvT4vLS+gA1PIrvPj4bbLD4vBd6bl7NbR2xeMk/YoGUSVF6KDgCmNiHMplFRHejXZQBKs3LYe/62iOINXjIJQS9p89QUHIDShnUMLs31YwOAeabUg9tWP+bl724gc3EEMrrPdzmnZXOvvLMFbrsc7PnK0FjB+19J3yh4rSfMB++dNXuKVYiPRPsz8v147HuXqBLTutLmdUJ2H/mtFkBUIA++Ot1At6ISl+lUEMGDfi52PvSIwSawsnXTbtZuJ/RzQi/cuJuDGU9T5Hvxgic6PT2KSuw/edXjiujm0y6OtaL+vGR2E6iHimjlb9Up0Jsr/nZaVi+9DdS/p3WW3RcB97/kTnsU1QH78f5Iy2zKbHFyfglHy8c1m2VXHn5L4qKQO6jccNMuu2HWH8Rlfdn36CWsD6uHM8/Y0Pg7uXt3PRS+asOR5+S3xxXNEfVlG4uF+XfmUJ+HR6I89TC8djQRNFv+vzIJbp7VUGdbbVzuQlRCe4waJxUqyOo5+3trNHr4hPBels/ZrSNkaqjCXOE8LQJEWEFjGfLQaq8nc7EPANceixHORoBRQ0BPf2XaHLL20uf/mRuxjq/Dw/QP3Ig5b2Lb/n/3jZjHf5uAKqiCKqiCKqiCKqiCKqiCKvjfgH/Ko2GV18Qq+MeBOtigkhy3rX7C+1DPO+pfR66wgLSAJomj1/x14zKE6/Pav6RIb8MAIKxaDYPER6ZOQFXM1hTXZLdhdrMFEU9oXn681qcK9QKiB8bw+c9Kr/J5WF6QLE23vjjJkMbT6HhtOlMXo7j1t3xZn7kOvAsQ19klIy4aaNs9lUjc+/YeIkjlWj5+CElfzRQkbyX9ojDo+FlWdt2u3/FNzz7CbdjlEfKg0XazBaY2RB006GXSD+47DrDbsLQ5mpSN3hqYBx4j+aoT6VRQanUDToCoPfFttZstcIsMY9JPu9mCpa2JuihVIaR5TfV9YGrYEEWdLwrqJlMbOwxt4NVCsu1zEffA4wCAT4LCcSh6KeBO1FnbpQxHo7dMwnxIGyU6SeHr6nOiH17PPIR+XQbA56dkpu5RNy6Dqab4r7mCuPCeCPsuAS9mEO92ga8l4/XMQwwfVV37cVkfZN++hn4d7YJaEACEjiWS8A25ewy06G9GTjyp0Wzavt8w/2XzXW9Twnv4tJstKG7dUHjPq+1ROvjbsFcyD8OZkS29DaNQ+KoNPQ4XQ1EdcF64iEyd9zgA2NB6nfDM086r/9D/fCxCfb/opb/0v9suUY2pztIUQQXz4sRr2jvOk2rAG8nI/UBz4kP/N5hlXC9Cx+4V5g4P5/8IRZNvkgTa+DGT3YbRd/wfvQ2bKVmHXZUHINyG8ekVldXDmkLtlshutqDbk+MNcZlk9bObkiNXUHenr8v69GNHw1Z8aV8Mu9mC3o9qoUFc1UfTefVmCtSOi7fVNNWra8C5fc4cKKpDWFP477Ci2zAAyDjsj9AJ5Hu/+ngsTt63UMjHh1rhy3olpiJ03F5h3ua+b0P1tamG9mbfviaUp7TxZdeH1QMAFDcrh3vt2gj7PkF4rwf7kSvwm6rNUb79fB/IgN542s0WEtNMV8fFtaGGNclutqA8lezja0I2sPceAS1c7pc8jitDSaBxqvLJ1/l7zi7BPf75Dl4AiP16ZRDgo5Xr8Jmmqnp5uFgPvQ2T9WWHqaSv3XccYHQrqsN4G7aFONT41iyOsf4MYQoJZB5E9W2lIT/ev28ACl+zwS0yTMjX8YN4IT9PD503VV4T/+9BlWrifxkqUk10tZlSoO/7dbSzGCOu1Ahu9+7E3FnLcIR9n4AmPQpwa3pT1FxFmKwuz0xkMZgUlXjVosE3XanU9Ivuh9IC16pNiupA+J6hmk0NR4Ne7YCmdzn0CLw5FSA+/+nVbXDlbC181HUVhte+AOvBQUjusFLafxTvqck2HHppOkvL+tSK9FHEID3tx04IfVJUR+HVuHj6zsVbsf9tzZC915Gr2NyuNqbn7kSQZy2pqg9Ph2ysLo2yoqSum8G1PY+DljGFBCJxxyqXKkUZX8YyT3mu5pTdbGFBQCubbxTy37bhWLxcZaYienmnBfp3fH5ar76/sqZaEfiqph4asigega9ywVF966O8aSPA5Iayg8cF/GNO5rLwC5XRy9eph1v2TlC7eKLl26J7e1eHFVm6PoCnDNw6tcOGNT8j9M9RSLt/odBnvGMPQFNFar7bG3kxxULdM3N3YlILEuPoqfQ0POR9nZU7VXpNCDbK073uenVDAG6+bxbk7URTj1qwTZ6EpC+JXU/k+/FoMMu1alxlYPLxYXH5MqfFImPoTJdlebynJtvQ9MuKvxf6v9eRq3i5fqYUb+GqMPg9clRo561NLVDtAc2ejTpM0bfLo0UzlObmS2lw8/KC+wZfOLsbBWGyOcTX7+FnRmmhamiHDI/+t7N7R5i27RdUQflAxhR4BwIAUQ++7VPKBBY83sh9g2H3P4F9EUYZrowGjyaNUV6nlstYdjSIO6/yV9m6oMehqA60mZ2AgF/OMYGGXr3OFZ0Urg6JRe1lKXc1Xxsn18HCFn/idrkT/f2IO/QOnyUIDlYALQCzDKgjB74NEVMSBM+kFdErxbk4wqVgxNX6FPTLJGQ+PlOaR79nVDT/9M/8b5lzJBnuytpaWT9U9I3ox0JRHWi9cyRaDD7Mnl3REeVwItViEuqi6rZlXSxw3+kQ8FI8/BjzuCmYtpmFNYHm+V9RTexheQ0eJq//v9dX6izBVsen92x//CegihH7L4PeayJdSMbk3Qc1Voyvw+s4yxbBmNfiUW9hsvS93iblyvogJHdYCUBbIPxTaqEgVpTuUXDzrMZuB2SMHAXZQpnzsRUt3xQPaMWDYgQmDwDieg1mLshLe0TCY+s+g82KohLbqBo7TwixdzK/iEXQSykwhbViQSFp/vH5nbFtZ3sEvSjeevB5XG1CgOYh7m5AtglUhl9RHejbdyiLc3V1SCzORENgogCwjZ+mxYX3ROKhLej4YTx8Tt6Cx9Z9lW6UgDZGV4bFos4SeZ8I7XZzQ9SBUuzv1Ujw2qf34kfxt00agWO2n2E3W9jYU1q+zkliwSwBQH3FhsPPE6Yu+xMr0p4QPbSlfx+DkKd3uzywBijjkG2fi9XFtQTnEDyU2zpg44qfYDdrXiuvDY7Frq8rP+jTeqltTf+jRXjGJ1egQw9f5iTj6UnPYtu8OdJx5+3i9GM09ISK0XXOMvzf5e5CnzWTWZyuikBRHQjcPBYhozTpcEVzIXDjOOYY5reCPRjoH/23GCeZ7Q+F/keLmMtuWf18WkXfiR7y3rHh+CTNmcWw7O7CuqaHq0NiUXt5KnO+w38Dz2acwLfBrVlat/HjBXskandS2XfUck8NnPiwPXbMml1hG/v0G44N6xYLZXmgXgUBMAblbvuG2nBWdMCN6/4o4O4m2CLe7YG/rIsFm5YvcNk+3taKQo/Dxdja3uhSXXa4Z7Te8VbL03J1SCySviTfqkfTJjj2bnN41LlliFMYuHKi8J3wOPLftpHYfTpw79CGrbuu2q+oDqTdLsYL9w9BaW5+pQwI3y4+H29Lerfj+v/CmCiqaGNKaQpQxjEvfTzjR/d9RSXOfwJeJ+t170FPCDfsFa0ngCaIzF/RDs0eFeeCK0aH/h91Mh9ffTEYvnPEW119fr392+c5KXi5pXY7RgXO6d/FsLmQ/6YNzT4WbcffPReGlA6eUtooBKVWR2bUTSYMuZu+54EKdgBic0gD01fWl1WMmAj/FxixKtXEewT6p55Hv5j+bFE4M7Ypvs7RNg5FdWDT0vnsWbYI1FsoSul54A8riupAnb6Z6PRuPIIXa17XCp/RVAVMdepAUR3sr/z2LQQkPmmo1262YMN17WOU1U+ZsKypmoqi98rduNk/muGwmy2MCbu4NpQxFZQJ8/DXVDS3z52DsqtXYfLxYfHNmrQjh9cr026jrIuF0WI3W5AXUywwYXzMHx7cIkQ1Ahqo+al6+SyeCd8+2jfx6cRRRGlP4onQ1Jh4V+w1fCx8d/lIx4qmjTmZC7vZgvXrlzLcSV/ORPBk0YWz3WxBf79IXBkWy9qVeGgLABIXjQYl5Q8mAOBes6Z0o1FUB+osScGpF21CGv/7u18fJGnl5Ui1mAyu0+nNgB4/3YRPv2BDs80lmqdDAM+3JN7+0n8g3vjMn2kBuQNeTxY2JwDMMQDtA74NdrMFoWNIXBieCaNlrw8kdbglHYTdbMH1R2IwfdQgKKoDtZa7ZkABIPDXSUKbqLrP2jAfzL3cxOUB6OaD0Zjc0opqGzQV3RsDCINzq08U7GaLSyYM0ILf0vRnWnRGyDO7hX5utVc7QOgZVJ4Jo/+vPRaDwVk9hXS72YLQH26xsgP9o5G5OIKNRfYU0SuZm2c1oZ0AGBMmi8G1NswHL2YcxdnfWwu08Pnulgngyx6fpAWB/eh8a8O6pv+d9OVMgQnj66A3fhTfqVGad1ZAi0HV/qsEIDZcwEHxeDRtgpzoG4wJU1QH8t61sbWDP2yWHyCCto4fkjWXj011NsGGzw8peCWThD6gTJirvtG3lTJhFJ5Vo4R8drMFzpMZONulAcuzurgWZHDjYbIun31Kix9FmbDBx0/j+sAYlPSLYngBYMMaLa5Sac9IXBppNTBhfH79t0xpVQr2Cfk8/P0E73Wlp04jdNIexoSdfsGGiFSiLh7yzG4WC4vHAQDNP5ELDCgTxudXVAfzHHqzPwlc/uDCl1Cam48zz9qENfbCOE3VnX7fMqYdAOqdLEfazGihLsunotdG/pvmGQf9vqqo5BYwfL8bFNWBoNTqwljzjn4oTaFj9jFcdrMFB94gAo25zXdCUR3oGxjLmDC72eLS6Q/FqaeJxgOk6z//Pq7bIJdMmKIS752UCZOdIWjZpknXhfTwatWFMlsXEAc9dM1EdHs0+zhJwGE3WxgTxvdP+H43nFrdBq9kkluy6X5k3q1LTQQgqlJSXH2PXjL0Df3v98hRZHxNzg08E0Zjc8r60tX57Z6Eqjhi/zGouhH7L4NeNfHNLAdG7xwL/5UeqPH7HmT8HIHgEQfYouVuaYsyhzE4KgWaL/9NG449NR1x3QbBmZbpUupTEdD4PBRn+k8dEfKE6JnI1QHq/ASrwYMXX0ZGi6vDmf3IFbStXoivgttUKo3U/876zIqap9zQ5CtNNUJWNwBDXBt+o+j92Ghm22I3W+Du7Y2y4mJp23jckQfKMKWx5qXLIAGuhKZyWwe4JR00HLh5yF7aAQFD5ZJLPm3xVV8sbNVMaJce+HIX14aifv804b1+E+Uh79f2aP7YYfbuvkM3YfVOx2dB7aU4AOLx0HfCDYT8fgZfNyUqoQGrJyB7ADnYXnjSymLU6OMo8bTI1Ff5NtpemISkr7S4NrJ+5G8keDw0L8VZ1jUCnuevI3HTL7CbLbg8PBZ1F7tm7Gi5Gjsa40ZX1yrEd8ucpM2KQvaDc3DfUxPx1w8ao1pZ/fR/wes2tFxWiLHKNnz+wTDU/TlFyEthT8ltwfNX2oxohMYbvw8KNI4YTVdfssH8RZKhftn8k7Wbvm87IwG3Wt8Q1K5k7Wq3zx1HIsvYc/YnVnawBID2XyfA/BlZB65tCDR4PDQFB6C0cV14Fl5Eac6deIHuJigFYiDasO8S0L7/CSwL2IqEwlhkRt009IeetnFp2Rhc6/Jdr7+u5oIslpysDP/bvXp1lN286RKnojpwqvQaRg17Gu47HTA1bIjEg5uYd1FFdWBETjchDlXarCj4bXQXtBqmXgjBq77plbZRv96xGHy6PP1i+qM0v4Cl0VvsDde98FWwGDidgu3gLSR1qAZzSm0hdEdF6ycFetvC9w39zWssAEDmEgtCnkzD9R7tUH3tnrvCbwoOQGG/ptKg9PzaU5lQgoceh4uhvHC/1AshBfpd6KGitVyfh/6mXnX59EujrLjxyCVi/8tB7MuTUHexUd2zsnpp+lPpafghRC40pfkA+Z7qqg0VpcnKtUsZDr9HjrLYgnazBVlTrXC/BTTe5xRibNL6ZfumHk5NtiFl8td4NKIfi4FIafqfuRHr8Oo/dyN2cOo92x//CahixP7LQCd1UVog6tQmF5SyzVT2DBB7kxVBm6UHHLtZHlSQx3f01g1MbmkV0mQSPT7YIQ/nJ1pRu6BUUOlxr1kT6zOSBDwZX8UiePJuoLwciupAxEcJgDvQ6Hvx1k+2OJb2jERBt2po+XYy6u70xeUuF3BplJWpYfLwQsZxtknr8VF1R30f2M0WQf0gY1EEMnuS28e+fYawOGT6DYQeIG7ZO6GaotnfuXl4IH1Be4R8dQvl+4hqgkfTJig9ddpgo6GoRGWp/MBRmFNqC+qobByP9wd6FhjSAW2uZCyKQPBI1/YBU7L34I0A0XBbtjnxZRTVgYA1EwS7Ln2/VZamr48Gfa5sw8z50IrmtgK49yR2N24RYSg/QOx3grePRka3BQAgqNLQsucmWdFwZsXBQmUMVmX56Tegd5Xs6mBBVVsASFUhl+UnYUgzzYEKb+spo6O0RySKm3oypu/8H6GC638+PwAhrASFW32iUG2DZvvjyp6RgqleXRaUW2aL5YrJou9CdzwBD08n4KiDYwmiXSHLK1FHk9VxLt6KhjNcB3PXr3/9OtpxaYE3avXJYu7XQ1K98L3fbtjNFpxNsKHR9Ltz5Q4A6d/EIuuxmUL77GYLbigBqGHPNpS92wO1rO/0tFW0F/C/38naj87V3Q0u+JflJ8HHROzAct+34cR4MhYhqV5IjyI3gVRtFyCq6+3qnzbYHFIwhQRi1NptmN+qxd8+6NJ3vP2iqzz8MwWafmG8FY88sxVvNDgpvDM1bIgzjwSjwSzjXPFo2gTr9m2Q1hn2XQKOPmMMaeCqPZWNr36NCV46SaoeL1uPeZfprtbrrCUWdjN4NzTInmnYDBpOQN/Pi/N3oYHJWyhD8eifF1xpJKhVU8icFuvSLECPa01hKh7yM7p9d9WeiuihEDElAU22X0TZkRPIX9EO8zr+hGeODcX1pAYsXuvQE6o0bAs7HwS2FG4Z9Xl6jhgHj637hHOJojrwwNAxzElIRXsjhSpGzAhVjFgV/P8dZM46KLha/AHywfJG1ry0nYfrA2NQ8zfNw6EeZ9rcTixWSmX18QbQVILn6gAmq+tm/2hUXyuqiLyZ5cDHgcR7X/k+0VA+sXA/4vw6CvmL1oXgQlEtBI8w2srJFumK2kQlq3ezuLtqX4X1xYbjdi1PbF04l72/W0mnjHb989ATKn6JaiXYysna67OrPprVKMLnTQ7AbrYI9h53Kxn8u/QXPWFlcb4qok0PsQdvC2ojAFFpTR85w+X8cjV+NB4Vvem8m/G82z5xBYrqwJTzrbAjvIaQTm3j0mZHsZhGiupA37hhWJ9IYsAVbwjEzvBVhjGXtY1PP5tgw4G3Ko43RMFutuD8RCtuNHDDsaemo89DI7Bhzc9oNTeeOSCheJzdOqLc5AaPLZrwIuszK9xbFAuxmFzVR2+RZe34f+nja4/FoGzseXwS+hs+CQq/qzKK6sCLpzpiWtP96DA1QXobwdPiu8sHSwK2CbTSPG1mJ+D4BM0+TaB/iz/UDc2FGF2yNlKnAaZWwcge2gj1jzpR69fdgrMPWo53ohOwegJCE+TqdYBm4+fqQKkH/Y2gK4cndNyoUwe+Pe7hrbF+wzKWpr/ZUlQHNlz3Qp+aJRiR0w0FH4Zg+9w5AFyvmbK15vxEK2OqaHpl6z6P+4dLzQw2vn/nW1dU0fayojrvRhglW7dk61Hu+za0eFecT6E7nkDA0INCfrrH6+vS00djOsrqrKhdsjR9LDxZe131a957NjTbWMzsdmVjwTuaopDxdSyCn69YpVwGrpg0V32Q+4EVLT9IxbrcPez8QZ0n/b/uD/rvmwfKrBW8YYP/lKT/HUas/T/IiB3+dzNiVTZi9xDQD1T/ofLv7WYLWwTaVKuJ8C+IjvnqEAXXHouBojoEPHSB5hcQj5bNGc5aJ6uxMm12jTTUyddX0vU0FNWBvHdsTI1CtiDRurocekRIr752D86tacWez02yYur9/QAA5fuOwnJALE8XQb4/fPql4/Ew7WBI82YvCxee+fcL8jT30jzNvKoj345bfUT7h8gDZdLy+sXdMG4ph1DQoxrLu/G6J8uT945NGCfZmAduHGdI4/ONrnMW60/+ZSjLP5t866Oo80XGhK0pTMWm5Quw/YY70mZGV3hooP8XXmlgaG9FdAOAz09Ge0U6Nq7oLekbJRhQ07/Fg78V8seFdRfocXWY8FpPbn7+nDHbkE8/T/i0yhianF/ChXRqt0dx8EwYTZ884EkAQETrHPbuWTUKZY5jGJ/fGWnzIwXVSlr2WTWK0ZM2J4r1CZ2zp1+w4WoQmZ8hqWRT5F1I83Obtq/BrGQ0+zgJbWYloHzvEdjNFrR823iDaNq+H1sWzRXakT5iBlo+fsgwjpeHxwp0ATC4qXfVr65sNs9PsArla/26Gz2bpuGTkAiWnjZLtIWSwZHIMtjNFhx8dToU1YH8t0S7SP4AfKFzEbJvXxPSTK2C8WhmLyHwsH7+KG3WolniBYEWWXvpjafzZAaav5eEXd8Q1dLS3HyUbWkm5F3ZphHDE5pgdAFf+68GmJtH7HtqupN1hjJhp1ZrWgH6/vHc3pQxYTSdZ8L4MrQNwS8YD8Blh04IbdSrF9rNFnwV3AZ2swWFH4Sw0Cb8OkDrMNWrK/Qbj5cyYQHrxku/UX1+gHh+pO++OdiDhV7hywDEsRDfZhoSg++Dvn2GIGTUfi1P0yYCDll/Xdsguka3my3oNWysUI7atukZM4rLdBMGHAFDDyL2oBZsOP8tG9vj9fNuTXFNeDRtwtKpow79uknH4crQWCEd0Oye9f1L1VRlDLQehx5a/lbE7HZdlckcIqqRA0Do/MsCvXrQp7tiKvVr4ppCsk+kzSceME033ODWNhjBf0xC2rxOUFQHWydlbXPr1I79fj3TuDYCEDyq3p8wQcBDHbAdfZoIearc1//fgypG7B6BC2OjDZtMv5j+AOQLD2Va6AZqN5OYWYErJwIgHhDtZguuDdacTFC865LWMDzUWYLdbMHxzotYXv4/D3azhXkty/nQKmxKvOFq2xkJ2Bm+CorqQNETmupjw4dOsjhXDWcmo7xEcxjgiACrN/ZlLWZY6E/xGHNScyE9pfEhgbaJBVYEDDkkbGbpCyLxTtZ++KfUQlOPWgyvm2e1Sg/b2+bNEfDLXDUDgPpbW2Fxlm1YAW9oB9xpwWGMxnrpZej83EShLO1LClm9tZs0GcNIY5rZzRYWE4q+92jSGO61azO3+xQe8iMH+0+CwpHx4EykTY82tN9utqCkbxRG5d4PAFjc2l/IQ52u6A9V+W/acDkxWKDX1QbNDtI/dsKpUuKxizJOH2anCvjfDogS2u0sKjLgjbt/IPsdkPikQAMAXH08ljmg4Wk5/ZyN5cn9wIqA9aQsZcYN356bm3AbtPxaXdRZkiJlynM+1Az5swaRGEnF92v2ADReTV5MMTOk5/vGbrYgc0Ajhndop91CnwPAwZeno+XaW7CbLUzFLOgl0dsmDzydzd9PMuSbe7mJ0AY9E6ef7zRv3cUphrEFgNZzSAyfzs9r37Mej/NYmtDP9H+D2cmGfv2o0WGgzMnSqQ3Tq2eMdevnIKX5WILxVuvSSG2sqLocZRCdJzMM4QZuKAEG3D8kzhVwps2OqpBBpHkV1YGSvlFMDZenP/2bWENeevBbEbQZ4+6EH9D3k/5min9/u9spaborwUTXiROEZ9lhN3d5e/asf582i6jD6unh59Diw+uF51v2Tix/zi/hhBkdnyow0bL6ACDj5wgEvEbW3bl5O5HW9ScMatVdOhbHbD8L6dQxAz/fyw6dgKmV5gyo9NRpYa7rvw1FdWBX+CoDnXp15kYPE5X3yH2DWZ0U7GYLfNKdAo7TL5C2p3TwZHXyczmu+6Ps98xLfvghJBTr9m0w4AWIPW/+WzaB7uRpRi+yVBCjhx6HNftoV/spD3wfxy48KKQFrJkgOOPi6eTLr19PbNA2XPdC32AxJqaM6ZLtPwBQ8LooiKF7YuiYfYiL6A3/T5KIOUK1MhaP8OIYK0w+Poa2UCaNwidB4dJ1kDroAIA/p882tJP24fmJopOkexloQOd/4u/fDlWqif9luBvVRL0dB1Xxkx009GUV1YGOex9Hw4dOCrg9WjZHaU4ezv7eGgeilhkWPo+AFijNzjUcXHncpT0jkbhwpqDTTVUMAWKc7MzI1nA280dRZ38Wd6jXsLHgNycKfY9ewvM+OQaargyNRZ2lxPiXxkDiN4G6O32xPHALYWoCW6K0QW0oqxcZNkrahuO3ruP5ljZmXMu7m9XHCJNtuHw6Beo4Q1EdiHorngVCpbr4+jL82F0ca0XqRzMq3NQqGutrj8Vg1zezGJ0xr8Vj96czcN/TE1Fz1W5cGmVFaQ0iYT69ug0LEq2np6L23S1dtBy17XJVxhVDLEvnjen1dfJu8nk6XNHJQ+Cvk5D12EzYJk9isYTeP9cWC/Z0Ruj4VCOSCnABQN/AWKzPIsxQyk0n3g2MRNq8Tsju82OFtCG6PbDHKA11b9caZUdOGOagojoYzQD59q6E1Gauvu/2gCTLk7u8PYuxQ+HD7FS8HRBlsJGT4dGPQ/YUK9JGi3M7KLU6pvulVEqr7N3dzFP92vV3DoxxEb2ReGAj7GYLCt6wMWk13yZ9G6naKbXD43F22DMUTQaQ2HZ9mndCeWmpYK/GQ8HKMPgPkn8z+vbq1df0eXqOHCeolsqAj8/H91P6tzEIeXY3Cl+1wW8qqUP2DfJ2pPo+Nvn4IPHoNvYu7v6Bwp5AY3LRMvq4aa6At+m927WZH6/K1h5qo1XReuteuzbKrl5lz6bGjeA8c7ZSeuh/GufNFb2ycjwtiupA9zFPYtv8H4Vy7jVrouy65l2Q7uUAUVMv6iwK52R1VfbO+8+GTKjEg37f5CF9YUdk9ZrHnmUMbEX9JaMt50Mrgn46DWdGtjYu4a1RduiEmD82HMqqhUK9AGB9aZIQwkW2ZnQbNx5e67XvWRaWgYbP4em+MN4K3znJyPnQipZvJwvfESCGKuGhxYqRKHjm3XtWFY+eWXu2e+UfU03ccuSze7Y//hPg8d8moAqqoAqqoAqqoAqqoAqqoAr+R+Cfci3/f+CuqOpG7L8M+hsxVxIpvdTSrVM75MbVQfMP5NJQQJPMmFoFw3kyA4rqQJtZCYJKEl9X2qwohE5MNbyrSGp1YZwV0ZMOCC6cAU1qVzwoBju/m/W3bj4qaguj9Y6XJz0UvG4TvIXxNMW8Go/dU43SOo+WzXEzqKFLybH6ig3mzzQ33Lc2tcC2sN8NeDKnxWJ87y0GaRk1Mqblsz61IvA10TFC1hILAoc5DDRfLruBwf6uvVrK0u/mtuCVzMN41jEE/oOOMhf7NA91O66nxZVU9oHjD2JTmz+E9LuBotFW+CyQO/Tg63k24wT61RQNJu7m1k5RjZ7KKF7eUQu9oZDRoQd6O0XzWA8OYoHRN1z3QqDnRTzTorOUFgB4JOMBQZLMS6sVlbgJ/7nl9r/Vj65oth28hXcbHhPSrj8Sg5qrdldYjgK9+cr5yIqWb5H5GrrjCaR1/Ql9g20ou37dUJZ6Nnwzy4FO1W6hpns1qVRbNketL05iN96V3VoAwP2HBzJvhXw7KvpPQbhBaNca6zcuQ5dnJ2Lnt7MQ81q81CPr3fQZD5mLI1Bva3X4ztW+9dczDwmORvTfbdeJE+B1vsQQw8nZvSM2L57H8ub92h5JsbOY101Z//BrS5NfvQSHDqa2oXAeS2MeRtvs88DxyFLp96fvx5K+UXjtu4WCC3m+HXrvtPQdDRxMwSOwJdbtXM3K0XHgaddD1qdW1Gx9id0uAjAEL65sXHJ+CcfJ+xa6XC9l/Zj+QwxCniL9R4Nn82VNYa1YOAtZn1SUxoN7hzZYv36py5shSo/+nStvgxWVkeUDgM7PT8KmL7/FQP9o6EG2/vPP1EES/272ZTMm1CW3l/2i4thNpj4Y893sWzJwdfMZ+X48GszSvuPLicGoG5dRKT69Z9kp2XsQ6VWt0vniirbuY8czfPwNtWydOxdvhc/0P/8nnHX0DHv5n7sRO/r5Pdsf/wmoshG7R+D7Y8nw2VUfAPlAaZBgCoGvihHny/ceQfMPCHPAB1Sl7wFtcaRMWPgXrpkwAIwJu/CkVcBDddgB4Ha5qLfuPyqLMWG0Th6v98rd6PbkeAGfojoM9d98kCz6ppBAYVPIXBwhtEVRHZibt1PKhAGA/ydJDD/fD3azBfUWJRsOZACxmbvRUFML5d8rqkNgwjK/iEW1B3KF8jR/eeMSvOpL1A+p44QrwzRPT7QNPBNGywYOcxjospstGOxvRfrCjlBfsgk4+HovPGmVbhIeAS0MfUd1+z8Lao+j1sX4PCcF+yLchTzNfieeMU8/ZxP6sGxLM8Q98Lhh3rj3zBfGnZYxtQkx9CcPe6bMMPQ1xfHA4NEs/dvg1gx/9u1rAg79QZZ+QxQyhmpG39cHxmD2ZTPsZgs7RNrNFpxdFcTmi6lOHXyekyLYnPFziTJhtGydvpmwmy0I3j4aXwW3YUwYDehLy3cbTxwNrArexHBFOZxYt+t35L9tQ9p8YhTPx2ri69Z/O3rQ9wMAvNvQGG/wr+9nScvp8auv2EDVD1u+lYzrj8TAbibOAuxmC9ZnaLapi/N3IXd5eyiqg7nLf/KXeOZAguYDgOBtY9gzravuTl/Sl0vF74RC9tIOwjN9zzNhMqD5ot+Ih6I6ELhxnGF9Wl6QjPUbiWq29wqiJlhsdhP6R/abBz6dX7eDhh+A79xkgZZuNeSOfwAgrtdgeO9Mx8aVPwl4FdXBVNhoQODmjx3GkGaiwx/6X/8tBg5zsHhzFJzH0mAKa8XCPByPFAURfNsoLvrfa30q+tQsMcxNmt9j6z5cGK/Nf1pubvOdLGC1W2QYits0FNp/clJdQ5/wdZyLt6LaZTcc5OJV2c3G4MWyNpi4A1zLx4nQKW1WFKbn7qyQKaHvKBMGgDFhfH7nUU31f8EdByoUSja2NORXVIcQfJoCtYPigT+s8+NqCmuljQkV4h65YiirXxdctZP+1Vl/FIPiRhny8rbB+W9r9mXRb8SzfNQrJo9zZZtG7DevTkqZMEV1IOPr2AqZT97eUrZPKqpDsDOzmy0CEwYAkwL/JLhmimFcFNUhOEDZNk/07EnDvlQE+n2HbwO1Of/hUrNK1YT14UbuaagK6Pwfg6obsf8y6G/E1JdsODyZ2CPwCxPvOh7QFpHoA4/Bp1+6gFMmQZMd1PTp9J3MlTWN9QMAc/J2ooF7NeGgxQMtQ91x87Y3ekaoIgmYh78fSgsKpXWcft6GJl+7to2QMSxM6rSmFRo+dNKQTxbjytWiX5FEjDFXG8cxhxt84FfAOJ48nH3KhkETt+KtBuKhXzaueb+2R4p1Nrs1k0nZKoJWez1xstNtQzrvivrUizY0ncYx8H4RUAoPMPzuHdoIwU4BEvA0406Mm66HbmBHeA3DOFCg6UFbx7CwBHqQlaWBZ10dviprv6ISt9RZveYZ8vLSWlNoEAuKbjeTOHEb8va6nLv6MXgqPQ0PeV831JE2PVpwSV4RzbJx1X9H/C0xn4/Ga7o4xor680WBDg+u+pG+k80/Gd2uvm8Ktf9qYHB+QW/jKa4Ps1MxauFzaPFukrRf5ubthL9HLfR+9Ak0+DwPFzoXGQJ+8+Dm5YUN2Zo9VvrCjswduVtUe2z4fZEgwKC3lKy8ztZRUR2IfiNeuNGl7W7/ZQJ8j9/GxVaeOPQSCSuwvCAZdd1ruOzjfSW3hAMf38dXh8QyO0BX31D+2zY0+9C1a/5LI62otyjZYG8IAAOPncNvbRsayurnvaI6MCr3fpyxXoFbVHvgUBpyFoXiRJdFwlxov3sYzAOPYXlBMm6Xl2F4M+MNsfefDbEqeFOlc8jVN0Zp02tGyOaKojrgKCnBqwExhpuju10n72aOK6qDxTUEjN93j8PFsHqn4+NAY5v59uZ8ZEXw91nSmIJ3Q1eHzxLY3qhfN0o2toRX7xyXbdDjLLd2MNzO6uvXl+ch52MrTo6ZwfJUtsbJaKFp3+XuQt9VL0o9eLrCwbc/aPkkZA4WHZLwZwxqw3VxjBW36rnh4MvTpeND7ST1dWUujkBG9/ns+cr6INTpm2lYZzNvX0NCC2Lf3mvYWGxeMk+o58rVMviEZt2zN0DsRqztS//cjdixL+7Z/vhPQNWN2D0G5i80L4YUFNVhOLTTPD790nH299YGiSifBwBazYsXFg69C3D+3clxMwR8AKAUaAec8c27CGoLtJ5+toeEgxqNiVR7WQpq7GiMwN8m4qn0NEH6RuvgPcx5BLbE6dVtUFpQKJXiqS+5ZsLy3rFVutDfSvKVvr9dx9PlhkTpVVQHYl+ZJOAr6xphwPV1UUu0nnoFdrMF3ceOR2bUTbyZ5UDWZ4RhoqEA9PQpqgNNdlzEvAM2Qz/R/92PPsxoaf7YYXTcniDQAwBvnW2PU5OJ1LJ4UIzhPQXKhOnfNeVUf5pOS0L6Tx21/igvF/qJMmE8jqBhWt8t/K2n0Id8WxXVgbDvEmA3WwQmTD//ZGPqPHcOYd+Ttn+YnQrvPxuyMq6YPT28FrXBIBwAIKjMONMyGQ2K6kB5aSn7LaOPP3CYGvjihxC5e3Z6SNPjKLd1EHBfGE++jfTvYljZ/LeM8yP7odlwr17dQM+kFl2A2HDUn5+MZfnGG/GKDqI8ftsLkwxpANDpbW1t+S53l4CXH0f6e0XQZiiqg7lrV1QHu42nZd/r0BNlXq5lhPaZryBo6xi4JR3Ehc5FmJCWha0L5wrzqtVe7Za7vKSE0VPWNYIxYYrqEJgwAAYmDICBCbObLQa1WrvZglZ/jcK1YBLgnjJhZ56xYbC/Fc+f6qRHy8q5krqfft7GhFh8/1A6KByLn85uYRXVAVPjRuBh91SyplMmjIbSeCXzML5b9DAKV4UZ8CZuXynUaTdbcMZKblw2/L4INTfVQcvPtLWA9svhmCUAgLruNWDbmSDQSX8X33/OsPfoGQP63r2DpgJJ4VJEQzJvOCYsc1qsdC6HfZ+AZ194BopKPOS5W9oK9FLwaCLeULliVG71iRK+PX5s6pClAovzdyF7gOYdb3H+Lmxt782YMD1Ovr1lgTdQevoMw8vf1uj7kjIGAHHSYTdbcKsekP59jFAH/U+ZMFm9ue9raq4ezYinXMqEmRr4QlEdyPg5QqBDvxYAxGNzSV/C7LZ8M9kwzhUBzct7ZaTwfM8RjAmjuIaeUA3j1H73MAM+AMgcrGlH0DL8GYM60kj9eAZjwk5NtsG9XWuhnYdf0ATl/PgHDddimyqqgzFh/FyxfJKAhBaap9PMIR6GeTAwtH2l/XRPQNWN2H8Mqm7E/stApQtFaYF4rFVHaR6Z1Et20LSbLSi3dsD9s3bjr/DqwgIVuHEcQkYTZoqP/l5ZXe7e3lifvgsdP4yXehE8/ZyNBUk11asL56XLGHjsHCbVKxTyRkxJQKPvNem2XhrYbdx4bJ87x4C/MhpvPhiNHbNmo9O78dj7viZ5m5K9xyBh1tfru8sHFzoXSetw1R+u0qjE2ZWUk6+fplEo7RmJLYvmsjQa1NjV4Yt/5gNh03Tqvevi2lCE+JzDkoBtckamW0eUebgJAad7jBpnuFXIXBwhbDK0HXHdH0XithWG9unHsKKxlAG1VzHQy9nJ9D9ahGd8cu9qbAAwL2h8EFrZd0Wl+frbAAqXR8Qi5bOZ0jYCFTM1NO/QEyre3z7AoF77d3DI5hktK+sDOobf5e5i6pOy9sd1fQSJO1ZJ20SfVxfXwoyQYOihMvr5+mhgY9k7Su+gtgdYSAtXQAPLXh4ei5TPxdhDMjpk36QrGmRpNDCrKawVU0e7MM7KVBArKqtPy/rMisBXNE+fffsMIW6z7wL0uPsfLcLaMB/mqU2W97vcXUh44hmU1jTB6eWOmr/tdrle8eVcfVN8YHi+LopDNh/ez9qH2OomIS3yQBn2Rbhr/XDH/lDWzsr64sWMo5gWHCYd2x6jxmHrwrm4XnZLav9UEV79s7C3rpyIkGdIX64princfmcsikDwyAMw+dYHfOrCmZENU8OGcJ7T7ESfzTiBZ3YOZ/szj1/f9uxl4QgYcqjSfqGeE13lk6U3Tq7DGG0ezjxrg+M1o5aOjNa/ux7KytnNFoOdsiua+bTw/W74vMkBQ72K6sDzpzrh66Z7Wdrd7EeV9R2l/4HBo+G+02Fok17bxBVjz5dxr10bt65c/N+wEWvz4j93I3Z82j3bH/8JqLoRu0dALwVJLNTc2uoXA34RoNAvsg8AIsFyR7lBYkUX+YyvY7H70xku6dDjXp++CwCw/+0Z6PQO0QV389QMVykTBgCJx3bg1qYWOF9aW9iwzjuL0ej7JAF/v+h+THIEADcaag486UJ3u1cke9a/o7Bj1mwErpgI3znJgoQq0quatAxfljJhPB0AkL9CC9BoN1tw9mkbmu/2hqI6UPiqjdWxskCTztVblGzA7+p3l2dI/LDzE4gEW683ntLBE1mfWgUpHI9HUR1YW0jKlO87inb7yGdMY185zxCXuKkdl2NJwDZDH5ZbyY3L5iXzGNNF66LPfP6M7vMN7bCbLXCeJPYwGYu00/K+kltw8/CA+op2MxmwbjzDZwrV7LFkElJFdeDrpnuF9/S3adt+hnNtmI/0O+Dz8+9o4Fz3qzfQdcIE6SELAMwDiV2V/haM5qn7s1xFTD9WN5QAA/12swWFq8KwtLVZUCGkN6p7Sm4b6ru4VrxN4+vLXhaO3PdJP/frMkB6SKH/KSPNOxLh6yq3EjssZ7oYVFoGA7w1Oz2+r/n6p2bvxtmnRUcSdrOFBY3Vq13ZzRY2pwEiXT7cW1OXo3Te7C8KV8Y0JgHNaRwz/o8f/6LRmn1Lu28TDG3ib9KprQktH+XQ7GJpYNbETb+wNN+5yXB27yjUd/YpG8KnJQhjQOs3NSS3OZQJs5st2HWzjMSrunPzoJ/XaXPEuHZ8X2d/YsXaMBLjiGfCKI4+D5Ggxc+06Ixli76DV2KqyIS5m1gZ/ZpF89wYEA1FJXZaFPem5Qtw31MTBTpla9YLGZra8ruBxBay5R5NVXnHFDF2Utn163Dz8BDooXkzPxeDfJvahMButiBtPtkrpgWHQQZ0bbObLRjoH+0Sn6v1REaL3WxB6IJ4ZA2ahbTZ5Jbsh5BQtP4xnuULHkm+u8TDW5H4528AgHMPBgv19Kt5E1m950rr1oPzVE2YggNc0kqBMrIyRiJ/RTvYzSTEC49nYYs/DXkV1YHG34paOvp6+Xey+mIP3pb2MS33bMYJQ7nDk6cj932b9FtwxdB83uQA2k5PkDLPXzfd63JtkOGluPVpb2aJZ4mZl/zgvlOj0e4Xwcp9a04Vvn+72YJ116szXDSGJ99/ZVevGui6Z6HsH/z7l0PVjdh/GXgbser+LXCxa3MW1yLvHRuOT9L0lJcXJAu2QIC2ENEbGR4KXrdh3PANUNrVwVPpafghJFTYxINSqyMz6iZMjRsh8cBGho+X5FAJuqvNiIJeikq9F+oPDR7N/FGaX8CeeenSWWcxRt6xJyjtGQmPLftQdl8E3P86YJCe6X/zNNwt6KVwsve8ZzZX+agueEX4+7SIxtlxkcw4XlEdCN4+Gi0aXYRHrzyXuGne0AXxaBFTIA36+sOlZniqXj4eGDoG7n86BPstGS6AeJDk54vXjiZYEyKq6b11tj1SLSaBNn3f8/W4W9pifeKSux4Hept3y94J1RQirdTHuSl6wgqfn5INNygA8cjpvdIY64fvd4B4Vbv/96N41Te9wvEGyFhSL4g8Tj3evzPXTNvMeKX5BuYtjy9P7ZEKX7PB79Mk1/PZzU0Y1wV5Ow1x9Hhw69QOptNFzP7BVb7iR2Ow81vRq2n+WzY0+0hTYQzfM5TZCyqqAyuv1cHs0EABz9mnbGicdBmZL3savH9W1Fey9/waoagOg+fQu8FV0VjxXv30c+du6JYx8fTZFBIoZWYV1YG4iN5MSEKBerSlcP6PUDR4ME2gP2JKAg68Md1Az/ATBVjc2h9XhsUi+YuZQjsU1YFuT46HV6LRCy597hMQg/KSEsO7yyNiUfdn194r9emKSm5Sr7VtgBq/G50o6b/Hu/mmKhpL2feujweVv6Idmj1KAu1+mZOMsGo1BJr6PDRCCMRbGT0ymjq9G2+4faRQ/GgM6hy/xDwp3k37ZO8oTEjLwrtzRwhxqNTf2uJwzBIBD98vPGT8HIHMHvMN9Wy5YcJnQe2FdWdPyW28HSB6YKzoe/AIaIFjbzdkcRJ5Gly1U9ZmWq6idri3aw23sjIWBJ7Pk/ZjJ4Q+uVfIr5/nf3ctofvrmra+cO/QBkXt6qLuYtFGrWBlGNzdy5kQzxWoL9lQ3NKJkKeJ45dTk20w/7DP4IGztPz2/8aNWKt/8EbsZNWNWBX8Q1BaqMInUbPNmfGEqGrDLyB0Abr2GNEF3z1Vu+WiUiT/T5KgtCMTV8+EAWDOI5xnzuLPmwSn+rINidsjGQ2eKGf12c0WZuPES5donTSd1k0h50ONbv6AReF2r0jc9/RETDuvSes9tuxDzsdWuP9FJIoBqycItHc7MoDQXl4mlcLS2yaZRI1C38BYXH1cswW6OEZcoO1mS6VMGADh4M7qim6PniPHsXIXRkRi/zszkDmN1Heq9BqChjng0SsP7tWrG5hK/YE84I1kZO/3Z+n5b9pQ8DqR4q9pS7zObVo6H2cTSBuKN2jeJ0t7Rgq47GYLmy80z5qQDYY8qRYTe5YxCPqxL3Mck26u9H9i4X5hPGjg783zZrN8RZ0vioeCT4htC2XC3KK0m2PKhFF6b9lFG5yo/cTbZ2lWDra290bfwFg4u3cU2qOooq1Snb6ZaP9VglRyavkkQdpuV+2lv53dVYEJ42Hdrt8BAH6fJqFgJZHmt5mdIJQnnVXO6FFUB0Y3J3YGAWsmSPGW7z3C7B88mjZhNGd/Is7xWtnX0GvYWCGNMmGXRpK8TQccR9mWZsh7l8w3nglTf2sLk48PeoxNQfmBowbvn7K+ohJ9+t7d21uYF+t2r2X2TnazBUPb2gEANx42qpNRm5X0n7RxNfmKHsz048K7Vudp0KfpQX9AzPrUasjrTM/Cd7m7DGXjuj6CxAMbWTspLurRlkKDB9MMdDT6PslAz+nVbTCqDnF4kvwFUZVdcEW0C/NKTEX2MjLvrC9NMs4Rjgmj777MSUbdn1NQ9ITVwEDo20//L79WF870LNT4fY90reXz280kcL3+Xa/hY9mtJfX2qt9T+jw8EhfHiJoCblHtYTdbGCMKEPf0Ny7WYDcqk1uSMh2mat8Vz4QpqgOnXxC90urXE0UlwjCebt85ydL9xdSwIbxX7DYwYfzY8+OpH1u7mYSnAQDP7U0BAINqXcGR56YL+cwDj2FIdg8AxG28bD+mQO1vPVo0Q9qcKEbDZ0HaekrLR3t54uzTNsN3XPwoOWucWt1GeFeanQu/dSbpPuzKLjJg7XgBh/WlSazs4quaDTe1D2y1l6jqF31WCuexNEaTojrg4WcGAIQ+udew9trNFsHLpZ4Jc3U+4NvxVD0i/Cw7eNzAhAGA/6CjlTJhNwZE4/Dk6ch6ZBaezSDqx4demo7ykhKYWgUb6vxfALfy8n/s798OVYzYPQbOS5fZB8nHmwHI7QAFusjU+nU38t8im0jmEgt7rz9EAkDER3cOkjoXt4rqwBMKOdA1W3MWGcM0G5gAz1pCXt6mgaeDGsjK3rV8OxmlPQhzd2tTC8NG5Ll5H2qu2m2wB6HelhTVgdCEPcLG7NU7h0hi/TqyPPyBa997MypkngBgfVYKav+SwvLcqusmHBJ4oA46+LoqktwpqxfhajNNhZN6q6Pu1Fdd0wzQy24ShrjX8LEMv2z8gl7WDJ+bfZyEOrnanf3VIcRQvdEP5NDm3ScLQb8QmnnVx5K4KCnNdrMFgSsmsvp54NW26P/iQTGGg5Kzu2jjqD/I0bGymy1CqIZ2c56GHhonEwHCsOzuWl+4m1CeehgAuQ0o7RGJuA4PsDLVdxwRaCwp1WxRFNWBsps3sXnxPJybJB4y+VtGRXUIHrGomhEANP4uSbpp8+3l//M4AXKAEfIfuSLkvXHNC3azBc3fSzLgoodC/rCTNisKbT87y/BnTos1MB12swWlp06zNOrRDSButcv3HcU5C1GXcYsIQ/GGQJaXD/ewqc0fOD5xOhom1YNbZBhMvvVxbpIV5oHH4CwqwrSmmio1D9TBCH8QLT8jekwsKy5GwGqy/gw8RmxnqM2VojrgvHIFiupAjd/3GFyBZ/YgarMhT5D6ez/6BJwXLrKyfH/JvlOaVlYsOgeg/fdixlFDXvou8DWNxrQZGpMY6unN8qTNJt9b1IqT0oOqfrxkB3V+zoXvJ671mww4jsBNY4W8S1uTAynPbDf4rSYRMCxJEejX9wkdn8ktSVmfn5IrpYn+TZ0md47gCnZ88I3hAGzatp85PynNzjXUZTdbUJ56GPXnE7rm5O0EotujPPWwgbaWjx+Cn+KOFu+KNkYHX5XbOdnNFjT5KgklcVECTdvm/8ic2wBA4DupAk20bOjCeFwbrLlip/ZfdrMFXjuasDIxr8ZLBTysDzi17fK9R6CoDtzudsowj888q6n87j5EDvG823h+3MacvON4ZgtxvrEu+Q+Ejk9FzxHjBOccfJ+EbB9tYP4V1QHvFeQm51D0UkMfeq/U3Pvz73i7rLi2Xdnv0AlirLHkL2ay3wtbNYPdbEHkgTLmCOpbcyrsZgvqxmUgbW4ncX0rJA47Bh47J9TNrzkU2uwzmkC4Gg8AWHddFJJOz90p9C+gCWRoWnlnC5mfHPw5fTar64eHHxbqozfiywv+h1zXV8F/FKoYsXsM6AfKMwR65gYgHsyeSieSId+jTtjNxF04YDwAUzjwFtmI6C0ZAKwsIBt0aDxRKUnctkKoi1+EKpLmHY5ZYtgwwr9IYGU8thL9/GoP5GL2ZTMrH7R1jICbAtVj50H2rJfa8b8rOoDp0xXVgSZfJ6H+PPliSFV19G1UVAdMPj4GnHYz8arm7EaYjyvrg4T3a9r6GhZ007b9KN3cXHoIk20U/Oald2+tqA6DhymASMllhz8ACHl2N9rsE704uVvaotmmYsMcpEG6r23QbkdorCM+X6zjUQPTqqjazZfdbMHxCdMNh0NqNH6hc5E2D+947jS1CcHi1v5wKy+H89w5htt/h2br4tGimaBOx7ep4cxkaR/o54ybhwdOPDnD0Pf6m9P3swhdc7nN1+RbH/4ptQSczZ4vZs9z8nZicv07KmxbiHoZZSZMvvWhqA5mlwgAuf1NMDUQvX2GTkzFup2rWYwyPnC1q8MFPxbUgxr1QFp+4Cgu7mrCyvO46F/u562w4Y/FQCNfNJyZjCnZe6T5KYQ8s1u4xbSbLSi7etUQZy3kZ+LV8Le2DYVvi9740TRKM73tePm0KL3ZuOInQx+8n7WP2cDxdQJgt5CK6sCEtCyU2zoI9fE2R/r+5NcDun6mze0kjHnoBPK9pXTwZOMnW5v4NdtuJh4y9WsiAOaMACDM5/JrdaGHgNc1BpoXNOn7RQ+ydH7s+x69xNptN1sQljwcALDvXSIwozYvsr7igQb5dpa7Nv7QrweK6sCH2aQvg7ePxvjmXaCsXgR3S1vEdRtkqJPelreaG4+8X9szPJ2fE23a/FNqQVEdyF3enqlx8vXTgNl2s0UI+s73VcBrydj1NRGw0Th5AKC+YkNJ19OsHbwquGxPcqZlGphl2d4/cNx2lhYavwem4ACXe1/iRdL2G6WiR2CPrfsMjCoFXrVYRm+bmaKXXnoOoc83H4wWvg2annhsB8unqA50/DBeGGP6W32F9Dl14GIKCYTdbEH+WzZMzd6N7L4/SvuPD8Hg6lxA7Y9puiz+Fw/9at5k7ehxuBgJLbrAbrYg5xdNSB74WjITuACA++4jGH9HYwEABh8/LdBw+9vrhjMEQG7rFNWB39IOV0hTFfz7wKPyLFVQBVVQBVVQBVVQBVVQBVVQBfjnXMtXqSZWwT8JQ0+oTEpCb2Z4yYnPT6Kk8/kNIwEAf/0wC6bGjQTpk+xWRZ+mqA4M8tdspKjkSbjV2VXfILXi1VIotNk10iDhafplEgI2PGm4VZtQVwVAVKOqHyXes5Zd1W6VAKDZo0eQuTiCqdIFpVZH+g9ESkxVKqik6vRzNqFevbTMlXS28FWtXFzr+1n8Jldl+faHpHphcBaJj+UsKhLy8mU2L5kHAKjTV5N2XlwbijWFqQaJLwB49MoT6uN/yyTksltBRXWgT/NOQhoPfVvdJ0jfI6YQCeeg42cFt/GK6sD6xCXYuJLcMqR/E4tWez3ZWCuqA7X6ZAn1qr+1Feo9k1tfmFN8XrvZgmuDjbF/+HhZesn4lznJcB4nAcxN2/YL7/NiNPWy0tx8w3xQVOLAgKfDbrbg+iOkvpZ7NIN+RXVgQ57R8BvQ1EwTCsm3824gUbsdx0lBnRcuoiBW8y549mkbjr2rSWzHN++itbtngeBowHnhIuxmC/JiitF2BhmbkGd2w3n+gkAHQG6UvdalsthIPOjnDH+7ocdDgQYFfj3zEADiZZXC1OzdqPkbCYrsPJ6Oa4NjWYgIvh522/Q6+b42/L4IAJB2WxufvR9qasd2vwh2k7U4f5dAb+gkopJM1V7pOyrNP9RR26QvD48VPHRSHLHVTTgXQWzAGifXgaI6kFdKxsZ/0FGW7+tXh8ItSQxeK/u29LdZfN7svj+6LOc8fwGmsFYV4qcQ8sxuw3cDgNkEUZgbGoDpuTsNuACgz4PDXa59rtZI/XeazXk0fN4nR7jl8B90VFgT+bhZsts1RXUIt8lUVVlPA9/HPF1vBxA7qKBh2m2LW+4pwcOpHk6Om4Hmjx1muGr9uhsXntTsh+k3GvjU6QrHFhBv/GR95V6zJkI/0r75w89Pl67ZfLsAopIIEBU32c283WxBjR2NWdq7DYk90oXxpB3OjGzDzRnFc8Z6BWkzovFn+98Emiva53gcPNA4jc0/IN8etWV9yFt0k1/9D3I7HLJ9tFBn1FvxaLfPnT03nEHW0VMvit5VzZ9pN3V2swXO9Cz0PXoJzT5KwqsBMSgovQZFdeD082I5HuxmC0yhQdLbYH5uLgvYKtCo70c+/9b23jDVIzfQAV+I8fPozbf+5hQAlrdpIuDWO9zSQ2TSkArfV8G/D6oYsXsIqI6/DGSLecgzRC/bbrYwb1zWg0RN48wzNlwdEsveU7jwpNWwwFDgvX1Rl810oeLpkB3m6Ganry907F7mypzmPX6LuNbd3m41/D8huujzW7WA3WxhjhMA4jb9ckuiUpEZdRMhT5HDyYnxoq5/I8cNAEDsy2KgZWrcT+vOe0cLfAloARztZgucV66wQxgtf/ZpzTYqfL+bsMGlR5XgcpcLQt/IGCuK72yC5oo3teNyPORHGExqaMzXq6gORnu7bzUX2LKDmQzoZiBjDAGji1waWmBlG9HYX39wD3kuBX5el9D8scPM9THFf8tOVLLMA48J9WU/PFvIx4OiOlBreQqriwKd1zRdUTWHGtSGxRXTradfn5eqZvLvLrYmtmQ50Tfg0bQJrqwPQtukEVLcdrMFXQ+R+Uad3fB0yvrcI7AlGn2fhNAx+wzzQvabTzsWT+a6XvhAIXjEAdwYEI3S2l7CO2pvQINly+hyRfOV9UH4JCicCBx+1g6WrwZoDDIA7Pp6pvBN2M0WpH9D1pwL461o8espYX7z3lcFGgq1GHXDm3VG6EISIDr/LRvDTZluWR9RSPl8JkLHE/Wyjdc9kf5TR6TN7YSexx5Co+lkjv91pBXsZgvGN+8Ck299FvLh0kgrc+mup4+vx262IP0njSns02+4kFfPrOnnKY09psfvCrKXhQt2kFSll+J1iwxjAWL1sOGPxYwGV31H03lHFjwEvJEstCEurLthDvJtoXlPrW6DN84Q9S0+dED9+USYSG3deDrsZgvcO7TBA8cfNNB8faA492g5KgSjzxQyvjYKeOhzvYwSw3eQeHAT+vYZIv0m6X8agF32DiAu46mQiOJtlzIcbWZpazgVLPYN0RxTUUYy8DXNBnhcWrZA++oQBb67fIS+p85CZO3n2976hUPCt/5+1j5Ev6EFYV+Qt1PI72p8i+8/J9TT/D1t/5SV960nhrlY/u7nmNZ0P77OSULgxnHIe4d83/5zjjAnVq6guttthmfcHSEWVanmhQMACYIekurF4kDK+kTfzh6Hi5H/lrbfX3jSiuAlk4S5r6gOOC9dhqI6mK3y3wEZs0e/DT5P89FH8T8BZeX/3N+/HKrc1/+XgQ/oXKc2kRZ5tGiGkRt34sspQ+DzkxgXRrbgmdqG4kazOswFOA804LL+QFDwhg3+U5KQNjuKGc6a2oSgLCtP8DIkq7twVRj8HtEWizWFqYyxuFvQL3Axr8Wj3kKysbSdkYBj8dMNhxp9eVnwYYr36cIYfO+3G+2/TDAEhqyIJmd5GVYW+2BuaMBd5bebSYydsZ+uxtLWZiiqA9tvuGP5xWjhoM63I/9NGx4fvB11Pa5jfVg99o66cecX6rmXm2B5myYYl5aNV7c+bggCLAsTwPdt/ps2NPuYtJ8G547r/ijz1mY3WzDo+FlMqKvdxrp5VkP57VuVtp3W4apfPAJbYt3O1UgojEXuQ/WY04iK4PQLNjT5yrjB6uu5takFqj2QWyk+9/DWLEhu4as2wf2zq+9J1j79u7thiF3haf91ApP6yvDyabd7RWLrwrnSTfxuaZDR5Kpf+XcRqUPQ6OETSP8mFlmPie7RAeIghtomVlRXz2MPYUvbNUJ6t/Hj4bWOrDuXR8Si7uLdQHm5lDa2znFBlGX1zL5sxso2jSpslwwmpGVhdmigMFayudCvo10IoXB9YAz++mFWhXVFOZzM+2hldOgPlHdzOKZAwyDw9NrNFsDNjan2KKoWeoDmCfs+Af5TtLmYV3pNsG9xBRWty1H7B6N+/7QK89GA6fqyNKwGLfd1ThKeb2kT8lQ27xXVgdiXJzEPd2NO5mJ+qxbCe0Ds3+ylHRAwVBPEUdf0lR3kabpbVHvp4dzVuuFqnuvr0ufzCGyJ0qwc9D9ahJiaGYj28qx0PvHg7NYRm5fMu6v1pKI1XlYPXx8fykRGx/k/QmFtkov0qBIDnrNP2dDoB22dpm7p9fWwdcG3vsFBD0Bu2ppOc73e83C7dyd4biR1jMjphnO2S+ydm5eX9EzkCuru9MW+7Oao4X0Lfo8chaIawyuc/b01Gj18AucnWrHv3RkCXf8r7ut7BT3/j7mv35z59T3bH/8JqLoRuwdhXfIfmN+qhcFz1epiYlhsTqkNgJOyHksTmDB6Za+oDjT5Jom5tk0o1Lyq+U8hh/fs/pq3JefxdJSXlCD/TW3jo8Fm+QPCkdjF7L2iOhgTRoNqukVqBu7UiJVf8AGgX+eH0eHzBLY41luoqWJSJizvXRueP9WJSfL0m8bWhXPJQ2w4rg+MYVJQu9nCFvjKmDA9zji/jgYmTE87pYX2SX7/Moyuo8UHmnz0MWRG3RTGruvECez52FPTkdShGtaH1RNUNegYzr5sZu0YXYeocc4NDTAwYQCEMAGK6mDOVyhQJgzQgnP7LTwllmlD1FqpWuGVRzSVoRsDNNUzvoxMCsqD+ooNpVk5AMjN0bp9G2Bq3EjIT93q82XrZZTCtE28JZRtntvCfkfswdsu66dAmTBAuwGlDlRcScxlwB9c+kXFCe++zBEPbFTS6woPZcIujrVqgpGVYey33WxB+gLSNzQILV++T4to2M0WqRTZP6WWIU1PC3+IKekbJXxbPA0/hi8EQG5C6XivLEiB+pINo07mo/ayFGGOA8CyfLKuXBmm3cbnHDYLddvNFsaEKaoDH7w3F0WjxLbo2wyQ26RWez0BgK2BfNuquZUK+WXfreyZuuPn57T+IGw3W1B6+oyAg6pp8rgU1YEOn2u3S5QJox4zQ37WvHDqaeLrrmxunnnWBrcIbZ2lTFhJnOjGnLevsJsthrbSfYCm8UyY/psHwAKMd3o73jD2FAdlwhbn72J0TEjLEvImbhdDfiiqA4G/TTTEwuSZMIq/bEsz6ffFt2PplC9YOs+E0fd6oEwYfc/HB3O11vFjr2fCqKqwvq5yWwekzYw2MBT8PNPPqeJBMdo3kFcAn131sTbMB0suGh16uVp3aLpp+36BWTp066Z0vsna7QpvwPonDW2loUxkc0hRHWjwYBq+99M0HwYdP8vKH3hzulCOxgbTM3V0PUo8rGnt8H3XdJoxLqPeK7KiOpD/pg0e17Sg0zwTBpAwD7L1hj+XeDRpzNKXB25B8MgDTFhtN1tQZ4nm7AsAGj1M9iXKhFGnR/9TQG3E/om/fzlU3Yj9l4EP6Ozh5glTmxAMWLXLoCYGEB317AGz2WKT9akV6aOIrUWrufF4+pFEPOOTK5VCeW5virWh6xG4cqKg+gVoh40xJ3MxpDZR9aBlEwv3Cy7ieZx6SRRfTg8yaaDPrvo48UtrNP727m+s9HUoqgPh0xJw6EXCvLnXrImy69fvCtfdSADTZkYzBkhfRlEdiH4jnrldVlQHgpdOQsbQmdIx4IP20nR9oM1za1phtWUuOxB5/9kQq4I3CXTJJIM0aCWgBcM2hbVisWxcQUm/KHitS0VZFws2LV+AXsPHGrwfuuozV1Ldvr2HYP3GZS7rda9eHWU3bxqC2VYkseThw+xURHt5smeehszFEQgarnmWkzEhfLBXfd1UMiqjJyi1OjYca8u8GwLAlaGxqLO08lshu5l4YSx8PhrNfj+NxB2rDH13YZyVuW3Xl60IQlK9BMky325W1t0ElBF146nZuw1qhnRtCVw1ESFP74b6kg3mL7SDTFjycBy1LjbMQfq7X0x/Q6D2vn2HouzgcWEMXDFJ9N3rmYfQrUaZIa/se+LBw8+M0kIitBiXls2EKXo69XSE73fDrqkxSPpqppAvdMcTSOv6k+E7Y4fAI1eY91kZXc9mnEC/mjelawyfdn6iFQ1mudZ60MObWQ58HOj6/a0+Udg2b4603qj9g5HacblLmu5mrsn6sP/RIrbv6MFUry5T5wpdEI+AN4xeaT2aNhFuy2kdHT+MR8MZRMgR+/IknOlZitCx5Nt0r10b60/+JRz2Ze3qGxiL9VlEkODu7Y2yYuIBduqFEGxt783azGuG8P3R6e14lHtAGCOAaI/waojXHovBrm9muexHRXWgX0c7rluao9oG0XW7fo7J2gIAHi2bY13SGuHdqJP5WNiqmSEvX69+/utpzPgyFsGTCaPw8ukIZneZ/akVaXfOF66+A1f12M0W5L9tYzanhrbc+V4VldhnO68QL7npP3VEyBP7DXUpqgNnncUY2ayzFB9A9sprr/vBbZcDV4fEIunLmejz0AhsWPMzawOlL+CP8QidKA92LmvT3YArJliPw83DAxvy9krXUuB/6EYs8Ll/7kYs65t7tj/+E1B1I3aPgKlNCAAgccuvAhPGS5HqpIlOLqlOud1swS1fJ9aG+QjSIh7Whq5Hn+adkDVoFhTVIUhT6UKnZ8IAwOTmLuTjIfOFVkC05hrY1SFLUR0IXDVRcA1dd6cvlgVsheM1YgOT+blRuucW1d6w8TNpXgctqGTTacTOrHRzc/TYc0a6IFIX4xQezezlUqLL90/2Q7OZJEvvbtluJi7qFdUBU9tQ2M3EhbirMTjyrBaQM20OuSkMHnFAyLe/0y+MCXP39kbx/edYu3nJKcWf/l0M2n+ZIKhOeGwhtkjOoycr3Eg8/P3gtS4VJRtbwn0nwcvb4tD/Z54RVYP49rfcU0Oow262oOzICWl+aqi/PoswLjwTVtoz0kBrFhcXj8dDjfb5+UDh9Y7rmfMNRXXg+K3rhrx9A7Tgm/qDD2XCaFrGIs09embUTYEJA8CYsJUFKTi3phXKO1tYLCyKn+IuLy2F+YskONOzNFrihsG9XWsAMDBhABGw3OyvuYMGAES3F8aIMmEyppOllTnZ71cDYgyOB6j9S8jTREhDb5Jpv1HHDIC2VvH16JkwAFi5jjjgiH6duKnu1/lh4T0/LhT3T+c6u1xLKprLlAkDgNcTh0rXIP2zqVUwPm9yALV/SUHY95pLbrvZItyQfHS+tVC/ojqEECC0n7seukHw1qmDV+aOFfsfRB1L3wZ6wPdo5g+4mxjD7ubhIV3H7q8uSuL1wDNh/Bx562x71O+fZqCJb1dceE+sKRTDW+jromNzf/wEVj7zZkNDuxTVAdM2M4I3X2fl0kZrDlrOxZO14FafKIEJu++Qxrzuf1tjAlI+n8mYMIDYuerXHZ5OOo50rQG0WHF2s0Vgwp5KT2OaIfr19UJMKXPPT+HyiFjGhNH6yk3E5i17Wbihj+nv0tNnBCbMbrYg/Is7sT0HjMTcO7Za+r68NIr0FWXC+DFZ0vc+Qz30990y1sGTNTvdQx3LmWv2WrnaeGd8FSv0i36PkDEVzT5Mwunnbbg8PFbIC0Bjwjo8gMQTf7I1kGfCeLwAGBPmiuEpvv8cNv66AIrqQO1lKeTMsfcIWXs4LYZDt24idGKqy29I1iZXderPUrGvTELvx0YzJ0uy76K8tBR2sxYOQg/nJhrtIe9N+Kduw/79d0VVjNg9AnRhpx8ujWLPS4X8Hs5hsbkAIkkEyMfNe6yiaRTy3yRGqBvy9iJoGYlgX37gqJCPLlS3y50CHtlCQuFW09vAnsOGdD3YzRaEPL0bbkkHWayly10uCAxGxvAZwuahqJq6R92dWvwkWk/ZweOGTcujVx7mruqNwM1jDTS/GxgppF29jwSVzVgUgbheg5H1qVVY/Gn/8HXE+XU0tJN6P3QeI+o4vIrC6Rc0Bub1zEMCfupUQNZXg46TIL1Ueqs/CPE0NNnlBqeX2Dd3swF77WiCdXvWQVEdLDYTTwP/31lDS9fjzYm+wYLs6jdnfiwB4Pz9t9ihkAdFdcA6zaiaEThMbDePmy/r1kmLOTeu7mnUXEWYCeuLk9CmWk0D3iORZQJ9PNxQAoQ6gkcegAyuD4yB+pI2vhfLSlF7Tl247XKQeDZubgJ+2cGs1V5PlDmOYf3GZUI69d6oqA6cHDcDdV8mnjQDV5EYSMXNa+L+BC2+1tXHY2GqU8flmJdbO6DGjsbMeUL2p1bGeFX03fL0lls1j6LqAw2lbdIf1gf6E2bP56dkWA4Q9Tn1ZRvsx/sbaP2tYA8KV4XhhlO76aQxvmTtEhiciZoQp2xLMwQ/T4Qhl0aSdA8/szB32by+IwgwNWwI/ylJSCwkaltF60KQfWc9uDwiFm810AQLMnroOL/RgAg+nFeuCCrDNE+DB9Ok9AMgjOydG8sNeXuR+6YYk4t6W+wbojGqFX3j+rlNVSTTfuwkpPPj5jx/AQ/5RQn9ZKjHjTAcnte0feJ4pOYYKG2m5iDJ2V3FyU6a+rDdbGECK8pkVdtADsSmEGK31rv2Yebtrl/nhw2HYD5AskfL5gwvTy/9TftAxjjw5R7yJsIat61+hj4NnaB5t6Vl6/6cIvSlojpwvSFRMQ8YcsjQ967mC0A8CwMA9hwWvK7yQNX247o/KrTTbragNCsHL2QcF/LX3elrEGbo+0LGkFNo+ThpQ8MZyZiaTdbSmOiTyPg6ljlp4vHwoBdW1j9+C+cjxH7g1Tad54igkQrveIGsK+g5cpzLd3wbqVBJUR1Yl5oIACjeEIjwatWFvJXtlXazBa3nGJ3ZuHl4IPaVSdiwbjHLl/LZTIR+fRzNPkyS4rWbLRh8nAge1ofVQ9p8owBy54s/VkhPFfz7oIoRu0eBRrEHuINDdxXVe55jC03pqdPCAguI0pxXMgkj0+zjJPQ9eolshLfc4O7tLeA+m2BDRjzxWujpJhqWy6SMFELHaSpc+rpdwYTIgRXi1LcZIEzb5zma1E6/OfPPLd5JRsio/QZ6+Pw1dmjMUmbP+XAeS2MqnjTwqytJmZ7Wh1tYcW6SFafv2IBQY35FdTCnEwDwyfARLvECxKkEBeo4g4YkoH8PDB4t0JK5xILay1Jw7CnRi6SsP0t7RApl+UCjiuqAqYEYYJra+03J3oPDz08XaOf7O8rhxPZ2q1m9xRtICIRWf42C3UzUgWj/h44h9k4fNdLsKXx3+RjSeNC3JXzPUIGGkJ/jUb73iDR/tWtlFQoSZFDDTryVmVNqS/M23+2N4g2BqPnbbhyeTGwZzj5lw/M5A5nbZgBAOXFvnP+mDS9kHBf6mv4+2ek26x+e9owrDdH/aBEbdzpW9GDhvWI3Jn++BACxvdnx5Q+4+JDmvp7W4dHMH3azBb8sn4EbXc9gX4Q71hbuQ8Br8sCyPI0e/n5C+rD56xEXTsI1UFVi/lvUH3j1/b3nPLHTOfzCdKBnAXunqA6YfOtjoH80/B45ivNvtWRl/Acdxak7buZ5vG4eWtBxDz8zGv18CG5eRBqxqc0fLF+9RURjgErf9d/v8BOEjsSDRPU3zq8j0uZE4ca2hqyP6v6cgogpCUibq4WDoFC0LoT1Q9qcKMOBn6+Pr9fd0rbCNdJutqD5+6IL78RNvwAACid2ILcMI+Re5jZc92JlTNvMzB6JQvBPTkYfD/q1XkaTe+3azF7DY8s+Yzvd3Jgad9l9EdJ6qs8UtS6oB9ta8y/DbiYu6o+/SILsUrs3nv6SrtrtWWlOnpReNy8vw1i/e05k6mUMWXmPQinNNG1PyW0hLehnjeloMlvziFpRHQAQvGSSgFf/X1EdyPnIqCFCHSzp6fsqmOw9UW8Ruz2ZN18+7IGMcQUA28FbrD46l6kK84XORcgcPJPZ/dLyiupASV/NURcvrFRUB6opexH0kqi6vT5xCWSgqA4EvZyMLs9MxHe5uwQ8PJ1U4yPnl3CX85j/Fvmy3n2yoAeZkEz/3OJdoqbNawNsyNvLmHJ+XPRq4np84+pqczh4QRkr5+ZZDQAwMLS9rOi9B1U2Yv8xqLIR+y8D1beNWvUc6g4qROa0WIzvvQVb22vMkitmhYfmu72RF1Ms5M1938bi7QCAW6d22LDmZwFXxqIIZPac71LCZTt4C0kdqkFRHej8/CTmblxG15X1Qbi9shEudL6F0DH7hHyBG8chZPQ+wfOZR5PGiNigMmltw6R6oqFsbDiUVQtZHaaGDeE8J1f7Aoiknz9kXn8kBjVX7cbygmQM9jdK2vjy/O/IA2XYFyGXUZiCA5DxUW0EDDlkKHdxrJXFf/Pd5YMlAdvQt/cQlNfwvGt3tzy+/LdsaPZR5V6fFNWBkIXxSB8lel9SVBKfbUjtIk1KuH00Sq95wuOSB9JHzKh0XlVGa5tdI1nogqEnVIyuc5bV1X3Mk8wLpN1sYd426XPxozGCwIGCW2QYyqp7YuOvCwC4vhHZU3IbbwdozmDsZgtOrW6DpgOIhDhtXiemzkS9hFK4MjQWydNmVth+fX9n/ByB4BEHhI1+5iU/cgN2lzj4dADo8HkC/nxxGnbe9MG3wa2l5fj6+LTejz7B4m/R9PD9bkJsLR6f3nMXj9tnV30Udb6I0h6R8NgqfrsyqKzfKsvjqpy+nW6d2jFGm7fLosB/c2VbmrEYPZXR4Orb149XZfn4/gleMgkZw+T2ob67fHCpXxnKAvzZbbtQxyOj2FpnahuKkia1hXHg4dyaVmj40ElWx/ATBVjc2h8AUZGt5V79/6nvgTtMJWcXK8vnaj7z69afEz+H/cOX0GB28l31r368eFtPWV/zeWU0zMnbifHNuzB72YtjrCz+n6zNDx27gDVtieYF74m2z4PDUb7v77kTz13eHi0Ga+s9T/8bZ8KxP7ZGpV749P3UMKkedh0JYXZsFeWl7Xpg6Bi479Bu9DMXRyCj+3z2bDdbcC7eyuJ5uaIDAKIPPAaffppN3IK8nWjqUavSuQCQfUEWmkc2l2Rz5fQLNhx8We5FmT4nFu7HWed1jG7exeWcOhdvReOkS7jSqi47x5x92oZG3ydVOK8pjsrOYa7qdVXO2a0jqh3OQdq3LZDRfT6Ct49GRrcFeCcnEB9bN96zNlHMRizgGXi4/wM2YmUl2Jz93T3bH/8JqLoRu0dgY7s/8GLGUWQMnYl1b3dn6aawVgheSiRopT0jDRIx+ntOs11Mis1LcbKmagwIf3NAIXikZqMkWywoE2Y3W1jcIIC41dZL/pI7rITvj8kGJsxutiCrN/FwyLufLj19BqkWEys/ocl2cbNNOSQsbM5z56C+rKmD6RdkalhMn2uuInGBBvtbmUoN/37ZVR/meY+vZ1+Eu1TyCJDgmVT9RE8DPRACgLsbuREpO3ICG35fZBgz2RheHhEr0HEsQQsIWviaDRFTEgxBhwEg4qMEBL6WjMDfJgq02s0WvLdsKKMx+/Y1BA4jnjIDX0lG4OaxgtSRx3s2wcbUoVz1hd1swfHOJFjvLXsnOMuJeo4pjMRqevq75Wi1V3OvTL1IxUX0BqDd+iqqg90oKqoD5fuOwm0XmTdxvQYb6AOA++MnMIcdikqMzAHgUPRSNE4mizVvU3L0ac0+T1EdjAnL/kT7PqZmi3Gk9N9D8IgDLP2pdGJvM6leoaFfClaGGeYH7wmSx3/w5ekY7G9Fv5o3hX7m66ZeyWwvTIJ7dU2thsa9479DyoTpx9VutqBWYYl0HBXVgaLOF5E5LRYeW4m0ucdhLfgylZzz64QMz+1ekSxYLs1LVZFpPa7q17eZplFDewCCcwz6PvUj7ZunTFjOx1aBXurpj0JlgXn17/Q06xlG+hf0Ugo7FD5dKNp5XOhchDOPtzUwYQxSNNVl57E0KRPWZh+xG/OvexlZn1pZcPJ3kx9meQb5VxyPicLt3p2EdllfmoT+aX0BQGDC+HlE+1G2dvHPzddfxsLL7dFgtuYJl8L1slvSsvx4KaqDMWF8PLCw5OFCf6f92Imoebmb2C0pnRvUzpbe3FEmzBUzt6atL9O6OPqMpmGw4Y/F0jb2OiLGYuRxtxh8GKU9Ig3z2m62YErjQ9iQbRQ+yb5X+nv4iQL83HK7SyYs8NdJqP1XA6TN6yT05aal81ncMoDE5aTvAtYQ1WaeCZPtS5R2ngkDgKYerr2z6r8h3qOwDDdfZ5dnJhryNfkqSfjeZGtInF9HjNapdtK2Uk+JvkduouzgccaElfaIZDE0ew96AgCgvmRDxlexBhyK6kDAWi1YPL8Py9rFz0X9ukZxbF4yD84LF9lcDxp255xlleO+56Aqjth/DKoYsSqogiqogiqogiqogiqogiqogn8YqhixewimBZNYQjVWaxJJ59GTCHqRSHC2LJorSA71UFpQaJAspo+cgbNPyeMa6dNGncwXJDZnnzbGcOn92GgAEAIp62/U9JJO6ixEJhG/8TCRTt8YEI37q7vGQdMOvzBdisdutqDN7ASpRDH9m1gohUaX5vNbtUBKB805QOzLmu6+HgcATM/dKcVP6VlwR/qf/6aNqVjSPNYXNdx2swVbbpiEZ0AzAuch9Kd4BCQ+Cb9Pk9Do+yTUMN1meCkNjaYT1YqQpzRJq6I6cG1wLE6M126CAjxrIfJAGZ4/RSSnIaP2C5JGk299Rk+j6UkoCvcx0COT3ALAmU7VmO47vfWcHRqIltUv6FEg8cBGOLt1FCSG5vfcDPkU1cGcoOjH4s8ZmnMau5l4+6K4dqYHS2/6KNA4bQAQ+J7mBdFyx86Ilil4Xe4tEiAG/jJJ+ftZ+wxu3k2tguHsrgp57WYLspd2EJ75b/fcGnIb2WafB7L7EuPt2r+koLhPOLshpeXoTbheLYa/YX0l8zDcd4geOvXSW7rO2M0WphotuyGSpSuqA+c6esH3x2SBjsl5DwtlZbde+rHV56M3nACg/tZWoBkgjnDo78zPrWj5JpHyU8cORSfJvC7rQnDyIUB4oLHbeNp4utr+QAz2748nMQH7nOgnnV8P9h7K7ETKO5N6yq0dcKmNXLIrk/Lnv23DlOw9LD17ihXHI4m3tZKupxH4WjK8ElMx6mQ+00CQ3Ui03FPDcMuRvSxcCNEAAHWWpOB2t1MsrXhDIJsf7jVrwm4m8cHiOjxgoP1sgra+280WlO87CqVdHeZ4gV+vB/pHV3jrzKcpqgOZg2eydP9B4m1i6JN7sbxNE6DMifLSUsPtgwz0+wtPS3i16tJ0Gc6X62ca8Nhe0NZ4j637pHOd4steFi68c/VdAWBqp9Q5l75cmy8KsCJoM0LH7jXsjdt/nIPzE8RbakC79bxl7+SyrXqaikZbpfNdVtbUsKEhnZaltmiycnX3FArpdrMF72TtZ88V3cby5dRXtLW7/rxkPHTsAtz/0lRd06ZHY8vPc9mzWzLRLjg8eTqCXzDafV0ru4nWzx5mtOZE3zDk0d+E6dsGALbJk4R+leVrtKW2tF33HJSX/XN//3KoshH7L4M+jhgF2ZW23UzclfNxwBTVwWL/fJmTjLBq4rU2vwhGTEkw6EPLrvv5TZXGmeLzundog/Xrlwr46fuQRfEIfFWuc+5qo8z7tT2Od16E+xMmCEyorA/0dcre8eXy37axANFCne/Y8NGInzGo1hW03z0M5oGiS3Oa3z28Nc509sH+t2cY+qyiNvHveDsWVwxmZQcIxtAdHIQ6fTOhqA7sK7mFSK9qBnwUTMEBcGZkV4jXlZ2Wvg03lADmyEL/7m7apM8reydrL5/uub2pcFjUvweI3r1p+/67Ghc+npiiOvDR+db4K7w6ex6QbseNrmeQsSiCeU8s6xoh2F3I8FbUfgC42T8a1de6DuCpb1tFbTFtM8PZXUX2p1Z4XHVD0+4F8OiV57KMPv3SKCvqLUxm9pWK6kDERwloND1JSktF9NJ8d9P3fMw0Pv+lUVZMf/8bvPnoGJTvO4rCV23wm5qEXkeussOvvg73dq0Ncet4uuvu9DU4MKDl3Tyrofy2eDDUQ/YUKzxbXWGMQEV9S+vU5+Pnf8j20YJHUL6MK1BUB/rGDUOZ45ghne+PzM+tyBj+/277WdnYyWgVxuJOjMCK8BWtCzGoulVGA03L+dCKn4Z/j3cDI3F9YAz++kGM3aX/T0H/rdvNFpga+MJ5/oJUIFBRG/lnfbrPrvpYFrCVpZ1e3QZN7tis3trUAtUfPMPimrH+GG3FninGMdPjLnrCCp+fxH2E0hC8dBITpFTWl9NzdyKhRZcK81W2Tvvu8sGFzkUu62DpfhH4MjsJk1sabbRNbUORuNkY104Gi/J3uYwhlr+iHY7Zfna59lS2nmYusSBomIM9N9/tjT3LOqDJV+SstOtmGT4I7CjFSfFmf2JFwOvJFfYFn9/UuBGcZ86y9IkFVsbc/c/EEWue8M/ZiOVNv2f74z8BVTdi9xjoJVoU6MfNM2GXE4NhNxNvaqdfsGFyS9E2ImjZJCiqAx4BxGPZgTdE73r0t6I6kHn7mpQeyoQBQEIh0Z1ev34pdt0sw3dFLYS8oX+OMjBhtD3s4BMZZmzn4dqwmy34c7oWs6thUj1pH9z31ERDOsXdp99wYSE0tQ0V3Mjy/dr8gyQkXSX9R5kwnk6AeKQrO3QCDWckCzh6P/qEUC9Ph54mgNixtNnnwdoQ176HlCZTW2KDYWosBvPO/cDKbrHq9NUOo5Fe1WA3W9Bj9JMIXGnUrXdmZMPd29swp+hvRXXAe4VmFxWS6iXkuzKM3KgMPaHiz/a/AQAyvyBz4Nod74gA0evn5x0TGvwkDwRe2UYFAH1b3WeQLt7udop56KL1rS0UbwM2L5lXIW4q3QdgOJhRJozCja4kJh3vwp4yYXwfAkSYIGtj9rJwNE4WXcvvmC2GmtAD35e89zQ9XHjSCreR5CYx4LVkNPs4CR69iKv7Pif6GdqesSiC4aVS8t2fzmDlAXJbSJkwAIiYksDK5P3aXpB0A2BeMgFgwZVGhrF+MeMoyrpGIP9N7QYP0GKmnf9Ds99SVAfqLUzGGwHRzEHCkefIDfjmdqKUmNH0jo0xYYrqQM6Hxv7imTD9oYxnwmTrLgAEvJGMpt97obRnJCurqA4kFu43lOUP8x0+01xe280WNkfSuy1g/UTpuLWphQGX/vC2PnEJ5ubtNKTT/0NPqAh6WbuRzPrMasCjB/072SGWb5te8KKoxEYp/fsYKKpDYMLm3ImLpc/v0y8diuqA7y75jbsrhkRRHWj5djLeDYyEaZsZf/0wC93GjzfQL8PR7NEjSJtHbn9iXosHQNz1A0DrnSMrXZ/0aXy/K6qDhVAo6nwRAGC5s2Q0GUACmquv2FDtgVzWP/T7AyAwYbSvBh47pzG3dzxL3vR1M8xft07tAEDKhAGiJgYtq2fC9O2rTPgyJ2+nwITFOh4V5qxQvrwck1sab9LOT7QybQdXQG+1FNXBmLCsJRahLpNvfdwq8RTGg28D9RzrislWVIfAhAFAQQ8wj8d2s0VgwqhtoN1sQc8R4xiugNeN9pAAULhKjNdK3yce2Cjkz4m+UeF3WgX/bqhixO4xuBvpEF3sUiwrcOZZslgdfHm68M5utiB4MpG8lWbnwm62IOLjBMOmSOukizNVPZRthp813c6ePwjsiLVhPsL7tPsX4rcCUdJPFx+6EJbvO4qMr2OFOpp/oN3SxYV1h91swTnbJfR5eCQ7+NF2/fXDLIF2Ho+zVjX2u7RnpGGh1y/A05rul+KhMKjWFaFumod3kpDzsXbYcbWZZ96+huORpchcTBxKOC9cNPSPompqeM4zonHziSdnMLUkSkvhq0QdCLFEzYgy6PR95+cnwa1TO5QVFzMjd6oqpD8c2c0WvJhxFN/77RbeUQ971BPixTFW5oq4Vp8svJBBDhneK3cz9RG+7TT48Zi8+4Q+msMdJl1JENef/Evon6LRhHav9akC7f39IoWDmt1M3HbbzRZh06RQdv06q1dPLwCkf6/F76NBtwHgzSwt/7XBsQaaj3dehOuPxODy8FjB2Dvt/oU4Y73CxuXK+qAKmXf9/5NjCaM0IS2LHcLp+70fzEB5de1GlC9b3qPQ0LeZPTWPafPf+MrAxALAV78MEJ4PvDEd5dYO8NrRBM0fO4zfHRtERv6OO+g2sxMEj5kA8Yo6LTgM/z/2rjs8qqLr/7K7IYEQINSwgYRUCIGwIaQtIN2FoChVEUU6JApiQUVBQRQLCgLSqyAWEFGUwKI0gSSUkKWTHkiy9BpayuZ+f1xm7sy9d5PwvuCLfPt7njzZO3fKmXOnnZkz5/z5wwrqYkGOuk+nKxZRLE3s4oXtK7f6RUHj5gbvjxK5900mS7vSFY2lFS18yPuEgkPQ7jiEbaslVSaT3oBYL36X3KQ30E0vADj89nxoQpvRfLz7H4XG3V0aE4/doO+qdDutKF+NfrmvKbYOQ2pcoO1jZF5b+L0tLQ7l7YwY/mDf2eMHGR8A8bSAgGzKBL6WjOw+0rhMHMCPZCzYAaK6Lfut2MW8XH2+bFtjDE07jYzZYhnEzyOp35Vl3jDpDXSjkOQrdzae976Y7+3eUQgadhAmvYH65WqULBqcYC0csjxiVWIrQtVLkvqUSW+AJUw8wQdER9nEBUhxd3FMIYZMWNrJb7PVQi2x6hp60jHrTn1BEVc4eAzRb4+x++2ch5xXLQcQrTuuzVdqrxBfo7pGXtx402qGuLHgravO9c+asZmKPiqHvG+nfLgA03P2c+1P/u2cC5XKWhkdV3J53g3zhf+gVGR+F6Yoz2y1oKwO73idpYGNx+L8S6GcoSqth7jO0fn6cBtCcoM6ZquFjqkExECVSW+AU5jSiNPFMVK7rsza75GCw3z9A4NDNfF/DHLMezXdD/2btkbvExcV5rDNVgsiJsVxVvnsDSTywUbt2bqhuV1VvIp2JNl3Wg8P2K5eVdDUbM9LislNboK2V0Z3bAzcwsUx6UXfR1cWuyCp1XoaNzbsSYVwogY1OuWLDQAoEkrQyysCl0fGoM4S+6Z7q+5qgF8DzRhnjaCOSeV5tzvShy5G01eEI8e0jOMRq/pXntBXXj3YMuUuCQj0ye5Y4b2bxns/24JP/Pi0udNisPrFOZjsG/EfD/xq/Az7JB6p7yvVP9k0LNTiVZaeH/MS4aGVnDTbm8TMVl4FzF77VqsPAATsGEqtjJmtFvhvH0qtJgJA+uIIBI06gPz1IYq7K+Xla4/mjG+iqJ+wpgedcfL1FtydhvJottdfAdGCYJP3ReGkzQdxOPhR5dXWSD4sbSQcAKLfHoPkL6Q7PCa9AdYJRhx9XWwLrDpRed8gfUkEcnouUeVLRXXUBvjC6eZtlJ47X+k2JO+HTtu9sKXZpkrz2Gy1oKexF0pzzyDz62gEjOddenT3boMtZw6i9cHnUK9XGlWBm5mbRE8HTHoDsr6Khv+byRWOv1f+CELtp+yfHpitFhg+jUeDueK4IMS0QmacFtldpdNhe8K/fJyRx5VD7t4g+3sD6te+geoq/pnY8thyRqVnY3GQH1qkaKhzdbX4FeUHiBYw7d35AySXJ/I8r70Ug32fLyi33mvy9mJQ47aq9JDxtTL0EthzLZExLwrZvRdRGiozT5itFsy96sNthsrfV4am6Tn78Z4vb0WUlO+7ZQRyui9VtJ3W0+IU1hZNeoNiPs39KRQ6nQ2N+h6H++66KGx/SVF+zqcxSH9Z3Gzq2e5ZlGbnYsDJc1gb7Amz1YLIiXFUHVMwtqKboOWtU9TqwoYTOtXm1+zPYxDWNh3X211W5Kfza8L5USuvzG4Dh6JK1gUIRcVIOPyn3W8hv7Zg0hv+PaqJjeP+OdXEvAWPLD8eBBwnYo8Iege1RPqCSCzKEE8PtPXqcQMya6aZBem8LWfGKwbMHgHizmR4qjjZkfesKp4c8jzYgYaY0SbvbFevqi6yT7WTzLWTPDxni6ct7rvrwqQ3IP9HX2lnmCmzNC+fCmEA8PGlZvQY3x7MVgucXFwUg2rxn6KT6qtDYriyXO7dxauzJAmvZIgLHKLylsWoPvwaaIZJb6BCmJw/4VPiqBA2//QeNGl0iboaIHnsmbMIfxRIzj6bLY3jFl2CsRW368iW0SJ5EH0m74kQJuc7K4SZreIi4fxYI3o8+TyN47/qPPW71Xa8tItKdmnlPGX//5gnljvOGoHcaTHcDmj9eUrB8FbfKEWd5N9abUEoxysZ6Vz4843FNt1p2EiapkfT9jBbLdRMMRUg7u2esmXKJ0S2zZB3LWfFw21/Va6OrBBmtoouAADegMCtvrzJ8tK/vGm+vr+PpHnd6sfHA4DAV/fhwm+iH7G0NiVUCNM2D4JJb8Ddp5SLJZPegOYL4rnwMx8YOV4SwxUAUGdpEkKSBnF5LGHMy/9RkEJVhy/ES5fdWSGM1AEAzncsVXxX/QzxhKr3iYvcnQ57C5Gae+pQIYyNl/dzC/pM6qPWR2yZOdSJOglz2u5F4968Z3SC1JeNZ/IKE/tgZ8lAADvmFfWU+gVxA0IXS7miCigRwgi/esY8DaFU5Eu9Xmnw3udGVeBYIQwAMgcu5Oixt6g70HqtKu+I8QaT3gDLxPm0flvXf4vGa0Vz7uFTRDW8QafyufrL+yIgnYRcTwjg+MVi23fLqBoiIJ5QVO+ezcWlvO8fpVqnxUF+AKAqhJHvTtxKyL+7vIygeKWpffY38TvJ8hgAambd5tpc02VxijIG3Wu/rT6PV9DACWEnn1KlUU6LPdcSga/so99jVHo2/f1ibke79TfpDZiZ1E1Rb4JNt0U1azL3n3tdbJ/ysYcVwuTtgwhhLA0mvYETwoS2Uv+Ub2o2ee4IHR9/9v8LiFQ6KvadmETLK83OxdzTe7E22JOequ7/dAFVzSQ+EwGg3bjRlC62z6qtR+Q8ktPp+9so+tvvnSSqysymNVstKM3OLTd/ol5s0hug2ZWK0vwC2C5eVNBw55lIpC8SN0PZdZ3fz8prF480HObrHxgcgtgjgusDIxEUtx/1nzkFAFwHZidN+WBJ4HlAvOhZ/KcPtIHiREdUGqY3OELjXRkqTXB+W4fTvMggqbZ4BkSv7zk9luLsG0ZuciX/2QE+Ni1WSXuZDQDorli9BUl0gHPfXZfjBVuv9TlieiIoyaFtKt7zEoqKFJM+UffZP533L8bGeWv9y9A2qA+XzaKKC/HlURmkTBHzzZtkxNBTL6FKt9N0cdV10DBal6e8wikf1g6exX1Dp8TDykWRRrSoSNQaWMgXk+wz+zvrq2g0mJuIsmOnaFpbhrRrvffrhQiZKy7iZy34hobrPBsAAFrMEd/5JojCt4e2GsxWC9LalKDJZEnl6c6zkaoLgT1zF+GqTWx/ke/FUTUmOYi6JMmPLBxI2/j5UhuubhqDaDWvyhbxe2297YyywkKY9AbUeKGA443aJMzmzaLw+WjaNvQzEuE5m3ekbS8dG+a2XhRYWqRoEJnan97XAgCX8zpKj9vP+xC4cwjyJkt3IADQvs/mfXNWCcxWC3evzKQ3IHKiuHBcPexrLv7JMcp7oOxzo77HuYWLt646dD6NAYhqnkLKcRT8EoLUSfZPOLFNvHcRNIK3vMf+3tC8HqruaqBYdKYvieDyvd7uskI4N1st9P6enH45f+SYlnMAQucCGr9692x0PPYsAMlXEHDvvqsgKDZv2L7osukAffZ7p/yL+MRyaenpPO7dksZ7pbq+yKu0mvSi82SC7j1FITljriToNF0ep1qmxt0dpWdFK6Xk7h9bB2IMpu5icaG7plkju5sgBAFviELllKDfaT4kLlH9Cvo2DoGv7kPI3HjVeYAN2zt7kapgaa988t1NegO9cwOIqn3FJvGObMaq1orxkvwmfQIAd483Y14UvaMIiNoD7KJ+Q/5+qtIKALd735vL7o3D7Fggh0lvALrkq4411waLY9vJ4ttcGrm/R5JO59kAi4P8aB+4aLymKjATuNYs4urPjkVzAkSV2JQwDbQBvii9Z8NLzTCTNsgfAPBshomGsf7b1L4hucfstNeCr3MlP19sHBYmvQHYz2vJkDisKneQs6j6apkojWNlt28rBK1zMU7chgJLKyuc5X4co+ChfM4MihP7yvp8yVpi9vdSfPkmtxzpK8T5vUq301KdZkZzdFAeAKj6237kPL2EC1t2Zg8Cx4n3tc9MioQD/7/gEMQeEWyfKt0/KA+B38Vx8UhH1uxKhaZVMKp0Ow1bRjY3OJN7X4Do2JKk9fpNR8NPvwUuPwIykJBL7Q1n8sYvnHTiXQO3n/fR8ISmCfT9ufGS7r+9uv3s/5fqQH49IQCpET8CABWUhJhWcHKRjsNtaZkwW0Wz4UGrlLuaX+cmYtIFaSdOXj/fd5MUao/aWjVV48pB3jf+OBEXkhtyYVOXLeXqQuo2oUk0N1kA4s4xF6/MpjqRnR9r5Hjv9nc9u8IGUXmS4/RH0j2xRp+Ki0eDiwt0DT2hT3aHUFusu9dn4uIjJ3apoq0RAQIAqv4q6vnHhkhOyMmkSVQIPVYmoek83tohyc9/QhLXPlLCNPSdSW/A+Zgb3N2BMssJLo+vAqTL0ETwkbc3e0IJIE6+Jr0BiTMlFTu3v0XV4Gk5/P0Tk96AaEs/mPQGeu+N0Jn5tTjxhqeW4auGh+DRMwPWtyQ++XyQhNV5eylNfi9Y4PudKDgOPv0EAKDXictc3bq8OBxVTTmKb2y2Wqi6jlytSA5yx0Zef5PegLIO4gK+9HQeV+7ysJUw6Q248kcQV2bhc2Je5uA/FPmp/SYnyoDkqDVo5AFceEXdLQBpN+xYYLZa6ELRXn80Wy30Lta4yWMV7/p6paKsnQG5r4k7q5eHxyArQjIqoZYvcTBur57ydqz2PmtGDBfGqnGS9Dm9FtPfWzatwfVB0QgcK42lacMWiIuzKfw4WlYoORRe0Va6+5c3Wd1VSXl1kdM9KyCYKyt4cTyyOotlEAGp0aeJqvww6Q3QuLsr8i2vfHsLePI74cg2nI+oArPVgsDBh+g7eT1JnwAAp8TD9H3gK/vQ+BNxPItt9gSnPfBHQQp6N4rkaKq24Z6wIhuHWYMqarTKBXViCGd8E94NDGw8D0g+7MlueZtIgOjSwbv/Ueoyhc3PabvkziLCYsP5zp643bjUbruwpYtWeH8NNNMwctJL3GTI3a8kpG4Vhccm3lz95Kbyy5v7SRzWXLw94U8err0tGiliHc+fWcfP892926DJpCSu7MxZyvu95Nv1bSRtxvVsKm0EuXW+gJm5SXb5R9xHDDxlRc+2orsOcj+f/ZZZjHAnryO5+2nSG9Cp62HVch45OO6IPTA4BLFHBL2DxEFELpCwiLDYkPHiAhoP4Ae4ssMnFWEAsHXdSvqbqG+Z9AZq+AIQLyzLd3AIFIMgI6gIpaUKOtk6HH5buhcmp5k8+/05jEt/eaS4gEk2/Kzgh6DTQCgqwtWXpZOUiEMD8KFfONIHi7wZmibtTI1vYsTOaUZFvcizzkuvmCxs165zz+WB5CNXGWzrquHqadIbkPMZf/pD6l993T4unBWwAKAoVjwNJHdASLxfAv6kZZr0BurniFjSkvPb1qk1/H7g9fR79BiIxdf12JSyBdboQthOpHP8kE8mmhbN0HhaooJnTh41cfZN9dPSjFWtUZpzWkETSbumsI4qvQS2kxmc8NrT2AtysG3XpDcg96dQUcjoHI7AA7wee+ejt2h+fRtJhmNI2K0nRHWmSBdnBT01YzORvz4EK7x3c3mShUtKmIbWQ/+l9L1ezzyJfmNf59IQnqzy+RsAsLF5HbSYE0930uWXweW7viyyvhfpZ08FzFYL/FsUKOoAiGptxAJkUQ/+lIqor9Z+Kp3ru+4/JePMFF6IUusj8nDB2Apu6/chf6LYPurPS8TFMTHIf49foPpulFSETHoDzo0XNx5s6Vk0vOlB/psIRtEX2+YtouVEuS8+k96AP0I8cGnCXaQ/sQoAcHAar+ZN8oo+XELHNmJy3F4d2XTsb7JgM+kNyBy0gEvfbeBQqY16hVH62O86ZvIvirxNegO8pyRy34Lkc7t3FKcm92yfPXaFHPbZ3gJZbQHsPSURsc07UPVkQDxFYevWaah4cq4NaUoN7RCrqaQcuYBB0pINNG7ROoNXJz8RPx/pJdKiW41WeT3V3p9/PgQdR46kKrlPeYVz9GSsas1tXrB9jWhYFPWMUPDNf62kkq5r4q1KH22zrvypP1tvAKiXWMtum2v7mqiSR8aMIfcW8KQ+Jr2Bqto6bffCAYMWdRcn0VMfgrNv8H1v7c2alAa2j5MNuRo/8PcgCc1ERZeU/d5baxR1U+MBAHrqRMJiuw7g4pYnjDZIEaXZd+pIbhC8+x+l6cxWC7acOcjlA4hCH2tQjOV9wbtGdBgljkEnw0tpWcmGn/HUlte4OSLCotws/aGZno7pLA/Ib3/GZQUpU96WzFYLsjoWwYH/X9BVHMUBBxxwwAEHHHDAAQcccACAgH/mtOrxPxBzWE38X0Pu0LloaxO4PJmLjNnRyO6/kO7AdBw5EjuXLEFsq244+XETBI0+gGsvxaDWat7ijvzkyZ76CAuzVXJaWPqXN8q+bIAqW3gz4fJ8mi+IR+Np4m4Za0lLrUw5PQNPWfFDMz2Xf0pRMd7zFe8b9fCL5vzRVARtcCBsJ5UOQokzWFKuU5sWEA6KKgczc5PwlHkcUKWMs3RYHv/kdQpPLcP0BkfK3Zltsr8qddRoL08nnY6eLNrbRbRHH6D8ngXvGulOpr1y1doLC+LkUuelR2mBlSuv/aujUe2XfXatucnzzH/PiEbTE7nvTSx+ma0WdBg9CrsWLVbUa+YVPzg72ZB7tw692F8Rf+zFyZ9oRKNP7d/1oIhsCew/yvEHEHksd/xJcGZdS7oby0LTKhhlh0+i78kLWB+s9LFFkPNZDNIH23foKk+Xsao1VdEqeNeIukdLcDHUmavfsjN7MPye+XBC/80tfgrrdiRv1iIZCSfp7NHU6fgz9JTAXt3sQY2/xFnsoMJMAACcu0lEQVT217mJSnUuAE4RLSEcOIpGydWRH30TZqsF6SW3MNanLZdPZdpDXEYmFgQGKOJcGhWDlCm8X6fYkE4QiotRdks6kbn7dCRcf99P47QbN5r65JOfXJn0BmBbI6BLfrnt9/qL0YoTPTmv7NWP1J21zKdWVvoC8S6yxt2dqjdq69SG7fIVmK0WhH4Zj/qpd1FaTcv5kASAcZmnMCegmV26WFoAoGfUUyjNyy/3O5QXrhZHrQ+ajt2AuUUNZK0Jg/+gVNXTJLX2T09i0mJh62Tl6Mj4tjWyuy1XHxtVnGafmWKE9xSx/90x++LvlhtEeteEoZnXOeqIHgCls6K6qs2/av2yqGcE/VbpCyNx/KlvEPPleHh+rRzvyuO1NtCPu0dsrzwAgJMTIAiqtAIST3M/iUHa0AVcO9FUq8bd+wJ468KAyMOqphxKQ9Cul+E78D9T2VOr8wfZh6h/MHs8GZyWh1VNGyvyIXUNmRuP42PLuUsroyG223OwHU8rlzaz1YIuDUP+HVYTG46GTlOl4gT/JUrLivHX2UWPLD8eBByqiY8Ydrb4FWarBYGvJXMqK+TieE58IIJGi0JSrdVJ3EBJOjXxgaGmZmJvEdDWVWwKuq5nUO3U+XLTmPQG1Dlmoz6XWCEM4J1VqmFIDfFOVs/w7jR/ctfFpDdQIYw91pcf37P/E7atUy2HCGEEWzZ+R1VqQqpURdDoAwgamkKtSxJelHbmfVORP/8DrtzASYyg5HwWg5KuoooLuV9EkGeSnASzeTqFSXebhNJS7juydQMA4+tjuPQs2GeNoTkAoLSatLdiL9/yhDCz1YLMexYHSwvEBYrOrwlMegO6+0ah2i/igrP2U+lIXywZUSl4h78QT+7yrRk5i5Zp0huw9bYzxnpIKhxkQaugo0UNnCmqzVlX69H9ecX3tydgsmCFFLPVAk0r/g4Qjb+fV285WXyb/vZ/QbyYLod3/6Poe1LpXuFMrGhamghhquVBvKfI1oE44t1621m1foGDD9E2eWzcfLhsOkDv+xEMl/lwyvregOrds6kFMjnvyJ0aNpy8s3Vsrbg3adIbqBB2x+xrt269T1xU7btsPsQwjPMUcdxRE8IAQDggfpv86Js0Lbncz9Irb+vdBgxR5EWEMDk9ciEMAGxXr6IophlV6waAXYt4p9x75qibH6foks+Vw4KE1fwuGTq/Jty7zJnRVMBi60e+ozzPGZ68IHL3ad4qXlDcfpit0h0zs9UC4w4rzefIW/Oh3XGIE8JIfnMCmkHXxJu2EzV+k+9g0htQmpeP01PFb0n+s/mVN+bZAyuEaVoFo/Qvb2zrKfpnIkJY2MfxHB3km5w950HLYWkld5pZPhIfiACoISvi/5I4zQ5OkRSKiBAGgAphAOA/KBWFX0qLeRJ2fVC0ap2FGFHV9vRHomom8atJYNIb0CP2BXydm4ibW0SjXDuXLKHvax/SonejSBx+WzR2kTFPMvxCDDGxYPu8LSNb8W1ImedeNyLrq2jpfUEqfdfrxGXKS6I2busktinWaiupx+bMREW9WSGs5p46qGrK4dpHeodvIYe2eRBt32pjzLnXeCfyLFgnzQTsXGa2WqgQxtJx4VVRXfpI8V16T7K89YnZKt7vNOkNVAgj79fk7VWkuZ/NrP85HHfEHhgcgtgjBnZBobZ4Ozla3SpaWTvpjhDb4cub3NQmUwCc3jebB5tXtQ37qBNPOVKmLLC7K0nKdAoPwaaULXQBqw3wpZa5zr5hRPriCG5R47tppN26mE4+RYVPlm5SJsmn6e7BsKVn4an0HjROUY8IlN2+jeLuUnm67SnIL73JpTfpDciKuKsqCPm+mwTnv0Rh9NYT/MKT9bPG1l9IlazXEdP75A6NHO4/KX0NqX2TMovolsDnA/u+0WJDuyjo4fKKDlUI3ya9gfpPSZvdissvaJR0cur1eSKNf2JeC2zJESfXd3x5YyReuhvYeKsajXt6bUvVxRwAhd+dzVt+5OiyB3kfkv+X36c06Q1Ym89fyDbpDZxQoHF3R3CVarC+xX8nTWgzrA8WrYitZiZXVvhT46l88ibPxBHvVwEh3EaA3JKZfKwoT0gnC1hiSVXOn4xvldbo7jwrLnL++n45Ek7s4mglLg/MVguqmnIQ27EvbB1bKwThDc3rwfePkRyf2XpfHRKDY+NE0+tk8UYsZwLinSO5Y1m1OhLH7wBwY7M/Fye/s9jWWMMGusaNFDySPwd9G0fp3b5qGWqcLuZ4Rn6zYwybz7ScA1x+2h2iFsDt3lFIX96Ght+6Z2L/7BtG9NmUTOua9WU0At4Qn4+0FjgekO+oRjfbRuq9nQ333XUpnVOzUxRxd4e62m2L8rxPTauj4Nml34MU8dJXiBtT5O6sz4e8420ACFylNDx1MU4Udu88I7Y9srnD8pf837z5B2xrvhHFy/mxtf58scw6ez04oStwSArNi5Rltlqoo2JiOTVvkpFrx+ZfVwMA9H/zG1zkHhFLE8k/+nAJNKHi6SGxYAlIfSp5Bu+6gMAp6TA6jhiJYm+xrREXMeTPfXddlFlOYHwTI3UbwI7jdRfz1j3r+Fylv0vPnS93I4D8PvtrsCLe4Qnz0SY6HS1nxmPAyXPc+2/WPk1/l+ae4d6d/TUYWSU3uY0vth0IbaW4JV3FDVDWfLxc6AdANzGnbfqObuKptf/D78xH+qIIVafVgHhPluVf0Chx80E+17Jtr/43Ytua0IS/R2gPJr14x9JJJwrtxOqn2WrBoMZtadrQL+Pt5uHA4w+HauL/GHLVREAa1DseexYuT+bSsLbjx2Dv16K6YrGpDaqYD+J2H/GEgsQx6Q2cOpk9XBoVg7qLk7DkzB6MvHfhl4Xawo4Nu7HZHzV6ZCnSqSF9QSRynpFUz9ofuYtJdU9VuPtjtloQG9oFuWOaovHHkjEMdmA06Q3QGJpTIUSNbrU6VBQPADRubrj2syc8hhRSy4pqZXE7d/cc/cp3uOSD+/Az7bDMm7d4ReKsPLMHQ7zbQRvgi5MT6yBo+MFy6e9w5A52hVYtt0xaJ0Nz4FQ2Nmcnc/HU6CCouacOnRzVJik1kDyJGqPaezZt4XPRcP8pWRFHXh/2mY3X5cXh2PYdr2Ia2+wJ2G7coPEu/R6ElPC18P1tFNwzdTjypqRWQtSz5Pk+2e9lqrI3NTsFp4ob4odm+krRyKqadT56C9tbuinqzT4TR6bFpjbYsUKyutkjsC1ViyPxq+5qgDsdpJPrsnYG/Ll2Jc1Ln+wOa7R46nFtcAz2fbZA8W3L2odRf2VyWtSe5bwh7y5ubIpDbX7i4pZ2CYduWwoXHxCNw2ze/ANiDvdFjR5ZXD62jq1RpnOimxq5H8egySR+EWXr2BranZLlvNiQTtxmBwnv2dqETYfMFdJ/9k0jGn6VqGjXTZfFwXfjTQgHjir6nJpqmdlqQWRqf3j0VKpIE1Use/yrzFgkj9/96UHY8vsauwtGQGyD58cZ0WCO0hWD/DuzYYR/xIqfPchVcq8MjUHtFbyqfGXAjqks7NFamfG7sjzt3utFCAePSWU9+xI9FZfzNGDnELqhkfNjKHyfl9zCZH8WA7937W+AAeImTX2tdIJrtlrQPPFFzlVD5ndhyOq8osJxVW0MLBJK4OLkrMqfzO/CqC9E1gk2iScfC+TldRo6AjtWLFWlS77JYi+OfK40Wy3oOGIkdi6VTLmfG29UVamsLOTlDD79BM7H3FCNmzfZSK9XlFcngqYHnZHWpoTfONjYFPV6pQEaLTJWtkLg4ENYn5+M9p++gdT3eUNl5P/a/CQMaBTDlfX55UBsb+kGW6fWELbv+3eoJtYf8c+pJl5Y+sjy40HAIYj9j8EKYtvOHsfZ0psYck+t6NWCKGREFNHfBy82RpVFtfH3gsXcYHOk+C7ejXgaBYMC4fm1dOz/Y6EHVjSVTO6SgWBGbjK3o8OCLKoI5IMr+3t6zn56r4vElZdlD8XdI6gvKDnIYOwU0RJCygnOjHB59Ngrd2PBAfRp8zQyZtWH7/NH7NJ244Vo1Pg+GU7hIbgW7I6a3yVzg6jxjTGodr4Y2h2S2or/AVfOFDZBQsEhaJ0kC3ruu+uisP0lek9NvmBak7eXOhBVq1OPHgPpKY49VLS4M6QCljDg7lOR2LVYEozJnZybA6JRfS1/+vZB9iG0ddXQSZ6lWV4e+44gY04UMvou4Hhhj9bydiLVFh49Yl/gFnBl2xpD0yWPi6OWVo0GwP5dw4oWF5pq1bA5UzoNZFHWPgx5Y0txqt1qNF0WR32wsXmsv1mDOrlVK/PGZn8ktVqvKL+ihbzZaoFvwgjkxIpCXYfRozg1UJJuTd5eRPw1DkFDU+xuwES9E4d9ny9Asz0vwWeA8j6ctl492C5eLPd7PZ/TGVfbXuHC5HVhcXVIDDxWJqHz0Vt4p06G3fajDWmquHshL1tejtkq3UXl6qzRAmU22hbk9SFjHrmfyy7O5PR194mkbj9YRFhsOGDQYlrOAUz2Fa2mtX91NHZ/w2sYVHbDyB6cwkKwZdMaDD/TjqpzahvU59x1nH3DiIYzeYuvle0vBPK7YwDwfrboVN7uN77HZ+sEI46+Ph/dnx4EIeW4ohySPrbrAGrRVd7u3f6uRy2dDjqVjzXNGpVLrz1hzmy1IHhRPE6Onq/atyor3LWeFkf9ZJY3X915JpLO5fI8WH6xaYS2BjjttdCNlvmn9yDepx0Xz8m5CracFvt5z4hYql4uFwoAIDbsSSSkbq1QiGLpqQzSF0YiaMx+XPitmcI/IgA4ubhAKBKtAxb1jICgcYLr7/vtzvPpS9tQv4Usnjp+FQtOtscJ43foOGIkXBIOqPKdzG1snci7/PeMOP5q5e962YtHxiGNmxvdOKuz1wOX215VjS/Pl9S7VChxCGIMHIKYAw8d9k7E5Dsxc/S80PJqQRS+8RL9zeR8FgPfd6WdSABo82GcwoM8+x6oeGClu2XbGuPq941QZ5lyt1PbNAC2tEzxd5A/EnauV+Rd0Y6ZPWGqMkKWPFwtTu60GLoAlk8qV4bFoPZy+zuZ9yMcqNF+5kMjvKcmquZXUXnAPb9pSYcVPGwxOx4lNQR6EZqACIb/yQJCXqfMmdHUyWvGvCgEvrKPGr0gJwnsiaqcRns8qogm550N6eX28NQypIRp7muRQBabajy41TcK1mdKqLELpzYtsGXjdxzdJr0Bl0bHoO4i9f6j1n5b7nsB+t7qp7Lss86vCVXzVFtwVmaDQd4O2XTaGjW4U0BAVJ0sO3Kq3PIqqqP8PUlL4p57zUgd327I34/ejSIr7OsZc6MQOHaf3TGponEDgGKhV/ynD727NuDkObhpihSbUQHfj4H/W9KGg5NzFdwxGTgVsvJ4Ym+BHduhDxJ2/YLOQ0bAeaty0Vhe3j0je6I0v0D1Xej+gTgS+UOF4yZB4AEXuoEHiOrINj89Z4SGpAdE/rILY0AUEqr+tr9SY+7QtNN43l1UgTvzgRHeHyVi0Kl8DK5xCUeK72JCk2guPmtIRu3blmcow2wVjfu4jrfSe3cE6cvbwGe9k8LICGsMCRAdYAe8lKqoh87Xh5ofz/0pFGntV1Va+CACOksnwLdn1ohHRbjdJwq7v1mk2h96tntWdQyRP2d+HY2A8clU26Dw+Wi4/ygJI1f+CILzd7W5MBaXR8ag7qEbONO9JuYOW4Qv/Fsq4tjb5FCrY8bsaAR/fRalOaJ7mXHWCMUJk1r+7FhHNoLezjqqoKe8OU9NEJX3gzfPtsax8DI6fpVHS+wTvWHLzMH1hADOzY698as8muR5/2uMdTgEsQcGxx2xRxDdfaOgbSBd8E9rUwJA6tAmvQFXiqvRZ/8frsFstXAd/+BUyVcOO1gOPv0ETHqDtNO0SLqgKgeJU7jcC35DldbxAFAhDABw8QqXt8suT8XgE7yI14W+1S9KMQCb9Aa8n13xopH1JUYQ26EP91y0tQl3CkHoI3kSIYzlkZyWyu4IEoe3BLom3vCemqiYrMxWC97PtijKNFstCsMCW9eLl5RTioq573/stfmcEKZtKhofON27joLn5QlD7H82Xs70GPj/fIe+z+69CC67PKlRiCNvivd6Rnq3o4402W8PAC/mduTKsLfgJvcmAPFCOWthLCVMg6eOi4u8wWl50LSQdt4DD7hIiyjPBrjdW7yLlpC6lSuD5ceeuYuQ3XU5pUU4eIy+0ye707yJECbnUdPdgxV1MukNOBr1vaIsOV97nbiMTXt+VfDg4samCt6RdqLWLkm8iElxinTWl1vQ3yRt2ZFTXJ6aFs24dGffNHLx1WDv25HfnrOldt6v80BFPHkel34PQuDYfcj+IkZRBzauSW/AnWciERv2pGo+RAgjYVW6ST4E1wZ74nn3q1y6sAPPw/+tZI6+c3Ft4PqHtBufuTpMQUtFfT/yvTjYMrJh0htwvYmz3Xj2vqeaEEbeqQlhWWvC6Pccl3kKWV9KY09GhCRQtZgdD9uly/Sek/zbPZ/TGQA4Iayka7gkhD37kirtbD5E0J2Rmwzvj0RhfMo+0WgDEcKeiJd8xA33bgfrBKOiTuQ+GDGUUdRDOTeZ9AbxVPeeBUoAOPe6mC5o2EGFEAZA4esy4CXJoMk756V+RoSwjNnRaPKcqHbovLOhou5q/Bi0+jW7QgkJJ1YAnSJa0nfWt4wITtFRX5EkvNov+xT8If2EHUPktJj04uYfIPo2NFstVOWbCFy3+4jjZO2n0mkYS6fZakH60ja4bCyGkHIcjT9JxBf+LWkcOS8IXcR4iHyTiPwOfC2ZCmEmvUFc1zg5oXuvFysU9v++K+Z7qp3YjokQZrZacD1BnPvCPpbWFmx+Ze0M6BneHelL+Hvn8vH5WHgZ0hdEUiHMbLVA17iRIp5Jb0DC3xsAgAphAND9VE/k/NBKQTs7T8j5lvNjqCrP/hVwGOt4YHAIYo8ghKIi2M5fUF1I/lgoWn763ncHjb958w/oGSNemCUdutXn8dhYcIC7DGu2Wqi+NOn0xAIjADqQ3n1a3M0mE2HyjIW43u4yNyCpDRryuxolpmsARFUcQv/J0fO5wZy1lqTzlXauiZNSUh5LM/nv8a0kYJGwXr/x95F2tvhVEed6QoAiT0C8rA2IVuvMVguuDJWcX5O4ZDBnF8okDzLhke9VmnuG2+liB+RP/AzUCSqb5s+1KxX0AuB2W7V1RQfIT8SNQrGpDcxWC2xpmeJiQmVBp3F1RdaX0Vx+8kWDSW+gl8sBwPe9JGz9+Vvu/cbALfS5y0vDaVxyT0Se50XjNVr37r5R6O7dhuNX+jLRYMHf8yULdOy9lMsjRf4TM/eD3C9j81bJWEdGRBGm5+yn6apt2EfLZmHSG6iBDXbRT743jRNdKG1QLJCseLL9j90lZ9sBG0Z4IadjY/M69HfuNGkToV6vNKQvbaNo32z5amA3EQqfE79vg7mJ0AYHAhAdJKvlWXbsFPfc8Ct1tUoWajxVyxsAPRVnYbZa4PfLaJpP3afFjR1imIQtw2wVVXHJc7Uth5GQulWxCPw8h78bq1Ym6/zbpDcgNeJHFPXkF/i1T/AOVANeSkXeZCMujuH7v7zuLL0eK5Mofc63BY7Or3MlIVVt3OG+zbbGMFstiD5coiiPBbmjZtIbMCegGRUurW+Ji/D890RBhzWg4xQuWWot7SIaRpCripqtFnpHDwA9RZODCq2zJIfoE5pEI3+9WEbgy4c4PlX9lT9t1M9IhP8B0aKs/49jkDE3itJK8t65bAnaH+HVvtWEHc9Zifgg+5Bqeyz+0wcZK8NV8zBbLbCE8XkBQHb/hZRusinEbpClz49UfP/Qzuno0WMgZuYqN/1IvLIOovBMrH+a9Abov0zEyfBSuCSoG4qQt3lixIqgp7EXZ9zGbJUMerH10gZJBmzYO+VsvJ6RPenvoBEHETSUdyhP3hFjV+T5+iBx7CHGQ8xWCzfWs/TaOrXmnm9u9qUuZQDAe5+bgg+AtB54su/LCnpqxoqbwfXn85ueGjcxL80eCzalbIFX48uKtPKyWMfXJr1o+VOtz6ptHAmdC+A78DCXX48nn6fxzVbREAybhjiZl89NDvz/gkMQe0SwIf2oYiIxWy3U7C8Jk+/wXowTd5RLz4hqGhpDc5j0BnjOTkQvrwg47bXQ+GQw0IQ2U93V3hv6CwBQn04umw9w6dg0nQcPpzSo7ZIBwJ1OojW8j+vzk/nx4jtouixOsePJeqVn6yh/bvV5PFemSW9ATol4B2JMrQIuHSsEEfqTDT8DEBfiJr1oHMOkN8D9R3EH0e9t0Txx7RXS4sp9d10AQNBIaceV5Bcb9iRyPxEXbbEtO6vyVm2ArWI+qIhHwFrIy5kew9XJdkk0F1z1t/2oYj6oKIPNy2y1oOzuXWS+sJCbUN45rxz0ifparxOXFd/bZZcnmi2No/zQbROtr114RZpYytvVFIqKFDvTzhck8+yaVsG0fsTsMKtaa2+Ses83kgsnJ4Ny6L+UrLalrwiHSW9A4syFqu125Zk9igkZEK3bqdHAhhET0WoTNctT+V2xoBHSdwzey59CxLbqpvim7Bhh0huwdsaX2HtXXJB1WicuSoPG7C+3/clPcOX1sdevz0wx4vMc5Y5910HDVPMjyO6zSEG72pgHgLsPeeZt8XsFL4qH31/DaJ8m1jjlCyWWrk2JGxV1q7ZXFAIv/CZuPHCCxz00npYIm4sTAFDT/fJ8AKBBUg1ufDTpDaj5XTI37oxvYuSeAfEbt0gRp9/ot8fQ8eP2Ii+Y9AZMrXeclhV6yAm+m0fAbLXg+qBoaAN8ufoSmK0W6L8UhRnnQj7cbLXQO1gAoNuWgjOlNxXjqElvwLWXJAGUHYfkGHDyHMqq2bhyqm6pgVv9omi+oV/FK+icf1o0UjTfSxQeA95IRuBYaQON7eu7Q125tKtuiOOw6RivftvWVaMQWJ0iWqJKt9Nwt7hwcWO79C93w0StvuwG2ZNtjmLnHQ0X/3q7yyg7fBJvNFFqaZxe2xIXx8RAs8u+7zA2L3JiRp4jJsXR56BRB3D2V8kC4a3mDZASpuH6uRr98s0Reb099tZG7uxanDVPFtdeiqHxQ2pKGgtmqwU114jtXRvoR8vfcuYg/c1+E3K/mlhdlfs1PBN1i9aD5E/+bveOglMS70vszLqWKO0cTuOmFEl3Mlm/fwDgxliZZOmS0ygf9+Rjt5pApjbnA8DmrT9ycca98BsXjx077I23jywcJ2IPDA5B7BFB7yBRaGFNHveMegqnRs5XHVzbjRV3lw9NFlUQN+SJCyPWoh/5zw7uJr2BqirJFz9k97gyuzLOf6XQHdbY0C7iQFynNh1MtE0DqCDH5tn2SB+80US8s3W7gY6j4dzrRji1aaG6wGAH0MPvSCb8iaA65t6FZVJO6JfiAoCosvn9PFpBS+LMhbg8PIYaR2HLY+Oa9AYUtr/ED7b3FgImvQG5IwOQNlQ02S+3vMfSDwDdew5SlCFfDAFA1oCF9L3ve0mqPIFGa3fgnph1BGXtlBMhgYXRvhqVLk2GJr0BG5vXUaQr6nAOPh8kKSYx16vSbqwc9hY5Jr3ovDf9ZUl9tuzwSZGXP4XSu0ZqML4+BjcG8gLE8PQc+jthx8/l0gOA7vQSWrSBfpyPHdIe5N9oz72NClvH1ly4rqEnfS49d16V3ya9AYbP4umOr5wmQLTiBUgnjIQ+28WLXHyWpy/mdgQgqnsR3zh/tZBULOWIeD8O2h16cfHop1HQAIiGFgjCUwZw77JmxMB7SiIVgrR1JXPmZJFl0htQ2oU/hVATTNlxTb6QtL4tCfh3GounQ95TE5HddTkX32y1IPszfvFb8mQbLi+2TABIOLELZqsFqRE/qi6qSNjtqNtcfDnMVgv61ZU2Uy68YlQdO9TK8O5/FF81FPl1IUag/paIQYEuL0onzjM8U6nl1OQZC2Gr687lBYim8QlNZqsFlonz6bNJb8Cawjoo/tMHmtBmdGPHW1dddW7Z9/kClP4l+gsLGM+f8gOAzqexKPwHe8K1tnRiZdIbUGdJEgLfOkHzPfKmRAfhQ7wPfz/MHshpAgBMyxE1N9YMvud6pEUNevrGotvAoZTOLb+JamyH355PT4kBUIM8Jr0BIUniePxKhrrqvdlqoRt1BLmRd/CpfyjMVguc2kiqwNogf6QvjFSMGz4DjqLeQmlTb+HpPYp6ExVIQPSXp2nRDLEtO8NsteDAx5I7GLPVgiORP9C4xOKgvfmLYGReW+455q0x3PPVtldwPGYNcrovpenz3xN9hwFArdXS6bsljNn0aCT1c9YZdHmCLgC7hrrk9K+9WRPRln7iBsoGpfXdqturUz+mRUIJ1Ryx167kApNavC4npFN0Ok41Cufm6DMfVKzOrVbGhub1OOFSXk6RUKLMxIHHHrqKozjggAMOOOCAAw444IADDgAoEwD8A6dVZY4TMQf+YUS6SBe9Wf1kAqIj7bae3x0iVsoI5OmIXrr8pIwFudOkBrVdLaLqYrsk6l4nHN1O33FGPBgQ9UcA8FiZxOXrOSsRWzZ+p1AbYP/Ld9KH9zWrluORUSqevBwT/ZUFjtunugN1cNoCXIjn1evK26k1Wy3QBvnD3EKy3tP440SOpit/BNF3RP3p+RxRZVFIPU7LMVst0DaoD5PeAP+fxtD85TTK6RqXKdbJ+lYUYkM6KegDgA/Hj4Bmj8TD2E79oAltBrPVgrBP4rm4fatLaj7aIP9yVTZYPgFAje8li1vZ3/PqFew3O/1RDHXSCgCaXance+KQl1ySZ8tj1Q0TZy1EjR/EMjNXh2Hu6b34/KsXpFPde/cc1GDvpNeWkY3LXSR1L3nfyPksBt0GDqX3MFk/Via9AaVnz1WqHMu787Gk8V5qWCGhQLxHQ9SBGk9L5PonMT6ixlPy/6LxmiKOHOQCec6nop8n4jiZGF6Rf+dP/Axw2eUJk95A73KR9/4T+HuZpO+zcQBwPsRYviy+rufCzFYLik2SOpR1gtgXj46fT/PLeWoJl4d8DGP9N5mtFjhvPYjSzuF46vhV3BwQreBdbLMnVMcVeVv3u+czKuqdOMU31Xp4oNvAoZgXKPb1Hk8+j/rzElW/PQnz3zaU5s0i8BVxbCJ3P81W0am82jc36Q0w/7JKUUZC0wRFPGi0NGzqhgHYEfIbNm/5Eb7vJdF4RVubqNKr68o75mV/l57Oo/zy7s+rnZ/7NRgrvHcDEO+A5pTcVPBaXicWV4fE0PzKjkmaG5N9xbtRmc9Ld4ga9ZVULUk+rPofWwY5Bct/j7+jQ/KYtGAIF86mvS1bB07LkVT2iSuSOns9kPN8AwSN4e/CmfQGOOl0OPuGkX6XMT7taP5OOlErpKTjWe6k5Hx7D1zrGkTTqM2J5Lf77rrc+9hO/Wg9AKC0czjORN3CtJwDKHw+GtlfxHDjNpuvSW9AwA/iXBT+9DFkDlxI48jbrdlqAcpsqCzMVgtVe2XLZZ/lY++A6texseW3iryIg+hDk6XTQrl7lfLoAID8iUaETY/n4putFui6nkHEoQF8eH4KYps9QfPw/kgcO3t0f15Rl7L2YbQu2lo1sfZmTRqHbQeK/gqgl1cENqQr3YM48HjDIYg9Ymj/ymhoG9QHIOptE5COTqzoEVSkAmBPNYaNy3p1fzbDpChT/tseSJ6tPo/HlWFKXXl5uYBonl0b4KuwpmivXJPeADg5QdfICwAwoXaWIs7nOftwvYnysJfwQs6PG0FlaDdutCIuSwOx7GfSG5Cwcz20Hh6q9FonGFH7KUnNZVKwuED60Xc7N9GarRaY+gxGuz9FK1IBr/M+y3q2Ntn9np9NEIXxo+PnKwykkDT5AyQVh4xvW8OWlomyI6IAl/q+pNrJtZvoUNjSs+wuwOTqLQBvuZIsXNu+puSlzwdJyOvFqzGyCwBW/Q4QLU4S+lih3qQ3UCuNAS+lYqxPW6R8uAD7i0QzyJv2b6JxL/0eRIW43I/5BQC7mAdElS9AtDLH9hGz1QLfd5Og2ZVKF6BqMFstqotaQDTTTi6pm/QGZL4g3k2L9WoNs9WCnO6S82a2bNb4iElvoMYpANF3k2rfUIHvQPFehe/EJNX2ryaMFXWQhMviP31gKSqixk3YPLQhTWmYSW/gBHk5fwBgfXB9bmFp0hugLS6jeR59fb5is0VtDGPbLbuAM+kNeDPzOHTbUzDW4zRV9WO/97hD+1DwS4hqO5dvQpitFtRanYRrg8X2U/CLqA5nu3qVLvrNVgsnNBDofBrTsKnZKahT+ybHE3n5RKil4+gMacNEiGkl9oV77Yg1vqMN8FX99ub8FJo+ffACRZzLI2OoMSNSV6cwXt2PhHc9VkjLu/R7EM0r4xvJ6m3m6jDcPVaLps3psRRjfNoh59MYRdn2Ng4uh4pST+60GMW3OPumEQE/3io3D/b56hCpzzdKri7+ny4ZBGFpIr7U2PJIXkSVkoD4fmPjX257Fd4fJULj7q7YLBBKS9FwZqIqrUJpKfw2jKb0+P4+Eia9eOWANf5EyiE0X39R6ouF7S9x+aaPqsvVr6SGFuvzkzHZNwLCyxfh93YS/A+48v04UPJj6P+mWO75mBsw6Q24OSCa64tsvfuevKAYTydmHaGGluTxWRVHeZ97sv8QyGHSG/DSPf+aGXOljamywye5Pk9+n/6IX3dkf6FOBwAcHzsfqe+J443zzobcxteB1msVdBC3IC67POndye83LVe0Jc3uVEpXwoldeO+3FwCIbgfYdgaAGtv6N0IQyv6xv8cdDj9i/2PI/YjJOzW7SIpt9gRsN25Au0MPWycrzo81wjJxvt34BOx7nZceQi13JPz5E0x6A7K/N9AFNPE3xOZDfgOA75YRCBp2UFXou9k/CntnL1KUBwCD0/KwqmljVRrVJmg2zCmiJbJe1yKj40qY9Abqx0otrj2QeOlLIjhjG/I4cpC8g1N02HfBBy5zaiO/i5ZaKGORMTsaga8pw+3RaLaKTnJrrU5CsakNNdxB/CLdGBhNT37YiVgtT7PVQn2g2INTeAi2/L4G3Xu9SK1UkXwIT7UeHkg4vgO9MrpjY+AW+o3WFNah36+8+gw+/QTOx9zg4rDOMkv/8oau65lKfzdANKyRY1pmN768vT8RNwpVf1P6g1pyZg+8ddXR5aXhqqc1ankCgGBsBafEw5WOLw/v0bQ9LvdpAY9v1R28Et8+ZqsFlqIivOMbpaiTSW+ArVNr/LVGvB/VYnY8jr0m8jT3p1B6imi2WvDE0d6oasqBxt0dZYWFNDxkbjztN2p0byw4gF5eEUhfEc5ZS1MbB9TGGwLWka+9eBX1fwAI/SoeR960P7aR/60+j0eHlw5QFx/lfQ81kPqSNEWxEdi5dEml07M0kzTpiyMQNMr+HRiCzFnRyHpuIRZf12N9cH1FnvI2oFYWwYXfmiE14kfVd+XxWw15k42onidQS5BqeZ6ZYoT3lMo5graHNXl78ezxl7An9Be7YxuiQ2H+ZRW6vjAMuaPK4H9vrjJbLfD9fSRynpa+lTakKRL+/IkmjXg/Dgc+WVBhG5KXnbEyHIFDpDYRl5GJBYHqRoDYdBOzjuBT/9BK80Qex9axNf76frnqd1flzT0MTTuN1T06YNOeX2nanq1NnAXa6y9Go+Z3/ClYbLfn6DpAzhtAtGZJ/EiqtUedZwNaRmX6u73f9saBroOG4a81yzHvWmNsbF4Ht3tHYfe8RRW2M7PVgnbjRnMWmdVoZPsMqRMA3H0qkvoUlG8GkDEaEDf3mkyy74NUDjK3V7TuWZd2CB5B2Y+s3yyyZu3i8fI/5kds29VvH1l+PAg4BLH/MUijvpruh/5NW9uNV94AZrZaEPPmGLpwB4Bz443w/DoROZ/FKHZD835ugcb9JJOxRT0jsHOJNKG9nnkSswKC0evEZRSVOVM1PPmgRCAfgDsOH4mdy5bQRW9lBAlAnDiLazrB82v7xhoqg/tZiJUXn3WUzcYFlBPszf5RsHYr49SoSDzi5NRePkPTTmNFU59yFwfs76LYCM7cMcnH3s6aSW9QTPLkf7M9L8F/wjV62mNPoCDxWSHAHipahOiaeHPW7Eg8p+1e2NJsE5dOTYhXy5vQeH6sEQ3mlt9+zFYLWs6Kh34Gv5Bk89U18kJpfgFapGiogEvKYHkpzzckaRBVdyLxtR4esF29CuPhYiS24ieugaes+KGZvlK8l/+X06zGHzbf9PmRCIpXCqmXRsWg7pLkCq1TydtatwFD8OfalXaFKZPeQJ2pm60WbLujVTqF1WiBMhul8/qgaHo6Ka8bIG4WZQ30oKd7ABA5MQ71dp/Fpj2/okXyIHj1OU7zy/4sBhmDF6B7z0EQUo+r8i827EkkpG5V5Wv6wkjk9FqsSgupa2W/m7xO5B3bxtX6c2XGsvK+u73f2Z/HwO+dJNwcEI3qa5Ox8PQeavQIADocuYNdoVXLLUcervauzl4Pzt2K2oKdODon/c5eWWSumn6pqSpt9saFO89GKkzoy9PcfTpS9FHGQG0jhv2m3QYMgWaPhYaxG4WGVN4o0v0KxHL6KppH7aVl45FvLJ8rTHoDNNWqoez2bRqWP9GI42Pn26X5zLqW6OZ7ijpltkcX2QS0109I+ZUR0kj8wJ1DkNFxJVrOisfR1+fTTWp5nm5/18OtJy7a7Y9smK6hJ0rPnrPLt2dnvk39JVaWXgJtrZqwXbuuCFdDqVDyr3Do3KXWYOic/gFBTCjGtmurHll+PAg4VBMfEfQOUnqJJ0hf1oZ2crajsx1efnri+bU4YPhsvkvjERPJJ4zfceWwQpjZasGsgGDcMfviqx2xeKO2aAnp3HgjLZP4JjPpDaqDjsvmA+gwehQ9eQifIpnfZeknam3BC+MRun8gaq9IEi1c3fN5YrZakD9RskTGOvMlFubsCR+D0/IUYWxccidJPpgSJ9QAqBDW+wSvNqeG6uv2wblGEeVJSNIgmi/RJ5eDDvJv9OOeWZ6yeukknAhhJIydANg82nwg3W3R7hTvI50fZ0TsE71pHJ8BR7Ep6Xcuf7PVQp2rEpD8WV8/6St4y3i3+t0zJ94o3O5CzWy1oDT3DGLeGqNYYAidCxD5XhzHq1VNG+PCq9K3JnVslFydy5PSEHPbbpvg4vmIdxsKn4umebI0l+YXwGy1KIQwAJxAa7ZakDFb8qWkdm/FdvUqzFYL9nWop6Dph2Z6Gpf4t7K+bbTb18n/7uWYbmfrwS46cp5dzPHAbLXgzBQjUqYsAASB88XEqlmyeYcdkCzZqQlh8rqnDV9An798pj99nzFHpB9lNuRNMiJg5xCYrZIpbAAI2DEUq/P2Ivt70Yw6ILpY8J0o3XEy6Q3Y/+kCZA1piJ6RPeHV5zjy3jdif5F4Qub3rngPlb2b6RQewn3zKmudYNKLGyLytpDTazFCv4xH5ERxDCP+2ioSkkx6ccOEvPfbOlzxPci7VU0b0zybrohT/X7yNk2eWWfqbSbH4fxYoyKdPD8Cv3ckS41mqwW+ztWpCq/OswEVdMxWC86PM1LH492eE++6ydUH5W2P+O+63FZSn5a3V+IGpTQ7FyVdwznVYoKsNWE0vssm0arwe3XTuHzkdcuaIdJGxjoihOl8JF4Tq7KBB0Tz9qwQlv29mBfxpciGsX1RdzgLALCmsA6cdDoqhF2Mi+GEMBblCSTyb02+I/G5qNZ+5Onk74kFTrPVwlkXln+zzZmJXH6NPk1ElxO9FHMkcQjt3f+oQghTo0tIOc7RLeeFPQGJ/M+faKT9DgACv4ujGjL6GeK9zIRTf6uWf+sJdYuzJr0BzRNfhNlqoWrt7F3fW/2iOHrG+LSj1nzlAhex0qomNBMfb6dmS37cWHrYKw5q/dyB/x9wnIj9j8GeiNVwl/yB5P4UCqNPDqzRhVx8TWgzXIz0QJ2lSbi4sSnq9Urj3ld2t01tN0cT2gybt4hH9bFP9MbZ7g1R/5tEOLm4QCgqKneX6tkME+50kFQhzr1uhOesRC7updEx0BYBddYeRmnrIGpMQi0/eR20Qf6wpWfR96PzY5AbeUfiyz1VrCtDRYMEAHD6oxj4fCDunE84F4YZnqlotjQOPh8o1QnMVgue7Pcytv78rSQoDomBx0reEIA9AUONfvLfycUFWxi/S/L3vU5cxsbmdVQHcpL30LTTeN79qqL80x/FoLh2GbS3NZxzXACKExg5rfJBnw2POdwXNXpkKfjE5vXe+VCkhGnK5YEa0hdGcpfaK/P9AWmHmbzPm2yE9xcpEIqKaDrDZ/FoMEfdgS6rlikvR23xI18YaKpVQ+63/pwDa3t1vP5iNJK/WKh4r3F1xe1uobgSrIP+C3VjGWwana+Pwr+ePVrJu7Dp8aj/jfJUUI3ec68Z4XpFwL7PlXeI1L4rVceJbAnzr6tVeQUAHUeOhMumA/Rd1lfR8H8zGbf6RsFt/T6Yjt3gDN7Q+sp2pW2dWkO74xB9LtraBDtb/EppYk8gWLoDdg7h1NgIfazK0vD0HCwL8uXiqPEMAHp0f56qbct5U177rUzbZunrOHwkdftRXlqi5qSGDfn70btRpGq6imhg60bqx8LJuQqEkmK7efQIMHKnKuREguDceCMOvz0fzfa8hFPtVtvlU/ThEiS3cuZ447d1OLKfXIaYt8ZwxiYA0ccf6ycKUI4zADD39F6M9eHvujq1aUGNRAGAtnkQbCfEe77tj9zFpLqnONr8D7giK0Iy22+2WhDbdQBNw4bLecjytmfM0yg9nce9U+NHeb+7vjAMxHjQB9mH8JFfa9wx+6KqKUc1X22D+rCdv6DIp0ePgWix4hSOtBZwu3cUqm3YV+m1hBxkvSAvmzxPvdhcoRlgD2rpAfV+Zy9deX3bpDfgzBQjTo6S7k2Xl4a8Sykqpqby5e8AILZ5B9iuXa80jSz+NSdiNV/6507Erq9+ZPnxIOA4EXtEQPyIETR57gi1PsWi7Mgp1FmaBOvbRk4Ikw/6+RP5E43LI2JU47G/iRBm0htgy8xB/W/EhSIZVNndJDYvAPg10MyFHZ4gWT0jOz11FyVh//QFKLt9mwphclrMVgsCvxN3n8mpltlqgS2dN8qxqBEvdAgB3gBAhTCz1UKFMJPegCOtBbQdP4aGsbRSgSnxMNqOl/yrVLtQandRkr5cumQbG9IJZqsFGkNz1cFVKCpC64/iFDwjeKVWniJ/Oa9XNPWhv5ec2UPjnRqxAIGv7kPGiwuoQZGMb6Jw7jWjQghjdz9ZBO4cIoZHtqTxWCHsjwLxZFPjzvunSgnTUBrlbcKkFx1lq8HJ1b6lLXsTL8ALYYBoZZBsEJBwy7vShMrmM+FcGG55u3H5qvG77ZE+HD1sPpkftoJ3/6P0xMqkN3DtwGwVd9kB0PsYxOcYiVN29y5cf98P/RfS7qq8vKYHGcupOadVBWaWLnk9iBBG0l0aFWN34ew5OxG1Vicp3p1eK520sPGbTErCmQ+NwP6j3GKorEMYR4/LJv6OFDEAQKy9kpN2QqOTi3gqwQphAJD1vJbmeWaKkQphJJ1cCKPlsXeJNo6i8ffMWUTjLAvyhdlqwY2B6k6LDakSr4mzcxb2xkO5AG/vHSCOyya9qDpn0huwcxlvIZLAybkKup+SLIKSuyZyrMnba1cII3OC/JteHxRNxyfyXq1PA4BQUkzjEC2JsnYGaIMDRT4xQlhp53AqhFk3NAcg+vQy6cWT+C4vSb7SWu0fyNVjaj1JjTR/vXiCmf2keFeUCGEsXcTHH1s3olLKQi6EAeAs9Wob1EfCX2tp3nKH0gCQFXEXZqsFF+OkfpXwl2Tcwd6cQfhF8xneCIB4385stWDGFX8u3cUxvKEJtc0hIoQBwEd+raH18KBCmNpcH7BJPJ18PqczV1bZ4ZPoWEM0gEGEMLX6yOd0NWxhjAqRsjsfvUXpJ/OSWnqdl6ghcHVToOIdm2f+e0ZpXJ4lnVKfH2e020/ZOrD9oppV4N4BQE4Jb1hHnl+4SxVV+km/kQthZqsFV1+OoWXnfhyj6IcO/P+F40Tsfwy5sQ5AOeB2HjICzlslx6EZ30Qh8NV9XNy8n1vghFGaUEgnZ+8nkXBdIy9s2r+JTqZkcmShNjCQC8Dl7VKpPRMYUoGU11tDu/OQahp5fLKzlvNpDHwnJikMEMhpKG+XrDK7exdeMaL+PKUhEPkusL1Frfyd2u/LI2JQZ6n9C75qaTK+bY3AlyWT6b6bRnJGRyoqk433bIaJCs1R78SpnoTYo6ciEIMPamlKu4RzRjIqmizlZRMjEGxate/Pwni4GD1qHKYuISqKby/80ugY1F2kbu2L/U12QSsDYhCALTc2LZaalpfTw5alCW0G4WQ2bZNs3djFK6smWR7t9iBfUJqtFnx4MQTJrZy5OOXxleTR7bmh0OxOhdlqUTUYUxnId/rlOPe6EYcniGPZmry9eOH5V7B13Uqaf8EvIfDqc9xuehb2xrCuxwqpw2xyWumyy5Mat2HTdx00jDq5VgO5P8emqSwvCC68alScfsrnDwBotiQePh8m4srQGHik3ebuPbHx2nwQhzpLk+x+RwBceyT/2VMkFpmrw5DVZYUoSH0Rw53a2+vHbJgaT8idNnuw9+0I2HuLANBmchwuR5UqDKw4hYdQFy0EdfZ6UFXLS6NiUHexOq/kZRf/6YNqQ0tRml+AW/2iFIYk5GlLu4Rj22qlkSJ5H2brqda/zVZJe0QtPjnpNVst6BkRi9ICfvyxVzZBWfsw2q9J3je3+KF69+wK01/c2BRajUAtFMrbrEkv3bm7n75B4l6Mi0G9Bfy4rdaOmy+Ip65D7PGSxM+aEcO58KgMLX4bRlMXFaRM9mRe/l2u9Dfg0NpJj+wJED0Rcx/0z52IFa55ZPnxIOA4EXtEsCH9KC5uFE1By3e9tq8UzVsTHxz+64ppOhK3cb9jiHg/jobVS6wFADg5Zj4XFxDvv/x9T7PC8+tEhHyjNB0v3xUFwFlhAvidJTnNJr0B2qYB3MBnCZN8MLFpyN0i+eKcnMSRi/lECCN3huT0qg2eapC/C04RTd3Xn5eo2C0zWy10F7i8vEh8ll8mvQHLzuyhJo0B4K0JPyrSEuS9b1Skz5gdjaqnXLHwtHi6tPCaF4JGiipfeT+3UJSpRhOb36+BZsr78oSwyvKP8AsQfaDYo+dWQ2fIERvahcZ/6vhVRZk774jDU1HPCCqEDTxl5dolW74cia2qUP9DarzQNfTEhVeMinA56i6ybz2OTccKYcR0+aVRMbC+rWyv2U8uQ4/j12gdTHoD5vmtVdRFrV053S7CltP7ub5H0LPdszBbLTges0ZRZq+M7vT34NNP0LLk39Ne2Sa9AeHVREGInI62mB2vmsZstaBRcnVKn2a35N9py8bvuPhOOqWrCTXa/m65gXv/euZJ+v3LOoTBc1YiYp/oDbPVgrpaN04IA4Bj0Wu49Gq/CcIOPI/AnUMU4RNqSyfF+bOqARBN/au1C2Ll0h4Cllu58sOmx+Pu05G4MTCa3ke6ucXPTmoxHRHCnMIls/Ps9wpeLI7tPh+K8Q58soAKYYR3bT6U5o2DH0l3+uTfVT42seMke4rE9smsLivgt07UMvB7W+xHZJ5j60H++yaMoHOHPZA7beTUFhAN0ai1Q7Vy2HuLJr0BdZYlqVq5PP10Tfq778kLAIDvfXfQ+qVMWaAqIMjHJrPVgirdTlMjJG4/71Ntc+xCXbctBSavMEU8k96AS6Olkzi27IhJ4v3aG5ulk7XW0+KwqBE/fpF7SSa9garbmvQGbDqQQNOpzcmEtoxvJaNimt2pcAoL4WipjBBmtlpQr1caaj+VDpPegNi0WMUY2/7IXXriXdE8Rf7rPBvApDeg8PloKoSxIHSSE8EuLw7Hibj5Cvp8N45C+sJILg0g+VGUzzvss9kqnpYC4t3BwFf2QWNozuVP2gDxHdgieRB9V2NtxRZXHXi84BDEHhH0DmrJqRr2y+pKOy5ZsO77XJxANLtSuUGexCNqeYDk6BUA4OSkKI8sbAHJtwqL6wnSREgGokujeFWJ4WdEx5Rn35RUXjz21qZ02dIyYdJLDmvZwUpjEFVVekY9pdgdzF8fgjV5e7kwUmaDpBqo/035jlNZkEWeSW+AYGxF+TXg5DlKz8nwUtg6tVad3NR2yJrPlwTXlrOk39GHJRPaBMO926FzkrTget79KpefdYOozmhIBRp/kghtg/ocnwJfS0ajTxPx7Ky3AQAbmksGH1ijK/b4IJ+o5AKz2WpRFRSIqpCaYCvniUlvwJWhMYp4bPzkL3jHoCa96DepZ9RTAIA/QpR+2T71D4XZKhqTISDGLYq7S0KfSW+gxhnU6j3wlPoub+nZc9wJqNlqgbZGDUV6eZ5yPhDc7B9F4xADKHUXJ9G7YMRZMan/eI9cLr2vsyi4ZMyL4sokvqsIbJk5dgXRTXt+5eLmTzQiZ3oMbvaPwsbALTSc+AiS16OijQziwLissBAaV1dqQZOoy7LfNz/6Jh0zNK6uNH+T3oCp2dJpoFBaytWXpYO0UW2QP945z9PZvZpkHIeMiYQ3Jr0Bm2672q2HXNAgeCVDPNWp/8wp6tbDHjyfPck9E4MibD1JnXS+PgCAs78GS21k728AgCf7in4Bq9wQ4Pr7ftT4IRkZHVciOEVHF7XsQpMtg0BIEVX5MmdGU/9ZZqsFJ0epWzhl++7BqeKGTM5nSvX1wueikfldGBemcXdH12OFMOklv00kL11DT67uJr0Bujv8/MPOc/LxNmiEqPlR1EgUgo4US3exrieIG3tNDzojtmNfnGq3mr7LeXYxpZ34X2PryvKLfHs1wZFAW6smvKdId03XN2/A0avWdwg01arRd8Q/Jckn7+cW0Li5URryJxqhrVNbkQcAFD7HjwMEKR8qTfIDwIGPxfVBUqv19N2hyWLcdmNH0zTEeBALp+1e9HfuxzFw+3kftE0DuDacvrQN2h3pg9p7XLiyt2xaA52XXtW3IUF5wioAXF3sreDr7lCx/7rs8lTNk1XhJunIZnHizIVUTVwNV9teAQDotqco6DFbLRjTdgdyei1W1IdtSya9AXNP7+WetSGiQZtDk8Vv8eny52C2WrA54XtVntguXYZJb6CbRPb458DjDeVWpAMOOOCAAw444IADDjjggBoEAcA/cLPp/8HtKceJ2COKwvaX6O6I7dJl7l3GynDFzhx7QqaAIKju7N8YKO7gOrVpoUiXbPiZex5w8pxo5prB/MaimoZr54vSzlbbKwj4fgzdHQKAoGHiLieh12y1oMxyAiVdw1Galw9dE343rFHf4xjUWLpUfeG3ZjBbLch734hVPn+r7mROz+GtY5G82N129l7E2mBPjne3PKvApDfgVl9pFzJvknRSxO7o3fGWTl+2jv2CqhgQK18E5De5UyLf8TNbLdD3PgGT3kBNHbc2n1XsEgOAhjnwMVstVN1HDRlzJbUSk95AzU6zNOk8G9D3jbZeU3x/z2dPQhvgS3kcmxYLALjxgthmirY2QehX0s5z7RW8w2IWb2cdxYu5HekzW7fSvHzV0zoAyPoyWsELs1U0+btj+RK0PyJemp+Rm4zJvhFcHLasITUuqO5ssu3HpDcg7JN46otGvuPN0nHuNaPqd66+bp+CVvaEiPgtU9tNZ/MLWi5dFDfpDfReExunrH0YYrv05/JhT21pX/o0Eb7vJSloY/MzWy2SiwaNlktvj0ZANDxC3nvrqtPyu/tE0nrXXSLe5dmcncylj3bVKvLNmC0ZzZCfLtnSs2gfSV8Yia9zExXtxdRnMADRdHj6wkj0rHaXO/2wdwrG1nFeYBCNw7rAkLfRC781gxwB45O502Vt0wCkrwhHbKd+1PLlkcgfFLwtbCKaiS+5Z0vm8nDxIv/XDQ/SskncVpvPwqlNC67cc+ON6HVCnCMC3kjG/um86h1Lv7zOLrvEcfD8OCPSBy9AjwBePdr9p2QEvJjKhZUVivfksr6Kxp6hX3J5E2MrLGrYMb5KTgLJiTXhbZP9Vel90glNotFkv8ifZMPPMOkNSGtTAlt6lqLdkz+vLZKVRo2ra4WnvGrjre3adbyeyZx4MotBcipprz15btdSdXe3n/dx817jfsdQdusWTd/kh3yUeTekz+z/xJmi1VVygvZ21lGuLWibBynSqY1bGataUyM5LAjt6UvbQOhcQMPThi3A9UHRsKVl0ngmvQFBIw7CrXs26iyRNG9MegNazorHpgMJmBPQTPWEEABKuobTvIan52BDPj9fE/c7HntrU5V7ojVT1OEcF5fQHVj1AvfMwqQ3wPn4abrGURuXCdq/Ip1amvQGhMyNx85B4Vy7IfF9E0Zw5fRLlZ5tHVvDdjyNG1eJuxei1URoYePI6d6QflRRHwcebzgEsUcI8sWdSW+A9z43hWpF4JAUxWCiNpmQcPnE3W2g6Aemxg/JaJBUg7MaRf7IQp/oMK8N9qR0kXJdnJxh0hvQs5HoJyT3E1F33f8tcVBN+PMnWiYZEOMyMimdzn+Jky117hvZEqZjNxR1SI34ESa9AY0/4VUo6YS0Q4/3fCMVPAEkNZGKJuGkr0TVuT1zJatqjT/m/X+lLxYNUQSNOoAGSaIK2xDvdlTFgKVJ/pvQdmm0qMrT9KAzx3OCj+uLg/D1QdHU1xkAqkJH8g18LZmbKACgUXJ1dDnRC4Fj93Hl1/mqmoKm8z396O/NCd/DpDfg7Bu8imLesw3xznmRPwlNxfsDxGLZzha/ouFXEk3aQD9aH/kC5Qv/lpyqLHmncXPjFhYAkFVyk77PfGEh/e2k09G41peCYfIKw+5QcZE1oUk03s9W9gcAdMEekiTp4LMLN5YelsdsOPt85Y8geM7mhQC1hV557YCg4F1e0Cd51v9GEgDO/RqMjG9EwTqH4c2fP61AwrZ1inLk/JRDLnwSH4UbmtcTw+85VyYg9yQU/crNjXs26Q3oMGoUAODSYGmjiCxg5ePTE/Fi3ItxMZTuwNcka3gB4+0bYwgasx+x28bRfCmSj8BstaDegiRqMU/ODzlviJ8fArb9Ev9ebDraVhjT8eyiiljDBIBzM7SoVfsWXdDKy9eGNIXZakGNH5JRc08dJE2aAwCos0xpwIOUkRKm4VwwlHYJh9cPmdjYvI5qfDkP5PUo6iAKTg3miG267PZtnPlAqapMQHzdma0W+L+ZzG2YsWDLr7NE/Y7l1vXfwmy14Idmek6dr0utEwBEX2CAZCG3+6meHK/JZhIApC+KgJOzaDjAdjKDllF2V1JtjJwYp0qHnN7rL4pz1ayAYNW+tOmQmf5We2+NLsRuq/JuX8CaOGhr1KDjHgCU5p6hjsYBYP5ppaXZsluixcEv/FvCN2EEjcsaRzn3Gj+WsH4AAwfzBmMy5kahZ4S4saZr4o2gEQe5NuL3y2jUXJNMLRhWJMgSX16AaO1QLd72VctoXu8m9UU1TRX6zMa/2vYKGvcT23eZ5QR6RvZUXeuUdA3HHyEeMOkN8NsgClLaWjVhtlpQdZcoKNuuXoXvq+r+5oJWivci2x+5S61Etp4mhjX6NBFlR07B1rE1THoDvYIBgPKK/B2J/AE3XhCtNhIjZN17vciN5+z6AAAVNNn692z7DKVR7lP2UYVQVvaP/T3ucAhijxDkO3xmqwVnom4pdlAuvCruWnYdNIymVVswnBsv7tyzFsqWndkDza5UlDzZBunL2iD/wyDFQoUs9AHxNM5stdAFGVuGSW9A35MX8GE9ceIU/G6rLlABUegzWy1YEMhfwuYWSvuP4m6ZqPc9LlNc6BCTy2yerAAzILsLbJ2sisU1AXFSKV+IAOLALYdJb0D6EmmxwSJo1AFJkIm5oRpHHma2WjAqPRsdR4zE7bJi1DsknnbM0R9Q1IelL3nGQtguXuTys/efpMmPvgld1zMKWjS7UulvkqbOMuXi6Mhb4qVl4mhb/2UixtfZg5p7xEUeub9G0rB02DKyMS7zFLo/PYi+73H8mip/THrROMfmjL2K7xXv24GLR7DlzEH63GBOInfKm/NjKJ5wleL/fVeq6/gmYvs5HrNGVVAvb5FB6kguXpv0BtR+Slz8sPcn1Oglz/L8TXrxzuT1F6Ph9RnvQJW8J20LEE8mm32YgRYpGvT9bIKiLEIbG65tUN9unQiGp+cgf30IgoYfxNtZRxX0kwU38cMkb6dkV5+F6x9i3JveyjupBBfixe9BHOzKL9QTJ7v22jpB0PCD3LMQ00qx2JIvhsh7t7/rIeeHVogviMbGn9rRO6xEuFydJ7VLuRAtH2MyZ0ondyzMVguWtFyt8PXFtsGEP39CT6PoMPd6u8vU4igLUhZZOK+W3Z3VbUuB7fwFBa1qv81WC0o7h9OwPwpS8HmO8qSUNfAkp/1WA+VtBsJb7Q49xyMqJC2MVCy4icsAEk7M3putFlhLPERB755hBOIMW+hcgGZ7XgIAtPo8HkKdWrT8nKeXYMtp/pRFjv2f8hodbL0Dvpc0DIjrCfk4bg+3+kYp3td9WhKSdH5NkL68DWo0vYLbP9dG2S1pTi94R7pfvSF/P+LvOVwmYfLxNmjEQS685EnRfYbn7ERkrZE8SO9s8atdugPH7sOmAwkw6Q0ozT2j4AWxyFxaYFX0KXv9ERA3Dz16ZohjHLNeYPuf2WpB4MuHVDeQtPXqIetLvj+V5hfQuOwJJRHszFYLtUiYcGIXTHoDpnhvpGURC5cmvYHbYPjrxRkAJPcEnYaNpPe6CKpcFMe4Zd68cMyOASa9AUlfiieX2jq1YdIbIBw8pphbtYy1vymhv6P1wecwOC2P8qY057SqUO/Ag0d6ejo++OADREdHo169enB3d4fBYMAnn3yCWyrzmj0kJCTAaDTCzc0NtWvXRv/+/ZGTY9+qb3lwmK//H4M1X7/t7PFKdUZ7u3rElKzOS0/N0HKCjiytfJCtuacOrrcTBS/WIaG8LHk6XeNGKM3L58pj/3ccPhJ36upQa7U4sU7LOaCqStbDL5rbwZSXBQB+fw6jptwnZh3Bp/6hdnlEaL4+KBo11ySr0qYmBJW3a3rVdhse2mow6Q3UWSnJ59YWP1V/Nmz6jiNGwiVBsop0eWSM3R1jkiZiUhxqLxd5d3VIDJxvC6i+Npk651QrRy2v9GVtkNNjKdqOH4Pqa5ORMTcK2X0XIerdONRaJeZPzfM6OdHTjISCQzDMfhVfj16EL/xbKtqUGtg49toQeSbtwV6+Be8aOaHlyrAYyg8AyP0kBv7fXqAOvwFx4iNqhm9nHcUX/tIuo9lqQXjKAKSEr6XlnX3TyJ3w6Rp6YlOKaJKcfCNtoB9sGZLT2IxVrZHddTl8/xiJoFGiJctme16Cz4CjXB8sjz/yOpe1D0PWCCcEvnzILj+a7K+K3Mg7yP0kBmlDJTU0ef4A0HxePDo+ewjzvZJV8/qjIAVPeUlqQya9AaenGqmVPRZZX0ZD530LPgNEwY11bJsxNwqBY+07gTVbLVhTWAeT/u7DuV5gMSo9G4uD/BTp7OVHEJnaH/vDxNPBzJnRyHp+Idf21H7n/BiK9CdWwf+nMQh4nVeblJd3cUwMDn0g8pmY4c+cGY2AN/hTO3t5nP01GA0Zwx5mqwU9I3ti477fEeslWaC78UI0PXE+95oRnrMlk9rjMk9RVUs5dE28sSlxo2r/qqjv2YNa+5SnYx0ms23fXjnl5UXA9u3y6kBQ8mQbOG89yLk2Ka8+rMl5tTwrG16eY+uyDmF086s8mK2ixUr3vFLsWL5EUa7ZaqHOq9XmqP/0GxKY9AaU/uWNwu+8sH+6ukP3+ynvwqtG1Mwu4eY3Np3WwwMJx3dw3/TJ/kPgtNeiWt44awTS2qgbYVIbO9VoNFstaLYkHqdGKq1Hq0GtzZUXRlDwjpGqIbKYf3oPFa5JekKPPTrWpR2CR1D2I2uunaxZO1d97h8zX7/9zk8PjB/vvvsu5s2bh169eiE6OhrOzs7YsWMH1q5di9DQUCQnJ6Nq1arl5vHLL7+gX79+aNWqFUaOHInr16/j66+/hlarxcGDB6HX6++LJocg9j+Gmh+x8uCk0yEgSYuMiCLFAAFIg0xRjwi4bD5gd8GXviASVfN1aPxJ+T46iA8vAnl+an7K5DBbLfBbPxq/Pj0boVVEdTKyiLQnJJI6uP6Zyp2GAKJVpyaTpMk6JGkQjsesUfACAGJbdaMnSwTnxxrRYK5E84+FHljR1Ie+vzokhpuYBpw8R1UzK4I9ftuLCwDpJbdUHY3eeCGa7rYB4PzwsPmXtTNAs0faae84fCRcNqtPhmrPbHjAD2OQOXCh6ncBRF9ymw6ZKzWZyZ+bHnRGWpsSmK0WdPduo/iu9hay9vIj/7M/i0HAD9dQdvikXf7r/Jpg055fK73ryLZrp7AQCKnHuQ2H9GVt6KmMtlZNoF4dKqQB4gkG2XWuTFvInRaDtOHl94f7gb1FiTy/ytDGxpP3LxIW/fYYepLAIu99o0Kl2F69sj+Pgd87SpPTpOynjl/Fz++a4Po7f/KRMTuanuD3OH4Nm0NqQYhpBack8U6o886G+CNoMy3vxmZ/fBj4B2YFBHNlNJ8fj8YfqzuIJnGe7PcybB9d5U6etU0DkPNcfZwcMx/7i0roJhPLs4hJcTjwsfR97fJdo8XcnL8x1qdtpYQhAqeIlhAOHKX0sOqQamD9+pW3aZK+KAJBow/gdu8oVNug7vuK5U95/bmifiwPD08tw/QGRxT11daqCdu168j+3gC/Fyzl9pMz61rCu7/yzg3ZlCJp1Pz6yWnT1qsH28WLlCeAuMmXPGOhYsFO5rgm70vteW1+Empqqqp+y9MfxeDUCHVhKLZDH9gysrk0am0ifXEE3RD6sdADq4xhyB/SDIZ+x8RTdicnTM06iNc+fBW1Vkt3ejO/jkbWgIWIDXsSaRP9qFpwZccGACjb1hiaLnmqbanN5DiqgUFo9/11FHKeXVyu8CeHrnEjlF25iryxrejG3IzcZLqmkOcDqLc7QLzjTJzDk7ZttlrQK6O74k6aGn1s2yYbm5Wthxpyp8WguJ4NOb0W40ZhmUMQY/CgBbGDBw8iMDAQNWvyGlGTJk3CJ598grlz5+LVV1+1m76kpARNmjSBTqfD8ePHUb16dQCAxWJBeHg4hg8fjsWLlc7ky4NDEPsfoyJBrLxFc2UX+kDFO2mj0rPxycxBqLewfIebK8/swRBvcYfHfXddFLa/pMiLOGG0Ryv7nP1ZDNwKnNBgbqJikDPpDdT55pU/glDvDRt36kHik5M8Npx1okjyYvMP2DEUQR9egy0zB/pkd6TPDMHerxeqDugxb47BlhmzuElUrV46zwbU4TVB+NQ4fDfxKyy93A7Hwsu4tK32D1SYwJaXba+88iaac78Gw/PZk8iZHoP0IeqTO0krx4CT5zC8pjQRsfn3OnEZr9TKg0kv+mlx/1H9Ho89IaC8ulQk2MU2e4KecJmtFjRdFlehM9w7z0Ti7wWLFeXKoUbHnWcjqfqcnBaC6AljUHONtGhpMTseXp8nQtfEm6r8lFd3eXv33zYUAS/Z30kn8eUnvADoKZYaX8n/0ENOmOGZqrpoBPiTau99bjgTdYu+t+fUWo039ys4qi6UYiPgknAA2Z/FYGH/xfjCvyVm5iYhpIpyIWuPnpv9o3DTSwvPr8WxiK0/S295NNNF7pIIxUle+tI21Nw6IAoICSd2IaWoGO/5iqpZ2pCm9K5sZYSRqrsa4E4H3l8jUL4za7PVgp7h3VF69hxypsfA973yHc7e2OyPGj3sWNCQ0ZUxJwrNvrmEhJ3rVXlEnFoTsBsY8vz8tg5H9pPSXaEex69hvEeuav+raAwhYwKqOCPhyLYKN3TKy/vGwGiqOq9WR/nppLyc8tpgeWPbzQHR2Pv1QgTtehm+Aw9z8e2lI/3CXn0qSs/SnFBwCFonDY3Hzl9q84zcabfafF0ZsPmTk96exl4ozT0DrYcHbFevoqxDGGAT6AajXPhhy3Nq04Jevzj9UQz85qQrDJyRPMip883+Udg7exHNR843bYAvEv7ewIVdGxyD255OKK0KnBw93257MlstaDkrHkdfV4/D/jYduwFzC164KBVKsBO/PfqCmMuAf04QK1r70Plx9OhRhIaGYvTo0Vi4cKHdeH/99Re6deuGjz76CJMnT+bedenSBQcPHsSlS5fg7FzxwQqB447YI47KCFtkgCp8TtKvXnnPr49Jb1AMlnnv85exL/zWDJ2rnsOhDxZw+alNhEQIM1stnGVHFkQIY/MiIJYUAVE9KGPwAno6FduxLy2XWOkji+3aT6UjYed6lP7lTfMOWilevmaFsIw5UWg+Px6jn9hOBzzTsy9xNJj0BvgPSoUtU1zYWKMLOSFMPpHX+CEZAxrFKCYDOX+IDxPC87Dp8ai7KAnBVarhq4aHKD/MVgsMn8bD89mTqvyT06AWXl67OBz5AwDA970ku3Uy6UVHuk4uok+Yu0+Jxk5Ya5Ly/xub16G/KyuEkXK7P/MSNXDC5mlvkpXnR4QwAlYIY/MDJB94VX/br+ATqTubJmc6f8/KbLWg6q/7ubbKou2RPuIGwJpknF4rqWoS1RQihMkXauSPrS8bpzwhjM2n5hpRrTTkG9GZsmBspRDCAOCSTbLOBgBHWgvYdNuVy8ukN0AbHAgA3EnOmSg+7dUYpRN5lv7y3rF3BbO+4u+AqC36AFD1Jr93k6ha6RtNYjhe7ryjoUYKdA09Ffnunb0I+sVinjqfxjjSWlBtD2zZxOKoHDk9l+DrXN44TU7sUi4tcej9nm8kzr0u0mU7nsaNwRVtONzpcF4xbpqtFlQ15XB83VggCYUmvQGlZ8XNEyKEkTt+BOmLpOekVusV36goVnx/9tdgji+B4/YhYed6BH0bx+Xnf0BsR6wQBoDTjmBh0hvoiRPJe3NILfp+Zq79/uz2dz1c3RSoGDNsN27AdukyejRtDwCUJya9gVrurQyKBl6F8XCxYtzKf8+IBkk14DlbrNOPhR5c3eRjCfvdnMJCFN9QjuprRXVh34GHVd/Lw8xWC3YulXwqEmuSasKQvbqzNBO1WG2NGjBbLZwQRu5TmfQGjLOKauNyIYz8Z/MkYRXVnYBYWrTGNgIAJBzfAUD0larZY8GSM3u4OrF/BFs2fkfL9PkgCbYr1wCIm0mAuDFM4ke9eRD5E43UiqxJb0Bwik7BL9ZXI0GVm2XQf5EI76m8H1OTXvStR5yK98nsRg2YsPOD/BuZrRaFEOaAfQQGBqJhw4b070EjP1/UdmnQoEG58Q4cEMeZmJgYxbvo6GjcuHED6enpinflwSGIPSLYkH6Umk5nBzm139ogf2kwbfYE7eTuP0mLY2LNDwDg5MQNHCdemc+VU/+ZU3i+sTTwyhfG8oGUNeuuBrLYUpsUDN+dpHnW+0W0lFW2rTEAIGGn5IjS1smK3I+lhk4Gs23NN9I8a91r68QJa4/j1xA4bh9OxM/H9pZuaLb0npWs/ZIxAjlPCdSETjWQeMS0Lomna9wItk6tubDU9+bTNO1fGU1527Pds7C5SPnJ6VGbgNny2QU9SxNrdOH6oGgurVo5QmkphCJRxZUYWiBIKSq2uzgob2I16Q3QNg2gljpJuVt+W43zMTeQ82kMcj+J4eID4iJHbQIPXB1Hw9mL7QBwu7dy0ezkXAU1YzNV6ZQvHkheZPEqbwPkJON2nyiOj3vv3QM0Wy3wGXAUJr0BV4YpB2W2TDUBoOW+FxSLCnt5yPPJ7rsIjaaLk71T4mHVRX5drRs07u5c+jkBktl1Et92MgNPHZccjfuahyt4l/3kMsw9vVfRnuwJ+qenGuG7UbSMuDmkFo3v/2ay6ndg6dF5NuAu+2fOEtsyMUJCePapfygOvyP2sSvL3RR8MukN1AhE6ek8ThhWqwMAanGUrVNpZ9EK5PgmRpo+YZfUBjbekqyStv5IbK+es5SnQmw5ZPxQG3fkY7B8sW/SGxSGPeTzhMsm/vQuaPQB1fGO/CeCr/4THTXPXi+xFgAgeFE8p54OAPO9lBsxxKiPfOFJUNI1XNFeyDMRsuW8AIBbT1yER0/REuLlkTGK95vTdgMAenlJwiax3MvW90K8ETNykylt6QvFhfOhNj8hsZW4s8+OTY2mJ+J8zA1azoqmPnDe2VBceDOWD9kySB2E1OPYe7eMe1feON9x+EiOH8uueyrmK7ng18KNv4NK5l17mwrZn8fQd38USEKx7cYNrm3d6hsF748ki8Fz9KKRqsvDY/BB9iGOFkLPpd+DFLxgf+t8Gqu+M1stsL5tRP35iYp3ADDSux2lI2+yUZWHJr0BPVubpLaVL1qVXtJYNGxT5bpU1snwUhwfK61/zFYLNiaFcxvXLG2AeL0ha0YM8ruXKd4RlBUWUlVLcm/cbLXA/91C1b6gNl4DwLXBMf8e8/WCAAhl/8Dfw1fas9lsmDZtGnQ6HV544YVy41qtYr/z8vJSvCNhBQUFinflwSGIPSLoHdQSbuv3IcJiU+wAfZB9iBv0bswRpAXBqb/LzddstcBcIO60kxMzks/GW9XsLlblNLBg71HI3wkxreCTUELz4nZ/rBakhGnQdPdgmPQGqlf9Z/DvND0xWTwzNwlpwyQrRmw5Z980AtsawWOleOLTy01cbLV0lXTUye6YnL7Y0C40LHiReKLATmDakKbo4RetOkjmTI+BtmkAzFYLNid8T8vKf8+ITfv+gHYHbybY+MYYyk/2fkVpdi70X/I7x4EHXFR3/uRCg9pCLXN1GAan5dGTA7PVguQZCxV8swf5ouzsm0aEu1RRTUvKPj+WF8bZBYMtLZPbpWTz9p2YhCbvJyna3fPuVxG4Kk4xgbN3hsiJE7Fu98lXi7g8zFYLhJJiXPitGTW7zyLi0IByhd2sNWGqQmb1P08gNrQLFfhZfmV/LrbXAx8vUKQz9RnMtX+T3gDf30bRZ31v0dro2TeVGxtND0pqDbEd+3J1IX4E7Qk0gGTVsaywkGsvJA17OgkAf4SIu/3+a8fAr/FF1W8/1qctzcfWUTIyofNrIglR90xenxo5n5qQByT3BoDIN6eIlopF+eURIi83HTJzRiCynhPbsu38BXQ+ekshUJj0BiS1Wq86VpmtFmgD/aS4stNxln/2TkB121PsjosmvQHzAoOoNUJi1IOA5RPBzf5R2JzwvSJcPlYGLxL99LHW4kgcsnBkw0k9WMFQLX9ShhqeXLGXnuwTlxO1T5ZxaTJmq1uKJIaefDdJQkXOZ5JgQ9yVyGkhFnIBUZ1YXieW1oNTFyjafuRE8bSOnAKSNsjWNWtGDFInzUdoFelEOGjMfkWbafJ+EoSYVrQM9911ufc3vhZdGsgtvhY+L/GE0NbWVcPRGhv2pBh+pI+CPnKnl8S9YpPcQ/R48nn6juXFWA/pNNKkNyBzID/mk00FkubNpyWDLs5Okh8/QHTzQixzEp9j8vmnzrIkvDduDJcnQUr4Wvr7wr2TeDZO6ek8Lj7pFya9gbp8MFst0Pk1oXHMVvFUkvxuPC2R638EM3KTaZs1Wy0IXhwvft97p7j15ydCEyqevOV8GqPII/DVfWioqw452h7pg9yPY2C7eBGZgxbQ+3f2hCj5WL/2Zk2UZufSd83nxys2T+TPtVYl/WvM1//TyMjIwNmzZ+nfg8T48eORlJSEjz76CE2bqs8DBLfvbe653NMmYuHq6srFqSwcd8T+xyD6tlfT/dC/qXSiIu/o8ntQJB7ADwAErafFod6CJO4iOwCce91Id2vNVuUlcjZv342jkNNLeaFWTiO5cxCXkcmZp6dCwz09aNYqmFodNNWqcWaMyxMi5O/V4rP3fMgFdmLdrTJYn5+Mvo2iOeGOLaPmnjo4szBQ1UiBnNaod+Ko1UgCcp9D/h3lyPoqGh7HnHDgkwUKOi6PiEGdpXy+cgHY3veTgwpibxjRcKb6PY/yeE7ybDEnHsfG3dOP39YI5uA/xPB7d6js0We2WtCztYlOqvKyp19qil2hVRXhJP20nAMYuvg1NPo0kVo10zXyQmm+tDtFjEcU9YjAzmWSpTKST+Fz0UicpbwrCEgGcNQg56da/cidEDZvYjSg66BhKKmuUxiiuN9+QHDhFSPnF43Es3c/SN4GN+TvR+9GkVzbJyD3kSqirTya2bK+zk1EcJVqFbbZCIsNBwxaRTib5n5o+m/oL68seZsOWhUH33f5Puqyy1PVKIA8LbEke36cUXTbICs/ZG48VQW/3ScK1X5RWq4s7h6BKluU7Zb9Dje3+KF692y7tBCLoU4RLbHlt9WK+pPfto6tod3Jb0gRkDvFxAopQfqyNoiP2kEd39uDnO9nphjhPaV8Q1H26gOIqmvdPY5iw6XWyP8kUHGKaC9fWtdOrRWbb4DoUoJ1y0CEA+8p0rhkL3975QFSf2HvC5L4rCEnNVrNVguaL4hH42nS+GtIBSxhUv7EIigg+g8lrmvup49U1Dd6n7iIMbUK7LYfe/lUqn9vawR0EdXLWAMcXV8YBnmb1IY0he246GPMnvVhbZ3asF2+Qu9cE4SnliElTEPpBIDYlp2RcHS7SFtkS6qFA4hWh1nrqABgnWCEfoayP5v0hn/NHbFOun6VMjD336JUKMGO0p8fGj8mT56Mjz/+GKNGjcKiRYsqjD927Fh88803OHHiBIKDg7l38+fPxyuvvAKz2Ywnn3yy0jQ4TsQccMABBxxwwAEHHHDAgf83mDJlCj7++GMMHTq0XAMdLIhpejX1QxKmprZYHhyC2CMCchxN1K7kIKdh7M500+VxeOe8QbFjZvIKo84Js/svxIXfxHsh03P2w3NWIgp+CaG7Lwc+XoCeUU8h+rCkTmi2ilbpWNUi+RE6uyuV1Eq827UgMEBx3A4Am8c8AbPVgqQvFyryIQ46zVbJqSdblzvPRNIL5Cx9AJC+vA1Xd3neVX/dT+MTc84jOuyEGuQ0m60W9G0UDUM59hOut7vMnYZdGxyjyEdTTdzpJ6dh5P4FAMXdJLPVAqGtQUGH/5vJqL0iSbEz2PnoLe40TLtDT++zyHkh/82qVsl3Io+8pe7QVb4TadIbuHt8JExwYuLe26E06Q049tp8xQmL/LfaaRh5tyu0qupJHqF7sm8Ejo8VyyC7zqX5Bbhj9qXxTrwivnfZfICrO/nPnobJy2JPwy781gzWDc05+uT8bJBUg6sfuZzP5hs0XDTh/9ea5fQ0TFNNVC3L+SwGH14M4Wjoe1LcuRXaGqDz9YFJb8Ddp+5Z6PPwoPFS359P2z7bX2v0yKKGG8xWC6wT+LuhBNU0VWg4cVRK7qOemtFQMQaUdJV8kbF99OaAaERYbFwdYjv1AwAU/ym6jAiuItaXGLgYZxXp09aqyfGKPQ0j4WarBZeHKw3p0DjRocqwezDp7TsdB8AZxJCnI/UfnJanSEfeW98WjQSwp2EkH3IadrN/lGpagrK7d6ExNKenYSTOhnxRrY60dwCo9ot40k9UGgmqbDnAfRNANM7BfvPq3bPhvrsuRyP7fYn5dGoif4ceJr0B6ctEZ9jkPtRf3y/nyrZ1ak3L/tn/L9zc4oeDU3n1zZweS/FXC3eUdQjj6LR3ykz+k9MwAAj9Uqqzk3MV1W/K9muz1YJjVzyx5IVeuGi8Vu5pGHHYLM+TnIbJw+ul3KRhglFUc/SekogPsg/RcYncv1PTKCD3NdXyBsBZzyTpM15coBqf5VnjaYnoekzytfZ5AwsXj5yGma0WJBzZRsPZPFnVQXl57Jggr9fErCMAgDG1Cri7c/J0l0bF0PSsgRa1fBV03JtrAOCav5bGv9jKFWarBdogf/redjwNBe8akfNDK3oalvW9WNdz4+8Z2rl8BWarBZ7PnoS2eRC99yw/DZtwLgy2y1ck2vYfxcLTkuqw1klaZpM03t/ncvRPz1Ealnrk8Y/cD7v39xAwZcoUTJ06FS+//DKWLl0KJyenSqWLiBDnp6Qk5Ql0cnIyatSogaCgIMW78uAQxB4xlN26BZPewC1sSp4UJ7szH/J3SdKGLcCx3t6IeF+yaLX3bhnSF7ehaU16A+o/cwpmqwXhLuIEdSx6DVrNiEfXY+L9kbPz3JDcyhl5k4x0cm4yOQltPoxTHQDVFuQA6MJQnkazR3RMyb4r2toEAKixgx5+ko79hnxxQZqxMhxVx1k5Z6jBi+Np3kHDDqoOXvJFIjsBs4t5tclVvgixhInhGXPEBVPmd2GKdHk/t4DZKup3yxfxRLgcl3kKZR3CqGWqC781g+mYaAkwb7Jk1Yk4t5TTLn826Q3Y3tIN9RJr0bJsnazY9t0ymK0WRBwawKW5MlQUEjsOH6mgv+lBZy5ftcWBGopiI6g/t1t9o2g6dnFotorqhunL2thtQya9QfXeSUXC5IXfmqFn22dU82NR1ZSDuafFi9tnSm/SPIq7R+BWvygu7xaz4+l7eT5svPrPnKJ3vM69bsTbWUcVvDofw1t6JJbI7OVJUHb7Npx0Ovi+m4Sp9Y7j4kZJZ319cH2YrRZsXbcSt4PqAQA1tEIsjhGwgmHuT6JAUi+xFjXcYNIbYBn/DS68orzvxy7AikObAABsN27gQrwRAS+mcu/NVgt3/wcAAnYMBSAKn3J1QltaJtq/MhpVukl3XFrOisfhCeIGAHHiSqwQAqKaEEvfE0d70+f6v/F39wDRIqtJbwCSj9D2fu0lSWALTy1Dzqcx2BxSCy2SB+HCq5IhgCt/iJMoMf6gJhjsLyrB6ry9WNVUMkLAIrZTP3r3hYWcb8SEtryMG5ulRWOZRWxnF8dIGz29G0XS/OTttMFByQmudYIRGfPEvtlh9CgaLne6CwCF7S/h7K/BND9iRImt9495iXg+pzNsncQL68SX3kd+0p0fFtodhxA+NY6+I+qPF16V2pxJL1qX+/OHFar1yfpSHBuIgZOsNWHQNfKixkEAcKrUW04r3U4AQOej4t2ltuPFuahGjywIB48peC+fAy6GaVTHF/kmB9lEM/+6WhrPE0Wz9KWdwymPAOn+HdkIMFstlK4/QnjDRb6bRiraDftNNKHNEDFJ4jF5V2evtDFD0rHqn/aEJvIN5PUDgE17fqWWSknaGy9I6vtkjGNpNelFwzqkLh/5taYCFwBq1AcA6i6WFrcePTNw/cVoeg+XpVFz7y4O+61YntQ4Iy3eD78jqsmXubtycY6Nm48NMQupkbTMjith0htw+G2l82fbiXRqIp+gZ2RPmPQGzPDkd2vNVgt8navTMVfedsxWCzYdSODSEHcXDvwz+OijjzB16lS89NJLWL58OTQadVHo7NmzOHXqFHfnq0OHDmjYsCGWLl2Kmzdv0vDDhw9j586d6N+//32Zrgcegzti9qRYNzc3jkkAkJaWhnfeeQe7du1CcXExWrdujalTp6Jz586K9NevX8ekSZPwyy+/4PLly/D398err76KMWPGVFpyrgzYO2I13DWKSUhtQXi/YBdWJr3oANfv3i4tuT/A+hCSp226PA5NJol3mdq/MhqAZHyCLLTZkwyNqys2ZydzE5b8t9kq+trQFgG2TtfoopYgfUkEqmU7o96RElwMdVb4JQOUpykE9px4FvwSAq8+xyvNMwBoNSMebV84hKyIu+XGZ+9GZM6KRsDr4knZ17mJGN9E3cqk2rfVuLujrLCQiwMoFzjyb0qQMTcK2X0X3XebYfPrk9mNWn4iZVvfNuLo+PkIXB2HjJeUdworg+I/fVCl22nVetvT02dpI7B1bI2/vl8Ok94AXUNP2C5eglBaajd+eXnZQ3nxnLZ7YUuzTdJGg6srhJaB9O5M+tI2mNT2D6wN9sSl0TFI+VDiV/76EDTqe1xRhlp5GXOiELTqlmIBQKAxNMfmhO9h0otOSXfP47+7PM/ynuX3IAreNVKnqRXx5cofQTjQWrysX155ADin2Gwc+V0+ANR3GYmz7MweDHj7LSTOXAjf30ci52nJlDdbzo2B0fj8k4V4wtX+Dnp5UOOTWt3YsPIE94p4Ir9TUm5ce3GiQ2H+ZRWa7h6MJs8dsZvP9YQAJBt+pmN6+yN3sTvUtcKyyPuMb6IQ+Oo+Rbi9+svDWEfb9tpjg6Qa1FpheXmS31dfjoFx3AF83VDpIF5O2/vZFnx7oR2WeUtW8sj7gaes+KGZqHZU8mQbOG89yBaNzkdv4a/4dtDsTrXLr/z3jGg0XX2uUoO9fFT7jk9jFPnWA3vfSY2HHUaPoqfrxOcggXVDc26uzfoqGv5v8neciWN1nZcepQVWlP7lTa0Vy+tij35dQ0/qUkEez2NvbVxtewW9TlxGf/dTeKmx5LzceWdDlHTkDTGwwpO8LKeIlvhpw2KFj08AuNUvCm4/M/fBNVqgzAZtgC9smaI7iKFn2sMaXVjp9m/vHUsbeY56Nw61VkmCZf5EI/Rd86DpojxFJ2liO/ZFUdqpf8cdMW2ff+6OmO2XB8aPefPm4dVXX4W3tzemTZumEMIaNGiAbt26AQCGDBmCb7/9Fjt27EDHjh1pnHXr1uG5555Dq1atMHLkSNy4cQOzZs2Ck5MTUlJS7ls18bEQxNq3b49Ro0Zx4c7Oznjuuefoc1ZWFiIjI6HT6TB+/HjUrFkTS5YswbFjx7B582Z07dqVxi0uLka7du2QmpqKsWPHIjg4GJs3b8aGDRvw4YcfYsqUKQ+MfrlDZ7PVgo7HnoXLk7lc5ycDm3xykf83Hi5GYqsqil1tkicLNs5750OREqZB3mQjd6FXHlct7f0sdirK99x4I3XASt6RyTt/ohHVCwRcbQ74vpvEpU1fHIGcp8SF2RPxoxTOeOXlXBoVgxqnS1DFzE+2FeH9bAs+8TPQPAkqM5nac9bK4d6FY6ftXji908euc1QAaLoiDmlDF9gtHxBdDRTXKoP/W5LZ8MBVccgYvICbOP4Twa3dkT5wu7fDzeahadEMm7f+qJo/u8Apb/EaG9IJtqtXUR7sCTL5E404PnY+ekb2xKb9mwDYXzBXxgFu4AEXZESIZv5JnpXlV0ULrcr2q7tPRcL1j/0YcPIc1gZ7lpsvIFoHzRvWVHEqI+fZyLy21MwzULl2bLYqL/7L6arM+HD36Ui6YDRbLQifGkeF1qKtTbCzxa+V4o1aOBXw7i0mKwuz1YLR+TFY1CgJLWbHw/v3S5z/JDZv61tG6L9KAgSBLsDvV9AnTqYjJ8bB41tlOyQGjNTGmpwfQ+H7vCR02eMDSVPZMdtstaDTsJFUpZEtk7z//HIgdrT2gFBSrEqbvbLLK1OeXg650ZGK2oO9Z4L0+ZEIit+veE8MOxFjT8TIjt/60cjuKzkBZiEYW1E3En4bRiPwFdFQRLOlcfD5QDLI1N03CkJRkWr9SZ7a4EDYTmaUG0eOixub4lAbyXH4/aRVi1feNy1P8H7nvIFqkbDxcz+JQZP3+fZNNl8qM2ZUNN6x78o6hOHPH1agR+wL9DRZLV1sq26wXbxoN//Pc/bhHV9JdZgYAMmZHoPEl75EXa0bl8Zpuxcu33YD1tdB7RVJyJgThcBxSsNgFbXPdWmH4BGU/cgLYh2dev9jgthOYcMD4wcRruyhQ4cO2LlzJxdXLogBwB9//IGPP/4YR44cgYuLC7p06YLPP/8c/v7+ykwrwGMhiL388stYuXJlufEGDBiA9evXIyUlBQaDAQBw8+ZNhISEwNXVFadOnaInXcTyyZw5czB27FiaR9++ffH7778jIyMDPj4+D4R+VhBzqa+nA4Mc5U1U8gGs67FC/NVC9B/k++soBMXvV+RTXl7kHfnd5oM4HPxI3ZR8yZNtcC6iCk68Mh+mRuFAmY3mY/gsHg3mqAt19mgoax9GddXZugGiCtjhCZK3+olZR6jKgzyuvXK0Hh6KBf7C03swxqedaj65P4VyO8xmqwVB38ZxfnVIOcQqoFo+xGKknCYS58qwGNRezk9UNwZGI+kr6QJpbLfnYDueBqGtAVvXreTqZY8H8jC1ibb704MgpDCnNMx3tIf7EcQraru+G0fB608nbJ09l6pc2Utvj3/20vTo/jwuh3lg/6cLFHmY9AY0Sq6O/Gjx5Pz8WCMazE1E+rI2VOVKzi+/rcMROCSl3HrLaSyKjVBVBZOnr8iK5qBT+VjTrJHd8kx69ZMlnV8TakZZjZcVtSFbp9b4a83yCuOd+cCounHAglhqIxsOOZ/FcJsq5L/G0FyxiPpPNgzKQ3mCAnnucOQO3qubBsOn8dTxvNquvVre9tolWSCyFmzl9PyYl4jnGxtxq28U3NZLlhDzJxrR6NNE7tRfLhiTPAiuvhyD/Z/yp9hn3zSi4Vf2tQzstY/KCFc6n8bUXDlrKZSk7fLScGxbvYxLezEuBocmSzQOPGXFksm9cbORlqqsmvoMBpL50z5CE5t/zJtjoC0RuNMQtTFQ/rsyqMxmQIvkQZzmxf0KpP+JcFn4XDTnR1Qt385DRtBNsMvDY1BnmdTvrr0Ug1qrxeewj+OROkmaZ28MjEaNH8S5y/jGGLj/yJdz9tdg6KdqsGXTGgCiBUHb5St2aZ2anYJoVy33DZ7s9zLnD7G8+pqt6tZ1SZ0KfgmB97B8TrVZDrK5RvIjIGVcGxzDnWaxuDIshrM0XRnBvzLCJiBuuP3+1UKHIMbgQQtijyIemztixcXFClVEglu3bmHjxo3o2LEjFcIAoHr16hgxYgTS09Opt2wA+P7771GtWjWMHDmSy2f8+PEoKSnBTz/99MDp35B+FAmH/6TPb2byA7k9AQMQBw9yx8ZslfTATXoDJ4SRMMNn8ar5yGHSG2DSG1BnaRL9zaYzWy3YvnIpGnS8Z442n/cTY3lXcmgsL8+kN6C7dxuuvBm5ydyFYQJyZ4MVwsxWCzpWLcPQtNP0OfI96a4c4dncqz5cfqc+CoLZaoHZakHOD63gvc8NY3za0TA5vXI1H5PegPSXF0DXyEsRfuy1+UBkS472zO/E7UFitp/wUT4o116u9K1V44dkBC8SfaIYPo2n5na3rlvJfQ9Cq7ydNEpW+kZpPk+61E7yIEIYrXsFQpi83izvCC3sf7W2Q9B58HDk9FqMPXMXUXPpaumDF8ZzeZH8KtpMKDtyCh7fiu03Ni2WrydAhTAAdKFNhDA2HikzcIjkCFVuaEEtja6JNxXC5G2M3FkhYI23qNVLTQgj8QN2DgEgGichxjsIiBAGAOtv1uDaHovgFB1HP4GaEEbima2i/zUACiFMW6+e4nvT3fJ7F+vlZt0J7O1kE5itFuh8fRRhau3Q+rZREUbol7cjcheUYP03ncWxbKJ0b6Sk41mYraIBArPVAk1oM9W85WHXBsegR9P21Afh4Qn8XcpLtls03fONRZqJTycC4oyWFcJMegMabb9Ny/XfPpSrr1wIA4Ajb0r10bQK5ngR23UArg2OQWwH3t8VyT/67TH0t9lqQca3vGnu0tN51KhD9bXJ+PCiZBzKpDdAty1FQU+9BbzPxyE1LqD6un1UUDXpDTD/skrBU4K4jEwcKb6L7r5RcD99B3vmSHfvzFYLehp7cXVgf6vlx95hkuPK0BiMzlcaKSL/j0Wv4ehk5yG1Mbukaziq7mqg+p6g28mnVenUtBINWbFCGNumzFYL8teHwKQ3YPvKpQBEZ851lvGGoogxKZPegN/f/YIro8YPUt7uPyaj4F0jR0vDZ09CSD1Ov+/b+3dytJAySJsgQtjl4ZJhjq0/f6uoP4uzpdI4HfVunKpRpzrLktDhyB149TkO27Xr9B5ieCpj7OHe/Jy4TDIiY9IbEDY9nmsLtVYp52MAyJwZTX1G2tvIYp9JneVxerY20fTkjp3ZaoHrH/sRvmq4Kg8eOfzLjXU8SngsBLGff/4Z1apVg7u7O+rXr4+xY8fi+nVpN+TIkSMoKipCTIxycI2OFgUYIoiVlZXh0KFDCAsLo87ZCCIjI+Hk5MQJbfeLhg0bcn8BAaLfraeDmqH5Z8NQKpSgVCjB5/5BKBVKsC7tEDZdEFAqlKD1nmewLu0QujQMoe9IfN9xu7HybHV0aRiCdWmHsC7tEIo31qfv2fh1Zu9Cl4YhXFzyrv1LL6HzM88pwskfScf+Pp1cmz5feDkMpUIJ8l5rTeORsrs0DIHQrAkiE59CqVCCtcf3c3m/7hOOUqEEnx7bDZ/1L9I8a/Q8jnVphxA6ZRiXV5eGIVgSpEfu22JZ7iv+Ru2/XGm6dWmH8LIuBzcKy3CjsAxZy4PQPTSZpi0+A2RHXkOpUIIbhWU0TalQguyVgVh33pk+s/zo0jAEP2z7nYb7/DRYKnP1txx/mgzar/oNyPtSoQTNd/TlaCZ1WJd2CJ88uxilQgn+fvUb5L/SmpZ/an6I4rsYdj/D0ZobdZVrL6VCCZIHf4N1aYdwo7BMUa91aYdQ5qKhNGYtD4JNKyjaQNaHYbhRWEbD2TZBeMnWr1QoQVlLf+7durRDyJwSBqc/k7n05DuwcUuFEuin7uJoUOOnGj3s97O9KPFKXic2rk3nhFKhBBkfG1DN7I7vTx1QLc917R76+8OjifQ3GtSm5d/NyVK0WfIurkqagg6hlhuNf2pWKPeNbFU0KBVKELb3NqyjW3P0+AyUaNT9vperd6lQAv12LUqFEnQTrnHfhuXx0dZ3sC7tENCwjqJt0WenMlTfWp3me6OwDD4v7Efm0mY4NSuUhntuc8bCXRv4tPf+Tn0Vqggj8ZqsfhmlQgkKe0p1L0Wp4rvdKCzD3exMro7yPkzyrP+51HbYdlsqlCB7chjWpR1C9gpxvBVuFXFl1Vr0N30+NbcF9y2n+QWL48jho6j/VxWOl2y9SHm1nktH8Y0rXDsgNH5/riqeaxSp2sZLhRKYwjqrjv3k+efly2lcdsyR9015H7223gs/rV2Dq/0MUr/sVR3Vv/0bP/7xs2IMX5d2CG6rd9OwZtv6wXfwPvp+7nGRXz9s/oXS2NkpRXXOUnsmYYeuFCraBvl2hPa0z1vR8LkBPnjdJxwld2/i5xUruDQ3CstoP5SXS+YOOR3ku8tp7GbqixrL/8bHNXaq0k2+kXzcfVmXw8WdcexvdO79PLo0DEFuRxsKn8hXbcvvHUlGqVCCss7ZHJ0TspuJc7zliIJGEs9/8VB0aRgCzz4WlAol6NpY5Nedm04Kmsnz6NRjeLlxlGpbJmENPt2FoDnDaDrSL8jfNL9gRZpSoQR3szK471lzqcRjU0x31fGA0Pdi4yj6rvq3fytoI3/bWupQEN8aRe2aY9fYb1AqlGCfwUbfX22sRac+z+NW9SKub9SeuwtvHz4Av2VDsS7tEKyjW+NGYRkGpmSitE0QpSO153x0aRjCzVNnR4pjsVCnpmLcJXUuFUoAH0+YIrrhzHcBuHs2n/LG/OF83CgsQ6eDT6JUKIH+Y1FV/FFXViuF+jd44H8oqZiYfzuEfzkiIyOFGTNmCBs2bBC+/fZb4bnnnhMACC1bthQKCwsFQRCEn3/+WQAgzJ8/X5H++PHjAgBh4sSJgiAIwqVLlwQAwoABA1TLq1evnhATE/Mf0+vp6cn91a1bVwDg+HP8Of4cf44/x5/jz/Hn+HP8CXl5ef/xOvNh4s6dO4Knp+c/ygtPT0/hzp07/+uqPzSIuij/Yuzbx6tuDB48GKGhoXj//fcxe/ZsvP/++9T0pIuLiyI9OfUiccqLS+KzpizvF2fP8ncLysrKYLVa4e7u/l9ZYwwMDAQAZGQoL/k6wMPBq8rDwavKw8GrysPBq8rDwavKw8GrysPBq8rjn+SVIAgoLCykjoMfNbi6uiInJwfFxcX/WJlVqlRRaKg9TvjXC2JqmDBhAqZOnYpNmzbh/fffR7V7DlKLVKwV3b0rmiUnccqLS+KTOA8CGo0GjRqp3/2433wAPLaXGR8kHLyqPBy8qjwcvKo8HLyqPBy8qjwcvKo8HLyqPP5pXtWsWfMfKec/haur62MtGP3TeCzuiMnh7OwMvV6PS5cuAQDdWSgoKFDEJWHE7r+HhweqVq2qGreoqAiXLl26bx8BDjjggAMOOOCAAw444IADLB5LQezu3bvIz89HgwaiJaKWLVvCxcUFSUlKC13JyaJFoDZtRAt+Go0GrVu3RmpqquJUbP/+/RAEgcZ1wAEHHHDAAQcccMABBxz4T/CvFsQuX76sGj558mSUlpbi6aefBiCaqX/66aexc+dOHD58mMa7efMmli5disDAQERGSiafBw4ciNu3b2Px4sVcvl9//TV0Oh3nKPpRwdmzZxX3zxxQh4NXlYeDV5WHg1eVh4NXlYeDV5WHg1eVh4NXlYeDVw48TPyrHTq//vrrSE5ORqdOneDt7Y2bN28iISEBO3bsQFRUFHbs2IGqVasCADIzMxEZGQlnZ2e8/vrrqFGjBpYsWYKjR49i06ZNMJlMNN/i4mIYjUYcPnwY48aNQ3BwMBISErBhwwZMmjQJ06ZN+19V2QEHHHDAAQcccMABBxx4DPCvFsR+++03zJ8/H8eOHcPly5eh1WoRGBiIAQMG4I033lBcJjx58iTeffdd7Nq1C8XFxWjdujWmTJmCrl27KvK+du0aJk2ahF9++QWXL1+Gv78/4uPj8corr/xX1g0dcMABBxxwwAEHHHDAAQf+1YKYAw444IADDjjggAMOOODAvxH/6jtiDjjggAMOOOCAAw444IAD/0Y4BDEHHHDAAQcccMABBxxwwIF/GA5BzAEHHHDAAQcccMABBxxw4B+GQxBzwAEHHHDAAQcccMABBxz4h+EQxBxwwAEHHHDAAQcccMABB/5hOAQxBxxwwAEHHHDAAQcccMCBfxgOQcwBBxxwwAEHHHDAAQcccOAfhkMQc8ABBxxwwAEHHHDAAQcc+IfhEMQccMABBxxwwAEHHHDAAQf+YTgEMQcccMABBxxwwAEHHHDAgX8YDkHsIePmzZuYPn06WrZsCXd3d9StWxdGoxErV66EIAiK+KtXr0bbtm1Ro0YNVK9eHS1atMC0adO4ODt37oSTk5Pq31NPPaVKR0JCAoxGI9zc3FC7dm30798fOTk5qnHT0tLw7LPPwsPDA25ubmjfvj22b9/+3zOjAlSGV7m5uXbrTv7WrFnD5VtUVIQPPvgAvr6+cHFxgb+/Pz7++GOUlJSo0rFq1SqEhYWhatWqaNCgAUaMGIGLFy+qxt23bx+6du0Kd3d31KhRA927d4fFYnmgfFHDw+BVefFbtGjxX9ffarVi8ODBqFevHqpWrYo2bdpg3bp1D5w3ariffrh582Z06dIFnp6ecHNzQ9OmTfHWW2/h/PnzinyvX7+OsWPHwsvLC66urggJCcGCBQtU+3ZZWRlmzZqFZs2awdXVFY0bN8abb76JW7duqdJ8P332QeFh8OlxHa+AyvNLEAQsXLiQjiu1atVC9+7dkZycrJrv4zZmPQw+Pa7j1fnz5zFmzBg0btwYVapUgbe3N1577TVcu3ZNEfd+2v7jNlYBD4dXj/N45cAjCsGBhwabzSa0a9dO0Gg0wtChQ4VFixYJs2bNEiIjIwUAwttvv83FHzp0qKDRaIT+/fsL8+fPFxYuXCi88847wvDhw7l4O3bsEAAIo0aNElavXs397dixQ0HH+vXrBScnJ8FgMAjz5s0Tpk+fLtSvX19o2LChUFBQwMXNzMwUateuLdSvX1+YPn26MG/ePMFgMAg6nU74888/HziPCCrLq5s3byrqTP5q1qwpVKlSRbh48SKX9zPPPCMAEIYNGyYsWbJEGDZsmABAePnllxV0zJw5UwAgdOjQQVi0aJEwefJkwc3NTWjevLlw8+ZNLm5SUpLg4uIi+Pn5CTNnzhRmzpwp+Pn5CdWrVxeOHDnyr+NVTk6OAEDo3bu3Iv7vv/+uoON+6n/58mXB19dXcHNzEyZPniwsWrRI6NChgwBAWL58+UPj1f3wSxAEYfHixQIAITw8XJg5c6awaNEiYcSIEYJWqxV8fX25NlBUVCREREQIOp1OeP3114XFixcLvXv3FgAIH374oYKOcePGUf4uXrxYeP311wWdTid06tRJsNlsXNz76bOPOp8ex/FKEO6PX2PGjBEACB07dhTmzJkjfPbZZ4Kfn59QpUoVVR48TmPWw+LT4zhenT9/XvDx8RGcnZ2FV199VVi4cKHw6quvCs7OzoLBYBBu3bpF495P23/cxipBeHi8elzHKwceXTgEsYeIxMREAYAwfvx4LryoqEjw9fUVatasScOWLl0qABBWrVpVYb5koFixYkWFcYuLiwW9Xi94e3sLhYWFNDw1NVXQaDTCyJEjufj9+/cXNBqNkJqaSsMKCwsFb29vISgoSCgrK6uwzP8E98Or8tL369ePC9+0aZMAQHjjjTe48DfeeEMAIOzdu5eGXbx4UahWrZoQEREhlJaW0vCNGzcKAIRPPvmEyyMiIkJwd3cX8vPzaVh+fr7g7u4udOvWrVL1/k/wsHhFFjZqE7Ma7qf+EyZMEAAIGzdupGGlpaVCRESEULt2ba5tPmjcD7+CgoKEhg0bCnfu3OHivv/++wIAYcOGDTRs3rx5AgBhzpw5XNw+ffoIzs7OQm5uLg07duyY4OTkJPTp04eLO2fOHAGAsGbNGhp2v332QeFh8elxHK8EofL8Sk1NFQAI3bt35+i5evWq0KBBAyEwMJBb3D5uY9bD4tPjOF699tprAgDh+++/58K///57AYAwbdo0GnY/bf9xG6sE4eHx6nEdrxx4dOEQxB4itmzZIgAQvvjiC8W7iIgIQa/XC4IgCGVlZYK/v7/QunVr+v7GjRt2OyU7UNy8eVOxGGLx559/CgCEjz76SPGuc+fOQo0aNYTi4mJBEMQTFBcXF6Fz586KuB999JEAQNi3b1/5lf4PUVle2QPZMd6yZQsXPmjQIAGAcObMGS78zJkzAgAhLi6Ohi1ZssSuMOzn5ycEBwfT54yMDLpjrUaLk5OTcPbs2XJp/k/xsHjFLmzu3LnD7SjKcb/19/LyEvz9/RVxV61aJQAQfvrpp3Jp/m9wP/zy9PQUmjdvrohHFjJbt26lYW3bthWqVaum6H9///23AED4/PPPaRgRUP7++28u7p07d4Rq1aoJPXr0oGH302cfJB4Wnx7H8UoQKs8vcmL1ww8/KOKNGjVK0S4etzHrYfHpcRyvQkNDhapVqyrmfpvNJri6ugp+fn6CINx/23/cxipBeHi8elzHKwceXTjuiD1EREZGolatWvjiiy+wbt06nDlzBqdOncLEiRORkpKCKVOmABB1hrOysmA0GjFt2jTUqVMHNWrUQK1atTBmzBjcvHlTNf/XXnsN1atXR9WqVREUFITZs2cr9L0PHDgAAIiJiVGkj46Oxo0bN5Ceng4AOHLkCIqKiuzGZfN70Kgsr9Rw8+ZNrF27Fj4+PujWrRv37sCBA/Dy8kLjxo258MaNG0Ov13P1qYhXp06dot+ioriCICAlJaVylb9PPCxeEXz11VeoVq0a3Nzc0LhxY3zwwQcoKiri4txP/c+ePYuCggLahuRx2fweBu6HXyaTCSdOnMCbb76JkydPIi8vD7/88gumTZuGDh06oHPnzgDEOxSHDh1CWFgYXF1dFeU5OTkp2pZGo0FkZCQX19XVFQaD4b7aIdtnHyQeBp9YPE7jFVB5fpG+U61aNUUeJIy9A/W4jVkPi08Ej9N4VVRUBFdXVzg5OXHhGo0GVatWRXZ2Ni5dunRfbf9xHKuAh8MrFo/beOXAowvd/5qAxxkeHh7YuHEjRowYgQEDBtBwd3d3rF+/Hs8++ywAURADgJ9++gnFxcWYNGkSfH198ccff2DRokVIS0vD9u3b6YDj7OyMXr16ITY2Fnq9HlarFcuWLcP48eNhsViwYsUKWpbVagUAeHl5KegjYQUFBQgJCal03IeByvJKDT/99BNu3ryJt956CxoNv7dgtVrRvHlz1XReXl7Iz8/n4pJwtbiCIMBqtSIoKOix5JVGo0Hnzp3x7LPPwsfHBxcvXsTatWsxbdo0JCUlYcuWLdBqtQAq367uN+7DwP3wa/bs2bh9+zZmz56NmTNn0vChQ4di0aJFtP5Xr17FnTt3VOvk4uKCunXrcnWyWq2oW7cuXFxcFPG9vLyQmJiI4uJiVKlS5b767IPEw+AT8HiOV0Dl+UW+0/bt29GrVy8aTxAE7Nq1CwCQl5dHwx+3Meth8elxHK9CQkKQlpYGi8UCg8FAwy0WC65evQoAOHPmzH3R+DiOVcDD4RXw+I5XDjy6cAhiDxnE8mGvXr1gNBpx5coVzJs3Dy+88AJ+++03dOvWDYWFhQCAixcv4s8//0TXrl0BAH379oUgCPj222+xZcsW9OjRAwDQtm1b/Pbbb1w5I0eORGxsLFauXIkRI0agbdu2AIDbt28DgOqgSnbHSJz7ifswUBleqWHp0qXQaDQYOnSo4t3t27dV6wOIdWLr8/+dV97e3ti2bRsXNnz4cIwaNQpLlizBjz/+iEGDBgH4d/EKqDy/nJ2d4e3tjd69e+Ppp59GtWrVYDabsXz5cmi1WixZsqTCOpF6ydtWeXFJnCpVqvxP+fWg+QQ8vuMVUDl+9ejRA82bN8f8+fOh1+vRp08f3L59GzNnzsSxY8cUdD6OY9bD4NPjOF6NHz8ev/76KwYMGICvv/4aLVq0wPHjxzF+/Hg4OzujpKQEt2/ffmD1IfH/jWPVw+AV8HiPVw48mnCoJj5EHD16FEajEd26dcOMGTPQu3dvDB8+HHv27IGnpydGjhwJm82GqlWrAhB3RYgQRvDyyy8DEE2qlgeNRoOJEycCADZt2kTDiUqHXFUDAO7evcvFuZ+4DxqV5ZUcJ06cQHJyMrp16wZvb2/F+2rVqqnWBxDrxNbn/zuv7OH9998H8O9sV0Dl+VVWVobu3bsjMTERa9euxeDBg9GvXz8sWbIEEyZMwNKlS/HXX39VWCdSL3nbKi8um+f/il8Pg0/28G8fr4DK80un02Hz5s1o27Yt3nnnHQQGBqJVq1ZITU3FZ599BgCoUaMGzfdxG7MeFp/s4d88XrVv3x4//vgjCgsL0bNnT/j4+ODpp59Gp06dqOn0GjVqPLD6kPj/trEKeDi8sofHYbxy4NGFQxB7iJg1axbu3r2L/v37c+HVqlVDz549cfr0aeTm5qJRo0YAAE9PT0UeDRs2BAB61F4emjRpAgC4dOkSDdPr9QDUj7xJGDkWv5+4DxqV5ZUcy5YtAwCMGDFCNV+9Xm/3uL+goICrT0X1d3JyonEeR17ZQ+PGjaHVav+V7QqoPL/27NmD3bt3o2/fvop7ByQtUZHy8PBA1apVVetUVFSES5cuKdrWpUuXVCfhgoIC1K1bF1WqVKFxSbhaXODh8Oth8Kk8/JvHK+D++qG3tzd27NiB06dPY9euXTh27BgOHz5Md8KbNWtG0z9uY9bD4pM9/NvHq/79+yM/Px+pqan4+++/YbVasXDhQuTn50On0yEgIOC+aHwcxyqCB82r8vBvH68ceHThEMQeIkjnUjudKC0tpf9btmwJV1dX1Q5K7gPUr1+/wvIyMjIAAA0aNKBhERERAICkpCRF/OTkZNSoUQNBQUEAgJYtW8LFxcVuXABo06ZNhXT8J6gsr1gUFxdj9erVqFevHp555hnVfCMiIlBQUMDdLQDEuwZWq5WrT0W8atq0KapXr16puE5OTggPD1ev7H+Jh8Ure8jOzobNZruvdsXWv2HDhvDy8lK9aP+w2xVQeX7dD181Gg1at26N1NRUxYJl//79EARB0bbKysqwf/9+Lu7du3dhsVjuqx2yffZB4mHwqTz8m8cr4D/rh97e3njiiSfonZmEhARoNBqYTCYa53Ebsx4Wn+zh3z5eAYBWq4XBYED79u1Rv359nDt3DqmpqejQoQOqVat2X23/cRyrWDxIXpWHf/t45cAjjP+Fqcb/Lxg/frzCNKwgiH5RGjZsKHh4eFDfL8Rk8S+//MLF7dOnj8J3zKVLlxRl3b17V2jbtq3CBGpxcbHQsGFDhZ8Li8UiaDQahbPofv36CRqNRrBYLDSM+LkIDAx8aH4u7odXBOvWrVP1t8Pijz/+KNcnz+7du2nYhQsXhKpVqwqRkZGqPnlYvySCIAht2rQR3N3dOaeNBQUFgru7u9ClS5fKV/4+8bB4pdaubDab8Nxzz6mabL6f+r/11lt2/fLUqlVLuHHjRsUV/w9RWX5ZLBYBgBAaGqowuUwcza5fv56GffPNN3Z98+h0OiEnJ4eGHTlypFzfPKtXr6Zh99tnHxQeFp8ex/FKEP6zfsjit99+U3XS/LiNWQ+LT4/reCWHzWYT+vfvLzg5OQnbt2+n4ffT9h+3scoeHgSvHtfxyoFHFw5B7CEiNzdXqF27tuDk5CS8+OKLwoIFC4RPPvlEaNKkiQBAmDdvHo17+vRpoUGDBoKrq6swYcIEYd68eULPnj0FAMLgwYO5fNu0aSP06tVLmDp1qrBkyRJh6tSpQmBgoABAGDt2rIKOtWvXcp7fP/30U6F+/fpCgwYNOOeWgiD6W/Hw8BDq168vfPrpp9Tzu1arVfidepC4H14RdO/eXQAgnDhxoty8n3rqKQGAMHz4cGHp0qXC8OHDBQDCiy++qIj75ZdfCgCEjh07CosWLRI++OADwc3NTWjWrJnCiefevXuFKlWqCH5+fsKsWbOEWbNmCX5+foKbmxs30D5oPCxe9e7dW+jSpYswefJkYfHixcL06dOF8PBwAYDwzDPPcM5UBeH+6n/p0iXBx8dHqF69uvDBBx8IixYtEjp27CgAEJYuXfpgGGMH98Ovvn37UiHjiy++EL755hvh6aefFgAI0dHR3IKxqKhICA8PF3Q6nfDGG28IS5YsEXr37i0AECZNmqSg49VXXxUACL179xaWLFkivPHGG4JOpxM6dOig4O399NlHnU+P43glCPfHr2HDhglDhw4VZs+eLSxevFgYPHiwoNVqhYiICOHatWuKvB+nMeth8elxHK8KCwuF4OBg4b333hOWLFkifPnll7ROcufc99P2H7exShAeHq8e1/HKgUcXDkHsISMzM1MYPHiw4OXlJeh0OsHd3V1o3749t2NMkJOTI7zwwgtC3bp1BWdnZ6FZs2bCl19+qRj4PvvsMyE6OlqoW7euoNPphJo1awodO3ZUeJhn8fvvvwtRUVFC1apVhVq1agl9+/YVMjMzVeOeOHFC6NWrl1CzZk2hatWqQtu2bYU///zzv2NEJXA/vDpz5oyg0WgEo9FYYb537twR3n//fcHHx0eoUqWK4OvrK3z00Ud2HU2uWLFCCA0NFVxcXIR69eoJQ4cOFc6fP68aNzExUejcubPg5uYmVK9eXXjyySeFlJSU+6v4f4CHwaulS5cKHTp0EBo0aCA4OzsL1atXF6KiooR58+Yp2iDB/dQ/Pz9fePHFF4U6deoILi4uQlhYmPDjjz/ef+X/A1SWX0VFRcLnn38uhIaGCq6urkKVKlWEwMBAYeLEicLNmzcV+V69elV45ZVXhIYNGwpVqlQRgoODhblz56rubJaWlgpffvmlEBQUJFSpUkXQ6/XC66+/rlgsE9xPn31QeBh8elzHK0GoPL8WLlwotG7dWqhRo4bg6uoqtGjRQvjkk0+E27dvq+b7uI1ZD4NPj+N49X/t3X9M1PUfB/DnSXagU+A8RsfduoMzSNmgjEuQMtoYNdEYf6AYQsCJ8/xJAo5sBf0YtMByNnIJosGkpk4cblkDR7dFMKSVQ7QSQi0gwbQzQi5+vL9/+OXz9ePh1x/h4enzsd3GXu/X533vz2fcZ5/X3ef9/tjtdpGYmCgMBoNQKpXC29tbxMTE3PAi/Xb+9++3c9XdOlb38/mK7k0KIa57Qh0RERERERHdVVysg4iIiIiIyMlYiBERERERETkZCzEiIiIiIiInYyFGRERERETkZCzEiIiIiIiInIyFGBERERERkZOxECMiIiIiInIyFmJEREREREROxkKMiIiIiJyisLAQCQkJCAgIgEKhgMFguK3te3t7kZaWhpCQEKhUKri7u2P27Nkwm81ob28fd5vu7m6kpKTAx8cHHh4eCAsLw/79+8fN7ejoQFJSEnx9faFUKjF79mzk5eVhcHDwdnfVQWNjI1566SXodDp4eHjAaDQiIyMDv/zyy7/um1yTQgghJnsQRER0/8nPz8dbb72F+vp6REVFTfZwiOgeoFAooFKpMG/ePHz33XeYOXMmzpw5c8vb//TTT0hPT0dERAT0ej08PDxw+vRplJeXw263o6mpCXPnzpXyL168iLCwMPT29mLTpk3Q6XSoqqqC1WpFeXk50tLSpNwff/wRERERGB4extq1a+Hv74/GxkZUVFQgJiYGR44cgUKhuKP9/vLLLxEbGwuj0Yj09HSo1Wq0tbVh586dUCqVaG1thVarvaO+yYUJIiKimwBwW6/6+nqRl5cn/U1E97f6+vpb+rx3dHRIfwcHBwu9Xj8h79/c3CwACIvFIovn5OQIAKKmpkaKDQ8PC5PJJFQqlfjrr7+keFxcnFAoFKKhoUHWR0FBgQAgKisr73h8MTExYurUqaKvr08WLy0tFQDEhx9+eMd9k+t6yNmFHxERuZ68vDyH2LZt22Cz2bBx40Z4eXnJ2gwGA9atW4fExEQ8+uijTholEd3rAgIC7kq/er0eAHDp0iVZvKqqCkajEUuWLJFibm5uWL9+PVJSUvDFF19g6dKlAID6+noEBgZiwYIFsj5SU1OxZcsW7N69GytWrJC11dXV4f3330dzczMGBwcRGBiINWvWYPXq1bK8y5cvw93dHd7e3rK4n58fAGD69On/Yu/JVbEQIyKim8rPz3eI7dmzBzabDZmZmTec56FWq+/uwIjogTQ0NASbzYahoSG0t7dL56hFixZJOT09Pejq6kJSUpLD9uHh4QCAY8eOSYWY3W7HtGnTHHLHYs3NzRBCSLcn7ty5E6tXr0Z4eDhef/11TJ8+HbW1tbBYLOjo6EBRUZHUxwsvvICmpia88soryMnJgVqtxokTJ5CVlYU5c+YgMTFxYg4MuRQu1kFERHdFfn4+FAoFvv76ayl25swZKBQKpKam4ueff0Z8fDy8vb3h6emJuLg4aa5Ie3s7EhISoFarMW3aNCxatOiGE9r/+OMPbN68GUFBQdI3zrGxsWhqanLCXhLRZPjqq6/g4+MDPz8/LFy4EG1tbdi6dSuSk5OlnO7ubgAYd+7VWKyrq0uKBQcH49SpU/j9999lufX19QCA/v5+6Re3np4ebNiwAYmJifj222+Rk5ODNWvWoLq6Ghs2bMAHH3wgO2e99tprsFgsOHDgAJ544gnodDq8+OKLCAgIQFNTE2bMmDFBR4ZcCQsxIiJyus7OTkRERMBms8FsNiMyMhI1NTWIjo7GqVOnMH/+fFy4cAGpqamIiorCkSNHEBsbi9HRUYd+5s2bh6KiImi1Wqxduxbx8fFobGzEwoULcfjw4UnaQ6L71+joKC5cuCB72Ww2AIDNZnNou/5zOxHCw8NRW1uLmpoavPfee9BoNLh06RKGh4elnIGBAQCAUql02N7d3V2WAwBZWVkYHBxEXFwcrFYrzp49i3379sFisWDq1Kmy/AMHDsBut8NsNjvs75IlSzA6Ooq6ujqpbzc3N2i1WkRHR6OsrAwHDx5EVlYW6urqkJiYiKGhoQk/RuQCJnuSGhERuSa9Xi8AiM7OznHbx1uso7OzU1rQo7i4WJafkZEhAAgvL68bth08eFAWf+aZZ8SUKVMc4t3d3UKn0wlfX19x5cqVO99JInJw7ef4Vl43OkdM5GIdXV1dYtasWWLVqlVSrKWlRQAQmzdvdsj/+++/BQCxfPlyWXz79u3C09NTGvvDDz8s8vPzhclkEgCEzWYTQghhsVhuut9vv/221G9SUpLw9/cXAwMDsvfbsWOHACBKS0sn5DiQa+EcMSIicjp/f3+8+uqrslhycjJKS0uhUqkc2lasWIHS0lIcP34c8fHxAIAffvgB33zzDZYtWybFxmg0GuTk5GDjxo04evQoYmNj7+4OET1AHnnkEdTW1spix48fR3Z2NoqLixEaGuqQf7f5+fkhOjoau3btwvbt26FUKqWFMK69/XDMWOz62xbXr1+PVatWobW1FXa7HcHBwfDy8kJJSQk0Gg1mzpwJABD/ffpTRUUFNBrNuGMaW5jk3Llz2Lt3L9atWwcPDw9ZTkJCAiwWC6xWK1auXPkvjgC5IhZiRETkdKGhoZgyRX53/NjFTEhIiEPbeBdUjY2NAK4+J2i8xUROnz4N4OqzgViIEU0cd3d3REdHy2IPPXT1kvKpp56atOcGXrlyBSMjI7h8+TJ8fHyg0Wig1WrHnS86FgsLC3NoUyqVsnhLSwv6+vpgNpul2GOPPQbg6oJE1x+L642dt0ZGRhzaxm6lvPaWSnpwsBAjIiKn8/T0dIiNXcj9v7Zr51FcvHgRAFBbW+vw7fy1+vv7/9VYiWhynDt3DgMDAzAajdIcrfPnz8PX19ch9+TJkzh69CiMRiN8fHyk+PLly1FcXIzDhw9LS9iPjIzgo48+gpeXl2yVxfEMDg4iMzMTSqUS2dnZUnzp0qXYsmUL8vLyEBUV5fBLl81mg7u7O5RKJYKCguDm5oZDhw6hoKBA9riPPXv2AABMJtNtHRu6P7AQIyIilzRWsBUWFiI3N3eSR0NEt6KyshJnz54FAPT19eGff/7Bu+++C+Dqs8CuXfUwJSUFVqsVnZ2d0iMyCgsLUVtbi9jYWBgMBgghcOLECVRWVmJoaAglJSWy98vNzcX+/fvx8ssvY9OmTdBqtfjss89w7NgxlJWVyVYrbGtrQ2pqKhYvXgydTofz58/j008/RUdHB3bv3o3HH39cytXpdNixYwdWrlyJOXPmIDk5GXq9Hn19fWhtbcWhQ4dw8uRJGAwGqFQqZGZmYuvWrXjyySeRkZEBlUqFhoYG7N27F0ajkbclPqBYiBERkUuaP38+gP/dokhE975du3bBarXKYm+88QYA4LnnnpMVYuNZvHgxfvvtN+zbtw+9vb0YGRmBVqtFQkICsrOzERwcLMufNWsWGhoakJubi5KSEvT392Pu3Ln4/PPPsWzZMlmuWq2GTqdDaWkpent74enpiWeffRaVlZV4+umnHcaSlpaGwMBAFBcX45NPPsGff/4JtVqNoKAgvPPOO7K5cUVFRQgKCkJZWRkKCgpgt9uh1WphsViQn58vzT2jBwsLMSIickkmkwkLFixATU0NysvLkZ6e7pDT1NSEkJCQcR/SSkQTJyoqSlrA4v+59rmCd5IbHR190zlZ19NqtaisrLxpnq+vL6qrq2+r78jISERGRt40T6FQICMjAxkZGbfVP93fWIgREZHLqqqqwvPPPw+z2YyPP/4YJpMJM2bMwK+//oqWlha0t7ejp6eHhRgREd1zWIgREZHL0uv1+P7777Ft2zZUV1ejoqICQghoNBqEhobizTffhFqtnuxhEhEROVCIW/kdmYiIiIiIiCbMlJunEBERERER0URiIUZERERERORkLMSIiIiIiIicjIUYERERERGRk7EQIyIiIiIicjIWYkRERERERE7GQoyIiIiIiMjJWIgRERERERE5GQsxIiIiIiIiJ2MhRkRERERE5GQsxIiIiIiIiJyMhRgREREREZGT/Qds3MLcRqexUAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), max(dynspec.freq), min(dynspec.freq)\n", + "\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(500,1000)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Mh. Can't see anything here. Let's try to rebin data a little, to get a better signal-to-noise ratio." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " # Rebinning in Frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current frequency resolution is 1.0\n" + ] + } + ], + "source": [ + "print(\"The current frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a frequency resolution of 2 Hz and using the average of the power" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "dynspec = dynspec.rebin_frequency(df_new=2.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new frequency resolution is 2.0\n" + ] + } + ], + "source": [ + "print(\"The new frequency resolution is {}\".format(dynspec.df))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see how the Dynamical Powerspectrum looks now" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2IAAAJ9CAYAAABXWMFoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d1hU1/b2OwVBERQVy9C7iODQmVFjjaNojD2WxBg7pMf0rjExPabYezcaS4xtjDVRQBAdC6J0BMbeRUGYme+P7dnn7DmDMb8v1+u9d78+Psw5u6+9zz4z691rLYXNZrOBg4ODg4ODg4ODg4OD46FB+e/uAAcHBwcHBwcHBwcHx/8a+A8xDg4ODg4ODg4ODg6Ohwz+Q4yDg4ODg4ODg4ODg+Mhg/8Q4+Dg4ODg4ODg4ODgeMjgP8Q4ODg4ODg4ODg4ODgeMvgPMQ4ODg4ODg4ODg4OjocM/kOMg4ODg4ODg4ODg4PjIYP/EOPg4ODg4ODg4ODg4HjI4D/EODg4ODg4ODg4ODg4HjL4DzEODg4ODg4ODg4ODo6HjEfyh9i0adMwePBgBAYGQqFQwN/f/775Dx48iO7du8PNzQ3u7u7o2bMnTCaTw7xmsxkjR46Ep6cn6tevj7i4OKxdu9Zh3urqanz44YcICAiAs7MzgoKCMHXqVNTU1Px/jpCDg4ODg4ODg4OD42Hh9OnTGDFiBMLDw9GoUSM0aNAArVu3xmuvvYazZ88+cD1bt26FXq+Hq6srmjRpgsGDB6O4uPj/1CeFzWaz/Z9K/guhUCjQpEkTxMTEIDs7G+7u7igpKXGYNyMjA507d4aXlxdeeOEFAMBPP/2ECxcuIC0tDZGRkTTvlStXEBcXhwsXLuC1116Dt7c3Vq5ciX379mHhwoV47rnnmLr79euHX3/9FaNHj4ZOp0N6ejoWLlyIZ599FosXL/5XDZ+Dg4ODg4ODg4OD4x/Erl278OmnnyIpKQne3t5Qq9U4fvw4Fi1aBHd3d5hMJjRv3vy+daxfvx6DBg1Cu3btMG7cOFy/fh3Tp0+HSqXCoUOHoNFo/l6nbI8gCgsL6eeIiAibn59fnXnj4+Ntbm5utvLycnqvvLzc5ubmZnv88ceZvG+88YYNgG3Tpk30Xm1trS0+Pt7WpEkT282bN+n9LVu22ADYXnvtNaaO1157zQbAduDAgf/r8Dg4ODg4ODg4ODg4HgGsWbPGBsD2xRdf3Dff3bt3bRqNxubr68v8Zjhy5IhNqVTaxo0b97fbfiSPJgYGBj5QvoKCAmRlZWHw4MHw8vKi9728vDB48GDs3LkT586do/dXrlyJoKAgPPHEE/SeSqXCiy++iCtXrmDr1q1MXgB45ZVXmDaF6+XLl//dYXFwcHBwcHBwcHBwPELw8/MDAFy9evW++fbt2wez2YyxY8eiYcOG9L5Wq0Xnzp3x888//23zJfXf7+6jg6ysLACATqeTpSUlJWHhwoXIzs5G7969cfbsWVRUVGDEiBEO8wr1DRkyhH728vKCj48Pk9fHxwcajYa2/XfRqlUr5tpqtSI7Oxtubm5QKBT/pzo5ODg4ODg4ODj+s2Gz2XDz5k1oNBoolY8kV4KqqircvXv3obUXGhoq+378d+y5HKGqqgq3bt1CVVUVTp48ibfeegsAkJycfN9yf/W7Y/fu3cjLy0NERMQD9+U/+oeY2WwGAIYNEyDcq6io+Nt5hfxt2rRx2K6XlxfKy8v/P3ouwmq1yn7scXBwcHBwcHBw/G+irKwM3t7e/+5uyFBVVYUAv4Y4d8Hy0NpUKpXw9PT8R8mK+fPn48UXX6TX/v7+WL58OTp27Hjfcg/6W+J/5ofY7du3AQDOzs6yNBcXFybP38krfHaUV8gvzft3YP8r/vr162jcuDE6IBlqOMnyb8g7jv6hxOGItUMUlPuP0fsA0L+1FrCSB6KyXxxcNx5yWNYeF8clwnPewTrzCPeFdgT0e2YYFAdP4N1jJnwWpaV5Bxt6o7b4DDbkHUf8vLHw/uogrg1PwE1fBQ6Nnk/Ld/hmLDznHGTqHHW4BItj/B32RRUSCEt+Eb1Wt2iO2vMX8MPJdLzURtRIFH4Rj6C3HLOU9vU6aqfvoYvYFOdJrxXOzrBVV8PyWDuo/jgqyvueTKSy6R8aiWu/BKFmRzN4zmXHVrooAn7P5TBl+odF4ebgOKhvW1F/c/Z9+7wh7zgef+s5NNxwyGGe2OVj4DslE8+bTqN7g7sO+9g/NBK1nbT4ec4CjGgdCwBoaGyKW4bLTH2Fc9rBJc8FmRPmo+MXY/DnWwvQPzQSqiYesFy5CmVkGNat+6XONQUAEX8qMLXFMURteg7KKiVMQxbQ/PZ9ut98nHkvAX7bb8GWfVLs35dxCHrz0H3XdenkBPh9lMnMjWJzKyjedMO6jesQu3gsfD87iAsTEtHcbh1+ciILH7SNp/VXLA+H19O5Dtv75EQWUr95Hk0XZQIAij+NR8B7WVAF+uHDX9fho8g4Wd8ujU1As/mZqO4RA5eXzqJ781P4PaGRTAYXJiai+eyDsvKO5OXos8KpHmw1d2VlBHncry5pnisjE9BkKRnfrQHxaLg+6777hYDIzaOgrFEi8K0sps6CH2JwvOcS9A+NhNKtIcrHRUDz7UFaPmblGBwevgDd3xmNndMWMu0E7XXGkZlR2DWV3L/ybAL2vUfWllUXiV+XrERC5hBkJqzBIH0XWC5duu86uR+EdQYAVn0UlGnHUDEpEV7fiHOyIe84erz5HFw3HsLVtcHwGFwAACh/IxEeuvNwHVDisG7v3Q1Q3vW2bC+vq591zZs0fVCHrrBcuMjcu9+4S6YkwP/DTIf5xxwpwuczh2H/G2TP7v7eaLitJfvqzUHx2PkZkX/zXW640O1mnX16ELn/1T7gqB77/RQga6OwczXU3hp0X38S2xMa/2W7uXfv4P2ETrjaNxK7pywAAAzu/Dis165jnSlT1q66ZQvA2Qm1peVMPf1DI6GICYftcC4AoOztRPjPzYPlylVZvr8jG/v+AnAoG8tj7bBpvmgmId1f1S1bIO8VXxwdsBAAYHj9ObidvIyuK0103xFwc10ALDYl9kRtpHUcqb6LKZGxD9QfAVU9Y7Hth8V1pkv7fmNIPJyvWuD8+2GH+VRB/vhl22/M+h53pABfFRpg3dQUV5JqcLz7UvQPjUTIPiccWBlD93SH3yXuvccEvHXsKL6IaudwPKrmnswzJa2zaFo8jg5cSMvUtYdeGZWAJoszURfqkmMtarAfW+Hm5lZn2X8n7t69i3MXLCjN9oe727+esbtx0wq/2BLk5eXB3d39H6u3X79+aN26NW7duoUjR45g06ZNuHTp0l+W+7u/JR4Ejybv+YBo0KABAOJm3h5VVVVMnr+TV/jsKK+QX5r3/wfCL/wLr3bArrM5UCucmP/ubkr6ud6BXJpncFgMEle+gF0Vx+i9JmlmpuzgsBiolfWYe0LeY1MW0jx3hnaEWuGEokU67DqbA2svPbTp46BWOGHg+DEYHBaDweHxGBwWA6fM04jIboBunmJ9g8NigJKzKP/0Mbi7KeH/9WGoFU7wOKuApVU9Uv7e/1ZzD8vGuDw2RDZW4b+ioAzn3u1E+13bNhAT8svxWsRjolwaNkbY2yaoFU64+ltb7DqbQ/M71XPF4LAYRraDw2KgVjhB2TEePXOqoFY4YWu8hsmzs4T00/nPk7SMUK7f8+PgFKfF4LAY2udmg8/AtZKVdT3XRgganYcbWyJo2S7fPA811KhndcaFLg2Yvsrm7t7fxhuPkvu7A5i87m5KNC53wY0xj+Ht7eNoH1Ud4pnyaoUTXP7IwbPhSVArnFC+JhZVPW8w6yHO5ISwiSdx6vWFcHdTouXCIxjcOhZqhRMuDosi8jpRROuTrifzx52gVjih9NuOeNIrF4PDYlAyYglCPjgCdzcluhy3QNE1kZZNXPUCU14676XfkLUY+NkRqA7nM+MNe+soMyZp/4X/owakQ9Elkcpi19kcqJ68CmVuMQaHxSBwGpnXz99cyZQrWx2HNyuexrUJj9H6/Z4pkLUn/H9z8qtotTqXyOfXKIS8b8KdoR3hVGXFJ1E6el+o2/Z4Enq+cARqhRP2L1kG1ROXsCexGboct8jaOP7RQnQ5bmHGZj/v9utk19kcPDVwONQKJww7fhZqhRNU7eNovomXulF5XHmhE73fveApqBVOuDnqMUZmaoUTmi87Qj833mCCc6OmNL3HibtMn9rtmUifh9aTjiH0bRPq1XdDUb0aWqZ08DLa35r1reD73WEMzr1GxxQ0+QgGh8XAY71JXLdBZG+YG3YYWd8vpvePfL6Ifq6XcQqDw2KwosNKDA6LgeLydUY2ldvCaT9/Kc9i+n3hrU4oXpIEJ6f69F7jclf6ec+6VVArnHDq9YXMPHSY+wIa/XoUrdI94TmkFFOKj0OtcIL/14eRodvCPNfC3+IlSTjXrQa7zubI9nIhf9Gs9ij+qQOT5uj5UCucULRAB3c3JRQXr9H81p46xK99nlmrRbPaM9eF4xY53GvqRUZiSUwYbI1d6Frw+MVE83msM4lrqDvZNyufJv0p++Ixpr7r48XrXWdz4NzSS7aO7Z9j4fpq6mOYVmKCu5tSJsOg0XnMM7DrbA5Ku1ihVjgBFRexekFfnPnyMWZ89nvEsB5PYmjaK1DeqUXTn8maG362N5QtWkB5pxbubkrU7Ahl5hDnrwBnzsvkVrRAh51bfiEy+PwxBPS4AMXVW7SsU5yWGYd0zKXfdsTNrW3I9e4AXB/7GM0nzJkgl65fsXO6FU2JXP88CXc3JQaHxWDW3TCoFU74XdGY5GvghtB3TDTd/bejUBSWY09iM5lcPQaV42atB9JU9Wk/P4tKgqp9HJw9W8rGLYyjfA15R6Abebc0NB7D4LAYjL/UXSZ34V3bP4V8t4h54zRcdx5n8rxbdAphh9ygVjjBa+UNDA6LwY6je2l6VYNGaDb4DJovO4LS/stpP0peb4vjHy+E7qgStseTMDgsBpY+emac0nlRK5xwzrmlbDzC/5If/Mj4PmXXtVrhhNB3TcxeKdy/9GsU3N2UULrexc1Rj+HItEV47JgNu87mALuCmPql7cre//cU8o+6qYq7mxLubqqH8P9f8zPF29sb3bt3R79+/TB58mQsWbIEb775JqZNm3bfcn/3t8SD4D/6h5jgIlJ6pFCAcE+gCv9OXiG/o7xCfke0JAcHBwcHBwcHB8d/M6ywwfpQ/j2cCFtRUVGIjo7GzJkz75vv7/6WeBD8R/8Qi4+PBwCkp6fL0jIyMqBQKBAbS6j1Vq1awcvLCxkZGQ7zAkBcnHicKD4+HhUVFSgrK2PylpWVwWw2M3n/CWi+O4iYKSk4O0nP3DdotEBCJHt9D7kTZsKg0dJ7DTdYZfUaK46gtlssjGaTeO/e5wuppK2072bDaDYhdPQhGDRa7Fk4DyGjsmE0m6DcdwQAoGrSmFy3C8cPGnJU5fyLerR/eQKtz+WyAoHrJ9A2dq5ciOBXMpi2BeQtiqX5hHRhHMI9RSw5Y+s9LY2mOZ+9gQWhAUxd1spK+rnezx6MTGw1d3FpvA692z8JABifR4453hqcCOV+E7a/3Jm2H394iEzORrMJiugIZgxOO7Nhy86Bx4EmzHzUuCqYfNZ79HRWzBoAwI3hScj+eBYAwHXdQQS9Ll+Lah9v2q60v0azCZ71byH24xSk5BfQ/FmfzkKThekI/PgwbaOkT33ZfAvXiri2ON1xKb1v0GhhNJtgioZsHnAvxKCbudbh+hHy5k4gG1fQpAx8GRQpm+8/o1yg2kP6pz96F7nj7210CgV6DHyWyRs24yyMZhOsnaJp/dL+S9uX9t+8oQ2MZhPeb3YK6vQcdixWC8IOOcGmb0fL/RDcmmnX9U9XuA04h/BRufSeytNTNhaj2YT8JTHY/8McWO9pv7zet8FoNsHt5wzUnj1Hx9aqH6krr9MSOO3MhilalFlIljMWnNmPP6NcYI8hRd3wZ5QLXjlL9hibrh1C/xgJAMzcS2UBANYTpwAAYxqdg7JtayjSjtK0y+2v4tozOhg0WjSfkYa8haRuj9755O8SsodeeY41QJY+B5YbN6jM98R4MPnaTDtL02h/qqrwVkAirUeapnG9DgD4cmcfmi6dV+FvbVEJ8hbFMuUd5QOAWOd6sucGABolF9D7Q330zDh95uagqMcCJGbfoflHTtiOCy/omfUl7TsAHJs0E+Xv6HFRfw0A8GnvpwAAtTt9ZbIT/hb1IEfg9K9OhNFswtzr5IVe/JkO7TKHAQBCUzNRNHAO054w9wDonmE0m9C17SmaL7k72bvqGQ/B/332fRiamsnISSpr4b7RbKLrR/N1Gi48r2fSpfk6viDu+Y1WkP7kjZzFtNl0HunDgjP7YdBosfXIDhR8l4TW81JRvk5uOyEdr+esdHwQEE/nXO3vi8iDw3Hpt1AAgFKibRbKdT1O3gHN5qYj/5lZuLI5FGXv6ZE3N54Zx6UJOmxJ/w2hE7Kg2C1+Wdocug21jZxpnfUNxbI152gvKE4mRzjPfKSH194aoFs5rcOg0cKWncOMTRnVGpXbA2E0mxA0KYM+f8pXG+LQJ0SGF1L1dM6EsoemzMK5l/W0D4vC/GDQaFG6JpLO51tNSV1zQ4nX6S0HfqX57/RLoH1eV54hW5sXU3TI67QEDZSslv+2xgWWS5dpWSnCs9Xwf4ocr1XvzsbmCnLM/s6TCbja/gpy7t5h8r/RpJDmFTAmr5ip98ugSBTGk321kRMpb/CKpu1/sXqQw77YDp2AQaNFllYFp53ku4vzFtFUwaDRomB5NAwaLWpsFpx7RY+R7pdke4iAvE5LAAD+76fTuZfmNW+Q+w9o2S8XBo0WDZUu8FiSDoNGi4Mdm8Gg0WJXm01MXvt3qIDiz+UOIDgeHu7cuYMrV67cN89f/e5wd3dHaGjo32r3P/qHWHBwMOLi4rB27VpqQAcQY7q1a9eia9euaNmyJb0/bNgwFBYW4rfffqP3LBYLfvzxRzRu3JjxljJsGHkxTp8+nWlTuHbkfZGDg4ODg4ODg4PjvxkWm/Wh/f8nIQ1pJcWePXtw4sQJ6kUdID4dTp06xdh8derUCa1atcL8+fNx69Ytev/o0aPYu3cvBg8eDCcnub+H+0Fhs9keDu/3N7Bs2TKUlpYCAH788UfcvXsXkyZNAkB8/T/zzDM0b1paGrp06QJvb2/qAeXHH3/E+fPnceDAAbRr147mvXz5MmJjY3H58mW89tpr8PLywqpVq7B3717Mnz8fY8aMYfrxxBNPYPPmzRgzZgx0Oh3S09OxYMECPP3001i2bNk/MtYbN26gUaNG6IwnUTWkAxquPYgzH+nhOzmN5hE0soUrolHQZREAoOep3ii+2BT+Tx1DvMmC1b93QMGIWTLNrbSO8APPwHfwcagD/bFl/0aa944xAPUNxXV3UqmiDkHs+5T/UyJCXiAGsjNL9yPVrwOTTxiLVKusahMKy8k8KN3csO30nwCAHoOehSLtqEz7bDSb8NWVIOxsKxqunp2kR6tv0qTN0HIF3yUh+FWWabLp2kGRfhRBWS5U2ybF2df0uNPCBt1jOTivuwFL5xio9h5G2Xt6+HxK2il7X4+qlhYUDZgj05KrwkOwdddaAMCmygaYEcJqQy5uCsPhuJ+JdtfbC7Xljo+8bqrIQl+veKZup72tUP1RSyj3HYHRbELcBylouoDVxNz93Q97In6lZTZXZMPw7HiqGRT6Gzs5BV0nZOBYjI3eV7q6MowiABSuiEbQiCM4/6IeLX5MQ/k7enhPI3JQhQVj655fGK16t6fHUC2njFWzmx9pHmk+Ib2uObKvK+aTFDQ0W1D/V9EYWhEdAdsRwoYFbBwPKIDQlEyHjIbQh88uhWH/gDawFBTL0g0aLSoHJqKiTy1Cn2PH1+W5sahnJA4d8r9PQsjLGSj+XIe8keQZrE6OR2l/IHScqJXNmxeP4t7zYNBoaV+vbglBZvRaVmYKBWUjpajpEYfdi+czefN/SETIS6ITCaF/I0sfw3ndDYdjsr93wVKJZ3za3zefgPJ1EfAemCO7Ly2T/0MiXupmxLaIxmTcsxMQOjGTWYsxU1LgOVuuUfyr9u3XkaPPdUG6Nj8pzsIHAeRZ65dvwJ1O55l6LjyvR/MZZM2r/X1RW3IGAFA5KBGuv8gdqagD/VFbVMLkl/Ypb1YCip+ci+SILrDci1NjNJvQ/uUJaLiWrU97BJShLqy5xeypdY2zrrmVyuf9C5HI0qqw+Mx+tFI3RGz2EDR7Ik9Wl+DspXhVO9Rcc8afvb/FGF95H4QxPchcCdfrbrljYMMbCFuYgqDF5+hzZ79vXHlOhyaL2PVRuCIaoa9VwHL+AlN/+boIPBl4HM7KWqS1q+ewXVN1Nd4KSGTaKVgejeCnjzD5uo4aC6cd5Ln2PeiKM4mVDuuTXt/YFgT3XoUoe0+Pk8/PZMYBAJcm6LD8nW/wij972qV0sh6nxsnzVyfHo7KFGpejrTgyYDoaKevDoNGitlssdi1bIJO38HzNO7Mf4yTzJOylZ9ZGwnfwcZRO0cHvw3RYO2ih3G+i+eJNFmRpVZhduh9LryUgfXQ0tv+24i+fJ3tZSD/XdI+F085s5C+JQciz5DSEqmkTbD2+m45XyH9xUxg8+56usw21nw9qS8WTSY6Y6tI1kTjVgXwnO1t7C90yJ8Jn0AkinznxCJ2QBVt7LRQHTEw9Ah5krPa4NF6H7I9nyfryV/vSF8UHsfd2GN0fBahCg2DJK0StrQZ78SuuX7/+jzqn+KcgfGe9cNrvoTnraB5W+o/Jo3///jh79iy6du0KPz8/VFVVITs7G6tXr0aDBg2wd+9eaLVaAMCoUaOwZMkS7NmzB507d6Z1rF27Fk899RTatWuHcePG4caNG/juu++gUCiQnZ39t48mPpJeExcsWIB9+/Yx9z744AMA5Neo9IeYXq/H3r178f777+P999+HQqGAXq/H2rVrmR9hANC0aVMcOHAAb7/9NmbMmIFbt26hTZs2WL16NZ566ilZP9auXYupU6di+fLlWLZsGby8vDBlyhS8/fbb/4JRc3BwcHBwcHBwcDzaIDZi/3oe559uY9iwYVi6dCmWLVuGixcvQqFQwM/PDxMmTMAbb7wBX1/fv6xj8ODBqF+/PqZOnYrXX38dzs7O6NatG7744ov/k/+IR5IR+1+ClBHbdTZHdn7foNHixrAkuK8SWZ6+Jy/ju229ETSJ2F91HzEaAHA9wBlNFjrWMgOONUmMJjIpCsb1S6GdlgpP0x0o/yTawtv9E9Fgg6i1VbYLh/Vorkzb80lxFlZe0SE3tlbWLgBMv+qPbRGNZeUEJggAbg9IRIP1Bx0yK/ZyEeqx15hJ8U7hMUwLioLRbEJyl0GwnCY2Nqo2odi6c80DacL6nryMTW2a0j4YNFqc2xiOlv1Ee6JzL+vR8nuRpVNFhEE54wZqOrPhChwxfFAoYKw4Umdf7jyZAFW1DXsWzkOv5OHYtnUlQvaOQtB3FtiyjjssU73DH3vbbnRYZ/6MRIQ8fxDqli2w5bARFpsVyV4xREbdh+C9zauR5AyErk1F8CviupOunw7HBqBzy3xMbX7coR2N9PrsxnBqL1WdHA/nrVlMHoFRrIu1AsR1UPiVDkFvpMvWcHKbTrBcuy6yx18nwepsQ8iLB6HUtoHVdBJFn+sQ+HbdzwdA1t/5wVUIGHZUlmb//DBs1C5vqMepUVtUAvOGNtD0P8n0UWBZ7wej2YT491PQYmQJajrLba7oevf2wpbMLTAMGAnj+qXMnmHQaHFjeBKaji+la09/9C4ye/pS+zWBMQxNzcSF5/W4GWhFwbDZMlnbMwSq8BBYcvNR0yMOzhduw2oioQUEjToAWDtG031DiqujdPBYnC4b060hSWi4huxj228747vgcBjNJvQYPIpqr6+M1iFrqsj2Xx6jk7HClKWZmUDtaxxB3aqlaMcngcLZGduLDyI5ogu25uxh+pi/JAah43Ngk3jJEtqxXxPSeTCaTUh+/Cls/f1nh8+h0sWF2hkK5XqFtMe2/AM0f9tsJU7EWpkxAoBitxdsXSuY+9K/Ab+OR2iKKIe/YgyDslxQ3JHY9c0u3Y+Jfh2YebWvw2g2of0rE9FwTQaKvtAh8C12PiYV5KBHgxqH75vEt1PQeCnJL2Xb78fqCX8VsRGwZefI8ggwaLQomJ6EwiGzYdBoad/qYikq1kfAawBrU6rao8HWsK2yvrv92Qw3O17C1Wd16PjSQZyItSLeZMHU5sdpWfs+3Y+lFFjZ/J8SYVPZmPkS8rb7MhVH35zJ1GN/iiFvZgK2Jk/HK/56ur+qIsJgyTkNo9mE4ppbmHiPVVW3aokt2dtl68Wg0UIZ1Rrbtq++L/sn3AvZOwqBw030+rHU8ai/MRNKNzdYb96k98PnpsL3Y/G9mL80BiEjD9N04d2jDvDDlgO/ok9eL2wO3XbftbqmPB1DvHUonqZDwDtkHXU8VoXtUzrhVisVTO/MrHMM9uMRZJk3OwHFfeeiZ0Aithcf/EuWt7p3PGODBhD7bPeVGbL2Oo8bR/OqPD1huXjRvlrK2gH4j2HEzp32fWiMWMuwM4+sPP4JPJKMGAcHBwcHBwcHBwfHowfi0fDhtPPfjv9oZx3/VVAo0H04YbYMGi39DwDuqzLQIt0dRjPx3LOpTVM0C78k2rG0rIedKxbiarhYnaCRO7cxnLmmZQYRb2Y9n3xG1N6sX4rHh4xCix/ToPzzCG1PyoYBoGyYPT4IiMf0VmzgYal2KKZ+Cc58pJexfn294qH29sK5l/VosP4gXP/wpHKYd2Y/8ubFi3IZMFKmqXTEhhnNJlwfkYRpQVG07C+7VtI0y8k8Wr7guySZjK4/LRps2rNhAPGQFJ6tpjIS2LCzG8OR/1Mitv7+M2U1AGIjUjmQyFzKhhnNJsBmQ3KXQew9yd/6v2Ziz0JiW6S8fAMGjRaBw02wZR1n5Cj97NyjRCYTASHPk/ncctgIAEj2iqFplpN5mBIYg2SvGIYNE2RYOpnYObj2LMLqk8SbXf73rPwKV0Qzc3wsYRWtY+/8eUx9ZR/oYcnNR8fnibfN8y/pmXEkvp1CP18dRdgwoSxA5m7FzaYoW+TFzE/Ab9UIm3MdN7YFUeYm8O10RrYVb5G2VJ6eKH+XjKvB+oMO2bD3iuRscshLB5G3II7U2a0cP/+xGgCg6S8GoRbaE9gwo9mEG8Pl60343GRhOmo6n8WbhccZraqQfnmcDrXlFTBotLjTwkWmuc3/nmhlazqfhdufzQAAae3qofbsORR+JXrkKu43FwBw5L2ZCJqUgfYvT6DPlgDd0YEo7Snq6n7cvghGswlOOw7BajpJ+yRlTezZMKPZBFV4CDwWp+PDosNM/W8WHofx2+mwdiTr5btgcQOT2nI0WZhOy5X90pZ6lxOg8hA9OErZMPvnCABqz55zeN9WXQ2DRoutOXtkaSHPHkatjvX0F5qaiVuDEzG8uAvTnnTfNmi0sOSchkGjxeUxOsIQSPYMa1UVw5wkvJsCa2UlI6MTsVYUfpNE86kD/AAAeTnesEdyBOlL9NRUGbsirN2vSlgvtvSZja+CtaoK1cnxcFMqoNS2IfOaIPeCKtTXcE0GLo8RGafiVe1o3m+CI5i8wv3pV/0pGwYQj7jmN/U0n32/pLIEgO2/rZDlSXpzIpW7KjSI2bfyn5mFVwtyaR/OrI1knqsTSSto/UIeSxezrF2j2YRfgnYCIB5Gv2l1GKWT9fREgH2fAPL8SJ/dirf06DJ6HPJmEw+GQ7e8AAAIeeGgQzbMoNHi6Jsz0SevF9SB/jTNWlmJguni+yk0NROv+JO9zHlrFhnDPTbMoNFSNsxoNqEmoIXYv9cn0jEazSZYj52iHj0FxH2YIlsvwvtHOkcXRxAPh4LN97BTRIaCh1xhL1rcYSGViUGjRZdU0ofa4lIYNFrUdD4rrpekKJlMjWYThniTfUxgwwAgrYsGrr8cRIsf02TfL+i7YrnofVH4KzCLoRMzYdBo6T5Q8onOYdttv08FADhvyZI9F+4rMxh5Cp/3zhPfeZaLF2HpHIMRp8qRdLQGl8eRdgQ2zGg20UDPHP874IwYBwcHBwcHBwcHB8cDwWKzwfIQLJseRhv/bnBGjIODg4ODg4ODg4OD4yGDO+v4N0PqrEOtcMLNoUm400SJI+/PZI5F2H+mBrb3HBEAQN78OBQnz2fyAo5dszpKK/5ch8B1t2DLOo68WQkITcnEzaeS4PYza4AKANdG6pgjJveDfVmp4wIhTerW3Wg2oVevYbAezYWlSwxUew7LZGDfd/Obemi+JMcDp5ekofcfLyBk5GGat8OxAXDtWYTZpfsR4NSwTplctdzG0METoThymhrn2/e/6QEPXG5/FUazCT0DEmX5fiw9gBf92js0dLaH4CoaIC7yT6bOlB2Bu/aMDheTrNjS+zu84q+nbm6lbS4rO4BnfNrjymgdmiwkR4WSuw+B5WSeQ5kZzSYkdx6IytCmcNksN+oXXK0LsB9H1GEF4wZfmD/7MUuv7/7uh2u/eqHV7ksoHtwMTtFXqROPq1tC4DnhNmrLK1DVJ4H2yfy6Hpqv5cb8yqjWsB475VCmjp6Xuz3jUW87a1ydvzgWIaOyZWUEJB2twWTPHJnchPmpttWg94gJ2LlyIfSvTkTj3YWMIbbgGEJw+W40m2iYBkco/DoJQa/Ln7UHWUf2KJ2sh9XZhgZmBVr8wIZ6sHSJwc4VC/9WnWW/tMVJ/XKmjKpZU1guXZbtSdL+Xh6rw6Ep9xxt3AuDcf3pJDRaLncCA4jhLgQ38Y7qdAR1q5Y4+YEv3E+r0exENdS7shknEkJ5Ye8pmaqjwVoBx3skIDposEfJz1E0mK1Qv7QeqdMS5hj1Tl/sarOJuu//q/aF8kOLu+Jq+/sHGgWAixN1SP/gB/T1isdzp0uxKMzvvvXat2sv95JPdDg9RnSUciFVj+Yz77n1b9USJaMC4T2NDU/icC9IiIRx4zJmrJcm6JD90SzZs3X+JT1a/JCGdeUZ+ORiEg2ELpXV/dbc/cYnva9s0ADbCtIQ9XUqWn0r7jGCMxG1nw+2pP+G3gm9He5tUuQvjUHrN8qpa30AULdsgdpz5x/4+ZWGS5H2U3jOADFcxc2nkpD23WzGEYQAqTMboQ7rLh/0a2VyeMxe+CysF0cyLf5Mh4B3SZ2N9jfF9Q6XmbJXR+nQ6aUMfNVSdDpVvcMfzj1KUPBtEoJfE4/EBq2eiMKhxJlKSn4BZoUEy8YslBFQsT4CJ5KIS/3i1VEIGCo+e/ZQubvT4PMAWS9dj1did6Srw/x1rR0AMOT2AbqVOzzqeHmcjgYuf9B6ATFsQc/eI1BuaIQTL83E3jtKvJffDw17FmHt6cPwCC16ZJ1TCN9ZS09pHpqzDr/W5kdWHv8EOCPGwcHBwcHBwcHBwcHxkMF/iD0iEAw0b3sq0XxmGqOtCtg4HgDRsBk0Wlg7ic4QpEbzxcnzMfuaF6O9CV6RAnWAHzWQVWrb0DSDRotb2wPpdd7IWdj+6zJieP0kMeZ/e+pSmldA/tIYNF6azhgiC5AawnpnNIQqOIDRkBnNJqj2Hsb1p5MYzVtteQXyl8ZA7eNNxnjPIYhqz2FZ+7HZQ5j2jGYTjr9CjIKVbVvjFX89dZErlNsftR4A6mTDACBg+1j8WdUMyDiG7cVEK3x5rE7GTlxufxUp+QXUuNdeqx3q5Mrkt5dP8TQdvb+9lDA/VzaHwmdqGgI2jwMAhM9NpWWaHLuGov5zaEBQgQ2T4hmf9lAH+KHJQhKw06DRYuvONUwe+3Fb8grRMOc82maz20DRlzoaiNjgHevQGP1YjA15C+MAkIDVdWmMhesN5Zmo93gpmv+UBsvJPPhOTkODejU0X2b0WtgqSfT6fXPn0vsCG2bfvvXYKZlsiz7XycZp0GhR9LmOYcPOfEwM20NGZWNIrtyV+aXxpJ61+UQVP/kieWbuGuIIW7iIyKSvVzwEZtft5wxYLl6EIj4S6lYtAYC6SRcCIBs0WijSjkLlSZzRlP3SFvX3icbzQa9nwPw6G/TVoVY1KYp59qRyUPv5AAD8PkpD8ILzML09U0y75+gBNlFGghE9QBgKabsAsLqMyP+kfrmsLSkbpvL0ZBwcXPi1NS6Pk7BhAGC1wGg2oXHOTVldwnXuBNLf64EqdD8h5jtQ5dhz1sUUHS5uCsOW7O1Q2BRwL7NAvYsEMpe6VA+fkwqj2YSdK4mzgNOjZ9G+2vdBcBak2qNh2DBpf6VsmIDQpSniPitxWqI7OpB+Vnc/A4NGS4NZGzSicw9hXdjPa9dRY3G1/RW8VCBngKV5jWYTJr26Bs4KJwCgbJh9fc77WsrGnv8TcSTkduo6TTOaTfD/gDhKsXYkz0LLA1cxJq+Y7Nlnz1HX89L31ZbMLdAesXO+sXEZHavQj5a/FsGg0aK6l+iMaUjuOcrgDvQW2bDKQYkwaLRUltK1Zj8WAfYnKOwZNevt2zBotGj1bRqTJrzb2mwoh0GjxZbMLXW2oWzQAAAQMvIwth7ZwaRdXugGS+cYBO4cLSvXJ+cqc200m2gwaOG6zYxU5M9IpGyY0Wyi4TLSviOMkpQNE8bQdEE68r9n36/KbmXYHO8re1eV/BxF8wx1Y/sknau8UbPo5+sdLiMkyxl3+iXQejwWp+NYjI2R0dmDrVD1RALCPj7JtCmwYQBENkxJHP709EuA0WxC4VAxnIbRbKJsGAAEDD2GvLnxTPqV58g7VRUSiPPDImh7Qpndka6Yd2Y/LaP20tCy4bPFd23TAx6o7Sp553Urh8eBJjBotIj6JhUGjRb9T16E0WxC03kio22PayN1DtcLQPZmg0aL7VtW4MRL5ATMtKAoNOxZBADoHxrpsNyjBitssDyE/w8jVtm/G/yHGAcHBwcHBwcHBwcHx0MG/yH2iGDgAKLpa/FjGm4+JbqmNWi08NqlAADUnjuP6yOS8PuqRdAfvetQK7ihjSfVZI0sfQxBb6SjtrgU4XOJNkdg0IQ8DXsWybRkBo2WaqBnhIRS7ZqAou4Lab6lN5oRTZSnJxRO9Zh+L/DdD0tBMQCigQprfJ5oy1/Qo9HyDEy91BqWLjHoMnocjGYTirovRG0ZOY9d9IVjjdK5V/XIjl0ju09tM06cwifFoitYIc1eVtLxUEax53z0db3NlGk6X34G/NIEHWaFBGNDeSbNa3+G3Gg2IXJ6KpMm/A14J50ZW96iWGTFkDGFjs9C3px4GgRT6eqKbdtWwaDRYnNFNlNPx2NVTD2nPmlCyuw34dyrenx0MYJxDS2UU7q6ok9eLwDEbfA3rQ4z9Qa+KQZA/bCAyFLQxkvbK+5J7BE9+56WpQHE/k3Q1BteepFpAwAaJRewDMvVqzIGSKltgxvbguj1F5dDYDSbKDulUIuOX6XBms+sJVrFIbnnEPh2Om4PSKTt544X7S/XhLdkngcAuNH5Djodu4OOvoUwaLRIa0fW9Z5F8wEAoc+ReSh/V0819UazCSWf6EiAbWfxOXAEy0WiUfUZdAJHT/lCFUJY6ZGny6DueIXpi/CZ+X8viPPSG83QIt2dZTYmeqNwRTSMZhMs+YRxELT2tcWlMJpNqGkoyuxmx0uYXUo0xc3miPIT2vVQNaDXUkbDpm9H7wtjKv5MR5mV5k+eQtN5ZJ2rWxLWr+wDErrCdkRkCFUeHjBotCj8SkfrV8RHArpreKOJyPxOCYwBFGQfnFQgBuD1nJUOz76noX9tIkKeP8gEgwcIuykwbYbcPujw0gQkR3aVyVhYGwaNFif3hAAAtoZtpfVcfzrJ4X5k07Wjn/NGzsJjKeNle4x7LzIOS+cYWLqIoSLstemWixfxTuExIpeIMBg0WkwvSYPTjkMwmk34Ibg1k9/1D3Gvr7FZUFhzC8uG9pT1U//qROY6waMEAGF4hfkqGjAHANk/BTDP4b1wJtajuRjS8DpTnyNW4IsWJpz5UGR3pXWFLCchKYTwGXsXzKP1CM+j0sWF5v+sOJParaW3W0fbK/pS7mLcvl9SN++CrCoHJaLnqd5MXkd7+LEYm6zv9thWkAZrp2h6XfVEAqBQQNW0CRolF0C19zBCRh6mTLWAzREeqO0WC1V4CFqku6N3Yh8AQP6PibRNn0/TaKiRsl/a0j5aOsc4ZHKln4sGz8a3VwKZsUmDQAtI9C2heRy9I4WyBo0WoUvFUCL58dWovzETnxRn4W5Pwk5dnMjOh/8H6XD5LRPNjCJjCwBRX4sMlJDfWE72VFvNXaYv0v5IUdxHXDMAkPUpYbgt+UXMPiaFr7ohAKDibT1arrsBAAj8ZQJyJ86k9VxufxVnDPVou4roCKwO2A2j2YRW35B3cqRLGXq3fxKXxuvw0cUIcQyS/1L7+XMvs6ccACBvdoLDcdW1ljn+u8Hd13NwcHBwcHBwcHBwPBCsD+nYID+ayPHQYD1BvNtZusRA+zrRqgj2G/t/nEPzNU07CwBYkRsH/8z69L4jhue8jngOujZSh9zxM3ExhbWh6RVItIWPHe9PtZdC2pRAUXMbpS2m9y+k6hmN2YrWJLDo1qO/U22WkCZ8zv8+CVuytqIkgQR9bP4T0Sz9GeUC1Z7DMm92756PYuw7BC3TrcGJaPldGiK/S0X84SFMf5XtxMDV7xSydgT2cKR16pVzTaaJs7e/EJD9ETkvH/XHeHqPYYqmEe2+5kvRm5g60J+pP/aIaPMiMCz0WhLc0VpZSbW3yU+NYfIdaO/JXAc/fUS0v/guDekT46D5Mg3VO/wBAF1ynoQ6wA/WykrUdD4rk4nQPykbOSUwBrVdY9G7QRXNK6xLOr8/JDqUqXQ9NFh/EOoAP3Q+0U+WT1qX/ZxZTSfRZFwV7d/G8ig8PmQU6hlJ4HBbba1sHADgO/g4Yo9YsSa8JSydY/DnT3NQuibS4fxK2y6dokPgcBP2RdVH2ppoJq99We/P0uB+7BIt6/8BWbO1JWdoPv1R4hGz4m09znwsaka7jiRzGTohC5b8Iqj9fLA0zAfNn5QzjwCg/TyVzk/vGAMUcW2xorU3zutuMPnUlQqEfFnF3LPevo38GYn02XXZnElYbA8PGM0mJuArILKJdT0/Bg2xdTOaTVC1CcXlcYR1yhs1C76h55E3OwHryjNg7UDK1547j47HquC/6t6auxeoFSAsKAAUjBCDNJsfc4Om/0kZCzcilwRuf2nlWBnr5LZa9LAmfc6azZXsI+Gbsf+HObBcvkLzOWKyPU7L7dEyvpzNXAt7QmGqkmnzj1lzcWN4EjZXZNM+jMkjpwJUew9TD7BCmfJ39VB7i3a904KiYOkSg62//wwAeHLlJAAkWLOwlgRUPkY8dCZ3GoA+XrFI9esA25Ec2jdFNNHWV7YkfdRNIszYn1GEbTrztAVO18SvAPkzEmXjFvp1t2c885w42uelaQaNFr5TWPtO2s7Ton3e1goxyHevENHTrLWqitb/bgAJgBw7OQXhB56h9QS+Sea2zaxUmlfZoAEKlonPbfArGXRehfW//4c5sHWtQMmnLINjb8tV/LmOub4+QgzELn0n/L5qEe33vjlzAZsNlstXmDxb0n8DQDzjCpg2fzYu6prhvO4GasuIPVrIiwdpunRt+gw6QWUm2DlKIdg5nX1Nj2+vBCJ4z3N4rUkRTZeu9dsDEpE3i9hi2e8f0nYfHzIKAJD0Blk3AW+nM+lGswkJzk5QVVmQNzuBsXsUoGrRHOd1NxCdNRQGjRZdR47BsddFWzhp/xyh7D09ZYel/WPWnHcsOj4/4S9ZQiHd6/M0vN6S2POFvHSQWctGswnuotiQP9JNVu+UwBjUFpei2dx0ZLRzQsX6CNkzUPS5DjeHJuHGsCS0/J48BwpnZ5ondCIbwPuv5MDx3w3OiHFwcHBwcHBwcHBwPBB4QOd/DpwRe0QgeE1U7TmMPVticMFSiZsdL6G6Vzyjzdpy4FcYNFoEDD2GkoQ7jNandqevTFMGAK7nahCwaTxaP816mrNWEaahvqEYvlPSYN7QhqYL3tIA4E6n86RvwQE48r6ozRK0N0FrJsKgIbGnAFb7JJxXF2DfP6PZhHMbwxkta3a00uE4GmefR8knOvj+UoEmffKYfgheFg0aLdTdz9C6hfP7Qn0XN4U5PIO+9MdeVCNmfuMeOzhgJJPHaDYhYNN4Wj5ouNhHof4b24IQ8A4bw0Ud4Ict+zcy+bKjlUy99hp+VeNG9J6tK4mvduWt2+z83bxJr587XUrrE7Bj3RIAgHOPEgBAvcdLUVtcKpOrvRYu8C1iI5Y3Nx7KqNZQ785m8gie5AR5hbx0EF9dCWLqsGcaALJ2nXuUENuN75JQ8nMUk7cuBlKILwcAHq+rodwvphnNJuTNTmDaspexai/RuvsNOU7zKeIJO3Z7QCLOvSpqqU+NJdp6hVoNzddpyJsXL9PIStvZunedbLxS73Zp7eohf3Es6l+wwfdj0Tub006RBTWaTagtJWyPKpSVo9CW6W3RjmHLYSNsh05QVtVoNuHmU0mIPWKFz9Q0FA/wkGmQi/rPofGfhDoFNurK5lC8VyT233fwcWZMUk2u0WzCVyWEfeoxeBTy3m9AbcEAstaK+87FQO8k/L5mMa3j/WansPWPDaSO9UupHdumiiyZhluwxRCg8vAAAKxo7Q2j2QS/D9OpFz/pfAveLpmyzZoyLI2jeZSO1aDRIv3r2UwaAGRX35WVM2i0KOy2iLkf9XUq3FdmoI9XLL23IDQA6kB/h3ua7/dH4bfhMgwaLbVnKurvhIgfCcMR8C55Fi1XryKtXT1ah9pLQz9b8kUVvlSWeaOJTczRt2Zi2CkzGv1CbEE7HiNsU2G3RfB/X2QMBXuk2/0TZXXdeP46IyepHKRtUyREOhyvao+Gfi6dokOyVwzNVzGhHQJ/mUDfIyFZzrT+gu+S4Ln4MF2b0vZ8PkmD0tWVvAdu30bwM0eYPMJpB+HdJayZTwavpHWEZ6sRNM+GirfFvSDgbdbWSF0l2ozJ/vd7hsl7Y3gSAraJzK3AtvlMFdf2UztT0WQhe/Ij/3u5TRtAYhpK7xs0WmrfZzSbKPvY6ts0GNu6o6ALuy4BYO51DQwaLTxfKULxk3Nlz8JXJRmoTha9ESr3k3240QqRbc6bR76PXEwRT02o9h5G69m3HO7jlvMXUDpFB7dF7jCaTdi9dAEtJ9hL2vcjf4l4GqdJx3Ow5Jx2uJZoWasFDTYQG8KST3XMs8zku4f6+1pgzfU4eq2IjWD2Budr4hf/0HdIXQGbxuPW9kCH/fAaQGxeg1ekIOmNiTCaTfA02aCw2OC+SpSdEG9UattIZRgeQvMJ3wU5/nfAGTEODg4ODg4ODg4OjgeC9d7/h9HOfzs4I8bBwcHBwcHBwcHBwfGQobDZ/gcOYD7CuHHjBho1aoTOeBJvFebhm+AIWR57qr2qTwL2zZ0rMzaP+joVrb5Ngyo8BCWDPHEyZSZz9O3Vglx8FxxO89f0iIPTDuL04OxrempEK5SJ+CkVXnsqYXVR0cDKl8fqUP+KFQ3WH0TR5zp4/VmLM4OtKOpBjhxYusRg54qFzFEA7RHAFC0fh9FsQrsvUtHye/HIVpsZqfD64w4TENWRPJJPJ8PSxQyAOET4yPMkTReOA1a2bg7nbWzAyzW3GmFBaAC9Nmi0OLcxHL39cuhRNilqusei/oly1J47L+tD6/kp8PuQHC2pWB8BrwE5zHwkmQZhhF8WNkd4yOq9PiIJGV/NZuSUvzgWIaNYxx353ych5GVyvKH4cx1jMG1/pEMRHQHbkRxYO0Yz8subG4/iPvPuawh8c2gS3NZk0aC79ke2AKDb02Og3s32T+3vi9qSMyj4LgnBr5J+hh1ywg+aLGZ92rddvDoKAUPFoLhKbRsUDW6E08/NQsCm8QidmOlwjACQNyceoROyUNM9ljnqAgA3n0qC28/icRChjs+KMxHrXA+6owOR3m4dLVP2gZ4cbXJzw6kvwxGaIhpR53+fhAP9v8Yo3w4YdsqMUe4XHI5FaMNoNiF8bipyx4vHd185G4fcWNahiKppE+ow4i+RFIULcQ2pgxtpe9Jrab8Kpich+JUMh/Ir+C4JruVKHJsk7g29E/ugtqwcAHCnXwLqbxRlr2wXDuvRXNk47Y/U5i2IQ+iYQ7Qdpasr4y7baDahy+hxMsc80r7nzUxAcT/5kSn7cagD/elRX0dHC9V+PvSop30d9mvbvq2aHnGobaBkZAA4fl7toQoJpMcEjWYTglZPhM3ZhqL+c2jbPZ98hoQ4uIfKQYlw/eVgnf0BgOre8Sjtb0PoWCJfVZtQWE7myfLZj1OQx/3GLL3udOwO9kXVhz2EPCpPT2w9+rvDPoZnq5l17qjNkCxn5MeT41n5S2MQMvKww3YAcgQudFwW5p3Zj3G+HeruU3gIft25mjkK+lfoerwSuyNdoYiPRHVTF9TbnoXb/RPp8bbO48bRQMlGswmRB4dDM00FZIrzdnaSnh6hfdC1ZX/vzMd61LhZETQpA9dG6qjL8xGnyukx3E4TxsPlN3FPMr+uR5NTtXDZnInyd/Xw/oz0IeyQE07H1aC6dzwT5FlATY84lPRR0YDQjvr3WXEm3g0gTjx6BSZRhymXx5LA7B1enID9P85xOP9Gswm9gvWw3r5N793YFkRDN0jbvP50Ehotz3BYBwD0GPQsdvyyhN43aEgIDmndjmT+dyCUuzEsiR4fLFgejeCnjzB9+as2pM+iUKaw5hZS7zlAEtaVfZ0AYO0UjTvvXIfrvRBCET+mwntaGmptNdiLX3H9+nW4u7v/7bH9qyF8Z83JbQ43t389l3PzphUR4RceWXn8E+CMGAcHBwcHBwcHBwcHx0MG/yH2CEFgw6QshL1xqNFsomwYQLQr1613YNBoKaNlyc2HzydpTJ7SyXqGDbvwa2vKhhnNJrT6luSPnioGW8x5YSauRDSgbJjRbMLVTlU0aKrVxQbnLVnwSK9H27JnwwAS3FPQKhk0WlQOIkbGbX9Ipa5dhTSfT9Mom3P+JT1UYcFEBru8aX2EeTPjzpPEScOynY/BoNGi/SsTkVpBgk/XFpcybJhQTsqGCejtl4PD46KYvFKnCgIb9mqByAyELk5B4Penaf54zRm0zVbisdTxSG79GJFxfjO86FGK2m6xqO4Vz9TfaEUGlZPguEDKhgntC2wYQIzH7TV1RrMJlQMTkf99EvzmEG28ID9be1K/368kv+Cu2R5GswluqzNQ/naiTPsnfI5IHwH17mxqzG44QdweC67aBTYMAGXDACBsQQptQ92yBe2/wIYJ19u2roT/e8Tpgy4ynxmjrb04VqPZRN37Cw4vBGcbbxYeh9vPGeh6nDAx0mDLsc718NZ5LXZFrgIAXBmtg7WDFj6fkPVnvXkTyoY1MtmPuqeNX9VagzW3GjFyBwClmxvznAlsWJu0pxGVOQzTWx2CQq2Gx4EmeKmAOMuRsmF1GaFXPZEApasrjOuXUjZMaLdn7xEAiNMF6XMluJEPmyW61AcIyyUg+NUMtPomDe0yhwEA4t9LoWwYAFQMrEHF23p0yXkStwckUjZMOh+OrkPHHMI7hWROldo2DBt2YxgJhlxvexa+KJZrh4V++m0mhzMKlovuxwFgxc2mAAizCwBb9m9kykllAEDGhp35WI/kx/ozMqGMSptQZj6ddhzCHzPnyp4DKRtmNJtgflMPZdvWtOzlsTps3bcehSvEvnucVKCoPwk9IjhdsmUdZ2QoBCq275s0j/OWLBQnz6dOaW77NaJpQj5pHcqo1ow8Hh8yiulXyVQd3isyMWM0mk1YeEJ0dHDnyQRZv24n+MMeQh6BDXO0nocXd4HT3lbIj6+mwcPt2TChHaG8S2PCxozz7cDIQ/i7644KALB111rKhglpivhIWd1ND3hQd/RvNc2HwtkZtqzjUL5+HsNOmfHnDDJPjw97Ds5bsnDzqSQqH03/kwwblrcoFscmzcS8M/vxfH4eegUmYVJBjkwm9njlbBxznTt+JgqGzYbazwcHPydOglQtmmNFa2+oWjSHQaOFy2+ZOP+SHqVriPOTTS9+CZfNhCHz/iyNyuYHDXF647wlC1e3hKBkKhnrtZHkr6WeEg0qVLR/jk48vBuQgEsTiBMOa1UVdbXfdD7ZlwU2TDofls6iww0pYwUA6e3WMTIR2nTEhgl1AIAi7Si9/uNeJI5tBWSswrgcMZD2z42jz/ZrWmDDjGYTw4ZJnx/h79VR8venwIZJQ7oIbBgAuJ28TMZ0z+FR8KqJInM2qB5cexbRct7THId7eFRhsT28///t4D/EODg4ODg4ODg4ODg4HjK4jdi/GdRGLP5dqA+JZ417x/ZE7dlzNN/NoUlI+5a1Ubjf2eW60u4YA1DfUFxnnstjdWg6X3Spq4oIo+5jqU1JQm+U/+QOr/essLjWAzKP453CY+hcn/i3ifgpFTkvzMSmygaYERKKa8/o0HgZa9sk/Rv3QQqaLiDpSjc3bDv9J766EoSdbd1k4/m2JB2v+YuaKaltkio8BJbcfJpm6RwD1V5R83r3dz/Ue7yU1jfpbAzc1VXULbT9WfR15RkY6E3cCZe/o2c0Voq4tti+aTkS30pB42XpdWoZHzveH39EbmC0vd2Hj6b9kmroVO7u2HrqD9mcXB2lg8fidJnsAEDdqiW2ZG93ONeCzZh5Qxto+p9E3vw4hI49xJTPXxID/2UKOO3MxrKyA6i02jDsvdfRaHkGir7U0aCpgq2QvUbRHkJ6b31fbEnbhC8uh2B3pKss311DHOoZDzFyv9E7Eg3XHpTlVbq4wFpVhbMbw9GqX26da1t6f3JRNj4KjEX/kxexoY2nLC+V0W4v2LpWPJCtgdFsQtTXqaiKr0TAsKPUpkDt74s5f6zEGIkty/3qE+wxz9Tegq+6IZIju2Lr8d3oGZCI7fcYI6Fs35OXsalNU9ncS22wbgxPQoPzNVDvyn4g2Zx7RY+jb86scy8xmk1IfDuF2qw4emaleYXnt9OxO3i32Wmm//Z96PDiBLiuI2OU2j8CJNit329XKQtXOTCR5hWgPQIMbJyFDwLiZWMdeboMS8N8YGuvheKAien7hRf0sCkB09tsMFmDRouCZdFQVbggb+QshC1MYVy61yXDuuSWHNEFW3P2IOqbVMYNf+E3SQiaJGcCWqS747zuxgOtP2mbw4u7YGXAHmqXYzSboHt9ItxXsm3YdO2wY90SGZspjP1+Y3HUn7Ov6dHq27/W3BvNJuiODnRoIyS9dtQPKb4oPoi3AhLp3ErrqekRh92L5zN97vbMGKh3ZTtsT5PhBnPSTXqtCg/B1l1r7/u8OJKD9L0goOhzHQIl7u7L3tejqrkFRYNYmyrhfXo/OJKLYINpNJswpKgbrne47LC/ddVx7lU9Wn5H5q10TSQ8NrriWqgSvh+nOSyv9vPBlvTfHMrG2ikayn1HYDSb0Gn8eMrQ3Q+1O32h7n7mgdaYo3Hdb1+TjtO+XFCWCwrjq2TlpKjpHisLJyLgfv0rXxeBtyKMGOl+CR2fn8DYggnlBBs0o9mELs+NRdnjagS97th+VyjbrVXEf4SNmOnkw7MR07bhNmIcHBwcHBwcHBwcHBwc/yD4D7FHBBtWrEbxNB1+LD0Ag0aLLdnbAQBFK7UAAI/9Zej5BLENuWMkdk4GjRbrysUzzgKMZhOCV06kn4W0T4qzKBtW9ktbqpFRurri4kTCMh2aMovWc+m3UMqGTb7YhrZZW16Blv1ySdrGZchbGIdpQVEwaLTo2XsEvD8j9mYzQkIBAAe/mAWj2YTSNZEO7UxudL9N+2q9STSWO9u6MfnCFqTg+tZghg0zmk1Qa27jroGcvZeyYQCwc+VCpg6Xfpfo5+hPU2EsDUdau3o4O0lPZSE9595Q6YLrTxPNp8CGVayPQG23WGzftBwA0HhZOioHJqJXr2GAQoGST8kZ+113VOS8uP9eGDRaet+g0eJqqBggV5CB0WyC5cYN2ZwBgMfidJpPFR4Cg0aLyoGJ+LH0AHI/16Dz2HGwR+XARGzfsgJGs4nYOABQVKnQ/cRNJl/Is4cR8hlJf8anPQKcGtIz/AIbBoCyFAaNFr3bP8nUIT2fL4yxtuQMDBqtjA0T8u1ZNJ/WJ8i94VrRXkYqg21FGRhxqhxez5TfV4tq0GiRt4CshY8Cid2IwIY5stswmk00WLZBo4WqGWGekBDJBImW1t/q2zTkdVqCTsfuUJuC2pIz8FaT4LlqLxKwNnDdBId9BEDtMcf5doBBo4Xl8hUYNFpsLz4oG9umNk1p28IYSj7VYVv+ARoQtdpdQVmA4BUp1C4EIEGOhWDfRrMJtTt90XK6aD+q9vZi6hfk23hpOq6PSKJpANB9BAlKW1hzC/kzEmmawGZv/7AT03dpwGlLlxgYNFrKcNV2jWXYMKPZhJOpM+k6a5uthOs6dj0AxN70gwBiKzbmDMtATvllCABgx9rFULdsQfuniI5A85/SYHqbZQENGi2QEAkn51rqjVRgw+zblcoBIF4CrZ2imXkxaMQg2VKPegAQNCkDl34LZe7lzUrAed0NqDw8EPSzaDtiOHFDtCP5SgdlgwZMoF2DRovL7a/CoNFiW0EateVJ/3o28z4wmk2UDQOA5G6D0XncOPqMVqwXPfQazSZop6Xi4qYw5hm7NYRlfgQ2zGg24ca2IJmMAODqFrJHSdmwq1tC0KvnUCjUaqaMIL+bQ9l2hODWb4e0h9FsomyYUAYAzseKtslGswkTynX0ORBslwRce0aHRb5/0uv8HxNxKbGZjEWyZ1gcMYmbK1tBqW3D5A+0C/7sMzUNTY4pZfULbJj9+nK0P0lR3EvcLwU2rORn0a7ZoNHSdXBltGhHBQDqAD/KhhnNJjT7uQHcV2Yw3l3t953a0jK0mZlKywj9u/50Es4m1adrpOGJc7gfrLvIvO1qs4m2I9SVHN2D5nM0/ufz88i+3JjY5l54Xs+kS983eXPjUfVEgqyuwvgqWd321wIbljczgVn7HY4NkK0jYU8EAO+BOZj90SAYNFpqYyidT3WgP7VBM2i0qGc8hBGP/4lbg4ntcumaSLqHA+R0C8f/JnhAZw4ODg4ODg4ODg6OB4IVCligeCjt/LeDM2KPCPqHRiLgnXSEOrnivSITAODyGB0Ch5PPWzK3wJZNPDOZL4tesxoqXVD2gZ7RDBo0WgS9LmpihLQPAuKh8vAg2mf9clrHtvwD8JydDlWzpjBotGiRTs7hNnsij9aR1q4eznwoaqSkmsPinvNhNJugiI7A9i0rHI7PoNHCbXtDpk8KtRpGswkhr53/y/Pi/h+ko1FyAW4MIxop84Y2CF45EYHTalH/bTMKV0Tj8lgdZSSk2jIBUk9uzWekwWsAkafUlkM6NgBwum1jNIJeX6qgvGtl6nVdd5Bo8m02nH6OMIpfBkUif3EshroRDbnfZpFpy/5YZB3tNa9Cn7+6EgSj2YSiL4h289aQJLj92Qy5rzambYY6uSLk2cMY+vVW2m/BI+WdZuyjbdO3Q9GAOdjZ1o3pu9FsQknCHWytIDZr3UeMxpuFx5l0AdW9iVbeYha1oKo2ocw47LWNVzaTdPPremJDE9kVBo2WMJL30Qq3mZHK2v+4X4L15k3oXp+I/CWiFtFoNlFNotFsYmJZSXE/G5mqPglQurggeDthJNUVlxE6MdPheADgsZTx2BdVH31PinYaQl13A5oDAEJeFG2bhDrObSReSyvekmt2hToElkWaJk03aLQ4/dwsoim+5820ylOB2m6EAQx6Ix2Nl6bD96ArrJ2i0WxuOhaF+Yna8e7Ey6Xg4bC2vIK2Y//8NVqRAZWnJ+3DzhWEYU7164CQ51nvh0azCZefqWSeOa1rKa1L6nkVANS7s6mG22g24UAVeaYKviPe6k7EWh3ah0j7WJ50i5kf//eIHWXAxvFM3D/7PYnZFzKPw2eGWlb3XyE3thbKfYQR7XWPtZHWL4xLyjQK+2nU14RpaDOZyMdy9SqCXxW9qBrbuuNAFWETg95Ih/X2bThvZT3Alq+LoG2dTJ2J1vufgUGjxUDvJKiaNqFjFOpUhQbBkpvPxJg6kSTKxaDRosWPafDsKzI2RrMJDdewDJs0v3uvQjpGa8do2PTtYDSb4NE7n7wPYkXGzaN3PqzHTsFWW0vLvFAhsqpuq0V2dEN5JoJfIde22lqE7nuWMn0A6PMvtdk1aLQoSbhDr8seZ08dNF6WzsxLyIsH6UkDAQG/jseDYKjbVXy9cQEGFXYHAOq9V3/0Ls1jNJvQfEQpcy39LKyL2MkptP95c+LpZ/u16Gj/8n/qGNSB/vT6ZOpMGM0mNFmYzua32aBs0IDWY293mZJf4HCcKcO20DLCiZhGyzPg9YXIqJ98twVTRvDOeW2kDsXTdFB2Yz2YCqxwde94WM6TuIwC2ys9WWE0m+iJmvBd5BRH8xms91jpGIv7zMO+OXPpdW/dE4zs7MtJ33FCWmhqJh5/6jmax7VnEQRb7k+KyXOT8dVsWub61mC4/ZxBmTtpWwaNlsY6lGKyZw61g/YbcpzZF7dkb0fbH1KxIe+4rBzHfzc4I8bBwcHBwcHBwcHB8UCw2sj/h9HOfzs4I8bBwcHBwcHBwcHBwfGQwd3X/5shuAJtO+ZTtFx4RJYudVtvNJuw+EZzjHK/QNOF+wnvpOB6MHB6zCzZsQaBah+fV4S5oYH0Wtm2NbbtWC3Ln/9DIooGzUHYghT4f5DO1JNRZUGSi4ree+x4f5TnN0fRANFNb9l7elR7WoFm1QjRXKAOEeqCo2NRBd8mIfi1DKj9fWnQ4L8q81dtAPJjQwAJnrtvzlwMLe6Kq+2vUFftADEY/vLtZ2gwS8EdenVyPD0u5MgtfF24NTgRB76fU2df7D8DQK9ew6jreOlRLWle84Y2aNawknHPb3/EzVEbAGDtoIVyv4np54hT5VjR2ls8etRBi9/XLMakszHIfj9WFixbyKdqEwqUn4Plxg0kHa1BRjsnmQyosXbrx6iDEul93aSJSP+GDaAbuiQFAe+QtVg6WQ+/jxy70Da/oYfmqzRcGa1D02M3sX3Tcqy42RRLw3ygbNsa1hOnZPJTNmgAhb83Dc5pP6a65lW4L/TnynM6NFnEPi+AOM/SfktDOjiqs/gzHQLeZd3H5y2MQ+joe0cvlSrAaoHRbEKPQc/SIKj2bbfLHIajCauYNEdjqd3pizvzNVj35dc0iLWj+gR5hP05Ev5PiUG57ddaXe3Y55fKOLUiCTO9MhyWZeq8N3b7+p7Pz0ONTY25oYE0TREdgVazzuDcWC/ZXlfVJwEumzOhbNAAbjvqY03gLgwoeByVj10EAJx7WU8Dzt9vXHeeTED9X8lRVqWrKy6v0aD2t2Y4/KG4F6u9vegxUIA4k0j47hCyo0VdqFQu1o7RuOXjDPeVGeRYYV5hne3by/NM7S2MuzeH51/Uo8WP8mfl1YJcfBccLrtvP85zL+uhmXMY1qq6XYB3PV5JnfIUfaFD/jOz0Gn8eOybOxcGjRYhWc7Ij68GQFyF7166gM75oMLuuDNYhXbbzjKycDQ2KfJ/SkTIC3ahLhIimcDLddUl3duEcdpjQ3km+nvLHfYA5Nhd46XpUIUEIm9CcxQMn13nWp9clI0kF+K46cKvrXEkfjV6xyejtsLs8J0kvIOE69ClKXi572bqtEft480EYHc0PqPZhMS3UnDwC/kR+IsTdcy6tC93v/eX2kuD9tsK8W6z0zRf/pIYhDwrD87tCBde0MOtrBZ/zJp73/307CQ9Wn1DAjhHZQ6DZrIStiNiwOzabrHYtWwBDlRZMSUwhpadfLEN0trVo9c9feNgq6112BfBZf3FFB08Z8n37OQug2A5XcDcf5DvG0azCb2Sh8NqOikL0eIIebMT6DF4Oj5bzX+E+/qDOS3R8CG4r79104rEiHOPrDz+CXBGjIODg4ODg4ODg4OD4yGD/xB7RGB1knuGMZpNSPt2Nv1s0GixqjVxRiHVsASvnIi9n36PwC9PIO4jYvxb8nMUjGYTNY7tf/IiZrwwhJY1mk2wnjhF65YaAoe8RNxoC2zYkNxzMJpNiPsohWr3hP8N3m2AkBcOYvVND1r+5PMzUThkNgq7LoKtawUUajXKPmAdFEjHKKDoSx0KviPOOIJfI0EPBTZM2se22UpGiyh1GGDTtYN3RkOm7tLJesYAunBFNJIjutA8Lr9lIvfubVxtfwXWXT6wHs2lTj9mhIQyxs2CO3TnrVm0bY/mNxmtV8GyaNnYhM8N1x6kfRHuXbBUwmg2IW9mgkMj7W3bVtHPRrMJUd+k4sxHevRO7IOa7sRJg++L17En4lem7IqyA3UygSVTdTRNud+Esl/aMvJc0dobANEMGs0mXH+HOGI4EWulbJhU7kL9lpN5KJtI6mqoqnI4RwaNFr3COjpkwwDAfVUGIweDRouGEVfotd9HabI1mzeLaK+Pv0pcMjdZmA7boRMwaLRY9nQyAND1bm/4br19G1t3rqH9MG9oI5sDwS2+gOod/rSPp8bdM5JfZGf8v3E801bLzBqaJmirhTR1gB9tCwAC3k2XzZ3gFId02kLTdvyyhNYrLdNmZipa9ssVDci9omXra0XZAQDEvXTat7MxyrcD4wAAAJTaNky57iNGUzbsCwcu97uMHocVN5vC1l4LpZsYlP3SeNGt9uSibPpZWBMzvcR5n14isjjKqNZsuXtMYG3XWCjbiazOTWt9woYlRNJ727esgDnpJqwnTjFsEwC4bM6E0WzCtoI0XO9wGQaNFtXPNsCGcnJfyoYJ7UvHevd3MmcCGwYQh0AevfPhOZs4TBDc6EudohjNJqj2HsbO6aKTj7wFcWL/dvngepALGv9K2B1LHnEDH7Bp/H2ZR0GOAhumcKonZ8OSolA5MBHfBYczz4DgIKr4cx0zzvETfmPYsPr7yHiCslzovbea5tO6At8i43bZnCmyJvfYsILvkpjAuQaNFjc7XkLtufMO2TDpOKV9BUDZMKPZhJJP7oVryDyO8y+K7xlhT5O2p3RxoXub/T4s1AcA/QeModeqpk0AiI4mhEDneZPdYWlSK6tDQN7COLyeN5jK4XYVcbdfW2Fm2pf2T2DDaB0jZ+H5xmUYn1cEADjf04dxoQ6QUwAAkPTmRFrPwk++pZ87jxPDmwjr0h7qVi0RPps4kSn6nMjz3KuiM50b24JQW2HGvqj6CF4phlooenwhzeNIjlJci76L+r9mMutVmq9nbxKeR3CeZdBoEdX8LAqHuTN1qndlw6DRYkpwPBTOxClL9+GjkdauHs3T/tgA2GpraYiGykGJTFu7ly4gfWorhthQurggufNAGDRahg0T+iIgb1Hsfce5betKvFdkQj3jIVp22Cky51V9EqBu2QIXnifOq6Z2WQfzhjZ47nQpSifrHdb3qMJyz2viw/j/3w7+Q4yDg4ODg4ODg4ODg+Mhg/8Qe0TQfDYbvNQ/sz4MGi10RwciudtgRutm0Ghxu38igveOgtFsQtDrGejvnQDrzZtoOo9o0v2fOgaDRotr11zRJedJLJ38BJx2HGLqOPuaHr1jDOid0FumJXu1IJe65V0TTtyDN50navwV0RGAUkVd6i8cLQb5tdf02WprcTKFsAYdj1XBvKEN0w+DRovyd/XIf3oWgl/NoO6J9a9NpFozIZ/SxYW6thbKCyygQaOFIv0o9u+MpGW8MxrC76M0JpBo0IgjqI4OpGUAILwece/7e/hvRNt+T2tpNJtQvKodo8WzH6dn39PMeIOfOcLUDQBtv0+FPbKribvj5ipX9Bj0LEJTM6mGL/+HRFq+zSyxrEGjRb3rNvhOTkNtWTmcdmaT/pZXEI3qsyLrMMKnPRLeSWHaFNaRELhWCOhrsykouyBda5bTBWSM4yuRNysBl8eS+vNmJ6D78NGAkjCkqhbNqXw0XxLGSgjKLcjJ96ArGVNCJA3cLeCxlPGMhlpoXwgI6tn3NHPfXputvq6SyVzQItuyWHf84dlqWXnKGmm00PQ/iRVlB9Bj4LO0XOiYQ8j/IZFe15vcmJGpFEKdwatqGLZQcB1ub5NxdZQOtcWlaJtNtmPzm0QzmmQahP4nLzLt1KVNFj4nvk3mu3ClFj5TWffeihiW6Qs75IQRPu1xdZSOGUNZP8IGq9zdUTkwEdu2rkTxNB111y24XAYArTPrJhwA6m3PwtIwH+xYu5jOs9FsomEbPivOpAG3hb6de5mw1gpnZ+hfm4jFV0Vmw3pMZLOk9qnq3dnYtm0VleUINxJOwLhxGVO30L75dVKn26fllN2QytT3oCtqi0vR3zuhTpYj//skGiJCsMeUQmDbhLJSN/qxR6xMfzyWiOyENOyCslsZ7jRTYFs+YStV7u64vjUYxX3nMm05Ys+NZhNKp5Bn1FZzl0k3mk1AxjG47y+Wlf80kHzOGzmLGfemNk1x7hU9lK6uQFIUrn5FWMDC+CoaAgEAkqO6yduyQ+vpFSJ79Rd57e8LY7vbk7g6F1gggIQ2OXsvNISUAfQZdIKMoSJL3E+qxAC/Bcuj0fFYHbZv92zNDBot0JwEendZ6sH0K3AGqM2mI5YpdPQh+LsThmvk6TKc7rgUAJC/lA0SLB3nuY3hsiDaBo2W2nYfmjwLjVawIQU0X5ExN91ZTMtE1KtPP0v3HUeyNmi0uLvcCbkTyWmC/JGzcP4lPVp+l4bCb0hf0tuto+WDXs9g9kuj2YTW88R31I3hSSIb+hNhoq4/nSQLLRK8dxTDUkvtwAAgJMsZZZ+FIv/pe/vGpTAm/epvgajsTWzvdq4kzJzudcIKVm4h31mEEDWuv7DhNoR+twi8RK+tVVW469UIA3MvOJTTpd9CcadfAkKfy6Z1MfvmL23pfvJpoLh/GM0mrGqtQfGqdnDZnInac+eh+bUUBo0WS8N8oOl/EovC/OD3URo+uxSGbgdvytp+FGG1KR7a//928B9iHBwcHBwcHBwcHBwcDxn8h9gjAoVajeROA2A0mxCdNRRzvAlj4d6rEJbcfEZDYzSb8OeMOQgabkLU16mYVCBqklSNGzHa3MJui1Dv8VK4/Sz3Rtbq2zTUnjuP2vIKqP186P0rz+nQs0E1/pg1l9Gi5X8vaup+2DiX2moAwI61i0mCUkXvmaqraX5BU/RnlAs0/U/Kxp/zwkzab8ELkxDkU9rnbUUZsrICU6f28Ubh10lYNuIHWmaB734YzSbqPUloQ707G9dGitpZqYbPHnmdiA2O095WNOCjMEYhqG/5O+J5enttmio8BF5fEJZIFRwAAGiR7o53AxKoVm3HL0tIv4xNgKQohLwk2qWdTJnJjnd+OioHJqJ0TSQzJqPZhC8/JB4Z++RcpVp3Afb9WnGzKbZkbkHeolj4Dj4O69FcJHcZxMhhTB7RstZWmBGakomm80l9vpsB1d7DdA0IwTkBoGA60YiWfEKYlmVlB6Bwqod5Pvds1uw8m5nf0OOGr8hYSlmKM2nEnkMI5C2gdqcvK5Ooi7gxPImOseRTHeZFhkPVrCkWn9nP1J0bW0vz6SZNhD2MZhMGj3sFinTWE6F0TnasXQzDCdHGLXjPcwCAmh5x6DyG2GQo/zwCg0bL2K0AxO7u8liRhcr8jLAQJ2KJvYLX98QGolFyATa08WTmrXJ7IKwdRPmoIoiWWLg++DnRHgcNF8sI2P7bCpS9L/Zl/4I4nPlIj9oBV6DUimxZq2+Jht1y4wZ+m/4dDBotAt5Jxy9BO2V1Cu3mLYqVra+I9BGIN1mYe1+VZODdANEbnVBGsMcqmxSLyhZKfNHCxKQ7Yi6liJyeirgPRGb81nbRc6LRbEL3EaPhs4B4Ql0f/DuaPZEn6+88H8JA9cm5KuufgJCXM9Dy5UKc2xiOvLnxsjy//7wIKg8PGDRahB0iHkOd9rYCAGRHK3H3dz+6voWAx3eMZE8QAvoCgNf3h+hzbblxA42SC5gx2/dLKh+/D8Vn3tZevv4s5y/clx2xl23L6WmwVlYCGcfgslm0h+tc30rLbD22S1bPhVQ9PQVhNJsQsv4s/D9gbZQEZstoNkERJ9p05c2Jp32Rznm97Vko/CaJskBjzhB7uGP3PIMazSZc+LU1I5e+XqSudwqPMWx0YddF+DPKhdavdHPDulvuMJpN9DQIAFyLagqDRksD8Ro0WhR8m4Qdaxcjb7Z8LUux3H8vAGBpmA+mXiL9KupO2Bvzm2TsHV6cQNnalv1y0TjTzMhRgG7SRNr3oi90srnacthI7Kyni4yUfZ8MGi3yl8TI7iu7lTFybvEDka+tRTUzD47ejwCx2xXSqpqQr5VlH+gR8gKxIc34cjaSjhIb2ajDChjNJnhuFu0Mxy1Yj8IV0bg9IBElP0cBILaFgudNo9mEBTu7MG169M5Hg/UHcSRe9IbqsfkkYbp+FIM/539P3gvhs1Nl/Q9qdJl+NppNuBjlgnXhzR0+a82eyMOlCDH0LiNjpYoysEazCcqo1jBotKi/rwV6DHoWRrOJfo8AiM2o/Xc6o9mEd5udxq4X2HfdowpuI/bPgf8Q4+Dg4ODg4ODg4ODgeMjgccT+zRBiMnQLfAk7DmxlNDFnPtYDNsB3MtHu1HaLhXpXNs58qEfuRJFBkmpmpBrqYsMCmWZHKBO06zkUdltE0wtXalHQebGsTmlZQNQClb+jh6pa1J7b53WkkRO0cSHPHobRbMIrZ+OQGyvG+cibF4/QcVmytoxmE3qFdcS2039i6qXWeL/ZKSY9f2kM1TI+ljoe9TdmyvowqLA7jps11NubfT/rgn0eW3stFAdMDsfZq8dQ6pkPAIpXtcN38T+jd4MqGDRahGerYbrsDeceJUz9UV+nMnKs3B4I155FTP3CGHuFtIe1shKqiDBYck7L+ms4cQO7uocwtimOtKKOULvTF+rubMw274yGKE+6BWvHaCj/PIKCb5MQuvgarMdOycprj4AyGX8lV+nY/3ztGzRS1kfEj6nwnnb/9STEPLN2isbvq8T1K8SbE/KuKDuAET7tSZqXBmdG+EPzZd0xoZRubtSeqew9PXw+TYNS2wZWE2FvVY0bwXLtOi37+FPP4fefF9E6HK0laeyor0oy8IZ/kizfhRf0aP4T6VfR5zrkjxRj/ChdXLCtKEP2LDl67qVjWVZ2AM1Vrsw9o9mE7bedZbGjHD1rdT37AJDcbTAsufk486EeTjFX0apfLh4U1b3iMXf2dLzo1x63hiSh4RrCbpvf1KOybRVCRrLxiMbkFWNBaACUDRrAevu2rL7n8/Mw+etnkf3RLHR8fgIabBAZS9+Drpjnc4DKavY1L8ouBq+aiKBJIrO+ouwAmqlc8fiQUVDuJ5rpPnm9UHy5CbwHiqcN+p+8iK+P9EBBl0WMjD4rzsSwg2OR99hSGDRaqMJDsHXXWvrMS/c4+1hzgnwNGi3KfmkLn0EnML0kDa/46++7Pzmaf+l+euYjPX1v1AWhjk+Ks/BBQHyd6fafPyvOpKxmXetFeq/8Hb3D59oRaPy8pCgY1y9Fh5cmUPseADj/kh4tfiCnCy5YKvHMvWfcUfvSfhR9qYP37lrU2+44/qGjceTNjUfo+CxZXgH2MS6LP9ch4G25t1NpuctjdTg0RXzGL24Kw+G4n7H6pgcWhfnhQqoezWemMeWEv/X3tcCdTufpnlwX6hqT/XXfk5fxfOOyOvMI8+afWR8lCXcc1i8dp9LVlTCnDvpQ9UQCXH7LpGlCOSEGp7RuaZ0AUN07ntq5AcC8M/upZ1D7crTemQkITc1k0oX+vH8hEms3d6B20sL+cvd3P9R7vBTKqNYO328kswrGcmIjFj47Fb5T0mjd1b3i0SA9D1tP7nPIqNm/3xzNT+D6CTA9PgseoUWPbNws4Tvr7hM+Dy2OWNe2ZY+sPP4JcEaMg4ODg4ODg4ODg4PjIYP/EOPg4ODg4ODg4ODg4HjI4D/EHhG89+t6GDRa3OknGv8GzCpAw/hL1JBTvSsbM0v3w3eKaBgb90EKanrEQdWsKUNzS48lCuWF6+HFXVA/pz6TP2i4CcndBqO6dzwiv5O7WjdotPjsUpjoFGLMQofHEgGgd2xP+jl0MTGgbzMrFRXrI2gASADMkR0ACB1Hjh/0jk+G7uhAJq1aFwaDRkuNqw0aLUo+JUGJhSNNBo0W9Tdm0s/C2AHgZsdLONlhsWxMdUEoFz01lTn2oDhgYo5PSD8rzphxa3sgrozWUePcH4Jb03amtzoE2w/NYTSbYN3lg14512DQaGVydO1ZJOtLUfeFMPR7BlUdiVMFy8k8h/1evKgnthw2Qh3gh8tjRFf2UkNsRyj6UkePJQpjKvg2iR6BUf55BKWT9bDVs2Hb9tWIOqyAIq4tij/XodMxcmzFFE2Cixs0JIDlxYlyV9XTS9Jo/Vtuu6DVt2kY4q1Dh2MD4D0tDZfG61D8mVjupYJTVM55c+Px+5rFuPC8HvVKSQBewSmD9FjiuZf1aHbvaB5AHI1ovkzDmQ/1jJOCwPUTaB6pm/WTzxPnKCt/m0/TLdeuM3N9IaY+lav02VL7+cBoNkHVJpQeSwSAN/yTaNkvisWjVs1/SqPBPl3NClqf0WxiAumW/BxV5zzar/VnfNo7PG4kPZaYkl9Ayxo0Wlg6xzisS/grOCARHAf5TkljHCTYQ3BTLpX33gXzEOrkCqPZRI8lAoDmyzTmWKJQZkEocWLh6Fji4jP7MSMkFM3mEOcPF4fdZvpx9JKGfo6dnIIFRe2ps4CmJgVs7e/JZ5c3Rvi0R9uMEfRYIgDUdD7LHEs0mk3Y0MYTQSOOMPcA4N2ABLzebieVnSU3HwCQNz8O01uxLrur+l5nHKNI145g7B9erwGtW3DkIW0PkM9/7xgD3U+NZhNzLFHl6cn0QZBv33yyTyc4O8ERhPeRwtkZ0VPFd4LU2UrQLuK8qGA6Wd/5i2MR/Rn7/rjtJ+7zRjMJXG/fn3XlZD3YhG8kGST8yv4f5jB5hWOJBo2WHktURBOnJ4LjD4NGiyvPEWcWl8eRdRj4ZjoaHBeDamuPiGMs+lKHp0s6y8Zf3GcelflXJeJ6Fe4VjvZinpO2+gLaN/v5EQLOXw8h18IeJ4Q+WTyUBJ1vPlMMVh/xo/juqXoiAdc/Iw61ypNuMWtB+ozZHwk8uzEc+T8mwqZvR9+ZAAClCpvasN8Zzm0MR9TX4tx5T0vDpIIc6jgMAGq6x8Kg0cL8pp4ZZ+X2QFz6mYRCUYUGwaDRUqdCRrOJHkuUykTdsgVCFtbAHkJg55oecQCAvfPm0f4BgK+6IVRhwQAARTxxWNVmRioNr2E0m+o8lggAWVoVPZYIkP3FaDbRcBTCsUT7PRAAjOXZdMzSY4kA4Lwtix5LFOZESA/e8xxyXpxJ63N0FDbAOAYhLxxE/9BI/CfA9pBc19u4+3oODg4ODg4ODg4ODg6OfxrcWce/GYLhY2c8iV1nc6B/dSJ1NX/+RT1a/JgGVdMmsFwmgSHNG9pQ9+/Xn05Co+UZVLui2O0FW1ei9Rt2yoz152NQ3emcrE0hf9RhBb5qeYRqZqROQARUJ8fDeasYEBK4p0U/cQPGtu6yenue6o28E95olq1E5rRZNL8jqH28UVtWLuvXX6FPzlVsjvBgHDT07tAPtUUlsjqKV7VDwDDihlwRG4Gff52PRkox2KWUAQjYOpYxHBYcYpx7WY+W36fJ6jaaTej2zBjc9KmHaz0rETBUdAQiwDujIS5Xu+JOp/PMmC9O1KHFsmPUuFmA1GFGwfJoBD99RGx3lzfQrRwp+QWYFUI0go32N8X1DsQFr6VLDHauWEjHpWwXDkVVDaBUwJKbj6AsFxTG1xHAFEDewjgU95xfp+OGW9sDoW9ezKwZew3siFPlWKUNpmyOVHYzrvlgU5umdbZfF4xmE0KWpyBkwUVs3fMLYUAm6uA5O13WT6PZhMiDw6Hpf7LO9XQ/I3apbKX3Y49Y8VmLYw+0PgHgncJjmBYUhSubQ9GkT57Dvgj3yj7Q42TKTIQtSoH/e+KYBOcvdY3js+JMxDrXu+8Y7WUDOH4epUbzQr6pl1rjzygXjDhVjpHulxzOOQCELE1B4Nvp0B+9i488T9I27hgDUN9QzPThyuZQ1FviAevoS3DvVUjbF+QbtHoigl/LQN6COLg1raSsW12yA4CbQ5NoqAvptcKpHhPU2Gg2IfbjFDSbyzrLqByUiP0/zEH0Z6k48q64/1X1SWDctQuQOmWoq1/SNKlDlvtBcMZgNJvQev8z8Bty3GE/6Dx6RQOS17fRbEL01FRci66hpwsA4rjjbvAdGmgeCgUtd7t/IhpsOIhrI3VovDQd517Vo+X0dJoujOPyGB0OfUKcTKhaNGfCVQBgZC04ebgyWocmC9NRf18LXP/MB/WMLDv4/wNhrRk0WrxakEvZ3rL39TSQudB3p72tUNP5LFuBUkVDb9jPV+HXSQh6PUM2v2ovDWorzA7nveQTHTxiL8Lj3XrYtnWl7FlR7dHg0m1XePTOv++4PNMa40pPKyw3bsjSBJZs5PDfcdPigiytGNw8/6dEhLxwUHZao679ymg2ocOxAUgJ2IelYT4yOSicnWGThJ+5337SO8aAO2294bQzG+XrIuA9MAcF05MQ/AobakZ4X5s3tMHxRCKjqj4JuBCnRu549nuHdByCgya1lwY1fp5QpB1l8tU1xvzvkxDycgZ9fqR5lVGtoSg7j+urPHAgaj29XzpZD7+P7u8wyhGSjtYgo52cWS5e1Q55nZbct+zFTWHw7HuathPx6Wic+undR9Y5hfCddcdxP7g+BGcdlTet6BFZ+sjK458AZ8Q4ODg4ODg4ODg4ODgeMvgPsUcIBo0WztfFAKiDxu2G0WyibBgAyoaFHXJCo+UZKFgWjUsWwqrYuopBAke5X0B1p3N4tSAXV0broFCrYTSbcGm8jmq2jsXYGM22wIbd7Sm6MhbYsLP3zmcLmp2dF1vT4MTSM8+2rhUoGjQHHkvSkdx5ILUzAES7EaFM6h4SIPbW4ERat9FswqXfQnHhBb3M9qToc1J+c4QHAGBL2iZarraohOkfkqIws3Q//JpfwaXxpJwtOwdDvMVAmNKxX7JUyhiBrb//DIAEmy2epkP0p+L5+RvDkhC06zmod2XDY3E6AoYec2grU5HiR9kwo9mE2rJyGM0mHP5wFmXDhIDcRrMJ6u5naD2uh+vTzyWf6IBuhD2cFRKMoi/JmAQ2DABut6jHnNvftm0VLKcLqM1Kaf+mzPgAIP9HInu1jzdCR4sa6zNrI2k9l8eSthr2LKJrRoBBQwLTGjRa3B6QiBWtvRnbJiFQr0GjxfONy2TykZ6lt+na0ftqH29GK1rb0ALL6QKaLrBhQroUAhsGAEVfiDZnjs7mG80mDCh4nLTp50PZMABo95Voo5EdrWTWCwBqG2c/HgAY/zOxP2vSJ48Gtrbp2kHdqiUUTvWYfvt8koa2GSMoGyakWU+cgk1HbDtu9yfzVDpZDIBrz4Y5shMJW5DC1GnQaKFu1VJWBneVMsbszygScFVgwwQbDfv6QucQG7e0dqQ/r5yNw4Iz+/FH5AYAQK+wjrRMkz55UNhIoHqhvfwlMdhYSGzgmpwg9gDFveZT1/gCCyNFcc0t2v9tX3/HrKO0b2cDgIwNC1ozES3WnGTHDcD1FxJ0tvlPacwcCyyUUK8Q6NktgjxzmdU1yFsUS+1VhL4azSa0mSHuFQIbJtR758kExq5HwJ1O51H2nh7tX5mIFsvEZ3/f3LlMeYNGizazUqFu2YK5H7YwBc1npqG4N7GpEQJO+05Og7WSaOsrByUCNhvduwWX/42XpiPpaA0qvawwVhyRyajpAnFtSgNCC3lsNXfp2hRcdDdZmI78pTG40+l8nWyY0WxC/5MXce0ZHQ18bTSbYO2gRdts8vVkQ3km01benHjKvBrNJsqGGc0mVDe1ytbx5tBtyFsYB6PZRAOgCy7IDRotVB4etD/9T16EqlrBlBfq25K1VcYICf/9P0hHo+QCGu5CgJDX0sWMzOi1MJpNqByUCKPZhJcKTsE7oyEj54v6a7DcvMncEz5/dikMLQ9WY3ekK37Z1IGmqTw9UTSA2NK9cS5a1rYjGDRauPYswtIwHyZv0psToYhry7Bh96vLoNGiaEIQnHZmw2g2UbvK4Fcy0CvnGpM3d0ozAGR/Fuozd1RRNuz6iCRm7oQ8JX3ICZbaCjPDhpW/Q+zUbj6VhOrkePn3hcFkHxCen/j3UqBs2xqbK7JhPXYKlqtXGTYMIIGpBdtz6X/7OQ/JcmbakrJhai9in6pq2oSexgGAO/0S8GPpAaac0WyCZ9/TdA8xaLRo+dNB/CfAYlM+tP//7fjvHyEHBwcHBwcHBwcHB8cjBm4j9m+G1EZMrXByeMbbkRZfQMKRwciMJsFDpQFoASAkyxn58dW0jEGjhdLFhTIWF1N08JyVjrBDTjgdV0PPR0vrr8uW5u/gudOlGOp2VdSCva7H8ddmMuMM2DYWoWMOORzr/exD7LWfdfVRuC/YRNRVnyMYzSYEbB7HBPcEgEu/haLZE3ko/CYJQZMyULRSi8DhJpqucnenZ/2tHbT4fc1ipq+OcO4VPVpOF+dA+3kqWvxANMzVyfEo66Fizt4r3dyw7fSfTJ2ry9Iw1Idop8Oz1bhytwHO627UOa/ScfYYPAoAkD9GzdiLSSEEnjWaTegyehzqbc+SybBwRTQNfOt70BVnEuWBPuM+SGE07dI6LF1ioNpzWHZfuA5ZmkKDH9/vORHun629hVG+Heqc6zv9EqjHTXuZBK6bAA//q2j2BOupUrD/ctR/+zo6vjABDdYfxOVxOjSdl47n8/MwIyTUYV+Tuw+B4kYl43XRPp80ALX9M2B+U0+DV08qyMGL2cNwuuNSpm8jT5dR2xBpWWl9b5yLxrEYG7WZkaK2WyxcTp3FliwShN7tz2a42fESUz7pjYlotILY2sR8kgLPWaxtlnQ8QlDlpDcnIuPL2Q7lKA2qbS8z+zEAhA2d9MQmTGxcQdMKvk1C4dDZ6NVzKLZtX42hxV1xtf0VptyNYUlwX5WBYafMWNVag/eKTKgHC5JcVLJ9Rvq3zYxU+HxKnt3Et1PQeKnchrE6OR79vvod2yIaM21KbZtUzZrCcukyrm8NRqPkAtm6urolhNoaKRs0wLYCwuQVT9Mh4B2xTQDYdUeFr1rHYnup6E3W0fNiNJvQMyBRxoQI9QiBvB8E68oz0FDpUqes/gpCPv3Ru0hrV+++eYxmEyK/TYXma7ldj03XDor0o8w4hPY7HbuDd5udpmu3ZGkIrCqg0gcMMy1t76rlNt1XAXbPqO0WC/UuwrJdSNXjyPvi+w0Afe8azSYkvTkRjZZnyOqX5peOUTrf9ml1XUv7+MfMubRulacnLBcvPlD5ayN1SJs2AyoFOQ2gDvBDbXHpffst/Q7hqD/CGs2bnYDQieJ+G5TlgpleGQ7L1PUdIHhFCsb13IllKx7HiZfY7xO9ApPo95zSNZHU3rKutZ9akYTCeDI/vXVPwHrxskNvrfZ9SG79GCw3btDvXkWf6xD4tvydJvxVxEdi+6/LkFqRhH3rYyh7XLyqHeYmLMOr307Evpd++o8I6LzlWCBc3VR/XeD/E5U3Legd9ejK458AZ8Q4ODg4ODg4ODg4ODgeMjgj9m+GvddEQUsjeBwTYDSb8MrZOCZWzP+FnarpHgunndk497IeHnk1cN5GWJ54kwVZWhVuPpWEtO/I2Wp7jVmX0eNQv/Ay7no3hmrPYeTNiUfoBJYNceR1SMpCCezI8/l5eHPVszg1dlad46jpEQenHYdg3eUDZTe5fZEAwVNTda94Oh5HMJpNuGWtwkDvJNl9oQ93DXHUnmFzRTb6eMUCAIpXRzn0iihA3aolas+ee6B5EfI48iwFgI7j1pAkNFyTgbzZCSjuOxd983tSL5ieaY2RntEawa9lwDujIRb47gcgt2tof2wAGt6LS3blOR2aLGI15kIZ4XrMmQ7YndMaoWOIDK49Q+yrGi9Lp9pcgbEwmk0YWtwVn3pvQqpfBxR9qUPgm3Jt8tmN4Wi4qhH1Btoi3R1L/f5g2geA/B8SUTRoDnNPFRwAxa3b2HLYiJ69R8B2JIeRca+ca9gW0Rhdj1did6QrvQaAq8/qUP+yBfvmzoVBo8Wmiiw4K5zuyzLb3+s8bhyct7Br6szHevh+LNr9BG6YgJDnD1K2xb4eAaqQQGzdt14m99y7t/GKP9G0l7+jp/Fm/oqlNWi0uDE8Ce4rM/Bj6QG86Ndelk9YS1VPJGDfnLlMnSp3d5xJaQuvL9Icjl9ASJYzfvIidlQt0t2xPyscRYPmONbeP6uDx5J06iGNymjdBIS8SLy6dTvZl3oGfRDY9O1wLbQBrkTaEDRJ/rwAgKpNKI2tZzSbELh2It7usQnjG5npuARGzRGbVRejLt3jZPJRqmhcIXWAH7Yc+JVJD89W44+KIDzpd5x6+GP2SommXmh71x0VutW31NkfKdspLSf0TfpcS599wWPqc6dLsSjMD0azCfrXJsJtdcZ9xy9to671qGrciMZPepD8UrkHr0iB/9ZqqPYcrpP5GFn6GN0vAraPRXHP+ZRhFTxNXpqgQ7M57N7zakEuvprwNGWqpJB60wWAvFkJKH5yLnr1Ggbr0VysKDuAF848gavtr8Cmb4cdvyyhXioFb8WOcO0ZHQ5+Qd5pyqjW2LZ9tUwu1613MMRbtFsFgHFl7XEmsZLKwPyGHs7XbGg6L515p26tOIxkrxhZewL+aj0bzSb0TuxDvBUnRAKZ4vqzh6Pno+hzHSytqtFstzM8lqRTb5n3O6UCAHd/98P1Oy7w7HsaRrMJgwq7UwZdKBOwZRzj7dNRX+qqHxCZbEfryJ6p+qsx3y89OaILtubseWB211Ff62pXewQ4pK3BXvz6yDJAwnfWTceCHhoj1jeq8JGVxz8BzohxcHBwcHBwcHBwcHA8ZKj/3R3g4ODg4ODg4ODg4PjPwMPyaGj5Hzi0xxmxRwTXfgliqPf6hmKsLiPHEQT34bmxtTjzIXHr3v7YAABA/gziClfVojmMZhOlwqVHVKT3nHZmo/xdPX58eSact2Wh/r4WMJpNNDik288ZsqMMAJDcZRD2LJyHmpaNqBOF0AnkGEGvnkMBABd+bQ1ljTim/O/JEUDzQNGN9DyfAzCaTZgREgq/D9OZMdv32WkHOR6n7FYGo9mEC7+2lo0NAHynEJfF0mOJkwpyZPkMGi2G5A+Qjc2g0VJZ71k0HwCQNzuBHkv0PehK3dOr/X1hfkNP+yvUsSV7u8x5gBRXR5E5vJiio2MOfiXD4Zw5b8uCx4EmODB9Ngq+TcJP3YmjhU0h22l9y/33InThNZz5SI/ypFsOx2TQaKGc44nie27/3cru4pPiLJou/L05NInmL0+6RY8lAuRIovToS6PlGZh0NgaVgxLR8fkJWB2wG8M+fAMAoLzL9kH4LBxLNJpNaJutxHndDdqedK2FvHRQdvzEUlAMazMPGDRa2I7kQO3nw8hVOIa4O9KVXgtlPZako7yruMX19YrHJYt4/AcgwVvtj3ZdHqej16W9FbCHcCxRyBPyPDl2G/xaBh1TTY84AIBCLeq6tu5bz4xb6MdrbbrTMXtPS5PJpew90UGAFJbOMbjQizhXeHLRG/S+dE3tXUBcmbv8lsnUWdUnAadnBsHrCzG8gDRd6eZG68iPr4ZBQ4JoL/X7Ay0yFEjuJD5HQnkANIi7cCxRQMiLB6GIJmEO7ncsUQg1IV1DirSj8FicjsYnyVzY9GKYA6PZBPObenosUehLyMsZWBfenJF1XccSAeD8i3qHx5KEPU4qH6PZBJWHBz2WCAC1xaWysrmxtTgc9zPS2tVDwMbxtJ5zr5L59BtyHENyz9E6DRotZpm7MO0IznOEa/tjiQAQ9XUqdK9PpNe9Y3vCoNHSY4kAUBhfhfwlMVgU5kf7Ibj5l4KOp1us7Pjyhef1UDUjITAKvxGPd9sfS4RCQa+vjdSh7H09syYNGi2Csogzj6A30un7xNHxLYNGi/O6G/SzEGLDcxY5Kl0znLy3mpySB6rv2aBadixxxCkSAiRg2FFmfKEp5PmwHiUhE07WuOJq+yv4sOgwFGlHydHW0CAAQP1LJMRM5SASUkK6fzdeJr7TrMdOyfoEAHHLX2PGZ9BoMc/nAOJN4pHUpo+bcWjyLBjNJthUNow4RcKeJHvFwGg2oXIgaVs4BgkAgTvGyOTo6LhobRmRQV3HEkeeLqvz6Hbg2+koenwhbj1BHAXdejJalteg0aLzmHHMnNd7vJQGLQaAU5vljoqEsAv2708hXbVHg4ubwmDQaGGqrpa9Z6THEo1mExMWRjiWqHRxofccvafp+u8aKxs7AMR9lIKtOXscys3+O4FQ32eXwmj6h0WHkTc7weH4grJcYIoGij+LB8f/FjgjxsHBwcHBwcHBwcHxQLBCASvkisp/RTv/7eCM2COCxoMKAYjal/wZifBQNQAA9HtpD9XyBKwmwYEb9iyC0WxCyPMH0SukPbYe2SHTaguQsh8A4P1ZGj4NJJ/vdDovY3GkWqXtt53R9+RlWE4XwKDR4vZ712keocy27atxp18CVL95oME5G24MI9rSkJeJhqqw6yJad+D6CXjrvJYGcb7+tKhZzaiy0Dp7+rFao8kX26D5k6foOBTRETQt/02iXS1/RwwC/U1IWxg0WuTNYwM9Wl/3gNFsQt6ceEZWQ330sHaMpvfC5lTSNMGIevpVf9SWnMHxV2fKZGrwipbdk8JjMdHgHv6AMAbWTtG4NEGHXj2GOsx/tf0V7LqjQvBrGfghuDWtt2A6kVdyZFds27EaLdqbYTSbEH94CKP9F3A+UQmriri53r10AV764EWaJrQrGOzfGiLOhb1WT/r3RKwV+3+Ygz9nEMcaHkuIttH//XQmn9rbC1HfpFInHQaNFidirZQtMppNuDJazoBI17Ha2wunUxrRtNOfNWMYgzMfydmi5MiuND34NdaovpnKlbl2L1Aw8k+O6oam89Lp+g5NZV3a5y2MQ/6SGIfaVOk46u0j2ua7ndvRuhwZm6uaNoH19m0YzcRpx2fFYnuGE4QJeG8kCSyuatoENT3iUDqZBDJV7T2M0ImECfL9OA1Xt4SwTJITG/DZ7U8SULXiLT1cNmci+OkjUPv7omBZNNMvo9kE682b6K3vy4zNczbR9qd/PRuW/CKmrQup8gDsAFB/Xwv8eJU4h7AdETXUynZicGhpueyPZ9lXgefz86AKDaKhDhRpR2mA58Cdox2yRI7YcAGq8BDmvkGjhekd8ZnO/zGxzvnVH70Lg0YLy9WrePyp5wAAbxayDjcAoOqJBFS8pafPY2hqJs58SNbq0TdmQuFMAsKuCW/J1H+z4yVmvSgOmFDbLRb2kPav1bdpuN1cScezJZsw59LnuXBFNIoeX4jPijNlYwtaMxF3+rH7rdMfx6k8hOe1+Yw0WC6RYNYCOyntD30n2Gy0jWthgM9UOctbGF8lG8fiM/spM2mfJpQVGA0BtnsuypX7SBDqTRVZtKxBo4UqJJDWc2W0DiPdRQcR9zuNIbwfpwSKjjGEgPINTGdgNJvQKF1kjupaL3TMSVE0ryOnEQaNFivSdcibEw+liwuce5TQ+/7vpzP9jvkkBa7rCAvfK6Q9bTtkVDaU2jYO+3FuYzhClorB3QXm2RGWjH6CGZNBo0Vyu8epbAwaLU7qlwMArCpxHQj5Xyo4BedtWUjuNKDO7yP2DoLuPJkgyydNB4Dqqa0oq/ZWAPn+cPY1PZNn+lV/2scXfx6L8nURTB8El/bCetQfvcu0JXxW786m98IWpsBoNmF8XhGazkuXjcme7RXSL00gMt4XVZ+mTQmMQXHfubRsr5xrNL/gPj/4S5E55PjfAP8hxsHBwcHBwcHBwcHB8ZDBf4g9QqjpEcdoVIS/+57XQR3oTzSxeYXoFdKeSbdWVjqoDTLN4u3+ibJ7Uk2Q2t+XKW/QaNGzQTU2tSF2AbFHrDgQtZ6m9W7/JNU+1TRQoun8dByaMgvp3xDbg60V5Oy/bpJovxDywkG865mOrd9NBwBkfCnaKXwUGEvHtL00E9dGimyJENizeDXRLG7fsoKWCxpBtKHOV20waLTYWnEYhV8lQunqiuLe88j581XErsSWTUIESF1SC1D+eYS2J7hJl2q6Ltx1p5/ty6q9vejnVwtyHcpYOrfKfUfQbE46bKdFOw57Tds3hr6YWbqfli+dokPhECIvy2UShFY9rQkMGi2yYtbQtmI/FjWfAW+nI+zbYhqcUpB38WdEthXrI3BuYzixKVkjskeOtH4AUDA9ic65QaPFVYsY9PLMxywrUltegeaH5bYbgu0fADRZyAa/tP9cW15BXcMDZK6ljIHvZDkbcn5QGMNAdRk9DtZO0ah6IoHeu5BKNKmes1kWz3LpMrVlsp/n2/0T0Ti7HjwOOOPxIaNoPwu+TULRlzraZnXveNju2TCoK2vRN7+nzIZCqNfm1ZyWe2HMi3g3IIHW+8snPQAAI9wIC7H1+G447TgEv4/ScOk3YmMhPPtGswkevfPRW9+X9t1WI9pmGs0m/BK0EwBw4uWZMJpNOPeKHrUlZxD8zBGmXwaNFmpvL1iaEjuxiyk6hxr/ji9MoHNx5P2ZuGSpZMZZ0z0Wdzqdx+YID4Z9MGi02LZtFZRRrWV1GjRaqL006PnkM1Ddc1U8IyQUljxyYqC6N7GfsJy/gAvP6xEy8rCsDul8SvF8fh7ZQ3Pz8cpZwvKoA/wYOz4AKBo4h8pCapdqNJuwcV5nmu/sq0S+3epbZO26ZhQz9ncA4DtFDHQbmX4Xl8fqqL3YV1eI/ZHHgSZMGaPZhNoGchfR9uxqy+lpsrQD08mzXjkwES7H6sOg0eLdgAT0ju0JABhQ8Dg5sTBkNhPMvOkBDxoAGiDPq03XDrcHiO8PgZ18tSCXrLfcPg5lHjyvAudeJmO8YwxgZCnUVfg1ebZbqRuixY9pDk8W2PSEWc6bJo7boNFi6/HdGJh7geZ7YvBYlHyiQ+LbZA+05BfRuRT2GqPZBIVTPfq5dyLpu7VTtKz/nmmN4Z3RkOnvlsNG8jdrKz66SE5mFNfcko1/TTlp76uSDBjXL8Xw4i4wmk1QhQXTtgU8d7oUoSmZUFSpaODnwA0TmPoMGi1KpupoYHSj2YRt+QeYtWA1nQQAlHyqg2K3+E46mrAKhm7is3IlqQaKuLYOn2vFAfm9rUd/d8j+2duUV/eOxw/BrWE0m5hQHQKkZV85G0ev6/+a6XDe550hYVnyZyRCvSub7gmq8BA8ljoerb4lz9SKMmJ7vmWiaGPp/1467txkGdSC79jQNavXd4YqNEjGAAp/8+bGI+CTwzBotBjY8AYdQ3J0D+Y9ZM/4AqDhFC6P0SEln7Cp5g1tYNBoqQ1aSVUzmr/wa2Krbbl2Qya3RxFWKGF5CP+t/wM/U/77R8jBwcHBwcHBwcHBwfGIgQd0/jdDGtBZrXCC0WzCpsoGmBESKrMrcfRZgCNtlX3+c6/o0XJ6mqz8zaeSqB3PjWFJSP9mNi5YKvGMz70AsQoFCWq5drFDrWfevHiEjsvCxYk6eM5Op33oFZiE2IxK6pGxrr7/HeTNTkDoRFFbW1d9Uu2WfZ7rI5KQ8dVsJj1g8ziEjicsmTRgo9FsQvicVPhOlsvtr/ogBIE2mk1IbtMJ3feXwdjWHeY39IydGQBML0mjQX3/DoxmE7Kr71ImRYozH+rhOyUNebMT4JmuwtQP5qNHgxrarnlDG2j6n6T5vyrJwBv+Scj/Pgnr+34PrbMzDBotKtZHwGtAjkxjaH8toLZbLNS7snGnXwLVtF8bqcPBz2eh3VepOPoGCVj8xeUQ7I50rbMeAAg75ATTZW/UNxTfN58juTA2KV/poKwBat2sNLBw8IoUFIyoO6C40UzsAgXPjAKE4MgBm8bDL/ACnHuUYFnZATRXuTLrTdkuHIoaC+PR76/6Knx+qeAUejeoQnK3wbDk5jP5FdERDCPcs+/TsB06Uec6VHl4wHL16l+uX3WrlrgV6wuXzZnMfaPZhDFnOtCg4cBfz8H4vCLMDQuCseIIIxP7v0w/PT1xblAwrkbX0mfxfnuetP+61yci/Ws2mHbloES4/nIQSUdr8Nusx3D4w1kO2xbW1ePDnsPvqxYRNlHXDsVPNsC8wXPQub4VBo0WivhIqC7fhLWhC6zHTjH1XB6rw6EpszD3uoYJIl3TPRZOO7MRkuWM/Phqpr2In1KR88JM9ApMorYr9nNiNJvQZkYqVo79Dm8FJNKg7CWf6OD/QTrCs9U49lY77F66gDD/ksDz9rJW+/tiS9omh3KUBuDOm5UA11I1vD5Pk/XHEcrXRcB7YA69FvYyelqiRxxlwYV7it1esHWtAACce1mPo2+x++HlsTo0nZ+OcxvD0bJfLlPWHnW9DwXYryHVHg0sXcwOx/JXY32Qduk7ZdN42bsKIHbSIS8cdFinrb2WMlKry9Iw1Ec8ZdBj4LNQpB/FiFPlWNHaW9a++XU9NF+Lc7auPAODnhjD2Gbar/ve7Z9kApErXV0pyy4Ei2fK3gsCLR1ncvchTDB1R8/Ylc2haNInD/lLYyiLXfGWnrLGjmTqqC7pZ+H5rmsuSqfo4Pdh3UGcXyo4Re2vhfJnPtLTUxbC9yUAuPKcDlcfv4OCzuJ3oPwfEhHykuN5FGAfgBsAVM2aYuuxXXWusVrbf0ZA59WmNmjwEAI6375pwVDtyUdWHv8EOCPGwcHBwcHBwcHBwcHxkMEZsX8zBO1C4PufIvDTI/T+re2BTBwYR6je4Q/1tCY0DovRbEKHlyZQLZHAiAD3vE2pVLBWVt5X4+d70BUnv26LhmsPonqHP/a23fjA2kHAsW3R/Vg9oVxmdQ0+CCD2H8Wf65A30rH22r4egMTmkp6bB4jXxe2lmQhdnIKAd0la8Wc6BLybjrOT9Gj1TZrDPj+o1pVqmQP9YW3gAuuJUw7zKpzqwVZzl9E4m9/Uo7JNNVp/epXGlnKk/ZP2U7h3Y1sQ3HsVyvpnjxvDkuC+KkN2XzrmO8YA1DcUAwAqtwdif5T8TH9dsnHEjrXNGIETSSvuq8UEgJAsZ+xfGovrEbUo7juXpl0ZrUOlRgGfqWl/2X8A6DF4FEqT6yN4vhm1xaX4sOgw2rsoRdlLmCNp+2c+1iN3vKiBt2dZ7ZE/I5HGCgOIfYKUpTKaTYh/P4Wxd7OXUV1rP+jniQh+NUNWRtrn94pEL25CnogfU+E9jdUml/wcBf+nCAPbK6Q9rvWNhPvqgyj8OhFBk0gbV0brmH7eeTIBf8yai48uRmD3xx3QYINcw2vPeDiC0WzCK2fjkBtbSzTt8cnYkrVVtra7jB6HPQvnOXymA7aORehYkTmRykBAn5yr2BzhQVnlXsF6av/4oIypqkVzWM4TuyKFWg1bba3D8fTN74mal5tQu5vFZ/ZjlG8H+R6xyxvoRmIzCayygLJf2sJn0Al5JxIiYXF1gmrPYdh07VDapwGcI65hUbsleDcggWlDHeCH2uJSprjrH54oudYEzT9SozKgIRqsF+dNYJHK39HL1og9BMZOQNtsJU7EWhk5CHtzwbdJKBw6+4H2SymkeVQRYbDknK5zrhTOztS+0lE7RrMJXUeOYfrsqJ3L43RoOi8dFesjUFOjos/FX50k6fnECNiy2bW+teIweg0ZDfWVSlhy85l67vaMR73tWQ7H8yDrsXRNJPyGHKf5kyO6yNhrR7JoPS8Vfh+Jc6tyd8e15DZI+5bMj/Qd2vSABy63Z+ssmJ6EwiGO57Jkqg4N211Gduwa2v/LY3V46fW1WDipP/bOm4fI6am4FXYXxb3my8aXNy8eQSssUO11bL8p4J3CY5gWFCVrv/hzHTYP+xov+rV3OH4pJhXk4NNXn4PLb+L+rYiOoDbejspJT2pc2RyKJ32P4c8oF1k+AdJ3N0C8qoa8yO6TRrMJ5bW34K1uyLQpMJzqVi2xJXu7w/5c3xqMDO0vdB12axXxH8GIrTS1fWiM2HDtiUdWHv8EOCPGwcHBwcHBwcHBwcHxkMEDOnNwcHBwcHBwcHBwPBAsNgUstn99sOWH0ca/G5wRe0TgO5UNtHm/Y4kV64nLXOceJVDtOUyDoxo0Wrj+chAlnxDX5MKxRADYVpSBbfkHaL66cCaxEge+nwOj2USDShrNouteVdMmsjLCEQCDhgRVBsjxM+mxD6PZhLiPUlCwPJrpg/BXOJZoNJug+aOWSS/8JommDck9R+ss+pyMUwiSLK1PcN3tFnmZpgW8SxyJtPpGdCs9rqw9LJ2JMe3Z10gA1hvDHQc2ln4Wgt1u2b8R23asZuRh0GhR9gExsrbV3EXhSi1qS87Q8s2O3kVRjwX0WGJdkPYTAG4NTsT5C2Jw4/J39CidIg/MWfKpDu6rMnD1WR3K32VdygvzpGrcCH9EbqD3G9arpmlS2VcOTGTK2tcjvfYakEPnJuKnVIdjyl8Sg/z4atzyt8qOAzZZmA6fqWkYknuOhkCQQrrODBpy5ONuixp6bGtKYAxGlj4Go9mEsg/01EjdoNFC5eEBgATfFY4lTiogx1ekATbVrVrK2pUeSwRAjyddHquj9TcurELBsmgYzSZsqshi+goA7V+eQN1ZS+Ub/CoJpp3/PQkLMKSoG00zmk3IXxKDTwPvHZ1SiC+knBdnUpncHkDmyGoRt3NrZSU52mmzIeyHCkbGADnuZjSbcKW1GklvTERGOyeHxxIBwHtgDmzttcw8AMQ5gACDRovcWHLEr+ep3qitMDNHvoS/wrFEo9mElwpO0YDuBo0WqCX9H5h7Qba+BLzoQeZa8xV5Nmzhokt0oYwQmkEKpYsLjGYT1D7esJy/AFVYMHk+7x1L/KL4oOw5Ob0/AFbTSZg3kCC5o3w7oGSqTjTWX0r2DWP4ZipT4ViidZcPznykp8cS82YmoFfONbFDmcfpkXJF+lGcfm4WWvXLxbsBCbgyWmzDaDZhy4FfZeNZH/w7PPuehu1IDj2WKOy9Lfvlwmg20TXiCMJYdy9dwNw7EWuF0WzCmLxiKocPAuJx1xCHwqGzkXv3NgpXahk5AeSYmRQqT0/ybK1qx8yjJec0LefoGB/aBNO5lAb5jc0eQu877RSD7aokR5Wk9R2aTN4JXgNycLrjUnrfUYgWod5ePYfClp3D7AFGswl9O/SH4oCJHkc2aIjjqyvP6VBve5asfemRROkzYI/q3vH0WGL1Dn8YNCRQOADEHx6CW4MTZeMS+io9lggAbx7ZD7fV5Pix2kuDgLfFwMPSY4nCsxH8SgbT3+pe8fQ64NdbcF7ehJmjQ1NmYUVrbzhvyYJBo4XmyzTmWGLRl+IzFzouC8KxxJrusTCaTbg5lHUbD4AeS7zynA7vFB6DQaOFTd8OAW+n02OJwviF7xDS/aS6Vzy+CY7Avjlz6b2kozWwHcmByt2d9m3Bmf1MoGtpqIYmffKwaGdnpl/27QjHEm8MJ3u04OwJAA2dYNBoMca3g2wN7Fi7GGXv6xG3vYyZx8IV0TRPo+QCOsbAHWOwIU8MEM/xvwHOiHFwcHBwcHBwcHBwPBCEOF//+nb++91YcEbsEcL9tGfS+14DcpjgzNu2rYLa3xfl6yLgcaAJ/D9IZ7Q6ai8NuuQ8STUyygYNZPUL9wTNWcK7KbRPwn+lqysNJEyhUDCaHu9pxLlEfnw1o/mfcc0HTeelI/hpMSCv+U09TRcYC4NGC+etWcyYC4bNhiKasIBrwluieoc/hhR1Q4SuqE6jbgCI+joVzZ7Ig9FsgrJduMwwO+qwAuYBjbBz5UKce1VPg0M2OUAYhLs94xmNqfA5b248KsNbkP56x8raBwCfT9IQmz0EAJD92CymX/WMhwgbsncUppeIrJfSzc3hGhCYvwPfz0HIs6IBtPe0NOqeV6px9E0ijgM8lqTD+zNSf/7SGKZey7XrhG28F0x1e+stzJoR+uq6Tm6UbI/8n4jm1vyGHgNzLyBkaQptV9W4ER3TqwW5CHn2MIxmEzxyFHRc9vWOaXSOkanrH55Ufp5pjen9vNkJ0BhVTNncuSQYs8cpCx3HmY/02JqzBwCQumo8zftNcAQzVgCoGBxI5NNFlJdW9KEDAIg3WYgR/HzR6YVy3xGEvVQCg0aLvl7xqLbV0LSST3Q48P0cNFLWZ+oRAt0aNFoUDSaG89c7iAxuz94jEPLsYajCgsn6qF8fRZ/rmP4aNFrKiAQON8HjQBOaPj6PsOrnfqqP6l7xMJpNlPkRWMQTL89EoxWisxBVm1A4wo61i3FxUxgjr+OvyRmXq8/qqFtyAOjpG8fsA9LPvRtUodFy0rbK3Z0ypOvCm8vW2c2nkhyuPVt2Dmy6dnj/QiS9F/BuOmVyjWYT8pfGoLJnFAwaLe4uJqyi5TTRQqtakLaEUA0AYbYAEhBW1aI5NANP07pOj55FHB8B1A23UE7qUEPZrQy+k9OQP4P0wzNThW0RjekzVrxadFJwu38icu7eoePLmjqL5quLGTRotMwzbzSb4D0tDXkL4mRycnQt3dekdd4aQupcEBrA7AfOu0jeV/z1CBpuQsEycrLhzEeEce9c38q0Zbl4EQaNFnmdltD6VZ6esj6pWjRHwXdJtD+2IyKr/scswnSY39Cj2RN56D58NGEkssS5stxgg98azSamPmFcldsDYdBocf5xLya/0tUVvRP7AACsx4jDpTuR3oyczMlerBwTInH0zZnI+nQW8pfEUJZUKmdVaBDKfmlL2weA4lXtaHq8yQLnLeQ9lzcrAc49Smh5RXwkVkQuQsO1B5k5kNbF9AfAFxHEwUuXnCexJWsrKtZHOHxeAt5NR1WfBMreAyRsg/M2kdmzZR2n4WwqByXK6hECRUvHbNWQ8AsCmyjcF5yqeGSek/VZuG6yKB2d6xMmVpF2VJbHO6Mhs28UfUHkLfRZmrbt28cAkHWhahOK6t7xeKmkP3W4I4XAjhYOnV2njA0aLW73J89w+tezmbYAx3uVfZ98pqYho50Tro3UUYawoMsi2ZoxaLQIGZWN/qGRsvo4/rvBGTEODg4ODg4ODg4OjgeC1aaE1fav53Ks/wOO3bn7+n8zBFeg3b0mwnhop0z7KbhaLntPD5//x957h0V1tO/j9xYE7KgoLkgHxYKrSNlVY3cVjb232BXUFJOYmBiNsSUxxcSIvUdNjC1G0TUaNVFAEF2x0+uKBbEhIrvL749xZs/sWUzezy+vMe/33NfFBXvOnJlnnjNnzvLcT1lEWIayI96oOk0OcxqxeGcv1EAW+AjX2m1l1+lUauR+rIXXwYc4/PNW9IwcAYvhCsoiQ2F2kqMwTA7IAd9ZlRc8BOynKQeA4MThaPgsFsFWZtom4MRY+I4wiM4J+7Jnma1MDtrGNgU3xe39jeHa57r4YrkCXVPu4WjzGpWOaU8uezJ0GzIWijIzKpIuis7ZWrg6TpyE+94OOD8nRtSf0qsRTDl57Fph+v7K5k7T2U9OzcSaQF/RXCq7F7bWYXmNGri1vSFjC/9M97Qfej2FsODn85C9SAPvD8n9Kjnsi/u/ueHimzFQL4lGg+VxyNiuhuW2E2OF9EYDAk++Bp/hF0R9KX298TC4Pmqk3IIpM9uufMJ70H3ga0ibrETQO1mMzaWFx4X6EfZTbH6MqnIH9HEPFbXRGw3oca0XY30U9erifucA/PzllxjZyBrXUKFtiYIO1XB5Rgw6TpqEu00ckPJ2DCdj79SeGOSWjLE1b6H1J1FwXRWP7EUaVPg+ZnPXGw0I2BqFtNEk5mXTg/oYW5PEUNEU/8K5K/x9EPu7NfavR59ROLz/exIfskQD/y13RAWi9UYD2r45FdV3JnBzNXUOQeZwObJ6kbguS/tWkP9hQw8K9LMgK4mtYVpS4v6oCCR8brUkp8aEITCajw28HaXBD++TdNXC8WmRbKHOhPdKERSAm6/UQ/K8layNrUx6owHh70XhzGcr0cMrjMWOCtv5HJyEwElJdtNSK46rENs4FkGrouF18D4sVZSQxV9gpQKEWJt7CpM82+Hpr16o0i0HSl9vbo3S8YSy6o0GlFeY4SBTwH/HVFZmIHVDGwSOP8uueyv9Kr72J6y+sOTB/ZERHKNZmWVfCKW7CqYCIzK+jIDf29b1s+qeO/Y2deX0Zw+2+w0tLu2RUB35EY9E19PyEA9GRKCouQymGhb4b3+CI7s3s340b09la/n/uj9Xdk5vJKUVljU8y8o+CMeJbNWdlTPIXqiB/+o8mPLy7fYvhHGWFp9O3sAVBQaAnpEjIL9zH6b8ArtyZy/Q4PoEayH5e6M1qL3V5n0mk0FfQJ412q54rAYum+KhbOSBg2cOiOZZ/JoGdbYlocJkQtYSDXxmW/ukpVvslWsoHqtB4uKVCPsgCq2iDcgOK8WTV8O4lPD2QN9DwqLFsQXn0DuwPSwlJUhdGYasvmu4OVCkf98KbvsdcXoZiQVWL4nG/RblokLutvgqOx4zvcUxoADRb6uF0agf8+dFou2dsz0mr1EDlocPkbo2lO2Bts9vwftarvA5AK6oOgCumDuFd6IzjqY2QeMZ2TAXF3OlZP4tBZ03nGv1wtLXj299/qXVx98ByTVRggQJEiRIkCBBggQJEl4wJEbsHwa1LnREXxy7cZm3+Ab4IvYkKbLbNmUATj8ruGtrMbRlA3QqNZQe7jDlW2M1qCXansVRbzSg46RJzGe9MqsRtcjRY60WRaP+CnHBUHtMjdASSWWt7LrK+hEe7zR+EpexytYS/GcWVIcTDXEg8BB0HiHQ5yeLrsna0RKpHTYjcEsU6qZUMOZHbzTgseUpqsqriPrMm6PFlWgx+2ULRc2aiL32O6eHJ6+GoaymHH3eO46TwSSWSBEUgNhjPwEgBa9nT5gK5W98IdP8D7So/UohqvfIxN78RAzqPBzm1Ax0vliC9+qmcTo4/NgRX/sHVarrsPOD4dKLL1SsU6mZRVtvNMD/+Dj4jTxP4j1qVYc5PQt3x2uQtNDKSkxIzcL6QJLNjlp2K2PuhH/fnKFFg+X8ejLubQpVf96//z+1iANWtgJyBWAh8WNjrudhS+NGdq/P+0iLK1ExIh357J/MZXusbDzKElT2nOZ/oGVxdMqGbjDdKGRsXMiemQh4IwG6Sw+gb261AFbGJvcK6QHTDRKDYe7YGke3b7Dq2b0V0reo4T/aymQpatdC7JWTCP4yGg2/jEPWjpbwX/gE5svXceeXQMaUUllt9QMABx87MSYg4kI55ruSDJUh86NQb7XVEq+98BTzXK9wcr9b2Aoprclrp0LbErK4C1z/OpUajc864HqbctG8aZFiewVpbSHUUfvpU1B1zxnRGkz7NhwBr59hLBFAirC2+s6AzxrY17cQXUZNYM9k4ZtauC3j9zhzx9aocjEb5qK7TPbcuVouo62tvBSZn2rgv+MeZLmFMBcXI3V1KAKnJMH5ZAOUdrj53GvtQVgk/c/al0WG4sS6tfDZNxlZ/axF12kB8Mr2bzpve+cab4iC95x47phORbKXfunfDGmbWyOz2wZEGAahVmT6n7IXws93pmi4dcfNe0QEi+/RGw1o81EU6q4XF19/nj7k6qYonG9B/b7XUPe0C7b7HOfmauoSAuUx694cfE6GlNYVeHDID7WH3MLD7k1F8baleh8ov6yLVkvO4cuG56BTkSy1D0Y/QErYDuhUao7BUrqrcDApll1P379KHy8cPP0zerXti+wvqnPF1+me5aGXoereM3bvEV2PtjqQq5viUOx2xrQX9GoIt2/iOKaXe2c+Y91s+xlytRA7g0jsWFnPUOxas4x5D6Sua4PAiWdRoWkJucmC9KHV4PeOleF9ODQCcV+Ln/OMba3gN1LMzlOZ6ByFsryefg3f+jd57jqlbDZAWLuMzhtZO+MsLZ7UqYDv+7w3RWV7Q4uvnxW9jhQXvbaVMav8EaZ6tYNc3RRPz1/4VzBia8+FvDBGbFLr5JdWH38HJEZMggQJEiRIkCBBggQJEl4wpH/EXiIEbIlif8/OSIE5LRM6lRo6lRrVe2SiZ+QIZlkRWlh0KjWCTo/m+qJsWIeUUgDg2LC8Xc2hU6nx6LAvZA5V0GZuFGPDaH8Lsp59DmvBxkpcTFgPvdGAHp5tUH9FHMp6WeNo6G97ViKhXz6F3MkJad9EQBHox44J+5mSr8HynNOsn6JJGpah6r4Pn2dGp1Ij1/RIpJ87UzToPGYC1zbzMw0OBB5CZHAXxo7QzEx0fBqj4/N+PMeG6VRq9PcIs45z6QGr5XUl2lrbyR70RgP0RgOufRsAnUqNz4oCEHKeZBtz+iURCUtX4WSwM/RGAzK2tYL5qpXR+sgnlFnehf17b8zE6eA90BsNUH//BsypGbC0U+O9ulZm63YUkY+yYelfRaBnz+HI2EYyn72efg06lZpjw4SZAoUMELVCmm/fhjmd+LTX2RDP1qneaMBn13VsrulfhkOnstaCs9UFAOR9SDKvNVgeh5icU1w7WzbM9npbXduzTAIgbBgAWMysbtyWxo24ttk/BjN9N1oQZ12rYS3YvQ+cmohb07QwvksyHgrXFndfPooXHY/sOBARhkHQGw3w+rkIIedJpjDKZkV2GwoXRVUEvEFiZYRsGJ0bAFYnkB6jbBoAKE6cg8/BSdbnr+A8Pgnbz8lW71AF+qXp0G0EWdf1fnZm9Z3qvZrK+hU+q7VO1QUA+J8YixumR1hb0AEeCdUBAAktHVj7eqvjoWzoxsaLa1kFka/0Z3rw2zmVsWF1T7uwLGm2VmpbNky4jwBAxpBVoj3PFjqVGj0v34NOZc0sKZxT4ZtaBLxOjlM2DABkpwkbFtltqEgu+ntKPtmHhAy1470KlAwi633VPZJZTnHiHMxFd5E3R4vLM2LgcKIhrk6NQeqGNig5TDJ00j1AOM+74zXwfT8elgtXcf2jxtAbDTD0+hYAsC9Az55pip6N2zN9CX/TvxU1azI2DAB89BPYufLubUTX5PQj8gRGJ3Jy/b5yDQ4+dkKNP+qxYwXvadl9smV/5U5OuPE2qc94ffxKdnxvvrXf+bPHAwACXiOsEGXDbGXSqdQsC6UthGzY/Ezea6Dm9gTuvheFkj2fZu39K2ziodjtqN+XZFXc6n1MNM9jW9dz7VNaV6DxWQfEt9wNy8OHKKtl/arFdNliLxyOnMWlEGvGyWq7z8BBYWb9Pz5IGPusxRrkD/ZmOtap1MwbxWvnTbIPZOXAdZ01I/KHmdY9q/oh8j5beKcJN1dzp9YidpbKJyu4zdqa07Pg9g1pZ8rO49rR/dHnA2udRL3RgLTvwlH4lhY7g9xQ2i8MpqOecDyUhHrP4j4BIHAiiYM8snszKpIucmwYAMaGCddBg/iaIjbM9l1gy5wCwLwl49g5e+cBoGWdAhQfDEBswTn4jzrP3WfV53HwfT8eufO0eDwgHH6/kf6Cv4i29jtgDBpviIJOpYZqaRwCJ56F709TOVnpfQHI86FTqeHjUB3ylkF2szu+rLDAWtT5v/lj+acn+gIg/SMmQYIECRIkSJAgQYIECS8YUvp6CRIkSJAgQYIECRIk/CVYIIflBXA5L2KMfxpSso5/GDTwsUvQOzjy2z4AwIp7jbC/aV3WhrpOxOScgp8DcaFTejWC167byAh9gg8zDXjFCRyNLnQPHHktH9ua8EUqheltDxQko7d7CJ844XUtGnxbeRpY2xTqAJ+mnCIoWYmfDWoETjgLe1iclYgPfMJY/4D9BAGVBWmnbQpBwNhku0kRuo4Yj6PbN7Dr1txXYXdQfZEM9vqPmDUVtb5PQIWmJUuzTCH7zZ0rWkvxpHcYqv1+TVRklPbZK6wXvjj1E4KqVOVk7TpiPKpczWcplOnx1p9E4dxcPjV3ZTq6MZMUpLY3HyHuTNag3hpxULusVTNUnL8s0qNwHdFkA3fHaZC0aCXm3W6G3NI6yJsdAMXxc5x8APBuYStc7l4H5jvWIsXrc09hgme7SmWUq5vadc+giQpoym2R/A5VuNTkAUmO+M79jN0xbkVrUaEAHoQ+QWZXsj6axkSj0cI43D0QiDq9iXte0SQNzs5fiR59R6Mi6SJb3/ZcYPRGAwK+j0LaqJXsvgldamzlyN/dDJc129B98FjIThs4XY/I6oTtPscrvQ+0z96pPVHe8QZzjfWay8tGx7XVNQ2qF+o87V1HBCwpheXSNXZcGBBP+xCmzNep1CiaoEHd9YIA/bAWQCJf2uGzrDN4zycccicnmEKDRCnwbedXGZ53ftz1HKyZMRAOR85yOi/tFwbnfYksIQpdw5X1f/lpKZpVca70eRPupbbI+lQDx7syqD63v28+1bVBFf1ZyIObsOLBonmFtYB+31bifh3rz7npCeees7MFvIZcZAlCAFKIWlhUWgjTUU9kXWuIgOlnUN41BA5Hk/G4fziq7j3DJYWhshS/poHL5njR2IVvaXHhXb4Mg+09KZqkgeIJ4HLpAdtTAOIOGTiOdxukGHktH99+MRh118VjVsZFfO7HF7Ut796G3Vu/H6YiY9gqTgahjLaJqgDgh7w4DGuk5eRV1KuLW/0CUXedOKmOTqXm3k2QyQDBV6WBV2+xd8ntqRqEjEvB2kan4fvTVKQNioFCJrcrW2Vr2LadwsUF5uJiu7qiadVpkhN7Mlc2jiqhBowRD+2OT13IhfurrV6WF3thz9vdcXzDWs5V+voEcQmJ580PIAmzyjveEI1jq2sKWWgL7Nm7Hv09wuzeL9u/bZOL2a5X+nfq+jYInHCWfe566SGONq8BpVsD1N1bii1evzMZhPLTeXeYPBlPXBSovTWe7TfCOQNAy8ThcOt31a5ubPFvSV+/8lwonKv/97mc0kcmRLVOemn18XdAYsQkSJAgQYIECRIkSJDwl2CukMP8Ago6v4gx/mn878/wXwKamEGnUmNa7TxMS0vlLCp6owHRXu3Y54PxvyAj9AkA2GXDACDXRIpr/hjZjgWzniiVI3VjCHxmx7MxeruHAOCtiw2+Jck18mdrOWsWTfBA2TBzhQWmo57In61lbIFQ7qshJgROOItHzwLThefapzxBiGMVKL09Wf8UuT+1QNEkjUgu4We90YCAsckoeJ8Eg2cv1PAWzxPn8PaN1ug6cjx0KjUm1yIB+Yq6dUTB4Llz+XnW+p5YBYVsmN5owP1REXi6mKTizViq4fpxOpCIsjYBTE5TlxDunpjyCxgbRvVI5RSyYRTn5q5Ek7XR6DZ8HDd3nUqN21OtYysa1IfcBOzMtwZL2+qagrJhQrn1RgMqzl8W6Zr2Q39TJsH1F8IYJbR0gDHioYgNozKe+C4CZcHebOyynqGY4NkOd8eT+6r08QIA3NhHCtUWv6bBodjtIrn1RgMCp5DkMdRaK1MquTFtC/WmhZaJ1g39u35MHAyzYxAw5hyT1eU6CeCnbBgAnJ1PWK3DP5NC6ZTt1anUiGzVnVuvOpWaFUd3XRWPxhui2H23ZyW+rNkGnUoN2Wki0+knFhS+RdZxUdtiTna/Y9Ygc6F+DwQeAkCYMK+5/L23/Vt4vykbRo9ZDFfgN/I8LJeucfryG3mefW62nASk19yRAEW9ugj7gCQWqrs+HuXd21jX3L6tqNC25OY6/Z3X4XyyAQ5lJjA2zPb5s7dW7d07IbIXWJ+BInN1OBw5y+bd4msib5V7JvS+XIzssWS/cr4ltrTrjQakfRuOHl5hmOmtEe2lQj1ua+JRqaw+78dD9XmcaA+k11fRE/kOHf6Bm3evtn1xf2QEynqGQr9vK7uu9Eh9UR8UXkMI60jZsBp/1GNs2K2fm3Ay6I0GKLvmImA6SUzicJR4EFTdSz7PrJMpeuZdNlvXU7uUAey829dxTCfZi6y66pBSitRVYSiapEFZ5H1UeWTB4YPbuH4DxyUjdSVhmOQtgzjdbWvigbrr4iFr1Yxjw0oGhsP4rpa7t/4zeUacyhNxgSR4oWyYcP7DGmlZe8Uzq3psyjGc/YQwOQEnxrLz3YaS5+0DnzAUTSB7FS2uTEHZsIAkR7iuikdueAl0KjU+7L4Pke6toVOpYTnWSHTf6HNd3jUEiAgWnaPyZk8PQsYXfIIjqrtRZ69A6e3J2DBhv5TB496lgnebMeIhtzbTv2/Ftfd7OwHzM5NhfEcr6mfhnSY40MwFxzesxYTcduh9mTB2NDHR5aelnLwlg8JF7wSAeI6MvJaP8o43IK9GEne0/iTKKtczNsx2b6hIuoj+HuL5jcruyP722zkVmZ+Te+ayKR7ZCzVce51KjYq2ar4Pi4zTybt1MgAApsKbuKl5UCnLR4tyOx1IZAW5KRu2NDuBm7M9NqyyvW9v6kVRWwn/25AYMQkSJEiQIEGCBAkSJPwlWCCDBbIXMs7/OiRG7CUCtWLqVGr0qfaYHaeWFVu/b2pJWXynMQBS7FR4fkqzngAAU2Y266Ojs4X56a8ICOT6UtSrC51KjbRvIqA3GhDZrBNjQZh1XpA2VqdSI9K9NZRdc3F5BokbOPzYkWOsMj/XICbnFCtG3frsUOTNIRa6P4JJ6lZL7eqszyZriSXbc/BFLHzPGt/Vo9dIAMD+giSRTtw/JTJ6z4lHj2u9uDl92fAcjm4j/Swr9obeaMDtvo3R7DtrylkAuDo1Bl1GW1M624Pv7imo9X0CnDNJzNOGgSvZuUl5pECl+6I0LMsm8tCUxnSM5sly9nd6p43QGw3w3z4VZUe8ReO2/CwaOpUaXvPikDG4CtOnPdnMN2/hvvophnjwKa2Fa0Hp4wXIFVC6NWDnyruGoMuoCaI1ZWsBtLXcme8UIWx2FCeTkD2g7epsiOfSe59Yv5Yd16lIuuWQ8xakhO1AZLNOcNkcjxbLork+9EYDOo+dyMkjC23BipxSPB5A0lr3v3KbXac3kqLj9uYlHCN7kQbVfzoDRWN/PP3VS6Q/W310vlgCWVVnu/qhba+PX/mXYkGMe5sCAMYnjYXb13Hc/aVthMWYhfisKABKD3c8HEos56nr2ohYnAbx9lPgK91V0KlI4epx13O48/YYSboPzM5Iwa1+gSz2AgB+27SO/f3eTTVuhlZD4VvEon5nsgbVdp/BvgA9GTsimMmoqFuHjSlcO0IdPelNLOBNY6I5fWb9EMyVCFix/VUAhCnVGw1QLSXyHt2+AQeauTD5hYV807aQMgYdJ05CwOtnGKtKx2+yNhoyR0eR3hkEjIY9vQn7mpaWSmJfAHScMIkrMWDKykHC0lU4sX4tb0VfJo5ly/qBjJn+dQQeDotAab8wlHdvg4ft77A29fteQ8ITs2j9Ul2ydb9Aw8qTCD0KbNm0d/yO4Ja5RDQ/30XWQtwng50RODURddfGQ9X/Cok9o/f1am/WLjCKlFE5dGgHpzs6FmXm6edqu89AtTQOqRv4FPu0b4cTDQGQWOSElg52PSdsn/v01T74IS+O07XvCAMK9wXB+WQDyP+wMsFnF1hT7lMvBmHpgLTQMm7MCbUK8WA4eR7T0xrCdNQT5RVmyNo052T4bct6rN1J3pl3JvMsLABciYqB3zsJXN8yM1k/yz8ZDFN2LgBA4eoq0qPxXS13/yCzYcoHjCHrEYD/KHG85jzfEMyYsE+0Fv4IdmLt8iMeYYYLv280q2LdE7OWaFBt1xluTk97hEJ36QGUbxayOEtLSQnuHgiE6yryXKZ/3wpydVNuPkLZy7uTPU7h78Nku629h+Kx5J74v5mAj/vuZO2vj7eW3KHQxCQh/Ssr2xg4KYmthbKeoWy8u+M1ovUkhPpT67tF6euNuwcCUdaTlPMZunEmd13WYiIffcaEsO13oDoMEv7fgsSISZAgQYIECRIkSJAg4S9BihH7+yBlTfyHQTPQrD3XGj+G+LLjNAuconYtmO/dF11HrSrBX0Yj5e0Yq/Wv32iWdQsQZ4+jFkKhpbAyFkSnUqPksC+q9cgUHbcHKlPHiZPgGJuE1JVhyOq7Bh2mTEbeIBMCXjvHrr/xthYNv+TZNqFc9ti/yhiGyA4DYE7LtNvOloFQuLgg9jLJSBdbcA4KmZyd90iojvWep9jntOXhcDslQ40frZbJ4C+ikfIOsWQOyugKlfN9VnzWVq5hWZ1R3PYuAMDUOQQFHatgUJ9TOLi2PSvGWdl9EOqhV9u+MGXlwLi3KStwbE9PmZ9qkDbGPhNjLwtX8cEAJLb6iWv/aHA4qv90xq7eK7sHNKMZ1S0AtFoUjfMfknVpLyMjAKR9F87iVh4NicDpZavY+QeH/FCzZ4ZIp/bWhqVDK9xp5ozyGsAv0Z9jesQgViRZ3jIIlgv2s1VVtsYUzRoj9tcfK13nlfWju/QAM+tkctc1T5ZzBVtt5c/a0RLn2q/GQA+rhVaYCY/JFOgHc2oGIFegeEwY7oRYEDDjDNfXjX1BaFhJZq7UjSEIHEdigwI3RSF17ErR3JsnjITHAuDwwW1YeKcJ5tS79txnMXeulisGOyvjIro4m0XrpWiCBkURJgROImy2d6Izcl+pgOXJE05GvyQnFve6KfcUxnq2Q8YXEfB7JwEup+uwZ4ni8YBwVN1j1YGisT/M19OtDZ5lX+t8sQTv1U1D67ND4drnOtqnPEH/mueZBd/eHG3nKjyvqFkTmeu8cK3dVm6uYR9EcVna3r7Rmt17pa83TJnZ0BsN8P11PAJeO8eNIYTtPvjDQxcMq1FsVz7bjG/29COcB0BiZM1Fd9nx1gui4LoyntsjhPtmWa9QOB5MEo1tqyNhvwDZc9JjPOEz/IKo/fJiL8xwyRHJbOocAuVvydiZH49acmfu/J1fApEcQtiO+bebIq5lFZGsfxV6I4lvVsjkaPzHGFT9ozrqfxfHnRfdd9v1BV6vmdvV8B1hEI2Vtrk1d7+FGHM9DyNrFKHT5b6o0o3PeFnZfjc38xzaOslF64RCp1JDERSAehtIjFPGdjXSO26CTqVG6oY2CBxP4u2+yo7HTG/ei+J5oO/sJ73D4HQg0a4Ocn9qgV/DV8JDWd2u7AXvaXHpjRgcfOyEb0cMhsVZiV93bIROpcbr6dfwxpnh8BudAn1+Mnf9o8HhOP3NatZX0QQNHEor4HK+CBUOChw6/EOl32t6Xy7GgWYu3P3I7LYBOpUaSm9Pxi5S3IrWon6M/cyqAKCoXQuxV06Sd5tNtl570BsN6Nm4PSwP+WyVtpmpaUbaf0vWxK/Pal9Y1sS32sS9tPr4OyAxYhIkSJAgQYIECRIkSPhLMEMO8wuIbnoRY/zT+N+foQQJEiRIkCBBggQJEiS8ZJBcE/9hUJq3I/ri2I3LIncDvx+mwn9mApony/FlQ+Le0DJxOGptrAHnnxMr7Vfp1gCmwpsArBS98V0tHB5VwHWltfCgkMo3d2rNUpEDgMzRERVlZUjf2gouJ5xYoLvwGlvXRSH0RgMGZXTlAslt3VcqQ+qaUAROJu4w/a/cxt6mrpxMwjGErg+0ILA9d8caf9TjZKEQumjQ64LWRMPzY7HrZJ8rRazYtl+SE7JHqJhbJEXeh1o0WhRn110o7dtwBLx+hvV5rFTBuXMJ5yTUgT08GBGB+C+shU2fh4gL5XCvUozdQfVZ/7MzUrDEL/i511EoAnxhTssUucBQeYXHSgaFo9quM7g1TctcMCsDlYW6g9i6GdlzOzId9cSxpvtx5LEDl8KZIrbgHCLdSSIGzzPVkBteggcjIlBze4Jdd5+YnFNcaQhayPl5OqXXj7meh7UzB3CuW3qjAYG/j4HPsBTojQa0SxmAWlPKcTD+F9F9Dk4cztwJU9eGMvc94RjGWVqWFv15LsYlA8NRbfcZu+vOnvy2ek3/vhWqOJrQcK0jSxcO8IWdASD7x2C47K+KW9oKBEwjrm9KdxVMBUbRGEIX1cogr1YNlpIS7ljxWA0SF5N7UBYZCsfYpOe6D35wMxjJreTsc2SnQTBfTxddc2u6Fuc/sLpyt/g6GhffirH7/AkhC2mGiuTLuD1VwxIL2MrwV12pK3OFpO6XD4dFoMXMC3CUm+y6PdN+fGInIityHVotjMb5OTHc2ug6YjzKXBxYivrKYO7YGke3b8AHN4OR8F4Yftu0DpFdBsN8Nc1ue+H+q2hQ327ZDeHcHg6NQI0f+QLB6iXRaLCc7AvC/ZBeIyy6vTQ7AcFVnDhdtU95wtxmhaB7SPNkOS5Ob4H0EU4ImHGGczWz1Tst3guAFbiu7B7JHKog7bPWyBi2ChGzpqJuXCFMmdkASAKfG09r4WqICfdGa1g6c9H7yaaYN4WpSwiUx5K5aypzC787XoM6G+IRcaGcS1Bir63w/WzbL93/qTuoEKX9wvB7zBqEzY5ipQwA8ux7D00RyQ+QQvEeJ8rZ3iHcI7c0bkTczSMz7RZrFuLWNC3kpgokz1uJsPODRe7zFLbzvrEvCB6zTaK1m/51BFqGZKBsuAMOJsWK3i1h5wfDpRd/zVNdGxzfuI71L9Tp2txTmOTZTvQdo/vgsawcCYXcyQmWJ0+44uA39gUhJWwHgtZEo0bobVRdURuOsdZ9/9/imvjF2XYvzDXxnTanXlp9/B2QXBMlSJAgQYIECRIkSJDwl2CpkMFS8QLS17+AMf5pSK6JLxFsLS86lRp+u0iRxC8bkuKzE3Lbwa3fVTj/nAilWwPojdYUs4ratQAA90dFMDZM2K9qaRzOfUTSuT4af587pzca8EhlTZMuC2mG8RdJgVf/0edRd308ig+SYsUjsjoBIBalmjMr/19ep1KjZLorsxzpjQaYi+6yz8tzTnNsivDvrN5r2d+UDVuecxoVZWVQBPpxYwhhMVxhx231+bD9HVFg/KPB4aKAZZ1KjauTY3BvtLUYZMdL/WDqHIJptfMAEPbw6LFWiD1J0vIrgqyFnK9Mi2HXcWzRpQfIHLTamtxBpcbnfi2sluDdzdi521Eau2wYvT8F72tRc7u1aGT7lCfQGw2sWKWtThNaOrAipHQ8WzYsa4e1EG/q+jbcfRt54CRy55LyCO1mTEF5hZnTF/0BgFPfkjnWu2Qt8Lk7P4GTByAsCkDSrv8ZG6Z+RsgUvqGFsmsudCo1ulct52QECKtAE7AAwNpGZI2tXrxMHNBery5hnR2qc/3UXRsvWlcPh0VwKY/p+S2NG8HxYBLTe1kkSX/sMyyFtav+UTWYcvI4Bo6e6+l1FenLSL+UDaP3kj23n8eJ9BL4+xjuGAAUamR2GWIhUteEIiiZPLODMrqivHsbds5/1HlcbbsVv21aB+MsawpsyoZtyzsNAHA4Vx21tiUwNgwAMiZ7wxY6lRrnP4xB8BfRonNCWEpKRHvCnVALbplLgIhgzloshN5oQOZnJPX3+XY1oAjwhdyJsCdCNuzGTDKXwre0LCEDHY+muae4vb8x99yuzSX36vAv2wCAY8O0F56i+DXr3mFvfezMj2fpzvVGA7oPfK3SPY8mI6nxQwKyw0rxrYqwgMISBLR94O9j0HThLehUatSPiUOrxVYdB26OguLEOREbJq9BmJ/7IyNYX4oT5xAxaypS7rvD4chZoruraWyfAQCFvw+bG2XD9EYDzDdvsbTcSm9PeCRUZ3O/PZUct2XDdCo13A9amVPKhjXeGMXaCEumUDZMqKfdazqjZ+QI0bNPWa9LIRYc2b0ZATPI/M3di7m9ROHqis+yyDlavFcR6FcpG0avrSh/Cv+ZZM+t9X0CY8MA4L26afh9HUldTtkw4bwr2pI+KRsm1K/eaGClTqiMmZ+TdT038xw79rg/KdHhVEwSwCS0dGDnhM88/bvgPS1OPSsbozca4KOfwM2L7v/K35KZLMa9TSFXN4XzvkT4HJzE2DB63ntoSqXrN3XsSjgcOSs6v6VxIyhq1kR8y92iYs1CpC0nBaDrr4hD8jzChrv0SiP3zN+HNHpWMkJvNGB/SVW0nzaF9dVoZilbu0L4v5WAlDwPZEz25r7vUF0ltvqJOwaQ4uvDsjozXQWttqaq91RWZ3qcc4sUH79hesTYMGE/hzLJ+vd3sL4vU8J2oFdID3h+HId6VUvY/nZn8l9PnCLhfwsSIyZBggQJEiRIkCBBgoS/BMsLStZh+X+AL/rfn+G/CGWRoTjy2IF97n/lNpTFj7k20Q1+A0CsLqbCm+g+6DVmtYm9chIAUCOPWC3fTifFMZ/2CEWz5dYCxlk7WsK1z3XWj99v46BTqZGwlMQbtTgzAhXJlzGk+n1mCQKAxFY/AQC2+xyHvEYN9OwxDO4bC1AykFjqUte1QdYPwVA2dGN9Wy6mMvkiOwxgMgDADK+26DhxEuvfZ/9kdp3Qwpf1qYa1B0DSeD9D/gdaTj+2lq3KYo3o59PfrIYigJQNkIUSdsrUOQQ6lZqzbJ5ovg/K35LRcQKRV3H8HHzetzIn1C99VsZFVAZ985qE5fxtHO78Qoppl/UMJYzTtXx4DLzM+nNdKY5DofLrVGoo+WXBimNTq5ylnZqzuB4o4GMA7MFn+AWrxX3CWc4yvKVxI3h+QlirarvPoNvEqdZ5GQ2YnEriEExdiO56Nm4P+UlrXFF1uZPovlJ//cCJZ7m50YKoQktvz5opSF3fBm7f2C96TGUtbnsXXa70EZ1/1zsC7adNYZ9vR2lgvlMEXb/RIouyPWttjR8S4D+TWDeFxUQBwNK+Fdbt+A4AELtmBQr2kLi1ksNkXT1cYI1/ypuj5eLRDK1IEVJFg/owdyJxbfbSxuuNBsZIUcZNbzQwNk3p4Y76Z5/NN6wF65/GSxrfIc9JVu+1OD+vNXQqNR62v8PFcwiZWsrCUdyK1mJkI/L8XXojBquesXpUB17z4hhTbau/hl9Z+7rxtvV51RsNGHK1kGsb6FANOpUaAdPOYMSYGdDv2cLOXX36WHTv00aTgruWkhKY0zKZBRoAOo0nz6qHvgg6lRpuX/PMYlb5I+4zALYv0mOeyurcZ+EzNc/1Ch55Wt1mMoatQv5sLTsffE6GIR4auK6MR9aOltCp1Diye7PdeBehToTz06nUuKl5wM4FrSH7ceorW2DKzmX3rX7iQ9Ym9bWVdtfwoet/AAASlq7C+lzr/av1fQJuPqqBh8MiuPY6lRprc0+h3y9n4D8zAU96h6FC05KtE5fTdeDzQTz0RgMOxu1HfsQj1qfrqni7MgDAwVP7kPZdODI/0+DuOML8eH8Yz8bMWqwR7RWRXQZbma/v4nAodjsnZ2zBOdHerzcacHecBg0XK/FK9GR2XFa9Kt7zCcfjAeHW/fvZO4U+d5FdBrM+fA5MEj3vQkRcKIdOpUbNXL7IvBCy0wbG3uiNpOSKcO8CgIwvI9gYvrPiMe56Dto6WeMeKcP5vLg/vdGAgCRHPBgegRIfEzfGPA2JUc1aooEqoQZ33eI7jQEAqv5XkDqmJkr7hkFZbLXT61RqpG0K4eSlReGzF1o9R/pcKeLGZPp98IDpNutTcs/p9wRa6DxgxplKn43Y3/eSPxKsngYrAgI5XWSMbcjJp3BxYTpJ77QR1ybFsLZN40ZhUEZX1j4keQhrq3AlXjzFb7mz9lenWL1caP8eCdWRpFYAABo+2yeE46euCoP/NsL0DvHg2S7zbRKrbu5kRMkgwgSWkBrXkNeoDgn/b0FixCRIkCBBggQJEiRIkPCXYKmQw/ICii2/iDH+afzvz/BfAlmrIJxYtxZfjhrOju0rtPrrUytLiGMV7rojuzYjZz6J3emleRV6owG/7tgIpVcjllGuyuEk5ncPANVOVeMsh/6jCHMR+mEUdCo1Gn5uzcR0dUoM0pYTxkunIoVlQ+dEAb4eeG/vTqxtdBpFzRUkbmXiWfgMS4HpRiFuTyVWr7ydQQBI7IU5LRM3ZxCLceG+IJg7tcaJdSQWTG80IOiL22yuGV9YrbPlta3+1fKqVRlzAADeW3M5a2W3q69y+intG4YHh/yI7AG+nM89/U2zHlYkXcT9kRE49v16rg+hrhwP2Y/bor8bKa2WP3vXm7qEwH/UeVaYlPa3rYmHqK3tZxpnBQCG92NEbct6hqLwTaJf+SnrOZ1Kjd7uIfBOdBb1rTiu4o7ZMkNCJoDGdOmNBpxYv5a7bmB1YrWnmb+o9d0Wd8dZLYPdho/j5hiUrGRFLak1GwDSNoWgo7MFgRPOAhHBCH8/Cnkfau1aT1M3tIGyKynQuSAriZsTtZ7qjQa4riQWe/2+rdz906nU6PHqSGR+xmfRFMZSmdOzENmiMzv/648bMbV1XwDAoLR+eJxXA/KqVVm2stOCOI0r0VarLEXxWA2CYu/gaU3eLmYb9zH61UlI3Uis0jdmkvlnDCEstim/ADV+eFZ4PJFnZX2PTMDFmdZxhcVYafyU0NJ755dALlYGAFfgVKdSY6qA1aOIPbGbnbdlJwBSwLTEw8I++x8fh51Bbtxcuw0Zy85n9+L3uje9rfdc6dWIu872eRtzPQ9VDpP7b75sZf+FzPg09avcNfYgnItQJzqVGt2Gj8OVKN5SfnmG9fNSt/NQensCAFfUmI6l8PcRrWHhfITyLs85DZ1KDc+PCSPcS9sHebuaW+9b4kXuPjb/1urJkL1Ag4FXb7G+m38bjZ7fzWKfTZ1DUKd3Kmr8kICynqGcHF1PT2OZVp0OJEIWf4F5NtCYNjqm3miAKqGGiOmx1aVOpUbA62fh+148dn68VHRvfD7gYzSVbg1gvprGHQt/P4pbnz2HjOfWcNs3pgAA6myMBxIvsgzBeqMBpixSOJkWA6fjp64NxdMeJMaTejjoVGoETk7idCr/4zxbf4A1Vsu26LXtc/XHClKQuE9aD1Gm3cBNUVCHpZP3VD2SlXdjYy/Ru0SIAwXW2K6el+8xedNCy1BeVYasPmuQ+bl1H9vRhOzffgtTYIx4yPV7Mtj6bvCfmQDnnxPhO4v3yggYa83qqDcaWJbU6+NJ3HnWEg2JoY4IRmlfkiGQxhY+7WFdVz7vx2N5zmlYHj2LDa2ogN5owFfZ8VAcV6HzxRLuXt+KJs899boQygAAncdMAAB4zbXGs92apoW5uJjdg8eWp9y6VCrNXAbleq9aPXfMt2/DXGFBhdL69VinUuPugUDWf+MNUVjveQqpa0M5mSgK39IicGoi/N4lMmV+rkHqamvbtI1Wr4VT35J1QeXfnWzfG0bC/y4kRkyCBAkSJEiQIEGCBAl/CWbIYMZ/P6Phixjjn4ZUR+wfhrCOmFJGLGumziE49v16u3Er9JiwRpPtOQqlrzeX2UnYF7W0mSssUMjk0KnUyPxUA9/3xfVPiiZpUHdtPB4d9kW7Bpn4rAHxd6cWPiHSvgtHwHSxD3vGdjX8RhhQ2i8M5ipyVN9pZXcs7VtB/sd5KJo1hvnydeTO08JzfuVZ9DLKH3FxNoq6dRB78Teunf/2qfB7JwHOJxugcI0Pam0TZ+8q2NMM7gNIHF21311R8sptkX66DR+HX3dshG7AGOafbg/2ZK3sbwDoPug1yOIuiK4reE8L98/Etbf0RgNanBkBVf8r3HFaB4f20zRuFNzWOEFmrmDsFCCoJyOTMQskRWTLbrj2RSMEvHZOFJthqzOA1Nu556eA6os4lPUMxa0JpWg06FKlunn6qxeqdMuxe852/oratVA4vCm6TEpASusK7M5PQHW5E2svtKpn/xiM6+23cMcAwOFEQ5R3vMGNk/OJBl5z+biV6QXhSAu1ZoET9kN/07p09vRAcT/WH7Ui0yu953+GAwXJcJApOD08T0cU6vMkxswW9taQPdl+yIvDsEZaVl9vbe4peCqrI3BzFN7rtxe7hnWC5QKpcab09cbBU/s4OYT12oZcLcTu9s0Qm3JMtG91HTmeq0+YO0/LxVxQ1D3tgqK2xQDAatHZk9/evLwTnZEdVoqyXqEiZsIW63NPYYJnO1Hb9K8iCBtwsgH2Beifyw7bypK1WAOZGfD+iOyf6vPAZw3+fA3Y62tWxkXM+nwy6q2u3DJe2jes0jqStmu4svfA894PkV0GI/YYX7/p7jgNYZhsxlE28oApL/+586QISlZiWcOzaBoTjUYL49D/ym1MrV3wl/QEVM7Y07qZlT0rtnqW16gBy8OH7Hjhm1q4LSPPTFmvUJxYuxY6lZqr75W2KYSxQkLcmqaFpQpYDCLtM2e+Fl7zyLH82Vr46LJwa5M3XDbx71j6e8z1PIysUQT/bVHwezeerWl78gtR/JqGq/VVGYzvaqFayr9X7b2b6GdaP9BWTte42vje+4Rov+yXpkNpB5KtWRHoh9gTu6FTqSFTKlFhIvFzFW3VXK0txXEV6jg+xm3tvb+0f6aub4PACWdF5xWurmjwyxMYIx7i/sgI1Mgtg/wP4umTM18LBD2E1xCrp0Dd0y642+EhKkwm9p0ldVUY9D2/Rs8/piOj80boVGqkrgpD4NREPOkdxjwJFIF+MKdmQJVQA2+5/crVuSvrGcp5zVA57e0pQuiNBnScOAlVEzNxZWED5E355KWtm0W/sy5I7AynF1BH7MkjEz4K++2l1cffAYkRkyBBggQJEiRIkCBBwl+CFCP29+F/f4YSJEiQIEGCBAkSJEiQ8JJB+kfsJYTyt2QuSDdjWysuIBoAzn9oDb6PMAxCi6+i8WhwONdP5AFrMK8tKGUe6d4arRZFQ280wPf9eKRvbQVTlxDWJnsBcUvUGw2o3iMTZ98m6cmr7hWnmtUbDQiYTgKgaUHP1FUkaNdvBJHDeV8iTi8jCQZqnSIFdakLgfnydQy8egue8+OQ/SMp3KhTqVmKejpetFc7Nq+SQeEwF93lZNGp1EgfQcYo7XATtbYliAL1IVfAfcBllhpf6JYYcGIsa/vrDuKigIQUkS7Tvxane9ZdesASZgiPUzRdGU3cNeIuWK8R3NfyGhVI29yaySXExfDtrMAsBS1ICgA9rvVCo0GX4HDkLMreLebkpYU9qVti8JfRTK6pcaeR2W2DSFaqs7Tl4ZyMD7wUkJutSTuuaL/nZKLXyZ2IS6HQLVEYHC+cP4X53n24roxHSusKGGdp0ePSCNaGytBL2wdZSzTMLdEWBwIPAQDyPrLeB8uzqhC0H/9tUcwtcX4med6yfggWJRrYfWCTqH8A6H25mP2doN7FuejQ64VrTngvLO3UkDk6AgDujtfAQaaATqVGz8gRLBlH1g/BMHUOseuiQ5/z4bXtp7G+9EYMS6FPx43sOJCdX3OfBO0bzaQANC103it5Mgmmnx2PnUFuuD6ZuIH8kBeHigcPRfcq0r01Qg1mKGrXwoRahTDfKYK5wsIFpetUauROtibb0RsN8JzPp5Gnx6lbIkAC2IXQqdR4K524ST4aYi1ITPugLlzU1dDxpBunc1qMHgA8nqWaPrF2LQu2DzWYWXkC6l5FrxcWZLaVO2MpOefzQTx8P7W6Lp97vRUiW3Vn1wll6X/lNkucQ/uStwxi5z/3a4HqRqvOAODGviDW1+KsROaWaLsnCXVCf5sys5G6wZpshiaDoG6JeqMBE1Kz2HmdypqsQrh+kxatRM7OFqJx7Lkl0jkL5dMbDVjW8Cyaf0vcEgFgb1NX9Og7mp0vmmjd9xxONGR/9/AK4/X+RQTnxmYqvIll2XEiNzv6u8kp6xipMWFwPujE6chtWRwsHYifr+PBJDT7jiTmUB6zvkOFySoonvYIRf0VccwtUdinMF26x5I4lHe8AZdN8UhdR+5F79SeXPstjRtBp1KzBA90TQv1B5AyNwCQtpm4BbtsjkeFpiV7Z9rbcwC+eLntGqH30+dna5p/Wsjd9prb2nuiPUn71lSUD7V+pm6JeqMBh3PPsuOy0waYO7bGjZlaKIICYO5kxPfeJ0T7HL32zmQNW0d1T7swt0Tb+Zlv34Yx4iH6XClCrW0JMFUjzl5p34Zj6qBYzi2R7jXUXZKGUgR9ew8zvNqy5GWFb5KEG6kxxC2Rjhd7Yjf0RgOMEQ/xrjf/HcA2mVe7GSRpTNEyb+79YPu7xVfROLFuLcx3itDop3/H13IzrHFi/92f/338O+64BAkSJEiQIEGCBAkSJPwPQUrW8Q9DmKzD3EsLx9gk3tK7UAPvOfF4NDgcp78hVmKdSs0Ch20DaQFiZQmbHcUF8MqrVsWh9DhRWyF0lx5g3Y4eaLTIajkTWp10KjUgk0GpashS15Z3DYHD0WSuvb2A27+ayEBvJAkyhMWAhZibeQ6f+LaGomZNmB88EF3r88skBE5JqnSckdfysa2JB/LmaHElOoadT10VhqBvitHuxxQulS8FS44ik0FfcF7Ub4P4mtji9Tv8jo2D/+jzKHxDy4oP25trad8w/L5yDTsXlKzE1RBrQdCKtmoc+WkTd79o4LD2wlPUc3iIHXMjRQkNKGx1za2pRRpWQJXi4dAI1PhRnNDkz+6b3mhAq6RhqN/3muj48+6xbaD38xIx2J7fm5+IqvIqomvuj4xgRcmft+5s+7PVW1lkKBxjn5/wwRZydVMcit3O+lX4+8CcnsWNRYPvhcxK8VgNEhevhE6lxrS0VKwICETuTy3gOZhYcOVVq6JMG4TftqyH7+4pCJhB7vfO/HjUkjujh084LCFNcGTXZm4OgDWJiBBUHqVbA9zdWB3xLXdjzq0WSFIrREk+aFsanA4AH2YasMhXDXuwTYBQmb7vjtegzgZ+/Q28egsrv+uH8x/GcG3TtrRGwJhzqAxyJyccykywuy7Zel+gQb2LFVyCIHvQG0nBZM+P+UQnjwaHo/pPlRfRtR3vr0B36QH0zQnjaHxHC9UXle8VNEGBLe6PikCt7xOY3m3lmZKvESV7EK4JvdGAVouiUX9FHBxPuqGsQ2Glc8lepMH1cStFx7MWa+Dzgf1EEfaevTuTNai3xtqeJpCobNzK+l1W7I03XbK59sKkIXqjAW3mReHs/JVYdc8de5u6onmyHJdCLJX26XtkAqpdckTkyDgYWvHyzM9MxjxfwlbXOlUXO32PASAJf/q4nMO0xJHwfeb1QSELaYaK5MsifQy5WsjKNtjTFUCKBdMC2cI2gP2EJcLrn/YIxfENa7l2NBGX7Ti2OhPeryGZXdg8n7ef0jWgNxqg6zdaVD5D2Ja+f+lcQuZHQT3uIm70UCD2ykm799/xpBv2Bxzmzt2YqUW1Qgviv1j1p2vGVm+zM1KwxI+wh09eDYPTL/aT3gCkZMxADyvrJewre6EGw179HQktHezuafaQGhOGwOjKxwOAn66fg0tg5kubnIJ+Z52T0B1O1R3+6+M9eVSOhRFHXlp9/B2QGDEJEiRIkCBBggQJEiRIeMGQ/hF7ieAYm4T074mfut5ogF+SE7znPIvP+ukMi9FI/zoCmd3XQ280oPvA16A3GhAxayrzpdap1Hj0KrGQ3nhbi+LXNIwNo8URAcLiUOiNBsysk4l6r9wQyTUoo6vV6lRRAVOBEakrSeyXw1E+Dq37oNdYf0KfaHoM4C16tNCj8BohG2Yb6/GJL/GLr/BUiXzgdSo1AqcQRtH4DokPqtC2RPoya0wJLZxMYxQoAqcmIvbYTzgZ7Izb+xtDERTAnacxeZaj1sLLdPzOF0uwxet36FRqyG45ItRghts3cVzchS2cf07k9CNkwwDiS69TqZE/W4sIwyAmo7KRB+a5XsH+pnVx6tvVXIHkyOAuXByPvXgRAIwNS/smgo0vZMMoel7mYwFsfdxT15Dipw1nEyvz7IwUKJoGcuNmL9Cwa8wdW3Oy2LImeqMBxQcDoDcaoKhXlzA3Xo1EFs/+HmHcHI2zyL2utY1nRlLXhj6XDUtdQ9ZecOJwJo9MqYRjbBKWZVut9Ip6dZH1A7GgFk0g88ncTvqQVyPF0TOG1UK34ePwcBhZa7tO/MjNVW80IDusFEWTNNw9ctkUj+bfkHiUFQGkYOjVtlsBALkfa2F5/JgxzgEzzrDYyyEe5PfhrDOieMNHQ8h9pcyHMJZR50Gs+gfP6VGzZwZ0KjUW1icW7Etv8MWmhc989o/B8E50xitOXBPuGTx0/Q9Ov/ctpaJnFACSFq5kf9/YFwS90YDdQfVRf4U1xid/Nrmn9tgwvdGAUAOJHEhb0IpdYzrqyc5z6/2jeBaXaiszXXc/5JGxr04WF9ymbFhZZCj33Athj2HVGw1sPQiP6Y0GHO3XEgBZP6ov+Jg52jbzUw1y52qR1XOd3TFrfZ+AjKUaWB4+ZPuo8B2QHVaKaWmprO87UzQcGwYADX+9CYS1QFmHQqRuDOGeE9e42mTevULh/WG83Tm6hRTa1avSw514bnwTgdSV5HlVerij3pp4PO0RittTyXNkL27Jnh4p8uaQ95faKVekrysfW98VOpUaddcSmfc2dQUAxobVOlWXG0NvNKDL6AkIGJuMiMEX8FkDAxuHtpnnGwKZksQd3W9XhMhX+kOnUuM79zPoXrUcaR03sbGLJj17Nn/Zhj5XinBvtIZbk4sP9SP9jBQ8l4I9EADWe1pjgftcKWLXC2XSGw2IbNZJxFId37AWAIl7pO1834/Hg+ERnI7z5mgZG5Y/W4tmy61FwOk8X4mebPcdEHxORu6pjxec7sjYOVpYnKLgfS1cTtcBABTuC8KYmndgaadmc6m3Oh4zGhxDxjtNuXkBQNkRbwDA5byGCPk4CgCQuqEN9EYDGn4VJ2LDZKHW+EXhbzoW/bzEL5js600D4fRLIiev7TtbyIbRmMWWn5GYeplZhvmuhPGkbJi953RvfiJbA/bYsOxF1ne43mhAz9fHitpI+PuQmpqKuXPnIiIiAq6urqhRowbUajUWLVqEkpKSv9RHRUUFtm/fDq1Wi3r16qFGjRpo1qwZPvnkEzyw8dT6K5D+EZMgQYIECRIkSJAgQcJfgrlC/sJ+/k5s2LABX3/9Nfz8/DB37lwsXboUjRs3xpw5c6DValFaWvqnfcyZMwcjR46Es7Mz5s2bh6VLl6JFixaYN28eunfvjv804utfHyN28+ZNzJs3DwcPHsTNmzfh5uaG/v37Y/78+ahduzbX9vr163jvvfdw8uRJPH36FK1bt8b8+fPRuXNnUb/379/HnDlzsGfPHhQVFcHPzw/Tp0/H1KlTIZP9fZW+hTFix25ctuvvrGjWGIVLANc+19mxDimlOBnszFnDaIwHPVa4Lwhu/UimsXujNSjp/4AVMKawHGuEnEQP+MyOR96u5rii/R6Bv4+Bz7AUViTzzyC0Ar0SPRlVC0pRkST2E6dtbVmKB8MjUHNHwl+OEaBxYkKLl6xVM8gsFhw6tEPExOlUanyYacDU9dHwOlCMMteqyO3hAL93rCzQ0x6hcLrxiBWwtTc3AIjsMADmtEz0vHwPh5rVJlauk6/BZ/gFrr0oNiasBec7bztXW72EfRDFYods26SuCsO5XsvgoqiKNh9Foe56cRFuWrTW3lg3Z2hhmE1icW7O0KK8OsnqJQSNR6MYePUWJtcyWtmkVWHI6mONcaMFk3N2tmAZqh4c8kNs860Y1siavZAWxqSxIrSQduGbWpiqApenE0Yi1/QIkzytRbvpHOqedsF2n+NMv8uLvTDDJUfErtlaywEgYEsU0sYQNib4i2g0+inXbsa3zO1qBCwqReyvP7J+JqRm4YOkAUjvtJFrW9l61RsN6Hb1VVQZVQ7TDcIaLM5KRIhjFay5r8IXe/vCf+sdUXY6Yb9LsxNYVi690YA2H0Xh7IKVaLEsGqrPxUW/AUHhbjvy5JseYYJnO26NAiSzWMqAb1Bd7iSaj7xaNVieWQltC/fa6ltvNCDk4yhMenO/qEhv7sdayMv4dUYLuM/KuIguzmboVGqszT3F7jvtVxHoB9njJzDlF7BrKyucau+z7tIDrN/WA5dnWItI640GBK2KhucnZL/sOnI8jm7bwM3n3mgNam/l4z7GXM/Dpsl9rNlUbcYzztLi4pv8OEJdy6tWRUn35nDex1vG7cl/olSOpd36sELaPocnwl11F9V6ZCJ1QxsEjj/L9s70ZRHwf/P5MXDyatUg82gI83Vr3CCNS7wdpcG5j1YymRffaYwP6l23P8dnMW0AoGjsj3ut6qHO1BxWRP3ugUB41bqLXX5HoVOpYenQCvKT57k4Stv92R7oeMUHA+DSK40dtxxrBHmXPABATM4pRHuR9UKL29Nrh2R2wf12RQCA21M1cF0VD6VXI5hy8kT6VjQNhPlKKqcTAHz8k42cmZ9rsLT/VqwM8OfOVxbztzs/AaHrZopiEG2Rtrk1Al7jmWBzx9ZQnCDH6HNjT1cAoGzoxvYcW9g+s1mfauDzvnWN03c+1bHeaMCA9G5420NPvFHkCsBi5oo0244PPD8WKv3rCGQMtR/bVbCnGTzH59uNF3s8IBz3vRXwOHgLscd3IThxOBr2uyrqwx5uvq5Fg295vStcXWG+fRs39gXZ7aeyPYX+pu88e9fkfaRFowVWr4oePuGoKCuD3mhAVvkjTPVqB3tQ+njhSWY6TuDnlzYmin5nnR3f44XFiC3RHP7b9HH27FkEBASgVq1a3PE5c+Zg0aJFWL58OaZPn17p9SaTCbVq1UKTJk2QlJQEudz6j+KoUaOwbds2nD9/Hmq1+i/L9K8u6Hzr1i2Eh4fDaDRiypQpaN68OS5duoSVK1fi999/x+nTp1G1alUAQEZGBrRaLZRKJWbNmoVatWph7dq10Ol0OHToELp27cr6ffr0Kbp164bz589jxowZCAoKwqFDhxAdHY2bN2/i448//odmLEGCBAkSJEiQIEHCP4cKyGDB30dKPG+cvxNt2rSxe3zo0KFYtGgRLl269Nzry8vLUVpaCjc3N+6fMABQqUhpmGrVqv1HMv2rXRMXL16MnJwcbN68GcuXL8eUKVOwfPlybN68GQaDAV999RVrO3v2bNy7dw96vR6zZ89GdHQ0/vjjD6hUKkybNo2jEtetW4ekpCR89dVX+OqrrzBp0iTs2bMHAwYMYGP+N6BTqaH09QbA+zmbL1/n2DAA2HhJw1kVAXGMx4WwHQAARaAfKhTApYht3Hm90QB5lzz4zCZWnUaDLkGnUsNzlRJ6owEHz+lFMtIaJrYWTfrjvC8RFTbPTfpXEaK6WB9mEosvAMR/uQrOJxsAACo0LeF40g33Y/2tY/YK5WqkfeLbGsqGJOtUeQWJFak4f5ljs16Jsvq2L81OwCJfNZaPXw3LhatwOJoMi+tTTg9VDiex6+2xE/THnJaJ1JgwvOmSjYzt5Bhlw2hbWh9GCP0+EvfzeEA4azfw6i2RxZzCZVO86Bj9HDg1ESNbvUoYovXEWutwoiFnaaZs2IPhhFHJFOi/wfI47u/qBWTt6y5ZfZuHh/PW9d1B9dFtyFj2OWheNjeez1KyeQnrtdTsmYFhjbTIm6OFuROJDzu5Zg2JnelcAr3RgC+99gIALsyKweXp1ox5ujNR0BsNKHxLC73RgH0l1aE3GnB/aFVu3APNXAj7+6x227jrhB1T+Pvg6a9eAIDIbkNxrFQB3/eJTnv0HY2GX8Xh4JkD3Bxpn2kdN8F8mWcD1gf6IL2TlQWxjdegcRAUOpUaGddUnGV6kH46dCo1dgfVR+rYlYwNAwDNhYFotTCa63OUYRwAwmQAwNkFhLGgbJhwne7OJ4wyrRcnPHdvNIlLo2tCp1Kj0+W+rF3moNUY6EHiR2gcH8WhtNPsb1NePhT16rK+A0++BoW/DzfnemviRWyY0tcbnh/HiVhXatX/3I/EdjiedIPnsxpfFHqjAebUDJjyCyCvWhVKd/KiczyUJIoFEcaX0PFvvK2FvnlNeCyJw5HHDpxF++pUK3OlOG5lIHQqNVQJNVB7K3m2ZG2aQ+nrDb3RAEOJJ+QnrVlTY3JOceOpPo/j1obtOjmUHsfYMNs99M5kfo9c4hcMU2Y26yOrxzpU65GJogkaBI4nWRSf1iSbrZAN6325GKmrwqAI8OX6K/6JZ8Puj4rAitzOSF0TyrFhAHAy2Jl9ttXpxZlEb43POsB8PR01fkiAZWAZa5fUeid2+R1F1xHjAQBVcu9CbzTAYrgCAJA5VMGQzC7wOTAJ/jumwtQlhMXs0D6Ubg3Qqy1Zoy690pD2nXX/H6yyZumNFjALR5vXQOqqMKRtbg2dSs3YML3RANdV5B13a4XViyTtW9Jn7jwtzFdS4XmGPGd9qj1mfQrZMOH9etw/HL6z4hkbJoTzHftORgM9IuD5MWHKHvcPR9kRsqaWZvPZagNeO8disOkxxeNyAICibh0rG3bMg7URPm/CPUcom9KbxFBuzTuN4C9JPBhlw2ZlXMTS7ATmAUMZR51KjT3+v7LY7OZJZG4VJpNdVlNvNEDWqhkCo0ns1f1YXj96owH+byVw7YVwH3AZBZtUTN9pm0hM64KsJFTdcwYp78TgzlckPq2mE6kDOfyakV1/bwwfbwWQWqO2bBhAao8B4Niwwje1dt/JdA1EpVmfH6+58Xj6qxc3B+1bUwEAjRaQ+0zfR5QN06nU8HGozvrUGw14K/0q+9uUlQN580CRrBKAgIAANGzYkP383cjPJ94eDRo0eG47Z2dnvPLKKzh8+DA+++wzpKenIzs7G5s2bUJMTAxGjRqFgICA5/Zhi3/1P2LHjx+Hs7Mzhg0bxh0fOnQonJycsHEjcSMqKSnB/v370bFjR44urF69OiZOnIjU1FQkJVndXLZv346qVati0qRJXL9vvvkmysvL8eOPP/73JiVBggQJEiRIkCBBwkuKf2uMmN25mM1YsGABlEolRowY8aftt23bhs6dO+P9999HQEAAfHx8MH78eLz11lvYsmXLfzz+v9o1saysDE5OTqKYLblcDmdnZ2RmZuLOnTtIS0tDWVkZNBqNqI+ICMIYJCUlISwsDBaLBefOnUPr1q3h5MSnCAsLC4NMJuP+aZMgQYIECRIkSJAgQcJ/B2lpaf+1mLk333wT8fHxWLx4MRo3bvyn7R0dHeHj44MxY8agZ0/iAbV7924sXLgQTk5O+PDDD/+j8f/VjFizZs1QXFwMg8HAHTcYDCguLgYA5Obmwmgk1LW7u7uoD3qsoIAEghcXF6O0tNRuW0dHR9SrV4+1/b9ASK02bNiQUZhF44grwtW5fGpdnUqNWqeIO5DsNyJTVFo6fEfw6WwBPjhc6JYSe2I3EhevRNgHJAXsg+ERdoOPSwYSV42boU6ivil1TgvdMteffUEsDXjq2mep6G0KOmYMWwXHIhmUvt7sukW+aizxC0bWp8RtqrTDTbwSNRmaVWexP+AwakWmQ280wDvRGY4Hk1D9pzNMBr3RANONQrx5ow0cZAo87m91W9lXQmh/5/1Ezq4jx+NdH+LG2cXZzNoldF7O6Q0gxR3zZ2sr1SlAgomz+q0BAKR33AR7OBB4SHQt7bPqnjNMn7uD6iP4i2go/srmEhHM/ux9uRjmO8TtRtamOQCgvOMN7p4WTdTgVrQW8xYQdzrf9+OhqFtH1K3eaEDtLcQ9ZWYda5KHxQ1SoDcakPOJhrWTnyJzuTlDi7S3/QAA4e9HQeHqKiooW6FpyebeaGEcFMfPcbqofpK4AdGgZZ1KjUeWJ0hbEY6Id6fiatutUC+JxoV3Y9B6QRRWBhBXVVN+AZun0L3FbRlxCdvYmLgjmtOzUKUbcQsxX77O3N/0RgNLJOOjnwBL+1ZMZppYwJ6OhGA6fpamWqdSo7jtXdF1TT7JwsNhEcwdNavPGuT+1MKuq1PNnhmoH2NNY65Tqa0uM2YzevQZxc1XeK/7X7nNXAuFLnEUZz5bya6j6fardLO6Vwv7Pbp9AzdvWxci850i+P1ISmXU2+eMzMXV7brQDrx6i31efeJ7kS5lbZqLXJto0da5mec4ufI/IG6nlsePWSF5vdGAY6UKTl+2a0JvNOBJPaubWPeq5ax9xAXy9/xM4ua2NvcUd082ev7B2lacvcRcBGspS1Hjj3pI+4YY8KhrnNCFzxbCda9TkQK4wvlRCAsdN10ZzdoJdaQ3GlB3fTwcT7pB6eOFOleeiMY50MwFgVMTkTXSDfJnxkRZm+ZccW+90YBa3ycAXfIRODlJtOdVaEh6ff8TYxG4OYq7jrb9VpXEjpmL7nJunzqVGjS5hCkrh13je2QCKsqf4n67IgROToLf2wk4tnU9dCo1rkW5sHamwpswZVnXaMB0sm8qmjXG5FpkDeR+TNYFfabapzxBVp81LNEF1cfyYuI+lrFdjfrTnzA5A14nfV6d8ixBUHgJWw/C69tPn8L0QvVZde8ZPNW1Ycep3MZZWrhsimfHS/tZXQyF+q269wwcu5M1NTuiL3cOcgUCoxLZHqpTqdk7tdNJQVhEl3zivv2GFqkbrHEvts9V2mbiVngwbj989k/G6EZt0fDLOCiCAtD7Mvme9LlfC7zrHcG53gn7CT5HjN2/beBT7ttre/jgNna+VmQ6IjsOJO+SnS0qdbeXhbaAd6IzALAEYzqVGk3ezcWBgmR85BPKyqkktvoJeqMB1XpkQm80YEcTFevvzKcrRe/carvIfS6aIHZbpL9v/dwEeqMBF2bFsHIx9rAywJ+bg3AfBYAHPtav1DqVGsNqEP3emGn9XqFTqbkyJo2U97g1ZLmUWun4LxMsFbIX9vPfxEcffYTvvvsOkydPxuzZs/+0/ePHj6HVavHgwQNs3rwZw4YNw7Bhw/DTTz9h6NChmDt3Lq5fv/6n/Qjxr/5H7M0334RcLseQIUMQGxuL3NxcHDp0CEOHDoWDA8nm8vjxYzx+THy+HR0dRX1Q1ou2eV5b2p62kSBBggQJEiRIkCBBwr8LH3/8MRYuXIhx48Zh1apVf34BgF27diEtLQ2DBw8WnRs8eDAsFgtOnTpl58rK8a/+R6x9+/b44Ycf8PDhQ/Tq1QteXl549dVX0alTJ/Tu3RsAULNmTZY5saysTNTHkyfEokjbPK8tbU/b/F9w48YN7ictjQTsP6kjI4Hzzwo161RqBJwYC4AUVtSp1Li3oREAoF+1RyjVkyD5kPOkSKWpCwlq1anUaJU0DOa0TGSVP2LHdCo1EhcTa1HNHQlosSxaZMWttptYjlRL4zj2SdiHLVLCdiCrNykgGTjJaiG1vVa1NA6mzGzojQZsyj2F2/sJ/Zs6ZiWUbiQ40vnnRFYgkSI7jBSFlYU0E1n7lzU8C51KjT9WrGbtVwb440nvMOTvaorcuVoShF9RgW7Dx7E2eqMBF5/WJAyBkxPKu5MikU6/JIoSCgjH0xsNcB9wGf7Hx3H6UAT6sbaykGbcOPZ0pggKgO4qWZ8p78TA/OABbszUsmsAIGM7SROtqEcY0kINYfp6Xy7GDJccVqi14uwlzhJN+zj7yUrUj4nD1/5BAAB5yyCYi+5ycsnaNBdZwpdlW9Mu61RqLj3vjbdJILNhdgzcT5LUxXV2XWBBz0LI4i8wuWgSgrKKcmYldl0ZL2KFBnpEIGDaGVaY2TCbWKpdV/IB8zqVGk91baD08SK6rMQySz/rjQZ8mEnk0KnUyF5IGNIs3XrI/zgPyGQsUYn85HmEzI8S9XdvjIaNQxOg1F0bz41BcSua3EvzzVuI+2oVHteTM7mvtt3KzYMG6uuNJFkBAJZEgPZZYbag4uwl7t4JQQvWcoH5z5JaGGfxllhLSQl6tdbZ7Yve89K+Ycj8XMOda7XQWuyVBtvX+DEB19pt5XSgNxrwYHgEvr7UBakbyZ5EU+YHJDmyttenOdp9NvRGA0sMUPgW0aOckFeMhaKytnF8ZPf6xmcd2FxoIiJbJLR0gM+hiSipqAK90cBS5ttjFKleC/Y0Q94TFzxsfwd7+nzDsR22zOHz4PNBPJQe7laW0SZBit5oQKlnOVLHrmRMRP5sLfJ3W/eWsg6FJLD/j/OcDMK1+LSWBZYnT6A3GnB4//ccC0CTtQBA1qca7v0BAG9sJXHQ6R03IfU1awFu3yMT7M6TFjvWqdTMMyJ9ayvWjrJWFU/5rxy3p1rXWcCMM5Ur7RmESXRo4gvPwRfJeyDYGkogXNs0oc83YT/AlJ3L6UGmVHL3ep5vCLcG9EYDqu6xemNYnlgZyCr6syJdtOpvfU5lIc1EZQoA67NJYfJuwPWjz0/G4/7hbA8V4mjzGkhdGca9Wy+8F4OqaVWQ+ZkG2/JOi67xbHiXtRWWJIk99hP+KOaTacxfNoa7lp5LaU2Y5forxO9Hoa6bLY8WjW9OJYXjhYmc6HWKxsTToSLpIrLDxPWbypt6oLc7WZu0XAydiz3PAgDoMGWyiPECSLIjW/juJWxn/b7X2J4hZI4pDj52Eh0TQuH6rGj46zHIma/lzil9vNDwqzirLDIZe3dkLdbg9QnWVOmK2rVg0bR47lgvC8yQv7Cf/wY+/vhjzJ8/H6+99hrWrVv3l8tSUY84s9ksOmd6VtLBJCjt8Ffwr/5HDCD/gebn5+P8+fP4/fffYTQasWrVKuTn50OpVMLf35+llLTnUkiPUVdEFxcXODs7221bVlaGO3fu2HVblCBBggQJEiRIkCBBwsuLTz75BPPnz8fo0aOxYcMGURp6ihs3buDatWucF1zTpk0BAJs3bxa1p8dCQ0P/I3n+9QWd7aGwsBCNGjVChw4dcPToUTx69Aj16tVD27ZtcezYMa7tggULMHfuXCQkJCA8nFii27Vrh/Pnz+Pu3buci+Iff/yBV155BZ9++inee++9v0VWWhyvONUXNWvIRdakAwXJ6O0eIvL7toWtdftWtBbn58Rw7Qve08LsBHjO561aa3NPIbO8Jsb9OpGzmMlaNUPLDZdhaAXO+mRrLdap1KxQL/2c/4EWHov5NNv2rFg6lRqOJ91Q1qGQnZuQmoX1gT7cGMJ52JOlxh/18LD9HbvyAcCA9G4oeYUwNzvz4zHEQ5y4BQBK+4XZLbYa/l4Uam+NZ/cDAPpcKcK02nmsne190RsN6OHZhit8aW+cypgzAEhbHs5ZitO+C0fmgNVce7mTE7N8dx47EQ5HrJbaJmuj8dT7CTK7bRCNQYvCCuF8sgFKO9yEIsAX5jRrzJi8eRPk9K2DRovsFyOlc8hYqkH6yJWisej9AYDSvmFw/jnR7n2khVdnZ6Sgo7MFAVujkDZ6JTpOmMQV8F2ecxpvtn4Vmwy/YJxmCA4mHqxUhwDw9FcvkT8/hemoJ24d9mBFainStrRGwJhzdq+hULqrcDApVjQPWqj67ngN6mywz8oAwKPB4ag7PQffeO+Cj0N1bo23mRfFsW62zw9t+3BYBGr8QNLX92rXD6bMbJi6hODY1vWIDO7C4gn1RgPW3Fdhd1B9kRz2+i18Uwu3ZbxOjHubQtX/CvRGA9q+MQXVf7KuzXHXc7CxsRfk6qYsVTkAVtxU0aA+zDdvceMBQGzBOUS6t8b8zGTM8w3hxkv7JgIBb/DpvW3vM10zlcGWLba3fwkL1KZvbQX/0efZufsjI1BrG9Fvk1Oj4TXkIp68GoaTq9cgsawcYY4OIt1RlPUMheLtm1B2zWXH+lwpwv6mdbl2eqPhLxWofd5e4ZFQHes9rbFuTeNGodGgS5BXrQqLHXd6pVsDZE3yw5UoUjZCEegHc2oGO+9yug6K296tVGcUiqAArhQDANyarsX5D2JEjIVOpRYV++18sQTv1U0juh4VQWLXnvVR/zvrO4SOKXN0xOEssu6mF4QjLbQMWUs08JkdL3pX/BW9Cc9/mGnAjG+iYel4D6r+VyB3ckLquiD4jzpv9xn5s36fNx59vk1HPfGJ7z7GBAvbmCssiHRvLbpeUa8uYlOOQadSY3nOaczwasvJUzRBg3FvHxCtMyFKBoYTL5iwFqK4bnvy6lRqbMo9hbGe7UTnAPH73Z6ObNdC/u5m8Bh4mWv3cGgE7vvKmXeK3mhAt+HjREXULe1bcYwwvT53rhaen1j3rZuva6HaehXm4mJUaFtCFncBcicnZL/fGlcnx3B9Zm5Xw3cEkVFRsybQsD5ij+9C79SeOBB4iM3t8GNHfO0fxMYs3BcEt35XYenQCg6XcmAuulvpWtybn4j+HmFM5h59R6Mi6SKUHu5o8vMNGFqX/SsKOr9+qi8cX0BB57JH5fi23d+njxUrVmD69Onw9PTEggULRP+ENWjQAN26dQMAjB07Fps3b8bx48fRsWNHAIQJ02q1SExMRPv27TFgwAAAwJ49e/DHH39g8ODB2Llz538k0786a6I9WCwWvP766zCbzSxzSfXq1fHqq69iz549uHDhAlq2JIHIjx49wrp16xAQEICwMKubyfDhw3H69GmsWbMGM2bMYMeXLVsGpVKJoUOHvthJSZAgQYIECRIkSJAg4f8MmvU8NzcXr732muh8hw4d2D9i9qBQKHD06FEsWbIEe/bswXvvvQeZTIaAgAB89tlnmDlz5n8s07+aEXv06BHCwsLQv39/+Pj44P79+9ixYweSk5OxaNEifPDBB6xteno6wsLC4ODggLfeegs1a9bE2rVrcfHiRRw8eBA6nY61ffr0KbRaLS5cuIDXX38dQUFBiI2Nxd69ezFnzhwsWLDgb5sDtS50RF8oZcS6kLYiHAHTrJZmc8fWoBmoLO3UkJ8isU2HMhOea6kESCHftDErEdm0A67PDYL/zIRK29qDuVNrHN1mZVOoRYki64dg+AxL4WQAiBXo7jgNkhattGsZy5+thdfKyzDfuw+90QDfPVPQvEUOy5z25NUwVEu9yxUg5az1b2jh9k0cMj/XwHeW2Bqe84kGNVoXoU5vawaip7o2OL5xHUZld8T33icQ2bQDzPfuY39BEvq4h0JxXAVzJ+Of6ubm61qojt5B7NGdrJ2pSwiUx5LtWgKFxxQBvog9uUfURtnQDaYbhehzpQj7bqgh75LHmAIhjLO0rKAvQLKIPWhSG6eWr7arZ/q55dJo1EspYxnKhMjYrobfMyugra4rYxiHZHbB/XZF0BsN8Dk4CYGTkirVm95oQKtF0ai/Ig5LsxPwrncEVAk1YIx4KGpHx+zpG8HiMZ5nXW2yNhq+3xfa1amtzJWxFgCYRdOe7LR95nY10jpuss98XuuFis4FdmV9HgMrbEfZH73RgKBV0bg05TvR/c+dq2WFiFsviILrSp4xA4DsBRr4fJKMivKnUNSsCfODB1wfjifdUDqnIX79kbcwl/UMxYn1a/8Sm1A0UYO66+KRM18Lr3lxqPa7K85f9kFW3zVMz+1SBrDMZmHnB8OlV9qf9kvRIL4mbmoe2LWm21rej5UqWFZM2/5pe+Hn0A+jUGejmD2RKZU4nHuWa982ZQDu3K+O6+23IPTDKLz9/g/Y0qsjzOlZonmU6n3we4u9PFskYAF1lx7g2KstYMrKYddY2qkBhQzF/k6ouz4est/ccbjJweeuVXuW9v+EmdEbDYzJo3uhTqVG6ppQOOc64Ep0DDRvT0XNHc9nIv/MS+J5cqd/HYHO2os4dr0xxzrrjQb07D4Mh478wPoo6xUKx4NJHHPzpHcYjqxegT7uoTDO0qJB4hMoTpyDolljmC9f5zwJnqcbhYsLXk+yxtI+b16251NXhyLr1bXcOZ1KjYI9zeA+4DL0RgNCkoeg3quplTLaf/YbIIyv2x93UX31Hbbn2pPrzmQNkj9eiVcu9oezLkt03t4clO4qmArE7zxLOzV+3bnJ7n0tiwxl2ZPt6Tf9qwj2PYOepwj9MAol7jJUK6jgvhvY9mVvjm+nX8aX/s24cyUDw/HERY6iMBMCJ1tlSl3XBnJHM/xHE8as8E0tLsyKwYp7jbC/aV1syzuNmfk9cVPzgDHBqWtDuTh3nUoNedWqcPnVEUVtizkZe7XtC1NWDjKWauD3Lv/946+yr5W9p7o0bCYxYgL83YzYy4h/NSNWpUoVtGzZEtu3b8eNGzdQtWpVhIaG4vDhw9w/VgDg7++P06dP4/3338enn36Kp0+fonXr1jh8+DC6du0q6vfo0aOYM2cOduzYgaKiIvj5+WH58uWYNm3ai5yiBAkSJEiQIEGCBAkvDSyQw/IC0ky8iDH+afyrGbH/BdhjxIRQ1K2D2Iu/sdiE5+HeGA1qbyGW3siW3UTZ7LJ/DMb19lvs+u0LIWvVDBXneb9tCuHnBVlJ+MgnlOtL2J+w7frcUxgV9Ra+/G4FPvAJgzy4CSwp1wAAdw8EcsyV7ZgZX0bA7+3KmTxbn3AAaJ4sx6UQC/u8OCsRH/iIa7oIQeeh/jQaDb4Vx7cBQPFrGjg+sKDqXmJtvfm6FqveXI55viGc9RsAiztJ/zoCFXWesvo2tvOUBzfBocNWC3C1311RNsYZpuxcrn37lCdcZjChfEIZ7WFt7imMiXqLWJbtzIsidVUYAqcmQuZQBYdzSBxHi2XRkGmLK41f0RsN6PHqSFQk218zAKnR5vSLNS5MUbMmMt5tBu+PKo/toX357ZwK/zcTIAtphvS3HeA3wvCn87YnQ8h5C5JbiTd1Wwtl/mwtPJbEQenhjkV/7MF7PuF2+wxIckRaKMmuGpNzCn7PYryYtdnXGwdP7QMA5JseYYIgtkJvNKBHn1EsG6IQirp1EP5bIfav6IDkj+1bjXtc64WcE15s3f+ZFR8gdc/utitDwGvnEJNzCtFe7UQsE40hozGeeqMBvnuncAw9Ha/djCks0yrN5knHVnq4w5TPJzzalncaIxu1FeldCNe42ritvWdXfgoas2Urj+2+Q+NPbkdp4Jr8CPp9W7m4O+HzpDcaENmsE8zFxZwuhbqpjLGwB3ptp3ETWXY9erxXeG+Y8vJF7DgApK5vg8AJ1vbpyyLg/+az+L/WOoTp8xDXsopovN6Xi3GgmQsAoPFZB5zcGoqyOoDXPLI+br6uZXsaAGR+poHve0QPq3JOsXp+FGVHvFF1ugLm1AwWbxj4+xikvkLeH6bOITj2/XoEborCyqFrMOnUa3BwMsF7aMpzdcOe/2feB8JjWYs1SB1bOUvyPOiNBvjETkTH5tex0fMPrr2yoRsOJh/+S30A5H5XaFsiI0oO/9HnoXRrgOtfquA3krArqWtDkdWLZ46FTOaY63nY0rjRn46VWl6CGV5tkbGtFfxGnmfXPW++ERfKkdDSgcVq0r5afBWNs299g/YfvA6XzWKGhs7refLoVGoWb1kZE22LO1M0qLdavIebuoTAcc4NVJGbUbNKKW5qHoja/JV1IsTAq7cwuZYRuqu9oQ86gAjDIFh2usJlkzir7vOe16i0dPSr9kjUf/5sLUzqR/AeSjx8FmQlieI/7e0NAJAzX4t6F82otuuM3b3I9jpbfQr7++n6ObgEZr60DBD9zjr9VP8Xxoh9127vS6uPvwP/akZMggQJEiRIkCBBggQJLw7mChnM/+Viy3Sc/3X873N+EiRIkCBBggQJEiRIkPCSQXJN/IchTF//6WM1/JxuYWeQG9emMtcAexS4PdAAaMula6JzA6/ewu6g+tz1woQQtu523onOrPCi3mhAr5AesDwqgeXhQ+bSmPZdOPprkphroN5oQGSr7tZ+jnkAXfLZuS6jJ0B5LBkAIGvTHBVnL0HZyAMDnqVhn1CrkI0vnK//jqnMZREAul56iKPNa7DPNEBX1280l563MldKei7i3anM9WlCahaGVL/P2tm64VE0T5bjy4bnuL5ydrawW8TSdh5hs6PgsjneqttjHvjMdzfUz0onCPvMn63F5Rkx7HOv0EiYCoxc/0L3OgBYlh2HN71Jkcm0b8NRM12BBt8St7OmMdFotDBOdD0A3ButQe2tvNtJyWFfVOuRyR2zt/ZUCTWYi5DC1RXXlnois/t60XxssT73lMiF789caW11ejtKA9eV8cj6VAOf9+2nf7d3HU2XTdvQJC5p30Qgc/CqSl3SbGWM7DiQSwNOofTxgikrB6ajnlB2zUV59zZwOHKWuavlDvXExZnWdMq2LsIAuHT0ACk3sC9Ab9fNxZ6u7IEmxhDOhZO7kQdMefnokFKKk8HOdvsYeS0fG97uz7m+6lRqbu0JMTfzHBo7lKLnvHdQZwNxLRqV3RHuzvdgaMW3XZCVhPnt+4lcHYWun3/mLkhdHmnih+wFGs4ttnisBm2mnUdGqLVgb2X90eRJt6ZpUX8FWS89A9rCUlJCGsgVgMXMuUz/lXvS+WIJfmtR7bljA0DqyjAERlnTvz9vTQJ8wiUqu/B87sdaeH7Mu3YPvHoLq77py5UFsJ0DTRmftjwcqoDbOBVcecIcW9l6Ro5gJQ5ov6efWDAnajKM458yF0e6N9L+LB1aQX7Smkpe1qoZDh/c9tz7rzcaELglSrQXUAhT5gvP0zIDNCGU7d6huTAQNXvyz/m0tFSsCAgk77yuQ2BxdGDPcO48LTznxyFjuxrpdpL+pK5vgx2dViPCSVHp/XzaIxTHN6xl90B36QH0zXl3LaVbA5gKb9qdKy1LkromFFm9/zwxT/YiDbw/tK83e2569hJMAeK9tTLojQb07DEMjz1rov9nR/CmS7ZozB4+4agoK7MrE0BS+wv3SNqOyggAGV9EwP/9s6gwmazuss/KMOR9qEWjRXEsIZFw3QtdjXtevodDzWojb1dzNBpkdTHPnavFktFb8O7e0UgbtZIlBbNF5ucapI0Su+KaKsr/Fck6pvw+8IW5Jq5+ZfdLq4+/AxIjJkGCBAkSJEiQIEGCBAkvGBIj9g+jsmQdChcXmIuLGbMghD2rFLuudi2Y791n1tXnWQnZ8Yhg6PdsYX2vzz0FD2V1AICPfgICxyWzawCwAoSUMbCH+ZnJ+CirH+RdrAWPLcca4degX/6Slb4y6xsthCws9ilsI0TI/Cgkz1vJPtsb1zb9/Y23tUh5O0ZkMbUoZXDZJA5KLpqkgdvIbJR3vMHJbGuV0xsN6DhxEu5MfIwqShPOtfmRtU37LhytW2Zgl99R6FRqVlBWyIgAYGmRqcW9Mp3deFuLhl9adUMLN9vq9NGQCJxetkqkF1ooU280sMQlf5as4K98BgCfnycza769tXmgIBkOMqtFmGtjU3i0ZBBJXbx9zhesoKnteBHvTkXC0lUArPdfmGSjMjkqO9by82jCsgrOFbyvxaXX+WP2Cm8L++ml7YODcfvtztPWelv8mgYum+O5+5W9UIPlw9bhS/9mdudtm6zAdKNQNCdh8hLRPiJgwgvf0sLkBHgs4S3aNEGH764pCHidT+YBAHJ1UxyK3c7JozcaEPZBFHuWbFkWmvq6rGcoK+D99FcvHG/2M1oviMK5j4gF+c9KAgiRtiIcTealAy61RMkxAHDM5ITcdsh72x+y08/kighGcMxFLHU7jy5X+uBYU/v3jOqLJtv4M8u/7fUUpXofFFxtgDoXZEhatFLE+uuNBqy/78a8JmzLi9A2FM97Jv8Mwvb0XtpeLyzebXxHC889Rpgys1Htd1fs8f8VvTSvwpSTx8ll77kKnRPFCp/TcZW+3jBlZtuX6dleYPvc0PTkwvaRXQaLCk4DwKyMi6zsgb2U68J+myeMJHvvc3Rke5zOVVG3DsxFdwEAnmeqITe8hLWjz7Y90GeAJpWpdJ9ybwV9wXnRuZHX8rGtiYeo3+HXjNjRRMUds51/haYlboVWg+F9sq/1vHwP+hEaWC5cJWMOGAMkWMvWKN0a4OA5/Z8y03qjAeHvRaH2VivDmL1QA89fn+DXHRsBAMuLvXCgmQvkwU1Q6lEDy1Z8xxImUW8CCup1Yo+d+yvr/eYMLRosj0P61xHwfyuBXUP3dABouTQaF96Nsa97lRqWY43Y9xylhzsqHjxE7LXfyTlB0Wnq7UG/wwj7ED6z/5b09ZNPDkaVF8CIPX1UjjUdfnppZAErQwABAABJREFU9fF3QGLEJEiQIEGCBAkSJEiQIOEFQ/pH7CWC3mgAIoIBAOZiUkBwqTtJu9t0RTQAYumZlpZq17qoNxqYL/KW7d2gNxrg+9NUvv9nv5vGREPWpjlKBoYzyxbta4JnO+J/rlIjS7eeG0unUqMiiVigKBsmVzeF3miA3miAonYtAMDHQ8dybJjeaIC8Sx569hwOvdGAu+M0xBJqMHPWIL3RgLyP+JiSPlcEMTHPLEnU35xeU9ovDC2XRjMZAaDe6nj2ufGGKLGuAfgvuMSN3/DLOHZ96iqS7r5CLmMpcm3R4Eg+dgfs5/SnNxoYGyZ3cmLnHGOTcCliGx6kuXBtK5zNeNj+DuuTFqEs6FoLpf2sKffdB1xG6qow6POTMTsjhZ3TGw1YnJXI+kx5O4YdV7qrEDj+LORVq6LN3ChuDrZsmN5owO78BMaG6VRqGN63xqM96W2V5XkWT9vzQstkYFQinurasDZ03dx8XYu74zVofmqciHFQ1KtL2u3bikeDw1m/FXIZ6q6NR6BDNbvj61Rq3A+QI+LdqdCp1Ejb0hp6owHfufPsDR3v7jgrw9Lsu2jWV/qyCMhaEebpwqwYtJ82BXMzz7Hz7p/GiayaAdPPQKdSI/NTDdqnWOOO6Him7Fx2Td6u5pheEM6dDzo9Go+GREBvNGDJ3DUAgOo7rRbr7SO/wbKer4rm3TNyhDjm4EYhN8/ZGeR5T24lZ/rXqUhcIUXBcH/MyrgIyBWo2v0mPJbEIX1ZBNf3gWZkHQvZMKEOLIYr7D4I74uQWabndSo1cn9qAf+ZCVD4++BxA2tC3yrdSFp815XxbHzKhlk6WAPK0r9vhQpNSwAkhXveh2Q+AdPOwHynCOa0TLvMUZXbpUyW9Z6nIDtNdJKxrRXutKyGpW6EbaCWeHpdy8+i2eeKhvUAgKWeX3HPfvpy17jado8DwIeZBjgurA3/NxNQZyOZa+DC67g3WoPJqZnI3K5Gr3b9rDHEcoWIDSuaqEHzb6PReGMU2r4xhZO37RtTIFMSvSpcXLixFa6urK3eaIDxXS27b7nztIz1soXwuOqLOFSsfwoA2OP/KwDAbORjleztG8uLvRgbBljXqSkzW7Tnsj1j31YAwLjc9tx5IRtG2zfceEP0jgGALs5WrwL/mQnokFLKPQO0bc+AtsCZWvamz/WXur4N+zvl6RM2D3PRXXY8YVdL7johG0Z1T9tSRviJxQE45iHaY+j8YOPURNv8ENEMsmdxxsLrVmW+AkWAL3dNxrBV7O/sBRrI4i/Aqcct6FRqZHwRgTddsiG/edfK4OzZAoW/D0ZeI7HepsKb8PuRfNfQXe3NPZcA0CGFPGMRs6ayuGOqH+858ZCfPM/Wx+ZlkciZr4Ul5RocY5MYGwZA9AyWl5H17PvreNZnZeww/Sw81mA58Rzxf8u6tz4eEM729G5DxsLta+v+Tn9MnUPwWVEAALDvOcHnZDDlF8D84AFaf0K+b1A2LP37Vpjc8lXojQY470uEd6IzFHXrcLK1fWMKUstLIG8eiH8DzJC9sJ//dUj/iEmQIEGCBAkSJEiQIEHCC4b0j9jLhoQUyKtWZR9HNmoLvdGARouIVcb5ZAP0qfYYzb+NFll7hBg5/BixyA+2WrqopUinUuNKdAxW7F6FarvP4P6oCAA8Y0b/Pv3EAlsI/ZozvojgLN+UkatI4rMF0rEtF65Cp1Jj1dxvAABJakGGqIhg6FRqNFoQh56NiaWzrFeoyMoplIH27bwvEW5fx0EW2oId8zxTDYVvaJH3kRbec4gV7s4vgcjYrkaPa72IPA8fivrN+JLoI3AqYd+Km5AMgkJLm/FdLbGM5eSh6fHJ7Pjb6Zc5y6XlyRPOkqZTqeH3NvFFlzdvQljHnus4HdFrVUvjUG9mFrM66o0GBE4lzNcSv2D8HkOYksAtUQhxrIIOKaWcXvx+GwdTgRHB52SwPH6MuuuIlf3GviBuPAr/7VMx0COCndMbDYhs0Zl9rvFOHifj7al8jA4du+yIt+hY2opwNFkXhazFGhQ1sxak1anU6KXtgwbfxqHOhnhcb09iFfPmaK3M5DeebH2d/mY19EYDXONqo/pOq09/9kKNKCagrFcork6OQa1tCbB0aAX/1Rai/51T7T47dTbGw/iOFlvzTsNjsZUZHdf5BIvV63b1VfyxYjU+8eUzg92aZpXX1CWE9Z82ZiX2rujE2u3NJ0Wt07+26rnRoEtImxaIW9O1TGeegy8yBuzdLyZDbzSgYI81HizEsQoe+5PngjK3mZ9qRMyFrQUYAJb4BXP6p2wczbKZ+akGbsvi4KooASxmlhkuY4h1L1mWbY1B/CzrDNefEPRc2GwrI603GqBoarX6Kt1JvIrnYLJnmNOzUDutFEHJ4jKXwrmkfRcO+cnz7HhG5404snszshZrcL1NOZ4ElImuEYLKWnH+sl2mIb3TRrvFammfbt9YdWAxXGHsEWBlZmz7FRarps+YIohY1hf5qmF2VnBjmIuLUSvjMdYE+sLvy3IWM3X3QCBCkstF+q67Lh7un8Zh1oC9qP7TGW6ep79ZjQqTCQDxuLC0s15rvn2btdWp1Lj4FmHCe/pGwHN+HDsnr1qV7bG280tdEwpzJyPHfsmdrR4BtkhdR5jxA81cuH5kSiUK3xBn2hTqjfZH46dv/dyEnc9aYt2XFIF+WO95ihtfuD8LmaGTwc7wWBIHRb26XHtLSQlmj/+RXeOX5ITcj7Wsr8gmrwAA6sZb42WCqzhhW95pACRDKMXFt2Igr2HN7AuIWXx6jF6fpFZAH3SA1/UqqzcE1bdwX1e4usJ87z7LLijEHy1/hDkjRzQ2Bc0mWisyncz3nQToVGoYB/ox3fkemYCrs+tyMWgZQ1cReYIOkOdSrmD9f1DvOgDgVlgFN6491F0bD695cXg9/Rq3fzU+6yCS13808d4IeI3oOH82eS8/HkD2tI4TJtmdp/C7jq0eq+4hz82qnFOQnzLA1CWEu1anUkP5WzKLwafXp7SuwJPeYdiZH48618vIORlhc/xHnYe5uJj1kR1WCnPRXUR2Gczmffqb1Zjh1RaWS6mV6uZlgqUCsFTIXsDPPz3T/z6kf8QkSJAgQYIECRIkSJAg4QVD+kfsZUFIUytr9Pgxd0qnUmN+JslcePV3X+hUajxxtYisjMLP1AIltP6lbSZWfMbMOFSHwtUVtb5PYNY4U+cQrp9PfFtDp1LD4URDAICisT/rI+yDKPi9k8BZt/I/IJbCUIMZebuas7a2+MDHGm9kfOeZ9TMhBTk7ibX10PU/kLalNatLFNl1COsrdU0ofA5NJLo61oizSh3+eSvrt6BPNbh9E4crUdY4p+LMOvAbYUBF5wLOCiZE+vBV3GefD+JRe2s8lF7WuA/VUmIlTl0dCv9RVqt896rleDgsgrueWaSfsYvUYkvrutn6/gvlSY0NwK6bbTgW8tFhX9ZuaXYCfN4nTNfJYGcuJtB/1HncmaxBSusKlPYNY/Nt2O8q+7tC09Jq6X3H6icPkDgpc9FdKGrWJOzfW8Sn/WmPUBKz86zGUEVbNTqPmQAAUDQNhGP3bPS8fI/ry++Hp7g2cSV8PohHw68Ic0nHPRi3H7agtc3Svg2H38jz3L3SqdS4rb0HvdHA4hK858SL7qPjwSToVGp4Jzrj1x0bWeyP/5sJduMIHg2JgOqLOJhtYi7m1LvG2ihnVidxTqfrIOy81ZpJ60kVTdAgu7cDu1cBJ8Yied5Kdn1VeRXoVGouJgEAkHgR9b+LYzGFshDCfulUapYpkGZtS/s2HPNvN2UxJFl91kCnUsP3/XgoG/FZ0nQqNZotJ7FMChcX5M2xMg2pa0KhNxpYBsmSgcSKnDZmJRQ1a2Lyh2+ytjX+qMfpjNYGuzFTy2I4aHyWUK/v+YQjdX0bJC7hs5ear1itvqYCI7f+TUc9ceSnTTj+PdkjZA5VWH/BX0azdgHTeSaO/vh8QNZlZvf1+DDTgObfWK9JjSF9PjjkB5lDFZTqfZC6vg2bW/fBY7k+s5ZoGCsMAJefltrdd0MNJN6Iskf2YM/jQKdSw3w1jX3OGiDOYpnTqyp5VpOt9ajq9E7F4gbEe4LGbtJ+l2XHYd2CfqJx19xXofg1K1skP2WA0tcbeqMBD4ZHiNoDhNFX1KsLWRuyl1seP0ZF0kXcfF3LZPwhLw7LsuPg7kniYul60xsNMD94AGVDa11M4TsocOJZTof0eIXJhAvvxTDvArmTE25Fa5G6KozFPKV9E8FdV7/vNfbM+cy2spjm1AzR/vpgeISVfXLgWdcb+4JENagAYGSNIjZWRugTXJ0cw+KgzA9IDb6qgwuh87Cy4XseEaazrRP/NYt6YVC5bFkaKtvIRtZMsDqVGgHfR7G2WX3WcPshANTabM0oZ759W7TOKHq7hwAWM/eup7HdtlAl1GB91F9hZUYDxiajZgp5Lu+N0SB7oYaTXW80QJ+fTLwhvgtn49B40jE5r6DgPS3uTCbXdb5YQrIPqpuysXtVfYJlxd4stvl6m3JOV9RDQHh/PZbEMVZrRFYnOP1G6tEFrY5m+phzi3zHmJ2RwrFcts91dK+J0BsNrMbpgYLk537nKu0XhuoXb2CIh8Yau1nBM4A0BpHKYr6axnkU/JtgqZC/sJ//dfzvz1CCBAkSJEiQIEGCBAkSXjJI/4hJkCBBggQJEiRIkCBBwguGVND5H0ZlBZ3tucwFJSuR+qA+YhvHAuBp8bsHAlGnNx/keStai/oxvKuMorE/Yo/vgk6lxqqcU/BxqM76UXp7ImeYB2Imx2CRLz82QNLaXp+wko2tSqiBm+PcEHvsJ06Wogka1P/jFsypGaI+Hg6NQI0fE5A3R4vqeRVw2RyPO5M1cD3/CId/3srcDJrGRKN9n/PIDisV9UGLJdu6dbSZG4W666yFIu25ZQBgBTaF19MCji0Th8Ot31XWp73rje9qUbWwAmc+W2k3CB0AMr6IYK5+MkdHlB9sAPnHdfDrzk0ilxSABIB3qXUFA6s/4MYUymDv73YpA1CtR6Zo/AptSyhvPYA5PQuy39xxuMnBSmUVwuFEQxwIPIQmp0bDawifcMVWZuFnmUMVVJQ/xZCrhdgZ5Aaljxcyx7jDc35cpfdD+Hl2Rgo6Oltwy1yC0Y344sy2sPdsVHa+8A0tShpZ2L0INZhJ8LugDS2g/TzkfahFo0WVu509T7ZpaanoU+0xdCo1e05t126HKZPh9Atf5DNtRTgy+6+2q6//ZHzhsdRVYSwJjblja8zfsA6LtT1x8Jwevr+OR2Y3cXFgnUqNjC8j4Pd2AsZcz2NuWt6JztzzuT73FHrEzIL7p+SeH3zshG/9m8Ae9EYDOo+ZAIejySJdVPbsCts9HBqB+75yLBm/CTP3j4Hf2wlwPOmGsg6F3Di0YKu98e3p0lZ/k1MzsSbQlytcTJE7Tyta37bzqKxfoQxNV0TbXVt6owG+u6cgYMYZTt6M7Wr4jbC66spr1IDrERluah5w/TaLH4nLmm1/+tzLnZxQ0cwPh3/ZhubfRouKkwOkUO2rRwzY3ycM5vQs7hwtPPy8+dubW4++o1lSp3HXczCshjWZgSLQD7EndtvdK58HvdGAXiE9cLejN6rdeArFiXPcucBNUcx1FSDP9Q+TvsIneb2xy+8ofPQTEDguWbQ+pqWlYkVA4F+a25/Jp1OpkbFUA9fzFai5PeFP2wvlEB5vvD6KJda4MVOLhl+RNXR7qoa5jctCWzAd24YIcC7wq8LQ4A85am1LYMW4dSo1V0xaeI1rXG0u8QwigoGEFLvrvmePYbCkXIPzyQYo7XCzUp3YmzM9pwjwhTlN/J4D+ILs/+l6+b9AbzQguewpF15he16nUsP4rhaPGj9FVuS6P91nqP5q/FEPG+ofgUtg5ktbwJh+Zx19fDiqVK/y5xf8/8TTR0+xtdOOl1YffwckRkyCBAkSJEiQIEGCBAkSXjCkf8ReIqSua1OpBQwAvnRLhLmTEToVSZlb2jcMX2UTy1dS651cMDgA1I+JY8k1AMJUxR7fxdpsuhfO9W/KzoX7p3F4heQLQM58LVI3tMGdKRqkfReOp24m6FRqdB/4Gm5N18IY8RCxx37C1aeP2ZgHCpJRd308fLeRlOvNk63B5wBQ40diAVw6dgMSl5AkBskfr2RJNu5MIcG7jRbGITusFDJHR6SuDkXJswQVeqMBeWsbcDqiySPKXGQsQQg9r1OpkfehFkpfb3Y8f731esUzC8ul10lCD+ddtaA3GqBo7A+dSo3U8hJ2XdoKoi/V0jjU3hqPyKYdOP0J07kLk5gczjoDZddcxoYJoWhQH4qaNXFyT2usCfRF4z/GPDcg2HZup4L3sBS5QovnkV2bmeX6cJODousfHPLD/ZHiAP2yOQ2gU6lxrd1WpK4O5fqcd7sZlxyFC7AvJ4Vcdwa5QW80wJSVA9/1OezatM2tEbTGGsRP0fFSPwBADfkTRDZ5BaMbtYXSqxFuzNSydrQAtHDutgHOwj6F+nL7Jg7pI0jyFUWgH5LUClEbmgJZCHk1a2riR4PD0WhRHG6+roVfkpOorRBDMruIjhnLrQW8nx6rJxpfp1IzNox+1hsNCJh2hrFowmtooLft807bPBgRgac9SLH1BvE1oVOp2Wca5A8AihPnMCt1EEyFN6FTqdH4q1LRGLQwKU1gs13XlrWhbBhNFT3k3XdQ3uoRk6VX1SeIyTnF6YIG2etUajgcTbarC73RgF5t+1qD/m3W263pWtT4MQE18ixYERAIv7fJnlLWoVCkk6e1IUL2IlKKwufgJE4u279TV4VhTaAvnvYIZenp9UYDLO1JkgZhWnfbeQDAW+lXRWvF9l7pVGqODbNtT9kwnUqNlkvJ8+M3wgBF7VpMP5aHDxkbBgDtp0+BTqWGx8DLiOw0SKwAwTh6owGWJ09QkUwSY1A2TCjHvTEamPILsLepK65+UJfro+5pF+T2JHs8La5MS0/YzqXxWQdWtkCnUnMlTjY29uLWXuyJ3QhaEw2lhzs7Zu7Il4wASLKkjC8jUDTBmizCdKMQ8V+uQsZo/uuNTqXGwkHbAQDaC2S/arQ4Hu96R2CX31H0jBzBxrJN3rBk3phKn3v6XqDX0mRK9LPwb8bCj1yJmtsTuPUtBH2X6FRqVjiY4sEhkkb++gRrEqCGX8WxvykbpmjWmGPD6JzYvCKCsTb3FG68rUXg1ETU2kaeo5JXbrOxhtc6y+SgMM7SMjaMvj8pGyacKx3zQZPaAMDYMLoGFmclivq2Rbeh4wAA5rRMu/sdADgcscpY3jVE1B/b75oGctfSshnCNulbWzHZC94niTWevEoSXdHkLDqVWsSGCWWj46uWxqFqRhVOnpuvayFvGSSeaEIKAOBh+zvoH9hCfP4lhLlC9sJ+/tch/SMmQYIECRIkSJAgQYIECS8YUozYPwxhjNjDsa8gcYk17qjksC+L/7H1f96Wd5oVexYet7RT4/GcB6j+7LoJqVkYUv0+eqf2xIHAQ2hxZgRU/a9wlpunPUJR5XASJ9f8zGTM8w3B/ZERuNnZhMZTDCjr2grHN6xF++lT0HK2Ne21EOXd2yC7rwIB06yMBR3r9v7GcO1D0uqnfxUB/5lW1qgyH+rcuVp4fhLHHZM5OrJClSOv5WNbEw+U9guD875EUR+92vaFKSsHpX3D4Pwzf17YDgCyyh8hutdEllYeAGqdqov77azpjG/M1KL/ayeR0NKByVPevQ0cb5Zg4b7NmNOsIyyPH9udl61feEzOKfg5VEePPqNQcfaSXdk6pJTiZLCzXd3YHhPGmjwcFoEaPySI1ocQMqUSN6aHwW1ZHKdTe7KX9QplpQSydrSEz/ALduWlmJ2RwhUOtoXeaMCWB/W4gqDCudnGH9nKxcXMbGuF9E4bnxtncPlpKWZ62y9A7ZfkhKxJvnaLIetUaiiaNYb58nVRv8+bGwD0jByBQ7HbyZoNacbSj9M4NXlwE1hSrlXah4g9rVkTsdd+55gDQ1kZSx//vGvzdjVHo0GXuHPNk+VIuecOeZc81k7Z0A1pb/jA531xIeOsTzVIHbPyuXqm5+6PjGAW9htva9Hwy+fH1wljXC0dWrFCzZXNRwhFg/qIPX8EvrunIHMgiakrmqgRxYv6/TAV/jMTOLmp7PbG0RsN0LwzFTV/SGKpuCu7Vgh7jLGwPb0XAPEAqJXxlLGDyoZuMN0o5OQpfEsLt6/t6084v1zTI0zybMfOyatVg6WkxO51/wlkrZrhprYWamWX46GHEtWNZlQ/m8vkFMpC3y+Ade+kMpo7tcbRbRuYHp63xgGg+bfRcP80DiWDwlFtF3mfKBt5wJSXz9o3iK8pio2j/duCnvc5OAmBk6zvO6WHO0z5BXbb/5VYI73RgLdvtMalEAt33NJODfkpA9eP7btW+I4CSAy3+Xr6n45pK3vq6lAETkmC0tcbB0/tI/tW7VqIvXISwV9GI+XtmOc+txGGQagVmV7p80whjMPUGw3o2XM4+u74HXubugIAIi6UI6GlAztf2fuvsr/tfaZQ1KwJ32NlSAst4/SYM18L51tA3StPoDh+jnsmWnwVDdUX5NmJLTiHSHcrq0r35FU5pzDVqx0UgX64OrMuAqcmoqxXKJx/vwa3XwFjxEPR2kr/OgL+b5H3a8eJk+AYy99TnUqN4rEa1PvlOsxFd3Fruhb1vxM8wzIZyruFwOeTa8iPsHoROJxoiLLpzvjt4ucvbUwU/c467NioFxYj9kOX719affwdkBgxCRIkSJAgQYIECRIkSHjBkP4Re4ngspkvSnsqeA93flpaKjtPiz12GzoO5V1D0KPXSACkSGd1AYu2PtAHAFDe8QZ0KjVU/a8gY1sr1k/OzhachU7p7YnyriGIcCKZ5eRmIHDCWezKPoWiZg7oPHYi8iPNSAstY77xeqMBikA/AMBvm9Yhs/9q0dzuj4xgbBgAZpnudLkvmieM5NqWDLIWgKRsGGC1claUlTEL1Ziad6A3GuC8L5EVaxW2p5ZG558T0ecKYbZYLNcxD87SNdWrHSyXruHhsAgWk3a/XRHGXM9jfuMNv4pjFj+K3zatg+fabHzgE4bcN9Tc+B1SCKsjUyqhU6kx5CqxJhZN0iDaqx3m3W6GirOXKo0loYW5KR4PCK/USntlWgyLp6rxQwKnM4qsxRrWf4XJBLdlcZC3DGJsGL3G1kJJ2TAASO2wGUUTST+KZo25/iMulAOAiA3bmnea+6xTqbGtiYdo3gCxutrLlml7PYu36LQRALgi0u2nTeFid2Z6a6A3Gtj8n+qsRXxj3BOANGs8m/FdLbsOAMyXrz+XubVF5Cv9oVOpGRsGABXJl6E3GtD/ym0WpyZkw2g/uXO1nEWXxZDIFTA/eCCKpxKyYbbW7LJIa4wfZWBo4W0AuBRiwa9BvwAg67NwXxBu9SRsWOoGa1ye4jiJpaCFw4Xj6VRqdBk9AX2uFDGmHgDazkxE7lyix4ZfWuNXhL/pT58rRVzGVyEbRueT+SnPZtLC1XqjAeabt6BTqREw4wybe9118SQTGQgzpFOpkTFsFdenT+xEbj4R707F4/7hXJv4L1ZBn5+MUdkdOf3SH+eTDXBvjPWZomunxVfRXPvIVt1Zv/ReAEC91fH4bct61rZiOx9Tqzca4Pa1VX/LsknxZCHoffBUVmefH4yIELFhwrV6a7oWtsjcTnRBY3coDh/chvor4uB4MAn1VsfD6ZdEZHzjys6X9Qxlf6v6X2EFpqknAdVx/xW/imSWB1uzan6WdYZb4zRu99S31vcJZcMUDepDbzTgdhcTp+eQ5CFsDaSuInIoAnzZeZ1KzdiwWz83gaJZY5jyCzjdCP/O+DIClnZ8rKLwvMzRETqVGl82PMc/rwBM1Uix6PX33dixKoeTUOOPepx+6TsKwHPZMNa3TAa90YDX068xJi9wCslaSdkwAMhe1wg6lRqNduaK+hDun76/jkfJ8fpwPtmAOy7cgwCSQZSyYYqgAOKBc+EqptYmMizPOY1tR9tzYwjhe8S699y3WPd3nUrNxVcLPR6ozACQPrsZsga4Mj0CwL3RGnjNi0P9FXE4um2DyANk94ylrJ9I99bQGw24N4a8CyqSL0NxXIW+50msaOyJ3SyjrOPBJFxf0pSxYe1en8Jke6prA7d4IO1b8i52jE2yy8a6bIpH7MXfAICxYaxdRQUcjpxF/us+nI7KO97A7t278G+ABTJYKl7AD6QYMQkSJEiQIEGCBAkSJEiQ8DdDihH7hyGMEcv7MQQ+w1Jwd5wGNXOfIqu/EgHTz8DSTo0bM8vhPuDyc/3gU2PCEBgtjoOivvpc7EVEMDL7V0Pa6JWi9r1CI2EqMAJ4vv/26+nX0KvqE1EshE6lRur6NgiccPa5MTX2rGb24isiW3TG1c984b1LhiqH+Xo19mJfAMDldB3cj6ovisHJ/FwDU51yBE4kmZbujtfgvj+QOnYls6R1udIHyq653HXP82kHgPzZWjgWV6C0yyN4Dubrb6WtCGcxc7QGGgBkL9TAe444FkeoBwqm00nnsT8vASHfvgH3zyqPG/HZPxlZfdZwuqTxFbbxhQCpCxNeKwuhzpmY5xvC+sqdp8XVKdZMal1GT4DyWLLdMf/Mz9/SoRXShzkgMCqRO0/j0w4UJMNBpmDHhTGFALg4v/W5pzDhWTxM1g/BSH1lC5vrwKu3MLkWyS6qCPTDx/of8JFPKCdX9iINvD8kMUS9wnszS7tQrttRGriujOfWZO7HWlydTPQhjF2pLK7heUxaZe1fN4bCVKFARugTZC3RwGd2vN1rHgyPQM0dCSRrpmAbZ3P8MRjz1b9gY2Mv0bVKdxVWxu/kYoooaE24sshQ9PzsBN6rm4bug16DLO4CNwYAhM6Jwrvvb2fMu735tP4kimVyszd/2leftB6iOmAAoPTx4lgDOl97z8jz9huK9ilPMKfeNbv7FkXm5xqkjbLuCX+2tis0LSGLv4DSfmHoMv8UDhU0RYJ6F/aVVMfKAH+Rpd52Hxc+Z0HJSixreBa9Wutwr703qv90BmmbW8MlzhH1VpP16Lt3CheHS+XSvjUVLmeMMGXzLIg9fdD3grKRB6587IbACWRPtLRTw/hKVVyeLq4npqhZE+YH1pis5+nQFoVvaXHwrc+xtjgcCS0d8FTXBsc3WmssPRoSgeo7CZP/vFgp2/ptAJD7Uwu279LYar3RgDE5r2CL1+/oPug1HNm1mZOvrGcoTqxfa1/msBZA4sW/NK/K9KtwcUHBRjdcCNtR6fqpe9oF232Ok/19QxsEjj8LRdNAmK9Yaw2mfxWBjGGr4LdzKvzfTBDpncbS2aL4YADuXqvLsorS9n6/jUNG540imdXnAUMrPjbdVma6bwpxe39jnGvzI6+nZ3WxaKwmAKSuDENglPX7iTAekoNgP5M7OeG1C9exsbEX3yS0Bas7SuWjsH1PKwL9cDfUlcWs2rat7P5VBlqXk5uvoF//4+PgN/I8q/cnPG/v2dcbDWi8MQp+y9Jhvn0bDyODcebg3Jc2Jop+Zx18bAwcqv33Y8TKS57ipy5bXlp9/B2QGDEJEiRIkCBBggQJEiRIeMFQ/tMCSJAgQYIECRIkSJAg4d8BGsP1Isb5X4fEiL1E8BlGivrVHpUP5bFkBEwnricOV3PhsVgGpbsKOpUawYnDOYpbXq0aADC3RGGALWANmqZuiXqjAUhIge978Vxwbo9ngf/ULbHgfS2CVkdzMr5ysT8U9UhRz4++HMedE9L0jb8rZcd6+ms5ebjg6vN8yl/bfgDAXHQXgRPPosrhJKSuCuPONxp0CUoPd+hUashCW0DhT1ykfvD5jbklCvVRIQMCJ1pdJpMWrmRuiXTsgjhSRPTG21p2fWSTV9iY/sfHcf0W7GkGjyVxuNfUAt9Z1sKqFEIXIuqWqDcacH28tSCnvDkJWs/9qQUXTC28P0Fvp0Gfn4xmP8yo1C2RziFwaiJ0KjXC34+yBo8/c7+jiV4iuwxm19zW3sNdUzXOLREgRWuF7hvKY8kkEP5Z8XHbYsPPQ1ltB2T1XcM+640G3JqmxeFnxZl7u4dA5xECcyeSYti1jzVJxta803hlPnFxyZ2nhcezxAQAeW6onpRejbA7qD6TOfbEbkxc/gYAoPPFEvgcmATvRGd4fxiPvfmJ6PHqSC4dtnAerivjWfFUpo+PrXqnbon0OvpcUJg7tSaJGjoNgt5owKqcUyQoPayFyEUFIIlUdCo1rrcpR0boEzQ+64DU11aypAN03VHU3PHM5eiZGw8tfttxwiRkbFcDadUwrEYx9EYD9xwXvqGFqcAIT2V1VgC9tF+Y9Rkpf4q8j7Q4sW4t3qubhoQnZjz0dib3e7y10CxAnp/1gT5cIgP6U/iWFhNy24ncEun1N/bxhU2pW2LJwHCkL4tgfU46cgwAKawKANVOWoti2z4jwr8pbJMsULfE2/sbs6Q8tvCdFc+t+/RlEaI2wn3lyO7NAADnfYlI7O2LWpHp0KnUeGf/KCYXTULU+3IxdCo1RmV3ZLLS5wwAljUkLoKmwpuo/hMp6Bzw2jlUKzQzeeieovT25HRa48cEzi0RsD7nisb+3HGaWv5ehDsCJ5yFzNEReqMBv+7cxNwShXPM/jEYBROai/ZyvdGAXto+nEuY7dq+eyAQbl/HwUNZHfNdSRmH4xvXcfeFuiUCwLVpdblzQnjOj8PDYRHcfTanW/eDaj0yUfgm2btvakjyD+M7Jvj9OJXrx/FQEgJPvmZ/nETi5kjXk705UQif5TtTrEknzMXFuBC2Q9T+lajJrH1R22J2fdMP86E3GmC+Yk1ccztKA989xP3f/01rAibhO9T90zjInZxE40Q0yGZuiXfHWZ9b/1Hke0DqGmuSFb3RgPiPnz1fArdEW9dMW7dEvdEA1z7XOT0BABJSoGhQH0/qyYBjJLFO1Vwldx0cebe2irZkDH3BM/nWtYHlyRPmlrggiyToeD39GiqSLpJnOMqqb5qgKXeeFpArmDy329VHyzesbtW2e8TzXMppoqK0TSHsWavoXACdSo1i82PuGtrvW62OAiCF14V7T2V7lE6lhveH8TDfvg290QDng2LXfwn/25AYMQkSJEiQIEGCBAkSJPwlWCrksFT897mcFzHGPw0pWcc/DGGyDqWMT4suDHQVwiOhOkrNDkhMaMwF4lJQ6wsNfh549RZ2B9UXnb/1cxPU72u/oKywnW0wa61TdbHTl1iphVawVffcMbV2Adq+MQWnv1ktCqQdkdUJ9Rwf4XqbctEYAJC9QAPvj+JZsO7dcRrU2RiPsiPeONF8HxvPnow0oNlem7Tl4QiYcQbLc04js7wOelQtY0U9bQOf6d80UcOm3FNoqKyOLlf64FjT/ZWOX1lAv95oQA+fcJZyvzJrvT2r3MOhEajxY8Jz+9ap1JCrm8JiuFJp/zqVmvUFABnb1Uh5ZQ36e4SJ5m0L2wDjyqyH9HjXSw9xtHkNdryX5lWYcvJYoHZlY92apsU9dTlXaBUgxWQrzhMLevqyCGYVNh31hEMPIypMJH11z+7DWCFuOkbRJA2UpRWo9b1YhxRPXg0DKgCnA4ms0LK5U2vkTTXBe2gK66+ygHihXpSNPFDh7AhzaoZIX/b0aHsfaWFRitS1oUwfE1KzWEIMmVKJw7lnRfOhuqL90QQSQllPlMpRYHLBlsaNRHMRwrYguNzJCYcyE7DiXiPsb1q30uvszU94jn7O+USDaxMJE02TE9j282eB9LZFw+2t0bRvw+HT9AaONd2PAendUPLKba7tLXMJxvSfAlxIRUX5U9Q6VRclo6oxVsk4SwvV5/x9L+8aAoejyayP0HNDuPT7szNSMO7XiSwVtlA+uhfk726Gy5ptnKx/pXh77lwtTNUr4DvLmkSmadwo1F/vjBvtlPD+MJ5LZGMLe/qUN2/CFbGvrH3OzhbwGkKYIpq0Q1g02vZ99Vfu4YTULHx/Q8MlaXnePhnZaRBCd17FfNfLdvtU+noDFRUwZeWg7mkXFLUtZtcK30vCfYXq/XlyTk7NxMDqD0TnC9/Qwu0b6/qQOznB8uQJ5maewye+rbn5xBacg0Imt/vs3x8ZgXuNZbg2kSTPEu4VTU6NhteQi+h5+R4ONasNADC+o4V7ZA6KtnqizsZ4keylfcNQ9eA5pH/aBn7v8N8RhP3Ywvb5pdCp1Ch8Q4sL78WgV0gPFPbxQb3V/HcTc8fWKHnvPhyX12EFju+PjEDC0lVMtvzdzeAx8LLdsW3lsN07qBy2oHsTO/cs0QpFyaBwlNaR4713+KRC9gp5246b/n0rZHTeWOnYQricroOkM4Fc0XjhNfQ5s52L88kGKO1wk7X76fo5uARmvrTJKeh31v6/jnthyTr2dtv40urj78D//r+aEiRIkCBBggQJEiRIkPCSQfpH7CXB3tSLomN118Wj7mkX9llvNKBBfE2s9zwlYsNoDIPeaIDuam8AxOd+cVYiJtcyMitM4b4gNP+WxItQNqzgfeJPn/WsaKptPAS1jqWuawOFqyvutytifs4xOafY33ubkmKL1X8i8QuPB4Sz63UqNYraFuOXlJaoaKtG3hwyZuCWKOZ/rwh6SObwzEe8/1ukGGJObj1mPXI86cbpQ6dSQxEUwKxQ4e9Z+6NzDphB5Jnh1RZf+wdBp7IW9aT9ZtkUjHVdGQ+Fiwtjw5Rdczl2I3V9GzZ+6oY28Nk/WaSz/lduE+ZxfGuU9Qpl1994W8uKhFLd5M+2FlhN20IsqZTBsrXEdRo/CTf2BbHjFsMV7j5RpK62jhn3NWEL7/wSCL8RBsaGWdqp0X76FHadsKCtsE+fwxP/1CKoNxrwbp0MqM9brzXl5AEAS1vcKzSStd+Wd5rdp/or4pDVa62oT4uzkvVN2TCFvw8cZtfC3ZGhbBxbi77eaMC9TqVI+JxnSfVGA4oPBrD5Ov2SCKcDRLbT75G5K++VwXtoiigOw9586f3Lma+FKS8fsSd2I+MLEr8yJLML6UOuEOnOcowwUnInJ3ZOyIa5xtXm2MHPl45gf1eYTCK2WenhjsMHt3FjyM5cYm2orEv8gjGyBolTtI2PEq4dyoYxeZ+QOJX9TetycQ+0WC4d476llFuHeqMBmZ+RZ8t37xRW8PjI2KVILCPMuJANy/lEw1mSW3wdLZINIOzL5z37wx4eDLfuhQGvn2GlKEpeuQ1ZSDMA1j1pdKO2qDh7CRXlT5EzX4srBxrjYNx+1pfH4buisR2OJrM+AHBsmN5owLjfJrDSEbasAi2cflmzDdEFEdz5tYntRXPRqdS4N0YDpa83Fv9/7H13WBRX2/69LIiIiohYliIdEcUVpOyqsSVZRGOPXaOxAYklphhNTDRGYzRGowlYYonGHmOJIptYo1JF14LoLr2s2EUFBdnd3x/HOTNndzF+75c3r7/3m/u6uNidOfU5Z87Acz+lIAM2HSqgG82zJiqZHB5DLsP+cCb13xkx/X0UbO9gMW6hXLnzZlPxaeTOqQ+bBg2g28T6h3J9cO1wbNiOkhQkXf0TAJD7eQj1UT77RSIz5wOVDRg5CVHdhzy76wO8Ud2tnBlrTEgvmJQdmD3EzdVwLRdpHews9j/3uza/kKY6uPhbEFNXaKVR48ozj+YsZJyODZuv1muwNsAHvQP59eH22IVZCczYD+eTM+oLH5I8eMRVkkbjUbIPYtxCWRZsdBTafxsP7cYwOG1NQ+vPUi1kpZLJcbXLFtL2MxareJ4Sl2YmwNSzDE03ptJytt58iHeH/Rm4OTHcgg17PCACM5wL6Xehj6Ftq5ZUVsL+ue8uOTXkTL9xy4INAwDpiXNo3DuPsmEA4LQ1jWkvW8GfUeb7U3jd/+c4AMDT1zvRcQCAb2Z9qPUa2Hq3pv5bQ84XsnJ7lnaAa/++rxTN1qZifYA3pH7e0K4nbWqX8EnJObw++C36+eGwKPiNPk9lIByvtWfr5ufe9O8Q4Zi5+7MP7LBgHNV6DbLT+DO0eHd7DAxob1UuLxv+kWTO/1BAkP80xH/ERIgQIUKECBEiRIgQIeIfhviP2EsCcy1I/jOG5k7newCItuSV+Mk0ClTuiNVMeb8ZaZifn4XevUcAvUqptiXMvh7V6EiDA9FyQA7V7nPamUqvWgCA3QOieWjQ+gHKpyupRid/CYnmFjDxLAy3WB+LQcs/gk2jRhicc9NiTqe+X2NxLeDts5Cc0cDjyxT4ZtaH98epiPYkGqoryp8B8JqkOc1IMl8u+bJKJscB/2QLv5z6a+7Tay6HtWSsJ3nNljmsabO8P05Fryv9mPtJ2STR5tG2BwCJBNJAPwRl2aK49hEKepNEpLpNYQh4+ywCYjPQ6FQzKvfyGUrENiH2506D9LA/lInVRacBAK2WpeCPXZsQeGos7SuqP++P5D/2HL2u/4CNOFk6W4laBxu0/LoealSdmDmU/RoMlUwOrwyi4S14Y52FPXqzN7RMewX9HdDg13R0nzAJar0Gp36wXDOVTI4hcsICcBH8ALJHzTXSKpkcmo7P7n+toFH5ODz5iY8PxEVvFPYjbKvgKwVyhxHfjT5dBlDZ5i1shOT9W+D8E+8n82BEFMP8qGRsMk1hH35Nblv0BQD11GSfcczS8xhA7TrCNhq6E/by6qQEAEBMh9eoFppjjmE00L64Nm16EabQ+OQJbVMoy1tKsqdlacTfzmUdP9fcn4mAHw+IgM8vUwCA8XVQyeSQuroCRhJlz2fPFAstd9SFpzTprXBsar0GKwpTaDmVTI6SueweVMnkuDGNMCqPfV2Ysh33z2C+q2Ry+MwiY7/cfxVkS0nbkzy70CTbwvlzfmNcf7KlKSjcGQKfX3jW1sbREWe/SIRBm8fUb/ddPGHe20ss/DNUMpKMO/k3sra6TWHQruGTfANA689T4LY4hem//JWmzF4xPzus+dIETMqk118bNh52J1ox/XDICycs4813nlkHTDwL/Qc8M871l744EffDWmCOd4SFf83tyQqmbbVegwZ70+E94oJVdoWD+1dkHcZ5doHPSA2MVVXwH8dHazN/roUY7sGP0eejVBzWnQHAs91cPz/4B9Bytw4E0mdFrdfA/lAm7kwi58ejZB+oBozB09eJlYHh9h20XcX7gD3vOTRnHYS4PC2BWR+VTI6iLxSYoC2A3e9nIQ3wtdpWor8fjWKr1pMk9sW728P4kFhsPEr2QcOJ5Hl7beg4KN9jozECJGH6qnutsb0NYW0aCiIRcv04/ZwG2TcpCBifBckxN6a+ufyFc/Ocl2J13ofO7GfaaHH6Hu69xVp6OOzLYOoeSjkAaTMXaBMjaHLlEVf1zDi5Pux+fxZt2GiAxNaWsoJ1ISjLLEqiAC5nnGn7W0vO4FasAjem8ueMbnQi7ZNDtHck8sKfoEPGCNQWFKGswgkAsCuIWMmYn1McHrfiIzMbcgto4nKfZ+8HYR2hT22jnWkw9AhF+XtKRh40uqPZ2Xls83qo9cRqiYvwyN2PmBOHV+oDUR/FouOX8cx7ymdWKj1PPd+8ZNU66mWEEZJ/7Oe/HeI/YiJEiBAhQoQIESJEiBDxD0P8R+wlQvl0JZQXaogW+2PWBlslk6PsFXa57kzktaFqvQaf+4Rh/r7NFu1ymhtD9jXmO6fhkT6UAgDcFxEt6aXIbQgdcYn6sfh8lMr0w9VdVXQGLVek4PC1U9gT1NyqTb9ar0Hulo5Mvxzywgkb4JNqS9tU6zUonqe00GgL2Q4haktKUfnKLXo96SKJ5ug9gmi23svNsZCHuWx+r7IjdufPfEnMNbEqmRzGLsQ/4W5NA3g+y2GVUHQa+a+vp+087HqbzrvlihS8NoLkfar3WhHUeg1iW3fB4JybsG3ZAgCQHEU0tgXbO2C952mGleB+X5qZgIDNcXS87l+loP7dGkhSL+CVJanMelyO2gqbkDYojHiM1c9894RyN193AHDKfaahPsxGKxTKp2CRAhdDSXDVgNgM2o6TjvUh4H7fnkI03T6zUuExhPdTAoCyu05Q6zVYX3ya1jFnFYK/JxpD7VuJCJxNcoTV5hfilbjJhPEbdhG7HhFtKMdiNt5OfBHkX8VbZS6E3+90vocnfSOoL4JQPlUDI+F9eKLVesJrnP+W9MQ5ACRyHQDKGFNEkah+0saNLeTUZSphs2w6BNHr3NrbtmwBlUyO9g3LcHc8kWdMcA/ce0tB8wA57MtA/pA1sJG3BcAzEmq9Bk/buNMh5A9mWc73c7ORtOIV2if3nHPfZ3jx+fMAwGNBisVeWjGdMPL1kjMpawcA+QPXYFou768n3HPCKJ3mci1YrIBq0FhGBpyvjtewi/Cflk7HYKystMoIXJ5OWEnvOalo/y3vW8b9CJkE/3FZCJhiuedtGrB+TUkfLWFkI5SDxN4eAPD6kLeoP6wQPnunwObUeTztfp3mo+N8UYXjb/4D738o+4a1VlDJ5Ag8NZbmE+OucXNqklcDABhd2B3F83imSjh3jkHlkG/mDyvsTzhX4ZzVeg2qBkXixjQlclewOby4z4cyk+p87lz7XQP3rHDtuawjPlENo/Oh3rcFxzbxecVywmqtjotD7+z7FuP12W3JTD0YybM2Rbva4+pEPu/dtTjiI3TzXaVFvcO/76Dt2h7NQk7nLfRew+h8ymjbnNYgZflqOs7uEyYBILk4pzoXWR27NDjQYl6mnmV0vTTV1ZhxvZPFGgC8PIR5w4TPjBDGy1fh/FMqHP90Zdhkzu8KAKI9O8Fw+w4C4jKg2xQG/YdKrFo+mPE5FyJodTzWFZ+GqbYWiYu+w97SDMoYaRMjmDrmaygcI2fpAwDNpI5wXZ2KFqtSLHK9lf0aTOty/pUtB5B3eqOfG5P3xDMrjStxCZhzI8RCZnlDeeuhmj9aW52XEMJ7R7ZuQMvlKVDrNSj55Jl/6+5NtA8AULnzvpUqmRy3326Bud7hzPPqvIn8DWWSSHD+0wR0m0xyyUVdIH6ymo959nZgG3mdY3uZIPqI/X0Q/xETIUKECBEiRIgQIUKEiH8YYkJnESJEiBAhQoQIESJEvBD+Kbbq/wIjJiZ0/g+DS453T+uDNwNJyNs+kX1RW1KKm/FKNE9Iweqi0/C2a0ip6+BV8XD/KsXCSdyaeYI57o1TUJpcrdegd8xIGv6cq69NiIBdhRROOqDpBj5ZpFqvge/OWJwd8i2cpQ3+si/heB4NjUK5Atg1YCU+iI1HPfVZ7ClNw2D3qDrr5H0TBd8P6k7Ga62O8BoAtE2Mh8eCFOumG906wubkeaY88OKyvD1Zgax5iXwAhgYNILG1heHBA6vlpYF+MFzLtbjO9VW4M4RJIiw0R9FUV2OWd6TV+ar1GsSE9MLTYE86H2E5bh+ZX3c42QL7/NUWbT3v+/u52Xi9ATGniLkWA0MPvYVJJTPnZ4lfrc1XrdegtPYRJnh2Ycw4Psq7hCW+7aHd0AkBb59FZbIPHvzeEq2+TcF7uTlY7t8WeHZsCU35asv5pJi6HyLRoESK1jtKUVtYjPXFp+H+zKS0rr0CEGdqp5/ZkM/XZyrRKuUR1L9uRucZsWi4i03YKbG3p2YzdcFcRrnLozAr+gAmO5Hw1mOvlWBzoAcqRkfB6ec0GLqH4si2DcxYK5N94Chw+ufaMnWWo2ruA6v3XgRcWWmALw2AUfKJEhNHJEPdrrFFObVeg5hXh+LaHEdqJinsTxrkj6Sju5n9+9RkQF+3MPod4J+zaM9OSC7mA/IEZdlSs6bCLxW49jYfrr1v9j0cDCYpPR73j4DDfpJ6QLsmHAFTMvGOTssEibAme7Veg4DNcfD+OBW2Hu6oLSmFrbsbDmUcIut5zA2mnmXYUZKC0a+QwADC+cXpcjHA8RH9Lkw0bt4nt54AMDSnnAYWEELSqR1MZy+TOm4dUR3TCfaH+GTzjwdE4M+Etc99Ls37HpL3Kh52vW1RVq3XoH36SMgGkjNf2sQJ2h984DuKrGNtzzDYHst6oT72PGrMJDmW+nnDkFsAAPi6IB2zvCPx6uWH+LBpHqL7j0Hy/i1QyeTkefqWnEdSV1cLc94nfSNwcu2Lz1dYpsu0KXDckwHthlB08CmliXIfJfsQE0gzWcS0eQVJV/+0OL+4z8YucticZs3ioy48pQmldSsj4T8t3WIcwvaKP1fCaGeC16f8u/TrgnQMPhNLnx9hvZvvKBlzVQDwynBAYcRjq/M2dZZDcoY1961rPtbw5I0IOKbkwnDnLk2CDZCgQMLxmY+zru/C69xYhOW4s66udp73PqlrHNbqCK95H5iMgn5kT0n9ffA4wYB6rxHT0ev7gtBqAOvCoNscCv+xxJR2UUEG5ngT80dhgmrzvhQXBqNxbz6AkFqvwZ9PgIU+pAy3lzhI2wYg6cgu+p1ra0X2n2jX9uZLm8CY+5u1d/Kkfyyh8+HodS+tPP4OiIyYCBEiRIgQIUKECBEiXggiI/b3QWTE/sPgtAvd0R+2EjsAf61hAniNV/CqeDgVGC0SsHJ4fchbqJLVx7sLd2FjYGsLLZUQhh6h2LF5Fc5WN8VyvyB63eFkC6pZtOkQBOMF6wEw7o9VoMlmPsgIN4/x14rwyeFhyBtKNEmOf7riV78/6pzj/4T9ep6srGnVel6qxCwXXZ2aQpOyA37/5SemLd8dscgbTsZuU78+jE+e1Kntq1F1omHQzWHoEQp7bTlqy/QW/YZrDDj3WkvLYA8gIevdv0pBnC4XNjDiB/8AlL+npE7EKpkcFaOi4LSVaN4d/3RF5Su3sLXkjEWIeIBoQOv/lkHr3piqRItVKVhamIYPvaKYsT1We8NBVUDrahMjaHJma/ITXrcmH+FnQ/dQcA78nNx7ZPenmkoOeVs7wlBhh4D4DCqLTcWnMc6zC9OesA+JrS1MtYRV4daEu197xBNH2x5g1/2ZVhkAbsUq4Lqa38dSfx8YdPmwadAAxqoqi7ne3N+GJkevSx634hRwTUyFdm04CvquQ/dJk2B/iA0WYU1GulWRNCE5QAILNP8+BQVfKeA9OxUJRacx5qMP0GhnGqRB/pA8eozaklKrzznHWEzLvYqVfiQ8NyfP/4k2unyGEu57iuvsx/ycujtegcyFidjx0BnDG92DSiZH2a/BcBuUzc71uyj4T2eZJWuoq0/z8Yd8E0+Zl28LUxFcz4EpI/X3gcmxPg4nbXvumaP7IRL+71hnPWxbe9Ck5cJ7Nw2VGPPs2bMm0weHfZHaYQ+93mvMBNhfKITh9h3ovotC/pt8InJra8E9q3tK09DQpj62PnTB5kAPZgwAELogDq6Jlsl3hc+H+ZyswZzFNC9XvLs9cjpvodfLZyjRcgXP6qwrPo1JnnzCcq8MB6xxT2X2OwD4/D4BTmft0fx7Upc7m4TgWFKVTA7PdEd8734C9hI7q2OvixXSfR8J/3fJmgpZ1OLPlPD5qcRiTYX1hfu7T6iKYeLr6pfDi7B6XJmDZVmURQaAmuhw1Eu2HlQJICk1uCBCar0G0f1GI/nAz3U+1+YsNgxGyog/by9IXZrCcOcupM7OMNy7Z7XM8+b1vL9BAKBidBTSlqymbKJJasKOMSswyzuS1m3zYxxNdWHoHoqxqw9g67MARdoNnVAQ/SO8D09EQe8fEe3ZCdcSOyJgUqblvI66A71KmffJ/2Qu/2oZ21YtcUvlTa2TmPn364DM/XNfWgaI+5tVdXjyP8aIqXuvfWnl8XdAZMREiBAhQoQIESJEiBDxQhAZsb8PYtTElwz5ixWM5ojTAHEaFu/DE+l9lUyO7KkJiJ33C56+TsLdqmRy7HnUGDHXYoi/Q8oFnF65BrNPD/5LLU1p3FOM8uiMhR+No/1K7O2xz19Nx2C8kAO1XoP8JXwIZJsQol1vsjkVBV8paDhgTgM3vNE9+M1Io9+F4ear+4Qz86xLsy4N8re4bw3CdmzatbHQwh1r78iU5+6XzlFCelwG22slUMnkmH+rLVRuHaGSyeE3Mw1h80kIeeOTJ9CuJcl8v7zdxqKdeuqz0K20DGWt1mtwZOsGHMpMAgBUGB9jVymvDcuUS5F04Q+r9TjGItHfD/0cqyAN8EXL5Sm4dSCQ9uu0NY3KsfIVwqqN8ugMRDxLFC4hh9n9sQrKhgEklLJmNgn7/aEX769n7EpCXnNsGBcu2iVLyshTOE61noS6rxjNh7c+UJYJ3eZQRpPcJ6IPkce2Dfw+SyHpBoRsmFqvwY1pSviOOo9mmc9SLDyTRatn/l4AENOGD8UOAJWDI1G6iw8RXU99FtK2RONd/p6SJOh+hkfJPlDrNZQNU+s1lA3j6ht0xPfqcG4KVhSS/idoC2gZjg27P0Zhsd84nJtL/Jx6dyTJOjk2jJOb8NnM20r2nd2JVjT0vFpPwqWfn5NAErC+RRKexrfugkY7CYtkyNGhtqQUd99WWDwn0gBfXP3MGWq9hrJh3N4qna1EcpV9nWyYWq/B7ckKSIMDMT8/Cy1XpKC2pBT9rpCE1apBY5m+uDOKayNzIdFcc2wYAPTzZpOWSls0R4s0vj9h3+ay5Nq2bUX8rebnZzFnIle+1bcpuDOBhP6f8sEMpj4AKPdcgc39R1bXjEsjAsCCDauOCUeXqSTBdG1RCR1jUhkfnn2MORMdFUL7yV0Rhca98xhZH92ynqbeyH9zNQblvsbMiRufJCwYj9Xe9FltaFMfr785DuvfGUDL2LrJqIyEbJhwfjXdO9Dvq4rOMP0AgHY9Sa4ssbXFpmepJgCg68UnTLmCr4h8v5LvZWRvW2Vi1q7cYM+IQ8iG2YSQc/q2oRL+47IoG3bvkD89m4Rz8PqUr7vO4wz6uYVbXcP3cnPQJ7IvHg4nsuqYOZze8383HfnbiD9iP8cqqPUa2HQIgucXpG9jt45MW4ULFMx6cD+K34ug3UhYK+0aNmS5EIEb4ixCs1cNJO8J3aYwi3pFXygYNkyt16BecibWFZ+2eB5uTCXv24I+6+i1ofm9YDp7mX4XjkeYroILU18W7Yo++zLgleFgUd68v1XnyPkpZMOKd7eHNXB1vQ9MZq4L2789hfwtwSVYF/roGoIe4Y2+aZjlHQndqkhat/Vn/B6QnjiHsY1v0zoBb5+FSianiZuTi89SptB8n6iDDkKt12CcZxcaSv55eJ4FiMSuHrOOA6/cYvoS4nGwGx74WLZR3Scc13sZLcqL+O+G+I+YCBEiRIgQIUKECBEiRPzDEP8Re0lQtDEYaj1J5NzoVDMAwCMjr3302R2L2iOeVMsj1LxsbeOOwjektK3BDR8gKTAJXxfwmtyACWcttFzcT/l0kkC59dBLKN0TjFPfr6FlTdXVFhoglUwO3WiikZd0DIbxIp/AVftWIpp/nwKJLZ+k+bVh4xmtv8SOtys+sW4doz23BrVeA0OOjpk39zny4zjadskv7Zh6xstXUbiTJHiMeXUoM35hW2q9hiSzjm0Aw527uPmuEoH1rwMmXqvbbE0q1R4GTCbatVMh9S3aAWARRQsAot8YxcxzqLsCY/IGWsjVfH4AoP+ITTjK2fG3+FRiIRMLZFzCuuLTdC7SahMG59ykY0n6YyceGUlibS7xa7fJk2F3uZBp5nBwE5TvC8Kgaceg3RhmwZz000VDJZND1uk60pbw/i32Ejv4jz3HsC21pWVQyeTo+s4UZt17XelnwQC3WEk01JxC/e54opn2+eNtWi7p6p8AQFkvxz3pcBuUTfsbcVUPwxUtAKDl8hR0WBoP7ySStPlMyK+M3IVaenPZqmRyBNUj0UKHNqxgygPAw9YSSI/L6PUtJWcs2i3sRfZ+t4uP6XXuHqeF9x11Hmq9Bk+7X8f12kdUNqbqaig+iEXSxaO4Z2B91V69/JDu1aYbBH4HUSHYWnIGBm0e8l/dQC+r9RoEbiQsr/tXKYxPqEomh6FHKDP2ZmtTkfTHTnzuw2vvV17qQSqk8ZE+AUDqUMvIrffrwxkZqPUaZHXkXz0qmRxX53qj8fY07CpNtVgPjh003+e118sBAJ+PHM9c7+3HPy8u60l7jr/wzyTXTvIX3XAohWdHhYxJSod6dLzajWTOVQOJj4p9UiYc95D27kxUoLiWsGoxbqEwBx3zMxm1y7KBqjM/D5WM+JVy8+T2PcdqC9tQyeRI/m0rZalzV0ThQGUDLPl5DeyOZNFyHOtuMYZnqBwSCbsjhEXUfReFqa0t/Ui594WpthbjPLvQ8X3ajD/rVxSmwHs22WuJ/n7oeakSwamjyHm5NpXZ23O9wy36KFyogHZdOPLmkGfC3J/VZXAJ/LbGWYyf2+c28rbkfdIxGNr1nWCO5X5BOJR+EI12EIaFY665Nlqvs8GKVmfpODnf58q2LWFz8jzzbHvN5Z+p6zOVyNsmh9TPG6dC6iNgPIkyySUI55KCc/2oZHJ4fZoKv/dY/8dTPxC2238cz+hKA/0AAK0/S0XhlwqUfMpblwDAJM8u6B3YlWlHMzuBWmlwOHuOtNP13SkWZxiXjDqj+imN9nnhwwS806QEhRGPKcMnrMPNhWPhhfO7PVnBJLzm8F5uDq0bEEv8iqsGRVr8HdJsDZHtzC6/AwB03/EWFdpXNuNiKAljkD94DQI2Wd8P5u9OAAwz/PT1TpTZNWf++4THAADSOtgxbXJ/T6wuOk3n7r1vMlNGKKPkogxGVnvbujLyE1rK2B3JQuvPWP8wlUyOE+vWwW/aOQtZvowwATBC8m//+b8QxEL8R0yECBEiRIgQIUKECBEi/mGIURP/wxBGTTx6PZu5Z64ZFjIQ3PWAP8fCezjRtmp/7ISCmB+JRrWOnEMcbk9WoNnaVIvr5mUl4e2RvH+L1TFIA3whefAIteU36HXdqkjkD15Dy0Z9GItbvauR13OjRT82jRrh8LVTzHyFY+CingmjRy0oyESEvZ2FHIR1y99T4sKHCVZZNkOPUEg/vQn0KiVzMMt5VD5dCaM9IFvCR+riouVxffkeG291PtbkVxeEUfoAoOSXdvAYctmqfw4ztxlKXPiIzK22ZxgeeNWD7WMTGm+3zGMkhHDtDD1CIT1+DtrVEQiIzbA63kdvRqLh7nTaVnS/0YzPAUDyr9jvb4KmG3mfKi4H3l/JIe+bKOSOtJ6PRThma3NSyeSQ2Nqix/kKzHLR4cwTI6LsgXbr3kXOZH7dhZEk65qXsH/hOB4NjbLIFybER3mXELt7MnRjE+G/OQ66sXyuK7VeY3HtVqwCVTLg6sREzL/VFikdLKNNmY/jzgQFXNanMvekTZwwLkODoQ0raNmweXGobirB5WmWez7knAQX3g3B3aAGOLsgEYHr49BER/w5hQy16WkNzaUFAK8NGw+bU+etyoibk02DBjC284V6H38+UEgklIW1xjiarycjZxspYDTQ3HDS4EAk/bGTlnNNaYJbyvtWZSf8zEVC4yLkSYP8GWadspRfKuD1aarFdWttm3/n8mRx6KN4AwVjPWB/D9TX6UXOA2E5tV6DPp37o7agyOrczKGSySF1dkZS9nHmmtNpF1R0uYMnfSNQ/2CGRT0A8Ex3RHFkJQCgYLECfpFFKPrdi4mkaQ7u/FDrNRia3wsVXe4w+ZWszQsgrHl1t3J6nYs4qdZrsPSuLz5smkfrO5xsAdf6j7DO44zFs2lNXq8PfguS1AtMf8LcUebv0chZcUj/OtHq+fO88/d50G4Mo+yYxb1n0Wa5HHXWZGS+xivueeFwcJM6ywFAde9wNP8kHxVd7pD5XX7A5P4DiP+l4cZNAEDZx0q4LWajUArbPFCWiX5uluylWq/B5gfNsLWNO/K/VsBnluDMF+xV8zoA+8wnFJ2Grx3v31uXrPUfKCH7JgWNTjWj+fCsgXmOFyrg9QkZV78rd3CgrQs+yz+HL3wsmWoOtq1aUmZ9QUEmw9yar4kw5+rjARFoNrMAJRv96PuPg/4DJZ64mqAbw5//tj5eqM0vBADU/NGa+kKr9RpEzI6D80/kPA74KQ4eH/+JE9j/0kYJ5P5m7XkoFraO9n9d4X+J2spqHOuz+qWVx98BkRETIUKECBEiRIgQIUKEiH8YYvh6ESJEiBAhQoQIESJEvBDE8PV/H0TTxP8wzE0TXxs6Djan+bC/fboMwKHT+wBYBpngvueuiKJOtxw4Wn1oTjkmOJVDJZNjxFU9trchwQQKFingv04PY+MGMF7IQcFXCmjfSmRMBWxbtcShrGSoZHLGpMHcPEJI75v3n79EgS1DvsfnPmHMdY6qt2YKIpybfm9bXIpkE64uLUxDSL369Dt3z9bLE7WFxSj+XAnP+cS0JiakFwy378DYRQ6b0xrcG6eA86ZUxqzleaYnN+OVOP8pb/LFJRitq97DYVFotDMNJkUHxlRG6LBrLZiHJLw9TJmXUDE6Co9dbZhkzcL7QnBmUSqZ3KoZnjmE7ZmUHWjIePN7hTtD4PtOGZIuHkXPsRNgdyTLogyH6t7hsD+cabWdvxpHXWXbZdngchgfwle3ORTRQVeQF/6kzjaet4+s9SMN9EPBlw6w/7MRRkz+g0nyzeHByCh8/eVqLPSRY3DOTUx20j933LfiFDCo7qPVEJ1Fstzy6cTpvuV3vFnQ80yizOdgft2aSc/1mUoEDNTiF98jf2k2+7x1Epr2cWkCVDI5pI0bw2Qw4LCOmIvV/NEax4P3MyZU5u3emKZEi5Up7D456g580hRIu4iyWUo0u/QUDT4sQ1JgEqqMNRjoHkFNkziUfKKEx0LyTGiqq2lyV24uNw2VaC51pH1ziY5jOr6Oa7N94DcjjZbXbuiExFe2YLlfkFU5GI96YJ73fnSub0PvDc0px66glrRMi9TG2Nz6T6vrwCVSV+s1iOkxBIZruXWaaHIm2EY7wO1rs3MlKgRIu4jSPcHIVmy1ule4zzbyttRs6q8grK9NiEBAfAa9vuuRE9YHeFvU4ZJyc2O32JsSCR69GYkzKyzNjf8KD4dH0YAaf/VMWJuD+VjKpyvhllSOpJO/Wi3DmR0X724PzzfJmarbFAb/cVl1PnMACWbkN/o8AJJcufPiNBzY0hWtlqVYjCdsXhyarSUma+/nZmPuFxOx4LMfscwvmJmDz54pNGH7rtJUONk41LnO3LjuHfLHwwxX+o7rfHEQGgrcEDhM1uZjbQCJkV7dOxyOV8qhi3WnAVbuHgxA075aSF1dYbh1y6K+ecJm82fgryAcP2cm+7wyz7vGJQg3dA+F9AQfzMJ41AM1K1qh/m/8Ho7p8Bpu9vOzMOsGSKqGqa3Js9ll2hSLID7W9u6u0lQMdVfUuR85024On+RrsNCHLyc0MRf2BVjfZ7uvnYNzQP5La4pH/2Y9GPePmSae6Jv40srj74DIiIkQIUKECBEiRIgQIeKFIDJifx9EH7GXBCWzSWjTP3ZtopqXPp37UwdPlUwO97SGVJMS3YeECR57rQR5Q1czbQk1NxwbVvJLO2xvI4PkmBvUeg2856Ti0Jn9NEGz92wSbvju23yi5trr5VRDJHTwNdfimLNhW0rO0DI+H6Uiqr4Uar2G0Th13peD/K8VdLzC+8L2L0VuY8oAwEcDJ9BxCDWGtYXFAADP+Sn0vuH2Haj1GticJnUzFhGtbrcpk7GjhGf4rEGt1wAS/rNar8HYKcm07UdDo5j6N99VImU5WQtJ6gXoNodaaMI5NkzYp1qvwa1QwjzM/Gw7Wi5PgU2jRky9xF8SaXlJGNGqCp3bOTZMrdcgb1kUnE67WPQhbI9jw4Ry51DzwB5JF49CJZNTNkwSzifsrBoYCWlwIADgXhsS8vfh8Cio9RqU1j6ykKfuBz5sr6F7KO1LJZOjXZYNLa/Wk2S0y1qdg42jI9R6DUlq/OoGhg3j6lr7TZ8Pz04WZW3kbVHwlQKBZ+1guJYLlU8ONLMTKBum1mtoIutvC1PReFsa1WzuCWpO23l98Fv8HG1I2gjdpjC4Jqai5YAcJBezKSZs3d1wYVYCw4aZoy42r094DALPsmGVVTI5TX4KAL2jSdj1Vt+m4BffI/BOnkjHJWyvcnDkc9kK873QyrYhYtp2AwBIjrkh6eqfOKw7A9+jJFw853A+w7nQgoHk2uPSD3BsmK2PFwmU8yyc++XpCbBPyoShB2EbB7pHQK3XQPZNCiTH3CA//0zMBl5Os7wjUbCYP6cAYIxHZ2YPDHtlOLpMmwLDjZvUWoAbW0H0jzRcv0pGAqAIk9za9CrB2H3xRM4JEQDIOSqUZf6yIAsZBq+KBwA0k/JJ45OO/0LO198m1XnOtPo2BS7ZtXQ8AAkNX/JqQ0iDA+E+mKRi4J57ps/vSZ+Hk7Yx13O/jcKe0jSrfVJrgw+UCIjPYMpwbNj190lKk/xncuYCEvTp3J9pg4N2Qyjq336KQbmvIans3F+yYcIUJinfkjOTSwSv1mtg7EaSmhcu5NdZrdfg5jtsOHfus/C7qcc91Lg1sTpnADQID8eGASSEvLV5Cfcyx4ap9SS58pfNL6HVMv5dI/X3wZ0JZLxZ88h53fNSJZb5BaPJ5lS83uApTS5N5VBLXjDv5eZgqDtJzbG6iE+gLVwbbmzOfXSwCeHTZ+xsu5mWubm/Df3MsWEAef4Opf5G2TAAaNpXC7Veg6QLfzD9GI964MkbEQwbBgB7BrBh683lxF0rmq/Eg8O+hKntQJ4zjg0TlrMGtV4D5UyS+Prmu3waipYrUjA/PwvdV/JnqG5zKGx6leBGuJRpoyDen2GghGvKpWpQyUhKC4eTLZhy98bx+822ZQvYusnQfdH7dY4XAAzJLZjvC33IHn5w2BcA8PD1Sot5m5/3NvK29PvAAOvJsUX890JkxESIECFChAgRIkSIEPFCEBmxvw8iI/aSoGHoHQstSW1BEW6+q6Rawq/c1AAATXU1TOdJqPvNgUSTe2eCArrvoiy03dxnr7nVAIBxbim0vejWRNvbfdIkAIT1yPwykfbPaXB6jZ7w3LELtYYA0U7XhYKvFHjl0kBs3dELujHEJy0kYwQzVrVeA0mndvSaOethOs8n6+XQ278zrcslpKxLG7yl5Azq/5aBsOPvWtxfV3ya1vP5fQLOf5KAmOAedBzqdo3hn2mP3tn3qWaVG8v5OQks+zX2HP3++pvj6Jg4ba9wTBUBxFVzfYA3KfPwITPn2NZdoNZrcH+sAqasbGad43S5AICb75C94vt+Gh71N9H7Qi2ssF/t+k7oE9nXYt8FTMpkrlWMiqIpDKQtmsN5RhGS/tiJBQWZuPBhAgCg0Y40qGRyTPDsgpiQXozs/d9Jp985+37u++UwI7O+tWV6AKB+SE+7X6ft3B/LsiDCfSdkZAp3hlj4aAGAUXMF3rNTca3TUwBAThgp02XqFCpPLmT7TC/S18NhUSj7WAnt6gjaDuf7RxolVI3/uCzoNoWh7GP+ee2r7Q0ANIE1N86yWYRt6PH2JGYuFaOj6By4+ZS+6UXHCwB7HjWG5JgbAqZk0jLGi1dpAuo+4TEoiP4Rts2b0fuDcl+DWq+Bw+0a2r65HIVsNJfMuXf0cCRdOQkAMPUso/f9xpzH4wERTB3z/XywjDAM2jXhlGWXHHOj/q51+UgI97WpZxk0hKDE5WkJuDueX3/fBRfx2jDCzMX0epNpY+ldX5S/1gqOv6TDN7M+TZJ775A/bVsq8DUw3K+gSW45+M0kbFJAfAYqkvyYudn6eFHfkrylCjo/9694dsT8d8CUTPQJVVnMl/te/2AGDpRlYn4+kdsMLyU8vkzB1VmOkAb6Qa3XIPm3rbSOsQup574oBb2z71s8w34ziY8cADx9NYy5x4HzwROypJVDCHt98f0EvBI/GT4fp6J8hpLeLxrmBgC4P0bB9Bm06B7uBtnjV78/4H9kIsxh/o4Q+tRwcPqZyLxPRB/YnCTPodcnxJ83dzlhy85/kkDbeTwgAqWz2WT3iApBqwE5kJ7gWTmuz87TyXMuCW9P6wnXtq73xeCcm8xcq4w1uHswwGItk07+SpkYTqazXHRMW412sCyl33tpKP5ciXnaN+i1kR9/QMtHzoqzeKdLOrWD6bwTtOsIK/5qWhwdf/P+V4llQSvel6uuZ427Rt9teg2KP1PCplcJ9bkSwnAtl37uq+0N2LCWLm0T4lH4pQJXJyWgcW+S0oFLkp1URs790mcJ6oXjAoifu25TGJWRoXsozs9JgGtKE1r2c58wnAqpT7/7jz2HxwMi0PrgI3otut9o6jsHEGsEU2f+7DXHPn81rVs0X4mMRbyffG35DVQHtETzBN4HUNgGl2ybOzvUeg1sPdzRLov8Wd24dx7Ueg2udd1scUYK18N3R+wL+3eK+O+EyIiJECFChAgRIkSIECHihWAySWD6B9iqf6KP/zRERuwlQY9WWgC8hmrRbeKDc35OAi0TM+8DqAaNxSzvSHS7+JheV8nkcFmfio9fPwC/E+MAEO3MwbIsqgnK+dAJ2vWdsDGwNQAgYnYc1UraHyL+G5XuDWhdAPA7TjTOR39ej1uxCqsMhFqvQXT/MXQs5lqnz/LPMVo379mpcFAVwFgP6H55AACg1YAcqGRylO/j/TZMZy/j20KiDdVtZhMy2vp48V+OugMgDApXt0C1nnzO6QubBg0YTZSthzvGeHSGNMgf+a9usNBUTfLsQuz9j8vQIMeeMAQCW3npcRl04dU4HNzEYq5cO5wfRe6WjvQ6l7xZJZOjXvFdpl6L1MbIHbGaasP76aIpi2Xr7sa032Qzr3Hl5D3AkWgEm//A28/f7R0AAChcoEDKt6sR9VEsvReuISxOQe8fcSj9IACScDRvqQLRV/vQcrofSGQ6p61p6LCE+MwYbtzE9U3eCDw1FnO9w6GcGcvIQa3XwHCb+ANw/lblM5QW2mmOwRSiLht67vPpr74HANyeooD8PCw0lBy8Xe9AGuDL9GlebmhOOW3bcU86mVv3UOQtZTX9jXamwW1xCvqHE42uSdnBor8nfQlb5j8uC5enJdB2tdebw7Y1YayL5ivRR9kPKpkc301eAwCIXnqCmbfEyLbbLssGTgW1zBw+OD3UakJY40WiCffdf4swi+U3qHyevCmBSibHH9s34v5YBfVt5NpVyeRQvB+Lj/KIz4y+S32oZHIcTt5BWXNheQBw2JdBfUCqBkZi1NVS6pOk1mvQ1y2MMkFNN6QiXGNgxr3joTMt+zyfEQ4qmRxNN6bCN5NoxI2Vlfhj50bsKU2DIUeHe4f8adkPm+ah62RypuWFP6FRCzM67iZy7zMKhgcPLOZUNotouDk/H5VMjltxCjjF5NJypbOVlNUDgNxRiWi6gfdHWVGYUud8astv0M9SV1fkf61gZGAvscOs6XFMHc/tUuLPKGAtAFCfV4D46HHjeziMMEcPh0fROsc2r2fkeOtAoFX5AsDplWRvBn8fjz8T1kKt16DlCmJFYesmg8MNE7aWnEFVS/aPI4Mun54/+a9tsJDBPUMV04/Q/4fKpydh7mpLyyBtQXwya6LDEf5pHPze4yPC2tQn+9NhXwZNPP3kDbJPtZOI7xnHFtX80RrtvouHTaNGaLibPOemzEvInpoAtV6DNPkvjAzUeg1eGzYe12cqcXuKAtLgQOwJak7aiiZtDnSPQGborjplyP3uObZuS5LqmHBaznN+CpxicqnMGm/n59pkC/Hd9kx3RG0vIh/T2cvw+DIFAZPIHm899BJyvyXrzbVbe72cYauoRYJLUyqX1UWnof+AXweVTA7PL/h3CDdf4TM6/loRbFu2wMGAw9Cu7ci8Pz2+TMG1txPRZl08bL08AQASW1uYOssR40ZY9gnP3q9COQGA34w06qcHEMsJlUxOE7dTJjvIn2EIHfZlwGhP+ATlzFiYzl4GAITNi0PRfCVqS8sgOWPme37UnViddO2ImI6v0/Zbf56CztOn4OsC3oLjyNYNzLoJx3wlPgGOf7oCAErmEjmWDfDE5TAjtj50oeVVMjllKK2dDRz7DgD3xikQ9Kf4Z/n/NYiMmAgRIkSIECFChAgRIl4IRkhgxD/gI/YP9PGfhviv90uCz5tnQ9qiOWpUJNrbyRAHJkpWTLdBCJuiodHG5jS7Ru/Z1K8PtV6DPUHN4TuSaK/C5sXBTiLF71V2eOXSQBRE/4iACXw0N8+JvO06QFimBnvTGW2V76jzVPvkujoV0f1GM/bm3L3k/VuQt5Rokf22Eo1u4c4QAMDCSBXTT94y4sfmOS8FJ9rtY+5diNjOaIyC6zkAIL5WHKQuTZlIkuhVymjImM9BB2GsqmL6qC0h5Y25RURT5d2a1hPC0EMPz025zDW1XoOkwCT6PfqNURbyePJGBCpCLXOtCBnE2oIi+vkdnRZ3BhHWjsu1VvN+MxpJrLa0jJa1xkj6HhtP5zs77yLsTrQCQPwtAMBrbip8fplCv0vs7ZEp56NMqWRy5G3tiJanbOD7YSrDWvi/Q/bD6qLTaLmCaEofHPbFkQXfwmsY2YfC/D9ce9xvm1Mkylht1wrapuIDwswZKyvpNU7TK6zLsblC+fV1C4Nar0HW54loJCVRFGOCezByfjAiCqaeZTBo83iNsHuYhQ/NrqCW9FkDSM6wvGG2yB1FfCQ5+/+el0jEK86frMa5HhAVwrR3cu1a2q5KJqe+bN4jLuBWD8LY2lWCRvXs5UAYyWPtHRk/q9RvVjNzTi4Mwp+JpO2wrKHEZySQzxdkzvipZHLqTyZcj0dRXvR++uJENNyVhrKP+ehzUpemaLw9Db0cDDD0CEXr3+7TPkxPa0iZZz5V5n4Ohw9vR4O96djaxh2dl82k9znWFQC6XXyML5tfopHUAFBmXiWTI+SbeKj1GpRPVzL+qGq9Bp/ka6h/no28LRLcyH6TNiMa58HuhN1z7qODpGMwbTMnrBZLC9MgOeZGr3F9m85nW2VfL08nLMnZBXyEUtfEVHhlOND67l/xPraNTjUDQKLEcuOd4aVkZMR9LprPMg+GW7eojyx3rU+oCvV/y6Dnvm5lJOZ+b10j/1jtjYJFfG6jsl+DCfNuAqRtA9BoRxr2lhI/H85Xkc6p3zU6XiGE7In7ItbfDQBgMODIgm8x6MpoyJbWHQHUGpylDZj+zs9JoJFXuT5sj2WRvdY2ALkzSMS5esmZDOPotz0WxidPLMbP+TQV9P4RT96IQMCkTHySr8H1VJI3k/O5Bfi1CJsfx5ydXHt/7NyIVt+moNmaVBiyr0GtJ9Ea6yU/i/zZsgW1mhCOgXvuuWt2R7LQp3N/YiXQg1h13DoQCJVMDvukTIvzzTuZ963jLF64Z7s4shK2R7OY8gBhnADCqtyZoIB9UibujyHjaPcdsWKYoC2g62q4Q6wx6r1WhJOPfXBpJm9xI2xXrdfQ+XLYVHwaGwNbo7b8Bnr7KREw8SxTHgBUA8bAd10RaguLUd07HKbaWkjOaKBbGYnwT+NQ/bsXAMCkIJYFwv0lsbenz7VwPDYhbWj7hhw+32NtrzDkroii7xnuXQQAzdamovXnllGR1XoN1EEH6fvJcOMm8z5tuDsdcnt7yBfHM89D+Lmh1MKl5Jd2KJ5HnvPKV25BrdfAYwE5F7gco5zvPtfu1aWt6Hw5CwqA34scg+a8KRU5r5iZRoj4r4f4j5gIESJEiBAhQoQIESJE/MMQTRNFiBAhQoQIESJEiBDxQhDD1/99kJhMJtN/ehD/l/HgwQM4OTmhO/qjIKELdAMSEePGBqcIOSfBxVDry6TWa9A2IR5X4hOsmudx34VQyeRw/NMVv/r9geBV8Wi9+zoMuQW4PVmBZmtT8W1hKmZ6EbMX/81x8I8sgqGH3qK9wFNjaWjWhKLT8LVryJgsAkBlsg8co/NpPe/fJqHgjXUASDjhM9+twdd3/LH+4KuYM3APlm0YgkszLOdSmeyD0yG/WsyDG8uXt9vg02ZXmXvmcuq4MJ4JaCG8Zx5MgvsuPw9oOgKP3oxEw93pFjKgDt4jxsPm5Hmr7ar1Gux46Izhje4x/QStiYfn/BTcfEeJ5j+koCLJD2nyX2iZOxMVcPkxFRWjo+ByWo/awmKo9RrEvDIQhtwCpv3A9XGQmICrExOZMXCmcumLE63KxHy9nieL50FYb0dJCoZ7KC2u676Lgv904pjcNmU0PIZcZj4L5wwAhh6hOLKVBFQp+aUdLWPbqiUeKFqjwa/8elT3DseJ9euYNbE2bkl4eyTv34KYHkNQPKA53L7mzVe48gVfKVArq4b/W+eYumq9BqvutcbBYGfYtmyBQ+fUtI6kUzvqKP4icPzTFZWv3KLPnOryA6jbNf7rigCKdrVH66GXqEwcTrbAPn8ylpvvKCFLKqPmrxxKZytR5f0UAc+CWJg78Ud9GEuTgpvP2fwsGV3YHbeU963uj7r2kvA+QIK1CM1ThdhbmoGB7hG4M1GBs18kPnePln2sZJLN6zaFMU7/HMI1BmTKpbgZr8T5TxPoeWE+9g4ZI3AhYjudl8SuHvRTO6HVt39timdNVtb2YPFnSiYowvu52VjmxyZrtvXxQm1BEdRl5EwJ/ySOJlUWtg8Q81xDoAdsbz6AbPstrPM4U+ez/nhABP5MWMusPQeuzjs6Lfo5VtV5JqhkcqwqOkOT4wIk4NANxQM0OtUMV34PgMcCfn7Cvea9fzIC4jKY67qVkTTRfeXgSFQ3tkHTjalwPtMU9zrfhdTVFYZbtwAAiwoyMMebmHZVDYpkzgCbdm1gvHwVLmeccaczCbCkXR2BgFjS3/WZSrT6NqXOdTG/zrXDySngz7HwHn7RQm7yxfGodDPBZ1Yqine3h+ebl+rsoy7Utb8fjIyC8+86GG7fQeWQSDj+kk7n/SJ9cGWKdrWHj+sdJAUm1bk3uM+A9TO/ruc5YFMctOP490vBIgW855BAW90mT0b9gxlW3zUc7E+2RHU3Ejwpf7ECPh+TfX5/rAJNNpN2Yl4dCsMVLTOOumRmPOqBSJdCZMqlkDo7WySmZsYQFULdPV5kvnXhYFkW+rqxaXPMx1iwSAGjvQm+75NzdmhOOXYFWaYZ6DlgGE6mL0RFRQUaN36xd8I/Ce5v1sh902DraP9v76+2shrpA1a+tPL4OyAyYiJEiBAhQoQIESJEiHghiOHr/z6IPmIvEdp8fxcxbqGoUXVinGAvRUjpZ+Fv7dpwxHR8HR5fpjCaoYg5cVhQwGu+ewd2BQD0utKPZ6peIWGus6cmIGeOC2waNULWvESYFB2gfsRrZ3VjE2mACnNN4LWumxH9xigAQHzrLnj/eijylkXB+8BkWvZ0yK+4vi+Ifi94Yx0NsMAxTMcmREH7ViK2t5FBtiTFqraWY9WEzu3ri09DJZPD55cp2LazJ70esCmOccAFgIDNcTj/SYKFDD/JZ7VenFM+d1/TkZQVsmHWyt1pW5/eM3aRM1o7gAQnUMnkNLlsn4g+8JyfAu36TpSlC2pKQo5P1uYjd0UUzn5B2C2nn9PQevdN2q+xiSPtS63X4MwTIyYO/B2tP+ND26tkcvRR9gMA1HtotKrJFMpSKBMujLQwwEFd4OTcbmU8AMA9rSGGeygtNKvl05Xwn55Gw8MHuN5C/hIFtj50gfd7PLvSsIxPxCw9zidl5dgwAKi9Xk414Vy9E+vXQSWTI6ZtN9qvcP090x1R8qkSpkwSot1wLZcGZwCAH+570LLes1Ph/9Y5OJxsAbVeQ8O6A4CdhIzv0Dk1oj4ioftbpDambJj5vuWuFX2hYL7/6vcHbBo1QrO1ROOrbtcYar0GFaP40PIlnyoh9ffB0sI0pu7VLlsYmTzudoPKqckAwobR521HCNR6Ddy/SkHA5EyaFFklkwNRIeg5biJUMjnmzt9kMW6AJJCm8zrqDpWMDSnN9bu1hE8fwaGPsh/Ueg1uT1ZgWi7LVt95M4S2W9szDHcmEAa++ncvDHQnjMe97k/oOvYJjyH3e4cz4xOyYQCQ3GMlswbc53MjSWqM5gnkfNFUkLmMv8Yyhy0H5CDmtWF0HqanNWj1bQpqj3jSvV74Jb+W5YKzTbjn8rbJ0X3SJItzCABlw9R6DYxd5Fih6A5tQgS9ptZrMEl9BKpLFVDJ5Hh15Ntw3XuFaYtLHK6SPUuvkXYRtfmFKI6stGoNoZLJUTpbSdMOcNdOPLZhymvXhWNuwrg6Wc0+oST4kpANA4AbCpIO4BffIwwbxvXD/ebYMO67rZcnPnr1IL3muCedMn9TWx0BAMqGHSzLomyYWq+hrBCXbsB4meyxbd7HaXscG6bWa6yyYZxMrbFClFV7Sphb7+EX6biFP5qPE6AbQ85qjg0Tti/8XRfM30EASYbuEa/D404+APjUAg1+TUd173B0fWcKDZtu3p+wLa8MB7QeegmGXjeYParWazD+WpHFGW9NPkFZtui4MB6ris5Y9PHNmz/B+8Bk+t17Dlm/1ffdUP8gmxiaa9vWxwt3JpF1O+CfTPvi2DBD91AmVYvhipb2u/lBM9QJiQQ2vUpw9WEL0s69e/DKcAAi2gMgLKowKArSLqLnpUrYnyTMFJcuRvcTb5WkXd/JatoSoRy4QFIA0OHreAzN70XHrl3fCbd/C4D3nFTkjlhN60xwKmfaoNYV6S9uWSHivwMiIyZChAgRIkSIECFChIgXgugj9vdB9BH7D4Ozt72n9cGbgSTpYcHTR4ht3QUA0br8cN8DB9qyYV1130XB4YYNDTOs1muw+UEzLLmigtugbEYTKkRd9svWynDgfNCE7a0oTMGxqkA6Lmv9SRs3RtLVPy2u2zg6wlhZ+Vx7dFs3GQ5lJlloKc3HLvw950YIsjrWTfJaq2Ou+TUf09hrJfgsox8kUhN8R7Jy4Xzp7o9RoMmWVKuytdaH02kX7PI5SnxQXsC3yJrWTLcqEvmD10Alk2Nd8Wl42jZk6rT/Nh6yb1j/J93KSJwftAJD3Vl2BgD6KN7AodTfoJLJqc+asK75Z2H9iNlxcP6JaC9v7m+D5v2vMvfNZSK8133iJJz4cd1zbf4BknA6II74GnT6LA4uP6Yy/h+ls5VoWGpC+te8T1HMa8NgyObTPAj7NWcBuOSopbOVkEbeQ6sBOfR+ySdKeCxMYcrWtR+Fc+bucbBp1waS0usw3K9g5FK4UAGvT1KZsVX3CaeJ1gFA6u+DhhsrUNHlDtR64rvZ9AoY3z+1XgPfXbHwm0H88PrpolHdrRy1PcNge0yQLLWZC0wtXSmDYD720AVxeNQa8PijhobMtpG3hVFzBV8XpGOWd6SFTG1btmASFgvbjLrwFPNdsy3WXiUjvp9l+qYoiP7R6n1OTvKv4tFiFVkD4d7nyvr88TZaNK9A4955jN+HULYAoLxQg5QO9WDoEYr7PvZwWZ8KmwYNcDiXZeKtrQEi2gMZlyzmNzjnJk36C5AUD6kd9jyXhS7cGUIsCjw7wVRbC2vI2yZHbvdNTDucTyGHm+8q0fx7loGq61zncCtWAdfVqbgxVUnDbatkchR9oUDrz1Jx/X0lLr7P+unGl0UhwS2tTratrv3fZl08DSMuvBfdfwx++CURr5+aisD4PJTEtoNsiXU/PGE/2vWdaBoWAIzPGwfhfheWfzgsChIT0HBXGkpnK5E9NeG5crJ1d8OhjEPkGV2ggNdcXu6lc5RwX5SCgkUKxj/KplEjlL/V3mJNnvSNoOzQ89anaFd7RPvmYEUrfo5cWdeUJnjFWcsnmFZ1Qj01n5JGJZNj4JVb2NuWJBnWro5AQb+1dfZl7TzuNWYCbI+S1CHma5e3TQ4HhxrIBl5B6Z5guA/Oxs13lDj/Sd1yLN0TjGzFVqvnOrcP772loO8P7j2+qMVFq+fBX0H3XRTy31zNyK3kUyU8viTzqP7dC/avF7LtSSRQl52n+/j1wW9BknrBat/mfx/cnqyA400DHPaxzJ85HiX7oOEzq56KJD84xeRCtzkU/mPPQa0nVkvGhw/JGrQKxgnsf2l9ori/WTv9OuMf8xE7O2jFSyuPvwMiIyZChAgRIkSIECFChIgXgugj9vdBZMT+wxBGTTx6ndUaf5Z/DuN+eQfjo4/hZIgDo5kp+zUYboOysbQwDSH16vN25evCUdCHMAxRF54irYMdAKD2iCeOtj1A247p9SYMOTraZlCWLXLCai3YsB/ue+CdJiWkTttuMNyvQPHnSnjOT7HKCvQO7IrD105ZXDfXNnOfhZEXAeDR0CicWbHaKlPF/Q7cEAevT9kIYsKyD4dH4UFrGxoRL06XizVD3oDxQg5q/miN48H7AZCEnlmfJyJobTxyJvOMn9SlKQx37iJ3eRRaBt2EsnkBlrY8X+ccrDFpgWftaHJdbmzm8uDwUd4lLFP2gvZbNyaJtjkKv1Tg2tts9MOqgZFosDfdoqwQXLQtc1kBYNhXgPi8eDvfxeNuN2jdxsd1SLp0jDB4YcFI/o1oOAu+UsB7dmqdTJlKJkejU83wsOtt5vqeR42xNsDHYpzCdsxZHICwQkknf7Xoy5yNAfhoadaYSQAwdu2IP3ZuZK7lLo9C3jDehr8utphjS+we1NJkoty9mOAeTJQutV6De4YqDPcg/l4GXT7Vygo11nWNEwAmaAuwPsC7zrF8kq9BcgXRIgOA745YrO+/Fl/5htCykrBgmLKyUTpbCfevUpj+Yjq+DsONm7Ts9feVaLUsBb2z7+NwcBOo9RosveuLI+0a0TI10eE04WvxPCU851n3v4nuM4omUPY7Mc6C4XkeuD2quDAYztNMMOjymXvWnkFrmvfyfUGIbp0DTUeSSFZ6/hpK3w1Fy8zH+GP7RtqmSiZHwWIF/NbfoH1JXV2RdOGP57IKoWeH4UmmC0xSwHNeCgp2hMB7+EUcKMtEP/cI2LrJaGJ27cYwBIzPonXbL4+HbGmKxdhj2ryCpKt/YsdDZ5r8WrsmHAFTiMw5hsWazM3HKoxK9zzYenmitrAYedvklP1/3r60JoveMSNh1Fyh5987Oi1+8A9gyl3fF8QwzsK2FxRkIsLeDn0i+6K2pNSijHtaQ5RGPcKNaUq0WGmdtQesP7vW+ntRpqXOcjZSwGios8266lUNjMSpHwirK20bAMMVLWqiw3F8g/XIrxWjo1A5+AFG+2VilgtJapy/RAGfjyzfg9bGzTHawmuytEbQRz3Ee7k5WO4XhILtHeA9gjBBErt6MD2tgd2JVri50QsZXyVazEm3ORTOzo/QfHgZDutIpE5hRMfAU2PhNexinXLQ722LS5Hb6Bm20Kdu+XGsmVqvwciCHtR/zzPdEcWRltFX70xQwGV9KhNFVa3X4LWcN2DTi/w9w0VQfdHz6EWh1muQU1OFGV6s/56tmwy1ZXqr5bkxxOlyscqv9f8XjFjYnvf+MUYsa/Dyl1YefwdERkyECBEiRIgQIUKECBEvBNM/5CP2f4ERE6MmvkRQyeQwdusIgGhJvvAJRdPLYNgwtZ5EMXIblA0AlA3jNIFuaj4K1pbThOmoiQ6H7avFUMlIlKf238bDkKOjfQKgNuncd5VMji7TpuBAWxcoZ8YCAAz3KwAAFyevIn1/QyLlvTZsPErmkihexocPAZDcNsJx5S8mfklcBEfvJBKtzWvYRWZeDXelIXgVabdslpIZz92DAVDJ5Lj2diKVkTlsOgSh0Y40Jj9Uor8fvtz3E9R6Deq9VoSRBWRsrptIVL6cyUQr1ieyLwAg6dIxosF/Lw0No/Nx9o4n01/blNGwqV+f0aSZa6WFbJg5LOzyHQww3LiJd+XHGe2YblUkM0evT1Ohksmxq5TXgjbYm05lBwAlv7Sj7T4cFoXc5VFopOY1oQBwd7yC9iFkw6T+PrgQsR2Pu92A1NkZAGA3pRyGO3dxoLIBAMCURVhb25YtoH0rkWrvhRDOIcGLsI+GHqF07oMbkghrlUMiEXjWzqpcjv68nrBnpXzEQIMun9GUcvMxZ8P6XbnDsGFc20ll59A7+z4AwOYUYTh130fS9vzeS6PPiEomx/WZfC407rf3b5MAAPaHMi3ZsI6vw3DvHm5PVjCaeS6nGsey2L9eiBtTlQj65hYzPnMZOP7piorRUViydCSsgXtuFvrI8dv2LrSu38w0dHcwMmM3ZZHzQvZqCbQbw5g2hGyYSdEBrZaloHRPMA4HN6HXE071YubKsWHajWHw3nW7Ts0/x4atrZDBd6QG8q/icX8Mkc+9Q/50Hc2fZbWeRH9VyeRo3DsPSSdJDkFuH3HRHFUyOcYXd4V+b1uL55Fr80LEdhr9VJJ6AcYnTzB+XDJsTpI9ENNtEC3v/XEq7QsgEfuE5xOHqAv8832u0054fXcZOZNJFE7v4Rdxf6wC/dzCoS47j0MZh2hZIRumkskhW0rOKZ+9U5j5Gx48gEomxxz1UHpN8tQG+g/IXjq5di2Csiz1qH26DLAY62WNF/0sfL8IyzwaGoXawmIAgO9IDUyKDlSO2sQIC8aJg1qvYSJxcqwLd/4tWPQWU1at1zBsWO6KKAgRYW8HlUyOR3IZc53r/9wNd6j1Giybvoa59yjZB9rVEfTZFY5z4JVbNBqesC0A6LiIvGskttZ10tbeMQCofGA0wKZBA6Z8RjW/N2K6D7baRoO96fDbTqKucvmx6iVn0rEFZdnSz2WzlEhbshqygVdQUetAIxXX831gdWy6zaEW17h1Afj5b/Q8BbVeg+V+Qbj9WwD2KnhrANPTGgDA0+7X4fwTee8U7SKRB32Pjodar0H+qxvQ7A0tjJUkUqdvZn0mr5vXsIt0za1ZTDRr+CzCZ0R7fN2tr8X4hOB8yFQyOe50voe9pRnQ/RSKU2pB9NVnkU0BwGU9KS9kw1QyOaQSI4002TzB0idR0jGYljd/vqQuTZm1FL4XhFDJ5AwbRt9TZXqrZ51wvyb6+6FyQCeLcYn474bIiIkQIUKECBEiRIgQIeKFYALwTzg2/V/wnRIZMREiRIgQIUKECBEiRIj4hyH+I/aSYK+WJIL8Y/tG3B9LTMfez81mkhoCwPvXebOD0jlKhsbXro5A+aBq3NzfBgDg/w4xWwtacImhxIVhzY1HPZj2uc/dLj6mAR5SvuVNFqTHZeg66x0AgFOhgTgCnzqP5l2JE6pJ2QE+v04BbCRMe4sHbWVMFwtifiTtNXFi+lfrSfJZALg8PYGRkct84hga88pAps5kbT6qe4eT9i/kQGJXD7k/d6Rl1HoNwuzr0fbvdL6H/G1yJBekM+3UlpRSEwau3t2DAYhrfYIp5zHkMg7n8yZzu0pTLUwVOXkPzSmndf98wpoEqfUatPkxDmlPDIBEghnOhbRfqUtTJkQ3Vx4A5AenM+2oZHwiY48hl+kcUpavht97aVTmHGr63ydy7PUmbePh8CgmGAIXcKLeayThLedwLzQH5ORkrKqibQjHqt0YhuZSknz6yNYN9B43p3KFhJow2fp4AQDuHfIHAPQJiyZmjO5RdK66laypptBkrGI0X+6dJiVQ6zVErs/G8o5Oixi3UN7cTiKBJCwY/u+yewAgYaEBWCSAVcnkCJiSidI5xOxEEsabsahkciSd/x29s++j2dpUdH2HmJppEyMY2XMmny1WpUDyqArWcKCMmP396vcHnH5Og8u6VGbeQsS8NgyytEY09HfvwK51lgUAm14ljHkc95v7zIVtdh+cTeuoZHwiXpuQNlTuJkUHBIzPguGKFj67Y2l5tV6DO5MUjNy4kNsOMTew5ctvAADOfXSMKahwTFGaIXDelGph2iQ9fg4AMC+bmDLZnWiF8u5PIRt4BUVfKCz2h3ZtuIXZp1qvwcym+SifwZqMmoMzY+XqcvVlaY0w3zUb03Kv0uucKSGHlK9+YOoKUbAjBDEdXkPBIj6NRP7ANXRswvK+wbxzv/+76WiZ/hiSY8TMblnLDAu5LTm2nY7J1ouYVPtPJ+kMksrOweYkMadddDuQMYk6s2I1sx8kqReg1muQu6UjTRsB8Obowrk13Wh9f94fq6DJmctmEVl3XEjqP+4fAe3qCOQNXU0TfwOAatBYAED93zJgd6IVABLco7YnSZjbvD+ReS8HA6QCx/3esiso6LfWqsxjm5TRYClCWdl6edIw83mbeZNu8z3kcsaZqQfwz4lar4Gxqorp7+3V0+lngzYPKpkcxZ+xgRsA4L3ehyyucX3mhNXixlRSR2hmn9XRhpoZuw/Oxv2xCmZsQVm28B9LnhFD91D47oxFUJatVZNSDtJAPzR7Q4uZXnxbT/ry59b9MeS6x0opMeEec57uMe3acDxK9oFar0Fe+BNaJ/yTOCCiPSOXCdoCSFs0p3Os91oRmWPGJbx99E887h/x3LNLiIHuEWgzsxBXJybSZ4ZzvzCH8kIN/WzqWUYTjgv7uv1bAKRNnDBvz2Y8GBFF14BD6RwlJE6N0faHeLyjI8mlg7+Pp3MBgFFXyd8P2tX8PPKWRZG/h0DeK8JzhHsXCNtQ6zW4E/L/x5/lRkj+sZ//dvz/seIiRIgQIUKECBEiRIgQ8V8E8R+xlwSDBw0mASO6DIDNiJtQ6zWI+20Cvi3kAzP0vFSJ1CURVJPpvpho89V6DXr7RCEgNgO+IzVwtK+h11UyOU6V+hDWJIR1uO/4ZTxsepUwWsDS2Uqo9RqcDHFA4UIFZGkkZLVKJoc0yB9JgUlw+pmwQULHXC5JoiTlAvzfTYfhzl16r2J0FNYGEK2ZLK0RGW/0cAB8ABBr6PH2JDpWAEjev4UwI5NbMvO49qQV7A9nQpsQgRWFKTA9rYHf6PN0Xt4HJkMlk1Pn/0dvRsJHmJzZRsr0w0ElkyMzdBcNHS50dO8yjXeuH+qugPHJE0aOex41hkomxwSncnptoY+l5v/qxERE1Zei4pAvo83j5Me1KRwbl8RYeN88SbBar8GJxzZMXyqZHKWzlWj5zFmeC9gCAI12pNEyAHFwvzOB19gLZSLsFwAq+5HgDxxzSh3OF92zykZw9XzfT6OfD53eB7VeA+c+ZEy119lw29FvjIL/tHSrQS1UMjmcfmYDbahkcnzuE0bv93OsooFM7o9VACYT3t5+ELqVkTB268jI9/jGHy3mW/QFLwv3RYQpM2VlMwzGpJLOOBzcBPlfK2hKASGbAABJ2cchsSfMrnkCZIeTLQAA/dzCrc5RrddgUQGbONSQfQ0GkwRlHxPtufHhQ6jc2WAcXPvrik9Drdeguk84AtfHAQDuvaVgtLRcWWua6btvKyApvo52WSQgkCT1ArTryFjz31xN2UyVTA6Xdfy5ZegRiltxCtj6eKFx7zxMbd0Z7VayzIo58+UUk4u8pezY1HoNpMdJEAfZwCvQfReFgwGHcWc4eS6vTmRDbN98V4nZXQnrcGcCYcseJfvQNi98lICSuUqm79peYbSNGc6FGHutxEIOBQ9cME0fjpV+bRgWCQDynj6CWq9BjBsfnEaIrhefwHv4RRhu3YL3HCKjz/IJgxF23giVTI7cn/n9aNOrBNrVPDthc+o8buwh4exDM0dRponrZ9rb7+LWgUAAwKGUA8yzL5XYQK3XwKZdG5wMcQAARMwm+2CATsU8W1I/cub5jTmPpYXk2XqU7INW37IBDrhgOkK5F32hwP2xCjTZnEoDsrh9TRJmn/+EWDn8mbgWAbGE0astLEbQ2mdBMwwm2s7BgMMAgFYDcnD05/UWz0PS1T8BANW9w3Emqilzf9RVPvS9EMI99kYSnx6Dex8IrSE4cKHSzc9u7pqhRyh59z1jyF8Zcg6FCxXM3vD8IgX5S8gZcn1fENR6DQ60dUGfyL5Me2q9Btq15JlqsSoFUpemtJ8e4yda7Lf0xYnIWxZFxyZkcY5s24C8YauZa8Jx9+ncn8jx+C8AQPsCgPoHM/BgBLFwaLKF7FOb0yxbW7C9Awr6rkPD6HyLfZ65MJEmP+fkObRhBRMYSK3X0CTtW8sj4bA/w6IdYVmbkDb0+8GyLJpS5Yf7HkzZyiGRlCkEgJQO9RBx/k2mLW5c3PessF141C0QH0+NRePtabD1bk3PaQB44mpEwQgZPBam4Ad/EjTMfVEKul18TNvb2sYdAPt+9n0/jVpd1FOfxeMB5FmO0+VapDnhxlTrwTOLIv5vQAzWIUKECBEiRIgQIUKEiBeCmND574PIiL0kMF4mIWxr8wuR2mEPVDI58oatRnA9orlU6zU41t4RjXYKNJBGA+6PVaBDxggYnzzB9X1BcE1pAsfofOi+j6Qan0uR26DWa1C8tiXaZdlQ/ykufKtQC+X+VQp6jZ4AAPD6JBUFD1zo/aSju+lYzH9vLTlDy9n6eEGt12B10WnKVnCayBu9SVhe48WrMHQPZdrx2xbLjIULkd0nVAUAOFDZAFXGGgR8V0TtsNutjKfa3cDpGho2Vq3XIHhVPFQyObp2uAoAcN5ENHsNd/NMnk1IG8BIfIligntgUklnbC05Q+RymQ0PzIW7VsnkOL1yDayh83TClK0N8IGhR6gF22COvtreUMnkqDngaqEZ7Zg5HCqZHCHL4pnrHLi2bxsq6fei+WT+mupqdHcwYlURWZe7BwOg1muQPTUBcbpcpp0b0yz9F/a2dYVNLTA77yJK5ygtxiYEl8CTu6fWa9DrSj8YdPn0uvZH6yF5zRkuzu/DfJ7Jv221Wr+uMVnz9fAYchkA4KLOg1qvwfoAb+QPWUPXFYBFGHSujdafpTLfzbXmAFAcWUkY2zGJjDyEZfso+8FUXW1VDvv81Vbnod3Ay47zdbRpxCdXvqF4gHrKO3wlowHBq+IJq67LhdTVFSqZHJM8SYh7+0OZ8JpLQlJzYaG5vu69RTTJbVNGW4wx88tEGO5X4HKYkV4LmJRJ58ixmQDoGQMA933t4ZqYikOn99F+3BanUIaZm7854xDw4y0AgG9mfVrG0IOEgPbKcID/9DTEhPRCxqJEel/YXvPvU7AnqDmevBGBM1+shEomR8PofKaM5+EHTN9Ht6ynmvDrtY8wtCHR4HNh8wHC/q+UZVqsLQDEt+7CXNNuDKNMnlqvgbMt2SMFixS4+Q557r7wIW1zCbnzevJJpgFWww4AzX8g7FLLATnUj/ZJX3Ie2h7LwrlOO5nywmdBJZPDePkqvffERQK1XkMTuAPA2GslMOQWUJl86EX8L8+E/Er9zjgMdo+CjSPxA3VPawgAqPGqRpPNqaj+3QvO8+sz68rJxvxMbBRO1tqUeYmylvFlUUy9unBi/ToYq6rwjk5Lr21t446aP1rTOQNA5eBIdJs8Ge2yyJ89sU3KoNZrUDEqCrpNYUybfTr3r7M/c3ZfepykQTFlZSMmpBfywp/A65NUZszFu9vD56NU3JmgQKsBOVQOtSWl6D6RWH5wZ6TdHV4/fn0D8alql2WDeuqztN5tQyUqRkchcGMcckesZsYjlJk1iwQOvruJ/+GJxzb4tjCVWmGoZHLUqDqhwvf5fx56j7hgsf+5z4Eb45iyXd+ZwpTNXUFYvNojntD9EInKV24x4+fY+6A15N0XenYYrsY1Rvl08sy8NjkWgaeIP+E7TUpQOluJ2p5kDR1/SUeTzanI28qfL859dLg7XgHtj50Q3ZpnmIUWFA6/ZaE42gbSIH/UFhQhuSCdsvymeiZceSfB4nw+OqOLxf6+d8iff581c6H3Sj5VwmFfBipGRWH10P6MvIR7xf6aw3PlLuK/DyIjJkKECBEiRIgQIUKEiBeC0SSB5B9gq/6JpNH/aYiM2EsEtV6DA2WZCDj5FqPRMte8cr+re4ejyeZUtByQg6WFaWg1IAe3lPcBgNolI6I9ovsR7bbboGxcDjPCb/R5pr2+2fdooloAsD1GbOdv/xYA+9cLmTGaa9m4sY3y6EzLHDq9DyqZnCYLVus1iAnphX5X7iAp+zgA4rMhPUF8IxQXBgMAfD9IYzROjn+6wqZRIxw6R5iCH/wDMNA9ArVleqoldlvM+yxwSSi5NrKnEm3xDcUD5jpAEniqZHIcTt5BrydlH0dxZCVGeXRGxagodHG8ZpX50H3HRwc0v99wN/FjsmnXhkZ4e/oqr21tkUp8x5QzYxFzLYb6QbiuTmXkqZLJ0bz/Vdj6eOHi+wmMxuz2FD4iXfkMJZpJHekYrk4ic57lTRIVT23dmWheDzejdRL9/RCSMYL21WIlL0PdD5FUM1nZ7wG6OxiheWcVM88hea8y+6B39n3mu9+JcbAf8ZiRS5sVjwAQRoiDuQYXIIlshRpwc42hTSPiYyhMBG3sSjSfNdHh6HeFMENf3yFaSafTLjBH0vnfmT0s9BGTDWSTX1t77jhY8ycRali577ZenvR7bWFxnewdV4bz0+QQOOUiE4UQIL5gQvm59rtG27oVq0D2VLJnFuuiYbhF2AZpkD/1R+Lq7SlNY+bKJW91W2FLyxUu4BP2mo9dmxBh9brf6PO0vsuPbOTXztOnQNrMhUbws6ZRf5TsA8M1wtzmhT9hyvhvjsMa91Q0OtUMhtt3ENPhNasy5X7X/y0D/dzCGb8RDqazhCV1PtOUrsHN3YTRH+fZBXsrm6JG1Yk+yxx6B3bFpJLOVvcqAHgnTyTyeX0tZfJUMjkOtHVB2x/i4T0nFfUeEH+ocA2JPht9tQ+tb87Kms+vcnAkU+7mW4+hkslROSSS2XvcT+CGOLpOJZ/yVgPVziaL8W8OZH1u1HoNvNUTCOtjZ6m7NVYSlq806hFUMjmJ2hcVQt4dGZcgDfK3eEYAoGpgJCR29QhT2EcHqbMzrs9UomF0Pl13rjzH+JlDKP8f/APw5I0IKq96rxXRz7YtW+D0qjWofzADl8OMTD2veC1N/MuhtqDIQvZJZewe4GT7KNmHlu1xohDuaQ0hbdEc0iDCpkR7R8LzTeIvFT31NGVu3i0ja2ifRCw/AiaexciCHvCezbPvzfsT9pIbM4dRHp2RtmQ1vD7hGW3huRP6RRxtw5qsij9XYqWM9PuVbwhmeikYP9juS1Lg8WUKU9ccHGtlzlbemKrEtfGJjPwa7E1nIpj6zSDnju2rxfB/h49c67eNRF/l2HvP+WQMrv2uISAuAy2/S0HBIgWuj62G1zDCIBfXPoL7Vyk4+vN6lE/nfT59R53H3bf5OWUuTETAxLP074TS2eQ54KwAKgd1gv/UdOSObQYA8D8xjrL8/u+kWz3vf/lplcX5ndFxN70/OTWdWllciU+ATbs2cNqaBtP5bDpnc7h9k25xTcR/N0RGTIQIESJEiBAhQoQIES8Ek+kfSuj8fyCjs8Rk+r8wzZcXDx48gJOTE+5pfTB05BiaI0R1+QHU7RpbaBJv7m+DZg0rMcnjT6wP8EbhzhCqGUoqO4e+fUbDqCFafYldPSQXZaDNuni0/pzPnWGubVW5dQRMJtwdz+d94XD3bQUyv0xkNEHmnwHA2EUO2/tPEPhTLnLCaun9ztOnQL38Owx2j8LSwjTqbyAcg6RjMJIPba3TDyD/awU6dtZil89Rpn9rrInup1D4v8VqLtV6DdqcHoPWQ4lWskbVCfXUZ3H3bQXuyI3wn0Y0UNdnKmlUMGH7wuuM3Mxsw43dOsLm5HnYtvZAbVGJxdhsvVujtqCIqWvbqiUTIdCahtGcEbU2b/N2zNuqHByJhvmPIMktpmyKsJ1XLg3En+33Mu3fG6eguZysrY1wXM/z4RDu4azqGszxjrC4PqmkM46cC0ZBf5ILyDt5IgLePou7BwOQGbqLGVdtrzDYHs2CWq9BtHckkgv4aIomRQdIUi/g3jgF7gcC3vsrEZJwCRdDTbS/XmMm0Pp1MW/Ca9FvjAKMqHOPqvUaxLTtZhEBNG9rR/iOOv8vycxa2RFX9djeRlZn+Zo/WtO8b/fHKFDhT3zbXFOaUKb8r/riUDpbiebnn1I/TWG5b+/6QN2usdV65przaM9OSC4+azHXdcWnMcmzi8Xe5hDTfTAMWuLL531wEgr6rrPKPNF2JRL6xtZu6ISAt89anZ9ar0HQ2njkTE6g9a09y8Jrj96MRMPd6SjYEQK/uBIY7t2rcx2tzef1IW/h919+eu4zZFJ2gCTlgsX9h8OiqF+w1XnD+hqYfw/+Ph7ui/gzzNi1I2xOnbdax3xuz3v+ubFoV0cgIDYDps5ySM5oLO5bk49KJkfhQgXD6liTDQA8GBmFKZ/9arH/rY3btmULJiIpnfOz83l10WnEtu5S5/zyvolC7sjV6PhlPPWjNgcXFRIAdJtDae4u8zFJGzeGpGkTFI50R/a7CRZyFJYdf60IwxsR65SAKfxzJ5SR1KUpE1EXAHyPjacMtHmb5qjr/QJYXyftmnAUvEGePd3KSLT5NAeGB8TC5MFhXzTunceUt9a+NMAXpvp2MF68ivwlCvh8lMrUuXUgEK79ruFmvBJPejyk7CGH6phw2CefQ/HOtvB88xKKd7eH55uX0O3iY5wMcUDeNjlyu2+yOv7r7yvhsacUtYXF/HjaBsBwRQtEtEdxdCN4fsGvscsZZxol0xzS4EAYsq/R79qNYTQno7ls1XriJ3207QEiu82hCPrkJmpLSrG3NAMD3SPMm6f1Hjw0wjkgHxUVFWgsyJX3soD7mzV454eQNrD/6wr/SxiqqpE9bOlLK4+/AyIjJkKECBEiRIgQIUKEiBeCGDXx74PoIyZChAgRIkSIECFChAgR/zDEf8ReEgwMaE/NEtV6DTX9UcnkaHN6DKW8JRITbHqV0CTD17pupm3EuIXCqLlCnUeTizLQc9xENNHx4aaF1Llar0FMx9epSU/Tjakof493dgWAphssg0hwULwfSz/bnNbAePkqTR7JlW24Ox2D3Ulwi5B69VE6R4mY7oNROltJgySYzmej46J4Oi6ABI0AiFOxz6xUVHS5g4jZcbT/KaXEwbZgRwhignvA78Q4AID/W+eg1mtwb5yCthe4Po6aJQIkYa9ar0HTDanIH8KHob/4QQIzBrVeA9tWLdHq22cJfBUdGDmaO0LbnCRJpA+l/oYJ2gIAQHbNY1qWcwBXyeSwdSMmNibnxng4PAoPRkYx6yNs19z5nprYXSGBLwoXKlB7vZxZN3OcXrUGyYe24sZWGWzd3aCSyanTuEomp2aJQmQsSoT2x05QyeSoGhhp0TY3Lv+f4xiZ3dzfxqIc9zPHm3em565N04cj2vkSYMtbSXOmZeZmidV9wmF7NAuVQyLRJ7IvimaHIXBDHG3z9z0/AQCeNpBA+1YikHYRlya0ZfqzPcqbk1SMInL3PjjJqmmL34lxMGVlU+dq7p45DPcrUDmYyEh5oQZbSs7Arl4tU0ca6PeXZolqvQYPRrDmuyo3EozkeWaJAHA8eD9to8mWVBpy/+7AelbHvqMkhTUvWxNOy2RPTbAwS+QwsykJAZ9URsJ25y6PslhT7oczS1xXfJoZw4SR7zJtqmRyvD7kLVpP8pQ3bw6YTMYhsbWFWq9BlbGG1uFg06AB7kwiz3yb6deg1mtwYxqbrJn77TmPhH/n0mKoZCSRs3B8wufs1qAnKFikgP+MGzQJa13rGHMtBlEXntIy0W+MQlk3RwuzSq8MB2YOkpQL9F7BYgUeq72h1mvwyI1Pyq6SyWli2oLtHZj2ANAgHFyb3HqqZHI0z6rB7Sl84IIeP/DmWENzyq2ah3afNInW51IICPtUyeSI+igWo66W0uBJnFkid184b+7MA4AOS0h6Ba9PUpl+87dZmmADQONtaXT/q/UaJpH1vXEK7ChJoeUPnVPDHNz5bFJ0oEGkVDI5PNP5tbkZT/aL7wckgbXQLLH4cyV0qyLp9yabU2nS6/xXN1jIhkPS1T9xKOUAZo75FZseNLcow8m9OiYcGwNbo+PCeGqWSPfKJ7wpX9KlYxbylVyvT+/fnqzAq6PeJueNIEGzsM7tyQqLa/cMVfT7nQkKxLTvCQDULBEA8oesocGUAFCzRK6N/K9JQCGbBg2Y9g3aPBgvkqAjnFniq5cf0nZbvUPSrzRPSGHMErl+7JMyAaOB3uN+c2lrhGaJcbpcFCzi59dqWQpjlggAhita0nbGJfisy2fWY5s3CSam28yn1uHuG7KvweFkC3q9QLUe1qBbSQLmlKW48e/IsecAI/k7rIENfx5XjCJnp62HO0rmKqGSyTEwoL3Vdl82cIzYP/Hz3w7xHzERIkSIECFChAgRIkSI+Ich/iP2kuDTS7yzL5dwUOpCQipzbI5ar4FXE+Koe3+MAkXzleh+eQCK57EJeVUyOYJXEYbJ7vezcPo5jSZY7XbxMS2jkslhuHGTtg0ALZenMJpIALCpX9/iGgA03k6cyPOXKKDWayDp1A5SZ2eLclzbfsfHI/vdBBi0eXD/KoWGrwaA83PYZIlcSFvP+URrn7siiiafVes1WONOPjsnOeLq/AD4juTrtl8ej4xFfFLdaxMSLeTDzSfmWgxqj3haZZ4A0AAYKpkcktQLFu0AJCAB95ljL9cHEI32GwdmoHBnCDpPn4LqPuG0bm0ZSaZpuKJFox1paLwtzUKbyvXBaeXUeg0eDY2i12xfJZq+o2OW0rqjC7szdYUJWFUyOVz7XUOb/dehXd+JT1MwWYF238VbaLBVMjnckqUAgAZ70+l1IdR6DXSjSTCXT/LJva5ueXTvmpc1ly8ArJRlYm2ADwImZVrsM5VMjj6RfXnt6KFM3B+rgMQA1JaUwnNeCrw+TaVthn9Kwjaf/zQBs27IUT5dCcUmNky6cBwNywi74nzOlrnPjcN3pIYJJy9kS8zn57gnHYHr47DlyCtoLnW0cDrnwrH3jh5uVS4cUpetZvswmSzGzqF8BhnbzXeVyKmpouPj1l27oRN9xgGg57iJNPHucA8l7WdRQQbVxK+6RxLhVowmbGHut1HAUXfaRruVhM2IcSNaY7/30jCyoAfGF3cFQNJqmMv7rWujiAyeJUa2OU3ubX3IJzy1yeAtAmoLiiz2gqm2lmiM3UnI/Kevd6LlD+vOoML/2edrpwAALVaSs6zKWGPBcgFAyShfmqz86Jb1zLqr9Rp4HyYh6G20jtCOS6RpNLh0Cdb2gaGHHmkd7DBApyLXjUD9uyZmz6n1GmRs5lMmVCT50XsA4P1xKv5sv/fZ/jRiWu5Vei+j427seuQE7xEXoNsUxrDkV+ITcCuWZwOcLvMpHu62qYeHPSppOG+OTcj/WoFdQS2h1msQdGYMIwP7Q5nwzyTO+AluaZDY2sLWx4uRkdPPadjahuwNYQJdc/hvicOhzCSoZHIUf6ZEyxUpdNwxbbvRcj4jWZbRpOxA5VQTzTN8rhry3OYuj4LzplQ4S3kWhhnfaRdmHwrP8AcjomgSdgCUAbN2DnvOT4H/1HTkbePHlvQnG9zoxlSlxdnW4WvyHp7gVE4ZPZVMTi0+1HoNHhmf4MSP68gYfrAMFqXWazDwyi2oZHIalh4ggbRapDaG74ep0K4Nx6Gq+mi2NhXVTci6J106BrVeA/2HfLoCtV6DZmtTcfu3AGae/aa9B4C8613Wk+TON6by9bhx356sYMYlfAZ1YxJx920FjFXkHOKY8kUFfEJytV6Du+MVONKOJKTfVHwah9IPWsid+yyxq4fe2feZtVDrNTT5tVD+1b3DMcDxEbznWA/+AgC5WzoydWqvlzPrRdm/Zyyn+RnEJT4XXhcyzwDgP40kguYsErgxH8pMYspJXZrCaSthX2tLSuGxIMXq3ntZYTRJ/rGf/3aI/4iJECFChAgRIkSIECFCxD8MMXz9fxjC8PVvBoYSzeTqeHh+kYLcLR3hN+a8hS+CNMgfhhwd8pZFwff9NKY9m3ZtcG9JLZxicgFYhqtV6zXw3RELSAC3E0Y47M9g6ptr4qgNu+kp7CV2FveqBkWiwa98AkL9R0rIlhDNTs9xE2H3+1mLttV6DZTvxSJl+WqrTNvqotMY8/77OL1yjcX9W3EKuCZaaryEbatkckgDfGn4a5VMjr7Z97CtuBNSO+wBwGuluJDfth7uqC0pZdo7+liKJb7toV3fCQETzuL6TCWmT/oVu4JaWpVXde9w2B/OtBhPcOoouA/mfYw4HCzLQuCv8fCfmm4hdwC4aahE5MH3UNB/LXqOnQC7I1moGhiJUz/wfm0R59/ErdImCJiSabHWwnFMy72KFeOGUyYCEgnUZSSxd+meYLgPzsbd8QpkLky0uib3DvnT5JYFO0LgPfziX66BtXtSfx+sOLIFU1t3hvJCDVI68PbyNdHhqJdsOY/anmGof+06asv0Fv4Vtq1a4lBWMrz3T0ZAXAZsHB1xWHeGYT8YlmP/ZBoiX3hPOM7nQSWTo2J0FJx+TrN637z+6MLuuKW8b1Um1mDbsgUOnVNDJSPh6sc1vok+EX1QW1pWZx3hPAdeuYUt897AmRX8s1U5OBKNL9yEIZf4LX6Wfw6d69tYyCL07DC49rtGxxp41g7XOj2l37kw0UJZqPUaJFfZ4+OVE9BiZQoTGrz7hEko7mMD/3fT0Tv7Pg4HN2HG/P71UCxrdY4Z+962rpbM1L7JKBiwlukTIIlyTdXVdcqlfIYSA8afxHxXNnlq/mIFdGMT0WP8RNRTWz+fzOdofoaaY22FDHs7eQO+HtQfxrzNup6Nm/FKysbc/i0Azd7QAgDuHgzA41PN0Or1Etj0KrHos+elSsxy0TGyii+LQoJbmtW9VrBYAe1Y6893yVwl6t82wTUxlR2rW0eoy85byOL+GAWabLE8hxcUZGKud7jFdd3mUDg7P0JW2C5EfhxHQ78DgH5vWyaRurXxqfUai3rCss5nmuJeZ2It8uSNCNT/LcOiDQ6ytEbQRz2s8745bk9RoNmaVJTOVsL9K8t1sobnPu/PUi1Y21d1nUd1ySRKM8Tqu54L4V85JBKOv6Rb3Yff3vXBzKb5zP5psy4evqvzUXu9HENzyilbGvpFHFxX1800mTO+dc1deK/s12A02N+YWro8r22VTI7r+4LQakAOc8/aftN/oITsG+tpB6yNmXvPczA/h+J0ufju3eE4vvFH+G+Jg88sNvw+ADzuH8H8LcXdk4S3x7Up9giYeNaqXB4PiIDDvgwULFbA+2PSbq3pKU5g/0sbrp37mzVw28f/WPj6ayMXv7Ty+Dvwvwpff/XqVRQXF+P27dtwcHBA8+bN0b59+/9aYYkQIUKECBEiRIgQ8X8ZYkLnvw//Y9PEY8eOYdSoUWjRogWCg4PRu3dvjBkzBkOGDMErr7wCFxcXREREYMmSJbh9+/a/Y8z/lRgS0Zl+ftKqFi5nnCkbBrDRe3KmEz8sjg0T3rv2YQOqIQNgoXGLbh0Bv5lp8HsvDQ77M5i6No0aMeUVH8QCNsRHqMf7U5nxxgT3AAD0nncC2vW8nbhsCa+J4tgwoQb51oFAqGRyNNrJa20/yz8Hz3RHWia2dRfcCLdB1EckKmPhzhB6zzUxFbPzLtJ2Dd1D6TzvvcXbr3Ns2JknRhTtao+Dwc54cKoF41MBkEhzar0Gle1aMbJWyeRYOnwkACBgApnHw4BayoZxZTvN5W32OTasaL6SjkMlk6Ol00NaR/jT1y0M+YPX4Ga8kpG7SiZHxOw4xMz/ALZONVDJ5Di2mURoOvUDYQk7XxxEyjUvrpMNMyk70Gsr/drA5jTpVxLeHjCZ6L0v2v8GAKgIsK55BQDn+sS3UPddFLyHX2RkJRw395teP+qO2l5h9N7dyOaY2prs9ZQO9Zj6HBtmDttjWdSnjls/ro9DWclQyeRou5AwRiVbvOC/Jc6iDU4+HANkzj5Kmzgx14W4bahkfD+cL/GJm4XPD/e7T5cBCP4+HjcNlfjZ6wQtK/TVsFYfAGrLb0A1YAwAEiVRJZOjtrQMar2GjtF8XkLENilDw11p6PrOFHrt9Ko1MOQWED+On0LxhQ95Ztp8wLK0QjZM2swF1zo9ZfoR+mGqZHJo14UjclYclvsFocUqwqR42zWE7rso+J8YB/vDmfB/l2jjDwc3Ib4dz84KlUyOy2FGpv+9bV0BgPEZUsnkCIjPwPCCnvTapJLOUMnkMIa2QbeLjy1kyKHlihSkdSD+MmHz4+g8dGOJz2g99VlUjIpC6Ww22mDApjhUGPlop+Z74nrtI6hkcsi/iqf19gQ1h7GyEoeTd8DYrSPtSzgP7rfwDMhfrEDzBN43pNkbWnovM3QX3L5OoWyY+T7j2LB3dFp6LS/8CVQyOXaUpFjU8UyutugfIOd+vQrgtcmpeJTsw8zX2IWdO1c//etEi31s7iMm6dSOfvYfew74zQUxrw5lWC0AuBS5jWm/5Jd2KJ+utJBf5YAHtC9tYgRGFvSg33d4HyPnGkDZMC4Spvne2Oh5qs49Yz4n3U+haLaG7G2ODQPAsGElc/nnurZnGGxbteRlGNHesp9nf1laPWttpDB1ljPjF47n+vtKSFuQ6IuvD3mLedevvu9Gy3GRIzk27GLNE7qXdT+FknVs15jZDyqZHK0/T6F+0dy7rs2Pf82Gcefj4wHEf9NG3pbeL9jBv79jgnvQqI1ug7KR8VUi0w73u+aP1thUfJq5djFiO3SbQ5m1m+sdDpv6fETP4nlKXJqZwIuzUSOLsXJQuXWESibHEt/2sPVuTa/HNilD1aBIKpv7hgaopybRX4VsmBAO+zNgf7Ilul58QtqWydEitTGS929BwMSzcDrtApVMjurfvWgd7YZO+DNhLTk3P+bl633i388yiXi58MKM2K+//opPPvkEWq0WJpMJbm5u6N+/P1q2bImmTZvi8ePHuHPnDq5evQqNRoOzZ8/i888/x9ixY/HFF1+gRYsW/855iBAhQoQIESJEiBAh4t8Mwoj9Ewmd/+1d/MfxQozYK6+8giFDhsDOzg6LFy9GYWEhSkpK8OuvvyIhIQFffvklli1bhk2bNiEtLQ0PHjzA4cOHMXjwYGzduhUBAQE4cODAv3su/1/DcJ9o+1QyOVDfgG3exxlNk0omR5RmCO5MUtCcLRyE2npU2FnVuBt6EC1YchFhwXK/jWLaV+s1sHFqjKqBfK6UHxctB4wGwmDtSKM5bADQfDonQxxQ0PtHZjzS48/yxUgk/JwAeB+eiHOddlrMvXN9GyZ6FQC0Tq7GU0cJanuFoem+BpDY2tJobF/58ho26YlzdJ6cdo2L9KWSyfGFTyhaD71ENJqLeI0mN+eY4B5QyeSwP5xJfR8A4B2dFqbMS3RM98cqUNBvrUV997H5jJwB4OqkBNi29gBA/Avqj6lh6gnZGJVMbhGtS63XwPmnVLj8mArdM58coUa9YLECDaPzsas0Fbpw3kfGpkMQI9fff/mJfhbK1pR5CVEXntJry/NfRcWoKJjMToMb05SULUCvUqLBf3M1M39rYFiEXqX4eeN3eKwmOXeqWthYlKtI8oPLGT7aJleXW2/ztjl0n0Ryf0n9vKkP1eWorfhzxFIAoGsrHG+fsGgAoDmAZt0g15OunIQ2IYK2HfBTHLJrCAs4yqMzVhfxebCMF3LoOMwZVpVMjkOn9yH73QQ0lzoiYjZhYrpPmIRL77GRQW9MUzL1+2aTZ8pWf9fiGVbJ5DDcr8D1fUH0mrEr0ehmVPPMFTdfzo+Qq8v9DlzOa2xvDQ9B0BoSLbN39HDa52f552C4fYfIKTjQYo5cuwV91iH9a/LMcX5Ewd/Ho3kGeUHf/i2A9mV3ohVht56xy/mLFfBMd0SfsGi8/uY4qPUaPEr2IWfV/QqLvXWv8106t3UeZwAAv+/5CesvKvFuWaQFw2mOrM95zfuH5R1p+aoWNnD/ijBSRV8oUKPqBO85qRjqTs6BGdcJg1fyCc/QjPPsgqSyc5D9nMOwMgsKyBnC5RMUPuvl+4KYPcL91o1NpGXn52cx9UIyRhD2JyEC9icFLItgnvYnW+IHfyLn3v6dIfUnMnSWNqDRbpPKzsH32HhIT5zDzXf5CLthWUPJud+4EdwO6rHnWBTOhPyKG1OVdBw2p84jeFW8BXvTZdoUC5n7jjqPCHs+UqPp7GWmTr2BN2kOJ7WezQUmhMeQy2j5HX9Wc+UvR21F3lJi9fBL9PfMOzJ4VTxzXgPA0S3rsaIwxereYN6ZAuyrbMisk/9bfDTjyiF8pENJx2BazmNBCi1veywLLfc+AkBy2yGDj3hsDt0Pkcx7QyWTA0YDpBVPIA0OxNEt69Fr9ASoZHJ8XZAOlUyOVstSaBRU7nzn6v/2WgeLPgAgJGMEHCUk4qhNgwZwcXnE3FfJ5PDZTaxPbDrw+1S3ORTSFs3R+jM+19sn+RqsLjptMR/uu8M+8reJUXOF3hNaUBju3UOToby/K7cGdyYpsOcRnzv1ePB+tLJtyKyRSiaH/9hzFutmfELYvkanmsFzXgpCMkbw9x7y1ijC/gD+zAJAc3xyZW5E2NC9tb2NzGK+Fvv/qDuupnrjVAjPzs1qpaZlKrqQ8/REu30AgFVFZ2BXTnzuY14ZCAA0T2lB97r9XkX8d+KFGLGqqiocPHgQMTExL9RovXr1oFKpoFKpcOvWLSxevBhabd2OrSJEiBAhQoQIESJEiHj58U8lW/6/kND5hf4RO3v27F8XqgOurq5YtmzZv1xfhAgRIkSIECFChAgRIv7bIOYRewkRMD6LUNbdBtFrt38LQJr8F7isS8XTV1knZKF5g2Ox1ILOV8nkKH7NnvnePJMNWMAFBWiwN522NXrp+/Tzo6FRcO6jw6OhUbTtx/2JKZf/iXHQfc+bNBp66Enbz4x7pf4+AICC3j/SPm1btmDMBbgxlO4JBgA0nFeGrM8TYXs0C423p8FUW4u532+gfaj1Gtw2VFrMEwBjrmcOofO5SiaH4d49Rn5NtqTC+8Bk9HOsomWkx2XUwfzbwlSm/j5/NW4dCAQAvJbzBr1+bVEz2Lb2QNbniai9Xo7J2nyLdTGH0GTJHNNyr8LuRCsAoI69nPkUV8d4gYT2TXhmRmfen1qvQT9dNNR6Dea7ZtP7jtH5cNqaBrsHvOZJrdegxcoUZE9NYNpo9108xl8rsjC9eh5a2TaEg4qETm+1jJjxOJ3mE/mmyX/Bnc73LEzfaqffsWir/bfx9L79IRIcxZBbQM1guf4AALLmTHsxHV7DoaxkRMyOgyG3ACqZHL/ltSPP2rUYJkS69q1EzPQiZlDv5eYgtnUX2lbVwEi8PuQtqPUa9LxE9qD2aSWzfpxJImcuywVy6ZAxAiqZHM5nmqLFyhTGjPZgsDNxtM84RE0mbdq1YWU5IIcxGyvYEYIIez6txNAcPgE5AChnxjLfCwY5UWf5r+espQnTjRevosPX8eijeAMLBo/hTYmyr6HoCwUKvlIw68199j44iY5NJZMj+90EOG1Ng++o88gK2wWAmPm61ufNoco+ViJIUYB1HmdgevoUkjNkPg2j83mT4ZBedN3ujuf3+dhrJcwY/EafZ5534ZnGmbuam6heDDVhaSEJdPQwoBZqvQYR599E689SaTj7ilHEdDsnrBYAcD7+O/R+nZhvdrv4GD2nxCIp+zgqhpMgQ1EfxSLCnpiFS+ztmXHcilWgpVnY7WjPThbmUp/7hFHTWQC4GLEdABD08VUc8E+GWq+Ba0oTqGQkUIhKJkd1t3K6Hw7rzmDTsS3EBHV9HMp3ekHaojli3EKR13MjAKD597wZXVbYLmJKm5mEhUd3wvf9NAT8FAfNbP6ZBwD3r1KgXR3BmD43PsKH6H+Rc0Ct16Bxbz6dCABcnk76kTo7M+XUeg1sOgRBJZOj7GNivhvtTcxPfT8kZnJh9vUYk1kukIa5CW1QvQbUrFglk8PWuzU/1qPuWFDApxuR2Nsj0d+PtqHWa3AznjflvDfiEW3HdD4bmupqqyaH6z1Jf8Yq/h3C9Rl4lphuFn+uhP876cyYOXP2kC1XkfTHzmcmcuR8kNvzARysmbgCsAhoxJnTthqQA1+7hnRMru8boV3fCbqV/Dvbf3oabFu1xM1Isr9GXNXDf+w5agbJjfHtvbGIbd3FYr1j2naDxJbV65ubgj5K9kHVwEgcbWvppuKyLhVrA3yY8uZnTfE8NtiRWq9BySe8eevDrrdh6+OFFsvr0/u2Pl6QBvkz49WuJ8+e4v3YOsfLvWOFydYNPUL5v7N+4VP2BK+KB3qVwvvjVJrEGgCC6znQdss+5seZt02OADtHmnh62ZGtAABJ6gVqMv//A0z/4M9/O/6lf8S++OILfPPNN6ipqamzzMmTJ/HFF1/8ywMTIUKECBEiRIgQIUKEiP9W/Ev/iM2bNw+zZs1Cr169cOeOpdYaAE6cOIH58+f/rwb3fwkFi0hgAk4TdytWAYMun2pXmr2hRcBmomXnQpkLtTz3DFVQ6zWof8dSf/BgZBS856TCeNSDXmu8Pc2qNk+osTz/SQL93HAX0SBXNSNOrOuLT+PPRMIg1LN/ivxBaxht5IORPHNm0JGAFn1CVcTJf0cITVrLBXHgkK3YCrVeg33+agut28SjbwMgSRxLax9hlEdnWINwXosKiPMw19b7m7Yz5biyr456m14LiM2gc5Eel8HQQ0/lMtNLwdRXyeQ414loL7kw09LGjeHzgxG1Rbz2fm0AcaIPO2+0kDMASI6R0MPGrmwIaA4r/dqgei6fSHpaLtFIh5wjTJB2AwkqUDpHifhnCXVNyg6MPFQyOa6meNPP5gyUx0I+aMjvVXZMOY71a9jtJoY3umcxvidv8IEuzNdNJZMz2vSw80ZUdLlDNZ1c+agPYxl21DE6nxkfAJqoU/FBLBlX3LP1MJlQo+pE29LvbQtD9jUAQN5SUsZw6xYAwPmnVJR8qkTF6Ch4DLkMtV6DeV77GU24kNGYnjWMjkOW1ginflgD3RjCehxr70j2jB2ffgEA7EbcoHPTJkZQRo5jRnZ4H4NNuzbQhfNadY4Z8D06HpqOzwKzDHVmncLN5Os9/CJznws5zTl+G+pJmHVu/Vkqmq1NRe0RTyaJqVqvQcvvUlBbVIIbSifaZuGXCrT+LBW+Cy6g+HNeq6vWa+B02gUBkzMhCQu20M5zzIOxa0f0c6zCRs9TtC+3xSmo7kaYO8PtO0BUCIp382NR5fRF+z/u0PYyF/Kh0jcH8meYUCbcZ/e0hsjbSoJx3Ol8D0NzymlgIQAoXEj2wsDTccyzntFxN03VodZr4LQ1jWrM1XoN7CV2qGlB1vhkiAPqHyTnyu3uHoTVXbKa9iGRknZsQtqgffpIq6G/TbW16DQ3jnkOJR2DoZvqTfsckvcq0cQ/eEDlyiUHb7HKMmFtz7ET0FxKxug1NxXnw3dQRqPLtCl0b7dNGY3As3boNmUy7Vtubw+1XgPnZ8Sd8FlQ6zUYFZWKw4e380zp/Qqm7wUFfAoN/Qc8i2T+jvn8VjBN48DNyXDvHu6OV5D12BTHsPtui8k8kwvSmXbqsi5Q6zXoPH0KnvSNoNe97fgAHIfO7KdzkkTfpMFFVDI50weXHsQl5wnCNQZ0mToFVTcdaR9qvQazvAmjJG3mYnW+nOWK8N61Tk/RN/sePOenoHABa9FwKJWkEdF05JnszoP4wC/m85UG+tFr1t4bHgtTLJ7LnpcqYbiWi4AJZ9FYJ2XGVnu9HM3WpkLq543tbWQWY/fZHYu+3c/SQF/C8RjuV+DeCDa4UttE3noBABpG59P0K8Lrwr8VhNeFkPr7wGdNPu1PNWgs5IvjmXcWANTmF8LmJB+E49DpfTDk6Oh35zNNUdD7R7w66m36N5CthzsjI259+0T0QZr8F1rXZMNajNh6uFM2luvf7z0+LU9MjyGYn58FALg8TRBSv5gwZZKOxPonqF4DWj/pz73Yq71kMf+XEZyP2D/x83dCq9Xis88+Q1RUFFxdXdGoUSPI5XIsXLgQlZWVf93AM9TW1mLlypUIDQ2Fo6MjnJycEBoaijVr1vyPx/QvJ3T29vbGmTNnoFAokJSUBD8/v7+uJEKECBEiRIgQIUKECBH/MDZs2IAffvgB/fr1w6hRo2BnZ4fjx4/j008/xa5du5CWlgYHB4fntlFTU4N+/frh+PHjGDVqFGJjY1FbWwudToeioqLn1rWGf9lHbOzYsdiwYQOKioqgUChw5syZf7UpEQA0QzZQzZdKJof0mdWnSianfiKc3bK5BhAAnKUNoJLJ0WznBYt7t8LIZ46xAYi2TiWT4/1c4itU3Tscar0GId/EM6yAkDUCgNoGpP8qk4SOI1uxFe1W8slNAaDxtjSLOZb3Jzbg2lc2E61nFzlqN5L8ct7JE2k5n92EGSmfwYeM1q6OQMBkonWNsLfDBE/eZ8dcg/ZK3GT6Ocy+HlNuuV8QHg6PYsaqkskhPU7CFPeOHk7LzrkRAkMPPa2v/4jX9AIgIaED/Rj7dQAwPHiAahd7ZmycPLM6kkeuyliD3G+jKFNk6klC+tqcOg9zcG0I752tJLK8GGqCNMgfAW8T3xYuRL9KJoduki3Ueg38fyZMqk27NvCezfq4TdYS1rX7pEkM47LML5gp59rvGiqS/LA5+Cf0eJv3C8rfJsftyQrU/y3Dgp0Qfj98eDvaZZG5L2pBEnLffFcJh5Nk/SXh7eG0leyZqI9iGW08ABpeWa3XIHd5FBpvS8Okks5wTSR2+QBJ0MvJWTbwCq3/Ud/9eP3NcczYrsQnUBZDJZNjmPodqPUaKGfyrBwHl70NaFv6qIdQyeTw28aGjH+3jPe3AIj2FxGE5Znf41cAQNKFP+j9mLbdIDFL7Gq4d4+0PYasc7ssG7T+jE8gypUrn1E348BBkkrOgfTFiWR/+3nD1suTJlq1fbUYkjA+BHev0ROIlrdVSzT/gWdbrr2diIJFChirqqg/GTfmXT5HAQCmrGyaWH38tSLE6XJRW0D8CG1OnbfQgAvlBgBIu4iczltomZt7PTG0SYbVOmq9BtNyr2KCtgDSZi4WTMGJ1HbI7bGRXtsV1JJp49r4REAigd/o8/j6jj8rW6MBAJ8Y1y2eJMsdoFMRmR3NQufpU5g69e8baN/cj7GqCiVzlTBevIpLkdvIuXpOYiGHO50MzNxM57Op30iHjBF42PU21HrWD6bkUyXdn7rvohCny8XQfOJPx1lKACTcvkomx9YS8l4+vXINHZ/HkMu41ukpTq4hFg2r7pFkttWmp2hy9RF8fp+A8ulsUvovm1+CSiZHTMfX8frgt5h5qPUazPUOp+O6NJNP0+DzC5HXpgfEXzOtgx1kS1OYdQOAzIXEl1I7jvzeUnIGtb3CaAoLygK5NK1zP3HlnP64ispWUot1Eb5fVTI5ij/qZLF/AEBib497pwmzfGTrBmTKpXDck84kgxfKxnD7Dn1HC8cmXA/hvanO5A81r7n8WWzuQ9xoB2FrCiMe02vc+4eyktdy8fT1Tmh0qhlqP2NTXhwoy8Qn+ZbyOdaeZ+4r3U3UsoLrO3+JgvjcgpVv0Jp4+E9PQ05YLfxm8qzP/Pws3JlI2MwmW/j5qPUaeCxIscrmmb8bGm9LQ+6KKAtrhPLpgneqLh+HspL5PffrZrRYybNh1v4mEs6Lu5ZxNgC9/ZT0fa+SyVGe0ADaNWSfaVdH0PXlUqJIGzfG0sI02B4lvvsPRkaR+yWlzLtCeC4DwBMPJ3zuE8bsF4D8HTe6sDtM57PpGAJ+iqPtDAxoj/8v8P+pk9iQIUNQWlqKrVu3YurUqYiNjcXOnTvxySef4OLFi1i/fv1ftrFgwQIcOXIEycnJ2LBhAyZPnoz4+HgsX74cixYt+h+P6X8VrGPcuHFISkrC06dP8eqrr2LHjh3/m+ZEiBAhQoQIESJEiBAh4m9Hp06d4OTkZHF92DDignD58mWLe0JUVlbiu+++Q//+/dGjRw+YTCY8fJav7l/F/zpqYq9evZCSkoIWLVpg1KhR/9J/g/8bPHr0CIsWLUL79u3RqFEjNGvWDEqlEps2bYLJLCV3eno6Xn31VTRq1AiNGzdGdHQ0NBqN1Xb1ej3Gjh0LV1dXODg4oFOnTti9e/e/bR4DA9oz2iLXP8uphsR4mY9QpdZroFsVCVs3YsMt1Myp9RoYq6po9CUAKJulhO/7aejTZQCjwbQ7QmyXOeZjwDd/QCWT4+IHCVSDs6AgE37bWYbAI+k2VJcfYGpr1j+Ls+U3t/fm+gMAl0tV6DwjFqpBYwEANqc1VPNXEP0jnQeXNLjlCl4zL0xiLRyPkLnjwPmuCeUDgPbbaAdhXjhfBqGGznjxKv3MsVcA4L85Do9dTVT7BwB+o89TraTnPKL9m51H2J76v1km3RbKYqB7BPxmplFfCPNx3BunsND0CfG5K58ws1rWmH4WRq4qUK2HSiaH79xzkHRqB+Plq7RNQw/CYKwN8MHSu76wP0SS0db2DCOs07eWdvtp8l8QYOeIesmZ2PGQ+DPZ1avFFx9thDYxwqqsObw2bDwuhxmZa7K9hVji9SvxDUm8ijsTic+E089E43risQ3CsoaSeT0jD2LavAIXDfF74hL7+r2XRqORCeXM7eM9Qc2hf/8pve97bLxF2YDYDPT270z3I4cPyzui0Y40RqsOAPouvOmCWq9Bb2eeieZwM7wRAGBrG3eLdTTcr4Ah+xpdc/Nk3ACwrNU5VA6JhLFbR6Z+yxVkr92KVaDNuvg6WTHh/jHkFqC2sJhJtGrK4jWytseItrf2ejnzXKhkcsrScGW5/rjIkNf3BeHINhLRdM4fQ5Hoz0ca4xDzGnnJ3Z7C+8VwfQjLLrodiObfpzBMtvI9PrqZSibHSr82GNqwAobbd+i6q/Ukya7QR4PrTyWTQ3X5Ad+PyYSiXe1xrL0jalSdKMvFYW9bVzzpG4GHXW8DAB53u0HvnfluDZVLnC4XJ9esZfoLOSfBwbIseCxIwaqiM7TPi6EmRuO/ojAFAXGs/ypAkvxKmzihpSA65pV3eP8Sjy9TaARL/+lp+GLZGJosttPncbSc114yds6PVjVgDL1X2zOM9uu7MxZTnYugksnRzy0c6n1b4D8uiyZU5sYWtJZYPCSd/x2/7/mJ2Vt+22Px9PVOjAy5qJD+00gU3nGNb8Icuk1kHJJO7SyejzEenWFb+ZRGG1XrNYRxaM77Y6lkcuQt488pLnKv4X4FXNaRPXtjqhLOZ5oid0UU00fFqCjqX8SB24um6mp4fGk9CqN5efN3dF1ntlqvQcFiBW1TOIcWqY2xNsAHeVs7MuW5cpyvlWwJP6bHA4hPrt3vZ/GL7xHUe60IHRfFQ9o2AGq9Bv3cwrHQR07bqhjNnuf5SxTwmZWKlX5tmPnpRifi9m8BFvMQsuHC8u99+g5cfkxl5KRd3wlzboTQsdo4sv6zwr9ZONS7a2PBal2YlcDI2PwdahPCRpQ1b1/YFgBU/+4F/+lpNJqlWq8BJBLifz+F7LOAWNayQyWTo2BGO3zoxcsv9RveH1T4nmm5IoUmsdcmRMDuSBZMnfmxyJ8ZtNREh+NnrxPMGL1nExm2Tx9pdU4vJf4p/7BnPmL+/v5o1aoV/fm7UVpaCgBo0aLFc8udOnUKDx8+RFhYGKZPn47GjRujcePGcHV1xZw5c1BbW/s/7vtf9hETom3btkhPT0ffvn0xd+5c5OXl/VsEZQ6j0YjevXsjJSUFb731FqZOnYqqqips374d48ePR05ODr7++msAQFpaGrp37w43NzcazfH7779H165dkZKSgvbteTr47t276NKlC27evImZM2fC3d0d27Ztw9ChQ7FhwwaMHz/+3z43ESJEiBAhQoQIESJE/PtgMBiwYMEC2NraYuTI5/8zfO0aCQK2YsUK1KtXD0uWLIGLiwu2bt2Kr776CmVlZfjpp5/+R/1LTOa00QvAxsYG8+bNw2effcZcf/z4MUaMGIEDBw7AwcEBT548gcFgqKOV/z1SU1OhVCoxY8YMLF++nF6vqalBmzZtcPfuXdy/fx8AEBERgatXryInJwdubsQHoKysDEFBQYiKisLvv/9O63/00UdYunQpDhw4gDfeILmhDAYDFAoF8vLyUFRUhIYNG/4tc3jw4AGcnJzQtetnsD9NtNVCbZQ542NN26OSyfG4fwQ2rvwWvnYNif37Z0p4fkEiMwlt0YWoUXXC8Y0kt5e0bQDudmyKtKWrmT5KfmlHI8t9ebsNToXUZ8ZX2zMMJa/Ww8nRSzHumd+W8kINPne9UqdmkJvHrViF1YhiAFA5OBKOe9KRuzwKecNWw3dnLIyOBgRMzqRlru8LQqsBLKNkTUbWxqCSkYhuf+zcyNQp+kIB768vwvgsek7tEU8EOd3A927ptEzVoEg0+DWdWZuYXm8i6ehuWib3547wG00iXvV+fTgO/86b7Qr9FbRrw5k5WcPdtxV48kYFZAMt94e179auvXr5IY60a4TCnSHwGnYRNdHhqJeciZBzEqqt58bls3cKzXGj1mvQPn0k9blqmzIaDR2q4dxHB3MI+/wkX4O50yaj/sEMBGXZ0nxMz9vbQvk8b27W+lTrNeg1ZgKObuEjinL3bsUp4JrI7rMnb0RQHxmVTA6TogMkqRdonfLpSsoK6H6IpPKQ2NvDVF1t0bc1HwVra3LisQ26OxiZe3nfRCF3JO+vZlJ2gCTlAtPOtNyrVHstrPtwWBRSlq9mxqH/QEmjSz5PZntK0zDYPeq54xX6a3DyuPmukuajqgvdLj7GyZDnOzwL+wGA+bfaIqUDYcK0GzpRv0db79Y4dGY/HYvU34dGYgWAJ30jUNlSCpcfrZ8l5vOx5kMCANImTkw0QLVegz5h0ai9Xk6v2bZqyXw3nwPXprRFcxhu3IRar0HHhfGM3x1AoqQu8/kFM70sme+CxQpoxybStnSbQ+E/9hwzB/PP1r7X9gqD7dEs5C6Pgt97aS90bljDooIMzPHmo6IK94uwDcc/XaG74wrZwCvom30Pazb3obnChHKPeXUoDFe0FvLrHdgVkgONGL/c3OVRsKmWwOfj1Dr3aZwul7Kw1lA6W4nsqQkI+CkO3rNTcW+cAs6bUtn5SySAyQRbD3fUlpTC2LUj9cm1qV8fefM6Uh9ttV6D96+HYlmrcxYsDTe+/G1yuCTVx4efbcPa0f2BjEvPfZdLA3xh0ObR710vPsGpEJIPS9o2gMqLq3visQ2mronFpRkJVtfU2EWOCl8HOP9Expy3LAp+Pz9E8qGtdZ65A6/cwt62rpCEt4cp8xKkzs5Iyj7+Qu/TjovimTPheXtL+JzZhLSB8eJVi3rc79tTFLjf5Qn8xpxH0a72aO70CA6qAqsyVOs1WF/RkkaOvT1FgWZr+DPB2ntA2OediQq4/Jhq8Yw9NRmwt7IphjYkY/ZOnoj0175Dc6mj1fNf2K75GJk+3cMAowF3DwbgXo4LpDWAQ7kELitP4gT2o6KiAo0bN7ao+58G9zerz6ZPYNOg/r+9P2PVE+SPW/hvlcfUqVPx/fffY9GiRZg9e/Zzy3755ZeYO3cupFIpsrOzERgYSO/16NEDJ06cwJUrVxAUZGnlUhf+1oTODg4O2Lt3L6ZNm4bHjx//dYX/JR48IOYmMhkbarVevXpo1qwZHJ9R4rm5ucjMzMSbb75J/wkDADc3N7z55ps4cuQIysv5l+u2bdvg6+tL/wkDAKlUiqlTp+Lu3btISkr6d05LhAgRIkSIECFChIiXEibTP/fz78TcuXPx/fffY/LkyX/5TxgAGlExKiqK+ScMIEEMAZK+63+Cf+kfMaPRaMGGcZBIJFixYgXS09Nx7Nixf6X5F0ZERASaNGmCJUuWYPfu3SguLsbVq1cxe/ZsZGVlYd68eQCAzEzCOCgUCos2oqKiYDKZkJVFfKauX7+OsrIyREVZ+jpx17j2RIgQIUKECBEiRIgQ8f8X5s2bhy+//BLjx4/H6tWr/7oCAHd3kneuZcuWFvc4l6x7gtyVL4J/yTTxZcKpU6cwceJEaLW8qUOjRo2wefNmDBgwAACwbNkyfPDBB0hKSkLv3r2Z+klJSejTpw/WrFmDyZMnIysrC506dcJHH31E/cs4VFVVwdHRESNGjMC2bdv+pfGa+84ZjUbcvHkT3SI/gV0GsT01p+sBQmW/Nmw8NZfQf6DEpZnELGFBQSZmzJ5Kg1Dc3N8GzfvzzsOAJT1+K1aBp40lFqYN1nDvkD+c++goBX9jqpJJKCo9LoPuenPoum+y2hZnHmnj6EhN/rixjS16BTcUDyD180bOHBcEvH0WhV8qUONai4I31llQ/7qfQhEXdhIfNiVmHN7JE6kJEwC+j2emJhw4s4u64JXhQEMFc+Ypar0G3971gbqddTqcGxdXV2jGJ7wPEBNO22NZFtfN2zL/zCWUfl7/1q63TRkNx/o1aNpXy5StyzzpeeZpMW1egeEZ+1wXGDPNDq8h6cIfFu0K+87fJofPSI3VeZh/F5pmcfe5NoWmnXnLotAyxQTHPelW2zJv19bLE7WFxVbns6AgE3O92QSluk1h8B+XxVxbWpiG/snTGCfvvzITNcdkbT5WzhxOkwQDJPHqLBcduk+aBPtDmZDY2qJwbgQ8/qiCXXkFDTFtDs4kTtg3Nybthk5w1NaD2+IUZu4WcvFujdoCEmLb2LUj9F0c4P6V4HkP9MPgfaepCZB5G8/bl+ZlpG0DYMovxrVlHaj5JweJrS1Mzxyfy2Yp4fY1GcOjNyPRcHc6tBvDYHPfDnnD+BeoSiZH2a/BcBuUbVU+LzJO7l6F8TGGuvPKO+5cru4TjhPr1gEAdjx0xsbA1nW2p9ZrEHp2GE36zpkLVg6JhOMv/HwXFGQiwt6OqS+cP732zGzMvI+M6qeY6x3OjIHbQ88zn+WgkslRsL0DvEew6U9UMjnCzhuR1dGGmjNL/X1wN7I5nH62TFFiPi6ubfM2zcejvFBDzFKjQqD+dbNFneLaR5j0zPRdrdeg6ztTcOoHNnGq+Xlj064NJE+qmWel8EsFvD5NxeP+EXDYn2Fh3s5B930k8getQeD6OPguzbZ6/tU1l7/C/8REVP+RElPH78OeIBL+v/aIJ2xfLUbhAgWuTUiscy8LXQo41NWnWq/BjofO+PS3YfD9II1eM6/DoXieEp7z+NDxQrNE8/4kHYOx+NcNkNvbo9vkyTi5dq2FzKzJ8cHIqP/H3nfHN1X1/7/ThFkoG0paugelUFJKR1IEZAXKBmUqsqFVcE9UhooDERQpe4gsQUEQCgFBUGhLSyGMUkj3CrMUCoVCM35/HM659+SmPurj15+P3vfr1Vdz7z3ncz5n3uQzUeHjgsznhO8n1LTQsXz+1jD4jjrL2lVEhGL/D5sQkTECzQeayDup1wjkvFsXvqPOsnoNf2nOAvIAwLt5pzDPrxO7pub8lEfjgwd4IeE51NmXLhmfmt5z9Fm7ZQlo8540OMzLlztJglhZ7NX/E6aJPmvf/stMEwsmvv+nj8ecOXMwd+5cPPPMM1i7di1cXH6bXio/Px9+fn6Ijo5Gaip/Bq5evRpTpkzBqlWrMHny5BooSPGnmib+/0CDBg3Qvn17vPLKK9ixYwdWr16NgIAAjBkzBgcPkrw99x5FyalTp46kft26dbkyv6esDBkyZMiQIUOGDBky/jcwb948zJ07F08//fSv/gi7fPkyLl68yH3n9/X1RWxsLNLS0nDqlCAgtlqtWLVqFVQqFfr06fO7+PnNP8T8/Px+95+/v//vYub34ty5c9DpdOjduzcWLFiAoUOHYtKkSTh27Bjc3d0xZcoUWK1W1K9fHwDw4JGTvRhVVVUAwMr8nrJ/BJcvX+b+srNJ0APlfSGYgTiEuljCRANLAICKsAKD2Yg5/ccybRgAnI7cyp7RRLaO9J5IOMy0YXefjIbBbMR7+YLJZdkkIUw7DcxApT3GNxM5vqyPm+E3pmapXsvTNpjWdEazgyTU9IP+QpLODd4/Exo5+Wg3i4QP9Xk7BfkDV7H6aQ+qYTAb4VK3LgKfOYUf2zdkbbVdfBdJpacYP7bKShjMRhhKieaQhvml2rBWKW4wrSLtK1QqXH5Zh7LJWhQ8Jzh7W4pL2GeqDaP0lc2aEl5cXRkPVBumV2twLppoSpUOkptDG0kQiWvP6TjJLQWlpfLz4caRasMMZiNyF5A5oX+O413dpzO73+aJ80wblr00GgFHxgMA3roahu9KyFpRubfiJHh6tQYqX28WRnlAJkkwTKXBjjwrg6UO8nq1BoXLWzLe4nqPdColpNowgISktz0WztEQt9X2vVtQNhfCVlMYzEaW5BsA/F9O5bRhlBYtS7VCtHxlOxKmttnxJlC2ELSlBrOR04YpVI8SY4/PYHVHZF3B7adiEFa7LuZ2Jwmb+3cZ4nQP6NUaeKbWHNxneIMKThsGCIlX6+wl/bNbLPCenQyXY0ZUdGzJlY05U42ZOReRWHiM04bRtvVqDcyv6RA08SQ8PiJhqMWaQEeeLfmFUIYS23eXX04zbZjKvRU8UxvAeimHacNc2reFeWc7Mu/zhMATBrMR1b0iJLwAj+ZtPUlgmvTjNtiqqjhtWPbnxATcbrGg5E0SSt/9RBV7TkPIB03IQMCLqeg1diK6nB2G9RUtkfeRFh7DMmEwG3FrHNFmmV8VEq329RUSb+vVGpR8FypZ1zSpK9WG0ee3QhvDYDbiyQX7oVdrELgxHqMalsNgNuLqDLKvP87n11+R5S5aT7st7O9DRKMq1oblbtbgHd9IxHXoAQDI3xrG5lyMiNM2pg0T89zl7DC84xsJl0fvpYoxJACLM22YIjyU9V38B4DThgFAp3kkHH5GuAvKx2uJNqxxI1yc0YJpw5QBvhwvBrOQisH/8ASELE/g+BXvbXss+axObYjkjrVhMBuRP8gVoUsSOD70HuGY4tWFa6f+zhMS/sX9AkhIebE2zGA2wudtEqyh3q403H0ymmnDHN+Pgc+R+fF5JwXWigoUvaur8cym/x3DtFPQs2vQhTIUzdFJnuvVJBUChTiVxZzJG/FdSEu4PBICq3oVMb76+cWg1/k7ULV2R/BaIXVBzmcxaPOEkAtJPCalr+ugbNYUvcZMZP0pt97DumBvpg2jGJbT2+nYeM1JhuKwB6N9+q1E9nzvvbpce/v3boKmTh1cttxl2jDxmDnThhnMRrhtTkXmc4kIWyishbtdyZfh4F/GcTTE2jCD2Qh7Rib0ag2aDzSxctYLJviOOovbY2MQ9ilJ+SHWhgFAbF3+6zC1uqHQ1KmDOvvSWdj8928I4fP1ag36XuzPPud+ygdBosmtrz2rg+VHL7yWSxKkL2x9ir3P/+dAQ8v/FX9/IpYuXYrZs2fDy8sLvXr1wubNm7Fx40b2RxU4APDmm28iJCQEaWn8+3nJkiWoX78+evXqhTlz5mDJkiXo1q0b0tLS8NZbb8HLy+t38fSbw9cXFBT8LsIA8Rf7v8SiRYtQVVWFJ598krtfv3599O/fH19++SUKCgpYMI/S0lIJDXqPBvH4PWVlyJAhQ4YMGTJkyJDx9weN8VBUVIRnnnlG8rxbt27o3bv3r9IIDw9HcnIy3n77bSxevBhVVVUICQnBunXrMH78+N/N02/WiOXn50v+Zs6cCYVC4fRZfn4+8vLy/jPh/wL0h5GzEPk0qZrFYkFkJJFup6RIQ5empqZCoVAgIoJIb1u3bg0PDw+J7SctC5DM3H82bGcvsuSjAC+lzllEklHGdeiBhwe9EZKhQssvk5nkKecdEsXF0W5Zr9ZAcdwokRgCwNGwetCrNcj7RIsG24l0kWoB5uZloOmFe0xSZesi1BfTKH1dmhD5yvPk3uWXBcnfL1+uQH6/1biuu0Xs/Z+0cfwCRLsiDgutV2vQL5AkI33hjRnQqzXYl8fPiV6tge3sRcR5ELvuWkeI/11cWE/GY73vBUnGzT1BMC1th3bvFuO13HOwWyxovfCRbfv3X0PZWJptXfmTGtd3B6PD4kcJTc+RADRiXzcACF4Xz11bKyoYD+XjBT+Tll8mI/8jMs8qPx92/+oMHQrn6mDJK5DwUDk8mvg8WIDIt+NZ3wEgML0O9OcrYDAbcXj9aqfatryhK+A/hsxRRrgLhnsSjYPlylVJ2ZxJaviPJdrEPaFN2H1HiaXBbETF52QeTcuj4PfjRHbfc7jgn7M4aS3Hrxi0bWtFBfN9BABEdeDasmbnwXqjjD2uydeh6F2ptNmxTn7f1Six3AUAHFm9CndHxGCz70/YcOp7VrZ/7GAUzRbW9v6ik9yeUrm3wvZxvVEx5C46po3Glx8+ia+Lj3Nz5ziuJTF3nfJ1Z6Q0KJAjz3q1hiVpvz8kitf6uShxZFYs3jw/FP61GnB71bQsCldeIJJ8mgwWALrGT0Xhtg4wmI1MW2QwG7GzRNgrWTMacYmdAbJeHPthO3+R+UR6v5vCeH77WgeWNB4gWjuKLjOmsSTRztar8oGC3fNeSiT7NGG0OrUhN//ZGzrhx01r4do3D1vaqpEtCvveeEMKlD+poV5A+q5s0QL7808gMF0wO8/UbpKsTc8DCqbRFkvs3baQZNHPNi5mycd9d09FX6/OzGf29UcaN7oXpnh1wd6M/dw9gKR3YJrcR3sz94VgLC88Bt9RZ8nZXUtIaq2I7ID5rQTJP+XJYDbienorGMxGXFpAcmG6bSZ8tksUtAkTLhGfP/tpsjfLn5EGrnLUfLRYLoSMr32H7HXrrdvIe0LwzXJZXSUmgejX41mS+kjfQnjNExIBKzq3Z+U0HybA5b3riMgYAXPMHdx+irzjfN9KQXVYJT9edjssPSKgV2vgn16XWzMGsxEP+kdKfHUcx5uOmfhZ65m57LN4r9E6voZJKH5HhxvTtGh5yiJpI/fTGJhWRUqsMcQomqOD9UYZDGYjdrdrhlp3+DZK3tKhaHsHLvz+vn1bAADVvSKwtnc3KEMCYauqwtw83j91X14qfmzfEHsz9jNNHwAEvJSK20/FoOB96Rx7fJwMa9lNKI8IofdHtXF+bu4IIJoBmlCaIndTOOw9SpnmVa/WsPnpX78KDw74AAAqRsewMZ0Y1AvXrLx/OH1mMBvR9tjTcIbWC4X1QzW2lx7bIKFDP/f16ix5ZjAbcfdJsi+nvP09qlranZ47jvQc4bt3Cvk+dPYiOnyWwNIL0Hr5KV5Mmzm8J/muMiCznKPZcmkyDrXbjU/8O3BjIObH/4jULebviP/VqInr16+H3W6v8U8c8ZCW7d69u4ROWFgYdu/ejVu3bqGqqgqnT5/+Qz/CgN/xQ8zb21vy16RJkxqf0b//S7Rr1w4AGSwxbt26hV27dqFJkyYICAhAQEAAOnfujO3bt8NsFgIfmM1mbN++HT169OAioIwePRq5ubn44Ycf2D2r1YolS5agcePGiIuL+z/tlwwZMmTIkCFDhgwZMv7Z+K+iJs6dOxfz5s37P03a/GsoLCxEp06dUF5ejrFjxyI2NhY3b97EqlWrUFBQgKVLlyIhgUhzkpOT8fjjj8PT0xMzZswAQOw8r169iuPHj6Njx46MbllZGSIiIlBWVoaXXnoJHh4e2LJlC44cOYLVq1dj0qRJf1ofaASacpMfngzuhOJ3dLjvYUHQdEE6/WtSPb1aA5WHGvbKSjx+rASvNs2V2F9f3x2M0X4n2TNKL67bMC4xqphuzKvTkbpgOcIWJqDlqSr8uGmtpO0pxbHIndWWk3zXhBFZV7goa/cHR6HCS4VWS5Il/kNi3rO/iEbeEyvgmzQZQZNPsmdZD+/hBR8dKzf0wnV89f5AuG2WJi4FhMh7jjbp9L+zSJW/FwYzn9j53bxT6Fj7IUuaK56XuA49YC27CYAkf87tsU4icQ1dkoD0Zxfjid5jcTe4Cafd+yNw/bkFKrtel/D8+lUNjOGQ3BfDmZ8XQPwevtg5AD6ziETWMRocTcbrjIZpWRTqXlHBay6/BkIyVDi8OYppKwGiUZnbgkjzY4xPoFEc8al4EBeJI6uJP2HPpycxHxwaVYy2y/hxkpCXSSY9wp2K32gkwryPtPB7IwX587VMo2PpEYFDG9fAN2ky8uNWO9X8OW3LSTmlmxusFRVQtmgBW0UF7A8esHFRNm/GaQUBoPQNHTw+ToGiUzvYM349SiBNWF0TDy7t28J2/iKuvKCD++JkLkKkeG5Urd1xNc4XzdYQbQmNqFk1MAp1f+DX5+2xMWi0iddic7QeRSd1vF8TzDvb4Vz0ZqG+jxdid1/iEkc77uui7R3g9eQ5vJZ7Dj3rWdFj3CTJeWVaHsWdtwDgomkHm/GCU5rO4PiMjvFjz02DW1oJLCXEeuPySzqcfSWRlXM8q3M3hTONtOOZQSMj3h8ShZ8T+ehzv5a0WffidDT8RpiHJsebojz2Jorf0XGR3GhdGuVW3G/NhwlQ/3idS1rvrC29WoOk0lOI8+gEZWgwrJmXfnXc7oyMQcNvUiXvOIPZiA6LEqBeIJwNiohQ2DMyofxJjaTgJHQ6ORItBl1i9RQRoXD5tBzWx80c7wDQP6o/9qbtBUA0G/n9yZlBI1rSqHYPDvjgSPvvAQDdzw9B/Wdd2DvS2buDImDzdHSKycbtLmUoeVOHhsU2NNqYCmXjRki6cNSpHxT9fOOHIGREbPuP6x8Aimfp4LPiEnJeCWIJpgE+6TY9pyjo2UGTVKvcW8Fy5SoAQOXdBpbC4pobjOqAPTvXo5ZC6fS9ubU4GaPa6FiSZjomjhESQ5YnwGteMu7u94P5chNEBhbgdpcySXO/dj4azEb0jx3MIrqK78d1G4akozu48Q04Mh453dczes7WYb2jrXC/GxmL7C+iETjzhIQPZzzdGxaNX75cwZ739erMLCdMKyIRNC2da88eS6yTxGsmclY8at23ozzYBV5zhX34vxI10XvVO39Z1MTCKe/9bcfjz8Bv9hH7O8Lb2xtpaWmYN28eDh06hK1bt6JevXrQaDRYuHAhhg0bxsrqdDocOXIEb7/9Nt5++20oFArodDps376d+xEGAM2aNcPx48fxxhtvYOnSpbh79y7atWuHrVu3YuTIkX91N2XIkCFDhgwZMmTIkPEPw/98+Hp/f3989dVXKCkpQXV1NSoqKvDzzz9zP8IotFotDh06hLt37+LOnTswGAzo1KmTE6okIMfXX3+NGzduoKqqCqdOnfo//RE2NIjY97d5Lxn5g1ayKGtUqiK2I6YRzSiy3moD663bLOeFuB4AtBh0Ca82zUW7pQlAFGkn6q14XF+kYmWvztThswJBitZoE/EzaL0wGT9uWou4sJ4AgIcHBXPTouhKPGws/JZ39DEQS38mNbrC3au3Kw3GN4lkWCxpsj7eCVde0CGuG5m/wJnEf41qw5YUHoffzml4wUewazeYjZjeuJRpw8T36XXguFOYcKkQerUGL+Zk8dqwhg2ZNsylfdtftR2//ZTUp0csMbNmZbP78/w6YbhnDHIXCnVopMGkc4dhMBuxqugYAp46zY1BieUu9GoNPD9MxlDPKFizsmvUhpnWRbCIfwqVivWBRoukyP48BpVdrzvVdDlqw+h9APD7bho6zYtHqxQ35lvF4KLEs42LmTbMYDbC9dsTMJiNyF4fAYPZiL3Hd3FrV9zPoPg0VLV5yElZDWYjsiIsOPtyItdUasdauPHIx4BqwwCgTlI6tK9MJ5rhQxkomkO0pD7vpDiVqu7N2M/aGXuxBJ8VCOVopE3HNZR0+gAZi0dSZqoNM5iNUB3OQFzH3giafJJrL3++EHGP0jOtEnxZ7oyKEdo6RBJEWiuIr5/1+nWUzoiAZ2oDVj7p7CHJvvL4KBmw251qwyaZ8tHoWDPMvd4O9w2+UKScYdH4/LdN5yTH8/PTYDtP1r/7YqKByOuzBuadxPRbr9awaG97M/ajxabT7P78M8SPhGrDlC1awPwqmYOmhmx0O3uf45m2m/1lNBedlM6/XduRixonnguqDVN5t8GAzHJYCorQqX4B50tF6XdMGw0A8HqSRBn8xJ/4Hc5asV4yVkHT0zD6ohCdFIBEGwYA4R8IEQAd/Wa7nhsKlXsrqHy9GR/l1nuov+ME04YZzEa0/kyQfPvunirh23/sackepTxE1SFRZ+t9n4a4cBIemfqBBbyYiuwl0Xj1SjhXz/f7qUheRPKsPYgjPsDlsTehqFMHbd5Lhsq9lYQHqkkWt218MxGKu/cFPkW+Wo5zS312kw5+AwB4qqA7K0fL0nOQ8gaQnJAUEXPimW+fb9JksjYySDRMGkm2xSCibaP9smdkIik4SXLO6NUaXNV7sXMoaEo6+3yqM+HxQjw5b1yfqWJ1jrT/HklHd9T4PujXZxQWl/sAANYOW467Q11wf0gUPD9MxtGPlwAgPnXRrwv+w/SsFmtaaHQ/gPhnO54/ORvDkf0liWx84dlEPJt6nNOGqfx88NzF0eya+klSsPfCL6dxPV7LtGEGs5HThjnrZ97wBogbNZk7v8XnWBNlfdbPgve16OtNIo7W3ZOGuG7DWJ2s6YkwrYrE8bAdCJqQgdtdyrh9PiLrChsXZ/xceZFEJZ1xcD/HH9PCHt0h4T3nUV5TvVqDWkdac2felRfJeXa/21W2LgNnnsDVGeR+n+FCEIf2n5M99mbuWcaTXQH4H5rAeKbaMIPZCG37HHZ/eBaJYntg+3oAQIfPEtgzuwuQ/NlyZE1LxJu5Z9Hr/B1EnOZziv2dYbcr/rK/fzr+53+IyZAhQ4YMGTJkyJAhQ8b/GuQfYjJkyJAhQ4YMGTJkyJDxF+M3/xDr2rWr5G/dunU1PuvatSu6dev2f8b4PxUGsxG+hkm4+BkJ9StWp1M1vNgB2mA2ImDzA4k5g7N6F55NBNLOQfvydDRZnwLl1qYAgO6TpqDVF8l4yUfL2rQ+3omn1awJhl64jtq9C+HSvi2jX/n0bdZu34Fj2eei7R2c8iPGpjvNJOZWyp9OwX1xstMgIpFGK5596jnkDRXCJ1O64v+ObVHa64KJ2dCigBBWdnFBMmx37rCytvMX0em9eJgSoyQO5BVjYpD6iWBK48hDyVt8GGBaP2f0cujVGtwfHAXrpRyOxyleXSTlJ3l1YSZO4vs39wQBIMEFKN6M2YekR+ZhNAGs7fxFlHYjW/tagg45G8MR+HwqGv7SHHq1BmWT+ES1zkCfKaoVaL23GFe1FfBUNeCf26zQfCiYa4nnIHB8BuJCH4c+awCK39ax+47rlAa4MJiNLIGoIw8UY9vEOl1HKZ8Kc+I1J1liliSGmMdNbT0RWpsEevDdPxndzw+R1HFcT7eTiElV8Mla0Ks1uDc0GtVtiWmhaZkwL75vpUAZEsibK/ZfxcaJJmDXqzVAT8FEL/RLMp7qT5PRqk4F7Friv1r0yFz1xg9BLCACRfDJWpIxWRPki9tdypDcsTZsq1qSc+VR4tPcEcs5czLq5O84TjQsPQBkTU1kvNuqhJDlR+4JZtLUrJKalFlvlHGBNEzLonB3vx8xA3pOCOgyPz+NtXn19Ye4HSKkkXC2ly2Fxdj+lh4AMPedCbBXP2TPKN5tt5erp4gk4aI/8e/A3TeYjRiQWY4tbdVO2xNfVz52l91zOcY73rsOvYq9pwzYe3wXVL7eMJiNkrDgerUGV74PEUzkHgUIcVznE4oeA0Q5OB3POJWHmiXuvpAgmPDmDV+Bs53sXL2ghDQEbiDJsy/HqgTTqgcPAABjjp6UnMGOZymdd2pK6pnaALmRgglf1sN7cIa+g54CAFzX3eL2UcXoGHTZfo4lr6f0A1dXszIZc4h53ZLC4+jf8ZzTfU/r1UlK53gXm0y+cLkzFhcks+AyAPBQ3xmtUtzwUN8ZerUGfjunMZqWy1fQ16szXszJQv9OekbvxZwsrm29WoN9B7ZiX2hjAEC1XYmcJa2ZCXkdRS20z3CBMjQYjb9OwdAL18l79fp1xlvfwU9z9GbmXMRsvwju3a1Xa2C3KZA3bAUCj4yHXq3BFwFCImGD2QhLXgEe7GrJ0bo6U1h74jQlLZalIHtpNCvn+I4T0wWAJheISSPl5aG+M4KmpDut4/N2CvYXphGTbU8PWLPzWBt9faO5egazEebHm7B2xIG8xGuClj3zKlnnz+6ZIJmHsFMK6NUaRL8Rz4XMp1AG+aO6+2Wur20G58MZqLtESS9XRuP884nQqzWIPzUWr18lvLl+dwIBT5/m6hrMRnRNmMrdW5zZAwazEb3GTARAznVKt9kawSz+Q/8w/Ni+Iea3OgulW0P8z8D+F/z9C/Cbg3UcO3bsdz/7v07oLEOGDBkyZMiQIUOGDBn/i/ivEjr/p7//64TO/yTsNBGncr1ag6AJGWiwTQg8McmUL5HMiz8f2L6ek2JGzImXSAiXFB5nZdy2EGl86ifLUfqGDnX2EYlir/N3OM0UrW8wG2G9lIOd7Yij8b4DW1nbpyPJZ4PZiP0/bELVQOKs6/XkOYlkS0wPADYEt3FahsJRe5KuUcLlFyGwBU2I7KwuQMIP69UaLC73gcFsxN0R0kAbjV2kzrGDpx9F905ZHK+AkCh1a3EyVz53E3GQf2LkUeYE7EzS+POylVw9Rwmk+NoxRO/6omNI77QNADhJ+tRGZrRPHYvvSoTw1IqIUAS8SK5bJiYjtwfRXN957AYAoFlmJcomkaTSuQu00J15iIa/NAdiwhiNIstdxF2KQ8BLqdh7Yg8AaXABg9mIVkuSoTvzkOOdOmEnZf4EQ8getHmfHy8AML+mY2uzcBsJpLAj4CD6PPEMo0/buPED0QRSLa0jnM2/5UcvLkCAwWzEvWFEEvzC5c5c3XfzTiFo4kmYT7VG4dyak0IDQqCQS51JguL6O0/g4DdkfPMHk/mlc590aPuv0qJlxcF3POcLY5UR7oId21dgeeExpjmljv1xHp1Q8L4W16drcalzNZcYmrZP++v67Qk2RhFz451qjSmo5F5MByDjFPzLOHZNgw60rXNZoi2gqHPUHdlfEB7iOvZGUHwajoftkNCnGjmD2YgzUVuYttCRh8Cv41nderuI5N1tSyqn9ad1VgYRzdv16UT7a08/h359RgEgYfVpcmG9WoMZTcheE2sWqwZEAVEduPapRpG2oVdrULnfD5df0sF27x6jZ8kvlJwdFI1XNyTaqZd1Eg2UytMDAJDzSTsWOAYA3stP52jsTScBKSKNVk77Q+lcnaHDg/4kgMW1Z3XIHrcMerUGlyYsQ9B6PvE8PYMBkoQbAGyHSPLwoReuY3FBMvrFjWHlK8bEYI0XL3gNqV1f0tfdpemwnzyPa7vasvEq/rY99GoN3LakYu/7j8OSV8Dq5S7QQpF8htXPr74Lg9mIoFquyI58wI05/S8eY71ag2bHSV7Tgm/CWJ8Wtz7JpTnRn6/AT+tW46q2AvUyiFYkb+gKooV8hP1FJ9G3/gNOk9S3/gN0mSlozigo3c969oep6wahfP+xOB9hYwFLpjcmAVsUtWqj/RdE662o5tP+9KpHLDNowAbah8BxJPmy3xgja5OClmmxnATvUIYEonCuDq2+IOeIrVs4V85gNiLwWUEb/cLlzmz9UFxLIGfz0AvXkfYhnwKktoFoUNcXHUN8NjkLS9/QMRqdTpKAZpaSUkbzwL1a2J9/glujHRYl4MxrfEAm9t2jcSM21jRoGQCY1nZG7ojlXFmD2YgF7mSvNN6QgivdbOz9Q9uymnKZJQHlIfcnXygD/QAAfgcnSs5DmtZBzLPXk+fwcSv+PS3ee3q1Bj8nrkTqqSB2/4JuI/RqDUtIT/mufGQZUPCeVrKHH2r88L8AOVjHn4ffrBH7v07OLEOGDBkyZMiQIUOGDBn/FsjBOv4moOHrAcCuI34herUGBd+EYU2QL9MKAHxIbKfaAFepBCGoliv7rPImEk+/gxNJCOxHdEyV7gifn4Ci2TpU7PMHAFydqcOR+8IyMZiNzKbe0bfggb0aR1cQrcCNaYK/WdgphVPpsCNMKyK5dpiEd6YOgRvjmSSuzlF3oklYV8WVF8NgNrLEnPtCG0Ov1uD44uVwqV+fKzP+kabh2WwTG+PkjrVhjrnDlQOIFsf8mg5NlLwEmIacTu1YC9+/8AmTjlH+cxbxdutiLQ2FeB7Lx2u5vujVGkx+bDQrQ0OC0za8xhdjuKcQDt2ekYn7Q6LwWi7RspZbBR8OW7dwIPUsTr63DAazETljlyG5Y22iLUsVJP5TvLrA+rgZtm7hTGIXsuimhK/FBcno1fA8N062M1kcfxSKyA6Ye70dDGYjzr1ApKGa08DD+7VYeUXyGcm4TPQn0t4fN61F9gbBd7F9hvT42lZCfEFUvYqYTwWlU38HkQRnRVhYeYPZiNi6LkgqPQXfN1LgPTuZta9q44mC98hcXN8djMsv6VDyXSgAou2haLeMSLjjug5lbTn7Pyi7LwAwDVjEaRv0ag3arCvixg8g/oD5W8Mw3DMG0727sLkU+y76vJ2C1gcuA4AkKS4A/PLlCo6uwWzEA30FAODe0GjJ/gXAtN5isPZGnoVpHUlLYL1OEoMvCgjBF33joPJQQ6/WwD+9Liu/O3A/S5BKy4vXQ58nnoGlRwS7dtRyKJs0Ye3fGxqN7KeXcfzQsn7fTuPqPT5xCvt86t1lULq5QRngy0L0py5YDvtJYc0GboxH9hfR+EKdDlUbTxjMRtS+XQ2kkTGnmioxaD9c++ahzRZi+RHz6nQAQPZXvOZ2bp6QQLrRq0XQqzVcsnLKq6WkFIrwUPzy5Qr09Y1G8Bpy5r3jGykpq/eMwIkyH27clAG+AIBWS5JxZBVJWHx6FvFveTknE+0/T4DvW4KvlOP+SdcocXOCFi49i2EwG/HZ7kF4wUeHWx8KPsgpny7n/W8eaRXo+K8qItqyOopaQEwYWg4mY95t2lS0eYKMOVyUOL6Y97UN2Manxpju3YVbD+/mneL2E52T4LXxbFzKYstJ5RxXrCk6Br1ag+/uuiF/S0dG56WmeTBVV8K0PIpLkC4+79l4tmqJuLZd2f0H48vZc3E58vAhK2cwG2E/nYkbU3lfXIPZiP2FafD4KBn9/GKwL2kzq/N18XF0Wvo8DGYjMsJduDpXXtBxe1Sv1kAZ6Cd5hxjMRlizsnFxSiK773KU92Ny/L7wsXsK1w+D2YiWieQMnN64lNPWGMxGlnZjvFcXLAsMwK1xWpyfmcho0HQAAGCqJulGFgaESrTg514UtGGtUty497311m24fkvOjTVexxjtsZ0EzT5NaaBXa+C7ZwqjFfJmNnv/0PYMZiOzJGDarbnEDz13gRaBzxDrn8fOVpF30KNw/4jq8KtWK87GtGv8VOQNX4G+/cey+8omTdB5Nlmncb1HQhkSCNe+xH/O550URuOx58j3qt2rN0ra+Fvir/AP+5f4if2mH2JXrlz5rxu6evXqf01DhgwZMmTIkCFDhgwZMv4J+E0/xPz8/PD666/j2rVrv7uBvXv3IjIyEitWrPjPhf/FoD5iBrMRiuQzuD2WSJ58Rp6FslVLZERsc6pBcZTSVOzzx5lXE7nn4oTC9w2+sBQSiWfgMyTJMcWqNsfR8stk+Hx8Cm79cmEwG+GxPQ/d6wl+VL2zBjqNWnjgXi0M8hASPWbMFpJKLnA/7ZRfcX/Mr+kQNI2PfkWx+Pnl6N+TJOFsrWqAB92uQK/WYIz7CU4qKP4vlqaKaSpqC34go/J7MN+qpYFBcJ9KtAUtkhtDDMqL+pNkqD8hUY86vRcPlacH80GhZca88Qqrx/wfRhLpL5VsBh19xqmdOf3cZL2QrJNCnHjzreaXuLq3+pHEu5X7/dB34FgYzEbU+z6NRYgb1UaHB/2IVJ1KSMVaO/E8VA6PRsl3oZxEVeXeCkvKvWG9lIO8zQLfUCjwyuOjMc+vE6NJJbW5m8KhdHPjaO/f9TWSO9bmJLDGcKBOfl3Wl8J5WrT/IoEbjx86tmb093cjiVL7PDke5yN4/z6D2Yij95sx2tSnwtl6o9eUlziPTlyy1YIPtLAUl8DnHRLxrMWgS2j9WTK6tCHaj92BQmLRfkNSkf+hFtYcIRJXzmcx+KwgBXZtR05DBADWzEsomqNDWH0ypwVRgoaTlm06wATfUUIC0c969gcA5A8hGmfXnwmve499L9EQOWriYl6bjnvDoqFXa+AxjCR/Ln1cGAdxu2LpN62/9x6ZnxtTtcjXr4FeTXyjKJJ+3omiLxuTeY+sQu/REyRry5n2rbSbK1SHBW0Rhf83RLN0bVhbzL8RDL1ag4aHshC6REiGKgbVuu2uJJrqn9YSbVBc9+HQqzWwVlTAmpPP+tX3Yn+u736vpSDvCXKmVYaRxK/3ZwnRYGlCZoAkUH+o78yNleUyEVQ22vTIt62iFjd+s/0iMCCznGgkuwlCzbjwPpLz2346E3q1BvYHD5i0nI1Lel10jZ9KxrUkAwdDfuCe0/VnMBvR8WNhrAxmIxYGhMLj42TOl5Dunwf9Itm8pH8g+ASZxhGt+Y0zLdFjvKCBoNYSRds7cJHxAKJJd6lfH3q1Bp9tXcHu04TfAKAM9GV80nWyf9fXAIDFBcm4lqBjViF5n5DzlZ4xlF5lmBouHUPg83YKTCsiuT3uMysFY2a+BABYGeQH39HE9yxkZQL0ag1meMciaHoa7u7ntXlixJyphvXqNVgryDvBd9dUNB1ggiOohn5vxn6JJUTzlSnIfHifu0/b2peXyvWnpdIVmc8lcnvYpSOJsHnw5QWI60giylL/MRpVWLx2nGlrxBDvbYpBHpFsjMXlxP0IPDKejMHeKUj+jNeINt6QIhk/vZpEBw2q5crul7ypg99OQXPt99001sYG75/ht306xyPF/nt12Of3W54Tzse0WojrNgw7S9IQNDWd+Q+bZgVzdJy9Z8VnUc5Y4XvKL2HknLNbLKTc91+zcrRfjutEr9bAtFywUvhwERmfhy3qofhtHTq/Gw9reTmarSJ72Zp5CdasbADEl1tMj1owiK2j/t5Q/IV//2z8ph9iL730Er788kt4enpi4MCB+Prrr5Gbm+u0bGVlJY4ePYpZs2bB29sbgwYNgkKhwJAhQ/5MvmXIkCFDhgwZMmTIkCHjfxYKu93+mywwi4uLMW/ePGzZsgX37xMJrpubG1q1aoUmTZqgqqoKN2/ehNlshs1mg91uR1hYGF599VWMHTv2P1D/96KiogKNGjVCdwyGSlELqjaesBSX4MYPQcyuWYya7JTpsy4zp+HYFyskGqjKJ6KZ3bUzSREg1Rw40qD3L1vuoq7CheXJ+TWeHPkWl1V5t+E0PWJceVEH90XJyJ+vhWk8H7nJYDai7aoEeM8mfhYhGSrO70fcnsq9FSxXiFksHVuA+OkkHfwGHRckMA2iaUUkgqal18iv49g4jku/PqNYREnNhwlQ77uMphvKcV13yylvymZNYS27yer3jx0MS36hRGvoOLZsTodHo1HGZVgKipyWUwb5I+nIdwj9MgGe85NRPl6LtPnLuHJ3n4xG/csP4HLMKJkDOj+U9t0RMbgZ4gKvuXwURMr/2YdVeNUnhrtHx0pRqzbs1Q9rXCum1Z0RNPkku47PzsGywACOFq2Xv6Ujk3I7jsmqIhJhUOXeClcH+KHZakGrcHUmiSZGy9q1HaFI4ek49qlGH4GoDjBNq4OgSSe553G9R8KaeQnXdwejxSCS78/vwCTUu1QHnh8mA4c8sT5wK/NNdGyz67mhqKeX5rj5tb3yn/Bx/glkVHlzuXpKvguF5/BMrp+mtZ2R33c1+gx/RjIuOZ/FIOAlXopPxyLn63CWU6fe0VYo/MYfp99OZGUc5/z22BhBe/QItm7hTFvr0rAhVmXug6eqgaQ+bbvz7Hg0W5UCRef22L97I8ePwWzEiLyeyNoVzHKaGcxG9POLga2qCpX7/eDaV4joa+3eCT9uXouwTxPQ+jNphE9nqEkL6Yj7g6NYhEe9WgOXhg1Z3kKD2Qi/HycicJyQE+4/7X3H+42ONcPtLmVOn4mh/EkN6+Nmdp27QIug+ReRlPlTjeeL47VLxxDO/+Y/jcVjZ6vwS1hdqHy8YCkQ/CBTq6yY7RcBlYcallKzhJZerUHeZg0st2sjKD6Nuy/+rGzVkuVTu5agg60W4P65sL8NZiPaJT+FNk+cx7hLxdgQ3AZXvg+BejZwK7QR3DanwtZF4/Tsczz/2fvE15uLaEvvX5+uZZELxc/aJSagzfsCTw/1nVnkQboe9l36hRs/Z58Vndtj/Ka9GNWwHH47p6Ht7BzOx43Se3DAB3X6FHB80DVC97fjXLG+PZqn7KXRXGRFittJAWgUlwPzqzo0O18NczcVYrpl4sShULhYFPCaU/Pe+bX3qaOmqfvkKTiyetWvlnesG9d9OKwm58oBCvMrOqg/JTxmb+iEwHGnsKTwOGZ4xxJN+aCnYD95HkXv6uA1j/fhFPNw+fsQtB7ifB90nzQFR9as+o97yhF0bAdklqP0Vh0s0CXh9u3bcHNz+9U+/f8A/c7aZtkcuNSr+3/enu1+FYrj5/xtx+PPwG+OmtimTRusWrUKCxcuxObNm/Hjjz/i+PHjMJmEHwu1a9eGRqNB9+7dMWzYMGi12l+hKEOGDBkyZMiQIUOGDBn/TvzmH2IUbm5umD59OqZPJza91dXVKCsrQ7169dCoUaM/nUEZMmTIkCFDhgwZMmT8TfBXRTSUoyb+Z9SqVQvu7u7yj7A/AQazEQ/9WuDOqBg0H2hC/oeCRvHWOD4ohLO6nebFc8lbxaBmiTXBWRJog9mIy9+HwH8r+dFtqq6EXk0CZlCzRHH7TY43rZF+X+8oiVmB2NTKYCYhqssmkX66L0qG1wlX+L4lmHuoUxuyzxenCOFvF7cm5mFVA6PYPb1agzpH3WGrJKHbPVMbsMTEAHGa7esbDfdFgglCyMKbXP3r8VpuLIdnXeOugzbEc+Nlv5jDPrdakgxrTj5cVQ9YebuuI2eCQc0SKU1q8hLz6nRUjOZD3tu1HTneAMD1uxPouec8u0dp0yAZ1FTDc34ycjeFS8wSDWYjGmw/gYPb1gMAVD5eEIPOT+zZYQCA2hVWeM1Nxss5mVy5uK5DoVdrEFZbCLohdvYGAHv1Qzx2lqQbyP2UTz5sMBvR4lgt7nqI612u7OMTJrNny6L48L6qNp4shLyXiiQA3XvKwJklVveKYElOWb0bxETMJaytxAm7y4xp0L0oOJCLYTAbgbRzyO+3Gi51edMMayYxR2wxiARU0as1yOuzhpglAkDPEoz36gLzazoJXQCop8/nnMnpZ0thMYrmSJNN98u8BRdXV45PZXAAgk/WYvU1depwZokGsxGewzNR9K6O8QgAzY7XImZQIrNESpOaJdLysc8LyW1ze65jnzNP+KFlYjL6Dn6ambPS9Bc0wEijTUISZmWrlsheH8GF2bbduQNPVQP01w5k7RXOJeMVvJYkdT45l5grO5ol0s/b/A5BvSCZtaNXa1iABLFZIgAoj5DQ6K9M3cbdp3uO0hDPi3h9i9s2rRWShd8bGo2GZ0hwjn6BxPyJmqHRenm91sK0PAozcy467YcY2esjJPe3+R2CwWxkwVNqej9YHzdz68P/1RRYy8u5UP9iXEuQmp3bzmRJyrrUrcvGgn4GSGCit5tfhMFsxB2NO1dnth9JgeDMLHHBTX8YzEZkd1/PEqTf+CEIISuFAD5DsvWo2OcP69VrMJiNMC2PQsvEZLh/TvZYz6cmMZo0ZP6GYJKyxX1IFmxnsuC2ORV3RsY4NUsUj6Pjf3pGP4iL5O47miXeHREDvVrDktnrXiJnSW0DeVf1vDAIALDv0i/QqzV4qqA717b4XZz9VSfs370R6Xd9yZoZugLWG2US828AiGhGTEBdwkgibWVoMIqWBcJgNiJo4knJuUzr2rqFw/4okFXgs3wQLAqazP7ci4loP+8s/D84j8uv+sHn7RR4zUnm9geFeP8BxHy/4AMtl1Dd8XtHnSTiHmBa3Zl7bjAbWcAex74nHfmOtVX+DPkOkb0kmuODmiUCgP8a8u1+hncsu9dmKTEJ95qXzM51cdumVSSoTeshWdx9Mf919qVL9+CjMPj2WIf7IvqN4nJgMBsxo0khTt9qIykn45+N360RkyFDhgwZMmTIkCFDxr8UdgX5+yva+YdDTuj8N4JerYG1jhK3/UhCR983BSlb4w3C536Zt5zWbbFcSNZpWhbFPXeU3Pik1eOeN8p7iP6d9KwshfVEE8RqL8BgNmLcWy87dZ6lNMtjb7JEzuJn3c7ex/7CNPjtIFL0gg+0TqVyvyxdgWZrUljdouhK9kyv1rCkm2KpnpjXuj+kcdLrB92uwHbnDlSt3VESwycMBYD9+ScYPQCwmnI5evUHX0XeJ1pEnLah5LtQfBfSkpU3mI3wfUMY7/yPtLBbSMAQqrmw9IhA2lfhjM8D334FvVqDoK/iMfYiCRoS9ZagVaNIXbAcT846AIBIVgHgwHdf4dqutjC/IkiqDWYjDka3Zjz0GjuR9KOiAm9f68DoVoyOgf/Y01JJnWjsXTTtWNAPACh5S9DYHA/bAQAsLPjCgFBuPdGw2XFhPXE7KYDRpWkAaNlfwojE/LX+uzlJacjyBDRZn4LqPp0ZP5RXF4sCerWGSZIBoGc9K/tsMBthKS5Bm/d4J33fpMlcH2v9SMKk06S35c9oYc3OI33ILZasJ9fvTkD7WhpHg9LuFzeGXWevbcs9B4D+XYZwIaGdrVWa0Fp8/7u7blx5vVqDfnFj2POsqYkSSfXSPf1Q+JUvx6f1Ug7O3vTADWslN+cqPx+OviKsguPt5HvLODri8XTUCh3/XJosGgD8XiN7wp5OQk2b+1rwoX8Y0dp0vc7R16s1sF69hsDxGUxbpjvzkD2zFBbj5kQyjt6zSdoIn7eFBKj0v7PxBYA7I2M47T79XzE6BogSQkS3SnHD1Zk6nLsnSKINZiMOfPcVXH9uwWjQds4+rGJlHDVlIR8KwXd+WboCloIi3Bqnha1SOMscxyBoehq+CJBqZR0ROF4a6p9CrOW7PziKpWIAyPuCO9Mv5bDPtfenc32mPLVMdJJwumcE9GoNYs5Us/u2qir23FYljIv74mQ2Zj8nrmT3qebakTZ9X/3YviEGmPoxPorf0aH5QBOypiaif5chMJiNuN/tKkuvoldrkD9oJdc/1eEMydoVw6VjCACg8YFLqAlUW+zI57VdZJ6OrF7FntHE42I02JaKK88LZ+jl7jbcfoqc5Td+CIKqVxFXngZ00qs10J8nIfM1HyZA2bwZAp85hb6Dn8b5CBvrF33HGMxGuLi6sn4ubH2KaF73b8XNPUGwZl6C8ulr6DFO0BI6W2cuR08j66VmyH2UnqS/bpBkrQ66UMZ4zI58ANudO3A5ZkSk0SrRUA3PIkFUAjfGc3Rs5y/i0oRluBrtxpV3bCtsYQIL3iTev9SyQK/WoOfTpE9VA6K4+k2+ImdQ4AzBCqjvQCFgXPYX0Ti4RdDi22NJ+/T7BkDW8v0hUdzeD5pC9go9owAg7lKc8K6qWxc39wRBgkeJ4RXHyRhRLa5pXYTT82B7wEEpDRn/aMg/xGTIkCFDhgwZMmTIkCHjL8ZvDl8v4/8GjuHrs5dEI3DGCQSfrIXsrrVgu3ePC4Hsu38ygiaeZOGeDWYjOixKYGGaHVFTyGFAkIwllMbgUF4QfEaedc7j6Bi4bSH+FS5166JwYwDaPHGe1Z9WomVJaSlyFsWwRMZM4/R4Jyh/OsVp1cqmaHFy7jLMvxGMn2boSALhGkJ122M1TKpk13bEge++cqrloSHrK0bHIGXhcnSaF49T7/L+URMuFWJdsDcAIlGru0cIMZ27WQP/MUZOqhrXeySSDn7D+iPug2lVJJOWOQMNU6/o3B6KhxbYzhJ/EDH94HXxuDSBD9NP4aiFFN+nED9XtgsCym6x0M7idpzRedA/EvVzyjlJeU3ti9MgiMMBA+BSLlDehmTrcb/b1Rr7YVoehaDpvOaJhnR21GSINR+/dYwo8j7Swk+kwaQ0e4+egINb1v0qbfF9Rz4Wl/tgX2hjFL+tY/4gPmn1sMIzpUY6QT+PQ6MDrmi6NoVbh7/WHsdXVAfY6qk4vyqA+P7cbdsULV/Jw90eFbBXP2S0Dt1X4q25U5lm/fJLOhaq3VFCrldrEHHahlNTO8KecQGwWSXj0ux4E9x83gM35z5AVbUK1hNNmLTaJawt9u3fymg5ouB9LXze5ueiRXJjXNcRzU33KVNQZy/ZT/rzFfhxRGdYL5hQ+UQ0l5rDcbwc2+POkZgwGHZsQN/BT2P/rq+d0nDRtMO+pM0AgI5po3EmagvRzPWI4LQstD29WkPCTg/IR86GMAQ8dRol34Wixer6uKxTSRIyO/JpMBvxcVkgDndwRZPjTbHV9zA31yVv6pA5I7HmdfArfRc/q2ltG8xGPFcajezIB79aDwALu0/v98u8haV7+sHvdcGCoSYeauKFlhenrlAG+rFkxRQTLhViVMNy6NUahJ1S4GynX//KUtMetus6QpV7GUmnDyDgyHj4P0r4DgC5C2NgbWBF0LR0+KTVQ0HUfRjMRozK74Hy2Jsc3UbHmuH08SDWd6WbG6wVFTCYjSix3MX4cTNx268O0t8X3jnflaRiuKfgGys+j8S80pD/4jESI3JWPJquS+HWg+/uqdjT93OE1hasXPRqDfLna/FEv+PICBfk7a4/t0Bl1+vk7BsxHi7HjE7XCA1lT9+5JW/p4Dk/ucaxdRx3u64jFMln2L1VRcfg9SgdBS3b/osEeHzk/HsLrXff4IuHViXzofo95774WfDJWhjWJAPd69nY+Diu2V+jpQwOgK1BHez/YVON9XMXaOH/KlkTPc5V4nAHwXdXr9ZA2S4I1gvk/UjHEwAe9o1E7f3pLMWLxV6NI9j1tw3XTr+zen459y8LX1/y3Oy/7Xj8GZA1YjJkyJAhQ4YMGTJkyJDxF0P+IfY3Qt7HWmbX/IU6HbZ7JOKfOCFo0EQiOaTScL1agxZnHjIb8QGZ5Yxe5fBopg1z9GcAgPD5CdCrNUj0SIXPyLNQNm8Gg9mI5YXHYDAbWZSulIXLWZ1LCzuySFR6tQa6l6Yz6eHllwS7+tyRyzn/DABQ/nSK1aM8qe7ZoVdrcDSsHtPw7U35AfeGRiPslAI5iwUp4sjV+wEAc/MyUCv/Crtf3acz168KnQ8AwG1LKnz3TMGpd4mmqWpAFBoda4aHfSM5LUTdPUQj83FZIADgzXDSTr/AWMZv0sFvEHhkPIukd9lCfM6UQf7I778K4y6RxMd3H0UvozCYjbCWEYmq/eR5vPk90RTsKc1A7PPTUPKWjvi+zErhxuvuk9EoeVMYT+pTJp7Lfv1GI2hDPLpNm8r1P+fduqi9jXdwpdEoFZEdJJLWG+1rATdvc7TFMD4gEvP8+Vou+qZYG2YwG2EXOdXSOf4+0MDdo7Tz52vxbt4pBE1Pw82JWlx5QYe7+/1gMBtR3TlQQodKzml98X9FRCjH78O+kdy1MtAPfm8IvkWU5hO5veDywFqjhkEMWibjwUMEptdhZfaFNgYApg0zmI0oiLqP7pOnSGhQOr6jziL9/WWIOVONUQ0f7VcXJcrHS/3K9GoN1hcdIxJVKg1MO4eyl+/BYDay6G2XX9bBeikH9XalIfNQENOGURo961nReAORpJe8qcPZVxKZn0n3KVM4XwgAyAh3gT39HExLI2BaHiUZo7LYcthPnkda+Ha0HpKFzBmCzxvV+LZLJP5APc5VcnUvTVyG3IXEfyv8A1Jmo88RNqZ19qbj4UGyPw3t3ZD0I4lmSNce9clR1KrNSaWpZu3OSHJmcFFZd2yAXq2BPf0c60vB+7w/q814gdFxH5KFDRXNoVCpoDqcwZVrdrwJW8t1v2wC2Kxo+wbRPnsOz4SrsRg+76Rw+5fyaaquRJeZQsTJ15tlAwC2+h7m5gsA7nlbBK17tY+XGh0AAQAASURBVOBjVvkEiQb3Xn4613dHGMxGhKWNBgDcnCj1ywWALz1OsLKOGnaD2YgXc8j7gyahrrYT/8wXmhTA7/UUFllSzAN3Fi2KkdB0LB80+SS7n3R0BwxmI5TNmwEg5+S6YG9WlmrDHPkVX4vbqRog+Eorks8g6fQB6NUapg17Lz8dt5MC4P9yKvz8r7L9CwBj8h93Oi/b/A7B7/UU5C6MgcFsRHn/duz5JK8uUB45haZryXleMYb0v4ELrzmg55HvbnJ2K1u0gK1bONOGUXriyKGxz09Ds82PLEqyBrD7+YNWIrR2PW5MCz7QwjR+GTLCXbhxqux6nUU3vtylvkQL5HeQ+BlbCoqgDPKH4jgZV6oNE0P8ncJgNqLtsadZGUXyGcafykONKV5duHkBgPMzhTPjoZ74B4++aObGeojHGaRqvmX3mh0X/PF+izaM+vR9oU5H93o29Bg3iatz6L6SG2+K+0OicPllsn9vTtQi6advYc/IJNrgACHarLhPtlYPWNtUG0bLVQ2IYtowAEwbBgh+mvbqh07fPX9b2P/Cv384/tAPsTuPDmUZMmTIkCFDhgwZMmTIkPH78Yd+iKnVakydOhXp6TX7xcj4/aA25wAvnTGYjej4SLJZNkXrWA21Dgj5QfaEChKjsg5KrlzA5unQqzUs+lHLL5Oh8vRgUh3rjTIisa9FbLlplK5xhV0ZjcBnH0mlW7SAwWxEw62pTGra+rNk3JimxeXvQxhNRw2GGHq1BqkLliNvM7EFF0s0f1m6Amc72RHwAvFNy9/SEVvi4wCQPDSWK1cZncPrV0Ov1qD8GS0MZiPq7xCkvPkDVrGxqWytxO0uZVykMPEYU+n0pEZE22YP8mHP9GoNRrbLQJPkEhjMRoz36gKARFrUqzUsT02DvnkonEskZv0yb3FSYoPZiA/8yLgM8IhAg+0nmGSM9f08iWRn7mXjIkSNc7sBgEgMKc2L0xvC940U1P2B97FyPdYA97tdZTTfvtaBRaMUawQozj+fiKQzB4mWLUDHnlNp7uu+RALv+1YKsj+P4ere3BMEg9mIdokJONX5G64vABC8Lp671quJz41p/DJ80PdJqDw90HRtCs68lgj7upZE8/PTKdy1VbE6Km8yttSPhMJgNiLo6DPY/8MmTjLpOL+OPie03J3HbgCpZ7n7jtoFR6n7W75RyI58UKMGgt6nuXAc171pFdFg9dcORPoTwdCrNSSKm82KJusFf5vcBVqmkR7v1QU5G8NhfqY9e15vI9HK0HZaLyRrRRkajKypRNI81ZTH7SmqhfL8kES0S3hyL6yPd2L+WM72aruPLiNoehqLokmjoQFAzmcxnOYuPpv4GBbOJWuIagnF0mEAOHCvFhoFES1xZRs7qy8e+59Cd5HxWtuZG2u9WgNrOdEiKlu1kMzDRp8jaPhNKtcPx/x/FNRPTTxvXxcfR/ZXnQAA49xuwG6xSNZvWWw5q1PaXYWKMTHYm7YXANHGWi6T88PjSCWuztRx9I/cC4Tbjxcl0nzHcwIAFNUKdi+oluBvQjWD7/iSvEbx2Tkst9/VmXy0P5rzqOla3peLtkmji3Z6L57tIdefWzCN+6KAEI7eAI8I7lqRQvyA5uenwbQyEtlfdeL6lTtyObeu6LOcz2I4fiRz/ChPFm3vtdxzqHPUnZsvxzp6tQbW7p3YtcFsZNYOjuNMMe3s00zjcqjdbu7ZZt+foFdroDvzUDJuBrMR/i+nQq/W4OdPl9aoyXDbnCpp98oLwhyN1xJtt/X6dRzcso7tL0bvYTWre/zzFXj4WHty3bME64uI5UpfLyF3HW2LWlhQTWjEaRujWx57E3FhPXF+ZqJEi5nXey2jk3TkO2QvjcaGiubs3NKrNVD5Em11z6cmcfvWewT/bjGYSZ7AvelJAICrM3SYfT3U6Zz/tG41mW9XEoFX2bgRNhUfh6G9Gxvvm3uCUBZbjlVFx7j6BrMR/um8xpE+azn4IgKPjGc81su5DvOrwp78xF+InvpstuDfXO/7NKx+7nMAYHun13niI0ktlcQwmI0IHHcKis7tuZysFEdXCpFDxXUc/9ek4ftbgoav/yv+/uH4Qz/EWrZsidWrVyMmJgYRERFYuXIl7t6VhgeXIUOGDBkyZMiQIUOGDBlS/KEfYrm5uTAYDBg2bBjOnz+P+Ph4qNVqTJs2DSdPnvzPBGTIkCFDhgwZMmTIkPE/B4X9r/v7p+MPB+vo3bs3tm/fjpKSEsyfPx+tWrXCqlWrEB0djYiICKxatQqVlZX/mZAMDlQFD5BAEACY8zgANFtVc0hkRwdmrzmCQ+ia2+7wf4WYSTzbWHBipyY1YjiaF1zVVkhU7dbr16FXa1DwnhZ96z9g5gPNV6Sg9SNexWZL7T8nTvmmVZEcrY4LEuA3xoh6+nxWfsKlQonJhKnbV/hxMzGbGHuxBOXPaNHx4wTkfUxML1R+Pkj7cBneuhrm1IzEYDZKxk7Rub2k7wDQLvkphGSoYD+dyZkLpGuU2HtiDx7PHAyXjiEwmI24PySKtdc/mjhQX5xCEu/uC20sMX1yhDgIB0CCE8zNy0DQtHTJfA7ILMeWtmoAQOCR8QiKT5OYeeRvDYNNxbex+Wgs44GWf9g3EpNMxAyk9wjBdGNfDlkzxd+2R+07xJzFtFIIfhH0yimO9s2cpswMLeZVEsgkcANJUj2pqAsuTVjGtWswG6E6nEHMcUy5sJSUMv6pSRnAO7d7br+B22N5p3/aX9/RxCk8Z2M4u+dSty4MZiPyNmsk65bWV3l6AAoFJlwqZHzFte3KytPE2eJ567AogZUVPzO/qsPDg0JAAfPOdlyZRsdIEJyI0za0m0P6ayksZiaT+/Zt4fgMWZ4A/1dTEDg+A7eeJqbIAU+dhvHNRPQ6fwd6tQYNtqVK1gcAJB38hvGxMsgPfR+ZlZpWRML/ZWF8DWYj9l0LhfKnU5iVZ0T20mhuv1LQgBee85Mxoegx1FZY2LOAl1KRs4gELLg6U4chrndhMBtxcUoiS15rMBthfpU3l1sYEMrSHPi+wZvMmRKjOB7azeL3hxiWklJMMuVLxsBxz9FE7AAJUy6Go8N9S6UrAp8ha/zxCXxScACAQgHr44L5Xas0G9w2pwomlWtXCaaFKWcAOz+e34W0hPXWbXZNAwI5mtt5nXBlgZvE9x3PEb1ag2WBAVgYEArTsii0+kI48313T2VlxOuRW2tvFkLZqiVaLBPOxsqu5Gy3nclC4TzeFJ6Ore/3Uzke3unYC0FT05lpG21jpjmSma2+flXgPeClVBR8QM7uh30juWTuztb1J/4d8KDbFejVGgRsni6YF4+Mwc0JAo/KI2Tucr4OR/AaqYkYQEwDi97V4cqLOpyO3MqNrV6twe5SYqrbP5KYwid3rO103K89R9b1AA8hMW9NJori8XNfTOboxlQtZre4wD1fmy8kgX437xQsl6+Qd9ejADE0Mb3YPN5usXD8PZttwswcEjCn5ZHLAID5rYgJdufZ5GymbgiUFn0/69UaVA0UApwEPnsCm9p6wn+TFcHrSF1LPjkzD21c86t9DVmZAOtVwSy41ZJkzG2Rya1nhUrF2tWrNTj/sCHh79ZtjAsfxGjp1Ro0HUDODC9VA2489WoScMwZyqZo0fDnephqImfthTfcuVQ/4vka5HqPOzfe8RXee0Oy9dj5Xm/Ju8zxXWA/eR4Khz0fabRyvNLPfj9O5Nr3PzQBADAio9RpX2T8c/FfR01s0aIFXn/9dWRnZ+PgwYN48sknkZmZienTp6N169aYPn06zp51np9KhgwZMmTIkCFDhgwZ/0OQoyb+afhTw9f7+/vDz88Pbm5usNvtqKysxMqVKxEeHo6RI0fi1q1bf2Zz/yiUbQtgn+uoLMj7SAtz31YwmI2w9IzAfYMv8rd0RMl3oZK6GQ9IqGpHB2ZAkPjQABTi+1uLk3+Tc2jO1+FcOUrTpX59XJpENB7F7whBHhSd20PZrCnjCQA8PiZSKLcLtdD13FBG68yrQghbAOg1ZiJGNSzH8kLBIZcGiKDSqOVznsD1rtVw/zyZBTjJntwaerUGewpD0fMCkaR1fpdIRAeY+nH8t0pxw80JWuzfvZFrW6/WwLQiEhd0G5EVYXEq3Qw6+gxq9y6E7UwWcdbv6sJoN9pKNMB9nnhGIoUW87/tbiMAwIisKywIR8TceDa2s/0iWHmmGUhMwJ7QJkwK5zfGyNEESHAN31Fn4b6YhBp+qqA7ACDw+VRWLuxTIvmsdfshTtwhGleXY0I/9WqS0LrNE+dR94c0WB/vhPwBgpTfXv0Qd5+MZuXbflrMeEpdQNIcWBoTCWBJzF1hzm55QNmkiUSiSGHpQfocmF4HABCaMhY45AkAKIi6j0oPF24sHbWMS2M2s8+2qiqybrqvR1zPJ51qTCwlpYDdjnXB3riWoMNt231YKyoYTRqaXyz1PPci0XT6b53O0Ywafha1ewuaNeVPjRkdU2IUtvkdgl6tQUa4CyylZjjCcd96zUtmWvHGX6dw2rmfung6rXd9upYbH8qLnaYeGLiK3X/sLBmfy9t9AAAf+GlYEB5aL+8jLfsMAFee18EccwcLs3qxci6adgh4MRUJpTFodv4B8qvvInQJSYnRaCPR2AUdfQbnXkxk2meVh5ob1/n5aRzfQQlpuD9EkMhTjYCYFxdXEriizlF3bLsayepS7bhYy1XvaCtkLyXrtWJ0DDJGLmLBisw723FjqfLx4savtuEkbF2EMe4XoAPsdpaGAxBC6he/LQQA0Ks1LI2F8c1EiQR9QYGwH/PX+bH2746Iwb1hRDN5taoha2NT8XGJk/+dkTEoH69F3ieCNigong9METQ9jaX/EPfLbwcJn39zohbW69dh82rF6OrVGqZ9NpiN8H6XtyKg/atXqsKm4uOsHE1oTPtF27vUuRoAsCwwAEmbdSjfG8jqXJqwjPTFQ4VaB06y8Ylr183pu4zC/xVBA5m8aDmarhN4dKlPQrK33FcHPu8ISdXFc9DCWAWveclwX5SMB/Zqjva2khSEL38epuVRkr0qngNl40Zo+WUyrs7Qcc/E7V1L4DXBjs+br+STvuvVGjSKy0FcrxHo32UIYusKZx4NENPseBNkL4lmaR8c97vBbMTSwCB8EdAWALD32PfcvFCrEIPZiDujyDzHteuG888/eg8rFGj4crGEV+WRU/CZlcKNAX2P16QF9JqTzFKLGMxGzMqTWobYO7fjUtR0r2fDa7nnkP1VJySdPSTRjmZvELTR9wdHYf6NYAmv4v9VzRRwG3YZK4PIPguaTqxIaAoJvVoDhUqFqzN0kjVXuK0DCj4gAcDud7uKht+koniWDqPyeyB/a5jT8b/8fQhOzl3G9TFdo4RerUFc16EstUZczycROO4UOqaNRomFWBIEPE1SEo1ueNPpeMr45+K//iFmtVqxY8cO6PV6BAQE4KOPPkKjRo2wYMECXLt2DQcOHECvXr2wfft2JCQk/Bk8y5AhQ4YMGTJkyJAh4/8H5KiJfxoUdrv9Dyn+CgoKsGrVKqxbtw5Xr16Fi4sLBgwYgPj4ePTp00dSftiwYThy5Ahu3pR/7YtRUVGBRo0aoTsGQ6WoBaWbG6wVFQCkoYYdpW4A8U9RL0iWaAjE14o6dZhk3LGcGJe/D2H+XQsKUvGqTwxXZ0TWFWwLcWf3uk+egjpJ6TXSXF54DNO9u7DrxQXJCKldXyI1VQb6oWCkO9q8n8z1kX6OPDUCTQeYiBbvThMuGTOlo6hTB3d3eeBY2A6JdMzZNf3s9+00NChQovVngt24aV0EPPao4PrdCa4NAHAJawvb2Yt4cMAHR9p/L6HPxiEmjIVGp/cr9vnDrV8uXDTtYDNe4HiafT2U2c+LkfNZDAJeSoWySRNYy8uRvTQagc+ewJ1RMUj+bDkrv6AgFYP3z0TQdF4qrk5tiKJZQVAdykDxt+3R5onzMJiNCNwYD7/XUpD9RTTsDS0ImpDB1aM8i9tRqFSwW4iPUKNjzXC7SxnKn9GiyVcpuB6v5fxMfNLqscSojjCYjdC+Mh1VTVxwq2M1gqbWvIZqqu9YVtm4EaBSIensIQBSX5qKMTG42vch8nqtRcCmePjuroLLL6drbDd7QycEflmN+63rod6uNLyYk4W+9R8w2i/nZGJhQCiUzZrCWnaT0XGpWxf78lJr3IuO7SnCQ2E/ncmu5+ZlYLZfBD4rSMFLPnzCYXG/KJ3Xcs/hE/8OTs+Ga8/pcPqtRPR8ahJUhzOgiAiFPSNTcq448hV8shYuda5max0AspdGI/i187BVVmJ41jV8F9KS1bk/OAr1dvHrriYo2wUBdjusWdnsnkv9+pKQ0ObXdPD4LI2tNwAonqWDW4ENjTYJ/iAVY2Lw3OztLH2E41jTPlb36YxaB6TpD8TjoAzwhTUnn937riQVwz1j2PlZNFsHr7nJvzqflObLlzvhfIQN7+adwjy/TpJ2Hddc1cAoFPUD8oeslNCLa9sVSRd/lrRZPl6LJutTuH7uKc1gId9/bU85ajGcWVI4W8Pz89Pwlm+UU9q2LhrcCqzHNFTKIH9YTbkASMLe2oaTjNZMcyQuda4m2v0DkxA4PgOVT0QzDaO4T6bVnVnSZ2djTe+p/HxgyStA0WwdfDddhjUnXzJX16yVeDLhRS7lBy1TNlmLZqtT2LXKxwsPvZvB5ehpCR3f3VOZdoXet/SMgOpQhoQuxbXndGj5pfCeEcOlYwguvVwPgeNOSZ7VNI/O9vyvfQ9wdk3fK+/lp3M+Ub/WhviZ4/uYol/mLfxwOYxLCbD3Xl2mqbu2qy1aDr4Iy49eqF7izs4P8TsGAGbmXGR1KObnp+Hrmzosbn2S8WYwkzD+NN2EXq2BaXkUex8qatWGvfohbkzT4qGbAudeTESf4c9AkXIGPmn1sMIzxemeFmsT+8WNYe9tZ2MR/n4CWiYm487IGDT8JrXGc2LsxRKMc7sh+R5EYbFX4wh24fbt23Bzc3Pa3v9P0O+sbRa9B5d6df9zhf8StvtVKH7xnb/tePwZUP3nIlLo9XocOnQINpsN7u7umDVrFqZOnQpPT88a60RGRmLXrl1/mFEZMmTIkCFDhgwZMmT8f8Zf5b8l+4g5x8GDB9GtWzds27YNRUVFmDdv3q/+CAOAgQMHYu3atb9aRgaYNgwARuX34OyW6f+SNwXbcxoB6IXLJOqUowTr5ZxMpg0T36/uFcHK9jhXifJntEwbBoBpwyw9I9Dz6UkwmI2cn1lchx44snoVJ50Vt28wGzHduwsMZiNL+ku1YZQPmpzamp3Hkr+KeaTR/Fy2NQMABGyZjlENy7nxomX355+Aa18+cW+7ZcRfpXAesfOmvnTiuoEzTzBtmMFMoscFTchg2jAAWF/Rkj2nGoI6fQokNuVi6ZfigZW7XzEmBm79cpFUegqNlpJxNCVGMRqpHWtxmjqftHoAgNxRxO/q2jAiFaS+PA238lqXsNp1ETQ9DTemark5MMfcYVLaC7qNbL78XktBv8xbCJx5gmnDHDUEVQOi0HAr0T7cTgrgktve7kISrjb5iki/xdowAEwbJqZpMBuhiAiFXq2B2+ZUnJ6ViKCp6YBCgXaJCVw5R98AmjTckd7NPUHI3RQO663bLBKYXq0BXPhk5m6bU1GrDpG0+r+awmnDnPk4BI47BcP3X+PnZSQR56KAEG6+336fRNSzlt1k4wUI/mn2WF6DfWdkDLv++pFvDQDYT2cy/y4AzD/wJR8tNw60bYPZiOvxpLyyWVOWkFTMG6XX8stk9B04FqrDGSjfG8i0YeI9aH5Vh36ZtxCwRfB7o349xXFN2b3AZ09gmvEMchbFsCiEy295wGA2sjGic9I+o+bXivWCCUmHtgMAi8h37Rvpu0P9STL2FwkalK+Lj6PNB8lIXcAnCHbbnIoNwW1g13Xk+gQAQevjWV/rpudy9F3at8Wkoi7cuFlz8nFvKPEna5HcGB32zARAzhYAEm0YbY/yQq/1ag3OR5CIo/P8OqHWkdZc26bqShR8oIX5VR2ux5N5rvtDGoIS0hi9nSWC75y1ogK++yZLznaqDaNt5n4agwEewrl+6L4Sdm1Hxt+NacI60w8bx6Lg6dUaZG/gtXaOUvqOH5P9+ZZvFHf/9lMxyFlE3hW1sorQdJ2goaPaMID429H7GyqaM20YAASOz4AyJJBpwyg2VDSHyrsNS+Ted/DT3LmgV2vwRG4v1j9LXgEA4PEBp2DNyYcywJeMy8IY3DeQz6MmzGTaMJWfD3cGlMUKvtYAkDvBEwe3rJOcD+HzExA0PQ3XdrXlxkmsDaN0xHWpNuzZbBO7TyPX2s5kkTPnP+wfR/rdzw/h7tF3XE3ashF5PbnyBc+RhN1RdWpx9ShClic41YbRd7ejNsxgNuLyyzq80KQAql5F0Ks1CFlO1s4XAW2hDPBFda8IuI8hvsWH2u1GvV1C9F+qDaM+WP3rV0n4ess3ClkRFm7v9nxqEjsvKKg2zGA2wl5NxiVj9jKce5EksqbJyI/tJD7wU015cHF15fZ07NlhjN6+pM14MSeL8aI47MGN8+m3iT8ojf7bP3oAHvaNBA55cmuhyl6b0aTJuHO+DgdAvm9V9eOTpsv45+MPacSysrIQHBz8u+q0b98e7ds7DxcuQ4YMGTJkyJAhQ4YMGf8m/CGN2O/9ESbjt8FR2l8ee5O7p/L0gF6tQeaMRK68MjSYRflzlF69cv4J9rnZ8SbYVkI0F4c3rCGSe21HHO7gyjQbjjj09RrULpP6+ljLbjKJ1IP+kag16ioAqRRQrxbyf7RPHQuD2ciiojnLiSbm/+C29ah8IhqNNxApq6JawUmrHNuhEfdKvguFwWzEhXgyTt7vEvvvMWmTJdpFSgsAYp+fhscjiNagVYobQjJUMJiNWPrJcBjMxK8JAOodFaKMcfPj681oi/1+AKBpKtGCdVj+HMpjiRalyVklbicFMBr3hgq5nAqi7nPzefK9ZXD9uYVEYkmv+/UZhZyN4ciYs8xpH82vCVGhit4lGoMXmhSgeJagXXWU7h9duRIGsxEJpTFI1XwrKeM4hjcnajHhUiHHo9/26Ry/9gxhXEJTxpK6pafh07OA8LmzHfRqDWLPDmNryaV9WywKCEHupzEIfz8BMa9NZ7w0HWCCq2sVJLBZYTAbYVoZCdPqzrB10SCx8ybo1cSnSenmxtno5yyOYeuHIi6sp1NpMABMfG235J643we2r+fGquE3qaxPT7eJ5eq1WJ7C0XDpSKTUERkj0GmeoNVxcXVF7NlhqDOI5Oah2jhH3O1eiWbHm2CqKQ/2jEwUvatDk/7ZbMzE8Dh8G/tCG8P/5VSWS4jy4fERH1V1WWAAAl4U/LN2tmuBaSVaRL1FNCs0FxnVBjnuD8cxujiZRBdrPtCEGz8EsQhrtJxerUGtIyQa6uS84QCAuLZdGU99+49l5RXJZ1h7515MhMrTA75vkXEdkXUF93QBXNv7DmxFScxd7p6yeTPU30m0Mtd1txA0PQ0u9YkW/8rzOlxLIHtI5esNWxcN45PeB4Tcj+J+VHe/zDRtd0bFYMWNx+AzKwXqBcmcJtlgNkIZSKK7DfXkNU/5/Vaz89rZWAJAzhiiLez8DokW+4l/Byb1B4DmK0TnbepZ+MwS/GLafsD7JdPobhQNzEIuJFVrd8ZLo42pyB1J2hVrh53NO23r/R1PsnIj8nqSuiKfQYpxbjdgKSyG688tEGm0wp5+Dnq1BgGb4mHt3gnlz2hx57EbKPgmjFuniR6pKH5Hh6Sfd5JxGb0c9fRE8yTOw6VcV8XVC5qQwfX/QQuinekxbhL0ag3LOai8b4fBbETLwRdhMBsRn53D9bdFcmP2ec1td1zb1ZY9v/K8DksDg6BXa7C4IBlrgny5PtP9Q8vnfBbDnSMF3/B5Muv0KeDqU42lXq2BS8OGbE90O3sferUGt7uQiKF5n2hxOykAbd5LZuWdnele88jzB3F8/s+Tc5dJylI6Z19ORLepQp45SgMgWudaP2bg/fM/1Xi2AoDvKOJf/cLlzk6/19h1HVH6Onl3VYyOgepwBuJ6jwQA9O8yhJVThgajz5PjAQDdzgrfY2i0VgDw/JDwt3rEANge5b6l/WngYGUjzplq71EKvVqD/C2CNl7Mp6W4BHtXL4UhZA/rg62LBlMbmRGyMgHKFi2YBjC35zqYVkVCdSgD+z5fX+O4/K0gh6//0/CHfoht374dPXr0QGmp88RzpaWl6NmzJ3bs2PFfMSdDhgwZMmTIkCFDhgwZ/0T8oR9iq1evRnl5OTw8PJw+9/DwwK1bt7B69er/ijkZMmTIkCFDhgwZMmT8jSBrxP40/KEfYufOnUNkpDTUqRiRkZE4e/bsH2Lq34zXcs8BeBS2d0UkZ+Zxv607fNLqQa/WYHjWNcHJPPMSALCgGgCQ/ygha+shWcxsrCy2HCM8yf2zD6uQvSQaipQzUDZvxtpXhIcidyFvlrIvaTPjqeQtaZLKI6tW4XjYDmYKJlbPl+4IhWltZ+g9wnE+ZhPhtzZZdgazESr3Viz4wLhLxVB0bs+ZORz7YgWjlT1umcQpXoyPWh8lppvaTexZ3seE9t0no9F4rysU4UKCSbGpReV+PzTYfgJrvEgi6avaCixufRIbKpqj6VpiwpPyKQmccb+bYIbJmSLkF+KhvjO7VrZowcwJLXkFMJiNWD5BSGBd7aZAquZbRL4dj2ezTbDU4/NlOJoB3k9o5jQ4AABU+rsht8c66NUa5H2iZQFKGC+PrPcMZiN6DxLCxdtVJMEvhcFsRM+nJnG0cyOr2Dqsd7QVZypiMBuhDA4gZoJrU7Au2Jt7Fvg8CeO7uzSd0Wh2vAnuPhmNTC1ZD7HPT0P5Ki8AgHroBRjMRmYSoldrYDtPTID8X0lF6yM3OF4BwF0UZMZxbPIHrELQ5JNwOWZkgS3q7UpD0sWfoWrtjl5jJgIAAl5IRfoXnbigBTQUviPGXizB9MaCNUDVQCGct7htxzlq0DeP3ROvP2rSyvp7JguTTPloPtDEzBYL52lhq6xEg755SOn4nVO+KHxHnUVZbDlLYuo1LxnBJ2tJTHkBYP8Pm7CkkCQMpknXHVExhpwHLq6uMJiNqBoQxc6Xgqj7aLKe8OiYFNrZHnUGS88INB9oQnVjEgq5aqBgllfd/TIA4EG3K1BEdkDSxZ8Fx34H81/anl6tgaWkFJYeJHDFqvwuqPvjWY4XvVoDlYcasWeHMXrPppJxUNSpA5WPFwxmI66P7Yiid3U483oiWh+6RvjNL8TBbesZnZaJQtoNGqDCYDaiYt8jM8VDnvhl6Qpc+T4EDbem4tD6GKdzoVdrULJAMI+9b+DN1hQqFQ5891WNZ6DYjNlx/cX1fBKKWrUZb45I+ulbbl8nL1rOlTv++Qpkf0WS6VouEzNrRcoZCR3HNU/via+pyShAgv6Iz4uK0XwCamWgHyq7Xsf7Lc8x2oHvnMaPm9ei7m0rVK3d4TNS+j2jzXuCWW3IigTEZ+dA5evN3jV6tQYPul1Bj3PEFC0urCfXbsNvUlnwlFo/EpNFGpiCji/Fl1NGcNcbfY6w4AuLsnqi5eCLbD7cPxf22As+/LtUbKZO6QW8JJgCl1juwmfkWUbLtIKYC2Z/EY1ZeUaO1o2pWtju3GF0ksyh3PPsp5ahUVwObN3C2T1Hs/92y4ipcpPjTVEnKV2y1kxryLuOvvP15ysY/3X3ENO/u09Go2yyFkE/j+Paj6hTm2vT8b0GANlLopEVYeHu0/+K5DMsCXXKwkemsY++B9F37Xv56TBNaIID29cDAI6Gke9O/YIfw5O/EPP2fn1HEXqd28NmJO8eZYsWZM+068Z4SSjl1yX9X92nM3yWCP0q3NYBBe+RNVb0rg5DPaPQrw9pw/ZYOAoG1YNv0mR4zUmG9fp1LCk8zugFTUlH9ucxGBrUATL+XfhDwTpu3ryJli1b/mqZ5s2b48aNG79aRoYMGTJkyJAhQ4YMGf9D+KuSLcsJnZ3D09MTXbp0wdatW2ssM3LkSBw9ehRXrlypsYwMaUJnmiy19A0dzs9MZJKXcZeKMbahID10adgQ+y79IpE4O3NsdcRjZ6vwS1hdJBYeQ4Io4TJFyVs6ZD6XyEmp4i7FISk4qUanXnpNEzXWJBkFgM6z47lAHaZlUfDwvQHXRxoDWufyyzq0XiiElqf3Tas7I6ffSsR5dIJL3bqwVRGNzu2nYtBoYyqKtneA15PnWLJdcds1jZezcaN1fPdOQdCUdMk4xZypZkmYHaXMfYY/gxua+mixLIWj7dKwIWx37khoFc7TwvtdoazisAfsPYjWpbpPZ9zyq4UWy8nzAaZ+qO5+GQazER1OjIF6qJAc2tnch2SokBVhgYurK3NGvvJ9CNyHZHEJZw1mI/p6R7FQv5TelRd0OPMaWQ/K5s2QdPaQ07FqtzQBbT4g8/WfEjqLQWnRhNfiucpeEo3AGSdQ9K6Oc/p2pKdXa1gCXgDI+0iL7HHLatwLVQOjuKSuYtD+xrw6HakLlqOvV2dcnxSJjNmEHl3jNfWr27SpqPtDmtP5iDhtw/xWZ9F2VQK8ZydL6tPyN6Zq0XwlH8ghYk481r21iKWWcKxnj9VAcdzI7itbtICtvJw5hBvMRnQ9NxT19PkS3kzrIiRJvb8rSUUDF6KlEpedaspj2jZncNxTjv+VwQGwXsqpce+Z1nZG0EQhFLWqjScsxSWSMaqp7a7xU1mC2NIdofAYRjRnPc5VYnl6N+T3JYEvHsRF4sjqVRy9/C0d4Tv6DLdGnZ11NZ0n4nIA4LdzGvKGrvhVnq3dO0F55JRE0+y3cxqnZXTWf0d+whYmoPXCZKh8vfHWoZ2Irevyq22bVkUiv/8q1heD2QjffZPR6rAKjTal1tjfnEUxyB25nKOlV2vgommH2A2n0Eh5H3tCmwAAlK1awnr1GnI3hcN/7GnsLk3HII9INDveBJt9f6pxHEdfNGNLWzV3b1tJCrPqoP3n+PoshmmRsjd0+tUEyeKxtPzoBVWvIu45/Twm/3Fs9hWCSyhDg3EjsimXPsAZPzTB9H/Cb9Ei1oTLL+vQflgWymLLoXJvBcuVq+yZ43cER5rZX0Yj8LkTWFV0DFO8uqDkTR0LXAEAUChgKD3NxmpUfg+UP3YbhpIMxq8jzcvfh7A0OAazEVOKY1EUTd45iOqAy29ZcDZqS43vXFqv4ycJUC8/BdSqBdudO7g1TovGG1Ik/TCYjQjcGI/u3c6iKLpS8oy2I/7OUVO7CwpS2dnqaNnwn/gFgF5jJ0L50ynJfXGditExqFtuRe396RJe6Dur4o4NTYLy/rYJjFlC5wXv/3UJnV99+287Hn8G/pBpYmxsLHbv3g2TyeT0+aVLl7B792489thj/xVzMmTIkCFDhgwZMmTI+PtAYf/r/v7p+EM/xF555RVUV1ejS5cu+PLLL2EymVBZWQmTyYQlS5agS5cusFgseOWVV/5sfv+xyFlKbLW/fyyE+Gt8JEimbkzVYkNwG+jVGpTuCIXtsXDsu/SLUzp6tQaJhce4e56pDViIVYPZiC6uJKEk1YY52l97zidt33pasKe3Pm5GhxNj2DXFntIM6NUaXI/X4lqCDo3rk7DrvgYS8jep9BSzOac+DVQyNdVE/ICC4tPQ4M16EtpnX05koX/1ag1U7q2wtTgZ+XGrEefRCQazkWnDACD1EyKhzYr9GgazEXYPwXyWth1zppobG+3L05FUegrRr8dD0ZnkuVv+aPz0ag36awciaEo6S2ApBk3C7NgGQPwnTr2zDIrDHuze7tJ0pg3zTG3ASd39VxYxGvcNvrD3EjTJtQ6cxKl3l7Fr6jejV2twLnoz1z4g1TiZRhPfBltlJXI3kXVG/api67pw80O1YWK4L05Gv76jiB3+jTLumSIilLXX5gPBVyZ5WzhuTiRjdnWGDgazEbefEuzsA36agH4BOo7nlI7f4c7IGG4cA2ecQNgpBdOGOfNvoWW1i19i9/zeEEJzX3lex/pI6x9dQULzKwMEPxz6jGr/Gm0iSbPtFgsX+rvl4Iu48qIO1b0isKZI2GuU77o/pCEkQ+VUazi/FfFnodowpkV7FF4aAMomC9ow+rx/lyGofdeOwftnSsaBServ8GH8k84cRJU+nPl86tUa/NxhJ1eH0hFrw+i+p9pFx7JvfD+WuxbzIvZdDU8fxerT9RWSoYL1Ug5pc0O80/kUa8MAYO+JPaydgM3T2eflDuccbYNqwwAwv1SD2YjDHVwRNPEk42/nis+he2k6bj0t+FOaun3FeBavw5q0uABI0tZHZfI/1HJlxBqtB/2d+1Urj5ziaNJ+OGrDHNut7hXBrimv1ILAkl8oaMMUvGmPeC9QTT/VZunVGuT3W80SZ7N9uEFIo1D8jg7ee4VzVDxONuMF/BJWl2nDAMB6lfjW+Y89DQAYnj0IAFAWWw69WoO7tiqn62BLWzU7dym/mh+el4yHWGOXO0rwbcvrtZbVpf9pH23dwtF2dTzGXSoGABxqt5ujCQD3hkWj03vxjE+KpIPfML9Ier98POFzgKkf+vpGo2iODpa8AuR8RvwBb0x9lIQ9OEDCk5gOANgOtZFox/I+IfVdNO24/rdemIyy2HIYzEZc6+eHqzN1jCb1ETOYjWhyvKlkLftvf4jPClLgpWoAgIRxz/5KlNj7kbEULV8eexOwWSXvvMUFyWh2nMy320Y3rg7ThgFA2jmcjdqC3qMnAAAe2KuxoCCV81G/MU0LvVqDM68lwlZVxd6XJz5aJhkrRXgo9GoNsp9axtpxprESf+eoCVUDovCqT4zT+dCrNZifnyahfXOCFqaVkThwj3wPoNow82u6GnlJWbgctfens9D7nIZyHHnHyz5i/z78IR+xyMhIJCYm4tlnn8Xzzz8vea5UKrFs2TJER0f/1wzKkCFDhgwZMmTIkCHjb4K/KqLhv0Aj9od8xCiysrKQmJiIEydO4NatW2jcuDFiYmIQHx+PkJCQP5PPfyyovW25yQ8HFY3x0+0QfOlBJKF6tQY45AmXlxpi374tAID+0QOYvwSFaU1nBE066Uia2fvTZ45SR/9DExDw9GmuvF6tgaJze9hPnkfO1+EIePp0jTbSLh1DYDuTBYVKBbvFwmzUH/SLRJ196RzdhNIY/PJNJ5x7KVHo2yOUvq5jEdsc28j7RAu/12qWZv1e+3rqAyIu223qVNTdk4bchTHIGb2c0bs6Qwf1xiwkZQp+DM5oD7pQhmcbF9dY5j/5k1CUP6NlibUnmfIlyT5r6p/YT+7FnCy8fOYJZGo3wff7qcgfsvI380WfX0vQ4fTbZJ6C18TjoedDif9Q+d5ApIVvZ9dRb8XDc2IOKrted8qjGD5p9fCJ+jBGeGqZz5yz8jXRWF54DNO9u8C0ujOCJp+EwWxE3/5jWRQ9WxcNXI4ZWfn8j7SobmxF0HRBU2IwG/H6VQ2M4fxYUIjbVUSEskTUIRkqLG59EsYHD/C6bzSKZuvgt7oAllKzhE+D2YiOCxJw5lWiYRP7t4j7Rn2mauLD2TiI/fYc23TkHwAKPtDi0oRlkrmuqV72hk5Qmutwfna2x8Lh8stpSVnTqki41LMg4KnTHP96tQalb+jg8VEy1x71SXHGR8H7WlyauAz6IU8Daec4/vRqDcoma9FsNe8713fQU7CfPI9b47Q48REfMVDMpz1WwxJtG8xG+O6aivzBK4X+OawbcRvUL1MMeu4azEY89tw01N8h1WA566Mjmhxviq2+hxH9Rjzzg/lvQNvL/qoTAp95JKV/VQf1gmRMNeVheIOK37zXxM/jug2DNTsPRXN08JqTDFNiFIIS+D0FSM+T38IrANzcE4SmA0w11nX0/7ltu48RnkSbGf5BAlouTZbMu7jO9elaLnm6GHdGxmD63G8xzu0G9J4RLCG8Xq1B9ucxCHw+VVLHpX597MtJRt/BT8Oefg5eJ1w5DdBv6b+4nGl5FDujqM+mY59jX5iOBttSJbTjs3OwLDAA5p3tOJ/hIdl6fB9oIBqbIH8kHfmuxnelM36pP2zx2zq0eT9ZUq/ku1B4Duejl4rpWHpG4IevlmGoZxQqn4iGW+ZNZL3QGEHTeJ/rnSVp6HF2DGzftGDvQPpedeTPkWftK9PhtjmVb9tFCdisUER2wP5dX6Nfn1Gwnb+I8vFaps2ka6Vfv9Gwncni6z9CwXta+LzDnze9swbCZVYTIPW3RQUv+CYMPiPPwmAm/oanDrXFmqeW1ui/abFX4wh2/W19ouh3Vq+P/zofsaLX/9k+Yn9II0YREhKCJUuW/OeCMmTIkCFDhgwZMmTIkCGD4Q/5iMn48zE0qANWBvnx2jAAijeaYN++LcwW/vvUXQCAojk6fFZAJDWzY3cjf76W2dHTvD8A4P2t4B9AafjtmIZO8+IR/EIhe0ZzQQGA/eR5GMxGvNV5H4pnCblOqI8YACgOe+D1Hd8AAPYXnQRiwrD3lAEAOG0YRW5kFdSfktwucaGPc5JLqg0reVPHSYgeHvRG9lPLON8ez9QGHF2xf8Lll3m762sJOjT8pTkAoH0G8YUSa8MAYFxhV9TdQyLc+b+cyurbumhQ0dYKa3k5ayN/axh6Pj1J0rfd7Zqhv3YgAF6ipvLxkpQVg/apcC7hO+3DZTDvJD4ANWnDAKJ9MpiNMK0leVz25QnSwEUBIfAcTiI50jw4Yj8SWs5gNqJ/7GCn0tDTbycirutQ6NUaXJq0DEETMpD9ZTSUTQS/j/LzzaFXa/DC5c7QqzVosj4FOwIOwmA2QtmqJZNccj4Hj3DwYgjTDFFtmHg8spdGc/w6Yrp3F+Lf8kgbpldrsH/vJvZcrNUwmI3wfSOF04ZR2sZwoU2/A0LuNEeNCtWGAcDi1kS7/Lov4dFrbjIspWay70bz0Qz9dk6D+yJBitzIpR7XPkW/HXwErdAlCVwOG0d+DGYj3BdLIy6KNRKrHvmulbylg0tYW1yasAyXLXfxbh7vjyRuI/DIeGR/SfqV12st52cHAHe868Cu64i4jr25deOaWwterW5y46d9hfhyeXyUDJeGDaHPGsDKT/HqUqPmzuftFPSPHQzD91+z8vnzid+IXdsRJ+ctY/eVocHk/snzAMBpwygferWG+UiJI0oCxDeVaQC/jIbLMSOyl0Qz+gBw44cg9At+DHuC9rF6pW+Q/UotDfRqDVx/4C0LDGYjzK/qMCuPl7CrPIQogNRfszz2JvRqDU58tAwjsq7ApX59jo4YW4trjhxKQduj2jAAUC9IxrVndUwb5rjnAMHPCQBMiUIuNzqe1mzi0+s1h/CQP4T4WUKhcKpN8T884Vf5NJiN6Jg2Gi4NG8JgNiK90zb2LK77cK5e7qcx6DP8GXb9fWUDdF3wMqPXcmky67uzMw8A04aJc0kqg/xhMBvR8JtUbGrribjeI2EoycCCglQ2TlQbZu3On2X7csj7zJ5OcpyV6lWMrng8vE64AiDvJ5V3G8kY0HL0jFJ5qJGvXyMZU71aA9eS+1y/KK1lgcT3TD30AkzrIpC7MAZxHXrgfrereHziFABA9PYs1ifHdUVpOt4/HUkiY1NtGM1tx/o2z8aVL/kulOO5bu51DPUka8n12xOwNKmP/IGruDrVvSIQc/IZNIrLQdqH5H1/Z1QMdrcT8maalkUx/iYV8dp0qg2jfN0ZGQPYrAAA82MNoVdrUDikKQxmI9OG0bJ6tQaWz+5KxoCOg4uVnB3KQD/23KVnMacNy90sjBv1r6X82XUdmTYMIH6R3u+mYJ4fyclHcw3eHhvjdE5k/DvwX2nErFYrLl26hPLyclitVqdlunbt+t80IUOGDBkyZMiQIUOGDBn/OPzhH2LvvfceFi1ahNu3b/9quZp+oMmQIUOGDBkyZMiQIeN/Cwr8NaHl//npnP9gsI5PPvkEb7zxBho1aoTBgwejTZs2UKmc/6abPXv2f83kPxmOCZ0d0SrFDVe1FQB+v/Ovo1NrXMfeuN3dD8c/JwlGx10qxobgNr+L9os5WWjoch+xdV3QYVECzr0oBAy4lqBDy0Q+ISQclpfYJMm0LApB8Wkom6yFbvpJDGuSgQ/9w35TvygNx2eOeDbbhKWBQTXSVHm3gaWwGPnztejb5yQuda5GzmcxsNWzwe9bK1SHMhj9jAcP8ZZvlKQfiOqAa7Oq0XLwRdwbGo36O4l56eiLZox3u8aS6NLAI3dGxiB50XJJX2gfzK/q4LWZDwDhrO+3kwLQKC6He178bXtUXXFF4HPOAwc4YmbORXwR0NbpGBbN1sFrrjCfjglKnY250s0NDyMCoPzpFHIWxyDghVSuPAC8eiUcC9wFUy5GI6oDkHaO62uf4c8g91kX5PZYh7jwPkg6feA3BQNwXPtcO4/ubbvbSGICSsvG9R4Ja+Ylp7Qd27D0iIDqcIbkWc+nJ0F1KIMEvrhSB9lPLeP4qCkgQY/xk1HrwEnJ/d+yP8WoGhiFB24uaLRJmIM9pRkY4BHB0VMG+cNqynXaPwDwTZqMevm10eaDZJRN1uJWWztyxiyH385pQINq5PVeS0zXunfC3LWrMc+vk4RfZaAfTNNawv8VPkkwLVP6ug6VbR9wQWGU7YJgq1+bmR46joWzpNwxZ6qR2lF6jtJAODSYQcXoGDQ5YGIJ313at4XtPEnSHXyyFi51rmYO/+I2Hf/fGxaN+jtOIPfTGDYmgc+ekJgKlk3S4uR7fILx3M0a+I8hIdX3JW2GXq1B2CkFMvu1gPXqNTx2tgq/hEmd4Z2NH8VruefwiX8Hrhwg7GWn6+iQJwwhe6BXa1D5RDRcv+XPDppM3XFP0c/mV3RQf+rcZHLoheuY3riU4/dBXCTqJEnN12uCuK2xF0uwqa0nAEB35iFmtyCBKZztDce+1nQOAGABOpTNm8F6owyq1u6wXr+BOaYTmO0XIaHpUr8+bPfuwbQsCq6tKuExLLPGNfJbQN9DNCm9I683J2jRdB0xq3sxJwuLAkIkfcz5LAa5o8h7pcnxprgzoi72pifh5cudsLC1YKaqV5M0ElnxIUDaObi4usKyuylcehYzevkfaWEaJ5xXBrMR3c8PQZ0+BZibl8GNiTLQD9bsPDzsG4na+9Oh8vTA3rS9AIDgdfFckCCAmOGJz6Sa5sYZirZ3QFbs15Jyw7OuYZmpK05HbmXvZBrsx2A2on8nPSxXrqJyvx9ULjYcaf899GoNG1caKMbZmqH99z88AQFP8SbI92wPmeml43wAYIHLrj2nQ8svkyXvinfzTmGeH2/y+r8SrMP74/fhUvcvCNZRVYVCOViHFKtWrYKHhwdOnTqFFi1a/Nk8yZAhQ4YMGTJkyJAh4+8Iu4L8/RXt/MPxh4J1FBcXY8iQIfKPsD8ROYnhknsqDzVuTGzFrqmkxa7tKHH4deaszSTerVrC//AEWK9fZ9owABjbsIzV9/1hCkdP/Dn/I8EBdVFACHM0hR3o+HECK0e1YQMyy0lhJ9ow/63TWfv5g0lo9WarU3CpczW617NxfRHzEXxSSJ7cL/gxju7ywmNOpZwGsxGDXO8h+4toGMxGmFZESsrsTfkBABC4ogRfqNNhMBtha2hF/uCVOPT1GlZWr9YwbRgF01ClnUPLwRdhMBvxy9IV7PmWtmr0C4xFPX0+AEBhAXMM768dyAUVEEve1AtIAAiVeytBQ9N1KPscdfpJMm4T70jG9355PeQNWyEZv5owZ/4EiVaOImtaIldWrA1zLE//WysqWGLLgBdS4dKwISsfPj8BerUGP67WcmtU6eZGAhc8kmCKnx347isEPHUaerUGChWfJFmv1sClvaDNq+4VAcSEcTQAIODIeIkEVa/WYE2QL4rf0XH869UaRJ4aAWvmJRTN0UHZqiX33BEGs1GiDXPpGEK0IKF1ADwKfPFaChdEwD+9rtM167trKmodOIkHcZGw9Izg6BrMRujO8Am3Ve6tauTv8tgqNNqUiltPa1mQm4HeQiAUutfE2rDL3/NpRzosSkDQ5JNo8wHZ281Wp8D/FSLNDnz2BAsIYTAboTxyClNXPwcA6DV2InI3C/2zZuexes60gN7flCBoQgbezRMSwFsvmLB/90bJmUDrVzVRcvcNZqNEG0afN7hcTfbWo9DebltSkXTuMK49S+Z/34GtrI6xzBMqX2+mDXPGM72uv+MElG5u8H+FBHeg2jC9WoNhOUJQk2ZrhMAn13cHAwBs5WR97EvazJLcnu1kB6xWzM9Pwy9hdbm+06TAlE7/TnqOp4p9/kwbRsvlbAyHaVUkt5fLpggJrG89rQV6knQoXxcfh9uBLDiCJlOn7WZ/GU3242EPAGApSSaZ8iV1d7ZrgXu2h1x9sTaspvNejP66Qez5l7mPs/tHXtNxe4qWufFDEHI3hWNaiRaRRn4OadkJl4RAVX0HPQVDCdnDNGG95fIV2C0WpvkxmI1wcXWFXq3BfYMv9uUQDWH+4JXwGEaC+fQeOYG1Q4NLOAMNhPJiThYMZiPujoiBpZCkP+lw8FnEnKmW1G26LgXXniXJmtvXLmOaiL5enVE2SYs7o2IQGlEAvVqDvM0axDbOxd1OntCrNTgfYZOM0+LWJ4G0c3gt9xxslZUkAMUj3nucq4TvG8J5ZTAb0XvEeNTpUwAAGL/xOW6uko7uAADU3k/en3vT9rK6PrNSJO8JsTbMYCbBxfRqDfp6R6HgA7LG7z7pPAftrqjl6OvVGbeTAqAM8MXtpADUO9oK34W0xOnIrYgLfbQ+HllW0GA5litXYTAb4do3j2nDDGYj0j9YBlUbT04b1u3sfdae+F2U22Md4zn7c8KzWBtGy0UarYg4TYKY1NmXjvYZLjj9ViL3rlD5eqO6VwRi65Kv4Dmf8YGeZPy78Ic0Yq1atYLFYvmzeZEhQ4YMGTJkyJAhQ8bfGXJC5z8Nf0gjNmLECBw8eBAPHjz4s/n51+Jcrw2clCl3swaWUjOuxTaXSAwVKWecSmiLZguh5gu3CZJRnz0VeFZzFADQP6Iv4rNzmPSn8gki3aQJFhUqFWKfn8bR9X1DCPmqEPkCNuh5FWdeJ9LQzIf3GX97QkmY8ysvCtqG/A+JpCvgJT7UrKMmTyy506s1UAYQH55LnatZOeUPRLr/Yg6R3tJw5rQtWj/G+ASRUs8kPg8hQaXcmF15XhgvSyFJHNl2VQLy+68iY7I+HsoAX8S8Ol2o5KIEADywV8O0KpKbhxF5PVmfiubosLzwGGyVQoLPJ/odh16twZUXdei5N9Opv4X4nuXKVUF7ufdnNjY0kbLlylVG2+87Mmf5/VdhSnEsbF00kjUihsrXGwazEU3XpqDbtKmCRmbf5Bol09V9OmN+vuCT83H+CVy23IUyNJjxDJCw3PTzvku/MKl3yy+JFLlWpR3KZk0ZHWtFBVp/WxtJpacka13ch73pSVAG+nH8Ub8eALgaVQcNF5ixvPAYV8Z/DE+z2XGyPnM+i0Gb93hpPwDYdzaDwWxE1tREZL/kz+anuk9nVsaZ/wfr86Pk662+4GnnbiZ+TQBJ5wAAlU9Ec30Oik/DntIM1ElKZ/6JFHq1Bskda3N7m6aMoG2YVgs8+o4iYZMbf52Ckpi7MJiNsFssuB5P9mLghng8njmYtT0/Pw2th/AaEY9+hehxrhIGsxFNjjet0Zej19iJMJiN8Jz/KMx1i9rwH2OUaOtpWwXvaaEfNo7RurKESPiZtl00xnq1BgE/CdoG+qzxhhRu3zhb7/RerQMnEfvCdKK5axfEntGw5wDRZDY73gQ/d9iJsqW1YFoeJeFd3H7VADKX1grBh7fJcbKu1xQd45Kbi/vu/roND/pFIm8o0Vz3zhoIl6On2XPrjTKmfe/fZQjiwvsAAJqvFM7hojk6Nve0nm1zS0n/1TtqI2gKOdsf6snaaLZK0FI0/jqFrLujz6Cl0hWDUnNZ+HwxbXEfqP+pvUcpCrd1wEwzsTR4/0KcpH0AqO9Sm31+Lffcr2rqxdo6+t/8OeGHnn2Un9qGkxxvtsfCkVplRfOBJviPPY28V9siXaPEmkepHMRYF0zOv7juw7F/90Y2r+tFZR3fTfQsr6fPZ+tRjIPfEI2JMjiAWXuIYTAbsbzwGPKHkGd965PvTzRBMwAETchAasdasHULl6znlktJuPxJXl1gqyLnh91iQbM1KWi4NRW7A/ejcr8f/MYYsSe0CY6ukPIgtr4AgOfPjGLPrk/XwietHl5vli2pc3Dbesaj97t8QmS9WoOXczLZ51/bh47aMb1agyvdidbSXv0QTTPJt+4G2537OM/wjkX2ug5oFJcDa04+7tyvg4EthZQ014a35crPXJzArCac8aJXa2ApLoHBbMSmO80AAEfD6nH9c6wHQJLgW+Xng/ytxBojXaPEd3tiWf2FrU+h78CxXH1LfiEOb1gjvBtGLZekP5Hx78Ef+iE2d+5ctG7dGk888QTy86XmCDJkyJAhQ4YMGTJkyPgHwv4X/v3D8Yd+iLVv3x4FBQVISkpCQEAAmjZtCj8/P8mfv7//n83vPxZDgzowm3+D2cik+M1WpzAb+chTI37VV0Uc4e5il6+JTbJ7KyR6pOKlpiQZp+XyFSwLDED7zxOIzfSjCFmB6cRfwW6x4Pjngp8T1WrRNuyPTFK/Lj4Ot365TML1ko/g9zP6Ion2575IiLRlekZItqry8+H6oWzcCC6adlD5eEEZGszqA0CD9RWSflZ3vwy9WoNFASGwPRaOu09GSyRuBrMRjeJyOKldUnASo6NXa+B+4i4n4QYA79nJiJwVDwAwjV+Gm18ocS3GDpUn8YcwlGRgqikPdRS1mKT5/mAivb7dhfgX9HxqErzmJMO3VgOunxnhLsK4tOej/9ycKEiCHX0EDGYjNgS3capdoAiccYJJ+Fa1OQ6XY0bm/0JpUI2TwWyEJb+QtVHPXMnGLWjSSfa544IEVl/l44U6Vysx8fMXABDJtqZOHbRWNYA185KgkVkRiXrGejX61PjumoomX6XAWnZTMvZxHp1Y2/5bp8PWLZz5QhjMRqQ9qIY1O4/VuzVOy7XhOT8Z3/r/iOneXWqUyhrMRpTFlsNgNiLgpVSUTeYTcAJA0pxPoVdrEP5+ArKfXsae1zpwEveG8smmffdO4ejT/1deJP4cd0bFMNo53ddzUf7uG3zh+q0wb7T+AI8IXEvQwbSKaBqKv23P9cd7hKBVeGAXNMUAkB+3mn1WeXpw9ejn7W8sQPl4LfaPXoBbuzzYM6qF0ZwWypev90IthRV6tQbXZvvWOK4/bloL3YvTYX5FB8VhDzTYxvuD3ZyoRf6HWlzfTZIw+7yTgmsRQnL25gNNAICySVpOE0b7mfP4OgSfrMW16bgXVG08JbwBwrze8neBXq2B9YLJaTnbmSyUxZbjsuUuerQ24c1ueziNoWOf6+6RJgnPLW+ODRXNMcmri9M29GoNrFnZqLMvnY2NS89iKDq3x71hZG3ZumhYeUteAaxXrwHgfYO95iRz+6fD4gQ0/lrQmNH79XecYO3WNpxE9BvxTnkydfsKerUG0xuX4qE2RPKc4mHfSG4sLnb5Gpc6E/+7neGrnJ5P4vpiHzb6TKylodo6cb2WgwWtd68xEyVWExQuv5xGTF0lO+MqW5N3muNcsPOmbVfc6tSCozGp70SON1o27JQQMODK9yHwH3taskYpkn76VjIGABD6ZQKme3dBh0XkXO3rTfbboAtlkn3lcvS007E0mI3MSoRaJ4jfccfCdsBgNmKSKZ/RFL8HaDmqvTkfs4ndt/crR0HU/RrrAEQT63jPYDZiYUAo86etCY7adL1aA3VqQ3jtVrDn4uTMdB7FVjgGsxG5Pdcx7ZHn8ExsC3FH/tYw6NUalvCd0m/1RTJs5y/CtFzw2VM+irznqPGkPvMAoKhVWygfHMDul4/XcnNFfdqspZfhO0pI8lzd2MbWRtRb8dj/Axln8ToKXheP4llkPH13T0XKwuW/On4y/rn4Qz5iNpsNKpUKXl5e7J6zKPh/IDK+DBkyZMiQIUOGDBky/qZQ2P+iPGL/gp8Rf0gjVlBQgPz8/N/0J+O34fLz0bBuJr+LHaVj3x/fidLXdWiwxE3yTNXGE/36joJerYF/upDTgZYb9hPxJ1tfQaRVVIrm8XEyRys78gEnsXp40BsA0d6IaSpqEXv/p9vESiRcFOPdiAT3dlIA+scOZmWo1NOSV8DVsd66DZvxAqJ25cCaeQlb2qrZs9tdymBaFoXXcklEveB1gkT33bxTcPnlNG50JMuYSpIdpayOY8KQetap1JHmawGAVM23CJxxApaSUkZjZZAfR6verjSOzqGNayRj83H+Cah8vZm9OtWiqVq7Q6/WoOnaFHRNmIryZ7SY2yITvc7fcSpB9N0zhV33y7wFQJAclk0SoqoZzEbO/wUAHk+YLhkHg9kIe0Ymd03HzX1RMq7OJBI7S0ERbGeycOY14hP4iX8HdJ88RTK+QdPSoV6QjJyvw9k9sdQ4KJ6X4tIyvyxdwd0LeCkVRX3qwlZVxfh5x5doiErf0OHKizo03iDMkzgyG6WTu0DQdpnWdoZLXRKp0PyqINVttjqFle/59CQAZG0DYFFAxX2s/xzvZ5jffxU3dhTui5KR9fAeGm51HilQ5evNommKQaW1LROTETQlHTkbw9FoB9EcXX5Jx9rw+5b4BA7yiOTq/1wl8GEpKcVnBSnIWSzkJRp0oQwJ3l3QZH0KZnQahJZfCmvk7n4/AIAxXKDReEMK06bX+jEDEy4VwmA2onRHKAAwfyK9WoOG36RC/WkylJOJ5qp0RygMZiOO3HdB07Up8H0zBS0GCbnZTs9KlIxbszUpGJTdl2hYStLYuIWnj8Idi3C+XXmBRMyjax4ALMUlEnrs2Y9e8PxQ6KvBbETOYkFbqVdrkP05uR7v1QW3LPXxXUhL1O5dyPrnTCNt13Xk2mw6wMTyXDkDpXFnZAxHa//ujbDUVUCv1qC6YS3cmKpF+d5Art61zq41aiTVn5C+lY/XSs4NMX/iPeNIq3w8GcsHr5ZL6tH+196f7lQLpFdrkPBIEy3RVPoIAlvxmUx9NQGg82ypps4eK/DX41wl3s07hevhdVm0Rkqv4ycJLGKjWLvccKvge+V43gDAlTGhbH/S51RbenWGDtlLiKVFxZgYnO1kZ+vD/ZEfpePYiM9pZ+OQ+RxZ7+oFZK72F5L1vbtdM45P8Rl8dYaw513q1oXVbkPSzzsBAO92HQaD2YiuCVOZRQX1ix7R4DZrt+XSZASfrAWD2Yjitwk9U9cNjNd6R0l03qau91i79N3hOG5ec/g9JB5P69VrjD7VXtu1HSXjrlCpWN11Xr+g+Akr91xMN67rUNgtFslYum0R5s1gNsJ31FmYd7ZDXLtuAEi+MTGt+oWCzoH6dDprj362V5P3SekbOlgvkVydygBfpM0nGrfyvYGIOVMNn1kpuP1UDOwO8RICZwia6CbrBZ+6s53IrwpFnTqo9njIotHmD1rJWaDI+HfhD2nEZMiQIUOGDBkyZMiQ8S+EHDXxT8N//UMsKysLFy9exN27d/H000//GTzJkCFDhgwZMmTIkCFDxj8af8g0EQBOnTqFTp06oX379njiiScwfvx49uzo0aOoX78+du/e/Wfw+K9A6rOrYe/xyOzpkCdTkZfuCMUAjwh4fJyMn9YRR3xlEAmCYjAbYSkuge0scWamIbHpM71ag20h7qgaEMXM/ahDvsFsRMmbOkw15XF8GMxGKIP88VPoLqbeFz+zVz+s0SSRlgGAB/0j0blFMV798QfYuoWjYp8QuKXHuUqOx3tDSQjvn18kpjGz8owczaD4NObk7TNLMK2Z59cJAHBpIjEXEIfYBYC+/ccCIGZpYt4oXBo25MxJ/NPrOjVh+S0QmzVcttxl5inUdGnmCzNgyS9k4dZ/XkZCC1suX2H16n2fhiZfEWf15ae7MtoGsxHX44npSf4AwRRuX2hjrv1ma1KYqUbIcSIUEZvx1NuVJulT29XxvCnIpTjBhCQ8lIVgF5e5/DIxPxEnZqWmoxSBEzMBheCYrFdrkP1VJxS8Jw2OIS5j3tmOtd+ha7bEvFQZGgyPj5KJyeyjVAIA8OP9xoxep/eImVNzoyBKy++7moV8Vi/gAx08VdAdALhw8TRIjaOJUdVitWSN0Ot+gcSkcdWjENgv+PAO75oPE6AMDSb7Nr+Qe+Z1whUAkHTxZ+5+wFOnmQN768+SWXt5T6zAm7lnWR8QEwaD2YgP/Pjw0S/5aBHwQioCN5Ax2d2uGXtmLbsJAGiVQswhG/TNk5jp0CS2FOuCicmy97PEsd127x5uJwnO7Plbw/DAm4S59xhGUjR86B/GntMk1Spfb0Y3rutQ1o/1Rcdwe4EXeo8Yz5KlGsxG3LraEOYYIYG5++JHCabXpHDz0e3sfc6ki5p6Bje6xiWL1qs18Ai5yvoKAHlPCs7yiR6pyF2glcy14/5RJJ+B+VFiYUczOJqaoPukKRIayYuWc2tQr9Yg5dPlsHbvhDr70tF8ZQqa9M/m6rVaIuxFMV/0unRHKD59VwhWIAblb2bORRTO03J8AkC/fqPRZD05e1z75kmei/ehZ2oD7tykz52F+weIWbMiIhQxZ6oR120YK18WW87CxTdbRebRtFIwtVUcJ/269pwOhzu4Ys64iWh1ohL2HqXI+0TL0ji4L07GmiBf5G8hZ63YHK531kBMuFSIqLfi2R6jaLHcuZmmwWxEqyXJyBtOglbR/dcy8Iakb+L1JB4z22PS8POO110TprI6erUGrVKI60G/AB0rS+e89HUd9uWlsoBGAFC8hLy/6n2fhpb7SHCORnE5UAb5I2BTPDcXlxLaQq/WwPv7m9w6vjc0Gt8HGqBXa6DqVcTNj5hnx3ntPXICAjZJzUnbvJ+MfsGP4Qv1o3Q4KWeQ/xFZbzQIl91iYSly9GoN8vqskewzg9kI22PhsOYQk1MalEjMDx03Wl499AKst4hJpteT57jyK6d8KeG1pj6qUxuyMudnJsI/vS4U4aG40sudtdWkfzY2HnoMOOQJ5QPhPVPdK0LSDgCELknA/nt12HVVrzD4bCSfaaoZ6gYSnfzQKY2/HeSoiX8a/tAPsYsXL6J79+7IycnBCy+8gH79+nHPu3btimbNmuHbb51HD5IhQ4YMGTJkyJAhQ4aMfzP+0A+x2bNnw2azIT09HQsXLkRkJO8wrlAooNVqkZ6eXgMFGY4YGtRBkHT2LGFSGnF42bheIwAAVlMuAEGSc+1ZnURiRYNzAJCEWX7QnyQi9vwwGSuD/DjJkF6tQdKR7wAAWbFfA+AlR58VCMlAHdtcUJCK+TdIeOqiPkpkRz7ApF1TURBXF279clm5wx1cYTAb0T92MAxmI9yMVwAAqsNEI/GBn0YgqlBwwRUoXDqGSCRa/aP6c7zZT5MgFEHLiSNt5Kx45H0iaGRsd+7gyguEtl3bEbmRVdCrNdhaLEieKW1lE8GxXAxa9srzghTz1MPmKNpO5lORTJJN1tvFB6mIOv0kVD5eEmmqMoQ46Ac8fZqTOp96ZxnC30/gJO9inhwlhFQi2LlpETdGjrg4eRmrX/q6DtbHhdQBdPxoaGBarvVCPtBLzJlq9KxnZdfVvSJQ3bUDIIqaajAbEfjMKfi8kyJZN2Koh15gn+88JpVAWzMvCf0tIevlQb9IDHK9B71ag2sJOrRYRiTdjTYRSXado+547LlprJ74f+zz03BddwsAWCAaADjzaiL7rFdrUPxte+Ls/qTFqaQ75+tw7Ms+DgCY4tUFJW/xqQMAIt1OOvgN0T6IkiMDQFF0JZTtgpw6+QOAi6sgzderSYLjH25pcH/wo7DMqSLtmBNkjxM0Jcp2QUwzBQBXtUKKCJo8mPH1fEc86B+JrcUkFYX5NdKvvRn7WRlxmogNUeug/OkU9GoNCr4JYzwp3dxgMBvx0E2F/I+0sOQXYkkhGS8q9QZIoIy6e9LgcszIgn3o1RrkD+BDo9PPJW/pEP5+Ars+NpwEEbmrJesh6SJJhJ4bWcWSRdP5cwyWIh57vVoD/1fJOhInWqVaFwqXhg3hceg2dpcKQSz0ag1yFsXg2BcrMPd6OxKq/jyfhqP7lCncNa334+a13P2SN3VOyznbzx7DMpH9wJ17trtUeAfr1Rp8EdAW3u+mMDqm5UTraDtDAlBUDo/mytM+zb3ejrW/xkuaIFmv1iBoehrHW/5HgkbRnpGJ1I61YM0m2rbQFGKtMN6rCwrn6hg/QVMJvw8O+ODZbBMJHPEooEx+AnA5lrw7/F5LwcUuX7O2KodHw3f0GdweGwNFyhmoWrsDIKkB1gV7I23+MhRFV0r2v0tYW5ZcXuXrzfrS7HgTyRg3iiNBG+jeoX0Vl6OfXX45zYJ7iGEwG1mgpvql92FaFoW+/cfi6gwdrmoriCbo3j2JhsgScUdCq/WQLKK11rSD5fIVmF8ha8VqykXO2GW8piftHG5O0DKLDHr/sXeFdAG2buFsfsR1XerXl2gM77eszfaHeDwB8l4Vl/d9g5QTB+GiKXIMZiPev9EWPcZP5ug89tw05E0T3ms0KJHBbMTSW22g9yRz4OLqys7AOkfdJfzQ/9R6RgzK48OD3hiRdYWlIjHH3GHtRs6Kx/n3w7B/7ya0WM6/uwJeSgV6lnDJp2v9mCE5g5XNmiJzRiIWBQhpIersTUetH8n7y+WYEQ8O+LA2T+hqQ8a/C3/oh9iRI0cwbNgwBAcH11jGy8sLZrO5xucyZMiQIUOGDBkyZMj43wINX/9X/P3T8Yd+iN2+fRutW7f+1TIPHz6E5VHyXxm/DXq1BrOvh3L3dC9NR/G37QGQ0LpiaYtpDfF9Oj0rUSK929JW7VRrZTAbUWdvOnftTLoqlvSFvy+EVX3Jh0g5/Q5MktR7M3YYjobVAyD4WzQOvAm/1wUJLGKIlDwurCfzk6HJhR15vW/whaH0NM69mMjdt8dqYDuThQ0VzWEwG2HtTqRde9P2SjRMVBoIkLD0DR0ihrcZkg9l40a42a4+vE4Qaav+7ZcldAqnh7DP4rEb1YZIc90/T2a+Mj/faQuvJ88xDaLBbMTtsTEoflvQmt281QCWgiKJNNWaRfxClM2a4vbYGK5Nx3DqF+cFMT47fCbMkXjeT04Q/HMcn9G6/QJjoVdrcP75RPbsvfx0KAN8YTCT0MDFbzv3mQKA1I61kF99l0m2D29Yg9s+glSvbLJW0k//b6Y7lSRXDRT8TEpfJ+Nl6RmBB/0iOd7p+lxQkMolx6VjRHH5+xDsDtyPX74UkpSL+RdLM2nIYjE/tGybJ86j08mRyOvFayxoGarBpDxmPpcIy4+8xpPS3bdvC7b6Hpa0QUNnOxvjfdnHuXnzH3sa5yNs+HnZStgeC0flcBJq+66tCrmfxuDZbCFpMeXBYDaiX+YtWC+YOH84Ma6ubgzTCsHCwXN+Mo6sWoVRbXRIe1AN9SfJTjUy9HrMD8+ye5ceE0JkWysqoFdrUH/nCfi+kYLs9RGY4R0r6acY1MeMJrTWqzUwrRO0EZS/028nomv8VChUKibR9x9D5iHsU2Ff0NQdyp/U3Fi6dBQk1Xq1hoXxp9c00arBbITv6DOs7pUXdLDduQN7RibqKGqx8gazEQEvppLzvMUFGMxGHLsp+MjauoXjyCrB11OMQdl9uWvPD5NZez3OVdao2abtbgtx5+5TTYJpeRTssRooA/1Y+TdzzyJ/0EpWtse5ShxbsgKO0Ks1SO5Ym31+qqA7tpXwyaNp4nUx9oz+FL3GTpTcN5iNyNQKlh7es8maujpD0P7d3K/G0sAgdl04T4uc7utx7sVE9M4aCAB4qqA7W6vvfrwWBrMRjTaRkPWWy1ckfaD/LT0iGB+2sxeRdO4wACDwW+KjbVoXgbJYEsKf+nQCwK2niTVFTXun9HXCv8rPB7tL0xH4PB8an7ZfPv4uGbNPyhAUnwb7p7dhfFN4xxnMRty1VaFiDDn/7bEa1K/7EL4/CFpUmj5Cr9bAZiRWBOpP+VQz2V91Yp9vj41B+geC9QO9nxEufAV0OXpa0qfltzywL4fQLZsiJFtf+9lnEloGsxGKzu25+o7rgmoqu8ZPBRQkXcMvYXVR3KMWS0EAgCQitwvnfMXoGBTOJeO7u10zwGZFXOjjiEkuZ9YmNrtCwo/jfnGmVf8pdBe2hbgjaAp5j7ycQyxBfA2T0HRdCn5etpLR8d03mTufHd+nM3MuSs/1spuSe46f6/QpYHzvNPH+1jL++fhDURNbt26NrKysXy1z9uxZ+Pj4/BHyMmTIkCFDhgwZMmTI+DvCriB/f0U7/3D8IY2YXq/Hvn37kJaW5vT5gQMH8PPPP6N///7/FXP/JlApyLEXebvyhltTcUG3kUlPPi4LhEtYWxjMRgRNOomXc4jUmEYatOs6IjC9Dn4NplW8T5+yVUtG//ZTMRKJ/H13O2yPhXPSpsDxUltoSykxRc1dIGhA7p5txknkqS+L9UYZo0UjnPUaM5HR3FOagZ877ESHE2Mk9umK46TMOLcb0Ks1KJxqY7T0ag2uPK+D7/7JXB36v8WyFGQvJdHMbo3Torr7ZVhv3cbJ95ZhVZvj0Ks1LHIhRcSceGTOSGRtGMxGXJ8u+Jp1fpdEj6ra3xKVw6NhDBfG5CUfMhapC5ajzfvJLNFls/1SCbJ4PJPOHUbqguXcmIvLKFu0QOCME+g9YjwAIg11pmGyn86UaJIAoN7RVqRgVAfYKivZM1N1JVzq1sU7vpHYeXQbK1/nltB2vwAdXszhBTG+tRrg4hQyRr4/TEGzNSnYU0okx81WCwktKXJHCloGg9nI6N2fXs58NDw+JpJY1aEMpvVifTxEkua+6hODW+P46HYF72lRMYYkzG09JIurp1drcM1aKZFqAoB5J/GDuftkNOzajmzdqlMbYn3RMUzwT3Uq2XQcd3pd+2VXydoVI3tDJ35vPMLDvpHsXtEcwX/GsT1ax+WX03D9jmj2GrjURXMjsDQwCO0zXJCzMZyjL460GXOmmuPHpW5dWA43B1R21o64bVeFNLGqY4RTsRag+2RBgu9Yr0myoGH5f+xdd1xTV/9+koCIiog4A7JBEcUgMhK1arXGUbe1tVbrVrBarV2Otq7aYacD96iz2lpHKxpbV6uAIBq3hD2MExEVASHJ74/DOfeeJFhfX9/++va9z+fDh9x7z/iec889N/mO5wsAiuYB6B3RCx3PlXEWOUS2RrPBF1BSZaUKGiVYI3RGPSztyXz/vnwVLFYeGFqlCk2/Ihal9KVRCHeqgZtvkDhI8Xqg8VEUrsPu2r2/becRJrrQL2OhOKJkzI3iuRKXF38uee4WOyc/dgYtl8fa9KEz6vGo622b+aJtHG5dGz7JzrCGeCxiUE8KnVGPoInJkJ3QM4shAHziz8d+vueeDq1ShcwtwgbG9puQ5uz4luYuhngK+x8AxkgqxmTv9lAcOW1X3k7jx7O2HXy9UfS6mjEEAoQh1NxBGM+VscvZsyXvmg8A2OxzFC4Gsp++sWMsNw86ox4yJ/IepHG3ADAqLZfFIovlAYBvmp4CIKyxB0OiYbqYVmXFUqPeJt4KaA2Pz8haq8zKQV+PCG493BktzBeNg2XxuKKYcIpBntH47pMvAQAFXWqhYd80BE0gniw6ox4XorcIz3/V9wFxgmwACHz9NCvjuiXJpg8AKHpdDUXzANauzqhnTJYAsKtlQ4zIfY60v1p4L/bZ/DbXjqKBO3l/vMF/9zB8qoJDM08Wq0hZgp33JEN3VbDAJQ77Ahv6a7m65hJHJn/dbUm4Mi4OzdfHMFlNRUX4qKEQU5xxswE0b01kx2IPBfE568/W89K9VgW0ShWytWttrgeNOWVTV6tUMbbPxQEtAAA337CNEc6dK3jEyBxrsM8Ofj5cm9crH0DC/xae6ofYrFmz4OLigueffx4zZ87EpUvkYfjhhx8wbdo09OnTBw0bNsT06dOfqbASJEiQIEGCBAkSJEj4f4REX//MILNYLE81zFOnTmHIkCHIyckRGpPJYLFY4OPjg507dyIsLKz6BiQAAO7duwdXV1d4f7wAlkaOjDUKgI2GVVHPleXJsNaS2zsGgOZrY5A2ZjnXDr0evCIWXvNsGQIfaduhhu4UJ2fWZ2o+1ssK4vMyBwccyDvFjsv6RKLmzzxroFapQvZCNQwjl8N373gETUy225b2wj3oWtVF0etquH2XaLeM+Fhn1CMs5RV80eoHTP9mAur0vs7y4gBA4Rg1CiMrkd1nNTcnN6ZooNTdxKDdx23iLKytFl1Gj0OtKzdQmZPHXXfw9ca+E3vQffDrOPjjdzbyfXQrBHMbXvzT+bN3TM9FzIpB/fWJMKyK4NZK5fPhKH+3iBvrk8D6XtvT0lf3n5YR1xNf65XWi2NhBIC43OPwdxTyEBlWRyBoXPXsqjqjHi3WxMD7Q3Lv5aqW2B+/1abvThPGszUGADcma5iGPePraAzunITPGhPZZY41WD482sbcrFR85CfEjgBA7w79UZmVA51Rj14hXWAqKkLhODXLeSSWIe9DDS5PJLGankl1UBBtX6tp7z63f3MCrnWQ2cSU2FsnhnXtkN1jTbVrJXuhGr4zq39OxeXF/UzLuMxYvfJ/bIVmgy9Ue6/t9evQpDEqr9+w25+4vN1xRYdC99NG7prOSNjR9rZ05+rdmKKB010L6m1MfOza7K3pi30Je236E8tsXY+DXAGYTaStiF7M2p/xdTQCpiUxy1jTL6sY/ba1ge9QwpCqqOeK+EvHHjt3bifqo6j9Hbvz5HaiPkJdrmLdeQ38hwlWA7Gcirp1YbonMDF+lZOI5bc6Iz2i3O6zWd1ayPtQg74DEqAPs1/u3n5/FOobIXBpLvalxMP3wFhk91hjM6bq5jLrczX83rV9Xqrb3wAgeFUsEsZ8gQ7J4+A56OKfjqFayGSAxfLY56k62enn2+PVSJ2znKs7Ki2X5dO7OUmDM7Pi8MKQkZAfJ/04NG1iE6MGEEt3jQMp0Bn16PjGBNT66aTdPikevBSFE9+utGuFB4Co92LgnnidYx2l5Xr0fQ2WUxcAEO+J+LO/Pva943SsCYoXeeGaRgHfmWSvVQT5M4bmJ91PHpofYYBnJK6/qUGTbxPslv+z9gBgesZFfBkQYvda9qdqxsRI2wL491XzU45Ia1dhU9fBuxkqc/Or7deenLRta7lz56kZA6m4DAAUD4uG65YkrM47jnFeHWzasy5PcTNWg/rLjuEo9qC4uBh1q/Ig/p1Av7P6zlloNzb0WcNcVobsOTP/tvPxLPBUMWIA0K5dOxgMBuzbtw+JiYm4c+cOXF1dERUVhX79+sHR0fFZyilBggQJEiRIkCBBgoT/Z/xVjIb/C6yJT/1DDAAcHBzQr18/9OvX71nJI0GCBAkSJEiQIEGCBAn/eDxVjJiEZw/fWSnIfnE1SyoJ8IH/OqMeprvFNu4JOqMepi5t8aKhJzuXM1/N6vp8kMjasobXvAS4/NEA8to8qUAN3Snkf6Bhga5lfSLh3voWa6fsxUgbGZqvjWHlLZWVnNw1f06GzqiHYXkkd566QFC3xPGGLBjWtoNWqWJED7pWxBS9ed4XXJ/ioF0KRQhJJt2o3xUsKegG5bY0lO1szAXslrvLEDRBIH6g5xsvTkBFIxfmlqgz6jHsSgEAoMIiJCvWKlW4E+yIypw8G5eER2vM8N8+kSVxtr5Xj3NLtIZ1ucwthHSh/vpEmDuGcW6JAEmGfTz0J5t2xKDU1WIUT7rPCETEfVsHMk8xRjA6ZXEZ8RyIj1smvIb45vFsfIp6rgCAWO8OXLns3kKiXp9kZwy4dIvdLwcPJbRKFUs6DQD747dCq1QhWj8YABgZhdgtEYBABx0disCtJdCHAd/fdyPr8JswJnPBzhD0vVSIj/zCbQK7qVsiAJiKilAwQwP31Yko2BkCrVKFXl1fYmW95glkKdQtkdZ9OIAkyb09QY2ur42xcU+p88NJ5pZIz/XW9GVt3IzV4Op75HkMGi24kWZ/H8rdI5mTE3xnJuLhwCjBZdDHS5iUyNZQ1K2LoA0xrF77cwMBAB8sFGjGa+lcuHa1ShXOPbIlYxCvUeqWaD1mCp1Rj+CVsfbdkZLOsfVDE65rlSpMqpdv00/jxQmcW+KK3OM2azVkaSz2Jexlx5R2O3Or0I4i0I+tw7anXsaUDCHRLQDAbGIJqalb4rW3NGgs3CbmlggAvkPPIn1jW2R8Ew1T8T1OpharBWKOVqnklUvdEsXJoimK2t/BsVBnZHRZz+rpjHoceOiEB0MICQ11SyztT/bit3zUOHWrGetTq1QhQm/i3MZoWTG85iVw5EIAIK9Vi32u2zMTvjMScWU6WUfULbbjJJIgnZIUiMdL6b8BwO9d4f1Dy5Qc8GOfxYnKaTmvOQl4pZkGTeJqIme+GhZ1myfaNz/LPslfs1hwc08Lbm+Sh7awqWu9fsSfU+csR9BG/l1D3RIBoNEy8tzLj5O94/o0DQJ/ERLR33uVpC3Jma9G3jCBTEbsllid6yRNekzRwzeKm8d6mxIR//sumzk596gMllMX2H5munUL1hh0+SZ3XN7pOmr+koxKFzM7lzm/ts0cPxwYhavva7i1JJZ7gCc5L3ZLfPFikU3/9twtr08VCC7e3ESIfqzTcABCgujMLWEsKbx1u2ntKmyu5X+gwa3OnjayiNunSaGzPhOo+qtzoaXu8lqlCj2u8MR0rlvIRjHOqwPezSREbDQdi1hO63at06/8rSHFiD0zPJVFbN68eU9UTiaT4YMPPniaLiRIkCBBggQJEiRIkCDhH4unIuuQy6s3pMlkhPPfYrFAJpPBZDJVW1aCEPjYGf1Q09efEUAAJJHjwR82ABAC1fXvx6FXy06MtIOCESS0fh6mwjs2AcgKNzfEXzwiWG96RODIOp6wQmfUo+vwMXA4lGqXVMCeZmhE7nNIOB6CjGHL0aPfcJQ0q4U/lpIA40e/euNIyB5olSqMSsvF3C1D4TUvAfFXT0Mhk2Png7pYFeSHRz0iAIvFhjTCWltIzwWnOuByuG2y8McFADt4KJlm2165629qcPa9OG4utEoVFAG+TOvYacJ4hM05jRPLIlB/XSLico8j1rsDbk1Uo+GKROR9pIHXXKLRqujeDoc32Aa1P6m8TG4rEgTD6gh47ZGh5i/EAvRwYBRKGsnhfrEM8j/OsDYfDohCrV0nq2uW9c/Jd8gT6Frw2PJBv4+A4TmeWMEa5g4q/LpjAzum9+75EWPg+BuxdMrCQ2BJJdT6EbNjUH+dLTX0k8yPvWBq8XFFt3A4/paKGZnn8Im/kNz67nA1Tn5GgvA35B3HSK8O0Bn16NX6ecSfP2x3rVsH9OfMVyNtDGnjZqwGZ2bbWT8hzRH/63ZS5g0Nzsy0LSPGgwN+cPqqPhwPCs9CyaAoHF+y0m498WdLexVL7fAk85czX80s5gCQ87EaPrMSkb6xLQJHCLTjj2vHom4Dxdl0aFOMjBq/8jcvOHTL4+r31vRFZU4evspJZEnhrcfg8kcD3O94mwv6T18WhcBJJ21k0Jx9hJMvBcNkyMTV9zXw+DSBlSntF8mSvFrXq3w+3Ia+3Brie+17YCyzQtLzBTtDGImE3TmqIh+hx7Oy9PjYT8WIK+zBuKslozUXt5e9UI1+PZKwqMkZ9GrxHDLfDYHPbFuiksfhVowaDZcncu0C5DmVH9ezdaNo3AhZsQHw3v+AkacAwMZ7DbClBW9JMKyIRNDEZCgCfGHKyMbeqylcUmtxv2JCHudjjdHOLRfFlc4415Z89bAmt7Bo2qDlkou4HF4JuaolS1isM+phqCjBgBXvwPMTW5Ipe3g4MAqFLRVwv2hCncximM9dQcEMDS5OjuPeL2Efx+LMrDiuLUoUZX1PdEY9OkyZgNo/2u6vmV9Ew//tJCgaN4Lpxk0b+eQuLjDfv4/7L0fDZbtgXhUTYwDAkMvX8eXmgUiO+QqDPKsSO6vbwFJDDvmxM9XuAdXNyZ+do5/HG7Iwe/Nr8JqXwKywU08PQY0kFzT9isz5lIwrjKbduj02d0oVcne0xrLwrfiqa2/sS9iL8NQhaNDHYFOvOuiMevToMwyW1It2rxtWRjBKf/EY6P9be5ujYd809g6oTl5xnevTNDj7TpzdZ0t8XLQvEMlhP1R7nbYduDEGflUWPLrf0mfHul63C/fxWysX/JB2Gm5BWX9bcgr6ndXvg4VQ/AVkHaayMmTNl8g6bHDkyBG75+/evYuUlBQsXrwYvXv3xsSJE+2WkyBBggQJEiRIkCBBgoT/ZTw1ff3jcP78eURGRuL777+XiDz+BFS70LXFdMjScp+qDXnNmlxCTcURpQ1tuBhUWwfYUlXbA6WOt6jb4E5ILZyaR2J2nh85FmYHGZziU5DxVTQiogwoan8HpTpfOGsJpW7ehxr47L3LtJqhp2U419aCYVcKOC2rzqjHirse2NWyYbVyD7l8HTuCm3Car16hXRF/7hAr88bVKCz1OAmtUoXavzfETwGEtpdaF7VKFcoP+sCpe47dPnRGPTbca4RtLZTcuep8urVKFfZeTcHAdn2YVldn1KP117FotuYyCl9sga5vncCxGwGoPdcFssSzTFvW/s0JqPMD0apmfBONgKlJXNsUrb+JhWOHQjhvdkOdHaQMnb/ceWqW7FR22AOW56+i76VCm/iax93fyq7hcDhENIbUuiCWYcHtFpjd4ApXP31DOLK6k4SXHSdNQK1dJyFv1QLmC3yszfXdwXB1LmPrwRpimuPyXhFwik+BLCwEhmlOCBxBEpJ2mDyBJSzWGfUI2DYR/tOTuHZ0Rj1+LwM+9lPZnBdrN+1Z0K5VPsBIEcWwvboB2ybC7YIMKR/bpoK4PV6NBqsEi0P0uxOR9PkKViZ3R2t4DzmP0NMyLGpy5omsfLSMtSUvfUkUGiXJkLRoBVvLR1vthlapYmUdjzaFg8yM0k437GppqfwOzTyx7+Qv7LoipDlMF9OYFZZ7zqqs8PQctSL+GXRGPdp8Hosm3yTg+lQNmnyTwKidq4PCzQ2mItu4EjE1/+6SOuhT6x4UMrnd+YxJz8DMjSPQbD5ZW/mzNGj2cUK18Th07Naya5UqRoNub2y0HUq3/bi9QtzvtekaLsZM3J64DWopE59bm3ccY6osuFqlCnIXF6y7uB9NHUhaiOLXouG62XYvofXpfViYnYxJs6fAdUsSsraq4Peq/rFjpLj6Uwg8BtpaKR5npbE+5+DrDYuDgksw/aRWPp1Rj84X+nN7uLx2bZaY/kmshABQMFMDz4UJyNwSxtIEiC1V1NPBnvx0DgFw9XVGPdRvT0S9S/dg1l+y+/yJZbsxWQP9DJElrsor4Um9Af5snsTXFQ0bwuzViLMwGd/RQLmIjKO6lAqG1RFQFCvg/7btM2vq3BaKo6ehOfsICW1qcPTw9u5nWZ9IXI9SwGd2YrWW2urGcPvnINy55oqg8Sl2aeiv7w5Gk/6XWb3nYsbjkYucPQuysBAc2LeFSzUgxr1Xo1F3qzDGW3ubo+n4u3bTcvwr3hoBWyfC/+0k9n3FdLuw2vKRZ17CbwHb/zssYrP/QovYgn+2Rew/QtbRunVr9OvXDwsXLvxPNC9BggQJEiRIkCBBggQJ/9X4j7Emenl54cKFC/+p5v9xMF3JwM03NNw5sQbb3uf52SQ55P4sXlNl6mLkGKRUQk5Q6Ix6Zg2zqNug2WByj6y1duL+aCJlWeJZtBxDmP+0ShWMHRzhFJ+Cm7EayB/JcHEX8Rt3GV3O6nrNS0ClqxMAosmtoyAJR0fUvc36cT3uDgDMGiZzcMCQy4J16fruYMhr12bWsB79hjOZTbcLoVWqEPVeDHp1G4KlHsK4S567xcZFrWEAmCZVPEYKrVLFrGE6o57T6imstDH0fF+PCFReu470ZVHs/PlpcTAVFeHkZ8uRGiZHnR5ZOLjzO3ZdqyRseUxrNjWJk2fZ3Wbss/LzBDTsm4Zln31L5AhpzubP+8NEaJUqFI5TI+e4FxyaeWJvS3dOTgdfb3K/3tVw95eym13tVIOVpdYwKueJMjOS7vhy60Nn1DNrmFapYrFo1zvXBwCMSBM0lU36X2bWMNlhD5t5P/teHDvnFE/Ws+XMRWR1W8fKUGuYom5dzL3VEhlDV7BreR9qMC3jMvx+mIiP/VQ2zwmVW6y97NX6edKee320WBPDLDviug+GRMN373gMuETWUMbQFSjrW2xXC5o6Zzkyt4ShtD9hBXXdnMTWhs6ox5UOmwAAPx2L4urbe6atNa1ia1jGV9EInHwSSYuE8Tt1z2Hl500YBQD4JWg/SjsRLW7rr2Mhb0Wey+h3JqJXtyHQKlUwH2rGWcNytofCdDGNzH+V9Ucsh9gaBgAjvTqgsmu4zVyIkbujNbRKFSqrSPioBSFp0Ypq9zYA6HDMyJ2jLK21C2REq9z6eSwPDEDw76O4ejqjHt/nE6vXKo0aG0Z/y641+ziB3R9799B0MQ0lg3imR1auGmtYz55DUarzBQB0r1XB16kCZUyj1+icnZseh4ru7dg1easWqLAILIe7CpKRu6M1KvX1uHYN69phTNV6pWus1bEHGOnTCdr+w6Ez6pH0ubA+aDmxXPQ+zPSNZJbJGk4VNvch/8dWAAgbpxgXordwZcsP+nDyROhNXH/lPSNs1nVldi5kpULyaQcfL2iVJA66w+QJjBE0+xM1qyO2KBnvkL24cCy5LmvayCbmh0LM9qoz6qFwrw/nY43RbBGJ/aPWrBmZ55g1TGfU44E3EKE3sWPxHnj23Tj2fDfa68SVqbs1iVnDxP1qlSqoPonl5rKyCx/rTWN0rcdg/V7WGfVYW9yEyWAPtI3GiWSu4s/+im27V3PlqTUMIGyd9toKGpcC/7eTkPWZGp3OlQIA21MyXyHRLQltauBWjJpZqUyd29rde2v+nMxiHE9/ILDhWj83Fk0bAECL1cJ8NehjQA1X8t1i8e/boDPqkb2Q3P8luSfQpP9lbg0470lmz8KDIdFIm0DYoX/dscFmnDqjHnW38u/ghn3TsO+0Dq1S5dXOsbxNsM05Kjt77iyEN2FCgZpZw/I/0LB+advdho2GW+90u/1I+Gfj38oj9jicPHkSzs7O/6nmJUiQIEGCBAkSJEiQ8Ffjr6KW/x+gr3+qGLG8vDy75ysrK5Gfn4/Vq1dj27ZtGDJkCLZt2/ZvC/lPhpg10UHmyDRnGV9HI2CarU82ZSS7tjsY5yK32fXJn5uVigmLJ+PsuzxDGyBonhQtg2C6JDAYPeoRgZq/X4T54UPS1sARQNI5AEDBDA1cs8xMWzjg0i1MrHfVRrvffH0MAlZfZcyPYqbCxyF9WRRqFMrh/aHABmZRt4Es8SzHwHZ3uBr1NhHrnDLJBcbo+zZtWful33xDg0ZLE5gPO7NAbYlBxjA+3uf6VA0eRj5EeucNKLdUoK8Hr8l1P+GGwvZFNvNNP9MYLXtyAIQZK/7oTgBAb3Ufzse9cJwaH777HZYFBlXbvhjF8QFwn1SByuxc6Ix6vHM9DIuanOHGA4Ax0VnPT858NY6+vggDZrwN1y1JdmNkFA0bIv4sibEr7xkBp/0pMKxth6Axp7jxWUOrVNkwjlGI2aasY6vE82Xq0ha/bVnHtVndvIhZsQJTnJAeIVhknY81xrkcD2S9sK7adqxhrw/6X94mGN/9sgbDm7UHAMaUOT87BR/4RlTbnrjvP+uzOD4Arr0yAJkMuqtnqo2bofF1clVLll9NUc8V8ZeOPbY/nVGPgsoH8HSog77pPVDe6brdchTimCPrseTN0cBrDh/rJHNygqWcWDumX2uLC+Fm7vqTzn11ZXVGPU6UmTHPry07J69VC+aHD23qiO8fjWW0Pv+ka6LLqLE2zK7PnR+A+JBtqCOvyeYl/bu2yHph3RPFKY1Ky8VM3RBkDV7JYmQN69qxfF1imaZlXMbXAcFPtJ4AcGygU6+1wzdNTyHgyChmAbIHGocrHqN1P+mLozC68zEceqcDNx95H2rgNa/6PEiUpZG2qWjgXm28DO2bxtc8Th4AQHQoe1+JyxSOUcN9bSLktWohd5oKlybFYcO9RhhZV8ijZX3/H2nbceOioOyXYpT2j4TzbiEP5gebXsOlGGLlfy52PPK1QMsFBew9mP+BBs3mJ9isP+v99M+eAetryiQXrPf6A347J8DtvByNj96EyZAJnZHEHYktLY9rDwC7L7Rc/NXT6OXRlr2TKRZmJyPcqYbd58peP9bXWsbFotmCBNz+OQimXxtA/34cfHVjEDQqlZWhc2FdFwBarIlhubyqg/V8VicTjRek+LO1/DjIHBxgqaxkbd8ZpUb99bycMscauDq1HZxvWpjHUeE4NQrbmuA38QSOYs/fNiaKxYjN+gtjxD7+Z8eIPZVFzMfHh9HU24PFYkFgYCC++OKLastIkCBBggQJEiRIkCDhvwsyC/n7K/r5p+OpfoiNGDHC7g8xuVwONzc3REZGol+/fnCy8i2XIEGCBAkSJEiQIEGCBAn/Ifp6CU8Oa9dEMcTuCiaLGb082kJ22AMHWuxDm0WxMD93F+ejtrIy6rODULdnpt1+7LnkAYLJ/truYDQVUb/Sa/Rz0LHX4Tv0rI1pP2d7KNI6buTKtzg+HN5DhCD1oVeMGFn3pl0Xq4cDo/DH0pWcLNbjB0hAuMMn9aE4ctrmGkXJAT84f+yKnD41kf4a73b4YEg0o3637iPo9xHwfeWcDX0tvT7FGIG0dhWMbndEWj42NhfINMS07YqGDWG6dYvVpW4b1bls6Ix6+O4bh8nqQ9C1qsuu3Xs1GvV+0rO0BIY17RA0lk8sS10l/8zVhNah81GdLOI1ABDXUvPdYuxPP8G3H9kaSD6PuyPUqLeRuFVQ+n2FmxuMrwWj8RLBrSP9u7ZQOJrh9ypxS1pVrMR4V+MTuepRuXv6RcMcGgjd7k1269lzNbNOcEzpi+k8iOtlfBWNgLeSGIW+vE0wzGeFuSjaF1ite4+1rCFLYh+bcNbabZO6Nz0YEo0T36x4ontp7z62/joW56fFQdt/OJB8HvdejUbNOybUOJBS7f0v7ReJDnOSoO/emK1bCupSY1gRiX4Rp/FN01N/6iJlnayUXqN9i/Fu5nl0dTbZvUbhmVQHBdEP7MqvM+rR9bUxcDicyl1X1HNF4wNmGKPvw6JpA1nCWa5NB08PVBYQF+KSwVFwTcy3caHWGfXQvDURt/uVwtDpO9bfkiJv/BLixo2558W7LJm1GEUj1UheyO9D6d9GI/BNfo+ROdbAgdxkaJUqWzrzqn66D34djsYi3FrmxK3D7G1t4DtUGB9NXcK5RLvXh6nwDmvL2q3TGjqjHt2GjYbiyGm7a42W6dnjFVzrXB/694m8lPo96zM10oeTlBqGde1YQmwKuYsLivqGoO97R/Bi3bMIrVGTtW2dwN5e/53OleJYqDPu7fdn7zvrJOQMVXsVTTgtHgN1EwQEV32acPnOaDXqr0u0+/xaz1V1rsMURSPVcNvAu6YZ39Xg/NS4J2qbfgbsPyfia30vFeKXds0e66Zrr/4LL4+C/A/ismo+1AzyrsRt3rAqAkHjU1gKG+djjXE+1RcBbyVxbeqMegRtjIFDwH2YL7mwlCp0/qsb15Oct4b4vuVsD4XPy+ds7gN1UXc97o7iDoL7q7lTGH7dtl54NqoSaYv7pt9ptEqV3UTrvZ4bAFNGts3cilPnNE6si43evwMAcwfWnH2Ek4OaI/73XTbjpG7Hi3KSMM07/L/CNdF/5l/nmpi58J/tmvgfY02UIEGCBAkSJEiQIEGCBAn2If0Q+5tgl4FojaZlCBSs4XNjoDPqEXxiOHp5EA1mZgqh+W3ydQLT1CjcCW143Z6ZePSrN3cOACq6t4NWqcI718Pg/w6hO8+ueIBeL7zMyjTtfxmK5gFMy6NVqjDo8k2muTF0+o7RkuuMevbn8zIJkF54uzkAopVrsKMWN7ZvFw9m9cSWA51Rjz+WrrSrBcuZr4ZWqcK16Rpkfa6GU/ccu+QNAPBIS2igj4f+BPkfZ5D+2nIbTeKJbwhltiI4kOun+foYKOvfI/O31dZiplWqkNaOUFMveWcZZBGtMcyFBDLLHGtgUU4Sl8Q4/uyvrM9Wi2NRa9dJ3NrbHH4Hx8DcKcxG9vduqBA0LgVyGSE06DBlAnRGQqVLrWE6ox7ZvdZwcwgAd0fVt2mP9p33kYY7pvfUWuso/iw76sbKA8C+lHguSarOqMfOgiSm4bwdJhjTaTJqU1ERZw3Lma9G4OunuWSxqpq5rN9Bl2/iUQ+B5MLBuxksmjY2gevmsjIg+Ty0ShU+zOI13+IxtZ0fI4xHZA0DgPQRLtAqVVC/PdHW6tuQkEvcHks0yeazwnOY96EGbr3T2RyI523I5evo1YWs7y6jxkKrVMHzEyFxcHjqECajvBZ5LqxJTH6PWwWdUY86O5L+VEMu7tu6rHJRAhnP7k3QGfVI/GIFahxIYWXtte28JxmpYXIbaxgA1F+fCFm7VsjuuwqXwyu5+m4n6nNl6bWgicko7R/Jzl97S8OtPfFYPvdvzepSOmzr8RZEP+Dar+waDq1ShfwfW5FA+JZONuMz3S1mRD6yhLNcv53OlaKy4Cp0Rj2ytqpQ+8eTzBr2TU4CCmZqWHsu3yfBd+hZ9I56kZ2b7JYLcwd+D9s/qqON7AUzNEheKOxDmVvJ/+kv7LMpS61hiA5F4yUJbK7E97uyjiMqc/KYNSx3LpHT0Ok7JgdAUpeI4dC0CbOG0bba15RzdQBwqTnC58bgty3rcGOKBkll1VssB28/isaLE9g1l+2E/tvvvUTBSjL6FBQhzVkdnVEP8/37cN2ShGOhzpw1DABLJD7ekIU7vwTZ3bOOhRI25ro9MwlJB4Csbusgc3Ji81bar2oNVu1VfT0isLaYJyFpNj8B5g6kXdMlAz7LPgnzfbJuqDUMAB4O4NMaXH+TTzMjnp+Mr6NtromtYbRN5edkj+x24b5wPjrUphxNaSN+hsRrQ2fUY0KBmvU/qV4+s4ZZt3W0VM7VE68vag0DgF+Df2afg8aT/YMSSpR2usGsYeJxa5UqNFLdQLPBFwRrGMDm/8GQaNav9fq22YvtoO8lwarFrJjNA1AzqQ4nB0V6RDkyv4zGDr9DXB/yY2cQ9nEsDCvI+qiz7q6NTNQapjPqoRxwCZXPC2k6Bmd2gymDpGNpffJVKAL9AADZFQ+YNUxn1GOj9+/snvkPOwPD+nAktKnBrGE07QLF1wGEBv8dH9v187eF5S/8+4fjqWLE/Pz8nqozmUyGzEz7rnMSJEiQIEGCBAkSJEiQ8L+Cp7KImc1mlJeXIycnBzk5OcjPz0dpaSny8/PZufLyclgsFu7PbDb/eeP/w9AZ9fg6IBhapQrpy6LQYCXRLPrGCvTS+175giuvVapgKrzDNDE5uSQpslgLengDsaaca2th9caPmMzoyq++T7Rut9UNibXsEzU25B3HzuBGAIi2SX12EIa5FDItj7WGnWopAaD2j0JSZZ1Rj0ZxgtZUrPGytswY4gRNetoYEltxbnoc/N4l2rjQ5KHEOrStDa7tFmica+gEOnXaFo1zEGtUtUoVTJf5hIlpo5bDqXsOTJ1tYyastXPRToAl5Txrq11KKSZPnsKuyw57cPNCkyOXlDohcGQq5MfO2LSpD6vSqlfFmBxfvJKbK7Hs1nMWf3Qnsj5Tw9xBhSW5J7Ah7zgbr9fcBFY+9LQMDn4+AIDeHfoDAG5NVHNj1Bn1KG1sqdZaRo8HeRKNnYN3M5ZegSam1Rn1cPDx4tr1+YCPjWjzeSyjedcZ9dgZ3Ai3xhMNbtbnJCHoF1tXcuOmGnVZWAgAcBp9eZtgTs6GywU6fApzpzDojHomL7V8ijWxmV1J3IDHwIvceHVGPXzj0rj5KBksaMh3BDdB/JEfAYCjvKZlG/QxoGQQSeSc/R4/n1Rr33nMOFY++myFjfyKlkFQtAxCb3UfKBoIybof9yyJj9M3hLPy2d+H2lhQ0zeEo7ynYJUUJ1M/sHezXWtIcQ9eztx5atL+QjUKusqYBrzpVwncPFOELSSJWul6NF+4ggcvRRFLc3gIK5/5ZTRX3+EQobZ2/INYcFwKKm1kA4D0pVFMvhcu98GtvWQNifcpGrNI/6b6EArrm3tawLCGrOnsbW1QmV/AyTBn4zp+jq1iYADA/RJvQfSvsghbJ1vnkERiXWRhIdAqVegweQIAEkOY05vXmXp/xFNrW9/TlnGx0Bn1qLx23a6VobwXn2oh/gqJZ8EhT6R+RCwajVJKMK+n4DVhWNMOFnUbOHg3g1ap4mju82cLlhudUY+CGcQSmjtXY5MWg8ooLk9B1+qqID+ktN3BLELWuPZWVXL6Ksp6rVKFA9kn2Tw470mGzqhHw4R6rI5YXlpOflzo+z1f24TeWiVJWC9XtWTnm3zLzz1NmFw8jKScsbb8UmR8Fc3t7VqlCr+1coHchVjqSxsL8TZapQpdRo9Do6UJNs85s7JuCYP67YnIiSzlLExXfwphiajF5VvWuA+tkqQi0SpV6HqpLzcO2ka3YaMBAE7HmkDu4sKuKdzcMOASsZzTxM7iuq6xZtanzqhHzsdqTEonKXJofLb4PUY/73jgyo2PQl6rFhQtSTqXfSIrO+3PlJaB+wGmavdB/+lJXH8UjZYlQPaIkM0VdyDfacTeKtZ1Dm1ei5j0DOiMei4VjHLAJZjSswAAE707cDLQujf3EEs/peTv1Y14SLivEd6LzscaV2sJ/DuDsib+FX//dDzVD7Fz587Bw8MD0dHROHLkCMrKynDt2jWUlZXh8OHDiIqKgqenJ86dO4fs7GzuT4IECRIkSJAgQYIECRL+1/FUP8RmzZqFu3fv4ujRo+jUqRMUCgUAQKFQoHPnzjhy5Aju3LmDWbNmPVNh/8kYENSaOw6cJFiVaNxR9rY2CHKsDQC4O4L4hS/KIRo4w3oSO0GZ9WZknmMaLurnPz+b+HsHHBmF/EmCJvnCFJKA0m1DIvpeKoTh9eUY6dUB0zME60DdnpkI+n0EchYQS8qNybymMutT3ufZWgsuPhZrp5qvFWJ6gmKTWVlapsuosVDUIxqzpgMNaH3yVTT6sSY6eGSzMqU6X5v51CpVjGFR3L/OqOdkpdq7GjcfcGUDU5w4ba32wj20WvkGu64z6pGiUqDmz8m4t98fOqMeN3/w4jSTAJD5ZTSLoxP7oiuCA23mKPS0jOuzV6eB7DjrczUcmjax0f6lD18O+XE9Jnu3x0ivDrZzHtkai5qcQWVWDnRGPfYd3w2dUY/THwrMmbSO7wzb5JjWFjmKytx8JovjwVMwrCNxiJU5JNm4VqmCIsgfXidrQ+bgwCwSTb7htck7ChJxIXoLZI41oCiV4eYkjU3cSPyv25G9UI2Hn5Jk473CujOZzWcvo/I3L1b23tBobg4AIHs8OXY7Ud+u5rFhQj2b8YnvTfy5QyjYGcLmwtriC/BWMutrtXeS8lfGxbFrt/Y2R53jGQCAo2tXQ94mGM7HGiOpjSMnv86oh+mSAaZLBuxL/JklWgWAXp0HcWO2HhuNRQgcmcpk933lHNMy03OBI1PhtJ8wKypaBmHN/P7cMyguT0FjaWgZ7w8TsbekFnxnJiJw8kmmARe3M+xKATvXaClZB/uO72Zt1vnhJJ6LHY8DP29hfYm12gCJeVI0boQm3yZA5uSE3+NWQVG3ro0VIvCNk0w+edd8nG63nYylKqajOstvxlfRaNTvCoLGEis7ZSQUl5nn1xa589T4Pj8BPZuT+DBqAQSAyt+84LzHdi+rDtZWkgo3Yhmh6+b3uFUc0yIdq0XdhtXVnH3ErdlmCwQvBHuWbaf4FO48jYNDV+EeyRLPwpRGLAGhp2UIGnsKD7ydWSJ6n2RnVrbZggRu7/P8JAHlvSLgbBt6iIcDhWeFjpnGXQWOTIW+vByGtcQi2Whpgt35a/oVOZ/9qZpr585o8l68OYlY5K7P9OPWxtWfQmwFqkLBDD6uln6ennERZv0lVHQL58rn7mgNrVLF2PFctyRxezwAdB43DoogfwBAwFtJLBZSPKb9aX+g7MVIKMrM3BzW0ufZlKXo1WUwfJdbUHcr6bNXl8Fsn/YYeBEpKoXNWGgSeqf95HvAoZZ7uf5oP79tWQedUY/yTtexP+0Pds1UVISJ9QjbKLUsO3h6YIyBvIsrs3JYn1qlCj6zErEs0HbvuPoe/92hrrwMDwdGcbLojHpcH6XCpL1ERspsSEHnOHASsYLeHcF7eKRvbIvK58PZsWE1bwH23mdin8t7RUBRQiz8iOS/h9G++td+QPaS2rUha9eKuy6O41uRe5y71qgfiR9PXxKFz7JPwnTJYDMfpZ0IS2j64qj/PsuYFB/2TPBUP8R27dqFfv36oUaNGnav16xZE/369cNPP/30bwknQYIECRIkSJAgQYIECf9EPNUPscLCQlRUVDy2TEVFBQoLCx9bRgIPrVKFjG8EzarOqGcaPq1SBd+hZ5kmiOZvGvvRNABAtnYt11ZnZzOrN79jHxTM0OAD3wjojHrUTnaG95DzUJ0R+qU4dodosCzqNvgqrzunoWnZ9AZ8ZhM2KcqMpzPqMSavA/ze560p1lo8/8OjbOIYABJDJGbNs65bQ3cKprvFpE5BKpQDLqH2zpOI8xA0xM7ax7u8ii06Ue/HMFmZ1n3HRKapMqyIJJamiHJW/+HAKLxVPwte8xI4C9Gd0UQLl9hmJyJnxKDh8kSYLMRPPjCFsLllDF3BNH1apQqKBu6IvRqNrLk1Oc3pndFqLGpyBkUj1VCfJZYOU3oWq+f3biIqrwmxglR7G7Ik1ma8OQvUgiZeFL9i7Z+vaB6A6Hcn4sZkDbO2UUtncKoDi/MASD4Ze/NK5zFo9CkYVgpldEY9+u5OQsKeNjiQdwoN+6Zx16h8Z8qJhddS8QjeHyWg0TKyrqimW9G4EVn7MxPxaGNjopm9cZOTw6FbHpvHuttsLQf+w8hCL2p/B34/TcDNWJ7J75bmLtcep63U+aL7SyNxUb2FnaPMm+nLolg7xxevtGuRovFW9Dgu9zhKBkWhYd80FsfZ7qMYmM9exuXrjWF8R2PThpjNVDzvJkMmN2atUoUIPR8z8fOHi7g6AGGIG3qFsOuJLXnBK2NhumTAjLmENeyRth16hXVH5lB31sb9V8j+JAsjFsLi14T9allgEFsnNydpcPV9DXr6CTFeW1p4crKkbwhH74hemJuVyubdeXcynosZz8mbP1vD2qi8dh2mGzehM+pZTFD8FcJQdvU9DWThIdxzZa3tp88UvSaeU51RzzHCPQ7eHybilWYaGMcSDfqttjLWpkO3PDh4KG2sI2LQc4XjeOv8jMxzOLR5rV1LBUC07726vgSfZGcc3PkdO5/QpgYemMuqlVfcj7UMAFCZX8DJoVWqYO4Yxsqca2vB9Tc1cPlemB8amxS0kbD79mr9PLfXHl2zmlk+qcVQq1Sh1k8n0WZRLDu++lMInIqJ6ntSugHv+UYhu+ca1o9471mYzeeo830/kRtH/XVkb6f7iOLoaXQbNprNpzgGVDwH6UujWO6/VcVK9h7WKlXoXot813H8LZWr4z3kPH65mooe3iR+SXWGlA8/Y2Zz4LQvhT2nAImFLBxD7oWlvYrF1tX8JRk1dKfgf2gUK0sZJK3XMgCY0jIgP67HixeLoFWqcPlNnsWUlhfv0bT+6jzBaqNVqhD97kTuWHwP7VlTxdiXvA9D6pD3M43F/TMLsMdnfNzb1wHBGPnxHpt+Gy1LwOKAFjay2Hsu6m1MZLGL8lYtoNzjCIfDqaxM0LgUToYj64X15RSfgpy+Lmh98lXodm9C4Tg1bsba7sMAIKtTG/L7/HNG1zgAjB/2hs3zrjPqUTtPgfd8BYuX797xNvMSOIXsZ5RBW8L/Dp7qh5i/vz9+/PFHFBcX271eVFSEH3/88anZFSVIkCBBggQJEiRIkPA3hERf/8zwVD/EJk6cCKPRiMjISGzcuBE5OTkoLS1FTk4OvvvuO0RFReH69euYNGnSs5ZXggQJEiRIkCBBggQJEv7rIbNYLE/1e/PNN9/EkiVLIJPJbK5ZLBZMnjwZ33777b8t4D8d9+7dg6urKzqjHxxkjpxpP3eeGlfGElIFes58qBlLuNjlYj/UeCHXrjuAtfle7CajVaogO+wBy/NXHytbxuYwBLwmJHqs7BoO97k5uD3PF44HBaru6LMVjGRA7IJnui24pn6fnwA3RS1OJjHkNWvCXFZmMxadUY+ur43Boc1rbcZiPV57YwWAnj2Hwnz2sk2f9uoAQM+Ld7E/pB50Rj38fh0N+e0ayBi6gl1flJPEJV68/0o057LzSNuOozKvTjZrt6XqXDoMyyMRFJP82LpJZSa8uj8WgZNOouzFSNT8RXDhKRynhvtq3nW0cWJd3B7blKOWvj5NgyZfC24W1a2hkgN+qN0ji5WT166N/eknAACqT2KhnxH3p+4pT4L52SnMndbv19EIfP20TRnrORHjzig1Uj5ejuAVsfCal2BTN/S0DL+tU+Ou6hEjuQGIyxBNBi1zcIClstJuX9WtH4puF+5j+7fd2dxblynYGQLPQcRV6vZ4NVLnCM/6k7j40DZpHWuMMWRjbZDvn7aVva0NI6UACJ1yaacbXL2ikWqWmNYzqQ4Koh9w19O/a4vA10/j2u5gnIvc9kTzY33esCISQRPJunU97o4dfoeqfW4A4PYENZa9txQf+YVz81AwQ8PczOzBom4DWSIZb2n/SDjvFp6tnAVq+My2Iq2JbM1cfANTnKB0usvR4D8O1nLfGxqNQ4sWY4BnZLV1jO9qAPVdeL1VgsrsXMzIPIdP/EPtlr33ajRc00tgSanenelxawQQnnvx3JbqfPF7613QeoYDZhN6XryLg8/5wVR4BxnfRCNzyAoAwPMjx7J3gb29u7p9+vqbGkYD/6hHBEs8Dgj3RNG4EXND/bO1U914xfMf9V4M6m0i99b5WGPsDtRVOycrco/D17EOot+ZCNctSXg4IAq1dhHylMxFavi/kwiFe30uTYw18j7S4PIEYS+Myz2OkVOno9auk9AZ9QheFQuvOQnI+lQNvyoXy2V3m2HPuK6QnSBu4uIQgOpktb5W3isCR9esfuL943H3TGfUI2xhLBotTYC8VQuYL1xh18wdVPh1xwZolSoMvWLEyLo3q22LfqZjoveo/dSJHLFP+zcnoM4PAhlSdXKJ8X1+Al5ppoHcxQXm+/e5ex6wdSL837ZNV7KjIBFDPHmiF3OnMMiPneHaLhkchdo/nnzi/bi6cT9JfZmTEyzl5fgh7TTcgrJQXFyMuqJE638X0O+sge8uhMKp5p9X+DdhKi9D+uczn9l8GAwGbN68GQcPHkRmZibKysrg7++Pl156CVOnTkXt2rX/5TZffvll7NixAyEhIbhw4cK/XP+pEjoDwLfffotXXnkF69atw5kzZ1BcXAxXV1e0bdsWI0eOhEZjP/+HBAkSJEiQIEGCBAkSJPyVWLduHZYtW4a+ffti2LBhcHR0xJEjRzB79mzs2LEDSUlJcHZ+MkUbAPzyyy/48ccf/6U61ngq10QKtVqN1atX49SpU0hPT8epU6ewatUq6UfYvwGx1uTK2OXc8bW3NPg1+GcEHh0JrVKFGi/kAgAXEK8z6rlAY4r25wZy/Viev4rSqiSJNJBXZ9RDe+EeK0OtYbRth0OpuLy3ORwPnkL2tjYAgMytKiS1cWRlnoshQajx5w4BAB4cIHGCrzR7/Jowl5Wh+LVou1qjQ5vXosvFfgBIIkmtUsUSFOfOU7Ox0sTUVGYWdG7HGmYNrVLFkulOdcth5wJfPw3/6bxGLbRGTWQvFLRpCV8R7bDMoUqv8fYtZHwtUIqPyeuArK0qltgXADRvCQHSoclDoVWqoExyYTS8YmT3W8XksdawhX4ZS2SvqUDWgJUo1fkya5iiMUnI7b6aD2gHgBvqe8wa9mAIWT/UGibWHGqVKtwdLswxANTukcW1Zy4pgVapQtB3MXAord7ATutsyT9R7TXx53HfvMn6zXphHRQNG7J1Km8TzMkkthDS/zVKLOjZ61VcnhjHtU3/FjU5g0ZLEzhrWEX3dpCd0DOykHnpiSwpJ61vHTyeP4uQf7j80QA6ox6FY0nd31q5cNYwALi335+1Ra1hOqMeqXPIs06DuGnbtC1xG5QshJbTKlXI+DoaI9KElAJFI9UoeOQOnVEP/+3CWoNcAWuIrWGAQKe88HZzdo5awwBgrddx1rfOqEfG19Fo8S4he6jzvSu0ShXKe0Vw98Q60N7e+aCJycjYTAL+izsUYuHt5tVac3RGPRqsTMRHfoRSPKBqTwSAi5OF+20+1AzXRcnfdUY9s4blzlPD570rXPsuIt4ftiaTz6NkUBRy52qQHlGOmQ3S7K5XnVGP/B9b4ZscwRpH54Amra27LYlZw7K/D+X7qYLy8wTUdS5DZXYu0pdFVWsNUwT5o+7WJBzYs4mTRWfUY20VIYPOqEeb5KGMZt9mbACafJ2ArK0q7n45awklua6giqDiVTXSZgXB1LktAqYmIfjEcGiVKs4zwvoeaZUqDLtSwPX1anYX0ue3glXE6dBZLnG38+5kmDuoYHjb36Zd8VyLvUTE17VKFfwOjmF1FS2DoFWqUG9TIgpmknfE7kAdDpWSZ+GrnEQ2bxQTvTsQC+YAktaEWsMAwP8d8iyYCu/YrGedkaSSAcCsYXT/iPXuwKxhANC1dyoUR5SMPKrbq6Oxt6U7s8Y3XpKAshcj2Tg0Zx8BALK2knEr6rnarB2AkE+IIZaNpvCwV4/2Y31MySjMF65w+4f8uPAuGln3Jh6aH8HBQwlFSHPuPSVGw3Ol3L2rsyMJDj5e7FydH07a1KmuLQo3RS10u3CfWcNG5XVksvvvKEHoaRk7pv0O8SSEVvJatdB8PSGbsbaGAWCpSuztP+L/FAr3+kzWu8PVdt9PNJ0BhUNTkmjcUl4Oh6ZNbFIZ/W3xXxojNnjwYBQUFGDLli2YPHkyJk6ciO3bt2PWrFk4d+4c1q5d++eNVOHBgweIjY3FpEmT0KhRo6eW6d/6ISZBggQJEiRIkCBBggQJf3e0a9cOrq6uNudffvllAPiXXAtnzZoFk8mEBQsW/FsyPfUPMZPJhG+//RZRUVFwdXWFg4Pg5ajX6xEbGwuDwfBvCfe/DmvN+7m3iYYt2OM6b5Eo4+lUA6Ym2WiQToT+xNraVUAsJs67k6E4omTng76Lwa4PXgAAXNsdzKw+EbOFpMvKz4l2jGrR/V8V+gDAEpnS/utUxRL9mT8/ANzzlsPpWBObOaDWv4yvonEs1Bk6o54lj2zblWi0DSsiUdrYzNURtz0rS2/Tn7UMx2ZoODnFiWwDtsRwdXxnChYCWt5SWQmdUY8aL+QicGsJACBwcwwKoh/A71U9S9AKgIspa9qfWOyM0fdx8lMh0bLOqGdU61TGoA0x+KyKtltesyaafpmA4FQHrCom97HwQS1W/8pMPwSmOEFeSzinaODOjWNnQRLq7EiC1kOgqrbWQJ/8bLnNvNmzcPjOSIT7mkQiW61aMHVua7fOsKrEouI2afyAeP5pDAm9brp1Cx0mT2BWTqrZLesTybWvVRLrY+2CUpj1lwCQmCN6zfq5Eo+VavgpLfYHvhEsKadWqYLv/rE2c9HsYyLn/Y630frkq3BfY5sYm9av2zOTO5f3kZAMFACLkQKATfkncGrecq6+zqiH6XI6k0F22IOsz2lJ2PRaL5woI8+A24ZE6FrVhVapQsA0stZkYSEo79mWzZu5Q/VaZgCY2SCt2mu0jV6dByHz5RWIP3MQ8tAWcPk+CQ9eisK19uR9oL38IiztVdwYil4XrHw0DYNWqULBzhAEvHaGjfNYqDNaxgnpGSgF+qDLN/HRrRAmR8bmMPi/qufWb6tUOcwdwyDvmo+zVTFr4nkGAMfWxbihJh4A+T+SJK3uaxNRftCHtZXzMZHV2KcS3h8lYH42SYT8XKxAPy1ue2rIYQTXEJ43ep5SfIvh+wpJ9N6z16vcvAJAnR5ZuBmrQeCkk/jlaqrNdZ1Rz2jRrS2PWqUKY0TJ3Zv0v8wScIvLiVMP+L2qxxhDNl4YOsqmXEX3djCfvYyAt5Lw29Z1AADvT8024xHjzi9B0Bn12NLCk9sril8R4i+CNpA91VLxiCXu7niOvMvkx/XM8iRGm88F2ntmHe9KEkw/HBCF8DkxUNRzRVZ3QattumQg44kOhedCYU/p6kyS+vbf/habt5ztvPWx2eALXEoZa/Tu0B8A4LdrApOLppKhMjbqdwWOR5tCZ9QjZ4FgJVnqcRKmLkbW1tXnhHgbOraavyQjbw55RnZu7Ez6elWPz7JPIv7SMfjvmEj2Q5FVUIwpGVegVQoJs8Pq5tvsgTLHGtw+QN/7YjnYcUGqzTna3gDPSFReNcJ0MY3z2hDDqHFm57q/NBIAMPk3IVbPP6WmTZ2wlFdYP9agfbxTX3gWjNH3hQLJ53GurX2TyokyM/ZnJMBnViLXNk09UfZiZLWWr+rGF3/+MLve550jduuaDJlIX0zShjgfa8ylpRF//rtDZvnr/gAgMDAQTZs2ZX/PGgUFxKujcePGT1Q+OTkZS5cuxddff/1vx6491Q+xsrIydO3aFW+99Rays7Ph4uICMeeHr68v1q9fj02bNj2mFQkSJEiQIEGCBAkSJEj4/4HJZML8+fPh4OCAV1999U/LV1ZWYuzYsejevTuGDBnyb/f/VD/EPvvsM/z++++YP38+rl+/jrFjx3LXXV1d0alTJ+h0un9bwMdhzpw5kMlk1f45Ojpy5dPS0tC/f3+4ubmhdu3a6NixIw4fPmy37eLiYkyePBkeHh6oWbMmQkJCsHz5cjwlyeRTQxzTQrUw5Z2uE6tDVZyMtQ/1zUlE+9VyWSzSNxKrhPh6LTnRgGUvVCO+eTy71u65K/hj2UoAQMPFteA7k1gFUhYsZ/3Yk+2Rth0AIPsTPr5JrC0KW0A0mSfKzCyWRizXI207XJoUh72BB1idjM1hAISYmMxXSCyWOIlxYfsi0nffVUzzL+6fWsI+9lNxMtHEzeIxPVA6cDJTTapWqULGMMEyAYAlfBRrZsUomGFG7jw1fHc/RHmvCDZfFNVp22j/91+ORq/QrjgzO47TvBlGLsd7vkSbRi2he86osDOY+Cd7DrqIVqlyPPrVG4FvJmGpx0mYHz4UxiRistQZ9agjr9LCWiwYldeRk4kmJhVbGHVGPWROJFm149GmRBvbQWWjGTQ/fIgfNi2FPVhb3mi7jZckcO0Y1rSDg48Xmw8AOL5kJQzLiQXshaGj0GZRLI6tXIVpGZe5eTy+ZCVkCULs0w6/Qzb3qGgkWa90nVUnnxjZPdfYjVeg1gXlgEvsHNVC33+ZxD5W/kbGIg8VYs685vJjzlkgPEPDm7Xn5uj+K9Fc35lbwmB5/qpgkU05j3l+bbkxiGE5cxE32jmy+yk/rkevTgO5ss+fL8GS3BMYb8iyO87ceWq8cLkPtEoVur80EiZDJrRKFaL1g2E+RyyHZgcZfGZVxd0E/wLZCf75cPuOWDquvk/YDc2dyPzTmDkAhK0PQLMFCXDwbkbqjyasbDuDGzGWVq1SxWJZe3Z/hdW/EG6G/A9yvuvwMey8WA7lgEvI3dEaOqMezQYL7ijfBG5nn31mEVlfakOsUpFOpF/KtKgz6qEQaUN3BjdCwJYYZH8fiqxP1WxdapUqGFZEcv0XjlHj1kQ1cl+sx+0hGV9H4/7L0ezZH5XblfQT6AetUsXWkxhapRAjS9vpefGuzd7Udr5g2XfdzO+Xs04NwK/b1sMahzdUJb+NFqxFltSLKHpdzVtLRJ/rv2jg1k/GN0TmfSd/we0JVTGUry1CzsdCGytyj+N4BO8ypDPq2R6gM+rR5JsEWNRtbGQESBxXg1WJMN0tRpdR5DtJ5iIhvlX300Zkfmlr3ZKZgQGXbgEAKm4JAfc0didgalK1lmPqmRE4SfB2aLU41qZcRedr0CpVjJFTbJWiaHiukjum8+c1pyopdqjg+fKeL4k3DphK7iG1CorrAsCXsa9BZ9Tj7HskbvJwa8EiScdkqXjE1bX29rC2uEbMiiH7ftVzS2PXKJyPNeZkEIPGb+bO1bBYuFjdSJaIPjNCGCONtWvU7wrrQ2fUI+szck+pVcl6PABwbboQL76zIMluObpXWqPyqhFapYrFWt+YLHilsD6iQ+2OT3xudoMr1V4LnHISFd3CsTtQx9qk77j/GvzFMWLp6em4du0a+3uWmDp1KhITEzFv3jw0b978T8svWrQIGRkZWLZs2TPp/6lYE7dt24bnnnsOM2fOBAC7FPa+vr44e/aszflniYEDByIgIMDm/Llz57Bo0SL06dOHncvMzIRGo4GDgwPeffdduLq6YvXq1dBqtdi/fz+6devGyj569AgvvPACzpw5g8mTJyM4OBj79+9HbGwsbty4gTlz5vxHxyVBggQJEiRIkCBBgoT/HD744AMsXboU48ePx4wZM/60fEZGBubNm4fZs2fDz8/vmcjwVD/EcnJy0Ldv38eWcXV1RVFR0VMJ9aQIDQ1FaKgto9SECcRfe8wYQRM6Y8YM3L17F6mpqVCpVACAESNGICQkBJMmTcKVK1fYD8o1a9YgJSUFixcvxuTJkwEA48aNw6BBg7Bw4UKMGjUK3t7e/9GxSZAgQYIECRIkSJDwt8N/gNGw2n7+Q5gzZw4WLFiAUaNGYcWKFU9UZ/r06ahfvz4GDBiAjIwMdr6yshKPHj1CRkYGateu/S/FsT2Va2Lt2rVRWFj42DI5OTmoX7/+0zT/b6GkpATff/89PD090aNHD3Zu79696Ny5M/sRBgB16tTB2LFjYTAYkJIiUL5u3boVtWrVwrhx47i2p06dioqKCmzfvh3/CeiMehjWtcPtn4PYOWvXMGreNr6jwf7922zdEk0laLSMuDI0+zgBgSNIEtz079oi7GMh0Nn/8Cj4zkzk2qWB1PI2wXDKL8KNKYL73cMBAvW62AUgs+IBjqxfg7XFTeA7IxE584nbQO48NWRhIaxcWQNAEeiHeX5tUfixLwDA3FFwCauhO4XU8kfcWBroiNtc/KEfuLHTZK3WJAA0qDrzi2jmRvCxH2nv+3w+wWt2X0IJ37utFq0WxyLjq2icmrccpf2ERKv2XAbp5zOz41gZ6/uTsSkMHgMvQhb8ALKEs4xOmLbhk+yMmr8ks3rhqUOgM5IA7MrniTuGy/YkxJ87hBbHh3NyiwP7AWDoFSOCxp6CrF0r1v6FcDOOhOzh+lxwuwWT13pcQy6TAGGj+gF69BvOzqeG8dtDz0DiKmcpLwdA3G10Rj3kx/U286Uz6rmUBZlbwpjrqngu0xdH2XXxAIDgGbmozMmDzqhHwtcrWN2gGOIyUtDZGU2+Jq59XwcE29wje5/FoJTs1LVtxV0Pu+WzPlXDwdebW4PiMjqjHvVTCzk34vKeEbjvT8gAXLYT15iByjPQGfUwn7ti4+p0ay9xh/CZnWgzj7Q/l++T0DChHnx/Hkee4WFn7LpM6Yx6xF4lzwIl4xl0+SYA4gopRu6nzmztlgyKwuHWtRHkWBurgvxYvzqjHop6xGXsytjlkHclNPnUtQgAklQ/AiCujXW3kfEGr4jlSQEiCC1z+UEfaJUqeHxKZKG00ZyrrtnEqP73Jf4MQ0UJync2hrxNsM2YqXw02azOqGdEOwBJu0HPW+9h3kPOo0efYVx7KicnG9exzxoL7uEx6Rnccy+r6wJFc8Ezw/+dRPi+cg5+7yfi64Bgdj677yqEfhkL49vkuXBfm4jTHy7Hpdg41lbf9B4ImJbE1oxWqcItzV1olSqY0gnxEb0GkBQVpi7ExcrjU+LmSdMOTHXLQY++r3Fjbrg8EYZ17WCN2r83RHrnDWj3EXFdbP/mBGR8E81cuwEASYRc5FYMeY4//3AlWx8RelO1z1n+bA0CpibBoRkh7miwkjx3Xg514DMrEb1CCKX9RO8ObG+h0CpV2Jewl3z2DMfDAVEs/YD1Pfow6zQbZw3dKaQvieIIP7RKFTKGruCODWvbwXdGIibWuwoAyBq4krVxs6cvV1Zn1LN3or1nlM6Vx6cJ3HNrDUUgebZKdaT9wnFkPp13J6PjuTJce0tjd59xTqs+ee7NPS2gMwqpM0r7R8L1uDuuRdewaUveqgVbv5W/eQGRrdn45DX5PnRGPaZnXOTkqL+ezCl9bhPa1CDtX7iHFbnHsTtQZzNHFLSdco9H7HrgpJNIUSmIe+17wjsjaJRAUpPQpgaT2Sv8KiBXwO2CnBubWMamXwr73CDPaKRvCGeutdaulgAgi2jNkQi5/NEAmVUpHWhSba1ShcCjI8nYftrIja9xYl0szE7m9jDads+eQ+3Oh+NvqWi+LoaVu/4c+cWxy1B9cnYJzw5z5szB3Llz8frrr2PNmjV2PfvsITc3F0ajESEhIQgMDGR/V69eRXp6OgIDA21+O/wZnsoi1q5dO8THx6OkpMRuFuqbN28iPj4e3bt3f5rm/y388MMPuHfvHqZMmQKFguS8OHfuHMrLy6FW2+Zoio4mX1hSUlIQGRkJs9mM06dPo23btqhptSlFRkZCJpNxP9okSJAgQYIECRIkSPhfgZjR8D/dz7PGvHnzMHfuXAwfPhzr1q2DXG7fJnXt2jUUFxfDy8sLtarYp7/44gvcvXvXpmxsbCxq1qyJr7766l9mdXwqi9iUKVNw48YN9OnTx4ai/uzZs+jTpw9KSkqYW99fibVr10Imk2H06NHsnNFIKGI9PDxsytNzV68SjVhRURFKS0vtlnVyckKDBg1Y2aeBmH6zadOmCAwkRBRFrxHyiBZfPUBq+A4AggaFavqo5uT+y9Gof7kSY/I6sHJUIzS8WXvkfKxGcCr5jU2DkANfP42yzgKta8BrZ5D1uZrT3FiqKI7NZy/DlJ6FxosT0HIZsaLV2nWSJSBVvz2RyRPr3QG9QrpgR3ATOHgoUVHPjFlZenh/mAiLo7C8Lk+Mw5U3GhFt5QFCAU2D6amGaqZvJApmEm2grF0r1NtENG++ujFo/XWsjUaJauTpeRq4vH3QYgQcGQWtUoX079pCq1ThpeFvsHripNX7Tuvg8WkCMl9ZAa1ShYELD+LBS1FMrmJzqV1yCdaWHe1aZlcS8O710nmb8jqjHjmRpeTgkCcAoCjPDVqlCqPOvQ6Hw4IWUKtUod7e2ly/lI4dAMYbsrCtBbF4HNi7GdYQ0xDTwOGe3V/hZAaAHcFVKQMsFlhSbLVxNDm1uYRQ8tPgeXFiygGXbnFyWmuC/Yedge+MREZXThE45STujFLjtZzO7FzJAT/kzlMj/uyvkFlZJ6i1OP3baGbd4SwpVrA+Z4iLtJGvYUI9AMCulg3t1vF7PxGV2bmMslxn1CN9aRQUDUl5rVKF+EM/cNZrp/0pCJxyEg8HkrV0Y7IGe1sKqQOs70HLBjeq1SDnzhMIDW5p7iJogqAI6tWyE0nMHtmaq5MZUYbK58Pxc9AvAMDIXACiiS/tH4msz9S4qN7C6tD0CtbWvh7ekTDdLYbOKCQmDp/Dp3Og4xGTAfitzuLuDV1bTt1zmIWOEtmI26D9U6p/rVKFyd7tcWrucuzfT6jo6f5GMT31OPccmi7x7yVxuw7NPNF8bYwgV+pFzlIsvjc6I0n6KrZ6Lw8M4OZoX/I+mNIykPWpkOTdHrSe4Wj6ZQKUXxCLibmDivVH65V34umrXf5owEgJxDLRzzKZDIojgiVIfuwMZjZIQ87HhCb9wN7NrKyvjrjqB40mKRpK+5NnwfiOBg+nN0Gb5KFwX52IdzPPo84PJ5E5ZAWmXniZm4/3bqjQcDnZl2miaa1ShRSVwkZGAGhxfDiaLSDPaWU+oYc2rGuHBwf82LhNRUXEInvAD+W9I7j5owQlOqMeNyZFMTKpkgN+NvNMyRcemqsSHw9aydJD6Ix6yBx565CiZRCye67h7oH4f/11fDJ2rVKFxosTuHLiz5QQSnyOWivF94xaNp21JHs4TfoOAH+E1kTTr8j6MKxpB3krgdhHVk3GAJ1Rj8bziEWJps5w3p2MHX6HUNaswqbsqJ/2I/TLWHyTkwCHbnlA8nnojHr09Iu2SYWjVarwZWArmzGIcSuG7E9v1c/CRO8OiH53InfdoWkT/h3WMQw1XB4hu+IBjO8I7wOdUQ+Pz8j87r2aws4pQnjyBIdueYDZhAaryFibn+JJ2Wg9MRZpfgCSzpG9e4nghZH1OXlmD+zZBLfviDeCws0NP/r/xqXmoalYgqZf575v3R1B6t9Q38NM30jEXo2GQxOe/tx89jKbS7F8DwdGwUsnzDclfPmvSej8X4ply5bho48+gpeXF7p164atW7di8+bN7O/XX39lZWfMmIHg4GAkJwtpZbp164bBgwfb/NWqVQt169bF4MGD0b59+39JpqeyiPXu3RuzZ8/GggULEBwcjBo1iGm6Tp06KC0thcViwbx589CpU6enaf6pkZaWhuPHj6Nr167w9RXcCh5WscY5VbG9iUGtXrTM48rS8g9FLHQSJEiQIEGCBAkSJEj4e4N6tOXl5eH111+3ud6pUye88MILf6lMT53Qed68eTh48CD69OkDV1dXKBQKODs7o2fPntDpdJg9e/azlPOJsHYtSaRoTadPTYrlVv7nAMmJJi7zuLK0fC1Rgtx/FWL6zWvXriE9PR0A4LaZ/OLef/B7RMyKgU+ykPiwfU3hNj0cGAWX7Umo+UsyCqIf4JXs520sNT6zEjHB/XcAYL7vOqOeWWgAIH+WBn7v8okM4y8dg1apgoOHktHF1r4myg/3CtEoJX6xgsX7KNzcmEaz8qoRWYNWsrgsJJ9n1hStUoXAN5OqjSOg8FxItIGWUxfYeOqlOEG5KMFmnFRDJ45xMXcMw0zfSPgPO4P079qiRk5N6Ix6xKz6UahTlehWrCX//r4bdEY9prrlwPXMTSaPq9yZxdbR+tb+6AAgCw/h5BHLKS7bs3lHoc77pE/UIVrLnl6XmAaVIulz2wBS2m7cxJcAAPKaNbk+5aEtSPzDSEK5n/kFoY5WJrlg/8HvkblIzWn4xW1a9+HyRwMuLYD7CTcWt1XRyIW1Qa1JCvf61d7jrM/U8PwkgdG6U9Rfn4hbmrvs+HjoT/D+MBHPjxyL4kFCHOHDAVFo0IdYOrJe4mM9/gx0vPJyORsfHeNmn6M2ZRUBvtw8AMDvcaugTHIh/Q9ciYxpAXatKGK0fJ88M+I4A3ty0zgg8XnanveHiWjzeSx3r3YVkHgE091i/B63CrrdfM5GnVEPh8Op6OXR1kYuZ2026qQXw++9RLwwZKSNzDqjHmvzjiP7e0LRbKkg8Ry9Wj+PtUFkXqg2Wiyn9RxUXrtu85yZuhB5xrsSL4VSdweiJe/EpxCwlgcAQr8QnsNvmp5in3s274jP/Vtz9PXielQ2irtqT/h8kIjAFCebcvS4d2RvVm9/Brl3N9/QsNg7MbRKkvTY732BmtweZOEtubm68XZ5tf3TObvf8TYCp5yEzqjHxnsNgEOebC0vyklC5fUbdsdIafe1ShXyKh8AAILfz+f6cN6djNk3W0O5KAEH9mzC2chtAIDP/Qmlf6ukYWjYlyT1jpxBLIj6MODOKLL3mzuo8OLFIhuZxffbewhvYdcZ9cjusQZ1emTZzGHtHlmAmXx2O0Hiy6n1aNEdfy69xa3UxtXO8wDPqvQWl/swq7lWqcKBXPKOVQT5k2fnkgG9I3oxuTbkHefkpP+br42pdn80vqthdPzWMHVuC8WR0zbvDHFb1lYmWXgIk1d50AHmC1dwd7gad0ap4fFpAkal5UJn1HOJp7VKFSyfF9u0qVWqkN17NbMuAUCvri9hbZAvmn6ZgOHzp3PymsvKmCyFYwTrru7qGVYm+h3B2lU8LBoPXopCw+WJ3NhcNyex1CaAKElx1dqV/3EGvq9dwUTvDlAuIveHvqMAoLx3BPp6RLCxxf+6nX2en51CrFaNGyH7+1DojHq82+gI/FNqorwnb11X1HNl41kV5MfmJHCykGrA713ynPRP17J6pqIim71McfQ0FCHNsS/1AJOz9u8NUW8TT42fGVGGyus3uLXJ0m9YodZPJ9Et7jgs7VXsnvW8ePe/J0bsL6avf1bYsGEDLBZLtX9Hjx61Kdu5c+c/bTcnJwcXLlz403L28FQWsby8PNSoUQPdunXjaN//P1FZWYmNGzfC3d0dAwYM4K4plcR9y55LIT1HXRHd3Nzg7Oxst2x5eTlu3779l1v6JEiQIEGCBAkSJEiQ8M/CU1nEfH19WQ6xvwt+/vln3LhxA6+99pqNW2Hr1q3h5OSExMREm3pJSUSj0a4dYZKSy+Vo27Ytzpw5Y2MVS05OhsViYWWfJYpfIVo8rVKF+usTWRxR0evEekHZjGrvTcU3OUSLlPdDaxS1vwOAj4FQBPhiqk8V42H/4dAZ9ejRZxin5Wv2scAqJNbSymvVQuVVI16rl4y8ORqWzBkgCWqpZs93BpnL1oeLWF0xCqq0sJkvr4BKUKixvlRnyGeXPxrY1NcqVeh0rpSdaxRHZM2dy/uTa5UqFrfTo99w1N55ErUXGFmZwNdPw/ujKgZJx0KUDCKxFjHpAuUobWt9c2/Wt6yklOvDudDMyW4NrVIFS+pFrC1uYqNJo59j0jNQ3jsC+9P+gMLNDQDxS9cqVZDfJq69Oy6Fk3iPKvae2xPUCJ8bg6s/CVpSMWg8mdivv82iWJjPXWEMZTqjHv5vkzVujL4PrVIF/3cSWWyOVqmCRd0GWqUKUzKuMH//j26RPu93vM31SRNoa5UqdIoTmN0quhG2x/jzQoJ0a2ub33tkzdDkotbaYOOultw4D29Yg7pbhWSqhcNIjNrcrFT4/URSVNAYCpljDU7OzC8ES6xYDrF1z1p7L5bFlJFNNJQilkqtUsXmkFocxXXtaehzIkvtnqewF3dhb/14xAta1rCFsaglJ/EulGFtd0mdauv6b5+I/FnCs7MwOxnxv24n1tPjetwZTe557o7W0JwlzKWeDnXg+8o5Ti5T4R27slZn5aMscoGbiTXl6k8hLJ6Jlqu3KRHPxYzHsJX72HmdUc8sAxXd27GyTb8SLCId35jA+nnQjawb84UrzJJibx4o6uwgayo9ohw9/aLhu3s8d12rVGFfMpGHMqcBQNPt6Tix2dbCCAAPG/E6TXGZFw09kfllNCwp59n4dEY97htdGKOaooE7ZxG1jid542oUvvn2JaAribO6/3I03vGJtiuLuA8AGOfVgViAbtzkymRsCmOxXRUWE6unOKKEVqmCx8CLeDCE9EHjZ3RGvcCad1yPb37tycls/czTOi5/NMCjX73tehPc3CPEQTntJxaP7335feS3Vi5cHWrxszd+nVEPeasWmOr9K3eOWWWrkpCburRF5VXhfTHb2MOmrFapwiNlhY3MWqUKN2M1UH6ewFggARJ/Ka9Vi8zjUWGtl/WJ5OrrjHq4Hne3mTcarwiQdQqQZyTlY/IeXt+czGFax43I/7GV0GDVuthZkIRenQZybTrJHIWxXyYeONnb2qC4ilhUERxosxe6ryVj8j88ihuz6xYiU+ZW8rnOD4J1yXfPeGiVKpTqfFHR+Robp7WMgG0Saf+3k+DyRwO4nagPp30pXL3glbGsrUgnMhbTjZvwfeUctEoVxnh1QGZEGZz2C3FluXM1yFhB5ir9u7Y2+9TV9zVcH6WdBMuyeLxixP+6HSFLYlmC6IY1HwAWC3RGPYpGqvFVTqLd9ViZmw+tUsXFR9PvY4db14bsBJGt62tjMNUtx6b+3xb/pRaxvyOe6odYvXr10KBBg2cty78F6pYozh1GUadOHfTp0wdHjx7lkkw/ePAAa9asQWBgICIjhY1y6NChePjwIVatWsW1880338DBwQEvv/zyf2gUEiRIkCBBggQJEiRI+F+AzGKx/Mu/N3v37o1Hjx5x7CL/nzAajfDy8kJ4eDhOnjxpt0xGRgYiIyPh6OiIadOmoW7duli9ejXOnz+Pffv2QavVsrKPHj2CRqPB2bNnMWXKFAQHByM+Ph67du3C7NmzMX/+/Gcm+7179+Dq6orO6AcHmX32H62S5OCxx2gnxosXi7BP1RjXJ7ZjMSliv30AaL4+hmkT6XXf3eMRFJuMjK+jETBNsECINUI3J2nQaFkCVucdxzivDuy8g48X9iXshVZJ8ussDxTy6YiRviyKsQLZg7UmicqsfnsiGk7IQXmn68j+RA2vg+X4bcs6u1YGa62XzqjHq9ldsNX3CDee6qwXAIDoUBjGOCFoXAo3H+Ly5k5hLIfKv4Lr0zRo8nWCXTmrG0+3V0eDalZ1Rj2ar4thuaa0ShWyP1XDMEKwzBjf1eD81DhE6wfDtZet5U88D/Rc2/kxjAkNAO69Go3EL1ZUO0fGtzU4/1aczXVF40ac1t26b61SheanHLFYyedVsxdbQj8/HECY0tj1/sOBZOE5cGjaRIhBEEHm5MTlJLLXR9bnahYjcPU9DTw+S0BF93b4fu23GN6sPfJnaXBpUhxX71GPCNQ4kGLTLodDntAF/8LOyxxr2GiAi15XMyuDeC5ozCWF5uwjlqcHIDnoCl5qgJvLnFH/RRIvJ3NwwIG8U6yNBwf8uBgcw/pwZGvX2siZ/m00At/kYxwAYIwhG0PqFHPlSwZHofaPts/v454ldi06FIWtauPUPLJOZ2Sewyf+oXatkfTYoWkT7Es9wJ2zbtde39d2B0O5QMFiTGm5Hv2G2+yfOqMePQM0KBoYCtfNZB4McZEIik3myv1yNRUveoTbHaMY5T0jcHTtapsx9db0hcVBAVNGNtxPuGGr7xFWpmFCPdzS3MWinCS84xMNeWgL7D/wPbRKFW5PUKPBykTIa9a0YbN7HOh6o/2/MGQkft2xgZuzm7EaNIoje1G7D2PgvibR7nwWxwfAz7WQWcLpuKqbf51Rj6Bjr8N36FnYgyLIH4+UrqB7Ws4CNXxmk2cw9LQM59rafh2xXhvNTzkirV0F8j7UoMEFEwbM+xVv1c/iZCkco0YD/T1mYRJfm55xEd1rVVQ7BnGf4n7F2Hs1hbM0Wdd93PxolSp8ln0S7/lG2dQV951UZsJHfuF22ykcq4b7mkSYO4ZB/scZtm8ogvxhMmSitH8knHcn2zZeDaLPViCpDfn+kb1QDd+Z/HcE9lx6KLEvJV6oZ/WeKRyjZtY0iryPNPCamwBDXCSWd/+Oy61njZtvaNBoKfnuUvZiJGr+koz079oS1uc+kaj5c7LNvqF+eyLqbrXdxwpmaHBxMtm/i+MDbN6HDp4eqCy4Wu19AqqP96zuHT4/O4VZ7cQwd1BBflwP52ONUdqJMOR2Gj8eNX9Jtmm3a9MQHMUeFBcXo27dutXO1f8X6HfWFlMWQuFUfW67ZwVTeRmuLJ75t52PZ4GnihGbM2cOOnbsiDVr1tgQY/x/YMOGDTCZTI+VJSAgACdOnMD777+PTz/9FI8ePULbtm1x4MABmzi3GjVq4LfffsPs2bOxbds2FBYWwt/fH0uWLMGkSZP+08ORIEGCBAkSJEiQIEHCPxxP9UNs//796Ny5MyZMmIDly5cjMjISTZo0sclMLZPJ8MEHHzwTQR+HmTNnPlHMWnBwMPbs2fNEbdarVw9Lly7F0qVL/13xJEiQIEGCBAkSJEj4Z+Cvit+SYsTsY86cOTh48CAsFgvOnDmDlStXYu7cuZgzZ47Nn4QnR+hpmU2Qea+QLohJz2BuNXkf8tTf2dvasM+T3XJhqXjE3BIBnpBAX14O33mETjdngZpdD4pNRvrGtpxbIu2fwjWnAjIHBxb4TUHdEgFwboniYHGdUc/cEq3Pi+W0DuTWKlWouzWJJTn1nZEIxzulnFuC+L/fDxNt2i1sX2QTEE0/j0rLZQQerE7SOWT3Xg0ACJiWBEWgH6xh7ZZoTU+rCGlul9Tg7Dtx0Bn1aLGG0CHLDtsmDbeeI8XR05zcPrMTOSIT3/d5NxBLNHEpq9c3B4Z1hFRG0cAdOqMevaNehKGiBDkfC3TLqk9icfoDgZDlzi9BqLvVfpoB1RkgONXBxi3RsLYddEY9bq9z5cZtWNMOirp12fozrIpAWrsKPBc73uY+64x6fFYYyMauVaqQvjgKtXad5Nawbvcmbn4qr123GyB9IFtYb7QPMUyd28Lv3UTIq1JROBWR3f7whjUY3owkY6RuibT+tekaHFm3GndGqzkyEGtQt8TGicSNYmPWESbHixeLUDBTw9wSX3h5FLc2aSqI3HnkHm1IEZ73a7uDkRNZisrcfOaWCACylrw7cHTDHACE7EVn1CNoVCqTk5KqALDrlggAa4N8Yago4ebP2i3R3j5h/Z+NK+kcSzQLgLkldpow3u790V64hwqfxgjYNpGbG0rM0uL4cLtyA0DT/pc5t0QKsVuiWPb9GQlI+nwFDCtIcmPqlkjLZH2mhqNMSFZ8YzJPGCR+lpz2p9gl/qjMyYMpgyTvpfsRxWafo9AZ9Yx4Y/+B79m11I+Wk3NZSXj+fAkUzfn9FQAcfAnJUPriKAy9YkTOAjVzg516jRCdyI8Lc9HrOcIofGZ2HCq6hUOrFJIAi+eatp2k+hGF7YuQ/T2hS8/+RM3amn1TSDyrCA4UnvNO39nMs8zJCTqjHiZDJqhbIgA0STKxz8e/sHXVU1S5Ion3/LR2FZifnQKveQmo9dNJ6FrZuiu5r01Ei1VpQl25gl37MiCEe64BYOgVI4rj+edob0ktm3cNAFR2DUdfj4hq3das26bQGfXo0XsYTJ3bMrdEReNGMKyKsKmvVaqYWyJNpSBzrMH29Ed1yXcF+R9nyLxWuTObDCQJ+u9xfHy79Risj6lbos6oh7xChkda0o9PsjORswFJRl951cjGddtUgtG+wncNAJxbIm3/u5HfAgCCYpPxdUAwyg/6sOu0jPMxkgS50VLiLqsIDkTNX5KxJf8EAl8n66Xmz8lsfhblCHtXzTsmu+kvPD8h5D5f5SRybolrq9IUUEIe6/skO+zBfRd5ODAKOqMeyiQXOHgoOddTClr2A98ILCnyhs6oZ3MIADVybgEQSEG0ShUqa/Ffv2m7/zX09RKeGZ7KInbkyJFnLYcECRIkSJAgQYIECRL+5pBZyN9f0c8/HU9sEdu7dy8MBqKF7dSp0xP/SXhynGtrgdYjDOmLBc2gqaiIWZp0Rj3KlJVcHRoUrTPqkVf5QNCUenqw81qlCvk/tsJ7vlGwlJczywq9rjPqETjitF0ND4XTvhRYKisFa8VGnhLWomkDa1Ctkeaticj7SGMTZCsmFxDL8lzMeFybTjTPDs08uTYf+NVF/gfkWshSQmu78wGxulANPyUIsB5D7/AejDr+uZjxWDprCGrvPMnJCgBR78fgwyyihTOlkyDwvB9aw+tkbQBE+0xlvTFFg32JP3N9mS6m2SUhoH/eHyYi8OhIWJ6/aldLKS4rtjLIqtIyHH85FNXBY+BFAMCBvFOoc4mQPJhuFwIAKvML8GafMYysxcHPhyVJpWkEUtruQOaX0Zy2EgC25J/AqUIvXA6vtBlb0BiSXNetdzo3D0FjT+HKgmBolSoo3OsjaDyhJXbenQwcEu6romUQtEoV3nNPZ3OFQ57IGrySlenRbzg3N6pPY7m5FcsDAGELYln5m5N4KzIgWBr3ZxANbINVidWuT5ootLyeBb6/jEP9dYnwfzvJ7r0Ty3NDfQ95H2owvFl7hKcOAQD8EuIGz4UJcGjaBAAg/+MMV8ewph3CFsTC+0MiT9DYU6xd5Xw5DCsjbPozn7vCyXEhnKRbaLAy0eYZyB9tQnUQ3/PJ3u3tjs2ibgPDikgbi6b4P0Vpf75cp/HjuTo1f06GVqnCkMvXufq6VnUhSzwL/+kCUc7crFRcmVYHiiNKliRYq1SxpMyVXXkyDXv30elYE7ty9gxsj+y+q6BVqpA7T41pGZdZGb/3yBzenkAsQcUthf23y+hx8JmViPSlwn4dFJsMi7qNjdbc+nmyJ2vzP0Ywa/GDISTBLU006+ZQguxXGtmsscrsXABA4JST+OlGW6SNXs76uxxeiZtvaNgxAGaZ0ypVcPwt1UaulsuE5yr9E1d2nqYysHiT1B6KQD9GfQ8QWnSx5doaFqtUMBQ1f0lm/SV+sYJ9ztxCLBzxV363u9ampdkyF+uMJDE4beNyeCW7N7qC1GrnX167NkbWvYmaS92488sCCb977lwNJ0PNi4SG3fiOBtFnK8jJQ5427VMr0r2h0SxBvOXMRVCLoLxmTZhu3ETQ+BSuHm2nZFAUsZwUkJymlopHyO6xBgDgfNuCdh/FcHMirkshTvli751k3a9WqUJFXTNq6MieTtNv0HeIuO6wZu2xM7gRd178X6tUQRHgi0gnYm27GUtkKdqntOm/tNMNKEKas2PT5XSYO4WhgaK23fv2x8NA1kaNAymQHzsDWTtC50/p5Wm9t3wEq7XOqEfnHW+T7yXTJnJt0vJ5h4mVOfyMGTqjHrV+It8RjNH3sS8lHq2/Et4tDk0a28j2S4gbkatqDiu6hTPrmxg0PQFAPJv8txN55t9qaVNWwj8bT/xDbMCAAfj++++5c9u3b8fAgQOfuVASJEiQIEGCBAkSJEj4G0LKI/bM8MQ/xOyx3F+5cuWJyS8kPBk25R2H/06e6lqshQqaKGgQh1y+DpmDA27GatBmUSzGeXVA8ApiJaJaNKp1ajb4AksKTSF3cUEPbyF/mtgSQ+Hg3Yx9NnVpC61ShcytKrT1zePkkyUQy1zWVqIVbf01kaNXl8Gom/EAXnMT7Go2dUY9o9qmfVfWlKPpl8T3vDJfSAIJADUmXYPvpgI4NPOE50JSZlUQH8elqOcK3U8boTPqkblVRY6NelReu460xT7EKrMn2SbuJXhFLGRhIai3MRHta5JHI3NLGIpGqmE21EFeFImbqZuuYPI2XkzGVd4zAityj3MaQRrLZa0tdPD1ht+rem7MVDMtnqPxBmKNO1FmhlapYlplmpSTolfnQexzx3MCzbXyC2LtydhMtMtr846zGBSdUY/KrBxWVpy4OWMooa4vt1SwssOatYdDtzzkzdFUq1EFSByPeLyBU8gcmwpJ4vG282OQM1/NJfc0XSKW9tAvYomWsRlP/w4A931ro3fUi+xY/34c129c7nH2+VaMGo3iEvBK9vOQq1qi0bIEG5nLe0dwaz17Wxub9Zn3oQY9L97F0bWrMd6QBZ8PEplVDwAuP3rIylMrygqRHDqjHl7zEmDuoMKDhzXZOYDEtllrqP1TaiJo7CmWwPz5kWM5mRU3ixE0QdCedxklsMRqlSpoL9yDIjgQxrcFLTi1AFPQdWetZS6OD7B7P5m16zKZe1niWW4PEq9dMXRGPYtTKZhB1gy1fhTtC+QScO8IbsK1oWjYEDqjHllbhWfjI79wZPdcA1MXIyBXYH42mYd7lU64O0KNQ5vWIiY9A+9mCvEVOduJ5diwguxxXrWKkLujNZOPjm1/+gkSm1GQDO8PExm9tnhMbmnk2QuKIXEq+bM0qHEgBdMyLiPwjZPcmj+48zvWNt0HQ5bEVju/tK7Py+cY5TjVlpd2uoH+6Vq87JKJyxNIzOLCbFImfWNbbr4vnPfmrJM6o55RgVvHtIjnQCzXmdhvoVWqcO/VaBie24hOE/iYt0ltjgIgngIx6STupqxPJLceSgbbp2Xv3b6f3fNi2ehn/2G8pdha7vIfGqNxYl0bj4O1m5ZwdbIGEqt6pwlVyYb7Ce+72r83BKJDYS4pgVapQu2LQhoM8b7g/REfB1V5ndCPn58Wh1O9yfuE7mfdLtxH9qckNpNakcrqy2HKyLa5B+ayMrvWHlqOemsA4GK6Fe71UW9jInxGCO+B6LMV3Jqm/61lF8MQF8n1T+tcGrKEK2ddRnxMY6j9fpzAtdH66yrLauFd4pXwhgYNzj2EzqhHk2/51Dr0s+liGufFID92hlufOqMed34hVsq9LUncM50XABi3dS8AYJAnid/1/55YmMpe5L/j+L9NYqBdtpNn7FGPCE72ZgsSYFjXDgsbn7Nr7X/kamHH+07rbKzehrVVcXy/eqO8dwQcf0vl5lI8fxnfRGNG5jn4Dj2LgGlEnt/txEpK+GfjqWLEJEiQIEGCBAkSJEiQ8D8IiTXxmeGpWBMl/OcwvFl7/LptPQCihel7qZBpoUr7E80OZVHaEdwElspKnJkdhyZfEy2Tzxd6rj2x9uXKV6Es9gkAzPfv40CukFBwWsZlGw1dZW4+0+IUtiRa/YzOG3C/420bbZHOqEd65w3QKlVQLiLyxB/5EZZTF1DaPxKZi9S4+lMIa3t+dopdTS3VVAHEakfZ0ozvauDQLQ/XenigMr+AyUW1aDemEEuA6a6QjNb/VT2gULDjd8IP2vRpfJfU85qXgAP7tkBn1ONa5QNSf9gZuG1I5JJg07gq8fw67U+Br2Mdbk6OhToz2YxvC3EGuUNI/J5hZQQQ2ZqVb/VtLKddWxXkB51Rj3l+bZE7Tw1FA3e77FAmQyZCT5PUEbMbkHihN65GsbiZzOfXQ6tUYYxXB5uxZ32m5o579nqVlenrwWsKAcBrDq9h1Rn1KHsxEgVV87X/4Pd2tYgAMCtLD5P2LtLGkDiWa7v5xJ5NvxKsoNbzW2dHko11lJa5t98fsd4dWBxZw+WJULjXR1H7O9gfv5WVb35KSJhucpKz9rVKFbyXCYylOwuSIK9dG5cnxmF/SD2Ez41h9wIAXrjcBwAw1UeIv/k6IBg6ox4TvYVk51S+X3dsgM/LJMam89hx3LgAIHxuDGThIciM4DXkjgdPceOtzC9AcXwAW/NH1q/hngFdq7rYcHADzI7AtenECmV++JBrw9SFWFFirxKtsSyiNXRGPeqPusdkFstAPxtymrBzchcXGyuGVqmCRSPERoktvWYnIODoSFbWrXc6l+BaZySJlbuMGks047duQatUoYHbfQBA1+FjALnwDMNswge+ZG3eUN9DvY0kjmt5YAC6OgsxcGkdNwIAs+AdygmCTAZUPi/Ek2mVKrxo6AkH72aoJSdWOsUR2xgWMXspQBg1ATDrWZvPY2GIIzFxy+42Y+M6OPlzMmcmWyukWAYxbk1Uo3Ac0fTnf6BBaacbGOKpxu9Vxu6ZvsSSETjiNNcGtf7ojHrk/dDapl3qzVBdvwDYM0+ZU4+tFNj3dEY99ofUY59p7DKN9aMQexoU7CT7/cLsZOw7sQc6ox4j0vIBEKu0GBMK1NiUf4K1L/5vDfe1ibihvmczBsrqK16bOQvUjHHPeY/wvit7sRy6nzay48rcfK4tBx8v+A49iwcH/OzKoVWqsC95HyfDTwtfgGHEcq5co2UJbO9hz010KDsWY0Ravo2lSN4mmMX+AYJ3gdiLIamNkETYel7TN/Dxk757xuPFi0XI7r/KrkWbroHqIJbZlE68WYI2PWSx7TqjHspF5B1JWWDPzIxj7J2P86ig5xotE6xmYtR/0cC9831mJyJ9Cel3XdfnWDmdUY/MV1YAAJc0OX82z3o6LeMyahyosq6/Go3yXmTsQaNPQatU4dZE8hw6+HoLfX6QiJzthPlV9Uks84yge152TxLHdyRkD5z2pXD9WY85c8gKfOIfihtTyH59c5IGd/qV2syLhH82pB9iEiRIkCBBggQJEiRIkPAX41/6IWadsFnCs4fOqMdzsUJ+HeoLHbg5Bs67k5H5ZTQsJQ+RsYm3jNA4CKoBLxzHWzpy56kRFJsMF/kjTmMm9sH+9M0RnBxiy4ZWqWJaKrFWR2fUI3MR0Rr1DGzPNF4dz5Wh+LVoVvb3uFXwfycRHgMvIrOCWE9iF0yxaQ8gLFbGXS2JNv3+fVztXh8AoPycxPo0XJFoU8/BuxkaL05A4Vg1k6tlwmvI2ByG+POHWbldLRtydXVGPc5PJdrtqz+FsLGO9BIsGwBwfSqvSZOFhXDXrTW41lo/Gq8FABfeJP0FTUiB4u5Ddt7jswQ2f1qlCndGCTl7vD9MhGFxM8iPnUH2p2SMuwoETd+iJiSmIvQLYlVLjyjHoU1r2XhW5wnxawFHR6J3h/64M1qNwO8ENqy7w9Uw6y/h6nsaGCpKhPgiuZBHyXretUoVjq1aBU+HOuy4Oi32x34qNOkvMNI56OoBANP+3x1B1uytGDXXl9iCAZD8WADYvZ7g+wcAIVeUzqhnWuO+6T1YO2ntKli7fywVGBmztpJcSwCJKxrkGQ1zSQm73mAlWW+UpUzelWitb01UY0kuiS+6/3K0zXip5vaFoaPYuaNrSI46rYfA7tZgZSIsqRehCPRjc3PtLQ0+y7bN3eXaK8Nm/sXWp8GTp8HzkwQ0/ZKsJRpXSGVRHCGWneznHTHo8k1YUs5Dq1Sh/q5H3JzT8r0jegEQmDEBYklX1HO10aanv+aEBbdbcP1plSp4zUmA/6t6lAwW2EZpnYIZ5LkyP3yIGrpT0FfJm/OxGjdukthOh0OpML7F5/uzbscahrXtuHkBAK+XzsPrpfNwOJzKzWFF52voEX+OlTV1MbK8WeK5p3Uoy6dYnibfJCAoNhnmDirsbemO+y9Ho0e/4WwfqZdu4vq0ZnkU99NwRSLcV5M1dykmjp3/2E8FWXgIdEY9x0BJcz1RaJUqeL0kxMqVVLHSZnwVjYzOG7jciMziGReJvpcKbc5rlSo8HBBl10oKALf2Eqa76lhzS6+RfWGmL3k/BR4diWEupB+xtUCrVGGlZyKGN2uPXs8NgOrTWK4tuufR+2C9Dig6nitDwJFR3DXKEGwtu+nePZvzFnUbdrwvgcQc1emRhW7DRrOyNBef+HmlY0j8YgX3TqW48mYIa7dlwmtA0jm7a3dj82bcsVapgvks2TOppVaMb3IEDwU63qOrV5OcV34kfi2r+1oAYO9p5wIHTHbLhd+uCdAZ9WjzmRC/mPdDa0zJuGLTj9iTxt7cW1LOI2vwShbDReOuxM8Nzd/13g0Vy7VJ41kpg6HMsQbujBbivjpOmsDNBf0vnt+sQWQvr8wvwO2fg+yWoXJeio0T3oPbJmJxNHk+SwZHoe7WJNRKzoL2wj0YVkewZ7FwrBqV2bnEayVVDp1RD9+GVUzEXYrxXu5Arg/6Dhb3v+KuB1eGIrvqu9C9tuXsO5bXyIv4b4DsL/z7p+NfihH78ssvsXr1anZ8r2oj8/LyslteJpMhNzf33xBPggQJEiRIkCBBggQJEv55+Jd+iN27d4/9+BKjoKDATmkJEiRIkCBBggQJEiT8oyCRdTwzyCz2eOkl/GW4d+8eXF1dUWTwwyu9B8GUkQ0HTw+Yrt/AgbxTCNoQA9+ZiVyd8t4RfxoESlEwQwPPT2zpYo3vaqD8PAGQyaC7KlAF64x6+O+YiMwhK1jZAZduMZc+2g6F2JXuSVA4Vg33NYk253VGPVqsiYH3h4nIn61BvXQzI+1QuLkh/uIRrj/6WTwu6/8UclVLmPWXbK4/HBiFP5auhFapgtzFBeb7923kmpRuQN/aD7n20pdEIXDySdZ3l4v9UOOFXMgcHHD79Qi4r03E0CtGjKx7U+jPIwyGteEIGs0TMDwcEIVJn+7A+ube3HmLug1kiWdxb78/6vbMhFzVEg/8XHCrjQLeHyVgesZFfBlA3F0cmnnCUloK0+3Caueg8jcvOHTL4+aLYkPecc4VU2fUo/naGPh8kIi8jzTwmmufbti6H51Rj14tO2HHBR0GeUZD5uSEA9knoVWq4Hi0KSrNchxoQYLb5bVqMTfa6LMVSGojEGlQKIL8YTJkAiAEBqc/XC64h4U0Z3THfjsnIGvQSvToNxyWlPN4/nwJDrcmybd7XrzLEQwA/JqVtwmG+exlOHg3swnW1xn16BXaFfHnDsHv19EIfP20zdqzLm/dfnX3w7re9Gtt8WXT09WWZfKGtsD+A9//aR/VfRYfG1ZEonf4WSz1OImgjTGMZKC6sf0rz3rWVhWjyrfXVtDvI2A2y+H/qr7aOaV9Keq5wnS3GFd/CmEJy62xqyAZAzyJ+1v+LA0etSxFRpf17Pq1ygdsjYv7y9yqQkbnDfDdOx5QWBA0LgWl/SMZjTwtPyqvI4zRZH+o6N4OhzeQgPwTZWa0rynnZM+fpYHTXUI4YHxHg/PT4qodH0V116zv26vZXVDYvsjufcjYFIaA4WfY+0Fn1CPouxj4zkisdg1UdG8Hx4OnIHNwgKWyEjqjHgceOmFxj14s+fO/Atru9d3BaNL/Mnfed/9Y5uKqM+rRu60W2WP8cWlSnM2+Ll7n9trXGfXo1WUwDOMbwFSvknOdFZezJx/tQ3wsPmevTtiCWJyZHcf2GABwaNIYlddv/OlcPIlc1tcUzQNgSsvgrvVP10JZqxiZEWUwrIxgqSwaJ9bFDfU95O5ozZKdU5g7hrGk8TqjHkWmh3ilmeBmX/ZiJEdmYS2Lwr0+c+23fv6zt7WB79CzduWX167N0kJYXxeXi9CbsKDRebx3Q4XPGutZ2ermyNS5LVZ/txijYqdx34HEfYjry1u1gPnCFe76i4ae+CVov+Ai36Qx9p3WQTtwBJB0zm6/9uZGPI6HA6Nwp7mCfdeqTh5xfWtkb2sDQ6fv0LVpCI5iD4qLi1G3bt0/leevBv3O2jJmIRRONf+8wr8JU3kZLi2f+bedj2cBib5eggQJEiRIkCBBggQJTwSZhfz9Ff380yGxJv5NMCCoNUr93QGQZMwH8oiGz9oaBghBzlTb0vlCf+5Y/NlaQwMAxneqrGEAynsKQe0UAVOT0GHyBNbOxHpX8ehXb5ZE1Z425/Z4IZgaAGTtWkFnJKQWDj5e7Jr7mkRW5noVfXmEngSye39IxtpsQQJcticJwcAK22Wq+iQW19/UMHkKdoYg+p2JnHw0oSu1hlnPEbWGySJaM2uYzqiHQzNPQiAhk+HNQ69x2loACJx8EoqQ5qyvGi+QOMgDeafQYgzRAm9rocTeklpkbkwlgMWCoNGnoDPq4XysMQzrSNLHWrtOYn1zb8gcHPBwoJDI0TH7OmROTkhss5ON4Y+lKzGwLwl4/rbD86zszGN7mTWsp180VGeAlgmvQe7iwso4dMtjFPdilPaLxEivDjCsD2fjD59DrGE6ox5ecxOQ/YkaDk0as3m9uacFFzgNEBp0rVIF091i1JHXhM6oh6W8nF3/JWg/LM9fZcfUGpaxKcyuNQwAs4YBQJMjt9Bb0xcAoau/2t0dDj5e0CpVzDpZXt8JAPCeezq7X9QaBgDdho2G38ExAIAevoSAwHyWpGy48nEDNn5AoHlfdOoXtP4mFjVyatpYvMSgWs6gDTGsTPanarT7IMauBtQzqQ63hi6Ek6Td5T0jELwqlpMl/8dW6PXcAACA/1rBSqFVqjDg0i2bewGQxNnW8onrbck/gYhWmUiPIPfI9/1EzkpwbbrGph4FfZ7FbeuMehQPEwhLrK1h4nb8fpoA31fOQdWsgCO+mJ+dwtrK+lwgqjHdLcad0WqciFzD2vks+yQr+0jbjlHPZ2wKw6VJcfAfJiSD1Sp58p1DpQIVvv+rVfdtYjKCxpH97fe4VSgcp4bCzY3dO2P0fSgakP358IY1jExinl9b1lbxa9GQt2qBS5PiGLERpfGma+bmG4I1gtbr1eI5bh5vT1CzOtMzLnJzVzzYiavr4CtY0gOGn4HOSMgail4nbSwfsorT4NO2ovWD2VgAsnftKCBroEetcrvWMErYIJaHElcAQKtUOeunSf/LuP+KsB60SkLrnb6U7HHBK2Ox77QOzT4WUoH0av08sYa1aoG5ezbZfc7ElghTWgb8pydhTef1XLnrUzWInEGeu07nSrm9X3wvxM/z46y8WqUKjeKqyG9SBIuTuXF9m/kQo3dbLbuevVBIyGyv/I3JGk4GsTVM4eYGrVKF0k43kBlRhvQlUVxi98yvWwIAVrXbxM49eInMs/yPM1C4EzmDjr0ON0UtVkZn1GPAZwdhfId/1i1qIbk9JT0Sz4X7CfJcGDp9BwDI+Doa16YTgicAMKyKYEmyresCwGs5nVl/KSoFug4fA30YeQ7ovaBkH9b4bes6TPTuwFnDFHXrMgIa63tJrWH0fmuVKuTG+3J73ZX3fUnhKmuYvb1dDEraFP3uRJYOotZPJ22+a3km1eHWW/qSKBtPhQGXbrHyvkPPQqtUYZeBt2pK+OdDsohJkCBBggQJEiRIkCDhySDFiD0zSDFi/8+g/ranLzbCytLuiPNIEqwGncIgP3YG6d9GI+ulFdVq7ahv+OP84rVKFUp1vvi99S52nmpqevZ6Ffvjt3J1c+ar4fOBYI0rezESx1at4uqON2RhVZBAhZz3kQaXJ8RxWkt7cDzaFL8E7WftiGV8ppArALOJO0XnUtx3RbdwOP6WamPxsJanvFcEnOJT7MbfxF89jS6xE7mEodkL1ZxFMy73OKZ0eQ2VWTl2xQ1McUJ6RDlyPlYjpv9+THXLsZGBrglrP3VFA3eYbhNK3fwPNGg2PwEV3dvB+fJ1lvz64ENHFlfmfKwxSjvdIHEkVfFB9ubfwdcbldm53BzRfl8YOgq/bluP5uti4PfDXZjPXubq2pvDksFROL545Z/GDtiDzqhH5JmXkBz2A1f+z/5TGFZFoH6qA1I/Wm73ur16OqMeq4qVGO9qRNdLffG5/4+MitseLJo2kCWc5bSovvFjETT2VLV1AEARHIgbHRugycGrjDZbjOpiTcSxGLfHq9FglRAPdPMNDRotTcC13cFoWhWvY3xbA98+WdgbeECwqjRtgspr1+3KxdqapOGSrNK6G/KOo2lV6gIA6NV5EEyGTC6GMfOLaPi/TeI9aRyTonkArn7miCb9iUWyy+hxLLFq0b5AuPVOxyNtO9TQCfNmfFsD5Rf2E71Wt24qnw/HI1cHTP7se6wN8rU7Nuv/OwoSEXZoErJeWMe1e2OKBo0XC1pvOm/5szRo9nFCtev34YAo1Np1Eg6eHqgsuIrGiXWx0ft3JjeNdxSXBYAHQ6JRZ0cS0je2RVa3dQBIihBzSQkMcZFcQl7r/cj6nHiODGvakfVoZ3+kyPpMDb/3ElHRLRyFrZzQ5Bth3oN+HwHfV4RYGkWAL0wZ2VyftD6tk1nxALHeHZDxTTQCpiZxstLP3Qe9DmOn2rgwxfYdYlG3wcGd3xHr5K6WUA64RMayPhxBo1Lt3leKMYZsrA3yxdX3NPD4zNZDxLren+1DipZBMF0ysD1QfuyM3b6t552i8jcvHGq51+Y8nTPaRvqyKHj8RrwmaNxfxqYwZHZdz7Vr3U/WZ2rse+ULjL48HLV7kITLDj5eqMzJsxmbqUtbltLCWlbxOVofAB4c8EOdqnYpvspJREgNZzT/YwR8XibU/L1CuiD+4hG7e+xXOYl4y4dPSWBvDsWwJ6OpS1v8tmVdtffLXls+yc6Y1OgI3vGJBqJDEbPpJ5acHAC6XbiP31q5/KksWqUK5kPN8Gvwz9AqVZiReQ5HHgRjbsOLjx1P3hwNvOYksP3M+nqlpeK/IkYsZMJfFyN2caUUIyZBggQJEiRIkCBBggQJBJIZ55lAihH7m2B6m47IjCjjNCPyY2fg0MyTWXAcmjSGzqhH4Rg1EC0kHC2/R+IGgo69DlOXtqjsGm7jA68z6vF7612sffH/3N71WFs3JmvgdbI20sYQBjWaXLHmL8no+MYE3lJQZQ2j/XjNTbBpX3ydoqLzNeY7vboqyWNvdR+ufHV+94Btsmp70Bn10BUQTWn81dOszcA3k9Cz51BOPu8FBi5+wLodRXOiLRNbw8p78j7sCpkcznuSuXgE6/i+WO8OqMzKwYi0fJag1NxB6C9jPOmn6YlK7A+pJ1gsmnmyMr9uW89iObI+VbN7S2PEAKB2gQU6ox4FnR1RmV8Ac6cwaJUqdK9Vwdqh1jAAXHwQxYxMovHOH0ASUR7euJabE4CsT61ShbTRy7F//zZ2nibrpG2KY0Vq/3iSa0MM6/gJe1YPt97pnNaaJjIX17Feg7SdoPEpaLBSGGvYQj4WK+j3EXgwRJDV+C6J29gZ3AhapQqHWu61sYbJDntwxwd//I71Tft5nDWM9m26nI4GqxKRNlkJrVKF5utjWBvW88LGJpOxWAydUc+sYQBJGNxoaQLezTyPc5HbWL3zb8WhvNN1bu6oNUzcB40Do22fmRXHrnV8YwJKBpF4h9dfmcTJGX+UxDRSaxgAZg3TGfVQOJjJeNMymDUsZEksjqxbjZh0Ehfj1jsdAJg1TGfUQ167NmcNo/0FryTJaOdmpdqMQWfUw+FwKmrtOom1Qb4s2SwgJHy2dz+GeKoR+PppjMtvz11rvDgBGZvCWLnKa9dR+ZsXyhqRMYnLZ20V7lmtXSdRMEMDw+eEeXaj9+/c+rjXoh5XlqLODjJvWd3Woc3nZJwyZWOUHPBDUGwyq08ThovHTq/l/9gK4XNj2PHcrFRk96qKtTOb4H7CDXdGCQl0Kd7vSzwnHH9LRZNvhGT0Bx46wfDcRr6/m0Ii6E35JwAA6cOXc7JMHDEZAJg1zBpapQr7f1wPj09tra4AIEs8y9bi+ait7LzYGmZtMaFxUtQS6vFZAq69pYHCzQ05C4R3iM6oh8sffIwo/U/jmMXvJNMlA+un//LfoDPqcXNPC3aOlu0V2pXJIo7DotYwui9mfU7m3++9RNzb78/qBE46ydbDrVBHlPeMQK3zzuy6IqQ5bu1tDq1ShZbLSRLhdzPPw++9RIyZ9hazhu0oSGTWrF6tSWzxvaHR5Hk8IiRq5vbLQ57cMa2fsTmMs4ZVPk9iBN/yIe+itI4bWVvXX2lhs3fRNt/yUUPRPICzQuZ9JMRPWj/H16dqbN7Pz58v4eactieGeAz0LyeyFO/3fp2c/2kjZq8dAXPHMFb3t1YuqOgWbmPdFLf9zvUwGFZHQN5VYNr9xD8USW0cbfYVekwTr18eT/ZSup+Jx/tn32sk/DMhWcQkSJAgQYIECRIkSJDwRJBYE58dJIvY3wTpX4XixhSNzXlLHWcsu9sMAFDSlmip3dcmIrt/bZT2IxrtoLGEjc9vxGUojpzGoU1rOU1O8WvR6OEdWa2lgDJXGdaHo/GSBORFlbDrKQuWw+0EYV2q9dNJVl+s9aGfp2fY5vh5nFYJAMZ5dSAaN6scTs+dH8C1If7svpq3NF2r0loCgKKeKyejzqhHL4+27Fz81dMwn72MxomCr7Ex+r5df3sqe9arjdi1jfeI5vTo2tUoHCtokgdndrPrT061+eIxbGzeDNte/hY6ox7bti0DAAy7UgDLGTJ/R9esRvq30YJ1I58kTK/oTrT4QzxJv/47HwAAug4fw/VXfz2x+vjOJBaSa9HOsIbYqqAz6pE3R4O8OcL6+8SfWFybfkW0dh2mTMCotFxhbj0FtjSxRQQATBfTuHlw+V7Qgqcvi2LsWACJ37CHW3ub4/mRY5ms1cHhroJb1+J+C2YIrJq0DfEYGy3l/fMdz9ZBnR1JaP7HCACA5wHCGKZoHoCc7aHQKlWMJS5nPtGoW56/Cp1Rj/zZGpu1Lu57UroBWVUMWwUziQyFYwWLJi1vaVwOnVEPn1mJzAJ+ayIpNyWDz4eDqvDea29pbObA4RCxFHzu35qt+1sThfXqetwdQRMFC67YMqsz6rEvYS8UAcSS4L99IjeHtX46ieNLVuKFoaMgSzhrM17xsRhapYrLOwQAvbq+BHNbwlj69t7X7NbVKlWobBvEsYoGpjhBZ9SzHHcf+ZH78sZVoUzP5h25duq/SCwZFd3CubxT9taPzqhHXlQJDCt5y3dm1/WcFv9Qy724PHgJACAvqoTJLstx5sZycXIc/KpyplnPUe2dJ8Vd2I7fI4zFaMUf+wm1e2Rx96ukCZmLrq+Nsd3bB19Ag5WJSP+uLXRGPaJrKrgyhe2LkPLxctwZrYYiyJ+1uSO4CQBgUU4SdhQIsV5fBwSj3YcCMygAmO7dAwD07P4KGilqc9doPes4KlpGbAkQ79PVzUWHcwPh+/M4YgFp3IifJ6UKmV8QK9Pz50tQ5wd+XgHg3NtxMBUVIW30cu6+3+94m9vHqGxnI7fBEBfJySSWa29Ld2iVKjTqd4W7rlWqcHmePyunXETuX8A24VlK+GoFsj5Vw+9d4X1GWXKtUT/NhKNrVzO2Y23/4TBdTEOddeR912w+eYd/7t8aAHlGad8Dr7wMgMQFUxbEutuSuDFplSqO1U8X/AsAYO6tlujZvCNrK+A14T7mbA/F9Sgntj6ohV1n1CN9aRROf7Dc5p2Y96EGj3pEQGfUw5SWgZ6B7Vnb9Fm29/3i7Ltx3FpxaOaJw61rM4ueVklYNLVKEkMIkH1WZ9Sj8jcv7l7rjHoUh7ixY49PE/Dr9vVosTqW7cWOv/Fxh29cjWJ1r72lwaImZxA0LgXKJBe7a4O+e8TnciJLWZ/iZ0osl4T/TUg/xCRIkCBBggQJEiRIkCDhL4bkmihBggQJEiRIkCBBgoQng0Rf/8wgWcT+JgiYchqNFyeg58W7yFkguBCZLqcz94c9qxbDb+cE6Ix6+L6fyJFDaJUqWCoeAQAz90fMJkHarpuT2DWAmMP3XuWTQgNC4HN5rwj07PEKgjaS+kXt+aSOFOZDxGWyYUI9VP7mxQL0xS4EWqUKrsfdWR17Jnh6jroBaZUqOGv5xLW0vV6dBnLjAICm/S8j70PiCjAk6TJ3zdptoMeVfgCAG+p7dsck7kurVOHBS1EwOwk7wZYWnqyc+5pE+P1IEl/f73gbvToPsuvaSAkVbu1tztqmpA/dFr2DrE/V2NLCk3NRC3wzyUZ2x4PEnYq6jNHkog6HBFp5a7cerVKFZt+eRv6Prbh5abmMEFU4NGmMnj2HwmtOAny/umB3TgBCsrG+uTe0ShVK+0cCZhN0Rj3ujFKzpJZiZGwO447fzSTpFQInnWSuTAAwpE4xtEoViodFo1Uq2Y4yvoqGe+2HbLzVrRkACNh2FxZ1G+YaKF57FyfH2awDrznE/aW0fyR5jg4I7o80IafPy4SoRH7rLgBCLEHPUdISnw+I++e16cQtsNkC4hrUMKEeJzO9B8sCg1iS44tvELmcis028xbwGiFAuf9yNAqGksD9hiuIG0vvWmVsPAcfOmJEGnHndXhoYWOwF/RN3b4arhCISoo7EHKXBbdbQBHgC/lxwd1O9Skhhoj/nRA2BEyzJVjQKlXIHGObIFx8Xdy/NXRGPYr2BcJ0OR2X25NEtAGb7+PmJD65LB2T/I8zuNq/grW91OMkN8e0/FIPgQxGnKRdTOqSPVABABwxC4UyyQU3YwVXz6AJKZz8Yrc1WsZJ5shdBwDDSOL61nncOJv5EJe1Xp8b8o6j+boYft6qXFDdTtRn5RRJwrPqsj0JnceOw+YN37J64v4yv4hG0GKSuPvgQ0e78tRfl4g738hQMiiK6/sdn2h0WDwdQd8JhB/h4/Vcsnjm3nrhCnx3j2cuuBTUndtaNp9kQjzx4sUiGzdFsSsZJZ/qduE+avfIQtCEFLI+zxzk5wlAxquE2Opw69qwh87jxsGwMgLdB79u9zp1baR4YC5DUGwyJ9OHWadtXS+r3M+pLIZVERyhCsWg55OgCGmO2TeJy7Df+4Jb4r1XSd8PBwjutaU6X+iMehYWwJBM9n7n3UK6FPE85M8SXOMcuhGijdIutwEARSN5chZaL2vQSvR6bgA31oQ2NWC+f99mHOUHfZDWcSM8P0nAEE81HJo2QdDEZOEdZLF1Mby5pwW8999HfjcFu9/y+m425ahMOqOeEZpolSr47hnPZKXu+rSsvJaQqJqSuXguTGDjvz5Nw60xSoTzcGAUbsWQ+fD+KIGTQ/w5PaIc8tq10cM7Eg6lFtbWeq8/7O65j9wsUBxRsuN2H8Swz7cmqll4gXjs9uZBwv8GJIuYBAkSJEiQIEGCBAkSnggSWcezg2QR+5tgl4FYDKa65cBntqAlM3dQIXMR0Z6Eb3sLgZNPQl9ebrcNppmsssDUX5doo62h2i4nGaFZFZMuUDjFp8B87goMIwgFsUOTxgCA4FTyuz3rMzXmZ6fg1+CfoTPqcUtzF4da7kXDhHocgUVBJSGTuDeZBH5ba5IzvomGRdOGXQuawFvprDX8WqUKpvQsVl6rVMEQF4mSQVH4ZDihzd3WQomi19U2QetMA9eVJwWxN3/ymjVZ+To/nITv+4nI/j7UrrYqcArRVI4xZMNkyKxWowYADfuSpK3tp05k49G/H8e0ouJAcWuZxJ/jf9+F9A3hqOjerlrLn3iezWVlaDb4AlfGIaII3+cnoPL6DZjPEhpx07170Bn1aH7KkWtLTMKiCA7ktLApHy+H/6vCfXLw80Fl13BkPr+ek4UGkVuDzrPrliRcCDdDq1Qh8L3T5D5FtkbhWIFmOn2D7Vo1n70Mx4JCXIollMAjcp9jY/fdPxbq6RNxd7iQOJSCjiFoNLG6TSgQyhTtCwQg0LrfnMRb28YYsgVr7Jd8gtjNPkcBAP4pNYV7GdmalJcRC5LfLmJFrfPDSdwdoebu+c1Yosmu8cCEJl8LbTc/5YgevlFQT58IAPgysBU2Nq+ySFOLmbpPtZYXCkVLgcJd9Uks/gityZLxAsCKux5Q/nabWAv3jLdpRzyHgSNOozqI58v6WaT3h9LU0+s5/V3RaFkCmw9qSdcqVcidp2ZJjWl99xNuCPp9hI1W+cGQaHb8SEsIboImJrO68b2+AQCc+GYFpmdc5MZkjL6PRnFk3m9MJvfihSEjyd7RqgVn5UxfHIX2UyfaHT+zlu1LsXt+Q95xFMwULG+yCLJGRnp1gFmkHnU82pR9/t73MCO3qewQysaTP0sDp/gUjPTqYHMPAMA1XQZL6kVc3x2MCig4WfJnCzIkqX5E7Z0nYVjTjt3rO6PVUH6eAMPryzE/m1gHL3zRBvvT/gBAyHfE/QXFJjPLL8X2F6IRelrGjR8AIy/4RUScYE9+h0Op0CpVLMmu9VxWt+fas8SGz0tFdp/VjGSGomFCPVjaq7hUC1qlCoM8CWlS7w79WdkthbzVVqtUQe5Sh33WKlUIGs/fdwp9GCEzWtCIWLRkTk7sWuIXK6BVqrgUBs7abLLWvo1m9yR9cRQ3tgcH/Lix64x6+Px4ExcflfLvf7MJiA6F2wbh+4Uhjk/HYcoQPFE0Z3kvGgDsPh5ttZvbD6xTYAROtiVKadTvCiwp57Gwr5DqZHPCDuY9Yc/yvPrTr9m5FtMvcBZpWkerVCF7gz93bH3vz74Tx9r9psiHla3100k0XJ6I4FV8KhPDmnbk/3JhfswlJcje3AKnP1jO2vq9jJ8fet7v3UTEN49n59zXCt/FGq5IhMK9Prv2TU71ScYl/G9AsohJkCBBggQJEiRIkCDhySDFiD0zyCwWy//AMP++uHfvHlxdXdEZ/eBQFWtg7hQGxb1HjM4cEDQ9MicnWKwsYtYxAfZAyzwcEIU/lq1ET79omMvKUDwsGq5bkuyWzf5EDcPrgvanujatIQsLYbIvyknCOz62sRiF49RosPE0NxadUY8H5jIM8ozGtIzL+DogGPJWLZD1QQ2kddyIKcYIpLWrQNHrarh9R7R6yiQX5H7YHI4HCYV/8/Ux8NtWBPOFKzZaMbFFzvo/QOjES5QyeM1L4LSdFKX9IuG8R9Cs02v3hkaj7rYkuJ9wQ2H7Irged0dxByHJae48Nfw3XMO+47vhu2c8svutYm3f2tucWcrsIX1ZFOpeUUA/Iw5aJYlBuqW5C4AkjU3vvAF+OycgcPJJ7CpIxgDPSNtG5AqiDQUwK0uPj/1U3GWXPxrgfsfb1c4N/X9jsgaNl9gmXDWsa4fsHmuwu6QOlgcGYEbmOcyaMR4ue86gaEhb1NuUCMURJUxdjABIgurK/ALojHr47ZqAwEm29N3VrWd6rWBnCDwHXbR7j2+PV6PBKrI+Op4rw+wGVx77fOT90BqX22/iysjCQ2BJFZ4/ea1auL3DE/VfNODGFA307wsaVocmjbHvtK5ajb74/IMDfnilWSp+CXFD7jw1vD9M/NM61vPR8+JdfLe8F87MFJIs27ME0HPy0BYwn7ticz+Lh0WjRCmHclHCE+0hAIkvcduQCHmrFjBfuEKsfFGtIT+fCXNJCSvX/JQj0tpVcO1aW6cft6fc2++Puw9qwesl4ikQkjgMdXe6oO7WJCzJPYFhc95G/fWJuP6mBmffI8+GuYMK8uP6P13H9mBPzl4tOyH+0jEUmR5iaPpLONBiHyd/+NwYDJ+yH/tD6tm0l74hHIEjU23OW8+D+NzRUjk+8Q9lstwZpUb99YnVthF8Yji8Xjr/p+MBCGW/otwM+R9ncDNWw6x+1mXvjFYDFqD++sRq5aR4kvVO8XBgFBfnlP9jKzQbLMS5iWWwqNtAlnjW5jz9/E1OAqb6CDFQPsnOzLpmD9Xti/bkTf+uLbJeWIdWScNwIXoLevYcCvPZyzZ1FQ3cYbpdaHP+6k8h8Bh4kcl68w0NGi1NYO8ze/2W94qAUzyxoBl3tYRywCUA4PYHnVGPgsoHGCOyehaOUcN9LbmeuUgN/3fI5/uvRHMpQ7bkn8CwZqJk45+p4fcev66Kh0UDw26j/hQTs4rtvZqCvh4R0F64B12rulC4ucFUVETGH0ziO+1BPD6Fe31GmW9dho5fEejHPF2qe1arO29YHomgGNt3MkCSaNO0AdXBuk702QoktXG0eSbqr0vEtIzL6FGr/In2EAAo2heI5LAfuHM7ChIRvn0avPZXwPG3VOR8rEYtowyNlgnv1a5NQ3AUe1BcXIy6devi7wb6nbX1mIVQ1Kj5H+/P9KgM59fO/NvOx7OAZBGTIEGCBAkSJEiQIEHCE0GKEXt2kGLE/mbQGUnyywP7tiB7Wxt2nmqDrK1hGZvD7GpoCmZqkPdDa9Zmj74kWWqddMJSlzGP+GW7J17H9TcF7aJY8xS4NJe1LU4mSxMmVqcZspy5CKdjTbAl/wR2FZNEoi9eLCL+7VUxBSXdH8BSXo6be1oAAIZcJj7mgzyJ9YxqD9PercUY69LaEdY0ag3Lma+GMfo+Dm9Yw+RJG7WcaOphy0hE/xvf0UA7kCTtjXpfYChzX5OIyxOJlcH353E2vua/L1/Fyr5o6Mk+u+QQX3wP57sAgB1+h7j59P4wEZVZOQhZEougmGSELIll8jTsm8aSPzZMqMfimYzvknNTOuvQeInA5kStYQCQ3nkDtEoV88fvMvNN1uftn4PY547/x953h0dVtO3fm90UCC1AKJuQXgghsBBSdgHpbAhFEER6lZIoiGLDgqioKKKImFCkCFItIJLAIkgRUgiBJfRNI+3QCQkEEpLN/v4YZs6Z3Q36fj8/Xt/3O/d15cruOVOfmTMnecr9GEVLhdQadnOGFnNzzuFu95tMNnS+5l6dWTnNIuI/T61hUnkaBCPyY77FuMs9sfhtssc+8e8At/gCWKqqUEqINFF0pwkrn5S+G7emktiooDmnWJ+KTqEwCEYEbObjbpRB/iidKLJMAYDn8HPI/oYk2aTypOPPXJDI6v7RwQX9npvMrSMXNwHAcp4k5bw1TYxv3PvrJtT0CYdpZQSuv6BD7f37LCFwy2ViHNOVnSGouXoNgd+L+yjvU54RiybnNghGmDe2wO5QN5T8HIqLzyeymAuKXRX12Rwvf6Rlz+OVV8RndE9oE7RYnoKB2sGsn/vPROHucyLDmN9vU9h4arPE54H+7nBSgcab0nDmZdGqJryq42TzwODL7n2aT/YYjS+hzxgsFiAti1nD7kwgc6fPqu/uadCcIu3RZLZSVkIqFwq6hqkdf8KFrhvxxeVU3K99CM/h59BocxpK3tRhlndXZHxE1rjVVyl4Ko7EsjkcNdrMEwCS7rtwba8vPApr0LKjLwroP2Ii9GoNzHfKyJyV9WHpXYJ2KeO4tpuvTMUct8soeYOXm2lFJLOG2YtTopDOXa/W4NNhIxmTY/7WDsj4KNGmvvQ7tYYZBCOuv6iDUqItLqvlLUSO+zPh8AdJxutyR2TrNAhGTCsSrSUZCxOZFc46Hkd6zR6k5W3Gvexr9rlirx/O675H6UQtN3+AMMJSa5j0OkNkGEKc6nOXLkc+wNYi0aJweaEWn+anI8JIvACumR8+dh0eDI2EMjgAABA48STafxUPj2eINVxqDZO2ceW5YO47rX82ehPuPxPFxt1iORnX7B+ncH1SOV2brWPWMIeOITgTtRm5S6LZe0Par5Rj1SAY0WxNKsr3kNionLHimZfyxQquL6k1DACc7ii4dgs+0KLxpjQ0js1B8pEd2FR0DAbBiCEeEZibcw4H9OQdbS4tRdE7Opi+7YLkAz8AAIre0SF/kXhu5iwVz6DcJdF2rWEAoHtZPOOtrWEqDzWTH41P3nrXze4aUmsY7VP6N9ODVrW4Hq+DaSVJIF3vcEuoWreq06prEIxI68izihoEI4u1p3+TUFQMj4JpXbjNHqZnoNvAbK6dB09HorFDPfjPTWMJo33eTkWLb4hHgqJTKILWx0HG/z3IFjEZMmTIkCFDhgwZMmT8NcgxYn8b5BixfzOov22pyQ/PBne2W4Zqimp7dILD4VPsGkXYF/FQf27rC039nQGgcnAkHB7WwslAWOKuv6hDs7OVUB4izGflY6LRaLNtviDpGCioNi/oyAT4LgVuhboyX3V74wZILJcQfbfO+4+rC5D4rWbfpv6lWBaDYERsx36ovVOGvQUkt0nuZg1j96NxaLSs767pyB+yCv1GT2bylbbVdc5MXIsEY9SyhiIiDKUhDVCrAurdNuNIwiqb+CmpZuxYZS0+8OPXem7OOSwJIBahGcVaFvPgeKg1qnte4cYD1B0TdPVlHWPbo7EBFSOi4PqjGJ9ROF8Hrw/E/ULjDvM+08LvdbKO139pi1MRW1m72Rs6I7PXcoxqQywzRe/q0ObDFFzZGYLWQy9wMRPtMx1wNrwWBsGIHtOn4/CqVTbj1as1MPfqDOXBk9z1PuOmQvU7b03QqzUs7kEaFwEAxfN0LP8XAOQv0sJXkpvHIBgReepZxtBnjdKkQJt70n7VaQ2xzusPzjLg+8t0hLUrxK7AvXb3ooOLC2orK5GzsRNy+6yDXq1BhNGMhS3O2MS7WH/+M+R8Gc3yej0w+MLlg8ZQHDOi4AMtFGYFvN63HxNhrw/TunAETc7k7mUvi4L/9ir8tn09k4F1G0Vv69DmI9IPjY+sq4+bM7T48a3FmOnd7U/nqWzUiDF3Bm2IQ3tdDn4O+A0A0G/0ZPy2ZR0GxIzCnr3ivqyrXwCwdNVAccyIwh/C4PXsGXQ4qUBWZwtXnsbwAIBF1xGKlNM27d2YqWXMlACQXHISsR7881s1MAKHVq9+bNybdH7Ba+MYO65pRSRjdQQA5UE1Llz0hPqgA8t3ZP3c13bvxCxcFJc/1MLn3brPSBobRu9L97Y1cpZGI3fkCmaNzXo1oc61Syg4injvbtxcpVD5eMFcLMBSU8Ou7S7JxCCPcHZWJ5/+jZsfbSd7WRSShnyJOT465H4ezbEa0vLXZuvQcplt7CoA5H+she9bVjJRKGAoOYV2ifFo82EKrr6kw7hpBsbKaO+MFV7Xoc2KszCXlyP7q2gEvpQGZfNmSM46wM6GuVc642y4bW5Aa9AzTOXrjZr8AqjTGqKpYwWWtD6Jfs9NtllXCuu5eaY1QHH0PW7MABDboQ/MN2+x8tIYMUVEGPb+stHuc20NB1dXZumuK0bLur5BMCLGOxKW6oc2ZWlcII0RXno5BUPTZzKPlz/rJ2+zBh912YGe9QSMnDmHMZJSD5Xqnlds1o7Gd1FMvlSAdcHeJM+bhNlSOtc/k4v1fGl/0s/07w2Aj3ms7t8FjvtOQBnohwX7tiHS2ZGbb8H7OhwftRxuQXn/2Jgo+jdrh8lPLkYsa50cIyZDhgwZMmTIkCFDhgwZskXsb4QcIyZDhgwZMmTIkCFDhgwZTxjyP2L/EAwLEhPeWpMJUNP1b1vEJLnSoOl7AcTlI3exlgXLPhgaydwSAcDl1+NwMpzAg6GRUHRpj0NvLgF1SzQIRqR+vgLRp6vrDA63NtHr1Rr4jspC8k/ruWSFtM6NOELGkLeZ1Fvn9Qcj5pC2ARC6XWmA94RLRdCrNXg/LxM5X5L5NPs2Fcp2QTYuFdJ+KUEFAJhv3GBuiQDgP8bIEj133vAyN4b8IcR1LneqAjuKRRcher964i3kjOEDoKWwZJxB+qJENF2bino7xT6V7YIQNOUE9GoN3s4zMveDri62j92SgFDcnE7GJ6Viru55BRXDozDywlWofLxsAuhpm7RPaRJg6o7y8WcrAQAKRycYBCO8PkjBrWkkUL5ycCT2PiJiCEoowZW5hHigxdM8wUPghJNwU4pB8m0+JP3cv08SklK3RINgxJLWJ1ldl92iPKXJuwGIbomPEh7r1RrmlqgMCYRerUHbb+NgEIxouDUN956NQtPz9zm5eX6SgocxEaxv3zdTbWRTl1vizelaHO/0A/tOA70HdtYj6AghcxGi76LvmCmEbGJTHNkvT6/CrsC9rJ5BMLKk5wBJoA0AllInNtcd27qj84nnWBl6XXhVJK6gJB8AoHRzgzKEJJY2rYjEgHN3AIC5JQIk2aviGJmr9/xUeL2fguyvo9iYbk0V27N+bvIXaRE0OdPmXuDsdOaWGNvnWQBATe9w7jmjbokAmFuidTv5W0nC4eYrU9H3yCwYBCN6Pj8NAJD7ebTNs2sQjLiwNIi1o/S/h58DfoNercG5hw8As4W0n1OIgboh0Ks1cD3iDgB4Kp5PPE0TnVPZUFKLrM5Eteq7k5S/9bwWZmex/30/fgcAGHe5J2vr5gzeLVEZGoxYj85s/Jc/JM+RQ7Wt2paWoXJJvniEzbnN/ipcm03cfKVuiQBg7iUgKO44GmxPQ+XgSE62tP5v28R3QfZysuY+76ZyZaVjULYLsqGsz3xE5lTbvRMjiKDIHSmed62/IOQ0NMktQJ7lsmRCUBHv3Q0PhvL08AUfaKFq1RIGwYiklF0QZov3DYIRgzzCoWrjCb1ag+TTZJ0HdtZD2bIFm4NBMKJtWBHm+JAzyf/VNE6mdJ4tl6VwY5fC9y079P8WspfoGeZcZsH+9g1xczpPsiOF57KTMJeXAwACXyJ7/sb6ZpxbGXVLDD8luidSQhI6LwA48SEh1rj4AUnqu87rDyxpfRJ6tYa5JRoEI3I2duLGIB1TyZs6rPEipDM3fw1iY9arNUjOOsC5+EnJOiwZ5FmgZ42DiwvrrzQpEDd2BTMZS1317Lk1KwMImU9apZm7t7dAsp8jw2BaTc5nmq4gKX03AGCOjw4+z2Xh/rAoRnZSbTGj3uGW6PRRPGuCrq3fGCPWBPliUswUHFq9GtGnq9nYqPu+Xq1B+2XxbG9mLEzk2lgX7A0AyB+0mhuzdK4qTw9uzldfIvsv/2Mt+7vGIBiRuySa2yv0s7lXZ+T0XM/6VaSeRoeTClh+Ie3DAAEAAElEQVR0HeG4j4SGJB/+Ge/6RnB1TSsi4f1eCg7c/89wVKOsiU/i578d8j9iMmTIkCFDhgwZMmTIkPGEIZN1/JthL6Ezxaf56XjDl2g7AzOckR1hm8iZoq5AamuyBwBcwmF7gacxQ8bBcuKsTbAqvV9Ycw8z+06E2ZRrt09a7r0boUjr6Iirc3RotZRPktw9qxJ/dHBhAezhp2qR2cnBpp26goorB0Vy1pa/Qnhw/UUdXAZeQ6MBuTAIRgwIILTkXxccQ5Cjq925SjWe9PeVuTpkzU2Ar2EqsypQMom6gpmlbVFI5e738wy0MVjg8iuvHaeoGhCBQ2vskwFI53/5Iy069jChrNstJluVrzeSjv0CAMiseoi3fCMfKy+Vrzdik4i16vNUPRplOWHtnKU4V6XGpraedokmpPMK+yIeLrctjPa3LrlKcWeCFumLiPZyTH4vuKoeojBK1FJefUmHVl/ZJh6WkrDYm0/2sii43FAy7XddcqscHInDK3lSkbxFWvi9aUejbgeKiDBcHtQQ3u/ZJso1CEbEXoplCa0pVB5qNPvxHjZ4H3lsAPzdUdFI+WIF+66ICGOabUR3ANLqDnZXurszi4O9+38G6XrRxKtS8gqDYCR0359ayVeSRJy2EZY+Buph52Fa2wVRwXm4dr8hHpqV2NZuA7rvn4P8GDENBT2j/ipJAEBSdnh+zMt/YLehMBcJsFQ/ZG3mfN8JAeOI5cH1iDsqnrrBxltXfwbBiKWlPpjjdvmxRAdMXkPHw7BzI/bdd0T/+tWPfW7pnO2196/gz9bW3rP3V84r6/LtUsbhvO57dPwsHuXtqrGtXwISr/XG4UuBCJx4En8Fj5tnXQQI9uZn/YxSMoR/BXbHcsAT6FNs96x73Ofin0JRc7ERfN4Wn4+IkyNZ6gsppEme/8oYaXLp6NPVeN/9XJ3PtPW7EQAWX07Daz4Sgqq9zyNoygmb84Mie0Nn4K4jAl9IZ3V6TpvGCDLyNmvg94iMAgCuzNWh9ZIUbCo6hqHnxsM1Jg8GwYi9950RU5/83fJXn2PpdVrP3nd7cwcAVauWqLl6DYBIlNHhpAKLW52qs5/H9e//+2R2XgDAQ30XHFz3bZ3PB/v+SLb0DI5t14OlxHgcaizV/xEJnTtOfHJkHae/k8k6ZMiQIUOGDBkyZMiQIUMm6/gbIbsm/gNBNTEaZ2eovNvg2mwd0hNsqe39fpvCtC9V+3zstkOtYdnfdcblj7RQNmqE7X7Eh3zsxWLo1YQW/8pcHfNxtpw4a3dctK9pXt1srGErCo7alEvr6Ijabhq0WprCXQdIol2DYGR+9x+35LX6BsGI/Op7TBYGwYhzDx+g8AcST+Sy+zgUjk4AgK8LjgEAHNrzMWjWcSit1p1GowG5qBoYgYHawdiTQ8Y1y7srV4eOVa/WoGJElI0cWi8hMRP5+jXsWsOtaSiep0P7tLGsnfxPSHxAv9GTEdtzONdGv9GTWTm9WoPAF9Ph8utx5G7i4wIA4M54LZz3ZGBAzChWp+RNHftME2wDJEHk5dUk1obKtuZyIZvTW76RXKydVEaDzpUCAC5/3gAvNCnCC02KkD/gW7T6KgVv+UZiQqObLBGzvZiMuVc6Q6/WwC27hlEG69Ua5HxP5lT0ro5ds0aTDalM5ncmN8XqNsdYclsASHhpuU0dAIwimCbtVbq7s3slP4didh8D2nyYgh5ZD+xVZ2OhlkiDYGRxE1TTLp2rQTAie1kU9x0A9v6ykbOGZS8Tk7qSuAHeGgYANSUCrmnL0S5lHFsHe1rfhlvT2PfczRpmDVP5eNlos621tFJrWF2wXsu64m1o4lWpNcz312mIGCYmFmZ1a8W4Eb1agw7HR6PNm4TSOmjKCZR2vQ2nfgU41uFneKoasBQPdPzb/Q6gR9YD6NUaqHy92RxuPW8/7g0AZw2j93vuOgNL9UMAYBa2gHGn2Fgvbwngxkv7jzg5EsqQQNwfFgWDYETgxjhcf0i0sbcna1nCdanMqNz1ag1wnKQqqIUDG+eQ87fsytUeanvw54B0TWgCeOvrdOztvonHyzkkEfHdUdHsmajLMi1N3F2XpYdiYORAtBlxFv4HJqPV0hQETc/Au74RWOf1B/L6rQVALAYUyubNEJJpq++1blcZEggoFNx9OkZp4nK6/vRssH5GpdYw6btDCuvv9s7CXKOnzfytLTMU3WbPYNfPaTfBbws5R+m8MzpvhzUMAkkQbN2W9Mwbdv4G9/7Zs2cLit7VIXVmF5txXZstxppSa5hBMLK9Qq1htHzL31XYWpQCReZFm3EBJCZYag3TqzVwTsrA7clE/n5jjBBeI22rWrVE6yUpuPdsFMa26YqjHX5m/XwZEAK9WoOAQ5Ng7tmZ68OUGIn8RVrR0t8plBtLzMCx3Lj0ag2iXyeJoOkZ3T5tLCdDpbs7s4YBgCKVpKPI6myB3qMT155UHtaQPstSaxgAOBlI3DcclFz52m4a6F4RE1XTs5mewRYfD2LZPHeHJKqO7mDTr4z/m5AtYjJkyJAhQ4YMGTJkyPhLUFgsUDyByKYn0ce/G7JF7B+CHaYz7HPvCVPZ55qCIhjfTEDGR4nsmkEw4uYMLfL6rUVpEmFWc+5/GQBQ3TeclSuuIckeVZ4eyOu3Fj5vp8JcXs40PZ9+N5JYAA6fwgN3C7Os2PPNptd0L8+EQ8OGNuP3dWzAfacaTcrAJr1OGbai3ojj+qO/i2vuQa/WYKZ3N86qEOpUDxe6bmRtF20lc58xYw70ag0uP9OU03RlVj3k5lCzi7BUuZ4sQk1BEbtOtcdUC0ZZ4gyCkSVCpvccXF2Rs7GTjeYYAJ4eeRSez2Wze77ziLa2uGc9mE25nJbNOnH0jV3BAAD/sadwe4oWKh8vxmxlJoY/1GZdhEP7ttCrNfBYJEnMOuw819byBcvYZ4NgBB4dZB/mZxAr5HkTNyc6j92hbgCAapPoh22teW2ZlMc+S/3zASDtU7Ku9X4R4xMUnUKR23sdHOrXx/k4khT24W/eZN81bIi7o8S4BdqO2ZQLvVqDBtvT8OBp0iZNgK1Xa6Bs3oybb/Y3UVgWQKyh5hs3WFsez5zDntAmsHTV4HCHeiicr+P2mnSvrC88ymRBWQ8NghH3RkYj4uRI3Nvrx8oGzk5H+Zhobg9YWwkDZ6ejfI8/a0floYY1avqQZ7VBvSr0njAVerUGAwKJddbBxYXX9D5iFaNsXACQlLKLa8/6uS3f42+j7bUX1yDdx3fGa+FrmMoYNqX7w1puerUGQTMyWKJ2qUWLYuSFq0guOYnWQy/AfCnH5n6PGdPRf8RE9n3sxWL2+a3ml3Blro7FNwKEPdV6vgBs2E4pXmsqWu4XX07j1iu2Yz+4J9paPfVqDZoOMsF8IRv1d6RjRrEW2eMT8XHLLHJvXSrUn/FWfr1ag4FRg2z6/zIgBJc/JM/x8u3EsuNzvB4AoOB9HSczg2BE7FPDoPjdA3nPk4TUFLGXYpH3GWlHmsDc3vpWudeyuJyGW9Nw4SMfm/LSekqHWv5+ZBg6LYy3ayl4+jdybgWMP2WzF+g8nAwnxGf55i1cCK/h2rBnqTJfyIah5JTNGPVqDSb+doT1deKDRHY2dM+qrFMO1jKR9m3vvUav++0g1q1XB/yKsC/jbSzV1nOVviPo9eufEHleCK+xKUv7Cv063u7YGmxPY+V2tHOHMKiGa7vNhyksObC0nvHNBABA7hLe8iXdK3QMxfN0SPtsBdyU9Zm1GAC+uJzKjSd7g3jm0vrNT95hn9WLSdtJJw0AAKE/mfeY/F6sjekm8r7wH2OE8tBJ7jzJf3qVyHIb3QGWU+e4sUq/UzxoRv5kpWe0xzMkVm6gbgh5t924wepL5QAAX18+yu5J53l7itauF0BdXhQUDi7OrJ12CfGIWp6JlC/qZlfGxTzo1RrsCW2CL0I64eXvt7FbUsZnVXKrx/Yr478PskVMhgwZMmTIkCFDhgwZfw1yjNjfBtki9g+DQTDi9w0k9shv/xQA4LRIVJuT+R7RDB7v9AOnZaZ1lYF+6LPxNVyP16GmuITVDz7hCGWjRshdrIXnJynsut+bqTgTtZn1J4VerUHM0+MBAPdGl2HPpT/YWArn28b9KJvxlin6mcYI1dtJtNfN0q7hRhzR8lJ/cINgxFSvbjCtisDlhVp2zSAYEbiBWNC2FpFxew4nGjOnvYTJ6cLMBG4cc+aS/EWVgyLhv20mHIcRxqKOyQKn7ad+7FSOqt8z2Xeal422W1tRgdw+JIfPlVd0yN/SEb4GYsH80dAV5cM7s7J3JhD/9wszElDyM+//rjv9EGXjolnZk11E7VjGwkTUXC6E3xtEW99sDfmtatUStWcvMpnE9nkWX1xOZZpMKudIZ5F9U6qxi3R2JJbQ/PQ64ycUzs4YHXuEk0fxT6GsnNT/nt6n2vMG28WcUtnfEW1qwVskRmZPDlmzO+O1cOpXgNCv41H4YhinQdSrNXA81JqLk6DWNakVzHzzFhTOzux74AvpyP1crHPlkUXVIBhR8L6O5ZPyW1uA/s9O4vq7M4HssUle3WANOqemg0w4Jol7AIBGm9O4svb2e6MBuaxOTYlgU/7ARvKs3rjWGI77M5G3WcPy2dRWVnJrar6UY3d8EUazjYWQgvZvLybm2iwdHjwdye5df4FYZ9Z/uAT5+jWwVD+0sV5dfVm04NB28zaL2n7F72L+HVpve0gr9Js4zWYMDq6uAEhs3r4fv2NeAJvaerI+9GoNsuYSTX/R23xMFu2HjqO+g5PN/WHnb6DP+Kl4qCd5xTpYMXwln/6NfR6R2xcRRhIndns30U6XTiR743LkAxtrH82JJ0VNkWjN21WSwT57HCZWB68FKaw9ALg4LYGbi16tgTknH5beJQgYfwr7flgPRZf2AEhuMQVvWLK75wyCEQFzRMsfAARNz8DjcDD0F76942fQIiEF2d9EQdW6FdfPTyFiPiw65uEXrpN3wXtinJI9C1XRj+2Ru1iL2HY9bMpYWymkWBPka9OuQTBi96c9AYDLnSeF5pN4Znmn1mnrctbtBr9JvAt2XtWg9bEKG4swrW9tfb49RYxdfHC8uc0cek96nutLaqkCwOUhlPYXOCkTg86Vsr0IAPmLxM80zybdm/5zbc+lGzP5/Gj0vW89r1d8tFy9vL4k5q/kDR1eyDZBr9ag9vQFboz3h4mxsEHTyD671bWUyWhVkB8qB0dyMq/tJvZrEIxYU9aKxVOZEiLhdqwp9GoN7j1L2q4aKOaJbPWVffbbmsuF3Hyszy5VG0/M8u5q971X1r/CxkqqV2swrNEpmFZGcP2Ye4mx+rX3xZyW5+MTkKFRsn5r+oQz62Svc0/DIBhRW1kpnh/VD/FlQAjzeskM3y6+Y2Ov2p2jjP9eyBYxGTJkyJAhQ4YMGTJk/CU8qWTLckJnGTJkyJAhQ4YMGTJkyJDxt0P+R+wfgmFBYewzNZMHThCTY9YeaGNDDgCQpMkUUnN78uGf0eyMBS0SUpC3iASjmlZE4lKXapjLy+H/WipM33aB/mw5o7jt+Fm8TTvUVL/3l424+WsQWg/liS0eNq3l6vTIegDzrdvcOGPbPoU7E7SobGG2GaN7InGr25u0CXq1Bt1mkWDpoOkZuDQlEcrQYOjVGmwob46glQL0ag1GteHdlK7H61CwPYz1qejSHm/nGVHvCnHvctl9HI4eFYzOnSaOpq6PFDdmatF/xEQ4HxaDZaVuPnTsMV6EPrj1FylwOeHKkjr7vpmKhltF15D0RYlMTo22N+TcJVI6OqHx96Rs2VjioiglQbEXJC51C4zt2A+KB1V4xUfLuZRQmVujzcIU9JoyDXHZOXgzsCvn/iVFzsedkNaRuDZSMolz2k1cubJxfED4qXcSuDYMgpEldvV69gyq+4azuTf/owQGwQjPT1JwbpZYzzf5eQDAjbU+zMWRUoQbBCPMN28xwgqDYISlqgoqHy8mn5wxK9jnrjvnMrl7v5eCuOwcZG/ojKTjScxNkeK51w3cuDucVHD3lW5unEyr9vnYuCVJZUHds4adJ6QhynZiELZBMEIRHsrK6tUaKBydSGJVANk919ukYNCrNTCt7cJ9B4CbM8iaL2xxBuabt+B4qDWTcf4iLXNpA4irprXb1oa5X2Dcot0YGBELANj2+mIAQMoDP0wrEtM5UFIBADj9mrhen+anQ68Wk7rq1RpYepcAICQTvjunM3prx/2ZbNwFHxB3XeqCCQC+v06Dywne9ZKSEFE5tfmIuCSZe3XGxqJjNjKicjIIRgSfcASiO2D5d0/jwMY1jG5ar9ZwqR4AYE0hCeCveKE5MjSEjjqj83ZkfxMFt+9siUGojBUpPGGCtEzZuGgM8Yhg6+a4n5wP1KWsclAk/DNcoFdroGzZgtWr7W6buiJntEiC5PtWKisrvC66Aapat4Jv8vNwqF+fO6s+zU+vc4zS79b7OPubKCAyDIEvpCMpcy8uPLwPa0hdgX8KaQG9WgOv9yXpG76OgjJQJLgpnqeD10cWWFpVIvn8Ya4tZRBPKlOX2/SMYiK/wAxCktB4EzknAmels3lI6yirLGSv3b2LT4N/AgAMjIjl3k3W77rau4R4xtK7BIqU0yh5gxD8xLZ9CoEZzqyeXq3B16WEdAiRYSRdxwFCeU+Tx9O0HQDsJpmW9p100kD2cEIkd7/wPR12h7pxe7FRjlg34OU0G1fPe8+KlPftEuNxcj4h+pKeI3VB6e7O2vbdNR0A4PFpCr4JDOLK0TL1d4hkVvZcPjcWHUPNCzcRG9ab3XM4amRl2h4dj+0hrXD9F3LuBcUfx1bf32EQjLjrRZ5H56QMG9dga9jb1wNiRrFxUbfhHtOnQ6/WIMY7Eg4achYEvnwd2d9EsXOFjn2Ojw75g1ez9m5N02L/prVcX9nfRHF16D6sfK2UuYk69Suo02XXJ/mvEc78I2F5gj//5ZD/EZMhQ4YMGTJkyJAhQ4aMJwyFxfJ/gKT/H4zy8nI0btwYPfE0VApHmFZHsKBXTsP0zAQYft7AtEJUe3LlFR1af5EChw5tUZslJmesK/j5ys4QtB56AQpnZ1iqqtj1W1O1aLYmFSGZKixtfeIvBVLnbdYgcH4ZzDn5rFzQd3EwTUyE787pCIo/zrUBAO2XxXPU61KYVkYgaEYGp31WNm+G5KwDXNnczRqWyNcgGDEguDvTZN78NQjNB5tsxqpwdOKoeqXzqu2mgVNJKSr9mkN1INNumezvOsNrmxKHvl0NvVqD+8Oi0OO9FKZFl85Hqp0NWRkPr/ftzxcAfipOw3DPaJvr9sagbN4M5pu3cGNXMNyHXIJpVQQ89zgwraRDh7ao/fIe0Ke4zv62FqXYWBTvjYzGjWEPYL5WD54HanF45SoAwDM5/VDx1A2bcVi3Tb9bumqYxUnl6YGa4pLHBuEDQMH2MHiPPMNduzcyGseWrmB9+f02BW4pzmi+MpUrQ6merceUu6kT/MeeYtdM68KRr1/DjeN6vA6O9y1wWy/Sl1u3Q/dh6NfxODeLJ4KZfKkAoxqWIrf6HiotSrziI1Igj7vcEzd0d+zOV3hNx2if/0yeBsGI2I79GCWzg4sLo22mUDZrCp+995H1aUdGo101MALOSY8naAAAZaNGqN7RGA59inBlrg6tl4j71KLriH0/fmd3XIou7WE5cfax4+4zbipUv4vPktLNDebSUji4ujJrGLU0UEs1ANzb64cGMXk2Fg69WoOvC45xydfzt3aA6akN3HpFvz4TzY4KSErZZbsvPo+G/6uixbquvSnte0D/UYwgp7abhmnzKaTzUYYEQnG/kqXGqAvWFlXaX8kbOjjUgFuHP3t+DIIRhTX34KVqYNMePS/qqidtd0fxcQzzjETjo81Q1o3UqYqNgHOy/X30V/au9X269+098382vsdd/zMZPa6Nx9V1O9YUpV1v/+m8KBw6tMWevVttrhf92B7ndd/bXFeoVNhbSCxlj3vf0v3SbfYMuP6YDmW7ICTv325T73FzVYYGI/m3bazO1Tk6eCRdZUnaC38Ig9ezZE2aHXPD+W0haLksBVdf1qF+/2toNICkXwlNHctIsqR/n7RLiEebhSl2Zftn8r42S4eWX4t1h1+4jp9CiKXYb99UBE4i58jVl3R1knVIkfN9J+T2XgffXdMRFJcBQ8kpDIwahJqiYm5Mm+42g7HCC2emtcP1yEZwT0zF/WFRuBbpANPERG7MPaZPh7LSzKzb9uQc/dpMpC1ewa2LMsAX5px8XH1Zh5dn/IgtbdVcHc0n8Wj5NT+nHy6dhFtQHsrKytCoUSP800D/Zu08+iMorQiQ/jdgfliJk1ve/sfK4++AbBGTIUOGDBkyZMiQIUOGjCcM+R+xfwhGnyTaGmoNA0RfdL1aw6xhUihUKriZCKex1BpGoWzW1OZa66EXEH26Gg716zP/acdDrRkzzavuh8R+FAo2DoBQ3wOiJsz3awuzhtFyVJMUFH8cBsEIh/ZtOQ2wx6IUXP+lLTeXvmeJNcvaGgYQqnLreTf5nSREZdSyvh7snrU1jFJ7U2uYQiUShZbVPoC5V2f8tn09ko79wqxhUn93qj1rdMIFzskZiO3xDAyCEfV3pNtYw6zHHjN4rF1rmEEwwqFjCAAwa5jyINGUlY2N5soBgN++qTAIRiRnHYBBMMJ9yCUAQL1CRzTILWNla7MuMmtYjHckm8fVOWIiYzdlfW5+24tT0WB7GnxHn0bAnDS4/CpaMU8XesIadC4f5x+3mbvimBjXJrWG0b50px/iyiu8Nc575Bnkf8LHuDXYzifezeu3lrOGAcCxpbzmUQpqDQOAkjd1yNevsZlDi8RUuK1PReEPYaLlbG0Xrr22qwktvzTNA8W6YG/o1RrEe3dDqFM9KAN8AQCBG+NwQ3eH9W8QjFxiXmoNA4Ch2Xq7GuKuWc/g/jASe0ATVAPAnrw0KIP8kb0+nLVtvnUbCR5pcP1RTElArWEqPx8AQMVwMWZEqsU2l5fDoQ+x3lArzL775Bm3joGSriW1hgFiSgoA3JpJrWEAYC4llNb39O2561+fSWZtmXt1RoMYPmH4xzeDWXzJLO+uLKarclAkfEdl2cQvpX22Ag+CWrCxvFgizp1aw7YXp2JXSYatReNRjCa9rlkUj9qzF9metraGAUBNFzF2xnwhm0sUv/rRWOl3gFDq0zNdeh0AVs5YjtZLbBNF03WUlgXA9sg0LzHxfc7GTsQC4u4O881bMK0gMUdzc86x+lfmkvgyaSzRME9SbrvfAXbt0Ler+ck6KKFsFwSDYETPadPY+ArfE/eAb9K0Oi066sVkj1FrmPV83s7jz117ZWjCaymkZVWtWsI9pQkAYoWVnnW0jPVZPdWUz92n90pfFvvpPel5PIyJIH0p+DhSitqsi6xtKd08tYZJz4ScpdGw1JCEz34/zMS12TrMzrmImj7hCF4bZzPentOmoUEB2evm8yZuD1ljwLk7eKjn48HM5y5xsmq1NIVZwwAwaxgACB8FsATRp19LYNawns9Pg/f0K7i6M4RrS6/WoM1Cft/Sz9Z7oX2amKYGIKkiqDWs42ISj7r/VgirFzgpk63J6TcSUNMn3GZP0O80ZUTAuFPkb5CZxwGLBQFbZiIpfTcrT+NUN3XrjKzOFuz9dRNL7A4AbX57iE4LxdhYvVqD+ocv1GkNu/4ieZ4ab0pD+II4br7JR3YQeX+Zgi1t1WysKk8P6NUaGOclwCAYoQwNFs8ICV/APxpyjNjfBvkfMRkyZMiQIUOGDBkyZMh4wpD/EfuHYGSDUqZJuf4C0TBem01+F7wvMmTd2BXMPpe8EgmX3ce5dqSaPnMgb9HI/Twac3POIa2jIy597cPKVfe8goyFhOHPUyWydBlKTnHap2XqDFYHABSpp4kW0seLldGrNZidQ6xz8SXRqD17UbTqPdJsnYrYyrW7v31Drj5t/9os0ZIz7PwNlE4kcTgPGytgEIx4ugvRfO3Zu9WuTE3rwolW+BGbmkEwMp98g2DESE8tlAdP2mgXdS/PRKeMUdyYZsaRpKfm7Dw2l7ujonFrmpbTDNK2DYIRlsxz7LoiPBS3dwcxTV/t6QvI2UhYtZTNmyE5OBkA4FJqttH4BU7KhP7CINaWaVUEDIIRbRamQL3KNh4sYPNMlpAXAO5519rIN+LtOBR8oMVIT6K5rdnPryFANIvSsUjlFO7sBINgRO9Jz9uUGRg5kBtTbK8RAID33M8j61WiaR10rpTVM01MROF8ca2liYZre3QS/e1b8slkpdCrSZJi67F6LBKTlzpo2iHCaCbrV3IKV1/SwTeeJM80CEbkx3zLrAQGwQjv94iWl7K/7SgWrYDSOQdujEPykR3EetZZsJGHNVMjbaNwix+bh0XXkSUJPtbhZ/zxzUrSd5PGjMUwtu9IzN+7ncVM6NUaIDIMuyrq28jk9dwzSDq6EwBwPcLBZk9JUT5aTAq7JIAk7347jy8f4x3J9UFl2ubDFKhat2JzKnlTXANq+ZWeSfV/5pn84r27YUAAWfu8SWI9Wv6t5pdgvnWbydxT1QAGwYh5S78DQJjNpOX1ag1+X/8tDIIRwo52yItxZRYUWq6xQz0M8RATtdK2pYnqAaDaVbRI6NUaVPfvwlk1DIIRPp+ZuDr091vXOsBLcpbSM2NHO3eb/UFl+oGfmCxWOraavMucJccgGKHy9Ub9Hen49FYg1x5NNk8tqUEzyZ5dEhDK+qFJshv8IK6F9Nmi/QYemsT6MwhGoNYM83ky3w7vi8/AhRkJ7HPQtAw2TlNipM3Z3+FznpmXsoROvlSARZ174I1rGm4cYUvj4eDiwuqYc/Kxt20S8/a48ooOc3PIOdtjxnQknTTghu4OFCoVks8dtHtOKBydOAvVmiBfbkxplWbU9ugEw86NyN/SESMvXIXjvhNw2vvIW8VOWD2te2MmeR9IWQ6tx+D76zQo7xOr2qBzpWivuYyWy1KwLKAthO7OCFgjsDZpXeekDFgyzuDlHMJanFxyEkXv6ri1Z5bz0CY4uO5b1rdD+7YQXhP/hpAmVLY3D+fkDMR26o/wU7WsTpf34uCcnAHzrdto9Yg5mbZP+7VmiLXGlZ0hcNvYgNW7NkuHpoNMjDW41ZfkvKUxitI+9GoN+g+fCKGrs901BcCeaen5XDE8Cv5zeQ8LpztE9jT2luL+M1GovyMdqt8zWUJzJtNHZ4O1rACg9bZsdi1zQSLyPhOtodaW4QGxYwAASceTuLmZz13iZCnj/xbkhM4yZMiQIUOGDBkyZMj4S5ATOv99kFkT/82gDDRde72HeoeIH3/wmjj4LjyJvfnpCF4bB593+PgYhaMT9hYct/F1t4aiUygsp85xZZSNGuHmlpY43ukH0bL1iFHw5ZwLiKlfZaPFsdePQTBC98pMLm+WlIkxe3kUAl8kGtc747VosjEVD/Vd4GQ4wbVrDcreRPvrPWEqHPdnIsJoZjFZXPkFOlyYnsD5o9fVtnRO0a/PZHm8ACD6dDXedz+HiJMj4bLWjdPcO3QMQe3pCzbt0u8lb+rqZIKUlrVmSLJXnl67PUWLjIWJj53H5Y+0uDQ50WbOxfN0ODcrAZFvxeH4x4nw3zoTuaNW2G2rpk+4DVPkhEtFSMjvUSd7XV177nHzoTCt7YKgKSdw79koHPtq5Z+Wl36v615dv+sakz30PlOB38NcARAGUfWEfFT1uGpTTsqSBxCLncPhU3W2e2eCFm7bTrLnwtoakv+xFqZJ4jqrvNugpqDI7vMm/S6FQTCiz/khUPUttJmz9DNlIPXbPwVtPyoH7pTDfO16nWO/NluHlstITOepCFs2OGnb1kymPaZPZ9b69/My8Z5fOBr+0Rx3u99kZfqOmYLK5o5onCHgZg9PNNkgMlj2f3YSsyRef1GHFsv558Z353TkD12F2F4jYL5EcpCZe3XG/k1rbfYIAES+FQe39anI+SIaAa+kYWPRMbRQurL9El8SjQSPNPjungbUKDjG17rmTPcw8ChWSnJ2Pe4cMghGdPw0njHArS48imle3Wz2Vl39AsDYi8XY1NYTPbIe4HCHejZlKaT7oMeM6Ti8clWdYwKAT28F4vcwV3K+vzwTDbfZZ5k0CEZceHgfc3x0HBOodTl6dv4V0Hp/xqpoEIzsvTjhUhE2BLexmYe9/W8tw/BTtSynZPFPoYwNkJZ9Kn46zI4K3G+hRItvbNn66jrvNIvi0XKZVfkDnhybrfXv7G+iEPhCOmp6h0P1eyZuzNTirh/g9zrJHReyKh5eC+wzBjoeao3qnlfqHJtBMCJm4FhYTp2DMjQY5nOX6lyXPztDpYypdcm5LtlIce/ZKM4iC5AYzdq7d1ndOxO0aLIhFdnLo6Bq/oBjSJWCvlMMghEBm2dyzKjWczJbaqFUOPyl9450fs6HW2FX4F7R+nb+Fna1a8bK+2e4IDeCMNpKGawNghGxfUcief/2P30P0THUWKpxCL/8Y1kC6d+s4c89OdbEzG3/3ayJskVMhgwZMmTIkCFDhgwZfw1Pikjj/4CpSI4RkyFDhgwZMmTIkCFDhownDNk18d8M64TOX1xORahTvb/sHkg/04Ss1nXuPheNqwMfIq/vWoQviEPmgkRWhtZdU3gUU7261dk+/V08T4ftM5bgFR8tc/HJXhYFn101HLWrsl0QzOdN3PgqB0eyRMHWc/Pd8zzyB3z7WDes6NPVSOso0udbu09UjIhiCW2tQctRl4HKwZFwvlkFReppu+WtE6E+eDoS9X4RXZU0pwBjJ6Bqnw8Otd+JFXc8MLNJCXFrUlqAWgXyB67mXMIUjRqiZJAaLZcRF8Z7tZV4rttI1FwutDtWAIQWWgF4LUhhcgqaeoKVvbxQa+O2at0GAKjaeKKmqBj1DrfEzkCDjfx7Tp2GKV/uwKa2tnT10nIUf8Xt6HGuKbmLtcgZm2gzjpBV8Qjvfx634tXYk7zZpj97Y7AHKhd7Y1CEh2Lvr5ugV2twY6YW7iuI/JSNGmH2yXR8GRDCla8aEAHnPXxSW+v9efUlHZLmfmbzDEn7t+g6Mkr46v5d8Pv6b9Fv5CT8tn09Yns8A3N2HoTXdKhoY0arFAXn8mvdt7Rt6vb3uLIUV+fo0GopOSPUaQ0hRN9F7mIt/F9LxfVf2qLF0xftPlvWiZSlydGV7u649LY/AubYH6+1zKRys3eu2UtaTROYA7BJJj035xz616/myuvVGs5VkiJ/S0f4jj5dp+ugNBH29XgdWiSk2B0jQMgl1gV7c/MbENgVtRUVuD8siiVZl96vyyXwr7j45m3WILvnevR7bjKKZ9fAd8FDRklOXbMAkiIipaPTn7qGUTd0AMitvod47242fd99LhoNt6Uhb5EWfm/anjN/dfxS120ACF4TB593xfak+0l3+iEOzO/GnbcAeQ4PrSFnKnUjB8T1KJ2khdt6+888Rd4iLQK2lqHWeJ6Nc6BuiN0zWNq23WuRYcDxM3bLSkGTL9u7L33PPK4d+v4xCEYM7DaUkbfMFiJgKm+BZ1tnYntIKxs35LqSeVtDWk/VuhWSMvf+5b1K3wEVe/3g+siVnc5D2awpI9oBAP9tM6GqUNiczY/dQ4/k/LgxSK/X1RYd05/Jod+FwfBpcBuFUcRF2LS2C/JjvkWMbxT25qfDb/8UBE44CYC4QisPks9SN9fy0dFIXUJCAUonajnilpwvotEoxwEtElJQOciWbO3+M1Fw+unof4Zr4siPoHL833dNrKmuROb2/27XRNkiJkOGDBkyZMiQIUOGDBlPGPI/Yv8wvOKjZZodqskJWRXPND11aZFaL0mBabVIyUzvOd01I3ACoWhvvioVerUG/UZP5upO9erG6tDrpnVi0lh67dysBLziQ6hZc0eRhLoW51r8vmENV4dSHAMiBb/Lr4RcJGbwWDYvc8/O0Ks1CJp6AqHL+QSKvkkkYajKl2idO9Qr4u5bz9/1x3RYdB05ud2YqeU0ZSzptYVQ73+Yz1s6ABJ0m5x1AHfGk3k2O+aGI4mrYBCM2Fh0DACxhgHArf1q6NUa7GjnDgAImp6B/AHfckm5AZKUOunoTrRcloIOJwl17nDPaNRcLuQsBdI53Z6shdf7KfBakIKcLwm9uNQaBgDB3flEpFL50Gvv52WipqgYVQMj8KDHNcSG9oJBMDKK+N6TnkfRmBpMaHTTRhZS0L0hlbm1NcwgGKHybsONwd74/F+TUDufLWef/5i6GDd0d7AneTMi58XZ9EcRXxINg2BE5aBIrl2aOLl5l2vs2gODL18m8xxrk1rDAMDczoezhtE61BpmShQTZAccmoQ+54ewsk7lFrvWMNqOQTByCZId95F1vKqrD71awxKrqhenIG/ESjTcmoarL+uwooAkBP403751RdjRDu/52SY4pdB7dILwOnn+KgdFotXSFNx/hlAyC9EkKN67UwkAoMXTF9nYrecgtYYBwN6C44zy3nzjBgLmpHHPHUXep1p2vVvWM9CrNRgQMwqK8FCur6fODINercHqwqM21jCDYETzT0UyipxRhP56YGc9umdV4pP8WG6f0N/W1jAA8B1N1uCpuOlsrFdfJvIpTQqEc5KYUL5Fgpig1sHVlXumDIIR64K9YRCMrL5erUFtRQUMghFjP9qN4RcICcqd8VpUDo7k5iP9zFnkYiNYWwbBCIf69Vk5vzFGRBtHoNzHBV7PnoHi1h1Wj1rDHhh8kdLRiZMDxQvZxEOhap8PAODTFyewMvHeZO8qIsK4dW+4jaxr89P26dqlZ6v1+l/+UIuqgSTNhseiFChDAsn6B3dH69QaThZFr4rJh1M6OnHWMINghEPDhnDek4HQr+Nxc4YWaR0doVdroH11JivX96VjcD5M0igo3dxsZK10d4ffm6koX1TJ5Nx7wtQ6PRKkcqDy5GT6yEpj/U62Xl+afNm6D4C8FwyCkaWn0as1bN9IQeWhV2tQk3cZABBzcSCSLraHpXcJDt+RJBXv1RlFb+uQnHXARgYAWGqZiuFRuP5LW9YuLZuUuZcbZ9U+H1QOioSiU6jNPADxHXC0w88oGxfNycN86zZrf01ZKwS8nIZLUxLZtcmXCmzao+g5bRpJ7/IYa5h0bjTtQYfjo2EQjCzVDe3rz6xhtFzueTVWtznGrgVNOYGQVfGwVFWh15Rp8PxZBWFHOwBg1jAA+LhlFhtT6hLyt1FyyUm4fZfK7wuFeLZYW8OgUNik9/hHw2J5cj//5ZD/EZMhQ4YMGTJkyJAhQ4aMJwz5H7F/MGisw+Gpi9k1qXaF/qYJVYOmZeD9PBKrpQwOAACUjKu2qffblnVcfYBQnl/dGcKuO1nFXdDxWH8OmpEB7enhyFkajaDJmVy7MUPGMRpfqv2qbFFf9GM/dJKNy/PjFFQMj2LtB03LgMLZGTX5BTAIRqwK8uNkYE8zRq0Oa8qIPFSDb9poyg2CEa75ZTAIRkQ6k5izh795Y+xFQi1MKWhvdbQg+5soXH+HJPuM7Tkc49t05WSp/ozEPVD5S/vRqzW492wUfI7XY98NghGLW52ysXjak2/TdaK1prG/mOw7LjuH1dsVuBfmXp1t6krbe88vHJWDIlnsi7m0FJFvxaHeL8cRG9YbjvtOIGD8KVb/1jQtHuqJhrrgfR1MqyOwuyTTpm2p3KX91RSIlsvsr6K5cgbByNaYrUd70ed7bJuuMPck86GaRFbfQck0m2yNplRw81ZmEm1vg5g8TDflYWB4DG4fbF2nFlV4TYfsDY+S6KaJGk2ppn/4hetQdGmPoLjjrP+cnutRnOqBwvnEGiJdq6fip0Pl3QaBG0WLnl6tgUKlsmn/zJwEm3E9FU+sNa2+TMGIj18DALzhKz4XC2+2ZZ/PRG3mZCmFQTDCUHIK6s9ScG9kNFx2H0fZuGj8sXwlV+7afhIXmPt5tE0bI3L72lyj/TXaksbNJ7bXCBsrgt8bqThSScof7fAzVG08Eb7hHEt0TuvX0+fDIBgx7ZFVUfps6NWPEmJHhgEA/F9NQ/mYaCSdNCDpk55w6sdr1WmiXzjwqS6o9Wp94VHU++U4Oi2MR7esZ3D6NZKM2G1gNuvP+owtGxzGWUqotX59eQucfi2BlaP1fx3YBT+FkATJTTamMm8Ae3I0CEY0PkposJ2TM7h7lxaFse/Rp6vRODYHTTaSvVZz9RpMK0RL281fg1BPn8/GUj6GX8+FpoHQqzVw7n8ZOV9Gs+TE0nFZMs5A6ebGrWPSfRekLllB4lUftf1hfgard/e5aGaZGqgdDADQvjoTPu+m4tBqEtM1N+ccKgLcYFoVgewFoSh+9E56sYTsa89PUjh5s/PckVj38t5sj6p9PvD8JAXNV4opDiwOotw/bpmFqh5XoVdrEHrgDpuT8CoZ960B5H3YICYPh75dDYNg5OKaKXpOncba16s1uB6vQ/FPoSxpNACYvu3C7XMp+l0YzD7XZS209mqhieMDM5zZvrGG8qCak4+ldwkCxpG0GRu8j7B2lQdPos1HKdx7SOXpwdoZWL8SnmkNUOuowKmIrQAIbbxBMOKne404a2DXOTNRfMMNLruPY2/SJgCEtp2ieJ6YvB0A0j5bgQ/zM5D9VTSz5gNA+0wHbA8h78ho4whYtB3hc7wei7GM7TXCRp6HVq9GwPhT3Jyle7ViRBT3/UzfpjAIRrQeegGrytRw+y6Vu39/mHiGSveaqo0nCheI8wiclW7zrH4ydgMAwGlvBurtPA7F0SYAwLwCqJyVTRpDr9Yg7It46NUadHstnt3TqzUoeluHgJdtqfXZ55JTde6rfyJoHrEn8fPfDvkfMRkyZMiQIUOGDBkyZMh4wpBZE//NsGZNtGft+Sv+zdblaGJIKVqmNsL1WV6wnDiL/K0duASJRe/o0GYh0cw51K+P2vv3ubbHXe6JG7o77JqySWOY75RxZQDAd+/zCJpyAiofL87/vnJQJA6vsp9M1LSmC4KmnmAJqIXXdVB/xievlGqcpXN9nLwMghHauTM57b3mk3gY55EE0IXzdbgwM8HumOpinVJ5t0FS6q9sLIrfPWDpXcL13/3FGXZ9vQ2CbbLP7GVRCJxNylYMj4LrT+lQBgfAfCmHs8zQMZa8oUPLE1VQHchkMukzfir7bk8W1X3DUTqrgsUBAUDO952YRpWWbf9VPDw+tZW7dAw0+exfgUEwYmBnPWquXuOuUdlJ2waAzKqHeMs3ku0Dxe8e2Ns2yWZ9pMnCrZG3SItNzy3Du74kDiR3M7Fg0TZylkbbMPz91WfMug6dhykxEkFxx7lnzt7aAbYMnNYIP1WL07Fq1FwRk0nTZK9SRtW61poyZNLvUlZF6zrmnp2hPHTSZj5SSJOl6tUaDDh3B3tCm7DvD/VdcHDdt+j8QRxOzn/EhKlQcH799qwBZWOj0XhTGm7vDkLTQSYbZsYVBUcx07sb1hcexSSvbuzZoBh0rhS7Q90w+qKALW3VyP9EC98d9+zGlFAGRYNgxMKbbfFHB1umr/ytHRAbeB4Xwkn8kkP7tqg9e9GmHPDnbKVS5kd2TXKmKsJDbayCdE1jvCOxt0CMCRJ2tIN62Hm7/VAUv6WD58cpULYLgqK0nOwdK7Y5gMRt+bxLLM251ffg79gAfcZPRbm3E5QjbqBxLEmMbVoXjqDJmbj6ko4lna6rf3usotL1z/9YC7/5GbDU1NiVpUPHEOzZswWRp55lVkl7yPkyGtuHLsOLb89Go83k+X1g8MWRsB3w3TUdQTP5Z+qBwRf19PlMNtawl4Qa+HNmPYrbk7Vouo7IcmReH9x+1xuqP7LqnKc1XI+4o+KpG1z/9iz30ms7io9jmKdoBa0LBsEI/98nI2DcKewqyYCzwtGmLaWbG8ylpXW2cXO6Fs1X2d/jMd6RjOXS3tjt1bE+763PsFvPa9HsW7E/+p6VvssBsETvdZ2vAPBTcRqGe/IWYXrO0PK3dwcho7PIZknPE4D8nXRNW46/ggdDI1Fv53E2xsDv4+D3umi1lY4xwmhGhkZptx3pPH64dBJuQXn/WJZA+jdrl+ELnxhr4omf3vnHyuPvgGwRkyFDhgwZMmTIkCFDhownDPkfsX8IdpjO2FhzgEe+x49YoF7INsG0KoKrVzWAMFOV1T4AABT/RBjJpNYw00pS55q2HHt3fY/cJdGcNez27iCcjyexEjdmanFrZEfWv+lbEi90Q3cHBsGIvE+1aHy0Gcx3ysR4DIjath97kZgJazaqgHfO28yNwneLBYgMg+UU0RJbW8Os+7B3zZ4GUa/WMAYjKlvjvAQMDI9B9tdR8PqA+NJff0GHBwZf3IjTQhngizWFRxnrFK3bI4vIVxoDRX31q/sTGSWXEHbK0kAlthfbahP1ag2zhhkEI2bnXETeiJW4PUUL4XUd0/hfmOvG/O+vvEIYtQp/IPEijvcA1YFMVPfvAr1ag6g343A10tlm79R200D3CondcNyfyeIBqJxye/Nxgnq1Bh6fpqAqNgLVfcW8VLTNzCqiAZ0mYQeUwjquhtatuXoNl7d1sJED/U3HHTN4LN7yJdpeug/2tk3i2qcIfDEdA87dsenXtDoC2RMSWewfQNjzpM9QwJw0lO/xZ/cdOrQl990J86UyNBhjLxbbzE/ZqBFuT9Zy46DzqOd+H6Y1XXDg+zVsTHq1Bu0zHUhswI/tWT1raxi9fv0Fst4n4jtxzGUbi44h8AWyLwbtfQl6tQaXt3XAkOwYm3UwCEbUFBVzY6PWMMqIJy1LrWG0fN8xU2zac7rCa9P3hDZh3+Oyc+BkOEH2dUop+oyfSuqVnOLa6fB5PAZGDeL6b7yJWDWaDjIhe3kUs4bR9Zz5KK9V5SPDmtQapjkFXHnYGADw/tEhMAhGmCYmwrBzI3KXiJrw2LDeKNgeBv8xhHlPr9bgneYXmdwog6lpbRf4jsqC8Z1OeDCUsGPWniXlysZGI/sbMb4EAMuDBAB9z97lZAiAWcP0Z8vFa/fvs/hHag2zPrP0ag0cGrhycTp/Zg0DwCw+5vMmJGXuJe8AiTXMtKYL3I41hf/SS6yfeO9uCH8/DqoDmWi6NpVZwwCgXi45T6TWsKIf28NB0w6m1RFc/857MqD4XYxBIhO04N5eEtNrmpQIS00NW1fKmJn/MWGlrT19AXq1Bsc7/cDml7OxEycfg2BEwMtpeMs3Eqmfr4CDC9HCHwnbAQAYESla5GhcGY2X8/yYxJ/R/gBA5eOFVmkPuCFbv0ce6kkcWP4iLbtO464BIOOjRBgEIzp/EIftfgegPHiSWcOsn0san0RlcGWujljDFApUDork+geA2u6d2B4ASB42AMwapk5ryMraO4v1ag0CxpF4o7a/vICdFQ3Qa8o07qyk1jD3lCaPBEeeBZUHiUWj1jBaJ++RHLrMj2PWsAdDIxmrcV2xTdL9KvV+sIbrVTPXX3acp913O7WGSdv2z3Dhyg33jLbpp+kgE2p7dOK+S+tQa9j9YVHMGpb9dRTXDh2b9Fq9nccZM69erWHWMCmyHpLzoC5rGJ2bddsy/u9A9e8egAwZMmTIkCFDhgwZMv4zoKglP0+in/92yBYxGTJkyJAhQ4YMGTJkyHjCkMk6/s2wR9bh9+MMBM5Oh0Ewol1CPM7HJzDTte6VmUj5YoVdNz2pG4CyUSOYy8vt3nvcd4NgxOLb/tjfvmGdQbjF83SMcljqXlbdvwtLVktxPV6HFgkpnHsB/fzejVCkdXRk/dP7dc3J+jotT8k+Sidq8erbm7EmyJcrQ6FXa2BKiERQ/HGbdikpwF+RlXX/NAje3j0AyP9EC9PERO6adRmVhxo1JQJrQyo3vVqDD/MzGAGFPVn8WZC5QTDC77cpCJx4Eu4pTXBDdwemFZE4HPsFvFQN6gx8BgAHV1fUVlQ8tm179fM/1sL3LSKXond1aPMhcXWq2OsH15g8GAQjol+bibTF/H5WhgTCfIEE7nulu6IwqgJKd3eYb9ywO8a8z7RobAKqmiig/jwFdyZo0WQDHzB95RUdWn9hG5xPsauiPoa4EjKFutZeGeALc04+IwIASMLxmnxCoR6Y4YzsiCq7Y1SoVDBrw1AwwAW+bxHXttCv4+H5ieiqer/2IReMf+/ZKNQ6KpD6ed3ysQbtu/inUJzTbrKZz5/B2sWVfqYB8OV7/LEwaCc+8yeuslX7fHCo/U4Yq6qgcXbGprvNsCG4zV/uh67vn2HCpSIUP2yKvVfbwalfAfIXaWGakIhpRV1RGFWB6y/oUO9mLRpuS6uzDW5dHpFZqNp4wtyyCSwnznLPoEEwYkBgV+zJPgbfvc8jcE0NlGWVqD17ER/mZ2BCxhR4jyTuf9V9w+1SodN2AH4N6LNM7/n9PAN5z6yEXq2B27GmKO16G7XdO6HZogKUdr0Ng2BE1JtxaLIh1eZZUzZvhgdbGnA0/qsLj7JnGgBq+oRDdYCMz6FjCGpPX4DC0Qllz3ZGo80kaXPgxjj4vcG7VUnfBQDsPkP2yBfuPxNFyIoUChhKSGqM5JKTiPXoXPcCP26tQNzEAmf9/ye7/bOzMvxULTI7OXDlj1XWItLZgkEe4VxZ2tbukkxEnhiLFk8Td1ZKnjTywlVsD2mFIedvYVe7Zo/tWxnoh+TDP9vcvz1Fi4yFiew7ve94qDWubPbBtDm7sO2VWDjtzeDavz8sCvV3iPJSNmuK7NeDkT0+EdUWMzqsmoULM8jfFfR9DpCk4s7JfFvmnp2xf/NaDBgwmiVwru3eCQ5/nGKEV9bjexwqRkShkfE6zDn5dt+1ANDx+Ggc6bIWIz21KPqxPdqMOMvKrCk8iqkSwqjwU7X4uGXWnxK+MFkEByD54I929y4FJYySjqvziedwsss2u+P13fs88mO+ZW2FfRmPe20fImjqCVZOr9agamAEXM9eReDPVxgxkLQtvVqDGks1DuGXfyw5Bf2bNWLokyPryNgpk3XIkCFDhgwZMmTIkCFDhoy/EfI/Yv8w6NUa+Ow2i5+/IRooqi2RWsPsWXzyFmkJNW15uc39u8/xCQgNghH5n2iRvTwKMd5i0DDVgMYMGWcTQFo6Scu0Z9IgXACcNcwgGFE6UYsWCWJZayKNH7f1YN+7zZpB7isUrL/s7zrb1T5J2/NMa8C0Tu+9uw53zSSB8q2pWlam4/HRbL7B6x5wY6ZtTvLqhoLtYZiXm8Vdryt4Vjofag2Tar/pvezvOkN91FbzNTRbj6WlPrg6hwRi1zZrxO4pnJ05a1jF8CjOGmY9pqHZ+rrH+iixrV6tQeBEQs7wvc8hAED+kFUcFf3kwu52A4apNSz7u86sH3t9Ba+LA0A0qJWDImGaJGpylVXi2F1j8nA9Xoey2ge41sOMqYXiGAp/CIPpnQbs+x+GDmQ/37jBkvpSNDtGAqz9Xk/FiQ8Sof6c7LWGRcQqlb2cBMkrnJ05TT6Vh/Tn3W8mod/oyTBWVdnK8NG4zTnECiZNnEutYQCw3OMR2crD+zbyuTc0HL9tW8cshHq1Bl7LRUIFvVqDYZ6RLLkqALi9UMhZwwyCEflbOsJ8IRtl42wTMBfPI8QuV3aGwHP4ObRLGWejoa7a54PyPf7I+1SLhn80B0ASmjto2rFxSMdEQemgGw3IRZ96Znbduf9l6NUaPJM0G3q1BhtDfbm5f5ifwb5XDSRWIJqI+PqLOhy/4gWDYERtd5GgwSAY8fA3byhDg/FgKCm7IbgNSqqa4GDoL6SNCYQqvzCqAgbBiBbfpCDlyxXcXKXjcDzUGn3OD2HXlWXkHEhK3429u76HQ4e26Gm4xNXbk30MANA9xATFMULgcf2Xtnjx/dmYHJLGyjnuz2TjlD4bBsEI/wOTuUB8g2DkrGF6tQaBL6Yj9Ot47C7JRNFXQTD36gyHP05hq+/vAIB+oyczC6818UFeghqV61pzc53m1Y1LLOwslDNSkT17tgAALNUPGQ28Xq1B9njJs9qyBWuPvgsA2DxDAZtn4qG+C2LbPgUAKDXfR/TpajFpuMUCvVqDu6Oi0ePMCABA7iayzvmLCPFNbTcN1hQehUEwYk0hSQJcmhTI9WMQjMgbvhIPY8QzUNXGk1srg2CEQ4e2XB3p57ujormy1vcp0t4gZC3Oh1sx2Xzg1xmDPMKh8vSAQ8cQPHiaJ9gY5BHOUoOEHBvPUolsD2kFg2DEhkWDWHlKhmE9P3N2HgCgLDkARe/q2Jiark3lzimK3UF70HxVKna0c7ebnLv+jnRMN+Wx7+Zbt5nF01GhRKN8CytP3+cAn1Scjk15iJBQ1Z6+AINgRNm4aDj8QQh5aPoX6fhGXxRQ73BLAOAIMihcf0xn1rDYPs9y68Le63MqMNKT7BGpNcwgGDFVQhhV+J4OH7ck72ypNWzQuVIIO9qxOhSOh1rDfCmH88yZcKnI5pw0f17O1e333GRY9jVj95UtW6B8TDQbb37Mt3jqzDAAZB22v/A5+7uEXjMIRtQrvofPD2+Dv4uYusBa3jtMZ+ze+6dBTuj890H+R0yGDBkyZMiQIUOGDBkynjDkf8T+Ibg5VYwN+XDFKpjWEX90SjNr7ccs9W2WwvNgNa4+15Yr2/tMBbGmWWmMDz1wgGliIgJfTMfeguOo7dEJ5WOiWfuWE2dtNEVu61MRfbqafTcIRo7CWdm8GRvv8U8SubrW8RLey8/i5gxCi3vzuUdWBEnIIrXg5H2mtfHhdmhINLXF0fdYu8sC2uKzH4fBIBjRbI1opfKYUML6tWTUrW3yHnkGn/h3gF6tgd/+KfBKd7UZuxRUK9v4qKgpk1o0ACCv31o4J2VAr9bg45vBuPyRFrGd+uNBj2vYE9oErZYSbeSevVvFMT6yymy9Syw+rj+lM5rjoh/bw3/7TDamond0uPKtH6tLtb2DzpF9YyjO5Kx87ilNbCyZ9LcQfZdp+Kw1xgbBiH4hF1h56T5MqyQWEp+3icyVh07CZfdxdHmXWMg2FR1D4zzRyqsM9IPTPQtGemoRvLoSxdH3sKuEaGK9nj0DVU49cU3mp6Lo+RDy5fgZbg/c6iomJNWrNWiZSqyKhf2diXX4mZXode5pKNoS+VCaYYNghMpTpNx+YPDF1jmfw+HwKcx4bw6keFzMgzR2TPp98vkJXDmDYITrj+nsM0BiP2rvis/N4svEOlF79y6Tf3XPKwDANLt6tQamHt8BANI+I8/yx/kiHb7nJykofkuH1kPJOkk1ybRv5/6Xcc3kjsBFF3G3+00AwMHQX7AneTMA4P08Ektk6Vr3vNMqzTbPg6JagXsjo2GpqWFymGrKx7u+EfDbMQMAcGj1aujVGpZ8t8XyFJyO3IL+Iybit23r2BxXlalxMPQXmM9dwpGEVayvS12qEeMdCb1agwEDRjOZWe9jusZ6tYal+6jueQWqvoWsLfOlHNwbKWq0e27K5Kw/9Lru5Zm4pi1nbbZ4+iLc1qfi9zBX1hdAaKyv7Azhnh+9WoPcPuvY546L49m9I5WkD2oRPzcrAYM8wtFgexqUB09y86lqIqZjAIDcxeJ5eLHbRjTanAa9WoPSSSJFu0MfkmYj9/NomC9ks7m9WBKFK3N1MCXyiYFnFIs07etP7IBercGcK11gWhlh9+wDgJwxK+BkOMFikUe10WH7Tz1svA0abk2DawyxzrhmkGfb901yVjgcNcLzUTzb9N7jAQC3ShtwbVCZHly7mvWdlL4bANDr3NPsWm3WRVan/4iJAADPNNJWw63iXrG2Lg3oP0q0bj7y6qjqcZVYg9zdcfVlHQoX6JB0PAm1py+wFBTStAbK4AAoIsLgPVo8I+nv9EWJ2FpEzvmaEoGzAOUu1nJjSdP8iPNxCexazlLR8m3tEWIQjIw+3h6GN+CtOgbBCP9t5N3RZEMqrr6k48rffyaKvcutnymAxGLp1Rp29gDAprvNbMZ2u6YBdgYaAAAOh0/Z3JfCfCEberUGZWOj0XXOTHadpr+x9oix/jvI6/0UZFY95N5ZBsGI3aFuUA87bzNHeqZK95W9mFb6/NB2Hf44hRbLUxCyKp6M+9p1ZlGm5erp85nVNsSpPgyCkaVZAYAY70jUnr6AOT467JzV16bPaUVdoVdr0PedKTb3/pGwWJ7cz3855H/EZMiQIUOGDBkyZMiQIeMJQ/5H7B+C5mtEzXZXFwcETSaa6dtTeI2ZFBZtR05zmP11FJwMJ3ByfiJ3/Y1m2UxbdP+ZKKbdnXJsEiLeIVYLvVoDh8OnUPncHbgeccentwJt+lN5qJG/tQNjOqT19oc1gkEw4uuCYyjtJ9ZbVaZGbfdOrO+f7olxUABgLi9H5nvEaubsVGOjhRt7sRjCjnY2SRINgpGzJjDN8cAIqO4rbOJcpOyR1ug7ZopNzMCd8VoETjiJSe5/2NWgUiSl7yaxAH4HWF/3e4TUGWdzuEM9VDewwHztOtfOjZlaG80fAIxqKFp8XHaT/THA9zwC5qSxBL3n4xPQZGMq04zSse4OdWNav8lHJrPPbRtcZW0qOoXCP8MFhfN1LBE47d96Dnq1Bis9bdehXWI8SxpMkbskmrNKNle6wvXHdJjWPEp8ffhnFvNCLZRDPCJYm97viTELD2MioF6cgtu7g2CN6y+IsRQ5S6OZ5cKpTIwzPBj6CxxukfWnsV0AUDhG1CTX0+czDabZWZxbQsFR5H0mWhkuL9RyWlcGJ0fuetMxN+D3m6jVpFpVs4VolE1ru6Dp2lQonJ1ZvRdfms21OSCwK1uHM1GbbdqioEmwKTw/TsGw8zfsWjTpmga+lMYs7bRNqpWOdiExhRaVgp+jpK33/MJtnoeDwz9Hg+0kboomsKXspTQhNcXIC1ehV5OE0Hq1Bvt+/I5ZVfM+1eKnkBbo/sIMNjaK0qRA7C0gz8GePVvQwYln7KrpI+7DAQFEE54/aDVWFx5F+Wg+PhYAGy8A/B7mipu/Btns/Ybb0nD5Q/J8dloYDwcXF2Svt014DoBZImv6EPk4uLpyZ0erL8V42UWap2AQjGi1NIXr0yAYWeLnkp9DcW+vH44krmJ95H+ihf9rqfD7bYrNWI9/nMitmUPHELTIAEtWDgDZEVVovSQFTc6p4JXuyuL1VnqmojQpEHq1BuPbkL13IbwGQTMybKwN0rlb77MLMxNsPB/MPTuza5OnJduVXW2PTjCvrIZBMLJkxNZl9GoNS/asV2uwtSgFVWtawxpB6+OgSDkNAFjjdZRLgFw5KJJ5bZhWkHgwy6U8Gwsc7cN84wZafZkC749O2Ox5uq99jtfD/D3bYMk4A0tNDTuLcxeTs6Pzh3EY1UbHvWeq+3dByKp4+L8mem6Efh3P9ouDK7G4BsxJsxmXFJWrRWuBdC1Unh4YGDXIZj4BL6eJ+1GSsDvni2jU/zkdW/K6cOOsGC5a/TI7ObD2iueR+YxteIu1rXAmh6ehfSP0mD6d1VOnNUTMkHEwrYhEwXYS53t5WwdEvhXH+klbvII9jw4uLhBe1bE5KVQk3W3M0+NZmz2yHrD79AzsO9b2mVCvPGkjN+lelj4b9HruZg0c2rdFVWwEm5tBMCJ3Uyc43SHvAes6Ku82MAhGHFy7GopOoazPOW6X4ZXuSvbZo0TYAHDg+zU2MWzHfu2I4nk6NNzOx+n9UyHHiP19kP8RkyFDhgwZMmTIkCFDhownDPkfsX8QDIIRYy8WcxqcqiF38FMxHwtBoUg9zWnBFG4PYRCM6D1hKldOatWp/3M6++y9yYHLUUJjIH4O+I3FQEjv1ZQIMD21wVZT/ogda5Z3V6QuIf7jyuAAbHthAByvlrH6ryePgWllhF3NXqtH2mQATKO/qa0n1MPOQ3id9/Om9akWirZ/aPVqlt9MGt+l8rb1ATcIRszOuQjloZPcddPKCDg+IKnc0+8HiFqyz21Z6mKfGga9WoM+40R5U8sVhblXZ1HDqFAg79kVrH8K9xU86+KEgqfYPBdfTmP1CxfosKQ1GS+1JOnVGuQu1nLsfdbI16+B/++TAQB/dHBh/Sjv3EOCRxp2T/0M3vMqbeTzUN+F+36vthLK4ACunPeuUm4uJW/q4D83DYceOLB6dL3yB3zLmKas+6KwvvfeN2uIlWmQycZy2eKbFOjVGhRsD0PuSDFuwWMRz9QpDPXm+unyXhzUn6Vw1zSfEG10s9Wi1S/euxucShWsrcbZfKzmvWeJddl83gSAaPVDU8fCfKeMxTdK+6B5lIKmkDgUS1UV9GoNVK1asriTqSZitduTfQx6tQbK4AC71lLrOByp5W5HO1HLCwDtEsTYpMdBms8t91knrs/cz6Oh6BSK/sMnihUeMXICYOyberWG5S/6uoCwDqpat+LiO7aHEEa6xECyl8bk98J7/mSvUWa36vpE7qbESDYmt4HZ7HPfscTiqPJQo32mAx7GRLBcWQBQe/8+++ylaoBGW8gZqp0rxldSefQ+U4Grc3RoPtiEoMMTYRCMLJ4QEFlRWySkoLayEoGTCCve3vvOnHac4nYIsQxQtlFlaDARlyvRjCscnVAT5ge9WowRuxGnZfKrcnNE7ufRqD7fCMuCt+KZnH6sbd95JJcY7jjhz3CzcxM03JZGGEetcOqtBBRGVcA9VWRVdRuYbfOMUfS7MJhbQ4BYNZg3wgDReiDdmwbBiP2b17J6e0KbcO0qgwMQ/n4cftuyDuhTzMoFHppE7j+yWORu1iD382jk9lnH6rop66Ph1jQbKwhlJqXjObk1jH122X0c5pvEihM08zj0ag2zVEjnYw1qiaWwaDuyz5cjHzCvAINAmFQb/tEc/q+l4uavQTj5rphD8pmcfuj5/DQ47juBZmdE9lG9WsPYC9VpDVFbUSFaW1q3Ym0zuTVvRs6OvoUsrptaoQyCETXFJUhK3/1YaxCFsKMd/H4m57/7kEvcGrr+xMe2+u0j7zrPT1Js2rZUVbFyh1etYvWE6LuwnDiLoJnHcbHbRgBATbUSbusJI6SUDTe2U3882NWKMeACgKWmBtlfR3HvPD/n6+wzRe54B3Zm0r1XWym+1ygbKJ1f1sNK9mzMzrnI2vIfQxhSpQySI3L7Qv2DI06/ngCfd8T91enjeCLvgiLWLs0/Rr8XRlXYyEqv1qDJhoao6R2OAf1HoegdHdosTMG5WQn4j4HlCf78l0P+R0yGDBkyZMiQIUOGDBkynjBU/+4ByJAhQ4YMGTJkyJAh4z8DTyp+S44Rk/HEoE0lJvTNQhR3vfXQCzha2Zh9p8HVUlO3g4sLCcQdR6hiHfeLLjqZVQ9tXE2o2d7JcALTirraDYxWtmwBB007mFZEYkBgVy7gl35WhIfaBGvT3xZnFdat/4olqtSrNQiYk4agGXwgql6tQd5m3m1qRzt35Fffw8PfiEvZmTmiuf7KK8SVx6F9W1yYq+bakY5xdZtj7F5NQRE3bwcXEuS/LIAkAJ1RrGUuMUEzT4hU4+0bses5Y1bAIBhZgtrsr6NgzsnH5EsFUP2eyc2/crBIoFDjIrr+GEpOwR4MghE5XxCXvStzdbimFWmHX/OJRpf3CKGK98LjdgPn/V9LtetO1DXrGQy/cJ3bG2wsj1xo9GoN4r27IXd8C5t94GQ4wfUz3DMa5ks5AEiSZL2aJPnUPyPStT9o/wAGwYhP/Dtwrkz0M6X8LXpbx6jXaX+607Z7tWe9WgRujENtNw27RgO5AeJOVFOtgl6twcf5RD7K0GDWrzLIH6feSmD9xPhGMfdDqUuTcV4C21sUpsRI5iqidHfHO+98x9rJXaxFgx/SOVdFh8OnMMjvHAp/CINnGklKrXQjKQikbkOXt3Vgnw2CETVXrwEA1pS1wpogXyjCQ+H7y3QYBCOSD/7IZHJngpikPPvrKE52Fs8Hdbp4tllI3HzC349j12jZqoERjPZfurfynlkJvVqD2TkXsfi2P/xfTYPl1DnmDn35Iy2Gn7vC2it+Swyup2QWs4fPQM7SaNRcucrJCQC2F6ciZykhdbnVtZRRFNP+331/PQAg/+lVHCkLc3fbtBYAoQM/G17Lktpaz106L4NgRNNUkT48bClx2fw9zBWtviLPkO/o09CrNRyxC4U0Oa1erUFM/Sq0jrwCg2BE3qda1oei/y2OTMB8jiSKpq6KewuO452NZH6nX0/AvdpK3GlXy8ZVf0c6FGYFLk1JxFu+kah4inct1Ks1aPvNDRv3VAqVnw+Z67pHFPGurigfE42SN3RcGwBw/JNElrLAnvxo2wt8f7FZQ5/nSFqMeblZcN6TYTMW6ZkMiAQ00rbNl3LQfGUqcymj8BtDyl0fSq75jzHC/9U0dPyU0IdTF16DYERsrxF25VDdn7i70hQh1nOyLu/zXBYMghGrHyWWlpa3lrUi9TS7r2zWlDs7s7+OYqkhmg82Efe0+UT2Pwf8Budk8g6Ruv1lf9eZtVf4dhBrCwCSMvfayLK2TCSromfq4VWrkL08Cnq1BhXDo+y6I+vVGtycocXe+4QoqPA9HdTDzsPhqFjOOhTg7ijybro9RYuGTe7btHf5I+JWq2rdio0xfEEcJzdpig+DQAhZKKU/jp9hcjBfuw7n/pcBkFQt9Hre8JVcv+uCbWn7qcv3hZea2nWRTT61DwAh46rt0Qmv+YjhBgPrV5Kz6HlbV2ODYMSP/vtRb+dxrs2tRSmInHCqTndWe+1I16P+jnSofs/Enn1b0WahSNpTNiqy7kZk/FdC/kdMhgwZMmTIkCFDhgwZMp4wFBbL/4Fsaf9glJeXo3HjxuiJp6FSOKLkTR08FqXA7VhTlHa9DYBoUqKNI9A4NofTvF2brYPDQwvcVxBtbt+xU1BTXwnnpAyUJQegcSyxXqhat0LNlauchUKv1uDmr0FoPtgE06oIBE0XNcr0vrJRI5jLCSV4yKp4XJiegBG5fZm2z7o9g2DE0Gw9HvS4ZtMWazM0mGmI7UHl54OavMvoe/Yu9rdvyOrR6wCwqySD0Z3b64fKh16r7abhNH4AsVodXrmKabPuPheNhtskVMFDx3OaOoAkZLRUE6tN5Lw4ON6vRYMf0lH8lg7nXkzgNGN3JmiRvihRHIdnOBzaBaL27EW8n5eJD3sNZZY6BoWCWQaEHe2gHnYet6dokbGQtKN0c4O5tBQlP4fC45lzNrKz1tza09Q51K+P2vv3OTkNOHcHJ8p8cEN3h9PYmaorMMu7q418g/+YgEvdNxCZDBkHy4mzdvunsN4j2rkzCXlCZBiTsT3QOmMvFmNTW0+YVkSyZMAUZWOj0XiTuG6HHjgwaxztGyDU524Ds+vsy16/0s9XX9JxdM/29pR1fYNgRGy/52A+d6nO9aAYdK4Uu0OJ9ay6fxc47juB2h6d4HD4FK7sDEFW5BZuf/saprIUF9J+15e3wJa2xFKs6NIee3d9b2PhaPttHLznp2LCpSK8u28EAjfeh37tMbzSlNB4K5s3Y4QGtL+k+y6YnToaAePFBK329ppDw4aovXuXu5a/SAvfiCIYQkgS3oGRA1FTTJKsZ2/ojMAJJ23k1m32DGaZrmtdAFvrDf2+pvAopnp1Q94iLX4a9aUN1f3SUh/McbssauyDA2C+lAPTt12QH/stYsN6o7q9N0tIaw8lb+jg8SnZE8qQQJgviPur8IcwPKxSMUt0XdZK6dgBQnXunihJExEZBsPOjdwzlL0+nBGGdDw+Gq2GXkDO952Q23udXWuWdX/XX9ShxXKRrIber9nvhcqVrXHsq5WsnkEwIix9DNTDztuUl0KhUsHSOYR7nneVZMBZ4Wh3jazbMa2IRP6QVXXKhl5vmdoIvvVv4X33c+wafVdYlzUIRgRujGMEMFIU/hAGr2fP2J3Pp/npeMP3kWfKozP59dwz6FPPTOT/VTQUzaqYvOuaE5ONszMsVVVsTABJis6l/ZCc/VJIzxl77Tseao2al5vC4X4V81agffR7bjIc/jjFzlmDYIRmUTzKO1ehs38BfvTfb9Pf486oa7N0aPl1yp/O1yAQshXVpfrwej/FtqFHZUKXx8Pz4xTggCcMIbsRtD6OI1oBYHPmS/f05YVa+LyTipvTtWi+ivwNFHnqWRzv9EOd86BjVnRpD7OrI37bIj4zpoRIBMWTvhw07bAneTP0ag0eDI1EvZ3Hcfe5aDQy3YXl1Lk/Pc8B4g2RfO7gn8qKzofih0sn4RaUh7KyMjRq1Oixffw7QP9mjY79ACpHlz+v8P+JmupKpCXP/8fK4++AbBGTIUOGDBkyZMiQIUOGjCcM2SL2b4a1RaxwgQ5eC0Qt0l/RvKjTGuIbzwOo7+AEvVqDnC+jEfBymlhAYnmgWvNJja6L7ToogVqzjVUp8q04uK3n42nob80pwNgJdSJ/S0f4jhb96DmLyto4XJoiUvrW9AlHcU8n+Lz7KE5jz/MImnqC1aUWAVreWib3RkajwXZxvtK+rcsaBCMOPFDiM3+RMpdeD9wQB783bZMW69UaTLhUhA3BIg0+tVZc/lCLS1MTObmFfh3PqIgBUZMIAKY1XdD8mCOzclmPsS4LjL259D17F681zbWrBY/xjsT9WA3q/XIcd8Zr0WRjKhxcXVFbUYHo09UsKbeyWVMkn/ndpn+DYES1xYxBHqLW1tyzM5yKS9FrZxZnrawL1Eo7OiEZ20NaQRnohwtvNkXQ1BN/aV/bG4PyoBrmXgIcOrRFbdbFOusWLtDh5ed24qeQFlxf24tT0dihHptjxNtxqFdqxpEEoo2vGhiBQ6tX28jjRpyWt1RYocNJBbI6k6M0JFOFC+E1AIDrv7RFi6fJOB8MjcSRBELr/Gea/7ogvKaDerF9LTMAWLpqoDhmRHXfcNzzdIJDjQWNvxefDdqHV7orCqMquLq13TvB4Y9TcHBxQW1l5V8aj8pDjfLINhi+0IA9oU3sWn4MghER78Sh6VpRfg3/aM4s63VB0SmUUUHTdmIGjoXqy9uo7nmFKxthNCNDo7Ruwi6klqS384z4yI/shV6Tn4fCbOFibP/qPgWAPuOnMgp9g2BEp4xRaNHgHnLOeCJ3JEkNUDYuGmmfrbBp0z2lCW7o7ohz/90DV8ob4fQjSyhAzpFWK04wuvU/8zLI+SIaI3ql4dOW/PmSdN+FxcdSZH/X2SblgrX1sde5p+HUr4Cd/QXv67jk69Z1pW1cfVnHElpXDYjAoTWrAdi3aA44d4ezVtJ7EW/HIeMj8dxUBvnDbMr9S54A1LJCrSfSdq3HYd1Os2NuuPGWD5zybqCmqJiVkVoWAUAREQZLxhmY1oXbWKtpmwO7DUXS0Z3QqzUonaSt8/1qbx6mVRFoctoRLb4hfXqmNcDEFkfxkZ8GRe/qcD5OjIW1Bh3b48A8SHp04ixF0nvKZk1xcYkvAifZWuN9k6bBw+BgY8kedv4GdrRzf+w60XOdouhdHdp8aPv+GxgeA9McX2SPT+TqX90ZglZDLzAvHmtY/11lPQb/DBfk93BgaS/oPdPqCARN472F2n8Vzyzh9uZStc8Hqk+aYv+mtXWu5WPRsin2X131j7UA0b9ZtQOenEUsdY9sEZMhQ4YMGTJkyJAhQ4YMGX8j5H/E/iFQ+hEWoAvTE5iWzlqDlPM9MUGVJgWyegbBiHVef2CYp5j4NPc5q6TBx8/AoT3RgOrVGhZDAgC3dwcBtWZ2j/apV2vgtp5n4zOtiMTOCsIGt3c9z6xkDWqRytusQfE8HRvb16Xe8Ft4ivUBAKoDmbg0VbSQ5Q/4FgCJZwIAzwklCPsintMqRZ+uZp+PLV2B5JKTyP9YC4eOIfAdfRpXXrFlWqMWFmoNkyYs7vB5PPzeJPOt7abB3BwxKaNBMGJDcBvcnkIYlZTNmsLhMLEc+Lybith+zwEA5lzpAr1aTMxJ+6fWMAAImnqCS6JN+9CfLWefAWDcNIONTOlY7o0kbE+HYtqi57RpXF+0vqX6IUsS3GTjo3k9Ym1L6+iIqy/rUPKmDslnfmftS/ebXq3hLFHZX0fB/7MLaLqhlMVjcBrNRo04eRdsD4NercH+TWuxPaQVQjJVhEGzVmFTV7rHHOrXZ2sFAN/c8QcA5C3S4mFMBMy9COudtTXMIBiRs7ETSyzrtSDFxhpmEIwY6allCXL1ag3qjbrK2LAMghHOSRnQqwmTp1Tm7on2mSkpqDXMIBhxIbwGBsEIlacHs4YZBCPrh47nzngtN/8BMaMAADW9w7nrUqgXpzCGPmsYBCP2/bAeBsEIx/2ZuBMEZg2jMqV9F0ZVcG0YBCNuhtUDANRWVqLk51A2d4NgZMyKUpSNjUZNiQDX4vvYE9oEDh1DEF8SzRKSU+jVGjRdm8rtD2l8Ck3aa0qMZAmODYKRs4bRdvYmbcLFE97I3UTOwsAMkjzZ2hpG94M9OerVGpyO3AKDQKxh9JqT4QRnDaPXaX3daWKJsmZ5pWuqOpCJvEUi69qpiK1An2IEzEnDgNgxAMh6WGvHy8dE43ufQ0B0B3Ztb9sktBp6AQGb4lD4HpFJy69TWIwq7RcAs4ZJnxvhNR0CXkmDsRM/hwExo2ysYWVjoxE48SST/e0pWm6MerUGgYcmwakfSRp/s6oBrryiw8VpIpvt456N/E+0zBoGAKoHZiYzazkaBCNWfx8rWr3aiQyClAWSztPcpD4nB+ln+gxRON0g+2PU7H3cePuOnYKuL81g301ru7B2KFNr2skgVLk5MmsYLdtieQocNO3geoTs3+zRrgCAoMmZ3F6Xji3p6E7GWFg19A4ro1dr4KBp99jYpqDpGfB9ToxDLI6+x/Zvmw9T7Mq0cAFZU0sGiRHL+VJkCrw5QwuVr8g+SPum1jDpfooN7UUskLdu21jDaF3VLRWzhlH2wbfzjFiT15XNsWKvHysvHWdJWWNOXm0+TGGfr83SoWIEYYGsuXKVxfzd3h3EyrQaeoHsifJyCK/Z/m1CrWEvZJu4Mb+dZ8Sd8VrkRlRiT06KzbNFrWH0jNKrNajwqWEssQDQ+QPCRqsMJHM71H4nZq/ailH5vQEAoaljublRKJs1BQDsLuHlSVl0//GQEzr/bZD/EZMhQ4YMGTJkyJAhQ4aMJwz5H7F/CMx5BSyvhvbVmew61aL4/z4ZAeNOwbQ6Asc7/cDuUy2Y4ncPG22O1BKwZ99Wu/1mdN7OPtM8TADJ1WRtIQmaeRyJgSSvS9hz52EQjFCGBtvV/tHP9epXofWjHGl5n2qx9FRv9DtxHcXzdFxZa62mytMDlz4NY1ou9ecpKHpbB2UQsZDQGCfPtAbQqzWI9egM06REbNz9Lcw9OyPrVd5fnv4e5BHONH13ApxYn1mvJmBXCdF+ORw1on990eKmV2tQuEDHLFlX1xF/9z15aWR85y5BER7KLCFS0O/Zy6O49mxiEtoTiwPNVUStTtSSSS09erUGDbanYcj5W0g6noRalWhhkmows7+OwoRLVqyMj/Bx/nG0+jIFZ2cTpsdOH8VzbdhD4Kx0XI58gJKKxlw/AGH5M5eXc7L2HnmGrRW1EgHg/O0pymrFnEvUR5/K6LvEWBgEI/zeTMXBtWJcCR1DhNHM8gXl9lnH8hkBZG/47n0e5l6dkf11FPqPmAhhRzsuL1M9fT7T3urVGpbLzG+MEaZEMZ/L9Rd13JrVJSdq1dKrNUg6ngSDYIRXuqtdTTe1VNL57NqzCQBYXjrr9WBnwY/37PZNZab3JNYAykBG++iwJJ7JipaXfr6jIXu+tpsGHs+IzGB6tYbltttURPLzKUMCGVsljT2pPX0BuRGVuKYle6Gmj2iVqO5PrMVfF5D6/Z6bzOZjvnEDyiB/BMUdx+tx25C/yDaXD0CsX3q1BuaGZviPJWyE2RFVXBmppYMyPHZ9aYbNfXsxQQbBCNOqCE7m1DpkEIzY+nNPACTH1cCIWFbm+os6mNaFs31qLV+DYMSe5M3sOrXWKJydcSNOi3ue5DVs+HkD6h1uycqtLzyKoEWXGPMcs2oFd2dlppvyuP7oWNWLRe2+MsCXjaU26yJyN2uQvUw8j9IWEw+KVktTYO7VGRkLE9naqXy82JzpGFq7lKH1F+KYrM/vDsdHczL0nZeK/E/Imlq6arB/81pm6ep84jlOLgOCu7PcfQBgPm/i5i49Yww7NwIg8WfWz6PzOXL2XZtF3jM+75J1UTve4dq5/tIDHPuK5Mz7qTgNQVNOIDDDGXcmaBlbYeCsdNTbKTL3Sde11nienScBr6Qxa4y92CCDYESvc08jpn4V9GoNWg29wI251nhetED1HM5kaxCMmFrYDQBQ8dQN3JzOPx+lk7SoHByJu89Fc+MDREsQbbdploLdy3wvETX5Bdz4XI+4czLWvjoT5aOj8WB7IyQf+onrV/reNwhGtNSIlpwTH5B35Xvx09B0kIm1+XBrS64uBbVoSc88+tk4LwFHl61Eh5MKVlev1uDB0ebQqzVcfjzp3qd7TIpvAoO4/j/y02D+e+tgEIwIfz8O4e/HcWNTtmwBAEg+/RurFxR3nLA9PgJlraY5U2k/lPXa6WBjNh8pzLduwyAYMTQ8Fv+JoAmdn8TPfzvkf8RkyJAhQ4YMGTJkyJAh4wlD9e8egAwZMmTIkCFDhgwZMv5DUGshP0+in/9yyBaxfwgcXJwxqg1xf0r9fAUzj183V8A9pQlLDBo0LQMdlsRj+IXrnAnd0rsE/ttn2mnZDjGCQjTxS/GWbyRuTyZuD2deSbDrqkbdEG7o7uDTW4Ewn7vEu4tYlW899AKK+pDg5OzxiQgYdwqG9o2Q/sIXdcoie0NnuG6tROsj/NjbfJSCi2835vopjr6Hywu1eDuPuCuMbdMVykMnOfc/6e8bu4LZd0oDTO85KxwxIHYM2mc6QK/WYH4eoXN+Py8TXgtSWD33IZcQlj6G62Pvr5tsZKBXa9D/2UkAgLYL+GSbdbm25YzhdSNXepOAXkr3TOvtateMkE08IuRQebfhxhM4Kx0NHR7YuPSEZKrwlm8kXI+446aZkHfc9bHYd9lSKGzGeTD0F9YPdd2bn7iW3c/f0pGNs2hoS5sAcmW7ILgda8rNZaSn1sYN9sorxN3k1FsJLJA94u04bpx6tQYLW5yB474TeCp+OnpNmcaNdY3XUQRNOQHlwZPw+dUMRcpplpj2gcGXlWvxK6HAbny0Gd5zP8/GGxR3nI2rxfIUqHy98X4ecRvsP2IiJ5vppjw41K+PPXu34qG+C1QeajbG4l72XyRSV2AAjBzFOsCfXqOfLRln2OdP89M5FyYALBWFdb3WS1LguO8EVG08cXOGrftf0PQMGASj3UTVpgSy1mPbkATf5gvZXB/NjrlB2bIFTN+Kro8HNq5h9x33nUBpUiBmeXeFXq3B9S71uH1hNuUCABLye6BD12z0e24yq0t/qBti/mDxWSjf448h52+h95kK5H+ihd6jE+bnnYTy4EnWdoMf0jm5UlemoPVxnIwGDBiNdvMLuXlTyn29WgPj9K8YAciDkNbsrGyxPAX5+jXQqzW4NVULU2Ikt64dlhCiIdMKIkPqemqpqoJ7Yir8B+ayvfKgh+jeNcmrG8y3brPvVF61d+8if0tHzMvNwqogP+RuFvsSdtgSPuRMbcXmrvLxgv8YIwJnp3PtUjkoD5Kz0/Htq1A2aYyay7w89GoNI0bRqzXoMj/Opj/Pt0QyjtJJREa+84gcFceIrKnLofuQS2x9Vb9nYthxIouqgcQVuyw5gNvDKj8fm/dZqy9TuDkAgPnadQA8UVLxPB1cHXhX1ixJeoDz1UrcmqpF3lhPNNmQyrVHQc8lOn+DYERZcgAe/kZIL7a/8DkA4tJm/T7UqzVw6leAblnPsGs1fcJtyt3eHcSeBypH41ox3Yo1/f7415KhmHUdDacXQ6FSsev+GSK1eL/nJkOvJoQnpnXhrO3qvjypScVTN7izpNHmNDTakganfgU2Mi4132dEXHq1Bq4xeey+Xq1BztJoOO3N4Oo8cBddI633TYclxEV+TH4vIsNmTclzGdwderWGESJReZ2dnYDczRp4fJoCh4YNoVdr4Ldvqihbt/pc34AYIiCdCyWvab4yFc1XEtkWfED2bfKpfdz+a78snhuz9H3UI+sBlEH+3LxyNnbikqdLUfIGkZ2UnKOuvwtk/H0wmUyYP38+oqOj4e7ujoYNG0Kj0eCjjz5CRUXFn9YvLS3FV199hf79+6NNmzaoV68egoODMX36dBQV2Q8H+TPI/4jJkCFDhgwZMmTIkCHjr+E/lDVx7dq1+PLLL+Hv74/58+dj8eLFCA4OxjvvvAOdTocHDx48tn56ejrmzp0LhUKBF198EcuXL0dsbCy+//57hIWF4fz58//ymOR/xP4hUHh7AiAaEd+d05mWaXybrrihuwMHFxd2381Ug0iXfFaXalEC5qTZtGsd7K9XawCLxUYbRdF0nUggQLV81u3o1RoIr+vwe5irXTIBikHnSgGQQGlry0gDB3E+1hrOwAknsd3vABol2SagpElHY3sOZ+V93knFyQc+dc65eJ6O0fRSDaxerWGWGSn2JG/G2fBaAMCssyTo/D0/ojW8P0wMcD8TtRntMx3szoFey1kaDcUxol28+H4Ak13O0mj0GTcVmlNiWYVKhfLR0QiaQTSIigiiATW+mYCit3XwTZrG6tP5SbWZNQVF7HrgBqLp/yYwiI2LUutSQhFhlT+zbrgG3gEAOLi6sn4NghGwyvWuTmvIzTMojljjPvHvwPo29fiOjVP9mW0CTfN5Ewtitmftoe20/iKFW8cHn91Hxkci7b+iUyjXRr2dx1EWX87aoM8R/X7Hn5C7UA17/YGi5sp8jSQ3zzCJpAbvXA+zsV7W5BewvbDvx+84WawK8mNEI06GE6gpEZOTXvpEpCWX4i1fYiG5P4xQM+d8wQfbU6s3tTJdmStSu1/ZGQIAeMM3CrEd+tg8X7SN92+0Q22PTjAlRorzKCpmml9rSOe0obw5+xwUfxyXP9Iie1kUVD5eNhbMW11LYb52HUHPn+DGYNESC6lDh7ZwG0isaHNzzsFtgGB33RvE5OHuQxf8to0E0Acdngi9WoNv7rTBvWfJ8+drELXeqR1/wraiLvh1QW/4zktFzkYNPvDrzPrP39qBtU/bmjGBkKgEfi2eoQCwZ88W1Fy9BrOlll27+asY8P/jvVbI7bMOAPD7hjXI+CiRjdtvByEEabYmFW1fzoKqVUso3dxgWhmB1kvIcxA0UyR8oDAIRmYFk1qtpPelv6m8fEefxif+ZG45PdfDIBjx8DdvqIedx9U5OtyaSkhGspdHwXdeKmYLxMJUc7mQs3jQ3yGZKujVGlx9WYfr8TpYepcg+fxhAEDuYjFdQvgpUTaASMoAkCTdACHYoOVpwmJpXxQ0HQAA9J70PADgp5AWUDZrCuckYp1tHJuDfhcGo2IEWfuavMtQeagZ1b+1NSno8ETu+ZDi3KwERjZFId1/7/pG4MSHicwaZX2u98h6wEhKVB5qdr9xbA7m+SYDAOb4kGc0d1krm/7pGUwtRwDw83fLAQDry1uw8TQdZLKp23yV/fQZwevisDvUDc79LwPz3GCpEQmjciMq2WeHP06xOvl6Yqmu7dEJikfLKZ1rz7NDbeQqBS03qo0Onp+kQNW6FZcKhtalf4/QtpXtglDVuYJro2a/uNdbL0mBe0oT3OpaCkWnUJhv3UZ133DU3r1L1hz8WPVqDfwfkcg4NCLkVn7fie8s+u6VrmHgi7x13PpvD1reez7ZtwM767kyHov4d1qHz+Nx+SNiPTvcoR7MplwULtCxc+e9iF+58tRiCYAlhX4YQ57NvM0ajgRIxv8ORowYgeLiYmzatAmzZs3CzJkzsW3bNrz99tvIysrCmjVrHlu/bdu2uHTpEgwGA9544w1MnToVX375JXbt2oWysjLMnz//Xx6T/I+YDBkyZMiQIUOGDBky/qvRpUsXNG7c2Ob6c88RBtezZ88+tr6Pjw/8/f1trvft2xdNmzb90/r2IP8j9g9Bzuticsqg+OMYfVHgNJe1lZXsvsuvx/GGbxSnkaZ08FWxESh6V4frL5LvMV5igkpr7Q+9bhCMuL07CAUfaHFvZDQGagfDIBhZPJAU9Lv6sxQu+SqNBZCOaXeYqFG31kDR+Ay9WoPKQSJNuLSfks3EikW16lKYTbmctmtPaBPRIrQxDtdmizTC52YloMa9kc0Yai18rBy9Tqni3YeQ+LcB5+7AIBjR8S0jN755Lf6AytMDerWGaWzpPb1ag9ThS9A+0wGBG+PwfPdD7H7AnDQ4PDTD2Emcj9LLE422iBpEs7MYh3H+hQQETcuAokt7bpyO+zOh8vTg9gkAZE8gmvqCD7SwdCXrK6XW1as1SPuMUFZXDo7E6cgtRB4VFYyKnPYR9kU8a/vwiXY2WlKDYOTosel++jBfpJGfasrn7gGAaWUEcpcQC9Ab1zTc2AyCEQ7163N79lD7ndx3l6U3YY2TXbbhgcEX/Z6bjJjBYxEUL1ogaELmxrE5aHt0PCw1NVwC3du7g5Af8y0MghGXt3VAhkYJvVqD8MyRdVqPadwUtYzS8bunNOGsyYEvpdmskRR/fLMSAFDbgCRWfz+PJISd3lgg58HzJ6B7eSZaL0nB+3mZGBDYFVmP1gwAbgwRKZmp/JwPE438voXd4XD4FILijqNr1jN4MDTS7jgMghEN/2jO3ZvQiJexz9upGKQ7iaSUXdCrNcj9PNqmrQHn7nDyUqSehu/e57kE3EsCQuHc/zJXjpNxn2L4/TwDocvj4Tv6NFStWmJXu2Zo8EM6LLqOyNevwerCo6S//qNQT58P15+Ipjtg3CluTL6jsohcnpnAksxvXEwSBtdcuYrkkpNMZnQMg/s+x2TSfLBInz624S0AQN5nWha7cu4hcWPJG7aSrXFtZSWJ+2jVHB3b8jFWUnlTFGwP42RQc7mQfaaWIntnN5N5AIk1ed7rKBlzVhWarSH7PfDFdBTP02GZOoPT+FvLfWnrE7i9OwitvkxBi4QUrpz/a6ns8w/7unJjkD7Td7vbPpMAWFwdbePKzhDU9uiElI5O7Prv679l5WlcHDsL+hSxNB0AiLU5Lcvmuczf2gG+o0+TeCLJ86FwdraRoRTC6zqbJOQAoFkUz8n6cId6bO6DfzvNtSdNdwIADfe52rRHz2BpmyM9yXtzS1s1fI7Xq/OcuDGTT7Kd+zk5Oy9NFi2SO34mmnxpudh2PWz6pPd/27KOxStKcaj9ThtrNY0ry/6uM5eKxSAYUXPlKhzLq236uDlDC0SGsXaS92+Hqcd3nDVW1Zd/Pm7o7gAA9iZtgkEgiemvvqRDTYmAj/OPo+htPo0IjdmlHgj7N63lxh4zcKyN9RcAjlfx60XHLG3bK90VSScN5J2wUIyppZ890xqg9Rcp6Nf/JNeO14IU+I7KAgBsauvJPSsdM2ps+qVxdH5jjJwnxT8dCjwh+vpH/QUGBqJ169bs5+9GcTFJ2N6yZcs/KWkfZWVluHv37v+ovvyPmAwZMmTIkCFDhgwZMv7PwWw248MPP4RKpcKYMWP+R2189NFHqK6uxsSJE//luvI/Yv8QGLtvBiLDmG/7pEbX0SljlF0fZgppjJLLbeIbfejb1WjzYQpOvZUAg2DE3sITyFlKtGelk4ivvzIkkIsp0as1SOq4Dt7zU9FgexqSUn9l9+Oyc2AQjAhZFW8zjtOvJyC270jcNFfYjQVw6BAMALg1TUyKWtObJD6VJpt12f2I+a9VSwzN1rN22rxIYn4UqafJuJs1tavZ21EsstsZBCP83kiF8c0E1r5erQGOn+E0fABQ1u0W025LtcU0KfDlhURee0KbIOthJWNto2WbK11Z0l7XH3nfc1UbT8R89CqWtD6J7PGJTJtKIWWmu1dbCdcNdwEArkfcbe7T8eUPa8hp9+blZqGmuIRrV+o/7z0/lbGUGQQjTGuIdVTh6MRkcXjlKqwpayVqn11cuPbUnxM/9uK3dMh7hlhulM2bcWOz1Hfm5q5Xa/CubwTr690fCMOkNKYtf/Bq+M8lFsBPW4pzpeOn8Vb2fPkdGjbk2OU2PkoyrFdrcCRsBwauOAhLJklIrFCpbKx1F7ttJO2mZbH50qSjerUGD++I80lsvwn2QC3XBsGIJa15jeil1SE4GPoL97zae46tNd9B08m+e88vHD2fn8bVabgtjd3bk32Mu+d6jdey6tUa7ArcCwA49hVZs+5ZlWgQk4d6O4+j+wszkLuYaHVvzNSi5A0dOi6Ox93uN7lkwXq1Bg7t20Ll5yPOrQvRJGcvi4L/q2ncswMAeyaT+jSZqkEwIj/mW67Nmv0kxowmsJ9uyoPyoJrb24EvpsNnI9GW11y9xqwaipTTGHe5J76+SfqpPXvRRo4Dw2N4eVwYBKQRDXX211G4HSrei/XozPYcTbRsvpDNxiodN/3t9zo5u/Zc+gNzg3valKVIPvADt0/vjOeZKmmScO+RZ8iz9yh5u1QOD5qLMSUf59vGmAHAnhwiR2qxs7ZyND9bA71ag75jp6Db7BlsvKYVxDoafboaerUG/TwuslgcvVrDvCqotwMA+L3BxxYaBCOqLWabMXHWm0dxdRRZkVvgcPhUneWlKK4hycsbbk1DwfYw3BsZbVPG1zAVt3cHMSuEtD2DYISlSjy3peOmODMngSUsl95vuSyFG1flYGIBb/dNPHa0c8fuEiJn6XlqEIy4OV2LEx8m2ozj6qN3u9+OGXatXvtOt+e+f3OnDfvcet8V9rlwgQ45Y1ZwZW9P0WKYZyTrK8aXWK3M5ffYOOhzOvlSAYrf0tk86/berQDQcXE8giaTuQYvvo/gb++y+G9aTpFKLIS3pmnZGJqvTAWO83HeUqtTXWsOgMW9GgQjWn1F9vdbvpE4/wJ5r1OPg2gX4jlyeVsHeKY1sLFqFb6tQMyQcVA2EdmWVX4+7P1Ex2pvLNkL2rH2fN4RY/R83klF6UQtiqOJbJd7pHPPrFc6bw2Vyv7Ui7b9KIP8yf54SWdz7x8Ni+XJ/QDIzs7GlStX2M/fiTlz5iA1NRUffPABgoOD/+X6P/74Iz7//HPExMRg8uTJ/3J9+R8xGTJkyJAhQ4YMGTJk/J/Cu+++i+XLl2P69OmYN2/ev1w/OTkZY8eORXh4OLZt2waFQvHnlazwX/GP2O3bt/Hqq68iICAALi4ucHd3R69evfDHH39w5dLT09G3b180bNgQjRo1QkxMDIxGo902BUHAhAkT4O7ujnr16qFLly744Ycf/tfmMCwoDNcjGzLf9gsP76PF0ySuQqoFlGquKLtfv+cmMxY0qbZJr9Yg4NAkxl7ktp74+lONr0EwYkD/UQCAydHP2tUYJgYGQK/WIEJ/FgbBiNKJWtZ2z2nTkLx/O8a26QrhVR16T3oewSccWRvuicVEM7Yug43pwPdruDno1Roo3dxgEIxIOmnAzkADq19TXMLKxfYcjtnpoiWg8D1RexS+ag67bqquYLnCLDo+tqxqn4+NDLPHiZpL2sZUUz4MghGXpiSya/Oin2btvHa1k41mzzpmIil9N07OT0T7r0gOIWFHO1a/6B0ds0gAhEGyrBvRZlc8dQO9zj1tozHVqzXweTuVtd/um3jGVjjnSheU1T5Arym8FcVawzmhC9HqWaofMlYnvVqDqY2vsnJ78tLsams9P05hczbfvMWVkcb/SPulffm8Tfam4/5MhC+I48rRXEzK4ACY1nThZJlcwlua9GfLYRBIHiWDYITmFGBa2wUtlKIG0m//FDzXkATLdn9hBpwONLexQEnXjsZeUjh0DGHMlVLLnhQF28OwqyTDxtrl0JAwdzVdl4oOnxML8twrncXxW1lYpN+3FpG4HNPqCBgEI5yTxRg7a1hbdg+tXs2u/1ScBufDreC753kU/dgeH98k2r0/OoiWzvpXHsD/NbIm7itS0fRSDVp9SbTOtXfvIvu7zsxqVXv2ImryLrO6xW8RK451Hio2pp0bAYDliaLIXibGlaj6khioUW3IM7xw2TiYe5F4uJI3dRgYEQtl82ao8m/B6lzZ5kes4m5uuKG7g6zOFrvPHwBUteUZ1tCHnEOmhEgEzkqH/08k55i1PFW/Z9q1VBoEwsIntSBQS6uluobl04vtNQJ6tQaK3z1gD002piKh4CgKPtBCO3cm81rQnX5ILFBd3Wy08402p8HcszOUIYEId3aCQTAi9qlh4twejT/ny2jon5nA9UflcnjlKlz/pS2UB0+ixlmBnO87wSAYGYtjWkdyZp/S1kftrdssrrTFcrInj39MYk43Fh2z2fMBhyax/HcAyZ9lDVp2e3EqHgyNZF4Pwqtk/Wv6hDO5r3kU+wcQ5lhPVQN2z3vkGRxbSixBxfN0UDiT/JQtDjrZZRqkfVOLrj0LJwC0SxS9PQZ2G8rJjqJsbDQOr1wFgOSzvDVNi0FtiEVxbwGRY+7n0dC9PBPNV6XiqbjprO7wC9cR+nU8i8VVNa1E37FTuHMSAPIHkuc44OBkGAQjXmgiMrsmHd3JPl+YnmBjVaL57gyCEQMCdMwKSHMKSj0lRjUshefHKajRBLA60n1nbR3y3CrGF9d8VYFa43n8LGhsnhMAaLaaZ3dUtWrJ7ZnbU3irsDSfo0EwQtm8GQyCkb1j0iofWVslLJkA4NSvgH2//oIOl7pvYBaqvEVaNqc2I87iRnhDLDHuES3fkvPM3t88lCnVeU8GqgZGQH+WWEv1Q8djuonIwu07cZ7dX5gBvVpkYc5/I5jlDKSg4973w3ruukEwwmwiufNanHw8bfo/DU8kPuzRz/8WFixYgIULF2Ly5MlYsWLFn1ewwt69e/HMM88gNDQU+/btQ6NGjf5H41D9eZF/NgoKCtCzZ0/cu3cPU6dORVBQEMrKypCVlYWSEtFtKy0tDT179oSHhwc++OADAMDy5cvRvXt3pKSkICxMTJh4+/ZtdOvWDdevX8crr7wCT09PbN68GSNHjsTatWv/R6ZHGTJkyJAhQ4YMGTJk/HuxYMECvP/++5g4cSK+/fbbf9mStXfvXgwdOhRt27bF/v374ebm9j8ey3/8P2Ljxo1DTU0NsrKyHsukMnv2bDg5OeHIkSPw8CAay5EjRyIkJARz587Fvn37WNlFixYhPz8fu3btwuDBgwEAU6dOhVarxauvvopnn30WDRo0+N+dmAwZMmTIkCFDhgwZ/zT8LyRbrrOfvxkffPAB3n//fYwfPx5r166Fg4N958ArV66grKwMXl5eqF+/Pru+b98+DBs2DMHBwThw4ACaNrXNSfuvQGGxWJ6EKP9XcOTIEfTo0QPLli3DrFmzUF1djerqak5gAJCTk4PAwEBMmTLFJlnb1KlTsW7dOgiCgFatCOWzp6cnXFxckJOTw5XduHEjJkyYgG3btmHkyJF/yxzKy8vRuHFj9MTTKP7oKfi8I7oYSF2QYry6YEv+EYxqo0NN73CbgGyDYETMwLGwnDpnUx8AcjdrkPXUKgzzjKwzONW6vQH9R6H27EW799cXHkVrVQN0WBLPEpZONeVjTZCv3fIAcRnInpDI9X39l7Zo8TQJuI8N7YUlp5IQ4iRS+QOAQ/u2qD17EcLrOpYk2N4cKkZE4XaIEm0+rLsMvSa9d3VnCFoNvVBnHQplkD9L9ikte2OmFu4ryLoVfKDFxecTubWrawwAca1zKXSC1wIxUeTtKVrmaiItrzv9kFE+l42NRuNNxOXUoWMIak9fgLJ5M+bSYd2/QTAiYMtMBK24DnN2HgyCEf6/T2Z039Yujdb1r8fr0CKBT2ZZs98Lqr6FWFFwFL6ODeoM+LZ2Z3pcPxTmXp2hPMi7Jl59SccCt6Vt2GsbIAHd1IXFuo+7o6LRcCufAJ3etydHe+Xo7/Ix0Wi0OY19V7VuhaTMvaL7YzcNHI4a7e4963YHBHdH7d27KE0KRPOJt2G+eYvdVzg7Y29+ep1yZf37+XDuN9L2+46dgu5L05DSUXRzSz6yg2vHtCIS7RYUoOFP1Sz5tr15S+Ge0oRRTzu0b4s9+7badZOV1rfXztU5Opx+PQF++6egfoMqeDxzjrt/+SMtc3Wl+DQ/HW88IifIXhaFvBEryZ59dLZQFM/T4X7AQzhec8RgfTrOhtcSF70NcfB9MxX1Drfkkiv7b52JgFf4PeJ4qDWqe15hZQZGDuQIc8y9OuOHDcvhpqyP7i/MQP0dogunQTAiLH0M1MPOM3kEHZ7IaPXzt3SE7+jTyF4Wxbl+GgQjYoaMg+WEbX6a7OVRyHtmJQZqB6OmoIiVt7e/6DlF7+d8GY2Al9PsPkOlE7XM/cpeW0Vv63D+hQTEPD2epbyQwivdFYVRFVhfeBSTvLoBAKoGRqCojxLubW9iR/v1KKipxxKkC6/poF4sPtvW/WZ/1xnZfb9FrEdnWOPOBC2abEhFyRs6liTX+hzK/Twa/q/aPu/W8waALy6n4rVOsTCXlrJr9s4eAOysAEgi7qSUXXbbtAfav99PMxA4SyR7av9VPJsHRf4nWrjcVLB37eNgWhmB5ukqZCxMRK8p03Bw7Wq752xtd5JW4Ldt69g16fPzuPMZAMpHRyN1yYo6n2WDYMSAAaPJu8nq3WkPKg81o28PyVRhaesTrE36rrEH2ve1WTqMnv4bfg9zRcVeP7jG5EGd1hBC9N0/lZkUiogwlIY0QPisU0jwIIREDu3b4sWdO7EsgBDqlI+JRurnK+pcZ4NgRPTrM9H4+zRkfxWNoLknYKmpgUKlwt7CE6ycvfo1lmocwi8oKyv7H7u6/W+C/s3ardcCqFQuf17h/xM1NZU4enDB3yaPb775Bi+++CK8vLzw4Ycf2vwT1rJlS/Tr1w8AMGnSJHz33Xc4ePAgevbsCQA4ceIEunfvDovFgkWLFqF58+bWXWDcuHH/0pj+oy1iyckkm72XlxcGDx6MPXv2wGw2IzAwEPPnz2fCyMgg8RZardamjejoaKxduxaZmZkYOHAgrly5gpKSEowdO9ZuWdre3/WPmAwZMmTIkCFDhgwZ/ylQWCxQPAE7zt/dB/1/oLCw0C7VfI8ePdg/YvZw9uxZVD6KLX/55ZftlvlX/xH7jybruHTpEgBg2rRpuH37Nr777jusXbsWTk5OGD9+PNatI7S5gkC0LNQlUQp6jcaT/Stl/yeQJqRr3bo1AgMD2T1qDQNETYky9BHxRK0Fbsr6MAhGu0HlerWGWcMA4Kn46TCtJXTlCQVH4T/GiGe1z8C0OqJubd0BT+4rtYbd2MXTeXbPqmRaTqmGbr2O9EfHJg3uNghG+L2Ziqfip2NebhYrQzXWerUGH540YI6PjgUV06SVdByuQi2+LjjGzZsi54toOJfWoM2HKah3uCXXrxT25k6tYRS0jkXXkSXtpUG1D54WE+JGziPEE9QaBgDe80VCDQB46gwfWE/HYBCMEF7TIWjKCWYNo+tlbQ2j2PVND1T37wK3Y03ReFMaCn8gcY179mzByzkXOOsJTWgt7dN/bhqSD//MrgWMOyXeyxA1W+Mu9+TqAWDWMC4Q+5GGcqY32Qu13TTQe4Zzc7Rnbcv+JgqTL9m3VAEkgFt58CS3xw2CEaffSIA1OKIIq7V26lfAXdOeHo4XsklQv7LKwt3L/joKbY+OBwAkZx2w6ce6z+wNnVm/UmuYQSAJTqXz+W37egBAbJ9noQz04+4pIsga5mwkBDB7LhGCoQZfNoLlXgUAktDcwdUV5mhC+KJs0hgAcL/2IQBiTZAi6ehOFP8kcrTTtAW+O6dDefAk9i3szuaefGQH9GoNOnxOktcuvpyGoJnHUXP1GtLP+dvM2/q5ej2XUK/f0N1B/iItbj2vxcOl97G01Acv51zgrA7tv+IT5K4pa8U+v55LrCqnX09Az6nTEDjhpI01DAoFfN5O5ZKne6Y1wBu+UazdwNnpiHibPJenIrYyWQGA5ycpyB/wLSYMOoiLQ1qxcfm+SZ63qtm8e0nAK2lQdGnPCCgMghG7g/YAIGeDXq3Bpc/cOXnkTlDATVkfMd6RqL+D0FrTwH29WgPPcQUccYLv6NOsLrWM5Y1YyY0j+I8J2Lvre9hD4IvEQpqU+iu71n/4RDYm6TMkPacAIOBlYiGyJvkACBkBAHR5Lw7K5s1we7eYjgAghBUDuw2FJeMM5uacQ/E8HbI3iNaq1W3IOU3fExXDo+CclAGfDgLSND9iyHuv4T0/QtJxZ7wWZ14Wn23pHsvd1Am5n0cjr99aZg2zJlhosiEV+rPlUFgApbs7xl4sZvKme9aeNUx6dnxxWZTNKz5azhoGwMYaVvyWjrwTbt5CWTIhvaCJuO1ZgqXkDa5H3Nn+0as1yBu+khuTtTUMAEwTE5E1l8io6Mf2MAh8kmEpgmZkoOnaVMReioXT3gwYKXEHeOu5wx+nOGsYIsMQOFu0uNsjN5HKvtEWMX0F/X1tto4jgqo9Td6tZlMuGv4hWg5oO+VjRCKymhKByelCeA36jZyEkjfJ2Sa1hhkEI4advwGAX7eWX6fgjWbZMAhGuMbk4fZkLWcNs/d3A71+bbaOPSuWjDNosiEVf/zQGX4/knQPe/ZtxcD6lXDoQCxijTanIbZdDyhDg7l2pPJyLiNkaoEvpcFSQ1KM7C08wda9rveWjP9drF+/HhaLpc6fQ4cO2ZSl1jCAWMkeV/9/4mT4H20Ru3uXPGQNGzbEwYMH4eRE3LaGDh0KPz8/vPXWW5g4cSLuP8pJ5PwoF40ULo/yCNEy/0pZGTJkyJAhQ4YMGTL+T6H20c+T6Oe/HP/RFrF69UiS3NGjR7N/wgDAzc0NQ4YMwdWrV3Hp0iUWM1Yl0QxRUBMjLfOvlP2fQJqQ7sqVK8jOzrYpI9UIPlhaifl5J4FaM/RqDWIGE5dJqbbPHhqcv8USqcY/sljUFBUjaBoxy76fl4kP8zP4/kJ2s+9Si8bJLtsAAIouJOEkpcK27t/sR2ijB+qGQK/WYHybrjYWqM3LvkDPerUIXhPH9WEQjHi3sx43p2tZm9ZazLTPVmCWd1cAwLmHD9hYFSoVAl5Jg+oAiZujcR5d58xk/VPa3ISCo2zsAPFzl8ogdLlIZaxIOc2S9tLyRxJXoc/4qbi6M4TFUAw5f4vrQ9r+ewG7YBCMXLsAobxVL07BlZ0hMAhG9D5TAQ/1bW7tHVxd4ffTDNZW5oJElLdxREYeSWbp9ewZFP8UCr1agy8DQri+Wy4j1NPt00QXW4NgRODGOJh7dbbRxuVGVLLvNNan6B1RSygta/2Z9ulw1AjUmrlrtJ8N5aI2tEWqAuuCvUkdFxfo1RqUjYuGQSBJu4+E7bDRWEtlat13xV4/m7FZW4wBILXjT3g1cwQAoP6OdK7tvOEr4T3yDNcPu++gRM1+L66twAknoWrV0mZserUGVft8YBAILbn03q0uzWHOzuPasWQQi1Jun3Vszksvp+D3DWuwJ4/s/y+3rMClxGD8toVor813ynB5IUng6vfzDJx5OYF7ZvVqDTyHi7GiQVNJTILbGZL8tMEP6aJWduh4VO3zQesvSHqCDk4ucD5MrEU0wbQUPadN486eJYOeYfd830xFs29ToepbiDlul/FlQAi3ZlTTT69tDxEtYp/5h7F7NKG6DR5pGmnydACMslqKputSceUVYllPPn+YnBGPFGtB6+PwRwcXFotCUbA9DHv2bGHfY8N6ky5PnIX52nUYBCO6vjQDsaG9YBCM2Pfjd8TSMsbIxm0QjCzxraX6IQacuwP9hUHIH7KKtVtbUYFek59nMqF1w0/Vsu/9LgzmxubzXBa3V0ve0DFLkrQNgCTSVqSeZtesNe/KRo1svQLSsrizWIpmq1NhvnkLGf+PvTePj+n6/8efM5MIgojENiKR1RJiIpLMDEppja1qK1q1r0mr1Wqr1VUXWqqbdxNrKbXUVpQwStHKQkQmsYTJKsuIJUIkIZLJ/P44zrn3zJ2o9/fXj7d33/f5eHhk5t6zn3PPHef5ej1f3bayMp38yPqmkupLA4LhtSgBOU/9AICwP/Z1uO4gc3a40x74HpiG5M9i2Vr12HtB8FFaF8Y9S/7jUrnA4VxfPZrBoCahQYydm0C9OAFxab9hYwcvDDEP5Op3tF+J94nX2+kkafM/0DvMb7SYWDgPo8UEt0FZULUP4MqnLLVBrcGq/OPcGqh44houDW7I6qjTQgXE39JoMaHf+aEsXdtRZ2FQazgLGtoP84pw9t36JFnj1H8SAMr2E5abhtcQ190xNkOyd16fybNudbW1YiSpo+V3CfgwdB8AMJapdF8gjBYTtvsfksxh4pe8ZDgNqQAAyuMm7I5aDAB4JUvw9TSoNfilE2GiX2+nY/Og6hjI1rsypAOarU1k7Ci0IXW+P8I+ikLL7xIwqEtfkrdxYxgtJqgXJ8B7fy1Xb236BTY+1pu3YD13EVej9dxvBIr6vwp9oZY1/ltncWnsf2vJ7Nj/Jv6rGTEvL2JKR0U2xKAKiqWlpVCryX8QHJkU0mvU7PDfSStDhgwZMmTIkCFDxv8S/lt9xB5H/FczYhER5JShsLBQco9ea9GiBcLDySlRYmKiJF1SUhIUCgXCwohvS+vWrdGmTRskJSU5TAsA3bt3/3s6UAfEJ4KXLrTCx36C7b0t5ZzDtKojaryWJSj/xR3dIbFVF5+2vJU5igWrpenEbBv9Ky7DduosLG/pOYZEfFJ5p3UDGC0mnP+A+FRcfl1gVGg6Lyci+9/ufWkA6qwYb3iuJNcpcwUA+R/xPjAAEFyvgdCumhrJieWW2+5otFWYw+RPY1E5IhLRPj1ZWlX7ACQuJSdy7f8kfhJeCwX7/KyvCFumm0tOscxryWmt0+EUtBqWwfq1pxMJQun03FWujUaLCYv9u8Cg1uDcy7x/E1VTowG853lkwnVADjfetRUVGK4nQSUB4vtx4uPvETA+laU5p9soOUWjNvqdv41GmxHnGPMJAH7zEpn/FSA9GRbX3/ZTcuo7OGwAOf3fMgtPnnuW5YNSJanbvgx6/+PTQ9g1t5+Eeam9zzy7/UROva0lN+C3cyZrF+176GfRyPyxG0on6Vj5pZN0qBgZycbN0bq1P+n3HZsuaa84nUPUWnG40x6oPJpxa7+m+ApXBv3r0j8PAJjCJb3nedzikGGk7Q36g6zBOe3Ietd8Hs1O6z2alXN56Gk49RF6uYj4SdEAzjRt2IIolsfqoiBBsu/HS8n+UgucPIOjnXdxbXFSCKymPY6uWsXSdvkqGtaMTG6+52ade+CprjgYMU3n1NaL6xvAP/NinzBx3wAgd6GOtTv3cx1yN98P4v5EKYwWE7qdGgODWsMC3PrOT0T5aIEFp+X4jD6DUqtgcn4vpB1j0Wj5qmob4s4dgUGtQdfF0eiUIDhkj8y4yqWt7R2KOe55MOe1wsABY7l21zOekjwnC1um48Nrwbg+UwdlP6J+mPu5lKWhzKJBrYH/LAeKtlfvK/i1UUtuGdQaWMvKuGvXZum4wPcGtQbtTzmjwbGWXL3ryloAShXyP9CjJiePtT1/WxdMvngJTu28Efk28c1r6U2Y/a5fREveOwa1BkFTBD+Zy7s64qXkREBJ2NrASSmS94rRYoKqZQsJ42AtIYqeZyI3sWu+u2cge5OGKVuWj9bC98A0h0xO9/ejWDsogyWeF++PybtAGdJBwsznLBbWHQD033mK6ytVgDRaTBj75huSui9OjsXNCTr4brnCfJrt22i0mPD89kPkmbzvI+Vov6UYFPwkgmaSQPO6N2ZxPpr0b2LXHQCA1l9J/dAywmokLKrnCulvJnv0HzURrjsEC4MNwUQ5ufnpShjUGpwM3YZun0Sx+1lfax9u34VgzUPVCo0WE7K+Js+vk68PuzYq+ym8tXcHbk4g86LII2zgxg73/d6T+H1fjJSPYgEAAUbi6lJ7+zZr69E1q1g7xaDfFWHBaBGTgC7fCBYv5uUR7L2lTasGAARFE3asrdGKVfnHYbSYkLNYh4DNs5D3mY6N+SuWcPxilqqQyvhn47/6P2LDhg1D48aN8dNPP6G8XDBRuXz5Mnbt2oWgoCAEBAQgICAA3bt3x7Zt25gYB0CEObZt24a+fftyrNrzzz+P7Oxs/Pqr4ABttVqxbNkyNG3aFIMGDXo0HZQhQ4YMGTJkyJAhQ8Y/Ev/VccQAYOXKlZg5cyaCg4MxZcoU3Lt3D7Gxsbh8+TL27t2L/v37AwASEhLw5JNPwsvLC7NnzwYALFu2DFeuXEF8fDy6dhVOBUtKShAWFoaSkhK8/vrraNOmDTZv3oyjR49i9erVmDp16t/WfnEcMSeFM5zaeaPf3rN4vZnAjtj7fzT+0xPb/Q8B4P1mBg4Yi9r0CyiZroPHqkTcHqNF45+TuDIo8j/UI2NmjMRumtaTca8Shyo6Ym+wO59XocA7WWlY5B/isD9GiwlrbrXi/D/qSldts2JImzCH98RtLd7VEWXXXZE7aDVr49WX9WjxrwQ8dfY23myWDYNag/xtXeD9HDlNctR3Rydv9uyNo+/ivwP7j8X+g1tYmh5zZqHB1XtQHeVjXtE4VfZliMtVdQpC3KGtMKg1cI9vxsVsctSe/A/0yJgVIzmdo9hYEI9xbXuwfJe2doHPaOKDFF2kZX5gYtQebgtlv4I6mSwA8Ns5E4Evn0D2Ui385yah+qkwOB8S4tjdiguA26AsVkbmt1oEviqwXuXPRSL+WxKb5vqvQUgJ2yoZC/t+A9K50b82i80pxZr846i2gcUxq6tMR/GnHGFh7klsuqHF2TDeQ7iutWGPHYVJGK0ZjLj0w2zeAzZGwf9Nad3iMujYGi0mFlfI0ZqhnwGiyNnAkMuVqWzcGBeWdmD+XeJ8Nybr0GytEKfQ77cpCJx4GqqWLWC9IjA6mcsiWVwjVq6mE/bHbXqgP4v5h+4ImnIKysaNUXubVytz9AwAwhw7+fqgJvcSLG/qcea1GO55fdAzuaUgAWPb6lE+WotGW5O4PeBBUAX6sXh69m2zHzejxYQnJ09DQ/M11OQKap+F7+hRoylHuzHCabs4rpR9OfnbusCa3Qjm+7EUC97T43w0vwcn3bWy2Fr2+a9F6dA8lvil+h2agpynfmD3KkZFIvitdCQU+UI9/LwkP411xxDRBTjJj5N9/Leit/Vo87mUOfFKaoRCbbmE6RLD0dyVH/BDfMhOdm1rYSLclA0crimaf1DXpxGX9pvD/dug1rA29kq/i82ZYfAaec5h3QDg1KolY7HFuPWiFkmLl6PvpGnY+0MMhnsRSxtl48bYf/HPB675uvYB+1ifr2VlcH68FAonJ6aoZ3lDjzOvx0jWY8lUHZpvTkNtZeUDnyHxPf/k+iwG1r8L+/dlXfPjqF5bDw0ObluHgYNeQK3pPJx82mJf4q+S+XO0lwNCHLO+E6bC+VAKW/MlU3Vofuom9u/fTJ6d9/UsXqgY3+QlMIuC6zN18FyR+MD9R9w/+7mcfPES1rYnrJsmFTCFEqZeHPMTAAre16PNkUoUPdkQ56Pq/k1lUGvY3njP0B31jKe4sikq+3VGwqG/L27W3w36m/WJnh88sjhifxz/+LEdj78D/9U+YgAwY8YMeHp6YvHixXj//fehVCqh0+mwadMm9OjRg6XT6/U4evQo3nvvPbz33ntQKBTQ6/XYtm0b958wAPDw8EB8fDzefvttfP/99ygvL0enTp2wZcsWjBkz5lF3UYYMGTJkyJAhQ4YMGf8w/Nf/RwwARowYgREjRvxlOp1Oh8OHHxwjiKJNmzbYsGHD/9+myZAhQ4YMGTJkyJDxz4HNxpRs/8/r+Yfjv9pH7J+EX8zEhKymhRszS6TUNg3QSXG713UAwLBMA7tmUBNpVYBIDuf9HILGPyexMnzjpuFqtOAA771AkN8VU/K90u/CMGw8Bu9+nTNLLJyvJ8ELbTb0acCbbZXuI0GpVS1bQP/6LKx9/1kYLSYEJruguj8RNnEkuEHNEqv7d+ecimlbVJ1IENFWwzIQNI04ePvGTYPRYoJ6H1GwPNS5sdCn584g83siWiDuOy3P3hFZbEJgb0Kk6N5ZYpZoUGtQe/YCV06jrUmgZoniPrjH8wIyjkw9qFkiAGzx/V0yPp2/5SXvqfO4IxNLo8WEcW17cOWL5dgdmSV6n3DlzBLNK8PJ57NlXDk5I1bAaDHBfy4xJfl9/RrWhrzPdEjSbIeth4b1kZolGi0mjLtQiEbbTqDjSuK47/mMuU4zJqe2Xqwtn14nztnXZunQ+E9PGNQauO0W+m35pROMFhOeTZuCWT49H2jCZ7SYSCDgA34AgMz13bAkTzCLEY9nmEs9pL7TzaEZ1IOcygEACgW67H2FmSXSfFnjYlleax+h7Ms1gnkXHds+06czs8DJ+b0ka4Z+Nqg1uBbfGkaLiZN2rr19G7lDVnFjkfmtFsrGjZlZIsW7EXG49aIWcakHub6JA8wCgMK5HpB5CaOyn2IiBY4QNIWY2tCg1F5Jjbi2i/ebwT2Hse/u8c2YyZ96SYLkeS14T9g7Bgbya7zHSiKEQIV5MnqQwzNl5w5cMGdaLwDcHRLBwgj8lVkiRT3jKeyL382tKa9FCbjYaz2XjpolOpo3vzduwvftRHaNiuFQDHp6DD70C4M6SdjTxDj9fizKn4skpszu5TCoNXDy9UFt71C4bj+BvIg7UA8/j5wvpLL21CyRzbPILPGL3BO4FqVD7dkLiL8r7O3ULNF+3ZsXB7OyxfspQAJdGy0mPDllOvpMnc7lbzQgB/OvhLDvQ2e9WudzxfbItN+gfXMWFOFdJHWJ25g4OAA+H9SwvD3m8DLht+ICsO+0UVIPANQbfwWDgp+E88FTaKgkAjuufzRnog1UBIsKeihF4Wtoe8TCKgDg9HsKCufrobmvqyQ2SxT3l5olAoD6S37t332GmEh6rEnE/izSz4GDXmBliMfjxhQdwlJGQ9G9M/J+DpGYJWpSAcXvgtozfS+LYW9K91fYUZgkSaeIv/+eNJ0nv2cuFTh8/yZ8vZwFb7b1EOoLfIXsfdT0vXlsIm69qEXz5FLUpmWwtonNEsVtGPvtG+ya54pEmGMjuPrtx07c19DPojHknBDIe217HxgtJjRPaApTKMmXMSMG5pgIdE5RsnxtP0mA8rgJ56Ni8N5VEoYj/yPHYQmoyfadV2/C5VgrGC0mxF/xY/evz9Ch3qFUST4Z/2z8IxgxGTJkyJAhQ4YMGTJk/N9DYSP/HkU9/3T814t1/LfDXqyDwqlVS1T7tcLB7T9KTmsB4dTqqrUC49v24O7X5aDrcqwVLt9ugmZDzDBaTPj0egcWnNm+bIB3Dh/YvpfEcbnwHT28FiWwOovm6XGndS2yRy/n2hj2URQ8VyZK2ma0EJl56hArxqr847hmrYf5vhHIXaiD7/xEjMy4ih0dWwhjdN/B32gxQWsahRau5ajqXVyns3FdDsZ1iQIErY+C79uJKH8uEo228eIFADDuQiEmNLnu8DTd0TzY1/Nujgmf+WngldQIa7yPS9qWvTEUWU+uddg2WkePObPQaGsSV1/OJg387geadVT3g5zsqaCDfRqPeHds8j3yQMdtR31moikicYC65sG+PApFaDBsqefqrMdRec5HWzMJa/Oa7sgduBoGNQmcmxIqnGamVN3DfF9yMmteGQ6v/UoWWkA8buKxUjVpwmTA7deaON2DnkWjhYQDCHidF5QpmaaDx+pESX76eWTGVSw+bUDDlAZIfyOGCfTY4+Z4HU58EQu/bbMQ+CpZHz1fmQnX7Scw/Pw1FhAVABO+sW/vvd98EOF5iXMkF/dzwOBxsKUKgaMNag1UR9SIax/3l+PgcqwV9gQe4K5b3tCjOuI2Y3IBQOnqitqKClbG3qIUDGkThpsTdGi6nh+nkqk6eKzhrzkaQwnLfV+wxtEcUdS1vsVO96ojahZE11FZtIxBXZ9GRaQvjq1cCd8D0xiTyEGhgLEolVtbmkXRaLksAdCGCHLcos/m5RFcQFwAUDVvDuu1azBaTNxa/3fwoHXMmuviwkIEOIKqfQCsF7Mk5QJgz+WuHT3R9lPCdKiTGuPqyMbYlxxX5zpSNmzImKJXLOG42L1aUq/42af1DbgwGLa+xKIi/yM9GuXb0OyHBwv5XJmtJ2MvaodS04kxPwa1BnOzzmFpQLBQ9w/dkTtgNfwOTUHghNMO3zkrb6kxw83CxiF3c1f4Pk8CclPBJwBQubvDWloKpasr9mfGI2xBFCct/zBzRHF5V0ekR2xmY7Kvsj6Th6dljc3ty8SjFGHBLGyOTd8VioS0h6qHljWoS18WaoCK5IjH4EHvlIpRkbjeRQWfD8nY5/0cgou91iP89GgkdyMWJQrnejhw6SQrp3RfINwHZ7Kysr7WIuC1JBIiodZxaI7AZBfkPtcSNXn5rF2DezzLfl88aGyNFhO6fRKF0+/HPvCdb//53L07CK4nFaupsVXjKHY/tuIU9Ddrb/37j0ys41jCJ4/tePwdkBkxGTJkyJAhQ4YMGTJkPBxkH7G/DbKP2GME8QlsTfEVyclT5YhIdnri1EaNbh9HoYXKlUtD7xfv6oib43XIXBeGK7P1+CL3BPYEHkCzIWYAQPC/ovGe5wVYn+yGe7/5cHbTtB2UDQPAsWGKUHLq57UoAeaV4fjjvvtRmy8SEDAnSXKC6bkyERMuFmD+FUHyXtW8OQxqDbPDNlpMKJmmw51nI/BNXgK8nRph/Oo5uLanPcyTSMDFdQuGcuO0L34363OSZjue9syA4WyZxCYc4O36xeMtPu26NkvHrh+sdIbv2+TEMf7bFSh+TQhODQDFr+qxsYMXnoieIZm7sue1EsbGaDGh44pobmw+8yOf13gfR+D6KJbuVu0dAEDWk2vRf9REyYnZgMFC4G3nacWSPtmzYRS0nA6rorm5vjFZ8G/Y8tESydgZLSbGhhktJuRuCWFtdWrn7XC8KRK+Xk7G5j4bpvJoxsr5JDdZckIsLuf6r0EwWkwcGxaY7FLnCao4796g/ayNQVNPsWDJp6JDcfeZCNb/+b4RLPht0IxkNNwlMApRmVkk3bDxrA6jxQRrWRnXXnG9BrUGTj5toXCu90A2zKDWMDZMnP9WEKCsLz1lpPd3dGwB/3GpKG9HTnYpG1b8KvFfKXqb/G26gfgi+f1yj5Xhup0wfUt/Hcq1P3V+jMNT3yPBu5lvhH07ui6JZmyY+Lr1SYukHEdzXNW7mF2/sTcId4y+OPN6DHxGn+GCEddWVLAy3s0xMb/SJfeDsBotJhhGTCBrscqGL3JPSPpC5639D1G4MlvPzVXhfD3zkwSIZLV4LdF/4rKoHxQAFpyZ9l2cDgCyfgrlxsCg1iAu7TfU30vWWcd38rk8uYt0KN7VEcaiVHRdEs3lZYzMzvXCWIoC1dqzYQBQMjCAlRG14FWubWKI9zb6vfGfngCAweGO42aW3/e59D7h6pANo+X1Tr/D2DBxHVPze7KgzymhSpyPjmH3LdrbqCmy4NPrHVg9BrUGhTsExqm2spJdz3rBG0aLCbU9yd7yVR7Zuxs1E4J0++6fRvrT8iyKd3XE8kvH4f1RgoQNczQ+dOyVDRuy+cidr+LSLA0IRtZXWvY9aMopDPCJQOCE06ydRgsJSEzX1eJ9Q4X3avfOjA1TeXowNgwArKUkQHnOOyEwqDVI+VDwO6XvUnH7r76k576L+5QesRkAMPz8NQAkWHL+ti7cui8b4YTM9cSflbJhALjfJLmLdHBq1RIf5PChW8QwqDWwltxg788b35KfnDZdVzYGNAj7nWEREtbIdfsJxoYBQLsx6TCoNWg2RPA1tlWTPS7vU+Ib6T44k5VjtJiQPYZY6IjZsOszeZ++zPAq7EvYA6PFBO2bs2BQa9BgfQXc45sJY6tQcGNK/xrUGjSPTeT2OUds39NjJnPfX2+nk+yVqgDfOsdSxj8XMiMmQ4YMGTJkyJAhQ4aMh4Kilvx7FPX80yEzYo8R/srG+89/rWAnLeff90Lz5fwpjPhvq2EZaLohETn916DlsgTM843kyvJamIADlS5QHTmNI8G7uboNGUMkp8KBG6IAkBPBA/s2srRBM5LxmZ/Aom0tlPqC3Ziiw/r2bbGwpXB6S/0WxEzcqY9j0WD3SYxY9wYMag3afpaA091/RtgCUrf4hNBoMaHrYkFVcFT2U5jtfglrfxyAipFCXw1qDfI/0LPTU/F18V8A6DzxHLtGbf1pv9LejGH3dhQmodW3xKemwa6TQEQXjklsslmqJgUQpcq67OI3jvkOALCnoiHclA1YmoPbf8TdIeSksMGxlgDAGCIAcOmfx42J+K/9Zwp6wsiYz12Cj5G/M1G6i7l0HEE/RsHv0BSOPTOoNRgQkMHaf/7tVpJ6KGMqBmMNSm7ApusKXdpIjDkkzJ+j00TPZ8zo9dJM7n5muPTk3RFrsfKWmrvuOzYdRosJ037chfq/CsxB2Qta1BRZhPbbbKwNsYGETcDJM6yssI/IWqSKcI78V2ouFbBTWqPFhHX5x7kxeO9qF26ujBYTQk4rcH2mDn5vJaL2rqBwSdMVvqOHeVU4S6/+g19DafPI+mzzeQJyvhBOe1VHiW9Kx+XRaH+K+KD6zeMZAPH81vYKReF8PdcfR/tS2psxjLmjbbz6st7hehNDrNwGAAXv6tFsiBkNDLnC+BUJzFLu5zqogvw5BvnSxzq25xjUGsYKuf2UhC8vEyVZZYjg82JQa+C7fxravZfI+fkAwLmXCQvTf+REqJo0wdr2PpL+Xv81CNd/DWLj5MhHxp51oOMZ8GIqd/32GC33LIkDaQOAeWIs2rx1Dwa1Bq2+TuDKo4gu0jqcEzFUTd1Qtt8fJz6PZdfc1yWibL8/Qj+LlqQXPyuqTqSvt3tdR96nOv75EPW3ZUOiAJcfWeFw3kMXknqOhTRgecTtzitvhlbfJnDjEXB0ElfGe54X0GhADvsuDthM1VSNFhPgpIJBrcFvW9fBoNbg9XbkGRAHtw6aSnzx9ga7Iy1iM2b59ERNvzDWNgDIWazDwIHPAwAsb0nXM32P1PYK5XwZKQJeJ3s/LddWfY88V4fbQuXpQdK8Rt5jxa/q4f9GEvI+JW21nTor7JOioOAUC651wsUpsewz7bv12jWWhqoEKmtsknc4hUGtweE7KnSqX8SuZ/TYwKWxXrkKj2blCH8vimuDeDx830mEza0xFoyfIhkn65PduO+tvibz7DYoCxWjInH3ozKhnPssYINdJyXrmjJ75lXhAMCYzsL5elz6WIe9RSmsT+3eE/a18HejcOdZMhYR8/k+AOAYRTEGeHeH20YyP7d7XUdycpDQ96JUNgaBRyfh9lgtBj01mt3PXBaJJXlJkv2Ufv7t57V1vv9puXF//AJFWCfJPRn/bMiMmAwZMmTIkCFDhgwZMh4Oso/Y3waZEXtcEB5MTksUCnjEuwMgJyRBPwqnOWKfBeoP4OTVxuHp9T2DNE6IQa1BzmIdbkwmttRfB3REg2MtWR6l5v5JTL9CCUNBT9EvLu7CyhOfAp+7R/ya3JRSFaAbXWys/oJ39agcEcn1R9w+APD+iGeOUj4UTnXfzRGup70VA1WQP3IX6bDd/xAMag3USxLguoNXOGx5iqhpUZ8L2nbx310VjbDe5w+YV5CTN4WTEwq2k1hiQeuiWJ3m5RFopKzPtRcnz3DMnvhe8a6O6PxtNCLeiXogWxDh4oyBAXoMda1keXM2kfLq7yUnhXd6XwEA5mNgX5593UaLCX0nTePbapd+gE8ErKUkdsrluYL/jL9zI3LiaVVwp45Gi4mpk/ntnIncoSsBkBhItD32Snr2a+nuR2VoMjAbQdOTYbSYUPA+OfXcW5QCg1qDbp8Ia54qGNrP1+gMoo6Z9Y3W4f1NbwzmYuVQP4o1Qb7YW5TC2uJ+koxp/1ETJQxt4Tv8ibhXUiN4riTPwdE1qxyOvT1W3lJjkndPFM8RxvbTFmfY58D1pK8nPwxnKmj27TBaSMyqoOnEp8539wwUDxcYN1o/jefnNy8R3idc2XM2MECPjFkxyCn3ROF8PUsvfn5pffUKb6B5WjUGDH0R2V+Ssc1dpIOyfn1Ju8TMHQ57IXV+jGQ8hp4v4a4d6LAPABgL0PazBMk6FrfL9+1EWM3Z3H2fD8g4dYqRMqo/tTsKg1qD/Qe2cHkoGwIQ/1q2zrfMQvs/J0CRmMaUMO3h+YwZns+Y2fdrs3Tc85ddXc7N1eW5/Bjr5goxrRr/nMTdo/3tnKJkbXpyp9RfSwxxTEBlSAdc2tpFkjbu/DEMUGcgeBm/5yV23YHmpkruGs0zMoOwc9bzZmR+R9YOZRnE65v6dlY8QawaKFtI3ysUNf1ucm2ifd5SkICb43WoN1fwb2bzUYd/KwVlRowWE4unaVBrYD1v5tLRfhXv6sjqdTnWitUzsH0vAMDE7wU/YwDIfDEWtWkkbph6MWFxaHxFipzFOtQ0VDHmmebNXqJjz4fT4RTm7/NE1Awo+xXAer2Em/dW3yawMbbfu6//KjAxtD8JXUmMM5WnB/ssvq9q0gRBUSfh1KolhkT/wepSurpiT1EySwcA8xbO4CxZuP1LSXzfSm+5IvlTwhw5ebXh0ik1nVB+wA9FA1vg4LZ17HrB9s6kjUdOszmwX7+u209A+S3xP9SkOrbaoEh9l+wpuYPJfkuZTq+FCbgwLRZD2oShaJ7gDzdg8DiUH/BD8mfEugYAmp0lzG3Bu3wsU4NaI/FvE8d1M1pMuPDc9wCAigN+3Bxl9lmHxluSuHUXOPsEQurVh3l1d5ZO+Wcqcr7Qcb/dKG69KLy7zGu6s/u2FIHFlfG/AZkRkyFDhgwZMmTIkCFDxsPBdv/fo6jnHw6ZEZMhQ4YMGTJkyJAhQ4aMRwz5P2KPC5LPwaDWoLpfN/RpdhEA8ET0DJgnxkIV3N4hxW+0mFBTWCQxczFaTLgeUg9ZX2kRsGkWnHzaouB9PfK3dUHmi7FotlYwhdgVaGTl1ZoIJe7UzptdE5vcAEDOiBUYndOPuwcAwfUEgQnz8ghcFpmEtI8RHNLbfpaAhjsF08GcxYJkPIVTWy/y168dK5PiMz+e3reas+H7TiJ3zWgxoeKAH3IWE1MRl7hk1PQLY4IbtMyvbhBzg4pRkYgNDIBBrUHuM8QEwlZTg/P6nwAAgauIeIB5TXfkDl3J+mXroUHRzmDONNTeRK7VsAy0+SIBJxfFwnfvdK6N9mNcW1nJlUNl6GnauVnnUPYCCU7p1LoV1+e+E6aysixvCKZRv69bLanTaDHBvCocth4aJioBAK2XElOZ/G1EfOTGFB2CJqcwyXD7vuWMWAG/X2ZCn3YPBZ+qWHuqDrZj9e8oFEyx6N8/uvyCmxMEQYm2n5B6hxrGIWexjgubUJf55VQ3ItufPXo5VE3dAIDJ0s+7ooHLvmQ4HzyFV7KIEAkVhwHA+mNQa2DNygUAXAt1lcyh16IE+G8VzMrWeB9HxxQnNt+OTG+MFhOqBoez7zQAeatvBOGFjssFc7HMCbF4xRLOBEQ6pyhZ24wWE17LypCs7aCok/Afl8qu1fYiEuli2eb8yAr2nNVWVqLD6ihU97kMr4W8WIW9SZTHplIcXbUKhf2aIOsFEnrAd34SSkdqMNBPy5m6URjUGqBfIVdO8avErHNPJyJQkPcJb8blt7W0Tsf1QU+PwYJrnZiJnzKkg2QMAKDtpwmw6YiU/Nysc1xZjkx36VyJxUACXk+Ct2cpl1bhTMy+Mr/VSub35ngdbvW4y12L9unJyu87aRp7jgBiKkXFe+z3aADIXUjMls6GEWmwwKOTcKhzY2wtJ2s6c1kk13dV+wD2OeS0ArXpF3Ch5wZ2LXB9FHK3kDAhm/b2htciXvDDoNZAEW/irnX5iszp5kJh3bq2JeZcFSMjYV7OB4Fe0HcUthQksPzUbJO+V0qm3n+245vCHga1BmPb6tF0QyJudXCT3KfjA/BS8QAJNh80PRmaRdGIfJsXYLj0sbCf5H+oR6fvo/F0xjNoNSyD1VvVuxhQqmC0mFB7+zbMa8Mwocl1yV6c+S9ilnl7DJn/oBnJXF2ZL8ainvEUMscLJvPZS3QIWniBtdfySye2tzTYfRKZ68JYPU+Nm8L102gxYdyFQhgtJtzYS0wSxaawAGBoE8rSOxLyMKg1LKxGTfEVJHV1ZvtUbUUFhrYJZ+mMFhM81vCiWiXTRQI/7m6w/NIJWU+uZZLrNYVFUDZsCFsPkv5uy4ZwG30daW/FIOjHKCYE1HbUWdwx+krM0sWg72QAXLB48X3aVjpW4uviPgOA18FbAIj8vS31HOJDdrI0FQf8YDt1FgDQbnUWK2OwnoTCefsN3vXDfi04K4iZpusAx0Go9WnC+5NeD5omhLTI+kbLrRNxGXPe/1nIM/UUthYmckJLMv53IJsmypAhQ4YMGTJkyJAh46GgsNmgeARCGo+ijv80FDbb/0AvH2OUlZXBzc0NffAsXIKDHTodA7wAw7JSH+wNFgQ9DGoNnFq1xKZTu6BdNRfeC4RTb0ObUMBmg3ltGIImp/B5fH1wx98TlwY5M9ldcV3m1d2hqFQh4OcqKOLJKa7/75MR8GKqpO59p40sr3l5hCS46Lr845hXNAjrff7g+hJwZDKynlyLyHlRaLqBOIbnfK6D39u8xDZApK9tfYtEFxRMUUd8kjVg6IvsFAwACt7To+2nCdhTlAwXhTOrv7anBrX1VHD6PYU7HbRH7uc6FtxZ4eLCgpeaV4UjaLpwWuqfXB8xbYh8rVMbNZN9FvdXfOo2MECPwpc1UC8WTq3F6ZUhHVjAXjZem2Yh64XlkrY6av8nucl43zccxa/qkTYvBga1Bi7HWpGTYdxn+AauluQrnK9HmyMVOLjjR3bNPo35h+7IHbAa7ddE4eLUWNYv+3SqQD/EHdvJXa893BbKfgWSdquaNGGCCfS6tU83qI6eZtdoWwxny7B6ywC0/TRBUg6F89HWqO5zmX3P3hgKl3MNcO5lMhaqTkEo+6oG1h9bIHGpdEwfBMsvnXAmctO/laculE7Uwf1HYb0rwrvAlnwG937zQb2nL0nSGy0mPPXCFKiOnoaTVxvUFBZJnt2rL+nR4vsEZH6rRc5zyzEwgIRwKJmug8cqchoe8U4UPH85JxlzR/UBJEQEFUgAAMPZMhg7N+HSfpWXyBzqARIeoMmmJC6NfVsX5KTgQz+BdbVnv8TfF+aexHxfnqEBCHtek5PHld/5u2i0+VxYH/1HTUS+wRU+HyYgd6EOvvMTuX2D1XPYC8aOe+scC9/dM5D77ErJcy2GqmMgrBmZuPWiFk0vlLP9aHRGMbZ2bMXS0fkQt9u+PdmbNAialSOZp8u7OqLta5W43lMN1T0bEwKBQgFjUSpCP41Gi5gE1IXanhqokjMeGIzZvo93hkWQkB0O0gBEtlx15DQmXCzAuMZEnOLuMxFcyIjMZZHIGbkCoZ9Fo8X3CVB5NIPn3hpc0fFiKavyj8PbqdEDx/mvIN5zH6YcVYAvY7KWXzqOlyNHYt9pI47eUeJIeUeOaRLX4bdzJoLmpHBiD3eMvqj3uTtUR4T9y9G+TWFQa5C1IRQB41O5e3Xt9dkbQ5H15FrunkFNBLkyX4yV5CsfrUX8N2Sf21qYiMgfXoeiRgHvj4U1UvaCFpFzTyEjrAZF8/Ro80Xd68e+Dw96bh3lccRyG9REdMh9cCayl2rhP5f8LumwOgoNihVIfS8GgyOHoKagUFJW+1POTEjKvq6p+T1RqC2HKrg9rOcusjylk3Q4uTAW/r9PRnbftQ7XyIPmzZ5F89s+EzmjVpDfQau7I2jaKUk+cR5HY1Zjq8ZR7MatW7fQpAm/vz4OoL9Zn+w+H05O9f/P66upuYsjpxY+tuPxd0BmxGTIkCFDhgwZMmTIkPFwkOXr/zbIjNh/GGJG7PDlcwI74OnBbMHpSYnlLT3OzIlByNJo5oeQ94kO7d5P5NI96FTZaDFhfZknNnbwYvdvjtfhxBeOWY2avmFw+p0wab3S72JvYWc0fd8FtpRzklOhulgRWu/LRZEsIK99elXLFiy4qaNyAaBqUDizLbfpukJ1pxq1pvN1sk6dEl5E21FnJadPKo9miDvzO7qdGoPmQy9y7czf1gXez0kDdV6ZrWfBYGk93T+IgsfqRO6afZuVIR2gLL+Lmpw8GC0mtF8TxebLEYpf0+NuM9sD04jrothamMgFgjZaTOj5yky4bhf88VTu7kyqvq55yvpKy9jR/xe250HzHzE/Cu7rEnFzvI6xn47S0T7UBXNMBJqfUHEskqP8A8/dxPaCbjgeshNPvTAFdz2d2XiUTNOxufOId0dJj1KHz03QuijGnNB7YlbUHuITbTHTY99Gg1qDzilKnA2rJevizwloNyYdiOgCnJSuP6PFhN4zZqDMxwm3fWsZK/ow42Vfr3icui6JJoGDtSGodVZB+Wcql36IeSDHKlJG1WgxoUf6CC7Ybl11UtS1P9R1Oi7OAwDB/4pmPm7ifFUDw+GyP5kr586zEUy++pfCkxjuFfHANV3Xnnl9hg4NbtTCdfsJ7vke1PVpxKX9xtLbs/A0bdHOYDRvXI5L51sj8NUk7p7RYsLgnsM4Jq9OpqZlC8SlHmRjAvBrzcnXBzW5l7hyKCOcu1CHveO+xGyfHqw8sYUEq6OpG6w3b+GO0RcNDIQVou+hwvl6NvZ1MdoACQ2wLznugetREd4FB3YTv7Yd5U3QqV4xOtZriMD1UXAtUqDlsgS4/tEcn3nvxpx2fHDx/A/0HIND2+B3cCoCJ5H+UNZOnI9aRdBr9wzdceul2/BY2hDKY6mS8sTt16ZVI6mrsyQNZaUBgQmkeCc7HYv8ia9eXSyuPSjz4/OBsN9o06qxoPk5h+NJ50b8bqLMryIhDXOzzmH25mlo975Qnvg9CwD5H+mRMSOGK//anvZoPvQiSifq0NyYA/edVbimv8nKB8gatPUg/obU8kLMztPyRmZcxa6eHXB1RHvGxA/00/KhL5QqoNaKG3uDkNxtK3s2xOns5/3WOC0LvPxXjJWjcda/PguNtyRJ7tmno/kpO5i7uSt8n09D5YhIOJdbYenpzMJp2OcNWxDFhSQRt6W6f3cU9nVG85RaxH+7gv/N9d/CiIW98+gYsZRFj+14/B2QGTEZMmTIkCFDhgwZMmQ8HGwAah9RPf9wyKqJjxE4W/vrJZLrNMBk+lxB/e/i1FhJOoNag5aJTbjr4hOiCU2uC8GbAZz4gpSRtYGXMMr5QgeXK+UAyInOmvgnUHq6OWwpvEIZ/Vw1KJz59QBEdeq1LKJa5f/zLKR/2hUAYHlLj4H9x3Inw+JTOnYK9baeq+PoaiGIriIxDfvjNiF3SwhLUzEqkhuDHm1zJSdj+R/oEXfmdwCAl9st1jeajrJhNKAmvd5yGTlNLXtBC/Mq0k9HbBitK+unUNwzdMf+A1twfl5zdp2eTtJyjRYTFE5O+CaPnPapV5jqZMMU3TuzPJ0SXsSCnBTcmEKUIUd7CUEjaVtujbvNtS/u3BFWb5WtmgUqNa8KZ23KHructbXgPT2XP3eRDtlfaqHs2hFGiwmlEwXFy+Hnrzlss9Figqo9UaR0X0f61XQDGQNVyxYsHVU9c3SyKR4vAAiKPsmxYTT4LM3/xJnhAID9wU1RZGmGbp9EQXX0NGPDjBYTPFYL/kElPUpRMpUP0gsA2jdnwXc+PxdGiwkHcvmA4XFFgg9Idj/BZ+NDvzCmYOkIVCnPoNYQNgzg2DCjxcSCSod9FIX6e08i9d0YzkcwYNMsGNQaLLsUD6PFhLvPSE/e6fjRPCXTdOzzUy8mQdm4MWqdlBwbxtrleoMrY0/gAXbPng27PkMI6EvXKl2TAGFSXi4S5spoMeHSx6Qtfc9UsDoGBui5fAP9SABze8XHjvHjkfepDi77k1ld9P4fsStZPcO9Ith9qjBpjy7fREPVSQiiS8vyXJmI49+tAAB0+j6a3bNeu8baaFBrYDtFmHfzcp55azPiHOo9fQk5zy2X7EUGtQb7ju9y2B5xPwEgLvUgMu5Vcmu0zXaBpaFsGC3XaDFhb9B+AIDv/ETM9umB4tf0rNygySlcYHMAsN4k+2EDQy6yN4Yi5LQCcemHYbSY4LPyIkv7W8dfARAWLuTLaJhXhKN4Dim7po1HnewE/WxLFtb4yiA/TPxoLgxqDfzeTmT7bMUT1zg2jJbRPK2GK4/21z1BCHD8R8xKpiqbu/B+4HARGwYA9Yyn0HJsAceG0XIXXm/Plb/zp97c/bxPyZq9pqnPronZMACMDQPA2DDxnk/Hy579bXtYxBQBSOrqjM7fRbO04vTW6yVwat0KpndiuDyKhDQAQP+G1exdErCJqL+KrU4UzvVQE1QpKZtaibj/mIjMV/xwTX+TW7tLbvgDAA5uWwcAGL/pFbQ/5czYsKdHT2Ll7ejYAnFnfmd+kIN7PMtYLrZX1VphtJjQbIiZWzv7c4hlRs4XOsaGZW8k6pHqmdmS54ntPaHB3HVHaJp6XbIu6V8nn7aS/NRXzvf5NBgtJjTceQIu8Rm4MC2W7dHiMrp9EoXv5/2L5b9VewcNjrVk350PnoLv24modVKw9W2/rmX870BmxGTIkCFDhgwZMmTIkPFQkFUT/z7IjNhjCuejraHyJDF4jBYT8j/SQxHGx6wSw2gxoWhnMHCY+H5RBSp6ytJ/1ETuBInGDDOv7s7KCBifCoNaw+L3DH4qGd/E/QC346QdQVEn0W5vBQCiJEjLoqc5LnHJKB+tBbWbb/xzEvKrPQhTMGY5/ohdiWtROqgXJ6D27AXuZJiWoejeGaqmbjCoNWjzeQLMP5D2Fb8msGOUPQIA37HprF9ifygAOPFzVxjUGgzLNLBr3h8nsHLEp/v2bEhK2FZ2j2JfZX002ZTElBKvRgtshzhd4Tt6BLyYiiNrSQyvoJnJ3FwY1BoEro+CTdcVurmzYKupQTWUMMdE4NoLXbk+hJxWCF/ub0gGtQZtR53Fgk490OyHRMl6oH05E7kJAKBs3JhjGK7P0GFom3AEzUiGQa1B0PRkdv9gJTllV3UKQuN8fgP0fScRWS8sR20aiW3l8XMqOQF9fjJmNS2SxP0BgKAfo2C9SOK3VI4gbAiNvUJ9XgBwdvbiE07GirTvxe5nfh8Jy5tk7LOXahH4CvHfUXk0gyq4Pf7o8gsb66App3D6fcL4ihk4cT0A4LEmUXKN+iAAwKB+z3HtoSxYwXt6DGrTDUYL8YEL2CzEHQMA9Zc8i2N5S+/w+aVpnr8gxLgyqDXwWkTW69r5X7NrnP+KnqhqzvbpAYNag/q/nkTFAT/JSbu4DjGTezasFrW3b+O3resAgGOFspfo8K825Jnq/n6Uw7LoX6PFhFL9PfR4dSYAoOm3FnaPPs+zvQ8zH1Fals8HiVCEBWO2u8Cy11ZW4u4QgdmzdRZiZ6nc3VkbvJ87g3bvCQyzeE+yPyWnf+1Zv1svklhR6sUJTLFWzMKqPJqh74SpMFpMaPtZgsNTazHjGDTrJAxqDWOf6kJdp99Gi4mL6VT2vBYA0OH4eHSs15D1DyDxqez7J4ZBrUHuIoGlbPV1Apd/qGFcnW3KenIt0rvZ2Fhe+MqH26/zt3WBrYEL7jW1oUnLctz2I6xGlWd93BtAGPaCdwVGSxHeBTlf6DCw/1gAQNCxiay87R8v4dohjh0lrhMA/ohdiR7pIyTtvhFew+XZl0L2djGjbZ+vtrJSMmYxl47jWEgD8i5ycsKyS/E481oMyp7XYnI+2YPavZeImxN0aPVNAkIXSuPqiceS/rWPB5f2lsBiiWOgKY+lAoe9eDbmc2He7PeOmsvF3LU+06dz7xkaZ8//jSRufg1qDSyzu6PZ/gYcs2vf9sZdSiRra8X+/qwMo8WEdu8mMrXCeVc0UB7nf6N0jB/PytsXvxsAYOuhYUqaN/YGSfYVg1oDg1cYYUrnJaJjihOK5unhP478Rql4QrDAoFYHnRJeJIxr6jlJeWKELoyG9WIWl0b8ueZSAZfeaDHhg5zTXNrcLSFQtCO/tWisvgHPjmf3T78fy/yDSyfp4KZswGK2Xn1Zz9rUZLMQZ5OO5y9mqY+wjH82ZEZMhgwZMmTIkCFDhgwZDwcbHpFq4v99Ff9pyIyYDBkyZMiQIUOGDBkyZDxiyP8RewxBHa3j0g/D+mQ3FNaUI2NGDDLHNebSALzpRpsR54B+hVxZ9H7ekIZcPvo5aNopiWkelcb/pvUpzPbpgVs9SWDOzO8jgSQiKuBrF3CZ5m+0NQlbChKQ9bUWJdN12NGxBdfG5rGJKH9OcNh38mvHTBEGPDsetlNnUbuzETF1PNYKuQOIed+diAqW59XniZnUoKfHwGgx4WSVEMSRmgnZ9F2R/kYMjBYTdgUaoTqihtFigtLVlbXF3hSjLlMFmubVXZMAEMEPo8WEFjEJnJNtwXYiUFDTkBzh+G+dxcoxrwznyvPffhuKxDRmmjD8zygERZ/EqY+JGV1tbyIqcHZKR5aHiqQYLSa8m2PC/hxBvtce3U6NEUQSbguiHYFHJyHlo1hOmEVsitK/YTWUmk6wnjfjxOexgDaEjUfhfMHB/MYUHXO6Vh4j5iKZC7pK2hP4bQ7L33AnMSHccLC3pO7iXR3ROUWJXwpP4tICXiQkpeoe34eXTkC9hIy9/1zBfNBacgNXejSTzCu779sKjmC0mODUuhXyPiUmQk6+Plze/A/0sGZkwqDWQOXRDAAwqA0RpGmdWMXWr/u6RLhcV9ZpJgYAZ+bEsDVTfsBPkmaLRVgn7vHN2Oc322m5tLlbyLwknuyAwvmCqcutuAC4DsiRmNramwFnf6mVrPeSqTouoLz/m4lov5Y8ax5r7ExglSqJ2VjgpBQ02kbmuLTHDTYuceePAQCGulZiSV4SVJ4eUIQRh/qsDaGwpZzDcK8Irvz6e4UAwLZTZ1HTl5j50PALFOa1YexZDlwpyOyLn3PxXzGMFhPcfiIB2K9F6aAK8mdp6b+sN9rD+VCKw7zU7M/eZMzySyekvRnDpaVplI0bcyau/Z+bxNL57poBg1qDUwsEAabEpctxe4wWPqPPYNCToyRrS9w/hRMxcKHm3AAxJ7bHwHNEfGH/wS0AgKN3hJ8BYjNLJ792AIj4QeCE06weo8UE9fJ6sJ43w+eDRLQalsGC2LrEJePID6uI+fRnCSy9LfkM/OYlovYsMaWlogef5CZjundPrn574QvxPQCID9mJ6v6kj1de0TPz6rL9/tx4i/d786pw4IcWMFqIUEbezyGS8g1qDaJ9erL8tpoaDNj9OvpOmoYmm5Ng0Qp7UNP1iVA4OeHDV9dz4+ZoXgAgZ+QK7l7SXSv7fK+dXSiMfoWsvKHnS9g+QcuvHC68P7OXatl1p9at4LIvmXv2D+740eEzoAjvgvQ3YuB6RXh33pjCuxvkVpfD8xkzW7u3xt034z1uhcLFhVvHtL59W6QiJBk9NjDTTJpeEU/ue59wRZvGt7ju+8ZNI2UUCs/dbzsi4HSHBEq3H2tq/l2d05iVf/l1PTKXCeNk05N3k6p5c7T4l/Derut5Et8zqDX42I/s9+Y1ZN35jk1H3G8/k3H3aQuDWoMDuzeg75kKlqfwHT1UTZrAY2sau6Zq2QIt/pXAzYV4vAxqDYYHdcF/BWgcsUfx7x8O+T9iMmTIkCFDhgwZMmTIkPGIIf9H7DGBvYMmPT1SHUvDVO+eOFjpjOyxRLa6dJIgtd0r/S5u7BWk1sUnOeLTHvOkWFYuACy7FC85lfmr7znDV0jKdZTOXdUQAa8lsQCORosJXU8+z+432naCnbbuO74LBrUG5hXhTNb4QId9MKg1qOpdzPrp+zw5VVKEd8HBHT/itawMVLsTR+P3fQX5ddqWg9t/5E7g4tqTIKO2X5vCHjTNzQk67rr9Caf/G4R98f44AUE/EqbAVFXF8vtMJhLSVKI+YI7A1lBhDFomlbum9QSMT+Xk95XHiBAGFVURs4gGtQaf+Qkspv34r8k/jubPEmZD4UxknZ3aEsdivxdMmH8lhAWCFZ8e+/0yk4yRSiGMS1I6G9tzL8dgoJ8WurmzkPwpv54AwqAwKEgZNcVXYLSYMDKDyCb7b5mFrHGxEgfxVsMy8NsmLRoq6+HC9BiORZjvG4HOKUpc3d1B6nB+X7SDllPeTziR3FPRkBsXyuY6YsxqLhcz4Yea3EvcXFkb2Fh6a8kN7p7T4RTu+7nZMZL5sK9rUO8RMKg1cJstSQZb3yKWtrQHLx0vLsd3bDrMMREImJMEZY3QpyTNdm58xPVOuFjArtO1XLovkJV76pP7oiYiwY6LkwV2hp6CGy0moNaKsFQhiIw9uyZeV+J7b7bTwnq9BMocIuZB1+GdYXUHvDVaTDj80xquL6rmJCSEOCgxDYwMAPsz4yXl9D1TAZu+K5PKF7ereWwiCoa2ZPVRUEbJoNYga0Mo/H+fzL6bJ8ZigE+ExMoA8U25sWfPdOcO2H/xT8Jede+MrJ9CcSVCtEbt3sZ0/Xd8jQSKvqdu4nBt1fYKhbJzB9hqaqBwrod2P8Nh/RTrs++L5rxOGPs+Dfh5NKhJwGM6npXehFW6MltgqitaC9L5+R/pEZYymrTlcFt2nbJWgMDw0zGi4x/h4syNHxXzsMfVl/iQBs4HTwEAWn5H2I1bcQFI7LqDq8Og1qC2gsx10PRkNNpK2M9W3ySwcBFeSY24euyfM5VnFatLPAbWPt1gq6nB+svCO2Ogn5bltfzSiSvHoNbAqY2ajN2oSHwcOYDl07Qjz2XhO3oYzpaR990ewo6+1LQAjQbk4IOc06zvDX8RRKn85yax67VlAmNn/+yJQ3wAgC35DAb3eBbOB0+xNjb7IZEJGhnUGszy6QltmsCYUfGiBrtP4u6vrR0+81Tm3f4eZQQDk11we6zA7p/a0BX3RlRza6DTZ0SIY8BgIibzbo4JXgsT0PK7BKw7uI6V2e3UGK5Pfm+RZ3XguZto/VUCAmefwI3JOkS8E4XqJuQ9mDNbEP4xqDXoP3Ii+/1kD0fPWu7A1ezzzELyO+xOoDBm8zwy2X2vRQmwlpWhtpKEnVA1b47CFR7svv27zGgxMYsLGf9bkMU6ZMiQIUOGDBkyZMiQ8XCoBaD4y1R/Tz3/cMiM2GOC4UFdcHkX8QcSn8S4/dEUAPB1qODT4b4ukTEMf4bUR7MhZkk+++/0NJGeRgY5k1NO+xPAkRlXcXdIBHfdaDFBFeDLnbJNvniJy0frsD9ppvWmRWzm2kZPWwM2zcLV3R2YxDuVWqegviyZ35MTPVvyGRjUGqy+3AvK4yYm/dvrZcLmZC/lfWmmmnPZ59tjtFAMIT4mit/bwGgxQREazHxxmq6X+r0xHPYSmIqJOnZSPs9XOGksnNWFjReVShazGeYfumPQ02NQ/VQYCyBM7csBsMCx9ih+TY/4b4V74jGnUs/02lNnb2Oqd0/AZkPWN1rYqu/BaDFh34m9LE9KqJI7lTZaTHjqhSmoX6wiY5xyTmI/T0/Pa+/eRZPNSdAsiubCK4jlunVzZ+GpM2Vc/hlu9xmQ1++f4GoFHw2ajvomOsLe/ZEwdlvD/FloHvUSPk+7Melw8muHop3B+D6QnHQa1BrG/PwVDGoNLu/qiMtzBZl533cSubECgG4fR0ny0b+5W0KwKv84AGBjQTy7brSY4P/7ZMQd2wkAsGYKAZHtfRLsyzaoNcj9nA86HRRN/KjUi8kY0LUkZnYNag1yNxP/iG8XjubqAwD3wZmsbyOynibtOm+WtMVoMQEhQdw+khLKvz6KdgaztOLxoPD9dTpUniScRdAhcnqv+L0NspfocOBfQvBT8d5DfTLEbAgAXPnBHWXPax/o62F/bZ5HJhQJafhjaCf0epnI7NOQIADxNSmcLw0vQIOVB4xPRcCLqcyHcfnNNrBV32N10bxnXo/h2kDL339wC7tmO3UWQTPNSHszBpnru6HseS2CZgl+cTRP7pYQFGrLyR7swHfKaDGhWNuA+V7Zqu+hnvGUZOxpWrfjHmg+9CJh2uYQpk1rGiVJT0NvAEQy3mgxQb0lk6WrdlWg3ckGAADvjxLg+YwZOwqToOxXwOqiTJJBrWGBkzcWxHNzaT+vtB/2c9ri+wTmoyROn/cZeSauXHGTlEnDnHT5OhrZXwrvBVsPDaoGESuKNd7HuXpeLhJ8max9uiFo3nXWHgBouSwBtb1CoTp6GtY+3ZiMukGtYT67g7sZoB5+Huok/l2W+y15zxz/bgWs1wT59YonrhGLg9kxMHYmrGfQrJNcXz/26yawdC1bSNZ27uau6JHIS82L66YhPsSgQcDF6cQhRZSurkjqSpjPonlCKAKVpwdc+udJynt6zGRu3tbcEnxyaR1xJzVovEXwbW7xrwTAk4zL1Zf0rF1hqbU4sG8jjBYTPvMjeasGh2N82x4IWRqNgu2dcbo78dFSNXUjf+/7eM5xz0PZC2S+m61NxMlFsTjywyo4tWoJnw8SmV8hACgS09BsiLDfOdpLxDCoNcj7TIeb43U4eCYYxXP0cD6UAlsPjWQs7S0ZFColnFVWrrziV4Vg0Aa1BnFnfofKvWmd9cv4Z0JmxGTIkCFDhgwZMmTIkPFQkAM6/31Q2Gz/A718jFFWVgY3Nzf0wbNwUjizk5Fre9qj+dCLkvS1vUKh/DO1zpMv8+ruyB20Gl2XRCPtTeKv8lKmGd8HBklOExWhwbClCkp8tCxxOqPFBF/jVOQa1kjqYuU4OcFWUyO5TlG6LxANlruzAI60/C9yT2CebyQsb+hxp6WN+Q5RDDx3E3Pc8yRtyv1cB9+3CUtxsNIZSwP4k3hH/im3xmm5AL2XX9ej9VdCsN0np0xHvQPJeC0rA18HCEqFAFA+WotGW0leJ18fdpJ4Y7IOzdYmsrEb4BuJzM9DkT1mOTdWuVtCYH5iPTemEfOj8K8Pv8P7vuFYdikes316SMbdfrxvxQXAbRAJjuy3bRY6fH8NcUd3cOmeOnsbhzoL6prmtWGYHX4Exs5NAAAVIyPhuuNEnXVQ2I+h5S09zszhT/odnbjTe4FHJyGzzzqWXrzWHOURjysA5GzSwO8Fk6QeVaAfxyTVhb/qW5+p0+GyPxkKJyccyD/FpbPpukKRmMa1z1EZg54eA+u5i5K+i2FQa/BW9hks9u/C5bUvc+j5Euzp5IErs/VouSwBmf+KRIMiFWpdgIwZgt8ZHReKG3uD4PmeE0o0bmh+IIf55AGAZlE0Wi6TsozmNd0RNFXwe6HtGXjuJo7fCMDtXtclef4Kde0ft8ZpMf29XZjqVszWEWXwAH6s7ct5UF2az6PRZq+F+Zg+LPYUJWNom3BuvgYMfREH9vyEjvHj4XqgEU59Qvahqy/rkTqf9/mzf0bt6/aId0dJj1KHexAUCqYAlvWNFo3ylPA4fw/XoiqhHn4eZc9rYRt/HUma7VzerG+0nL8phXklCcreOUUJd+dK/BlSX5Km/IAfOrlfQX5kRZ1truvahEtPoGBBe9Q7IASk7/JNNNzNNfgjZqWkf9lfapnvof1+S1FzyBtOT+Vz9QB1P6c900cAq5vDdfsJWJ/shkMbf6hzvh927VDWWDH2GtwGZXH3gtZHSRSBHUFZvz5q796Fyt0d1tJSFLyvR9tPpM+asnMHpk5Z174JkMDwbT8V3keO5iOl6h7eeWE6FIlpuGP0RQNDrnR/PKIGRtyBtZSswW4fR6H58kRJWY7asLEgHuPa9pCkHdzjWW5vrqsc8Zof1O85WDMIg6pwrgdb9T0ub8lUHTzWCO0yx0Yg99mVD7U2ASD/Qz38fixETV4+ru7ugNTwLZJ05c9FolytQqtv+XG98ooeLb8T5qquOh50T+XRDNaSGw7zPAh1jZkYNbZqHMVu3Lp1C02aNPm36/i/Bv3N2q/zW3BSufyf11djrcLhs4sf2/H4OyAzYjJkyJAhQ4YMGTJkyHg4PCpp+f8Brkj2EXuMID4d8VxUn13L2SSctFM2jNqxU7UqitxBq2FQa9DqaxKromJkJD76aqLDk5cD+zaiYmQku+e7bzoAYIh5IGw9RL4ok1MktvxU5SxnsQ5rc45iZMZVGC0mXNrahSnmUZwM3cbYMDHm+ZK61V8mwP/NRKwra8HdF7NhYqwfTfxJBl0cxNgwxe9tJGlpey8t0MNtYxLxp3hVj8uv65H+RgxUHQNxbwCJ20RPfb8O6MjKoL4h8d8sR/YS4nezL343ADIvzdYKimoGtQa2qiqoqhTs+624AMIojk3n2mZQa3ByYSxe2P4KjBYTx4ZRXyv7uVK6uuL6eU8YLSZ0XBmNwFeTYDVnS+blzWbZ2FOUzL4HTU7B681yWN2uO04g/0PBn4tjU5dHYHRGMbdW6N8zcwgz8GZxKLsuHmv7PH4vkO+DOvUmPjH32bC8n0OgCA3m6jdaiFKh89HWrCwxmyaGrcACZVeesaR5ACB/WxdJzBp7GNQaKF4nPpY42FJSzsEdP8K8PKLO09Cr0WT84n77GUaLCQtyUri+R6Q+h4Cjk9g1MRtWNTDcvjgYLSasXPEMADAGK2fECngtSoD3R3zMGcqGUb+CZkPMqDWdh/u6RNQUXwFAfFQMag0ry/okiYGjah+A3M91hA1Tqrj1aF4Zjjnuebjd67pkXsUQK55lLotk958aNwXaN2ch/wMyNh1TnGC0mOC2MQlbO7bChEtPABD82czLyf7x8cYfuPINag3CFhD/u/yPSFmqIH/EXCI+dzsK78fdm3oUNTl5dc6xUtNJ0oew1FoMbRPO+QsBRMHUoNbA+7kz8FiTiEGh/QEAqfNj0DlpHFeOQU3iA9G22qOkRyl3j0tjs8FoMWGGOQcBXQrR6psE/L5uNc5EboLlLT2abE6C26AsGDKGcHnFbBhdb6WTdAiakQyVRzOcDavFnyH1MeRcKVSeHvgg5zRbH/EhOxkbJi5zR2ESchaTPa39GjLe9v61633+4NgwgMzfp1/xbNidZyNw9SU9sl5YztQs6X4rhtFigtNT+TBaTGj8pyfL33VJNFeHuK2uA3Lgup0w+Ic2/oBO30cL78L7McLs8wDApa1d0PdMBecjLH6eK1ormMLounziJzaoU2/Ghjl6Bqg/MgAWQzHu3BEYLSa0/SSBy1P2AvFno36BBrUG5tgI+O2YydL1Tr/Dym/7aQLyPtPhk9xk9Jk+3WG/5vtGMPa4gSFXksZoMSGufRyspaXolX6XvIM62Fh9dE3QMZibxVsojGvbg6k2iuu9HSLdI+k9gLD0IzOucms+7vA2Vh9lw4wWE0qmkTEUs2EAEBTF/z649aIWTq1a4vAdlaSfKo9m8F6QgOrW7gCA1PAt6PR9NFMGBgjrH//tCqTNI1YcFSPJO0Hl7o7WawQGvuB9Pdr/OUFSB0XARt4XWBXgCwC48JEQzywwWcoKid+xNAaiWDl0T1EyrkbrMfdytzrrlvG/A5kRkyFDhgwZMmTIkCFDxsNBZsT+NsiMmAwZMmTIkCFDhgwZMmQ8YshiHf9h2It1OLVuhZrLxDws5OTzKL/VAIETTz9QNIBCfD/ray1aH7dJhBkGdX0a1mvXcDVajxYxCQ7Lre7fnQtiabSY8PSYyVD+KQQBXnCtEz5sfh6R86LQdEMiKkZG4viyFawdRosJo7Kf4hz/jRYTQpZGI32uIPpAhQPE7aBCGrfHaFHrDLj9lCQxhxhyrhSz3S9ha7kb1gT5svKD/xWNcy/HcKYzLsda4eJxX7R7t24nbHH9HvHu6NPsItZ+MhSJXy7nyjJaTBjg3R22mhrumv3403szzDlYGeTHruduCUGzvQ3h9hMxN1K1D0Dcke1cflre0EwS9LP0Gx80/OUEsr7WInvMcpYuKjMLd2udsba9DwCwORXXT8vq/n4UMweh156ImoEGu6WS2RSXa8rR2qkRa5sjAQL7vtvfo5+zNoSy4L2Xd3WE1yQL4s4f48pTeXrAer2Ea0/ghihkjudFXKh4yoPG374/1KTs3Gxh7Vl+6YQzkZscPlf+yfWRHX4XV1/So8X3gmP3J7nJiHBxlsy1/RiIv996Ucvm235cHnQtd3NXFsgcICI1m8d8i/m+EXX2mQrZdE5R4mxYLRbmnsR8X2IG+E1eAua0IyYzYuGXvxI3ENejbNgQtZWVDsVUNhbEY2LvcVxgZYrmCU2R+msnFvD6YdcNhf1+VdcY2o8JFQ6IO7wNAND15PNoNSzjLx30aTkbC+Kx5qYGv3chZnCZ32oR+CovQnFrnBZJS8hzWf1UGH5fvwYGtQZKTSfsj9vECUBcWqBHc5MVrr+mSERithQkYNBbr6O8jRLqL+sWbhC30b6/dfVnwDPjoLxUDOt1InEe+lk0Ut8lz0LQuij4zk+EeXmERDZdDEVYMGwpgjkbTV9XO40WE0IXRhOJchAz9m3PfQONi0udfaqrL+aYCBauofqpMDgfSuHSO7XzRmX7Fky6HyCmhD4f/LXwBgC4xzdDaY8bkvWV95kO7d5NdNg2VacgWM+T0DGufzRnUvZL8pIQUq8++pwdBpf+ebi8qyNaD8uAk187XPjYHa6nGzChqLrGwMmnLfYl/ooBvpGwVVVx94wWIi515IdVDp8FWw8NnLMvM1NlgIRccaqyMel4Me4Mi4DL9Xv4bes6Vk7VwXZw6Z/H6n2zOBTp3WxsPOzh1EaNi0tawF8kJHT91yB4PmNGyTQdPFYn4s6zEfgjlpi1Zv7YDTlP/4BdFY0QGxjA2q2I5/eU22O1Dtv8oLFTHVEjrn2cw/dxXd+1adVI6ur8wDUoRvZSLfznJknS099v6qTGsGhvMxGquvZrR9h28TTcg3IeW3EKJtbRce6jE+vIWPrYjsffAZkRkyFDhgwZMmTIkCFDhoxHDPk/Yo8JfjGfAQDGhhnUGrQeloHAiSSIZ/CyaEAb4tChmZ6ymFeEw6bvCqPFhOwxyzk2jKa78GVbAGDMSf+RE6FOaoyCd0lgQctbejgfPCWph7Jhyy8dxwu5TyKhaz0M6vccrvUjjriuO07gurUCPWfPRNWgcOLka+f4D9gF7VUoGBvGpbl/Wtj45yS4/ZTEBXVVubtD6eqK7fMM6P/cJMaG0fteCxO4U8LrvwahqncxLk6OZelofYU7gtHgmOCIHJVJpIw3+R7BDDcLmmxK4hyQVc2bo2f6CNhqalAyXQiu63doCkun+L0N1xfKhtE6fcemc+yI9WKW5JSMzlVV72LUU9ag4S9kHqksPkVsYADGNi5l5duzYfcM3VlZC95ZyzlrG9QaxoYZLSYonJy4vhrUGvx8uzMMag0y7lWy62ws7gfRFK8/cRoAnPjKqT7fs7paD8uA9eYtds9vOwmuG5d+mHMsB4DAH0uw5lYrhJus7DoNJWBQa2BeES6p11FbjBYTvBaR8aHiBOrh5+G/ZRZL0yv9Lvsc04bUQVkDivd9wzEwkEg8uxxrxeoJPDpJUrdNRwIpU0bX8oYeOfeDMgNgwhYA0GOO0I6aQ94AgFpLAxa4HQDME2IZG1ZeS5zxVR35QNU++0kfzj9Bgu1SNgwAY8MAwH1+PdwZFiFh8exhP7/7swgr1WJXffQ9U8GxW+Pa9kBNTp5kDgHgmv4mY8NouYM69WaO7GJEvBMlERigbJgYde2F9myRNSOT1euIDROnL5mmw/SCHthy2x1GiwnPm8dingcJen35dT3HhhktJjh5tYHbRmGf+H09CfPhfLQ1lNdvof0PvBz6hekxaPjLCdhqaiRr9vS9xrj93G0WEPpB7XwQ++voszL/KmObDWoNWnwviMD4zieMD2W3AjYJa1GMCu9GqBwuBLDPHbqSfIjoAoNag7IXtJw4BkAET2g7/N5KlLBhtH2K8C4PZAsoGwYAzodSWD9sevKM1eTlMzaMlknZsIoDZA/eWBAPhZOTw/Ep7XGDlSn+S9mfQU/xwdCNFhNjwwAwNsxoMeHNdloY1BrkZ7SC0WJCesRmGC0m1OTkIejLKodsGG3H9zfb4uZ4Ha73JsITB3L5dzhtGxVRcYSD29Zh32kj1897bgoukLK4Hw12nYTyuFD+N3kJuFFJ9o/aXqGYfyUE6d2I4VS1Wy0AMl8AsCb/OKBQoKbIgqz7AksUNwqbAgAalNSSEDa7T7I6AieexvKbbQgbdtgLlSMiJWwYgAeyYfnburB+RGVmsWff+qRFktZ+zU0v6MGNRVJXZ9x9huyVNDA0RcH2zih4X4/czwWxFv+5wjtIjJrLxQAAi/Y2rs/QSYJm2489AJRMF8qtax9+LFH7CP/9wyH/R0yGDBkyZMiQIUOGDBkyHjFkH7H/MKi9banZD8+1F6RMSyfp4L5O8OkRszziU6OC9/RQVQHqJfwpG2N9asox1bsnd92g1qC2pwbK4yaHZVPU5YshLod+1nweDdPbwol3wbt6tP1M6oPW4FhL3OlNbNfF9uY2fVcoEtJgD0X3zrCdOisdOKUKuZ9FwDwxVnoPwglUxxQnZISRYNOf5CbjfV8SzNVRoMsHwb4fqgBfxP3xywP9N5aV+mBvsLukDPHfIeaBOJ/ujZxRKwiLNSCc2f7TIL9lL2jRZFMSV4YjWH7pBPXw87ixNwjNhpDT2srhkYh4Lxlnw8ix0rU97dH0u0bsVNm+TSXTdDj1cWyddXB+GW29sO/EXvj9NoUxtzRoLU33StYFfBfQATX9wuB0OIWVQ4N5Z/7YTchrN34D2/dC7e3b5KI2BEhK5/xOxHb31CdKjOWXjmOWT084Ag2GW1ffjBYTfPfMwMCwdGSH33Vo4y8ORiz2lwGAsue1aLKZzJnLsVao6l3M7s3NOodXNk1jJ/a0XvpsOHrOndp5Y1/CHva98B09Y/gc9cFoMaHvhKn4ff0a+G2ficBXpCfrFFwwbYUCxqLUOv0pxOV3WB2FC9McrxVH9Yh9QHqmj4DrgJw601LQYLAKFxccyD0Bg1qDgvf18F17CTWFRSyd0tUVtRVEpt2pVUucX+ANl2Jn+Hzo2BfHqZ03avKEwMJObb1QU1DI2tPj1ZlotO0EcNgL6FfosIzy0VrEf7McYSmj4fmM2WEahXM9fGY+jjCXenXup+UH/NBogDRIuTk2QiLrnbtQB/MkYcxVTZrAWlYGALgyWw/TOzF1jqU9chbr8PmwjRjZqKzOPKogf9R4NoIiIa1OPxv7Z4/6yYjTVA0Mh8t+/nmr7RXKhWOhiMrMwjDXckTMj8LJhfz6uvqyHi1OlQNJ6Q7ba79WAzdEwW+edJ83Wkx48tyzOBK82+F7z1FZzOrhvq+cOAgzDXgftiAKNzvYEPAaz+QoQzqgNv0C+/5OdjoW+Yc4XA/UN3RDQTzG2wVYfljcnKBD0/Wk3+XPRaLB9Wqojgj7rLg94jbkb+sC7+fOsHRlz2vR5OdkoJZYJJTuC8TJ0G3wjZuGoGmCP5496PNF/eOsT3aDU3k1bMlC2armzXFrQ2Nu7dO20N8PFE+dvY1DnRuz79dn6OC5UvDdM8dEIHcYHxCaBt0Wly2Go7nNXaiD7/xE1PYOxWVdA7T5XLAyaf/nBLQbk17ncwAA2RtDkfXkWhjUGrY/0LoelE+M/5aAzk8Fvf7IfMQOmb96bMfj74DMiMmQIUOGDBkyZMiQIUPGI4b8H7HHBMODunDf3dclwvILCUo6Ob8XAHKq0jyhKQYMFoKMtv00gbFhYrtjetLS58/ZAIDbY7Tc9eznXVhwVEd2yTSd346ZzNdFnNb+NKnldwnc/fMvxXDp3somJ2G7Ao2srHbvJqJyBPE5sGfDPOLdUdMvzDEbBgC1Vvi+k4i5l7txfiziE6bCHcHICKth4/K+rxBM9/QHsZJ+O7VRM1858VjmbBLKd2pN/IKsWYIvxLs5JJ39GP/49SAW3DrvE8EOXNzW6j6XkTNqBbt35IdVAMg47unkAaPFhCabkiR2646gHn4eRgsJ8qvUdILRYkLDX05gaWtyEto8oSmafeXKFMfs2wIApz4mDOOdZwXfIkcsKQA8Y0xFl6+iOUbrXv8wrrzZcRMBgGPDAGDU9jkwWkyIf/I7dm1u1jm2ngxqDS4uEoLy1rg6s89UhU081we2k7HP+UIY52dSZkraT78Hrr3HfRefTpbtJ2OdO3QlY8MC10dJTi8pG6asXx+qciUqRkXCvJKssSsD7rF6xWwYACwNCJawYUaLCRUfqLl04vooe2O0mFC6LxBeixJYu51at3I4nw0yLqPvhKlQHyNlWN7Qs/uXd5Gg2Nq0aoENA1jMlroYAv1rs1ibfT5IrJNJMQwbL7mmiBfaSM0wil/V4+kxkyV+O+bYCOR+rsOBS0TFz1ZVxepq+0kC7v2o5AKkUjbs3oBwRBgLkPvMKlyYHsOVKf7c9Zc8OLUS/ENrCgrZmjeoNYj/dgW5f58NuxYlrCuK+G+Wo+fsmfB8xszmomS6Dp1TyGt1SV4SDlw6ydgwAOiRPkLi19doQA68kog6qcrTg12f1fOIpP2+88mYX3nlflDxC38AAF7JuoDKHuUSXxQAGHeh0KFvitW1FiuD/B7IoFnN2WxvNqg1uPtMBCvjiagZMFpMOBtWi+cvEL+c22O1qLlcDPMqwXfzg5zTjA27MVkYR6eyu5ibdU7S5tjAAAzLNMB9XSLya8q59qTOj0GlugHan3Jme6uj9961Pe3R6+WZ8JuXCJW7O3IX6lhaGnS63tOXJPvf089PZnWFLCWBpul7kiJrLtmLKBsGkEDXBrUGnisSmS+vIiwYTn7tAICxT9kbQ2G0mLDIP4SrVzxfvs+n4dLWLowNM1pMkuDLAGD+oTv33fWP5uxz0/WJrMxG207g0P3A6XSexOyceP69nzsDRffOAICthYlosjkJxkLBesJ9cCYAcGyYOUZ4V1yfQcaZ7leth2UAACw96uPA7g1cey8s8UajATm4/msQ/JPrs7aUTNUxaxr671Dnxih7XotfCsl+4LmS7J+lVuK/HLC5Gtq3ZnFjKWbDAGBQaH/2bhH3eVDvEeyz73xSrvJYKmPDACC6SIvWP7pA1bKFhEEVg7JhRouJY8McwVRVxa1dAAg5rWB6ATL+dyAHdJYhQ4YMGTJkyJAhQ8bDQQ7o/LdBZsQeE5SNDkfW1+RUf2thIqANgXr4eWQui4RFe5udmlzT38SBfRtZWoD4XgBAxxXRAnPThpyuZz1J1PISvl6O2l6hrJzAl05gpJcWAwaPwwAf4URLjIJ39fBMUUKRmIbsjaG48oqeOw2qOtgOgHAC1eslwkCUvaCVnAIt9u/CTtLDTVa8lkXUy/781wouHS1rk+8ROB1OYaf93+QJjBtVvsr8Vsv5JtjX6TWSZ1huj9XCyactS2tvr22rqcGLYw5LTs38J55n7aK+D05+7Zh/xBP1wcZY5dGMle+xOhHOR1phbtY5tHs/UXKSZu3TjbUv+F/k9LXaZmV13/vNh7Uh7ugOKLp3xqDgJ1l++5Na8Rjsj9uEAb6EbTSMmAAA+KndUaiO8jHpxO1RNmzI6m50/jpXpnl5BEtP885qWgTvn7IBACVTdSh7XsuUy5QNGwIA802yh/+bZDxonDKAMEW0jgkXCxD4suDXRBm1nukjoGzYEBUjIzk2ifpLZY4njJ4qyB9tRpxj6pYAifdEURJC2nd3COnX4PBBAIDaw23RZGA2GwdaR9cembC8IagOUhgtJlxcHgz/N5Jw/LsVyB2yCrkLdQiceJobY/pPzDTSsaV/lcdS2eeWiU1QOlEnSWtQazA/aD+yv9Sy73RN2qN4sA+cD6Wgz/tkbNRfCn51Lb8ktv1JXZ1R9ryWy0fLre7fHSqPZogrOo0JFwtgUGuQ8PVy1qcH4qT0VNdoMSFnsQ5Gi4n5haTNi8FvP69laZRdCVOX++xK+L4tMG7f5Altv/ebD5b4bcdvm8netrcohTGRR35YhfWHn2D9EKNwRzD7nBKqRE3xFaiOkH3S8paei6kHgMVhyvlCh+axhGGwvKFH+QEhLuDxZSsww5yDYZkGGNQalPWrYHtSSL36GPT0GK7Mm8dawZqRieyNobi0QM/6tMb7OIwWExdH7/curhxba7SYoKxfH0aLCaa3Y3BnGFlLtYfb4ruADvD7gvjxUGVOyqRs7ODFxiL8PYHZDXzpBIre1qPgXT36nqngWLMZ5hxujjOXkeet/q8nkV1NmLcGu0+iy4kXYLSYsLkDGceEr5bDaDEhaHoynLyIgmyP+sLPjGZrBX+t2rQMfNNdeKbE80V9Jaff92+u6RfG2tNw5wl8p06GsUjwL/P9dTqaJzRFxQE/ZH2jxenuP7N3i7W0FN6/VbE6rNeusbqGnCvl2DT6DC67FM8Ufr8vJYqOC3PJ+hDHygKAdfnHAQB7iwQ1RwCwpZzDvuO7uHHNenIt7GF5S8/tFQDgM/oMPslNxqUF5B7dG8Vpcges5uZoZ8BvXLmOmBs6T46sBOi//AHED2e0l46VU92/u0OrE4AoWlYNJM8fZarsLTjOR/PqswCQ058ojNYe8GQqtQBw6hOyh/eZNh0GtQbaNwnT1WRzEoL3v8TV3zPmDWwsiEfusy6cGnHOJg28khpB2bkD619c6kEJMw4Accd2Sq7Zf88Ov4v6b1hgvXIVeZ/qMHDAWBgtJpTt98crFsHSRjxG4t8Q4mcYIMykxsUFfc4OY9dVnYKQ3s0msY6S8c+HzIjJkCFDhgwZMmTIkCHj4VBrAxSPgK2qlRkxGTJkyJAhQ4YMGTJkyJDxN0P+j9hjgiZbk+GznwhLjPbSASeJc27g7BOoHBHJKO4PcogwQsBrSVBqiJiBc/ZlAID3AmK+c2NvEPYlx6H9migsuEbS+O2YCeWfqRJzBVvqOdiqBeECMZU+eGQiTi4kohb+41LR8rsEFvQQAFz657E81/a0R+M/iCMvlVqn5dC/BrUGTq1bIVmjwtcBHR06sRrUREKd3subRJzJ57TT48ZkHfwPT8bVaeHw3T0DtgZWiamB2HTOvJIEls7dQhyjE75ajn2Jv3L1Wvt0Y/Var1zFsZAGnBM4ANiq72GAd3eunn3Hd8HJpy3OhtVyZgjWkhtcf/YG7edM7sRQHT2N0E+JSWKVOzn1GdJGCHB7ewsxI6GBc22nzqKmgzfuGH1htJgw0kswKSt+VTDxofXQYKA3A10BAIN1z0hMJMTpaysr2ee7Pu6CWcYSHQveKs5rUGtwO9IHAOCxJhGVY26xexNTMwRzTgdBe2mgYvs1QL+vb9+Wu07Lch2QA4VXa7juOMHlLX8ukstvNROTSY9VgtO620ZhXaZ8SNb1sZWkXzVFFmL61a+A5L+/LkZlPwUAuN3rOso73ZPMoUGtQeCk+yZJw8aj65Jo+O28DVXHQIfme5XNVaw/1IyVmnAZLSZmSpNs7Az3H0nbNanE1FgsZmBrWSV5thTO9TgTI2omlKxRce0dfv4alMdNqO1JxqrJ5iSHbXU+eArWkhsI2hbN5sOg1mBYpgEv5vUh4z5aK8knbpdYUOPpMZPh9xYv8GFQa5BSdQ+DezwLo8WE/fs3Y8DgcQhaH8W1qWO9hhgcMRgAEVl4J+Qp9syV11axUAQGtQYBryfhiagZkvac023EjsIkbg1bn7QACgXUixO49OI0fvMS4eTVBt0+icKZ12PQZCQxWQxZSkzBVwb5sZAcvmOJvHX7U84wqDWI++1n8uzeFzyiJrT+41Lh8yEffL6u/VDcJmVzT5b2WggxaPmt468AgAP7NpL2vp2I/A8FkzZlSAdWXrMfEnF9pmDy2rDYhrafJeDYmFBW14ChL+KNw2NhUGugCm4PgLyHKKLvh4S4sTcIB8OIZPjNCbwYkdFiQk1hEWp7hWJQv+eQ/6He4RoTB3YXo/qpMG48lDVkn22/Jorbf+jY5D6zCtf0N+E6IAfBoXnc/VeyLkB15LRDs7PZ7pfQOWkcd13VPgCzfQTZ+DW/PoXMb7UsOPryS8dZfgBo7dQIypAO3N5N74vnta45Lg+sZp/F9yNcSPiFwnf03DNFzdjtx8ARwt+NQuM/Pbn1bLSYEDE/ymE7DWoN2n6awMyVFWHk3fX7utUkeLMoD0XhO3q47E/G6AzBRJruv0aLiZmEf3pdWIdiKKttkj3BaDHBJY480+J92zNBMOLSp92D16IEjGvbA/5vJLG9s8s30fB7wYRCbTn2H9zCyqT/xOJjYnEnmo6WDQCdvhfG+kCHfQAA34+SUZt+AeW1d1GS2gIXu1dLyqGiXvag5W/uoIZBreF+Q8Ud2goA/z1iHdRH7FH8+4dD/o+YDBkyZMiQIUOGDBkyZDxiyP8Re4zgfPCUcHJVa4XCxQVGiwkNd56AeVU4yvb742O/bsLp0QXi8L7vNJGEvz1WiypbNTzHFMGg1qDdB0lI6FoPADnRtHf8BnjpX/FJ45zL3bGkVSp34tY5RYljK1Yicp5wmgYQR+rT3X/G8tQ9khM/++/2wgL9R01E1k+hXP1UQh0AfPrnMcnjZmsTMbvbETRfnojcZ1fC4wTv4ihuqzKkA4JmJMNoMcF3bDq7T9NY3iIMEhWvEMNYlMqVBwC2mhqW7vubbYlIwqUC2OOLXEFgwr4M+rl4jsBetYghJ+RZ42K5fABhmQBgx5dPsWuKxDQ0MOSyOXQ7TuSuq3rc5uoR11tK9A9Qc6kAgzr1hqpTkMMTSDGcD6Ww61RYQ9XUTdKnBruJnLDCuR5a3ZcqBoDll3rD0CYUqvYByB0pdUXd0bEFyRcWDFX7ANb3vE90kjUz/0oI10aLoSU3VgY1kRvPXaRzeOptUGuwpUBgPGj5g7sZHM4PABza9ANUnYJwcXcQuxY05ZTDE2j2DJ08g0ZFtbCdOgtrRiYG9h/LtaXD8fHwWJ3I6qLsaYfdl1F1kIi/7D+4Bbde1ML7I8JudznxAkyhhLHrnDSOCUW02kOe66u7O7Cxocx2v/FThVP4s2WsfmVjEhD1l8vkedu8+XsmgtD5u2jcM3SX9A0AAuYQxuzdHNLPXYFGXNPfBAA02pqES1u7cHk4JuO++AEAKP9MxZXZvOCJ0WLCa3Nexr743cKJdeo5mCfEcmxR5Lwo7Du5DyXTyV5AA30bLSb0SZkKJ18fbi6o8IbRYkLH+PGsTaeqGnJtNFpM7MRVndQYuZu7wqDWcFYIRosJ1vVA89hEdFwejS/PHQIAtF5K5oiG4BD3/zt1Mq7N0qH9D1EkkHWiNFg9QAKu0zpuvSiwi7fHaCXhMABg34m9LL33xwkSxoXNg4IEqb73mw8nVX7lFT0a59ewMqobEvbfel6Q4LedOgu3DPLM3m3T2CHbYrSYkNxtKxPbaWquYG1QBbfHoCeG4/KujlD+mQprRibWTlwmea7Nq8Ix5Fwpd610H2GSnQ+lcIJUdB21e588P8HLohnTY7/f0XARVJjpu4AOMFpMeHLKdCKEBZ4FajOCWJ/QEALWi1kAhHeEeVIsAl8VWJlZPj25fcqg1nDBke1BBVYAYglA89H5DZqeLMlDYbQQIaJPr3dA8S5iReK1UBq+w6DW4LKd1D9A3pm3e13nLEUA4OTCWKg6BTFrC4BYPgCEfW9kIeImthRBNn/qfeEUo8XEBKD8k+vDa1ECBp67ia0Tn2Zp7zwbwd7bbhsJC/1nSH2uXxSeKxPhEU8sMOKKTnN9uzaLZ5qSPxN+G/w5h4zfpQVknmrPkjkQs9uOcHDHj6wOv+7COzzvU6GuTXt6AwAXVJo+X4oGDQAAjZT1mdw9DRrOrEAuF7P5FffHUf8BYFX+cUzN7wmjxfRfJNbxqNgwmRGTIUOGDBkyZMiQIUOGDBl/M+T/iD1GMFpMnEwsDWJqtBA54CYDs5ncMgDszyGndAa1BkpXVyR8tRzDNYOwPzMeLRObMGaHgvM38ApjPmb29wGg+G4TyYkbDQx84ov7EuH3A2M6HSbsyXTvnixgJCBIUduzb/RU32gxQZGQhvlh+zmmjtZrXh4B65MW7hRsf3BTAMCgPiNx6hPh1NxoMcEj3p3lpSeU9idR1JfozBxBTteeERLn0aTyzEv7U854qWkB1x9xH+f5RqJyeKRDlol+b/VNArI2kFAC5lXhXJ/9f5/Mle123AMnF8XCEZ6ImoFbPYncdYM/GkMRGszd7/JNNGEE75/a3R6rhfXmLVjPmwEAJdN1eOqFKQCAOZe7S/putJjgt00Ikhl3/hi753y0Nfs8uJsB5UNDuXxHO+/CktxEWC9mIWc4H6KAwqDW4MCvG2G9mCX47NSXptth5sfS9E6M5ITXoNbAPJGsB0VoMIwWEycL3e+zubg2S4dLW4XTxpriK5JyxOXFHdoK9ZcJKH5NyuL0TB+BSx8L8s6UMXRLJb5vozOKcderMVeez+gzXPBl6tM1xSMeDcfcYumoDPPA9r2gHn4eAJD1Uyju5jZmsu+Ntt33kTvYDIXzhX4a1Boc3rBGaGvnJjAvj0D2Ui32X/yTXLwfpHhc2x5wOpwC/8OT4fXlSRxZS+Swy2vvQtmwIbe2DWoNpvwyi/VV4ULk7y1v6OEz+oxDptB+LQHAsXlLoeoUhKsv61m5jTJvPpBJN1pM8PydBN/1WMWfPBvUGqRFbMa++N2SfBQZPTawezSQrjg/Y1q1t2HuTU7Lr4eoUDlcCJFA/UPa7bqB4HoNuHFpuPMElA0bwrw8AlnfCCxW8+WJuDglFge3rZPsFfRzw19OsDGl8260kFAYjX8WWBjx/NbVTwDoM306AMD7owTsO7EX9Z6+xM1Jy+8S4PV+JiuDMvL2z0HL78j139ethkGtQchpwpxBG8LSdv0iWhjLpHSW13ruIqxZuSyYr9Fiwod+Uj/R3MGrELN1MHfNc46VzUnAa459Fw1qDbwWJeB2LyHERuE7eih+b4OincHI/D4S7ddGoeZSASfDX+9AMsL+iJKUR+8XasuZTxwAKGqE+uxBmTkKVacgyRiGLSB10fc0QCwBABJKo/HPSdyaoBYwjvBnSH20GpYBRXgXSRqjxYRre9qjtVMjrjxlw4bs94JBrUH2Ui2gULD1NnXXAczzyGTpqVWGza0RCw0BkPcws+Z4jew1ihTyfr1eRfyPjS/ouJAVDXafRLO1iVy4FXF7aZsqRpH3sWk/+a3QfdHLXNqKJ/mwCuLnlfr9+XyYwEIHOKqjcL6eXTNaTAjYLLzTjB0FhrndnnKW7+LUWKiTGkObVs2Va1BrhH3UAcTz3/jnJGT+i/SPhjhwtO8YLSRMQ/YnZAy6CK54jzdkH7G/DfJ/xGTIkCFDhgwZMmTIkCHjEUP+j9hjhKS7Vvy+bjWAuk+Wba81ZZ/brxVO92oriK03DVaZtrUzK4fmVwX4wqDW4Ny9O0CtFfvjNgEAOn8rKAMpuneG6ogapT1u4OrLelb/0PMlnC3+PUN3xKUJASQLdwTjzrMRXMDI2jSinDezUAff/dNYWY0G8MFCp7oJfmO0/NxFRKmvZLoOT5wZzqWPuXQcVnM2Kmvvsf5lV5ejpEepZLzsTw8bbSM+XAOGvsiuDT8vBPi0P7k23Sd6chcS/6OL3aslTIx4jN3jm+HP71egph85AVa6urK0HZcTlTWFcz0EjCf+d9Q/gNab3ZcE/PTbORMGtQZb/Q6jLogD0N7WV8KWSuz5r+4mPhHqxQnoO2kaS9N4Cx8A2mNVIqiPXEbYfR+4w14wWkxwauuFCZeeQM5zyzl/CorqPpeFgpyd4Xa6mPkb+MZNI6fo9epzY0RBfZHoPfp3UGh/ZI2LRc4mDVP0A4CAt0olvjB0zCjEn+k4nJkTw643X56IDW9/BZ/RZ5D5rVayRp6/YGHKk2GptVy7096Mkayj4yE7Ue+WAkvyBBbDevMWrJmEsfpq/Qg0SCbKYQFHBJaz5nIxq/vApZMwqDV4vZ0OceeOsLJVnYhfGvWDAoCAF1PR4qSwTui/Ft8nwGsh8VUq3RfIjU/Be6Q/Hb8thf/cpDr9FLL7rYWtpoblbaSsj/1ZCRjU4Qk29xUjI+E/N4mdEB/IJT6n6i95fwz7uRGfAFcOj8RoLx2s581o8a8ElpYytPYwWkwI+pHscVTVUgwa0JiuDTomYh9W+3VreUOP/A/Iqb7K04Nrs/iz90cJKOon7Ve5vxsMag1yFxE21LyGrOXaykoEzTqJgDlJLJi5OJ/9+jWoNcxioHgOryi4vsyT6+e1KB33PNCxAUhwazFc9gn+Rv6HJ3NtoHl+ancURfN4lVVHz5aYgUjvRk6lb7x3Fwa1BjV9w9DqW95X6erLeqg6BgJawjoWva3n7t/YK/hbQkv8PjNmxuDS1i6MubFm5uCrvET0nsmrXhotJvgnO6DLIfhR2foWoeKqKwJfPol27xLGamWQH2tD9lItC8bs//tkbm1SZb9h2/9EzSFvAIDtIX8dGc6WwXrezPpJVW2pMqsjRu3afYKQ3uv2SRQO5J5A5Nv82s24V8n6CAC25DOS8gxqDZoPvShZY/uzEogq6P38/nOTYCxKxcLckxiZcRUrg4gisapTEHq9NJN7HsVlBc0S3jNpbxJLkinnLgIAXlcfhHl5BGrT7vsHKwVVWPPaMFhLyTv5mzxhn+g9YwYMag3mZp2D6/YTMMdEoM2xOzCoNUidzwd+bjcm/YFsOV2fcy9r4dTOm7v+SS55Fpwq+Lz+c8meHXRsIuunQa2BcdcGDM0cwNJd+qA9duWGcHXfHRLBjXHxnPtr/j7s96jAl8nvjUn3/evEz5f9M5c/SInJ+b1g3MH7nD62qLU9un//cMj/EZMhQ4YMGTJkyJAhQ4aMRwyFzfY/YID5GKOsrAxubm6YfmwUlgfxp2dGiwn+P89CwGs8k3FpgR4+H/JxbwByspL7uY4pjonvi09ioou0yA6/+1Dtqz3cFsp+BTBaTOg/ciIUiWlQdu7AFIoAwqLZTp3l8tV1EmiP/I/0yJjBn4IZ1BrkLNahT+90HDrbEUFTT3H3M/8VyU6aAODmBB36vJYIUyjQOUWJpa1PcyyMPWtlb2vuiCk4fEeFxf5/rV5k388Pck7jY79uKHteC7esCtiSz3Bp7OfOvozspVp2Ymd/f1X+cUz37oni1/TwGZaDPYEHuPY7GvPMf0UiZ8QKdF0SjVZfJ9TZ5wfB5VgrpkRG66EwqDVw8mmLmktkjQzq0pepAYrHmf4drB+KC3PUTInPfm4AYGNBPMa17fHQa8jWQwNFPPGxOJB7wuF81jVGdO2q2gcg55MG8BktjeFy60Ut3M/cYqe+VYPC4RKXjLyfQ+D+a0PcdVfCqdIGjzUk7teeiob4PlA4/Xc05o76VvyaHq2+JmujZKoOjSw1uDS6Fq0PODN/IXFZyy8dh69zowfOvz2yvtIi4PUkfJBzGu2d78BT5epwDgDg+kwdPFfwvjAcw96yBaxXrnLXxX+Dl0WzuFl1QTIfYcGcUhtNU22zcnGail/TI+3NGAyOGIyawiI4H22N8nsuGOuVjMVHhiDwJUG9NGh9FFR3FPBeQNqiCvSDNTPH4byoOgWxeD4AMODZ8bAln2H7oHg/rGvcVB7NUKEPQP1fCZOgcHKCraYGt17UMj8w86pw5A5e9cA1Ude6dTTWvrtnIChKYC4A4J3sdCzyJz5dnb+NxtlXYyT9pcheokPGC/+Cs0KF0OSxcHaywn1wpqQt/85e76jNuVtC4HSmEdp+luCwv/1HTYQigShMqjw9EJd+mKV56uxtHOrc2GH57U42QF7EHYf1m9eGIWhyisNxC38vCs1+SETJdB3zW12NfwAAhF9JREFUPxSj75kK/JQVznw1xWX7/z4ZAS+mwmgxwW/HTATOPiEZn6sv6dHi+wRk/tgNOU//gFcs4Si+2wRb/Q5zfc//UM/WJ4NCAdhs8Ih3R0mPUv7ZO6JGXPs4AH+9l2d9rUX2mOUPtZfaz4F4HAHCbM0Nf5ZZw7D2BPjCmpULo8WEPtOnc8ysuBwKOv6jc/rhVs8SvJV9Bm8tnoGUD2PR7/xQuNW7g50Bv0nWj/XJbsw3zKDWwPuEK/IjK7h6Mtd3g//KWvy2dR1h/I6oGTM4w5zDWNJfCk9iuFcEa9egTr1hvXkL12fokPIR+Q3l1NYL+07sZfMrhusfzVHxxDWUTtTB/cdEXH5dj/Q3Yhw+s+blERyz6Oi3idFiwhNRM+C8Kx5HsRu3bt1CkyZN/nLOHjXob9anvKPhpHT5P6+vprYKh/JjHtvx+DsgM2IyZMiQIUOGDBkyZMiQ8Ygh/0dMhgwZMmTIkCFDhgwZMh4x5P+IPSbI7F3NmctRupqaJXqfEEQfxKZtGwviYVBrUGWrhirIH75vJ+KpcVO4sqlDbuaySHT/MArZ4XdhtJiw7FI8q0v8VwxlPyHgoSIxDUaLCU9vOcnSmleEc6YY5lXhAIBOsdGwhyrIn+WjMvcZM2I4h9kBFwZjbtY5NE+xIT+yAu7Nb3NlWH7phMCXT6BkGhHPuLq7A058HgtTKGn/2bBaju4fHD6IjYHRYsKdZ3lnW3vkfK5Dfk05vuo7iF0Tj8vlubyUec/ZM4ks8P10H/t1AwAkLl0OW/IZVk/ez8Tp98J03gxTDIVzPdQrJY+kMqQD5zAPACM+fhMA0OrrBFytaMQ5VANA4NFJrB07ConpX+DLxFTPa3u+wz5TgQrxdyoMMDKDmJ1l3w83cPeZCJZOXDc1S4wu0krMEsV1GtQa1OTlI2BOEned4ov7AhDj2vZg9+kYfJWXyAK0iiWmAeC2N3HiL9gkBIYefv4am7f2a6Ik4gPM+f3+2o07sh0uiY3ZPfEz4fZTEhOeAQCXOGJ249boDtx+SsLTkxNx6hPimG+qquLMEtlY3Q+AKr5mD2qW+PwFCzzWJOLomlXINazhZK7F+XydG8Fv+0xJObTd9p+NFhMCN1eg7HktPvbrhnFte0jmSJzPcwUxtcz/QM+NCQU1S6SBou37JzZLVLVsgSuz9ZJ2iftTOTwStpRzMFpMuPy6sC77TJ3OmSUCwljVFBYBIOIxDUeXYlbTImaWSGGeEIuMmeS5a5nYhAmqTM7vJdlzixYSsQHDMBIEmj7DdB/8reOvTAL8VlyAZNyMFhOsJTeYWSIAJoTi9pMwj0HTk1le65Pd2JixNv9AwpjcmKKT3KPocuIFtDvZAKXWSocxT6lUv0GtQZsvpEGAxe32fzMRzgoVDGoNbpY0gvvgTFQNDmfpaL4De35i1+gcGdQauMc3c1juS5lmlqZ0og6qC41YkFz7sTOoNZxJnPU6EYii8uPULLF04v0xaUOUlFSeHsiLuIO7Q4T9iY4pAOQa1qByeCQGRw5hQZFpfc1+IOaIjswSAeD3Lq5QDz8Pc6xQNns33zdLBIAOsUSUwt5ss8X3CSje1RENLtSHQa3Bxe7VsJS7YVT2U1y6RgX8BBotJhZ+pqRHKcyrwlm7R2cUM1O7JTeEd+prWRncs0ivNz/Fz3v2Ui33HIoDuQcdm4iD23+EsnFjTLhYwMaJ4uWssUwQbFC/51g+a1YuS2ut5/hnpf1eM+HSEyz8yi83usNzRSIMag1yclqi4olrDt0HDm38AQCw4FonKJycOLPEmxPIb4LACafh/MlVlp+acF5aoMfAhtehaklCCAyZJAijXLVWwHqThBDxXJnI8tYUFJI2jRRCsNT2IutuZwAxz3zhrf0AgNZfJXBjFbowmu2buUNXonOKkuuPo98hf8SuxJ1feAGexxayfP3fBvk/YjJkyJAhQ4YMGTJkyJDxiCGLdfyHQR0f++BZOCmcAYCJGuxL2MOcTUt+8MGJL2K5UyJAOE25PUYIEPnHXeCJ+sL9DQXxGDX7NTTYdRKf5CYjwsUZBrUGd4dEwDUxq05xhdxFOvi+I3XWF9f7MAIBivAusCWfgZNfO9Tk5LF8cy93w9mwWpbOqVVLFmRXXId92+zvOWq7/fWHSUvv9Z00Dc4HT0EZ0oEFhgaA/G1d4P3cGUk+hYsLqnt2Ru4IJ+QMXyFpp9Fiwrl7dzD5o9fhvi4RN6boUNK7CoETTwsVK1VArfWB4yiulwopaNOqkdRVWDcA0P3DqDpPeB9mvjYWxMNT5YqMe5WY046cRrc72QBt65fiPc8L6LokmskYUxjUGqzJPw4vp0aIeCcK7j8KgXcNag0y14UhcFIK59RN8wEPJ/hitJjwZnEok9IGiPR3G+M1WDOIsMC6/OOY5N2T5Y3KzEJsYIDD8v5qbK5G61HhbYPv24mSNVM6UYeTi2Il66h8tBaNtiZJylY1aYK4C384XMNGiwkDBo+D6vJ1VHVoAxpSQDy29vNM85Y9r0XiUuKIP/z8NcxqWsSVXdc4GtREZGVf4q8Y4BMBW/U9AMCNyTo0W+t47QCCg7r9uFEEHp0Ev/sS4VUDw9EwpxRxR7Zz6Q1qXvTBvn2qjoFsPu3bXNtTw5zwHzSf4vka2L4XCwVw59kILuyDqkkTWMvKeMf62AjkPrsSIV9GI/0NPvC7ffk1/cJweMMaSTtqe2qgPG6C4WwZnm2cjmifntx9yxt6ifR/8a6OaHU/CHL1U2FwPpTC6hLXL24rEzHo0w2qo6eR+7kOvm8nImexDpkvSten/Tqmf/M/0CNjVgyCl0VjyOgEmELBnp3iV/Wo8LLB/01hXTgq0x70WaD3F+SkOAzsDBBRi3q3bWi6nl97V6P1SH2PzEH/URPhZC6E9XoJbo/VovGWJE5IiNZTMTISrjsEVtRRWydcLMC4xiV1rh+Vuzuqg31w5Y0qNF/WkJtjZcOGqK2sRPtTzrjYvVqS96VMM4a6Etl5R+XfelGL7q+mIvOlIODkGdycoJP0m86jfR/EAjl19c//8GRk91vL6r+2pz1OhG1Cz3dexlWdFbnPrmR5I+dFoemGxId6lnqn38GxkAYo3BEMr5HnULC9M9qO4vfsO0Zf3NrfGq2+SYDhbBleb5bzl+8bWkeXr6PRKrESyuMmdo3iYd/pD4u6ynaUxr7uB+V5mHqn5vdEobZccp0+j/1aB/93iHW0mfXoxDqKlj+24/F3QGbEZMiQIUOGDBkyZMiQIeMRQ2bE/sOoixHrM306jq5axU5JtKZRcBuUxfI5ebXBvpP7HngST1kyWqZBTYKYWq+XsDR1nSQZLSbkVpfD17kR5l3RwBQKZP7YDUFT03Eg/xQ6royG90cJUHl6oGh1C1SlucPnQ6kkMZV/BYCnR0/C1e4NkfZWjMM6/ZPrY/+pECbDrGofAJuLE/Yf2OKQSTAvj0CnBfnYl3JAUl7R23q0Pl6Jyz0aotMzF5ktuiM2jErGj8y4iqpaZ+wNdpe0rWViE1ypbAL0K4TRYkLH5dHw/vjB0tyOxvfOsAg02HUSWwoS8EKHp1FbUVF35vtYl38cJ6paMWbHEejp7J1nI3C3qQonF8Xii5JArDjSF4GvnJCyDh7NGBPqaJ04gv3aEfeRos/U6ah8+SZOhm4jrItXG9QUFqFqcHidksa0PioLDwCK39vA1reI3bfpuuLgjh9hUGtwb0A46h1IdnjS3fhPT6Sc82NSwQ86wVS1bIG41IMwqDVQJzXGWu8///KkU6nphFrTeZhXhiNoRrIklIJ9m2jd9gzHg0546Wk/ADi180ZNXj6X9mClM5YGBD+wnVUH28Glfx53jcqoUyzJS8Kb7bTse+aP3RA48TTyfg5BuzHpqBgZiePLVnBtqxwRiYY7TzAJeADI+1SHJpoSLOu0mWM8xP3K+1SHdu/xp/6XtnbBhZ4bWJqKkZGomVrC9jmjxQT9a7PQ+OckToJaDHEdlMkF+PneW5Qi8TGjKN0XCPfBmTBaTIh8Owq3/BXw+TAB5c9FsuDvtB4AGBwxmO27D2LW6fqtq60Or0V0AU7y4RPMq8JZ0HeKzO8iEfjKCdwap4XbRn7Pn2rOxaopw6E8boLlLT3Ui8keNeFiAX567mnUpl9A3qc6XJwSCwAY6KdF7d27MJwtg7FzE+R/pIfv5quIO7KdsEsH/PBEyyykhJIz275nKvB7F1eu7Q9jhUDDJjwMxM9N5veRCHxJ2L8og0lRNTAcLvuTmaw5BZ1zR88/Xd8AWCiW3M1d4ft8GpOZ/yvGNdxkRbKG+BOGnFYgvZuNY1sL39Hj3GzHUuYUmlQw3+a/ZFgOewH9CtnXd3NM+MxPyFPbUwNrQyc4H+RDvTgfbY3qPpfZ95JpOtzoeQ+Bk8hedG1PezQfelFSnXl5BHKHrnTIqA64MBgHOuxzeI9+/iovES+mTUaLZy9w1y1v6dHiVBUO/8SzyNlfauH/huOwLQDQ4FhL3Ol9BQPP3cT+4KYOh6imXxicDpMwBdRqY1CHJ7j18rDMmXhtD3piOPOBo8j7RIeLU8kz1On7aLT97TZ7dsXvBPv6KKtoj5aJTXBFR5j5HlMmIGn/B48tA8QYMfXMR8eIWVY8tuPxd0BmxGTIkCFDhgwZMmTIkCHjEUP+j9hjCINaw7EHBrUG10p4ZbKawiJ0ThoHgJy6iNkw1z+aAwAaFd7l2AoAuPYMH2jW0QktvT7LpycMag2cFcR3KXDiaXai3txE/mZ86o+0iM1MyZGeIhktJlSMikRNQSG7rjxuQqtvpIGoozLJCXh2+F3kPrsSZfv9AQDmGZ6cj5ZBTZSGRmcQn4CgWSdRc7nY4QnX+HG/QXnchDZfJDA2DAoF+kybzqV7JesCC6C8o2MLxobZj9sVXRljw54eMxneHyewfgKANo34ChS/xqsQipk8AGiwi5yYuqsaOmTDaN/Fbei98U0McyU25RsL4tl9VYAva8PF7tUwWkz4I3Yl88/6vYsrAl8hJ3Pp9+5iTxFZU9lLibqhUxs1nHx9GBtG25u1IZRrE21HXPphri/0c7XNCoNag6n5PeGyPxnugzNZv2MTfgYAlKudHI6ruCzKhgHg2DDz8ggoEtPYPDu9WczaarQISpjm1d1xu9d15A5dCaPFhMBkF/SZOh1/iGKXv5V9Bpe2kkDd9zp5sesW7W0Y1Br4J9eX9PHOsAiEm6yYm3UOypvlMFpMCJpB2kpPPi1vkXkPXSiohdL1CgD33JyEtfLWLK7v9uuXsmEAUJOXL/Fn6N+QrLXe6XeYOpxT61ZcGS7983AtSsddO5DPn5aL2TAAyHmaKJKl91wDAFi19GviP/ShoHbYcCfprzggcrv3ElF+x0Xi/yNe++3eS0TezyFQNmwIgIxrbVYjbr9454sf4TYoi2MxGv+cBPPyCAkblv+hHgoXFwQenQSjxYTy5yIlapsAsCr/OJwVKtSFgV7nWZ6m6xPZPiZmwwCg10sz0f+5SZwVgkGtAQ57cfNXsL0zrs3SoWqxmstP17I6qTFqe4U69Psy7togaV/u4FVcGUVv6xH4ygnYemiQtGQ5uw6QQLZrgnyZj437xRqmYjuucQlq0wk7QZlJg1qD2rt3MfR8CYydyUmz90cJqPRzx8Lr7aFwcYHrgBwsbJlOLCS2hGCeRybyP9Q/UH2WfVcoSB8W6RDwOvEVo+8m1mfR2q7u350rI+sbLVPApGWK2Q0AOLqGjI+YDYNShSFtwqDyaMaeQVrP0PMlaNlUUOIt1TSF0WKC7/NErbFeA0G92H7vLt0XyD4na1SoHB4JAMxnlbJhDY615Ngwc2wEvigR8lKY7m+zfaZOZ/sMHRfzqnAYzpYJSpD33z0UE40zAJD9zGgxQXncxLFhbG++z4b1TifBrj1WJzI2zPloa8aGVQ0SFDIBIHfoSqbsaFBrcGOysJeopjrBoNag8B09WUO9QyXM2OvtdBI2DADOzImB0+8pkjXTqvNVqJMaQ+EkvCfo+BfuCMauQCMAYH9wUyzJI/tjy0SBHSnY3hlOh1NYe1t9TRQMHbFhdEypArL9O8n1j+bcGrBm5aL8vnIwRbv3hWeo7WcJHJMd+PIJFGzvLCm3pl8YjoU0wI3JOlybpePq9m1Ygmt72kM3dxbq70/BfwVseESqif/pjv7fQ/6PmAwZMmTIkCFDhgwZMmQ8Ysg+Yv9hUHvbfgFzoMjmT73EJ3IR86Pgvk7wsaBKhACxh6envnX5IFAlpxFZTzPVs7IXtGiySTh9N68NQ9DklAfa/ovr2FOUjFkFfWHR3kbmt1oEvppUZ95/BzRv8a6OSIvYjC5fRXMKY45OK+3t1O8YfdHAQOy6i1/Vo9W3vD+XrYcGB7etczhm2Zs08H/BxF3bUZiEkV48g+DoVJt+fiXrAgY3vPvAsajtFQrln6kSv4cH+VzU9VkV3B7Wc1Jbf3uMu1CIHg3yOBW3B83Vg+4pQzpAUVnFqSACwMD+Y1F79gLnt1EyTQeP1Ymc743RQuLW+D6fBie/dsiZoEbo0xlwUlqx3ocoDCpdXVFbUfHAsa4Ljsax94wZOLZyJTp/G42zr8ZA+9YsuO9MR21lZZ3jTn1yAOIbQE9DxWmuzdKh+XJyvaZvGJx+T8G1Pe0R2qKIKWT1Sr+LP0PqO8xDQdXr/soHCSBx3er/elIyNjZ9VygS0hz6x6zKPw5vp0bCumnqxuLnQKmCsTAFO8qb4M2kUQiccBpObdQoHuyD2+0A3/mCuhrty4NQMl0Hj1W8IhtVwaPfG//pidu9rkvWNW13XNFpDGrTjSvX3tfNaDHh6dGTUO/SddQUFDp8Ruh+QNUF7euh4+l8uwaHNhFmcONtD9yoaYS4CC+H7DUte27WOSwNCIY+7R7y7njAoiWMi9iPiEJZvz5q7xKKtniOHmlvxcB31wwERZ/EU2dv41Dnxn+5trO+1rL4krQd+tdmoUnWbdhSznHXh2UacKf3FYflKMKCWforr+jR8rsEzpfz5ngdU+pVdu6A/QelvrrPX7Dg48PD4d/BAmW/AujT7qGq1on5lFGoPJrho1NGvO8bzsZaHGvNEa5F6dA8ln/WNt72wA/Rw5A32BlnRn+H4V7S+F7i77SdjrAq/zhezh2FPYEHsKzUB9+c7ouA8akO8xotxG+bjo2jd8+DYHlTD/USqU/xL4Un0VBZT7Jeub448B3M/1AP7wXSd6J4fdvjarQeLWISUDJdh1MLYiVzWRce9D560DVH9+t6f2Vv0qC7Tz5Ke9x46LpLpurgsYasD7rX0DQDfCNxIPdEne8L7xOu+D2+CxS1QPMUoMnmJLjHN2P1ixUf6RgN1g/l/HUBooDp9pPwLCq6d8bdFg046w6qFm20mDDo6TGI+41YiRjUGlyZrUfLZYJvvVM7b9zNzf7vUE1sNQNOynr/5/XV1N7DoeKVj+14/B2QGTEZMmTIkCFDhgwZMmTIeMRw+k83QIYMGTJkyJAhQ4YMGf8lqK0FUPuXyf6eev7ZkBmxxwTWrFwUztcz52JKo3c9+TwMag1Gzj0EQDCJsCWfQd5nxOHTWaFyaCogBg0wuTPgN3ZNbJaoCAtG0GTB2dWprZekTHvToaFtwrHW+08AQM5zy4U0ShXya/iAhVy77jtx03Ls/9J6Wg3LIA7uX/LCGAa1Bjlf6Ng4aT6PRm1PDbK/1MKg1uDWOC3+6PILq7PVtwnI+VyHO8MiEJZaC5W7OxotKmL5cz7XwfKWIEjQZpNAtyu6dwYANFIKZlhVg8OhcHHh5sl+fAY3vIues2eSccocgJKpZK5qD7dl9fz2Mwm6Sc0SlZpOAIgcrv140M9zLvMO7RTWcxfh5OvDjSVbK/quKHiPOCZ/eGQEZo17GXOzzrF0tHxVgC/+CuJ1VZt+gcn6tv8hirVn/8EtAIBDG39gaU99TKR+mxwg4giZ30XCoNbA9/k0mGMisO/4Lnh/lICSHqVEGIXWUVEBRHSBQa3BZdGaMqg1mGrO5cRNAGJSYj8+RosJ1j7dYFBrcGwlkWRu8wVx5nb7KYmZJYYsjWYO+DS/0lUQPLm0tQuTLAaAzGWRrI7THwjXnX5PgUe8O5oPvYjsBR1ZG6gpH83TfDkx2xt3oRBVg8NhtJjg/XECu0//dlgdxY195jLSxvq/nkRc0WluHbRMbIKD239E3qc6DOrSF6Nz+sFoMeHWi8Ssdrp3T5Y+a0Mo4s4fE8quJaIrqZU+CJpKArXWFFnguTIR5kmxrE0VoyKZiaU9xNc8ViXC8oYgXvNW9hm03nSOm5fbva5zfbX/LDZLNFpMuD5DhwP5p2C0mJjTvUGtgea7NBYmw6DWoLZXKFcWNVO+Flqfa6dBrYGqUxDuGH3xwTdrcGjTD+y5Hte4BJfvueHCl8GcmEH2Eh1X9vxF0wAACdPDkHCoM6oGkrSftjjD+k1Re/cueqffYWaJANBuN/mhcahzY1je0qPrF9GcQErxro7cGLdfmA2AmPt1TlHCoNZg1oLtnFkibZ/YLFGp6QSjxQQnv3YAwNIbzpah5XfEzO3oqlWsXmqWCABZ8+tz65J+ntTkKgJfOgFlvwIyBl3rISVUyfaf8tFk3VlLbjCzRAA4tkIIKuwe3wzFr/IiR0aLCc1jyfNB92A6J06HU5A9djkzS1yVf5zcHzEBAJFkF7fTvJLUezWa1KGsT9aAt1Mj7AkkoU/2BrtzZokGtQa+v07nvtsLaNnv/wA4IZaNBfFQtWwBAFAvEd5hJdMEoYbhXhEYmjlA8u7z2yYS9DlJBDnuPiOYYTKzRKWKvYsAQHX0NC59rJM8m4qwYJT3JPucx6pElr7LN/y7BiChUOg1R+9o+o4Vw/63Af2c96kOVQfbwaDWQOEsNWN7JYuIcfm/YMIW398l9Tr6DXLP0B1GiwmnPoll+z81S8z6mvwGsFVVwXfPDEn7KApmtUP22OWATYEmm5OAiC44/SdZN8Wv6pl4Dc0buD4K+xL2AABKJwrCJW4/JXF9tjZw5swSAWDf8V0AgK5LomE9dxEGtQa7KhrBaDGh5TJB5AwA9iXsgcqjmWScZPyzIf9HTIYMGTJkyJAhQ4YMGTIeMWSxjv8wqONjqdkPTRqT082rL+mR+q7joMcUf+UcKxbzeBiHXJpucM9hsLk4w5pBgpwOHPQC3L4vRmmPGyw4rz0K3tMjLWoZFzRVfHKWtGT5Qzk0i/P2njmDnZrq5s5C4tLlDk/dfA9MQ+6A1Rj05CgWhLRwRzDO6TY6dICmMKg1uPebD+o9femB7bDPR/P+u+IRZS9oUe92LeuTQa1BbU8Nftu6Dk+PnoTftq5D5NtRiJq/A5OaXGVpbo7XYd0nSzGnnd5huR/knMbHft1QNSgcv6z4Fu6qhtCljURi1x0AgC4nXoB6+HmJUzFtc/h7UWj2AzlNdGrrxcIN0PsDA3tA6d4UNYVFDvt4Ky6ASY4b1BpAGwIkpXNlDOrUWxCEAHDP0B31jLyUusqjGWz3qlF7+zZ/XSQmUbgjGOrv6kF5jJxcQ6kCakloBVX7AFwa2QJ7Zy7GrPtCJOqkxkw4IX9bF3g/xzu80/b57p+GoKmkPevyj6O1SMxCjIHnbmLt6kFo9TXvJO+/ZRYCXk9C9VNh+H29EKi0cngkGv4iyKDnLNYh88VYSdkdU5yQEVbzUE7xgDRA8YOc51WeHohLP8zdL3tBC3ejGXFnfsegJ0fBepGEj7Dfd5zaqFFTZEHOYh383uJFRShuTNGx9UNRfsAP8SE74bd9JnJGreCekSpbNVzuB66XiBLYtT+6SIvs8Lt46uxtHLsehL1B+x2PjzYExp3rJfsDLT+7upyJ05hXhCNopiC4MOip0bCeN6O2p4bJvteFWy9qkbR4Ofx/noWA15K4thstJoR8GQ2bE1gQZXuBAvq34oAfjofsxOT8Xjj/fWc03ZCI6zN1SPkwFj1enSmRzrdH5rJINMpTofVSUo99sGyxIIg9zDERCIqWCrzQ9voemIZD/b7hxHymmnMxutEtGNQa3H0mAsdWrGR7U9MN/NyL10Nd4hnhp0ej2RCztF/3A4oDQkBhAPjwWjCSujpzaSmj2OvlmfjzX3zQcbrXMQGEVi1RU3wFQ8+XYE8nD67vNJi9fVs7pyhxNuzfM4lytJaHn7+GXzo1/8t0FDRguusfzbEz4DeH42dQa3B7rBYlwQomHCReYylV9/DKxbFoNICEmNhXWR/fBXTgyqDlOGpX1tdaOLepgM/oM5w4kTgovSOEpdYyNtT+vbixIJ6FlxD3lc6dUtMJ++M2sXu+e2awgNLi9unSRqLJQMIIO/n6oCaXvL+zl2rhPzfJ4br+d0HL6BQTjbafJjicL/E1KvLxV+koavqF4fCGNVw7xemqI9rj2InPHltxCibW0XzqoxPruLbmsR2PvwMyIyZDhgwZMmTIkCFDhgwZjxgyI/YfBj1d6INn4aRwJjLC/zqB3qZyHAtpAICcljxxZjjzcwCAvM90aPeu9JT6+kwd3LLvwflQClQtWyAu9SAG+mlR+VQI6u89ycqjsD9x6jN9Oo6uWuWQfaIsjvjkmJ28N2mCiws6oWtYNsrfaQNFPJ8GAIKXRcNrETnFtem6wuebLORHVkhOjcJSa/Hbsh5I/jQWByud8dXzY2FLPoPCHcHwGnmOO/UyrwhH7jOkvZnfapHzHM+chX4WjRbfk1Ot0IXRuBlWVadEv9FiwqAnhjO/J4pbL2pxpWctgmadZDLPdUEsz565LowFz1Q2bszYHnHdXU8+j1bDMiTl/BXDpgr0Q9yxneg/aiIObv/xL9kFg1qDrYWJcFM2cMhcUdB2jrtQiAlNrsOg1kikkpWdO6D27AXk/RyCi70IE3F3SATzvwKAnM918HubX591nRj2SB+BRgNyABBp8svbAx2OiSM4mkd63Z5J/atyfA9MQ9AU4n/kf3gyAsanovZwWzgNvob9OUmsHt3cWWiyOUnCeIkxOqMYU92KsfKWGjPcLP/WCW3Be3q0/TQBKnd3WEtLWd+Urq7YnxkPg1oDt+MeLFC5WLr5/wX2zwAgelYVChJUE2ROvY5U48ja1QCAgM2z4LOvGod/WoP1ZZ7Y2MHLYdkA8Y9IezMGIUujMXzCMQnDcWlrF/iMPoPKEZFonH6VPYOs7107ojaNrAmbrisUiWkP3ScAKHpbjzafC2t4a2EiRnuJAl4rFLj5ohZNNyTik9xkzp+p4D09zkdLQwro3piFxC+X41btHYz20rF7XkmNcDSxM5OYp2MQtD4Kvm8nQhXkD6s5m9vHaMiButovTuvUuhX2pRwQ7juQN7e8qceZ1wR2UxEaDFsq70PG1XPYC+gnsOFl+/3RZGA2+1tXuwBA5emBa+s84La0EVRHTiN3c1c0bnQHKWFbWZvryl/X2jVaTJh/JQQpoUqojqhZQG+jxYTr1gp4qly5NXv4jgofvD2N7b3LLx3HLJ+eqBoUjvnfrUP/htUO2QdH/Vl2KR6vdurvMGSB+BkU57cvhz67Dxo3gFgU3DrZAhkzYhC4IQp+88hYUHbJ0bgY1BoYzpbB2LlJncwmvWb//q6rHbmLdBjUPxkZYTUwr+mO3IGrpWzpr9MZm1xXuyZcLMD69m0d3qOfBwb2QG1FBcpe0CLxy+Xs+4NQ1zgD0vA0Tq1aIvNVP1S7W5E7dCV7xz6MFUvzhKa4pr8JgLxjrZk57F5N3zCU+dRDs7WJ3L5oX8472enIq/bE5g5qSUigusZF/L3GVv3fIV/vOeXRMWLXf3hsx+PvgMyIyZAhQ4YMGTJkyJAhQ8YjhvwfsccMLb9LAGqtOD62K4wWEzsloWwYPdW5ODlWktdoMcFzRSJhwwJ8Yb1CfI1+MB/CsZUrYV4RjpvjecUvcZkDfCLgsi9ZcmJE/wGA8rjJ4SmbtawMAa8lYWfAbzi4bR3uGbpzZRvUGpybHcOuKRLTsKptvMMxOPQtYcMMag36N6zGgd0bAADndBtZWbQ94hM659sKGNQaVI6IhNFiQqcYwobRPKnzY5gyZPCyaMk4GNQaxP1B1BavzdKx8Xf7KQlBs4hfhentGMm4GS0mXH2Z+HDdHleG22O0MFpMjA1TBfpxvk/t10ZB1T4ABrWGndSJx9QRQ1E4X8++Gy0mXPnKCb1emglFQhqbg4BNRGmLqmkq/r/2zjssiuvr499dll4UBYEF6UVEcUXqorGLvZcYWxQ1Yos9MZpYo0k0ajRiwRaNxl5jISaWqICgYe1KEaUsKhhFkA73/WMyszs7C0J+QpT3fp5nH5Y7Z245c+fOzj33ntPKi2uX8Z+WaLd8piqPwzt5ZXJluTCzmWvWDOLqYL+I77WS9YroOERlUdsdvgpOx1Reqpw/Zzyesd7fJE4OFVqFWGvYqkfRIKWlFVoI1fXNEiKVcV7T1AmRyjhrWKRSgcSdPtx5uUNUHr+SVgci+4Q7QqQyuI+5htLf7REilXEe1MQd0zhrGERM/3o9JAeRSgUurd+E5+NUVpXk71X5htZ7ghCpDIc8G6H56olc/TV1rtk2AGi8NAp5Z5y5GXVWb+WvX3PfWWtY5kw5zBMKteaVtCqQ97/Y2Jjrp2xa4A2VpSBlWRD85zIeGlnLdWRGPJd34sgN0Iu8hhCpDC1WTITLzBhIzl1nZsLNsrl8Rbp6SPmlBQDAZwmTn0E2M3ts830U9v76AZenTlN35A0KgMNgxqJz6cdNyGtmyeXleWUE0/Ybqj4hir4BiY01xMbG+HuMykNc0mpVe9uOV/VFALg9NZz3P2vBAoAn0+WIzIhH/V1Mn/XX51vrGi8VerIMkcpgtofpF6xljT2WHpgHS49saOL0zz2R3suKk+csVv8E4I5UKlDWnvEUKWrlhZxTrgLZ0swnvHwjj+5S6dPdBZFKBaQronj3G2sN0+x/nIyaNQwAolscQqRSgegWhyBxcuDSt+ZYI30uc0+z3iDLsp/jeYo5Ho5mLI1OQ2/AolcCL/+0eXJ+ef/U5Xlgidb7IkQq4yxCZe2VvOeIujVMYmONEKkM3wd2wEs3HS5fdp/ohS0ROPDcXzDOa7MkAYCOVSNMceBbaNTrVv76NToNGyPQX4hUBtE5W5VOtFjDNMd4ANDd0hD2C5l7jbWGAdBqDWPL0WnYADMaPBTUf1KiSude0cNQ0sUXAZ8x3mxD7FppbS9bD72XIjQxzAQAgTUMAHoE9ESHFqpnVaRSAZFfc177AGCY6XNevpptD5HKcDrxCjY+vgyzPTFoP3qsVl1nzpTz+kWIVIaUZUHo2mMYFj1U7VPTadgANpdzeLKlT54iYdQGuE+IRYhUhhv+v3B5sPXM/TBQ6zX52fEC939Z4kNeOwwSn8LyBKPjR3ubV9iHlrt442OzZ8xvh7/0BTKJ6wO4NPXyJ2bwPVG+85ST2vvUceiLGIVCoVAoFAqFQqHUMnSP2H+M+h6x35S30N3WBwmb/SDSK0e9a/po9GMUxLKmuD/ZCCndVTNVT456cpaDitZPV7TPgEXbOvcmW8Lg8BUzc9vV3hektFSQl+beGPaYjpkZRA3NOU9Gb6oX+1c5S45bM8K1yrJUtIei2XUxvrdhPG2NSwtGROMrWs/XRkV7Baqqx8rapLluXR3WE2DPOy/Q1CAd7QxK0N3WR5BvpFIBp5Pj4D4ujucZ7k31Y6nIg9mrjwK5GHJs+tD7SvzSRKoq9+h4QAS4h8VWuL5dfU9DRWj2uckZAUj0K0L448tw0TXB7tyGGGb6XJB/yrIgOH1R8R6zN3nw0ixb89pq82AouD/sWiEy/ToCPg9D/Z3RFeqhd2JXFLV9IshHXVbbvgtWtlv3j0DuJIG09OBiBmleZ49rulgrVVmrRS29cObk7jf2dfU8pifdw2pXT61yS1Li4K+v+8Z9DADw4uMgxC4Ten8EgDWPouCpZ8T9r2nZrcq9WVF/1swn4zM5bL9V3WOPFwfBsMULxPvt5Z2fMywQ9XbHQBuyeEDRkhlPb/j/IqgvS9CNAci6YwmXWfz7RrNud4oLMMORsbbNzPThPO8lRPjBfVwcl2+3Lh+i/PZ9PA8NwrUlwn6o+X+3bkOR5VsfltdzUK64y6Wz+3bEpqZ41bUpCs3FuL6QWS3RI6AnStPSEalUcPvT1O/bisa8Vx8FAgQoMRJxddPW3rxBASg1FMPoWSn0zjArE7LHB8FiczRvPFHPX/2v88FPuBh96nJAxXueNHk9MADZg/M5i2pF1wYAnk2WM89TtX1ekUoFmq+aCOnKKKQulMN+YZRAL+PSgpEawN/D9GyiHI3CtY/v6uebXrJAcbmENz4AgPdfItz0IYK6qnsmXvEoBrMdGSsJ62k2UqnAb/m6gj1vLudGw3V4PB5+FwT3Hx7jZNwpbi8dqzvLqPr42fECd17S6kBuH6O2+rP6ELXyArl+B6UdWkFyTrjfid3Dlz0+CNcXbhBcZwD4IGw8DI/FQmxkhPL8fFVhWrzsqrdL8xmj2Y+Sfm4J1+HxFV5z7reJxn7biq6XOmy7Sn+3h6RTKicrWz6Ri/+ljcAbJdweWPZ+SNrVEq4j4pGw0Z9bXcPToVUjbgXTozk+SPr2i3d2TxT7m7Wj+aha2yP2x4uf3ll9vA2oRYxCoVAoFAqFQqFQahnJf10BCoVCoVAoFAqF8p5Aamn/1v+DRXt0aeJ/jPrSxD8y73CusQHVcjxtS0g0TfPsMYBZhiBxtMfdz63hPiGWK0s9n+wT7tyGavXjLb6dKFhSV5E5f/aTlrjpw3QfWTzwrRUjp3vBBiXtMis8n6tn3xHQSUjFqbsXuXqzx3oE9ETZk2cgJcW889wufIww7z8R2cwMIl09wfFmayfi9tRwnr7YvDXL7xHQEyev/ormayaiZb/beBr0CoD2ZSfsOW67wuC2/C5EhoZ40ssJFpu1u15utSgM1xdsQOchoyG+VPnSicEPO3LOF55NlsN/ZDwe+RcIdBepVCBQMRCFpxtBMbfypZwAhMtA1Mrklgcd+gRuU64K+lVoQgq2ujsBYJbFnN++RWsfBADfL8PQcKuaHv6wg7hvDspzc7UuD1TXp3ras2NN0KjPfS4Aq2bbNQmcM4ELUp05Uw6r2AKBrtnvBX39YXg0lncdA9rc4zZnV7Y0TOzdBMrFIlj3vccLbguolhhpQ1vb2SDJAKCcJYd0pSr4r/fKibBZFcWlJ64LwMMBm9Dy64mw3nGD29QeqVQgtTQP4+xVQXetos3wNOgVRPr6OJNyFSFSGRfkFOAHMhbp6uHM41heG/8eHYQG27Uvv9RsU3WX/ib+GAC3yVe50A/iZk3wYEI9mCXoQPF5OK8vpZfmIdS+NR5+E4Qy43I8HLAJ3ZwDUV5YyOszaV/K0XhJFEY/eIwPTV/A6dh4wTLa1wMDcHntJrj9HAbnOdEQnbMF6aA9MDkLkbfA/J9/wgcG2pfCJe1qCbe1pSBxt7iAsmy+FaHT1B1ld1VjbXnblpi05QD6Gufx5LSVl/JLCzgN5S/J7t6yC7eMSfO+ZUNNaLt3Klp6zcKGpWCPq7crUqlAq4Vh3HinmQcbHsAtTh+JfkW8ern/FAanuVqWMP+zLI2VVQ/Jwga7D5HKkLg+AG6TtIeJUK8H289YJA6NUfo4TausNnJOuaLo10YwTyqGJK8EmXJjFNcneDBmA3a8asRbaqmJevB4rfpRW0YrauWFMyd2C8Yc4J9n9z/LEyOVCnQYGcpbgs2GeShv0xLiS8xz//XAABgfFG4VAIBh99OZsBL+zZHS3wROn1e8lDxSyYTtSO64nTvfKtoMXiaZONfcuMLzNMtUD7Rc0fLXir4D4AV/1rG0RFlWVpXKVU/bm2uOD01fcH2we8suOBX/GwBGxzr16+HBQk8kD94ouA7q45G27/nlxTAS62H+s+aIkzEOYnQ8XFH2IElr2wBoDVPDhSgQiaBjaoqHM5vBYUEUDjz4C+buD9/ZpXjc0sT6IyER1cLSRFKMP17ufGf18TagFjEKhUKhUCgUCoVSNQgBQC1ibwNqEfuP0bSItbo+mLNUsU4d1Gdpevh152bUAYAEy6CbnInSJ08rLaeyWVH2+8uRQQidewxH/F1QnpvLOeVgZ52rMptVUbkVla1O0qpAuM6IQVE3P1zYGvFGi0/CNl+4j7kmKI+1LGi2OWd4IGdB0VZPzysjcC94FyOvESS1snqMfJAGR90sjPg1DA8Hbqqw3jOT7lQYWFSzLgDgPzcM9RPzeU5K1Hm8OAgOX/FnqFmrUqRSgWXZHrjobcjrP10GfcwF2173+ArcdY0Fs35vqhubnrwyENLmT/Fn8yPMTK6TA5I/toXLT0qcvHwUwdMmwGR/xZvB1VnzKArTHOUV9i2xrCnPSUGIVMYFrXXdHQaXz2JRHuyNs/tUs7n6F625TfKRSlXAZhbWCpQ2T47GXzMu4026PsTDb4O4DeLlrWVIHqsDt4+vo6iHH/RPxgnyE/k2A7l2Gy9GBcH8J+Y81hoZqVRgqtKP52iDReLsiNKHjwR6mZl0B9+7enFp7HWRODvi5OWjWPW3MyKb8WcGc4YFwjizBJJz15Gw2Q/u4/mBVxPC/eE+kbGOm19pgL1O57j6lLX3we+7t/HqR4JlKLTQw58bNmu9HupBdll0GjZA0T4TbmO7Zrs0SdnrDacPmY366pvY3S58DOePFILzFz28jjtFttjvac2lN4sZBtv+qkDFHW69fuPsvY5VI9yf7wQQcM4i2DLsYkyQHpiHhC2+cB97rUKLro6XB8ruPHjjuLo7tyF2ejRG8u6WcBkmtIxX9L96unrwbm1o5iE6Z4uOje5jdoNkLl3d4YD6eR+mdMCL4L95QbIlNtaci3xtFgIW8ysN8Kq/RGCdYx0PsA4K2GMAeJaliqwZ6nmop6sHFH45Igh5diKIS8ELXM06+UmfK+dCMGjTE0/P/UeiqIE+9E/F8Y69HhAA40PC1QIiiYRzYsXyZLoc1quFDhyq+qxM2OILz+9eoCwhmSeraalW/+uyfwJcp8Vo7TP/BvXzX44MQv2dlVvPuGfKgFEQRd/gvv926CdePRJ3tMLDLlsBVPx8iVQq4HR8PG8Fj/ox9txIpQJeP06E3TLtulYvA1AFf9d2TFu7y9r74OEoERd6hkV99YLmeer3Dnu9AGgNtF7U3Y/Xz1hHMep5uq0bg4fL3gNnHfVG1J5FLGfXO6uPtwG1iFEoFAqFQqFQKJSqUV4OiMprvhxSC2X8x1CL2H+MukVMIuIHEtWc6dLcaxCpVGDnKwv89ncznlta9hgAyKdPgOm+GMEse2WWmMpm1VgX2J1u5+L3ZqZa81Cvc9ZxD5Rcbgjpd/zZJLF3E5w+s7fCsiTWVri/Usrtf+Oda2qK0w8uwWvdRNgtjxK0J2GDP1L6MDP5JV18ofvbNUEeFdX7Tei4OaMs8SF3Dssn6UG4v7g5TG5lcvsSQm6/goeBEmtdmyD9kBfsBtzhymFn3NXLrqp1kQ0rwM3IBctgsjwDh13PMuWqre9/GvSKV882kz6B8a/xEJuZIHGOh8D9vLY6hCUmIaJNsMDqGqlk3HWPvz8MOeetcftTZmb6yTQ5rNcw11uzn6QdbAa9i2ac+1/NPTCaen3TNWH3k7HX5U2WvUilgnNLz6a/Ou0Cs+4P4RKrj3DbGEG5kUoFeviEVGh1HnDvGQ55NqowXACLjqsT7s2yhGmCBDarVPfD89Ag/h47aO8TFVkQWNqPGQe9M3Fa7+PKzuWsjv/cV5XNGkvsbJH6oQOkK/kWZ03379rO73i3N7JP2PH2oEYqFdj40hY/f9kTxoe07wNi97qp33sVEalUwOfaEFj2fvBGq25lFpnpSfcQdmk4FwAeUFmK1F3OV3WmvbJ01nIr9m6C8pv3K6wn+3dvWhSGDA7jZuEBJkh51OqNuF5UjJF/jYbdgDtIO9gMjQferlBPbB3mJN/Cdy5McF7Wxbs2yv9oDHHHtArb/CZrX6v4ciyzYiygnldGwH7QLYj8moPE3ULaPDnuTgp/Y55sGls++931lwncfshXQwO5fdaaulN3Ca+Ngj7+MDwWCx2rRrw9RZXJqtdrdGob3l4xbXUQy5ri9Kk9vPta0zJSEW/SMcujfd5wHMLoelJiAta7uQPgh70BgFWPojHDkQlIzu67ZPMN/vQTXPlhE08H3J4zLYx8kIadHo35/UMt7Irxn5Z4/UGWYExTzx8A8gYH4sqajVrbxVq8A2+U4MN6cZjmyAQKZ/vttylX8ZlTgFY9dXML5u2zrWhcXff4CqY4BGtdWeASZ4Bkv0JkzpTD5ntmDNRcpZQ3OBDZA/LhOOQmEtcFAGYlcBv11xvLZSklJbiAY++sBYiziJkOqz2LWO7ud1YfbwPqvp5CoVAoFAqFQqFQahn6IvYOEalUQOLQGIE3SlB81gHdm3wAAExwXQCnft8PgNm3AgDHXxthdxM7ZMlfap1ZCZHKYDclEQDwQ6duAICs4x6MRWZ7K1656ucMu58Oq2hm5uHFqCCeHBsQ9rcJbTA3+SaXnnawGa/s1lM+AQDUW28K6XdRvDIilQqU37xf4UznoyVBKH3ylGcNY49FKhXcrL26NSxSqeBk3MNUHuF0f1Pt85iapJptBhhLxpNpcoh09dAkYqKgLllhQciaEMQr+9TFwwCYtechUhl6+PdAiFSGR/4FMPg1FiejTwAA2t4sQGQzM/QwKgQA2A24w+kXALf/RHO2VNLYDglbfQEwQXzb3GS8xZV08YXTyXEAgDOp17i8IpUKiK4o8PqDLIRIZcznNuP9cafDn4ycbUvumNGRqyAlxSh7/jdnDRt2P51rX5eBo5CwzZeniw1urpwXQ5bSDkz/meEYBJOuD2H7bRRTf1spbswJx9OpcmTOkOPwss5c3pFKBe7Kf4ZibjiXF2sNS/wxgLv2bNs0ZzTVr4PE2ZGpx5OngH9znqWkR+u+3HdWR/IbxUjY3gohUhk8YsXo3rY/l1e9vumIzIjHpQM+vGvEHg+Ryirdg3nIsxEAIG7pBl65AOO5jeX+1EZwnxDLs4YBQMOt0Uje3VKrJbB7uwGCNHVdAEAPv+7ondgV57dFIFKpQMuvJ3Kyu9OucOeKjfl7p7x+ZPr848WMzk8/uISuTgHQ8fLg6q5ZVml6Bjdzz16jjM/kAmuYxzVd3nkAIOmUyrOGiXyZMeNIU0uBNYwtN1KpgPMhxoMoeZKF52ODUNDXn5PRJEQqg2XvBzC8aIUQqQzef4ngcU0X6XPlfAvedDlXX/YeU85RpXU1KsJIH9X+xm53XnL7puxGPkTH4aE8HSiPNIVytpyTd4kz4OpY2qEVXo4IglucPgCgh7w3r+5FbZ8w/yc84tKeTFflxdap6fqJKIh0grmOEWcNY/OJWs1YEL5w8ufGmrvynwEAYgMD5p5xcmDK6+aHTh+N4c79zqU50g95IVKp0GoNExsZIVKpwFnPE4JjEkd7rh5sPUlQC+64+j17vSXzc8P9z5GwH8TsnSFxt6Bjbo7GX0ep7hlnR1hG1QcAdHMLFuTF6pwtM0QqQ9LQjQCAxJ98YPZLDJRz5NCxasSzmgHgrGESW74HRFZGObgEAHAq/jfe/VbQx1/Q31hrmHq9lIG5EDdrwpPt3uQDnh7KFXcFzz7WwvzkqPaA6+z5858156VrjglFPfyQsjwID9rs5NJ7G6s857LWsG53XiIsMQnrs9pzxxovYerwPDQIIVIZTA4w3lc9todx+W953AZJqwMRkXqZVy8AaKzL38dY1t4Hf88v5K7B6w+yuDqnzZejvG1LnrzYuwkAwGR/DFouVT2P1ccgdv9nTAtdLnB8zzsvuH7LWsPU68b+zenF6C71KzlPbwuy+Ptxpzgwfc59fBxXtl2MCQAg2Y8ZK1hrWIhUxrOGAcCVNRvhOOQmAm+UwG3KVbiN+ovLu0dwH64szWunbTx7pyGk9j51HPoiRqFQKBQKhUKhUCi1DH0Re0fI7+WLzTlSnIw+gZgWuihfa4WyV4xlI6XvZm4GRceqEc7u3wEA3LrvmUkqr2EQibiZlfI2LZEbwszgnIw6DgCw7P0Ac5Nv8vY+9JD3BsDMVPW7m4XdTey4mFrmP0Vz+TVbOxE6DRtgd9oVBPx4He0MVZsoxWLC5ZGw1ReX121CpFIBvchrePhtEOTTJwBg1nizM0E6/6z3jVQqkLQqkPvu+CV/v8yyFH7MI3aWNO+MM0KkMrS5WcibJdWcWWLPZa1T7PFDno1gvSYKpKQYDguYGbVXQwO545YbomF9PotXdohUhh2pl7kZ6dJ0fvwgtwsfAwC+sHgAsYGBwLrC/i3pwrc6sXUvTUuHeyhj8VorjcMlbwP4LA6D7m/X4D4uDm3Hj+e1c8XfLtAkspkZxAYGqgQtM0rPxwUhbR4z666+5l8UdYPzLDgpMYGrr/oMnsi3Gf74eSt3TsJmP+xNY/RXmqFEiFQGUce/cXNWOMz2xCBxXQBCpDJ06/Ihd52arZ3I08nD/pvwZLocjl9G82axI5UKJO9uCf8vwtDdqz1Xj78DrVXXOfYWZ8UJkcpQ+vAR0g424+ofIpXhahc7uI++jgH3nuHM776cBS1EKgMpKgIAGLdTeWlTvy7q9QQAHYuGArm0L+WCtCUpcTgZfYI7l/XQpw57LKn9dq1lsV7UAKDf3SzoWDQUWARKM5S4lai6hraDUrjvbDweACh//Zp3f9gtY6wQrOdNVhdmm5mZ62JHC5WV9Z+6Jf7kw7s2kUoFFx9JfWZ3rTQOH0wcr3WWl007c/xnXptZ612kUoHPnqrKZWMplufmouGWaJQYirn6hiUmCfIFgIK2jAX3pg/BA98SGGcSrqyGV8x5Hu7mWzDWeel3UUjc0YrLe5Els6fz5YggnPaqz8kfdYuE5Nx1RCoVeDaJsbTdCtiDW9PDGU9pYGbOQ6QyNF89EZJz11F/VzQS/YqQEO6Pl/5SdHViLMCJawOgnM3M0Cdu9eTaYb1aZSEqb8NYDhp/HQXDkBTBHhP1e9Mx1hAvRzJW/MxSJk5Z0rYmTD/5J7aT/uk4iErLuXPDH1/GnaDdjOwuxjKrbpErz89HiFSGjS9tubKCpzHj+bP2tpy+2DqxY2NKSZ7A8hMilSHhg528PlT24gVP5klnG1jpM88fdk8PAPguCENoQgqSVwRx9Shr78O77qz1QfpdFM/rIgAMvveE+06KipD4kw+vXpFKBfTuGuLxfuYaZh33QBFhLGSGx2IR8HkYJ8+WWdTdT2iplohV98tOH8xTXODKCJHKkD5XzstDXUc2AxMFZajLLG30jxc+sQ6vbSFSGUL6j4T+yTgkjNqAduPGccc0nxGnMv7Caa/62ODminDbGDwPDULqQqZOA5M7Id9GxJN/MHoDV4ZhSAqSh2yEvcQEpR35q2oaigt4ddU5/xdy/2rIpUUqFUj5pQUilQo0XhoF8cV4nvzpM3s5q338/HDO2tok4h8L/x92vH6z/mVjiPT1McX8sWoc/bklvnjqzaxWCejJ/d4IkcpgupexcNsvVt377H3Ofn/xcRCUc5h7ml01FCKVIT2QH/NP/Z4DgCfTGP2x1kSAsdppnsPegyFSGbcKRHOMTVrrg/cBUl5ea5+6Dn0Ro1AoFAqFQqFQKHWahIQEfPXVVwgMDISlpSVMTU0hk8nw9ddf47XaxM+bOHXqFORyOYyNjdGgQQMMGjQIKSkpbz5RC/RFjEKhUCgUCoVCoVSN93SP2LZt27B69Wq4uLjgq6++wooVK+Dh4YH58+dDLpejoKDgjXkcPnwYPXv2REFBAVasWIHZs2fjzz//RHBwMJRK5RvP14S6r/+PYV2Bthq4FOaHFLxj6ktP0kvzEGrfGgC4wLM6Xh4o+qEAfzQ9rloO4OGKsgdJAtM5ALz4OAixy1Rul7nN0U4OnMm8IthAwXmDAmBygL/E6lB6DAbYqZYWapbLou4OlnUx73RyHFJ6RFR4TlhiEja4uVaar7qeUkvzYC8x4cmy7sE1N8iqL4HTzDvnlCvqdRfqMVKpgNOpsZzrec06aKYBjPOIk5ePcsfT5snhtDMVpWnpPHmRX3OcObYLXe/3wJkmJ5nlRB1bQfLHda1118QtTh+JfkU8t/UhUhkeLQ2C43zVck/NJU2aOtDMnw1kXJGb9Y7DQyE5xw+ACTBBQa9+s4GXb/cmH3BLbiujovZqux4V9YvK8lT//9VpF2TfagTnOUzbRPr6OJNyFfnlxejv1BqkpBiRSgVk30yE1dooPJskh2lGKQyPxlaYv7puuzoFgBQVCfSdUpKHSa36oCz7eaX9UTNNx8MV9yda4OGgjWg/eiz0Iq8JZI++NsEGN1cuXT249cPvguA8h38/JK4NEAQ33vj4Mpx0mXtJx6Ihr57amPdQga+dVce0Bb4t7uqH89v493vK8iC4hafh5NVfVWNSYzs03P8K4Y1/wyCPjlrdTmtS1t4HOuf/EvRvsbExd37mUU/Y9L2n9R5Qv3YXCsRoZ1guHBeGB8L8yC2cTlQ5QdHUvXo+vl+F4driDYJ8sj8JgsUmVaiD/Xn1sNXdSWsbn02UQ3oyjQuLATD31rP2xdwSc/acot8cod/lEXc9KxqXqnrPaKO651dl7AZU41/wtAlYsGwrvnf1EgTO7iHvjfR+drylperXsPsH/VCWlKI1/8rGjjd917y2rEv4N41H5W1b4uwv27kwMur5pB/ygv3HqSjPzUWkUoHrRcX4wskfu9KuoJGOMVzPj4bLMH74lqqMfxU901hSlgfBZVE8ygsLEZF6GePsW3O/GzJnyHFzVji6ebTh6sXmM/S+EvuGdMTp07+g7Sfjkd5BDNfp/IDSsuUTYbUuCo6xhvjrWWNYhr4ULBFN/MmHc+fOoh5yAABML1kgt022oO5JqwNhkiqG9eoo5AwPRKdZVxAnUy3TZNveZtInMDpylQvsXVEf1LzWsuUToZirCqOQNl+OxkvfHFaAffZq5pk+Vw7DLIJri1WOnLyih+FO0G7e0mPxJdV1fl/c13cwHFJr7uvPFex7a/q4du0a3NzcUK9ePV76/Pnz8fXXX2PdunWYPHlyheeXlJTA0dEREokEd+7cgYkJ48hFoVCgVatWCA0NxebNm6tVJ2oRo1AoFAqFQqFQKFWjnNTe5y3i6+sreAkDgCFDhgAAbt/WHnuR5eLFi1AqlRg7diz3EgYAMpkM7dq1w759+1BSUlKtOtEXsXcE04OMpShSqUDmDGbjJztj0mbSJ7CTmCDpZ2bTtumXxswm5zsPIOmUihCpDLvSruDvX905a1iPVl15+RdEOqHt1BguT/VZPtYapr45mNt4/A+N+jCu300OXEVRDz+eDGsNU6+zej4sKT0juO9Sp2z4LgiDq/MT7pxnk5l2vx4YwDkgWT9mkKC+mrDnB3/6CcbZt0aIVMblBTDuwctby+D6ywREKhVY8yiKpwdtxMgOAgC6d2ZuTnVnDKw1LPsEMyNa0sUXLZdORMoyvqv/EKkMgbMn8KxhALPpvjQtHakL5Mjvp3K3S+JuIUQqw4OHNvgtn3H/LfnjuqCeFc3ssTNyWWF2EMuaIkQqQ8oyxhqmvkGcPb975yHIHh/E2yisnl+reGaT7IWICIhNTVFvKOOYJOeUK09Wcu46XowKgsTRntdv6u9UOd5gwyaw1jBt15I9N1LJOBoo+s2Rd0zbd26D8898V8gAuPpoyrJpySXMBuwTzXZy1jAAOJPCuG02Eutx1rAQqQxWa5mZ0TJ9wPjMTV7eCeH+gmvEnpc2g9n03SJ2KJcWmtoaTromOHXzDxR18+P1x5bLJkLUkh98PUQq4xywlD1IgtunMTj+2oizhqnPgodIZehrzLQtcyaz8fz2bcZ1ebPrYgzqfIVXRwB4OJBxrtPmZiH6JoYAACY4tIbbz4yDgrLs5zwdakPdGhapVHBBxwFmZrisvQ/0zsQJ8kgYtYFnDQOA0rR0PA16ha7TPuWsT2z5rz7iB+Rl+4zOeWaWfWamD5SzGAcYCVt9eeff9P9FYOXQbFeIVIbJN4ZyaakLVPdOvZ9jcDrxilY9aKaFSGVouEVl9VL/a/6gCEXdmHG0+ZqJGGySwzu+Q809eKPwKDxezcwES+xskXPKFfV3RsN99HXoXrDhlX2h2VEAKscw2sZNzXrq1Bf+KGFhz01cF1ChDEtxVz/ue8oyVdgP1rGHen7PJsqR8ZmcVxcSxziiyPyA4HtXpv+rW8NCpDKUPkrlrGGRSgV377Ayzr8oeeW471A52AiRynhOLtTL9v8ijDtPPb1HcB+kz5XjjwIdLp0EtcDeZypHCz3vqJyNhEhleH3GmeuT4ovxcDo1lrOGqY+1d4J2ozw3F8krAxEiZUIPRCoV0IUILb6byFnDirqrnrdOp8Zybfv7V/cKn4shUhkS1wuvWaRSAae50SgvZJx42UtMmN8SD5IQcvsVbFYxz8bTDy4Jzv2liRSnTzNhKgxOxKKhgu/Uo4iUwGodc20e+RfAzKAQZU+fIVKp4ELdAOC5c8/vx9Qx+nsm/EB5axlyhgUit002dBo2QKRSgTnJtxCpVCBhgz9cp8fAejVj4cptLMaFJ25cvofSVb9vjI5cRfL3gSj04jsQYUn8IZA3DnBj/DrVb4PEHa1wd2I4CntWHC6Dy++fZy/8m/PKujMlnBsD2GtvN+AOT0Z8KR5Tk+5Dx9wcEPF1SlHh5uYGGxsb7vO2SU9nVihZWVlVKhcXx/xWDwoKEhwLDAzEq1evkJCQUK2y6YsYhUKhUCgUCoVCqRqEAKS8Fj41v3uqrKwMS5YsgUQiwUcffVSpLLsHzNbWVnCMTcvIyBAcqwz6IvYOcnNWOADVDIzRkatosWIikjtsR6RSgTPHdnGy7GzOiMbBaNBT5a6bDT76ciTz1m4YkoIV1vFc0FH1mT+JkwP3v465OTyu6XLH9C9acxYwFv2TcbzZoefjgtD2ZgGvziwVzaBf8T6MhhHRKCeMu/3cIYFo9GMUZibdgfHBq1iTxgQCFl+Kx7rHwhl8ddi0Kz9sgo6lJQAIApOKLyvgMjMGLb+eiGmOfFfj3N4bdxdB/uyMLBvsUr1Mi14JCJHKoPvbNVjFvoLTF9HQcXPm8hRJJGhw4i56BPXi1bPZdea2s18UhUvrNwna5T72Gr539dJqpdKsQ+KPAeh99zknK27WBKdP7UGBlLGaOn3BzMbZLWf04bM4DHOTb3IWVYvN0Uj8MQCe1yVcnuzMnWJYE64tKbObQdIpFQBQrzvjMrw4xJcr1/ynaJQ+Sq1wz4xl7we8tC4DRnHfWUvi0mxVeSE/zIF+l0da1/Zr61Ouw+O5AMQsbMgGNo11O8/qe6JDa0SkXsaQB0MF+auXy90n1sxMmc2qKJx+GMOrx7keqwTXhpv5nsLcz9Z976n2DgTmcXq+sDUCS1LiuHMb/RgFEs9YhLt1U9WtvLCQV8/exvk8HatbFAEmqLDN98wMr9ukq0gI98ftVuW4HibUH2uJu+RtgJff2UPUirFIqFsKAVXAbXXUy4xUKiBu1oSrD+um3W55FGexYjH+05L7rvgnhAAAJGzxZfpnex8YH2Ssk+wYAADe025w3wffYyzqzgeZAPLiFp643aoct2YwOk/ptkWrNVm9n2tbCWDb/w5632WsgPc+Ceedq9k/1NvusTWMsx6xQYDVrSDdm3cAAPy+Zxv0TzPX/Na0cK78wNkTECKVod1Ps1H+R2OE9B/J1QcATsaeRIzsIFfmr+6nuXOfTeS7RQcY9+na7peU5UF4Po65lgnzmvKOaVoK1z2+AnFD4f6XSKUCsnjVOXpnVH3Y6YtodG/bH4++DoLJ/hguIC57bvz8cNz+NJxXFnvcbbJqryIAdO09HHtzzQGorJOsbJZM5SI8aNYEzjLRtfdwRCoVcNn3kt/w8jIAwN9j+KsXzHcw/dz1/GhEKhV4PTAAIt9mKE15DLvlUfjOpTlXn6eBxtjjdJ7rK796mSP9C5XujbsyoTG6e3cEwIznhheteOUBQH45Y21P+mgjr00fNpbDeg0zXhf09cdzL12ITU0BAJaXdbkAxA16JvCux6pHKssLALhNUu3lLunEWOW91qkCJWuOb5HNVOFkNGW0/R+7fAPS58rh/FsoIpUKBC+YypM1GFHMfd/8pC2v/ew9ZHSEv4/x7P4dqLeb2St26tY5hEhl6GhYhhCpDO5hzJ7cZteZ8ADGmYTTNQCYiA24vEQtveAyMwauw1V7r14NZSzpg+89gdun/NVBzkc+4dUvaXUgHnbZyqyMSM9DpFKBJhGM7pSz5XCMNeRks8cHcd8jj+7i9Ke+SqLz4I+RtCoQksZMmJHH+5vj9Rln7ry1rk2YMA7UZUOFJCYmIjMzk/u8TaZNm4bo6GgsXrwYHh4elcrm5zMB0vX19QXHDP5ZtcLKVBVJtaQpFAqFQqFQKBTK/1tIOQER1fyLY037E/zyyy/x448/Yvz48Zg7d+4b5Y2MjAAARWqThyyF/0yWsjJVhVrE3hFyhjLrkEOkMnwwcTyXzs66sQE+Q6QydBkwCt07DeZk1Gepsk+4887N9iFcHj2CekG6QuVBSDlHjr1pUTyPiWUvXuCBbwn2pzP7e467nYHBTCWvLo/2eQNgAjyHSGWw3H0DV7pX7NlQx9ONV0/OQuHlgT+aMlYL030x0KlfD12MSpC0qyU2u+zn5KYMCYNyFt+KlXlUFfyUzbf5qokoy8rizeixs06sbKP1FXtAKktIFs4S/pPX/vRoeFwaydT7vJQLUM3KkGu3EalUIGedKr8p92+j7NUrnrczAPje5i9B3TUtGuqBallZp1/H8ep1Jl8fD/tvwvGmjKVHYmON07/tBQBc2KLyTJcVppr9tdwYjeUuTMBLHatGiFQq4Db5KtbYXOPV58k0OU79vp+rz/2xKq9PABMU9/z2LXj4jWo2UBtJu1ri8SI56l1uyOX/6OsgiKJvcG1mrXaXvFUBsCWvmX57/LUR73po9i+JjTX3vfRxGs/Cwcr2aN0XhhetuH1O7LHyti0xzr411wcBxqPgs4lyrdbX0idPeedHKhXIOMzMTo8fNpmZifVtxgUn97wuQcIGf/QI7iPQS3nblrx6+uvrCmQA4PTpX9DvLhNgmb0WxzPiOGskO/urXi/2k+xXiCUpjPX64TdBXGB4xNwUFiQSodGPzNigM/0pMtvUw4tRQuuX09K/BGlseZZR9dFqYRh2nd6K6Un3AIALlq1ef4mzIwDgsOtZzpLurqsKRO8+9hpCpDL8vnsbAEAsa4opDqrA1JeOqfYD7vdkAnu7Tb0KsXcTlN+4x9VJ23ikaaFi/2dny5tsUe0VYu8rQBUMmO1v7UePFfSzEKkMxY1K8XDAJsx7qIDhsVhB+WXP/2b0eFwV7DqhRBXkPmYFYx1x/DIaZz1PoMREF2WkXFB39TLTDjZjxrbwKIT0HcErs16sgaAfRyoVcN3+DA0jGM+ZLrOjOWsxazlhAzonRPhhzbOOSGq3Q6v16tZLaYXjflniQzjOY+7tv3Z6C85Vb4c2SghjvTpz/Gds92D2OJa4F0B5pClXF9bSHyKVIXrlRpBgJj9y7TZzj9+4h4ffBMH7LxFyhqn2FjbYptq7p14Hdl+W8cGrINf4m/ZZuVzXMvRo3Zd3rNSQcDJPp8jhNy8MVr+qLEIFbZ9y53e190XGYS/0s+PvK1W3rHIrWY7G4tb0cJTn5gIAzHdEc4GCe955gXZjx0HcgnkWznDk36/PQ1X/6/7O7DVmrfPqbVIeaYqSLr68NM3nH7s/lV11wOrNrlMq3D6+jhCpaj8kp5N/VuWESGWISXYCAr15etR89qmnASrrsWYfSXndkLNiFkQ64eF3Qbx6P/o6iFtRAADFZx3Q724W55UxubARAKDbnZecjLr1MEQqg+t0lcWsXHEXIVIZHBYwfe3W9HD8keSBdY+ZvaIWm6O5Z0agYiB3Xkpflec88WUFOgTf4jwlOwy+BeOuD5G8W7i3mVJ7LFy4EEuXLsXo0aOxcePGN58AQCqVAtC+/JBN07ZssTLoixiFQqFQKBQKhUKpGrWyP+yfTw2wcOFCLFq0CKNGjcKWLVsgqqKjFD8/ZqtOdHS04FhMTAzMzMzg7u4uOFYZNI7Yfwwbk6Ed+kAiUpsVD/QGYlSe2ZrFDOP2CVS2hjthsx9Sekage7sBKEtIxusBATA+xI8PlLwyEC6zYgSzgSnLguD0RbQgf025/H4BMDrC5NnwijmeB6u8RmliFW2G5x+Z8zwzduv+ER6EmsJtd4HW2XkdD1ecOn8QIVIZ9qdHY7BdkNbZWAAo7OUPZWsdJI5gYvXMSb7FW8+vbcaVjc11KD0GJmIDXhvZ8yqKjSVxaIyT0ScEukna1RJ4ro/kwRuZmdg/GkPcMQ2RSgUCFQPRYDrj7a4ixM2aQJz9Aif/isSybA9c9DasUJbVI1u+fMYEmO5lZvvmJt9EO0Nm4Orq4A9SUqz1/Ef7vOE4hK97TZ1p7gcJkcqQ3z8Al37cpFWvkUoFvNZNhN3yKGav2m97BTO+mjOt7P86nm4ou5cIgNk79PqDLEH+LnEGSPYr5LVdW1216UlbeovYobDue09wTFv91JHYWOPk9TOCtgTf7A8TtT0Lb8pTvW5iU1NB3J7Kztfsr5r5AoDr7jC4zBY+LCqyFN0rzoennhFafDsRNz4Lr7QeIVIZnhz1hN6x+hg6M5LbX6KtDPXvPe+8wK9e5tCxaoRT8b/x6v5qaCC6fH4JiyzvCNqpmW9xVz/onWGsfQklrzFo1WxY/8DMWCvnyCH9LgqvTrvArFsyAODx4iA4fCWMpVfWzge/79kmKCOlJA8THJi4jdkn3HG91f4KrWzakMUDipbM/tmGEdHIPOqJm/6/AAA+TOmAF8F/C3Sjc16KjOOOvBhZ6qjrjK1L86sfQdrvLgwvWqGoex4XL03bddBE85h6LCQAEJ2zBemQUWE+RN4CoqgbKGvnA50LKkupcrYc0hVRKOjrD8OjsTxL+IPRGzirERuvyfO6BPdaMfHmRK28cObEboGuHy8Ogl6OCNZRryGKvqF1DACY/UO3WzHj39zkm1juwlhhytu2hPiiMCZX56Gj8cLNQGDN6XDrNc41N37juFLeWgbxZYXgGMBcoxcfB3H7zwAgeWUgDJ+IIV355thU6uVUlM7GuRI8y39pAaehN5A3OBAm+2O05lWVcfTxIjlnCdJGxmEv7ndJZfVlWfEoBlMnToH+qTguVqe2tgH8+1+kq4eHS1rB6XP+dWLzeLQkCKuGbsda1ybcPQcAOk3dUXaX2Ttf1t4Hv+9m7nVRKy+Q60y9n0yXC+45tlwdS0tulQ2vXSIRt5+LBMvw24EdlT6LKtLLs8lybj97pJKJJ9iVvIC5+8N3Po5Ye53+/N+sNUQpKcH5ssNvVR+LFy/GggULMGLECOzYsQNisXabVGZmJnJycmBvb88tNywpKYGDgwN0dXV5ccRu3LgBHx8fjB49Glu2bKlWfd57i5hIJNL6Uffvz/LgwQP07dsX5ubmMDY2Rps2bXDu3Dmt+ebk5GDKlCmwtbWFgYEBvLy8sGHDhhpfr0qhUCgUCoVCoVDeLuvXr8eCBQtgb2+PTp06Yc+ePfj555+5z9mzZznZuXPnwtPTE7GxsVyarq4ufvjhB6SlpaFNmzYIDw/HN998gy5dusDS0hKLFi2qdp3qhLOONm3aYPz48bw0XV3+m3pycjLkcjkkEgnmzJmDevXqISIiAiEhITh9+jQ6derEyRYXF6Nz586Ij4/HlClT4OnpidOnT2PixIl4+vQpFi5cWBvNolAoFAqFQqFQ3ineV2cdbByw1NRUjBo1SnC8bdu26Ny5c6V5DBo0CIaGhli6dClmzZoFfX19dOzYEd9++22194cBdWBpokgkwqhRo7Bjx45K5QYPHoxDhw7h+vXrkMlkAIC8vDx4eXnBwMAA9+/f59aIhoeHY9KkSVi7di2mTJnC5TFgwACcOHECiYmJcHBweCv1Z828LxKcMcjDh0tnTdlZE4JQ1EAEu2VReHLUs8KlVOoE3ijhNvRq5sdiFW2Gp0GvuPS9aVEw1+F7eqlsaZDEzhYnY0/yzPHdun6I8ptM4Gd1039ly7zU88867sG5Odd2vCDSCYYhKQCA3CGBMN0XU2kbAcYhyKmz+zD/WXPEyZhgniRYBtEVheDcLgNHQRTFuMbOmhAEy43CZV3qpHwTBKfPo5F+yAt2A+4gUqlA0MwJiP5+o9a2ev8lwk0fAh2LhpzjCHYZT0VLPCU21tym57Y3C3DR21CwLC1EyjjeKHv6jDsvfa4cd6aEV7gRmuXpVDkXqDjjczluT1W56tamz/K2LXH2l+1a84tUKuCydwJcZ8Tg5cgg1N/J6G9ZSiwXrFRbHTJnyGGzKopXzwH3niGvzACRzcwQqVTgs6cyKFpWbanVofQYtLgQxnNdzLI3LQofNpZrOZuPxzVdPPAtgcTaCqVPnvKWu6iT+pUc9otVS0s06/bqo0CY7YkRnKeNxB8DONfdgKpvVAeJnS1K0zMQqVTgg4njYXg0lne86DdH6Hd5xKuv5tIk94uj4DSUuQ+ehwbh2hLGUYt626Yn3cNqV09e3gPuPcMhT2Yj/JNP5Tg58zuE2rfmjmsbS7p3HoKyOw94xytaeq2+tE0b6vknfx8Il5n8JVkJW3y5YOzaePhNEJw/5wdgVq9DpFIBt51hkOSLeNc8prAMC5xbCerxemAAjA9eFbT72SQ5coPz4fKRQlBv+6vGSA3gLy9M3OkDt5F/cXIvRgXB/CftzibU/1/xKAazHQN56dxSr5ZeyFpcAquZZShLSOaVp75cij3Xa91E3JkSjnZjx0HZWoKShqVw/4T5QcMu9a6sPpFKBZwPfwK3yVeRtCYQrtMqvideDQ3kHCtUhLhZE5Tfvg+xgQHKCwuRd8aZWxasc16KhMxGcPlIwV1z9no2XzUR4tYvYN33HtdH8gYFwOTAVSbY8z/u7bXpk/2e+GMAJHliOH0ejSefyrklsdrarKkLgN+nNz6+jAkOrZF6oDmO+W/EFIdgpM+Vc05IIpUKOEWGQpQngdsUpi917ziIW8YNAPjDDpGeqoDoU5PuY61rExSfdcB5r2NcmWGJSehrnFfpErrQhBR8vWEYFzRZ/XhBpBP+bH6Eef47OeDklWNwOjMWln/qggx8jjif/Tx59tpUBVY3ZaQcOiJxlZf29bubhSNNmTAY6s9K9XM0r6F8+gSY7otBwyvm2ON0nnf/skstI5UKdPNogycjmqNRuOr6ss9gbXUqb9MS4kvMM0f9GQ8AuhdsUNJO6HJdeaQp1nnv5bYThEhlOPDgr/diaWI7Ub9aW5p4gRx5Z/XxNnjvlyayFBcXIy8vT+ux169f4/jx42jXrh33EgYAJiYmGDt2LBISEri3ZADYs2cPjIyMMG7cOF4+06ZNQ0lJCfbt21cjbaBQKBQKhUKhUN5p3nNnHe8SdcIiZmxsjMLCQpSVlcHS0hJDhgzB0qVLUa9ePQCMdxO5XI558+Zh6dKlvPPPnj2LLl264Mcff8SkSZNQXl4OExMT+Pj44PLlyzzZoqIiGBoaYsCAAThw4MC/qq+NjQ3v/7KyMmRlZaE1uuNEwn30c2/OO34k4ZYgTf0YAPRzbw6d+mYod7CFztO/ceDP39HPvTl3nJURG+ijvLCowjx6xmXjVz8LXjp7jK1Hxs+esNhpiFM//sRLP5JwCyNS2iEvhJkFEhsZ4pAiliejrUyxkSGejPCG1dbrIKX/bNhu6QkSz1j+nk0IQKONKiuBjosjypIfCfJhv/cfNBjkhtBqqNkeHTNTlL3KrVCvA2T+OKRgrAk3i4qwoLkvSEAziK7e1noOADwf7Y+G22N57VXXj+zAGDjNi9N6HAAyPw2AThHQaONV6FhYIHWUC2I/2YJ+7s0FeuDK3O+KhoOZDc/PPgmA9ZUXKL+dwCuXbTMAFHZrBUNlPqcjidQaqSvMIR3G/C9u7oFDhw4CAK4UAmt6dUPp43RemeVybxzbsZt3TZfdjoWnniH6uTdH+i5PxAXsx5xMHyS2LQEA9IzLRmi9TDSPHAXXKX9h7d1oTG0aJNCBxE6K0nQlUr72g2LQNl7dK7pWrAzxbwZRbMXXRxvf3L6Kz5sFcNeOzXNcamtE2F9G22WhaLCDSX8x3B/mP/MtTOp6Zv+2/msALvsc4tWd10Z7W5SmZvDyOJxnBmVJA/wRYCqoo04TVwRuvwUjnWKc9a/HO1YU4oOn/hLYL1HVq7y1N77euBVfNvMT9DX1OlXE36P80eCnWPhFlSBOzp/xzJgZgJbd7+JZR/69o5l359gcnPWvx6X3+XgYxFGMc5iXB11Qf2Ay427+5n14XRKhT714LPOWaa0P24bU+f64PnIr+rk3h8SqEUqfPkPyCl+4zFZZuXRcHLH15H583MQf2fvcYDEkEUcSbsFnTygcFsbi0xt30M6wXKATtu7q17H32OHQ+ZOxDM66eQvXCpxwIcBEUC/2b1GID06t+wkfLA9Fw+2xKD7WGOn3rOH8uWqS7+VH/qi/h9+Hno/xR8NtTFruQD+YHozDm9A2pvZzb46k8Ja41Wknd+z1YUcY93/E6aYs+RGOJNzComdeULQWQ2Jrg9KMTF4+LS4Og/M4oROlL24quGu0+/51GIn1OL09/MYPzp/HCfpBSXsZft20S2uf02niirL7zNiVOTUAMZO3aJXrFvc30osa4FZrwSEAwIwbt9HGkGg997ObN/CtdwvmH5EIRx7c5OpnEtkQeSHPUXTUHvp9U3nnFXfygd7vKgckXpdEuNOG8Op9JOEWvM+NgONuAp1LN3jnZ04LgM2aq1hxJwazvQLf+BxPK83D1KZBUE4PgHT1VS5ds5/2GjcCJyJU+tRp2IALicDKl7VpgZQBErhOu85Lr3/WHC87q1ZdpO1sisYj73L/v+7rC+OjzL2U198PJofjtPYzVn9iYyM8XOsCx9BbvOO/5+thvUwVFPfVQWeYDWSslem7PFGcYQKdQhEcFsYK7j/NducO8IPpoTgM+ysNA01e8upif94Aqe1VFre8w44w6f+owntDk2cTAvDJ2ONYc7IX/hrKjCtZ4wJgGcHov/S4HSS907Xm8aaxNGeoP+r9EsuT19Y+TY4k3ELf7t1wMWk9Xr58yf2GfZdgLWKt0R0S1IJFDCW4jFN12iIG8p7j7+9PVqxYQY4cOUJ++uknMmTIEAKANG/enOTm5hJCCDl48CABQMLDwwXn37lzhwAgc+fOJYQQkp2dTQCQwYMHay3P0tKSBAUF/ev6Wltb8z4WFhYEAP3QD/3QD/3QD/3QD/3QD0lLS/vXvzNrkoKCAmJtbV2rurC2tiYFBQX/ddNrjPfeWcfVq3wrwciRI+Ht7Y158+bhhx9+wLx585Cfnw8A0NfXF5xv8E+gQlamMllWnpX5N2Rm8tcJl5eXQ6lUwtTUtMpxDLTh5sYETU5MTHyDJIXqqupQXVUdqquqQ3VVdaiuqg7VVdWhuqo6takrQghyc3O5wMHvGgYGBkhJSUFxsfbQODWBnp4e91u9LvLev4hpY/bs2Vi0aBFOnjyJefPmcf7/i4qKBLKF/2wmZWUqk2XlWZm3gVgshp2d3VvJB0DdNd2+Raiuqg7VVdWhuqo6VFdVh+qq6lBdVR2qq6pT27p6F5ckqmNgYFCnX4xqmzrjrEMdXV1dSKVSZGdnAwA3s5CRkSGQZdNYl5Pm5uYwNDTUKltUVITs7Ox/5Z6SQqFQKBQKhUKhUFjq5ItYYWEh0tPTYWVlBQBo3rw59PX1ER0tdD8dE8O4yfX19QXAzHz4+PggPj5eYBWLjY0FIYSTpVAoFAqFQqFQKJR/w3v9Ivb8+XOt6V9++SVKS0vRq1cvAIyb+l69euHChQu4cUPl3SgvLw9btmyBm5sb/P39ufShQ4ciPz8fmzdv5uW7Zs0aSCQSDBkypAZa87+RmZkp2H9G0Q7VVdWhuqo6VFdVh+qq6lBdVR2qq6pDdVV1qK4oNcl77b5++vTpiImJQfv27WFvb4+8vDycOnUK58+fR0BAAM6fPw9DQyb4XlJSEvz9/aGrq4vp06fDzMwMERERuHXrFk6ePImQkBAu3+LiYsjlcty4cQNTp06Fp6cnTp06hSNHjmD+/PlYsmTJf9VkCoVCoVAoFAqFUgd4r1/Ejh07hvDwcNy+fRvPnz+Hjo4O3NzcMHjwYMyYMUOwmfDevXv4/PPPcfHiRRQXF8PHxwcLFy5Ep06dBHm/fPkS8+fPx+HDh/H8+XO4uLhg4sSJmDRp0v/k3ZBCoVAoFAqFQqFQ3usXMQqFQqFQKBQKhUJ5H3mv94hRKBQKhUKhUCgUyvsIfRGjUCgUCoVCoVAolFqGvohRKBQKhUKhUCgUSi1DX8QoFAqFQqFQKBQKpZahL2IUCoVCoVAoFAqFUsvQFzEKhUKhUCgUCoVCqWXoixiFQqFQKBQKhUKh1DL0RYxCoVAoFAqFQqFQahn6IkahUCgUCoVCoVAotQx9EaNQKBQKhUKhUCiUWoa+iNUweXl5WLZsGZo3bw5TU1NYWFhALpdjx44dIIQI5Hft2oXg4GCYmZnBxMQEzZo1w5IlS3gyFy5cgEgk0vrp2bOn1nqcOnUKcrkcxsbGaNCgAQYNGoSUlBStsg8ePEDfvn1hbm4OY2NjtGnTBufOnfvflfEGqqKrR48eVdh29rN7925evkVFRfjqq6/g5OQEfX19uLi4YOnSpSgpKdFaj507d6Jly5YwNDSElZUVxo4di6ysLK2yV69eRadOnWBqagozMzN07doVCoXirepFGzWhq8rkmzVr9j+3X6lUYuTIkbC0tIShoSF8fX1x4MCBt64bbVTnPjx9+jQ6duwIa2trGBsbw8PDA7NmzcLTp08F+ebk5GDKlCmwtbWFgYEBvLy8sGHDBq33dnl5OVavXo0mTZrAwMAAjRs3xsyZM/H69Wutda7OPfu2qAk91dXxCqi6vggh2LhxIzeu1K9fH127dkVMTIzWfOvamFUTeqqr49XTp08xYcIENG7cGHp6erC3t8enn36Kly9fCmSr0/fr2lgF1Iyu6vJ4RXlHIZQao6ysjLRu3ZqIxWIyevRosmnTJrJ69Wri7+9PAJA5c+bw5EePHk3EYjEZNGgQCQ8PJxs3biSfffYZCQ0N5cmdP3+eACDjx48nu3bt4n3Onz8vqMehQ4eISCQiMpmMrF+/nixbtow0atSI2NjYkIyMDJ5sUlISadCgAWnUqBFZtmwZWb9+PZHJZEQikZCzZ8++dR2xVFVXeXl5gjazn3r16hE9PT2SlZXFy7tPnz4EABkzZgyJiIggY8aMIQDIqFGjBPVYtWoVAUDatm1LNm3aRL788ktibGxMmjZtSvLy8niy0dHRRF9fnzg7O5NVq1aRVatWEWdnZ2JiYkJu3rz53ukqJSWFACD9+vUTyJ84cUJQj+q0//nz58TJyYkYGxuTL7/8kmzatIm0bduWACDbtm2rMV1VR1+EELJ582YCgLRq1YqsWrWKbNq0iYwdO5bo6OgQJycnXh8oKioifn5+RCKRkOnTp5PNmzeTfv36EQBkwYIFgnpMnTqV0+/mzZvJ9OnTiUQiIe3btydlZWU82ercs++6nurieEVI9fQ1YcIEAoC0a9eOrF27lnzzzTfE2dmZ6OnpadVBXRqzakpPdXG8evr0KXFwcCC6urpk8uTJZOPGjWTy5MlEV1eXyGQy8vr1a062On2/ro1VhNScrurqeEV5d6EvYjVIVFQUAUCmTZvGSy8qKiJOTk6kXr16XNqWLVsIALJz58435ssOFNu3b3+jbHFxMZFKpcTe3p7k5uZy6fHx8UQsFpNx48bx5AcNGkTEYjGJj4/n0nJzc4m9vT1xd3cn5eXlbyzz31AdXVV2/sCBA3npJ0+eJADIjBkzeOkzZswgAMiVK1e4tKysLGJkZET8/PxIaWkpl378+HECgHz99de8PPz8/IipqSlJT0/n0tLT04mpqSnp3Llzldr9b6gpXbE/bLQ9mLVRnfbPnj2bACDHjx/n0kpLS4mfnx9p0KABr2++baqjL3d3d2JjY0MKCgp4svPmzSMAyJEjR7i09evXEwBk7dq1PNn+/fsTXV1d8ujRIy7t9u3bRCQSkf79+/Nk165dSwCQ3bt3c2nVvWffFjWlp7o4XhFSdX3Fx8cTAKRr1668+rx48YJYWVkRNzc33o/bujZm1ZSe6uJ49emnnxIAZM+ePbz0PXv2EABkyZIlXFp1+n5dG6sIqTld1dXxivLuQl/EapAzZ84QAOS7774THPPz8yNSqZQQQkh5eTlxcXEhPj4+3PFXr15VeFOqDxR5eXmCH0PqnD17lgAgixcvFhzr0KEDMTMzI8XFxYQQxoKir69POnToIJBdvHgxAUCuXr1aeaP/JVXVVUWwM8ZnzpzhpQ8bNowAIKmpqbz01NRUAoCEhYVxaRERERW+DDs7OxNPT0/u/8TERG7GWltdRCIRyczMrLTO/5aa0pX6D5uCggLejKIm1W2/ra0tcXFxEcju3LmTACD79u2rtM7/C9XRl7W1NWnatKlAjv0h89tvv3FpwcHBxMjISHD//fnnnwQA+fbbb7k09gXlzz//5MkWFBQQIyMj0q1bNy6tOvfs26Sm9FQXxytCqq4v1mL1yy+/COTGjx8v6Bd1bcyqKT3VxfHK29ubGBoaCp79ZWVlxMDAgDg7OxNCqt/369pYRUjN6aqujleUdxe6R6wG8ff3R/369fHdd9/hwIEDSE1Nxf379zF37lxcv34dCxcuBMCsGU5OToZcLseSJUvQsGFDmJmZoX79+pgwYQLy8vK05v/pp5/CxMQEhoaGcHd3xw8//CBY7x0XFwcACAoKEpwfGBiIV69eISEhAQBw8+ZNFBUVVSirnt/bpqq60kZeXh72798PBwcHdO7cmXcsLi4Otra2aNy4MS+9cePGkEqlvPa8SVf379/nrsWbZAkhuH79etUaX01qSlcs33//PYyMjGBsbIzGjRvjq6++QlFREU+mOu3PzMxERkYG14c0ZdXzqwmqo6+QkBDcvXsXM2fOxL1795CWlobDhw9jyZIlaNu2LTp06ACA2UPx119/oWXLljAwMBCUJxKJBH1LLBbD39+fJ2tgYACZTFatfqh+z75NakJP6tSl8Qqour7Ye8fIyEiQB5umvgeqro1ZNaUnlro0XhUVFcHAwAAikYiXLhaLYWhoiIcPHyI7O7tafb8ujlVAzehKnbo2XlHeXST/dQXqMubm5jh+/DjGjh2LwYMHc+mmpqY4dOgQ+vbtC4B5EQOAffv2obi4GPPnz4eTkxN+/fVXbNq0CQ8ePMC5c+e4AUdXVxe9e/dG9+7dIZVKoVQqsXXrVkybNg0KhQLbt2/nylIqlQAAW1tbQf3YtIyMDHh5eVVZtiaoqq60sW/fPuTl5WHWrFkQi/lzC0qlEk2bNtV6nq2tLdLT03mybLo2WUIIlEol3N3d66SuxGIxOnTogL59+8LBwQFZWVnYv38/lixZgujoaJw5cwY6OjoAqt6vqitbE1RHXz/88APy8/Pxww8/YNWqVVz66NGjsWnTJq79L168QEFBgdY26evrw8LCgtcmpVIJCwsL6OvrC+RtbW0RFRWF4uJi6OnpVeuefZvUhJ6AujleAVXXF3udzp07h969e3NyhBBcvHgRAJCWlsal17Uxq6b0VBfHKy8vLzx48AAKhQIymYxLVygUePHiBQAgNTW1WnWsi2MVUDO6AurueEV5d6EvYjUM6/mwd+/ekMvl+Pvvv7F+/Xp89NFHOHbsGDp37ozc3FwAQFZWFs6ePYtOnToBAAYMGABCCH766SecOXMG3bp1AwAEBwfj2LFjvHLGjRuH7t27Y8eOHRg7diyCg4MBAPn5+QCgdVBlZ8dYmerI1gRV0ZU2tmzZArFYjNGjRwuO5efna20PwLRJvT3/33Vlb2+PP/74g5cWGhqK8ePHIyIiAnv37sWwYcMAvF+6AqquL11dXdjb26Nfv37o1asXjIyMEBkZiW3btkFHRwcRERFvbBPbLs2+VZksK6Onp/ef6utt6wmou+MVUDV9devWDU2bNkV4eDikUin69++P/Px8rFq1Crdv3xbUsy6OWTWhp7o4Xk2bNg1Hjx7F4MGDsWbNGjRr1gx37tzBtGnToKuri5KSEuTn57+19rDy7+NYVRO6Aur2eEV5N6FLE2uQW7duQS6Xo3PnzlixYgX69euH0NBQXL58GdbW1hg3bhzKyspgaGgIgJkVYV/CWEaNGgWAcalaGWKxGHPnzgUAnDx5kktnl3RoLtUAgMLCQp5MdWTfNlXVlSZ3795FTEwMOnfuDHt7e8FxIyMjre0BmDapt+f/u64qYt68eQDez34FVF1f5eXl6Nq1K6KiorB//36MHDkSAwcOREREBGbPno0tW7bg999/f2Ob2HZp9q3KZNXz/K/0VRN6qoj3fbwCqq4viUSC06dPIzg4GJ999hnc3NzQokULxMfH45tvvgEAmJmZcfnWtTGrpvRUEe/zeNWmTRvs3bsXubm56NGjBxwcHNCrVy+0b9+ec51uZmb21trDyr9vYxVQM7qqiLowXlHeXeiLWA2yevVqFBYWYtCgQbx0IyMj9OjRA48fP8ajR49gZ2cHALC2thbkYWNjAwCcqb0yHB0dAQDZ2dlcmlQqBaDd5M2msWbx6si+baqqK022bt0KABg7dqzWfKVSaYXm/oyMDF573tR+kUjEydRFXVVE48aNoaOj8172K6Dq+rp8+TIuXbqEAQMGCPYdsOeyS6TMzc1haGiotU1FRUXIzs4W9K3s7GytD+GMjAxYWFhAT0+Pk2XTtckCNaOvmtBTZbzP4xVQvfvQ3t4e58+fx+PHj3Hx4kXcvn0bN27c4GbCmzRpwp1f18asmtJTRbzv49WgQYOQnp6O+Ph4/Pnnn1Aqldi4cSPS09MhkUjg6uparTrWxbGK5W3rqjLe9/GK8u5CX8RqEPbm0madKC0t5f42b94cBgYGWm9Qdj9Ao0aN3lheYmIiAMDKyopL8/PzAwBER0cL5GNiYmBmZgZ3d3cAQPPmzaGvr1+hLAD4+vq+sR7/hqrqSp3i4mLs2rULlpaW6NOnj9Z8/fz8kJGRwdtbADB7DZRKJa89b9KVh4cHTExMqiQrEonQqlUr7Y39H6kpXVXEw4cPUVZWVq1+pd5+Gxsb2Nraat1oX9P9Cqi6vqqjV7FYDB8fH8THxwt+sMTGxoIQIuhb5eXliI2N5ckWFhZCoVBUqx+q37Nvk5rQU2W8z+MV8O/uQ3t7e3zwwQfcnplTp05BLBYjJCSEk6lrY1ZN6aki3vfxCgB0dHQgk8nQpk0bNGrUCE+ePEF8fDzatm0LIyOjavX9ujhWqfM2dVUZ7/t4RXmH+S9cNf5/Ydq0aQLXsIQwcVFsbGyIubk5F/uFdVl8+PBhnmz//v0FsWOys7MFZRUWFpLg4GCBC9Ti4mJiY2MjiHOhUCiIWCwWBIseOHAgEYvFRKFQcGlsnAs3N7cai3NRHV2xHDhwQGu8HXV+/fXXSmPyXLp0iUt79uwZMTQ0JP7+/lpj8qjHJSGEEF9fX2JqasoL2piRkUFMTU1Jx44dq974alJTutLWr8rKysiQIUO0umyuTvtnzZpVYVye+vXrk1evXr254f+SqupLoVAQAMTb21vgcpkNNHvo0CEu7ccff6wwNo9EIiEpKSlc2s2bNyuNzbNr1y4urbr37NuipvRUF8crQv7dfajOsWPHtAZprmtjVk3pqa6OV5qUlZWRQYMGEZFIRM6dO8elV6fv17WxqiLehq7q6nhFeXehL2I1yKNHj0iDBg2ISCQiw4cPJxs2bCBff/01cXR0JADI+vXrOdnHjx8TKysrYmBgQGbPnk3Wr19PevToQQCQkSNH8vL19fUlvXv3JosWLSIRERFk0aJFxM3NjQAgU6ZMEdRj//79vMjvy5cvJ40aNSJWVla84JaEMPFWzM3NSaNGjcjy5cu5yO86OjqCuFNvk+roiqVr164EALl7926leffs2ZMAIKGhoWTLli0kNDSUACDDhw8XyK5cuZIAIO3atSObNm0iX331FTE2NiZNmjQRBPG8cuUK0dPTI87OzmT16tVk9erVxNnZmRgbG/MG2rdNTemqX79+pGPHjuTLL78kmzdvJsuWLSOtWrUiAEifPn14wVQJqV77s7OziYODAzExMSFfffUV2bRpE2nXrh0BQLZs2fJ2FFMB1dHXgAEDuJeM7777jvz444+kV69eBAAJDAzk/WAsKioirVq1IhKJhMyYMYNERESQfv36EQBk/vz5gnpMnjyZACD9+vUjERERZMaMGUQikZC2bdsKdFude/Zd11NdHK8IqZ6+xowZQ0aPHk1++OEHsnnzZjJy5Eiio6ND/Pz8yMuXLwV516Uxq6b0VBfHq9zcXOLp6Um++OILEhERQVauXMm1STM4d3X6fl0bqwipOV3V1fGK8u5CX8RqmKSkJDJy5Ehia2tLJBIJMTU1JW3atOHNGLOkpKSQjz76iFhYWBBdXV3SpEkTsnLlSsHA980335DAwEBiYWFBJBIJqVevHmnXrp0gwrw6J06cIAEBAcTQ0JDUr1+fDBgwgCQlJWmVvXv3LunduzepV68eMTQ0JMHBweTs2bP/myKqQHV0lZqaSsRiMZHL5W/Mt6CggMybN484ODgQPT094uTkRBYvXlxhoMnt27cTb29voq+vTywtLcno0aPJ06dPtcpGRUWRDh06EGNjY2JiYkK6dOlCrl+/Xr2G/wtqQldbtmwhbdu2JVZWVkRXV5eYmJiQgIAAsn79ekEfZKlO+9PT08nw4cNJw4YNib6+PmnZsiXZu3dv9Rv/L6iqvoqKisi3335LvL29iYGBAdHT0yNubm5k7ty5JC8vT5DvixcvyKRJk4iNjQ3R09Mjnp6eZN26dVpnNktLS8nKlSuJu7s70dPTI1KplEyfPl3wY5mlOvfs26Im9FRXxytCqq6vjRs3Eh8fH2JmZkYMDAxIs2bNyNdff03y8/O15lvXxqya0FNdHK+KiorIhx9+SBwdHYm+vj4xNzcnXbp0qfBHenX6fl0bq2pKV3V5vKK8m4gI0YhQR6FQKBQKhUKhUCiUGoU666BQKBQKhUKhUCiUWoa+iFEoFAqFQqFQKBRKLUNfxCgUCoVCoVAoFAqllqEvYhQKhUKhUCgUCoVSy9AXMQqFQqFQKBQKhUKpZeiLGIVCoVAoFAqFQqHUMvRFjEKhUCgUCoVCoVBqGfoiRqFQKBQKhUKhUCi1DH0Ro1AoFAqFQqHUCsuXL8egQYPg7OwMkUgER0fHap3/7NkzjB49Gt7e3mjQoAEMDAzg6uqK0NBQJCUlaT1HqVRi5MiRsLS0hKGhIXx9fXHgwAGtssnJyRg2bBisrKygr68PV1dXLFiwAIWFhdVtqoDo6Gj07t0bdnZ2MDQ0hIuLC8aNG4eHDx/+z3lT3k9EhBDyX1eCQqFQKHWPhQsXYtGiRTh//jzatWv3X1eHQqG8A4hEIjRo0AA+Pj64fv06zMzM8OjRoyqf/+DBA4wZMwZBQUFwcHCAoaEhEhMTsW3bNhQVFSEmJgZNmzbl5P/++2/4+vri2bNnmDFjBuzs7LBnzx5cvHgR27Ztw+jRoznZ+/fvIygoCKWlpZg0aRKcnJwQHR2NnTt3okuXLjh9+jREItG/aveZM2fQo0cPuLi4YMyYMbCwsMCdO3ewefNm6Ovr49atW7C1tf1XeVPeYwiFQqFQKG8AQLU+58+fJwsWLOC+UyiUus358+erdL8nJydz3728vIiDg8NbKT82NpYAIGFhYbz02bNnEwDk+PHjXFppaSnx8/MjDRo0ILm5uVx6nz59iEgkIleuXOHlsWzZMgKA7Nq161/Xr0uXLkRXV5dkZWXx0iMiIggAsnr16n+dN+X9RVLbL34UCoVCef9YsGCBIG3NmjXIycnBp59+ivr16/OOOTo6YvLkyfjwww9hb29fS7WkUCjvOs7OzjWSr4ODAwDgxYsXvPQ9e/bAxcUFvXr14tJ0dHQwZcoUjBw5EqdOncLgwYMBAOfPn4e7uzvkcjkvj48//hhffPEFtm/fjuHDh/OO/f777/juu+8QGxuLwsJCuLu7Y+LEiZgwYQJP7tWrVzAwMIC5uTkvXSqVAgCMjY3/h9ZT3lfoixiFQqFQ3sjChQsFaTt27EBOTg6mTZtW4T4PCwuLmq0YhUL5f0lJSQlycnJQUlKCpKQkbozq3r07J5OZmYmMjAwMGzZMcH5gYCAAIC4ujnsRKyoqgpGRkUCWTYuNjQUhhFueuHnzZkyYMAGBgYGYN28ejI2NcfbsWYSFhSE5ORkrVqzg8ggJCUFMTAxGjRqF2bNnw8LCArdv38bMmTPh6emJDz/88O0ohvJeQZ11UCgUCqVGWLhwIUQiES5cuMClPXr0CCKRCB9//DESEhLQr18/mJubo169eujTpw+3VyQpKQmDBg2ChYUFjIyM0L179wo3tD9//hxz5syBh4cHN+Pco0cPxMTE1EIrKRTKf0FkZCQsLS0hlUrxwQcf4M6dO/j+++8xYsQITkapVAKA1r1XbFpGRgaX5uXlhXv37uHJkyc82fPnzwMA8vLyOItbZmYmpk6dig8//BBRUVGYPXs2Jk6ciCNHjmDq1KlYtWoVb8yaO3cuwsLCcPDgQchkMtjZ2aFr165wdnZGTEwMTE1N35JmKO8T9EWMQqFQKLVOSkoKgoKCkJOTg9DQUAQHB+P48ePo1KkT7t27h4CAAGRnZ+Pjjz9Gu3btcPr0afTo0QPl5eWCfHx8fLBixQrY2tpi0qRJ6NevH6Kjo/HBBx/gxIkT/1ELKZS6S3l5ObKzs3mfnJwcAEBOTo7gmOZ9+zYIDAzE2bNncfz4cXzzzTewsbHBixcvUFpaysnk5+cDAPT19QXnGxgY8GQAYObMmSgsLESfPn1w8eJFPH78GPv370dYWBh0dXV58gcPHkRRURFCQ0MF7e3VqxfKy8vx+++/c3nr6OjA1tYWnTp1wpYtW3D48GHMnDkTv//+Oz788EOUlJS8dR1R3gP+601qFAqFQnk/cXBwIABISkqK1uPanHWkpKRwDj1WrlzJkx83bhwBQOrXr1/hscOHD/PSW7duTcRisSBdqVQSOzs7YmVlRQoKCv59IykUigD1+7gqn4rGiLfprCMjI4M0bNiQjB8/nku7du0aAUDmzJkjkH/9+jUBQIYOHcpLX7t2LalXrx5Xdz09PbJw4ULi5+dHAJCcnBxCCCFhYWFvbPfixYu5fIcNG0acnJxIfn4+r7wNGzYQACQiIuKt6IHyfkH3iFEoFAql1nFycsL06dN5aSNGjEBERAQaNGggODZ8+HBERETgxo0b6NevHwBAoVDg8uXLGDJkCJfGYmNjg9mzZ+PTTz/FH3/8gR49etRsgyiU/0dYW1vj7NmzvLQbN25g1qxZWLlyJVq0aCGQr2mkUik6deqErVu3Yu3atdDX1+ccYagvP2Rh0zSXLU6ZMgXjx4/HrVu3UFRUBC8vL9SvXx/r16+HjY0NzMzMAADkn+hPO3fuhI2NjdY6sY5JUlNTsXv3bkyePBmGhoY8mUGDBiEsLAwXL17E2LFj/wcNUN5H6IsYhUKhUGqdFi1aQCzmr45nf8x4e3sLjmn7QRUdHQ2AiROkzZlIYmIiACY2EH0Ro1DeHgYGBujUqRMvTSJhflK2atXqP4sbWFBQgLKyMrx69QqWlpawsbGBra2t1v2ibJqvr6/gmL6+Pi/92rVryMrKQmhoKJfm5uYGgHFIpKkLTdhxq6ysTHCMXUqpvqSS8v8H+iJGoVAolFqnXr16gjT2h1xlx9T3Ufz9998AgLNnzwpm59XJy8v7n+pKoVD+G1JTU5Gfnw8XFxduj9bTp09hZWUlkL179y7++OMPuLi4wNLSkksfOnQoVq5ciRMnTnAu7MvKyrBu3TrUr1+f52VRG4WFhZg2bRr09fUxa9YsLn3w4MH44osvsGDBArRr105g6crJyYGBgQH09fXh4eEBHR0dHD16FMuWLeOF+9ixYwcAwM/Pr1q6odQN6IsYhUKhUN5L2Be25cuX4/PPP/+Pa0OhUKrCrl278PjxYwBAVlYWiouLsXTpUgBMLDB1r4cjR47ExYsXkZKSwoXIWL58Oc6ePYsePXrA0dERhBDcvn0bu3btQklJCdavX88r7/PPP8eBAwfw0UcfYcaMGbC1tcUvv/yCuLg4bNmyheet8M6dO/j444/Rs2dP2NnZ4enTp/jpp5+QnJyM7du3o0mTJpysnZ0dNmzYgLFjx8LT0xMjRoyAg4MDsrKycOvWLRw9ehR3796Fo6MjGjRogGnTpuH7779Hy5YtMW7cODRo0ABXrlzB7t274eLiQpcl/j+FvohRKBQK5b0kICAAgGqJIoVCeffZunUrLl68yEv78ssvAQBt27blvYhpo2fPnkhPT8f+/fvx7NkzlJWVwdbWFoMGDcKsWbPg5eXFk2/YsCGuXLmCzz//HOvXr0deXh6aNm2KvXv3YsiQITxZCwsL2NnZISIiAs+ePUO9evXQpk0b7Nq1C/7+/oK6jB49Gu7u7li5ciU2bdqEly9fwsLCAh4eHliyZAlvb9yKFSvg4eGBLVu2YNmyZSgqKoKtrS3CwsKwcOFCbu8Z5f8X9EWMQqFQKO8lfn5+kMvlOH78OLZt24YxY8YIZGJiYuDt7a01SCuFQnl7tGvXjnNgURnqcQX/jWynTp3euCdLE1tbW+zateuNclZWVjhy5Ei18g4ODkZwcPAb5UQiEcaNG4dx48ZVK39K3Ya+iFEoFArlvWXPnj1o3749QkNDER4eDj8/P5iamiItLQ3Xrl1DUlISMjMz6YsYhUKhUN456IsYhUKhUN5bHBwcEB8fjzVr1uDIkSPYuXMnCCGwsbFBixYt8NVXX8HCwuK/riaFQqFQKAJEpCp2ZAqFQqFQKBQKhUKhvDXEbxahUCgUCoVCoVAoFMrbhL6IUSgUCoVCoVAoFEotQ1/EKBQKhUKhUCgUCqWWoS9iFAqFQqFQKBQKhVLL0BcxCoVCoVAoFAqFQqll6IsYhUKhUCgUCoVCodQy9EWMQqFQKBQKhUKhUGoZ+iJGoVAoFAqFQqFQKLUMfRGjUCgUCoVCoVAolFqGvohRKBQKhUKhUCgUSi1DX8QoFAqFQqFQKBQKpZahL2IUCoVCoVAoFAqFUsv8H+8fxdIh1Co8AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=1.98, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(500, 1000)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJ9CAYAAADZgogUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xTZfv48U+bQgul7JkWOmjLhkBpaQOKghooqCCCDBciqy7kcaGCiojiwsUWQQVEFBWUQlREFDsohbChkxmQTVktNMnvj+M5yWlS9Pn+KvLI9fbVF8k597nXWY2nuS4/l8vlQgghhBBCCCHE/xf/f7oDQgghhBBCCPFvIB+uhBBCCCGEEKICyIcrIYQQQgghhKgA8uFKCCGEEEIIISqAfLgSQgghhBBCiAogH66EEEIIIYQQogLIhyshhBBCCCGEqADy4UoIIYQQQgghKoB8uBJCCCGEEEKICiAfroQQQgghhBCiAsiHKyGEEEIIIcT/nN27dzNkyBBatGhBjRo1qFq1Ks2bN2fs2LEcOnToL9eTmpqK2WwmODiY2rVr079/fwoLC/9PffJzuVyu/9OWQgghhBBCCPEPWb16Na+88gqJiYmEhYUREBDA1q1bmTdvHtWrV8dms1G/fv3L1vHVV19x55130q5dO4YPH87p06d55513MBgMbNiwAaPR+F/1ST5cCSGEEEIIIf41vvjiCwYMGMCUKVN46qmnyi136dIlIiIiCAgIYPv27VSrVg0Am81GXFwcw4YNY/bs2f9V2/JngUIIIYQQQoh/jfDwcABOnjx52XJr167Fbrfz4IMPah+sAEwmEzfccAOff/45ly5d+q/aDvjvuyv+jNPpxG63ExISgp+f3z/dHSGEEEII8Q9wuVycOXMGo9GIv//V+UyjuLiYixcvXrH2YmNjvX4//m++H+VLcXExZ8+epbi4mB07dvD0008DkJycfNntsrKyAEhKSvJal5iYyE8//UROTg6tWrX6y32RD1d/A7vdTuPGjf/pbgghhBBCiKvA/v37CQsL+6e74aW4uJjI8GocPuK4Ym36+/tTr169Cn0A8eGHH/LII49o7yMiIliwYAHXXXfdZbez2+0AhIaGeq1Tlx08eFA+XP3TQkJCAOhCMt/m7KLvkIGQtZ2vc7YC0P/GW/hizfcA9I1tA6CtU98XTo4n8tksXb1f52ylb2wbbttwlKHVD9M3tg19N/zO1x0bALBvfAJRc/fhql4Nx6489k1IIPvuuVqdAIbatfgy4xf6xrbh0GOdaPRupq5uz3KOEyd9tr/3pQRm9Z3N5LYm3fKAMCOlB+xedZUd28EFLVifsERX5qWtG2gbGKi9V9cFGBtSaj/Mgac7ETYlk69zttIvLgnnmbMQ3wqytlN0VzzVP8/S2i3bflnHhybwyzj3vBwd3ol6czLL3e5cn44Ef7MBvw4tcG3c6TVfBa/FE/VMltd2/m2b49yyizP947lQx5/6M/Vt+LdphnPrbt0212ec4/HaBfSNbcOZfvGELPWu15NnfX5xLXFl7/C5bu9HrYkas5cvN6Rx27C7Mfy62auM6tKNJiqtsfms58/6UV7ZZr8EsPv6Uu19/kwTXWNzONDtfLl1XO448tVOQERjCl6sTtV1wdw+bC1P1MnzKnOmXzwvTJjH2+1a0zvrGMNqHLpsv48PTeDizUU0GrzLa93REZ3AD+rNyvQ5V77qLHsu+NrO8/3vozsReXs+C6PWlLsP/spxr677YEc6oQHVtD74BQaCw8FXOzbRN7YNF74OZ1Wr7/jgZASrO4X47Jt6vngeJ6XLw6j0QgiuTTs59Ggn6m6/SOXHD/NV7Pecd15kSPM4fn+oEw2muefq4H86EfqWck5sKrnIxDZxurEcdZyjniFYa/vTXVlU8w/izoTO5D7djKhx7nM+74P2vNnlc2aaYn3OQ+nyMJ6LWEFikL+27rYNR1nesZ5Wpu6PNZjTZJ3P/fDhzgwebJHI1zlb6X9LMqV79uv66rlPv87ZinnqgzgrQaP39Oe8X7sWuDbv5MCnLcjqtMTnsaK+NrSIwbEz1+f+LG//AuS/2ZGmT2zQln95tiYLO3j/z77TgxL46aW5Wt99HZvnb+uI9c15f+m66km9ZpY3tj8bQ9m+HB3ZiUarDvLFDyt9ljl/W0eqLt/AvvmtaHL/dgDyprcnOmVTueccQP7sdjQdoVwLS28w0XHSRqyLkmgwPdOrPze8PIxan64H4CHbbl6dfDfPPvsJH5ha6MbQ7usHiHpauW7P37WeGv5Vyt3Par9OfhHNuaw6hL2utNt9y+1Uv7PAq7/3bNzLpx2UP3W6dKOJKjsPUTA8nCYvK/069nkMde/KxVA9BEfRGa/t/atWwXn+gva+7DnwZzz7X81ah7OW45ctc7llR0d2ot6sTFyJbfDL2KotL10ehuP9+gT+sFHb9s6OZo7f2oKaC9d71ffatkyead2Jr3O20mPs/VT5Ltur3bLtz9+1nvubJ/zlY/qJLVt5s6273KnBCdRctN5rjOD7OPt442bCO+zRfje82ly8eJHDRxzszY6gesjf/2St6IyT8Lg95OTkUL169Qqrt0+fPjRv3pyzZ8+yadMmli9fzrFjx/50u/Pnld9DAj1+B1UFBQXpyvxV8uHqb6B+Eg+gEtVD/AkICAK/StpBG+Af6H7tVwnA671/UJD2WlU9xJ8Av0pUqRage63bxj8QlyEQP79K+AcFaeVUBv/K2jJDYJCu/bLl/Mpp3z8oiGCP8uryAP9AbZyedZUdm6FqoFeZaiH+VA90n9TqOrVOta/KdpVx+lWCP+bVUNlznXf7ZRkq6+el7PZlBVRS1vsZgnD5mC9f+wrA3xCI068ShkpBGAK9+6au9xRUzV1GbfdyPOvz7J9XH6sGEeBXWTseDeXsdwBXQJDX/vur/SivbOVqAQR4/B8q/ypBVK5WmQC/S+XWcbnjyFc7Af6B+FcNwlA5SDePujKVgggOMXidR+X121A5CEPVknLX4Ue5c+WrzrLngq/tPN8bAoOoFFz5svvgrxz36rqQEH+qB7j74OdXCfz83cdcsHJuBl0KKHcc6vmiO06CAwkwBOJSz9UAf62uAKf39QbQndPVKnvv+2KHP9UN+vms5q+c/+o5p12TqgRR9Y/96nMeggMJDvGnepB7nee1E/A5z57zptVd5jrn61puCAzCr5L3seqnzlHVoHKPFW3f/3Ed/yt053oV/XW9KoZyj9+y55TnOEA5X/7qddWT57Xrz84JX2PwumdUDtLum77KqO0p1zn9PJR3zpWdKwKCCKxW9l7jsU8ru8tWDTFgqOy+lniOwfN+UD3En+r+5e9ntV+GqoG6dg3BgT77W9WjPVdAEAH+lXXtGaoq2xn8vO/fAP5+lXH6uf8nV9lz4M949r9ScGWf25Z33Su7zPM6outrcCB+XsdPZd38e9ZXzfP4rOT73lXeef1Xj+ngMuU8++JZJ/g+zqpXU9Zd7V8TqR7iT/UQwz/djf+zsLAw7clgnz596NevH/Hx8Zw/f55x48aVu13VqlUBKCkp8VpXXFysK/NXXZ1//CmEEEIIIYS4Ipy4cF6R/65MkPK2bdvSvn17pk+fftlyapj1gwcPeq1Tl/n6k8HLkQ9XQgghhBBCiH+VCxcucOLEicuWiY+PByA9Pd1rXUZGBtWrVyc2Nva/alc+XP2NDjzdCQDrV59gtduwGE30ik+m9IDySdhiNGHMCMFqtwHQ85aBWO027t29n7xBM3V1qdsDjKhhx2I0sXdJG5a0aIhzdWOsdhsRz6ezIisVx44c5f1z6ViMJk7e546A4jh+AovRhNVuw/hGmrZcrduznKf5+9ZpZSKfSScxyIDVbtP6ZbXbSFqRR+GrSVp/Pdd71r89aaGuDMCzve/V+qGWtdptlB5UvmjY+OU0bb3zzBllu4wtAGS8rszVDcOGs3h/mratL1a7DZe/+7XVbmNwilWr+/wdnXTbHx2VxLr3ZgHg2rCN3PlxujEDRD+e4dWm1W7jaMcaADz24uc0eC8Nv8BA3XYfLJ+jlfdv2xyAp+vkauMP+dxdb/4bSYT8WterDc/6XFlbdePynPNLRZVJ3fULFqMJw8/K37L7m1pq64t7J2CIbQrAiRbK3x2fu7MTVruNfaVnveYz9/1O2mtXZ/c+sxhNtMgO0Mpb7TYMdevwTqMN+FWqrLxfY6Tglrns63ROV6dnHZ7/qnV5jkd9bWjVjD2TkojJCqS0cC+WpjvZOH4Gz9bdrc2NK6kdAG/vSSfk8wxebdoWgK9b1tPq6XHb3V5jzPmoI3Vnp2Psu0M3HgBDvXpsem469T9Iozye/fUcQ3Lb7sRkBerWWYwmcmYmaMuSb7wTgIbvpvFV9A9Epj6oq1ut70KfBG2cZc9htZznurCAavSMSgTAuboxqwozWbVvA1E/PABAFYuSjX5s7QJdnz3HX3+6MuZKPyrfbQhoHEbATftwZSvfddk6djqVvt+Aq9tBLEYTfcMSsNptNJyahnN1Y9puVP40xr/UPU/PRiaw5xV9pKZ7GnfWHQN3JfbjuodG4jh1muixGbq+FSZ/yHvRzbVl/kFBXPwhXKsr4KZ93Lf0ISxGE7kfKMfuiBp23Vzuez3Waw5bv5sCQF1DsLZsxW/LsNptRC4fUe51puG7adTddknrD8A7e9LY36MGhtimNL5zm9LPP857XZvvKW2m/vC5bnn+m4ksPZDhs021jcOPm4l5OFNXZl4zZR4OP2ZW5uqPa3TNT5RfJHrFJ+vqUOXM7UjQ0YvcltuD7w5m+zy+yqNeM88MTHSfh+Z2yn1rons/W+02jo5K8mq/7D3jUrfTXAqt7XPMAFW/Ur7LF3HXFm1Z7AMbfI7L81iOuXej9jpgdTaTG2yh4Tvue01AeGPt/pk1aQYAXbdcYGp0C2oszOCWqpc4d2cnXf3qX909mreLAWFJWIwmZu5d59W+Z99q984BU5G27MvW87Uyh75xf6drbmyk9rrSj9msyF5FxPPuXwjr3bYbq91G6q5fdO1c/CGckp7xOMt8b2RZL/c1p+xx5Xl/3jfBzMkVMcr9o0UMAGeuO+ZVzher3Ubnx0YCcHS0e9/X/yCNCQUb6Tzd/d2l3PlxBNy0j98T9H9at+fR1tSa7x6n5z4dE2HWllX5Zj2Baxvqyp26x92moVYtDHXr0O3lseX2F9BdOwBeiVKO4ZMrlLGf6nHea9xlr/eGVs2093/1u4r/NIfLecV+KtLhw4d9Ll+zZg3btm0jMTFRW3bo0CF27dql+w5V165dadSoER9++CFnz57Vlm/evJmff/6Z/v37U6nSX//zWZDvXAkhhBBCCCH+B40ePZpDhw7RrVs3wsPDKS4uJjs7m8WLFxMSEsJbb72llR03bhwff/wxa9as4YYbbgCgUqVKvPvuu9x1111cd911DB8+nKKiIqZOnUq9evV46aWX/us+yYcrIYQQQgghrmHKd67+/u9DVXQbgwYN4pNPPuHTTz/l6NGj+Pn5ER4ezsiRI3nyySdp0qTJn9bRv39/qlSpwqRJk3jiiScIDAyke/fuTJky5b/+vhXIhyshhBBCCCHE/6ABAwYwYMCAv1R2/vz5zJ8/3+e63r1707t37wrpk3y4EkIIIYQQ4hqmRPK7Mu3820lACyGEEEIIIYSoAPLkSgghhBBCiGuYw+XC4fr7v3N1Jdr4p8mTq79RUIcTXuE5Sw/aOToqSQtPOyV0FQDZJRdxbtsFwCfNGgNw8r4k8t5O9AqzrL6OelYJGXl/WJpXOOYbhyqhm/1NLVn/6gytfTV06M13Db1s38uGnr6/SZdyy+6ZlETnLXeweFE3cu6bgcVoonXGEF1frXYb/u1aaMvKhtt2bHeHzlb1aNJR2zbnQ/frsixGE/P3rSNwZRZxqx/xWj9n3zptu8iVD7Jxwgx6Rpu1fvzYOoSmWUFYthVpIX3VvmycMEPXr5j7s91z3ecerU9qmGHPPp3+Iy3CvGbhSpk/sn+r5VLCu2C12zg9JBHnll36cPs5BQDasdL0yXTO9bigrfcM/+vZbs6ceJLb3+J13MWOzNItOzMwkZWpiwAw1KxByBP7Sf15KS8XZmEbpyTcC/4yE4vRxPAmXejZ7Drd3Mc84g737PebTbdvdsaV6vav49hxAFbtXa+8v9Gu1XN6iDtEqmcdnseqxWii8LN2+OLYvpuI59PJjVfmdndHJfz19SkjtPn0S9+M1W5jbIQSkvdcv07YnzSTM8Mdhti1YZtX3bEPbCDno47YnzRr+zx5txK22nH0qLbMardhf0IJc939nmG6sZwZmKiNQR3PoYHNtP4CLD1bHefqxsSOWq+VcezO00IeJ7ftTmHyhxhq1dLW35bbA6vdRtAR/THl2bZnGgRnlz/6f+OdrCxQwpj7d9+vrY+5byMlveJ125Q9nr87qIRez5mR4E7vsDqMFZnfaW2W1xd1mX/3/WzpoNxYtz4+nVP3usMkR76YzS397gOgV5c+ujqmHI/hd0sTqn6dSZPMYAIilVDJJ75zh0/3C3SHt3cWF1P55r26Opo+ma6E3344kxPfuXOWWIwmAsJCqfKNEhK6YEqSNr7QKe6w3GX/jR21nuRWN3qNV31feVUWXx9Yz4QCJdz3mAgzYa+msevZmgRERWC121i5arF7m0QlRUDoa2lYthV5ncNNn8igmn8QAI4bOujWqRpOdfdXnfcLfZTjfPPT07lh+HAix6Vz5GGztn7foAgAigYl6tpsOfF3TrQMYnnMKmK/H0FZZe8RvoQsVkLHJ7e7Gb805TwMn6Dsh/w3lfY2TnDfn0p6xWN/yqyrw699K0Lv2I7fb+7jSG3zuodHKvcWU0ttOzVcdnl9sxhN9N1xVDfW886LHF3ezGtfrkj/llofp2vbWe02nq27W1dX8Jf60PdNn8hg//NmXtx1m7bs7ief0Mon/WeU1z3dv21z/LKrkzNLybfTLS1F63+jPju1lBZlx+UrPL7n+Wu129j/nJnKN+8lcGWWV9nSgj3a6x67eml1q/1r9X4Ke18ys3PUdGr1ygXAsVP5N/WgclwfKHWHrvach7y3E8n5qCMWo4lqX2Ti6mxi4/gZ1PmtllZ2YlQH0tpV1t7H3J9NSa94wpef1pb17DmIxpPSdGkwSGhTbgj45TGrtG33vWAmc8oM9+8ZJ09yqXlj6s5K90plAnBgnHIMqdcOq92GoUF9WmQrzyFq9cpVfh/p+rHXNVKde4DoRaNwbN+NuHbJkyshhBBCCCGuYf+r0QKvRvLkSgghhBBCCCEqgDy5EkIIIYQQ4hrmxIVDnlxVCHlyJYQQQgghhBAVQD5cCSGEEEIIIUQFkD8LFEIIIYQQ4homAS0qjjy5EkIIIYQQQogKIB+u/kY3hir5INR8CJOONQfQ8noA9H7+CXr0GsKzkQlct6VYW24xmqj1cTpP91xO05+UnFRWu43vDmZr+R12PlOHnNnxWl6sxCdHadtXtm4A4HxYNW1bgKgfHwDgh8/ncXx4ks+8Qla7jZ7Jg7W6yuaSeK5Anwsn4vl0qvUowFkJrt/aF4DQO7ZjMZqwf91SG49z807e3qPkl8idH6erMyAsVHtd+mMTAFbt26BtW5j8IQA377wV/A26/BKGBvW5v0kXDNGRFNwy1yv/xPAmXZT3q8OotrOy0pfz57X1fj+Fkh9fjLV1da+xqvX0SlBygOR+3MG9fP1W7XWlvUd129VLq0nu3TO0HDe9c3pytr+Sm8pQr56u/hoLM3RtWe02+lUrUuqZma6VPX1rGwD2vWhm3XuzMI917++4TU4ACnvNIXXT90pfp3Wi4LUkZc7+kPteJ6x2GyGLM2g/OUXJO3XqNEc/iiB27X2Mj4yny6MjdfNgtdtwnjkDgCtJyTf1+yNmr5wzal4yT571+MrV9uvr0wA4/mASbTf6eeUdUYXXP0FARBNdm2XL9dt5RKu7yjdKTi1XZxMFryXp2g5emonxjTRujd8EgF98G6/2LvZQ8s3EPrCBrY9P1+rNOVSfgIYNANg3wUyvuB5YjCbeGT0LgO5T1+nG7efU19tsQyVqFFzSjeGJXwbg332/Vx8cO5WcKlErzyr76eRJbX5Kb1dynn3/5ccUDU7k/B3uvGdq/pbOj43kqXzlGLVfXxWL0UTqmi995qECCFyh5EIztIyluHcCg3bZWXogQ+tn79A4Jb/T6PXU+jhdOea6H9DqWXimjlb2crmPVBajiZqfpNMkMxgA16WLfL/0Y5YeyKC0YA/HvnXnonq6Ti7m0cr1YF+nc5QW7sVqt5HVYQkAyTffpeWR8xyT/Yk/ch/dn6S1eWxEErV752jl7E+ZWbF+hbZt7j0ztNxGgHbN8sVx8qT22lC9OoWvJenmoKp/ZZ57aKRum4gFSn4hz1xEAGRs0cqMrV2g9e9cv05YjCbO3dnJnZtv0Ue6eTyyrLnP+QX4ZfpsAFq/l8LPc+Zgtduo/4GSG9FQtw5Vj7j4dP9vnGuk/3WgdO9+6s5S5qHQMtdrDk46zuvaOToqibKc17VX5unoUQw1a2AxmijtHkenZ0bT9IkMd0E/5dwPXJGF8XUlp1FJT+Uc3J1SFUDLAXXBGkmbt1Pwq1SZql8puficth1sHTMdq93G+vZf6ObAardxS7/7OPyYmeMPJmGIieLrlso1uLS7ch/qG5bAxo6flzuH6r83DX7Aq4zq0i0dtXKNJ6VRu3eONmfVlrjHWv2zDCxGE2EZ1XB2VebHuWUXYa+mETtSyUUVOXAL+W8o1y21Xsex47ocVGrd/sHK+VPyfQQz967j8OPuPGEWo4nGr6Rp79Xxep6jQ3fvxVCrFquaryBndrzu/hn2ahq7hk+nxawUAho1dA82oQ3JoR2w2m0MU++v6K/x0WMziH1gg/ZezVN2vPNJXVk155v6PnBFFs4g5Y+qujw6EufmnQB0HD+afRPMOI4ehfVbdf10rm6s5JJMakdyy65a/U1eSuO6h0cypdCdi+yHJfN1+82zz9sfmU7gWmWcB55V5vFQv2h2xpWy8Ewdrbx67qhzWVbTJzK05afvTqTZL/8bfySmJhG+Ej//dvLhSgghhBBCCCEqwP/Gx2khhBBCCCHE38L5x8+VaOffTp5cCSGEEEIIIUQFkCdXQgghhBBCXMMcVyiJ8JVo458mT66EEEIIIYQQogLIkyshhBBCCCGuYQ6X8nMl2vm3kydXf6OJ9bdiqFmD0m5K+NNf2wbh39YdMreX+TbapWzBtWk7AM/X3eXe2M8Pq93G0hb1ib57E1a7jY7jR1PJz8D35yvRecsdFCZ/SOwIJXSr1W6j4YhCXfsBYaEEfbdeFyY15t6NWtjTOnPS6dlzkBYyVA3vajGaWJm6iILXlNC6MZ+MBqDwMyUM92um63XtFLyuhB9u/HIav7T5Wrdua6dFulClrSpXUeq8P1tb5h8cTOmBg1ofAm7apwvN6vn6hxbfgtOha8Px+xGsdhuOvEJl+1Cjtp1O9wM0/nC7bpHVbmNVc3cY5p49BnrNR0nPeM7EhVKWZ+j60oN27fVDuTmcuNUfi9HExCgldLvjsZr89q4Srttx9KhW1lco/KgfH9DGOy5/C4Y1ynhCFivhfJu8mEbTz0dp7wGy27tPZYvRRN6n7Wm01o+oZ9J1Yb5jHlVCF8/cu476Hyghek+nRvP95LeJHLQZgOAvM3Xj8zx+/NKVMiXXn9Hq7DxGCQnvKi3VlqkhmD23VdMIeM5f79A4rHYbGybOoJpBCaXdM6azbp7P9u+Ef/f9lO7ZpwtF7BlCVz1X1HMN4OyARPIGB5J7r5L64MA4JbRu1y0XsNpt7O6ohEQvqR2IX1wrXX1rPpqj1Wsxmjg9JBGApoNtHL8pEoBK56D00GEAuldRjsm1bavo+vfbOzN1Y/6hsDk/f6jU3T5rIBajifjm7vO2bKh5i9FEbnyJtkwtc94cq61Pf3MmVb/KxP6kWVvvHxxMtS8y6V7FgbOLifBlx3VzajGa8AsM1LWpSv1xCUHfreez5ka6vD5WW6+G+we4bksxkxts4XRqtLZeTQlhMZpoNyUFq93GkYfN3HzXUN1+Gpe/hZzpCQAYWjVjTuPfAPAPCQGgX5gy13VvzcG/dXOtzt0dL/HGngycq93tqG07tu/2GfZ/69g/wnNPdqe/qDtbCf+ubm98PU0714N/UUJ0f7r/N62/YyP0ofzV1/te0Ie8dhQVkXPvDN0xn9zqRgJXZmnX/bypiTwz8xOvfQFwdlUUe15O0vbr/i9ba+sM0ZEEf5nJ1wfWA5C8O1lXR/3bd2n99eQZtjv0tTRde8rEOfl+8tv03X4Pjd5O479Ry1BV197GCTMwxDbVteH/6yYlbHV0JPlPKGk5AlZnU/MTd6j7mAWj4Y/QzJ71Ba5U7m2FveZQ0jOe2JFZPFdg42haI0AJ3a/aN0HZFx3Hj9bafip/q1bf90s/puG7adT5MB1HbgFWu41jI5MIWK3chwy1amnpOjz7UDQ4Udcvw88b6ZXQSwn73Vlp5/A3LZR0HN9v8Lq+Ra4Yrr1XU62o5/aBxLP4r92kK++p6ZPpnLwviUrfb9D60fYtJX3G0N17tf3qPHdOma9b9rD2QhSbn5yuq8fzHqOOVzV/3zrmNQtX0jyExRE7IktXHqBHryFETs+l9NBhLt30x/V1/VbypibS6ZnRnFsVBYBfx9aA9/VEPa89+2NoEaPVr6YlAOW+kfd2onafUe9FAHXmptNkYprXXFntNn5o8a12f3KcOq27n1b9KhNTYCDtJ6XozocOG+7SUsLsXdKG/eOV9CIlXQ9jtdsIm6xcF+pPV1IDqNc3td5db4dr41VTd4D7WPykqC4ANRZksPt6971RXBvkyZUQQgghhBDXMIkWWHHkyZUQQgghhBBCVAD5cCWEEEIIIYQQFUD+LFAIIYQQQohrmBM/HPhdkXb+7a7KJ1dnz55l8uTJtGnThpCQEOrWrYvZbGb+/Pm4XOWHGXn66afx8/OjWrVqPteXlJQwYcIEIiMjCQwMpGnTpkyaNIlLly79XUMRQgghhBBCXCOuuidXTqeTnj17kpaWxn333ccjjzzC+fPn+eyzzxg6dCg7d+5kypQpXtvZbDbefvttqlWrVu4HsLvuuotly5bxwAMPkJSURHp6OuPHjycvL4/58+f/zSMTQgghhBDi6uN0KT9Xop1/Oz/X5R4F/QPS09Mxm82MGTOGqVOnassvXrxI8+bNOXHiBKdOndJt43A4SExMpFGjRhQVFbFhwwbOnj2rK5OamkqvXr0YO3Ysb731lrb8P//5D2+//Ta//fYbZrOZilBUVESNGjW4gdsp/KALuXfMIDm0g65M62x/tsX5jplitdto9X4K2x+Z7jMcufrek8VoosraBnwTY6X1uymEL9pH6f4DnHggidofpfPGngyejEjEarcR+/FoIhP2Q/cDXvXFrr2PnK4fYzGaeH/vb8RWCtaFaAcoWtmU6j3zte0il4+g8LbZAFz30Eh+nTaLycea8fHyboy7cylvz7mTLf/xHkvRyqakt1vqNQ61Ly8dbckL9Xbo1pWdpw4TR1NvZjpllQ3l7rl9241+bOng4nzfTlT9OlO3jWcfbul3nxYStmy9VruNhWfqMCTkuK6dltNTaDwpjaOjkqg3M50T38WS1WGJVubE0CRqz0vnzMBEaq3dQ+khJexrr069Kd1/QFd/i9kp4IKdI/WhdS1GE0WDE0l/c6bPOSm7vy43F5fjud3i/WkMbGz2Wp43NZHoxzOw2m00X3cP4QO26l4DnLw/iVrzlX3k7GLihyXzsRhN7F3SRitjqFObc+Zogr5dr7V/6aY4fvpkrm6f+Oq3v6klK1MX0avz7ezrF4rxTXe4XrX8nklJXDReIvaBDV5jfOdkBCtb1cRQqxap29e4w0i3a4Fz884/nSdVlbUNuND1d44PS6LO3HRu2naGH1uH/PmGQOHitkQO3KLNSeDahiyPWYXFaOLoqCQafbdPS1egsj9l5mxUKbGj1uvGq+5j8+OjCPk8o2xTPq8lgwtv5Hjnkz6Pj/KOJc/1AD2adNSF4/f09YH19A1L4OT9SayfPOOyx6j9STPGN9xhwXM+6ui130AJDZ/d3p9jI5PIfmGGdr0o2/c2mYPZ2mmRblyHHzPT8N0/Dz3ua658HYP7nzPT+BV3fY/n7WRqdAtdmYCwUEoPHNTmq9PTo6n5qf7apa7rGdMZV2wEhqOnqP9lEfOa/FruuV7SK56f58zR7XuVus1DuTncFny+3GuCer1/JNydBqFeWk2Omk9RZW0Dcr5vqhuf57EW9dVIYh7O1C3PeyeR6DHKsXfh9gRKqhuo+Wk6NdbV4XSX4xiqV8dRVATAy4VZjI9UQlkX35qguwYYmkXj2J1Hrd9qc7LzCQBypicQm6KUUfdjeful7HK1HnWeYn6+n6jBNq95az8phXONXUSOS2fP522JuGtLuW2Up7zj+8xdidRI3Y7zzBku9EmgyjfrtXH/lTbUMoWL2xJZ7wTWFt+Ve2yor8H3Nb+887nZR6PZ/YA7rcCel5OIGJ+O1W7jxgeGU3lVls97jarSz424dMMhAAonJxH5rHKcnx6SSI2Fyv0iuesdOHILdP0ob85Kf2xCpzp7yG7vj3/VqjjPny93HH7tW2npbf7KeMvz3cFseofGaduB931oz8tJOAMh6illfP12HmFpi/q69gBu6t2fNdmvcvr0aapXr/6X2r+S1N9ZN2xvQLWQv/8P2s6ecdKx1e9X7XxUhKvuzwKL/rjgGo1G3fLKlStTt25dgoODvbZ577332LFjB++//3659S5apNxcx4wZo1uuvl+wYMH/R6+FEEIIIYT43+T44ztXV+Ln3+6q+7PAhIQEatasyeuvv05ERASdOnXi/PnzfPzxx2RnZzNz5kxd+b179zJ+/HheeOEFwsPDy603KyuL0NBQGjdurFveuHFjjEYjWVlZ/+c+N2rUSPfe6bwWovgLIYQQQgghPF11H65q1arF8uXLefDBBxkwYIC2PCQkhKVLl9KnTx9d+dGjRxMVFcXYsWMvW6/dbqdly5Y+14WGhnLgwAGf64QQQgghhPg3u1JPleTJ1T+kWrVqtG7dmttuuw2z2cyJEyeYNm0agwcPZtmyZdx8880AfPbZZ6xatYp169YREHD5oZw/f57AwECf64KCgjhf5m94/xuHDh3SvVf/flUIIYQQQghx7bjqPlxt3boVs9nM1KlTGTVqlLZ80KBBtG7dmuHDh5Ofn8/p06cZM2YMw4YN+0uBKKpWrUpJSYnPdcXFxVStWrXCxiCEEEIIIcT/CqfLD6frCuS5ugJt/NOuug9XU6dOpbi4mP79++uWV61alV69evHBBx+wZ88e3nvvPc6dO8fw4cPJy8vTyl24cAGXy0VeXh6BgYHad6yMRiMHD+qjbakOHjxIaGjo3zcoIYQQQgghxL/eVffhSv0A5HA4vNaV/hHmt7S0lL1793Lu3Dk6derks56YmBhatWrFtm3bAIiPj2fhwoXs379fF9Ri//792O12brvttooeihBCCCGEEFc9+c5VxbnqQrGrQSfKJvU9deoUy5Yto1atWkRHR/P000/zxRdfeP20bNmSoKAgvvjiC12erEGDBgHwzjvv6OpV3w8ZMuRvGU/zd4+QHNqB0m5xWs4Dq92m5bjyXAaQMzOB5JZdCXs1TZfvodPTo3mpIFt73yM8AYAbt9+ulbvQ9XcsRhPbHpvOjhca4lepMlmTZuDXsTXWs620PuXcNwNri+907Wrrun5Mzx4DAXgkvDNjDnWk4PUkIr8ZoZVNb7eUg1+10t4X3jabntHKn2aqeaN+ua8jux+YwWfNjTR6K81nDhY1V5baf4vRxNx967AYTTRdMooli2/QljebOxqrXZ+PpNm80WycMMNrDsflb9HlsrAYTbr2t3RwYbXbdDmufJU73sbjT0UT23rlEfqkWWMsRhMBUREAJLe7mcaT0siZE6/l3mpR5zAWo4lhOYXkv5VI1iszAAhZnEHYstNau87a7nxIVruN34qdPHCnlSYvpen61iuuBwCVi5yXzW1SNseJ87r2unouR53nNlNTADBmhDCwsdkrX8qRh81EP55BwWtJWIwmYhscpeC1JD4pqkvTR49o5asduKjV7b/O3Uc1xxWA4/gJLb+Nut1Pn8zFYjTRMypRa9dz/4dlVOPAODNOm5ILrbRwL1vHTtfKvH/SHT004vl0Yh/YQODahljtNp7Kd7ddyU/5Hzmp29dgHjsKq91GvbSaWo6rssetumzfC2bd+29irPhVqkyduUo+mB9bh2C12zgzMFErd2CcmYDwxryxJ0O3bc71n+jmpKTrYW2eqt9xSJcfqWCRMg/G19OIHbWeU/ckafPjF9eKm4Y8gMVo4plJn3j1G2DJ2Rpau87VyjF8vPNJrQ613YX7f9OWqXrFJ2O12zjxQBKP5u3SlluMJk4N7Oiut4uJk/clYbXbOLcqir5hyvXq2I0l2n5Mbtsdq93GpZvidP3zzHEFYO3+rm4fqK9t/ZsCUHdWOhajic2nQ7EYTQzdvVdfX98dJN/QTzeOhu+mcfGHcO1Y3zsxSVtn/7qlV14bgLwF7blx6INe1yFAywFltdsgsS3vdehE7gedtGVWu40HfvqVm7adwWI0cUv/+6n9xSZdXfYnzNr8O8+dw7VpO6UHDmJPPOMzx6HFaML+lJnAFVm68371BYOufM6seCa8f3+5ucqSW90IoMtxBXDUfAqAb2KsuhxXajvqv2qOK/V9QKOGjL1lhbasyrL1Wj6vx4w/AGg5rr47mK3luLLabVqup5P3K/vDsVv5q5TFkT9p9ak5rqx2m88cV+qc+sr1pOXKunQOgKjB7rn0/Nn0/HRy7lOu1WqOK8/6Pf8tT9l7ECj3d+PDeVxMiAXgl+lKfsigb9dz6aY4uo4cwYFn9V9z8JW7rElmMJEDt0D3A7pj1Gq3ce/u/V7XeF/z02xDJTpMHM37e3/zamPKXZ8SuWyE9j5ivLL/pp1qTOVV+sjKat0BYaGcGKrst+9iV2ptqTmuXJ1N1FiYoW3jyC1w30uL6nI5ATftY0eREpXZef48TTKD8TcpvysW35pAZOqDWlnXpu103XIBwxolnY+hXj1AyZenypkTj1/H1l7teM5D71D372ztJ6dwZ/5NWt9z5sRzZFlzIsank3v3DG2bETXsujrUuXFlu/N1imvDVffkasyYMXzyySc888wzbN26lc6dO3PixAnmzJnDoUOHmDZtGgaDgaSkJJ/bf/DBB+zdu5c777xTt7xXr1707t2bt99+m9OnT5OUlER6ejpz587l7rvvpkuXLldieEIIIYQQQlxVHPjjuALPXLz/Lu3f56r7cBUeHs769euZOHEiq1evZvHixVSpUgWTycRbb73FHXfc8X+u+4svvmDSpEksWLCATz/9lNDQUCZOnMgzzzxTgSMQQgghhBBCXIuuug9XAE2bNuXjjz/+P237888/l7suKCiISZMmMWnSpP9jz4QQQgghhBDCt6vyw5UQQgghhBDiynBdoVDsrmsgFPtVF9BCCCGEEEIIIf4XyZMrIYQQQgghrmESir3i+LlcLtc/3Yl/m6KiImrUqMHJnCj6N+uA1W6j8NJZRoUrEQmtdhvvnwznu1a1dNvlTU2kyu/+hL7mDuv7SVFdXtvWg8Z3bvMKha0qGzbYV6jtsqFWW72fwvZHpuvqe3tPOj+fj2V5yzpe9ar8AgNZVZjpvTwgAFdpabl9BDDUrUPqltVe4XHL9t3z36d/N2Fr71WVbly+ti27zrNPQ3Yd4MXM2/AzuIi+e5Ouvjf2ZPBkRCJFgxOpvijD59z6aiPk17p82fRHLEYT/m2b49yyi8vxFa41991ECvrPxGI0MWffOpoEVNNt0+6NFBpOdR8bFqOJvKmJbOw/lQFh7uiZat29OlhYsdGKxWji2Mgk6s5K121b9rXn9olPjaLGAiVs7uFvWtCwz06v+n0db1a7jW73P8hP8z8sd65UudM6EfNQJla7jYRnR1Nrfjo50xO0UMv2p8xUO+Ak/c2Z7vDdN/TDkZPvcz7Lhp+OHZml1eNKPE3oHdu19QfGmQl7VZnLnJkJxI5aX+7x6DlmdZ3K0Cwa194DOIuLdfOyd2IS4RP0833R0pHK1g3atgERTQj85ALnrj+K1W4j9uPR1Nnq0sarbhv92Sia/kc5FpN3J+O40Y7zuvb4/+o+dv1DQvAzNtBCV5fte9yLozkbDk2+L8Z/rbKdoVUzHNt3M6Uwk6cjvfMFGmrVwnHypM85jrc5mFR/q9e+txhNnF0Vhf1AbQqTP/S5XgtvPCmF+tOVfZD3TiL5A/TjjrQOo179Imr1ysUvrhWubGX/ec4tQOLmS2S0q4Szi4nTTatQ6+N08DdgPZDtdf6X3Qf+ppZaKH/P8fXdcZSvW9bTyp1cEcP69l9cNv1B4WftyOn68WVTHeQtaE9+t3m6MseHJVFnrns8R0claakcfLXjy/HhSdSZk87R0UnUm5Guld/3gpkmL6VxeIyZzU9N183vyANJzApLLzfMe3nHf4uZKTSZmOa1Tc+eg3h3+Yf0WPsIscO3Y384jkZv6UO4+2onZ048scPd4b1LesXz85w5un55Hu+e5c/164SfC6p+lYn9KTNbx0y/7DwZ6tUjdfMPyty8aKbJi+7+HXzGTOhraeyZlMTuB2Zo9fhVqsyRB+OoN0O/Ty72iNfCkl9u/xQubsstTXfzQag+ZD1Ard9qc0Ot3dqxVtotjoCf3ClXLEYTt+04rt2Tc2YkUHj77HLb8nU9vnnQUPzXKmH/y+67vAXtqVL1IqF3bGffF21o0n8rR0clsXHCjHLb2PdFG3Z2/tTndV09Dk8PSdTCrqv38SkNvPv2Z2lBAPLeTiR/4EzdvHlev8+tiiK4R4HPsavHcY9bh2jXj7Jtl/394MQDSQT/XkrgCn3I+bJOp0ZTI1m53p74LpbavXPInR9HzP3ZSpvhCbguXcRqt9G9USt+ZhmnT5+mevXqfzrmK039nfX7reEEh/z9f9B27oyTW9rsvWrnoyLIkyshhBBCCCGuYQ6XPw7XFQjFfg080pHvXAkhhBBCCCFEBZAnV0IIIYQQQlzDnPjhvALPXJz8+x9dyZMrIYQQQgghhKgA8uRKCCGEEEKIa5hEC6w48uRKCCGEEEIIISqAhGL/G6hhLW/gdlYf2q4LDzqhYCP3L3mI+5LX8GvbIF1I0P1ftqbxnduYUpiJKTBQW54zK57CW5XQtPE2B1kmAwAl30fwc+tvtLqTr++LI69Qq7PZhkrs7njJKwz7+yfDeaTWXgB6Rptxnj/P/ufNNJ6U5jMcdY/wBFbtXe+1vGyYY/V17Nr7dCGJz/XrxLr3Z/kMka7+23xOCuEveIftVcucu7MTReEGLbTviJwC5vbpgWNHDheskfzS5msAOk4YzYaJM2gxM4Wdo9yh5v2Dg3GeO0f+W4nUbXGMzg0KeKvRxnLH4CuEe0xWILnxJbq+lZ0P1VP5W3krrgu7348i+p5N5Yad3fuSmV3D9eGDi3snEPTdeq+yni70SaDKN/oyan/yL50l5Y+w/wD2r1sSWfsEJV0Pa9sG/7Cdlbm/aaHjV65ajMVoYs8rSUQ8l+6zv+qyKmsbcKHr77rlS87WYG5spFc/PetxdjHhv86mWx8Q0YQVacu92jLUqY3j+AndMjVMu6+Q+AAktsX61Se6ZflvJpI3eKb2vrw0BWqY7kpFl/BL36xbp54jnstOOs4zsLGZgIgmlO7ZxwVrJFUsheRMT6Cwz+xyQ/erhu7ey7xm4eX2ZVz+FlYWtWVKA2W+oheOZtYds3m9aRutrH/r5ji37eLg02ZCp6Tp2ktu2RXHqdNa2cNjzDR8J42e20+xslVNrHYbU47H8FObYK1Mafc4AlYrYaD3jzfT+OU0r75b7TaSb74Lx/bdWO02mv401Cu0+OWox2ii7U7qjC6hdO9+r7FfLhy4+tr+dUt6hO9kSwcXfh1b48rezuExSTTIPMf3X36s1ake09FzDlK6Zx8AhurVSd31y2XDWbfPGkjJ+trgD41fTqNgkYmowTaWH8zittB4DPXq4Th6FICcuR2JHbZB27btmyk0ejvNq+89IjuxqjCTxWdqafteTQMA7tDe5YWU9lTp50ZcuuHQn853QKOGlB46TN6C9lraicsdl77mQt3fTbOCyI8v5qHcHKbFxOrKHfyqlS7VgWfdLxdmkRBYiV4dLJQe/t2rTIP06vyeVMSRh8zUn5bmtf3l0nv4au+vhvj+s3Ll1VnedsW9E1g7Wzn3DdGROPIKKe0ex+pP52r999z2zMBETvc/w5CYDTxbdzcWo4nC15KIfCbdq25f/VJTKXguU+fy8bydTI1uQf4iE00H23Tb+/0UyqmPGpPx+kyvMeXOj6NGrXM06JfHqn0bsBhNFN+aQNC3ynU3du19RA7aXO48HFjaiu1JC7EYTTxXYOOVqPLn7/TdidRYoKSYGFjYjZOdlet9WEY1DiSe9Rr3yfuTlHQdH3Uk9gH3+Xbj9tupfLPy+8yxEUlkv1h+GPn/K6vdxvaLFxgbkaRbbqhbB8ex4z7Lq30YnZvH+9Hh/xOh2L/eHENwiOFvb+/cGQd92+VetfNREeTJlRBCCCGEEEJUAPnOlRBCCCGEENcwJVrg3/99qCvRxj9NnlwJIYQQQgghRAWQD1dCCCGEEEIIUQHkzwKFEEIIIYS4hjnxxyFJhCuEPLkSQgghhBBCiAogT66EEEIIIYS4hjlc/jhcf/8zF8c1kAFKnlz9zSxGEy5zO0DJfTAxqgN1t7h0Oa6sdhtWu43Gd24D0HJcqfk9Gq/003ImLPrFDCg5aQJv2YPFaMJiNNHujRQceYVamwDvGbN07y1GE9enjOC7VrXo/NhIAC1/z+bR7yttv5YCwC397uPAs2al/5cuAkpOLM9+FU5Wcj70CE8AIPLb4ViMJiIHbdaNK3hpJq3fVeq1P2HW9efo8mZYjCZ2DZ+uzVFZhpaxBH+ZqeW4stptzI6N4sUVC7HabVSxFDKgoDsWo4k6H6ZjMZrYOUrJHdWrgwWAlbm/KXl5/pNBjeQ8so830bXXfN094Oeny49RNteMZ46rssqW7V7FgePUaR5qv1aX8yLvnUTdGMNfSMNiNLHkgDu3SdB367W5A9i7pI1W77l+nch/M5GqK2y6/p+6J0lrwzPHVUB4Y7Z2WkRJ18P4V62qLBx9FOe5c3xzrhoAzi27lLwptWqxe+gMLSePJ88xzI76Stmui0kb+4BqSk6lC30SiMkK9DkvPyyZr+TE8hhr6Z59uvwn6njK5rjqvf2kLseVWnfqwY1YthUphTK2KLla3uuk1df0iQztHLEYTRx+zKybN6vdRuTyEQBUtm7wynGV3OpGnOfPc3xYki7fzsDGZq3/AFUshRxJMdNyyiFd/8rOQeDahpwZmMhbrw3EF/W8ebVpW1Z+6j5Xmj6ZTvcqDl3fndt2AdDg5gPkzO2oq8Mzx5VfXCsavpPGvi/asLJVTW35rF+66caq5rjKmduRiM8OlZvPR81xNfNUKNF3b6L9pBSKBinH9bFvY7X9WPZcttptJD41CovRRI3kPFakf6uM44/jaMnZGlr/7917PQeWtvI6H9U6t3ZaxJYOLqx2G64N28Dl4u5hVvzSlGtPr6RbtfIRz6WzIm25u/9FRbrrkyre5tBeb4pfTJM3s9kxejpWu42owTaKBidyW2g8VruN1M0/aGU9c1xZjCYava1cp6KWjtSN31VSouT/WXmXe99c9OPw48qxtOajOTTbUMlrvnsl9PLq686N7hxpnvcXzzLn7+hE6SElt1303Zvw69ham8fcaZ288kiprHYbp+5J0sqquZTy44sBeOXl+3RlrXabLsdV/luJuvoSAispuQo7NNEtV9vf/HsoVruNN8fO0q07nRpNzowE7dz17OdtO45jqFfPqy6ADi+P5nJ83WMAbX4A8Hfn+rHabawvuaS972W+zWcdQd+tJ2bBaKx2m3YvDlidrfWt2YZK7jxtT5hJe3smYf22c9pRhZ49lOuBoal3fieA3PlxXsvU/QLu8X8S/gtWu42p0S04sqw5y8wzvLZzdTtIjQXKdbFwcVsAor4fhtVuo+CWudS/fReu0lIsRhMR66sQ9K07n2LkoM3aPveVB7FOtfNK7kRTS6aYLV7981RjQYa27mTnE3x9YD05H3UkbVVbrb6S7yO0ua41X7lveOa4shhNBPg7OfCscg7Vne2dI8zQqplW3vPeBOAfHKzbl573BU8Wo0mX40q7Tx077vNa53m8zoiJ5vytHRHXFnlyJYQQQgghxDXMiT9O+c5VhZAnV0IIIYQQQghRAeTJlRBCCCGEENcwh8sPh+vvT/B7Jdr4p8mTKyGEEEIIIYSoAPLkSgghhBBCiGuY4wrluXLId66EEEIIIYQQQvwV8uHqb/R1zlasdhvff/kxp4ckYjGa+E/edqovcocgBRhzyB2m8+AzZl3Y0pwZCRy88xKHvmkBQMyjmUpo4Mm7dCFAG051hym/+EO4rn71ddctF6jyjRJW9bd33WFvWR1G1/88BECNQiUEq1/6Zup0PQQoIWqjvhwJBoOuvkl3LtKFai+8dQ6AFvLbM9Rv6BSlf1vHTtfNUYMJSp29km7VbTMsp5BLN8UpoYB35ACQ+0kHrYzVbiMhsJJW/+kux8lf2F4XLhug9PDvWshWdbujy5uRErFGVy58wFasBzdp/VpyIN0rNLs63/12HtG2/fmCv24/WO02WsxKIaNYCes8tnaB1q5/cDD5A2Z61QlgWv6Yrh6L0UTPqER33/4Yw7r3Z9H0iQxtzlXn71BCbydf31er49ydnSjdu18ro4bdr2JRwgTPiInW9cFx8qQ2T66SEq0Oz77mzO1IfUMwoIRWV2khhjsbtJD1AWGhABz7NlbpW5tuStj2sCRtrGVD03uGyD4zMFF7/UitvVjtNm1erXYbo3PzSA7tgLV1dW17/7bNiXk0U9cngNJuSijjhu+meYVzjx21noPPKKF8/Vs31+q3GE2kbl+DZVsRdeam03WkErI9d5o+TL1/sDIf9aen4SryHUp5+UElLcLymFWELM6g9rz0ckNCJ3e9g3ppNbWQ3j3CE8otCxBw0z5dOHD1X/W1K1sJk92k/1ZtG4vRRMxDyjwZWsRo8+7XsTWxwzbgyCuk6eejtPJWu40TDyTp5u3rlkoo7MDeR/jo1bcBqHtrji70vWefEjb1p8aCDK9Qzv7rlPUvbe2t9GeNkd/NZwjrt519L5i9jo+cmQleYe6tdhtP1s7n90f+CJHvcdx70sL2/7Gtun2D9OpMqr+Vh3JzdOeA5zG07o3pum09FSwykdz8eva87A7XXNBvltY3z/JNWh3SXsc8mkmDjHOwOgyAqY0yvebt1XVLtT4FhBoBiB6rzGPqwY34pSnpAyYda64LAf3rB7N0x4NrwzYlpcTHHYh5KFNb125Kin6OjCZqfur7+CwanEjNT5Rw1/YnlLnuMFEJfV6SHE/O9ATyBs2kV3yytn2PXkMACEzNwrBG6f/Br1rhvE65XjfssxOL0UT3Kg78At2hsnuG7qDw9tk+5/yhmvtxHD2qvVfbCgg1Um+G0r/8he21dWWPoRrr6ui2A5SQ/uoyp0PX3rBpj2mv1fQR+58ze83Po71SvZapbe7ueIkjKco2xjfd92tbeyUdBijnaNHgRF3fmm2oRMz9SpoEV2cT0YtGEZMV6DOEviogKoL6t+/Swodb7TYu9ojX1hcNUtqIfOePEOX3Z2vHWM7MBE6nRmO129iTcEHbptPTo/Frr0+PMCynEENNdwoFNSWF07aD+37JoCQ5/rLXLk99wxJo/shOdo6Yrp0zarqZshI3u0Pj+3ffT9hk93yqji5vhn9QEM99+xln+yupBzzTqRx8xox/7Vq0ej+Fh3JzsNpttH4vRRsLwKBdduW+N919Dc5/I0n5fQjlvuJ5HdHSnaC/Nh1r+7/xq7bT5X/Ffv7t/v0jFEIIIYQQQogrQD5cCSGEEEIIIUQFkIAWQgghhBBCXMMkoEXFkSdXQgghhBBCCFEB5MmVEEIIIYQQ1zAnVybBr/Nvb+GfJ0+uhBBCCCGEEKICyIerv9Gdt/bBYjTRK6EXzsHHsdptpHwzjDf2ZGhlum65wIbJcVoI3dDX3CFFLaHtiR29nui7NxEceNG93Ggi7UAEFqMS/ldltduIe3E0lW/eqws/a39KCWe8tm0V9k5MokG6ErraYjQREBWBtcV3hCxW+hT07XqtviqWQi2Eb8yjmTjPnNHWFQ1KZG5sJFa7jQbp1bHabSTfeCfgDvntS/d7hml9BViZukgJDzw6TDeOnOJGVPoxm9z3O/H2HiW0bsy9G7VxRS4bgcVootPTo7EYTZzv24mmQzZ5tVc2DKzFaGJjx8+ZGxsJgMvcTit3fcoIrdyAsCRwuXTzuORsDSxGEyNq2N1hkpu29QqdvHPkdBKDDJz4LlYXRtZ57pxWrmx44NgU97yr65zFxbrQ7Fa7jZ8v+OvashhN2J8yY+y7AwBHXqFWT/CX+pDkt+04zsn73KGiPefEs12A4lsTAFj33ixdmZYTf/cZBlvdrumT7hDOK9avwGq3UfdWJZS+4/gJXbs9ewwkekyGV33q65DFGbqw3hajiRei4rT1fYLPsndJGwAtfPHQL1eSNzURl7mdbn5XL5jrNd59L7hDKYe+poRod27bpQudPXTfdVhbV6fw1STt3PAMYw2wMvc37bXj5EnttdVuI3BtQwBuC433OUar3cbLhVm6eXHkFgBgf1Lpn+vSRa/t1Prn7FunhFm2dKTFbCWM8Om7E3XhgdWyvkIin7o3CVfhflpkByjhxzdsI2eW0tf8u2Zy4rtYrc3aH6Vr2zm7mDg2IomAsFBqJOcxJsJMm6n6kN5lQ67X6pVLwZQkrzDtfj8pIfvD+m0nb2oiqc1SOT1ECXe/c+R0Xdmjo5N4+voVAJy8Xwnpfzo1WqvTNm46B54169p2dm2v1TG2dgFDdh3wmoc9RXV4+GAnpsXE6sKXA+RfOqtc30LdqSA8mTdfJGqwDUdRERHjlTmaULARANMmpXzuJx20+irfvJec6Qna9n7pmzm2pLFSfv3dWohztZ3/3DOaI8uUFAErslJ1577BT0kFYWgWza9tgwBIfEoJoX9bbg/duRUQrrQRc99G3tijnFunU6Np+G6abjxLD+hThVjtNva9YKZocCLVF2Vw4jtljoxvpinX0wkzAPj5wznEpqzHYjRRetBOyxnK8eDndGr1pDZTQpWH3rGdHz6f53VcrypUrlmXboojrX0V3fpBu+z44nmMJf/gTjeg3g8803CoTnc57jVGz344u/yRPqOtMu/mAZvY83KS7tho/Eoaha8p11P71y2x2m1816oWye1v0dVntdvImans7/rT07TUDRajie53D/M63tLfnEn+G+60B7s7usOOf//FfPIGz9SFFPfsd6/4ZCxGEyvWfQO400QAVF6Vxdn+ynlV/bM/fgfJ2KKb4/xFJgpvm02N5Dyv4zxzygxcm7ZrbVntNgZUO43j1GndWOtPV46nRYcSCUzN8hlKXS1raBGjvf/uYDYrc3/DYjTx/slwXdkLfRK0azxARrtKxGUP0NWl9kt9v7Hj51zo1obnR4+g2heZWmoQVXFdJ3vubkLYq2lMi1Hu1aGvpXHdFvd997PmSuoAz/tz0yfTtXQfAT9lU9JLuV6Ozs3T/e7j2adLTbz319XIif8V+/m3+/ePUAghhBBCCCGuAPnOlRBCCCGEENcwh8sfxxVI8Hsl2vin/ftHKIQQQgghhBBXgDy5EkIIIYQQ4hrmxA8nVyJa4N/fxj9NnlwJIYQQQgghRAWQJ1dCCCGEEEJcw+Q7VxXn3z9CIYQQQgghhLgC5MPV38ixOx+A0gMHWd/+CyxGE3mDZ9K2spKPRM09FbxUn4+oaHAibTIHg8vFwa9aUee3WlTvmU/ue520MtuTFmK129jzURNaZAeQ+4mSg6Xu7HRdXQDG19O4+a6hAIRPSKfgdF1tvZoPo2yuDavdxsL9v2nlAhqHYbXbmLl3HRajieqfZWj5RY52L8ViNOHYnYers0lXT8yno3V9CVidDUBym24ALD9XlfPOi0S/lUfOjASsdhtt3k7RcrbEPJLJ2Igkrc4276RgMZpIapsLQM1PlfFW/TpTa8Mzd0bPaDPD9nVh4X4lF9FN29y5ugD80jZreVB+mT4bX657aCQAc2MjcXZx51wqT/JuJdeIa1kdr3wnbdcPwmI00W5Kim65Sq37iOOc9n7fBCXvja2khBuqOHl/r7Jfji5vhtVuY+uY6YzOzdPVc+Qhdw4n1fKWdfAvdTEufwsHnzF79c1T0LfrdceC1W7jxu23U7p3v7ZczYdUVtm8VX6BgT7HuXLVYp/bl9ensrmaLEYT4QOUvDa1UnditduYGxtJ/l0ztf0KcPCrVl45nwCavJSme182Fw6APfGMkqfmvhm6+fAs2yuuh8/+W4wmlses8jmOnA87au8TAisB4FepsrbsqPkU/p1P6rZr804KVruNETkFGKpXx2I0MbxJFyxGE5WtG2jyopJ3qMYCdx49q93G6SFKfpjm6+7x6mPmazNwFhezM65UWxY7MksbY+3eOdpy9RoDcDq6CnVnp7Ni/QqtHeMbaVreOHX8ZfMIxc5UchVFrK+ilXF1O4jVbqNJZjDRj2fQs9l1ZLw+U1vvWV+9Gel83bIeJT3j+fWV95TxJufpyjT57oSu7R8+m6etP1R6lkEhvwNKri5VFUshH4Rmeu1bgJTwLrplOXM7Kq9XK9fEupWUY2TPy0kcG6lcqyZGKXM1pYGyTcFNH+nm3TNvDkDdWelYjCaMfXewdex0AC72iFdyLf26iU3x+nPF81xQr72qC3WU3FclXQ9ry4bsOkDp3v3anDwZkYjVbiPD9CUBjRrq6u4XlohfgPJHLWpOxOKIEqovyuCCNZI64yvp9qs6N2WvicGdjinzvHmnlots+P7Ouu3K89Mnc8Hp4KFc9/H3WXMjF6yR2pgBLtyewI0PDKdFttLfh2oq16czdyWSM7ejrs5e8cnltlc2Z5//uj9ypG3ZRc9m17En4QIR49N1fd7zeVsin0nn5H1JGPvu0ObB8fsRut3/IAA5s5VrZOVjBm27gwubANAiO4CAn7K17Y44zlE0KJHmH44mb8gMXX8858xXnkFV5DdK/q6fL/jzxp4MLbeixWiitFscp6Ld/fCl6WDv41993fzD0bqyXUeM0JXNf0vJr3fxh3By3+vEha6/6/qv5uRT85+1Wz+IXQ/V1u5VtwwbRewv9wLwSK29HHzajPO69gBU+WY91RdlkPdpe639urfmcOreJHJmx3tdJ9SfwNQs9iYHEBAVQekB5Tqj5u5zVnax/ZHpXtfntQ8leR3fnjkr/UNCtHUHxpkJXJHFmbsSmdW3t26+PPtUZXfQZef9auHA/4r9/Nv9+0cohBBCCCGEEFeAfLgSQgghhBBCiAogAS2EEEIIIYS4hjldfjhdVyAU+xVo458mT66EEEIIIYQQogLIkyshhBBCCCGuYc4rFGzCeQ081/n3j1AIIYQQQgghrgD5cPU3s9ptLD+YRfTP9+tCqZYN+av+e+mmOKovysDYdwdTCjMJvWM7x/8IyRzzqBJu3N/Ukp49BgLQ+M5t7IwrJebejbr6em8/SeSyEVo//H/dBMDR5c0I7lGg62PZ8K5q34Y07qyVWZH5HRajiVHhXbT+9mx2Hb23n2RlnhLS+uR9Sfj9prSfsKk/AFFPp+tCnQaubYhfpcqkbv0Jq93GtJhY+oYl4Dh6lNjRSnhi45tpPucRYOsYJUyxOidlw6hajCZSV3+hLV+Zl8aBxLMMadyZM3cl0jV4l8+Q23lvJ+rq8Fxf9etMLEYThmbR+K9TljtucIelrpdWE4vRROfHRmLZ2ZvUZqkA1JmTrptPi9FEoz47CQgLZfPT03WhWo8/6A7/+vsjZuobgrU+7ByljPnpyE4APBLeWVmXWlvbZkZMNG0yB2tt1Z/mnsPc9ztpIXFP9znHDVWcbHrkfd0478i7WX8cbCvSvW/601Cq9Dupm5cWb50A9KHIy4YOBnCVlOhCL5cNVetXqTJWu42YrECtHleSEtK7tHsct+1QwgtPPtYMi9FEyK91KSt1x1rdMewyt9PaCb1ju1e7Zfuo8jw/yy7zrD+gUUPtfemhw+WGjVfL2J/Sh76PfXADJx5I0h0DrksXdfPXsM9Ora7jDyaxdYxyzLyW0wNHUREAAVERPFegH8vSAxm6sdZYmKGErX/bTyu370Wz11yocj/o5HN5zL0bte1rzdenfLjuoZH4h4Tgl7bZa17V16dToykt3KuELU+4oJ+Pj0czp/FvBP9SD+eZMyS37OpzTtV/A1dmcVtoPEWDEynLuWUXACG/1tX2weFvWmC127i/SReWnq1Labc47VxW9QhPYOi+63weqwCRK4YDkNNjlrK++wEl3H7LOrR6P4WI8elULnIBELfJqRwzO3tr25dNB1B2fBduT9CVsw8twWI0caFPgu7YU3+az0nR9tOBcWat3ou1vMN0L2we5jWXkSsfVMoFVqYsV2kpVruN35OU60Ds0Gz84lpRxVKIa9N2AqIivM4RgOLeCVr9tXvn4F+1KocfM1MjWUkVsa+TOzS4Gmq+LM/5nxYTS0nPeG2+qlgKtdeGWrX4ZcZsKq/KYmdcqW67sEdyiR22QVdv6UG719ynHtyoK6PO7enUaK3sDWmHMWaEYKhZA0O0OxR8xF1bALhpzG9ayPCUg8rxWOl7pe3YEVkMLOxGxPPpWn2N/jiv1T6r7mncmfS3ZhI+Id2rPwAdJ4zW6vA1V/vHm/kgVPkd4dWmbXkyIpF9L7hTcnSZmkHYq2m6bctSw6WXDZN/JMXMrgf14eGDvltPzkz3sdn0P8p1p/LNe7XfVSxGEzGfKv1W00Y0flnpQ8M+O4l5OJP609LYMymJg/ddJHKgMqf7Ss8SOiWNHz6fx5GHzVqb0fds4tS9SVq/Ml+bQeyILO39waeV8arpJy70SSDmsQzyHmgEQPSaoVp6iZhHM31e75csmuZ1/c7qsERb/2D2Zg4sVdJ7bH9kOoZm0YR8noFz2y5tzGUZ3870WnY1crr8r9jPv92/f4RCCCGEEEIIcQXId66EEEIIIYS4hjnww8HfH8nvSrTxT5MnV0IIIYQQQghRAeTJlRBCCCGEENewK/V9KPnOlRBCCCGEEEKIv0SeXAkhhBBCCHENc3Blvg/l+Ntb+Of5uVwu1z/diX+boqIiatSowcmcKO7qP1gLDXzTtjP82DrEK4TtoW9aUCf4PCOb/MK8ZuEUftaOyEFKSOPUgxu59ZZBOLbv1rax2m20mJlCk4lp2vuyYX7V96fuSaLmp+7QrqCETF//6gxdCNKyrwFIbIvhxDmiF+1jd8dL2vrrHh7JyvfepV9YIlMKM3k6spNXH/xbN2fl94t9hiUFKHwtibadc/my6Y+69n2F686ZF0fs0Gzd9la7jdhf7tVCt5Z2iyPgp2xO3pfEcZOL6MczADj8mJmG73rPk+dyX/OmvnaZ2+GXtpmAhg0oPfy7V98CwkIpPXBQt62hbh0cx477rLfssrJz7vm+bD1l67pwewLB+UW4dhdoYbw96+m85Q5+a/uVrv7TdydSY0GGzz6V7Vd5+86znwDrSy4xPjLea/mwfV1Yk92Kgr6zAIhMfZDYBzdwdHkzNnb8XNcvZ9f2+K/d5LN9v46tcW3Yxql7kjjVDCKXFtHqw51si3Nq7d08aKhu+7JzWbbfPW9RUhmUd4xa7TZ6Rptxnj+vW573aXui79n0f5ozX2UH7DzMkhYNyy1/wRpJFUshAEWDEjkV60+Tl9Ko9VttTnY+8ZfaUh182kyDDSUErPY+l9440ZQfW4f43M5XuHpfY52zbx3Dm3TxOrZVvTrfroVij1w+gsLbZvsMee5rDnM+7Ejsg/rQ2p7ttJyRwo7R0332z9f+Od+3E1W/zqRgkYnoB3Nwnj9f7n70NZ4et9/DqmWfXvYcUo/bss7160Tw0szLjvty13T1fev3Ugh9zX0NcyW1wy99s89tyo7tcue/2pec6QnEpqyHhDawfqvXel/zYzGa2DsxSRdO3NfcAJwdkMjwiV/xWXNjuWXU14ZatXCcPOlVn3p9nr53HSnhXcodX8HrSeTePYO4F0dTd7bvvp0ekkiNhcp9o+w9R3c9CgzEULsWe++LYtuj073m0bPs0N17GRiipEVRU40AujnyDw7Gee6cti1A1I8PaKkPytZZVnn3F/C9n3JmJmjnXt47icQ8vQlXSYkyB6nR1EjO05X3VX9AZDiuoMo4duZS+FoSkc+k67Y5sqw59W/fxbERSZztfk4LW6+6dEtHKn2/gT2ftyXiri3av9dtKebXtkHkLWhPfrd5Pvt/eIyZsM8LKD10WFtniInCkVuAX/tW7EuuQeNX3OfF5a6VhtimOHLytfc5czvqQviXPRZv2NaHn1t/g8VoInd+HM2f3o/j9yN8fWA9fcMSfLZhtdsoOuOkVmwBp0+fpnr16j7L/ZPU31knZN5EULVKf3t7xWcvMbHTj1ftfFQEeXIlhBBCCCHENUy+c1Vx/v0jFEIIIYQQQogrQD5cCSGEEEIIIUQFkD8LFEIIIYQQ4hrmcPnjuAJ/sncl2vinXZUjPHv2LJMnT6ZNmzaEhIRQt25dzGYz8+fPR42/UVxczJw5c7j99tuJiIigSpUqREVFMWjQIHbu3Omz3pKSEiZMmEBkZCSBgYE0bdqUSZMmcenSpSs5PCGEEEIIIcT/p5ycHCZMmEBiYiL16tUjJCQEk8nEK6+8wrk/gsX8GZfLxaJFizCbzdStW5eQkBBatWrFxIkTKSoq+q/7dNV9uHI6nfTs2ZPx48cTHx/PW2+9xfPPP4/D4WDo0KE888wzAOzZs4cRI0Zw4sQJhg0bxgcffMCgQYOwWq2YTCbWrFnjVfddd93Fyy+/TLdu3Zg2bRo33HAD48ePZ/jw4Vd6mEIIIYQQQlwVXPjhvAI/rgoO9/7RRx8xdepUmjZtyoQJE3jjjTdo1qwZzz//PGazmQsXLvxpHc8//zxDhgyhSpUqvPDCC7zxxhu0adOGF154gVtuuYX/NrD6VfdngZmZmaxbt44xY8YwdepUbXlKSgrNmzdn1qxZTJkyhXr16rFp0yZMJpNu+yFDhtC+fXuefPJJNmxwh9RMTU1l2bJljB07lrfeeguABx98kJo1a/L2228zYsQIzGbzFRmjEEIIIYQQ4v/PnXfeybhx46hRo4a2bNSoUcTExPDKK68wd+5cHn744XK3Ly0t5Z133qFDhw788MMP+Pv7a3UEBASwcOFCNm/e7PV543KuuidX6uM3o1Gf+6Jy5crUrVuX4OBgAOrUqeNzoC1btqR169Zs26bPL7Jo0SIAxowZo1uuvl+wYEEF9F6vb2wbLceV1W7T8shYjCZif7nXnTcDqHzzXuY1Cwcgp+vHWh3JoR1wbN+N1W7Tfm4a8gA1c51aGc88DFa7jeSWXbV1NT9N5/dHzdo6gFofp+vyV3jmkuj82Ej3ADK24MjJZ3fHS1o7FqOJql9l0i8sEQBTYCAHnzHTy3wb9qfMuMztsNptOLftosPE0Vq/AHLf7wTA/ufNRD6TzpnrjpH41Cit/WH7ugBQsMhEz2gzTX8aCkDs0Gysdhun7knS6msxO0XLcQWwesFcrHYbtT5OJ/+umdryzU9P1/XBardhqFObhu+mYbXb8OvYWjePnnlnrHYbfmmbsdptrNhoZejuvQBsv3hBK1t64KC2raFePWXDWjU4d2cnzg5I1O0fz3rVZeqcqu3esK0PoORBcRw7rttvZf0yYzYrv1/MoS+aYmhQH4vRhPO69lq9ao4rTxmvzyRnVjwWo4ni3gk+cxgBxH4yWjdnh79p4VVO/RkfGa/1U1328MFOWGpvxRXgPk7VPEVlc1xdtHTEf+0mLvRJILn9Lewfb6b5nBStzlXLlXOztArsfmAGrk3b2XFfrK49/7Xu3FNnBirzHrl8hM88KU1/Gopz2y6c23bp1pXlPH+eC7crc5S4+RKf7v+NgMoO3TYBURF/muPKardxtn8nr/0OXDbHFcAvbb7W6qj+WQZNXlLytxT10vdDtXh/mj5X0cwErcy2x6Z75bhSPVlbyfWSenAjFqOJ/DcTvfap57FqMZqYs2+drg/D7xytq9NiNNHj9nvc15iL7lx5saPW67Y977yomxcAv4AATjygnPPNRm/Bardx5CGzrl/qv41fTsNiNJHcpptWj7Nre10bnufZoTsvsmdSEjEP7dVymZW3H3vs6kW8zaGV6dljIAe6hXjl6GqSGawbg2vDNm1d4eQkzq6KUo6FUIOuT3HZAwDIX6SvD+DAOLOuTnV/WowmGqwv4fiwJK3s9bMytdf9dh7xmWvsxqEPattHrK+imx91uXnsKAbtsis5rkDLcaWu9xy3ds0D2k9WztnwCem6dvMXtveZd6nakgwtx5XVbsP+hHusp+5JYvH+NK186nbvv0RRr89+ca1ICe+ibRuWUU3b7tjIJKx2G1FPKfc8zxxX+583k/tuova+xsIMAhqHAVBomes1N6pVhZmsyF7Fo/d9w/yi+l5l1Hm/dEtH5jULp8PE0VqOK7WcmuPKarexMvc3r/k12AO19SceSOLmAfdjtdvw/+P3H08Wo0l3HKjLTjrcOfpO3pdEz5jOytg88svlD5iJq6RE65ea40qto/C1JKWsv0FXf2nhXhw7cwG0HFfdtp7T6jWOVHKS1Z2drstxpbZT6XvlXqCuU//9tW2Q0i+PHFejc/PYM8k9vobvpOlyXAE4cguw2m24Nm0nYuYu/TUx8icAcufHaX1Q1zty8glc21BbXtjzQ3zJm5qIxWji9zSj1q+Y+7PBoVwXqvpX1sqeGahcOw0N6nPgWTMWo4m+sW181nu1Ub9zdSV+KlLHjh11H6xUd911F4DX54GyLl26xIULF2jYsKH2wUqlfhYJ9nHuXc5V9+QqISGBmjVr8vrrrxMREUGnTp04f/48H3/8MdnZ2cycOfOy2zudTg4dOkSDBg10y7OysggNDaVx48a65Y0bN8ZoNJKVlVXhYxFCCCGEEEJcWQcOHADw+jxQVpUqVbj++utZtWoVU6ZMoV+/fgQEBPDzzz8zffp07r77bmJiYv6rtq+6D1e1atVi+fLlPPjggwwYMEBbHhISwtKlS+nTp89lt585cyaHDh1i/PjxuuV2u52WLVv63CY0NFTbCf8XjRo10r13Op3llBRCCCGEEOLq4nT54XRV7PehymsHICYmRvek6NChQxXWhsPh4OWXXyYgIIDBgwf/afmFCxdy//3388wzz2ixHfz8/HjuueeYOHHif93+VffhCqBatWq0bt2a2267DbPZzIkTJ5g2bRqDBw9m2bJl3HzzzT63S0tLY+zYsbRr145nn31Wt+78+fMEBgb63C4oKIjz58/7XCeEEEIIIYT43zBmzBjS09OZPHkyzZo1+9PygYGBREZGcu+999KzZ08Ali5dyqRJkwgKCuK55577r9q/6j5cbd26FbPZzNSpUxk1apS2fNCgQbRu3Zrhw4eTn5+PwaD/G+Ds7Gx69eqF0WhkxYoVBAUF6dZXrVqVkpISn20WFxdTtWrV/3Ofy37aLioq8vn3n0IIIYQQQlxtHPjjuAKhGNQ2cnNzqV69eoXXP378eD744ANGjBjBuHHj/rT8+fPnMZvNdOjQgcWLF2vLBw4cyMCBA5kwYQJ33nnnX/qQprrqAlpMnTqV4uJi+vfvr1tetWpVevXqxd69e9mzZ49u3caNG7n55pupUaMGa9asITQ01Kteo9HIwYMHfbZ58OBBn9sIIYQQQgghrn4vvvgikyZNYujQoX8ao0H15Zdfkpub6/W5A6B///44nU7WrVvnY8vyXXUfrtQPQA6Hw2tdaWmp7l9QPljddNNNhISEsGbNGsLDw33WGx8fz8GDB9m/f79u+f79+7Hb7XTs2LGihiCEEEIIIcT/DPU7V1fi5+/w4osv8tJLL3Hffffx4Ycf4uf319r5bz93/BVX3YcrNejE/PnzdctPnTrFsmXLqFWrFtHR0QBs2rSJm2++mWrVqrFmzRoiIyPLrXfQoEEAvPPOO7rl6vshQ4ZUzAA8PLvFpr1Ww3f6Bwdjtdu0MOJWu43IWicAKBqUyL4JZrpsuYP94/U5tyxGE63fTQHAsGYj1T/LIPeTDgBct6VYK2MxmnCcOq3VDdDgvTRdCFwA/Px8ho6u9oUSzrfwNSWErX/b5vj7+JNJte6mq4ey7dHplO7Zh/H1NPzSNmtlNk6YoQuJGvOIUnfjSUq46Py3EqmxIEOrb24T5f8M1FkRRM7ktkTf7Q6v3fbNFDKnuOvbOWK61/yo4+mxqxcl30f4DHkO4Dh+Qlvm2rDNq56y5dWw+fOahWO127jtm8cp/Kwd1z08kosW94dyx9Gjyr+5BQR/mUm1JRk+Q3yroXrVn/N3dNKWBd6yB4Af739D23ZgYTfdtgGNGureN+yzk9jUE+TMicf/V2XOTjyQRJu3U7xCJ1uMJhqvVC44Qd/pwwOrrHYbOffOwGI0MS5fOU6vCy3Qjt2yZcvOF8AHoZnMjY0kdmSW13FmMZro1cGibVvZuoGiwYn4OcDx+xEav5xG+AtpWp0J45QQ39kvzuDJw+058rCZhIVbde179qPafuV8qJNt0K1X+xF99yYOPm32Wucr7H2VZetpMTuFRdbrqW8I1oUVBigt2KOkP+iu/z9eZev57d1ZXm2U/Vf1+yNK346OSmLnxfNa/wJClZCwOR921M5xgJsGP4AxQ0nzMLCxWWvn5cIsLeT5OycjAHeY+vw3E3GudkdObTNVCaOdHKpcU5o+kcHAwm7cu/d6AC7d5A5jrP579857AHB2UeZVDdm98EwdrYwry72fSg/afV5zLEYTfcMSlGvXjR208qv2beB07B+v9yrjqD9NOS7OOou9wqsDHLynOQefUebvh8/m6fa71W4j8jslYXyl3VXY/cAMUrevUfqZ1E7rS9njwNXtIFkmA71zeirLnRB0zKU75qx2G9nz2mrLTq6I0dYBRD6bzm9tv1KOT7uDR/N2aeuy45aw+Ewtmg62kfNRR13I++2PTOf4cHcY6lqb3X8Of6JFIKe7X+DUvcp6NYx14WtJLG1RH6vdRrNf79XNQWXrBppmKeVmhSkhtAPCQnVzFLLYHSI971N3OPuyYj8eTermH7AYTex/zkz9D9K0fveMcoc4bzpkkz7EfnwbbZ5Ku8dp81R/o/Jn+/lvJlLz03RqGdz3Hc/+Bf9ST3ccurK3a+XO9u/EgcSz2vq6s9whz8tqPCmNmMcyyFvgHuOKzO907R1JMXtd29pPVu7DI2rYtXmyGE1aqhGr3cZZZzE/zVfCeteb6e6D5zj67jiKxWii4wR3CoNT9yZRL60mUc+kkzMzgRXng6j9UToXaymhvlfm/obVbuPQWLNWj9Vuo87cdI4sa64bZ5/RY/6YcD9qfZyO89w5jqS4t1P7fXxYkq5fnudgzr0zlOPL6VDu2X+kaJhcqE+lcOqeJH5qo4SqnrtvHSs2Wr3mXReufluRbl9Y7TZyZse71//Rn0s3xdEn+CwRz6dTHjXEuuf93XN/qa8Lbpmre68q6XrYa7lnygOA6MczOPZtLE1eTNP1OXXLal05/+BgQhZnKNey348QNjnN57EnKt7EiRN56aWXuOeee/joo4+8QqqrDh06xK5du3RxFtTPHR9//LFXeXVZfHy817rLueq+czVmzBg++eQTnnnmGbZu3Urnzp05ceIEc+bM4dChQ0ybNg2DwcDevXu5+eabOXnyJI8++ihpaWmkpaXp6urbt68Wm75Xr1707t2bt99+m9OnT5OUlER6ejpz587l7rvvpkuXLv/EcIUQQgghhBD/B9OmTeOFF16gSZMm3HTTTVpeW1WDBg20QHjjxo3j448/Zs2aNdxwww0A9O7dm4SEBFJTU7n++uu54447APjqq6/49ddf6d+/Px06dPiv+nTVfbgKDw9n/fr1TJw4kdWrV7N48WKqVKmCyWTirbfe0gZdWFjI8ePHAeVRoC+FhYW6xF9ffPEFkyZNYsGCBXz66aeEhoYyceJELeyiEEIIIYQQ1xon/jivwB+0VXQbap7affv2cd9993mt79q1a7lRxgEMBgM//vgjr776Kl999RVPP/00fn5+xMTEMGXKFMaOHftf9+mq+3AF0LRpU5+P5zzdcMMNuFyu/6reoKAgJk2axKRJk/5/uieEEEIIIYT4h82fP9/rq0T/bdmQkBAmT57M5MmTK6RPV+WHKyGEEEIIIcSV4XD54bgCSYSvRBv/tKsuoIUQQgghhBBC/C+SJ1dCCCGEEEJcw/7OMOll2/m383P9t19cEn+qqKiIGjVqcDIniv7NOmC122g5LYXGr6SR+3EHYu7bqAvLChAQFUFpwR4KXk8i6il92FFDs2iOvuVP7d45AF7bWu02oheNAiBsjYPAFVm67cuGgFXD5Za4LhHoV8lrXfGtCQR96w61emismUZvKyFFbxryAIY1G73qttptdHl0JOvem+Uz3PLMveu477Gx/DJ9ttf6YyOSqDvbO9SqZ90Wo4mAiCaU7tmnve+5/RSL9sSzvv0XgDsc6gVrJFUshRga1Mfx+xFdfd+fr8Rb0a3ImRNP7PAsDj9m5tFRX7GkRUOvdkEJBVvpx2yv/rT47R6a9N/q1efvDmbT7MuHiHksw2veAY44zpG4bCwFd8zipsEPYPh5I8W9E1g7e7ZWR1z2AE4crEnsqPVe+9qzH4/m7eK9wf21ENie6/Z90YYm/bdy6t4kMl+b4XOfHPs2lrq3KsdUwSITUYNtf7oPfK0LCG/M1F8W80h4ZxI3XyKjXSWtTGn3OAJWZ3tt77yuPZV27sNx7Lg+RK/RhKFObVK3/kTU1yOJeSgTv4AAVu3boAu77TmvUV+NpOCOWbo6yvbzcixGE2cGJhKyOMPn+rLbDyzsxsnOJ3zOiS+GWrVI3b4Gi9HEoF127q9+hOR2N2uh+y/XpsVo4rYdx/lsfDLr3nefWxf6JBCSbad0/wEAJhRspHOQP1Ffj6Sgr3su2q0fRMM+O7W+xmQFkhtfor3PW9Ce/G7zdHNhtdtYdT6QcW8Po/70NGbuXceo8C5Y7Ta63TuMPbdWIuaxDCzbirC2rq7r86P2eN4zZun6vrxlHa9zwXOf+dqv5fn9ETO9h/3KpPpbdeULJyeRc/8Mut89jICfsnV9Khuu3dfx7OsYmXkqlG/aNsK/aQSO3Xk+6yzv3Dg2MkkLA35kWXPq374LgKPLm1G6tg71eh4g4KZ9Xm123XKBZ+vu1s3VyANJzApL9zk36rh9rTvwrJkqR13UmZPus89l56JoUCLVP/M+B14qyOaFqDiv5Tnz4qhZ+xyb4heT9MQoqi9yb3tgaSvC+m3XzVdZVrvNazvPsjXW1eF0FyVoVUnPeAJXZnnVoaqXVpOj5lPlri/r+INJ1PkwHftTZoyvK1GGPfeTL3/lfPd1XJV3PSpvThI29adWr1yv7Q21auE4eZILfRKo8s16n/v0jRNNebJ2vu74aTEzhchpu3AcP8GAnYdZ0qIhVruNjhNGU+fD8kOc+zpG/mzM+79sTfVvqmkpVi5Xt8Vo4uBXrQi9Y7tuna/j7fAYMw3f0UeDvlyf1fu8qux1aHRuHu+PvIvVC+YS+8loIp/xDpdfkhxPYGqWrm6L0YR/uxbsSqlG7Mgsn/NS3DuBoO/Ws+eVJCKeU+otdV3iZ5Zx+vRpqlevztVG/Z115C/9CKxW6c83+P9UcvYSs65fetXOR0WQJ1dCCCGEEEJcw1wuf5yuv//bQq4r0MY/7d8/QiGEEEIIIYS4AuTJlRBCCCGEENcwB344uALRAq9AG/80eXIlhBBCCCGEEBVAnlwJIYQQQghxDXO6rkwkP+c1EEZPnlwJIYQQQgghRAWQJ1dCCCGEEEJcw5xXKFrglWjjn/bvH+E/qF/bjtrrYqODGuvqaDmuQMmboL7e8UR9AC3Hlee6nU/X1HJcAT7zaDR9IoOmT2QQuCJLt61fpcq68p3HjNJed3/sYV1/e0abAbj5lV/ImR2v1d/obXd+CTXHlWdemCPLmmMxmgj+MlNr67kCG2EZ1bQyo8K7cLiTAfNYpf3Cz9pp6+rOTmdc/hatXldnkzbO03cnanWqOa5+KYbCxW1Z2aom53+th8Vo0uVu+aXN11jtNorbNNbNtcVoYmq/OwGIHa7kryhqVqrluFLLJowbrfVNzXG17wWz1g+L0UTDmkXaNp4/vUPjKOg/k2Mjk3TzbjGaSHxyFL3HP4F/rYtYjCZ+XPQRAGtnK7m/Em13YjGa6NRwX7k5rvzi22jL3otuDuu3YrXb8G/XQmsHYFK7ZQCcii0/d1DNKsUA5L2dSNRgm26uPPut/qsuL/2xCc6u7bV1J8yhPBLeGYCMdpV026s5rsry/3UTjmPHtbo992Hq1p+wGE00f7FAmfvFzYn9eLRXHer8eOZL8uy/f1CQbrmnY45zWpsANbec0NVbdi56depN6/dSOOI4x+LIn7Syh8aavebMc3sAx8mT9Og1BIDPmhuxGE04jh5V9tsffSw7Lk8P1dxP8NJMuo4YoS37ZfpsSvcfwGq3kTMvjolRHQCIfSxbt61njiv/kBBy40t07UTfvUl7bzGayJmZQNJ/RjE1ugX1pyu57SIrVSNvaiLRa4ZS6cdsLYebtXV1pf0/rhUWo4ndHS/p2l/esg4APaMSde3EPJzJgILu2rJh+7pgMZrw69ia67YUe82hqsH7aWSZDAB0HD9aG0fO/TMACPgpmzMDEzn4tFlrC6DZ3NGcdl4oN2fPodKzWIwm2k9K0bb7umU9XKWlpK75Epe5nde+KXtuqD+Fk5UcV2rZ+rfv0tZt7Pg5jd5K03JclT3O1BxXD+XmaMv2JCj9Xrw/zWubiBUXvNoH5bpf+TTcODqD06nRuvG6ktzXXs/+p7810+s4zvu0Pf5+Tm2Zf9vm2uvYodkELKtF8vV9dbmqALYnLdTVv3dJG448ZPaav9N3nNXayv2gk3ZMWO02lkStxt/UEkDLceXs2t5rPwAsiPi53GOm7Jhy5sVR50Nl/6g5rgBdjqsDz7rPa2cXJfeeOod+7VuVmzuv3DxYCW2U/l/X3qtvh8eYMdSsAUCP2+/RclyBkmtNLZe6fQ2AluNqy8Vi7VjOmRen3FNah+iOB4vRRJOJaTiOK9c39V7XYlbKn+a4Uq+PJb3ilfyDLWO19QWL3OPsGdOZ48OSAGh85zYyXp+pq0f9t+T7CObuW6dbti1xIbnz43T77oWoOPBz/2na/vFmNj81XXvvV6myV19Vap/fim5FQFiotvyhmvspvjVBm5tTjqoE/JSNxWjS5bjyFJiahWGNEfPmi1rd9dJqsnLlZ8SOzCL4F+V3jwvWSG2bnA87snb2bOXcfM49v03WeF/nxb+bfLgSQgghhBBCiAogfxYohBBCCCHENcyJH84rECb9SrTxT5MnV0IIIYQQQghRAeTJlRBCCCGEENcwh8sPxxUIxX4l2vinyZMrIYQQQgghhKgA8uRKCCGEEEKIa5iEYq84//4R/oOcxUrYY4vRhCvQwZKo1boQpxajifiNAzgxNInYlPW6bT3DRPsXBfgM9ezsYtKFXc1/M1FXv9Vuw79mDYp7J2jbzn59qlZ/8JeZxG8c4O7v+fMA/No2iMLec3T98fspVPde7VvkiuFsil/sNfbrg+BA4lldvyO+u8DFYD+cXdtT7yslNOmlm+IAeLVpW3dbv9m0caphXZtmucNqvxJlInLgFqx2G6GvuUPpqmPuGa2ETa/0oxJqtWiwEgb6odwcnJt3an0qGpxIYZ/ZXts3fKBQN88AO0dOJ6CREsb2+LAkqgw6q9vOMwy4xWii7ix9eFer3UaNhRnUmp9O3o3zdHNoMZoonJxEjeQ8lhxIJz++WKvbM/wtwKpln2qvPefWuXkn8TaHtuzN/Js5MzARl0G3OUdSzNifUsIMB9ykhLbPHzhTN35fPMNXB9y0j08+fZ9zq6IAON/A36vcyRUx1Pqttm6OwL2/y9atunHog1iMJgLCG+M4ehSAHeYFrB3yBoC2bz37m9ymm9KvxmEAPHm4PVa7jZUFGeS+30mru9lHo9l+8QIAQxp3Zvreddo6xw536Ouyof0tRhMrMr9j26PTqW8IJvEpJZ1At3uHseWJ6fq0BA+Zddv33H4KAP8DR7zOYYvRhLO4GPvXLbVlrqR2WIwm1pe4Q5qr4107e7ZuW/XfFm+e1cqduDueltNTsBhNJN94p9bmcwU2nGfOAGCIifIao1pv4W2zSX9rpm6/tH4vhQYZ4HLC0eXNtLb8fgrFYjQRO0IJk134ahJhGdVIbtMNS597sNptnE6NVq5VxcVex9bpLse1sc1touyLVcsX8NEmMykHE3XnlC8bXp6hvf7PoQ5a+XMN/AmdooSR3/eCmdJucUSMT2dAmBIu+lG7Ejr+wDh3aPD7m3Qh9eBGGs63MbCwm9buSwXKNcQvbbPu2gpw6JsWumNE/Tfn/hla2ZcKsnXbtc4YooUdN6wxeqXVAKj0cyOmxSjnfY8mHQkIV1JK1DJUBT8/LEYTqQc3EvXjA/j9ZuPo6CStjvZZA5Xrfo0QjMv38fXqRDJMX3Ikxaz1wy99M63fTfEKG359ygivOY++ZxMJgZW0Ms4tu3Tb+PU7hiOvULtW2p/Qh8BXhQ/YSv1p7mu1Wn6HeQEFU5S0FYt7faC7R7Z5JwWnbYdu///w2Tze2ZPm89jw3DeevjlXTbefYoe60xVc6JOg1ePfurlWLmxymlbef52Nut+VKuMNCMC1abtX26rc9zvp7htqfwynL2CIieKHz+dx811DsRhNTC5cr6T1eCcNx6nTgPv6rm6//PrmZZsAoHXGEIL9SpX6/Q3UqnNWt95iNNF0sXKdMrSM1erLnR+HoVYtmryUpi0bl7+FmXvXeY1HfR+4Qjm/HTvc6WA8U3c4z52j2l2HdG0DnBiaxJKzNbRlP7f+hrCAarp9ZDGaiLk/23u/uVxY7TaCf6lH45fTaJ0xxL3q0kVd/3ydQwClBw7q2jmcaNCOrc+aG73GW/b4L/2xCflp4aS1c4d+f8q4yn2duV65P/3S5msA3t/7G5UPVcJiNNGrU28A/Dq2BmDfje57urg2yJMrIYQQQgghrmFO/HBege9DSbRAIYQQQgghhBB/iTy5EkIIIYQQ4hrmukJ5rlzy5EoIIYQQQgghxF8hT66EEEIIIYS4hjldV+g7V5LnSgghhBBCCCHEXyEfrq6Q2Ac3KCE6zbdpy44sa05WhyXUnpeOs2t7QB+6W31dba+/V/hSi9HEPksV3fsG69GFErUYTTiOHiXou/VaXfe+OlZ7ff6OTtTuncP5O9zhqkuSlTDF0WuGkvtuorbc1e2grg8B4Y0BKOw1xx1utlYtXXhUtQ/7vmgDQNDkw2x4eQb+azdR7YtMAJ6Z+YlWp9Vu45jjnNc4AV14ci+J7jDuFqMJ5/nzuvmrviiDqK9Hclvwea0Mq8OovigDgLf3pOu2Xx6zisPftADgxu23a8t3vd6IgEYN2fDyDBzHjjMip8Brv5TlGaK5rEfzdmkh7iOfVfqghotWt1HD36phw8u2Z7XbSN6djNVuY1L9rdr66j3zCVmcQaUi9/8hstpt1J+extYx03V1tH0rhXt37/cKNX05jQKqEdyjAICG7yhhi0N+rau1s779F5zsfMIr1HfJEye96mr3Roq2vrJ1AwCle/d7tQfgF9ZIV19y8+tJ3foTiU+NonT/ASxGE9/mtVbGsbM3Bf1maePc/cAMxkYoYZ8fzdtFSngXra7i3gn0uF0JH951ixKufefF87r9l/ikEtpYTQ9Q6UclpHObzMFYjCZqrKtD/WlpRKx3n5crW9XEareRuvkHLUS8IbapbmzGvjt0YbILFplICKyktd1v5xGtPoAuj47UvS+8sw7HhynHzaTnP6TxJCXMsmN3Hu0np9Crg4VXbxuo7QtHbgH7XjCzZ1KSbn+rryOXj9D6ZjGa2PbodEI+zyD6nk1s7Pg5AKNz86hf5YxWzv6kmejEvcxtsg7XxUuwXjkWayTnucPSN7tO22+n7nEf5/fu3q/rQ8x9G3Xnu+c1TQ3vXzYk/7Y4J2/sUc7nM7FKSoK47AE0eSmNgJ+U/XTmLiVVxe6OSpj7jQ+/S/IN/bDabVy3pZibho1kZV4aZ/opocfNY0eRGGTwCvlstds4/mASjfrs1O3HsuH7AV6IitNSBQBsS1wIQOx/bKQ2S8Vqt1Hnt1pYjCY6vDwai9HEpRsOacfDqn0bmLdusRJyf3YKh75ujqFmDZJDO1Bw00cA1JuRrrW5KV4pm7plNRN/+YqmT6bT7KPRbHrefc4DhE5JI3daJ12qh+BVW3Rj+bPrgNVuo1avXF2ahq1jlXb8q1bVlbPabRhaxmIxmrA/6U5XYDGaiHo6Havdph3z6jwaX3eHQ/e8jrSoXFV3PQwIdYe0d65uzEsF2Vq7ADNiorU6rHYbx0a4j72jQy5o9Ti37cJWUuIzxPon4b8A4Cot9ZqfmKxAAPY/bybmkUxdnwMaNgCg1Wf5pK796o+Q4Mr1IS7QHeLbV0h/AMex47r21PQBoXdsp2kl5ZqI00GjMSXkzIknb6r7nh09NgNDndocTayDxWhiwM7DxNyfjePkSV0fhy8dyajwLl77u2dUImWVDX1/OjWa4t4J/Nz6G6+yteelMzc2Ule+7LVm/3izrl6r3caBce5w/ueuP0pA4zCMbwZo6wPCQgmIitD1N2dOPFa7jc6PjSy3vxHPKefJyRUxWv3OLu5jq8o37nQ4rd9NIeCmfUQ8l07+W4lambaVg7R67U+6+5m3oD2xlYKJGK+08fqvXwDg2rBN+13pf4Ga5+pK/Pzb/ftHKIQQQgghhBBXgHy4EkIIIYQQQogKIAEthBBCCCGEuIZJQIuKI0+uhBBCCCGEEKICyJMrIYQQQgghrmHOK5RE+Eq08U+TJ1dCCCGEEEIIUQHkyZUQQgghhBDXMPnOVcWRJ1d/oz0vJwDuPB/HhydRumefljOh/u27aDZvNAA/fDYP0OcxOulQ8jUFHXN51X12QCIR49O5+EO4tqzakgyfOTo885BkvzBDe131KyUnx/m6/ljtNubsW8fPH84BoFLlUgr6z9TlGDk7wJ33Qs1DlNzqRqx2GwWLTKRuX6PkplgVpWt/Z+dPsdptLI9Z5ZVLY+SPQwF4qSCbfaVnGdK4s1f/1TGoXi7MAtxz9fiCz3Xl1LI3D7hfWxbzUKY2Fr+fQqH7AW1exkYk6ba3GE1sTvgMi9FE5Zv3AuAXGEjMu5coPXRYa3d2bBRWuw3TJu95BiXnCoArqZ3PMb0X3RzXs3W09w/lKjmtWmcrp2XOhx0BOPiMmZTwLkrfO7bWzYfFaCI/LVx7XTavVNiradrr789X0pVTc3kF3niMISHHvfpX0jNee112v1mMJl2OHNMmOHPdMV3+GgDz46N0Oc+q/ZEby3MMDacqfew8ZpRXHprSbnFaXQeWtsKRkw9AwRSljKOoCIAaCzI4MM5M0aBEwgdsxWq38XLU17r8Np55ih7Puktro0F6ddbOnk3O/VWxGE2sbVsFq91Gi8ruXD0Afncf1caWO62TkmerZVeMfXcAsCRqNYbYpuxJuKCNTc33E/XDA2zp4MJiNFE4qIGuL2XnN2qwvq9LW9RX2v9j3zsq++n2c5OX0qgzN52S7yN4K7qVbn7rf5BG6eHf+b1LLa3OvS+ZafJSGhET1rP/eXeuFqvdRvAv9YgdtR7/ts29cu4EhIViMZpwJbWjT/BZLfcPgPGNNBw32gFwnjmDX1wr9nzuzj/XfcdttF57Vqsvc8oMbQyfNNPngSl7DBszQsj7tD0Wo4mTnU8wYOdhnOfPa2X2TlSOhT6/pOjO9ey4Jbp6Qj7PoPOYUdr7QL9KXGpUHYBf2wZReZVyXTlxYyRWu420t2e6O+VvAMDQIoZW6UOo86E7N56nhHGjdeehf+vm5I9pprXZJ9eizGFJiTavxzufxGq3afmqPN00+AHqG4IBaPJiGlsSPsNx6jQA16eM0I7t5uvuISYrkBuGDdfajgusrOSi2unS5l0tb7XbGGhOJ/XHJVp5Z7E+l+BLBdnaeXP4cbPP/QPw/JE2HBrrPo4AnOfPc+reJKx2G83mjtbl7DO+keaznvJyBlrtNq57aCQXe8Rry5tWqqZtvyIrVRuTf/f9JAYZdONVJdruxGI0UXvHBeI2Obl+9AhKjlTV2rDabTwdqeR89A8J8Tlexw0ddH222m3kxpfQc/spGk9KY+9L7nmyGE2s2GgFYEsHl5afLvHOzV73Cu0ci3Tfz33dN8JeTfM6L7tuuUBpwR5ih2dRPdf9K53VbsNx/AS1P0onoHEYS1o09Op708Wj6NltA/lvJurGaTGacBYXUzRYn+uq1QfunIQANZLzWDt7ttf1zPN3Bc/lngLCGxMxfZfWXo9bh9D+lRTdPQugdP8B/NI2a9utWL+C0oI92vuQX+tS2GsOt/S/n2pfZCo51RrU182Run+T29/C+vZfuDth0OeBNDSor+QRm5Kmtd/0PxlaPb269GFCwUYAtj7uzh1n2Kfkv/Jv3VyZp8pV3Mdn+rd8nbPVa/zi302eXAkhhBBCCHENkydXFUeeXAkhhBBCCCFEBZAnV0IIIYQQQlzD5MlVxZEnV0IIIYQQQghRAeTJlRBCCCGEENcweXJVceTJlRBCCCGEEEJUAPlw9TfadNdcLeSqxWjC/6Ky3GI0YWgWDUDEc+naMpUawrOWQQkNXXPheq91Rzoq4ZjVUOGghIm1GE08nrcTi9HEpZvisNpttJuSogtH7RmuHKA02A+L0USxy0/rx87On9Jmaoqub9WWZHiN8Ug/JfRo7g3zlXKJbeHDegBEpj6olWu6WAnJ/fsjZq3tnOkJxI5aj9VuIzHIwPAmXbzGqbrhweHa64TASrpyU6NbcLZ/J11fLUYT/uuUOpK799fKPnm4Pa5uB7XtD/3HHToXIOrHBwiIDMdiNLF/vHudq6SE4npVdH1T59PWXilz3nmR/DeSMLSIAcC/uxKu3i/dHUbWa3wZW7Rl2ecjAdgW5yQgKoLYBzcAEPpamjam3aODlHDTnygh/A3NorVjSC0zLKcQq93GjUMf1IX69gzTbTGaaNhnJydXxLCwzTy63zNMW5e/sD0nHkgicGWWV1hsz/epPy6h2QZlX0xpoCw/OiqJSj83UsZvaknI58oxk/SfUbow0ABNP3eHxc5/M5FqSzIYtq8LdWenk/+WEso34Cd3OOiwftu17f9z63J63H6Prm/bH5lO+lsztfHdtfIhrHYbnR8b6RWWuf7SIK2u35OKsBhNRC9wh6K2GE2kHNSHE67eMx9/U0sAJnT/WpmDHWu19T2jEnXbgxKS2mI0EXOfEr63RXYATV5yhxpWy/3+SPmhrlWuDdsASH9TSZEQ0DiMgFAjhlZKqO/AW/bg37a5OxXBXUOV8MJ1alNvpvsY2TV8OnteTgKng8aT0nTHyFfRPyj93rILV2elb0N372VETgGlBw4q6QDSN3uFXi47blf2dnZf94lW5uTSUPrXWu9zG6vdxkO5OQzLKcQ/JMQrRPWv61qR332etmxJi4a6OnY9OAOAmHs3MvmYO+y5Zz3TTinh3us9VAhA75yeAPiv3cR1D43UbRN4yqG1raUVcDo48KwZx85ctictxGq30Trb32sejiU4dWNzbttFxHhl7ttkDuZC19+x2m0cGOcOXX5gnFk7PvPeTmR0bh535N0MwI+LPtLqUst9uv83AH6ZPlvrX/iAreTGl/DzXCWVxjsnIwAocV2i5o4zRK56kCMPm3XXx8kNtmAxmkhu2ZUet92tG4fVbuOFqDitX5ufnO513s4vUsJdZ5kMNHo7TTffAJmvKftl9zDl30/3/4aza3su3RSn9QHAPzi43ONJLVfNupWzxgCv/eJ5f/WcS89tVWd+Vfr7w5L5ZLf3p8qy9RT0naWrU33tPHMGQ2xTXR1Wu023PzzXjam1B4DwF9K0dSNyCnTtB3+phAnf1+mctky9/2hhxwv34rixA8G/1KP4xSLdfCw/mMVzBd7zs7ZtFe31ucYuLaWH2nbha0mU7j+gaweg5fQUosdmsLvjJZo+4Q43PqFgIyeGKmH0qy9y3/Otdhthk9N8hpEve2+otiSD/LcSvdJgHHnYfZ0r3buf1K0/adut+nYh9ad5XxvL9rvssbJpQzSWsDj8frNp6w/Nrk3OTCUVTu60Ttr+dfx+BFBSq7yxJwP/tZuwGE2cuStRW+95r/C8LgOUNKnNxKgOuuMFIPLZdAYX3ohzmzu0fLN5o7V6+sa2QVxb5M8ChRBCCCGEuIa5ACd//5/seWdu/feRJ1dCCCGEEEIIUQHkyZUQQgghhBDXMAloUXHkyZUQQgghhBBCVAB5ciWEEEIIIcQ1TJ5cVRx5ciWEEEIIIYQQFUA+XP2N+sa20YUprffTfi00p2N3nlbOareR+24ihrp1AH04cavdBk4HAQ0baOXtT5iJeiqdXp1660LnGn5Wwj1PjW4BQO931mAxmtj89HQtdOjLhVlELxytCzca+t1hbtp2hkfCO+v6b3xDCYt6doA+JLXaHkBd2xm6PDKSHrcOUVZkbNFCzhYmf6iNI3+gEiK7wfvuULWxKe4Q85798QwZr/r5wzm6sqoevZR2q32RCcDhMe7Qttpc78zVXm/p4I5TE/vxaC7Ud3Hy/iRtfcy9G7VwuI1fVsLOjstXwqUHrszSzUHZkLB9wxJo+mQ6jp25unlS15+6J8krxKynl+pt115fbFzLZ5nCnh9iMZqIeiYd/7bNcezO0+p0dlHqnRsbyRsnmlLZukFZfl17Jdz5G0m6uqx2G+vbf0FspWACVmez8Ixy/AVUKuXFZ+dpIWxV6lyrbul3H7s7XtIta7g0jzcilmK122g6J58TQ5U2q3+mhPr9+YI/7bMGAuDn+KPeyE7U3aT0Z26TdQA0/U8GMVmBgH6e1eP465b12Pe0S1sf9eMDXmVjU9bTo0lHqn2RqTuW/nOoA8FfZurCOQMcui5YNzc9arrD5Kt+T6wBwGfNjV770VlcjCMnX9vnhpaxXtu/02gDF/ok4DK3023f4H3lWDs+PIkWs1LKDcfuefyU7j9A6UE7ju273X3Y4g4F7P+rEmbYcfwEhx8367ZXw4OrZdX2Ep9Swmwf/KoV338xH4BnV93F7Ngorawq+YZ+ABwf5n1ceZaddKw59Wak61IodHl0pK79aTGxDKh2GueZM9p+t9pt+LdurgsTrbZnMZq4adsZXTuFi9uytm0VSrvFaeHVVctb1uFij3gudP0dgEs3HNLW/TptljYvo3Pz+HnuHF17rbP9+e5gNmGT03h/729am9vinLpQ02/vSSfmoUyvecp9vxP+QUEY++7Qym5/ZLq2PuzVNPZMUsYUPTaDSVPu4dz1RwGIf360Vi78C6XP9zRWrtOe56PzuvZau9GLRjGm1h4sRhO3hcazasVCYh/YQP0P3CkdAFrOUFJtpO5Yy6rlC3THVsyC0Thu7KCbQ/U4iX48A6vdxv3Vj1BWzkcdAfBv29zr/LincWcMRRep9GM2oOzf3x8x49+gnq6Ngtfdx1Puu8q9x3n+PLU/Uo7Zo6OTqLGuDvlvJepDrQ9MJOxV9/1FbUOlrit7bylbXrtv5ORry3xds612G3teSdLq9BxDvbSazI6NIu/T9rryarlWHyhz3+gtd59KesUDYFizka+if6CKpZAOL4/GEB2J1W7jttB4XokyaXWdGai/Lxe+lkTkuHSmxcTqxpdz7wyOLGvuNQ7PNAye5Z8cl0Lteem6ecqZE8/Tv5u0vvoF6P/oyfN3FlXlE/6691a7jU3PTtfNcdl7qJqipqyy86+WP7cqiujHM8Dp0C2vf/suYkcpv1/EPKS//luMJvY9EceTEe75S5s6U1e3em9o8H4aR5b9kW7m/U4Yft4ICe6w6m03Kk9gSrvHsShyja6PEc8pc9gqXX/fvJqpT66uxM+/nXy4EkIIIYQQQogKIN+5EkIIIYQQ4hom37mqOPLkSgghhBBCCCEqgDy5EkIIIYQQ4hrmcvnhugJPla5EG/80eXIlhBBCCCGEEBVAnlwJIYQQQghxDXPih5Mr8J2rK9DGP02eXAkhhBBCCCFEBfBzuVyuPy8m/htFRUXUqFGDronPUylTyTvjmWOibB4nXzkcLEYTJcnxzJ7xDrGVgrEYTex/zkzjV9LY96KZJi/q83moSrvFsXrBXCxGE4aYKE51qE/a1Jm6NvYuaUP4gK1Y7TZeOtqStHaVdf1zXteefZYgfr73De5v0gWAxM2XeKne9nLzfajjOP5gEnU+TPcqA3ChTwJVvllP/luJ5A2aSfSiUTiqObV8FKDk1wm9w53vqbw58tUHi9GEK6kd3y/9WLfNvhfMhL+yHldpKQAXfwinRc3fmR7qzp9TfGsCQd+u1+2b5Ov7kvrL11qZ3E86EHPvRmXdjXeSuuZLrX11G4vRRM7MBN2YfDl1bxJnby8irN92Xf/LjsfXGFXdtp7jpzbBFH7WjshBmyntHkfA6mxaZ/trOXjUfkV9OZKYRzO1elqlDyGs33asdhvN191DcJUS6t6aU+68AjxXYOOFlOFUXpVFsw2VtBxXlzu2PefncmPz1abVbuPmQUP54bN5Wh3quuPDk6gzR3+clfSM5+e5c7SyfnGtcGVv17Y58rBZy/WT+34nYh7JvGzbZftcdhzq8p8v+HNDFaduXcGUJHLvmeHuS3wbXFlbdfU8mreL96K988+c69eJde/P0vXj8ONmGk71fc579nvpgQz6hSX+6bUF0M3H0VFJ1Jvp+7xVXbelmF/bBl22jGc7AC8cbUVGOyW/Vc6HHYl9cAMAAaFGVmSlan0JCG9M6d792vYXe8RztlEAteddvk++jjfPMfsHBeEsLtaVT27bHcex49oyQ53aOI6fKHcMap2GmjVwnDqN1W6jw8TR3vO1Ooy3m37B2AjvfHZ7Xkli91D38ZAzL47Yoe58T2XPn7LjUzm7tsd/7Sby30yk6RMZf+m64cvkwvU8G5ngNdayx37g2oYUHK9D6B3b6bn9FHPnJbN17HRdWYDkrnfgyC3wmr8e4Qm4VtWH7ge05flvJeJ/0Y/IcenlHqcjcgq03Gq+2J8ys3XMdJp9NJqI59M5fXciNRZ4zweAoUF9HL8fwZXUDr/0zcpCPz8KX0kk8tl0ra9jDnXknUYbvHIvqf3LX9ie+t8GMmbiZ8wb0AunbYfX8efZdkBkOKWFe7X35s0XSWtXWelTdCSOvEJdOz9f8OfR6aPY8p/pvvdpYltON61KjYUZABS8nkT0JydZ+f3icq+5t+04zvKWdfA3tcRp24F/1aqszEv7S/fTssf45Y4tz/PM0CzaK4+n7tr9YBInrish5r6NFC5uS72aZ6nWo8DnHFrtNmafNrK0RX1AyXFXZ667T77uA55tnhiaRO156V7n2CWXg6Vn6zIw5CQAkakPkml5l/qGYJ/Xf896y/bR1/wcXd6MMztqY7gIVQ77UXvaWn5mGadPn6Z69eo+5/CfpP7OmrTsEQKCA//29krPlZB++/tX7XxUBPmzQCGEEEIIIa5hEoq94sifBQohhBBCCCFEBZAnV0IIIYQQQlzDJBR7xZEnV0IIIYQQQghRAa7KD1dnz55l8uTJtGnThpCQEOrWrYvZbGb+/PmUjb+RmZn5/9g777imrvePf0JAVBRExRGGMhVxBJmJWnejuEfdtVoXYPVr7XDVbe2wrlpxW0e11lFHKxrrrMp0RBxgmDKCG0VRkIT8/rjek1wSrKXUn9rn/XrlRe4Zz3nOueeem0NyPw86deqE6tWrw9bWFl26dIFKpTJrV6PRYPjw4XBwcECVKlXg7++PXbt2vYIeEQRBEARBEMTrCf/M1at4ve28dpurkpISdO3aFTNnzkRAQAAWL16ML774AjqdDiNHjsTUqVNZ2ZiYGLRt2xbp6emYN28e5s6di+TkZLRp0waXL18W2L1//z5at26NX3/9FWFhYVi+fDmqVauGAQMG4Mcff3zV3SQIgiAIgiAI4i3jtZNij46Ohlwux6RJk7B06VKW/uzZMzRu3Bj379/HgwcPAACBgYFISkpCYmIiHB0dAQA5OTnw9vZGcHAwjhw5wup//vnnWLRoEQ4cOIAePXoAAHQ6HWQyGVJTU3Hjxg1Uq1atQvrAy1q2bzkV4oucJKnY2xO6xGRBOaVGhXf7fcDkYW9+LMelzzgZ1vnp8fj4849QbRcnF527zxv1eyeyeoCpHOi9MTI8sxWZSLma4+5vXqjdQ22QqQ6Xo06EQepZdNwRKbl1kNL+R7O2eDl4kaUlkzjnfRuW0Q535A9g2cAZ12bWhdfoc7gxV46iulqk91xrInWq/tEPof5/YkotbnxcI0czyWYAJm3w8DKzZeESa4PMoAIABjlepUaFRffdcbRpdbN1eL/4usay5cb5ACdZb3H6okl6aVsm+cecBNLEZdUpnV5aMv1FsuF/JfXfxTUI+qIisz6YsxPS+B1EJv1pYte47dRtvnAfan48Sh8nb/KD54jzgnzeprGUfeoiGSRndKiyP86srdJ2LR0l0OZozPZnfno8ZroGCNLUG/3h9eE5Qdo36bHoc3gCvMLiXkrS3Byj1OmI+N8AWB+KZ2ltE55ieu3raD9yNCopuTYzZ8nhcuQxLHPzBFLkxvAS4MZt8z6p1/uj2vVKkCyKgmX9etDm3jTrn/G46GUtoHnHBo7fGK53S7eG6HUwjkkel7bxonlZuozYwxW61AwkLw9k8v/m0Hwqh+Q7zocnfYJQdW8s1Bv8Ic6zRMqQ1aycQiJF1u6mcO5/xaydl/GTz3tY8hQDnGQsjZeNftYlACc2cjL+2x7VwpZGzmXaU2pU8I0fhIsBnAQ2L4/Oh5rgmZ8ej0Brq79ci3mZ7NJtxBUVY6ZrgMAHfg69KFwAj0IiRep2KdyHqARlFBIppBcBlS9Y+AbLhi7IC5ag+o6YF/pally2OX+CLxUjpoUVRH4+OPzbNpM6mdrHGPM81IdSo0LbsWNxau1akz4Ytyn2cofoaRG0WYb188ZcORrMjkJRSACsI+NNwnnwJH8fhLT+a+C9NhwNvjpvdv0rqy9/xd+RxM/9RI7wUfuxt4kDAKDoSENYv5uBzDlyJI6NKHMuG4dQ4SmrTaVGhW2PamHOvgFwm2KQmy9dhydrphzO86NYuZbzw+CwSliPryv2aYT5v2+Fn3UltP9wDE5sXGcyZubG8fGAYDx0s8CViYY+8lLqpcunbZfCzWjeWjRtjENHdsA3fhDq9Eri7klt+yJ5ri3chqhYPZs/HVDwzh1Wb1baBcxza8mO+fAlvI/ni57hszFhsDp63mR8yrrP8Xk+P4TDaaEwPAYv6Z/oJ/y8otUXvxFS7H57Pn5lUuzn+y19bcejInjtvrnKz88HAEgkEkF6pUqVULt2bdjYcBdGSkoK4uPj8d5777GNFQA4Ojrivffew9GjR3Hz5k2Wvn37dri7u7ONFQCIxWJMmDAB9+/fR2Rk5L/ZLYIgCIIgCIIg3nJeu81VYGAgatSogW+//Ra7du1CZmYmkpKSMG3aNJw/fx5z5swBAMTHc/8RlslkJjaCg4Oh1+tx/jz3n/Hc3Fzk5OQgODjYbFlje+Whfv36gpenp2e5bREEQRAEQRDEq0T/ip63+i+oBb52Uuz29vY4cOAARo8ejQEDBrD06tWrY8+ePejduzcATpwCgOBbKx7jnwj+3bIEQRAEQRAEQRDl4bXbXAFAtWrV0LRpU/Ts2RNyuRz379/HypUrMWTIEOzfvx+dO3fGkydPAADW1qa/D61cuTIAsDJ/p2x5yM3NFRzzv18lCIIgCIIgiNcdPYBXocLwWgk9/Eu8dpury5cvQy6XY+nSpQgNDWXpgwcPRtOmTTFmzBikpqaiatWqAIAiMw+lFhYWAgAr83fKEgRBEARBEARBlIfX7pmrpUuXorCwEO+9954gvWrVqujWrRtu3LiBjIwMJnhh7ud8fBr/k7+/U5YgCIIgCIIg/kuUQPTKXm87r93mit/s6HQ6kzztczlurVaLgABOUjk6OtqkXExMDEQiEfz8/ABwghOOjo6IiTGVmeXT/P39K6YDRlg8KQbAyXPqEpOZtKextOmRPZvZe3GhnuXP6TyAybADQELgzyxP0ft9gR3+b+8JJ5gM+5M+QVBqVJifbhDqyPtAxsryct68zOjFLyIEfuk75MB96MUy5WTrnNdCvS4ANU9xkubPFP7M3k8NTwIAtDey4D0lDQDQYHYU0nsaZHbjioq59kQieI08j+PNbFhb3oseIDLnAvNHr9VCqVGx46Ju3LnnZdgdompAvcYgsX1zkhx5I2TICm3I0nS3brP3vAw7b8/CxgZKjQoiS0vmAy/DrpBIcVW2DQAgKvWz0j9+4eKj3QmTCSSDeXhblk6OwnF8LsOu1KiQ9rWM9c2cfK+ufUuW3mDAZXbeklcEwf34SADAlFtS7Mnm5rHY3l4gHauQSGHp5IiUrb4AgK5XH0AhkTIZ4tI+W7o1RGkUEinSNzRgvoW062dWnpaXYQfASb3LWghsGLflPfs2LKqbyuErNSp4hRok0N0/ixbIsPO2+LIKiRTqdQGs/FMf7h8pdmdqQWwk8arUqExk2JUaFbw+PMfq9ku8jfzBwZBaW2N2+30AgG6B3cxeAwqJFJIY83L+ADCg2kOBDDsAnGpeBQBQSWlo02VeFBCTgEfS+oKyfhdLMD5ZjYgbZwQy7HzbCokUuZ/I4TX6HCSLoqDUqJgMu/EY8WhzNBB7ugEARNGXmAy7uFZN1I22hTYtg8mwixt5IOdXHygkUmTOlgtkknXtWgrsGp+LRhvDoNSoEPnnXkCvF8iwpyw1iAlpPpcDAOpHFbC00yvXcOdj1Dm4fxqDzgNGoFVCX2x4WA/pC2Vw7n8FSo0K+UM4O7mT5Wb7qpBIkbmrmcm8VkcEQiGRMhl2Pv9hi9pQalTou/gIFBIpvLaEYWj1e1BqVLgdLodCIsXCdOH8y9Q+Rv0Pb7N2LU5x895Yhj3lJ1/MdA1A10ZtAABp203XBwCQXgSTYTfOl13qx81XCzEA4NHAYCg1KrMy7BZNG7O+G78ACGTYAcB/dhgATob94bBgWB47D4vKlZH0P4MMu6Wzk8AXpUYFcRMvAIDb0Q/RZGW4wF/BtR3IjX3daFvEtLCCUqNCem9bNFsWLvBDIZFijEtrQTuVf48z8d+4XwCgU6cKZNiVGhUazObmsnVkPJ70DWIy7KXvj/x8dJkTBX1REbJmyMtcs/m/IkvzP+7h167uV/OQNVNukq+QSDFWncaOxd4Gkasvxm3jZNhF3AdM63czmF8KR190uFwAca2aaLzOMGap3wWjwQBD7E7jMdF8KoeFjQ3efW8E60+e7gm2NHJmMuw8vZMVZsfGeX4USo45M9sXZq5i+QefVBa0F/nHL/CzroRc7WMmw248ZuZk2JUaFartjMGViRFo8a2hXw/aPwUAeJ36QGDDrVT4gJIrSVBIpKjTK4mV0yWnwW2ICo8GBqPFN+FQalQCGXYAaFVZ+BGXD/fC42ddCVZHz0PcyAMAMPdOE+EYJ3Zn79O+kQnmvNNCbt29EyrDsz8a4JOUq1BIpFhW/5zg8wrx3+S121w1acJN7k2bNgnSHzx4gP3798Pe3h4eHh7w8PCAv78/du3axQQrAE68YteuXejQoQPq1avH0gcPHozU1FT89ttvLE2n02HFihWoUaMGQkJC/t2OEQRBEARBEATxVvPaPXM1adIkbNmyBVOnTsXly5fRqlUr3L9/H+vWrUNubi5WrlwJsZj7b97y5cvRvn17tGnTBhMmTAAArFixAiUlJVi8eLHA7tSpU7Fr1y4MGTIEkydPhqOjI37++WfEx8dj/fr1qG7mv+gEQRAEQRAE8bajf0Uy6STF/v9AgwYNEBcXh3nz5uHYsWPYsWMHqlSpAqlUisWLF6Nv376srFwux8mTJ/HFF1/giy++gEgkglwux65du9CiRQuB3Vq1auHs2bOYOnUqVq5cicePH6NJkybYsWMHBg4c+Kq7SRAEQRAEQRDEW8Zrt7kCAHd3d2zevPmvC4ILInzs2LGXKuvo6IitW7f+E9cIgiAIgiAI4q2iRC+C6BV8q1TyH/jm6rV75oogCIIgCIIgCOJN5LX85oogCIIgCIIgiFeDXv+Kggj/B6II0zdXBEEQBEEQBEEQFQBtrv5FdEkpuDdaZhIHAgBSFwdDIZGiq2crPFW6otE5KzisimbxJNTz7AAIY4mwv3GXTeKAAMDp5lw8irSvZai6NxYKiZTF9pmbdh41rz4yxCQJbi7w1ThmBt8u3/btj7i0m5MM8TxOrVmL9G7rcK9VHpQaFTIGQOAvAFi6NoDu3n1BG11cuHhYkz/9iPMlxxAbiS+ju56CEEcuno74BBe3KKTxO8xH64OG+EF3f/NC2veN4T09FZ+kcPFN6i3j4p4cPrgNFpUrozSi4464uc8bzRdz8TYOJZ8FwMXTMqbx+jDBsb6oiPnw4H0ZS3dYFY2ML2UsphTP7XA5MmfLoc02DV79tBcXd8dCBwROC2N9B4CGcVXQ6cojKDUqHN220WwMrbR+a+Ax7CKUGhVUvkA/Jy7+jy4vz6Rs6pgG8HifG+dDPjVYeuk4JEqNCg8iuCVBHREItyOjWLrLe4YYK4uPbBX4awyLTVZUBFH0JZYu8vURtKW9kYWSR49YvrEtY7+yZpjGkCldJ73bOmRrHwMAjm9ajyd9g7DT7Ri2XD3EynYL7IasL4Rz2/iaEteqib2D2yGvTwGaxQ7B6vl9sTXrrODclR5XTfAjmKOgX9Bf+qyQSGFZnwsVUdQtwCSWV/S0IMy40hvuVtUE12ryD0G4NYGLz1N/cRRLbzd6DNJ3NIdSo2IxoJQaFfZmG+wmflybXcN8X3T37uOWLF/Qtu56CosV5DI3ivk8/VZziE9eYOUCVIZYhO+Ej0XDL6JZ30qPlbhIxNIcl58HABzZzT1X6xBVQ3D+kzf54Y+dm1CtSxp2eteDesQqZtd2ewxExx1Rf8nzOF017KDUqOAeb7jOE1ttNZmbLocMceqM4/BU2xkDhUSKCfY3kDdCBj0A1/1juZg6EVwb010DWT2lRoUxLq0Refm4IA0ApqUmsPf8tZnxSTNE3DgDtyGmMewsWnjjm7qGceJ9UmpUeBBbF0qNCsnLufWy+i+cnz4rDDGChl/PAgCUXOFi/zwcaoglxlM6nlGtddHsfaXHJVz9wkKkDlzN6ui3lAhsyD4Nhe4aF1/P3+0GnL+MMsQIbN6YlfNdEI6Srx7AN34QbsnykT+Yu8c1nBmNp9InJuNV0pq717nE2gjmjFKjwjOFv2C9MO6P8XHpdaPW/zLYe+Nrja/jemg0sqfLcW+UDHXPF5u0kfaNDOo1hrh5fIxFY7JmylHyiFuff/exh9UjYRs5U+XI+KU51nq5sTqRx3YBAHTtWmJzWxkXT1Cvx9y08wLbypyLON7MBpGXj7P4XQDg/mkMHg0Kxo25puuh5LsolBQUQHTW0OdBzubXzX2eSgCAzw/CuGMpW31h0TELjwcEs7EraeMLhUSKblULUXCY68vjAcFsTEc0aIPc5+uu8RjyY+H153CzPtRbZpg/fBw2dVvDM/alz3fpc8z/fdKHW2dHzdmHwjp6s+tOaXulcT0wlovfdz0FLRaFI6pFJUG9G2edWYy3np24OGldrz4Q2HRYHY0TPvux2MNHMAaCeXdSGCPzdYVXC3wVr7cd2lwRBEEQBEEQBEFUAPTMFUEQBEEQBEH8h6E4VxUHfXNFEARBEARBEARRAdA3VwRBEARBEATxH4biXFUc9M0VQRAEQRAEQRBEBUCbK4IgCIIgCIIgiApApNeXP5xXUlISMjMzcffuXVSpUgV16tRBs2bNYGtrW5E+vnHk5+fDzs4OeWo3vNeoJbKny/HEWQuvMIMs8ovkZBUSKcS1a0H/uADt4u9hSq1kgWSsQiLFzX3eGOJ+juXx9rrJe0KbkWnik1KjgvzjUEQtXY0W34ajzrkn+GPnJpO2R2W2xo2pXjCWXC6Lfom3sce7DjsuCgnAw4ZWqBMRZSKhaux7ytJgpA5cDdffx8BrbDzLS3z2BJMaylm5ntfuYfucbqi2M8asveRNfvAccV4grWz8V+ztCV1i8l/240UoNSqEvNMHkX/uhUIixay0C2hR6Rn6OQULfFJqVOjq2QolBQWcb5tbIq3zRhOp36bLwxE3YRn6txuIJ41qC2Tly4P1qXooanvTxOfPbvoioaXeJN0Y47EypvvVPKzcE4IGszhp7Sd9glB1byzLt3SU4GB8pFkbySuDUDlXDOcFwjnQ6JwVTv0UwGTyAU7Ke0EdTuI98OJ7sO/Gnavid/1xfNN6AEDnwSNhcYqTkc+cI0fi2AjWLo+4di3o7t4z21dzcvEAJ+Gte/AQ6QtlcJ0ejYz5MjScyfW3pI0v/vjlR7j+Pgbp3deVaeNl2hJZW0NfVASxrS10+fmsvEIihUX16gI5egDQfCaHZFEULJo3RklCUpntKSRSiPx8oD9/tUwfxF7u0KlTcWuCHHVXREG9wR9eo84JbACAuFZN3O3RCPabOJnurm7BKCksRFFIAKwjhfPz0cBgVP8lxqw/ACCuWwe6W7dN0ssie48Prsq2sXKW9etBpszA6eYGafXS13XGL83RcGACPkm5inerFqPTkA9Rer1KXhkEz/GxgjRxEy8mKV7apjnKkoFuO24sbOIyWD9v/k+OS1MiWLnSa3XKVl8WCqH0mhFTqMNsNz8UdQvAyXXrBD6lLg6G+yema59So0LrieNgs9vQP7sztfCw9T1kT5fDaWGUoKxCIkXmHDlc5kQJ+u27IBz1j+Syta2sPiskUkTmXECIY0uIPd2gS0574bgV9A+Cze5Yk3ucUqNC8+/CUX+JwQ9+nouOO+Jw44NoETcY9XonsnoWTRtD//0j6DvkCHwHgJAWnRF56Q8AgOtvY5DeYx0AwDd+EC4G7IDPD+FwWhiFgsNuONP8VwBA64S+sBtXDO2NLEH/StsGAM+fwtBCloxHbe4iZ4octjdKUH1HDCyqVsWhlCiT+WP8/vb+xrgYsOMv5z8AZE+Tw+WHy0ib2hQNZ0Sz9IXpcSwMQPpXMrhOM+Txa4de1gKi6EsQ29tDl5cHALCsVxfam7fKbM9C2gQHDm6FlUhs9r65IysKg5zlsKhcGSWFhWxM2n84Bic2GuZok4hwOC+IwsNID9zKrQE/rww8anPXpL0XrY9KjQrdAruZhCtRalToJu+Jg1EHBOPrfnwkUjv8yOyZm4dWJ+ujuF0uACBlaTA8Po4x8cOcT4U9AnFqzVqzY6JeHQiv0Dhhe4HNgLjLgjkTNDUMlk9LkNeIuwfyaPXFOIn9ePjw4Wv5+Zj/zOq1bSrEVf992XjdkyKoh3792o5HRfC3n7k6fvw4NmzYgKNHj+LuXdMLycLCAr6+vujfvz8+/PBD1K5du0IcJQiCIAiCIAiCeJ156c3Vr7/+ihkzZkCtVkOv18PR0RG9evVCvXr1ULNmTTx9+hT37t1DUlISVCoVzp07h9mzZ2P48OGYN28e6tat+2/2gyAIgiAIgiCIcqDXvxqZ9PL/Xu7N4aU2V++88w7OnDmDpk2b4uuvv8bAgQPh4uJSZvlnz57hxIkT2Lp1K7Zt24YdO3Zg69at6NmzZ4U5ThAEQRAEQRAE8TrxUpurJ0+e4Pfff0dISMhLGa1UqRIUCgUUCgXu3LmDr7/+Gmq1+h85ShAEQRAEQRBExUNBhCuOl9pcnTt3rtwNODg4YPHixeWuTxAEQRAEQRAE8SZAQYQJgiAIgiAI4j+M/vnrVbTztlOuOFfz5s3Dd999h2fPnpVZ5tSpU5g3b165HXsb6OPVDADgtDAK6b3WQhJTHYBBspV/KTUqiL3cBXWTZnmgpLAQx5vZsDRjGdB6vRMxpVYyfFaEQ+TrAwAI/jwUN1dUZmVvj5djSYZBvrX6LzFQSKSotywKf+zchJDG7wAAnipdWZns4Md4VsOw5+ZlRkv/BYCxdhpBmnVkPC5+YSqVXdJailsT5Ogm55658/iY84OXYV9x4yzcdo/DpIZyQbvja2QxGXbjdP7Yc8R5DL+eBYVEio9TEgXSqSKrSkyGXdzIw0SG3Njv/MHBZeYpJFLoUtJZ+jy3lujnFIzURTKWZunaAABwKPkslBoV1mWegecHFwRjkKl9DIVECsdvotDHKRC6lPQyZdjVG/whLiVPKvZyR2H3QEFaytJgFLW9aVZivbQMO58OAO47Q+E/OwwOUTWQqX1sUm6C/Q0mw67UqFB1LyerrN7oD6VGhYPxkYK5a9xPz/GxeOpSLJCyVWpUuO5fjEufRwjaiZeKcVfHSdfzMuwAYHXkHOQfh3JSzacuImsmJ8/vMifKrJxvZMIx1s7gJA2WZESbSOCXnkOR104BAFync/3kZdiVGhUsTl9ESON34DU2XtBexnwZK8PbU68OZGUK+gexfO1R7plUfVERlBoVdPn5uPmxHJKY6qz8oeunTfyTLOLke83JsI9Sp8PmTwfMvuODx4fdoD9/FWnbuTF23xEq6PPC9Djo1KkAgLorOOnr9K7rkb2HWysUEimyZnLXW+Tl47DfHMPSv0rkxoaXYRfb2iJ3MncO7CKvok1CocBnJsO/PJjJk/PpSo0KIv+mEDfxEow/Dy/Dblm/HrpefQBt7k34Vs0Q9Ju33yx2CACg4cAEAMBiDx8oJFJM27DZZKw8x8diQOJNQXulZdgBoOW8MEOZ4OYCG60T+kJsbw9LJ0fmR57uCSr/FieQm6+33CC57Lp/rInfHu9fNLlGeR+CK4sBANYH4xHSpC0AwGdFOADA/ZMYpCwLxie5LQX13PaMw5nv1wDgwhYAwMPWXCgCp4VRENvbm/jAhzAwbvviFxHAowJWpmFcFcE1a1w/xJHzIfIUJ2k+JL09K8eXtXRrCADMNwBwjRzN3gd8EYb6S7ixcv19DJQaFUoSkqDUqKDvwElx1+udCKVGxfpVciUJhxsfNFlnFBIp7nbzYOuQ17h49v5iwA4AwNWPuD7bDn3A6pxp/isORv9W5v0gpH1/LLnvBgBY128NnnR7hqJuAXD8JgonFq/gfHryBLJPQ1k9fq02lviu08tw/c5NO2+y/iRvaYnk74Og1KhwdUIEwi6cF8iwWzo5YnziEHas/mCVwFeRJXePFkVfwt2xMibDrtSoBDLs5vqZOsgO3fp/KJQaXxPAxtdeXJXrZ2EhbsyVs3GtdDge3eQ9WZ1r4RFQrwlAjHQ3vEadw6M2dyH29mTt9Eu8zcbFnD+3JnK2w08eE/jH2z8YdcDU9w4/Mn/EJySCNe/WRG49K26Xy+alx8cxuB3OpXfpMZTZabaEu8ampSYwn/QWgNuRUcxn43tYULMUlt7n2h2uzX1bAQAtvg1neXoL4OzyNbgWHoHPUy+jw+UCSC+adIP4D1CuzdWcOXMwZcoUdOzYEffu3TNb5uTJk5g7d+4/co4gCIIgCIIgiH8X/pmrV/F62ynX5goAXF1dcfbsWchkMqSkpFSkTwRBEARBEARBEG8c5d5cDR8+HBs3bsSNGzcgk8lw9uzZivSLIAiCIAiCIIhXgf4Vvt5yyr25AoARI0YgMjISxcXF6NSpE3bs2FFRfhEEQRAEQRAEQbxR/KPNFQB07NgRUVFRqFu3LoYOHYqFCxdWhF8EQRAEQRAEQbwKXtXzVhX8zJVarcasWbMQHBwMBwcHVK9eHVKpFF9++SUKCgpe2o5Wq8X333+Pli1bwsbGBnZ2dmjZsiXWrFnz15VLUSFS7E2aNEFsbCy6d++OmTNnIjU1FfXr168I0wRBEARBEARBECZs3LgRK1euRM+ePTF06FBYWVnhxIkT+OKLL7Bz507ExMSgSpUqL7Tx7Nkz9OzZEydOnMDQoUMRGhoKrVaL5ORk3Lhx42/7VGFxrurWrYs///wTgwcPxo8//viXHSEIgiAIgiAIgigv/fv3x7Rp02BnZ8fSQkND4enpiS+//BIbNmzARx999EIb8+fPx9GjR/HHH3+gffv2/9inf/yzQGOqVKmCvXv3YuLEiXj69GlFmn6jUWpUcI0cjZRvmwCAIDYDH0tBp04VxFXw/OmJSWwMc/WuToiA/uJVtPrfONj9FAPrbTUBAB2Gj0KdlVGY3FDG2ixpLRXYEtWyR89r91BFkQ5xIw9m/8GIR6zdrl0GsfcZvxjiwJSOO8KzJb+2SeweizMq1F0RBW1Gpkl5v4sl+GhQONL6G7525e0a/y3dFm97SyNnAMBSD29WdllGFPTFhhhsuusp8JsThuQVQYIxVUikeDQwGNGLV5v4xbeXM1UuSOfrpwxdBYVEiqJuAdCm3xD4OMaltUn5MS6tWbwc4/Q7BxoBANQRhhhWU2SHEJn0p6BdnToVOe24y/XuWBmSt7SEx8cxqHKqLhd/Z4RMYNccfJ6oWIQ6B1JxR/4ALpbVTPJ9F4SzY+Nz4PXhOXT1bIWO13oie5qcpZeep+nd17H0nsldzPrAM9S5ldl5FLXUcE6c5wvjW5Uub+zjz40l8KnE/WPH9eAYtE7oa1Kn9Hy6/zsXg8kz3hoKiRSFPQKh9eFivyWvDGLlGs6MhtjDVVA3vedaNk42u2OZfctOhrne9HtuPOstjUId60cQ+TcFYIh9dudAIygkUkTmXGB1POOtTcZkg5crCt65g5gWVrBY48DFPBqiAgCkDlotiE003TXQpL5CIoVTv6vs+FpYhOEc6w1PGB8v8Gbv+RhdfHyikkePcLp5ZZafvDII+YfcuTXrfzEsfX56PGszZ0YJ8puYxl4ybkObexP7Pu8MAFg4fYQgj2emz0FBPYsW3lBqVPjWvZmJva5XH2Cndz2z7RkfP3rnqSEtJkHQnk3IDURePYGDcQdh6SiBUqPCIGe5iS3N3iaGeEthcSZ+A8DwG++Y9YH/K3ZwgO7BQwDA1QmGmFSpA1bjil+JoJ7nhFh4bQqDUqNCThsrk7YGRV82WYNLr6XsvvM8XpckpjoyAg1jcfWZ+fs3fz+41ypPcB09fi8IrfYlwtLJUWC/0epCViZ+AReracWNs+jqe9nsdc/XszpyTuC7cfytiZoALMmIhv2maFZG28EPtc7aQ9vBDwqJFG67xzGbunv3oZBIMTElCSE+7Zm9iSnCWHIKiRSRJ3ZD2ZSLW6WDCMmr3Vg8QmuRFbzPW0Ls5Q7b7THoee0eN4b5+cy3rl0HC+yNT1Zjtpuf4N6tkEiBEhHS+q+Bx4mRUEikWOkpjAOnzc6Bdq+DwNbt8Ya5p8vLY32vvTYayd8HsXKl73HGdgGg5hU9RNGXmC/aDn7wGhdvtk6D2VGsb2IHB2gzMgXn17ieUqOCppMDa2ePdx2BzdKfYVRTuXn+v/0jTM5D0/MWXBy4z0Lx+D1D33gsXRtA114j6Gu93ua/XeBjb2Yp7JiNy5MjoJBIMe7cMHx20xdKjQpV9sfBc8R5QV2lRoV2Y8agxOhnbMuudIBSo8K773F+11tmuD/ZbzLEWPzWvRmON7PBN3VVEFmbruevI3r9q3tVJP7+/oKNFc/AgQMBAFeuXHlh/YKCAixfvhy9evVC+/btodfr8ejRoxfW+SvKtbkqKSnBrFmzzOaJRCIsW7YMsbGxOH78+D9yjiAIgiAIgiAI4u+QnZ0NgPtl3Ys4ffo0Hj16BD8/P/zvf/+Dra0tbG1t4eDggOnTp0Or1f7ttivsZ4GlCQgI+LdMEwRBEARBEARRQbyqAL98G56enrCwMHzHk5ubW2Ft6HQ6zJ8/H5aWlhgyZMgLy16/fh0AsGzZMlSqVAnffvstatWqhW3btuGrr75CTk4ONm/e/Lfa/9c2VwRBEARBEARBEK+SSZMmITo6GgsXLkSjRo1eWJb/CeD9+/dx9epVVn7AgAFo3749tmzZgqlTp8Lb2/tFZgS89ObKzc3tpY3yiEQipKam/u16BEEQBEEQBEG8Iv4FmfQy2wGQnJwMW1vbCjc/c+ZM/PDDDxg7diymTZv2l+V5Ab7g4GCTjdjw4cNx8uRJnDx58t/ZXGVkZLy0UR6R6BWcJIIgCIIgCIIg/tPMmTMHCxYswMiRI7F6talYmTmcnJwAAPXq1TPJ48NK5eXl/S0/XnpzlZ6ebpK2dOlSrFixAmlpaX+rUYIgCIIgCIIgXg/+DSW/str5N5gzZw7mzp2LDz74AOvXr3/pL3gCAzl1XV4Awxg+rU6dOiZ5L+Kl1QIbNGhg8rK3ty8zj3/9l9mrvgzguYz16HOo+msskw4deV0o382X41Hu2yqQz/WfGWYiTbvixllWptouTgY6aslqaD6Tw+roeSg1KnS4XCCQROfrKzUqaNNv4ECTWgCAyBO7WdsJgT9zPmhUOHR4B4q6BkAhkaLhwAQTSVVjewCwrbGT2TKsX6Vku8/7WkAUfYmV5eXKzdUFgNYJfaGQSLHkvhuUGhWe9A0yKVPDosQkrfv4P9HaP9FEqrb6LzFQSKTYkRUlKJ+y1RcA0HPgGdyaKDfxnffv5Lp1gnqlpW+Nj7XZOYKyGzLP4IL/LwAAr3CDhHNojRw0iRqGPdkGaWuL5o3h/il3XHttNNI6bQQAPG17CwBQ83I+8kbIoJBIkfa1DMGXimHzpwNEfj7MRqb2MbokdYP7Z9GIvHgEAOC6b6zAd6VGhToRUQi+VCzwXdyEkwo+lHwWx5ocgNNXwvECgNxP5Gxupu9oDoVEigOeh9Gl1/vMPt/G7f2NAYCFByiNufP/7I8GTBaYfz3txS2KEzUBgrqz0i7Aa0w87pyvi8xZchNbxtTsrgYAJAcUAQAq/xaHI3u4h1fT+nAhAvhzH/nn3hfa4suKPQ0/o3b82jBWKl9g9771WH3jDJPsd+jJPUwb4tgSN+bJcG+MDMkBRSjoFySwCQCFPbj+Vt0by8bIf2aY2XAFPH2u3RFIIPMoJFJ4nfqAHYuf/zyjUWUNPk5JNGtLfEKClGXBnL+N34Hn+FhEt9hjYn+mawA7vhy0ncnUl/bBa0sYq2t9MB5KjQrVdsYIwk3wdTZ4uUKpUeHeGC7sQMmlRIS07w8AeDQwGBYtDOEYJtlnABBK2j/rEgALaRNB+7yUPd+GQiLF48NuuPk/OVCiY/a0ORqTtYOn9hobKDUq3JwkN5E+F9flbsgZXzcW1OWl6nkiL/0BpUYF6UXDdWjc/9vhcjxT+AMA7o6TQT2CCwVxfdQqNNoQJrDFr8EAMOUW9/fZH9y9uOe1e1iWEYWQTgNY+ccDgvGjy2mBDZ9KVUz6eiAnHiUJScjd583G68bOZlBIpKi2KxaH5rSDNjuH1Uv7Rgb9OYMEcnrxYyg1KnhZ2SA1oFAw5vxf4zFWSKSwP8uFFkn/uQXr0/eSeExuKGN1Ol15hGM/bcC9VnmoFM9dy2n91wjk75UaFbpVLRRImHerWoh3wg3rn3FZhUSKJa07I7ndJlY+pPNAJPppEXlyDwBgfI0sVqfZUi7cgqhYJ7ClqMrJ60svgvUJADxHnIdCIoX70IusTVbneZla66IBAJZuDZE5W446K7l1RC9vISin1KjgOdFwfU3UBLD5w3N3HHdv6HntHmK+XS2ob3mc+6ywKfMMxqq5f5RrPpMzGy3iOHl53Z07zOaRJ1Ymc7T5d+FQTTOEETDul0Xlymys60YbfgamXheAlMGrBWWVGhUW1+fCUthti0FuO0Ds7SnwWZt+g4Ww4H3IPN4Alg240Cyuh0ebrIdOC6OYfT6v4cAELKp30eS+bTwfT65bh/PnPFl6Umvus9mRXZsEfvMhKW7MlZtcwyW+XiD+XebNm4e5c+fi/fffx8aNGwVCGcbk5uYiKSkJT548YWmurq5o1aoV4uLicOGCISSKTqfDunXrYGlpiXffffdv+UOCFgRBEARBEATxX0b//PUq2qlAVq5cidmzZ8PFxQWdOnXC9u3bBfl169ZF585cHMVp06Zh8+bNOHHiBNq1a8fKrFixAm3atEGnTp0wceJE1KpVC7/88gvi4uIwa9YsuLi4/C2faHNFEARBEARBEMQbR3w890uAzMxMfPDBByb5bdu2ZZursvD19UVUVBS++OILLFu2DIWFhfD29saPP/6IESNG/G2faHNFEARBEARBEP9hXnWcq4pi06ZN2LRp0z8u27x5cxw4cKBCfHrpZ64IgiAIgiAIgiCIsqHNFUEQBEEQBEEQRAXw0j8LfOedd0zSMjMzy8wDuDhXp06dKqdrBEEQBEEQBEG8El6FoMV/AJFe/3KK82XJGr7QuEgEnU731wXfMvLz82FnZ4d26AVLkRUAQBTQDPp4Tpo9/ecWcB18Cbf3N0adXkkAIJCf5Y+N5UFvTZBDNS2iTKlvy3p1ob15C+of/eA18jwr4xRTDRc3N0NhLRFs5bdhF5KC2+Pl+G7yGnzr3ozZcds9Dp4TYwXyrQBQpC+GtcgKCokU90bJUGsDJw/b9LwFFte/UKa//LF6dSC8QuNMytweL0eBsx7q4auQq32MUakDENkoEiHXQ6BrrynTpvEYsTJOfkw22bjO+GQ1Zl/rycbYnJ3cTziZ7oRPIszblkix+sYZhDZoLbCR+l0wk0Y3tlnaBs+D92WosTVakGZZvx60uTcBAG0SCnG6eWWWJ7K2hr6oSOBHUbcAzPx+I751b4YdWVEY5Mz5rpe3gCjq0l/6wGNcvlvr3tCmZQjyl2RE40GJNea5tSxTUp/HQtoEgZsvYa7DVdZu8wsi7L7UUjAPS9vpfjUPv/vYc3PvyCh4juDkgCfl+iPRTytoY2d2NOwsqkAhkSJ1my/ch158oV/8OOj0JQhxbClo37JeXaSFusNlThRu7vMGTtjjWetHcHnvMqxO1kdxu1wAQPZ0OZwWRsGygTO0N7LMtgNw0uSRjSIR0rYvdMlpkF7k5NZdYm2QGVQg8PPOgUZ49LgKk//+JOUqFnv4IPmHIKT1XSMIR8DL9peWqjb3t0nUMDj3v4LC7oE4tXbtX4ZCKJ2v3uCP9K7rBeUtnZ2gLyyC7s4dNIyrgjVOhrn7ovkgCmgGXWVLWJy+aLZdCxsbHEo+CwBoO3asWX+VGhXcfwmFx8cxLF3b0Q/Htm5g9rq4BkFcrw47N6Xre20Jg85aj9SBq9GtpQIHLyjxbr8PIIrm5n1Ii87Q3blTZj/EtWpCd+8+Hg0KRvUdMWxd5duZlXYB89y4uWU8b8yNr9inESL/+IWTi54jR+JY03WcH9dnfzRApc43DOfBaP6Vtv1xSiI+Wz0Kku+iWJr3eUuT64dfe5QaFbw2hcF1ejTyDnoizneX2bli2cAZB6N/Y3mZ2scY49IaSo0KXXoMhf48d60XdQ2A9SGDpLyxfwDQNWQISlTXzI6vUqPC2cISNoYAIHZwgO7OHdyYJ0ODWdECv27Mk+HIiEUY49Iao9TpmH6uD9yHGOTG1cUFUBz8WBDSwtw8FdewQ8nTQuiLiqDUqNDy3EAWCsGkbO1aiEw4xo75e+C5+atMyiokUkAkgjLHIOu9NessOqz8DFcmRphcs9Kvwk3u55YNXXAw6oDBnpkxfdG1x3MgJx49HQ2hKczZML5XtJ44Dme+N6w/+UOCEf3dapPwCgoJF/5lQoNWAtvmbA5Jb4/trideuAYBYOslAKjXBiC9+zqTzw0WVauixEg2+6/GIu1rGdymcuuV/NIzRLWoxPJEvj7QX7xq1pey0opCAnBy/Tp0fXcQSq4kQalRoatnK9wd0Bw1f4zmwm7o9dClmMaCLewRiMq/xWHX9Quw90rDw4cPYWtra1Lu/xv+M6vL2lmwqFL5ryv8Q0qeFiJz7LzXdjwqgn8URJggCIIgCIIgiDebN1XQ4nXkpTdX//WAwARBEARBEARBEC+CpNgJgiAIgiAI4r/MGxpE+HXkpR6kunnz5j9u6NatW//YBkEQBEEQBEEQxOvKS22u3NzcMGXKFNy+fftvN3Dw4EEEBARgzZo1f7suQRAEQRAEQRD/NqJX+Hq7eanN1eTJk/HDDz/AyckJPXr0wNatW5Gammq2bEFBAU6dOoUZM2agQYMG6NmzJ0QiEXr37l2RfhMEQRAEQRAEQbxWvNQzVwsWLMC4ceMwb948/Pzzz4iMjAQA2Nraom7durC3t0dhYSHu378PjUaDkpIS6PV6NG/eHAsXLsTQoUP/1U4QBEEQBEEQBFFO6JmrCuOl41zx5OfnY/v27Th69CjOnj0reJaqUqVKaNasGdq1a4e+fftCJpNVuMNvAnzMgDy1G95rZIgV9GhgMKr/wsVGEtewQ+Q1LsCyuTgvxnEWHkZ6IEa6W5Dv+VMYkoetgkIiRcFhN9h0SWP1hl/PwpZGzkJbIhGg13MxXpp1QOTl48zesz8a4ITPfpNYHEeeWGGxhw/zoywfzb1XalRovjgc9RdHmY0l8XnqZezPa4nr/sWC/OHXszC0+j1BWXPjw6cDgEXlyigpLAQA2J2phY0ND6KfUzA3zrVrQXf3HuzP1kReq/tmx5fn7lgZ6u5Pxe2e7qi1zhDX5/GAYFTbGWPSP4VEitsfyXFxegQ8To5gcVfMxRT5q/gkpfvXesI42OyJRf4hd9T4zAqHjuwwsVHcyQ9WR8+bGitl72mvQNwZ9hSJrbYaYu/Uqol3/0zDIZ8aLHYUj3GcJcAQf8X92Eh4jr6Gw+mxZc5VnqyZcjjP586999pwWBYAlz+OMDseLHZKYDMg7rJJP/YVVMMqT4+/7Ke5Y7GtLXT5+QDA4ucAQM9r93CgSS0A5mNSeZ+3xKFDAWj4hWEepH4XjP39l+KTfqNx+LdtJuc5a6YcM4b9wq69v/KRj3PG2+iZ3AVFbW+azG9zY5w/OBiVHpeg8m9xLC1laTBSB642ey3yGMeAW+nphfsfyhC/gFtHHh92Q7UuaayuT/RQXJVx/dTLWkAUfcnEbunzqflcDsm3UShN6uJguH8Sg7wPZOj5yQmcbl4ZImtr5PzPz6S8sb2w5BT0tnnM8rrJe0KbkSkoCwCdE3vAoqMwHhmf137kaFRSnkP+IXfYdk01GU/1Bn+4bdPD8vj5MmPoJC8PRtp7qwXpXa8+wCT7DOF8e76uv+h6N26/YVwVXJ/bFNYH418Yv0epUcF3YTjq/BBlYqOgXxDOrFgjqFfcyQ/Ht2woc+302hQGlz+KcHTbRigkUuQd9IR9t2Rk/NIcDQcmCMoqJFLAQgyU6LAkIxo+laqY+Gjp1hAHz+wT+M+3uywjCsO++gQO5x9Bf+4K0r+WQT18lUm54nf9UTnrIXSJyWbjIxZ1C4D1wXhBu/w6w/Mw0gN2ISkmYwQAASod4qVidpy8Mgie42NNxjp5kx+Lu2fuXCzKiMFnDYMFacbXGD8G5u4BYm9P6BKTsTXrLEb4dIUuP18Q6+lF8el4W2W1a5xnHOvJXN3Ubb5Iaf8jXA+MRXrPtS8VE0+ztwkuB21ntjSfy1HgpGPxMd12hcLzf4b7pPuOUHhMjjFpf2JKEr73aGzi271RMtQ9loNfzuxEP6dglLSWwuKMCmnfyOA2JdrseJbu/19dQ6XrG/fTGHVEINJ7c+PCx7TTtW+J3ODKsMnVw36TMGYlj0Xzxjh0eIeJba2+GCex/7WN68R/ZnVeNeeVxbnKCpvz2o5HRfC31QJtbW0RGhqK0NBQAEBxcTHu3buHKlWqwM7OrsIdJAiCIAiCIAjiX4S+uaow/rEUu5WVFerVq1cRvhAEQRAEQRAEQbyxUJwrgiAIgiAIgvgvoxdxr1fRzlvOS6kFEgRBEARBEARBEC+GNlcEQRAEQRAEQRAVAP0skCAIgiAIgiD+w+j13OtVtPO287el2Im/hpe1bIdesBRZwbJeXWhv3sLt/Y1Rp1eSSfkXSXUrNSq8Ez4Wf0asNZH3fNo7EFX2xZm1YU7OufSxsXRprvYxrEQiDHVu9Zc+lfbbuCzfV3PcmihH3e+jkDFfhuujVpn44706HC7zOFndRuescN2/2Gx7Ynt76PLyAADiunWgu3Wbe+/phshTv0L6dThUUznZb/WqQHiFCcfoRWNVelxC2vVD5Mk9AADfBeGQHMyC3fbHuNcqz6xvFjY2KCkoYPW7BYRAm6P5S+lXdk57BaJ6XCaT6DaRPH4ui970+3A4fh2Fh8OCEfOtUCL6SZ8gVM19CsQkmJwDY/lvhUSKJ32DcK+JGM4LTOWwAUBVVIQprkGCNH6sSvteGvXaAHiNNUgnhyWnMEn10vMxdbsU7kNUgvq83XWZZzDGpTXE9va426uxQAb39ng56qw0yP2L/JtCf+6KiS/m2iztu8jXB9fDq8JrTLwgP6RdP+jUqbi5zxv1eidCqVHB9fBoVEusBMmiKJQcc8YWz58xwqW12TZbJ/SFzXOJc2P4c1EevkmPRVyhK/Z412FpmbuaweW9y4J+qtf7Iz1kPbr0HGYyLqmLZHD/zLxcc/LmlvD84AIAwPpUPeRsd8X52YZrtvQ5Nw4zwaOXt4AoipNvF1lVwvrU43CyrFamPHjAF2GouTGayRkb+6PUqNA/tRPUe71Qf4mRHLmjL6DXM5l11nYrKY7s2oQW34Sj3nJTaXhzvGz4BF4SnM05q0rQFz9jNtyOjILnCEOIhL+69kunVz9dG4/a3DWbJ+CYE9Axmx2mfS2Dx7xLOJQSVeb6UvqYlwZ/2bGQX3qGqBaVYOkogTZHw8rGFOow282Phb4w13bqNl+UPKjE5M/NjYu4hh10Dx4C4EJjlFQSoc4PhutbqVGh8Zn30WDAZQxNysa2xk7Q7G0C5xlaPGhWk5uDwc3Nrn1lhRAoHXqCT783RiYIycHn+awIh9NXBp+0HfyYjD8/Hw7fiBOMn7n3Fi28MWznEQytfg9ue8ah0fRrKHn0yMQPPtSKMfwc4a/v0ueK9e35eUr+PgieE01l5+//7oWa3dXInSxH7YQi5LSvhID2iTj3RxNYaCGQuf+r8TSXztNhxGgc37T+heVL1y0ddsEcNyfJUW8Z5yMvoc+H9lBqVOjadTBKLiUia4Yczl8a+lLah5xffeDY96rZPnYYPoqFNTDX/7Lgx7br1QfIyauMJa1+f22lx/nPrE4/zH1lUuzZH81+bcejIqBvrgiCIAiCIAjivwxJsVcY5Xrm6pHRf1cIgiAIgiAIgiCIcm6uJBIJxo4di/j4+L8uTBAEQRAEQRDE6wsvxf4qXm855dpc1alTB+vXr0dwcDD8/Pywdu1aPH78uKJ9IwiCIAiCIAiCeGMo1+YqNTUVSqUSffv2xZUrVxAWFgaJRIJx48bh3Llz/8ihOXPmQCQSlfmysrISlI+OjkbPnj3h5OSEKlWqwN3dHWPGjEFamukD5EVFRZg1axZcXV1hbW0Nd3d3LFiwAMXFxSZlCYIgCIIgCOK/gEj/6l5vO+UWtOjcuTM6d+6MO3fuYOPGjVi/fj3WrVuH9evXQyqVIjQ0FEOGDIGNjc3fstu3b194eHiYpCckJGDRokXo0aMHSzt8+DC6desGd3d3fPTRR6hduzauXr2KtWvXYs+ePbh8+TIcHR1Z+YEDB2L//v348MMPIZPJEB0djZkzZyIlJQWbNm0q71AQBEEQBEEQBEH88yDCDg4OmDJlCpKTk/HHH3/gvffew9WrVxEaGor69esjNDQUCQmmsqhl0bx5cwwbNszk9fAhJ886atQoVnbp0qUQi8WIiorC1KlTMXr0aCxduhTLly9HXl4edu3axcpGRkZi//79mDx5MjZs2IDRo0djw4YNmDx5MjZv3oyoqJeT6/27KDUqFLvVw+P3glCnVxIyFshYXv6QYAAoU85TqVHBf3YYquyLM1uGl2Evi4AvwgTSr7zEac6vPvDYFgYAUBcXQCGRor5lNSbDbtx+9dO1y7RvTlLZWIZdqVGhsHsg8j7g+lz3+yg4xVRDw5kGeVuHqBrsfWJoBHv/vYR7nq8oJEDQntXJ+ih5XAAAkMRUR+TFIyxfl5wGhUSKut8bzmWTb24K6t8bIxOMZZ9rdwTHXpvCBOOlU6ey93UioqC9kQUby2esvCigmUBylpdh523ycsXyj0PxeIDwfIv8fAS+AUCV/XFo90cyS+Nti6ytufF9Lk3r+HUUUrb6msiwKzUqVN0bC+WvWwBwct/G8NLfwar+AIBKD7VwXhCFj1MSBeW6yXpAIZFCam3N7PLjYIz8EjcWad8Y5rVSo4JSo0Kd05aC49423E+H077lynYcNorlrQnaKrBrWa8ufH4IBwC4WFYDAERePSGQYde1a4k6K4XXrfhuPvfX21NwXgDgnbCxaD1xHPPJGKVGBf3Fq0jvtg6wEAvydOpUKDUq1OvNjZFCIkV6l/WQLOLatuiYhREurZH7idzELgDYdElj6Xx/Ae5cZM6Sm5RXXMmHyNIwdgBg6doAnvHWrL7U2logw67UqODy3mVkzZAzHwHA4YwVFBKpQIadt8nLsPPl24wfx47TOm9k75OiXVF7TTS6dh3MSUP3C8Kxp9wYWZ/i5lf1X2KYb+IadlBv9Gcy7ACgL34GJ8tq6ObXhbWXOYsbr8brwqGQSBG/gJN6Ly3Dzr/f7X4U9ZdEsXYUEimUORcBQCDDDgCis1z+x2G7hen+TdkYGJ+L0vPbuG31en/2vrB7IGxUnGx3Fxd/KDUqJrvN10t7dwPUEYEYn6w22w9j1Bv9TdJ3ux+FUqNC/iF3s3UYHbMN88OtIdymRqPkyRN0fH+U2Xl4d5xM0FcA0CUmm5YViQxj8fw9ANyaIMdsh2tQalQokDoKqsx284NSozIrw/7NPe5aTGn/I9L6rAEA3N7fGE1WhbO2u6u74mGkB3QPHkKpUUEdEYjaa6NR5wfuGus8cCSz2WDAZQDAtsZOAABJn2vQXVOj+i8xKOgXZFaGHYDJuWVr9HMZ9uJ3heeitAz7k75BUEikcPqK84lfSyyPc7L77a70BgAcvsHdr4ektxe0LQiR8KMfDh36GfGPXbk5028NSh49Mhvuwt+BW/PF3p7cXy93aFZ6QKlRwWv0ObPrskIihV7eArDi1hHPibGC+c5Tszs3RxM+jUDjr67Cdc553Jnsggazo+A8P0pwffAYX38AF64kY74MFs0bm+2rQiKF1RHuF03qtQGCfKVGhWbLwk3aUEikOBh1gLX1cCh370xeHizwg5dhBwCPtVoAwIQGhs8x9dZwoQqcv4wCRCJBO0qNCuo1AVBqVHDse9XsGq2QSGF19LzJ+Ip8fbi0wGYoDV+3Znc1lBoVJtln4NIDR5NyryX6V/h6y/nHmytj3N3d4ebmBltbW+j1ehQUFGDt2rXw9fXFwIED8eDBg3LZLSgowI4dO+Dk5IQuXbqw9Pz8fFSuXBn29vaC8hKJBAAE35pt374dADBp0iRBWf74p59+KpdvBEEQBEEQBEEQQAVsrnQ6HX799VcoFAp4eHjg66+/hp2dHRYtWoTbt2/jyJEj6NSpE3bt2oXw8PBytbFr1y7k5+djxIgREIsN/1VWKBR49OgRPvjgA1y6dAk5OTlQKpX45JNP4O3tjUGDBrGy8fHxcHR0hLOzs8C2s7MzJBLJP1I+rF+/vuDl6elZblsEQRAEQRAE8UohtcAKo9zPXGVkZGDdunX48ccfcevWLVhYWKBHjx4ICwvDu+++y8p16tQJnTp1Qt++fXH48OFytbVhwwaIRCJ8+OGHgvRp06bh9u3b2LhxI7Zt28bSQ0JC8PPPP6N69eosTaPRoEmTJmbtOzo6Ijs722weQRAEQRAEQRDEy1CuzZVCocCxY8dQUlKCevXqYcaMGRg7diycnJzKrBMQEID9+/f/7bauX7+OM2fOoGPHjnB1dRXkicViODo6olOnTujTpw9q1qyJs2fPYsWKFRg0aBD279/P1AWfPHkC6+fPj5SmcuXKePLkyd/2jSc3N1dwnJ+fDzs7u3LbIwiCIAiCIIhXxqt6Huo/8MxVuTZXf/zxB9q3b4+wsDD07t0blpZ/baZHjx7sWai/w4YNGwAAo0ePNskbMWIEoqKicPXqVVSpUgUA0KdPH3h4eCAsLAybN29m9apWrYqioiKzbRQWFqJq1ap/2zeCIAiCIAiCIAiecj1zlZiYiGPHjqF///4vtbECgKZNm+KDDz74W+1otVps2bIFtWrVQp8+fQR5mZmZ2LZtG7p168Y2VjzvvfceAODUqVMsTSKRICcnx2w7OTk5Asl2giAIgiAIgiCIv0u5NleNGjWqaD/M8ttvv+HWrVsYNmyYyU/6+I2STqczqafVagV/Ae5niTk5OcjKyhKUzcrKgkajgb+/PwiCIAiCIAjiPwdJsVcY5dpc7dq1Cx06dHjhN0EdO3bEr7/++o+c438SaBzbiqdRo0YQi8XYt2+ficQ7HxA4IMAQI2nw4MEAgGXLlgnK8sdDhw79R76WhUIiRYm1GA/dxVBqVGj4hSF2hu32GEO5K/lm69ZaF83iJiSvDBLkl47H4BRTTZBvl1aEEJ/2rCyPKMYOwa0SodSoMOLzTwQxK4zLKiRSPGpzF/dGyUzy2iQUQqlRwW03F+sjY77MbKyNU2vXwn5zNKubHfyY5SkkUtyRPxAcl/bVOjJeEJOmuF0u9MXPIK5VE5rgRyZjZuw7AGgzMoX2+t1C2tcySC8CmbuaYW8TB1ZeqVHBdbphvDO+NPQ7ayYXP6ikjS/O/9ictXV4/1YoJFI02hiGwUlcTKugKYZYWTxRS1ej96w/AICLxQLg8G/bkLvPGzc/ljN7So0Kx6T2zIfOA0YAAPRFRZh+qzmz+/i9IHi8f7HMGDgKiRTiJl7Q5t5ktnKmGuIwxUi5+D/HtnLX2FIPb2EMphvcPyFCGr+DvIMG9ctaZ+0Fvka1qASFRIpPehhikigkUjRZGY4aW6Oha9+S+cP7alHMHfPxYQCgYxXDP0n4eGlOC6MM8Yw0Krj+PkbQR/HJCwAAS2fuWc+Hw4LZ+S5JTjeZT1X2x8F/2nmBDd52SOeB7DhlS3NBPgB0C+yG9K9lJunGcyvhE0OcNj59z2NbQXmFRIqQzgNZfmJohEn8mdW/K5Cx3Vvgpzb9BlT3HHFXVyA455ZOjgL7JS0eCXyLW7hKYMd4PEvHejq9co3Ad/6v61Tumii5xK0ZOV11+Nadi+9W1PamwL5CIoXuwUN4fXgOVU7VBQAEXypmedrcmyzuncu8KCgkUjSYHWUyRubGF+CuHeOYffzfx+8FwUJqECxyiKqB2+PluFxgeA5YqVHh8IGfYH2qHrPBt5PwrJCVKR3/qsn8W+z41Nq10OZokD8kGPrn/7wzt+55hcdhpaeX2XhTxnh9eK7MPOPYXUUhARDb2rLjrlcfCGxr0zLYe8tjhjluvB7WXhNtkl7SxhcKiRQBKp0hXa832NbrWXrdFVFszE6uW8fS+Xh0pW3z96vjzWwQcj2E+ZE9XY46vZJwLSwC3YK6s3XdLiSFndP03msF/bM4fdFk7hojbuIFAKh+6LKZkeTgY8CV9jN3H7f2Hd+03tCemccEqv4ai9vjDWtoTkc9Hg3i4i7dOdAI1u9mCMrfa5XH+szf330XhENsawuvkefRNWQIEv20rF/8PUapUUFkacn6uaz+OSg1KkQe24W7v3lBp06F/oM76DTEIPBlbp6Joi4h8bP6SNnqCwDoFhBiMle7XzX4mBpQCH3xMyAmAX4XS0ziTvW5dgcA4LklTGBHp07F9VGrcFtmLyhfuq0W34bDa2w8y+f7LfnWcP13HszFM3vWJUBQ324bF0fP83+Gz0xduxjUoFOWBePI7s2GxgKbQSGRCj8j6PUo6hYguPa9xnH+8GsUAHRJ6mZoWyTCnQOmXyboL17l3sRx842Pzabe4G92Pdjt+YeJDeLtplzPXK1fvx55eXll/pTO0dERDx48wPr169G3b99yOabRaHD48GEEBgaiWTPTQG01a9bEpEmTsHjxYvj6+mLMmDFM0GLbtm1wd3cXPKfVrVs3dO/eHUuWLMHDhw8hk8kQHR2NDRs2YNiwYWjdunW5/CQIgiAIgiCINxoStKgwyrW5unz5Mrp37/7CMgEBAfj999/L5RTAffuk0+nMClnwLFq0CI0aNcL69euxcOFCFBUVwdHREWFhYZgzZw5sjf7TB3DfuC1YsAA//fQTtm7dCkdHR8ybNw9Tp04tt58EQRAEQRAEQRBAOTdX9+/fR506dV5Ypnbt2rh79265nAKA6dOnY/r06S8sIxKJMGbMGIwZM+aF5XgqV66MBQsWYMGCBeX2iyAIgiAIgiDeKl5VgN//QBDhcj1zVbt2baSkpLywTHJyMmrUqFEe8wRBEARBEARBEG8c5dpctWrVCgcOHIBarTabf/36dRw4cABt2rT5R84RBEEQBEEQBPHvItK/utfbTrk2V59++imKi4vRunVr/PDDD1Cr1SgoKIBarcaKFSvQunVraLVafPrppxXtL0EQBEEQBEEQxGuJSK/Xl2sPuW7dOowfP95snCmxWIyIiIgXilG8zeTn58POzg7t0AuWIiukLAuGx6QYeMZbIzlIC5ToUBQSwGTGXQ+OgdeYeOjlLSCKugSlRoXm34Wj/pIos/bF3p7QJSabzePlU8dktcKpNA+4Dr5kttzj94JQbVcsdyAS4cYvTdFgwGVWf1RmayabzpP6XTBShqwGYCT93FoKizMGCW4AuP+hDPELVmHB3cb4c1wQRNGXYFm/HrS5QtlmAEBgMyZnKvJvisMHfjIrLy62t4cuLw+P3wvC2eVr4D87DOfmrhKUHXn9Bn5s1AAAJ+Va6XA88yvlJ194DBPK+Ya064fIk3tYf4z7oF4TwGRazWFhY4OSggJYNG8MUbGOnQ9j+43XhyFp9CrBePGUlr83Tucxzhd7uAJ370P34KFJO+bsPFP4o2ryXYFEc1ntP+kThKp7ublw82M56i01zLvb+xujTq8kgW89k7swCW5z7asjAuEVHidIE1lVwuEbcSYS2saS2y87RjzpC2UC6Xze5rv9P8CR3ZtfaNs4vbQfS+67QdnUFtnT5HD6ihsLl1gbrHM+W6Ydz5MjYK+sAvvN0YJ5+KL2jNsV+fqgpLIlRNHC69XStQEKvOugxpRMPG17S2Dr2FMxvpg5hoV0uPk/Oeotj2L5xigkUkgvAgkjvFFyKdHsuNifrYmHYXVw+8sSFBVbQRRjx2SSxd6eiDy2i9kqzY15MjSYJTwX9mdrIq/VfSg1KrQfORqVlJzseKcrj3Cid3PoUtLxtHcg/oxY+8JrQSA9X68utDe5cRD5+eDwb9vQtetgHDr0s/l1w6cRIv/4BQDQLHYILgdt58JjtPEVyHsbj8f9371Qs7sayVtawnP4BWTuaob6ayoht7U1XOaYrsml59/Cu41wqnkV2J2phZ1uxwTnOmeKHFf+F1HmPHhR343zyprbSo0K4TnBSA0ofGE9gLsm9cXPWLriSj5W/6aA6zRD6IyyfCjLF7688fpp2cCZhXbgGX49C0Or34NCIkXT8xa44ldSZhvmfGd9CGgGi5RsRF49AffjI+Ex7CLLS/tWBq2tDl6hcXCJtUFmUAGUGhX6p3bCozZ3BXarn66NhDOerO8ia2voi4qg1KiQqX2M0YM/wgOPKoj7ynDP2ZMdg35Owaw94/XI2Ff5pWeIalFJMEbGBE0NQ40t0YL54Lp/LH7vuhw+laqwcgqJFBnzZejdPRoqX0P9Kqfq4mlbLlyAou9wICbB7Bxh9+Dn99ycqXI4fh1V5tiWHndRQDPo4y+ztHWZZ+BiWU3QTrOl4ZAsMv+5ha9XcNgNRVpL1Oyu/tvrvnGeZ7w1+tQ8x8J48GPHv/8rW5auDVBiUwWHjuwos37aNzK4TeHmRNuEpzjVvIrArtjDFbqUdABg4wkA2o5+gpAIWn0xTmI/Hj58aCK09jrAf2Z1+WYBLKpU/tfbK3laiMwpX7y241ERlEvQAgDGjBmD1q1bIyIiArGxsXjw4AFq1KiB4OBghIWFwdvb+6+NEARBEARBEARBvCWUe3MFAN7e3lixYkVF+UIQBEEQBEEQBPHGUq5nrgiCIAiCIAiCIAgh/+ibK51Oh+vXryMvL8/ss1cA8M477/yTJgiCIAiCIAiCIN4Iyr25mj9/PpYuXYqHDx++sFxZmy6CIAiCIAiCIP7/EeHVyKS//SGEy7m5+vbbbzF79mzY2dnh/fffh7OzMywt/9GXYARBEARBEARBEG805Xrmat26dXB0dIRarcamTZswf/58zJ492+zrv076VzJ4TOKkkn9wjAVKuG/yeBl2hUQKrzGcZK0oipNhVkikqHOxEEoNJ3He9eoDZu9p70CB7Df/4mk5L4yTSXU+C9fBlyC2tYVSo0LEjTNQalRQb/QHAJxdvobVSf4+EA0GXGZtt544DtnBj6HUqHDzf3JWLmXIak6y10iy1OKMitXjfbIq0EMhkeJ088oQRXPS8gfPH0Zhj0A0PW+B1MUG+dp+m48BAGalXYBFuoal69q3FPTr8TueAIBqu2LhemAszs3lJM6fdQlA9dO1oe3oJ5C/rnSYG9OFdxsBAKb4KQEAXVz8mb+RJ/fA48RItJ4wDgCQq+Wk5y0buiC9xzoMv54FpUaF/EPuMEapUaGkoAAAUJKQhM9/5+Tcf885jzbjxyFnqhwKiRQNZkULxutJ3yDkTDGM5+AkjcCmUqNCSKcBaPRjGNqNGiPof/I8O1jsqyrwI2+EjDsHLbxNJH7vNqsE/d37AtvGqIqKAAAZ82VMhh2AQIbdnJw3ABzwPCxI48tlzJdhVtoFeIXH4cFwGW5/JEf+IXcoNSrogpqY2OElm/n6xn8tmjYWtK3t6Cc4tmzgDNfp0cwOb7NvSmdYFGnLlLY215/zRc/gHl/Z0H5TThqWl2FXalTIDCpAhxHmQ0soJFK4DVEh7qtVCFDpMKh6Hst7OCxYUI7/uynzDBQSKUTW1gAA/cWruDWFk8UufpebozcnyaFNvwHryHiojwrnoEIiRccqOthuj4FSo4LmczkuTYlA1kxufrUfOZqNC9+uyhcouZSI5B+CoF4VaDJGea3uoyQhCef9dsKx71VcnhTB8vg1x2dFOABOltiYpNGrkPatDAqJFC3nhQEAdrgeZ2NaSXkOT5WuAICjTasj8s+9AIAq+zjJfgsbG2bLWA5ZIZGi1ll7FPQLAgAmww4Ah3/bxsmqX0pkfbkxVy6wo7t6ndmR9LmGTfl1uPZOXxSUsz9bk83l6t9z57/xJ5x8uMt7l1H5Yjpc5kQJrl/eT3VxAd4JH8vSp9e+DgDY6XaMpfH+FTQwzM3EZ09Y3tPegQCA+enxgr6XRqlRoWnMUABA3gcys2UiHGNY2dKhHZQaFT5O4aT49cXPAADFeu6eNLlmGlynRUPk52Pig7Gd1O+CTWyWLu81Lp6lH4z+jbumq1cHwK2TWxo5s7K8DHtpf42Pjdt51iWAldHHX0bk1RNQSKRMhn1+ejzyDnrC7fNoNHS/xa5fABiU3gG73Y8K/AeA3e5H4TotGmnfyqDUqPCop5Tlj3FpDdFZFew3c+v54wFc/6tZCCWr+fXIdd9YKDUqiG1toZe1YDLsvL1uLRXsfZvx45gMe+fEHiw9vdda+FSqIhjTG/NkuD5qFVS+wvPxtO0t2J2pBQDQtKlmIj/uqhwFANDm3oRlQxcgjpNT52XYjTH+TKHUqOD153BWRh9v+Iwgrl0LY1xaC84LAFz+2LBmaDtwa/aAxJuCse7ldAnxLXeyNPuzNQXt/5UMe+4+7n73g2MsOlbRodOQDwV1jjyxEow3T1G3ANycxF2/D4bLcPDsfpRcSeLG2MmPlTfuk67uM9Y2L8POl3vWJYDJsANgMuwABDLs5u49ry160at7veWUa3OVlZWF3r17w8HBoaL9IQiCIAiCIAiCeCMp12/56tatC61WW9G+EARBEARBEATxqtE/f72Kdt5yyvXN1YABA/DHH3+g6PlPiwiCIAiCIAiCIP7rlGtzNXfuXNSvXx/9+/dHenr6X1cgCIIgCIIgCOL1RP8KX2855fpZYNOmTVFcXAyNRoPIyEjY2dmhRo0aJuVEIhFSU1P/qY8EQRAEQRAEQRCvPeXaXJWUlMDS0hIuLi4sTa833YqaSyMIgiAIgiAI4vVBpH9Fca7+A1uDcm2uMjIyKtgNgiAIgiAIgiCIN5tyPXNFvDyu06LZe+OYC0qNCs1ihwAA7n8oM6knPnGBxVw45FODpd9tJtwPe27l4lr1vHYPAOCwOhpiBwcWq0GXnw+FRAp3q2pcTK0PzwEAhmW0M9iYwMU54mNi2eyOZbFQ6i2Pwr3RMuT86sNslo5LZIxCIkXU0tVI3eaLgsNugjglp9asxRW/Erh/wsVhSd0uxe7R7wIA5rm1hO7efWbn6LaNUEikeDg0GEqNClX2x7E203uuZWPzWGKJR23uCuJKGI8xH3NmrB0XU0rU2IPlKSRSDGhyHrZn0qHUqDDCpTUAQJuRCYVEii2NnAEAtl1TkTmLi4+huJIviP2i1KjwlXtzKDUqdHf0Q9W9sSzeBd/3TlceQSGRIruzHo7fRLHxGGF7GwAX74q3mTTeHg1nRMP6ULygL9X/rILidrnM5vRbzWG/iZtbxnF+eC5PjkBk0p9cP538WP6jgVyMlimuXNyghjOjkbI0WFD3zoFGUGpU8FkRjosBOwR9AYDG68NM4ueUtPHF9VGrsLBDb4jr1kGNLdG4OD0C4vW1oZBIYXFGhcclhayOZf16ALh4OMYoNSp4nByBQ0d2COKNlD6/2htZJvUAoOCdO9CfvypILx0zqHQsnemugUgNKCwzrhCfbnXknEl9AFCv4eLudGupwMXerlwcGG8uLpvdT4aYQ2lfy1icuREurZG8pSVujfJj+bZbbKGQSFk79ZZxc0Xs6YZrYVz8mLHqNME1xceWknwbBYVEirGDIlHSWopKSqGvxj57L8iAV1gccqbKodSo0C/xNstL/S5YEI9rrDoNAJA5i4vdxsf+Mo75AnCxZao14uJ7PX7+g4bScbb+bMbFtlKv9xeMtUIiZXHjxHXrmJyH7a4nYLMnVtCPPtfumD1fDWZHseuSz9+adRbqH7lx5q+50vM3r9V9Vie7gxUeDQxG5KU/AHAx1vi1yenoQ9weLxfYP/nEEzaHE0xi9JReJwBAVGzB0rwrVWXv+XhfM125uG9j1WlsDb4dboitBQCOfa9ysbk2R5vti+tvYwAA/rPD2DVkfaoei6O31MNbYK+7ozCGnP48Z39+ejzUqwOh/tFP0K+UIasF84rPS10kE/hjco4fPWLrJAB8nnoZVifrC85X6ToKiRT6VlJ2rNSoWAzD0uPMM/rScMT57gIAnPDZL8jb4XocCokUwZeKzcYAc/uci2V1cllEmfGJqu2MMWn31gTDORre6iwUEil0+fk4smcz+ly7IxgXvdYQ6+z0yjXQtWvJrZEds7Ah84zZWE8KiSFu4oPh3DUvfR6qTalR4WHrewhp/A4ufxxhEpssXbGB2TkYdQDJK4KwKb8O1KsDmW1LRwkAoPPAkYLr1nVQgsnaKa5hh8gELobb7XA5pt9qbvacH/tpA5QaFXpV4x4NsahcGduyzuJo0+psvO/+5oW8VvexLvOMoL5So0LDOOEaw+fV750IjxMGP62va5A72XBNLvbwYXXCklOYPeuD8VgzcQUAoMYW7trpcLmA8/15/FFjlBoVPEech0ULb/jPDDOZDyc2rhOMs/F7c9fHGwE9c1VhlOubK2MSExORlJSEx48f4/33368InwiCIAiCIAiCIN44yv3N1YULF9CyZUs0bdoU/fv3x4gRI1jeqVOnULVqVRw4cKAifCQIgiAIgiAI4t+CvrmqMMq1uUpKSkK7du2QkpKCSZMmoWvXroL8d955B7Vq1cLu3bsrxEmCIAiCIAiCIIjXnXJtrmbPno2SkhLEx8dj8eLFCAgIEOSLRCLIZDLEx8eXYYEgCIIgCIIgCOLtolybq5MnT6Jv375o1KhRmWVcXFyg0WjK7RhBEARBEARBEP8+vBT7q3i97ZRrc/Xw4UPUr1//hWWePXsGrVZbLqcIgiAIgiAIgiDeNMq1uapfvz4SExNfWCYhIQENGzYsj/m3DqVGhTsHuG/5LF0bAOBkRSV9rgEAam6MNluH/2ss9ek8P4q9X/tQArcpXN3xNQzS1LyEsDGl5VTvyB+YSIvysu2Zc+ToUrWIyaXWWh8Nx75XBXYUEimaLQkHwElRG9uSfh0O96EXYdMljZUffj3LRCI2pd0mHNm1CQAnR/5wWDB8F4Yj/StOatbSyRExi1bjs5u+ZmVzlRqVydhZtBDKDPM0PvM+Gp2zQsmVJIE86nlfC0RePIJ3LveBuIkXlBoViroZ+tOtpQIAkBjKSfMqm9qaSD2XZmhStuD4aNPqmJt2Hl5hcSbns+vVB/i5MSeD63FiJDzHx5rI2qZtl6LESiSw+ctJg/QsX17b0Q8jr9/g6vYdzqRqldmcjPmNnc1QKZ+TnOVleAHA4+MYge38ZHsmuy2fHAoA8NoUBgAYmdkGSaNXCdpValSwOH0RCokU2oxM6G7dZv7zEtoAUM2iMnsv2fcIjwYZJOCNZZjdh3B2k7e0NIyxSASlRoXUbb4m85avL65bh/Px+RgoNSp0cQ1i5W9+LBeMKwA0/y6clTXOy50sx1OlKzvO3uMjKFP9dG0oNSpILwLeX2QAALQ3b0GbkQkAiDy2S+Bnk5XhcJsaDa8PzyF/MNdvz+EXcPGLCHS4XACFRIqqv8aazA8AiDz1K/NjrZcbe69eHQi3zw3zX6lR4dDNprA4o8K01AQkrwgSXK882pu3AACOX0dh+I13IEYJy3P/NAap33HhD26Pl6NftXwoNSokhkaw86XUqJA7WSgPvtjDB3V6JQEAXKcLJcKTfwgS+OA9JQ1lobt1GyOv3zAZg9LX3N4mDiyPlwDnYfP+uY06Yht4jeSugY7DRpltV9/KMP/qxehQ/ZcYdnxs6waDjPb5q4BeOJ57vOugpNAQZqCLiz/z2XheO8VUg+f/DDLe5s4Nf7zWyw1LPbyR/EMQ6kQY1ny3veNYGeP5KJDa/+w6xDXsUGudYW4Utb3JyYNfUyNztvDc8WPrtmecwIdZjVvDKzSOSXnzbXyUw82rsOQUfHbTl9Vx/ywaN+Zxa7e2ox907VsK/Ct9Tr91b4bidrlQSKTw/MkgdV3QLwgP3jecU9FZLj15c0t4rw03e/3fmiBH1gw5bk2UIyHwZ8HYKiRSHMjhHlEIad4RABDTwsrsuN8J5drt7miQny9Lkt14/Oqu4M7RvVEyzHW4KsjfmC5nNmalXYDu7j1OSv9sTW7dOnmB2Rn1PBwI7w/P+GQ1xierAQC1j3NrzDd1OZsBM7i1mb9/87b4+7NCIkVRV8OjG54TYvFzYwk8tz5D4/VcXW0O9yujP3758YV99V4dDt2Dh6ydOhFRWFg3wURGn29XIZHi0jNbAEBJYSHeb9JFkF+7B9cnF8tqLJ2/btY4mX4uArjQNTVOVGZhIq7NdEH9JVGC+jy9bR4L1o3ZboawAz2Tu+C3OR1M7mWl7wUllxIhKnXN+10sEfjKv3c7MkrQvtsfHwIABpzPMduX1w696NW93nLKtblSKBQ4dOgQ4uLizOYfOXIEf/75J7p16/aPnCMIgiAIgiAIgnhTKNfmasaMGahevTo6dOiA6dOn49o17huYXbt24eOPP0aPHj3g4OCATz75pEKdJQiCIAiCIAiigiEp9gqjXEGEnZ2dceTIEQwYMABff/01Sx80aBD0ej0aNmyIPXv2oG7duhXmKEEQBEEQBEEQxOtMuTZXAODv7w+1Wo2DBw8iOjoa9+/fh52dHYKCgtCrVy9YWVlVpJ8EQRAEQRAEQfwLvColv/+CWmC5N1cAYGlpiV69eqFXr14V5Q9BEARBEARBEMQbyT/aXBEEQRAEQRAE8Ybzqp6H+g98cyXS6/V/u5vz5s17OeMiEWbOnPm3nXrTyc/Ph52dHZr+8inqDcqAUqOC7FI/3FPVgU22CBdnRKDz4JF4Ou0hbt63hZWVDi7vXRbYmJ8ej5muAWbtG0twl5aLzdM9wSBnuaCcufpuf3wIzw8umNiEhRjK7PNQSKTIni6H00JO4tSihTeQkomSggITe7cmymETchPVuqSZbVffSoojuzYhvfgxQhtwUrMpS4KROmg160frieOQoyiB15h4Vi9jvgwNZ0Yj51cf1K5WAOt3M5A3Qoa4hasQcj0EuvaGINUOUTWQvMobsd+sEoyJQiKFenUg0nuuNZEv5kndLmXy3wCQ+l0w3D/lJJPtz9ZEXqv7EAU0gz7+stn6So0KOx7Z48dGDdAv8TbG2mmgkEhxb7QMtdZHl3kesqfJ4fRVVJk2FRIpHg8IRrWdMSxtUHoH5LW6Lygn/Tocdb+Pgsi/KRqvSUKin2l8uZSffOEx7CIAoKS1FH/s3CRo80mfIFTdy8mmi+vWQeTFI6yuQiKFOiIQXuEGdVClRoXVDxyx378BSp48MTsnS9r4wuL0RbjHV0ZqQCEydzWDU80HsOjIhQ3I/USO+ouFErrG5+7gk8r43qOxoB9KjQoh7/RB5J97zY4Xz91xMhyfuQQDnIQy3XxZvl/8e49tYUgZapg7kpjq0AQ/YuV9vwxHnZWcr8k/BCGt75oypfjL4s6BRnDoeR0AcHOSHPWWPb+2KlcWSHnz3BsjE8hpl+6n8fs2CYU43bwy7o6VofZa86EdvDaHwXWaYT7e/kiOOj9EIXuPD5z6cfLRYp9G0F29joZxVZD2SWOs/mkFekV8Dsdvopgdj5MjkNJuE7p2GYSShCSIHRygu3OHjeX5omeY7hooaL+oWwCsD8YL/DGeLyJLS+i1WohPSFDJQoenbTm5+PSvZHCdJpSb75ncBVcuNYDnxFg8fi8IkUuXYcvDxvjdx17QFwCwrF8P2tybwsEIbg7EJHDvLcRAic5kvADu+rw6IYKNcf4hd9h2TTU7f1RFRZjyXPbf68/hcB3E2X/SNwgWxXpU/i0O4hMStmZtyzqL2mIbwblsPWEciqtaIM8HcJ1qXoYaAFIXB8P9E2H4hOTlwfD8XwzyPpDBfnM0LKRNUKK6xsb30cBgVP8l5oUhJLKnyXEifBHed25lcn7Kqpc7WQ6r9ndRu4daIEEdOC0M9pujWVpXt2Czc9wcJm09vye1mhTK1kLjckqNCu++N4JJth/IiUdPR8O9c2d2NOQRn+CJk1awhpVui78Ob4fLUSciysQPpUYFv7lhqL3G/Ll50diKPVwhKirGwdjfTWwOSOuI8+c8YZckgsNq0+sdML038Gml14NW/xuHartiYVG5Mg6lGcIJiI47Qt8hR2DD3Dry+LAbqnVJe2FfLJo3RkkCF9Lkz0LgSzdhOZGfD1KGVGdzVKlR4cgTK4w7PZzJ+hv3KXmTHzxHcKESikIC0Onr0zjd3BC2o/Qc1Hwmh13Hm7DpkiYo8074WFTZZzi//Hk0Jn1Hc1iobVg4EYCb994halzKckJyu00m875Z7BBcDtpudjwsGzjjob8ENntiYenWENq0DGj2NsEhv7VwsqzG6uy6fgH2Xml4+PAhbG1tzY7r/yf8Z1a3WQthUbnyX1f4h5QUFiJt3vTXdjwqgnJ9czVnzpwy80QiTr9er9f/ZzdXBEEQBEEQBPHG8IqeufovfHNVrs3ViRMnzKY/ePAA8fHx+P7779GtWzeEhob+I+cIgiAIgiAIgiDeFMq1uWrbtm2Zeb169cLAgQMRGBiIQYMGldsxgiAIgiAIgiBeAfTMVYVRriDCf0WzZs3Qq1cvLFy48N8wTxAEQRAEQRAE8drxr2yuAMDFxQVXrlz5t8wTBEEQBEEQBEG8VvxrUuyxsbGoUqXKv2WeIAiCIAiCIIiKgH4WWGGUa3OVmZlpNl2r1SIrKwvr1q3DmTNnMGDAgH/kHEEQBEEQBEEQxJtCueJcWVhYMMl1c+j1enh6euL48eNwdHT8Rw6+ifAxA9qhFyxFVhBZW0NfVAQAglggZcVduvmxHPWWmo+zUVbcqrJiUuT86gPHvlzcl2/SYzHFNUhQp1/ibezxrsPSOowYDasj58q0ufrGGRarCgCWZUTBu1JVk5gblg2ckTHE2SSOE/++5bmBcOh5XRAjylx/Hh92w9nmv5rE8zJ3zL93/yUU1TIsUG+5IcaFeoM/nA9YoMr+OJM2xI08oLuegoLDbjjT/FcT+yxWiJ8P9OevCtLzDnrCvlsyiw9k7NMXt5thQZ3LJuPIx9GyqFoVJU+eIHlFEDwnxKKgfxDOfG+In7QoIwa9Dk2EV5gwNotDVA3cmuYKi1MXcWNnMzQYwMXf8twSBrep0UhZFoyS6lp4jTonqMf7XLodnuqna+NRm7t4OCwYdj/FmMRZcom1QWaQaZwz3rb841AU2ouQJ9XBKzTuhfPSXP3SZS0qVwasrHDo+mkAMMl/NDAYN7sWI+3dDVzf9xUAMQlltpu8yQ9eywtRWL8qrCPjMTElCd2qFjLbH6ckYqmHNyxsbFBSUGCwIxJBmXOxzGuxdHvGcwEA5qadx2w3PyzJiMbkhjKBDeN+8XY+T72Mb92bmV0b7oTKcGHWKnQeOBIWpy/ComljlFxJMllXSvvlGW+N5IAiiL09oUtM5sZjRRC8Pj4PvVaLPtfuYG8TB1anKCQA1pGGuFQvQuzpBuj10KWkGxLNxI/KnSxH/SXCuDPZ0+SwSytB9V8M8YseDwjGuHm7sa2xk0k/jMdE174lxCcuCOyVHgdLZydos7JZ2p7sGPRzCmbHWV/I4bwg6oXnk7c5KdcfiX5azEq7gHluLU3aLT3niroGIDPEAmn91pjY6+IahMPpsSZt8teecT9/zzmP7o5+ZbZjru983Rf5yB/zMRXN2g5ujgeeNqixlVsHLBu6QJvB/XNV28EPlsfPM1vhOcFIDSiEUqOC66HR8Bp1Dk97B7LYQ8Z9Uq8NgNfY+DLHmt1HnByhzc5B1hdyuG7OhDYr2+Rc3dYVYMDYSbA+ZBpH7f5IGWr+aIjtZukoQXEDB4iiLpnYcd0/Fl5hwnWrpK0vLE5dLHMM74TJ4LDKfNwrsbcnkqbYshhOLzoXZfXfXNm/OubvK2XFyjTXhnHetke1sKWRs0me4ko+fstthhM++1nagYKqWOnpBQC4uc8b9XonouhIQ2C5gyCunTETU5JM4hcuTI/D5nut8L0knvlm7ppUrwo0uR/eGyXDMzsREj6NQJeew6A/dwVOMdWwweWM2WvaOIZVSKcB0F1Tm/XTOK5ZQb8g2OyJLXOdGJykwQjb22XGhNPqi3ES+1/buE78Z1b36QshfgVxrnSFhUhdSHGuTBg+fLjZzZWFhQXs7e0RGBiIXr16wdra+h87SBAEQRAEQRAE8SZQrs3Vpk2bKtgNgiAIgiAIgiCIN5t/TS2QIAiCIAiCIAjiv8S/phZIEARBEARBEMQbAKkFVhjl2ly5ubmVqzGRSITU1NRy1SUIgiAIgiAIgnidKdfmqqSkBMXFxcjNzQUAiMVi1K5dG3fv3oVOxylE1a9fH5UqVRLUK4cwIUEQBEEQBEEQ/yIiPfd6Fe287ZTrmauEhAQ4OjoiODgYJ06cQGFhIXJzc1FYWIjjx48jKCgITk5OSEhIQHp6uuD1X4SXYQeA/qmdoJBImVQn/1fzuZyVqbeUkyueqOFkVEtLp36ckiiwz6fr2rVkZdsmPMXDYcFMhh0Ak2EvaeuLzoNHQqlRYaydhuV39WyF45vWC2SBjdtXalQIbdAaSo0Kdw40glKjYjLsvB/3R3JS09obWXD6yiC7zMr0HQ6FRArrHfYAAM+fwjCoep7Z/ig1KlTrkibI8/khHAqJFJmz5VBqVDhf9MykrsfHMUyGXalRIfn7IHiNOsdk2AFgw8N6LF93PQUAYNMlTXBuSvtiUagVpD8aGAz7bsmIzLmAamvuAgCSfwhiNuKlYoFEvFNMNQBAypDVAIB7A1pwYzAhlmt/d6yg7eaVKsMrLA73RskE5+CO/AGTB05qvZWdL7ep0VBcyYfHpBgmw15amvpZlwDY7Obau/+7l6DMozZ3odSoYPcTJ4ttLMMOgMmwG9tUalSwaN4YCokU1X+JwYVZq+AVyo2zz4pwQTn+xTMxJcmsvTsHGiFlqy9KCgtR8uiRyTnhqf5LDCwrFwMA3KZGC2TYS8tSA4DniPM4fHAbTq5fBwD43qOxwPacOSMBACUFBWy8AAB6Pfc+UCiPXtAviB1vzTrL2tFdvY57YwyS67PdOBntyQ1lgnHg21ZqVLg7litvYWODb92bsTZ4H3h7Dquj0bXLIFicvoj7v3sxGXbjazB3spybB9vCmH/JAdwalNXdgaV5TohFaGISUr8Lxt4mDgCAlQ+codSo2Bjx56TROSuT8WT9TU5D5J97AQCZs7l17M4+D5Ny9ZdECebx1qyzcPoqClFLVwvSq+2MwbbGThD5NxX0CQAabQhjfbWKTRLYF3u5Y2RmG8G4abOyUdg9EABQ66w9mu//H2sHgIkMO9+ecRneXqIfd/3Pc2sJ0XFhiBF1cQEy5suQO1mOe2O482x9KB6eEwzX9N7sOGZPX1QE14NjTNZ2XoadbzPtGxm6O/qxckeeWLFxUWpUuDfKMM+6dBuKRhvCmL3kTX4CH0tfQ75fctdnabnu/MHBSF3Mrf0WV9NRY2s0a5+XYQcAy+PnWfqm/DpMhh0AvEadg6VbQybDzrMpvw4s69eD11hOcrtr18GCdUEhkaJ3soL1T5udAwBo0/MitFnZsHR24sblWxkKDrtBIZFiyPsTmAy7pZOjYA2427pY0Pe0UQ1xZPdmk/Wh5fwweIXF4eY+b6GsuZEMO2/HuC4vwz4+Wc3SR6m5zzm6xGR4juDGyPv8y/0fWyGRonVCX0Eaf48rS6a9f2onQfnMSVx+oLWVoB5Pk5XhZtfT+x9yc6m0DLtSo8LNSXJMrpmGSp1vQCGRoslKbu6s9PSCpbMTdO1aon7/ZG7taLoP1gfjTdpN2861yYe/MM6f7hqI6/7Fgmu384ARJjZ4GXbj9HPzVyHh0wjuujp3BUqNCrF7m0MhkWKsOg0iS0vBNR2s6s/qRh7diYkpRqEsjjkJxvn87FVQalSw2cPdM0N834W2ox+0R10Ec6GwxLA+8m3x119JG18UdRaGbiDefsq1uZoxYwYePHiAkydPom3bthCLxQC4b7DatWuHEydO4P79+5gxY0aFOksQBEEQBEEQxL+A/hW8/gOUa3O1d+9e9OrVy+RnfzyVK1dGr1698Ouvv/4j5wiCIAiCIAiCIN4UyrW5unfvHoqLi19Ypri4GPfu3SuXUwRBEARBEARBEG8a5dpcubu7Y/fu3Xj48KHZ/Ly8POzevbvcqoIEQRAEQRAEQbwiXsVPAv8jPw0s1+YqNDQUGo0GgYGB2LJlCzIyMvD06VNkZGRg8+bNCAoKws2bNzF+/PiK9pcgCIIgCIIgCOK1pFxS7B999BGSk5OxYsUKjBw50iRfr9djwoQJCA8PN1ObIAiCIAiCIIjXBZJirzjK9c0VACxfvhxnz57Fhx9+CF9fX7i5ucHX1xejRo3CmTNnsHz58or0842ltMw0L3fNI3ZwgEIixeVJEYLyYk83XPcvNpEJBoDPLvdj7+3P1sTObE4O9uj2jVBIpBD5N8Wp5lWYpHZp/vj5R1jdfWKSXlJQwKRQnyn8gSGcvHhp+VmFRAqHntcBAE2ihkGpUaGoGyfnW/PHaBO7AunYX7fgae9A2G7nJIdFWqH0cel2GsZVAQBk7uJksK9+xI2Ty9woKCRSDI4ZYyJrz9sCgDbjx6F1QCKUGhUcomqg0TkrKDUqrP2qD5QaFVpNCgUAWJ8ySLMb+2DpKGG2dVevC/plfzYLANB85Ud42Jp7vrDmJQvc/93LINHaPZD5lR38WHA+4xauQpVTdU3kZvnjkHb9kLylJc7NX2W2j7mfyNn5yprBSVVPrpmG7GkGWf/SstInNq6DUqPCuGwZ4lvuNClTegzzPpBh5PUbAh/dd4QK/C1JMEhie599n9V16sTJNmfv8YFCIoXsUj82l8SNPPC9R2OkfSOD39wwyCeHMl8cel5H1WpFMIdSo4J6dSDUawKA4Ob4wf9nKCRSFHULgMjamtlXSKRIXRwM9/jKgvohjd8xK0MMAO9PP2i2PfZ+31bBWNnsiWV9et+5laCesYy9UqOCuAkne9/y3ED4zzLIiYssLRGs6g9xr7tQSKRMBr40D9s/hf3ZmhilTkdJQhKyZshRs7uajZkxjkfvQ9nUFu6fRaPZEqEcvmRRlKD8Kk8PuH9qWCcONKmFMVmtEDSFk/RO/p4LLXDdv5jZKGu+AkDiOO76dOh5HXcONIJF88aCcgqJFOITEigkUoxIeQ8A0MU1iPkU0nkgK8/LKis1KiR8GgGxgwMazuTGdUDiTRS2aSJoO/LkHmiCHwnSLKpXR+XfOfnme63y4Dk+FrDgQiTc/kiOu+NkUEik3HUe3Jz5yacDgGVDF5P+6jvkMIn3gv5BiLjbFg1nRqP+kiiTc2/ZgJO27uMUKLCT3m0dW6/NjSUAJL/PSUEHTudk9Rd7+LBxAYBaGwxt6S9eRcOZ0cxv73n3BDYL+gUJbFfT6Fi+uFZN5ovtzzFIGczJ45c8egTA9B7A1+Pb+mpXP1auf2onTkY9LQOlGWF7G9rcm7A+VQ9+F0tQcikRCokUnlvCoG/Fhf942vYW0n9uIZina5yikT1djoOxv3PjMmwVbJ6H6RCfvMD80W/VC+p5jTpn6H//IBQ5cH3uNORDKCRSDL/OreGWT7n69Xpz94qw5BRBf2udtWfv1z6UIHefN8u/PV6OlZ5eUEikWJIRjQ1eroI+8zL+fPnU74IF60j6zy0EbdmUCj8y3TWQ2RFZVWLXRJuEQi4kSBvuPp3+tQz3f/eC08IoVt7cmu78JZdf/K6/oN34BatMyvJ2Ln0egXajxrA83gbAhTsQn7yAecnRJmuRMW5DOHsTNQFmP9eIAppB8yl373r8XhAszqgQ0o6bV90Cu7FyYi93KHpz95k2CYUsfX56PHvv+A3n34Y+XaHXagX9sQtJEbTbrWqhYX53zObuHc9l40uHAdHduo3fNq/CsSYHDH0Ibo7QGjlosiocYltbVjbt3Q1Qrw6ExemLiFy5ucxxId5OyvXNFY9MJoNMJvvrggRBEARBEARBvJ68queh6JsrgiAIgiAIgiAI4mUo9+ZKp9Nh+fLlCAoKgp2dHSwtDV+CqVQqhIeHQ61WV4iTBEEQBEEQBEH8O/DPXL2K19tOuTZXhYWF6NixIyZPnoz09HRUr14der1htFxd58FkHwAAzCJJREFUXfHjjz9i69atFeYoQRAEQRAEQRDE60y5NlfffPMN/vzzT8yfPx83b97E6NGjBfl2dnZo27YtlErl37Y9Z84ciESiMl9WVlYmdQ4ePIhOnTrB3t4eVatWhZeXFz766COTckVFRZg1axZcXV1hbW0Nd3d3LFiw4C8DIhMEQRAEQRDEW8sbGudKrVZj1qxZCA4OhoODA6pXrw6pVIovv/wSBWWIRP0VAwcOhEgkQtOmTf+6sBnKJWjx888/45133sH06dMBACKRyKSMq6srLl269Ldt9+3bFx4eHibpCQkJWLRoEXr06CFInzt3LubMmQOFQoG5c+eiatWqyMzMREJCgomNgQMHYv/+/fjwww8hk8kQHR2NmTNnIiUlBZs2bfrbvhIEQRAEQRAE8f/Dxo0bsXLlSvTs2RNDhw6FlZUVTpw4gS+++AI7d+5ETEwMqlSp8tL2fv/9d+zevftv1SlNuTZXGRkZ6Nmz5wvL2NnZIS8v72/bbt68OZo3b26SPm7cOADAqFGjWNrRo0cxZ84czJs3DzNnznyh3cjISOzfvx+TJ0/G4sWLAQCjR49GjRo1sGTJEowdOxZyufyFNgiCIAiCIAjireMNVQvs378/pk2bBjs7O5YWGhoKT09PfPnll9iwYYPZX7OZ4/HjxwgPD8f48eNx4MCBcvtUrp8F2tjY4N69ey8sk5GRgZo1a5bLqdIUFBRgx44dcHJyQpcuXVj6woULUadOHUybNg0ANyglJSVmbWzfvh0AMGnSJEE6f/zTTz9ViK/m+CTlKgAuZoJ6VaAgZsgzH2c4xVSDQiJFn2t3WEwFXTIX66Lz4JGsbMaXnOy9pM81KDUqPBguQ16r+xjgxKWrioqQsiwY+nNXYFG9OmvfomljpC4SSuZH/vEL8ylnqumm8sSP6xEj3c3iChnHesja3RTq9f5QSKS4JufGTWfNTSWlRgWxvT3ujeHaG349CxYtvAUxM/6MWMtsqUesEuSVjn2xWHKCixPSyhBjKP0rzvaTPkGo+XsVWDRtzNo2jtvx+LAbqu6NxZYGfwIA7sgf4HtJPDbl10GNLVxMjrPLVgMAitreNOuDNkcDbQc/diy2tWWxqbTZOVBqVFg1OoLlP7MVIb7lTgRNDUNYcgq0VYWXWOmYUs/GVDOJRcUfP/GsibROXOyytK9lyJwtF8ZIex7iQ6lRoUPv88ym3hKQX3rGyik1KnQeOFJgOyPwKZuHVifrC+KOKDUqWLo2gEIihf3maPzYqIEgz2MyF6PsQE48s2F/tiae9AlCYivuOcs248fh8RonAIBTv6tQalSw7ZrKfNBd5+LIuE2JRt1jNwW+AtwcN8Z4bNJ7roXXuHggJgGLPXwAANYH43E4PRbiWjXx7nsjAADun8Tg4hIpkjcZzl9k0p8wx+AkDcbXyGLHRV0NsViM2y59jmy7prI04/ln6eTIbCkkUuiuqTHy+g049LyOWuu52ESZs+XQa7WwC0lBnO8us37xuA1RIa/VfRZDx/nLKHjGW5vEhQOAQ4d3YFlGFBfX6rsoM9aAxwOCAXBxtpQaFZ51CWDrS2ZQAWps5Xz0nBjL6vDj8aJYNjwlbX3h0PM6tPbcf/6KugawPF17DftrIW2Cw+mxrB+lY8nx7SkkUuju3EFJG18oNSqsSWuDSspzAl8UEinEDg4IVvVn9sIunDecE0cJlBoV7o8IRNYMOS5Oj0C9I5wv2hwNlL9uYXZqr4lm9bQZmaz/DyO5X1Voj7rg1Nq10OxtApvdsTi1IdDsuVBIpLix1BD7puCwm8lYHT7wU5lroHFMvNLzL+SdPqxc6RhUAHDwzD7BdX1mxRpBudMr10C9kVvHdffuA+Bii5Wm9Jzn04yP+fhjAPCozV3BevH4vSBBfcsGzihqexML6yYw227TYnBk1yZUztNBXKsmXAeb/urFaaEhRluTiHCMVafB0skRd8fKmH1dew3aJjwFAHRt1EbQrs3uWHhOiOXmyckLUGpU2NKIi0HGjy9PxIj+guPtrieQvLklAGDZ1Q6o3zuRnY86Kw3X2OSGwvusccxD3p5xXLls7WO4Dr7EbKlXc/MoZVkwZqSpBLbujZJBX/yM2TmY4yPIVw9fhZrd1dDLW7C00jEkfX7g4t7ZnakFqyOm1496HXed8vf8TlcMceOsD3FxpJ70CULeCBk8T44QtB9obSVos/R9DQBSlgULYuYZ/9XHX8blydy99Oxybq7q1Nw9g7/Xzk+PR/KoOlDu4+4zp5tXhkIiRZcGgRh4kouVGNK+PwDAooU3dFevc59JbG2hkEjR1S2Y+TIu2zBvjP/q2reEx1IdK5e+ozky53CfkbJmyNHHKZC1oZe1QHpvG7j+PgbO86Ogy8/HsgxDnDGv0DikLAlGH69mIP49/P39BRsrnoEDubiJV66YrmtlMWPGDOh0OixYsOAf+VSuzZW/vz8iIyPL/C3j7du3ERkZWWHfBO3atQv5+fkYMWIExGIxAG7D9eeffyIoKAgbNmyAo6MjqlevjmrVqmHQoEG4deuWwEZ8fDwcHR3h7OwsSHd2doZEIkF8fDwIgiAIgiAI4r/G26YWmJ2dDQCoW7fuS5WPi4vDDz/8gKVLl8LWKCB0eSjXzwInTpyIHj16oEePHli9erUg79KlSxg7diwKCgowYcKEf+Qcz4YNGyASifDhhx+ytJSUFOh0OsTExODIkSOYOnUqWrRogdOnT2P58uVISEjAuXPnULVqVQCARqNBkyZNzNp3dHRkJ6E81K9fX3Bc1rdnBEEQBEEQBPFfx9PTExYWhu94cnNzK8y2TqfD/PnzYWlpiSFDhvxlea1Wi9GjR+Pdd9/FgAED/nH75dpcdevWDV988QUWLFgAb29vVKpUCQBQrVo1PH36FHq9HvPmzUPbtm3/sYPXr1/HmTNn0LFjR7i6urL0R48eAQDu3LmDdevWMcXCPn36wNbWFnPnzsXmzZsRFhYGAHjy5Amsra3NtlG5cmU8efLkH/tKEARBEARBEMT/H5MmTUJ0dDQWLlyIRo0a/WX5RYsWISUlBfv27auQ9ssdRHjevHk4cuQIevToATs7O4jFYlSpUgVdu3aFUqnEF198USEObtiwAQBM5N55FQ8LCwu8//77grwPPvgAAHDy5EmWVrVqVRQVFZlto7CwkH3DVR5yc3MFr+Tk5HLbIgiCIAiCIIhXyiuWYk9OThZ8dq4oZs6ciR9++AFjx45lmgwvIiUlBfPmzcOMGTPg5mb6XGx5KNc3V5mZmahUqRI6deqETp06VYgj5tBqtdiyZQtq1aqFPn36CPKcnLiH5e3t7U2+keJ/pmesViiRSJCTk2O2nZycHDg6OprNIwiCIAiCIAji9WbOnDlYsGABRo4cafLYUll88sknqFmzJvr06YOUlBSWrtVq8ezZM6SkpMDGxsbkEaAXUa5vrlxdXVmMq3+T3377Dbdu3cKwYcNMNlB169aFi4sL7t+/b/KTPv75qTp16rC0gIAA5OTkICsrS1A2KysLGo0G/v7+/1IvCIIgCIIgCOI15g0NIswzZ84czJ07Fx988AHWr19vNgavOW7cuAGNRgMfHx94enqyV05ODpKTk+Hp6YkxY8b8LV/KtbmqUaMGateuXZ6qfwv+J4HGsa2Mef/996HX67FmzRpB+qpVqwAAISEhLG3w4MEAgGXLlgnK8sdDhw6tCJdNUEikSHvGbfI0n8mR3mstSx+alI2j2zciO/gxAGBfC0cTSV2LUxfZ+4YzDHK3CokUNbYYjuWXnmGKaxCO9PkOAFDy/Jk0ACi5koTK90QmkrCKxO5QalRw/DrKrJQvLwtsW89gS6lRwbn/FXiNPicoW2hnwero8vJwX1qC/EPu2NLIGYcO/czavDlJbiL/qpBIoV4TgMicC1yi0QXx7qeTAACNTg8HAHT1bAXXaVy/T69cg5hFq1FyJUlgi5cJPtv8V0E6zwjb21CvCRCMBU+ASmcirX3spw1QalQQ+TfFrUE+eNrWoESpkEixsFEgO66/OIqdm2k/DUe1nTGGsT3mxMp1Gvoh7o2RQafmpLzFJyTM95xfDfLiPG5To+Ey1yBF3OicFeqsjILI0hIKiRTJAUVoFss9tLlu5A+IalGJ9UEhkcLi9EXB8a0Jcva+pKdQ9VMhkUKbfgNKjQrZ0wyKny6xNgLZ2p6OhjHc4Xocp1euYW1U3RuLajtjkHfQk9XnxyFlGSeH22QlJwusS0lH9R0xgvPBl92TbUhPXygzkYA2pt2oMdDduw/RWRVLs/05Bp4jzrP+yieHMtv3RsvY+6VJHQV2rQ8ZZOYBoCjEICVemim3uHLea8KZDW12jqAfALD4m0GCeonjInBvlAyLMmJM+sTqBQolfMU1DHKzyQHcz5wfP5f3Nr6+JzWUw/WQ8KfUCokUe7K5+ciHINBrtVBIpAj7fqdgfSlNaVl6478KiRTdWvUSlP/j5x8BGNavG/30gj6K63JrYonqGvPtRW3z429x+iKaRA2DfTfup9dtE55Cvd6f+VPo2wAx0t3M3kpPL3g8l4w+GB8JAIhfsArOX0YJ5rlxW8bjVZoY6W647RmHY00OQCGRspABdSKiBOV5OWylRgXHvlfZe43awaz90jLn/F+lRoUW33LzytLJEX8WGvJ1Kelm6/Ny3ny6UqOCel0A5JNDBecQANK7rGfvUxcHm4SzAICQTgMgv/QMXa8+MKQ14Z6nTtnqCwA4kMOtVfZnawpsKCRSVNtlkPPf8LAetDeyWJ5CIsXO7GhAz80P64PxiLx8XOBD6iIZ6x8fVsF5QRTWerlBm52D2mujBWN2qjn3yMDTPbVMxpR/b39WGCYmpG1fPHjfIKNuvIbwdT0/uABLJ0c49zfIOpc1b/kxqNldbVaSnGeUS2uBLa/QOLT4NhwBAWp86SaFuJbBz1oboiGyqsSuOeMwEHz95OXBEEVdwuobZwAAOVPkLE8hkcJpIXevf9j6HpQaFaqfri3w12tMPPc3NA4AcLRpdTSNGSoMxTHlGuw3RcNtiAoiXx/k/Opjsj4Yw6ffmiCHx8exEFlVgkIihezTUEG+8XvPLWEYmdlGMG4KiRSB1lZwm8KtU/dHGs7X4Rtx8Bp5HgCgu85981ByKZGtrbr8fCg1KhxKi2E2MwKfmj134hMXcHj/Vig1KpS0lsJ1UAJc5nDy6tfGR3AS8ddToJBIIYq+BIfzJXD7xSBi5l3J8IhJ+lcypA5ajb3qy2bbIiqOefPmYe7cuXj//fexceNGgVCGMbm5uUhKShJ8KfPdd99h165dJi8HBwc4Oztj165dL/XzQmPK9bPA4OBgXLx48a8L/gM0Gg0OHz6MwMBANGtmPkbA559/jj179uDTTz+FWq1GixYtcObMGWzbtg0dOnRgGvcAJ8LRvXt3LFmyBA8fPoRMJkN0dDQ2bNiAYcOGoXXr1mbbIAiCIAiCIIi3mVclk17RbaxcuRKzZ8+Gi4sLOnXqxOLa8tStWxedO3cGAEybNg2bN2/GiRMn0K5dOwAo8/GmTz/9FNWqVUP//v3/tk/l2lzNmTMHbdq0wfr1602EJiqKTZs2QafTvdC+ra0tTp8+jZkzZ2L//v3YsGEDnJycMH36dMycOZPFxOLZtWsXFixYgJ9++glbt26Fo6Mj5s2bh6lTp/4rfSAIgiAIgiAI4t+Bj1ObmZnJBO2Madu2LdtcvSrKtbk6dOgQ2rVrh3HjxmHVqlUIDAxEvXr1TH7fKBKJMHPmzHI5Nn369Jd6rqt27dpYtWoV+yngi6hcuTIWLFjwjyMvEwRBEARBEMRbw7/4PJRJOxXIpk2bsGnTpgovm5GRUW6fyv3NFc/FixfL/IngP9lcEQRBEARBEARBvEmUa3N14sSJivaDIAiCIAiCIIj/B97UZ65eR156c3XgwAE0btwYXl5eaNu27b/pE0EQBEEQBEEQxBvHS0ux9+nTBzt27BCk/fLLL+jbt2+FO0UQBEEQBEEQxCviDY9z9Trx0psrvd50NJKSkrB///4KdehtImVFSwDA/iA3KDUqSBZFsbz7H8qwrbETFBIpsnY3hV7WAodvxJm1o5BIEfE8bgWPJKY6UrdLAXAxG9pWS4JSo0J4g9Yszfiv49dc2/lDgplNdMyGT/RQw/Fzfs85D4VEirtjZbg7Tga7KoVQalRwPTQaCokUkTkXWFwMPn5GzR+52BOj1FzsFc/xsbD/1NLE9qXPI3BznzerK65VEzuyopDeYx1CHFty/hrNtaglXDye6222cLGmXCSCcVFIpAhQ6QRj0+p/4xCZcwGyT0Jh0cIbAFjcD4VEim4tFfAaFy+Ik8ETLxWbjcMFAPpzV3B+zirgmBNLO5ATD33xM3ZOjON8uK5OYTYeH3YDOmazPPGJCzg31yDComuvYWWvBG8TtA+YxkhJ7c9FCtdrtSzWDB9zp1VlC8H5MUfdFVEIad+fi9mRny/Is2jamLXn9JUhBlrcjhbI+4Abs9vhXNyoR4MM88n92EgonPwEPsf57kJBvyDBOHpMikHT8xZw/jLKbN+M+93qu8kszXV6NEu//ZGc9ZGvf3LDOig1Klg6G+KJ8XmqaRFQSKSovsMQU6rWekNcp3q9E3Frohy6di2xLtNwrfF+W0fGo9E5K7PxqL6py7XhMlfYnzYJhax83ggZam6MFuR3C+qOSo/16BU50WQc+HriR4WC9iKvncIzhT/SvpWxcsbx3IzteI0yxKLLH8ydp35OwWbLzvh1iODY2Jc+1+6w8i3iBrP6/PxqdM4K2vQbXJubwsyez9Jx8SIvHmHteP4Uxt6vLrXO8W1YRxpivl2T/8TyTjWvAq/R55h/ezZ8j9YTxyF/cLAhrlq7Tcxn43lY2k/jc6vt6MfKZHwpE5TxnGCI2/RMYT74vCjqksAm3w/PibEmZY3b1bVrKYglp5BIUW8ZN6+02Tl4p7L52ErG1wIfo0ghkULcxIuLEddtHaKWrBasCV6bwtj77OlyNPztmcAnPk93TY2oFpVwyKeGwc8HDwEAHu9zz1v3ut4bAJDX6j633pUUmp0HO73r4f6HMoHPvvsnmYyHceyjlKGr2Pu0dzewuvxfvo96eQt4rwnH0CRunT3ZdJ/JGD/tFQj/2WHMT57IU7+ixtZoQVk+7lWXpG7cfXqmHNrsHKQu4uLj3RvF5Vu6NTTxydgOADz7o4FJLLP0r7n6Yp9Ggv7XWxaFvFb3uTa6NcLt8XJmU1/8jI2N3ZlaJnPZY8dTLMmIhqtVNQCA4zdRUP/oh9Lw5R+1uWviq0IixbKMKNid4eKE1dxiI6ijCTbEvdRfvIorwdvwbn9Ooa1IX4xFGTGwqF6dlbk3motTppoWAej17H4Z/d1qk7GyaNqYi9c1fBVrx9x8N/7MURbPugTgs4bBZs+HQiLFwvQ4E9sPhsugXh2Iw0+soZBIYXGGq5v7idzEBs/Z5Wtgeew8NJ+allF/wN3j+3iZDydEvL2U65krgiAIgiAIgiDeEt5QtcDXkZf+5oogCIIgCIIgCIIoG9pcEQRBEARBEARBVAB/62eBpYMEEwRBEARBEATxZiN6/noV7bzt/K3N1eLFi7Fu3Tp2nP/8QXgXFxez5UUiEW7cuPEP3CMIgiAIgiAIgngz+Fubq/z8fLahMiY7O9tMaYIgCIIgCIIgXntI0KLCeOlnrkpKSsr1+i9zWbEZo9TpcD1eDMAgx6s96gKH6LtMitb1ozsQRV8SyN+q1wUIbBlLrKvXBkAT/AjuQwwy1O2qcGOdvJmTfy8tGWrRwhsKiRS3FM+YHQC4KtsmKCdu4oXujpx0a+210ai7MwlVFOnoMHwUk3YOceTaGJctw82PDZLYALDByxUAoPlUDt3V64K2eL+eJtUwyPzeu49BznKB/LCxvdLyqbrEZJNx3nFNKDV7dvkadBo1DrY/xyBlaA1ujJ9L094Ol6Mk/xGUGhXiv1xl4h9P96t5ZvN4CXvex56OhvOkCX4klFW+dRsPh3LS19W6pGHk9Rumtoz6LEg3+gnuxJQkeJ99H0qNCsk/BEGpUeFg1AHmHy+HbOxvaTnju2Nl7H3mHDnUG/yhu54i8OHub15QalQ4dISLZxf8eSiqnKrLylz6LAL2mzn52zoRUUzaHABcYm1woX0EUKKDyKqSoC82ewzy07wPV/xKBGV4CW712gBWTuzTiMlQI7i5YOye1NfDbe84wTUDAJ/d9IU2K1vQlrnza9G0MWu70TkrKDUqbPh4GcQnL6DL2s8hdnAwqXPdvxhKjQq3JhqkkfN0T0zGWiGRwtKtIU43r8zaj1u4SiCPr9SooM3KRvVfYuAVzklnS78KN/FVl5hscj1UUp6D2+fRuDFPJpDWLn3NGNez/TkGyZv8kL5QGH5A0Xc4ACB5+CqBLdffxrC1JLRGDrNVr3ciNJ/JTcaFl693nS6UswbA/BT5+hjaNZJyr5FoSAtt0BpKjYqFUAj+LFRwHktfJ6KAZoJ8vwMf48z3a2D783PJ/eDmZUqXh1wPMfHV9fcxAIBjWzegsEcgFBIpGs4w7RNPJeU5kzQAsDtTC0qNil3/ZYVEKI345AWz6XwfXZWjWFruZO48jFWnsTZKrym6a2pBnkAmesQqWDZwBgDoxVzbbr+OM5EMNx5zc9cSAOg75AjK9HMKhkIixZ0DjQTpAFhIAr4dz/GxLH9ntiFcgd/cMJMxMJ43AOA/K4z1URR1CS5zo7CtMReKofWEcRialC3w+c9Va1FrXTRSlgQLbLM+W4i5+Sdt8n/snXd4FFXbxu/NbkggQOhlU0inhLKQugsISlkIqBQFpQkiLQgW7CIgig0RBalKkS6CINIWQUAglZClBtIbQy9JCCRky/fHMGf37GxQ3y/y8srzu65c2TnlOc+pk8kk94M6q+PhnVCT9c3nIzEsReCbYkiI+stEX03ZuZwNbowXRQIAqvXIQ/qycK4f/u/Ei+EsmtdxOrabb9VGnVXxuPtEEbenXQ+IYTiKOl2Dys+XGw9F/HGEVqvOlQ8ZlcLZbZv0PPRqDUK/jYUz8n9qg1f9dCjqdA0AUH1rEmtDr9bA0qU9NheK5/7t/lGIeaw/Moa7AQCe8hLlzy0lJdhSmITr20OgKrOycel7+obTe7uUZjklhpTp+Op4WZ5Ux0XTSrw/NA8Sx2FYtOzMU7YKQbXdtvAN9vXzPhT3zXv+kayOaa8vFO1DUWdVPELGJ2FuUEuuXtM5cZyNnPXtWN3ncp5A/gwdFsQudPrzwl/d+8S/C5JiJwiCIAiCIIhHGIVV/HoQ7fzbIbVAgiAIgiAIgiCIKoDeXBEEQRAEQRDEowz9z1WVQW+uCIIgCIIgCIIgqgB6c0UQBEEQBEEQjzqPwFulBwG9uSIIgiAIgiAIgqgC6OHqH6R/SBssC/HHQi9RtlSS5Kw2xQM79/3EZDq3puwEABR8oMPsXLHs9M6/IPcjLZMWLRlsk47138jLWOvVGgRsGofw6RPQPPYcy1MF+LE2LcfTYBCMeCdyNwrftUkph8YPtTm8zxtv/boJgCgxqggLxc7T+wEArnt5OVcAyI28gyZzRUnu3kE6ToZU/aUoXXr+bR0nRXrH4I/0ETZZagBQJ9Ti7NrLl158VceN3dWxWlQ/2BgA0DJFJUrjDjFy9YfldkW13ckwCEYEvGUn+xvdFkUtzLDctslnZ6/ToMfzo2R92x5aF3066NlYSO2rmjaRlbWHyZ1PE/1OmL0YhZtFCeoVzZtVWi/q7QmizP49CX7D+VRmb15QC/g+exJ6tQbBLyfKJJelcgbBiD4RMVya9DllxiL0ieoLvVqDtLELETL6KDLmRcGlRg3mQ8mp+tCrNZgsRECv1sBzTQK2BhtEads6nkwGOX15uMz/fWktMMhblPm2VtyVyaBnzI/i/HVEkuAOGZvM/N7524+2AgknuDH2ez+eSThL6NUanOhgtclW736JpTvK3VtOnWWf56lFyV5Jmtfn4ziYr1yBQTDi1iBesjlg8zg0nmeT5a2rtI2ffd96/Grrv16tQetvYtE7IJor6yhx3Xi+za6UZi9bLMmdn39HB2XzIJx9aREKTbcwLfuYrH3pOmj/KGTME8c+u+cy+L8Xz5Ur8asBRUQbxLTqwq2bmhmu8G5ygxs/SR5ZPTsOCtdq6JH2JCs/xreTU4llAGg2LR59ImKwe8daVj73I60opR7emguJoAwOEOWej4v67AmzF3Py247Sxtbkk1xbwRMTWX7GN9FAwglkfh3N7APAlW3N0atZJHY238nqSfLyIWOTWR/cf02SzcWF13V4P9vI+aBsUJ99zlzdHoAok61Xa5AwezEGpl0GXJScHXs2FPDzbt+mhNSevax206/icHWcFgNrFnPryb7ezeE26f2Mb6M423q1Bqa8AgCizDgAZA9YwtlxnMuAvS/e10+DYESbxCFQuFaDQTDiWLhtD/fRPcXVy/5ci15P2u4/W0troutnU5i9BktsZ7ezMw8A6n8vllGGNmftS/LkHpsTsbaFN2K6DoRBMOLznEQ2TkGvi/dZa0e+f4bCFHH9Gc/AIBghdDUxu/bjId2zLr6ig6pJY9kYsPmaIK4hZYP6yOn9vWxM9WoNPApuc/2SbC0NCQAAeA88jfRl4cj+QovezTujousFdBsuSvKH/5LF+uRMJt/xnAGAE5HrRbufiHNeujuAa99/ejlXvmBTa87naukXMNBb3FM1tiTCUrcmcp5eytUxd+2AqOSRqNc3HQlfLIZBMKL0mShsD61r258Loph/o/I7c2NXc2MC14fSgba1K3QRQ7nkDWgEg2CE5xq+rF6twZ1vyrk0+/FxEaeUhSHQqzVQdc+HNfU0q5O5pj0rXzzEdm4bBCMU4a3h//xxln+j43X4zojDrACx7aKdokR8yeDoSkMXPKxIaoEP4uvfDj1cEQRBEARBEARBVAH0cEUQBEEQBEEQBFEFkKAFQRAEQRAEQTzKkBR7lUFvrgiCIAiCIAiCIKoAenNFEARBEARBEI8wD0psggQtCIIgCIIgCIIgiL8EvbkiCIIgCIIgiEcZ+p+rKkNhtVofgW4+WIqLi+Hp6YmueBoqhassv2FcHVzR3QTgPJaIM6Ry9uUNghExLR5DSbeWOLRgCfRqDYaeLcTaFt5/y/bkzLOo5VKGx9yBtl/G4sQbC7m4Ug2Wxv+pb4AYLyJjQRSCJybi+igtomKP4Zl6yfg0sO1f6pdkwzHPkQkZmVgUHFSpTVXTJjBduIjcj7To0esYMiLKkfVlNCzVrQjceBcuB20xpJLKK/CBf4SsH4r2oRCmW9C0XxrK+kbCfbsYr+T5swJG1r6MTicGwKNXNrI/0yLgnXiUDozC4flLZH2R+nDhdR28V52D+eq1+/b9+vYQ1OubzuXnbWyDuxc8EPyKLZ7H/ZiYkY4FwSFOx7Bgqg4+H9vi6qh8vGEqKJT5ZI/CzQ3miJZwOWxE1pxoBE5J4MoDwJQLHTCn6TGWLtlQtA+FNfU019deTw5F+ituyO6+HDGhj2Pn6f1OY3M54rj27duR0jaU1JXFE5PKxnQZAHNGtlPbjm1YOreHy6FUWV6P50fB5WAqMlaGQXWxGtJHLOL8cOa/QTCi+9AXodx/TJb+V/anPeW9I3C3thK1frTNwfbzKejrFcbHY/NvBlNOntP+AYD/9jGokeMK70/jcGOkFjdaAhnDFyFg8zhYa5qQo18GvVoDa0cNpq9ejpkBHWT+qvx8kT7BCwFvxzs9n4Q3dLjV8i5CRh9ldZRB/rB6uLM4Vo5jUd47Am67krm8CKMZyRqlrC9FQ6PhuTYBhZtD4T3wNG49G4XaO0/BUloqttU8COZzmQCA4GQ3ZETw8XscfZa+lz0ZCfdfk5D9uZaNSfCkRFncqRsjtUj6ZBE3Jplr2iNoWCqUrUKwc+9GMcZZigvSutWC+WYRdMfvIq5dNafz4jh+ElMyT2NOUChXDrDtZWd1LPt88FvLX8WYP/0iUX1rEpdf8L4OPrPiZHuKxRd8TYcmc53H3+p/5grG1znP+VvRMxyue446Le8M+7aePytgfQs1ACD6eAU+bCjGG3K2Nxz7Wtk5YJ+mrF0b5uJiKBvUh/nqNUzLPoaZAR3kNl2UgMWMjG+j4N6kFD7PnKp0jfwVVE0aw3TxEjYXJmCgd7TMr5sjtKizSry3Ts48i3lBLWR9zJqtReZQcY15Hq6PW/1dsPP4b3j1Qji+bmobb71ag+ZHXZE+JgTW1NNQqFQo3+WFaj3ymL3cWVqcG2U7rwyCEY+d7I/q+hzZmKj8fGHKzYepWxhU+1KgbNwIO1P3AACaL5uAc6P5dV/yXDRqbeDvT5XFvXMk98e2ONd5laxc/zNXsCj9MRyPXA+9WgMXTStYjGeY7ZjQx2G+cQO3dgdAAeBw25+hV2twc7gWdVbH48q25mj41Dmna0bqf8BvLyL4hWNc3m3LXfT3jpSVl6joHgbXvSm4MkGLhoviYemkgcthI8t/P9uIWQF8X0zWChzALygqKkLt2rXvOx7/DaSfWduM/gTKau7/eHvmu2U4uey9h3Y8qgJ6c0UQBEEQBEEQjzD0P1dVB/3PFUEQBEEQBEEQRBVAb64IgiAIgiAI4lGG/ueqyqA3VwRBEARBEARBEFUAvbkiCIIgCIIgiEcZenNVZdCbK4IgCIIgCIIgiCqAHq7+QTK/bS9LUzaojxvD6rBrJlkd3pqT+jUIRpn0r/13Zd26CNj7IszFxUyGHQBG1L7K6vv/MpazZ/85d5aWXc8LaoFZARpRgtwKtJ8Vy8pJMuy9T9902keDYETQuvGs/ez+SwAA9VbEIyOiHF2rW7i+2PsRnOzG6vXyj+LsLs477FRe1yAY0c/jFjLnitK26YsiZWV2pOwGAAQtzMG3XqKEsrmWGdn9l+C39StYWb1aw2TYJSSJVmvqaTTtlwaDYMTBpUtZ/voWavTyDYdHL1HS26VCtOWxORF9OuiZXUf53qZfxcF89RqUdesyP/tE9WWfw1IGAQAaDr8iG9/y69WR/exi2fhVxscfvyCTg5c4E7uQK2svw+5YXvpuLS9nUrOBUxKgcLVJSXeYOQF6tQYHlkZxa1Th5obM1e1hTeVllfVqDXb/uhbBI46JaUoXbp71ag2UIYGsfXPXDlCEhXI2ACDw91Ey6V69WoMVzZuh8D0d579erUGHo4NhzshGwQc6KOt4cvmOGASjTIZd2TIYerUGV1tXBwBk91wG/3fi2VwDgF9SdadrNmDLOCj3H0NFz3BYuvBngkEwIvp4Bd9W3bqV+nd+eAVq/ZiA4uejoU6oBQDo6xXG+intNXsZ9vM/h3I22n4Zi5CxyfD+VJTarrsyHgFvi/s8eFIiQkalsPYVR4wYt/RlAECPQSORucbmvyk3n9VzJj/vuzYbIaOPYlr2MeaXOTMHu3atl50JUv2yekou3SAYZTLsUn5N4S4MghHeA8U1VvOnROzKOIIr48Wzbef+TayO8ZoXVN5enB1n6wcA3H9NgsLNDQFvi/MrybDr1Rr0y9CzcnVXxrPPl38RZbSt18W9sXPvRvR85gUAwKkwC6xmCz7JSUJcu2pc36+/qOXajgl9nPPpxo5gJsMulctY1QHpiyO5vXx9lJbZLH4+Gi7dCgAAqwuOoMau43DEZ1Yc127GN9Hi531iGI/jb4q2R52Ty/lvadUQty13ufr2MuyVnff29AnrxfLnZ3Rl6Ydfi+b2lFTm8i8tkLm6PcYUdERYqoUbD3bvO1fA0nv3fp61bS4uFr/fC4MhSY4bBCMUrtWgV2twa3cADIUpMAhGZA9YAp9nTgEAeg58gbWTsSBKtmYkMuaL96/XMsV7RunAKJguXgIAtDG8jAijWVa3zqp4XBkvzlu7alcBhYK1dWOkFreejUKLiFzo1RpkrW0PXd0s3I7wg16tQVqYSTZO89TJsKaexpTM07CaTKjWI4/Z63LiDvzet51XBsEI/YARqK7PAQC89MPL3FztiNsGAFDtE8dkZ+oeVtfvg3jZfcJeht0gGFEy2DaPeTPFNX67P3+Pl9gatZiFIVE188H17SFwO9gEW1o1xPHI9egdJJ7nFuMZGAQj3s8W96L5xg0YBCNq9spmMuwGwYjEzxdB2bgRJ8Pe+UQZa8/+XpTdYznzOXOu6LO9DLtULizVAs29W4Lr3hS0TFHh2AeLxHvFvXujytsL5q4d8Ng9JfOs2Vr8ryGpBT6Ir3879HBFEARBEARBEARRBdDDFUEQBEEQBEEQRBVAghYEQRAEQRAE8ShDghZVBr25IgiCIAiCIAiCqALozRVBEARBEARBPMIorFYorP/8a6UH0cZ/G3pzRRAEQRAEQRAEUQXQw9U/yMmeqzh508zV7WG+eg2XuzSVy10fPeVUGrhgqo5d52xoyz577b6LCR0OAgBi2nbD2PRsJjt6p18k9GoNQiYksfKdXx7H2fV7P96pz9V7XEbq+6IM7+m7d5h/u0LrAAAuTbbJXOd+LEqNBr5hk2F1lP6W5Fjt5U9VPqLcb0ZEua3hXQ0AiFK2ADC+WSenUs0RxwZBr9Yg6DWxzZAQgfP/8su28TJduAi9WoOWi2OR8+R30Ks1aL5sAlTNfKB7fbys7+XWCqQvjuTm4Zms7qxPBR/osDjvMKwmE8vv11eUpb00WYeuezNZXXuf7dPMN26w6yF7bdK4KWEbAQDmGzeY7cCNoo85Ty3F6PxOQHTbSqWAAUDlpYZBMKLuD/HoOnoMGz//HWO4ObHH/HgHfJJjWyef5yTigukWlMEBzGdAXLvS5915SUxuueHieBgEI1xLrXDx8GB2rOXl8N7oiu3nU2Rr3b4PO0/sg6qZD+efOT2Lfb4Y7Y4acy9jcd5hrkzQsFTOZt0j9QAAWV9Gw/sTXmYaAFSb68EgGHFmwkJkvtOKzY/58Q6sjP2c2acBwM59PwEAGi3gbWeuaY/y3qKcf27kHQDAnX6RXJ+DJyZi2/lkuO45CpeDvMS7Xq1BQjtXbm/vPL2fayN9qS1cQMAQcdxrr0+AEF3C2rk6VtyLISsn4LGT/Vnbn+QkwWvAaa7Nxn0K0OWEuLc9D9d3Oi+AKL1uEIzw+kzs853GbggalioLEyG1lT9Dh15PDmW2hMV1AIjS1477Qq/WIGDvi1y7BsEIz7UJ3L5xtt5ZOIr9x9Bp0jgYBCOUQf4sr+Fi29mmbBWCukfq4XDbn3F5sQfSF0bKfLdv/24vcayt5eUsrdYh8Wz6Lv8w7nS5xNLt+65+rQwV3cOQ/YwYiqLbmaegiDvO8i0lJXjPX5R47hPVFzGtugAA6i23+Zo/TcfmXqqnXFNf1n+fn1QIGS/uWdMTogx/vRU2eeza6xPEEBkHRqKR0gNPpgqAi1zOnguL8cq9M7xbIXI2tMXL50XZ7I9Px8jaB4AaLrZwDG9lnbxviAh7mXjpe8EiMdyAdPZJ/qh+T+F8s2rb4UiZBY2ePoug4anIey0IKe1dsCz/sKydVc3Fc6SP7ins2rWezat9Wcd7k7VClJSv2SubrUd79mz+AQCg8m/GwozYYxCMWJh3GNkDxbxeNcR147E5kbUVMvookjVKWHXtZOu54WJx3kb7dgLsfptfd2U8av6UiO0hu1C8KxCBQ1OxK7QODnz/ncwH+7AfAPCqcTDLu/aSFr6JHnivwTl5nZ9tP5/4fhjHjY9ercGUTFsYjfvtQ0dZdr1agwuP2+Ty658S+1VjS6LMBgC86qdDxg8dUK9vOkx5Bbh1xw19G52w9WFQO678K3NiWbgOZ77o1RqYL12GQTBiVbG4dw+1def651gPAPuZQkLl7YXsdWJ+SnsXbPtFx+p/3fQoevd6jqtvKjyPveuW2+4NQxfh1rPO5ecfWqwP8OtfDj1cEQRBEARBEARBVAH0P1cEQRAEQRAE8QjzoAL8UhBhgiAIgiAIgiAI4i9Bb64IgiAIgiAI4lGG4lxVGfTmiiAIgiAIgiAIogqgN1cEQRAEQRAE8QhD/3NVddCbK4IgCIIgCIIgiCqAHq7+QfqHtEFMmycAiPEVgoaLMW7qrYhHn7BeAIAORwdXGiPEIBjh83Ecu05/TIxLoaxbF9/5HMGb9cR4QOar17A0JABtvoqFQTCi+lYxBkpgsjure+hbW4wOKVaV1IbEyvzD8IzJZHErXvfTspgNg9IuAgAaz4tjsSzOvbiIlVX5eHO2XNzdoWwVAlXTJlAGB7D6AOC21i6+1T0frE+ch16twdyglrBq2+F2/yhZHA2DYES9vulcLA5Dy+3Mjl6tQeP4Ii5uDQD4zoxD1DsTAADnRi/C5QXVcSkaUDZsyMqNTc+Gm8KVxY8p7yPGuynpfBUA0GPwKPh8FAd/15pcP43twcZlb+taXL9uvGCL7xJhNHMxMQyCkcVlqWz+g15NYHE7lvkeBhJO4Mp4LWdj5/ljzIbpvMDaqF5QwsYtZEwy+6z5LJbVVzVtgmqXbmH0V68CAKZknobGzQ1NVTVhzsi2xVlaHAmP1OpO47ABQMDP4+C5JgGW0lJ+7K1AX68w1nbQ2gmw6toBCgUrk1BmhimvgNUrHhLNteH1WRx+DvoN45t1qjTWikEw4kbH6zAIRgS+kYAbI/kxAoDtH38JvVqDsBkTkD5iEctX7j+Gsr6RXH/8t42V9VGKZWYQjCh9JorZznpiBdx2JbPypbsDUH1rkiy+21NeEbg6Tov0JeK6ytvYhuuP/3MnmK/l1gqujzl9bbFtlA0bcvWkzxvfn42iYdHYPvRL3NrahOVJsZXaHlOwtFvLvODqYoJercH1qc0qHdffNq5Ep8njcPE1HbDPGx6bE7k2b47QIvdjLS5ubQm9WgPfGXG4HFGb2Wj09FkAtn0gjYfUz+zuyxGc7Ma16bgXVE0ay3wDbPNaFKgU49pk5jgtZz6Tjhsdr+OC6Rae8ErH2113cHHAHPtcbXeyLC37Rn2sLG6EMb6dnLahV2tgys6F694UNjaq7vlwadcSZU+K449oWxwzU0EhzDeLAACKsFDunLLfP23nxKL2ej72jkEwwv3XJNau6vcUaN+Qx+zTqzXI7LoSerUGE+sUwNK5rSyf+dMtjBuL9MdWISOiHAbBiF/Cljg9n+zrfxHYRpZnH3tJisFlX69pvzRWvuczL8hiIUoo4o+jo7sLO+NKvcR72miHuZB87OUfhaLwppyNsd1GcL5JZVun2H78ubC1JYJHHJOtUYkdR36RjQEAtJ4Xi9hmndD2y1jO976nb8j2lSLuuNOxNAhGqJr5AACLOWh/j4tvtxkGwYhR5/KYzavjtJwNvVrDYjKd0a1h6Xf73kR+VGmldQCg4AOdLM0gGDEnKBTKOp5O+23vu3098R5cG35brSy/5sYErryzGHnZPZbj1iDx7Pd99iQ2t2yE7HXiXCR9Yjuv9WoNGi2Igzk9CxkLbD8jKNzcOH+ksiNqX3XaZ1WAH0u7OVzLzVXeTHGcTIXnETDEZq+8roWtjei3xmPX7g0A+HXU4vsJKHxXHE//rWNx5Bt5bLSHGopzVWXQwxVBEARBEARBEEQVQA9XBEEQBEEQBEEQVQAJWhAEQRAEQRDEIwwJWlQd9OaKIAiCIAiCIAiiCqA3VwRBEARBEATxKENBhKsMenNFEARBEARBEARRBdDD1T/IxZejYN5YAwBksqxbj+6A8IYOdb+uKctTNWmMmG7PQq/WwC+pOkuXyvWLOyfKcxeJksuSfKv6yzjOVlZEGSeVesfgD0CUDXe0CQAjfTvJpFUlRnuKUuo3dgSjT0QMKyPJ7ZoKCrk6lrIymM+kI3x3AcwZ2djYsgnLK33sCjIWROGtrJMARPlSiWnZx6CIP44rGqWYcE/C2FHe15n/AGBNOe1U7rbOqnj2ObnDRgS9mgDzlSvMxtKQAM6W245kzs5vP66Qjc0nOUlQeamhbB4EACiPEWW2lfXrQa/WoO4P8eg6ZgyKhkbj40Yn8cTJUqfStf7bxtquTxUDsEnWSrLiUt8bLrb1AwC6jRknGweDYITl1FnuWhq3xvPicHmiKBVrunAR5jPpML67EAAwJygUT4x8STa+IeOT0PSrOGT80IGl2csVB7+cyNqxr3dw6VIuLfDNeOT3qgFYrcyf6QFhAADhTR0uTdKh9jqbbO9ty12u7wCQ/ZlNTjj9uwhAoYBercGF121ywnVXxrPyPZ4fBQAY7tMRANBgabxsvFSv2sIEAEDOU0u5sZNoPC8OaXdvw2MTL0nO7Hip4dErG45IMsENlsQjZFwyMlZ1QL3NHgCAi6/oWBuBP4qS2k95RXD1D9xxYWXMV67gq9x4ZM2JZml9T99AbLNO8FyTgFda9UTDRbY1UrRTXJsnOlhZ+drrElgYB+WBYxh1Lg8GwYiCTa3FSi5K1j+PTYloMjcOqhfEXzUWbGoNg2DEvjtK1FkVD7+p8WhiJ6t9bNoi2bjV/SEefdN7wyAYsaUwiY1b26TncbPCdr5dmqSDXq3hpPRNFy/J7EmU7/GD+gvbWWYQjMiaE80+69UaZM4Vr0f6dsLNiurY0qohqutzWP+cSUMrItpwbTZ86hzWt1DL2rdvV5Lot7e1a9d6VNRwgV6tQUVNV1wbrcXVX0O4epeiPCuVwm86R+zbzeFa2blh75/9nnG0dXO4OJa33y2S1WNhNPalOJUf16s1iL0XAkEmkd/Udp7bn8l1j9Rj6RFTJ0BGpE22vcuJO3g/24jL4R6w7PPh7Gk+jcWoc3nMD+mr5k+JzBfH8wYAro7owPYn2zMZ4p68HKtDxjfR0Ks1KBkcjVNhFmR+Ja4PSRrecWzsz2ln43Bqsnh2Nv0qjhuL7aF1OT/tz+ArE2zzCYUCZqsFO+J/BQBM0z4Jg2BE1zFjWAiDyFTxZ4Hnat1g7TZYEo/gZDcYBCMK3xXPkIyuK5mvbgebiKFLatxh7TZYEu903Hw+4veQ/XiabxYx+1LYBEV4a9m429dd1ewP5A6ycvn2dvtE9ZX5AYBJtktjFTDEiMLNoegdIM5R7o9tuXo18pWsrrW8vNL2HNsR3tTBlJ0LAFA180Hi5+KZdfXXEEQYzWg2LR7Fz/MhQQAg+JUEZtNzjc3XU2EWVqbcuwLen4rjmdNvKRf65H8F6f+u/smvRwF6uCIIgiAIgiAIgqgC6H+uCIIgCIIgCOJRxmoVvx5EO/9y6M0VQRAEQRAEQRBEFUBvrgiCIAiCIAjiEYbiXFUdD92bqxkzZkChUFT65erqWmndRYsWsXJXr16V5VssFsydOxctWrSAu7s7fHx8MGXKFJSWlv6TXSIIgiAIgiAI4hHgoXtzNWDAAAQFBcnST5w4gdmzZ+PJJ590Wk8QBLzzzjuoWbMmbt265bTMa6+9hnnz5qF///6YMmUK0tLSMG/ePKSmpmLv3r1wcXnonjUJgiAIgiAI4p+F4lxVGQqr9X/jP8vGjRuHpUuXYvv27ejTp48sv3///sjLy0NoaCjWrFmDK1euoEGDBiz/9OnTaNOmDfr374/Nmzez9Pnz52Py5MlYu3YthgwZUiW+FhcXw9PTEzfSA/Bsc1G+2rTXF/tabYNerUHBptbweeYUAJt0q8rPF6bcfJnUuD32eXd7RaDa7mRZfutvYvHh6DVYGhLA0gCgT8ensePIL2h+aAT8Bp+Q2fyzdgHg8VEvoeXHpzCoXhI+GT4cxVNLkaDZBL1agy4n7uBg2+rMTtmTkTi4ZCl6DB4Fl0OpeD/biFkBzu3fr6+O0rAurVvAcuos0r+LQMiYZJnfCtdqsFbcZdd+SdWxxDteJhlbWV8r82NZ/mGM9u0kthHRBtbkkyiPiYDbzmRZ2crayPihA7J7LGf9Cp8+AUc/XMT1rzJbANjcWfb5wKVbQaX9yJ+hQ9rYhSxP8bsXrE+cB2AbP8c2Lr6iw/G3F3L23so6iS8C2+B+pC8Ph3t+NfjOiJPNlWS/cHMovAeeBgB4/NEQPwf9xrWjDA5gcsn2TMjIRD+PW9CrNbg6VosGS+NR8lw0am1I4Ow7YhCMGJLzOK51vMGlX5qsY2EI7OuW947AgWXfOV0jCpUKVpMJ3+Ufxph782/P5Vgdmv52ETsP/izzRZ1QC0J0yV9ab9LY7bujxBeBbWAQjOjVZyh271hbad2cT7Twfy/eaV79I3VZ/x3XUi/fcFhNJln7MW2egPnadQDA9e0hqNc3HQCQvU4Dv4XAbxtXOvXF0qU9XA6mQuWlhum8AECUODbliWv0gukWhox9DdWulwFJJ1l7/tvGImR8UqXjIbXV+UQZDrV1x+VYHVKnLkQv/yjszknEuEItRjQ4go7u4i/F9GoNbu0OQE07OXzHvgevnoCM4Yv+dD4uTNGh6Zw42fl4p18k/li4FE+MGA3XvSmV+mxfr+czL0ARd/y+7TnbOwDQKm4YFrZfh67VLZWu9W2lNfD2mpHw/TCO80HZMhjmtIxK27EvK61Vx7L+W8cip99SzjcJl7YtELbqNFKf9mNzrVdrsDL/MEbe2yvO5tkgGNHhowliyIDotlCYrbAmn0TOZ1rArxTpj61ibWWt0yBwiBGK8NawHhXvmaa9vhjjcwhffzQYoS+fQmG081+mOvbF2X3Ofp3bj499f6U6Vm07KOLvP4/lfSJYGA+9WmPbhy5KwGLm2mnzVSxOvs6fued/DoXXAPGsVNavx/ajys8X6eO9kDHCtnZdNK1gMZ6BsnkQzOcymY2yvpE4uHQpK1fZzxaO11ZtO+T0q4GAt+VnisK1Gnbn2cIo5M7Swu/9eAxKu8jCrNweEIUaP/My+I7t9Rz4AhvDbeeTWdiJ+417ZTj7mcJZHwFgRN5juKS1hTkZV6hF/ovNcEVbF/W/i2f1sr6MRjONgLsLmqLGFrEv5q4doDxwTNb++bd1+HzMcswLagEAuKsPh7LcIpaNbgsk2H7Oan/kNmbrdqKoqAi1a9eutE//LaSfWcMHfgyVq/s/3p6pogxHN099aMejKvifeFVTWlqKDRs2wNvbG7169ZLlb9myBdu2bcPixYuhVCqdWADWr18Pq9WKV199lUsfM2YMatSogTVr1vwTrhMEQRAEQRAE8Yjw0P1ZoDN++uknFBcXY/LkybKHp+LiYrz88ssYN24cIiMjsXDhQqc2kpOT4eLigsjISC7d3d0dGo0GycnJTuv9FZo2bcpdWyyWSkoSBEEQBEEQxMOFwiJ+PYh2/u38T7y5WrZsGRQKBV588UVZ3ttvvw2LxYJPP/30vjYEQUCDBg3g5uYmy/Py8sLVq1dx9+5dJzUJgiAIgiAIgiD+nIf+zdW5c+dw+PBhdOvWDf7+/lzekSNHsGTJEqxduxaenp73tXP79m2nD1aA+PZKKlOtWrW/7eOFCxe4a+nvVwmCIAiCIAjioYcELaqMh/7N1bJlywAAL730Epd+9+5djB07Ft27d8fzzz//p3Zq1KiB8vJyp3llZWWsDEEQBEEQBEEQxH/CQ/3mymQyYdWqVahfvz769+/P5S1YsABnz57FnDlzkJlpU8opKREVj3JyclBcXIyAAFE1T61W48yZMygvL5e9wTp//jwaNGjwH721IgiCIAiCIIj/ZSiIcNXxUD9c/frrr7h06RJeeeUV2QNRXl4eLBYLevfu7bRuZGQkPDw8WMyriIgI7NmzB0lJSejcuTMrV1ZWBqPRiMcee+yf6whBEARBEARBEP96Huo/C5T+JHD06NGyvFGjRuGnn36SfXXt2hUAsHz5ck5effDgwVAoFPj66685O9999x1u376NoUOHVrn//UPEeDUGwQhV93wWf+GMzuZXTJcBAABTbj4AW4yHK+O1XOwHAFhW1IR9doxxdVcfDr1aA6/P47A0JICLM6FXa7DjyC8AgHOdVwHg41B8lRvPYoA4tvl5TiI+vtoCerUG+b1UyIoow0tbxiL3yRrwjLG9MZRiXPWJiIFBMKLmsUIAgMuhVACQxaO48LpONl7KlsGy+Bgx7XpwvkkxmpovvA0AiHp7ArI/0zIb1oq7uDRJtK0IC0Vu5B3o1RpsKJDHN3Kp5M9ApbKXX9axssfvNkDuj21hEIywJouxeqQYV5LPYSmDoGraRBbvRhXgBwAIfuEYS9erNTj64SKEzZjAxfOy90nqszSHUnyyiHp53Bg5kjZ2IasvvKFjMa4AsPHLXqfhfGzyTRxnL8JoRrfqtrgs5q4dYOncnmvHIBgR8uJRLsaVM6QYVwBQ+tgVWb4U48p+/VV0D7PFuBonxrgCwGJcuR5oii7jxrJ69t87Txwni3EFAMZ3bEqierUGeRvF/Zk/WB5DSK/WIGNlGHbnHwUAjPHthPPv2Nas1FajhXHYefBnxHQfhFqHGnDjIESXQBnkz82vPQqV7XdberUGAXtfxK8326M8JkKMq5N6mmvLkfSRi9hnZXAALF1s82Pf/5hWXbh6hW9E4q4+HBsKxHm7MEXs186Tv7My9fqms3ZXRy+Dy2FxHeasb8d8Uri5wSAYcbe2K3JnaWE6L2B+3hEAgCmvgNka6dtJPK+STqJgU2u2pnOeWsr1Tfp8/h0dwmZMYNfxTwYDAIp14l7enZMIvVqD3Mg7mBnQge0PAFyMK2lc7c8UKYbPrWejWJmsdRqujsK1Grx+u45t55O52EhZX0bjj4VLMf1KKFz3pqD7KT4u1OOj+D9dl+rt2fQDly68pXNaztl+9nnmFNLvNuHytp23nf16tQYLgkO4GFfpC0VFXCnG1Z2nI7nyUp+mXwll7a/wPSRrW6/WICQ2ifMtd5btvmQ5cRbJGiWb65ZHhgMQ5zt/mo75I8W4umPwx8SMdOjVGjHGFYDMl5UQOtcS42G9E8/FuLrTLxKBQ4woGRwN69FTUNavBwBQdc/HiubNkPDFYhRG35Ltf2XLYLh4eIhlvb1YX+oeqScbYynGlbR3pL7al2PxAuOPI3NutGycDIIR5TFivKbqhbeQ8W0Uevd8DpdjdbjW8Ybol8Usi+VUHi6Pz+U14DQMghHK0OYwX7uOi6+Ja8WUm8/FuDIIRliMZ3BzhJaLcWUQjIj+yBaPyqprJ/vZwiAYARelLB5UWSM3LsaVvb/Wirtceb/3xXJSjCsAOPTtElbvwyut0H3oi5ydLuPGInOCkp3z9jGu5t9oZhtnlYqdgcr9apk/0ndncTNZ7MI9fhiYdhn+v44BAFzSFrN2o96egHMzWmPXng0sxpVE4BsJUHXPZzGuAEB54JjsDHbx8MCpVxayGFcAUM1wFCweVsIJ3DH4szaTda4yXx9KrNYH9/Uv56F9cyUIAnbv3o3IyEi0aSMPZNquXTu0a9dOlr59+3YAwJNPPskFEW7Tpg0mTpyIb7/9FgMGDEBMTAzS0tIwb948dOnSpcoCCBMEQRAEQRAE8Wjy0D5crVy5EmazWSZk8f/h66+/hp+fH5YuXYodO3agQYMGmDRpEmbOnAkXl4f6JR5BEARBEARB/CPQ/1xVHQ/tE8V7770Hq9WKMWPG/K16K1euhNVq5d5aSSiVSkyZMgXnzp1DeXk5zp8/j6+++go1a9asKrcJgiAIgiAIgnhEeWjfXBEEQRAEQRAE8QCgOFdVxkP75oogCIIgCIIgCOJ/CXpzRRAEQRAEQRCPMPQ/V1UHvbn6h9GrNZh6mVc77DR5HPI2imnmjGxO5jN9qShPemzaIpls7MaWTZzKpRsEI6oZjnLXzmR97SVmw2ZMYOmv+4nyuv67XpLVey8iBofaugMAsgYvBgDUCr4J/3fjWTuK9qKkb+/mnWE6LwAATOcFpxLUt3aLMvEn3ljIpSOyDcxpGVhZ3EiUO+8o+rHz+G8yaXODYGQy1XVWx8MzizelHpALF3d3XG9dG+oEUea397uvy+wUTLJ9th+753xEGeFG38bh+vYQAMCB4pbwG3yCSdcbBCNKnotG4bs2ufabNz1gunBRJuNrys4FALjUqoWSwdFcm5LEuFTn3KdtmZ/tZsdyfkl1Uoe34vprnyfV7eUrSvOffH0hy/swOwWqZj4wCEYEDDGi8F0da9txnpI1SmRV3GKSynvXLUdRoDvLvz5KK+tn0LrxTiWMy3tHMPvCG+J4Wbq0R0X3MM53aX1+npMI170prH6DJTZ5YAA4/3MotofswsElS7kxkLCX0bWHkyIG0GzQSbRLeh7ZPZfJyhoEI4JHpnBhAE5NXojyPX6y/aVXa7Bz70ZsCtwra8OcmcPKOI7x7vyj3LwFjziGtDATDnz/HazadrjTLxJ6tQa3LGXI/kKLCRm85DKTCT9VDHNGNlwOpjrt94UfmiJ9sU2O2+uzOOxf8T2e89EhqbwCTefEOZUCl66H/jKRpaV3+YHlWcvLoVdr4P5rEvzej0f68nBMatbxvrL8Ps+cYjL4Upvpy8K59rw+i0PKjEXo+pL4/7aS1HfQsFQYBCPafW7bFx/l3JMl3+fNjaWyZTDXj6KdQdz1kW9sstGBQ2xr8NIkHawVd2E5cRZuCldW3iAYEfhGAvRqDT5sKMplH7lms2nVtcP+Fd877XPfdD4Wo/oLW+iCLifuVBpSQWp3c8tGXLokYZ2+MBKIbAOVny8r/1bWSeT0s+2LLifu4I9FS+GIXq1BQjtb/4bkPI6Nhfw+g0Ihq/frsC/RY9BIWbpBMCKt42p27TtTXFNXJtjCZBTtbIoFwSHsOn+GDllPrMCJNxbi8dNPAwCey3mCrdX3vvwBBsGIWj8mwCAYYb52XdYH6bsUJsIgGGFOy8CuDDEkQODWy+JYfR+OGx3F+sqQQDb+xc+L53Fle0d4QzwjVd5e2HY+GUGvJbB27P24MloMDWL5qgTBLyfi7te3kTrVdo8zCEbcspSx818R0QbV3Svgv20sK1OwqTWzZz59DgDQZG4c1076ijD2ueS5aCR+tojzR6/WwGgXMUMRd1zWpwU3fWAoTAEAXH9Ry86SJd98LbNlEIxwadeSN+CwLiSJfGm/6tUaxLWrhvyebhh1Lo+Vc/81CbDazvlbz0Yhf5o4vttD6wIAegfpoE25zcKcOPPHcb84C+dwoPVWbG7ZCCHjxHAKr2WmAQD8d72EOqvjceD775gd/+1juPPZ8X46OfOs7Fy3lJbK0hw/V9fbzv4t6SdBPFrQwxVBEARBEARBEEQVQH8WSBAEQRAEQRCPMg8qwO8jEESY3lwRBEEQBEEQBEFUAfTmiiAIgiAIgiAeYUjQouqgN1cEQRAEQRAEQRBVAL25IgiCIAiCIIhHGQoiXGXQm6t/EEl+M3FSOJfusSkRZzutZrKdn1xtDmXLYBgEI0LGJuO1zDTo1Rq8ny3mK8JbIzDZHfcjfUkEd62s48nJzTpKQd9uqoBV246TOQ0ZfZQrAwDmq9cAANmf2aS37xyvy0lBS7LolpISZutyrCjh3fPZkczm9vMpONL2Z7ROGMrJqRoEI5AkjtXI2pehV2uQHatgtvRqDS6/rIP/zpf4Ove+1/8uHhnzomAQjCgaGg3z4wIsZWVI+nQRVvgegl6tgeeaBK7N8A8m4NQrC1kbBsGIa2NsssER74tS9aZdDXDn6Uic6GA7DV73E8ci7qvF8P40DsHJbgCARrvcZPNiP567zh1C3NzF3Jjbl1HWro3gVxKgHzACgCjD60za3HLqrEzCHADcDjYBALhoWsFqMrG89IpSQKHA9IAw/HRks638TavNhncYJmee5XwPdK2JtPHiGPn/MhZ1V8Zj+3lRwrfeinhZ/zKHLGZpBsHI5G9LJxaJc3C4PtRfitLCLgdTmdy65I9prygp/bZ/FIqHRHO282focGuQmOY14DRXT6/W4LK5VCanCwCFm8UwAbf7R0ER3pqt28bxtbEy/zBGBcc7ldR1HHfpusYrrvK1a0fGyjBub0iYuoWxtIIPdE7l3O3tKeKPo/rWJABATRd3NEi1YlFwEFqmqJDxQwe+r61rMzsRRjPnDxQKWPfVA5RW1o592x4Kk6wP0rkjYS8//cRI+R6UaHDYJu0NAKoAP8S07Qbd8bucFLyifSiaDTqJ4l2BAICQ0XwYCUSKMu0Hvv8OjujVGjT5RpQyz/gmGpFurqLcd7dCbj2Y0zK4enWfveB0fsOnTxDl3b+IBfZ5o/F8XvracY/Zf77T5ZKtT3HHEfptrKwNg2BERdcLsvGSbBxsWx2+iR5O++nYLgDk/9SG2QqJTQKSTsKUm8/yvwhsw62l9xqcg16tQeZqmz43O29CAtn1tY43MMjbdv4BcPpP55OadYTLYaMsXa/W4PEXxzDbKm8vFA2NRsNFNnn3Jt/EAZG2sCRpYxeyvVWthyjZvcH/d9Q+K/7O95X1L3LjYD9+yiB/9nnEuQK4HOKl1KV689SipHfIS+Iauz0gCub0LFGef1g0aq9PkPXFHvWX4lozFZ7HU14R3Hq4OcI2Xt4DxXsguhWK/e+eL5u7gd7RWPb5VwCAgu610KRfGkLGi3vcIBhxRrfGNjfNg2AQjKh7pB5nI2RUCitTa0OCrA0AKBoWDVWAH7NrEIxYmX+Y5W9rVR/DcrvCIBhRb7nt/Ou/agpnx6VWLejVGpx9hV+fmXOioGzcCNvOi2NrvnYdBsEIt53J3BzFDfsSq/p05epab6tYmZo/JSJt/EK0+H4C89Vy+zamNzxja+tSA3SaPI5d24fGsE9z/Ow4Lr1qiGEjcnp/L8sPGZssq6tXa9iZNS+oBQDgynjbfEvt50/XOW1f5ePNXV803QLxaEFvrgiCIAiCIAjiEYb+56rqoDdXBEEQBEEQBEEQVQC9uSIIgiAIgiCIRxmLVfx6EO38y6E3VwRBEARBEARBEFUAvbkiCIIgCIIgiEcZUgusMujNFUEQBEEQBEEQRBVAD1cEQRAEQRAEQRBVgMJqdRLMgvh/UVxcDE9PT/jNnAVLY1cWywKALG6Ki7s7LGVlLM8xho6zmDotl8YibexCzo6U32pBLHxmxcnqm54Ig+r3FM7PnE+18H83XtbO/dqXrst7R8BtV7KsT7kfaXFu9CL4bx0rxmFxUrf7qRLsbV0LRcOi4bkmwWkZ+2uDYETbpOcxt81GvPnlWFR/+hJq9spm5W6M1OJKtBk5Ty3lxuTyRB3UO8/j6Z3J2NyykdO+Sb53Gz4a7mfOw3ThIpev8vbCjqQd6PX0cOz+ZbXMv6mX2+DjRif/9vjZp0W9PQF1VscjfXEkt1YsnTS49X4JavfOktm+H45z7Sz2TmXfpTL29bi8tL4slovE/LwjCHH1YPUc++GIQTCi5ZJY+H4orlNlqxDs3LtR1nbX0WPYGgOAy7E6NFoo1sn6Mhr9n0jE7CaplY7xtOxjmBnQgetLn6i+MBUUwiAY0TtIB8vt27j+ohb1lsfL+l/wvg5nJoqxeNQJtSBEl1TaH0cfOk8cB6GzAkGv22JE2du2J/37cOTEfF9pP3I/1sJvauX71L68fTuvZaZhblBLAEDexjZoNuhkpXPtrF1l3bow37jhtD378s7sKNqHYveOtVyeQTBiwU0fbGtVn6t3eaIO7jcsqL0u4b5rs09YL+xI2S1rz95nx3qV+RzTrgfMV64AALLmRCNwSgKLd9Xk63trbJ0GgUNEP13c3bErO+G+Y+d5uD6KOl1z2matQw2g8SzEiuNaBA23xWSy91Ph5gZreTnLm52bgMVXuiIroszp3qysfwXv69BnYDxOdLA6LXdjRzCKUhsg8JtM7Dz+G/x3voScGHn8n8rGMuczLfzfke+Xys43AGi5OBZxY76ELmEcfJ89+ad9+DPut58q8136fG20Fkc/WsTVHXGuAKua+wAQ4xkdm7ZIjDeYcAIAoGxQn8V8tMfULQyqfWLsqS7jxsL91ySnbUrc7h+FQwuWOI2tBwDaN8aj3pHzMOUVyPrTu9dzsJwQYxEqa9fGzrN/3Pe+o9yvxp3PvSB0VMHvAzHemMq/GUw5eU59q2z8blvuor93JC6/rEOjb+Oclv8zewAwJfM05gSFOs3LnaWF3/u2mGiO9x69WoPAZHdkRZTJ6qqaNIbp4iVZ+v38lGw7+p0/XQffD+Ocrq+S56JRa0MCFucdxvhmnWT2HMtLXB2rRZ0lf+AAfkFRURFq164tK/PfRvqZtWP3D6FS3T+malVgMpXhyN7pD+14VAX05oogCIIgCIIgCKIKIEELgiAIgiAIgniUsVrFrwfRzr8cenNFEARBEARBEARRBdDDFUEQBEEQBEE8wiisD+6rKklPT8e0adMQHR2Nhg0bolatWtBoNJg1axZKS0v/tP6NGzfwzTffoGfPnvDx8UH16tXRvHlzjB07FgUFBX9a3xn0cEUQBEEQBEEQxP8cy5cvx9y5cxEYGIhp06Zh9uzZaN68OaZOnQqdToc7d+7ct35iYiKmTJkChUKBl19+Gd9++y1iYmKwZs0atGnTBmfOnPnbPtH/XBEEQRAEQRDEo8z/aBDhZ555Bu+++y48PT1Z2vjx4xEcHIxZs2Zh2bJlePnllyut36JFC5w7dw6BgYFcep8+fdCjRw9MmzYNmzZt+ls+0ZurfxC/aUnIeWopVF5qlqZXazgJUEtZmUyO1SAYYemkQa+zfVha/gwdq+s7I47ZcsRnVhw8/mgIhUrF5at+T0HhezoYBCMMghHlvSPg2eYas1PeO0LmQ8ulsay8fXsGwQi3XckwCEZkLIji0iXJV0mGfXR6DtK/i4BercG286Ks9t7WtQAAq2bN4dps8f0EZkdCGRwAvVqDpv3SMLegJxqvOYW7GxtzfpXVVyBkfBIbHym90YI4mBp7Mhl2g2DE82cFAECF1cza0Ks1uBbqBtOFi7K+3l6hQtD68bAm2+SD7bmfDLsjjuUyV7eHXq1BndXxsGrbyeTLXQ4bEd9us8yOPapmPrK0q5NvIzjZTda21L70/eXzUbg1KFpWxn4M7K9bHhkOQ8vtrH8u7qJk66RmHblyOU8tZZ99Ez3w1JlrbL6UDepDr9YgbdxC1u7OvRuhV2sQmfosACBjVQfo1RpOhh0AUqeKdRTtQxG8uggnOlixtkSU9c6YH8V8zv+pDfqevoGZAR24dQKAybADgOX2bQhv6VBveTzyf2oDvVqDmMf6s7I+s+LYWEky7GzN9Y0EAFwbrUWPwaNkcrw1tiQyGXYprU9EDLNxdZwWwhvifgx56Sgrl72OnyMA8Jsaj7InI1maqmkTlqdoHwqFmxuaL5vA6kUbnwEATJ/5IitXa3dNzq5ercGJu3JZY/t2JRl21ucnI7myBsGIVgtjna5/a+pptn6yP9My2xPrFMjaabQgjpNhX5x3WLZWW8+LxY6U3ez6+otaGAQjMte0Z3ZUfr5sHbZLeh6TM8/K/MpZ307s2z0Z9ouv6NAkznanl2TYASBwiBEZK8OQNScalrIyzqeWi2Nt+yJF/B2lJMN+69koWbslna/iUFt3ZHVbweoZBCN233bD7QFRMAhGJsNe3kc8i9/0i0byJV/Wpl6tQViqhZPJlsra4zMrDic6OPz04qJkH+v2yYDf1HikvxUkjsm9MABdxo4FIIZSkNqUvr+Wmcbq+78Tz/kEALd2B9gk5VX872z1ag18Z8bhOR8dvL9VIX+GDorw1n/p3Pw8J1GWd2FrS+5sUjYPktV1XD/2n49+tAjNV/D3GkmGHQAaLo4XyyacgEEw4tJkHQJ23WL5twZFo/BdHfJn6JAzwjbO9jLslUnFH1qwRDY29uNYe10CdsT/KhuTE3fLYDlxlp1n5uJiONL/zBXu2vy4gGq7k2GqZfMx45M6sjEuezISwps6bi3Z+93fW1wP9jLsvU/flLXvTF7+0iQd+/zqyjEAgIkZ6VzfADAZ9szV7TE/74hTu1kRZbK8wvd0uNbNX+aLvX3XA00BiKFnpPmpLGSAFB5Er9agR9qTXJlaG8TzfHyzTngrS/x5QHhD53St2dttsDRelk5ULeHh4dyDlcTgwYMBAKdOnbpvfT8/P9mDFQB0794d9erV+9P6zqA3VwRBEARBEATxCKOwWqF4AEp+D6INACgsFGNyNm7c+D+qX1RUhJKSErRu3fpv16WHK4IgCIIgCIIgHhjBwcFwcbH9Ad2FCxeqzLbZbMZHH30ElUqFIUOG/Ec2Zs2ahYqKCrzwwgt/uy49XBEEQRAEQRDEo4zl3teDaOcf5tVXX0V8fDw++eQTNG/e/G/X37RpE7788kv06tULo0aN+tv16eGKIAiCIAiCIIgHRkZGBmrXrl3ldj/44AN8++23GDt2LN59992/XX/nzp0YOnQowsLC8OOPP0KhUPxtG/RwRRAEQRAEQRCPMP+G/7maMWMGPv74Y4waNQqLFy/+2/V3796NAQMGIDQ0FHv27PmPH/5ILZAgCIIgCIIgiP9ZZsyYgQ8//BAvvPACvv/++7/9xmn37t3o168fWrRogb1796Ju3br/sS/0cPUP0yesF0znBXatiGjD5FT1ag0uTxSlSl3c3TlJT5fDRuxusUOUvPbwgO+MOE7CV6/WwKVGDU72tNvw0TAIRvwc9BusJhMra+kiyhWffnkhkyF125WM5A4bWV1J9togGNEwrg6CV01A2tiF6B0zBF3GjWXtlO/xY3XWltSHuyBK/Jqt4h/Rjk7PgV6tgalbGExPhGFZiD9Cxoi23RSurA2DYMSkZh2Z3eZHXdFsmk3iV/q+8+DPrL2KrhdgKSlBveWiVG5Mux4AgKZz4pzK8F6eqIPh51XcfKxvoYbKxxuuCiUMghFdR49B86OuqFYk/iYlvUKM5n3tJVE++tJBLwROESVYuw99kfkvtVOZpKuzPAnlvQ0bNDxVbHNxJCo8q7H8sicjcW2MFlZtO07WV5L/tseUx0cPNwhGHI9cj4wIUdbZss+nUj8yIspx5OvFCD4w0qnkvoRerYF+wAikdVzN2tCrNdiVnQBz1w6sXO9ez7HPke+KUsf5UaXY1qo+G4+dJ/bJ2pA+1+2TAQDI7r6cm0/7/QIAJk83WI6n4a2sk1jVXOxf8KREFD8fDYNghO+zJ/FMrdM2v4I7cu3Yyzirv4hjdQAgZ1hT1vbVcVqZH3q1BsrgABxculQc32rAbz+ucCpDLFG0Mwjmxzuwc0Cv1sDjohknX18oG+uAIbx0PCLbABBlniX7pgsXWbY19TSs5eUsBEL+DB08YzIBAHVWxSNvpriOrz12l2vHIBjxpl80nKEIbw24KJncsl6tQfkeP+aDVL9PWC/4fByHr3LjZX2XPlc/2BgB78TDIBixpVAMl5AxTy5VDgDTr4RC5eeL8c06QXhTx9lpcKKCGyvpDAgalooeg8W/hzfl5jN/m/RLw7ygFjJ/0rv8AP+dL7H0428vhMfmRBRskkuDGwQjgkemIHBKAhRhoVz/Fr2wGHq1BjmfaZEWZuLq1fxJlA8v3Bwqs6dXa9B82QS0ThFvvV+HanClnZLb5we++87Wz77pnI2U9i7QqzW4OlYrnuM7kvn1Et1W/H5v3cS06oL86Too2rdg+0gKSRH4Zjx3TuWLkQLQ6lPxn8q3nU9m5ecGtQQAXBsjrqf0JTbZbreDTdCz6VnWJ6vJBGX9egBse04R3hrNj7rC5WAq/H+6BuvRU2xM5ucdgfCWjpW378/b/ra1ws6JZbVQ+K4OZX0jEdPtWZjPZbL6kk2DYMSV8VrZfux+qgR6tYZJf9vXudNPfr7q1RqUelmREVHOzu0jXy+G96dx8J0Rh+AXjkHhWk0s90wUd8ao/JtxtgalXUTo/FjcsthCICjCW8Oqaydr0/F+1raaO/tc2Xm+pVVD7pyUbHwasx4F74vjk97lB+y+7YacDW3R7vNYAOLZMmvsSrjtSHZmlrs35GxoiymZp/Fbz1YwCEZc/qWFrLy9f43n2+TbfT4Wz9pF/Z9yWhYALKWuLLSH/ThI3wcbRwMAu+94fxIHz7W2kBf2vkpjUfizPwyCEf7vyiXR7aXZr/4awo27S7cCp/ehnE+0+CJQ3F8mMcIF/LeOldkFgM+vBQMAtqSflLVNVC0zZ87Ehx9+iOHDh2P58uWcUIY9Fy5cwNmzZ3H79m0ufc+ePejfvz+aN2+Offv2oV69ev8vf+jPAgmCIAiCIAjiUeZ/NIjwggULMH36dPj6+qJ79+5Yt24dl9+4cWP06CH+Mv7dd9/FDz/8gP3796Nr164AgKNHj+Lpp5+G1WrFqFGjsGvXLlkbw4YN+1s+0cMVQRAEQRAEQRD/cyQni29d8/Pzncqmd+nShT1cOePUqVMoKxPfKL/22mtOy/zdhyv6s0CCIAiCIAiCeJSxWh/cVxWycuVKWK3WSr8OHDggKyu9tQKAkSNH3re+9T/wlx6uCIIgCIIgCIIgqgD6s0CCIAiCIAiCeIRRWMWvB9HOvx16c0UQBEEQBEEQBFEF0JsrgiAIgiAIgniU+Qf+H6rSdv7lKKz/yX9qEfeluLgYnp6e6Bb4ChTZ5/8zIwoFvwD3eQPdCistrqzjCfPNIgBA3sY2aDboJBfzwpGiodHwXJsARXhrXG9dC0mfLAIgxnKyuLrAdc9RZM3WooM2HUWdruHW7gDU7JUNACh4Xwe/rddgPn0OANA6xQWnwiwYerYQa1t4szYMghELbvpgW6v6lfo9MO0yNrdsxHw1CEb0bt4Zu84dYmXGFWqxxFuMyVL9YGNsDTaI/YpsA8PW1WKMkd0B8LjnnyMGwYiVxY2wvoWaS3M2NlL6tvPJ6N9WD/O16yy97Zex8FpsxM1+bfHYmwk4eCEIdT5wgzXlNItr0XniONTYIsa5yfwqGkGv8zE4JNrOiYWi8w3UXlUbNX4Wy0vjlz9dh7RxYgwkyz4fuHQrQN/TNzCpbh4AcHFMKptfS5f2cDkoxtES3tRBPTuO8+HDK60wveEZrn768nDk9PoeANBl7Fi4b0+CsnkQzOcyOdvCllaoXb2MrQdHLr+sQ6NvxfYqeobDdc9RuLRugXNveCB4ZAoMghGPTRiL6r/YYjcFr5mAgLfksWf+KANmBWhk6dJasY+FYj8uF0y3MNK3k8w3+zpBayeg/gkg8fNFXH0AuP6iFvWW2+I36V4fj7ivFrMyORvawv+5E2id4oI5TY9VOg+O7QLAW1knWZwUAMj8OhqN44G4uYvZWj7c9mfo1Rq8m3UCnwa2heJ3L1RTmlHe5aLTWDaS/8rGjbAzdQ/LVwYHwJyRDWX9ejBfu87vs4BoWMrKWNrK/MNOx8xZXzSfxqLx/DhcmqRD4/lxKBkcjVo/JlRax6VGDVgc4ooAQO7HWvhNFeNgbS2tiSdrFEOpcHE6nhMyMvH+ihHw/kRcW4Xv6uD9aZxs/iWkvjv6fr+5ss9/LTMNc4Na3vessG/34is6NPkmTlbGfq0CYvwr74GnubRl+Ycx2rcTS1O4ueH7jH3wVtWEXq1B8fPRqL1efpZI9aV5+CQnCZPemYxaPyYga217BA5NvW8fJQo2tYbPM6fuW9ZZPfs0lbcXoFKyeGOV9d8ZBsGITicGcGe4QqXi4jX+2R4DgPPv6OD1WRwyV7dncQRLn4mCxybxjL32khb1v7edM/Z2pTEEwNU3CEZ0fHU8PE/fgPn0Oaf7z963y7E6pE61xbAz7fWFqnv+X+rD31mfAKCsXRtWPzUsJ86ytAuv69D0K7EftQ41QEnnqzI76YsjoSpSIuBteewna0cNFEeMiD5egYR2rlA1aQzTxUtc+/Z+lPeOwMVoVzSbHodrY7So/108V/Z+fbj8SwvcvFAbIeOTuHYkhC2toO5/htXrOmYMymsr2V5QhjbHzt9+hL7fcCBJHkvq1qBo1Nxo2zeXf2mBpiMvwXzjxn39qgxpvqX7lfTziqWkpNLyYSmDsD9kA+qGZKOoqAi1a9e+bxv/DaSfWbtop0Klcv/H2zOZynAw/uOHdjyqAnpzRRAEQRAEQRCPMAqL+PUg2vm3Q/9zRRAEQRAEQRAEUQXQmyuCIAiCIAiCeJSh/7mqMujNFUEQBEEQBEEQRBVAb64IgiAIgiAI4lHGeu/rQbTzL4feXBEEQRAEQRAEQVQB9HD1D2LOysWVCVouzV462dnnD7NFqWrDeQcJ3W6F+DwnkV22Pabg6koy7Irw1mg2SJQkdZSLtW/Pc60oT2o9egohY9OgV2ugV2tw/jF3uO45iqvjtHAxAec2NRfLDytidX1mxcFUW5TrXJZ/GDVV5TAIRoyofZW14/FHQwDgZNgHpV1k+cKWVlCoVEyGvXfMEOazpaQEerUG2jfGI+ax/ljibZOLvdPlkq1f92TYATAJX/s+SujVGibDbhCMnJysws1NVtYgGPGUVwTM164jY14USz/xxkJYbt9G/JeLYWwPeMZkYveva1m+Xq1BjS2JzIeg1xM4f+bfaMY+N50Thyb90vD1nPkwCEYoQwLZ+Pl+GAe9WoPro7Qo/MMHysaNsD20LuenyksNvVqDC1N03PxOyTwNACjsWp2VlWTYJT//KAMSr/tx68MgGJkMu16tgft2USb94hPiPA49awsDoO5/xibDvs9bNu6p7y1kaa57jsIgGGE5dRbZPZexMpIMu8LNDdOvhCJj2CKWV/C+Dq9lpiHwx/GYFaCR7RPJb3vZ3N7NOwMAXDw80HJJLJMUt697e0AU/H8Zi6fOXINerUHm0EW41a/Yqfxu8seLkLm6Pcr7RECv1qDWhgS2NgyCEemPrQIA/LI/kqvvbE87Svzay7BnzdYi6NUExM1dzNI8emWz8h+PHgkA2N1iB8q7iPun7ZexUIYEAgB0r4l7RK/W4O5vzTgZ9pz17WDOyBb9sFhlY2Yvww4AI307wdK5vWws7MnZ0BZ6tQYmD/Fakq6Om7u40rMNADomXOfS7vaKAADULBDL9g7uiEXBQWh+8EWunkEwYkOBKLe+NCIMK8Z8w/K8P41j8+NsDs0Z2bjzdCSX9mcy1zHdB+HW7gAAQK8a5U7rSHtMyrN0Ecfs+NsLYX68A8tTNg9ChdXMxnhLYRJyNrSFNdWTs5v+fThG31uv0hprEWfGaN9O6B0zBAbBiPg5tvUhlbP3S5qH9/wjmSS+azWTbB7yNraBM87o1nBlS++NgeRPWKqFa6+ie5hsXZsKz8NaeofZkc6oyxN1eGzCWGSvE8vmfmy7J9pLmV+6Lkoy3xgp5iubNuHy7f27NSias+Hi4QHXA03h9Zk4DpKM+rtZJ5gMu0EwosQfCEu1sGv7M9D47kK2v5turcaVqbkxgcmw27erV2vQ/uNYbizLnyjmrlXd8532wfG+bBCMWFbUhPngDMlG/SPi/WDn2T+wbsdyrrwkww4AJZ2vOrUVMj4JAW/HI+dTLTqfKAMAdqZkDBX7ntDOFdfGaJk8urWjbc3Zz7vbrmQ0my7u0aMf2s5xx32jiBDXXsvFtvFq9PRZuHqK+2xe4mYYBCNyPxLnf37eEaj7n+HWgNuOZLYXSgdGIe1lT3FMtq6W9dMgGFFzI38PbvT0Wew8vR8tU1SVjrGyVYgsTRHemvmgV2uAe2p3Ywo6Mhn2gvd1rF3Jdo9BI9HgyXSn7RD/bujPAgmCIAiCIAjiEUZhtULxAMQmHkQb/23ozRVBEARBEARBEEQVQG+uCIIgCIIgCOJRhqTYqwx6c0UQBEEQBEEQBFEF0JsrgiAIgiAIgniUsYKJdfzj7fzLoTdXBEEQBEEQBEEQVYDCan0E/vjxAVNcXAxPT090xdNQKVyZZGvWnGgETkmQlb/7WzNU65EHYUsrnIxax8nDSp8/zE7B+LmTYHx3oUxiXbpWBgfAnJHN7Jq6hUG13whYRDngXk8OhTVFlBEW3tLBM8sMj82iTG3/M1cwvs55max082UTELQwB6YLogy0skF9mK9e+9MxyJgXBbdrSvh+GMf6oQhvDevRUyjf4we3nrniWA2JRu114pg0jq+NS9pimS176XS9WoMrE7RouCge0ccrkNDOlY1D8KoJyBixiBuTS5N0uBV9B5mPr0C5tQJPeUVw41r3SD3c6HhdNt7s8z5voFuhUz8AQOXfDDuO/AIA6NNBz2RrAeD6i1q8/+5qLAoOqty+Hde3h6DR+FKYCs+LsuoXOmBO02NcfwDA44+GKH3simx88j7UYf+oLzDwzTdQ68cE2XoAAGXt2th59g/o1RpUdA+D694UpC+NQMjYZK5/jujVGnQ/VYK9rWvJ8q7+GoKUsI3QqzW4NlqL+svinY6XpZMGv21cydmsbFzMXTtAeUDse2CyO7Iiylg9t4NNcDLbCzn6ZZXaccRZG9J3ZasQrDSswHCfjgCAgqk6+Hwch49ykvGBf0Sl9uzb/rM2r28PQb2+6U7bt+fyyzo0+jYOytDm2Pnbj9CrNXCpUQO7MuPu255BMCLfdAu+qprom94bFV0vVOoXAJQ8F41aGxKc9qXgAx18PopzWs8gGPHqhXCkhZkq7auzOo7nimNZg2DEkTILZgbYpMzhogQsZlkd+/HrMnYsCxvgbFz/zK9uw0ZD9XsKl9bxxAAYWq9DTRd3Ni7pK8KQo1923/mWGHGuANN2PYusQYux4KYPtrWqj/Tvw5ET873Mv9cy0zA3qOVfWk8AsDL/MEb6doJBMGKyEIF56mQE7hvFpMedMSjtIja2bML10bGdzK+jMeLxP/DHa1puPAre18FnlvO1AACIbgsknGA2XWrVYtLUzjAIRgSvnoCAt+O5NGf9VoSFsvuVfZkbI7WouzIecFGi8O0onJ60EMuKmmC050VW13H+TU+Ecf2SeDfrBD4NbMullfeJgNuOZADA2PRsTFs5DKdfFsNLdB0zBvm9XdBiRia7Dxa+p4P3J3Gy9ed4nv7ZHnDMaxxfG6ua/YGAn8aj3gkFGv8uwJSTB4NgRMSxQew8+TN7ANi8SOV2nj+GGK8O7J4s8VFOMiLdXNFl3Fi4/8rvK2ftOOaFzo+F96dxuPxLC2BPPaS+vxD+u15CyOijrIw0Fo51AaDlklj4fnif9eZg434+nX9Hx6T5gb+wlv8Cku2bw7Woszpeln/xNR2qX7awUDfXX9TiWgcL/CcexgH8gqKiItSuXfv/5cM/gfQz6xPt34FK6f6Pt2cyl+H31M8e2vGoCujNFUEQBEEQBEEQRBVA/3NFEARBEARBEI8yVjwgtcB/von/NvTmiiAIgiAIgiAIogqgN1cEQRAEQRAE8ShDca6qjIfuzdWMGTOgUCgq/XJ1dQUAWK1WrFmzBs899xyCgoJQo0YN+Pr64qmnnkJiYqJT2xaLBXPnzkWLFi3g7u4OHx8fTJkyBaWlpQ+yiwRBEARBEARB/At56N5cDRgwAEFBQbL0EydOYPbs2XjyyScBAOXl5Rg+fDg0Gg2ee+45+Pv748KFC1i8eDG0Wi1WrVqFYcOGcTZee+01zJs3D/3798eUKVOQlpaGefPmITU1FXv37oWLy0P3rEkQBEEQBEEQxP8ID93DVdu2bdG2bVtZ+rhx4wAAo0ePBgCoVCocOHAAXbp04cqNGTMGoaGhmDJlCoYMGcIemE6fPo358+djwIAB2Lx5Myvv7++PyZMnY8OGDRgyZMg/1S2CIAiCIAiCeDixAFA8oHb+5fxPvKopLS3Fhg0b4O3tjV69egEQH64cH6wAoHHjxujSpQsuX76My5cvs/T169fDarXi1Vdf5cqPGTMGNWrUwJo1a/4x/6UYDIFTEliMBoNgxM7zYhyfai5iHCrl/jponTCUizNUtFN8izc9IAyN58c5jWWR/ZlWtHfwZ67upYllLE4MAOz+dS1r++SrC3FxYDm73tKqIbOds74ds+P3QTx2pOxGzgbxgVeK7fH8WYHriz1lT0Yi+5klSBu3kOu/9egpGAQji3F1x+CPmvm2+EWrmv0h69ut3QHoOfAFZH+mZW01XCTGl/j9w07Mvl6tQcA78ayt7HXid49LFgQOTYVercFTXraYRcHJbgCAjB+aAxBj09iPbUzXgeKHboVQ1vFk7RgEI7qMG8t8MeXksXpSjCuDYET64kgMen0PFgUHsfHRvTYeUCiYrfSlNn8MghH1+qaj1o93WNqpMAvrmz1SjCuDYORiqTSbHoeRvp0QN3cxAMCckY3zP4fyA1rNFb18w2EQjHDdK8Z9CRmbDEX7UOjVGhQNjWZtBq0fD71ag95BOlyZoOViXKWvCEPW2vYAgJSwjVh80wsGwchiXEl9tP/+28aVfF8UCija8/6xmG0HjrFxW+hlFxsusg3Ku1xEyKgU6NUaxPQYzI2DNC4AkDVbXDMVPcNZPCv7NiKODRLH6Uw6hvt0ZPV8PhZj1nzgH8Fsn39bx1yQ2rLvS/dTfGyf8j4R0Ks1uD0gis1tZeNi73Pqe+KeMZ8+B0CMm7IrMw69+gyFXq1ByeBomLqFsTr2e2+Mbyfo1Rrcmu0NTaoY08yRm8PFMbnwmAXByW5O+yLFuJJspy+K5HxPCzPJ2pbqT8k8XWmexKj8zk79nxnQAQbBCEtncV0ZClNYfu8gHRrHi/3p9dQwZleKcaVsaDu/HosdC2WD+rK2DYIRpc9EIWudLcbOvjXL0Pv0Tc6/mr2ysfRmK25cpPV2c7hW5nfmV9Fc/VXNfRD0qrhmt7Wqj8uxOhbjSvLJIBihiGiD+V264fr2EK6trHX8eGGfN/N/pK945vUO7ohz4RVi/MRuKzAt+xgqY2PLJuK4duLt2vch6NUETG94Bm4XinF5oo7l1Tsr3j9yPtXa1sP34TYjCScAAL2aRaJkcDQ6HrmC2bkJnG1l3brss16tQcbwRVz7erUGnU+I9wHpfgcA6ZPcuXoS9Y6LsRC3FSTg9CQx7uPGlk2gV2sQ+m2s7QwJ8hfjK7pWg+r3FNwcYbuHSDjGuAKAA999x8otDQmA9ydxbH7cdiQj+OVEXOsdwsp7fyLul7ZzYrlzyP6749kkrYHKYgoaBCNWNRPjEb7WfRfqr0iCKSfPNgZ2MfMcx0dKt2rbseuyn+uxcumLIxHj1QFFw6JhPXoKrgeasrNSiuvn/msSDIIRubO0aHF4OPKn62yxzDStOF+l9vRqDbw/Fcei0dNn0WiB+FmKceU4FvY+S/Pm+2Eccta34/omfQ9MFtfDgMweXN2ez7zAjWMf3VMAgFOTF7K0nPXtcGaieF24mb/nGAQjVD62PWaf7pdUnaU1jKvD0q/2FNdr9PEKqJr5sDJN5saxGFevZaah3vJ4bO37DYhHj4fuzZUzfvrpJxQXF2Py5MlQKpV/Wr6wsBDVqlVDnTp1WFpycjJcXFwQGRnJlXV3d4dGo0FycnJVu00QBEEQBEEQDz0KqxWKByA28SDa+G/zP/FwtWzZMigUCrz44ot/Wnbnzp1ISkrC8OHD4e5u+82XIAho0KAB3NzcZHW8vLwQFxeHu3fvolq1an/bv6ZNm3LXFssj8M6TIAiCIAiCIAiOh/7h6ty5czh8+DC6desGf3//+5bNyMjA8OHD4eXlhTlz5nB5t2/fdvpgBYA9hN2+ffs/ergiCIIgCIIgiP9ZSIq9ynjoH66WLVsGAHjppZfuWy4nJwfdunWDQqHArl270LBhQy6/Ro0a3P9g2VNWVsbK/CdcuHCBuy4uLoanp+d/ZIsgCIIgCIIgiP9NHmpBC5PJhFWrVqF+/fro379/peVyc3Px+OOP49atW/jtt9/Qpk0bWRm1Wo2rV6+ivLxclnf+/Hk0aNCA3loRBEEQBEEQjx7Sm6sH8fUv56F+uPr1119x6dIlDBs2rNI/6cvNzUXXrl1RVFSE3377De3bt3daLiIiAhaLBUlJSVx6WVkZjEYjwsPDndYjCIIgCIIgCIL4KzzUD1fSnwRKsa0cycvLw+OPP46bN29iz549CAsLq9TW4MGDoVAo8PXXX3Pp3333HW7fvo2hQ4dWmd8SW9JPAgAmZ55lUp3h0ybAIBjR/NAIxHh1AADkJPlAr9ag8bw4eA04DQBw8fAAAHjGZKJ8jx+XBgDmxztAr9ZgyoUOTII8p+IWYroMYGW8BpyGKsCPk1vuf+YKkzHN7LoSQ88WArDJIhsEI/yfPw4A+PhqCwCiZGqTDTZxEACYP3cgqydJx0rXB5csdSoZnz9DB71ag4uv6pDzmRbV9Tn4beNKlm9fx/SEOJdH2v4MRfxxZIxYJJOzPfTtElHCPoj/X7wW309A0/pFAICaGxPgiF6tQUaE+AZz7juL4KJphaG1rjG7s3MTYE7PYuV3njnI8trMjYX7r0m4uLUl/He9BKuuncz3Ny+2R8j4JCgh/nam88RxMAhG1Poxgf3GxiAYkdPXJvkr1S8ZWlNmT2q7YKqOu5bm1L6+Y13Vfk9OXnbniX2wmkzMjkEwYnNhAqyp4rq7ave7icAp4thZbt9m8veAOI8ho1IQODSVpXWonsva7X/mCpMLBwBV0yZQRLTh1olerQGsVlhTT0Ov1sikpO37FDZjgi0j6SRXLn1UXejVGuheGy+TObY0KodBMOLiWPHPfs1n0m1j+b4O9fqmc3LIUnsD0y6jT6d+AIBuw0ZDr9bA6/M4Vq7D0cHMR7iI6qX2MvWAKOdsEIyo8XOi071g30/7th3LNpkrykDv3rEWBsGIuLmLodqXwso6s+22IxnG9oC5uFiWV2d1PFzatkBOv6XIiCjn6nsers+VZTLkE5JQ3scWNuDiKzpu7dn3ZU5QKKurbC4PBm8QjBCiSzj7li7toVdrkLdRXCPXWrvL+me5fRuXtGJ/pJAOEp1PlMF85QoMghFZa9uj+tYkFjLi69w4nH9Hx+x5bEpE4BAjYtr3ZGmv1s0FIttwZ9hvw3h5dQA4/7YOiZ/bzqHMNeJmeVW/y2k/9WoNFGGhaLQwTia9rVdrYKrpCtN5gclq508X/czsupLZAAB0K+RsK+vXg6W0lF3r1Rp0dHfh6wBQ2P1CMnzaBPy2cSUux+qQUGZm9RwZ+PMhNFpgC/nhsTlRvCe8G8/6EPLSUSiDA7i+WivuotaPCTjU1h1tq7lzts03bsAgGDE6PQdXtjV3emYdaivOuWdMJhRh4hrK7rmM2TcIRpTHiGtQOque8orAsqImnB/en8QB0ffChmTm4POcRFgr7gIA6qyKZ+NT1pdXDb78sg6OMGn8OfK1UGe17TyUbDadI0qPS2EZDIKR9cW+3JUJWmbffl3Yr78xBR1Z+5Pq5nEhVext7buj5OrZry9F/HFWfn/oL+xzyHjxF8yea8TzvaLrBQS+6TyERr0Ol9Fs0EmkjVto24vGMwCA0oFRrF3H9e14Fjuj7+kb7LMkZ6/yb4YacR6cHxJZEWXImq3Fz0G/cW0o4o6jw8wJyFgg+lN99W2ZT+ldfmDX3gNPs3APgCjtbioQ91ho/FCo/HzF9ipuYYm3bd2v8TvA5ixoeCrSl4UjoZ0rdsT/Cr1agxsjtZy/c4NaAgDe9JOvn4cWenNVZTy0/3MlCAJ2796NyMhIp3/mV1JSgscffxy5ubmYNGkSzp07h3PnznFlevTogcaNGwMA2rRpg4kTJ+Lbb7/FgAEDEBMTg7S0NMybNw9dunShAMIEQRAEQRAEQfy/eGgfrlauXAmz2VypkMW1a9eQk5MDAJg/f77TMvv372cPVwDw9ddfw8/PD0uXLsWOHTvQoEEDTJo0CTNnzoSLy0P9Eo8gCIIgCIIg/hksABQPqJ1/OQ/tw9V7772H9957r9J8Pz8/WP/mq0WlUokpU6ZgypQp/1/3CIIgCIIgCIIgOB7ahyuCIAiCIAiCIP55FFYrFA/g/6EeRBv/behv4QiCIAiCIAiCIKoAergiCIIgCIIgCIKoAujh6h/GIBgxL6iFKP89Lwr1vxelPQPH5LIyvzw/hyuvV2tgKS1lEqB5OQ0BgJPf3bt2OQDgVJiF1Rv33ESYM7IBAMKborTsNV0T6NUa5M7SYmX+YWxpJdrSqzWITH0WI2pfZfKijtLOkjwuAFTfaosPZhCMaLAkXiaNLtm1/5zxbRS7Thu7EABw/K2F8H9HlH5tnTBUlFBep8H5n0OZLdXvKZxcrzQWPZ8dyUn56tUamDNzuDE/+9IiVNfnwNpRA0ccZWE7ullgMZ5htsJSLZg8YRLLt+zz4cZFPVuUjL1zpxpCRh+FIu64zOaJDlZRArZ1bXEcFyzhxsred8cx2xG3DTmfaoHotpifdwQr8w+z/vp8HMfKt05xgcrbCwDQJ7IPAODaS1qujwbBiDuNrZXKtEvXA71FqVhVk8YIfEOU5zU/3oHZUDVtwtn1nRHH2Wj/SSw+8I9gZba0aogLE0Sp+5zPtDBduIjPNn7P9VsZEggAUIY2F+fBTkpa2SqE87PB0niufQCw6trBIBiZv7V+TODK6NUaZPdYDr1aA59nTnH9NQhGNJt3khuPO/1s0sybWzbCjsNbxTH5PUU2dg2fOoc7/SKhV2uQP9W2vgEwuegnRoxm5SOMZpn/yuAAKIP80aeDHi61bDLu99tL9tfpy8NZ+ex1fJ5BMCJ9eTgqutvk8AelXWR5u3ZvcCrDXdztFudD/nQdDIIRuR9pkd9TidsDxL42+SaOG2eJDh+Jkvl9ovoCAMznMnF7QBQMghEubW1hHbK/0HL1XQ6Kkv7V/xDHoXa+SeYbAGR8E838e/z007i4VZQ6tj+nAoemctLWr/rp4PVZHC5ubYn0JeLcZK3TwHzpMufD+xtW89Lv9+Sm7WlwsoLrb9Aw0e/toXWd+gsA1pTTYv9bi/eAxyaMBQCU94lAzpN80HrfD/l95TinofNjYRCMMF+77lTeuqInH6txd06i2Jd9Pjg6U5SQb5xUjI+62cJ1pC+NgCK8NVRNxfvExpY2afPCd20S9gbBCOEtUYI/f5qO3WfsqUx+W1qry0L8cSz8RyZF7sjFV8T1Zk05zdmRxsFtZzIMghF1j9Rjdez9ZeOVcIKlve3P709pjt23J7GzBwAafcuPfcO4OgCAksHRCJySIAs5IJE1W8ud7Xq1Bntb14LCtRr0ag3KGtfg2u42fDQaLoqX7XMm77+6PTq+Oh75UaWctHnBptYIS7XIyrepVgy9WoOK7mHQqzXoeqof1w/JRo9BIwEArgeaQuFajeW51KiB/meuABBDGjjWrTe2nLVpEIzIm6nFhIxMAKJMv5Tn6NeGEtue4M4aFyULnbK7r136vfZMOXkoDjFXeg4GvhnPtSfRcHE8FBWiEkNJZ/FnGvswKY51fvtxBcamZ8MgGFH62BVmx3vgaZhy8wEAsc06cT5IdS/cO3dCRh8FAMQ81h8AUHelTc7e7WCTSiXoH2pIir3KoIcrgiAIgiAIgiCIKoAELQiCIAiCIAjiUcZiBRQP4K2Shd5cEQRBEARBEARBEH8BenNFEARBEARBEI8yD+r/oeh/rgiCIAiCIAiCIIi/Ar25IgiCIAiCIIhHmgel5EdvrgiCIAiCIAiCIIi/AD1c/YP0D2nDXQdPTmSfd579g8V3allNjIVRNDQaerUGs3PFuBrp34dDr9YgZFwyAOCtrJMsbkVCmRg758NsMQ5P4L5RyH3F9tuAk6+JMaU81ySg7+kbODdqEUb6dsKUzNOsTN0+GQg+MBJ5H4rxTC7H6jh/cz7l45E4xraxv7aPOdFyaaytzy8nsrJSmW7DRsPFXYxN4zXgNELjh0L9YzV09M5mZUp3B8jGU6/WQHHEKPPHIBiR84mWK2cQjFBdLubKBia7czFYup8qQZuFL7N8g2BESnsXuO1KRtHOIBgEI25s8ObijQBA9hda+D9/nOuXQTBCFeAnG6PWKS5cm310T7HrnM+0UNavJ4vpkf7CIiDhBCY164iRvp1kY+6iaYU5TY/BVHgeBsGIHUk7YBCMODpzkWy8/KbGwxHHOFsSpouXmC/K/cfY+jNduIjzP4dCr9ZA5ecL74SaAMDiDDnGiNlYGI8zujWindsKXB2nhcbNjWtv54HNyP1Ii6I5FTAIRsSEPs58Np9JR/keP1b21rNR3BgAQNYEcVxrHWrgNJ5I/SN1Zf2zn5td5w6hYFNrNhaOcdwAPvaVY55UPm38QpZ3cWtLVD8oxkf6fdUyKFuFwO1gEyRrlJz/BsEIc0Y2zJk52HHMAEtJCbc+7Pvs2De9WoMbI7UIefEo8z1giJHFjpHSQl48Cte9Yqw4ZZA/lk/vx+1B+/IS1nJbTBtAjLu0tbQm/D6IR/ArCajxs3wvP39WYGkNF4lrbUfidmazxs+J6DpmDHbt3sDaCngrnpsbZf16UNbxZOvowHffQeHmJostFPxKAvOvWo88HI9cDwBQ+flyfjt+zpqtRZN+aQgZJ8ZJChxilJWZFaBB/nQdNhTEoVczcd6luF4AUL7HD247k2X9rwzH2EemutUBANV/SWJ9DHo9gesfACjCW7O60ccruDXr/Wmc0xg/0rXrnqNcekz7ngAAl24FrA3r0VMw5eTBIBjROsUFIWOTccvPA6YLYhw030QPVtb70zju7FN/EYe7+nBUvyL/rXPZk7a9IvX58svi/STkxaMwlpcj/TsxzljDRfFOx6/JN2L/cmdpOTs3XhBjSV0ZL36//pYvtzYKNrWW2ZIQ3tIxW/b+Tck8DfPpczB37cCVz9nQFnq1Bmv8DgAQ4+fZn/EA8Piol6DybwZAjLskxeyz79PuvCTc7RUBZZmFG0O3Y9myshJ9Oj6NoPkm1Nwottmn49PsnPZ55hRS2ttiAUoM9+kIAHDdK/4ccKD1Vq49Ftdp40oYBCMqul7A7rwklme5fRvj65wHYIsXp2zYEKPO5YnrtqCQtalXa9BsWjwWBQfJ/BDe4H92qKO8jbInIzlfDIIRV8dEYvwuA4tp5XjvMwhGBE9KhF6tQfEQW1w7AMhYGQZL5/bsWopbJ+G3rYJ9rugZDuUt8TxTtA+VjbVercHAmmKMMIVKBZd2Lbl8KRabXq3B4rzDXF7TfmmiP99E4/OcRBZn074v5V3E/ZT5dfT/VrwrinNVZdDDFUEQBEEQBEEQRBVA/3NFEARBEARBEI8yFiseyP9DUZwrgiAIgiAIgiAI4q9Ab64IgiAIgiAI4lHGahG/HkQ7/3LozRVBEARBEARBEEQVQA9XBEEQBEEQBEEQVQA9XP3D6NUaZH4Vza4NghE3R2iZxGrgEJvMq+daUZp37PuvAgByYr7nbHWrbmb1Zkb2hPCWDtMDwmAQjKidWB3+z51A6xQX1q7EwevBAESZ3zl5ek4atKXXRTSbLkruNloYx3wcld8Z/u/yMt6O8rEBe1/k0iS7vjPiYOoWVmld1e8psJSVsTreA0+j+i9JWOJta8+jV7bjUMrsSTa1b4yH/3vxnA+BG8bDnCHaSF8YCb1ag6yIMla/7MlIvFkvCz6z4jhp8psjRAnWBM0mRL85HvW/i4f53ivswGRRqjZj2CImMatXa+BSqxbGFWqR8UltTrL35ggt5jQ9hqJh0Yg2PgMAMOXms3r+78TDfO068+n826KcbZuvbVL2Enkf6lg9i/GMbFwl/1X+zaB7fTwux+qYzLsksd/8qCvOv61jddIXy6XG7SWkQ146ivRFvMRyzM5UJG5tC4NgRJN7krRSnuTf0fKaLN13ZhwaLBHnRpJYVtbxFGXiP4iHdUUjUX79xg3OD7eeuWwca/5kC2EgpQUNTwUAlHS+ioCfxuPqONueMghGXOvI27Nf87d2B0DfbziTiwcAVYAfACBjfhSz88fCpU6l0AemXeauF+Ydxp2nI9GkXxospaUAgIipE2A+k46zQmNceF0ns6Hyb8ZJekvfTbn5XJ/1ag3CUi2cH7/MnM3VAQBzZg4GpYnyv/YS8q0WxsKcmYO3Z60SpZWfCENMqy7IGdaU2Sh9RpQcd2ndAgbBiOLnbefVouAgtk6ujtNCeFMHvZdNDnl9CzXnS/qycMS07cZCRBgEI9x2JKPrmDGcv4Xv6pgN87XrMN8s4tbQ7hxRjll4QweXti24feUoMy3tKSnPfkwNghGBb8rDETjD98M4POejw8UJ4QCAy2E26Wu3nrlQNmwok+W2R0q7/iIfFuKtrJP47ccVTiWyAVH2Oeax/vBOqInd22xrMqGdK25ZbGeWI/btOPoAAOZL/DrVqzVAdFtW5lSYBZdf1sFjk21/5UeVwiAY0XzFBBgEI3oHd+TO2v0rvmeS+5JUvV6tgfuvSdB8FsuuCza1httN8dycmJGOt/2jkNPnO9aO/dnzSY4tDAIA+L0fz/Wj7g9iew0Xi98VR4zoMWgkG0+fZ045HYOMeVFQfyHe0xbf9ELWnGjmX88aomy38sAxro7/cyew/XwK62/bYwro1RpoUm1zVs1wFKacPNs4p2fhxsh7cxHZBoXvivu92u5kqH5PQcCe0bayN27I5MklTDl5QNJJ9D19A3q1BmlTmsAR+/Vtb+e7fJtcuF6tgXbKeO7afg6dyfjbs/P4b3iulnh+WnXt/lLoAfWXcVxf5ga1xNAvtsvabbAkHguCQ2S+ONsXtdclQNWkMfRqDZTNg+C9RQmXQ6msjBSiRmLfmmXss+ueo8gdUA+h8UOxe8daXB+lxdWx/H6R7LjU9IBL8W0uT1rjADB+cKxsvxsEI2rmueBt/yjb2tk6VjYuQa8mQK/WYEv6SVneQwlJsVcZ9HBFEARBEARBEARRBZCgBUEQBEEQBEE8ypAUe5VBb64IgiAIgiAIgiCqAHpzRRAEQRAEQRCPMg/q/6Hof64IgiAIgiAIgiCIvwK9uSIIgiAIgiCIRxkrHtCbq3++if82Cqv1EXg/94ApLi6Gp6cnuuJpqBSunJRp/nQd0sYtBGAnJbzXF/tabQMAdD3Vj8lQO8qfOsqV2ssC69UaYJ830K3wvr5lrOqA4BHH2LWlc3t4flKAm9N8odxvS48wmpGsUXLtuNSqBUtJCSuzoSAOdZU1OJ84FArAapX1xSAY0WPwKPz24wpZXxz766yvABDTfRDMZ9JlTTqrAwD6U8UwtK4Ng2CEv2E0lFerIXPoIpb/eU4i3vaPYnZKn4niJIrNj3fgxqcy3xxlmiuTsM1YEIXgiYn3rZtQZsaQHbEInpSIu70iUG23TXr2+igt6q3gJaYbxtXB9ZH1YU7PYmmXJuvQeF4c57e9X1K7xbsCUbu3rZ5CpcLu/KMAgPYfxyJ16sI/leP9K3yUk4wP/CPEedj9EkJePCorI1vXdtwcrkXi54vQakEsfGbFyeq2TnHB/u+jcKO9CSFj7aR6I9sASXI5XGfjf781+cTJUmya2x31lsc7LVOwqTWThr7+ohbJHy8CgEr74wxnssQSo87lYUXzZn9qK2udGOZBwu1gE5R3ucjVKxoWDc81YvgHdUItCNElXH768nCEvHgUwpZWOBm17i+Nj2O6tM4BoNahBtgUuLfy8wvAtZe0+Oa9BZgZ0IEbh/Nv6+D1uXy+JRThrWE9Ko57Wd9IuG9PYnbzZmrRbBq/VxTtQ2FNPQ1ADLGgdruJQ23dK7XvrH/S91vPRuG3ufPR31se2kDiwhQdzLoi+L1yE6bC83gr6yS+CGzjtGzJ4Gh4nivmQi448wGo/HyR9r392JbuDsDhtj9zZ+JvUU1hKS1F5lfRyHpuMQCg+9AX2Vnn7Oyu7Jy+/LIOjb4V58jULQyqfSmsTHmfCLjtSIaybl0mR/5na6ey/tqPv3bKeNReL65ht4NNsC14d6VjsjjvMPxda0L32njU+jGBrRMAyP5Mi4B34uHi4cHCKTijYKoOZ2JtZ+H8vCMYM/E1tt5aLYqFz0dxyPlEC//3REn5BTd98OsLXWFNPonLsTou5EllvjrmVfQMx+8rv//L58f95swgGNHhowlouCgeyuZBMJ/LtFWObAPD1tXQqzUYlHYRoz0vVmqLzfu9Pklz1GnSOHhsTmRlOk8chxpbbPfSyvyyZ0OBGBZB4VoN1oq73JwHr56AgLf50Ct6tYbVsbdt1bWDIu44Z/tOv0hU35p03/bv5+v97k+V8dO5Y6gbko2ioiLUrl37L9V5kEg/s3ZvOg4ql2r/eHsmy13svbDkoR2PqoDeXBEEQRAEQRDEowz9z1WVQf9zRRAEQRAEQRAEUQXQmyuCIAiCIAiCeJSxWABYHlA7/27ozRVBEARBEARBEEQVQA9XBEEQBEEQBEEQVQD9WSBBEARBEARBPMqQoEWVQW+uCIIgCIIgCIIgqgB6uHoA2MdCSBvHxwu6NFmHfa22IWj/KOjVGrj1zBXreLVnMRwMghGZX0XLbEUbn+Eb6laI8j4RrI701f2ULTaVFONKsu1yKBXpW0Og3H8MWetE25mr2yNZo2Rlur40BgCw69whAEDxrkAAYDElKsVqRclz0U5jQfz24wo8drI/AKDziTLo1RqovL0AiLHApL4Kb9rakOJK6NUapzGuHNGrNYgwmgEAr9fLZmkho1IQ+CYfJ0Pj5obcj7Qs7fC8JZytu+/cQNaX0Sx/VH5nZK1tjztPR7L+dXxlHCvfOmEo9GoNGsfXRtHQaJlv2f2XMH8c42a0+yIWerUG0e5KZA9cglu7A1iMK2UdTwBAvRXxXEwsALiiu8liXN0eEAWDYGQxruzjgejVGhQ/z6+n2r2zOHtWkwl6tQbNl0+A6k7lv2WS6qwtOFJpnv3ncV++wtrN6fU9lLVrs3WqbBXC+WQf90v6Xq3Ugpgeg3Fm4kLOtvQ1p+kxNFwUz8W4Mj/eAUg6iZxPxPn9MDsFF7e25OrbtwkAhe/qoFdrUP1gYxgEI66PEuv+3saDi3EFAEU7g5gtKcaVQTAi+WMxjpr/1rGcbcmWvQ1VgB9Lk+Yo68toDD1byMrcHK5FQUU9GAQjgtaPl423PfYxrgCgvMtFAMDHV1uwNCnGFQCs8D3E2jYIRmR9GY2WU8S15Lm2FvRqDSp6hnNzYh/3xf67fXrwxERkrBJjVpV0voqPr7aoNEaTQTCi/vfxmBnQQezD76NYmVOv2Ob77m/NIGxpxbUrxbjKn66Dz3vpnP3a2XwbAGBNPY07T0cif5oOWRFlmNrgrNP1ahCMyP+pDb7OtcXYksZg4y1xL9b8KZHFuMpex4+JRNM5cahVvRymwvPImBdVaYwrlX8z1PoxAbt2ruN8MQhGLMs/zK7bJj2PXs34uFr2bTaeF4este25+fLolc1d7302DBkz2sLaUYOg1xPQ/NAI6NUaLp6f4xzp1Ro8f1bg2nou5wkAQKNvbbGOVPtSkDVby67ddiQD0W2R8XYLmV37sbaP/Wifr1dr4L/rJVZXGRwAvVqD2usTUPiueI/YFrwb++6IsRm/yo1n4yYxvlkn6NUa3HhGjGMlxbgCgIB3xD1tKS2VrWeDYET6snAAYDGuLtw7PyY168hiXAFA16eOAfu84f+eaK/nsyOxrVV9WJPFGHuNFsbhbq8I1o/o4xUAgKy17QEALu7usrUDAK57+HiA9r7VOtRA1ld7nM1hw0Wif1yMKwBIOsnWyGjPi7htuQtlg/pQBgdw9yl7GhpLubnz2JwIVdMmLK3GlkRZncpsSdRV1sATJ0tZjKsReY8x3wM3FKN1igu7ltp9zkcn2nNRosX3E2AQjLIYVwBQfWuS03FxnHcJFw8P5mvx87afZ+z9V/k34+oo69fjPvcPcb7fHzqkN1cP4utfDj1cEQRBEARBEARBVAH0P1cEQRAEQRAE8ShjsQJ4AG+VLPTmiiAIgiAIgiAIgvgL0JsrgiAIgiAIgniEsVotsFr/+QC/D6KN/zb05oogCIIgCIIgCKIKoDdXBEEQBEEQBPEoY7U+mP+HIrVAoqpxlHw2viNKu4aoL/ESoA6LL+j1BJl0aYJmE7O1uVCUVXbbkQzs82bpzZdPwPZ3ugEAzv8cityPRRnoqHcmMDtN54gyw5J8c9DwVK5tt53JzJ5BMKJ2b1Gi2V5+1R57H4v8XeB6oKlsDPRqDarrc5D1ZTQOtRXlZ02F5wEA7XqeBQCkL4zEnSYWro697fezjbL2HH2IeyuK81MZHMDyg1dN4Or4fRDP+Whvq7o+B8FrigEAIasmQIguQeDQVFT/xSbnW/OnRPbZa8BpAMAlbTESZi/mbF0dp+X60nzZBHyekyi2qVCgyddxaH7UFUuL1ACA6yUerP656S0RmOwOuChZmkutWlw/NhcmoMbPiU5lsyUf4ucslo2bM2ltv6nxqLciXsxzUcLaUeO0zlCfjlxdKe9yrI4b/0YLeElrc3ExHpswlsnrS5LC5b0jOPt6tQZ3+kXCo+A2zKfPAQBqHWrA8hz3lX1fJWlp//dEeebpAWFo0i+NlfffMUY2Ft6fin7e6XIJrROGot6KeDhDr9bAM4aXMy6YagslAAAhsbY1srrgCJJnLeLqGwQjTNm5Nh/2ecMgGBH4RgLWP9cTf5SJyXVWx2Nva1EWPXCKuN9dWrfAXX24TYo5um2l8sYAMLXB2UrzJBt9dE8hc8hi7Dy9H8qWwfDYlIjb/aMgdHIFAPRIexKItEkL69UaLtyA8Jat/wWbWiN4xDHWz0Nt3RE6P5aVLR0YBQAYmHYZUy+3YX5krOqAoGGp3PptftQVVm07VOuRh5NR65zOuUvbIlzR3QQA5G0U7dVdGY87Bn9mK2+meAYWPG2B78w4fJSTDL1ag65jxnB9kr6/Evo7WlarwY2VXq3BoJpFsjEMuHeGxvQYzI0rAHjGZOLqWC2CJydi+/kUWb5BMMKUk8fsO4ZPGO3biV037ZcGa8Vdrr59iAUACByaitHpOej5zAuycubHO8CcloHAN+Ox56eVou+z7sr6Y8+Vbc1hEIxY30LNnRXFA2y/o22+zHamBr4pnhu64/fsJpxgkuf2aD6N5fpsEIxQdc8HAJT1jUT4BxPg4u6OnN7fszrmjGxRajsslO1VAOhWXQy90X/962zccta349rzffYksubIw2NI9InqK47H5nHML6ltycem/dKg3K+GQTAi70MdG4+FXglAt0Jmq7Crbd1Ifau2OxkFH4h7ZOvyLuJYDU3F5zmJ2JWdgMAN46FXazg5ensmZ54Vz9aXRRsdPAucnoH254AUZsTeD8drx7Nbr9agv3ckzFevwZxhk/F3PGMvdPSwtd1vOABg0qH9LM0vqbqsTtuk5zlf7ZHaeLt+BitzSVvM8q2pp3EqzPmflR0ps8BQmIJm0+I528oG9WEQjLjbK6JSyfXK+rcr4wjL7/XOH07rmnLykDlXXFOuB5rCfO06y7P/TDw60JsrgiAIgiAIgniUsT4gtUB6c0UQBEEQBEEQBEH8FejNFUEQBEEQBEE8ylgsgOIBKPmRWiBBEARBEARBEATxV6CHK4IgCIIgCIIgiCqA/iyQIAiCIAiCIB5lSNCiyqA3V/8F7KVPJflP8+MC9GoNlC2DWRl7Od4r40Up1dD5sUhfEQaAl+ut6SLKmed+rIWh5XaW1/7xczi4dCkAoOncavCbKspRJ362iLXjzDfTE2IbknS7hL1MadiHouzukTILqh9szEn9SjZOT1qI7SG7WJ2MVR0AAMogfwBA5hBRprz1NzZ55hsdRenSnH5LmeS0ffvvZp0AAMwK0HA+pS+KlMm1l3i5cj5LEr56tQYZI2yS2ABwdayW899xbPI/UCB/ug4Bm0pQ0TOcjZdEeW/nMq9S+6UDo9C7eWekTF/ESb6eG70Ib/uLktTSofPrMQ02t2wEQJQObpmiwh2DP4JeSxDlfi1mZt9SUsI+GwQjarq4s+sReY9xPmlSbTK7zvqp3H9PZjm6rVwm12LGjxsWwhmOku+S3UYL4zg76UsjoGrahI0HAPyxaCkyFoifez7zAjSfxeLAsu8wOfMs59sfC5fCmnySXW8K3Cubo5vDxTmU1lll/tmT0+c72boBwGStJVl9AEz+uHRgFPRqDcr3+AEA27cA4PMx3+e8D3Xs83CfjtwYlT4TxbWdubo90K2QlbEYz7B17kxi3XLqLC5FVrNJMSecQB/dU1zZLifuYH7eEYxOz3Haz/zpOnQ785Roo99wmHLzoVdrEJn6LMxpohyyRQU0myaeHb+1/BVIOsnZ8Vwr7lPhTR3UX8TBqhPlr32eOcXKSH3y/jQOqibieWEafU0MJdGyEZI1SlYueIQonx/z+DOs/rnwCijijwMAejw/iqXb++E98DRyNohy9M0G2dbK3JAf2edm00Q58Gc0ohx6pJsoMe+2I5mtWxd32x7a0qohgldPQPY6DXI+1eK1zDTbGbIgimv/xgtaXHtJi7yn6nN7K+vLaJQ+E4WUGeLefyG3uyg57ucLvVrD1pM9erUGwps6ro/6U8WyPRs+3SZ/Xns9f16+lzwAezb9AEf2rl0OAFCEhbI0y4mzKBoWLZPplmj41Dl+rX4VDb1ag52pe3DtJXHf/fbCbOTN1LIyi/MOI65dNa5tg2BkZ4BBMKLx/DgowlvLfAQA9+1JqL8sHpayMnQbNhoAkP2Z7Zze/etaZM3WyuopzMBTZ64BAEyXq7N0ZYP6AIDAKQmVhiwwFYhS6sGTbKE12syNlZWT7tnNpscxfxznsJGxgruWxs/nI7FOsaac5b3tL66BoNfFOZTk6O3rAsDcMUNgEIxIfU88iw+2tfWvsj45hhlxlPqPensC9GoN27fRx3m/3Q424Xyw5+Rroh/503RAkrjnYneNRFiqRfyZJPIOK5u+TLxvNu2XxtowCEbkfCrOYebXvES+fX8uvmI7RzcWxjstNzOAP/clzFfFc6babjGszOVYnez+pwgLddo/+7TpDc9Umhf0WgLMXTtge8guZlO6xxGPHvTmiiAIgiAIgiAeYawWC6wPQNDCSoIWBEEQBEEQBEEQxF+B3lwRBEEQBEEQxKMM/c9VlUFvrgiCIAiCIAiCIKoAenNFEARBEARBEI8yFiugoDdXVQG9uSIIgiAIgiAIgqgC6M0VQRAEQRAEQTzKWK0AHoCSH725Iv6/GAQj0r+LwOVfWrA0xzhDUqyEC6/rsHPfT7IYV5fNpWi4WIzr4P1pHEJGifFZ0leEocPMCcxmwN4X4Tc1nrNbPEB8fla2CkG1gmu4PFHHypf1jeRi7khkVdzCvjXLsLRIDb+p8cifIdbJn66DS2tbP+40UEDl54uZAR1QMtMbAGDVtmP5qt9TkFJ+l+tL411izJOdf2zh+u71uRj3A5FtuHHK/EqMe5H9uZbFpPg0UIxjs6EgjhvrnKfFeF4xoY+jzdxYZM3WInnWIpTHRHDzYW/f/nPKDFvsL8f5yVgZBu+Bp2FpdQvWo6fguucoZ8M30QNuu5JZvQ5HB8MgGPF5TiIsndsDADw2J2LXuUNofmgE53dMj8Hc9aC0iwgZmwyXti2Y/bQwE/5os4Vr88MrrZi/jv0amHYZAHBJW4zeMUNYurE91xR6+YbzccAeF0RbCSdk42UQjHjOxxZrJHN1exYHzd5G5txop/FCAKDlG+dgunARBsGIw/OXsLrBE8WYMoVPeKDxPDFO1LygFrI5cvbZnjqrxX0ixUlacNPHafmcT7RQeam5NWhfxiAYUS/xIheTrqJ7GIqDxBuPx2bR34FeqWKcurQMWYyZi1tbAgCaTY9zGjtIr9bAY1Mi6h+pC/9fxooxboanOo1VYxCMGFPQEQCg+N1LbPveHEsxcySyZ3uytXvn6UgcbFsdIa4eWBbiz9q1j+WUNm4hVN3zxXaTbLGhktr/BECMk1XzJ7G/rRbEcuPlohHXYOnuAOjVGqhni74o4o5zfZW+F+0MAgDsOGZAekUpzJsaQtkqxGm8PRd3d5jPZbJrKTYeALgcTGXpjmeY/3Mn0Lvnc5y9MDe7WGD3mN0kldUfm57N7XtFrVpQBfixsgFvxyNgiBH+78ZjblBL21j3X4J2X8Ti4mvivqj7QzyOzlyE05MWMlt903sj8I0EeGxKZON2reMN6NUamHLFWEbSegIAZR1PWDqJfqpnizHDPr4qnruv18tG797Pc32u/1080r8PhyPVDzZG5uMrEDFVvEd0njgOmV9FsziBAGBNEWO4STH+Zn1oi/kWlmqpdJ8VvqtD0OsJUDZuBL1ag/rfi/vOV1UTzabFo3eQOB7jm3WS1dWrNdiRspt9LusbCevRU+zavs1p2cdYP1W/pyDjm2gEvMPHbMocuoi7Tl8aAb+p8ZhYpwAAkP3sYmbjWkwIV9YgGNk90dkelcZKPTuO27eOqPx8AYj7AACuvyiOp9uOZOiO38WlyTqn54zHOTeZLYkLW1vCIBhxfZRoq7xPBDz+aAhB5y6zpQwJZOu3fI8fXDStbPddhYKzaxCMmJJ5mvNDOjelfZvQToz91v1UCRbmHca24N2yMZKQ7JR5V7D84EmJSGnvIsZqe8N2zwgZfZR9Tmjnynz2ChcAAHVPKri+2fvY5BvbOTfIW4v05eEsTptj3C4AcNG0QtEwW9ys6gcbI3N1e+jVGjRaaItNFrRfjJm3+9e1XP/qH6mLj3KSuTNMsh3T7Vmn46E8cAwtvrOdkUIXMX1L+kkQjxb05oogCIIgCIIgHmGsFiusD+B/rqz05oogCIIgCIIgCIL4K9CbK4IgCIIgCIJ4lLFa8GD+5+oBtPFfht5cEQRBEARBEARBVAEP3cPVjBkzoFAoKv1ydXXlyp87dw79+vVD3bp14eHhgc6dO+P33393aruoqAiTJk2Cl5cX3N3dERoaikWLFj0Sf/9JEARBEARBEP8m0tPTMW3aNERHR6Nhw4aoVasWNBoNZs2ahdLS0r9sZ+fOndDpdPDw8EC9evXw7LPPIicn5z/y6aH7s8ABAwYgKChIln7ixAnMnj0bTz75JEvLysqCTqeDSqXCW2+9BU9PT3z33XfQ6/XYtWsXunfvzsrevXsXPXr0QGpqKiZNmoSWLVti165diI2NxaVLlzBjxowH0T2CIAiCIAiCeKj4XxW0WL58ORYsWICnnnoKQ4cOhaurK/bv34+pU6di48aNSEhIQPXq1e9r4+eff8YzzzyDdu3aYfbs2SgqKsLXX3+Njh074ujRo1Cr1X/LJ4X1f+S1zbhx47B06VJs374dffr0AQAMGjQImzdvRkpKCjQaDQDg1q1bCA0Nhbu7O86ePQvFPRnShQsXYuLEiZg3bx4mTZrE7A4cOBC//vorMjIy0KxZsyrxtbi4GJ6enmj/3CzU/zEVyuZB2Ll/Eyft/X62EbMCNKxO6cAouJZa4DfjLFb4HgLAS7bmzdSiZ8xRnAuvwFNnrmFbq/oAgNwf28JvsE1aN/szLTJGLLLJkbq7Y1d2Amer8F0dvD8VpUiz12kQMMSIW4OiUXNjAivjUqMGLLdvQ9mwIc69H4gVTy3GrAANFO1DYU0V5XsNghGBG8Yj67nFTuVppb6ef0cHr8/i4NKuJSzH0wAA6d+Ho9aZajjxxsL71pX4KCcZzx8ei6DhqUhfEYaQUSmw6tox6Vj9qWK8Xi+bG2MmrXyqGFs+6IEaW0S5442F8fB0qS6T3rYfc8f273dt/9m01xeq7vnImB+F4EmJuLi1JZr0S+P6Vvx8NGqvT3Bqd3R6DpPMdtZm8+UT4Dc1nstXNg+C+VzmfaWCHcmaE43AKbb5VnmpYTovQOXnix1x26BXa7h15uiLPeff1tmk9O9xc4QWgePO4lrHGwCAW7sDcD2+CdLGyef7yrbmaPjUOWTOjUbQa/y4OGvXMVRBwM/jkD1gCVeu/pG6rO37+V/eJwJuO0S53YCfxqPFB2dgLi6+b52yJyPh/msSLsfq0GhhXKVrof6Ruljnv99pP/Kn65yOBSDu2Tvd2sBduM32moSlc3vs3rAMMV4duPTS3QFQza8PoZMK6S8suu8acPR3Q0ldrGjeDNdGa1F/WXylZQFAWb8edp783Wmf+p+5gi2tGqKiZzgLVeDMhqN9QFyzzY+64lx4BUvfd0eJbtXN963LpKgbN0LOhCD4zoiTrQ/HuTEIRui9wwCLuVL/pLScT7Twfy/+T88DltZvOAxbV9/3HOmXocfJVH8EvZrg1Fdl3bow37gh87nF9xPQbFo8VzZ9WTgnb13eJwIHvvsObb+Mhde+GyicoYC6/xm8lXUSXwS2gUEwol3S82jSL43Zbp3iglNhlf8PhONezNnQFv7PneDKpH8fjsbqm/CMyeTqaY8PhPvXdbF/xfdsHFTNfGDKK4BBMKL9x7FInSrug+JdgYhvt9npfG8pTEJ/70gYBCNaLYyFz8dxTudAGeSPnX9s+dMz8H5r8s+wdNLA5bBRtr7+DINghP/2MWg55wYLMSC8qWPhCxzL9u75HCynzspt/DoGIeOSuXnZeMsTsxYOxYZXv8SrfjZpeb1X+/vGFKqsD1fHalloEr1ag5LnolFrg229KuvXg/nadWaj58AXkDsZMOgWoN/Xb6HJ3DibD/dsbzufjKe8ImAQjIjpOhDm9KxK5yE42Q0ZEeUyX53dKw2CEYEbxyPoVfHekfOZFv7vxHPj0ztIh12ZcVx9a0cNFEeM3JkGAEVDo+G51nZv9EuqjoLe1bkylY1ll3Fj4Xa1HIr441yeyVqBA/gFRUVFqF27dqU2/ltIP7N2VfSHSuH65xX+n5isFThg3VJl43H06FEEBwfD09OTS586dSpmzZqF+fPn4+WXX660fkVFBfz8/KBSqXD69GnUrFkTAGA0GhEWFobRo0dj6dKlf8unh+7PAp1RWlqKDRs2wNvbG7169WJp27ZtQ9euXdmDFQDUrFkTL730EtLT05GcnMzS161bhxo1amDMmDGc7VdffRUVFRX48ccfH0hfCIIgCIIgCOKhwmp5cF9VSHh4uOzBCgAGDxZjiJ46deq+9Q8ePAhBEPDSSy+xBysA0Gg06Nq1K3788UdUVFT8LZ8euj8LdMZPP/2E4uJiTJ48GUqlEoD4Z4Ll5eXQarWy8tHRYuC45ORkREZGwmKx4NixY+jQoQPc7wXOlIiMjIRCoeAexP4uTZs25a7NZvE3ouaKMpisFbCay1FcYoHJWsG+l977LmGqKIOiwoK7t+6iuERcePb55rIy3L1VAZO1AndumVie5XYZV85SVsbaAAAXqwt3DQDm8jJZfVMFb8fFehcWawWslruwlJUxfxXmcljvlSsuscjas0dKl9pzMZfDIrV7pwzmcsuf1pUoLbEwXy137o2rqQyKe2XKbplQ7MqPsfS97JaJ619xiQUKF96+45g7tn+/a/vPptJywM5H8+1yWf/MDr7Y598uMd/XB0uZvK7VXA7zvf7a9+F+2NsRE+75abGtVft1Vtk8Afx6Yml3y1BRepcbF3Mla0UaI2d9c1bePg8Q15JjOfu27+e/qaIMynu2xDm7C/Of9FlaS+a7ZTIf7T9XlN6ttB+VjQUg7llTRRlMdntNwmJyXs9UWg5UlMFSprrvXDn6WFxiwe1bZq4/lZUFAKul8j5J68Vkty/vN45SHiCu2bu3+P1XegcoNt2/rpRntdyFuYyfj8r2NKtnNVfqn5RmKZPP8X3rOMyPs3oVpXdldu19tTpZg8UlFq5/UlnpnJEwVYjtm8vF9WO+rbh3vzHb7Nzbb5Lt8lsuMN3nhx3HcXO85wD3zvPScllfzaXlsjGRzpriEgvMd2155tLyStcKNw7lzucEAHevvR9/pUxlWExlcPmb563UpuXOvXm5V8fZ2cn8s7tfymw4rJ3bt8z4v/buPCyqsv0D+HeGZWZAEBBFGGQVXHAXXCCDFJfEJTTUckXES3LDrVczd1NT0rRQEVySSzMtLcylF5MsFdIMXNNEUQRMoQwlYBC4f3/4m/MyzoAzNKMw3p/rOtfb+5x7zpzn9pybeWbOOU+FohRFmo69Gn65qq4Pyn8X5TplzRP+5lQ+dYyWl6KyGHhU5d9HZR/w1HFU5W+Wpv6XFYmfWYuKqxzTVf92aDq3yqlM7fXKzw9Va5qy71XjyopMUF5pol1dfVwKk3KFSv0DgHL8f52q4xeKleMx8Bx2UZkPLy8viMX/+43n7t27en2fnJwcAICDg0ONccrP/9WNJ44fP47ff/8dPj4+2r851QOvvPIKiUQiunnzptD25ZdfEgDauHGjWvzly5cJAM2bN4+IiAoKCggADRs2TOP2GzduTN27d6/1/jVt2lRlsbe3Jzw5RHnhhRdeeOGFF154ecmXO3fu1PpzpiGVlJRQ06ZNn2suxGIxOTg4qHx21qfy8nLq3r07mZqa0tWrV2uMnTJlCgGgK1euqK2LjY0lAPTdd9/p9P51/pera9eu4eTJk+jVqxfc3d2F9uLiYgCARCJRe43y1yllTE2xynhlTG08PdqurKxEXl4erKyshHu+asPLywsAcP369Vpv42XBudIe50p7nCvtca60x7nSHudKe5wr7T3PXBERHj16pPNDEZ4XqVSKrKwslJWVPbf3NDc3V7uSTJ+io6ORmpqKFStWoEWLFjXG6jKe0FadH1xt3boVADBhwgSVdgsLCwCAQqFQe01paalKTE2xynhljD6IxWI4OzvrZTsA6uQNkHUN50p7nCvtca60x7nSHudKe5wr7XGutPe8c6XpnqC6RCqVGnSw8zwtWLAAn376KSZOnIh58+Y9M16X8YS26vQDLcrLy7Fz5040atQIoaGhKuuU3wDk5uaqvU7ZJpfLAQC2traQyWQaYxUKBQoKCoRYxhhjjDHGWP2yePFiLF++HOHh4di8ebNWr9FlPKGtOj24OnjwIO7du4dRo0ap/VzXtm1bSCQSpKamqr0uLe3JYzR9fX0BPPmGolOnTkhPT1cbmZ45cwZEJMQyxhhjjDHG6o/FixdjyZIlGDt2LBISErS+LcfPzw8Aqh1PWFtbw9vbW6d9qdPzXA0YMACHDh3ChQsX0LZtW7X1YWFh2L9/P3799Ve0b98ewP/muZJIJLh27ZqQ3NjYWEyZMkXjPFdJSUm4fv063Nzcnku/GGOMMcYYY//e0qVLsWjRIowePRo7duxQeQphVXfv3kVhYSFcXFyES/0eP34MV1dXmJmZqcxzdf78eXTq1Anh4eFISEjQaX/q7OAqLy8PLi4u6Ny5M37++WeNMZmZmejSpQvMzMwwY8YMWFtbIz4+HhcvXsShQ4fQt29fIbasrAz+/v44f/48pk2bhlatWuHw4cM4cOAA3n//fSxbtux5dY0xxhhjjDH2Lyl/PHFxccGyZcvUBlYODg7o3bs3AGDcuHH47LPPkJKSgqCgICFm3759GD58ONq3b4/IyEg8fPgQ69atg0gkwrlz53S+LLDOPtBix44dqKioUHuQRVXNmzfHqVOnMHfuXKxatQplZWXo1KkTjh49iuDgYJVYc3NzHDt2DO+//z4+//xz/Pnnn/D09MQnn3yCyZMnG7o7jDHGGGOMMT1SzlOVnZ2NsWPHqq0PDAwUBlfVCQsLg0wmw/LlyzF79mxIJBL06tULH374Ya2eyVBnf7lijDHGGGOMsfqkTj/QgjHGGGOMMcbqCx5cMcYYY4wxxpge8OCKMcYYY4wxxvSAB1eMMcYYY4wxpgc8uGKMMcYYY4wxPeDBFWOMMcYYY4zpAQ+uGGOMMcYYY0wPeHDFGGOMMcYYY3rAgyvGGGOMMcYY0wMeXDHGGGOMMcaYHvDgqpaKioqwYsUKtG3bFlZWVrC3t4e/vz927NgBIlKLT0xMREBAAKytrdGgQQO0adMGy5YtU4n54YcfIBKJNC4DBgzQuB+HDx+Gv78/LC0tYWdnh7CwMGRlZWmMvXbtGt544w3Y2trC0tISPXr0wPHjx/99Mp5Bm1zdunWr2r4rl127dqlsV6FQYOHChXB3d4dEIoGnpyeWL1+Ox48fa9yPnTt3omPHjpDJZHBwcMCECROQn5+vMfbnn39GcHAwrKysYG1tjX79+iEjI0OveXmaIfJUU3ybNm3+dd/z8vIwZswYNG7cGDKZDL6+vti3b5/ec6OJLufgkSNH0KtXLzRt2hSWlpZo0aIFZs+ejXv37qltt7CwEFOnToVcLodUKoWPjw82bdqk8byurKzEunXr0LJlS0ilUjRr1gyzZs3CP//8o3GfdTlf9ckQuXqZ6xUAEBE2b94s1BQbGxv069cPaWlpGrdrbPUKMEyujLVm3bt3D5MmTUKzZs1gbm4OFxcXTJ8+HX///bdarC7HvrHVK0PkyVhrFavDiOmsoqKCXnnlFRKLxRQeHk5xcXG0bt066tKlCwGgd999VyU+PDycxGIxhYWF0caNG2nz5s30n//8hyIiIlTiUlJSCABNnDiREhMTVZaUlBS1/fjqq69IJBJRhw4dKDY2llasWEFNmjQhR0dHys3NVYnNzMwkOzs7atKkCa1YsYJiY2OpQ4cOZGpqSsnJyXrPkZK2uSoqKlLrs3Jp2LAhmZubU35+vsq2Bw8eTABo/PjxFB8fT+PHjycANHbsWLX9WLt2LQGgwMBAiouLowULFpClpSW1bt2aioqKVGJTU1NJIpGQh4cHrV27ltauXUseHh7UoEEDunDhQr3KU1ZWFgGg0NBQtfiDBw+q7Ycuff/zzz/J3d2dLC0tacGCBRQXF0eBgYEEgLZt22aQPOmaLyKiLVu2EADq3LkzrV27luLi4mjChAlkYmJC7u7uKv/+CoWC/Pz8yNTUlGbMmEFbtmyh0NBQAkCLFi1S249p06YJ+d2yZQvNmDGDTE1N6bXXXqOKigqVWF3O1/qQq5e5XhERTZo0iQBQUFAQbdiwgVatWkUeHh5kbm6usf/GVK+IDJcrY6xZ9+7dI1dXVzIzM6MpU6bQ5s2bacqUKWRmZkYdOnSgf/75R4jV5dg3tnplqDwZY61idRsPrmrh9OnTBICio6NV2hUKBbm7u1PDhg2FtoSEBAJAO3fufOZ2lQVg+/btz4wtKysjJycncnFxoUePHgnt6enpJBaLKTIyUiU+LCyMxGIxpaenC22PHj0iFxcX8vb2psrKyme+Z23okquaXv/mm2+qtB86dIgA0MyZM1XaZ86cSQDo1KlTQlt+fj5ZWFiQn58flZeXC+1JSUkEgD744AOVbfj5+ZGVlRXl5OQIbTk5OWRlZUW9e/fWqt+6MlSelB9UNP2h1USXvs+ZM4cAUFJSktBWXl5Ofn5+ZGdnp3Jc6psu+fL29iZHR0cqKSlRiZ0/fz4BoAMHDghtsbGxBIA2bNigEjtkyBAyMzOjW7duCW2XLl0ikUhEQ4YMUYndsGEDAaBdu3YJbbqer/pkqFy9zPUqPT2dAFC/fv1U9uXBgwfk4OBAXl5eKh9Wja1eERkuV8ZYs6ZPn04AaPfu3Srtu3fvJgC0bNkyoU2XY9/Y6pWh8mSMtYrVbTy4qoWjR48SAFq9erXaOj8/P3JyciIiosrKSvL09KROnToJ6x8+fFjtyVa1ABQVFal9wKkqOTmZANDSpUvV1vXs2ZOsra2prKyMiJ782iGRSKhnz55qsUuXLiUA9PPPP9fc6VrSNlfVUX67e/ToUZX2kSNHEgDKzs5Wac/OziYAFBUVJbTFx8dXO8D18PCgVq1aCf//+vXrwrfLmvZFJBLR3bt3a9zn2jBUnqp+UCkpKVH55u9puvZdLpeTp6enWuzOnTsJAH3xxRc17vO/oUu+mjZtSq1bt1aLU34w+e9//yu0BQQEkIWFhdq59+OPPxIA+vDDD4U25YDjxx9/VIktKSkhCwsLev3114U2Xc5XfTNUrl7meqX8Zenzzz9Xi5s4caLacWFs9YrIcLkyxprVrl07kslkan/7KyoqSCqVkoeHBxHpfuwbW70yVJ6MsVaxuo3vuaqFLl26wMbGBqtXr8a+ffuQnZ2Nq1evYt68eTh37hwWL14M4Ml1uDdu3IC/vz+WLVuGRo0awdraGjY2Npg0aRKKioo0bn/69Olo0KABZDIZvL29sX79erXrp8+ePQsA6N69u9rru3XrhocPH+L3338HAFy4cAEKhaLa2Krb0zdtc6VJUVER9u7dC1dXV/Tu3Vtl3dmzZyGXy9GsWTOV9mbNmsHJyUmlP8/K1dWrV4V/i2fFEhHOnTunXed1YKg8KX300UewsLCApaUlmjVrhoULF0KhUKjE6NL3u3fvIjc3Vzh+no6tuj1D0CVfffv2xZUrVzBr1iz89ttvuHPnDvbv349ly5YhMDAQPXv2BPDkfoRff/0VHTt2hFQqVXs/kUikdlyJxWJ06dJFJVYqlaJDhw46HYNVz1d9M0SuqnoZ65Xy3LGwsFDbhrKt6v1ExlavAMPlSsmYapZCoYBUKoVIJFJpF4vFkMlkuHnzJgoKCnQ69o2xXhkiT1UZU61idZvpi96B+sjW1hZJSUmYMGEChg0bJrRbWVnhq6++whtvvAHgyeAKAL744guUlZXh/fffh7u7O7799lvExcXh2rVrOH78uFBIzMzMMGjQIPTv3x9OTk7Iy8vD1q1bER0djYyMDGzfvl14r7y8PACAXC5X2z9lW25uLnx8fLSONQRtc6XJF198gaKiIsyePRtiser3AHl5eWjdurXG18nlcuTk5KjEKts1xRIR8vLy4O3t/cJyZag8icVi9OzZE2+88QZcXV2Rn5+PvXv3YtmyZUhNTcXRo0dhYmICQPtjStdYQ9AlX+vXr0dxcTHWr1+PtWvXCu3h4eGIi4sT+v/gwQOUlJRo7JNEIoG9vb1Kn/Ly8mBvbw+JRKIWL5fLcfr0aZSVlcHc3Fyn81XfDJEr4OWuV8p/p+PHj2PQoEFCHBHhxIkTAIA7d+4I7cZWrwDD5coYa5aPjw+uXbuGjIwMdOjQQWjPyMjAgwcPAADZ2dk67aMx1itD5AkwzlrF6jYeXNWS8ol/gwYNgr+/P/766y/Exsbi7bffxjfffIPevXvj0aNHAID8/HwkJycjODgYADB06FAQET777DMcPXoUr7/+OgAgICAA33zzjcr7REZGon///tixYwcmTJiAgIAAAEBxcTEAaCyUym+xlDG6xBqCNrnSJCEhAWKxGOHh4WrriouLNfYHeNKnqv2pL7kyRJ5cXFzw/fffq7RFRERg4sSJiI+Px549ezBy5EgA9SdPStrmy8zMDC4uLggNDcXAgQNhYWGB7777Dtu2bYOJiQni4+Of2Sdlv54+rmqKVcaYm5u/8HzpO1fAy12vXn/9dbRu3RobN26Ek5MThgwZguLiYqxduxaXLl1S20djrFeAYXJljDUrOjoaX3/9NYYNG4aPP/4Ybdq0weXLlxEdHQ0zMzM8fvwYxcXFeuuPMr6+1StD5Akw3lrF6i6+LLAWLl68CH9/f/Tu3Rtr1qxBaGgoIiIicPLkSTRt2hSRkZGoqKiATCYD8OQbDOXASmns2LEAnjwitCZisRjz5s0DABw6dEhoV15O8fRlEgBQWlqqEqNLrL5pm6unXblyBWlpaejduzdcXFzU1ltYWGjsD/CkT1X7Ux9yZag8VWf+/PkA6ucxBWifr8rKSvTr1w+nT5/G3r17MWbMGLz55puIj4/HnDlzkJCQgGPHjj2zT8p+PX1c1RRbdZv14RzUJVfVeVnqlampKY4cOYKAgAD85z//gZeXF9q3b4/09HSsWrUKAGBtbS1s19jqFWC4XFWnPtesHj16YM+ePXj06BFCQkLg6uqKgQMH4rXXXhMeBW5tba23/ijj61u9MkSeqlPfaxWr23hwVQvr1q1DaWkpwsLCVNotLCwQEhKC27dv49atW3B2dgYANG3aVG0bjo6OACD81F0TNzc3AEBBQYHQ5uTkBEDzT87KNuXP0rrE6pu2uXra1q1bAQATJkzQuF0nJ6dqf27Pzc1V6c+z+i8SiYSYF5UrQ+WpOs2aNYOJiUm9PKYA7fN18uRJ/PTTTxg6dKjadfzK1yovTbK1tYVMJtPYJ4VCgYKCArXjqqCgQOMf1tzcXNjb28Pc3FyIVbZrigVe/DmoS65q8rLUKxcXF6SkpOD27ds4ceIELl26hPPnzwvfWLds2VJ4vbHVK8BwuapOfa9ZYWFhyMnJQXp6On788Ufk5eVh8+bNyMnJgampKZo3b67TPhprvdJ3nmpSn2sVq9t4cFULypNG0y8J5eXlwv+2bdsWUqlU44mnvMa+SZMmz3y/69evAwAcHByENj8/PwBAamqqWnxaWhqsra3h7e0NAGjbti0kEkm1sQDg6+v7zP2oDW1zVVVZWRkSExPRuHFjDB48WON2/fz8kJubq3KtPvDk2v28vDyV/jwrVy1atECDBg20ihWJROjcubPmzv4LhspTdW7evImKigqdjqmqfXd0dIRcLtd4I7qhjylA+3zpklexWIxOnTohPT1d7QPImTNnQERqx1VlZSXOnDmjEltaWoqMjAydjsGq56u+GSJXNXnZ6pWLiwteffVV4f6Tw4cPQywWo2/fvkKMsdUrwHC5qk59r1kAYGJigg4dOqBHjx5o0qQJ/vjjD6SnpyMwMBAWFhY6HfvGWq8A/eapJvW5VrE67kU8orC+i46OVnvMKdGTeTscHR3J1tZWmJ9E+Qje/fv3q8QOGTJEbX6TgoICtfcqLS2lgIAAtUd6lpWVkaOjo9pcDBkZGSQWi9UmKH7zzTdJLBZTRkaG0Kaci8HLy8tgczHokiulffv2aZwTpqpvv/22xnljfvrpJ6Ht/v37JJPJqEuXLhrnjak6dwYRka+vL1lZWalMFpibm0tWVlbUq1cv7TuvA0PlSdMxVVFRQcOHD9f46GFd+j579uxq54yxsbGhhw8fPrvjtaRtvjIyMggAtWvXTu3RwcqJTb/66iuh7dNPP6123hhTU1PKysoS2i5cuFDjvDGJiYlCm67nqz4ZKldcr9R98803GicGNrZ6RWS4XBlrzXpaRUUFhYWFkUgkouPHjwvtuhz7xlivnqaPPBljrWJ1Gw+uauHWrVtkZ2dHIpGIRo0aRZs2baIPPviA3NzcCADFxsYKsbdv3yYHBweSSqU0Z84cio2NpZCQEAJAY8aMUdmur68vDRo0iJYsWULx8fG0ZMkS8vLyIgA0depUtf3Yu3evyiziK1eupCZNmpCDg4PKhIpET+YDsbW1pSZNmtDKlSuFWcRNTEzU5kbSJ11ypdSvXz8CQFeuXKlx2wMGDCAAFBERQQkJCRQREUEAaNSoUWqxMTExBICCgoIoLi6OFi5cSJaWltSyZUu1iSNPnTpF5ubm5OHhQevWraN169aRh4cHWVpaqhRQfTJUnkJDQ6lXr160YMEC2rJlC61YsYI6d+5MAGjw4MEqk3cS6db3goICcnV1pQYNGtDChQspLi6OgoKCCAAlJCToJzHV0CVfQ4cOFQYNq1evpk8//ZQGDhxIAKhbt24qHwAVCgV17tyZTE1NaebMmRQfH0+hoaEEgN5//321/ZgyZQoBoNDQUIqPj6eZM2eSqakpBQYGquVWl/O1PuTqZa9X48ePp/DwcFq/fj1t2bKFxowZQyYmJuTn50d///232raNqV4RGS5XxlizHj16RK1ataL33nuP4uPjKSYmRujT05NC63LsG1u9MlSejLFWsbqNB1e1lJmZSWPGjCG5XE6mpqZkZWVFPXr0UPlmVykrK4vefvttsre3JzMzM2rZsiXFxMSoFbNVq1ZRt27dyN7enkxNTalhw4YUFBSkNlt5VQcPHqSuXbuSTCYjGxsbGjp0KGVmZmqMvXLlCg0aNIgaNmxIMpmMAgICKDk5+d8lQgu65Co7O5vEYjH5+/s/c7slJSU0f/58cnV1JXNzc3J3d6elS5dWO7nh9u3bqV27diSRSKhx48YUHh5O9+7d0xh7+vRp6tmzJ1laWlKDBg2oT58+dO7cOd06riND5CkhIYECAwPJwcGBzMzMqEGDBtS1a1eKjY1VO/6UdOl7Tk4OjRo1iho1akQSiYQ6duxIe/bs0b3ztaBtvhQKBX344YfUrl07kkqlZG5uTl5eXjRv3jwqKipS2+6DBw9o8uTJ5OjoSObm5tSqVSv65JNPNH4DWV5eTjExMeTt7U3m5ubk5OREM2bMUPsArKTL+apPhsjVy16vNm/eTJ06dSJra2uSSqXUpk0b+uCDD6i4uFjjdo2tXhEZJlfGWLMUCgWNGDGC3NzcSCKRkK2tLfXp06faD9+6HPvGVK8MlSdjrVWs7hIRPTWDGmOMMcYYY4wxnfEDLRhjjDHGGGNMD3hwxRhjjDHGGGN6wIMrxhhjjDHGGNMDHlwxxhhjjDHGmB7w4IoxxhhjjDHG9IAHV4wxxhhjjDGmBzy4YowxxhhjjDE94MEVY4wxxhhjjOkBD64YY4wxxlitrVy5EmFhYfDw8IBIJIKbm5tOr79//z7Cw8PRrl072NnZQSqVonnz5oiIiEBmZqbG1+Tl5WHMmDFo3LgxZDIZfH19sW/fPo2xN27cwMiRI+Hg4ACJRILmzZtj0aJFKC0t1bWralJTUzFo0CA4OztDJpPB09MTkZGRuHnz5r/eNqufREREL3onGGOM1Q+LFy/GkiVLkJKSgqCgoBe9O4yxOkAkEsHOzg6dOnXCuXPnYG1tjVu3bmn9+mvXrmH8+PHo3r07XF1dIZPJcP36dWzbtg0KhQJpaWlo3bq1EP/XX3/B19cX9+/fx8yZM+Hs7Izdu3fjxIkT2LZtG8LDw4XYq1evonv37igvL8fkyZPh7u6O1NRU7Ny5E3369MGRI0cgEolq1e+jR48iJCQEnp6eGD9+POzt7XH58mVs2bIFEokEFy9ehFwur9W2WT1GjDHGXkoAdFpSUlJo0aJFwn8zxoxbSkqKVuf7jRs3hP/28fEhV1dXvbz/mTNnCABFRUWptM+ZM4cAUFJSktBWXl5Ofn5+ZGdnR48ePRLaBw8eTCKRiE6dOqWyjRUrVhAASkxMrPX+9enTh8zMzCg/P1+lPT4+ngDQunXrar1tVn+ZPu/BHGOMsbph0aJFam0ff/wxCgsLMX36dNjY2Kisc3Nzw5QpUzBixAi4uLg8p71kjNV1Hh4eBtmuq6srAODBgwcq7bt374anpycGDhwotJmYmGDq1KkYM2YMDh8+jGHDhgEAUlJS4O3tDX9/f5VtjBs3Du+99x62b9+OUaNGqaw7duwYVq9ejTNnzqC0tBTe3t545513MGnSJJW4hw8fQiqVwtbWVqXdyckJAGBpafkves/qKx5cMcbYS2rx4sVqbTt27EBhYSGio6OrvW/C3t7esDvGGHspPX78GIWFhXj8+DEyMzOFGtW/f38h5u7du8jNzcXIkSPVXt+tWzcAwNmzZ4XBlUKhgIWFhVqssu3MmTMgIuHSwC1btmDSpEno1q0b5s+fD0tLSyQnJyMqKgo3btzAmjVrhG307dsXaWlpGDt2LObMmQN7e3tcunQJs2bNQqtWrTBixAj9JIbVK/xAC8YYY1pbvHgxRCIRfvjhB6Ht1q1bEIlEGDduHH7//XeEhobC1tYWDRs2xODBg4V7LzIzMxEWFgZ7e3tYWFigf//+1d70/eeff+Ldd99FixYthG+GQ0JCkJaW9hx6yRh7Eb777js0btwYTk5OePXVV3H58mV89NFHGD16tBCTl5cHABrvZVK25ebmCm0+Pj747bff8Mcff6jEpqSkAACKioqEX8bu3r2LadOmYcSIETh9+jTmzJmDd955BwcOHMC0adOwdu1alZo1b948REVF4csvv0SHDh3g7OyMfv36wcPDA2lpabCystJTZlh9woMrxhhjepGVlYXu3bujsLAQERERCAgIQFJSEoKDg/Hbb7+ha9euKCgowLhx4xAUFIQjR44gJCQElZWVatvp1KkT1qxZA7lcjsmTJyM0NBSpqal49dVXcfDgwRfUQ8aMV2VlJQoKClSWwsJCAEBhYaHauqfPW33o1q0bkpOTkZSUhFWrVsHR0REPHjxAeXm5EFNcXAwAkEgkaq+XSqUqMQAwa9YslJaWYvDgwThx4gRu376NvXv3IioqCmZmZirxX375JRQKBSIiItT6O3DgQFRWVuLYsWPCtk1MTCCXyxEcHIyEhATs378fs2bNwrFjxzBixAg8fvxY7zli9cCLvumLMcZY3eHq6koAKCsrS+N6TQ+0yMrKEh56ERMToxIfGRlJAMjGxqbadfv371dpf+WVV0gsFqu15+XlkbOzMzk4OFBJSUntO8kYU1P1PNZmqa5G6POBFrm5udSoUSOaOHGi0PbLL78QAHr33XfV4v/55x8CQG+99ZZK+4YNG6hhw4bCvpubm9PixYvJz8+PAFBhYSEREUVFRT2z30uXLhW2O3LkSHJ3d6fi4mKV99u0aRMBoPj4eL3kgdUvfM8VY4wxvXB3d8eMGTNU2kaPHo34+HjY2dmprRs1ahTi4+Nx/vx5hIaGAgAyMjJw8uRJDB8+XGhTcnR0xJw5czB9+nR8//33CAkJMWyHGHuJNG3aFMnJySpt58+fx+zZsxETE4P27durxRuak5MTgoODsXXrVmzYsAESiUR4WETVS/+UlG1PXzI4depUTJw4ERcvXoRCoYCPjw9sbGwQGxsLR0dHWFtbAwDo/2cn2rlzJxwdHTXuk/LhHdnZ2di1axemTJkCmUymEhMWFoaoqCicOHECEyZM+BcZYPURD64YY4zpRfv27SEWq15trvyA0q5dO7V1mj4kpaamAngyj42mB25cv34dwJO5a3hwxZj+SKVSBAcHq7SZmj75mNi5c+cXNq9dSUkJKioq8PDhQzRu3BiOjo6Qy+Ua779Utvn6+qqtk0gkKu2//PIL8vPzERERIbR5eXkBePLQnqdz8TRl3aqoqFBbp7yMserljOzlwYMrxhhjetGwYUO1NuWHs5rWVb0v4a+//gIAJCcnq32LXlVRUdG/2lfG2IuRnZ2N4uJieHp6Cvc83bt3Dw4ODmqxV65cwffffw9PT080btxYaH/rrbcQExODgwcPCo9jr6iowCeffAIbGxuVpwtqUlpaiujoaEgkEsyePVtoHzZsGN577z0sWrQIQUFBar9IFRYWQiqVQiKRoEWLFjAxMcHXX3+NFStWqExdsWPHDgCAn5+fTrlhxoEHV4wxxuoM5SBs5cqVmDt37gveG8aYNhITE3H79m0AQH5+PsrKyrB8+XIAT+aqqvq0vzFjxuDEiRPIysoSpntYuXIlkpOTERISAjc3NxARLl26hMTERDx+/BixsbEq7zd37lzs27cPb7/9NmbOnAm5XI7PP/8cZ8+eRUJCgspT+i5fvoxx48ZhwIABcHZ2xr179/DZZ5/hxo0b2L59O1q2bCnEOjs7Y9OmTZgwYQJatWqF0aNHw9XVFfn5+bh48SK+/vprXLlyBW5ubrCzs0N0dDQ++ugjdOzYEZGRkbCzs8OpU6ewa9cueHp68iWBLykeXDHGGKszunbtCuB/lwcyxuq+rVu34sSJEyptCxYsAAAEBgaqDK40GTBgAHJycrB3717cv38fFRUVkMvlCAsLw+zZs+Hj46MS36hRI5w6dQpz585FbGwsioqK0Lp1a+zZswfDhw9XibW3t4ezszPi4+Nx//59NGzYED169EBiYiK6dOmiti/h4eHw9vZGTEwM4uLi8Pfff8Pe3h4tWrTAsmXLVO41W7NmDVq0aIGEhASsWLECCoUCcrkcUVFRWLx4sXAvF3u58OCKMcZYneHn5wd/f38kJSVh27ZtGD9+vFpMWloa2rVrp3FiUMaY/gQFBQkPeahJ1XnvahMbHBz8zHucniaXy5GYmPjMOAcHBxw4cECnbQcEBCAgIOCZcSKRCJGRkYiMjNRp+8y48eCKMcZYnbJ792689tpriIiIwMaNG+Hn5wcrKyvcuXMHv/zyCzIzM3H37l0eXDHGGKtzeHDFGGOsTnF1dUV6ejo+/vhjHDhwADt37gQRwdHREe3bt8fChQthb2//oneTMcYYUyMibX7vZYwxxhhjjDFWI/GzQxhjjDHGGGOMPQsPrhhjjDHGGGNMD3hwxRhjjDHGGGN6wIMrxhhjjDHGGNMDHlwxxhhjjDHGmB7w4IoxxhhjjDHG9IAHV4wxxhhjjDGmBzy4YowxxhhjjDE94MEVY4wxxhhjjOkBD64YY4wxxhhjTA94cMUYY4wxxhhjesCDK8YYY4wxxhjTg/8DiCcKzLo4SBQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Something appears! It looks like the QPO is changing its frequency. Let's now try to also rebin a little in time!" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Rebin time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try to improve the visualization by rebinnin our matrix in the time axis" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The current time resolution is 1\n" + ] + } + ], + "source": [ + "print(\"The current time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's rebin to a time resolution of 64 s" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "dynspec = dynspec.rebin_time(dt_new=64.0, method=\"average\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The new time resolution is 64.0\n" + ] + } + ], + "source": [ + "print(\"The new time resolution is {}\".format(dynspec.dt))" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJ9CAYAAADZgogUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADG3UlEQVR4nOzdeVwV9foH8M+cc9h3AVEQFBH3XUEhS0tbzUyvZWllVpqt17JfaaWpqfdW16XUNpe0tOxa3WzxlmlauS9p7mviArgioCDLmZnfHwY3Avk+wnBA+Lx78erl4cMzw+EsDN+Z59FM0zRBRERERERE5WKr7B0gIiIiIiKqDnhwRUREREREZAEeXBEREREREVmAB1dEREREREQW4MEVERERERGRBXhwRUREREREZAEeXBEREREREVmAB1dEREREREQW4MEVERERERGRBXhwRUREREREZAEeXBERERER0VVn3759GDhwIJo1a4aAgAB4e3ujadOmePbZZ5Gamiqus3TpUiQmJsLHxwe1atXCXXfdhcOHD5dpnzTTNM0yfSUREREREVElWbFiBSZOnIjOnTujXr16cDgc2LFjBz744AP4+/tj27ZtqF27dqk1vvjiC/Tr1w9t2rTBkCFDkJGRgWnTpsFut2Pz5s0IDw+/on3iwRUREREREVUbixcvxt13343XXnsNzz///GVz+fn5aNCgARwOB3bt2gVfX18AwLZt29ChQwc8/PDDeP/9969o2zwtkIiIiIiIqo369esDAM6dO1dq7qeffkJKSgoeeeSRwgMrAGjbti26deuGTz/9FPn5+Ve0bceV7y6pGIaBlJQU+Pn5QdO0yt4dIiIiIqoEpmni/PnzCA8Ph81WNdc0cnJykJeX57LtNW7cuNjvx1dyfVRJcnJycOHCBeTk5GD37t144YUXAAC33XZbqV+3adMmAEBCQkKxz3Xu3Bk//vgj9u/fjxYtWoj3hQdXFSAlJQWRkZGVvRtEREREVAUcO3YM9erVq+zdKCYnJwfR9X1x4pTusm3abDaEhoZaugAxe/ZsPPXUU4X/btCgARYsWIBrr7221K9LSUkBAERERBT7XMFtycnJPLiqbH5+fgCAI782gL9v6X+laL1ksLKe50m7aLsR/9qgzNhjG4pqnWsXLMr5Hc1RZo7e4iWqFbhPFEPQzgxlxtghLCbVobk6s2W3qJTNz1eZ0UJl97/++xFRrjI4oqOUGefhoy7Yk7LRr2ujzJjCNwbHT9vKuTf/o7m5i3I2H09lRk/PLO/uFOGIqKvM7Hu2+BtYSWJf2iHKaeF1lBkz5YSo1sn72yozdb44IKplZmWJckZOrignYfPxFuXMXPVfqE2ns7y7U8hRX/YLpR7sJ8qZv+4pz+4UYWvdVJQztu+1bJtWvp9UBlvzxqKcsXu/Zdu0B/qrQ+4eolri52ZWtiin4kQ+VmNp4e+GVU1eXh5OnNJxZEsD+PtV/Mpa5nkD9TskYf/+/fD3F/xche688040bdoUFy5cwNatW/HVV1/hzJkzyq/Lzr70c/bwKP748fT0LJKR4sFVBSg4Evf3tSkfqDYv9S9Adg/ZwZVDc1PXsstefOzu6v0CAIfgEWTzlNWyy35nhMOuPqAzBPfFFXEIvgfhNm2a+hvVhD8nzerv00IOm+B7qML7rwl+5uKDKwu/T+nPXPQ4s/j+l/zMJa95AOAQ7D8ge66YwlqS1z2HTVbL1GTn6BuaIcpJSH7mAGBq6j5W0se2hOi1AIBmlz02TAsftzbha62l7ykWvp9Uhsq4z+ySx7blz80ru87m8hu89L+qfpmIv58N/n6y3zeronr16hWuDN55553429/+hri4OGRnZ2PUqFGX/Tpv70t/lMrNLf6HrpycnCIZqap58icREREREbmEAROGS/5zTZPy1q1bo127dnj77bdLzRW0WU9OTi72uYLbSjplsDQ8uCIiIiIiomrl4sWLSEtLKzUTFxcHAFi3bl2xz61fvx7+/v5o3Fh2KmwBnhZYyUb2+FqZ+fdjt1i3wZOnRbGAhQdFOaNrO2Wm0euyc9V1RbvMAgfeKN7R5a9ifhOVgj24liiX468+3cAzKEhUS/J9nu8pu3DSP+mYKGfl9ROwyU4bcP6eZN02LZQ5oLMo58hR/3XNd6nsgWbdiV8AWsaKYtqJs8qMPUT2+DeEjzPn8eJ/+furoO3qa/EAwGwWI8oZW3eJchJhszYrMycHdxDVCnm/+Bt1SSSnTRs56lOhAcAQXkviiFRfA+U8dlxUS8KZJLy2MkkWswtea6XvJ8Y26bWy6utljPPnRbWwUXY9oatJ3w/1ndZdf+aoEybKOU+ctGybVjr7sPr3ET0vB/hwiQv2pnx004DugkUl3bT0HREnTpxAnTrFr71duXIldu7ciW7duhXelpqaioyMDERFRRWe6te1a1fUrVsXs2fPxjPPPFPYjv23337DqlWrMHjwYLi5Xdkprjy4IiIiIiKiq85jjz2G1NRU3HDDDahfvz5ycnKwZcsWLFq0CH5+fpg8eXJhdtSoUZg/fz5WrlxZeNDl5uaGN998E/3798e1116LIUOGIDMzE1OnTkVoaCjGjRt3xfvEgysiIiIiohrs0jVXFb90ZfU27r33Xnz44Yf46KOPcPr0aWiahvr16+PRRx/F//3f/yEqSn22xF133QUvLy9MmDABzz33HDw8PNC9e3e89tprV3y9FcCDKyIiIiIiugrdfffduPvuu0XZefPmYd68eSV+7vbbb8ftt99uyT7x4IqIiIiIqAa71MnPNdup7tgtkIiIiIiIyAJcuSIiIiIiqsF004RuVvw1V67YRmXjwVUF6jrhYdjdS2+zO2bkfGUdx/niU6NL4uzWXh3KEbbkXr9dFEtrqm4jHGhvKKplOmTTy2P+T93i+NwgdXtUAPA7lifKuS3foszookqArW1zZSZws6ztrG5hi/WTTyWKcmHT14pySa+qfwYNRsvaVUvk9IoX5WqtTRHlDt+nblft/YWsRbal7LLniTP1hHWbbC6b8aHlqJ9PIe/JfubSt19J+2j9bOlzTgq3ma/ef98U6TNdyK4ebaB5eIhKmbmy9wrj9BlRzipaO9loCVPYVt/S0RJC4jbrFtHc1OM/ANljVkr6PJG2T5eQtli3sv2+VO5tccpM8Bz165nTzLdid+gqwoMrIiIiIqIa7GrtFlgV8ZorIiIiIiIiC3DlioiIiIioBjNgQufKlSW4ckVERERERGQBHlwRERERERFZgKcFEhERERHVYGxoYR2uXBEREREREVmAK1cVKHTNKTjspc8neSnoQWWd/Bdk8zWCvlTPxQj8cq+o1lnhnCjJzBrJHBoA2PO6bB5W42XqTK3dF0S17KfSRTnJVBV7o2hRLX3bbmUmv0cHUS23g4dFOXtYbWUmYvEhUS3T31+Us3KGlYTnaWtnTjkuqjNGl7ayWlsPiHJmM/VjyHYoWVRLMo0pc0BnUa2g7/eLcqbD9W8pOe3U95k9v76oln29+rnp+c1GUS1HtGybu59Xzwxq/Jhsm1JGjmvns9lTZXO1Mvt2EuW8v9hQnt25Klg5vwoAEN9Kndm4Q1RKOpvKSs6mUcqMtk4258oRqZ5hCABYukmWqyY4RNg6XLkiIiIiIiKyAFeuiIiIiIhqMOOPD1dsp7rjyhUREREREZEFuHJFRERERFSD6S4aIuyKbVQ2rlwRERERERFZgCtXREREREQ1mG5e+nDFdqo7HlxVIP1QEjTNrfSQVkdZZ2+Xj0Tbu3XwNcqMLShQVCtovqyN9vcp25SZ4akdRbWSF6hbyQOA1q6FMmNukrWUzRO20rYdOabMZDUNFdXy9vFUZtyWbxHVOn+PsJX2avX+Z7eoK6rl/v1mUc4REa7MZLWNENXy+FbQEnf9dlEtw89PlKs7+agyk9VP1jraJytLlLMfTlFm9HOydsMS0hbr+tk0y7ZpNc+N6jb3emamqFZOzzhlRnPKfjPItWuiXJ2fq+YJJI466hbxgKwtt1krQFRL2mJdi1O3Fbdly1qZ67v2iXK21k2VmVMJQaJablnqx1DAgvWiWjZP9fsJABjCNutWsglea43zslEzjjPqnGT8BAA4jx0XJonKhgdXREREREQ1GLsFWqdq/smMiIiIiIjoKsODKyIiIiIiIgvwtEAiIiIiohrMgAYdsmtFy7ud6q5KrlxduHABkyZNQqtWreDn54eQkBAkJiZi3rx5MM3LXwj6wgsvQNM0+Pr6lvj53NxcjBkzBtHR0fDw8EBMTAwmTJiA/Pz8ivpWiIiIiIiohqhyK1eGYeDWW2/F2rVrMWjQIDz11FPIzs7GJ598gsGDB2PPnj147bXXin3dtm3bMGXKFPj6+l72AKx///5YsmQJHnroISQkJGDdunUYPXo0Dh48iHnz5lXwd0ZEREREVPUY5qUPV2ynutPM0paCKsG6deuQmJiI4cOHY+rUqYW35+XloWnTpkhLS0N6enqRr9F1HZ07d0bdunWRmZmJzZs348KFC0UyS5cuRc+ePfHss89i8uTJhbePGDECU6ZMwZo1a5CYmGjJ95CZmYmAgAC0v3sC7O6lt0kNWKhutxq6NlC03RMvNVRmkm6XtTuP+VTWOvr7L2Vt4q10wwMPKzOa8FFtOGTL0znB6r9D1FqrbqMNAPl11e16bXlOUS3bAXWLdQAwYiKVGe2guvU4ACQ9o26DDABR49cqM/aQYFEt/cxZUc5K9kbRyox+8LCl29Tc1M9PM1/WYvrI+ARlJur7i6Ja2pptopxE8guy19mI19SPHyl7iyainLQtt0T6/er7HwCCt6gf2/puWct849p2opztl63qUOfWolrSEQhVlZWvQZqHh6iWmZurzNhDZaM99NOnRTm6cpKf58Wb2igzzvwcrP/vGGRkZMDf39+KXbNUwe+sm3eFwdev4k9ou3DeQMcWJ6vs/WGFKndaYOYf80jCw4vOyHF3d0dISAh8fHyKfc1bb72F3bt3Y/r06Zet+/HHHwMAhg8fXuT2gn8vWLCgHHtNRERERHR10v+45soVH9VdlTstMD4+HoGBgXj99dfRoEEDdOrUCdnZ2Zg/fz62bNmCd999t0j+yJEjGD16NF555RXUr1//snU3bdqEiIgIREYW/Qt+ZGQkwsPDsWmTYEjpZdStW3T4qmHUhC7+RERERET0Z1Xu4CooKAhfffUVHnnkEdx9992Ft/v5+eHzzz/HnXfeWST/2GOPoWHDhnj22WdLrZuSkoLmzZuX+LmIiAgcP86J3URERERU87hqVYkrV5XE19cXLVu2xB133IHExESkpaVh5syZGDBgAJYsWYIbb7wRAPDJJ5/gu+++w+rVq+FwlP6tZGdnw+My5896enoiOzu7zPubmppa5N8F568SEREREVHNUeUOrnbs2IHExERMnToVw4YNK7z93nvvRcuWLTFkyBAcOnQIGRkZGD58OB5++GFRIwpvb2/kXuYi0pycHHh7e1v2PRARERERXS0MU4NhumDOlQu2Udmq3MHV1KlTkZOTg7vuuqvI7d7e3ujZsydmzJiBpKQkvPXWW8jKysKQIUNw8ODBwtzFixdhmiYOHjwIDw+PwmuswsPDkZycXOI2k5OTERERUXHfFBERERERVXtV7uCq4ABI1/Vin3M6nYX/P3LkCLKystCpU6cS68TGxqJFixbYuXMnACAuLg4LFy7EsWPHijS1OHbsGFJSUnDHHXdY/a0QEREREVV5vObKOlXu4Kp58+ZYtmwZ5s2bh+eff77w9vT0dCxZsgRBQUFo1KgRXnjhBdx3333Fvv6VV17B77//jo8++qjIdU/33nsvFi5ciGnTphWZczVt2jQAwMCBAy3/XgK+2AqH5lZqRjKOaePPzUTb27/wHWUm8dlhygwAOH1l87Akcs18Ue799Eai3I8fzlFmWv/rcVGtiBXnRLmsOoHKjDNJNifKLUc948TIPC+qpUuvFdy6SxlJfk42f6jBV+minJ6gnv9hbN4jqqUprqkEANMpnA3Wsqkop+/cq8zYm8ges1mxtUQ5z282inISUf9VPza0db+Jatlj1TP0AEA/8LsyE/qb7PVAyh5WW5mRzq+SzMOS1nK/IOsamxfmq8zYd4tKyeZXSVXh+VUX74xXZry+lD2XpDP0jK7qGWK2n6y7//UzZ0Q5R4MoUU76/uRqttay12Nju/r12GqSeWSeX6sfZ07h70BUfVS5g6vhw4fjww8/xMiRI7Fjxw5cc801SEtLw6xZs5CamoqZM2fCbrcjIaHkAY0zZszAkSNH0K9fvyK39+zZE7fffjumTJmCjIwMJCQkYN26dZgzZw7uu+8+dOnSxRXfHhERERFRlaLDBt0F42+Ln5dW/VS5g6v69etj48aNGD9+PFasWIFFixbBy8sLbdu2xeTJk9G3b98y1168eDEmTJiABQsW4KOPPkJERATGjx+PkSNHWvgdEBERERFRTVTlDq4AICYmBvPnzy/T165ateqyn/P09MSECRMwYcKEMu4ZERERERFRyarkwRUREREREbmG6aJW7GYNaMVe8SdXEhERERER1QBcuSIiIiIiqsHYit06PLiqQFrzRtDsHqVnDhxR1olZlCHa3ms9Y5WZtVPeFdW648AtotzDR9VdFn/6pZWoVvRXOaLcU59+oMxsf+5tUa2EVFlr+qD560Q5ibQbopUZr1Oy1q1uy7eUd3cKhf9rrSgnazANuNUJU2ac+XmiWpqbdaMBDEGLdUDWst1ws4tqWdliXUrSZl3aSh6mZGiEjMdKWYtv6RY1t9LHXVwJw1v9OHNE1hPV8v7PhvLuToVxRIQrM87kFBfsSVFanOy9Qtpm3Ur2TPVrlZGoHj8BALaN6tEYud3bimrh+82ynIWkzwHnsePKjLFDNtrASvaQYFkw0F8Z0Q8eLufeUHXEgysiIiIiohpMN23QTRe0Yrfub3VVFq+5IiIiIiIisgBXroiIiIiIajADGgwXrLkY4pO+r15cuSIiIiIiIrIAV66IiIiIiGowdgu0DleuiIiIiIiILMCVqwpkbN8LQyt/m+D0VgGiXA9fdXvX1862ENX6KvY7Ua7F9MeVmQbrZC3WL9QrvW19RVg3WdaavnHvB5SZhvfLWnz7f7xelJM4+3CCLNdF3Ua46ZsXRbWMbbtFOeeJk8pM/k0dRbXclqnbDWfc11lUK2CB7P53BnspM7aftopqSdq6AwAOJikjRo7s+SSh7zsoytkbqccHSJ0c0kGUq7tI1qLZvHChPLtTtNamHeqMhfeFlKN+pCxoyK5lML09y7E3FUdy/wOAvXGMOpRxXlRLP3lKlDO3qt9fHUFBsm06ncqMu7DFuj1Q9vvBhW5NlBlpi/vUnrLHY+i76lbsVo55sMc2FOX0A7/LCp45W469ufq4rlsgr7kiIiIiIiIiAa5cERERERHVYJe6BVb89VCu2EZl48oVERERERGRBXhwRUREREREZAGeFkhEREREVIMZsEHnEGFLcOWKiIiIiIjIAly5IiIiIiKqwdiK3To8uKpkKc8lKjPh/1orqnV3u6eVmciWJ0S13vv5BlGu1hn1k8R9j2DWBQD7Ktm8kVb11LO1vE7LnrzvvzJNlOsVu1OZ6bTrkGybj/5NmTHssm46+b6yXOPBW5QZW3R9US1DlJLN5rEfzxTV0gUZ6fwqKbfd6sfticdkc8ZC31lX3t0ptP/teFGu2cwMZUbfJZslpR88LMolv6B+PYt4TfZ6JvmZA4CjXoQ6lK6+LwDZrLSgz7aJaknnD2lBgcqM8/ARUS1L2eyimCMs1LJN5jYNlwVX/mrZNq2knzsnytn9/dW1LmSJammespllkhlW6Q/IXs9qz1G/nwCw9OQvm5+fMiOdX2UPqy3KSWegEf0VD66IiIiIiGowAzYYvObKErzmioiIiIiIyAJcuSIiIiIiqsF0U4NuVvyAX1dso7Jx5YqIiIiIiMgCXLkiIiIiIqrBdBfNudJ5zRURERERERFJaKZZAxrOu1hmZiYCAgLQ6fbxcLiV3iZV0h4153ZZ62WfQ+o2sGmTZT/uoH4popyRna3M2IOCRLUQIsuZPurWswfuV7e6BQDP07K/L+x8+m1lpuEPD4lqNXtR3Q7/y41fi2rd2aWvKAdNfY6z4S1r6Wv4uotyTm83ZcbjaJpsm0nHlBnT6RTVkjo3SN2WOGi+rMW6Q9jmXtJyuyq3EbaHqttyO2Nl7bZ1L9mJFY4V6rbQ+vXtRbXsghbf6ffL2lUHfiR7bGgO9fcpfWw7u3cQ5Tz3n1TXOiYboVEZbC2bKjMXYmWt8L3/s6G8u1Mh7CHBsmBeviimZ8rGXriamdhGlNPW/qbM2Js0EtXS9x0U5aziNPOxCkuQkZEBf0Ebflcr+J117q/t4O0nG8FQHtnndTzUfmuVvT+swJUrIiIiIiIiC/DgioiIiIiIyAJsaEFEREREVIOxoYV1uHJFRERERERkAa5cERERERHVYAZcM+DXqPAtVD6uXBEREREREVmAK1cVyNQ0mIoW2PZmsco6nt+o27UDgC7IuL8na+tuNvEQ5bB1lzJy/KFmolJ1J68V5eyB6ha7MSN2i2odmC9r0Szx+41zRbkpHRoqM26arB3qOz8tFOWGRHVRZk4tUbc3BoALe3xEuaC96ozH1nRRLVtDdStz01v2mNWSkmU5wZ/XpK2vIWgXDgDOG9T1bGeyZNushFbsCAlURiQtlQH5m1PUBvXj8WgndYt1AHBE1lNmpC3WpfZP7qjMNPhW1ordbdlmUU5STYtrJaplbtqhzFy4q5Oolu9iWVt0Y6f6xcX/nKzlv3SAg715Y2VGy86RbTPpqDKjnzkrqlUZHBHC+zZZPdLFtlH9OwQAaH5+yoyrW6xXNwZsMFyw5uKKbVS26v8dEhERERERuQBXroiIiIiIajDdtEE3XdAt0AXbqGzV/zskIiIiIiJyAa5cERERERHVYAY0GHBFt8CK30Zl48oVERERERGRBbhyRURERERUg/GaK+tU/++QiIiIiIjIBbhyVYFOdbTB5ln68av3l9bNZTAT2ygzurvsXFdblmxehx6vnoUinl8VFCTKne6jnsdUa65sFk3ABk9RLjprqDJz+M73RbW8bbminESUw1eU2/+uer7Zm80XiGqNWf6gKBf6Q5Iy4zx3TlTL4ameYXWyW21RrTrpF0Q5K+cZ2YNryXLH05UZff+hcu7N/9haymab5YXJZptJ5nlZPfPoaILstUrCPH9emTk+KlFUyyfVFOVi/65+nF3sLZtP6EhQvwcAgLZOPWvMlpEtqmW2Uc8xlP4spRz1IpQZ53HZPDspffd+S+tdzcy8fFHO3qKJutbhY6JahuC5aTXJ48zMUj9PTDMPkL3VVSodNuguWHNxxTYqW/X/DomIiIiIiFyAB1dEREREREQW4GmBREREREQ1mGFqMEwXtGJ3wTYqG1euiIiIiIiILMCVKyIiIiKiGsxwUUMLowas61T/75CIiIiIiMgFuHJVgRq8shEOza3UjN3fX1lHz8wUbU9bq26v6+fmLqoFL1mLckeWoBV4RLhsm0K1V6YoM6cHJYhq5avvfgBA0+d2KjPtdj4uqpV1bZYy868UL1GtgP2yc5cPv/KOMhP93SOyWqPeFuWim6vb1zf/p11Uy3lE3a7XLbuBqJZ50brW3c7uHUQ5x+9nZPUsbLOuX99eHVr5q6iWx2lZm/vjX6rbcuNn2c/c/eaOopzbBacyo63ZJqqlp2coM/X+IRstkSfcfwmvJRstqwUAjvqRyozzwO+iWrZW6nbbUmcflr1u+6aqf+Yewlbs9tBQUc7ZSP0+JmlxDwA2T/X7q5Fj3euUlD0wQJTTz8hez3D6tDIiuS8uBQWvG4YuqyVkVTt/3ZS1rq9shmmD4YIBv67YRmWr/t8hERERERGRC3DlioiIiIioBtOhQUfFd/JzxTYqG1euiIiIiIiILMCVKyIiIiKiGozXXFmn+n+HRERERERELsCVKyIiIiKiGkyHa66HsranY9XEg6sKlHFvPOzupbcZDdohaLO+dZdoe0aXtsrM+fqytqcBH28Q5SBoE29vFisqpeXkiXJGgI8yEzR/nahWkCgFZNzTWZmp/esFUS19j/pp57ZZ9jM3m9QX5WIWDVNmYj+7KKr1czdRDId7v6/MNMx/VFQrYK+6dXTtt2UtsqUv7La2zZUZx4otolrqxtF/bNPCFs12YZt1ieyOssfZ1FZzlZnu8bKfQLP3ZaMNfI+UPu4CAGqtEZUSudg7XpSzsn26o2EDWTBb9hyWjDaw+ahfZwHA2L5XlJMI/kB4n1nYctvMUo/GAICseurnpmAwCQDZczjvljhRLffvNgm3qiYZRQBcwWNDcN9qPt6iWshJk+WspAkONEyz4veDrjo8uCIiIiIiqsF4zZV1qv93SERERERE5AI8uCIiIiIiIrIATwskIiIiIqrBdNMG3QWn7LliG5WtSn6HFy5cwKRJk9CqVSv4+fkhJCQEiYmJmDdvHsw/Lh7MycnBrFmz0Lt3bzRo0ABeXl5o2LAh7r33XuzZs6fEurm5uRgzZgyio6Ph4eGBmJgYTJgwAfn5+a789oiIiIiIqJz279+PMWPGoHPnzggNDYWfnx/atm2LiRMnIkvYsMY0TXz88cdITExESEgI/Pz80KJFC4wfPx6ZgsZtf1XlDq4Mw8Ctt96K0aNHIy4uDpMnT8bLL78MXdcxePBgjBw5EgCQlJSEoUOHIi0tDQ8//DBmzJiBe++9F99//z3atm2LlStXFqvdv39/vPrqq7jhhhswc+ZMdOvWDaNHj8aQIUNc/W0SEREREVUJJjQYLvgwLW73PnfuXEydOhUxMTEYM2YM3njjDTRp0gQvv/wyEhMTcfGiuovqyy+/jIEDB8LLywuvvPIK3njjDbRq1QqvvPIKbrrppsKFHakqd1rghg0bsHr1agwfPhxTp04tvP3xxx9H06ZN8d577+G1115DaGgotm7dirZt2xb5+oEDB6Jdu3b4v//7P2zevLnw9qVLl2LJkiV49tlnMXnyZADAI488gsDAQEyZMgVDhw5FYmKiS75HIiIiIiIqn379+mHUqFEICAgovG3YsGGIjY3FxIkTMWfOHDz55JOX/Xqn04lp06ahffv2+OGHH2Cz2QprOBwOLFy4EL/99lux443SVLmDq4Llt/Dw8CK3u7u7IyQkBLm5uQCA4OBgBAcHF/v65s2bo2XLlti5c2eR2z/++GMAwPDhw4vcPnz4cEyZMgULFiyw/OAq4JONcGilz2Cx11fP75HOyLkQqZ7DEbBwvbCakGAOhL7ngKWbPPF39c8pIjlUVEs648RvkXX32/kHEpSZwJXnZcW2yOZhafd0UmYcGbL5Sf+8tZ8od93Kz9TbvCBbPNduOavM2FfK5qktXbFYlGv2rvpxFrVNVEpMMv/mzKPqxw8AnGtlKDOxT29WZgDgSD91LQA4q6sn/fxbNg4OLbrvF+WifdSPjd3L64lqGcH+yox0ftXRMbL3k+hPTigzzgO/i2pZSTKjyGpam6ainCmc/ShhZGeLcgE/Ct7HhDMdJe+JVs6vspqVjw39bCXMr5KqYTOsrtZrrjp27Fji7f3798fEiROLHQ/8VX5+Pi5evIg6deoUHlgVKDgW8RHOditQ5Q6u4uPjERgYiNdffx0NGjRAp06dkJ2djfnz52PLli149913S/16wzCQmpqKsLCwIrdv2rQJERERiIwsejATGRmJ8PBwbNpUdV/IiIiIiIhI5vjx4wBQ7Hjgr7y8vHDdddfhu+++w2uvvYa//e1vcDgcWLVqFd5++23cd999iI2V/eGkQJU7uAoKCsJXX32FRx55BHfffXfh7X5+fvj8889x5513lvr17777LlJTUzF69Ogit6ekpKB58+Ylfk1EREThD6Es6tatW+TfhiH7Ky8RERERUWUzTA2Gae31UJfbDgDExsYWWSlKTU21bBu6ruPVV1+Fw+HAgAEDlPmFCxfiwQcfxMiRIwt7O2iahpdeegnjx4+/4u1XuYMrAPD19UXLli1xxx13IDExEWlpaZg5cyYGDBiAJUuW4MYbbyzx69auXYtnn30Wbdq0wYsvvljkc9nZ2fDw8Cjx6zw9PZEtPDWAiIiIiIiqpuHDh2PdunWYNGkSmjRposx7eHggOjoaDzzwAG699VYAwOeff44JEybA09MTL7300hVtv8odXO3YsQOJiYmYOnUqhg0bVnj7vffei5YtW2LIkCE4dOgQ7HZ7ka/bsmULevbsifDwcHz77bfw9Cx6/ZG3t3fh9Vp/lZOTA29v7zLv81+PtjMzM4tcWEdEREREVFXpsEF3QRPxgm0cOHAA/v7q61yv1OjRozFjxgwMHToUo0aNUuazs7ORmJiI9u3bY9GiRYW333PPPbjnnnswZswY9OvXT3SQVqDKtWKfOnUqcnJycNdddxW53dvbGz179sSRI0eQlJRU5HO//vorbrzxRgQEBGDlypWIiIgoVjc8PBzJycklbjM5ObnEryEiIiIioqpv7NixmDBhAgYPHqzs0VDgs88+w4EDB4oddwDAXXfdBcMwsHr16ivajyp3cFVwAKTrerHPOZ3OIv8HLh1Y9ejRA35+fli5ciXq169fYt24uDgkJyfj2LFjRW4/duwYUlJSLttthIiIiIioOiu45soVHxVh7NixGDduHAYNGoTZs2dDE3SzBq78uEOiyp0W2Lx5cyxbtgzz5s3D888/X3h7eno6lixZgqCgIDRq1AgAsHXrVtx4443w9fXFypUrER0dfdm69957LxYuXIhp06YVzrkCgGnTpgG4NB+rMjiPHFNmtMtcK/ZX/p9Y3GZdwBFeV5kxvWT77wyVLQ87BWdw6qdPi2rZQ4q38y+JI7iWMuM8JmuKErz+lDJT/CleMrufnygX85z6sZFzk+wPDEdvlr1s3Na9+F+B/kobK2vp2zRYfZ/tu1bWxlkqN0z6U1A7PkrWlrvOhpJPXS6SWSJry53WtuQ/NBXJDIoX1Tp88zuiXMNlDyszPrtkrwed+/0myq07dfnX/QJv//KxqNb/NeiszBycps4AQKPha0U56x5lgHlNW1HOvv2QulZenqiWLUb9ONN3y9rqW9liXUpzyF7PJC3D7bVl7ycS9kDZpQUXO8m6mHnvFrT8F76H2dqW3Bzsr4xtu5UZR906olrOVPX+SxnXthPl3HYmKTP6uXPl3Buywvjx4zFu3Djcf//9mDt3brGW6gVSU1ORkZGBqKiowsuBCprdzZ8/v0gjvYLbgEsLNFeiyh1cDR8+HB9++CFGjhyJHTt24JprrkFaWhpmzZqF1NRUzJw5E3a7HUeOHMGNN96Ic+fO4emnn8batWuxdm3RN7M+ffoU9qbv2bMnbr/9dkyZMgUZGRlISEjAunXrMGfOHNx3333o0qVLZXy7RERERERUBjNnzsQrr7yCqKgo9OjRo3CubYGwsLDCRnijRo3C/PnzsXLlSnTr1g0AcPvttyM+Ph5Lly7Fddddh759+wIAvvjiC/zyyy+466670L59+yvapyp3cFW/fn1s3LgR48ePx4oVK7Bo0SJ4eXmhbdu2mDx5cuE3ffjwYZw9e2l45NixY0usdfjw4SKDvxYvXowJEyZgwYIF+OijjxAREYHx48cXtl0kIiIiIqppDNhguOBqIau3UTCn9ujRoxg0aFCxz3ft2vWyXcYBwG63Y/ny5fjHP/6BL774Ai+88AI0TUNsbCxee+01PPvss1e8T1Xu4AoAYmJiCpfiLqdbt24wr3B6tqenJyZMmIAJEyaUZ/eIiIiIiKiSzZs3D/PmzStX1s/PD5MmTcKkSZMs2acqeXBFRERERESuoZsadBcMEXbFNipblesWSEREREREdDXiyhURERERUQ1WkW3S/7qd6o4HV5XM3kzdRjWvjqzdtkfSWWUm5VbZsOTab8vaCB98XN2Gt8FL60S1tIOiGOrJyonoZ9T3GQDYmzdWZs49mCCqdTpBPS+h8aPqVskAoGdminK2PzV2uRzPrUdEtRpvFcVghqnbEt/VRFZsQu0dyszTQy+Iai06HyTK/d7nPWXm5ifaimq5nxfFcKaVuk153ZdlL9vaUUGT77+li2oNPnqtKNfoPfVj25EhuzN+bKN+zgGA/binMmM0kb2ZHx2rbplfp6msJXRuT1nrXo/TOcqMLSdfVCs7yF2U8/H2UofyZduUtlmvqswrnF9TGn3PAetqpWeIcl6HZO9hkjbrp4fJ3sNC35W9Cds81c9NK1usS9vq236Rve9YOSaBahYeXBERERER1WCmaYNhVvzVQqYLtlHZqv93SERERERE5AJcuSIiIiIiqsF0aNDhgm6BLthGZePKFRERERERkQW4ckVEREREVIMZpms6+RlmhW+i0nHlioiIiIiIyAJcuSIiIiIiqsEMF3ULdMU2KhsPripQ7k3tobuVPufBY+kmZR2PHPUsKQBwHlbPKfI9UUdUS6reijxlJnWEenYMANSdIhxgZVq3pmyPbSjKGV5uykzQPNn+B29uqt6eqJKckZWlzDhqh4hqSR5nAIDTp5WRRT90EZX6rH5bZcbNTTaVZMVG2fyhe556W5m58J3s8VPnLvWcLgBovkr9c/o5tZGo1u83zRHlJG7qN0iU073VbynaOtlcpEb3iWK4fdc5Zaath3p+GAC8fO+nysxt3sdEteIHPi7KeW1RzzGMeF/2+PH0VL9OAYB+8pQo52rp98vmLAUvU88BrKrfIwDYg2spM3qMbCaldjJdlDszVH3fSudX2f39RTlNME8tr0ULUS3dQ/0LueT3KQCwBwbItimYNWYPUs9NNM08QP0yRdVI9T98JCIiIiIicgGuXBERERER1WAGNBguaJPuim1UNq5cERERERERWYArV0RERERENZhuatBd0IrdFduobFy5IiIiIiIisgBXroiIiIiIajC2YrcOD64qkMeyX+HQFK1xO7dW1tn3Nx/R9mL+T90i2/uLDaJaubfK2lXbdHVb9JwQWet0aVv0tPhQZSZw0WZRLT1Idt9i825ZTsDYudeyWlrHlrLcnsPKjLTFur1ZrCin7zmgzET9kC+q5Z6mfgxdrOMrquV56rwoF91giDLz9y4/iGp98NBtotx/66rbv49z5IhqtdowQJlpV+e4qNa5pt6inCHoBO7rHS+q5Z4ue2wsHZirzMzq3lNW6++vKzM/5cjGWazoMkOUu3XH88qM2bSBqJbuI2vF7i54rdUP/C6qZfNWPzaM7GxRrcCPZK3AZUMXZGyt1aMxAMDco74/7HVqCzcqOC1qo6z9vtNmF+VC3peNEJDQMzNFOU3wc3esOCmq5SFo/y59XEharEvp59Q91nVT9lpG1QcProiIiIiIajADGgwXXA/FboFEREREREQkwpUrIiIiIqIazHTRnCuTK1dEREREREQkwZUrIiIiIqIazDBddM0V51wRERERERGRBFeuKtv67cpIzHrrNidtO+ueKWsdaj+vbgvtnVJLVEvff0iUy70xTJk59rys3XPkD7K23JLWuaYhLOXpqcwYObJ22+bmnbJcfCt1SNj6N7+2rOW5m62JOrRM1jIfHVooI57fbBSVOvdggigX++FFdaiLqBSa3S1rvz/k2DXKzPrP24hqhf9LPXZh64hOslpz14pyjjrq56bzhKz1shYneMwC0L3V7ccjvk8T1brVpm6L7nZeNloi4LDsNXTXB+r2+52OPyaq1fv/fhTlvhvdVZnxErZil7ZZF9Fkf9FOv6+zMiNt625st240BpxO62pJGVY2preWKbg/pCNYtIvqkQuQtoj38BDlcrqrR+V4LN0kqnU14Jwr61T/75CIiIiIiMgFeHBFRERERERkAZ4WSERERERUg7GhhXW4ckVERERERGQBrlwREREREdVghouGCLtiG5WNK1dEREREREQW4MoVEREREVENxmuurMODqwqktWsGza6YpyCYjZRyQ4Boe5LHa+QHspke2lnZXBj4+Cgj4cdkc21ODZHNH6o9Uz1zZ/+sOFEtbN0jiknmdUhJZ1hZ6Vxz9WyqIMjmCtl+2irKWTl9JaeOtzLj1ba5qFbIN/tlGw0OUkZmf3ibqFS3fltEuQNx6lkuAf2E96xg/k3kbNnjX/qzNGupX6vSb5LNtQn8UDanyBFWWx0KUf8sAaDeD+nKjLFtt6iWVMPlDykzv7/2jqjWiot2UW72DdcrMw2yOohq5dZSzxnz/bdwWKMpmyFW60v1fD/h2EFLOVNPVMJWrXPqiURRru7CXaKcnp6hzgjnqUnYQ4JFOf3MWVGuOs2wItfiwRURERERUQ3GlSvr8JorIiIiIiIiC3DlioiIiIioBuPKlXW4ckVERERERGQBrlwREREREdVgXLmyDleuiIiIiIiILMCVqwpkbt0DUyu9TW3yC+rWpxGvqVuPA4C9RRNlRvP0FNWSSnqujTIT8bOs9XjYsuOinKQpetNnZS3n0+/qKMr5fyJsJWyR8/07i3IBu9JFuaB56rbW9uBaolpagyhRLj0+XJmRtmj2+FbdElcLlI0skLQHBgAI2vV6poWKSm08JbvPgnBAmQlYd0xU6/yd8cqM7wHhfXHunCwnaKUtbbEupZ88pczY8/JFtWy+6tESJx6Xtauu/bbsddsUtE/fk5ctqvXIir+LclNvW6DMjGtwu6hW7d7q11pby6aiWsZO2eu2cf68KCfhEL6eOZOOWrZNK9mbxYpyWY3U4wgkY04A+WiGvJvV76/u328WVlOTtliXMq5tp8zYfpGNJqGahQdXREREREQ1mAnAQMWfsiebZnd142mBREREREREFuDKFRERERFRDcaGFtbhyhUREREREZEFuHJFRERERFSDceXKOly5IiIiIiIisgBXriqQfm0baI7SW59H/HRBWUfr2FK2PYf6WDkv0l9Uyz05RZQL26huceyekimqld2sjijn7VQ3gnUK99+RK+tbk92nkzLj/Z8Nsm1G11dmApZsE9UycmRt7m3e3sqMfjZNVAvCnO/RZGVGcl8AgDNM3WZdX79dVCu3Z5woJ2n/HjxL1lb8XH6CKAdBK3bpY9tLkgsJFtWSMt3UbcWPjpG1Mo8aL2sLLWKX/R3RvJClzOjWTrNAkyd/U2aG9npGVKtBlqxJdqdbTigzU1v+W1Tr71/2V2bq3LlHVMvWWtiyfbu6ZfuZR2XPubAvDopy9sYxyowmeG8CAOfvSaKchHHgsCiX2179XHd07yCq5b5mlywnaLNudFW3OwcA20+ub3nutuN3ZUbalv5qwJUr63DlioiIiIiIyAJcuSIiIiIiqsG4cmUdrlwRERERERFZgCtXREREREQ1mGlqMF2wquSKbVQ2rlwRERERERFZgCtXREREREQ1mAENBlxwzZULtlHZuHJFRERERERkAa5cVaDUzp6we5Q+FKXBZ6eUdfR9wjkcgepZQJ45uaJahigFeK1WzxtJ79lCVMv3mGxmk2TOj3R+kv+2k6Lcqa511bUaRIlqOQ8fUWYu3KWeqwUA/vtlM8R0H3dlRlurnrcDAOn3y+bHeJxXTwBxy5RNCfE4cV6ZMeJayWoJ5ldZLWiven4SABwbrZ4BFfmqbP6TrW1zZUbftltUS8rco54L0/DUOVEtp3Cb9maxykx2dKColsdS9WMj8uNDolpHRsrmeUX8U/3z9DminocIALmh6nl2ANBt/v8pM45s2V+XAw5L3y3UJPOrACDrb+rXR7/jskeQUa+2KHeupXpGZNC/fxXVOn9PZ3WtX46Kaunhsll1AQvXi3IS1v3ErZ1f5YisJ8ol3Sd7r476Vj3T0V5X/fgx9Vxgn2iTVE3w4IqIiIiIqAZjK3br8LRAIiIiIiIiC3DlioiIiIioBmMrdutw5YqIiIiIiMgCVfLg6sKFC5g0aRJatWoFPz8/hISEIDExEfPmzYNpmkWyGzZsQI8ePeDn5wd/f3/ccsst2LZtW4l1U1JS8MADDyA0NBReXl7o2LEjFi9e7ILviIiIiIioaiq45soVH9VdlTu4MgwDt956K0aPHo24uDhMnjwZL7/8MnRdx+DBgzFy5MjC7Pr169G1a1ccPnwY48ePx7hx43DgwAFce+212LFjR5G6aWlp6NKlC7744gs89thjePPNN+Hr64u7774bH3zwgau/TSIiIiIiqmY0869LQZVs3bp1SExMxPDhwzF16tTC2/Py8tC0aVOkpaUhPT0dABAfH4+9e/diz549iIiIAAAkJyejWbNm6Ny5M5YtW1b49c8//zzeeOMNfPXVV+jVqxcAQNd1JCQk4NChQzhy5Ah8fX0t+R4yMzMREBCAHvWfgMPmUWo2JyZUWc9z3wnRdp0pgpwha31tJa2DrBW7uWWXKJdxn7qNbcACWdtZR0S4KCdp/37qcVnr5dpvq1sv24NriWqduLuJKBf6zjpRztXsjWNEOdPdTZnRTpwW1Tp1Z2NRLq21uuFw44+yRbXMTTvUISG7v7olNACc7a1+3nmlydpVi9vXd26tjNi2y0ZLaIKfOQDo6RnKzKGF7US1Ygaq20Kb17QV1dLWbBPlJGw+PqKcs6PssS1pf33oX+rXWQDwTlH/jbbuFNn4ACl7qPp9Uz8tez2wks2z9NErBYwc9diRvFviRLW8jqSLcsk3qe+zOm/Kfk769e1FOftKdWv6Q5Nlj7Pwn9Wvx15LNopq5d3cUZRz/36zMmN0Vb+2OJ05+Hn1q8jIyIC/8PXblQp+Z+3w+TNw+JT+O6sVnFm52PK3qVX2/rBClVu5ysy8NLcnPLzoL73u7u4ICQmBzx9vMgcPHsSmTZtw1113FR5YAUBERATuuusuLF++HCdO/O9g4+OPP0ZMTEzhgRUA2O12PPXUU0hLS8PSpUsr8tsiIiIiIqJqrsodXMXHxyMwMBCvv/46Fi9ejKNHj2Lv3r0YNWoUtmzZgrFjxwIANm269JfUhITiA007d+4M0zSxZcsWAEBqaiqSk5PRuXPxv5AU3FZQryzq1q1b5CM2Vj3UkoiIiIioKjBddL1VTegWWOVasQcFBeGrr77CI488grvvvrvwdj8/P3z++ee48847AVxqTgGgyKpVgT+fInilWSIiIiIiorKocgdXAODr64uWLVvijjvuQGJiItLS0jBz5kwMGDAAS5YswY033ojs7EvXOnh4FD8/1POP854LMleSLYvU1NQi/y44f5WIiIiIqKozAbiiC0OVavRQQarcwdWOHTuQmJiIqVOnYtiwYYW333vvvWjZsiWGDBmCQ4cOwdvbGwCQm5tbrEbOHxeLFmSuJEtERERERFQWVe6aq6lTpyInJwd33XVXkdu9vb3Rs2dPHDlyBElJSYUNL0o6na/gtoJT/q4kS0RERERUkxjQXPZR3VW5lauCgx1dL94y3Ol0Fv4/Lu5Sm9J169bhkUceKZJbv349NE1Dhw4dAFxqOBEREYH164u35y64rWNHWWvOK+E8chzQSm8nnHmD+qDO/azsFMPs+HrKjGbIFmS9vpS1NJWQtliXqvXD78qMtOG8pMU6ANgD1T+DustSlRkAyO3eQZlx/H5GVKvOj7J2w5L7Q9oWXd9/SJQTcdhFMWPnXss2GTxb1pY+f7i6tb6VLdal9D86qqoEfuT69vvJXdXjLCLWy07Bzr6lkyjn/6v6edf4ySRRLcnzRNpiXXNzF+XM/Dx1Ji9fVEvSYh0A7EFB6lp5sl+A/vX4LGXmzY9vENVynjgpyh0c0UiZiX1T9triPCl7Dc29Vd1+XDyyQMD9O1ktrX6kKFfv8yPKjGwwA+B+4rwoJ3k+xYyQjU3Z/068MhM6VNZMbEmraaLcwx36KDOZ4erW5Xp+TTgRjv6syq1cNW/eHAAwb968Irenp6djyZIlCAoKQqNGjdCoUSN07NgRixcvLmxYAVxqXrF48WLccMMNqFOnTuHt9957Lw4dOoSvv/668DZd1zF9+nQEBgbitttuq9hvjIiIiIiIqrUqt3I1fPhwfPjhhxg5ciR27NiBa665BmlpaZg1axZSU1Mxc+ZM2O2X/iL15ptv4vrrr8e1116Lp556CgAwffp0GIaByZMnF6k7cuRILF68GAMGDMCzzz6LiIgIfPLJJ9i0aRNmz54NPz8/l3+vRERERESVzXRRm3S2Yq8E9evXx8aNGzF+/HisWLECixYtgpeXF9q2bYvJkyejb9++hdnExESsWrUKL7/8Ml5++WVomobExEQsXrwYbdq0KVI3ODgYa9aswciRIzFz5kxcuHABzZs3x6JFi9C/f39Xf5tERERERFTNVLmDKwCIiYnB/PnzRdmEhASsWLFClI2IiMBHH31Unl0jIiIiIqpWDFOD5oJVJaMGrFxVuWuuiIiIiIiIrkZVcuWKiIiIiIhcwzRdNES4BjRP5MoVERERERGRBTTTrAnHkK6VmZmJgIAAdENvOBRzrmze3sp6RrZsLgw0wXmslfDjlnyPAGT7D8DIyirH3hR1/EX1LCMAaDDXutlOklkuSa8miGpFfyGbeWTLylFmTnWtLapVa5fs8eg4IJghVruWqJZ2Nl2ZcUbJ9h8bXT+bykpmQht1CIBjT5Iyo6dnlHNvrpz09UD8uifRubUst367MmIPlj1mz97WRJSr9ds5ZcbYbt2cN6sd/of6tarWLtn7Tr6P7D0grZ16gpKWK/vbcaN/q18bAfl8s6oq72b1LM8LEaX/vlIgeOGvopwWG63MpLcOFNUK2qh+3zw3XfYzb1nrhCjn77iozHz7rXoen56Tg98nvoSMjAz4+/uLtu1KBb+zNl/0POze6rld5aVn52L3Pa9X2fvDCly5IiIiIiIisgCvuSIiIiIiqsE458o6XLkiIiIiIiKyAFeuiIiIiIhqMM65sg5XroiIiIiIiCzAgysiIiIiIiILlOu0wL179+Lo0aM4c+YMvLy8ULt2bbRq1aratla8UkZCKxgOz1Iz2obdyjpHx8jahUdP36PMnLtF1h7Y/5P1opzEub6yNsg+qfminNvqncqMmZsrquWeLoqJ2qfvfy9OVKvxo+paDUavE9WSNtZXNy4Ggvdb124eALQGUcrMmfaytta1Pj+mDgla9VYH9izZY7sy2qw7IuspM85jx0W18nt0EOU8TqhHMxiCFusAYCaq29zra38T1fI5KXs9k7RZz7ivs6iW+3lDlPNaslGUk9Aaqu//9YM+FNW67vGhotyWO95XZjqMe0xUS9pi3da6qTJjeshamZub1OMgtHYtZLW27hLl3L/frMwEXdNWtk3h+6u5U/3YPvFEvKhWxGPnlZnDPzQW1VptCxPlcuo4lZkF981UZrLOG7h1omiTlYpDhK1zxQdXP/74I+bMmYPly5fjzJkzxT5vs9nQrl079OvXDw899BBCQkIs2VEiIiIiIqKqTHxw9cUXX+Cll17C/v37YZomIiIi0Lt3b9SpUwe1atXCxYsXcfbsWezduxfbtm3D5s2b8corr+CBBx7A+PHjERYm+0sBERERERG5zqWVK1e0Yq/wTVQ60cHVddddh9WrV6Nly5b45z//if79+yMq6vKn/OTl5WHlypX46KOPsHDhQixatAgfffQR7rjjDst2nIiIiIiIqCoRHVxlZ2fjm2++wW233SYq6u7ujptvvhk333wzTp8+jX/+85/Yv39/uXaUiIiIiIisxyHC1hEdXG3erL4Q8nJCQ0MxefLkMn89ERERERHR1YBDhImIiIiIajAT8g7E5d1OdVemg6vx48fD29sbTz/9NNzd3UvM/PTTT/jpp58wZsyYcu3g1cyep8Oul94E2+jYTFknJ1rW9jS7cyNlJvArdQtYAJA19JU511S2BJznV/Jj6a9CV6jvD2kb27orT4tyklbmjR/7VVRLwlG3jijnTD1h2TalNIfsZSOrhbqJTeBHspbzksdj0qsJolrSNvfQBI9b4ZW5johwUS6/QW1lxpC2jvbzU2b0Vg1FtbLqeYlyvv+2boSD2/ItopzksfH767LHRuPp6pb/6ubMl7gtk53xYfPxUWYCF8lqmU7Z3mX9rZMy4/P5BlGtmKfVr0GN/m+YqNaWGVNl21zxuDLT4+Ftolo/tFTfFwAQ+5T6/pC+bqcOUz8eQ9+VvU7ZhaNvjNhIdUj42mIPDRXl9NPq99dr2sguGVl/OFq9PUHrdACI+q8ohp/eU7f8n3ZO/Rqak+MEkCTbKFULZRoiPHbsWLzwwgvo3r07zp49W2Jm1apVGDduXLl2joiIiIiIKlbBNVeu+KjuynRwBQDR0dFYs2YNEhIScPDgQSv3iYiIiIiI6KpT5oOrBx54AHPnzsWRI0eQkJCANWvWWLlfRERERETkCqYLP6q5Mh9cAcCDDz6IpUuXIj8/Hz169MCiRYus2i8iIiIiIqKrSrkOrgCge/fuWLt2LcLCwjBw4EBMmjTJiv0iIiIiIiJXcNX1VhZfc7V//36MGTMGnTt3RmhoKPz8/NC2bVtMnDgRWVlZ4jpOpxNvvfUW2rdvDx8fHwQEBKB9+/Z47733rnifLGnF3rx5c2zYsAG33347Ro8ejUOHDqFu3bpWlCYiIiIiIipm7ty5mDlzJu644w4MHDgQbm5uWLlyJV5++WX8+9//xvr16+HlVXrH27y8PNxxxx1YuXIlBg4ciGHDhsHpdOLAgQM4cuTIFe+TZXOuwsLC8PPPP+Pee+/FBx98oPxGiIiIiIiIyqpfv34YNWoUAgICCm8bNmwYYmNjMXHiRMyZMwdPPvlkqTVeffVVLF++HD/88AOuv/76cu+TpUOEvby88J///AfPPPMM3nrrLWiSOTHVmLl1H0zNrdSMZqgnKDXeYJdtUFBLOr/KUS9ClDNz85SZmMl7RbXy2qjnWABA3s0dlZncQNlD2+9T2VweyWwn6YwZEVu5z9gtwujSVr3J1dtEtaTfp89vKcqM9B6zN4tVZsTzq6SEM6wknMnq+wIANGFOwjh/Xr29tb+JavmWd2eKbFT2vpBze5wo5/n1RmWm4fOyx4aFz2Do3drLgqusm4+Xf5P6tRGQz7CS0E+eUmY0PUZUq93y0n8BKuCWrJ6J+MvedqJaOx+bJsp1rPuQMhPZb6eoVui76tlg0lmNmQ1lz05HjvrdXxO8twKA01v2O0l6rPp1+0KmcFZjqocy0vg52fu5ZLYcADT8/FFlJmCf+r7Q83IArBJtszKZpqVve6Vux0odO5b8uO3fvz8mTpyInTtLf15mZWXhzTffRO/evXH99dfDNE1cuHABfoJZkZdTpt/gDMO47HBgTdMwbdo0bNiwAT/++GOZd4yIiIiIiOhKHT9+HMClM+tK88svv+D8+fPo0KED/v73v8Pf3x/+/v4IDQ3Fiy++CGcZ/nBu6crVn8XFyf7qSERERERElcdVA34LthEbGwvbn87SSU1NtWwbuq7j1VdfhcPhwIABA0rN7tu3DwAwbdo0uLu74/XXX0dwcDAWLlyIf/zjH0hOTsb8+fOvaPsVdnBFRERERETkSsOHD8e6deswadIkNGnSpNTs+T9OoU9LS8OuXbsK83fffTeuv/56fPjhhxg5ciSaNWsm3r744Kphw4biogU0TcOhQ4eu+OuIiIiIiMhFKqBN+mW3A+DAgQPw9/e3vPzo0aMxY8YMDB06FKNGjVLmCxrwde7cudiB2AMPPIBVq1Zh1apVFXNwlZSUJC5aoKY3tCAiIiIiooo3duxYTJgwAYMHD8a7774r+pp69eoBAOrUqVPscwVjpc6dO3dF+yE+uDp8+HCx26ZOnYrp06fj999/v6KNEhERERFR1XC1dgssMHbsWIwbNw6DBg3C7NmzxQs88fHxAP7XAOPPCm6rXbv2Fe2L+OCqfv36xW4LCgq67OcIl1qja6U3ZLS1ba4us223aHPOGzooM46Vsra/emigKGdu3SXKSdhXyf4yIGkC6/XHY1NFt8laylrZZt3epJEyY6SctGx7AOB+7Kwyc1HYxtnzcJool19bvdyvHU8W1lK3G7btEZWC1rGlLLjjgDJyepCs3XbI+7JW4JLHhr7voKiWhOahbm8MAGZurix3TVv1NtdsE9XySFOPeZCyh8neGCVtxbP7dhLV8j2YIcpJxmNk9ZNt0+cz61qsW8k7RfZLjh6bI8rVe0Q9QqCp8K7IMGSPs4tn1bM7HRHholqS0QzS99b0mxJFuQEDVykznxxS/w4BAPaVgaJcbrssZSZgROnjagpkd1M3t7YLTzHLby27zKXxh9nqkOBIwannwLrflKgk48ePx7hx43D//fdj7ty5RRpl/FlqaioyMjIQFRUFb29vAEB0dDSuueYarF27Fr/++ivat7/0vq7rOmbNmgWHw4GbbrrpivaHDS2IiIiIiGoy848PV2zHQjNnzsQrr7yCqKgo9OjRAx9//HGRz4eFheHGG28EAIwaNQrz58/HypUr0a1bt8LM9OnTce2116JHjx54+umnERwcjE8//RQbN27EmDFjEBUVdUX7xIMrIiIiIiK66mzatAkAcPToUQwaNKjY57t27Vp4cHU57dq1w9q1a/Hyyy9j2rRpyMnJQbNmzfDBBx/gwQcfvOJ94sEVEREREVEN5uo5V1aZN28e5s2bV+5s69at8dVXX1myT+qTWImIiIiIiEiJB1dEREREREQWEJ8WeN111xW77ejRo5f9HHBpztVPP/1Uxl0jIiIiIiKXcEVDixpAfHC1evXqK/4chwir2dIvKDNa4xhZsR+3KCNJExNEpXRP2TPMt4u6DawjW1grRdbu3Gevul2y8/ARUS0trpUoZz+Vrt7mkWOiWla20paS7JtXrrD1tUP2spHnr26x690oWrbNn7bKcgL2VFkreaeg/XjQAVmLcnuLJuoQAH3XPlFORPD6a7aT7RfWbxfF7BnqVto5Nwtb/q+V3ReSVuYQtpKX8P5C1uP791dlr7XR7urRAAFrZK9n0oERmpu7MmPmy14PJO3867y5VlQrb1+cKHeht7pl+J4Osp/TbY8/L8o16af+GWR2ihTV8v5C3Ypd6o57Lv+72Z/52dXPTduqQFGt1c9PEeXaf/SMMqOdPSGqFfbeIWXGUIy+KWBbvU2UMyW/wwpasZtmvmh7VH2Ua4gwERERERFd3a7WhhZVUbmGCBMREREREdElbMVORERERFSTXaVDhKsi0QmqJ07IzoktzcmTJ8tdg4iIiIiIqKoSHVw1bNgQL7zwAk6dUjcS+Ktvv/0WcXFxeO+99674a4mIiIiIqKJpLvyo3kQHV88++yxmzJiBevXqoVevXvjoo49w6FDJnVuysrLw008/4aWXXkL9+vVxxx13QNM03HnnnVbuNxERERERUZUiuuZqwoQJePTRRzF+/Hh88sknWLp0KQDA398fYWFhCAoKQk5ODtLS0pCSkgLDMGCaJlq3bo1JkyZh4MCBFfpNEBERERFRGfGaK8uIG1pERkZi1qxZmDx5Mj7++GMsX74ca9aswf79+wsz7u7uaNu2Lbp164a+ffsiIUE256Mmyw8PUma0tb+Jal24q5MyU2edLqrl+c1GUU7CHttQlDvat44o57PNupk1tvQsUc709VZmLvaOF9XyWqK+b3N7yua9ePz3V1Eu5Vn1Y6PeeztEtYzz50U5Z6d66tAZ2cwpKzmTZTNm7MG11KGVsvs/5ybZbCe3XaKYjGD+inR+laNhA1HOuXOvMuO+U1QKKc+oZ+gBQOhW9fwerJL9nKwUM002p0tzV8+ccqYKr3u22UUxe7266m1KZwU2Uc+qy2gRKKrl/8l6UU59j8nVfls2g2t/U/VrqNlT9v7a+At1xh4aKqr1zZEQUU5yIlZ2hOy33kmnZe91geqXAxjn1bM+AcB0qqe4nXtQ9jtn0Lx1opzkNVSyTT0vB1i4RLZNqhauuFugv78/hg0bhmHDhgEA8vPzcfbsWXh5eSEgIMDyHSQiIiIiogrElSvLlLsVu5ubG+rUka04EBERERERVVecc0VEREREVJOZ2qUPV2ynmhN1CyQiIiIiIqLS8eCKiIiIiIjIAjwtkIiIiIioBjNNWZNZK7ZT3fHgqgLZG0XDbvcoNaOvk7VClvBdvEGZObyotahWvZwOopxnirott+HlJqoV8ZqsJa66IesVOHNOFMtro243LGmxLuW94XdRzvTyFOVqbxW0r4+JFNXCtt2iWMBmdctzZ3qGbJsWckTXF+WSe0UoM2FvyR6zbss2i3JWkrRy1k+fFtUy7dad5GDzVo81AACvU4Yo556aqczIGmTL5Nwua0Ntc8p+g3D/bpMyo7VrIaplbpX18pe2WZc401E9TiR03RlRLSt/TjZP2WujkSNo5Q8g5t/q19DJC94V1RrZYpAyY3jLGs7XeUPWfl9bs02ZkY5c2Pa6rE180Bl1y3PZs1xG2mLdUV/2XpcTU9uSbTrNfNH2qPrgwRURERERUU3GVuyWKdOfI88Lh4gSERERERHVFGU6uAoPD8fQoUOxaZP6dAYiIiIiIqrCClqxu+KjmivTwVXt2rUxe/ZsdO7cGR06dMD777+PCxcuWL1vREREREREV40yHVwdOnQI33//Pfr27YudO3fiscceQ3h4OB599FFs3ly+C7fHjh0LTdMu++HmVrQ5wrp163DHHXegXr168PLyQkxMDIYMGYLffy/eECA3NxdjxoxBdHQ0PDw8EBMTgwkTJiA/nxcbEhEREVHNpJmu+6juytzQ4sYbb8SNN96I06dPY+7cuZg9ezZmzZqF2bNno23bthg2bBgGDBgAHx+fK6rbt29fNGrUqNjt27dvxxtvvIFevXoV3vbdd9+hZ8+eiImJwZNPPomQkBDs2rUL77//Pj7//HPs2LEDERH/6/jVv39/LFmyBA899BASEhKwbt06jB49GgcPHsS8efPKelcQERERERFBM03rOs6vWLECs2bNwpdffon8/Hz4+PhgwIABePzxx9G6tawF+OU8+uijeP/99/HNN9+gZ8+eAICbb74ZK1euREpKCkJCQgqzs2fPxpAhQzB16lQMHz4cALB06VL07NkTzz77LCZPnlyYHTFiBKZMmYI1a9YgMTGxXPtYIDMzEwEBAeje8Gk4FK3YzeOpynrSVrHQ1OexGl3aikq5nVS3NwYAff8hZUbaEhduspbttsAAZcZ57Lhsm1KC+1Zzl7XONXMFbdGrsGMvyZ4nkRNlbcol7CHB6pDFwzP0s2mW1quKrG7xLZHfQzbmwW35Fsu2eb5/Z1HOEPy5MXiNesQAACA3TxRzpp6Q1buK5faME+U8vr26r+N2W1VXlDtyTt2+Pnev+n0OAKJHydqPS9j8/EQ5w8KmZtLfSWyrt1m2TcmYCgDQPNTv6abgee408rDizBxkZGTA399ftG1XKvidNXLaeNiE413Kw7iYg2PDx1TZ+8MK1g0vARATE4OGDRvC398fpmkiKysL77//Ptq1a4f+/fsjPT29THWzsrKwaNEi1KtXD7fcckvh7ZmZmfD09ERQUNEXqvDwcAAosmr28ccfA0DhwVaBgn8vWLCgTPtGREREREQEWHBwpes6vvjiC9x8881o1KgR/vnPfyIgIABvvPEGTp06hWXLlqFHjx5YvHgxHn/88TJtY/HixcjMzMSDDz4Iu/1/A/NuvvlmnD9/HoMGDcJvv/2G5ORkfP/99xgxYgSaNWuGe+65pzC7adMmREREIDKy6PC4yMhIhIeHl6vzYd26dYt8xMbGlrkWEREREZFLsVugZcp8zVVSUhJmzZqFDz74ACdPnoTNZkOvXr3w2GOP4aabbirM9ejRAz169EDfvn3x3XfflWlbc+bMgaZpeOihh4rcPmrUKJw6dQpz587FwoULC2+/7bbb8Mknn8DvT0vcKSkpaN68eYn1IyIicPy4xaeRERERERFRjVKmg6ubb74ZK1asgGEYqFOnDl566SUMHToU9erVu+zXxMXFYcmSJVe8rX379mH16tXo3r07oqOji3zObrcjIiICPXr0QJ8+fVCrVi2sWbMG06dPxz333IMlS5YUdhfMzs6Gh0fJ1z95enoiOzv7ivetQGpq0eumCs5fJSIiIiKq8sw/PlyxnWquTAdXP/zwA66//no89thjuPPOO+FwqMv06tWr8FqoKzFnzhwAwCOPPFLscw8++CDWrl2LXbt2wcvLCwDQp08fNGrUCI899hjmz59f+HXe3t7IvUwjgZycHHh7e1/xvhERERERERUo0zVXe/bswYoVK9CvXz/RgRUAtGzZEoMGDbqi7TidTnz44YcIDg5Gnz59inzu6NGjWLhwIXr27Fl4YFXgrrvuAgD89NNPhbeFh4cjOTm5xO0kJycXadlORERERER0pcp0cNWkSROr96NEX3/9NU6ePIn77ruv2Cl9BQdKuq4X+zqn01nk/8Cl0xKTk5Nx7NixItljx44hJSUFHTt2tHr3iYiIiIiqPtOFH9VcmU4LXLx4Md555x189NFHJa74JCcn44EHHsATTzyBvn37lnnnCk4JfPjhh4t9rkmTJrDb7fjyyy8xadIkBAYGFn6uYCBwXNz/Zmvce++9WLhwIaZNm1ZkztW0adMAAAMHDizzfl6OZprQjNIfRXprdWdBTTdE2ztyu+A6L+GDOmr8VllQwiY7hj85sKUoV+c/6tlaUo6GDWRBQ/0zcCYdFZWyN4pWZowjJa+y/pWZL5ulI5lfoglmeQFA9IJj6hAA1AlTRkzhDDf9zFnZNl3s2GjZzK/aW/JFOY+l1s35sQlOdT4VL5sxEpZdfLB7SfR9B5UZ6fyqcw8miHJB89Rzfvw+XS+qJWG0aSbL/SZ7PXAInifOEydFtSqD5PXM+3CGqFbxP5VWPK2j7H0nJ9RLmcl+U/Zed+Fm9Rvx4UHviGrd9lpXUU5PV/8MpPOrxLMrBRxHzohyTnUE9uBaolr66dOinIS9hWCxQc8FZN8mVRNlOriaPXs2zp07d9lT6SIiIpCeno7Zs2eX+eAqJSUF3333HeLj49GqVatin69VqxaGDx+OyZMno127dhgyZEhhQ4uFCxciJiamyHVaPXv2xO23344pU6YgIyMDCQkJWLduHebMmYP77rsPXbp0KdN+EhERERFd1djQwjJlOrjasWMHbr/99lIzcXFx+Oabb8q0U8Cl1Sdd10tsZFHgjTfeQJMmTTB79mxMmjQJubm5iIiIwGOPPYaxY8cWm/y8ePFiTJgwAQsWLChcdRs/fjxGjhxZ5v0kIiIiIiICynhwlZaWhtq1a5eaCQkJwZkzZV8HffHFF/Hiiy+WmtE0DUOGDMGQIUNENT09PTFhwgRMmDChzPtFRERERFStuGrAbw0YIlymhhYhISE4eLD0c+sPHDhQ5DooIiIiIiKi6qxMB1fXXHMNvvrqK+zfv7/Ez+/btw9fffUVrr322nLtHBERERERVSzNdN1HdVemg6vnnnsO+fn56NKlC2bMmIH9+/cjKysL+/fvx/Tp09GlSxc4nU4899xzVu8vERERERFRlVSma67i4uLw9ttv44knnsDf//73Yp+32+1455130KlTp3Lv4NXMefgooLmVHvpdXceML94tsSQNZycpMxfa1RPVktI6tFBmjC27RLVC31W3VAaA7NvilBmPpadEtS42ChHlPA+niXIS+sHDltWSkrTYlbSEBgDnEVkrdjOhjTKjrftNVEvCuLadKJdyrbqlMgDUm7RWmYl8VZ2xWs7t8aKcz351+/rQLbLWy4avhzoEWVtifdc+US1Ji3UAOPuIumV78GxZLUc99TB5w5T92dUeEizKVdk268LRDJLXM8lrAQBIr8SwCdrhG7/tEdXKivQR5fzXJam3WUf2M9e81K3MG37xqKhWbPoGUU7CHhQkymUnyEYzSEZLGMeOi2pJmDm5olyu4HcIQLb/ktcz3ZSN4qh07BZomTIdXAHAkCFD0KVLF7z99tvYsGED0tPTERgYiM6dO+Oxxx5Ds2ayWSBERERERETVQZkPrgCgWbNmmD59ulX7QkREREREdNUq0zVXREREREREVFS5Vq50Xce+fftw7tw56LpeYua6664rzyaIiIiIiIiuCmU+uHr11VcxdepUZGRklJq73EEXERERERFVPg2uaZNe/UcIl/Hg6vXXX8crr7yCgIAA3H///YiMjITDUa5FMCIiIiIioqtamY6IZs2ahYiICPz6668IDQ21ep+qj7gWgEPRcnX9dnWdjTtEm0salajMRL6xUVRL+scLU9hmXULzkLV79jyZrcxI999zfcmDsP9Kz8xUZi7eKWuR7fWl7Gcgobm5i3Inh3RUZmq/LWsrvv99WRvbxkPVbWzPDVK30QaAoH1Zyoztl62iWg2SG4hyTkFG79ZeVMttk6z9uJGl/j69f9wpqqVnq58nUvk9OohyXntSLdum9L6VtFkXjxk4nqwOCTtHS9s9u2dEKjPamm2yjVpJ2HLeEake7+G0cOQCIGuzbvf3F9Xy/V72/uqUPJ+EbfWbvq4eWZDUV9bWXcrmo245r587J6rlveWIKOe8pq0yY+VjW/L6CcharEtJHv8wcsWvG5XK1C59uGI71VyZGlocO3YMd955Jw+siIiIiIiI/lCmlauwsDA4nZK/6xIRERERUZXGIcKWKdPK1d13340ffvgBubmyadhERERERETVXZkOrsaNG4e6deuiX79+OHz4sNX7RERERERErmK68KOaK9NpgS1btkR+fj5SUlKwdOlSBAQEIDAwsFhO0zQcOnSovPtIRERERERU5ZXp4MowDDgcDkRFRRXeZpbQWaik24iIiIiIqOrQTBfNuaoBhwZlOrhKSkqyeDeIiIiIiIiubpz8W4EcKWlw2Eqf3WRlz8WA3w1lxuzYXFTLceyMKHfytvrKTNh/j4pqGWfOynKC2VpahxaiWgfvks1CafjKr8qMlfOrpGwNo9QhAHWXCeYPBdcS1ZLMrwIAe1htZSa3lnDehWQenJDhrZg9dwUca2Qzp4z8PMu2aQjnV4nmDx2TDV/x2CCbB+c8f16UE21zr2DmFICj/6ee71dnnew+cwsOVGb0XbKZZV4/yuYn5XdWvybbBPOCAPnMoPyb1HPv3JZtFtWSPoYkRDODhNuUzCa0XOfWsty+Y8pI5Kuyx5ld+Lqtn01TZhz1IkS1zneQ5byWuP49UUT4c0prpp4NFrpRfb+a+lXyqza7BVqm3D/xPXv2YO/evbhw4QLuv/9+K/aJiIiIiIjoqlOmboEA8Ouvv6J9+/Zo2bIl+vXrhwcffLDwcz/99BO8vb3x1VdfWbGPRERERERUUdgt0DJlOrjau3cvunXrhoMHD2L48OG49dZbi3z+uuuuQ3BwMD777DNLdpKIiIiIiKiqK9PB1SuvvALDMLBp0yZMnjwZcXFxRT6vaRoSEhKwaZPs2gwiIiIiIqKrXZkOrlatWoW+ffuiSZMml81ERUUhJSWlzDtGREREREQVr6AVuys+qrsyHVxlZGSgbt26pWby8vLgdFrZC4+IiIiIiKjqKlO3wLp162LPnj2lZrZv344GDRqUpXy1YZxNg6G5l5qxN4tV1tH3HBBtL/DHQ8rMuR4xolr+62WrjsGz1Lnc69uLatmPy1ovS+QHyNpt1/sxX5Qzc3OVGXtj2X2r71f/nGze3rJa+w6Kco66ddS1Gsra6+a3i5Ztc+8JdSbL9X/C0nLUP0sAyPpbJ2XmZCfZ36caPr9OlLOSpF215lb661OB1MGtRLmIb9SvB5ltwkS1/Deq21UDQPgba5UZyessAJju1rVMzu4ha/fsczhDmZG2f5eStll3OTfZ/W9lK3nJayMAOFPVr2eGm11UK+ca9ePR+/gFUS19225R7sRwwciCaernEgB4WfheXRkcyer26QBQSzACRBfU0U3Z7xmVztQufbhiO9VcmVaubr75Zvz3v//Fxo0lzzBYtmwZfv75Z/Ts2bNcO0dERERERHS1KNPB1UsvvQQ/Pz/ccMMNePHFF7F796W/nCxevBjPPPMMevXqhdDQUIwYMcLSnSUiIiIiIouxFbtlynQORGRkJJYtW4a7774b//znPwtvv+eee2CaJho0aIDPP/8cYWGy0z+IiIiIiIiudmU+wbxjx47Yv38/vv32W6xbtw5paWkICAhAp06d0Lt3b7i5uVm5n0REREREVAFc1cmvJnQLLNfVuw6HA71790bv3r2t2h8iIiIiIqKrknWtkYiIiIiI6OrjquuhuHJVsvHjx4tymqZh9OjRZdlEtWC2iIFpL70luLFph3UbFLQLD/pv6S30C2TdHi/KeX67SZmxr/xVVEsq99Y4ZSa7tuyhHbpK3a4aAFKHJSgzdb+zrj2tzd9PlDMuXhTlRG2EG5U+u66A57Yk2TbPnFVmQt6X3WennlC3Ea49U9ZGWD94WJTz81G38/f5XPZ8krK3uPxg9gJWtuW2R8jaUIe9JbtvDR8fZcZH0K4dAJz5eaKchHY+W5TTBS2m83t0ENXy/KbkbrrFtinISFvmmxbeZ1JauxbqkF3Wetm5eaco55l5XpmR3K+A7LVRyvbLVlHOK0492sAQtli3N28syknbrFvJ7u+vzOiZmaJa6Q+o34MDP5SNvMirHyLK2QTjLBz1I9WFjFzgqGiTVE2U6eBq7Nixl/2cpl16ETVNs8YfXBERERERVXkuuuaKK1eXsXLlyhJvT09Px6ZNm/DWW2+hZ8+eGDZsWLl2joiIiIiI6GpRpoOrrl27XvZzvXv3Rv/+/REfH4977rmnzDtGREREREQuwGuuLFOmIcIqrVq1Qu/evTFp0qSKKE9ERERERFTlVMjBFQBERUVh507ZxalERERERERXuwprxb5hwwZ4eXlVVHkiIiIiIrICTwu0TJkOro4eLbmnpNPpxLFjxzBr1iysXr0ad999d7l2joiIiIiI6GpRpoOrBg0aFLZcL4lpmoiNjcW//vWvMu9YdeD0dgMcbqVmHB4eyjqmYH4VIJ8XISGd0WJr00yZ+f3uQFGt6P+oZ5cAgOcJ9cwa702y2SWSWUwAEPruMXUtUSXZXAznEfX2AMARXV+UM7PV87DsJzJEtXThfeaICFdmjLNpolp1flLnDFElwFFXNtsJZ9XPJ+k27WG1RTkrZ1hJmG6ytwBHgyhZvXT1Y+hi1+aiWj67T4pyeqo6d6FthKiWp2DOldc+2X5JXw8krJ5flSOYYyh+D8jNV4dK+X3hz6SzqaBLn3muZXRpK8qZDvUVGXbhNvXd+4VJ62gO2euGfiHLsm1KZlhJfh8BAKzeJoo56oQpM5L3aqcpeI5UAZqLWrG7pN17JSvTwdUDDzxQ4sGVzWZDUFAQ4uPj0bt3b3gIDhyIiIiIiIiqgzIdXM2bN8/i3SAiIiIiIrq6VVi3QCIiIiIiopqkwroFEhERERHRVYDdAi1TpoOrhg0blmljmqbh0KFDZfpaIiIiIiKiqqxMB1eGYSA/Px+pqakAALvdjpCQEJw5cwa6fqnfT926deHu7l7k60yzBhyuEhERERFdRdgt0DplOrjavn07evTogfr16+Mf//gHunTpArvdDl3X8csvv2DUqFEwDAPLly+Hn5+f1ft81XA/kw2HXdFcNjBAWUc/ecqiPQLODkkQ5YJ/uyDK5fuU3moekLdYNzfvFOWOjklUZqJe3S2qZSWtQwtRzrlll7qWsNOmcfK0KKdFqNuP6wd+F9Vy3tBBts1M9QiBvGZ1RbXclm9RZrL+1klUy+fzDaKc5uauzNjaytqKI1s2TgEWPtclpD9zqdyeccqMx7ebRLVMf39ZTjCqQtpWXPK800/JnnNSkjb96d1kZ4v4fbpelJPcH5KREQDgtLAVuHibgvbXknbzgPyxIWETtvjOvU39PJG2Ype2Hzd+2yOsqJbZr6NltQK3yF7zJK9VWo6s5bld+NriPCEbu0D0V2VqaPHSSy8hPT0dq1atQteuXWG3X3oZsNvt6NatG1auXIm0tDS89NJLlu4sERERERFVANMFHzVAmQ6u/vOf/6B3797FTvsr4Onpid69e+OLL74o184RERERERFdLcp0cHX27Fnk55e+/Jqfn4+zZ8+WaaeIiIiIiIiuNmU6uIqJicFnn32GjIyMEj9/7tw5fPbZZ2XuKkhERERERC7iilMCa8ipgWU6uBo2bBhSUlIQHx+PDz/8EElJSbh48SKSkpIwf/58dOrUCSdOnMATTzxh9f4SERERERFVSWXqFvjkk0/iwIEDmD59OgYPHlzs86Zp4qmnnsLjjz9e7h0kIiIiIqKKw1bs1inTwRUAvPnmm7jnnnswd+5cbN26FRkZGQgICED79u3x4IMPIjFR3S67ujMdNpj20hcH028QnDqpyU6vzGygXohsMD9JVMv08RLlsFE9FNrs3FpUKv0BWZv4qPFrlZkTz8gef3XWyNrEY+MOZcR+4pyo1IFF6vsj+p7tolri1ygLW26fj1K3KAeAoHnq9unqRv6XGF3bKTPSFutSNi9PZUbfJmv5bxeMXABkragz24eLann/x9r7Q0LaZl1Cz8wU5fJuVreF9t6VKqrlPJ6szJy/p7Oolj1P9uz0/kL9c/I/pG7XDlh7to2k3Tkga2st/Vma2TminISVLdat5pWsHnVyUdCuHQA8lsqec/aQYGVGPyO7Tt5vkazlP+JbKSNanqx9uoS+76BltYjKo8wHVwCQkJCAhATZL8RERERERFQFuep6qBqwclWma66IiIiIiIioqDIfXOm6jjfffBOdOnVCQEAAHI7/LYJt27YNjz/+OPbvt25yOxERERERWa/gmitXfFR3ZTq4ysnJQffu3fHss8/i8OHD8PPzg2n+796Kjo7GBx98gI8++siyHSUiIiIiIqrKynRw9dprr+Hnn3/Gq6++ihMnTuCRRx4p8vmAgAB07doV33///RXXHjt2LDRNu+yHm1vxS+C//fZb9OjRA0FBQfD29kbjxo3x5JNPFsvl5uZizJgxiI6OhoeHB2JiYjBhwgTlQGQiIiIiomrrKp1ztX//fowZMwadO3dGaGgo/Pz80LZtW0ycOBFZWVllqtm/f39omoaWLVuW6evL1NDik08+wXXXXYcXX3wRAKBpWrFMdHQ0fvvttyuu3bdvXzRq1KjY7du3b8cbb7yBXr16Fbl93LhxGDt2LG6++WaMGzcO3t7eOHr0KLZvL95trX///liyZAkeeughJCQkYN26dRg9ejQOHjyIefPmXfG+EhERERFR5Zg7dy5mzpyJO+64AwMHDoSbmxtWrlyJl19+Gf/+97+xfv16eHkJO2AD+Oabb/DZZ59d0df8VZkOrpKSknDHHXeUmgkICMC5c7LW1H/WunVrtG5dvFX1o48+CgB4+OGHC29bvnw5xo4di/Hjx2P06NGl1l26dCmWLFmCZ599FpMnTwYAPPLIIwgMDMSUKVMwdOhQto8nIiIioprnKu0W2K9fP4waNQoBAf8beTJs2DDExsZi4sSJmDNnTolns5XkwoULePzxx/HEE0/gq6++KvM+lengysfHB2fPlj4PISkpCbVq1SrTTv1VVlYWFi1ahHr16uGWW24pvH3SpEmoXbs2Ro0aBeDSneLt7Q2brfjZjh9//DEAYPjw4UVuHz58OKZMmYIFCxZYfnBl7NgHQyt9ko+/YHHP3ixWtD3/jw8oM05RJWD/XPXsGABo/ko9ZUZ3GqJaQZ+o5yIBgObjo8xk15U9ezNj1LUAoNbRMGXGmZwiqhV9jyznao56EaJc0Lx1opytTTN1Jl097wUAjF/V80su9pTNhfHZfUqUcx4+osxIZvwAgJ6eIcpBkPPLkM0M0uoIHrMnTopqSeZvAYDp6aHM6AcOi2rB0EUxz7X7lBnneeE8OwnhLwaS+VXiTW7eKcqJH4/CuVNW1Trxd+HcwTfVMwwBIG2wegRMrQ9kr1OVwfhtjzLjnVP8DJ4SNYoWxUxv9XMTwjlXYoL5kNLfSSSPbWcr2UxQbc024VbVzgxVPxb1vBzggyWWbZOK6tix5N9X+/fvj4kTJ2LnTtnrJwC89NJL0HUdEyZMKNfBVZmuuerYsSOWLl162XMZT506haVLl1p2sLJ48WJkZmbiwQcfhN1uB3DpgOvnn39Gp06dMGfOHERERMDPzw++vr645557cPJk0V8aNm3ahIiICERGFv0lITIyEuHh4di0ybrhl0REREREV4vq1i3w+PHjAICwMPUfGgFg48aNmDFjBqZOnQp/4R+qLqdMK1dPP/00evXqhV69euHdd98t8rnffvsNQ4cORVZWFp566qly7VyBOXPmQNM0PPTQQ4W3HTx4ELquY/369Vi2bBlGjhyJNm3a4JdffsGbb76J7du3Y/PmzfD29gYApKSkoHnz5iXWj4iIKPwhlEXdunWL/NswZCs1REREREQ1TWxsbJEzzVJTUy2rres6Xn31VTgcDgwYMECZdzqdeOSRR3DTTTfh7rvvLvf2y3Rw1bNnT7z88suYMGECmjVrBnd3dwCAr68vLl68CNM0MX78eHTt2rXcO7hv3z6sXr0a3bt3R3T0/5a/z/9xmsfp06cxa9aswo6Fffr0gb+/P8aNG4f58+fjscceAwBkZ2fDw6PkZXFPT09kZ2eXe1+JiIiIiKjyDB8+HOvWrcOkSZPQpEkTZf6NN97AwYMH8eWXX1qy/TIPER4/fjyWLVuGXr16ISAgAHa7HV5eXrj11lvx/fff4+WXX7ZkB+fMmQMAxdq9F3TxsNlsuP/++4t8btCgQQCAVatWFd7m7e2N3NzcEreRk5NTuMJVFqmpqUU+DhxQX/tERERERFQluLgV+4EDB4r87myV0aNHY8aMGRg6dGhhT4bSHDx4EOPHj8dLL72Ehg1l1+2plGnl6ujRo3B3d0ePHj3Qo0cPS3akJE6nEx9++CGCg4PRp0+fIp+rV+9SI4WgoKBiK1IFp+n9uVtheHg4kpOTS9xOcnIyIiJkF/MTEREREVHVMnbsWEyYMAGDBw8udtnS5YwYMQK1atVCnz59cPDg/5pnOZ1O5OXl4eDBg/Dx8Sl2CVBpyrRyFR0dXTjjqiJ9/fXXOHnyJO67775iB1BhYWGIiopCWlpasVP6Cq6fql27duFtcXFxSE5OxrFjx4pkjx07hpSUlMt2GyEiIiIiqtau0iHCBcaOHYtx48Zh0KBBmD17dokzeEty5MgRpKSkoEWLFoiNjS38SE5OxoEDBxAbG4shQ4Zc0b6UaeUqMDAQISEhZfnSK1JwSuCfZ1v92f3334+JEyfivffewzPPPFN4+zvvvAMAuO222wpvu/fee7Fw4UJMmzatcM4VAEybNg0AMHDgQKt3X8TZvYM6tELWolxC0sIWALwPyh6UpuBaNXOzrFmIdN9qLz+mzDR8XtaG93z/zqLc2e7qdrc+qeq29ADgcTRNmdEPytpV20OCRbmkYepzjqMXlryy+1f69e1FOaz8VRkxO7QQldLS0pUZj29lHT+lrX8ljEq4VjP9FnWLewDwW7Tesm1mtg8X5bz/Y137cSlD0Gbd1rqprNb2vcqM36ey+9XRIEqUMwWPbXHrdLcyvaWXSPTeBMAheH+StliXkrRZd94g3P8frXt/tZK+Tz1+wmo2T09ZLlg2Zkc0nkT4C7DkOWBli3UAcETXV2ZC3hc8Fs18K3aHSjF+/HiMGzcO999/P+bOnVviSCbg0mU8GRkZiIqKKrwc6F//+hfS09OLZR9//HF4enpiypQpV7RqBZTx4Kpz587YunVrWb5ULCUlBd999x3i4+PRqlWrEjPPP/88Pv/8czz33HPYv38/2rRpg9WrV2PhwoW44YYb0L9//8Jsz549cfvtt2PKlCnIyMhAQkIC1q1bhzlz5uC+++5Dly5dKvT7ISIiIiKqilzVJt3qbcycOROvvPIKoqKi0KNHj8K5tgXCwsJw4403AgBGjRqF+fPnY+XKlejWrRsAXPbypueeew6+vr7o16/fFe9TmQ6uxo4di2uvvRazZ88u1mjCKvPmzYOu66XW9/f3xy+//ILRo0djyZIlmDNnDurVq4cXX3wRo0ePLpyJVWDx4sWYMGECFixYgI8++ggREREYP348Ro4cWSHfAxERERERVYyCObVHjx4tbGj3Z127di08uHKVMh1c/fe//0W3bt3w6KOP4p133kF8fDzq1KlT7PxGTdMwevToMu3Yiy++KLquKyQkBO+8807hqYCl8fT0xIQJEzBhwoQy7RMRERERUbVTgddDFduOhebNm4d58+ZZnk1KSirzPpV55arA1q1bL3uKYHkOroiIiIiIiK4mZTq4WrlypdX7QUREREREleBqveaqKhIfXH311Vdo2rQpGjdujK5du1bkPhEREREREV11xHOu+vTpg0WLFhW57dNPP0Xfvn0t3ykiIiIiInKRq3zOVVUiXrkyzeL3xt69e7FkyRJLd6imyQ5zU2b8hbXsoaHKjGQ+CACYj8hmTuln1TObzj0oqxX6+S5Rzimd+SIgnVlzbpD6e/A4dk5UyzgmmP0hlNdSPYcDAKJe26zMOPPzRLXsh4+IcinPJSoz4f+Szb+RvBY76kfKamVeEOX0c+qfp+m0cmqWjJXzq7L6dRLlfD6Tza/Ku1k9jN39e/VjEQDSHpK9btSaq35Nk8yvAoAzj6q3GfKe7DXUmXRUlLOS5PUYgGi2kNtPv4lKVcbvSY46YeqQxfOrLt4Zr8x4fbnR0m26mt5OPQ8RAIx1sseGSAm/W1YVTuF7HdFfWTdxkIiIiIiIrj5XabfAqkh8WiARERERERFdHg+uiIiIiIiILHBFpwX+dUgwERERERFd3bQ/Plyxneruig6uJk+ejFmzZhX+O/OPxgJRUVEl5jVNw5EjvCCQiIiIiIiqvys6uMrMzCw8oPqz48ePW7ZDRERERETkQmxoYRnxwZVhGBW5H9XSiSc7we7hWWqm7hRZK2qJnDYlryD+mT23nqhW0L4cUe7k0+p22xFLjolq5bWJEeUc53OVmdNxAaJablmyZ3nAoYvKjH7gd1EtCXuzWFHOtmmfKKfHNVNmtLUWtteFrM36sdHqxw8ARL6qruU8InucSTm7d1BmHCtk7Z6z/iZree7/wx5lRheOIrAHqp8D0hbrmkP2VuG996Q6FCl7DZK0WJeytW4qyknbrF/1BO2vbYLHDwDoZ86Wd2/+J76VKObcuEOZsXl7i2oZ2dminKjNus0uqnXyCfXrQdgM4WNR2Mrc0bCBMuO0ssU6AHtIsDJTGY8fCB4/ROXBVuxERERERDWYZl76cMV2qjt2CyQiIiIiIrIAV66IiIiIiGoyXnNlGa5cERERERERWYArV0RERERENV0NWFVyBa5cERERERERWYArVxWo9raLcDjK/2cAvVt7Uc5tubot9InhstbXdabJWsSHp0YrM9IW2TZh7uRjCcpM6DuyNra5PeNEOdvqbaKcRP5NHdWhZZtFtbR2LWQ5i9usS9ibNFJm6k8R7pegrXJGr9aiUn6frhflPLYfVWZ0USXA53NZy/O0gZ2VmYBDstbR+vrtopxE1h3qtvQA4P2F+vs89aTsNaj2DOvmJxrb94pymoeHMpPVs62olt8uWYtpfd9BUU5C2jLfdDqVmfymkaJaGTGNlZmg+cK24ha2yNa8vWRBYSt2EUP2ihA23boRLPbYhqKc08JRIVKWtlmXsLrFuqS1ezVq685ugdbhyhUREREREZEFeHBFRERERERkAZ4WSERERERUk7EVu2W4ckVERERERGQBrlwREREREdVgbGhhHa5cERERERERWYArV0RERERENRmvubIMD64qkG31dtg0t3LXsa/6tfw7U8DqB7Xdro74+4tK6ZmZopxkhpUWJ5hPAcBwaKKchM3HR5Tz3HpEmcntLpsr5Fihnm1mtfP3qGcxAYDfIvU8Kc3NXVTLbNdEvT3h/Cop/fRpS+tJBCwUfA+a7DHrvEH9GHL8KHv8SOZXSdVdtE+UM4XPJ+jq2ULnb28jKuW/J12Zkd4XpqenKOeoE6bM6GfPybaZnyfKSUhn+wWttmyTsDeOkQUzzisj+slT5dybK2fz8xPljPPq/ZfOLDMOq+fxSetJ5p8B8u9Tsk39nOyxbSV7I/V8TgDQq9EMK3ItHlwREREREdVgvObKOrzmioiIiIiIyAJcuSIiIiIiqsl4zZVluHJFRERERERkAa5cERERERHVZFy5sgxXroiIiIiIiCzAlasaJuKDnaKcurnxH7l9B8u+M3+R9lCCKFdrrroVu7lJ1kLV49p2opxT0Brd43iGqFZeuLo1vbTFurT9u5GVJcpJSFqsA4C9SSN1yDBEtbQz6tbFsibC8nbP+v5DyozN21tUy8jOFuXsYbWVmbQeDUW1am1TtziWPs/tgQGyoKH+k6R+5qyo1InhiaJcnWlrlRmfz2Tt0yX3x/n+wlEEwtEAxokcZcbeQj2KAADMQ+oxD5cKqkdoWPmaISV5zlVlkhbrAACb+v6XtkWvDHlxjUU5yagHe2ioqJYhGNWS0721qJbH0k2inISkLb3NzAOED43KxG6B1uHKFRERERERkQV4cEVERERERGQBnhZIRERERFSTsaGFZbhyRUREREREZAGuXBERERER1WCaaUIzK35ZyRXbqGxcuSIiIiIiIrIAV64q0IU+HeFw8yw147tY3SJYc3MXbc/Mz1OHIuuKatm0cFHO2LlXlJMIXXNalJO0S5a2d80Kk923uf7qv0P4uAeJann817o2sGZzWVvu7Eh1y3Dfg7JW8kl9a4lyDecdV2b0UFmL7+xwL2XG6/ckUa09zwaLco2HqdtCS1usS+knTykzQbtCRLWS+qi/z8hdolI4c2dzUS5onnpMgpSkxToAOKLrKzPOw7IW5bm3xikz0hbrVpK2WNd8ZKMB9LNpykzO7fGiWp7fbBTlJI6+Imu/HzVO9tiwkj1Y/bqn+avbcgPyx2NVJWmxLqWflr3vS3j+8JsoZ68fKco5jxxTZiTt9w0zX7S9SsdrrizDlSsiIiIiIiILcOWKiIiIiKgG4xBh63DlioiIiIiIyAJcuSIiIiIiqsl4zZVluHJFRERERERkAa5cERERERHVYLzmyjpcuSIiIiIiIrIAV64qkO/RbDgcRqkZyewMyUwSADCvaauutWabqJbU2SEJykztlSdEtfR9B0W508PU2wx9VzZvxzcpTJTz+XWPMmNc21pU68D89spM7KBfRbXMTTtEOW/BaC1D00S1orbL/uy0/5/qn1PDkbKfk3rKlVzjYbK5PI4GUcqMEegrqmVs2y3bpmD+ilNYK3KbKCYSuipZlHMKMjm9hPOTvpb9nCQzg+xBrp9BJ2WPVc+q0w/8LqqV8rT6tQUAov6tnkEnnV9ldGmrzNhWbxPVajBF9npW+rtqBRG8PpqZ6plHlSW7bydlxvsL9dzNymLl80QyvwoAsvoJ7rPUXGXGdOYA65eItlmpeM2VZbhyRUREREREZAEeXBEREREREVmApwUSEREREdVgbGhhHa5cERERERERWYArV0RERERENRkbWliGK1dEREREREQW4MpVRdqyG9DcSo3oFm4uu46HMuMjrGVvFivKBc8StNIWtJu/EpI265K29ABg27JXlMvq3VGZ8VuhbtcOALGDMpUZSdtZANAuqtvAXiqo/juKtD2tVK1d6kzurXGiWpIW2faQYFEt/cxZUc6ZdFQdim8lqqXFyXI5fu7KzNHH64lqNXxB1uZeQg/xlwWT1BFpi3UrGeeta5Fta9lUlDvdWdb+PXi2dT8nR5YsJ3psC7ntPKzMSN/npD8ne4sm6m3u2ieqJRl/AFj/+miVM4+qR14AQMh71j3OKoO0zbqVfD5Tt6bP7al+D3PmW/mbXsWqCddDuQJXroiIiIiIiCzAlSsiIiIioprMNC99uGI71RxXroiIiIiIiCzAlSsiIiIiohqMc66sU+VWrsaOHQtN0y774eZ2+QYR77zzTmHuzJkzxT5vGAamTp2Kpk2bwtPTE5GRkRgxYgSysoRXARMREREREV1GlVu56tu3Lxo1alTs9u3bt+ONN95Ar169Svy6lJQUjBw5Er6+vrhw4UKJmWeeeQZvvfUW+vTpgxEjRmDPnj146623sHXrVixfvhw2W5U71iQiIiIiqlicc2WZKndw1bp1a7Ru3brY7Y8++igA4OGHHy7x65544gnExMSgRYsWWLBgQbHP79q1C9OnT0ffvn3x+eefF94eHR2Np59+GosWLcKAAQMs+i4uscc0gN1eent0K9uL+h3IUIday9oIa6fTy7czf6KfTRPljC5tRTnb6m3KjLZGnQEgvj/czjuVGT1T3WJdSvq4sIeGinJZnaOVGU9hq+ELd3US5QI/cm3rX2mLdStlNpINN/D/eL0o5xC0dm/8zmlRLfUjVs7cvFOUs7VppswYv8lGFjgiwkU5Q/D6YuTkiGqJtrdTNr4hWHaXwVEvQplxHk8W1ao9c61so1YKE7wGpQvem66AtM26hLOurGU+LGzFbvP2VmaM7GxRLStbrNv8/EQ5K0cbVAbj2nainO2XrcqMx7eCMSFmvmh7VH1cFUs1WVlZWLRoEerVq4dbbrml2Of/85//4KuvvsK7774Lu91eYo1PPvkEpmli+PDhRW4fMmQIvL29SzwgIyIiIiIikqpyK1clWbx4MTIzM/H0008XO3jKzMzEk08+iUcffRTx8fF4++23S6yxadMm2Gw2xMfHF7nd09MTbdu2xaZN6r8+XE7dunWL/NswjDLXIiIiIiJyJc249OGK7VR3V8XK1Zw5c6BpGh566KFin3vhhRdgGAb+8Y9/lFojJSUFISEh8PAofppeREQEzpw5g7y8PMv2mYiIiIiIapYqv3K1b98+rF69Gt27d0d0dNHrRtasWYP33nsPCxcuREBAQKl1srOzSzywAi6tXhVk3N3dr3gfU1NTi/w7MzNTuT9ERERERFUCG1pYpsqvXM2ZMwcA8MgjjxS5PS8vD0OHDkWPHj1w7733Kut4e3sjNze3xM/l/HGxs7fgIlMiIiIiIqKSVOmVK6fTiQ8//BDBwcHo06dPkc/NnDkTe/fuxeTJk3Hw4MHC28//0cXm8OHDyMzMRMOGDQEA4eHh2L17N3Jzc4utYCUnJyMkJKRMq1ZERERERFczDhG2TpU+uPr6669x8uRJ/P3vfy92QHTkyBEYhoFbb721xK+Nj4+Hj49P4cyruLg4LFu2DBs3bsS1115bmMvJycG2bdtw3XXXVdw3QkRERERE1V6VPrgqOCWwpNlWgwcPRpcuXYrdPnPmTKxatQpz585FUND/5lf0798fkyZNwrRp04ocXM2aNQvZ2dkYOHCg5ft/tnNt2N09S80EWTjnytiunr+ScV9nUa2ABbJZLhKSmR4AoG2Szb+x8o8ekvsMALIF91ugQ/Z0Mp3WTSAyhfN7PL/eaNk2A3adE+V0y7YI2AMF1zBqsrOc9XOy/ZeQzq8S27hDGZE+eiQzp7Q8WTV9zwFRTssu+dTrP7O1bS6q5dy2W5RzNa1DC1HOdCt5LMhfOddvL8/ulI1gnprksQgA+r6D6pDFbD7q+XJaRB1RLd3C+1/r2FKUM4Rz41xNOr/KeUMHUc4jVTD78ZRsPqHmr57BpQfL5nRJ5lfVSKZ56cMV26nmquzBVUpKCr777jvEx8ejVavibwRt2rRBmzZtit3+zTffAAB69eqFkJCQwttbtWqFJ554AjNmzEDfvn1x2223Yc+ePXjrrbfQtWtXywcIExERERFRzVJlD67mzZsHXdeLNbIoj2nTpqFBgwZ4//338e233yIkJARPPfUUxo8fD5utyvf2ICIiIiKyHK+5sk6VPaJ48cUXYZomhgwZckVfN2/ePJimWWTVqoDdbseIESOwb98+5ObmIjk5GVOmTIGvr69Vu01ERERERDVUlV25IiIiIiIiF+CcK8tU2ZUrIiIiIiKiqwlXroiIiIiIajBec2UdHlxVoMCFG+HQ3ErN2GMbKuvoFrZrD9opaI0KIKt3vCh3pqX6IRT9SYqoVk50sCjnWLFFmTn9WIKoVug760S5gAXqltuV8XohbZ0rYQ8NFeX03fst26akpTIAmFF11bVOWddiHQAu3ql+Dnh9pX4sAgAMYWN6TVNnhG1sL8T4KzPeX2wQ1dLiBK27AeibZO27Xc3eookop+/ap8yYW3aJajkiwkU56wYzyGm/qsde5N4SJ6rluUY9ziLzVln7+oDfzohyWrZ6BIVz/yFRLSl788bKTL5X6e/3BSrjlCHJ65n3N7+Kanlslf1OIhl7YVzbTlRL1D79iGz8gaNOmCh3rmu0MuP3qcXjOKha4GmBREREREREFuDKFRERERFRTcYhwpbhyhUREREREZEFuHJFRERERFSDsaGFdbhyRUREREREZAGuXBERERER1WQcImwZHlxVoPzu7WA6PEsPLdts2fZsnoptATC27RbV8jstayPstUTdZl3aatjZorYo59FI3R617ldHZNsUpWRSnksU5bxOq19Z7PmyV59cf0HrbgC156hbhue1iBTVsq86LcpJGFlZsuB2dbtnLShIVCpjYGdRLmBhJbTYtfBCX2mbdQlb0glRTtJw3ubnJ6qV20nd+hoA3JarH9vaxVxRLQlpW/eTCbVEueDZslEVEo6GDUQ55+9Jyoz7d5tEtQxBxvffsudSXrf2opx91UFRTlQrMECUk4yg0K5pW869qTheX25UZqSvPpIW61KiFutSwpEXzhMnZTlP9agcopLw4IqIiIiIqAbjNVfW4TVXREREREREFuDKFRERERFRTWaYlz5csZ1qjitXREREREREFuDKFRERERFRTcZugZbhyhUREREREZEFeHBFRERERERkAZ4WWIE81uyGQ3MvNaP5+yvr6JmZou3ldG2pzLh/L5ur5Uy2bvaKlOfX6jkcAJB9W5wy47FUNqMlp1e8KOezP02ZiVgl+zmZm3eKclY6MyRBmfE/ki+qpV3bTpRz2y2YNabJ5nTpZ86qM8LZK4G7z4tylXHmgn69es6Px37ZzCkrn8P6adlss9xb1c9Ntwuy6XKS+VVSppvsrU4y80jftU9UK3iXKGYpyfwqANA6tFBmbDmyn5MzQD1fUVv7m6iWfdWvopyVjOh6suDWDGVEW7OtfDtTyezNYkU5fc8By7Z5+jH1exMA1J6tfj0w8/PKuztFhC5Xv4dZOSuzsmlwUSv2it9EpePKFRERERERkQW4ckVEREREVJOZ5qUPV2ynmuPKFRERERERkQV4cEVEREREVINppus+rLR//36MGTMGnTt3RmhoKPz8/NC2bVtMnDgRWVlZyq8/d+4c3nzzTdx0002IjIyEl5cXmjRpgqFDh+LYsWNl2iceXBERERER0VVn7ty5mDp1KmJiYjBmzBi88cYbaNKkCV5++WUkJibi4sWLpX79hg0bMGLECGiahieffBIzZszAbbfdhgULFqBVq1bYvXv3Fe8Tr7kiIiIiIqrJrtIhwv369cOoUaMQEPC/bq/Dhg1DbGwsJk6ciDlz5uDJJ5+87Nc3bdoU+/btQ0xMTJHbe/bsiRtvvBFjxozBZ599dkX7xIOrCmTk5MLQjNJDOTnKOvbgWqLtSdusS5x8KlGUM0rvNA8AqPfNKVEt88hxUc5nu7rFtLQ9qvexC6LcvmEhykyjZ9YLt+p6wbPWuXybqU+oH0O1Z64V1bKHBCszOW0biGpZ2eLbavaV6lbU0sd21t86KTM+n28QVpPx+K9sBIKVJK2cQ9+x7vHvqFtHlDPzZaMNJGMGHPUiRLWcx5NFOS1fV4eOpYpq2Twj1ZnYhqJaSf1l923kBNnrhoTuL3gTA+AeqW7ZbqSr27UDgBZZV5nRd+8X1cq/qaMo5/7jNvU2LWyxLiV9blZGC4TKGElDV65jx5KfA/3798fEiROxc2fp428aNGhQ4u09evRArVq1lF9fEh5cERERERHVYJppQnNBJz9XbAMAjh+/9Af7sLCwMn19RkYGzp8/j5Yt1TNk/4oHV0RERERE5DKxsbGw2f7X+iE1VbZaLqHrOl599VU4HA4MGDCgTDUmTpyI/Px8DBo06Iq/lgdXREREREQ1mfHHhyu2U8GGDx+OdevWYdKkSWjSpMkVf/1nn32Gf/3rX7jlllswePDgK/56HlwREREREZHLHDhwAP7+/pbXHT16NGbMmIGhQ4di1KhRV/z1S5cuxcCBA9GhQwd8+umn0DTtimvw4IqIiIiIqAarDtdcjR07FhMmTMDgwYPx7rvvXvHXf/fdd+jbty9atGiBZcuWlfngj3OuiIiIiIjoqjV27FiMGzcOgwYNwuzZs694xem7777DnXfeiaZNm2L58uUICgoq875w5aqS5d2sbqPqcar0AWiFzqaVc2/+JytC9peFgIPqjL5PEAJg8/MT5STthsWti7fJhsM1PR2uDjWIkm0z6agoJ2FvFC3K6QcPKzOOOrKOOhfi6oty0jbrIsHqF7nsMDdRKftd6hblAOC72No25a7mv+OMMiNoyG05W9vmotzZtgHqEGStnG1tmolqGR7qt0Tnxh2iWtJtQtCKXQ8LlNVKOSGKGdv3yuoJXIz0UWb81qsfi4C8xbq9hfoaCn3XPlEtx4Y9opxTMDZFc5O1dT/WSz3aI0LYit1tmWwES2W0Mq+q7MLRAHDYlZHKaF9PxY0fPx7jxo3D/fffj7lz5xZplPFnqampyMjIQFRUFLy9vQtvX7ZsGfr06YMmTZpgxYoVqFVLNgLpcnhwRURERERUk12lQ4RnzpyJV155BVFRUejRowc+/vjjIp8PCwvDjTfeCAAYNWoU5s+fj5UrV6Jbt24AgM2bN6N3794wTRODBw/Gf//732LbuO+++65on3hwRUREREREV51Nmy4Nrz969GiJbdO7du1aeHBVkp07dyLnj5XpZ555psTMlR5c8ZorIiIiIqKazDRd92GhefPmwTTNy36sWrWqWLZg1QoAHnzwwVK/3izD/vLgioiIiIiIyAI8LZCIiIiIqAbTzEsfrthOdceVKyIiIiIiIgtw5YqIiIiIqCargOuhLrudao4HV5XMlq9+kJlbd4lq2RvHKDMZbUNFtRqOVM+OAYCzDyeIchJaHdm+2evWVmac+w+Jah19JVGUixpn4cwmAem8FMn8KgCw+ahn0Ugv2vT8eqMoJyGZVwNA9GIcsHB9OfemKHvzxsqMLpxFYyV7sGz+hi58Doi2KZwLox/4XZkxhLPlfMLUMwAB2WNbcxqiWik3qmfthQsf/sZvsvlJEuYW2XuAmGS4pvD1wOtL9R1ieHqKakll1/dXZjyEd5khmF8FAOY1bdWhNdtEtSJec+37CQA4GjZQZvRg2axJ7WK+KGfstG6empUkr1NE5cGDKyIiIiKiGkwzLn24YjvVHa+5IiIiIiIisgBXroiIiIiIajJec2UZrlwRERERERFZgCtXREREREQ1mfnHhyu2U81x5YqIiIiIiMgCXLmqQI4GkXDYPErNpNVXt9wOad1UtD3t1Dllxvff1rVnBoCAw3nKjBbXSlTLELZLlrSmtwcGiGrVXafefwBw1K2jzOwb0UBUK+Y5QctwU3hfSNoDAzAELYLt9SNEtRw+3qKc8/ckZUbftU9UC51by3IC+vXtZcGVv6ozNruslqGLYlrHlsqMvnmnbJsWkrYulrSJNy5kiWp5HToryulZgnp7DopqRQquBZD9JOUcdcKUGeeJk5Zu0+6nbrmtBajbnQOA89hxZUZvLxu5oK39TZTzWLpJlLOSJmyzLiFpiy55/QRkjx9xPWGHcisXHmwtZb/fVNW27o76keqQkQscrfh9oaqDB1dERERERDWYZprQXNBswhXbqGw8LZCIiIiIiMgCXLkiIiIiIqrJ2IrdMly5IiIiIiIisgBXroiIiIiIajITgKyXVvm3U81x5YqIiIiIiMgCXLmqQM6kY4DmVmqm1uEjyjrZt8eLtueTlCLKSaTfnyDKBW88rczo+2RtkKXODFXvW8j760S13NNyRDkjTN1iWtRiXch0OkW5A/erW/kDQOM16szhu0NEtaLGrhXlTj6VqMyETZfVwvrtspyA20ZZ+3fJH/Cye3cU1fL+zwZRLiPWV5nx3ywqBUd0fWXGKXj9AQCbp6cop59NE+VEtQ4etqyWzb301+FC+bLnnZUkbdZtgtbpAGCcPy/K5beJUWbck9Sv7QBg81aPZsiqXfpIkgJeopS1bMJRJ7azmcqMM1n2Hixpiy4ZywAATuFoBitb/tubxYpy+j51b3dpi3XJ/WFaPKbCHttQmXEKxlQ4zXwrdqfCsVugdbhyRUREREREZAGuXBERERER1WQmXNQtsOI3Udm4ckVERERERGQBrlwREREREdVknHNlmSq3cjV27FhomnbZDze3Sxcmm6aJBQsW4J577kGjRo3g7e2NqKgo3HHHHdiwoeSLxw3DwNSpU9G0aVN4enoiMjISI0aMQFZWliu/RSIiIiIiqoaq3MpV37590ahRo2K3b9++HW+88QZ69eoFAMjNzcX999+Ptm3b4p577kF0dDRSU1Px7rvvIiEhAR9++CHuu+++IjWeeeYZvPXWW+jTpw9GjBiBPXv24K233sLWrVuxfPly2GxV7liTiIiIiIiuElXu4Kp169Zo3bp1sdsfffRRAMDDDz8MAHA4HFi1ahW6du1aJDdkyBC0aNECI0aMwIABAwoPmHbt2oXp06ejb9+++Pzzzwvz0dHRePrpp7Fo0SIMGDCgor4tIiIiIqKqyQCguWg71ZxmmlX/5MesrCyEh4fD398fSUlJsNvtpeb/9re/4YsvvkBqairq1KkDAHj55ZcxceJE/Pzzz7j22msLszk5OQgODkbXrl2xdOlSS/Y3MzMTAQEB6NHgSThspc/3SOtcV1kvaNtZ0Xb1PQdEOQnx7I/MbEFIuCIonDHjPHZcVk/A7u8vyumZ6hknjvqRoloXY2srM27Lt4hq7Z8tm7PU+BH1cCTNQzaLxszNFeUk7CHBsm1mX1RmbAGynyWEM4/SO0UoMx5psvkl0p9n5r2dlRn/Q7LTmO1H1DNr9JOnRLXMhDainLbuN2Xm4p2yuX2+P8rm30iem1c7La6VKGdu2iEraCv9PRQAYOiyWlc5R0S4KCedYWUZyc8IuOp/TpqbbFajmZ9XwXtScZxmPlZhCTIyMuAv/J3DlQp+Z72h1Qtw2GW/B5SHU8/Fjzteq7L3hxWq3MpVSRYvXozMzEw8/fTTygMrADh+/Djc3d0RGBhYeNumTZtgs9kQH1/0jd3T0xNt27bFpk2brN5tIiIiIqIqj0OErXNVHFzNmTMHmqbhoYceUmaXLl2KjRs34v7774enp2fh7SkpKQgJCYFHCX+dj4iIwNq1a5GXlwd3d9lfUf6sbt2iq0+GUQPWPImIiIiIqIgqf3C1b98+rF69Gt27d0d0dHSp2QMHDuD+++9HREQEJk+eXORz2dnZJR5YASg8CMvOzi7TwRURERER0VWLrdgtU+UPrubMmQMAeOSRR0rNHT58GN27d4emafjvf/+L0NDQIp/39vbGqVMlX1+Qk5NTmCmL1NTUIv8uOH+ViIiIiIhqjirde9zpdOLDDz9EcHAw+vTpc9lcUlISrr/+ely4cAE//PADWrUqfvFveHg4zpw5g9wSLsZPTk5GSEgIV62IiIiIqOYpWLlyxUc1V6UPrr7++mucPHkS991332VP6UtKSkK3bt2QkZGBH374Ae3atSsxFxcXB8MwsHHjxiK35+TkYNu2bejYUdZ1jYiIiIiIqCRV+rTAglMCC2Zb/dWRI0dw/fXXIz09HT/88AM6dOhw2Vr9+/fHpEmTMG3atCKt2GfNmoXs7GwMHDjQ2p0HYKalw9RKXw3TPQRtYM+ki7ZnD1O3+L7Yrr6olsfK7aKcU9KWWxMOThD+NcMeKDjlMqSWqFZ+Hdnpm2nNvdSbfH+dqJbbkWOinISkxToA2JvFKjMnuoaIaoW+K/s+JfQzsjEDWocWyoxzyy5RrfQHEkS5wA/V32duzzhRLSn/T9ZbVksTtpgW1RK0WAcAm5+fMuP15UZlBgBMQS0AMLqW/Ae1P7Nnyto4a7q6rbWxXdYiHvGy9un2c+rW+mda+IpqhR4LE+WcJ9Rt+lOeTxTVCn99rTJjb95YVMsUju2wXVCPANGTT4hqubzFOgBb2+bKjLFtt6zWnxp3lcZsFqPObJW9hlrJyhbrjsh6opyV41yqFV5zZZkqe3CVkpKC7777DvHx8SWe5nf+/Hlcf/31SEpKwlNPPYV9+/Zh3759RTI33ngjwsIuvdm0atUKTzzxBGbMmIG+ffvitttuw549e/DWW2+ha9euHCBMRERERETlUmUPrubNmwdd1y/byOLs2bM4fPgwAGD69OklZlauXFl4cAUA06ZNQ4MGDfD+++/j22+/RUhICJ566imMHz8eNumgWyIiIiKi6sQAIDzRqNzbqeaq7MHViy++iBdffPGyn2/QoAHMK1xatNvtGDFiBEaMGFHe3SMiIiIiIiqiyh5cERERERFRxdNME5oLrodyxTYqG8+FIyIiIiIisgAProiIiIiIiCzA0wIrkJ55HprmVmomZIm6ra9+7pxoe5I2yO7fbRLV0ry9RTm7oN2ztNXtqSdkrX9rz1S3/kV6hqiWW3qwKBeyWt0y3B4sa/9++o4mykxAkqDFPQCP/bJ2w+aJM8pM6LsHRLWkJC2Cz/ZXt9EGgOy66qtsow74i2oF7coU5SQnLvhsT5XVim0oyukHfhflJCqjxbRx/rxltcyLF0U5209blZnU4bLXljrTBK8tUht3iGLq5u9AkPBxoXdsKcrZBK+PkhbrVjN2ytrcW3k9vGRMBQAcuz1UmQl/Q3afSdqsa+3U4ycAwJC2T7ewzbrerb0oZ1/1q2XblGCL9XJiK3bLcOWKiIiIiIjIAly5IiIiIiKqyQwT0FywqmRw5YqIiIiIiIgEuHJFRERERFST8Zory3DlioiIiIiIyAJcuSIiIiIiqtFctHIl6sV7dePKFRERERERkQW4clXJ8ls3UGbcdst+TEamen5P7m1xoloeS2XzsE4+0EaZCdpfV1Sr7ir1LCkAMNs0U2ayotUzv66E15eCfRN2wKn1wTplJutvnUS13M6li3JGdrYoJ6F5eIhyF29opcwE/yabRxY0Xz0XRjIvCABsew6LcpKf5tnr6olqBSxcL8qJxKvvVwDQft2jzJhOZ3n3pgh74xhlRt9/SFRLum+SeWrS+VWSWkZOjqiWlD0wQJnRhXP7zM07ZTlRyjrGfuvmt0lJ50TpgplTABC+x9o5gCqmcC6V5DkHCJ93Nrtsm9L5VYJ6dn9fUSnpc4DKgddcWYYrV0RERERERBbgyhURERERUU1mmHDJujbnXBEREREREZEEV66IiIiIiGoy07j04YrtVHNcuSIiIiIiIrIAD66IiIiIiIgswNMCK5ntp63KTNbt8aJaXt8J2qNqolIwE9Qt1gGg9pwt6lr5eaJa0lbaEl6/WVhMSI+VteXGxnPKiM/nG0SlnF3biXKSx5mjYQNRLT05VZSTtPOvjJMDLnaTtWiW7H+t5bIW08l/TxTl6rwpaBm+cYeoVmVcMixp93z+ns6iWn6LZO3rrWyNnnFnW2VGul9ax5ainC5sn341s7rlv61tc3UmTT2aBACcV3lbaPFog2vaKjP2rftFtf6/vTuPi6rq/wD+mWEZFgFBFFkEQcUtlVRc4DHJpSxTQ8N80ixE/WVqmWlPi6ll2qJpWZQKLukrK33S0lKfn6ZZueSSuJZbuIG5lKGIsgzf3x8+Mz/HGZkzegdw+LxfL17ZmS/n3vvl3jNz5tx7jvLSHqX239W1nGK9IFltCROf5Wrvr+4R4XZjSk7lKNV1R+BU7JrhyBUREREREZEGOHJFRERERFSVcSp2zXDkioiIiIiISAMcuSIiIiIiqsr4zJVmOHJFRERERESkAY5cERERERFVZYJyGrly/iYqGjtXTvRnahu4eXqVGVPzl0t26/H6ZpvS9lTOV8O39qeXBgDd3WrTVatMs+4eVUeprsLomkpxht/sT31a8scZpbpUufn7243Jae+nVFdB7/Z2Y2Je3KJUl8oU66pKfj+mWV2q3IJrKMXpvMq+jgBA8vOV6lKZYl2Vztv+fgFA7Z/V9k3nbr9J1npaay2pTF1c/ZdzapWF1FIKM577026MW4D96xdQn2ZdhWg4xXp+X7Xp66tvPqkUd6pPlN0YpWUBFLk1iVWKKz18TC1u9692Y4ztmyvVpTuulrNKq00zpTDdpiy7MapLYxQ+GK8U5/3jb/a3ecn+ZyBArW30+15tKnnVZV9U31OIbsTOFRERERFRVcZnrjTDZ66IiIiIiIg0wJErIiIiIqKqrLQU6jeH3u52XBtHroiIiIiIiDTAzhUREREREZEGeFsgEREREVFVxgktNMORKyIiIiIiIg1w5MqJqh8phLu7rsyYoiD76+TkrVRbI8TwaZDdGLcitW8Mqh29qBTnFlPXbozq+knHh0UoxcV8b38NqyPvqa0LU3+U2ro2f/VoYjcmYtkJpbpKTp6yG1Pa4W6luvTFait2FFfzsBuT3cdNqa4m76itIVZ6xv56Rjp/tbXB/ugSajcmOEtxTZJte9XiVJQorpiydY9S2MV+9s9bLddiuvxIW6U4/x+z1Sp0s/99XX5jtbXNzt8VohRXZ/JZuzHGCxeU6nJTWFvLeMb+9rTmt2yHUlyJ4hpotd+3v1ag6vqExpzT9mMOqK0/pCXd5t3lvk1VJZ1b2Y1x/26nWmVatmeKVNcKVJm2wK1+tFJdxiP22yDV61yV8e88Teur9DhypRmOXBEREREREWmAI1dERERERFVZqQAoh1GlUo5cERERERERkQKOXBERERERVWEipRBx/gK/5bGNisaRKyIiIiIiIg1w5IqIiIiIqCoTKZ/noarAbIHsXDmR24+74aYrewpsQ3SU3Xo8ehxX2l7pP+Lsxuh/ylKqS19bbRrk0hD707+rinlxi1KcJMbZjYl9RW162sL7WivFBa06aDemRMNpYEt81S5NzzW7lOIMcfanko8ddkCpLiicswBQWlBgP0Zxmv6QH+1PJW/89bBSXW7BalOBG8//aTem5JT9Ka0BwK2G2nWi5TTrKvx3258uHwBK6tmfCh8ACkLtLy3ht1rt2qy2Qe0aUJwMX60uhWnW9V72jxEA0FBtimldkf3p01XPbS2VHD+pWV16Hx+lOJU2Q5XOXe38EcXp61WO4a9HWijVVX2h2ntdZeXWIEYpznj4d/sxClOsE91p2LkiIiIiIqrKpJxmC6wCI1d85oqIiIiIiEgDHLkiIiIiIqrKSksBXTnM5MfZAomIiIiIiEgFO1dEREREREQa4G2BRERERERVGSe00Aw7V07092Nt4OZZ9rS9eQ3s11PnO7Wpo/+ub7AbU80/XqkurNquFHY13v603F573dS2Wao2qbJHzl92YyS8tlpdfxcqxRk1nGbdLTDQboz38b+V6lKdhvpCU3+7MQFZanWVZKstDaClvLvsT2UeUKI2PXBxiP1cAID+J/tTsasy/mn/nAWA/JS2dmOqLf35dnfH7K+2tZTigv5zVCnOP8/+3+nEyDilusLf3qwU51bf/pTnqtM9X+nVxm6M99fblOqCt/3lAwAAu3+1G+LWJFapKt3Fy0pxqksIqFDat9NqU/5DcSp294hwuzGnUtSWjKg9Q+08U5kmXssp1ou6qb1Xe65Re6/Wkq5EywUQ1KicZ8YDh5TquvyI/XYWAPw3Kkwlf07x3KYqhZ0rIiIiIqIqTEpLIeUwoYVwQgsiIiIiIiJSwZErIiIiIqKqjM9caYYjV0RERERERBrgyBURERERUVVWKoCOI1da4MgVERERERGRBjhyRURERERUlYkAKIeZ/KrAyJVOpAocZTm7ePEiAgIC0LHdOLi7l73OlVu+/XWWShXWQVGl9/FRi6uttv4NCovshpTk5CpVpbqWi8paFm4N1NY8Mh62v44FAOj9/OzHBFVXqqvk+EmlOBVusfWU4oyH1NYpUtpmY4XF2QAYfz2s2TYrLb3aGm76Jmo5Q7b9c6P0stpaRirco9XWAlJd20zv62s3Rsv9V+VeO0Qt0Lvs9hoACuuqrTvotuEXpTiVNllljSXN6XRqcQofIS7+s51SVb5/2H8/AdRzq1SXxu8VWnGvE6EW6KZ2A1LJsRP2gxTbM9U1KVXoWt+lFCc79mm2TS2ptKElpYVYd+xD5OXlwd9fbZ3F8mT6zNrJMwXuOsX1+W5DiRRjfdHSSpsPLXDkioiIiIioCpNSgZTDM1dVYUyHz1wRERERERFpgCNXRERERERVmZSifJ65KodtVDCOXBEREREREWmg0nWuJk6cCJ1Od9MfDw/Lh+0OHjyIhx9+GIGBgfD19UWHDh2wfv16m3Xn5eVh5MiRCA8Ph5eXF5o2bYqPP/64Stz/SURERETkSg4dOoTx48ejXbt2qFmzJvz8/BAXF4fJkyfjsgMTKK1atQoJCQnw9fVFUFAQUlJSkJ2dfUv7VOluC+zduzfq169vVb5nzx5MnToVPXr0MJcdPXoUCQkJcHd3xwsvvICAgABkZGTg/vvvx+rVq9GlSxdzbFFREbp27Ypdu3Zh5MiRaNy4MVavXo2nn34aZ86cwcSJE8vj8IiIiIiIKpU7dUKLefPmIT09HT179kT//v3h4eGBDRs2YNy4cViyZAm2bt0Kb2/vMutYtmwZHnnkEbRo0QJTp05FXl4e3nvvPSQmJmLHjh0ICwtzaJ/umKnY/+d//gdz5szBN998g+7duwMA+vbtiy+//BI7d+5EXFwcACA/Px9NmzaFl5cXfvvtN+j+O53sRx99hOHDh2PmzJkYOXKkud4+ffpg5cqVOHz4MKKi1KYltsc0rWWXqOFw1xvKjFWZHvWvb9SmKDfMD7Qb4/vlz0p1qU5dXPLHGaU4FZf7tFWK87xkfxpY7z1q052r7r++eSO7MaV7flOqS0vF97VWivP43x2abVN16lz9ZfvLDKhO1577QoLdmMjFatOFl5zKUYvr1MpujOFMvlJdxv0HleJ0dze1GyO79ivVpaQCpl5WXQ5Cdfpxt6YN7caU+NufYh0AdFt22405O9z+uQgAYSsUpr4GUPrnX3Zj9DWClOoqOXlKKa68uQXaf28CAOOFC07eE2vuUXWU4rRcQkOF8d6WSnF5dcv+jGESNH/L7ezOLTn5ikK7vSpPqS5N271yViLF+B5fV9qpx02fWZN0yeU2Ffv3slyzfOzYsQMNGjRAQECARfm4ceMwefJkfPDBBxgxYsRNf7+4uBh169aFu7s79u/fj2rVqgEAsrKy0KpVK6SlpWHOnDkO7VOluy3QlsuXL+Pzzz9HREQEunXrZi5bsWIFkpKSzB0rAKhWrRoGDx6MQ4cOYfv27ebyxYsXw8fHB0OGDLGoe9SoUSguLsYXX3xRLsdCRERERFSpSGn5/WiodevWVh0rAHj00UcBAPv2lb1G2saNG5Gbm4vBgwebO1YAEBcXh6SkJHzxxRcoLi52aJ8q3W2BtixduhQXL17EM888Aze3a9+07tmzB4WFhWjfvr1VfLt21xYs3L59O9q0aYPS0lL88ssvaNmyJby8LL/BbNOmDXQ6nUVHzFGhoaEW/280XvuWt6RUYYFdsf8HMxbYHwEAgJLiq5psDwCgsO8O1adSl8L+A4C+xP636Cq5B9T3X29UWOxZw1yoKilRy5lOw33TGRX/Tkb7fwOj4n4ZCxXO7VLF60Rxmyq5dVM4LwD149Qp1Cdanmeqb3Ki4ciVqF2bqteTKOSspESpKqXrxFikdv6rno+lCvnQa3xulzdR/JurXieaqqS5NSq27cYitZuPKuLcUGq3FdtQTdu9claCa/te2W8UK0ExUA67aMpHgwYNoNf//xjP6dOnNd3OqVPXRvJDQsq+E8v0+f9m/Yn169fj0KFDaNrU/p0lJndE52ru3LnQ6XQYNGiQuSw3NxcAEB4ebhVvKsvJuXb7z4ULF3DlyhWbsQaDAcHBweZYLZguoO9PZmhTYYo21ThEu7v91H39dQVsVFHlXBwe+K4CcvZLBWzzPfvbVLvxzgEbK+A4d5fzNitiRly1u/3U/apxffbMUfsbaXoTk9Y5K2/lf7efOrW7N8vfD5X4/VDVVPvHcKQcdqOyuHTpks0Rlorm6emJ2rVr46c/VpXbNvV6vfmxHWcwGo2YNGkS3N3d8dhjj5UZq9qfcKnO1cGDB/HTTz+hc+fOiI6ONpcX/Pd+fIPB+n5j0+iUKaasWFN8geL9/bbc2NsuLS1Fbm4u/Pz8lE+eBg0aAAAOH1Z7BqWqY74cx5w5hvlyDPPlOObMMcyXY5gvxzkjZyKCS5cuOTwpQnnx8vJCdnY2iorURpi14OnpaXUnmZZGjRqFLVu2YMqUKWjYsOznch3pT6iq9J2ruXPnAgAGDx5sUe7z34eiCwuth5SvXr1qEVNWrCneR/EhaxV6vR4REREO/w6ASvmwY2XEfDmOOXMM8+UY5stxzJljmC/HMF+Oc1bOKuOI1fW8vLyc2tkpT6+++io+/PBDDB06FC+99JLdeEf6E6oq9YQWJSUlWLhwIWrUqIHk5GSL10zfANi6nc9UZhrOCwwMhLe3t83YwsJCnD9/3uZwIBERERERVX4TJ07EG2+8gdTUVMyaNUvpdxzpT6iq1J2rlStX4syZMxgwYIDVcF2zZs1gMBiwZYv19KJbt24FcG0GEeDaNxEtW7bErl27rHqm27Ztg4iYY4mIiIiI6M4xceJEvPbaa3jiiSeQmZmp/FhOfHw8ANy0P+Hv74/YWLUlkUwq9TpXDz30EL799lvs2bMHzZo1s3o9JSUFy5Ytwy+//IIWLVoA+P91rgwGAw4ePGhObnp6OkaMGGFznasVK1bg8OHDqFu3brkcFxERERER3b7XX38dEyZMwOOPP44FCxZYzEJ4vdOnTyMvLw+RkZHmW/2Ki4sRFRUFDw8Pi3Wudu/ejZYtWyI1NRWZmZkO7U+l7Vzl5uYiMjISrVq1ws8/21749siRI2jTpg08PDzw3HPPwd/fHxkZGdi7dy++/fZb3H///ebYoqIiJCQkYPfu3XjmmWfQuHFjrFq1CsuXL8e4ceMwadKk8jo0IiIiIiK6TabBk8jISEyaNMmqYxUSEoKuXbsCAJ588kl88skn2LBhA5KSkswxS5cuxaOPPooWLVpgyJAhuHjxImbMmAGdToedO3c6fFtgpZ3QYsGCBTAajVYTWVyvfv362LRpE1588UW89dZbKCoqQsuWLbFmzRp06dLFItbT0xPr1q3DuHHj8Nlnn+HPP/9EvXr18MEHH2D48OHOPhwiIiIiItKQaZ2qEydO4IknnrB6vWPHjubO1c2kpKTA29sbb7zxBsaMGQODwYDOnTvj7bffvqU5GSrtyBUREREREdGdpFJPaEFERERERHSnYOeKiIiIiIhIA+xcERERERERaYCdKyIiIiIiIg2wc0VERERERKQBdq6IiIiIiIg0wM4VERERERGRBti5IiIiIiIi0gA7V0RERERERBpg54qIiIiIiEgD7FwpyM/Px5QpU9CsWTP4+fkhODgYCQkJWLBgAUTEKn7RokVITEyEv78/qlWrhrvuuguTJk2yiPn++++h0+ls/jz00EM292PVqlVISEiAr68vgoKCkJKSguzsbJuxBw8exMMPP4zAwED4+vqiQ4cOWL9+/e0nQ4FKvo4dO3bT4zf9fPrppxb1FhYWYvz48YiOjobBYEC9evXwxhtvoLi42OZ+LFy4EHfffTe8vb0REhKCwYMH49y5czZjf/75Z3Tp0gV+fn7w9/dHt27dkJWVpWleyuKMnJUVf9ddd9ncD0fykJubi4EDB6JmzZrw9vZG69atsXTpUs1zY4sj1+Tq1avRuXNn1K5dG76+vmjYsCHGjBmDM2fOWNWbl5eHkSNHIjw8HF5eXmjatCk+/vhjm9d5aWkpZsyYgUaNGsHLywt16tTB888/j8uXL9vcZ0euX605I1+u3IYB6jkTEcyaNcvc1lSvXh3dunXD1q1bbdbrqu2YM/Llym3YmTNn8NRTT6FOnTrw9PREZGQknn32Wfz9999WsY5cC67ahjkjX67ehlEFEiqT0WiUf/zjH6LX6yU1NVVmz54tM2bMkDZt2ggAeeGFFyziU1NTRa/XS0pKinz00Ucya9Ys+de//iVpaWkWcRs2bBAAMnToUFm0aJHFz4YNG6z248svvxSdTidxcXGSnp4uU6ZMkVq1akloaKjk5ORYxB45ckSCgoKkVq1aMmXKFElPT5e4uDhxd3eXtWvXap6j66nmKz8/3+q4TT8BAQHi6ekp586ds6i7V69eAkAGDRokGRkZMmjQIAEgTzzxhNV+TJ8+XQBIx44dZfbs2fLqq6+Kr6+vNGnSRPLz8y1it2zZIgaDQWJiYmT69Okyffp0iYmJkWrVqsmePXuclisTZ+UsOztbAEhycrJV/MqVK632w5E8/PnnnxIdHS2+vr7y6quvyuzZs6Vjx44CQObNm1cp8iUiMmfOHAEgrVq1kunTp8vs2bNl8ODB4ubmJtHR0RbnQmFhocTHx4u7u7s899xzMmfOHElOThYAMmHCBKv9eOaZZ8z5nTNnjjz33HPi7u4u9957rxiNRotYR65frTkrX67ahok4lrOnnnpKAEhSUpLMnDlT3nrrLYmJiRFPT0+beXDFdsxZ+XLVNuzMmTMSFRUlHh4eMmLECJk1a5aMGDFCPDw8JC4uTi5fvmyOdeRacNU2zFn5cuU2jCoWO1d2bN68WQDIqFGjLMoLCwslOjpaAgICzGWZmZkCQBYuXGi3XtNFPX/+fLuxRUVFEhYWJpGRkXLp0iVz+a5du0Sv18uQIUMs4lNSUkSv18uuXbvMZZcuXZLIyEiJjY2V0tJSu9u8VY7kq6zff+SRRyzKv/32WwEgo0ePtigfPXq0AJBNmzaZy86dOyc+Pj4SHx8vJSUl5vIVK1YIAJk8ebJFHfHx8eLn5yenTp0yl506dUr8/Pyka9euSsd9O5yVM9MHE1tvqrY4koexY8cKAFmxYoW5rKSkROLj4yUoKMjiPNWaI/mKjY2V0NBQuXLlikXsK6+8IgBk+fLl5rL09HQBIDNnzrSI7d27t3h4eMixY8fMZfv27ROdTie9e/e2iJ05c6YAkE8//dRc5uj1qzVn5ctV2zAR9Zzt2rVLAEi3bt0s9unChQsSEhIiDRo0sPiQ6qrtmLPy5apt2LPPPisAZPHixRblixcvFgAyadIkc5kj14KrtmHOypcrt2FUsdi5smPNmjUCQN555x2r1+Lj4yUsLExEREpLS6VevXrSsmVL8+sXL1686QV0/UWdn59v9WHmemvXrhUA8vrrr1u91qlTJ/H395eioiIRuTa6YTAYpFOnTlaxr7/+ugCQn3/+ueyDvg2q+boZ07e4a9assSjv37+/AJATJ05YlJ84cUIAyLBhw8xlGRkZN+3kxsTESOPGjc3/f/jwYfO3yLb2RafTyenTp8vc59vlrJxd/8HkypUrFt/u3cjRPISHh0u9evWsYhcuXCgA5Isvvihzn2+HI/mqXbu2NGnSxCrO9CHkf//3f81liYmJ4uPjY3Ut/vDDDwJA3n77bXOZqbPxww8/WMReuXJFfHx85IEHHjCXOXL9OoOz8uWqbZiIes5MI0ufffaZVdzQoUOtzhFXbceclS9XbcOaN28u3t7eVp8PjEajeHl5SUxMjIg4fi24ahvmrHy5chtGFYvPXNnRpk0bVK9eHe+88w6WLl2KEydO4LfffsNLL72EnTt3YuLEiQCu3Vt79OhRJCQkYNKkSahRowb8/f1RvXp1PPXUU8jPz7dZ/7PPPotq1arB29sbsbGxeP/9963ujd6+fTsAoH379la/365dO1y8eBGHDh0CAOzZsweFhYU3jb2+PmdQzZct+fn5WLJkCaKiotC1a1eL17Zv347w8HDUqVPHorxOnToICwuzOCZ7+frtt9/Mfw97sSKCnTt3qh38LXJWzkzeffdd+Pj4wNfXF3Xq1MH48eNRWFhoEeNIHk6fPo2cnBzz+XRj7PX1OYMj+br//vtx4MABPP/88/j1119x8uRJLFu2DJMmTULHjh3RqVMnANeePfjll19w9913w8vLy2p7Op3O6hzT6/Vo06aNRayXlxfi4uIcOh+vv36dwRn5up6rtWGAes5M15GPj49VHaay658lctV2zFn5MnG1NqywsBBeXl7Q6XQW5Xq9Ht7e3vj9999x/vx5h64FV27DnJGv67liG0YVy72id6CyCwwMxIoVKzB48GD07dvXXO7n54cvv/wSDz/8MIBrnSsA+OKLL1BUVIRx48YhOjoa33zzDWbPno2DBw9i/fr15sbBw8MDPXv2xIMPPoiwsDDk5uZi7ty5GDVqFLKysjB//nzztnJzcwEA4eHhVvtnKsvJyUHTpk2VY51FNV+2fPHFF8jPz8eYMWOg11v2+3Nzc9GkSRObvxceHo5Tp05ZxJrKbcWKCHJzcxEbG1vh+QKclzO9Xo9OnTrh4YcfRlRUFM6dO4clS5Zg0qRJ2LJlC9asWQM3NzcA6ueYo7HO4Ei+3n//fRQUFOD999/H9OnTzeWpqamYPXu2+fgvXLiAK1eu2Dwmg8GA4OBgi2PKzc1FcHAwDAaDVXx4eDg2b96MoqIieHp6OnT9OoMz8gW4bhsGqOfM9Ddbv349evbsaY4TEWzcuBEAcPLkSXO5q7ZjzsqXq7ZhTZs2xcGDB5GVlYW4uDhzeVZWFi5cuAAAOHHihEP76cptmDPyBbh2G0YVi50rBaYZ/3r27ImEhAT89ddfSE9Px2OPPYavv/4aXbt2xaVLlwAA586dw9q1a9GlSxcAQJ8+fSAi+OSTT7BmzRo88MADAIDExER8/fXXFtsZMmQIHnzwQSxYsACDBw9GYmIiAKCgoAAAbDaCpm+oTDGOxDqLSr5syczMhF6vR2pqqtVrBQUFNo8JuHZc1x/TnZYvwDk5i4yMxHfffWdRlpaWhqFDhyIjIwOff/45+vfvD+DOy5lqvjw8PBAZGYnk5GT06NEDPj4++M9//oN58+bBzc0NGRkZdo/JdFw3nmNlxZpiPD09XTJfgGu3YYBazh544AE0adIEH330EcLCwtC7d28UFBRg+vTp2Ldvn9W+unI75ox8uWobNmrUKHz11Vfo27cv3nvvPdx1113Yv38/Ro0aBQ8PDxQXF6OgoECzYzLF36ltmDPyBbh+G0YVh7cF2rF3714kJCSga9eumDp1KpKTk5GWloaffvoJtWvXxpAhQ2A0GuHt7Q3g2rcSpo6VyRNPPAHg2rSfZdHr9XjppZcAAN9++6253HS7xI23QQDA1atXLWIciXUG1Xzd6MCBA9i6dSu6du2KyMhIq9d9fHxsHhNw7biuP6Y7KV+A83J2M6+88goA1z/HSktL0a1bN2zevBlLlizBwIED8cgjjyAjIwNjx45FZmYm1q1bZ/eYTMd14zlWVuz1dbpivm7GFdowQD1n7u7uWL16NRITE/Gvf/0LDRo0QIsWLbBr1y689dZbAAB/f39zva7ajjkrXzdzp7dhHTp0wOeff45Lly6he/fuiIqKQo8ePXDvvfeapwD39/fX7JhM8XdqG+aMfN2Mq7RhVLHYubJjxowZuHr1KlJSUizKfXx80L17dxw/fhzHjh1DREQEAKB27dpWdYSGhgKAefi6LHXr1gUAnD9/3lwWFhYGwPYwsqnMNNTsSKwzqObrRnPnzgUADB482Ga9YWFhNx1Gz8nJsTgmeznQ6XTmmIrOF+C8nN1MnTp14Obm5vLn2E8//YQff/wRffr0sbpX3/S7pluRAgMD4e3tbfOYCgsLcf78eatz7Pz58zbfPHNychAcHAxPT09zrKncVixw5+WrLHd6GwY4dk1GRkZiw4YNOH78ODZu3Ih9+/Zh9+7d5m+oGzVqZP59V23HnJWvm7nT2zDg2jV16tQp7Nq1Cz/88ANyc3Mxa9YsnDp1Cu7u7qhfv75D++nKbRigfb7K4gptGFUsdq7sMF0ItkYOSkpKzP9t1qwZvLy8bF5Mpvvoa9WqZXd7hw8fBgCEhISYy+Lj4wEAW7ZssYrfunUr/P39ERsbCwBo1qwZDAbDTWMBoHXr1nb341ap5ut6RUVFWLRoEWrWrIlevXrZrDc+Ph45OTkW9+MD1+7Pz83NtTgme/lq2LAhqlWrphSr0+nQqlUr2werEWfl7GZ+//13GI1Gh86x6/MQGhqK8PBwmw+eV6ZzzJG86vV6tGzZErt27bL6sLFt2zaIiNU5Vlpaim3btlnEXr16FVlZWQ6dj9dfv87gjHyV5U5vw4BbuyYjIyNxzz33mJ87WbVqFfR6Pe6//35zjKu2Y87K183c6W2YiZubG+Li4tChQwfUqlULf/zxB3bt2oWOHTvCx8fHoWvBldswEy3zVRZXaMOoglXEFIV3klGjRllNYSpybV2O0NBQCQwMNK9BYppmd9myZRaxvXv3tlrD5Pz581bbunr1qiQmJlpN01lUVCShoaFW6ytkZWWJXq+3WqD4kUceEb1eL1lZWeYy0/oKDRo0cOr6Co7ky2Tp0qU213653jfffFPm+jA//vijuezs2bPi7e0tbdq0sbk+zPVrYoiItG7dWvz8/CwWAczJyRE/Pz/p3Lmz+sHfImflzNY5ZjQa5dFHH7U51bAjeRgzZsxN14ipXr26XLx40f6B3yLVfGVlZQkAad68udU0waaFTL/88ktz2YcffnjTNWLc3d0lOzvbXLZnz54y14hZtGiRuczR61drzsqXq7ZhIrd2TV7v66+/trkwsKu2Y87Kl6u2YbYYjUZJSUkRnU4n69evN5c7ci24ahtmixb5cuU2jCoWO1d2HDt2TIKCgkSn08mAAQPk448/lsmTJ0vdunUFgKSnp5tjjx8/LiEhIeLl5SVjx46V9PR06d69uwCQgQMHWtTbunVr6dmzp7z22muSkZEhr732mjRo0EAAyMiRI632Y8mSJRYrg7/55ptSq1YtCQkJsVgwUeTaeh+BgYFSq1YtefPNN80rg7u5uVmthaQ1R/Jl0q1bNwEgBw4cKLPuhx56SABIWlqaZGZmSlpamgCQAQMGWMVOmzZNAEhSUpLMnj1bxo8fL76+vtKoUSOrxSE3bdoknp6eEhMTIzNmzJAZM2ZITEyM+Pr6WjSMzuKsnCUnJ0vnzp3l1VdflTlz5siUKVOkVatWAkB69eplsViniGN5OH/+vERFRUm1atVk/PjxMnv2bElKShIAkpmZqU1ibsKRfPXp08fcYXjnnXfkww8/lB49eggAadeuncUHvsLCQmnVqpW4u7vL6NGjJSMjQ5KTkwWAjBs3zmo/RowYIQAkOTlZMjIyZPTo0eLu7i4dO3a0yq0j16/WnJUvV23DRBzL2aBBgyQ1NVXef/99mTNnjgwcOFDc3NwkPj5e/v77b6u6XbEdc1a+XLUNu3TpkjRu3FhefvllycjIkGnTppmP68bFoR25Fly1DXNWvly5DaOKxc6VgiNHjsjAgQMlPDxc3N3dxc/PTzp06GDxLa5Jdna2PPbYYxIcHCweHh7SqFEjmTZtmlVD9dZbb0m7du0kODhY3N3dJSAgQJKSkqxWIL/eypUrpW3btuLt7S3Vq1eXPn36yJEjR2zGHjhwQHr27CkBAQHi7e0tiYmJsnbt2ttLhCJH8nXixAnR6/WSkJBgt94rV67IK6+8IlFRUeLp6SnR0dHy+uuv33Txwvnz50vz5s3FYDBIzZo1JTU1Vc6cOWMzdvPmzdKpUyfx9fWVatWqyX333Sc7d+507MBvgzNylpmZKR07dpSQkBDx8PCQatWqSdu2bSU9Pd3qfDRxJA+nTp2SAQMGSI0aNcRgMMjdd98tn3/+ueMHfwtU81VYWChvv/22NG/eXLy8vMTT01MaNGggL730kuTn51vVe+HCBRk+fLiEhoaKp6enNG7cWD744AOb3zKWlJTItGnTJDY2Vjw9PSUsLEyee+45qw+9Jo5cv1pzRr5cuQ0TUc/ZrFmzpGXLluLv7y9eXl5y1113yeTJk6WgoMBmva7ajjkjX67ahhUWFkq/fv2kbt26YjAYJDAwUO67776bfuh25FpwxTbMWfly9TaMKo5O5IaV0oiIiIiIiMhhnNCCiIiIiIhIA+xcERERERERaYCdKyIiIiIiIg2wc0VERERERKQBdq6IiIiIiIg0wM4VERERERGRBti5IiIiIiIi0gA7V0RERERERBpg54qIiIiIbtmbb76JlJQUxMTEQKfToW7dug79/tmzZ5GamormzZsjKCgIXl5eqF+/PtLS0nDkyBGbv5Obm4uBAweiZs2a8Pb2RuvWrbF06VKbsUePHkX//v0REhICg8GA+vXrY8KECbh69aqjh2ply5Yt6NmzJyIiIuDt7Y169ephyJAh+P3332+7broz6UREKnoniIjozjBx4kS89tpr2LBhA5KSkip6d4ioEtDpdAgKCkLLli2xc+dO+Pv749ixY8q/f/DgQQwaNAjt27dHVFQUvL29cfjwYcybNw+FhYXYunUrmjRpYo7/66+/0Lp1a5w9exajR49GREQEFi9ejI0bN2LevHlITU01x/72229o3749SkpKMHz4cERHR2PLli1YuHAh7rvvPqxevRo6ne6WjnvNmjXo3r076tWrh0GDBiE4OBj79+/HnDlzYDAYsHfvXoSHh99S3XQHEyIiqpIAOPSzYcMGmTBhgvnfROTaNmzYoHS9Hz161Pzvpk2bSlRUlCbb37ZtmwCQYcOGWZSPHTtWAMiKFSvMZSUlJRIfHy9BQUFy6dIlc3mvXr1Ep9PJpk2bLOqYMmWKAJBFixbd8v7dd9994uHhIefOnbMoz8jIEAAyY8aMW66b7lzu5d2ZIyKiymHChAlWZe+99x7y8vLw7LPPonr16hav1a1bFyNGjEC/fv0QGRlZTntJRJVdTEyMU+qNiooCAFy4cMGifPHixahXrx569OhhLnNzc8PIkSMxcOBArFq1Cn379gUAbNiwAbGxsUhISLCo48knn8TLL7+M+fPnY8CAARavrVu3Du+88w62bduGq1evIjY2Fk8//TSeeuopi7iLFy/Cy8sLgYGBFuVhYWEAAF9f39s4erpTsXNFRFRFTZw40apswYIFyMvLw6hRo2763ERwcLBzd4yIqqTi4mLk5eWhuLgYR44cMbdRDz74oDnm9OnTyMnJQf/+/a1+v127dgCA7du3mztXhYWF8PHxsYo1lW3btg0iYr41cM6cOXjqqafQrl07vPLKK/D19cXatWsxbNgwHD16FFOnTjXXcf/992Pr1q144oknMHbsWAQHB2Pfvn14/vnn0bhxY/Tr10+bxNAdhRNaEBGRsokTJ0Kn0+H77783lx07dgw6nQ5PPvkkDh06hOTkZAQGBiIgIAC9evUyP3tx5MgRpKSkIDg4GD4+PnjwwQdv+tD3n3/+iRdeeAENGzY0fzPcvXt3bN26tRyOkogqwn/+8x/UrFkTYWFhuOeee7B//368++67ePzxx80xubm5AGDzWSZTWU5OjrmsadOm+PXXX/HHH39YxG7YsAEAkJ+fbx4ZO336NJ555hn069cPmzdvxtixY/H0009j+fLleOaZZzB9+nSLNuull17CsGHD8O9//xtxcXGIiIhAt27dEBMTg61bt8LPz0+jzNCdhJ0rIiLSRHZ2Ntq3b4+8vDykpaUhMTERK1asQJcuXfDrr7+ibdu2OH/+PJ588kkkJSVh9erV6N69O0pLS63qadmyJaZOnYrw8HAMHz4cycnJ2LJlC+655x6sXLmygo6QyHWVlpbi/PnzFj95eXkAgLy8PKvXbrxutdCuXTusXbsWK1aswFtvvYXQ0FBcuHABJSUl5piCggIAgMFgsPp9Ly8vixgAeP7553H16lX06tULGzduxPHjx7FkyRIMGzYMHh4eFvH//ve/UVhYiLS0NKvj7dGjB0pLS7Fu3Tpz3W5ubggPD0eXLl2QmZmJZcuW4fnnn8e6devQr18/FBcXa54jugNU9ENfRERUeURFRQkAyc7Otvm6rQktsrOzzZNeTJs2zSJ+yJAhAkCqV69+09eWLVtmUf6Pf/xD9Hq9VXlubq5ERERISEiIXLly5dYPkoisXH8dq/zcrI3QckKLnJwcqVGjhgwdOtRctmPHDgEgL7zwglX85cuXBYD885//tCifOXOmBAQEmPfd09NTJk6cKPHx8QJA8vLyRERk2LBhdo/79ddfN9fbv39/iY6OloKCAovtffzxxwJAMjIyNMkD3Vn4zBUREWkiOjoazz33nEXZ448/joyMDAQFBVm9NmDAAGRkZGD37t1ITk4GAGRlZeGnn37Co48+ai4zCQ0NxdixY/Hss8/iu+++Q/fu3Z17QERVSO3atbF27VqLst27d2PMmDGYNm0aWrRoYRXvbGFhYejSpQvmzp2LmTNnwmAwmCeLuP7WPxNT2Y23DI4cORJDhw7F3r17UVhYiKZNm6J69epIT09HaGgo/P39AQDy39WJFi5ciNDQUJv7ZJq848SJE/j0008xYsQIeHt7W8SkpKRg2LBh2LhxIwYPHnwbGaA7ETtXRESkiRYtWkCvt7zb3PQBpXnz5lav2fqQtGXLFgDX1rGxNeHG4cOHAVxbu4adKyLteHl5oUuXLhZl7u7XPia2atWqwta1u3LlCoxGIy5evIiaNWsiNDQU4eHhNp+/NJW1bt3a6jWDwWBRvmPHDpw7dw5paWnmsgYNGgC4NmnPjbm4kandMhqNVq+ZbmO8/nZGqjrYuSIiIk0EBARYlZk+nJX12vXPJfz1118AgLVr11p9i369/Pz829pXIqoYJ06cQEFBAerVq2d+5unMmTMICQmxij1w4AC+++471KtXDzVr1jSX//Of/8S0adOwcuVK83TsRqMRH3zwAapXr24xu6AtV69exahRo2AwGDBmzBhzed++ffHyyy9jwoQJSEpKshqRysvLg5eXFwwGAxo2bAg3Nzd89dVXmDJlisXSFQsWLAAAxMfHO5Qbcg3sXBERUaVh6oS9+eabePHFFyt4b4hIxaJFi3D8+HEAwLlz51BUVIQ33ngDwLW1qq6f7W/gwIHYuHEjsrOzzcs9vPnmm1i7di26d++OunXrQkSwb98+LFq0CMXFxUhPT7fY3osvvoilS5fisccew+jRoxEeHo7PPvsM27dvR2ZmpsUsffv378eTTz6Jhx56CBEREThz5gw++eQTHD16FPPnz0ejRo3MsREREfj4448xePBgNG7cGI8//jiioqJw7tw57N27F1999RUOHDiAunXrIigoCKNGjcK7776Lu+++G0OGDEFQUBA2bdqETz/9FPXq1eMtgVUUO1dERFRptG3bFsD/3x5IRJXf3LlzsXHjRouyV199FQDQsWNHi86VLQ899BBOnTqFJUuW4OzZszAajQgPD0dKSgrGjBmDpk2bWsTXqFEDmzZtwosvvoj09HTk5+ejSZMm+Pzzz/Hoo49axAYHByMiIgIZGRk4e/YsAgIC0KFDByxatAht2rSx2pfU1FTExsZi2rRpmD17Nv7++28EBwejYcOGmDRpksWzZlOnTkXDhg2RmZmJKVOmoLCwEOHh4Rg2bBgmTpxofpaLqhZ2roiIqNKIj49HQkICVqxYgXnz5mHQoEFWMVu3bkXz5s1tLgxKRNpJSkoyT/JQluvXvbuV2C5duth9xulG4eHhWLRokd24kJAQLF++3KG6ExMTkZiYaDdOp9NhyJAhGDJkiEP1k2tj54qIiCqVxYsX495770VaWho++ugjxMfHw8/PDydPnsSOHTtw5MgRnD59mp0rIiKqdNi5IiKiSiUqKgq7du3Ce++9h+XLl2PhwoUQEYSGhqJFixYYP348goODK3o3iYiIrOhEZbyXiIiIiIiIyqS3H0JERERERET2sHNFRERERESkAXauiIiIiIiINMDOFRERERERkQbYuSIiIiIiItIAO1dEREREREQaYOeKiIiIiIhIA+xcERERERERaYCdKyIiIiIiIg2wc0VERERERKQBdq6IiIiIiIg0wM4VERERERGRBv4PPa3f/CVytIgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent)\n", + "plt.colorbar()\n", + "plt.ylim(700,850)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now the change of the QPO frequency is clear. Erratic, but clear." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Trace maximun" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's use the method `trace_maximum()` to find the index of the maximum on each powerspectrum in a certain frequency range. For example, between 755 and 782Hz)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "tracing = dynspec.trace_maximum(min_freq=755, max_freq=850)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is how the trace function looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAJ2CAYAAAADlpygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACXXklEQVR4nOzde3zO9f/H8ec1bIyZMafN5ByiHCdzTHxLOlFIOjgTKdFBB9VXvjp9UUppKDlWQnz76eCsnJJDIeWQ44ZiGGYbdv3++HTtc13bsF27ts917Xrcb7fd+rw/+3w+1+uqq/Hc5/15vW12u90uAAAAAIDfCrC6AAAAAACAtQiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wpbXUBBlJaWpvj4eIWEhMhms1ldDgAAAAA/ZLfbdfbsWUVERCgg4Or3BAmGeSA+Pl5RUVFWlwEAAAAAOnz4sCpVqnTVYwiGeSAkJESS8R+gZMmSFlcDAAAAwB8lJiYqKioqPZ9cDcEwDzimj5YsWZJgCAAAAMBS2Xm8jeYzAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4Oe8MhieO3dOY8eOVf369RUSEqLw8HDFxMRo+vTpstvt6cf16tVLNpsty68vv/wy03VTUlL08ssvq2rVqgoKClL16tU1ZswYXbx4MT/fHgAAAAB4lcJWF5BRWlqaOnbsqHXr1unRRx/V0KFDlZSUpLlz56p3797atWuX3nzzTZdzZs6cmek60dHRmfZ1795dixYtUp8+fdS8eXOtX79eo0aN0t69ezV9+vS8eksAAAAA4NVsdudbcF5g/fr1iomJ0bBhwzRhwoT0/ampqapdu7YSEhJ0+vRpScYdw08//VTZeQtLlixRp06dNHz4cI0bNy59/4gRIzR+/HitXbtWMTExHnkPiYmJCg0N1ZkzZ1SyZEmPXBMAAAAAciInucTrppImJiZKkiIiIlz2BwYGKjw8XMWLF890jt1uV2JiotLS0q543Tlz5kiShg0b5rLfMZ41a1YuqgYAAAAA3+V1U0mjo6NVqlQpvfXWW6pSpYqaNWumpKQkffrpp9q8ebMmT56c6ZzQ0FCdPXtWgYGBat26tcaMGaNmzZq5HLNp0yZFRkYqKirKZX9UVJQiIiK0adMmt2uuWLGiy/hqARUAAAAAvI3XBcOwsDAtXrxY/fr1U7du3dL3h4SEaP78+br33nvT91WoUEFPPfWUGjdurOLFi+uXX37RO++8o1atWmnJkiVq3759+rHx8fGqW7dulq8ZGRmpI0eO5Nl7AgAAAABv5nXPGErS1q1bNWbMGFWrVk0xMTFKSEjQpEmT9Pvvv2vRokXq0KHDFc/ds2ePGjRooIiICO3Zsyd9f6FChdSiRQutWbMm0zmtW7fWr7/+mv7sYm555TOGhw5Jn30mPf20FOB1M4gBAAAAeJhPP2O4fft2xcTEqEOHDnr77bfVuXNn9e3bVz/++KMqVKig/v376/Lly1c8v2bNmurWrZv27t2r3bt3p+8PDg5WSkpKluckJycrODjY4+/FK1y8KN15p1SlivTcc9KyZVZXBAAAAMDLeF0wnDBhgpKTk9W1a1eX/cHBwerUqZMOHjyoAwcOXPUaVapUkSSdOHEifV9ERITi4uKyPD4uLk6RkZG5qttrFSkipaZKjhvDH31kbT0AAAAAvI7XBUNHeMvqruClS5dc/nkljimk5cuXT9/XtGlTxcXF6fDhwy7HHj58WPHx8WrSpEmu6vZqAwaY24sXS0ePWlcLAAAAAK/jdcHQ0SAm44Lzp0+f1qJFixQWFqYaNWro/PnzSk5OznT+1q1bNW/ePNWpU0fVq1dP39+jRw9J0jvvvONyvGPcs2dPz70Jb3P33VK5csb2pUtShn+3AAAAAPyb1zWfOXjwoBo1aqRTp06pZ8+eatGihRISEjRlyhQdOHBAkyZN0uDBg7Vt2zZ17NhR9957r2rWrJnelfTjjz9WQECAvv/+e7Vs2dLl2nfddZe+/vpr9e3bV82bN9f69es1bdo0PfTQQ5o5c6bH3oNXNp8ZOVJ6801ju2pVae9emtAAAAAABVhOconXBUNJ2rdvn0aPHq3ly5fr+PHjKlasmBo0aKBhw4apS5cukqRjx47pmWee0aZNmxQfH68LFy6oYsWKuuWWW/T888+rdu3ama6bnJysMWPGaNasWTp69KgiIyPVu3dvjRw5UkWKFPFY/V4ZDPfulWrWNMfffy9dpbsrAAAAAN/m88HQ13llMJSMIOjoSnrffdKXX1pbDwAAAIA849PLVSAPOTehWbRIOnbMuloAAAAAeA2CoT+55x6pbFljmyY0AAAAAP5BMPQngYFS797meMoUKS3NunoAAAAAeAWCob/p39/c/vNPacUK62oBAAAA4BUIhv6mRg3p1lvN8UcfWVcLAAAAAK9AMPRHzk1ovvpKOn7cslIAAAAAWI9g6I/uvZcmNAAAAADSEQz9UWCg1KuXOaYJDQAAAODXCIb+yrkJzb59NKEBAAAA/BjB0F/VrCm1a2eOY2OtqwUAAACApQiG/sy5Cc3ChTShAQAAAPwUwdCf3XuvFB5ubF+6JH36qaXlAAAAALAGwdCfBQXRhAYAAAAAwdDvOTeh2btXWrnSuloAAAAAWIJg6O9q1ZJuucUc04QGAAAA8DsEQ2RuQvPXX9bVAgAAACDfEQwhde4slSljbF+8SBMaAAAAwM8QDJG5CU1srGS3W1YOAAAAgPxFMITBeTopTWgAAAAAv0IwhKFWLaltW3NMExoAAADAbxAMYXK+a7hggfT339bVAgAAACDfEAxhytiEZvp0S8sBAAAAkD8IhjAVLSo9+qg5njKFJjQAAACAHyAYwpXzdNI9e6RVqywrBQAAAED+IBjC1fXXS23amGOa0AAAAAAFHsEQmdGEBgAAAPArBENk1qWL2YQmNVWaMcPaegAAAADkKYIhMsvYhCY2liY0AAAAQAFGMETW+vc3t3fvllavtq4WAAAAAHmKYIis1a4ttW5tjmlCAwAAABRYBENcmXMTmvnzpRMnrKsFAAAAQJ4hGOLK7rtPKl3a2KYJDQAAAFBgEQxxZTShAQAAAPwCwRBX59yE5o8/pDVrrKsFAAAAQJ4gGOLq6tSRWrUyxzShAQAAAAocgiGuzbkJzZdfSidPWlcLAAAAAI8jGOLa7rtPCgsztmlCAwAAABQ4BENcW7Firk1oPvqIJjQAAABAAUIwRPZkbELzww/W1QIAAADAowiGyJ66daWWLc0xTWgAAACAAoNgiOyjCQ0AAABQIBEMkX333282oUlJkWbOtLYeAAAAAB5BMET2FSsmPfKIOaYJDQAAAFAgEAyRM85NaH7/XfrxR+tqAQAAAOARBEPkzA03SC1amGOa0AAAAAA+j2CInHNuQjNvnpSQYF0tAAAAAHKNYIic69pVKlXK2E5JkWbMsLQcAAAAALlDMETOZWxCExtLExoAAADAhxEM4R7nJjS7dklr11pXS078+ac0bpy0Z4/VlQAAAABeg2AI99SrJ8XEmOOPPrKuluxKS5Puvlt6+mnpxhulLVusrggAAADwCgRDuM/XmtDs3i3t3GlsJydLXbpIJ05YWxMAAADgBQiGcF+3bq5NaGbOtLSca9q82XV88KDUvbt06ZI19QAAAABegmAI9xUrJj38sDn29iY0GYOhJK1YIY0cmf+1AAAAAF6EYIjccW5C89tv0rp11tVyLc7BsEQJc3vcOGnOnPyvBwAAAPASBEPkTv36UvPm5jg21rpariYtTdq61Rx/8olUq5Y57tdP2rYt38sCAAAAvIFXBsNz585p7Nixql+/vkJCQhQeHq6YmBhNnz5d9qtMVXzuuedks9lUwvlukJOUlBS9/PLLqlq1qoKCglS9enWNGTNGFy9ezKu34h+cm9B88YV06pR1tVzJnj3S2bPm+JZbpK++kkJCjPGFC1LnztLJk5aUBwAAAFjJ64JhWlqaOnbsqFGjRqlp06YaN26cXnrpJV2+fFm9e/fWyCs8D7Zt2zaNHz/+iqFQkrp3767XXntN7dq106RJk9S2bVuNGjVK/Z2nQyLnunWTQkON7eRk72xC4zyNtEoVqUwZqU4dacYMc/+BA9IDD9CMBgAAAH7HZr/aLTgLrF+/XjExMRo2bJgmTJiQvj81NVW1a9dWQkKCTp8+7XLO5cuXdfPNN6tixYpKTEzUzz//rHPnzrkcs2TJEnXq1EnDhw/XuHHj0vePGDFC48eP19q1axXjvC5fLiQmJio0NFRnzpxRyZIlPXJNrzd0qPT++8b2DTdI27dLNpu1NTkbMUIaP97Yvu8+6csvze+9/LL02mvm+JlnpLfeyt/6AAAAAA/LSS7xujuGiYmJkqSIiAiX/YGBgQoPD1fx4sUznTNx4kT99ttveu+996543Tn/NBcZNmyYy37HeNasWbmoGi7TSXfulNavt66WrPz8s7nduLHr9159VbrzTnP89tvSZ5/lS1kAAACANyhsdQEZRUdHq1SpUnrrrbdUpUoVNWvWTElJSfr000+1efNmTZ482eX4gwcPatSoUXrllVd03XXXXfG6mzZtUmRkpKKiolz2R0VFKSIiQps2bXK75ooVK7qM09LS3L6Wz6pfX7r5ZmnDBmMcGyt56A5srmVsPJMxGAYEGNNfo6ONZxElqU8fY6rpTTflX50AAACARbzujmFYWJgWL16s0qVLq1u3brruuutUp04dTZo0SfPnz8/0POBjjz2matWqafjw4Ve9bnx8vCIjI7P8XmRkpOLi4jz2HvzWwIHm9uefe08TmoyNZzIGQ0kqVcpoRuN4RtXRjCYhIT8qBAAAACzldcFQkkqUKKF69erp6aef1oIFCzR16lTVqFFDDz74oJYuXZp+3Ny5c/Xtt99q8uTJKlz46jc/k5KSFBQUlOX3ihYtqqSkJLfrPXr0qMvXHsddJ3+TsQmNt0zPdW48c911RuOZrNSt69qMZv9+qUcP6fLlvK0PAAAAsJjXTSXdvn27YmJiNGHCBA0aNCh9f48ePVSvXj31799f+/bt05kzZzRs2DD17ds3W01jgoODlZKSkuX3kpOTFRwc7LH34LeCg6WHHpImTTLGsbHS449b34TGORhmdbfQWefO0ksvSWPGGOPvv5fat5cyTBfOUkCA1LGj1LOn+7UCAAAAFvC6YDhhwgQlJyera9euLvuDg4PVqVMnvf/++zpw4IAmTpyo8+fPq3///tq7d2/6cRcuXJDdbtfevXsVFBSU/kxhRETEFaeLxsXFXXGaKXKof38zGO7YYTxz2Ly5tTXlJBhKRjOaLVukJUuM8apV2X+t2bOlqlW95/lKAAAAIBu8biqpI7xdzmL63qV/1pe7dOmSDh48qPPnz6tZs2aqWbNm+tdPP/2kpKQk1axZUx07dkw/t2nTpoqLi9Phw4ddrnn48GHFx8erSZMmefiu/MhNN0nNmpnjjz6yrhbJaDyzZYs5zs5/50KFjIBXs6Z7r7lwoXvnAQAAABbxujuGdevW1ffff6/p06fr2WefTd9/+vRpLVq0SGFhYapRo4aee+45PfTQQ5nOf+WVV/Tnn39q5syZCnU87yZjKurs2bP1zjvvuKxj+M4770iSejL9z3MGDpQ2bjS2P/9cmjBBCguzppa9e6/deCYrpUpJa9ZIn34qZVgTM0vOdxiXLctxmQAAAICVvG6B+4MHD6pRo0Y6deqUevbsqRYtWighIUFTpkzRgQMHNGnSJA0ePPiK57dt2zbLBe4l6a677tLXX3+tvn37qnnz5lq/fr2mTZumhx56SDNnzvTYe/DLBe6dnT8vRURI/6xJqffeM541tMLcudKDDxrb110nHTiQN6+zZYtr6PzrL6ls2bx5LQAAACAbfHqB++uuu04//fSTHn74Ya1cuVJDhw7VG2+8oaioKM2fP/+qofBa5s2bpxdffFHLli3T4MGDtWLFCo0ePVoff/yxB98BVLy40YTGITZWsur3D1db2N6TGjSQSpc2xytW5N1rAQAAAB7mdXcMCwK/v2MoSb/8YoQlh/XrpZtvzv862raVVq82tv/zH+mFF/Lutbp1k+bNM7b79ZOmTMm71wIAAACuwafvGKKAuOkmKTraHFvRhCZj45m8vGMoGctaOCxdat1dUgAAACCHCIbIOwMHmtuffy6dPp2/r+9u4xl3OQfDgwelffvy9vUAAAAADyEYIu907y6FhBjbFy4YS0DkJ+f1CytXlsLD8/b1qlUz1jB0oDspAAAAfATBEHknYxOajz7K3+mVOV3Y3hM6dDC3CYYAAADwEQRD5K0BA8zt7dvN9Q3zg3MwzM7C9p7gPJ10xQrp8uX8eV0AAAAgFwiGyFsNGrg2oYmNzZ/Xze/GMw633CLZbMb2qVPS1q3587oAAABALhAMkfec7xp+9pl05kzev+a+fVJiojnOr2AYHi41bGiOmU4KAAAAH0AwRN6zoglNfjeecZZx2QoAAADAyxEMkfdKlJB69jTHo0dLcXF5+5o//2xu59fdQgfnYPjjj1JSUv6+PgAAAJBDBEPkjyFDpIB/Pm7Hj0v33y+lpOTd61nRkdShZUspKMjYTk2V1q7N39cHAAAAcohgiPxRr5701lvmeMMG6Ykn8ua1rGo841CsmBEOHXjOEAAAAF6OYIj8M3y41KOHOY6NzZsupVY1nnHmPJ2UYAgAAAAvRzBE/rHZpKlTpZtuMvc9/ri0fr1nX8d5GmlUlFS2rGevnx3OwXDrVunEifyvAQAAAMgmgiHyV3CwtHChVLq0Mb54UbrvPik+3nOvYcXC9hk1bCiFhRnbdru0cqU1dQAAAADZQDBE/qta1VjP0NGM5uhRoxlNaqpnrm9l4xmHQoWkdu3MMdNJAQAA4MUIhrBGhw7SG2+Y4/XrpSefzP117XZrG884Yz1DAAAA+AiCIazz9NNS9+7mePJk4xnE3Ni3Tzpzxhx7SzDcv1/680/ragEAAACugmAI69hs0rRp0o03mvuGDDGWsnCX88L2VjWecaheXapSxRwznRQAAABeimAIaxUvbjSjcTRqSU01mtEcO+be9bzh+UIHm41lKwAAAOATCIawXrVqrs1o4uPdb0bjTcFQcg2Gy5dLaWnW1QIAAABcAcEQ3uFf/5Jef90cr10rPfVUzq7hTY1nHJw7kyYkSNu2WVYKAAAAcCUEQ3iPZ56RunY1xx98IH38cfbP96bGMw5ly0oNGphjppMCAADACxEM4T1sNiMI1q9v7nvsMemnn7J3vvM00qgoqVw5z9bnLpatAAAAgJcjGMK7lChhNKMpVcoYp6ZKXbpkrxmNtz1f6OAcDH/4QbpwwbpaAAAAgCwQDOF9qleX5s417iBKUlycMcX0Ws1ovDUYtmolBQYa2ykp0rp11tYDAAAAZEAwhHe6/XZp7Fhz/OOP0ogRVz7ebvfeYBgcLLVoYY55zhAAAABehmAI7/Xcc8ayFQ7vvy9Nn571sd7YeMYZ6xkCAADAixEM4b1sNumTT6QbbjD3DRokbdqU+Vjnu4WVKnlP4xkH52C4ebOxdAUAAADgJQiG8G4lSkhffWU2o0lJMZrR/PWX63HeOo3UoXFjKTTU2LbbpZUrra0HAAAAcEIwhPerUUOaM8dsRnPkiNGM5uJF8xhvD4aFCrkuds+yFQAAAPAiBEP4ho4dpTFjzPGaNdLTTxvbdru0ZYv5PW8MhhLPGQIAAMBrEQzhO55/3phG6jBxojRjhvTnn9Lp0+Z+XwiG+/ZJ+/dbVwsAAADghGAI32GzGV1J69Y19w0cKMXGmuNKlaTy5fO9tGypWVOqXNkcL19uXS0AAACAE4IhfEtIiNGMxtHIJTlZeust8/veerdQMoIt00kBAADghQiG8D01a0qzZ5vNaJx5czCUXIPh8uVSWpp1tQAAAAD/KGx1AYBbOnWSRo+WRo1y3e/twdC5M+mJE8YyHAEe/v1MtWrSZ59JtWp59roAAAAosGx2u91udREFTWJiokJDQ3XmzBmVLFnS6nIKrrQ06f77pYULzX3HjnnvM4YON90k/fpr3r5Gx47SkiV5+xoAAADwajnJJUwlhe8KCJA+/VSKiTHGDz3k/aFQMpfZyEvffisdOpT3rwMAAIACgTuGeYA7hvksLU06fNjo+JnVc4feKC7O88HNbpe6d5eOHDHGo0YZ020BAADgl3KSSwiGeYBgCMu8+qr0738b2xER0sGDUmEeJQYAAPBHTCUF/FWfPmYzm/h4njMEAABAthAMgYKkcmWj8YxDbKx1tQAAAMBnEAyBgmbgQHP7m29oQgMAAIBrIhgCBU3HjlJkpLGdliZNm2ZtPQAAAPB6BEOgoClcWOrb1xxPmyZdumRdPQAAAPB6BEOgIOrb12xCExdnTCkFAAAAroBgCBRENKEBAABADhAMgYJqwABze8kS6fBh62oBAACAVyMYAgXVHXcYi9xLNKEBAADAVREMgYKKJjQAAADIJoIhUJD16yfZbMb2kSPSt99aWw8AAAC8EsEQKMhoQgMAAIBsIBgCBZ1zE5r/+z+a0AAAACATgiFQ0HXq5NqE5uOPra0HAAAAXodgCBR0GZvQTJ0qXb5sXT0AAADwOgRDwB/07UsTGgAAAFyRVwbDc+fOaezYsapfv75CQkIUHh6umJgYTZ8+XXa7Pf24kSNHKiYmRuXKlVNQUJCioqJ05513atWqVVleNyUlRS+//LKqVq2qoKAgVa9eXWPGjNHFixfz6Z0BFrnuOun2280xTWgAAADgxGZ3TlpeIC0tTW3atNG6dev06KOP6uabb1ZSUpLmzp2rn376Sc8++6zefPNNSVLbtm1Vu3Zt1axZU2FhYTp27JhmzZqlXbt2acaMGXr44Yddrn3vvfdq0aJF6tOnj5o3b67169fr448/1qOPPqrp06d77D0kJiYqNDRUZ86cUcmSJT12XSBXvvpK6tzZ2A4IkA4elCpVsrQkAAAA5J2c5BKvC4br169XTEyMhg0bpgkTJqTvT01NVe3atZWQkKDTp09f8fxz586pevXqKlOmjH777bf0/UuWLFGnTp00fPhwjRs3Ln3/iBEjNH78eK1du1YxMTEeeQ8EQ3ilS5eM5SuOHjXG//639PLL1tYEAACAPJOTXOJ1U0kTExMlSRGOLor/CAwMVHh4uIoXL37V80uUKKEyZcro1KlTLvvnzJkjSRo2bJjLfsd41qxZuaga8AE0oQEAAMAVFLa6gIyio6NVqlQpvfXWW6pSpYqaNWumpKQkffrpp9q8ebMmT56c6ZwTJ04oLS1NR48e1ZQpU7Rr1y716dPH5ZhNmzYpMjJSUVFRLvujoqIUERGhTZs2uV1zxYoVXcZpaWluXwvIU337Sv/5j2S3G+sZfveddMcdVlcFAAAAi3ldMAwLC9PixYvVr18/devWLX1/SEiI5s+fr3vvvdfl+HPnzqls2bLp42LFimnAgAEaP368y3Hx8fGqW7dulq8ZGRmpI0eOeO5NAN6qShXpttvMrqSxsQRDAAAAeF8wlIzpoPXq1dPdd9+tmJgYJSQkaNKkSXrwwQe1aNEidejQIf3YYsWKaenSpbp06ZIOHjyo2bNn69y5c0pKSnKZdpqUlKSgoKAsX69o0aJKSkpyu96jjme2/uGYywt4pYEDzWD49ddSXJwUGWltTQAAALCU1zWf2b59u6KjozVhwgQNGjQofX9SUpLq1auntLQ07du3T4UKFcry/MuXL6tt27Y6ffq0tmzZoiJFikgy7jjWrVtXGzduzHROdHS0jhw5ovj4eI+8B5rPwKtdvGgsX+H4hcaLL0pjxlhbEwAAADzOp5vPTJgwQcnJyeratavL/uDgYHXq1EkHDx7UgQMHrnh+oUKF1LNnT+3YsUNr1qxJ3x8REaG4uLgsz4mLi1Mkd0zgL4oUkZyfwX3jDekKa38CAADAP3hdMHSEt8tZdEu8dOmSyz+v5MKFC5KkhISE9H1NmzZVXFycDh8+7HLs4cOHFR8fryZNmuSqbsCnDB0qlStnbF++LHXrJh06ZG1NAAAAsIzXBUNHg5iMC86fPn1aixYtUlhYmGrUqKFTp04pNTU10/nnz5/XtGnTFBAQoOjo6PT9PXr0kCS98847Lsc7xj179vTcmwC8Xfny0rx5xhIWkvT331KXLtI/v1QBAACAf/G65jPDhg3TjBkzNHLkSG3fvl0tWrRQQkKCpkyZoqNHj2rSpEkqVKiQVq9erYEDB+q+++5TjRo1FBISov3792vmzJk6cuSIXnnlFV133XXp1+3UqZPuvPNOjR8/XmfOnFHz5s21fv16TZs2TQ899JBatmxp4bsGLNC6tTRhgnH3UJI2b5Yee0z65BPJZrO2NgAAAOQrr2s+I0n79u3T6NGjtXz5ch0/flzFihVTgwYNNGzYMHXp0iX9mNdff13r1q1TXFyckpKSVKZMGTVt2lSDBg1Sp06dMl03OTlZY8aM0axZs3T06FFFRkaqd+/eGjlyZHqTGk+g+Qx8ht0u9e4tffqpue+996THH7euJgAAAHhETnKJVwZDX0cwhE9JTpZatZJ+/tkYFy4sLV9u3FEEAACAz/LprqQA8lnRotKCBVLZssb40iXp/vulDI2aAAAAUHARDAFIUVHSF19IjvVB//5buu8+424iAAAACjyCIQBD27bS+PHmeNMmafBg4zlEAAAAFGgEQwCmoUOlRx4xx598In34oXX1AAAAIF8QDAGYbDZp8mSpUSNz35NPSj/+aF1NAAAAyHMEQwCuihWTFi6UwsONsaMZzZEj1tYFAACAPEMwBJBZ5cquzWiOHzea0aSkePZ1Ll6Udu2SLl/27HUBAACQIwRDAFm75Rbpv/81xz/9JA0Z4rlmNGfPSi1bSnXrSu3b0wEVAADAQgRDAFf25JNSz57meNo06aOPcn9du13q1csIm5K0ahUdUAEAACxEMARwZTabFBsrNWxo7nviCWnt2txd9403pAULXPd98onR+AYAAAD5jmAI4OqCg40QV6aMMb540WhGEx/v3vW++UZ68UVzbLOZ2088QQdUAAAACxAMAVxblSpGM5qAf35kHDvmXjOavXulBx80p4xGRkobNmTugBoX57HSAQAAcG0EQwDZ066d9Pbb5njDBmno0Oyff+6cdO+90unTxjgoyLgTGR2dPx1QAQAAcEUEQwDZ99RTxh0/hylTjGcQr8Vul3r3lnbuNPd9+KERCiWjA6pz6Ny40bMdUAEAAHBVBEMA2WezGWHwppvMfY8/Lq1ff/Xz3npL+vJLczx4sBEUnQ0bljcdUAEAAHBNNrudX8l7WmJiokJDQ3XmzBmVLFnS6nIAz9u/X2rSREpIMMYVK0o//yxFRGQ+9rvvpI4dzbt/LVtKy5dLgYGZj01Kklq0kLZtM8ZFikgrVxr7AAAAkCM5ySXcMQSQc1WrSp9/bjajOXrUaBqTmup63L590gMPuDabmTcv61AoGR1QFy70XAdUAAAAZAvBEIB72reX3nzTHK9fLz35pDk+f17q3NlsNhMYKM2fL1WocPXrVqniGjrd7YAKAACAbCMYAnDfiBHGHUGHyZOlqVONO4R9+kjbt5vf++ADqVmz7F331luN5xIdNmww1jgEAABAniAYAnCfzWYEwRtvNPcNGSL162csQeHw2GNS3745u/bw4VKPHuY4NjZ7HVABAACQYzSfyQM0n4HfydiMxlmLFtKKFVd+rvBqkpKkmBjpl1+McZEi0urVUvPmuavXmd1uTIONijK+AAAACgiazwDIX1WrSp99Zj4X6BARYSxT4U4olMxmNKVLG+OLF43nDY8ezV29Do4pry1aSHXqSOvWeea6AAAAPoZgCMAzOnSQXn/dHGe32cy1ZAydV+qA6o4JE6Tp043t8+eN0EkHVAAA4IcIhgA855lnpDFjpNatjTt9N9/smet26CC98YY5XrfOtQOqO1asMOp1duyY50InAACAD+EZwzzAM4ZAHrDbjWY0n39u7psyxWh0k1MHDhjPRJ48aYyLFpWSk83vDxxodFgFAADwYTxjCKDgsdmkadOk+vXNfUOGGEtZ5ERSkrG+oiMUFikiLVvmuuzGRx8ZoRMAAMBPEAwB+I7ixaWvvpLCwoxxaqrxXOCxY9k7326XBgyQtm0z902caDSfybjsxuOP5zx0AgAA+CiCIQDfUq2aazOa+PjsPxf47rvS7NnmuG9fY9qoZITOhQtdQ2eXLp7rgAoAAODFCIYAfM+//iWNHWuO166Vnnrq6uesXCk9/bQ5btZMmjTJmKLqUK2a8QyjcwfUrl1pRgMAAAo8giEA3/Tss0Zoc/jgA+njj7M+9uBBqVs36fJlY1y+vLGURlBQ5mMzLruxdq00bJjHygYAAPBGBEMAvslmM4KgczOaxx6TfvrJ9bgLF4wpoSdOGOPChaUvv5QiI6987WeeMYKkw4cfGo1vAAAACiiCIQDfVaKE8VxgqVLG2PFc4PHjxthulwYNkrZsMc95912pZcurXzer0Dl4sLRxo0fLBwAA8BYEQwC+rXp1ae5c81nBuDjzucD33pNmzDCP7dPHuKuYHVk1o8lJB1QAAAAfkqsF7n///XcdOnRIJ06cULFixVSuXDnVr1/f7xd1Z4F7wAJvvCE9/7w57thR+v5787nCpk2lNWuMxexz4rvvpDvukNLSjHHLltLy5VJgoGfqBgAAyCM5ySU5DoYrVqzQtGnTtGzZMp1wPLPjJCAgQA0bNtT999+vPn36KDw8PGfVFwAEQ8ACdrvxXOCXX2b+Xrly0ubNUqVK7l37zTelkSPN8eDBRkdTAAAAL5YnwXDBggV68cUXtXv3btntdkVGRqpp06aqUKGCSpcurQsXLujkyZP6/ffftW3bNqWmpiooKEiPPPKIRo8erfLly3vkzfkCgiFgkXPnpJtvlnbuNPcVLmzc4Wvd2v3rZhU6P/5Y6t3b/WsCAADkMY8Hw9atW+vHH39UvXr19PDDD6t79+6qXLnyFY9PTU3VypUrNXPmTH311VcqVKiQZs6cqbvvvjvn78YHEQwBC+3da0wbPX3aGL/3nvT447m/7rlzUvPm0o4dxjgoSPrhB+O1AAAAvFBOcknh7FwwKSlJX3/9te64445sFRAYGKjbbrtNt912m/7++2+98cYb2r17d7bOBYBcqVHDuEP49ttSq1bZbzZzLY4OqI7QmZIide5sTFH1oxkRAACgYMpV8xlkjTuGQAH27bdGMxrHj87WraVly6QiRaytCwAAIIOc5BKWqwCAnLj9duk//zHHa9ZII0ZYVw8AAIAHuBUMR48erf/+979KTU294jGrV6/W6NGj3S4MALzWyJHGmoYO770nffqpdfUAAADkkltTSQMCAmSz2RQTE6OvvvpKZcqUyXTMv//9b40ePVqXHWuI+RGmkgJ+4OxZowPqb78Z46Ag6ccfpSZNrK0LAADgH/kylbRq1apau3atmjdvrr1797p7GQDwTSEh0ldfSaGhxjglRerSRfrrL0vLAgAAcIfbwfCRRx7Rxx9/rIMHD6p58+Zau3atJ+sCAO9Xs6Y0Z45ksxnjw4eN9Q4vXrS2LgAAgBzKVfOZXr16acmSJbp48aLat2+vzz77zFN1AYBvuOMO6bXXzPHq1dIzz1hXDwAAgBty3ZX01ltv1bp161S+fHn17NlTY8eO9URdAOA7nn/eWNPQ4d13pZkzrasHAAAghzyyXEXdunW1ceNGNWrUSKNGjVLfvn11kalUAPxFQIDRlbROHXPfgAHSli3W1QQAAJADhT11ofLly2vNmjXq0aOHPvnkExUrVsxTlwYA7+doRtO0qZSYKCUnG3cRf/5ZKlvW6uoAAACuymPBUJKKFSumhQsX6qmnntLEiRNlczRkAAB/UKuWNHu2dPfdkt0uHTokde8uff+9VNijP27hD9atk775Rsrusk8hIdJDD0lRUXlbFwCgQHJrHcPs2LRpk5KSktSmTZu8uLxXYx1DwM+99pr08svm+P33pSFDrKsHvmfXLqlBAyk1NWfn1a0r/fqrVKhQnpQFAPAt+bKO4bU0bdrUL0MhAOjFF6U77zTHX31lWSnwUR98kPNQKEm//WbcoQYAIIeY2wQAnhYQIA0dKn39tTH+4QfpwgWJZ6+RHUlJrl1t27aVKlW6+jkbNkh79xrbsbFSx455Vh4AoGDKdjCsVq1aji9us9m0b9++HJ8HAD6vZUspMNC465OSIq1dK7Vvb3VV8AXz5klnzhjbRYtKCxZIYWFXP2fBAum++4zt//1Pio+XIiLytk4AQIGS7WB44MCBHF+c5jMA/FZwsNSihbRypTFetoxgiOyJjTW3u3W7diiUpLvuksqXl44fN5rVfPKJMaUZAIBsynYw3L9/f6Z9EyZM0Hvvvac///zTo0UBQIHQoYNrMASuZccOoxupw4AB2TuvSBGpTx/p9deN8ZQp0vPPG9OaAQDIhmz/iXHddddl+gr757eYWX3P8eWOc+fOaezYsapfv75CQkIUHh6umJgYTZ8+XY4mqsnJyZoyZYruueceValSRcWKFVO1atXUo0cP7dq1K8vrpqSk6OWXX1bVqlUVFBSk6tWra8yYMbp48aJbdQLAVTnfIdyyRTp50rpa4Buc7xbWrSvFxGT/3H79zO2DB2lCAwDIEa/7VWJaWpo6duyoUaNGqWnTpho3bpxeeuklXb58Wb1799bIkSMlGVNbBwwYoISEBPXt21fvv/++evTooe+++04NGjTQSsdv6Z10795dr732mtq1a6dJkyapbdu2GjVqlPr375/fbxOAP2jUSCpVyti22827h0BWMjadGTBAyskjGdWqSf/6lzl2DpkAAFxDrtYx/Pe//63Ro0frcnYX382G9evXKyYmRsOGDdOECRPS96empqp27dpKSEjQ6dOndfLkSR0+fFgNGjRwOf+3335Tw4YNVb9+ff3888/p+5csWaJOnTpp+PDhGjduXPr+ESNGaPz48Vq7dq1icvKb2atgHUMA6e67z2gMIkkDB0qTJ1tbD7zXjBnSo48a20WLSnFxUunSObvG/PnS/fcb24UKSYcPSxUrerZOAIDP8Ip1DN2VmJgoSYrI0E0tMDBQ4eHhKl68uCSpTJkymUKhJNWtW1f16tXTjh07XPbPmTNHkjRs2DCX/Y7xrFmzPFA9AGTgPJ2U5wxxNc53+Lp2zXkolKS77zaa0EhmExoAALLB69YxjI6OVqlSpfTWW2+pSpUqatasmZKSkvTpp59q8+bNmnyN37anpaXp6NGjKu/4g/EfmzZtUmRkpKKiolz2R0VFKSIiQps2bXK75ooZfhublpbm9rUAFDDOwXDfPmn/fqlqVevqgXfaudNY0sQhu01nMipSROrdW3rjDWM8ZYo0ciRNaAAA1+R1f1KEhYVp8eLFKl26tLp166brrrtOderU0aRJkzR//vxrPg84efJkHT16VI86puP8Iz4+XpGRkVmeExkZqbi4OI+9BwBIV6OGVLmyOeauIbLifLewTh1jqRN3OTehOXBAWrrU/WsBAPxGtu8Ytm7dOtO+Q4cOXfF7krGO4erVq3NcVIkSJVSvXj3dfffdiomJUUJCgiZNmqQHH3xQixYtUocOHbI8b926dRo+fLhuuukmvfDCCy7fS0pKUlBQUJbnFS1aVElJSTmu0+Ho0aMuY8dcXgCQzWYsWzFtmjFetkyi4RWcXbhgPF/okNOmMxlVr2585hyBMDZWuu223NUIACjwst18JsCNaSg2my3HjWm2b9+u6OhoTZgwQYMGDUrfn5SUpHr16iktLU379u1ToUKFXM7bvHmz2rdvr7CwMP3www+Z7g6GhISobt262rhxY6bXjI6O1pEjRxQfH5+jWq+E5jMAXHz2mdSjh7Fdpoz0119M7YNp5kzpkUeM7aAgKT7evecLnX35pfGcoiQVLiwdOkQTGgDwQznJJbla4D4vTJgwQcnJyerq+APtH8HBwerUqZPef/99HThwQNWrV0//3pYtW9ShQweFhoZq5cqVWU4ZjYiIuOJ00bi4uCtOMwWAXGvXztw+eVL65RepYUPr6oF38UTTmYzuvlsqV874JcSlS9L06caC9wAAXEG2g6G7i9XnlCO8ZXWn8dKlSy7/lIxQ2L59e4WEhGjlypVXrLNp06aaPXu2Dh8+7NKA5vDhw4qPj9fdd9/tybcBAKZy5aSbbjICoWRMJyUYQjKazvz4ozl2t+lMRoGBRhOaN980xlOmSM89x51qAMAVed2fEHXr1pUkTZ8+3WX/6dOntWjRIoWFhalGjRqSpK1bt6pDhw4qUaKEVq5cqapX6fTX459pXO+8847Lfse4Z8+ennkDAJAVlq1AVqZMMbdr15ZatvTctZ2fZd2/n88dAOCqsvWM4bFjx1ShQoVcvdDx48czLSGRlYMHD6pRo0Y6deqUevbsqRYtWighIUFTpkzRgQMHNGnSJA0ePFgHDx5U48aNlZCQoFdeecVlaqlD586d09c9lKS77rpLX3/9tfr27avmzZtr/fr1mjZtmh566CHNnDkzV+/PGc8YAsjk22+ljh2N7aJFpVOnjH/Cf124IEVGGp8FSRo/XnrqKc++RocOZiC87z7j2UMAgN/ISS7JVjAMDg7W0KFDNWLECJUrVy5Hxfzf//2fXn31Vd111116+eWXs3XOvn37NHr0aC1fvlzHjx9XsWLF1KBBAw0bNkxdunSRJK1atUq33HLLVa+zf/9+ValSJX2cnJysMWPGaNasWTp69KgiIyPVu3dvjRw5UkWKFMnR+7oagiGATM6fl8LCpIsXjfHy5a7PHsL/zJolPfywsR0UJMXFGc2JPGnePKlbN2O7cGHp8GEpl7/oBQD4Do8Hw5deekkTJkzQxYsXddttt6lbt26KiYnJ8i7d+fPn9fPPP+v777/XrFmzdOTIETVu3FhTp07VjTfe6P678iEEQwBZattWcizh8/zz0tixlpYDi7VuLf3wg7Hds6cRFD0tNVWKijKa0EjS668bC94DAPyCx4OhZDRpGT16tObOnasLFy5IkkqWLKny5csrLCxMycnJSkhIUHx8vNLS0mS323XjjTfqmWee8bvn9wiGALL0n/9IL71kbDdtKv30k7X1wDq//SbdcIM5Xr3aCIp5YeRIswlNtWrSnj00oQEAP5EnwdD54nPmzNGyZcu0du1aHT9+PP17gYGBql+/vtq2basuXbqoefPm7r0DH0cwBJCljRulm282tm02Y+mKsDBra4I1nnpKcjRDu/56adeu3C1qfzV790o1a5rj7783nj0EABR4eRoMM7p48aJOnjypYsWKKTQ0NDeXKjAIhgCydOmSFB4unTljjOfPl/55bhp+JDlZiogwm86MGycNH563r9m+vfFcqyTdf7/x7CEAoMDLSS7J9VySIkWKqEKFCoRCALiWwoUl56ZZLB/gn+bPN0NhYKD0yCN5/5rO6yN+9ZXkNNsHAADJC9cxBIACzXk9w6VLrasD1vnoI3P7/vuNu8h57d57pbJlje1Ll6RPPsn71wQA+BSCIQDkJ+dguHevdOCAZaXAArt2mZ1IJdc7eXkpMFDq3dscT5kipaXlz2sDAHwCwRAA8lOtWlKlSubY8dwX/MOUKeZ2rVp514k0K/36mdt//imtWJF/rw0A8HoEQwDITzaba0dIb3rOcM4c6aGHjO6p8LzkZOnTT83xgAF514k0KzVrSu3amePY2Px7bQCA1yMYAkB+c55Ouny5d0zpmzPHWGR99mzp1lulnTutrqjgWbBASkgwtgMDpUcfzf8anKeuLlxIExoAQDqCIQDkt1tvNbf//lvavt26WiRp2zbXaYbnzxvNSk6ftqigAsq56UyXLvnTdCajzp1dm9BMn57/NQAAvJJbwfDs2bOergMA/Ef58lL9+ubYyumkJ08aYeHCBdf9e/cadxAvX7amroLm99+lNWvM8cCB1tQRGCj16mWOaUIDAPiHW8EwIiJCAwYM0KZNmzxdDwD4B+fppFYFw0uXpAcecO2Mevvt5vaSJdKrr+Z3VQWTc9OZmjWlNm2sq8X57vC+fdLKldbVAgDwGm4Fw3Llymnq1Km6+eab1bhxY8XGxurcuXOerg0ACi7nYLh6tZSSkv81vPCCayh9+WXp66+lf/3L3DdmjPFsHNxnddOZjGrVkm65xRzThAYAIDeD4b59+/Tdd9+pS5cu2rFjhx577DFFRERo4MCB+vnnnz1dIwAUPK1bS0WKGNsXLkjr1+fv63/2mfT22+b4zjulV16RChWS5s6VqlY1v/foo9Jvv+VvfQXJggXGlF3JuqYzGWVsQvPXX9bVAgDwCm43n+nQoYPmzZunI0eOaOzYsSpfvrymTJmiZs2aqXHjxpoyZYrOnz/vyVoBoOAoUUJq3twc5+d00l9+kfr0Mce1akmzZkkB//yRULq09NVXUnCwMT53jmY0ueF8R65LF7P5i5U6dzab31y8SBMaAEDuu5KWLVtWzz33nPbs2aOlS5eqa9eu2rlzpwYNGqSKFStq0KBB+vXXXz1RKwAULFY8Z5iQ4NpspkQJ445RaKjrcTfeKH38sTnes8dY45BGJTnzxx/GVGEH5zt1VgoKogkNAMCFR5erqF69uqpVq6aSJUvKbrfr/Pnzio2NVcOGDdW9e3ed5rfNAGByDoabNuX9HbnLl6UePaT9+819M2ZIdetmfXz37tIzz5jj//s/mtHklHPTmRo1pLZtLSslk/79ze29e6VVqywrBQBgvVwHw8uXL2vBggW67bbbVKNGDb3xxhsKDQ3V22+/rb/++kvff/+92rdvr3nz5mnw4MGeqBkACoamTaWQEGM7LS3v/2L+4ovS99+b45deMu4eXs3Ysa4B9rXXjGmmuLaUFNcpmlY3ncmoVi3XoEoTGgDwaza73W5358QDBw5oypQp+uSTT3T8+HEFBATozjvv1GOPPaZ/OXe0+0eXLl20atUqJSQk5Lpob5eYmKjQ0FCdOXNGJUuWtLocAN7snnukxYuN7SFDpPffz5vX+eIL4w6gwx13SP/7n/lc4dWcPCk1aWIua1GihPTTT1KdOnlSaoExd6704IPGdpEiUlycdzxf6Oyzz4y7yJJR45EjUrly1tYEAPCYnOQSt+4YOu4Ovv7665KkF198Ufv379fChQuzDIWS1LRpU505c8adlwOAgsv5btzSpXnzGtu3S717m+MaNaTZs7MXCiWpTBnjLmGxYsbY0YyGn+lX541NZzLq3Nn47ysZTWicl9UAAPgVt4Lh0qVL1aZNG33xxRc6dOiQRo8erUqVKl31nLvuuksfOzcyAAC4BsPdu6VDhzx7/YQEI8QlJRnjEiWMkFeqVM6uc9NN0rRp5nj3bprRXM3u3a5Tg72l6UxGGZvQxMZK7k0kAgD4OLemkv7xxx+6/vrr86KeAoGppACyzW6XoqKMaYaSsX6gJ39unDhhXluS5s837l656+mnpXHjzPGrrxrrH8LVM89I//2vsV2jhtGdNLt3aPPbH39ItWub4xUrpFtusa4eAIDH5CSXuP2MIa6MYAggR3r1yp8pfC+8IP3nP7m7xqVL0u23S8uXG+MiRaTjx6WwsNzXV1CkpEiVKhmhXJLefFN69llra7qWtm3NZTW6dzeePQQA+Lw8f8Zw3rx5ateuneKcfwvtJC4uTrfeeqsWLFjgzuUBwL/075/33SrvvFMaPTr31ylc2AgNjj9cLl5kmYOMFi40Q2GRIq5TNb3VwIHm9oIF0t9/W1cLAMAShd05aerUqTp16pQiIyOz/H5kZKROnz6tqVOnqktupiwBgD9o0UL6/Xdp8+a8uX7JktK//iUVKuSZ64WHG1MNFy0yxsuWXXvZC3/i3HSmc2ff6PLpaEJz8qTZhObpp62uCgCQj9wKhtu3b9edd9551WOaNm2qr7/+2q2iAMDv1KplfPmK9u3NYJhX3VR90e7d0sqV5thbm85kVLSo9Oij0vjxxjg2VhoxwrvWXQQA5Cm3ppImJCSo3DV+AxoeHq4Tjqk0AICCxbmb6p490sGD1tXiTaZONberV/etJi79+5vbe/aYzxwCAPyCW8EwPDxce/fuveoxe/bsUamctkMHAPiG6683Gqw4OJrR+LOUFOmTT8xx//7e24k0K7VrS61bm+OPPrKuFgBAvnPrT6wWLVpo8eLF2r17d5bf/+OPP7R48WK1atUqV8UBALyUzeZ613DZMutq8RZffeXadKZ3b0vLcQtNaADAb7kVDJ9++mldvHhRLVu21Pvvv6/du3fr/Pnz2r17t9577z21bNlSly5d0tM8uA4ABVfGYOjvi907N525917faDqTUZcuUunSxnZqqjRjhrX1AADyjdvrGE6ZMkVDhgzR5cuXM32vUKFC+uCDD9SvX79cF+iLWMcQgF84dkyqWNEc//KLdOON1tVjpT17XJsHLV3qGpx9yfDh0oQJxnatWkbHXJrQAIBPyvN1DCWpf//++uWXXzR48GA1btxY1atXV+PGjTVkyBD98ssvfhsKAcBvVKgg1atnjv25O+mUKeZ2tWpSu3bW1ZJbzk1odu+mCQ0A+Am3lqtwqFOnjt577z1P1QIA8DXt20s7dhjby5YZSxz4G19vOpNRnTpSq1bSDz8Y49hYqW1bS0sCAOQ9H/6TCwBguQ4dzO01a4yQ5G8WLTKbzhQu7JtNZzJybkIzf775/gAABVau7hhevnxZf/zxh06dOpXls4aS1Nq59TUAoGBp3doIQ5cuSUlJ0oYNUps2VleVvzI2nSlf3rJSPOa++6ShQ6VTp8wmNMOHW10VACAPuR0MX3vtNU2YMEFnzpy56nFXCowAgAKgRAmpeXNz2uGyZb4fDPftkx55RLrGer3p/vrL3B4wIG9qym9Fi0qPPiq9844xfv556c03r31eQID0r38ZYTkoyDO1bN9u3MEsVUqaNs214REAwGPcCoZvvfWWXnnlFYWGhurhhx9WVFSUChfO1c1HAICvat/eNRi+9pq19eRGYqJ0551GJ86cqlZNuvVWz9dklQEDzGCYmuoagK9mxgwjFDrfSXXX8ePSHXdIR44Y4y5dpFWrPBc6AQDp3FquombNmkpOTtaWLVtUtmzZvKjLp7FcBQC/sm6d1KKFsR0QICUkSKGh1tbkjrQ0YwrlV1+5d/7MmdJDD3m0JMv17CnNmePeuR99lLs7qBcvGr90WLPGdX///p4JnQDgB3KSS9y6zXf48GH179+fUAgAkJo2lUJCpLNnjXC1cqXxrJ2v+c9/XEPhgAFSjx7ZO/e666SqVfOkLEvNnCk9/bR0jcdGJEl2u/TUU8Z6lpL0+OPGciYxMe699ogRmUOhZCwN0qRJwZm2CwBewq1gWL58eV26dMnTtQAAfFGRIsZyBv/7nzFetsz3guHXX0uvvGKO27aV3n/feG/+LCBAatgw+8cvXGiEtoQE447fffdJmzdLERE5e91PP5Wcl8O65x7p4EFp2zZjnNvQCQDIxK3lKrp166alS5cqxR/bkgMAMnNetmLZMuvqcMfu3caUSceTFVFR0uefEwrdUbWq8e/OsY7jsWPS/fcbzyhm1+bNrstl1K1r3LlcsEAqXdrY5wid8fGeqx0A/JxbwfDf//63KlasqPvvv1/79+/3dE0AAF/Tvr25/ccf0uHD1tWSE2fPSp07G01nJKOpycKFUrly1tbly9q3d+1gun699MQT2Tv3r7+M/x6OXzyHhhrTe0NCrhw6+SU1AHiEW8GwXr16OnDggJYsWaIaNWqodOnSqlatWqav6tWre7peAIA3ql3bdbrg8uXW1ZJdaWnGkgy//Wbui42VGje2rqaCYsQI6YEHzPFHHxnPBl7NxYtSt27mLxVsNmn2bKlmTfOYrELnk096rm4A8GNuBcO0tDQVLlxYlStXVuXKlRUaGiq73Z7pKy0tzdP1AgC8kc3metfQF6aTvv66cXfQ4YknjPULkXs2mzR1qnTjjea+xx+XNmy48jnPPCOtXm2OR4+WOnXKfJw7oRMAcE1uLVeBq2O5CgB+aeZMM1iVLy8dPWoEBG+0ZImxXqHjj8A2baSlS3mu0NP+/NNoRnPqlDGuWNF4hjDjIvXOnx3JaF40f745bTSj8+eNxjO//mqMixQxQmXz5h5/CwDgy3KSS9y6YwgAQCbOi7sfPy7t2GFdLVezZ4/04INmKKxUSfriC0JhXqhWzfW5wKNHpa5dXZvRbNniuvREnTrSjBlXDoWSVLy48exhxmY0R496/C0AgL/IdTDctWuXFi5cqJkzZ3qiHgCAr4qIkG64wRx743TSs2eNu1GOdfmCgoxulzSbyTsdOhjTdh3WrpWGDTO2//7baDaTnGyMS5Y0pveGhFz7ulWrSp99dvXQCQDINreD4ZYtW9SoUSPVq1dP999/v3r16pX+vdWrVys4OFiLFy/2RI0AAF/hzc8Z2u1S796uzWYmT5aaNrWuJn/xzDNGYxmHDz80ng3s3l06dMjcP3u2dP312b9uhw7SG2+YY+fQCQDIEbeC4e+//662bdtq7969GjZsmDp27Ojy/datW6tMmTL68ssvPVIkAMBHOAfD1avz/u6N3W50F83O1+uvG8+tOTz+uOT0S03kIZtN+vhjqX59c9+gQdLKleb43/82nvvMqaefzhw6p01zv1YA8FNuBcNXXnlFaWlp2rRpk8aNG6emGX7barPZ1Lx5c23atMkjRQIAfESbNlKhQsb2+fPSxo1591rffCNVqGC8Xna+XnzRPLdVK2n8+LyrDZkVL25MEw0Ly/y9e+6RXnrJvetmFToHD87bzx4AFEBuBcNVq1apS5cuuv4q0z0qV66s+Ph4twsDAPigkBDp5pvN8dKlefM6aWnSY48ZC6LnVGSkNG8ezWasUL26NHeua7fa66+/drOZa8kYOlNTpS5dpGPHclcvAPgRt34KnzlzRhUztprOIDU1VZcuXXKrKACAD8uP5wyXLpUOHsz5eWFhRoAoX97zNSF7brtNeu894y5u5cpGd1FPLO3kCJ2OgBkfTzMaAMgBt4JhxYoVtWvXrqse8+uvv6pKlSruXB4A4Mucg+FPP5kdQD0pNtbcbttW+v337H0dOUKzGW8wZIh08qT0xx9S7dqeu+5tt0ljx5rjH3+Uhg/33PUBoABzKxjedttt+uabb/TTTz9l+f3vv/9ea9asUadOnXJVHADABzVrJpUoYWxfvmw0ofGko0elRYvM8ZAhxnTE7HwFB3u2FrgvNFQqWtTz1332WeNOocOkSdInn3j+dQCggHErGL744osKCQlRu3bt9MILL+i3f1p/z5s3T0899ZTuuusulS1bViNGjPBosQAAH1CkiHEXz8HT00k/+cQInJKx/uDdd3v2+vBtjmY09eqZ+wYNMu5eAwCuyGa32+3unPjzzz+rW7duOnDggHkxm012u11VqlTR/Pnz1bBhQ0/V6VMSExMVGhqqM2fOqKQnnpsAAF/z7rvmenJ16riuHZgbaWnGs2SOP3tGjnRdPB1w2LdPatJEOn3aGEdGSps383wpAL+Sk1zidguwJk2aaPfu3Vq4cKGeffZZ9evXT8OHD9cXX3yhP/74I1eh8Ny5cxo7dqzq16+vkJAQhYeHKyYmRtOnT5dzjl26dKkGDRqkpk2bqmjRorLZbFq1atUVr3vmzBkNHTpUkZGRKlq0qG644QZ9+OGHcjMbAwCuxPk5w127pLg4z1x32TIzFEpSv36euS4KnowdUOPijCmmFy9aWxcAeKnCuTq5cGHdc889uueeezxVj9LS0tSxY0etW7dOjz76qIYOHaqkpCTNnTtXvXv31q5du/Tmm29KkmbPnq05c+aoXr16qlOnjrZt23bF66ampqpDhw7aunWrhg4dqjp16uibb77R4MGDdfz4cb366qseew8A4Pfq1jXWGHQsF7BsmfToo7m/rnPTmfbtjb/8A1dy++3Sf/4jvfCCMf7hB2nECGniRGvrAgAv5PZU0ryyfv16xcTEaNiwYZowYUL6/tTUVNWuXVsJCQk6/c+0kLi4OIWHhysoKEj//e9/9cwzz2jlypVq6/xsyz8++OADDRkyRBMnTtTQoUPT999333363//+pz179ui6667zyHtgKikASHr4YWnWLGP7oYekmTNzd71jx6SoKMmxFNIXX7g2GQGyYrcbn5P58819n3wi9eplWUkAkF9ykkvcumM4evTobB1ns9k0atSoHF07MTFRkhQREeGyPzAwUOHh4UpJSUnfFxkZme3rzpkzR8HBwerfv7/L/mHDhmnBggX6/PPP9eyzz+aoVgDAVXToYAbDZcuMv6A7L2yeU598YobCcuUkD85WQQFms0nTpxvLlezcaewbNMhoTtOkiaWlAYA3cSsYXm3ape2fP/TtdrtbwTA6OlqlSpXSW2+9pSpVqqhZs2ZKSkrSp59+qs2bN2vy5Mk5rjctLU1btmxRo0aNVDRDa+zo6GjZbDZt2rQpx9d1qFixYqbXAwC/d+ut5vaxY0YDmhtucO9aaWnSlCnmuHdvKTAwd/XBf5QoIS1caKxheeaMlJIide5sNKMpV87q6gDAK7gVDFeuXJnl/tOnT2vTpk2aOHGiOnXqpEGDBuX42mFhYVq8eLH69eunbt26pe8PCQnR/Pnzde+99+b4mqdOndKFCxeyvMMYFBSk8PBwxXmqMQIAwBAZaXQk3bXLGC9b5n4wXL5c2r/fHNN0BjlVs6Y0Z450553G3esjR6Ru3aSlS40lVgDAz7kVDNu0aXPF791zzz3q3r27oqOj9cADD7hVVIkSJVSvXj3dfffdiomJUUJCgiZNmqQHH3xQixYtUocOHXJ0vaSkJElGCMxK0aJF049xx9GjR13Gjrm8AOD32rd3DYZPPunedZybztx6q1SjRu5rg/+54w7ptdekl14yxqtXS08/bSyvAgB+zu3lKq6mfv36uueeezR27Ngcn7t9+3bFxMSoQ4cOevvtt9W5c2f17dtXP/74oypUqKD+/fvrsmNh42wKDg6WJJfnE50lJyenHwMA8CDnZStWrZLc+SXcsWPSV1+Z4wEDclsV/NkLL0hdupjjiROlGTOsqwcAvESeBENJqly5snbs2JHj8yZMmKDk5GR1zdBpLjg4WJ06ddLBgwd1wHkNq2wICwtTsWLFspwumpKSohMnTuSokQ0AIJvatJEKFTK2z52TBg40pvHlxPTpZtOZsmUlNx4pANI5mtHUqWPuGzjQeN4QAPxYngXDjRs3qlixYjk+zxHesroreOmfvxg4/pldAQEBatSokbZu3ZrpruFPP/0ku92uJnQmAwDPCw01/tLtMGuW9N572T+fpjPICyEhxl1ox2MfyclGM5q//7a0LACwklvB8NChQ1l+/fnnn1q9erUeeugh/fjjjzl+FlCS6tatK0maPn26y/7Tp09r0aJFCgsLUw03ni3p0aOHkpKSFOv8nIqkd955R4ULF1b37t1zfE0AQDaMGydFR5vj4cONaaXZsWKF9Oef5pimM/CUWrWk2bPNJVQOHzaa0eTwl88AUFC4tcB9QEBA+rIUWbHb7apZs6ZWrFiR4ymaBw8eVKNGjXTq1Cn17NlTLVq0UEJCgqZMmaIDBw5o0qRJGjx4sCTp119/1eLFiyVJa9eu1bfffqs+ffqoatWqkqShQ4emN4FJTU1VTEyMfvnlFz3xxBOqU6eOlixZooULF+qll17Sa6+9ltN/DVfEAvcAkMGRI1LjxtJffxnjsmWln3+WKle++nnduknz5hnb7doZ3UkBT3rtNenll83xsGHShAmWlQMAnpSTXOJWMOzVq1eWwTAgIEBhYWGKjo7WPffcc8UuoNeyb98+jR49WsuXL9fx48dVrFgxNWjQQMOGDVMXpwfGp0+frt69e1/xOvv371eVKlXSx6dPn9ZLL72kBQsW6OTJk6pevboGDx6sIUOGXDXo5hTBEACy8MMPRrhz3JFp3NjYd6XHDo4flypVMo///HMjKAKelJYm3Xefa4OjmTOlhx6yrCQA8JQ8D4a4OoIhAFzBpEnS44+b40ceMRqBZPXLuTfflEaONLbLljXuOvJ8IfJCYqLUrJn0++/GuGhRae1aqVEja+sCgFzKSS7Js+YzAABkMniw1KuXOZ4xQ3r//czHZWw606sXoRB5p2RJ446h4y9NjmY0J05YWhYA5CeCIQAg/9hs0ocfSs6doJ96ylho3NnKldK+feaYpjPIa9dfb3TNdTh0SOrenWY0APyGW1NJq1Wr5t6L2Wza5/wHfQHFVFIAuIbDh41w6NyMZvNmKSrKGDs3nbnlFqM7KZAf/v1v6dVXzfHw4UZnXQDwQXk+lTQtLU0pKSk6cOCADhw4oMOHD+vChQs6fPhw+r6UlBTZ7XaXr7S0NLfeEACggImKMoJf4cLG+O+/pS5djCl8x49LCxeaxzqvgwjktVGjpLvvNsfjx0tz5lhXDwDkE7eC4a+//qrIyEjdfPPNWrlypZKTk3X06FElJydrxYoVatasmSpVqqRff/1V+/fvd/kCAECS1Lq18Zduh59/lh57zGhG45i+Fx4u3XuvFdXBXwUEGF1Jr7/e3Nevn7R1q3U1AUA+cGsq6dChQ/Xdd99px44dCsyiGUBycrLq16+vjh07auLEiR4p1JcwlRQAsslul3r3lj791NwXHCwlJRnbTz8tvf22NbXBv/3+uxQdLZ09a4yvu8745UV4uLV1AUAO5PlyFZUqVVKPHj309lX+sH766af12Wef6ciRIzm9vM8jGAJADly4ILVqZTxjmNEff0i1auV/TYAkLVrkesf61lulN97I3rmlS0tu9mQAAE/JSS4p7M4LnDx5UhcvXrzqMRcvXtTJkyfduTwAwJ8UKyYtWGA0o/n7b3P/LbcQCmGte+6RXn5ZGj3aGC9fLjVtmv3zueMNwIe49Yxh9erV9eWXX+rMmTNZfv/UqVP68ssv3e5eCgDwM5UrS198IRUqZO7r39+6egCHV16R7rzTvXPfeUc6etSj5QBAXnErGA4aNEjx8fGKjo7WjBkzdODAAV24cEEHDhzQp59+qmbNmunYsWMaMmSIp+sFABRUbdtKs2dLNWpIffoYS1YAVgsIMNY37NhRKl7ceAb2Wl82m3HupUtGMyUA8AFuPWMoSU8++aTee+892Rw//JzY7XYNHTpU7777bq4L9EU8YwgAgB8bOVJ6801ju2pVae9eI2ACQD7L8+YzDuvXr9fHH3+srVu36syZMwoNDVWjRo3Uq1cvxcTEuHtZn0cwBADAj+3dK9WsaY6//17q0MG6egD4rXwLhsgawRAAAD/Xvr3RrEaS7rtP+vJLa+sB4JdykkuY1wAAAOBpAwea24sWSceOWVcLAGSD28Hw8uXLevfdd9WsWTOFhoaqcGFz5Ytt27Zp8ODB2r17t0eKBAAA8Cn33COVLWts04QGgA9wKxgmJyfr1ltv1fDhw7V//36FhITIeUZq1apV9cknn2jmzJkeKxQAAMBnBAZKvXub4ylTpLQ06+oBgGtwKxi++eabWrNmjV577TUdO3ZM/fr1c/l+aGio2rRpo++++84jRQIAAPgc578f/fmn+cwhAHght4Lh3Llz1bp1a73wwgsKCAjIcsmKqlWr6vDhw7kuEAAAwCfVrCm1a2eOY2OtqwUArsGtYHjgwAFFR0df9ZjQ0FCdOnXKraIAAAAKBOcmNF99JR0/blkpAHA1bgXD4sWL6+TJk1c95sCBAypdurRbRQEAABQI995LExoAPsGtYNikSRMtWbJE58+fz/L7f/31l5YsWeLXi9wDAAAoMFDq1csc04QGgJdyKxg+8cQTOn78uO66665MS1L88ssvuuuuu3T+/HkNHTrUI0UCAAD4rP79ze19+6QVK6yrBQCuoPC1D8msU6dOeumllzRmzBjVqVNHgYGBkqQSJUrowoULstvtGj16tNq0aePRYgEAAHyOowmNIxDGxkrt21tbEwBk4PYC96NHj9b333+vu+66S6GhoSpUqJCKFSumjh076rvvvtNLL73kyToBAAB814AB5vbChTShAeB1bHbnlemz6dChQwoMDFSFChXyoiafl5iYqNDQUJ05c0YlS5a0uhwAAGC1lBSpUiXpxAlj/Oab0rPPWlsTgAIvJ7nErTuGVatW1QsvvOBWcQAAAH4nKIgmNAC8mlvBsFSpUgoPD/d0LQAAAAWXcxOavXullSutqwUAMnArGN58883aunWrp2sBAAAouGrVkm65xRzHxlpXCwBk4FYwfPXVV/XDDz9o6tSpnq4HAACg4MrYhOavv6yrBQCcuLVcxTfffKO2bdtq4MCB+vDDDxUdHa0KFSrIZrO5HGez2TRq1CiPFAoAAODzOneWypSRTp6ULl6UPv1UeuYZq6sCAPe6kgYEZO9Go81m0+XLl3NclK+jKykAALiip5+Wxo0ztmvUkHbvljL8ch0APCEnucStO4YreVgaAADAPQMGmMHQ0YSmXTtrawLg97IdDBcvXqzatWurVq1aatOmTV7WBAAAUHDVqiW1bSutWmWMY2MJhgAsl+3mM507d9Znn33msu/zzz9Xly5dPF4UAABAgebchGbBAunvv62rBQCUgzuGWT2K+Pvvv2vRokUeLQgAAKDA69LFtQnNM89IMTHXPq9YMaljR4n1pAF4mFvPGAIAACAXgoKkXr3MZw0//dT4yo7ataVffpECA/OsPAD+x611DAEAAJBL/ftL2ez07uL336X16z1fDwC/xh1DAAAAK1x/vTRjhvTJJ1JKyrWP37XLmHoqScuWSTQDBOBBOQqGGRewBwAAQC707Gl8Zcfo0dIrrxjby5ZJr72Wd3UB8DvZXuA+ICBAJUuWdFkYMTExUWfPnlVkZGTWF7fZdPDgQc9U6kNY4B4AAHjcunVSixbGdkCAlJAghYZaWxMAr5ZnC9wnJiYqMTEx0/4jR47krEIAAADkTNOmUkiIdPaslJZmrIN4zz1WVwWggMj2E89paWlufQEAAMADihSR2rY1x0uXWlYKgIKHrqQAAAC+on17c3vZMuvqAFDgEAwBAAB8RYcO5vYff0iHD1tXC4AChWAIAADgK2rXliIizPHy5dbVAqBAIRgCAAD4CpuN6aQA8gTBEAAAwJdkDIbZW3kMAK6KYAgAAOBLbr3V3D5+XNq507paABQYBEMAAABfEhEh1a1rjlm2AoAHEAwBAAB8jXN3Up4zBOABBEMAAABf4/yc4erVUmqqdbUAKBAIhgAAAL6mTRupUCFj+/x5aeNGa+sB4PMIhgAAAL4mJES6+WZzzHRSALlEMAQAAPBFrGcIwIMIhgAAAL7IORhu3CglJlpXCwCf55XB8Ny5cxo7dqzq16+vkJAQhYeHKyYmRtOnT5c9wyKuGzduVPv27RUSEqKSJUvq9ttv17Zt27K8bnx8vB555BGVLVtWxYoVU5MmTTRv3rx8eEcAAAAe1qyZVKKEsX35srRqlaXlAPBtXhcM09LS1LFjR40aNUpNmzbVuHHj9NJLL+ny5cvq3bu3Ro4cmX7shg0b1KZNG+3fv1+jR4/Wv//9b+3Zs0etWrXS9u3bXa6bkJCgli1basGCBXrsscf07rvvqkSJEurWrZs++eST/H6bAAAAuVOkiNS2rTlmOimAXLDZM96Cs9j69esVExOjYcOGacKECen7U1NTVbt2bSUkJOj06dOSpOjoaP3+++/atWuXIiMjJUlxcXGqU6eObr75Zn3//ffp5z/77LN6++23tXjxYt11112SpMuXL6t58+bat2+fDh48qBKO37rlUmJiokJDQ3XmzBmVLFnSI9cEAADI5N13pWHDjO06daTffrO0HADeJSe5xOvuGCb+Mz8+IiLCZX9gYKDCw8NVvHhxSdLevXu1adMmde3aNT0USlJkZKS6du2qZcuW6dixY+n758yZo+rVq6eHQkkqVKiQhg4dqoSEBC1ZsiQv3xYAAIDnOT9nuGuXFBdnXS0AfJrXBcPo6GiVKlVKb731lubNm6dDhw7p999/1/PPP6/Nmzfr1VdflSRt2rRJktS8efNM17j55ptlt9u1efNmSdLRo0cVFxenm53bOjsd63w9AAAAn1G3rlShgjlevty6WgD4tMJWF5BRWFiYFi9erH79+qlbt27p+0NCQjR//nzde++9koxGMpJc7hY6OE8rzemx7qhYsaLLOC0tze1rAQAAZJvNZtw1nDXLGC9bJj3yiLU1AfBJXnfHUJJKlCihevXq6emnn9aCBQs0depU1ahRQw8++KCWLl0qSUpKSpIkBQUFZTq/aNGiLsfk5FgAAACfknE9Q+9qHwHAR3jdHcPt27crJiZGEyZM0KBBg9L39+jRQ/Xq1VP//v21b98+BQcHS5JSUlIyXSM5OVmS0o/JybHuOHr0qMvY8ZAnAABAnnMOhkePGg1obrjBunoA+CSvu2M4YcIEJScnq2vXri77g4OD1alTJx08eFAHDhxIb06T1RRQxz7HNNGcHAsAAOBTIiONjqQOLFsBwA1eFwwdQe3y5cuZvnfp0qX0fzZt2lSSsbxFRhs2bJDNZlPjxo0lGc8ARkZGasOGDVkeK0lNmjTxzBsAAADIbxmnkwJADnldMKxbt64kafr06S77T58+rUWLFiksLEw1atRQjRo11KRJE82bNy+9uYxkNJqZN2+e2rVrpwpOXbp69Oihffv26X//+1/6vsuXL+u9995TqVKldMcdd+TtGwMAAMgrzsFw1Srp4kXLSgHgm7xugfuDBw+qUaNGOnXqlHr27KkWLVooISFBU6ZM0YEDBzRp0iQNHjxYkrRu3TrdcsstqlSpkoYOHSpJeu+993T8+HGtXbtWN910U/p1T548qcaNG+vkyZMaPny4IiMjNXfuXK1atUpTp05V3759PfYeWOAeAADkqzNnpDJlJMeMqx9/lFq0sLYmAJbLSS7xumAoSfv27dPo0aO1fPlyHT9+XMWKFVODBg00bNgwdenSxeXY9evX66WXXtLGjRtls9kUExOj119/XY0aNcp03bi4OI0cOVLffPONzp07p7p16+q5555T9+7dPVo/wRAAAOS7mBjJ8YjNq69Kr7xiaTkArOfzwdDXEQwBAEC+e+UVafRoY7tlS+mHH6ytB4DlcpJLvO4ZQwAAALjB+TnDDRuks2etqwWAzyEYAgAAFATNmknFixvbly5Jq1dbWw8An0IwBAAAKAgCA6U2bcwxy1YAyAGCIQAAQEHBeoYA3EQwBAAAKCicg+HOndLRo9bVAsCnEAwBAAAKinr1pPLlzfHy5dbVAsCnEAwBAAAKCpuN6aQA3EIwBAAAKEicg+HSpRJLVgOuVq6UBg2S1q+3uhKvUtjqAgAAAOBBt95qbsfHS7/8IjVoYFk5gFdZtky67TYpLU1auFA6cEAqVszqqrwCdwwBAAAKkqgoqX59czxtmnW1AN7kwAHpgQeMUChJf/0lrVtnaUnehGAIAABQ0PTrZ27PnCklJVlXC+ANkpKkzp2lkydd9/McbjqCIQAAQEHz0ENS0aLG9pkz0rx51tYDWMlulwYMkLZty/w9gmE6giEAAEBBU7q01LWrOY6Nta4WwGrvvCPNnm2OW7UytzdvlhIS8r0kb0QwBAAAKIgGDjS3162TduywrhbAKitWSM88Y46bNZO+/VYqVcoY2+1Gl1IQDAEAAAqkmBipbl1zzF1D+JuDB6Xu3aXLl41x+fLS/PlScLDUrp153NKl1tTnZQiGAAAABZHNZjxX5UATGviTCxeMZjMnThjjwoWlL7+UIiONsfN6nzxnKIlgCAAAUHA9/LAUFGRsnz5t/MUYKOgczWa2bjX3TZwotWxpjp2D4b590v79+VeflyIYAgAAFFQ0oYE/mjhRmjXLHPfpIw0a5HpMjRpS5crmePny/KnNixEMAQAACjLnJjRr10o7d1pXC5DXVq2SRowwx9HR0qRJxtRqZzYb00kzIBgCAAAUZC1aSHXqmGPuGqKgOnTIuEPuaDZTrpzRbMaxpmdGzsFw+XIpLS3va/RiBEMAAICCLGMTmhkzjMYcQEFy4YLUpUvmZjOVKl35HOfOpCdOSL/+mrc1ejmCIQAAQEH3yCM0oUHBZbcbzxBu3mzue+cd14Xss1K+vHTjjebYz5etIBgCAAAUdDShQUH2/vvGnXCHXr2kwYOzd26HDua2nz9nSDAEAADwB87TSX/8kSY0KBhWr5aeesocN2kiffhh5mYzV+L8nOEPP0jJyZ6tz4cQDAEAAPxBy5ZS7drmeMoU62oBPOHw4czNZhYsuHKzmay0aiUVKWJsX7ggrV/v+Tp9BMEQAADAH9CEBgVJcrLRbObvv41x4cLSvHlSVFTOrlO8uBQTY479eDopwRAAAMBfODehOXXKaOUP+Bq7XXrsMennn81948dLrVu7dz3WM5REMAQAAPAfZcpI999vjj/6yLpaAHd98IE0fbo5fuQR6fHH3b+eczD8+WfjlyZ+iGAIAADgTzI2ofntN+tqAXJqzRpp2DBz3LixNHly9pvNZKVJE6lkSWM7LU1auTJXJfoqgiEAAIA/adVKuv56c0wTGviKI0eMZjOXLhnjsmWNZjPFiuXuuoULS7fcYo79dDopwRAAAMCfZGxC8+mnft2iHz4iOVm67z7pr7+McaFC0hdfSJUre+b6rGdIMAQAAPA7jzwiBQYa2zShgbez26UhQ6SffjL3jRsntW3ruddwfs5wzx7p4EHPXdtHEAwBAAD8TXg4TWjgOyZPlj7+2Bw//LD0xBOefY1ataRKlczx8uWevb4PIBgCAAD4I+fppD/8IO3aZV0twJX8+KNrCGzY0PhFRm6azWTFZvP7ZSsIhgAAAP6odWvjLokDTWjgbeLijDvbjmYz4eHSwoW5bzZzJRmDYVpazq/x7bfG1FcfRDAEAADwR1k1oblwwXPX371buv12o4vkuXOeuy78Q0qK0Wzm+HFj7Gg2c911efeat95qbv/9t7R9e87Oj42VOnaUHnhAOn/es7XlA4IhAACAv3r0UbMJTUKC6/pwuZGQYPwF+bvvpC+/lN5+2zPXhX9wNJvZuNHc9/bbrktK5IUKFaR69cxxTqaTrl8vPf64sf3FF66/dPERBEMAAAB/FR4u9e5tjmNjja/cuHxZevBB6c8/zX3ffpu7a8K/xMZK06aZ4549PfdLi2tx5znD+Hjj7ubFi8a4dGlpzBjP15bHCIYAAAD+bNw46cYbzfHjjxt3P9z10kvGnUJnP/9sLIsBXMvatdLQoea4QQMjKHq62cyVOAfDNWuMKa1Xk5pqPAd59KgxDgiQPv9cqlo172rMIwRDAAAAf1a8uPTVV8ZdDsm463HffeZfdHNi3jzpjTcy709Lk1atyk2V8Afx8UbIctx5K1PGaDYTHJx/NbRpIxUubGwnJUkbNlz9+CeecP1FyptvuoZLH0IwBAAA8HdVq0qffWbc7ZCMUHj//cbdkOzascN1Wmr16q4LkPth+3/kgKPZzLFjxthx561Klfyto0QJqXlzc3y1z+2UKa5rgD7wgDRiRN7VlscIhgAAAJA6dHC927dunfTkk9k799Qp6d57zU6MjruQ991nHrN0qacqRUH0xBOud+feftu1S2h+cr7jd6XP7YYNZrMZyZiOPXVq/k15zQMEQwAAABieflrq3t0cT55s/GX3ahzNZvbtM/dNn250d3T+C/aePdLBgx4tFwVExqZHDz4oPfWUdfU4f243bZJOn3b9/tGjUpcu5h31sDBjymvx4vlWYl4gGAIAAMBgsxndIOvXN/cNGXL156xeftm16+jzzxvTUCXp+uulyEjze8uXe7Ze+D7nZR4k6aabjCmaVt55a9pUCgkxtjM+H5uaaqzNmbHZTLVq+V6mpxEMAQAAYHJMAw0LM8apqa7PfjmbP18aO9Yc33ab9Npr5thmc6/9P/zD0aOZl3nI72YzWSlS5MrPxw4bZnROdXj9dWMadgFAMAQAAICratVcm9E4ukU6N6PZuVN69FHXc+bMkQoVcr1WxmCYlpZ3dcN3ePsyD1n9QmPaNOnDD8393bpJzzyTv3XlIYIhAAAAMvvXv1zvBq5daz73dfq0a7OZ4GDXJS+cOTcQ+ftvo3sp8OSTRoMjB29b5sG5lj/+MO6ODx5s7qtfX/r4Y59uNpMRwRAAAABZe/ZZ43kqhw8+MJrR9Owp7d1r7v/kE9fnEp1VrCjdcIM5Zjoppk41Ghs5eOMyD3XqSBER5rhbtwLXbCYjgiEAAACyZrMZd0WcQ1///tKSJeb4ueeMvzRfjfMzWARD/7Zhg9HQyMFbl3nI+HysYwp0QIA0d66xTmcBQzAEAADAlZUoYdwdKVUq8/f+9S/pP/+59jWc/4K9erXrs4rwHydOGM1mfOXOW1ZTW8eONZosFUAEQwAAAFxd9erGXRLnuzpVqxr7MjabyUrr1lLhwsZ2UpKxRAH8z3vvGY2MJN9Y5sH5+VjJmFb97LPW1JIPCIYAAAC4tttvl9591/gLfYUKV242k5WQEOnmm80x00n9z6VLRldPh2ee8f5lHiIipIEDje22bQtcs5mMCIYAAADInqFDpePHjcYzN96Ys3NZz9C/LVkixcUZ2wEBrs8ZerPJk6W//pJWrDCmVRdgBEMAAABkX3i4e8+EOQfDn36SzpzxXE3wfrGx5vYdd0hRUdbVklNlyxboO4UOBEMAAADkvehoY0qpZHR4XLXK0nKQjw4dkr75xhwPGGBdLbgigiEAAADyXpEixnNaDkwn9R8ff2wu9xAZKXXsaG09yJLXBcNXX31VNpvtil9FihRxOX7evHmKiYlR8eLFFRISolatWmmJ89o6TtLS0jRhwgTVrl1bRYsWVVRUlEaMGKHz58/nx1sDAADwbzxn6H8yNp3p29fsUAuv4nX/Vbp06aIaNWpk2v/rr7/q7bff1l133ZW+780339TIkSPVsGFDvfbaa5KkWbNm6c4779TMmTPVs2dPl2s89dRTmjhxojp37qwRI0Zo165dmjhxorZu3aply5YpIMDrcjIAAEDB4RwMf/9dOnJEqlTJunqQ9775xvjvLBlNZ/r2tbYeXJHNbrfbrS4iOwYOHKjY2Fh9/fXX6tSpk44fP67KlSurVq1a2rJlS/qdxIsXL6pRo0aKi4vTgQMHVLJkSUnSzp07Vb9+fXXu3Fnz589Pv+57772nJ554QrNnz9aDDz7okVoTExMVGhqqM2fOpL8+AACA37PbjamER48a4+nTpUcftbQk5LG77pK+/trY7tTJ3Ea+yEku8YlbZOfPn9dnn32mSpUq6fbbb5ckrVu3TqmpqerZs6fL9NIiRYrowQcf1KlTp7Ro0aL0/XPnzpXdbtewYcNcrt2/f38FBwdr1qxZ+fJeAAAA/JbN5nrXcOlS62pB3jt82FimwoGmM17NJ4LhvHnzlJiYqF69eqlQoUKSpJSUFElScHBwpuMd+zZs2JC+b9OmTQoICFB0dLTLsUWLFlWDBg20adMmt+urWLGiy1fNmjXdvhYAAECBlvE5Q9+YvAZ3ODediYgwlqmA1/KJYDht2jTZbDb16dMnfd8NN9wgSVqxYkWm41euXClJOnz4cPq++Ph4hYeHKygoKNPxkZGROnHihFJTUz1dOgAAAJw5B8Pjx6WdO62rBXnn0iVp6lRzTNMZr+f1/3X++OMP/fjjj7r11ltVtWrV9P3169dXhw4dtGjRIj377LPq3bu3JGn69On65p91UpKSktKPT0pKyjIUSsZdQ8cxgYGBOa7xqGOe/D8cc3kBAACQQUSEVLeu9NtvxnjZMqlevZxd4/Jlo5GJHyw67rO+/dZsOmOzSf36WVsPrsnr7xhO+6e9bb8sPkyff/65unTpov/+97+qW7eu6tatqy+++EKTJk2SJJcHLIODg9Onn2aUnJycfgwAAADyWG6WrdizR7rxRqlUKWn5co+WBQ+KjTW3O3aUKle2rhZki1cHw0uXLmnGjBkqU6aMOnfunOn7YWFhmj9/vo4ePao1a9Zoy5Yt2rdvnyIiIiRJtWvXTj82IiJCJ06cyDIcxsXFKTw83K27hQAAAMgh52C4apV08WL2zjt7VrrnHuNuY2Ki9PjjPKPojY4ckf7v/8wxTWd8glcHw//97386fvy4HnrooStOA5Wk8uXLq1WrVmrYsKECAgLSF7i/w+kB16ZNmyotLU0//fSTy7nJycnatm2bmjRpkjdvAgAAAK7atJH+aSio8+eljRuvfU5amrG0xa5d5r7ff5d+/DFvaoT7pk1zbTrTqZO19SBbvDoYOqaR9s3BQpg///yzpk6dqjZt2qhly5bp+7t37y6bzaZ33nnH5fgpU6YoKSlJPXv29EjNAAAAuIaSJaVmzcxxdqaTvv66tHBh5v0ffeS5upB7ly/TdMZHee0C9/Hx8apcubIaN26sjVf4LdKoUaO0Z88eRUdHKzQ0VFu2bNEnn3yiihUratWqVYqKinI5fujQoXr//ffVuXNn3XHHHdq1a5cmTpyoFi1aaMWKFQoI8ExOZoF7AACAa3jlFWn0aGM7JkZau/bKxy5ZIt15pzlttFw56a+/jO2gICkuTipTJm/rRfb83/8Z/60ko+nM/v3SdddZW5MfKxAL3E+fPl2XL1/OsumMQ6NGjXTo0CGNGTNGQ4YM0dKlSzV06FBt3rw5UyiUpHfeeUf//e9/tXPnTg0ZMkSfffaZhg4dqq+//tpjoRAAAADZ0KGDub1xo/HMYFb27JEefNAMhVFR0k8/Gc1nJCklRZo5M09LRQ44N525/XZCoQ/x2juGvow7hgAAANdw8aJUurR07pwxXrxYuusu12POnpVuvtlc2iIoyHimsEkT6cknpYkTjf116hjrIbJ8hbXi4ozuo47nCxculO6919KS/F2BuGMIAACAAqxIEaMJjUPG5wztdql3bzMUSsbzhI6Ggf37m/t37br6VFTkD+emMxUr0nTGxxAMAQAAYI2rrWf4xhvS/PnmeOhQoyupQ716xrOJDjShsVZWTWeKFLGuHuQYwRAAAADWcA6Gv/0mxccb299+K734ovm9Vq2kceMyn++8Pt68eVJCQt7UiWv77jvp8GFj22YzgiF8CsEQAAAA1rjhBqlCBXO8fLm0d6/Uo4fZbKZSJSP0ZXX3qWtXKTTU2KYJjbWcm87cdptUpYplpcA9BEMAAABYw2ZzvWv41VdS587S6dPGOChIWrBAKl8+6/ODg6VHHjHHsbFmoET+iYuTvv7aHDvfyYXPIBgCAADAOs7BcMECaccOc/zhh1LTplc/37kJzW+/SevWebY+XNvHHxvPGErGHWDHOobwKQRDAAAAWOfWW7PeP3iw0ZX0WurXl5o3N8c0obmykyel8+c9e02azhQYBEMAAABYp1IlqXZt130tW0oTJmT/Gs5TF7/4giY0WZk82ZiSW62atHWr5667eLF06JCxTdMZn0YwBAAAgLX+9S9zOzLSaDYTGJj987t1c21CM2uWZ+vzdcuXS0OGGHf3/vrLeI7zxIncX/fAAdepvB06SFWr5v66sATBEAAAANZ64QWpWTOpQQPpf/9z7VSaHcHB0sMPm2Oa0JgOHJC6dzcXnpekgweNfZcuuX/dpCQjYJ48aYyLFJFGj85VqbAWwRAAAADWKl9e2rDBmOLYsKF713CeTrpzJ01opMzhzdmKFdJzz7l3Xbvd+Pe9bZu5b+JEI9zDZxEMAQAA4Pvq15duvtkcO6+r54+yCm+TJkl3322Ox4+X5szJ+bXffVeaPdsc9+0rDRzodqnwDgRDAAAAFAwZm9CcOmVdLVZ75x3X8Navn/TYY9KMGdL117vudw6P17JypfT00+a4WTMjcNpsua0YFiMYAgAAoGDo1k0qWdLYTk723yY0K1ZIzzxjjps1k95/3whvoaHSV19JISHG9y5cuPJ004wOHjT+HTvWLCxfXpo/XwoK8vhbQP4jGAIAAKBgKF6cJjSOxjJXC2+1a0szZ5pjR4OaqzWjuXBB6tLF7GZauLD05ZdGF1kUCARDAAAAFBzOyyfs2CGtX29dLfnNcfcvO+Htnnukl182x8uXG91hs2K3G88Qbtli7nv3XWO9SRQYBEMAAAAUHDfd5Nod01+a0DiazTgvXn+t8PbKK9Kdd5rjt9+WPvss83Hvved6h7FPH+N5RRQoBEMAAAAULM5NaD7/3D+a0Eyc6PpMZXbCW0CAcU6tWq7n/fKLOV69Who+3Bw3bUqzmQKKYAgAAICCpXt31yY0zt05C6JVq6QRI8xxdHT2w1toqLRwoVSihDF2bkZz6JDUtav5vGK5ctKCBVLRoh5/C7AewRAAAAAFS/Hi0kMPmeOC3IQmq/A2f37OwlvdusYyFg7790s9ekj33Sf9/bexr3Bhad48qVIlz9UOr2Kz2wvq/yXWSUxMVGhoqM6cOaOSjt9WAQAAIP/88ovUoIE5XrdOat7csnKyzW43mrxkZ/kIu1168UVp82ZjXLiwsVRFq1buvfaoUdKYMVl/7733pMcfd++6sExOcknhfKoJAAAAyD833WRMqfzpJ2P80Ue+EQwfe8yo1R3vvON+KJSkf//bCKVLlrju79VLGjLE/evCJzCVFAAAAAWTcxOaL76QTp+2rJRsSUmRPv7YvXN79ZIGD87d6wcEGM9j1qxp7mvSRPrwQ5rN+AHuGAIAAKBg6t5deuop6exZo6nK7Nnefedr+3bp4kVznJ3n+Ww26ZZbPBfeSpWS/u//jDuXRYsady9pNuMXCIYAAAAomEqUkHr2lCZPNsYffWTcVfPWu1+OZwUlqV49IyhaoWZNadkya14blmEqKQAAAAqugQPN7e3bpY0bravlWpyDYePG1tUBv0QwBAAAQMHVoIGxKLtDbKxlpVyTczBs0sS6OuCXCIYAAAAo2Jyb0Hz2mXTmjHW1XElKiuvUUe4YIp8RDAEAAFCwPfCAFBJibDua0HibHTvMxjMBAcZyG0A+IhgCAACgYHM0oXH46CNjcXhv4jyNtG5dKTjYulrglwiGAAAAKPicp5P++qu58L23oPEMLEYwBAAAQMHXsKFrQxdva0JDMITFCIYAAADwD97ahCYlxbiL6UAwhAUIhgAAAPAPDzxgPG8oSUlJ0pw51tbjkLHxTIMGlpYD/0QwBAAAgH8ICfHOJjTO00jr1KHxDCxBMAQAAID/cJ5O+ssv0qZN1tXiwPOF8AIEQwAAAPiPRo1cw5c3NKFxDobODXKAfEQwBAAAgH9xvms4d66UmGhdLamp0vbt5pg7hrAIwRAAAAD+pUcP72lCs2OHEQ4lGs/AUgRDAAAA+JeQEOnBB82xlU1oaDwDL0EwBAAAgP9xnk66bZv088/W1EHjGXgJgiEAAAD8T+PGRiMaB6ua0DgHUoIhLEQwBAAAgH+yugkNjWfgRQiGAAAA8E8PPigVL25snz+f/01oaDwDL0IwBAAAgH+yugmN8/OFtWubIRWwAMEQAAAA/itjExrnsJbXWNgeXoRgCAAAAP/VuLHUsKE5zs8mNHQkhRchGAIAAMB/2Wyudw3nzJHOns37101NlX791RwTDGExgiEAAAD8mxVNaHbupPEMvArBEAAAAP6tZEmpRw9zPG5c3t81pPEMvAzBEAAAABg40Nzes0fq3TtvO5SysD28DMEQAAAAaNJEevxxczx/vvTGG3n3ejSegZchGAIAAACSNH681KqVOX7xRenbbz3/OjSegRciGAIAAACSVKSING+eFBlpjO1249nDvXs9+zrOjWdsNhrPwCsQDAEAAACH8uWlBQukwEBjfPq01LmzdO6c514jY+OZEiU8d23ATV4XDF999VXZbLYrfhUpUsTl+PXr1+vuu+9WpUqVVKxYMVWvXl39+/fXn3/+menaKSkpevnll1W1alUFBQWpevXqGjNmjC5evJhfbw8AAADeLjpa+vBDc7xjh9Snj+ea0TgHwyZNPHNNIJcKW11ARl26dFGNGjUy7f/111/19ttv66677krf9+2336pTp06qXr26Hn/8cYWHh2vnzp2KjY3V/PnztX37dkU6pgJI6t69uxYtWqQ+ffqoefPmWr9+vUaNGqW9e/dq+vTp+fH2AAAA4Av69DEC3AcfGON584xnAZ97LvfXpvEMvJDXBcMbb7xRN954Y6b9A/9pIdy3b9/0fRMmTFChQoW0bt06hYeHp++/4YYb1L9/f82bN0/Dhg2TJC1ZskSLFi3S8OHDNW7cOElSv379VKpUKY0fP14DBgxQTExMHr4zAAAA+JQJE4wmMT/+aIyff954HvC229y/5sWLNJ6BV/K6qaRZOX/+vD777DNVqlRJt99+e/r+xMREFS1aVGFhYS7HR0RESJKKOy0UOmfOHElKD4oOjvGsWbPyoHIAAAD4rMBA407hP3+3TG9Gs2+f+9fcuVNKSTG2aTwDL+ITwXDevHlKTExUr169VKhQofT9t912m86ePatHH31Uv/zyi+Li4vTdd99pxIgRqlOnjh544IH0Yzdt2qTIyEhFRUW5XDsqKkoRERHatGlTvr0fAAAA+IgKFVyb0Zw6ZTSjOX/eves5L2xP4xl4Ea+bSpqVadOmyWazqU+fPi77n3/+ef3111/6+OOPNXv27PT9d9xxh+bOnauQkJD0ffHx8apbt26W14+MjNSRI0fcrq9ixYou47S0NLevBQAAAC/TrJnxrGG/fsZ4+3apb19p7lzjrl9O8HwhvJTX3zH8448/9OOPP6pdu3aqWrWqy/cKFSqkyMhItW/fXlOnTtWCBQs0YsQILVu2TA888IBLt9GkpCQFBQVl+RpFixZVUlJSnr4PAAAA+LC+faVBg8zx559L//1vzq9DMISX8vo7htOmTZNkNIrJqFevXlq3bp127typYsWKSZI6d+6sGjVq6LHHHtOnn36afl5wcLBSHPO5M0hOTlZwcLDbNR49etRlnJiYqNDQULevBwAAAC/07rtG45h164zxyJHGM4IdOmTvfBrPwIt59R3DS5cuacaMGSpTpow6d+7s8r1Dhw5p9uzZ6tSpU3oodOjataskafXq1en7IiIiFBcXl+XrxMXFuSxrAQAAAGQSGCh9+aXkeIwoLU164AEpi/Wzs5Sx8UzDhnlTJ+AGrw6G//vf/3T8+HE99NBDmaaBOkLe5cuXM5136dIll39KUtOmTRUXF6fDhw+7HHv48GHFx8erCYuLAgAA4FoqVpTmz5eKFDHGCQnZb0bjPI30+utpPAOv4tXB0DGN1HntQofrr79ehQoV0ldffaXTp0+7fM+xWH3Tpk3T9/Xo0UOS9M4777gc6xj37NnTM0UDAACgYGveXJo0yRz/+qvUv7+xnMXVOAdDbkrAy3jtM4bx8fH69ttvFR0drfr162f6funSpTVs2DCNGzdODRs2VP/+/VW6dGmtXbtWs2fPVvXq1V2eS+zUqZPuvPNOjR8/XmfOnFHz5s21fv16TZs2TQ899JBatmyZn28PAAAAvqx/f2PpidhYYzx3rvHM4IgRVz6HxjPwYja7/Vq/2rDG2LFj9eKLLyo2Nlb9+/fP8hi73a6pU6dq6tSp2rlzp1JSUhQZGalOnTrp1VdfVdmyZV2OT05O1pgxYzRr1iwdPXpUkZGR6t27t0aOHKkijukAHuBoPnPmzBmVLFnSY9cFAACAF0lJkW65RVq/3hgHBEjffSe1b5/52IsXpZAQ8xnDNWukVq3yr1b4pZzkEq8Nhr6MYAgAAOAn4uONu3/HjhnjMmWMO4lVqrge98svRgdTyWg8k5jIM4bIcznJJV79jCEAAADg1SIiXJvRnDxpNKPJuEb2zz+b2zSegRciGAIAAAC5ERMjvfeeOd62LXMzGp4vhJcjGAIAAAC5NWCA5NT4UHPmSM7d8AmG8HIEQwAAACC3bDbp/felZs3Mfc88I61YYTSe+eUXcz/BEF6IYAgAAAB4QlCQ8bxhhQrG+PJlqVs36ZtvzG6kNpvUsKF1NQJXQDAEAAAAPCUyUvryS6nwP8uFnzwpPfCA+f1atYxlKwAvQzAEAAAAPKlFC2niRHN84YK53aRJ/tcDZAPBEAAAAPC0QYOkPn0y7+f5QngpgiEAAADgaTabNGmSFB3tup9gCC9FMAQAAADyQtGirs1orrtOatrU2pqAKyhsdQEAAABAgVWpkrR9u7RggXTrrVKxYlZXBGSJYAgAAADkpfBwacAAq6sAroqppAAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcIhgAAAADg5wiGAAAAAODnCIYAAAAA4OcKW11AQWS32yVJiYmJFlcCAAAAwF858ogjn1wNwTAPnD17VpIUFRVlcSUAAAAA/N3Zs2cVGhp61WNs9uzER+RIWlqa4uPjFRISIpvNZnU58FI1a9aUJO3Zs8fiSoDs43MLX8NnFr6Izy08xW636+zZs4qIiFBAwNWfIuSOYR4ICAhQpUqVrC4DXs7xP2fJkiUtrgTIPj638DV8ZuGL+NzCk651p9CB5jMAAAAA4OcIhgAAAADg53jGEAAAAAD8HHcMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQwBAAAAwM8RDAEAAADAzxEMAQAAAMDPEQyBLJw7d05jx45V/fr1FRISovDwcMXExGj69Omy2+2SpAMHDshms131a/bs2S7XTUlJ0csvv6yqVasqKChI1atX15gxY3Tx4sUs65gxY4YaNmyoYsWKqXz58urXr5/+/vvvLI/duHGj2rdvr5CQEJUsWVK33367tm3b5tF/L/Bu2fncOnzzzTe69dZbVaFCBRUvXlzXX3+9nn76aR0/fjzTdc+cOaOhQ4cqMjJSRYsW1Q033KAPP/ww0zUlKS0tTRMmTFDt2rVVtGhRRUVFacSIETp//nyWNS9ZskQxMTEqXry4Spcura5du2r//v2e+RcCr5fdz6zdbtfkyZPTfx6WKlVKt99+uzZs2JDldflZi7x0/PhxDRo0SFFRUQoMDFTlypX15JNP6vTp05mO/eOPP3TvvfcqLCxMxYsXV6tWrbRixYosr8vPWljODsDF5cuX7S1btrQHBATYe/fubf/oo4/sEyZMsEdHR9sl2Z999lm73W63nzt3zj5z5swsv0JDQ+2BgYH2v//+2+Xa99xzj12SvU+fPvYpU6bY+/TpY5dkf/TRRzPVMX78eLske5s2bewfffSRfdSoUfbixYvb69ataz937pzLsevXr7cHBQXZq1WrZh8/frx9/Pjx9mrVqtlLlChh//XXX/Ps3xW8R3Y/t3a73R4bG2uXZG/cuLF9/Pjx9o8++sjer18/e6FChexVq1Z1+XylpKTYmzZtai9cuLD9qaeessfGxto7d+5sl2R/5ZVXMtXxxBNP2CXZO3fubI+NjbU/9dRT9sKFC9tvueUW++XLl12OnT9/vt1ms9kbNGhgnzRpkn3s2LH2cuXK2StWrGiPi4vLs39X8A45+cwOGjTILsnetm1b+8SJE+1vvPGGvVq1avbAwED7ypUrM12bn7XIK8ePH7dfd9119iJFitgff/xx++TJk+2PP/64vUiRIvYGDRrYz58/n37s3r177aVLl7aXK1fOPnbsWPukSZPsDRo0sBcuXNi+dOlSl+vysxbegGAIZLBu3Tq7JPuwYcNc9qekpNirVq1qDw0Nzdb5999/v8v+//u//7NLsg8fPtxl//Dhw+2S7GvXrk3f9/fff9uDg4PtTZs2tV+6dCl9/+LFi+2S7P/5z39crtG0aVN7SEiI/ciRI+n7jhw5Yg8JCbF36NAhW+8bvi0nn9tatWrZK1asaL9w4YLLsS+++KJdkn3hwoXp+yZNmmSXZJ84caLLsV26dLEXKVLEfuDAgfR9O3bssNtsNnuXLl1cjp04caJdkn327Nnp+1JTU+0RERH2ypUr28+ePZu+f+vWrfaAgAB7//79c/zvAL4lu5/ZrVu32iXZb7/9dntaWlr6cadOnbKXL1/eXrNmTZe/CPOzFnnpySeftEuyz5kzx2X/nDlz7JLsr732Wvq+rl272gMCAuxbt25N33f27Fl75cqV7bVq1XL5PPOzFt6AYAhk8O2339ol2d96661M32vatKk9IiLiquc7fjP97bffuuzv2bOnXZL90KFDLvsPHTpkl2R/7LHH0vdNmTLFLsk+Y8aMTNevVq2avU6dOunjPXv2pP9mPKtabDab/ejRo1etGb4vJ5/bChUq2OvWrZvpOMdfTL7//vv0fS1atLAHBwdnCpFr1qyxS7K/+eab6fscwXLNmjUux164cMEeHBxs79ixY/q+pUuX2iXZR48enamOdu3a2UuWLGlPTU3NxjuHr8ruZ9ZxR2/u3LmZjhswYECmzxw/a5GXbrzxRnuxYsVcQp3dbtwBL1q0qL1atWp2u92YVRQUFGRv165dpmuMHj3aLsm+cePG9H38rIU34BlDIIPo6GiVKlVKb731lubNm6dDhw7p999/1/PPP6/Nmzfr1VdfveK5586d0xdffKHrrrtOHTp0cPnepk2bFBkZqaioKJf9UVFRioiI0KZNm1yOlaTmzZtneo2bb75Zv//+u86dO5etY+12uzZv3py9Nw+flZPP7W233abffvtNI0aM0K5du3T48GEtWLBAr732mtq0aaN27dpJMp5h2bJlixo2bKiiRYtmej2bzZbpcxsQEKDo6GiXY4sWLaoGDRrk6DOemJio3bt35/rfC7xXdj+zKSkpkqTg4OBM13Dsc37WkJ+1yEspKSkqWrSobDaby/6AgAAVK1ZMf/75p06cOKFff/1VKSkpV/y8SOZnip+18BYEQyCDsLAwLV68WKVLl1a3bt103XXXqU6dOpo0aZLmz5+v/v37X/Hczz//XOfOnVPv3r0VEOD6v1d8fLwiIyOzPC8yMlJxcXEuxzr2Z3Ws3W5PP+Zax0pyuTYKppx8bt9991117dpV7777rurWravKlSvrvvvuU8eOHbV06VIVKlRIknTq1ClduHAhy89WUFCQwsPDM31uw8PDFRQUlOn4yMhInThxQqmpqenHOvZndazE57agy+5n9oYbbpCkTA077Ha7Vq9eLUk6fPhw+n5+1iIv3XDDDTp16lSmhkPbtm3TqVOnJEmHDh3K0eeFn7XwFoWtLgDwRiVKlFC9evV09913KyYmRgkJCZo0aZIefPBBLVq0KNPdQIepU6cqICBAvXv3zvS9pKSkLH+IS8Zv+ZKSklyOlZTl8Y7fJjqOycmxKNiy+7ktUqSIKleurM6dO+uuu+5ScHCwvvvuO3388ccqVKiQpkyZIunqny0p68/t1Y51HBMYGMjnFpKy95nt2LGj6tatqw8++EARERHq0qWLkpKSNH78eO3YsUOScvQ55GctcmPYsGH66quv1K1bN73zzjuqV6+edu7cqWHDhqlIkSK6ePGikpKSPPbZchzPz1rkB4IhkMH27dsVExOjCRMmaNCgQen7e/TooXr16ql///7at29f+l0Vh99++00bNmzQbbfdpsqVK2e6bnBwcPqUqIySk5Ndpkk5tlNSUlSsWLFMxzof43xsVtd1PgYFV3Y/tzabTbfffrsuXbqktWvXpk+Huv/++1WmTBm9+eab6t69u9q3b3/Vz5aU9ef2r7/+uuKxjmOc/8nn1n9l9zNbuHBhffPNN3r00Uf13HPP6bnnnpMk3XjjjXrjjTc0YsQIlSxZMv18ftYiL7Vq1UqfffaZnnjiCXXq1EmSVKhQIfXr10833HCDFi5cqJIlS+bo88LPWngLppICGUyYMEHJycnq2rWry/7g4GB16tRJBw8e1IEDBzKdN23aNElSv379srxuRETEFadrxMXFuUzziIiISN+f1bE2my39mGsdK2U9hQQFS3Y/tz/++KN++OEH3XfffZmekXGc65ieFxYWpmLFimX52UpJSdGJEycyfW5PnDiR5V9A4uLiFB4ersDAwPRjHfuzOlbic1vQ5eRnbeXKlbVy5UodPHhQq1ev1o4dO/TLL7+k3/GoXbt2+vn8rEVe69q1q44cOaKtW7dqzZo1io+P1+TJk3XkyBEVLlxYNWrUyNHnhZ+18BYEQyADxw/Ky5cvZ/repUuXXP7pkJqaqpkzZ6ps2bK65557srxu06ZNFRcX5/IsjGQ8GxMfH68mTZq4HCtJ69evz3SdDRs26Prrr1eJEiWydazNZlPjxo2zfrMoMLL7uc3J5zsgIECNGjXS1q1bM/0F5KeffpLdbs/0uU1LS9NPP/3kcmxycrK2bduWo894yZIlVatWrWu8a/gyd37WVq5cWa1bt05/7nDJkiUKCAjQbbfdln4MP2uRHwoVKqQGDRqoVatWKleunI4dO6atW7eqTZs2Cg4OVv369RUUFHTFz4uk9M8iP2vhNSzsiAp4pWHDhmVqDW23G2tmVaxY0R4WFuay3pXdbrfPmzfv/9u796Coyy4O4N8FZEFCLoK0LBM3BZEGTUFRUqkYcsTLMIZiIgErjngXxfFSQpZSimkqmS5ektEaNTVssgaNmEIYLxOmYiWEWmiCqauErIDn/cOXfV0XE3w1Eb6fGWaY8zv77O/Z2XnYw/5+z2myb9bdvvzyy3/srfX9998bYpWVlWJtbS19+/ZtsrfW3X2SREQCAwPF1tbWqFFtRUWF2NrayiuvvNL8ydNTq7nv2+LiYgEgAQEBJluUNzYR//zzzw2xtWvX3re3loWFhZSXlxtiP/300z/21srOzjbEbt26JSqVyqS3VnFxsZiZmYlGo3no14KeDg+z1t7tiy++aLJpPdda+rc1NDRIVFSUKBQK+fbbbw3x1157TczMzKS4uNgQa+xj2K1bN6OWF1xrqTVgYUh0j7Nnz4qjo6MoFAqJiYmRdevWyZIlS8TDw0MASGZmpsljhgwZIgCkpKTkH8ceNmyYABCNRiNZWVmi0WgEgMTExJjkZmRkCAAJDQ2V9evXy6JFi8TGxka6d+9utLiLiBQUFIilpaV4eXnJypUrZeXKleLl5SU2NjZGf5Co7WrJ+3bUqFGG4nDZsmWydu1aGT58uACQ4OBgow/Ier1e+vTpIxYWFpKcnCxarVYiIyMFgLz55psm5zF16lQBIJGRkaLVaiU5OVksLCxk8ODBRk3IRUR27NghCoVCevXqJZmZmZKeni5dunQRFxcXowbi1Da15D2bkJAg8fHx8uGHH8qGDRskNjZWzM3NJSgoSK5du2YyNtdaelxu3Lghfn5+smDBAtFqtZKRkSF9+vQRALJkyRKj3DNnzoiDg4N06dJF0tPTJTMzU3r16iXm5uYmvY651lJrwMKQqAmlpaUSGxsrarVaLCwsxNbWVgYOHGj0TUqj8+fPi5mZmQwYMOCB4968eVMWLlwo7u7uYmlpKZ6enrJ48eL7NpfdvHmzBAQEiFKpFGdnZ4mPj5dLly41mXvo0CF5+eWXxcbGRp555hkJDw+XY8eOtWzi9FRr7vtWr9fL+++/LwEBAWJlZSWWlpbSrVs3mT9/vlRXV5uMe/XqVZkyZYqoVCqxtLQUPz8/WbNmjUmDZxGR+vp6ycjIEB8fH7G0tBRXV1eZNWuWyQfsRvv27ZN+/fqJtbW12Nvby6hRo6S0tPTRvCDU6jX3Pfvxxx9L7969pVOnTmJlZSXPP/+8LFmyRGpqapocl2stPS56vV6io6PFw8NDlEqlODg4SHh4uEmh16ikpERGjBghdnZ2Ym1tLSEhIZKbm9tkLtdaetIUIiKP+3JVIiIiIiIiar24+QwREREREVE7x8KQiIiIiIionWNhSERERERE1M6xMCQiIiIiImrnWBgSERERERG1cywMiYiIiIiI2jkWhkRERERERO0cC0MiIiIiIqJ2joUhERERERE9tdLT0xEVFQUvLy8oFAp4eHi06PGVlZWIj49HQEAAHB0dYWVlha5du0Kj0aC0tLTJx1y4cAGxsbFwdnaGtbU1AgMDsXPnziZzy8rKMG7cOLi4uECpVKJr165ITU1FbW1tS6dqorCwECNGjICbmxusra3h7e2NxMRE/Pbbby0eSyEi8n+fERERETVLWloa3n77beTl5SE0NPRJnw4R0VNPoVDA0dERvXv3xrFjx9CpUyecPXu22Y//5ZdfkJCQgP79+8Pd3R3W1tY4c+YMNm3aBL1ej6KiIvTo0cOQf+XKFQQGBqKyshLJyclwc3PD9u3bkZ+fj02bNiE+Pt6Q+/PPP6N///6or6/HlClT4OnpicLCQmzduhXh4eHYv38/FArFQ83766+/RkREBLy9vZGQkAAnJyecOnUKGzZsgFKpxIkTJ6BWq5s/oBAREdFDAdCin7y8PElNTTX8TkRE95eXl9es9bKsrMzwu7+/v7i7uz+S5z98+LAAkKSkJKN4SkqKAJCcnBxDrL6+XoKCgsTR0VFu3LhhiI8cOVIUCoUUFBQYjbF06VIBINnZ2Q99fuHh4dKhQwepqqoyimu1WgEgK1eubNF4Fg9VnhIRERFSU1NNYqtWrYJOp8OMGTNgb29vdMzDwwNTp05FdHQ0nnvuuX/pLImI2jYvL6/HMq67uzsA4OrVq0bx7du3w9vbG8OHDzfEzM3NMW3aNMTGxuKrr77C6NGjAQB5eXnw8fHBgAEDjMaIi4vDggULsHnzZsTExBgdO3DgAJYtW4bDhw+jtrYWPj4+mDx5MiZNmmSUd/36dVhZWcHBwcEo7urqCgCwsbFp0XxZGBIRET2ktLQ0k9iWLVug0+kwc+bM+97n4uTk9HhPjIiIWqyurg46nQ51dXUoLS01rPFDhw415Fy8eBEVFRUYN26cyeODg4MBAEeOHDEUhnq9Hh07djTJbYwdPnwYImK4nHTDhg2YNGkSgoODsXDhQtjY2CA3NxdJSUkoKyvD8uXLDWO8+uqrKCoqwhtvvIGUlBQ4OTnh5MmTmD17Nvz8/BAdHd2i+XPzGSIion9RWloaFAoFvvvuO0Ps7NmzUCgUiIuLw6+//orIyEg4ODjAzs4OI0eONNwrU1paiqioKDg5OaFjx44YOnTofTcY+OuvvzB37lz4+voa/qMcERGBoqKif2GWRERPn2+++QbOzs5wdXXFoEGDcOrUKaxYsQLjx4835Fy4cAEAmrx3rzFWUVFhiPn7++P06dP4888/jXLz8vIAANXV1YZvJC9evIjp06cjOjoahw4dQkpKCiZPnow9e/Zg+vTp+OCDD4zW/Pnz5yMpKQm7du1Cr1694ObmhiFDhsDLywtFRUWwtbVt0fxZGBIREbUS5eXl6N+/P3Q6HTQaDUJCQpCTk4OwsDCcPn0a/fr1w+XLlxEXF4fQ0FDs378fERERuH37tsk4vXv3xvLly6FWqzFlyhRERkaisLAQgwYNwr59+57QDImImnb79m1cvnzZ6Een0wEAdDqdybF7171HITg4GLm5ucjJycF7770HlUqFq1evor6+3pBTU1MDAFAqlSaPt7KyMsoBgNmzZ6O2thYjR45Efn4+zp07hx07diApKQkdOnQwyt+1axf0ej00Go3JfIcPH47bt2/jwIEDhrHNzc2hVqsRFhaGrKws7N69G7Nnz8aBAwcQHR2Nurq6lr0AD323IxEREZlwd3cXAFJeXt7k8aY2nykvLzdsUJORkWGUn5iYKADE3t7+vsd2795tFH/xxRfFzMzMJH7hwgVxc3MTFxcXuXnz5sNPkojoEbt7HWzOz/3W2Ee5+UxFRYV07txZJk6caIgdPXpUAMjcuXNN8v/++28BIGPHjjWKr169Wuzs7AznbmlpKWlpaRIUFCQARKfTiYhIUlLSA+e9ePFiw7jjxo0TT09PqampMXq+devWCQDRarUtmi/vMSQiImolPD09MWvWLKPY+PHjodVq4ejoaHIsJiYGWq0Wx48fR2RkJACguLgYP/zwA8aMGWOINVKpVEhJScGMGTNw8OBBREREPN4JERE107PPPovc3Fyj2PHjxzFnzhxkZGSgZ8+eJvmPm6urK8LCwrBx40asXr0aSqXSsLHL3ZeLNmqM3XuZ6bRp0zBx4kScOHECer0e/v7+sLe3R2ZmJlQqFTp16gQAkP92Edy6dStUKlWT59S40c758+exbds2TJ06FdbW1kY5UVFRSEpKQn5+PiZMmNDs+bIwJCIiaiV69uwJMzPjuzwaPxwEBASYHGvqA0phYSGAO322mtoc58yZMwDu9NZiYUhErYWVlRXCwsKMYhYWd0qVPn36PLG+rzdv3kRDQwOuX78OZ2dnqFQqqNXqJu/XbowFBgaaHFMqlUbxo0ePoqqqChqNxhDr1q0bgDsblN37Wtyrcd1vaGgwOdZ46evdl8A2BwtDIiKiVsLOzs4k1vjB6J+O3X0fyZUrVwAAubm5Jv99v1t1dfX/da5ERE+j8+fPo6amBt7e3oZ7/C5dugQXFxeT3JKSEhw8eBDe3t5wdnY2xMeOHYuMjAzs27fP0LKioaEBa9asgb29vdEupk2pra3FzJkzoVQqMWfOHEN89OjRWLBgAVJTUxEaGmryTaBOp4OVlRWUSiV8fX1hbm6OvXv3YunSpUbtkbZs2QIACAoKatFrw8KQiIioDWksINPT0zFv3rwnfDZERI9fdnY2zp07BwCoqqrCrVu38O677wK404vw7l1FY2NjkZ+fj/LyckNLofT0dOTm5iIiIgIeHh4QEZw8eRLZ2dmoq6tDZmam0fPNmzcPO3fuxOuvv47k5GSo1Wp8+umnOHLkCLKysox2Az116hTi4uIwbNgwuLm54dKlS/jkk09QVlaGzZs3o3v37oZcNzc3rFu3DhMmTICfnx/Gjx8Pd3d3VFVV4cSJE9i7dy9KSkrg4eEBR0dHzJw5EytWrMALL7yAxMREODo6oqCgANu2bYO3t3eLLiMFWBgSERG1Kf369QPwv0tKiYjauo0bNyI/P98o9tZbbwEABg8ebFQYNmXYsGH4448/sGPHDlRWVqKhoQFqtRpRUVGYM2cO/P39jfI7d+6MgoICzJs3D5mZmaiurkaPHj3w2WefYcyYMUa5Tk5OcHNzg1arRWVlJezs7DBw4EBkZ2ejb9++JucSHx8PHx8fZGRkYP369bh27RqcnJzg6+uLd955x+jeyuXLl8PX1xdZWVlYunQp9Ho91Go1kpKSkJaWZrh3sblYGBIREbUhQUFBGDBgAHJycrBp0yYkJCSY5BQVFSEgIKDJpstERK1FaGioYUOWf3J3X9iHyQ0LC3vgPX33UqvVyM7OfmCei4sL9uzZ06KxQ0JCEBIS8sA8hUKBxMREJCYmtmj8+2FhSERE1MZs374dL730EjQaDT766CMEBQXB1tYWv//+O44ePYrS0lJcvHiRhSERERmwMCQiImpj3N3d8eOPP2LVqlXYs2cPtm7dChGBSqVCz549sWjRIjg5OT3p0yQiolZEIc35fpaIiIiIiIjaLLMHpxAREREREVFbxsKQiIiIiIionWNhSERERERE1M6xMCQiIiIiImrnWBgSERERERG1cywMiYiIiIiI2jkWhkRERERERO0cC0MiIiIiIqJ2joUhERERERFRO8fCkIiIiIiIqJ1jYUhERERERNTOsTAkIiIiIiJq5/4DI+AYCggLEMYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=1)\n", + "\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot it on top of the dynamic spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1cAAAJ9CAYAAADZgogUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADuE0lEQVR4nOzdd3xT1d8H8M/N6N4UOikte8vee8oeMgTciuLG8VPcgujjQlDEhQPEjaKgbFnK3lBGW1YHbZndI22ae58/Ki236562adLxefvKC3PyzTmnyc1Nzj1LUhRFAREREREREVWKzt4VICIiIiIiqg3YuCIiIiIiIrICNq6IiIiIiIisgI0rIiIiIiIiK2DjioiIiIiIyArYuCIiIiIiIrICNq6IiIiIiIisgI0rIiIiIiIiK2DjioiIiIiIyArYuCIiIiIiIrICNq6IiIiIiKjGiYyMxIwZM9CqVSt4enrCxcUFLVu2xNNPP43ExEThfNatW4devXrB1dUVPj4+mDx5Mi5cuFChOkmKoigVeiYREREREZGdbNmyBW+++SZ69OiB4OBgGAwGhIeH45tvvoGHhweOHj2KBg0alJnHqlWrMGnSJNxyyy2YOXMmUlNTsWjRIuj1ehw8eBCBgYHlqhMbV0REREREVGusXLkSU6ZMwTvvvIPnnnuu1Diz2YzQ0FAYDAacPHkSbm5uAICjR4+ic+fOuP/++/HFF1+Uq2wOCyQiIiIiolqjUaNGAIDk5OQy43bs2IGEhAQ88MADBQ0rAOjQoQMGDBiAn3/+GWazuVxlG8pfXdIiyzISEhLg7u4OSZLsXR0iIiIisgNFUZCeno7AwEDodNWzT8NkMiE3N9dm5TVv3rzY7+PyzI8qiclkQkZGBkwmE06dOoXnn38eADBy5Mgyn3fgwAEAQM+ePYs91qNHD2zduhVRUVFo06aNcF3YuKoCCQkJaNiwob2rQURERETVQFxcHIKDg+1djWJMJhPCQn1w6XK2zcrU6XSoX7++VTsgvvzySzz++OMF90NDQ/Hdd9+hb9++ZT4vISEBABAUFFTssRtp8fHxbFzZm7u7OwAg1tsR7rsnA86lv8xP7B+imZ9DitiVDp/fIzVjdIEBQnllNHbTDgLgclW7q/RKJwehvFzjhcLgHp2pGSPHCmYmqkmIdsy5WKGsdM4u2kGeYq+/fOmKUJw96DUmkAKA5Ur1rb/cJkw7SPCLQXfifCVrc1OReqNYnJN2nJyZVdnqqOh9fDRj4sfXE8orcEWMWKH1vLRjrqcIZZUyQPs999qbIJQXTDlCYbLZeleLdY5OQnGKwBAXRbZUtjoF9PV9heJkd2ehOOV8XGWqo6JrJPZjV465aLUyrfl9Yg+6hsV/hJZEjrPe97DOVeB70yB2bhT+bOaYxPLTkGPOwUd/v13w27C6yc3NxaXL2YgJnw4Pd7Hfa5WRlp6LRu1+QFRUFDw8PKyW7/jx49GyZUtkZGTgyJEjWLNmDa5du6b5vKys/O9BR0fHYo85OTmpYkSxcVUFbrTEPZNz4Pb7OWBWu1JjHVy0TxgOOWKNK0ej9herzkHsy8vsJHAiA+DoqP0l7eAi9mEV/F0AR0ftNVhkgdeiXBwFXg/BMnUicYLvk9X/TivSC/wNlmpcf1nkPRdtXFnx7xRuXBm1P3eyUa5sdVRE3nORcx4gdj7Lz1Dgs2IU+5HkIHDhw1HwswmL2LEhW3Hqs+hxpkCvHWPNxpXo+UzkMwdAseLnSSdYplXPtVb8PrEH0d8R1nzNdEaRz7lg40r0s2nd02O1nybi4e4AD4+qb1xVleDg4IKewfHjx+O2225D165dkZWVhRdeeKHU57n8952Uk1O80W0ymVQxoqrn4M9aRFp8DDDl2bsaREREREQlUiDb7GYL7du3R8eOHfHJJ5+UGXdjmfX4+OI9rTfSShoyWBY2rqqYlJgF/Bhl72oQEREREdUZ2dnZSEpKKjOma9euAIA9e/YUe2zv3r3w8PBA8+bNy1UuG1c2IC06Cpht01InIiIiIioPWVFsdrOmS5culZi+bds2nDhxAj169ChIS0xMREREhGoOVf/+/REQEIAvv/wSGRkZBenHjh3D9u3bMXnyZBhFh5z+h3OubECKy4DycxRwR0t7V4WIiIiIqFZ4+OGHkZiYiEGDBqFRo0YwmUw4dOgQfvrpJ7i7u2PBggUFsS+88AKWL1+Obdu2YcCAAQAAo9GIDz/8EFOnTkXfvn0xc+ZMpKWlYeHChahfvz7mzp1b7jqxcWUj0sKjUG5vDhjUnYW33bJf87k7P+1kvYqkpAqFuewQWxFLadtEMyZgldgqS/JNVwzKknCPdiPVf5lQVtAJrt5jdtH+qBjdBFf4E/g7s7uILeXvcll7JRzAupPTIWlPhgcAy+XL1ivTirL7tRCK0wnsGeh88IJQXlbtt24ktuKnlJyuGaPzEDtmFcHjzHL9umaMa3R9sTIb+ovFnbfeqmpem85qxqQM0T7nAYDHxgihOJ3IwiOCKwqKrm6m99Vevc8isMqWKMuVq2KBgouH6gTOtaLfJ/IF663yKmcLrih2JloszsZEvw/lWOutnKj38hKKs6SkWK1Ma0ofqv17JCc7C1hvg8pU0o0ZUbYox5qmTZuGb7/9FitWrMDVq1chSRIaNWqEhx56CP/73/8QEqK9OufkyZPh7OyM+fPn49lnn4WjoyMGDx6Md955p9zzrQA2rmxGupAGZdU5YEoze1eFiIiIiKjGmzJlCqZMmSIUu2zZMixbtqzEx0aPHo3Ro0dbpU6cc1WFlPbq/VykBUcAC+deEREREVH1odjwv9qOjasqpDx+i+q+dCYFWCM2jIiIiIiIiGoWNq6q0pCGUNqW0Hsl1/5WOxERERHVDDJstFoge66oUiQJyjMd1UmnkoD1MXaqEBERERERVRU2rqramDAoLbxVSdL7hwErr/NPRERERFQRsg1vtR0bV1VNV0Lv1bFrwN9xdqoQERERERFVBTaubGF8YyiNPVRJ0nvsvSIiIiIi+7uxz5UtbrUdG1e2YNBBeapI79XBK8COeDtViIiIiIiIrI2bCFehF34ZCsf/dnXXWYbiJZ/TqJdUuAX9+edi4P1PE8189NlmofIsbbXzgtkilBciM4XC0oOMmjFuOn+hvBSdJBTnvyxCMyZjkPau6QDgci1PKE5/7KxmjOg4Yl2Y9m7hrmdThPKSZcH3U0DK6FZCcV5/nRaKuzJD+z1o8L32eynK3LW5UJxbRJJQ3OUBvpoxjntyhfKyKsHPiSU52XpFNhTboV6Xq/158tgo9p6LXtvUubtrxsjp6WJlWrTPtc5JVp4xoNO+xikZtc+zAKCYxb4rlNQ0oThrkRprn/MAQDkfK5ahHfaLlLOzbFqepBd8zwWOWVGinxO9l5fVyrSkpAjF6dzcNGPkjIxK1kbN3LmZZoz7Zu3zmYPZZI3qUA3CnisbkfUGbBk6UZXW9OxJuO9j7xURERER2Q83EbYeNq5saF/3QUj2Uu97FbTwgJ1qQ0RERERE1sTGlQ1ZjEZsHTJBleb1TxzcDl+yU42IiIiIqK7jghbWw8aVje3tOQRp7l6qtKBF7L0iIiIiIqrp2LiyMbODI7YOHq9K8/47Gi7Hr5T8BCIiIiKiKqTANhsI1/5+Kzau7GJ3n+HIcFPvexX8IXuviIiIiIhqMjau7CDX0QnbB45VpfmsPw/n09fsVCMiIiIiqqts0Wt141bbsXFlJ//2HYFMF/W+DUEfHrRTbYiIiIiIqLLYuLKTHGcX/NN/tCqt3p9n4HRGbINTIiIiIiJrkBXb3Wo7g70rUJt5nk6Fo0NuqY8f9euDAU6r4WzKBgBICmB6IQErHpisirPcli1Untte7bfTdd9FobzSBrUUivPYqL07uc7dXSivi/f4C8UFHtWOcY8T2xFdl5IpFGcRySvATygv+UKsdnm3NBXKS594WShO5+WlGVNvZ6JQXoqzi1Bcg++1jw1rMqaV/lmrCL1AdkqrxmJ5nU8QilMaah9D0qXrYnkJxGT3ayGUl+sRwfrr9UJx1mRurP2a6SwNhPLSRWp/No0HooTy0vuJlRk30UszJvBTsTJFyWbrfla06JLShOKyeoodj457IitTnRpBsZitm2GzUO2YM9FCWVlSUipTkwqRg+prB0VmCOWl9/UVK/TQGbE4oiLYc2VHJkdX7Bg8SpXWde8O1LvCfa+IiIiIyDYUG95qOzau7GzrsLHIcXAsuK+XZQxf95sda0RERERERBXBxpWdZbp74N+Bt6rSuu/aBu/rV+1UIyIiIiIiqgg2rqqBLbeOR67RoeC+wZKHoetW2bFGRERERFRXcCl262HjqhpI8/TG7n5DVWm9/v0bnslcOZCIiIiIqKZg46qa2DxiAsyGwtX+jHlmDNnwux1rRERERER1AZditx42rqqJFB9f7O0zWJXWZ8dGuKWl2KdCRERERERULmxcVSObRk6E5aZ9YhxyczF44xo71oiIiIiIajsZks1utR0bV9VIkq8f9vccoErrt3UdXFPT7VMhIiIiIiISZtAOoYqSL12GbHQqO0jyVt3dOHoSuu/aBp2Sv56KU44J72/7DMqLXTTLm/thK80YydVNMwYA3LZGCMXNXXZBM+bLpKZCeSVtFzscpcYhmjGK4E7zea0ai5V5VXtp/JxgT6G8HB0dtIOOnRXKK7tvC6E4t1PXNGNyQnyE8jIcEdu1Xu9TTzPG1FisTONBgTIjo4XyUpxdhOK8/xB4z3uJvf6OOSahON1l7UVs5IwMobxEuB5JEIqT06vvBR5jlPbfIGdnCeWV26WZZoxkEcoKZsFLl94nq+dVXL2Xl1CcJSVFM0ZxdxXKy3FPpFCc1CxUOyYnTygvOfaiUJwuNFgzJqWF2PerIUd70onLdrHXQmcU+D4BIAt+J1qTTuBcK/rZ1KVla+cllBNguab9fVgX2apXiT1XZHNX/QJwsHtfdeIXJ4C0XPtUiIiIiIiIhLBxVQ1tGDMJslTYspfScvMbWEREREREVqYoks1utR0bV9XQ5cCGONqlpypN+jQcSK+GvVdpuUCm2d61ICIiIiKyOzauqqn1Y6ao7kvJOcA3p+xUm5L1PbMdUpPlkFquAJadtnd1iIiIiKgCLDa81XZsXFVTCQ1DcaxjN1WatCQcyBKbpFvV3LNTMThiMySLAikzD7qn/wW+OmnvahERERER2Q0bV9XY+rFFeq+uZgPLq0cPUeNr56BX1Gvz6P63C/hWbJVBIiIiIqoeFOgg2+Cm1IGmR+3/C2uwuNCmONmukypNWnwMMNm/9yr0enSJ6dJT/wA/Rtm2MkRERERE1UC1bFxlZGTgrbfeQrt27eDu7g5fX1/06tULy5Ytg6KUvj/E888/D0mS4OZW8l4TOTk5ePXVVxEWFgZHR0c0adIE8+fPh9lcfRdkKDb36lIW8IP9Gy+h18+XmC4pgPTYduBXsX2aiIiIiIhqi2rXuJJlGSNGjMArr7yCrl27YsGCBXj55ZdhsVhw7733Ys6cOSU+7+jRo/jggw9KbVgBwNSpU/HGG29g0KBBWLJkCQYMGIBXXnkFM2fOrKo/p9IuNGsJpV+gKk1adBTItd+UQDdTGnwzr5f6uKQA0sPbgNUlN8CIiIiIqPpQbHir7SSlrK4gO9izZw969eqF2bNnY+HChQXpubm5aNmyJZKSkpBSZEd4i8WCHj16ICAgAGlpaTh48CAyMjJUMevWrcOoUaPw9NNPY8GCBQXpzzzzDD744APs2rULvXr1ssrfkJaWBk9PTzz65ndwdCp7h3KXHdq7sLe9LRFT7/5IlbZh/nScmKRerj15hZ9mXle6GjRjAMD/35zS6xOxB1PXFtZHcTMC97SC9PFxVZxikKAsGwqMDBUqU9TLC4dqxkiCR7WsF9tvweyufR3CLSJJKC+Ld+kXAG6Q8sQaz1KC2E7zSoCvdl6JYnldHttIKK7+z9rzA3UeHkJ5yWlpQnHWpAvQ/jzJiZetWqakN2rGKBaxnvar01tqxtQ/Iri9w2nrXShJuq2VUJzPb9abX6oLCRaKk2MvWq3MzAHarz8AuJ9L14yR4+KF8lJaNxGKk06d0w5qESqUFyKjxeKqKWuegySj9ucXABSB0TI6D0+hvOS0VKE4Kj+R9zO3Q5hmTI4pC4vevBOpqanwEDzebOnGb9aDZ++Am7tDlZeXkZ6LLk2/q7avhzVUu56rtP9OYIGB6t4aBwcH+Pr6wtXVtdhzPvroI5w6dQqLFy8uNd8ffvgBADB79mxV+o373333XSVqXbXiujXFxc6NVWk9Pt8k/APc2kIvFvnR08MfytzuUGa1VSVLeQqke/8GNsfasHZEREREVB4yJJvdajuxbgwb6tatG7y8vPDuu+8iNDQU3bt3R1ZWFpYvX45Dhw7hs88+U8XHxMTglVdewWuvvYZGjUq/on7gwAEEBQWhYcOGqvSGDRsiMDAQBw4cqHCdAwICVPdlWS4lsoIkCXsevhWTH/ikIMkr7hparT2EU+O6lfHEqlG0caX0CgAkCcqbPQGzDOmrwv24JLMM3LUZyvfDgUFiV4+JiIiIiGqiate48vb2xpo1a/DAAw9gypTCxRzc3d3x22+/Yfz48ar4hx9+GI0bN8bTTz9dZr4JCQlo3bp1iY8FBQXh4kXrDQepCjG9WyKxfSMEHI8pSOv+2UacHt0Fit52HZAuWWnwu17kter1X+NSkqC80xvIlSGtKFySXcqxAHdshPLVYKClj0YBBsCv7KGURERERGQ9siJBVqq+V8kWZdhbtWtcAYCbmxvatm2LsWPHolevXkhKSsKSJUswffp0rF69GkOH5s+5+fHHH7Fhwwbs3LkTBkPZf0pWVhYcHR1LfMzJyQlZWVkVrm9iYqLq/o3xq1b1X+/VxIc/L0iqd+EKmm88gsiRna1bVhkaxavniCnOeqDDTfN5dBKUhX2BPBnSTUuySyYLpBmbhMpQegdA+WUE4FwtD08iIiIiohJVuzlX4eHh6NWrF4YOHYr33nsPEyZMwP3334+dO3fC398fM2fOhMViQVJSEmbPno37779faCEKFxcX5OSUvEiDyWSCi0v17y05P6ANLrdWD63r8elGwNrDEMtQbL5VN3/AQa9O00lQPuoHZVLTCpUh7UoEFh+rYA2JiIiIqDxssYHwjVttV+3+woULF8JkMmHy5MmqdBcXF4waNQoxMTGIjo7G3LlzkZmZiZkzZ+Ls2bMFt+zsbCiKgrNnzyIuLq7g+YGBgYiPL3nFpfj4eAQFBVXp32UVkoS9s4arkuqfSUTTLeE2q0KjixGq+0pP/5ID9ToonwyAMlZ7JZ2SSKsEVrMiIiIiIqpGql3j6kYDyGIpvhJeXl5ewb8xMTHIzMxE9+7d0axZs4Lb/v37kZWVhWbNmmHEiBEFz+3atSvi4+NVDS4AiIuLQ0JCArp06VKFf5X1nBnSHteaqRfQ6PnpBsAGK+o75mQh4Gq0OrF3QImxAACDDsrSwVDubgnFoXyHmhSVAkQml7uORERERFQ+XC3QeqrdpJbWrVtj06ZNWLZsGZ577rmC9JSUFKxevRre3t5o2rQpnn/+edxxxx3Fnv/aa6/h/PnzWLFihWre07Rp0/D9999j0aJFqn2uFi1aBACYMWNG1f1R1qTTYe9DwzD62eUFSX6nLqLxjpM4hFJ6kawkJD4SupsacXl6A3SdGpT9JKMOysJ+wHt9oOSVMXxRBqSuP0FKvGnu258XgBbelaw1EREREZFtVLvG1ezZs/Htt99izpw5CA8PR+/evZGUlISlS5ciMTERS5YsgV6vR8+ePUt8/scff4yYmBhMmjRJlT5q1CiMHj0aH3zwAVJTU9GzZ0/s2bMHX331Fe644w706dPHFn+eVUSO6IReH6+HT/SVgrQen27EoVGDAKnqrgiEFZlvddG/KUJEF50w6PJvZRkVCnx50zLuay5AebZTOWtJREREROXB1QKtp9o1rho1aoT9+/dj3rx52LJlC3766Sc4OzujQ4cOWLBgASZOnFjhvFeuXIn58+fju+++w4oVKxAUFIR58+Zhzpw5VvwLCrnuPg9Ho1OZMSKD+aJOFN8favXoqbj348JNkwOPReONV5cDA8veS+q5r24VKBGQS2g0NUpQz7e6ENoaIQJ5mRWxzY4PDu2E3jc3rk5cx5YTBmSFqpdvn//UZs28nvh9pFCZ9Y5lCMWZvItvXl2U5cpVobz0uWbNGCU7WygvuZRFWoo5r72R8/XxrYSy8tufKRQnt9Ceb6ecFdsCQdLpNWMUWew404WI7bcmx2rXTRcUqBkDADmBbkJxxgNR2kGC6h8SODYiLwjlpQsQ6xWXEy9pxnhcyBPKS5TOy0szRuS9BMSODdG8DCaxodp5XmV/RwCALk4zBAAgnbLiXNXIaOvlZWW53ZtrxjjsE/ssyWlpQnFK2ybaQSes9/qL1kvfoL5QnOj3k63pQgXPx9G23y5HMWt/V4ucs2WzyRrVoRqk2jWuAKBJkyZYvny5dmAJtm/fXupjTk5OmD9/PubPn1/BmlUf+/v0w+hffkH9K5cL0qT3D0PRaFxVlDHXhKDE86q06JDW6I8rpTyj/K53C0FOPRc4Xi8cGhi4PgJnH9ZeDZKIiIiIKkaBBMUG86FsUYa9VbsFLUiMxWDA+gnqXjxpzyVgV0KVlBdyMQr6m3oGLJIOsQ21rx6Wi16HxGEtVEkB6yNKCSYiIiIiql7YuKrB9gwYiCRfX1Wa9P6RKikrLPaU6n5CQGPkOjhbvZzEUS1V972PJsA5PtXq5RARERERWRsbVzWYxWjEhnETVGnSjnhgT6LVywot0ri60Ki11csAgGs9Q5HrqZ6DwN4rIiIioqrDpdith42rGm7n4CFI8VYvVy7dtRk4nWS1Mgx5uQiOP6tKiw6pmsaVYtTj0lD1cEM2roiIiIioJmDjqobLc3DAxqK9V9dNkCasBc6kWKWM4PizMFoKV82RISGmYcsynlE5iSPUefscjIPj5fQqK4+IiIioLmPPlfWwcVULbB9+KyLbtFWlSVeyIY3/Czhf+flKRedbXfJrBJOT9tLkFXW1b2OY3RwK7ksKELAxssrKIyIiIiKyBjauagGL0YiP57wIpbufKl1KzII07i8gtnK9Praab3WD7GTA5cHNVGkB6zg0kIiIiKgqKNBBtsFNqQNNj9r/F9YROc7OUH4eAaWTekNBKT4T0ti/gItim+UWpbPkIeSiepO8qppvdbOiQwPr7YuBw3WxzWuJiIiIiOyhWm4iXFtIDQMgObqUHZOgvQlvwL9ZmjEA8FvXUBiX3Yf+07+F94nCFQOl2HRkjlmPbb/ci3fv3yCU1/yETgCAoGPn4WDOUT2W+IQfHH2uAwAWX9VuaJ042UioTL/9hfO6jOYWuMX4V0HZOouC7BezcOiWnhj93N+aeX00YZ1Qmc8l3yoU57bVej1nGe39NGMcUi2aMQCgP3ZWO0iQzx+nheJkwfz0Xl6aMZab5vKVRdIbBaLEXjM59qJQnC5Ee0NuxSB2fcp4IEo7yNoiL2iG6IICxfJSlEpWppAxPFqsSMH8JL2+wnUpVqaj9leivsj2F6Vx3Ft9hzLrfeppxliSrtugJmpSs1ChOId9tv886bK0z1VKyzChvKSoWM0Y8y2NhfLCkTNicVYk+hmwXLumGSNHx1e2OuWm8/AQC3TV3m5GTrxcydpUH7ICyErVz4eSrfd1Um2x56qWMXs645/v7kRKK/UPeLeYZPSfvhy4LNZQu6HRIfWJ+0qTAGT5uFe6nlrMRkdENe6gSmsTua/KyyUiIiIiqig2rmqhXG8X7Pj+LqQ2Uw8R9Dh3HdL4tcC1bOG8Gh1QN65iujQrJdL6TrXorrrfODocTiYODSQiIiKyJq4WaD1sXNVSufVcseOHu5DWRD38Q4pMzl+mPcmkmYdkkdHwiHrYWWxn2zWuIpt0Qp6+cJiOQbag5dlDNiufiIiIiKg82LiqxXIauGPHD3cjo1GRTYZPJkG6bR2QmlPKM/P5RV6EU4a6EWbLnqscRxecCbtFldYmYq/NyiciIiKqCxRFstmttmPjqpYz+Xtg+493IzPYS5UuHbuW38BKyy31uUXnW10PqY+MBl4lB1eRokMDm144BqSXXmciIiIiInth46oOyA7ywvYf70ZWoHqFHOnwVUhT1gMZJa+C1KjICme2HBJ4w+lmXWDRFa4GZrSYgc1xNq8HEREREZEWNq7qiKwQb2z/8W4oAeql4aX9lyHdvgHILNLAkmWEHFbPt4rp0ryqq1mMyckN5xq1VaVJf2ovMU1EREREYizQ2exW29X+v5AKZIbWg/LHaCgN1Hs3SLsTId2xCcjOK0irfy4RLinqlfliujS1ST2LKjo0EJtjgay8koOJiIiIiOyEjau6pplXfgPL10mVLO2Ih3TnJsCU32gpOt8qJcAHqUFiGwda26nm3SBLhRMgpaw8YCuHBhIRERFZg2zDW22nvR09VZgccxGy0Uk7UENmIxftIAAdnLR3ff8tPQQICoTnd/XQ//blcEwp3PNK2noRiXfuxO7PpuC2E3+rnufZ1wcvBx4ult9jf43ULLNBhNgCFCbfkg9HE3xwvnEbND13orCuf16AMjpMKN+yvHvfBqG4Wd0Hasb4fyC207zzP5FCcSLSh7YUi2ul3dMX/KfY+yRf0D7OAMCSkqId00FsHp/+6BnNmKwBLYTyctku9vpbPBw1Y6QT54Ty0oUEC8Uh8YpmiGy23oIucnyCUJwuwE87SFDKMLEecO9/xT5Pikl7WwlRyplo7Rgrvhai9PXrawcBgKKIhTk6VKI2VUfk9QcAXWCAdlCW2H6OssB5CgCU89rnPZ2bm1iZskUzxnBE+5wHADpXV6E4U9sgzRiHfVGaMQCQ3EXsQqvHhmsCUWLHrAhdgL9QnJx4SSzDtLRK1IbqMvZc1VGprfzxz3d3ItdD3fgL3BKFHo/9CuxJVKUrvQJtWb1ijrfvqU7YEAPkaH9BEREREVHZFOhsdqvtav9fSKVKaReIf1bcAbOb+ipm8MYISJeLXPXrJXZFqKqcaKuedyWlm4EdYle2iYiIiIhsgcMC67jkDsH4d/kd6HfnChiySl6SXfFzBpp42rhmammePrgQ2gJh0YVDuqRfz0JpW6/ymUsA/F0AqfZvbEdERERUlKxIkG2wwa8tyrA3Nq4I17uE4N9lM9D3ru9gMJUwN6dnQLVoeIS361mscSX9eraMZ4hTAlyh/DgcaG+fRTuIiIiIqObjsEACAFzrHopdX02HxbF4e1vpLTB52AbC2/WosrylxExID2wBLHVhHRsiIiKiQjIkm91qOzauqMCVPo2x64upsDjoC9IUnQQMFFzprIol+zTA+bBWVZa/dDYV+ON8leVPRERERLUbG1ekcnlAM+z6ahqUYDcoTnoor3YDGtt3vtXNVk5+GEor7yrLX1pwBJCttzQsERERUXWn/DfnqqpvCudcUV10uV9TKMen27saJbraIBjKrslQ0nOtsz3G5ljoZm4tuCtFJENZGw2MqfweWkRERERUt7BxRTWTu5U2wZzQBMoHRyCdTi5IkhYchjI6tFos4kFERERU1WToINtgQJstyrA3Nq7sLGm89hwinz9OC+X1TpPRmjG+ISlCeW080V4ozi1Nu/vIcPG6UF66EylCcY/XG6kZ4yBQLwB47PY1cJ3dHv4P7ShIk45fx6V1F5A1rGFBWreAWM28mn+cqBkDABs/6aUZo+jEGnYWJ7G4wI+0V1WU/BoI5SVKX7++ZozuepZQXiLLjLhsj9QOKgd97DXNmJQRLYXy8lgfUdnqFEiY1VwoLnid9msrx14UyktOvCwUl3SbwPnsN7HzmejSMvp6AtsxZGYK5ZU1oIVmjNuuC0J56VxdheIkN+04y+UrQnlZlaTXjgGg9/KwWpHmYB+xwPBzVivTmuSMDKE4nbOLdl6mHKG8JKNRKM5hX5RmTOZAsfOZ52ax19+aA+yFXrPES2J5eXkJxckpKUJxREXV/uYjkYbMMaHIbaqeV+b9wVFA4dwrIiIiIhLHxhWRXofk2eqeOqcj1+C8I8FOFSIiIiKyHUWx3a22Y+OKCEDGhMYwN3JXpXl/cKxunAWIiIiIyCrYuCICAIMOyU+oe6+c912G026xMdxERERENdWNBS1scavtav9fSCQofUoTmIPVk8u9Pzhmp9oQERERUU3DxhXRDQ56pDzWTpXksjMRjgfEVkojIiIiqolkSDa71XZsXBHdJH1aM+T5OavSvBey94qIiIiItLFxRXQTxcmAlEfVvVeuW+LhGy62HxARERFRTcOeK+th44qoiLQ7WyDP10mV1mHJFjvVhoiIiIhqCoO9K1Cb5XZpCsmp7F3Fff44rZmPuWtzofKCNqZrxmTcpxfLa1m0UJycI7CLvJubUF66AH+hON+jmZoxCQOdNWMA4IMN40pMHzJIwoRfvi24H/r3KdyXuB9oU6/UvB48OkSozOD4FM2YlxbsF8rrzTk9heLg56cZojgaxfJqESoUZnbUPr0YrmofswAg6bSPW0W2COUlKq1LgGaMx/oIobz0fg2E4iyXr2jGBP+kHQMAckqKUJw1+W7W3htObhkmlJfsIHauwvGz2nm1ayKUlcv2SM2Y9AEthfJy3S52bEjZJqE4EXL7pkJxxoQUzRjLtWtCeVmSk4XiROgE89KFBGvGZAe6asYAgONe7ffc2uTsLM0YnYeHUF5KTm5lq1PAdZvYMWvVDUpEzwcRFzRjdEGBYnnFcw/LkiiKBEWp+l4lW5Rhb+y5IirBv4NGIMNVve+V9P4RO9WGiIiIiGoCNq6ISpDj7Ixtw0erE9ecByKtd5WWiIiIqDrgnCvrYeOKqBQ7hoxCtnPhsE5JAaQP2HtFRERERCVj44qoFNmubtg+dJQ68bdzQFSKXepDREREVBVkBZAVyQY3e/+lVY+NK6IybBs+BianwpUDJVmBdPt6IEF7UQ0iIiIiqlvYuCIqQ6abB/4ZNEKVJkWnQxr/F3BJe8UnIiIiIqo72Lgi0rBx7GQoLb1VadLZ1PwG1tVsO9WKiIiIyDpk6Gx2q+1q/19IVEkmZxcof4yC0sxLlS5FpUCasBa4br19aoiIiIhITFRUFF599VX06NED9evXh7u7Ozp06IA333wTmZliUzgURcEPP/yAXr16wdfXF+7u7mjTpg3mzZuHtLS0cteJjSsiEQ3+a2A1Vm/sKJ1KgjRxLZAisJkyERERUTWkQLLZzZq+/vprLFy4EE2aNMGrr76K9957Dy1atMDLL7+MXr16ITtbe4TRyy+/jBkzZsDZ2RmvvfYa3nvvPbRr1w6vvfYahg0bBkUp3yochor+MaRNkSQoUtkHkS5Ye0dx44EoofJkgRjDxuZCeSlBgofG+VjNkOtDGgpl5f3HaaE4naurZoz/12JXKxJnNxGKAwAEuEL5YzQw5k9IMekFyVL4dWDSOnyxSgI8HDSzWd3EXzNGL4ld93j4rR1CcR/f30ozJvWlYKG8THFO2kEAXOO1YzzOi71Pkn8D7RhHo1BeuHJdrEyBD5TcvqlYmcfPCoWJ5KdLE+wpTUkRi7MmD+3PJiIuCGUleuWv/vvax+PVZ88J5aX39dWMcd0eIZSXqIT7td/zBgdEzu6A/ugZoTiLQIzULFQoL+VMtGaMqXcLobycdkUKxcmxFzVjXDLqCeUl8loAgK5hkGaMlJMrVuaVq5oxcgWultuK3kfwtU3SPtdKUdq/IQBAumlblNLI8QlCeVHtMmnSJLzwwgvw9PQsSJs1axaaNWuGN998E1999RUee+yxUp+fl5eHRYsWoVOnTti8eTN0Ol1BHgaDAd9//z2OHTuGDh06CNeJPVdE5RHsBmX1aCjBbqpk6fBVSJPXA+liX65ERERE1YVik2XYJSiKdXuuunTpompY3TB16lQAwIkTJ8p8vtlsRnZ2Nvz9/QsaVjcEBuZ3gLgKXNS/GRtXROUV4p7fwApQf9ikA5ch3b4ByDTbqWJEREREdPFifg+3n59fmXHOzs7o168fNmzYgHfeeQdnz55FdHQ0li1bhk8++QR33HEHmjVrVq6y2bgiqogwDyirR0Hxc1YlS3suQZq+EcjKs045ipJ/IyIiIqoittlAOP8GAM2aNUNAQEDBzZosFgveeOMNGAwGTJ8+XTP++++/x6BBgzBnzhw0a9YMYWFhuO+++/DUU0/h22+/LXf5bFwRVVRTLyh/jIbiq57zIf2bAOnOTYCpEg0sRYH01kFI/l9BavM9sFlsXDoRERFRXTZ79mzs2bMH8+bNQ4sW2nM+HR0dERYWhrvuugs//vgjfvzxR9x2222YP38+3nrrrXKXz8YVUWW08M5vYPk4qpKlbRch3b0ZyBGdLn0TRYH0wm5I7x+GZJYhXcqCdMcmYGOMlSpNREREVEiGZLMbAJw5cwaJiYkFN2t55ZVX8PHHH+PBBx/ECy+8oBmflZWFXr16IS0tDcuXL8ftt9+O22+/HStXrsTUqVPx6quvIjJSbLGdG9i4Iqqs1j5QVo2C4qleKVDaHAfp/r8Bs9hKXwAARUHbNzdD+uKkOi+znN9Y2xJnjRoTERER1Sqvv/465s+fj3vvvRefffaZ0HN+/fVXnDlzBpMnTy722OTJkyHLMnbu3FmuerBxRWQN7X2h/DYSirt6OXBpXQykB7cCeQINLEVB6/e2otnSvSU+LOXK+cMN/xFY45yIiIhIUE3d5+qG119/HXPnzsXdd9+NL7/8EpLGVkg3xMfn/6ayWIqPNMrLy1P9K4qNKyJr6dQAysqRUNyKNLBWn4f0yHbAUnYDq+WH/6DFkl1lxkgmS/6CGbut14VOREREVFPNmzcPc+fOxZ133omvv/662JLqNyQmJiIiIgJZWVkFaa1btwYALF++vFj8jbSuXbuWqz7cRJjImrr5Qfn5VmDyekg3rRgo/XoWMOqgLO5f4tOaL9mJVgvVGwIrEqB8PCB//tavhZvQSll5wNT1UH4dCXTxqpI/g4iIiKi6W7JkCV577TWEhIRgyJAh+OGHH1SP+/n5YejQoQCAF154AcuXL8e2bdswYMAAAMDo0aPRrVs3rFu3Dv369cPEiRMBAKtWrcK///6LyZMno1OnTuWqExtXVSi1qQQHl7K7JR33WrEHomWYZohsEOsmlUxiezUpzUI1Y7z/OC2Ul87NTTsIQFqPYM0Yt78jhPJyiXTQDgIw0zRcM2Zpj435/9MzAMqPtwJT10MyFXYzSz9GAQYdHOePB3SF70PY5/vQ6t2txfJTPuwHTGsOZXJTwCxDWn2+MK/MPGDKetRfNQro3ECzbgkPN9eMmdlwu2YMAHx/bLBQnOeRK5oxlowMobz0RqNmTHK74psIlsQ7M1soznW72DEkQufuLhZ3LVMzRk6w3jlDF6L9WQKAPC8n7SAAOH5WM8TUW3vlJgBw2iU2gfjq/6y3r5ySrX1sXJ/USigvx2SxLRQClmofZ7ndtT+/AKBvof0dAACIvKAZImXmCGUlhTbUjBF9L0Xp69XTjLFcv27VMuU4Dse+QREcIiV0frl8VSgvOTtLO8jKRI4zJUf7c6Iz661RnSp382ITVV2ONR04cAAAEBsbi7vvvrvY4/379y9oXJVEr9fj77//xv/93/9h1apVeP755yFJEpo1a4Z33nkHTz/9dLnrxGGBRFWhbyCU74ZDcVB/xKQVEWjzyqaCvasafXMQreYXb1jJH/QB7miZf8egg/LFICijQtV5pZshTVoHHLtWJX8CERERUXW2bNkyKIpS6m379u3FYm/0Wt3g7u6Ot956CxEREcjJyYHJZEJ4eDiee+45GAzl74di44qoqgwKhvLtMChG9ces0beH0Wru3whZcRhtXt1c7Gkn5w0F7mmtTjTqoHw1GMqwEFWylJoLaeJa4KR1r9ISERFR3WHrTYRrMzauiKrSsBAo3wyBUmQ4ZthXB9H2xY3Fwk+/Mhgx93YpOS8HPZRlQ6AMVA+1kJJzIE1YC0QkW63aRERERFR+bFwRVbWRoVCWDoaiL/tqTcScAbjwYLey83IyQPluGJR+gapk6ZoJ0vi/gDMplaqq5/ZYdOzyDbqFfYLg9/YWDF8kIiKi2ktRJJvdajs2rohsYVxjKJ8OhKIr+aQS9UxfnH+0p1hezgYo3w+H0tNflSxdyc5vYJ1PrVAVPbfFoMU9f8IxIQO6HAuCFx5Ao1f/ZQOLiIiISBAbV0S2MqkplMX9UfSizdnHeuHsk73Ll5erEcpPt0Lp6qdKlhKzII37C4hNL1d2rY4cQ4v71kKXq96LK+CrYwiZt4sNLCIiolqMPVfWw8YVkS1Na45jH45BrqcTLI56RD7fH1HP9QMEdxJXcXeAsnIElE71VclSfCaksX8BF8WWOW9+/CQen/s2dDnFdycHgMDPj6Dh23vYwCIiIiLSwH2uiGwsYUJbJI5pDSgKFGMl97/wcMjfTHjcX5DCC1cMlGLTgfF/QflzDBDgWurTm56MwJOvvQXHnNwyiwlafAiygx7xz3SvXH2JiIio2rFAgsUG+1zZogx7Y88VkR0oBl3lG1Y3eDlCWTUKSmsfVbJ0Pi1/DtaVkjdfDIs8g9mvzIeTyaRKvz6mKc59MLjY8MWGC/YjcPFB69SZiIiIqBZiz1UVavBjFByNTmXG6JxdNPMR3pk84oJmiLPeKJaXg1ic3uSsHeSjvct5eXiGJ2nGpA5qKZSXRfvlBwAEfxOjGTM7ZqRQXqY2Js2Y35MchPJyiS9sAbndNRCPL3oF/pcuFqRJZ1JxaeAOLN0hAb43vVfHrkF69S9I2eoeq0N9uuHzR5+GxWBAn6eb494Fn6oeD/m/Pfhw3tvAY+016zaz4XDNmIa/il3fsVy9qhljyGkglJeSaxaKEyG3byoUp7+cJhRnSUisTHVU5HZNtIPCzwnlZUjzEoq7/mJD7aCTYu+5oWMzsThTycNZVU6fF8pLzszUjKn362mhvPIE6y/CYV+U1fICAH39+poxloRLQnnpQoMqW50C6UPFzttOSdrvufG62N5/Og9PoTg5wEc7KFL7OxgAdEbt87tsLns0QVXQuZY+yuFmcprY+Qxp2osribwWAABJ4GKkInAuKAeL4DGkRTZrf+dXB8p/N1uUU9ux54qolshw98KSJ+bicgP1Mu0BiXH5+2Al/XeCP3Ed0sS1kNLUX95He3TG5y89Bct/u5HvHDEY3z45s1g5ulf3Al+cqJo/goiIiKgGY+OKqBZJ8/TBkifn4apvkWXaTyZBum0dsPcSpAlrISXnqB5XBjfEp68+C4tR3WO5Y8xw/PDovcXK0c3ZDXxzyvp/ABEREdmcAh0UxQa3OtD0qP1/IVEdk+pVD0uenIfr9dTD5KRj16AbuQbSdfUQBaV/EJRvhyKvlKGgWyaMws8P3VUsXffMTuC7COtVnIiIiKiGY+OKqBZK9qmPj5+Yh2Svsue7Kb0DoHw/HHAue/rlpslj8dt904ulS0/+A/xs3fkgRERERDUVG1dEtVSSrx8+fvINpHp6l/i40t0Pyo+3Ai5i69qsmz4Rq++crEqTFEB6dAfw29lK15eIiIjsQwEg2+DGBS2IqEa71iAAHz8xD0oD9aqOSqf6UH4eAbgJrh75nzV3TYHyVAdVmiQrkGZtA9aIrchGREREVFuxcUVUy13xD4bye+E+WMqwkPyNhz0El8C9mSRBebkrlEfVS7FLFgXSA1uA9dFWqDERERHZkqxINrvVdtzniqguaOUD5Z/boORYNOdXaZIkKPO6A2YLpC9OFibnKcC9f0NZMQwYGlLJChMRERHVPOy5IqordFLlG1Y3SBKU/+sF5d5W6uRcGdJdm4HtF0t5IhEREVU3CnQ2u9V27LmqQpn9miPPyaXMGLeYLO2MzscKlae0aqwZk9VAbI6Nyw7BFeCyteuvCw7UjAEAyZwnFKe4OGnGuG217hLhmX1baMZ4ns8Wysv9ovZO84azcUJ5KUH1heIe/PdWzZjAXbmaMQBwsu2N/5OAN/sgyCTD58fIgselHAuUGRux9Gcd0Kfs9/7BPO16AYDLRV/NGM/1p4XykoWiAF2YQO/bcbGFPCyiZRq1h2rKZrH3SRd+TrBUbTlNxY6z+0P/1oy5pbnYO/DIxpFCcc5XtD9PbmKHhpDc7s2F4hz2WW8VTb2fn1hgTo52DADL1auaMTpH7fMsAMjR1ruQ4v73GbFARfQTJSDHpB0DwOSr/dl0itQMASD2Gc7r1EwoL8NhwddMgJyZKRQnfGyIvLZOjkJ5IT1dLM6qRIav1YXlGai8an/zkYiqjk5C/Pt9kTxJ/UNAl22BNG0DsPeSnSpGREREomTFdrfajo0rIqocvQ4XF/VHyjh1z6mUmQdpynrg4BU7VYyIiIjItjgskIgqz6BD3MeDIOXJ8FwbXZAsZZiBSeug/DEK6CA2tIxqEbMFutwiwwCL3gcAow5w1B7eR0REVUMBoAgNhax8ObUdG1dEZB1GHeI+HQzpgc3w2FQ4T1BKywUmroOycRzQzMt+9SPbURQEvb4Hvt+egi5bey6lopeAWxtBWToIcOLXEhER1VwcFkhEVqM46BG7dCjSBzZUpUspOZBe22unWpGtef9+Fg0+Py7UsAL+2ydtbTSkdw9Xcc2IiKgkiiLZ7FbbsXFFRFalOOoR8/VQKP2D1A9suQikiK1mRjWYrMBvYQUbSV+eBJLEVm8jIiKqjti4IiKrU5wNUJYPhXLTPBrJLAMbYuxYK7IFr7/Ow/lMcoWeK2WYIX12wso1IiIiLTIkm91qu2rZuMrIyMBbb72Fdu3awd3dHb6+vujVqxeWLVsGRcmfCmcymbB06VKMGzcOoaGhcHZ2RuPGjTFt2jScPl3ypiY5OTl49dVXERYWBkdHRzRp0gTz58+H2Wy25Z9HVDd4OAAD1b1X0p8X7FQZsglZgf8ida9VdisfnNw/HScOzMCJAzMgH5umuilFVpnEFyeANLG9vIiIiKqbate4kmUZI0aMwCuvvIKuXbtiwYIFePnll2GxWHDvvfdizpw5AIDo6Gg8+OCDSEpKwv3334+PP/4Y06ZNw8aNG9GhQwds27atWN5Tp07FG2+8gUGDBmHJkiUYMGAAXnnlFcycOdPWfyZRnaCMKfLDeetFIJ0/nGsrj80xcD51XZV2aXYn5IZ4wNzQHeaG7kCRm/JcJ1W8lJab38AiIiKqgardskz79u3Dzp07MXv2bCxcuLAg/ZFHHkHLli3x+eef45133kH9+vVx5MgRdOjQQfX8GTNmoGPHjvjf//6HgwcPFqSvW7cOq1evxtNPP40FCxYAAB544AF4eXnhgw8+wIMPPohevXpZ9W9x/ScKjsaydzLX1ddenlp0L3pTfaNmjMsOwS3khWl378oXE6xaYsqYVpoxPtc9xTIT2UEegPO/1nvdsge21IxxDc8Sy+xsrHYMAKlvc80YXZZYD+6vc3sLxbV5cxcwohEUgwQpL7/HWcqxQNkcB0xskl+mSWx4gNQ5XTNGFx4olNdr83cJxT2yXvs4q2/ljjjZrN3wTBuuffwAQGao9oK3AV+cFcrrai+BxXMVBQ2ePaJKymrqjbgRrQFL4XW8ndlFnhfqglYjm6L+usK6WD45gaabziHXtezzJwD4OWkfG3HHfDVjAEBxd9GMcdgXJZTX1anaxw8A+P2jPYTSkmj7zbhlwXOjNUlhQdpBAJTzYuc9EXKO2DxQl+MC32PBYucgke9Ew+EzQnnZgzWPDTld+/NrP3Vh0fBCtlpsggta2EFaWhoAIDBQfZJycHCAr68vXF1dAQD16tUr1rACgNatW6Nt27Y4cUJ95fOHH34AAMyePVuVfuP+d999Z4XaE5GKlyPQr8jQwDXn7VQZqkptDxyF+7HLqrTYJ7oBeu2vmdgnu6nuG1NM6PTTv1atHxERkS1Uu8ZVt27d4OXlhXfffRcrV65EbGwsIiIi8MILL+DQoUN4/fXXy3y+LMtITEyEn5+fKv3AgQMICgpCw4bqJaIbNmyIwMBAHDhwwNp/ChEBUMaEqRP+jgOyxJbophpCUTD6+99USdmhnrgyroXQ0zPbNsD1oeohpN2Xb4Ehm0NIiYhsQbbhrbardo0rb29vrFmzBj4+PpgyZQoaNWqEVq1aYcmSJfjtt98050d99tlnSExMxN13361KT0hIQFBQyUMOgoKCEB8fX+E6BwQEqG7NmjWrcF5Etc6oUCi6wmEAUlYesDXOjhUia2t59ASanVQPnY19vBtgEP+KiZmt7r1yvZ6Ojr+KDeEkIiKqLqpd4woA3Nzc0LZtWzz77LNYtWoVvvzySzRt2hTTp0/H5s2bS33e7t278fTTT+OWW27Biy++qHosKysLjo6OJT7PyckJWVmCc1yIqHx8nYHeAaokrhpYu4z5Tt1rZQp2x5XbxOaG3ZDRwR9JAxqp0np8vRn6HK7mSkRU1biJsPVUuwUtwsPD0atXLyxcuBCzZs0qSJ82bRratm2LmTNn4ty5c9Dr9arnHTp0CKNGjUJgYCDWrl0LJyf1RGgXFxfklDJx1WQywcVFeyJzaRITE1X309LS4OkpuKACUR2gjAmD9O9Nk7g3xAA5oku1UHXWNPw0Wh47qUqLe7QrFKO+lGeULnZ2d/hsL9wLzf1KKm75fQ8O396v0vUkIiKyhWrXc7Vw4UKYTCZMnjxZle7i4oJRo0YhJiYG0dHRqscOHz6MoUOHwtPTE9u2bStx+F9gYGCpQ//i4+NLHTJIRFYwKhQ3X6yS0s3AjooPxaXqo2ivVY6/Gy5NbV2hvNK6BiKlV7AqreeXm6DL5Rw9IqKqxJ4r66l2jasbDSCLpfhV7by8PNW/QH7DasiQIXB3d8e2bdvQqFGjYs8DgK5duyI+Ph5xceq5HnFxcUhISECXLl2s9ScQUVEBrkA39SIzXDWw5guLOIO2h46p0uIe6QzFseKDImJmd1fd90xMRrs/91c4PyIiIluqdo2r1q3zr3guW7ZMlZ6SkoLVq1fD29sbTZs2BQAcOXIEQ4cOhZubG7Zt24awsLCi2RWYNm0aAGDRokWq9Bv3Z8yYYZ0/gIhKVGzVwPUx0OexR6ImG12k1yrX1wWXprerVJ6pvYKR2lW9FUevpRsh5XEYKRFRVZEh2exW21W7OVezZ8/Gt99+izlz5iA8PBy9e/dGUlISli5disTERCxZsgR6vR4xMTEYOnQokpOT8cQTT2D37t3YvXu3Kq8JEyYU7Is1atQojB49Gh988AFSU1PRs2dP7NmzB1999RXuuOMO9OnTxx5/LlHdMSYMeHlvwV0pOQfNT57A6Vs62K9OVGEhZy6gw95DqrSLszpBdq7k14okIXZ2N7Sb8UdBknfcNbRZdxAnxnYv/XlERETVQLVrXDVq1Aj79+/HvHnzsGXLFvz0009wdnZGhw4dsGDBAkycOBEAcOHCBVy/fh0ASt376sKFCwWNKwBYuXIl5s+fj++++w4rVqxAUFAQ5s2bhzlz5lT531Uay9WrmjGS0SiUl/M/kdpBVqb38dGMER0iJHuILSpiKXnRR3VeaalCeek8PITi9O7umjGWa9eE8nKP1K6b6D4QOmdnoTj/b7SPDXMHsS0ErnYS6/Ce+3LvYmkzG+xF8JXClQI7he9ExHDtVeWC3VM0Yy62CdaMKY88L+vtxnF9UiuhOO8o7ZXxvPddEsoro3ED7ZhBYu/50k7ri6VJH6pXblV8HLGgx4PIiSj7mHSMFTifKQpeaXcY/uGxBUl9vtiAmPG3QCmyKXFkql/RZxcz6+0d2mUC+OYB7X25EgViACDgy9NCcVbd86VVY+0YALpo7WNIyRNbpVHy1z7O5Dix+ZXK+VjtICuTdGILr8jp6ZoxOk/t7wlRupt+u5Qlt3mgdhAAx7hkzRjR7zBdWIhQnHxB+/3Ue3sL5WVJ1q6/KKV1E6E4fexlzRg5I6Oy1ak2FCX/Zotyartq17gCgCZNmmD58uVlxgwYMABKOd8hJycnzJ8/H/Pnz69M9Yiogk437qpqXHX85wB+fOq+Yj+YqZo7nVRsOX3l4XbIEWzsa5IkHHh0KMbM+qogyefCFTTdcAxnRnW0ThlERERVgL9oiMhmTjVRLxzjkZyGpscj7FQbqijpgyOq+4qnAzCzrVXLuDCwDa62Uq/i2vXTzYBs1b4eIiIiq2LjiohsJsnTD4n11ENKOu3gSnA1ytkU4PciKz0+2BbwcLBuOZKE/Y8MVSX5RiWi8d8nrFsOERFBsdFiFkodWNCCjSsisqnTRXqvOv5zAJKteyNkBdJbByE1+gZSn1+Bw1dsW34NJi08CkkuHJKtuBmhzLJur9UN54a2w/Vm/qq0bp9sqhuD9omIqEZi44qIbOpUY3XjyvtqEkJPn7NdBRQF0v92Qnr/MKR0M6RTSZAmrGUDS0R0GvDLGXXaA20Ab6eqKU+nw4GH1b1XDU7FI3T7qaopj4iojuImwtbDxhUR2dRVnyBc8VavcNVp+z7bFK4okF7YA+kb9UpuUroZ0m3rgONiq2XVVdKio5AsN/VauRigPFK5fa20nBnRAclh9VVp3T7ZzN4rIiKqlti4IiKbO12k96rTjv1V/2NZUTDu9+WQvih5zo6Umpvfg3UqqWrrUVNdzAB+jFKn3dMK8LXSCoGlUPQ6HHhoiCrN/1gMGu6OKuUZRERUXooNb7UdG1dEZHNFVw30TbyKhlHRVVegomD0mu8xaMvqMsOk5BxI4/8CIqy3p0ptIX10FJK5cG6c4qiH8tgtNik7cmxnpAar99TrtmSTTcomIiIqDzauiMjmLtULQZKHeqhXVa4aeOu6XzB002+qNEUnQf64P5R+6iGK0jUTpAl/wS8+ocrqU+NcygJWFNmI+q6WgL/Yxt+VpRj0OFik9yro4HkE7T9rk/KJiGo7WZFsdqvtquUmwnWJLlh7d/U8b7FhN8Yr2jvIJ3WqJ5SX5/rT2kEAEkfW14xp8J3gPkaJYmH1IrVjRMlpaUJxuoZBmjEZg1sK5ZXWwqIZE/iJUFaQs7OE4nSO2gsO6M6LLegQeF47BgDg5V7mw6eadkOfw2sL7vfeuRPXXu8CSMVPvHd4xWgW98VwU4npHT/Zgu7rNqjSFAmIWDgcVya0hm54e7S7YxW89sUXPC5dzsb8156H8tcYIMyj1DJf+zxMs14AYMgWCkNaI6NmjPcUvVBe0lWBFRh7ZQrldeTdi+icU3jcWox6fD1jMjKueqviAjZoH9u6LLEX43iY+jN3ssd4dGiwBfWuXC9Ia/XBP9j44pCiTy1GCRL7Mr86rZVmjHewWK+muUszoThjqlkzRmfOE8orx03sK93RUXvZfClPrEw5Ll47qBpTZO1jVpR80XoXZORMsc+mwyWx7zDLNe35pGm3in2HeWwQ+07XGbWPM0uy9UYJSDqxcyNOiS2gxB31qKLYc0VEdnGqSVfVfc8L1+AVZd0V+275cju6f7ChWHrU+8NwZVJrAIDsYsSJbycgtXOAKkZKzIQ07i8gVvuiRW3mlpSG9j/tUqWdnNgdGQHepTyjaliMBmyYNk6V1vpwOBpHchNqIqLK4mqB1sPGFRHZRXyDxsgM8FSlhWyw3gaxbZfvRM+31xZLj3p7CC7drt6XyeLmgPDvJiLtFj9VunQxI7+BdTHDavWqaQZ8vx5GU2HviqzX4cBM7d6iqrBz5CCk+Hip0kb99qtd6kJERFQSNq6IyD4kCTG3tlElNVp/ElKepdgNebLm7eb41j/sQZ83ii9esfPVcUi8s32J1bF4OCL8h9uQ3kY91FWKSc9fRTBRbJhObeKSko7ev25RpZ0e2wVpDcWGF1ub2dEBG28fq0prd/gQQs7ZcJ80IqJaiKsFWg/nXBGR3cTe2gatv9ldcN876jLubP5qhfJ6SOPx3XNG48RdfdCqjMl9eV5OOP7TJNwyZSXcThfOUZDOpQLj10LZNA7wdKxQ/Wqifj9tglNW4Vw2WSdh/0NDy3hG1dsxZghGfv873FMLh2uO+m0lPn1ujh1rRURElI89V0RkN1c6hyCrvluVl7PvmRE4/kB/odg8H2cc/2kSlOZeqnTpTAqkD49VQe2qJ6eMLPT7ebMqLWpkR6SENbBTjfLlOjth05QxqrSO+/chKDraPhUiIqoFFEg2u9V2bFwRkf3odIgZ1a5KizjwxFAceXhQuZ5j9nWB8sdoKE3Vc8Lw29mq3+y4muj782Y4Z6hXo9w/a5idaqO2dcJwZLq7qtJGruLcKyIisj82rojIro49ORjX2wRoB5aTrJOw/+lbcejxCg5j83eB8tVgVZIUlwEc1V7SuKZzzMxG/x/VqyyeGX4Lrjez/vtUETkuztg8aZQqrfOe3fC/GGenGhEREeXjnCsisqtcT2es/fMxuCSkQG8qeW+dcR7ae+n8nBqqup/t64Zcd7E94krVth6Uxh6QzhfuJSP9eQFKR+393Wqy3r9thWuqegGPfQ9Xj16rG7ZMHIFhv/wJl8z8fbN0ioKRq37D10/Mtm/FiIhqIFtt8MtNhImIbCQr0Kv0B720V+pLTaqCBo8kAWMbA4uOFqatOQ+80rXEzY5rA6MpBwO+X69KOzewLa62CrZTjUqW7e6KbRNuxajvfi9I67bzX/w5eSquBlSPHjYiIqp72LiqQuYOTaBzcikzxnjojGY+RrPYBHLLZe0NWJ1SrLvxp+/xknsabpY8vpVQXt5/iG4Gar05L7oAf7ESHbR3fnfbIlZ/jzPaP1KtvTO8nGPSjNF7eQjlJXKcAQDSUjVD/j3aWiir3Q0aa8boDWKv2vGoZkJxfUevAwAoY8Ig3dS4ks6nQTmVBLSpB9PrYseP9zsxQnEN39R+n04mizUcvui4WTuoJJ+GQ5eUpkraHDwNSV/5lfKEQrKj9ucEkdq9kAAQ8IF2zPGcNhju8hcMWfn7cOlkGQ/u/BzH3lMveBFmNAqVObXfv5oxnR3FhoU+23+kUJzDOe3e1XobxY4fo1HsK11OSRGKs7XMAS2F4tyPXtKMqa5/IwDo3N01Y2R/se0OpBSxLSLShmu/th4bxL7DdM5l/665QXJ00IyRQ0KE8rIYtS9mifyeAgCdq6t2EAA5U/u11blpL8ikMwucF6sDRcq/2aKcWo5zroiIytLBF0pD9ReotOaCnSpTxUx5kBarV0RUBgUjPqCJnSpUtixHV0Tf2VmV1vC3cDjHpdinQkREVOexcUVEVBZJAkaHqdP+rKWNq+8jIV1SrxCoPNvJTpURc25mD1gcC3tsdHkymn26u4xnEBFRUbJiu1ttx8YVEZEGZay6cSVFJANRKfapTEVpfdvlWIrt46X0DQR6iA19tJecBm6Imd5Rldbwl2NwSkjlNzwREdkc51wREWnp6gclwAVS4k29On+eB26zX5WExWdAengbsPsSpHI2KKp7r9UNZx/uiUbfH4Y+1wIA0OdaMKzHYs3nKa28oSwZAHSo+GIounNpcHpyF/QRKcid2gQ5r3cBjLxuSUQ1i602+OUmwkREBOgkYFSoKkmqCUMDEzMhjfsL0s7E8jesuvsBfWrGqnsmfw/ETbml3M+TTidDGr8WOFaxvcuk82lwGbcBhr1XIKXkwvHz03Ce9S+QZ+0laYiIqKZg44qISIAyVr1ioXT8OnwuCq6caA9XsiCN/0u1R1d5KM90qlHLzZ95pBdkQ/m/0qS0XEgT1wInrpfvebEZcJ2wCbpL2ap04+poOD22C5KFDSwiqjkURbLZrbZj44qISERPfyi+TqqkdlsO2akyZXNNToM0fi2kM9rL4RelSIAyqy0wuHrta6UlO9gL4fOGwyKwbUJRUnIOpAlr4RIp1oMlxWfCdfxG6OJLXqrZ4dfzuOvdzyDJbGAREdU1nHNFRCRCrwNGhgLfFu4F027LQey4e4T96lQCl9QMPPzou5DOJKvSlaaeUL4YBDhrnPbrOwM+TmXHVFMxd3TGxYnt4Byv7q0b4FKkV0pWIL24B9KOwj23pOsmdJi6Ekd/nYKspqXvMSQlZsFl/EboYjPKrEvvDTtgMRrw3TMza1QPIBHVTYqSf7NFObUdG1dERIKUMWGQbmpcNTpxHp6XriNVcMPPquaUnolZj7+LoDOxqnQlzAPKH6OBQLHNM2syi4sDMpr5qhPdivcgKd8PB6auh7QrsSDN8WoWOkxZiSO/TkV24+IbrhuvZsJl0kboL6Sry2ztjZwn28L58V2QcgvL6vfnFuQZDPjpyXvZwCIiqiPYuKpCxqPnYDRqXAFuEaqZT3xPsavI/su053847okUysvcqZlQnE5g1Euuh9hlCl2g2JLPGc09NGNc/zkrlJfsJniF/mycWJxImbEXrZaX1LSRWFzcZc0Yy2Wx+UO64EChOPligmZM/aMWobwMGdrHUK632HtpTMnWDgIws8GwYml65zwsdPsXrhmFvRZj923C+fu7lZnXliFdhMp8zWedZsxP+twS0w3pJgyauRy+p9XH17WA+li08GUkZ/gCUernNPYSGwaXEewoFCcLjMhzdmwulJchU+zYOLTArBmz6ZaSX3+HGUPx6OV5aHL2dEGa4+VMdJ36E1LWDIfcyL0gXbpmgtftm6A/q+4Vy2rug5M/TYTZ1wXeTl5o8cBa6MyFJ8ZBv29Ed79YZMzrUmIDa27MRM36K8ENNGMAQHYSGxJpCNA+18qJl4Ty0jlqHxtyTo5QXq7bI7SDAFhzsKUuVGz4qyJwDtV5e4oVKtLQPhMtlJVFEnvPPTZeFYoTIWdnaQcBkATed93xFKG8DM4umjGix4WcWfJw3oqQM8ruwQYA2WyyWnlVSfnvZotyajvOuSIiEmQxGHC0h/qHeuD606VE244hMwcD7lsB36PqhlVyAx98tORFJPv7lvLMui3XyRmfPvUKLjRWN/j0CVnwmrgZuov5P5yk5Bx4TdoMQ0SKKi67sRdO/jwBZt/8H37JQ8MQ9dkIKHr1j2fXz07D7Y3DdWM8DBFRHcfGFRFRORzq00N1v96BODhe0b56WVX02bnof/93aHBQPRQwxdcLHy55CdcDxXo96iqTsws+efpVxDZSrwapj82A14TN0EekwHPy3zCcVM9hyw71xMmVE2H2Uw+1TBrRBFFLhkPRFWlgLT4J13fVmzQTEVHtw8YVEVE5nOzUHibnwiGIkgIEbBQbbmttepMZ/Wb+AL990ar0bF83fPTxS7jaUGyobV2X7eKGj5+Zi7w26nlW+uh0ePdbA+Mx9YIYpoYeOPnLROQGuJWY3/WxzZG2pDeKrjjs9v5xuC44btW6ExFZw41NhG1xq+0454qIqBzyHBxwtHsX9Ni+syAtcN1pRN/Z2XqFrIiA9PZBSInF5zZM13iqyccFW7+7B5e9xObGUb4sN3ek/DoUXuM3whBZuIS9VGQkX06AG06unIDcYHeUxTSpMZArw/PJ3ap0t7ePQnHUIeuxtlarOxERVR/suSIiKqfDRYYG+u6NgUOS2CRvTSeuQ5r9T4kNKy05ns7YuuIepLbws05d6hjF1wkpvw1DXtOSF82x+Dnj5MqJyAkRW7jANL0p0hb0KJbuPvcwnD+3/1w9IqICttpAmJsIExFRUeFdOiDH0aHgvs6iIGCTdYYGSu8fLtZbIiLX3QlbV9yNlNYBVqlHXaX4OSP192HIC1P3TMn1nZD6+zCYGnuVK7/su5oj7f+Krybp8fIBOH8ttjoeERHVHGxcERGVU66TE8K7dlKlBay3wg/liGTgzwvlflpWA3dsW34XktsFVb4OBNnfBam/D4O5Q/7+ZXlNPZDy21BYmgkutV1E9gMtkf5G8eXgPZ7fj17bN1eqrkRE1nBjE2Fb3Go7zrkiIqqAQ717oMvOvQX3G+y8AGOqCWZPwb3TSiB9cETVa6W4G6GsHg04FO5lsz5DvUiFopeQEeID2YGnc2uSg1yRsnEkdFeyIddzAoyVuxaZNas1kCvD/Y3DqvTp33wCi16PfX0HVSp/IiKqHvhtTERUAce7dYLFQQ99bv5mtzqzDP+/oxB3W/sK5Vf/cgKw6pw68cG2QIf6qqTUVM6nshmdBNlfe/NSUVlPtIWUa4HbO4VLsusUBXd+uRgWvR4He/W3WllEROXBTYSth40re4uM1gzxt+Iqz6K70RuzLWL5Zedqxjgmlb2q1g1yQqJQnLmDl2bMtduaa8YAgO/RbKE4kZVDRbu6dUYHzRjZrP26AoByNkYsrlmodtCZaKG8LF7OQnF6ncCxdvSMUF5oEqIZYjwQJZRVxuCWQnGB27TeA0dc7dsY/lsK/4bA9RElNq6C+1wsllbUyBdXQJILD6JcV0csm3IbTNfU+yhF7g7TzAsAfH7Xfj3Ojxf7nPj8Lbb4gt7LSzPGkpIilJckcswCkB31mjH1DqcL5fW6NFEzxpAt9kF3uVzKOdRxDIb2/QmD/v2tIEmnKLh36SLc0y0cGN+42FOevTZCqMzuE8WWeT/8vfZKhQ6Jl4TyknNyhOLEiE10zxzQQjPGdbvYMF05WvuzKcwi9r1pVYodyhSkyNp10wWIbRch5Zq1g7LFFgGSjEahuNz2oZoxxkOC32FUp3DOFRFRBcWPVDfUGuw4B0NG+X9sesRfR5s1B1Rpx6f3hsnbtZRnUI0lSdg88Hbs6DVOnWxRID24BVgbbZ96ERHdWM2vKm91ABtXREQVdGloc8iGwtOoPscCv61ny51Pj6WboLPIBffNTkYcuW+ANapI1ZEkYcOQO7Cr+yh1cp4C6b6/gU2xdqoYERFVFhtXREQVZPZyxtVeoaq0wHKuGuh+KRntVu1TpZ24vSey64kNp6UaSpLw1/B7oNzXWp1sliHdtQnYasXhakREGmRFstmttmPjioioEhJGqIcG+m07C322wPyA/3T76m8YzHkF9/McDDh8P1eOqxMkCcq7vaHcqT6GpFwZ0h0bgX/i7VQxIiKqKDauiIgqIXF4Cyi6witxhiwzOsxZC9w0zK80rlfTcMvK3aq0U5O6I9OvYvspUQ2kk6As7AtlmnpxEclkgTR9I7BHbKEfIiKqHiq1WmBERARiY2Nx7do1ODs7o0GDBmjXrh08PDysVT8iomot19cVV3s2QoNd0QVpDX8/Admox5F3RwO60odAdPvmbxhzCnu5LEY9Dj44uCqrS9WRToLyUT/ALEP6tXDOnpSVB0zdgEb39UJMqNgql0REFcK12K2m3I2rrVu34quvvsLff/+Na9euFXtcp9OhY8eOmDRpEu677z74+vpapaJERNXVqTmDUG/St9DnFA7va/TLMcgGHY7938gSn+OclI4OP+1UpZ0e3xUZgd5VWleqpvQ6KJ8MyG9grT5fkCxlmPHgF2/gs1mvIy6kmf3qR0REQoQbV6tWrcJLL72EqKgoKIqCoKAgjBs3Dv7+/vDx8UF2djauX7+OiIgIHD16FAcPHsRrr72Gu+66C/PmzYOfHze+JKLaKeWWQOz7cjK63/9LwabCABD2wxEoDnpEPnc3IKl7sLou3waHm/aJk/U6HHyIvVZ1mkEH5YtBgNkCaV3hHnbOpiw89PlcfPrwPMQHF98Hi4ioshRIUAT3mqtsObWdUOOqX79+2LlzJ9q2bYu3334bU6dORUhI6Zt65ubmYtu2bVixYgW+//57/PTTT1ixYgXGjh1rtYoTEVUnV/o3wf7PJqH7QyuhMxfOt2q87CAGwgPbnptQ0MBySslEp+//UT3/1KguSAthT3+dZ9RB+WoIcNcmSJvjCpJdsjMx67PX8Mkj85EY2MiOFSQiorIINa6ysrLw119/YeTIkoe3FOXg4IDhw4dj+PDhuHr1Kt5++21ERUVVqqI1kRQWDMnRpewggbGnSe3FNhIVGcbqu0Vwed/0dLE4RyfNEJ9rKUJZpQ4Tm1Pgue60ZkzCY4LDZ87FacdAbKd5UbI5VzvIyjJCtN8nN4QK5SWdOCcUp72cg7hcb0fNGMew0i/43MzjQIJYoe5umiGbt3VRJ+i7IHxWGO5f8i70cuEr0G3ZVhgcgX3PjAAkCV1++BuOmaaCxxVJQvgjA3D1WRO0uPYSfGUV7WPWd7PY8S/6Xiru2ueqzI7+Qnm5bhNb0l7n5aUd5KH9XgKA79FMzRj5gnX3oHrw6JAS0w3PDMTjSe+izaHjBWmuWRl4dtkcKGvGAC2LDx89liu2RtXm9u00YxqYmgrlZXbXa8Y47YwUykt0Mob7Pu33wJrnH1GW5GQ7lGo9qSNbCcV57xD7DMiZAp+nxEtCeYnQCc73l9PShOKMh85Upjo1jqLk32xRTm0ndCY+ePCgcMOqqPr162PBggV49tlnK/R8IqKa5FiXHlg262nIkvr02unzreiyeBOM6Sa0X66ea3V25C1IadLAltWkai7PwQFL3vgfTndoo0qXrpkgTfgLOJtin4oREVGZuBQ7EZGVHe7eB98++CTkovOsFm/G2Ls/g2Natjr+Yc61ouJynRyx+M3nofRU9/ZJl7MhjVsLXBC7Ak9ERLZTocbVvHnz8P777yM3t/ThTTt27MC8efMqXDEioprsQK/++P7+x4qlNwhXD809P7QtkloE2KpaVMPkOjtB+elWKF3Vi0JJiZmQxv0FxAoO4SYiIpuo0D5Xr7/+OiRJwurVq/HHH3+gXr16xWK2b9+OefPm4dVXX610JYmIaqK9fQdDn5eH6cs+LTXm0KMlz7khKuDuAGXlCGDCWkhHrhYkSxczgE4/Afr8HtJbSnm67GpE0uTmiJ/bq8x914io7lIUCYpig9UCbVCGvVV4WGBYWBh27dqFnj174uzZs9pPICKqg3YNHI5/Xx1f4mPRA1rhWptg21aIaiYPByi/joDSTn0xU5IVSGYZklmGrpSbISUHDZaGw3fZSTtVnoio7qhw4+quu+7C119/jZiYGPTs2RO7du2yZr2IiGqNE3f2wa4Xi29FwV4rKhdvJyirRkFpVbGNpv0+PgIpx3ornxIRUXGVWtDinnvuwbp162A2mzFkyBD89NNP1qoXEVGtcvzefvj3lfHIdc1fVn7/E8NwpQP3K6JyqucE5Y/RUDrVL/dTHRIy4fOL6LLoRERUERWac3WzwYMHY/fu3Rg5ciRmzJiB8+fP48UXX7RG3YiIapUTd/VB1PjOUHQSzG7ae48Rlai+M5SN46CcTwOy8wqSo8zFr5cGv7wTbvsK9xLy++gI9B/lwWKo9Nc/EdUiNXXOVVRUFL777jts2rQJ586dg8lkQpMmTTB58mTMnj0brq5ie8Xm5eXhk08+wbJlyxAZGQmDwYAmTZrgoYcewkMPPVSuOlnl7Nq6dWvs27cPo0ePxiuvvIJz584hIICrXxERFZXr4WzvKlBtoNcBzbxUSdklbCKc+GwXNJv8V8F9x7h0dN/+D3YPGVTVNSQiqnJff/01lixZgrFjx2LGjBkwGo3Ytm0bXn75Zfzyyy/Yu3cvnJ3L/t7Nzc3F2LFjsW3bNsyYMQOzZs1CXl4ezpw5g5iYmHLXyWqXrvz8/PDPP/9g2rRp+OabbzT/kLpAuXARirHsq9NJt2nviO7z22mh8nQh2hPjJaODUF6iLk8I04ypd7L0Jftv5nXkulCcyIyB4K/ihfLK7NNUKM75H9sOpcnu00IozjU2UyjObUuEZozO3V0oL6mB2HCkzOY+mjFOO8VeV+PBM9pBglen5Eyx1wxp2nsIGdM9hLKKShV7zdyQoBnjEnFNKK/s7s01Y5wSs4TyQkaGWJyiaIa4btM+FstDTknRjNHl5WnGAIDkpN2bmDpC+5wNAJ7rxc7bSgkNoqIu5uUI5fXxsTHFE90VvNgqCk1ORxUkTfvzO7R8FvkNtFL81KCrUJmeb17UjBH5bgIAOVY7LwCQswWPWwF6wfOZ5cpV7SA70AUHCsXlBLhpxniuEztmZaEoIK9jM80YwxGBc7sgWeCcXR5K6yaaMdKpc1Ytk8pv0qRJeOGFF+Dp6VmQNmvWLDRr1gxvvvkmvvrqKzz2WPFtUW72xhtv4O+//8bmzZsxcODAStfJqpsIOzs74/fff8cTTzyB7Oxs7ScQERFR1ZEk/Dl9kirJ+XwKfFdb70ctEdV8imK7mzV16dJF1bC6YerUqQCAEydOlPn8zMxMfPjhhxg3bhwGDhwIRVGQnl65/QMr1LiSZbnU/askScKiRYuwb98+bN26tVKVIyIiosoJ79oR0c0aq9KCPzoAyFb+lUNEVE1cvJjfE+7n51dm3L///ov09HR07twZTz75JDw8PODh4YH69evjxRdfRJ7gyIebVdmM1q5dxYYUEBERURWSJPw1fRIem/tuQZJLVBLqrTuL66O1h24REVlbs2bNoNMV9vEkJiZaLW+LxYI33ngDBoMB06dPLzM2MjJ/esKiRYvg4OCAd999F/Xq1cP333+P//u//0N8fDyWL19ervKtOiyQiIiIqp+jPbogLixElRa86ID1x+gQEdnZ7NmzsWfPHsybNw8tWpQ9h/3GEMCkpCRs2bIFDz/8MKZMmYLVq1djwIAB+Pbbb3H6tNh8xBuEe64aN26sHVSEJEk4d46T/YiIiOxJ0enw17RJePitDwrSXE9dg/emC0geXv7vdyKqZRQp/2aLcgCcOXMGHh5ii0KVxyuvvIKPP/4YDz74IF544QXN+BsL8PXo0aNYQ+yuu+7C9u3bsX37drRqJbaYEVCOxlV0dLRwpjdIkg3eJCIiItJ0qE93JDQMQmBc4WqqDRftR/KwMIDf10RUw73++uuYP38+7r33Xnz22WdCzwkOzl/N1N/fv9hjN7aVSk5OLlc9hBtXFy5cKJa2cOFCLF68GOfPny9XoURERGRbil6PtdNuw8x3PypIczt2BV7bY5AyMNR+FSMiu6uKlfxKK6cqvP7665g7dy7uvvtufPnll8IdPN26dQNQuADGzW6kNWjQoFx1EW5cNWrUqFiat7d3qY8RERFR9bJ/QG/c8ctyOEenFqQFLzyAlAGN2HtFRDXSvHnzMHfuXNx55534+uuvVQtl3CwxMRGpqakICQmBi4sLACAsLAy9e/fG7t27cfjwYXTq1AlA/qIYS5cuhcFgwLBhw8pVnypbLZCIiIiqF1mvR/zjXdD0mS0FaR4HE+Gx+yLSeje0Y82IyK6U/262KMeKlixZgtdeew0hISEYMmQIfvjhB9Xjfn5+GDp0KADghRdewPLly7Ft2zYMGDCgIGbx4sXo27cvhgwZgieeeAL16tXDzz//jP379+PVV19FSIh6MSAtbFxVIbl1GGRHlzJjfE5ob7YsNRXrGZT12lcd83x9hPIyJF0XivOK0l7/35AktqF0TkMvoThHi/b+8BbB+uvMQmHI6VH2ajMA4Lg3UigvvZ9297LrvuLDcEsim3OF4nSOjtp5iW6aJxjndDVJM0bktQAAi1fZnyMAkCOjhfIydxFbetp4UHuTVfdNEUJ5ZVhaCsUBCZoRose2wz6BOGtPJjZoL0B7darYpOD6P5dvdaYylXIVsyjFZNKMkR0qWxm1oM+jNWM+7jZOKK8GJu1zIwB4PxQAyyJX6OMyC9JafLgHaQPcC+4/0GinUF5LX+yrGeP1VpxQXrrQYKE4Obr48J2i0oaLfea89ogt/6wLDNCMkQS+mwDAcvmyUJwIJUEsL3MTd80YffumQnkZTseKxR3RPocqbZsI5SWdsP3iaPqYS5oxYu84VaUDBw4AAGJjY3H33XcXe7x///4FjavSdOzYEbt378bLL7+MRYsWwWQyoVWrVvjmm29wzz33lLtObFwRERHVJUYdsp9oC7f/7StM2nkJhn1XkNe9fHMLiKh2UCBBQdUPDbZ2GcuWLcOyZcsqHdu+fXusWbPGKnXiPldERER1TM60prAEqHuEnRcct1NtiIhqDzauiIiI6hpHPUyPtVElOWxLgOHwNTtViIiodhAeFtivX79iabGxsaU+BuTvc7Vjx44KVo2IiIiqiunOZnBeFA7d1cK5Zh6j1gMOeniXMek8u7UPEt7ojexOHEJIVGvU0AUtqiPhxtXOnaVPbi3tMW4iTEREVE05G5D9aBu4vn6oIEnKU4C8vDJnRbgeuoJGD/2NiD23V30diYhqmEptIkxEREQ1l+nu5nD+6AR0STnlep5DXDpc9yYCYgv8EVF1x54rq6nUJsJERERUg7kZkfFRL7jftwNSbvkWlvZcewF4qIrqRURUQ3EpdiIiojrMPLwhkiKnQn8mFdJ/V5WvWIrvjef1+xnUX3qi4L7nuguQZspQBPcRIyKqC4QaV5cuXYK/v3+lCrp8+TL8/PwqlQcRERFVATcjLB19C+5mW5yLhcjuRlXjyng5C6HhZ3HhluY2qSIRUU0g1Lhq3LgxHn/8cTzzzDNo0KB8qwOtXbsWr7/+OsaMGYNXX321QpWsqZJbOMDB2aHMmAa7UzXzkeMThMrTubpqxjjkmoXyEh0c4ng6XjMms0tDobycr4nVzZJ0XTNG7yd2nLqcTxGKS23rrZ1Xg/pCeVkuX9GMMfVuIZSXS3yWUJzsJPBRjxCbV5k5oKVQnDFb+ygyCMQAgCE5WzNGaRYqlJfx4BmhOGtyu2jSDgJwbWorzRjfn08L5aULC9GMkS/ECuUlSom7rBnjn5IhlJdFsExdcKBmTI6f9rkRAIyHtI8N3x2JQnldvU37vQQAn9+030+nK9rHPwCYPYv3NpXkxa0TNGP0OSUvafFy0F4ExhceN52/O4KEtA5C5WqRoy8KxeX01D4/Ol8XO4IUX0+huIwQF80Yt13nhPLK7qtdf7eTYkviy/XcheJcdkQKxQmVabWcAOmE2GsmQu/rqx0E4MoAse/q+gfTNWN03trHjy5X7PNrf9J/N1uUU7sJ9eU//fTT+PjjjxEcHIwxY8ZgxYoVOHeu5A9EZmYmduzYgZdeegmNGjXC2LFjIUkSxo8fb816ExERkY0d6dpTdb99+B5AqQMz1ImIBAn1XM2fPx8PPfQQ5s2bhx9//BHr1q0DAHh4eMDPzw/e3t4wmUxISkpCQkICZFmGoiho37493nrrLcyYMaNK/wgiIiKqeke79MSoP34uuO+dcg0NL55FXMNmdqwVEVUaVwu0GuEFLRo2bIilS5diwYIF+OGHH/D3339j165diIqKKohxcHBAhw4dMGDAAEycOBE9e/YsI0ciIiKqSeIbNsJlv0D4XS4crt4ufC8bV0RE/yn3aoEeHh6YNWsWZs2aBQAwm824fv06nJ2d4ekpNnaZiIiIaiBJwtGuPTH8r98KktqF78W6EXcAUu2fS0FUa7HnymoqvX6q0WiEv78/G1ZERER1wJEu6lEp9a8lIiAxxk61ISKqXrg5BREREQmLDWuC677qFdfah++xU22IyDokG95qNzauiIiISJwkFeu9ahe+106VISKqXqpl4yojIwNvvfUW2rVrB3d3d/j6+qJXr15YtmwZlCJLvu7btw9DhgyBu7s7PDw8cOutt+Lo0aMl5puQkIC77roL9evXh7OzM7p06YKVK1fa4C8iIiKqPY527aW67385Dg0ui+1TRURUm1W7xpUsyxgxYgReeeUVdO3aFQsWLMDLL78Mi8WCe++9F3PmzCmI3bt3L/r3748LFy5g3rx5mDt3Ls6cOYO+ffsiPDxclW9SUhL69OmDVatW4eGHH8aHH34INzc3TJkyBd98842t/0wiIqIa60KT5kjx9lGltePQQKIaS1Fsd6vtJKVoV5Cd7dmzB7169cLs2bOxcOHCgvTc3Fy0bNkSSUlJSElJAQB069YNEREROH36NIKCggAA8fHxaNWqFXr06IFNmzYVPP+5557De++9hzVr1mDMmDEAAIvFgp49e+LcuXOIiYmBm5ubVf6GtLQ0eHp6Ys5di+Ho4FxmrNlfeyEQY3yyULmWpBTtIEVs13prkpqECMUp52KF4rIGaO9u77JdbDd6vU89oThL0nXNmNQRrYTy8lx/WjNG5+4ulFdKnyChOI/1EUJxtqYLDBALNOi1Y1LShLJK7R4oFJcRqn1qDNyeI5SXciZaKE6EztlFKC69u/bnziFD7HxgPHhGKA4tQjVDdNGJYnkZxBazlTMzNWMuPdNEKC//Bee0g1o1FsoLp8+LxQnQOToJxVmaiZ0PpBPaf+ele7XPs9OWLsWgdesL7sc1DMM7ry8sFue9WvucVx46D+3vTTkt1aplitAZHYTiZHOuZkxeJ7Gl7R2uaB//AJDUUfs18/pT7H2S24l9nnThAsfZfdrHGQD4nNQ+Hzvsi9KMAYC8jmKvreGI9nlPaav9WuTkZOH9BfcgNTUVHh4eQmXb0o3frDN+/xYOrmLfL5WRm5mF7yfcVW1fD2uodj1XaWn5P5ACA9U/gBwcHODr6wtXV1cAwNmzZ3HgwAFMnjy5oGEFAEFBQZg8eTL+/vtvXLp0qSD9hx9+QJMmTQoaVgCg1+vx+OOPIykpqWBjZCIiItJ2qMhelg3jLqDe1UulRBNRtabY8FbLVahxlZ6ebu16FOjWrRu8vLzw7rvvYuXKlYiNjUVERAReeOEFHDp0CK+//joA4MCBAwBQ4kbFPXr0gKIoOHToEAAgMTER8fHx6NGjR4mxN+dHRERE2s60aoV0d3WPSIdDHBpIRHVbuTcRBvJ7laZNm4aZM2eia9euVq2Qt7c31qxZgwceeABTpkwpSHd3d8dvv/2G8ePHA8hfnAKAqtfqhpuHCJY3tiICAtRDm2RZrnBeRERENYGi1+N4x27o/c/mgrSOB3djy60T7FgrIqoQRcq/2aKcWq5CPVcNGjTAl19+iR49eqBz58744osvkJGRYbVKubm5oW3btnj22WexatUqfPnll2jatCmmT5+OzZvzT+JZWVkAAEdHx2LPd3JyUsWUJ5aIiIjEHOmsXjUw9MIZeCVdtVNtiIjsr0KNq3PnzmHjxo2YOHEiTpw4gYcffhiBgYF46KGHcPDgwUpVKDw8HL169cLQoUPx3nvvYcKECbj//vuxc+dO+Pv7Y+bMmbBYLHBxyZ90l5NTfEK5yWQCgIKY8sRWRGJioup25ozg5G8iIqIaLKplO2S6qBeD6nCIe14R1TTcQth6KrygxdChQ7Fy5UpcvHgRb731Fvz8/LB06VJ0794dnTt3xtKlS5EpsIpTUQsXLoTJZMLkyZNV6S4uLhg1ahRiYmIQHR1dsOBFScP5bqTdGPJXnlgiIiISIxsMCO+gnh7Q4dBuO9WGiMj+Kr1aYP369fH888/jzJkz2Lx5MyZPnoyTJ09i1qxZCAgIwKxZs3D8+HHh/G40diyW4ksE5+XlFfx7Y67Xnj3FJ8/u3bsXkiShc+fOAPLnRAUFBWHv3uJX026kdenSRbiORERElO9oF/XQwMZnI+CeKraFCBFVE1wt0GqsuhR7kyZN0LhxY3h4eEBRFGRmZuKLL75Ax44dMXXq1IL9qcrSunVrAMCyZctU6SkpKVi9ejW8vb3RtGlTNG3aFF26dMHKlSsLFqwA8hevWLlyJQYNGgR/f/+C9GnTpuHcuXP4888/C9IsFgsWL14MLy8vjBw5snJ/PBERUR0U0boDsp0K93TUKQpuOcyhgURUN1W6cWWxWLBq1SoMHz4cTZs2xdtvvw1PT0+89957uHLlCjZt2oQhQ4Zg5cqVeOSRRzTzmz17Nnx8fDBnzhzceeed+Oyzz/DWW2+hY8eOSExMxPz586HX528o+uGHHyInJwd9+/bFokWLsGjRIvTt2xeyLGPBggWqfOfMmYNGjRph+vTpeO211/DFF19gyJAhOHDgAN5//324C27aSkRERIXyjEacvEU9+qPjQQ4NJKpx2GtlFRVaih0AoqOjsXTpUnzzzTe4fPkydDodxowZg4cffhjDhg0riBsyZAiGDBmCiRMnYsOGDZr5NmrUCPv378e8efOwZcsW/PTTT3B2dkaHDh2wYMECTJw4sSC2V69e2L59O15++WW8/PLLkCQJvXr1wsqVK3HLLbeo8q1Xrx527dqFOXPmYMmSJcjIyEDr1q3x008/YerUqRV9GcpkuXoNFqNTmTFZ7etp5uOR7ipUXk5zX80YSRY7skV3OhehnIu1Wl4A4Hb0smaM6GL4lqTrQnE6V+33wPtoklBeee2basboL6cJ5eV1XCxO5PXQBQZoBwGQExKF4oToxa7vyLEXrVak+2ax18wytpVmjHImupK1KT85W2xlU9ftEVVck+KS2jprxvhEFl9YqCQ5nUKF4lzOaX/uAj/XPmcAgueN0+eF8pL0RqE4xWLWjskrPky+xDJPnBOK07m5acZIeWLTzu8duQkA4CW7APsK05ufOYEHuq+GpZ4z/tzRTigvi8DoFgBIHK99rgr8U+zcYkkROx+YOzfWjDEetN5iVobDYnlJ9esLxdXbfUUzRuwoAwzJ2UJxIp8n/68jhfJKeLi5ZozH8EChvF5utEYo7qOniu+NWlSmj/bP6BxThX9qUw1VoXd8+PDh2LJlC2RZhr+/P1566SU8+OCDCA4OLvU5Xbt2xerVq4Xyb9KkCZYvXy4U27NnT2zZskUoNigoCCtWrBCKJSIiIjGpg0JgcTZAn50/N1qyKPDaeAHXp7e2c82IiGyrQo2rzZs3Y+DAgXj44Ycxfvx4GAza2YwZM6Zg1T4iIiKqPRQXI9IGhcB7bWHPnvfa82xcEVGdU6HG1enTp9GiRYtyPadt27Zo27ZtRYojIiKiai55VBNV48r934vQp4oNAyUiqi0qtKBFeRtWREREVLulDmkE2VFfcF9nluG5Kdp+FSIqrxwLXF45AK+uv2PC7uUw5uXau0a2w6XYraZCjasbS52XtCkvkL9X1eDBg7Fq1apKVY6IiIhqBtndAWn9G6rSfH6z3uJIRFUq1wL3B3bA+bPT0Eeno8P5fehzcpO9a0U1UIUaV19++SWSk5MRFBRU4uNBQUFISUnBl19+WanKERERUc2RPEq9qp7njjgEXouxU22IBOXJcHvoXzhsUK9M2/7CPkCpA10tAHuurKhCjavw8HB07dq1zJiuXbvi+PHjFaoUERER1TzJo5vAXE+9JH/f8PV2qg2RAIsMt0d3wvGv4tvG+GRch3+y9bYCobqhQo2rpKQkNGjQoMwYX19fXLt2rUKVIiIioppHcTHi8iz1PpOt4o7Bjz9QqTqSFbg+sRuOq6JLDWkTe9h29bEryYa32q1CjStfX1+cPXu2zJgzZ87Ay8urItkTERFRDXX1nrbI83ZUpfU9vsFOtSEqhazA9Zk9cPql7I3BW8UerTtDA8kqKrQUe+/evbFmzRpERUWhefPiu2ZHRkZizZo1GD16dKUrWNt5/HtBM0bOEVvK1vGCyNUA258gdI6O2kEARK9myCkpFa5LUdcntxKKa7A5UTsoW+x90h2/rBmTOKOlUF5+e7LEygwM0IxJbesplJe7h5NYmQlJ2kGS2HuuF7hQY6mvHQMAOBMtFOa15rRYfrbWIkwoTHfximaMnJlZ2dqo+Pym/ZqJng8c90QKxVlEglqECuWFyAzNEJ27u1BW6Z1LnpNclHu0dplytHV7feQM7TL9VkQI5fW5NLTE9FHDMjHu5x8L7reOPQznADOu+AWXmleeo79QmRZXWTPm4qSyR9fcELDTWyjOePCMUJytWa5eFYrL69hMM8bUsb5QXu47zgnF6UJKf69vyAx1Fcor+I8U7bweFOsv+D65I6AoGDD3N7T/Qd1RkOdgwP5Hh6HXwnUFafXTLqPdjLNIaV78+Dx4UPu7NTerhvTU2Go+VB1op1ao5+rZZ5+F2WxGnz598PHHHyMqKgqZmZmIiorC4sWL0adPH+Tl5eHZZ5+1dn2JiIiomts6chSyXVwK7usUBYP//s2ONSL6j6Kg71t/oP0Pu1TJFqMeaz++FwdnDUF6gJfqsbAN4TasINV0FWpcde3aFZ988glSUlLw5JNPolWrVvDw8ECrVq0we/ZspKam4tNPP0X37t2tXV8iIiKq5rJdXbF1xEhVWqfD/6LeVYFRAERVRVHQ+90/0XH5P6pki0GH9R/ejZgBrQFJwtlh7VWPh208Ycta2gdXC7SaCjWuAGDmzJk4duwYHnnkEXTu3BlNmjRB586d8eijj+LYsWN44IEHrFlPIiIiqkG2jBoDk1PhMGKdImPwFu5/SXaiKLj1k9/Q+attqmRZr8OGhXfh/JB2BWnnijSufCIvwSOai7SRmArNubqhVatWWLx4sbXqQkRERLVEhocHdgy/FcNX/1GQ1uXgdmweNhnJPmJzooisZejSNRjy9V+qNFknYdN7M3BuuHqFy8ROYcjydYPLtcL5iaEbwnF81kCb1JVqtgr3XBERERGVZdOYccg1OhTc18sWDNr6ux1rRHXRwG/+wvDP1cedIkn4+/+mIWp0p2Lxil6H6GFtVWmcd0WiKtVzZbFYEBkZieTkZFgsJa/Z1K9fv8oUQURERDVUupcX9vYYin7/ri1I67ZvCzYPmYQ0r3p2rBnVFf2+24BRH/9aLH3L/CmImNC11OdF39oOrX/YW3C//ol4uF1MQkawT5XUk2qPCjeu3njjDSxcuBCpqallxpXW6CIiIqLab9vA8ei1eyMMljwAgMGSh4Hb/sDqCffbuWZU2/X++W+MXfhTsfRtr0/Cqck9ynxuYrcwmLxd4JRcuOVJ6MYTOHF/7ew0kJT8my3Kqe0q1Lh699138dprr8HT0xN33nknGjZsCIOhUp1gREREVAuledXDvu6D0Xv3xoK0nns2Y+vgiUj3ENtniqi8evy2DRPe/a5Y+o6XxiN8em/N5ysGPWIGt0aLXw8WpIXV4sYVWU+FWkRLly5FUFAQDh8+jPr1xTadIyIiorpp26AJ6LH3b+jl/NEsxrxc9N++Bn+NvdvONaPaqOvqfzDpreXF0v98ciou3F12j9XNLoxop2pc+R2OgculVGT5e1qlntWL9N/NFuXUbhVqXMXFxWHmzJlsWGlQWoRCcXQpOyYqTjOfq1NbCZXnt1Y7r8xOQUJ5Of8TKRQnIqNnqFCcU5LYEFL96RjNGMVsFsrLkKEdAwCWlBTNmIRHmgnlFfiJdl4Nvo8Qyku0d10kzj3BuvvPSA20zw9pjd2E8nLfc1U76EyKUF41nS5H7NiWMzOruCbF6X19NWMs18SWM7bc0lQozphs0oyRI6OF8kLLMO28Ii4IZeWUInY+k6MvasZkDWghlJchW+yM4LAvSihOhOSn/fq/Nyh/6WspuinwXeF3y4ADa9F/qSdQL3+59hc+HS5U5sLuGzVjnvpxhFBeOH1eKEwXGqwZoxjFflIpZ6I1Y6TGIWJ5nY8VijMcOaMZ49aqsViZgt+vSqz2sZ08qrlQXj4jsjVjLh/N/33Tbed2TP7sm2KP/zFlBjZ0mwwcEioSZi8L9PUboZ/rz3DJLBwaqHx/GXvGdgYAPD1gnWY+Gem5KF4bqs0qtFqgn58f8vLyrF0XIiIiqqWUpzpC0RdetZYy8yB9etyONaLapvPenbjns4+gU9QXGv6aOBUbxk0ud34WoxHHundRl7FrbynRNRw3EbaaCjWupkyZgs2bNyMnJ8fa9SEiIqLaKMwDmFSkR/KLk0AKf0tQ5XU4sBf3LfkAOkVWpW8Ycxv+mnh7hfM92Ken6n7zE6fhnlL2Ym5Ut1WocTV37lwEBARg0qRJuHBBbIgEERER1W3KUx2h3DTlQsowA1+csF+FqFZoui0cDyx+H3pZ3bDaPGIs/ph6ByBVfJ7PyU63wOTkVHBfJ8vouHuf8POd91+qcNk2xZ4rq6lQ46pt27aIjo7GunXr0LRpU/j4+KBx48bFbk2aNLF2fYmIiKimau4FjFPP7ZE+OwGk5VYu3z2JkIavhjTkd2BXQuXyohql8b8nMfGpLwuW+r9h27CR+G3GvZVqWAGA2dERx7upNxoWHRrofOAyGj7wd6XKp5qnQo0rWZZhMBgQEhKCkJAQeHp6QlGUYje5yBUEIiIiqtuUZ9U/VKWUHEgzt0CfJ7ZQQjHbL0KauA7SgcuQDl+FdN8WGHM51LAuCN0bgUlPfAGDWd2w+mfQMPx818xKN6xuONRbvcJgy2Mn4JqeXuZznA9fQaPp66HPrhn7vUo2vNV2FVotMDo62srVICIiojqhtQ+UUaGQ1kYXJEmb4zAjbgG+n/YMLAajeF47EyDN2Agpp/AHrHQ1G61OHcHxDuJLblPNE3LgDCY/+hkMueqG1a7+g/HjvbOs1rACgPCunZDr4ACH3PweVoPFgg57DwClbHnldPwaGk1bD316BS8YUI1WoZ4rIiIioopSXusGxV3diGoTcQDTflkEnUXwSv/eS5CmbYBUQs/ALUf3WKOaVE0FHTmPKQ9/AqNJ3XjZ27s/vnvgESg66/68zXF2xonOHVRpnXaWPDTQ8dR1NJq6DvrUSg51tTXOubKaSh99p0+fxu+//44VK1ZYoz5ERERU2zX1gvLrSChu6gZWu5N7MfXXDyHJGg2sA5chTVkPKbPkbWHahB+EXnA/JqpZAo5H4/aHlsAhW914OdCjD7596AkoOn2VlHuoj7ontM3hY9Clq+vgGJGE0EnrYEjmsNS6rMKNq8OHD6NTp05o27YtJk2ahHvuuafgsR07dsDFxQVr1qyxRh2JiIiotunqB+WXEVBc1DMUOhzfhcmrPoFU2rztI1chTV6fv9JgKZxNWWgRyT20ahu/U7GY9uDHcMxUb14dMaQDvnl4NmR91TSsAOBY9y7IMxQeq8a8PLhvLtzE2eFsChpNXgdDkrpuGd39qqxOVsWeK6up0JyriIgIDBgwAAAwe/ZsREZGYv369QWP9+vXD/Xq1cOvv/6KsWPHWqWiNZEuT4ZOX/aiHkpT7V3fzX5iV99ymgdoxrjuixHKy5pLkWQEi417znMWOxw9jmu/HqK723uHi+1VIfJ6BH56XigvEXpvb6E4S3Ky1coUJQleFTSFeGnGuG6PEMpL5PW/MqOlUF4NvhcrU2zardi3hN6nnlCcxc9TM0Y+LXac6ZxdtPNqJPalb/J1EIpz2hkpFCdCf+ysUJzIsXH5HrFjI/Cva5oxolPT9UfPCMXpHJ00Y1z/EXstFK3env/k9GyhGeO4R+y99F+aohnz0IRby3y8+Qtd8MQb8+GYW9gL0PnIdrRvE4+cD3oBusLPoi78OrLHboVrkR6DI726wCM5FU1OF77ufa9sgnmoT5llH22k/VoAQMAX2q+H6Hk7+Vbt49Fjg9h5SuRzDgBKoK92jOi5xUP7PAUAcpr292urMLGVHSMv+yH4bDSmPrUETunZqseO9uqMz+Y8A3OuBJFPaP1DQkXirUc3FkuTBgYAm+MK7uv+TMSZ0b3hGp2EPpM3wHhVXbdr3Rri3yUTgS4fihVKtUKFeq5ee+01yLKMAwcOYMGCBejatavqcUmS0LNnTxw4cMAqlSQiIqLaKaptWyx5YQ4UR/VPEuN3Z+D4/F5Ayb+IoTudDOfbNsE1PVMVF969Iz5/7SkcHKje7LXxlhPQmWvGSm1UtsALcXj66TfglpahSg/v1gGfz30aFmOF+grKTRkTprrfYNtZuEdeRe/bv4PzZfXqgdc7B2PvstthcRa7OEW1R4UaV9u3b8fEiRPRokXpV3xCQkKQkMC9JoiIiKhspzt0gGn5ICgORRpY30TC4eX9kKJS4DRxI6Qk9VyWk13aY8m8Z5DnYMShvt1VjzmlZCFw/7kqrztVLZ/zl/D00/PgnqpuvJzq3A6fzn8WeQ7lWF2yskaGQtEX9qQaTHnoP/ZruCSkqcKSbwnEnuW3I8/N0XZ1o2qjQo2r1NRUBASUPQQtNzcXeXklTzQlIiIiupllSDBMXw2AYlAPyXX4/DRcBv8J3dUi82w6tMGSN/6HPIf8noEk//q40KKJKqbpxmNVW2mqUl7RVzDl7sXwTFIPMYzs0BpL3noOZkcb9wr5OAF9AlVJhmz1VIWUtv7YvWIa8jy0h/xS7VShxlVAQABOnz5dZszx48cRGhpakeyJiIioDrKMCIFpaX9V7wCAYsutR7VricVvPY9cJ3XPwKH+6t6rxpvDIVmsOYuYbMUjPglT7lkMt6vqXqEz7Vpg8f/NKfbe24oyNqzUx1JbNsCu76fD7OVswxpZCRe0sJoKNa6GDx+O9evXY//+/SU+vmnTJvzzzz8YNWpUpSpHREREdYtlTChyPu0LRVfyojLnWjfDh2+/gBzn4j0Dh/upl8t2uZ6BgMMXqqSeVLWGvvYTPC6lqNLOt26Gj955ATkuduwVGhkKpYRDM62ZL3b9MANmb7FFRqj2qlDj6qWXXoK7uzsGDRqEF198EadOnQIArFy5Ek899RTGjBmD+vXr45lnnrFqZYmIiKj2y5vYGDkf9yn2I9ZySz0seudF5LiU3DNwJcgfcY0bqdKabODQwJrG/1g0wnaqR0jFNA/DondfhMnVzo0XPxegl3pqTHpjH+z6YQZyfV3tVCkrYM+V1VSocdWwYUNs2rQJDRo0wNtvv42VK1dCURTcfvvt+PDDDxEUFIQNGzbAz6+GrO1PRERE1UrelCbIWdwHinP+9g+W7g2Q/eswZLuV/QO26NDAJpvCgdL2zKJqqecnG1T3U3y88MGCV5DtXj0aL8rLXQs2wE5t1QC7froDOX7udq4VVRcVXruyS5cuiIqKwtq1a7Fnzx4kJSXB09MT3bt3x7hx42A02nD1FiIiIqp18m5vCsvAQEhXTZBbe+fveXWx7Occ6tcD47/5peC+2+VU+B2PxeUOoVVbWbKKBifj0GTHSVXaptvHIsvDzU41KkF3fyhHp2F7hBFprf2gGCrUV1GtSEr+zRbl1HaV2hjAYDBg3LhxGDdunLXqQ0RERFRA8XOB4ic+FCwxNBhJjRvA5/yVgrSmG46zcVVD9PhM3WuV5e2GHWOH2Kk2ZfBxQmr7BvauBVVDttl1rY5SzsdDMWpMulS0NzgMjNILFqidl+jACH29emJFmrWX2/f/Q+My43/yQsWGkeZ1bKYZY3YVu4rkvDNSKE7Sab8HimzFzSol614FU1o11i7y9HmxvAT/TqcLSZoxoq+YLjhQM6bB9xGCuYmy3uU1S9J1sUDROAFydpZ2UITYRH/rTh0veZGCosxdtT/nAGA8EKUZ47dM7Niw5nazctsm2kEAcMJ6+zBZOoi9Zo57xM57IuSUFM0YSfYXymv2MbFFsPTXtX+67GvbHyPOryy433DNKZwc8CQgqY+/xSPWCJX5tLf2j3vfd2KE8vLYkKwZIzUOEcor209sVTqdWfvbXxL4bgUAi6PY91NmoPZ525Slfi38z8Sh+ebjqrTtd9yK3Gw3ILvsvAK/ETuudY5iZ7QHd9+qGeMSr/1a5Iqci6lWqVDjat68eUJxkiThlVdeqUgRRERERBVyuFtPjFhT2LjyvXYFDWPOIy5UsNFLdjH4q79U97M8XLF7yiDgmp0qRFQBFWpcvf7666U+Jv13VUhRFDauiIiIyOYuhoThagM/1L9yuSCt0/7dbFxVY/UvJKL95gOqtH+nD0WOqzMbVzbAOVfWU6HG1bZt20pMT0lJwYEDB/DRRx9h1KhRmDVrVqUqR0RERFRukoQjXXpi2Lo/CpI6HtiD1ZPvKDY0kKqHwV//BZ1S+Ms7280ZO6cNtWONiCqmQo2r/v37l/rYuHHjMHXqVHTr1g233357hStGREREVFGHu/VSNa78LiUg8GIsEho2Kv1JAGCWYfjoOPRrYyD39Id5bteqrSihXtwVdNiwV5W2a+pgmNy5Ia/N2GoPqjrQc1Ula0e2a9cO48aNw1tvvVUV2RMRERGVKaZxMyTV81WldTywu+wn5ckwztoB4/8dhu74dRg+PwnDO4ersJYEAAO/+Qt6S+GiGznOjvh3+jA71oio4qpsYf6QkBCcOHGiqrInIiIiKp0k4WiXHqqkjgf2lB5vkWF87F8YVqtX0TR8cQquKWlVUUMC4JVwDV3+Ujd690waiCxvbspLNVOVNa727dsHZ2exJUKJiIiIrO1I156q+0EXY9EgMb54oKzAOHsXDL8WXxpfyszD4F82FH8OWcXA5eugzyvcCMHsaMQ/d2ovg05UXVVozlVsbGyJ6Xl5eYiLi8PSpUuxc+dOTJkypVKVIyIiIqqoc81aItXTG56phfspdTywBxvHTioMkhUYn9kFw49nSs1nwK8bsXnaKGS7u1ZldescjyvJ6PbHv6q0vRP7I93X0041Iqq8CjWuQkNDC5ZcL4miKGjWrBnef//9CleMiIiIqDIUnR5Hu3RH/y2FPU+dDuwubFwpCowv7IVhhXozasVBB5jlgmWjnTOzMXDlRqy7b6Ktql4nDFi+HgZzXsH9PKMB2+8eacca1V1cit16KtS4uuuuu0psXOl0Onh7e6Nbt24YN24cHB0dK13BGk2x5N/KoAvT3oVdvlByT2GxuPZNNWN0x4sPeSgxL0+xq3PKebG6idCdyBCLE4hxcHMTykuW9EJxilz2+1geuiDtXeuVpBSrlQcAhmvpmjG5HZoJ5WW8rJ0XAFi8BFZ5un5dMC/tIcbSRaGsIDXVWCnshpgEzZDUQWJ75nhsjBCKEzk25HjteomSjEahOMVsFsuwVWPtmNPnhbIyZuRpBwnSeXkJxckpKZoxOT1bCOXlnJgpVqZATE4vsTIdd0cKxdmaY5LY0udyYK5QXL3FFzRjgm+6tpuuNAS2FN4PiT6PfsF7kR7sDbyyF4avTqueqxh1SP9mABx/PgfHNTEF6YN+3oANo8bB5FLy+UjvU0+o/pYk7fOe6HdrZsdWQnH9+odrxvxzSfs3BADojov9PjA3NpX5uHtSCnr8sl2VdqRFP+T9VR9Fvz1y2mp/8+ucxVYWtIT6C8UFbsvRDlK0Wwo5OVlC5VHtUaHG1bJly6xcDSIiIiLrS+zWGCZvFzglF/7IDdsYDqekTDh/UaRhZZCQ/mU/mIcFQw5yVTWuXDMyMPCvDVg/ZYLN6l6bDft5LYyWwgs3Fp0e/3YaY8caEVlHlS1oQURERGRvikGP6CFtVGmdFm9Ghy+2q+N0EjI+6wvzyPwRJZY23sgd0VAVM+y3P+FgKrtHhrS5paSh/x+bVGnHWvRGqodvKc8gqjnYuCIiIqJa7cKt7VT3HTLVQxAVCcj4pDdyx4Wq0rOeaa+675Gahv7rNldJHeuSwSvXwym7cNidLEn4t/NYO9aICjYRtsWtlqvQsMDGjQXG1ZdAkiScOyc254eIiIjIGuJ7NkWOuxMc04v3OikSkPlRb+TeVvy3jeWWesgdHASHLYXLt9/66xpsGz0ceQ4OVVrn6qTZoZMYvfQ3mI1G/DnsHsQ1EpufVRLn9EwMWqVe2j68eS8keflVtppE1UKFeq5kWUZOTg6io6MRHR2NuLg4ZGdnIy4uriAtJycHiqKobrIsMnWXiIiIyHpkBwNiBrcu8bHMBT2Qc3vpi9NkF+m98kpKRt8NW0qJrn3a/nsYjz/xDpoejUSrAyfwxPsvI/Sc2CI9RRlyzXhg3mI4Z2YXpMmQ8E9nzrWi2qNCjavjx48jKCgIPXr0wLZt22AymZCYmAiTyYStW7eie/fuCA4OxvHjx3HhwgXVjYiIiMjWig4NBICMd7oh587mZT4vr2t9nOqgfu6IlauhF11FswZrvfsoHnjxQ+gthSvmOuWY8MiH8xASXfq+YCXRm/Pw0KuL0G7fUVX6qaZdcc0nyBrVJaoWKtS4eumll5CSkoLt27ejf//+0Ovzl7PW6/UYMGAAtm3bhqSkJLz00ktWrSwRERFRRcQMaoWLvfO3nLAY9dj16jjk3NdS6Ll/Tp+kul/v6jX0/nu7tatYrbTYfwIPzlkEo7n4tgjOpiw8uuh1BMeKba2gz8vDzLkf4Zbdh1Tp2Q4u2NJjilXqS5XEOVdWU6HG1e+//45x48bBoZTxxk5OThg3bhxWrVpVqcoRERERWYVOh3Xf3I9Vvz+On7Y8h5N39RZ+alT7Nohqq95TauTPv0OfZ7392KqTpodPY9b/FsCYW3rvnEtWJh5b+BoCLkaXmZcuz4J73/wEnf7Zr0rPdnHGirH/41wrqnUq1Li6fv06zBrd4WazGdcFNwglIiIiqnI6Ha61a4jMQO9yP7Vo71X9S1fQfdtOa9Ws2mh8LBKPPPMeHHLUKyruH94bp7qrh0e6Zqbj8YWvwT8hrsS8JIuMu9/5DN227Falm5wd8dF7cxDvX/GFMYiqqwqtFtikSRP8+uuvmDt3Ljw9PYs9npycjF9//bXCqwrWJdJNkzpLowsMEMvs+FnNkCt3iA2BkB3E+m2dWmvvDq/PEczrukU7CIBTfKpmjOXyFaG8pGahQnG6lEztMq9eFcpLjk8QirMmkbo5iM4f+G8YsBazs3acY4DYFUv5hPVWGdUlZQjFWQReD7cEsddMFxIsFCfHXhSKEyNpRiiNBec5REYLhemKLG9dktyOzYTycoiI1w4CILRMkhXnxjjuiRSKuzRD7FzrZ2ikGeNyWux8JnYGBSS9UTNGsYi9ZpJROy+vP09rxgBAXrzYsWHqrv2DPO5psfdp7oiJQnFBva8gNSAYcT+GoWF44fzxcb+uROwdbaHodchqIbZHk+Me61147tb3lFCcs077/dSFu6LR+Sg8svA9OJpyVI8d6toH3094CnpLHt4zPgn9zksFj7mnp+LFT56Dac2tUJoW/iZ8ausY3PnZJ+i59V9VXrkODvh4zss459cWgfsuQYTXhkTNGEUS6y+QTosNZVQEzqEiY9wUcw3ZF81WQ/Y4LLBks2bNQkJCArp164Zvv/0W0dHRyM7ORnR0NJYvX47u3bvj0qVLePTRR61dXyIiIiLbkyTseGiUKsk35jLabjxopwpZV8OYs3hk0etwNqkv+h7t1APf3jcbsl4Ps4Mjcr4fDEsP9YUx6Uo2HCdshHQhLT9BUTDtyy/QZ6t6VcX8htVLiGrTtkr/FiJ7qlDP1WOPPYYzZ85g8eLFuPfee4s9rigKHn/8cTzyyCOVriARERFRdRDVtx0SWoUg8HRsQVq/petw4tYudqxV5XmcuoxHP1gEl+wsVXr4LV2xbOYzkA03/Vx0NSLnxyFwnLIJ+gOFoyJ0iVlwnLAROWtuheGzUxiwSd1jaTYY8On/nkdEe/XS9lQ9SAAkG/QqifQH1nQV6rkCgA8//BC7du3Cfffdh44dO6Jx48bo2LEj7r//fuzcuRMffvihNetJREREZF+ShB0Pqnuv/M4loNWWI3aqUOW5R15Bz+nfwzVLPWT6VNtO+Pqh52AxlDD0092InJ+HwtKhnipZdzETTn1Xw/iFumFl0evx+bPP4WTHTlavP1F1U6Geqxt69uyJnj17WqsuRERERNVaxMBbcLlpIPzOFs6f7b90HQ7fNQyQqsd1eclsQef3NiJoWyT0uXnQlTHRxfF6JgxZ6jlZEa1uwZcPP4+8subUeTgg59dhcJqwEbrwpMKyM9UrKFp0Onzx1DM43qVrxf4Yohqmwj1XRERERHWNotNhx8yRqrSAiDi0ijhUyjNsr/XXu9Dmy53wOncV7nHJcI1LKfVWtGEV1aItvnj0RZgdHLUL8nKE6ddhkFuXvPqirNPhqyefwpEevBBPdUeFG1cWiwUffvghunfvDk9PTxhuGo979OhRPPLII4iKirJKJYmIiIiqi5PDuuBqqHpRh8FbVwJK9VgKLezPYxV63rmmrfD5Yy/B7CjQsLqhnhNMvw2D3Fy9erQsSfjmscdxsHefCtWFbEtSbHer7SrUuDKZTBg8eDCefvppXLhwAe7u7lBuOqGEhYXhm2++wYoVK6xWUSIiIqLqQNHr8M8D6t6rkItn0OxMxRo11uSQmg2f02JLnN/sbLPW+OyJV5Dr5Fz+Qus7w7RqOOR2PgAAxUmP5Y8+hn39BpQ/L6IarkJzrt555x38888/mD9/PubMmYN58+bhjTfeKHjc09MT/fv3x8aNG1XpRERERLVB+MhuGPjZn/C5eK0gbci2lTjT7Ba7zr1qcDAG0k0XvC0OBhz8ZGKZy7SZPZ3wy/VxUHRi+xiWyN8Fps2joTv6/+3deVxU5f4H8M/MMAzDDoLIIrKIuORSirnU1Vtalkvhzay0zLW8qZlWv7Q0XOteTasrN/dMW0zbtFJLyywTy7qamisKIksIKpvAADPP7w9jchzkPINnAOHzfr3mVZ75zPeceTjnzDzznCUXItQDScfvqHktqn036H2uTpw4gXfffRdff/01Tp06hdLSUkRHR2PIkCGYPHkyPDw8HK45dOhQbNiwAe3atcPhw4cdfn2NOlcffPAB/va3v2H69OkAAE0VO5HIyEj89lvd/4JDREREpDaLiw7fj74H98/66yidyNSjiEr5Haej6u4+TkE/p9j8O+fm5si+q5Xi68RX19GxquSihaVL08v/L3cfZ6Lrsnr1aiQmJmLQoEEYNmwY9Ho9du7ciZdeegkbNmzA3r17YTTKj8Z+8cUX+Oijjxx6zdVq1LlKTU3FoEGDqs34+Pjg4sWLNVqoxsTs76kcOpainAFQ2jNWMeN33CJVS79PvfPltMHNpHK5Pao+IfZqbinKd5qXpSmSu3O6MCoff152q/KHFwC4/qTctuVdYqRq6X+Vu9P8hfuUly3gqzNStSxX3QflmrlWAcqhgiLljMrMF85L5bReXsqhQ6ekapV3kvt76tKUM/Ikfh48nipVSRcUpBwCYE5LV8y4SL7HC4PaSOW8T5cphw7L/Z3U1GxzhlRO46L8MWyW/SzVyH051gYo72vN2efkZhmqvG4Uh8v9cmz8Xu7b+HVd5vgqPluPKocAZIZV/fma3XEAbg/ciiY5f41e9dq3AfsebHvNWiFJyvPTevsohwDsO+dtN63Xj5k2//7fTZ2wPbO1Yi1TE7khhY0Fcp91Hsq7A4gSyc9gi1kxU3Sn3H7W85tjUjmZfWjRnRLtWloMbJWcJTnsgQcewLRp0+Dj89c28+STTyImJgbz5s3DqlWrMGHCBKlaRUVF+Oc//4mnnnoKmzdvrvEy1eicKw8PD5w/X/0XlNTUVPj7+9dooYiIiIjqO7Nej63/iLeZ1ubAYUT/LvsFXl2GSyVoftz2B9nkTso/vBLdqLp06WLTsao0dOhQAHDosL4XX3wRZrMZc+fOva5lqlHnqkuXLtiyZQsuXbpU5fPnzp3Dli1b0KNHj+taOCIiIqL6bHffO5HnbzsaOPC9j+pkWSIPJ0Nn/usIFbNOh5T2ciM61MiJWnzUgvT0y0OnQZJHXvz8889YsmQJFi9eDG9v+xFhR9SoczVp0iRkZ2dj4MCBdpdb/+233zBw4EBcunQJEydOvK6FIyIiIqrPKlxdsW3w/TbT2u87gIjjybW+LDH/sz3M8UzbKJS7OXBZdaJaEhMTg+DgYOtDTWazGXPmzIGLiwseeeQRxXxFRQXGjBmDu+66Cw8++OB1z79Gnav+/fvjpZdewnfffYc2bdrg1VdfBQB4enrilltuwb59+zBr1iz06tXruheQiIiIqD77/u67kO9re2jSgDoYvYo+YHs4Ig8JpMZo8uTJSEpKwuzZsxEbq7wNLFiwAMnJyUhMTFRl/jW+ifDs2bPx9ddfY+DAgfDx8YFOp4PRaMQ999yDr776Ci+99JIqC0hERERUn5W5GfD1AwNtpt2c9AvCTqXW2jLoS8vQ4ojtRY6Sb5a7MAxRbR8WePLkSWRlZVkfapkxYwaWLFmCcePGYdq0aYr55ORkzJ49Gy+++CKioqJUWYYaXXQnLS0Nrq6u6NOnD/r06aPKghARERHdqL4beDfu+fAzeBb+dRXUAe9/jKUzptbK/CN+T4a+vML6b4tWg9Mdeb4VNR4JCQmYO3cuRo4ciaVLl0q9ZurUqfD390d8fDySk/86lLeiogJlZWVITk6Gh4eHQ4cu1mjkKjIy0nqPKyIiIqLGrtTdiO2D+9tM6/zDXgSfkbgmuQqiD9heyj69VQRKPdxrZd5EdS0hIQGzZs3CiBEjsHLlyirvwVuVM2fOIDMzE+3atUNMTIz1kZGRgZMnTyImJgZjx451aFlqNHLl6+uLgACJe9gQERERNRLf3H8v7t74OdyLL98PUCsE+n/wMVa+8LTT5x2z3/ZiFjzfihqL2bNnY9asWXj00UexevVqaLVVjx1lZWUhPz8f4eHhcHe//MPDwoULkZeXZ5f95z//CTc3NyxatMjhC27UqHPVrVs37N+/vyYvJSIiImqQSjw98E38PRj43sfWabfu/BGbhz+Ic2HqXhHtSrryCkQesr064clbeL4VydOIy4/amI+aEhMT8fLLLyM8PBx9+vTB+++/b/N8UFAQ+vbtCwCYNm0a3nnnHezcuRO9e/cGgGue3vTss8/C09MTDzzwgMPLVKPOVUJCAm6//XasXLkSY8aMqUmJRkEb3AxaV2O1GcuxVNXm5/aj8t3ts5+LkKoVUNZSKqe/UKKYEa46qVr+Hx9VDgFQvk+7A644Nr46FRHK90lw/emEYkaW4US2XNBVLxXzPV2uHGomORqdkiYVc0++oJgxX+Neec6kC2oqlTsf10Qx4/uF3DqrO3BSKqcmrbf9TRWvZinIl6oltHKHV8jQGuQuC+2ab1EOAXC5qLwPkqskpzyulVROY5b7BuHyP+V1QxMVLlVLnJbbNs3Z56RyMgpaeipmvI8VSNVS8++k1bvKzbO8TCrXbLfyPnTU1K2X5z1DD8tnLtBeunz+k9ZiwfSv30DOG7cBAN4Jv1OxljDIfT3z+/TyL/TN00/D1WT7Xs6nt4Pfp39+Rhw9ffVL7egk7wd0+hPlfQsAeBYo30hZzb+55zdyN27WBQZK5cqDld+nzDz15aVS86Oa2bdvH4DL14MYMWKE3fO9evWydq5qS406V1u3bkXv3r3xxBNP4K233kLXrl3RrFkzu+MbNRoNZsyYocqCEhEREdV3Fn83FIxsDd8lh63TPDeewsWpHVER7uWUeUak2/7Q80dgOEqMzpkXNVC1dYNfleexZs0arFmzRvVsampqjZepxiNXlfbv33/NQwTZuSIiIqLGJm98O3ivOgptyeVjLTQVAr5vHkLuwh5OmV9Emm3nKrU5Dwkkqis16lzt3LlT7eUgIiIiahAsgUYUPhYLn2VHrNO81ifj4pSOqs9LazEjPMP2tIAzYexckWNu1HOu6iPpztXmzZvRunVrtGrVCr169XLmMhERERHd0PKeuglea45Ba7p8ZpGmzHL5UEG3QarOp1l2KtzKbM895MgVUd2Rvs9VfHw81q9fbzPtww8/xODBg1VfKCIiIqIbmbmZOwofsb0AiveaY4g9/auq84k4a3tIYK5/MIo8fVWdBxHJk+5cCWE/jnfs2DFs2rRJ1QUiIiIiagjyJt4E4fLXxb40FQIPbvsPYlIPqDaPqztXKc3bqlabiBwn3bkiIiIiInnmME/kTWpvM83FYsbQrW8iOu3QddfXCAtaXHWlwDM8JJBqQtTio4Grd52rhIQEaDSaaz70etv7+iQlJWHQoEEICwuD0WhEdHQ0xo4di9On7e/pYDKZMHPmTERGRsJgMCA6Ohpz585FebnEPYCIiIiIHHTx+ZtR8Kjt4YF6czke/nIxItN/v67aTXPT4V5qe7/AFHauiOpUja4W6EyDBw9Gy5b2N7A9ePAgFixYgIEDB1qnbdu2Df3790d0dDQmTJiAgIAA/P7771i+fDk+/vhjHDp0CKGhodb80KFDsWnTJowaNQrdu3dHUlISZsyYgeTkZOnr3hMRERFJ02qQu6A7NOUWeK1Ptk7Wm8vxyBeLsG7Q80gLia1R6Yi0Izb/vugTiAJvyRvCE5FTONS5uvomwc7QoUMHdOjQwW76E088AQAYPXq0ddrixYuh0+mwZ88eBAT8tTNp164dxo4di40bN2Ly5MkAgC1btmDTpk2YMmUKXnvtNQDAmDFj4Ovri0WLFmHcuHHo0UPl+08Iy+VHNbRXjcRVRfYO8oDy36fplzqpSrq8S8ohAJbMLMWMVu8qVUtjdJfLeSjnzLm5UrUsRUVSOe1h5fbQSPwtAUBIjJRaCgqkasnSHkxWzFS/pv4ld4jcr6IBG48qhyRpvb2VQ1WcF1plrLhEOQTA9wv1lr8uWAryFTOaqHC5WqfTrndxrMpbN5fKue86rhyC3HpbcpvcF1chsXv0OnpBqhbKK6RiZomMULH91ea545hixtQlRqqWPv16l+Yv8p+bcjRH7Y+Gudq67O7V13ihG+4veBsdtvxsneZaUYZh2xZiyRsvIKX9X+1Unu4mtVwRH/xi8+8U7+aAxLJWRRQUSuUsJcU1ql/lPNtESeVk2l96nia5dUOfcVG5lrePYkZbJvcdiBoOhw4LfO211xAeHm59LF68GABspl35aNGihSoLeenSJaxfvx5hYWHo16+fdXpBQQHc3Nzg5+dnkw8JCQEAeHh4WKe9//77AGDtbFWq/Pe7776ryrISERERXU3otPhs3uP435232kx3Ky7FU5P/hfAjpxwsKBCRm2Iz6UyTyOtdTCK6Tg6NXBUUFKCgil/U09NV/LmpChs3bkRBQQEmTZoEne6vnxbvvvtu7N27FyNGjMBzzz2HgIAAHD58GFOnTkWbNm3w0EMPWbP79u1DaGgomje3/dW0efPmCAkJwb59+5z6HoiIiKhxEy46vD3rn9BWmNFp11+jTsZLJZj49Kt4Y8mLSI+NkKoVlJkJzzLboy9S/eVeS2Snti42wQta/MVisdTooYZVq1ZBo9Fg1KhRNtOnTZuG8ePH46OPPkKnTp2sI1tRUVHYu3cvvLy8rNnMzEyb86+uFBoaioyMjBovX3BwsM0jJkbuEAgiIiJqXCwuLlg9dyIO9exkM929sBgTJ72CkGS5w0BbHbG9GEaBmzcueDRRazGJqIbq3dUCr3b8+HHs3r0bd9xxByIjbYe7dTodQkND0adPH6xcuRKffPIJpk6dih07duChhx6yuQpgcXExDAZDlfNwc3NDcbF6xxATERERXYtZ74KV85/GkVttL9PumV+ESRNfQfDZs4o1Yq7qXKU2iQBq4dx4apg0tfho6Ord1QKvtmrVKgCXLz5xtccffxx79uzB77//DqPRCACIj49Hy5YtMX78eLzzzjvW17m7u8NkMlU5j9LSUri7y11MoSpZWbYXdSgoKICPj/JJjkRERNQ4VRhcsfxfUzD+2YWI/eWvjpLXxQJMmfUyFsyeg3MhVR9xAyHsRq5Sm8hdHIKInKtej1xVVFRg7dq1aNKkCeLj422eS0tLw3vvvYf+/ftbO1aVhgwZAgDYtWuXdVpISMg1D/3LyMi45iGDRERERM5Q7uaKpQumILmT7RUtffIuYmrCywj8o+or8jY5dw7+58/bTEttEuGsxaTGgDcRVk297lx9/vnnyM7OxvDhw+0O6avsKJnN9heyraiosPkvAMTFxSEjIwNnrxpqP3v2LDIzM9GlSxe1F5+IiIioWmVGN/z3tedwur3t+dp+F85jSsLLaHLunN1rrh61uuTqgRzPpk5dTiKSU687V5WHBF55b6tKsbGx0Ol0+Oyzz5CXl2fzXOUNgePi4qzTHn74YQDA66+/bpOt/PewYcPUWWgiIiIiB5g8jEhc/DxS29oe2tckNwdTEmbC76p7N9ofEhjB863o+nDkSjX19pyrzMxMbNu2DV27dkX79u3tnvf398fkyZPx2muv4eabb8bYsWPh7++PH3/8Ee+99x6io6NtztPq378/BgwYgEWLFiE/Px/du3dHUlISVq1aheHDh+O2226rzbdHREREZFXq6Y4lr7+ASRPmI/xEqnV64LlsTJk1EwtnzUW+vz+AqjpXvL8VUX1RbztXa9asgdlsrvJCFpUWLFiA2NhYrFy5EvPnz4fJZEJoaCjGjx+PhIQEeHt72+Q3btyIuXPn4t1338W6desQGhqK2bNn44UXXnDKe9BYLj+qY44Ikagjd0n7c3EeyiHJXwwCP3TwZobV0cr9mpbXK1wq57v3j+tZGhu6oCC5oFD+G5jP5UiV0gYrz1OcuyBVS5jLlUMAtMaaX7DlakHf5SqHAMDXVzEiyuWW31LF/fXqg9yhbaRyPskVyiEA+l9PXs/i2NBe4+qoV8qLkVsvfE3K+ykAsGRkKmZ0vyVL1Sq6s7VUzvObY4oZ4+7jUrVkiIjmyiEAllTlq70BgE5iOzFfdXRGfSKzPzNky12NV52btzhG07KFVK7M21UxY/pc7mCg0puv/UFcCjcsnJOAN2ZNgebIX58DQVlZ+PeCqRCfDwDKLdBmZ9u8Li2sLbQe1/4OYLl0SXG5LCVyfyetXrktZGly5Pbt9ieA2NNecfud6lgK8qVyMrThYcqhsnr7VdtGbV3JrzGMr9bbv/j06dMxffr0ajMajQZjx47F2LFjpWq6ublh7ty5mDt3rhqLSERERKSqS95eEJ/2BwZ9Ac3xi9bpmpN5wP1fQoyw/VGnRG9Eto/cDyBE5Hz1+pwrIiIiokYn0AjxaX+Ilra3ddEcuwjN9D0209ICoyC0/DpHVF9wayQiIiKqb5q5Q3w2ACLS9hQHzVVHFZ5p2rIWF4oaLF7QQjXsXBERERHVRyEeEJsGQIRf+3yiVHauiOoVdq6IiIiI6qswT4hN/SFC7C9YYXJxRZafxEUViJSIy6Oizn5w5IqIiIiI6lYLb4jNAyCa2V7hMy0wGhatro4Wioiqws4VERERUX0X5XP5HKzmngAA4abD923vquOFogaD51yppt5eip2IiIiIrtDKFyLpQYif/wBa+iLtlei6XiIiugo7V0REREQ3CncXoDfPsyKqr9i5ciLzuXMw692qD2VX/zQAiJgIqfk1+/qcYqY0uolULVma6HDFjOVUmlQt723HpHKmzjGKGf2veVK1yoK9lUMA9NmFUjkZliyJP7rKLCXFihmdr69ULXNOjtxMYyOVM8dT5GpJEG3lfsG90M5VKtdk41HFTMCHyhm1lce1ksoZMpTXWZ9TJVK1hJvcR4U2XPkLnyUtXaqW5zdy+4PCvq0VM17b5WrpmijvH4XkMS1ab7l9izkvTypX+zRSKan9mcy+wAHaiOaKGUvqWalapQEKn9F/cj+m/D6Fn9zfXGPQK2bGJfWTqhV86bhUTobW01MqZ4oNlsrpfz2pHMrNlaolpaxcKlYu8R0CkFt+mf2ZpbxUan7UcLBzRURERETUmNXW+VCN4JwrXtCCiIiIiIhIBRy5IiIiIiJqzDhypRqOXBEREREREamAI1dERERERI2YBrKXsbn++TR0HLkiIiIiIiJSATtXREREREREKuBhgUREREREjRkvaKEajlwRERERERGpgCNXzhQTDhjcq88cT1Wuc1IiA+DcA20UMwGfnJCqJfvDgjiVJplUptEr37UeAFzzTIoZ2eXXH8+QyllKihUzZbe2kqrl+pPc30CGRifXZnl3tVTM+Gw9KlUr8ym5u9uHJCrf3b7ojtZStTwzlO9wrzlySqpW0/NBUjmzRMZyU7RULZeTkuuZSfl9Gg6ekaylvJ3IMndUXn8AwPXsRdXmKdu2XtuPKWZ0vr5StcznzyuHJCIAUN5ZbjvRFwcoh46elpupquT2oroA5eU3H0+53oWxYUk9q5jRGhU+e/9k3J8qlTPLbE95eVK1Qj8JU8yc6+4qVUuW1uCmmLEUFUnVMpzKkcpZ2kQph1Rct2X2nwCg/1X5s0mWzPqvKytRbX7OpAGgqYVRJV7QgoiIiIiIiKSwc0VERERERKQCdq6IiIiIiIhUwHOuiIiIiIgaM14tUDUcuSIiIiIiIlIBR66IiIiIiBozjlyphiNXREREREREKuDIFRERERFRI6YRtXSfK45cERERERERkQyOXDmR7nwRdK7majPVP+sY9z8sihkR01yqli6nUCqX1yVQMeP7q9zd3EWB3Dwtp9IUM5rocKlaWT3dpXLNPjilmHH96YRULTVpmim3PwD4HbigHPLykqoVkih3d3utr69ipsJT8l7tx1PlchKEQa9aLd1R5XURACzmctXmaTGZpHK6gADFjDk3V6qW/kSmVM5cUiyVk5pn+nmpXE58G8WM3zHJNvP2VMxY0tKlahkOnpHKVcQq75O1baKkauHoaamYuVOMYkZ3QG47l12HZMiss7LztKi4LkqLjZDLZSgvf8CHcuuZVnK/bSlU/nzVNWkiVaukpVyuLj4TpUj+nYrC3BQz3ieLFDPCpREM1ZANjlwRERERERGpgJ0rIiIiIiIiFfCwQCIiIiKiRowXtFAPR66IiIiIiIhUwJErIiIiIqLGjDcRVg1HroiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSAc+5IiIiIiJqzIS4/KiN+TRw7Fw5kSgsgtBXVJvRhoUo1rGkZ0rNz+PgH4qZS52aSdUyHk+Vynl9fV4xU94+WqqW9rxyLVlmD1epXMBBs1ROlJcrZrQhwVK1LJlZyrUMBrlaGXLrhs7PT7lWsyZStcxRQXLzTL+omNGa6mAnK/G3BABT91jFTF6sRqpW0JpjUjk1mXNzFTManV6q1oU7W0jlmuy7oJgpjvSVquV+Qnn5AcD/06OKGZn9LADARSeXk2DqFCGVM2QXK2YsaenXuTS2dAdOqlpPNTq59jd3ilEuJfkeZfaNAGC+qLw/E5LLb2qjvD4ackulallS0qRyeYPaKGZ8NytvSwDgquJndV3QnS+SynlKfA+ySNSxlMv9LanhYOeKiIiIiKgR432u1MNzroiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXREREREREKuAFLYiIiIiIGjGN5fKjNubT0HHkioiIiIiISAUcuSIiIiIiaszEn4/amE8Dx5ErIiIiIiIiFXDkyolEeDMIg3v1mZOp6s2wvFwx4vFrulQpU1wrqZx+30nFjPbQKalasspviVHMmHx1UrV8Dsndaf5iv9aKGb//qXfXeo3RKBc0lUnFzBcvKmZEsL9ULX3KObl5FhQoZry/kmuz/HvbKGZ8thyVqmXJypbKGQ2uihlD0lmpWrK04WGKGUua3DYsNb8mvlI53y/k2lYY3BQzbvsuSNUym5X3Z7I0JSa5eZ5XXh/NHVtK1dLvOyGVkzn9QKPTS9USKraZLE1UuHJIq5GqZU4+I5XTl5QoZmRP65DZN8rSHJH7rHONiVDMWFLSpGppm4dK5Xw3y23DatIaq//+AwCWkmKpWpf+rvwZ7LHzmFStikBvqZwmN1cxowsMVM6UKa+v9YHmz0dtzKeh48gVERERERGRCjhyRURERETUmAlx+VEb82ngOHJFRERERESkAo5cERERERE1ZrxaoGo4ckVERERERKQCdq6IiIiIiIhUwM4VERERERGRCnjOFRERERFRI6YRlx+1MZ+GjiNXREREREREKuDIlROZDTqYDbpqMzq9XrGOKC+Xmp/snc5l6PedkMppI5orZv64zUOqVtBeubuYu+aZFDOG5DypWuaCAqmc97Yc5VpSleTu6G7OUZ4fAOiCmkrlhKlMOXTxklQti2Sb6fybKGZEYaFULb/DyjmLVCVA5+cnFyxUb3vS+vpK5Sxp6arNU4bQVb9/qqRrqrzOAoC4pNxmZTcp7zMAwO1snlTOclE5VxqlvC4CgP78ecWMa4by/AD5/YEMYZb7DJBVHtdKMSP7GaApl3inGo1ULekftC2yW3vtEm2ipHIWnXJ7yP7ybTmbIZlUj0Yrt9+wlCp/Vsvy2HlMMSPzfQQALEdPS+V0Evttmc9qc3mp1Pyo4WDnioiIiIioMeOl2FXDwwKJiIiIiIhUwJErIiIiIqJGTPPnozbm09Bx5IqIiIiIiEgFHLkiIiIiImrMeM6VajhyRUREREREpAKOXBERERERNWYcuVINR66IiIiIiIhUwJErIiIiIqLGTIjLj9qYTwPHzpUTuRSWwcWkcCdzDw/FOiIvT50FAlB4V2upnFeK3B3FK9yU79QetLdEqpZIPiOVyxnaRjET+OFZqVpq0kSHS+XMp9KUa+n1UrVEXr5UDv5+ihFL1h9SpSwdWkrlNMXlipmK5srLBQC635IVM6busVK1DEnHpXIanfLfQBsp9zeHSbktAAAqbusyZP/mssq7xChm9L+clKoljO5yuXLlttXvOyFVS2a7s+RLbnOStL6+iplLNwVJ1TLullu3ZdpDFxgoVct8NkMqJ0N6njk5ipnyuFZStWTXDRmao6elchWdlbcT2cOKtBHNpXKWVPU+E4t7yn0GyPBIltuepPZV5WapWlrJfYu5lvfH1HCwc0VERERE1Ng1/EGlWsFzroiIiIiIiFTAzhUREREREZEKeFggEREREVEjphGXH7Uxn4aOI1dEREREREQq4MgVEREREVGjxrsIq4UjV0RERERERCpg54qIiIiIqBGrPOeqNh5qOnHiBGbOnIlu3bohMDAQXl5e6NSpE+bNm4dLly4pvv7ixYt44403cNddd6F58+YwGo2IjY3FuHHjcPZsze4Px84VERERERHdcFavXo3FixcjOjoaM2fOxIIFCxAbG4uXXnoJPXr0QElJSbWv/+mnnzB16lRoNBpMmDABS5Yswb333ot3330X7du3x5EjRxxeJp5z5UwaAFpNtZFLHYIkCslkgOIg5b5y02/OSdUSbq5SOZzMUq4VGyFV6tLfW0vlAj88qpjJG9RGqpbv0eo3OquTqYoR7UXlX0gAIPO5CMVM0ALl+QEOHLksc3d7ScWBcrsNz2+SFTM6yXmKm6IVM4ak45LV5Ghc9YoZS0qaVC2th4dUThcYqJgpjvaXqmXYq257yND/clK1WpaSYqlcxc0xihlD2gWpWubz5xUzJbfHStXSVkjFpNZb9z98pGqp+YOwOSdHKqc1uitmZP+WwlQmlZOh33dCtVpqM5wvVcyYOiuv1wCg/1Vum9N6eytmLAUFUrWMP0juW2IiFCOaCrNcLQmWjEzVajVKN+gpVw888ACmTZsGH5+/9pNPPvkkYmJiMG/ePKxatQoTJky45utbt26N48ePIzra9ntG//790bdvX8ycORMfffSRQ8vEkSsiIiIiIrrhdOnSxaZjVWno0KEAgMOHD1f7+oiICLuOFQD06dMH/v7+iq+vCjtXRERERESNmqjFh/Olp6cDAIKC5I7+ulp+fj4KCwtr9HoeFkhERERERLUmJiYGWu1fYzxZWcqnmcgym82YM2cOXFxc8Mgjj9Soxrx581BeXo4RI0Y4/Fp2roiIiIiIGjPLn4/amI+TTZ48GUlJSZg/fz5iY+XOk73SRx99hIULF6Jfv34YOXKkw69n54qIiIiIiGrNyZMn4S1xoRVHzZgxA0uWLMG4ceMwbdo0h1+/ZcsWDBs2DJ07d8aHH34Ijab6C9NVhZ0rIiIiIqJGzBn3oLrWfJwlISEBc+fOxciRI7F06VKHX79t2zYMHjwY7dq1w9dff13jzh8vaEFERERERDeshIQEzJo1CyNGjMDKlSsdHnHatm0b7r//frRu3Ro7duyAn59fjZel3nWuEhISoNForvnQ6+3vPfPll1+iT58+8PPzg7u7O1q1alXlNe1NJhNmzpyJyMhIGAwGREdHY+7cuSgvL6+Nt0ZERERERCqaPXs2Zs2ahUcffRSrV6+2uVDGlbKysnDs2DEUF9vee+/rr79GfHw8YmNj8c0338DfX+5+ktdS7w4LHDx4MFq2bGk3/eDBg1iwYAEGDhxoM33WrFlISEjA3XffjVmzZsHd3R1paWk4ePCgXY2hQ4di06ZNGDVqFLp3746kpCTMmDEDycnJWLNmjbPeEhERERERqSwxMREvv/wywsPD0adPH7z//vs2zwcFBaFv374AgGnTpuGdd97Bzp070bt3bwDAL7/8gvvuuw9CCIwcORJbt261m8fw4cMdWqZ617nq0KEDOnToYDf9iSeeAACMHj3aOm3Hjh1ISEjA7NmzMWPGjGrrbtmyBZs2bcKUKVPw2muvAQDGjBkDX19fLFq0COPGjUOPHj1UfCeAJS0DFr1btRljqnIdbViI1PyM3yvfnVz2XuiZk+TuDt/8/QDFjMUsd4Ct5/enpHIaQ/VtCgAmf7l5lgQbpHKeOb6KGfOF81K1ghbI5WqbrkkTqZznN8ekctqI5ooZzaVSqVrilPIlWk1d5NZZt7P5Ujlz9jnFjNboLlXLcumSVA4SOeNVv7hdi8bXVzFjzsuTqqULDJTKCVf7IwuuZsnMlqoFIbe3cj2WoZgxl8i1mRTJ8wUMScfVm2XyGamc9PqoYnvI1Mob2Eaqlu/nR6VyRXe2VszI7qfqgiX1rGLGUC73uY9gyXvwGJS3TRQUyNWSdTJVMSL7nURm3bZENJMrdvS05FyVFdytvC6aSooB++/rpJJ9+/YBANLS0qq8bHqvXr2snauqHD58GKWll7+LPPPMM1VmHO1c1bvDAqty6dIlrF+/HmFhYejXr591+vz589G0aVPr1UCKiopgsVR9jcfKnuzkyZNtplf++91331V/wYmIiIiI6jshau+hojVr1kAIcc3Hd999Z5etHLUCgMcff7za14saLO8N0bnauHEjCgoK8Pjjj0On0wG43OH6/vvvceutt2LVqlUIDQ2Fl5cXPD098dBDDyE72/bX0X379iE0NBTNm9v+mt68eXOEhIRYe75EREREREQ1Ue8OC6zKqlWroNFoMGrUKOu05ORkmM1m7N27F19//TVeeOEFdOzYET/88APeeOMNHDx4EL/88gvc3S8PJWdmZqJt27ZV1g8NDUV6enqNly84ONjm39caPSMiIiIiqm8awqXY64t637k6fvw4du/ejTvvvBORkZHW6YWFhQCAnJwcrFixAmPGjAEAxMfHw9vbG7NmzcI777yD8ePHAwCKi4thMFR9fo2bm5vdlUOIiIiIiIgcUe8PC1y1ahUAWDtPlYxGIwBAq9Xi0UcftXmu8oS2K4+zdHd3h8lkqnIepaWl1hGumsjKyrJ5nDx5ssa1iIiIiIhql6jFR8NWrztXFRUVWLt2LZo0aYL4+Hib58LCwgAAfn5+diNSlYfpXbx40TotJCQEGRlVX1UqIyMDoaGhai46ERERERE1MvW6c/X5558jOzsbw4cPt+tABQUFITw8HBcuXLA7pK/y/KmmTZtap8XFxSEjIwNnz9peAvXs2bPIzMxEly5dnPQuiIiIiIjqL42l9h4NXb3uXFUeEnjlva2u9Oijj0IIgWXLltlMf+uttwAA9957r3Xaww8/DAB4/fXXbbKV/x42bJgai0xERERERI1Uvb2gRWZmJrZt24auXbuiffv2VWaef/55fPzxx3j22Wdx4sQJdOzYEbt378Z7772HO+64A0OHDrVm+/fvjwEDBmDRokXIz89H9+7dkZSUhFWrVmH48OG47bbbauutERERERFRA1RvO1dr1qyB2Wy2u5DFlby9vfHDDz9gxowZ2LRpE1atWoWwsDBMnz4dM2bMsN4Tq9LGjRsxd+5cvPvuu1i3bh1CQ0Mxe/ZsvPDCC85+O9dk6dBSOXQwWbX5ydzZHgAMWRqpnLjGRUJsMsm5UrVkl83nN+V6QWuOSdUquS1WKlfYMUgx43YxQKqWS06hYsaSla2YAQCtt7dU7lw/5XMKg3adl6plaR8tlcOhU4oRTXS4VClN0SXFjP4XuQvJmKVScmTWf7VduiVMKmf84bhq8yyO9pfKGfaqN09ZlhLlK71qI+TazJKqfEsO426596hrGiiVE4XK67bMewQAuOiUM5KkPpsAaCU+n3w/P3q9i2PD8xvl/buay18XLBmZtT5Prd5VKqfx8pLKmS/IfKbIfdeQ2gaOnpaqJUsX1FQx4/2V8rpoKi9VY3HoBlJvO1fTp0/H9OnTFXMBAQF46623rIcCVsfNzQ1z587F3Llz1VhEIiIiIqIbX21dyK/hXyywfp9zRUREREREdKNg54qIiIiIiEgF9fawQCIiIiIiqgVCXH7UxnwaOI5cERERERERqYAjV0REREREjRlHrlTDkSsiIiIiIiIVcOSKiIiIiKgx46XYVcORKyIiIiIiIhVw5KqOmXx1ihmjZC2tt49iRubO9gAg+raWylkKCxUzRXfK1fLekyaVM8vcqV2ScfdxqVzRHcrvwSWnSKqWyL0glZNRER4olQv8OFkxYzaXS9XSZp+Tyl24v41ixv+zo1K1ZH7o0gXKtYUoKZHKWYqU/57CYpaqpSbjD3LrrAxTj1ipnGGP3Dwrbo5RzLjsPylVq6iP3H7Dc4fyPs2Smi5Vq+Bu5Xl6fyW3DzWfy5HKqUlmf3yZRjGhO5wiVakufoTW+foqhw4q7/McUXZrK8WM608nVJ1nbbNEhcoFj8utG3Lq7zCGWfKzrqHQiMuP2phPQ8eRKyIiIiIiIhVw5IqIiIiIqFHjSVdq4cgVERERERGRCjhyRURERETUmPE+V6rhyBUREREREZEK2LkiIiIiIiJSAQ8LJCIiIiJqzHg9C9Vw5IqIiIiIiEgFHLkiIiIiImrENAA0tXCxCeVbmN/42Llyorz+sXA1uleb8dt0VLX5lUcGKma05QFStTwzyqVyeQPaKGaa/JQrVasiMlgqpytRXrb8mOrbvZJLqdyOxCOrTDFjyfpDqpYMbViIXO5khlTOEhOmHDqWIlVLlv9nyut27lDl9QcAAj5UrmXOyZGqJcvSoaViRnswWaqWqXusVM544KxixlJSLFVL6+GhmDHsOS5VS6PVSeUM6XnKoQDJfdCOY1I5GdoIifUfgPdX6s2zflPe72k8ldcfABAFBde7MH+JiZCKmU+mKma0BoNULYvJJJVz/emEckgjt53k9W+lmPH9QnZdlPsM0wUFKWbMx9X9DNB6eytmLHWw/kBi/SG6HuxcERERERE1ZjznSjU854qIiIiIiEgFHLkiIiIiImrMeBNh1XDkioiIiIiISAUcuSIiIiIiatR40pVaOHJFRERERESkAo5cERERERE1ZpY/H7UxnwaOI1dEREREREQqYOeKiIiIiIhIBTws0Il8UspgMFx/E1tuipbK6X5LVszkDWojVct381GpnP9Fibu+5+RI1dJI5vLuaa2Y8d4qd3f78i4xUjnN0dNSORnmThLzPHBSqpYmKlxupsdS5HIq0oaGKGaafia5XAaDYuRSXIRUKePu41I5l1Tl9VH26AZDktw8i3rFKmbc/zBJ1bIcT5XKySi9taVUTuZ95veX2wf5fJkrlZNhSU2Xymn0esVMaZcoqVrGtEKpnCUjUyonQ6PVSeWExayYMYcGSNW61EV5O/f8Vm5/jJOpcjkZEvsMAIBJbnuSIpTbFQB8v5D7fJWhDW4mlTNn/aHaPGVZCgpqd4Zqrj8AEBNR+/OkBoEjV0RERERERCrgyBURERERUWPGmwirhiNXREREREREKuDIFRERERFRY8aRK9Vw5IqIiIiIiEgFHLkiIiIiImrMxJ+P2phPA8eRKyIiIiIiIhVw5IqIiIiIqDHjOVeq4cgVERERERGRCjhy5USaIynQ6N2uu4728CkVluZPav9goNUpR4zuUqUsJcVSOe+txxQzGpk7qwMQOo1UTobWIPe31p4+p5ip6NBSrtbBZKmcmkpuj5XKGX84rpjR6PRStURUqPL8divPzxGWgnxV68lw3yXzHuTWWYvEOiS7/hiS1Gtbvx8y5IKS2xMsFsVISVykVClj+iXFjHRb6F2lYjpfX8WMpVB5uQBAmMulcjI0R09L5TyPqjZLaEOC5YLFJYoRS17e9S1MDaj5WaeR+GwFAJGdI5WTqScsZqlasu8TOuXf7y1FRXK1VKQNDpLKWU6mOndB6huOXKmGI1dEREREREQq4MgVEREREVFjxpEr1XDkioiIiIiISAUcuSIiIiIiasw4cqUajlwRERERERGpgJ0rIiIiIiIiFfCwQCIiIiKiRk1A/fv1XGs+DRtHroiIiIiIiFTAkSsiIiIiosbM8uejNubTwLFz1cj47zgjlZNd9y0ZmTVfmKsU9WktlfPccUwxIyTvrK5vGy2Vs3RoqZjRni+WqlXhb1SudTBZqpbW4CaVs5hKpXIyjD8cl8ppQ0OUQxa5NU1bUKKYMUtVArQhwVI5S2aWci2DQa6WySSV0/r6KmaKOgZJ1fJMuaSYkd3OtR4eckGL8uEeloICqVJ5g9pI5Xw3H1XMGPbIrbMy7VFyW6xULeNuuXkir0wxog0PkyqlyTonN0+t8kErau4zZMlsc/WZpUTuMwAanWJEWGT3aLWvIkZi3w65zzGtt49ULSHRtmUdIqRq6X89KZWToTW6K2dceJBYY8POFRERERFRo8ZzrtTC7jQREREREZEKOHJFRERERNSY8SbCquHIFRERERERkQo4ckVERERE1JjxlCvVcOSKiIiIiIhIBRy5IiIiIiJqzITl8qM25tPAceSKiIiIiIhIBexcERERERERqYCHBTpRabcYCLfq797t9uNxxToanV5qfsJcrhwK9JeqpYVczpKWLpWT4X20QG6eEhnZu76X+MptAuXuGsWMwcVDqpb+f+rdHV6EN5PKmQIMihlj1iWpWtndvaRyzb7JVcxYfOTarNTfVTHjmp0tVSv9PrnlD3krSzFjMZmkasmy5OUpZjzTvKVqneum/D4D0qRKoaBbc6mc5zfH5ApK8N18VCqnC2qqmDFnn5OqVX5LjGLGuFt5n626LLnlh5vydg4AlsJCxUx5XCupWvp9J6RyMnIeaiOVC1wvt26oSeulvD1p3I1StWTXx/pKezBZtVqWgnzVarkeSJXKaQMDpXLmnBzFjKWkWDlTXio1vzrHS7GrhiNXREREREREKuDIFRERERFRY9fwB5VqBUeuiIiIiIiIVMCRKyIiIiKixoznXKmGI1dEREREREQq4MgVEREREVFjxpEr1XDkioiIiIiISAUcuSIiIiIiasw4cqUajlwRERERERGpgCNXTuSWY4LBoKs2I3PXd0thodwM20Qp1zp6Wq6WpMK7WitmfA5dlKplyciUyhX0U56n97ZjUrXczvlK5Qyn0hUzol2EVK2sydGKmeDXT0nVEidTpXKGk8oZCzRStQJT5X51ynxM+e8UtFbu7+QqlZIT8tYJqZyuaaBiRngYpWpZUtLk5hmoPE+zZK2AFKmYFJ9D56VyZolMeVwrqVr6fXJ/J3P2OcWM1tNTbp7/k9hQVKYNbqaYsWT9IVXrwkDlfQsABO7OVQ5Jtr+Q+NzRSH7uBG06I5WzSKVUplHeP4riklpYkJoxdY9VzBiSjtfCktSMmtuJOSdHKmfqIdFmF8slChUDW6VmWbcEamnkyvmzqGscuSIiIiIiIlIBR66IiIiIiBoznnOlGo5cERERERERqYCdKyIiIiIiIhXwsEAiIiIiosaMhwWqhiNXREREREREKuDIFRERERFRIyaEgKiFUaXamEdd48gVERERERGRCjhyRURERETUmPGcK9Wwc+VMp9IAvVu1ETXvNG/y1StmDJK1tGEhUjmvr49JhLwk5yrHe5vEPNtESdXSJKdL5UpvbamYMf52VqpW8OFixYzM3egBQFMmcXd4ANAqD1LL3rVelmeacqb8lhipWvr/nVTMaL29pWpZCgqkcuZzEu0REyFVSyOZKzcq75Jz7m0iVSvoHYntRJLF210ueE45ot934voWpgZEcYlqtbThYVK5/FhPqZzXdvX+TrpSuZzUui07z7RsxYzs55ylRHnfCMj9DSxpcvt2XWCgVE7t/aNaCu5uLZXz/kq99awuWLL+qPV5GvYcV8yUd1H+DCvX6dRYHLqBsHNFRERERNSYceRKNTznioiIiIiISAUcuSIiIiIiasw4cqUajlwRERERERGpgCNXRERERESNmLAICEst3OeqFuZR1zhyRUREREREpAKOXBERERERNWriz0dtzKdh48gVERERERGRCupd5yohIQEajeaaD73+2jfKfeutt6y53Nxcu+ctFgsWL16M1q1bw83NDc2bN8fUqVNx6dIlZ74lIiIiIiJS2YkTJzBz5kx069YNgYGB8PLyQqdOnTBv3jyHvt9v2bIFPXr0gIeHB/z9/TFkyBCkpKTUaJnq3WGBgwcPRsuWLe2mHzx4EAsWLMDAgQOrfF1mZiZeeOEFeHp6oqioqMrMM888gzfffBPx8fGYOnUqjh49ijfffBP79+/Hjh07oNWq29fUNguC1tVYbUbNu44bsyRWogjlO9sDgCZfvQ6npbBQKifaREnlNEdPK4dkMoB0e7iUmBUzlpJiuXlKkF0vtN4+UjlTbJBiRp+TI1WrtGesVM7ju2NSObVYCgpqdX4AUBJskMoZvz8uldPGRChmQrbmS9VSXmPlieQzUjltRHPFjCX1rFQtnX8TqZyQ2L9YysukasmwpKVL5bzS5Orpmii/T/P581K1fLYclZupmnwl9kEq/4Ap+zeQYfb3kAtK7h9laA3K+w2LySRVy/sr9fazWqO7VE7Nz7q6INpGS+U0R04pZvS/nFTMWMpLpeZX5yzi8qM25qOi1atXIzExEYMGDcKwYcOg1+uxc+dOvPTSS9iwYQP27t0Lo7H67+KffPIJHnjgAXTs2BELFixAfn4+Xn/9dfTs2RO//PILQkJCHFqmete56tChAzp06GA3/YknngAAjB49usrXPfXUU4iOjka7du3w7rvv2j3/+++/4z//+Q8GDx6Mjz/+2Do9MjISkyZNwvr16/HII4+o9C6IiIiIiMiZHnjgAUybNg0+Pn/90PPkk08iJiYG8+bNw6pVqzBhwoRrvr68vBwTJ05E8+bN8cMPP8DT0xMAcM8996Bz585ISEjA8uXLHVqmendYYFUuXbqE9evXIywsDP369bN7/tNPP8XmzZuxdOlS6HS6Kmt88MEHEEJg8uTJNtPHjh0Ld3f3KjtkREREREQNn6jFh3q6dOli07GqNHToUADA4cOHq339rl27kJmZiTFjxlg7VgDQqVMn9O7dGx9++CHKy8sdWqZ6N3JVlY0bN6KgoACTJk2y6zwVFBRgwoQJeOKJJ9C1a1f897//rbLGvn37oNVq0bVrV5vpbm5u6NSpE/bt21fj5QsODrb5t9l8+YAcU1mJ4mvVHC7WmpTnJ0sjsewAYFZx+YVJ7lADTR20WbnJopjR1cHQv7bMVSpnKlVuW9l1UaYWoO7fqb6SbQutbFtIbAO6Otg2ZWklll92PZN9n0KinpqHBapN5n3Wxd9SlraWP+dUJ/m5AzU/d7TKXy4t5XKHBapJ6yL3e3u9/ntKqO3vGqY//5ZC1O+r5Jkqamedq5xPTEyMzek4WVlZqs4nPf3y4cNBQdWfFlH5/b979+52z3Xr1g3ffvstTpw4gXbt2knP+4boXK1atQoajQajRo2ye+7//u//YLFY8Morr1RbIzMzEwEBATBUcaxzaGgo9uzZg7KyMri6yn1ZrU7lBvT6e1Ovu1ajsrWuF4Ck8O/0F7YF0Y2N23DjU0d/88LCwipHWOqaq6srmjVrhjd3vFpr89RqtdBoNE6rbzabMWfOHLi4uCie8pOZmQngcl/gapXTMjIyGlbn6vjx49i9ezfuvPNOREZG2jz3448/YtmyZXjvvfcUV9ji4uIqO1bA5dGrykxNOldX97YtFgsyMzPh5eUlvfLExMQAAE6eVD45ktheNcE2cwzbyzFsL8exzRzD9nIM28txzmgzIQQKCwsdvihCbXFzc0NKSgrKympvhN/V1dX63dsZJk+ejKSkJMyfPx+xsdVfhKu4+PJIZlV9hCv7B46o952rVatWAQDGjBljM72srAzjxo1Dnz598PDDDyvWcXd3x7lz56p8rrS01JpRg1arRViY3FXornwNAHh7e6uyDA0d28txbDPHsL0cw/ZyHNvMMWwvx7C9HOesNquPI1ZXcnNzc2pnpzbNmDEDS5Yswbhx4zBt2jTFfOV3f1MVV+isaf+gXl/QoqKiAmvXrkWTJk0QHx9v81xiYiKOHTuGKVOmIDk52foo/POyvCkpKTh9+q/LcYeEhCA3N7fKxsvIyEBAQIAqhwQSEREREVHtSkhIwNy5czFy5EgsXbpU6jWVI4oZGRl2z1VOq+qQwerU687V559/juzsbAwfPtxuuO7MmTOwWCy45557EBMTY3188sknAICuXbvaXNI9Li4OFosFP//8s02d0tJSHDhwAF26dHH+GyIiIiIiIlUlJCRg1qxZGDFiBFauXCl9Wk5cXBwAICkpye65vXv3wtvbG61atXJoWTSiHl++ZMCAAfjyyy9x8OBBtG/f3ua53377rcpjYhMTE/Hdd99h9erV8PPzw/333w8AOHToEDp27Ij4+Hib+1z95z//waRJk7Bu3ToMHz7cqe+HiIiIiIjUM3v2bLz88st49NFHsWbNGpurEF4pKysL+fn5CA8Ptx7qV15ejhYtWkCv1+P333+3Xo79t99+wy233IKRI0di5cqVDi1Pve1cZWZmIjw8HJ07d8ZPP/0k/brHH38c77zzDnJychAQEGDz3MSJE7FkyRLEx8fj3nvvxdGjR/Hmm2+iZ8+e+Pbbb6/5xyAiIiIiovolMTEREyZMQHh4OObMmWP3XT4oKAh9+/YF8FcfYefOnejdu7c1s3HjRgwdOhQdO3bE2LFjUVBQgMWLF0Oj0eDXX391+LDAentBizVr1sBsNttdyOJ6vP7664iIiMDy5cvx5ZdfIiAgABMnTsTs2bPZsSIiIiIiuoFU3qcqLS0NI0aMsHu+V69e1s7VtQwZMgRGoxFz587Fs88+C4PBgDvvvBP/+te/HO5YAfV45IqIiIiIiOhGwuEaIiIiIiIiFbBzRUREREREpAJ2roiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXREREREREKmDnioiIiIiISAXsXBEREREREamAnSsiIiIiIiIVsHNFRERERESkAnauJBQVFWH+/Plo3749vLy8EBAQgB49emDNmjUQQtjl161bh549e8Lb2xuenp646aabMGfOHJvMd999B41GU+VjwIABVS7Hli1b0KNHD3h4eMDf3x9DhgxBSkpKldnjx4/j/vvvh5+fHzw8PHD77bfj22+/vf7GkCDTXqmpqdd8/5WP9957z6auyWTCzJkzERkZCYPBgOjoaMydOxfl5eVVLsfatWtx8803w2g0IigoCGPGjEFOTk6V2Z9++gl9+vSBl5cXvL290a9fPxw4cEDVdqmOM9qsuvxNN91U5XI40g6ZmZl47LHHEBgYCKPRiC5dumDjxo2qt01VHNkmt27dijvvvBPNmjWDh4cHYmNj8eyzzyI7O9uubn5+PiZOnIjQ0FC4ubmhXbt2eOutt6rczi0WCxYvXozWrVvDzc0NzZs3x9SpU3Hp0qUql9mR7VdtzmivhrwPA+TbTAiBpUuXWvc1vr6+6NevH/bu3Vtl3Ya6H3NGezXkfVh2djaefPJJNG/eHK6urggPD8fTTz+NvLw8u6wj20JD3Yc5o70a+j6M6pCgapnNZnHbbbcJrVYrRo4cKZYtWyYWL14sunbtKgCI559/3iY/cuRIodVqxZAhQ8R///tfsXTpUvF///d/YvTo0Ta5nTt3CgBi3LhxYt26dTaPnTt32i3Hxx9/LDQajejUqZNITEwU8+fPF02bNhXBwcEiIyPDJpucnCz8/f1F06ZNxfz580ViYqLo1KmTcHFxEdu3b1e9ja4k215FRUV277vy4ePjI1xdXUVOTo5N7fvuu08AEKNGjRIrVqwQo0aNEgDEiBEj7JZj0aJFAoDo1auXWLZsmZgxY4bw8PAQbdu2FUVFRTbZpKQkYTAYRFRUlFi0aJFYtGiRiIqKEp6enuLgwYNOa6tKzmqzlJQUAUDEx8fb5T///HO75XCkHc6fPy8iIyOFh4eHmDFjhli2bJno1auXACBWr15dL9pLCCGWL18uAIjOnTuLRYsWiWXLlokxY8YInU4nIiMjbdYFk8kk4uLihIuLi3jmmWfE8uXLRXx8vAAgXn75ZbvlmDRpkrV9ly9fLp555hnh4uIi/v73vwuz2WyTdWT7VZuz2quh7sOEcKzNnnzySQFA9O7dW7z55pvi1VdfFVFRUcLV1bXKdmiI+zFntVdD3YdlZ2eLFi1aCL1eLyZMmCCWLl0qJkyYIPR6vejUqZO4dOmSNevIttBQ92HOaq+GvA+jusXOlYI9e/YIAGLy5Mk2000mk4iMjBQ+Pj7WaStXrhQAxNq1axXrVm7Ub7/9tmK2rKxMhISEiPDwcFFYWGidvn//fqHVasXYsWNt8kOGDBFarVbs37/fOq2wsFCEh4eLVq1aCYvFojjPmnKkvap7/QMPPGAz/csvvxQAxJQpU2ymT5kyRQAQP/74o3VaTk6OcHd3F3FxcaKiosI6ffPmzQKAmDdvnk2NuLg44eXlJdLT063T0tPThZeXl+jbt6/U+74ezmqzyi8mVX2oVsWRdnjuuecEALF582brtIqKChEXFyf8/f1t1lO1OdJerVq1EsHBwaKkpMQm++KLLwoA4tNPP7VOS0xMFADEm2++aZMdPHiw0Ov1IjU11Trt8OHDQqPRiMGDB9tk33zzTQFAvPfee9Zpjm6/anNWezXUfZgQ8m22f/9+AUD069fPZpkuXrwogoKCRExMjM2X1Ia6H3NWezXUfdjTTz8tAIj333/fZvr7778vAIg5c+ZYpzmyLTTUfZiz2qsh78OobrFzpWDbtm0CgPj3v/9t91xcXJwICQkRQghhsVhEdHS0uOWWW6zPFxQUXHMDunKjLioqsvsyc6Xt27cLAGL27Nl2z91xxx3C29tblJWVCSEuj24YDAZxxx132GVnz54tAIiffvqp+jd9HWTb61oqf8Xdtm2bzfRhw4YJACItLc1melpamgAgxo8fb522YsWKa3Zyo6KiRJs2baz/PnnypPVX5KqWRaPRiKysrGqX+Xo5q82u/GJSUlJi8+ve1Rxth9DQUBEdHW2XXbt2rQAgPvzww2qX+Xo40l7NmjUTbdu2tctVfgn5+uuvrdN69uwp3N3d7bbF77//XgAQ//rXv6zTKjsb33//vU22pKREuLu7i3vuucc6zZHt1xmc1V4NdR8mhHybVY4sffDBB3a5cePG2a0jDXU/5qz2aqj7sA4dOgij0Wj3/cBsNgs3NzcRFRUlhHB8W2io+zBntVdD3odR3eI5Vwq6du0KX19f/Pvf/8bGjRuRlpaGY8eOYdq0afj111+RkJAA4PKxtadOnUKPHj0wZ84cNGnSBN7e3vD19cWTTz6JoqKiKus//fTT8PT0hNFoRKtWrfDGG2/YHRu9b98+AED37t3tXt+tWzcUFBTgxIkTAICDBw/CZDJdM3tlPWeQba+qFBUVYcOGDWjRogX69u1r89y+ffsQGhqK5s2b20xv3rw5QkJCbN6TUnsdO3bM+vdQygoh8Ouvv8q9+RpyVptVeu211+Du7g4PDw80b94cM2fOhMlkssk40g5ZWVnIyMiwrk9XZ6+s5wyOtNfdd9+NI0eOYOrUqTh69CjOnj2LTz75BHPmzEGvXr1wxx13ALh87sH//vc/3HzzzXBzc7Obn0ajsVvHtFotunbtapN1c3NDp06dHFofr9x+ncEZ7XWlhrYPA+TbrHI7cnd3t6tROe3Kc4ka6n7MWe1VqaHtw0wmE9zc3KDRaGyma7VaGI1GnD59Grm5uQ5tCw15H+aM9rpSQ9yHUd1yqesFqO/8/PywefNmjBkzBg8++KB1upeXFz7++GPcf//9AC53rgDgww8/RFlZGV566SVERkbiiy++wLJly3D8+HF8++231p2DXq/HoEGDcO+99yIkJASZmZlYtWoVJk+ejAMHDuDtt9+2ziszMxMAEBoaard8ldMyMjLQrl076ayzyLZXVT788EMUFRXh2WefhVZr2+/PzMxE27Ztq3xdaGgo0tPTbbKV06vKCiGQmZmJVq1a1Xl7Ac5rM61WizvuuAP3338/WrRogZycHGzYsAFz5sxBUlIStm3bBp1OB0B+HXM06wyOtNcbb7yB4uJivPHGG1i0aJF1+siRI7Fs2TLr+7948SJKSkqqfE8GgwEBAQE27ykzMxMBAQEwGAx2+dDQUOzZswdlZWVwdXV1aPt1Bme0F9Bw92GAfJtV/s2+/fZbDBo0yJoTQmDXrl0AgLNnz1qnN9T9mLPaq6Huw9q1a4fjx4/jwIED6NSpk3X6gQMHcPHiRQBAWlqaQ8vZkPdhzmgvoGHvw6husXMlofKKf4MGDUKPHj1w4cIFJCYm4pFHHsGmTZvQt29fFBYWAgBycnKwfft29OnTBwDwj3/8A0IIvPPOO9i2bRvuueceAEDPnj2xadMmm/mMHTsW9957L9asWYMxY8agZ8+eAIDi4mIAqHInWPkLVWXGkayzyLRXVVauXAmtVouRI0faPVdcXFzlewIuv68r39ON1l6Ac9osPDwc33zzjc200aNHY9y4cVixYgXWr1+PYcOGAbjx2ky2vfR6PcLDwxEfH4+BAwfC3d0dX331FVavXg2dTocVK1YovqfK93X1OlZdtjLj6uraINsLaNj7MECuze655x60bdsW//3vfxESEoLBgwejuLgYixYtwuHDh+2WtSHvx5zRXg11HzZ58mR89tlnePDBB/H666/jpptuwu+//47JkydDr9ejvLwcxcXFqr2nyvyNug9zRnsBDX8fRnWHhwUqOHToEHr06IG+fftiwYIFiI+Px+jRo7F79240a9YMY8eOhdlshtFoBHD5V4nKjlWlESNGALh82c/qaLVaTJs2DQDw5ZdfWqdXHi5x9WEQAFBaWmqTcSTrDLLtdbUjR45g79696Nu3L8LDw+2ed3d3r/I9AZff15Xv6UZqL8B5bXYtL774IoCGv45ZLBb069cPe/bswYYNG/DYY4/hgQcewIoVK/Dcc89h5cqV2LFjh+J7qnxfV69j1WWvrNkQ2+taGsI+DJBvMxcXF2zduhU9e/bE//3f/yEmJgYdO3bE/v378eqrrwIAvL29rXUb6n7MWe11LTf6Puz222/H+vXrUVhYiP79+6NFixYYOHAg/v73v1svAe7t7a3ae6rM36j7MGe017U0lH0Y1S12rhQsXrwYpaWlGDJkiM10d3d39O/fH2fOnEFqairCwsIAAM2aNbOrERwcDADW4evqREREAAByc3Ot00JCQgBUPYxcOa1yqNmRrDPIttfVVq1aBQAYM2ZMlXVDQkKuOYyekZFh856U2kCj0Vgzdd1egPPa7FqaN28OnU7X4Nex3bt344cffsA//vEPu2P1K19beSiSn58fjEZjle/JZDIhNzfXbh3Lzc2t8sMzIyMDAQEBcHV1tWYrp1eVBW689qrOjb4PAxzbJsPDw7Fz506cOXMGu3btwuHDh/Hbb79Zf6Fu3bq19fUNdT/mrPa6lht9HwZc3qbS09Oxf/9+fP/998jMzMTSpUuRnp4OFxcXtGzZ0qHlbMj7MED99qpOQ9iHUd1i50pB5YZQ1chBRUWF9b/t27eHm5tblRtT5XH0TZs2VZzfyZMnAQBBQUHWaXFxcQCApKQku/zevXvh7e2NVq1aAQDat28Pg8FwzSwAdOnSRXE5akq2va5UVlaGdevWITAwEPfdd1+VdePi4pCRkWFzPD5w+fj8zMxMm/ek1F6xsbHw9PSUymo0GnTu3LnqN6sSZ7XZtZw+fRpms9mhdezKdggODkZoaGiVJ57Xp3XMkXbVarW45ZZbsH//frsvGz///DOEEHbrmMViwc8//2yTLS0txYEDBxxaH6/cfp3BGe1VnRt9HwbUbJsMDw/H3/72N+t5J1u2bIFWq8Xdd99tzTTU/Ziz2utabvR9WCWdTodOnTrh9ttvR9OmTfHHH39g//796NWrF9zd3R3aFhryPqySmu1VnYawD6M6VheXKLyRTJ482e4SpkJcvi9HcHCw8PPzs96DpPIyu5988olNdvDgwXb3MMnNzbWbV2lpqejZs6fdZTrLyspEcHCw3f0VDhw4ILRard0Nih944AGh1WrFgQMHrNMq768QExPj1PsrONJelTZu3FjlvV+u9MUXX1R7f5gffvjBOu3cuXPCaDSKrl27Vnl/mCvviSGEEF26dBFeXl42NwHMyMgQXl5e4s4775R/8zXkrDarah0zm81i6NChVV5q2JF2ePbZZ695jxhfX19RUFCg/MZrSLa9Dhw4IACIDh062F0muPJGph9//LF12pIlS655jxgXFxeRkpJinXbw4MFq7xGzbt066zRHt1+1Oau9Guo+TIiabZNX2rRpU5U3Bm6o+zFntVdD3YdVxWw2iyFDhgiNRiO+/fZb63RHtoWGug+rihrt1ZD3YVS32LlSkJqaKvz9/YVGoxHDhw8Xb731lpg3b56IiIgQAERiYqI1e+bMGREUFCTc3NzEc889JxITE0X//v0FAPHYY4/Z1O3SpYsYNGiQmDVrllixYoWYNWuWiImJEQDExIkT7ZZjw4YNNncGf+WVV0TTpk1FUFCQzQ0Thbh8vw8/Pz/RtGlT8corr1jvDK7T6ezuhaQ2R9qrUr9+/QQAceTIkWprDxgwQAAQo0ePFitXrhSjR48WAMTw4cPtsgsXLhQARO/evcWyZcvEzJkzhYeHh2jdurXdzSF//PFH4erqKqKiosTixYvF4sWLRVRUlPDw8LDZMTqLs9osPj5e3HnnnWLGjBli+fLlYv78+aJz584CgLjvvvtsbtYphGPtkJubK1q0aCE8PT3FzJkzxbJly0Tv3r0FALFy5Up1GuYaHGmvf/zjH9YOw7///W+xZMkSMXDgQAFAdOvWzeYLn8lkEp07dxYuLi5iypQpYsWKFSI+Pl4AEC+99JLdckyYMEEAEPHx8WLFihViypQpwsXFRfTq1cuubR3ZftXmrPZqqPswIRxrs1GjRomRI0eKN954Qyxfvlw89thjQqfTibi4OJGXl2dXuyHux5zVXg11H1ZYWCjatGkjpk+fLlasWCEWLlxofV9X3xzakW2hoe7DnNVeDXkfRnWLnSsJycnJ4rHHHhOhoaHCxcVFeHl5idtvv93mV9xKKSkp4pFHHhEBAQFCr9eL1q1bi4ULF9rtqF599VXRrVs3ERAQIFxcXISPj4/o3bu33R3Ir/T555+LW2+9VRiNRuHr6yv+8Y9/iOTk5CqzR44cEYMGDRI+Pj7CaDSKnj17iu3bt19fQ0hypL3S0tKEVqsVPXr0UKxbUlIiXnzxRdGiRQvh6uoqIiMjxezZs69588K3335bdOjQQRgMBhEYGChGjhwpsrOzq8zu2bNH3HHHHcLDw0N4enqKu+66S/z666+OvfHr4Iw2W7lypejVq5cICgoSer1eeHp6iltvvVUkJibarY+VHGmH9PR0MXz4cNGkSRNhMBjEzTffLNavX+/4m68B2fYymUziX//6l+jQoYNwc3MTrq6uIiYmRkybNk0UFRXZ1b148aJ46qmnRHBwsHB1dRVt2rQR//nPf6r8lbGiokIsXLhQtGrVSri6uoqQkBDxzDPP2H3preTI9qs2Z7RXQ96HCSHfZkuXLhW33HKL8Pb2Fm5ubuKmm24S8+bNE8XFxVXWbaj7MWe0V0Pdh5lMJvHQQw+JiIgIYTAYhJ+fn7jrrruu+aXbkW2hIe7DnNVeDX0fRnVHI8RVd0ojIiIiIiIih/GCFkRERERERCpg54qIiIiIiEgF7FwRERERERGpgJ0rIiIiIiIiFbBzRUREREREpAJ2roiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXRERERFRjr7zyCoYMGYKoqChoNBpEREQ49Ppz585h5MiR6NChA/z9/eHm5oaWLVti9OjRSE5OrvI1mZmZeOyxxxAYGAij0YguXbpg48aNVWZPnTqFYcOGISgoCAaDAS1btsTLL7+M0tJSR9+qnaSkJAwaNAhhYWEwGo2Ijo7G2LFjcfr06euuTTcmjRBC1PVCEBHRjSEhIQGzZs3Czp070bt377peHCKqBzQaDfz9/XHLLbfg119/hbe3N1JTU6Vff/z4cYwaNQrdu3dHixYtYDQacfLkSaxevRomkwl79+5F27ZtrfkLFy6gS5cuOHfuHKZMmYKwsDC8//772LVrF1avXo2RI0das8eOHUP37t1RUVGBp556CpGRkUhKSsLatWtx1113YevWrdBoNDV639u2bUP//v0RHR2NUaNGISAgAL///juWL18Og8GAQ4cOITQ0tEa16QYmiIioUQLg0GPnzp3i5Zdftv4/ETVsO3fulNreT506Zf3/du3aiRYtWqgy/59//lkAEOPHj7eZ/txzzwkAYvPmzdZpFRUVIi4uTvj7+4vCwkLr9Pvuu09oNBrx448/2tSYP3++ACDWrVtX4+W76667hF6vFzk5OTbTV6xYIQCIxYsX17g23bhcarszR0RE9cPLL79sN+31119Hfn4+nn76afj6+to8FxERgQkTJuChhx5CeHh4LS0lEdV3UVFRTqnbokULAMDFixdtpr///vuIjo7GwIEDrdN0Oh0mTpyIxx57DFu2bMGDDz4IANi5cydatWqFHj162NR4/PHHMX36dLz99tsYPny4zXM7duzAv//9b/z8888oLS1Fq1at8M9//hNPPvmkTa6goABubm7w8/OzmR4SEgIA8PDwuI53Tzcqdq6IiBqphIQEu2lr1qxBfn4+Jk+efM3zJgICApy7YETUKJWXlyM/Px/l5eVITk627qPuvfdeayYrKwsZGRkYNmyY3eu7desGANi3b5+1c2UymeDu7m6XrZz2888/QwhhPTRw+fLlePLJJ9GtWze8+OKL8PDwwPbt2zF+/HicOnUKCxYssNa4++67sXfvXowYMQLPPfccAgICcPjwYUydOhVt2rTBQw89pE7D0A2FF7QgIiJpCQkJ0Gg0+O6776zTUlNTodFo8Pjjj+PEiROIj4+Hn58ffHx8cN9991nPvUhOTsaQIUMQEBAAd3d33Hvvvdc86fv8+fN4/vnnERsba/1luH///ti7d28tvEsiqgtfffUVAgMDERISgr/97W/4/fff8dprr+HRRx+1ZjIzMwGgynOZKqdlZGRYp7Vr1w5Hjx7FH3/8YZPduXMnAKCoqMg6MpaVlYVJkybhoYcewp49e/Dcc8/hn//8Jz799FNMmjQJixYtstlnTZs2DePHj8dHH32ETp06ISwsDP369UNUVBT27t0LLy8vlVqGbiTsXBERkSpSUlLQvXt35OfnY/To0ejZsyc2b96MPn364OjRo7j11luRm5uLxx9/HL1798bWrVvRv39/WCwWuzq33HILFixYgNDQUDz11FOIj49HUlIS/va3v+Hzzz+vo3dI1HBZLBbk5ubaPPLz8wEA+fn5ds9dvd2qoVu3bti+fTs2b96MV199FcHBwbh48SIqKiqsmeLiYgCAwWCwe72bm5tNBgCmTp2K0tJS3Hfffdi1axfOnDmDDRs2YPz48dDr9Tb5jz76CCaTCaNHj7Z7vwMHDoTFYsGOHTustXU6HUJDQ9GnTx+sXLkSn3zyCaZOnYodO3bgoYceQnl5ueptRDeAuj7pi4iI6o8WLVoIACIlJaXK56u6oEVKSor1ohcLFy60yY8dO1YAEL6+vtd87pNPPrGZfttttwmtVms3PTMzU4SFhYmgoCBRUlJS8zdJRHau3I5lHtfaR6h5QYuMjAzRpEkTMW7cOOu0X375RQAQzz//vF3+0qVLAoB4+OGHbaa/+eabwsfHx7rsrq6uIiEhQcTFxQkAIj8/XwghxPjx4xXf9+zZs611hw0bJiIjI0VxcbHN/N566y0BQKxYsUKVdqAbC8+5IiIiVURGRuKZZ56xmfboo49ixYoV8Pf3t3tu+PDhWLFiBX777TfEx8cDAA4cOIDdu3dj6NCh1mmVgoOD8dxzz+Hpp5/GN998g/79+zv3DRE1Is2aNcP27dttpv3222949tlnsXDhQnTs2NEu72whISHo06cPVq1ahTfffBMGg8F6sYgrD/2rVDnt6kMGJ06ciHHjxuHQoUMwmUxo164dfH19kZiYiODgYHh7ewMAxJ93J1q7di2Cg4OrXKbKi3ekpaXhvffew4QJE2A0Gm0yQ4YMwfjx47Fr1y6MGTPmOlqAbkTsXBERkSo6duwIrdb2aPPKLygdOnSwe66qL0lJSUkALt/HpqoLbpw8eRLA5XvXsHNFpB43Nzf06dPHZpqLy+WviZ07d66z+9qVlJTAbDajoKAAgYGBCA4ORmhoaJXnX1ZO69Kli91zBoPBZvovv/yCnJwcjB492jotJiYGwOWL9lzdFler3G+ZzWa75yoPY7zycEZqPNi5IiIiVfj4+NhNq/xyVt1zV56XcOHCBQDA9u3b7X5Fv1JRUdF1LSsR1Y20tDQUFxcjOjraes5TdnY2goKC7LJHjhzBN998g+joaAQGBlqnP/zww1i4cCE+//xz6+XYzWYz/vOf/8DX19fm6oJVKS0txeTJk2EwGPDss89apz/44IOYPn06Xn75ZfTu3dtuRCo/Px9ubm4wGAyIjY2FTqfDZ599hvnz59vcumLNmjUAgLi4OIfahhoGdq6IiKjeqOyEvfLKK3jhhRfqeGmISMa6detw5swZAEBOTg7Kysowd+5cAJfvVXXl1f4ee+wx7Nq1CykpKdbbPbzyyivYvn07+vfvj4iICAghcPjwYaxbtw7l5eVITEy0md8LL7yAjRs34pFHHsGUKVMQGhqKDz74APv27cPKlSttrtL3+++/4/HHH8eAAQMQFhaG7OxsvPPOOzh16hTefvtttG7d2poNCwvDW2+9hTFjxqBNmzZ49NFH0aJFC+Tk5ODQoUP47LPPcOTIEURERMDf3x+TJ0/Ga6+9hptvvhljx46Fv78/fvzxR7z33nuIjo7mIYGNFDtXRERUb9x6660A/jo8kIjqv1WrVmHXrl0202bMmAEA6NWrl03nqioDBgxAeno6NmzYgHPnzsFsNiM0NBRDhgzBs88+i3bt2tnkmzRpgh9//BEvvPACEhMTUVRUhLZt22L9+vUYOnSoTTYgIABhYWFYsWIFzp07Bx8fH9x+++1Yt24dunbtarcsI0eORKtWrbBw4UIsW7YMeXl5CAgIQGxsLObMmWNzrtmCBQsQGxuLlStXYv78+TCZTAgNDcX48eORkJBgPZeLGhd2roiIqN6Ii4tDjx49sHnzZqxevRqjRo2yy+zduxcdOnSo8sagRKSe3r17Wy/yUJ0r73tXk2yfPn0Uz3G6WmhoKNatW6eYCwoKwqeffupQ7Z49e6Jnz56KOY1Gg7Fjx2Ls2LEO1aeGjZ0rIiKqV95//338/e9/x+jRo/Hf//4XcXFx8PLywtmzZ/HLL78gOTkZWVlZ7FwREVG9w84VERHVKy1atMD+/fvx+uuv49NPP8XatWshhEBwcDA6duyImTNnIiAgoK4Xk4iIyI5GyIz3EhERERERUbW0yhEiIiIiIiJSws4VERERERGRCti5IiIiIiIiUgE7V0RERERERCpg54qIiIiIiEgF7FwRERERERGpgJ0rIiIiIiIiFbBzRUREREREpAJ2roiIiIiIiFTAzhUREREREZEK2LkiIiIiIiJSATtXREREREREKvh/DSBjkRG9Cx8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "extent = min(dynspec.time), max(dynspec.time), min(dynspec.freq), max(dynspec.freq)\n", + "plt.imshow(dynspec.dyn_ps, origin=\"lower\", aspect=\"auto\", vmin=2.0, vmax=3.0,\n", + " interpolation=\"none\", extent=extent, alpha=0.7)\n", + "plt.colorbar()\n", + "plt.ylim(740,850)\n", + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', lw=3, alpha=1)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true + } + }, + "source": [ + "This method is, of course, prone to errors in noisy data. We'll try to get better methods implemented in the future!\n", + "\n", + "In the meantime, a Savitzky-Golay filter is often good enough to cut away outliers:" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Frequency (Hz)')" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4YAAAJ2CAYAAAADlpygAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC840lEQVR4nOzdeXyM1/cH8M8kZCOJEFsidq0ltiCIrZSqokqLWtpSlGqpokpL9YufqtZSqhta+xZLrVVrFzuxtvZIgiQokYREZJvfH8eTO5OFJCaZyczn/Xrl5bnPPPPMnUrbOXPuPUen1+v1ICIiIiIiIptlZ+4JEBERERERkXkxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsXCFzT8AapaamIiIiAq6urtDpdOaeDhERERER2SC9Xo979+7By8sLdnaPzwkyMMwDERER8PHxMfc0iIiIiIiIcO3aNZQrV+6x1zAwzAOurq4A5C/Azc3NzLMhIiIiIiJbFBsbCx8fn7T45HEYGOYBbfmom5sbA0MiIiIiIjKr7GxvY/EZIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMYxMCQiIiIiIrJxDAyJiIiIiIhsHANDIiIiIiIiG8fAkIiIiIiIyMZZZGB4//59TJ06FbVr14arqys8PT0REBCARYsWQa/Xp13Xr18/6HS6TH/Wrl2b4b4PHz7EZ599hkqVKsHR0RFVqlTBlClTkJSUlJ9vj4iIiIiIyKIUMvcE0ktNTUWHDh1w4MABvPXWWxg2bBji4+OxcuVK9O/fH+fOncOXX35p9JylS5dmuI+/v3+Gcz179sTGjRvx9ttvo2nTpjh48CAmTJiAy5cvY9GiRXn1loiIiIiIiCyaTm+YgrMABw8eREBAAEaMGIFZs2alnU9MTET16tURFRWF6OhoAJIxXLx4MbLzFrZt24aOHTti5MiRmDFjRtr5UaNGYebMmdi/fz8CAgJM8h5iY2Ph7u6OmJgYuLm5meSeREREREREOZGTuMTilpLGxsYCALy8vIzOOzg4wNPTE0WKFMnwHL1ej9jYWKSmpmZ53xUrVgAARowYYXReGy9btuwpZk1ERERERFRwWdxSUn9/fxQrVgzTp09HxYoV0bhxY8THx2Px4sUICgrCDz/8kOE57u7uuHfvHhwcHNCyZUtMmTIFjRs3Nrrm6NGj8Pb2ho+Pj9F5Hx8feHl54ejRo7mec9myZY3GjwtQiYiIiIiILI3FBYYeHh7YtGkTBg4ciB49eqSdd3V1xbp16/DKK6+knStTpgw+/PBDNGjQAEWKFMGpU6cwe/ZstGjRAtu2bUPbtm3Tro2IiEDNmjUzfU1vb29cv349z94TERERERGRJbO4PYYAcOLECUyZMgWVK1dGQEAAoqKiMG/ePJw/fx4bN25Eu3btsnzupUuXUK9ePXh5eeHSpUtp5+3t7dGsWTP89ddfGZ7TsmVLnD59Om3v4tOyyD2G//wDfPcdMHcuYG9v7tkQEREREVEeK9B7DM+cOYOAgAC0a9cOX331Fbp27YoBAwZg3759KFOmDAYNGoSUlJQsn1+tWjX06NEDly9fxsWLF9POu7i44OHDh5k+JyEhAS4uLiZ/LxYhIQGoXx+oXRv4/nsgkwquRERERERk2ywuMJw1axYSEhLQvXt3o/MuLi7o2LEjwsLCEBoa+th7VKxYEQBw+/bttHNeXl4IDw/P9Prw8HB4e3s/1bwtlpMTkJysxt9/b765EBERERGRRbK4wFAL3jLLCiY/CnCSDQOdTGhLSEuXLp12rlGjRggPD8e1a9eMrr127RoiIiLQsGHDp5q3RXv7bXV87BhgsMSWiIiIiIjI4gJDrUBM+obz0dHR2LhxIzw8PFC1alXExcUhISEhw/NPnDiBwMBA1KhRA1WqVEk736tXLwDA7Nmzja7Xxn369DHdm7A0Q4YARYvKcWoq8PXX5p0PERERERFZFIsrPhMWFgY/Pz/cvXsXffr0QbNmzRAVFYX58+cjNDQU8+bNw9ChQ3Hy5El06NABr7zyCqpVq5ZWlfTnn3+GnZ0dduzYgebNmxvdu3PnztiyZQsGDBiApk2b4uDBg1i4cCH69u2LpSbce2eRxWdefx1YvVqOS5QAbt5kERoiIiIiIiuWk7jE4gJDAAgODsakSZOwe/du3Lx5E87OzqhXrx5GjBiBbt26AQBu3LiBjz76CEePHkVERAQePHiAsmXLonXr1hg3bhyqV6+e4b4JCQmYMmUKli1bhsjISHh7e6N///4YO3YsChcubLL5W2RgeOwY0KiRGi9aBLz1ltmmQ0REREREeavAB4YFnUUGhgDg6wv8+68cN24MHDpk3vkQEREREVGeKdDtKigPGRahOXoUCA4231yIiIiIiMhiMDC0Je++CxQpIsepqcBXX5l3PkREREREZBEYGNoSZ2egY0c1XrsWyKQtCBERERER2RYGhrbmo4/U8Z07wIoV5psLERERERFZBAaGtqZhQ+BRr0gAwLx55psLERERERFZBAaGtih9EZorV8w3FyIiIiIiMjsGhrZo6FAWoSEiIiIiojQMDG2RszPw0ktqzCI0REREREQ2jYGhrRo9Wh3fvs0iNERERERENoyBoa3y9wdq1FDj774z31yIiIiIiMisGBjaMsMiNEeOsAgNEREREZGNYmBoy95917gIzddfm3c+RERERERkFgwMbVmRIkCHDmocGMgiNERERERENoiBoa1jERoiIiIiIpvHwNDWNW4MVK+uxt9/b765EBERERGRWTAwpIxFaEJCzDcXIiIiIiLKdwwMCRg6FHBxkeOUFBahISIiIiKyMQwMKWMRmjVrpEopERERERHZBAaGJNIXoVm50nxzISIiIiKifMXAkESTJsCzz6rxd9+Zby5ERERERJSvGBiS0r+/Oj58GAgNNdtUiIiIiIgo/zAwJOW994yL0Hz1lXnnQ0RERERE+YKBISlFiwLt26vxjh2AXm+++RARERERUb5gYEjG+vZVxyEhwLlz5psLERERERHlCwaGZKxDB6BQITlOSWF1UiIiIiIiG8DAkIw5OwN+fmr8xx9AXJzZpkNERERERHmPgSFl1LmzOr5yBTh1ynxzISIiIiKiPMfAkDJq21YdR0YCf//NIjRERERERFaMgSFl1LAh4Ooqx3o9cOIEEBZm3jkREREREVGeYWBIGRUqBDz3nBpfuQIEBZltOkRERERElLcYGFLmnn9eHYeEAGfPAvHx5psPERERERHlGQaGlLk2bdTx7dtAdDSL0BARERERWSkGhpQ5X1+gVCk1DgmR5aQsQkNEREREZHUYGFLmdDrjrGFIiGQOWYSGiIiIiMjqMDCkrKXfZ6jXswgNEREREZEVYmBIWTPMGMbEAHfvsggNEREREZEVYmBIWatcGahYUY1DQoCUFBahISIiIiKyMgwM6fHSLycFWISGiIiIiMjKMDCkx8tsn+Ht28DVq+abExERERERmRQDQ3q81q3VcXw8cPOmHLMIDRERERGR1WBgSI9XpgxQq5Yaa8tJWYSGiIiIiMhqMDCkJzNcTqotIU1OBk6fNs98iIiIiIjIpBgY0pMZBoZhYVKZFACOHWMRGiIiIiIiK8DAkJ6sZUvA7tGvyoMHQESEHLMIDRERERGRVWBgSE9WrBjQsKEaR0WpYxahISIiIiIq8BgYUvYYLie9fl0dnz0rWUQiIiIiIiqwGBhS9hgGhqdPq6WlycnAqVPmmRMREREREZkEA0PKnoAAwNFRjhMTAXt79VhQEIvQEBEREREVYAwMKXucnSU41GiN7gHgv/+Aa9fyf065cfcucOAAcOeOuWdCRERERGQxGBhS9hkuJz10CPDxUeNjx/J/Pjml1wMrVwI7dgDffw9ERpp7RkREREREFoGBIWWfYWAYFAQ884waF4QiNHfuALduyXFyMrB6NRAfb945ERERERFZAAaGlH0NGwKurnKcmirLSZ2cZFwQitBo/RdTUuTP6GggMFDeCxERERGRDWNgSNlXqBDQqpUa//UXULeuGlt6EZrISFlGOnUqsGIFcP8+EBIC7Npl7pkREREREZkVA0PKGcPlpLt3A35+amzpRWgOHQIOHpQM4aVLwE8/SU/GAweAM2fMPTsiIiIiIrNhYEg5YxgYnj0rQZZhEZqgoPyfU3bo9cCvvxqfu3cP+OUX4OhRYONG4MYNs0yNiIiIiMjcLDIwvH//PqZOnYratWvD1dUVnp6eCAgIwKJFi6B/zFLFjz/+GDqdDkWLFs308YcPH+Kzzz5DpUqV4OjoiCpVqmDKlClISkrKq7difXx9gZIl1XjPHqBBAzX+91/LLEJz+rT8pJeaCmzbBqxdCyxZwmI0RERERGSTLC4wTE1NRYcOHTBhwgQ0atQIM2bMwPjx45GSkoL+/ftj7NixmT7v5MmTmDlzZpZBIQD07NkTkydPRps2bTBv3jw899xzmDBhAgYNGpRXb8f66HRAmzZqvGcPUKuWcRGazAIwc5s5UxWZcXMDtm4FPD3V46dOyTXffcdiNERERERkc3T6x6XgzODgwYMICAjAiBEjMGvWrLTziYmJqF69OqKiohAdHW30nJSUFDRp0gRly5ZFbGwsjh07hvv37xtds23bNnTs2BEjR47EjBkz0s6PGjUKM2fOxP79+xFg2MD9KcTGxsLd3R0xMTFwc3MzyT0tyvz5wDvvyHGFClLA5bffgCNH5FypUsC770oQaQmiowEvL5XJ7NVLis9cvQq89posJdU4OQHjxwOffmqWqRIRERERmUpO4hKLyxjGxsYCALy8vIzOOzg4wNPTE0WKFMnwnDlz5uDs2bOYO3dulvddsWIFAGDEiBFG57XxsmXLnmLWNsZwn2FYGHDlivFy0lu3pKiLpfjxRxUUOjgAffvKcfnyUlnVMGOckCCB4dChzBwSERERkc0oZO4JpOfv749ixYph+vTpqFixIho3boz4+HgsXrwYQUFB+OGHH4yuDwsLw4QJEzBx4kRUqFAhy/sePXoU3t7e8DEslALAx8cHXl5eOGqYNcqhsmXLGo1TrT2gqFwZqFgRCA2V8e7dkkEsV04FhEFBxkVpzCUxEfjmGzX28wOefVaNnZykOmmDBsD778tSWAD4/nvg4kVgzRqgePH8nTMRERERUT6zuIyhh4cHNm3ahOLFi6NHjx6oUKECatSogXnz5mHdunUZ9gO+++67qFy5MkaOHPnY+0ZERMDb2zvTx7y9vREeHm6y92AT0u8zBICGDdW5f/6xjCI0K1ZI/0JAlrY2aQKkC+QBAIMHy3LYYsXUud27JWA8eTI/ZkpEREREZDYWFxgCQNGiReHr64vRo0dj/fr1WLBgAapWrYrevXtj586dadetXLkS27dvxw8//IBChR6f/IyPj4ejo2Omjzk5OSH+KapRRkZGGv1cunQp1/cqMAyXk+7ZI8suLa0IjV4PfP21Gvv6yp5IF5fMr2/bViqUVqmizoWGAq1bAxEReTpVIiIiIiJzsrilpGfOnEFAQABmzZqFIUOGpJ3v1asXfH19MWjQIAQHByMmJgYjRozAgAEDslU0xsXFBQ8fPsz0sYSEBLhkFSxQ5gwzhv/9JxnCOnXkRytCExQE+PubrwjNb79J+wxNQEDm2UJDTZvKMtLJk4G//5Zz0dGyVLZ//8c/V6cDqlaVfwZERERERAWIxQWGs2bNQkJCArp372503sXFBR07dsS3336L0NBQzJkzB3FxcRg0aBAuX76cdt2DBw+g1+tx+fJlODo6pu0p9PLyynK5aHh4eJbLTCkLZcpIhlALvHbvloDIz08FhloRGnPtNfzqK3VcubLMOV1Ro0w9/7zMvVAhYO9eOff770D16sBj2qEAkCyph4dl7K8kIiIiIsomi1tKqgVvKSkpGR5LflQYJDk5GWFhYYiLi0Pjxo1RrVq1tJ8jR44gPj4e1apVQ4cOHdKe26hRI4SHh+PatWtG97x27RoiIiLQ0HB/HGWPYdZw9WpZulmmjBSh0QQF5f+8AODYMeCPP9RYyypnJzC0swNefRXo0AFwdpZzycnAgQPZe+1z53I0VSIiIiIic7O4wLBmzZoAgEWLFhmdj46OxsaNG+Hh4YGqVavi448/RmBgYIafmjVrwsnJCYGBgUZ9EHv16gUAmD17ttF9tXGfPn3y7D1ZrW7d1PHhw8CmTXJs2LrCXEVoDPcWli4tGUPgyUtJNU5O0otRa20BACdOALVrAy1bZvypVk1dd+XK08+fiIiIiCgfWVyD+7CwMPj5+eHu3bvo06cPmjVrhqioKMyfPx+hoaGYN28ehg4dmuXzn3vuuUwb3ANA586dsWXLFgwYMABNmzbFwYMHsXDhQvTt2xdLly412Xuw+gb3Gr1ell1qyy1r1pSllCkpwIwZgLan86WXZK9hfgkJkb1+WtuQV14B6taViqPp+lg+UUyMtOaIjpbxxx8D06ZlvC4yUvolaj76CMik5yYRERERUX4p0A3uK1SogCNHjuCNN97A3r17MWzYMEybNg0+Pj5Yt27dY4PCJwkMDMSnn36KXbt2YejQodizZw8mTZqEn3/+2YTvwIbodMAXX6jx2bPAsmXSRN6wAEtQkASR+WXWLBUUenpKNVIg+9lCQ+7uwAcfqPG8ecCdOxmvK1NGLTsFJDglIiIiIiogLC5jaA1sJmOo6dYN2LBBjsuXl8bwd+8CP/ygrhk40HjvYV65c0fmoLUf6dlTisYAkt1s0SLn97x7V9pc3Lsn4/HjpWppeoGBqhiPnx/w8ss5fy0iIiIiIhMp0BlDKoD+7/+kYAsAXL0q7R7KlAEMK70eO5Y/c/n+exUUurkBzz6rHstNxhCQKqPDh6vxnDkSLKan7WMEZJ8hv3MhIiIiogKCgSE9vRo1gH791Pj//g+IjQUMK73++y+QkJC380hIAObOVeO33jLuoZidiqRZ+fBDtWcwNlaCw/QMA8Po6MyDRyIiIiIiC8TAkEzj888BR0c5vn0bmDlT+hxq55KSpDBNXlq6VPoPAkDhwsZLOd3dAReX3N+7RAng/ffVePZsCRANeXjIj4bVSYmIiIiogGBgSKbh42McOM2YIVmz/CpCk5oqr6np3VsVoAGeLluoGTlSFZiJjga+/TbjNemXkxIRERERFQAMDMl0xo2TfX0AcP++LCk17Gl48yYQHp43r715M3DhghqPHg1ERKixKQLDUqWkt6FmxgxVkEZjGBiGhBgHp0REREREFoqBIZlOiRLSv0/z/fey78+wCE1QUN689ldfqeMOHWQZa2SkOpfbwjPpjR4NODnJcVSUvEdDlSqpfY0PHgA3bpjmdYmIiIiI8hADQzKtESOA0qXlOCkJmDjROGv4zz+mL0Jz8CCwf78af/SRBG0PH6pzpsgYAhJgvvOOGn/9NRAXp8YuLlKRVcPlpERERERUADAwJNMqWhSYMEGNly6VPw2L0Jw5Y9rX/PprdeznBzz3nHG28GkLz6Q3Zgzg4CDH//0H/PST8eOGy0mDg033ukREREREeYSBIZneoEGypBKQYjOffw7Urq0e//PPjBU9cys4GNiwQY0/+kiWcpp6f6Ehb29gwAA1nj5dlo1qDAPDq1clGCYiIiIismAMDMn0HByAyZPVePNm+VPbe3f/PrBmDZCc/PSv9c03qtJphQrAa6/JsWFgaKr9hYbGjpWWGIDsI1ywQD1WvjxQqJAcp6RIcEhEREREZMEYGFLe6NXLuFXFl18Cbduq8fXrwG+/Pd1rREcDP/+sxsOHS0Cm1xsvJTV1xhCQ4K9fPzWeNk3tnSxcWB7XcJ8hEREREVk4BoaUN+zsgC++UON9+4C7d42XlAYFPV2V0oULVeGXokXV8s70hWfyImMISHsOe3s5jogAfvlFPcZ+hkRERERUgDAwpLzToQPQooUaf/IJ0KmTcdXObduAa9dyfu/kZGDOHDV++20pMgNkLDxTpEjO758dlSoBb76pxtOmAYmJcmwYGN64AcTH580ciIiIiIhMgIEh5R2dToIlzZkzwNq1QM+egLOznEtJkf2G6RvFP8mGDWrvnk4ny0g1eVl4Jr1PPpHsKCDzWbJEjsuUUe9Rr5dm90REREREFoqBIeWtgADg5ZfVeMIEyeC99poqRnPvngSHKSnZv++sWeq4SxegShU1zovG9lmpWhXo3VuNp06VKqR2dqoyK8DlpERERERk0RgYUt77v/9TQWBIiPT9q1LFuBjNtWvZL0Zz+LA0tdd8+KE6zo/CM+l9+qnx+1u5Uo65z5CIiIiICggGhpT3fH2BN95Q488+k313AQHymObYMeD48Sffb/ZsdVy/vvE+xrt3VXVQIO8zhgBQvTrQo4caT5sGpKYaB4Z378oPEREREZEFYmBI+WPSJLXn7u5d4IMPJMv28stA6dLquq1bpZVFVq5dAwID1fjDD1W2DjDeX5iXhWfSGztWHZ87B2zcCHh4AMWKqfPMGhIRERGRhWJgSPmjQgUJDjVr1kjjewcH4PXXjYvRrF4N3L+f+X2+/VbtRSxbVgrZGMrrxvZZqVcPeOklNdZadXA5KREREREVAAwMKf+MGAH4+anx0KFAbKxk1rJTjOb+fdmfqHnvPQksDeX3/kJD48ap46NHgT17MgaGen3+zomIiIiIKBsYGFL+KVQIWLBANYW/fl3aPQAZi9FcvQps3278/CVLgOhoOXZyAgYPNn48feGZ/MwYAkDz5vKj+eIL48qkDx7I3koiIiIiIgvDwJDyV/36wKhRavzdd8CBA3IcEADUqqUeO3oUOHFCjlNTjYvOvPEG4OlpfO/0hWfyO2MIGGcNd+8Gzp6VnoYaLiclIiIiIgvEwJDy38SJqu+gXg8MGgQ8fChLSbt0MS5Gs2ULEB4ObNsGXLqkzo8YkfG+5io8Y6hDB6BuXTX+4gvj5aTBwfk/JyIiIiKiJ2BgSPnPxQX48Uc1PnsW+PJLOXZwkIIyTk4y1orRfP21ur59e6BmzYz3NecyUo1OZ1yhdMMG472SV68CSUn5Py8iIiIiosdgYEjm8fzzQP/+avx//ydtHgCgeHHjYjQXLwJ//qmuNWxob8gwY2iOZaSa115TGVEAWLFC7atMTpaWG0REREREFoSBIZnP118DpUrJcWKiLClNTZVx1aoSPALA4cPqOTVqAC+8kPFe5i48Y6hQIWDMGDVetUqypBruMyQiIiIiC8PAkMyneHFgzhw13r/feIlps2aS+TtzRp179VXjhvYaSyg8Y+itt1RwmpysCuwADAyJiIiIyOIwMCTz6tED6NhRjT/+WNpYABIAXrum9ug5OwN2dlKMJj3DZaRubuYpPGPI0REYOVKNt24F4uLkODJSWlcQEREREVkIBoZkXjqdtKwoWlTG9+5J43q9XjKAhhnEhg3l+tWrVZClMWdj+6wMHgx4eMjxw4fAsWNyrNcDISHmmxcRERERUToMDMn8ypcHpk5V402bgHXrpGjLf//JucKFAX9/OY6NBdasMa72aZgxNOf+QkOursCwYWp85Iha7srlpERERERkQRgYkmUYOhRo0kSNhw0zblHx+uvS41ATFgbs2CHH6QvPWErGEACGD1eFZ+LjVdaQgSERERERWRAGhmQZ7O2B+fMlMwgAN26o9hWANLRv3lyqkmoOHwZOncpYeMZSMoYAUKIE8M47anzokPQxjIqSeRMRERERWQAGhmQ5fH2Nm8NrWrYE/Pxkf+ErrwAlS6rHNm8GgoLU2M1N7Ve0FKNGqYA3Lg44eVKOuc+QiIiIiCwEA0OyLJ98Ajz7rPE5w4b2jo6yrNTJScbJydLmQmNJy0g15coBb7yhxgcOSL/GJy0n1euBgwclsJw82TgrSkRERERkQgwMybI4OcmSUq1XYY0aQOfOxteUKAF065Z5P0NLWkZqaMwYNd/oaOCffyQw1OszXnv7NjBrlmRQAwKAmTOBzz4DBg3K/HoiIiIioqdUyNwTIMqgRQtg927gjz+AAQNk/2F6zzwDtG4N7NljfN4SM4aAZEFffRVYu1bG+/YBtWsD06ZJwJiaCgQHA0ePAmfPGldc1SxbJv0PGzZ8/Gt5eACvvSYBNBERERFRNjAwJMvUurX8PE6LFlKN1LBIjaVmDAFg3DgVGP73H3Dxosz35EngxAnJJGbGwQFITJTjjRtlj2Xp0lm/TmQksH070KePKWdPRERERFaMgSEVXFoxmvv3gWvXgDp1LK/wjCE/P+CFF1SbjV9/lcb3mS0PdXaW9+PnJ4VrfvxRrk1OBgIDpdKpg0PWr3X5MhATA7i758lbISIiIiLrwsCQCjZHR+DttwtOEDRunAoMMysm06wZ0KuXBJBagR0AqFULGDxYju/cAc6fB2bPzrjPMjAQiI2VYPP48SdnXYmIiIiIwMCQrIFOBxQrZu5ZZE+rVkDTplJtVOPlBfTvLwFu5cqZP++dd4B//wXmzJHxhg3ASy8BAwcaX+fnJ3szAQkMW7UC7FhjioiIiIgej58YifKTTgesXi1LYHv2BDZtAsLCgClTsg4KNV99BTRqpMbDhgGnTxtfU7++yiLeuwdcumTS6RMRERGRdWJgSJTffHwk47dqlbTiKJTNxL2DgwSVWnY0IQHo3l0CQI27O1CtmhoHBZls2kRERERkvRgYEhUklSoBv/yixhcvAkOGGBewadBAHV+6JPsviYiIiIgeg4EhUUHzyivAiBFqvGIFsGCBGlerBri5ybFWhIaIiIiI6DEYGBIVRF9+Cfj7q/GwYcCpU3JsZyd7DTUnTgCpqfk7PyIiIiIqUBgYEhVE6fcbPnxovN/Qz08VoYmNZREaIiIiInosBoZEBVXFisDixWp86ZL0OtTrWYSGiIiIiHKEgSFRQfbyy8DIkWq8ciXw009yzCI0RERERJRNDAyJCrpp04AmTdT4gw9kv2G1aoCrq5zT62WvIRERERFRJhgYEhV0hQtLT0QPDxk/fAiMGiVFaPz81HXHj7MIDRERERFlioEhkTWoUEEtIQWA3buB/fszFqG5fNk88yMiIiIii8bAkMhavPqqcYZw8mQpQlO1qjrHIjRERERElAkGhkTWQqcDJkxQ499/B44cMS5Cc/Eii9AQERERUQYMDImsycsvA3XqqPHkycAzz7AIDRERERE9FgNDImtiZ2ecNdyyBTh5kkVoiIiIiOixGBgSWZtu3YCaNdV48mSgfn0WoSEiIiKiLFlkYHj//n1MnToVtWvXhqurKzw9PREQEIBFixZBr9enXTd27FgEBASgVKlScHR0hI+PDzp16oQ//vgj0/s+fPgQn332GSpVqgRHR0dUqVIFU6ZMQVJSUj69M6J8kD5r+OuvwNWrLEJDRERERFmyuMAwNTUVHTp0wIQJE9CoUSPMmDED48ePR0pKCvr374+xY8emXXvo0CHUqVMHH3/8Mb7//nu8++67uHLlClq3bo2lS5dmuHfPnj0xefJktGnTBvPmzcNzzz2HCRMmYNCgQfn5FonyXvfuwLPPqvGUKRmL0MTG5v+8iIiIiMgi6fSGKTgLcPDgQQQEBGDEiBGYNWtW2vnExERUr14dUVFRiI6OzvL59+/fR5UqVVCiRAmcPXs27fy2bdvQsWNHjBw5EjNmzEg7P2rUKMycORP79+9HQECASd5DbGws3N3dERMTAzc3N5PckyjHli4F3nxTjnU64NQpYMcO4N49Ode6NdCqlfnmR0RERER5KidxicVlDGMfZTG8vLyMzjs4OMDT0xNFihR57POLFi2KEiVK4O7du0bnV6xYAQAYMWKE0XltvGzZsqeYNZEF6tULqFJFjvV64IsvZK+hhkVoiIiIiOiRQuaeQHr+/v4oVqwYpk+fjooVK6Jx48aIj4/H4sWLERQUhB9++CHDc27fvo3U1FRERkZi/vz5OHfuHN5++22ja44ePQpvb2/4+PgYnffx8YGXlxeOHj2a6zmXLVvWaJzKD9tkCQoVAj79FND+XVi1ChgxQrKHer30MwwOBqpVM+s0iYiIiMj8LC4w9PDwwKZNmzBw4ED06NEj7byrqyvWrVuHV155xej6+/fvo2TJkmljZ2dnvPPOO5g5c6bRdREREahpWKnRgLe3N65fv266N0FkKfr2BSZNAkJDJRj89lvghRdUVdKgIAaGRERERGR5gSEgy0F9fX3x8ssvIyAgAFFRUZg3bx569+6NjRs3ol27dmnXOjs7Y+fOnUhOTkZYWBiWL1+O+/fvIz4+3mjZaXx8PBwdHTN9PScnJ8THx+d6vpGRkUZjbS0vkdkVLgyMGwcMHizjFSuAPn1UYKgVoeFeWCIiIiKbZnHFZ86cOQN/f3/MmjULQ4YMSTsfHx8PX19fpKamIjg4GPb29pk+PyUlBc899xyio6Nx/PhxFC5cGIBkHGvWrInDhw9neI6/vz+uX7+OiIgIk7wHFp8hi/LwoWQFr12Tcf/+QK1aqghNy5ZAmzbmmx8RERER5YkCXXxm1qxZSEhIQPfu3Y3Ou7i4oGPHjggLC0NoaGiWz7e3t0efPn3wzz//4K+//ko77+XlhfDw8EyfEx4eDm9vb5PMn8jiODoCBm1esHQpUKaMGu/bJ0tNiYiIiMhmWVxgqAVvKSkpGR5LTk42+jMrDx48AABERUWlnWvUqBHCw8NxTcuaPHLt2jVERESgYcOGTzVvIov29tuAVuk3ORnYvRvQllqnpgKBgVKMhoiIiIhsksUFhlqBmEWLFhmdj46OxsaNG+Hh4YGqVavi7t27SExMzPD8uLg4LFy4EHZ2dvD3908736tXLwDA7Nmzja7Xxn369DHdmyCyNE5OwJgxarxsGdC8OWD36D8BcXHA6tVAUpJ55kdEREREZmVxxWdGjBiBJUuWYOzYsThz5gyaNWuGqKgozJ8/H5GRkZg3bx7s7e3x559/YvDgwXj11VdRtWpVuLq6IiQkBEuXLsX169cxceJEVKhQIe2+HTt2RKdOnTBz5kzExMSgadOmOHjwIBYuXIi+ffuiefPmZnzXRPlg0CDpZXjzpgSAy5cDb74JbNsmj0dEAFu3Al26SEsLIiIiIrIZFld8BgCCg4MxadIk7N69Gzdv3oSzszPq1auHESNGoFu3bmnXfPHFFzhw4ADCw8MRHx+PEiVKoFGjRhgyZAg6duyY4b4JCQmYMmUKli1bhsjISHh7e6N///4YO3ZsWpEaU2DxGbJYM2YAo0fLsYOD9DE8dgw4eVJd89JLgEG2nYiIiIgKppzEJRYZGBZ0DAzJYsXFARUrArdvy/iDD4CvvwZ+/lkyhoAsL33rLcAg405EREREBU+BrkpKRHmoSBFg1Cg1/vFHCRJ79jQuRrNmDYvREBEREdkQBoZEtua994DixeU4IQH43/8Ad3ege3fjYjRr1kgFUyIiIiKyegwMiWyNqyvw4Ydq/MMPwIYNssS0fXt1PjxcitFwtTkRERGR1WNgSGSLPvwQqF5djfv3B65ckaIzdeuq8ydOSHEaIiIiIrJqDAyJbFGRItLU3tlZxjExss8wMRHo1AkoW1Zd+9tvwNWr5pknEREREeULBoZEtsrXF/j2WzU+dgz46COgcGHg9dcBFxc5rxWjiY01zzyJiIiIKM8xMCSyZf37A2+8ocZz5wLr1mUsRnP/PrB6temL0aSkAP/9J8EnEREREZkNA0MiW6bTAd9/D9Sooc69/bbsN6xUCXjhBXU+PBzYts10xWgePpT+ifPmAUuWsAIqERERkRkxMCSydUWKyFJRbb9hbCzQo4cEbo0bA3XqqGuPHweCgp7+NfV64NdfJdgEgNBQVkAlIiIiMiMGhkQk+w3nzVPjoCBg9GjJKHbubPpiNPv2AefOGZ9jBVQiIiIis2FgSESif3/grbfU+NtvpXJp4cJSsVQrRpOSIhnGe/dy9zqXLgF79qixTqeOWQGViIiIyCwYGBKRMm8eULOmGg8YAFy+DBQrJsVotCAut8VooqKkuI22ZNTNDRg4kBVQiYiIiMyMgSERKVp/Qy1Qu3dP9hsmJGQsRnP9umT4skOvl32E//sf8Pff8rxly4AZM4BnnwVCQowroK5Zw2I0RERERPlIp9ez2oOpxcbGwt3dHTExMXBzczP3dIhybvFioF8/NR46VLKJej2wfj1w5ox6rHNnoEEDOU5MBIKDZf/g+fPGP09aevrll0B8vBr7+cm9DZeaEhEREVG25SQuYWCYBxgYklXo3x9YtEiNV62SvYZJScCcOcDZs8Dt27I81NkZCAuToDAlJXev5+0NTJsmS1c1nToBDRs+1dsgIiIislUMDM2MgSFZhfh4wN8f+PdfGRctKlm88+eBW7dyd09HRwkAmzeX3onFi0s2Ugsm331X2mPcuCFje3spiFO+/NO/HyIiIiIbw8DQzBgYktU4exZo1Mh4iWd2+PhI4FexInDzJuDuDnh6Al5ewODBEmRqxo6VZaSALBv97Tfg1Cn1mkWLynNcXU3yloiIiIhsBQNDM2NgSFZlyRLjNhYaR0egXDnAyQkoUUICv5YtpcpokSKy33DhQgkMAcn+9e8vzzH04AFQu7YsQwUkoFy3TgrQaP95KldO9jwWKpRnb5OIiIjI2uQkLuGnLCJ6vDfflCBw/37JAFavLj8VKkgl0XXrgH/+kWvv3gUuXADq1wc2blRBIQB07JgxKARkf+JPPwHPPy/jc+ckKGzXDtixQ85pFVA7d87Tt0pERERkq5gxzAPMGJJNySwzWKcOcOKEuqZRIwkMH2fAAODnn+W4cGF5/vnzWVdAJSIiIqLHyklcwj6GRPR0HByA11+XzB8ghWQMg8Ly5YEXX3zyfb76CihVSo6TkoB33pGqpGXKqGu2bQOuXTPd3AFZrnrtGhATY9r7EhERERUgDAyJ6Ol5eACvvZax56CrK9Cjh2QRn6R4cWDuXDU+cEAykT17Ggeda9Y8uSdidun1suR14ULp02jqoJOIiIiogGBgSESmUaUK0LatGtvbS1BnWIH0Sbp3lyyhZuxYIC7OOOi8d0+Cw9z2SzR06BBw8qQcJyYCq1ebLugkIiIiKkAYGBKR6QQEAG3aSGGa11/PvNjM4+h0wHffqWDy3j3gvfeAypWNg85r16QYzdMICVHFbTT375su6CQiIiIqQBgYEpHp6HTSsqJ/f6Batdzdw8cH+OILNd60SSqfBgQAvr7q/LFjwPHjuXuN6GggMFC1wzBsg2GKoJOIiIiogGFgSESW5913gaZN1fj99yWYe/lloHRpdX7rVmllkRNJScCqVUB8vIzt7IAuXaR/oubYMSAoKNfTJyIiIipo2K4iD7BdBZEJ/Puv9ENMSpLxwIHA/PnSK/Gnn4AHD+S8qyswePCT9zImJQHBwcCiRRL43bkD3L4t1Ujv3QOqVgX69VOvZ28vmc+cLoclIiIishA5iUsYGOYBBoZEJjJxIjBpkhrv2QO0bi0B3rJlailo+fLAW29JMBcTA1y4ID0Qz58Hzp2TPy9fBpKTH/969eoBr76qrnN1lbYZrq558vaIiIiI8hIDQzNjYEhkIg8fSrB2/ryMq1YFTp8GHB2BDRuAX3+VrN/t21JV9L//gMjIp3vNbt2A2rXV2DDoJCIiIipAchKXFHrso0RE5uToKMtHW7SQ8eXLshfwv//UHsGccnUFypSRzGOdOkD16sDixcDSpfL4+vVSVVX7j+fVq8D27UDHjk//foiIiIgsFDOGeYAZQyITGzoU+P777F9fuLBURa1RQ/68eVMqj5YoATg7y17C8uXV9QkJEnweOybjQoWA8ePVUlVACt/4+Znk7RARERHlBy4lNTMGhkQmFhMjyzuvXTM+7+EhgV9qKlCsGFCyJFCxIjBmjIz1ellueuqUek7HjkCjRhlf49o1oEEDyUYCQKlSwPDhLEZDREREBVZO4hK2qyAiy+fuDuzbB0yfLhVJ//oLuHVLKosePgysXAk0bw488wzg4CD7D1NSgCNHjIPC+vWBhg0zfw0fH+ltqO0lvHVL+idqPQ5TUoA1a4D79/P2vRIRERGZwVNlDM+fP4+rV6/i9u3bcHZ2RqlSpVC7dm2bz5IxY0hkBvv2Abt2qXG1alK9NDVVxt7ekvEr9ISt1XPmAB98oMavvgr4+qoxi9EQERFRAZGnxWf27NmDhQsXYteuXbh9+3aGx+3s7FC/fn289tprePvtt+Hp6ZnTlyAiyrlmzYCICODsWRlfuqQeK1IE6NnzyUEhAAwbJs3tlyyR8bp1UoxGa1nBYjRERERkhbKdMVy/fj0+/fRTXLx4EXq9Ht7e3mjUqBHKlCmD4sWL48GDB7hz5w7Onz+PkydPIjExEY6OjnjzzTcxadIklC5dOq/fi8VgxpDITBITgQULZBmoxs5OMnwVKmT/Pg8eyNLU48dlnFkxmi5dZGkqERERkYUyefGZli1bYt++ffD19cUbb7yBnj17orxhRb90EhMTsXfvXixduhS//vor7O3tsXTpUrz88ss5fzcFEANDIjOKipJ9iAkJMn7pJcDfP+f3uXpVitFoKyPSF6MpVEiWpnp7m2beRERERCZm8uIz8fHx2LJlC06fPo2PPvrosUEhADg4OKB9+/ZYtmwZQkJCMHDgQFy8eDH774CIKLeKF5cMoa9v1hVIs6N8eSk2Y1iMZv16tRw1ORlYvZrFaIiIiMgqsF1FHmDGkMiKzJ4NfPihGnfvDtSsqcYVKgBvvsliNERERGRx2K6CiMhUPvgA6NtXjQMDjbOEYWHAjh35Py8iIiIiE8pVYDhp0iR8/fXXSExMzPKaP//8E5MmTcr1xIiILIJOB/z4o3GhmTlzABcXNT58GDh5Mt+nRkRERGQquQoMP//8c3z88cd4/vnncefOnUyv+eOPP/C///3vqSZHRGQRXFyADRuAEiVknJQEnDsHlCyprtmyRdplEBERERVAuV5KWqlSJezfvx9NmzbF5cuXTTknIiLLU6EC8MUXarx+vbSscHKSsVaMJi7OPPMjIiIiegq5DgzffPNN/PzzzwgLC0PTpk2xf/9+U86LiMjydO8OODrKcWwscOAA8OqrstwUAGJiZA9iSor55khERESUC09VfKZfv37Ytm0bkpKS0LZtW6xatcpU8yIisjzFikmWULNkCVCtGtC6tToXGgrs3JnfMyMiIiJ6Kk9dlfT555/HgQMHULp0afTp0wdTp041xbyIiCzTG2+o4+3bpb9hixZAjRrq/KFDwKlT+T83sh4PHkg2ukwZ+QKCiIgoj5mkXUXNmjVx+PBh+Pn5YcKECRgwYACSkpJMcWsiIsvSvr0qOpOSAqxcKUtJX3nFuBjN5s1AZKRZpkhW4KOPZB/rzZvAgAHA0aPmnhEREVk5k/UxLF26NP766y907twZv/zyC2bNmmWqWxMRWY7ChYFevdR46VL509EReP11tQcxORlYtYrFaCjntm4F5s1T4+RkoE8f4/6ZREREJmbSBvfOzs7YsGEDhg8fjgcPHpjy1kRElsNwOWlQEHD2rByXKJGxGM3atUBqav7PkQqmmzeBt9/OeP7SJaBnT2D37qx//v5bfueIiIhyQafX6/V5ceOjR48iPj4erVq1yovbW7TY2Fi4u7sjJiYGbm5u5p4OEZmaXg/UqiW9DAFg7FjjVhZ//gns3avGL70E+Pvn7xyp4NHrgU6dgG3bZGxvD1StCly4oK7p0cN4P2t6JUsC774L2Jn0e18iIiqgchKX5Nn/ORo1amSTQSER2QCdzjhruGyZcVawZUvgmWfU+Pz5/JsbFVzffaeCQkCq3b72GlCqlDq3eTNw717W9/jvPyA4OO/mSEREVotfKRIR5UafPmrJ6PXrwB9/qMd0OqBxYzW+ehVgQS56nLNngdGj1bhyZSAgAChUCHj/fdnbCki10t27AV9foE4d9VO8uHpuUFD+zp2IiKxCoexeWLly5RzfXKfTIZjfXBKRNSpfHnjuObVkdMkSoE0b48ft7aVyaXIycO2afNgnSu/hQ6B3byAhQcZubsDLL8sXDIUKAaNGybkRI+TxU6fk9+nDD9U9zp0DVq+W44sXJavo6pqvb4OIiAq2bAeGoaGhOb65Tvs2nYjIGr3xhgoM162TSpJFisi4cGEJDkNCZHzlCgNDytynnxr3vezdG3B3l+NatQBnZ2DYMFlmumOHnB87Vr6IqFtXxs88AxQtKpVLU1OBEydkSTMREVE2ZXspaUhISIaf4cOHQ6fTZfpYSEgIrly5kpdzJyIyr1dflQ/tgHwg//VX48cNA0H+95Ays2sXMGOGGr/+OlC6tBo3aCB/2tkBixZJ5VsASEyU5cxaBXB7e6B+ffW848elmA0REVE2ZTswrFChQoYfDw+PLB/TfnLj/v37mDp1KmrXrg1XV1d4enoiICAAixYtglZENSEhAfPnz0eXLl1QsWJFODs7o3LlyujVqxfOaZUC03n48CE+++wzVKpUCY6OjqhSpQqmTJmCJO79IaLccHOTxvYaraehxjAwjIwE4uPzZVpUQNy5A7z1lhpXrizFZjQlSwI+PmpctiywcKEa//sv8PHHauznp46jo1mEhoiIcsTiis+kpqaiQ4cOmDBhAho1aoQZM2Zg/PjxSElJQf/+/TF27FgAsrT1nXfeQVRUFAYMGIBvv/0WvXr1wu+//4569ephr2Gp+Ed69uyJyZMno02bNpg3bx6ee+45TJgwAYMGDcrvt0lE1uLNN9Xxzp0SAGrKlgWcnORYrwdysSSfrJReDwwaBEREyNjeHli8WPoVaho0UAWONF26AIMHq/HcuaqSqYcHUKWKeoxFaIiIKAeyvccwvxw+fBj79u3DiBEjMGvWrLTzQ4cORfXq1fHjjz/iyy+/RMmSJXHixAnUq1fP6Pl9+vRB/fr18dFHH+HYsWNp57dt24aNGzdi5MiRmPFo2c7AgQNRrFgxzJw5E++88w4CAgLy5T0SkRVp21aW/t28KXu7VqyQYiGALP+rVEn1O7xyBahZ03xzJcvx88/Ahg1qPHGiFIvRCtAUKqT2D6Y3Y4ZUwdX6G/bvD5w5I20tGjRQmcILF1iEhoiIss3iMoaxsbEAAC8vL6PzDg4O8PT0RJFHhR1KlCiRISgEgJo1a8LX1xf//POP0fkVK1YAAEZoVd0e0cbLli0zweyJyOYUKiR7vTSPW07KfYYESFbwgw/UOCAAGDfOOMOnFZ3JTJEiwPLl8rsHALduAQMGSBby2WelCA0gX1ScPJknb4GIiKyPxQWG/v7+KFasGKZPn47AwEBcvXoV58+fx7hx4xAUFITPP//8sc9PTU1FZGQkShtu3gdw9OhReHt7w8dwvwYAHx8feHl54ejRo7mec9myZY1+qlWrlut7EVEBZNjs/tQp4PRpNTYMDKOigLt3829eZHmSkuSLhLg4Gbu6AsuWye/G1avqOq3oTFYaNACmTFHjLVuAH36QJamGX5oGBbEIDRERZYvFBYYeHh7YtGkTihcvjh49eqBChQqoUaMG5s2bh3Xr1j1xP+APP/yAyMhIvGW4oR9AREQEvL29M32Ot7c3wsPDTfYeiMjG1K0rDcc1hlnD4sVV6wGAWUNb97//AYZfRH73nSw3NswWpi86k5XRo6WXpmbkSFm2zCI0RESUC9neY9gyk35IVx99u5nZY4D0Mfzzzz9zPKmiRYvC19cXL7/8MgICAhAVFYV58+ahd+/e2LhxI9q1a5fp8w4cOICRI0eibt26+OSTT4wei4+Ph6OjY6bPc3JyQvxTVAuMNCw2AVkO6274QZCIrJtOJ0VoxoyR8fLlwLRpkr3R6aQgyPHj8tiVK0/OBpF1OnUK+OILNe7VS7KHSUnGfQwzKzqTGXt7YMkSoE4dCQATEoC33wYOHpTfOS0gDAoCqlY16VshIiLrk+3AcN++fTl+LDcN7s+cOYOAgADMmjULQ4YMSTvfq1cv+Pr6YtCgQQgODoa9vb3R84KCgtCxY0d4eXlh69atcNIqAT7i4uKChw8fZvqaCQkJcHFxyfFciYjS9O4trQP0eqlMuns38MIL8ljlyiowDAmRa3Lx30cq4BYskH1/gGQEv/tOfg/Ons1e0ZnM+PgAP/4I9Owp40OHZCkzi9AQEVEOZTswDAkJyct5pJk1axYSEhLQvXt3o/MuLi7o2LEjvv32W4SGhqKKQUnu48ePo127dnB3d8fevXszXTLq5eWV5XLR8PDwLJeZEhFli7e3VCjduVPGS5aowLBSJXVdfDxw44a0siDbkZQErF6txh99BBQrJseGy0hr1sy66ExWevSQ/YZnzsh4+XJg6lQpUhMXp4rQtGjxNO+AiIis3FM1uM/OT05pwVtKSkqGx5KTk43+BCQobNu2LVxdXbF3794sX7NRo0YIDw/HtWvXjM5fu3YNERERaNiwYY7nSkRkxLAIzYYNkqUB5AN6mTLqMe4ztD27dgH//SfH9vYqw3frVs6KzmTFsDLuypWSiaxfX507fpxFaIiI6LEsrvhMzUc9vhYtWmR0Pjo6Ghs3boSHhweqPtorceLECbRr1w5FixbF3r17UcnwW/l0evXqBQCYPXu20Xlt3Mfwf6pERLnRtasEgYBkBtevV4+xbYVtW75cHbdrJz0HAbXEGAA8PYHy5XN3/0f/jwMAXLsG/P23cRGau3f5e0dERI+VraWkN27cQBnDb7tz4ebNmxlaSGRmxIgRWLJkCcaOHYszZ86gWbNmiIqKwvz58xEZGYl58+bB3t4eYWFhaNeuHe7evYvhw4fjwIEDOHDggNG9unbtmtb3sGPHjujUqRNmzpyJmJgYNG3aFAcPHsTChQvRt29fNG/e/KneHxERihYFunVTVUmXLgW0CsmVKwPaf6PCwoDkZNWHjqxbXBzw669qrH0RmduiM5kpXx5o2RL46y8ZL18O/PST/N5pAWFQkBSlISIiyoROr3/y2hIXFxcMGzYMo0aNQintW85s2rp1Kz7//HN07twZn332WbaeExwcjEmTJmH37t24efMmnJ2dUa9ePYwYMQLdunUDAPzxxx9o3br1Y+8TEhKCihUrpo0TEhIwZcoULFu2DJGRkfD29kb//v0xduxYFC5cOEfv63G0qqQxMTFwc3Mz2X2JqADYuVPtLdTpZJlguXJAYiLw5ZeAtkz+rbeM9x6S9Vq5UooTAYCLC3DzpnyJcPq0yioXKiTtJp6mENpPPwGDB8uxh4cUQbp8GQgMlHN2dvIaRYvm/jWIiKhAyUlckq3AcPz48Zg1axaSkpLQvn179OjRAwEBAUYFYDRxcXE4duwYduzYgWXLluH69eto0KABFixYgDp16uT+XRUgDAyJbFhKimRvIiJkPG2aVCsFgEWLgNBQOW7RAnj+eXPMkPJbp07A1q1y3KsXsGKFHP/yi2SPAWk58eiLz1yLipK9rElJMv71V3ntmTMlawlIgSSukCEishk5iUuytcdwypQpOH/+PN566y3s3bsX/fr1wzPPPAMPDw9Ur14dTZs2Rf369VGhQgUUK1YMbdq0wRdffAEPDw8sWbIER44csZmgkIhsnL29cSGQJUtU0Q/uM7Q9t28Dv/+uxlrm8L//VFAImKa3ZfHiQIcOarx8ufw+GhahCQpiERoiIspUtovP+Pj4YP78+YiIiMC8efPQtWtXODk54eLFizh8+DBOnTqFmzdvol69ehg5ciT279+PkydPsqgLEdmeN99Ux2fPAidOyLFhYBgRATx4kL/zovy3Zo3sJwWAEiWA9u3l2LBFxdMUnUnP8P+5mzcDsbEsQkNERNmS48oHbm5uGDJkSFrz+aSkJNy5cwfOzs5wd3c3+QSJiAocX1+gXj3pHQcA338PzJ8PeHkBTk7SzFyvl2WlNWqYcaKU5wyrkfboARQuLIGiqYrOpNe5szSyv3dPfs/Wrwf69WMRGiIieqKnbldRuHBhlClThkEhEZGhgQPV8eLFsmzQzg4wKIjFzI2VCwlRlWgBlc07e1Zli+3tgbp1Tfeazs7GexW1wNRwqer588D9+6Z7TSIisgoW18eQiMgqvP02oLXoSUqSiqSA8XLS4OD8nxfln5Ur1XHFikBAgBwbLiOtWfPpKpFmxnA56Z49Up20enXVYzM1VWWziYiIHmFgSESUF5ydgTFj1HjhQuD6dePAMCoKiI7O96lRPtDrjZeR9u4ty0XzouhMem3aSHVSQILAVaskM1mvnrqGRWiIiCgdBoZERHll8GCgZEk5TkwEpk+XAiSG5aK5nNQ6nTolS0Y1Whbv+HF1rkQJoEIF07+2vT3w+utqrAWo6YvQhISY/rWJiKjAYmBIRJRXihQBRo1S4/nzgRs3jAt/WFJgeOaMFCu5ft3cMyn4DLOFdevKktHkZOMlnKYsOpOe1hYDkOzghQsSiFaqZHyeiIjoEQaGRER5aehQ6S8HSJXIr782Xk4aEmIZS/rOnAHWrQNOn5bei7dumXtGBVdKivH+Qi1beO6ccdEZw6WdptawIVCtmhqvWCF/Gi5dPXeORWiIiCgNA0Miorzk6gqMHKnG338PFC2qxnFxwM2b+T8vQzduAJs2qXFiouxLS0gw35wKsr/+AsLD5VinA3r1kuNjx9Q1NWqYvuiMIZ3OuAjN8uXyBUSNGixCQ0REmcpVYHjv3j1Tz4OIyHq9/z5QrJgcP3gA/PCDqlgKmHc5aXy8BIFJSRKkRkVJwBAVJRnE1FTzza2g0rJzANCqFVCuHHD7tnHRmYYN834ehoFhcDBw5EjGTOXx45aRsSYiIrPLVWDo5eWFd955B0ePHjX1fIiIrI+7OzBihBrPmyf7vTTmCAz1euDSJZnXkiXAt9/KMte5c4EtW+SaS5eAP/7I/7kVZA8fAmvXqrEWnBnu58urojPpVa0K+PurcWZFaKKiWISGiIgA5DIwLFWqFBYsWIAmTZqgQYMG+Omnn3Cf+xSIiLI2fLgsKwUkM2cYcIWFSWGSvJScLMHJN98A3bsDXl7AM89IQZwTJ4A7d9S1J05I1UpAlkWeO5e3c7Mm27apFiQODsCrr8o/+1On1DV5WXQmPcOs4erVMhcWoSEiokzkKjAMDg7G77//jm7duuGff/7Bu+++Cy8vLwwePBjHDPdQEBGR8PCQ4FCzbJns5QNkGWdeVALV64FFi4AXXpDXb9hQMoRr18q+wscJDlbHGzZI/z16MsNqpC+9JP/cz52TJbuALOWsWzf/5tOjB2D36H/1t24Bu3bJsWERmvPn5csKIiKyabkuPtOuXTsEBgbi+vXrmDp1KkqXLo358+ejcePGaNCgAebPn484/o+GiEj58ENV+OPePeDff9Vjpl5Oeu8e0LMn0L8/sHNn1tUnixWTgHHuXGDAAHX+0iWgUCE5ZjGa7ImJUctwgcyXkRoWf8kPZcoAbduqsRa4Vq+uit+kpLAIDRERPX1V0pIlS+Ljjz/GpUuXsHPnTnTv3h3//vsvhgwZgrJly2LIkCE4ffq0KeZKRFSwlSghhWg0u3erYMuUgeH580DjxkBgoPF5nQ6oXRto3lyWOH74IfDRR7L88f33jfdBXrwowYPmzh3pcchCJVlbt072GAKAmxvQqZMUnQkNVdcYZuryi+Fy0g0bJHtZqJBxEZqgIP7dEhHZOJO2q6hSpQoqV64MNzc36PV6xMXF4aeffkL9+vXRs2dPRGv7LoiIbNXIkSpTExcnlSIBaW9giozc+vVScMRwX2CzZhL83bkjgeDzzwO+vhK8dO0KlCwp1/n6AnXqqOcdPizP1Vy8yGI0j2O4jPTVVwEnJ6n6qSleHKhYMd+nha5dAWdnOY6LU61JDIPUqCjjAJaIiGzOUweGKSkpWL9+Pdq3b4+qVati2rRpcHd3x1dffYVbt25hx44daNu2LQIDAzF06FBTzJmIqOAqVQoYMkSNDx2SLJNe/3QfzJOTgY8/loDEsKXQ8OHA3r1Ahw6SFTLcO9iypSxtNGSYXVq5EnjuOaByZXXuzz8lI0nGIiLkn7OmTx/5OzFcopmfRWcMuboCL7+sxloAW6KEcaDKIjRERDYt14FhaGgoPv30U/j4+KB79+7Ys2cPOnfujO3bt+PSpUsYNWoUSpQogbZt2+L333/HK6+8gu3bt5ty7kREBdPo0ZJNAqSvodb6J7fLSW/dAtq3B6ZPV+dcXCQA+OYboHBh2c+4b596vFo1oHXrjPfq1UsFL+HhwP79wGuvqT6MgGQlWYzG2KpVailm2bISUKcvOmO4dDO/GQb827fLElfAuJ/iuXMsQkNEZMNyFRhq2cEvvvgCAPDpp58iJCQEGzZswAsvvJDpcxo1aoSYmJjcz5SIyFqULQu8844aHzwoBV4Ms3nZdfiwZKL27FHnqlaVTGTv3jK+eRP49Vf1ePHiklnMLHvl4yOZRM3y5RJkvv66BJgAi9FkxnAZaa9eEgias+hMeu3by987IJlMbf8pi9AQEdEjuQoMd+7ciVatWmHNmjW4evUqJk2ahHLlyj32OZ07d8bPP/+cq0kSEVmdMWOkzx0gWaVjx2QPYHa/QNPrgR9+kCDOsNVF586SgaxdW8YPHkgQl5QkYwcHCfK0jGVmDLNLa9fKUtcyZYyXI7IYjXL+vPFewt695Z+PuYvOGHJwkP6VGi2QZREaIiJ6RKfX5/z/ABcuXMCzzz6bF/OxCrGxsXB3d0dMTAzc3NzMPR0islTvvQd8950cFykCfPCB7EF0dHz88xITZf/foUPqnE4nQWH79qpvHSBBZ2ysGvfsmXFfYXpRURIIasHk+vVSwAQAduwADhxQ1z73nPzYsgkTgClT5PjZZ2VJ5s6d6p9T8eLAsGHm2V9o6O+/jbPBISGyx/D2beDbb9X5t94CKlXK9+kREZHp5SQuKZSbF2BQSERkAh9/DMyfLwFYXJxknRo3Nr4mPl4+uBv+3LhhXGDG2VmWhlapIvsNs9KixZODQkACmZdeAjZulPHy5SowbNtWXl/bD/n33zJnreqlrdHrgRUr1LhPn4xLMs1VdCa9Zs2A8uWBq1dlvGIF8MkngKenBIhahjMoiIEhEZENytVS0sDAQLRp0wbh4eGZPh4eHo7nn38e69evf6rJERFZtfLlgX791Hj/fskybdoE/PKLFJP56is53rxZ9iJeumQcFGr7FatUefxrPfNM5sVmsmK4nHTLFrXE1c5OitFoWc2UFNtuc/D338ZFg3r3lqWlllJ0xpCdndp3CgBLl8p+Q8B4qSuL0BAR2aRcLSVt3749bt26hRMnTmR5TYMGDVC6dGls27btqSZYEHEpKRFlW0iIVAhNScn5c7t1A8aNe/LSU0dHCRzt7bN/7wcPgNKlVRD6889A//7q8VWrVNuKRo2Ajh1zNndrcOOGZEu1DFyTJhK8L14sf68AUKuW8d4+c/vnH7X/FACGDpVlpCkpwMyZKqB94QUgIMA8cyQiIpPJ86WkZ86cQadOnR57TaNGjbBly5bc3J6IyHZUqgS8+aZkBbPi7Cx716pXVz9+fhJQ5hVteeqiRTJevtw4MKxcWQWGuW2zUZDFxwNduqigEAA+/VSKzmhBIWD+ojPp+frKsuANG2T83XfyuzV8OFC3rgS2gCwnbdrUMpbAEhFRvshVYBgVFYVSpUo99hpPT0/c1vokERFR1r78UoKJS5ek1USNGsZBoI+PcUGZ/NKnjwoM9+yRJu5eXjI2bHp/5w4QHW3c69CapaZKMH/kiDo3dSrQqZMUndEUL26Ze/UWL5bWKKdPy/jDD+XvU8t4AvJ3GhYmew+JiMgm5Cow9PT0xOXLlx97zaVLl1DMVj4kEBE9jZIlgb17zT2LjFq3lj2MkZFSZGXVKmDkSHmsRAnAzU1VPA0JAerXN99c89OnnwLr1qlxv37A2LGyX89wi4Wfn2Vm3FxdZd+ov78sh01NlRYm+/cDFSpIQAhICxUGhkRENiNXX0E3a9YMmzZtwsWLFzN9/MKFC9i0aRNatGjxVJMjIiIzsreXgEFj2MRdpzPOGtrKctKffwamTVPjVq2AH3+Ufx7pi85YcqDs4yMFjbRqsnFxkvEsX15dwyI0REQ2JVeB4ejRo5GUlITmzZvj22+/xcWLFxEXF4eLFy9i7ty5aN68OZKTkzF69GhTz5eIiPKTYRXL48fVvkIgY2Bo7Y3R9+4FBg9W42rVpMejg4OMg4LUY9WrS29KS9awoQT7Wlbz+nXgo49UkaKUFODUKfPNj4iI8lWuAsNGjRrhu+++Q3R0ND744APUqFEDbm5uqFGjBkaMGIGYmBh8//33aJy+HxcRERUsDRpIqwuNYdbQMDCMi3t8D8WC7sIFqQKrtXcoXhzYulX+BCy/6ExWunaVPa6aEyeA336T5aWABLvWHvATERGAXAaGADBo0CCcOnUKQ4cORYMGDVClShU0aNAA7733Hk6dOoWBAweacp5ERGQOOp1xT8MVK1SgULQoYFiILDg4f+eWX27flnYc0dEyLlxYqnoaVoU9flwde3hYZtGZrIweDRj+P/vgQWDXLjnWitAQEZHVy1XxGU2NGjUwd+5cU82FiIgsUe/ewMSJcnzlCnD4sFSwBCRrqGUKr1yxvt53Dx9KVs0w6F2wAGjZUo3TF51p0MAyi85kRaeTthVXrkj1WUCCwxIl5L0EBbEIDRGRDTBD/XMiIipQqlaVRu4aw+WkVaqo47AwtdTSGuj1kknbt0+dGz9eWlUYunBBFZ2xswPq1cu3KZpM4cLA2rWyN1KzdasEi2fPqvdHRERW66kyhikpKbhw4QLu3r2LlJSUTK9pafitKhERFUx9+kimEABWrwZmzpRgokIFCYZSU4GkJClgYi3ZpSlTgGXL1LhnT+B//8t4XfqiM0WL5v3c8oKHh7SxaNJEls/q9cCaNcCAAVKEpmlTc8+QiIjyUK4Dw8mTJ2PWrFmIiYl57HVZBYxERFSA9OghjdBTUoD//pM9aB06SEVOHx+1D+3KlYIfGEZFSV/C+fPVufLlgTp1gBkzMl5v2NKhoBSdyUqVKsCvvwJt2gCJibKUdsUKCXYNM6dZ0enkHp07A4We6rtn5eZNCVidnICXX5Y+jEREZHK5+q/29OnTMXHiRLi7u+ONN96Aj48PCpnqfwBERGR5SpcG2rYFfv9dxsuXS2AIyD5Dw8CwTRvzzNEUYmNl+eimTepcsWJA9+4SKCUmZv1cDw/jSq0FVbNmwC+/qKJD0dHAkiWy19Kw2FBWTp2SoLBz56efy/378rsWGyvj1auBfv1MF3QSEVGaXP2Xdf78+fD29sbx48dRsmRJU8+JiIgsUZ8+KjD89VfJlBUpIsHQ3r1yPjwcSEiQ7E5BkpoKrFoFjBghGVGNoyPQq1f2loe2bl2wis48Tu/ewKVLwOefy/jGDeDHH6W4UMuWsoz4cYKCAC+vp8ugpqQAgYEqKARkqfJvv5km6CQiIiO5CgyvXbuGQYMGMSgkIrIlr7wCODsDDx5IULhpkwRNXl4SQD18KPvSQkONi5hYur17pbG74V5BQILb+fOB5s2ffA93d8kYWpPPPgOuXgV+/lnGqamynPTaNWDyZKBFC+Pr9Xr54uDGDRlv2yYZRh+f3L3+jh2Zt8owRdBJREQZ5KoqaenSpZFsTZXniIjoyVxdgS5d1FirTmpvb7yv8MqVfJ1Wrv3zD9Cpkyx9TR8UtmgBnD8P9O0r7+1JP9YWFAKS/VywQArQlCmjzoeFSWXW8eMBFxf1z6BSJSnQ4+ws16WkyNLPe/dy/tonT6piR4B80WA4h23bJEAlIiKTyVVg2KNHD+zcuRMPHz409XyIiMiSGTa7//13qV4JGO+ts/TAMDxc9hHWrSstGQxVqyYN33/7TSqu2jqdTvZXnjsHvPuu8VLZ5cslYFu4ULKJgATI3bur6+7fl8AyJ4XoIiKADRsk8/jPP8CRI8DGjdJLUlvC+jRBJxERZUqn1+v1OX1SfHw82rdvj2LFimHOnDmoVKlSXsytwIqNjYW7uztiYmLg5uZm7ukQEZlOUhJQtixw546M580Dhg6VfXnz5qnrPvxQlldakthYYPp0abXx4IHxY2XLAu3aSWD49tuyVJEyOngQGDwYOHPG+HyLFrIHsUYNGR84IEtBNQ0bSnbWkF4vvzfnzkl29vx54N9/JXsbFZX56/ftK301tY8uPj7AW2+xGA0RURZyEpfkKjCsXLkykpKSEBERAQBwd3dHsWLFMt5cp0NwcHBOb1/gMTAkIqs2dCjw/fdyHBAA7N8vH9RnzlQZnFdesZxG70lJwE8/SQ9Cw8IyAODpKcVUfH0ly9W1q2QSKWtJSfJ3/b//GQfYhQtLm49evSSTvHmzBH3x8fJTooT8nty+LT///Ze7jN/06cYtQjILOomICEA+BIYVK1aELpuV10JCQnJ6+wKPgSERWbX9+40LsoSEyB6zDRukVQEgPf+6dTPL9NLo9cD69cC4cVJh05CHhwQwHh4q29S4sWrBQU925Yp8SaBVqjU1OzvZt1ijhmQStc8TJUsCU6dKhVJN584sRkNElImcxCW5WnsRGhqam6cREZE1aNpU9t9pFSNXrwY+/lj2GWqB4ZUrEpiZq33D/v1SafTgQePzDg7A8OFSJGXrVrUksWJF4IUX8n2aBVrlyrIXc80a4IMPpBF9bhQpIr9P9vaSwfX0BBo1At5/XxWyOXFCAvekJMk0rl0rze5v3ZLHn7YCKhER5a74DBER2TA7OwmsNKtWyZ+GBWju31cf2vPThQuSqWzePGNQ2KePPD52LLBrlwoK3dykYIq9ff7Pt6DT6eR34fx5YMgQFcgVKyZ7AZs0kf6O9erJFwrPPy8N6tevl9YXV68CFy9K9rZbN1nW26qVBO/avQCgfn3JEmp+/11+xwwroK5Zw2I0RERPIVdLSQ2dO3cO58+fx/379/HGG2+Yal4FGpeSEpHVO3lSPqxrzp2TCpXffacCwvbtJRjIDzdvyp63n37KWAGzTRvgq68APz/ptbhggdprWKgQ0L8/4O2dP/O0dklJ8qdWPVSzfz+wc6caN2oEdOwoewV/+gmIiZHzjo7AoEGSNUwvNVUKBO3Zo67dsEGqlmofZcqXl2I0DPKJiADkLC7Jdcbw+PHj8PPzg6+vL1577TX069cv7bE///wTLi4u2LRpU25vT0RElqxuXeDZZ9U4s6xhfrStiIuTZutVq0pBHMOgsHZtWeq4a5cEhXq9tD0wLEDTqRODQlMqXDhjUAhIkaJatdT46FHg2DFZEqoFhQDw6quZB4WAZKoXL1Y9Ix8+lOxvy5bqmqtXge3bn/59EBHZoFwFhufPn8dzzz2Hy5cvY8SIEeiQbrN+y5YtUaJECaxdu9YkkyQiIguj0wGvv67Gq1ZJ4GUYGIaF5ax/XU7t3y/tJT77TJYVary9pbfe8eOStQRkbvv2AWfPquv8/S2ncqq10+mALl2A0qXVuS1bVEEZQJacPvPM4+9Trhwwf74anz4t1U/TB53Hj5tm3kRENiRXgeHEiRORmpqKo0ePYsaMGWjUqJHR4zqdDk2bNsXRo0dNMkkiIrJAhoHhhQuyvLRCBcnsAEBionHlSFO6eVOKj0RGqnMODrJs9K23JHM0ZYosL9V+du9W11aooIJGyh8ODrIf0XDvoKZ6dePM3+O8+qos/9XMmiUFbAyDzq1b8+53j4jISuUqMPzjjz/QrVs3PGu4jCid8uXLp/U5JCIiK1S9unHGbdUq2fdVrpw6lxfLSfV6aUKvNUHX6ST7N3y4NFrPbCmjIRabMZ/ixSWwM6xW6+kp/SNzUsH2m2+AKlXUeOBA2X9oWIxm9WrjTDIRET1WrgLDmJgYlC1b9rHXJCYmIjk5OVeTIiKiAiL9ctLU1LzfZ/jdd9KeQPP889J/sEiRJz/X2VmyVkWLmn5elD1Vq8rfl50d4O4uv0OOjjm7h6srsHy5Cu4jI4ExY6SyqRZg3rsnlUrzcjkzEZEVyVUfw7Jly+LcuXOPveb06dOoWLFibm5PREQFRc+eUgAEkOWbhw5JYPjHH3IuPBxISACcnEzzev/+C4wercaVKkmrg5dfzt7z3d2fnFGkvOfvD9SpI1VhC+Xqo4j0NZw4UfaYAlKh9KWX5IuCXbvk3NWr0tripZdMM28iIiuWq4xh+/bt8dtvv+HIkSOZPr5jxw789ddf6Nix41NNjoiILFzFisYtKVatkuIvDg4yTk2VIjSm8PAh0Lu3BJqABJuvvCK98rTG6E/6YVBoOZycch8UasaNA5o1U+MPPgBKljQuRnPkCHDixNO9DhGRDchVYPjpp5/C1dUVbdq0wSeffIKzj6q8BQYG4sMPP0Tnzp1RsmRJjBo1yqSTJSIiC9Srlzpes0b2ABquGDHVctJPPpEqlJpOnYCyZY3bZpBtKVQIWLZM9o0CQHw80LevZAhLlVLXbdki2WsiIspSrgJDHx8f7NixA6VKlcK0adMQGBgIvV6P119/Hd988w28vb2xfft2lDasEEZERNape3dVifTmTeDPP02/z3DXLmDmTDWuV0+yQvXrs4iMratYEZg3T42PHQOmTpW9i9oSZhajISJ6olw3uG/YsCEuXryIDRs2YMyYMRg4cCBGjhyJNWvW4MKFC6hfv36uJ3X//n1MnToVtWvXhqurKzw9PREQEIBFixZBr9enXbdz504MGTIEjRo1gpOTE3Q6Hf7Q9rVkIiYmBsOGDYO3tzecnJxQq1YtfP/990b3JCKiHCpTBnjuOTVeudI4MPzvPyA2Nvf3v3MHePNNNfbwAF58UY79/HJ/X7IeffoYZ66/+AI4cwZ47TVVjCY2FggMZDEaIqIsPNXi/kKFCqFLly7o0qWLqeaD1NRUdOjQAQcOHMBbb72FYcOGIT4+HitXrkT//v1x7tw5fPnllwCA5cuXY8WKFfD19UWNGjVw8uTJLO+bmJiIdu3a4cSJExg2bBhq1KiB3377DUOHDsXNmzfx+eefm+w9EBHZnF69gD175HjdOsngFC2qMjRXruSumbxeDwwapPoV2tlJ5UlHRwk+ixc3yfSpgNPppFrt/v1ScEavl/2oJ05Ib0uth2VYGLBjh1RFJSIiIzq9haXLDh48iICAAIwYMQKzZs1KO5+YmIjq1asjKioK0dHRAIDw8HB4enrC0dERX3/9NT766CPs3bsXzxl+c/3Id999h/feew9z5szBsGHD0s6/+uqr2Lx5My5duoQKFSqY5D3ExsbC3d0dMTExcNP2PRARWbOoKMkcJiXJePNmaXCv7QmsU0cCupxauFB61Glat1aN0Lt3Ny4yQvT335K9Tk2V8QsvSGuTdeuAR/UQAEjRotx8UUFEVMDkJC7JVcZw0qRJ2bpOp9NhwoQJObp37KPlRl5eXkbnHRwc4OnpiYcPH6ad8/b2zvZ9V6xYARcXFwwaNMjo/IgRI7B+/XqsXr0aY8aMydFciYjokeLFgfbtpcgHIMtJx4xRgeGVK5LFyUkT84sXpWm9pnZtoHlzOS5SBKhe3TRzJ+vRogUweTLw6acy3rEDmDYN+Ogj4PZt4NYtOb9lixSnSfdZg4jIluUqMHzcskvdo//p6/X6XAWG/v7+KFasGKZPn46KFSuicePGiI+Px+LFixEUFIQffvghx/NNTU3F8ePH4efnB6d0vbT8/f2h0+lw9OjRHN9XU7Zs2QyvR0Rkc15/XQWGGzcCM2aox+7fl72GhpUiHycpSfaNxcfL2M1NsjxakRsWnaGsjB0L/PWX9C8EpM9h8+bSc3P+fGl3kpwsrVUGD5YvGYiIKHeB4d69ezM9Hx0djaNHj2LOnDno2LEjhgwZkuN7e3h4YNOmTRg4cCB69OiRdt7V1RXr1q3DK6+8kuN73r17Fw8ePMg0w+jo6AhPT0+Es4w1EdHTefllqQKZkADExcmH85IlJSAEJGuY3cDw88+luqRm4kTjAjYsOkNZsbMDli6VpaIREbKstFcv2W/46qvAihWSvdaK0bzxBr9kICJCLgPDVq1aZflYly5d0LNnT/j7++P111/P1aSKFi0KX19fvPzyywgICEBUVBTmzZuH3r17Y+PGjWjXrl2O7hf/6BtnR0fHTB93cnJKuyY3IrWiCI9oa3mJiGyKqyvQubN82AYkIzNokHFg2KTJk+/z119SVVLTqxdQrpzaI8aiM/QkJUvK71/r1lKFNDJS+htu3y7ntEJJoaEsRkNE9Eiu21U8Tu3atdGlSxdMnTo1x889c+YMAgIC0K5dO3z11Vfo2rUrBgwYgH379qFMmTIYNGgQUnJYatrFxQUAjPYnGkpISEi7hoiInoLhF4LbtskHdE1oqCpOk5XoaMngaHXRypcHpk8Hzp9X1zRoYKrZkjVr0QKYMkWNd+2SLxxatABq1FDnDx8GTp3K//kREVmYPAkMAaB8+fL4559/cvy8WbNmISEhAd27dzc67+Ligo4dOyIsLAyhoaE5uqeHhwecnZ0zXS768OFD3L59O0eFbIiIKAsvvSSZQwB4+BA4eVLtC0xMlGqlWRXDTkiQfYVXr8rYzg5YtkwCSm3vNovOUE6MGWOcDZw4EfjjD9mvavilxebNsuyUiMiG5VlgePjwYTg7O+f4eVrwlllWMDk52ejP7LKzs4Ofnx9OnDiRIWt45MgR6PV6NGzYMMdzJSKidJycgK5d1XjdOuMM3+nTwJEjGZ937x7QsaNkGTXjxknRkKAgda5ePe4Ho+yzswOWLAG0L39TU6W/YXS0ZLe1gnTJycDq1bI3lojIRuUqMLx69WqmP1euXMGff/6Jvn37Yt++fTneCwgANWvWBAAsWrTI6Hx0dDQ2btwIDw8PVK1aNcf37dWrF+Lj4/HTTz8ZnZ89ezYKFSqEnj175vieRESUCcPlpDt3SqEYw1UZv/8uWUBNVBTQrp3a9wXIeOJEICQEuHtXnWfRGcopT08J+rQvFG7ckMx0sWLSW1NroRITI/tjWVmciGxUrhrc29nZpbWlyIxer0e1atWwZ8+eHC/RDAsLg5+fH+7evYs+ffqgWbNmiIqKwvz58xEaGop58+Zh6NChAIDTp09j06ZNAID9+/dj+/btePvtt1GpUiUAwLBhw9KKwCQmJiIgIACnTp3C8OHDUaNGDWzbtg0bNmzA+PHjMXny5Jz+Y8gSG9wTkU1LSgLKlgXu3JHx999LlubHH1VGpkgR4J13gAcPpAn5mTPq+V27Sh9ER0f5oP7vv3K+UiXgrbfy972Q9Zg+Hfj4YzX+3/+klcWffwKG1dabNAFefDH/50dElAdyEpfkKjDs169fpoGhnZ0dPDw84O/vjy5dumRZBfRJgoODMWnSJOzevRs3b96Es7Mz6tWrhxEjRqBbt25p1y1atAj9+/fP8j4hISGoWLFi2jg6Ohrjx4/H+vXrcefOHVSpUgVDhw7Fe++999hAN6cYGBKRzRsyRAJBAGjVSvZ1hYUBixerjIyDA/Dzz0BwsHrem28CCxcChQpJ78OZM9X13bsDtWrl69sgK5KaKlVzteXKOp0UpGndWjKKhgWOunUD6tQxzzyJiEwozwNDejwGhkRk8/78E3juOTnW6YBr12Q56ZEj8sH89m3pNWfYm3DYMGD2bFWsZt8++eAOSIZx5EjuL6Snc/s2UL8+cP26jEuXlgJJHh7A/PnyOCBfTAwYIJlvIqICLCdxSZ4VnyEiIhvWvDng5SXHej2wZo0cN2okVUt/+cU4KJwwAfjmGxUU6vXA8ePqcRadIVNIv9/w5k3Zb1iokOyN1VY6JSdLH8Sn6HFMRFTQMDAkIiLTs7cHevRQ45Ur5c/9+4FJk4w/cL/wAvD226oICCBFZ6Ki1JhFZ8hUAgKkn6Fmzx75wmLPHqBLF3WexWiIyMbkailp5cqVc/diOh2CDfeSWCkuJSUigiwbbdxYjefNA0aPloIzgASCHTtKOwutGM2jgmEsOkN5KjVVgsAtW4zPV60KvPwy4OwsWUQAaNoUaN8+/+dIRGQCeb7HsGLFikhKSkJkZCQAwN7eHp6enrh9+3Za/8GyZcvCwcEhw3NDQkJy+nIFDgNDIiLIctCqVYErVzI+VqgQMGuWZAW1jIyXl2QOExKMi8689hrg65t/8ybbcPcu0KuXtE9Jr1gxoGFD+XF0BF59FahdO9+nSET0tPJ8j+Hp06fh7e2NJk2aYO/evUhISEBkZCQSEhKwZ88eNG7cGOXKlcPp06cREhJi9ENERDZCpzPuaahxcgI2bgTef984ExMRIRmckydVUOjiAlSvni/TJRvj4QFs3w4cOGC8hBQAoqOl8NGsWcDu3cCKFcCjL8OJiKxVrjKGw4YNw++//45//vkn06xgQkICateujQ4dOmDOnDkmmWhBwowhEdEjZ84Yl/13dZXgr2VLGev1EiSePKmuKVxYeiECsh/shRfybbpkw86eBb78UoLA5GTjxwoVkv6GP/0E1KhhnvkREeVCnmcMN2zYgC5dumQaFAKAk5MTunTpgvXr1+fm9kREZC18fVVW0NNTCnxoQSGg9hlqFUwBFRQCsv+QKD/UrCl9Ni9fBoYPl32GmuRkaZ/i6yvLnCMinvxz96753gsRUS4Uys2T7ty5gyTD/3FnIikpCXfu3MnVpIiIyErodMD69cDBg7JfSysuY6hwYaBnT8nGxMWp85UqASVK5N9ciQCgQgVpnTJ+PDB3rvTWvHdPHktNBT76SLKL5co9+V7MeBNRAZKrjGGVKlWwdu1axMTEZPr43bt3sXbt2lxXLyUiIivi4gI8/3zmQaHG3R3o3l31MQTYooLMq2RJaa1y/br0OnRykvOpqcDataq67uMcOqSCSiIiC5erwHDIkCGIiIiAv78/lixZgtDQUDx48AChoaFYvHgxGjdujBs3buC9994z9XyJiMhaVawIdOsGFC8O1K8P1Kpl7hkRAW5uwIIFwAcfqF6bMTHApk2y97Bw4Yw/2nWpqcb7Z4mILFiuis8AwAcffIC5c+dCZ9iQ+BG9Xo9hw4bhm2++eeoJFkQsPkNERGSFJkwApkxR4xkzgJEjM163a5fsSQSk+unw4SpYJCLKR3nex1Bz8OBB/Pzzzzhx4gRiYmLg7u4OPz8/9OvXDwEBAbm9bYHHwJCIiMgKpaQAbdsCf/wh40KFgL//loqlhqKiAMOq7G+8AVSpkm/TJCLS5FtgSJljYEhERGSlIiOBevWAW7dkXL48cOKELIE2tGQJcOWKHNesCfToka/TJCIC8qFdBREREZFNKlsWWL5cLQ29ehV46y3pyWnIsNXK+fPA/fv5N0ciolzIdWCYkpKCb775Bo0bN4a7uzsKFVKdL06ePImhQ4fi4sWLJpkkERERkcVo21b2G2q2bJH9hoaqVweKFJFjFqEhogIgV4FhQkICnn/+eYwcORIhISFwdXWF4YrUSpUq4ZdffsHSpUtNNlEiIiIii/HZZ0Dr1mo8dixw4IAa29vLklNNUFDGrCIRkQXJVWD45Zdf4q+//sLkyZNx48YNDBw40Ohxd3d3tGrVCr///rtJJklERERkUeztgRUrgNKlZZySArz+OnDnjrrGsBfn3btqzyERkQXKVWC4cuVKtGzZEp988gns7OwybVlRqVIlXLt27aknSERERGSRypQx3m947ZrsN0xNlXGJEkClSur6oKD8nyMRUTblKjAMDQ2Fv7//Y69xd3fH3bt3czUpIiIiogLh+eeBiRPVeOtW4/2GDRuqYxahISILlqvAsEiRIrhjuFQiE6GhoSievnQzERERkbUZPx5o00aNx40D9u+XYxahIaICIleBYcOGDbFt2zbExcVl+vitW7ewbds2m25yT0RERDbC3l6WlKbfb3j7dsYiNMePswgNEVmkXAWGw4cPx82bN9G5c+cMLSlOnTqFzp07Iy4uDsOGDTPJJImIiIgsWpkywMqVgN2jj1bXrwO9ewPJycZFaKKigJAQ88yRiOgxchUYduzYEePHj8cff/yBGjVqYNq0aQCAokWLws/PD0ePHsX//vc/tGrVyqSTJSIiIrJYrVsb7zfcuRMYNgwoXpxFaIjI4uW6wf2kSZOwY8cOdO7cGe7u7rC3t4ezszM6dOiA33//HePHjzflPImIiIgs36efAh07qvEPPwDffAM0aKDOnTvHIjREZHF0en3OF7pfvXoVDg4OKFOmTF7MqcCLjY2Fu7s7YmJi4ObmZu7pEBERUX66dw9o3hw4fVrGOh2wfj1w8SIQHy/n2rUDmjUz3xyJyCbkJC7JVcawUqVK+OSTT3I1OSIiIiKr5uoKbNki+w4BKTbTty9QtKi6JiiIRWiIyKLkKjAsVqwYPD09TT0XIiIiIuvg4wNs3gw4O8s4Lg6YMgWIjZUxi9AQkYXJVWDYpEkTnDhxwtRzISIiIrIeDRtKGwudTsaRkbKkNDFRxixCQ0QWJFeB4eeff46///4bCxYsMPV8iIiIiKxH167Al1+qcViYBIepqcD585JJJCKyAIVy86TffvsNzz33HAYPHozvv/8e/v7+KFOmDHTaN2KP6HQ6TJgwwSQTJSIiIiqQRo+WwjPaF+oXLgC7dgEvvACcPMkiNERkEXJVldTOLnuJRp1Oh5SUlBxPqqBjVVIiIiIykpQEvPgisGePOtexowSHw4ap5aZERCaUk7gkVxnDvXv35mpiRERERDapcGFg7VogIECWkALAtm2AhwcQGgpUqmTW6RERZTsw3LRpE6pXr45nnnkGrVq1yss5EREREVkfDw9g61agcWPg9m1pVxEYCPj5AR9+aO7ZEZGNy3bxma5du2LVqlVG51avXo1u3bqZfFJEREREVqlyZWDjRsDBQcYPHwKTJrF1BRGZXbYzhpltRTx//jw2btxo0gkRERERWbWAAGDhQuCNN2QcHQ106gQsXvzkvYaFCgHVqgEuLnk+TSKyLbnaY0hERERET6FvX2DHDmDpUhmfPSttLWrVevJzPT2Bd98F7O3zdo5EZFNy1ceQiIiIiJ7SjBmytFSzaxeQnPzk592+DVy7lnfzIiKbxMCQiIiIyBxKlpQsobZ8NDoauHQJKF8+8x/D5aNXrphlykRkvXK0lDR9A3siIiIiegqvvQb07w/8/LOMd+wAvvsOKFEi47V//gloLcOuXAHatMm/eRKR1ct2g3s7Ozu4ubkZNUaMjY3FvXv34O3tnfnNdTqEhYWZZqYFCBvcExERUbaFhwPPPAPEx8t4xAhg1qyM1127JkVrAMkyfvwx4OSUb9MkooInzxrcx8bGIjY2NsP569ev52yGRERERCS8vYHRo6VtBQDMmwe89x5QtarxdV5egKOjtLjQ64HQUKB69XyfLhFZp2zvMUxNTc3VDxERERE9wUcfAWXKyHFSEjBuXMZr7O2BihXVmPsMiciEWHyGiIiIyNyKFgUmT1bjtWuB/fszXmdYxZSBIRGZEANDIiIiIkvQvz/g66vGo0bJklFDhoHh7dtATEz+zI2IrB4DQyIiIiJLYG8PfPWVGh8+DAQGGl/j6Qm4uqpxSEj+zI2IrB4DQyIiIiJL8eKLwAsvqPHYsVJsRqPTcTkpEeUJBoZEREREluSrr1TT+5AQqVJqKH1gmL3OY0REj8XAkIiIiMiS1Kkj+w01kycDd+6osWFgeP8+8N9/+Tc3IrJaDAyJiIiILM3kyYCLixxHRwNTpqjHXF2BkiXVODg4X6dGRNaJgSERERGRpfHykt6GmnnzgMuX1bhKFXXMfYZEZAIMDImIiIgs0ejRWTe9N1xOGhYGpKTk79yIyOowMCQiIiKyRI9rel+hAmD36GNcYiJw/Xr+z4+IrAoDQyIiIiJLlVXTe0dHoFw5dZ7LSYnoKTEwJCIiIrJU9vbA11+rsWHTe/YzJCITYmBIREREZMnat8/Y9D452TgwDA8HHj7M/7kRkdWwyMDw/v37mDp1KmrXrg1XV1d4enoiICAAixYtgj5dE9fDhw+jbdu2cHV1hZubG1588UWcPHky0/tGRETgzTffRMmSJeHs7IyGDRsiUPvWjYiIiMhSpW96f/gw4O0NODjIudRUIDTUbNMjooLP4gLD1NRUdOjQARMmTECjRo0wY8YMjB8/HikpKejfvz/Gjh2bdu2hQ4fQqlUrhISEYNKkSfjf//6HS5cuoUWLFjhz5ozRfaOiotC8eXOsX78e7777Lr755hsULVoUPXr0wC+//JLfb5OIiIgo++rUAZo2VeOtW2WZacWK6hyXkxLRU9Dp06fgzOzgwYMICAjAiBEjMGvWrLTziYmJqF69OqKiohAdHQ0A8Pf3x/nz53Hu3Dl4e3sDAMLDw1GjRg00adIEO3bsSHv+mDFj8NVXX2HTpk3o3LkzACAlJQVNmzZFcHAwwsLCULRoUZO8h9jYWLi7uyMmJgZubm4muScRERHZuKlTgU8/leO6dYGTJ4FDh4Dt2+VcyZLAe++ZbXpEZHlyEpdYXMYwNjYWAODl5WV03sHBAZ6enihSpAgA4PLlyzh69Ci6d++eFhQCgLe3N7p3745du3bhxo0baedXrFiBKlWqpAWFAGBvb49hw4YhKioK27Zty8u3RURERPR0XnpJHZ86JfsKDfcZ/vcf8OhzFBFRTllcYOjv749ixYph+vTpCAwMxNWrV3H+/HmMGzcOQUFB+PzzzwEAR48eBQA0NVxW8UiTJk2g1+sRFBQEAIiMjER4eDiaNGmS6bWG9yMiIiKySHXrAmXLqvG2bZIlNFzxFBKS//MiIqtQyNwTSM/DwwObNm3CwIED0aNHj7Tzrq6uWLduHV555RUAUkgGgFG2UGO4rDSn1+ZGWcP/SEP2SRIRERGZlE4nWcOFC2W8bRswaJBkDU+flnNXrkgASUSUQxaXMQSAokWLwtfXF6NHj8b69euxYMECVK1aFb1798bOnTsBAPHx8QAAR0fHDM93cnIyuiYn1xIRERFZrI4d1fGuXdKiIn0/Q8sqH0FEBYTFZQzPnDmDgIAAzJo1C0OGDEk736tXL/j6+mLQoEEIDg6Gi4sLAOBhJj17EhISACDtmpxcmxuRkZFGY22TJxEREZFJPf88ULgwkJQE3L8P/P034O+vHr93T/YaliplvjkSUYFkcRnDWbNmISEhAd27dzc67+Ligo4dOyIsLAyhoaFpxWkyWwKqndOWiebkWiIiIiKL5eYGtGihxtu2ybmSJdU5tq0golywuMBQC9RSUlIyPJacnJz2Z6NGjQBIe4v0Dh06BJ1OhwYNGgCQPYDe3t44dOhQptcCQMOGDU3zBoiIiIjykuFyUq2qevrlpEREOWRxgWHNmjUBAIsWLTI6Hx0djY0bN8LDwwNVq1ZF1apV0bBhQwQGBqYVlwGk0ExgYCDatGmDMmXKpJ3v1asXgoODsXnz5rRzKSkpmDt3LooVK4aXDEtAExEREVkqw88sFy4AwcHGgWFoKJDJF+xERI9jcQ3uw8LC4Ofnh7t376JPnz5o1qwZoqKiMH/+fISGhmLevHkYOnQoAODAgQNo3bo1ypUrh2HDhgEA5s6di5s3b2L//v2oa1CV686dO2jQoAHu3LmDkSNHwtvbGytXrsQff/yBBQsWYMCAASZ7D2xwT0RERHlGrweqVFGtKebMkeqk06cDWmX0t98Gypc33xyJyCIU6Ab3FSpUwJEjR/DGG29g7969GDZsGKZNmwYfHx+sW7cuLSgEgICAAPzxxx+oWLEixo8fjwkTJqBq1ar466+/jIJCAChRogT279+PV155BfPmzcPw4cMRExODVatWmTQoJCIiIspTOl3G5aROToBhvQQuJyWiHLK4jKE1YMaQiIiI8tRvv6klpY6OQFQUcPgw8Oefcq58eckaEpFNK9AZQyIiIiJ6gueeA5yd5fjhQ2DPHuN9htevy3kiomxiYEhERERU0Dg7A23aqPG2bUC5coCDg4xTU4GwMPPMjYgKJAaGRERERAWRYXXSbdsAOzugQgV1jvsMiSgHGBgSERERFUSGgWFYGHD2LPsZElGuMTAkIiIiKogqVgQe9X8GIFlDw8Dw1i3g3r18nxYRFUwMDImIiIgKqvTLSUuVAooWVee0XodERE/AwJCIiIiooDIMDPftA2JjuZyUiHKFgSERERFRQdW8OeDqKsfJycDOncaBYXAwwJbVRMZCQoAtW4Br18w9E4vCwJCIiIiooCpcGHjhBTXetg2oVEmN790Dbt7M/3kRWaorV4AlS4Bjx4BVq4CkJHPPyGIwMCQiIiIqyNLvM3R1BUqXVueOH8//ORFZouhoYO1alUWPi2PW0AADQyIiIqKCrEMHdXzzJnDiBODnp86dPs2sCFm/hARp25LV0umkJMkQxscbn+c+3DQMDImIiIgKsrJljQPBbduAOnWAQoVknJAA/PuveeZGlB+io4HGjaWFy+DBGYNDvR7YvBm4cSPjcxkYpmFgSERERFTQGS4n3boVcHYGatVS54KC8n9ORPllzBjJjAPA/PnA+vXGjx86pB4HgAoV1HFkJPDgQd7PsQBgYEhERERU0HXsqI6PHAH++w9o0ECdu3ZNGt4TWZs//5Rg0ND770sWEZAKpDt3qsfKlQP69gWcnGSs17Pf5yMMDImIiIgKukaNgBIl5FivB37/HfDxAUqWVNcwa0jWJiEBeOedjOdv3JAsYnQ0EBgIpKbK+aJFgR49pJqvYfVeLicFwMCQiIiIqOCztwdefFGNt24FdDrjrOGpUyxCQ9ZlyhTg4kU17txZHc+fD0yerIrN2NlJUOjmJmPDfp8MDAEwMCQiIiKyDobLSX//XRre161rXITm7FnzzI3I1E6fBr78Uo3feQdYswZ49ll1bvFi+fcAkOq95curxwwDw6go4O7dvJ1vAcDAkIiIiMgavPCCZEUA+ZB7+LAUoalZU13D5aRkDVJSgEGDVNBXtqwEiU5OwE8/qevu3AH++guoXx9o2ND4HsWLA+7uasx9hgwMiYiIiKxCiRJAkyZqvHWr/Gn4gfjqVRahoYLv22+lyJLhuFgxOS5f3ngJ9f79st9WpzO+h07H5aTpMDAkIiIishaGy0m3bZM/WYSGrElYGPDpp2rctSvQrZscx8TIctK2baXQDCCFZ959V7KM6aUPDNP3P7QxDAyJiIiIrIVhP8NTp4DwcBahIeuh10uQFxcnYzc3yRYC8ju9erUUm3FyytjCRbvOkGFl0vh44ObNvJt7AcDAkIiIiMha1K0LeHmpsZY1ZBEasgarVgG//abG06fL77teD2zZAkREqMdGjpRsoubTTyXbaKhoUaB0aTUODs6beRcQDAyJiIiIrIVOZ5w11AJDFqGhgu7OHeCDD9S4RQspQANIRvDUKfVYvXrS2/Pbb1V7irg4yTamXy5apYo6tvF9hgwMiYiIiKyJYWC4cyfw8KEcGy4nZREaKmhGjQL++0+OHRyk+qidHRAaKu1ZNF5eQKdO8iWJl5dkFTW//SZZR0OG+wyvXlWVTm0QA0MiIiIia9K2LVC4sBzHxQHLlslx+fKAp6e67vjx/J8bUW7s3Ck9CTXjxwPVq0uxmcBAKTADAEWKAD17qmXTgGQVW7RQ4w8+kOyjpnx5wN5ejpOSgGvX8u59WDgGhkRERETWxNUVeO01NZ48GUhMZBEaKpji44HBg9W4Vi3g448ls7d6tSpEY2cH9Ohh3JtQO//TT5JlBCTrOGqUetzBQSr3amx4OSkDQyIiIiJr89lnqtl9WBiwcKEcGxahefAAOHfOPPMjyq6JE1XzeZ0OWLBAMuLpi820bw9UqJD5PapXlyyjZvFiYNcuNWY/QwAMDImIiIisT/XqQJ8+avx//yfVSF1cjIvQHDuW/3Mjyq7jx4GZM9X4/feBJk2Ao0eBkyfV+bp1AX//x9/r448l26gZPFiykYBxYBgRIV+a2CAGhkRERETW6LPP1N6p8HBZTgdkLEKjFfQgsiRJScDAgWr/oI+PfMERFgZs366uMyw28zgODpJt1K67cgV46y3gzBm5h6OjnNfrpaCNDWJgSERERGSNqlYF+vVT46lTJUOSvggNW1eQpdEa2Z84oc59952cX7MmY7EZrdjSkzRpIllHzdq1QJ060triwgWVQbTR5aQMDImIiIis1YQJ6kPzzZvy4TqzIjQ2XKKfLNDXX6t9sQDQuzfw4osZi810756x2MyT/N//ATVqGJ87flz2Hc6YIYHnxo02WZiJgSERERGRtapQQZbjab78Erh3T/ZkactMHzwAzp41z/yI0lu/XvYDavz8gB9/BLZulSXRmhdeACpWzPn9XV2BQ4ckCPT1NX4sNVUKMs2fD5QrB4weDfzzT67eRkHEwJCIiIjImn3yido/dfs2MHduxiI0XE5KluDYMaBvX1kyCgDe3sDmzRKsGS4rrVsXaNw496/j5gaMHAmcPi2v+f77QPHixtfcuiXBY+3aQMOG0i/RyjEwJCIiIrJm5coZ94H7+mtpDG64nDQsjEVoyLyuXgU6d1YVQYsUkZYUycnAb7+p68qWzV6xmezQllXPnSvVSMeMAZ55JuO9g4KkR+LAgWofohViYEhERERk7caNA5yd5fjuXWDWLFlmWqKEuub4cfPMjSg2VoK9GzdkbGcHrFolbSQMi824uOSs2ExOODpKi5devSSb2LGjcXsLQPY9Nm4MnD+f9X0uX1YZzwKGgSERERGRtStTBnjvPTWeNUsCRMOs4cmTpi24cecOsGyZfLBPTDTdfcm6JCcDr78ubSM0M2dKsZk1a4D79+WcVmymWLG8m4vWz7BoUVk+unMncPiwLF3V/POPPLZ8ecbnBwXJ7/zatQXyd56BIREREZEtGDNGlucBkqGZMQOoV8+4CI1hf7in8eCBfEC+fFkK2+zfb5r7kvUZOdJ4qejQocCwYcC2bcD16+p8u3ZApUp5O5eiRYFSpdQ4JATw9wcOHjRejh0XJ3sh33lHLX29dk3mDAD//it7IwsYBoZEREREtqBkSeCDD9T4m2/kA279+upcUNDTF6JJTQXWrZOMpOby5ae7J1mnuXPlR/Pii/J7efy48dLmOnWkB2F+0LKGgOpn6OwM/PADsGKFBI+a+fNlaenx45LdTElR17dpkz/zNSEGhkRERES2YtQoqcgISFA4fbqU/S9dWl2zbZtkP3Jrz56MgWBEhMqsEAHyezZihBr7+kqfwogI4wximTJSlMYUxWaywzAwDAsz7vHZq5d8cVKnjjp35gwQEAAcOCBjnU6WvHp45M98TYiBIREREZGtKF4c+PBDNZ43D4iKkj1eWnGalBTJfty7l/P7//svsG9fxvN6PRAamqspkxU6fVqKyGhFZUqVkgqkOp1x5s3FRX4386LYTFYqVpT9jIDsuTVczgpI1dJDh2QZqebhQ+m/uHkz0LKlcXBZgDAwJCIiIrIlH36oshkPHgBffCHj115TWZl794w/oAPyIX7XLnn+t9+qD/WaW7eAjRvVuHhx4wbk2rI8sm2RkVKBVCsq4+QEbNokPQtXr1bndTr5nczLYjOZcXAAfHzUOLPfW2dn4McfgSlTjIPW48fl34+LF/N+nnmAgSERERGRLXF3B0aPVuMffpCsSJUqQNu26vy1a7Kk7/p1+QBcpYoUAJk9W4qDTJumrn3wQNoLaJUYHRwk01OzprqGgSE9eAC8/LLxUuWlS2Wfnva7pnnhBfNl3jLbZ5je9evy5cg77xgXrDl1Sqr9rlqVt3PMAwwMiYiIiGzN8OGAp6ccJyYCU6fKcUCA7PVKSZFebSNHSr/DCRMyLgWdOBE4ckQVm4mKUo+98op8WDb8gH3nDhAdnYdviize7NnAsWNq/MUXkhVMX/Sodu38KzaTGcPf2/BwICHB+PF79yS7mZIi/x4NGwa8+aZ6/P592Z9YwDAwJCIiIrI1RYsCH3+sxgsWyAfZ4GAJ9ubMkQ++ly5lXDKq7UVMTpaG4Nu2GRebadFCZQpLlFDFbgAp/0+2KSYG+OorNe7bV34HDds8AFJs5uWX86/YTGa8vKThPZBxf2xKChAYqPbg6nRSlGbxYmnRUqQI8NJLwEcf5fu0nxYDQyIiIiJbNHSoqkaalCQZmmrV5MN7bKzxtW5usvz08mXg11/V+cuXgc8+U+OqVYHWrdVYp8vesjyyfrNnqxYmzs7ye3b/fsY2Dz175m+xmczY22e9P3b7duDqVTVu21aWWQPyRcmxYxIk2hW8MKvgzZiIiIiInp6LCzBunBrfuGH8uL098Oyzslfwgw+AGjXkw/ILLxi3GThxAjh3TgrYvPpqxg/E6QNDvd7U74QsXVQUMHOmGr/3nvTVNKx+a2ltHjL7QuP4ceDoUXW+Vi1Zfm2oenW1TLuAYWBIREREZKsGD5ZqkIYqVwb+7/8kK7JggQSHdnYy3r5drpk4EShbVj1n82agVSu1zNRQpUrqOC5OqpeSbZkxQ2WhixQBxoyRYjOGRWjatbOsNg+Gc7l9Gzh7Fti6VZ0rXRro0sW8S15NjIEhERERka1ycpL+ce3bA2+8AezeLfsKP/lE9lk1ayZZEc3Ro5I12bpVCszY28v5Bw9kT1X6/YgA4OpqXLWRy0lty+3bwDffqPEHH0hAaFiExtcXaNo0/+f2OJ6e8rurCQzMuOTVwcE8c8sjDAyJiIiIbFm9epIJXLIEaNPGeCmoTidZEW0vIiA95y5dkmCvXTt1ftcu2UeWGe4ztF3Tp0umGJC9qq+/njHzZu5iM5lJvz9WWwKt08mS6eLFzTOvPMTAkIiIiIiy5uAg2REnp4yP9eol2UbNuHHSxy09ww/YoaEq80LW7cYN4Ntv1fj994EdO4wzb6+/brmZt8yWtj7/vBRZskIMDImIiIjo8YoXl35zhlkdDw8pFrJokXFPxN69ZWmpoQoVVCYyKcl4bxlZr2nT1O+Ch4dUvjUsNvPaa5ZTbCYz6QPDWrVkebWVYmBIRERERE9WtSrw4ovygb5oUcn0ODtL37mff1bXnT0rxUUMOToC5cqpMZeTWr/r14EfflDjUaNkCbKmWTPV5sFSuboCDRvKccWKVldsJj0GhkRERESUPY0bS5GZ4cON9x127gwMGaLG335r3LQc4D5DWzN1KvDwoRx7egIdOqjKpDod0KiR+eaWE506ye/8W29Z7pJXE2FgSERERETZ5+KS+QfkGTOktYWmf3/j1hSGgWF4OJCQkHdzJPMKC5NWJ5qPPwbOn1fjatUAd/f8n1duFSli1ZlCDQNDIiIiInp6Li7AihVA4cIyvnULePttVc3R21uWlAJyLjTULNOkfDBliuwlBSSz3KeP8TLSBg3MMy96LAaGRERERGQafn4SFGi2bgW+/16O7e1ln5aGy0mtU3Aw8MsvajxuHHDhgvqCwM1NMoZkcSwuMPz888+h0+my/CmsfQv1SGBgIAICAlCkSBG4urqiRYsW2JZ+TfsjqampmDVrFqpXrw4nJyf4+Phg1KhRiNN6qxARERHR0xk9GmjdWo1HjQL+/VeOuc/Q+k2apNpReHsDgwYBx4+rx+vXN+6VSRajkLknkF63bt1QNZPeIKdPn8ZXX32Fzp07p5378ssvMXbsWNSvXx+TJ08GACxbtgydOnXC0qVL0adPH6N7fPjhh5gzZw66du2KUaNG4dy5c5gzZw5OnDiBXbt2wY6/pERERERPx84OWLwYqFsXuHtX9hL26AEcOWIcGN6+LcVI3NzMN1cyrfPngWXL1PjTT6U1iWHRGT8/88yNnkin12t5Xcs2ePBg/PTTT9iyZQs6duyImzdvonz58njmmWdw/PjxtExiUlIS/Pz8EB4ejtDQULg9+o/Nv//+i9q1a6Nr165Yt25d2n3nzp2L4cOHY/ny5ejdu7dJ5hobGwt3d3fExMSkvT4RERGRTVm7Vvocavr1k7YWM2eqXnavvALUq2eGyVGe6NULWLVKjitUAC5elN+Dixfl3DPPSJ9Lyjc5iUsKRIosLi4Oq1atQrly5fDiiy8CAA4cOIDExET06dPHaHlp4cKF0bt3b9y9excbN25MO79y5Uro9XqMGDHC6N6DBg2Ci4sLlhl+u0FERERET+e114D33lPjRYskk8jlpNbpn3+A1avVeMIEaW7PojMFRoEIDAMDAxEbG4t+/frB3t4eAPDwUV8UFxeXDNdr5w4dOpR27ujRo7Czs4O/v7/RtU5OTqhXrx6OHj2a6/mVLVvW6KcaN9QSERERSQsLw6WDQ4cCqalqfOWKKkpCBdvEiervsnJl4M03gRMn1DlXVxadsXAFIjBcuHAhdDod3n777bRztWrVAgDs2bMnw/V79+4FAFy7di3tXEREBDw9PeGolUk24O3tjdu3byMxMdHUUyciIiKyXY6OwJo1ah/hgwey70z7zHX/PvDff+abH5nGiRPA+vVqPHGiVKE1LDrj58eiMxbO4v92Lly4gH379qFNmzaoVKlS2vnatWujXbt22LhxI8aMGYNz587h3Llz+Pjjj/Hbb78BAOLj49Ouj4+PzzQoBCRrmP76nIiMjDT6uWSYMiciIiKyZVWqAAsXqvGFC8Du3SqTlJvlpKmpzDRakokT1fGzz0rfwsuXWXSmgLH4wHDho/+QDBw4MMNjq1evRrdu3fD111+jZs2aqFmzJtasWYN58+YBgNEGSxcXl7Tlp+klJCSkXUNEREREJvbaa8D776vxkSPAyZNynNPA8M4d6Y04bRr3KFqCo0eBzZvV+PPPJVsYFKTOVa0KuLvn+9QoZyw6MExOTsaSJUtQokQJdO3aNcPjHh4eWLduHSIjI/HXX3/h+PHjCA4OhpeXFwCgevXqadd6eXnh9u3bmQaH4eHh8PT0hIODQ969GSIiIiJb9vXXxsVHtm0Dbt0CQkNV37snefhQql7+958cb9vGzKG5TZmijmvVktYksbGqEinAojMFhEUHhps3b8bNmzfRt2/fLJeBAkDp0qXRokUL1K9fH3Z2dmkN7l966aW0axo1aoTU1FQcOXLE6LkJCQk4efIkGjZsmDdvgoiIiIjUfkMtc5ScDAQGyj7D8PAnP1+vB3791XhP4u3bwNWreTJdyoZ//gE2bVLjzz6TfYTHjxsXnXnmGfPMj3LEogNDbRnpgAEDsv2cY8eOYcGCBWjVqhWaN2+edr5nz57Q6XSYPXu20fXz589HfHw8+vTpY5I5ExEREVEWKleWXoaa27eBrVuB4OAnP/fvv4Fz5zKeN1yySPnryy/V8TPPAK++Kvs/WXSmQCpk7glkJSIiAtu3b4e/vz9q166d6TUTJkzApUuX4O/vD3d3dxw/fhy//PILvL29sXTpUqNra9eujffeew/ffvstunXrhpdeegnnzp3DnDlz0KpVK5M1tyciIiKix+jWDRg+HJgzR8anT0t/w9ats37OpUvAo6rzAIAiRYC4ODk+exZ48UWAtSLyV0gIsHKlGo8ZI3sLL140LjpTv7555kc5ZrHh+6JFi5CSkpJp0RmNn58frl69iilTpuC9997Dzp07MWzYMAQFBcHHxyfD9bNnz8bXX3+Nf//9F++99x5WrVqFYcOGYcuWLbDjNxlERERE+eOrr4C6ddV4+XLg2LHMr71zB1i3Ti1NdHcHBg0CHlWVR3KyBJeUv776Su0N9fYG3nhDjtMXnSlWLN+nRrmj0+u5Y9fUYmNj4e7ujpiYGKPKqERERET0yOXLQO3awKPq8KhYUQI8V1d1zcOHwIIFal9hoULA228DXl7Ab78Bhw/L+ZIlgaFDJUNFee/GDfn70oo6zpwJfPihZApnzVJB/OuvAwbFICn/5SQuYZqMiIiIiPJf1arAu++qcWgoMGSICir0emDjRuNiM506SVAIGFe6/O8/4Nq1PJ8yPTJ7tgoKixeXDC4gje4Ni85Uq2aW6VHuMDAkIiIiIvPo0QNo3FiNV6wAKlUCRowA5s6Vqpeaxo2BevXUuFQpwHDrUFZLUcm0oqOB775T4+HDgaJFMxadqV9f9hxSgWGxxWeIiIiIyMpVrgy0awdcv65aVoSFAd98I8fOzsCzzwItWgAG1ebTNGigMoVnzwIdOshzKO989x1w754cFykCDBsmx8HBQEyMHOt0Uo2UChRmDImIiIjIPEqWlGIyPXoAFSpkfPzBA+DkSckeli4NdO0qFUzv3JHHa9UyLkJz6lS+Td0mxcfLMlLNkCGylBQwLjpTpQqLzhRADAyJiIiIyDx0OskaurkB/fpJC4tXX5UgMX0hmQcPpMF9v34SJL7wgjS3N6xuGhSk9riR6S1cqPZ8OjgAI0fKcWystKnQGO7/pAKDS0mJiIiIyHwqV1btJu7cAXx95Sc+XpYqnjgB/P67ql4KSJuEnTuBDz6QYEWrTqoVoSlfPv/fh7VLSgK+/lqN33pLFQI6cUL2GAKy3/CZZ/J/fvTUGBgSERERkflUrpz5+VatgI4d5TguTgLBX38FNm8GoqLk/Pbtkln08VF7DYOCGBhmJT5eWn44OOT8uStWSIYWAOzspKE9kLHojJ8fi84UUFxKSkRERETm4+YGeHoanytfHnjxRTUuUgR45RVg0SIgIkJdn5ICrFljvHTx339l2SkZO3ZMMn7ffANERubsuampwJdfqnH37tJuBAAuXDAuOlO/vmnmS/mOgSERERERmVeVKurYzU2K0WSVdXJ0lMc1K1ZkLEKjLU0lceUKsHWrBHhxccDq1ZI9zK6NG4Fz59R43Dj5MzpaMriaypUBDw+TTJnyHwNDIiIiIjKvFi2AcuWAMmWAXr1kn9rj9Omjjg8elGWkdeqocyxCo0RHA2vXGv/ziI4GAgPVvsDH0euBL75Q45dekoI/SUnAqlUqwLS3B1q3NuXMKZ8xMCQiIiIi8ypaFBg4UNoflC375OubNgUqVVLjFSuMl5PeuqX2HNqy9MGboZAQ2bf5JLt3A0ePqvG4cRIsbt4M3LihznfoIME9FVgMDImIiIioYNHpgN691Xj5cqBUKePAxLCvni3KLHjr2BF49lk1PngQOHPm8fcxzBY2by4/hw8bL9f182OLCivAwJCIiIiICh7DwPD8eWmZYItFaBISMs8IHjqUMXhr2BDo2tW42M+mTcbBo6EjR4A9e9R43DjJNO7Yoc6VKyfLS9P3naQCh4EhERERERU8NWsC9eqp8fLlUoTG0VHG1l6E5tix/2/vzuOqqtY+gP8O8yCjOMBhEHDGCAecTTNLDYdQcUgzEfFKmZFoZb6l13JICct7yQGnq2nmPLypXSyzUkjz1XKorpiGgqLeDCXkKPC8f+zOOWzPUcFEDpzf9/Ph415rr7PPPrTY8bDWehYwaJAyDdfVFXBxUbK5tmqlrNn829+AXbuAffuAU6eUpDN79yp7PQ4davw+3W26adnRwkcfVabwll2bWKuWkgjIjjvg1QQaEa7MfdCuXbsGDw8P5Ofnw93dvapvh4iIiKhmSk4GJk9Wjn19lXWFn32mjHQByvTShISaM5oloozgzZ6trP27X4GBSrKe0lLluG5dJTPsiBHKHoUAcPKkEmjrrV6tBJf6rS5sbIBRo7hnpIWrSFzC8J6IiIiIqqdhw5SN1kWUgGXfPmXETB8YXroEnD8PBARU7X3+VSUlwNatwJw5ykjhX5WdbdysHlC2+ggIAL78EoiNBSIj1fsWNmyotMnKMtb17s2gsIZhYEhERERE1ZNWC3TrpkyRBJTppMuWKevezp9X6g4frr6B4c2bwEcfAXPnKhvJ3y48HHj9daBdO+DKFWW94IkTyrTQwkKgTh1ltPTKFeXr4kXgt99Mr1NUpEw3PXUKWLECcHBQpuLqDRoEHD9uLLdsqaxXpBqFgSERERERVV/DhxsDw40bgdRUJQmNPjA8fhzo2RNwdq66e6yoggJgyRIgJQXIyTE936WLEhD27m2cJnvpkrLW79FHlXLLlkC/fupptCLA2bPAN98oX19/rd64Xu/mTeNxvXqAvb2xrNUq2U1ryvRcMmDyGSIiIiKqvgYOVEa4AODaNeDTT02T0NxrSwZLsnGjMkUzKck0KOzTRwnovvpKnQn07Fl1ptA7BW8ajbL/43PPAYsXK+sIL18GVq1Sgk1/f+MaQ70OHYx1rq7AkCFMNlND8b8qEREREVVfnp5KwLR5s1Jes0YJFsPDjRuzHz6srJuz9FEunQ4YOxa4etVYZ2trXEv5yCOmr8nPB9avN2YKrWjw5uOjBIpt2gCffKJkKc3NVe7F1RXw81Pa2dgoGUiZWLHGYmBIRERERNXbs88aA8NPP1UCq9atjYFhXl71SEKzc6cxKNQHhGPGKCN5AHD6tLq9PkupfquJvxK8NWsGPPaYMhoZFGR6vlcv8/VUYzAwJCIiIqLqLSoK8PBQRs9u3lSCxLg4ZUqlfjpmdUhCs3at8bhhQ2ULCf36yfL4q8Hb448r2V1PnVLXR0QoI65Uo3GNIRERERFVb05OyvRRvTVrlH9btzbWnTihZN+0VPn5wI4dxrK5aaN38yCCN41G+T7Wrm2s8/NTpupa+jRc+ssYGBIRERFR9Td8uPH4yy+VkcIWLYxJaG7dAn74oUpurVw2b1bW9QFKMp3GjZUpoff68vBQMpE+qODNyUmZmhsSotzD0KFMNmMl+F+ZiIiIiKq/rl2V0a3cXGXt3ccfA5MmKSNv+k3hLTkJjX6UEwCaN1emwb7wQtXcS+3awMiRVfPeVGU4YkhERERE1Z8+WYuePtAquxF7Xp75fQGrWm6ukkRGr0ULYzZQooeEgSERERER1Qxlp5MePars01e/vjL6pnf48EO/rXtat04Z5QSAWrWUvQYZGNJDxsCQiIiIiGqGiAigaVNj2VwSmuPHLS8JTdlspGFhyrYTvr5Vdz9klRgYEhEREVHNoNGoRw3XrlVG4m5PQnPsWNXcnzk//6wexQwPVz5H/fpVd09klRgYEhEREVHN8eyzxuOzZ4GMDCXLZ9ntH777zjh1s6qVTTpTu7YyUlinDmBvX3X3RFaJgSERERER1RwhIUCHDsayuemklpKERkQdGD7yiDJayPWFVAUYGBIRERFRzVJ2Oun69cr0UV9fdcBlCUlovv0W+OUXY1k/qsn1hVQFGBgSERERUc0yeLCyfQUAXLkC/PvfyrGlJaEpO1qo1QLe3soxRwypCjAwJCIiIqKapU4doGdPY1kfgLVooaw3BKo+Cc2tW8AnnxjL+tFCJp6hKsLAkIiIiIhqnrLTSbdtAwoKlMyk4eHG+sOHqy4JzeefA5cvK8e2tso2FQATz1CVYWBIRERERDVPv36Ai4tyXFioBIeAejrpxYtAbu7DvzdAPY00PFzZ2B7g+kKqMgwMiYiIiKjmqVULeOYZY3nZMuVfS0hC88cfwJYtxnJEhPGY6wupijAwJCIiIqKa6bnnjMd79wJffKEclx01PHYM0Oke7n1t364EhwDg7KwOBhkYUhVhYEhERERENVPPnkCbNsbylCnKmsKqTkJTdhrpk08CdnbKMRPPUBViYEhERERENZNGA8yZYywfPKhM4XR0NGYBBYDvvnt4SWiuXAE++8xY7tbNeMzEM1SFGBgSERERUc31xBNAjx7G8tSpQHFx1SWh2bBBeX9A2bewQQPjOSaeoSrEwJCIiIiIarbZs43HP/0ErFqlrOUrG4g9rCQ0ZaeRDh5s3LIC4PpCqlIMDImIiIioZmvTBoiJMZanTQNu3FCPGh4/XvlJaM6eBfbvN5aHDgXy8oxljhhSFWJgSEREREQ139tvKxvJA8D588CHHyrrDPVJaG7erPwkNGvXGo+DgoCGDYGSEqXMxDNUxRgYEhEREVHN16QJMHq0sTxrFlBU9PCS0Iiop5EOG6asbdTz8TEGqURVgIEhEREREVmHadMAJyfl+LffgORk0yQ0Fy5Uznt//z1w8qSxPHy4+r24vpCqGANDIiIiIrIOWi0wYYKxnJKiTOF8GEloyk4jDQ9X9lIsmwmVgSFVMQaGRERERGQ9XnsN8PRUjgsLgZkz1aOGx449+CQ0paXAxx8by8OHK2sLmXiGLAgDQyIiIiKyHt7eSnCot3gx4OpauUlovvpKSXgDKCOUw4YBly4x8QxZFAaGRERERGRdJkwwjtAVFwPvvKNM7dTLyHiwo4Zlk8489hgQEKBeX8jEM2QBGBgSERERkXVxcQHeestYXrvWmJQGAP77X2DbtgeTobSgANiwwVh+9lnlX64vJAvDwJCIiIiIrE9cnLKPoN4HHwBt2xrLJ08C33zz199nxQogP185dnICBg1SjssGhlxfSBaAgSERERERWR97e2UKqd7OnYCzs7LxvN4XXwBZWff/HsXFSuZTveefV9Y43p54hiOGZAEYGBIRERGRdYqJAVq2NJanTlVG9NzdlbIIsHGjsufh/di0CTh7VjnWaICkJOWYiWfIAjEwJCIiIiLrZGMDzJljLGdkAHv3AkOGALa2Sl1REbBunZKttCJEgHnzjOVnngEaNVKOmXiGLJDFBYbTp0+HRqO545e9vb2qfUZGBvr16wd/f384OzsjNDQU8fHx+OWXX0yurdPp8NZbbyE4OBiOjo4IDQ3FO++8g1u3bj2sj0dEREREluTJJ4HHHzeW33hDGcHr08dYd+lSxZPRfPklcPiwsTx5svGYiWfIAtlV9Q3cbsCAAWhYdiHwn3744QfMmzcPffv2NdTt3r0bUVFRCA0Nxfjx4+Hj44MTJ05gyZIl2LRpE44dOwatVmtoP2TIEGzbtg2jR49Ghw4dkJGRgTfffBNZWVlYuXLlw/h4RERERGRJNBpg9mygfXulfOIE8NFHynrA3Fzg0CFjva8v0Llz+a5bdrSwUyegQwdjueyIIRPPkIWwuMAwPDwc4eHhJvV/+9vfAABxcXGGuvnz58PW1hYHDhyAj4+PoT4sLAzx8fHYsGEDEhMTAQA7d+7Etm3bMHHiRLz33nsAgDFjxsDT0xMpKSkYO3YsOnbsWImfjIiIiIgsUrt2wIABwObNSnnqVCA6GujVS0kSk52t1H/+uTKaaGYQQ+X4cWDXLmN50iTjMRPPkIWyuKmk5vzxxx9Yt24d/P390atXL0P9tWvX4OTkBC8vL1V7vz9/wFxdXQ11a9euBQBDoKinL3/00UeVcOdEREREVC28845xXWFODjBlilIePBhwc1PqRZSEMvdKRvPnIAQAoHFjoF8/Y/nyZSVbKcDEM2RRqkVguGHDBly7dg2jRo2Crf4HFkDPnj1x/fp1PP/88/j++++Rk5ODzz77DElJSWjWrBmGDh1qaHvo0CFotVoEBASorh0QEAA/Pz8c0k8TICIiIiLr06yZemRv4UJg/36gVi11MpobN4BPPrlzMpqcHGDNGmM5KUlJcqNXdn0hE8+QBakWgeGyZcug0WgwevRoVf2UKVOQkJCAjRs3IiIiwjCiGBISgszMTLjp/7oDIDc3V7XesCytVoucnJz7vj9fX1/VVyN9xikiIiIiqj6mTQNCQ5VjESA+HtDpAH9/ICrK2C4vD9i+3XwymgULAH1iw7p1gZEj1ee5sT1ZKIsPDH/++Wd888036N69O4KDg1XnbG1todVq0aNHDyxduhSbN29GUlIS9uzZg6FDh6qyjRYWFsLR0dHsezg5OaGwsLBSPwcRERERWThnZ2DJEmP5xx+N21m0agW0aWM8d/w4cOCA+vXXrgGLFhnLL70EODmp25RNPMP1hWRBLC75zO2WLVsGQEkUc7tRo0bhwIEDOHHiBJydnQEA0dHRaNiwIRISEvCvf/3L8DoXFxfodDqz71FUVAQXF5f7vscLZX/Aoax99PDwuO/rEREREVEV6d4diI0FVqxQyjNnAjExQPPmQO/eymjhuXPKuT17lDWC+lHGpUuV4BAAXFyAhAT1tW9PPMMRQ7IgFj1iWFxcjFWrVqF27dqIjo5WncvOzsaaNWsQFRVlCAr1YmJiAAD79u0z1Pn5+d1xumhOTs4dp5kSERERkZVJTlamgQLKtND4eKC01Hwymo0bgatXlXbvv2+8xujRQO3a6uvenniGgSFZEIsODHfs2IG8vDyMGDHCZBqoPsgrKSkxeV3xnz9w+n8BIDIyEjk5OTin/wvPn86dO4fc3Fy0KTs1gIiIiIisl7e3slZQ78AB4xRRNzclOCybjGbdOiXhjP73TBsbYOJE0+uWXV9YuzYTz5BFsejAUD+NtOzehXpNmjSBra0ttm7dit9//111Tr9ZfWRkpKFu2LBhAID3y/4lp0x5+PDhD+amiYiIiKj6GzwY6NPHWH79deD8eeU4IAB4+mnjuYsXgenTjeVBg4DbcmMA4PpCsmgWu8YwNzcXu3fvRtu2bfHII4+YnPf29kZiYiLee+89tGzZEvHx8fD29sb+/fuxZs0ahIaGqtYlRkVFoU+fPkhJSUF+fj46dOiAjIwMLFu2DCNGjEDnzp0f5scjIiIiIkum0QAffgh8+SVQUABcvw68+CKwdatyrnVrZQTw8GHgl1+AX381vnbyZPPXLDtiyMCQLIzFjhiuXLkSJSUlZpPO6M2bNw9LlixB3bp1MWvWLLz00kv4+uuvkZCQgIyMDLi7u6vab9iwAVOnTsWePXvwwgsv4IsvvsCMGTOwfPnyyv44RERERFTdBAQAs2cby9u3Kxvc6/XurbQpm520XTt19lI9Jp4hC6cRMbcBC/0V+qyk+fn5JsEpEREREVUjJSVA585AZqZSrldP2cbCy0sp79+vnNeLjQVSUgBPT/V1Ll40rlPUaIApU7jGkCpdReISix0xJCIiIiKqcra2yjYU9vZKOS8PePVV4/mFC43HdeooI4jr1hk3uddj4hmycAwMiYiIiIjuJixMST6jt3SpsvYwO1sJAvU6dFBGAy9eVKadlp2Yx8QzZOEYGBIRERER3cvUqUDTpsby2LHAnDnKVFNAWTM4cqTx/LFjxumngHrEkOsLyQIxMCQiIiIiuhdHRyAtzVg+dUo9jfTll4H+/QF/f2Ndejpw5oxp4hmOGJIFYmBIRERERFQenTsD48aZ1teqBfztb4CdnbL/Ya1aSn1pKbBhA5CVBRQXK3UaDVC//sO7Z6JyYmBIRERERFRec+aYjvjFxxuzkLq7K8GhzZ+/ZhcWAhs3GtvWrq2MPhJZGAaGRERERETl5eEBpKYay7a2QGKiuk1goLLHoV7ZDKWcRkoWioEhEREREVFFPPMMkJysbGS/cqUSCN6uTRugZUvTeiaeIQtlV9U3QERERERU7SQlKV93otEAUVHApUtATo6xniOGZKE4YkhEREREVBns7IAhQ4zJaDw9GRiSxeKIIRERERFRZXF3B154AfjxRyA4GLC3r+o7IjKLgSERERERUWVycQFat67quyC6K04lJSIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnIMDImIiIiIiKwcA0MiIiIiIiIrx8CQiIiIiIjIyjEwJCIiIiIisnJ2VX0DNZGIAACuXbtWxXdCRERERETWSh+P6OOTu2FgWAmuX78OAAgICKjiOyEiIiIiImt3/fp1eHh43LWNRsoTPlKFlJaWIjc3F25ubtBoNFV9O2ShGjVqBAA4depUFd8JUfmx31J1wz5L1RH7LT0oIoLr16/Dz88PNjZ3X0XIEcNKYGNjA39//6q+DbJw+h9Od3f3Kr4TovJjv6Xqhn2WqiP2W3qQ7jVSqMfkM0RERERERFaOgSEREREREZGV4xpDIiIiIiIiK8cRQyIiIiIiIivHwJCIiIiIiMjKMTAkIiIiIiKycgwMiYiIiIiIrBwDQyIiIiIiIivHwJCIiIiIiMjKMTAkIiIiIiKycgwMiYiIiIiIrBwDQyIiIiIiIivHwJCIiIiIiMjKMTAkIiIiIiKycgwMiYiIiIiIrBwDQyIiIiIiIivHwJDIjIKCAsyaNQuPPPII3Nzc4OPjg44dO2LlypUQEQDA2bNnodFo7vq1Zs0a1XV1Oh3eeustBAcHw9HREaGhoXjnnXdw69Yts/exatUqtGzZEs7OzqhXrx7GjBmDy5cvm2377bffokePHnBzc4O7uzt69eqFo0ePPtDvC1m28vRbvV27duGJJ55A/fr14erqiiZNmmDSpEnIy8szuW5+fj5eeuklaLVaODk5ISwsDAsXLjS5JgCUlpZi/vz5aNq0KZycnBAQEICkpCT88ccfZu95586d6NixI1xdXeHt7Y2YmBicOXPmwXxDyOKVt8+KCBYtWmR4Hnp6eqJXr17IzMw0e10+a6ky5eXlYdy4cQgICICDgwMCAwPx8ssv4/fffzdp+/PPP+OZZ56Bl5cXXF1d0aVLF3zxxRdmr8tnLVU5ISKVkpIS6dy5s9jY2EhsbKwsXrxY5s+fL23bthUA8uqrr4qISEFBgaxevdrsl4eHhzg4OMjly5dV1+7fv78AkNGjR0taWpqMHj1aAMjzzz9vch8pKSkCQLp27SqLFy+WN998U1xdXaV58+ZSUFCgapuRkSGOjo4SEhIiKSkpkpKSIiEhIVKrVi354YcfKu17RZajvP1WRGTJkiUCQFq3bi0pKSmyePFiGTNmjNja2kpwcLCqf+l0OomMjBQ7Ozt55ZVXZMmSJRIdHS0AZNq0aSb3MWHCBAEg0dHRsmTJEnnllVfEzs5OHn/8cSkpKVG13bRpk2g0GomIiJDU1FSZNWuW1K1bV3x9fSUnJ6fSvldkGSrSZ8eNGycApFu3brJgwQKZM2eOhISEiIODg+zdu9fk2nzWUmXJy8uToKAgsbe3l/Hjx8uiRYtk/PjxYm9vLxEREfLHH38Y2mZlZYm3t7fUrVtXZs2aJampqRIRESF2dnaSnp6uui6ftWQJGBgS3ebAgQMCQBITE1X1Op1OgoODxcPDo1yvHzRokKr+008/FQAyceJEVf3EiRMFgOzfv99Qd/nyZXFxcZHIyEgpLi421G/fvl0AyMyZM1XXiIyMFDc3Nzl//ryh7vz58+Lm5iZPPvlkuT43VW8V6beNGzcWX19fuXHjhqrt1KlTBYBs2bLFUJeamioAZMGCBaq2AwYMEHt7ezl79qyh7vjx46LRaGTAgAGqtgsWLBAAsmbNGkPdzZs3xc/PTwIDA+X69euG+iNHjoiNjY3Ex8dX+HtA1Ut5++yRI0cEgPTq1UtKS0sN7a5evSr16tWTRo0aqX4R5rOWKtPLL78sAGTt2rWq+rVr1woAefvttw11MTExYmNjI0eOHDHUXb9+XQIDA6Vx48aq/sxnLVkCBoZEt9m9e7cAkLlz55qci4yMFD8/v7u+Xv+X6d27d6vqhw8fLgAkOztbVZ+dnS0AJCEhwVCXlpYmAGTVqlUm1w8JCZFmzZoZyqdOnTL8ZdzcvWg0Grlw4cJd75mqv4r02/r160vz5s1N2ul/Mfn3v/9tqOvUqZO4uLiYBJFfffWVAJB3333XUKcPLL/66itV2xs3boiLi4v07t3bUJeeni4AZMaMGSb30b17d3F3d5ebN2+W45NTdVXePqsf0fv4449N2o0dO9akz/FZS5UpPDxcnJ2dVUGdiDIC7uTkJCEhISKizCpydHSU7t27m1xjxowZAkC+/fZbQx2ftWQJuMaQ6DZt27aFp6cn5s6diw0bNiA7Oxs//fQTpkyZgsOHD2P69Ol3fG1BQQHWr1+PoKAgPPnkk6pzhw4dglarRUBAgKo+ICAAfn5+OHTokKotAHTo0MHkPdq3b4+ffvoJBQUF5WorIjh8+HD5PjxVWxXptz179sTJkyeRlJSEH3/8EefOncPmzZvx9ttvo2vXrujevTsAZQ3L//3f/6Fly5ZwcnIyeT+NRmPSb21sbNC2bVtVWycnJ0RERFSoj1+7dg3/+c9//vL3hSxXefusTqcDALi4uJhcQ19Xdq0hn7VUmXQ6HZycnKDRaFT1NjY2cHZ2xi+//IIrV67ghx9+gE6nu2N/AYx9is9ashQMDIlu4+Xlhe3bt8Pb2xuDBw9GUFAQmjVrhtTUVGzatAnx8fF3fO0nn3yCgoICxMbGwsZG/eOVm5sLrVZr9nVarRY5OTmqtvp6c21FxNDmXm0BqK5NNVNF+u0HH3yAmJgYfPDBB2jevDkCAwMxcOBA9O7dG+np6bC1tQUAXL16FTdu3DDbtxwdHeHj42PSb318fODo6GjSXqvV4sqVK7h586ahrb7eXFuA/bamK2+fDQsLAwCThB0ign379gEAzp07Z6jns5YqU1hYGK5evWqScOjo0aO4evUqACA7O7tC/YXPWrIUdlV9A0SWqFatWmjRogX69euHjh074rfffkNqaiqeffZZbNu2zWQ0UG/p0qWwsbFBbGysybnCwkKzD3FA+StfYWGhqi0As+31f03Ut6lIW6rZyttv7e3tERgYiOjoaPTt2xcuLi747LPPsHz5ctja2iItLQ3A3fsWYL7f3q2tvo2DgwP7LQEoX5/t3bs3mjdvjg8//BB+fn4YMGAACgsLkZKSguPHjwNAhfohn7X0VyQmJmLr1q0YPHgw3n//fbRo0QInTpxAYmIi7O3tcevWLRQWFj6wvqVvz2ctPQwMDIluc+zYMXTs2BHz58/HuHHjDPXDhg1DixYtEB8fj9OnTxtGVfROnjyJzMxM9OzZE4GBgSbXdXFxMUyJul1RUZFqmpT+WKfTwdnZ2aRt2TZl25q7btk2VHOVt99qNBr06tULxcXF2L9/v2E61KBBg1C7dm28++67GDJkCHr06HHXvgWY77eXLl26Y1t9m7L/st9ar/L2WTs7O+zatQvPP/88XnvtNbz22msAgPDwcMyZMwdJSUlwd3c3vJ7PWqpMXbp0wbp16zBhwgRERUUBAGxtbTFmzBiEhYVhy5YtcHd3r1B/4bOWLAWnkhLdZv78+SgqKkJMTIyq3sXFBVFRUfj1119x9uxZk9ctW7YMADBmzBiz1/Xz87vjdI2cnBzVNA8/Pz9Dvbm2Go3G0OZebQHzU0ioZilvv/3mm2/w9ddfY+DAgSZrZPSv1U/P8/LygrOzs9m+pdPpcOXKFZN+e+XKFbO/gOTk5MDHxwcODg6Gtvp6c20B9tuariLP2sDAQOzduxe//vor9u3bh+PHj+P77783jHg0bdrU8Ho+a6myxcTE4Pz58zhy5Ai++uor5ObmYtGiRTh//jzs7OzQsGHDCvUXPmvJUjAwJLqN/kFZUlJicq64uFj1r97NmzexevVq1KlTB/379zd73cjISOTk5KjWwgDK2pjc3Fy0adNG1RYAMjIyTK6TmZmJJk2aoFatWuVqq9Fo0Lp1a/MflmqM8vbbivRvGxsbtGrVCkeOHDH5BeTgwYMQEZN+W1paioMHD6raFhUV4ejRoxXq4+7u7mjcuPE9PjVVZ/fzrA0MDMRjjz1mWHe4c+dO2NjYoGfPnoY2fNbSw2Bra4uIiAh06dIFdevWxcWLF3HkyBF07doVLi4ueOSRR+Do6HjH/gLA0Bf5rCWLUYUZUYksUmJioklqaBFlzyxfX1/x8vJS7XclIrJhwwaz+2aV9b//+7933Vvr66+/NtRdunRJnJ2dpW3btmb31iq7T5KISJs2bcTNzU21UW1OTo64ubnJE088Uf4PT9VWefvt0aNHBYCEh4ebpCjXbyK+adMmQ90///nPO+6tZWdnJ2fOnDHU/fDDD3fdW2v16tWGups3b4qvr6/J3lpHjx4VGxsbiYuLu+/vBVUP9/OsLWvbtm1mN63ns5YetpKSEomJiRGNRiNffPGFoX7QoEFiY2MjR48eNdTp9zFs1KiRassLPmvJEjAwJLrN2bNnxdvbWzQajYwYMUIWLlwoM2fOlAYNGggASU1NNXlNr169BICcPHnyrtfu06ePAJC4uDhZunSpxMXFCQAZMWKESdvk5GQBIN26dZPFixfLW2+9Ja6urtK0aVPVw11EZP/+/eLg4CAhISEyf/58mT9/voSEhIirq6vqf0hUc1Wk3w4cONAQHM6dO1f++c9/St++fQWAtG/fXvULsk6nk9atW4udnZ1MnDhR0tLSJDo6WgDI//zP/5jcx/jx4wWAREdHS1pamkycOFHs7Oyka9euqk3IRUTWr18vGo1GIiIiJDU1VWbPni1169aVevXqqTYQp5qpIn129OjREhsbKx988IEsWbJERo4cKba2thIZGSm///67ybX5rKXKcv36dWnWrJm88cYbkpaWJsnJydK6dWsBIDNnzlS1PXXqlHh5eUndunVl9uzZkpqaKhEREWJra2uy1zGftWQJGBgSmZGVlSUjR44UrVYrdnZ24ubmJl26dFGNpOhlZ2eLjY2NdOzY8Z7XvXHjhkydOlWCgoLEwcFBgoODZcaMGXfcXHbFihUSHh4ujo6OUqdOHYmNjZW8vDyzbQ8cOCDdu3cXV1dXqVWrljz11FNy+PDhin1wqtbK2291Op28++67Eh4eLk5OTuLg4CCNGjWSKVOmSEFBgcl1r169Ki+++KL4+vqKg4ODNGvWTP7xj3+YbPAsIlJcXCzJycnSuHFjcXBwED8/P3nllVdMfsHW27Fjh7Rr106cnZ3F09NTBg4cKFlZWQ/mG0IWr7x9dtGiRdKqVStxd3cXJycnadGihcycOVMKCwvNXpfPWqosOp1Ohg4dKg0aNBBHR0fx8vKSp556yiTQ0zt58qT069dPPDw8xNnZWTp16iTp6elm2/JZS1VNIyJS2dNViYiIiIiIyHIx+QwREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREVVbs2fPRkxMDEJCQqDRaNCgQYMKvf7SpUuIjY1FeHg4vL294eTkhIYNGyIuLg5ZWVlmX5Obm4uRI0eiTp06cHZ2Rps2bbBhwwazbU+fPo3hw4ejXr16cHR0RMOGDTFt2jQUFRVV9KOayMjIQL9+/eDv7w9nZ2eEhoYiPj4ev/zyS4WvpRER+ct3REREROUyffp0/P3vf8fevXvRrVu3qr4dIqJqT6PRwNvbG61atcLhw4fh7u6Os2fPlvv1P//8M0aPHo0OHTogKCgIzs7OOHXqFJYvXw6dTofMzEw0b97c0P63335DmzZtcOnSJUycOBH+/v5Yu3Yt9u3bh+XLlyM2NtbQ9qeffkKHDh1QXFyMF198EcHBwcjIyMCqVavw1FNPYdeuXdBoNPf1uXfv3o2oqCiEhoZi9OjR8PHxwYkTJ7BkyRI4Ojri2LFj0Gq15b+gEBER0X0BUKGvvXv3yrRp0wzHRER0Z3v37i3X8/L06dOG47CwMAkKCnog73/w4EEBIAkJCar6yZMnCwDZvn27oa64uFgiIyPF29tbrl+/bqjv37+/aDQa2b9/v+oas2bNEgCyevXq+76/p556Suzt7eXy5cuq+rS0NAEg8+fPr9D17O4rPCUiIiJMmzbNpO79999Hfn4+Xn75ZXh6eqrONWjQAOPHj8fQoUMRGBj4kO6SiKhmCwkJqZTrBgUFAQCuXr2qql+7di1CQ0PRt29fQ52trS1eeukljBw5Ejt37sTgwYMBAHv37kXjxo3RsWNH1TVGjRqFN954AytWrMCIESNU5/bs2YO5c+fi4MGDKCoqQuPGjfHCCy9g3LhxqnbXrl2Dk5MTvLy8VPV+fn4AAFdX1wp9XgaGRERE92n69OkmdStXrkR+fj4SExPvuM7Fx8encm+MiIgq7NatW8jPz8etW7eQlZVleMY//fTThjYXLlxATk4Ohg8fbvL69u3bAwAOHTpkCAx1Oh1cXFxM2urrDh48CBExTCddsmQJxo0bh/bt22Pq1KlwdXVFeno6EhIScPr0acybN89wjZ49eyIzMxPPP/88Jk+eDB8fHxw/fhxJSUlo1qwZhg4dWqHPz+QzRERED9H06dOh0Wjw5ZdfGurOnj0LjUaDUaNG4T//+Q+io6Ph5eUFDw8P9O/f37BWJisrCzExMfDx8YGLiwuefvrpOyYY+O9//4tXX30VTZo0MfxFOSoqCpmZmQ/hUxIRVT+fffYZ6tSpAz8/Pzz22GM4ceIE3nvvPTz33HOGNrm5uQBgdu2evi4nJ8dQFxYWhh9//BEXL15Utd27dy8AoKCgwDAieeHCBUyYMAFDhw7FgQMHMHnyZLzwwgvYsmULJkyYgJSUFNUzf8qUKUhISMDGjRsREREBf39/9OrVCyEhIcjMzISbm1uFPj8DQyIiIgtx5swZdOjQAfn5+YiLi0OnTp2wfft29OjRAz/++CPatWuHK1euYNSoUejWrRt27dqFqKgolJaWmlynVatWmDdvHrRaLV588UVER0cjIyMDjz32GHbs2FFFn5CIyLzS0lJcuXJF9ZWfnw8AyM/PNzl3+3PvQWjfvj3S09Oxfft2zJkzB76+vrh69SqKi4sNbQoLCwEAjo6OJq93cnJStQGApKQkFBUVoX///ti3bx9+/fVXrF+/HgkJCbC3t1e137hxI3Q6HeLi4kw+b9++fVFaWoo9e/YYrm1rawutVosePXpg6dKl2Lx5M5KSkrBnzx4MHToUt27dqtg34L5XOxIREZGJoKAgASBnzpwxe95c8pkzZ84YEtQkJyer2sfHxwsA8fT0vOO5zZs3q+o7d+4sNjY2JvW5ubni7+8v9erVkxs3btz/hyQiesDKPgfL83WnZ+yDTD6Tk5MjtWvXlrFjxxrqvvvuOwEgr776qkn7P/74QwDIsGHDVPULFiwQDw8Pw707ODjI9OnTJTIyUgBIfn6+iIgkJCTc83PPmDHDcN3hw4dLcHCwFBYWqt5v4cKFAkDS0tIq9Hm5xpCIiMhCBAcH45VXXlHVPffcc0hLS4O3t7fJuREjRiAtLQ3ff/89oqOjAQBHjx7FN998gyFDhhjq9Hx9fTF58mS8/PLL+PzzzxEVFVW5H4iIqJzq16+P9PR0Vd3333+PSZMmITk5GY8++qhJ+8rm5+eHHj16YNmyZViwYAEcHR0NiV3KThfV09fdPs30pZdewtixY3Hs2DHodDqEhYXB09MTqamp8PX1hbu7OwBA/txFcNWqVfD19TV7T/pEO9nZ2VizZg3Gjx8PZ2dnVZuYmBgkJCRg3759GDNmTLk/LwNDIiIiC/Hoo4/Cxka9ykP/y0F4eLjJOXO/oGRkZABQ9tkylxzn1KlTAJS9tRgYEpGlcHJyQo8ePVR1dnZKqNK6desq2/f1xo0bKCkpwbVr11CnTh34+vpCq9WaXa+tr2vTpo3JOUdHR1X9d999h8uXLyMuLs5Q16hRIwBKgrLbvxe30z/3S0pKTM7pp76WnQJbHgwMiYiILISHh4dJnf4Xo7udK7uO5LfffgMApKenm/z1vayCgoK/dK9ERNVRdnY2CgsLERoaaljjl5eXh3r16pm0PXnyJD7//HOEhoaiTp06hvphw4YhOTkZO3bsMGxZUVJSgn/84x/w9PRUZTE1p6ioCImJiXB0dMSkSZMM9YMHD8Ybb7yBadOmoVu3biYjgfn5+XBycoKjoyOaNGkCW1tbbN26FbNmzVJtj7Ry5UoAQGRkZIW+NwwMiYiIahB9ADl79my8/vrrVXw3RESVb/Xq1fj1118BAJcvX8bNmzfxzjvvAFD2IiybVXTkyJHYt28fzpw5Y9hSaPbs2UhPT0dUVBQaNGgAEcHx48exevVq3Lp1C6mpqar3e/3117FhwwY8++yzmDhxIrRaLT7++GMcOnQIS5cuVWUDPXHiBEaNGoU+ffrA398feXl5+Ne//oXTp09jxYoVaNq0qaGtv78/Fi5ciDFjxqBZs2Z47rnnEBQUhMuXL+PYsWPYunUrTp48iQYNGsDb2xuJiYl477330LJlS8THx8Pb2xv79+/HmjVrEBoaWqFppAADQyIiohqlXbt2AIxTSomIarply5Zh3759qro333wTANC1a1dVYGhOnz59cP78eaxfvx6XLl1CSUkJtFotYmJiMGnSJISFhana165dG/v378frr7+O1NRUFBQUoHnz5li3bh2GDBmiauvj4wN/f3+kpaXh0qVL8PDwQJcuXbB69Wq0bdvW5F5iY2PRuHFjJCcnY/Hixfj999/h4+ODJk2a4O2331atrZw3bx6aNGmCpUuXYtasWdDpdNBqtUhISMD06dMNaxfLi4EhERFRDRIZGYmOHTti+/btWL58OUaPHm3SJjMzE+Hh4WY3XSYishTdunUzJGS5m7L7wt5P2x49etxzTd/ttFotVq9efc929erVw5YtWyp07U6dOqFTp073bKfRaBAfH4/4+PgKXf9OGBgSERHVMGvXrsXjjz+OuLg4fPjhh4iMjISbmxvOnTuH7777DllZWbhw4QIDQyIiMmBgSEREVMMEBQXhyJEjeP/997FlyxasWrUKIgJfX188+uijeOutt+Dj41PVt0lERBZEI+UZnyUiIiIiIqIay+beTYiIiIiIiKgmY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFaOgSEREREREZGVY2BIRERERERk5RgYEhERERERWTkGhkRERERERFbu/wFpnMXWT8CJ6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.signal import savgol_filter\n", + "\n", + "plt.plot(dynspec.time, dynspec.freq[tracing], color='red', alpha=0.5)\n", + "plt.plot(dynspec.time, savgol_filter(dynspec.freq[tracing], 4, 2), color='red', alpha=1)\n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Frequency (Hz)\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Shifting-and-adding\n", + "\n", + "Shift-and-add is a technique used to improve the detection of QPOs ([Méndez et al. 1998](https://doi.org/10.1086/311600)). Basically, the spectrum is calculated in many segments, just as in the dynamical power spectrum above, but then the single spectra are shifted so that they are centered in the variable frequency of the followed feature. \n", + "This technique is implemented in Stingray's Dynamic Cross- and Powerspectrum. We can apply it here, using the `trace_maximum` functionality from the sections above.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500.0, 1000.0)" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJ2CAYAAADL+nZ2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4+ElEQVR4nOzdd3gUVdsG8HtTSIMEQqjSi4AgRaoiVRBERFQEBWmKqLy86qviJ4gIIjZEEOnSBaT3GkroLXQIEDohIaSQnmza7nx/xBlnZmdLdjckYe/fdXGR3Z3dPdtmzj3PmTM6QRAEEBERERERETnArbAbQERERERERMUfwyURERERERE5jOGSiIiIiIiIHMZwSURERERERA5juCQiIiIiIiKHMVwSERERERGRwxguiYiIiIiIyGEehd2A4s5oNOL+/fsoVaoUdDpdYTeHiIiIiIhckCAISE1NReXKleHmVjg1RIZLB92/fx9Vq1Yt7GYQERERERHh3r17qFKlSqE8N8Olg0qVKgUg70P09/cv5NYQEREREZErSklJQdWqVaV8UhgYLh0kDoX19/dnuCQiIiIiokJVmIfqcUIfIiIiIiIichjDJRERERERETmM4ZKIiIiIiIgcxnBJREREREREDmO4JCIiIiIiIocxXBIREREREZHDeCoSIiIiIpIYjUakpKQgKysLQOGe1oDIlQmCAADw8vKCv78/3NyKfl2Q4ZKIiIiIAOQFy5iYGJQuXRoBAQEMlkSFTBAEZGZmIiYmBhUqVCjyAZPhkoiIiIgAACkpKShdujR8fHwKuylEhLyRA+LvUfx9FmVFO/oSERER0SOTlZUFb2/vwm4GEal4e3tLQ9WLMoZLIiIiIpJwKCxR0VNcfpcMl0REREQEoPh0YIlcUXH4fTJcEhERERERkcMYLomIiIiIiMhhDJdERERERETkMIZLIiIiIiIqUqZNm4bFixcXdjMonxguiYiIiIioSGG4LJ4YLomIiIiIHhOpqamF3YRC4aqvu6hhuCQiIiIil7N48WLodDrs2bMH48ePR/Xq1eHl5YXGjRtj5cqVmvfZuHEj2rZtCz8/P5QsWRJt27bFpk2bFMsMHToU3t7eyMzMlK47duwYdDodAgMDYTQapet37NgBnU6HVatWKR5j1apVeP7551GqVCn4+vqidevWWLt2rUl7dDodhgwZgr179+L5559HyZIl8corr1h83WFhYXjzzTfxxBNPwMvLCxUrVkSnTp2wbds2h96bU6dO4bXXXkNQUBC8vLxQr149TJo0Cbm5uSbL3rhxA0OHDkWVKlVQokQJVK5cGa+++ipOnz4tva67d+/iwIED0Ol00r87d+4AAGrUqIGOHTvi7Nmz6NatGwICAtC4cWMAwPjx4xXLyon303oP9+3bh2effRa+vr6oUqUKfv75ZwBAYmIi3nvvPZQvXx6+vr7o2bMn7t+/b/E9dmUehd0AIiIiIiq6BEGAXq8v7GZY5OPjY/c5AP/v//4P6enpGDFiBABg0aJFePvtt5GZmYkhQ4ZIy82aNQv/+c9/UL9+fYwbNw5AXgjr3bs35s6di+HDhwMAOnfujMWLF+PIkSN44YUXAAB79+6Fm5sbEhMTcfbsWTRv3hwAsG/fPuh0OnTq1El6nrFjx2LSpEno3r07Jk6cCDc3N2zYsAFvvvkmZsyYgf/85z+K9p86dQrr1q3D+++/j8GDB1t8rQ8fPkTnzp0BAB9++CGqV6+O+Ph4nDp1CidOnMDLL79s13uzbds2vP7666hTpw4+//xzBAYG4tixYxg3bhzOnTuHNWvWKNr7wgsvICcnB++99x4aNWqEhIQEHDhwAEePHkXz5s3x119/4X//+x+CgoLw9ddfS/ctV66c9HdERAQ6d+6MN998E2+88QbS0tIsvnZLzp49iy1btmD48OEYNGgQVq9eja+++gre3t5YsmQJatSogfHjx+PGjRuYPn06Bg0ahD179tj9fI8znSAIQmE3ojhLSUlBQEAAkpOT4e/vX9jNISIiIidITk6Gp6cnfH19C7spj1RsbCzKly+vuC4jIwO//PJLIbXINl9++WW+P6vFixdj6NChqFatGi5cuICAgAAAeZ9948aNkZqaiqioKPj4+CAxMRFVq1ZFxYoVcebMGanPl5KSgmbNmiE2Nhb37t1D6dKlERUVhSpVqmDMmDGYNGkSgLzAWapUKYSEhGDs2LH48ssvAQDNmzdHdnY2Ll68CAA4c+YMmjdvjtGjR+OHH35QtLd3797Yt28foqKiUKpUKQCQAvXu3bvRpUsXq6958+bNePXVV7Fq1Sr07dvXKe9NZmYmatSogSeffBL79u2Dh8e/taupU6fis88+Q0hICDp27AhBEPD000/jxo0bOHnypFRtFBmNRri55Q2srFGjBmrUqIH9+/ebtK9GjRq4e/cu/vzzTwwbNkxx2/jx4zFhwgTcvn0bNWrUMLmf+jHFquixY8fQunVrAEB2djaqV6+OmJgYjBw5EtOnT5eW/+yzzzB16lRcvXoV9erVM/9mFwCt36dcUcglHBZLREREJLN161aUL18eNWvWxI0bNwq7OVTAPvroIyk8AUBAQAA+/PBDJCYmSiFk9+7dSE9Px8cff6zotPv7++Pjjz9GWlqaVMl64oknpKAFAJmZmTh27Bi6deuGDh06YO/evQCApKQknDt3TqokAsDy5cuh0+kwePBgxMfHK/716tULqampOHbsmKL9TZo0sSlYiq8NyBuOm5KS4rT3JiYmBkOHDkVSUpKizT169AAABAcHAwDOnTuHsLAwDB061CRYApCCpS0CAwMxdOhQm5e35Nlnn5WCJQCUKFECrVq1giAI+PjjjxXLtmvXDgBw/fp1pzz344bDYomIiIhklixZguzsbMTGxmLTpk34/PPPC7tJVIAaNGhgct1TTz0FALh16xYA4Pbt2wCAhg0bmiwrXicuC+RVKufPn4/U1FSEhoYiMzMTnTt3RlZWFsaOHYvs7Gzs378fRqNRES6vXLkCQRBQv359s+2NiYlRXH7yySdtfano0KEDBg0ahMWLF2P58uVo2bIlunTpgn79+kmvWc6W9+bKlSsAgHfffddqm8VA1qxZM5vbbE7t2rXh7u7u8OMAQK1atUyuK1OmDACgZs2amtc/fPjQKc/9uGG4JCIiIpKRH7uVkZFRiC0pGnx8fKRhnEWVj49PYTdBoXPnzpgzZw4OHjyIY8eOoXLlyqhfvz6ysrKQkZGB48ePY9++fXB3d0eHDh2k+wmCAJ1Ohx07dpgNTuqAm9/hwEuWLMGoUaOwY8cOHDp0CFOmTMGkSZMwbdo0jBw5Mt+vVTzCbvLkyWjatKnmMpUrV87341pj7nVbOvZWa3IhABZDqrnbeGShNoZLIiIiIpmcnBzpb3OdUVei0+ke62NPr1y5gldffVVx3eXLlwH8W9ES/w8LC5Mm6TG3LAB06tQJOp0Oe/fuxbFjx6TqZOPGjREUFIS9e/ciJCQEzZo1Q+nSpaX71a1bFzt37kS1atU0q4bO0qhRIzRq1AijRo1CUlISWrduja+++gr/+c9/FOHMlvembt26AAA/Pz+rw3PFKuu5c+esttHeCZoCAwMBAAkJCYpjLjMzMxEdHY06derY9bhkGx5zSURERCTDcOlaZs+ejeTkZOlycnIy5syZg9KlS0tVxa5du8LPzw9//PGH4nyKqamp+OOPP1CyZEl07dpVuj4oKAhPP/00tm7dilOnTknhUpwZds2aNQgLC1MMiQWAgQMHAgDGjBkDg8Fg0lb1kNj8SkhIUJwKBQBKly6NmjVrIiMjQ3H6FMC296Zbt24oX748fvrpJyQkJJg8p16vl96zJk2aoGHDhli4cCHCwsJMlpVXA0uWLKn5eNaIAVY9m+vUqVNNXjs5HyuXRERERDLycCn/mx5PQUFBaN26tTQ5zKJFixAREYH58+dLFdvSpUvjl19+wX/+8x+0bt1aOg3H4sWLcePGDcydO1cx8Q2QNzR22rRp0t/y68VTc6jDZcuWLTF+/HiMHz8eTZs2xZtvvonKlSsjOjoap0+fxvbt25GdnW33a126dCmmTp2K1157DXXq1IGnpycOHDiAXbt2oW/fvibDi215b/z8/LB06VL07t0b9erVw7vvvos6deogKSkJV69exfr167FhwwZ07NgROp0OixYtwgsvvIBWrVpJpyJJSkrCgQMH0L17d/z3v/8FALRp0wYLFizAN998gwYNGsDNzQ2vvPIK/Pz8LL7GLl26oF69ehg3bhwePnyImjVr4vDhwzh+/DiCgoLsfu/INgyXRERERDLyaiUrl4+/n3/+GYcOHcLMmTMRExODJ598EsuXL0f//v0Vy40YMQKVKlXC5MmTMWHCBAB5lbgNGzagd+/eJo8rhstatWqhevXq0vXisFpPT09p5lG5b7/9Fi1atMD06dMxbdo0pKeno3z58mjUqJHilBj26NixI86ePYutW7ciOjoa7u7uqFmzJn799VfN4y1tfW+6deuG0NBQ/PTTT1i2bBni4uJQpkwZ1K5dG5999pliZtiWLVsiNDQUEydOxOrVqzFnzhwEBQWhVatWaNu2rbTcpEmTkJCQgJkzZyIpKQmCIOD27dtWw6W7uzs2b96Mjz/+GH/88QdKlCiBF198EQcOHFA8PhUMnufSQUXhfDJERETkPM2aNZOOCfvvf//rcIe+OLF2Hr3HiXguR/EcjPQvvjdFE89zSURERFTM8JhLIiL7FLlwGR4ejgEDBqBBgwYICAiAr68v6tevj88++wzR0dE2P8727dvx3HPPwc/PD4GBgXjzzTelcxQRERERmcNwSURknyJ3zGVkZCSio6Px2muvoUqVKvDw8MDFixcxb948rFy5EufOnbM6XGP9+vXo06cPmjRpgsmTJyM5ORnTpk1D27ZtcerUqQI51w4RERE9HhguiYjsU2yOuVyzZg369u2Ln3/+2eKJfHNyclCjRg14eHggLCwMJUuWBJB3Pp3mzZvjvffew7x585zWrqIwtpmIiIicp2rVqoiMjASQd2qIpUuXFnKLHh1XOuaSqLjhMZdOJM6ylZiYaHG5AwcO4P79+xg2bJgULAGgadOm6NixI1atWsVpxYmIiMgsVi6JiOxTZMNlZmYm4uPjERkZieDgYHzwwQcAgB49eli8X2hoKADg2WefNbmtTZs2SElJwbVr15zfYCIiInos8DyXRET2KXLHXIrmz58vnUQVAGrUqIFly5Zpng9I7v79+wCAJ554wuQ28bqoqCg0bNjQrnZVqlRJcdloNNr1OERERFQ0sXJJRGSfIhsue/fujfr16yMtLQ1nz57F5s2bER8fb/V+GRkZAAAvLy+T27y9vRXLEBEREakxXBIR2afIhssqVaqgSpUqAPKC5htvvIGWLVsiIyMDo0ePNns/X19fAEBWVpbJbZmZmYpl7KE+HYp44CwRERE9HhguiYjsU2SPuVRr3LgxmjVrhlmzZllcTjzNSFRUlMlt4nVaQ2aJiIiIBEGAwWCQLjNcEhHZrtiESwDQ6/VISEiwuEzLli0BAMeOHTO57fjx4/D398eTTz5ZIO0jIiKi4k09gQ/DJRGR7YpcuHzw4IHm9SEhIbh06RLatGkjXRcdHY2rV68qjqHs0KEDKlWqhPnz5yMtLU26/vz589i/fz/efPNNeHp6FtwLICIiomKL4ZKIyH5FLlx+9NFHaNOmDcaMGYO5c+fi999/x6BBg9CtWzeUKlUKU6ZMkZYdPXo0GjRogJMnT0rXeXp64vfff8e9e/fQrl07zJo1Cz/99BNefPFFlCtXDhMmTCiMl0VERETFgDpc8lQkBAA6nQ5Dhgyxadnx48dDp9Phzp07iuvPnTuHF154AWXKlIFOp8P48eOd3k4t+Wl7YRgyZAh0Ol2Rfc79+/dDp9Nh8eLFTm9Hx44dUaNGDac/bmEqchP6vP3221i6dCn++usvxMXFQafToXr16vjggw8watQoVKtWzepjvPnmm/Dx8cH333+PL774Al5eXnjhhRfw888/83hLIiIiMouVS9dy69Yt/PTTTzh48CAiIiLg5eWFihUrolWrVhgyZAg6derklOfJzc3FG2+8gZycHEycOBGlS5dG48aNsXHjRpw7d+6RBU2iglbkwmXfvn3Rt29fm5ZdvHix2b0IPXv2RM+ePZ3YMiIiInrcMVy6jlOnTqFDhw7w9PTEoEGD0LBhQ+j1ely/fh3BwcEoVaqUXeFy7Nix+OqrrxSnxbt16xZu3bqFKVOmYOTIkdL1v/32G5YsWcJwSY+NIhcuiYiIiAoLw6XrmDBhAjIyMnDu3Dk0adLE5HZz84BY4+HhAQ8PZRdbfKzAwEC7HpOouChyx1wSERERFRaGS9dx/fp1lC1bVjNYAkDFihVNrjt27Bg6dOgAPz8/lC1bFsOGDVNMIAmYHnPZsWNHdOjQAQAwdOhQ6HQ66HQ61KhRA0uWLAEA6Tr1sX3R0dH46KOPUK1aNZQoUQKVK1fG8OHDERsba9K2sLAwdO/eHX5+fggMDMSAAQM0l7Pk6tWrGDFiBBo2bIhSpUrB19cXzZs3x/z5802WFV9neHg4xowZgypVqsDLywtNmjTB9u3bTZbPzMzEqFGjULlyZfj4+KBVq1YIDg7OV/uMRiMmTZqE9u3bo2LFiihRogSqVauGjz76CA8fPnT4OTdt2oRmzZrB29sbVatWxTfffGP2uOusrCz88MMPaNiwIby9vVG6dGm88sorOHv2rMmyiYmJeP/99xEUFAQ/Pz907NgRp0+fztdrLy5YuSQiIiL6B8OlKaPRaPVUcIUtMDAQbm75q5nUrl0b4eHhWL9+PV5//XWry587dw49e/bE0KFD0b9/f+zfvx8LFiyAm5sb5s2bZ/Z+X3/9Ndq2bYsffvgBw4cPR7t27QBAmqjy0KFD+Ouvv6Tln3vuOQBAREQEnn32WWRnZ+O9995D7dq1cePGDcyePRshISE4deoUAgICAAC3b99Gu3btkJWVhZEjR6Jq1arYsmULunfvnq/3ZP/+/Th48CB69uyJmjVrIj09HWvWrMH777+PuLg4jB492uQ+gwcPhqenJ7744gtkZ2dj2rRp6N27N65du6aYrObtt9/Gxo0b8corr6Bbt264efMmXn/9ddSsWdPm9mVnZ2Py5Ml444038Oqrr8LPzw+hoaFYsGABDh8+jNOnT6NEiRJ2PeeGDRvwxhtvoEaNGhg3bhw8PDywaNEibNu2zWTZnJwcdO/eHUePHsXAgQMxcuRIJCcn488//0Tbtm1x8OBBtGjRQlq2W7duCA0NxcCBA9GmTRucO3cOXbp0QdmyZW1+7cWGQA5JTk4WAAjJycmF3RQiIiJy0Pnz5wUA0r/q1asXdpMeqZiYGJPr4uLiFO9JUfwXFxeX79d69OhRwdPTUwAg1K1bVxg6dKgwa9Ys4fLlyybLAhB0Op1w/PhxxfU9evQQPDw8hNTUVOm6b7/9VgAg3L59W7ouJCREACAsWrRIcf/BgwcL5rrjvXr1EsqVKyfcu3dPcX1oaKjg7u4ufPvtt9J1b7/9tgBA2Ldvn3Sd0WgUevfuLQAQBg8ebOXdyJOWlmZyncFgEDp06CD4+/sL2dnZJq/z5ZdfFoxGo3T9yZMnBQDCV199JV23a9cuzXZs2LBB+gxtYTQahYyMDJPr58+fLwAQVq1aZddz5ubmClWrVhXKli2r+C4lJSUJ1apVM/nsfvvtNwGAsHPnTsVjJycnC1WrVhU6dOggXTd37lwBgDBu3DjFslOnTs33Okbr96l+/sLOJRwWS0RERPQPVi5dx7PPPovTp09j8ODBSE5OxqJFizBixAg89dRTaN++PW7dumWyfOvWrRXXde7cGbm5uSanHXFUcnIytm7dil69esHb2xvx8fHSvxo1aqBOnTrS8E6j0YgtW7agRYsWigmIdDodvvzyy3w9r5+fn/R3ZmYmHj58iISEBLz44otISUnB1atXTe7zySefKE7r0bJlS5QsWRLXr1+Xrtu4cSMAYNSoUYr79u7dG/Xq1bO5fTqdDj4+PgAAg8GApKQkxMfHo3PnzgCAEydO2PWcp0+fxr179zB06FAEBQVJ1wcEBODDDz80aceyZctQv359NG/eXPHZZGdno2vXrjh8+DD0er3UDnd3d3z++eeKx/joo4/g7+9v82svLjgsloiIiOgfPM+la3n66aelYxzv3r2LAwcOYP78+Th06BBeffVVxTDLWrVqmdxfHNaodbyfI8LDw2E0GrFgwQIsWLBAcxmxPbGxsUhLS0P9+vVNlnnqqadMrouLi4PBYJAuu7u7o1y5cgCAtLQ0jB8/HqtXr8a9e/dM7puYmGi2HXJly5ZVvCe3bt2Cm5sbnnzySZNlGzRogPDwcOlyWlqayXGsgYGB0uewevVqTJkyBWfPnjX5fcrbl5/nFHck2PoeXrlyBXq9XnrftMTHx6Nq1aq4desWKlWqZBIkvby8UKtWLc33tDhjuCQiIiL6ByuXpgIDAxEXF1fYzbDIGbOwVq9eHYMGDcLAgQPRrl07HDlyBCdPnsTzzz8PIC+EmSMIgsPPr/V477zzDgYPHqy5jFjBy6+WLVvi7t270uXq1atLldf+/ftj69atGD58ONq3b4+yZcvC3d0d27dvx9SpU2E0Gk0ez9z7Yu978uuvv2LChAmK60JCQtCxY0esX78e/fr1Q6tWrfD777+jatWq8Pb2hsFgQPfu3TXbVxAEQcDTTz+N3377zewyloLn44zhkoiIiOgfDJem3NzcFEMFH3c6nQ6tW7fGkSNHEBUVVeDPpaVOnTrQ6XTIzs5Gly5dLD5GuXLlULJkSc0hq5cvXza5bvny5dKQTeDfkJqUlIStW7di4MCBmDNnjuI+e/bssfpaLKlVqxaMRiOuXbuGhg0bKm67cuWK4vKgQYOkQC8SZ/T966+/4O3tjZCQEPj6+kq3a732/DynWH219T2sW7cu4uLi0LlzZ6sTSdWqVQvBwcFISUlRVC+zsrJw69YtlClTxuL9ixsec0lERET0D4ZL17F7927Nz1ev10vHM2oNiXSmkiVLAoDJbLxly5ZFjx49sH79ehw/ftzkfoIgSNVkd3d39OzZE6dOnUJISIhimV9++cXkvm3btkWXLl2kf23btpUeR7yfXHR0tOapSPLj1VdfBQBMnjxZcf3GjRsVw1OBvDAmb1+XLl2kAObu7g6dTqeoUAqCgO+//96h52zevDmqVKmCRYsWIT4+Xro+JSXFJGgDeQH4wYMHZiuXMTExinYYDAZMmTJFsczs2bORkpKief/ijJVLIiIion8wXLqO//3vf3j48CF69eqFp59+Gr6+vrh37x5WrFiBa9euYdCgQXj66acLtA1t2rTBjBkzMGLECLz88svw9PRE69atUbNmTcyePRvPP/882rdvj0GDBqFZs2YwGo24desWNm3ahEGDBmH8+PEAgO+//x47duxAz5498d///hdVqlTBli1b8jWcuVSpUnjxxRexbNky+Pj4SMNn586di5o1azp0XGm3bt3wyiuvYMmSJUhISED37t1x8+ZNzJ07F40aNcKlS5dsepw+ffpg3bp16Ny5MwYNGoScnBxs3LgRGRkZDj2nu7s7pk6dir59+6JVq1Z4//334eHhgYULF6Js2bKIiIhQPPYnn3yC3bt3Y9SoUdi3bx86d+4Mf39/REREYO/evVJ1Fcg7t+m8efPw3Xff4fbt23j22Wdx9uxZrFmzBrVr13781jGFNk/tY6IoTPlLREREzrF+/XrFKS7c3NwKu0mPlLVTHTxOdu3aJYwYMUJo3LixULZsWcHd3V0IDAwUOnbsKCxYsEAwGAzSsjBzOo9FixYJAISQkBDpuvycisRgMAiff/658MQTTwhubm4my8TFxQlffPGFULduXcHLy0sICAgQGjVqJHz88cdCWFiY4rEuXLggdO3aVfD19RXKlCkj9O/fX4iJicnXqUji4uKE9957T6hUqZLg5eUlNGrUSJg3b57Nr1NUvXp1xek4BEEQMjIyhM8++0yoUKGC4O3tLbRs2VLYtWuXxdOxaJk3b57QoEEDwcvLS6hYsaLw/vvvCw8fPtR8nfl9znXr1glNmjQRSpQoIVSpUkUYO3asEBwcrPnZ5eTkCL///rvQokULwdfXV/D19RXq1Kkj9O/fX9i1a5di2YcPHwrvvvuuEBgYKPj6+godOnQQQkNDhQ4dOjx2pyLRCYKTj0B2MSkpKQgICEBycvJjOZ0wERGRK1m9ejX69eunuM5gMFg9rupxERsbi/Llyxd2M4hIg7XfZ1HIJa6xpiQiIiKygdapRx67YWtERAWE4ZKIiIjoHwyXRET2Y7gkIiIi+gfDJRGR/RguiYiIiP7BcElEZD+GSyIiIqJ/MFwSEdmP4ZKIiIjoHwyXRET2Y7gkIiIi+oerh0ueoY6o6CoOv0+GSyIiIqJ/uHq4BIpHB5bI1RSX3yXDJREREdE/tMKl1nWPKy8vL2RmZhZ2M4hIJTMzE15eXoXdDKsYLomIiIj+4eqVS39/fyQlJUGv1xebSgnR40wQBOj1eiQlJcHf37+wm2OVR2E3gIiIiKiocPVw6ebmhgoVKiAlJQUpKSkAAJ1OV8itInJN4g4eLy8vVKhQAW5uRb8uyHBJRERE9A9XD5dAXsAsXbp0YTeDiIqhoh9/iYiIiB4RhksiIvsxXBIRERH9g+GSiMh+DJdERERE/2C4JCKyH8MlERER0T9c/VQkRESOYLgkIiIi+gcrl0RE9mO4JCIiIvoHwyURkf0YLomIiIj+wXBJRGQ/hksiIiKifzBcEhHZj+GSiIiI6B8Ml0RE9mO4JCIiIvoHwyURkf0YLomIiIj+wXBJRGQ/hksiIiKif/A8l0RE9mO4JCIiIvoHK5dERPZjuCQiIiL6B8MlEZH9GC6JiIiI/sFwSURkP4ZLIiIion8wXBIR2Y/hkoiIiOgfDJdERPZjuCQiIiL6B8MlEZH9GC6JiIiI/sFTkRAR2Y/hkoiIiOgfrFwSEdmP4ZKIiIjoHwyXRET2Y7gkIiIiAiAIgmaQZLgkIrINwyURERERzIdIhksiItswXBIRERHB/MQ9DJdERLZhuCQiIiICwyURkaMYLomIiIjAcElE5CiGSyIiIiKYD5c8zyURkW0YLomIiIjAyiURkaMYLomIiIjAcElE5CiGSyIiIiIwXBIROYrhkoiIiAg8zyURkaMYLomIiIjAyiURkaMYLomIiIjAcElE5CiGSyIiIiLwVCRERI5iuCQiIiICK5dERI5iuCQiIiICwyURkaMYLomIiIjAcElE5CiGSyIiIiIwXBIROYrhkoiIiAgMl0REjmK4JCIiIgLDJRGRoxguiYiIiMBwSUTkKIZLIiIiIvA8l0REjmK4JCIiIgIrl0REjmK4JCIiIoIyXLq5/dtFYrgkIrINwyURERERlOHSx8dH+pvhkojINgyXRERERGC4JCJyFMMlEREREZTh0tfXV/qb4ZKIyDYMl0RERERg5ZKIyFEMl0REREQwHy55KhIiItsUuXB57do1jBs3Dm3atEG5cuVQqlQpNG3aFJMmTUJ6erpNjyEIAlasWIHnnnsOQUFBKFWqFBo2bIjvvvsOKSkpBfwKiIiIqDgyFy4FQYDRaCyMJhERFStFLlwuXLgQU6dORe3atTFu3DhMnjwZ9erVw9ixY/Hcc89Br9dbfYyxY8diwIAB8PHxwbfffovJkyfj6aefxrfffosXX3wRgiA8gldCRERExYm5cAlwaCwRkS08CrsBan369MHo0aMREBAgXffhhx+ibt26mDRpEhYsWICRI0eavX9ubi6mTZuGZ555Brt375bOU/Xhhx/Cw8MDy5cvx/nz59G0adOCfilERERUjFgLlyVKlHjUTSIiKlaKXOWyRYsWimAp6tevHwDg0qVLFu+fk5MDvV6PihUrKk6ADACVK1cGAPj5+TmptURERPS4YOWSiMgxRa5yaU5kZCQAoEKFChaX8/HxQfv27bFz5078/PPPeOONN+Dh4YH9+/dj1qxZeOedd1C3bl2721GpUiXFZR6DQURE9HhguCQickyRq1xqMRgMmDhxIjw8PNC/f3+ryy9fvhydO3fGV199hbp166JmzZp499138b///Q9Lly59BC0mIiKi4sbceS4BhksiIlsUi8rlp59+imPHjuGHH35AvXr1rC7v5eWFmjVrYtCgQXjppZcAAOvWrcP3338Pb29vfP3113a3JTo6WnE5JSVFcxgvERERFS+sXBIROabIh8tvvvkGM2bMwPDhwzF69Giry2dkZOC5557DM888g5UrV0rXv/XWW3jrrbcwbtw49OnTx6aQSkRERK7DUrjkuS6JiKwr0sNix48fj++//x5Dhw7FnDlzbLrP2rVrcf36dbz55psmt7355pswGo04fPiws5tKRERExRwrl0REjimy4XL8+PGYMGECBg8ejPnz50On09l0v6ioKAB5x2mqiRsGbiCIiIhIjeGSiMgxRTJcfvfdd5gwYQIGDhyIhQsXmpxSRBQdHY2rV68iIyNDuu6pp54CACxZssRkefG6li1bFkCriYiIqDiTh0svLy/Fjm2GSyIi64rcMZczZ87Et99+i2rVqqFLly5YsWKF4vYKFSqga9euAIDRo0djyZIlCAkJQceOHQEAPXv2RKtWrbB9+3a0b98er7/+OgBg/fr1OHToEN58800888wzj/Q1ERERUdEnD5eenp7w8PCQrmO4JCKyrsiFy9DQUABAREQEBg8ebHJ7hw4dpHCpxd3dHXv27MGPP/6I9evX4//+7/+g0+lQt25d/Pzzz/jss88KrO1ERERUfDFcEhE5RicIglDYjSjOxFORJCcnw9/fv7CbQ0RERHZq0aIFTp8+DSDvUJqRI0ciNTUVAHD8+HG0bt26MJtHRGRRUcglRfKYSyIiIqJHTV259PT01LyNiIi0MVwSERERQXtYrIjDYomIrGO4JCIiIgLDJRGRoxguiYiIiMBwSUTkKIZLIiIiIjBcEhE5iuGSiIiICAyXRESOYrgkIiIiAsMlEZGjGC6JiIiIYPlUJAyXRETWMVwSERERwXLlkue5JCKyjuGSiIiICBwWS0TkKIZLIiIicnkGgwGCIEiXGS6JiPKP4ZKIiIhcnnrYK8MlEVH+MVwSERGRy2O4JCJyHMMlERERuTyGSyIixzFcEhERkctjuCQichzDJREREbk8rXApP88lT0VCRGQdwyURERG5PFYuiYgcx3BJRERELo/hkojIcQyXRERE5PLU4dLd3Z3hkogonxguiYiIyOXJw6Wnpyd0Oh3DJRFRPjFcEhERkctTh0sADJdERPnEcElEREQuj+GSiMhxDJdERETk8hguiYgcx3BJRERELk8rXPI8l0RE+cNwSURERC6PlUsiIscxXBIREZHLY7gkInIcwyURERG5PIZLIiLHMVwSERGRy2O4JCJyHMMlERERuTyGSyIixzFcEhERkctjuCQichzDJREREbk8a+GSpyIhIrKO4ZKIiIhcnrXzXLJySURkHcMlERERuTwOiyUichzDJREREbk8hksiIscxXBIREZHLY7gkInIcwyURERG5PIZLIiLHMVwSERGRy2O4JCJyHMMlERERuTyGSyIixzFcEhERkcuTh0ee55KIyD4Ml0REROTyeJ5LIiLHMVwSERGRy+OwWCIixzFcEhERkctjuCQichzDJREREbk8hksiIscxXBIREZHLY7gkInIcwyURERG5PIZLIiLHMVwSERGRy7MWLnkqEiIi6xguiYiIyOWxcklE5DiGSyIiInJ5PM8lEZHjGC6JiIjI5VmrXAqCAKPR+MjbRURUnDBcEhERkcuzFi4BVi+JiKxhuCQiIiKXx3BJROQ4hksiIiJyeQyXRESOY7gkIiIil8dwSUTkOIZLIiIicnm2hEue65KIyDKGSyIiInJ5rFwSETmO4ZKIiIhcnrXzXAIMl0RE1jBcEhERkctj5ZKIyHEMl0REROTy5OGyRIkSABguiYjyi+GSiIiIXF52drb0t1i5dHNzg06nk65nuCQisozhkoiIiFyePFyKlUtAWb1kuCQisozhkoiIiFyaIAiaw2IBZbjkqUiIiCxjuCQiIiKXZjAYIAiCdFk+Sywrl0REtmO4JCIiIpcmHxILKCuX8qDJcElEZBnDJREREbk09XBXHnNJRGQfhksiIiJyaerKJYfFEhHZh+GSiIiIXJqlYbEMl0REtmO4JCIiIpfGYbFERM7BcElEREQujcNiiYicg+GSiIiIXJo8XLq5ucHd3V26zPNcEhHZjuGSiIiIXJo8NMqHxAKsXBIR5QfDJREREbk0eeVSPiRWfZnhkojIMoZLIiIicmnycMnKJRGR/YpcuLx27RrGjRuHNm3aoFy5cihVqhSaNm2KSZMmIT093ebHyc3NxfTp0/HMM8/Az88PAQEBeOaZZzB37twCbD0REREVN/JhserKJcMlEZHtPKwv8mgtXLgQM2fORK9evTBgwAB4enoiJCQEY8eOxerVq3H8+HH4+PhYfIzs7Gz06tULISEhGDBgAD788EPk5ubi+vXruHv37iN6JURERFQcsHJJROQcRS5c9unTB6NHj0ZAQIB03Ycffoi6deti0qRJWLBgAUaOHGnxMSZOnIg9e/Zg9+7d6NSpU0E3mYiIiIoxhksiIucocsNiW7RooQiWon79+gEALl26ZPH+6enp+P333/Hqq6+iU6dOEAQBqampBdJWIiIiKv5sHRbLU5EQEVlW5MKlOZGRkQCAChUqWFzu0KFDSE1NRfPmzfHJJ5/A398f/v7+KFeuHMaMGcO9jkRERKTAyiURkXMUuWGxWgwGAyZOnAgPDw/079/f4rLh4eEAgGnTpqFEiRL45ZdfULZsWSxfvhw//vgjoqKisGTJErvbUqlSJcVlo9Fo92MRERFR4WO4JCJyjmIRLj/99FMcO3YMP/zwA+rVq2dxWXEIbEJCAsLCwqTl+/bti06dOmHp0qX46quv0KBBgwJvNxERERV9lobF8jyXRES2K/LDYr/55hvMmDEDw4cPx+jRo60uL84k26ZNG5MgOmjQIADA/v377W5PdHS04t/169ftfiwiIiIqfKxcEhE5R5EOl+PHj8f333+PoUOHYs6cOTbdp0qVKgCAihUrmtwmDmlNTEx0XiOJiIioWGO4JCJyjiIbLsePH48JEyZg8ODBmD9/PnQ6nU33a9WqFYB/JwCSE68rX7688xpKRERExZqts8UyXBIRWVYkw+V3332HCRMmYODAgVi4cCHc3LSbGR0djatXryIjI0O6rmbNmmjbti1OnjyJM2fOSNcbDAb8+eef8PDwwIsvvljgr4GIiIiKB1YuiYico8hN6DNz5kx8++23qFatGrp06YIVK1Yobq9QoQK6du0KABg9ejSWLFmCkJAQdOzYUVrmjz/+QLt27dClSxd8/PHHKFu2LFatWoWTJ09i3LhxqFat2qN8SURERFSE2RoueZ5LIiLLily4DA0NBQBERERg8ODBJrd36NBBCpfmNGvWDEePHsXYsWMxbdo0ZGZmokGDBli0aBGGDBlSEM0mIiKiYorDYomInKPIhcvFixdj8eLFDi/buHFjbN682XkNIyIioscSh8USETlHkTzmkoiIiOhRsRQueZ5LIiLbMVwSERGRS+OwWCIi52C4JCIiIpfGYbFERM7BcElEREQujeGSiMg5GC6JiIjIpdk6LJanIiEisozhkoiIiFyapcql/LJ8OSIiMsVwSURERC7NUrj09vaW/s7MzHxkbSIiKo4YLomIiMilWRoWy3BJRGQ7hksiIiJyaaxcEhE5B8MlERERuTSGSyIi52C4JCIiIpfGYbFERM7BcElEREQuzVLl0sfHR/qb4ZKIyDKGSyIiInJpHBZLROQcDJdERETk0jgslojIORguiYiIyKXZWrnU6/UQBOGRtYuIqLhhuCQiIiKXZmu4VC9LRERKDJdERETk0mwdFgtwaCwRkSUMl0REROTS8lO5ZLgkIjKP4ZKIiIhcGsMlEZFzMFwSERGRS+OwWCIi52C4JCIiIpdlMBhgNBqly+rKpbu7uyJwMlwSEZnHcElEREQuSz37qzpcAjzXJRGRrRguiYiIyGXJh8QCpsNiAYZLIiJbMVwSERGRy2LlkojIeRguiYiIyGWpw6W1yqVery/wNhERFVcMl0REROSy1MNiWbkkIrIfwyURERG5LA6LJSJyHoZLIiIiclnqcOnu7m6yDMMlEZFtGC6JiIjIZcmHxZYoUQI6nc5kGYZLIiLbOBQu3d3dMWDAAGe1hYiIiOiRklcutYbEAgyXRES2cihclipVCtWqVXNWW4iIiIgeKXm41JopFgB8fHykvxkuiYjMcyhcNmvWDJcvX3ZWW4iIiIgeKfWwWC2sXBIR2cahcPl///d/2L59O3bv3u2s9hARERE9MhwWS0TkPB6O3Dk2Nhbdu3fHSy+9hN69e6Nly5aoWLGi5sHwgwYNcuSpiIiIiJzOlmGxDJdERLZxKFwOGTIEOp0OgiBg/fr1WL9+PQAowqUgCNDpdAyXREREVOTkd1isXq8v8DYRERVXDoXLRYsWOasdRERERI8ch8USETmPQ+Fy8ODBzmoHERER0SPHYbFERM7j0IQ+RERERMUZZ4slInIep4TLTZs2oV+/fmjSpAnq1KkjXX/lyhX88ssviIqKcsbTEBERETkVh8USETmPQ8NiBUHAO++8g5UrVwLIO8mw/ED3wMBAfP311zAYDBg9erRjLSUiIiJyMluGxfr4+Eh/M1wSEZnnUOVy+vTp+PvvvzFs2DAkJCTgiy++UNxeoUIFPP/889i2bZtDjSQiIiIqCBwWS0TkPA6Fy4ULF+KZZ57B3LlzERAQoHl+yzp16uDOnTuOPA0RERFRgeCwWCIi53EoXF6/fh0dOnSwuExQUBDi4+MdeRoiIiKiAsHZYomInMehcFmiRAmkpaVZXObevXvw9/d35GmIiIiICgSHxRIROY9D4bJJkybYs2ePYsUsl5qait27d6NFixaOPA0RERFRgcjvsFj5xIVERKTkULgcNmwYbt++jSFDhphUMOPj49G/f3/Ex8fjgw8+cKiRRERERAWBw2KJiJzHoVORDBw4EHv27MFff/2FdevWoXTp0gCAp556Cjdv3kROTg6GDRuGV1991RltJSIiInKq/A6LzcnJgcFggLu7e4G3jYiouHGocgkAS5YswZ9//on69esjLi4OgiDg6tWrqFu3LubOnYt58+Y5o51ERERETpffYbEAkJWVVaBtIiIqrhyqXIree+89vPfee9Dr9UhMTERAQAD8/Pyc8dBEREREBcaWYbE+Pj6Ky5mZmfD19S3QdhERFUdOCZciHx8fkxUwERERUVGV32GxAI+7JCIyx6FhsW3atMHXX3+NPXv2cEVLRERExY49w2LZ5yEi0uZQ5fLChQs4efIkfvrpJ5QoUQKtW7fGCy+8gM6dO6NNmzY82J2IiIiKNFuGxapDJ8MlEZE2h8JlUlISjh07hj179mDv3r04evQoDh48iPHjx8PX1xfPP/88OnfujM6dO6N58+bOajMRERGRU9gyLFan08Hb21sKlQyXRETaHAqXJUqUQIcOHdChQwdMnDgRaWlpOHDgAPbt24d9+/YhODgYwcHB0Ol0yM3NdVabiYiIiJzClmGxABguiYhs4NQJfUqWLIlmzZohMTERCQkJiIqKQnx8vDOfgoiIiMhpbBkWCyiPu9Tr9QXaJiKi4srhcJmQkICQkBCpWnnt2jUIgoDAwEB06NABnTt3xgsvvOCMthIRERE5lS3DYgFluGTlkohIm0PhslmzZrh48SIEQYCfnx/atWuHYcOGoXPnzmjatCl0Op2z2klERETkdPkZFitiuCQi0uZQuDx//jx0Oh26du2Kr776Cu3ateMMsURERFRs2DMsluGSiEibQ+e5/N///ofGjRtj9+7deOGFF1CmTBm8/PLLmDp1Ks6fP++sNhIREREVCFuHxfr4+Eh/M1wSEWlzqHI5ZcoUAHnHXYrHXO7btw87duyATqdD2bJl0alTJ7zwwgsYPny4UxpMRERE5CwcFktE5DwOVS5FgYGB6NOnD2bNmoWrV68iMjISU6ZMgZubG9auXYsRI0Y442mIiIiInIrDYomInMdppyJJT0/HwYMHsXfvXuzduxcXL16E0WgEAJQqVcpZT0NERETkNJwtlojIeRwKlwcOHMC+ffuwd+9ehIaGIjc3F4IgwMfHB506dULnzp3RuXNntGzZ0lntJSIiInIaVi6JiJzHoXDZqVMnAHkr45YtW0rntHz22Wct7v0jIiIiKgp4zCURkfM4FC6/+OILdO7cGe3atYOfn5+z2kRERET0SNgzLFav1xdom4iIiiuHwuUvv/zirHYQERERPVIGgwEGg0G6zGGxRESOcdqEPtHR0Th37hySkpIQEBCAZs2aoVKlSs56eCIiIiKnklctAQ6LJSJylMPhMiIiAh999BF27txpclu3bt0wa9Ys1KhRw9GnISIiInKq/IRLHx8f6W+GSyIibQ6FywcPHqBt27aIiopCjRo10L59e1SqVAnR0dE4dOgQdu7ciXbt2iE0NBQVK1Z0VpuJiIiIHCafzAfgsFgiIkc5FC6///57REVF4eeff8Znn30Gd3d36TaDwYCpU6fiyy+/xPfff48ZM2Y43FgiIiIiZ1GHSw6LJSJyjJsjd962bRu6dOmCUaNGKYIlALi7u+OLL75A165dsXXrVocaSURERORsPOaSiMi5HAqX0dHRaNmypcVlWrRogQcPHjjyNEREREROx2GxRETO5VC4DAgIQEREhMVl7t27B39/f0eehoiIiMjpGC6JiJzLoXDZtm1brF27FidOnNC8/eTJk1izZg2ef/55mx/z2rVrGDduHNq0aYNy5cqhVKlSaNq0KSZNmoT09HS72tmvXz/odDo0atTIrvsTERHR40c+LNbT0xM6nc7ssgyXRETWOTShz9ixY7F9+3a0a9cOb7/9Njp27IiKFSviwYMH2L9/P/7++2+4ublhzJgxNj/mwoULMXPmTPTq1QsDBgyAp6cnQkJCMHbsWKxevRrHjx9XTAduzdatW7F27dp83YeIiIgef/LKpaWqJaAMl3q9vsDaRERUnDkULp955hmsXbsWgwcPxl9//YVly5ZJtwmCgMDAQCxcuBAtWrSw+TH79OmD0aNHIyAgQLruww8/RN26dTFp0iQsWLAAI0eOtOmx0tLSMGLECPznP//B5s2bbX9hRERE9NiTh0tLk/kArFwSEdnCoXAJAD179kRERAQ2btyIs2fPIjk5GQEBAWjWrBl69+4NPz+/fD2euSDar18/TJo0CZcuXbL5sb7++msYDAZ8//33DJdERESkIB8Way1cykdAMVwSEWmzO1xGREQgNDQUbm5uaNmyJQYMGIABAwY4s20KkZGRAIAKFSrYtPzJkycxY8YM/P33306dUKhSpUqKy0aj0WmPTURERI+OvcNiMzMzIQiCxWM0iYhckV3h8osvvsC0adMgCAIAwM3NDZ9//jl++uknpzZOZDAYMHHiRHh4eKB///5Wl8/NzcWwYcPw4osvom/fvgXSJiIiIire7B0WazQakZubazWQEhG5mnyHy7///hu//fYbdDod6tevD0EQEB4ejsmTJ6N58+Z48803nd7ITz/9FMeOHcMPP/yAevXqWV1+8uTJuHHjBjZu3Oj0tkRHRysup6SkKI4PJSIiouIhP8Ni5eESyKteMlwSESnl+1Qk8+fPh4eHB3bt2oWwsDBcvnwZO3bsgJubG+bPn+/0Bn7zzTeYMWMGhg8fjtGjR1td/saNG/juu+/w9ddfo1atWk5vDxERET0e7B0WC/C4SyIiLfmuXF64cAGvvPIKunTpIl334osv4pVXXsHhw4ed2rjx48fj+++/x9ChQzFnzhyb7vP5558jMDAQr732Gm7cuCFdn5ubi+zsbNy4cQN+fn4mx04SERGRa7F3WCzAcElEpCXf4TIxMRH169c3ub5BgwbYsmWLUxoF5AXLCRMmYPDgwZg/f77NB83fvXsX9+/fR8OGDTVvr1u3Ll5++WVs3brVaW0lIiKi4sfRYbFERKSU73BpNBrh5eVlcn2JEiWcNnPqd999hwkTJmDgwIFYuHAh3Ny0R+9GR0cjOTkZ1apVg6+vLwDg119/RVJSksmyI0aMgLe3N3777TdWLYmIiChfw2I9PDzg7u4Og8EAgOGSiEiLXbPFFuTU2zNnzsS3336LatWqoUuXLlixYoXi9goVKqBr164AgNGjR2PJkiUICQlBx44dAUAxXFfuiy++QMmSJdGnT58CazsREREVH/kZFgvkVS/T09MBAHq9vsDaRURUXNkVLqdMmYI///xTcV1KSgoAoFq1aibL63Q63L1716bHDg0NBZB3Hs3Bgweb3N6hQwcpXBIRERHZKz/DYgFluGTlkojIlF3hMiUlRQqTapGRkQ41aPHixVi8eLHTl71z547dbSIiIqLHT36GxQKAj4+P9DfDJRGRKbuOuSQiIiIq7uwZFitiuCQiMpXv81wSERERPQ7sGRYrYrgkIjLFcElEREQuKb/DYhkuiYgsY7gkIiIil8RhsUREzsVwSURERC6Jw2KJiJyL4ZKIiIhcEofFEhE5F8MlERERuSQOiyUici6GSyIiInJJjgyL1ev1BdImIqLijOGSiIiIXFJ+h8X6+PhIf7NySURkiuGSiIiIXBKHxRIRORfDJREREbkkzhZLRORcDJdERETkkjhbLBGRczFcEhERkUvisFgiIudiuCQiIiKXJB8Wy8olEZHjGC6JiIjIJbFySUTkXAyXRERE5JIYLomInIvhkoiIiFwSh8USETkXwyURERG5pPxWLn18fKS/9Xp9gbSJiKg4Y7gkIiIil8RhsUREzsVwSURERC7JkWGxrFwSEZliuCQiIiKX5EjlMisrq0DaRERUnDFcEhERkUviMZdERM7FcElEREQuyZFhsdnZ2TAYDAXSLiKi4orhkoiIiFyO0WhEbm6udDm/lUuAQ2OJiNQYLomIiMjlyKuWgH3hkkNjiYiUGC6JiIjI5ajDZX6HxQIMl0REagyXRERE5HLkk/kA9lUuea5LIiIlhksiIiJyOfaES09PT7i7u0uXWbkkIlJiuCQiIiKXY8+wWEA5NJbhkohIieGSiIiIXI66cmlruJQPjeWwWCIiJYZLIiIicjnyqqNOp4OXl5dN95OHS1YuiYiUGC6JiIjI5ciDoY+PD3Q6nU3347BYIiLzGC6JiIjI5WRkZEh/q2eBtYSVSyIi8xguiYiIyOWoK5e24jGXRETmMVwSERGRy5GHS19fX5vvx2GxRETmMVwSERGRy+GwWCIi52O4JCIiIpdjb+WSw2KJiMxjuCQiIiKXY+8xlxwWS0RkHsMlERERuRwOiyUicj6GSyIiInI5HBZLROR8DJdERETkcjgslojI+RguiYiIyOVwWCwRkfMxXBIREZHL4bBYIiLnY7gkIiIil8NhsUREzsdwSURERC5HPizW3solwyURkRLDJREREbkceyuXHBZLRGQewyURERG5HHsn9OGwWCIi8xguiYiIyOU4Y0IfhksiIiWGSyIiInI5HBZLROR8DJdERETkcjgslojI+RguiYiIyOVwWCwRkfN5FHYDiIiIiB41W4bF6vV67N+/H+7u7ujYsSNKlChhMixWEATodLoCby8RUXHAcElEREQux5bzXB45cgQnTpwAAJQoUQIdO3ZUDIs1Go3IyclBiRIlCraxRETFBIfFEhERkUsxGAzIycmRLpurXB4+fFj6e//+/ZrLcmgsEdG/GC6JiIjIpagDob2zxQKcMZaISI7hkoiIiFyKfEgskL8JfeTDYgFWLomI5BguiYiIyKU4UrlkuCQiMo/hkoiIiFyKI+HSzc0NXl5e0mUOiyUi+hfDJREREbkU+bBYLy8vuLnlrzskr16ycklE9C+GSyIiInIptpzj0hL5fRguiYj+xXBJRERELsWWc1xqMRqNAJThksNiiYj+xXBJRERELsXWyqWHh4ficlZWFgAOiyUiMofhkoiIiFyKo+GSw2KJiLQxXBIREZFLsXVYrE6nU1wWh8ByWCwRkTaGSyIiInIptlYuDQaD4jKHxRIRWcZwSURERC7F1nCZm5uruKxVuWS4JCL6F8MlERERuRRbhsUajUZpdliR1jGXHBZLRPQvhksiIiJyKbZULtVDYoF/gySHxRIRaWO4JCIiIpdiS7hUD4kFOFssEZE1DJdERETkUmwZFmupcslhsURE2hguiYiIyKU4WrnksFgiIm0Ml0RERORSbKlcaoVLzhZLRGRZkQuX165dw7hx49CmTRuUK1cOpUqVQtOmTTFp0iSkp6dbvX9iYiJ+//13vPjii6hatSp8fHxQr149DB8+HPfu3XsEr4CIiIiKMmcec8lhsURE/ypy4XLhwoWYOnUqateujXHjxmHy5MmoV68exo4di+eee87qHsITJ07g888/h06nw8iRIzFjxgz06NEDy5Ytw9NPP43Lly8/oldCRERERRFniyUiKhgehd0AtT59+mD06NEICAiQrvvwww9Rt25dTJo0CQsWLMDIkSPN3r9+/foIDw9H7dq1Fde//PLL6Nq1K8aNG4e1a9cWWPuJiIioaLN3WCxniyUisqzIVS5btGihCJaifv36AQAuXbpk8f41atQwCZYA0KVLFwQGBlq9PxERET3e7B0Wy9liiYgsK3Lh0pzIyEgAQIUKFey6f3JyMlJTU+2+PxERET0eOFssEVHBKHLDYrUYDAZMnDgRHh4e6N+/v12PMWnSJOTk5GDw4MEOtaVSpUqKy0aj0aHHIyIiokfL3vNcZmVlwWg0clgsEZEZxSJcfvrppzh27Bh++OEH1KtXL9/3X7t2LX799Vd0794dQ4cOLYAWEhERUXFhb+USALKzszkslojIjCIfLr/55hvMmDEDw4cPx+jRo/N9/+3bt2PAgAFo3rw5Vq1aBZ1O51B7oqOjFZdTUlI0jxElIiKiokkeLvMzoQ+QFyY5LJaISFuRDpfjx4/H999/j6FDh2LOnDn5vv/OnTvx+uuvo2HDhggODoa/v38BtJKIiIiKC0EQNCuXgiDg2LFjSElJwfPPP685LBYA0tLSOCyWiMiMIhsux48fjwkTJmDw4MGYP39+viuOO3fuRO/evVG/fn3s2bMHZcqUKaCWEhERUXGhHsYqBsVr164hODgYQN7Q13LlymnePzExUREus7OzYTQa4eZWbOZIJCIqMEVyTfjdd99hwoQJGDhwIBYuXGh2hR0dHY2rV68qDswHgODgYLz22muoV68e9u7di8DAwEfRbCIiIiri1JVGcVjs9u3bpevOnDljdlhsQkKCYlgswOMuiYhERa5yOXPmTHz77beoVq0aunTpghUrVihur1ChArp27QoAGD16NJYsWYKQkBB07NgRAHDq1Cm8+uqrEAQBQ4cOxY4dO0ye45133inw10FERERFj3qHtFiFdHd3V1xvKVzWr19fcZ1erzd77CYRkSspcuEyNDQUABAREaF52pAOHTpI4VLLpUuXpD2I//vf/zSXYbgkIiJyTerKpblwae6Yy4SEBJMZZlm5JCLKU+SGxS5evBiCIJj9t3//fpNlxaolAAwZMsTi/QVBePQvioiIiIoEeeXSw8MDnp6eAEzDZU5OjvS3fEJArWGxnNSHiChPkQuXRERERAXF3Dku1eEyLS1N+rt8+fLS3+np6SYT+DBcEhHlYbgkIiIil2HuHJfqyQNTUlKkv4OCghS3q2eM5bBYIqI8DJdERETkMuTDYuUBUT2BjzxclihRAqVLl5Yuq4fGsnJJRJSH4ZKIiIiKhMTERJPZXJ3N3LDYrKwsxXKpqanS3+7u7orTmqkn9WG4JCLKU+RmiyUiIiLXc+nSJaxduxbu7u746KOPEBQUVCDPY25YrDpcGo1G6W8PDw9FuIyPj0d2drZ0mcNiiYjysHJJREREhW7t2rUA8k4BsnHjxgJ7HnPDYtXhUk4dLs+fPw+dTiddTk9Pd3IriYiKJ1YuiYiIqEi5f/9+gT221rBYg8FgcsylnIeHB8qUKWNynUg+sywRkStj5ZKIiIiKFPmQVGfTGhYrH+Kqxd3dHU888YSiWikPl6xcEhHlYbgkIiIil6E1LNbSkFggL0h6eXmhXLly0nWenp7S3wyXRER5GC6JiIjIZWhVLm0JlwDwxBNPmFwHMFwSEYkYLomIiMhlaB1zaS1curu7AwCqVKkiXScPlwV9+hQiouKC4ZKIiIgKlSAIZm9LS0tz6jGY9g6LBcyHS1YuiYjycLZYIiIiKlRaE+oYjUacOHECu3btQmBgID766CPFcY72smdCHzFIyo+5ZOWSiMgUK5dERERUqLTCnV6vx65duwAACQkJOH36tFOey5HKpZubG5588kkAygl9MjMzndI2IqLijuGSiIiICpVWuFNXAxMSEpzyXI4ccwkA3bp1w1NPPWV35TItLQ2bNm3Czp07kZOTY/P9iIiKA4ZLIiIiKlRalcuHDx8qLnt5eTnluRyZLRYAypYti759+6J8+fKaj2nNgQMHcPbsWRw/fhynTp2y+X5ERMUBwyUREREVKq1wGRsbq7gsD3iOcGRYrJx4X1vuLxcaGir9LQ77JSJ6XDBcEhERUaHSCmcxMTGKy84aQmrPsFhr4TI/lUsioscZwyUREREVKq3KpTpc5qc6aIm1YbElS5Y0uY/8mEuRvZVLIqLHGcMlERERFSqtcBYfH291GXtoDYuVh9tGjRqZ3MeZw2LzQxAE7N+/H2vWrDF5P4iIiiKe55KIiIgKlbXzTNq6jC2sVS7LlSsHd3d3GAwG6To3N9N98eJ91fe3RP6YtggPD8f+/fsB5M0yO3To0Hzdn4joUWPlkoiIiAqVLeHMGdVBQRCsHnNZokQJ1KpVS3E/nU5n8lh+fn75bpvWsZlGo9Hs8keOHJH+vnv3rk3PQURUmBguiYiIqFDZUpW0JcBlZ2dbXC4nJ0dRPdQKl15eXmjXrp10OSgoSPOx5JVLWycb0jofpqVzZObm5tr0uERERQWHxRIREVGhsjU4WvLgwQMsXLgQADBo0CBUqVLFZBl15VBrWKyXlxeqVauGHj164Pr162jbtq3m88kn/rF1yK5W5TI9PV1zEiGA4ZKIih9WLomIiKhQOaNyuWrVKmRnZyM7OxurV6/WXEYd7nx8fCAIgkm4BIBWrVphwIABqFGjhuZjySuX2dnZEATB6mvQqlKmpaWZXd5Zp18hInpUGC6JiIioUDmjcpmYmCj9nZKSormMOtz5+PjAYDAojnsUw6U1pUqVkv4WBMGmKqNWuExPTze7vPoxbQmwRESFieGSiIiICpWtlUtHw5W8cqnT6eDl5WVSzfT29rbpsdRDWbWGvMoZjUaHw+WRI0cwf/58hIWF2dRGIqJHjcdcEhERkVMZDAacO3cOANC0aVO4u7tbXN7WYxazs7NtrixqUZ/jUqfTKa5zc3NzKFz6+/trLnv27Fns2LFD83XmJ1zu2bMHALBmzRo0aNBA8xQpRESFieGSiIiInOr8+fPYsmWLdLl58+YWl5cPi61evbrZ0244Gi61znGpFThtIR8Wq35sOYPBgE2bNpl9HHPh0tpQ25ycHIfeCyKigsBdXkRERORUmzdvlv6Wh0w5QRCk04LIK3odOnRAjx49NEOeo+e61DrHpTxcyifpsaZUqVKKymFcXBzCw8Nx8OBBxWPevn3b4uOYC5fWqrmcSZaIiiJWLomIiOiRSk5OxoIFC2AwGPD222+bzNbaqlUr1KtXD3q9HgsWLJBmTXU0XKqrlOrr8hMuvb29UbJkSWnyoP3790tB8eLFi3jvvffg7e2Ny5cvW3wcebi8c+cObt68iaZNm1od8sqZZImoKGLlkoiIiB6p9evXIyUlBenp6dixY4ciKJUoUQIAEBAQgIoVKyqGfpqr5tlaxdOqXMrDXX7Cpaenp2Jo7MGDB6W/4+LisG7dOuTm5uLq1asWH0d8/oyMDCxfvhyHDh3C+vXrNSf/kZO/Z+L7eOjQIc4oS0SFipVLIiIieqTkx1RGRUUpblMfRyiGTcB85TIzM9Om55WfrqR06dIA7K9cenp6wt/fX2p/amqq4vbr169j165dVkNiUlIS5s+fjyeeeEIKjFFRURbPfwkoA/XBgwdx4sQJAIC/vz+aNGli8+sgInImVi6JiIioyJCHSUAZNm0Nl+KQ0uzsbISGhiI8PBwAEB8fLy0TFBQEQBku/fz8bG6nm5ubYnZYMVyKoRUATp8+bdNjRUZGSuFQFBcXZ/E+OTk5UpVSft8NGzbY9JxERAWBlUsiIiJyKk9PT7PHBFo7btJauDQajSbHI6rDpdFohNFoxIEDB3DkyBEAwNChQ/Hw4UNpmbJlywKwv3IJKINkamoq3Nzc8NRTT+Ho0aNSO+wVGxtr8fZTp05h1apVqFOnjt3PQUTkbKxcEhERkVN5enoqLi9cuBBTpkzB9evXLVbkPD09TYKjPFxu374df/zxBxISEhTLaJ0GJCcnRwqWQN6EO9Yql/kNl4GBgdLfqampCAwMlEKrNZ07d7Z4u7VweeHCBaSnp+P8+fMmt1kbiktEVFAYLomIiMipPDyUA6MiIiKQmpqK5cuXIzo62uz91FVLresSExMVoRHQPuZSPflPTk6O0yuX6nAZFBSEMmXKWF0WANq3b493333X7GNbC5eWqI9jJSJ6VBguiYiIyKnU4VJu3759Zm9TT+Zj7jp1tU4rXKrDmbe3t0nlUhAEh8JluXLlpL/T09MREBBgNly+8sor0vtSt25dq8/nyJDayMhIu+9LROQIHnNJRERETmUwGMzepjWEVaRVudQKl+qhp1rhUl0hNRgMinBZtmxZ5OTkKGZdzW+4FIfWigRBgL+/P3Q6neKUIG5ubqhWrRoGDhyIe/fuoWnTpgD+PR2KszFcElFhYbgkIiIip7L1vJNqWkFSK3CqZ3XVCqz3799XXL59+zYePHggXS5btqzJsYn5DZf+/v6KyYtycnLg7u6OgIAAJCUlScsFBATA3d0d1atXR/Xq1aXrCypcRkVFQRAE6HS6Anl8IiJzOCyWiIiInMrecGlr5VJ9PKUtlcvc3FzF/S5evIhp06ZJlz08PEwmIrJGr9ejVKlS0mUxrKqHxpobKuvm5qb5+hyVmZmJ9PR0pz8uEZE1DJdERETkVM6sXGpdpw6TWuEyMTFRcVld3bxx44bisq+vb74rfcnJyYpwKQ67lZ+iBDCdzEf9vAXB0vBjIqKCwmGxRERE5DRGo9HsMZfDhg1DSkoKrl+/jrNnz5rcbstssUBemDQajRAEAe7u7prhUk0+BFan08Hb21txuz0hLz09XREuxaG4tlYugbyhseog7AwMl0RUGBguiYiIyGksTeZTqlQpVKlSBfXr19cMl7YMgQWAtLQ0zJo1C0lJSXjjjTdsClLycOnj42NSpbQnXLZr1w7BwcHSZfEUIOowaalyWVDHXTJcElFh4LBYIiIichpLQ2JLliwJIO9YQ63TlWhVKatWrar5WPHx8cjNzcWqVavyHS61gqQ9Ia9NmzaoXbu2dFmsXKqHxVqrXFqinrzIVgyXRFQYGC6JiIjIacyFSz8/P7i7u0uXtSbP0QqXQUFB6Nixo8Xqn3xmVnPkYUsrXMpPU2IrPz8/9OzZU7oshsugoCDptXp6ejp0zGWtWrXy3S6A4ZKICgfDJRERETmNuXApPzYRsH1mWADo2LEjRowY4VC71MNi1Ro1amTX4z7xxBPS3+KwWB8fH3Tv3h2VKlVCjx49NF+rpbbI1ahRw652MVwSUWHgMZdERETkNLaGS1srlyIPDw94eHjYPROtPFyWLFkSdevWRbt27bBy5Ur4+PigSZMmdj1u5cqVpb9TUlKQlpaGkiVLomXLlmjZsqXV+1sLl/LHt0b+/jBcElFhYLgkIioicnJysG/fPmRnZ6Nz5852H2tFVJgcCZfWzvno7e2NtLQ0u9olD1udO3fGgAEDAACjRo0CgHyfhkRUqVIlxeXo6GjUrVvX5vtbC5eWArda2bJlERMTA4DhkogKB4fFEhEVEadPn8axY8dw+vRp7N27t7CbU2Byc3Oxc+dOrF+/HikpKYXdHHIyc+FSnMxHZOtpR+TUpw+xhRhY5ZXLcuXKSX/rdDq7gyWQFw7lx1SKQ2NtZemYy65du+YrXMrb4cxwKQgCbty4gbCwMIuzARMRsXJJRFRE7Ny5U/r7zJkz6NWrVyG2puCcO3cOx48fB5B3TsQ+ffoUcovImcyFS3VIsqdyqXV7165dcffuXURHR8NoNCI9PV1xe/ny5XHv3j1F2CpbtqzF58mvypUrIyEhAcC/k/rYSl25rFatGqpXrw6dTofWrVvnK8wVVLi8ceMGli9fDgDo0aMHWrVq5bTHJqLHCyuXRET0SMnPC3jp0qVCbAkVBHPhUh0mnVW5fPLJJ9G/f398/vnnePbZZ01ur1ChAgBl5TIoKMji8+SX/LhIR8Oln58fXnjhBXTu3BkeHh6aIdwceWh2Zrhcv3699Pf27dud9rhE9PhhuCQiKiLkp2nIj+TkZLuPQysMWuc3pMeHuXCpDnT2HnOpJj82WesxxeeVh0tnVy61Zoy1lbVjLt3cbO+qFVTlksdvEpGtGC6pyEhJScGxY8cQHR1d2E0hKhT56USKbty4gWnTpuG3337Ld6e2sDBcPt7U4VKn06Fu3bom52t0RuXSzc1NEc60wmW5cuVgMBiQlZUlXVcQw2JF+a1cql+TIAh2t0MetDMzM2E0Gu1+LDl7d3w9DrKzs3H48GGEhoY67f0sTPfu3cO2bdtw9+7dwm4KPaa4haciY926dbh79y68vLzwv//9z66JG4iKM3d3d+Tk5EiXBUGwOtHIpUuXIAgCBEHApUuXFBWUokodLg0Gg0t3Xoub6Oho3Lt3D40aNdKcjEYeLqtUqYKBAwdqViTzeyoSwLSy6evrq/iNaD1mtWrVTH4XRWlYrD07lcxRV0EzMzMtThhkKw8PD6dM5CMIAiIjIxEQEAB/f3+HH+9ROH78OPbt2wcgb0fA008/Xcgtsp/BYMCKFSug1+tx6dIlfP7559zZR07HyiUVCTk5OdJetKysLFy7dq2QW0T06KkDljxompOZmSn9La/MFGXqzox6AhYqutLS0rBgwQJs374dq1ev1lxGHi49PDzMDnVVB8kSJUpY3Zmi3umoPl2P1mN6enri+eefl67T6XQoU6aMxefJL0eGxarZ09nX6XTo1q2bSbh01nBW9brJ3urqwYMHsWDBAvzxxx9ISkpyQssKnhgsgbyd4Plx9epVrF27Fnfu3HFyq+yTlJQkfSf0ej3i4+MLuUX0OGK4LGJycnJw/vx53L9/H0lJSZg7dy7mzZtXbFbC9lK/vqysLBw7dgxhYWEODREiKk7UHThbOobyQFlcwqU6QBSn40Vd3Z07d6TweOfOHc3DGNTh0hxbJvhRsxYu1Y8p3i7O5AoAZcqUcXqlXF25zO92q2nTptLfHTp0yNd95ZMZubu7K97HvXv34vbt2/l6PC3qzzE7O9uux7l69SqAvL5OWFiYw+0qyvR6PVauXIlLly5h8eLFRWJIrXrIujOr5kQi1sKLmF27duHUqVNwd3eHt7e3tEf/0KFDeOWVVwq5dQUnMTFRcXnv3r1SRWbIkCGoUaNGIbTq8WAwGGAwGPJ1rjQqGvR6PQICAiwuUxzDpbqdrFwWH+odAWfOnMHLL7+suM7ecGltMh/A/nD58OFD6TpnH28JKCuXWVlZSExMVEyuY82LL76I8uXLo0KFCopzcIpq166Nmzdvat7Xy8tLcQ5RHx8fKfxdvnwZV65cwccff+xQtVb9Oer1eps+r/j4eLi7u0vPLZ9U6cGDB3a3pzhQD4/Ozs4u9MN95CNdANtGxxDlF3dZFDGnTp0CkBcI5B2u06dPF1aT7JaTk2Pz3lt15VK+Aty1a5czm+VSEhMT8dtvv2HKlCmIiIgo7OaQFepqwONauVR3cFi5LD7U6+qLFy+adFBtDZdaQ1itUQcaW8OlfPifs4+3BPLOpSmvAuV3aKyvry+ee+451K5dW7ouNzcXKSkpAICXX34ZjRs31qxqqt839dBYQRBw/fr1fLXHGlvWTVevXsWMGTPw+++/S4e9yO/3uE/ep64KFoX1s/pzM1eBNhgMWLNmDebMmYPIyMhH0TR6jDBcFhO2HJB//fp1HDhwAKmpqY+gRZadPXsWP//8M/7880+bJgFQVy7lisJQkuJq06ZNSE9PR1ZWVr6PFaFHSxAEk87H4xgutV6nq1Qus7KyEBERUazXacnJyYrLmZmZ0lBHUVGqXIrLF3Tl0sPDQzqfJpD/SX3UoqKiULVqVVSoUAFbtmxBYGAgXn/9dXTq1MlkSK+1cOkM6hAir0Cas3LlSunvzZs3w2AwKB7n4cOHdg+vfVQcmcRIPfzfmevn3NxcHDp0CAcPHszXe6jeppirXF69ehVhYWF48OCB4phTIlswXBYT1obGJSQkYMWKFQgJCcGOHTseUavM27RpE3Jzc3H//n2cPXvW6vKWwqXW7H+5ubm4cOECrl27xmMyLZBPIqDuFFLRkpuba/JdfhzDZXZ2tsnrdIXKZW5uLmbNmoWFCxdi8+bNBf58MTEx+Pvvv7F//36nriO11iPqykZBVi7tmdAHUFYuCyJcAnkz44ouXLjg0GPNmTMHDx48QGZmJqZPn664Tf152hIura1LBEFAVFQUoqKiNL8v6hCS34mCHj58aHIfQRAQExNj0/0FQcDRo0cf+cQ4Wq/T3HlcrS3nzPXzqVOnsHfvXuzbtw9nzpyx+X7qUSPmgql8hEJsbKxdbSyKrl+/jm3bttn8vSP7MFwWE9b2RB4/flzaIFy+fPlRNMks9YbJluFB+Q2XoaGhWL9+PVasWIFbt27lv5FERYzWRt5aB85oNCo6fWLn5caNG1ixYgWWL1+OH3/8EUeOHHFuY63Q6/VYt24dVq1aZVKV1OpguULl8sKFC1IwO3fuXIE/34YNGxAeHo79+/c7ZUIXkdbkcur196OsXHp6eioqwfLHFARBCl7yymVBDIsFgHbt2kl/b9261ab7REdH48cff8SBAwcU1x86dEj6Wz17urVwqfWeW1uXhIeH488//8Sff/6J8PBwk+ezp3JpSxtsHRo7efJktG3bFk8++SSuXLmS7+fWIggCNm7ciFmzZpntR2i9TlvXV+pA7sxwuXPnTs2/rbG1cilfLi0trdB2XIoV2pCQEIfbkJ6ejlWrVkn9Ryo4DJdFiKXhF9b2lKnH9hdmNU9dhbA2K58gCPkOl/LjMNeuXZvPFhIVPfaES/V9srKyEBsbixYtWmDAgAGYNGkSsrKyHK5excTE4MaNGzYP5zx37hwuXryIK1eumHSy1XvOAdeoXKorfgW9jpZPliIey++o7Oxszc62OnA+qmMujUYjPv74Y5QuXRrz588H8O/24tq1a5gyZQrGjBmDzMzMR1K5lE+6d+TIEcUMteb07dsXY8aMQdeuXaXjIrOysnD8+HFpmXv37il+N+rvjnobKW5PjUaj9Hmlp6fj8uXLuHHjhmY71qxZI/29YcMGxW32jKpQ92fc3Nw0vzu2Turz999/A8gLQ/Lhto64c+cOzp07h9jYWCxdulRzmcIKlwU1dN7WyqX687XURytI58+fx969e3HgwAHFb8Ie8fHx0ropJiamWB+eUNQxXBYhlmbtsjamXr1RLszhcepOlLUfcEZGhsXXZ+28Z8VhKGBh4IqzeNH6HmsFMUv3EQQB27dvl36D4eHhMBgMyMnJsfvYppiYGMyePRvLli3D0aNHbbpPcHCw9Le6yuBqlcvY2FjcunXLZP1u7fOIi4vDjh077Drnr3pnpNYOOlFycjLOnTtn02dgbmh9YmKiInwUZOXSy8tLql5euXIF+/fvR2pqKr788ksYjUZpZ+aePXuQnp6OU6dOYenSpY+kctm2bVuULl0aQF64kh+ikpOTYxJULl26hMOHD0u3iztKT506pfidCIJgsfqs3rnctGlT3L9/H9OnT8fkyZNx4sQJXLx4EatXr8ayZcs0RzfJw6D6N6r1XbVWuVTP/eDp6Wl35dJoNCqqqc6a4FD9nmp9v7Vep607w+wJl4IgYNWqVfj5558LZCJHeyqXAGzaUVIQtmzZIv0dEhLi0GOp33/2HQsOw2URYqmzYW26aPVGujA7a+oVtLUVsbU9YkX9gP+iSut9d2RyAls566TdRcWtW7ewaNEiHDx4sECfx57KpdbG8eTJk9LfRqNR6lRbC6rmyEcJ7Nmzx6b7qE/BIP/eabXjcQuXgiBgy5YtmDNnDv744w8sXbrUJJhb69isX78eJ06cwKpVq/I9SZt6eXMBLzc3FwsWLMDGjRvx999/W62mmguX6uAk3145u3Kp0+nw1ltvoWHDhoqKaWJiIi5dugQgb+hsXFycdNvmzZsfSeXS09MTL730knRZrNrHxMSgWbNmKFmyJP7880/p9uXLlyvuLy6vta7Jz2yv9+/fx9KlS6XP68CBA4qdjatXr7b5sQD71k3iLLcig8GgeZ/Y2Fir26WIiAjFfU+dOiV9V3Nzc+1ef5QqVUpxWSvA21K5FI9XVf9+7AmX165dw5UrV5CVlaUIVs5ib+UyISEBx44dw9ChQ7Ft2zant0uuoEZ1qF+7vdvEwpKdnV0kJuy0BcNlEeJIuFSz53gIZ3nU4dJaZdPVZGRkICQkxOQYHqDgg9/atWvx888/23y8UXGwdOlS3L17F/v27SvQSQCcFS7VQyDFNss3pCkpKdi0aRNCQkJsGlmQX+pwKe/Ya7U5IyPjsaq0b9iwAb169cJHH31ktvpgqaOZlZUlVXQMBoPJMXDWqNfB5g6riIyMlEJAZGSk1c9aHuaeeOIJRXCUr8ftrVzaei7eGjVqoFu3borjEoF/Q5m6Mrl3715FhaygKpeAcmjsjh07kJOTgzFjxiAsLAyCIOB///sf4uPjYTQaTcLlsWPHEBcXZ/K6AJgdzqq2ePFivPbaa4rvl16vx7179xTLyfsUWp/73r178ffffyM2Nlaz/2Ft3aT1HVQHTiDv+x0XF4fExESz64Dz588rLsfExCAqKgopKSmYMmUKpkyZgrCwMIvt0aJe52pNFmRL5XLAgAGoUqUKnnvuOcUwX3vCpXpyLKPRCKPRiB07dmDFihWIi4szG77i4uKwdOlSbNq0yWxgt7dyeeXKFXTp0gWLFy9Gr169bJ6watu2bRg8eLDmd1otNzcXS5YswW+//Wbz9z0/inO4TEpKwpQpU/Dbb79JO9GKMobLIsRSgLQWLtW3a+3JS01Nxe3btwu8E6fegFgLl1oTRMg9yspleno6PvroI3zwwQeFdoyBo/bv348DBw5odmoLMlzGxcVJKz31sC5rLly4gHHjxpl0Igqb+nflzIlR1JwRLo1GIy5evKi4TpzpT74h3b17N86ePYsDBw5YnQDMlqGKauodPvKOvdb3QhCEQt0hZgtBEHDgwAGsWrXK6k4G+QQb5k58b2m9Jh/CKT53fqjXwebeW3XotLbOkweG0qVLS0NAAeV6vCCHxYo2b95s8l0Sw6X6N5CZmanYDhVU5RIAunfvLg3NTU5OxowZM7Bo0SLp9vT0dEydOhWHDx82CXyCIGDr1q2aE3DZ0tk+ePAghg4dqhks1Dso5OsyrSGPhw4dQnh4OLZv3675XY2KirK4ftIKkvKdTHILFy7E77//jrlz52r2T7ROo3X69GkEBwdDr9fDaDQqjhm1lfp13b592+S3Zq1yGRERIR0Pevz4cbRt21b6zdsTLg0Gg+JQoYyMDFy6dAknTpzAtWvXsHnzZpPHFX9j27Ztw61bt3D27FmEhoZqPr6t57mULycIAmbOnCm9F0ajEZ9//rnV9VJSUhL69u2LpUuXolevXlb7guHh4bh9+zZSU1Ol4eLOVJzD5c6dO5GVlQVBEIrFPCMMl0WIpc6GtYCl7iSoV4ipqamYN28elixZUqDnOxSnv5ef4ys9Pd3iSqgohcvRo0djzpw5mDdvHn7//fdH9rzOJB8WqWZLuExLS8P+/fvzveJVf462hsvMzEx0794dEydOxEsvvVSkVvjqve+2nG9WS3p6OtauXYvJkyebnVxF63v+4MEDbNiwwexU8Or3ODY21uT9E+8rX1be+ZYfH6lF3eE393vcuHEjRo4cicuXL5t0fuR78819vkV9Up/r168jJCQEV65cMZnwRE0+86S5wKb1+zAYDDAajSad8PwO+1N37GNjY7Fu3TrFUFHAdDshtvX06dPYtGmTSTvkv4eAgABFuLSncunh4aHYEWFr5RKA5qQuBw8ehCAIVoewF2S4LFOmDJ5//nnpslYn/I8//sAff/yhef+ff/5ZM5jZMiz2r7/+kv4Wz4spCg8PV7Tj+vXr0Ov1OHr0KE6cOGH2Me/cuWPyPTl79iy++uorVK1a1ez5PLWGUKt3mojEdUpMTIzJDrzs7GzNquSpU6ccrm7J12VGoxHJyckmv1drlUv1e3fr1i20bdsWZ8+etStchoSEYMqUKfj999/x4MEDpKenK4bU37t3z2R9IP5u5JVXczOEq9e/tlQuw8PDTXb87tmzx+pp7y5cuCC9f0lJSVbXm/LvfUEM/ywq4VIMiflRkDu2CwLDpZN89tlnDu95txSixE6HOdYql0ePHpV+rGFhYTafK+rhw4e4d++ezT+E/v37Y+nSpViyZIm0AjZ3rIXI2vkXnREuBUGwelxHUlISFi5cKF225fycxY36OyoIAi5cuICjR48iKysLBoMBnTt3RqdOndCpU6d8rQDVn5Otn9vhw4elylZ0dLRdw5ssEWcjtuc4Dms7PmwRExODGTNm4NKlS0hPT8eePXs02yLveKSmpiIyMhKCIOD8+fNmz4uo7qxodfS0Kpdy1oaVqzv8WiHw6tWr6NOnD2bOnIn+/fubfPbWKpdA0T/uUl4JsDbDpbxaae67p34fTp06hYoVK6JmzZomlTetsCEIAmJjYzXfT/nyBoMBv/zyC/r06YO2bdsqlle/54mJiYiIiMCWLVtw9uxZxbFVgiAowkFAQADKlCkjXbancqnT6RTVS1srlwkJCZo7RWJiYhAaGmp1BERBhktAOTRW/tmLE++kpqYqqg9dunSR/jY3BNqWICWf/GnMmDEYO3asdDkhIUGxs+DatWvYsWMHgoODTb5vahEREYrL4jGPDx8+xOLFizXvo96uZ2ZmYseOHdK6wNyOBHW4u3//vmbF8/Tp0w7PISCec3fdunX44YcfcPjwYdy9e1exTH7DJZD3PezUqZPJadhsCZfbt2+XZvldt24dHj58aDLjvtYxn1qvTU0QBKkvdvPmTSxatAirVq0CkLedOHXqFNLT02EwGKT7Z2dnmw2Rn3/+ucVRderJyOQ7P7TIt1Hi38487MnZ4TIsLAyTJ0/GihUrbP4u7t+/Hz/99BP++uuvfPVJHsV8Gc7EcOkkCxYsUKzI7SH/kZYuXRpvvfWW2dvVLFUuMzMzTYZI7t69WzPU3bt3D3///TfmzJmDGTNm4I8//sCCBQtsmqVry5Yt0nLZ2dmKlbSlqoRWx0nO0XCp1+sxc+ZM/PjjjxZPNrxgwQLFSvtRn6z5UVCH/Js3b2L9+vUIDg7G4cOHce7cOakTffz4cZNhW5bYcj5D9e2nTp0yqaQ7O1xu2LABv//+e75X5oBpuMzvsc8ApKFboszMTM2Nmvg9T0xMNPndRUZGah43Z0u4TEpKQlZWlt3hUv2eaf2WV61aJW38zp8/b1KhePDggfQ45tqR35n7cnNzH+nkBrZu3HNychSd8dzcXM33TL1eGzNmDOLj4xEREYElS5YobtN6nXv27MGsWbMwa9Ysk9+1fJ16+fJlKQxfv35dEWq0wuXevXuly/JhgiEhIYrOcmBgoMOVSyAvpIr8/f0tLivasGGD9FssXbo0qlevLt32448/Sm3WOj+0v7+/xdlznUEeLkVt27bFqFGjTK4vUaIE/vzzT833SX7ezIiICKu/EXl1s169emjcuLHi+FJ5cE1OTrb5uDn1OSDlw2jNVcjU2/VNmzZh48aNmDdvHq5cuYIaNWpo3k+9zo2IiNAMl6dOnTJZH1s7ZZtadnY2bt68iUuXLsFgMODAgQMmz29tWKw8XLZu3VpanyYnJ5uc3sSWdZx8yH18fDwmTZpkEi5t2S5p9ZtycnKkIsWOHTsQERGB1atXIzQ0FPPnz8fWrVuxYcMGxTp6//790mfp5uaGOXPmSLddvXoV8+bNM/ta1DtK9u7di8uXLyMiIkLasS3/bonrsaSkJJw5cwZ6vd6pp9lzZrjMzc3Ftm3bkJ6eLk3CZM6DBw9w5MgRJCYmSqcFu3XrlsmODEvU25+iPkcBw6UTzZ492+oe7aSkJOzdu1dz76R8ZeDn56fYYALaKxBBEExOpA4oV36hoaGKx46JicEnn3yCChUqKGaC3LlzJxYsWIDw8HA8ePBAsUK3NqFEZmYmdu/erfjhy4dgyTtXsbGxuHbtmvRjsRYuDQaDxY6dtc7x1atXpfMbbd68WXN4UW5urskwpUcdLmNiYrBw4ULMmDHD5hNLqwmCYPH9UHdCN23aJP196NAhk+Fk+Vn5qTvA1nYK7Nq1C1u3blW0Afg3XObm5uLSpUsme3/zIzs7W+pA3bp1y+ZzqomcES61qp+Wwsb58+el5zl9+rT0m9IaUmZLuASUw2XVn4v6+xIWFobt27dLz6d+zVptV5+QWl1lycrKksKHuQ5WfnYiZWZm4vfff8eUKVOknSGCIOD69esICwvL115eWyumtj5mRESEyYZfa2is/H148OCBItTJZ8MEtMOl2KlPTk42mSxDvk5VV1ZmzZol/a0VLtVDZ1NSUnD16lXFuqF8+fKoXbu2w5VLIK9qV6FCBTz77LOoWLGixWVFYrUFAF577TV07txZurxx40bp7w4dOqBFixaK+xbkZD6iJ598Ek8++aTiuilTpuCzzz4zGVr/8ssvo0aNGoogKRoyZIj0t9FolIbGyQO5KDU1VbHdePLJJ+Hu7o6nnnpKui6/E0OJ5OsVvV6v6JQfOXIEV69excqVKxUdbPnO6/T0dFy9elW6vH79erOjmdTHf16+fFkz4MXFxZnsIM/v6Ifs7GxFlTs3N9fkeGpLlcucnBzFjvsffvgBv/76q3T54MGDim2OtXCpdc7vFStWmOxwVbcxNzfXZJ0jrj/k6xHxPTcYDIrtybZt26T1740bN6TXnJKSoji35MCBA/HBBx/g7bfflq779ttvzY4+U1cujUYjPv30UyxcuBAjRoxAkyZN8NRTT2Hfvn0A8tbrSUlJmDdvHlauXIl+/fqZhEt7tsEidZh0ZA4K9fdS/O6fPHkSv/32GzZt2oTMzExkZWVh8eLF2L17N+bOnat4DGt9Xzl1qN6+fTvmzp2r+F0VJQyXTpSZmYnJkydbXGbLli04dOgQVq5cabISkXeuPD09TfauqjtfycnJmD59OqZNm2ZSYcrIyMCePXvQpUsXTJkyRbGi2bZtG/R6PbKysvDzzz8DyNtDZukEtdZWinq93uT1aIXLuLg4zJ49GytWrMCBAwdMKipaG01AuULJ7x4bded+7dq1Jh3kTZs2mQSplJQUk/s6a4rsrKwsLFy4UJrR9fbt25g9e7a0l9bW8wmqicN8zFGvTNUbY0fCpfo9tfadOXPmDDIyMkyCtDgpUEhICNauXYv58+ebPeZQ7cGDB1izZo3UobYlGFmi/vyjoqKwcuXKfA2X1do7ailcyvfkZmRkSB07rfdA/h6rO0byvd3ycKnuLMk33gkJCVi7di1Onjwpzfhr6T0UBAGnTp0yqYBoHR8ivmfm9hbnJ1yeOHFCClzi0M1r165h+fLlWLNmDU6fPo19+/aZVFzU3n33XZQqVQoffvih1ee0tSqiNYGP1vdF/tmtXLlSsV5Thzx1J0T9XqmHgYqdvcjISJOdM0ePHsW5c+cAmP7+tY6ve/jwoWK9EBgYiIEDB8LNzQ2lS5dGTEwMIiIikJSUJL2G/ITLevXq4aOPPkK3bt0sLieKjY1VBPG33noL7du311y2ffv2JlXEgh4SK3rjjTekv99++220bt0a5cuXN/muvfPOOwCAnj17mjxG9+7dUblyZemyuNPmzTfflHYKiSOc5DtN3d3dUbNmTQB557wURUZGOnxss/q7nJycjFmzZuHq1atYs2YN4uLiTE5Now4Zubm5+PLLLzV3usjDpSAI0ncVyPsuycO5emdafl9bcnKySedcfMywsDBMmTJF87er1+thMBhw6dIlaZuq0+nQokULfPTRR6hTp47Ufvnpm6xtExMSEjTXg/Pnz1f8VrV2kmrdTzwVkri8uO5V76xSD3sWP4P79+8rRgEMGDAAAPDTTz9J55p9+PChyQ5ikdbOjAsXLuDu3btS0MrKysLw4cOlET27du2S3tMdO3aY9GfMvYdxcXHYuHEjTp8+Db1ej40bN5pMRuXMyqV6wqR79+7BYDBgz549SEpKws6dO/Hbb7/h/Pnz0vOony8/o2HUTp06hejoaM1jz4sChksnmzFjhtkDbwVBkDoegiCYDNGU/whKlCgBd3d3RVVB/IIZDAasW7cO33zzDR4+fIiUlBTNPXjDhw/H3r17sWnTJmnvWmxsrCKIHj58GGlpaYqOq7e3Nzp37qzY42mt4yevTIjkjymu9A8fPiytLA4ePIiUlBRcv34dK1euxKVLl1ChQgXNx5c/f36Hvqg7ZllZWSYbO3OT98irl19++SXKli2LH3/8MV/Pr+Wdd97Be++9h44dOyI0NNSk8mPvsX7W9sSpO47yDq0gCCYVkPxUb/NbuQRMh1sB/1Yu5b8VayFBtH37doSFhWHHjh2IjIw0aYO1lXlqaip27tyJEydOQBAExeeQnZ2NESNG4O2339Yc9qZFfoyL+nnUxB0t6qnoxQ6ltXAZExMjfZ46nU5ROZGHS3WgkG+4xNcN/BsQLYXLzZs3Y8yYMSbt0topIb4PzqhcqndI5ObmSpNFGAwGDB48GC+88ALq169v9rsTHR2NRYsWQRAEzJ071+p3Xf3dMbcTR+v5tDrR8terPiUFoOyQZ2RkKNZ76vVDenq6tA2Qn/fP3A7D2bNnS/ez5vTp04pO/GuvvSadH/D06dOYO3cuFi1ahBMnTijaILIWLuUOHDiAL774wuIxgJs2bZK+50FBQejcubPFcNmrVy/FdY+icgkA//d//4d3330X7777rvR+A8CoUaOk969SpUro0aMHANNwWbt2bVSuXFkKKsC/64IqVarg008/xX//+1/Ur18fgPL7UqtWLWnndP369eHn5yfdpt725ZfWd1n8zhuNRgQHB5tsc7VCRkJCAv7++2+TDndCQoL024qPj1fsHAkKClKEbfV6IL/h8ujRoyb9iejoaAiCgF27dlkcdp+enq4YFfDUU0/h3LlzmDx5Ml5++WXp+ps3b0rvT2xsLObPn4+VK1fi7NmzJjvK1aOqxB1/KSkpilOLaYVLrQrrgwcPkJCQII1QE9fB6s9HXZwQd2zJ+5XlypWTPqtq1aqhd+/e0m1ak9Tl5uZq7miLiYnBqlWrFOvPmzdv4oMPPsDx48cVYT83N9fk+2Zu+7Ft2zacO3cOW7ZswaJFi3Du3DmcPHlSseNNfV97w2VMTIzJe5aSkoK7d+/iwoULmD17NubMmYMff/zR4mnZbJ2nRasynJOTgxMnTmDNmjUFft5RexS5cHnt2jWMGzcObdq0Qbly5VCqVCk0bdoUkyZNyteQh+3bt+O5556Dn58fAgMD8eabbxbobEtiCMzOzsaoUaOQkJCA69evK1Ye1tov78SVKFECOp1OcdD79u3bsXz5ckyZMgV9+vTBH3/8gcWLF2tOI56SkqJ4vTt37kRkZKTJbF05OTnYv3+/YghslSpV0L59e8UwHVuOn1OvBB4+fCituMWVvnplfePGDaxZswbh4eHYsGGD2ZkVHQmX4g/z/v37OHHiBDIyMhSfxZkzZxShSt4ZEvfk3717F5MnT0ZiYiK+/fZbh/b+btu2TXHc06ZNm0zel6ysLBw7dgzLli3LV/XQ2spS3Ljk5OSYdI7j4uJMhl5u3boVwcHBSEhIwPr166XZGLXkt3IJaHfE7969i9TUVMXj2fp+y/fAnjhxwiQYWRpSo9frsWTJEhw/fhw7duzA+fPnFZ34e/fuSQHv8OHDJsMHtciPcZEzV7m8c+eOyfsrbqC1wqX8dyHvhJUvXx5PPPGEdFk+8Yt6PSQPv+q2Go1Gk9B39+5dxMfHQxAEnD17VnNYjjgZkdbzOKNyqZ4MJCEhAZmZmRAEAZs2bZLalJOTY3avunpvvbXjytXh0tx6SKtDZWlY7LVr1zQ7Z+qOpnwdofV44k4ZcbmUlBTFaWbkh1ksW7YMycnJNm1T5UPyqlatiqpVqwLIC9cTJ06UPuewsDDpOyh/b2w9vjEiIgLdu3fHlClT8Oqrr5odoSKvkr/00kvw8PBAzZo1Fd93IG8nacuWLdGkSROpzcCjq1wGBARgwYIFWLBggWJETsWKFbF37158/fXXCA4OlipATz75JOrWrSstJ25/5dfJvxMBAQGK1yIPjfIdS35+forL6u+9nHg+xVWrVpndFmtdL3/M1atXY9CgQdJ2VzyuUSSGYSBvm6Oe3Tw7O1vqj9y6dUvRN1GHS0crl1ojhGJiYpCUlGR1yGJWVpYiXLZq1Qr79u2D0WhEQEAAGjduLN22Z88e6fscGRmJq1evYtOmTSbBQ344QalSpRQ7TcTjQgHtnZOWXrvYFxTXverXpv5OiNs2+XIBAQGKvmbz5s2lv7VOe3bnzh3FeqB27drS31o7XFesWIFly5aZXK8O0ub6FfKdg/Jtpbxtzqpcak0YFhUVhZdeegmrVq2SvrNpaWkWh63ammnkn0NWVhYOHz6MadOmYefOnbh8+TL69etndWLMR63IhcuFCxdi6tSpqF27NsaNG4fJkyejXr16GDt2LJ577jmbxkivX78ePXv2hF6vx+TJkzFq1CgcPHgQbdu2NXtMkqO6d+8u/b1582b8+uuvWL58ueKYRvVKWd35kneuPDw8sHXrVmzbtk364d+9exfXr1+XzqkE5HV458yZg5MnT5o93hHI6xgtWbJE8/xsu3btUoQKcYMl78BZO+4xMzNT8/WJjyuu+NSzAS5YsEDq8BuNRsUQEjn5e6MOCNaOuUxJSUFqaioWLVqEnTt3YunSpYofojg0GAAaN26M5557TrocEhKCyZMnK5bJycmx63jMpKQk7N+/H8OHD1dcr3VC3NjYWOzatQs3btxQHF9kjbXfh16vx+3bt/Hrr7/it99+U9ymFWLFIbrz58/HhQsXsG/fPrM7afJbubRUkQwLC1Ps1bNlJazujOr1epM2yN+fvXv3YsCAAdLsfGvWrFF0ZEJCQhQbbHVFcdGiRVYDprnPw1y41AomkZGR0Ov1ViuX8r34lStXRvny5aXLMTExUlu0Kpfy36D68eW/t7CwMLz77ruoVasWtm3bhrS0NM1Jn7Kyskwm4RA/T3mb5RWV/IRL9fsaGxsLQRCwfft2k6qXuZ0z6uGi+/fvt/ic6vWfuR0V1iqXWVlZuH79utRRW7FihXSbfAKae/fuSa9Tr9dj165d0nunNbJBDIFiRyQ0NFTaJpQsWRJ9+/aV1ukZGRlYunRpvo9Rk68bDxw4YDKD7t27d6WTvotsrVzOnDlT6uzdvn3b7LpBHrDEoKLT6UyOWXz22WelnbTyKos8rBWWli1b4vvvv0ejRo0U17///vvS3/379wcAzcqlFnPh0tfXF/Xq1ZMua50qqFq1aihXrhxSU1Nx8uRJXL161ewM1ZbC5Y0bN7B582Zs374dS5cuhcFgwK1bt6SQ4eHhgddffx3PPPOMdN/4+Hh069YNbm5uMBqNWL58OSpUqID/+7//w+HDhy2GS7HKKMpPuLx165bm+jYuLs5sAJf3idThUh62dDodPvjgA0U7J0+ejFWrVuHMmTPSukT9/PLL/v7+aNmypVS9FLfd5tjy2s1VLsUJdkRalUt/f3+z4fLcuXMm60d5tbpChQqK90P0wQcfSOs8rSolYFu4tNQ3LVmyJIC8/oYzwqUgCCbHwN66dQuLFy/WHBVgKfTZWrkUP6+kpCTMnj0be/fuNekfySvbRUGRC5d9+vRBZGQkli9fjv/+97/48MMPsWrVKnz99de4cOECFixYYPH+OTk5+O9//4uqVavi0KFDGDFiBEaPHo1du3YhJiYG48ePL5B2N2rUSNoDmZOTI+0Fl698xCnpz507h7lz52LMmDGKjpnYuYqPj8fEiRPxyiuv4MiRI1i5cqViY6AOiDk5OdixY4fiuBitzod8L5K8U2dLuJS3T4tW5RL4dyUlrvjknRlBEEw2YCEhIZorCnsrl4IgSENvxfvFxMRI49R37NiB1atXS8t//PHH0rEqwL/DBNUbdUvhUhx2K//xb9u2DdOmTcO3335rsoPD2jCljIwMk+GrCQkJmsFFfl1QUBBGjx6tONdZRkYGtm3bhqysLKvHXQD/rhjlr0VrqF1KSgpu3Lih2EBZqlwaDAYkJCQoVrzy4WrqIUO2bDi1DtZXd6Lk1bN+/fphxYoVeOutt3Du3DmTzqx6o6AOIwcPHsRff/1ldaeLFnPhUqtDLYbwxMREk9+g/D2Wt08dLvV6vbTe0AoU4uerfi3y91AQBOlYt9TUVPTv319R8S9Tpozit6N+v7SGxcpnB83PRA3qzlFcXBwOHz6sWQE0Fy7Vv+mQkBDNmXF37NiB7du3WxxOLGcpXBqNRixevBgrVqzAiBEjsHPnTsWQ2M8++0xaN4uHUaSkpGD27Nl4++230aNHDxgMBs31e1RUFNLS0pCcnGwy0UiLFi3g6+urqKbMnDkzXzP0+vv7K0KKen6BrKwsnD171mT9bEu4zMjIwJ9//qm4ztypoOThUh681ENj5ZcnTJiAPn36oE+fPjYdX1tYPvvsM2zatAkHDx5E165dATgeLn18fFCrVi1px25OTo7JMdLvvPMO/vOf/yje8zt37mjujNbazicnJyMlJUVRCUxISMCJEycU28ratWvD09MTTZo0ka67fPkyGjRogKCgINy6dUvajkyePBl37twxCZeVKlWSLmdkZCjW0/kJl+ZOixEXF6e5zggICJD6eEBeP01elZL/tsTLDRo0kC5nZmbi6tWr2LJlC3bu3AnAdBsp3wb7+/vD19dXUfGzNJO6I+EyMzNTcX9zlUtx3QJAsYMgIyPDpEIn/z7WqVMHr776quL2KlWqYNy4cYrJuETyeQDUOynl79nu3bvx888/Wzzfpvw4cPX2zZ5wGRUVpfjOlS9fHn///bfZ0RqWDnGydedecnIysrKy8Pfff5sNq+YKM4WlyIXLFi1aaE7q0q9fPwDaVR65AwcO4P79+xg2bJi0xwLIO6i9Y8eOWLVqlUOzTZnj7u6O1q1bS5dPnjxpUmm4dOkS/vrrL2zatAkPHjxAaGgo2rRpI63Q4+LisHPnTsyePVtxPKZer1fsMZJ/ueRVO/meIktfWi8vL/Tt21e6fP36dcUGWwyX6iqjpY6IVuUS+Hd4QmpqKqZPn45Vq1Yp9k6rKz/JyclWZ9JVf37WOvfZ2dkmwWn16tU4d+6cYm9ahQoV0KhRI8VEKOKKQd1OS+FyzZo1WLFiBebMmQODwSCde+3hw4ea07ZrDYVUkwfBo0ePYvr06Zg5cybCwsLw+++/Y9q0aYiLi1OsLL29veHl5aWohuj1es1p3QVB0NygJiUlmbTN19cX6enpUiBJT09HixYtMG/ePMWwa0s7I3JychSd8PLlyyvO9aYedpKfDaf8srnK5bVr16QdKqmpqWan0xcJgmASluLi4qSquDnmNl5RUVE4evSootoYFRWl+J3LJ+IQO5U7d+6UNvjXrl3DL7/8guXLlyM0NFTxuT7xxBPw9/dX7EQSv7OWwqX6Ny5/D+/cuaP4jYtVDtFzzz2HNm3aKF6P+rHUe4/FY8+A/FUu1Z2jBw8emB3arvW9zszMxPbt2xXX3bt3T/GdjI+Px/z583HixAmcPHnS5L0xN3u3VjUkNTUVubm5iI2NlfbEp6am4qWXXlIEhsGDByuOdb927RrWrVsnfcf27duHOXPmmO2w3LhxA6dPn8bNmzel77q7u7s0Y2rLli2lZcPDw/Hnn39qVp5feOEFk+saNGggdfouXrxo8v4BeUNW1b9DdbhMSkrC6NGjMW7cOOm7uGzZMpPth1a4FIeOi+RVSEvhskyZMlizZg3WrFmj2OlS1Li7u6NXr16KKqw8XN65c8fs+QvlnXn5++Lr62sS6OSzUAN5O5Lj4uJMjrm3tMNR7cyZMyaVtYMHDyoCkVhprlOnjvTbNxgMCAkJQWBgoGK2WUEQcPjwYcV3PSgoCKVKlVL07eQ7a20Nl4IgKE4TIt/J9fDhQ5PX7enpifbt2yt2uMvfQ19fX5PZ/TMyMvDaa6+hWrVqJs9/8eJFGAwGZGVlKT4H+TpTbJN8fXDlyhUpxAiCgOTkZOn+lrZDYig2N6GP+LpF4rpN/lmL/XLx8wgICFB8N9VDY+X9uIyMDKxYsUIKpCVLlsTrr7+OrKwsPPPMM4pqdIkSJRTff3XfS3wN4eHhOHLkCPR6veZORflzy++n9Vj5If8+p6en44svvpA+E3d3d/Tt21cxwsMZlcvExESsXbtWkSmaN2+Otm3bSpcZLu0kDkkzN+GLSBym8+yzz5rc1qZNG6SkpDh0QHulSpUU/+Qr8WeffVZa6RmNRmzfvh2CIEAQBMycORNDhgwxWfnev38f7dq1w7Bhw/DRRx/hxIkTmseaiBte9Sxs8g65fIUh70CWL19esbevffv2qFq1qiLEy38wYrj09PRUhFdLnb+4uDjN8CmuGEJCQvDJJ58gODgYy5YtQ05OjtkVgtb4fUvh8syZM6hYsSIGDBhgEoTETqi6g5mTk4O2bdtKHSudTodevXphx44dipWsuCJVBzJzw1MSEhKkzmJKSgru378vXQ4ODpaCsHwPqF6vt3q+PvF1ZGVlScMf0tLSsGbNGiQmJiIpKQmnTp1SdOzEUCmfXc/cMM3ExETNNuTm5pqsAOPj4zF16lT8+uuvuHXrFtatWyftnLh48aL0+VjaGaGu0jVo0AANGzaULsuPFQNs28OnbmdycrLZcKk+J5V8KGVgYCB27dqF3bt3SxuNpKQkk8cXv9uWNhDm3u+HDx8iODgYixcvlpaR7zirXLkyRo4cKV0W9+afOXMGS5YsgcFgwOeff47w8HDcuHFDWtcAeRu48uXLm0zqI3aYLIVLreMxxc/T0jligbzgIt/BphUu1VPm2xMus7OzTd7X8PBwxXpBPjmKVri8dOmS5s4wccSJwWDA8uXLLe511gqXDx8+NPtbTkpKsnje2JYtW6JOnTqK6u/FixdNOrqjR482u3Nr27ZtuHv3ruI116pVS9rJUL58ecV34sGDB1i4cCE2bdokfdcbNWqk2Ekgkv8+5adbkLt//75Je+Xh8v79+2jfvj1++uknTJw4Ea+99hqysrIwffp0k8fS+r7duXNH8f2Rd24bNGiAZs2aAQBq1qyp6OAVZ/LXaDQaNT/7+Ph4RSdW/hmLO4nlOxaio6Olz0k8pEc+UZIoJCTE5Jhs+e9GfioadTAF8rYBYuCTr49KliypqFgFBwcjICDAZMeyfKZYNzc3lC1bFjqdTtGf2bBhA/7++2+cPn3a5Pcq7tBSO3jwoGL7I++kJyQkKLb3I0aMwJgxY9C8eXPEx8fj3r17JhMytmjRQnM2/1KlSmHo0KEYNWoU+vTpI/WnsrKypKGosbGxOH78OKKiohQ7G8VwWb9+fWmHd1ZWFm7evAmDwYCVK1di2rRpWL58OQRBsBisxc/VXOUSMD3VldFoVKzLxPZER0dLj2PpuEt5P1scldSjRw+8//77GDFiBMqUKYPk5GS4ubnhlVdegY+PD3Q6HV566SXFOVDF4/tFWVlZSE5ONjk/tjnODJeCIEinINm5cyemTZum2In31ltvoUGDBorz/1qrXNpyBoLZs2crdkK2atUKPXv2VOwwunLlCkJCQnDo0CGHTrHiLMUiXBoMBkycOBEeHh7ScQjmiHux1Af3y69z5Lx5lnh5eSmmU7979y4uXryIL7/8EiNHjlR0RipWrCitaNLT07FgwQLFyikoKEixx0v8gqr3gsiXSU9Pl1Yi8hWNv78/BgwYgNdeew2//PILunTpAp1OpxhuIe5t9/DwkEKnekIhS2HBXNgS97TIVzxRUVFYvXq1YhiFvEpz69YtPPXUU4rJCswNi01PT8e2bdsQExODFStWmBygL86kq/UDl4eCNm3aSHvP1CsGQRBMwqW5zp16Eg5xY5CTk6NY2Xbr1k0R7q0duyduDIKDg82uOKKiojTDpbxyaa5qL++M+vv7K4alqL9zkZGRUkhYunSpyUH44kbKUlhQHz9Sv359xfFH6k5GWlqaYiX84MEDXLx4UfFdUL8vBoPB5HMTl7E0hOf8+fM4fvw4jh49KlU0tdYZtoRLaxuvrKws6bskD7zt2rVTHMctn9H54cOHCA8Pl4ZWqVWsWFGaaVr+noqvIT/hUnzfMzIyFO1TV4m8vLxQq1YtRbiMiYlRfN8yMjJM1iH2hEut8Cbf8Pr6+iomcElISDDpeGVkZGh2sMTjLu/fv292QhOR1m9J3mH18vJSVI4TExMthsv+/fsjPT1ds9Ihl5qaqvjNyc/jKLZJHvDUFZVXX31VMVwPyOvE37hxA+3bt8err76qOQlP1apVpePM5MeJynewRkdHm2wLxHAZHh6O5557TrEjZ/fu3Wjbtq3mcL+zZ8+adLzk69eKFSsqvj9ubm4IDg7G8uXLcejQIcUOvOKsZMmSivN/ag2Nla+/fHx8FP0f+cy68h0X8fHxGDFihLQjQauzrtfrFRXk5ORkRQCVDwWVXy8Pf6KqVatKOzp9fHzw4osvSrcFBwcjMjLS4k7EmjVrStsy+W8kNzcX165dw9atWzF//nzFYw4bNgyVKlXC22+/rVgXy+dQqFq1qiLMpKSkSDuBfXx8UK5cOeh0Ohw6dAgTJkzAwoULsWzZMhw+fFi6T+vWrU22P/IhpL6+vmjYsKHityhu4+bOnYudO3fizz//1Kxcent7K3YwXLp0CTt37pQ+85s3b+L+/fsWw2V2djYMBoMUXm0Jl6mpqYrfn9hfWb9+PX777TfcvXtXMTTWUrgU+3Lu7u6oXLmy9DmKozgqVqyIjz/+GJ999hmaNm2KcuXKSffNycmR2puRkYHRo0fj/ffft3l7kZGRoXm8JfDv+2JOWloajh07Jn0u8fHx2L59O6ZPn44TJ04oKpb9+vWTPid5307df7p69SpOnDiBrKwsJCUlYerUqZg/f77Z/vWWLVsQHBwsXa5Tp46UM4KCghRV/OnTp2Pv3r1WJ6d7FIpFuPz0009x7NgxfPfdd4pjPrSInST1kE7g32qRraVoLdHR0Yp/6jDRsGFDxQp806ZNir28Pj4+6N27N4YPH46+ffsqOv5iGzt16oT169ejU6dO0vVa4dLPz0+x51DsBALKTmLJkiXh5+eHMWPGYNSoUdIXX77CunXrFgwGAwIDAxXVSnm4tPRjlndm5MNKExMTpSma5eTH5/n5+eHll19WdAjPnDmjCHnmKpcnT55UBAx1RUr93CVLllRsSIC8FZv8vZY/rzgxiXrFZC5cXrt2DRcuXMCRI0eQlZUlPb98xS12+uXhXmuoqlxiYiKGDBmCXr16KSa+kMvNzTUZFgv8Gy6zs7Nx+vRpzWPC5J9fjRo1FCtHS3veUlNTFeecA/4NXZZ2Rhw7dky6XafToVatWorKSGxsrMkec/FyXFwc5s+fj3Xr1imm4NYK3erJAMxVLuXfEXln6vz58xAEwWQyHyBvw6PX622uXJo7h6s4WZa809ixY0c88cQTePrpp6Xr5LevWrVKMUmGfD0iDqMqWbKkovP34MEDxWkqtNqpvk3cqF+4cEFRdV+6dKniPH5PPfUUsrKy0LRpUymYGI1GPHjwAJGRkVi2bBmWLVtm8hnJN4y2dhasdYwCAwNN3mv17zU7O1szpIrHXdpyKiCtcCkfElu9enUEBgZKl9Xhsnfv3tLJyOvUqYMhQ4YgNjYWfn5+imFiQN53R37M0qVLl6TOW/PmzRXr7KysLEUFRB0ufX190bdvX7zzzjuKHXgbNmxQnMJCHhBSUlLw1FNPwdfXF23atJG+exUqVMCkSZOk5aKjoxWdTJ1OBzc3N+zcuRNt27bVrCLLl5dv32NjY01ONWHueEtRUFAQ+vfvr7lzuTizdtylekisfOeg/G959XL79u3S9iIpKUmxHpevN0JDQ6XgKN/h4u3traiQinx9fTFo0CDFdhRQzhJbp04dRbgUR8BY0qBBAymctmjRAg0bNlT0NYC8Sr/RaERubi6OHj2K3bt3S3MsDB8+HBcuXMDp06cVx+g9++yzimGxwL87sKpUqSL9tuSHfNy6dUtx3GqrVq1MtgOJiYkmwUX+fl27dg2CIEjvrTg/hEi+DpNvG8PCwkxGfd28edPqkGDx9FzqiqRIfdYBeV/T29tbsbMmJycHZ8+eVfQ3zp49K73etLQ0RVA2N0OzfBlvb29pe+Dr66vYpol9ih07dmD//v1Ys2aN2RGIVapUkc7HCeT1i3Jycszu6JUPFd62bRuOHj0q9U03bNiAXbt2YfHixUhLS8Mff/yBPXv2KPo2FSpUwNChQxU72eTf/czMTGn5O3fuYNWqVdi5c6e0IzMlJQWRkZEm580UyXfklStXDm+88Yb0mxb7TiKxb6c1m+2jVuTD5TfffIMZM2Zg+PDhGD16tNXlxZWPVsdW/BLJhwk6m06nQ48ePaQPX743r2zZshg+fDiaNGkCnU6H+vXrY8yYMahWrRqeeOIJ9OzZE5988gnat2+P0qVLK0KQVrgMCAiAr6+vYuMhrjTknURx77m4shJXpDVr1pRWztnZ2YiMjDRZCWhVLnNycjBs2DC0bdtWWsnJVxKNGjWS2iQIguLHquWZZ56Bh4cHhgwZIl23aNEixevSqlxmZ2eb/CDVG97k5GRFh6ZGjRp4+eWXFRulDz74QLGn3t/fX9FZ09qYa1Vqs7OzsXPnTmzYsAF79uzB/v37cfXqVZMKWpkyZeDh4aEI0+Lt6o0ckPceTpo0CUuWLAGQt9FSz4iZkpKC8PBwxQZOXDl7e3tDp9Nhz5492Lp1K/766y+T48Lk71H16tUt7nmTu3TpkslQKnFDYCksLFq0SPq7SpUqcHd3R61atRQbMHU1V9x4bty4UfoOyINgfsKlunL54MEDCIIAg8GgCJ6JiYmoVauW2dEO8fHxNlcu5Xtj1a8rNDRU0X5xyJi8einvaMunsG/UqBE+//xzDB48GAMHDpQOCShVqpRi2ExcXBzS09PNVi4NBoPJBjglJcVkCFjjxo1hMBjw1VdfoVu3bmjbti1efPFFpKWlwdvbWxEQTpw4gaVLl+LmzZvYv3+/YhINNzc3RQfCkXAp7xiVLVsW7u7uiqqWemeCOAGJ2v3793H9+nWbwqXWxGLyHTfVqlVT7PyLjY1VPG6VKlXw9ddf48aNG7hy5QpKly4tVaflHRU3Nzf06dMHHTt2VAxD2759OwwGAypUqKBYl4jD9oC8375WFQnIm1zl/fffl7aH2dnZGDt2rHR7x44d4e7uDi8vL/z111+4evWqyW/9k08+UQw/1ev1ivc1MzMTr7zyCl566SXFDoAJEyZonpvyhx9+ULxn6uMu5eviojDr66Ni7nQkInOT+QBAkyZNpOpxjx49pOBtNBqlE9lv3bpV2lni7++vmGQqKSlJek55uAwMDETFihVNqtwtWrSAt7e3IjwCeeupqlWr4o033kDHjh1Rp04dRcdYPrP+c889ZxIc5efr9Pb2Rp8+ffDll18qdnJlZWXh9u3bSEhIQE5OjmIbsnz5csybNw9fffWVdF25cuVQv359eHt7K/o64ndYvg6xdK5lrcql1npWvm5MTExU9AsyMzMVO6zk2+B69epJn6FWX8qWcCn21cwNxVRXLuXbfflIO9G5c+cUrzEjI0Oqxsq/ozqdTvGbljN39gadTqeY4C8+Ph65ubmK7faBAwc0X0dAQIDm8a/WwmVwcDBCQ0MRHBwsHRMr9pPESbDkx5l7e3vju+++w40bNxTrZcC0Hyeu9+X9LvUOT/WhQEDeZy2fxfz55583GZEhL2bdunXLpmG2j0KRDpfjx4/H999/j6FDh2LOnDk23Ufc46vVGRSvK6i9muXKlUPJkiURFBRkcsxn06ZNMXToUJO9ebm5uRgyZAj++usvdOnSRfrilChRQvGlMRcudTqdYu+/GC7lKxp1uBRXmOo9j1euXFHsaQeUFWCx8zdnzhwsWLAAR48exfDhw3H06FFF5atWrVqKqpx6z7Q8wOp0OjRv3hxubm744IMPpBVobGwsjh07ZvLcABTHgKlX6OrQlJKSomhbtWrVEBQUhLfeegsvv/wylixZojhgHsjrzMlXDlrhMjExUXouQRCwdetW/PDDD4rQd+vWLWmjr57xDoBiYon4+Hj4+fmZVFwEQcDu3btNhkBeu3YNH3/8Mdq2bYsHDx5g+vTpmDZtGsaNGyd1UMWOu06ng4+Pj2Koqfz4mJSUFEWnoXr16jYfM6CedRAwrVyqT01w//59xUq6efPmyMzMhLu7u2K4nnpCrPT0dOTm5poNelohTx2M9Xo9DAaDybDbzMxMpKamIjEx0WQjtHv3bkWwk+/0iIuLs7lyWbp0aXh4eJjszU5LS1N0rCpXriwNg5OHyytXriAmJgYZGRmKY5HEPfg1atRArVq1pE5AzZo1FcOWcnNzzZ5+Qn3uV6PRiISEBOkE4PJO2jPPPCN1UNq0aSOtt8RhVPJqa1hYmKLDJB/O6enpqbl+scZauBTXYfLfknrD/eDBA0W75DscQ0JCbDpnmLXKZdWqVRW/I3kbfH19ERgYiDVr1mDz5s1Sh0D8zrds2RLly5eHl5cXevbsiSpVqiAzMxNz586Vvn/JycmIiIiAm5sb2rZtC51OBw8PD0Xno0mTJiaddDkvLy907NhRurx8+XIp0NWrVw9ffPEFunfvbjKyolq1ahg2bBg+++wzk5mJxd/KyZMnMXnyZMXoAjc3NyxYsADjxo3D/7d33vFRlNv//8xudje7m01IZ7NpJCEQEhICJNJCk1CkhGLoRUoUBGm2rx1B5HqV61VBQGzXgv0KFiwgCCIooKCgyKVjCC2UkF7I/P7Ib8bnmZndbNiEAJ736+VLMju7OzvlPOfznPOc88knn3DLIaKiopCVlcXds0pxyTqtfydxWZfIpVJcWq1WTJw4Eb1798awYcO4InYrV67E8ePH8d///lfeNnDgQCQlJXG2R5rEVa631Ol0CA8Pl7cZjUa5WGBCQgLGjRsHo9GI2bNnY/HixZg8eTJat24t2yilAJV44oknkJ2dzW1jI5fs96WlpXH3/LJly7Bv3z7VPSu1m2ILn2RkZMjHojWhyk5+OROX4eHhCA8PdysjLiAggBNN7DjE2jWdTsfd30ajUXVd2XEoNze31uwnCWd29sKFC9w4zdpAZz6z2WzmhKPk67G/y9/f36kNcpWSqhSXx44d4yb08vLyVMXCKisr8fvvv2Pu3Ll466235ElFrSUZElJ/ZNZ3W7NmjWpZRFFREefvPProo3jkkUfkzEAW5eSmdC7Za6b0q1g/XmL//v3cBLky6w4AN0FTVFTk9n3Q0Fyz4nLevHl4/PHHMWHCBLz88su19jKUkNI+WGEi8cMPP8DX11czlcNT2rRpg1GjRmHgwIFwOBzo2rWrPGOckZGB//znP6obUEIQBGzatIlz7oxGI3cjSW1MtKp3sTdlUVERpk2bxhkQ6XWluAT4dIsff/wRkyZNwsMPPyynASrTYqurq/HCCy/I23bv3o2PP/6YSxuMjIzkPpc1CG3atMHo0aNlg9ShQwf4+fmhbdu2cDgc3Cwk24JFGbm8fPmyZksM5cCrNLrSjFZcXBzeeOMNjB8/XnNQYJ1CZ60Mli1bhsrKSuTn52Pnzp2qSpH5+fmy8dRq9cJ+x9mzZxEQECAPnlVVVTh06BA++eQTzXv50KFDKCsrQ9euXbFlyxb5e/bv348VK1bg66+/5gaKqqoqbvA6duyYLNLYip9Wq1WVVuismTRb+ZJFOt8VFRVYv349goKC0K5dO3lwXrFihXxPWK1WJCYmorKyEpcvX+bWCCojl/n5+Rg3bhzefvttTnhK94g7i9hLS0tx9OhRzVlMZWRJ4oMPPpDPryAInKPnTFyeOHECn332GbeWzNvbGxs2bMCiRYvw6aefytuLi4s5sd+sWTP5ucvIyJDXF1VXV+Orr77Cvn375GtrNpu5SSiWm266CYGBgZy9e/TRRzVTokpKSnDq1Cn8+uuv+Oijj/D000/jhRdewOzZszlB6HA4EBoaivLyctVgLUU+lev5WHbt2iVfO6PRyEU96ltcss/X7t27sX79eln4KNc+sumCGzduvOK0WNYBDQ8P5xwv9v6MiIiQx7SCggI5E0I6N1arFWvWrMEff/whF6kpKyuTq55LsELw7rvvxt13380JDXY9pjOU1RrvvfdeWeyazWbO/rRo0QLFxcU4duwYVq5cCZPJBEEQOEF48uRJnD9/Hl9++SXnPKalpWHLli2YNGkSgJrx6Msvv0RmZiaio6PxyiuvQK/Xy7+X/X0StaXF3qiwv7WukUug5rnt1KkTfHx8kJOTIzvlZ8+eRWJiIjfZJ7Wuuuuuu+Rthw4dQnFxMedwS88XO5E8ZswYjB8/Hl27dsXIkSPxxhtvoLS0FM8++6zm79ISl23btkWPHj3w0EMPcdtbtWql6UMFBgZya1L37NmDjRs3avYFZrdFR0fLforBYOAmlCUbI4lLZU/mrKwstGnTBna7HYsXL4YgCG4XUVGmxmrRtGlT1UQz61MJgoDbbrtNFtVsoSdRFPHTTz9h06ZN+P3335Gfn69qZSbBiufLly9z/iVrZ52NMQCfPq8lLp2lxNaGUlxq3fdSKnVFRQXWrFmDp556CvPmzcPSpUtx6NAhfPzxx6ioqKg1cqlMCVYuUwFqIr+Szdfr9dy9q5UNqTVBzwY6ysrKuGPSWufORi0DAgI0s1B8fX25+99VhP1qck2Ky/nz5+Pxxx/HuHHj8Oqrr3Jqn+XkyZP4448/OOeuW7dusNvtePnll7no3S+//IJvv/0W2dnZmhfRUzIzMxEQEIAWLVogJycH8fHxmDx5MmbNmoWnn37arfYnrHNlMBi4B1qqkKglLlmxWFhYCH9/f+6mlQyyFCVgjahyJiQ3NxcLFy5EUlISPvvsMy6yUF5ejq+++op7yNkefOxnKptDAzVrw2JjYxEQEICVK1di79692LhxI+bMmYP+/fsDqEmXkma5zp07J/cJVUYu9+7dqxldkIrnSLARHj8/P+4hdLbODOANg7PZtdzcXBw7dkx21qWokkR1dbUstLQil+w1Ki4uhtFohNFoxOeff45//vOfeOutt7jjj4yM5BoCf/jhh8jPz1el/FVXV2Pbtm24//775W1a/cq2bt2K8+fPcyJdStl2Z80lO9PHTkKcO3dOLrP+0EMP4cKFC9i9ezcGDx6MCxcucFkI7dq1kx2d8vJy1bpLCVEU8dhjj+Hdd9/FwYMH8fbbb8vnWvq/O4N7dXW103ZGzsQye++FhIRws7ha4lIURXzwwQfYuXMnd28VFRXJfVx//vlnWTwXFhZy6d0tWrSQnzuDwYB//vOf8mtHjhzhFusnJCTIxXtYYmJi5Od82LBh8jm+ePEiVxxA4uTJk+jcuTM+/vhj7N271+lALImI8vJyTTFYVFTEra0CamZrWadQSrE1GAxur+lmYZ0eX19fXL58WZWuB/CRiIMHD2LLli14++23UVlZyUWiLRYL57x/++23qnu+urpalW5Um7i02+1O08HYaA/wV+Ew9p4PDQ1Vtc0oKSnh1of/9ttv8m/x8fGBIAhcb+WsrCynk5oSer0e48ePl//+5ptvuHuEnfjo1q2bpiPFisuioiIuNTcgIAD/+c9/8MMPP6gyekJDQ/H111/jyJEjcvsTZ+KyoqKCm+j7O0Uu2Wfq0KFD3GRldXV1nSK6TZs2xZw5c+S/i4qK5Ikis9ksRyz79OnDpfLv379fs1Js//79MWPGDOTk5ODZZ5+FzWZDz5495WN25r8BQI8ePVRRrSFDhgCoSaOdPn06gJp0wPT0dM17z9fXl3uepGdIS1yy5OTkyMdmtVo5v0gZuZSWFEjExsbi3nvvRV5enhypdVdcsqmxf/75p/y57OeHh4erstwSEhKQlpYGPz8/jBw5Ek8//TSXJSJNbH/77bf47LPP5LWJS5cuxTPPPCPfI8pOAqzAdNbyrnnz5twzzqIlLtlstcDAQM3WRrXB3ntnz57VbPH0yy+/YP/+/XjjjTewe/dula9WWVmJY8eO1SoutWoqbNiwgfub7SMfERHBRQy1bKxSXFZVVakqabPjjNYkNTvWR0dHO11awy6LIHHphKVLl+Kxxx5DZGQkevXqhVWrVsnFIN566y2sW7dO3veBBx5AQkICF3kxGAx47rnn8OeffyIjIwMvvvgi/vGPf6B3794IDg7G448/3iDHrQzPm81m6PV6NGnSBGVlZbVWA1ViNBrhcDhUPRdri1xKQoc1EspwOytGrVYrhg0bpkp7KCgowMCBA/Hxxx/LTkJFRQUXtZTYv38/d1zK4iwScXFxsrAPDg5GYmIiTCaTnN4L1Bje22+/XX7Pli1bUFJSwjmeFRUVXFVYtnJcYWEhnnzySTltj01Fu+mmm7hzIQ0GtUUuWZRpDZcuXZKNlpbxO336NERRdBq5ZK/vpUuXsHPnTm6GTMLf3x+PPPIIl8L73nvvYfny5VwUi722W7ZskQdYrSqV+/btw+rVq2WDbLVa5f5S7O/XEvHKNBK2Sqj0ewsLC7lBZs+ePUhPT5ePSafTcZGVsrIyp5HLnTt3ckUYLl26hNWrV3NFrNwt1KVcrypx5swZznnVypYICwtTDXrK7y0tLdWsNKpsrSANNPv27eMEU1ZWFvfdw4cPR5cuXeS/WedAes7Y4l56vV6erAFqHBV2fduvv/6qGoA2b95cazpNeHi47MxoRS6BmuevadOm8jmSquixpf5//fVXVFVVyZMpElJhIyUFBQV455138NVXX6myN5o1a6bqxSo9X1oTJJLwYT/D19eXa3F1+vRpLuJ8/vx5LFu2DE8++SQ3I698RsvLyzknZc+ePU7FJesMAH9FzZUTGWazmbM5xcXFiI+P51pesevjduzYIX+GwWBA586dMXXqVLlPtDPYqqEAsGjRIgA1zzIrLtn+cyys43ns2DEuzfvRRx/F+PHjXYoMFlZcHjlyRL52R44ccdqG5EYnMTGRs8lSOyqgxrazz6I7mVlPPfUUli9frvIN+vXrJws4qeemxB9//MHZtczMTCQkJGDEiBF44YUX8NJLLzktWuaMJk2acGMH8FfkFACWLFmC06dPY9OmTapJKglfX19u0kIaN1hxqexfHRQUxEWezGYzd34leyxFBll76eXlBR8fH5X9c3f8CQ8P58ZpSfSxwZCIiAhVBoggCFixYgX+/PNPvP766wgICODGz8OHD6OoqEhVMR+oGZMksaRsL8JGFlk/hR2TIiMjMWjQIFU0GeDF5a5du1BdXc2lj8bFxaFLly7o1q0bjEajavLRGWzksqSkhBuf2ImAd999l1sqYzKZuOVdhw8f1hSXhYWFWLduHR566CHN5T3KyU52n/j4eO5+0bov2YnBgoICnDt3TrVmnX2etCap2chldHS00/GEFbpHjx51mW58tbjmxKU0g3/8+HG5QAX7H1uZzhnZ2dn45JNPYDKZcM899+Cpp55CRkYGvv/++6tWRU7ZuF5rZsQVRqMRer2ec3ouXLhQa+RSSl1hnS1l9UHlYuOkpCRMmTIFixcvxrx587j1Cx988AFWrVqF0tJSHD58mHPwJZSRs9jYWE1xyRoVrcI1Eo899pj8sJaXl+O7777jHvRffvmFGzj69OnDRViPHz8uNz1nC+907dqVuy5Sieq6iEt2pvDixYu4ePGiS3F55swZXLp0iXNEJaOp0+k4A1pdXc2tB9HpdIiJiUGfPn3kdTLsed26dSuWLl0q/52Wlobp06dzv1EyTlqpvaIocqKzZ8+e8rVnnYTS0lLu/Ofn5+ODDz7g7sW2bduq0ny1jBybatKqVSvu3l21ahX3nBQXF+PEiRP4888/NdtuHDhwAFu3bq1T5BLg71f2XOXl5XGL7NlojkR4eDgnLi9duqQqhHD06FGsWLECzz77LFewgJ0EA/4S/GyRAj8/P66dEVDjVDz33HMqsctWPrZarRg+fDjS0tIwatQozmHw9vZGp06duONmC3gAfJ9bh8OBoUOH4t5775UrTN99992YNGmSPDnEVsBjKSoqQlVVFUaOHImePXti0aJFaNeuHZKTk2VxUVpaiv3796vEJcAP6Hv27MG0adPgcDgwevRo9O3bFzNnzuRme2NiYriJNKvVKtsCZxMkubm5nONks9lgMBi4iZv//ve/qKqqQlVVFT7++GO5oMSnn34qn7fKykqcP38er732Gg4dOoQjR45wdtff3x82m00VmdHpdKpqsGfOnOGeRV9fX1itVnm9tERJSQlKSko4O/Sf//xH/l52dr19+/awWCyw2WxISEjQtLkxMTEYOXIkIiIisGDBAnn75s2bkZeXx6XPA+6Jy3PnzsnPYpMmTTB58mTN9zgjPj6ei1BJ2RtsdM5ut2uuUbpR0ev16Natm/w363Sy58Xf39+tNERBEHDHHXdg7969XK9strcu8FcUEfhrKYbEwIEDMWLECKcFo9yFFXktWrRQiaqQkBDZdjiLXLLrQ8+ePavKAkhISODOX9euXTn7ZzQaOUGiTItlxaW/vz8EQVDZP3fHH51Oxz0vUmqssthXdHS0yg+RnmfJbrITQufOncNnn30mLzmR1nVLnD59GhUVFaqJNXYfdixj95Mm8A0Gg6rDAXv9i4uLVesE+/TpA0EQ0KNHDzzwwAO49dZbnZ0aDqlGgRI/Pz/uerOkpKRg165dXPHPI0eOcOKyqqoK33//PZYsWYKtW7dizZo1ePjhh10KspKSEi7b5aabbuLGYy1xyUbTCwoKNANMWpHLyspKbN68GQ8++KAqjdvf35/LXGFfk46noqKCGwcai2tOXL7++usQRdHpf6xRlfZl16BIDBgwAD/88ANKSkpw4cIFfPjhh9zagIaGfQCLioq4h80dgSsZD3ZfqYy0hJa4LCoq4lIgpYI/rGFl92dJT0/HY489hq1bt3LpsgcPHsRLL73E9ZBiDQp7TNKavfj4eM6pUjZ0d3YMQE2q1D333CP/vX37ds7BYYVGREQEwsLCOJF2/vx5/Pzzz/jzzz+5c3HzzTdzg1NpaanTJsta4lJZcObixYtym5LKykpVygNQ4zSyM24BAQFcujM7+75lyxYu0jdq1CiMGzcOHTp0gMlkwtmzZxEREcGdO2nmS4oCmkwm7vO/+eYbiKLIOSBa6yfsdjtXXEM5Ax0QEICqqip88sknePHFFzmBJg2Cyoie1vlgSU9P5/7Oz89HXl4eN7nx8ssv47XXXuOis2yk+ptvvsHChQuxYMECrF271q3F7Gz0iXVszp49y7X3WLBggUoYOBwOuZCFhFK4v/nmmzh9+jQuXbokR3CkVGUW6fyw93ZycrJmG6W2bdti4sSJ3LYWLVpwaV12ux39+/dXRXRMJhP0ej0GDhwob5NaBAHgquIBNQKidevWsFgsMBgMsFgscsqlhKu02MrKSgQEBCAjIwPx8fEwm82wWq1cOtiuXbtUabHAX9HARYsWITk5GcuXL+citUuWLMGqVatkR8DhcHBOEOsosfdwYWGh/J7c3Fxu9l56nlibc+bMGaxfv17uvydRXFwsTxJcunQJGRkZmDRpElq3bs31zvPx8YHBYNCslOhwOFRLM86cOcM9L2xkk3VciouLUVRUxFUB3rt3r5w+yjoVWr1IlfTo0UOe9OvRo4ds16XUbjZqGR4e7rQHp5YjDADTpk2rswjU6/VcKwzpt7ETU3+nqKUE6+ew6XLK9Zbu1qcAamoQfP311/j++++xZ88eleN68803y/cfO84rq517wu233w673Q4vLy/MmzfP5fE7i1yyk64VFRXypK5ESEgIMjIyMHbsWNx2221o3bo155MZjUbOh1CmxbLiUrrPrzRyGRUVxUVaDx48iKqqKk5oSGuy2eccUIvr2NhYbtKIHdsefvhhPP/88/IYJooi8vLyuMk4m83GTUZIr0nLsNjjYd+jPCb22b/vvvu4c8NWUpWKjikFqhaCIGhOlMTGxiI5OVk1CZGeno6srCwEBQVxabinT59GXl4eysrKcPHiRSxfvhzr16/nxq/jx4/LPa21YIMU3t7eKt9F675UdntwR1yKooj//ve/2LBhA9dOJDAwEDabDU2aNEG3bt0wffp0LsLv7e3NRS/ZpRGNxTUnLm8U2Ifn6NGjstOq0+ncSluRnA9WXLJOrJeXl2xolGmxrKAKCQnBvffeyzl2ZrNZc7ZRchxSU1Oxc+dOzvG+ePEiF3lJTk7m1i9K+Pv7w9vbGyaTifudCQkJ3DmpLX3m7rvvlh3F6upqvPvuu3jrrbdw6tQpzoGSnBD2HJw/fx6FhYV45513ZOFoNBrRvn17VRTAWdNmLUdJesAlLl68iHPnzqGsrAzHjh3TnPk6ffo0J3hatGiBIUOGIDk5GQMHDuRmjd9//335eG02G2csgJrBTBAEzagwGwVkjdo333yDI0eOcM50//79VeWs+/btywkmZbWzhIQEfPPNN6rG5qGhoXLqlFZ1N4mcnBzunouPj1etOwNqBhSlAyt9nyAIuPXWW5Gdnc2tPX3ttdfk6pOvvPKKy0bcAB9hZiNALMnJyYiIiOCuj9FoRHBwMPR6PTfosevLAL7E+PHjx3Hu3DmcOHFCVYjmwoULKCws5MQlmz6qZOHChdwgxh67q3V10kAfERHBvUeacDhx4oQ80AqCoCrj7uwznaXFKteOS3aKTXc8dOgQCgoKVCKroqIClZWVclqmFnv27MF7772HyspK+Pn5cdebvS7KZ1hyGJXiUnLO2rZtiylTpsjbf/zxR83eY99//z3KysqwfPlyOe2+tLQUr7/+urwPKyiV4lL5XAM1kWA2esw+A6xDWVJSgsLCQoSGhnL29/XXX5d7+0koo4xa4pK1h3q9nqvQ+d5773GN4tnKmkqURX2AmueFLQpTF7TWXf5dK8VKsOJy7969srNaWzGf2hAEAZ06ddKsk+Dt7Y0BAwaotkdFRWlGla4Eu92OY8eOIT8/HyNHjnS5rzNxGRISwj377LOk1+tlXyI2Nla2b6y4NJlM3ORoSUkJqqqqnEYuAV5cSjUGnGGxWBATE4PIyEgMHjwYHTp0kEVfZWUljh49ykUNpbGRnfAF1MLOZDJp2pOAgADMnDlTlbWWm5vLiRxnkUvlWMWO1VoZEOzYzrbJMhqNmhNBzjLDlGitMWzevDkCAgLwzDPPyD5Lt27d0LdvXwiCAKvVipSUFO44d+zYgbKyMnz++eeqTCOJTZs24dy5c6p14QDvMzRr1kw1Rmrdl2wwq7i4WLOeAysuL1++LN8LAFQt9IC/7r3g4GDVdRgwYICq20NjQuKygVBGLiVCQkJU0RClAZFmdwB+xoi9Odl1isqCPmz4PjQ0VDOVRCutgDVCgYGBWLt2rWZqoMFgQJs2bTSNhr+/v+zEsOvEZs6cKaedtWzZstbUHZvNhjvvvFP++9dff8XOnTvxwgsvyOdTp9PJn8k6cFI0jy1KERsbywlyoMYhdDbb6Ovrq7pOwcHBnDMsRS5LS0tVzdMlLl26xImHli1bwm63Y+jQoWjXrp3TypopKSlO1yhpiUu22iU72Bw6dIhrTi3NVLL7jxgxQjMiwU4A/Pbbb9yaQT8/P4wePRrPPfccZ/AkTp06xf3u7OxsrF69Gg6HQ65Y6MxRHTRoEDp06MCJVaAmbTcmJgY+Pj7crB1LWVmZZr8oieLiYs6gFxUVaUbRpfMzbtw4eVtUVJR8TVjH/syZM5xjoRxEdu3apdk+AKiZEWWfV62UF4mmTZtixYoViI6ORs+ePbn7zJW4ZCcS2Htn48aNqtRxh8OhmnjQorbIpQSbRqWcZV+4cCG+/vprVcXYbdu2yeJPEAT069cPs2fP5mzhgQMH8N1338FgMHDXk7UDRqORs8OSuCwpKVGlxQI1DbPHjBmjOekRFBQk2+TS0lJ88MEHmksEtI5D6Ug5q7zIRgrY55G9thcvXpTvNTaq8fbbb2PatGmybRQEQTVRUZu4BMCtzdy2bRvWrFkj/+0sJVZCKS7HjRt3xSmTJC7VJCcnc/eVNMnKFihriEr4bGqshJag8QSDweDWek1nabHKSVdWXAYHB2uOpewkvNFo5JYgATVjt9aaSy1xWVtKrJ+fH8aPH49JkybB398fAQEB3CTw/v37OdEn2Tp/f39kZGTIVZSVtsRgMGhm5E2dOhVWqxXe3t5cgOLEiRPc71auuSwoKMBNN93EHVtwcDBnJ7TGSy2fBKjxP7UKaLqaRGVR+gA6nQ7NmjWD1WrFLbfcgv/973+YMWMGunfvLvsT0jp1NroojcHsOJycnIxp06ZxkfnPPvtM5dcqKwXHxsaqzrly/BUEQfWMaPVGVxaOKyoqkrPp2ElqpbgE1Pa8SZMmmDRpksdp6vUFicsGwlnYX+qJxKIcEIxGo/ygsA4kGx1hDTH7sFdXV3POtdJgSkRFRXGiNjo6WjUTqdfrMXPmTIwYMYJLX0tJSYG3t3et4nL+/PmYOnUq5s2bh5ycHAwfPhz3338/Ro4c6VbqzujRo7nCFVu3bsXHH38sv968eXN5sGFnbKTUDjbNTBKhyrWwzqJcyv5dQI2hYw1leXm5nIbMGp9JkyZx55JNVWEjyACcikvlhAOLw+HgBoxWrVpxjreylQhbBl56X/fu3TFy5Ejcd999ePXVVzW/hx3InnvuOa5QyNSpU9GjRw+ugTrrEJ47d46L1n/33XfIy8vDTz/9hIsXL7p0Dq1WK/r06YPp06dj9uzZGDJkCMaOHctNVjRr1gyjRo1CSkoKunTpwq3n3bdvn9O+WmwUWSo/r6zICfzVwmH06NF4+OGHkZiYyK2FZJ9LZVEfZZXCX375xWnJ+Z07d3JtTtjzqcXNN9+MCRMmqBx9V6mHbIohm6ZYUVGBAwcOcPeuq5LzLO5GLlmBp9PpuBSpU6dOoV+/fnjvvfdk56yiooIrBhMeHo709HT4+flh7NixnM3ZtWsXqqqquPMdGBgoT3JYrVbuOWEHcq3IJVAze33nnXdy9slsNsvrWSWUzobS6XMVuXRW8U9C6eiyDjXrGLZu3Vq2M+fPn+eWLSQnJ6uOSUtcKicSOnTowNk99vvY508Lpbi8++67Xe7vCtaW7Nu3D6WlpZxj+HcUlzqdjlvesnHjRuzfv5+raulq3LhS+vXrp0pfr29x6S5ak2iS/8MKHDb1k7XvzjoFGI1G2Gw27nkoLCyUnxktcXn58mV5jKtNXCq/V5nZ9dtvv3GfwT6DN998Mx566CFkZWVpHrfyWvj6+sqTot7e3txnHT58mLPPyshldXU1YmJiOJulnHh2Ji4nTpyIrKws9O7dG0FBQQgICNCcmABq6nywRee0bBOgFpcREREwmUyyTYyNjVUFKiTbzY6lv/32G1fPIiYmBvfddx9CQkJwyy23yNuPHj2K999/n/s8Za2Tjh07qiY5lPelKIrw9/fn9tOqLq4sRidFVZU+RXR0NAwGA/c9WpPANpsNEyZMcLp84WpC4rKBcCYuHQ4HoqKikJKSAj8/P2RnZ6sEIJteqdU0FeDFpcVi4Zwhtn2FM3EJ1Cy0jouLU+Wos5hMJrRs2RI5OTlo3bo1kpKS5H3Dw8NVg05gYKDs2Ddt2hTLli3DY489Js8cupNrL2Gz2TgD8fPPP3NOOus0swbywoULqKys5CJnkrOiVRxDC7PZrDr3QUFB8PX1VVWM/f333zkHd8CAAZwDyRpzZaW0+Ph41axqRESEy8iuIAiYMGGC/Pfs2bO56y8IAvc9bGRMik7rdDpMmjQJTz31lOZsMMA73WxhmqSkJHh7e8NisSAiIgJDhgxBhw4dnBbusNvt0Ol02L17N5YtW4bFixer+tc5o2XLlkhOTtacnY2Pj8fgwYNx1113Yf78+fL2o0ePqu5LCWVLGEEQNMWlJCQEQcCCBQswevRo7pqw98bZs2c5x0C5tkK55ppN/WKLuISHh9e6Ps3ZWmVXkcvExESMGTMGo0aNQkZGBpfmtmfPHm5NoStxyZ5TZ+LyzJkzTiOXQI1AYQWmdAxShKyiokKVccB+/+DBg+V7vaioCBs2bODObUBAgLxW+c477+QcTslBqK6u5rJJ2BluURSh1+tlG6fT6fCPf/wDwcHB6NKli+q+MhgM+PDDD/Hdd99xNoid7GEdpKioKKfPm0R4eDhnE9hry4q9wMBAp86bVmRf6cBJReNYdDqd3FqBxd/f32l0QqJfv36y3Zs8ebLLfqe1wVb3vHz5Ml577TUuTezvuOYS4DMbvv32Wzz99NOyc9qsWTOnhU48wdfXl1seADSeuNSy69J94uz+ZMdiZ8dtNBrlyvUSJSUlcuEe1kaywkuygaz99/b2Vvk5SnHp7e3NTTSz7xcEQRV9cpbFZDQa5XFYolu3bvLYbTKZuAk21heRqu+aTCZu3Dlw4IDT9d+AOi1WmuCKjIxEmzZtkJOTg+nTp+Ouu+7iJuSUpKWlYeLEiejevbtmhhygnoiTnnt3/Ej2WTl//jznc8yYMQO9evWCIAho1aoVV8xt0aJFnK1ks9KaNGmiGXXVui+VFYi1UK5tlfwTNsoZFBQEHx8fNGnShPPztMRldHQ0TCaTpg2/2pC4bCBcRS4FQcCQIUMwZ84cJCYmqma2pdkwwLmzJxlBg8GgKtHNPkSuxKXZbMbYsWMxY8YMp4vzpYcmKCgIQ4cOxbBhw+SbWq/Xq4y1q++rK0ajEe3atZPPJduqQDnzxzp2JSUlOHTokFyAQK/XyzO6yrRYZ5FLq9WqEpdSeg1rXC9evMjNqAcGBiI1NVVzPSqgFpfe3t6qa+zO7POcOXPw3nvv4csvv8SYMWNUr2sVuQL41GfWOI0YMUIlUJwZRimqJ12XlJQU9O3bFxEREZophcpZtNoKHwiCAL1eD4fDgQEDBtQa5S4uLkZqairX8FqqwCqKInbs2IHvvvsO5eXlnPALCgqCXq9XXSuz2axyVJTOAXvNpPRo6fu02pBIBAYGYtasWZqv1ea8AzX3r5aj4UpcCoKA5s2bo0WLFhAEAcOGDZNf+9///ic/J7UV6WAdkLKyMs20WGXJeMn5kdDpdBgwYAAmT57MCYT9+/fj/PnzOH36NFfUKi4uDiaTSXbErFYrFzVevHgxV2gkICAAPj4+iI2NVT3DkrhkhSUAjB07VuVUdu7cGTk5OXj//fcxduxYADXnnq3OCNRkKfzyyy/45ZdfMHfuXHTq1An9+/fn7GJsbCw6duyI4OBgPPPMM6pzpkT5vLDnj7VXPj4+WLp0KebOnYtRo0Zh4sSJmDZtGl544QXcd999qs9VOiPOxiittiWdO3eutZVIkyZNsH//fnz//fdYtmyZy31rw9vbm8sUmDVr1t+2DQkLa9d/++03vPHGG/Lf99xzT72tg1SinMRoLHHpaixwZj/ZyUNn/pRUuZod26Vn7dixY1x0iR0XJXHJjmlms1m19k0rcunn56fpL9ntdrd7sUv7DRgwAC1btkS3bt2QmpoqiyNvb2/4+flpTloGBQXJzzQ7cbpt2zZu0rO2yGVycjL3O9g0bVeFG4Gaybbu3burqmdL1yEgIIC7p6WMBfYaOLsnWrZsye3HFgWcMmUKQkND0bNnT+j1esyaNUu2j4WFhVz2IDupFRMT47btkc69krCwMO76shN8+fn5OHXqFLd2XhrDlDU9tKK90tjYUHagLpC4bCC0Bm6z2awK8wOumwyHhYVppvhJN61WxVhlI25PcBYBklA+aPWZ7202m2E0GlUOHVCTCso+QH5+ftx5ZKO3DodDNvbuRi7ZNg8AX7mMnQy4ePEit76jU6dOEARBU2R5eXlpDsrsDL+WsHF2fMOHD0efPn1gNpu53xUdHY1p06Zpvs+ZuExISMA999zDVSTVMox2u13+DK0IDDsDKFGXFI3IyEg8+OCDeOihh5CTkwOHw1FrpEcqvsDOBEuV1jZv3oy1a9diw4YNePPNN7kI7K233oo5c+ao0vdSU1NVxln5HLDrL4G/2puw6cBa9O7dG+3atdP8Ta5meSUEQdAcsF2JSyX9+vXTtE+RkZEuByX2e51FLgE+/VSrdD1QM8m2cuVKztn7+eef8d1338mOnFR4LDo6mrNj7PPCRjmtVivat2/PXStWiErHxa639Pb2dtq+ISwsDG3btuV+d8eOHWUb3qJFC4SGhuLIkSM4cOAAKisrkZmZifbt23MOj06nw9NPP43Tp0/j1ltvRc+ePeXXunXrxj2TgiCoIn7Orq3NZkNwcDAWL16MVatW4dVXX8WLL76IGTNmaM5qK50RZ+IyLS1N5YTXtt5Swt/fH506dXLbOXbFCy+8IDvF7DMVFhZWp/v9RiIpKYm7V6UsgeDgYFU16fpk0KBBnL1riLWdnuKOuHSWCaYlLqXUeTYlNjQ0lHtutCKXyhYggLa4BLTPo5bv4AzJ1oWEhGDEiBHy2kNpu7e3NwRB0OxQwJ4X1k6uXLmSyxCrLXLp6+ur6lUqUZu4lBAEAVlZWfIaUyljxcvLC71794afnx+6dOkin382Bb9fv37yv9l0eovFojmZ0KlTJ/m4MjIy8MgjjyAnJ4drkfLJJ59g5syZ6Nu3L7fMLC4uTiWEneFMXLZu3Zo73+xk59q1a/HKK69wY5Q0Hih9EJ1Op7LpWllYjQWJywZCa+Bme9G4i7e3t2YESdqmJS5ZPBWXznLhJZo3by6LX5vNVq83t81mQ6tWrZCenq46DmWJbp1Ox50n1jhGRUXJ56cukUvWMPn7+8uON2sw9u7dy0UuJUOnVXEzNjZW0+liGyFnZ2dzv1XrugqCwO0jCAIyMzNhs9mQmpqKMWPGICoqSjVwBQYGcvel0gFV9tTTuu/YlMa6ikvlNdMiICBAjsZLaDmSykh1SUkJFxXes2cP8vLyuFYKUs9MicTERPj4+CA1NZV7LtnrIaG8bj4+PpyTJ6WxsCnIgPoc9e3bFwaDQXPChF1P5QpPxaXVatVMn2Pvd62qc+zsd1VVFRdJ0po0A9RFdVgsFgtycnLkv3fv3s01h4+JiYFOp4PFYuEmdJw14W7durUqHVRLXLLrLR0OBwRBcNp3t0mTJty19/b2xpQpU3DHHXdgxIgRbttzdiY8PT0dnTt3RteuXZGRkYGcnBzMnDkTw4cPx7Rp01Q229nkiruOm4S74lIQBFVaVW3rLRuCmJgYbr24xN9xvaWEct2lxKxZs+q05KSuhISE4MEHH4Rer8fQoUOdVtluTIKDg1VplEoHX1oKoUQSl+y+UqYDKy5jYmK45+hKI5fS2KuswQCoxZwrnE3+S8co/b+2jKL27dvLY+7Zs2e5thy1RS4NBgNat26tGQSpi41KTU3FrFmzcPPNN3PXIS0tDbNnz8YTTzyBoUOHYsqUKdy93q5dO3To0AHJyclcKqxUoZdFp9Op+kgDNTaPXdazefNm5Ofny+0OgZqx4L777nPb5jtLi01ISNDMqPnxxx+xfPlybiLttttuk3+DsrUUoI5QUrXYvwEGg0H1sDmbNQP4xcfsw2wwGDRvUGXk0tlarYaOXPr6+iI7OxspKSnIzs6udf+6kp2djXnz5nHpQH5+fprRMNYBZdNYoqKi5POjjL44qyxqtVoxePBgeZaKXZfFfg8bCQsNDZXXs2mtEdQaSICa/P9hw4Zh0KBBeOaZZ7j7RGstLOuoSrRt2xZ33303srKy5IFM+V7l/acV3XDVLsZisXBOhZYzoxSXwcHBXMuc2mb9ahM1EqyYkcRlbGysfP9VVVXhrbfectkYWZoRtFgsnBDXmoVVOgdGo5GbSJFEKysurVYrty4YgDywKZ11g8HgdgU9T8UlAC41VkIaxJQTNRKu1oM6s23OIpfSaxMnTpTtZHFxMdatWye/Lj1DSnHp6+ur6SwlJCSongtl5ebq6mpuVlia0dcSl6zolCZspIISTZs2rVM/PtYuent7IzMzEz179oSXlxcEQUBAQABatWqlOTnn7NrWtX+kUly6qgrMrgu22WyqdbJXi8mTJ3P9WYG/b0qshHLJg4+PD1dZvaFYsGABiouL8dFHH9V5krw+YVtFKNukKKOXLVu2lI81IiICXl5emtEkrcilNBnljrhURi6VmRDOIpdhYWGq57gukUutyWpBEOTt0jOu9ZnSkgOg5hl3NmGg9LWU9shqtcJgMGjarrpOgEloXSNpPFWeW71ej759+2Lo0KHc9fPy8lItMUpKSnLaaqtbt26c37Zo0SKuvdTjjz/u0g6yY31GRgZMJpPmONqqVStuvDx//jwqKiq4gkNGoxFz587FSy+9hMzMTAwcOFBzDXtZWRn3t7+/P1egqDEhcdlACIKgcmxdFcvo0aMH4uLiEBwczM2sOBOX0kMkvebsIfY0klhb5BKoEU2DBw9GRESEZkUsTxAEAd7e3hgyZAgiIiLktThag5uWMJFSVCUD7ufnxxlaNvrC4uPjAz8/Pxw+fBjHjh3jBIeztYg9evSQhZRWCxhnEZfAwEB8+OGHWLNmDYKDgzFgwACkpqZi4MCBmiLVnVYRgFpcKp2y2sSlyWTi9unduzfnJLsTuWQHJh8fn1odYq30RK33sPtJzaG9vLy4qAY74CtFrV6v587H/Pnz4efnh+7du2sKLy3ngE0Bl4pHscVlbDYbhgwZIr+3V69e8mSPUkiGhYW5fV2Vz7rRaKxzGuKAAQNUETlp7anZbHZZlVELV+LSWeTNaDSiadOmXDowOynkTFwC2lWWtSJa7HFJhXyUkUtAW1zabDZZ+DZv3hwTJ050O7qsXB7gyaTb1Y5cAjXrvv/xj3+gbdu2WLlypVvjQEMgCAJWrlzJTSZ5UijoRkDZruiOO+5QPR8NRWPdByxdunRB+/bt0blzZy4NElCLy/bt26NDhw6Ii4uThaiWn6AVuZQqd7oSl9K6c3adudVqVX2HMsIk2XppPTzLlaTFKrdJ/pH0PWFhYSqfKTIykhsDtbJpAHUklW374uPjI/9ba+K4PsXllaTaN2vWTB4DdDodOnbs6DRLRRAELrX8tddekycPAgICnBYslMjMzESrVq2QnJyMzp07QxAEzd/RqlUrTgvk5+fj8OHDcsTSy8sLkydPRteuXeVJ53bt2mn6vEqNYTQakZ6ejjvuuMPlsV4NSFxeRVyVoDcYDBg7diymT5/O5cdriUvJ6dHr9bLjfTUjl64+U6vIR31gt9sxadIk3HfffU6dC61Bw263w2QyyUZOEASn64fYB15ybE0mEyIjI7nzqyUuHQ4H4uPjZWOu0+lU58lZ5FJJUFAQsrKynK7Nc1eEsL2fAO1iQkqUg6AUzTKZTBg1ahT3mpZzqrw2yl6MtYlLrWuoJXSUIlSqbqd1b8TExGDy5Mm47bbb5G3KtXnDhw/HuXPnsHHjRk0HSktcsoOpFLFkI5c+Pj4YM2YMNm3ahH/9619466235Nc6dOjApf5qpbw4QzlgX8n6Mz8/P2RmZsp/N2vWjKvorPWMm81mzdQnnU7nsiCYq8glwK+ZkWCbRFssFtVv1rrOWhGtgIAAVZ9Id8Wl1nPuroNzvYtLALj//vvx008/aRb4uZqEhobivffeg91uR0pKCtd79u9Iq1at5LHEx8cHc+bMaeQjurpYrVYMGDAAmZmZKnukFJetW7dG3759MXbsWNmmaU1gWiwWVeSyqKgIxcXFtUYuq6uruZ6EkZGRqnFM2aqE/QylX1CXtFgte8R+tvRvZaYNUCNi2Yydpk2bqpaEeHl5aRYnHDJkCMaMGYNp06bJx3AtisuQkBAMHToUPXr0wJgxY9C0aVOn4hKoSUPVqoEyY8aMWsdZm82G4cOHY+jQobJv5U5a7OnTp7llXLGxsQgJCam11oQrroX0WBKXV5ErSSURBEFlfKQHT5ptA5w/xLX1VKsNg8GgOePVv39/GAwGlUNX35FLCek3uzqHWrO3kZGR3AJ3oGYRvdJ5FgQBgwcPxqhRo+RCMiysQdIyGD179uTWQl6+fFllzJ1FLl2h1+tVRsZdcRkYGIgZM2YAqBGa7ohLJYMGDcLy5cvx3XffqaKSWsYvICBAvl9NJhO35sGdyKXWNdR6j4+PDzeISovimzdvzl1rvV4v36uvvPIKnn32WYwYMQLLly9Xfaaz3piAdlosOxlx8uRJnDx5kqt06uPjA4vFgo4dO2LOnDncPacsglAXB74+xCVQIx70ej10Oh13LBaLRdNRMBgMmsLbZDLB19dX8zhcpcVK1yk9PV31TLERe6kpNou/v78q5UkrcikIAjfBUVBQoJkWq2U/r9TBMRgMqjWonohLnU6neQ49TYttyDV69U3Pnj2Rl5eH3bt3X1NFKxoDnU6HtWvX4sknn8S3336rWazl74pSXCYlJan2adu2LWdPmjdvDrvdrhKXQE1F3trE5cmTJ+X0REEQEB0drXq2WJsD8EUcY2JiuEndulTi1SrqokzBl1DeJ+Hh4Sr/TbnW2uFwaI6LUpYQa/O1ijle6dhUX+IyODgYNpsNXbt2lc+rK8HrcDhU9QjMZrPsR9UVb29v7vo0bdoUAQEBnO9w6tQpHDhwQP5bGsfcEZe1VfBuTK7dI7sBYGeBtPqOuYsyYiQ9eDqdzqW4DAwM9Lhqn1KYATUza2lpafi///s/uUy/hKtKmZ6gZWyUaM1IRkVFQRRFVR/Ivn37ygY9LCwMY8aMgZ+fH1q0aKE5WLODDpsuB9Sk3jVr1gwGg0H+zOrqapUT5G7kUonSQLsrLgHg+eefx+nTp7FhwwanRQVcYTKZcMcddyAtLU0l7J05pwsXLkSvXr0wfvx47thri1wqm1hLaL3HbDZrGl+j0citw+natStXJGj27Nl4991369xsXCtyyUbPzp07h5UrV3JreG02m0sHfsmSJcjMzMQ999xTp3USyme9riJDomvXrvjqq68wd+5cToBZLBZNR8GVuBQEQXMdtNFohJeXl6YdYtcFsdX/AD4K6WyQVaYvO1uLpyzqw0YuJRHtbuTSnRLvVqtVM3XZE+qapqxFXdZcEtc2MTExeOCBBxptLey1SlJSkmxX9Hq95jpCu92O++67Dzk5OZgzZw7GjBkj+zleXl7cxND06dM5exETE6Pq98uKT7vdDrPZrBorXfWtNhgM6N27N3x8fJCdna1ZUM4VyhoBrO1m/RRluq3D4YDVauXs5vjx4zk/pS6V3rUmfVxN2LrCy8tLNa5dqbhU4ipyCUCV/jpp0qQrDtIMGTKEG0ekCXo2cllWVsZVjK2LuGRbBGm1pGtMGr8Zyg1Mt27d5NYBnlRXcxa51Ov1sqHTcjDrq+ek0Wjk2g5IaRuS4ejQoQN++OEHAED//v3r5TuVuCMupSIb7LotZ8axWbNmmDlzJi5fvqxqTqsFa5CkdZxS/yMpask6a1arlTPm0dHRLgcYV/j4+HD9GevqFEpGXznLVddeSMpz5Mz4JSYmahancSYue/bsiTNnzjhd86HlWEvrApU9Jb28vLBixQr4+fkhNzdX/kxPnXstcck+06WlpSgrK+McEZvN5nKNUtu2bblWGu6iFBWeRKDsdrvq/FosFpjNZvj7+3PnV2o0rkQ6txkZGXJLFgnpvFksFrkqnvJ9RqMRbdq0webNm1FVVQWz2cw9t9J9lpiYKLf9SU5ORuvWrTF//nxUVlaiTZs2TkU2Ky5//vlnbiCXJpIsFgv0ej23huVK02KtVqvqnHpaAEX5rOn1+lqdJCVKu3Etz3oTxJUQEBCAZ555BkuWLMG0adOcigJvb2/VJLJkj7p164aPPvoIALBz507u9bCwMM4GlpWVcdXi2ahjVlYW1qxZA7PZXGu15Y4dO+LTTz+9omeyZ8+eSE5OxtGjR1FZWamaqJNg023NZrM8sZaVlYUdO3bAbrcjNDQU999/PyZNmgRAXRvAFfXdW9HPz4+z1VdLXA4YMADh4eHIzc2VC+tcKSkpKWjXrh3Wrl0L4K/lHKGhoTCZTKp2Xna7nVsOUhtJSUnw9fWV+4JfS5C4bEBsNlu9iK2goCBYrVa5bQYbuZQMXUOKS5PJJDvNNptN5XR17dpVTt9sqGIL7ohLqViPVLmztrz1ujhnyn0HDx6Mw4cPw2q1ykabdd569OiBPXv2oFevXjh79qxbzdOd4UnkkkU5i1hXhzc2Nhbe3t4oKyuD3W53OphotaUQBAEWi0XzPm3fvr3L6+QscuksWh8UFIRFixZxjdw9Hfi00mKVz1dBQQE3GDore+8pyt/NTqbUFVdFncLCwjhxaTAYXPZPDAsLQ1xcHOdsSefNbDa7FJc2mw2jRo3Cb7/9hpSUFO58S/dG79695c+QytWvWbMG69atw+233+70Nw4ZMkROg2Z7cAJ/iUupMiz7e91NzfLz8+N+m7KghyAITouAuUtERIS8rthoNKJXr151draUEwMkLokbkZkzZ2LmzJl1fp9kjxITE7Fz50558lhCWpfOPkfbt2/n9mHFZWpqqjxm1ja5KQiCR89jUFCQ03ZQQ4YMwZdffomuXbvCarXizTffxAMPPMBlvbG9d6V1h2fPnsXUqVPrdBy+vr6qFOArxdfXVy6UB1zZGK513mvL+DAajfjiiy/w+uuv45ZbbqlTmrIWo0aNksXl6NGjAdTY3ujoaOzfv5/bl13a4Y64VC77uJYgcXkdIAgCUlJSsHXrVgB/iUY2LVan03EClN3PU9gHNCIiQjOCxRYHaQjcEYIWiwVxcXGyuJSiH3Wpvubu99vtdvTp0wc//vijvI11vJs0aYLp06dj5MiRiI2NveL0EKD+xGVaWhp+/vlnAK7PSVRUlDywsuW1TSYTxo4di4MHD6pabLD4+/tDp9NxlXgtFgt0Op2mUKzNSdZ6j7e3N2JjY1WRMmmAVUbzPBFggFqIS5V0WWFRUFDARS6dDfaeorz+zioeu4NW1FMa1MLCwuRIIeA8LZa1D4MHD8ayZctQXFwMh8MhOwRa3yNdd+n9MTExqoGczQjw8/PDlClTuNf79eunWRCIpXfv3nj88cfx2GOPqV5j15YqxaW7kcuIiAiVuDQYDBg9ejR27dqFlJQUjyPnPXr0kHtuJiQkXFHVTuUxXOl6KIK4EZGebWnZzMqVKznbyha308LLy0tVjMfdCewrXdrgDikpKUhOTpb71z711FMu9xcEARMmTLii7xo2bBhee+01AOo2MXWlPtJigZrrwi7XckekJiUleRQQYBk7diwSExNhs9m4FGQtcckWWPKkoM+1AE1dXic8++yz6NWrFzp37iyLJlZcAuoZmfoSl+znNtYsiVYOvhKr1Yrs7GwANeemXbt2MBqN9RI9Vg4SZrNZtU3p9AcGBiI+Pt4jYQmojeyViku73Y4BAwYgOTkZgwYNcrrfoEGDYLfbERERoZo0CA8PR/fu3V1WI9Pr9arCPK6qGtdm7C0WCyfupDV8Wn0NJUGnPEeu+l26g1LASQ4Gu77lzJkzXEGr+nr+lDj7zVeC1r0kDWrKKoFeXl5O11xK+Pj4ICcnB0OGDOHWY2uJS3cEl7e3d71E2B555BE88MAD3Lbg4GDuGJTPs7uRS6VDKYm2+Ph4jBgx4ooKeSnx8vJCWloa2rRpc8XtIARBkCeFQkJC/vb9IgnCGU2bNuWqiwN/iUstW+bl5YXMzMw6CaBevXrJ/87KyrqyA3WTq9WXNCoqClOnTsXEiRM9Xg+snPy6UnHZkMLdXVJTU1X2Vtm+y2q1cpOd17u4pMjldUJ6ejrWrVuHefPmydu0xCXbZ6++nNvOnTvj7Nmz8Pf3d5rPfzVo1qwZ9uzZ4/R1i8WCESNGIDU1FQEBAXKl2ProzaV0PHU6Xa3isr6or8glUJOCWlvBgMDAQI/7JAUFBcl9woC/foOWoKht4NPpdLBYLHJUXhrcrVYroqOjceTIEXlfaY2FciDyVFwqI5/S74iMjMQff/wBAFwKD+C8H2p90KtXL6xfvx42m01V0KEu1Ba5ZLFarbWKS6Dmdyt/u3KgFARBnnRxJTLra4AVBAELFy5EaWkp/v3vfwNQF8JgJ9Gk6KMSLaGrzAK4lgvlDBkyBB07dkRISMhVczgJ4nogODhYzkQJCAjAjBkzsHr1apw/fx7AXwXDEhISsHnzZhQVFSElJQWdO3dGQEBAndM2O3bsCD8/P1it1ms2tfFK0GpdciUobf+Visv+/fvj7bffBoA6F0tqSJR975s3by7bZGUNj+sREpfXGdKaN4CvjAaoZ2jqq2R7ZGTkFa1hqG+SkpJqFZeCIDgtDOMJSiFZWVnZaOLyWmhkXRtBQUFcyoens4c+Pj4qcQnUDPSsuJSieErHub4jl5IjwbbMyM3Nlf/t7e2tKjZUn3Tp0kVOtfFkPalU6ZUVz9L5NZvN6N+/P3744Qe0bdsWFovFLXGphVLEso2+4+LiEBAQIDtxLPU5eysIAv71r3+hTZs2+PnnnzF79mzudTZSWZeJAWXRiIZqx1QfCIKgWQmYIP7u6HQ6jBs3Dn/88QcSEhIQGBiIV199FSNGjEB4eLhctd9ms2HWrFm4fPmyR2O+s2q2RA3KzJErFZdxcXEYMGAALl68iI4dO9bHodULysglmxIrjcvXMyQurzNGjRqFNWvWwN/fH506deJm0pUOfEOl5TUWrCOvRUOmESgd+IqKCpW4bChjUF9psVcTZaqmp+u7fHx8cPr0aQC8UElMTMS6detQWVkJb29vpxV56ztyKV1rtpIzW8jAx8dH1Re0vtHqCVpXpBL8bNU69jlKS0tDWlqa/LeWkNTqialEKS5ZR8HLywt33nknCgoK8PHHH3Mivb6faWk9kdaaolatWmHjxo0oKyurU4aGMvJ6o9ldgvi7EBQUxFV2zcrKQnFxMURR5HwAg8HgcZs3wjVxcXEIDAzEuXPnPKpbIQjCNRWxlGDFpNFo5OoNSAGk6xkSl9cZUVFRqihicHAwzp4922BrLq8VvLy8VJUZWa5mU/CKigrV+a6oqGiQ76rvtgZXA6W49FQksOeAvc7SOttffvkFqampTgd8T8Wls9RNZWqLRJMmTdCpUyePvvNqoRTOrq6VcmJDEAS31u5pRS5ZvLy8EBgYWK9tVuqKzWbD3LlzUVJSUueU5ltuuQVfffUVIiIi6mWNJUEQ1wae1kwgrgy9Xo+cnBzk5uaqonw3Am3atMGIESPw6aefYsGCBfVWZfdagcTlDUB2dja2b9+OwMBAueQxcOOJS6DGiXvnnXcA1DjBJSUl8mtXM120SZMmmtHMhkApLuvaPL0xUEYQWXFnMBjqnDrIRumUEeP4+HhuFlALTyqqAkCnTp2wfft2VFVVcVEtZ31U09LSrriv6dVGKS5dRcaVz1h4eLhbEwfurp9R3ttXu6iB0Wi8osqu6enpLic3CIIgiLrh7e19wxYeEwQB7777Li5fvgy9Xo+nn35aXvpzPSx9qg2qFnsDEBISggEDBqgKVNTXmstriRYtWqBXr15o3rw5Bg4cyL3mabn/2mArrErfzYqe1NTUBvleg8Eg9xJt27Ztg7W4qE+UooA95isRXe3atYPdbkdwcDDS09Pdeg8r/DwpegPUpLnecccdGDZsGPr27Stvd1aI4VpraOwKpfB2VZ1VOeixfblcUVvkUkKZAn6tV8xjzwcJS4IgCKIuSJHxESNGyNtuueWWxjqceoMilzcQKSkpiIiIwJ9//olevXpdF2vzroQuXbqgS5cuXE9PoOHXIkpVaI1Go7zObPjw4Vi/fj1CQ0MbdIatZ8+e6Nat23WVotOnTx+sW7cOTZs2RUJCgrx98ODBclN7d/uj+vr64o477oAoim6nBQ8ePBhr1qyByWRC9+7d63z8SoKDg1XFW5o0aQKbzcb1twRwXRVNqUsPUKXwrC1iLOFqzSVLY0cu68r1dJ0JgiCIa5PIyEjMmDEDFRUVbtUxuNYhcXkDYTKZsH37dmzZsgV9+vRp7MNpcCwWC+x2O06ePImgoKAGfyAFQVDl/tvtdowbN65Bv1fiehKWQE2p9dTUVFXls6ZNm2LatGkoLCystUiTkrqsNw0ICMDEiRPr9Pl1RRAEREVFYe/evdz260l01EVc2u126HQ6VFdXIzAw0O3Ue3cjl4255tJdbrnlFqxduxY6nc5lv1iCIAiCcJfrISvNXUhc3mA0bdoUt956a2MfxlVBEASMHz8ehw4dQrNmzeql2TpRvziLJoeGht4wa4IjIyOva3Fps9ncLibg4+ODkSNH4uDBg2jfvr3bYv9KI5fXorhMT09HREQEfHx8rov1zwRBEARxNSFvnLiuMZvNSEpK8rjVBUFcKVrrLq8ncTl48GD53/369at1//j4eNxyyy11WtOt1+u59Ynurrm8VqP1drudhCVBEARBaECRS4IgCA+43sVls2bNMGHCBJSVlbm9hvJKMJvNcj9NZ5FLi8UCh8OBEydOwN/f/7oqjEQQBEEQBIlLgiAIj1CKS7PZfF1FtQRBcNqvsz4xm824ePEiAOeRS0EQMGbMGBw8eJBS3QmCIAjiOoTEJUEQhAcoe13a7fY6FR76u8BWfnXVNshisSA5OflqHBJBEARBEPUMTQsTBEF4gDJyeT2lxF5NkpKSANS0M2nZsmUjHw1BEARBEA0BRS4JgiA8wG63w2AwoLKyUv6bUJOamgqHw3HdpQ0TBEEQBOE+FLkkCILwAJ1Oh/DwcPlvEpfOCQkJIWFJEARBEDcwJC4JgiA8JDo6Wv53WFhY4x0IQRAEQRBEI0LikiAIwkNycnIgCAKsVitGjhzZ2IdDEARBEATRKAiiKIqNfRDXM5cuXYKfnx8KCgrg6+vb2IdDEEQjkZubCz8/P0r7JAiCIAiiUbgWdAkV9CEIgqgH2HWXBEEQBEEQf0coLZYgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiPIXFJEARBEARBEARBeAyJS4IgCIIgCIIgCMJjSFwSBEEQBEEQBEEQHkPikiAIgiAIgiAIgvAYEpcEQRAEQRAEQRCEx5C4JAiCIAiCIAiCIDyGxCVBEARBEARBEAThMSQuCYIgCIIgCIIgCI8hcUkQBEEQBEEQBEF4DIlLgiAIgiAIgiAIwmNIXBIEQRAEQRAEQRAeQ+KSIAiCIAiCIAiC8BgSlwRBEARBEARBEITHkLgkCIIgCIIgCIIgPIbEJUEQBEEQBEEQBOExJC4JgiAIgiAIgiAIjyFxSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiPIXFJEARBEARBEARBeAyJS4IgCIIgCIIgCMJjSFwSBEEQBEEQBEEQHkPikiAIgiAIgiAIgvAYEpcEQRAEQRAEQRCEx3g19gFc74iiCAC4dOlSIx8JQRAEQRAEQRB/VyQ9IumTxoDEpYfExcUBACIiIhr5SAiCIAiCIAiC+LtTWFgIPz+/RvluEpceotPpEBQUhIMHD0IQhMY+HOJvSPPmzQEABw4caOQjIf6u0D1INDZ0DxLXAnQfEo1NXFwcRFFEWFhYox0DiUsP0el00Ol0jTY7QBA6Xc3SaV9f30Y+EuLvCt2DRGND9yBxLUD3IdHY6PV6AH/di40BFfQhCIIgCIIgCIIgPIbEJUEQBEEQBEEQBOExgtiY5YQIgiAIgiAIgiCIGwKKXBIEQRAEQRAEQRAeQ+KSIAiCIAiCIAiC8BgSlwRBEARBEARBEITHkLgkCIIgCIIgCIIgPIbEJUEQBEEQBEEQBOExJC4JgiAIgiAIgiAIjyFxSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLv8/giBo/ufj46Pad//+/Rg8eDD8/f1htVqRkZGBDRs2aH5uQUEB7rrrLjgcDnh7eyMxMRHLli2DKIoN/ZOI65Dz58/jnnvuQVxcHLy9vREcHIwePXrgu+++4/b78ccf0atXL9hsNvj6+qJv377YvXu35mfm5eVh/PjxCA4OhtlsRvv27fHBBx9chV9DXG/MmzfPqS0UBAEGg4Hbn2wh0RAUFRXhySefROvWrWGz2RAUFIROnTrh9ddfV90vZAuJhuD06dOYOnUqIiIiYDQaERkZiVmzZuHixYuqfckOEp6waNEiZGdnIyYmBoIgIDo62uX+DWXzysvL8eijj6JZs2YwmUyIjY3FE088gcrKyjr/Jq86v+MGJiMjA7fffju3TelMHTp0CJ06dYKXlxfuu+8++Pn5YeXKlejTpw+++OIL9OrVS963oqICmZmZ2LVrF+666y4kJCTgiy++wJ133onTp09j3rx5V+NnEdcJx44dQ/fu3VFUVITJkycjPj4eBQUF+PXXX3HixAl5vx9++AHdu3eHw+HA/PnzAQBLlixBRkYGtm7ditatW8v7nj9/Hl26dMGZM2cwd+5chIeHY9WqVRg+fDheffVVTJw48ar/TuLaZejQoYiLi1Nt//XXX/H0009j4MCB8jayhURDUF1djX79+mHr1q2YMGEC7rrrLpSUlOCdd97BxIkTsW/fPjz11FMAyBYSDcOZM2dw0003IS8vD3fccQeSkpKwd+9eLFu2DJs3b8b3338Pi8UCgOwg4TkPPvggAgIC0LZtW83JC5aGtHkjRozAmjVrMGnSJHTs2BHbtm3DI488goMHD+L111+v248SCVEURRGAOGHChFr3y87OFnU6nbhr1y55W2FhoRgZGSnGx8eL1dXV8valS5eKAMTnn3+e+4yhQ4eKBoNBPHr0aH0dPnED0KVLFzE8PFzMy8tzuV9aWppos9nE3NxceVtubq5os9nEzMxMbt97771XBCB+8skn8raqqioxLS1NDAgIEAsLC+v3RxA3JLfffrsIQPzss8/kbWQLiYZg69atIgBx9uzZ3Pby8nKxWbNmop+fn7yNbCHREMyaNUsEIK5atYrbvmrVKhGAuGDBAnkb2UHCUw4dOiT/OzExUYyKinK6b0PZvM8//1wEIM6dO5f7jLlz54oAxO+//75Ov4nE5f9HEpfl5eVOB5mioiLRZDKJPXv2VL02f/58EYD4448/yts6d+4sWiwWsbS0lNt38+bNIgDxqaeeqt8fQVy3bNq0iRt0KioqxOLiYtV+Bw4cEAGIkyZNUr02adIkURAE8eTJk/I2h8MhxsbGqvZ94403RADie++9V4+/grgRKSoqEn19fcXw8HCxqqpK3ka2kGgIvvzySxGA+M9//lP1WlpamhgWFiaKItlCouFITk4WzWYzJwxFURQvX74sent7izExMaIokh0k6h9X4rIhbd6YMWNEAOLx48e5fY8fPy4CEKdNm1an30FrLhk+/PBDWCwW2Gw2hISE4K677kJBQYH8+q+//ory8nJ07NhR9d4OHToAAHbs2AGgJrXn559/RmpqKry9vbl909PTIQiCvC9BrF27FgAQGRmJgQMHwmw2w2q1Ij4+Hm+99Za8n3TPOLsHRVHETz/9BAA4efIkTpw4Id+byn3ZzyMIZ3zwwQe4dOkSbrvtNuj1egBkC4mGIz09HU2aNME///lPfPDBBzh+/Dj++OMPPPDAA/jpp5/k1EGyhURDUV5eDm9vbwiCwG3X6XQwm804fPgw8vPzyQ4SV5WGtHk7duyAw+FAREQEt29ERATCwsLqfG/Smsv/T3p6OrKzsxEXF4dLly5h7dq1WLJkCTZt2oStW7fCx8cHeXl5AACHw6F6v7RNWht34cIFlJaWau5rMpkQFBTEraMj/t7s378fAJCTk4PmzZvjP//5DyoqKrB48WKMGzcOlZWVmDhxYp3uwbrsSxDOeOWVVyAIAiZNmiRvI1tINBT+/v745JNPMGXKFAwfPlzebrPZ8NFHH2Hw4MEA6nYPki0k6kJiYiL279+P3bt3o02bNvL23bt348KFCwCA48ePkx0krioNafPy8vLQqlUrze91OBzIzc2t07GSuPz//Pjjj9zf48ePR3JyMh566CE899xzeOihh1BSUgKgxhAokWaipH1c7SvtL+1DEIWFhQBqHKiNGzfCaDQCAAYPHoyYmBg8+OCDmDBhQr3dg8p9CUKL/fv3Y8uWLbj55pvRrFkzeTvZQqIh8fHxQVJSEgYNGoROnTrh/PnzWLp0KUaPHo01a9YgMzOTbCHRYMyePRurV6/G8OHD8e9//xtJSUn47bffMHv2bBgMBlRWVqKkpITsIHFVaUibV1JSUq/3JqXFuuDee++F0WjE559/DgBydbDy8nLVvmVlZdw+rvaV9pf2IQiz2QwAGDVqlCwsgZpZ/EGDBuHUqVPYv39/vd2Dyn0JQotXXnkFADBlyhRuO9lCoqHYs2cPOnXqhMzMTDz99NMYMmQIJk+ejC1btqBp06bIycnB5cuXyRYSDUZGRgbeffddFBYWon///oiKisLAgQPRo0cPDBgwAADg6+tLdpC4qjSkzbNYLPV6b5K4dIHBYEBYWBjy8/MBAGFhYQC002ekbVK42d/fH2azWXPf8vJy5Ofna4arib8n4eHhAICmTZuqXrPb7QBq0mrqcg/WZV+CUFJVVYU33ngDgYGBGDJkCPca2UKioXj22WdRVlaG7OxsbrvFYkH//v1x7NgxHD16lGwh0aBkZ2cjNzcXu3btwubNm5GXl4fly5cjNzcXXl5eiIuLIztIXFUa0uaFhYU5Tcs+ceJEne9NEpcuKCsrQ25uLkJDQwEArVu3hslkwrZt21T7/vDDDwCA9u3bA6hZ+N22bVvs2rVLNRuwfft2iKIo70sQ6enpAKCZ1y5tCwkJQVpaGgA4vQcFQUC7du0A1IhSh8Mh35vKfQHQPUg45dNPP8Xp06cxduxYVboM2UKioZAcnMuXL6teq6qqkv9PtpBoaPR6Pdq0aYOMjAyEhITg1KlT2LVrF7p16waLxUJ2kLiqNKTNS0tLw4kTJ/Dnn39y+/7555/Iy8ur+71Zp9qyNyj5+fma2++55x5Veehbb71V1Ol04u7du+VtUk+j5s2bc6WrlyxZ4rSnkZeXl3jkyJH6/SHEdcv58+dFm80mOhwOrhVOXl6eaLVaxfj4eHlb+/btRZvNJp44cULeduLECdFms4k333wz97nSPazV56hJkybipUuXGvBXEdcz/fv3FwGIv/76q+brZAuJhmD27NmabRkuXLgg2u120d/fX26JQ7aQuFpcvnxZzM7OFgVBEDds2CBvJztI1Ce19blsKJv32Wefuexz+d1339Xpd5C4FGsGsw4dOogPPPCAuGzZMvHpp58We/ToIQIQb7rpJrGkpETe98CBA6K/v78YEhIiLlq0SFy6dKnYpk0bUa/Xi19++SX3ueXl5WK7du1ELy8vce7cueLKlSvFIUOGiADEhx9++Gr/TOIaZ8WKFSIAMTExUVy8eLG4aNEiMTIyUjQYDOJXX30l7/f999+LRqNRjImJEZ999lnx2WefFWNiYkSr1coNcKJYM3ESFRUl+vj4iI8++qi4YsUKsXv37iIA8eWXX77aP5G4Tjhx4oSo1+vF9PR0p/uQLSQagqNHj4oBAQGiIAji2LFjxWXLlokLFy4Uo6OjRQDi0qVL5X3JFhINQWFhoZiQkCA++OCD4sqVK8VnnnlGbNeunQhAXLhwIbcv2UHCU9544w1xwYIF4oIFC8SQkBCxSZMm8t9vvPEGt29D2rwBAwaIAMTJkyeLL7/8sjh58mQRgDh27Ng6/yYSl6Iorl69Wuzdu7cYFhYmmkwm0WKxiCkpKeLChQtVzW5FURR///13cdCgQaKfn59oNpvFzp07i+vWrdP87AsXLojTp08X7Xa7aDQaxYSEBPGFF15QNeclCFEUxY8++ki86aabRIvFIvr4+IiZmZnili1bVPtt3bpV7Nmzp2i1WkUfHx+xd+/e4k8//aT5mbm5ueLYsWPFwMBA0WQyiampqeK7777b0D+FuI5ZuHChCEB86aWXXO5HtpBoCA4ePCiOHz9edDgcopeXl2iz2cSMjAzxo48+Uu1LtpCob8rLy8WRI0eK0dHRoslkEv39/cXevXurxKIE2UHCE7p16yYC0PyvW7duqv0byuaVlpaKDz30kBgVFSUajUaxWbNm4vz588WKioo6/yZBFEWxbom0BEEQBEEQBEEQBMFDBX0IgiAIgiAIgiAIjyFxSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiPIXFJEARBEIRTHn74YZjNZuTl5V3V7xVFEe3atUNGRsZV/V6CIAjiyiFxSRAEQTQ4giC4/G/16tWNfYiEBsePH8e//vUvTJ8+HWFhYfL2o0ePQhAEdOnSxel7pX2io6Ov6LsFQcD8+fOxZcsWfPjhh1f0GQRBEMTVxauxD4AgCIL4e2Cz2TB37lzN11q2bHmVj4ZwhwULFqCiogL33HNPo3x///79kZSUhIceegjDhg2DIAiNchwEQRCEe5C4JAiCIK4Kvr6+mDdvXmMfBuEmBQUFWLVqFXr37o2mTZs22nGMGzcO999/P7755hv06tWr0Y6DIAiCqB1KiyUIgiCuCb799lsIgoB58+Zh+/bt6N+/PwICAiAIAo4ePSrv9/nnn6NPnz4ICAiAyWRCixYtMG/ePJSWlqo+UxRFLFmyBImJifD29obD4cCMGTNQUFCA6OhoVcrmbbfdpvo+reNTcvz4cUydOhXR0dEwmUwICQnB8OHDsW/fPtW+0vcWFxfj3nvvRWRkJEwmE+Li4vDUU09BFEXN87N9+3aMGDECDocDJpMJdrsdvXv3xvvvvw8A+OOPPyAIAjIzMzXfL4oiYmNjYbVaUVBQoLkPyzvvvIOSkhKMGDGi1n3rQm0p0srzK33/K6+8Uq/HQRAEQdQ/FLkkCIIgrim2bduGRYsWoUuXLpg0aRLy8/NhNBoBAI8++igWLFiAkJAQZGVlITAwENu3b8fjjz+ODRs24JtvvoHBYJA/a/bs2Xj++edht9tx++23w2AwYM2aNfjxxx9RUVEhf64n7Ny5E71790ZBQQH69euH7OxsnDx5Ev/973/xxRdfYOPGjWjfvj33nsrKSvTp0wd5eXno168fvLy8sHr1avzf//0fysrK8Nhjj3H7r1y5EtOmTYOXlxcGDRqEuLg4nDlzBjt27MCLL76I4cOHo2XLlujRowe++eYbHD58GDExMdxnrF+/HocPH8akSZPg5+dX6+9av349AKBTp04eniEe5W+TePPNN3H48GFYLBZue1RUFBwOB9avXw9RFCk1liAI4hqGxCVBEARxVbh06ZJm1K9ly5YYOXKk/PfXX3+N5cuX44477uD2W79+PRYsWICuXbvi008/ha+vr/zaE088gUceeQRLlizBnDlzAABbt27F888/j9jYWGzfvh0BAQEAgIULF6JHjx44efIkoqKiPPpNlZWVGD58OMrKyrBlyxZ07NhRfm3fvn1IT0/HlClTsHv3bu59eXl5SElJwbp162A2mwHUiK74+Hg8++yzePDBB2WR/Pvvv+POO++En58ftmzZgoSEBO6z/vzzT/nf06ZNw8aNG7Fy5UosWrSI2++ll14CANx+++1u/bYtW7bA19cXzZs3d7rP8ePHnaY6X7x4UXO71v6vvfYaDh8+jI4dO2LmzJmq19PS0rB69Wrs27cPrVq1cufwCYIgiMZAJAiCIIgGBoDT/7KyskRRFMWNGzeKAMQ2bdpofkZWVpYIQNy3b5/qtaqqKjEoKEhs3769vG3KlCkiAPHVV19V7S99V1RUFLd9woQJIgDxyJEjTt/z2GOPyds+/vhjEYB4//33ax7znDlzRADi3r175W1RUVEiAPHAgQOq/cePHy8CEPfs2SNvmzFjhghA/Pe//635HSwVFRVi06ZNxdDQULGiokLefvr0adFgMIgpKSm1foYoimJ5ebkIQGzevLnm60eOHHF5Tdn/lOdYyfr160WDwSDGxMSIZ86c0dxn6tSpIgDxiy++cOv4CYIgiMaBIpcEQRDEVcHhcCA3N7fW/dLT0zW3b9u2DUajEe+++67m60ajEX/88Yf8988//wwA6Natm2rfLl26QK/Xu3PYLtm2bRsA4PDhw5oRuf379wOoWQ+ZmJgob/fz80NcXJxq/4iICADAhQsX5G0//PADAKBPnz61Ho/BYMCUKVPwxBNPYM2aNbj11lsB1EQGKysrVdFgZ5w7dw4A4O/v73K/zp07Y8uWLZqvHT16FM2aNXP5/t9//x3Dhg2Dj48P1q5di+DgYM39pKhzfn5+bYdOEARBNCIkLgmCIIhrCmeVSc+fP4+qqio8/vjjbn2OVLQmNDRU9ZqXlxeCgoKu/CCZYwKADz74wOV+RUVF3N9NmjTR3M/Lq2ZYvnz5srxNSi91OBxuHdPtt9+ORYsWYcWKFbj11lshiiJefvllWK1WjBkzxq3PkFJ1y8rK3Nr/Sjh16hRuueUWlJaWYt26dWjRooXTfaViTdJxEQRBENcmVC2WIAiCuKZwVrDFz88PZrMZly9fhiiKTv9j9weA06dPqz6rqqpKMwqm0+nk15VorSGUvuOdd95xeUwTJkyo/Yc7QRKiJ06ccGv/iIgIDBgwQC7ss2HDBhw8eBAjR47k1qnW9p1Go1EWz/VNSUkJBg4ciGPHjuHVV19F165dXe4vRVJDQkIa5HgIgiCI+oHEJUEQBHFdcNNNN6G0tBS//PKLW/u3bdsWALBp0ybVa1u2bOGigxJSGihbJEdi586dmscE/JUe2xB06NABAPDVV1+5/Z5p06ZBFEWsXLmyzoV8JFq3bo28vDwUFhbW6X21UV1djdGjR2Pnzp2YP3++W9HUP/74AzqdDq1bt67XYyEIgiDqFxKXBEEQxHXBrFmzANSIJK1o5MWLF7Fr1y7579tuuw1ATXVYNgJXVlaGBx54QPM7pPWeK1eu5Lbv2bMHzz33nGr/rKwsREdH48UXX9QUf9XV1fj2229d/7BakFqQzJ8/n1tTKqG1jrV3796IjY3Fyy+/jNWrV6NNmzZO17I6o3v37qiurtYU1Z4wd+5crFmzBhMmTMAjjzxS6/7l5eXYvXs3UlNTnaYTEwRBENcGtOaSIAiCuC7o3bs3Hn/8cTz22GOIi4vDLbfcgujoaBQUFODIkSPYtGkTbrvtNixfvhxATbGZu+66Cy+88AKSkpJw6623yn0u/f39YbfbVd+RlZWF5s2b45133kFubi5uuukmHD9+HGvWrEFWVhbef/99bn+j0YiPPvoIffr0Qd++fdG1a1ckJyfDaDTi+PHj2LZtG/Lz8z1au9iqVSu8+OKLmDp1Ktq0aYNBgwahefPmyM/Px44dO+Dn54eNGzdy7xEEAVOnTsW9994LAG4X8mEZOnQoFi9ejK+//ho9evS44uNn2b59O5577jl4e3vD4XBoFkHq3r07unfvLv/97bffoqKiAsOGDauXYyAIgiAaDhKXBEEQxHXDo48+ioyMDLzwwgvYtGkTPv74Y/j7+yMiIgJz587F+PHjuf2fe+45xMfHY+nSpVixYgUCAwMxZMgQPPnkk0hJSVF9vre3N7755hvcc889WLduHXbs2IGkpCSsWrUKAQEBKnEJ1KTf/vrrr1i8eDE+//xzvPzyy/Dy8kJYWBi6d+9eL6IoJycHSUlJeOaZZ/Dtt99i9erVCAoKQnJyMqZMmaL5nttuuw333XcfLBaL24V8WDp16oTk5GS89dZbWLhwobwe1RNKSkoA1ESPn3zySaf7seLyzTffhNFoxOTJkz3+foIgCKJhEUS2+gFBEARB/E2Ijo4GUNMy40Zk/fr1yMzMxJQpU1Rpvu7y1ltvYdy4cfjkk08wcODAej7C2jl79iyio6MxatQovPzyy1f9+wmCIIi6QeKSIAiC+Ftyo4vLPn364Ouvv8auXbvQpk2bK/oMURSRnp4ur710Vsm3obj77rvx0ksv4X//+59mGjNBEARxbUFpsQRBEARxg7Bnzx589tln2LFjB77++msMGzbsioUlULN2c+XKlVi9ejVOnTp11QVeaGgo3nzzTRKWBEEQ1wkUuSQIgiD+ltyIkcvXX38dEydOhJ+fH/r06YNly5YhICCgsQ+LIAiC+JtA4pIgCIIgCIIgCILwGOpzSRAEQRAEQRAEQXgMiUuCIAiCIAiCIAjCY0hcEgRBEARBEARBEB5D4pIgCIIgCIIgCILwGBKXBEEQBEEQBEEQhMeQuCQIgiAIgiAIgiA8hsQlQRAEQRAEQRAE4TEkLgmCIAiCIAiCIAiP+X9RGPOXQZDd7wAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f0_list = dynspec.freq[tracing]\n", + "\n", + "new_spec = dynspec.shift_and_add(f0_list, nbins=500)\n", + "\n", + "# Let's compare it to the original power spectrum.\n", + "plt.plot(ps.freq, ps.power, label='power spectrum', alpha=0.5, color=\"k\")\n", + "plt.plot(new_spec.freq, new_spec.power, label='Shifted-and-added', color=\"k\")\n", + "\n", + "plt.legend()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlim([500, 1000])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Ta da!" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/EventList/EventList Tutorial.html b/notebooks/EventList/EventList Tutorial.html new file mode 100644 index 000000000..208097e47 --- /dev/null +++ b/notebooks/EventList/EventList Tutorial.html @@ -0,0 +1,1806 @@ + + + + + + + + Contents — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the basics of creating an event list object and carrying out various operations such as simulating time and energies, joining, storing and retrieving event lists.

+
+
+

Setup

+

Import some useful libraries.

+
+
[1]:
+
+
+
import numpy as np
+
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import some relevant stingray classes.

+
+
[2]:
+
+
+
from stingray import EventList, Lightcurve
+
+
+
+
+

Creating EventList from Photon Arrival Times

+

Given photon arrival times, an eventlist object can be created. Times are assumed to be seconds from a reference MJD, that can optionally be specified with the mjdref keyword and attribute.

+
+
[3]:
+
+
+
times = [0.5, 1.1, 2.2, 3.7]
+mjdref=58000.
+
+
+
+

Create event list object by passing arrival times as argument.

+
+
[4]:
+
+
+
ev = EventList(times, mjdref=mjdref)
+ev.time
+
+
+
+
+
[4]:
+
+
+
+
+array([0.5, 1.1, 2.2, 3.7])
+
+
+

One can add all sorts of data to the EventList object, it is very flexible. In general, we suggest to stick with easily interpretable attributes, like energy or pi.

+
ev.energy = [0., 3., 4., 20.]
+
+
+

is the same as

+
+
[5]:
+
+
+
energy = [0., 3., 4., 20.]
+ev = EventList(times, energy=energy, mjdref=mjdref)
+
+
+
+

It is always recommended to specify the good time intervals (GTIs) of the event list, as the time intervals where the instrument was fully operational. If not specified, GTIs are defined automatically as the first and the last event time.

+
+
[6]:
+
+
+
gti = [[0, 4]]
+ev = EventList(times, gti=gti, energy=energy, mjdref=mjdref)
+
+
+
+
+
+
+

Roundtrip to Astropy-compatible formats

+

EventList has the following methods that allow an easy roundtrip to Astropy objects: to_astropy_table, to_astropy_timeseries, from_astropy_table, from_astropy_timeseries

+

This allows a better interoperability with the Astropy ecosystem.

+

In this roundtrip, a Table or Timeseries object is created, having as columns time and all other attributes of the same size (e.g. pi, energy), and the rest of the attributes (e.g. gti, mjdref) in the table’s metadata.

+
+
[7]:
+
+
+
table = ev.to_astropy_table()
+table
+
+
+
+
+
[7]:
+
+
+
+
Table length=4 + + + + + + + +
energytime
float64float64
0.00.5
3.01.1
4.02.2
20.03.7
+
+

When converting to Timeseries, times are transformed into astropy.time.TimeDelta objects.

+
+
[8]:
+
+
+
timeseries = ev.to_astropy_timeseries()
+timeseries
+
+
+
+
+
[8]:
+
+
+
+
TimeSeries length=4 + + + + + + + +
timeenergy
objectfloat64
5.787037037037037e-060.0
1.2731481481481482e-053.0
2.5462962962962965e-054.0
4.282407407407408e-0520.0
+
+
+
[9]:
+
+
+
table.meta
+
+
+
+
+
[9]:
+
+
+
+
+OrderedDict([('dt', 0),
+             ('gti', array([[0, 4]])),
+             ('mjdref', 58000.0),
+             ('ncounts', 4),
+             ('notes', '')])
+
+
+

Of course, these objects can be converted back to event lists. The user should be careful in defining the proper column names and metadata so that the final object is a valid EventList

+
+
[10]:
+
+
+
table_ev = EventList.from_astropy_table(table)
+table_ts = EventList.from_astropy_timeseries(timeseries)
+
+
+
+
+
[11]:
+
+
+
table_ev.time, table_ts.time
+
+
+
+
+
[11]:
+
+
+
+
+(array([0.5, 1.1, 2.2, 3.7]), array([0.5, 1.1, 2.2, 3.7]))
+
+
+
+

Loading and writing EventList objects

+

We made it possible to save and load data in a number of different formats.

+

The general syntax is

+
ev = EventList.read(filename, format)
+
+ev.write(filename, format)
+
+
+

There are three main blocks of formats that might be useful:

+
    +
  1. (read-only) HEASoft-compatible formats -> read event data from HEASOFT-supported missions

  2. +
  3. pickle: reading and saving EventLists from/to Python pickle objects

  4. +
  5. Any format compatible with astropy.table.Table objects.

  6. +
+
+
+
+

Loading an EventList from an X-ray observation in HEASoft-compatible format

+

Loading event data from HEASoft-supported missions in FITS format is easy. It’s sufficient to use the read method with hea or, equivalently, ogip, as format.

+

Beware: please use hea or ogip, not fits! It would make the roundrip to Astropy tables more complicated, as Astropy supports a generic FITS writer which is not necessarily compatible with HEASoft.

+
+
[12]:
+
+
+
ev = EventList.read('events.fits', 'ogip')
+
+
+
+

Times are saved to the time attribute, GTIs to the gti attribute, MJDREF to the mjdref attribute, etc.

+
+
[13]:
+
+
+
ev.time[:10]
+
+
+
+
+
[13]:
+
+
+
+
+array([80000000.23635569, 80000001.47479323, 80000001.78458866,
+       80000002.78943624, 80000003.42859936, 80000004.07943003,
+       80000006.09310323, 80000007.18041813, 80000008.17602143,
+       80000008.20403489], dtype=float128)
+
+
+
+
[14]:
+
+
+
ev.mjdref
+
+
+
+
+
[14]:
+
+
+
+
+55197.00076601852
+
+
+
+
[15]:
+
+
+
ev.gti
+
+
+
+
+
[15]:
+
+
+
+
+array([[80000000., 80001025.]], dtype=float128)
+
+
+
+
+

Roundtrip to pickle objects

+

It is possible to save and load eventlist objects using pickle.

+
+
[16]:
+
+
+
ev.write("events.p", "pickle")
+ev2 = EventList.read("events.p", "pickle")
+
+np.allclose(ev2.time, ev.time), np.allclose(ev2.gti, ev.gti)
+
+
+
+
+
[16]:
+
+
+
+
+(True, True)
+
+
+
+
+

Roundtrip to Astropy-compatible formats

+

If the read and write methods receive a format which is not hea, ogip, or pickle, the event list is transformed into an Astropy Table object with the methods described above, and the readers and writers from the Table class are used instead. This allows to extend the save/load operations to a large number of formats, including hdf5 and enhanced CSV (ascii.ecsv).

+

Note that columns coming from the EVENTS (or equivalent) fits extension, those having the same length as time, when converting to astropy tables they become columns of the table. All the others, including gti, are treated as metadata.

+

Care should be used in selecting formats that preserve metadata. For example, simple CSV format loses all metadata, including MJDREF, GTIs etc.

+
+
[17]:
+
+
+
ev.write("events.hdf5", "hdf5")
+ev3 = EventList.read("events.hdf5", "hdf5")
+ev3.time[:10]
+
+
+
+
+
[17]:
+
+
+
+
+array([80000000.23635569, 80000001.47479323, 80000001.78458866,
+       80000002.78943624, 80000003.42859936, 80000004.07943003,
+       80000006.09310323, 80000007.18041813, 80000008.17602143,
+       80000008.20403489], dtype=float128)
+
+
+
+
[18]:
+
+
+
# Try the round trip again to verify that everything works
+
+ev.write("events.ecsv", "ascii.ecsv")
+ev4 = EventList.read("events.ecsv", "ascii.ecsv")
+!cat events.ecsv
+ev4.time[:10]
+
+
+
+
+
+
+
+
+# %ECSV 1.0
+# ---
+# datatype:
+# - {name: energy, datatype: float32}
+# - {name: pi, datatype: float32}
+# - {name: time, datatype: float128}
+# meta: !!omap
+# - {dt: 0}
+# - gti: !numpy.ndarray
+#     buffer: !!binary |
+#       QUFBQUFBQ0FscGdaUURHRnBuOEFBQUFBQUFBZ0FKZVlHVUF4aGFaL0FBQT0=
+#     dtype: float128
+#     order: C
+#     shape: !!python/tuple [1, 2]
+# - {header: 'XTENSION= ''BINTABLE''           / binary table extension                         BITPIX  =                    8 / array
+#     data type                                NAXIS   =                    2 / number of array dimensions                     NAXIS1  =                   12
+#     / length of dimension 1                          NAXIS2  =                 1000 / length of dimension 2                          PCOUNT  =                    0
+#     / number of group parameters                     GCOUNT  =                    1 / number of groups                               TFIELDS
+#     =                    2 / number of table fields                         TTYPE1  = ''TIME    ''                                                            TFORM1  =
+#     ''1D      ''                                                            TTYPE2  = ''PI      ''                                                            TFORM2  =
+#     ''1J      ''                                                            EXTNAME = ''EVENTS  ''           / extension name                                 OBSERVER=
+#     ''Edwige Bubble''                                                       TELESCOP= ''NuSTAR  ''           / Telescope (mission) name                       INSTRUME=
+#     ''FPMA    ''           / Instrument name                                OBS_ID  = ''00000000001''        / Observation ID                                 TARG_ID
+#     =                    0 / Target ID                                      OBJECT  = ''Fake X-1''           / Name of observed object                        RA_OBJ  =                  0.0
+#     / [deg] R.A. Object                              DEC_OBJ =                  0.0 / [deg] Dec Object                               RA_NOM  =                  0.0
+#     / Right Ascension used for barycenter correctionsDEC_NOM =                  0.0 / Declination used for barycenter corrections    RA_PNT  =                  0.0
+#     / [deg] RA pointing                              DEC_PNT =                  0.0 / [deg] Dec pointing                             PA_PNT  =                  0.0
+#     / [deg] Position angle (roll)                    EQUINOX =               2000.0 / Equinox of celestial coord system              RADECSYS=
+#     ''FK5     ''           / Coordinate Reference System                    TASSIGN = ''SATELLITE''          / Time assigned by onboard
+#     clock                 TIMESYS = ''TDB     ''           / All times in this file are TDB                 MJDREFI =                55197
+#     / TDB time reference; Modified Julian Day (int)  MJDREFF =        0.00076601852 / TDB time reference; Modified Julian Day (frac)
+#     TIMEREF = ''SOLARSYSTEM''        / Times are pathlength-corrected to barycenter   CLOCKAPP=                    F / TRUE if timestamps
+#     corrected by gnd sware      TIMEUNIT= ''s       ''           / unit for time keywords                         TSTART  =           80000000.0
+#     / Elapsed seconds since MJDREF at start of file  TSTOP   =           80001025.0 / Elapsed seconds since MJDREF at end of file    LIVETIME=               1025.0
+#     / On-source time                                 TIMEZERO=                  0.0 / Time Zero                                      COMMENT
+#     FITS (Flexible Image Transport System) format is defined in ''Astronomy aCOMMENT nd Astrophysics'', volume 376, page 359; bibcode:
+#     2001A&A...376..359H    COMMENT MJDREFI+MJDREFF = epoch of Jan 1, 2010, in TT time system.              HISTORY File modified by
+#     user ''meo'' with fv  on 2015-08-17T14:10:02             HISTORY File modified by user ''meo'' with fv  on 2015-08-17T14:48:52             END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             '}
+# - {instr: fpma}
+# - {mission: nustar}
+# - {mjdref: 55197.00076601852}
+# - {ncounts: 1000}
+# - {notes: ''}
+# - {timeref: solarsystem}
+# - {timesys: tdb}
+# schema: astropy-2.0
+energy pi time
+8.56 174.0 80000000.23635569215
+33.039997 786.0 80000001.47479322553
+7.9999995 160.0 80000001.78458866477
+27.84 656.0 80000002.789436236024
+8.84 181.0 80000003.428599357605
+13.92 308.0 80000004.079430028796
+37.839996 906.0 80000006.09310323
+40.559998 974.0 80000007.180418133736
+5.8799996 107.0 80000008.176021426916
+41.239998 991.0 80000008.204034894705
+33.64 801.0 80000009.69214613736
+8.72 178.0 80000010.36281684041
+17.32 393.0 80000010.78324916959
+6.56 124.0 80000011.8733625412
+21.28 492.0 80000013.92633379996
+10.24 216.0 80000014.204483643174
+10.68 227.0 80000014.26073910296
+26.68 627.0 80000015.256171390414
+3.96 59.0 80000018.08373501897
+13.96 309.0 80000018.83911728859
+28.32 668.0 80000019.98157013953
+38.319996 918.0 80000020.76013682783
+17.76 404.0 80000021.14855520427
+12.64 276.0 80000022.02460347116
+29.76 704.0 80000023.50157275796
+24.08 562.0 80000023.61806283891
+10.400001 220.0 80000024.97833034396
+41.519997 998.0 80000025.95996727049
+4.24 66.0 80000026.16019311547
+23.32 543.0 80000027.089139238
+41.399998 995.0 80000028.596908301115
+19.72 453.0 80000031.065731182694
+36.559998 874.0 80000031.10555113852
+38.399998 920.0 80000032.516511276364
+24.28 567.0 80000032.808356150985
+29.48 697.0 80000033.18797942996
+36.76 879.0 80000033.85146795213
+10.6 225.0 80000034.861510172486
+20.0 460.0 80000038.22435864806
+3.3600001 44.0 80000038.39090189338
+15.08 337.0 80000042.41919325292
+22.48 522.0 80000043.69195660949
+4.24 66.0 80000045.52997684479
+21.88 507.0 80000052.78282105923
+39.6 950.0 80000052.919592529535
+3.24 41.0 80000054.28180256486
+14.32 318.0 80000056.48970986903
+7.4399996 146.0 80000057.49698485434
+7.9599996 159.0 80000058.55781446397
+21.36 494.0 80000059.284333616495
+35.159996 839.0 80000060.359298199415
+21.64 501.0 80000063.666031733155
+36.44 871.0 80000064.78927731514
+35.319996 843.0 80000067.341705307364
+26.08 612.0 80000068.267971634865
+12.12 263.0 80000070.24889309704
+11.400001 245.0 80000072.99266758561
+35.839996 856.0 80000073.4422865361
+6.68 127.0 80000073.81521306932
+28.4 670.0 80000074.7710172981
+22.08 512.0 80000076.15446573496
+29.64 701.0 80000076.61943152547
+34.319996 818.0 80000078.37191092968
+9.04 186.0 80000079.364117503166
+42.399998 1020.0 80000080.12182110548
+14.08 312.0 80000080.4114151746
+12.64 276.0 80000083.704568862915
+26.16 614.0 80000084.38392549753
+21.12 488.0 80000084.49645087123
+7.7599998 154.0 80000084.73323458433
+5.64 101.0 80000085.518022567034
+4.2799997 67.0 80000086.06328216195
+39.039997 936.0 80000087.00356020033
+14.88 332.0 80000087.108956605196
+11.24 241.0 80000087.3983823657
+42.199997 1015.0 80000088.44739763439
+28.16 664.0 80000088.72279639542
+2.48 22.0 80000089.15565529466
+42.28 1017.0 80000090.20357654989
+5.32 93.0 80000090.7642698288
+14.28 317.0 80000090.80305439234
+40.319996 968.0 80000091.500082850456
+18.44 421.0 80000092.158643990755
+32.239998 766.0 80000092.89413803816
+4.4 70.0 80000094.805209457874
+38.879997 932.0 80000095.04941494763
+32.199997 765.0 80000096.56686630845
+30.4 720.0 80000096.91533789039
+35.719997 853.0 80000098.67825654149
+29.32 693.0 80000098.92884159088
+17.199999 390.0 80000099.199268594384
+37.92 908.0 80000100.14995288849
+1.96 9.0 80000100.935947969556
+13.12 288.0 80000102.76762147248
+30.6 725.0 80000103.05724072456
+34.239998 816.0 80000104.193173110485
+8.88 182.0 80000107.33343601227
+29.6 700.0 80000107.40127386153
+8.24 166.0 80000107.56737007201
+39.76 954.0 80000109.40503971279
+41.399998 995.0 80000109.51361806691
+32.399998 770.0 80000111.27798360586
+20.2 465.0 80000112.93057106435
+22.36 519.0 80000113.545409321785
+41.559998 999.0 80000113.71510283649
+36.64 876.0 80000115.363516911864
+5.12 88.0 80000116.62624913454
+24.32 568.0 80000117.5390470773
+11.4800005 247.0 80000118.313546299934
+10.0 210.0 80000118.64352825284
+13.36 294.0 80000119.64161340892
+4.48 72.0 80000119.70217871666
+5.68 102.0 80000119.87085522711
+25.76 604.0 80000120.67677563429
+1.9200001 8.0 80000121.80093438923
+2.92 33.0 80000122.09129279852
+5.12 88.0 80000122.545517489314
+33.32 793.0 80000122.93073017895
+13.76 304.0 80000123.276563555
+37.159996 889.0 80000125.506356075406
+30.56 724.0 80000125.6568851918
+37.079998 887.0 80000127.336458325386
+6.4399996 121.0 80000127.45361994207
+11.96 259.0 80000128.36573840678
+14.08 312.0 80000129.43040788174
+14.36 319.0 80000130.30537183583
+34.239998 816.0 80000131.993975520134
+29.92 708.0 80000132.51598034799
+21.8 505.0 80000132.877141192555
+10.84 231.0 80000134.958766937256
+15.72 353.0 80000136.26415735483
+9.32 193.0 80000136.271308645606
+38.44 921.0 80000136.491618439555
+34.559998 824.0 80000136.59682570398
+29.64 701.0 80000136.81391918659
+13.6 300.0 80000137.111403808
+15.0 335.0 80000137.99286413193
+8.2 165.0 80000140.02283409238
+31.0 735.0 80000141.585879951715
+18.12 413.0 80000141.88128243387
+27.64 651.0 80000142.301297202706
+29.44 696.0 80000144.258596763015
+4.32 68.0 80000146.35952179134
+9.92 208.0 80000146.431891173124
+26.6 625.0 80000146.93531550467
+32.719997 778.0 80000147.86272408068
+4.4 70.0 80000148.20213320851
+14.04 311.0 80000148.998638793826
+10.76 229.0 80000150.13331639767
+8.12 163.0 80000150.40001221001
+31.96 759.0 80000150.51030369103
+41.6 1000.0 80000158.27798460424
+2.96 34.0 80000158.565826013684
+19.76 454.0 80000160.18738743663
+14.440001 321.0 80000162.67192919552
+11.72 253.0 80000163.52692268789
+37.44 896.0 80000164.03886182606
+32.84 781.0 80000164.495729878545
+17.24 391.0 80000165.17495532334
+3.44 46.0 80000166.38718263805
+25.76 604.0 80000168.38902553916
+25.44 596.0 80000169.68685694039
+23.56 549.0 80000169.713349059224
+19.08 437.0 80000170.805011570454
+41.039997 986.0 80000172.42077590525
+2.16 14.0 80000172.43760578334
+2.16 14.0 80000174.10814335942
+37.28 892.0 80000174.15144339204
+30.76 729.0 80000174.80246704817
+28.24 666.0 80000174.83830589056
+23.52 548.0 80000176.110384613276
+33.399998 795.0 80000176.43801294267
+7.08 137.0 80000177.71353569627
+39.12 938.0 80000178.329968214035
+9.44 196.0 80000180.91684667766
+6.56 124.0 80000181.358734831214
+24.96 584.0 80000182.17984089255
+14.08 312.0 80000182.2385392189
+29.92 708.0 80000183.21093174815
+8.52 173.0 80000183.68284714222
+23.92 558.0 80000184.32184153795
+33.96 809.0 80000187.16848820448
+13.0 285.0 80000188.89809964597
+2.56 24.0 80000189.59268042445
+8.52 173.0 80000190.39239893854
+29.6 700.0 80000190.987773641944
+8.04 161.0 80000191.39765946567
+9.84 206.0 80000191.63218219578
+37.399998 895.0 80000191.7998701334
+37.48 897.0 80000194.591946706176
+2.44 21.0 80000195.17524069548
+
+33.039997 786.0 80000195.60482543707
+15.4 345.0 80000197.01553657651
+20.56 474.0 80000198.18857589364
+12.8 280.0 80000199.30817961693
+20.16 464.0 80000200.066078454256
+1.6800001 2.0 80000201.68090777099
+12.04 261.0 80000202.814891934395
+18.32 418.0 80000203.25650832057
+40.359997 969.0 80000203.48255087435
+34.28 817.0 80000204.7061804533
+34.64 826.0 80000207.248482748866
+30.4 720.0 80000208.40996426344
+28.76 679.0 80000208.54558329284
+3.6 50.0 80000212.2733836025
+39.399998 945.0 80000213.37501113117
+23.64 551.0 80000214.05003093183
+10.24 216.0 80000214.76189556718
+15.440001 346.0 80000214.94751133025
+33.839996 806.0 80000215.30322690308
+2.88 32.0 80000215.606552898884
+17.56 399.0 80000216.67295819521
+17.199999 390.0 80000216.721879810095
+22.0 510.0 80000217.02722400427
+7.3199997 143.0 80000218.21801964939
+6.3199997 118.0 80000223.690936505795
+40.519997 973.0 80000224.71057784557
+10.6 225.0 80000224.88408643007
+31.08 737.0 80000225.81306296587
+21.0 485.0 80000228.288003221154
+15.64 351.0 80000229.47965101898
+34.719997 828.0 80000229.982017084956
+25.88 607.0 80000230.13939705491
+16.52 373.0 80000230.207446575165
+1.8 5.0 80000233.628895014524
+33.0 785.0 80000233.858214601874
+36.879997 882.0 80000235.58721217513
+1.76 4.0 80000236.03008031845
+42.239998 1016.0 80000239.206377997994
+31.119999 738.0 80000240.66440632939
+34.159996 814.0 80000241.05537928641
+13.56 299.0 80000242.91226673126
+18.92 433.0 80000243.34091578424
+22.44 521.0 80000246.23444570601
+40.8 980.0 80000246.39591316879
+21.28 492.0 80000248.63243843615
+24.28 567.0 80000249.259784281254
+9.56 199.0 80000249.85402186215
+5.04 86.0 80000250.17666938901
+3.0 35.0 80000251.49163559079
+25.44 596.0 80000251.50295473635
+24.4 570.0 80000252.06601053476
+30.56 724.0 80000252.272911697626
+38.12 913.0 80000252.985514968634
+38.8 930.0 80000253.836741268635
+30.76 729.0 80000255.06581965089
+41.719997 1003.0 80000255.60727831721
+41.64 1001.0 80000256.902037888765
+19.8 455.0 80000258.60432396829
+42.359997 1019.0 80000260.50080451369
+25.6 600.0 80000260.75552198291
+11.56 249.0 80000260.88460493088
+33.839996 806.0 80000261.36898006499
+37.48 897.0 80000262.92271217704
+18.2 415.0 80000262.99845524132
+23.36 544.0 80000263.33590015769
+40.96 984.0 80000264.96524555981
+9.28 192.0 80000265.84508921206
+10.84 231.0 80000266.91673760116
+4.44 71.0 80000268.235334053636
+22.76 529.0 80000271.489329367876
+23.96 559.0 80000271.64101035893
+35.879997 857.0 80000271.98798702657
+11.16 239.0 80000273.71523039043
+36.199997 865.0 80000275.30799421668
+32.76 779.0 80000275.81958813965
+27.32 643.0 80000276.46777294576
+27.0 635.0 80000277.24329108
+11.360001 244.0 80000277.80254943669
+3.08 37.0 80000278.42643971741
+18.68 427.0 80000278.52543953061
+5.8399997 106.0 80000278.78952820599
+25.24 591.0 80000279.13904826343
+11.400001 245.0 80000279.32166413963
+6.72 128.0 80000279.47431126237
+34.6 825.0 80000281.05502511561
+14.2 315.0 80000281.66787202656
+18.08 412.0 80000281.735276550055
+14.16 314.0 80000283.60641156137
+12.4800005 272.0 80000284.68940325081
+22.72 528.0 80000284.771769434214
+7.2 140.0 80000285.59601339698
+37.519997 898.0 80000287.934347867966
+37.559998 899.0 80000288.457227408886
+25.36 594.0 80000288.84559759498
+37.039997 886.0 80000289.283936053514
+32.48 772.0 80000289.74665103853
+21.36 494.0 80000290.772457659245
+1.64 1.0 80000290.879882499576
+19.32 443.0 80000291.225027650595
+21.84 506.0 80000291.23198154569
+2.8 30.0 80000293.356203347445
+31.92 758.0 80000296.29710520804
+32.52 773.0 80000297.10793355107
+37.159996 889.0 80000298.52665117383
+12.64 276.0 80000298.93143287301
+7.4399996 146.0 80000299.927507817745
+17.199999 390.0 80000300.818491622806
+2.52 23.0 80000302.07161732018
+2.56 24.0 80000302.72473844886
+36.319996 868.0 80000305.32900521159
+4.52 73.0 80000305.93047915399
+3.24 41.0 80000306.89711469412
+16.64 376.0 80000309.568026304245
+4.4 70.0 80000310.67230030894
+18.36 419.0 80000311.17736788094
+8.24 166.0 80000311.37703952193
+20.12 463.0 80000313.92710117996
+36.76 879.0 80000316.52630840242
+3.6399999 51.0 80000316.576121881604
+2.56 24.0 80000316.61531569064
+4.68 77.0 80000316.991498693824
+30.92 733.0 80000318.496204048395
+4.44 71.0 80000318.759574487805
+25.72 603.0 80000318.99812464416
+24.16 564.0 80000323.19316992164
+39.64 951.0 80000323.76615965366
+2.6799998 27.0 80000324.23196092248
+30.8 730.0 80000325.30946139991
+13.68 302.0 80000325.49627235532
+40.64 976.0 80000325.76096495986
+9.04 186.0 80000326.018922537565
+23.56 549.0 80000328.51117782295
+32.12 763.0 80000330.33366891742
+21.16 489.0 80000331.37347571552
+38.8 930.0 80000332.161390304565
+6.2 115.0 80000332.54631538689
+37.319996 893.0 80000333.515790537
+2.6799998 27.0 80000335.46171656251
+27.8 655.0 80000336.63410934806
+38.92 933.0 80000339.03143580258
+5.7599998 104.0 80000339.16872346401
+18.32 418.0 80000340.030776798725
+5.8399997 106.0 80000340.41478018463
+17.48 397.0 80000340.533760264516
+33.32 793.0 80000341.72407652438
+11.360001 244.0 80000344.206543818116
+24.88 582.0 80000344.78012427688
+32.96 784.0 80000345.00482337177
+2.52 23.0 80000345.26880034804
+13.2 290.0 80000345.654379203916
+34.359997 819.0 80000345.975308820605
+42.359997 1019.0 80000346.41354955733
+7.8799996 157.0 80000346.86677853763
+39.6 950.0 80000347.32460169494
+9.32 193.0 80000347.35750260949
+16.0 360.0 80000349.31582227349
+37.879997 907.0 80000351.124539494514
+19.44 446.0 80000352.37143753469
+36.76 879.0 80000353.196565657854
+2.24 16.0 80000354.17744512856
+30.88 732.0 80000355.20202793181
+39.8 955.0 80000355.60426925123
+40.12 963.0 80000355.82318587601
+16.4 370.0 80000356.5162641108
+10.360001 219.0 80000357.642409190536
+4.12 63.0 80000359.16175606847
+7.68 152.0 80000359.8546615839
+4.12 63.0 80000362.5537327677
+20.8 480.0 80000362.92154058814
+17.199999 390.0 80000363.773983463645
+39.999996 960.0 80000365.48620200157
+36.319996 868.0 80000368.489620789886
+19.6 450.0 80000369.631684705615
+41.679996 1002.0 80000370.6534255296
+39.159996 939.0 80000371.82940942049
+34.399998 820.0 80000373.43823419511
+29.28 692.0 80000373.8585408777
+39.039997 936.0 80000374.209455892444
+34.44 821.0 80000374.64683301747
+2.96 34.0 80000375.620239943266
+32.36 769.0 80000378.87894229591
+35.999996 860.0 80000378.97707155347
+14.28 317.0 80000379.42757484317
+37.839996 906.0 80000379.917373120785
+8.92 183.0 80000381.10625052452
+37.239998 891.0 80000382.077453806996
+31.039999 736.0 80000382.17598539591
+34.079998 812.0 80000382.22633959353
+25.84 606.0 80000382.22792515159
+27.6 650.0 80000382.55412106216
+2.8 30.0 80000383.94620233774
+37.12 888.0 80000384.37110866606
+28.16 664.0 80000387.30780394375
+20.44 471.0 80000387.87746040523
+25.119999 588.0 80000388.37795352936
+2.6799998 27.0 80000389.268874913454
+37.199997 890.0 80000392.62231977284
+28.16 664.0 80000393.17818275094
+11.52 248.0 80000393.43643279374
+2.6 25.0 80000395.12563699484
+15.6 350.0 80000395.77989049256
+6.48 122.0 80000396.31284117699
+32.039997 761.0 80000399.1847140342
+37.92 908.0 80000399.54459910095
+16.84 381.0 80000400.72491231561
+20.64 476.0 80000403.17735889554
+8.88 182.0 80000403.54358610511
+20.72 478.0 80000404.22769507766
+5.4 95.0 80000404.47602318227
+42.479996 1022.0 80000404.67004515231
+16.64 376.0 80000408.95574080944
+7.16 139.0 80000410.03962627053
+16.72 378.0 80000410.75551979244
+8.52 173.0 80000412.09823872149
+31.8 755.0 80000412.219870209694
+1.9200001 8.0 80000412.81054663658
+21.96 509.0 80000414.8682410419
+24.44 571.0 80000415.37962676585
+27.92 658.0 80000416.70795631409
+24.56 574.0 80000417.1444568038
+37.039997 886.0 80000418.38563929498
+1.96 9.0 80000420.47344271839
+8.88 182.0 80000420.53409618139
+26.48 622.0 80000420.80564555526
+41.719997 1003.0 80000420.863403081894
+5.96 109.0 80000420.942480519414
+35.8 855.0 80000422.02582614124
+8.44 171.0 80000422.79813404381
+12.76 279.0 80000424.42955330014
+7.8399997 156.0 80000424.81564453244
+7.4799995 147.0 80000425.28199738264
+40.319996 968.0 80000425.867245197296
+33.719997 803.0 80000426.62731541693
+40.12 963.0 80000427.133511930704
+14.52 323.0 80000427.36044855416
+7.0 135.0 80000428.54412809014
+15.56 349.0 80000428.88726851344
+30.6 725.0 80000429.38063727319
+19.6 450.0 80000432.95051422715
+3.08 37.0 80000434.64868846536
+2.4 20.0 80000435.51728320122
+39.76 954.0 80000436.24377171695
+23.64 551.0 80000437.577606111765
+9.48 197.0 80000438.05216662586
+34.039997 811.0 80000438.70308248699
+2.3600001 19.0 80000442.052734196186
+27.36 644.0 80000442.764658123255
+14.4800005 322.0 80000443.238895997405
+12.76 279.0 80000445.098355308175
+14.6 325.0 80000446.023702159524
+32.879997 782.0 80000446.16962249577
+10.92 233.0 80000448.83636845648
+7.7999997 155.0 80000450.061449572444
+9.12 188.0 80000450.52947856486
+32.079998 762.0 80000450.55909974873
+28.32 668.0 80000451.879113674164
+22.28 517.0 80000452.064453706145
+10.08 212.0 80000452.13652163744
+26.32 618.0 80000452.9472001791
+35.399998 845.0 80000453.03071194887
+9.48 197.0 80000454.07206726074
+3.32 43.0 80000456.48143340647
+34.399998 820.0 80000458.18602730334
+11.56 249.0 80000459.0324331224
+4.2799997 67.0 80000459.4572635144
+32.36 769.0 80000459.920432657
+41.239998 991.0 80000464.06256014109
+10.76 229.0 80000464.33307418227
+34.079998 812.0 80000466.34134361148
+26.84 631.0 80000467.24169912934
+16.119999 363.0 80000467.884447038174
+40.319996 968.0 80000468.7550342083
+10.72 228.0 80000469.84887549281
+22.52 523.0 80000469.8745007813
+39.92 958.0 80000472.20344258845
+27.4 645.0 80000472.30986727774
+31.84 756.0 80000473.21885484457
+15.440001 346.0 80000473.694500654936
+17.24 391.0 80000476.0327218622
+32.84 781.0 80000476.96122226119
+39.28 942.0 80000480.92292739451
+35.319996 843.0 80000481.06054444611
+4.4 70.0 80000481.37218731642
+24.36 569.0 80000481.933602169156
+26.16 614.0 80000481.98567260802
+40.879997 982.0 80000482.9210729748
+40.479996 972.0 80000483.857440814376
+4.64 76.0 80000484.32165810466
+39.8 955.0 80000484.80663745105
+29.16 689.0 80000486.771085351706
+11.84 256.0 80000487.217004179955
+14.16 314.0 80000487.990593642
+28.92 683.0 80000491.276099190116
+37.999996 910.0 80000491.747016862035
+6.4399996 121.0 80000493.35879443586
+25.2 590.0 80000494.31928488612
+12.16 264.0 80000495.14925374091
+14.6 325.0 80000495.4605127275
+20.64 476.0 80000496.37845928967
+5.16 89.0 80000496.85824956
+19.88 457.0 80000497.20662690699
+35.92 858.0 80000502.43506611884
+25.8 605.0 80000502.71769653261
+17.119999 388.0 80000502.80815401673
+36.159996 864.0 80000504.42526854575
+21.4 495.0 80000505.48890078068
+12.4800005 272.0 80000506.024649724364
+21.92 508.0 80000506.17142087221
+4.56 74.0 80000508.07841642201
+4.72 78.0 80000508.71263246238
+31.56 749.0 80000509.140583753586
+28.119999 663.0 80000509.95569059253
+27.28 642.0 80000510.86728909612
+12.04 261.0 80000512.479585409164
+30.199999 715.0 80000516.56570722163
+33.36 794.0 80000516.99862577021
+5.16 89.0 80000517.344923987985
+11.12 238.0 80000519.38823206723
+11.32 243.0 80000519.57560668886
+5.0 85.0 80000519.58020955324
+33.239998 791.0 80000520.51779472828
+6.3999996 120.0 80000520.546872377396
+9.72 203.0 80000521.153368234634
+30.64 726.0 80000521.42145887017
+21.96 509.0 80000521.63308496773
+12.6 275.0 80000523.057834371924
+8.36 169.0 80000525.05073848367
+10.56 224.0 80000527.819232299924
+29.24 691.0 80000531.12523216009
+24.6 575.0 80000532.10568276048
+40.8 980.0 80000533.20108996332
+17.0 385.0 80000534.29738210142
+23.48 547.0 80000534.340845018625
+18.28 417.0 80000534.83431440592
+2.08 12.0 80000534.87653042376
+41.92 1008.0 80000534.895185917616
+8.52 173.0 80000535.94042633474
+19.84 456.0 80000537.48509004712
+10.400001 220.0 80000538.26394830644
+23.92 558.0 80000540.002261936665
+37.719997 903.0 80000540.1134250015
+13.84 306.0 80000546.718622386456
+4.32 68.0 80000546.84028501809
+18.56 424.0 80000547.30754908919
+3.08 37.0 80000549.5327937603
+27.88 657.0 80000550.56298401952
+29.0 685.0 80000550.60222132504
+35.159996 839.0 80000552.734096348286
+38.519997 923.0 80000553.922179594636
+5.52 98.0 80000555.44246518612
+18.56 424.0 80000558.82404534519
+39.319996 943.0 80000558.947059229016
+32.399998 770.0 80000559.282619684935
+33.0 785.0 80000560.58969677985
+29.72 703.0 80000560.70387540758
+10.24 216.0 80000561.323437169194
+17.88 407.0 80000562.679025664926
+27.44 646.0 80000563.71705073118
+14.4800005 322.0 80000563.95132599771
+25.24 591.0 80000564.861919119954
+23.24 541.0 80000565.76752875745
+37.92 908.0 80000565.78528097272
+24.92 583.0 80000566.29958720505
+31.88 757.0 80000567.06900238991
+42.359997 1019.0 80000569.15245625377
+11.68 252.0 80000570.583770141006
+11.56 249.0 80000571.260604158044
+22.48 522.0 80000572.77767854929
+24.64 576.0 80000574.140301436186
+28.119999 663.0 80000574.51526069641
+3.28 42.0 80000577.082364201546
+35.559998 849.0 80000578.60487310588
+5.72 103.0 80000579.25371134281
+3.4 45.0 80000579.63681046665
+6.3199997 118.0 80000581.21821717918
+6.3199997 118.0 80000582.04014620185
+22.12 513.0 80000583.46193483472
+9.5199995 198.0 80000586.03360375762
+3.48 47.0 80000589.798507750034
+31.72 753.0 80000591.46542161703
+2.88 32.0 80000591.97941620648
+10.8 230.0 80000593.13316428661
+15.84 356.0 80000594.042805209756
+15.56 349.0 80000594.91821274161
+37.159996 889.0 80000595.397889867425
+28.16 664.0 80000595.763835296035
+6.8399997 131.0 80000596.830532982945
+37.559998 899.0 80000598.901824980974
+31.16 739.0 80000599.64194495976
+28.88 682.0 80000600.793473765254
+31.56 749.0 80000602.10744164884
+7.8399997 156.0 80000602.55246156454
+17.24 391.0 80000603.4955958724
+7.12 138.0 80000606.650620505214
+2.16 14.0 80000608.090855017304
+37.879997 907.0 80000609.993093535304
+4.7999997 80.0 80000610.186307400465
+15.56 349.0 80000611.37006236613
+30.48 722.0 80000611.83906060457
+19.96 459.0 80000611.8572294265
+34.64 826.0 80000611.95349282026
+41.839996 1006.0 80000613.84575891495
+23.2 540.0 80000617.17802332342
+17.56 399.0 80000617.24794691801
+34.559998 824.0 80000617.35718101263
+28.16 664.0 80000617.732587218285
+20.64 476.0 80000618.9578525275
+28.84 681.0 80000619.30346444249
+39.239998 941.0 80000621.2265856415
+18.16 414.0 80000621.38765838742
+7.9999995 160.0 80000621.735619053245
+33.079998 787.0 80000623.792137786746
+37.64 901.0 80000623.85770910978
+2.6 25.0 80000626.21549396217
+31.039999 736.0 80000627.16449086368
+33.12 788.0 80000628.88948699832
+39.319996 943.0 80000630.68285809457
+11.32 243.0 80000630.789920687675
+30.48 722.0 80000632.821838498116
+27.199999 640.0 80000632.881889894605
+24.84 581.0 80000634.78217072785
+20.28 467.0 80000635.002951964736
+33.679996 802.0 80000635.41563603282
+36.199997 865.0 80000635.88681785762
+8.56 174.0 80000637.371477141976
+35.519997 848.0 80000642.38429802656
+30.4 720.0 80000643.78843893111
+25.44 596.0 80000644.600917607546
+11.68 252.0 80000644.882760211825
+10.28 217.0 80000645.594902947545
+9.2 190.0 80000645.93502403796
+16.439999 371.0 80000646.383003011346
+2.6399999 26.0 80000646.53795617819
+34.64 826.0 80000647.63100332022
+22.84 531.0 80000648.47574129701
+5.12 88.0 80000649.00771085918
+42.079998 1012.0 80000649.114930674434
+24.92 583.0 80000650.1061706841
+22.88 532.0 80000655.68533721566
+24.68 577.0 80000657.16480255127
+26.68 627.0 80000657.258827999234
+19.8 455.0 80000657.33367057145
+35.64 851.0 80000658.74945259094
+2.08 12.0 80000660.18671748042
+17.439999 396.0 80000660.63745248318
+33.999996 810.0 80000661.82945792377
+6.48 122.0 80000661.90170559287
+17.16 389.0 80000662.26141363382
+33.32 793.0 80000662.64840815961
+41.64 1001.0 80000663.12676268816
+14.56 324.0 80000663.227578774095
+24.44 571.0 80000664.475006356835
+3.3600001 44.0 80000664.552283763885
+17.24 391.0 80000665.17621576786
+27.4 645.0 80000666.08528217673
+39.079998 937.0 80000670.71755500138
+7.72 153.0 80000671.198174357414
+6.8799996 132.0 80000673.345912232995
+34.199997 815.0 80000674.87888632715
+35.28 842.0 80000676.18293096125
+11.64 251.0 80000676.64919489622
+40.359997 969.0 80000676.80372226238
+31.44 746.0 80000678.275382354856
+11.8 255.0 80000680.48982979357
+
+26.24 616.0 80000684.38221885264
+2.8 30.0 80000685.43452076614
+22.0 510.0 80000686.74407067895
+31.199999 740.0 80000686.81872756779
+30.84 731.0 80000688.30932036042
+42.319996 1018.0 80000688.81981065869
+20.16 464.0 80000691.197261437774
+16.4 370.0 80000692.15807239711
+27.92 658.0 80000693.03427194059
+10.360001 219.0 80000694.3066085726
+36.8 880.0 80000694.962600558996
+40.44 971.0 80000697.02309130132
+38.48 922.0 80000698.11148573458
+21.56 499.0 80000698.516439035535
+40.28 967.0 80000699.06620439887
+42.44 1021.0 80000701.39014860988
+27.76 654.0 80000701.87561401725
+11.8 255.0 80000702.62369687855
+27.88 657.0 80000702.988359063864
+39.159996 939.0 80000705.296378955245
+23.96 559.0 80000705.433091163635
+11.440001 246.0 80000705.599841311574
+2.8400002 31.0 80000709.3684746474
+12.2 265.0 80000709.77955941856
+3.7199998 53.0 80000709.794584959745
+11.2 240.0 80000709.846471622586
+27.0 635.0 80000711.9785169363
+19.4 445.0 80000712.899810910225
+1.9200001 8.0 80000713.0795609951
+21.96 509.0 80000713.76596863568
+36.48 872.0 80000716.780457377434
+22.039999 511.0 80000717.29924210906
+17.32 393.0 80000720.5562723279
+12.68 277.0 80000720.58715964854
+41.239998 991.0 80000722.03180555999
+29.32 693.0 80000722.03699606657
+7.9599996 159.0 80000722.478862181306
+29.96 709.0 80000723.87889204919
+5.52 98.0 80000724.7961999625
+37.44 896.0 80000726.34677195549
+40.28 967.0 80000727.47035036981
+26.84 631.0 80000728.90236452222
+41.92 1008.0 80000729.3514444083
+26.16 614.0 80000730.33039654791
+4.2 65.0 80000730.81428743899
+4.4 70.0 80000731.42920610309
+16.359999 369.0 80000732.61377693713
+14.04 311.0 80000733.754086226225
+17.08 387.0 80000733.79874679446
+3.52 48.0 80000733.991308033466
+38.28 917.0 80000734.417156770825
+1.96 9.0 80000738.45621095598
+11.08 237.0 80000739.78259626031
+39.319996 943.0 80000739.904296547174
+29.36 694.0 80000742.26487219334
+20.8 480.0 80000742.58448088169
+18.0 410.0 80000743.84713715315
+7.0 135.0 80000745.445721656084
+33.32 793.0 80000745.704266637564
+4.96 84.0 80000746.49740232527
+2.88 32.0 80000748.3739194572
+40.76 979.0 80000749.18420062959
+39.559998 949.0 80000749.238480210304
+40.8 980.0 80000749.36030867696
+15.36 344.0 80000751.06558699906
+35.64 851.0 80000751.55830208957
+39.479996 947.0 80000752.70824530721
+9.12 188.0 80000752.72337460518
+20.64 476.0 80000752.881983697414
+29.52 698.0 80000753.15865902603
+35.28 842.0 80000753.76198838651
+27.92 658.0 80000754.23456764221
+18.08 412.0 80000754.3275937736
+35.76 854.0 80000755.37613813579
+26.56 624.0 80000756.66476659477
+6.7599998 129.0 80000758.372802481055
+23.48 547.0 80000759.07206888497
+29.16 689.0 80000759.892510056496
+36.48 872.0 80000761.603752076626
+17.16 389.0 80000762.42036630213
+11.0 235.0 80000765.06811144948
+31.76 754.0 80000765.382397055626
+35.44 846.0 80000765.4667224288
+41.28 992.0 80000765.93857854605
+37.039997 886.0 80000767.26963350177
+25.72 603.0 80000767.7786257714
+20.28 467.0 80000770.32975102961
+7.3999996 145.0 80000771.69804634154
+3.32 43.0 80000773.945546999574
+37.399998 895.0 80000774.221253693104
+10.92 233.0 80000775.89942243695
+24.6 575.0 80000777.312041819096
+12.4800005 272.0 80000777.77507701516
+31.72 753.0 80000777.79259891808
+12.360001 269.0 80000779.33480271697
+22.64 526.0 80000779.554390221834
+36.999996 885.0 80000780.81437155604
+29.28 692.0 80000780.933462917805
+35.159996 839.0 80000781.15924490988
+24.64 576.0 80000781.26206161082
+25.119999 588.0 80000781.72611118853
+4.7599998 79.0 80000782.172751545906
+20.28 467.0 80000783.125701248646
+38.64 926.0 80000785.342386975884
+4.92 83.0 80000785.36341136694
+34.6 825.0 80000785.92007930577
+20.56 474.0 80000786.1086602211
+17.279999 392.0 80000786.253573834896
+33.6 800.0 80000787.553292140365
+32.32 768.0 80000787.658161982894
+4.68 77.0 80000790.072870031
+24.64 576.0 80000792.274298503995
+9.44 196.0 80000792.443054273725
+17.52 398.0 80000792.46565423906
+14.4800005 322.0 80000792.808876529336
+33.879997 807.0 80000795.87703709304
+32.719997 778.0 80000795.91278010607
+5.44 96.0 80000797.14426906407
+11.04 236.0 80000797.26987493038
+34.719997 828.0 80000798.51847578585
+2.2 15.0 80000799.48481544852
+31.72 753.0 80000799.881970733404
+31.039999 736.0 80000803.51909430325
+18.52 423.0 80000803.731096595526
+32.16 764.0 80000803.883781552315
+40.92 983.0 80000805.29773187637
+18.0 410.0 80000805.306009307504
+17.32 393.0 80000807.21232941747
+11.88 257.0 80000808.28512185812
+21.36 494.0 80000808.454649567604
+2.48 22.0 80000808.523783952
+41.76 1004.0 80000809.73774009943
+39.92 958.0 80000810.001270249486
+13.12 288.0 80000810.86777666211
+41.319996 993.0 80000811.438306853175
+6.16 114.0 80000812.21489995718
+28.199999 665.0 80000815.07969661057
+29.56 699.0 80000815.974775359035
+19.44 446.0 80000816.16485761106
+3.32 43.0 80000816.704811513424
+33.679996 802.0 80000816.80518731475
+6.68 127.0 80000816.81600318849
+3.1599998 39.0 80000819.00975045562
+19.32 443.0 80000819.48453132808
+34.079998 812.0 80000821.329228281975
+8.8 180.0 80000821.52698163688
+36.319996 868.0 80000822.00912617147
+34.199997 815.0 80000824.46000294387
+10.52 223.0 80000824.66023361683
+11.28 242.0 80000825.05113039911
+25.0 585.0 80000827.12451052666
+3.96 59.0 80000827.4073446542
+24.68 577.0 80000828.5048404783
+38.159996 914.0 80000828.622610628605
+31.88 757.0 80000828.63124883175
+24.0 560.0 80000829.2215629518
+20.6 475.0 80000829.66059269011
+5.32 93.0 80000830.33870181441
+13.76 304.0 80000831.20006233454
+11.88 257.0 80000831.21613633633
+15.16 339.0 80000832.059845909476
+21.84 506.0 80000832.423598602414
+13.6 300.0 80000833.69929590821
+34.999996 835.0 80000834.46965831518
+41.159996 989.0 80000836.12533031404
+8.12 163.0 80000836.71061439812
+28.4 670.0 80000836.78514607251
+19.56 449.0 80000837.03853216767
+12.88 282.0 80000839.699784219265
+5.2799997 92.0 80000841.037233412266
+31.76 754.0 80000843.41804847121
+35.48 847.0 80000844.98050430417
+31.199999 740.0 80000845.57550364733
+28.76 679.0 80000850.37028862536
+24.039999 561.0 80000850.423752725124
+41.839996 1006.0 80000851.28334981203
+36.76 879.0 80000851.615449771285
+17.4 395.0 80000851.654990166426
+38.999996 935.0 80000851.67317868769
+12.32 268.0 80000852.59776712954
+11.2 240.0 80000854.87065626681
+7.4399996 146.0 80000855.74864292145
+14.76 329.0 80000855.829678565264
+7.2799997 142.0 80000856.83493223786
+21.36 494.0 80000858.589912459254
+26.28 617.0 80000859.1553748399
+37.44 896.0 80000859.18091611564
+5.56 99.0 80000859.44560496509
+21.44 496.0 80000859.509354412556
+25.28 592.0 80000860.59416265786
+24.96 584.0 80000861.303189352155
+19.4 445.0 80000861.96652762592
+10.92 233.0 80000863.23499922454
+20.24 466.0 80000864.197188302875
+7.04 136.0 80000865.590956673026
+42.319996 1018.0 80000865.72700405121
+33.6 800.0 80000866.084478631616
+31.8 755.0 80000866.50517678261
+32.8 780.0 80000866.850857138634
+41.239998 991.0 80000867.7263391763
+22.0 510.0 80000868.06848114729
+14.4800005 322.0 80000869.2763479501
+34.44 821.0 80000870.65760450065
+19.72 453.0 80000871.05340576172
+23.28 542.0 80000873.14886234701
+38.239998 916.0 80000874.297571882606
+36.039997 861.0 80000874.73376466334
+22.28 517.0 80000879.41517931223
+33.999996 810.0 80000881.185400635004
+15.6 350.0 80000882.22257082164
+21.56 499.0 80000884.97935457528
+27.84 656.0 80000885.29664757848
+11.72 253.0 80000886.4507638216
+37.8 905.0 80000888.94126729667
+23.28 542.0 80000889.59991361201
+33.079998 787.0 80000890.74508482218
+32.719997 778.0 80000893.32567283511
+13.32 293.0 80000893.43082770705
+35.48 847.0 80000893.56059738994
+4.68 77.0 80000894.35489681363
+39.64 951.0 80000897.77023650706
+23.039999 536.0 80000899.03790041804
+14.4 320.0 80000899.37754881382
+18.4 420.0 80000900.8128515929
+10.84 231.0 80000901.414481043816
+20.32 468.0 80000901.48123975098
+42.359997 1019.0 80000901.93236474693
+25.2 590.0 80000901.972453475
+23.64 551.0 80000902.81782488525
+38.399998 920.0 80000903.59163464606
+30.199999 715.0 80000903.92151616514
+13.4800005 297.0 80000904.27971172333
+11.76 254.0 80000904.998699590564
+16.76 379.0 80000905.63441582024
+13.2 290.0 80000905.648124307394
+2.04 11.0 80000906.234885290265
+12.64 276.0 80000907.07798694074
+9.16 189.0 80000908.87027671933
+25.52 598.0 80000909.368400886655
+4.56 74.0 80000909.811767444015
+27.24 641.0 80000910.33445057273
+17.199999 390.0 80000910.60975474119
+2.16 14.0 80000911.29370170832
+34.519997 823.0 80000913.69095006585
+12.2 265.0 80000914.1802495867
+26.88 632.0 80000914.66017211974
+28.199999 665.0 80000916.50571863353
+42.399998 1020.0 80000916.718121901155
+37.44 896.0 80000919.645673155785
+27.6 650.0 80000920.63476088643
+18.88 432.0 80000922.45012420416
+8.48 172.0 80000925.23763982952
+12.28 267.0 80000926.283655911684
+28.32 668.0 80000926.6409278512
+30.96 734.0 80000928.05741724372
+32.079998 762.0 80000933.627166330814
+39.44 946.0 80000933.76277536154
+30.24 716.0 80000934.16055440903
+6.7599998 129.0 80000935.81169986725
+24.48 572.0 80000936.16736589372
+14.6 325.0 80000936.44196587801
+25.68 602.0 80000936.549025550485
+11.4800005 247.0 80000938.685712620616
+6.2 115.0 80000939.08911083639
+36.239998 866.0 80000940.29467050731
+27.28 642.0 80000941.77238176763
+4.2799997 67.0 80000942.128024578094
+12.92 283.0 80000942.38229085505
+20.96 484.0 80000944.63000917435
+9.64 201.0 80000945.404179006815
+14.32 318.0 80000945.718157589436
+8.32 168.0 80000945.91892364621
+42.28 1017.0 80000948.791864678264
+29.32 693.0 80000948.85667587817
+2.32 18.0 80000949.93122699857
+2.6399999 26.0 80000950.1588781476
+8.44 171.0 80000950.502268999815
+39.8 955.0 80000951.22832208872
+21.08 487.0 80000951.838016077876
+20.32 468.0 80000952.52954874933
+33.96 809.0 80000952.626723498106
+21.68 502.0 80000956.18126910925
+33.079998 787.0 80000956.38345962763
+23.76 554.0 80000957.466738790274
+8.32 168.0 80000959.38979135454
+14.28 317.0 80000960.34404800832
+29.92 708.0 80000962.452562466264
+11.64 251.0 80000964.24332383275
+25.6 600.0 80000966.99032564461
+28.36 669.0 80000967.36089865863
+15.4 345.0 80000968.338882282376
+25.48 597.0 80000968.875151097775
+16.72 378.0 80000969.143758147955
+14.76 329.0 80000971.409240707755
+19.6 450.0 80000974.77004908025
+28.76 679.0 80000974.80595380068
+38.359997 919.0 80000975.64050154388
+40.6 975.0 80000975.95903091133
+4.2 65.0 80000980.43536031246
+3.1599998 39.0 80000980.572394132614
+41.679996 1002.0 80000981.61112074554
+17.439999 396.0 80000981.74807231128
+40.239998 966.0 80000983.25735516846
+36.359997 869.0 80000985.01507012546
+18.12 413.0 80000985.20637777448
+38.28 917.0 80000986.77888666093
+40.479996 972.0 80000988.17710210383
+29.72 703.0 80000988.92275629938
+16.96 384.0 80000990.097374781966
+30.8 730.0 80000990.79127365351
+21.72 503.0 80000991.06344228983
+42.28 1017.0 80000991.80377283692
+28.24 666.0 80000993.049590453506
+7.04 136.0 80000994.441833391786
+36.28 867.0 80000994.527631640434
+24.4 570.0 80000995.25695282221
+21.76 504.0 80000995.29652753472
+11.52 248.0 80000995.99297225475
+41.319996 993.0 80000996.40901064873
+35.239998 841.0 80000996.557712092996
+10.52 223.0 80000997.22821688652
+33.96 809.0 80000997.405183792114
+11.96 259.0 80000997.93263950944
+15.440001 346.0 80000998.813208565116
+30.92 733.0 80000999.3882278502
+3.96 59.0 80000999.59336720407
+18.36 419.0 80001000.09518702328
+32.039997 761.0 80001001.49414373934
+28.48 672.0 80001002.54425382614
+39.8 955.0 80001003.1178855896
+18.72 428.0 80001003.56476637721
+7.52 148.0 80001005.884933292866
+9.68 202.0 80001007.618157073855
+3.6799998 52.0 80001009.596397176385
+13.56 299.0 80001015.068401411176
+40.519997 973.0 80001015.44013249874
+24.0 560.0 80001017.39824913442
+34.12 813.0 80001017.49642172456
+25.88 607.0 80001017.91779854894
+7.3199997 143.0 80001017.95813263953
+12.84 281.0 80001018.01935687661
+6.56 124.0 80001023.587887212634
+30.64 726.0 80001023.69297429919
+
+
+
+
[18]:
+
+
+
+
+array([80000000.23635569, 80000001.47479323, 80000001.78458866,
+       80000002.78943624, 80000003.42859936, 80000004.07943003,
+       80000006.09310323, 80000007.18041813, 80000008.17602143,
+       80000008.20403489], dtype=float128)
+
+
+
+

Transforming a Lightcurve into an EventList.

+

Event lists can be obtained from light curves, where the standard followed is as follows: as many events are created as the counts in the lightcurve at the time specified by time bins.

+

To demonstrate this, let us define a light curve.

+
+
[19]:
+
+
+
times = np.arange(3)
+counts = np.floor(np.random.rand(3)*5)
+lc = Lightcurve(times, counts, skip_checks=True, dt=1.)
+
+
+
+
+
[20]:
+
+
+
lc.time, lc.counts
+
+
+
+
+
[20]:
+
+
+
+
+(array([0, 1, 2]), array([1., 4., 3.]))
+
+
+

Now, eventlist can be loaded by calling static from_lc() method.

+
+
[21]:
+
+
+
ev = EventList.from_lc(lc)
+ev.time
+
+
+
+
+
[21]:
+
+
+
+
+array([0, 1, 1, 1, 1, 2, 2, 2])
+
+
+
+
+

Simulating EventList from Lightcurve

+

An arguably better way is having proper random events, reproducing the initial light curve within the errors. Stingray does this by using the inverse CDF method, using the light curve as a binned probability distribution. Please note that in this case we will have to create the EventList object before (in technical terms, simulate_times is not a static method.). See simulation tutorial for more details.

+
+
[22]:
+
+
+
ev = EventList()
+ev.simulate_times(lc)
+ev.time
+
+
+
+
+
[22]:
+
+
+
+
+array([0.60459939, 0.8644437 , 1.47100837, 1.54281243, 1.80725171,
+       2.47032653])
+
+
+
+
+

Creating a light curve from an EventList object

+

After simulating event list, the original light curve can be recovered. Let’s demonstrate by creating a light curve.

+
+
[23]:
+
+
+
dt = 1.
+times = np.arange(50)
+counts = np.floor(np.random.rand(50)*50000)
+lc = Lightcurve(times, counts, skip_checks=True, dt=1.)
+
+
+
+

Simulate an event list.

+
+
[24]:
+
+
+
ev = EventList()
+ev = ev.from_lc(lc)
+
+
+
+
+
[25]:
+
+
+
ev.gti
+
+
+
+
+
[25]:
+
+
+
+
+array([[-0.5, 49.5]])
+
+
+

Recover original light curve curve using to_lc() method. Here, dt defines time resolution, tstart the starting time, and tseg the total time duration.

+
+
[26]:
+
+
+
lc_new = ev.to_lc(dt=1)
+
+
+
+

Let us verify that this has worked properly, by comparing the input and output light curves

+
+
[27]:
+
+
+
plt.plot(lc.time, lc.counts,'r-', lc_new.counts, 'g-', drawstyle="steps-mid")
+plt.xlabel('Times')
+plt.ylabel('Counts')
+
+
+
+
+
[27]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_EventList_EventList_Tutorial_54_1.png +
+
+

… and their difference

+
+
[28]:
+
+
+
plt.plot(lc.time, lc.counts - lc_new.counts, 'g-', drawstyle="steps-mid")
+plt.xlabel('Times')
+plt.ylabel('Counts')
+
+
+
+
+
[28]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_EventList_EventList_Tutorial_56_1.png +
+
+

As can be seen from the figure above, the recovered light curve is aligned with the original light curve.

+
+
+

Simulating Energies

+

In order to simulate photon energies, a spectral distribution needs to be passed. The spectrum input is a two-dimensional array, with the energies in keV in the first dimension and the number of counts in the second. The count array will be normalized before the simulation: the raw counts do not matter, but only the ratio of the counts in each bin to the total. Again, the energies are simulated using an inverse CDF method.

+
+
[29]:
+
+
+
spectrum = [[1, 2, 3, 4, 5, 6],[1000, 2040, 1000, 3000, 4020, 2070]]
+
+
+
+
+
[30]:
+
+
+
ev = EventList(time=np.sort(np.random.uniform(0, 1000, 12)))
+ev.simulate_energies(spectrum)
+
+
+
+
+
[31]:
+
+
+
ev.energy
+
+
+
+
+
[31]:
+
+
+
+
+array([4.84164641, 3.62741142, 3.68169619, 4.70867585, 4.92065534,
+       4.93644725, 2.26749277, 5.45959615, 3.01137686, 4.86366818,
+       0.63048041, 6.26300006])
+
+
+
+
+

Joining EventLists

+

Two event lists can also be joined together. If the GTI do not overlap, the event times and GTIs are appended. Otherwise, the GTIs are crossed (i.e., only the overlapping parts are saved) and the events merged together.

+
+
[32]:
+
+
+
ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])
+ev2 = EventList(time=[4,5], gti=[[3.5, 5.5]])
+ev = ev1.join(ev2)
+ev.time, ev.gti
+
+
+
+
+
[32]:
+
+
+
+
+(array([1, 2, 3, 4, 5]), array([[0.5, 5.5]]))
+
+
+
+
[33]:
+
+
+
ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])
+ev2 = EventList(time=[1.2, 3.3, 5.6], gti=[[0.6, 7.8]])
+ev = ev1.join(ev2)
+ev.time, ev.gti
+
+
+
+
+
[33]:
+
+
+
+
+(array([1. , 1.2, 2. , 3. , 3.3, 5.6]), array([[0.6, 3.5]]))
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/EventList/EventList Tutorial.ipynb b/notebooks/EventList/EventList Tutorial.ipynb new file mode 100644 index 000000000..1a5f3488a --- /dev/null +++ b/notebooks/EventList/EventList Tutorial.ipynb @@ -0,0 +1,2007 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating an event list object and carrying out various operations such as simulating time and energies, joining, storing and retrieving event lists." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some relevant stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import EventList, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating EventList from Photon Arrival Times" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Given photon arrival times, an eventlist object can be created. Times are assumed to be seconds from a reference MJD, that can optionally be specified with the `mjdref` keyword and attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "times = [0.5, 1.1, 2.2, 3.7]\n", + "mjdref=58000." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create event list object by passing arrival times as argument." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.5, 1.1, 2.2, 3.7])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList(times, mjdref=mjdref)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can add all sorts of data to the `EventList` object, it is very flexible. In general, we suggest to stick with easily interpretable attributes, like `energy` or `pi`.\n", + "\n", + "```\n", + "ev.energy = [0., 3., 4., 20.]\n", + "```\n", + "\n", + "is the same as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "energy = [0., 3., 4., 20.]\n", + "ev = EventList(times, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It is always recommended to specify the good time intervals (GTIs) of the event list, as the time intervals where the instrument was fully operational. If not specified, GTIs are defined automatically as the first and the last event time." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [[0, 4]]\n", + "ev = EventList(times, gti=gti, energy=energy, mjdref=mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "`EventList` has the following methods that allow an easy roundtrip to Astropy objects: `to_astropy_table`, `to_astropy_timeseries`, `from_astropy_table`, `from_astropy_timeseries`\n", + "\n", + "This allows a better interoperability with the Astropy ecosystem. \n", + "\n", + "In this roundtrip, a `Table` or `Timeseries` object is created, having as columns `time` and all other attributes of the same size (e.g. `pi`, `energy`), and the rest of the attributes (e.g. `gti`, `mjdref`) in the table's metadata." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
Table length=4\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
energytime
float64float64
0.00.5
3.01.1
4.02.2
20.03.7
" + ], + "text/plain": [ + "\n", + " energy time \n", + "float64 float64\n", + "------- -------\n", + " 0.0 0.5\n", + " 3.0 1.1\n", + " 4.0 2.2\n", + " 20.0 3.7" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table = ev.to_astropy_table()\n", + "table" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When converting to `Timeseries`, times are transformed into `astropy.time.TimeDelta` objects." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
TimeSeries length=4\n", + "
\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timeenergy
objectfloat64
5.787037037037037e-060.0
1.2731481481481482e-053.0
2.5462962962962965e-054.0
4.282407407407408e-0520.0
" + ], + "text/plain": [ + "\n", + " time energy\n", + " object float64\n", + "---------------------- -------\n", + " 5.787037037037037e-06 0.0\n", + "1.2731481481481482e-05 3.0\n", + "2.5462962962962965e-05 4.0\n", + " 4.282407407407408e-05 20.0" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "timeseries = ev.to_astropy_timeseries()\n", + "timeseries" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "OrderedDict([('dt', 0),\n", + " ('gti', array([[0, 4]])),\n", + " ('mjdref', 58000.0),\n", + " ('ncounts', 4),\n", + " ('notes', '')])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table.meta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Of course, these objects can be converted back to event lists. The user should be careful in defining the proper column names and metadata so that the final object is a valid `EventList`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "table_ev = EventList.from_astropy_table(table)\n", + "table_ts = EventList.from_astropy_timeseries(timeseries)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0.5, 1.1, 2.2, 3.7]), array([0.5, 1.1, 2.2, 3.7]))" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "table_ev.time, table_ts.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Loading and writing EventList objects\n", + "\n", + "We made it possible to save and load data in a number of different formats.\n", + "\n", + "The general syntax is\n", + "\n", + "```\n", + "ev = EventList.read(filename, format)\n", + "\n", + "ev.write(filename, format)\n", + "\n", + "```\n", + "\n", + "There are three main blocks of formats that might be useful:\n", + "\n", + "1. (read-only) HEASoft-compatible formats -> read event data from HEASOFT-supported missions\n", + "\n", + "2. `pickle`: reading and saving EventLists from/to Python pickle objects\n", + "\n", + "3. Any format compatible with `astropy.table.Table` objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading an EventList from an X-ray observation in HEASoft-compatible format\n", + "\n", + "Loading event data from HEASoft-supported missions in FITS format is easy. It's sufficient to use the `read` method with `hea` or, equivalently, `ogip`, as format. \n", + "\n", + "Beware: please use `hea` or `ogip`, not `fits`! It would make the roundrip to Astropy tables more complicated, as Astropy supports a generic FITS writer which is not necessarily compatible with HEASoft." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList.read('events.fits', 'ogip')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Times are saved to the `time` attribute, GTIs to the `gti` attribute, MJDREF to the `mjdref` attribute, etc. " + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "55197.00076601852" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.mjdref" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[80000000., 80001025.]], dtype=float128)" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to pickle objects\n", + "\n", + "It is possible to save and load eventlist objects using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(True, True)" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.p\", \"pickle\")\n", + "ev2 = EventList.read(\"events.p\", \"pickle\")\n", + "\n", + "np.allclose(ev2.time, ev.time), np.allclose(ev2.gti, ev.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Roundtrip to Astropy-compatible formats\n", + "\n", + "If the `read` and `write` methods receive a format which is not `hea`, `ogip`, or `pickle`, the event list is transformed into an `Astropy` `Table` object with the methods described above, and the readers and writers from the `Table` class are used instead. This allows to extend the save/load operations to a large number of formats, including `hdf5` and enhanced CSV (`ascii.ecsv`).\n", + "\n", + "Note that columns coming from the `EVENTS` (or equivalent) fits extension, those having the same length as `time`, when converting to `astropy` tables they become columns of the table. All the others, including `gti`, are treated as metadata.\n", + "\n", + "Care should be used in selecting formats that preserve metadata. For example, simple CSV format loses all metadata, including MJDREF, GTIs etc." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.write(\"events.hdf5\", \"hdf5\")\n", + "ev3 = EventList.read(\"events.hdf5\", \"hdf5\")\n", + "ev3.time[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "# %ECSV 1.0\r\n", + "# ---\r\n", + "# datatype:\r\n", + "# - {name: energy, datatype: float32}\r\n", + "# - {name: pi, datatype: float32}\r\n", + "# - {name: time, datatype: float128}\r\n", + "# meta: !!omap\r\n", + "# - {dt: 0}\r\n", + "# - gti: !numpy.ndarray\r\n", + "# buffer: !!binary |\r\n", + "# QUFBQUFBQ0FscGdaUURHRnBuOEFBQUFBQUFBZ0FKZVlHVUF4aGFaL0FBQT0=\r\n", + "# dtype: float128\r\n", + "# order: C\r\n", + "# shape: !!python/tuple [1, 2]\r\n", + "# - {header: 'XTENSION= ''BINTABLE'' / binary table extension BITPIX = 8 / array\r\n", + "# data type NAXIS = 2 / number of array dimensions NAXIS1 = 12\r\n", + "# / length of dimension 1 NAXIS2 = 1000 / length of dimension 2 PCOUNT = 0\r\n", + "# / number of group parameters GCOUNT = 1 / number of groups TFIELDS\r\n", + "# = 2 / number of table fields TTYPE1 = ''TIME '' TFORM1 =\r\n", + "# ''1D '' TTYPE2 = ''PI '' TFORM2 =\r\n", + "# ''1J '' EXTNAME = ''EVENTS '' / extension name OBSERVER=\r\n", + "# ''Edwige Bubble'' TELESCOP= ''NuSTAR '' / Telescope (mission) name INSTRUME=\r\n", + "# ''FPMA '' / Instrument name OBS_ID = ''00000000001'' / Observation ID TARG_ID\r\n", + "# = 0 / Target ID OBJECT = ''Fake X-1'' / Name of observed object RA_OBJ = 0.0\r\n", + "# / [deg] R.A. Object DEC_OBJ = 0.0 / [deg] Dec Object RA_NOM = 0.0\r\n", + "# / Right Ascension used for barycenter correctionsDEC_NOM = 0.0 / Declination used for barycenter corrections RA_PNT = 0.0\r\n", + "# / [deg] RA pointing DEC_PNT = 0.0 / [deg] Dec pointing PA_PNT = 0.0\r\n", + "# / [deg] Position angle (roll) EQUINOX = 2000.0 / Equinox of celestial coord system RADECSYS=\r\n", + "# ''FK5 '' / Coordinate Reference System TASSIGN = ''SATELLITE'' / Time assigned by onboard\r\n", + "# clock TIMESYS = ''TDB '' / All times in this file are TDB MJDREFI = 55197\r\n", + "# / TDB time reference; Modified Julian Day (int) MJDREFF = 0.00076601852 / TDB time reference; Modified Julian Day (frac)\r\n", + "# TIMEREF = ''SOLARSYSTEM'' / Times are pathlength-corrected to barycenter CLOCKAPP= F / TRUE if timestamps\r\n", + "# corrected by gnd sware TIMEUNIT= ''s '' / unit for time keywords TSTART = 80000000.0\r\n", + "# / Elapsed seconds since MJDREF at start of file TSTOP = 80001025.0 / Elapsed seconds since MJDREF at end of file LIVETIME= 1025.0\r\n", + "# / On-source time TIMEZERO= 0.0 / Time Zero COMMENT\r\n", + "# FITS (Flexible Image Transport System) format is defined in ''Astronomy aCOMMENT nd Astrophysics'', volume 376, page 359; bibcode:\r\n", + "# 2001A&A...376..359H COMMENT MJDREFI+MJDREFF = epoch of Jan 1, 2010, in TT time system. HISTORY File modified by\r\n", + "# user ''meo'' with fv on 2015-08-17T14:10:02 HISTORY File modified by user ''meo'' with fv on 2015-08-17T14:48:52 END '}\r\n", + "# - {instr: fpma}\r\n", + "# - {mission: nustar}\r\n", + "# - {mjdref: 55197.00076601852}\r\n", + "# - {ncounts: 1000}\r\n", + "# - {notes: ''}\r\n", + "# - {timeref: solarsystem}\r\n", + "# - {timesys: tdb}\r\n", + "# schema: astropy-2.0\r\n", + "energy pi time\r\n", + "8.56 174.0 80000000.23635569215\r\n", + "33.039997 786.0 80000001.47479322553\r\n", + "7.9999995 160.0 80000001.78458866477\r\n", + "27.84 656.0 80000002.789436236024\r\n", + "8.84 181.0 80000003.428599357605\r\n", + "13.92 308.0 80000004.079430028796\r\n", + "37.839996 906.0 80000006.09310323\r\n", + "40.559998 974.0 80000007.180418133736\r\n", + "5.8799996 107.0 80000008.176021426916\r\n", + "41.239998 991.0 80000008.204034894705\r\n", + "33.64 801.0 80000009.69214613736\r\n", + "8.72 178.0 80000010.36281684041\r\n", + "17.32 393.0 80000010.78324916959\r\n", + "6.56 124.0 80000011.8733625412\r\n", + "21.28 492.0 80000013.92633379996\r\n", + "10.24 216.0 80000014.204483643174\r\n", + "10.68 227.0 80000014.26073910296\r\n", + "26.68 627.0 80000015.256171390414\r\n", + "3.96 59.0 80000018.08373501897\r\n", + "13.96 309.0 80000018.83911728859\r\n", + "28.32 668.0 80000019.98157013953\r\n", + "38.319996 918.0 80000020.76013682783\r\n", + "17.76 404.0 80000021.14855520427\r\n", + "12.64 276.0 80000022.02460347116\r\n", + "29.76 704.0 80000023.50157275796\r\n", + "24.08 562.0 80000023.61806283891\r\n", + "10.400001 220.0 80000024.97833034396\r\n", + "41.519997 998.0 80000025.95996727049\r\n", + "4.24 66.0 80000026.16019311547\r\n", + "23.32 543.0 80000027.089139238\r\n", + "41.399998 995.0 80000028.596908301115\r\n", + "19.72 453.0 80000031.065731182694\r\n", + "36.559998 874.0 80000031.10555113852\r\n", + "38.399998 920.0 80000032.516511276364\r\n", + "24.28 567.0 80000032.808356150985\r\n", + "29.48 697.0 80000033.18797942996\r\n", + "36.76 879.0 80000033.85146795213\r\n", + "10.6 225.0 80000034.861510172486\r\n", + "20.0 460.0 80000038.22435864806\r\n", + "3.3600001 44.0 80000038.39090189338\r\n", + "15.08 337.0 80000042.41919325292\r\n", + "22.48 522.0 80000043.69195660949\r\n", + "4.24 66.0 80000045.52997684479\r\n", + "21.88 507.0 80000052.78282105923\r\n", + "39.6 950.0 80000052.919592529535\r\n", + "3.24 41.0 80000054.28180256486\r\n", + "14.32 318.0 80000056.48970986903\r\n", + "7.4399996 146.0 80000057.49698485434\r\n", + "7.9599996 159.0 80000058.55781446397\r\n", + "21.36 494.0 80000059.284333616495\r\n", + "35.159996 839.0 80000060.359298199415\r\n", + "21.64 501.0 80000063.666031733155\r\n", + "36.44 871.0 80000064.78927731514\r\n", + "35.319996 843.0 80000067.341705307364\r\n", + "26.08 612.0 80000068.267971634865\r\n", + "12.12 263.0 80000070.24889309704\r\n", + "11.400001 245.0 80000072.99266758561\r\n", + "35.839996 856.0 80000073.4422865361\r\n", + "6.68 127.0 80000073.81521306932\r\n", + "28.4 670.0 80000074.7710172981\r\n", + "22.08 512.0 80000076.15446573496\r\n", + "29.64 701.0 80000076.61943152547\r\n", + "34.319996 818.0 80000078.37191092968\r\n", + "9.04 186.0 80000079.364117503166\r\n", + "42.399998 1020.0 80000080.12182110548\r\n", + "14.08 312.0 80000080.4114151746\r\n", + "12.64 276.0 80000083.704568862915\r\n", + "26.16 614.0 80000084.38392549753\r\n", + "21.12 488.0 80000084.49645087123\r\n", + "7.7599998 154.0 80000084.73323458433\r\n", + "5.64 101.0 80000085.518022567034\r\n", + "4.2799997 67.0 80000086.06328216195\r\n", + "39.039997 936.0 80000087.00356020033\r\n", + "14.88 332.0 80000087.108956605196\r\n", + "11.24 241.0 80000087.3983823657\r\n", + "42.199997 1015.0 80000088.44739763439\r\n", + "28.16 664.0 80000088.72279639542\r\n", + "2.48 22.0 80000089.15565529466\r\n", + "42.28 1017.0 80000090.20357654989\r\n", + "5.32 93.0 80000090.7642698288\r\n", + "14.28 317.0 80000090.80305439234\r\n", + "40.319996 968.0 80000091.500082850456\r\n", + "18.44 421.0 80000092.158643990755\r\n", + "32.239998 766.0 80000092.89413803816\r\n", + "4.4 70.0 80000094.805209457874\r\n", + "38.879997 932.0 80000095.04941494763\r\n", + "32.199997 765.0 80000096.56686630845\r\n", + "30.4 720.0 80000096.91533789039\r\n", + "35.719997 853.0 80000098.67825654149\r\n", + "29.32 693.0 80000098.92884159088\r\n", + "17.199999 390.0 80000099.199268594384\r\n", + "37.92 908.0 80000100.14995288849\r\n", + "1.96 9.0 80000100.935947969556\r\n", + "13.12 288.0 80000102.76762147248\r\n", + "30.6 725.0 80000103.05724072456\r\n", + "34.239998 816.0 80000104.193173110485\r\n", + "8.88 182.0 80000107.33343601227\r\n", + "29.6 700.0 80000107.40127386153\r\n", + "8.24 166.0 80000107.56737007201\r\n", + "39.76 954.0 80000109.40503971279\r\n", + "41.399998 995.0 80000109.51361806691\r\n", + "32.399998 770.0 80000111.27798360586\r\n", + "20.2 465.0 80000112.93057106435\r\n", + "22.36 519.0 80000113.545409321785\r\n", + "41.559998 999.0 80000113.71510283649\r\n", + "36.64 876.0 80000115.363516911864\r\n", + "5.12 88.0 80000116.62624913454\r\n", + "24.32 568.0 80000117.5390470773\r\n", + "11.4800005 247.0 80000118.313546299934\r\n", + "10.0 210.0 80000118.64352825284\r\n", + "13.36 294.0 80000119.64161340892\r\n", + "4.48 72.0 80000119.70217871666\r\n", + "5.68 102.0 80000119.87085522711\r\n", + "25.76 604.0 80000120.67677563429\r\n", + "1.9200001 8.0 80000121.80093438923\r\n", + "2.92 33.0 80000122.09129279852\r\n", + "5.12 88.0 80000122.545517489314\r\n", + "33.32 793.0 80000122.93073017895\r\n", + "13.76 304.0 80000123.276563555\r\n", + "37.159996 889.0 80000125.506356075406\r\n", + "30.56 724.0 80000125.6568851918\r\n", + "37.079998 887.0 80000127.336458325386\r\n", + "6.4399996 121.0 80000127.45361994207\r\n", + "11.96 259.0 80000128.36573840678\r\n", + "14.08 312.0 80000129.43040788174\r\n", + "14.36 319.0 80000130.30537183583\r\n", + "34.239998 816.0 80000131.993975520134\r\n", + "29.92 708.0 80000132.51598034799\r\n", + "21.8 505.0 80000132.877141192555\r\n", + "10.84 231.0 80000134.958766937256\r\n", + "15.72 353.0 80000136.26415735483\r\n", + "9.32 193.0 80000136.271308645606\r\n", + "38.44 921.0 80000136.491618439555\r\n", + "34.559998 824.0 80000136.59682570398\r\n", + "29.64 701.0 80000136.81391918659\r\n", + "13.6 300.0 80000137.111403808\r\n", + "15.0 335.0 80000137.99286413193\r\n", + "8.2 165.0 80000140.02283409238\r\n", + "31.0 735.0 80000141.585879951715\r\n", + "18.12 413.0 80000141.88128243387\r\n", + "27.64 651.0 80000142.301297202706\r\n", + "29.44 696.0 80000144.258596763015\r\n", + "4.32 68.0 80000146.35952179134\r\n", + "9.92 208.0 80000146.431891173124\r\n", + "26.6 625.0 80000146.93531550467\r\n", + "32.719997 778.0 80000147.86272408068\r\n", + "4.4 70.0 80000148.20213320851\r\n", + "14.04 311.0 80000148.998638793826\r\n", + "10.76 229.0 80000150.13331639767\r\n", + "8.12 163.0 80000150.40001221001\r\n", + "31.96 759.0 80000150.51030369103\r\n", + "41.6 1000.0 80000158.27798460424\r\n", + "2.96 34.0 80000158.565826013684\r\n", + "19.76 454.0 80000160.18738743663\r\n", + "14.440001 321.0 80000162.67192919552\r\n", + "11.72 253.0 80000163.52692268789\r\n", + "37.44 896.0 80000164.03886182606\r\n", + "32.84 781.0 80000164.495729878545\r\n", + "17.24 391.0 80000165.17495532334\r\n", + "3.44 46.0 80000166.38718263805\r\n", + "25.76 604.0 80000168.38902553916\r\n", + "25.44 596.0 80000169.68685694039\r\n", + "23.56 549.0 80000169.713349059224\r\n", + "19.08 437.0 80000170.805011570454\r\n", + "41.039997 986.0 80000172.42077590525\r\n", + "2.16 14.0 80000172.43760578334\r\n", + "2.16 14.0 80000174.10814335942\r\n", + "37.28 892.0 80000174.15144339204\r\n", + "30.76 729.0 80000174.80246704817\r\n", + "28.24 666.0 80000174.83830589056\r\n", + "23.52 548.0 80000176.110384613276\r\n", + "33.399998 795.0 80000176.43801294267\r\n", + "7.08 137.0 80000177.71353569627\r\n", + "39.12 938.0 80000178.329968214035\r\n", + "9.44 196.0 80000180.91684667766\r\n", + "6.56 124.0 80000181.358734831214\r\n", + "24.96 584.0 80000182.17984089255\r\n", + "14.08 312.0 80000182.2385392189\r\n", + "29.92 708.0 80000183.21093174815\r\n", + "8.52 173.0 80000183.68284714222\r\n", + "23.92 558.0 80000184.32184153795\r\n", + "33.96 809.0 80000187.16848820448\r\n", + "13.0 285.0 80000188.89809964597\r\n", + "2.56 24.0 80000189.59268042445\r\n", + "8.52 173.0 80000190.39239893854\r\n", + "29.6 700.0 80000190.987773641944\r\n", + "8.04 161.0 80000191.39765946567\r\n", + "9.84 206.0 80000191.63218219578\r\n", + "37.399998 895.0 80000191.7998701334\r\n", + "37.48 897.0 80000194.591946706176\r\n", + "2.44 21.0 80000195.17524069548\r\n", + "22.72 528.0 80000195.27073279023\r", + "\r\n", + "33.039997 786.0 80000195.60482543707\r\n", + "15.4 345.0 80000197.01553657651\r\n", + "20.56 474.0 80000198.18857589364\r\n", + "12.8 280.0 80000199.30817961693\r\n", + "20.16 464.0 80000200.066078454256\r\n", + "1.6800001 2.0 80000201.68090777099\r\n", + "12.04 261.0 80000202.814891934395\r\n", + "18.32 418.0 80000203.25650832057\r\n", + "40.359997 969.0 80000203.48255087435\r\n", + "34.28 817.0 80000204.7061804533\r\n", + "34.64 826.0 80000207.248482748866\r\n", + "30.4 720.0 80000208.40996426344\r\n", + "28.76 679.0 80000208.54558329284\r\n", + "3.6 50.0 80000212.2733836025\r\n", + "39.399998 945.0 80000213.37501113117\r\n", + "23.64 551.0 80000214.05003093183\r\n", + "10.24 216.0 80000214.76189556718\r\n", + "15.440001 346.0 80000214.94751133025\r\n", + "33.839996 806.0 80000215.30322690308\r\n", + "2.88 32.0 80000215.606552898884\r\n", + "17.56 399.0 80000216.67295819521\r\n", + "17.199999 390.0 80000216.721879810095\r\n", + "22.0 510.0 80000217.02722400427\r\n", + "7.3199997 143.0 80000218.21801964939\r\n", + "6.3199997 118.0 80000223.690936505795\r\n", + "40.519997 973.0 80000224.71057784557\r\n", + "10.6 225.0 80000224.88408643007\r\n", + "31.08 737.0 80000225.81306296587\r\n", + "21.0 485.0 80000228.288003221154\r\n", + "15.64 351.0 80000229.47965101898\r\n", + "34.719997 828.0 80000229.982017084956\r\n", + "25.88 607.0 80000230.13939705491\r\n", + "16.52 373.0 80000230.207446575165\r\n", + "1.8 5.0 80000233.628895014524\r\n", + "33.0 785.0 80000233.858214601874\r\n", + "36.879997 882.0 80000235.58721217513\r\n", + "1.76 4.0 80000236.03008031845\r\n", + "42.239998 1016.0 80000239.206377997994\r\n", + "31.119999 738.0 80000240.66440632939\r\n", + "34.159996 814.0 80000241.05537928641\r\n", + "13.56 299.0 80000242.91226673126\r\n", + "18.92 433.0 80000243.34091578424\r\n", + "22.44 521.0 80000246.23444570601\r\n", + "40.8 980.0 80000246.39591316879\r\n", + "21.28 492.0 80000248.63243843615\r\n", + "24.28 567.0 80000249.259784281254\r\n", + "9.56 199.0 80000249.85402186215\r\n", + "5.04 86.0 80000250.17666938901\r\n", + "3.0 35.0 80000251.49163559079\r\n", + "25.44 596.0 80000251.50295473635\r\n", + "24.4 570.0 80000252.06601053476\r\n", + "30.56 724.0 80000252.272911697626\r\n", + "38.12 913.0 80000252.985514968634\r\n", + "38.8 930.0 80000253.836741268635\r\n", + "30.76 729.0 80000255.06581965089\r\n", + "41.719997 1003.0 80000255.60727831721\r\n", + "41.64 1001.0 80000256.902037888765\r\n", + "19.8 455.0 80000258.60432396829\r\n", + "42.359997 1019.0 80000260.50080451369\r\n", + "25.6 600.0 80000260.75552198291\r\n", + "11.56 249.0 80000260.88460493088\r\n", + "33.839996 806.0 80000261.36898006499\r\n", + "37.48 897.0 80000262.92271217704\r\n", + "18.2 415.0 80000262.99845524132\r\n", + "23.36 544.0 80000263.33590015769\r\n", + "40.96 984.0 80000264.96524555981\r\n", + "9.28 192.0 80000265.84508921206\r\n", + "10.84 231.0 80000266.91673760116\r\n", + "4.44 71.0 80000268.235334053636\r\n", + "22.76 529.0 80000271.489329367876\r\n", + "23.96 559.0 80000271.64101035893\r\n", + "35.879997 857.0 80000271.98798702657\r\n", + "11.16 239.0 80000273.71523039043\r\n", + "36.199997 865.0 80000275.30799421668\r\n", + "32.76 779.0 80000275.81958813965\r\n", + "27.32 643.0 80000276.46777294576\r\n", + "27.0 635.0 80000277.24329108\r\n", + "11.360001 244.0 80000277.80254943669\r\n", + "3.08 37.0 80000278.42643971741\r\n", + "18.68 427.0 80000278.52543953061\r\n", + "5.8399997 106.0 80000278.78952820599\r\n", + "25.24 591.0 80000279.13904826343\r\n", + "11.400001 245.0 80000279.32166413963\r\n", + "6.72 128.0 80000279.47431126237\r\n", + "34.6 825.0 80000281.05502511561\r\n", + "14.2 315.0 80000281.66787202656\r\n", + "18.08 412.0 80000281.735276550055\r\n", + "14.16 314.0 80000283.60641156137\r\n", + "12.4800005 272.0 80000284.68940325081\r\n", + "22.72 528.0 80000284.771769434214\r\n", + "7.2 140.0 80000285.59601339698\r\n", + "37.519997 898.0 80000287.934347867966\r\n", + "37.559998 899.0 80000288.457227408886\r\n", + "25.36 594.0 80000288.84559759498\r\n", + "37.039997 886.0 80000289.283936053514\r\n", + "32.48 772.0 80000289.74665103853\r\n", + "21.36 494.0 80000290.772457659245\r\n", + "1.64 1.0 80000290.879882499576\r\n", + "19.32 443.0 80000291.225027650595\r\n", + "21.84 506.0 80000291.23198154569\r\n", + "2.8 30.0 80000293.356203347445\r\n", + "31.92 758.0 80000296.29710520804\r\n", + "32.52 773.0 80000297.10793355107\r\n", + "37.159996 889.0 80000298.52665117383\r\n", + "12.64 276.0 80000298.93143287301\r\n", + "7.4399996 146.0 80000299.927507817745\r\n", + "17.199999 390.0 80000300.818491622806\r\n", + "2.52 23.0 80000302.07161732018\r\n", + "2.56 24.0 80000302.72473844886\r\n", + "36.319996 868.0 80000305.32900521159\r\n", + "4.52 73.0 80000305.93047915399\r\n", + "3.24 41.0 80000306.89711469412\r\n", + "16.64 376.0 80000309.568026304245\r\n", + "4.4 70.0 80000310.67230030894\r\n", + "18.36 419.0 80000311.17736788094\r\n", + "8.24 166.0 80000311.37703952193\r\n", + "20.12 463.0 80000313.92710117996\r\n", + "36.76 879.0 80000316.52630840242\r\n", + "3.6399999 51.0 80000316.576121881604\r\n", + "2.56 24.0 80000316.61531569064\r\n", + "4.68 77.0 80000316.991498693824\r\n", + "30.92 733.0 80000318.496204048395\r\n", + "4.44 71.0 80000318.759574487805\r\n", + "25.72 603.0 80000318.99812464416\r\n", + "24.16 564.0 80000323.19316992164\r\n", + "39.64 951.0 80000323.76615965366\r\n", + "2.6799998 27.0 80000324.23196092248\r\n", + "30.8 730.0 80000325.30946139991\r\n", + "13.68 302.0 80000325.49627235532\r\n", + "40.64 976.0 80000325.76096495986\r\n", + "9.04 186.0 80000326.018922537565\r\n", + "23.56 549.0 80000328.51117782295\r\n", + "32.12 763.0 80000330.33366891742\r\n", + "21.16 489.0 80000331.37347571552\r\n", + "38.8 930.0 80000332.161390304565\r\n", + "6.2 115.0 80000332.54631538689\r\n", + "37.319996 893.0 80000333.515790537\r\n", + "2.6799998 27.0 80000335.46171656251\r\n", + "27.8 655.0 80000336.63410934806\r\n", + "38.92 933.0 80000339.03143580258\r\n", + "5.7599998 104.0 80000339.16872346401\r\n", + "18.32 418.0 80000340.030776798725\r\n", + "5.8399997 106.0 80000340.41478018463\r\n", + "17.48 397.0 80000340.533760264516\r\n", + "33.32 793.0 80000341.72407652438\r\n", + "11.360001 244.0 80000344.206543818116\r\n", + "24.88 582.0 80000344.78012427688\r\n", + "32.96 784.0 80000345.00482337177\r\n", + "2.52 23.0 80000345.26880034804\r\n", + "13.2 290.0 80000345.654379203916\r\n", + "34.359997 819.0 80000345.975308820605\r\n", + "42.359997 1019.0 80000346.41354955733\r\n", + "7.8799996 157.0 80000346.86677853763\r\n", + "39.6 950.0 80000347.32460169494\r\n", + "9.32 193.0 80000347.35750260949\r\n", + "16.0 360.0 80000349.31582227349\r\n", + "37.879997 907.0 80000351.124539494514\r\n", + "19.44 446.0 80000352.37143753469\r\n", + "36.76 879.0 80000353.196565657854\r\n", + "2.24 16.0 80000354.17744512856\r\n", + "30.88 732.0 80000355.20202793181\r\n", + "39.8 955.0 80000355.60426925123\r\n", + "40.12 963.0 80000355.82318587601\r\n", + "16.4 370.0 80000356.5162641108\r\n", + "10.360001 219.0 80000357.642409190536\r\n", + "4.12 63.0 80000359.16175606847\r\n", + "7.68 152.0 80000359.8546615839\r\n", + "4.12 63.0 80000362.5537327677\r\n", + "20.8 480.0 80000362.92154058814\r\n", + "17.199999 390.0 80000363.773983463645\r\n", + "39.999996 960.0 80000365.48620200157\r\n", + "36.319996 868.0 80000368.489620789886\r\n", + "19.6 450.0 80000369.631684705615\r\n", + "41.679996 1002.0 80000370.6534255296\r\n", + "39.159996 939.0 80000371.82940942049\r\n", + "34.399998 820.0 80000373.43823419511\r\n", + "29.28 692.0 80000373.8585408777\r\n", + "39.039997 936.0 80000374.209455892444\r\n", + "34.44 821.0 80000374.64683301747\r\n", + "2.96 34.0 80000375.620239943266\r\n", + "32.36 769.0 80000378.87894229591\r\n", + "35.999996 860.0 80000378.97707155347\r\n", + "14.28 317.0 80000379.42757484317\r\n", + "37.839996 906.0 80000379.917373120785\r\n", + "8.92 183.0 80000381.10625052452\r\n", + "37.239998 891.0 80000382.077453806996\r\n", + "31.039999 736.0 80000382.17598539591\r\n", + "34.079998 812.0 80000382.22633959353\r\n", + "25.84 606.0 80000382.22792515159\r\n", + "27.6 650.0 80000382.55412106216\r\n", + "2.8 30.0 80000383.94620233774\r\n", + "37.12 888.0 80000384.37110866606\r\n", + "28.16 664.0 80000387.30780394375\r\n", + "20.44 471.0 80000387.87746040523\r\n", + "25.119999 588.0 80000388.37795352936\r\n", + "2.6799998 27.0 80000389.268874913454\r\n", + "37.199997 890.0 80000392.62231977284\r\n", + "28.16 664.0 80000393.17818275094\r\n", + "11.52 248.0 80000393.43643279374\r\n", + "2.6 25.0 80000395.12563699484\r\n", + "15.6 350.0 80000395.77989049256\r\n", + "6.48 122.0 80000396.31284117699\r\n", + "32.039997 761.0 80000399.1847140342\r\n", + "37.92 908.0 80000399.54459910095\r\n", + "16.84 381.0 80000400.72491231561\r\n", + "20.64 476.0 80000403.17735889554\r\n", + "8.88 182.0 80000403.54358610511\r\n", + "20.72 478.0 80000404.22769507766\r\n", + "5.4 95.0 80000404.47602318227\r\n", + "42.479996 1022.0 80000404.67004515231\r\n", + "16.64 376.0 80000408.95574080944\r\n", + "7.16 139.0 80000410.03962627053\r\n", + "16.72 378.0 80000410.75551979244\r\n", + "8.52 173.0 80000412.09823872149\r\n", + "31.8 755.0 80000412.219870209694\r\n", + "1.9200001 8.0 80000412.81054663658\r\n", + "21.96 509.0 80000414.8682410419\r\n", + "24.44 571.0 80000415.37962676585\r\n", + "27.92 658.0 80000416.70795631409\r\n", + "24.56 574.0 80000417.1444568038\r\n", + "37.039997 886.0 80000418.38563929498\r\n", + "1.96 9.0 80000420.47344271839\r\n", + "8.88 182.0 80000420.53409618139\r\n", + "26.48 622.0 80000420.80564555526\r\n", + "41.719997 1003.0 80000420.863403081894\r\n", + "5.96 109.0 80000420.942480519414\r\n", + "35.8 855.0 80000422.02582614124\r\n", + "8.44 171.0 80000422.79813404381\r\n", + "12.76 279.0 80000424.42955330014\r\n", + "7.8399997 156.0 80000424.81564453244\r\n", + "7.4799995 147.0 80000425.28199738264\r\n", + "40.319996 968.0 80000425.867245197296\r\n", + "33.719997 803.0 80000426.62731541693\r\n", + "40.12 963.0 80000427.133511930704\r\n", + "14.52 323.0 80000427.36044855416\r\n", + "7.0 135.0 80000428.54412809014\r\n", + "15.56 349.0 80000428.88726851344\r\n", + "30.6 725.0 80000429.38063727319\r\n", + "19.6 450.0 80000432.95051422715\r\n", + "3.08 37.0 80000434.64868846536\r\n", + "2.4 20.0 80000435.51728320122\r\n", + "39.76 954.0 80000436.24377171695\r\n", + "23.64 551.0 80000437.577606111765\r\n", + "9.48 197.0 80000438.05216662586\r\n", + "34.039997 811.0 80000438.70308248699\r\n", + "2.3600001 19.0 80000442.052734196186\r\n", + "27.36 644.0 80000442.764658123255\r\n", + "14.4800005 322.0 80000443.238895997405\r\n", + "12.76 279.0 80000445.098355308175\r\n", + "14.6 325.0 80000446.023702159524\r\n", + "32.879997 782.0 80000446.16962249577\r\n", + "10.92 233.0 80000448.83636845648\r\n", + "7.7999997 155.0 80000450.061449572444\r\n", + "9.12 188.0 80000450.52947856486\r\n", + "32.079998 762.0 80000450.55909974873\r\n", + "28.32 668.0 80000451.879113674164\r\n", + "22.28 517.0 80000452.064453706145\r\n", + "10.08 212.0 80000452.13652163744\r\n", + "26.32 618.0 80000452.9472001791\r\n", + "35.399998 845.0 80000453.03071194887\r\n", + "9.48 197.0 80000454.07206726074\r\n", + "3.32 43.0 80000456.48143340647\r\n", + "34.399998 820.0 80000458.18602730334\r\n", + "11.56 249.0 80000459.0324331224\r\n", + "4.2799997 67.0 80000459.4572635144\r\n", + "32.36 769.0 80000459.920432657\r\n", + "41.239998 991.0 80000464.06256014109\r\n", + "10.76 229.0 80000464.33307418227\r\n", + "34.079998 812.0 80000466.34134361148\r\n", + "26.84 631.0 80000467.24169912934\r\n", + "16.119999 363.0 80000467.884447038174\r\n", + "40.319996 968.0 80000468.7550342083\r\n", + "10.72 228.0 80000469.84887549281\r\n", + "22.52 523.0 80000469.8745007813\r\n", + "39.92 958.0 80000472.20344258845\r\n", + "27.4 645.0 80000472.30986727774\r\n", + "31.84 756.0 80000473.21885484457\r\n", + "15.440001 346.0 80000473.694500654936\r\n", + "17.24 391.0 80000476.0327218622\r\n", + "32.84 781.0 80000476.96122226119\r\n", + "39.28 942.0 80000480.92292739451\r\n", + "35.319996 843.0 80000481.06054444611\r\n", + "4.4 70.0 80000481.37218731642\r\n", + "24.36 569.0 80000481.933602169156\r\n", + "26.16 614.0 80000481.98567260802\r\n", + "40.879997 982.0 80000482.9210729748\r\n", + "40.479996 972.0 80000483.857440814376\r\n", + "4.64 76.0 80000484.32165810466\r\n", + "39.8 955.0 80000484.80663745105\r\n", + "29.16 689.0 80000486.771085351706\r\n", + "11.84 256.0 80000487.217004179955\r\n", + "14.16 314.0 80000487.990593642\r\n", + "28.92 683.0 80000491.276099190116\r\n", + "37.999996 910.0 80000491.747016862035\r\n", + "6.4399996 121.0 80000493.35879443586\r\n", + "25.2 590.0 80000494.31928488612\r\n", + "12.16 264.0 80000495.14925374091\r\n", + "14.6 325.0 80000495.4605127275\r\n", + "20.64 476.0 80000496.37845928967\r\n", + "5.16 89.0 80000496.85824956\r\n", + "19.88 457.0 80000497.20662690699\r\n", + "35.92 858.0 80000502.43506611884\r\n", + "25.8 605.0 80000502.71769653261\r\n", + "17.119999 388.0 80000502.80815401673\r\n", + "36.159996 864.0 80000504.42526854575\r\n", + "21.4 495.0 80000505.48890078068\r\n", + "12.4800005 272.0 80000506.024649724364\r\n", + "21.92 508.0 80000506.17142087221\r\n", + "4.56 74.0 80000508.07841642201\r\n", + "4.72 78.0 80000508.71263246238\r\n", + "31.56 749.0 80000509.140583753586\r\n", + "28.119999 663.0 80000509.95569059253\r\n", + "27.28 642.0 80000510.86728909612\r\n", + "12.04 261.0 80000512.479585409164\r\n", + "30.199999 715.0 80000516.56570722163\r\n", + "33.36 794.0 80000516.99862577021\r\n", + "5.16 89.0 80000517.344923987985\r\n", + "11.12 238.0 80000519.38823206723\r\n", + "11.32 243.0 80000519.57560668886\r\n", + "5.0 85.0 80000519.58020955324\r\n", + "33.239998 791.0 80000520.51779472828\r\n", + "6.3999996 120.0 80000520.546872377396\r\n", + "9.72 203.0 80000521.153368234634\r\n", + "30.64 726.0 80000521.42145887017\r\n", + "21.96 509.0 80000521.63308496773\r\n", + "12.6 275.0 80000523.057834371924\r\n", + "8.36 169.0 80000525.05073848367\r\n", + "10.56 224.0 80000527.819232299924\r\n", + "29.24 691.0 80000531.12523216009\r\n", + "24.6 575.0 80000532.10568276048\r\n", + "40.8 980.0 80000533.20108996332\r\n", + "17.0 385.0 80000534.29738210142\r\n", + "23.48 547.0 80000534.340845018625\r\n", + "18.28 417.0 80000534.83431440592\r\n", + "2.08 12.0 80000534.87653042376\r\n", + "41.92 1008.0 80000534.895185917616\r\n", + "8.52 173.0 80000535.94042633474\r\n", + "19.84 456.0 80000537.48509004712\r\n", + "10.400001 220.0 80000538.26394830644\r\n", + "23.92 558.0 80000540.002261936665\r\n", + "37.719997 903.0 80000540.1134250015\r\n", + "13.84 306.0 80000546.718622386456\r\n", + "4.32 68.0 80000546.84028501809\r\n", + "18.56 424.0 80000547.30754908919\r\n", + "3.08 37.0 80000549.5327937603\r\n", + "27.88 657.0 80000550.56298401952\r\n", + "29.0 685.0 80000550.60222132504\r\n", + "35.159996 839.0 80000552.734096348286\r\n", + "38.519997 923.0 80000553.922179594636\r\n", + "5.52 98.0 80000555.44246518612\r\n", + "18.56 424.0 80000558.82404534519\r\n", + "39.319996 943.0 80000558.947059229016\r\n", + "32.399998 770.0 80000559.282619684935\r\n", + "33.0 785.0 80000560.58969677985\r\n", + "29.72 703.0 80000560.70387540758\r\n", + "10.24 216.0 80000561.323437169194\r\n", + "17.88 407.0 80000562.679025664926\r\n", + "27.44 646.0 80000563.71705073118\r\n", + "14.4800005 322.0 80000563.95132599771\r\n", + "25.24 591.0 80000564.861919119954\r\n", + "23.24 541.0 80000565.76752875745\r\n", + "37.92 908.0 80000565.78528097272\r\n", + "24.92 583.0 80000566.29958720505\r\n", + "31.88 757.0 80000567.06900238991\r\n", + "42.359997 1019.0 80000569.15245625377\r\n", + "11.68 252.0 80000570.583770141006\r\n", + "11.56 249.0 80000571.260604158044\r\n", + "22.48 522.0 80000572.77767854929\r\n", + "24.64 576.0 80000574.140301436186\r\n", + "28.119999 663.0 80000574.51526069641\r\n", + "3.28 42.0 80000577.082364201546\r\n", + "35.559998 849.0 80000578.60487310588\r\n", + "5.72 103.0 80000579.25371134281\r\n", + "3.4 45.0 80000579.63681046665\r\n", + "6.3199997 118.0 80000581.21821717918\r\n", + "6.3199997 118.0 80000582.04014620185\r\n", + "22.12 513.0 80000583.46193483472\r\n", + "9.5199995 198.0 80000586.03360375762\r\n", + "3.48 47.0 80000589.798507750034\r\n", + "31.72 753.0 80000591.46542161703\r\n", + "2.88 32.0 80000591.97941620648\r\n", + "10.8 230.0 80000593.13316428661\r\n", + "15.84 356.0 80000594.042805209756\r\n", + "15.56 349.0 80000594.91821274161\r\n", + "37.159996 889.0 80000595.397889867425\r\n", + "28.16 664.0 80000595.763835296035\r\n", + "6.8399997 131.0 80000596.830532982945\r\n", + "37.559998 899.0 80000598.901824980974\r\n", + "31.16 739.0 80000599.64194495976\r\n", + "28.88 682.0 80000600.793473765254\r\n", + "31.56 749.0 80000602.10744164884\r\n", + "7.8399997 156.0 80000602.55246156454\r\n", + "17.24 391.0 80000603.4955958724\r\n", + "7.12 138.0 80000606.650620505214\r\n", + "2.16 14.0 80000608.090855017304\r\n", + "37.879997 907.0 80000609.993093535304\r\n", + "4.7999997 80.0 80000610.186307400465\r\n", + "15.56 349.0 80000611.37006236613\r\n", + "30.48 722.0 80000611.83906060457\r\n", + "19.96 459.0 80000611.8572294265\r\n", + "34.64 826.0 80000611.95349282026\r\n", + "41.839996 1006.0 80000613.84575891495\r\n", + "23.2 540.0 80000617.17802332342\r\n", + "17.56 399.0 80000617.24794691801\r\n", + "34.559998 824.0 80000617.35718101263\r\n", + "28.16 664.0 80000617.732587218285\r\n", + "20.64 476.0 80000618.9578525275\r\n", + "28.84 681.0 80000619.30346444249\r\n", + "39.239998 941.0 80000621.2265856415\r\n", + "18.16 414.0 80000621.38765838742\r\n", + "7.9999995 160.0 80000621.735619053245\r\n", + "33.079998 787.0 80000623.792137786746\r\n", + "37.64 901.0 80000623.85770910978\r\n", + "2.6 25.0 80000626.21549396217\r\n", + "31.039999 736.0 80000627.16449086368\r\n", + "33.12 788.0 80000628.88948699832\r\n", + "39.319996 943.0 80000630.68285809457\r\n", + "11.32 243.0 80000630.789920687675\r\n", + "30.48 722.0 80000632.821838498116\r\n", + "27.199999 640.0 80000632.881889894605\r\n", + "24.84 581.0 80000634.78217072785\r\n", + "20.28 467.0 80000635.002951964736\r\n", + "33.679996 802.0 80000635.41563603282\r\n", + "36.199997 865.0 80000635.88681785762\r\n", + "8.56 174.0 80000637.371477141976\r\n", + "35.519997 848.0 80000642.38429802656\r\n", + "30.4 720.0 80000643.78843893111\r\n", + "25.44 596.0 80000644.600917607546\r\n", + "11.68 252.0 80000644.882760211825\r\n", + "10.28 217.0 80000645.594902947545\r\n", + "9.2 190.0 80000645.93502403796\r\n", + "16.439999 371.0 80000646.383003011346\r\n", + "2.6399999 26.0 80000646.53795617819\r\n", + "34.64 826.0 80000647.63100332022\r\n", + "22.84 531.0 80000648.47574129701\r\n", + "5.12 88.0 80000649.00771085918\r\n", + "42.079998 1012.0 80000649.114930674434\r\n", + "24.92 583.0 80000650.1061706841\r\n", + "22.88 532.0 80000655.68533721566\r\n", + "24.68 577.0 80000657.16480255127\r\n", + "26.68 627.0 80000657.258827999234\r\n", + "19.8 455.0 80000657.33367057145\r\n", + "35.64 851.0 80000658.74945259094\r\n", + "2.08 12.0 80000660.18671748042\r\n", + "17.439999 396.0 80000660.63745248318\r\n", + "33.999996 810.0 80000661.82945792377\r\n", + "6.48 122.0 80000661.90170559287\r\n", + "17.16 389.0 80000662.26141363382\r\n", + "33.32 793.0 80000662.64840815961\r\n", + "41.64 1001.0 80000663.12676268816\r\n", + "14.56 324.0 80000663.227578774095\r\n", + "24.44 571.0 80000664.475006356835\r\n", + "3.3600001 44.0 80000664.552283763885\r\n", + "17.24 391.0 80000665.17621576786\r\n", + "27.4 645.0 80000666.08528217673\r\n", + "39.079998 937.0 80000670.71755500138\r\n", + "7.72 153.0 80000671.198174357414\r\n", + "6.8799996 132.0 80000673.345912232995\r\n", + "34.199997 815.0 80000674.87888632715\r\n", + "35.28 842.0 80000676.18293096125\r\n", + "11.64 251.0 80000676.64919489622\r\n", + "40.359997 969.0 80000676.80372226238\r\n", + "31.44 746.0 80000678.275382354856\r\n", + "11.8 255.0 80000680.48982979357\r\n", + "19.28 442.0 80000682.686058193445\r", + "\r\n", + "26.24 616.0 80000684.38221885264\r\n", + "2.8 30.0 80000685.43452076614\r\n", + "22.0 510.0 80000686.74407067895\r\n", + "31.199999 740.0 80000686.81872756779\r\n", + "30.84 731.0 80000688.30932036042\r\n", + "42.319996 1018.0 80000688.81981065869\r\n", + "20.16 464.0 80000691.197261437774\r\n", + "16.4 370.0 80000692.15807239711\r\n", + "27.92 658.0 80000693.03427194059\r\n", + "10.360001 219.0 80000694.3066085726\r\n", + "36.8 880.0 80000694.962600558996\r\n", + "40.44 971.0 80000697.02309130132\r\n", + "38.48 922.0 80000698.11148573458\r\n", + "21.56 499.0 80000698.516439035535\r\n", + "40.28 967.0 80000699.06620439887\r\n", + "42.44 1021.0 80000701.39014860988\r\n", + "27.76 654.0 80000701.87561401725\r\n", + "11.8 255.0 80000702.62369687855\r\n", + "27.88 657.0 80000702.988359063864\r\n", + "39.159996 939.0 80000705.296378955245\r\n", + "23.96 559.0 80000705.433091163635\r\n", + "11.440001 246.0 80000705.599841311574\r\n", + "2.8400002 31.0 80000709.3684746474\r\n", + "12.2 265.0 80000709.77955941856\r\n", + "3.7199998 53.0 80000709.794584959745\r\n", + "11.2 240.0 80000709.846471622586\r\n", + "27.0 635.0 80000711.9785169363\r\n", + "19.4 445.0 80000712.899810910225\r\n", + "1.9200001 8.0 80000713.0795609951\r\n", + "21.96 509.0 80000713.76596863568\r\n", + "36.48 872.0 80000716.780457377434\r\n", + "22.039999 511.0 80000717.29924210906\r\n", + "17.32 393.0 80000720.5562723279\r\n", + "12.68 277.0 80000720.58715964854\r\n", + "41.239998 991.0 80000722.03180555999\r\n", + "29.32 693.0 80000722.03699606657\r\n", + "7.9599996 159.0 80000722.478862181306\r\n", + "29.96 709.0 80000723.87889204919\r\n", + "5.52 98.0 80000724.7961999625\r\n", + "37.44 896.0 80000726.34677195549\r\n", + "40.28 967.0 80000727.47035036981\r\n", + "26.84 631.0 80000728.90236452222\r\n", + "41.92 1008.0 80000729.3514444083\r\n", + "26.16 614.0 80000730.33039654791\r\n", + "4.2 65.0 80000730.81428743899\r\n", + "4.4 70.0 80000731.42920610309\r\n", + "16.359999 369.0 80000732.61377693713\r\n", + "14.04 311.0 80000733.754086226225\r\n", + "17.08 387.0 80000733.79874679446\r\n", + "3.52 48.0 80000733.991308033466\r\n", + "38.28 917.0 80000734.417156770825\r\n", + "1.96 9.0 80000738.45621095598\r\n", + "11.08 237.0 80000739.78259626031\r\n", + "39.319996 943.0 80000739.904296547174\r\n", + "29.36 694.0 80000742.26487219334\r\n", + "20.8 480.0 80000742.58448088169\r\n", + "18.0 410.0 80000743.84713715315\r\n", + "7.0 135.0 80000745.445721656084\r\n", + "33.32 793.0 80000745.704266637564\r\n", + "4.96 84.0 80000746.49740232527\r\n", + "2.88 32.0 80000748.3739194572\r\n", + "40.76 979.0 80000749.18420062959\r\n", + "39.559998 949.0 80000749.238480210304\r\n", + "40.8 980.0 80000749.36030867696\r\n", + "15.36 344.0 80000751.06558699906\r\n", + "35.64 851.0 80000751.55830208957\r\n", + "39.479996 947.0 80000752.70824530721\r\n", + "9.12 188.0 80000752.72337460518\r\n", + "20.64 476.0 80000752.881983697414\r\n", + "29.52 698.0 80000753.15865902603\r\n", + "35.28 842.0 80000753.76198838651\r\n", + "27.92 658.0 80000754.23456764221\r\n", + "18.08 412.0 80000754.3275937736\r\n", + "35.76 854.0 80000755.37613813579\r\n", + "26.56 624.0 80000756.66476659477\r\n", + "6.7599998 129.0 80000758.372802481055\r\n", + "23.48 547.0 80000759.07206888497\r\n", + "29.16 689.0 80000759.892510056496\r\n", + "36.48 872.0 80000761.603752076626\r\n", + "17.16 389.0 80000762.42036630213\r\n", + "11.0 235.0 80000765.06811144948\r\n", + "31.76 754.0 80000765.382397055626\r\n", + "35.44 846.0 80000765.4667224288\r\n", + "41.28 992.0 80000765.93857854605\r\n", + "37.039997 886.0 80000767.26963350177\r\n", + "25.72 603.0 80000767.7786257714\r\n", + "20.28 467.0 80000770.32975102961\r\n", + "7.3999996 145.0 80000771.69804634154\r\n", + "3.32 43.0 80000773.945546999574\r\n", + "37.399998 895.0 80000774.221253693104\r\n", + "10.92 233.0 80000775.89942243695\r\n", + "24.6 575.0 80000777.312041819096\r\n", + "12.4800005 272.0 80000777.77507701516\r\n", + "31.72 753.0 80000777.79259891808\r\n", + "12.360001 269.0 80000779.33480271697\r\n", + "22.64 526.0 80000779.554390221834\r\n", + "36.999996 885.0 80000780.81437155604\r\n", + "29.28 692.0 80000780.933462917805\r\n", + "35.159996 839.0 80000781.15924490988\r\n", + "24.64 576.0 80000781.26206161082\r\n", + "25.119999 588.0 80000781.72611118853\r\n", + "4.7599998 79.0 80000782.172751545906\r\n", + "20.28 467.0 80000783.125701248646\r\n", + "38.64 926.0 80000785.342386975884\r\n", + "4.92 83.0 80000785.36341136694\r\n", + "34.6 825.0 80000785.92007930577\r\n", + "20.56 474.0 80000786.1086602211\r\n", + "17.279999 392.0 80000786.253573834896\r\n", + "33.6 800.0 80000787.553292140365\r\n", + "32.32 768.0 80000787.658161982894\r\n", + "4.68 77.0 80000790.072870031\r\n", + "24.64 576.0 80000792.274298503995\r\n", + "9.44 196.0 80000792.443054273725\r\n", + "17.52 398.0 80000792.46565423906\r\n", + "14.4800005 322.0 80000792.808876529336\r\n", + "33.879997 807.0 80000795.87703709304\r\n", + "32.719997 778.0 80000795.91278010607\r\n", + "5.44 96.0 80000797.14426906407\r\n", + "11.04 236.0 80000797.26987493038\r\n", + "34.719997 828.0 80000798.51847578585\r\n", + "2.2 15.0 80000799.48481544852\r\n", + "31.72 753.0 80000799.881970733404\r\n", + "31.039999 736.0 80000803.51909430325\r\n", + "18.52 423.0 80000803.731096595526\r\n", + "32.16 764.0 80000803.883781552315\r\n", + "40.92 983.0 80000805.29773187637\r\n", + "18.0 410.0 80000805.306009307504\r\n", + "17.32 393.0 80000807.21232941747\r\n", + "11.88 257.0 80000808.28512185812\r\n", + "21.36 494.0 80000808.454649567604\r\n", + "2.48 22.0 80000808.523783952\r\n", + "41.76 1004.0 80000809.73774009943\r\n", + "39.92 958.0 80000810.001270249486\r\n", + "13.12 288.0 80000810.86777666211\r\n", + "41.319996 993.0 80000811.438306853175\r\n", + "6.16 114.0 80000812.21489995718\r\n", + "28.199999 665.0 80000815.07969661057\r\n", + "29.56 699.0 80000815.974775359035\r\n", + "19.44 446.0 80000816.16485761106\r\n", + "3.32 43.0 80000816.704811513424\r\n", + "33.679996 802.0 80000816.80518731475\r\n", + "6.68 127.0 80000816.81600318849\r\n", + "3.1599998 39.0 80000819.00975045562\r\n", + "19.32 443.0 80000819.48453132808\r\n", + "34.079998 812.0 80000821.329228281975\r\n", + "8.8 180.0 80000821.52698163688\r\n", + "36.319996 868.0 80000822.00912617147\r\n", + "34.199997 815.0 80000824.46000294387\r\n", + "10.52 223.0 80000824.66023361683\r\n", + "11.28 242.0 80000825.05113039911\r\n", + "25.0 585.0 80000827.12451052666\r\n", + "3.96 59.0 80000827.4073446542\r\n", + "24.68 577.0 80000828.5048404783\r\n", + "38.159996 914.0 80000828.622610628605\r\n", + "31.88 757.0 80000828.63124883175\r\n", + "24.0 560.0 80000829.2215629518\r\n", + "20.6 475.0 80000829.66059269011\r\n", + "5.32 93.0 80000830.33870181441\r\n", + "13.76 304.0 80000831.20006233454\r\n", + "11.88 257.0 80000831.21613633633\r\n", + "15.16 339.0 80000832.059845909476\r\n", + "21.84 506.0 80000832.423598602414\r\n", + "13.6 300.0 80000833.69929590821\r\n", + "34.999996 835.0 80000834.46965831518\r\n", + "41.159996 989.0 80000836.12533031404\r\n", + "8.12 163.0 80000836.71061439812\r\n", + "28.4 670.0 80000836.78514607251\r\n", + "19.56 449.0 80000837.03853216767\r\n", + "12.88 282.0 80000839.699784219265\r\n", + "5.2799997 92.0 80000841.037233412266\r\n", + "31.76 754.0 80000843.41804847121\r\n", + "35.48 847.0 80000844.98050430417\r\n", + "31.199999 740.0 80000845.57550364733\r\n", + "28.76 679.0 80000850.37028862536\r\n", + "24.039999 561.0 80000850.423752725124\r\n", + "41.839996 1006.0 80000851.28334981203\r\n", + "36.76 879.0 80000851.615449771285\r\n", + "17.4 395.0 80000851.654990166426\r\n", + "38.999996 935.0 80000851.67317868769\r\n", + "12.32 268.0 80000852.59776712954\r\n", + "11.2 240.0 80000854.87065626681\r\n", + "7.4399996 146.0 80000855.74864292145\r\n", + "14.76 329.0 80000855.829678565264\r\n", + "7.2799997 142.0 80000856.83493223786\r\n", + "21.36 494.0 80000858.589912459254\r\n", + "26.28 617.0 80000859.1553748399\r\n", + "37.44 896.0 80000859.18091611564\r\n", + "5.56 99.0 80000859.44560496509\r\n", + "21.44 496.0 80000859.509354412556\r\n", + "25.28 592.0 80000860.59416265786\r\n", + "24.96 584.0 80000861.303189352155\r\n", + "19.4 445.0 80000861.96652762592\r\n", + "10.92 233.0 80000863.23499922454\r\n", + "20.24 466.0 80000864.197188302875\r\n", + "7.04 136.0 80000865.590956673026\r\n", + "42.319996 1018.0 80000865.72700405121\r\n", + "33.6 800.0 80000866.084478631616\r\n", + "31.8 755.0 80000866.50517678261\r\n", + "32.8 780.0 80000866.850857138634\r\n", + "41.239998 991.0 80000867.7263391763\r\n", + "22.0 510.0 80000868.06848114729\r\n", + "14.4800005 322.0 80000869.2763479501\r\n", + "34.44 821.0 80000870.65760450065\r\n", + "19.72 453.0 80000871.05340576172\r\n", + "23.28 542.0 80000873.14886234701\r\n", + "38.239998 916.0 80000874.297571882606\r\n", + "36.039997 861.0 80000874.73376466334\r\n", + "22.28 517.0 80000879.41517931223\r\n", + "33.999996 810.0 80000881.185400635004\r\n", + "15.6 350.0 80000882.22257082164\r\n", + "21.56 499.0 80000884.97935457528\r\n", + "27.84 656.0 80000885.29664757848\r\n", + "11.72 253.0 80000886.4507638216\r\n", + "37.8 905.0 80000888.94126729667\r\n", + "23.28 542.0 80000889.59991361201\r\n", + "33.079998 787.0 80000890.74508482218\r\n", + "32.719997 778.0 80000893.32567283511\r\n", + "13.32 293.0 80000893.43082770705\r\n", + "35.48 847.0 80000893.56059738994\r\n", + "4.68 77.0 80000894.35489681363\r\n", + "39.64 951.0 80000897.77023650706\r\n", + "23.039999 536.0 80000899.03790041804\r\n", + "14.4 320.0 80000899.37754881382\r\n", + "18.4 420.0 80000900.8128515929\r\n", + "10.84 231.0 80000901.414481043816\r\n", + "20.32 468.0 80000901.48123975098\r\n", + "42.359997 1019.0 80000901.93236474693\r\n", + "25.2 590.0 80000901.972453475\r\n", + "23.64 551.0 80000902.81782488525\r\n", + "38.399998 920.0 80000903.59163464606\r\n", + "30.199999 715.0 80000903.92151616514\r\n", + "13.4800005 297.0 80000904.27971172333\r\n", + "11.76 254.0 80000904.998699590564\r\n", + "16.76 379.0 80000905.63441582024\r\n", + "13.2 290.0 80000905.648124307394\r\n", + "2.04 11.0 80000906.234885290265\r\n", + "12.64 276.0 80000907.07798694074\r\n", + "9.16 189.0 80000908.87027671933\r\n", + "25.52 598.0 80000909.368400886655\r\n", + "4.56 74.0 80000909.811767444015\r\n", + "27.24 641.0 80000910.33445057273\r\n", + "17.199999 390.0 80000910.60975474119\r\n", + "2.16 14.0 80000911.29370170832\r\n", + "34.519997 823.0 80000913.69095006585\r\n", + "12.2 265.0 80000914.1802495867\r\n", + "26.88 632.0 80000914.66017211974\r\n", + "28.199999 665.0 80000916.50571863353\r\n", + "42.399998 1020.0 80000916.718121901155\r\n", + "37.44 896.0 80000919.645673155785\r\n", + "27.6 650.0 80000920.63476088643\r\n", + "18.88 432.0 80000922.45012420416\r\n", + "8.48 172.0 80000925.23763982952\r\n", + "12.28 267.0 80000926.283655911684\r\n", + "28.32 668.0 80000926.6409278512\r\n", + "30.96 734.0 80000928.05741724372\r\n", + "32.079998 762.0 80000933.627166330814\r\n", + "39.44 946.0 80000933.76277536154\r\n", + "30.24 716.0 80000934.16055440903\r\n", + "6.7599998 129.0 80000935.81169986725\r\n", + "24.48 572.0 80000936.16736589372\r\n", + "14.6 325.0 80000936.44196587801\r\n", + "25.68 602.0 80000936.549025550485\r\n", + "11.4800005 247.0 80000938.685712620616\r\n", + "6.2 115.0 80000939.08911083639\r\n", + "36.239998 866.0 80000940.29467050731\r\n", + "27.28 642.0 80000941.77238176763\r\n", + "4.2799997 67.0 80000942.128024578094\r\n", + "12.92 283.0 80000942.38229085505\r\n", + "20.96 484.0 80000944.63000917435\r\n", + "9.64 201.0 80000945.404179006815\r\n", + "14.32 318.0 80000945.718157589436\r\n", + "8.32 168.0 80000945.91892364621\r\n", + "42.28 1017.0 80000948.791864678264\r\n", + "29.32 693.0 80000948.85667587817\r\n", + "2.32 18.0 80000949.93122699857\r\n", + "2.6399999 26.0 80000950.1588781476\r\n", + "8.44 171.0 80000950.502268999815\r\n", + "39.8 955.0 80000951.22832208872\r\n", + "21.08 487.0 80000951.838016077876\r\n", + "20.32 468.0 80000952.52954874933\r\n", + "33.96 809.0 80000952.626723498106\r\n", + "21.68 502.0 80000956.18126910925\r\n", + "33.079998 787.0 80000956.38345962763\r\n", + "23.76 554.0 80000957.466738790274\r\n", + "8.32 168.0 80000959.38979135454\r\n", + "14.28 317.0 80000960.34404800832\r\n", + "29.92 708.0 80000962.452562466264\r\n", + "11.64 251.0 80000964.24332383275\r\n", + "25.6 600.0 80000966.99032564461\r\n", + "28.36 669.0 80000967.36089865863\r\n", + "15.4 345.0 80000968.338882282376\r\n", + "25.48 597.0 80000968.875151097775\r\n", + "16.72 378.0 80000969.143758147955\r\n", + "14.76 329.0 80000971.409240707755\r\n", + "19.6 450.0 80000974.77004908025\r\n", + "28.76 679.0 80000974.80595380068\r\n", + "38.359997 919.0 80000975.64050154388\r\n", + "40.6 975.0 80000975.95903091133\r\n", + "4.2 65.0 80000980.43536031246\r\n", + "3.1599998 39.0 80000980.572394132614\r\n", + "41.679996 1002.0 80000981.61112074554\r\n", + "17.439999 396.0 80000981.74807231128\r\n", + "40.239998 966.0 80000983.25735516846\r\n", + "36.359997 869.0 80000985.01507012546\r\n", + "18.12 413.0 80000985.20637777448\r\n", + "38.28 917.0 80000986.77888666093\r\n", + "40.479996 972.0 80000988.17710210383\r\n", + "29.72 703.0 80000988.92275629938\r\n", + "16.96 384.0 80000990.097374781966\r\n", + "30.8 730.0 80000990.79127365351\r\n", + "21.72 503.0 80000991.06344228983\r\n", + "42.28 1017.0 80000991.80377283692\r\n", + "28.24 666.0 80000993.049590453506\r\n", + "7.04 136.0 80000994.441833391786\r\n", + "36.28 867.0 80000994.527631640434\r\n", + "24.4 570.0 80000995.25695282221\r\n", + "21.76 504.0 80000995.29652753472\r\n", + "11.52 248.0 80000995.99297225475\r\n", + "41.319996 993.0 80000996.40901064873\r\n", + "35.239998 841.0 80000996.557712092996\r\n", + "10.52 223.0 80000997.22821688652\r\n", + "33.96 809.0 80000997.405183792114\r\n", + "11.96 259.0 80000997.93263950944\r\n", + "15.440001 346.0 80000998.813208565116\r\n", + "30.92 733.0 80000999.3882278502\r\n", + "3.96 59.0 80000999.59336720407\r\n", + "18.36 419.0 80001000.09518702328\r\n", + "32.039997 761.0 80001001.49414373934\r\n", + "28.48 672.0 80001002.54425382614\r\n", + "39.8 955.0 80001003.1178855896\r\n", + "18.72 428.0 80001003.56476637721\r\n", + "7.52 148.0 80001005.884933292866\r\n", + "9.68 202.0 80001007.618157073855\r\n", + "3.6799998 52.0 80001009.596397176385\r\n", + "13.56 299.0 80001015.068401411176\r\n", + "40.519997 973.0 80001015.44013249874\r\n", + "24.0 560.0 80001017.39824913442\r\n", + "34.12 813.0 80001017.49642172456\r\n", + "25.88 607.0 80001017.91779854894\r\n", + "7.3199997 143.0 80001017.95813263953\r\n", + "12.84 281.0 80001018.01935687661\r\n", + "6.56 124.0 80001023.587887212634\r\n", + "30.64 726.0 80001023.69297429919\r\n" + ] + }, + { + "data": { + "text/plain": [ + "array([80000000.23635569, 80000001.47479323, 80000001.78458866,\n", + " 80000002.78943624, 80000003.42859936, 80000004.07943003,\n", + " 80000006.09310323, 80000007.18041813, 80000008.17602143,\n", + " 80000008.20403489], dtype=float128)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Try the round trip again to verify that everything works\n", + "\n", + "ev.write(\"events.ecsv\", \"ascii.ecsv\")\n", + "ev4 = EventList.read(\"events.ecsv\", \"ascii.ecsv\")\n", + "!cat events.ecsv\n", + "ev4.time[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Transforming a Lightcurve into an EventList." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Event lists can be obtained from light curves, where the standard followed is as follows: as many events are created as the counts in the lightcurve at the time specified by time bins.\n", + "\n", + "To demonstrate this, let us define a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(3)\n", + "counts = np.floor(np.random.rand(3)*5)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([0, 1, 2]), array([1., 4., 3.]))" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.time, lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, eventlist can be loaded by calling static `from_lc()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 1, 1, 1, 2, 2, 2])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList.from_lc(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating EventList from Lightcurve" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "An arguably better way is having proper random events, reproducing the initial light curve within the errors. Stingray does this by using the inverse CDF method, using the light curve as a binned probability distribution.\n", + "Please note that in this case we will have to create the EventList object before (in technical terms, `simulate_times` is not a static method.). See simulation tutorial for more details.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.60459939, 0.8644437 , 1.47100837, 1.54281243, 1.80725171,\n", + " 2.47032653])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev = EventList()\n", + "ev.simulate_times(lc)\n", + "ev.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve from an EventList object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After simulating event list, the original light curve can be recovered. Let's demonstrate by creating a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1.\n", + "times = np.arange(50)\n", + "counts = np.floor(np.random.rand(50)*50000)\n", + "lc = Lightcurve(times, counts, skip_checks=True, dt=1.)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulate an event list." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList()\n", + "ev = ev.from_lc(lc)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.5, 49.5]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Recover original light curve curve using `to_lc()` method. Here, `dt` defines time resolution, `tstart` the starting time, and `tseg` the total time duration." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = ev.to_lc(dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us verify that this has worked properly, by comparing the input and output light curves" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEKCAYAAADTgGjXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAYs0lEQVR4nO3dfbBlVXnn8e9PfOuKypsdiqFhGiMzGXwZlA5CtKYIlojaESaliGhgLGLXlDixy0wiJFOFb0zMVEpRY8j0CGUTRGSMBEKBpINgYtWANNIRAR062hTdxUtHoIkjwYDP/HHWlUP3vbdv777nnHvO+X6qbt191t77nLWqT99nP2utvXaqCkmSunjWqCsgSRpfBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwMNIkm2JLkjyaYkG1vZAUk2JLmn/d6/lSfJZ5JsTvKdJK/ue58z2/H3JDmzr/zo9v6b27kZZHskSc80jEzk16rqqKpa1V6fA9xQVUcAN7TXAG8Cjmg/a4ALoRd0gPOA1wDHAOfNBJ52zHv7zjtp8M2RJM0YRXfWycD6tr0eOKWv/JLquRnYL8nBwBuBDVX1cFU9AmwATmr7XlRVN1fvjslL+t5LkjQEzx7w+xfw10kK+J9VtQ44qKrub/sfAA5q24cA9/Wdu7WVzVe+dZbyeb34xS+ulStX7nlLJGlK3Xbbbf9YVctn2zfoIPK6qtqW5BeBDUm+17+zqqoFmIFKsoZeFxmHHXYYGzduHPRHStLESHLvXPsG2p1VVdva74eAK+mNaTzYuqJovx9qh28DDu07fUUrm698xSzls9VjXVWtqqpVy5fPGkwlSR0MLIgk+YUkL5zZBk4EvgtcDczMsDoTuKptXw2c0WZpHQvsaN1e1wMnJtm/DaifCFzf9j2W5Ng2K+uMvveSJA3BILuzDgKubLNunw1cVlVfS3IrcEWSs4B7gVPb8dcCbwY2Az8B3gNQVQ8n+Rhwazvuo1X1cNt+H/AFYBlwXfuRJA1Jpm0p+FWrVpVjIpK0cElu67tN4xm8Y12S1JlBRJLUmUFEktTZoO8TUUfrLng3l225ZtZ9p69czZq1lw65RpK0KzORJeqyLdewadmOXco3LdsxZ3CRpGEzE1nCjnp8X2664NFnlB2/dr+R1EWSZmMmIknqzEykA8crJKnHINLBzHjFUY/v+4zyTct2wJZreis9Supsvgs18GJtKTGIdOR4hTQ4c12ogRdrS41BRHvN7j0NwmwXauDF2kLt/P/yqGWHc8Ef3r7on2MQ0V6ze09dzXUBMlcWooWbL5tbTAYRLQq799TFXH/ojnp8X05fuXpEtZocc2Vzi8kgImmkhvGHToPjfSKSpM4MIpKkzuzOmhDOkJI0CgaRCeEMKc3wgkLDZBCZIM6QGq6lele1FxQaJoOI1NFSvqvaCwoNi0FE2gveVa1p5+wsSVJnBhFJUmd2Zw3BUh2A1fia7zvlulMaJjORIZjreengM9PVzXzfKded0jCZiQyJA7BabK45paXAICJp7GxatmPWCzC7hofP7ixJY+X0lavnvDfHruHhMxORNFbWrL101ps47RoeDTMRSVJnBhFJUmcGEUlSZwYRSVJnAx9YT7IPsBHYVlWrkxwOXA4cCNwG/GZV/TTJ84BLgKOBHwHvqKot7T3OBc4CngJ+u6qub+UnAZ8G9gE+X1WfGHR7JGkpmWv1gmGtXDCMTOQDwN19r/8I+FRVvRR4hF5woP1+pJV/qh1HkiOB04CXAScBf5pknxacPge8CTgSeGc7VpKmxlyrFwxr5YKBZiJJVgBvAc4HPpgkwAnA6e2Q9cCHgQuBk9s2wFeAP2nHnwxcXlVPAD9Mshk4ph23uap+0D7r8nbsXYNskyQtNaNcvWDQmcgFwO8BP2uvDwQeraon2+utwCFt+xDgPoC2f0c7/uflO50zV7kkaUgGFkSSrAYeqqrbBvUZe1CXNUk2Jtm4ffv2UVdHkibGIDOR1wJvTbKF3kD6CfQGwfdLMtONtgLY1ra3AYcCtP370htg/3n5TufMVb6LqlpXVauqatXy5cv3vmWSJGCAQaSqzq2qFVW1kt7A+Ner6l3AjcDb2mFnAle17avba9r+r1dVtfLTkjyvzew6AvgWcCtwRJLDkzy3fcbVg2qPJGlXo1g760PA5Uk+DtwOXNTKLwL+vA2cP0wvKFBVdya5gt6A+ZPA2VX1FECS9wPX05vie3FV3TnUlkjSlBtKEKmqm4Cb2vYPeHp2Vf8x/wy8fY7zz6c3w2vn8muBaxexqpKkPeAd65KkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzkaxdpb20qZlOzh+7X67lA3jUZgab7N9dwBOX7maNWsvHX6FNPbMRMbM6StXzxoshvUoTI2vub47m5btmPUZ3dJCmImMmTVrL2XNqCuhsTTXd2e2zERaKDMRSVJnBhFJUmcGEUlSZwYRSVJnBhFJUmcGEUlSZwYRSVJn3iciSX3WXfDueW++9O7+ZzITkaQ+l225hk3Ldsy6z7v7d2UmImng5rq6X6prvh31+L7cdMGju5R7d/+uzEQkDdxcV/eu+Tb+zEQkDcVcV/cab2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTOvE9EkvbSfOttTfpaWwPLRJI8P8m3kvx9kjuTfKSVH57kliSbk3w5yXNb+fPa681t/8q+9zq3lX8/yRv7yk9qZZuTnDOotkjSfOa6I38a1toaZCbyBHBCVf04yXOAbya5Dvgg8KmqujzJnwFnARe2349U1UuTnAb8EfCOJEcCpwEvA/4V8DdJ/k37jM8BbwC2Arcmubqq7hpgmyRpVrPdkT8Na20NLBOpnh+3l89pPwWcAHylla8HTmnbJ7fXtP2vT5JWfnlVPVFVPwQ2A8e0n81V9YOq+ilweTtWkjQkAx1YT7JPkk3AQ8AG4B+AR6vqyXbIVuCQtn0IcB9A278DOLC/fKdz5iqfrR5rkmxMsnH79u2L0DJJEgw4iFTVU1V1FLCCXubwy4P8vHnqsa6qVlXVquXLl4+iCpI0kYYyxbeqHgVuBI4D9ksyMxazAtjWtrcBhwK0/fsCP+ov3+mcucolSUMyyNlZy5Ps17aX0RsAv5teMHlbO+xM4Kq2fXV7Tdv/9aqqVn5am711OHAE8C3gVuCINtvrufQG368eVHskSbsa5Oysg4H1SfahF6yuqKprktwFXJ7k48DtwEXt+IuAP0+yGXiYXlCgqu5McgVwF/AkcHZVPQWQ5P3A9cA+wMVVdecA2yNJ2snAgkhVfQd41SzlP6A3PrJz+T8Db5/jvc4Hzp+l/Frg2r2urCSpE5c9kSR1ZhCRJHXm2llSM83rH0ldmYlIzTSvfyR1tceZSJL9gUPbwLk0dubKODYt2zG16x9JXS0oE0lyU5IXJTkA+Dbwv5J8crBVkwZjrozjqMf35fSVq0dQI2l8LTQT2beqHkvyW8AlVXVeEjMRja3ZMg5Je26hYyLPTnIwcCpg57AkCVh4JvIReneGf7Oqbk3yEuCewVVLeiZnTo2H3Y03afIsNBO5v6peWVXvg5/fde6YiIbGmVPjwfGm6bPQTOSzwKsXUCYNjDOnxoPjTdNl3iCS5DjgV4HlST7Yt+tF9BY9lCRNsd1lIs8FXtCOe2Ff+WM8vZy7JGlKzRtEquobwDeSfKGq7h1SnSRJY2KhYyLPS7IOWNl/TlWdMIhKSZLGw0KDyP8G/gz4PPDU4KojaalwWrUWYqFB5MmqunCgNZG0pMxM1935/o5Ny3bAlmtYM6J67SmD4WAtNIj8VZL3AVcCT8wUVtXDA6mVpCVhEqZVT0owXKoWGkTObL9/t6+sgJcsbnU07bzjWYMwCcFwqVpQEKmqwwddEQnmvmr0jmdpaVpQEElyxmzlVXXJ4lZHWpw7nufrBzerkRbPQruzfqVv+/nA6+k9V8QgoiVprowGzGqkxbTQ7qz/0v86yX7A5YOokLRYXMNJGryuz1j/f4DjJJI05RY6JvJX9GZjQW/hxX8HXDGoSkmSxsNCx0T+uG/7SeDeqto6gPpIksbIgrqz2kKM36O3ku/+wE8HWSlJ0nhYUBBJcirwLeDt9J6zfksSl4KXpCm30O6sPwB+paoeAkiyHPgb4CuDqti42rRsxy53wu7uvoQu52jpm+3fFVyvSZNlobOznjUTQJof7cG5U+P0lav3+L6ELudo6Zvr39VnwmvSLDQT+VqS64EvtdfvAK4dTJXG15q1l+7xYm5dztlTc10Rg1fFgzLXv6vrNWnS7O4Z6y8FDqqq303yG8Dr2q7/A3xx0JXT3jt95WqYZ/kPVzGVtDd2l4lcAJwLUFVfBb4KkOQVbd+vz3VikkPpLYtyEL17TNZV1aeTHAB8md5TErcAp1bVI0kCfBp4M/AT4D9V1bfbe50J/Lf21h+vqvWt/GjgC8AyepnRB6pq5n4WMX+mMylXxZMwpuQzLzSudjeucVBV3bFzYStbuZtznwR+p6qOBI4Fzk5yJHAOcENVHQHc0F4DvAk4ov2sAS4EaEHnPOA1wDHAeUn2b+dcCLy377yTdlMnTZhJGVOaWetrZ46haKnbXSay3zz7ls13YlXdD9zftv8pyd3AIcDJwPHtsPXATcCHWvklLZO4Ocl+SQ5ux26YeQBWkg3ASUluAl5UVTe38kuAU4DrdtMmTZBhjCkNyzg982KucbZxywC193aXiWxM8t6dC5P8FnDbQj8kyUrgVcAt9LKb+9uuB+h1d0EvwNzXd9rWVjZf+dZZyiUN0FzZH4xfBqi9t7tMZC1wZZJ38XTQWAU8F/iPC/mAJC8A/gJYW1WP9YY+eqqqkgx8DCPJGnpdZBx22GGD/jj1cWbY5Jmk7E97b95MpKoerKpfBT5CbxB8C/CRqjquqh7Y3ZsneQ69APLFNjAP8GDrpqL9nrn/ZBtwaN/pK1rZfOUrZimfrR3rqmpVVa1avnz57qqtRTLfFat9/dJkWOjzRG4EbtyTN26zrS4C7q6qT/btupreM9s/0X5f1Vf+/iSX0xtE31FV97f7U/5732D6icC5VfVwkseSHEuvm+wM4LN7UkcN1jTMDJOm3UJvNuzitcBvAnck2dTKfp9e8LgiyVnAvfTW4oLeFN03A5vpTfF9D0ALFh8Dbm3HfXRmkB14H09P8b0OB9UlaagGFkSq6ptA5tj9+lmOL+DsOd7rYuDiWco3Ai/fi2pKkvaC619JkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6G+SyJ9K8JuGJhNK0MxPRSEzKEwmlaWcmopHwmRTSZDATkSR1ZiYy5eZ68qBPHZS0EGYiU2yucQmfOihpocxEpthc4xI+dVDSQpmJSJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI68z4RLdi6C949602IrryrpcKVoYfPTEQLdtmWa9i0bMcu5a68q6XAlaFHw0xEe+Sox/flpgseHXU1hs4r3KXPlaFHw0xE2g2vcKW5mYlIu+EVrjQ3MxFJUmcGEUlSZwYRSVJnBhFJUmcOrC/Q2nNfxabHfwg4tVOSZgwsE0lycZKHkny3r+yAJBuS3NN+79/Kk+QzSTYn+U6SV/edc2Y7/p4kZ/aVH53kjnbOZ5JkUG3ZmVM7JalnkJnIF4A/AS7pKzsHuKGqPpHknPb6Q8CbgCPaz2uAC4HXJDkAOA9YBRRwW5Krq+qRdsx7gVuAa4GTgOsG1ZgL/vD2Qb21JI2tgWUiVfW3wMM7FZ8MrG/b64FT+sovqZ6bgf2SHAy8EdhQVQ+3wLEBOKnte1FV3VxVRS9QnYIkaaiGPSZyUFXd37YfAA5q24cA9/Udt7WVzVe+dZZySVry5lrMFHorJKxZe+mQa9TdyGZntQyihvFZSdYk2Zhk4/bt24fxkZI0p7kWM920bMecwWWpGnYm8mCSg6vq/tYl9VAr3wYc2nfcila2DTh+p/KbWvmKWY6fVVWtA9YBrFq1aiiBS5LmM9tipjsv8jkOhp2JXA3MzLA6E7iqr/yMNkvrWGBH6/a6Hjgxyf5tJteJwPVt32NJjm2zss7oey9J0pAMLBNJ8iV6WcSLk2ylN8vqE8AVSc4C7gVObYdfC7wZ2Az8BHgPQFU9nORjwK3tuI9W1cxg/fvozQBbRm9W1sBmZkmSZjewIFJV75xj1+tnObaAs+d4n4uBi2cp3wi8fG/qKEnaOy57IknqzCAiSerMICJJ6swFGCVpDMx1g+KoF4Q1iEjSHti0bMcu93MM4w/5zA2KO3/OqBeENYhI0gKdvnI1zJINDOsP+Ww3KI6aQUSSFmjN2ktZM+pKLDEOrEuSOjMTkYZsVH3qGg+zfT9mypfid8RMRBqi01eunvUPwagHR7U0zPX9gKX7HTETkYbIPnXNZxy/H2YikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwikqTODCKSpM4MIpKkzrxjXZLreakzg4g05Ub9jIxRMnjuPYOINOXGcb2mxTDNwXMxGUQkTaVpDZ6LzSAiLXF2uWgpc3aWtIT5/BEtdWYi0hJml4uWOjMRSVJnBhFJUmd2Z0nSAE36xAgzEUkakGmYGGEmIkkDMg0TI8xEJEmdjX0QSXJSku8n2ZzknFHXR5KmyVh3ZyXZB/gc8AZgK3Brkqur6q7R1mz8TfpgoKTFMe6ZyDHA5qr6QVX9FLgcOHnEdRp70zAYKGlxjHUmAhwC3Nf3eivwmhHVZWJMw2CgpMUx7pnIgiRZk2Rjko3bt28fdXUkaWKMexDZBhza93pFK3uGqlpXVauqatXy5cuHVjlJmnTjHkRuBY5IcniS5wKnAVePuE6SNDXGekykqp5M8n7gemAf4OKqunPE1ZKkqTHWQQSgqq4Frh11PSRpGo17d5YkaYQMIpKkzgwikqTOUlWjrsNQJdkO3Nvx9BcD/7iI1RkXtnu62O7pspB2/+uqmvX+iKkLInsjycaqWjXqegyb7Z4utnu67G277c6SJHVmEJEkdWYQ2TPrRl2BEbHd08V2T5e9ardjIpKkzsxEJEmdGUQWYJoewZvk4iQPJfluX9kBSTYkuaf93n+UdVxsSQ5NcmOSu5LcmeQDrXyi2w2Q5PlJvpXk71vbP9LKD09yS/vOf7ktcDpRkuyT5PYk17TXE99mgCRbktyRZFOSja2s83fdILIbfY/gfRNwJPDOJEeOtlYD9QXgpJ3KzgFuqKojgBva60nyJPA7VXUkcCxwdvs3nvR2AzwBnFBV/x44CjgpybHAHwGfqqqXAo8AZ42uigPzAeDuvtfT0OYZv1ZVR/VN7e38XTeI7N5UPYK3qv4WeHin4pOB9W17PXDKMOs0aFV1f1V9u23/E70/LIcw4e0GqJ4ft5fPaT8FnAB8pZVPXNuTrADeAny+vQ4T3ubd6PxdN4js3myP4D1kRHUZlYOq6v62/QBw0CgrM0hJVgKvAm5hStrdunU2AQ8BG4B/AB6tqifbIZP4nb8A+D3gZ+31gUx+m2cU8NdJbksy8yTszt/1sV8KXsNVVZVkIqf0JXkB8BfA2qp6rHdx2jPJ7a6qp4CjkuwHXAn88mhrNFhJVgMPVdVtSY4fcXVG4XVVtS3JLwIbknyvf+eeftfNRHZvQY/gnXAPJjkYoP1+aMT1WXRJnkMvgHyxqr7aiie+3f2q6lHgRuA4YL8kMxeZk/adfy3w1iRb6HVPnwB8mslu889V1bb2+yF6Fw3HsBffdYPI7vkI3l57z2zbZwJXjbAui671h18E3F1Vn+zbNdHtBkiyvGUgJFkGvIHemNCNwNvaYRPV9qo6t6pWVNVKev+fv15V72KC2zwjyS8keeHMNnAi8F324rvuzYYLkOTN9PpQZx7Be/5oazQ4Sb4EHE9vZc8HgfOAvwSuAA6jtwLyqVW18+D72EryOuDvgDt4uo/89+mNi0xsuwGSvJLeQOo+9C4qr6iqjyZ5Cb2r9AOA24F3V9UTo6vpYLTurP9aVaunoc2tjVe2l88GLquq85McSMfvukFEktSZ3VmSpM4MIpKkzgwikqTODCKSpM4MIpKkzgwi0iJKcmBbHXVTkgeSbGvbP07yp6Oun7TYnOIrDUiSDwM/rqo/HnVdpEExE5GGIMnxfc+t+HCS9Un+Lsm9SX4jyf9oz3j4WluChSRHJ/lGWyjv+r5lKX67PfvkO0kuH2W7JIOINBq/RG/NprcClwI3VtUrgMeBt7RA8lngbVV1NHAxMLNSwjnAq6rqlcB/HnrNpT6u4iuNxnVV9S9J7qC35MjXWvkdwErg3wIvp7fKKu2YmaW6vwN8Mclf0luSRhoZg4g0Gk8AVNXPkvxLPT04+TN6/y8D3FlVx81y7luA/wD8OvAHSV7R9xwMaajszpKWpu8Dy5McB72l6pO8LMmzgEOr6kbgQ8C+wAtGWE9NOTMRaQmqqp8meRvwmST70vu/egHwf4FLW1mAz7TngEgj4RRfSVJndmdJkjoziEiSOjOISJI6M4hIkjoziEiSOjOISJI6M4hIkjoziEiSOvv/L9ch5gJVw5IAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts,'r-', lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "... and their difference" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZAAAAEGCAYAAABLgMOSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAR20lEQVR4nO3df7BcZX3H8ffHRNAW5WdEJKRBYWqjWBxXEKUdRMBQxVBKLWjH/IHNdCqt1GqNZaYg6ow6VqiKdlJgjD+BUtGoFRr5YZ0ORW6QiqiYiDIk5ZeAWmoLRr79Y09kvd4kN8/N3s299/2aubPnec6zu99nsjefe86zezZVhSRJO+oJoy5AkjQzGSCSpCYGiCSpiQEiSWpigEiSmswfdQHTab/99qvFixePugxJmlHWrVv3w6paML5/TgXI4sWLGRsbG3UZkjSjJLlzon5PYUmSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmow0QJIsTXJ7kg1JVk6wf/ckl3X7b0yyeNz+RUkeTvLmaStakgSMMECSzAMuBE4ElgCnJ1kybtgZwENVdQhwPvCecfvfD3xp2LVKkn7VKI9AjgA2VNUdVfUocCmwbNyYZcDqbvsK4GVJApDkZOD7wG3TU64kadAoA+RA4K6B9saub8IxVbUZ+DGwb5I9gLcCb9/ekyRZkWQsydj999+/UwqXJM3cRfRzgfOr6uHtDayqVVXVq6reggULhl+ZJM0R80f43JuAgwbaC7u+icZsTDIf2BN4ADgSODXJe4G9gMeS/F9VfWjoVUuSgNEGyE3AoUkOph8UpwGvGTdmDbAcuAE4Fbi2qgr4nS0DkpwLPGx4SNL0GlmAVNXmJGcCVwPzgEuq6rYk5wFjVbUGuBj4eJINwIP0Q0aStAtI/w/6uaHX69XY2Nioy5CkGSXJuqrqje+fqYvokqQRM0AkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNRhogSZYmuT3JhiQrJ9i/e5LLuv03Jlnc9R+fZF2SW7vbY6e9eEma40YWIEnmARcCJwJLgNOTLBk37Azgoao6BDgfeE/X/0PgpKo6DFgOfHx6qpYkbTHKI5AjgA1VdUdVPQpcCiwbN2YZsLrbvgJ4WZJU1der6r+6/tuAJyfZfVqqliQBow2QA4G7Btobu74Jx1TVZuDHwL7jxvwBcHNVPTKkOiVJE5g/6gKmIslz6J/WOmEbY1YAKwAWLVo0TZVJ0uw3yiOQTcBBA+2FXd+EY5LMB/YEHujaC4ErgddV1fe29iRVtaqqelXVW7BgwU4sX5LmtlEGyE3AoUkOTrIbcBqwZtyYNfQXyQFOBa6tqkqyF/BFYGVV/ft0FSxJetzIAqRb0zgTuBr4NnB5Vd2W5Lwkr+qGXQzsm2QD8CZgy1t9zwQOAf42yS3dz9OmeQqSNKelqkZdw7Tp9Xo1NjY26jIkaUZJsq6qeuP7/SS6JKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmuxwgCTZO8nzhlGMJGnmmFSAJLk+yVOT7APcDPxjkvcPtzRJ0q5sskcge1bVT4BTgI9V1ZHAccMrS5K0q5tsgMxPcgDwauALQ6xHkjRDTDZA3g5cDWyoqpuSPBNYP7yyJEm7uvmTHHd3Vf1i4byq7nANRJLmtskegXxwkn2SpDlim0cgSY4CXgwsSPKmgV1PBeYNszBJ0q5te6ewdgP26MY9ZaD/J8CpwypKkrTr22aAVNVXgK8k+WhV3TlNNUmSZoDJLqLvnmQVsHjwPlV17DCKkiTt+iYbIP8E/ANwEfDz4ZUjSZopJvsurM1V9ZGq+lpVrdvyM9UnT7I0ye1JNiRZOcH+3ZNc1u2/McnigX1v6/pvT/LyqdYiSdoxkw2Qzyf5syQHJNlny89UnjjJPOBC4ERgCXB6kiXjhp0BPFRVhwDnA+/p7rsEOA14DrAU+HD3eJKkaTLZU1jLu9u3DPQV8MwpPPcR9D/ZfgdAkkuBZcC3BsYsA87ttq8APpQkXf+lVfUI8P0kG7rHu2EK9WzVWVedxS333DKMh5akoTv86YdzwdILdvrjTipAqurgnf7McCBw10B7I3Dk1sZU1eYkPwb27fr/Y9x9D5zoSZKsAFYALFq0aKcULkmaZIAked1E/VX1sZ1bzs5XVauAVQC9Xq9aHmMYyS1JM91kT2G9cGD7ScDL6H8vyFQCZBNw0EB7Ydc30ZiNSeYDewIPTPK+kqQhmuwprD8fbCfZC7h0is99E3BokoPp/+d/GvCacWPW0F9/uYH+J9+vrapKsgb4VHdBx2cAhwJfm2I9kqQdMNkjkPH+B5jSuki3pnEm/cvEzwMuqarbkpwHjFXVGuBi4OPdIvmD9EOGbtzl9BfcNwNvqCo/nyJJ0yhV218WSPJ5+u+6gv5/9r8FXF5Vv/LZjV1Zr9ersbGxUZchSTNKknVV1RvfP9kjkPcNbG8G7qyqjTulMknSjDSpDxJ2F1X8Dv0r8u4NPDrMoiRJu75JBUiSV9NfpP5D+t+LfmMSL+cuSXPYZE9hnQ28sKruA0iyAPgy/U+HS5LmoMleC+sJW8Kj88AO3FeSNAtN9gjkqiRXA5/u2n8E/MtwSpIkzQTb+070Q4D9q+otSU4Bju523QB8ctjFSZJ2Xds7ArkAeBtAVX0G+AxAksO6fScNsTZJ0i5se+sY+1fVreM7u77FQ6lIkjQjbC9A9trGvifvxDokSTPM9gJkLMmfjO9M8npgyl9pK0mauba3BnIWcGWS1/J4YPSA3YDfH2JdkqRd3DYDpKruBV6c5KXAc7vuL1bVtUOvTJK0S5vs94FcB1w35FokSTOInyaXJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1GQkAZJknyRrk6zvbvfeyrjl3Zj1SZZ3fb+W5ItJvpPktiTvnt7qJUkwuiOQlcA1VXUocE3X/iVJ9gHOAY4EjgDOGQia91XVs4HnAy9JcuL0lC1J2mJUAbIMWN1trwZOnmDMy4G1VfVgVT0ErAWWVtVPu6/YpaoeBW4GFg6/ZEnSoFEFyP5VdXe3fQ+w/wRjDgTuGmhv7Pp+IclewEn0j2IkSdNo/rAeOMmXgadPsOvswUZVVZJqePz5wKeBD1TVHdsYtwJYAbBo0aIdfRpJ0lYMLUCq6rit7Utyb5IDquruJAcA900wbBNwzEB7IXD9QHsVsL6qLthOHau6sfR6vR0OKknSxEZ1CmsNsLzbXg58boIxVwMnJNm7Wzw/oesjyTuBPYGzhl+qJGkiowqQdwPHJ1kPHNe1SdJLchFAVT0IvAO4qfs5r6oeTLKQ/mmwJcDNSW5J8vpRTEKS5rJUzZ2zOr1er8bGxkZdhiTNKEnWVVVvfL+fRJckNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSEwNEktTEAJEkNTFAJElNDBBJUhMDRJLUxACRJDUxQCRJTQwQSVKTkQRIkn2SrE2yvrvdeyvjlndj1idZPsH+NUm+OfyKJUnjjeoIZCVwTVUdClzTtX9Jkn2Ac4AjgSOAcwaDJskpwMPTU64kabxRBcgyYHW3vRo4eYIxLwfWVtWDVfUQsBZYCpBkD+BNwDuHX6okaSKjCpD9q+rubvseYP8JxhwI3DXQ3tj1AbwD+Dvgp9t7oiQrkowlGbv//vunULIkadD8YT1wki8DT59g19mDjaqqJLUDj3s48Kyq+sski7c3vqpWAasAer3epJ9HkrRtQwuQqjpua/uS3JvkgKq6O8kBwH0TDNsEHDPQXghcDxwF9JL8gH79T0tyfVUdgyRp2ozqFNYaYMu7qpYDn5tgzNXACUn27hbPTwCurqqPVNUzqmoxcDTwXcNDkqbfqALk3cDxSdYDx3VtkvSSXARQVQ/SX+u4qfs5r+uTJO0CUjV3lgV6vV6NjY2NugxJmlGSrKuq3vh+P4kuSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpiQEiSWpigEiSmhggkqQmBogkqYkBIklqYoBIkpoYIJKkJgaIJKmJASJJamKASJKaGCCSpCYGiCSpSapq1DVMmyT3A3c23n0/4Ic7sZyZwnnPLc57bpnsvH+jqhaM75xTATIVScaqqjfqOqab855bnPfcMtV5ewpLktTEAJEkNTFAJm/VqAsYEec9tzjvuWVK83YNRJLUxCMQSVITA0SS1MQA2Y4kS5PcnmRDkpWjrmeYklyS5L4k3xzo2yfJ2iTru9u9R1njMCQ5KMl1Sb6V5LYkb+z6Z/XckzwpydeS/Gc377d3/QcnubF7zV+WZLdR1zoMSeYl+XqSL3TtWT/vJD9IcmuSW5KMdX3Nr3MDZBuSzAMuBE4ElgCnJ1ky2qqG6qPA0nF9K4FrqupQ4JquPdtsBv6qqpYALwLe0P07z/a5PwIcW1W/DRwOLE3yIuA9wPlVdQjwEHDG6EocqjcC3x5oz5V5v7SqDh/4/Efz69wA2bYjgA1VdUdVPQpcCiwbcU1DU1X/Bjw4rnsZsLrbXg2cPJ01TYequruqbu62/5v+fyoHMsvnXn0Pd80ndj8FHAtc0fXPunkDJFkIvAK4qGuHOTDvrWh+nRsg23YgcNdAe2PXN5fsX1V3d9v3APuPsphhS7IYeD5wI3Ng7t1pnFuA+4C1wPeAH1XV5m7IbH3NXwD8NfBY196XuTHvAv41ybokK7q+5tf5/J1dnWavqqoks/Z930n2AP4ZOKuqftL/o7Rvts69qn4OHJ5kL+BK4NmjrWj4krwSuK+q1iU5ZsTlTLejq2pTkqcBa5N8Z3Dnjr7OPQLZtk3AQQPthV3fXHJvkgMAutv7RlzPUCR5Iv3w+GRVfabrnhNzB6iqHwHXAUcBeyXZ8sflbHzNvwR4VZIf0D8tfSzw98z+eVNVm7rb++j/wXAEU3idGyDbdhNwaPfujN2A04A1I65puq0Blnfby4HPjbCWoejOf18MfLuq3j+wa1bPPcmC7siDJE8Gjqe//nMdcGo3bNbNu6reVlULq2ox/d/pa6vqtczyeSf59SRP2bINnAB8kym8zv0k+nYk+T3650vnAZdU1btGW9HwJPk0cAz9SzzfC5wDfBa4HFhE/1L4r66q8QvtM1qSo4GvArfy+Dnxv6G/DjJr557kefQXTefR/2Py8qo6L8kz6f9lvg/wdeCPq+qR0VU6PN0prDdX1Stn+7y7+V3ZNecDn6qqdyXZl8bXuQEiSWriKSxJUhMDRJLUxACRJDUxQCRJTQwQSVITA0TaSZLs213l9JYk9yTZ1G0/nOTDo65P2tl8G680BEnOBR6uqveNuhZpWDwCkYYsyTED3zlxbpLVSb6a5M4kpyR5b/cdDVd1l1QhyQuSfKW76N3VA5ea+Ivue0u+keTSUc5LMkCk6fcs+tdfehXwCeC6qjoM+F/gFV2IfBA4tapeAFwCbLkCwkrg+VX1POBPp71yaYBX45Wm35eq6mdJbqV/GZGruv5bgcXAbwLPpX+1VLoxWy63/Q3gk0k+S/8yM9LIGCDS9HsEoKoeS/Kzenwh8jH6v5MBbquqoya47yuA3wVOAs5OctjAd1hI08pTWNKu53ZgQZKjoH+p+STPSfIE4KCqug54K7AnsMcI69Qc5xGItIupqkeTnAp8IMme9H9PLwC+C3yi6wvwge57PKSR8G28kqQmnsKSJDUxQCRJTQwQSVITA0SS1MQAkSQ1MUAkSU0MEElSk/8HiGXKaLOVk7kAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(lc.time, lc.counts - lc_new.counts, 'g-', drawstyle=\"steps-mid\")\n", + "plt.xlabel('Times')\n", + "plt.ylabel('Counts')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As can be seen from the figure above, the recovered light curve is aligned with the original light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Energies" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to simulate photon energies, a spectral distribution needs to be passed.\n", + "The `spectrum` input is a two-dimensional array, with the energies in keV in the first dimension and the number of counts in the second. The count array will be normalized before the simulation: the raw counts do not matter, but only the ratio of the counts in each bin to the total.\n", + "Again, the energies are simulated using an inverse CDF method." + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[1000, 2040, 1000, 3000, 4020, 2070]]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "ev = EventList(time=np.sort(np.random.uniform(0, 1000, 12)))\n", + "ev.simulate_energies(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.84164641, 3.62741142, 3.68169619, 4.70867585, 4.92065534,\n", + " 4.93644725, 2.26749277, 5.45959615, 3.01137686, 4.86366818,\n", + " 0.63048041, 6.26300006])" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev.energy" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Joining EventLists" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two event lists can also be joined together. If the GTI do not overlap, the event times and GTIs are appended. Otherwise, the GTIs are crossed (i.e., only the overlapping parts are saved) and the events merged together." + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1, 2, 3, 4, 5]), array([[0.5, 5.5]]))" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[4,5], gti=[[3.5, 5.5]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([1. , 1.2, 2. , 3. , 3.3, 5.6]), array([[0.6, 3.5]]))" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev1 = EventList(time=[1,2,3], gti=[[0.5, 3.5]])\n", + "ev2 = EventList(time=[1.2, 3.3, 5.6], gti=[[0.6, 7.8]])\n", + "ev = ev1.join(ev2)\n", + "ev.time, ev.gti" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.html b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.html new file mode 100644 index 000000000..628caa2cb --- /dev/null +++ b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.html @@ -0,0 +1,438 @@ + + + + + + + + R.m.s. - intensity diagram — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+import matplotlib as mpl
+import seaborn
+mpl.rcParams['figure.figsize']=(15.0,8.0)
+mpl.rcParams['font.size']=12                #10
+mpl.rcParams['savefig.dpi']=100             #72
+from matplotlib import pyplot as plt
+
+import stingray as sr
+
+from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum, Crossspectrum, AveragedCrossspectrum
+from stingray import events
+from stingray.events import EventList
+import glob
+import numpy as np
+from astropy.modeling import models, fitting
+
+
+
+
+

R.m.s. - intensity diagram

+

This diagram is used to characterize the variability of black hole binaries and AGN (see e.g. Plant et al., arXiv:1404.7498; McHardy 2010 2010LNP…794..203M for a review).

+

In Stingray it is very easy to calculate.

+
+

Setup: simulate a light curve with a variable rms and rate

+

We simulate a light curve with powerlaw variability, and then we rescale it so that it has increasing flux and r.m.s. variability.

+
+
[2]:
+
+
+
from stingray.simulator.simulator import Simulator
+from scipy.ndimage.filters import gaussian_filter1d
+from stingray.utils import baseline_als
+from scipy.interpolate import interp1d
+
+
+np.random.seed(1034232)
+# Simulate a light curve with increasing variability and flux
+length = 10000
+dt = 0.1
+times = np.arange(0, length, dt)
+
+# Create a light curve with powerlaw variability (index 1),
+# and smooth it to eliminate some Gaussian noise. We will simulate proper
+# noise with the `np.random.poisson` function.
+# Both should not be used together, because they alter the noise properties.
+sim = Simulator(dt=dt, N=int(length/dt), mean=50, rms=0.4)
+counts_cont = sim.simulate(1).counts
+counts_cont_init = gaussian_filter1d(counts_cont, 200)
+
+
+
+
+
[6]:
+
+
+
# ---------------------
+# Renormalize so that the light curve has increasing flux and r.m.s.
+# variability.
+# ---------------------
+
+
+# The baseline function cannot be used with too large arrays.
+# Since it's just an approximation, we will just use one every
+# ten array elements to calculate the baseline
+mask = np.zeros_like(times, dtype=bool)
+mask[::10] = True
+print (counts_cont_init[mask])
+
+baseline = baseline_als(times[mask], counts_cont_init[mask], 1e10, 0.001)
+base_func = interp1d(times[mask], baseline, bounds_error=False, fill_value='extrapolate')
+
+counts_cont = counts_cont_init - base_func(times)
+
+counts_cont -= np.min(counts_cont)
+counts_cont += 1
+counts_cont *= times * 0.003
+# counts_cont += 500
+counts_cont += 500
+
+
+
+
+
+
+
+
+[52.83292539 52.83104461 52.82542772 ... 64.26625716 64.25516327
+ 64.24864925]
+
+
+
+
[7]:
+
+
+
# Finally, Poissonize it!
+counts = np.random.poisson(counts_cont)
+plt.plot(times, counts_cont, zorder=10, label='Continuous light curve')
+plt.plot(times, counts, label='Final light curve')
+
+plt.legend()
+
+
+
+
+
[7]:
+
+
+
+
+<matplotlib.legend.Legend at 0x106983978>
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_4_1.png +
+
+
+
+

R.m.s. - intensity diagram

+

We use the analyze_lc_chunks method in Lightcurve to calculate two quantities: the rate and the excess variance, normalized as \(F_{\rm var}\) (Vaughan et al. 2010). analyze_lc_chunks() requires an input function that just accepts a light curve. Therefore, we create the two functions rate and excvar that wrap the existing functionality in Stingray.

+

Then, we plot the results.

+

Done!

+
+
[8]:
+
+
+
# This function can be found in stingray.utils
+def excess_variance(lc, normalization='fvar'):
+    """Calculate the excess variance.
+
+    Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source
+    intrinsic variance: the *excess variance*, defined as
+
+    .. math:: \sigma_{XS} = S^2 - \overline{\sigma_{err}^2}
+
+    the *normalized excess variance*, defined as
+
+    .. math:: \sigma_{NXS} = \sigma_{XS} / \overline{x^2}
+
+    and the *fractional mean square variability amplitude*, or
+    :math:`F_{var}`, defined as
+
+    .. math:: F_{var} = \sqrt{\dfrac{\sigma_{XS}}{\overline{x^2}}}
+
+
+    Parameters
+    ----------
+    lc : a :class:`Lightcurve` object
+    normalization : str
+        if 'fvar', return the fractional mean square variability :math:`F_{var}`.
+        If 'none', return the unnormalized excess variance variance
+        :math:`\sigma_{XS}`. If 'norm_xs', return the normalized excess variance
+        :math:`\sigma_{XS}`
+
+    Returns
+    -------
+    var_xs : float
+    var_xs_err : float
+    """
+    lc_mean_var = np.mean(lc.counts_err ** 2)
+    lc_actual_var = np.var(lc.counts)
+    var_xs = lc_actual_var - lc_mean_var
+    mean_lc = np.mean(lc.counts)
+    mean_ctvar = mean_lc ** 2
+    var_nxs = var_xs / mean_lc ** 2
+
+    fvar = np.sqrt(var_xs / mean_ctvar)
+
+    N = len(lc.counts)
+    var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2
+    var_nxs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc
+    var_nxs_err = np.sqrt(var_nxs_err_A ** 2 + var_nxs_err_B ** 2)
+
+    fvar_err = var_nxs_err / (2 * fvar)
+
+    if normalization == 'fvar':
+        return fvar, fvar_err
+    elif normalization == 'norm_xs':
+        return var_nxs, var_nxs_err
+    elif normalization == 'none' or normalization is None:
+        return var_xs, var_nxs_err * mean_lc **2
+
+
+
+
+
[9]:
+
+
+
def fvar_fun(lc):
+    return excess_variance(lc, normalization='fvar')
+
+def norm_exc_var_fun(lc):
+    return excess_variance(lc, normalization='norm_xs')
+
+def exc_var_fun(lc):
+    return excess_variance(lc, normalization='none')
+
+def rate_fun(lc):
+    return lc.meancounts, np.std(lc.counts)
+
+lc = Lightcurve(times, counts, gti=[[-0.5*dt, length - 0.5*dt]], dt=dt)
+
+start, stop, res = lc.analyze_lc_chunks(1000, np.var)
+var = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, rate_fun)
+rate, rate_err = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, fvar_fun)
+fvar, fvar_err = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, exc_var_fun)
+evar, evar_err = res
+
+start, stop, res = lc.analyze_lc_chunks(1000, norm_exc_var_fun)
+nvar, nvar_err = res
+
+plt.errorbar(rate, fvar, xerr=rate_err, yerr=fvar_err, fmt='none')
+plt.loglog()
+plt.xlabel('Count rate')
+plt.ylabel(r'$F_{\rm var}$')
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.text.Text at 0x1140ab588>
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_7_1.png +
+
+
+
[10]:
+
+
+
tmean = (start + stop)/2
+
+
+
+
+
[11]:
+
+
+
from matplotlib.gridspec import GridSpec
+plt.figure(figsize=(15, 20))
+gs = GridSpec(5, 1)
+ax_lc = plt.subplot(gs[0])
+ax_mean = plt.subplot(gs[1], sharex=ax_lc)
+ax_evar = plt.subplot(gs[2], sharex=ax_lc)
+ax_nvar = plt.subplot(gs[3], sharex=ax_lc)
+ax_fvar = plt.subplot(gs[4], sharex=ax_lc)
+
+ax_lc.plot(lc.time, lc.counts)
+ax_lc.set_ylabel('Counts')
+ax_mean.scatter(tmean, rate)
+ax_mean.set_ylabel('Counts')
+
+ax_evar.errorbar(tmean, evar, yerr=evar_err, fmt='o')
+ax_evar.set_ylabel(r'$\sigma_{XS}$')
+
+ax_fvar.errorbar(tmean, fvar, yerr=fvar_err, fmt='o')
+ax_fvar.set_ylabel(r'$F_{var}$')
+
+ax_nvar.errorbar(tmean, nvar, yerr=nvar_err, fmt='o')
+ax_nvar.set_ylabel(r'$\sigma_{NXS}$')
+

+
+
+
+
[11]:
+
+
+
+
+<matplotlib.text.Text at 0x118bf6eb8>
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Analyze_light_curves_chunk_by_chunk_-_an_example_9_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb new file mode 100644 index 000000000..fb3c8ab12 --- /dev/null +++ b/notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline \n", + "import matplotlib as mpl\n", + "import seaborn\n", + "mpl.rcParams['figure.figsize']=(15.0,8.0) \n", + "mpl.rcParams['font.size']=12 #10 \n", + "mpl.rcParams['savefig.dpi']=100 #72 \n", + "from matplotlib import pyplot as plt\n", + "\n", + "import stingray as sr\n", + "\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum, Crossspectrum, AveragedCrossspectrum\n", + "from stingray import events\n", + "from stingray.events import EventList\n", + "import glob\n", + "import numpy as np\n", + "from astropy.modeling import models, fitting\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# R.m.s. - intensity diagram\n", + "\n", + "This diagram is used to characterize the variability of black hole binaries and AGN (see e.g. Plant et al., arXiv:1404.7498; McHardy 2010 2010LNP...794..203M for a review).\n", + "\n", + "In Stingray it is very easy to calculate.\n", + "\n", + "## Setup: simulate a light curve with a variable rms and rate\n", + "We simulate a light curve with powerlaw variability, and then we rescale\n", + "it so that it has increasing flux and r.m.s. variability." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.simulator import Simulator\n", + "from scipy.ndimage.filters import gaussian_filter1d\n", + "from stingray.utils import baseline_als\n", + "from scipy.interpolate import interp1d\n", + "\n", + "\n", + "np.random.seed(1034232)\n", + "# Simulate a light curve with increasing variability and flux\n", + "length = 10000\n", + "dt = 0.1\n", + "times = np.arange(0, length, dt)\n", + "\n", + "# Create a light curve with powerlaw variability (index 1), \n", + "# and smooth it to eliminate some Gaussian noise. We will simulate proper\n", + "# noise with the `np.random.poisson` function.\n", + "# Both should not be used together, because they alter the noise properties.\n", + "sim = Simulator(dt=dt, N=int(length/dt), mean=50, rms=0.4)\n", + "counts_cont = sim.simulate(1).counts\n", + "counts_cont_init = gaussian_filter1d(counts_cont, 200)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[52.83292539 52.83104461 52.82542772 ... 64.26625716 64.25516327\n", + " 64.24864925]\n" + ] + } + ], + "source": [ + "# ---------------------\n", + "# Renormalize so that the light curve has increasing flux and r.m.s. \n", + "# variability.\n", + "# ---------------------\n", + "\n", + "\n", + "# The baseline function cannot be used with too large arrays. \n", + "# Since it's just an approximation, we will just use one every\n", + "# ten array elements to calculate the baseline\n", + "mask = np.zeros_like(times, dtype=bool)\n", + "mask[::10] = True\n", + "print (counts_cont_init[mask])\n", + "\n", + "baseline = baseline_als(times[mask], counts_cont_init[mask], 1e10, 0.001)\n", + "base_func = interp1d(times[mask], baseline, bounds_error=False, fill_value='extrapolate')\n", + "\n", + "counts_cont = counts_cont_init - base_func(times)\n", + "\n", + "counts_cont -= np.min(counts_cont)\n", + "counts_cont += 1\n", + "counts_cont *= times * 0.003\n", + "# counts_cont += 500\n", + "counts_cont += 500\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXUAAAD3CAYAAADi8sSvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd8HNW1x7+zTb1XS5Ys2bLHvWAbAzZgCD3UhJZHSEJ/hJaEkNBCNS2hQwKBUMILIS8BXgKEGqqNccO9jWVbzeqSZXVtm3l/jCRLturuzDbd7+fDh907M/eesXbP3rn3nN+RNE1DIBAIBJGBJdgGCAQCgcA4hFMXCASCCEI4dYFAIIgghFMXCASCCEI4dYFAIIggbMEcvL6+1efQm5SUWJqaOow0J+QR9zw2EPc8NvDnnjMyEqTBjoXtTN1mswbbhIAj7nlsIO55bGDWPYetUxcIBALB4QinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBBGEcOoCgUAQQQinLhAIBAFkTc161tdtNq3/oGaUhip79+7hueeepquri87OTo4+ejGXX341kjRoEteAfPnl58yYMRNJknjllT/xy1/eapLFw/PSS38kLS2NGTNmsWLFV1x22VUDnvf+++9SVlbKtdfe0K9948b1xMcnUFQ0ORDmCgQRy5+3/w2AU2csNqV/MVM/hNbWVu6553ZuvPFmnnnmj/zxj6+wZ89u/vWvt0bd1z/+8Qbt7e2kpaUH1aH3ZfJkeVCHPhT//vc7NDTUm2CRQDB2aHa2mD5GSM/U//7ZbtburBvwmNUq4fWOXjpm4dRMLjyxaNDjK1Z8yRFHLCQvL797HCt33nkvdrsdgGeeeYLNmzcCcPLJp3HhhT/ggQfuwW63U1NTTWNjA7fffg+NjQ3s3r2LZcvu4je/uZ9ly+7mhRde5cc/vpi5c49gz57dADz88OPs2rWTf/3rLe699yEAzj77VN555yOqq6t46KH78Hq9SJLEvffeTVpabu9xgLvvvo1zzvk+6ekZPPTQvVitNlRV5e67l5GVlX3Y/a1fv653rPfe+ydvvfV3EhOTsNnsfOc7JwOwbdsWfv7z6zhwoIlzzz0fWZ7G6tXfsGvXTgoKJpKdrferaRpPPPFbduzYhtvt4YorriYuLn7Ae3nggXtobm6mpaWZ/PwJzJs3n9NPP5PGxgZuueVnvPzyX3j++WfZtGkDqqpy0UWXcOKJJ4367ysQhDJK027TxxAz9UNoaKgnJye3X1tsbCx2u52vv15OdXUVL7zwKs899xKffPJhr3POzh7H448/y/e/fxHvvPM2xxyzhKKiKdx55329PwgA7e3tnHTSqTz77AtkZGSyatXXg9ry+98/yQUXXMzvf/8iN910M7fffvug565du5pp02bw5JN/4IorrqG9vW3I+zxw4AB/+ctrPPfcyzz++LN0dXX2HrPZbDz++LM8+OCj/OMfbzB16jQWLTqaa6+9sdehA3z11Rc0Nx/gxRdf4+mnn2fnzh1Djjl//gKef/5lfvCDS/ngg/cA+Oij9/nud8/im2++prq6kueee4mnn36e1157mdbW1iH7EwjCjQ5P5/An+UlIz9QvPLFo0Fl1RkYC9fXGf+mzssaxa9fOfm1VVZXU1dVSVlbCnDlzkSQJm83GjBmzKC3dC+jLGgCZmVls2bJpyDGmTDl4rsvlOux4T93Y0tJS5sw5orf/mpqaAc7V/3/mmefw+ut/5uabbyAuLp5rrrluSBv27augsLCQ6OhoAGbOnN3HvqlIkkRqahpdXV2D9lFeXsaMGfp1iYmJXHXVtaxfv27AewHIz58AQGHhRLxeLzU11Xz66Sc8+eQfeOedt1GUnVx//dUAeDweamqqmDgxZ8j7EAjChQ53J//Y9S/TxxEz9UNYvHgJq1evpLJyH6A7l2eeeYK9e/cwYUJh79KLx+Nh69bNjB+vL9MMtIlqsVhQVXWAUfqf63BE0djYCEBNTTUtLc0AFBQUsHnzBgCKixXS09N7x+7o6MDtdlNSsgfQl43mzJnHU089xwknfIfXX//zkPc5fnweZWWlOJ1dqKrKjh3bDlo3wL1IkoSm9b+XgoICdu7cDkBbWxu/+MX1g96L3sfBj9uZZ57DH/7wNAUFhSQkJDBhQgHz5i3g2Wdf4Omnn+fEE08iN3f8kPcgEIQTyyu/Ccg4IT1TDwZxcfHccce9PPLIMlRVpaOjg8WLj+W8885HkiQ2bPiWa665DLfbzYknnoQsTx20r5kzZ7Ns2d386ld3DDnm1KnTiI+P56qrfkxBQSHjxunLP9dd9zMeeWQZb7zxFzweDw888AAAF174A6655ifk5OSSnT2uu4/pLFt2N3/+80uoqsoNN/xiyDGTk5O55JIf89OfXkViYiJOpxObzYbH4xnw/OnTZ/L8888yblwuBQWFACxZcjzr1q3h2muvwOv1ctllVw16L4dywgkn8dRTj/Lww48DsHjxcWzY8C0//emVdHZ2cNxxJxAbGzfkPQgE4YSGz+UjRoXU9/E40PhTJMOs5ZdQxsh79ng8vP76n/nxj69A0zSuu+4qrr76p8yde4Qh/RuF+DuPDSL5njVN48PSzyhtKWNr48Gl3b9f9JzP9zxUkYxhZ+qyLEcBrwATgRbgOkADXu3+/1bgOkVRVFmWrwKuATzAMkVR3vPJYoHp2Gw2urq6uPzyS7DZ7EyfPpM5c+YF2yyBIOKo6ajjvZKPDmt3eg7fTzOCkSy/XAW0KYpylCzLMvAs4ATuVBTlC1mWnwfOkWX5G+BGYAEQDayQZfkTRVGcplgu8Jtrrrlu2A1VgUDgH26ve8D2leXrmJkwy/DxRrJROh34AEBRFAWYBswHvuw+/gFwEnAk8LWiKE5FUZqB3cDsw7sTCAQCgVlr7COZqW8EzpRl+Z/AIiAXqFMUpceiViAJSASa+1zX0z4oKSmxftXpy8hI8PnacEXc89hA3HPk0GodeMNf1TRT7nkkTv1l9Nn5cuBr4Fugb/BwAnAAfb09YYD2QfGnengkb6wMhrjnsYG458iiqaV9wPYX1r3OnMQ5PvU51I/BSJZfFgKfKoqyBPgHsBfYIMvy0u7jp6M7/DXAsbIsR8uynIT+Q7DVJ4sFAoEgQghUKGMPI3HqxcDPujdC7wd+AdwM3Nvd5gDeVBSlBnga3cF/BtyhKMrg6YghSnV1FaeccjzXX39173+vvPIixcUKr7zy4qj7u/76qykrKx2w7f3332XFii8HvhB44IF7WLVq5WHt//rX24PGkwsEguDS7GzlyfXPU9pSDoDLa06Uy2AMu/yiKEoD+kbooRw/wLkvAqP3fCFGQUEhzz77wmHtPVIARnHGGWf5dN3//M8rnHbad7HZRO6YQBBqfFT2GcUH9vKHTS+z7Jg7eHLDHwM6fkh7hbd3v8eGui0DHrNaJLzq6B9r5mXO4ntFZ476ur7qhhdffB6zZs2hvLyM1NRUli37LV1dnTz88DLa2lppaKjne9+7kPPOO3/IPns0zs855/s89tgjKMp2UlPTqK6u4pFHngD0Wflf//oabW1tPPDA/Xz77Sb272/knntu56GHHuvtq6mpiQceuJu2tjY0TePOO+/l448/IC0tjXPPPZ+yslJ+97sHefbZF7j00gvJy5uA3W5j3759LFv2COPG5fD55/9h06aNXHnlf/Pww/fR3Kzve//sZ7cwadLgypYCgaAvWu//Hv322YCPHtJOPViUlpb0CksB3H33sn7Hq6oqeeqp58jKyubaay9nx47t2O12TjrpFI4//kQaGuq5/vqrh3XqPaxY8SUtLc28+OJrNDU18YMfnNd7TJan8pOfXMn777/L22+/zXXX3cyrr77EPfc82K+PP//5JZYsOY5zzz2fLVs29dNyOZTOzk5+8pMrmDJlKv/3f2/y4Yf/5rLLruL999/l2mtv4LXXXmb+/CM577zzqago58EH7+W5514a0b0IBGOZVlcbLa6DCqmVbdUBtyGknfr3is4cdFZt5m75QMsvFRXlva+TkpJ7tcp1pUUnWVlZ/P3vf+XLLz8nNjZuVGvepaWlzJypJyGkpKSQn1/Qe0yWpwGQmprGjh1DKyZ+97tnAzBr1hxmzZrDSy8dfOw7VA6iZ4yTTz6N6667krPOOpf29nYmTixi797drF+/jk8//RiA1lbzhf0Fgkjg1hX39b5u9/ge3ecPIe3UQ5WBVAz/9re/MHPmbM4773zWr1/HN9+sGHF/EydO4qOP3ufCC6GlpaXfD8jAiomWw5x0j2Li5MlT2LhxPStXriAhIbFXMfFQOeGefuPj45HlaTz99OO9a/wTJhRwyinTOeWU02hq2s+77/5zxPciEAiCi3DqBrF48XE88cRv+fTTj4mPj8dqtQ6olT4QxxyzhFWrVvLf/305qalpREdHD7kJOmfOXH75yxt55pk/9jrnSy+9nIceuo+PPnofSZK49dbfIEkSd911Gxs2fNs74x+Is846l5tvvpHbbrsLgB/96HIefvh+3nnnbTo62rn88qsHvVYgEIQWQqUxBCgrK6W4WOGkk06lufkAl156EW+++S4Oh6PfeZF0zyNF3PPYIBzvuaa9lhVVqzln0hnYLfok7LrPfjWqPn5/4m99GtsvlUaB+WRmZvHcc0/z97+/gaqqXHvtDYc5dIFAEFo8/u1ztHs6yIrNoL6jEYsUGjWHhFMPAWJiYnqLRQgEgvCgZyO03d3BpxVfBdmag4TGT4tAIBCEKe/uPVwrPZgIpy4QCAQRhHDqghHzPzv+zselnwfbDIFAMARiTV0wYlZVrwPglIITgmyJQCAYDDFTFwgEgghCOHWBT7i9bmraa4NthkAgOATh1AU+8ftNL3H/6seoaqsZ9tz/lH/Jy1tfP6ztpa1/AUDVVFRNHbUNjZ37eXjNk5S1VIz6WoEgUhFOXeATxQf2AlDTUTfsuf+3+998W7fpsLb1dZsB+OVXd3H/6kdHbcPfd/2TirYqfrvumVFfKxBEKsKpCwKKV/Ue1ub0uqjraACgw93Jyqq1lLfsY2vDjsPOre2oZ2O3xn7PNQKB4CAi+kUQMD4o+ZT3Sj7iqlk/GvB4TXstbxW/x/b9Sm/b0qkL+51z36rfAfDwkrvMM1QgMBlNtYA0+iXHkSBm6gLDcHldrKxaQ5dnYN3390r0zLsXt7zW29Z35n7/6sf6OfRD6bvu7vSh7qNX9R4mWSwQBBq1I56ub7+DtyHXlP6FUxcYxnt7P+b1nW/yVvF7I77mxi9uG9F5+1qruOHzW3vf/8+O/6Wu8+DyS0Vr1YBLOz2omsqNX9zGMxvDvoSuIIjsatrNv/Z84NfkwFNTAJoVyW5OQWrh1AWDsrF+K9XDhC1KHFQArWitBKCy3bgSXt9UfEt1ey2PrHu6X/vuAyX93j+89kn+prw96JfNreqVqJSm3YbZJhh7PLXhBT4u+5zd3YECo0Vz2/E2jkOKaseSVG+wdTpiTV0wIB3uzt5lkpFoPq+oXMWuA3sAqGytQtO0Aas2jZYnvxl5bdSV1Wvp9Dq5cuYP/R5XIAD4vGIF8fY4FmbP69f+WcXIK5v1xVM/HjQrtqxyDPh6DIhw6oIBcavuEZ3X87l8Q3m7t82jedlUvxWbxcZzm18xwbrB2VC3mS6Pk6/2rcRutXNc7tFYLdaA2iCIHN4sfgfgMKc+2L7RUGiahLcuHywerOmVhtg3EMKpC0xhb0sZn5YHR2P6reJ3WFm9FtBrsS4dvzgodggil56n0tGgNmWguWKwZpYj2UZemH60iDV1wbA0O1t5aM2TAx+UJNbVbAisQcPQ49BB37wVES+CUMBTOwEAW2b5MGf6h5ipC4bl9q/vH/RYfUcD/9zz/mHtJc3mfnBHSqenk0/KviA9Ni3YpgjCnDZ3u8/Xqh3xqK1pWBIbscS2GWjV4QinLvCLwR5D9zaXBtaQIfjX3g+GPO5VvUiSFDI1JgWhyb/3fuzztZ7afABsWWVGmTMowqkL/GJ74+DJQqFKTXst2XFZve9vWX43Tq+LK2b+kNLmcs4r+q4hkTuCyKLD0+nTdZrHhrcxB8nRiSV5eK0kfxFTE8GY4/7Vj9Hlcfa+78lOfWnrX/i04iuq2odXnhQIRoqnfjyoNqwmhjH2RTh1wZhkU/1WQJfvPRSvNnhmqmBsomqqTxLPmoYexih5saXvM8GywxFOXTAg/mwKhQNratYD8Or2vwXZEkE4cMPnt1Lf2Tjq69QDGWjOWKzpVUj2keV++ItYUxf0Y3nlKjRN48vKlYOe8/qOfwTQInPokTJod3cE2RJBJNMbxpgVuGiwYZ26LMt24M9AAeAFrgI8wKuABmwFrlMURZVl+Srgmu7jyxRFGbmykyAk+FufzNDB6BsHHq60utpo7GxioCXO/Z1N5CeMD7hNgshC7YxDbUnHkrAfS2xrwMYdyfLLGYBNUZRjgPuAB4DHgTsVRTkWPVP8HFmWs4EbgcXAqcBDsixHmWO2wEgqWqt8SnsOd5qcB/AMsH7e5GwG9Dqsf935JhWtVYE2TRABBDKMsS8jceq7AJssyxYgEXAD84Evu49/AJwEHAl8rSiKU1GUZmA3MNt4kwVGUt/RyMNrn+Tmr+4ac0sRmqYO+WO2quZbvq5aw6OiXJ5glGheq66Xbu8KSBhjX0aypt6GvvSyE0gHzgSOUxSlJ/e6FUhCd/jNfa7raR+UlJRYbDbfxZYyMhJ8vjZcMfqea2oPCgu9uP3PhvYd6jy54Y9YB0g4io+PIiMjAcd+/ZhH8wb8syY+2+GNtz4XVBu2nL1IlsFlKsy455E49Z8DHymKcpssy3nAZ4Cjz/EE4ADQ0v360PZBaWryfWaYkZFAfX3g1qlCASPvubq9ln2tVSQ44nvbihtLhrgiMvFqh5cUa2tzUl/fSnvbwVl8ID9r4rMd3mgaeOomgKRiyxg6jNHXex7qx2Akyy9NHJyB7wfswAZZlpd2t50OLAfWAMfKshwty3ISMA19E1UQgixb/Rivbn+DFldkfJFMQWSVCnxAbU5H64rDmlptWnWjoRjJTP0J4GVZlpejz9BvB9YBL8qy7AB2AG8qiuKVZflpdAdvAe5QFGXs7b6FGf8p/3L4kwQCwYjpDWPMDuwGaQ/DOnVFUdqACwc4dPwA574IiCKQIU7fWp6VbcaVnosUxNOLAKCqbfRyEWpnHGpzhh7GGNdiglXDIzJKxyDCaQ3Nx2WfA/3rrwrGFpqm8cCax0d9naemAABbdqmxBo0C4dTHGCXN5dy58sFgmxHyPLruWb7c93Xv+7d3v0eLq3XYQtyCyOD6z3896ms0tx1vQw5SVEfAwxj7ImQCIhS3102Hp4sNdZtZnLsIu8XG+rrNvLT1L8E2LSwoaemf1v1p+Ve95flGUohbEL70qHaOFk9dXndR6bKg7rELpx6h/OzLO3pfu1U3i8bNFw5dIBiGL/et5O+7/jnq6zRVwlOXD1Y31mHCGM1GLL+MAfZ3NXHbisFL0glGj6+zOUFooWoqv137DP8u+QTAJ4cO4G3MAXc0tox9SNbgSjcLpy4QjJJ39nzIL768k/V1m4NtisBPujxOyloreL/kk35RYaNB03o2SFWso9B5SYoyJ4NWOPUwpm/1nqEo9UHcXzA4H5V9BsCq6nVBtkRgJNsad/p0ndqShtaZgDW1BkvUyFNzbjr6cp/GGw7h1MOUDXVbuPmr37Cyqr8M7seln7Oyak2/tvLW4K7xRSoiNDSyGEixc0TXVRcCYBtXOuJrMmPSmZk11afxhkNslIYpq7o1zZdXruSIzFlEWaOQJIl/7f0gyJaNHSpaD4qhdXmcRFkdomB1GNPhg0qp2hF/UDN9FMlGdqt91GONFOHUw5wDzhZu/uouFmTN5bIZ/xVsc0aM5rajdsWhdcWiOWPRPHZQraB1PzxaPUg2F5KjCym6HUtsK5LNE1yjB6HD3cEty+9hZto0rp1zWbDNEfjIGyMoEHMoB5ONQkcMTzj1MKdnCWBd7caQduqa2463OR21OR21LRnNGTfqPqToNqwpdbpQUmxrSOht3bbifo7LPRqArY07gmyNIJBorii8jTn6pCO5flTXWkzMVhZOPYIItepFmteKd3823sZxqC1p0PNBtrqxJNVjiWlFiu5AiurQ1ewsXiSLiqZJ4LWhuaPQXNFoXXGo7Ymobcl4qifiqZ6oO/jUGqxp1Vhiglcku8XVynslHwdtfIF/+KN95KmdAJoFW3bJqCcY0gA6/kYhnHoE8YdNLwfbBADUzlg8tRP0yi+q/hGzxDdhSa7DmtyAFDP0LPvgobZ+7ZpqQT2Qof9QNGXiqSrCU1WEFNuCLWMf1vR9SNbD9dEDyaflX7Eoez7xjtE/iQgCT6en06frNK9VzyC1ObGmh1a5Q+HUI4g9zaVBHV/tjMNTWYR3fzYggb0L27gSrOlVWKJ8+/L0RbKoWFNrsabW6k8BTZl4949DbU7HXTYdd+Uk7Dl7sGZWDFltxkze3v0eO/cXc93cK4IyvmB4vKqXvc2l5Mbn+Pyd8dTlgdeObfwuJIsvEwnzPp/CqYchFa1VbPUxptYMNLcD977JeOvHAxJSbLPuzFNrkSRzPryS1YstvRpbejWa24GnZgKe2gm4y6fjqZ2APX8nluT6oKy7C9Gv0Objsi94r+Qjn6/XVAlv7QSweLBlhl4OiHDqYUCXx8kbyltcOOcM4kjm4bVPBtskQF8O8VQX4KmeCKoNKboNe54ScGcq2V3Y84qxZZfirirCW5uHq3g+lqR67AXbRpUQYhSVbdXE2WNJjhqyTK8gwLS52v1y6KBLAmiuGKxZpUg2t0GWGYdIPgoDlld+w7rajdz9+ej1nc3C25yGc8sSPJVTwOLFXrCNqFlfY00JzuwYQLK7cUzYQdSsr7EkNqA2Z+g21o1HC/BqzINrnuCOrx8AoLhpLxvrtgTWAMGAvF/6H7+u1zT0SYykYh8XOmGMfREz9TDApeqzgU538KNbNFXCs28KnppCQMWWXYItd3fQRYz6YolpxyGvw9uQi7t8Ku7SmXgPZOIo3IJkN39m1eQ8WG+9rqOeJzc8DwjJ3mBT2lLeTyPfF9SmTL3+aPo+JMfIZDoCjXDqghGjdsXg2jMHrT0ZKbodx6RNQSvZNRySBLaMSiyJjbhLZqIeyKRr62IcRRuxJhwYvgODuHfV7wI2lmBwmp0t/G7ds37349o9DwCbn7N0Mx8cxfJLCLO+bjNvFb/bTz2uw+1/FIkvePdn4dx2DFp7Mta0SqJmrAxZh94XS1QXDnkdtvEKuB24dh6Jp258UGz5ump1UMYVQKurbfiThsHbkgJIWOL3BzU3YjjETD2EGaioxWPf/j6gNmiqBXf5VLx1+WDxYC/cjC0jtOJyh0OSwJ5TgiW+GdfuubhLZ6K5Hdhy9gZ0/f+vO99icc6iwA0oMBRP1SQAbLl7fO5jXsYsNtRvwW4xz/UKpx5m1HQErvah2hmHa/cctM5EpJhWHEUbQ3qGMhzWxP1ETVuNS1mAp3IKmjsK+4QdISE3IDAXf4XW1LbEbuGuRqxJjT71EWOL5vuTz8KrqZxXdIZf9gyFWH4RDIinMRvntqPROhOxZpQTNeObsHboPVhi2omavgopphVv3QTce+agqcKrRyJv7HyLR9Y+ZUhf7uqJANhy9vrVT0p0MtfM/jGZsRlGmDUgwqkLDsNdXYB7z1wA7JM24ijc7mPWXGgiOZxETVuNJWE/3v3jcO2aj+a1BtssgQHUddRT064/za6oWk15H3lkX1E741CbspDimrEkjm6WfvWsH/V5F5jJg3Dqgl40DdwVU/BUTAV7F1HTV2FLqwm2WaYg2Tw45HVYkmtRW9Jx7jgSze0ItlkCP7l31e+4f/Wj/dq8qpf/lH/pc596EQwJ+7jR78HMSp/O4pwjAXBYzNNQ74tYUxcA3Q69dAbe+jykqHYcU9cGJRMzkEgWFcfkjbhLp+Otz8O5fZHu6KODE2EkMIc1tRtYU7Pep2tVZ0y3vG4blpTRyz9YJAtnTzqdNncH3y082ScbRj1mQEYRhDSaKuHaPVd36LHNRE1fHfEOvQdJ0rAXbMOWsxvNGYdzxyLUTvMUFjs9XT4XOBYMza6mgaNSWv0oO+ipLtTldX2IlDpm3EIA4u1xXD3rR+TGj/PZjtEgnPoYR/Nace2aj9qUjSVhP1FT1+ra5mMISQL7+N3Y83eAOxrnzoWoXTGmjPXLr+7ixi9uM6Xvsc7bu98bsP2z8uU+9ae5ovDWj0eK6sCaNnrd9UumXeDTuP4inHqQaHd3oGrB3XzU3HbdgbWkY0muxSGvC9mScYHAll3W69hdykI0V5RpY1W0hlesfzjT6vYt8cjdM0sft3fUaqPj43N8GtMIhFMPAgeczfxq+T28sOW1fu1ur5sdjbvY1bSbzytWmGqD5orCuWNRb4aoY/LGiIpw8RVbdhm23GI0ZyxOZQGax5xtp5VVa+jyhKZ2iECXk/bW5SE5OrGmjz6CJikq0QSrRobYKA0CPXrbWxq292t/s/gdVgQglVztjO2eieryofb8nSIBpw+2nD1oHjve2gJcxUfoTzAG/+B9VbmSxq79/HTO5Yb2KzAGfS3dqs/SfSi4snT8YhOsGhliph5C7GzabfoYamcczp2L0Fwx2MbvEg59ACQJ7Pk7saZWo7am6klYJigwbQuhQieRgFEfY80Vhac2X5+lZ+zzqY/cIC6/DDtTl2X5J8BPut9GA3OBJcCT6GJjW4HrFEVRZVm+CrgG8ADLFEUZeOdCMCBm+1bVGY1LWQDuKOz527Fll5s8YvgiSWCfuBnNFY3aloKnQsaerxg+zoeln3H0uIUkRSUY3vdYw6jfXXfPLD1nj89lEYP59xx2pq4oyquKoixVFGUp8C1wI3AXcKeiKMei+6JzZFnO7j62GDgVeEiWZfN2miIQf/UphkJz23EpC7pn6Ipw6CNAsmg4Jq8HqxtPTaEp6o7v7v2QV7a9bni/YxEjQkU1V5Rfa+nnTz6bO478hd92+MOI19RlWV4AzFAU5TpZlu8GelK0PgBOAbzA14qiOAGnLMu7gdnA2sH6TEmJxWbzPT0QZyjhAAAgAElEQVQ7IyM8ZzfV3tje14kpUUTZ9ExGq9Wc1TDNa9U3/brisWXv9VsLeiwh2d1ETV+Fc8uxuEtnIkV3YE3cb+gYDc7Gwz7L4frZ9gd/77mvL/G1L3fVRL9m6Rcecfqozjfj7zyajdLbgXu7X0uKovTccSuQBCQCzX3O72kflKamjlEM35+MjATq631PKggmB5oP3velb93UWxHH6zU++kRTLbq2SUcS1owKbHm7xBr6KLHEtOOYuhqXshBX8Vxd3MzArFPVq1Ff30qXp4uS5nKOlY+gocF//e9wwojvs8dzcKZeVjX67E89Lj1Pj0v3YZYOjOoe/LnnoX4MRuTUZVlOBmRFUT7vburrfRKAA0BL9+tD2wWHIA2yei4ZvG+taRKu3XNQW1OxpNRgL9gmHLqPWBObsE/Yjrt0Jq7iI3SlR4NK+DW7Wvig5NPegshR8VczMarIkL7HElXtB3WKbll+z6iv12fpFp9n6SlRyaO+xgxG6kWOAz7t836DLMtLu1+fDiwH1gDHyrIcLctyEjANfRNVcAjaIVs6H5V+xidlX9DmY5LEgGNo4N47E/VAFpbEBhyTNgmH7ie2zH1YM8vROhNwl8wwNCKmb4X7iubRZy+OVfa1VlHbUe93P6ozulf3yJruW2LYrUfe5LcdRjDS5RcZ6CskfDPwoizLDmAH8KaiKF5Zlp9Gd/AW4A5FUcaGgMgouOebR6jv7C/f+c7eDw0dQ9PQqxU15iLFHcAxeYPPu/iC/tjzd6B1JODdn4MlvhlbdpnhY7Q4w3NZMRg8tPZJwP+i3p6eWXrunlFnj/YQbzdPM2g0jMipK4ryu0Pe7wKOH+C8F4EXjTEtMjnUoZuBp2oS3toCpJhWoqZ8a9gyga/E2mLo8Pi+Bp0Tl93v0TqYSBYNR9FGurYdjbtcRoprwZrQZOgYqys2cGL2UirbqhgXl02CI97Q/gX9UZ0xeBvG67N0HzReQg2RfGQSmqbR0q0O1+xs4f2ST3B6zRfK8tTm46mcjOToIEpeh2R3mz6mmZw2eSk3z/8pNhNrOo4WyeHEUbQJQC/3Z7AOe1NXM7euuI+nNrzAwwZV7olEXN6Dn+31dZt97ufgLH23z7P0UEI4dZN4r+RjbltxP9sad/LKtr/y75JP+KTs8+Ev9ANPYzbusulgd+KYug7JETraIncfdYtP150/47tE26J5aumDTEudYrBVvmNNaMKWt0sX/9ozx/CM0x6xtwPO5mHOHLvcuuLe3tcDFWkfCWpXDN6GXKTotoiYpYNw6qaxfN83gJ4KXtfRAMC+NvM+NN7WZNx7Z4HFQ5S8Dku07+GiRnPJtAtGXJNxUfb8fu+jrKFbjciWXdpdOSmtt9K8IHAY8eTrqZrUZy3dAKNCAOHUA0CzqwU4XMDLKFRnNK7ieaBZcBRtxBIbWhtt04eYYR9aDaavE//x9It7E7NCEUkCx8StSI5OPJVFeFtSgm3SmKDZ2crzm1/xux+1KxZvg17VyJoaGbN0EE497OkpcoEnCvuEHViTGwI6ft4wwkU5cdnYh6jNeMYQJb7yE/qn5Q8W3x9MJJsb+6RNgKYvw7iNr0O5qX6b4X2GI62uNryql3+XfMSWhh1+9+epnAT0rKX7b1+oIJx6GKNp3Rt1nQlYM8uwZQVezyV+iMiM84q+yx2LftGraXPWxFO5YPI5gTItYFgTDmAbX6yvr5fMMnx9/R+7/mVsh2FIq6ute/P4j3gM0HhRO+L12qMxrVhTQyOyyiiEUzcJb/dGV3HT3mHO9B1PhYzanIklsQH7hODIuA61eXlSfv+o19MKvsPi3EW97xPs+g/CY8fdP+pxM2PTB2y//cifU5iYP+r+/MU2rgRLYgPqgUy8dYEfP9LZ36WHje5pLjWkP3flZEDCPj7yZDOEUzcI7ZDpWZdXz7syK77aUzceT00hUnQbjqKNQQvF8uf7YLXoAkzRtijOLDyFS6YOU9Oxe7AJCXncfdSvDjt81sRTyY0fx09m/OCwpRuz0dfXt4DNhbtcRu0QseVmUdHqmy5LD2pbEmpTFpb4JizJvmejXjDlHK6dfRkAcbbYYc4OHMKpG8C/9nzA9Z//ujfKxWy8Lal66KLVhWPK+qDWFc05pEL65OSJQ55v6fMzEGOL7n19euFJHJOzcERj9sgsTEudwtHjDl5zWsF3AEiPSePXC29kfuac3mOByPaTHE4chVtBs+LaMxtNjbApYIjgz0RJ08BdIQNgy1P8mqUnOhKYkTaVCyafw68W3uh7RwYjnPooOXRGDvBxd/z50xteGPQco1C7YnEVzwXAMXlD0EMXp6ZO5udHXNv7fmH2vCHPt1qs3Dj3auSUIq6aeemQ5yYfUufx0I3S6+deyQ+nXcCyY24fUMO6x/lnxWbwyLF3DzmWUVhT6rBmlKN1JuLZZ0xcfZPzAG3udpxeF5vrtxmiGz5WUZvTdYG7pDqsCf7pDc5Jn4EkSSzNW0x6TKpBFvpP6KTphQG17XXct/pRfjTtIhaNm3/Y8VZ3Gy6vm1u+usuU8TWPTY908TqwF27BmmhserqvFCUXjup8ObUIOXVoFUK7xUZ0n5n8UKREJzNQMOGkpELW121meqo8Kvv8xZ6v6LHrNQVYkusN0V//9fJ7SXDE0+pq44Ip5wS1Bma4omng3jcZ0LDn7fKrrwkJeb3Lh6GGmKmPglU13wLw151v9rYdOiuv72zAoxk/k9JUCdfueWhdcXqhiwz/1hXNIis2E4Apyf4l40RZhyqaNbInoePGH83Pj7iWc4vOAPS490AgWb04Jm0GNNx7Z6F5jJk7tbp0Fc/K1siJqR4JH5Z+xvsln/jdj3f/OL2uQFo1llj/FFGX5B7ltz1mIWbqfrC3uYzHvv19vzYzYqk1Ddxl01Bb0rAk1+rp6UHkkqkX8PrOf/Rru+uoWyhu2kNRciGPHXc/Dqvx8dqj/Ze1SJZ+TxGOAGanWuKbseXsxVNVhLtsereTN4rw1ycZDe8aoGKqqRKeiikgqdhyi/3qyyJZRrz/EwyEU/eRhs79hzl0j+rhT1v/x/CxvLUT8NbnI8W24Ji0OSghWHaLDbeqb8hG2w6fRWfFZpDVLQUw0HEj8dWl9WyW2i123Kr5Qme2nD14m9PxNubgTanFmjr6ajwCY/DW5aO5YrBmVPhdteqswlMNssocxPKLD3g0L+Wt+wY8ZoRgf1+8B9Jxl08FexeOyesDKqN7esFJA7ZnxOgx4vkJuQGzRce/X7NJSQVcLJ/Xb1P10ePu44HFd/hr2IBIFk0Pc5S8uEqnG5ZtOrbm6f6jeey4KyeB1Y19vO9PuTaLjceOu59TCk4w0DrjETN1H/FVFW40qB3xuHbPBUklavIGLFGBrTli6fNIcFrBd3h3r16dJy8hh1sWXE929/p5uCBJEsfmHg3A5TMuoaqtmhhbNFbJvLmNJaYd2/hiPBVT9WWYbsleQeBwV04CrwNb3k6/pajNfgo1AjFTD1E0twPXriNAtWGfuAVLfOAlWPvOCHtiwHsoSMwfcXTKaCjozgadlT79sGNnTzqN5KgkLpxyrt/jzM+aw1mTTgP0tfbLpv+AhVlH+N3vQNiyS7HEN+HdPw5PY7bf/a2r3chnFcsNsCw0cXndvLvnw94sUn9Qu2Lx1uUjOTqwZflXpSpcsg6EUw9BNNWCq3gemisWW24xtrTQ0KYIRNbcwux53Dz/p1wkn3fYsdz4cTyw+A4mJk0wfNwF2fP4yQxzomMkCeyFW8DixV023e+iGm7VzVvF71LWUmGQhaFBTyTZ5xXL+bDsM/64+c+0udv96tNdMUWX1s3b5XNJx0lJBX7ZEGiEUw8xNA3cJTNQ21KwplZhy9lj6njPnvDIiM99aMlveHLpgyZao0cWTEwqwB5ClY6MwBLToa/nehz6+roBC+O/XfcMzc5W3N0VgFRNpanLv4SaYLGpZjvXf/5rNtVv663Z29C5n2c2+F4d09uagtqUjRR3wC/RrsLeSUR4zNWFUw8xPNUTewtG2yduNTXS5fuTz+pVUOwh1hZz8M0hnsdqsUacsx0MM54GrFllWBL2ozZl420cN/wFI+D2r+/nvtWPAvDytr9y58oHqTSxGItZPPDlMwC8uu2vvW1d3i72tVX51F9PGDCAY8IOv75HWphtTQunHkJ4mzLx7JuC5OgkavJ6JItq6ngDZVqeXvAdFuccybzM2aaOHaokRyUBcMXMH/L48csM7fvgMowHd9k0NJcxm277u5po7NzPhu46neUtA0dmhQMug0JNvfV5aB2JWNMr/dqP+s2im3tfh8c8XUS/hAxqRzyuPbPB4tFDFx3mF6keiKy4TE7MPw6AspYK3i/9z5CFLCKNO478BY1dTb3O3Wgs0Z3Y8xTcZTNwlc7Q/9YGeIu7vnm49/Wmhq0cHcLJMWajeey6HIDF41cI41HZC8iOywq7GFIxUx8At9cd0IK/mtveG+nimLgFS1xgytH1+JLbj/x5b1ta9EFhogmJeTxx/LLDSs5FMrH2GPISBq7m9NM5lxsyhjWzAktio6693jh05Shf2NKwY9A8ilBD1VQaO43VMHLvKwKPQ69o5Efx9RPzj+3fECbC62KmPgAPrHmc+s5GChLzmZw8kdMKTiTaFm1KtEGvposrFlvO7qBkHebGj+Ox4+6jrrOB7Lj+seeBTK0PRVKikmly6puPFoPi2fVlmK04tyzGXTYNa2KjX85nIJqdLZBgaJejpiea5dB9mx7+V/k/vqr8xtAx1Y54vHV5SFHtfocwhitipj4A9Z2NAJS2lPNJ+Rf8YdPL/HP3+yhNuw0dR9/Mma5LgabUYMs1tv/hSI9J630dbYsOeGGJcODm+T81pV9LVCf2/J3gteMqmWl4CbxQ4HfrnuX+1Y8Netxoh35wc9SCfcIOn0MYe+hJrhMbpWHI8spVvL7jH4Me39NcyiflXxg+rrcuH299nq7pMnGLaU93PZosfbl8xn+FrHRoKJESndzvvVUy7t/MmrFPL4HXnIG3IdCSC+D0unh245/YZfBkpYey1gpqO+pM6Xsg1KYs1NY0XSvdzwLsJ+cvPez7ER6LL8KpA/A35W1WVq9F1cyNNumLtzkNd9lUsDlN13S566hbOH/y2f3aMsMsxT9UMGpdHQ4uw2B14y6fiuo0LkN3JFW41tSsZ8f+XTzVXdwlnNG8Fl0jSVL1JyAD6YlTn5cRHhFhwqn3QUIytWpRD2pnbLemS3f1IhM1XXpEt7Q+P1gn5C1hfLwxcdJjDaM/H5aort5lGLeByzBv736vV1VzMALxWQ8UnsrJaK4YXZIhxthqYPMyZnHLguu5eOr3DO3XLIRTP4Q7vn7A1P41jw1X8Xzw2rEXbPW7pNZwZHYvvdi79c3tFhvnTz570M0rweH8cNqF5MaPY1JSIaoJ66vW9EosSfWoLel4643b1/j9xj/x913/NKw/I2jqOsA/d79Pl8e4iYzaEY+nRtfNNyoDO6pPgIAkSRQk5odN4l14WBkgNDSaXS3m9a9KuHbP7VO9yLdsuZGQFp1CY1cTi7L1sntHZS+gorWK47pVCgUj5+hxCzh63AIAxscbH4IoSeAo3ErXliW4y6diSWrEEuWf5jdA8YG9FB/Yy4y0acxIOzzRLBi/6y9ve529zcZFpWgaOLcuAcCev8OQZcxjxh3JCXlL/O4nWAin3oc7TZylaxq4y6ehtqRjSa4zvXrRz4+4lnh73MEZutXOf039vqljjgWSosyJE5QcTuwTduDeOxt3yUwc8lrDnO7eAyXMSJPZub+Yqrbq3uQys2hxtfJp+Ve97/+8/W9cNOVc2t0d1HfokWVruktD+ounpgAAKbYZqwEhjNfPuZJpacYUDA8WY9apFzft4cPSz7hy1g9725pd5iX9eGvzdQnQmBYckzaZPkuKd8SHzeNiuJEanWKILOyhWNOq8O7P1pOS6vKwZRmTF/Fh2WfMypjOMxt1caxJyYW4vC76xnOUt+4zLKT1jZ1vs7lhW+/7NTXr8apevq07qCVvxHdNc9vxVEwF8Ct6bF7GLM4oPJmU6CRi+mofhSkj+tbLsnwbcDbgAP4AfAm8ip5AuxW4TlEUVZblq4BrAA+wTFGU98ww2gie3PBHAFZWrTV9LL160TSwO3FMCWz1IoHxHDNuIe+VfMyS3KOYmDiB13b8ryH9ShI4CrbRtSUZd4WMJanB79JrPfxu3bO9r3+7ThfPulg+uPFX0VJpmFMfKBt7T3OpIX33xV2uO3Rb3k6/CklPSZlETrz/OvehwrAbpbIsLwWOARYDxwN5wOPAnYqiHIv+c3+OLMvZwI3d550KPCTLckiUCRkqVNHsxIL+1YvWB6x6kdgGNY9TC07kVwtu4KIp57Jo3HxD++5ZhkG14S6ZZWpS0qGfEVVT2dKwvfcpZKDvjaqpvLjlNdbUrOft4vd4v+STw87pcB8efWK07Ib3QLquZhrbjC3b92WXn827hiW5RxloWfAZyUz9VGAL8H9AInALcBX6bB3gA+AUwAt8rSiKE3DKsrwbmA0MOhVOSYnFZvM9mSMjIwFVValtb2BcwsBx139a9wYf7/mK1773BNH2w+OAuyRjw5/6orkcuHbN16sXTdoY0OpFGRmJ2CIkuSgjI8j57gOQlXlQ8Ov8GWfw5rb3AfjvhZfy/Fr/io9b06rxNmXpEr21E/xyWkMRF38wwuMfu9/hr8pb+viShVe/9wSXvnUT35m4hGsWXtJ7XmVLDRvrt7Kxfmtv24+P7B/q1+I2V7tI81pxl84ASe1edvH9l++YKXMNtGz0mPHZHolTTwcmAGcChcA7gEVRlJ5/yVYgCd3h9/VaPe2D0tTku0PNyEigvr6VN3a+xYqq1fx0zhUD7vB/vEffsNleUUpeQi6vbf9fJiTm9R7/oPhzn20YCs1rwVl8hB47O36XqdWLjh9/DF/uW9mvraG+NSIyRnv+zqFMtu1gRMyshFl+96cvw2ynqzUVd8UULImNfi0vDEbDgYORXj2FNgC8msrOCv2H5NO9K/hewcHEtf3th1ciqq1r7qeLY3b4u7tC1r9XObv9/ncJ5mfLn8/2UD8GI4lTbwQ+UhTFpSiKAnTR31knAAeAFvpLCPW0m8rKav1BYM+BkiHP09BQNZXVNd+aHruraeDaOxutPRlreiW2cXtNHc+Imp2C0EKyu3AUbgXNqn+W1MAuqH1Q+p8Rn3vD57fybe1G1tVuZFX1OhOtAm9LanfAQavpVcHClZHM1FcAN8my/DgwDogDPpVleamiKF8ApwOfA2uAB2RZjgaigGnom6gB4aOyzyhMyu9XsFjf4ddpd3ewrnZjQGzxVMioTdlYEvZjLzC3etFgiOSi8MeaUoc1owJvfR6eysnYDQ6D3VC3ZdBj67sLbvRF1VRaBsnjeLlPxSK7xe6/cQOgea24984CVByFW/0W7IpUhnXqiqK8J8vycehO2wJcB5QAL8qy7AB2AG8qiuKVZflpYHn3eXcoihKYXcFunt/8Kr8/8be97/uu+z2/+VU8w6RNG4GnZgKemkKk6DZd08XkD96Ppl0EwHG5xwAaS3KPorFzv2EysYLgYs/fidqSiqe6EEtSPdZE40Ipy1pHFjJZ3LSX32/6E27Vw5mFpwx7vlczJ7qra+Px4HXoyy4B3J8KN0YU0qgoyq8GaD5+gPNeBHyvFOsD0gBxHqqmIiH1270PhEP37s/Sw6zsXTjkdUg2c8Z85Ni7+fXyewF6oy8ukg8uweQKXZeAMr67qMbinEX92i+Wv8fflLf96luyenFM2oxz+yLce2djmfm1aZ+rwXhyw/O9r3c2FQ97vhnCeJ7aPPA6dJ10sewyJBGZnXLXyod7CxsECm9LCq49c8DiJWrKtwELXRQEnwRHPE8tfRDbIclex+YexdHjFnDTF7f71b8lvhlbzl48VUW4y6bhmDT4sonZ7B5m78oMNJcD9z49y9NeuM3vp99Lpl7A6zsHl9oOdyLyGT3QDl3tiMdVfATQrbpoYjm6Bxf/hhirHpo5UOFoQXA41KH3bTeiHKAtZw9S3AG8jbl4GiMnUWY4eoIO8Nqx5+/Amrjf7z7TY1IMsCx0iciZeiDRXFF6LLrXjn3iZqxJjaaNZbfae7VHnlr6oKEFGwTmEWeP87sPyaLpyzBbj8FdOgNLfLMhol+hjqe6UNdLSqo3RNsFzA+5DDYR59QDWehC89hwKvMPxqKnm6e6CHD5vAt7Xw82MxQEnwcX32lKprIlukMX/SqZhWv3HKKmrY7oCBBvazKefZP1PaqJm8Ol7nPQCVvPsK+lmveKPz9sp/2Gz28NyPia14Jr1xFonYlYM8tNjUW/ad41NHbu54TCY2hsPDz5QxBaJEUl9nufl2CcXK81vRK1JVVfhtk3BXu+YljfoYTmtuvyGoCjaBOS3T3MFaPoO8xqjo6WsF1T/82nj/JZxfKgjK3ros9DbUvFmlqNfcJ2U2cR8fY4js5ZiMUStn+uMc3EpALuOPIXhvQlSWAv2I4U3Y6nphBv0+H1Z8MdTUMPOnBHYxu/G2uC/2Gc3598lgGWhQdh6yXaXeZptgyFpoF772zU5gwsSfXYxWOhYAQYqQIoWb04ijaC5MW1dzZqV6xhfYcCnn1TuusO1Br2BHzC+CXMSJvKBVPOMaS/UCZsnXow0DRwl87Au38clvj9OIo2mLqmuTBrHqDrdwvCnytnXsr3i840pC9LbCv2wm3gtevLgN7I2DT3NGbjqZ6IFNXul0b6oUiSxE/nXM7S8Yt7q1cdG6FVwMJ2TT0YePZNwVufhxTb0q2Lbu6m7E9m/IBLp10YEcJcApiXqYt9vbXbmDIDtvQq1PZEvLUFuPbM0TOYw/ip0duagnvPXLB49O+XSUlW8Y44nl76UMR+r8Jyph6MKujuqon6DCK6nSgTs0V76NHPiNQPnsAY7PkKlsQG1AOZeCqLgm2Oz6jtCbh26Bm5jolbsMSYGxAQyd+rsHTqjV3+JyCMBk/NBDz7piA5OvXakXbX8Bf5wKz0ab2vr519mSljCCILSdL08ohRHXiqivDuzwq2SaNG89hwblsM6FWMrKm1QbYovAlLp97pcQZsLE/NhO5SdF04pq41Nf1/cc4iFmXrWi59Nd8FgqGQ7G4ck9eDxaNvnLYNWcYgpOiJJOvBll0aPGMihLB06lsbdgRkHE9tfq9Dj5q6Fku0+RE3P5p+EU8vfYhoW0hUAhSYwN1HDaSP5x+W2DYcRZtAlXDumo/a6X8Wq9lomoRrzxzUljQsKbVEL/zQ0D2BQwXWxgph6dTfK/nI9DE8Nfm4y6aD3ak7dJPX+PoSyet9AsiMTWdKivHr39bkeuwF28HjwLnt6JAOddQ0cO+Z1Vt3wDFpk+GbvOdOOsPYDsOEsHTqZuOuLsRdPr17hr4moA5dMPa4/cifYzNIx8eWuQ9bbjGoNpybj0NzO4a/KMBomoR772y8+3OwxDfhmPItksX4SLJYe4zhfYYDwqn3QdPAva8IT4WM5Ogkappw6AJzGN9H8z4nLtvQoia2nD1YEhsA6NqyGM0TOpHLmirh3jMbb2O3Q5fXIVmNL6oxL3O24X2GC6Hz1w4ymqaXofPUFOqJDyZvigrGNmdNPI3x8TnMy5yFJEkcOW4+KypXGdK3JIFDXqc7z/05OLcdo4t/OQIXYDAQmteKq3ieni2asF+foZvg0PvGoF8/90qSHInDXBFZiJk6PZmi03WHHtOqz9CFQxeYiMNqZ9G4+Tis+vLIhZPP4TeLbjasf0kC+6TNSFHtaM5YnNsXBXXzVO2Koevbk3vT/82aoUP/PalpqVMMlWgIB8a8U9dUC+49c/DW5yPFNhM1dY3hM5qT85ca2p8g8rBarGTHGRtjLkkQNXs5ttxiNJfu2L0tqYaOMRI8jdk4tx0DgCWlBsfkjYavoZ+Yd6yh/YUzY9qpax4bLmWBruWSsJ+oqWsNlfjs4aT847loynkDHpufOcfw8QThy9yMWYb2J0lgz92DvXALqDZcOxfgqc0PSKEIzWvFtXemnvqvSdgnbiZq8kYkyf/BJyT0z+MYSyqMwzFmnbrqjMa5YxFqa6o+ezAx9T/eEUd23OESqc+c8DCXz7zElDEF4clVsy41pV9bRiWOqWvB5sZdNh3X7rlobrspY4Ge9u/cdjTehvH6E/DMlaYXkRHojEmnrnbE49x+FFpnAtasUhxFxj8OjgQjIx4EkcPzZz1kSr/WhCaiZ67EkrAftSmbri1L8DRmGzpr17xW3JWTcG4/Gq0rHlt2CVHTV5mSuBepKov+MuaiX7wH0vWKKqoNW95ObNmlpirb5SXkmte5ICJJjU02rW/J4cQxdQ2emgI8+ybj3jMXT0UntvHFfs2kNVcUnvrxeGongMehy2oUbsWa3GCg9QeZlzmLCYnjWV75jSn9hzNjxqlrGvoHuUIGScU+aSO2tBrTx7114U3DnnNy/lI+Kf+CgsR80+0RhAfZcVnUtJsjbCVJYB9XijWlFnfZNNTmTD0ZqH481sxyrMn1I4pM0TRQ25Lx1ubjbcoGzQJWN7ac3djGlZgW3QJ6EfYeXfQTxi8BdL36drfIKxkTTl1TLbhLZuBtzNWzRCevxxLfYtp4iY4EWlyt/drslsEz+84tOoOzJ50mlmMEAcUS3UmUvF4vTFE5GbU1FbU1FbekYolrxpLQhBTThuToQrJ40DQLuB2ozlg81YXgOahPJMW0Yssqx5pWZaoz70usPZZnTni493vTo1c/1ol4p665onAWz0NrT0aKO0DU5A2mJ2E8tOQ3XPdZf9GmgsQ8Ti/4DrPSp/Pbdc8cdo1w6IK+FCTkUdNey3cLT6a+s5E1NetNG8uWVoMtrQa1Mw5vYw7eA+mobcmobSOruOWYugZLwv6AFuiQ0AcT35vDiWin7m1J6S1ga02rxF64LWAbojfMvYrkPlXlJUnizJWXdM8AAAwUSURBVImnBmRsQfhzwZRzmJY6mTmZs/hq30rWYJ5T78ES045lfDH28cVoXitqWxKaMxbNFQOqBSQVbG4sUZ1IMa1I0R1BqbQ0JaWIRdlHBH7gMCEinbqmgae6EM++KSBpAdkQvXn+dTz27e97309NnWzeYIKIJ9oWxYJsXWd8dvoM3jaoBN5IkaxerEn7gcAWpBkJN827OtgmhDQR9+yieey4io/As08Gu77Tbx9nrkMHSBPFoQUmkRGbxjMnPBxsMwRhQkTN1L0tqbj2zAZ3NJbEBl2j2YQMUYEg0Ii1Y50Y29iU0x0NEeHUNVXCU1mEp3oioGHL3YUtZ29A1/sSHQnMz5zDtDQ5cIMKBBHKXUfdwtdVq/m0/Kvetstm/BdHjGFJ3ZES9k5dbU/AVTILrSMRKaoDx6RNWOKbA26HJEki5V8gMIis2Aympkzu59QXZM0NokXhw4icuizL64GewO4S4AHgVUADtgLXKYqiyrJ8FXAN4AGWKYpi2u6Opkp4qibps3PNgjWjAnv+zoDFyPbl1oU/G9X53ys6k4bORpOsEUQqtx/5cx5c8wQAC7OOYG2t+RExocKvFtwQbBPChmGduizL0YCkKMrSPm3vAHcqivKFLMvPA+fIsvwNcCOwAIgGVsiy/ImiKIYHhavOGFzF8/TZuaMTe8E209KRh6IouZCLppw3ar3m7+QfZ5JFgkgmIyYN0DXCfzLj4jHl1Cck5g1/kgAY2Ux9DhAry/LH3effDswHvuw+/gFwCuAFvu524k5ZlncDs4G1g3WckhKLzTb62ozexnFoHYn67DxPMU1dcSiunH8xpxQdH/BxMzISAj5msBH3fJD/vfAPSMEIDg8wGRkJJHli+72PRMy4r5E49Q7gUeBPwGR0Jy4pitKj7dYKJAGJQN/F7J72QWlq8k25zTauBGtqNZboTp+u95UfyN/jDeVtANrbXNTXtw5zhbFkZCQEfMxgI+55cB497j5aXa3cu+p3AbAqsNTXt9Lc3NHvfaThz2d7qB+DkcRJ7QL+oiiKpijKLqAR6FuiJQE4gL7mnjBAu+FIkhZwhw6wJPeo3tcLRUabIMjE2KLJjM1ATikKtimmkBWr1yCYnDwxyJaEFyNx6pcDjwHIspyDPiP/WJblpd3HTweWA2uAY2VZjpZlOQmYhr6JGlFcNOU8rptzBVHWwQW6BIJAct2cK4JtgqFcM+vHAKTFpLLsmNu5Ye5VQbYovBjJ8stLwKuyLK9Aj3a5HGgAXpRl2QHsAN5UFMUry/LT6A7eAtyhKErEVG+++6hbADhuvBDmF4QWfQstRwKzM2b0vk6JNk9bPlIZ1qkriuIC/muAQ4ftEiqK8iLwogF2hRRXzPwhmbGHl6MTCEKFo7IXsKpmXbDNEIQAIvd4BMxOnx5sEwSCIbl0+oVcP+fKYJsxYn6z6OYB26elTgmwJZFH2GeUmsElU8/HbrHz6vY3uHXhTdgs4p9JEPpMS5vCfUffxl3fmFPj1Eiy4w7GWvx4+sWcPuNYVu/ZSlFyYRCtigyEt+pDkiORS6ZdwIxu/ZYFWXPHREywIHJIiwl9tdBoa3S/90dmH4HFYhEO3SDG/PJLX/W7pKjEXocOCIcuiAgulr8XbBOIt8f1vrZF2MZuqDHmnbqIgRVEKifkLeH8yWdzbJ/8imBx68Kb+uV5CMxjzDv1H0+/uPd1T91DgSASOH/y2ZyQtyTg454y4YQhj/d8z66e9aN+3z+BMYx5p54Ulcj0VKGBLhAYxTmTTh+wfUb39+zonIUAzMmYyZEiM9twxEYpMCFxPNv3K0xMmhBsUwQCv/ndsfcgBalS0qSkgTc7JUlidsYMlh1zO8lRQ0pCCfxEOHXgtILvkJeQyzQxYxdEALH22EGP/XrBjTS7Wnh+86umjP3fs38y5HGRIWo+Y2755WL5vMPabBYbczJm4rDag2CRQBBYJiYVjOi8x467b9R9x9pFDdFgM6ac+pTkSRybe1C7Jc42+IxGIIhU4uyxPHvCI/3a+i6JPHvCIzx7wiNE2w7Gkw+2rCIIPcaUU79x3tUATOqeqeQm5ATRGoEgCHQHeB2ag3FMzpEHT5Gkw47/7Ihrhu36nIkDb5Dqw4rIskAxptbUez6oC7Lmsqe5VFQmF4wZrp71I9bXbWZ8/MGJzLJjbqeitRJJkkiLTuX9kk986nth1jzW1m5gRvrUQc+JsUUPekxgLGPKqfdw3PhjmJ0xQ+zCC8YMczJmMidjZr+2lOjk3o3LZqdeV94mDZzt2XemneCIp9XV1vv+R9Mv4ryi75IUldjbdnL+Uj6vWM7Dx96FR/XiEPUHAsaYdOqAcOgCQR+SohK5ad7VI5KYfmjxb9jWuJNVNd9y2fQfYJEs/Rw6wLlFZ3DOpNOF1EYQiNg19Qsmn9Pv/fzMOUGyRCAID6akFI1osiNJEjPTp3HlzB8OWaBDOPTgEHEz9QVZczkic44oNycQCMYkEefUL5uhF2nSNI1zJp7OeyUf49W8QhNdIBCMCSLW00mSxCkFJzA7Yzr/3PM+Z086LdgmCQT/3969hVhVxXEc/57Jy5TNGBReIkHI/CGBVlbec4JE68EikkCkUrLMoKiHrgYVZnQlI6IwRLsRlPiQYApRUUJEUWCU/1CiHiIYrJwRarxND2sfO+Go0xz1nL36fZ5mr7Mf1u+cff577bX27GN20mU7p141athIlk1c7IVRswGYNvoyhg9pP/6O1jRKWdQ7zpsBwL2XLG9wT8zytmjCAlbNXHF40XPYMZ4rY82hlNMvN1wwn4WT57O/26vrZqfKM7MeZXCLn4/U7EpZ1CuVCme1ttHZ3c3ySUvY09PNT10/M86/YmR20hzr6Y/WPEpZ1GtdeHb61+TpxYP3zcz+z0o5p25mZn1zUTczy4iLuplZRlzUzcwy4qJuZpYRF3Uzs4y4qJuZZcRF3cwsI5Xe3t5G98HMzE4Qj9TNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjLupmZhlxUTczy0jpfiRDUgvwMjAJ6AFujYidje3VwEkaDKwFxgJDgZXAd8A6oBf4FrgzIg5JWgrcDhwAVkbEJkmnA28CI4Bu4OaI6DzVOQZC0gjgK2AOKdM6Ms4s6UFgPjCEdAx/QsaZi2N7PenYPggsJePPWdIU4KmI6JA0jjpzSpoKrC723RoRj/WnH2UcqV8HtEbENOAB4LkG96dei4DdETELmAe8BDwPrCjaKsC1kkYBdwEzgLnAk5KGAncA24t9XwdWNCDDf1Z84V8F/iyass4sqQOYTsoyGxhD5pmBa4BBETEdeBx4gkwzS7oPeA1oLZpORM5XgIXATGCKpIv705cyFvWZwAcAEfE5cGlju1O3d4FHir8rpLPyZNIoDmAzcBVwObAtInoiYg+wE5hIzftRs28ZPEs6aH8ptnPPPBfYDmwE3gc2kX/mH4BBxdV1O7CffDPvAq6v2a4rp6R2YGhE7IqIXmAL/cxfxqLeDuyp2T4oqXTTSFURsTciuiW1Ae+RztKV4oOEdDk2nCNz99VebWtqkm4BOiNiS01z1pmBc0gDkAXAMuAtoCXzzHtJUy87gDXAi2T6OUfEBtJJq6renO1AVx/7HlcZi3oX0Faz3RIRBxrVmRNB0hjgI+CNiHgbOFTzchvwB0fm7qu92tbslgBzJH0MXES65BxR83qOmXcDWyJiX0QE8Bf//pLmmPkeUubxpDWw9aT1hKocM1fV+x0+2r7HVcaivo00V0exkLC9sd2pj6SRwFbg/ohYWzR/XczBAlwNfAp8AcyS1CppODCBtABz+P2o2bepRcQVETE7IjqAb4CbgM05ZwY+A+ZJqkg6FxgGfJh55t/5ZwT6GzCYzI/tGnXljIguYJ+k8yVVSNN3/cpfuqc01tz9MpE0B704InY0tlcDJ2k1cCPpErXqbtKl6hDge2BpRBwsVs5vI52MV0XEBklnkEZAo4F9wMKI+PVUZqhHMVpfRhrZrCHjzJKeBq4kZXkI+JGMM0s6k3Rn12hSxtXAl2SaWdJY4J2ImCppPHXmLAatLwCnke5+ebg//ShdUTczs6Mr4/SLmZkdhYu6mVlGXNTNzDLiom5mlhEXdTOzjLiom5llxEXdzCwjfwMRw/XZmKvm+gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Finally, Poissonize it!\n", + "counts = np.random.poisson(counts_cont)\n", + "plt.plot(times, counts_cont, zorder=10, label='Continuous light curve')\n", + "plt.plot(times, counts, label='Final light curve')\n", + "\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## R.m.s. - intensity diagram\n", + "\n", + "We use the `analyze_lc_chunks` method in `Lightcurve` to calculate two quantities: the rate and the excess variance, normalized as $F_{\\rm var}$ (Vaughan et al. 2010).\n", + "`analyze_lc_chunks()` requires an input function that just accepts a light curve. Therefore, we create the two functions `rate` and `excvar` that wrap the existing functionality in Stingray.\n", + "\n", + "Then, we plot the results.\n", + "\n", + "Done!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "# This function can be found in stingray.utils\n", + "def excess_variance(lc, normalization='fvar'):\n", + " \"\"\"Calculate the excess variance.\n", + "\n", + " Vaughan et al. 2003, MNRAS 345, 1271 give three measurements of source\n", + " intrinsic variance: the *excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{XS} = S^2 - \\overline{\\sigma_{err}^2}\n", + " \n", + " the *normalized excess variance*, defined as\n", + " \n", + " .. math:: \\sigma_{NXS} = \\sigma_{XS} / \\overline{x^2}\n", + " \n", + " and the *fractional mean square variability amplitude*, or \n", + " :math:`F_{var}`, defined as\n", + " \n", + " .. math:: F_{var} = \\sqrt{\\dfrac{\\sigma_{XS}}{\\overline{x^2}}}\n", + " \n", + "\n", + " Parameters\n", + " ----------\n", + " lc : a :class:`Lightcurve` object\n", + " normalization : str\n", + " if 'fvar', return the fractional mean square variability :math:`F_{var}`. \n", + " If 'none', return the unnormalized excess variance variance \n", + " :math:`\\sigma_{XS}`. If 'norm_xs', return the normalized excess variance\n", + " :math:`\\sigma_{XS}`\n", + "\n", + " Returns\n", + " -------\n", + " var_xs : float\n", + " var_xs_err : float\n", + " \"\"\"\n", + " lc_mean_var = np.mean(lc.counts_err ** 2)\n", + " lc_actual_var = np.var(lc.counts)\n", + " var_xs = lc_actual_var - lc_mean_var\n", + " mean_lc = np.mean(lc.counts)\n", + " mean_ctvar = mean_lc ** 2\n", + " var_nxs = var_xs / mean_lc ** 2\n", + "\n", + " fvar = np.sqrt(var_xs / mean_ctvar)\n", + "\n", + " N = len(lc.counts)\n", + " var_nxs_err_A = np.sqrt(2 / N) * lc_mean_var / mean_lc ** 2\n", + " var_nxs_err_B = np.sqrt(mean_lc ** 2 / N) * 2 * fvar / mean_lc\n", + " var_nxs_err = np.sqrt(var_nxs_err_A ** 2 + var_nxs_err_B ** 2)\n", + "\n", + " fvar_err = var_nxs_err / (2 * fvar)\n", + "\n", + " if normalization == 'fvar':\n", + " return fvar, fvar_err\n", + " elif normalization == 'norm_xs':\n", + " return var_nxs, var_nxs_err\n", + " elif normalization == 'none' or normalization is None:\n", + " return var_xs, var_nxs_err * mean_lc **2" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEJCAYAAACKWmBmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAADdxJREFUeJzt3X+MZfVZx/H37C52WVjStWxSja0YSZ/EmvBDGuiKFAVausaytsGitg20SOqqTbUuTbEpxdiSslaI1K2xglB/xtBCAqGI/YFCV1oICtSmzwLaJiZVSF3YFVja3R3/OHfY6zj77Pw4954zd96vZLNzz73n3u+c78x8zvM953zP1PT0NJIkHc6qrhsgSeo3g0KSVDIoJEklg0KSVDIoJEklg0KSVFrTdQNG4amn9nrOryQt0MaN66fmWm5FIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSNIdtO3aybcfOrpvRCwaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUGjF83x5qWZQSJJKBoUkqWRQSJJKa7pugKTJtZyP/ezeuw9YXt/D9q2bRvK+VhSSpJIVhaSRGdUe7jjMVBLL+XtoixWFJKlkUEiSSgaFJKlkUEiSSgaFJKlkUEiSSp4eq1Ytp4uTZiynC6s8VVNdsKKQJJWsKNSq5bjHO6kXVk3q96Xxs6KQJJUMCklSyaCQJJUMCs2btwyVViYPZkvSHDwJ4BArCq1o23bsfPE6CklzMygkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWn8NCKt2H92kVP19Dnua/6euc+p8ZYfqwoJEklKwppCfq8d+wd7tQWKwpJUsmg6DnvASGpaw499czsUOjTAck+tWU2h1ek0bGikCSVrCh6ZvaecZ8OSPapLZLGx6DQWPRxuAr6OZxmEKtvHHqSJJWsKDQWfd1LdjitfW7TyWNFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJKTAkoTykn51BYrCklSyaCQJJUcepqlT3c6g37egU3SymJFIUkqWVHM0rcDgH26W5hVjbQyGRSatz6ElaTxc+hJklQyKCRJJYNCklTyGIVWtEk87tL1SQddn9I9iX3aNSsKSVLJikKaMF3vUffplG61w4pCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNCklQyKCRJJYNC0oqzbcfOzqdjX04MCklSyaCQJJUWFBQRMRURp4+qMZKk/llQUGTmNPDBEbVFktRDi7nD3f6I+CzwEHAQIDM/2mqrJEm9sZiguK71VkiSemvBB7Mz8x+AncAu4LHBP43Q7r37PJVPUmcWXFFExO8APw38GPA48F3g3JbbJUnqicWcHvuzmXkusCszzwJ2t9wmDdm+dRMb1q/tuhmSVrDFBMULETEF7ImIC4FouU2SpB5ZTFBcSTNk9avAK4GL22yQJKlfFhMUbwRuB34L+EpmPtRukyRJfbKYs54+kJnnA38KvCUi/qP9ZkmS+mIxZz29EthCc6bT08B7226UJKk/jhgUEbE5M+8cWvRB4LPAJzPzeyNrmSSpF+ZTUfwecCdARFyQmZeNtkmSpD6ZzzGKqaGvrxxVQyRJ/TSfoJge+nrqsK+SJE2k+Qw9nRgRNwAPAEdHxJrM3D/idkmSemI+QbEZOBU4g2Zep2ci4gngYeCRzNw+wvZJWma2b93UdRPUsiMGRWbeB9w38zgiXgKcRBMep46uaZKkPljwdRSZ+QLw1cE/SdKEW8wUHpKkFcSgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVDApJUsmgkCSVFnzjIkkalW07do7lc3bv3TeWz5uU28JaUUiSSlYUknpjXHvgM5XEpOzxj5oVhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSpZFBIkkoGhSSp5JXZCzSuuWiGjWtemtm8alUSWFFIko7AimKButjLdl4aSV2yopAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVLJoJAklQwKSVJpTdcNmI+IOAe4CFgHXJOZD3fcJElaMZZFUNAExGXAycDrAYNCksakl0EREe8Fzh08/KfM/EhEHAO8B3h/dy2TpJWnl0GRmdcB1808jojjgWuAD2Xmk501TJJWoLEHRUScDnwsM8+OiFXADuAk4AXg0sx8fI7V/gDYCFwdEbdl5i3ja7EkrWxjDYqIuBx4O/DsYNEWYG1mvjYizgA+Dlwwe73MfMf4WilJGjbuiuIJ4M3Anw8enwncBZCZ90fEaW18yIYN61izZnUbb9ULq1dPAbBx4/qOWyJNBn+nFmasQZGZn4mIE4YWHQc8M/T4QESsycz9S/mc3bufW8rqvXPgwDQATz21t+OWSJPB36m5HS44u77gbg8w3LJVSw0JSVK7ug6KLwObAQbHKB7ttjmSpNm6Pj32VuC8iNgJTAGXdNweSdIsYw+KzPwmcMbg64PAu8fdBknS/HU99CRJ6jmDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSSWDQpJUMigkSaWub1wkSQu2bcfOJa2/e+++Vt5nsbZv3dTJ5y6WFYUkqWRFIWnZWeoe+Uwlsdz27LtiRSFJKhkUkqSSQSFJKhkUkqSSQSFJKhkUkqSSQSFJKnkdhaQVx+snFmZqenq66zZIknrMoSdJUsmgkCSVDApJUsmgkCSVPOtpCSLiHOAiYB1wTWY+3HGTtAT2Z/fsg/a1sU0NiqVZB1wGnAy8HvCHenmzP7tnH7RvydvUoaclyMzbaTrhPcDNHTdHS2R/ds8+aF8b29SgWIKIOB64HvhQZj7ZdXu0NPZn9+yD9rWxTSf2gruIeAjYM3j475l5yQLWPR34WGaePXi8CtgBnAS8AFyamY9HxKeBjcB3gNsy85YWvwUNiYgPAG8Cvg/YkZk3LGBd+3OJIuJi4OLBw7U0wxgvz8yn57m+fTBLRBxFs4d/AnAA+JXM/MYC1h/bNp3IYxQRsRaYmtmAczz/w5n5rdlfDx5fDrwdeHZolS3A2sx8bUScAXwcuCAz3zGq70GHRMTZwCbgJ2lK6N+e9bz9OWKZeRNwE0BE/BFw43BI2AeLshlYk5mbIuI84CPAW2ae7NM2ndShp5OAdRFxd0R8cbDRAIiIo4G/jYgtEfE+4NpZ6z4BvHnWsjOBuwAy837gtNE1XXN4A/AocCtwO3DHzBP253hFxGnAqzPzT4aW2QeLswtYM6gEjgO+N/NE37bppAbFc8Dv0/yBeTfwlxGxBiAznx8svx64EHjr8IqZ+RmGOmzgOOCZoccHZt5PY3E8zQ/9hRzqzymwPztwBXDV8AL7YNH+h2bY6RvAp4A/nHmib9t0UoNiF/AXmTmdmbtoxuZ+AGDwB+Yq4G5gL/CuebzfHmD90ONVmbm/3Sar8B3g7zLzu5mZwD6aMVf7c4wi4qVAZOaXZi23DxbnN2l+rl9FMwpy82DYvHfbdFKD4p0043NExA/SJO23B88dDTyWme8Cfo7m4OiRfJlmPJHBMNajbTdYpfuA8yNiatCfx9CEB9if43QW8IU5ltsHi7ObQxXAfwNHAasHj3u1TSe11LsBuCki7gOmgXfOJGtmPgd8YvD1PobKvcKtwHkRsROYAuZ9BpWWLjPviIizgK/S7Nz8WmYeGDxnf45PAP82e6F9sGjXAjdGxL00QXBFZj4L/dumE3t6rCSpHZM69CRJaolBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNKkXnAnLVhEHAdcDbwO2E9z5ez7MvOhlj/nKuDzmXlvF+tLC2VFIfHiXP530kylcHJmngz8LvC5iHhZyx/3Og5N1dDF+tKCeGW2xIs3oP8UcGJmHhxavhl4MDOfjIgrgLfR3GTmbuBy4BXAPZl5wuD1HwbIzA9HxLeBW2imf94P/ALwUzQ3l/lP4Ocz89Ghz7qHJqheTTNb6Jk09xw4Bjg4WPaa4fWB54FPAi+jmTX5NzLzn1vdOFrxrCikxinAA8MhAZCZdw5CYjPNHfZ+YvDaE2mmPK+8HPhCZp4C/CPw65n5aeBBmruPzTVp2yOZOTOn0hbg7Mz8ceA2YOsc698MXJ6ZpwKXAX+zmG9eqhgUUuMgzURqh/MzwF9n5vODCSZvBM6Zx/veNfj/a8D3z+P1XwHIzD3ALwEXRcTVNDOIHjv8wog4lqbC+LOI+Bfgr4BjRzBUphXOg9lS40Fga0RMZeaL47ER8VHg7/n/O1VTNL8/0/zfgDmKoRvKDGb+ZI7XHc7zg899BXAPzQyin6MZajpl1mtXA/sGx1Nm2vtDNMNXUmusKKTGvcCTwJURsRogIt5AM1Xz14EvAr8YEUcP7hp2CfAl4GlgQ0RsjIiXAOfP47P2c+SdtNcAj2fmtTRVxhs5dAB7P829lp8BHouItw3aex7NEJfUKoNCAgZVxJuAHwW+FhGPAO8HNmfmf2XmHTT36n4Q+FfgW8D1gz/W24EHgM/T3DPjSO4C/jgiNhWvuRtYFRFfB+4Hvgn8yBzr/zJw6aC9VwNvHa6IpDZ41pMkqWRFIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpJJBIUkqGRSSpNL/Al/GVmTFouw4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "def fvar_fun(lc):\n", + " return excess_variance(lc, normalization='fvar')\n", + "\n", + "def norm_exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='norm_xs')\n", + "\n", + "def exc_var_fun(lc):\n", + " return excess_variance(lc, normalization='none')\n", + "\n", + "def rate_fun(lc):\n", + " return lc.meancounts, np.std(lc.counts)\n", + "\n", + "lc = Lightcurve(times, counts, gti=[[-0.5*dt, length - 0.5*dt]], dt=dt)\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, np.var)\n", + "var = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, rate_fun)\n", + "rate, rate_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, fvar_fun)\n", + "fvar, fvar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, exc_var_fun)\n", + "evar, evar_err = res\n", + "\n", + "start, stop, res = lc.analyze_lc_chunks(1000, norm_exc_var_fun)\n", + "nvar, nvar_err = res\n", + "\n", + "plt.errorbar(rate, fvar, xerr=rate_err, yerr=fvar_err, fmt='none')\n", + "plt.loglog()\n", + "plt.xlabel('Count rate')\n", + "plt.ylabel(r'$F_{\\rm var}$')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "tmean = (start + stop)/2" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4MAAARdCAYAAADrBJcrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xd4VFX6B/DvTHonDRIILZRL7x2pFhZlEXVXXcvaK6uLnZ+6rnUVuwgiIoi9YEFEQBEJEHoJhJJcUkhCQkjvdSYzvz+mZMqdySSZnu/neXicuffcO8dkMnPfe855X5larQYRERERERF1LXJXd4CIiIiIiIicj8EgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUG+ru6AI5WU1Lhl3YzIyGBUVNS7uhvkpfj+Ikfje4wcie8vciS+v8iR3PX9FRsbJrO0jyODLuDr6+PqLpAX4/uLHI3vMXIkvr/Ikfj+IkfyxPcXg0EiIiIiIqIuiMEgERERERFRF8RgkIiIiIiIqAtiMEhERERERNQFMRgkIiIiIiLqghgMEhERERERdUB5dSM+/PkUSisbXN2VDvHqOoNERERERESO8tJnR1BV24zaBgWWDeru6u60G0cGiYiIiIiI2qm2QYGq2mYAQFNzi4t70zEMBomIiIiIiNqpvlGhf6x2YT86g8EgERERERGRjdJzK7D9yHmjbWoPjQa5ZpCIiIiIiMhGr3+dAgAY0ifSxT3pPI4MEhERERERtZNKZTgc6JlDgy4fGRQEIQDAJwASAVQDWAzNT3O99r+nACwWRVElCMI9AO4DoATwsiiKm13SaSIiIiIi8noXy+ux7tc0/G32AAxKiIBMJtPvO5hWpH9cU6+QOtztucPI4D0AakVRnALgIQArALwN4FlRFGcAkAG4WhCEOAAPA5gOYB6AV7WBJBERERERkd19+buIzIIqvPblMXyyNR0NTUr9vm0H8/SPS6sakXG+whVd7BR3CAaHAdgKAKIoigCGAhgPYJd2/1YAlwGYBGCvKIpNoihWAcgEMMr53SUiIiIioq7AcPJncmohFr+z22Lbk5llju+Qnbl8miiA4wAWCIKwEcBkAL0AFIuiqPvZ1wCIABAOoMrgON12iyIjg+Hr62P/HttBbGyYq7tAXozvL3I0vsfIkfj+Ikfi+4vaw9/P9nDpQmktYmMHOrA39ucOweA6aEYD9wDYC+AogJ4G+8MAVEKznjBMYrtFFRX1du2ovcTGhqGkpMbV3SAvxfcXORrfY+RIfH+RI/H9Re3VrFC23UjrtwO5uGH2AAf2pmOs3QBxh2miEwHsEEXxEgAbAGQDSBEEYbZ2/3xoAsVDAGYIghAoCEIENAHkKRf0l4iIiIiIPJharYbahuKAFTVNTuiN67jDyGAGgJcEQXgGmpG+uwCEAlgjCII/gDQA34ui2CIIwnJoAkM5gGdEUWx0VaeJiIiIiMgzLfsqBXUNCrx092Sr7QrL3HOmob24PBgURbEUmgQxpmZJtF0DYI3DO0VERERERF7r7Hnp1WYKpQobk7MxdVgcnlt3yMm9cj6XB4NERERERETu4LPf0rH35EVsPZDXdmMv4A5rBomIiIiIiBzm+6QsvPPdCbPttQ3GxeL3nrzorC65BQaDRERERETk1bYcyMXJbPM6gA+/tweAJih8+7vjzu6WyzEYJCIiIiKiLm3dr2k4lV3u6m44HYNBIiIiIiLyKPkltXj72+OSpR+ULSoolCqbz1VUUY/jmaX27J7HYDBIREREREQe5cOfT+PUuXL8sCvLbN+jK/bivjeTLB6rbDEOFNf+mma3ftlSu9CdMJsoERERERF5FF1A16JqDb7OF9diy4Fcs6QwhkqrGvDkqv1G2zLzqxzTSQ/AYJCIiIiIiDyKTCYDYDwS98bXKVYDQcByfUF7Ubao4Ofr49DXsCdOEyUiMpFfXIsvfhfbtd6AiIiInEem/a/hrMyGJqVRm+/+zDSbtinTH+kYDc0tDj2/vTEYJCIy8crnR/HnsQLsPVXo6q4QERGRBO3AIKyt0Nt2KA/ZF6qNtq3ZfMZxnWqrQ26IwSARkYkmheauXrOH3d0jIiLqctpI2MJZPtYxGCQi6oA/jpxHzsXqthvaQUVNExqblW031GpRqVBcUe/AHtlXdV0z6hutr/EgIiIypF8zaLTNvJ2HDdQ5HYNBIqJ2KqlswFd/ZODF9Ucc/lotKhUeW7kXT3ywz+ZjPtmSjqWrD0DMqzDbV9ugwNaDue0KLh1tyfvJ+Ne7e1Df6D59IiIi96aP+9qK9jys1IOzMRgkImqnZoXzpo+m5WgCurp2BEr7Tl0EAGRdMB+5XL81HRt2ZuHn5HMWj1e2qFBnMFKnVqtRXd9s8+ubsvXYDUmZHX4NIiLqYiTXDJoPDTIUtI7BIBGRG0vLNR7da2xWQqVWQ61WY9XGU9ivDfxsdbFcM320rKpRv61Z0WJUgPf5Tw7joXf36Ld9n5SFJcuTJUca23LwTBGWLE/G9sPn22xbUtnQ7vMTEVHX1JpN1Hq49+Y3x/HoimTHd8hDMRgkInKSU+fKUFhW1+HjaxsUePDt3Vj25TGUVDXicHox1mw+g/LqRqvHqdVqq6OZ97+1C/e+kYRf9uUAAC6UavrYrGhBs6IFWw/maftfbnNfda93KK0IALAnte3MrM6aydPWz4OIiDyB8ShgRn6l0Y1NQ5W1HZ/d4u0YDBIROUGLSoW3vz2BZ9Yc7PA5Hn5vDwAgI7/KKHJ6/IN92LgnW/IYZYsK732fivvf2mVWf8nUT7uzsU0b+AGASg1s2pvTrj5u2JmJjXuycf9bu/DVH2eN9hVX1OODn06ioqYJKRklVqePni+uxblCxyToef+Hkzb9PIiIyHVqGxRY+dNJ5BXVSO7XJYtJySjF8u9T8eoXx5zYO8s8bVoqg0Ei6jIOpxfjh11ZTn3N2gYFTmWXmU337KwTmWVGz6WCNpVKjXvfSEJqlqZtUkpBmyNi3+00XreXX1Krf6wbGayobsRHm06jqLweJzJLoVC2nnPrwTx9X/44km90ro9/TcMRsQQvrD+M9384ide/SrHYj/+uO4SXPj0ClVqNwrI65F6UvhjoiOOZpZr/j5omu52TiIhso1vq0JZtB/NwVCzB858cltxvOC6o+1yn9vN1dQeIiJxl1cZTAIBFM/rDR+6ce2G60TxD+04VorZegSsm9THbp1arUV7dhPomJXp3D7V43q93ZEhuNxxNKzOZProhqTUQPiKWtNl3lUoNuUGe7tyLNRDzKrDvTDEOnCnCgTOaKaCXjkvATZcP0qf5liKTtdZtrK7TjAheKK3D+q1p+jZSFwd3L9upf7xu6Vyz/Wq1ujW9uMFjIiJyTw+9uxu9u4dh6c3jrLazVh9QrVZL5YqhDmAwSERdjsxJ3yCWpiF+vFkTAJkGg8UV9Vi6+oD+uVTwY01dowIvfdpa7mLX8QttHmMtKcyS980X3OeX1GHP8QKjbTuO5WPHsXwLwZrxsaZ2n2h7LaElyhYVHnhrF2aO6YmSygYUlddj2f3TOnw+IiJyvIamFpw9X9nh43/cnYXN+3LRPTLIjr3qujhNlIgIQGZBFTZrE6h0Rnl1o3764S/tPN87G1KNnm/YmYlmK3dGTb3xteVpl1L+OHIey6xM1ZTy5fazbTcyoJu6c764Fqo2pgUVVVjPJvrehhNY/M4uNGmnulbUNKFFpcbOYwU4lV2OkspGKFtUyL1YY9MUJA4iEhF5ns37cgEAxW18Z5BtODJIRF1SfaMSz6w5gKtn9MfsMb3wv8+PAgAmDu2ub2Mx+5iVKOLxdhSHBzRrJy6W1SM+OhhF2rIPOlsNkrnYIq+otu1GBr76Q3qqaUfd+dqfnTq+oqYJG/dkY8G0fpL7T2jXPuYV1SA0yA++Pub3Mz/Zko79py/iX9eORFxUMOKigiGXa35fVXXN+PNovtkxRETkXvafvojULK4DdAYGg0TUJZ3OKUdVXTM+2yZi9phe+u1Kg5G4bYfycP3cgTafs73ZKY+kF+MD7TrG2/4itOtYb7Vpbw585NaH7N7/4SRqGxQY2jfSbN/+05q6i19uP4uKmiZcMioePSKDMHdcAtZvSdMHlB2lVqtRWtWImIhArk8kInKQNb+cMXreolI5ba1/pzmrTpKdeMhPlYjIviwFbu39CH9x/WF9iYT2BoO6QBAAPt0mtvOVvddPe85Z3V/boAAAqxladVN1k1ML8cOubGzccw6lEvUYG5qU+P1Qns2/u90nLuCpD/fjt0PnsfvEBX1Nxq0Hc7Hyp5M2nYOIiNrnoXf3IOVs24nPqP0YDBJRl7R+a7pdzpNzsQbbDrRvOic53/Yj5yUz0337Zwa++TMTT65qe3qvSqXG3lOakceNydlYvzUdz36sqRu5YWcWjtqQoZWIiNqvsbkF7/94En8e41R/e2MwSERdgkpl25hfnXbUyZrDaUVGzw9qn3vYzJAuxzTZgEKpwsVyzba6RmWbo4NvfJ2CzPwqAECzwvbEPkREZF3K2RIkpxbine9OWP0s/uL39iUxo7YxGCQir5JfUiuZsnrp6v36x2ork0GX/2A81e/9H1JR12gcIJoWeNdNSeQdS89iWshY2aKCssVykCd2IhU6ERFJq65vxvs/nsS6LWk4mV2GJJPyRZ7G0+4LuzyBjCAIfgA+BdAPQAuAewAoAayH5ud5CsBiURRVgiDcA+A+7f6XRVHc7Io+E5H7em7tIQDmNfpKq8zXi+ms3nRa/9j0jmRKRil+3J0NH5kMC6b1Q3iIv+Q5ftl7DtsOcbqopzG8cfD2tyeQW1SDj56YLZmp1BYKpQp+vrzPSkRkqyXLjWvacpaNc7nDN9aVAHxFUZwG4EUArwB4G8CzoijOACADcLUgCHEAHgYwHcA8AK8KghDgoj4TkYvkFdWguNK+tYUOnimyun/nsQL8cTQfS95PRkGpeeF0QJP0hF9gni23qAaAZm1KR5mOIks5lV2Gb3Zk2FQLkYioq+Fno3O5fGQQwFkAvoIgyAGEA1AAmAJgl3b/VgBXQDNquFcUxSYATYIgZAIYBeCw+Sk1IiOD4evr48i+d1hsbJiru0BezJvfX7padov/Nhq+PjJcNqmvfl+jwahebGwYUjNL8OmvZzBmcHejc4SEBXX49f+jTRhC3quqUYmoqBBEhNp2v9Hw7y06OhRR4YFW27+tfQ9fd9lg9IwJ7XhHvZg3f4aR6/H95R4s/R5CQjx7rMeW7wF34g7BYC00U0TTAcQAWABgpiiKutsCNQAioAkUqwyO0223qKKi3tpul4mNDUNJSY2ru0Feqqu8v1Z+fwIAMLp/lH7blgO5+sfvf3MMvx8+DwA4m2e81mv1Dyec0EPyVP9ZvR++PjLcceVQDOkTiciwADQpLI8WGv69lZXVoqWp7dFBACgtrYUf74Cb6SqfYeQafH+5D0u/h7q6Jif3xL7Ky+ts/h5wFms3QNxhmugjAH4TRXEwgNHQrB80XJQTBqASQLX2sel2IvIyeUU1uP/NJJw613aB8G92ZGD7EU3QZ7jeTxcIStl1/ELnO0leTdmixppfzuCxlXsBAJuSrdc+JCIi+/hhV7aru9ApERZyC7grdwgGK9A64lcOwA9AiiAIs7Xb5gPYA+AQgBmCIAQKghABYCg0yWWIyMtsO5iHZqVKn0K6oqYJjc3SqaZ/P3weX/+RgaZOrPMiasvWg5aTA53ILHViT4iIiOzHHaaJvgNgnSAIe6AZEXwawBEAawRB8AeQBuB7URRbBEFYDk1gKAfwjCiKltMDEpFHqmtU4IA2oUtxRQM2JZ/DxuRzCA7wxYpHZlo8btO+c8g4X2VxP1FHtbVO9L3vU/WPq2qbERbsBx+5O9xrJSJyH43NSuxMaS0bUdugwJ5UztRxNZcHg6Io1gK4XmLXLIm2awCscXiniMjpquubERbkh/2nLhpt36idnlffpMQFC5k8AWDrAZZ1IMewlEFWygvrNTnN3lo8HZFh1pMgcLkgEXUF1fXNOJFRit2pF5BVUK3f/tm2dBwRS1zYMwLcY5ooEXVxR8USLFmejJ/2nINMJrPYjmv9yFO8/e1xAMChtCKs/PEkyqsbkZxaKJky/afd2fhxd5bRtpSzJcgvqXVKX4mIHCU1qwxLlifjk63pRoEgAAaCbsLlI4NE5PlOnytHZFgAesaEoLZBgbWbz+DqGf3RLy5csv3xzFIcOH0R9/51OPaeKsQnW9IBADuOnse1MwdYfB1dohgid1dQWodmRQs+/Pk0AODoWc1FT0Roa2KB1Kwy/LArCykZmjWHuve+QqnC+z+eBACsWzrXmd0mIuqUi+X1KK5owKgB0QCAI2Kxi3tEbWEwSESdolKr8ZZ2FGTd0rn4/XAeTmSVISO/ymyNX2FZHVZvOo28Is2Ix9xxCdhtMNrX0NQCKwODRB7l/rd2mW2rrG1Nmf7dzkzJ41Qqzh8lIvdTWtmA4soGDOsXZbHN0x8dAAB88OhMBPr7Ijm10Fndow7iNFEi6hyT69aWFs0GRYvKrOnqn1sDQZ3aBuNaPFxHRd5s4x7rJSoKSmqxZvMZo20q7R+FWq3G57+JOJ1T7rD+ERFZ8uSH+/HmN8dR32ie3bu+UYE3vk7RP1e28MvcUzAYJOrCpNYvtfscBtHgqewyfQp+w3OXVzcir6gGjRKFu4sqGoyef7n9bKf7ROSuKmosF1M+X1yL/6w9hGNnW9fR3Pnan7h72U4oW1TIuViDnSkFeOub487oKhGRpGal+Xf5OxtOIC23wmibUuKmsLfz9/W80IrTRIm6qN0nLmD91nT8794piIsKtvm47UfOIzI0ABOGdDfb9/Z3J/SPDe8KPv7BPgBA98ggo/bLDVLyE3V1r3x+xOK++iYlWgymjzY0KREUwK9wInI+qfvIpslhPt2arl8r3VX857YJEBJj0NzQ7OqutIvnha9EZBfrt2qSthzU1vTTKa6oN5u6aejrPzLwwcZT+ufWBhdN7wqaLgesb5IuJE/UFTUrLN9FT8+twG+HWsunvPrFUavnUqnUyL1Yw/WHRORwUp8zXS0QnD+5D/rHhyMi1HpJIXfEYJCIjCxdfQAPv7fH5vbZF6ot7vvid5Mpn8wOQ9QhH/58GkcN0rDnl7TWPqxtUBglpgGA3w7l4YX1h7H1YK7T+khEXU91XTOe/+Swq7vheh58ecNgkKiLU6vVSDpegOfWHoJCafv8/oqaJiiULXjty2MW2xxOL7K4j4g6R9miQnl1Ix5+bw8eXbFXv726vhkbkjR1C09mM9kMETnOp9vSWRMVgMyDo0EuOCAifLZNBADkXLQ8ync6pxw/7motjP3Yyr2Ij7a+1tB02ltReX0neklEhpZ9dcxsnQ4ArPs1TbJ9Q5MSMhkQ6M+vfiLqOMMEcWVVjS7sCdkDvxGISM/a+iKpDIaFZdaDuxaVuktmEyNyBtNAsKKmCQfPFOFCaesUUsN71Yvf2Q2AheyJSFpDkxIBfj6Qy1s/OeoaFQgJ9DNqV17dhNWbTuO6WQOMpqx3ZZ68CobBIFEXkllQBZVKjcG9u0nu33/a/tM6730jye7nJCJzj63c23YjIiIJCqUKi9/ZjT49QvH8HZMAAJuSz2Fj8jk8duMYxEW2zgR69YujUANWl4mQ5+CaQSIvse9UIb40Tdhi4n+fH7X64V1e3Trdo4BrAIi6hBOZpZzqRdRFFVfU4/0fUlFQqvnOzytq/e7//fB5AMCJjFJ8uzNTv505ir0Lg0EiL/Hx5jTsOJYPhUQxWFMpBimfN+3N0T82/IBf8eNJ/bTRxmaWgCDyROL5SjyyIhlvfJ0iub+0qgHvfZ+KJ1ftk9yvUquxbksaTucwEQ2Rt1Gp1Fi3JR0pGaX4anuGxXYtajVauOTDzKIZ/T16eqgOp4kSeRlrdf903v/xpOR2w7VGDU1K3P36TgBARKi/XfpGRM5XVduMqtrWIsgVNU34cXcWrpmRiLoGzY0eNYD6RgW+2ZGJK6f2RVyUZkpYZn4VklMLkZxayLWGRF4g6XgBFAoVLp/YG/9evgd1jZrPAGvZxHceK3BW9zxCZFgAoiMCsXB6f2xKzoEaao8OChkMEnmYwrI6+PnKERMRZPdzV9S01iqrrm8tPG94IUlEnu2L30WkZJSirkGJqy/pr9++eX8ukk8WIutCFV65ZwoATRIonfziWoQE+SEyzPOKKhORhi57+OUTe+sDQVMqtRq7UgpQ39Q1ZwVdPqE3th85b3H/W4un6x+rvWDSLINBIg/zzJqDAIwzAtY3Kiw1R7OiBQ+9tweXT+jt8L4Rkfurrtfc3DmTW24U7DU2a6aY1zVIf548t+4QAGYjJfJGhkFNxvlKfN5GDgJvFhrsJ7n9wUUjjGZQGfPcoUEGg0ReICO/Sv/Y8B7VhdI6bNiZCYVShS0Hcp3fMSJyO7qSFM0KFU5ml5nt9/z73ETUGblFXTuBnNxCXDdhSHezbX+fPRDf7czE+MGxDu6V4zCBDJGXKiipxbMfH8SJLPOLPSIiW9RbmEZGRO6lRaXCc2sP4tf9OZ0+1zc7LCeT8WaXTUgAAIweGINLxyfYdMxfJvfBR0/MRt+4MEd2zaEYDBJ5mXJtivgLbRSEJyIylJSiSRJhmIRq5U/SyaaIyPnOnq/EoTTpesDl1U3IL6nDD7uybTpXUbnxNUJeFx8NBICbLhuMVY/NQkJsKG6+fDAmD+th03G+Pp4dTnl274kIgPG0ruQTBTgqFkNtS1pRIiITtRbWDBKRa7325TF8+PPpdh+363gBVvx40ui6QLcGmDRevHMSACDAz0e/7d6/DsOKJTNc1SWnsfuaQUEQ4kVRLBQEYQaAUQDWi6JoabUlEXWSQqnCnhMX9M8/25IGALj/6uGu6hIRERHZ0YHTFzt87KfaDKJFFQ36bdZKSXQ19y0cjoTuoWbbZTIZggP98NRNY/UJtryRXYNBQRBWAVAJgrASwFcAfgcwF8B19nwdImr1++E8pGSUmm0/k1Phgt4QkTdY++sZhARKZ9TTKa5swHNrD+LOK4di4pDukHlyoS0iN5ZfXIuPfjnToWObFa1BzNMfHbBXlzxefHQwquuaMW9SH0yUSAxjSOgT6aReuYa9RwYnAZgA4L8A1oqi+LwgCIft/BpEbk/ZonL4HPLCsjrER4fgTwvFYHcbjBYSEbXH3pNtj0Is/XA/AODDn0/jiFiCBxeNcHS3iLqkmg5O3f50Wzp2Hee1gBRdLVWy/5pBH+05rwawVRCEYAAhdn4NIreWlFKAe99IQqZBuQdbncouQ522ZmD2hWoUV2qmdBSU1mH1ptNG00R09QYNC8UTEbnCkfRiAEBpVQMyC9r/2UdElnV0zJ2BINnC3sHgZwAKAeSIongQwFEAq+38GkRu7cfdmkxe+8+0b35/Wm4F3v7uBN785jgA4OXPjujvvL/73XEcPFNkNk1k/dY0O/SYiMh2d772J4oqpLMVP7lqP/73+VG0qLgeicheTGdgM0Ec2ZO9p4n+BuA9URR1E5RnABho7QBBEG4HcLv2aSCAMQAuAfAuNEkSTwFYLIqiShCEewDcB0AJ4GVRFDfbuf9ELlOsvbjKvVhjtq/WQq2v3ScKHdonIiIpK360XnJCpQI8PNs6kdtSq80DREOlVQ1QqRgwWnLtzERXd8Gt2CUYFARhOjRTRD8GcJcgCLq3qC+ADwEMtnSsKIrrAazXnmclgHUAngPwrCiKSYIgfAjgakEQ9gN4GJo1iYEAkgVB2C6KIufIkXtq5+cwky8Qkaeoqbd9DdPrXx2DXC7D4zeOdWCPiLoOlVoNuZXJo0+u2u/E3ri3l+6ejNSsUmzYmQUAiAwLwIJp/VzbKTdjr5HBywHMAhAP4EWD7UrYOE1UEIQJAIaLorhYEIT/Atil3bUVwBUAWgDs1QZ/TYIgZEJTuoIJasit2COme/4T1v8hIvdVXddstm3LgVz94/veTMLr909FTLcgpOdVOrNrRF7HlpvFvJ0srVdMCHrFhOCKib0hg4w/KAl2CQZFUXweAARBuFUUxc87eJqnAbygfSwTRVE3rlIDIAJAOADDVem67RZFRgbD19fHWhOXiY0Nc3UXyEHkcs0nTWCQH+qUavzvk0N4/JbxGNxGauKI8ED947yiWv3j9dtENHlxfRtyHwtnJmKTds0rUXt9n5Rl9PzJD/fj5zcW6p9b+95Tq9UoKq9Hj6jgNtsSdZanvb+Ka4xvvkRHh8Lfz/j6duXGU87skkcY3KebS37Xnvb+sveawd2CILwBIAoGsbcoindaO0gQhG4ABFEUd2o3Ga48DwNQCaBa+9h0u0UVFha4u1psbBhKSszXhZF30M3T37ovB7uP5aOuUYnl36bgv7dPtHpcjYWsoLuPS5eOIGrLjFHx2JNq+7rSxg6mLyeyxPC7rqi4GjV1zYBMhoNnijBnbC/4+crx+6E8fPNnJgDglisG44Z5Q/kdSQ7jaddg9Y0KLF2ZbLTtXF45Vm08BWWLGk/fOg55RbU4qs3oS8DYQTFIySjFkN7dnP67dtf3l7UA1d7B4HcA9mj/tWfF1EwAOwyepwiCMFsUxSQA8wHsBHAIwCuCIAQCCAAwFJrkMkQuV9eo0Bdolhlt1yZ+MfhrKK1qwIofT+KO+UPRNy5Mf3xBaS2I7GXK8B64Ye7AdgWD8g7Mce4VG4KCkrp2H0ddz93Ldho9V6vVmDepjz4QBIBjZ0tww7yhzu4akUudzC5DkL8vBiaYT3iTqvm59tc0ZF2oBgCczqnAp1vTHd5Hd9IrJgQFpZa/d+68aigOninCjFHxTuyV57J3MOgniuLjHThOAGA4N+kxAGsEQfAHkAbge1EUWwRBWA5NoCkH8Iwoio2d7jFRJ72w/jByL9bgH5cOwuUTe0u2UWujwabmFnyzIxN5RbV4Yf1h3LNgGNZsPiN5DFF8dDCG94vCVVP7QqUGHlu5V7Kd1AjgvX8dDrVajZGJ0ejdPdRoPZcltsaC0RGBePmuyahvUqKxWamveQkA8yf3wdaDebadiLxek8LyFPfyauZ/IwKAd747AQBYt3SuTe3Tciv0j5c1q1oxAAAgAElEQVR/n+qQPrmru64aiukj4/Hr/hz8sKs1dOgfH45zhZoAOSTQD3PHJbioh57H3sFgsiAIfwXwmyiK5qvLLRBF8Q2T52ehSUhj2m4NgDWd7iVRByiUKvj5mudK15WC+HpHBrpHBkleUecV1eJwejFWmczpZyBI1rxyzxTJ7eHBfqjWZnMc0qcbbps/RHIEUCaT4ZHrRwOAjcGgbdHg+ufmoaSkBgH+PgAC8PLdk/Hsx5qAMDTYD+OFWPj7yrH/dJFN59O5ff4QrG/jDnegvw8auYbWYyx+Z7fFfYfSi7BoRn+z7Wq1Gp9sScPIxGhMGNJdv31DUiZiIoIwZ2wvh/SVyN0UlNTi7HkmYJLiI2+9Hps2Ig7zp/TFfz4+aOUIssTeVYD+BuBnAI2CIKi0//itTR4hObVQXzDe1PniWtz3ZhJ+2Zdj9RzvfZ+qKQAkwTQQJGqv6SPjzKYRTRsR36HpnT5y82P6x4dLtk2IDdUfc9dV5lP4esaE4PUHpmLBtH64dFwCFl8zEv+cN6TdfZoxKh73LRxutc2oAdHtPi+5p6raZnwscUOsqLwee1IL8YHJZ+bWA3n4/DfRWd0jciiVWo31W9Nw6lyZftuxsyX6vAN5RTX4z9pDOHq2xFVd9Bh/mdzH1V3waHYNBkVR7CmKotzkn3um8yQysW5LGjZbCPaOZ5YCAH7anQ21hWCPyNHuumoYnr5lvP55TEQgpo+M69C5Hr1hjNF57v3rMIwXYvH32QO0I36twkM062GnjojD9JHSazBiIoJw7cxEfYY7H5/WYLNfnPHC9R5Rwbh9vnmwKJPJ0CsmxGq/b7p8MOZN6o23Fk+32g4Alt48rs025FoZ+VVGz+salJL30/i5S97mXGE1dp8oxNvfntBvW/HjSdz9+k6UVjXg+U9YOc1WCbGhFm/EU9vsOk1UEITnpLaLovii1HYiT7HjaL7+8V3LduLvcwZg/uS+khco1e0oxkze4Z2HLsH2w+dtmopp6qW7J0tObVl2/9Q2jx2RGG3z1M6gAF8M6xspeZf59Qem6R/Pn9IXGflV+hsgAHDnlUOx5UAurr7EfEqfJb4+rfcan7t9Iu5ethMqtRpXTe2L62YNMLob3h7hwf64Ye4gm9oO7t2tQ69BrpNbZJyFT61Wo6ZegSXvJ1s4gshz7DyWD38/H0wfGa8fAZRi6cY0ta7EUbcrTyVZY+9pojKDf/4AFgLoYefXIHI60wLLG3Zq6mmdK3S/9MHkXGufmoOIEH9cOysRM0e3jprNGdsLl45vXcA+f4r0NBbDkbD/u2UcAvx9MKBXOGK7BVl8zSBt5lp/iTWslqxYMgOLrx1pc3tDUeGBuOUKAWHB/h06XhK/x8kGGflVEE3WTL306WG88XWKi3pEZF1pVQPKqqTzG37++1ms/TUNADQF0C3YfcL2LNCkwa+UjrP3NNEXDP49C2A6gBH2fA0iZ1IoVRbTFxeW1eH7pEzJfeR5+vQIldx+7cxEq8fpRubkMhmG9I3Ub791noDEnq1r8BZdkmhxpOqeBcOwYFo/DErohpWPzDSaCirl4etGYsqwHlgwrZ/VdlL91AWsCbHWp2PaW6B26qnhiKGhoQY/O0sG9DJe0zgiMard/Rg3OLbdx5DjKFpUVve/9uUx1NQb34w7V1hjlE2RyJ08uWo/nli1r+2G7V/qTWgNon3lJt8ljAY7zN7ZRE2FAuCqTnJ7lqZrrPzpJFKzpKezvfzZETQ0MT+St+gXF4a8IvNajwum9bOYWMiWqZw6fr5yjB4YLZkZbuqI1nV/tiSDiY8Owb1tJFqx5Pb5Q3HLFYLFoMxRnvjHWGzen4PLJ2jKr/Tu3hp8TxsRJ5mYBtAUIa+qbcZfp/czS3qzcHp/nMouR3iIv370fubonth94oLFfvzr2pG487U/zbbbksmU7K9JIjNsSWW90fMvfj/rrO4QkYeYObonMvIrMY/JYzrN3msGz6E1NpcD6AbgDctHEDlGRU0Tth7Mxd9nD5QsB2HqcHqx/rFarUZFTROiwgMtBoIAGAh6kVEDorFoRmK7p+aYTuW0Nu0HAIb1jQKQhSsm9sbvh8+3t5t2owsEH71hNLqFBjjlNfvGhWHxNa3TVCNCAzC0byTScisQHx3cuvbR4Ec4f3Ifq7WiBvaKwP1XD8eghG5obFaiuKIBowfGGAWDz/5zApQtKrz25TH9tlfvnYL/++iA/vnIxGiMF2IZDLqJZ2wZVSHyIJkFVWaF4Tkw2EHaH1yAvw8eNPhOiQoPBGDbLBMyZu+RwdkGj9UAKkVRrLbzaxC1SVecOzm1EB88alay0kxtQ2vSl98Oncd3OzNxjUT9K/JOS/4+2i7nGTsoBiP6R+Ey7eiXqb5xYVixZAaCAnztHgzet3A4DqUVISWjtO3GWiP6S5dpcFbmxgcWjcARsRjTR7SutewZE4Kxg2IwcWh3TBnWdqbUSUN1y9IDEB9tPvVVN1X3sRvHIMBXM1W1R1QwYiICUapd1yP06YYAbRbUiBB/VNXZXCaXXOjs+Uo0NCkxemCM5P7q+maEBfnZnGSJyFE+/PkUyqub9M837snGsH7tn+ZO5tmpdYIDfbHykZlm2bCpbfYOBvMA3A/gUu25/xQEYYUoitYXBRBZsP3weRSW1+Of84QOHW+tOPUv+3LQ0KjE9XMHGm3fd+oiAOCnPec69JrkvW6dJ+jrnN10mXlGS38/H6OSDVKCtclf7G3ysB6YPKwHGpuVbY5QtsdDHUw6Y4vQID/MHmNcQFwuk+Gh60bZ/bWGm1x4xUeH6INBQDNauvzfMxDo74N730iy++uT/elGe9c+NQcfbz4DoU8kZo7uCUAzEvO/z4/i8gm98Q+Jv1UiZzL9TN60N4f1AyWsenQWmpQt8JXL8a93dxvtu2ZmImaN7onwEMuJzIICHL36zTvZe9HI6wDmAfgMwCcA5gJ4286vQV3I1zsykJRS0GY7tVoNhbJ90zZ/2p2NbYfyoFCq0GxwLG8iez7D9WjtMW2E9ZGoOWN7Wd1vKlj7xSRV4N1RAv197XZntG+PMIz1wIQrDywagSdutB6U37XAfI1iaJCf09dSUuc1NLVg/+kio2m+Z3LKAQDbj7huOjZ5v9oGBd7dcAKZBVVW25nmOgGAghLp5HRdWYC/D8KD/REc2BrU6b6XB/WKsBoIUsfZO4S+AsBY3UigIAi/Ajhp59cg0hPzKhARGoAvfxdxOqcCqx+fBT9f6xfCLSqVUZKO+95McnAvydmeuXU8vtx+FntSjdcAhgT6oq5RqX/eMyYE4w2CnbsXDNOPDBt67+FLOpSobOSAaFw7MxHjBfOAasWSGWhScNKEI0wc0r3NNuFWymT4yGVoUakRGuSHQQkRRlNvw4P9WEuUiAAAvx3KQ2pWGVKzyrD2qTloMUhGdzyzFGO0U5g5VbnVtBFxkt+zltxx5RAsmNYPcVHBDuxV12bvYNBX+6/Z4DmzbJDDLPvKuNbUuxtS8cAi82omp86VISWjFLdcPhj3vJ5klqLeUIuVQrDkGfz9fBBjkNzlzQenobSqEQmxoahvUuDJVfsBAM/fMdGmkaCO1teTy2QWyz8EB/ohOLBDpyU7GTsoBikZpehjYSR51pieuG7WAJzMLsM7350AANw2fwgC/X3x9R9nkc87+26BxafJVVpaWt97dy3babRv+fepAIArp/RFcUWDU/vlzkYNiLYpGJwgxKKipgk+cjkDQQezdzD4JYAkQRC+1j7/B4Cv7Pwa1EVl5FficFoxbrxskMX0+2m5Fdi8L8ds+9vfai7kdOuTsgos5zW6YKGuIHmuqPBAfaYxw+knHblZe/Plg/Hl9rMYO8jzpk+SsfsWDkd+SR36xxsnJBg7KAZHxBL06aHZPjIxGuuWzjVqc9mE3vppiX17hCG3qMY5nSYzD727x9VdILJoy4FcV3fBrST2DMd/bpuAlz49YrWdYaZQciy7LY4QBCESwBoAL0FTW/B2AKtEUfyfvV6DurZXvziGP47mQ8ytwDc7MpB7UfriS6G0PPXu6z9Yr8pTxUc7587g3QuGIjrccrmFS8cnYO1TcxAd4b3DerpF+EEB3p2Vzd/PB4k9w82mcN21YBieumksJkhM79UZ0b81Ic2D14xw6rpQsiznovSNPpVajcz8KijbKHJPZKi8uhFF5fVtNySbRYQEoH986+ysF++c5MLeEGCnkUFBEMYC2ALgDlEUtwLYKgjC/wC8JgjCCVEUU+3xOkQAcPRsCf48VmAxNX+zSSKZNG0iAQBIzzMv+E3u7+On5uB8US1eWH8Yf5nUB9sO5dnlvFJZN6eNiEeQvy/e//EkBiZESB/n5es/bpg7EHK5DIs6WV7lP7dNQFiQY7KnOlKAnw+EPtZrVUWFB+Ljp+boZym88eA0FFc0GNUzlBIS6AuZTGZUzobs58X1R/DW4unIL67Vb1O2qJCcWojPtJmAn7t9AvrFWV4qQKTz+AeampemMwMAoKiiHrWN/DtuL13t59vnD0F9oxIJHUz4RvZjr2mibwL4hyiKSboNoig+LQjCLmiyiV5mp9chQpPC+jLUvSeN56K/8c1xR3aHHOjluyejoVkJuUyGvnFhWPPkbPjI5fpgcNSAaKRmlQEAIkL9seRvoyFvzwiNhaZjBsXgoWtHYnCfbp39X/BIEaEBuHvBsE6fx/DurzcynK7eLTQA3UIDcMmoeCSnFsJHLsOVU/ril305eOIfY/HG15r1ze8vmYmPNp3GgTNFruq219PVmdV54K1dCDTIsPvi+iNmF/eFZXWI7RZkcQ2xskWFksoGyVqW5Ll2n7iAH3dn45V7JiPEoOzPa18cxdl8yxlC1Wo1/m/1AWd00WvpysCQ69lrmmikYSCoI4ribwCkq8EStUMd7755pY+emC25vW9cGJ6/YyJ6xoRgQM/W0Tkfk/zcc8cl6B8/e+sE9I0L05eV6MysPZlMhrGDY40uDohsEWGQ+vyamYlY/fgsDNKOMCf21ATHt3awbip1TItKbZRFWKe8uhFLV+/Hxj3ZeGbNQaz55YzFc6z7NQ3PrDkIMa/CkV0lJ/pxdxbWb01HdV0zTmWXo6m5BVV1mvyHlgLBi+X12HYwjymLyKvYa2TQTxAEuWlxeUEQ5ABYFIQ67XBasf6xPQtqk2v5+sjRvVsQiiuNM6399/aJ7T5XlMk6vzljeyE9rxILp/frTBeJ2mVkYjR+3Z+LKyb2BgB9qZtVj86Cn5/mZkZ7CiP3jAlhUisHSMspx1d/ZKC4ogGb9uYAAA6nF2NBcS16dw9F0vECCL276UcCdSO52YXVbU4hJs+weV9rYhc11Hh05V40NCnx1E1jzdpW1jbh7PlKfPjzaQBoV2kE0njixjHtm7lDTmOvYHAXgP9q/xl6FoD1dEFENsgzyNSXfLLQSktyZ4uvGYE9qYX6qZ0AMGN0PH7Yld3pc5uu4wsO9MNjN0gXHr/pskHILqy2mJWWqKMG9+6G5f+egZBA46/XAH/jZDwJsSFmpSkeum4kBvfuhpYWNT7YeArXzUrE5n25DAYdwNLygfVb0xEW7Kf/jDKdTnpMLEF6biVmjIrHBBvqWZJnqKxpRkOTZvRYKtB7dIXx1OP8klqzNiTt+TsmoqiiAUP7RbXdmFzCXsHg/wHYIgjCzQAOQ7MSZxyAYgAL7fQa5IF+2ZcDhVKFa2cmQtmiwoHTRRg3OAb+fpoLI2s13pqaW9cGJh2/4PC+kv2Fh/ijuq5Z/zwuKhhThvcwCgY7YuUjMwEAvj4yDOgZjkvHJ7RxhLHLJvTu1OsTWRNqQ9KcR64fY7a2LSosUD81eenN47RbmZbeudRWP5+yLmiylZ7MLpNMKkLuo7K2CWk5FZgyvAdkMhk+/11Er5gQ3DBvqFnb73Zm6h/vSeUNZ3vq0yNMX6aH3JNdgkFRFGsEQZgJYA6AsQBUAFaKosjiP13cT7s1Iz7XzkzEH0fy8d3OTKRkxODUuXK0tKjx8VNz9G2PisUY2CsCEaEB2JlSgM+1md/IvY0ZGIPjmaWS+2aO7ilZ97GzDKfZPfPPCXY/P5GjRYYFQOjdDQMTIvDrfk3AJzVQzcFr11IoVfrsh+RY9Y0KrNuSjgXT+tol2+trXxxDcWUDQoP9MDIxGjuPFQAA5k7q1+lzk7TVj8/GfW8mubob1E52KzoviqIawJ/af+Tlvk/KQq+YEEwdEWdTe2WLSn/n7VxhtVktwBU/nsSxsyUAgKdvGW+xbAS5n9EDo3HXgqGShZ8H9orAmw9Ow++Hz+OIWIzukcE4X2x5es2l4xIwzkptNyJv8pR29E8XDEoZ1i+q0yPpZDu1SWaQI+nFmDK8h2s6o3XqXBkOpxXjtvlDvHpq+/Yj+Th2tgRpueVY+cisTp9Ptxa9rLrRaPvaX07hrvlDOn3+rmpYv0icyTFPpLTs/qlGN07eXzIDjU3Ws7+Te7BbMEhdy5YDmosXW4PBU9nlVvfrAkEA+N8XRzveMXK6+OgQs6ybIYG+ePzGsejTIxQymQw3XjoIN146CADMsrAF+vvqj7n5isHO6DKRx7hsQgIGJUTgpU+5/N4Zci7WGD1fs/kM1myWzjK642g+hvePQlxUsEP79Pa3JwBoZloM6CVd+9QbKFs0N4mbFao2WrbPZ9tEjBvcepOxoUmJpz7cZ9fX6OrkMhliuwUZbQsJ9GNGbg/BYJDsrqC0DkH+PogKD9RvO3u+tdi7aTBwJsd6oEju6+lbx2OgycXJ4mtGQOgTadO6KQCYOToeF8vqMXtcL0d0kchj+Ehk2pPLZBbrNa5bOhd3vqaZjCOVlZcc68vtZwFofg9qtRoymUz/X0d4/esUrH58tkPO7ena+rnnFFbrHx9LL7bYjtpmOnoOdH46+5sPTmuzhjQ5DifCk9395+ODePwD47tuuiLhAFBV25pQ5HROOd5kUXi389p9U2xqZxoIAppC49YCwdgIzd3DnjGalO1+vj64+YrB6BXDYs7UNT1+4xhcMbG3/m+iI26bP8Ri3U6dmy8fjBvmDuzwa5C0b//MwF3LduJ8cS2WvJ+MO1/7U5+Z0p5Ml1eQxvqtafj38mSopKIUrcMMAO0mwM+n7UbtFBUeqC/jQs7HYJA6JbOgCtsO5rXd0IK3GAi6pe6Rwfj4yTltNzTw8HWjcNn4BESGBVhtNzAhAo9cP9ogWyJR1zasXxRuvHSQ1ZGN+GjrUxF7xoTA10dutd2l4xNY58sBfjukWeP+33WHUFOvAABs3p9j9Zjy6kZU1zdbbdMVFJbVGWUOB4AWlRq1DQrUNSpQYsNo9+4ThahtUEBhZXrp3pOsC2gvt0gs5xjSt7X25iv3TO5QrWByHbeYJioIwv9BU4LCH8AH0NQtXA/NjMJTABaLoqgSBOEeAPcBUAJ4WRTFza7pcddw8EwRggN9MTIx2mKb/32uWd83cUh3REcEWmxHnsf0onFIn25Iz2ud7juiv3HNoDGDYjBmUIxN57b2niIicy/cOQnPrT2Ei+X1AICocOmbLpeMjMeGpCyjbT5yWevfs+XBE7KjmjpNUJhXVIPQID+jZRMA9LNnDMtTlFU1IjTYz+rIy4akTPx9tneM7pZXN+KZNQfRKzYEL9012Wjfw+/tgVwmg0qtNivh8eoXRzGgZwSuNxnl/u8nhzCsbyRLUTmIbuaBr48c7/xrOr74/SwWzeiPwrJ6DOvXGgxyhM/zuHxkUBCE2QCmAZgOYBaA3gDeBvCsKIozoKlZeLUgCHEAHta2mwfgVUEQrA9BUKes3nQa73x3wqa2yhYV1Go1yg2ydj3/ySFHdY2cbNVjs/DI9aONtvWK5Qc+kbP4+sixxOBv8PX7pwEA7vnrMEwfGYfwYM3UbKnRxVWPzdLX5iTnOJRehPpGBZ7/5DAe/2Af3ttwAkdFy1MVG5qUeGLVPjy39qDV82490PGZOO5Gl+WzoKQOaokpnpamfWbkVxktPdEprmhgIOggIYG+8PWR62tDR4QGYPG1I9ErNhQThnRHMBPFeDR3GBmcB+AkgJ8AhAN4AsA90IwOAsBWAFcAaAGwVxTFJgBNgiBkAhgFTZF7sqC6vhlhQX4OW9Bu6M9jBfoF9QCQV2S5hAB5FkesESCi9uneLQj3LhyG/nHh+pG+qcPjMHV4a1bnbmH+RsdMGd5DfwFHztOsUOFfBuV2TmSV4USWdKH6Mznl+Px3zXdnSWWj2f62KJQqKJQqyGTA3pOFmD4y3qgWa2ufWtCiUkvua8umvedQWduMf84T9NsKSmrx6TYRd101FD06mVFVl6HcEt21THpua0kDtVqNmgZFp16XpE0d3gMTh/RAZFgA8ktqMaRPZNsHkcdyh2AwBkBfAAsA9AewCYBcW7cQAGoAREATKFYZHKfbblFkZDB8fd3zIjY2Nkxy+5lzZVC2qDBqYOdrrZ3OLsPSlclYNGsA7lo4wmK7+kYFggJ8LQaMhn39NTkb2Reqzdo0qmAUCJJnM31/Sr1fg4MDLL6Pyfvxd+8af51l/ed+5YxQyHx8sPqnkwCAmMhgo9/V1XMG4XhWGeoaFcgzKaNAjvdHygVcPTNR/9wnwM8siVpbf1uxsWFY/m0KBvSKwFWXJOK2F7ahvLoJ86b0xW8HclFep8Div402O27RE5vQolLjl7eubne/N+45BwB47JYJSBGLERLkhy+2ZyCzoAobdmfjhXumtvucJQbJ5H7YlW2xXV5ZPZ5fcwBR4YFGs4/+vTwZtQwG7eaxm8fjrS81S39CggNw+bT+AIAJruyUh/K070d3CAbLAKSLotgMQBQEoRGaqaI6YQAqAVRrH5tut6iiot7OXbWP2NgwlJRIfwk/tSIZACTvHrZXcko+AODn3VlYOLWvZJvK2iY8umIvJgixuHfhcBxOK8bw/lEIC24d8v/k55PILKjCTZcNwofaCwxTL3x8oNP9JfuYP7Uftu7PadcxKx+ZiRaVGntPFmLsoBiz96fueVCArz5LXkN9s8X3MXk3a59h5HqThVh8HuCL+iYlGhsUZr+rJ24cg292ZCDvYg0C/X3Q2MyU7s7y1W/p+Oq3dP3zT342/05t62/rQmElth/Kw3YAk4RYlFc3AQDO5mrKNOUUVKKkpAYqtRotLWp9IfAWldqm81tTUlKD5z7aDwDoH6+5JCurbEBJSQ1qGxQ4mV2GyUN7mK05b1a0wN9khkllpW3XaLuOahL0lJsUj2cgaD8+chmG9Gq9xG5sNP/cINu46/ejtQDVHYLBZAD/FgThbQDxAEIA7BAEYbYoikkA5gPYCeAQgFcEQQgEEABgKDTJZbxWXaMC6bkVGDc4tt3TPKvrm3E8o1Ryn0qlBmSa+lUFJXUAgCNiCfoeytPfnRtqkBnqx92abbrEBeTeHrhuFE5nl1qcpjsiMQqnso1rO+qmDc2b1MfquZ+7bQL+7yMG/kRE9mCtHALQWojd0H1v7pJoCZwrNL4AfX7dIeSX1OGluyY5JODXvV7uxRrkF9fii+1ncfZ8JQ6eKcK/rh2pn558rrAaL316BNfMTMRfp/Vr9+vsPFZgz26TiaF9I/Gva0ca1w9k0uEuxeULCbQZQVOgCfZ+AbAYwGMAXhAEYT80GUa/F0XxIoDlAPYA+BPAM6Iotn9yvQd57/tUrPzpFI6KJe0+9tXPjyK/RDoYeOi9PXh6tfkF/YXSOv3jNIN5+TrFFSxo7Amkbhzcs2CY/vGIflFm+23VIyoYDy4aAV8fGWaO6dnh8xCR+3j2nxNw7cxE/OOyQUbbRw9g1l/Hs37Vfe8bSR0+c772Zu9/1h7CK9rM31IKy+qQV6QJ7DYkZeJIB2ryPbfuEM6e10zWSs0qw71vJCE1qxQqtRop2hvTG3dntxn8kvPFdgs0W0fKWLBrcYeRQYii+KTE5lkS7dYAWOP4HrmHzHzNEsliK3V21Gq1/uLf8HGRYeBm8tnb0KREQ5PSLHvX/tNFdug1uQXtr3bMwBg8/LdRADQjgtX1CqTltI4KvnrfFPhbWVf71uLpaFYY31GeMKQ7Jgzpbv8+E5HdjB4Yg/2nL6JvnPTUIMOP/8Se4UjsGQ4AiI0IwvIfUvWfHVsP5JqVqiD72X/avP6d4Xd5W84Vmq/hT8+rlMzOqd+fW4Hq+maMF2LhI5fjmTWaDKarH5+tz1Zqj6Uq725IBQD9aKAawN3LduLqS/pj4fR+nT4/2YcuEPRhDdIuyy2CQeoYMa8Cy75KwZK/j0K/uHAseT8Z181KxFVT+9l0/F3LduLKKdJrCcmzDe7TDXnFtfoLPAAIC/ZHWLC/UTDYI9J6Bri2CsgTkXu6fb6AGaPiMbhPN6vtTGOO0QOj8dRNY9EvTvPZMW1EnFEwOHtsLySlcNqevSiU5tNAH1mxF9V1thWkf+nTI5Lb71q20+Ixr3+dAgC4fs5A/GWy4dKA1gDywbd3Yf6UvqiubcbCS/rpt5/KLrOpX4ZM32M/J59D1oUqo+Uo5BqThnbHAm2wLpPJEBHqj6raZrPfGXk3BoNuqq6x7YXRWw9q7uBt3HMOV0zS5Nz5YVe2zcEg0HY6Z/JMf589ECP6RxsVgtUZOSAa+CMDi2b0d0HPiMgZ/Hx9MKQDF9symQyCQRr5iNAALL15HF778hgAoFcM64s6mq2BYGdlFlQZPTccjWxsbsFP2nwBO47l67e/bWPtYUNinnmuv1PZ5WZr18m5Hr1+NEYkmkwF198PYDTYlbh8zSBJe+T9vR0+1jTDFmfoe7Z1S+fixbsmYaLE1Mx+cWGYNLS7WQF4P185Rg2Ilqwv1iMyGGuenI2F0xkMEnVVE4dqPk9s+RwY3Lt1dLFfvGelTCfLjp0twafb0ttu2EnieauJ38mB7r96uOWdVuI9jgx2LRwZdKGa+mb4+sglC8BKZRBrbFZix9F8zBjdE+HBxoWFZQZ/1Q+/t8f0UJRXN+LxD/bZodfkCgmxoZ8Wo20AACAASURBVHhg0Qgcfu1P/bYVS2YiOFDz3jmUVoQPfz6NO68catP5fOS8D0TUlQ3sFYHVj8+CXwdq8V41tS9+3W95VklkWAAqapo60z1ykl3HL+gfl1V5dU6+Lkkmk8FHLoNabZ65ViYRDXLwoGviFaEL/Xt5Mha/s9vm9r/szcEPu7Kx7tc0o+1qAM1K62mjdxzNt7qfPI8uEASASUN7YOUjM3HJqHgX9oiIPEl7AsEHF43A+MGx6B8XjvFCrNn+vj1aRwz7WUhaQ+6NZYM812wr2b0/eHQWVj02C927BRltDwyQ+PvXBowcGOxaGAx6kDJtwdWL5fXYdbwAqVmahdy5F2vwyRbrUz1OdmDRNzmXv58cM9oI5j56YrbFfVIjzERE9jBhSHcsvnakWTFxAPjPbROw5PrR+uc3XDrIrA0ROY6/n+UbO36+cvj5yvHyPZOxYslM/fbesaGWT8h5ol0Krx7dRHVdMz7efEZy3/dJWZg/uQ+aFZqpo8UVDfh0m9iu8+vqDZF7MkzjHejvi+1Hzku28/WRQyYzTgtPRORMvbuHYnDvbhgzMAZzxvZCgL/xhajpCAQROc/IxGj9AECCQT4BXx85fH3k+OiJ2ahvUkoGkNNHxmPrwTwMl0g+R96LwaCLGKaTziqosloQFrCeJpq8S1s35FYsmYlmiXTkRETO4COXY+nN41zdDSKS8LfZA/TBYHy0efZfXx+5Wd4JnetmD8Cssb14Q6eL4TRRF8jKr8R9bybpn7cVCJJ3iwq3XMtv/GDztTlBAb6ICJH+ICciIiLvddn4BIv7TEfp20sukzEQ7IIYDLrAf9fsd3UXyE307h6KJ24ca7Qt2GDt370LraSFJiIioi5Fat3uLG0CmTvmD4Ga60ionRgMukBVrXMKypL7ePT60fjLpD5m2/8+ZwB6RAUbbbtiUm9cOi4Br947BX6+/BMlIs8wtG8kosMDJfddP2eg2bawYD9Hd4nI6/TpYZ74JT46BOuWzsWkoT1c0CPydLzSdLLdJy603Yi8TmR4oFlheEC6zk+gvy9uvmKwWZBIROTOnvjHWLz+wFTJfZeOT8Dssb2Mtj38t1HO6BaR13jsxjGYMjzOaNt1sxJd1BvyFkwg42Trt1ovAUHeIyo8AOXVmsLLPaODER8djLUmNSKJiLyJzEoGrH/OE3DL5YNR26hA3sUaDOgZ4cSeEXmGyyYk4I8j0rWhh/eLMnr+8ZNzzKaNcpYotRdHBolsMKJ/VNuNTMgNLopkMhnkMhkeum4kLhlpUEuQpXyIyAvFR2tmNowXYnHp+AT9lHe5XIbwYH+MSIw2at+XheqJMHV4HEIC254+rSsZIbV+MCSQ4zzUPnzHELXhziuHYuKQ7njg7V2dPtfYQbEYOygWyScL7dAzIiL39ORN45CWU47Jw3pYHS0MDvBFfZMSz9w6HofSivDdzixU13FdPZE1z985CS0t0iWmYroF4V/XjkTv7laKyhMZ4MggkRXXzxmIS0bFt91QQs8Y8zWCpjgwSETeKCLEH1OGx1kNBAHg3YcvwarHZsHXR45pI+JZNoe6hIEJ0lOkxw2OxTCTgu83zjVPviSXyeDna7mMxLjBsYhliQiyEUcGiSxYt3Su/rG/nxzjhVgIvbuhV0wI3vjmuNVj/3HZIEwdHoeH39vj6G4SEXksXx85DK9pe0QG4Xxxres6ROQgN8wdCJVajWnD4xARGoD84lpsTD6HY2dLAACjBkRjvKCpLfzOQ5cgJNAXjc0tOJNT7spuUxfAYJDIBjKZDIuvGWm2ffm/Z0ChVOGJD/ZBZbBq+/IJvQEAS28eh7LqRsvntX9XiYg81j//MgTDB8YiK6+C0+nJq8wzKS+V0D0UU4fH6YNBw1IruhHy0CBO4CPH47uMujRLC637x4fbdHxokB8iwwLwyr2TMX5wrNn+wb27YapJGmgiIpIWGuSHv80dhH9cNggLp/fDXVcNNWtjWKJiynDWVSPPpUu0BEiXmiJyBgaD1KU9fet4s20+chn+PntAu87TIzIYC6b1a38H2lhPQ0TUFQUF+GLRjERMHRGHhdP76bffs2AYbr1isP75+MHdXdA7Ivswyi1g4XLA38/y2kAie2AwSF3KUzeN1T/uHx+G+OgQPLhohH7ba/dPxZon52BI30ipw+1Gd3HTj+nUiYgskstkWDSjtah27+6hRklpxg2Owf/dMs4VXSOy6v6rh9vUbvE1mmuQueN6Se4flRiNv0zug//ePtFufSMyxDWD1KUM6BWBF++ahI83n8FD140CAESGB+j3d+9E9i01bK/0umhGIq6+pH+bmfaIiMjcdbMSERcVDJlMhkEJ3VzdHSIzk4b2QHREIF757KjVduOF7lj71ByL1wNyuQzXzzHPKEpkLxwZJK/12n1TJLcnxIbi+TsmoVuoJgiMj9JM05jRjhISz98xEa9aOL+tGAgSEdlm2gjN2uuYboEAgKum9sN4wXyK6LxJveHrw89Wcg8DekqXkDDF6wFyJY4Mktd5a/F0hIf4wUcux6XjExAS6ItNe3MASC/RCw70xZonZ8NHbvu9kT49zKd3qm0fGCQiona4e8Ew3HHlkDY/p/8yuS9yCmsgnq90Us+oK3nqprFY9lWK5L41T87GPa8nmW1/+pbxCDXIFErkbhgMkteJDGud9nnz5ZpEA/pg0MIK7fYEgkRE5HzWPqeX3T8VF0rrEBHij0B/JtygzgsL9kNNvcJoWz8rmcYtvT8tFZgnche8Aiav8v6SGVb3t2ddHxEReYbYbkEYPTDG5vZrnpyNv0zu03ZD6rKumNjbbFuAhcyefzPJQB7AGxLkQTgySF4lJFB6KsbNlw9G1oUqjgASERF85HIM7t0N2w7mubor5IaW/3sGQoP8MHdcApoVLTh6tgQzRvUEoAn0mppbJI/7v1vGoaq2uV03JohczS2CQUEQjgGo1j49B+AVAOsBqAGcArBYFEWVIAj3ALgPgBLAy6IobnZBd8lNPHbDGLz17XGb2l46PgGXjk9waH8s3TEkIiLnuX7uQJTXNKGhSYnSqkb9dt16r5GJ0S7sHXmC0CDNjeWgAF8EBfhi7jjr1w+6BHTMbEueyOXBoCAIgQBkoijONti2CcCzoigmCYLwIYCrBUHYD+BhABMABAJIFgRhuyiKTa7oN9nffQuHY/Wm0za37909FADQIyoY04b3wIBerp2X///s3XucXXV97//X3DKTy8wwSSYkGEggYT5yC8RgCJeQAFFucrGUYqMWRAEpFa0tooL1cvBYrXAUW2gboGitv0OL5Rwbi6DiBbBCxXh+UPQbo2jLUWQIk8yEmEmYzPlj7xkmyZ5JJrNvM+v1fDx4OOu71t77M5OPe+/3Wt+11kEzp7J61eF0HOyHgSRVypwZU/no5Uv5hwfX880fPgvAogUziEPa+NQ7T+SAgfPKC5w1cP7J8wfPMZcKGbjywPJFc5h5wGRWHncQzVMmVbQmaSwqHgaBY4EpEfEguXo+CCwBvpNffz/weqAPeDQf/nojYgOwCPj38pesUmiZOolPXLWMA6Y2cvUt3ym4zR3Xn8ba7/2CJR3tu2xfLfPzVx2/5zkGkqTye+OphzG5qZ4zlsyldWruy/rMIfeSbWzY87SBN5xkGMyqE448kMee/s0+b980qZ7zTppfuoKkMqmGMLgV+DRwB3A4ufBXk1Ia2GfXA7QCLcDmIY8bGB9WW9sU6uurIyRo79rapnD0gtw8+0/90XLe95cPs2LxXL6z7tnBbQ6c1cLbL1w0uNzevuctHuTfRaVnj6mUitVfVx3cNuy6GTOm8csXtnLiMXPoeWk7v3yuhzmzvfJjVt349mWc9yf/Gxi5/2prc8cGJ09p8H1QBY23vqiGMLge2JAPf+sjYiO5I4MDmoFN5M4pbC4wPqyurq1FLlWjdcf7TuPBf/8v/vFbG/a6bffm39LZ2QPAzGkN3PX+03m2c8tgGDw+2gfXa3jt7c3+nVRS9phKqZz9ddbxuXPBWhsnM3f6ZDo7ezhg2iQ2bdk+7GPOWDKXbz7x7LDrVR2mtzTyYnfhM4mWHjGLI+a18fmvpcGxoT03Uv8dfeh0Hv/x87Q3N/o+qD1U6+fjiDs4yljHcC4HbgaIiIPIHQF8MCJW5tefDTwMPA4sj4imiGgFjiB3cRlVsdraGs464RCuvvDoguvramsGT9RunbbnnPtXzZzK6197MH/ypuP4wzceU9JaJUn66OVL+cBbXjO4fOD0KbusH7h/rarbcBeNm9pUzzsvOJoVx71qj3UXrTiMq84/asTnfds5R/AnbzqOE4+eXZQ6pUqrhjB4J3BARDwC3EMuHL4b+Gj+ojGTgHtTSs8Bt5ILhg8BN6SUtg3znKoyr331rILjF61YwH97xwn86ZuO48C2KXusr6mp4U1nHM5R86eXukRJkmieMmmXq0LOnTmVO9532i7bHL7bjcSvcWdlVbju9xfvdZs3n3XEHmNHzs9NJz73xPmccOSBIz6+saGOo+ZPp7amZsTtpPGi4tNEU0rbgdUFVq0osO0aYE3Ji1JZfPiy1zJvdu6wdetUw54kqXr8+VXL+Mdv/YzfX3X44HlihTRPaWCE1SqTy85+NUfMa2POjCksO/LAgleL/dvrVjJnduse0/heNXNamaqUqk/Fw6DGh7raGvp2FnhnHcbrX3sw0wcu372bT//hSfz8V92DQVCSpGozq20Kf/Q7rxzxe/PrOvhNgWsRfPiy1/KL514JF2efcAjnn3IoP312E7fc83/KUut49bHLl/Jndz0+7PpXzZzK/33hpRGf46rzj2Lnzv7BI3ofv2IZAPd//5eD2xw4fQq/eXEr9XW7Togb+G7zuysP299fQRr3DIPaJx97+1JuWPPY4PINf7CEj3/hCQCueMORLDvqQO5/7D9Z/1+beOcFR9E0ac/W+vBlr6VrSy/TW5qY3tJUttolSRqrQuegHTGvjektTTzz61fCYGNDHY0NdRx96Aze/LoO/uHr68tZ5rhz+NxWfvrs5oLr6ur2fsh16RGzqCkwZXPo7uub3rGUHS/v3GObNbtN/5WyqBrOGVQVO3ROM5+4chlzZkzlr//klZm7UxpfCXsnHj2bmpoazlk2j/dcfGzBIAgwb3Yzxy2cWfKaJUkqp7mzpr6yMCSXnLFkLh+69PjyFzSOLHzV8LfzmNRQx2Vnv5r3v/k1HDqnBYDjFs7kjNe8EswLBcHd1dXWDvvdRMo6/5+hEX3o0tcO/jyp4ZV7NjbUux9BkiSAA9umcNnZr+b+7/+SFccetMu6Q+e08Ikrl/GBv/1+haqrHqctfhXfWvd/B5cLXUV8qBrg1Pzf8wNveQ09W3fQlj8F5Zs/HPn2HgNXKp/eUviUFUk5hkGNyo1/cDzP/LqbA6b55ipJ0oBTjz1oMLjsbvfbU3zkbbnzDO++/ycAHHXodP7jmRcH15930nx+8VwPT/58Y+kKLrO3nf1qlkQ7LVMnsXzRHHbu7Kd5yithsKG+lj9903HcufbHPL/pt3s8vr6udjAI7ouTjp7Npi29LDvKW0BII/HwjgB4+7l7Xmq5kMMOahn23j2SJGXBRSsWUFdbw4XLD93nx1xwyivbHnJgMycOCSnv+p1db01RUwMLDmoZ9rkuXrlgFNXum7eeGXuMvf61Bxft+ZcfexBTmhq44JRDmd7SxMwDJu+xzeFzD+DjV56wT8+3aMEMjpjXNuz6+rpazj/5UGYVeB1JrzAMitMWv4qTj5nDeSfN3+fHDNws/iRvuipJypiOgw9gzftO2+V+hKPVUF/Lxact4L2/dyyTGuq46/2n77L+9UuHD2J1Be5l0TJ15CmXd73/dG6+5mSuPP/IgutPW7zrTdjPPXEebzrj8D3qGs7ZJxwy7LrVqw7fp+eA3Pl9rz5k73/X91x87D7dV1DSyAyDE8hn3nXKPm133e8v5rb3ngrk9qwN7A3c9xtH5E7Y/uy1p/CONxT+UJEkSSM7+4R5HH3YjMHlRQtyPx80c+ouFzy58/pXrnp57onzmD1j12mnAJ+4clnBWT6rVx3OFfnP6rbmRpYduetO3AuXH8od1+95Vc3Z0/d8jZFcfNpC5rZP3WP8TWcczqrj9+8Io7dvlErPcwbHkcZJdfRu7xt2/b5cghkYnFZxx/WnUTvkKlyvffUs1n7vF4PLF54y8vSXfbmClyRJ2jfvvOAoNjy7maMOnb7L+NDP24tWLGDnzn5WHHcQxxw2g7/85ycBmNxYz4lHz6Zl6iQ65h7Ar198iSlNDXudJnnGkrm7fBfYHwfPyt20/fo3v4Z3febhXdbNanOaplTNPDI4jtz+3hUjrt+Xt/Khl7je/c3/4FnT+PgVr8zVP38vYVCSJO2bgamdu9/4fKimSfUcfdiMve5sra2t4dKzXs1rOtp3Ha+p4ZjDZtA4qY75s1v2GgTPPuEQpjY1DC4P/Q4wGgPTNYc+16olc3nXRcdw7IIZwz1s79zpLJWcRwbHsbbmRrp6evd5+zuvP22vHzDTm3M3gx/ppGxJkjQ6ZyyZyzO/7uYNozg//0OXHs/O/txJHDe8dQm1Bc4VHIvdn2/OjD2neQ7V2FBH46Q6ul/avsv4wG0cIHcl1H/53i9YdtRsDhvhIji71zD0PMhTjz2In/znpj1u0yGp+AyDZTa3fSrPdr406sctO/JAIHf0rx+Igw/g+je/hrvv/wnf/T+/ym+165v6Ocvm8a/f/+Xg8r5M62ycVMdt7z11l3sKSpKksZncWM+7Llo0qscM3GgdYMEwN2evq62hb+dozvofvXdddAyP/P+/5g/feDQbnt3MJ7+0jsmN9Rxz2HSOXThzl23feOphnHXCIUxu3LevmGcuPYRfPtfDhcsPGxxbdtRsjl04c5+fQ9L+8/9lZTZ0CsWAmhro38v7+EUrcpeRXji3lZ8+u3lw5sQFpxzKcxtf4k2rDt9jNsXQPX5vHMXlr4eetC5JkqrXbe89lZ07S/saiw9vZ/HhuSmpHQcfwGVnv5oj57UVvD0EMKoQN21yA++95LgxPYek/ec5g2XWn09982Y3Dxnc++NmtOambx4fswBYkv/ftuZG3v+WJcyfvedUjDj4lUsze9NVSZImnob63NTNcqmpqeHUYw8aNghKGl/c7VJmA7lvf2f9rzp+LscunEF7gTfhpkl1LHxVK0fOb+OkY+Z4o1VJkiRJwzIMltlAGGwashev/YDJPL/pt4PLk+pr2f5y4TkfNTU1zGorfO+fmpoaPvjWJbuMnX/yfL731HO0NTeOrXBJkiRJE4rTRMstnwZramr42NuXcs6yeXzosuM5a+khg5scNHPkq3mNxoXLD+NTV5804qWsJUlSdlx5Xu4m9KccM6fClUiqNBNCmZ1/8nwAzj1xHnPbp/G7KxcwtamB3zt94eA2HQcfwAffuoTfO23hMM8iSZK0f5YdNZu73n86B07fc6bRxStzF6w7cv70PdZJmnicJlpmRx82g698+nxeeGHLsNuceNRs5s1upnd7HwCHzmkedltJkqRiOXvZPM464ZB9uh2VpPHPMFgBw73B3nn9aezs76euNnfA9sj5bbzn4mNZ8Kq937RVkiSpGAyCUnYYBqtITU0NdUPegGtqali0YEYFK5IkSZI0UXnOoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpg2r6+/srXYMkSZIkqcw8MihJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlUH2lC8iSiKgFbgOOBXqBd6SUNlS2Ko0XEdEA3AXMBxqBm4CngbuBfuAp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOcv8eqm4RMQt4Angduf65G/tLRRARHwDOByaR+yz8DvaXiiD/+fh5cp+PfcAV+P6lIoiIE4BPppRWRsRCxthTEbEM+Gx+2wdTSh8t/2+1K48MlteFQFNK6UTg/cDNFa5H48tbgI0ppeXAWcBfArcAN+bHaoALImI2cC1wMnAm8ImIaASuBp7Mb/sF4MYK/A6qYvkvVH8D/DY/ZH+pKCJiJXASub5ZARyM/aXiOQeoTymdBHwM+Dj2l8YoIt4H3AE05YeK0VN/DawGTgFOiIjF5fp9hmMYLK9TgK8BpJS+Dxxf2XI0zvwT8KH8zzXk9iotIbd3HeB+YBWwFHg0pdSbUtoMbAAWMaT/hmwrDfVpch9Uv8ov218qljOBJ4H7gH8B1mJ/qXjWA/X5GVgtwA7sL43dz4DfGbI8pp6KiBagMaX0s5RSP/AAVdBrhsHyagE2D1nuiwin6mqfpJS2pJR6IqIZuJfcXqaa/BsK5KYhtLJnnxUaHxiTAIiIy4DOlNIDQ4btLxXLTHI7QC8G3gn8A1Brf6lItpCbIvoTYA1wK75/aYxSSl8mt2NhwFh7qgXoLrBtRRkGy6sbaB6yXJtSerlSxWj8iYiDgW8Bf59S+hKwc8jqZmATe/ZZofGBMWnA5cDrIuLbwHHkprXMGrLe/tJYbAQeSCltTyklYBu7fgmyvzQWf0yuvzrIXZfh8+TOTR1gf6kYxvqda7htK8owWF6PkpvXTv4E0icrW47Gk4g4EHgQuD6ldFd+eF3+XByAs4GHgceB5RHRFBGtwBHkTnQe7L8h20oApJROTSmtSCmtBH4E/AFwv/2lInkEOCsiaiLiIGAq8E37S0XSxStHYV4EGvDzUcU3pp5KKXUD2yNiQUTUkJs+X/Feq+nv79/7ViqKIVcTXUTunK+3pZR+UtmqNF5ExGeBS8hNgxnwbnLTYSYBPwauSCn15a9sdSW5HT7/PaX05YiYQm5v6RxgO7A6pfRcOX8HjQ/5o4PvJLcXdA32l4ogIj4FnEaubz4IPIP9pSKIiGnkrrY9h1w/fRb4AfaXxigi5gP/M6W0LCI6GGNP5Q8GfQaoI3c10RvK/1vtyjAoSZIkSRnkNFFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgbVV7qAUurs7OmvdA2FtLVNoatra6XL0ARlf6nU7DGVkv2lUrK/VErV2l/t7c01w63zyGAF1NfXVboETWD2l0rNHlMp2V8qJftLpTQe+8swKEmSJEkZZBiUJEmSpAwyDEqSJEkaF3p39PF811Z6d/RVupQJYUJfQEaSxqveHX1s3tJL67RGGhvG3zkIkiQVU9/Ondzz0AbWre/kxe5eprc0srijnUtOX0hdrce39pdhUJKqiB92kiTt6Z6HNvCNHzw7uLyxu3dwefWqjkqVNe75zUKSqsjAh93G7l76eeXD7p6HNlS6NEmSKqJ3Rx/r1ncWXLdu/QtOGR2Dih8ZjIjLgMvyi03AccCJwFrgp/nx21NK90TEFcBVwMvATSmlteWtVpJKZ28fdhetWOCUUUlS5mze0suL3b0F13X1bGPzll5mtU0pc1UTQ8XDYErpbuBugIj4K+AuYAlwS0rp5oHtImI2cC1wPLnQ+EhEfD2lVLgzJGmc8cNOkqQ9tU5rZHpLIxsLfEa2NTfROq2xAlVNDFUzTTQijgeOSin9LbkweG5EfDci7oyIZmAp8GhKqTeltBnYACyqYMmSVFQDH3aF+GEnScqqxoY6Fne0F1y3uGOms2bGoOJHBof4IPDR/M+PA3eklJ6IiBuADwM/AjYP2b4HaB3pCdvaplBfX53N0d7eXOkSNIHZX+PXyce+iq88/PMC4wcx96ADKlBRYfaYSsn+UinZX+PTH/3eYqZMnsT3n/o1L2z6LTMPmMyyo+dw+XlHUVdXNce3xl1/VUUYjIgDgEgpfSs/dF9KadPAz8DngO8CQ/+6zcAmRtDVtbXYpRZFe3sznZ09lS5DE5T9Nb6dd+IhbP3tdtatf4Gunm20NTexuGMm5514SNX8u1Zjj3krjomjGvtLE4f9Nb5dePJ8zl568C7v9y+++FKlyxpUrf01UkCtijAInAp8c8jyAxHxrpTS48AZwBPkjhZ+PCKagEbgCOCpslcqSSVUV1vL6lUdXLRigeFmH3grDknKlsaGOs+fL6JqCYMBDJ0XdTXwuYjYATwHXJlS6o6IW4GHyZ3reENKaVv5S5Wk0vPDbt943ylJkvZfVYTBlNJf7Lb8Q+DkAtutAdaUqy5JUvXyVhySJI2Nc2gkSePSvtyKQ5IkDc8wKEkal7wVhyRJY2MYlCSNS953SpKksamKcwYlSdofl5y+EGCPW3EMjEuSpOEZBiVJ45a34pAkaf8ZBiVJ45634pAkafQ8Z1CSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGVQfaULiIjLgMvyi03AccApwGeAfuAp4JqU0s6IuAK4CngZuCmltLbsBUuSJEnSBFDxI4MppbtTSitTSiuBJ4BrgT8DbkwpLQdqgAsiYnZ+3cnAmcAnIqKxQmVLkiRJ0rhW8TA4ICKOB45KKf0tsAT4Tn7V/cAqYCnwaEqpN6W0GdgALKpIsZJGrXdHH893baV3R1+lS5EkSRJVF/EP/QAAIABJREFUME10iA8CH83/XJNS6s//3AO0Ai3A5iHbD4wPq61tCvX1dcWusyja25srXYImsGrqr76+ndz1L//B95/6NZ2bfkv7AZNZdvQcLj/vKOrqqmZ/lEapmnpME4/9pVKyv1RK462/qiIMRsQBQKSUvpUf2jlkdTOwCejO/7z7+LC6urYWs8yiaW9vprOzp9JlaIKqtv760jfW840fPDu4/HzXb/nKwz9n62+3s3pVRwUr0/6qth7TxGJ/qZTsL5VStfbXSAG1WnbLnwp8c8jyuohYmf/5bOBh4HFgeUQ0RUQrcAS5i8tIqlK9O/pYt76z4Lp1619wyqgkSVIFVUsYDODnQ5b/BPhoRPwbMAm4N6X0HHAruWD4EHBDSmlb2SuVtM82b+nlxe7eguu6eraxeUvhdZIkSSq9qpgmmlL6i92W1wMrCmy3BlhTrrokjU3rtEamtzSysUAgbGtuonWaFwSWJEmqlGo5MihpAmpsqGNxR3vBdYs7ZtLYUJ0XeJIkScqCqjgyKGniuuT0hUDuHMGunm20NTexuGPm4LgkSZIqwzAoqaTqamtZvaqDi1YsYPOWXlqnNXpEUJIkqQoYBiWVRWNDHbPaplS6DEmSJOV5zqAkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZZBhUJIkSZIyyDAoSZIkSRlkGJQkSZKkDDIMSpIkSVIGGQYlSZIkKYMMg5IkZUzvjj6e79pK746+SpciSaqg+koXIEmSyqNv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtb9w5KUNYZBSZIy4p6HNvCNHzw7uLyxu3dwefWqjkqVJUmqEHcDSpKUAb07+li3vrPgunXrX3DKqCRlkGFQkqQM2Lyllxe7ewuu6+rZxuYthddJkiYuw6AkSRnQOq2R6S2NBde1NTfROq3wOknSxFX0MBgRc/L/uzwiromIqcV+DUmSNDqNDXUs7mgvuG5xx0waG+rKXJEkqdKKegGZiLgd2BkRfwV8CXgQOB24qJivI0mSRu+S0xcCuXMEu3q20dbcxOKOmYPjkqRsKfbVRJcCxwMfBu5MKX0kIv69yK8hSZL2Q11tLatXdXDRigVs3tJL67RGjwhKUoYVe5poXf45LwDuj4gpgNNEJUmqIo0Ndcxqm2IQlKSMK3YY/ALwa+AXKaXHgCeAvynya0iSJEmSxqjY00QfAD6bUhq4WdFywBMRJEmSJKnKFCUMRsTJ5KaI3gG8PSJqhjz/XwMde3n8B4DzgUnAbcAPgbXAT/Ob3J5SuicirgCuAl4GbkoprS1G/ZIkSZKUNcU6Mvg6YAUwB/jYkPGX2cs00YhYCZwEnAxMAf4UqAFuSSndPGS72cC15C5Q0wQ8EhFfTyl5l1xJkiRJGqWihMGU0kcAIuKtKaW/H+XDzwSeBO4DWoDrgLfnni4uIHd08D3krlT6aD789UbEBmAR4NVKJUmSJGmUin3O4Hcj4i+A6eSO7gGQUrp8hMfMBOYBbwAOBb4C/DlwR0rpiYi4gdytKn4EbB7yuB6gdaRi2tqmUF9fnVdKa29vrnQJmsDsL5WaPaZSsr9USvaXSmm89Vexw+A/Ag/n/+vfx8dsBH6SUtoOpIjYBnw1pfR8fv19wOeA7wJD/7rNwKaRnrira+soSi+f9vZmOjt7Kl2GJij7S6Vmj6mU7C+Vkv2lUqrW/hopoBY7DDaklP50lI95BHh3RNxC7pzDqcBXI+KalNLjwBnkblHxOPDxiGgCGoEjgKeKV7okSZIkZUexw+AjEXEe8ED+SN9epZTWRsSp5MJeLXAN0Al8LiJ2AM8BV6aUuiPiVnJHHWuBG1JK24pcvyRJkiRlQrHD4O8CfwQQEQNj/SmlEU/cSym9r8DwyQW2WwOsGWONkiRJkpR5RQ2DKaWDivl8kiRJkqTSKGoYjIg/KzSeUvpYoXFJkiRJUmXUFvn5aob8Nwk4HziwyK8hSZIkSRqjYk8T/ejQ5Yj4b8CDxXwNSZIkSdLYFfvI4O6mAYeU+DUkSZIkSaNU7HMGn+GVm83XAgcAf1HM15AkSZIkjV2xby2xcsjP/cCmlFJ3kV9DkiRJkjRGxZ4m+p/AOcDNwK3AZRFR6qmokiRJkqRRKvaRwU8BhwN3kbui6NuAw4D3FPl1JEmSJEljUOww+HpgcUppJ0BEfBV4ssivIUmSJEkao2JP4axn14BZD/QV+TUkSZIkSWNU7COD/wB8OyL+v/zy7wNfKvJrSJIkSZLGqGhhMCLagDXAOuD0/H+fSSn9fbFeQ5IkSZJUHEWZJhoRi4GngSUppftTStcBDwB/HhGLivEakiRJkqTiKdY5g58Gfj+l9LWBgZTSB4HLgVuK9BqSJEmSpCIpVhhsSyl9e/fBlNIDwMwivYYkSZIkqUiKFQYbCt1cPj82qUivIUmSJEkqkmKFwe8AHy4wfiPwgyK9hiRJkiSpSIp1NdEPAP8aEW8G/h2oAV4DPA+cX6TXkCRJkiQVSVHCYEqpJyJOBU4DFgM7gb9KKT1cjOeXJEmSJBVX0e4zmFLqBx7K/ydJkiRJqmLFOmdQkiRJkjSOGAal/dC7o4/nu7bSu6Ov0qVIkqRxzO8UqqSiTROVsqBv507ueWgD69Z38mJ3L9NbGlnc0c4lpy+krtZ9K5Ikad/4nULVwDAojcI9D23gGz94dnB5Y3fv4PLqVR2VKkuSJI0zfqdQNXC3g7SPenf0sW59Z8F169a/4PQOSZK0T/xOoWphGJT20eYtvbzY3VtwXVfPNjZvKbxOkiRpKL9TqFoYBqV91DqtkektjQXXtTU30Tqt8DpJkqSh/E6hamEYlPZRY0MdizvaC65b3DGTxoa6MlckSZLGI79TqFp4ARlpFC45fSGQm8/f1bONtuYmFnfMHByXJEnaF36nUDWoijAYER8AzgcmAbcB3wHuBvqBp4BrUko7I+IK4CrgZeCmlNLaylSsrKqrrWX1qg4uWrGAzVt6aZ3W6N47SZI0an6nUDWo+DTRiFgJnAScDKwADgZuAW5MKS0HaoALImI2cG1+uzOBT0SEE6pVEY0Ndcxqm+KbtiRJGhO/U6iSKh4GyQW7J4H7gH8B1gJLyB0dBLgfWAUsBR5NKfWmlDYDG4BF5S9XkiRJksa/apgmOhOYB7wBOBT4ClCbUurPr+8BWoEWYPOQxw2MD6utbQr19dW5l6W9vbnSJWgCs79UavaYSsn+UinZXyql8dZf1RAGNwI/SSltB1JEbCM3VXRAM7AJ6M7/vPv4sLq6tha51OJob2+ms7On0mVogrK/VGr2mErJ/lIp2V8qpWrtr5ECajVME30EOCsiaiLiIGAq8M38uYQAZwMPA48DyyOiKSJagSPIXVxGkiRJkjRKFT8ymFJaGxGnkgt7tcA1wDPAmoiYBPwYuDel1BcRt5ILhrXADSmlbZWqW5IkSZLGs4qHQYCU0vsKDK8osN0aYE3pK5IkSZKkia0apolKkiRJksrMMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJI+jd0cfzXVvp3dFX6VIkqajqK12AJElSNerbuZN7HtrAuvWdvNjdy/SWRhZ3tHPJ6Qupq3V/uqTxzzAoSZJUwD0PbeAbP3h2cHljd+/g8upVHZUqS5KKxt1akiRJu+nd0ce69Z0F161b/4JTRiVNCIZBSZKk3Wze0suL3b0F13X1bGPzlsLrJGk8MQxKkiTtpnVaI9NbGguua2tuonVa4XWSNJ4YBiVJknbT2FDH4o72gusWd8yksaGuzBVJUvF5ARlJkqQCLjl9IZA7R7CrZxttzU0s7pg5OC5J451hUJIkqYC62lpWr+rgohUL2Lyll9ZpjR4RlDShVEUYjIgfAt35xWeAW4G1wE/zY7enlO6JiCuAq4CXgZtSSmvLXqwkScqUxoY6ZrVNqXQZklR0FQ+DEdEE1KSUVg4ZewdwS0rp5iFjs4FrgeOBJuCRiPh6SsnLeUmSJEnSKFU8DALHAlMi4kFy9XwQWAJERFxA7ujge4ClwKP58NcbERuARcC/V6ZsSZIkSRq/qiEMbgU+DdwBHA7cD/w5cEdK6YmIuAH4MPAjYPOQx/UArSM9cVvbFOrrq3Nuf3t7c6VL0ARmf6nU7DGVkv2lUrK/VErjrb+qIQyuBzaklPqB9RGxEfhaSum/8uvvAz4HfBcY+tdtBjaN9MRdXVtLUO7Ytbc309nZU+kyNEHZXyo1e0ylZH+plOwvlVK19tdIAbUa7jN4OXAzQEQcBLQA/ysilubXnwE8ATwOLI+IpohoBY4AnqpAvZIkSZI07lXDkcE7gbsj4hGgn1w43AZ8LiJ2AM8BV6aUuiPiVuBhciH2hpTStkoVLUmSJEnjWcXDYEppO7C6wKqTC2y7BlhT8qIkSZIkaYKrhmmikiRJkqQyMwxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkoqmd0cfz3dtpXdHX6VLkbQXFb+1hKpD744+Nm/ppXVaI40NdZUuR5IkjTN9O3dyz0MbWLe+kxe7e5ne0sjijnYuOX0hdbUef5CqkWEw43zjliRJxXDPQxv4xg+eHVze2N07uLx6VUelypI0Ar/tZ9zAG/fG7l76eeWN+56HNlS6NEmSNE707uhj3frOguvWrX/BKaNSlTIMZphv3JIkqRg2b+nlxe7eguu6eraxeUvhdZIqyzCYYb5xS5KkYmid1sj0lsaC69qam2idVnidpMoyDGaYb9ySJKkYGhvqWNzRXnDd4o6ZXpxOqlKGwQzzjVuSJBXLJacvZNXxc5nR0kRtDcxoaWLV8XO55PSFlS5N0jC8mmjGDbxBr1v/Al0922hrbmJxx0zfuCVJ0qjU1dayelUHF61Y4O2qpHHCMJhxvnFLkqRiamyoY1bblEqXIWkfGAYF+MYtSZIkZY3nDEqSJElSBhkGJUmSJCmDDIOSJEmSlEE1/f39la5BkiRJklRmHhmUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMqi+0gVkSUTUArcBxwK9wDtSShsqW5XGi4hoAO4C5gONwE3A08DdQD/wFHBNSmlnRFwBXAW8DNyUUlobEZOBLwKzgB7g0pRSZ7l/D1W3iJgFPAG8jlz/3I39pSKIiA8A5wOTyH0Wfgf7S0WQ/3z8PLnPxz7gCnz/UhFExAnAJ1NKKyNiIWPsqYhYBnw2v+2DKaWPlv+32pVHBsvrQqAppXQi8H7g5grXo/HlLcDGlNJy4CzgL4FbgBvzYzXABRExG7gWOBk4E/hERDQCVwNP5rf9AnBjBX4HVbH8F6q/AX6bH7K/VBQRsRI4iVzfrAAOxv5S8ZwD1KeUTgI+Bnwc+0tjFBHvA+4AmvJDxeipvwZWA6cAJ0TE4nL9PsMxDJbXKcDXAFJK3weOr2w5Gmf+CfhQ/ucacnuVlpDbuw5wP7AKWAo8mlLqTSltBjYAixjSf0O2lYb6NLkPql/ll+0vFcuZwJPAfcC/AGuxv1Q864H6/AysFmAH9pfG7mfA7wxZHlNPRUQL0JhS+llKqR94gCroNcNgebUAm4cs90WEU3W1T1JKW1JKPRHRDNxLbi9TTf4NBXLTEFrZs88KjQ+MSQBExGVAZ0rpgSHD9peKZSa5HaAXA+8E/gGotb9UJFvITRH9CbAGuBXfvzRGKaUvk9uxMGCsPdUCdBfYtqIMg+XVDTQPWa5NKb1cqWI0/kTEwcC3gL9PKX0J2DlkdTOwiT37rND4wJg04HLgdRHxbeA4ctNaZg1Zb39pLDYCD6SUtqeUErCNXb8E2V8aiz8m118d5K7L8Hly56YOsL9UDGP9zjXcthVlGCyvR8nNayd/AumTlS1H40lEHAg8CFyfUrorP7wufy4OwNnAw8DjwPKIaIqIVuAIcic6D/bfkG0lAFJKp6aUVqSUVgI/Av4AuN/+UpE8ApwVETURcRAwFfim/aUi6eKVozAvAg34+ajiG1NPpZS6ge0RsSAiashNn694r9X09/fvfSsVxZCriS4id87X21JKP6lsVRovIuKzwCXkpsEMeDe56TCTgB8DV6SU+vJXtrqS3A6f/55S+nJETCG3t3QOsB1YnVJ6rpy/g8aH/NHBd5LbC7oG+0tFEBGfAk4j1zcfBJ7B/lIRRMQ0clfbnkOunz4L/AD7S2MUEfOB/5lSWhYRHYyxp/IHgz4D1JG7mugN5f+tdmUYlCRJkqQMcpqoJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBtVXuoBS6uzs6a90DYW0tU2hq2trpcvQBGV/qdTsMZWS/aVSsr9UStXaX+3tzTXDrStbGIyIOmANEEA/8E5gG3B3fvkp4JqU0s6IuAK4CngZuCmltDYiJgNfBGYBPcClKaXOctVfTPX1dZUuQROY/aVSs8dUSvaXSsn+UimNx/4q5zTR8wBSSicDNwIfB24BbkwpLQdqgAsiYjZwLXAycCbwiYhoBK4Gnsxv+4X8c0iSJEmS9kPZwmBK6X8BV+YX5wGbgCXAd/Jj9wOrgKXAoyml3pTSZmADsAg4BfjabttKkiRJkvZDWc8ZTCm9HBGfB94I/C7wupTSwHl9PUAr0AJsHvKwQuMDYyNqa5tStYdr29ubK12CJjD7S6Vmj6mU7C+Vkv2lUhpv/VX2C8iklC6NiOuBx4DJQ1Y1kzta2J3/eaTxgbERVeMJnJBrks7OnkqXoQnK/lKp2WMqJftLpWR/qZSqtb9GCqhlmyYaEW+NiA/kF7cCO4EfRMTK/NjZwMPA48DyiGiKiFbgCHIXl3kUOGe3bSVJkiRJ+6GcRwb/Gfi7iPgu0AC8B/gxsCYiJuV/vjel1BcRt5ILe7XADSmlbRFxO/D5iHgE2A6sLmPtkiRJkjSh1PT3V+Wt+IqiWu8zWK2HkDUx2F8qNXtMpWR/qZTsL5VStfbXSPcZLOetJSRJkiRpv1132/e47rbvVbqMCcMwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmD6sv1QhHRANwFzAcagZuA/wLWAj/Nb3Z7SumeiLgCuAp4GbgppbQ2IiYDXwRmAT3ApSmlznLVL0mSJEkTSdnCIPAWYGNK6a0RMR34EfAx4JaU0s0DG0XEbOBa4HigCXgkIr4OXA08mVL6SES8CbgReHcZ65ckSZKkCaOcYfCfgHvzP9eQO+q3BIiIuIDc0cH3AEuBR1NKvUBvRGwAFgGnAJ/KP/5+4ENlrF2SJEmSJpSyhcGU0haAiGgmFwpvJDdd9I6U0hMRcQPwYXJHDDcPeWgP0Aq0DBkfGBtRW9sU6uvrivY7FFN7e3OlS9AEZn+p1OwxlZL9pVKyv8a3uroaoHr/Hau1ruGU88ggEXEwcB9wW0rpSxFxQEppU371fcDngO8CQ/+KzcAmoHvI+MDYiLq6thar9KJqb2+ms7On0mVogrK/VGr2mErJ/lIp2V/jX19fP0BV/jtWa3+NFFDLdjXRiDgQeBC4PqV0V374gYhYmv/5DOAJ4HFgeUQ0RUQrcATwFPAocE5+27OBh8tVuyRJkiRNNOU8MvhBoA34UEQMnO/3XuB/RMQO4DngypRSd0TcSi7s1QI3pJS2RcTtwOcj4hFgO7C6jLVLkiRJ0oRSznMG303hq3+eXGDbNcCa3ca2AheXpjpJkiRJyhZvOi9JkiRJGWQYlCRJkqQMMgxKkiRJUgYZBiVJkiQpgwyDkiRJkpRBhkFJkiRJyiDDoCRJkiRlkGFQkiRJkjLIMChJkiRJGWQYlCRJklT1Hnv6N2za0svG7m382Z2P8djTv6l0SeNefaULkCRJkqSRPPb0b/ibr/zH4PKznS8NLp9w5IGVKmvc88igJEmSpKr21X/7xTDjvyxrHRONYVCSJElSVfvVC1sLjv9640tlrmRiMQxKkiRJqmoHzZxScHzOjKllrmRiMQxKkiRJqmrnnjh/mPF55S1kgvECMpIkSZKq2sBFYu5Y+zR9O/uZ2z6Nc0+c58VjxsgwKEmSJKnqnXDkgdz77Z8B8LG3L61wNROD00QlSZIkKYMMg5IkSZKUQYZBSZIkScogw6AkSZIkZVDZLiATEQ3AXcB8oBG4CXgauBvoB54Crkkp7YyIK4CrgJeBm1JKayNiMvBFYBbQA1yaUuosV/2SJEmSNJGU88jgW4CNKaXlwFnAXwK3ADfmx2qACyJiNnAtcDJwJvCJiGgErgaezG/7BeDGMtYuSZIkSRNKOcPgPwEfyv9cQ+6o3xLgO/mx+4FVwFLg0ZRSb0ppM7ABWAScAnxtt20lSZIkSfuhbNNEU0pbACKiGbiX3JG9T6eU+vOb9ACtQAuwechDC40PjI2orW0K9fV1Ram/2NrbmytdgiYw+0ulZo+plOwvlZL9Nb7V1dUA1fvvWK11DaesN52PiIOB+4DbUkpfiohPDVndDGwCuvM/jzQ+MDairq6txSi76Nrbm+ns7Kl0GZqg7C+Vmj2mUrK/VEr21/jX15c7jlSN/47V2l8jBdSyTRONiAOBB4HrU0p35YfXRcTK/M9nAw8DjwPLI6IpIlqBI8hdXOZR4JzdtpUkSZIk7YdyHhn8INAGfCgiBs4dfDdwa0RMAn4M3JtS6ouIW8mFvVrghpTStoi4Hfh8RDwCbAdWl7F2SZIkSZpQynnO4LvJhb/drSiw7RpgzW5jW4GLS1OdJEmSJGWLN52XJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSJCmDDIOSJEmSlEGGQUmSJEnKIMOgJEmSJGWQYVCSJEmSMsgwKEmSJEkZZBiUJEmSpAwyDEqSJElSBhkGJUmSpAq57rbvcd1t36t0Gcoow6AkSZIkZVD9aDaOiOuB21NK3RFRD5wMPJNS+s9RPMcJwCdTSisjYjGwFvhpfvXtKaV7IuIK4CrgZeCmlNLaiJgMfBGYBfQAl6aUOkdTvyRJkiQpZ1RhELgwpfTJ/M9/D0wCpkTEP6aU/m5vD46I9wFvBV7KDy0Bbkkp3Txkm9nAtcDxQBPwSER8HbgaeDKl9JGIeBNwI/DuUdYvSZIkSWL000R7ASKiHXhtSuki4Fzgbfv4+J8BvzNkeQlwbkR8NyLujIhmYCnwaEqpN6W0GdgALAJOAb6Wf9z9wKpR1i5JkiRJyhvtkcG7I+KrwGTg7wBSSjvzU0b3KqX05YiYP2ToceCOlNITEXED8GHgR8DmIdv0AK1Ay5DxgbERtbVNob6+bl9KK7v29uZKl6AJzP5SqdljKiX7S6VUbf1VV1cDVF9d1eruD59Z6RJGNN7+HUcVBlNKd0fEg8DclNLjABFxGPDsfr7+fSmlTQM/A58DvgsM/Ss2A5uA7iHjA2Mj6uraup9llVZ7ezOdnT2VLkMTlP2lUrPHVEr2l0qpGvurr68foOrq0uhVY3/ByAF1tBeQWZBS+hnwq4GxlNLPgd/bz9oeiIh35YPlGcAT5I4WfjwimoBG4AjgKeBR4Jz8+rOBh/fzNSVJkiQp80Z7zuBtEXHl0IGIqI+I393P178a+B8R8W1yVya9KaX0HHArubD3EHBDSmkbcDtwVEQ8AlwJfHQ/X1OSJEmSMm+05wyeDbwvIr4MfAa4CDia3BTPfZJS+gWwLP/zD8mFwN23WQOs2W1sK3DxKOuVJEmSJBUw2jA4jdxFXA4ldwGZL6aUvKqnJEmSJI0zo50m+s/kwuBJwDHA9Ij464iYUvTKJEmSJEklM9oweBrwDXJHBrenlK4lN0X0/mIXJkmSJEkqndGGwRrgGeBfgV9FxHUppQeANxa9MkmSJElSyYw2DPYAh6WUDgWOBU6IiD9OKb1Y/NIkSZIkSaUy2jD485TSbwDyt4B4M7C66FVJkqSSue6273Hdbd+rdBmSpAobbRh8JiLeMWR5J9BSxHokSZIkSWUw2ltL/BHwzxFxDbAOOA54tOhVSZIkSZJKalRhMKX0K2BZRJxI7pzBfwX+dykKkyRJkiSVzmiPDAKQUvo34N+KXIskSZIkqUxGe86gJEmSJGkCMAxKkiRJFfDY079h05ZeNnZv48/ufIzHnv5NpUtSxuzXNFFJkiRJ+++xp3/D33zlPwaXn+18aXD5hCMPrFRZyhiPDEqSJEll9tV/+8Uw478sax3KNsOgJEmSVGa/emFrwfFfb3ypzJUoywyDkiRJUpkdNHNKwfE5M6aWuRJlmWFQkiRJKrNzT5w/zPi88haiTPMCMpIkSVKZDVwk5o61T9O3s5+57dM498R5XjxGZWVJHZxhAAAgAElEQVQYlCRJkirghCMP5N5v/wyAj719aYWrURY5TVSSJEmSMsgwKEmSJEkZVPZpohFxAvDJlNLKiFgI3A30A08B16SUdkbEFcBVwMvATSmltRExGfgiMAv+H3v3HmVXed55/luqAhShkhCiLMMiLeWCn0ieMXYbIwpjIB1jx8jYTDLuTDOZ2ASMMZ52YhLFTuJWt1nOpRtj4iRTMTc1uXVuOKwREIMnFxIjiXLiXIZQ8DjChgkXqwu1bggjoqqaP84p+SCqiirq7LP3Ofv7WUtr1X732aqnznlUql+9734PB4H3Z+Z4p+uXJEmSpF7Q0ZnBiPgZ4FZgaXPos8AnM/NtQB/w3oh4LfBR4K3AO4FfiogTgA8DDzUf+1vAJztZuyRJkiT1kk4vE30M+KGW4zcDf9n8+IvA24Gzge2ZeTgz9wO7gDcA5wH3HvNYSZIkSdKr0NFlopn5hYhY1zLUl5lTzY8PAiuBFcD+lsfMND49NqdVq5YxMNC/2LILMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d+jFqbbXsey31pisuXjQWAfcKD58Vzj02Nz2rv3+fZU2WZDQ4OMjx8suwz1KPtLRbPHutvo2G727H+BickpPvzLf8qm4XWVel8z+0tFqmJ/TUw05kWqVpcWror9BXMH1LJ3E/27iLiw+fG7gC8DXwHeFhFLI2IlsJ7G5jLbgYuPeaxUis0jO9g8sqPsMiRpQUbHdnPTtoeZmGz88Pnk+CFu2vYwo2O7S65MklSGssPgTwGfioidwPHAHZn5TeBXaYS9Pwd+PjNfAH4DeH1EPABcBXyqpJolSepK9+x8fJbxJzpahySpGjq+TDQzHwfOaX78NeCCGR5zC3DLMWPPA+/rQImSJPWkp5+d+faJZ/Yc6nAlkqQqKHtmUJIkdchppyybcfzU1Sd2uBJJUhUYBiVJqolNw+tmGV/b2UIkSZVQ9m6ikiSpQ6Z3Db317jEmJqc4fWg5m4bXVmo3UUlS5xgGJUmqkY0b1nDH/Y8BcN0VZ5dcTXeY3j36+mvOLbkSSWovl4lKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJHbF5ZMfR+24kSZJUPsOgJEmSJNWQu4lKkiRJJXGXWpXJmUFJkiRJqiHDoCRJkiTVkGFQWqDRsd3se+4wew68wJbbRhkd2112SZIkSdKCec+gtACjY7u5advDR4+fHD909HjjhjVllSVJkiQtmDOD0gLcs/PxWcaf6GgdkiRJ0mIZBqUFePrZ52ccf2bPoQ5XIknqBG8NkNTLDIPSApx2yrIZx09dfWKHK5EkFW361oCJySng27cGGAgl9QrDoLQAm4bXzTK+trOFSJIK560BknqdG8hICzC9Scytd48xMTnF6UPL2TS81s1jJKkHeWuApF7nzKC0QBs3rOGk5SewesVSrrvibIOgJPUobw2Q1OsMg5IkSTPw1gBJva4Sy0Qj4m+BA83DbwC/ANwOTAH/CHwkMycj4oPAh4AjwKcz8+4SypUkSTXgrQGSel3pM4MRsRToy8wLm38uBz4LfDIz3wb0Ae+NiNcCHwXeCrwT+KWIOKG0wnvM5pEdbB7ZUXYZ6lFuzS6pW3lrgKReVoWZwTOBZRHxJRr1/BzwZuAvm+e/CLwDmAC2Z+Zh4HBE7ALeAPx150uWNF/TW7NPm96aHfCHKqkk119zbtklSJIqoAph8HngM8CtwBk0wl9fZk41zx8EVgIrgP0t102Pz2rVqmUMDPS3veB2GBoaLLuEl+jv7wOqV1dVVf35qlJd9/3138wy/s+8+4Lv7XA1apcq9Zh6T9X6q+rf87Uwvo4qUrf1VxXC4NeAXc3w97WI2ENjZnDaILCPxj2FgzOMz2rv3pm3hC7b0NAg4+MHyy7jJSYmGtm7anVVVZWfr6r11//3zZlr+efdBytVp+avaj2m3lLF/qry93wtTBX7S72jqv01V0At/Z5B4MeBGwAi4jQaM4BfiogLm+ffBXwZ+ArwtohYGhErgfU0NpeRVGFuzS5JklRNVQiDtwEnRcQDwB/QCIc/AXwqInYCxwN3ZOY3gV+lEQz/HPj5zHyhpJolzZNbs0uSJFVT6ctEM/NF4LIZTl0ww2NvAW4pvChJbePW7JIkSdVUehiU1Ps2bljDHfc/BsB1V5xdcjWSJEmCaiwTVcl8DzhJkiSpfpwZrDnfA06SJEmqJ2cGa+6enY/PMv5ER+uQpMXYPLKDzSM7yi5DkqSu4sxgzT397MzvxfjMnkMdrqS7XH/NuWWXIEmSJC2KYbDmTjtlGU+Ovzz4+R5wkiQ1+AtASb3KZaI153vASZIkSfXkzGDN+R5wkiRJUj0ZBuV7wEmSJEk15DJRSZIkSaohw6AkSZIk1ZBhUJLU1UbHdrPvucPsOfACW24bZXRsd9klSZLUFbxnUJLUtUbHdnPTtoePHj85fujosRthSZI0N8OgpI7wfbpUhHt2Pj7L+BOGQUmSXoHLRCVJXevpZ5+fcfyZPYc6XIkkSd3HmUEBztpI6k6nnbKMJ8dfHvxOXX1iCdVIAtg8sgPwZwupGzgzKEkVtHlkx9EfqDS7TcPrZhlf29lCJEnqQoZBSVLX2rhhDR96z+vpX9IHwOlDy/nQe17v/YJSSdzdV+ouhkFJqhh/mFqYjRvWcNLyE1i9YinXXXG2QVAqyfTuvhOTU8C3d/f1e5hUXYZBSaoQf5iS1K3m2t1XUjV11QYyEbEEGAHOBA4DV2bmrnKrkqT28a0SJHUrd/eVuk+3zQxeCizNzGHgE8ANJdcjSW3lD1OSutVppyybcdzdfaXq6rYweB5wL0BmPgicVW45ktRe/jAlqVu5u6/UfbpqmSiwAtjfcjwREQOZeWSmB69atYyBgf7OVLZAQ0ODZZegHmZ/da9/987v4/rf+eoM41Gp17VKtQD09zd2E61aXXp1fB2707svGGTFiqXc+Ht/y5GJKdaduoL3/cAZnP+m08su7SXsLxWp2/qr28LgAaD1GV4yWxAE2Lt35uVWZRsaGmR8/GDZZahH2V/dbf3pK/nQe17PrXePMTE5xelDy9k0vJb1p6+szOtaxR6bmGhsuFO1urRwVewvzd/601ey8sQTANjy/sYCriq9nvaXilTV/poroHZbGNwOXAL8YUScAzxUcj2S1HYbN6zhjvsfA+C6K84uuZrucP0155ZdgqQm/z1K3aPbwuCdwEURsQPoAy4vuR5JKoQ/TEmSpKJ1VRjMzEng6rLrkCRJkqRu1227iUqSJEmS2sAwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqob6pqamya5AkSZIkdZgzg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINDZRdQJ1ExBJgBDgTOAxcmZm7yq1K3SIijgO2AuuAE4BPA2PA7cAU8I/ARzJzMiI+CHwIOAJ8OjPvjojvAH4HeA1wEHh/Zo53+utQtUXEa4CvAhfR6J/bsb/UBhHxs8B7gONp/F/4l9hfaoPm/4+/SeP/xwngg/j9S20QERuB/5yZF0bE97LInoqIc4DPNR/7pcz8VOe/qpdyZrCzLgWWZuYw8AnghpLrUXf5UWBPZr4N+EHg14HPAp9sjvUB742I1wIfBd4KvBP4pYg4Afgw8FDzsb8FfLKEr0EV1vyB6ibgW80h+0ttEREXAufS6JsLgO/E/lL7XAwMZOa5wHXAL2B/aZEi4meAW4GlzaF29NTngcuA84CNEfGmTn09szEMdtZ5wL0AmfkgcFa55ajL/BHwH5of99H4rdKbafx2HeCLwNuBs4HtmXk4M/cDu4A30NJ/LY+VWn2Gxn9UTzeP7S+1yzuBh4A7gbuAu7G/1D5fAwaaK7BWAP+C/aXFewz4oZbjRfVURKwATsjMxzJzCriPCvSaYbCzVgD7W44nIsKlupqXzHwuMw9GxCBwB43fMvU1v6FAYxnCSl7eZzONT49JAETEB4DxzLyvZdj+UrucQuMXoO8DrgZ+F1hif6lNnqOxRPRR4BbgV/H7lxYpM79A4xcL0xbbUyuAAzM8tlSGwc46AAy2HC/JzCNlFaPuExHfCfwF8NuZ+d+AyZbTg8A+Xt5nM41Pj0nTfhy4KCLuB95IY1nLa1rO219ajD3AfZn5YmYm8AIv/SHI/tJifIxGf72Oxr4Mv0nj3tRp9pfaYbE/c8322FIZBjtrO4117TRvIH2o3HLUTSJiDfAl4OOZubU5/HfNe3EA3gV8GfgK8LaIWBoRK4H1NG50Ptp/LY+VAMjM8zPzgsy8EPh74MeAL9pfapMHgB+MiL6IOA04Efgz+0ttspdvz8L8D+A4/P9R7beonsrMA8CLEfE9EdFHY/l86b3WNzU19cqPUlu07Cb6Bhr3fF2emY+WW5W6RUR8DvgRGstgpv0EjeUwxwOPAB/MzInmzlZX0fiFzy9m5hciYhmN35aeCrwIXJaZ3+zk16Du0JwdvJrGb0Fvwf5SG0TEfwG+n0bf/BzwDewvtUFELKex2/apNPrpc8DfYH9pkSJiHfD7mXlORLyORfZUczLoV4B+GruJ/nznv6qXMgxKkiRJUg25TFSSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGBsouoEjj4wenyq5hJqtWLWPv3ufLLkM9yv5S0ewxFcn+UpHsLxWpqv01NDTYN9s5ZwZLMDDQX3YJ6mH2l4pmj6lI9peKZH+pSN3YX4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZK6wuaRHWwe2VF2GT1joMi/PCKWACPAmcBh4MrM3NVy/hJgC3AE2JqZt8x2TUS8Cbgb+Kfm5b+RmX9QZP2SJEmS1KsKDYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNgGvHWWa94MfDYzbyi4ZkmSJEnqeUUvEz0PuBcgMx8Ezmo5tx7YlZl7M/NF4AHg/DmueTOwKSL+KiJui4jBgmuXJEmSpJ5V9MzgCmB/y/FERAxk5pEZzh0EVs52DfAV4NbM/GpE/DzwH4GfnuuTr1q1jIGB/jZ8Ge03NGSWVXHsLxXNHlOR7C8Vyf7qbv39fUB1X8eq1jWbosPgAaD1GVnSDIIznRsE9s12TUTcmZn7mmN3Ar/2Sp98797nX3XhRRoaGmR8/GDZZahH2V8qmj2mItlfKpL91f0mJqYAKvk6VrW/5gqoRS8T3Q5cDNC8/++hlnOPAGdExMkRcTyNJaI757jmvog4u/nxDwBfLbh2SZIkSepZRc8M3glcFBE7gD7g8oi4DFiemTdHxLXAfTRC6dbMfCoiXnZN8+/6MPBrEfEvwDeBqwquXZIkSZJ6VqFhMDMngauPGX605fxdwF3zuIbM/FsaO41KkiRJkhbJN52XJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJElSSTaP7GDzyI6yy1BNGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqaKDIvzwilgAjwJnAYeDKzNzVcv4SYAtwBNiambfM45rLgH+fmcNF1i5JkiRJvazomcFLgaXN4PYJ4IbpExFxHHAj8A7gAuCqiFjzCte8CbgC6Cu4bkmSJEnqaUWHwfOAewEy80HgrJZz64Fdmbk3M18EHgDOn+2aiFgN/CLwkwXXLEmSJEk9r9BlosAKYH/L8UREDGTmkRnOHQRWznLNCcBtwLXAt+b7yVetWsbAQP+rrb1QQ0ODZZegHmZ/qWj2mIpkf6lIVeuv/v7Ggreq1VVVVX++qlrXbIoOgweA1mdkSTMIznRuENg30zU07h88A/gNYCmwISJ+JTPnnCXcu/f5xVVfkKGhQcbHD5ZdhnqU/aWi2WMqkv2lIlWxvyYmpgAqV1cVjY7tZs/+F5iYnOLDv/ynbBpex8YNa8ou66gq9hfMHVCLDoPbgUuAP4yIc4CHWs49ApwREScDz9FYIvoZYOrYazLzK8DrASJiHfD7rxQEJUmSJPWG0bHd3LTt4aPHT44fOnpcpUDYbYq+Z/BO4IWI2EFjs5iPRcRlEXFVZv4LjWWf9wE7aewm+tRM1xRcoyRJkqQKu2fn47OMP9HROnpNoTODmTkJXH3M8KMt5+8C7prHNa3nHwfOaV+VkiRJkqrs6Wdnvv3rmT2HOlxJb/FN5yVJkiRV2mmnLJtx/NTVJ3a4kt5iGJQkSZJUaZuG180yvrazhfSYojeQkSRJkqRFmd4k5ta7x5iYnOL0oeVsGl7r5jGLZBiUJEmSVHkbN6zhjvsfA+C6K84uuZre4DJRSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSVIJRsd2s++5w+w58AJbbhtldGx32SWpZgbKLkCSJEmqm9Gx3dy07eGjx0+OHzp6vHHDmrLKUs04MyhJkiR12D07H59l/ImO1qF6MwxKkiRJHfb0s8/POP7MnkMdrkR1ZhiUJEmSOuy0U5bNOH7q6hM7XInqzDAoSZIkddim4XWzjK/tbCGqtUI3kImIJcAIcCZwGLgyM3e1nL8E2AIcAbZm5i2zXRMRG4CbgT7gn5rjR4qsX5IkSSrC9CYxt949xsTkFKcPLWfT8Fo3j1FHFT0zeCmwNDOHgU8AN0yfiIjjgBuBdwAXAFdFxJo5rvlF4Ocy863N40sKrl2SJEkqzMYNazhp+QmsXrGU66442yCojis6DJ4H3AuQmQ8CZ7WcWw/sysy9mfki8ABw/hzX/HBm/lVEHA+8FthfcO2SJPWkzSM72Dyyo+wyJEklK/p9Blfw0tA2EREDzeWdx547CKyc65qIWAv8afP8P7zSJ1+1ahkDA/2L/RoKMTQ0WHYJ6mH2l4pmj3W3/v4+oLqvY1XrUm+oWn9V/d9j1VT9+apqXbMpOgweAFqfkSUt9/kde24Q2DfXNZn5BHBGRFwJfBZ4/1yffO/embfsLdvQ0CDj4wfLLkM9yv5S0eyx7jcxMQVQydfR/lKRqthfVf73WEVVfr6q2F8wd0AtepnoduBigIg4B3io5dwjNILdyc2ln+cDO2e7JiK2RcQZzWsPApMF1y5JkiRJPavomcE7gYsiYgeNXUAvj4jLgOWZeXNEXAvcRyOUbs3MpyLiZdc0/65fBm6PiBeB54ErC65dkiRJknpWoWEwMyeBq48ZfrTl/F3AXfO4hszcAbz12HFJkiRJ0sK94jLRiPh4RKxofjwQERdExL8qvjRJkiRJUlHmc8/gpZl5oPnxbwMfBW6KiMvnuEaSJEmSVGHzCYOHASJiCHhLZv4wsIlv38snSZIkSeoy8wmDt0fEPcAfAP8Vjt7XV/TmM5IkSaXbPLKDzSM7yi5DktruFQNdZt4eEV8CTs/MrwBExHcDTxZdnCRJkiSpGK8YBiPiezLzMeDp6bHM/Drwb4ssTJIkSZJUnPks9RyJiC9k5s3TAxExQGNjmTuKK02SJEmSvu36a84tu4SeMp8w+C7gZyLiC8CvAD8M/E803lBeqqXpe0f8hiRJkqRuNZ8wuBzYD3wXjQ1kficz315oVZIkSZKkQs1nN9HfoxEGzwX+Z+DkiPh8RCwrtDJJkiRJUmHms5vopmOGPhoR7wS+CFxQSFWSJEmSpELNZzfRTwGPAI8CmZnfysz7IuKvC69OkiRJklSI+dwz+CXg+4D/HTgjIk4EXgC+BvxUgbVJkiRJkgoyn2Wi24HtEXE8jfsG/w2wEfhXBdcmSZIkSSrIfJaJfhw4C5gAHgTuyMwtRRcmSZIkSSrOfHYT/WlgTfPjk4Dvi4g3RMQJxZUlSZIkSSrSfO4ZXA28D3hd83g98IHm8buLKUuSJEmSVKT5hEGArwP/HVgG3JCZ1xZXkiRJkiSpaPNZJnoQ+O7M/C7gTODsiPhYsWVJkiRJkoo0nzD49czcDZCZ36TxFhOXFVqVJEmSJKlQ8wmD34iIK1uOJ4EVBdUjSZIkSeqA+dwz+H8CfxwRHwH+DngjsL3QqiRJUiFGx3az77nDTExOseW2UTYNr2PjhjWvfKEkqefM503nnwbOiYhhGvcM/gnwfxddmCRJaq/Rsd3ctO3ho8dPjh86emwglKT6me9uomTmTmBngbVIkqQC3bPz8VnGnzAMSlINzTsMvhoRsQQYoTGjeBi4MjN3tZy/BNgCHAG2ZuYts10TEW8Efg2YaI7/2PTGNpIk6ZU9/ezzM44/s+dQhyuRJFXBfDaQWYxLgaWZOQx8Arhh+kREHAfcCLwDuAC4KiLWzHHN54B/n5kXAn8MfLzg2iVJ6imnnbJsxvFTV5/Y4UokSVVQdBg8D7gXIDMfBM5qObce2JWZezPzReAB4Pw5rvnfMvPvmx8PAC8UXLskST1l0/C6WcbXdrYQSUddf825XH/NuWWXoZoqdJkojbeg2N9yPBERA5l5ZIZzB4GVc1zzDEBEnEtjh9PzX+mTr1q1jIGB/kV+CcUYGhosuwQtQn9/H1Dd17Gqdal32GPd6d0XDLJixVJu/L2/5cjEFOtOXcH7fuAMzn/T6WWX9hJV66+qf8/Xwvg6qkjd1l9Fh8EDQOszsqQZBGc6Nwjsm+uaiPgR4OeBTZk5/kqffO/eme+NKNvQ0CDj4wfLLkOLMDExBVDJ19H+UtHsse62/vSVrDzxBAC2vL+x+KZKr2fV+mt0bDd79r/AxOQUH/7lP/WtOLpc1fpLvaWq/TVXQC16meh24GKAiDgHeKjl3CPAGRFxckQcT2Omb+ds10TEj9KYEbwwM79ecN2SJKnmpt+KY2Ky8QvA6bfiGB1z/zpJvaHoMHgn8EJE7KCxWczHIuKyiLgqM/8FuBa4j0YI3JqZT81yTT/wqzRmDP84Iu6PiE8VXLskSaqxud6KQ5J6QaHLRDNzErj6mOFHW87fBdw1j2sATm57gdKrMDq2m33PHWZicoott426ZEiSepRvxSGp1xU9M6gusXlkB5tHdpRdRuW5ZEiS6sO34pDU6wyD0gK4ZEiS6sO34pDU64reTVTqKS4ZkqT6mL4F4Na7x5iYnOL0oeVsGl7rrQGSeoYzg9ICuGRIkupl44Y1nLT8BFavWMp1V5xtEJTUUwyD0gK4ZEiSJEm9wmWi0gK4ZEiSJEm9wjAoLdDGDWu44/7HALjuirNLrkaSJEl6dVwmKqkjfPsSSZKkajEMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBMTq2m33PHWbPgRfYctsoo2O7yy5JkiRJUsEGyi5A5Rod281N2x4+evzk+KGjxxs3rCmrLEmSJEkFc2aw5u7Z+fgs4090tA5JkiRJneXMYM09/ezzM44/s+dQhyuRJHXK9decW3YJkqQKcGaw5k47ZdmM46euPrHDlUiSJEnqJMNgzW0aXjfL+NrOFiJJkiSpowpdJhoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFvmcc2NQGbm54usvS6mN4m59e4xJianOH1oOZuG17p5jNpqesfaickpttw2yqbhdfaYJElSyYqeGbwUWJqZw8AngBumT0TEccCNwDuAC4CrImLNbNdExFBEfBF4T8E1187GDWs4afkJrF6xlOuuONsf0tVW0zvWTkxOAd/esda3MJEkSSpX0WHwPOBegMx8EDir5dx6YFdm7s3MF4EHgPPnuGY58J+A3y64Zklt5I61krrd9dec66Y7knpS0buJrgD2txxPRMRAZh6Z4dxBYOUc13wD+EZEvGu+n3zVqmUMDPS/+uoLNDQ0WHYJL9Hf3wdUr66qqvrzVaW6nt4z+461VapTC+NrpyLZXyqS/aUidVt/FR0GDwCtz8iSZhCc6dwgsO8VrlmQvXtn/iG0bENDg4yPHyy7jJeYmGgs4ataXVVV5eerav112uplPDn+8rcqOXX1iZWqU/NXtR5Tb7G/VCT7S0Wqan/NFVCLXia6HbgYICLOAR5qOfcIcEZEnBwRx9NYIrrzFa6RKsElQ/PnjrWSJEnVVPTM4J3ARRGxA+gDLo+Iy4DlmXlzRFwL3EcjlG7NzKci4mXXFFyjpAK5Y60kSVI1FRoGM3MSuPqY4Udbzt8F3DWPa1rP/6c2liipAzZuWMMd9z8GwHVXnF1yNZIkSQLfdF6SJEmSaskwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJKnrbR7ZweaRHWWXIUlSVzEMSpIkSVINGQYlSZIkqYYMg5IkSWobl21L3WOg7AJUDddfc27ZJUiSJEnqIGcGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIe8ZlNQR3peqoirsALsAACAASURBVIyO7Wbfc4eZmJxiy22jbBpex8YNa8ouS5KkyjMMSpK61ujYbm7a9vDR4yfHDx09NhBKkjQ3l4lKkrrWPTsfn2X8iY7WIalheqZ+z4EX2HLbKKNju8suSdIcnBmUJHWtp599fsbxZ/Yc6nAlkpypl7qPM4OSpK512inLZhw/dfWJHa5EkjP1UvcxDEpSBW0e2cHmkR1ll1F5m4bXzTK+trOFSHKmXupCLhOVJHWt6aVnt949xsTkFKcPLWfT8FqXpEklOO2UZTw5/vLg50y9VF3ODEpSxbgBw8Js3LCGk5afwOoVS7nuirMNglJJnKmXuo8zg5JUIW7AIKlbOVMvdZ9Cw2BELAFGgDOBw8CVmbmr5fwlwBbgCLA1M2+Z7ZqI+F7gdmAK+EfgI5k5WWT9ktRpc23A4A9Ukqpu44Y13HH/YwBcd8XZJVcj6ZUUvUz0UmBpZg4DnwBumD4REccBNwLvAC4AroqINXNc81ngk5n5NqAPeG/BtUtSx7kBgyRJ6pSiw+B5wL0AmfkgcFbLufXArszcm5kvAg8A589xzZuBv2x+/EXg7QXXLkkd51slSJKkTin6nsEVwP6W44mIGMjMIzOcOwisnO0aoC8zp4557JxWrVrGwED/YuovzNDQYNklqIfZX93r373z+7j+d746w3hU6nWtUi0A/f19QPXq0qvj69jdqv7vsap1qTd0W38VHQYPAK3PyJJmEJzp3CCwb7ZrImJyhsfOae/emZdblW1oaJDx8YNll6EeZX91t/Wnr+RD73n9yzZgWH/6ysq8rlXssYmJxu8Kq1aXFq6K/aWFqfK/R/tLRapqf80VUIsOg9uBS4A/jIhzgIdazj0CnBERJwPP0Vgi+hkaG8TMdM3fRcSFmXk/8C7gLwquXZJK4QYMC3f9NeeWXYIkSV2n6DB4J3BRROygsenL5RFxGbA8M2+OiGuB+2jcu7g1M5+KiJdd0/y7fgq4JSKOpxEk7yi4dkkqjeFGUrfy+5fUPfqmpqZe+VFdanz8YCW/uKpOIas32F8qmj2mItlfKpL9pSJVtb+Ghgb7ZjtX9G6ikiRJkqQKMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmqop99nUJIkSZI0M2cGJUmSJKmGDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1NFB2AXUSEUuAEeBM4DBwZWbuKrcqdYuIOA7YCqwDTgA+DYwBtwNTwD8CH8nMyYj4IPAh4Ajw6cy8OyK+A/gd4DXAQeD9mTne6a9D1RYRrwG+ClxEo39ux/5SG0TEzwLvAY6n8X/hX2J/qQ2a/z/+Jo3/HyeAD+L3L7VBRGwE/nNmXhgR38sieyoizgE+13zslzLzU53/ql7KmcHOuhRYmpnDwCeAG0quR93lR4E9mfk24AeBXwc+C3yyOdYHvDciXgt8FHgr8E7glyLiBODDwEPNx/4W8MkSvgZVWPMHqpuAbzWH7C+1RURcCJxLo28uAL4T+0vtczEwkJnnAtcBv4D9pUWKiJ8BbgWWNofa0VOfBy4DzgM2RsSbOvX1zMYw2FnnAfcCZOaDwFnllqMu80fAf2h+3Efjt0pvpvHbdYAvAm8Hzga2Z+bhzNwP7ALeQEv/tTxWavUZGv9RPd08tr/ULu8EHgLuBO4C7sb+Uvt8DRhorsBaAfwL9pcW7zHgh1qOF9VTEbECOCEzH8vMKeA+KtBrhsHOWgHsbzmeiAiX6mpeMvO5zDwYEYPAHTR+y9TX/IYCjWUIK3l5n800Pj0mARARHwDGM/O+lmH7S+1yCo1fgL4PuBr4XWCJ/aU2eY7GEtFHgVuAX8XvX1qkzPwCjV8sTFtsT60ADszw2FIZBjvrADDYcrwkM4+UVYy6T0R8J/AXwG9n5n8DJltODwL7eHmfzTQ+PSZN+3Hgooi4H3gjjWUtr2k5b39pMfYA92Xmi5mZwAu89Icg+0uL8TEa/fU6Gvsy/CaNe1On2V9qh8X+zDXbY0tlGOys7TTWtdO8gfShcstRN4mINcCXgI9n5tbm8N8178UBeBfwZeArwNsiYmlErATW07jR+Wj/tTxWAiAzz8/MCzLzQuDvgR8Dvmh/qU0eAH4wIvoi4jTgRODP7C+1yV6+PQvzP4Dj8P9Htd+ieiozDwAvRsT3REQfjeXzpfda39TU1Cs/Sm3RspvoG2jc83V5Zj5ablXqFhHxOeBHaCyDmfYTNJbDHA88AnwwMyeaO1tdReMXPr+YmV+IiGU0flt6KvAicFlmfrOTX4O6Q3N28GoavwW9BftLbRAR/wX4fhp983PAN7C/1AYRsZzGbtun0uinzwF/g/2lRYqIdcDvZ+Y5EfE6FtlTzcmgXwH6aewm+vOd/6peyjAoSZIkSTXkMlFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNWQYlCRJkqQaMgxKkiRJUg0NlF1AkcbHD06VXcNMVq1axt69z5ddhnqU/aWi2WMqkv2lItlfKlJV+2toaLBvtnPODJZgYKC/7BLUw+wvFc0eU5HsLxXJ/lKRurG/DIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDRkGJUmSJHWFzSM72Dyyo+wyeoZhUJIkSZJqaKCMTxoRS4AR4EzgMHBlZu5qOX8JsAU4AmzNzFsi4gPAB5oPWQq8EXhtZu7rYOmSJEmS1BNKCYPApcDSzByOiHOAG4D3AkTEccCNwFuAQ8D2iNiWmbcDtzcf83/RCIkGQUmSJEl6FcpaJnoecC9AZj4InNVybj2wKzP3ZuaLwAPA+dMnI+Is4PWZeXMH65UkSZKknlLWzOAKYH/L8UREDGTmkRnOHQRWthz/HPCp+XySVauWMTDQv9haCzE0NFh2Ceph9peKZo+pSPaXimR/dbf+/j6guq9jVeuaTVlh8ADQ+kwtaQbBmc4NAvsAIuIkIDLzL+bzSfbufb4Npbbf0NAg4+MHyy5DPcr+UtHsMRXJ/lKR7K/uNzExBVDJ17Gq/TVXQC1rmeh24GKA5j2DD7WcewQ4IyJOjojjaSwR3dk8dz7wZ50sVJIkSZJ6UVkzg3cCF0XEDqAPuDwiLgOWZ+bNEXEtcB+NsLo1M59qXhfA10upWJIkSZJ6SClhMDMngauPGX605fxdwF0zXHd9waVJkiRJUi34pvOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJJVk88gONo/sKLsM1ZRhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGjIMSpIkSVINGQYlSZIkqYYMg5IkSZIqb3RsN/ueO8yeAy+w5bZRRsd2l11S1xsouwBJkiRJmsvo2G5u2vbw0eMnxw8dPd64YU1ZZXU9ZwYlSZIkVdo9Ox+fZfyJjtbRawyDkiRJkirt6Wefn3H8mT2HOlxJbzEMSpIkSaq0005ZNuP4qatP7HAlvaWUewYjYgkwApwJHAauzMxdLecvAbYAR4CtmXlLc/xngfcAxwMjmXlbp2uXJEmS1Fmbhte95J7Bb4+vLaGa3lHWBjKXAkszczgizgFuAN4LEBHHATcCbwEOAdsjYhuwHjgXeCuwDPjpMgqXJEmS1FnTm8TcevcYE5NTnD60nE3Da908ZpHKWiZ6HnAvQGY+CJzVcm49sCsz92bmi8ADwPnAO4GHgDuBu4C7O1qxJEmSpNJs3LCGk5afwOoVS7nuirMNgm1Q1szgCmB/y/FERAxk5pEZzh0EVgKnAGuBdwPfBWyLiO/LzKnZPsmqVcsYGOhve/HtMDQ0WHYJ6mH2l4pmj6lI9peKVLX+6u/vA6pXV1VV/fmqal2zKSsMHgBan6klzSA407lBYB+wB3i0OVuYEfECMAT899k+yd69M+86VLahoUHGxw+WXYZ6lP2lotljKpL9pSJVsb8mJhrzGlWrq6qq/HxVsb9g7oBa1jLR7cDFAM17Bh9qOfcIcEZEnBwRx9NYIrqTxnLRH4yIvog4DTiRRkCUJEmSJC1QWTODdwIXRcQOoA+4PCIuA5Zn5s0RcS1wH42wujUznwKeiojzga80xz+SmRMl1S9JkiRJXa2UMJiZk8DVxww/2nL+LhqbxBx73c8UXJokSZIk1YJvOi9JkiRJNWQYlCRJkkowOrabfc8dZs+BF9hy2yijY7vLLkk1U9Y9g5IkSVJtjY7t5qZtDx89fnL80NFj3z9PneLMoCRJktRh9+x8fJbxJzpah+rNMChJkiR12NPPzvx+2M/sOdThSlRnhkFJkmpm88gONo/sKLsMqdZOO2XZjOOnrj6xw5WozgyDkiRJUodtGl43y/jazhaiWnMDGUmSJKnDpjeJufXuMSYmpzh9aDmbhte6eYw6yjAoSZIklWDjhjXccf9jAFx3xdklV6M6cpmoJEmSJNWQYVCSJGkObrgjqVcZBiVJkiSphrxnUJIkSVJXuP6ac8suoac4Myi9Ci4ZkiRJUrczDEqSJElSDZWyTDQilgAjwJnAYeDKzNzVcv4SYAtwBNiambc0x/8WONB82Dcy8/KOFi5JkiRJPaKsewYvBZZm5nBEnAPcALwXICKOA24E3gIcArZHxDZgP9CXmReWU7IkSZIk9Y6ylomeB9wLkJkPAme1nFsP7MrMvZn5IvAAcD6NWcRlEfGliPjzZoiUJEmSJL0KZc0MrqAx0zdtIiIGMvPIDOcOAiuB54HPALcCZwBfjIhoXjOjVauWMTDQ3/bi22FoaLDsErQI/f19QHVfx6rWpd5hj3U3v4ctTNWfLy1M1V5H+6u3dNvrWFYYPAC0PlNLWkLdsecGgX3A12jMGE4BX4uIPcCpwD/P9kn27n2+rUW3y9DQIOPjB8suQ4swMTEFUMnX0f5S0eyx7uf3sIWp8vOlhbG/VKQq9hfMHVDLWia6HbgYoLnc86GWc48AZ0TEyRFxPI0lojuBH6dxbyERcRqNGcRnOlm0JEmSJPWKsmYG7wQuiogdQB9weURcBizPzJsj4lrgPhphdWtmPhURtwG3R8QDwBTw43MtEZUkSZIkza6UMJiZk8DVxww/2nL+LuCuY655Ebis+OokSZIkqff5pvOSJEmSVEOGQUmSJEmqIcOgJEk1Mjq2m33PHWbPgRfYctsoo2O7yy5JklSSsjaQkSRJHTY6tpubtj189PjJ8UNHjzduWFNWWZKkkhgGJUmqiXt2Pj7L+BOGQakk119zbtklqMZcJipJUk08/ezzM44/s+dQhyuRJFWBYVCSpJo47ZRlM46fuvrEDlciSaoCw6AkSTWxaXjdLONrO1tIF3HDHUm9zHsGBcDmkR2A69YlqZdN3xd4691jTExOcfrQcjYNr/V+wVm44Y6kXufMoCRJNbJxwxpOWn4Cq1cs5borzjbUzGGuDXckqRcYBqUFcsmQJNWDG+5I6nWGQWkBppcMTUxOAd9eMmQglKTe44Y7knqdYVBaAJcMSVJ9uOGOpF7nBjLSArhkSJLqww13JPU6ZwalBXDJ0Ku3eWTH0V1rJalbuOGOpF5WysxgRCwBRoAzgcPAlZm5q+X8JcAW4AiwNTNvaTn3GuCrwEWZ+WhHC1ftbRpe95Jtxr897pIhSZIkdZeyZgYvBZZm5jDwCeCG6RMRcRxwI/AO4ALgqohY03LuJuBbHa9YovEb4g+95/X0L+kD4PSh5XzoPa/3N8WSJEnqOmWFwfOAewEy80HgrJZz64Fdmbk3M18EHgDOb577DPB54OkO1iq9hEuGJEmS1AvK2kBmBbC/5XgiIgYy88gM5w4CKyPiA8B4Zt4XET87n0+yatUyBgb621VzWw0NDZZdwkv09zdmuqpWV1VV/fmqYl1Vf860ML6O3a3q/x6rVlfVny8tjK+jitRt/VVWGDwAtD5TS5pBcKZzg8A+4KPAVES8HXgj8FsR8Z7M/OZsn2Tv3pl3fizb0NAg4+MHyy7jJSYmGu+bV7W6qqrKz1cV+wuq/ZxpYaraY5q/Kv97rGJ/Vfn50sJUsb/UO6raX3MF1LLC4HbgEuAPI+Ic4KGWc48AZ0TEycBzNJaIfiYz75h+QETcD1w9VxCUJEmSJM1uUWEwIvqAD2Xm5xd46Z3ARRGxA+gDLo+Iy4DlmXlzRFwL3EfjnsatmfnUYuqUJEmSJL3UosJgZk5FxHkRcXNmTi7gukng6mOGH205fxdw1xzXX7jQWiVJkiRJ39aOZaLfDXw5In4L+Hvg4cx8rg1/ryRJkiSpIO14a4m3Aj9G4+0evh/49Tb8nZIkSZKkArVjZvB44CTgb5rLOyVJkiRJFdeOmcH/B3g3sDMitkfEF9vwd0qSJEmSCtSOmcElmfmpiLgQuBi4rg1/pyRJKsj115xbdgmSpApox8zgP0TEMuC/09hM5sI2/J3qoNGx3ex77jB7DrzAlttGGR3bXXZJkiRJkgrWjjC4C5gEfhr4GPAbbfg71SGjY7u5advDTExOAfDk+CFu2vawgVCSJEnqce1YJvpPwO8DDwI/6dtKdJd7dj4+y/gTbNywpqO1SJIkSeqcRc8MZubdmXkpsBO4JSK2LL4sdcrTzz4/4/gzew51uBJJkiRJnbTomcGI+FHgdc0/gzTed1Bd4rRTlvHk+MuD36mrTyyhGkmSJEmdsuAwGBEXZ+aftAxNAduAzMyDbatMHbFpeB03bXt4hvG1JVQjSVL1uPuqpF71amYGPw38CUBEvDczf7e9JamTpu8LvPXuMSYmpzh9aDmbhtd6v6DaanrH2onJKbbcNsqm4XX2mCRJUslezT2DfS0f/8d2FaLybNywhpOWn8DqFUu57oqz/SFdbeWOtZIkSdX0amYGp1o+7pv1UVIPc8nQ/LljrSRJUjW9mjD4vRFxG/DXwHdExEBmHmlzXZJ6hDvWSpIkVdOrCYMXA/8aOAd4EdgfEY8B/wD8v5l5/Sv9BRGxBBgBzgQOA1dm5q6W85cAW4AjwNbMvCUi+oFbgKAxO3l1Zv7jq6hfUge5Y60kSVI1LTgMZuYDwAPTxxFxAo1Q96+bf+bjUmBpZg5HxDnADcB7m3/fccCNwFuAQ8D2iNgGDDc//1sj4kLgF6avkVRd7lgrSZJUTYt+n8HMPAx8pflnvs4D7m1e/2BEnNVybj2wKzP3AkTEA8D5mflHEXF38zFrgX2LrV1S8dyxVpIkqZoWHQZfpRXA/pbjiZZ7D489dxBYCZCZRyLiN4H/BfhfX+mTrFq1jIGB/vZV3UZDQ4Nll/AS/f2NvYCqVpdenaq9ju++YJA7v/x1AH7jEz9QcjVqh6r1mHqL/aUi2V8qUrf1V1lh8ADQ+kwtadmE5thzg7TMAmbm+yPi48BoRGzIzFl3odi7d+aNK8o2NDTI+PjBsst4iYmJxiaxVatLC1fF/gJ7rJdUtcfUG+wvFcn+UpGq2l9zBdRX8z6D7bCdxkY0NO8ZfKjl3CPAGRFxckQcD5wP7IyI/yMifrb5mOeByeYfSZIkSdIClTUzeCdwUUTsoPFehZdHxGXA8sy8OSKuBe6jEVa3ZuZTEfHHwH+NiL8CjgN+MjO/VVL9kiRJktTVSgmDmTkJXH3M8KMt5+8C7jrmmkPAvy2+OkmSJEnqfWUtE9X/397dxshVnncYv/bF2DVeuwaWLSgISy25hT+EVEXY6xpMpZoQLFoUqapkRWkJL3FoFBQkUtqCpSLaKiWUUkVWwbBK0jaqGpAlTBSMFIWq2LBRq1ZysviubJVIgcTauOs3CHa93n44s2Yway/2zs6ZM+f6fdrzPHO098zcuzP/Oec8I0mSJEklMgxKkirv/i27uH/LrrLLkCSpUgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkqSWcUEnqToMg5IkSZJUQ6V86bw6z6P3rCm7BEmSJElt5JFBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVkGJQkSZKkGiplNdGI6AW2ANcAx4A7M3Nv0/ytwGbgBDCSmVsjYgEwAqwAFgKPZObz7a5d0vlxxVpJkqTOUtaRwduARZk5DDwAPDY90Qh9jwM3AeuAuyNiCPg0cCAzrwduBr7W9qolSZIkqUuUFQbXAi8CZOZrwLVNc1cDezNzIjOPA68ANwDfBh5q3KaH4qihJEmSJOk8lPWl80uBQ03bkxHRn5knZpg7AizLzKMAETEAPAs8ONsvWb58Mf39fa2ruoUGBwfKLkFdzP7SfOu0Huvr6wE6ry6dH5/Hauv0v8dOrUvdoWr9VVYYPAw0P1K9jSA409wAcBAgIq4AtgFbMvNbs/2SiYl3WlNtiw0ODjA+fqTsMtSl7C/Nt07sscnJKYCOq0vnrhP7S+emk/8e7S/Np07tr7MF1LLC4E7gVuBfImI1sLtp7nXgqoi4CDhKcYroVxvXDb4EfCEzv9fugiVJkiSpm5QVBrcB6yNiF8X1f7dHxEZgSWY+FRH3ATsormkcycw3I+IJYDnwUERMXzv4ycz8RRl3QJIkSZKqrJQwmJkngU2nDe9pmt8ObD9tn3uBe+e/OklSlYyO7efg0WNMnpxi8zOjbBhewaqVQ2WXJUlSxyvryKAk6Szu37IL8PsZZzM6tp8nn//Rqe2fjL99attAKEnS2ZX11RKSJM3Zd1594wzjP25rHZIkVZFhUJJUWW/9fOZVo3964O02VyJJUvUYBiVJlXX5JYtnHL/s4gvbXIkkSdVjGJQkVdaG4RVnGL+yvYVIAt5b0OnA4XfZ/Mwoo2P7yy5J0lm4gIwkqbKmF4l5+oUxJk9O8ZHBJWwYvtLFY6QSuKCTVD0eGZQkVdqqlUP88pKFXLx0EQ/fcZ1vOqWSuKCTVD2GQUmSJM2ZCzpJ1WMYlCRJ0py5oJNUPYZBSZIkzZkLOknV4wIykiRJmjMXdJKqxzAoSZKklli1cohnX94HwMN3XFdyNZJm42mikiRJklRDhkFJkiRJqiHDoCRJkiTVUCnXDEZEL7AFuAY4BtyZmXub5m8FNgMngJHM3No0twr4Smbe2NaiJUmSJKmLlHVk8DZgUWYOAw8Aj01PRMQC4HHgJmAdcHdEDDXmvgw8DSxqe8WSJEmS1EXKCoNrgRcBMvM14NqmuauBvZk5kZnHgVeAGxpz+4BPtbNQSZIkSepGZX21xFLgUNP2ZET0Z+aJGeaOAMsAMvO5iFjxYX/J8uWL6e/va0G5rTc4OFB2Cepi9lf19fX1AJ37XHZaXZ3+eOnc+DxWW6f/PXZqXeoOVeuvssLgYaD5keptBMGZ5gaAg+fzSyYm3jm/6ubZ4OAA4+NHyi5DXcr+6g6Tk1MAHflcdmKPdfLjpXPTif2lc9PJf4/2l+ZTp/bX2QJqWaeJ7gRuAYiI1cDuprnXgasi4qKIuIDiFNFX21+iJJVjdGw/B48e48Dhd9n8zCijY/vLLkmSJHWhso4MbgPWR8QuoAe4PSI2Aksy86mIuA/YQRFWRzLzzZLqlKS2Gh3bz5PP/+jU9k/G3z61vWrlUFllSZKkLlRKGMzMk8Cm04b3NM1vB7afYd83gNXzVpwkleg7r75xhvEfGwYlSVJL+aXzktRB3vr5zNc6//TA222uRJIkdTvDoCR1kMsvWTzj+GUXX9jmSiRJUrcr65pBSdIMNgyveN81g++NX1lCNdXx6D1ryi5BkqTKMQxKUgeZvi7w6RfGmDw5xUcGl7Bh+EqvF5QkSS1nGJSkDrNq5RDPvrwPgIfvuK7kaiRJUrfymkFJkiRJqiHDoCRJkiTVkKeJSpIkqWVc0EmqDo8MSpIkSVINGQYlSZIkqYYMg5IkSZJUQ4ZBSZIkSaohw6AkSZIk1ZBhUJIkSZJqyDAoSZIkSTVUyvcMRkQvsAW4BjgG3JmZe5vmbwU2AyeAkczcOts+kiRJkqQPr6wjg7cBizJzGHgAeGx6IiIWAI8DNwHrgLsjYuhs+0iSJEmSzk1ZYXAt8CJAZr4GXNs0dzWwNzMnMvM48Apwwyz7SJIkSZLOQSmniQJLgUNN25MR0Z+ZJ2aYOwIsm2WfGS1fvpj+/r4Wlt06g4MDZZegLmZ/VV9fXw/Quc9lp9al7mB/aT7ZX5pPVeuvssLgYaD5keptCnWnzw0AB2fZZ0YTE++0oNTWGxwcYHz8SNllqEvZX91hcnIKoCOfS3tM88n+0nyyvzSfOrW/zhZQyzpNdCdwC0BErAZ2N829DlwVERdFxAUUp4i+Oss+kiRJkqRzUNaRwW3A+ojYBfQAt0fERmBJZj4VEfcBOyjC6khmvhkRH9inpNolSZIkqfJKCYOZeRLYdNrwnqb57cD2D7GPJEmSJOk8lHVkUJJ0Fo/es6bsEiRJUpcr65pBSZIkSVKJDIOSJEmSVEOGQUmSJEmqIcOgJEmSJNWQYVCSJEmSasgwKEmSJEk1ZBiUJEmSpBoyDEqSJElSDfVMTU2VXYMkSZIkqc08MihJkiRJNWQYlCRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqqH+sguok4joBbYA1wDHgDszc2+5VakqImIBMAKsABYCjwBjwNeBKeCHwB9l5smIuAv4HHACeCQzX4iIXwL+EbgUOAL8QWaOt/t+qLNFxKXAfwDrKfrn69hfaoGI+BPgd4ALKF4L/xX7Sy3QeH38BsXr4yRwF/7/UgtExCrgK5l5Y0T8GnPsqYhYDTzRuO1Lmfnn7b9X7+eRwfa6DViUmcPAA8BjJdejHHwWgQAAAxlJREFUavk0cCAzrwduBr4G/A3wYGOsB/jdiPgV4IvAbwKfAP4qIhYCnwd2N277TeDBEu6DOljjDdWTwC8aQ/aXWiIibgTWUPTNOuAK7C+1zi1Af2auAR4G/gL7S3MUEV8GngYWNYZa0VN/D2wE1gKrIuLX23V/zsQw2F5rgRcBMvM14Npyy1HFfBt4qPFzD8WnSr9B8ek6wHeB3wauA3Zm5rHMPATsBT5GU/813VZq9lWKF6q3Gtv2l1rlE8BuYBuwHXgB+0ut899Af+MMrKXA/2F/ae72AZ9q2p5TT0XEUmBhZu7LzClgBx3Qa4bB9loKHGranowIT9XVh5KZRzPzSEQMAM9SfMrU0/iHAsVpCMv4YJ/NND49JgEQEX8IjGfmjqZh+0utcgnFB6C/B2wC/gnotb/UIkcpThHdA2wF/g7/f2mOMvM5ig8Wps21p5YCh2e4bakMg+11GBho2u7NzBNlFaPqiYgrgO8D/5CZ3wJONk0PAAf5YJ/NND49Jk37LLA+Il4GPk5xWsulTfP2l+biALAjM49nZgLv8v43QfaX5uJLFP31UYp1Gb5BcW3qNPtLrTDX91xnum2pDIPttZPivHYaF5DuLrccVUlEDAEvAX+cmSON4f9sXIsD8Eng34AfANdHxKKIWAZcTXGh86n+a7qtBEBm3pCZ6zLzRuC/gM8A37W/1CKvADdHRE9EXA5cCHzP/lKLTPDeUZj/BRbg66Nab049lZmHgeMR8asR0UNx+nzpvdYzNTU1+63UEk2riX6M4pqv2zNzT7lVqSoi4gng9ylOg5l2L8XpMBcArwN3ZeZkY2Wruyk+8PnLzHwuIhZTfFp6GXAc2JiZP2vnfVA1NI4ObqL4FHQr9pdaICL+Gvgtir75U+B/sL/UAhGxhGK17cso+ukJ4N+xvzRHEbEC+OfMXB0RH2WOPdU4GPS3QB/FaqJ/1v579X6GQUmSJEmqIU8TlSRJkqQaMgxKkiRJUg0ZBiVJkiSphgyDkiRJklRDhkFJkiRJqiHDoCRJkiTVkGFQkiRJkmrIMChJkiRJNfT/RHyrlUNUVfcAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from matplotlib.gridspec import GridSpec\n", + "plt.figure(figsize=(15, 20))\n", + "gs = GridSpec(5, 1)\n", + "ax_lc = plt.subplot(gs[0])\n", + "ax_mean = plt.subplot(gs[1], sharex=ax_lc)\n", + "ax_evar = plt.subplot(gs[2], sharex=ax_lc)\n", + "ax_nvar = plt.subplot(gs[3], sharex=ax_lc)\n", + "ax_fvar = plt.subplot(gs[4], sharex=ax_lc)\n", + "\n", + "ax_lc.plot(lc.time, lc.counts)\n", + "ax_lc.set_ylabel('Counts')\n", + "ax_mean.scatter(tmean, rate)\n", + "ax_mean.set_ylabel('Counts')\n", + "\n", + "ax_evar.errorbar(tmean, evar, yerr=evar_err, fmt='o')\n", + "ax_evar.set_ylabel(r'$\\sigma_{XS}$')\n", + "\n", + "ax_fvar.errorbar(tmean, fvar, yerr=fvar_err, fmt='o')\n", + "ax_fvar.set_ylabel(r'$F_{var}$')\n", + "\n", + "ax_nvar.errorbar(tmean, nvar, yerr=nvar_err, fmt='o')\n", + "ax_nvar.set_ylabel(r'$\\sigma_{NXS}$')\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.1" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Lightcurve/Lightcurve tutorial.html b/notebooks/Lightcurve/Lightcurve tutorial.html new file mode 100644 index 000000000..397b5f290 --- /dev/null +++ b/notebooks/Lightcurve/Lightcurve tutorial.html @@ -0,0 +1,1744 @@ + + + + + + + + Creating a light curve — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Start here to begin with Stingray.

+
+
[1]:
+
+
+
import numpy as np
+%matplotlib inline
+import warnings
+warnings.filterwarnings('ignore')
+
+
+
+
+

Creating a light curve

+
+
[2]:
+
+
+
from stingray import Lightcurve
+
+
+
+

A Lightcurve object is usually created in one of the following two ways:

+
    +
  1. From an array of time stamps and an array of counts.

    +
    lc = Lightcurve(times, counts, **opts)
    +
    +
    +

    where **opts are any (optional) keyword arguments (e.g. dt=0.1, mjdref=55000, etc.)

    +
  2. +
  3. From photon arrival times.

    +
    lc = Lightcurve.make_lightcurve(event_arrival_times, dt=1, **opts)
    +
    +
    +
  4. +
+

as will be described in the next sections.

+

An additional possibility is creating an empty Lightcurve object, whose attributes will be filled in later:

+
lc = Lightcurve()
+
+
+

or, if one wants to specify any keyword arguments:

+
lc = Lightcurve(**opts)
+
+
+

This option is usually only relevant to advanced users, but we mention it here for reference

+
+

1. Array of time stamps and counts

+

Create 1000 time stamps

+
+
[3]:
+
+
+
times = np.arange(1000)
+times[:10]
+
+
+
+
+
[3]:
+
+
+
+
+array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+
+
+

Create 1000 random Poisson-distributed counts:

+
+
[4]:
+
+
+
counts = np.random.poisson(100, size=len(times))
+counts[:10]
+
+
+
+
+
[4]:
+
+
+
+
+array([ 91,  98,  98,  98, 108,  86, 101, 114,  93,  95])
+
+
+

Create a Lightcurve object with the times and counts array.

+
+
[5]:
+
+
+
lc = Lightcurve(times, counts)
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+

The number of data points can be counted with the len function.

+
+
[6]:
+
+
+
len(lc)
+
+
+
+
+
[6]:
+
+
+
+
+1000
+
+
+

Note the warnings thrown by the syntax above. By default, stingray does a number of checks on the data that is put into the Lightcurve class. For example, it checks whether it’s evenly sampled. It also computes the time resolution dt. All of these checks take time. If you know the time resolution, it’s a good idea to put it in manually. If you know that your light curve is well-behaved (for example, because you know the data really well, or because you’ve generated it yourself, as +we’ve done above), you can skip those checks and save a bit of time:

+
+
[7]:
+
+
+
dt = 1
+lc = Lightcurve(times, counts, dt=dt, skip_checks=True)
+
+
+
+
+
+

2. Photon Arrival Times

+

Often, you might have unbinned photon arrival times, rather than a light curve with time stamps and associated measurements. If this is the case, you can use the make_lightcurve method to turn these photon arrival times into a regularly binned light curve.

+
+
[8]:
+
+
+
arrivals = np.loadtxt("photon_arrivals.txt")
+arrivals[:10]
+
+
+
+
+
[8]:
+
+
+
+
+array([1., 1., 2., 2., 2., 3., 3., 3., 3., 3.])
+
+
+
+
[9]:
+
+
+
lc_new = Lightcurve.make_lightcurve(arrivals, dt=1)
+
+
+
+

The time bins and respective counts can be seen with lc.counts and lc.time

+
+
[10]:
+
+
+
lc_new.counts
+
+
+
+
+
[10]:
+
+
+
+
+array([2, 3, 5, 1, 4, 1, 3, 1, 1])
+
+
+
+
[11]:
+
+
+
lc_new.time
+
+
+
+
+
[11]:
+
+
+
+
+array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5])
+
+
+

One useful feature is that you can explicitly pass in the start time and the duration of the observation. This can be helpful because the chance that a photon will arrive exactly at the start of the observation and the end of the observation is very small. In practice, when making multiple light curves from the same observation (e.g. individual light curves of multiple detectors, of for different energy ranges) this can lead to the creation of light curves with time bins that are slightly +offset from one another. Here, passing in the total duration of the observation and the start time can be helpful.

+
+
[12]:
+
+
+
lc_new = Lightcurve.make_lightcurve(arrivals, dt=1.0, tstart=1.0, tseg=9.0)
+
+
+
+
+
+
+

Properties

+

A Lightcurve object has the following properties :

+
    +
  1. time : numpy array of time values

  2. +
  3. counts : numpy array of counts per bin values

  4. +
  5. counts_err: numpy array with the uncertainties on the values in counts

  6. +
  7. countrate : numpy array of counts per second

  8. +
  9. countrate_err: numpy array of the uncertainties on the values in countrate

  10. +
  11. n : Number of data points in the lightcurve

  12. +
  13. dt : Time resolution of the light curve

  14. +
  15. tseg : Total duration of the light curve

  16. +
  17. tstart : Start time of the light curve

  18. +
  19. meancounts: The mean counts of the light curve

  20. +
  21. meanrate: The mean count rate of the light curve

  22. +
  23. mjdref: MJD reference date (tstart / 86400 gives the date in MJD at the start of the observation)

  24. +
  25. gti:Good Time Intervals. They indicate the “safe” time intervals to be used during the analysis of the light curve.

  26. +
  27. err_dist: Statistic of the Lightcurve, it is used to calculate the uncertainties and other statistical values appropriately. It propagates to Spectrum classes

  28. +
+
+
[13]:
+
+
+
lc.n == len(lc)
+
+
+
+
+
[13]:
+
+
+
+
+True
+
+
+

Note that by default, stingray assumes that the user is passing a light curve in counts per bin. That is, the counts in bin \(i\) will be the number of photons that arrived in the interval \(t_i - 0.5\Delta t\) and \(t_i + 0.5\Delta t\). Sometimes, data is given in count rate, i.e. the number of events that arrive within an interval of a second. The two will only be the same if the time resolution of the light curve is exactly 1 second.

+

Whether the input data is in counts per bin or in count rate can be toggled via the boolean input_counts keyword argument. By default, this argument is set to True, and the code assumes the light curve passed into the object is in counts/bin. By setting it to False, the user can pass in count rates:

+
+
[14]:
+
+
+
# times with a resolution of 0.1
+dt = 0.1
+times = np.arange(0, 100, dt)
+times[:10]
+
+
+
+
+
[14]:
+
+
+
+
+array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
+
+
+
+
[15]:
+
+
+
mean_countrate = 100.0
+countrate = np.random.poisson(mean_countrate, size=len(times))
+
+
+
+
+
[16]:
+
+
+
lc = Lightcurve(times, counts=countrate, dt=dt, skip_checks=True, input_counts=False)
+
+
+
+

Internally, both counts and countrate attribute will be defined no matter what the user passes in, since they’re trivially converted between each other through a multiplication/division with `dt:

+
+
[17]:
+
+
+
print(mean_countrate)
+print(lc.countrate[:10])
+
+
+
+
+
+
+
+
+100.0
+[113  92 110  97 101 102 103 101 124  89]
+
+
+
+
[18]:
+
+
+
mean_counts = mean_countrate * dt
+print(mean_counts)
+print(lc.counts[:10])
+
+
+
+
+
+
+
+
+10.0
+[11.3  9.2 11.   9.7 10.1 10.2 10.3 10.1 12.4  8.9]
+
+
+
+

Error Distributions in stingray.Lightcurve

+

The instruments that record our data impose measurement noise on our measurements. Depending on the type of instrument, the statistical distribution of that noise can be different. stingray was originally developed with X-ray data in mind, where most data comes in the form of photon arrival times, which generate measurements distributed according to a Poisson distribution. By default, err_dist is assumed to Poisson, and this is the only statistical distribution currently fully +supported. But you can put in your own errors (via counts_err or countrate_err). It’ll produce a warning, and be aware that some of the statistical assumptions made about downstream products (e.g. the normalization of periodograms) may not be correct:

+
+
[19]:
+
+
+
times = np.arange(1000)
+
+mean_flux = 100.0 # mean flux
+std_flux = 2.0 # standard deviation on the flux
+
+# generate fluxes with a Gaussian distribution and
+# an array of associated uncertainties
+flux = np.random.normal(loc=mean_flux, scale=std_flux, size=len(times))
+flux_err = np.ones_like(flux) * std_flux
+
+
+
+
+
[20]:
+
+
+
lc = Lightcurve(times, flux, err=flux_err, err_dist="gauss", dt=1.0, skip_checks=True)
+
+
+
+
+
+

Good Time Intervals

+

Lightcurve (and most other core stingray classes) support the use of Good Time Intervals (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don’t apply to the data within a Lightcurve object, but become relevant in a number of circumstances, such as when generating Powerspectrum objects.

+

If no GTIs are given at instantiation of the Lightcurve class, an artificial GTI will be created spanning the entire length of the data set being passed in:

+
+
[21]:
+
+
+
times = np.arange(1000)
+counts = np.random.poisson(100, size=len(times))
+
+lc = Lightcurve(times, counts, dt=1, skip_checks=True)
+
+
+
+
+
[22]:
+
+
+
lc.gti
+
+
+
+
+
[22]:
+
+
+
+
+array([[-5.000e-01,  9.995e+02]])
+
+
+
+
[23]:
+
+
+
print(times[0]) # first time stamp in the light curve
+print(times[-1]) # last time stamp in the light curve
+print(lc.gti) # the GTIs generated within Lightcurve
+
+
+
+
+
+
+
+
+0
+999
+[[-5.000e-01  9.995e+02]]
+
+
+GTIs are defined as a list of tuples:
+
[24]:
+
+
+
gti = [(0, 500), (600, 1000)]
+
+
+
+
+
[25]:
+
+
+
lc = Lightcurve(times, counts, dt=1, skip_checks=True, gti=gti)
+
+
+
+
+
[26]:
+
+
+
print(lc.gti)
+
+
+
+
+
+
+
+
+[[   0  500]
+ [ 600 1000]]
+
+
+

We’ll get back to these when we talk more about some of the methods that apply GTIs to the data.

+
+
+
+

Operations

+
+

Addition/Subtraction

+

Two light curves can be summed up or subtracted from each other if they have same time arrays.

+
+
[27]:
+
+
+
lc = Lightcurve(times, counts, dt=1, skip_checks=True)
+lc_rand = Lightcurve(np.arange(1000), [500]*1000, dt=1, skip_checks=True)
+
+
+
+
+
[28]:
+
+
+
lc_sum = lc + lc_rand
+
+
+
+
+
[29]:
+
+
+
print("Counts in light curve 1: " + str(lc.counts[:5]))
+print("Counts in light curve 2: " + str(lc_rand.counts[:5]))
+print("Counts in summed light curve: " + str(lc_sum.counts[:5]))
+
+
+
+
+
+
+
+
+Counts in light curve 1: [103  99 102 109 104]
+Counts in light curve 2: [500 500 500 500 500]
+Counts in summed light curve: [603 599 602 609 604]
+
+
+
+
+

Negation

+

A negation operation on the lightcurve object inverts the count array from positive to negative values.

+
+
[30]:
+
+
+
lc_neg = -lc
+
+
+
+
+
[31]:
+
+
+
lc_sum = lc + lc_neg
+
+
+
+
+
[32]:
+
+
+
np.all(lc_sum.counts == 0)  # All the points on lc and lc_neg cancel each other
+
+
+
+
+
[32]:
+
+
+
+
+True
+
+
+
+
+

Indexing

+

Count value at a particular time can be obtained using indexing.

+
+
[33]:
+
+
+
lc[120]
+
+
+
+
+
[33]:
+
+
+
+
+113
+
+
+

A Lightcurve can also be sliced to generate a new object.

+
+
[34]:
+
+
+
lc_sliced = lc[100:200]
+
+
+
+
+
[35]:
+
+
+
len(lc_sliced.counts)
+
+
+
+
+
[35]:
+
+
+
+
+100
+
+
+
+
+
+

Methods

+
+

Concatenation

+

Two light curves can be combined into a single object using the join method. Note that both of them must not have overlapping time arrays.

+
+
[36]:
+
+
+
lc_1 = lc
+
+
+
+
+
[37]:
+
+
+
lc_2 = Lightcurve(np.arange(1000, 2000), np.random.rand(1000)*1000, dt=1, skip_checks=True)
+
+
+
+
+
[38]:
+
+
+
lc_long = lc_1.join(lc_2, skip_checks=True)  # Or vice-versa
+
+
+
+
+
[39]:
+
+
+
print(len(lc_long))
+
+
+
+
+
+
+
+
+2000
+
+
+
+
+

Truncation

+

A light curve can also be truncated.

+
+
[40]:
+
+
+
lc_cut = lc_long.truncate(start=0, stop=1000)
+
+
+
+
+
[41]:
+
+
+
len(lc_cut)
+
+
+
+
+
[41]:
+
+
+
+
+1000
+
+
+

Note : By default, the start and stop parameters are assumed to be given as indices of the time array. However, the start and stop values can also be given as time values in the same value as the time array.

+
+
[42]:
+
+
+
lc_cut = lc_long.truncate(start=500, stop=1500, method='time')
+
+
+
+
+
[43]:
+
+
+
lc_cut.time[0], lc_cut.time[-1]
+
+
+
+
+
[43]:
+
+
+
+
+(500, 1499)
+
+
+
+
+

Re-binning

+

The time resolution (dt) can also be changed to a larger value.

+

Note : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division.

+
+
[44]:
+
+
+
lc_rebinned = lc_long.rebin(2)
+
+
+
+
+
[45]:
+
+
+
print("Old time resolution = " + str(lc_long.dt))
+print("Number of data points = " + str(lc_long.n))
+print("New time resolution = " + str(lc_rebinned.dt))
+print("Number of data points = " + str(lc_rebinned.n))
+
+
+
+
+
+
+
+
+Old time resolution = 1
+Number of data points = 2000
+New time resolution = 2
+Number of data points = 1000
+
+
+
+
+

Sorting

+

A lightcurve can be sorted using the sort method. This function sorts time array and the counts array is changed accordingly.

+
+
[46]:
+
+
+
new_lc_long = lc_long[:]  # Copying into a new object
+
+
+
+
+
[47]:
+
+
+
new_lc_long = new_lc_long.sort(reverse=True)
+
+
+
+
+
[48]:
+
+
+
new_lc_long.time[0] == max(lc_long.time)
+
+
+
+
+
[48]:
+
+
+
+
+True
+
+
+

You can sort by the counts array using sort_counts method which changes time array accordingly:

+
+
[49]:
+
+
+
new_lc = lc_long[:]
+new_lc = new_lc.sort_counts()
+new_lc.counts[-1] == max(lc_long.counts)
+
+
+
+
+
[49]:
+
+
+
+
+True
+
+
+
+
+

Plotting

+

A curve can be plotted with the plot method.

+
+
[50]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_89_0.png +
+
+

A plot can also be customized using several keyword arguments.

+
+
[51]:
+
+
+
lc.plot(labels=('Time', "Counts"),  # (xlabel, ylabel)
+        axis=(0, 1000, -50, 150),  # (xmin, xmax, ymin, ymax)
+        title="Random generated lightcurve",
+        marker='c:')  # c is for cyan and : is the marker style
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_91_0.png +
+
+

The figure drawn can also be saved in a file using keywords arguments in the plot method itself.

+
+
[52]:
+
+
+
lc.plot(marker = 'k', save=True, filename="lightcurve.png")
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_93_0.png +
+
+

Note : See utils.savefig function for more options on saving a file.

+
+
+
+

Sample Data

+

Stingray also has a sample Lightcurve data which can be imported from within the library.

+
+
[53]:
+
+
+
from stingray import sampledata
+
+
+
+
+
[54]:
+
+
+
lc = sampledata.sample_data()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
[55]:
+
+
+
lc.plot()
+
+
+
+
+
+
+
+../../_images/notebooks_Lightcurve_Lightcurve_tutorial_99_0.png +
+
+
+

Checking the Light Curve for Irregularities

+

You can perform checks on the behaviour of the light curve, similar to what’s done when instantiating a Lightcurve object when skip_checks=False, by calling the relevant method:

+
+
[56]:
+
+
+
time = np.hstack([np.arange(0, 10, 0.1), np.arange(10, 20, 0.3)]) # uneven time resolution
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=1.0, skip_checks=True)
+
+
+
+
+
[57]:
+
+
+
lc.check_lightcurve()
+
+
+
+

Let’s add some badly formatted GTIs:

+
+
[58]:
+
+
+
gti = [(10, 100, 123), (20, 30, 40)] # not a well-behaved GTI
+lc = Lightcurve(time, counts, dt=0.1, skip_checks=True, gti=gti)
+
+
+
+
+
[59]:
+
+
+
# This will fail
+lc.check_lightcurve()
+
+
+
+
+
+
+
+
+---------------------------------------------------------------------------
+TypeError                                 Traceback (most recent call last)
+<ipython-input-59-7e2c226c1569> in <module>
+----> 1 lc.check_lightcurve()
+
+/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/lightcurve.py in check_lightcurve(self)
+    418         # i.e. the bin sizes aren't equal throughout.
+    419
+--> 420         check_gtis(self.gti)
+    421
+    422         idxs = np.searchsorted(self.time, self.gti)
+
+/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/gti.py in check_gtis(gti)
+    225     if len(gti) != gti.shape[0] or len(gti.shape) != 2 or \
+    226             len(gti) != gti.shape[0]:
+--> 227         raise TypeError("Please check formatting of GTIs. They need to be"
+    228                         " provided as [[gti00, gti01], [gti10, gti11], ...]")
+    229
+
+TypeError: Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]
+
+
+
+
+

MJDREF and Shifting Times

+

The mjdref keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don’t become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time.

+

mjdref is generally passed into the Lightcurve object at instantiation, but it can be changed later:

+
+
[60]:
+
+
+
mjdref = 91254
+time = np.arange(1000)
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=1, skip_checks=True, mjdref=mjdref)
+print(lc.mjdref)
+
+
+
+
+
+
+
+
+91254
+
+
+
+
[61]:
+
+
+
mjdref_new = 91254 + 20
+lc_new = lc.change_mjdref(mjdref_new)
+print(lc_new.mjdref)
+
+
+
+
+
+
+
+
+91274
+
+
+

This change only affects the reference time, not the values given in the time attribute. However, it is also possible to shift the entire light curve, along with its GTIs:

+
+
[62]:
+
+
+
gti = [(0,500), (600, 1000)]
+lc.gti = gti
+
+
+
+
+
[63]:
+
+
+
print("first three time bins: " + str(lc.time[:3]))
+print("GTIs: " + str(lc.gti))
+
+
+
+
+
+
+
+
+first three time bins: [0 1 2]
+GTIs: [[   0  500]
+ [ 600 1000]]
+
+
+
+
[64]:
+
+
+
time_shift = 10.0
+lc_shifted = lc.shift(time_shift)
+
+
+
+
+
[65]:
+
+
+
print("Shifted first three time bins: " + str(lc_shifted.time[:3]))
+print("Shifted GTIs: " + str(lc_shifted.gti))
+
+
+
+
+
+
+
+
+Shifted first three time bins: [10. 11. 12.]
+Shifted GTIs: [[  10.  510.]
+ [ 610. 1010.]]
+
+
+
+
+

Calculating a baseline

+

TODO: Need to document this method

+
+
[ ]:
+
+
+

+
+
+
+
+
+

Working with GTIs and Splitting Light Curves

+

It is possible to split light curves into multiple segments. In particular, it can be useful to split light curves with large gaps into individual contiguous segments without gaps.

+
+
[66]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.array([1, 2, 3, 10, 11, 12, 13, 14, 17, 18, 19, 20])
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, skip_checks=True)
+
+
+
+
+
+
+
+
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
[67]:
+
+
+
lc.gti
+
+
+
+
+
[67]:
+
+
+
+
+array([[ 0.5, 20.5]])
+
+
+

This light curve has uneven bins. It has a large gap between 3 and 10, and a smaller gap between 14 and 17. We can use the split method to split it into three contiguous segments:

+
+
[68]:
+
+
+
lc_split = lc.split(min_gap=2*lc.dt)
+
+
+
+
+
[69]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[1 2 3]
+[10 11 12 13 14]
+[17 18 19 20]
+
+
+

This has split the light curve into three contiguous segments. You can adjust the tolerance for the size of gap that’s acceptable via the min_gap attribute. You can also require a minimum number of data points in the output light curves. This is helpful when you’re only interested in contiguous segments of a certain length:

+
+
[70]:
+
+
+
lc_split = lc.split(min_gap=6.0)
+
+
+
+
+
[71]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[1 2 3]
+[10 11 12 13 14 17 18 19 20]
+
+
+

What if we only want the long segment?

+
+
[72]:
+
+
+
lc_split = lc.split(min_gap=6.0, min_points=4)
+
+
+
+
+
[73]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[10 11 12 13 14 17 18 19 20]
+
+
+

A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:

+
+
[74]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.arange(20)
+counts = np.random.poisson(100, size=len(time))
+gti = [(0,8), (12,20)]
+
+
+lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)
+
+
+
+
+
[75]:
+
+
+
lc_split = lc.split_by_gti()
+
+
+
+
+
[76]:
+
+
+
for lc_tmp in lc_split:
+    print(lc_tmp.time)
+
+
+
+
+
+
+
+
+[1 2 3 4 5 6 7]
+[13 14 15 16 17 18 19]
+
+
+

Because I’d passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.

+

You can also apply the GTIs directly to the original light curve, which will filter time, counts, countrate, counts_err and countrate_err to only fall within the bounds of the GTIs:

+
+
[77]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.arange(20)
+counts = np.random.poisson(100, size=len(time))
+gti = [(0,8), (12,20)]
+
+
+lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)
+
+
+
+

Caution: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:

+
+
[78]:
+
+
+
# time array before applying GTIs:
+lc.time
+
+
+
+
+
[78]:
+
+
+
+
+array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
+       17, 18, 19])
+
+
+
+
[79]:
+
+
+
lc.apply_gtis()
+
+
+
+
+
[80]:
+
+
+
# time array after applying GTIs
+lc.time
+
+
+
+
+
[80]:
+
+
+
+
+array([ 1,  2,  3,  4,  5,  6,  7, 13, 14, 15, 16, 17, 18, 19])
+
+
+

As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs.

+
+
+

Analyzing Light Curve Segments

+

There’s some functionality in stingray aimed at making analysis of individual light curve segments (or chunks, as they’re called throughout the code) efficient.

+

One helpful function tells you the length that segments should have to satisfy two conditions: (1) the minimum number of time bins in the segment, and (2) the minimum total number of counts (or flux) in each segment.

+

Let’s give this a try with an example:

+
+
[81]:
+
+
+
dt=1.0
+time = np.arange(0, 100, dt)
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=dt, skip_checks=True)
+
+
+
+
+
[82]:
+
+
+
min_total_counts = 300
+min_total_bins = 2
+estimated_chunk_length = lc.estimate_chunk_length(min_total_counts, min_total_bins)
+
+print("The estimated length of each segment in seconds to satisfy both conditions is: " + str(estimated_chunk_length))
+
+
+
+
+
+
+
+
+The estimated length of each segment in seconds to satisfy both conditions is: 4.0
+
+
+

So we have time bins of 1 second time resolution, each with an average of 100 counts/bin. We require at least 2 time bins in each segment, and also a minimum number of total counts in the segment of 300. In theory, you’d expect to need 3 time bins (so 3-second segments) to satisfy the condition above. However, the Poisson distribution is quite variable, so we cannot guarantee that all bins will have a total number of counts above 300. Hence, our segments need to be 4 seconds long.

+

We can now use these segments to do some analysis, using the analyze_by_chunks method. In the simplest, case we can use a standard numpy operation to learn something about the properties of each segment:

+
+
[83]:
+
+
+
start_times, stop_times, lc_sums = lc.analyze_lc_chunks(segment_size = 10.0, func=np.median)
+
+
+
+
+
[84]:
+
+
+
lc_sums
+
+
+
+
+
[84]:
+
+
+
+
+array([102. , 110. ,  92. ,  96.5,  99.5, 100. ,  95. ,  96.5, 100. ,
+       108. ])
+
+
+

This splits the light curve into 10-second segments, and then finds the median number of counts/bin in each segment. For a flat light curve like the one we generated above, this isn’t super interesting, but this method can be helpful for more complex analyses. Instead of np.median, you can also pass in your own function:

+
+
[85]:
+
+
+
def myfunc(lc):
+    """
+    Not a very interesting function
+    """
+    return np.sum(lc.counts) * 10.0
+
+
+
+
+
[86]:
+
+
+
start_times, stop_times, lc_result = lc.analyze_lc_chunks(segment_size=10.0, func=myfunc)
+
+
+
+
+
[87]:
+
+
+
lc_result
+
+
+
+
+
[87]:
+
+
+
+
+array([10090., 10830.,  9370., 10120., 10180., 10190.,  9910.,  9610.,
+        9880., 10600.])
+
+
+
+
+

Compatibility with Lightkurve

+

The `Lightkurve package <https://lightkurve.github.io/lightkurve/>`__ provides a large amount of complementary functionality to stingray, in particular for data observed with Kepler and TESS, stars and exoplanets, and unevenly sampled data. We have implemented a conversion method that converts to/from stingray’s native Lightcurve object and Lightkurve’s native LightCurve object. Equivalent functionality exists in Lightkurve, too. The users who have not installed +Lightkurve package should do so first by running pip install lightkurve in their terminal and then following with the next command.

+
+
[88]:
+
+
+
import lightkurve
+
+
+
+
+
[89]:
+
+
+
lc_new = lc.to_lightkurve()
+
+
+
+
+
[90]:
+
+
+
type(lc_new)
+
+
+
+
+
[90]:
+
+
+
+
+lightkurve.lightcurve.LightCurve
+
+
+
+
[91]:
+
+
+
lc_new.time
+
+
+
+
+
[91]:
+
+
+
+
+array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,
+       13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
+       26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
+       39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
+       52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
+       65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,
+       78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,
+       91., 92., 93., 94., 95., 96., 97., 98., 99.])
+
+
+
+
[92]:
+
+
+
lc_new.flux
+
+
+
+
+
[92]:
+
+
+
+
+array([110,  82,  94, 126, 102,  80, 102, 105, 106, 102, 119,  98, 112,
+        98, 119, 112, 119,  99,  99, 108,  91,  85,  93, 109,  97,  82,
+        87,  89,  96, 108, 120,  88,  97,  88, 109, 120,  94, 106,  94,
+        96, 120, 122,  92,  87, 113,  94, 100,  99, 105,  86, 107, 101,
+        94, 102,  96, 112,  93, 117,  99,  98,  91, 101,  94, 120, 105,
+        91,  91,  96,  85, 117, 104, 102,  91,  94, 100, 115,  98,  74,
+        95,  88, 100, 107, 102, 109, 109,  94,  86,  84,  97, 100, 110,
+       109, 117,  96, 108, 108, 110, 108,  97,  97])
+
+
+

Let’s do the rountrip to stingray:

+
+
[93]:
+
+
+
lc_back = lc_new.to_stingray()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
[94]:
+
+
+
lc_back.time
+
+
+
+
+
[94]:
+
+
+
+
+array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9., 10., 11., 12.,
+       13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,
+       26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,
+       39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,
+       52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,
+       65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,
+       78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,
+       91., 92., 93., 94., 95., 96., 97., 98., 99.])
+
+
+
+
[95]:
+
+
+
lc_back.counts
+
+
+
+
+
[95]:
+
+
+
+
+array([110.,  82.,  94., 126., 102.,  80., 102., 105., 106., 102., 119.,
+        98., 112.,  98., 119., 112., 119.,  99.,  99., 108.,  91.,  85.,
+        93., 109.,  97.,  82.,  87.,  89.,  96., 108., 120.,  88.,  97.,
+        88., 109., 120.,  94., 106.,  94.,  96., 120., 122.,  92.,  87.,
+       113.,  94., 100.,  99., 105.,  86., 107., 101.,  94., 102.,  96.,
+       112.,  93., 117.,  99.,  98.,  91., 101.,  94., 120., 105.,  91.,
+        91.,  96.,  85., 117., 104., 102.,  91.,  94., 100., 115.,  98.,
+        74.,  95.,  88., 100., 107., 102., 109., 109.,  94.,  86.,  84.,
+        97., 100., 110., 109., 117.,  96., 108., 108., 110., 108.,  97.,
+        97.])
+
+
+

Similarly, we can transform Lightcurve objects to and from astropy.TimeSeries objects:

+
+
[96]:
+
+
+
dt=1.0
+time = np.arange(0, 100, dt)
+counts = np.random.poisson(100, size=len(time))
+
+lc = Lightcurve(time, counts, dt=dt, skip_checks=True)
+
+# convet to astropy.TimeSeries object
+ts = lc.to_astropy_timeseries()
+
+
+
+
+
[97]:
+
+
+
type(ts)
+
+
+
+
+
[97]:
+
+
+
+
+astropy.timeseries.sampled.TimeSeries
+
+
+
+
[98]:
+
+
+
ts[:10]
+
+
+
+
+
[98]:
+
+
+
+TimeSeries length=10 + + + + + + + + + + + + + +
timecounts
objectint64
0.0100
1.1574074074074073e-0592
2.3148148148148147e-0598
3.472222222222222e-0585
4.6296296296296294e-05113
5.787037037037037e-0594
6.944444444444444e-0599
8.101851851851852e-05108
9.259259259259259e-05101
0.00010416666666666667117
+
+

lc_back = Lightcurve.from_astropy_timeseries(ts)

+
+
+

Reading/Writing Lightcurves to/from files

+

The Lightcurve class has some rudimentary reading/writing capabilities via the read and write methods. For more information stingray inputs and outputs, please refer to the I/O tutorial.

+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Lightcurve/Lightcurve tutorial.ipynb b/notebooks/Lightcurve/Lightcurve tutorial.ipynb new file mode 100644 index 000000000..205cf1859 --- /dev/null +++ b/notebooks/Lightcurve/Lightcurve tutorial.ipynb @@ -0,0 +1,2226 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start here to begin with Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a light curve" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `Lightcurve` object is usually created in one of the following two ways:\n", + "\n", + "1. From an array of time stamps and an array of counts.\n", + " \n", + " lc = Lightcurve(times, counts, **opts)\n", + "\n", + " where `**opts` are any (optional) keyword arguments (e.g. `dt=0.1`, `mjdref=55000`, etc.)\n", + "\n", + "2. From photon arrival times.\n", + "\n", + " lc = Lightcurve.make_lightcurve(event_arrival_times, dt=1, **opts)\n", + "\n", + "as will be described in the next sections.\n", + "\n", + "An additional possibility is creating an empty `Lightcurve` object, whose attributes will be filled in later:\n", + "\n", + " lc = Lightcurve()\n", + "\n", + "or, if one wants to specify any keyword arguments:\n", + "\n", + " lc = Lightcurve(**opts)\n", + "\n", + " This option is usually only relevant to advanced users, but we mention it here for reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Array of time stamps and counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 time stamps" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1000)\n", + "times[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 random Poisson-distributed counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 91, 98, 98, 98, 108, 86, 101, 114, 93, 95])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "counts = np.random.poisson(100, size=len(times))\n", + "counts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Lightcurve object with the times and counts array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = Lightcurve(times, counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points can be counted with the `len` function." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note the warnings thrown by the syntax above. By default, `stingray` does a number of checks on the data that is put into the `Lightcurve` class. For example, it checks whether it's evenly sampled. It also computes the time resolution `dt`. All of these checks take time. If you know the time resolution, it's a good idea to put it in manually. If you know that your light curve is well-behaved (for example, because you know the data really well, or because you've generated it yourself, as we've done above), you can skip those checks and save a bit of time:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 1 \n", + "lc = Lightcurve(times, counts, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Photon Arrival Times\n", + "\n", + "Often, you might have unbinned photon arrival times, rather than a light curve with time stamps and associated measurements. If this is the case, you can use the `make_lightcurve` method to turn these photon arrival times into a regularly binned light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1., 1., 2., 2., 2., 3., 3., 3., 3., 3.])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "arrivals = np.loadtxt(\"photon_arrivals.txt\")\n", + "arrivals[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time bins and respective counts can be seen with `lc.counts` and `lc.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2, 3, 5, 1, 4, 1, 3, 1, 1])" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5])" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One useful feature is that you can explicitly pass in the start time and the duration of the observation. This can be helpful because the chance that a photon will arrive exactly at the start of the observation and the end of the observation is very small. In practice, when making multiple light curves from the same observation (e.g. individual light curves of multiple detectors, of for different energy ranges) this can lead to the creation of light curves with time bins that are *slightly* offset from one another. Here, passing in the total duration of the observation and the start time can be helpful." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = Lightcurve.make_lightcurve(arrivals, dt=1.0, tstart=1.0, tseg=9.0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve object has the following properties :\n", + "\n", + "1. `time` : numpy array of time values\n", + "2. `counts` : numpy array of counts per bin values\n", + "3. `counts_err`: numpy array with the uncertainties on the values in `counts`\n", + "4. `countrate` : numpy array of counts per second\n", + "5. `countrate_err`: numpy array of the uncertainties on the values in `countrate`\n", + "4. `n` : Number of data points in the lightcurve\n", + "5. `dt` : Time resolution of the light curve\n", + "6. `tseg` : Total duration of the light curve\n", + "7. `tstart` : Start time of the light curve\n", + "8. `meancounts`: The mean counts of the light curve\n", + "9. `meanrate`: The mean count rate of the light curve\n", + "10. `mjdref`: MJD reference date (``tstart`` / 86400 gives the date in MJD at the start of the observation)\n", + "11. `gti`:Good Time Intervals. They indicate the \"safe\" time intervals to be used during the analysis of the light curve. \n", + "12. `err_dist`: Statistic of the Lightcurve, it is used to calculate the uncertainties and other statistical values appropriately. It propagates to Spectrum classes\n" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.n == len(lc)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that by default, `stingray` assumes that the user is passing a light curve in **counts per bin**. That is, the counts in bin $i$ will be the number of photons that arrived in the interval $t_i - 0.5\\Delta t$ and $t_i + 0.5\\Delta t$. Sometimes, data is given in **count rate**, i.e. the number of events that arrive within an interval of a *second*. The two will only be the same if the time resolution of the light curve is exactly 1 second.\n", + "\n", + "Whether the input data is in counts per bin or in count rate can be toggled via the boolean `input_counts` keyword argument. By default, this argument is set to `True`, and the code assumes the light curve passed into the object is in counts/bin. By setting it to `False`, the user can pass in count rates:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# times with a resolution of 0.1\n", + "dt = 0.1\n", + "times = np.arange(0, 100, dt)\n", + "times[:10]" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "mean_countrate = 100.0\n", + "countrate = np.random.poisson(mean_countrate, size=len(times))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts=countrate, dt=dt, skip_checks=True, input_counts=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Internally, both `counts` and `countrate` attribute will be defined no matter what the user passes in, since they're trivially converted between each other through a multiplication/division with `dt:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "100.0\n", + "[113 92 110 97 101 102 103 101 124 89]\n" + ] + } + ], + "source": [ + "print(mean_countrate)\n", + "print(lc.countrate[:10])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10.0\n", + "[11.3 9.2 11. 9.7 10.1 10.2 10.3 10.1 12.4 8.9]\n" + ] + } + ], + "source": [ + "mean_counts = mean_countrate * dt\n", + "print(mean_counts)\n", + "print(lc.counts[:10])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Error Distributions in `stingray.Lightcurve`\n", + "\n", + "The instruments that record our data impose measurement noise on our measurements. Depending on the type of instrument, the statistical distribution of that noise can be different. `stingray` was originally developed with X-ray data in mind, where most data comes in the form of _photon arrival times_, which generate measurements distributed according to a Poisson distribution. By default, `err_dist` is assumed to Poisson, and this is the only statistical distribution currently fully supported. But you *can* put in your own errors (via `counts_err` or `countrate_err`). It'll produce a warning, and be aware that some of the statistical assumptions made about downstream products (e.g. the normalization of periodograms) may not be correct:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "\n", + "mean_flux = 100.0 # mean flux\n", + "std_flux = 2.0 # standard deviation on the flux\n", + "\n", + "# generate fluxes with a Gaussian distribution and \n", + "# an array of associated uncertainties\n", + "flux = np.random.normal(loc=mean_flux, scale=std_flux, size=len(times)) \n", + "flux_err = np.ones_like(flux) * std_flux" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, flux, err=flux_err, err_dist=\"gauss\", dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Good Time Intervals\n", + "\n", + "`Lightcurve` (and most other core `stingray` classes) support the use of *Good Time Intervals* (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don't apply to the data within a `Lightcurve` object, but become relevant in a number of circumstances, such as when generating `Powerspectrum` objects. \n", + "\n", + "If no GTIs are given at instantiation of the `Lightcurve` class, an artificial GTI will be created spanning the entire length of the data set being passed in:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(times))\n", + "\n", + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5.000e-01, 9.995e+02]])" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "999\n", + "[[-5.000e-01 9.995e+02]]\n" + ] + } + ], + "source": [ + "print(times[0]) # first time stamp in the light curve\n", + "print(times[-1]) # last time stamp in the light curve\n", + "print(lc.gti) # the GTIs generated within Lightcurve" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "GTIs are defined as a list of tuples:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0, 500), (600, 1000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(lc.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll get back to these when we talk more about some of the methods that apply GTIs to the data.\n", + "\n", + "# Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Addition/Subtraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be summed up or subtracted from each other if they have same time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, counts, dt=1, skip_checks=True)\n", + "lc_rand = Lightcurve(np.arange(1000), [500]*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_rand" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counts in light curve 1: [103 99 102 109 104]\n", + "Counts in light curve 2: [500 500 500 500 500]\n", + "Counts in summed light curve: [603 599 602 609 604]\n" + ] + } + ], + "source": [ + "print(\"Counts in light curve 1: \" + str(lc.counts[:5]))\n", + "print(\"Counts in light curve 2: \" + str(lc_rand.counts[:5]))\n", + "print(\"Counts in summed light curve: \" + str(lc_sum.counts[:5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Negation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A negation operation on the lightcurve object inverts the count array from positive to negative values." + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "lc_neg = -lc" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sum = lc + lc_neg" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.all(lc_sum.counts == 0) # All the points on lc and lc_neg cancel each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count value at a particular time can be obtained using indexing." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "113" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc[120]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve can also be sliced to generate a new object." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "lc_sliced = lc[100:200]" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_sliced.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Concatenation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two light curves can be combined into a single object using the `join` method. Note that both of them must not have overlapping time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lc_1 = lc" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "lc_2 = Lightcurve(np.arange(1000, 2000), np.random.rand(1000)*1000, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "lc_long = lc_1.join(lc_2, skip_checks=True) # Or vice-versa" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2000\n" + ] + } + ], + "source": [ + "print(len(lc_long))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Truncation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A light curve can also be truncated." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=0, stop=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(lc_cut)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : By default, the `start` and `stop` parameters are assumed to be given as **indices** of the time array. However, the `start` and `stop` values can also be given as time values in the same value as the time array." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "lc_cut = lc_long.truncate(start=500, stop=1500, method='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1499)" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_cut.time[0], lc_cut.time[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Re-binning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution (`dt`) can also be changed to a larger value.\n", + "\n", + "**Note** : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "lc_rebinned = lc_long.rebin(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Old time resolution = 1\n", + "Number of data points = 2000\n", + "New time resolution = 2\n", + "Number of data points = 1000\n" + ] + } + ], + "source": [ + "print(\"Old time resolution = \" + str(lc_long.dt))\n", + "print(\"Number of data points = \" + str(lc_long.n))\n", + "print(\"New time resolution = \" + str(lc_rebinned.dt))\n", + "print(\"Number of data points = \" + str(lc_rebinned.n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Sorting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A lightcurve can be sorted using the `sort` method. This function sorts `time` array and the `counts` array is changed accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = lc_long[:] # Copying into a new object" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "new_lc_long = new_lc_long.sort(reverse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc_long.time[0] == max(lc_long.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can sort by the `counts` array using `sort_counts` method which changes `time` array accordingly:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_lc = lc_long[:]\n", + "new_lc = new_lc.sort_counts()\n", + "new_lc.counts[-1] == max(lc_long.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A curve can be plotted with the `plot` method." + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABPqElEQVR4nO2dd7wVxdnHf88tXHqTK0oTFASxYEHsih3BFhMTjcYWNcW8pvlGNFFjjIrG9FheY01iiRqNGOyKgkZBUHoXUDqX3m+d94+ze87s7MzsbDltme/ncz/3nD2zM7Ozs88+88wzzxBjDBaLxWJJFxXFroDFYrFYkscKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqqKXQEA6NatG+vbt2+xq2GxWCxlxdSpU9cxxmplv5WEcO/bty+mTJlS7GpYLBZLWUFEX6h+s2YZi8ViSSFWuFssFksKscLdYrFYUogV7haLxZJCrHC3WCyWFGKFu8VisaQQK9wtFoslhVjhbrFYPCxauw0ffb6+2NWwxCRQuBPRY0S0lohmccfuIKIZRDSNiN4koh7cbzcR0SIimk9EZ+ar4haLJT+c9rv3cfFfPy52NSwxMdHcnwAwQjj2G8bYIYyxQwH8B8CtAEBEgwFcBOBA55wHiKgysdpaLBaLxYhA4c4YmwBgg3BsC/e1HQB3O6fzADzLGKtnjC0BsAjAsITqarFYLBZDIseWIaI7AVwGYDOAk53DPQHw47nlzjHZ+dcCuBYA+vTpE7UaFovFYpEQeUKVMfZzxlhvAE8B+IFzmGRJFec/zBgbyhgbWlsrDWpmsVgslogk4S3zNICvOp+XA+jN/dYLwMoEyrBYLBZLCCIJdyIawH09F8A85/NYABcRUQ0R9QMwAMDkeFW0WCwWS1gCbe5E9AyA4QC6EdFyALcBGElEAwG0APgCwHcBgDE2m4ieAzAHQBOA6xhjzXmqu8VisVgUBAp3xtjFksOPatLfCeDOOJWyWCwWSzzsClWLxWJJIVa4WywWSwqxwt1isVhSiBXuFovFkkKscLdYLJYUYoW7xWKxpBAr3C0WiyWFWOFusVgsKcQK9yKxevMufOvRSdi8s7HYVUklG7Y34NJHJqFua31R6/H4h0vw4HufF7UOlt0TK9yLxJ/fXYiJC9dh7LQVxa5KKnl60hf4YNE6PP7hkqLW4/ZX5uCe1+cFJ7RYEsYK9yLR4gRCJpJFSbbExW1Xabxpi2U3wAr3IsFYRuxUVljhnk+Yle6W3RQr3ItEs6O6W9meH9wBEbO6u2U3xQr3IuGaZSqsWSYvELLS3WLZLbHCvUi4Zhkr3OWc8fv38dJnyyOfTwnJ9ssfm4y/vLswZi6WNLB03XYMuf1NLNuwo9hVMcIK9yLR7Ap3ewd8MMawYM02/Pif0yPn4b4yWUyj+/sL6nDfmwti5WFJB89PXYbNOxvx78/Kw8PNipYiYc0yapKYBM1q7tYsY0mIrKmvTLDCvUi0tFizjIok5LH7IIbN6+sPfYRb/j0rgRqULovWbkPf0eOwaO22vJc1dvpK7P+L11DfVF67bV739Ke45m9Til2NWFjhXiRcbxnrCumnJQF1O+o7c/LSDfj7x1/ELr+UGTt9JQDgPzNW5r2su1+di4amFqzf1pD3spJk3IxVeGvOmmJXIxZWuBeJFmZdIVUkaUqxZhnL7ooV7kVid1qh+sjExeg7elzWFBVEkr7pury27GpE39Hjsppsmrjn9XkYdMtrxa6GpYgECncieoyI1hLRLO7Yb4hoHhHNIKKXiKgz99tNRLSIiOYT0Zl5qnfZk12huhsI9zGvZWKrNBuq0clMqFJgXl+sy7i0PTwhfYG9Hnzvc+xqbCl2NbKkaQBVLtdiork/AWCEcOwtAAcxxg4BsADATQBARIMBXATgQOecB4ioMrHapojdyRUy7MOQiHA3KcepWbl5QZQTaWrZctPDAkULY2wCgA3CsTcZY03O148B9HI+nwfgWcZYPWNsCYBFAIYlWN+8cd3Tn6L/za8CAPrf/Cp+8PSneS0va5ZJVfdPhiTMMjlXyFxelz02GYf96s1cOcybtpR57IMl6Dt6HHY2FN/rZOP2BvQdPQ7PT1lW7KpYNCShN14FwDXu9QTA3/HlzjEfRHQtEU0hoil1dXUJVCMe42asQpMjcZtaGP4zY1Vey3OFzu4U+8RUIzc0zWvJLmLijk1YUIeNO3Lx88up5R+ZuBgAsGFHOK+TuIu4ZCxdvx0A8I9JXyaetyU5Ygl3Ivo5gCYAT7mHJMmkvYsx9jBjbChjbGhtbW2capQlTc2ZZmnJk1mUMZaXBzsOpi8yk3oHXZ9rc28xaIekVrNGxeReVVZmatnU3GJ8DoCswlIsZKWXYt+Mi3tNpXRdkYU7EV0O4GwAl7DcFS0H0JtL1gtA+lwRYjJ31RZ8tHg9gPxpj7/49yz0u+nVPOUeDdN+b5Lsd28tQL+bXlUujnFNLf/4+Evc+8Z8RX1yJe1saC5ae33/qU8Dy652JmdcYX3QbW/gtN+9H5h3c5GFu4x+N72Kbz06udjVSJSfPj8d/W56FT99PnrIjKSJJNyJaASAGwGcyxjjo+iMBXAREdUQUT8AAwCk6y4mwJQvNmY/J7FgR8ZTZTxkZgajmSf/uxQAsKtBnpgfQj7x4VJ9ZkRF3e7wtVmrA9NUOAsiXGG9vaEZn9dtDzyvsTmPHjMGfVc1nfHBonXJ1qWAyC77xU9XeP6XAiaukM8A+AjAQCJaTkTfBvAXAB0AvEVE04joIQBgjM0G8ByAOQBeB3AdY6z4M0ASmlsYdjUWp2p8hy+hUZyHHQ1NwYlC5mOuuRuYZYISGMyS8nlEmVTd1dicNZPkg50NzdnRRVWFa5YJ12FKUXPPB0k8z3x7yyiDeXcPJt4yFzPG9maMVTPGejHGHmWM9WeM9WaMHer8fZdLfydjbD/G2EDGWMmuorjqiU8w6JbXi10NlOK03puzV2PwrW9g+rJNsfIZO30lBt/6RlbAmNvcQxQS44nLestEzGbQLa/jaw99FL0CGtZu3YUDbn0dD0/ITKRWCpq7KXm1ucd0M5rkmCaT4PpnP4v1PK/fVo8Dbn0dD6RoM/PdwMtazvsLiuehwz8TpahYTViYaZvpyzfFymf8vLWe7+beMiEaRZHUTOw4fu5RpTuAaTFfgCpWbdoFABg3M+O1VVXp2tzNRgpuWIuwmn4h+WTphuBEhoyL6d22Zks9AOCVFK1W3m2FezHhfdt5ObazoRnb65MxhwRR39SMLbvya2eOqtiZiKOgrMWy12+r1+YVdr3Bhu35DYTltoFbqyqN5t7cwrBRqI+r6eteBibv0Pqm5kTmI2TmDveQrC/Krmnrrsa8mVI3Oi6maQoHYoV7keG11MPveAsH3vZGovmrbIhff+gjHPLLN6W/JYUoME11yGRWqObK3tnYjCN+/ba2nDDP9IbtDTj8jrfiVC+Q7H1zKpYT1v7GufvVuTjsjrc8QtgNJS3T3MOIr0v+OglDblf0E5MJVU0YCPdSLpT0xXvfmIfD7njLI+AP/uWbGPnHiWYVDwFjDJc8MilTX5P0JWhKlWGFexHgBQnfTXbmQStRPX/Tl28OPDeuDiMKTFMfYCM/95BlBxEmeaFGVzw6zd31ttnKab9VmpdBGHjPLpco2q3slrpCcoakL77hXNMmYdSweF2wh1BYStE0mgRWuAuYRi4UWbFpp7HnhNdbJr89K2zuyzfuQFQHkAVrtqJua878IYoAY809TKEKORNG/BBRKIFVU52fx2blpp1Z10WxDXSau9uH1m1ryIYniDIBuzJEHxbZsL0B2zQvve0NTVgnmMZKRaiaPoPLN+6MlP+yDTvAGMPmnY1Yu3UXVm/eFSmfsFjhLmAauZBn3bZ6HDfmXdz16jyj9B7NPc8dPMzL48v1O3D8PePxzOTwPvJTv9iIM34/AUfemTN/+DV3s7ySaBOTHa74YkK9ZPN0z44d8y5+9coczzHR5q4Tvuff/yG++uB/M+mdCVhTP/cN2xtw7Jh3ccd/5gSmlbXV4Xe8hZPuHa9MO+pPEzFUNI0ZrkQOQxRlycQldubyzXgxwt6pc1dtwQn3jsejHyzBkNvfxLA738HRd78TOp8oWOEuEMUv2B2mvzPPbOcWz4Rqnu13YXJftTmaZgIAi+sMtmxL0M89ME8DRZx3hQzTTvm8Y+PnZzyMRBlVWWEmrOes2gIg93Iz7c+bnAnFUF5kgiRcr5lkllVDV7Wsrd68Npn0EW6OydzL4nXRtiT8Yn1mjeekJV7PoEKEKUidcF+2YYd2eBgEP8FZt7XeY2ZQ0aoq04z1pvGzeVfIPIfcjqWQhjBVyLYL9E+oZkpYvXmXzxOCh3/olwTYWFUvApOaL3XyDmtCFtt01orNie1Hmsubc9NETnNvlEyQylrAUdyNXSddQtnTQ0yoytC5vEad74kiMk1cb6N60ag2ai/E4sXUCfcT7h2Pr8dYWMILliPvfNtjZlDhakkNEeyV+b7HYbRgscOF6c5S4a4wyxx99zsYdpe6XXmt5uT73pO7v8VsuKbmFvzsXzMy9QSFfAl6E5/95w9w2u/e17pbRsVtwmzgMENhXeXGojH0cw+1biwhd8F82NzjhvNQucRGXVXOj9F58hV2hCd1wh3IDU2jEMUsk/XXNfR2KeiEagyhFQYT4c4j00Cz9RB+0nl8RG0+Mcs4L0GXLbvie9Go2ixnZgmXj2l35k1UhSIfJskoQjOfj6DKFbQQc8mpFO5xiOIt43ZSU82d13yS6ljb65swZ2X0l1pcqqTC3czPffOORixauzWXLqbJfUdDE2YHtIVHsIQ0uquSrttWj/Hz1ga+sL9Yvx11W+tR39SMmQqXVJ/N3WnKZonmLitOtllJWILMm4vrtktHK8s27MCaLcEeISZVC1t9Vfp12+qxuG4bZizflI0kOmvF5kw8Ge6OJr2GSbavgK6eSVKV/yLKiyjeMu77QKeN8ng094Te4d/9x1RMXLgOC359VnYOAAjZiWJURead4nOFVFTmnL98gC837MDSMaOcanjT6QSU7Lcf/3Ma3pitn9w2EyzyRKrjN74wA4vXbcdrPzwBB+zdUZnvSb95DxUEXHB4L7wwdbm8DOe/+4IMrbnDjWdvlj5bInfTvv3EJ/KUzvVvrW/CifeOx+xfeXfhPMHxmnHvp7JE3U2IKGRVmvvIP07EWmf+7JtH9cGNZw7C2X/+AGcdtBfuu3BI3GKVqF4WhVgIZTV3gUiae4zXcFJ2xylLNwLwe1OEMjcI38NoMUY2d8W5X27Y4U1nUmVXM5X89OmXmwJP54WASnFX3RtV/dwFNlsMluu3MHlcGtW8hyvkTZUP93aEVVb4WzaZi/2i6uPbY2z7lx+bu/z4Ws4xYvaKzdjlaO9TvthoFu4iptQX289OqCYIYwzvL6gLFMRRNHf+lFWbd2L+6q3qxPD7uX+4aF3suNtVla43hTefoAfI1Byyo6EJkxavx9qtuzB7pd+UYOQtY9i0ovY1c0WmvE07GnICUZOXzETEs72+ydMu05Ztkq+g9D2QDBMW1AXadXc1md1L/YjE+z0rrIX7O2FBnfQF7mr6pjZoWTJ+NMa3V1ITqmKZcsUq3PMoXu+SdduzXlEuFRXenmnkLRNRp3fbsBhmmd1GuL/46Qpc/thk/PMT/aa+cSZUAeCYu9/FmX+YoE3PPxtTv9iISx6ZhPsUuwWZ4go00e4f9DI77Xf6urr84qVZ+MbDH2PYne9g1J8+8P1uprlH89z45l8zcT8ueWQSzr//Q29aSZayuvBc/8xnnge6vqlF+nIVs35j9mpc9thkPK7Y/MMt13Ri3QS3DbNmGaFSlz02ORvR0Hti5l/YUSUvuCs9wj0ZacTXR8xTVkbYx1Hc6OXk+97D8PveQ5vqyuyxSmHOy1NsyMVvgahcIa1ZJjm+cDb1XR0w0RPF7zzOjXIXj8xfo9f2g3AXuTQ0iWYZc3TX8XmAv7lcc/cVYFYPRTp3kpTX8GR1DtLcZ67Y7BMCsu36xHq4y8ZVvvduucaau1GqDM7tNTYbui1g2p9luVZw0iEp4a6rPj9qztY/ZLmq9HyXqKwgrnMyz8Wrek5ss4z43WruydHo9KrqSv0lxzXLuMxbrfbW4Id4KnOKjqXrtvu8LLKauyjcnbpNW7YJywTbtog4auHr2ZbTfGRUJqjxBGmbHht9BM29qYX5hEBDk0xrzB1bu3WXZ9NtGW7fkvnl75TZpiXZqLxcwtvcM+nDxpvnW86jubdk1gY8O/lLrNzkXckcZp7qnbm5iW6f5i55BBqbGF6buco86JxBvSorcusaGPMrCEFhhWeE2Ocg6y1jMEpJmt1GuLsxOYK0uihmGdmNGvEHdWhSXg5mY4BIhIuK4fe9h3P+4jWNVKpWMDpfz7//w6wXgwrdtbdtpRfuMnyukKaau+K4e43D73tPm7aqQt+tm5pbfPcs6OU66k8f5OzeinbKrVT2C4df/HuWNn+XrNBxvrsv2KCyRVzh/pfxi0KVK8sDyPTx6cs3YfSLM3Hry7M96cIoRNf+faqyTNlz9OD7i/C9pz7F6wb7zIp5bOXWHXjMTRWUTcck9Rjzmj5G1Hvz42/0UwDFPV3CXfd2d4VeVYDmHmkRROgzcqhs5WGprlRo7iFqp1ss1CZAuMvOjLxZh6IaHlup5vwgzb25hfnMA/USUwpfj7qt9YGae9YsIwlD8eWGiKFqRZu7qVnGoO2Z5zPznVdR4RXu7nWJ0R2j7tMqtqPsJeFGYlxnuDkKn6cqhHZlBeW2fmTeJ4TIOzJ0ZUpUq4wqgJ01y4Rg3bZ6vDFb/XZ3l227QlBF3AnVsOQ07ujCfcuuRix1AhSJtvswdfOZZbimCtLcpQtpFLFlglDaTbne6j50sqRB97ixhfnqIr4Ut+5qxNjp3iiAWQ8Uxa1yzTKTlmzArBXyxUk8YWKThxXuScC/I1ta1C//qDHjxbNkZhQ31rvqfb29vgkvT8vdpzv+MxeffbkRgNq8UknkGSHJvKKydXI+RlVU1LFlSsAsQ0SPEdFaIprFHbuQiGYTUQsRDRXS30REi4hoPhGdmY9Ky7jqiU/w3X98qvzdjbEhDtnFRo4m3MOdww8RqxIQ7jf9a2b28w3PT/fWLUQ+umvv0Lra8118EGWCO+mQv7zm7vpXS90ADTR3sQxxQvWG56fjRq5dgWDfcbdrvT13Dc7+s9dsFnelpdvHwpplAH/fkgkqtzz+hUyCWUYVbrg54j6tfjs0X0dvJVWuiLe8PAs/fHZa9vsr01fiKw9kwh7zozH+7ApOc/eVC8Fun5SXkG9hXiLZajHR3J8AMEI4NgvABQA8fnRENBjARQAOdM55gIjCG2sjIPqyiuTMMno7sPu2r6kyH9TEuU9u+aarW2Ws3ar2AArz4tEJji5tvcLdJ+CkmntgEikqDV8mtGWXZzKv4p9Q9QquLzf4wx/n4rXI65dkhM+smST7PYOpfZuXjWF2juLP8wpAptTQo5oUxUuJoljpNr7Qae4t3MjPG37A23eSCkRm8LgkTqAEY4xNALBBODaXMSZzzD4PwLOMsXrG2BIAiwAMS6SmIXluitef3TXLtBJs7mIj/+2jLwAArSXeIf/85Ev88e2FPs8H3f1/ZfpKLN/o9VLhu88Hi9YB8AsXU+av3opPnNWpMmRVU3nNhBleuw/ivNVbMH7+Wq/91rVT+jR3s/xlyV76bLlngiybFsC/P1vheciDbO4AMG7GKs93UUDJYrhkbe6KdhKFU5yh9yvTVzplZr67QsbUM4XX3N0YMZt3NCo3YpFVlb+eZsaUESZ1wl1nzjDxcw/KR2XT3lbfhIcnLJb+9vrs1djhPMMtGenuga9G7rP6QnT3WVXvBTFdn01I2ubeEwAvVZc7x3wQ0bVENIWIptTVxZ99FvnZCzOyvu0AZ5bxae7eGzPWeahaCZr753XbcOO/ZuL3by/AmNfmen7Tdcr/eeaz7DAxWyb3eZUjlKKaZcQFUz07twms23nCQiAXUaB5V/GJaTMHRvxhIq58/BPPA5GzU0b0lpGk+/E/p/sPAtjZ0IQf/XMavvnIx6HK+fU47z0UY/HLtMjcQiKFcBeOyyZpTahvasYzk73KiZu16QuYb3pXGbnhhem46cWZmLXCLMAc3waMqcMNN0a8ThNvGZew/uf3vDYP42ZyL3Ah3b3cokG+VJVZRveS0m1wknOF9B6/6OGPfWmTJmnhLmsC6R1jjD3MGBvKGBtaW1ubcDUy8A+CKzxFf2xVdxLNMrxmvWGHN3aIqk+6Lw5xww/Zmz7uRsYuh/TqJFTCn2aDwvNA934RHzyxvvzQNq6HQRgPH7cavOZuuoiIp96nuUvmENwyFdn75iEi3lL+vOywXlMvGeSxuWfOceOryFfj+vP1mWWa5YIuqllGpTAA5iY9VSgEVR93cRcPggntTfIJVR1av/gAU14+SVq4LwfQm/veC8DKhMvwsLOhGfePX6TUtDZub8BfJyxWasaqNpeZZVxMJhN1eb89d63vmGiWeX7KMiyu24aGphbcP36RtAN9LtnazmcakFdBiswU4aJ7EAFhKOt+MJhQlZkZwrzn+JWMbl8IY2N2EX3TZS/b7CpRQ8096splWfbuMVMhwTe9q3G7QktmtcpOqHLCslkQcm4+4um6Xah01V29ZScue2xyrgzNO0KWz5yVWzBBoTWL/VNm0gMcbxnNfTJpb91+vVFj0iRB0iF/xwJ4moh+B6AHgAEAJutPiccf3lmA/3tfblurIOB/X5iBt+euQYeazKWabtIgau78/RNvuOr+qzqGa0/lEYe8//vCDLSursANZwzEb96YDyLg+8P7e9KMkMSw8V1fCPkiTup6A5yJmrs6zEEYLeXNOTn3VcYYiCiUrdpN2cKAB95bhD+/uyiS25p47VqzjMrmLuQRdTAmjy+eORbFLONem1tv2ZxEkM29pYVl86ngJiQBYHqIFZs8Hy5a7/mu6zey30b+Sb1Q0HTimTG/55Tnd6eb67qUyRxP4fV2A+FORM8AGA6gGxEtB3AbMhOsfwZQC2AcEU1jjJ3JGJtNRM8BmAOgCcB1jLHkoihJ0GlpFUTYsD0zFHUb19QlySfc+Q2zDAWo7LA6Rrj/2K7GFmxyTEAydzOZh43vxRNqEZNOcxcEl5CUvy73o6jRyOrCLzRhzBkWm1aYqxdzNHcg9N4bAPyjFpkAd6/L1OYedUJVNBMAufZuaWFG+cpcId1rkmmaWduyIr8WxrLni6e75pr2NX5xEuZFGyX0h4qgiWfeC8kb/tm75WLO5q6+EJ3rLfEFFZhA4c4Yu1jx00uK9HcCuDNOpcKgGxIBOQHoLmwR7/nbc9dIF+jUVHmPuV4tmTzMBKhM21BtxaaafHP9r8UJXhU6c0kQOndMsd10mruLz26qMTfweYQRilmhx3Krj6NozPe9ucDzXSbc3fu5uE7udrtD8KKS1SOywEdO+za5Pl7euMLXLZrvy7n89bSw3EsiI+hyZ8QNV52tAy9kY1ozzDV3mZti7sA9r8/DLWcP1uahi6uUk+3++sxfvRUD9+pgVM8olP0K1WDh7kykOgZT8eH6wdOf4aonpvjOqxaE6R3/mZP9LD5cYTZ1MNnIgccV+qZ+9/4Xjzm6h9S3VNxv3/KlNd2sQzwvjPzjhV7QytQwyMwfof2wpS+uUKfljnGjhrDxxxudN6Ar8MSXECC/Zyfun3N0aG7J+bmLimpSwl2XTdiXoum98gld4dqe/WQZ/vTuQm0eWpu7Yg9VwO/pljRlL9x1ZNy3vJq7KbrUuuXKQZh0Oj4/10WvJiAqo4t/PiCEWUa0uWtMUXpvGf/5JnVxfw7zGPNZBgUMC4N8ojecgJF6oITMQ+YtY5QFb3N3FASdqUK2NqFTm2rP7yqzjquAxF1Sr3s2wuYceK8U+xgT/H29vrFFKw9Mul0RrDLlL9yDFkm4WkXonWk0v5lqx3w698Eyebj5JK6bmau5//3jL7TnxjLL6GzuQr7id/7F4H4K0tx/OXa2x0vIFYZhQsh6hHuCmvtWyVxOWMVdlt6k//FC8pOlG3DXq3Oze63KVtfK8HrLMDzx4RJtLBs3S36BHn8fPGYZ4VzXnBfXm9f02fzUiR2jQ7XgymW6EwqZMbN5OJ2c0ZllChFDRkXZC3fdkIj3zdUFmgqL3yNFnil/+LNlmQ5pIrj4FK7N3Z0DuCUgdKxMPpt2MF3YYb/NnSm/qybnxGo88d+leHnaSt/vYW4RLxCSNMvICGuWkbV7WLNMfVOLZ6VlS4B3h4s4ofrLV+ZoUufu7+fcfALfts0tuWdJVFDckYFsQj6M7Vyc2OThi7xAWBQYlJcO0eaemdAPd591E6o5c1zhhXwKhLv6N17bYNwxE3Q3I4orZJCnheo81yxjPKEqerUYCgMgnLeMKOh4u2s2qe/JNjN1hHkO+POTNMvICPuARtfc9b8Z+V5zTRGkxWby1d8bPraM2E3ce9/YbObJo66DWf2CYgcB4V7EupdKUlizTAR0LkqM65BZrTCBN+jEheuwdVduYlSV428k+6KaPGgfct4Mrj3zmr9NwZP/XRp47tQvNmKKZ9d6czuv3ltGLcwB7yKsxuYW3PTiDKze7A2+JavGpCW5uuY2UAhhluE+r9rsD/aVJKE1d8mqXXerQBUrNu3U9tGMGSEYz4SqwYSn/EXkLdeNCimuSOW/xzEL6l5a/C9d27XCzS/NVKaV1UNXppjy48UbfOlEMfPZlxvxmzcym3rIqj1xYR3uH7+IkztG1UmUFAh39W8tjJtMStAsA8CzSbLK1OIGIfPWKbgCVzz+SfYzr03fNna2LLmPrz30UfYzMywTgC+kK9/t/UGevOfyL4YJC+rwzORleG7KcqNys+VFeBB4QfjXiUtClReWsIE7ZddxibPZtw4xXIUnTxja3PkJVSNToERzN40Kyb3Y44TR0J3KX/LarfV4epI8AJpLmOiZUWTCVx74L+4f/zkA+fP1rUcn4zdvzM+2q9XcI6AbRrUwlp0kzNq+DJs56IZ7JwLN4TWK8w7tEeLMaAStwOMRNTz+PP+DJ9rcudjZilsSVI2cfTIgIUdCIXmMCDvqCzsx5xIk5MTNvWXwI1pVHHYxX389OJs7Y0qznSyGUxQS9XM3rIbos68qN0jOKInSqROi7IW73uaemwRytSFTYcDvcC97qPnNHUzu29V/m4JlG3Z4hLvRptIx+4RMc1cVK2p43mG5ueauehCCrsUtg19TEEQYz5q4iPuRBpl+ZQ+9yVL1IPNEkOb+2AdLPDFXTASuXLjzv2tC/npMcrk0t78yO5SQ/s7fpypDX/PXbLTc31RzR7xnrKVFbydzf3K3CywkZS/cdZ1HZm82vZEruB3eZfY7mQufjk07GnHXq3M9eQXtGJTJOx6ZCTjvMVWpWrOML9yA97uRAAm4GvdXcatAk3MKwSYhGmjQAjom+WzyQtf6exvY3H8lvBxNtFjZC8M7oaqek+EVHb4P8aZLE9Zvb8DcVfI5Cb5NxD0ZgtIHwadU3h7F8RZmtmJ4veEesElS9sJd94AFDTVNkdnv+HABplm2MObJy2TWPz7M09Ebm1uUk9Diw+s1y4iau2CWiagden6PMKIvxkSVS5Bw50cVbj2NXujaazKzuXvqEdJDS1aP5hamjBrKxwcyse/rUHmFhbXlmwr3JtNFYapymP5+FLV/Fq/o/CPtsFHykfTphqYWrN9Wj1F/mqjc2chXNvN2OpPhZVzVNOPHm8tEF2jNZ3PnPgdFm2wwmG2ct3oLzldsFJIpL/zFFnORSJASftYfc1ELpy3bhP99fnqgKQfQTwaaukJ68gu5tsKFj0Fz68uzlIJ7F7fRyR/e8sboWSbZrlDHbS/Plk6WhjW/mW4+3tzCMIqLLilGqgQyz8WVnJMDT9BIKqhPX/jQf5WjlbiUvXDXdVyZj3cUYSCbSKpvasHL01Zi9sot+OtEechhf3289TXR3KPGBM+d7xXM2+qblGYZMWa8N9KjqNV7vzcbTKje/socTHNWBkrrGuFSCzmhKhKkuW8TXqTPT11u9ELXxdVnkCsbOsKuipWxYM025ehsF7eq9fmp4TykRCYv3YCbX5rpi6XEv/DiPhMiQaOCL9arlbeWmJr7J0s34raXzbzgwlL+wl3TevKofOHLkD1M9U3NWS3MXMAwYWIouPljT6gKmt72+mal8N1Wr94bNijkgoldd0e9PvpzpFFVETX3KFY1VVRQHt1aCMZYaI8Uo1XRBs2oUqR2NSUf1buNEKk1yubZSaF7hzcHhGA2qfW67WrX1ziUtXCftWKzcqMOQK6N3DZ2dihvDED+AtnVmLNdLzEcAr49dy2u+dvU7HeDeaHYiJrFtvpGpTfLtnrvhOGmHY0YdufbmLF8k+8Fdskjk/DuvDWecoII2o5t5B8n4o3Zq7VpRIor3MNLd5ON0IMCaIUVdCpt+k/vLMTPncVAJlmqJlR1i9+iIobcTmobyijo7vPOxmZfVNn123LC+vLHgvcqWr8tP5OtZS3cg1D1h0c/WBIqH5lZprmFRfLF9drcDTT3EHnv1bG1/3zmHXnoHsTtgmb938/XYe3Wevzl3UVSIXrLv3PDSU/gsIjP4eotu/CDpz8NdU4RrTKxfbFV6CYlGdOHiZCxittfVuQpx75tYq4MW24cxNrIJqdLgUVr/FsMLgvp9jisX9ekquOhrIV7ULyVpLQ6WZ9uZix2FAojm7vhNXRrX4Oj9vV3EnFFI2NQunWJNmL3NJNVfHwZcbSssFpgoSdUTx6Yi3Fu4vkSBZ3nEYN5+w7aq0OIfQBM6lW4tvbP6RRPouvK3q6JjW/Kt47eJ3SdTChv4R5g10hKuMvMMoyx2Kpbsnsvyl82v31zAY6/593s94v/+rHPNPCT56ahsbnFd9xtvzdmr8G4mat8efNrAZ7g4t4UcmFRAZVJAN77EcUsY4JOeE9YUIfZK8y8Kxgz62N9R4/DrBWbA9PxcYDyzcSF3t2iimmWke1c5SLzPgurcCQZqpqnrIW7uFuSj4T6g0xYNbfE19yNXCENaWHyIGrvzlsbqJW9+OkK6SRd1JdjIR/EYo7Qowj3QQbbqgVpyP/8ZJlxeaZ1/Mck/T4BxWZHQ06IlpBVxjfaBcJ7cOUrmmlZC/dgzT2ZcqRbrsVX3A2XUZvl1RLTTKS6xijoXPmSptATqnxxUd7NQZPKQLBt2yQPIGOSM61jIU0upnTgNtzeauBlVAz4l45L2JGr1dwlFMwsI7lZjLHYsZ/N/NzNiGuTlHXIqPbsQtpHv/P3qcGJEiSuWUa1uTZPUPuZukKammXC5FlIunfKOQh4hHsJvYdE92EgiuZeJOFORI8R0VoimsUd60pEbxHRQud/F+63m4hoERHNJ6Iz81Jrh4JNqCribhRCcw/lGhCjPjKBUg5mmULDv/DyFT0iqP3CCGLTF1AxJyxVtON83b37J5ROXesb/cI9tM29iGaZJwCMEI6NBvAOY2wAgHec7yCiwQAuAnCgc84DRGS2s3MEgoR7FNnEe0O4yIasJv7KQSRpcwfi7SLjThrzWkRU60qpCIrj+u+R1/x1G8XEIchEEsajyNSjpxRfyHz7lqpZpl4iB0Jr7sUyyzDGJgAQp8nPA/Ck8/lJAOdzx59ljNUzxpYAWARgWDJV9RMkHKNonuLiCVU+C9Zsw00vyneDMRXaSZplgHiapGve4F+YUTV3040S8k0+tkzz2NzzZNQM2mUojGJhEoWyVOGrLtuwvBQQQ3YAwKWPBm/IwpO0kucStXt2Z4ytAgDn/57O8Z4A+Kn85c4xH0R0LRFNIaIpdXV1siSxiaKM1FT7mySsJtqm2mywknT4gTjP8WdfbgIAVFcmINxLZHIuH3KNNwnkyxUyCGObO/JnOnI5tHdnAMCZB3ZPPG9xk2+XEtEdAHgjYkaluky8ZWRdSXorGGMPM8aGMsaG1tb6TSFJEE1z9zdJ2CFre26WX4dJ+AHja0iow/PCPepDVCpD/HyZTVyKJdyNvWUYy9tCK5dqx6RwUI9OiefNjzpKRWEQ2bKzMThRAJUl5i2zhoj2BgDn/1rn+HIAvbl0vQCsjF69eETx9pDZ8a/52xRJSjXtasw0dxPhE7Shsie/BMwQ1VxHi2peKRWbez4emf617bOfTWMKJY24aYiOQu0AFLjmJALlYJYZPz++1aG6xMwyYwFc7ny+HMDL3PGLiKiGiPoBGAAgOHJODMZdfzw6t62W/hZFNslmrjeE3EWlfWt5fXj+ee3RiWt+SWTHT+5E1dxLxuaeh2fm5lEHJJ9pnijEXXAViuo8RMFTPR+l0buSo2g2dyJ6BsBHAAYS0XIi+jaAMQBOJ6KFAE53voMxNhvAcwDmAHgdwHWMseTjgXIc2KOTNGAWEM0eloRAaG+guR+xT5fEo0ImItwr4tvcZZNMxSDpl+dx/feQTriXLIWR7gCAVnkwLahuXzEjgeaDfLlCBhqHGWMXK346VZH+TgB3xqlUWFQP8U+em55YXmFo1yrY5l5ZQXmw2cbPj9cioj5EYffOzBfJt275ep7km4Jq7umS7XaFqo4kX3xJjJDEjv7bC4f40hDlQ7jHJwk/91Ih3xOqpU6+ZeArPzg++1m35qSDoYOByO5y+0y968KSDuGeYC9IIi8xizatKrFfbbu8lKUrNwq8FlHuw9/dRTgUiz071mTHMjrNvUfnNpHy311ezvnyaEqFcJ+xPDhcqSlJdChRaLcwJnUPTPKeJuXTzNv/kliFW0wSN8uUmazJd6z7CqJsm1TnybRgiU4qhLtL/z3bo0/XtqHOGeIswnBJQkCKeTAmX1Ke9Bs7aVfI9YKXUIfW0YbXxSJpYRwkKz+48eRkC4xJPkX7becMRm2Hmux33ShUFwsm7D3qv2fOFfXgnsn71qeJVAn3mqoKo3jZPIP39qZXddJ9u/nNKirEPDK75/i14FK0uevcskx39SkVCj0B2qtLOMWiHFBFXh24l9lzE4T2pSB5m/bdI9fG+0pMnZYc5fW0BtA6wsSEaCtUadOLQyxYEU07jDHpwp5Sd4UUKZG1ScYk7WFWgu/ivKPy5HCFsvsCjeqrHfYs/tkqReWolEiVcK/kbICmiMIsCUuJWAfG5JH8otj3dUPRJLq6zi2r0PuVxqWUXRfzHbESiO4y+PWhvbKfVcHtxLyjmhiJgPE3DDdOzxdTCNn+nZP2zWv+d37loLzlnSrhHiXOsyjMktAGxEh8DEy66XHYslpVVqDPHuqhfxKTwbpIleWmuZewbEfvAphwosY9784tClS5OLqeVG6Xi6MU8bZ7HtnLiT+W74iXPTu3yfvooHObVnnLO1XCPQricDKRCVWhVRmTB9MK3TkJqMnDYhEe3fC6lDX31pJonif071bwenRrn7+HtVDwAk3l4iiaGXWjJF23yaz3UJwneTm9PXdN9nO+lu176pDnLp/PS0iVcI9yI0QBy2u/ndqoY8Q8c83Ryt/8Nnd5MK2wN5ag1qSSErxVmpeHSQkPXXp4IvUIy28vPNR37BtH9vYnzDMTf3YKnrr6qMB0hXhPMgY8fY2/LqpYTC680OQ/D+ndGSftn4ngmlT8IEK4laj8Y5QGP/h8XkOqhDsQ3s7q19xz33UmCt1Mvc8VEnLNPYqdUrcSMJkJ1WgamEuXtsXRXGVzBUSUqPumyYPYplWlUcjnQmwVxxjQURLErmvAPeK7AP981LavyfYPNwSv2yRRr4coer/N8yAWQP7vk9XcDYlyG0Rhxn/VrdDUuQX6XCEV+USx5w2XbAMYJz8RnXA2GR1E8VhKglLS4UzuQ6HmL6KYLnilg7+Wyorcb67mPuKgvQEAffeI5pZIUIfhENegAMCwfl1z9SmE5p7n+2Q19wAeuCS6KUAMlE8e4a4+TzdCkPm5y9MF1c7PKYO649whPRR1Mqdb+1Y47YA9PcdqO9Rgr07yCJs/Om2AkUDKVxCkIFQPSSkJfRPOGBx/R6MfnNw/+zlKbP1Kj0AnXHNCv+xn97cWJ99Lj+qD2befid4hFw/yKIV7r06YffuZ2d2eAOBpzuSVpGAcd/3xwYkUXHhEL1x2zD7aNA9/64js50N7d8ZBPTsCyK/mXl5LDhW4Cy2i2J39mnvuuza2iuam+F0hFZp7xDtruhmIjurKCrQRolfu0a6V8rJqqiqNYs3kK3xpVIphl21oDg55rGrKmgRGPm1a5fKobwofftmjrRNl+wkRodLJujnrLUNoFzEwWKYsvYBrV1Pl+Z2fE0rSk6W7Imy4Ce1qqtBRMz/npnGprCB0bpvxEMqnN05pPYkRceVJlBHU0ft6/Y35xtbP8quHvH6zjDyPYgYOY8z/8pq3eqsyD2ZofdyjSN4iBO8+nqcM2lOdWEPXdvHrX28Qk0fVmsmEv8hkwhiLtGrWY5apyHmzVBDhnEMyZpgD9u4Yv6LIvByCXsAXDpVPjJvY3C8e1seoHnGexepKwgkD9J5ZfO6MsewoOJ+6RyqEO2U7c/hzD+nV2fOdf7h87l7EpyMs/PVZUhc82YSqDH74+8eLDjWorZOfzP8X4bRUBiatmMrcxJjZyKh9TRUW3zUSS+4eicV3jTSuj8vxEvfFTm2qMThAmBABD116BBbfNRKzbj8zOwxWCcvhA2ul9buLW1Qiu7cmGAVcUzRlEnHR3dEoQ0YjvemsQZHzqqzI9QlCxsa++K6R2I/bbtBl8V0jcVifzgCAO843W5zj3h75QqbMrxcpvJ5MRr53GS4SUuVkIlIqKypwZN+uOFkzHyZbtQ7kV3NPhVmGb6C4bcV3GFGzJeRuNjlp5S6OZpq7+LIwRZmfcQ5yzV2sk2m5Im4bkjPkDmP2VdnsdV5CblnkrFDmvVV0tniZcCDNyM20fU2Eu6pJkoiuKF5XHAHCr/rOavCqESt3XOd1JUOXXnUPTa7LVOGR5WVq5nXrrpu8Fn8TF4Hlg1Ro7m67JTGxzXeGa07wLj2WvURMwgoM69eFywPo5wQh4/MLJdwVV3rGgeaTcQwq4a6uh4nNXTw9SCiLyDR3omBhEdYFVjXU53PhJyYBf/867QB5ew/uEWyyUAkOE++Wnlx8dJnXVuD7IeB3vm7fOqZv9vkyEZTuqfyoVNdrdFm6k44qkvSWIUU3NRHwrkKiax/xtl50ZMZcNLB7uECHYUiJcHelu/5GnO3YC/V55T5fdXw/z2/8vdN7y+Q+X3bMPui/Z+4GvvI/x2eHoPyDnISt9Yh9uuKO8w40SssYkzaXWI2OnJ+4iQYutovMzFBdSfjoplOk58tsuTVVFcFCT/Gz7LQnrjwSIw+W9wX+Af2fUwd4Hr4WoQHuvuBgLB0zypdHry5tMfUXp2mrq9bcgx/J5797DPbvnjGL8JOnLm5bRV1n1OCEyrj06D742hG9sm1i0kWzI1susSz0BrLpcqM8nsk/PzVwviDJkNlxcnIVD111xLqeM6QHlo4ZhT1jTOQGkQrhnuTIxqOdi+UYmn90WrhXW+fzNq6i9qEN0+Flwlo8PawNWLwOmWbZtlWV8uUoO1pTVRnoYqkZ1GvPE/HPl+QaSQzbHMWUkM03hs2dKDdp21biXeP2AbfuvqoECP3GpkwCdzPw7PkhmpLv57IFfC4qvcxkJJakG2Es05Xj0RHGPboQxBLuRPRDIppFRLOJ6EfOsa5E9BYRLXT+dwnIJjZJurvpBO6NIwYpf1Pl4f+Nf0HIPwehezZNh6qqCVKxHq5QZYxhtMHEnFi6LB74z0YMVLeR5HhNVUXgw5FUH9BlI4bkF9dIePIJKEc5yW4gsQiE+sZMZVrLNPeYbeGa39wXc25C1SBf51zPRuuOcK/tUOObGHdTiSY/E8GdpMCUZcVgNvoxmV8oQBgcf5lRTySigwBcA2AYgCEAziaiAQBGA3iHMTYAwDvO97xianM3EQAegSt05m9zZhptR9eUo1LMVB2VX6DlXl8SmnsLk1vuxWpUZ9cQAN89ab9ADxixjV2bO7/45JKj9gmlBdYYeK0o3xUhHyrdfRXjqVRrfPqDBI/KllttKChc//W2EuFeEWSWCSjCFbTuamNxQlV/LjznADnN/fErjsSrPzzBWxUnod8zLbgw95wk7NamL4pj9/OHajZ5IZeb5n4AgI8ZYzsYY00A3gfwFQDnAXjSSfMkgPNj1dCAwM4cAo/WE01+awm7ktL0je9eu6mXgnJCVfgu5hd03T7N3RHujaZRBCX3sFVlReTNumWlaAWHaJbhihXNC9qHOqCdVFejC9zG5+2aZdpIzDJuH476OLh5u5p7bkLVPA9emLlCWDa5TkIa8biORseWv6OxybxiISD421DWDU08nMpNuM8CcCIR7UFEbQGMBNAbQHfG2CoAcP5LV5MQ0bVENIWIptTV1cWoBq+567vzFcfqlwgDwHGctwYRcMWxfaXpxFt1y9mDpb99XfDKULltqpXAXKLbz81Mluqukxc4Zx20l3LbwYwrpP/4yc7iH9cjIzs5l62zupN2aF3lEwA3nDEQlRWEfYTl6erFUsD3h++HAdxemTVVlZ6Har/adj6hpsov6Jk6YUA3nMOFcxAfwsu5+98cyuauL/dKRb8ymfQnEG47ZzA61FThR6ft7/s9Tijcsw/ZG7saM6OCKGYZt2/ydXBfim57/fT0/bFXx9aoqarAz0cdAADo2aWNpz1NhKHrcprEXqpSV0hJOl7JcKNrnmywYK4YC7cjF8kYmwvgHgBvAXgdwHQAxq9QxtjDjLGhjLGhtbVq538TTO2tR+zTFf/63rHK35eOGeWJrVJBhKtP6CdNK5Z56dHylXAHCR1P9dwpNXrucHa1HdfrxPCt7iQYANxw5kC8/qMTpflmvGX83bdXl7ZYOmYUDuzhxr4wFxQzf3mm7zrOOHAvfH7XSN8SdVWujAE/GzEIb/3kpOyxmmqv5v7OT4fjr5cNFfJTjYgyxx9UxB/6+7ePwu++PkRZr0uP3gdjf3AcAEB0+tCZwIJabWhfeV/ct7Z9YHyZCgK+cWQfzLz9TBzXvxsm3Xyqcb2C+Ms3D8/Z80WzjIG0cG+TbDGga+L7n1MH4OObT8X8X5+FCw7P7PrUtlUVFvEmP4NLcL16undsjVm3nxl8ggalssHU3w/q0QlLx4wyWgVcbpo7GGOPMsYOZ4ydCGADgIUA1hDR3gDg/F8bv5p6csutk10UQNAtoPB+V20k7D+Pt+lD+lmV3oVpfue9U3RNETRZ5P7Et20cxPYKMwFaU1XhK9+3wCxAc9d5oQQtgnPj5YiukDriTPAGmr6EBOK1Vca8Z649353ryJVnoLlnhTuvuWeEcJigcibvJ3eNSauqitgec6bCN2oI4LKaUAUAItrT+d8HwAUAngEwFsDlTpLLAbwcpwwTsmYZZ9Kvg2Ego6AhMJFuok60RZvdPeXqPsOXSNDvHuEeUCdRQP6aWzKeXR4tuNVFRby+MLvvXHdyf99R2ephGe5x3aSs9yXrz8m1qYqukDpMHmaVyUzkrIP28mjzqnkNl5ysN79nVx3XL2ueuvqEfdG1XSucOKDWU55JF7955AHYq2Nr9OfMaqLmboLJ8+Ta3GuqKqV1+9mIgQCAn488IDCvsHNbgP6Z8N/bMtPcAfyLiOYAeAXAdYyxjQDGADidiBYCON35nld4wXFIr86YdtsZyrR8J/j+8P7KdAC0saZlXH9Kf18ZIqpOJJbj7ngjgzenqLxTAH13qq70asPnDumBS4/OzUm4SmpSGyKI16eLYSNySK/OPjnlSxZg7uJHVmLSoFvsvuDChFEwsU+roimK59488gA8zJmhxLYUJ/SimABGnzUIf774MAAZU+Knt5yOPdq7kQvdegVz/IBu+PjmUz3X5trcdd5FIiZlNXATv3ybtamuxNIxo7LP98VHBQcPM1XOTCf2/QEJjU5LlFixZRhjJ0iOrQdwqiR5wTBtx+DhbzQzj+liBt2iKF25XrOM9zePcNfkUVlBno4qeitkY18kpHH4lncrNXfVcb10D6pntXYHK/25rpkjTGz0OObBwIVgASbB3NoE8zK1jj9OhcK8NPiUWU+uUGaZMJp7hba94/Rgsd+ZdgFxPqsYoadTsULVRbb0WYfbgf508WHKELFBed19wcE479AenvJ18PnxMUL447wvbaBWmXV7864q5H+TUVVBnvr+8LQBnt/dTsybvOLg09xD9nW3Pqc690l86FT5ucqi6ZyIbKjten5E2fgiCqq1BqrfRcHhb2tx1ORH11dcQRXmnsmEWTizTHCaq47vh4HdO+C8Q3vqhXsMuSr2+xvOGBgpnyIo7ukQ7pQVQG4nNLR/O8nOHdIDj11xpOR3CtQILx7WB3+86DBpfeRl5n5sVVWRHVK75XRqU42nuc23ZeXzHU6c8DQN1FVZQdn2eu47x2B/YSGI3+YeD9+EKve5Z+c22XjYqsU97vHvDd8PgH+1qAq3/XTbInrL8R+LItxjae7CPRfvaZBWm3vhhyjTYKQY5pJk+SUR8ZKnd5e2eOPHJ6K2Q01iI0weWV8YtHcH7e/Z34TvRVDcUyLcI97YpM0yJtqtaml4hfCCMkU0Y5oKsaoK0m4YIPN6iINOm8y0s76cXF1d+3e4RS9xfL9d/2tdjBSRWO0WpLkHnJ6N5x6iL+nan7HgNCKy6497vj8Nn7c6HS8f4nZn09PFpi87V8hyJ6izEaLdFN0ZqolF0YvGVCsQ8+vesTV6dm6D7h1r0IMz+4hUVVbgrq8cjFMG7YlDevkXgbjCM/syklSoR6fWOK6/fzm2DJ8pQbgG97va5u7Nx68Z6V+aAHBYn84g8m6ybEK39jUYdfDe+D9uH8wgdH3gVm7Bm8m5osZrOgEs49j99sAfvpEbaf7928NwwWE9tfmFNXcC3mt48qph+NoRvcxPlpR144hBnoWCYiF88sev9I7CSZEuKia7fF13cn9P+Op2NVXo4ayhKYxxLyWbdWjkjxaTYFRhOoOJu6AqbrSyHKlWnStHvIbKCsKHo+XhdHmqKggD9+ogNUcBZpsJPH7lMAzcqwP6jh4XWJ7YkqJvOQVKd+Y5zxdFUFFPXui/9P3jAuspK76ignB/yE3Y+XIrhU1dxFDSunNl34P6rWqUcsWxffHLc70hoU8YUIsTBugXEbIIk+t8HU/av1br/RV0PpAzx/F4NfLcZ9FTxXMOUawJJCLCVcf1w7vz9Mt39urUGv+4+ij0v/lVNLUwVBDw528ejq8++N/IZYclFZp7TpsLd9OCumpkzd3Q5s5XwrcNlyZ//reoo70gM4VolpHVJ0zZ/kVM3Ge+XMWVZ80yXEpPfgHlm/aMKJusy+DrE3YiNq52Kd6zuPnlzDLm56iUGOPzTdJwiUytbnFdEglh+z055xXeLJMOzT2g4e756sHZVYY8wZo7Qj0Z1564H1Zu2oXLj+2L+95cIE2j9nPP/PeZGwLKNJk8u+srB6Ntq0osrtuGdjVVuPu1eYEBxu67cAjuH78IN44YhF/9Zw6uFnal4utsgq6tTUZIYmzykwftia8d0QsvTF3uOe7P2zk/wbHwX755GDZub8h+/+2FQ3wLnPj6vPT9Y/H6rNX4vwmLfXn9+7rj8OrMVTisd2es2bILAPCLsw/A2OkrleXLrvW2cwbj9lfmAMi9uKsSmgzfWp+JKtJOEoFSWceYZeoezXu+ejA+XLQeXdq24tLr+lfu87++dyxenbkaz37yJRgDNu9sVJ7HIA/Rkf3dyD3Om2MhSYVwd1E19jeOlC9iCJ5QpVBv6U5tqvH7bxyqTaMScqH8YD3eMsHJv8kt4piydAOAYM29d9e2GPPVQwBAc03mdfa778lzUd3DrPaY9X6pxH0XDskKd1VdVJq+yIn712LCArMAdmcf0sPz/asSezJ/Pw/r0wWH9ekiFe6H9u6MQ3t39hzbs4N+dx5ZH7ryuH454e787ovnE1Hi1m3NvHRqQ+waFHcCUfc8fOPIPspnWpoX1wsO6dUZh/TqjNFnDcJxY97VCnd5vUIlzz2fCdv9jcouUDl5JWo/Mjkv6Vlu/4Sqe9ybTqsxcIIq7E5JroWgtSRUbFji+D2T0NuDriPINBBUlyAtyySOeqlgWtO2rZLR3bbuymjue4UQ7sVw/VMRy89dzCukaM5G1CxCe6RCuLvInt9nOJ9xEaPd02PUR15muLrINBheUI254JBQ5R+xTxdcdVw//JaLhBiVOC8+UXP/9VcOwhXH9lVOvAV5bKhq4rZf0ID47gsOxhXH9sXx/bvhF6MOwPPfPSbgjMIg89AJGuXtdEL2imaUqKapn486AFce1xfDB5pPihbD9U9FUE1+Mcobe+ber+aeKV+bUTiZ4DZDMVojFWYZXcMdI9k5xcVIuCd8VwLLdDqT6YPYvWNNqPIrKwi3nqN3xTMlTtPw5xIR9uzQ2ufJwRPFY4MvJ6g99+yYK182v1AszjxwL9+xoBbY3pDRtNs6Zpm4XXjvTm1w2zlmG6+XI2I89uMGdFOk9GLiwFHMl1y6NPeQqkkxzDIq23OYcjyXWUQFKZ7mnjvXJJes947KlVRRl6yAKx1FMjZB19LoBNTqIsT6LyQlpbknWJewWbnJCxS5wkM6NHeFp4npeWF45QfHY8aKTeFPzJapMr8o0mvy+urhvYriYuUStv1uP/dAHNk3s4CosoJw4RG98PzU5Ub5BAUyU2Xx4CWH4/kpyz07OxWLp64+Chs4L5uoBAmrUwbtie8N3w/fObF4I5ASku1GLs8A8NClh6N1daU2vWfEafLsZYeOwUmTJhXCPduCBg3I3w6zJc7eNAf36oSDJSs64yJWRXT9k/12+uA9czb8InSesFwubC131fH9MsLd4CEJtLkrjvfo3MYXFK1Y8Fs45pOqygrcOGJQQcpSUVqae9DvmQQjDsrs77Bq804AmdGiP0Ad739lsGgxRNqkSYVZxl2e3aFN8DC0WhPXW0a++6i4P6XJ7HzOLEOJDjnDEmc7NyDnh93J4L5lA5kpRzilI0wsxYlfHhWxqkF9yQ3k1r4muN92bdfKKM98kArNfZ892uHWswdjlMHmwu7eoEBxvGWU5WgK+v03huCAvXP1LhGTe+yy++/ZHr8YdQDOHdIjMG3umsOZtSzytnnp+8di9eZdeSyzdG5IYAwpzc++MBfIeJzddNYgXDi0d2DZ/7j6KIyftxadijD/kQrhDgTH63AhIlRVkBPvIbxZJl+IpfCd6iuHqYMuFfMZSmKhirFnSoQl8BY1h/XpUuwqlAyiVq3rY0SZfvudk/yxbmT06tIW3zqmb4zaRScVZpnImMyH5NssQ97/rvnBHc61luz9yS/oKacJ1Tjs0T7THqpNN0pV6CdZrzDL/y3mqO6RNJ5SGZn/UqO5R8HELpjU8HL8DcMxb9UWXUmeb3ddcDCO2ncPHLGPTMNiuTOK2NfyXfSz1x6dnSN58NIj8O7ctejdtW2eS02OBy453GNOi8urPzwBM1dsTiy/UuTdn56E+au3FrsaWcrAT0HJbincc54XhZOM/bq1Q79u7ZS/i1Xp2Loa3+I2rJafEy72TdLku/340K3d2tfg60eqbZylqFGNPDh4DigM++zRDvvsoe5DQSQV8TKf7FvbHvvWFtZtNYwbcqmOEGXs1maZUprRd4M9mWim0m32iqBjlFJHL6W6lBqdncm8ru3CrWZOsuxCERTtNAwMyUYT5fMtBLE0dyL6MYCrkanvTABXAmgL4J8A+gJYCuDrjLGNsWqZMDm3uvxJhOe/eww6tDZv3ratKvHQpUcozDByCMX1lnHbb9z1x6O+yXBT0zxhhbua84b0RGMTw1cO1++4lDSPXTEUA/dKziwVxBNXHon9EtD6dV0pnrAvbCeNLNyJqCeA6wEMZoztJKLnAFwEYDCAdxhjY4hoNIDRAG5MpLZlhLsS0xgCRhzkjyMig1/QU1SzjPP/wB7JL+oKSymaZUqFigrSmrTyxSmDuhe0vOEDg7e/4zEzUzHhW+mbtlzimmWqALQhoipkNPaVAM4D8KTz+5MAzo9ZRuK4t0elucs8VPJFFJGUDaK1G3nLBFFKdbGUF0lv3F0qRNbcGWMriOg+AF8C2AngTcbYm0TUnTG2ykmzioikr1MiuhbAtQDQp4954P0kUZnn3v3pcCzfuLOgdQkjpJPYZi8JSmmhispFcndi4s9Oxtqt+VuYtLvBK/b/e+ZAHNyzk9E+CNef0j+PtTIn8hNBRF2Q0dL7AegBoB0RXWp6PmPsYcbYUMbY0NracJvnJoVKOPXo3AbD+oU0q8SuS4RzimyKKCHZnsjmI+VO765tccQ+he23qUTSr7u0bYUTDTf5TtL9NQ5x1J3TACxhjNUxxhoBvAjgWABriGhvAHD+67cJLwIH98zYiEtBNkXRfrMaBWdzL4aXWym0n0shTWmWlMM9S673msm+Cf1qM26q7gJEkU5tMoaSQkUojeMt8yWAo4moLTJmmVMBTAGwHcDlAMY4/1+OW8mk+dtVw/B53bbYga+SJExN+F3ti6m9l5L9sabKau6W5PnOifth8N4djSZrf3L6/jhm3z1w1L7yDYL679kBT119VCiPuDjEsblPIqIXAHwKoAnAZwAeBtAewHNE9G1kXgAXJlHRJOnctlXJDV/DaPD8LH9xbe7FK1ukpspq7paE4Pp1ZQUZe+FUV1YEmm4KFfYZiOnnzhi7DcBtwuF6ZLR4iwFR5OPgHh0xceE61HaoyWrPhdIGeEpJcy+lUZjFUgrsluEHSpEwoumGMwbijMF7Zf3Lx11/fKxl6RaLJX1Y4V4ihFGCqysrPJp6sRYRlZDibrGEJtgHoXwWLMmwhkpDdEG/YlHGArIUzDKFjl1iSR9hd2IqF6zmbsDEn52c951UyrFDlUKN37thOLY3NBe7GpYUUU4hBnRY4W5AOcUQLySlobm3Qmd7eywWH9YsU2SKLx6jUwKy3WKJzPCBGbfFdjVeHbddqyrn93CByEoNq7lbIlNKsWUslrD86ryDcN3J/dGpjdfk2q6mCh+OPgW17Qsf/z5JrHC3WCy7JdWVFejVRW7T69m5TYFrkzzWLGOxWHYLhoXdY6HMsZq7xWJJPdNvPQOtW+1euqwV7iVCWtyvLJZSJN+uzKVIql9l5WA3s5OSFoslH6RWc593x4iS8MO2WCyWYpBa4V5uO/MUY7MNi8WSXlJtlikHLjtmHwBAm1bl9TKyWCylTWo193LhJ6fvjx+ftr+NR26xWBLFCvciQ0R2Gb/FYkkca5axWCyWFGKFu8VisaQQK9wtFoslhUQW7kQ0kIimcX9biOhHRNSViN4iooXO/8Lv3GyxWCy7OZGFO2NsPmPsUMbYoQCOALADwEsARgN4hzE2AMA7zneLxWKxFJCkzDKnAvicMfYFgPMAPOkcfxLA+QmVYbFYLBZDkhLuFwF4xvncnTG2CgCc/9LtTIjoWiKaQkRT6urqEqqGxWKxWIAEhDsRtQJwLoDnw5zHGHuYMTaUMTa0trY2bjUsFovFwpGE5n4WgE8ZY2uc72uIaG8AcP6vTaAMi8VisYQgCeF+MXImGQAYC+By5/PlAF5OoAyLxWKxhCCWcCeitgBOB/Aid3gMgNOJaKHz25g4ZVgsFoslPLFiyzDGdgDYQzi2HhnvGYvFYrEUCbtC1WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkECvcLRaLJYVY4W6xWCwpxAp3i8ViSSFWuFssFksKscLdYrFYUkisFaqW3ZNHLx+Kuq31xa6GxWLRYIW7JTSnHtC92FWwWCwBWLOMxWKxpBCruVssJcjjVx6JnQ3Nxa6GpYyxwt1iKUFOHijdndJiMcaaZSwWiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFKIFe4Wi8WSQqxwt1gslhRihbvFYrGkEGKMFbsOIKI6AF/EyKIbgHUJVacc2N2uF7DXvLtgrzkc+zDGamU/lIRwjwsRTWGMDS12PQrF7na9gL3m3QV7zclhzTIWi8WSQqxwt1gslhSSFuH+cLErUGB2t+sF7DXvLthrTohU2NwtFovF4iUtmrvFYrFYOKxwt1gslhRS1sKdiEYQ0XwiWkREo4tdn6Qgot5ENJ6I5hLRbCL6oXO8KxG9RUQLnf9duHNuctphPhGdWbzaR4eIKonoMyL6j/M91dcLAETUmYheIKJ5zv0+Js3XTUQ/dvr0LCJ6hohap/F6iegxIlpLRLO4Y6Gvk4iOIKKZzm9/IiIyrgRjrCz/AFQC+BzAvgBaAZgOYHCx65XQte0N4HDncwcACwAMBnAvgNHO8dEA7nE+D3auvwZAP6ddKot9HRGu+ycAngbwH+d7qq/XuZYnAVztfG4FoHNarxtATwBLALRxvj8H4Io0Xi+AEwEcDmAWdyz0dQKYDOAYAATgNQBnmdahnDX3YQAWMcYWM8YaADwL4Lwi1ykRGGOrGGOfOp+3ApiLzINxHjLCAM7/853P5wF4ljFWzxhbAmARMu1TNhBRLwCjADzCHU7t9QIAEXVERgg8CgCMsQbG2Cak+7qrALQhoioAbQGsRAqvlzE2AcAG4XCo6ySivQF0ZIx9xDKS/m/cOYGUs3DvCWAZ9325cyxVEFFfAIcBmASgO2NsFZB5AQBwN9pMQ1v8AcDPALRwx9J8vUBm1FkH4HHHHPUIEbVDSq+bMbYCwH0AvgSwCsBmxtibSOn1Sgh7nT2dz+JxI8pZuMtsT6ny6ySi9gD+BeBHjLEtuqSSY2XTFkR0NoC1jLGppqdIjpXN9XJUITN0f5AxdhiA7cgM11WU9XU7NubzkDE99ADQjogu1Z0iOVY21xsC1XXGuv5yFu7LAfTmvvdCZoiXCoioGhnB/hRj7EXn8BpnqAbn/1rneLm3xXEAziWipciY104hon8gvdfrshzAcsbYJOf7C8gI+7Re92kAljDG6hhjjQBeBHAs0nu9ImGvc7nzWTxuRDkL908ADCCifkTUCsBFAMYWuU6J4MyIPwpgLmPsd9xPYwFc7ny+HMDL3PGLiKiGiPoBGIDMRExZwBi7iTHWizHWF5n7+C5j7FKk9HpdGGOrASwjooHOoVMBzEF6r/tLAEcTUVunj5+KzHxSWq9XJNR1OqabrUR0tNNel3HnBFPsWeWYM9IjkfEk+RzAz4tdnwSv63hkhl8zAExz/kYC2APAOwAWOv+7cuf83GmH+Qgxo15qfwCGI+ctsztc76EApjj3+t8AuqT5ugHcDmAegFkA/o6Mh0jqrhfAM8jMKzQio4F/O8p1AhjqtNXnAP4CJ6qAyZ8NP2CxWCwppJzNMhaLxWJRYIW7xWKxpBAr3C0WiyWFWOFusVgsKcQKd4vFYkkhVrhbLBZLCrHC3WKxWFLI/wM30V3xVHIPEgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A plot can also be customized using several keyword arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEWCAYAAABBvWFzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACQS0lEQVR4nOydd3hb1d2A36NlyXvvvUecvaeBsgulbErZlNKWVSilQJktq2WPlr3KaCkUyt5x9k6c5diO996WLVuy5vn+0NX9ZMcJCSQEqN7nyRNLV7r36I7zO78tpJQECBAgQIAA3xTN4R5AgAABAgT4YRAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAQIECBDgoBAQKAECBAgQ4KAQECgBAgQIEOCgEBAoAb41hBC3CyFeOdzj+CEhhLhQCLFyL9syhRBSCKFTXn8khLhgP/dbLoS49GCONcAPn4BA+R9HCNEohLAJIYaFEJ1CiBeFEKGHe1z/K3ybE7eU8ngp5UvfdD/jBVWAAD4CAiUAwElSylBgKjANuPHwDueHQWDCPXAC5+z7TUCgBFCRUnYCn+AVLAAIIf4ghKgTQliEEJVCiJ/6bbtQCLFSCHG/EGJACNEghDjeb3uWEGKZ8t3PgFj/4wkhThZC7BRCmJWVepHftkYhxPVCiG1CiBEhxHNCiATFbGMRQnwuhIja228RQvxeCNEhhGgXQlyqrKhzlW1BypibhRBdQognhRAmZVuZEKJVCHGdEKJb2cdFfvvdn+/eIIToBF4QQkQJId4XQvQo5+h9IUSq8vm7gEXA44qG+LjyfqEQ4jMhRL8QoloIcabf8WOEEO8KIYaEEOuBnP29vv7akBBCK4R4QAjRq1y3KybQOjKEEKuU8/2pEMJ3/ZYr/5uVcc9T9vkLIcQuv3tluvK+eu6V1y8KIf68j3O2SwjxY7/P65Rx+vY3VwixWrlvtgohyvb3HAQ4xEgpA//+h/8BjcCPlL9Tge3AI37bzwCS8S4+zgJGgCRl24WAE/gFoAV+BbQDQtm+BngQCAIWAxbgFWVbvrKvowE98HugFjD4jWstkACkAN3AZrwaVBDwJXDbXn7TcUAnUAIEA/8AJJCrbH8YeBeIBsKA94B7lG1lgAu4UxnXCYAViDqA796njNEExACnKeMIA/4NvOM31nLgUr/XIUALcBGgA6YDvUCJsv2fwBvK5yYBbcDKvZyHTOV368YfC7gcqFSueRTw+QSfrVOuk0l5fe9E+/W7T9qAWYAAcoEMZZt67pXXLwJ/3sc5uxV41e/zJwJVyt8pQJ9yXTR4758+IO5wP0uBfzIgUP7X/+GduIfxTvYS+AKI3MfnK4CfKH9fCNT6bQtW9pEIpCsTRYjf9tf4f4FyC/CG3zaNMiGV+Y3rXL/tbwF/93t9pf/EPG6Mz6NM8srrXN+kpkx2I0CO3/Z5QIPydxlgGzdZdgNz9/O7DsC4j/M3FRjwe13OWIFyFrBi3HeeAm7DK7SdQKHftrv5egLlS+CXfp/90QSf/aPf9l8DH0+0X+W9T4Cr9zKOrxIoY86Zcp0sQLDy+lXgVuXvG4B/jNv/J8AFh/tZCvyTBOyVAQBOkVJ+LoRYgnfSjwXMAEKI84Fr8U4iAKGMNV11+v6QUlqFEP6fGZBSjvh9tglIU/5OVl77vusRQrTgXYH66PL72zbB670FDyQDG/1et/j9HYdX8G1SxgpeQaH1+0yflNLl99qqHGt/vtsjpRxVNwoRDDyEV2vymejChBBaKaV7grFnAHOEEGa/93R4taw45W//39PE1yN53H5aJvhMp9/fvnOwN9LwajRfhzHnTEpZK4TYBZwkhHgPOBmvZgre83OGEOIkv+/rgaVf89gBDiIBgRJARUq5TAjxInA/cIoQIgN4BjgKWCOldAshKvBOol9FBxAlhAjxEyrpeFer4DWNlfo+LLwzdBpeLeWb0oHXlOMjze/vXrzCqERKeaDH2p/vji/ffR1QAMyRUnYKIaYCW/j/czj+8y3AMinl0eN3LITQ4tX60oAq5e30A/wNPvZ1jr6KiUqUt7B3f44VryD2kQi0fsX+XgfOwau5Vkopa/2O8w8p5S8OYLwBviUCTvkA43kYOFqZ+ELwPuw9AIpzetL+7ERK2YRXS7hDCGEQQiwE/FeVbwAnCiGOEkLo8U68dmD1QfgNbwAXCSGKFA3hVr9xefAKyYeEEPHK70oRQhy7H7/p63w3DK8QMgshovGarvzpArL9Xr8P5AshzhNC6JV/s4QQRYpG8x/gdiFEsBCiGNivvJIJeAO4Whl/JF5T0v7SA3jGjftZ4HdCiBnCS66yIAGvmfRnSiDAccCS/TjGP4Fj8PrlXvN7/xW8msuxyv6MimM/dcK9BPhWCQiUAGOQUvYALwO3SCkrgQfwOte78GoUqw5gdz8D5gD9eCfSl/2OUw38HHgM78r/JLzhy46D8Bs+Ah7FawapVcYPXoEF3smzFlgrhBjC65Au2M/dH+h3H8braO7FG2Tw8bjtjwCnKxFgj0opLXgn0rPxanGd/L/DGuAKvKanTry+iBf2c9zjeQb4FNiGV2P6EK/2M5EZbgxSSitwF7BKibSaK6X8t/Lea3j9H+/gDVwAuBrv9TUD5yrbvuoYHXiv23zgX37vtwA/AW7CK9hagOsJzGXfCXzROAEC/GAR3nDkHUDQON9IAAXhDfd+UkqZ8ZUfDhBgLwSkeoAfJEKInyqmtii8K/z3AsLk/xFCmIQQJyg5Hil4Nci3D/e4Any/OeQCRQjxvPAmiO3we+92IUSbEKJC+XeC37YbhRC1wpvQ9ZV27QAB9sIv8ZpE6vCacX51eIfznUMAdwADeE1eu/DzNQUI8HU45CYvIcRivHkOL0spJynv3Q4MSynvH/fZYrzRHbPxhjV+DuTvJbwyQIAAAQJ8hzjkGoqUcjlep+z+8BPgn1JKu5SyAa/zc/YhG1yAAAECBDhoHM48lCuUpLmNwHVSygG8SW1r/T7TythENxUhxGXAZQAhISEzCgsLD/FwAwQIEOCHxaZNm3qllHEHa3+HS6D8HfgT3hyHP+ENTb2YiRPmJrTJSSmfBp4GmDlzpty4ceNEHwsQIECAAHtBCPF1Ky1MyGGJ8pJSdkkp3X6JYj6zVitjM3ZT8cbiBwgQIECA7ziHRaAIIZL8Xv4Ub44AeKu4ni28JcKzgDxg/bc9vgABAgQIcOAccpOXEOJ1vBVFY4UQrXjj3cuU0h4Sb1XZXwJIKXcKId7AW1bbBfwmEOEVIECAAN8PfhCZ8gEfSoAAAQIcOEKITVLKmQdrf4FM+QABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECBAhwUAgIlAABAgQIcFAICJQAAQIECHBQCAiUAAECfCv8s6uLlzs7D/cwAhxCDldP+QABAvyPcc6uXQCcn5h4mEcS4FARECgBAgT4VpBlZYd7CAEOMQGTV4AAAQIEOCgccoEihHheCNEthNjh995fhRBVQohtQoi3hRCRyvuZQgibEKJC+ffkoR5fgAABvh1EeTmivPxwDyPAIeTb0FBeBI4b995nwCQp5WSgBrjRb1udlHKq8u/yb2F8AQIECBDgIHDIfShSyuVCiMxx733q93ItcPqhHsf3BbPTSZBGg0mrPdxD+Z+l2+EgVq9HI8ThHsoPioAP5YfPd8GHcjHwkd/rLCHEFiHEMiHEosM1qMNF1KpVzN68+XAP43+WltFRElav5u6mpsM9FJUeh4NP+/sZdLkO91C+MVLKwz2EAIeQwypQhBA3Ay7gVeWtDiBdSjkNuBZ4TQgRvpfvXiaE2CiE2NjT0/PtDPhb4LaMDK5PSzvcw/ifJVSr5TfJyRwVFXW4h6KywWLh2G3bqLZaD/dQvhGivBzNsmWHexgBDiGHTaAIIS4AfgycK5Vli5TSLqXsU/7eBNQB+RN9X0r5tJRyppRyZlxc3Lc17EPO7VlZgTj9r8GtDQ0HxeEbpdfzeH4+8yIivvG+XB4PorycvzY3f6P9TA4J4cn8fNKDgr7xmAJ8v3i1qwtRXk6f03m4h7JfHBaBIoQ4DrgBOFlKafV7P04IoVX+zgbygPrDMcbDgZSSR1pb+biv73AP5XtHkEZDnF7/jU0qo243dzc1sW5o6IC/+0l/P7rycszKwy+BaJ0O7Tf0xdTabFxeU8Ou77CG4pGSHocDq9u918/IsrKD7ke5raGB47ZuPaj7PByMut10Oxy4x92/UkqidTpGPZ7DNLID49sIG34dWAMUCCFahRCXAI8DYcBn48KDFwPbhBBbgTeBy6WU/Yd6jN8VrB4P19TWcvz27Yd7KIeN1tFRitavp3V09IC+d3NGBt0LFiC+4eRdY7Nxc0MDl1ZX7/NzUkpsbveYCWC31Yob6Fd8HXqNhr6FC7n2G5owY/R6LkxMJN1o/Eb7OZR0OxzEr169z9IqLo8Hx0GeGHfbbNQf4L3yXeSlri4SVq+m2+EY8/7PExPpW7iQlO+JdnrIBYqU8hwpZZKUUi+lTJVSPielzJVSpo0PD5ZSviWlLJFSTpFSTpdSvneoxzfBeLly927WDA5+24fGIAR3Z2Xx3qRJ3/qxvyust1ioslpZb7Ec0PeqRkZYYTZ/4+OnBQVxQ1oaLxUWqu+5peSiqip2joyo7/U5nQSvWMHf29rU965ITUWWlZFtMgFgc7t5sKWFigP8LeOpsdl4sbOTkX2s/g8Eq9vNzyorabfb9/s7do+H7cPDqvY1nnCdjsdyc1m4D1OhfvlygpYv3+dxGm02flZZiX0/Bc9fc3L4oLR0vz77XWZhRARP5OURNi66s3JkhOc7Ohg9SNf+UPNdiPL6TiGBx9vauL2xESklzaOjDH9L0TV6jYYbMzL4cWzst3K87yKnxsUhy8o49QD9YosrKlhcUUHbAUySExGl13NvTg7Tw8LU99rsdl7s7OTf3d3qeyatlnuyssb4WpweDwNOp6q1DLvdXFdXx2927/5GY5oTFsbf8/KI0+v3+Tmr2801u3d/5f26yWLh9e5ulh+AAK6xWpm8cSNX19ZOuL3X6eSxtjbqvqG28H5fH693d9Ngs+3X55eZzTzb0bHHe0+3t3+jcXzbbLRYeKS1lfFi9OaGBi6prqZqL+bOTrud39fV7WEqO1wEBMo4NEIgy8r4ZMoUrB4PGWvXclZl5bdy7DN37iRjzRo++BZ8KLtGRtgxPHzIj7O/2D0e7m5q+tomkb9kZ5NnMqH7hiavUbebOxobCV6+nFN3eIs7JBoMrJ42jcuTk9XP6YSg3GymTpn4Lti1C8Py5USvWsVmRSOJ0evJNhoPWDiOp8Ph4Fe7d7PpKzSdjRYLj7S1seIrtOvJoaF8MnkyRx5AJFuaYnKJ0k2cuqYXggSDAf0+zv/++FBOiY3l3UmT9tu892BLC39paRnz3r3Nzfyypma/vn+guKXk3qYmLN9wkSml5OGWFtXEFabVEm8w4BknGC5MTCQ9KIjwCc67R0pO37mTv7a0sO078iwHBMo++KaT04Hy2cAAzXY7Px7nQ1lmNo8xtxwMjt22jWO3bfva33d6PJy1cyfvHKSQ7Wc7Ori5oYHSDRsQ5eU8PG6S+CouTEqiZs4cEgyGvX5mw9AQorycOxob9/qZrSMj3N7YiM3jYbGifQi8Ji6rn7DzSEmT3c6wYoqYGRZGvKJBpCqTr0YI6ubO5bq9+FA+7utjxsaNNH7Fatyo0XBBQgKFwcH7/FyW0cjtmZnkj/vcoMvFMrOZAcVcFabV0u90qiavz/r7EeXlPNLautd9R+r1yLIyHs7Lm3B7mFbLisHBfd6no263arYbcrn4xwT+Fg/ec72/TuhEg4HpoaFj3rs5PZ1/Fhd/5XfdUvJcRweuA1jErBoc5MaGBl76hmX4q6xWfltXxx/qvTFHWiFYOThIwzgN7yexsTTNm6eaUcePf9XQEFNDQ8mbYPvh4H9eoDzc0oIoL1cl/IjbjSgvZ86mTQRpNFgXLeK/35JP4+SYGGL1elZMnTrm/bKKCiZt2HBQj9Vit2P7mtrAMrOZXqeTbSMjdB+kcMbfpKQgy8q4LzsbYMIHaF9UWCws+woTjm8y29dklW00cndWFlenpJCsCIZep5OTduzgMT9/SavdTpXVSpDG+wiFaLXcnZ2NLCsjSfme2enknqamvWqCQRoNSQaDuo+9sW1khJe6uvgqo4ZLSpINBkY9njFRatuHhymrqGCjouEMulycs2sXTyumIt/Z6N3HtbS63WyyWPbqQzFqNDyVn88x0dF73YdpxQpCV6wA4JaGBs6vqlI1PB8f9vVxUXU1u/3eb7DZ2LqXc/hMQQHvTJpE8+ioqhmatFrOrqzkJ34LM6fHs8fqf83gIJdWV/PFAZj+poaG8kFpKad/A63TIyWJBgPd8+fzN0VATw0N5en8fHUx4mOLxcLf29pwTnDP+hJdU4OCvvIe+rb4boziINNmt9Oyn7bcLcqN6lM9fTpJgsGA3eOhzW7H/jXsk1fU1PDPrq4D/t55CQksjIwc817bvHl0z59/wPvaF0unTOH9fTgzB5xORHk5943LofBIyXHbtvFSZyfHRUfvUyPYGx/39fHsXmzcpyg+lJMP0I90RmUlZRUV+/QLLI6MxLJwIXdmZu71M3EGAzdmZLDUbOa1ri6K169n1qZNACT5/dZWu527s7KYoayOX+nq4rmODrocDvXh73U6uamhYUIfymXV1Ry5dSuTQ0O/ssTLkZGRPJmfT/BXlOPZaLFwWU0NpRs2MNev2oLPnevzL/nu+eOUyf/oqCisixZxu3Je/lhfjygvHzOJ1VitzNy0idN37pzw2LttNu5uaqJzXJRSh93O2sFBdV8hysR3Q3o6H0+evEduzZAi9FP8znXeunVM3bhxwuOuHBzkrqYmpm3cyAzlOl2pnO/3/UzHwStWqO/7SDAYODs+nkS/Y600mxHl5bzf2zvh8cK0Wo6JiiLua9z3PppHR4letYrXursxKtf0w74+7m5uHuOUH3S5OHfXLn69ezc7JtD8grVaUgwG3u/r20Oz8afRZuOFjg5VQz2U/CAFypxNm/a7fMlLRUXIsjJ+pDxcwVotsqyMd0tLqbJayVu/nmtraykfGODtAzDvfGE2U72fjkUfDaOjvN3bu8dxkoOCvtENPBHxX7Ey9tnCP+kfG7WtEYKS4GAidTr+1d1Nxdew3b7S1cUvamq416+8yYd9fYjy8j2EcMvoKPc1N9Pk98DY3G46xjnf/5aXx8ywMJ5sb5/QlOIbe6hOh34fv3vY5eLWhga2j4zQ73Kxy2qlzeFg44wZXKwknPY4HBy5dSs3NTSwRtEEioODWTM0ROLq1epqOsdkYk5YGCfFxOxxnJWKn+Oe5mbuaWrinqYmnB4PFpeLLeN8JWaXi8travaIYuu028fkfeQoWt1vU1N5q6REfT/fZOKm9HRmh3uLTkwLDWXplCmqSU8jBCatVs2XeVUJPjhu2zYuU8Kns5R9G/Zy7oK1WtKNxj0mlDd6epi3ZQsWtxtZVsbw4sW4pcQpJcdGR+9xLc6Jj+eTyZOJ97vf10yfzhdTpgBe34O/w/6R1lae6uigfOpUliuafYTibxhYuFD9nEtK3hz3XMXq9fw2NZVcP214k3Ltlu/FD7XLakW/fDkP7odJts/pnLBcTpRiGr2mtpbbGxoAr3BLDQoaoz2/1tXFLquVOL0e0wTnPVirJVPxNU2kXUasWMHN9fVssFi4uLqa6FWreOAATckHyg9SoPw6JYUrUlIm3CalZGg/HWppfiaPv7W3c7Ny8feH/5SU7DOEciJWDA7SODrKqeNWgZlr1nBERcUB7eur+PH27SzZsmWv20N1Op7Oz+e2zMwxpoJRt5tnCwo4LjqaOeHhzAufsDLOPjknIQFgzPmsVyaJ3+zejSgv5yHlxq+z2fhDfb26HeDE7dtJXrNmzD6Pjo5mw4wZ7LJa+aS/X3Xuu6VUo542WSyI8nL+UFc34bg2Wywcv307f2pqQgI/jY1l1bRpLJ86lcbRUXqUhzZCp+O1oiL0QqgP8uzwcCK0WjSgOpSFEKydMYPfpaerxxh2uXBLyc5Zs7gtI4Nkg4FuRZPJWbeOmxoauLG+fsxE5JSSCxISmDXuXCetWcOv/JzPGUYj92RlcWlS0phAAJ0QlEVGqrkMUXo9Q243axVh+K/ubkR5Oc8oWuPSKVNYOW0aX5rNPKOYxSJ0OmRZGR9OnjzhucswGlkxOLhHQECkTkeoVovd42HE7abf6eTPTU1krl2LKC9n+7gFiVYI6m02Vg8OqivqWeHhagDBk+3tZK9bxwZl7FohWBIRQWloKIsUzf7OzEz+VVw8xpH9dH4+zxYUjDnW8sFB5mzePKakzdWpqXiWLFFNr+NpVhY2+7JZNNhs3FBXR/Lq1Zy2Y8ce2yN0On6tBHjUKvd1SlAQKwcH1QWK/zHWTJ9OYUjIHvtxejysGhqiODiYSeO2Oz0ehhQzZXFIiGqi+91e7v2DxQ9SoNyUkcHNGRkTbltqNpO2Zg39ys16f3MzorxcXRV2ORyI8nJmbtxItF6Pa8kS3iwp4ZKkJK5OTd3vMdzf0sL5u3bR7XDwbm+verx9cVlSEiEaDZtmzBjzfpPdTvk3yLHosNs5bceOMSvchtHRMar+RPw8IYGyigr+7KdJ1I+OMm3TJt7t66POZttv4eyPbxKpmTNHfc+Xw/Gikv9RoDiWZ4SF8VFpKUV+juYb09O5KytrzD7XDA6yzGzmv5Mm8Wp3Nycq9vO/t7WRuXYtUkr1GuytkvNmi4WVg4P8IT2dK1JSSAsKYn5EhPeB3LmT3ynhmQaNhmyTCaeU/L6+nja7HYvbzQO5ubjLytTVdYfdzh2NjeqEJaUkbvVqHmltRQhBSUgIc8LDuSsri/SgIFrsdmaGhXmFk99kuMFi4aWuLgzjTGMnRkczOzyc9UNDxK9axWtdXYRqtbzS1UXW2rXq59YODXGMXy2wboeDn+zYwR3KdY1WjrVmaIjP+/vJMBpZEBHBiqlTqZg5EwCLy8WawcG9+lAAXios5NRxpspwrZbUoCDcUhK6YgUxq1Zxit9nxms8n/b386vduzli61ZVmF21ezczFZPXEZGR3JaRoS72/l1Swr9KSjinspLjlSCTEbebsyor+ZHfIuyc+HjVxOcjWblO4/0zQoi9JsjODQ/ns8mTuSQpaa/nocvh4IGWFjygLgIebGkhefVqXB4PLo+HWzMzGViwgBeU+z3HaOSlwkJK/QRDrhK1+Pe2tgkrQPiE0fSwMILHnUcBXJ6czNWpqfQ7nbzZ08PzBQUMLFiw13EfDH6QLYBvbWhgmdnMsmnT9tjWbrczpKyUovV6apSL4stu9j20mUYjQy4XrXY72UYjb/b08EFfH7/0Cx3dF7usVi5KTGSzxcJPduxgzbRpzP0KjSVCp+OchASmh4Wxc2SEzRYL58TH0z1//j7DMf3xSLmHTX7U4+E/vb002+1sUIRV+dSphPtNrKft2IFbSt5R/CrNo6NkKJNShl8IZ0pQEBFaLTVWK8dERe3hX9pksfDv7m6i9XpWDQ7y3wn8NKlBQTyYk0P2BKGhJ8XGjgktbRwd5fjt2/l3cTGnx8cDXm3k6HGTw1W1tarTGWCK8mB2OZ30uVxsGR7mR1FR2Bcv3msplLPj4zkjPp5wrZb89esZdLk4r6pKnXg+VCr+aoXgGiUfY05YGAYh+Fd3NyaNhqOjoojX6zFqtbTZ7dze2MjtjY3cmpHBHVlZCLwa7x/q6rivpQWDEFQMD9Nst3N6XBwXKGY1KaU6qf04JoYn8/P3WBW/r2gLb/f00ON08n5fH58ODOzxu2IVE0vF8DCzw8NZrWgRf1aE8o+ionAvWcJfmps5ets2rklN5eHWVgYXLlRX+TtGRpivaLRfTJmyR8jxhqEhbqyv5/Vx0VXTQkN5Kj9f1Y6SDQamhIZSPXs2FrdbXTj4aFQ0gNNiY+lS/DH+wRCFISHc7reYWDM0xBvd3fxTMdNN3rCB7Yq/weds90hJ2MqVXJuaygO5uep3s4xGzktIINdkQpSXc2ZcHJcnJ3Pk1q38d9KkCf14ETod8yMiJryHlmzZQqxezytFRfQuWECETqdewz6nkw6Hg36Xi06HgykbN/JSYaFat+/lri4eaGmhZd48dX8zwsJIDQrigdZWHmxtxTMu5DrRYCBer+eVri7vosTvedJpNPw9Px8pJTU2G0/m53NaXNyE4ccHkx+UhvKGorr/qalprzbQ0+Li6J4/X7UJP11QgCwrU6vLRinhkW9OmsRnAwOUbNjAX1pamBkWtt8aikdKuh0O4gwG5kVE8EZxMXYp9xm7LhUb75cDA7zR3U1ZRQXnV1XRarcTZzAQ+RVJbT7y163jF35lQ0bdblrtdk6IjubHMTFqAlSMTqeGvAL0OJ2qQxRQnYOzwsLUSQ68D9Sx0dHE6vV8MjCwR/z7zE2buK+lhVsaGnh3L/k0T7a3c21d3RiH/xcDA4jy8j0S0lxSsiQigjy/ieftnh7+WF8/ZtX2QkEBRyomj8uSkrhfmThuVTTVGZs28cXAAAaNZq83/QOtrUSuXMkdjY3U2mxsHxlh1OOhfnSUp/PzOSU2FqeUtNntqrno5wkJxBkMLIqI4NOBATLWrmWdxYKUkqmhoRyj3Fe+6J3hRYu4OztbPfcOKdELwaywMF4oKMAjJXGrVnF7Y6MaTuzweLi8poZbxplcf1ZZiX7ZMs6srCQ1KIjfKGbeXyQl8aGfIM8PDuaOzEzVPLk4MpJV06YxV3kthEAjBCfExPBmSYk6OZdVVPAzJQerKDhYTaycKJouUqcjz2TaI5Lqhc5Oliiagiwro23+fNYODvJkeztZfhPgFouFq3bv5oSYGJZOmUK44qMDWD51KluUhdBmi4Vra2tVYfNwayuvdXdTNXs2H5SWqsLEd67h/01HD48Li3ZJyS+Tk5kdHs788HCKgoPVgIW95fx0ORyErFjBH8ddi1qrlVqbjelhYdzb3EzUqlVcXlPDucr5mxMeTrbRiMXtVhcoF1RVcXN9PX1OJ9fV1dHucIwxdb7c2akK2NgJnv8ovZ7JSlBI7QT+2tTVq7mspoY1g4NcXlNDxMqV37hQ6VfxgxIoviiWq1JSeHwv8fLX1tVRVlGxXwX7fA/gbpuNN3t6eHcvkR/j0QjBf0tLyTEaaR4d5UwlAunLfZitPHjNUPWjo/x81y5eLSrigoQEInU6MtesoXQ/w4YXRUaqjjrwmssWV1Rgdrm4vbFRtfmfunMni/1MAh9PnjwmPDpKr+ep/Hx6nE6+8Fv19jmdXJeWxtnx8aQFBe3hcL4zM5Mb09M5Iy6O4/20iF0jIySuWkWb3a5OfH/zEx4+2/TVtbVjfCgtdjvLBgdx+U1Up+7cyV3NzWOyiieFhvLF1KmUhoTwdEeHWhLlY7+ggo+UfIvf7iXb26fV+ExBP09IYNOMGayaNo0tw8O809tLWUUFD7e2quU+XujspNfhYHZ4OCaNhmSDgXyTiZ/u2MHMTZv4ZMoUZFkZv0hOpsvhoHD9ev7d3c3j+flcl5rKjNBQToiJYYPFQtjKlfx0xw56nU52jIyQtW4dTaOjqvb8sl/Agt3j4fXublxSMikkhJZ58zgqKooHcnK4IiWF45Xr0jo6SuyqVQRrNOoEHq3XY/N4eEtxUv+9rQ1RXs5RW7dyaXU1a6ZNY9OMGWwZHuZ1ZVKP1OvpXrCAbTNnjmmv8F5vL/nr1pFpNLJpeHiPRUR+cDBhWi0tdjtDLheddjuPtbXxUGsrMatW8alyfaZv2sRjbW3YPB42K9rk2unTAe89PVWpXPBgSwsPtbaq3xt0ufhxTAwFwcEcFx1N/Zw5fDFlCm+WlBCiLIq0QvBWSckeuSnv9/WxcMsW7m1u5u1Jk7g9K4tr09KQZWXcMc6kanW7+ay/nw+V424YGuKDvj4+U15vHh6m3eHgp7GxzFcsEU93dPBadzd3NjZycmwsdXPnkmMyEWswcJXyDIx33L/tN8f4zJ47Zs2iewJT1W9ra/l8YIBck4kZfpUdwGuibHM4aB4d5cioKOYo22/bRw7WweAHZfL6bVoa2SYTw243R0dFkb12LfdmZ3NmfDyPtLZi93hICwqi3eGg024nMSiIe5uauLGhgQ3TpzMzPJxaJbILvAlSPvPL5/39Y6K23u3t5ee7dhGt09Hop6b6eLGzk/v9IipCtVpmhIaybmiIn1VW8mpR0RgT2Ed+D2J6UBBpQUG8WFQEeIUCE5QUubWhgWyjkQv97LnVViutdjs3Z2RQNTJCldXKAzk53NbYyO/S0ghVHrLdNhuz/W7Cp9rbWTE4yH8mTWLU7Wbhli2cER9P4+goD7S0qBrc5wMDnF1ZyTuTJtHjdOIYtyK9ZS8huRstFrqcTuptNn4SG8vdWVn8zm9iuigpiYuSkviwr48Tt2+nRJncj4mK4uPJk9WkwX6nE6NGw6+Tk/FfEnwxMIBOCP47aRLZ69bx6927ebu3V51UfhQVxVFRUTzY2qrml4yn2M9+/evkZLKNRqaHhdHndPJ3Rfi12u2809vLTxVzyObhYZ5Xosoez8vjYuVanBkfz7bhYW6ur2deeDhJQUFkBAWx22bj7d5ezoiPJ1fxw1ySmMj7fX3U2mycGBPDUVFRnKz8b9JoeF/Rtv39SG4pOS46mlNjY4nT64lYsYLLk5NJDgri3d5ejqyooHXePNWke319PSfGxFCk09EyOsqZO3eiEYLzExPVRMi0oCCyjUY0QlAcHMyqadNU/8qA08lzHR38taWFdyZNUkvOLB8cZLfNht3j4YWCAjXSzEe8Xk+W0YjD4yFi5UoAOufP5zVFUPkmzftzcojW6eiw27lOcRy/WFjIvPBwztu1C4vbzepp07g7O5vpYWGqyc0X/TVv82YyjUY67HZa7HbqR0eZExbGu6WlXFxVxQO5uWMWWgBlikZ7e2MjSwcGuD49nRMniMgDKDebOXH7ds6Jj+ezyZM5ets2lm3fToJeT82cOcwOC2Nw4UIE7FFZY+vwMNfs3s2nAwNUzp6N3ePh+rQ07snOxqjRqAJlbni4Oibf9dYCkzZs4Mb0dO4eFyjg07iOi44eY74GbyDGVSkpqla90WLhV8nJROl03kKeBzlqVD3uIdnrt4zd4+GR1lZOjI7mlHFRFb48ietqa3EDH5SWYna5aFYESqsyUQ8qJohQvwtzV3Oz+sB92N/PMx0d6ur6qt27sbjdE2ZBW91uVg0OcnZ8vGo+qJk9m6SgIIbcbuZHRIxxugKq4zter6fP5WLl4CArlX30L1ig+lB6HA5cUpIUFMQb3d3E6vWqQHFLyd1ZWZi0Wv7V3c3Zyo2dbTQy7Hbzs/h4dYJdNnXqmNpQT7W3qwJTKwSNo6NqFu9P/WzJiyMiKAoO5t/d3RwZGUmN1bqHPf262lo6HQ6qrVY+nzKFSL2e8xITOU8xnb3S2UmcXj9h+O4JMTFjfCgDLhfHbdvGk/n5/DI5mTVDQ4x6PMwICxvjK7q1oYHVfhEyRyhj8/l4BpxOFkREeMt/SKna2jvmzWPU4+GD/n62DQ9zaVISt2RksGjLFiRebSjfb5LsXbCAC6uqOL+qilCtlrLISE6IjuaymhqSDQYWR0SQFBTEzQ0NCBiTHyDLyiiLjMTidvPrmhpG3G7yg4MpVRzOFyUmcpniozt+2zZGPR5+nZLC2fHx6ITgaL/zHKzV8tHkybza1cWZlZU4peTzgQE2+5kgPcCRUVFUzJzJ1I0b+dJspigkhC/NZvpdLjX446ioKGRZGf/t7eWUHTt4S1klX52SwkOK6XDL8DDXK/fDR/39qkD5a04Ok0JC+F1dHW/29PDxuCiw1KAgHsnNJVcRWgUmEwkGA9tmziRCp1Pt/r7n6HpFmFydksLqwUFCNBq1UKhTStKNxjHVm9cODfF8Zydrh4ZUM6SPdRYLszZtotlu54P16/eYlDONRqaFhrJleJhlg4Ms276dTyZP5tht23i7pIRTlMioLoeDaJ0OAZyr+Dh93J+Tw+QNG2iy2/lRVBRbLBb6XC7+kp3N9enpbLJYCBKC//b1sctqZbPFgtXtZlFFBf8qLubM+HgidTruysri0dbWMQm9WUYj8QYDHQ4H9zQ37yFQOubNo2TDBh5va+OPGRljcsJMWi0P5ubilpJqq5WHcnMZdru5qaGBY6OjD5lA+UGYvAZcLq6preWYCUqJ+BLdXEodoaOjohhcuFBVER/Pz0eWlREkBBfu2oVWqeW1QDF3Faxfzxvd3WQbjWpC3BcDA16tAW8phvE4pcTscqmru0uTkqgYHqbX4UAvBK90de2R7PbplClEaLUMulyYXS4uq6nhspoa5m/ZQtbatYQq+4pfvVoNmX2qoEB94MEbenvE1q3U22xjIoLsHg8XJiYSrNViUwRntE6nClPw2pN/pji9+xRHNngngF/4BSIkKWaucJ2OdUNDVI4rWnfM1q08qNi1Nw0Pq6Yqu8fDmsFBOu12XlbyUB7y0+DKFR/KeBtvq93OkogIQrVanmlv55ioKB7MyWHt0NCYgnivFhVxrjL+y5OT+WLKFDodDjV0e9PwML+qqcHh8eCWUjXVGTQa7mpu5ordu3m6o4NnOzp4q6eHZrud/ygmoRqbjf+UlPDr5GTuaGzkn93d9DqdDLvdTAoJ4bbGRkK1Wt7q7SVv/Xp+sn07x0ZFcVdWlnqcR5Xr9OesLNrtdnaMjNBmt/PHhgaSlfIhf8zIYMjlImvtWj7u72dBeDijbjca4PKaGm6oH9sa6Fc1Nfx81y6cynnwTUZnxsWxbOpUNREySwkn9p2LH8fEsGH6dFULdEuJW0oKTCb+6Bcd+UhbGycrC7RpoaEsUr7/SlcXUkr+1NjIebt2cWFVFU91dDA5NHSP6gtPtLWpyZCyrIyqOXMoHxjg04GBMU7kaquVy6urOS46mrXTp5MSFMTTHR0crywwZFkZcQYDK81mLquupkfxoTzY2sqbPT1Uzpql7muq4lcYXrQIi9vNz5Uw9XsmuLfuz8lhZNEi5oSF8VxBgeoT9C/GmLh6NfO2bMFTVsaM0FBiVq3iwsREZFkZP09MZLGiVdTbbFyfnk6m0cjv6+u5oa6OmZs28YXZzE9jYykwmTC7XGrey1mVlfy+ro6m0VFubmig3+Xi/d5edQzPd3bSofzO/AkqRzSMjmJUFmUT+XymbdzI2ZWVLB8c5KraWm5S/D7/7uk54PYQ+8sPQqD4Hqhz4uMJEkK9gYA98iSO2baNM3bu3MOH0u5wsNRsVk04j+flqXHrXw4M8FJXF58rvoQUg4GfxcdzZlyc1yQxzrcSodPxZkkJ2SYTlyUl8WxHByds384FVVVqqZKl4/wpEq+W5FtRv11SwhUpKVyenMyg203S6tXqZ1ODghh0uVhhNhOi1fK3tjZqrFaO2roVgxBIvPkbGUFBvFJURJvDwbTQUArXr1dDJE/fuXOMAK6cPZvnlN8botVyX3Y2v0lOZsDlGiM0a6xWTlWiYfQaDReN6y65JDKSx/PyOC46ml8kJRGrrITe6e1l/pYtPNvRwadTpnBidDTb/ByoPufj75UsbV/iWI3NxorBQd7o7uaymhpe6eri2ro6HmtrGxOynGky8UpxMcXBwTzZ3s7znZ08VVDAlSkpaox+gsFA0PLlXFVby11KmZRovV69R5YoE+a1vlVyaio7Z81i7fTpWD0eXujsVCel1xRz5GOtrSwzm8k3mTBpNKQGBfGF2cxTHR38vr6ed0tLkWVlXJmayiaLhYVbtrB5eJgQrZZPp0zBvngxlycns3l4mJx164hYuZLG0VGuTU3lruZmVvjVd3qzp0ct694yOsqTihnu5vR0fpeWxtKBAR7Py+OG9HR1knustZWIlSt5pasLnRA0j45yf0sLO0ZG+JviZ/pLczO6ZcuYtmkTb3R30zR3rnpdfdnmUXo9y6dNo2f+fNZPn06l1cqtjY28ovh11k+fTpXVOsbPA94AAIm3vcCA00mjzcZH/f38rq6OrLVrebGjA4fHQ+H69TzV0YHV7eaT/n5i9Hq658/fIxz2qY4OnunoUH0ZjaOj6IQgSKl3dm92Nv8oLOS/kyahxbvYDNdq+Wdx8ZiWBACvd3dzlBKe/OXUqVyclMTv0tNpmTuXbqdTDW/31Qp7tLWVJGUxV2+z8UZ3NyvNZl4uKuLa1FS6nU7OT0hQs/99RSuvqa3lqt27eb24mCOjokgMCuK3SoCPBD5R5hWnlJy0YwdHKw3DfD6vDdOnU+0XYu9j/pYttDscZAQFMX/cPNflcLB9ZASrIlD9Kw883tamzmUHmx+EySter+e1KVM4KiqKxYqpQ4u3aU20Xo9HSrRKL+tbMjJ4rauLBpuNLJOJu5qa+GNDAx+VlqIXgrN27mSVojpflJiIZ8kShBAsM5vVXJVNw8OsGRoiTq9nvcXCu319e1RRfaunh1v9HGAFJhMf9verGdK+CclHpGJf/ndxMbPCw8kwGjklLk7NpPWVtPAdZ9fICLc0NnKLcowz4uKYEhrK+319/K2tjevS0jBqNARrNPwxI4PH29qYFx7OaTt3cldWFtU2G8f6mVDe6+vjr83NfDJlChE6HW/39pJnMtHtdHJvczPvKU7oR1tbeb27m8+mTMHqdu8RyurL//nNXhJLfb4YX8hrv9NJudnMcdHR3irP/f0ct20bU5SH+Oz4eKJ0OrYpDt+LlQi2ySEh6gq8w27nLy0tnBIbyzuTJpG/fj2XVldTFhnJkZGR7BgZQQNqUEXRuFDVn8XHk2QwEKvXs8xs5vXubmaGhVEUHExRcDBdDgdzN28eM7n5WrKOeDyMeDw80d7O/Tk5XJeWhsvj4e3eXsrNZn5XW8sx0dEYNRoSDAYuSEig2W4nIygIjRAYFFPW693dakfG55XEUd/xfWZT/0njM2VCeL2oiMLgYKYpZUdG3G4+6u9nxqZNNM6dq2ohO61WpmzYwP/H8Xn5bVqa6kSeERpKjslEt8PBVSkpJBoMXOhXHeDmhgbe6umhYuZMck0m1k2fzo319XxpNhOl0/FsQcEeuU2pQUHkmEz8tq5ODZBwLl7M79LSuK6ujuSgIDxSes2MERG02e2q4/ij0lJcUnJ3czMa4OHcXB7KyWFRRAQeKem029k8YwbhK1eSs24d4M3n8Jlq800mzoqL42/t7VQMD/O54m/x8fOEBG5qaOCa2lrWDA7yk9hYzklIYMDl4tmODhZERDDgcvH2pEm02+3MU8KmT4+L482eHpYPDhKh1dI0bx6XJSdzd3Y2Gy2WPSJMj4uO5mPlvu5asACr282VKSnck51NkEZDwqpVgNeHsnZoSF10+q7drM2b+XVyMhckJvJsRwd/zsoi3mAgRqejz+XinIQENQr0pvp6am02ni0o4Pq0NH4aG0uQEAy4XPwkJoY1yv6njiuoebD4QWgoOiHYYrGw3GzmuG3buKq2lpeUlVKETqeu6oqCgzk+Opq60dH/zz9RLp4QgnkREaowAW8Ej8+ks3RggN/W1SGlZLWyalxvsbA4IoLnx2XgdjscfNjfz3l+mlLVnDnclJ5OjsnEzxMSWODnkPcooaOZRiPHRUcz6vHwcV8fj7S28mxHBxckJDC6eDG/rqlBlJdTbbVSGBzMLMVs9/OEBK8tNySEFwoKeDA3F50QVNtsnLpzJ//o7GS3zcZlSUnEGwxcVF1NSXAwf8/PV8fw1+Zm1UTllpIaq5V/KOfQP1rr6tRUFkREcEN9PWWRkROudG6oq+MX1dVM2bBBXeWdFR+PLCtjXkQET7W387yStFZns3Hazp1qyYtjFcHiEzxuKTlx+3Y+GxjgR1FRnKOYtf6Sk6OWjnmyvZ2HW1spq6ggXwmoKA0JoXF0VO2V4cErlH3awqItWxDl5Yjyci6oquKE7duZvXkzZ8THs2nmTN7p7eWPDQ1oli1Te4BYPR7WKZFHV9bWohOCy/wCIt7t7WXnyAjrLBbOrKyk3GzmgdZWjt22jSUVFRQEB/NiUREXJCbyVEcHv6qp4baGBuZt2cIuq5ULExPpW7CACxMTmb9lCysGB0k1GrksOZkn8/N5vrBQ/c0tdjuRSp6DT5iAN+fIF9J69e7dHBkVRdXs2QB7ZFM3KKveJZGRyLIyXigs5OWuLmZt3sy0TZvodTpVh/16i4VnOjroVyZb8K7cP1Um6bz16zm7snKPcj5GjYb7srNV36RRo0Gn0RBnMPBsQQHBGg1GrZY7s7Kotdm4yC/k/d2+Plb4ZY/bpWSn1covkpK4uLqarHXr9qhe4d+PpcZmU0sDrR4aomj9eh5QSr13OxykGY1qIua/enr42a5dvN/by+SNG7G43ZRFRrKkooJHW1vVMO/JISH8xi8g5KWiIjLXrqVw/XpO8qs+cWtGBu4lS1g/fTpPK89Zt9PJp/39LDObyV63jg8V7e+OzEySDAYaR0fZMmMGa6ZNY9TtZpfVqprN/9beTpvdznt9fapmvmXmTCK0Wu5tblYjXMO0WqJ0OsJ1Ou7MzGRyaCjbR0a4MyuLKaGhdDudXJ+WRpbJNCZ682DxgxAoI24319fXq/Hu/vy5qQmTUp9rUkgIV9fWYl20SHVwPpCbi3PxYoaVdq6LIyIoCQ4mRrmQkzZs4JzKSu5oalJrOfmvvn3+CfDWmOpxOOh2ONhttaor4dPj4nizu5tOh4Mtw8O80tVFhlJ6YqXZjEYIGufOJVav50uzmcL16zl++3auqa3FA/yzuxu3lGqoZOH69QgheDwvj3Pj45kZFkbT6Ch3NzdzUXU1gy7XmEKCEvhJTAxBGg2XJiXxUWkp9+fkjMkQ3jYywm9TU4nR66m12dRQ1WSDgV/7/d48RShvsVi4u7l5j/j34vXr+UtLC892dLBN8RP4qvyuMJupsVp5rauLS6qruaOxkVa7HQ3e8FNRXs6N9fW4PB41x2SjxcKSiAgsbjdbLBbuzMzkvuxs3uvtVQsOphuN5JpM3KH4uH6TnMy2WbOI1OmYEhrKp4o2ZPV4aFAikk7zCzR4w6/GU+batTzR1ka308lOZTHxVk8P702axKVJSWNCx12KwzNSuVeWDw4yacMGFiqTir9/6bmCAm6qr8e4bBkXVlUB3vv2zqYmonU65oSF8avkZGweD1M2bqRxdJTSkBB6HQ6CNBour6nhOr9w59SgIMwulxp4AfDLpCTuampSc1+WDw4ipSQ9KIgHcnJ4obCQ9dOnk2M08khurpobY3O71UXXHX5Res90dLBoyxZe6+ri7MpKNTfpzqYmlg4MoF++HJ2i+YM316LH4aDKz5T515YWjty6lff7+micOxfrokW809Pj7WPS3MyiigrqbDaaR0f5teJXPDkmhuvT0vh7ezs/VnwoK6dP5/OBAcoqKshet45ds2ZxQ1qamvS42i+J2T8Tv9pmY05YGFE6HU12O2/29HDCtm280NnJrpERfpmczD8UU9hHpaXqNQdvS2fw5icdvW0bH5WWsm1khCO2buVEZVxzwsLUOlt9Tid/Uqoe3NnUxF+am5m9eTMvdXaqZrAXOjvVIINTd+7kipoaTFotHQ4HHinZMjxMmE7HA62tnF1ZqT6Hc8PDCdJouDAxkRyTiV6Hg3KzWa1svXJwEJfHw6jHwxUpKdRarZRVVDB5wwZmb97M7+rquFMJ/GkeHeX2xkZ+pJjWDiZiopT+7xuioEAmvfACp8XFoQFMGg33KfbL9yZNUjsgivJywJuF+6ZfzsUTbW1csXs3EVot16enY3W7OTUujiqrlYurqlS/SqLBQMf8+XQ7HNza0ECT3a6q8ZaFC/l0YIDTdu7khOhoPuzv54GcHPqdTu7ycwZmGY1jIn9+n5bGfTk5tNnt/KyykpszMuhzOonQ6Vg1OEi60cjlSr2m6tmzKVi/nmyjkaVTp/J8Rwf3t7Qw4vFwVUoKL3Z2MuR280ZxMRssFj7q7+dn8fHc1NCgRvoAuJYsYdrGjWwfGVFNaFJKPHgjvPqdTl7u7KTN4eCp9nbeKinhiMhIdBoN/+3tZXJICD/dsYOtIyPsnj2bHJMJl5T0u1w81tpKSUgIj7a1cVx0tNekmJHBrLAwTti+nYsSE7k3O5vf1dXhUKKYHmhp2SN/4baMDL4wmxn1eNhosXjNWeN8VV9MmcKkkBCG3W6GXC6mhoVRuG4d1TYbrxQVEa3TEazVMikkhFjFrADeIIlnFK1yxO3mPz09jHo8dDocY8yUlyYl8Yf0dAacTnZZrZyvCALw1rv6RU3NHgJ1ckjIGN/QO5Mm8ZPYWD7o6xvT5+bPWVncpNT4+lt7O1eMC9K4JSODPykTgM9k4rsHI3U6IrRa1ikT02O5uQy53dzX3MyDublMDglhl9VKqFbLbqUWWmFwMJ9Nnkynw8Hr3d3MDg+nYniYm9LTubmhQZ2YF0VE8GpREc90dKjHj9LpGHC5eHfSJI6KisLu8RDtdz4BVk6bxkVVVWrZ+b4FC4jW63m3t5efKI79j0pLvdWBxznHXy4sVM/tAsXcOzs8nAsTE3F6PETqdOg0GnocDuZs3kzD6CgP5uRwdny8GqDycmEhm4eHSTQYOD0ujmqrVS2/89fsbNKNRr4cGCDLZOKlzk6uSU2lymrlodZWioOD6XY62TFrFgkGA4MuFzfX1zM1NJRVQ0Pe0kkuF3/Ly1OF3pKICK5MTfX60JRozC0WCx9MnszFVVV7mL3mh4dzRGSk+tt/mZTEUx0dZAQFqQE+PvJNJt4sKeGymhrWDg2xdMoUyqKiuKWhgSfa2uhfuFCdy8A7p2yaMYOdIyMcu20blyUn75HEOZ4LEhI4Mz6eE2NjN0kpZ+7zwwfAIRcoQojngR8D3VLKScp70cC/gEygEThTSjmgbLsRuARv1e2rpJSffOUxCgrkGytWcEZ8PCvMZr5QIkji9HpOio2l025XnWl/SE/nrZ4eInQ6b/mQ6Og9qpD6OCMujtPi4ji7spI5YWGcEhvLdWlp3N/SwjMdHSyJjORFJQfh8ylT0AvBkooK8kymMf0cwNsz2uc/0QnBO5MmUTkyQrOS8OVzZm6eMYNpYWG4PB4qrVbO2LlTNc+B12Z+dkICK8zmMYmJPvv3Gz09TA8N5dq0NO5pauJPWVkkBwVRHBzMVbW16njBayr7h+LLsbrdzN28mSmhoVyalMSfm5owu1xqOZNbMjK4JSODoOXLuTUjgyG3m4daW6mbM4fb/JyzG2fMGJNklbFmDVekpJBkMHBeVRUfT57MI62tPJCTQ1FICC6Phzd7ethosXBybKyqZd6TlcWNDQ1E63TEGwx7tEAtDg5ml9XKxYmJCCF4tqODldOmEaLRqCageeHhnBgTo5qAioODqbRaebaggAsSEtBNELb8YkcHj7e1MSkkhFPj4jg5NpaW0VHSlTI00Tod/S4X5oULub2xccyD+6fMTP6YmYnV7ebzgQH+3dNDhFbLKbGxHK0EQNySkcHVqamEa7XoNRrsHg9rh4a4ub5eNbdenZLCL5OTWTc0NMYE5CMtKIg3iouZt2ULH5SW8uXAAA8o43g0N5dBl4tbGhvZNnMmPU4nR+1jJZpiMPBCYSHHbNvGEZGR5JlMnBIbS3JQEO/39XFWXBwhWi31o6P0O50siYwkXKfjta4u6mw2fhQVxeqhIY6KjGTA5aLWZqPT4eDq1FQMQlCj9IhvHB1lxC8CrHP+fO5sbGRueLgqTHbOmsV6v99cPnUqZcr9sDAignPj4zlf8SNcXVvLLRkZXJeWpvofPywt5e3eXrUGmD8xOh0/T0jgb+3tVM+ezc6RETRCqEJnckgIv0pO5vKUFHocDorWr+evOTlqUzOL2602pDsqMnJMD5X0oCCv7y44mI/6+jhjLx1e/1NSwl9bWigJCeHoqChmhoWpvh/w5sVstlgYcrtpV8LZs5XtP09I4Ob0dO5tbuaG9HTaHQ6Wmc3kmUyEabVqiPMVNTW83NXF5JAQIpUF1WcDA5hdLtVHA15zZ6bJhBDieydQFgPDwMt+AuUvQL+U8l4hxB+AKCnlDUKIYuB1YDaQDHwO5Espx/sSxzBz5kx5+ltvMSs8nHVDQ9zc0ECoVssXU6YwNTSUQZeL+NWrmRUWxj+KiihU7OzjmR8ePiaXIV/xd9za2MjJMTG829fH4MKFnFNZqUaZnBMfz+ywMM5JSMAjJT/evp0z4uL4V08Ps8LCeKajA5NGg3XxYm6sr+deZYVSGhLCAzk5YyKtjo2K4sXCQtYMDY2pOHxbRgYXJiaSpdxca6ZNY3Z4OMdt28ZnAwNckZLCJYmJvNzVxaKICNKCgrC43RypTCTlU6eyJDKSypERflZZydaREUI0GmrmzGGTxcIvqqu9/qPBQXqcThZFRLDLah1TEvu/kyZxYkwMW4eH+XJgQM1JuDk9nS/N5jFVUm9KT6fL4WDV0BBP5efjkpKzKiv5sLSUUY+HxRUV/Co5mb/l5+PweAhavlydjF/r6iJSp6MsMpJqq5Uck0lNiDs2KopovV7N3gbvhDhRgmWywYBJo8EpJc3KCnB6aCibZs7kloaGMQUvwVuuZX5EBLPDwsg1mUhYvZoBlwujRsNlSUk8qqzgfavpxRERPF9YyId9fVylmKKmh4byWF4eH/f3q6t7f1ZPm8a8iAhe7+riZ7t2cW1qKp0OB691d2MQgmtSU/ljRgarBgc5fvt2lk+dykOtrcwJDydKp2NGWBjpQUHeFbsQ7BwZoWF0VA3tBW8r5N8r1+asuDj+WVJC6+goaWvX7rHQ+W1qKqUhIVyk+IGklGj8TFg/i4/nVSW7/M3ubs6orOTtkhJ222xckJhIqFLyPmzFCpxSYhCC6tmzyTSZOGn7dtrtdh7JzcUpJS90dqo+uevT0vhLTg6f9vdzXV0dCXo916WlsW5oSK1SAP/v/Aavlhap01FltXJTejpnTjBp356ZycOtrZj9ov/8J1GAp/LzubupiSa7ndlhYbxfWkq8EkGZbzLxs4QEble0VFlWxpxNm+h0OHgiL4+Tduxgemgoj+flcdTWrdg8njEaabbRSL1iffhtaip3ZWXxpdnM/S0t/DY1lSfb2zk1NpZfKBaHqaGhqo8nTTFhvj1pEj/aupUUgwGNEHQ5HOq9vW76dM7YuZNXi4rUnkkX7NrFy11d1M+ZQ5bJxN/a2thgsfBCYSHDLhdOKdkxMsKKwUEsbjf3NjdzV1YW00NDWWo285fc3O+XQAEQQmQC7/sJlGqgTErZIYRIAsqllAWKdoKU8h7lc58At0sp1+xl1wDkTJ0q6x9+GPCu7h7xKybnb946c+dO1gwN0W6348G7mpN4TRvPdXRQMTxMpdWq3oA3p6ez1GxWhcwpsbG8VVKCxe1WV0UpBgP1c+di0GgwO52MeDws2rKFhtFRXios5IKqKv6UmclP4+L4dU3NHqrwWyUlnLZzJwKvkHk4N1cVBP50z5/PkooKNRLItmgRNTYbj7W1kWIwUBAczM927QKgYuZMHB4PJ+/YQafDwZlxcbxeXMxT7e04pWRySAg2jwezy8XF1dVqD4aHcnI4Njqad/v61EgZgddEVmW1kmgwEK3X835vL7c3NqITgvzgYAZcLoI1GtKNxjHVAeaEhalmGfDW23JJyZ1NTbTY7VyjTGiXjFuFL4mIoFyxiX/e36+u7ouDg3mzpIT/KA7z8TxXUMAl1dWcEx/PiTEx/KmxkaSgIH6dnKxOQB+WltIwOjph0ysfdXPmqCvHICHw4E2I/aCvD4vbrWbGzw8PZ1ZYGMdGR/NiZ+cYX8x4/llcjAZvNv4b3d3c2dTEDWlp3NfSQpxeT3FwMO8qkYb569fTardTPnUqGUFBpAYFoV++nCMjI/li6lSura3lodZWgoQYU5zzV8nJvK7kTPkSHF1LlmD3eHi+o4P5ERHE6PX8ePt2LkxM5NrUVIQQDDidtDscXFNbS4xOx78m+B1JBgOXJCUxKSSEsysrKQwO3kNrBG/ia5fDQbXNxtFRUQhQC1aunjaNOeHhvNDZicXl4oP+fj4fGGDnrFnE6vWkr1mDXamB9mxBAY+2tpJoMHBfTg4AP6qo4AuzmWSDgS+mTPEWRVQWaFtnzmSKYtK9NjWVBxWN7dKkJM6Ii+P6uroxpkgt3pyqdydNQi8EfS4XC5RF2hdmM1rgg8mTOc5vwfdUfr7aq/6IyEi+nDqVboeDzLVrsXk8JClJiD5kWRl/b2ujcXSUWzIyCFPmDN/iFLxBCrdnZqrPG3j9nRLGmIGPj47mhOhoXFJyYWIitzc2Uj86SrfDwTqLhWcLCojV6/l7Wxv/Kinh9J079xoafExUFC4pWTM0hG3Jkh+EQDFLKSP9tg9IKaOEEI8Da6WUryjvPwd8JKV8c4J9XgZcBkB+/oxL/vtfDBoNsXo9TilVTeCtkhK1N4S/3fHSpCQsLhcVw8PMDAvj1e5ujoiMZFFEBHohOCk2loygIH66c6daOr44OJhts2Zhdbu5vbGR9Uq5c/BOPOcmJPB8Z6dqH70qJQWPcqyLqqrYohzrjsxMVdU+LyGBiuFhFkZE0OFwcGN6uqoZXLF79xh/S67J5C1AFxrKC4WFvN7dzatdXbTY7ZQEB6sOxf8ok26dzcYRkZHc19yMdfFigpYvB7z+nrKKCjYpNvR0o5FfJicjpeSOxkbuaGri0dxcup1O7mtuZnJICJuGh7k1I4PSkBDmRUSo1WMBXB4PO0ZG1M5x8QYDy8xmni8ooGiCGmQ3p6czojjIL05K4vq6ujFmPfAWONxts9Fgs9HmcHC+cm79SQsK4vG8PF7t6uJXycksjowkfc0a2pSHOtto5IXCQoqCg5m6cSPtfg/7rlmzKAwJweZ282F/P+FaLZssFlKCgsg0GllcUcGJ0dE8npfHl2Yz3Q4HNypC7LaMDE6JjeWK3bvRazQcHx3Nvc3NPJmfv0fZDZ92uNxsZklFBWfExfGGX/Mrm9vNGz093NXUxOdTpqgVnv01DX9i9fq9tuqN1um4LzubyaGhDLhcdDkcPK6sWIuDg3lfEab/6enh+JgYrty9mySDYYxWDt4Ooa93d+/RO+OfxcWcGhuLQylF/1WURUZyU3q6qoU/k5/PsNvNb8ftN0Gvp8vpJEyrpSg4mGyTid8kJzM3PJwht5twRRMKX7lSjba6NjXVG3ar3NOeJUu4q6kJnRCcl5jICrOZc5QF1nuTJjHgcrF1eJhH2toI02oZULSY36Wl8VdFYD3Q0sJzHR3smDWLX9bUkB4URLXVSrXNxhZl0vaZ446MjOSq1FSeam/no/5+poWGEqPX81BODr/avVudF06NjeU/iu/vpJgY3lOExFUpKTza1jbmPX8+Ki3l8bY2PujvVysfn+5XxcCfFIOBM+PjeaytjRmhoUTr9Xw0rjHeRDTNnUuGyfSDFihPAGvGCZQPpZRv7Wv/GVOmyI0bNhBnMNA8OsoTioZybHQ0R0ZFUTkyQokysd2RmclLnZ3EKjkkeyPTaKRh7lzVfu6zv5+fkKD6O25KT+duPwejT+WdFx4+xgT0TH4+k0JC1Dj2CK2Wlnnz+KCvj3ubmykIDqZhdJQXCwspDglhx/Awf21pIUij2cMefE1qKg/l5qIrLx+TU6DBG7e+fWSEouBgfqdEwNyZmUlaUBBTQkO5u7l5j5W9f1n90g0bqFbCMpvtdj4fGBjTQe6N4mLOrKzkzZISNHidtWVRUWopdvCW/+9dsIAwnY5hl4upGzfyh/R0bB4PV9XW8ru0NMrNZp7Iy2O2UqdpxO0mNSiI0+LiVJu5j2idjtszM1Wzko9wrZYht5vfpaVRZbXyfl8fq6dNw+7xcISfhnd3VpaaITw9NFRduZ8dH88/CgsRQuyR5Gp1u7li925Oi4sjPSiIyX7tZx/NzeXM+HgSDAYuqarik/5+zC4XIx4PN6Wnc1d2Nmank7VDQzzW1kacXs9vUlLUDqJNc+eOyRBfsmULywcHOTIykuKQEDVf6LWiIj7q71edwOPRAo4lS7C43ZSsX68K0WcLCmhVyuY/mpu7x3nz4ZvE/ZkVFsYJ0dFkmUxMDglh+eAgx0ZFea+l282OkRGOjYpSo6XCtVp+EhtLudnMNbW1WNxuPp48ma3DwxwRGUmcXo9LSs6srFSr+PpomjuXFzo7aR4dVRcKvQsW8EFfHxdUVXFLRgbnxMdTvGED/ywu5pWuLt7v6+PqlBRi9Xpua2zk+rQ07srOJnfdOhpHR71dG83mMYEVc8PDmREayhPt7erzumH6dPpcLmqsVs6Mj2f6xo2EabVq6SHPkiWkrlnDtWlpHB0VRcPoKA6PR9VyZ4aFjWmVMC88nL9kZzMlNJQTt28f02TsiylTVB/Wv4qLebmzk2yTiWyjkZ/GxZHp17fGl1cC3grL+cHBJCrmuJNiYnimoEDNJXoiL48Bl4sIrRaTVssTbW18NjAwxsR3R2YmXw4MEKTR8KlSRNI/iOTLKVM4Mjr6oAqUw5XY2CWESPIzefmM4q2Af3GsVGDi5uN+xOn1vNbdTaLBwJSQEDVDdVFEBJdXV1MUEkKEVsu0sDAuT07mNkVd9CffZEIjhKrGN46OYnO7VRNVjslEpdWqZnQD3N3czHkJCUwLDWW3zcYHfX38KCqKEI2GkuBgWu12Bt1u7mlupm7uXO7IzOS2xkYG3W6CNBrOTkjgnF272Kqo4r56XW/29IzJOP67UnQwaPlyHm5tZaPFgk4ItfTInZmZzA0P562eHh7NzaXP5WLt0BAVw8OcvGMHH5aWMlUIrkxJ4Y3u7jGq/0OtrbyxZQvpQUGqdjfq8bBeqZnlQ4s3NHHbzJnUj46qNdN+nZysJtmBtxz7lbt3oxWCcrOZe7OzyTQaOWrrVt4vLaXAZOL+lhYebGnhnyUlfNDXx4DLxamxsSyKiOCdSZN4t7fXa3MvKuL0uDhqbTbmK9V8I3Q6/tPby5LISN7r6+P1ri51Mp3v14HSqNGQERSkFnUEb9OuL6dOJXLlSv7p10MDvFE3k5SGV3kmE+/39fFCZ+eY2m4AV6amckNdHS12Ow/m5HBjejpnV1ayaXiY9RYLJ2zbxkf9/YRptViU1bQvJ6pi5kzSjUbVH3F7ZqZ6fzWOjnJ0VBS2RYu4rbGRrHXrcC1Z4rWHd3ZyelwcrxUVYfV46HI4MLtcCLz5UW1+mpcGVB+Ary7Wx4rpJlMp0tjucNDldPLX7Gxi9HqOiY5WNU5/Lf4nMTHU2mz8JCaGDoeD86uqWDltmhoWPbBgAXqNhmsVYQJeoT0zLIwLq6p4v6+P/5SU8GhuLs91dqoBIQ/k5JBuNFIWGcn5u3ZxWmwsFyYmcmtDg1qB+ryEBPXz00NDWTowwKKICL40mzkiMhIPcF9LCy2KL6RxdJRVg4OqqcvH43l5akLy3c3NvFlSwkXV1eSaTLytmMJ9muu58fFohECzbBkRWi3XpaVx3q5d/Lu7m3eUz84ND+fp/HyWVFQw4HKRbDCwZmiIRRUVfDllilpV4pLERJ4tLKTaauUnMTHcmJHBzfX1XJSUxM8VzclfyBYpQSZ/zsrijw0NLK6oUNMRwJt4/HBrK1oh+Ftenmp1OXPnTv7d06OmOfhaYz+am8slSUlcmJhIldXKoogIep1OHmlr466sLNxSTljy/ptyuDSUvwJ9fk75aCnl74UQJcBr/L9T/gsgb3+c8r2PPUaT3c4NaWlclpzMTfX1vNPbi11KrkxJ4dG8PM7auZNP+vvVQpBPKk7hnyUkEKIkWJVu2MAOZcLtXbCAo7duHXPhz09I4JrUVEwajWrOGVm0iGCtlg67HaeUqtnCh2+1NXPTJqwej2p/bbPb2aQ04PJpRACJq1apq0ffjebTDvz5V3GxegNH6XSqQ/PoqCg+Gxgg0WCg0+HghOhoPpg8mfuamxF47dxml4sup1PNiQCvml0YHMxLXV3qpARgXriQM3fu5Iy4OC5NTmaLxaIKDZ+m56sL9uesLG5taMDDWHU/z2TimtRULG43D7e20ulwEKPTUaKshMezc9YsMo1GPhsY4LP+fsrNZuINBh7JzeXlri7ub2khUqcb44D12biPiIzk/IQEXuvupt/p5PLkZH5RU8MFCQlqjahep5M0pUvieLrnz1cdtT6ts3zqVD7q66PL6VQnupNiYojT6zk2OpqVg4PeAn1+JXL8+aC0lOOio9EIwcMtLfy2ro6HcnJU88+ssDDenTSJxKAgsteupWF0lHXTpxOs0dBst5NsMKi9Lx5ra+Oa2lr1+oI3WKDcbPZmdvf2qk2yzoqL45mCAl5Tsv/zTSaO3baNn8bGcn16OhUWCw+3tnJiTAyfDQxQGBysVvv1J8do5JTYWM6Mj2eOom2NJ99kYlC5r8BrkgzSaOhzOnksL49zExJwKzXAEg0GnunoYPPwMCunTWNySAhzNm9ml9WqFgJ9r7eX9/v6eCIvD51Gw4yNG9k8PEySwcC7kyaxcnCQRIOBs5UEYp8wfDAnh2vr6vh8yhTVt3fCtm3qQipWrydEo6EwOFj1zywzmzleKS475HbzXEEB/U4n5+zaRZbRyNTQUIqCg1WLxNzwcNZMn06vw0Gccs3vzc7m8uRkCtevV5Non2lvZ5PFwhP5+WrOztFRUVycmMg5u3aRbDBwfmKiaqIXwOvFxTzR1qZqOtelpqpRfOA1uVrcbhpHR7G43Xw2MMBVKSlssljodjqpmTOHX1RXqwmovjQGk0aDzeNRQ5UvSEjgpeLi75fJSwjxOlAGxAJdwG3AO8AbQDrQDJwhpexXPn8zcDHgAq6RUn70VceYOXOmTHrhBd7v6+O61FTuz80lePlyPFJil5K/5+VxeUrKmNXXQzk5VFqtPNPRgQb4mRJCe1N9PdE6HT+OiSEvOJhTduxQ6xkdGRnJl2YzOUYjVbNnc2tj45iCc2fFxbFpeJib09MZdLu5praWOL2ejydP5vmODp5Qihu+V1qKQaNh2saNGITA7vFwS2YmpymrjpVmM4NuN212u+oE9KcoOJipoaGEabWsGxpi68gI3fPnc1ZlJUvNZtU5eHRUFMXBwbzQ2cngokXq718/fTq/qK5m68gIP09I4Ky4ODVXZ9jlImzlSvJNJs5LSOCWxka1Iut92dmkBgVxfHQ0UX6Vin2RWgCNc+eyenCQp9rb+VdJiaqy55tMqp/kr9nZROn1PN/RsYf9fjxGjQaTktD10LjVZ4HJxD3Z2XzQ18e5CQnMCQ8nc+1atff79NBQHsrNpTA4mDqbjQVKBWFAvU+sbjcbLRZCtVqWms2kBwUxW9nP7LAw3iop4UuzmV1Wq/rQv1JUxIzQUC6vqcGD10H7enc3O2bNUs+Dj5XTprEgIoKP+/qI0OnUKr0+3u7p4dLqakwaDaunTyfdaOT93l7aHA41/wi85YW6nU5CtVrVj7AoIgKDELxeXMwbPT3c0tDAP4qK8EjJSbGx2JUaWY2joxQGB/N2SQnViib984QETt+5Uz1XPtrnzSMpKIh/d3ePWcDkmkzcnJ7O+YmJtNntahi1j8khITikHOOoPysujitSUlikmDE758/ns/5+zvNbxPjQC8HCiAgWR0SoHRltbjeDLhexej0bLRbVZAzeSfnTcaVUnmhrY8Tt5sLERHbbbKom1Tl/vhqYcEdTk7pIA28awT1KFV/f8zGyaBE31NfjVipYzI+I4K6mJn6flqaO/bjoaK5MSeG5jg7+09uLSaPhrPh4fpmUxNW1tao53T+f6CcxMfxXmUtkWRl/rK/HpNWqZugkg4FrUlP5vZKf5Ivgejwvb488JX/i9HquTk1V9zM+sm1vjCxaRIhO9/0yeUkpz9nLpqP28vm7gLsO9DhNiinqNiXT97G8PHKMRnqdTmwej3qz/EVJclo7NKT6Jzx4b+i/t7Xx15YWjo2KYtngIO+VlvJeaSnHbN3KpJAQdUKrGx2l2W7ngsREVaAcHRXFeouFhtFRqm02ZiiryR6nk4bRUa5NS+OJ9nY+HRggdtUqhhYt4tKkJO5pamJOeDi3NjRwjGKv9gCvdnWN6ZTo47KkJJ4qKCBixYoxHRZHlYz9pWazGmnS53RyfEwMlyvVgn0RZbP9Vphxer0qTJJXr1YFUa7JpNYJ2zI8TKhWi14Izt21ix2zZvFuXx+5JhMLIiLG+Hle6uzk1sxMzklIoN1upyg4mD9lZdE8Osq9zc38Li2Nf/X0cEdmJrkmE6uHhvhpbCyxej0nxcSMCYH1/a7bMjJUh7iPIKW0TKXVypqhIZ7r7GTD9OneVqdKyPVmpebaUVu3EqPUmvJFlP05Kwub202wVqsWUvQvSy7LyrAohTEv8JsAnysoUKstxxsM7BgZ4dmODtodDm6or0eWldFpt1NltXJDfT1PtrejF4Ljt2/nxOhotYaZj+vq6jg+Oppup5PnOzq4PSuLH8fG4pGSGJ1OzWnodjrRgipMtMDyadMYcDp5sLVVDYMecrnYMTLCyTt28JvkZNVEW2W1jgmQ2G2zjRG8m4eHuSEtjZ0jI6wcHOSoqCieLyhgQUSEqgluslgY9XhwSMnvld5DJ8fEsH1khBlhYaqWumFoiESDgdLQUKSUzAsP58qUFF5TCntGaLWsmzGDLwYGeKKtjUqlnfQzBQVjKkh/3N/PqTt3UjFzplpiZffs2Tzf2clfmpv5Q10d9+bkkL5mDS12O5tmzGB6WBhrBgc5oqJC9f9E6nQEaTRqr5a/5uQQJAQtdjsnxMQQu3IlP/brg6LBW6U83mDg9aIiYpVkR58wyTOZ+Li/X002PTMujkuSkpgeGsrPdu0a45v9UVSUKlDOio8nTOlseXdTExclJZHrl4dybkICv09P58uBAVKVgJOXu7pUYfJ2SYm3fH9tLZckJWHUaHBLSahWO6ZZnU+Y/DIpiUqrlZNiYripoYErUlLQCcH9LS28UFCgZvgfTH4QxSHBGzY47HYTptNRbbXym5oansjPp91up9JqVXsfXJOaypmVlXtkXf8oKopMo5HfpaWxY2SEemU1/XpXF3aPRy3LfVFiIiUhIYRptdzX3MzpcXH8KTOTGL2eGZs2EaH0Ev9DeroaR39/Swtrpk9Xk/V89ua54eG0ORyqWcigXOB3e3t5vbubiuFhso1G7s7O5vS4OHTLlvF0RwfLBweZGRamdoB8Ii+PNKOR8xMTidDpVP/G5uFhjtu2jTeKiylUEvVmhYWxwWIhPSiIeeHhjPoJ2xOio+no7+eCxETVFptsMNDucFAaEsJH/f1UzZ6NR8oxpjJ/ioODuaepiVqbjU/6+/lDejolwcGcW1nJ3/PzOT0ujt/X1/NoaysvFxVxfVoatzc28sXAAH/Ly6Nt3jwea2vj3uZm6ubMoXD9em5saCBBr6csMhKnlPynt5dfp6TwUGvrmCCDuZs3q4EK/y4u5vbGRjUcMykoiPMSEjhNuSamFSsI1WqxLFrE6Tt2YFIaoE0NDaUsKopRt5vwlSv3aFx0sRKx5/B4eCIvj1GPh6tra3m7t5cdIyPkr1vHbpuNUiVAYr3FoiZ93qQUznyvt5eTd+zg7qwsr+lPr8eo1LfyoRGC0+PjuWZoiIdbWzkiMpLPpkzB6fHQYrdjUUoF/be3d0xOjU4I1SzzgTLhVc2eTeH69aQFBZEeFMSqoSHKzWaeyc/HqNFwWlwcJuV3+mvxRcHBrBsa4lcpKawbGuKXNTW0zpvHy52d/KWlhe7589EJwWaLhRCtVq1Pl2k08lBLCyft2MEliYk8kpvLrPBw6mw2bm9s5In8fAqCg3FJyT3NzbxSVMQ58fGcvnMnu202tiul6BMMBgTe6gBHRkVRGBzME+3tLDebceP1oTikZGFEhLdg6cAAS81mFkZEUBgcrDbjAlg/NMTtjY2UT53qLYGj0fDF1KmAt3dIlF7PGXFx/Lunh88GBni9uJiSDRv4wmzmrPh44vV6joqM5NmCAhxSsmjLFrWI4xs9PbzR08ObJSU4lHnizLg4/lVSwmaLhTPi4rg7K4tf1NRwTnw8KwYH+XJgYEwE5/kJCfy7u5u/5uSoTvw3S0owCKHmoVQMD3NKXJwaUg9w8vbtY6LEfEmXX0yZovYp+m9vL7dlZPDHzEzsHg8DTueYpnwHkx+MQLF5POSsW8flyclcqXQqu3r3bkY8HgxCMLhwITfU1xO+ciXnJSTwo6goTlW6mV3l1yv+oqoqamw2IpQH7M9NTVRarfyjqIhMpZLp6Yoq77NrPldQQLhOR/O8eey2Wslfv54so5H1ykphcUQEO0dG1FW2r/d5nF7P0ilTOGLrVhYotXoAdYWzy2rl38XFnFFZyUelpWjwalNVioBsmDOHZzo6WD04qNbb+klsLJcnJ/Nke7sayfNEWxtnxMdza0MDJ8bE8GxBARE6Hc+0t3NPc7Nqi/9RVBQxej27Rka4q7mZbTNnUqokhhavX48H72Rhdrk4OiqKIyMjx2gOLxcWcnp8vDopXZyYyJVKlNGC8HB6nU7+pNSumhIaSrzBQLzBwNMFBQi85b7f6O7m0ylTOC8hgWyTiQ9LS9FrNByzdSsFwcGqlviQ0lDtA7/wyMeU0hhXp6Rweny86gswCEHF8DAPt7ayYnBQLTDpa2W7YnCQCJ2OV7q6ODMujrKoKDUoIjkoiCGrlaVTprDUbOb0HTtYZ7GgF4LLamrQCcEJ0dFkGo3e5mZKOO2gy8U/Cgv5RU0NTo+H8qlT1WKevrDfeCX5st3hYNTjGVP9GeD8Xbs4OiqKVdOmEaTR4JISrRBUW62ctGMH58THc0VKCkdGRnJBYiKfDQyo4apVs2dzfV0dIUoo/T8KCykKCaEkOJhzdu1iQXg4lyYnU2+zcd6uXSQHBeGSkleKiri3uZkdIyPsslrZZbXy07g4nu3o4NfJySTo9VyclESIVqv6mcAbBjvgdHJeVRV/SE9X/XnPdXZSbjZzV3Y2Z8XH07dgAWdVVhKi0TBV6bFSoATEZBiNY3rSz4+IwKOUBro5I0P1VxyjNAS7t6mJ6WFhHBMdzWvFxep995+SErYr4+9zOjlayd+oHx2lrKKCeeHhbLBY+FFFBQ/l5tKidFwdcDrZMjzMgMtFhtHISTExnF1ZSaxez7MdHTyal0e/y8WMTZuYHBJC14IFtNntpK5Zw1lxcSyMiOCkmBgy1q5VJ/ltw8PohSA3OJjNFgvlZjO/TEqibf58DMuWkRoURMu8ebzX26veH3/KzGSdxaL2kdkyYwbTNm3iDiUsOlqvJ8lg4KdxcTyam8t7fX2cGhtL/egoDimRZWVcX1fHubt20TJ3rhra3ON08kBODpNDQ7lq924e3Uub9G/CD0agfDEwQI/TSZ/TSaSSnBWr1zOiqOjPdnTwfGcnox4PMXo9TxcUcN6uXbzS1cXOkRGeUmo7nRQTQ47JpFbYnRIayrTQUNKNRnxr1ZbRUfRC8MeMDP7c1MQ5lZV8oJgyYvR6niso8PaesNvJM5k4Iy5Ora57XHQ0HymfvbCqCqdyA/jzWF4ebXY700ND1QiU4/3qQF2UmMiJMTE80NrKjpERys1mni4oIFjJpXhJcRr7Wsj6YtLvaW4mTKtlQXg4W4eH+U1KCj+OiVHDhh9rbWXV4CD/GB0lUqcjTYn8uaiqSh3HI62t/D49XbVf/0FZdYvyci6truY8ZUW6bmiIWzMz1ZBQh5RqXsXT+fljmnZFK/6YEK2WrSMjYxzbvlpnzxQUjDE9ARSFhPCMsmIM02oRwO/q6nikrY1T4+L4d0kJqwYHOSEmhmG3m4uqqtg+MsJ749oNdCn9uq1ut9qwaFFEBE/m53NcdDSbLBZe6+5m7dAQ2xV/VZzBwBEVFd4CkTYba4eGMGq1atLa+6WllIaG8nPFbPlGdzdbhoeZHR6utjsGuCQpidWDg1ypLH78+UdXl5pd/uOYGN7v60MvhNr/B7yT7hdTp/JUezvv9/XxWlERx0RHk2008s6kSWSvXUvsqlXkKfWh3lTKwRwVFcX0jRv5VXLymNyGv+Xnc25CAjVWKwVKRYljo6P5W1sbpSEh6DQaMoxG7h5XCWBBRAR3KOV6csa12q0bHeXsykqWRESwbWSE//T2kh8czClxcfwqOZm1Q0PMDA8f0yxuImINBnKMRrWV7x/8moGBtyVEq91OWWQk66dPV027sqyM+RERaoSaXggsbjdfmM10OhyUKt//QGnDPC88nBCtlhvS0ykMDvZqYcPDDLlcqh8nw2jki4EB9bm+OCmJBIOBz/v7SVIWaKK8nL9mZ/NadzevdXer98azHR08WVDA7UpIP3hba/taNvxRMdvf1tDAnU1NYyoq/729nXaHw1t9Iy6ODKNRDULwZ8TtptPhYPngoGpdebStjftzcni1q4v1FktAoOyLaaGhvFRYyAlKJM3zBQXkBwez22rloupqdaVcN2cOdo+H39fVqaaIpzs6eKqggI1DQzzY2kqcXs8/u7tZNm0arymlJ+D/+1+vs1gYcLm4MiWFPyurBh93NzV5QyyViWS3kph3TWoqD7W2qnZXgBNjYni4tZWm0VEy/B7CepuNV7q6OLKoCI0QhCuT5aDbzeDChYTrdFxSVbVHoh/AtbW16g3U4XBwe2am2oXPsnAhphUr1MzzeeHhROp0fKgIuLd7ezkiMpLHlPyLSL1+jAkE8BaUlJJHlXyJ2UqPDv/YfJ/GV2O1MjU0lPtzcthksXirQqel8UxHBwaNZg8f0Uxlheaf7PWXlhbuy8lRe8rPDw9nvcXC7LAw7m9pIS0oiLPj43m6vZ0TY2K4LzubK2tridbpmBQayif9/czbvJlBl4vH/Yr7WVwuJBDu14rZv0JzUUgIcXo9b/T0qFn1ekXT9X0nSAisbjcf9fWx02rlVzU1/Le0FH+sbjfbhoc5q7KSU2NjecuvKKmP+Uoy7Xu9veqk4rteszZvVvNs4P+byZk0Gl4rLqbBZuPJ9nY1VN4hJSNuN3U2G1+YzWrhwd02G1M2bkSAGpiwZXiYZWYz5oULOXXHDqaEhrJ2cJANFgtXpqYyuHChWmH4nuxsbyi5241Rq+XjyZOpttk4WSnHUxISwrTQUKweD1NCQ7HHxtLpcGD3ePhVTQ2/SE7mzqYm/t7ezpP5+fxCEajvKv17rvCzEuyLWiUS8v3eXt7s6eG5wkJCV6xg1OOhbd48koOC+LS/n2O3bVNbJ6vnU4kIPF9Z9GSbTGOu//SwMO7LziZar1e7WP4mJYUMoxGdEJxVWckFCQl8MjDAe3196j16U3o6s5V797G2tjFRof4tfU+PiyPdaOQvShDAaXFxFK5fz/lVVUwJCVFL4n/e30+8wcAdWVmsHhpSyzy9XlTE4shILq2uVs+fEEKt5u1DlJfzt7w8HszJIc9k8lbq2LmTs+Li0Gs0rJw2Te2kerD5wQiUVMWHAN5uZRdXV3N3VhYGjYYZoaG4pGRWeDhxej0PtbbyV78SIT6HXJrRyB8zMhh2u9U+BE+1t/NSZyerp0/nF8nJzAkPZ7nZTIhGg8Trv1jsF7ljl5IBl4uyyEg1Y/5vbW18MmUKH5aWqslTACXK6sc27ob40mzmP729nF9VxatFRTTMnatm997Z2MhjbW08U1BAjc3GysFBXi0qUifDP6Sns1zRZpaazSytqOC5ggIuNpkwarUcHx3NR/395BiNXJCYiEmjUYXG7ZmZJCgdDDsdDpwejxqd1TBnDlnr1nFkZCQuKbmmtlYtrTIpJIRPJk9Wm06Bty7U4i1buDQpicLgYI7eupW7s7K4MCmJi6qrKQ4J2UOgzAkLo2f+fMJ0OtxS0qWUbgdYFBnJv4qLmRkWhktK3u7tZfXQEMXBwdTabNzY0MAXZrNabmJSaCjv9vaqSW63ZGRweXIyP09I4NOBAcJXrlR9KBMx6nYTt3o1c/wc9b4+Ez5eLS7GLSV3Njay02qleYK2qqfu2KF25POVVX+xo4OLqqvV8FjwJqX6Vx8ACNXpOCsujjuampgaGsqWmTNxS0nj6CjDbjcjbjeVVqsqTHzn/dxdu7gtI0MNj+9fsIDoVatIMhgoUyLSPurvp3zqVLKMRiJ0OtWfcNL27byv1CeL0Go5NS6OG9PT+WxggGtqazk5NhajVsvciAgyjUaG3G6WDQ5i0mqZoywuRtxuVg8Okh8czOcDAzyUm0tpaChxSvXh2WFhaISgZXSUf3R28vBXaCY+PFJyxe7dnBgTw3qLhZe6uigJCeH46Gje7u0lRHkGso1Gbs3I4NKkJNL8FmrHREfjWrKEk7dv58n2djbMmDFm/+FaLeVmM3PCw5kbHs6SigruysripowMXiwsZMDl4rS4OLU7qi8I4e7mZuaEh3NybKy3f0xfH8dHR/Ph5MmsMJs5Nz6eB3NzOaeykhNjYlR/lX9ofpHio3wY1AXfWyUlnBIby/HR0VxXV8dum42zExLUBaAP/7yyy5KSeLqjgymhoWrjtFWDg1ydkqJqPnqNBj2Hhh+MQLG53QSvWMEdmZlcl5bGLRkZ/L29Xc0zmKX0LVg5OMhN6eneRls2Gx0OB79VbOkJBgOPtbXxu7Q0tfPg/S0tYxKA7mxsJD84GKNyU5wSGzumk1+sXs/jbW1ogCcLCni6o4PC4GC2Dw/zUlfXmH4ThcHBfFhaSuG4xkc+AfPvnh4uTkzk+O3beaukxGsDVXwI/+np4Z/FxQy5XBT5ff/4mBi1lpEvCODp9nYuVlY0H06ezG6rlSAlPh+8/cptHg/ROp3X9tzYyKNtbTTPnUv1nDl0ORxUjoywS8kN0Ws0bJs5k1Ctlux16wjTaul1OseYYoQQnBYXx13NzdzV3Kz6qy7ctYulStHO8eg0GrVlMECW3+rOpNEwPTSUnHXriNbpuDIlhVeLipgVHk6ETsfa6dPxSMnnAwNcq6x2r/Ur2ninEorqL/RuSPPPoR3LMsUXcXpcHKunT1f7fPsTo2hNOSaTWvDwpvp67mluZvvMmUxSalJtHRmhJDhY7V3hSxiNVb7f5XDQareTNK7bIcDtWVmcGheHw+PB4nKhE4IIrZbcdevIN5momj2bNYqP5d7mZnVyOTIqiskhIZwdH8+I282bJSVkKvkUd2RmEqnTjQkC8PF6UREVw8Msqqhg0O3mhc5Ofp2czFs9PVykBH0AamdNHza3mxqlxL8vZ8oXlHJ1SgoP5+VxZFQUrfPnj7mmx8fE7NFBc28IvCYfgTc5MkSrZUlkJNcrYbY+coODuUO53v5oFG1lUUQEbyjtlP0bgo16POy22Rh2uzEIQVlkJDc3NPCT2FjubW7mT8o+fVYJWVZGu93OdXV16gL0L9nZvNrVxTrFf9pstzPgchGvhPJfV1fHJouFV4uLebunh2SDgbb583m/t5cfKT60P2dlsX14WI1WfF2pCK4ujvzmEPBGw80KC+O2zEyOiIzkqYIC7mpqYsGWLYwuXuxtcayY9x73a6p3KPjBCJTtyoPUMDpKiNIBLkKnU+sRTQsN5bmODuL1eo6PiWFWeDj3t7TwRk8P6UYjp8XFIaXkosREtYc0eOsRzfJbpeo1GobdbrUBVMqaNZyu2OvBW4wy12RCr9yozxUUUBISwqtdXfyzu5spISGq7fd3dXVUWa3sUDrq+fBFiM0OD1dXvb6b66XCQhINBuYoE+n4Ve0mi0XNFh50uzk7Pp7N40rMVAwPI0EVKNbFiwG4sb6e3TabWjYmTpnwHmlt5Z7mZipmzlQFaalyjny+iNDlyxnxeMb4Jn6VnKyGM64eGlKj2X4cE6O2LN0bR1RUUG42qy2Y3+ntVc9Bv8vFqqEhlkRGqo2h5oSH02m3s0DpOwHwvtJ/4yS/hktZ69ah8Rv33igNCeH5ggJOiImhaXSUO5qaODkmhql+94KP+tFRNTx3fKJkqtFIqtHIs+3tzAgL81ZrSEnhcr+mZVq8TvzxFZPBW1/qd3V1atkQ/1pepSEhCCGYGxHBCrOZbSMjXJSYyCeTJzM9NJRQnY6zN22icXSUMK2W8qlTEXibpG0bHmbBli08U1DAEuV8gVcrWujr4NjRwTKzmZnh4eSYTEwJDVXL1JwzLsm2IDhYLXnkaziWbzLx6eTJzB3X79xHrMHAKbGx7LJa1eq5+0IIwYqpUylUFnQ3jBMk+0uIEok5nma7nVqbjVCtFiEEt2ZkMD88HKfHw3KzmUHFZLY4IoJuhwOb201yUBCv+5nFhRC8V1rKzE2bEOXlPJWfz4f9/Yjyck6KiWGXn/nyXsW8Bt6Wzr7umL7F7OyWFiJ0ujHdXd/s6dlDoLxUWMipO3diEEK1VPg60a4fGlIXAU+0twcEyv6SazLxelERi/xuzEuTkrB7PLzW1cXCiAie7uhQJ8Jeh0OtDpuvrISFEDw4Tv32NWLyURIczC2NjTygZNgCaktO8JpaJvkJpAGXi16nk2tSU5kSGqqG8oHX4b98cJBBl0u96OBdYeUqN9eI202sXs/v09K8vSqU5EeAD/v6OFEpc+773Vf6JUCdEB1NcUiIGsoI/2/S0AnBmUq0E3hNJTtHRjBqNHxUWkqIVotRq1XNYS8WFjJ5nCblT5bJpFYY8OGQkllhYfwtL4/7W1pICgpibng4R4yLZpoIX0FOoUxgPlv4CdHRXJKUhFUpz/9cQYGqfUXqdLxeXKwKwsKQkD20P/AmS/oeuOi9CLZEg4FjoqMJ1Wq5raGBd3p7WWE2q850fzYMDbHOYuH8Xbv4R1GR2mPGh8vj4Rc1NWMae/kTazBgdrmoslo5edw2X7azLxTYJ0AjtNoxTeKCNBo6lHBiq1JJOlSnU30gFrebGZs24VmyBICdIyPsttl4sbNzjEDxIaXk3IQE9fdenZLCeosFp8eDXqNh6dSp3iZWig8l12Ti6Kgo+l0uJoeG4lmyBMn/awV749WuLnaMjIwJ0tgXPsHzaX8/f29v58XCQrXy91ctEnwcFRXFrLCwPdoV55tMPJSTQ7ay0NIJwTnx8ZSEhPB4Xp56nkY8Hj4ZGCB4xQp1weNPlxLAIpR/Pk6NjWVqaKiaK1cWGcm0TZu4oKqKuUoIv++3Rep0XOunQVfMnEmnw8HCcYmxABuUBWO7w8F1tbU82NrK8wUFPJGXR57JxB8zMtg+MqIutA4lPxiBEq3XqyUYfLilJEavpygkhCMiI7kzM3OM8ABvrH3pBOYXH39pbubDvj419vvEmBjiDQa0QiDwFn6cMcGq1cfNDQ2cGRfHCTExnDNufNkmE1E6HeOrFbg8HvTLl/OTmBjeKClh+8yZROn1BGk0tNvtzN+8mb/m5Kh9Qfxrbt2Qnq7moSQYDFxTW8vMsDCuVsxAvvIk1/g5QX1Cw2fLjjcYVMftsqlTGXG7Od4v8cuH0+PBsHw5iyIi+HTy5D2cg6fs2MHP4uOZGR7OP/0q7O4Po4sXY/XbX1lkJO9MmsTMsDBSgoL4QFnlhfg50lcNDfGjrVtVAftCRwd3Nzezdvp01Tw1smgRqwcHiVm1imCNhhFFOxvPgMtF6po13JqRwa2ZmbQ7HFzlp1X4c1x0tBqoMRE6jYYn8/PVttO3NzRwR1MTn06ezNFKNOECxScxnl8kJfHFwAAXJiZyRnw8bilptdsJGjeJxer1XJiYSL/LxeU1NfyruJgzjUa2KK0MglesIE6vV+/70+LiWOMXMTUeX1+Uc+Pj+UtODh/393NjQwPnJSSgx7sY8gUQzPeb5Hx3lVCej31hdjpZajarQSMHwucDA7zT2+uNWJo+Xe15sz/8uamJjRYLNXPmjHk/1WjkGr9J/KzKSi5LSmJSaCiX+gm8E6KjCc7P9wqMCQTmidu3szAighXTpvFpfz8XJybyRF4eJ+/YwcKICFXLu8GvmnSSUhMMUBt5vVxYiN3j4dLkZO/53svv8S3k1g4NcW92NvEGAxckJqrCPDEoiN3jfushQ0r5vf83Y8YMOeBwSJYulXc1NkofP6+slCxdKpNWrZJ9DocczxtdXfKh5mbpcLv32OYjbfVqydKl6utzd+6Ul1dXq6/rrdYJ9+3j0ZYWucpsllstFnni1q1yu8Uy5rubhob2+I7b45EsXSpZulQuHxiQLF0qP+vrk1JK+X5vr2TpUnnGjh2y226XNSMje3z/xro6ydKl8oX2dsnSpXLK+vV7HZ+UUr7V3S3/1dWlvi5at27Mb94Xf25slNv8ftP4cfynu1t9vXxgQJ64datsHR3dr3374/J45NL+fsnSpfK1zk7ZbbfLN7q6ZJfdrn5m7eCgZOlS+Y+ODimllImrVkmWLpXt445XYbFI7bh7ZTxbLRbJ0qXyhtraAxrn9bW1kqVLZcVezomUUnbb7fK3u3fv877z4fJ4pMfj2e/jj7hc8qqaGjnkdEoppfR4PNLqcsn/9vRMeK/tDd+9w9KlssFqlSdv2yZP2rZNHcs7PT3ypG3bpEU5jpRSPtzSIlm6dL+vr9XlkpdVVcnP+/v3e1w+eux2+VBzs6ya4P7/Ku5saPjKZ0JKKR9obpZNNtse7/+mulrGrFix1+8lrVolU1ev3uP9BZs2SZYulb9T7qmQZctk3MqVUkrvc/1KZ6eUUsp7Ghvlr6qr1fMvpZTDLpdk6VJ5e0PDHvvNXbtWTlq/Xnb4nfcnWlvVayellK90dsoramr2+C6wUR7EufgHo6H4iuRt9XOeTlLMHa8VFU1o2ni1q4v/9vWRaTSOMSX5c2psrJoRC96sWn8TUva6dWNa6Y7nSkUTuK2hgQ/6+5kVHq6axO5ubuaDvj7a/RyV4DUTDC9ahJT/XxHUV2ZlcUQEq6ZNoyg4mCi9fg/H6iaLRS0HszAigh/HxND+Fau3U8f99t+npe2RE7E3bt7H6vLHMTHc0tBASUgI+YqN/YP+fpabzXtoa+M5qqKCL81m1YzxaX8/JyjRa7U2G+ckJHCGn8kOvKu8IyIjSVb8SmumTaPL6VSd4T6mhIbi+grzSJbRyD8KCyc0MeyLXyYn0263U7wPR3OcwbCHaXVv/L6ujqc7OsZEo4ny8jH5TP4Ea7U84pdfYFe0kxyjUQ25BW/C3bHbtvFSYSHHKFqSPxcqpT0+7u8n02Qiy2gkOShIXZFfWl1Nr9PJsNtNqGKu9XVXdO7nvWPSatX8rwMl1mAYo00cCHoh1BI2++Lavex/amgoVVYrLo9nwjbSH5SWThiWm6rch5cqZsSHcnNVs9un/f2qP9TnY50eGqpWz/D5b97q6VFNZj7+VVzMjE2b+GxggPOUyElfBFrj6CiZJpNa4fixQ5B74s8PRqCkG428VVIyxvz0y6Qk5oSFjYnt92F1u9VCbZP24Rt4eNwFiNLpeKytjecKCwFvJ7XjJnggx3NlSgqzwsLGOCijdTrVJj4enyknVKsl2WDAd9uG6XSqieHm+nrubm7GsnCh+lBfptSqapw7lwyjkVeKig445vxglWXwSDnG0fxQbi4/T0jYr0n65wkJY/xK00JDSTQYuDsrSw2/HU+CwcAzBQUkKkI202Qi0y9SzJ9Oux2NEMRPEOkE3vP88wlqqX0VOSYTr/g5ab8p7/f17TH5nRwTs8ciYG/4fE9140Katw0P0+lw8FZPz4QCBeDshATVjDz+OVg1bRrVVuuY8/efkhJ6nc4x/V4OFUsHBrinuZnnCwpIPcDjnRQbq+ZPfR26nE6+MJvZm9hstdvVe9CfY6KjmR4WRoGy2PD3G20dHlYrZ3/c14dJqx1jZkswGGiZO3dMUVYfvurX/lGWlyUlkW00qub8K1NSxvh6DxkHU905XP9mzJixhyonpVct3jU8POE2p9stw5Yvly+0t0+43cfNdXXyqC1b1Ncbh4ZUk8o35ZGWFjljw4YJt7F0qTxyyxZpd7tlo80mR1wuKaWUNSMjMnrFCvmf7m75UkeHjFmxQrr8TCJvdHXJvLVrZZui/l64a5f80wRq8rdB7tq18pdVVd/a8TYODUmWLpXv9vRIKaW8r6lpj/MjpdfkxdKl0rhs2bc2tq/LM21t8g91dd9oH063W46OM69ZXS65aWhon+baD3p75Rk7dqjms+8SV9bUSJYulS99jWfxl1VVMkExNX0daq1W+Vlf315NkSxdKqdO8FwfW1GhmrvGc8LWrXLmxo3q91m6VD7Z1iYfbWn5yvEcW1EhWbr0a90nHGST18EvN/kd4uaGBoo2bFDVRX90Gg0blcQm6z7U3xc6O/lCiTgCeLK9fUyv5/1l6/AwZVu2jAnhvSo1lY0z9145+kuzmZ0jI2SuXcunSrZskEZDv8uFQaPh/MREehcuHNNx8Iz4eGrmzFHNPq93dfGqXyOpb5OLEhM5yi+ia+3gIGVbtlA1LhrsYJFsMBAkhPrb7R4PfS7XHjd5iEZDsEbDbV/DGfxtc2lyslpe/esgpRwT5u7DpNUyPSxsr1Fu4H1+/j1Bf3nwlpIp27Jln8/OoeT6tDSeyMtTAx0OhN+np6ulkr4Oz3V0cML27RM65MFrep3ovOQHB6ulVsbzm5QU/qCEQd+Xnc1N6elcXlOz146b/ox4PMTodHsNGgF4ur2da/ZRAv9g8YMxeU2ET/WutdkmjMS6praWj5QyBydMEMUEcEFi4piqoMEaDXtvHLx3hpWM4v1VO0cXL0ZK6RUefpNkutG4z/DITRYL64eG+GVyMhohmBcRMaYk+LfJ9NBQ7mpuZr7Sg77P5WLZ4CDW/bSxHyhJQUGMKmGx4E0AGx+zD96w7L1Fd/0QiVq1Si1CeCDclpHBu319e3StBG/e17IJGqN9W6QZjWpB1AMley9m0P3lkqQkjtmHIPt4L8Kq3mZj+8jImGK0PnyhwqfFxan9UCbvI/rUn7dLSohbvZpXurr2SPL04eurNN50ebD5QQuUXyUnUxYZScFebqBbMzKI1+uZto8Ld/e41aHd42Gpn8ayvyyIiMC+eLHqZPsqfM66ZKU8yP5+78KqKnaMjHBmfDwxej3vTZrE4REn3uACgxBqUc0TY2IO6BwcSqqtVuL1+glt0j8kfKvo1gMIq/VxSlzcXoNV7szM5NaMDDWB93+JHJNJ7a0yEfU2mxqm7s8psbHY97K422W1qtrie0oC8Fnjgk72hi95+9h9+HL/mJFBwyFo+TueH7RA8TWfCZ5ghQUwNyJCrbS7v1ySlLTPC7cvDmQiFeXlzAwLY8OMGQf0vT+kp/NgS4uap3BtXR0ROh1/9UvE/La4traWkpAQEv3U/O+CMNlttar9QZoPcNX+fUSWle1h8vqmCCHQf0XS4v8qP925k1yTaY/cj3d6e9VIr/G4paRFsYT4msztb6KmU3oTiPel0fxpglI0h4IftED5c1MTj7a10Tl/Pgl7ieY5UP6hZPb+dD+jbL4JGy0Hblw7NyGBc/1CctcMDak1o75tfpmcvNcoqsNJsFZLiEaj9kP5odOjlDsP1f2gH/fvDAl6/R6N2cBrworby7N4fXq6Go3ZOS6N4Kt4JDd3wrI9h4PDdocJIQqAf/m9lQ3cCkQCvwB83sCbpJQffp1j+GoK9TqdB02gFAUHH5LWmeNxK6Urvilvl5SMKeH9bRKn1/NASwvHRUePCQE+3KQEBTH8P+RDiV+9mji9nm6l70uAQ8sXU6cykU1kudlMiFarFqP15+P+fnRCcGJMzAHPVbHfoUXbYXvKpZTVwFQAIYQWaAPeBi4CHpJS3v9Nj3F1aqq3YdZBjIv/1dd0BB4oX1UDaX/J3c9KrocCg0ZDpE532ARagP9n9BAFQgTYkxqrlVCtdo86cucnJmLYy7Ng93hw/wCek+/KsvEooE5K2bS3ULyvg1tKJIwJq/2+IMrLKQwOZte4SsTfJ+5tbiZGrx9TbyvAt8/+2uIDHBzO2LmTopAQto/ztV62jwKYfzvEVYC/LQ6/h9TL2cDrfq+vEEJsE0I8L4SYMD5PCHGZEGKjEGJjz15i5R9qbWX25s17lBT/vlBltR7uIXwjLk9O5vyvKLES4NDTbrdj9isfFODQ8s/i4v1uGvZDQxzs6I8DHoAQBqAdKJFSdgkhEoBevJ1K/wQkSSkv3tc+Zs6cKTdu3LjH+/U2Gw+1tvJwbu73Ukv5vvNkWxtPtrezeebMg2bCC3DgiPJywrVaBvfSnTLA/y5CiE1Syr1nVx8g3wUN5Xhgs5SyC0BK2SWldEspPcAzwNe2+WSbTDyWlxcQJocJk1ZLgsEQECbfAcK/Q0ERAX64fBfusnPwM3cJIZKklB3Ky58COw7LqAJ8Y17u7Nxr8csA3x4BH0qAb4vDKlCEEMHA0cAv/d7+ixBiKl6TV+O4bQG+R1yWnHzYyr4E+H8abTZCtNoJe8gHCHAwOawCRUppBWLGvXfeYRpOgINMnc3GO729/CzgmD+sZK1bh1GjwfY/lHsT4PDwXfChBPiBEqnT7bW6aoBvl+xvoUdJgADfBR9KgB8on/b3j6nUHODwEPChBPi2CAiUAIeMS5KS1NbFAQ4ftVYrIVrtHq2QAwQ42ARMXgEOGcvMZp5qbz/cw/ifJ2/9etLWrDncwwjwP0BAQwlwyMgPDt5r3+0A3y6zvkEP9QAB9peAQAlwyNhX7aIA3x4BH0qAb4sDNnkJIaKEEF+/IXOAAAECBPhBsl8CRQhRLoQIF0JEA1uBF4QQDx7aoQUIECBAgO8T+6uhREgph4BTgReklDOAHx26YQUIECBAgO8b+ytQdEKIJOBM4P1DOJ4AAQIECPA9ZX8Fyh3AJ0CtlHKDECIb2H3ohhUgQIAAAb5v7G+UV4eUUnXESynrAz6UAAECBAjgz/5qKI/t53sBAgQIEOB/lH1qKEKIecB8IE4Ica3fpnAg0Cg8QIAAAQKofJXJywCEKp8L83t/CDj9UA0qQIAAAQJ8/9inQJFSLgOWCSFelFI2fUtjChAgQIAA30P21ykfJIR4Gsj0/46U8shDMagAAQIECPD9Y38Fyr+BJ4FngUA98gABAgQIsAf7K1BcUsq/H+yDCyEaAQteIeWSUs5Uyrv8C6821AicKaUcONjHDhAgQIAAB5f9DRt+TwjxayFEkhAi2vfvII3hCCnlVCnlTOX1H4AvpJR5wBfK6wABAgQI8B1nfzWUC5T/r/d7TwLZB3c4APwEKFP+fgkoB244BMcJECBAgAAHkf0SKFLKrEN0fAl8KoSQwFNSyqeBBCllh3LcDiFE/ERfFEJcBlwGkJ6efoiGFyBAgAAB9pf9EihCiPMnel9K+fI3PP4CKWW7IjQ+E0JU7e8XFeHzNMDMmTPlNxxHgAABAgT4huyvyWuW399G4ChgM/CNBIqUsl35v1sI8TYwG+gSQiQp2kkS0P1NjhEgQIAAAb4d9tfkdaX/ayFEBPCPb3JgIUQIoJFSWpS/jwHuBN7F67O5V/n/v9/kOAECBAgQ4Nvh6/aUtwJ53/DYCcDbQgjfOF6TUn4shNgAvCGEuARoBs74hscJECBAgADfAvvrQ3kPrwMdvEUhi4A3vsmB/6+9+4+9q67vOP58rRXEXwFdN5FCWhRNCtv40RFBZ9wgGaKxwxiHmZPFbdVkJKJmG6z/sC37Q4ZKNjeWKixuMogBpoTxexKXJYIUrYWuoOXHRrFKh9vAzQCF9/44p36v9dtvv1/43J7v/d7nI7n5nvO599y+z5t+++Kce+7nVNWDwC/MMv443Sk1SdIEme8RysUjy7uBf6+qHWOoR5I0oeb1xcZ+ksj76GYcPgx4epxFSZImz7wCJcl7gK/RfZ7xHuDOJE5fL0n6kfme8toA/GJVPQaQZAVwG3D1uAqTJE2W+c7l9VN7wqT3+AK2lSRNgfkeodyU5Gbgyn7914EbxlOSJGkS7e+e8q+jm1vr95O8C3gzEOCrwBUHoD5J0oTY32mrS+juV0JVXVtVH62qj9AdnVwy3tIkSZNkf4Gyqqq27D1YVZvoboAlSRKw/0B58RzPHdKyEEnSZNtfoNyV5Hf3Huzn2bp7PCVJkibR/q7yOo9uAsffYCZA1gIHAWeNsS5J0oSZM1Cq6nvAqUl+GTiuH/6nqvry2CuTJE2U+d4P5Xbg9jHXIkmaYH7bXZLUhIEiSWrCQJEkNWGgSJKaGCxQkhyZ5PYk25JsTfLhfvzCJI8m2dw/zhyqRknS/M13tuFx2A18rKq+nuTlwN1Jbu2f+1RVXTzHtpKkRWawQKmqncDOfvnJJNuAI4aqR5L0wiyKz1CSrAJOAO7sh85NsiXJ5UkO28c265NsSrJp165dB6pUSdI+DB4oSV4GXAOcV1VPAJcCrwWOpzuC+cRs21XVxqpaW1VrV6xYcaDKlSTtw6CBkuRFdGFyRVVdC910L1X1bFU9B3wGOHnIGiVJ8zPkVV4BLgO2VdUnR8YPH3nZWcC9B7o2SdLCDXmV15uA3wTuSbK5H/sj4L1JjgcKeBj44BDFSZIWZsirvP6V7v70e7vhQNciSXrhBv9QXpK0NBgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmDBRJUhMGiiSpCQNFktSEgSJJasJAkSQ1YaBIkpowUCRJTRgokqQmFm2gJDkjyf1Jtic5f+h6JElzW5SBkmQZ8FfA24A1wHuTrBm2KknSXBZloAAnA9ur6sGqehq4Clg3cE2SpDks1kA5AnhkZH1HP/YjSdYn2ZRk065duw5ocZKkn7RYAyWzjNWPrVRtrKq1VbV2xYoVB6gsSdK+LNZA2QEcObK+EvjOQLVIkuZhsQbKXcAxSVYnOQg4G7hu4JokSXNYPnQBs6mq3UnOBW4GlgGXV9XWgcuSJM1hUQYKQFXdANwwdB2SpPlZrKe8JEkTxkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDUxSKAk+fMk9yXZkuQfkxzaj69K8sMkm/vH3wxRnyRp4YY6QrkVOK6qfh74FnDByHMPVNXx/eNDw5QnSVqoQQKlqm6pqt396h3AyiHqkCS1sxg+Q/kAcOPI+uok30jylSS/NFRRkqSFWT6uN05yG/DqWZ7aUFVf6l+zAdgNXNE/txM4qqoeT3IS8MUkx1bVE7O8/3pgPcBRRx01jl2QJC3A2AKlqk6f6/kk5wDvAE6rquq3eQp4ql++O8kDwOuBTbO8/0ZgI8DatWurbfWSpIUa6iqvM4A/BN5ZVf83Mr4iybJ++WjgGODBIWqUJC3M2I5Q9uPTwMHArUkA7uiv6HoL8CdJdgPPAh+qqu8PVKMkaQEGCZSqet0+xq8BrjnA5UiSGlgMV3lJkpYAA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDVhoEiSmjBQJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqYpBASXJhkkeTbO4fZ448d0GS7UnuT/KrQ9QnSVq45QP+2Z+qqotHB5KsAc4GjgVeA9yW5PVV9ewQBUqS5m+xnfJaB1xVVU9V1UPAduDkgWuSJM3DkEco5yZ5P7AJ+FhV/RdwBHDHyGt29GM/Icl6YH2/+lSSe8dZ7AT5aeA/hy5ikbAXM+zFDHsx4w0t32xsgZLkNuDVszy1AbgU+FOg+p+fAD4AZJbX12zvX1UbgY39n7WpqtY2KHvi2YsZ9mKGvZhhL2Yk2dTy/cYWKFV1+nxel+QzwPX96g7gyJGnVwLfaVyaJGkMhrrK6/CR1bOAPaerrgPOTnJwktXAMcDXDnR9kqSFG+ozlIuSHE93Outh4IMAVbU1yReAfwN2A783zyu8No6pzklkL2bYixn2Yoa9mNG0F6ma9SMKSZIWZLFdNixJmlAGiiSpiYkPlCRn9NO0bE9y/tD1jFOSI5PcnmRbkq1JPtyPvzLJrUm+3f88bGSbJT2VTZJlSb6R5Pp+fSp7keTQJFcnua//+3HKFPfiI/3vx71Jrkzy4mnqRZLLkzw2+t2857P/SU5Kck//3F8kme1rHT+uqib2ASwDHgCOBg4CvgmsGbquMe7v4cCJ/fLLgW8Ba4CLgPP78fOBj/fLa/qeHAys7nu1bOj9aNyTjwL/AFzfr09lL4DPAb/TLx8EHDqNvaD7IvRDwCH9+heA35qmXgBvAU4E7h0ZW/D+011hewrd9wNvBN62vz970o9QTga2V9WDVfU0cBXd9C1LUlXtrKqv98tPAtvofoHW0f2DQv/z1/rlJT2VTZKVwNuBz44MT10vkryC7h+RywCq6umq+m+msBe95cAhSZYDL6H7LtvU9KKq/gX4/l7DC9r//qsdr6iqr1aXLn83ss0+TXqgHAE8MrK+z6lalpokq4ATgDuBn62qndCFDvAz/cuWen8uAf4AeG5kbBp7cTSwC/jb/vTfZ5O8lCnsRVU9ClwM/AewE/ifqrqFKezFXha6/0f0y3uPz2nSA2XeU7UsJUleBlwDnFdVT8z10lnGlkR/krwDeKyq7p7vJrOMLYle0P0f+YnApVV1AvC/dKc19mXJ9qL/bGAd3emb1wAvTfK+uTaZZWxJ9GKe9rX/z6svkx4oUzdVS5IX0YXJFVV1bT/8vT2zD/Q/H+vHl3J/3gS8M8nDdKc6fyXJ55nOXuwAdlTVnf361XQBM429OB14qKp2VdUzwLXAqUxnL0YtdP939Mt7j89p0gPlLuCYJKuTHER3L5XrBq5pbPqrLC4DtlXVJ0eeug44p18+B/jSyPiSnMqmqi6oqpVVtYruv/uXq+p9TGcvvgs8kmTPzLGn0c02MXW9oDvV9cYkL+l/X06j+6xxGnsxakH7358WezLJG/s+vn9km30b+oqEBlc0nEl3tdMDwIah6xnzvr6Z7rBzC7C5f5wJvAr4Z+Db/c9Xjmyzoe/N/czjKo1JfABvZeYqr6nsBXA83a0gtgBfBA6b4l78MXAf3RyBf093BdPU9AK4ku7zo2fojjR++/nsP7C27+EDwKfpZ1aZ6+HUK5KkJib9lJckaZEwUCRJTRgokqQmDBRJUhMGiiSpCQNFWoAkr0qyuX98N8mj/fIPkvz10PVJQ/KyYel5SnIh8IOqunjoWqTFwCMUqYEkbx25J8uFST6X5JYkDyd5V5KL+ntL3NRPn7PnfhNfSXJ3kpv3TI0hTSoDRRqP19JNrb8O+Dxwe1X9HPBD4O19qPwl8O6qOgm4HPizoYqVWlg+dAHSEnVjVT2T5B66G8Hd1I/fA6wC3gAcB9za3whvGd10GdLEMlCk8XgKoKqeS/JMzXxY+Rzd712ArVV1ylAFSq15yksaxv3AiiSnQHdbgiTHDlyT9IIYKNIAqrtl9buBjyf5Jt3M0acOWpT0AnnZsCSpCY9QJElNGCiSpCYMFElSEwaKJKkJA0WS1ISBIklqwkCRJDXx/7jtGO2v5bZtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(labels=('Time', \"Counts\"), # (xlabel, ylabel)\n", + " axis=(0, 1000, -50, 150), # (xmin, xmax, ymin, ymax)\n", + " title=\"Random generated lightcurve\",\n", + " marker='c:') # c is for cyan and : is the marker style" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The figure drawn can also be saved in a file using keywords arguments in the plot method itself." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD4CAYAAAAXUaZHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABF1UlEQVR4nO2deZwUxdnHf88uK7cIch8CGiAajAtZwaDihSBiBKMG9I0CEhVFAV8/EFBMjK8oKmrQKAExiBcIogER5VLjrQFRBJVDUVnkFBS5YbfeP3ZqrOmp7q6+pmdmn+/ns5+d6aO6qrr6N08/9VQVCSHAMAzD5BcFcWeAYRiGCR8Wd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8pAqcWcAAOrXry9atWoVdzYYhmFyimXLlm0XQjTQ7csKcW/VqhWWLl0adzYYhmFyCiL6xm4fu2UYhmHyEBZ3hmGYPITFnWEYJg9hcWcYhslDWNwZhmHyEBZ3hmGYPITFnWEYJg9hcWcYJoUvvvgCb7zxRtzZYALiKu5E9C8i2kpEK5Vt/0dEK4joYyJaSERNlX2jiWgdEa0moh5RZZxhmGg4/vjjcdZZZ8WdDSYgJpb7EwDOs2y7TwjxayFEMYB5AP4CAER0AoB+AH6VOOdRIioMLbcMwzCMEa7iLoR4E8AOy7ZdyteaAORyTr0BzBBCHBBCrAewDkCnkPLKMAzDGOJ7bhkiGgvgSgA/ApDvcM0AvK8cVprYpjv/GgDXAMAxxxzjNxsMwzCMBt8dqkKIW4UQLQA8A+CGxGbSHWpz/mQhRIkQoqRBA+2kZgzDMIxPwoiWeRbAxYnPpQBaKPuaA/guhGswDMMwHvAl7kTURvl6IYAvEp/nAuhHRFWJqDWANgA+DJZFhmEYxiuuPncimg7gTAD1iagUwF8BnE9E7QCUA/gGwGAAEEKsIqKZAD4DcBjAECFEWUR5ZxiGYWwgIbQu8YxSUlIieLEOhskOiCq6zrJBGxhniGiZEKJEt49HqDIMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuDMMw+QhLO4MwzB5CIs7wzBMHsLizjAMk4ewuMfExo0b0b17d/zwww9xZyUv2b59O84991xs2bIl1nw89NBDuOeee2LNA1M5YXGPiTvvvBOLFi3Cs88+G3dW8pJJkyZh8eLFmDBhQqz5GDZsGEaNGhVrHpjKCYt7TJSXlwMACgr4FkQBD6FnKjusLDEhxb2wkFchjAIWd6ayw+IeE2VlFZNlsuUeDSzuTGWHlSUm2HKPFhZ3prLD4h4T7HN3pn379nj66ad9nx+WuPfs2RNjx44NlAaTH6xbtw716tXD+vXr486KEawsMcFuGXuEEFi1ahWuuOIK32mEJe6vvvoqxowZEygNJj+YOnUqdu7ciWeeeSburBjByhIT7JaxJwxXCrtlmLCRbSpXYHGPCbbc7YlT3Lt27YohQ4YEvn4288UXX4CI8MUXX7gfHJAZM2agWrVqOHDgQOTXCpO+ffuiT58+cWcjEKwsMSHFnS33dORbTRD8WllvvfUWHn300cDXz2amT58OAHjuueciv9aIESNw4MABbN26NfJrhcnMmTMxZ86cuLMRCBb3mOAOVXvCdKWwW4aprLCyxERlEvcHH3wQRGRskWfKLfPjjz+CiDBjxozA18s2Ro8ejRo1asSdDSZGXJWFiP5FRFuJaKWy7T4i+oKIVhDRi0R0lLJvNBGtI6LVRNQjonznPJWpQ3XkyJEAfnZFuRGmW8ZJ3NetWwcAuO+++wJfL9sYN24c9u3bF3c2kuTTG1SulMXEbHwCwHmWbYsAtBdC/BrAGgCjAYCITgDQD8CvEuc8SkT5r14+qEwdql4fhkxZ7nJfrkVB5BL5VLe5VhZXZRFCvAlgh2XbQiHE4cTX9wE0T3zuDWCGEOKAEGI9gHUAOoWY38jo27cvioqKAABFRUXo169fpNeT1mmuNZhMEJW4n3feeahfv37adXLhHkyYMAFEhL1798adFXz//fcgIjzxxBNxZ4VxIAyz8SoAryQ+NwOwQdlXmtiWBhFdQ0RLiWjptm3bQshGMGbOnInDhyt+rw4fPhx5JIEU91x5xQsD07JG5ZZZsGABvv/+e8/5yQbuv/9+ABXz1HshijJKd9bEiRNDT5sJj0DiTkS3AjgMQA7Z0plA2tYlhJgshCgRQpQ0aNAgSDZyEvlDEoaQ6RBCZJ14mebH5Di38klxLy8vd00v7gFPJveqSpUqAIBDhw4ZnwP83M7iQpfHbGybQZFlyqZy+RZ3IuoP4AIA/yN+LlEpgBbKYc0BfOc/e/nJihUr8PrrrwOITlCuv/76rPPnhynuf/nLX1BQUGA7OEYK9sSJE3HLLbe4Xmfv3r2x1dell17qem3pMpRifeSRR+KEE05wTTtucddRUFCA7t27x52NUBkwYAAKCgowYMCAuLOSxFdrJqLzAPwZwIVCCNUJOBdAPyKqSkStAbQB8GHwbOYX77zzTvJzVJb7P//5z0jSDUKYbpl//OMfAGDrg1b96A899JBjWkSEnTt3GuUtCmbPnu16jIyqkmK9e/duoxGm0tKPApP7adefsXjx4rCzkzF05X7yySdT/mcDJqGQ0wG8B6AdEZUS0SAA/wBQG8AiIvqYiP4JAEKIVQBmAvgMwKsAhgghzOLfMkxZWRn2798fy7XVBp9Nr3Eqe/bsCT2dsN0yTph0kqpp+OlU3b9/f6SW8d69e5N5lG4Zr9fLRss9CsrKygKHfqr1rSMXOt5VTKJlLhNCNBFCFAkhmgshHhdC/EII0UIIUZz4G6wcP1YIcZwQop0Q4hWntOPkggsuQPXq1ePORlaK+5w5c1CrVi3897//DZTOjBkzUKtWrWTYZ5jiLgnywKnRMn7SqV69Ok477TTf13di8+bNqFmzJsaPHw8gO8U9qNi9+eabIeUEuPzyywMN2tq2bRtq1qyJcePGhZanuMkup2wGefXVV2O7tvpQROWWCcKCBQsAAB9+GMyj9vLLL6d8jyJaxi5NL5a7X3EHgA8++MDXeW5s2FARdDZz5kwA6T53N6QPP0q3TFDeeuut0NKS9eSX776r6BrMp9HKlVbc48TOLbN3717s3r07I3k4cOAAfvzxx0iv4beDMogv126/U7itH3H3GpLoFWsMvpPlXlZWlhLiCaT76J2u4cSBAwfwww8/GOXZCbuoGXkNa1vUlWnXrl2RuVLl/cw114sTLO4xo1qpDRo0QO3atUNN3+4BPv3003HUUUeFei0r1gclCreMybX37t2Lhg0bOl7Hy0O9fft2RB2+60XcR44cifr166eIsBR3neXupaznnHMO6tat65hHJ9SQVCty22mnnZbWFm+55RbUr18/ReDr1KmDk046yTTrxggh0K1bt5T8uh2fC7C4x4CT5R42dg3RxJ8e1IrxK+4mbpkwOlT9Hp+ptysVJ3F//vnnASDF+vXro7eiRnZJ/LQLJ8t96dKlafteeOEFAMCOHSmD47FmzRrP13YjG12jYcDibsHvjf7222+NH6RMRst4Tf+bb74xnuDLyqpVq7Bly5bk90xY7nZC40WAvLplqlWrZnysFzZs2JAySEnFSazlsVu2bEkaCH7EfcOGDb5/DLZv346ffvrJdv/u3bvT5nTPFlE1bW9ff/21r/TXr18PIQR++OEHbN68GRs3bvSVjldY3C34EbatW7eiZcuWGDFihNHxmexQ9SKUX331FVq1aoXJkyd7vs57772H9u3bo3HjxsltcbplTPz96nW8XDOqH+RjjjkGw4cPT9lmdcs4dZB27twZp556qvHxKtu3b8cxxxyDm266yfVYXfkbNGiA4447zvbYDh06oFGjRq7pmFwrzOOt59j9yC9btgxPPfWU57RXrFiBY489Fg8++CDq1q2LJk2aoHnz5u4nhgCLuwU/4i4tlpdeesno+Gy13EtLS31fZ/Xq1aHlJQyh9Rotkw3iDgDz58/XXkOK9cGDBx3P//jjjwGYdaiqSPeHlygyL53WTj53p7SzRdz9uoO+/PJLAOlhn5nw2+eduK9fv97x9dANVdy3bNmS4mawo2rVqgBg3JOfrZa79VgvrgrdvPR2lvvGjRvTIiFU1DpZu3at43WDiLtM26sP2XrN5cuXh7YeqUzbrkNVZ4nr6sCpQ9UJL3URNKrJRNy94kc0TZ5Bv/mx+5HKhLhXifwKGebYY49FcXExli9f7ut89UZLF4PbjZAuAD+LAGeT5R5E3KX4OJ0v02/evDmKiopsrVA1H23btsW+ffvS/NxB6+3w4cMYNGhQMp9B6qljx44AKtxzYUfReHHLqHj1uWdq4JhKFIZNeXm55wVwTCx3v2/bduJeXl4e+VxGeWe5Az+/mvrBj1tG3jg/lns2i7sXTCx3FSeRsubDy7GmWIUljHoKIx7crs6kEJi2T3m816UNMxnnHUXb9/ODEeUzGKflnpfiHoQg4m5quUfhltm9ezc++eQT27xFjc5yt1omdnnZuXMnPv/88+T3oCNU9+zZ4/rmZrXWwhD3LVu2YP78+a5pffnll9iyZQsOHDiAZcuWGV3DyYeuu55TfLkpbu7N1atXa/3sX3/9dXLEpxNhhLyaprl161asWbMGS5cuTT6ny5cvT5tPJuwfNxb3LMKPuMsGZfrKHIXlfvHFF6O4uDjN1ZFNlrtd+iUlJSnT13p5EHT7rrjiCteZIIMIi932QYMGoVevXvj0008d0/3FL36Bpk2bYvDgwSgpKXG8hqxDr5a7V3HXWe6/+93vHI/dtWsXjj322LT9rVu3RrNm2jV6tOno8CuyduUtLi5Gu3btcPLJJ2PYsGHYuXMnOnbsiCuvvDIj4m6FxT0GgljufgjLcn/77bcBpEdTZGOHqpWvvvrK6Dhd2rpj33vvPdfz1Xq3s9zt7o1d/mREhYl7pry8XDsvjd098OuW8dqe1XumRnjYldltQJffDlW/2KW5adOm5OePPvooOYPkO++8E7hj2ASdzz1qKo24CyGwYMEC1xsZVNxLS0uxcuVKx+OtlvuSJUsCT/AkJ5ayirtbI1LdIU51s2fPHrz55pvYvHmztk/DS4eqG9Y8S9fFjh07kpOZOaWly4vK7t27U67xwQcfOI6gVL8vXLjQtY2YTj3r5Y1EirXVLbNw4UJtOn597ro0rOmEZd2aCF5Qt8zatWuTywJKCgsLPbtG/ZZZ1iG7ZSLkqaeewnnnnYfHH3/c8bggbhkAaNGiBU488UTH49WG8u6776Jbt2649dZbPV9XxS4O2q0RmazmAwDXXXcdzjjjDDRp0gQdOnRI2x/EcrdiPe7ss88GAHTr1g2dO3d2TdNN3C+77LKUe7Z//35t5I417RdffBE9evTAhAkTtOnKOghzcis3y71Hjx5a/7Zfn7t6z9R7GpalqdapNU2vsfA6rMe3bdsWbdq0SZkOWC2XEKlL44U9twz73DOA/PV2G/qbabeMjPd2s/bdkIJm7dQNy+fuNkgpTMvd7jjZSao+wH7EfdmyZWkioBNka9qy7djF3su3pzAsdyuZ8rmrhCHuTta5dZ9aNr8/TnbHq28hVapUSRFdr6GQfmBxjxDp9pAPoB1hibtTp5raUOzcKU6sW7cuLcrCTdw//PBDrF+/3jFda9nVfNasWdPxXJPYYr9uGSuqj96PuB86dCjtGrr6V4/ZvHlzsj7s2oiTuOsmhXOKcrFzy3j1uXudb97Oci8rK8Phw4cxZcoUfPvttynneBHgefPm2Z6nK9vBgwcxe/ZsX4aBXb4KCwuT+6ziDri/eXlZxMYpzj1qWNwtBHXLSH7961/bHh9U3Nu0aZMWZeHmluncubM2skHFacCLm7jrCNtyl2LTpk0bx2PdxP3w4cNG4q6m3aFDB1eBlSOVdeJ+/fXXO+bJek27aBmvi3WMHTvW03V1aQAVbfzDDz/E1VdfjRtuuCHlOKdnxtoG+vTpY3tN3XM0btw4XHLJJclZIt1Q01BnybT+aDmJ+8iRIx2v8corwReYY8vdI04VlmnL3RTTOUPckOUK4pYJIu5u4uAFN3F3OgbwJ+5ubpnNmze7dlI6We5yjhGvBA2FdEItny4U0uqWkeWyTsnhdyZJE8tdzsRonVHSJE27KbSrVKmSsvSj1S2jezPkDtUY2bp1K1588UXb/dkk7mpDCUPcf/zxx2SfgtV3H0TcvbhlnFwMXvPi9DptTUuXpts9PnToUNp51h/FXbt2Yfr06Snb3AT2iCOOAFARQmgy/YWXyaiiEHfTa8rr2om4X3F38rlL5FzvdobC7t27U+7TTTfdlHRF2fV9uFnuOtdO2HPLZIVbhoj+RURbiWilsu1SIlpFROVEVGI5fjQRrSOi1UTUI4pM6+jVqxcuvvhi2/124m6tdD8NNUhEQhjifvXVVyc/DxgwIGWfF3F3Eo46deqkfDcZvh+VWwb4Ob7arSNQh4nlPmDAAPzpT39K2eYmsHL/3Llzk/PNSLwaAHaC49UtA6QPrtMJlc5CtYYL2oXrhmW5O4Vb2onrkCFDcPnllye/z5gxA6eccgqA1HtqfSNR76HTmIcoooR036PAxHJ/AsB5lm0rAfweQMo8lkR0AoB+AH6VOOdRIvI2i49PrLGsVkzFXf7ae1mQIciNkucGEXd1gIZd+iY4PaRHH310ynerwGVa3J2OdXPLlJWVpT20VsvdOrAKcI/g8LvIiQ6r2Mrvfix3L7OkqudZBdCuffhtuyaWuxtO01T7sdytbTaouGd1KKQQ4k0AOyzbPhdC6GLjegOYIYQ4IIRYD2AdgE6h5NQjU6dOTfkuxV2+OkuslfzII48AAKpXr56W5uOPP4477rgjzZfndKOee+45fPPNNynb1Aa0aNEiAP4fkJUrVyZHp+rQ5c1uRRkvFph8ED/99FO88sorrv5bu7zo0D1QTz/9tHZBbyEEnnnmmZQQVzdxB4CZM2emfLeKu64u3Cx3kx88U6SrwfqD4jVaBvhZ3Hfu3InHHntMe7wur2odlJWV2VruTnMqeRmh6qVjVmLnrvnpp59w3333afe98MIL2LNnTzIPQd0yTvfZ7rxVq1bZnhMWYU/52wzA+8r30sS2NIjoGgDXABUr0ITNVVddha5duyZXhzG13OVDJSMfJKtXr06+pm/btg0PP/xwcp/Tr3u/fv3QuHHjFOtavaa0PPyKu3XAlLUudXk7+eSTtWk5+dyt6chjZVSQ/JGSx1pHAQLBLPcrrrhCe+yePXvwxz/+Ee3atUvOqW5ynZtvvjnlu9UtoxMar+LuZwpoeZ5VhL26ZdS6l0I2cOBAzJkzBxdeeKHReVbL3U7cw7Lc/czvbifuo0aNwqxZs2zPHz16tDYfdm4ZJ3FfsGCBa76tZT3zzDMjt97D7lDV1YC2BEKIyUKIEiFESVQryasPgmyY1ld7uwq2umXUB3X79u1GacjtmzdvTtmua8RBpx+QWIVblzdr/iVOlpOduOuuE9Ry99LoZb7U13PTQUQqJpa7V7eM31d6ne/Zq1tG53OXBobJaFwgtQ5Ut4z1vvr9EXOy3E3bjp3oOq0KBfw8eFDnlvHqc3da2D6M2Tn9Era4lwJooXxvDsB97s8A7N27F3fffbfta/T333+P+++/32hhCBWdW0Zi+vptt123HJ/1AXniiSewZs0aHDx4EHfddZc2VE83ajSIa8DJKoxK3IMOOVcfHtkW/KzEZa3fON0yuvOC+NyluMt61Vm7OgvVznK33ld1fiK7fOsoLS3Feef93J3nVDZdOp988omt1WxNS+fSk+k65dGkLTp14GdyfnwrYbtl5gJ4logeANAUQBsAH4Z8jRT+9re/4d5779XuKygowFVXXYW5c+fiyCOPBGC+SIPVcndyUdg1ALvtM2bMSNtmFZOBAweievXquPPOO3HrrbeioKAAo0aNSjlGN4dNkEUonKIqvIi7F3H+97//nZKG37nVy8vLcffdd+POO+/09UBZf/z9iLv1nDCG7Fstdz9uGXlfZb5NO6bVcqo+94KCgpSyeRmxqbJkyZKU7071pdtXXFxse7zpj2AYoZBhjs4OE1dxJ6LpAM4EUJ+ISgH8FRUdrA8DaADgZSL6WAjRQwixiohmAvgMwGEAQ4QQ4YUQaHCy0goKCpKvZ3Zx0X7E3TQNJwvMZPu+ffuSCxfrHmqdKyeI9ejkGnLr/NJZ7iaLdaivtH7EXeZLWu6A98U3gPT61YmDm/UchuVuF72hdqiapKvWvfzhchJ3NxFzcsvIdlO7du2087z80IYZbeSWlvqjaRIK6VfcnaamjhpXcRdCXGazSztiSAgxFoDZmOcQcBoFSUTJhi2jZKwiNXfuXO0AHau4L168OPnZ1DrWWRt2r4d281nI7dYOXjsyJe5huWV053mxeFVxl53lfizmMWPGpHzX/ZjKdO0mUZMdl9bjVYK6anRhnDp0Pnd5ntr5bZov1S1jfeaCjq5WryEJ6s4Iy3IfNWoUHnzwQcc0/Ir7ypUr0b59e6N8+iHnF8h2G+IuG6QMj7NWct++fbXnWUMmb7rppuRnU7eM7oZ6XWdTirtp3H0QcXd6SP24Zbx2qMooGz9umbKyMteRqV7QibtXy1L3w+VWNru3Dq/i7uSWsf4IAfp71qNHj6RP2+qWUQlL3L106LvhZWFw3ZuSZMqUKahXrx5OPfVU2zTcDEx5HSsnnnhipBZ9zk8/4BZHaw2BNK1ML/G5XlwtJo1OPc+ruGeDz91vtIypANqlGaa464QmiLj7TUPnczepH7XurW4ZHTpxr1u3bsp+ec+tYiaDAYIKldcOVSfcfgzs3Ky6H9f9+/fnpM8978VdNuwwVqZR0zU5Vj3OyyAUNT354EhxnzhxouO5cfncVbE3Ffdhw4alRAkFccsA4Yr7rl27HK9lgt9IILWe3n77bYwYMQJPPPEEAP+W+8MPP+w4l428ptoHYhotI5+xoOF+pue///77rse4GVHqil4mfWh+xT0OUZfkvLg7vRKpDdKPVeiUrtN3iXot2SC9irvVcnebOlYn7qZlDuKWUX8YTN0yDz30EJ599tm0/X46VIFwxV1HGJa7m4BZ79f+/fsxfvz4lDz48bkPHTrU8XiZphwIZs2r6pax1oNsNzrjwG+HqlPb+e1vf+spLSesI1T9dMY7aVCYuuOVSifucVnuXuKU1fOCdqjqhlfbEaRDVf1h8OKW0dVRtop7HJa7bp/fDlWv17S+ecp77iTuQUTMrdwSk+klvPwQh9mRaweLuw9Mfe5ehcPpuIULF6a8ttsde8stt6RtM/G5q/G/Utx79+6Nf/zjH67nvvvuu3jnnXdS8mba0J1EwJqG9VhV3A8ePIhrrrkmbVInXT395z//SX5WJ3MyRT12w4YNxuf5IYwOVbepgL/99ltH8TZ9E9P53J1w+yFSnyVreqprLYhb0K3ckgYNGmDw4MGOaZl2qOqMnzfeeCPtOKvOfPDBB8l1j3VlXLRoEe6+++5YLfe8jpZRfe5qyFwYTJgwAbfddptjmnISMhUTgejZs2fys9pIb7zxRqO8nXbaacnPppYekC7YuggYu+/qA79gwQLbCaqcCOpzv//++z1f0wtexV1XjnPOOcf1POt0FSqm91MXLeOEW+evKu5W1HsfZBoNU3HftGkTJk2a5JiWl5G8foRXTis8duxYbb67d+8OAHjttdcAsOXuizgsdwDajkAT1EanzkMdFV7E3W6JPsDdFaU+1Hb3JIpomUzO2eH1WrpymKxO5SZyUbhl3Cx3p8U61PTDEvdMxbkXFBQ4hkICPw+us8PkR4nF3QemPndpDZk+oOoK97obow46MrlxF154IdavX5/ygGQihEonBnYN1fpg6qJ97L6HKe7qmAI3Minu1vVI3YRalzeTex5U3CdMmJAy54qJW8bE524y5a96reHDh3sS6Ysuuih5vtO86kHrUMWv5a5ex6SvwG6a7SjJeXF3m2fZrw9QnYNdZwV4tdx37NiBESNGpKSV7eLuxXL3KyC6/dalAoOkGSZyKgiJm7jrfO4m99wt3tutzMOHDzdOT+LF525FNXTUYyZMmOB6XZVt27bhk08+0e5TjSKT4AIvLjQ3y52IHKdlMPkhcZulMgpyXtzdLHeTbW7oGoraoE3TLC8vT0nLpNc/KNYfuEOHDtk2VC9uGSfL3SkvTvi5N7HGEXuw3L2IexhuGZUwxN3JLaPGxgedutpOuL0u5Wd6fNAIH7fQVI5zjwhdpfupbDvLfdu2bejYsSPWr19vlI4QIqXRmYh72Ja700RrUVvuK1asSHZE2eXVK5l0y1hxE3e5kAlQEV1x1VVXGfnc3Sz3KMRdV/fqfEpDhgyxFW51/vzbb789ZZ/psyG54YYbMHny5LTtXjuzTRcfLysrQ4cOHZLfrTNVAhVt+/zzz9eeb+qWseP000/HihUrjPLqlZwXd7ch1dbK9SMGOitg//79ePbZZ7F8+XLjKA0/lnsU4m5nuVsXHfDic1fryC79YcOGJVemt8urV7JZ3K0/pFOnTjWy3J2sTi+hrRKTOnI7ZtWqVbbirrYb6/KWXnnrrbdw7bXXplnwapnDtobdrHyn9Znd3DJueX377bdxww03OGfQJ3kv7lbCstz379/vOr+37trZLO5WMfJiuZvUwe7du13z6pVsFncddrOCqriJu1fXh1/L3TRffla+csM6U6tXt0yYON3nMNwyW7du9ZUvN3I6zv2jjz6yXagD0D/4N954o3Zleyd0D8e+ffuSIqlG1jjx0ksvYf78+cnvJlZcUKyWxa5du2zF3Tqfyo4dO9C0aVPMnTs3rS67deuGefPmJb+bCIib66a4uNhooJZKrom7yZJ0buLuVejsrOk77rgDW7duxcSJE43q0e5HJawlIlWsE+Vlq7jv3bsXF1xwQco2tfNUXWnKjqjEPectdyfsGqzb/MxW7KZ/9ROLG6Xl3qxZ+lrkug5VO6yW+2uvvYZNmzbZDtQYMmRI8rNu4jCvbNy4EX/4wx88nZPNHap+cbpHfix360hhlX/+85/JdIPkK2yc3gzjvOdWPvvss7RtXvsZunbtGlZ2UshpcXcLiQrLqrOb/jXoQIswxb1Ro0Y444wztOdbozZM3TLqBGBudanWURAry6uAZNpyVzvW4hJ30/o98cQTfU8VrSOT1rMft19UOJVb52r02ibdJgP0C4u7AbqGVV5enlXibifaY8aMQatWrZLfzzrrrDTXQP/+/XHo0KG07bL+XnzxRcyaNSstbXUswMMPP5z8nMkHMdPirt6PqMTdSUwWLFjgOj+NRAhh5PojIixbtsz1OHUeoKhZuHBhyvc43TJq1JAVXfSZ1zYZ1YR3OS3u1tWSrIT1+haV5R6mz93ux+bll192bWxPPvmk1h/uVzjjtPAyiZ/7p1vU3Irb28uUKVOMr2f6A+S2TkDcqBZyNrllwhD3qMa75LS4Z8pyD9PnrhKm5R70TSKMZeWc0oqKXLPcTcYDuNWf6bJ2ppY7kFl/uilHHnlk8rNJlFEchOGWYctdg5vlXpncMkFdIXZlDCutqLjooosydi0guLjbLa6twuJegRogoIo7W+5muLZOIvoXEW0lopXKtnpEtIiI1ib+11X2jSaidUS0moh6RJLrBLnucw97bpkg+QlT3OP0j0ZN3D53wNuC1KZ5zMZ7VqtWreTnbBV3XYx/LlnuTwCwBmuOArBECNEGwJLEdxDRCQD6AfhV4pxHiSiyYO4oxF03zFjX8E3ild0I+xc7DHFX85Tr4m4yd7pXMiHubla0F3E3tdyz5Z6pqPWbrW4ZdY4pSc5Y7kKINwHssGzuDWBa4vM0AH2U7TOEEAeEEOsBrAPQKZyspuPWcP2Iky50TGfVrlq1Ctdcc42vfEnCjnMPIjbSvaH+YPp1r8QZtqYSxZJpmRD3a6+91nF/FOKejaj3T7dgeTags9zPPfdcT2lkW4dqIyHEJgBI/G+Y2N4MgLrWWWliWxpEdA0RLSWipVFNhxmluDtRo0YNo+PCFvcgYiYX8Fb7MXLdcs9VcXfDi8896jx27twZQDR9H2redWv0ZgPW+Zj8kCsdqrqnSXsnhBCThRAlQoiSBg0ahJyNCsISd69ipfbyOxHmogNhNXhV3P2mmS3iHrWwxSXupi5BLx2qfpHC1LFjx9DTVvOeLW3Kyg8//BA4jWyz3LcQURMASPyXkyOUAmihHNccwHf+sxcMP+Ku8+NfeOGFntKoXbu20XEm4mA6YAUIx1JVrYhcCIV0IgrL/fjjj09+Np1TKGysi4Y4kakVgNwi1/ygPh/Z6pZR54ryS7ZZ7nMB9E987g9gjrK9HxFVJaLWANoA+DBYFp1Zvnw56tWrp93nx/LU/Ypu377dUxomlvt//vOf0C2/sMU9F0IhnYhC3MePHx96mlGRCfeFrOOoxV0lm9wyYRBnKOR0AO8BaEdEpUQ0CMA4AOcS0VoA5ya+QwixCsBMAJ8BeBXAECFEpE96cXGxdsIswJ8/LAzBNbHcu3TpEvorcxhiFka0TBRTwPoh7B/Pc845x2iJt2wh18XdaWm7fCIqcXdNVQhxmc0ubZyZEGIsgLG6fVFhJ5JXXnml57QyJe6FhYVZabmHIe5e186MirAt9yjeBPIFttz9k21umawiTJEMIy3rzZo2bVraMUSUlWFqYfjcs4W4OjyzhahFcOnSpcnPTm80pgEGVirL/TONrvNKXtRetom7NY0aNWrgl7/8ZSTXUskWyz1bYEs7Wpo0aWLkljnmmGN8pV9Z7l9UP2J5Ie6qBRGUKMS9vLxcO+owzJsaVkyzarmHMQo3Tiq7WyZqy72wsDBZJ1G5Fhj/5IW4S44//ngce+yxns7p1Cl1AG0U4m63wEI2dqiqD6l1cFmdOnUCp59JwhZjN7HMVNihKVGK+4QJE9CoUaPkd6e27JQPr/dIDUX9zW9+4+ncykZeiXu1atXw61//2tM5J510Usp3O3Fv27atcZo6cY/acg8Lp577XIoUATJvabds2TKj18sEdu4W67z0ftuy03m6H4Vf/OIXyc/t2rXzdc3KQvapSwCqV6/u+Rxr47WzQNasWWOcps4tkyuWu5O455oPPhv7NHINO3eLrFtZJ37bslOd6sRdvafZaBxlE3lVO6oP0BRr4w2jwVjzEKbl7vQqGrZbxkquhaBlsxhHMWOlFb/366qrrkp+tmsP1rSDiLtfwykT4j5y5MhI05cLlEdBXol7GCNSw2gw1oYelrgfccQROO6442z3s+WeSjZ3qLZu3Tq0tOzwK+5NmzZNfrZzy8gwWVknQZ6bxo0ba7fr8q9uizqUuGXLlpH/gNiNrg+DvBJ3P0Qh7lF1qBKRo987anHPZstd55LzOvVqGDRs2ND9oCxHbZdu4i7x6l6RFBQUeBqsNHfuXG0+oyLqNh/lj0deibufG2FtIGpl161b13p4ktdff912n6m4e72xTuIeViMM6paZPXt2KPnwim6g2KBBgzKej/Xr12Px4sWux2Xih1IIgddeey1tu5u1qD4T6o99p06dcN55Fev2hDXAjYg8ibv69pgPPncWdw94tV6dLHcnK9YpeibKUMg4LXcTt0z9+vUD58EPuh8lIgo1fNOkfmvUqGE0IjNT4q4rv9s9Utuv2kYbN26cbB+yPcs68VseJ3F3gy13l7QjSzkGwva5O4mZbt53XRpO+fJzY3v27Gl8XT84Pfgm9esnYikMsqnz1OQ+ZKr/ws+kVKpoWoVe7pOW+8UXXwwgNUTRC07ibh2DAgBdu3bV5jMKhBCRi3uU7TYvxH3WrFm+z7U2frWynR5Ap5sSpbj36tULl12mn8vNS0Np2LAhfve736Vsa9y4se0Mm7fffruRIMU1UtGu7Nkk+ib06dMncBq33norAPs3Rjesbpmbb745ud0q7oMHD8ZPP/0UqIPY7jk4+eST8dNPPyVXewKAJUuWuJ7nBy/rJlgZOHAghgwZ4njMv//97+Tnzp07Jxc3idJyj2auyQwjXRWZtNy9iLtdOn4tD3VVeL8cccQRqFmzZsq2hg0b2parWrVqRuIe1fSlfolD3E2mbbBrq05vhKaoE1HpFnB2w2qty3aidn6q0TJB2qNThypQ0dbtXKVhCqMaIeSV2rVr46ijjnI8Rq2jwsLCZL8Hu2VckBXkR9zPPPPMlO+q4LqJu504R2m5O+FFyIQQaeVbsWKFbRqmr6hxRYsQUco6nr169fKVThh9BkHEPcxQXCEEWrVq5ft8+VnmqaCgAH379gWQPrLbL0Tk2m4HDhzomk877BaxtxKk3ouKilwjs9Qyqs8ei7sLQcS9pKREmxbgHO5VUFCAgwcPan3MpuKuNs5nnnnGOM928b9exV2XjpO4m1jutWvXRllZGcrLy31FVHTr1i1tW926dVFcXOx4HhFh9uzZKCsrw65du5KvwXYPT8+ePbX5mzRpUvKz3/6DIOIexrzo0roVQqBp06a49957faelDgwkIvz+979HWVmZduh/WVkZTjnlFADAo48+apS+TFs3kEnu+9Of/mSbNzdMBwk5tXs3qlSpgtNOOw3nn3++7TF2b/PslnFBraCgr+FObhkiSt5s2RFkEuJoYqV5cdHYpRfUcrfmyfS61jyoQ9MLCgo8dR7a+ezd5rWRFiARpSyW4uSL15VV3WYtr2n9BhH3MPosnMJ7/aRlHahkl55ppJkOp+Pt6t2kXKb3TJeWqbEo8+70DFv3yWeCO1RdCGK526UFINmRpNsnb4rJyNPTTz89ZV+bNm3SjvPyANqV00tnnJ24B7Xcred7nWxM93pLRK5i4fUhsXvVV9ORHZMSa73bLZzu9pahS0tiIorq/Og6H72boeBWV+p9HjJkSNo8Mk7Icql5cBvEZJe27HS0I8xomSCrPskfZKdn2Lrv6quvBgC0b9/eNIueqVTiLv2FJmkBwPDhw1P2qQ3QtEN1yJAhKdOULlu2LPkKahdy5pcuXbrgkUceMTq2vLzcyC2jdhT5EXedm6GoqAgbNmzQnq+b1bNatWq+xV1Xr6+88gouueQS13TGjBmT8vBZ3TiTJ0/W1mHLli2xdetWx/wGccu8/fbb+NWvfgVAv4qP6nP3w8GDBwEA1113Hfr375/ilnFDXlOtd50BJLFLe9OmTa6zbIYp7kEsaNk2nZ5ha1779u0LIQSaNGni+7pu5IW4h/lq4+TiMXX/mP6C+3UnOT20Xhq8iVvGq5vAxHKvVauWp9DFIOLutW04udSsLjg/rgRduiom9U1EySgYa8QTkC7uuonsnJDiLt8KvFjuErUencIx7QZBmVwrW1Zgk+3AryZERaArEtEwIlpJRKuIaHhiWz0iWkREaxP/7cfwh0RUN9l6s8aNG2d0TT/iHoZbBjAXd1O3jBQbIQTuuece13RNxP3uu++2La+duAd1NZjilI7Vco9C3E3cMqq4O1nufpHtQoq7H8tdzYOst8aNG6e5rGSa1ro1eR7CfO51ZTONEDO5Zzkl7kTUHsDVADoBOAnABUTUBsAoAEuEEG0ALEl8jxRTt4xXa8B6vOqmcUrLaZ9p+KREHaAlyxeGuJu6ZaSbQAiBkSNHukbA2Im7Ovjk2muv9STG1apV831vvYq+F3F3srLdHuYglntBQYEny92KW53IcspoIS8zP+qiQKTlPn/+/LTBQnbibnLf5Dlh+K1Nxffss89O25Z34g7geADvCyH2CiEOA/gPgIsA9AYgZ3GaBqBPoBwaEGaHqiqOfgXcCS8Wq9PxVmTZTaMUTC13pxG8OuzE3ep39RJ6VrVqVd/D9XXX8XJfs90tE4XPXaYdtltG158g07TWrcm1pPtoz549xvmyw66dWOtQV6cm9ywT8+BYCSLuKwF0JaKjiagGgPMBtADQSAixCQAS/7WjWojoGiJaSkRLrWt1esVU3G+88UbXtNRFFIgIQ4cO1R5nbQwPPvigdp+68IGaV+txJqL/8MMPA3Aupyo4F198cdpyaBI7cZeDf2Rnlhozbc2PlTp16qTtHzt2LAoLC9PmoXcS99GjR+OEE05IbrNa7r/85S/TRM2v5d69e3f069cv+d16H9Q2E6a427Urk05/IsKECRNw5JFH4vbbb0/bH0RI+vbti3379gEIzy0j602K4P/93/+hWbNmqFatGu6//34AFe3N6+hTGXIaxlqqpqGQ6jMjR5maDJjLKctdCPE5gHsALALwKoBPABhPZCGEmCyEKBFClDRo0MBvNgCYV1yXLl3w7rvvOuUpZW6VgoIC/O///q/2WGtDv+6667THWcO5TGKE7a4jw6fURmedvlUNjRs7dixWrFihTdfOn9iyZUsIIdChQwfHfOn44Ycf0uqld+/eOHz4cErsOeAs7nfddRdWrVqV3Gad+uDzzz/HnDlzjNKT259//nnt/gULFuDJJ5+0TWfw4MH473//C8CbX9hNCE899VRtW2zbtq1rSGtBQQEGDRqEH3/8Eeeccw42btyYst8q7l4s7hkzZiQtdz9uGV20jFXcx4wZg9LSUuzbtw9XXHEFgAr3kvp2Z5JnKe7NmjXDrl27XI93wvRNUm2HHTt2hBDCaO3cnBJ3ABBCPC6E6CiE6ApgB4C1ALYQURMASPx3jgkLAdVyDzNyhsh+aLT1ZpmOLLSz3L24ZdQGZ92vdmA61YVb3Lr1IQ3q8rLmM6jPXTfATIfc7nR/3KKWpCh5GXEbpB16dX3ZrQMch1vGxHI3wUQM5Y9B1apVAz/3Xt2fUaUfJkGjZRom/h8D4PcApgOYC6B/4pD+AObozw4PVYD+/Oc/G82nDbi/AjuJu3W7aePy2qHq1iis+1XL3S1PVoGcOHFi2r6gQmGXTy+DRm655ZbA4u40IZfbj6wUJS8zLJo8zHYuMysXX3xxijXvFpHk554NHz486Z66+eabUb9+ffTo0SPleiZt/L777kOzZs1SxnY4+dzt8OJzr1atmvb4u+++GwAwfvx417T8iLtT/VrHa4RpdJoS9OdkNhF9BuAlAEOEEDsBjANwLhGtBXBu4nukqDempKQEO3bssD1WreTRo0c7pkvkbSGB2267Le0aVkxFXK54oyMMy72oqCglncsuuwyDBw9OfreKe1BMLXfdA1NSUuLaseUm7k714vbgWae5NcHkYbabTdF67vjx4/Hiiy8mv7u9Nfq5Z/fccw+mT58OAOjQoQO2bdsG6S71Yrl369YNpaWlKWXzY7l7cctYxb1GjRoQQmDUqIpAPZPJw0zF17Rj/4wzzkj5HoflHmhuGSHE6Zpt3wOIfml3Bb9WtMnrr59fXFNxd7IY3VwquvQAc3GvUqVKSkO1WqVhz30RRNx1272Ku5PVGJe4m55rtczd3DLWTnATTPoPvAiUmkeZj7DdMtJyr1q1aqD+Dyfc3hhNz8tFyz2rMInoUJENYvr06doebxPLffLkybj88stTrm9yTQApHTHqdjWW1q0sVp+46n5wynuVKlVS8vvXv/41Zb81XjlOn7uanwsuuECbH7c+C9M5bnTllGIZl7hbxdvNEHDrUNXlzamteH2u7NIL2y0zfPhwtG/fHv/zP/8TSdgykN4e7rzzTl/psLj7RFacX3Hv168f5s2bp93vltbVV1+dNl2vqeV+xBFHJK0ZeU7dunVTBvzo0lIbnNW/6sdyf/PNN5NzlUii9rmreWvZsiW6d+/ueB25Xb5qm1pQOreME7rryzrw4nOP0nI37Yfxcs9M3hS9lMmp7yJofiStW7fGp59+ikaNGkUinrr6U33pTvXLlntI+K24sN0yJg+TW4eqVxF16lB1QhV3px+QsHyFTuJuUs/WNwnTDlVJkBWirItCmxCk3rxa7lb8uGVMxN1LmXTHBrX8nY4xtdy9aoVfkbael3PRMtlGUGG04rVDVT3P9Jp2/kxTq8B6XtOmTdGyZUs0bdoULVq0sE2jqKgIkyZNQq9evXDyySen7Tex3Fu0aJEy6MsJJ3FX35DcLHe740xCSU855RQQUcoUzCY0atQIl156aUqnphtObeDvf/+7p3OtFq9pH4GOs88+G08//XTy+8KFC5Ox5nYEtdxfffVVDBgwwPhc3bXGjRuXMlDQeoz6ef78+UbH+cVk0NItt9ySsvBM7dq1k89jGCPpTciLxTrchMEOE3EP23L3Ov2Am1vGml5hYSG+/vpr13xUqVIF7du317qjALOVYubPn4/27dsb1ZH1GKvVZSrudm84JvX33nvvueZTd/2CggLMnDnT9Vy76xYWFqb464cNG2Z8ru67W7u1E/ehQ4diwoQJKdvOPfdc1yXigvrce/TokQyr9HM+APz5z39OO8ZOtK2RKmGKOxFh+PDhePnllx2Pa9asGRYtWoSioiIcPnwYBQUFeO6559ClS5dA1/dCXljufsXdxC2Ta5a7KW5uCpNBTEFes+0eOLtyW11IXl+XTdtGWFaVmh+vyw2atEsn3Kb89YqfyKmgbgivBoPp9cLIl596iMPnnleWux1TpkzRduaEbbmPGDEC3377LW688UaMGTNGe4xbnLtX0TLx1U+aNAk1a9bE6tWrUbt2bYwcOdJV3KdOnYq77roL48aNw/Dhw9NWpXIqi1M+JV597lah6tWrFwYMGIAnnngiLT3ddcN8FX7uueewffv25Pdp06Y5Toz2/vvvY/bs2bjvvvvS0vrggw8wa9YsnHLKKfjuu+8AAA888EAy5lyHrqwTJkxIvhFIcffje9chh/bbxeWb5tELTudPmTIFS5YswdFHH210vLrv3XffxfPPP4/HHnsMQgjs3LnT9jy7KTrU/W6YGC5RkRfiLrGrvEGDBmm3hy3uRx11FJ566inHY+xemf26f0wEVh3E8c477wBwt9xbt26Nxx57DABsyxQkesKr5W4V96pVq2Lq1Kmu4m76VtejRw8sWLDA8RjJH/7wh5TvV155pe11AaBz587o3LmzVtw7deqETp06pWxr3Lix4/V193zo0KFp4m46n48bmzZtAgBPqwZFabkPGjTI9pl2S6ukpAQlJSUYN24cWrZs6SjuXvOlQ2e5Z8qKzyu3TBTnhd3LHbZbxkvsMPDzK7acFCoIYYq7WzncXAxB3TJhLEydKUzr3Yul7YS03NVJ9dyIww1hR5C8BA1plMdzKGRAdA/w66+/bnu8iXCHfVNMpx9wEjO1nNK6NqVLly4YPnw4pk2b5uk8HWGF+xERJk6ciKFDh9pOu+AWjhfUcp88eTKGDh2Kbt264YEHHsBbb73lWoZMoIvQcWuTe/fuBZAu7n7dAuPHj8ewYcPQs2dP43PiCP2zw62+5LTDkscffzz5WSfufowa9rn7xKnizjzzTNt92STuVhEyfRCbNm3q6fqFhYVpIWV+CVI3VnFv3LhxWiSHit/pEEzFvUmTJsnr33TTTZ6uESW66X/d6mD37t0Afhb3oG24efPmruGbVrLJcnfDGtqohjA6ESQ6LhNkz89rCIQdLQOEf3Ps3BNerqOWM86HKEzL3Q2/lntYApdNuJVFzrmidjhmmlyy3KNMSx7vdyWxIOSV5R52nLuatmTp0qVYunSpp+s4ped3OwD0798/VtHyeu2HH344OYCosLAQAwcOxNSpU43ScbPc7bY///zzmDp1asrKTnGxePHilCgbv7jVV69evTBq1CiMGDEi8LX8kk0/pm5tRv6fPXs2atSoYRx54yVcM9ORMkAlFHevsbHWY37zm9+EsqyXU74AM5/7hRdeGEmonyleH+Abbrgh5fvw4cONxd1vh2qLFi3wl7/8xVM+o8J0NG9QqlSpkpzLPC5yyXKX+3//+98DAEpLSwHoQyG9hjbGKe7ZcwcCICMdjjrqKONjAe8DJaLAaj2Y9M6rQperbhng53DMunXruh7r1y3D/EwmBSabxN0OO4PBrS3JidxMFgWqX7++UZpRkBeW+3HHHYe///3vuPTSS12PlWuDAvF0qPq5zlNPPYWTTjop+T1bfO5Br3388cfjgQceSFmg2o6goZCVGV3dvP/++0kLNVPXjAtTy12Hztjq0qUL7r33XgwcOND12osXL8bLL79sZMCETV6IO+A+X4eEiFClSpXkfA9uZMoCsXPLAMAf//hH4/MySRgDVUwjU1jcw0UOrGK8We7ybdm0P6Nly5a4/vrrA+XPL9n/7hQh2eyWkUuc6QYbZYtbJpPXbtiwIQD7edmzVdzDzFdYg5KYVOzuUdD5lOImbyx3P2TSLbNmzRqsWLHC+DqTJk3CGWecoZ1FrrKI+xtvvJEcuTp79mzMmzcPrVq1ivSaYTJr1qwUd1pQPv74Yyxbtiy09LKR1atX49NPP83oNb24ZXKJSinuYc2W54U2bdqgTZs2tvutealTpw6uu+46xzTjFveoXVbq1K0NGzbEVVddZXtsNlpUl1xySajpHXfccTjuuON8n58LQtW2bVu0bds2o9f04urLxnZmR6V2y2RTj76c7Kl169aux+omDsuFUMgoyaa8ZBv16tUD8LOrL45rZ4ogK25ZcZsVMki6mSBQTRDRTQD+BEAA+BTAQAA1ADwHoBWArwH8QQjhbeq1iAl7CTkdb731FurUqWN8fM2aNfHCCy94msw/Wyz35cuXY//+/bHlA2Bxd+Lyyy/HwYMHXVdcCpt58+bhxBNPzNj1XnnlFbRr1y5wOlG5aTLdRn2LOxE1AzAUwAlCiH1ENBNAPwAnAFgihBhHRKMAjAKQvoxKFhBlZZ922mmejiciXHTRRUbHZpvPvbi4OLY8SFjc7SkoKHB0aUWFyXJ0YWI36ZwdJkJtPSYXXFuSoKZrFQDViagKKiz27wD0BjAtsX8agD4BrxE6bpZ7GNPhmuJHlLJN3LOBbMoLk1t4aTvZ5Mp1w7flLoTYSETjAXwLYB+AhUKIhUTUSAixKXHMJiJqqDufiK4BcA0AHHPMMX6zEQi7G7V69WqjdUjDxEsDy5ZBTNnU0O1CJCsT69evT67mxARHfc7Gjh2LkpISI8PvtttuizJbxgRxy9RFhZXeGsAPAGYRkf1oGwtCiMkAJgNASUlJLO86TvORyJXK486L2zlsuVeQybetbKVVq1Y5FSqarejadf369dG9e3ej88MMfw1CENOrG4D1QohtQohDAF4A0AXAFiJqAgCJ/1uDZzNc5MRf2SBOYbllKnu0DIs7Exbqs3TssccCMFs3QYZw2kUlybmvMjVDaZBomW8BnEJENVDhljkHwFIAewD0BzAu8X9O0EyGzYIFC/DFF19klVvBj1smbss9m+qvWrVqcWeByUNGjBiB4uJio87aO+64A2eddRa6du2q3X/88cdj8eLFniLighDE5/4BET0P4CMAhwEsR4WbpRaAmUQ0CBU/AO6zeWWYevXqZayCTclFn3s2We4s7kxYqO26sLDQOAqnqKjI1XWTqWmfgYBx7kKIvwL4q2XzAVRY8YwBfgSyuLgYCxcuROPGjZPW86mnnhp21lzJJss9m/LCMNlApZx+IBvxIvJ33nkn+vTpk4wvX758eaBh6X7JJsudYZhUWNyzBC9CWVRUhN/+9rfJ73ENImJxZ3IZtyCEXBqwpIPfZQ1xmvQrCLkskNngCsn03CVM/uF1JaZcgS13A7766qvIRSQXG1Q25Hnt2rXYvXt33Nlg8ohct9glLO4GmMzUWBnJFsudrXeGSSf+p7OSkw3Wr19yOe8M07NnTwBA7dq1U7bLFa/OP//8jOcpTFjcGd+wuDO5zCOPPIKvv/46OXJUUqtWLXzzzTeYNGlSPBkLCXbLMAxTKSkqKkLLli21++KazDBM2HJnGKZScPrpp8edhYzCljvDMHnPjh07UKNGjbizkVFY3LOEfAm/YphspG7dunFnIePktVsmF/xm3CnJMEwU5K3lvm/fvqyIw2YYhomDvBX3XJsClt0yDMOECZu2MTNkyBAAQM2aNWPOCcMw+QSLe8zccccdKCsry7k3DYZhspu8dcvkCnEvlccwTH7CljvDMEwewuLOMAyTh7C4MwzD5CG+xZ2I2hHRx8rfLiIaTkT1iGgREa1N/K98Q8MYhmFixre4CyFWCyGKhRDFAH4DYC+AFwGMArBECNEGwJLEd4ZhGCaDhOWWOQfAl0KIbwD0BjAtsX0agD4hXYNhGIYxJCxx7wdgeuJzIyHEJgBI/G+oO4GIriGipUS0dNu2bSFlg2EYhgFCEHciOgLAhQBmeTlPCDFZCFEihChp0KBB0GwwDMMwCmFY7j0BfCSE2JL4voWImgBA4v/WEK7BMAzDeCAMcb8MP7tkAGAugP6Jz/0BzAnhGgzDMIwHAok7EdUAcC6AF5TN4wCcS0RrE/vGBbkGwzAM451Ac8sIIfYCONqy7XtURM8wDMMwMcEjVBmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUNY3BmGYfKQQCNUmcrJSy+9hM2bN8edDYZhHGBxZzxzwQUXxJ0FhmFcYLcMwzBMHsKWO8NkIfPnz8eePXvizgaTw7C4M0wW0rNnz7izwOQ47JZhGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPYXFnGIbJQ1jcGYZh8hAWd4ZhmDyExZ1hGCYPISFE3HkAEW0D8E2AJOoD2B5SdnKBylZegMtcWeAye6OlEKKBbkdWiHtQiGipEKIk7nxkispWXoDLXFngMocHu2UYhmHyEBZ3hmGYPCRfxH1y3BnIMJWtvACXubLAZQ6JvPC5MwzDMKnki+XOMAzDKLC4MwzD5CE5Le5EdB4RrSaidUQ0Ku78hAURtSCi14nocyJaRUTDEtvrEdEiIlqb+F9XOWd0oh5WE1GP+HLvHyIqJKLlRDQv8T2vywsARHQUET1PRF8k7vdv87ncRHRTok2vJKLpRFQtH8tLRP8ioq1EtFLZ5rmcRPQbIvo0se8hIiLjTAghcvIPQCGALwEcC+AIAJ8AOCHufIVUtiYAOiY+1wawBsAJAO4FMCqxfRSAexKfT0iUvyqA1ol6KYy7HD7K/b8AngUwL/E9r8ubKMs0AH9KfD4CwFH5Wm4AzQCsB1A98X0mgAH5WF4AXQF0BLBS2ea5nAA+BPBbAATgFQA9TfOQy5Z7JwDrhBBfCSEOApgBoHfMeQoFIcQmIcRHic8/AfgcFQ9Gb1SIARL/+yQ+9wYwQwhxQAixHsA6VNRPzkBEzQH0AjBF2Zy35QUAIjoSFSLwOAAIIQ4KIX5Afpe7CoDqRFQFQA0A3yEPyyuEeBPADstmT+UkoiYAjhRCvCcqlP5J5RxXclncmwHYoHwvTWzLK4ioFYAOAD4A0EgIsQmo+AEA0DBxWD7Uxd8BjARQrmzL5/ICFW+d2wBMTbijphBRTeRpuYUQGwGMB/AtgE0AfhRCLESelleD13I2S3y2bjcil8Vd53vKq7hOIqoFYDaA4UKIXU6HarblTF0Q0QUAtgohlpmeotmWM+VVqIKKV/eJQogOAPag4nXdjpwud8LH3BsVroemAGoS0R+dTtFsy5nyesCunIHKn8viXgqghfK9OSpe8fICIipChbA/I4R4IbF5S+JVDYn/WxPbc70uTgVwIRF9jQr32tlE9DTyt7ySUgClQogPEt+fR4XY52u5uwFYL4TYJoQ4BOAFAF2Qv+W14rWcpYnP1u1G5LK4/xdAGyJqTURHAOgHYG7MeQqFRI/44wA+F0I8oOyaC6B/4nN/AHOU7f2IqCoRtQbQBhUdMTmBEGK0EKK5EKIVKu7ja0KIPyJPyysRQmwGsIGI2iU2nQPgM+Rvub8FcAoR1Ui08XNQ0Z+Ur+W14qmcCdfNT0R0SqK+rlTOcSfuXuWAPdLnoyKS5EsAt8adnxDLdRoqXr9WAPg48Xc+gKMBLAGwNvG/nnLOrYl6WA0PPerZ9gfgTPwcLVMZylsMYGniXv8bQN18LjeAvwH4AsBKAE+hIkIk78oLYDoq+hUOocICH+SnnABKEnX1JYB/IDGrgMkfTz/AMAyTh+SyW4ZhGIaxgcWdYRgmD2FxZxiGyUNY3BmGYfIQFneGYZg8hMWdYRgmD2FxZxiGyUP+H2kbkaeDVWTyAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot(marker = 'k', save=True, filename=\"lightcurve.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : See `utils.savefig` function for more options on saving a file." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Sample Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray also has a sample `Lightcurve` data which can be imported from within the library." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import sampledata" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc = sampledata.sample_data()" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEFCAYAAAAPCDf9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABiL0lEQVR4nO19d7xVxbX/d9174VIuvQlc4FJVFAFBgt2IBTUJauILMVE0yTPPmPLSMdHEFKMvVf0ZTXjGp0ajIbGRKBaIBQVBROlK7733cmF+f5y9z5k9e9ou595T5usH7z6zp+29Z9asWbMKMcbg4ODg4FAeqGjsDjg4ODg4NBwc0XdwcHAoIzii7+Dg4FBGcETfwcHBoYzgiL6Dg4NDGaGqsTtgQseOHVldXV1jd8PBwcGhaNCxY0e8/PLLLzPGRov3Cp7o19XVYfbs2Y3dDQcHB4eiAhF1lKU78Y6Dg4NDGcERfQcHB4cygiP6Dg4ODmUER/QdHBwcygiO6Ds4ODiUERzRd3BwcCgjOKLv4ODgUEZwRL+IcaT+OCbOXgvnHtvBwcEWBW+c5aDGH15bhnunLkV1VQXGDOne2N1xcHAoAjhOv4ixbd9hAMCeQ/WN3BMHB4digSP6pQAn3nFwcLCEI/pFDKLG7oGDg0OxwRF9BwcHhzKCI/oODg4OZQRH9EsATqLv4OBgC0f0ixgEJ9QvN3ywdhfqjx1v7G44FDEc0XdwKBIs2rAHV/7hbfz6lY8auysORQxH9B0cigRbPbuMRRv2NHJPHIoZVkSfiNoS0T+I6EMiWkxEZxJReyJ6lYiWen/bcflvJaJlRPQREV3KpQ8jovnevfuInNJhGnBq+uUB527DIQ3Ycvr3AniJMXYSgMEAFgMYD2AqY6w/gKnebxDRQABjAZwCYDSAB4io0qvnQQA3Aejv/QsF7XWwh1syHRwcosJI9ImoNYDzAPwZABhjRxhjuwCMAfCol+1RAFd612MAPMUYO8wYWwlgGYARRNQVQGvG2AyWYVke48o4JIDjAMsDbmPskAZsOP0+ALYC+D8iep+IHiKilgC6MMY2AoD3t7OXvzuAtVz5dV5ad+9aTA+BiG4iotlENHvr1q2RHsjBoVixaMMeHDxyTHnfZnFfvHEPfvniYscIOChhQ/SrAJwO4EHG2FAA++GJchSQsSNMkx5OZGwCY2w4Y2x4p06dLLro4FDc2HvoKC6/bxq++dT7ier57J9mYMKbK7DnoHPC5yCHDdFfB2AdY2ym9/sfyCwCmz2RDby/W7j8PbjytQA2eOm1knQHS/z7w82oG/8C1u44AEC+ipYSjh1nOFJfHjrph45mnnPOmp2J6sky+KU+OBxiw0j0GWObAKwlohO9pFEAFgGYBGCclzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XBkHCzz93noAGQOdcsCNj7yLAbdNbuxuFBx0sn2f5lc4ou+ggG0Qla8DeIKImgJYAeBGZBaMiUT0JQBrAFwDAIyxhUQ0EZmFoR7ALYwxX1B5M4BHADQHMNn752CJCm8mHy8xee26nQfw1Sfm4JEbR6B9y6bZ9DeXlM95DovgTEMnr/fvuUNfBxWsiD5j7AMAwyW3Riny3wngTkn6bACnRuifAwefeysxmo8Jb67AvHW78c+5GzDurLrG7k5Rw0l3HExwFrlFhAqPezt2PEj1i30NKLVFLA6i+FHScfHHs5x+4i45lCgc0S9C+BPabeFLB1HEO9p6vGqcMz4HFRzRLyKUuu61W8OApIKZrHjHvUsHBRzRL0KU2oT2udwSe6zGQWnzBQ4pwBH9IoJqPhf7BoA59jQ1+AtoRQrv8o0lW3HgiDPyKjU4ou/Q6CjyNaugkJXpJ6T5K7ftx7iHZ2H80/OTd8qhoOCIvkODY9PuQ9J0x+cHUX/sOCbP35g9y7FZHNNS2dx3KMPhL9+6L2FNDoUGR/SLEMWsmTF9+TaMvGsq/jUv54EjLe60qCGh6BOmrcDNT8zBi/M3WVdzPCXjrLL+FiUOR/SLCCrZfSGJR77x5PsY9JOXlff9qE9zVu/iUv2DXEdpeGzcldkRbd+fiZhl83aK/XzHIf9wRL8IkdPTb7g231u9E3XjX8CyLXu1+SbN3YC9h6Md/jlCBSlFF3X3o7ymtIaG+zalB0f0SwANob//z7kZccybS7blrY00F7EvPzobD01bkV6F+YYjrg4NBEf0yxgvzt+IjzbpOXcR+aBN+VizpizejF+8sDj9ivMMfuFz4i6HfMDWy6ZDASBt2vjVJ+YAAFbdfYUxbz5FSc44Sw6Vawab95TW93IbkNKD4/SLGI3BCeZDlFQs2jvPf7Ae45+e1+Dtiq+lIQhxoX8Lh/hwRL+IIBJcf2IW42GbjIstdHHGN5/6AE+9mwv/vG7nAUxZtLkRe6RGWs74St3fUznCEX2HRkexkpXL7p2GLz82u8HbtSHnovvt6G0U9gLsEB+O6DtYIW0iIK2vyOjM3kNh1dSjx46j/lj0uL5pL3zb9x1OuUaHUkHZE/0DR+ox8d21RbWN9bfuPo1Myxd7YyHnA96M+mPHsXmP3I1DIaD/jybjot+90djdcHBQouyJ/s//tRjff3oepi/f3thdMUIk7cUo05cd2ma1dyzk0D/71yJ87JdTsfvA0Xx0D3+ZsQprdxxIVMeq7dHLW21yInznpEOi0A9y648dx+3PLVD6cXJQo+yJ/ta9mW3wvohWpI0Jfz6WTOSsCBRq6uItAIC9h9Mn+vsO1+P25xdi7IR3Uq/bBNkrKKbFvKHx1rJt+Ms7qzH+mYbXpip2lD3RLyq62Yi+d9LaVfiO1nbuP5JNq/cOHY83MpXz299zMD+7CBtIh2PW70ZD9iSDQl14/G4Vav8KGWVP9IsZWZl+EQ38uet2AwBWbt+fTZvkuXj468w1xvINcfZScK/Tf+Yo4p2ED1EszFDBfasigCP6xQyf+05h6O87XI9fvfQhjsbQPIkDWWSnxuSwixkHjxxzEa4crOGIvodi4pZzu/302LHfvbIED7y+HE+/t07eZmotaeqzaCStc4xHp68qWMOqEAzPPOiOlzHwx2p31kkQhaH47J9moO8PX8xLPxzSg/O946EYtrOqCZjGgnW4/hgANCqnb+cvPp3V+SeTFgII+h0qgiEAIDxW6yWGWEl3fz5DEeV1z1y5I1GbUVAs36oQ4Tj9IoQ/IdNcqBp60SvERbYxN3tRiGsx7UrzjWKyrykUOKLvoRjGzhpBfzwfdNP0GtIyBJNy+hYrQcmoqTo4NBKsiD4RrSKi+UT0ARHN9tLaE9GrRLTU+9uOy38rES0joo+I6FIufZhXzzIiuo8KYAY3egciYMH6TKjBfYKOehrcjslXS9qGYBWSkdeQ4h0ZGnMsyGaC6kkbYtZkv7f3e9/hepx111TMXtVwIpykmLVyB/4+e605Y5khCqf/ccbYEMbYcO/3eABTGWP9AUz1foOIBgIYC+AUAKMBPEBElV6ZBwHcBKC/92908kdIC43L6q/fdRAvLdgYqUyak//JWZnJ8cHaXelVqoHsEDrK8+STX2gMkUGh7TTFtztv3S5s2H0Iv3nlo0bpjwib7/8ff5qB7/3DbLx1/DjDPVOWYFuZ+CtKIt4ZA+BR7/pRAFdy6U8xxg4zxlYCWAZgBBF1BdCaMTaDZWbVY1yZsseY+9/Cfz0+xyqvSDB5grFt32H84bVlsQnXtn1HzJlSgGzORtFGKlVZbmrBT7jX89C0Ffj0g9PTqTgmNu0+hD2HClMld9aqHbhnylL8wGKBMGHn/iOY20CMU1zYau8wAK8QEQPwJ8bYBABdGGMbAYAxtpGIOnt5uwPg7djXeWlHvWsxPQQiugmZHQF69uxp2cXiRhRiu+fQUbw4f2NOw4K7N/wXUwAAZ/friCE92kbuh4qYNoQkrrGFff6TF4DUMYCkvUkSNtIfD/6wOFIfT7tr5F1T0bVNM8y4dVTsvuQLvsbaIU+DLQk+/cfpWLF1v1U0usaCLad/NmPsdACXAbiFiM7T5JWNUaZJDycyNoExNpwxNrxTp06WXYyHApvfVvjFC4vx1SfmYMW2fQDkogFfRr95zyHUjX8B05elE9A8Lf76rYT9KTTCnA/MXJFxAng4JqFNAvH1Pvf+egDAnDW7Yte5sUCdo+W8vCYfUyu27jdnamRYEX3G2Abv7xYAzwIYAWCzJ7KB93eLl30dgB5c8VoAG7z0Wkl6QSCf0oK68S/gnilLUq93l8bTZJPKzACevWonAODxmasTtSWbDrsOHMGKrfti1VcZU3unnLDcIyCrt0cnJFGH89Fjx3Hz4+9ht8Iqen+BWfymOVJyO7wUKy1gGIk+EbUkolb+NYBLACwAMAnAOC/bOADPe9eTAIwlomoi6o3Mge0sTxS0l4hGelo713NlSh73TFmaep05DYvwFK+sUMv9k4Cv55Lfv4kLfxvPd3xFhYTox+1USijUY4KGiJvwu1eXYPKCTRj801cC6VmC2OhfJ38o1fMhFWxk+l0APOtxYVUA/soYe4mI3gUwkYi+BGANgGsAgDG2kIgmAlgEoB7ALYwxX1h2M4BHADQHMNn75xATvq67bMxWeTqRqXEvkgVmy9742g4Sml/WaOxAOFtD31LQ2Szh71WoZzn5gpHoM8ZWABgsSd8OQHoqwxi7E8CdkvTZAE6N3s38oRQ4GBm5qKq0f6668S/k6lLQnrTfU5VEUd9mztmQxqTxYQsNhcBtby4AefxHm/Ziz6GjOKOufTYtFSZdErmt/thx/OG15fjyub3Rsrq0vNU4i1wPxUgmdJxJdZX+09psaf1D4PfX7OTK2fdPB1nXZVa6yvKae7H98jfiINAR9JxnZfsORhVZmN787NU7DTnyj0vveRPX/HEGgHTl77nIbbm0SXM34PdTluDXLxeGXUKaKHui31g7uhfmbcxqZ8RFml0f2SfDPV1ySpds2tuehs1jM1an/p5kBH5/hOhlOpIm0ru9h45i1G9fx4L1u63rb2joCHqcdx913RPbEC1ySxmyGM2+amopuqwuO6LPGMPT763DwSPJdXKT4Ja/zsFnE4bly8rFLWa4KcsJrZsBAJo3qQzdy8dBV5VEqL9iWzrqbiIBfXfVDizfuh+/NViTNqRcvW78C/jaX8PGeKUgbixW8Dtn3XlZsaPsiP6MFdvxnb/Pxc/+taixu5IYOz2VTd24VJEQcTCbDrPSJkUy7Z0o0JVWTVTT/G3oeMn/mhd2uyFbeDbvOYRDR3NMip2Pomh9KdbFJo2FWsbpi+fYpYSSJvoy68H9hzOTZ+vexj+YSgrfT44fgjANmLj6tLj+pNo7UXphS9DeKwC5tQwvL9yMcQ/Pyv62efbk/vQLG7JvunbHAfzvmysi1+WfAfH8jmwTvW3fYYmWU/GhZIn+2h0HMOC2ybhvqlw/PsTpFvGSXh8j8In4uLJJ7ivBMKR/9iEzzkoLcQ9yC3kIRA1QkkSmX3/sOA4ebVzxZxxc9+eZuPPFxQkcp+VeAmXFO7kXOfwXU3DGnVOSdLEgULJEf8nmvQAyRic8Cp2DiQPZBA+LbwwcvCTt4bdWAsgFLle1FQdEhMUb98Qvr7kXt4+xtX5SQJRIVXmJo8C1O3bCO7jivre89EJeCoPYeygjlovaZZlFbinSCR8lS/ST4NHpq7A8pnsBEQ0xaeJofoj9knWT9+0jc+6WBOt3HcRl907Li0aNqo+mT9GY9C3tQ+Sotc3h1HIbSz2TMYbfv7ok0tyTfbOom0h/LvDFSll7qWSJvnGCe3/FAcIYw08mLcSV97+dTTt+nDUYxxOnHb6IST8/Cg4dzYmN8iWNWb39gDmTBLq3FOLYLfteCBPcRhX1tY+2muuJOI5UHiYb8p3sPHAU905dimv/N55WW9y+Zg9yeU7fu27M3V++ULJEX4VcBCiB0xWGzF5Pg2PT7kPo88MX8bd340XgaYgxwxTXeWkr5Qb2xvSxng/xTiEc7KTmIyli/iiGcfmCT2CPHjP3XkeMoz6JzOI5TmD4NHHJ79/IWwyEkiX69QpTfHFsb/f82Pscp/iRfRHHcx+sj9T+nkNHC8odgEpFU/VbRL5IwrF8zKqYKpuN+bVsXkM+g6c3PsnPwaYvD3nnTdOX5wwc4+7GdZx+Y42JJZv35U2brGSJ/lGDRov/MX2tiIemKVS9Ynz1fYfrcdodr+CuF6MHr4g1bjWs/ksLNgHIyNDTQOqy57zQ/GCltgTteEEs0uo+ROtdOs/SkJxulLbW7VSLBaM6TvPHC9++f+3EO0UE1XdX6WwrD/8M5WTY52kR/HPehgbhFHSE+LkPMpo3oqZMWGXV0NM8bf+jTiqbQBwq2m20QYjUk/xA18UonGx0lc3C4fXjdiXKI7+9bBumL8+4GdnkjamXFm7K3v/rzDUAMu5SSg0lS/R5yKJGiaKXnFMrOQpoToQQ4FAUT2Ca1LJSvmsGVVtpIK4ITH/gmbu7bEtYE2TnfnloSttnm7NmZ+q7grQXnEJYwKIi0i4y4QN+/qGZuPZ/ZwLIWDyL2CRJKxWULNHnNU+ufWhm9nrXwcyEn7Y0uBBE5TgPHjmG91abDWYKRc9ZtICNKqbJBfJIF/k49+BrfPD15VlOzsfR43LRn21Prn5gOq7O0yGbdjGLUk9KMv3G8fNPYCy6xpzUnUKEcoEeJGTypi3dirrxLzS6jy8ZSpbof/fvc6XpyhCDSpGAPP0HT8/Dpx+cgY271bJypQ8YzWBOLNJXVCCKpw4diWbFm6+dTlytKFvXyk/PWYfxz8wXyiZ/GN8FRhzs0WgsacdGHulvIexk/e+ybd9h9L71RfS+9cVIYUaz+vYpPEtSbabr/pxxmzFpbjQFkIZAyRJ9FdQcjfdXMbPEMbBgQ8aoKIo74GxbKU9evs+qqo8IB9tvLxdEXpKCUi4v5c7LttY20PbC0EUV99pQu7KjEp9QabcdeSdXAFRf5o/pnilLpdyy7umiLuqyutJ6G9sVosTGRNkRfRVUk848edTDg0g+oNImLXwUKlviYeOmgZe85MsLYz7IrKlOFRfXUJI4vpmVgjvptI6aUxPvNKT2TiOVlz5jSsNd5QDutQ+3YPL8xjkkLmuiX3/sONo0bwIAqG3XQponJydMj+jpt/DRh+7wunaSegx9sJgiUp8+tp2yxPBe4b4nhel8ppkkZgDQcPJrvn+X3vMmnn1/Xa4PWu0d+zaSBlGJW08SRGlL2t0U+5rWbFcdWd34yLu4+Yk52LT7EA4rrKHzhbIm+qf99BVcOaQbAOCzZ/QAEGHcWGSM69c9KuIYONm5P8jV+9S7ayK3YYN8WIKqz1L8vyrxTupdUXQkd3mk/ji+9be52bOm3Qc18v5ITRSGAkEUqDXPZInR64mCtMaliQEZeddUnHjbS6m0ZYuyJvoHjhzLuVCNWNaP8qQbG1v2HrbygJkUvPqgbdWrt0eLUuXrx6fd962x3eCqEXubn2ov1JBxf1MWbzaWy69FbnqL79odB4zGkVJEUKaQEeX43z1cMi1epDAM/oIoO6IvHliJvnjqOb8fuw8cVTpm8xHLQRo3yES5XpwhonI5oYNYRPYYsmrT5iDnpRgAxkdSc/x8oxC5cNX43hHjIPLcX72GHz+/MGGP9JB1N27EM6nKZkqLYAHS/PIj+isEt63ix32V47iu/79ZMMH0UWUTnB9kNz8RjpMaFTLzcRNU286g+mcBjlgP2zQRjGw9rIrg30lcR3A2iPtaoywWaX26uMFU3lxi9gQqIq3Rlsazp8Xp58W3VEKUHdF/UtALz3H6mb+7D+Q4m4XrdxsJXyE5VYsCKwdfMcs1BMb84W3lPfVZin3nr3/YvODn2ov2UmJH9jIUm7liu/b+tKXRCXFDolDGFpCeCqssZGtjo+yIvghfN9gnCHPW7Mres1mlZRPYNF7EInwgkViyUAk2aIzGgHC/bc8eGmNeimqNJpiIu1o9MVfufW4cpI244oRn39cb+nx2Qs4Pvewd+AZDDQ1bxijKopwWJ143/oWsU8JA/elUX5Aoe6Lvr+i+D++AoZPFGJQeKBnELeLgfo6bzBNiBHaWcZpjJ7yDXQfU8libZ5MtaI3BjV1275uR8ptFbor0hpLpxzwr+feHWxK10ZDgfdfEtR3JpssOWjVkOeqjy/zsfLgpfijPQoc10SeiSiJ6n4j+5f1uT0SvEtFS7287Lu+tRLSMiD4ioku59GFENN+7dx8VgBmg34Ffv/yR9H7uIFfe1Q41TSO3KQ5ufkehcgamg4rI+TFD5WXi6ZM2xiEk70fJBrEPcmOVysHWz0pDuOuNc7ifJo4dZ5GNj/LV4zh68A39+h6bsarB2orC6X8TAO8gfjyAqYyx/gCmer9BRAMBjAVwCoDRAB4gIt8a5kEANwHo7/0bnaj3MSCSbvHbqr61cnWKMTjESV/JLShpjrXEhj5SoX7c3jQconDyAXXXuAesXrmdmp1VIL8kLW2L57juLdLE+55/oqRDJqlDtMZ2enbrM/OMefKt7cTDiugTUS2AKwA8xCWPAfCod/0ogCu59KcYY4cZYysBLAMwgoi6AmjNGJvBMqzYY1yZvEPF/f1z7gZDweht8QPyC5yHT1WVlZzTkTiER8U5zlu/K3IZHkVA36UwPdoCTk30lUU5eW7cXYz/Lm1Ly8aijZ5+FNRUV6VaXxz4MRwaWtRUaFpnT86K51QwX7Dl9O8B8H0A/D67C2NsIwB4fzt76d0B8E+5zkvr7l2L6SEQ0U1ENJuIZm/dmq7Ggeh4TAzKoRovMwyaEao6ZktCnoltHOZO+OMQHlWJlVvVB6BqlU2e85XI9GVlCmySmfpzgOP8eNFR3Md4+O2VVu1m25GkzV+frr1CIUR8Wro5HMtAB7X/q2RYvjVaP0odRqJPRJ8AsIUx9p5lnbKNF9OkhxMZm8AYG84YG96pUyfLZvXImeAb8inSVapXcglItEYemb4qdyvGCFeVWb1D7WpBHV2Ku5beb3xiYoKqh75mlFL8E7M936WFtZZKA7zDQvhK/gGpLSOjdp+RTKHgD68tt8rXoWX087lihA2nfzaATxHRKgBPAbiQiB4HsNkT2cD766sWrAPQgytfC2CDl14rSc8LZtx6Ibq0rs5X9YmgmwRxJquKiMxZE95l+Ojetnngt0xGmsSFxMIN6Vva2kLVx3dX7fTu5zIEnjshMbY9/ItzSNipVcSxXAhU30ODi3eE37ZWxQO7tU6/MwUII9FnjN3KGKtljNUhc0D7b8bYFwBMAjDOyzYOwPPe9SQAY4momoh6I3NgO8sTAe0lopGe1s71XJnU0bVNc4zo3SH3HDHriSNuMaoMag9Yo7dX2665NP3igV2UZYb2bCtvP3BtJ945865/h3ZCT7/XeMEjYhs/xWzP30HYni3G6Z7qGyvbiPg0hbCBs1UoW7F1XzTr5ITtlxqS6OnfDeBiIloK4GLvNxhjCwFMBLAIwEsAbmGM+ULUm5E5DF4GYDmAyQnaNyKOPkTcEG08XpYYewTKRKyvsWDL6W/acwizhdCRccz3ddzsbknEM1XUMtU7HNClRtt+3MVi4uzMUZWtRkkcRqJSqFwXfQsAFBEhCxrq4DbB3xf+9o1o88T6rKWAJl8eEYnoM8ZeZ4x9wrvezhgbxRjr7/3dweW7kzHWlzF2ImNsMpc+mzF2qnfvayzPwk1+njSkLPrAEb3jp7RD4inLxFDZNMr0FZUePRZMf3KWnSvmS7jdyFaNP505a8OiqkUb5AY0qj5WV8n96GfLJRwifHmd75k47YgLikkNUdXEdoVX03wSvHxMPZ21/K3PzA/o5tuK0wqJ4conStoiNw6n37Qq2iuRTZYKWdy3QJlo9Zn7kJ92oiyU63ba+OcP43TLICoyIqcKRRflsN60yEUBv7vR+e5JQ7PG5K5D9e0OFaAvGB9RmJcVGs20VxdtxgvzcoZhKlGmbftzE8RDLkSUNtGPYfB7Xv+gttCGXXojF5nGRpWJ6AtFBte2yV7HOeSLQ0TEIr6vGdNisGl3ukY/tl1fJfH/38MQ7SyULj2jyKUlpcXW4p0UdnMmR15K+pnCghPXhTEATJyt1llPk9Hm52XP9vJxIkI1j3TO/YoRpU30uWvbAfWiYDp+39Slkds1Rd0RiU87TlVMbN8GUVTdfEwSjNKy6nVckbFn9AyV275Pzl3HjTRku7ORuWJQqUiaZMP8M85ckTuLSCriaFJpN51s6W63Ns2U90RxWrgN+f00ZP0/enZ+7LLf/4faOjV+nOow/vDasuz1/729yqrMzJU7zJkAHIrpbrpQUNJEP458R8ZR6nDz42F/+MZJLdxv1axJ9vpADJPxOKRqyx5zxKq2LZqE0pQh7WL0AUhGACcvkC+Q5vOKXIanOFfbacr0dbDdmTHFNWDB6SuaeO4DuVZVlGeP6uIh6WIa57ts4c6H0o7Odm8MRrCQUNJEn/dnEndCm8QtMktK0yAX60zqdSVOzFcrNwySLI3lx6uLhOh3VXDCjWWNaq+9Y5lPk1G0LLdtQyWaMfWJf9f5iHam60Ocr8lrO6Xt036XRJOsmFDaRD8GNRUnWhwZaIumer8n4qLQPaIOdqg+S/1mq7qMbSk4/QQr1zXDao15ZO0O6NJKnldVR7Yuy45FhO0rsOf0+fOGYBnzQa6ibcWqbep7n04ts9dxdqM2iCOmVGFvgnMHEwox7m0UlDbR565N3PdnPMITCi4So10z4Qz+7ttJrz9uQhzOVu1amSM0kiepqkh3yDDGUNPM7BxMJotW+g+K+Dr8SdxQkzmNRcdI9FXnGor8aw3aV0nGaNLnTfuzyGw+ouBvmsPoYkBJE/04SIPTN41y8W5SjQq1poa6jM1EktGVob3aSvPqVOh0sH10WTa1/yDVYsCkdR0x+OSxhb22mCWnr1Enjc3pq1Q5I8YsyA/SO8jVYe/h4hbPJEVJE/2gcZY+b1azQ0jfGYMriCoiiTqkRZVQ1bPpaJDNQvPHN8KOqlR+33cdOBpr8WKwI/wyYhU3PrFYlRgnOS7sxTt2+QIHuUKZI/XRGIukSPJurMVZaQr1HZQobaIf4SDX5ybiEC5xu2iqInSwFLHJ5k2DlqWqPusMzXi/RFG6ol9IDIUBnNOvYyjNGNMA8mdUPZ+pG+t3yUUZSTnKtPX0Ex3kpiT68pHkcHyOZbxhVQtFLkKPjCWb9+a1/tIm+twkNA5aBadvg/0GtwsidO4GbGCK/qUC71f8/AFml9WfsThgzfXBjmSKuRhTW9aK+USotHdMxxUPvL5cmp6c07ej+vYElEmuMqg3EP1sOaEtVds92uuVCeK8mqtPz4TLsD0riWJUlwSF7m5h/U65T6m04Ii+h3xrdvDoUBN0LBZ1UIuyY1uubk3Av765TCuLA1YecdRArX2tW9RlrsMwBhKfrSQUY0TI58fANX178Xbcw+84r8b3T2//jeX50ub0KxUW882b6H0zlQpKmujzPLFp3Pjy4TPq2kduZeqHWwK/0/DUqYMoRlBNitbNg0Sbt5pNUz0OADq3amb1HOGDcrv6rSPwQP0MSgveBLs8Hn+ZsdoqXyzOVXgm/1mUh9mKNlQbhG5tcpy+3FeNvs86K9Wki1zazhKbKYj7IM4dSimjpIl+4CDXUjlhUHd1IAWVkccOwTWBBb8bMX8QIfGOooL+nYN67KJ7XhniTq+z+nWwc+IWs4V2kqhGNsTgrL65s4vlnoZRWDzmc825tDh2BxstLVWTaCz5MHH6j05fLa3jmMIPw1n9cu/pU4O72XWQg0xkmZbYrBDEMXEWHp0bDW1beT65Lm2iz12bRA9VlZnculwqNTmRQETdKkcdT6KfG/WWPZjO72ptmvz77HWhNCUtZHbPERbvxIeNske3tmFZdVg8lvk7bWnOHXKNwcAuCew5X7VM/5hBzfQDzzNkWKYvz3/PlJxrAemuiivX2TKKFxP+xkXaRH/LXsXirGknzT6Y1G3zZfzmo6SJPh/M3CjTt+BKoh+/2eZPJtO37QdZiHd4RPGmGPvdJFDns7Avg8HhaaBPq7YfCKXlA3F874jIcfrR6qipjreY8e3IxD9puL6IalsQF9OXbZemH9YQ4zT7cNjgFsK0KCRFSRN93mDIdBj07PsZR1S6bKotnupgSFlPqN5IxUM7i7eXbZO3I9TLR1uyiVLUsqn9wVYMhRQQJSWu5tI2GjXywNvRe7brgF0s1jh662KRLNE3vIOdgmbUJaeoQ2j6kDEVfDujTg7XoVuUbd9lVCviuFC9f53f/DQPk02u1/Md9aykiT4P64Gnyae606Qy+BGjWksmlekv3bJPmk8EH8bR5nV8akj3cNuK8crA7MQ73NOSZT/Ectk0i0NMWX/FOZfWfH5bwUGKsF4fA+KdYClfZbOh5N18OzIVTFk3smclMdrg0VgO9HikGdzIxOnLnDimibIh+kctl2rdAFPdEv3R/Pmtldb9igP7Q0ZRnquWEcvTw7n8w+CQVTEDdh80Wy8HD0vVDxJafGWcpLKwXRuyPhnrTgFpaKPYineqRB//ivyf/1gudoLslfGuimWhCmXzRqk2ajEXu3NnMXFel87GxBQYSYY4fdioCDi0YZdeDz+J80IblA3Rf/q98KGkDB1rNIdUig/fXtAsMRG/ENcQcUSpApmE2mHARdxWnNeAMfmnUdbp/RXnLYM+LqxYPvc7PgG0eW2yuCahg7II5wVpgK/7vs8NVefT9McnnMpDSQ+i1bLqsbq01muavMF9Wymnr31hwXuq+La8+DFoIxL9Y+hCJC7barcz5tGQmw1bI7+4KBuib3sibnKLLINozdiltV67Ial4p97WwhHBgBdxo1sF6lTIaY8zO5tcvpwo3gloF1m8I3WkJb7O8DOL+vqmMIppg2+/WuJKwlcN1hGaZt55Cx+ARwbZjkyeL3dtGiWy8ReFKKrsJW5/bkGuD9x3O86i7454NeoThAUtzk6rEERMaaFsiL79JFbn26k4qBPHw2dO72HZlrx8WmAsKB/UEVVV+VCa935C89ZaNp+DeJAb9bDMJruM6A+ubRusx4LTTxIXVgRfl6x/h+rDDIrYn5F9Mnr1y2NwrTJEWeRkRFv27bJeTcVdimLw7eAOnU/tlrOXYSz6HPmI81/Tr3PQLXTUunp1aJFnzfkgnJ5+WrAlSpp8qlCK4oD/5zy9A7Gwnn5+PrI4eHjRVdyB5Xc1HHfAcvcR4ChJ+S5Ca0oEEczfOX/nMqIq+u+X7iKE30dTjL7Ei+dkXLWfplUq8G7tO6RfjGzFaYGmuHdWKwnwIyPa2rMw4beK0+eT+R1MHC570YY9yvJR6+vWpnmDcvpOvJMS0tCNVt0TJ+cygzZNyOmYRb/iQHzkASfkLHQ37ZY7fYuq982X23fYLEILlJeMbX/ih91P24tgePmzTDvu3zZuMxKK4HRYtDFHkHwdAJkMmimuAykR6YNavCO/ITNukymn6V5h+DxC3gd+joq70qjvf8U2Xl1bOFOIuKW01UxLCxE1wKPXn9/qiw+6j9u2uVx+GnU8vDAvGNA7b+Id4Xdrjnv6n5c+VJTRd8bva0guzoAtNm4IDMQ80oRUZOWrqLCYQTYtprkb821CgJzsWla97hyKGWj+uDN7SetVLtrctemN2XL6qlemOsjlk/lzg+OMJXr/YtGZK3dkr21sbOKcKSSBzZhNVH9eay8g2H6zCdNWKO+pNBw+0Bh1yLB6e9Cfe/44/ZiC92x5SVpWph9vtxIiLgp5r5V4R9EG3zeb6aN7zlydFhXFQIVEBVZqHKV43yqV1Cae2lL4INdMcANVSrLLFmaZGM1/h6Ldilq8w6R5pi3dlmiO6Hb5Nv6owErLp7+R6BNRMyKaRURziWghEf3US29PRK8S0VLvbzuuzK1EtIyIPiKiS7n0YUQ037t3H9nHl0sM1TcTF1WdVZ6qjrsnf4iXF+YMnzrWhJ2D8Ygb8Skp4h7eyu6HVDaZpT99gbiIZfwJum1fUPwU5Y1FZcpsDL90nF5dhxbRGuTgD7/Ih9iW0p1XF222qy/CG5a9irYt1FpEd08O7irVHkBz6TwHPm3p1rzthvlgNCp17Yx4p3Sovg2nfxjAhYyxwQCGABhNRCMBjAcwlTHWH8BU7zeIaCCAsQBOATAawANE5NvzPwjgJgD9vX+j03sUPVQuBXq0jz9heXzlL+9lr7cZ9OjF7W1DDSgromy67/VV1NVmsHPEFbTIlXG0mb/vrAhbt9qrH+Zu6KKHcZ0yJumIsqgdEgU+h8wTvI82ySMn8YFv/GdUW0hnIGodqXdHuetAxDnbA3pZmpe4ydb7KHctugFXvROrei2nVwsFjTgucPoj+5jdr3/l/D52jcrayzNTaJwRLAP/ZLKJ948BGAPgUS/9UQBXetdjADzFGDvMGFsJYBmAEUTUFUBrxtgMlhmxj3Fl8o7zT5RHivI5y76dWobundw16GY5LeKs+6hNZdZEljARxTS6n5XpSyoz+RQBwod4KrHFwvV7tPkyeRWiCu7aZjOpUzf0oZJDZ/Iam1DCf2W8COKwxDc9YzmRDcCJdwy8fkjsolwojV3lqpDtjGTfJ4MQw6Vqi0sPeoRlOGpwSKP1568taUZmFxutlmZVar9VpiG516CRlRRWFIaIKonoAwBbALzKGJsJoAtjbCMAeH87e9m7A1jLFV/npXX3rsX0BoL8Ta/dkTGJln1ScbCmxZCHOf3cdXeJipwMsoETtpKN3mG+Lyu2hbWQ/NshTp9Fn1xEajHK32avDeW3XcRMMn3x8E6uGRSEzIhKlTcK/EUp0OcIriOUnL533/ZQUOWvyFZVNopKrXq3kbvD99tm3tkaLOqgepeZg9zc76R0wFReNvbThBXRZ4wdY4wNAVCLDNd+qia7KsiRdfAjIrqJiGYT0eytW82m/XaIQQAV6Ull8mLxvSkZ/pg5fXO/+cn/7qqdkjYyf+NaZQa4cITfsf9bpnWiyisiIKqQjDqbIDSRON8EVICynH4uTUanw2q+nnjHVL+hnmx6ihKFT59eG5CPq+IXiFAt1jZd061tuu9j42qaQSD6Fv0pZESSJTDGdgF4HRlZ/GZPZAPvr6/8vA4Ab5JaC2CDl14rSZe1M4ExNpwxNrxTJ3MA71RgscX3scMikLcOIpd8mLPATKSaJv6WEE5jHYZMPtFoEhJD2R7kBjlaFfce0rhgskVNRcB44hGmBpYSjwCiGB/FAV+/TDceCPabNz7SwTQmcun2BFeaxiX+90X9vb6yUN06BKZFYLfBEpkr6VrnPeQqNXkYC35/i8dpOBWV6LDR3ulERG296+YALgLwIYBJAMZ52cYBeN67ngRgLBFVE1FvZA5sZ3kioL1ENNLT2rmeK1NUSCrbF3cKvPzatma+C+f06wjArEaZpkxfdCfNBKLcXUG4Ato70gyZP7LdlC2nr1Q/zLYr9j3iFiUPMB3eMRbUxOnbyTs81ri6zha0gM1iYMzsoVWzKq3bbBv2wBTPWdSYijK2eSeEOw/knLypRGGZg9xcA/l2k6A6UE4LNt7FugJ41NPAqQAwkTH2LyKaAWAiEX0JwBoA1wAAY2whEU0EsAhAPYBbGGM+K3szgEcANAcw2fvXIDBzsOY0v45DR5OZ5Isy/enL5UFQbCGL8Zr5XfgbUZXYQvQ5Lp1oEWXGyj5oCF5O5h69vA18MhOI2mVRn38uYTrIteb0+T7F4FKDZwIUPBew7AMP025D1AjSVSm2d8GJnTBlcViVVfXYaVvkNva0NBJ9xtg8ACH/r4yx7QBGKcrcCeBOSfpsALrzgEZDFHn3YYlDrCgQuTr+Z6qDK/Q7eeUqJ1pRa66prgKkB7m6tsU25ZmNxlmWRI2xHAHUvTvZHStVUWV95l2Oj06t9DYhtt9JtIvQ5TeJd7LvLMFwW7cz53P+OLf4+vAZr64WwcfFbpjsaELlmSDTTziNbEO35gtlY5EbB6qXn1RTQKv+l4Awy+TgPGwNdXTwqxTrCk8M+XPwc9e/7MD7+Ve1yyS7AiWHLm9PbNdYD3et5/TtdyFxoXqfby3Vh8q09Tn1/Ae54zXj7kFS5VPv5jROyKsjrfCHKlEh35e4u1p+AVDVcFwYezYt6d6hrKu8SMd52UwJptdo85r9j2XS3rlIEkOUR+8OYZsAsY0oyA18IV14KlVA6GBddlwIH/BC1Z6uPMD5nbFon7GwR0krMYGN+qNSo4VJr22Q7+AwfpblW+WeX33ILKfT7gsAPD0np43ti3cinRMI4NVqPzOsFnsUgYmsQjIK7b2yMMewnGCzU2AMKzkHbjb91w072djg43jk22C/bIi+jwsURloqZm30KSeE0k3ck4nOnNO/oz5DTJgXtmhEWVeHSGwYWFBMZWiHdx+c2b6by4lh7uLOjVaia2UbImuR55uj+sfskdCWZRqgd38AhAmU1TuTjN/BtW24OgzjX6giigjPB8/5EpFUBm9bl5jlGc7hHW/zpSPmD01bqawvar9kRN3k7yhNlB3RbxklMhZjATe9/rcwcfqmgfje6p2xy+rK2Lop0NZl2daTs9Yo7wHqhZEPbuH73tl14Gi8g/aYHNctH+9nrFtMtzlrqIxoUJTpn9m5mrzNTJ6z+qbPQBzg7Eb8nsxdt5trW9af3LW4gMfxRS9qsIhO28T+xZWD28SNPs5YYM7b7GBmrFArZzR2FK6yIfpZwqiUM8rTDx4N69CbD2L095+YGSaYJtgQAlncWh5jhpgNoOMQX79c8ADVsN2hDDcY8g2jaT+Ofv3qbQdCadVVoqW1WqSUa0vdmkx7Ksm0lpZVERpDSyE1XouO3fHPRdr7qhnkg0ABG4ykJI4xFjhziNApr7xtQ+ryNoR68cYcQ7Nsi1rsJhtvQUY/v4tC2RB9HwYXHgGoXr2C6chCG1w9JqzkfIZt9ElcEBV1FblCsvy6Q8/6Y9zEt9CQISIcPmqhmomcGMimLzxsTNrVnH7ujs37b0gOzm/pNSEgTPa+QssqMgm2fCbt4XkM8Y4IVWwBEzNnumfD6TPLfHu5cy6VNhSgFiX70PntSQNlR/RVHv+iHZ7pI2OpLCptoOI6N+w6KE0H+MMsUX4bfXbxzcv9zajrvO/fS6X1qEDZ/5mrZwDeWiZumeWZfWM1EUN6tPVKiYuHBaev07iSiNdsD0zbSWTyUZSB/peTNcuQ1HpcBtv++e+5f5caaboOUxbLFzO7loUcmiy2i3kgn6JCnVZelDZbWriGSIKyIfr+JFQFPDHJKfnffOQjaV1JNDcU6dstJq/pwCzqoRcvxzXVwUS5p8VhH//XBrbPE14cMujkuX6O815sjLMCdMFcJQCgjTQaW7h0aBGxbOBPbwaDAkXlsnXEXAUij9v3sp03ILorFV5bRgeV5potjtss1CzI6OlEnFHbNN0/kmJsZh9lQ/TThI3JvA5fvaBv5LJa3y9MnkcsYTUmIwzIJPDV+ngjHEA/oWJpogh1SNMt8tdr5II+ETx4hD//seyUzLlaCq9YJ6owgbebiIOMTD/X1oOvLw/2waITVwzqmsuvyeffm75crY4stheom9/NadrYxblrUPXf1hEjP4dO6ZZx386/850HjkjzpgVH9DUIczSZ3+LhY6ic4UPZxOUUYRNYISy+TX/A2FZpl4+w60BwB2OjJRO1L6F6DPXK8PfZ65T3/PIPvaUXtcggDSQD8wJnu5s8o66dOZOAz4/slWtHzuqHk7iMFWQwTlKk88xQr4jRyPYfUc9JsT0+CIqNVo4t4bUm0Fy2Oz51CgbXtkFrbsd39Bj/LtP33FY2RN/0OaIYrZgMfmQ1BSzudIRN0dONu83Rh8R61+wQYvHaqAIa8tpubW3eJlEUQxTZEhyP6j82fZVVPXy6LkhHEqiGEh9+MwlE99g2w9zEk5jWgVywd8V7VaQ/wO0IbMeFKpKbDnxWn9MGct9b/NbhsS1vi/cXpQsoFHDyRoTmTSuVEyYf3jrLhujHgYqzbNNcf9BiOh94STOhVZNyocaVropQr99lJzqRta/aqibh9HcK5xLyAAvqdpNz+pkCS7cED+LFem44qy5S/eqFMN6ixFh4kRe/h6lqtSgrWp+swyVy2Qjy+Md5adf7q49sFrzH25jIPGuaNMpUTf365Y+y1+MvO0nZn+//Y26ufdK7rMiHh2ZH9D1IuRcF91pTbbCClB3EcWnLtui1f2QQrUjl7Qq/Y8w6v5+qSRTVzoHHIc5RXS54iD0xC2snpQOxzW5tm4Xqf1txOJy0I7YLn3j2kU+YFxTJ+ObSiPTEyup1RWQuogQ2+pCLtyt14Sx0PhziU17vWm5nrZuv+7mzn8oK0nLzNm5EoqKkiX5/LmB1muJtlUm4D3nMVbu6Vdlstq8mAmqlvcMMeVUcZChd35jPDdpuyxmCdgCZNtP5qCKR9eXRfP3Nmqh1p5NEo5Jb5OblOCZbtzGPIb+pjpx4J50+2CwAcaPZ6dxFqGAj4jQaJ3ro3bGltu0Yx39GlDTR/84lA6zz2ugeJxFt2A5JpWaAngUGAPxZ0NmOc/Lvl1CVtalR52yLR/0xhiPHxK20ol8MmDBtheKuHWyJkMwPEM8dWrdnkUfK6TPg3VU79HWbuHHljswCKaw4RKRpy1y/7YLu59MRfV1VUi+souV3iJmSV8jP0fMVPr5ENK2q0IrCHKcfEVUV4cfjuX8eskmyP2bs2ihy0/CBj7ysyOXKwPu1AWS6zjaTLfNXNYdsDJlULYncz/b9R7Btn6i9o+6jr7N81dDu0jZFLPzppfoMBiTVVErijXHygmQHuXHp9n8Mr9Vy+i2bVhoPcgEv/nGCxSMq1z1PYlNigyCnL2/UdhPBM0pdWpu9d2baz/zXkAGPSpvocyH9fEIsHuLpENJ+sSTm05ZI5L8WHLxuK6fz4e/3a5rgW910YKmr6xP3TVPcV5XLQTXheQI3yuB+WtUvIBfM2sZISNXHQHqI04/GXSWZrnKVTYvFOeZ9E3H51WcGa3eIsrjG0ga5x7p6aNDnU2TxjgU2abTbdO9zl8Rlc5gNs911BH9//mM9jWWyhmwNiJIm+uf064iBXVubMyKavNuERRvDmjY2ct/LB3VVttFcI1NOFV77fPi+wO0EFI4/6PrlVYNi1+8vjmkxR8pJbc3pJxCl5Ms4S6jjpvP6GMs0axImB1IOXqqoIOmD9/d9wQre9HjL7rzM/h14+WZpxGG6uvZLPIqaytv2rXMrM7efdTFuV2UqKGmiX1VZgR9/cqBVXoZour5RYXuop8rWpCo5O+DXvUZB0Pk8Ue9v5nwaNW8iFwG8xIksooYTzOfuN8Tp++kR1QZN9coQ9wDSLA4I3h99ajguBI9+nWtw4UmdY/UFCBssEtcFUcxo6npVZYV1IHLTW2hSaT9v/CbF8xT+E3Vv2zzCuDDnqzAceucDJU30A7B4qaJMPFRFgg9jU1Sn/1/bTm2hGLVfR46pDY3MkbPk93kd5fMGdJL2ycZiVSw3Zki3TDqXtsMzbon63GqZbTA9jRivtpBZZ+eD029aWaGtmzGWFTX1bN8ikL7C8zvTr3ONNK4xjy+f0xtAfg4gZTCN14wOvK48d+3lXB9Sj81l6ta2WarjIiPeaVj5TskTfdvXmU81uUz9Fod6mgOdHu1ynjtHxeTI0hBh2byiLq2bpXYwJRNLZN0GG8qKfvNVYADmrNmZ/R11y60kpBY1yD2ZWrQZMb8uwPvug0exfOt+7DqYOVQXTf/vnZrxnrpsy75oDvIS2HSogqZEBunn3mwuoFFOTz/4lHFUMW0hCxmab5Q80Y8C02CMY/Z/19WDcFbfDvaqjsq2c+hQ01R5Twe//29bxMrVVJJXiO84t/2VyJENC4vIRevEMEs28RG91G3edsXJkj6r69VBea4h1Cj3xKlHWGSlJlaPv7MaQG5cDOuV8dfji+ACQdMtuVLy+iDzU5Wm2CvN4ejXJW6++J1g6+ZV1m0O6t7GKl8Dn+OWD9E3fyhmYYkYvd3PjeiJ4b3a2cn0NW2kyW08MXO18p5ZUhzMwXssjFKPCF91VXx+mfhDxx1F2WGM6O073mJYsCGn8qejayP7dJA1Gvj5/dEnWrV/7cd6StsSH2G3RMMkqp6+TmQlcvZ9OtVg1d1X4OMnysV0unfsV+Xbajw7J+yozsqGw8IRmk1dFTHcQYjziy9fXVVpPcZGndwFw3u1yxpgaeFUNtMDz5nc9eJiZT7G7LiLWI63bLkjTb5n389NnhMtImDJ4I8rGRER89jer5IclPG+1G2hUknVWiRKCZImu3Dva16sXMaAx9+RxPyV1CF7XiCoBBBlUVZ52YyKiwcGVWDFZ9UdGFYqqICsbyafOv4Y9ss+9a45cpkM5/ZPJ/ZvZQQnQP67Eccc71YZEReRbm2bKxeJ+z43NFOlU9nMH8SAEiJE61AZXpi3MXK7WRmxxWquyuMTpRvPrsONZ9dl0zvWVIfKjKhrDxn8XHxghinfPl/IYzrIDf6WuX41HZ5p6xd++/W/v2ZXNq1rG983TjLuSGZ5C/DfK1ymUuY2AXLXvnYaW+G0OOchYrCN0DNpCMuGXfY67ib6FDB2ApMaONp8tzFDuuOv//kxYz5TXdWRVJ0zdemi1PFaSTbQvfc+3A7AyfTzAJsDyt9wGihxIdsJqLbWP5Gok5o+fr/ONYEdgczv+CcHy0UuAHD/v5cGXLvWtguGdtS9p4wr5GCGCyTm5kk4l0wQ7FxkMv9ZJy/ILba+jFsqehB+84feYeKu4H6z4qNwA+JurKoiY6zEB8XWHZqKiO8vnQUWB5nfpXoJEyPr0d5DcstzVde0c0kQ7/BeLO8dO8RcnkONRdhAU13DerVTfoVnv3qWtK77/r0sm/aFkUEDK717CT+P0EdFPv9sTjUCVGE/k6Lkib5q4PJ+tIEMsTF5v2TMTJQf5Xy1f8yTGWeJi5D3xrN7W/VVhxYSs/gBXeTiH8YYfvPKktht1lSHD7E6SYLAHzhyzBhoBgBO7Z77Bt3a5AxZ/vDaslBeXvqT4/TDELlkncjMv7Vxd5Czy5aQyr+Dv8/t3xEMDF9/ck64vAVkeQ8dtdNc4R91YLewEeJBjgHxtYRku4hqiVGWrA3AJ3oamT73RAzBnVGDGRhyqKSgRtxC7uxmaM92gbyypxI1wGy+Le9aRZe/a5scwyVbvB7/snmnEwdGok9EPYjoNSJaTEQLieibXnp7InqViJZ6f9txZW4lomVE9BERXcqlDyOi+d69+6gBFVQPCNtvseXdB48a49DacG68Y66/feXMQFuMMfPW3XBbJmfdf7geC9bvDqTZeucTOU1d/2rbtQiffUja4f2V68A/S1cvmDwT+uTrTG/dezibdlptW6+v4TrFpGOCX9yAC2Dvr8jpqsQ+QFiTpsJzS7B5z+FQ3rjinakGL65+3c9xO6KQ1ShY4D3qdhRNFUJ9qTMyY8/8spmcvHgn7nTnn23FLy8P3otY1+GIMWdlPTbN4fCcMrRhWEjThg2nXw/gO4yxkwGMBHALEQ0EMB7AVMZYfwBTvd/w7o0FcAqA0QAeICJ/uXwQwE0A+nv/Rqf4LFr8v3+HuUcecQwj/ypZiXni5IPX+9YNOhtZuGzeLNm8D5/4f29lfw/t2S7wPCcqOH9AMkAleebcfjHe+N4F2f3KOytyKp9JNIn4pn0XAIwFiUPbFmp1Rak7ACGJfw+ZRZfvgF+P0C+V2AdAB8nORoRu0QjnDb+/tzXxXnl8e+Lc7DW/ENe2aw6woO2BD1mfdFar8t2Uuk/84zAGbJD4xLEV7/jf4bF3ctpmoaAnRoIazKL3xhm+J7Zncy7Mz3Hx+4qBjYDgwpKafYIGRqLPGNvIGJvjXe8FsBhAdwBjADzqZXsUwJXe9RgATzHGDjPGVgJYBmAEEXUF0JoxNoNl3u5jXJm8wX+hBzVaN7bxOBkLci5nSWRuJpn+Sbe/pO4rxTvEEyG6OLjw5M7Z9kWE5pAkT/uWTdGrQ8usnJaXHyfx980XbZbdRrNAhK1OraoDfwG9+uGMFUGCKepK84f5Mr/5fP0+9hxSazvJ3Eir6k0D1wyrzdQtpg+vDfYJwHV/nhVIkxaE2iVGLO2dwF/5IXBUrvbNJVu19/nvk1PDzaCyIugg7un3NLGOJWniGyDYL1q5enMFRt/zpjyPl0XcsecDkWT6RFQHYCiAmQC6MMY2ApmFAYB/YtYdAK+ntc5L6+5di+mydm4iotlENHvrVv0Ht8XBI0FifID7bfsRGYCfTFqozcNb+PmIYtBiQthlgLlUH42esFhepXGRySvTColP9edy7nB5ufImzo9PVu+bbzPb1zDESSN2739e+jB0z2RR+5cZq+UZvN4ozoHzgjN6yzWzeHm5zLJb952Oatx2HwiNBf3DjfNCTdr4qeex64BetKoCA8Npd7yS/X37FUHliCaC6Cqyzr/QZxtRzCcHdwsU5+uVHZrz7+WqB6Zr604D1kSfiGoAPA3gvxlj6oCtCjGYJj2cyNgExthwxtjwTp3sghGo4G+nxG3Viq05J1Cmj9jKQovABnFd5vK7h5cXBuW9izSxc2O1L2Thn90nJjwHWGe5SzLhlG5tpO37bfETo0XTKnlnEXaad0xj5JNdPEQCKeTXiuRI7ahPlqpzAZzrZ67kVwQ3FP7ziM/C2znoLbvDdyaoVJnJLgrcDm5n1q5Fzlp86z45IZcR1ydm2p0DmeoSrdWB4DMfFWMfBuqSiHeElcpmPe/ZntOIs2QAGtA2y47oE1ETZAj+E4yxZ7zkzZ7IBt7fLV76OgA9uOK1ADZ46bWS9Lxi/2GzMZU4DkQ9935dMoFXkm7XT7xNLdoB5KKCfYfrAyKhg96B9PkDMovhtn3hM4QkOHjkWIDA/vzKU4P9AwIqlTYybhv4GjkX/z64/fXFRzzx8Q2kZF9jn3Bgz5d7S4hz68trf/qvRdm0IT3ahmTyr2gC2RPUjvpkw+WXGgNBH7wywPcuDVr3qmTSxwLGYfJ+qvqkg8idZ34HK/lgbW536xNYImCu4FJZd9Yh213G2TF1bRN0Zyxy2s/MWQ8deO0ev7wI2TvkJQlRD3Kj6Xslh432DgH4M4DFjLHfcbcmARjnXY8D8DyXPpaIqomoNzIHtrM8EdBeIhrp1Xk9VyZvsONug3lOFeTAMoMcGUQNIR+2g1e2Bf/j68sDv/2uPnzDGVj0s2iRofYp9LF5PPP++oAsmHfJ60+gv2vkogAw7sxekfoFZNzpyuC/E/6AXEfA/vRGkGvVBQSRWak+fMMZIZm8aPhkgk6UMmluND5HfC9+wG1xXJvsLeIQ0BfmbcRGYWcik2lPWbwFIqTnARHPOmzCfRrFjRGemwG44r63Ammh9yZhzABg0cbcYsETfVtFhwZk9GEjtzgbwHUA5hPRB17aDwHcDWAiEX0JwBoA1wAAY2whEU0EsAgZzZ9bGGP+MngzgEcANAcw2fvX6BBf+CPTVwZ+Z4mDoZ7XPpSfP0TRcBEnsxgb1+dOKysoJ+awxO3P688jfLzHnUsEBr3EMEX2ZG1bhLfYPGQRhVQLq+ygWOcQTYQuRoLMr0+LppU5rR6vqM5SW0tM8zCTTzpBHhSIHwtEJAmVmbxLnVpVS593Bqdt5H9H6XvRvCvZZ9JFi/NhZ+VuzIIRde2xWBL8KCzeCT/E7oNHA7YV3drahUrM1pmSAoctjFSDMfYW1J9rlKLMnQDulKTPBnBquET+YBMYZVD3NgGOZnhde8xamQukcE7/jpi1agdeNLhguOWvc6Tp1pw+1HJnH7+8KvrrSzKcglyLWdPlBu8gD15en0Cv25kL3HJW37DWk+odyTlGr351t7MYoPFTJFtoKijc4rqQf/Uc5nDuIcL9S38i+11+dZFal58AzBcPtDVqqLY4sUsrvLVsW0ibhlcz9HcmOi0UWRe27AmfdaQh9LBluLq3ax6KeDeirn1Ye0dCoAf/9JXAb57psZn7/rcUg7fkCyVvkbv/iFmm307gTEXXAoN7tAVgFwREBpthd27/jrBx5tS7ozywuw68umNU8ITxg7W7QnF4RQzs1jqgFfPi/I2oG/8C7ufsJC4fFI7ipHpHJBmhJq0bHpcIjsh4VEjqrqCgiMCkNy21y4jQv6jwe8a7O1Zm4pMUL3ivRh1VxINfOB1AWPdetijKeC2dWO6Z98OydpNmWM/2LSLZtazdEY4Y99nhmePH9i2bhoj5PWOHSHe2pjZVBo8mBvSaP84w1JwOSp7oy4ZNx5qmmW28BzEUYXx/KIo+WFTXpLJCypWIJvkykYQJ/TpFXyh8mPouTsyTTmgVeI7HZqwCEPS2GEXNUy4lsBO3AXrCWy9RVeS/PWPAFx9516KVHE7t3jqvx3KyV9dOMGDTS5yCzzzojlcUOcMQ1R910LnEFr/clr1yjSbTGdTQnm2tFlaf6Mq0lP7nM6dh1d1XSN9Zk8qKkFGnzdDt0pqzKeHSP3n/W+HMjYCSJ/oyAj68V3sM8bh3wOxfI+kkttliZg/ihEH8z3l5V3DSIqoe/mm1bTFxdobAH64/br29VjUjfr9vXNiPk7nHU4H1IfOMSRQUz5h2NiJO7JKTuUdl9K84Te0oT4ebL+gb+C37ZnG1d4L12ueVaRmpin/9r+9L03cadPcnL1BrVfFt+j0xHciHD4UV+QzvkDcI3HuoHht2H8Ka7QewMIJ6dT5R8kRfhp9deQrO4NQyJ88PyuqjzAuVG2MemyXyShEfP6mzpxIZbF0mPkgLviXm7NsuwpzbL06tXt8m4uQfvxSykFVBNZHEiVdVWRGJ+OgWBhnnSkTZ+kUVTxt0b9tMedCs0u7yITvgDiP88Cd3DR7uSg9xLd7ZFwUHgCKS7ID5oOviJ5m5Mp4s20aryu/y8eMMf5ut9u1PFDTYVOaD2TiLX3Rf8tR9L7nnDWPdDYWyJPotmlbhG6P6Z3/L/IPw0I31if91pjT9yiE5q7xXNIduvsz54yd2BkFvHRkXyv57TXWsqUb7lnqNm3xDJe6U++vPwCcec9bsxB9eWyZ1gdG8qdqzY5VCVOY3+aNnFyjLqnD5aV2V79toMxLz04u7KZ1/mdueUz+TiabLFkmZxosMXVo3i+STyKY/tmDMrCr7nOSMRCb+k9nS2MDWc2pDoOSJvmxVrqmu0srGVVahUfDti3NGNWskB0g+7r/2dLzvcdn/8rSDXvtwi9eP6KMrEhfcoNrBetjoZAMIOGTz+3/1A9Px65c/wsd/83o230PXDweQWeDf+sHHpXVVyU5yYf7eOl9NvHM7/onqjx3HGXdO0dZro3Qg+77+UJ5920WYPv5CYx0qqBZBFaYv24bL7p1mlfe6kb2kGkS63Y84JE5orVeFlDkW9DnzHQYPurIdtTg/Lj2li5XDtUJH6RN9wxcSjVqAzMdN3K7l0GhaVYF2HpftLw43PvIu/vLOarwZUZ4MBIOG+FDJ5VUudW3Rulk67ikA+UTq07FlWE+a1PJpXu2WX9Rr24WJ9A1n1SlDHz7OeXWU4SSNGihxKp98/34/ZYk0Pw9Z0BMreA12rKlGt7bh8QyErc4BYNrS+H6t/t/UpXhWonGjApF8wRr445eVZcSdhWidLOKM3u1CafXHGTbvOYyfcVbXgJ1rFd7fPeCLv4IPUTf+BWM9hYb0Zm2BQvR/zmP2bReheZNKnPKT4MDrI2i7xOGITYvN41/SB0i4XbMN1+Gik8MLlop/+9EV4chdUXDuALlfpGs/1hN/jehLRbar6dSqOmScVcERD90rNu0cats1V3K2Mqd5PFqaCIawEwGAx6brFxLALlynrMcje0uCtQuQvY+3l2035lHht6+aFzEefNW2O1iRqfBFkFO/cz72HDxq5ZzsaUlgdgBZRisK6jzHhYxl/GHpPOYmRVKGTIfS5/Q19zrWVJsnMOTyZt4ISYYaAxcs40rSQJTBfK3VwaEav71msDR9cG0baboOKoIj7lIynHROTCDTvc7UZ25T5frBBN853GBOAyzQR0naXsG3TLc2YVGF6mDSJwAj+8iVBkI+5iUQX8e6nQfwxzeCLj7ivg8bVDepiGRUJ83nVdC3U00o6pUMoptlHj8YfZJlL4QuUKZnw37+aqzytrjxnLq81V3yRN/Wb46Ir328X/ZaxplcfbrUK3QWHQ2OyEQ1URuYdgcAUNch6EZ59m0X5c3VbzNF+Ls47pZl4odWzZqEOH1RTKCSKbcyLLqn92oXORbA+MuChGKoguhnwTJeNb//j7mhW5/kDvp9qDj9Z7xYrjdf0C/Wu51920Uhw6Bz/ue1UD6dIVtS9O1Uk41Mp1qoRSQ1bvvM6bXKe3yoTlswlrOatzl/SYK0bYUCdeet5gLBlUP1xFmFEzhOTDb4WjdTi43yBV0sUx8nevLmeXdcgg9+fDE61lTHOohOgqgL7WNfHCHl9M/t3zFE5ALGU2DKWLxDDAT59J7tIhOVT3l+0k1P52vI3DX5Q4y8ayomzg6LGMZLOE0Vp39q9zZYdfcVWc+qUdGxpjrwrCo5dL4IzZ+uGwYgp0Hz8NurcPDIMXwgeOE0IWrvemoO3Ht1UMeY4MGr0basrmywg9wkwYlMKHmZvioqkAk+d9+rQwspQWqhUQXMF0zj4FaOE22MRen+a4cC0FsNyw7OmzWpxKrtYd3y6yXeOvmadUS7OuZ3BzILhowgqQ5+VdAddMo49nyGyrPpe76ImT8W/R4s3rgHJ//4JfTpFCa8d109iOtPsh5F1UaSgfe426pZE2mAmnygpjp/87fkOf2o8CMQ+bvh8/p3ksqHOxvUx3gM6BLfDUIUqHTt8xnJiccnTstwwjoZM38OMLxXTi47S2KgIyOMw+vaZ5/n1y9/pGwnjhjk3P4dvbLy+y09T5ane/0+b0DYcVwSiDYacRkWGVRaPbZ4+Ibhscv671PcSfCBjHzw4smwe2i7b+ofAJvO1WwgMjCmLkzwdjVJ8aVz9IZySVDynL4InbodADz+5REAcpx+BQGrJVxoFKRl+GSyGDyzr1mLoyGgE+/w89gnAscZCy2sqoDo7Vo0yZu46nMj9Afb/qH/kB5t8eHPRyvPNOJCFO/0loggdIZXSaHjYC88ySzvFwOY+PC/lsIsIpiX+7RRn3SYtxhPv3UUpi3ZqnRDnRQ7D6id1F1seS7yuRE9tPfTXPBFlB2n/9wtZ2vvD+uVOfH35xYRoYuBq+e3pDKIRkBxD8xk3gyvG5kTgcj00QG5WKhDHi1wdUogvKjM167o1Ko6RMyuUpzF8G4S8gWb6tMk+K2bVUlFWZ1bh5UB8kn0TcoHAHB2PzVj8Zlh8oNTX7QUdffVXvB+axKrjBmcGTM11VW4bFA8P0Yq+LtS0xOIz9hREr4RAAZ2U2u4nVGXH80+H2VH9GWTVXRYBeSIU4UFkTFNFrH8hOvjbZVlGgdfGBkmFuEOhJMmff2cWH2wgY0PEwD41sUDMOXb56Nvp5pIXF1Smv9Vyffm640b7F2nIqjDvDsuxc/GnIqTuwZ3ob+8KsxM1GtivMrww8vtVBO/c/EA9GhvjnescyVx2alyQuvv6C46OWw4KIKfn4Miqv7aqK5GxeWDuuK8AZ1w7+cy51Umly0iWinO1r6gUZf+j+H6XUBSlB3Rl+HTEvVLn6mQjSNxC5fPk3YeMrFG3La7J5Tx6rBF5ySOo+6VFYR+neXnHSoRDiEeUe7LHRr6ctooC42N7cHEr8j9MNkj+FwyIhyR5ltHVztFwlD86tOnhdJ0Gjd1HeWLhv++RcdwMujes2ho+eR/jsxev3fbRca6o2Da9zOuO2qqq/DYF0dk54sueI0MKoWPuIxFGnBEH/IP0MWTT/Zo3yJEgOoEVTCxeL4WAdk4sRk8MsdR+cRRjfdDVU+OCdTsE4PlXGP3ds1jcfpP3pQjECbLU5mvJFsVv3wjKqefhLa01lizS9tSfBmf019k4VpYN55Fgyz+DKuDhWjKFs/dcrbVrscGKjGlDvnU0QfKkOjL5IKyl/zJ07rikRvPwHUje4VU6cQDInGwiz5D8qnhZTM+xOZbWqqb/vNrQREQr2LHi5q+cl4f9Gif2zkc1cidVQS3GWesdsNZdThdYnE56WtnZ4LNxJgTTbhzFZNYXKY62UxhI/F3iZfVuKqCNs8VVaZvHZhbUm3U92yKidCAYWATwWTjEQU2O+oLBX9ZNvY4SVB2RF82aWQfhohwwYmdUVFBIX/fZ2kOs/IJqf93i3LiQmcj+/zh5SeFZKp9OZ9EfLCQWy8/GdO+n/PuuF4TU1YVuvGsfjn1x8sVh3D+t4uzNeaf+XNnyOWpvm8VWe0/ulzup4hXO/VhCugtE5sAdpaqUV1vN6IUIQt/vc03MUsCG2v3ODhPYlC39M7LAr9rBFcw+V4cy0pl82sf7yf1L2JSjxKJpsni9NJTwjFgfdzz2SHasip866IBUn1/GwJoE8RFhGz3E3CapZGIi6IaHjZqdKoD0SgOwUTw3LfKUtOXOcveaRuFCmmcBUg13pZs3mssyzd34UmdcXrPtqE8Z9S1w7urMk7jbHsn80EV1emX6lX48yVKuEURNl4xbfH0zeHdmUpFOClk71V8D+K4zrd4p6yI/rcuHhCr3Ok92wVivIYWDu4bXT20O+4WODmeQOrcQrRqVoW9irig37yovzTdxvJUdBF762UnS/M1qaQsJymjr025WMJxvAC+8b0LlPdsVEiTGKy2rK7Cty8egNGn5hbkJgor1S6tmxn9r/N443sXBIK1VJBehKRaMK8bWZd12aDSdOEJwsM3nCHNw6sIn2RxeAoA3dqEd7vnD+iEL57dWxrIXgalTN9bcG1UQlX4xVWnxi4rwlfLbgzIoqOJi0C+FUMKd79VQOADp//iylO1xlbnn9gpvmFFDEbWxtKSz/Nf5/dVetf8ynk5VUaZCIuftEMlHKYPmXijY01T7WGojeppEk4fAL4xqj8GcIE2eLuGb3MMwe1XyBdFFXp1aInOrXK2HCa7DhmBBTIqiu/cOgqPfXEEHhonJ+jDJOIkEf66cO/YIVby6Ve+dZ5091NRQfjxJwdiuEVIUL5dEb7rDdUi6+OBz5+uvDe4tq1VH0z4ynl9pOlpMNfLBLGNDJ+W2DKINhptW+Q3il1ZEf24PjN89wJ9OrY0EieTWESHuDuRKNAx6OefmJM/DpBEIfIxsk/7yLrE944dauiXetZlXWPk0TCJV60TLZujcl6mMfKxPuozoRPaNJPKgX3o3pOIDi3tOOv+CrXZJJj0tbPxjVH9seruK7IeZVWRynyoznKA3HlLEiz/5eUhT6k+0rDytnFNLVNQ4NVqJ1w3LO+W9WVF9OPSjCaVFVh19xX493cvkN7nh4tsUv7qM/KDOxFfVPjb+MRp6VkX6ga33/WhPdtK5a/+4nXZqV21suyPSWTySewCfO72mOXqKbNujQLx2aIOm7jeMNNCLsiMXc/zoTN+Wm3bwO4JiO6wDsh4i537k0uU96d9/+OYcas6ROTv/iPn66mygpTP2pgH3vxZ3SWa88C0UBYy/aaVFThy7Hhi8YAK/ECS+d6obdcCS++8LNap/IAuNbj/WvW2F8iInFQBNkTYxAY2m5rr7199ei1uf35hIK29whzdBr5M2FZd0UYEEgVRv5vJv1O+cULrzAJra5iVBu66epDxoFZ3DrT4Z6Ol6SZvsSZ9et5Lpg6dPa0ycaGyxSvfOi9WOaDhDbWMnD4RPUxEW4hoAZfWnoheJaKl3t923L1biWgZEX1ERJdy6cOIaL537z5qwCfNcj55kg7wYiPVwG9SWWEl6xctVF/51vnGMl8Y2Qv9OtsRGl34SD/qlu1EUUHUWHjjexckcvXcw5MJi6ptMvzmmsFZv/dp4W+cYZcNoohg8oGfjTkFv//sYKvFT+UkTQXZju2Gs+qMzuoAfUD55nlyVW77KTrUVGPBTy8NBE+S4S9fGiFN14lDffzacsefb9iwAo8AuB/AY1zaeABTGWN3E9F47/cPiGgggLEATgHQDcAUIhrAGDsG4EEANwF4B8CLAEYDmJzWg2gf4MYReHzmaqWBTVKkuX75C8jDNwzHwK7JiG9U9O1Ug+duORsDFRof3754AA4cOaZ0rCXD/dcOTWzNevsnBuLsfh2tDhTP7tch1vdQucquqiCtDF4GWftn9umAb108wDpqVBK0rK7CVUPtvlFU9cBPDemGB18Phlm8/RN2sZYbw/VApY1rTw82TMW5/cOiu39Z+rG6Js8+dWxhfErG2JtEVCckjwFwgXf9KIDXAfzAS3+KMXYYwEoiWgZgBBGtAtCaMTYDAIjoMQBXooGI/pl9O+T1cOScfun5Vff3DD3btwhE72oo6LQ92rVsit9yMlIb+IfgSdCsSaX2kA/IGNdUVlBIPdUWZynGB2+QlgS+G4i4TtnSxkkntMKHm/ZGlmXLOOfG3tno4NtniK5T0oSKSfLRs32LgvnuQHyZfhfG2EYAYIxtJCJfqbg7Mpy8j3Ve2lHvWkyXgohuQmZXgJ49kwXvbgjkZ9DnZyLJIlcVCqZ8+/zIu7E+nVpiw66DGF7XLpa74w9/Phqbdh9S6pCnYbSz4KeXmjNFQPuWTSPZEchw/7VDcdHv3oxM9McM6Y4/vLbcnLFAUNuuOf77ov642nLnEwcmC/c3PedthYK0T3pkT8806VIwxiYAmAAAw4cPbxCPHc2bVOLro/TyPB0uH3QCRljqMzcGvjCyJx5/Z02DaAfEhcrjpgwjerfHrJU78MurBmFkRPELj2ZNKqXqgL6hmknV1AY2YoMoeO27F2C/IjawLZpWZhbIlhEPe7t49gj/eW5vDOvVXhnMPQpGnWR2uRwXRIT/vij/qtBJ8ZtrBudN0URE3NG4mYi6elx+VwBbvPR1AHjBVS2ADV56rSS9YLD453LtAVs88Pl0wqTlK1DpL64chF9cqQ/24hBGu5bJOH1T0J44aNO8ifZAXoXLB52AF+dvAgD0aN8c37l4AK6SuBXXtt2iCd677SK0bdE01g53UPc2mL9+d/b3Ny7sh29fcmLkegoFaUW4inJOlhRxezwJwDjvehyA57n0sURUTUS9AfQHMMsTBe0lopGe1s71XBkHDj7NLwRHWeUM3zrZZFBkQpoeG5Pi2hE5+wUiwtdH9VdGW9OhQ011bJHmQ+OCAYQawiAxX5j8zXPxVoGJbmxg5PSJ6ElkDm07EtE6AD8BcDeAiUT0JQBrAFwDAIyxhUQ0EcAiAPUAbvE0dwDgZmQ0gZojc4DbIIe4xQZfe6fYaf7Er5ypDCBRDPjupSfiu5cWLwcqg89IqA6tGwLiGUljBhNJCpugMIUIG+2dzylujVLkvxPAnZL02QDS85pU4ijmyQAUjpZKY+G5W862cobXGGhMv/bVVZVY8cvL0eeHL2r19gsZnz69VukivBhQFha5xYT/Or8vxj8zP2sh6CCHP+nSDFCeJgpJrOOjUNiIigrCn64bVpDvyAZR1ZYLDY7oFxjGjuiJsRbWjeWOu64ehPP7dypawtEY8OXwaR0+JoEu5oRDfuGIvkNRonWzJviPMwrDwrFYcEZde3z9wn64LqFDOofihiP6Dg5lgooKwneKWD3SIR00/j7PwcHBwaHB4Ii+g4ODQxnBEX0HBweHMoIj+g4ODg5lBEf0HRwcHMoIjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGINaY3pcsQERbAay2zN4RwLY8dqexUKrPBbhnK1a4ZytsbAMAxlgoUEjBE/0oIKLZjLHh5pzFhVJ9LsA9W7HCPVvxwol3HBwcHMoIjug7ODg4lBFKjehPaOwO5Aml+lyAe7ZihXu2IkVJyfQdHBwcHPQoNU7fwcHBwUEDR/QdHBwcyggFTfSJ6GEi2kJEC7i09kT0KhEt9f624+7dSkTLiOgjIrqUSx9GRPO9e/dRAUQdVzzbHUS0nog+8P5dzt0rimcjoh5E9BoRLSaihUT0TS+96L+b5tlK4bs1I6JZRDTXe7afeuml8N1Uz1b03y0WGGMF+w/AeQBOB7CAS/sVgPHe9XgA/+NdDwQwF0A1gN4AlgOo9O7NAnAmMrGhJwO4rECf7Q4A35XkLZpnA9AVwOnedSsAS7z+F/130zxbKXw3AlDjXTcBMBPAyBL5bqpnK/rvFudfQXP6jLE3AewQkscAeNS7fhTAlVz6U4yxw4yxlQCWARhBRF0BtGaMzWCZr/YYV6bRoHg2FYrm2RhjGxljc7zrvQAWA+iOEvhummdToZiejTHG9nk/m3j/GErju6meTYWiebY4KGiir0AXxthGIDMJAXT20rsDWMvlW+eldfeuxfRCxdeIaJ4n/vG30kX5bERUB2AoMpxVSX034dmAEvhuRFRJRB8A2ALgVcZYyXw3xbMBJfDdoqIYib4KMtka06QXIh4E0BfAEAAbAfzWSy+6ZyOiGgBPA/hvxtgeXVZJWrE9W0l8N8bYMcbYEAC1yHC2p2qyl8KzlcR3i4piJPqbvW0WvL9bvPR1AHpw+WoBbPDSayXpBQfG2GZvcB4H8L8ARni3iurZiKgJMkTxCcbYM15ySXw32bOVynfzwRjbBeB1AKNRIt/NB/9spfbdbFGMRH8SgHHe9TgAz3PpY4momoh6A+gPYJa3Jd1LRCO9k/bruTIFBX9yebgKgK/ZUzTP5vXjzwAWM8Z+x90q+u+merYS+W6diKitd90cwEUAPkRpfDfps5XCd4uFxj5J1v0D8CQy266jyKyyXwLQAcBUAEu9v+25/D9C5qT9I3Cn6gCGI/NBlwO4H54lcgE+218AzAcwD5mB17XYng3AOchseecB+MD7d3kpfDfNs5XCdzsNwPveMywA8GMvvRS+m+rZiv67xfnn3DA4ODg4lBGKUbzj4ODg4BATjug7ODg4lBEc0XdwcHAoIzii7+Dg4FBGcETfwcHBQQIiusZz0HaciJQxc0niPNFLlzqrI6KmRPR/nuO2uUR0AVfmTiJaS0T7YAEiakNE/+Scyd1oKuOIvoODQ9mDiC4gokeE5AUArgbwpqH4I8gYsokYD2AqY6w/Muqu4730/wQAxtggABcD+C0R+bT4n8gZidngFgCLGGODAVzg1dVUV8ARfQcHBwcJGGOLGWMfWeRTOU9UOasbiMwiAMbYFgC7kNH/B2PsHeb5OuLhGZg9TUTvev/O9psH0MozFqvx+lGv668j+g4ODg75gcpZ3VwAY4ioyrP4HYag2wcZ7gXwe8bYGQA+DeAhL/1+ACcj4w5iPoBvsoxbCSWq4jyJg4ODQymAiGYi4ze/BkB7zxMnAPyAMfZynpp9GBlCPRvAagDTYeDOkXEdMZCL2dKaiFoBuBQZy/ALkXEe9yoRTWMaJ4eO6Ds4OJQtGGMfAzIyfQA3MMZuSLH6zUTUlTG2kXdWxxirB/AtPxMRTUfGzYUOFQDOZIwd5BO9g9u7Wca1wjIiWgngJGSCvSgrcnBwcHBIH1JndUTUgohaetcXA6hnjC0y1PUKgK/5P4hoiHe5BsAoL60LgBMBrNBV5Ii+g4ODgwREdBURrUMmPOILRPSyl96NiF7k8j0JYAaAE4loHRF9ybt1N4CLiWgpMlo6d3vpnQHMIaLFAH4A4Dqurl95bbbw6rrDu/UNAMMpE/BlEYD/8tJ/DuAsIpqPzOHwDxhj27TP5RyuOTg4OJQPHKfv4ODgUEZwRN/BwcGhjOCIvoODg0MZwRF9BwcHhzKCI/oODg4OZQRH9B0cHBzKCI7oOzg4OJQR/j+RSFFPhdmq7wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Checking the Light Curve for Irregularities\n", + "\n", + "You can perform checks on the behaviour of the light curve, similar to what's done when instantiating a `Lightcurve` object when `skip_checks=False`, by calling the relevant method:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "time = np.hstack([np.arange(0, 10, 0.1), np.arange(10, 20, 0.3)]) # uneven time resolution\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1.0, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's add some badly formatted GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [], + "source": [ + "gti = [(10, 100, 123), (20, 30, 40)] # not a well-behaved GTI\n", + "lc = Lightcurve(time, counts, dt=0.1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlc\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcheck_lightcurve\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/lightcurve.py\u001b[0m in \u001b[0;36mcheck_lightcurve\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 418\u001b[0m \u001b[0;31m# i.e. the bin sizes aren't equal throughout.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 419\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 420\u001b[0;31m \u001b[0mcheck_gtis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 421\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 422\u001b[0m \u001b[0midxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearchsorted\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m/opt/miniconda3/envs/stingraydev/lib/python3.8/site-packages/stingray-0.3.dev267+gc5fd28c.d20210122-py3.8.egg/stingray/gti.py\u001b[0m in \u001b[0;36mcheck_gtis\u001b[0;34m(gti)\u001b[0m\n\u001b[1;32m 225\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0;36m2\u001b[0m \u001b[0;32mor\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m\\\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgti\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mgti\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 227\u001b[0;31m raise TypeError(\"Please check formatting of GTIs. They need to be\"\n\u001b[0m\u001b[1;32m 228\u001b[0m \" provided as [[gti00, gti01], [gti10, gti11], ...]\")\n\u001b[1;32m 229\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mTypeError\u001b[0m: Please check formatting of GTIs. They need to be provided as [[gti00, gti01], [gti10, gti11], ...]" + ] + } + ], + "source": [ + "# This will fail\n", + "lc.check_lightcurve()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## MJDREF and Shifting Times\n", + "\n", + "The `mjdref` keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don't become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time. \n", + "\n", + "`mjdref` is generally passed into the `Lightcurve` object at instantiation, but it can be changed later:" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91254\n" + ] + } + ], + "source": [ + "mjdref = 91254\n", + "time = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, mjdref=mjdref)\n", + "print(lc.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91274\n" + ] + } + ], + "source": [ + "mjdref_new = 91254 + 20\n", + "lc_new = lc.change_mjdref(mjdref_new)\n", + "print(lc_new.mjdref)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This change only affects the *reference time*, not the values given in the `time` attribute. However, it is also possible to shift the *entire light curve*, along with its GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0,500), (600, 1000)]\n", + "lc.gti = gti" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first three time bins: [0 1 2]\n", + "GTIs: [[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(\"first three time bins: \" + str(lc.time[:3]))\n", + "print(\"GTIs: \" + str(lc.gti))" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "time_shift = 10.0\n", + "lc_shifted = lc.shift(time_shift)" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shifted first three time bins: [10. 11. 12.]\n", + "Shifted GTIs: [[ 10. 510.]\n", + " [ 610. 1010.]]\n" + ] + } + ], + "source": [ + "print(\"Shifted first three time bins: \" + str(lc_shifted.time[:3]))\n", + "print(\"Shifted GTIs: \" + str(lc_shifted.gti))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calculating a baseline\n", + "\n", + "**TODO**: Need to document this method" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Working with GTIs and Splitting Light Curves\n", + "\n", + "It is possible to split light curves into multiple segments. In particular, it can be useful to split light curves with large gaps into individual contiguous segments without gaps. " + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.array([1, 2, 3, 10, 11, 12, 13, 14, 17, 18, 19, 20])\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 0.5, 20.5]])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This light curve has uneven bins. It has a large gap between 3 and 10, and a smaller gap between 14 and 17. We can use the `split` method to split it into three contiguous segments:" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=2*lc.dt)" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14]\n", + "[17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This has split the light curve into three contiguous segments. You can adjust the tolerance for the size of gap that's acceptable via the `min_gap` attribute. You can also require a minimum number of data points in the output light curves. This is helpful when you're only interested in contiguous segments of a certain length:" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3]\n", + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What if we only want the long segment?" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split(min_gap=6.0, min_points=4)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[10 11 12 13 14 17 18 19 20]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [], + "source": [ + "lc_split = lc.split_by_gti()" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[1 2 3 4 5 6 7]\n", + "[13 14 15 16 17 18 19]\n" + ] + } + ], + "source": [ + "for lc_tmp in lc_split:\n", + " print(lc_tmp.time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because I'd passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.\n", + "\n", + "You can also apply the GTIs *directly* to the original light curve, which will filter `time`, `counts`, `countrate`, `counts_err` and `countrate_err` to only fall within the bounds of the GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "lc = Lightcurve(time, counts, dt=1, skip_checks=True, gti=gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Caution**: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array before applying GTIs:\n", + "lc.time" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "lc.apply_gtis()" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array after applying GTIs\n", + "lc.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs. \n", + "\n", + "## Analyzing Light Curve Segments\n", + "\n", + "There's some functionality in `stingray` aimed at making analysis of individual light curve segments (or chunks, as they're called throughout the code) efficient. \n", + "\n", + "One helpful function tells you the length that segments should have to satisfy two conditions: (1) the minimum number of time bins in the segment, and (2) the minimum total number of counts (or flux) in each segment.\n", + "\n", + "Let's give this a try with an example:" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The estimated length of each segment in seconds to satisfy both conditions is: 4.0\n" + ] + } + ], + "source": [ + "min_total_counts = 300\n", + "min_total_bins = 2\n", + "estimated_chunk_length = lc.estimate_chunk_length(min_total_counts, min_total_bins)\n", + "\n", + "print(\"The estimated length of each segment in seconds to satisfy both conditions is: \" + str(estimated_chunk_length))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So we have time bins of 1 second time resolution, each with an average of 100 counts/bin. We require at least 2 time bins in each segment, and also a minimum number of total counts in the segment of 300. In theory, you'd expect to need 3 time bins (so 3-second segments) to satisfy the condition above. However, the Poisson distribution is quite variable, so we cannot guarantee that all bins will have a total number of counts above 300. Hence, our segments need to be 4 seconds long. \n", + "\n", + "We can now use these segments to do some analysis, using the `analyze_by_chunks` method. In the simplest, case we can use a standard `numpy` operation to learn something about the properties of each segment:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "start_times, stop_times, lc_sums = lc.analyze_lc_chunks(segment_size = 10.0, func=np.median)" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([102. , 110. , 92. , 96.5, 99.5, 100. , 95. , 96.5, 100. ,\n", + " 108. ])" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_sums" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This splits the light curve into 10-second segments, and then finds the median number of counts/bin in each segment. For a flat light curve like the one we generated above, this isn't super interesting, but this method can be helpful for more complex analyses. Instead of `np.median`, you can also pass in your own function:" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "def myfunc(lc):\n", + " \"\"\"\n", + " Not a very interesting function\n", + " \"\"\"\n", + " return np.sum(lc.counts) * 10.0" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "start_times, stop_times, lc_result = lc.analyze_lc_chunks(segment_size=10.0, func=myfunc)" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([10090., 10830., 9370., 10120., 10180., 10190., 9910., 9610.,\n", + " 9880., 10600.])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_result" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Compatibility with `Lightkurve`\n", + "\n", + "The [`Lightkurve` package](https://lightkurve.github.io/lightkurve/) provides a large amount of complementary functionality to stingray, in particular for data observed with Kepler and TESS, stars and exoplanets, and unevenly sampled data. We have implemented a conversion method that converts to/from `stingray`'s native `Lightcurve` object and `Lightkurve`'s native `LightCurve` object. Equivalent functionality exists in `Lightkurve`, too. The users who have not installed Lightkurve package should do so first by running *pip install lightkurve* in their terminal and then following with the next command." + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "import lightkurve" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [], + "source": [ + "lc_new = lc.to_lightkurve()" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "lightkurve.lightcurve.LightCurve" + ] + }, + "execution_count": 90, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(lc_new)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.time" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110, 82, 94, 126, 102, 80, 102, 105, 106, 102, 119, 98, 112,\n", + " 98, 119, 112, 119, 99, 99, 108, 91, 85, 93, 109, 97, 82,\n", + " 87, 89, 96, 108, 120, 88, 97, 88, 109, 120, 94, 106, 94,\n", + " 96, 120, 122, 92, 87, 113, 94, 100, 99, 105, 86, 107, 101,\n", + " 94, 102, 96, 112, 93, 117, 99, 98, 91, 101, 94, 120, 105,\n", + " 91, 91, 96, 85, 117, 104, 102, 91, 94, 100, 115, 98, 74,\n", + " 95, 88, 100, 107, 102, 109, 109, 94, 86, 84, 97, 100, 110,\n", + " 109, 117, 96, 108, 108, 110, 108, 97, 97])" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_new.flux" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's do the rountrip to stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + } + ], + "source": [ + "lc_back = lc_new.to_stingray()" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,\n", + " 13., 14., 15., 16., 17., 18., 19., 20., 21., 22., 23., 24., 25.,\n", + " 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38.,\n", + " 39., 40., 41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51.,\n", + " 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63., 64.,\n", + " 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77.,\n", + " 78., 79., 80., 81., 82., 83., 84., 85., 86., 87., 88., 89., 90.,\n", + " 91., 92., 93., 94., 95., 96., 97., 98., 99.])" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.time" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([110., 82., 94., 126., 102., 80., 102., 105., 106., 102., 119.,\n", + " 98., 112., 98., 119., 112., 119., 99., 99., 108., 91., 85.,\n", + " 93., 109., 97., 82., 87., 89., 96., 108., 120., 88., 97.,\n", + " 88., 109., 120., 94., 106., 94., 96., 120., 122., 92., 87.,\n", + " 113., 94., 100., 99., 105., 86., 107., 101., 94., 102., 96.,\n", + " 112., 93., 117., 99., 98., 91., 101., 94., 120., 105., 91.,\n", + " 91., 96., 85., 117., 104., 102., 91., 94., 100., 115., 98.,\n", + " 74., 95., 88., 100., 107., 102., 109., 109., 94., 86., 84.,\n", + " 97., 100., 110., 109., 117., 96., 108., 108., 110., 108., 97.,\n", + " 97.])" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lc_back.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, we can transform `Lightcurve` objects to and from `astropy.TimeSeries` objects:" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [], + "source": [ + "dt=1.0\n", + "time = np.arange(0, 100, dt)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "lc = Lightcurve(time, counts, dt=dt, skip_checks=True)\n", + "\n", + "# convet to astropy.TimeSeries object\n", + "ts = lc.to_astropy_timeseries()" + ] + }, + { + "cell_type": "code", + "execution_count": 97, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.timeseries.sampled.TimeSeries" + ] + }, + "execution_count": 97, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts)" + ] + }, + { + "cell_type": "code", + "execution_count": 98, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "TimeSeries length=10\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "
timecounts
objectint64
0.0100
1.1574074074074073e-0592
2.3148148148148147e-0598
3.472222222222222e-0585
4.6296296296296294e-05113
5.787037037037037e-0594
6.944444444444444e-0599
8.101851851851852e-05108
9.259259259259259e-05101
0.00010416666666666667117
" + ], + "text/plain": [ + "\n", + " time counts\n", + " object int64 \n", + "---------------------- ------\n", + " 0.0 100\n", + "1.1574074074074073e-05 92\n", + "2.3148148148148147e-05 98\n", + " 3.472222222222222e-05 85\n", + "4.6296296296296294e-05 113\n", + " 5.787037037037037e-05 94\n", + " 6.944444444444444e-05 99\n", + " 8.101851851851852e-05 108\n", + " 9.259259259259259e-05 101\n", + "0.00010416666666666667 117" + ] + }, + "execution_count": 98, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "lc_back = Lightcurve.from_astropy_timeseries(ts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading/Writing Lightcurves to/from files\n", + "\n", + "The `Lightcurve` class has some rudimentary reading/writing capabilities via the `read` and `write` methods. For more information `stingray` inputs and outputs, please refer to the I/O tutorial." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.html b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.html new file mode 100644 index 000000000..e808cf48a --- /dev/null +++ b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.html @@ -0,0 +1,334 @@ + + + + + + + + Lomb Scargle Cross Spectra — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Lomb Scargle Cross Spectra

+

This tutorial shows how to make and manipulate a Lomb Scargle cross spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.lombscargle import LombScargleCrossspectrum, LombScarglePowerspectrum
+from scipy.interpolate import make_interp_spline
+import numpy as np
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+plt.style.use('seaborn-v0_8-talk')
+%matplotlib inline
+from matplotlib.font_manager import FontProperties
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+
+

1. Create two light curves

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out Lightcurve for more examples.

+

Make two signals in units of counts. The first is a sine wave with random normal noise, frequency of 3 and at random times, and the second is another sine wave with frequency of 3, phase shift of 0.01/2pi and make their counts non-negative by subtracting its least value.

+
+
[2]:
+
+
+
rand = np.random.default_rng(42)
+n = 100
+t = np.sort(rand.random(n)) * 10
+y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)
+y2 = np.sin(2 * np.pi * 3.0 * (t+0.3)) + 0.1 * rand.standard_normal(n)
+sub = min(np.min(y), np.min(y2))
+y -= sub
+y2 -= sub
+
+
+
+

Lets convert them into Lightcurve objects

+
+
[3]:
+
+
+
lc1 = Lightcurve(t, y)
+lc2 = Lightcurve(t, y2)
+
+
+
+

Let us plot them to see how they look

+
+
[4]:
+
+
+
t0 = np.linspace(0,10,1000)
+y01 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)
+y01 -= sub
+y02 = np.sin(2 * np.pi * 3.0 * (t0+0.3)) + 0.1 * rand.standard_normal(t0.size)
+y02 -= sub
+
+spline1 = make_interp_spline(t0, y01)
+spline2 = make_interp_spline(t0, y02)
+t01 = np.linspace(0,10,1000)
+
+fig, ax = plt.subplots(2,1,figsize=(10,12))
+ax[0].scatter(lc1.time, lc1.counts, lw=2, color='blue',label='lc1')
+ax[0].set_xlabel("Time (s)", fontproperties=font_prop)
+ax[0].set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax[0].tick_params(axis='x', labelsize=16)
+ax[0].tick_params(axis='y', labelsize=16)
+ax[0].tick_params(which='major', width=1.5, length=7)
+ax[0].tick_params(which='minor', width=1.5, length=4)
+ax[0].plot(t01,spline1(t01),lw=2,color='lightblue',label='source of lc1')
+
+ax[1].scatter(lc1.time, lc2.counts, lw=2, color='red',label='lc2')
+ax[1].set_xlabel("Time (s)", fontproperties=font_prop)
+ax[1].set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax[1].tick_params(axis='x', labelsize=16)
+ax[1].tick_params(axis='y', labelsize=16)
+ax[1].tick_params(which='major', width=1.5, length=7)
+ax[1].tick_params(which='minor', width=1.5, length=4)
+ax[1].plot(t01,spline2(t01),lw=2,color='orange',label='source of lc2')
+
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_7_0.png +
+
+
+

2. Pass both of the light curves to the LombScargleCrossspectrum class to create a LombScargleCrossspectrum object.

+

The first Lightcurve passed is the channel of interest or interest band, and the second Lightcurve passed is the reference band. You can also specify the optional attribute norm if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘none’.

+
+
[5]:
+
+
+
lcs = LombScargleCrossspectrum(
+    lc1,
+    lc2,
+    min_freq=0,
+    max_freq=None,
+    method="fast",
+    power_type="all",
+    norm="none",
+)
+
+
+
+

We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has a real and an imaginary component.

+
+
[6]:
+
+
+
print(lcs.freq[0:5])
+print(lcs.power[0:5])
+
+
+
+
+
+
+
+
+[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]
+[  6.31032111 +4.52192914j  63.18701964+17.6050907j
+ 118.96655765-28.2054288j   84.8747486 -42.95292067j
+  -5.16601064+18.1110093j ]
+
+
+
+
+

Properties

+
+

Parameters

+
    +
  • data1: This parameter allows you to provide the dataset for the first channel or band of interest. It can be either a `stingray.lightcurve.Lightcurve <https://docs.stingray.science/en/stable/core.html#working-with-lightcurves>`__ or `stingray.events.EventList <https://docs.stingray.science/en/stable/core.html#working-with-event-data>`__ object. It is optional, and the default value is None.

  • +
  • data2: Similar to data1, this parameter represents the dataset for the second channel or “reference” band. It follows the same format as data1 and is also optional with a default value of None.

  • +
  • norm: This parameter defines the normalization of the cross spectrum. It takes string values from the set {frac, abs, leahy, none}. The default normalization is set to none.

  • +
  • power_type: This parameter allows you to specify the type of cross spectral power you want to compute. The options are: real for the real part, absolute for the magnitude, and all to compute both real part and magnitude. The default is all.

  • +
  • fullspec: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the cross spectrum. When set to False (default), only positive frequencies are kept; when set to True, both positive and negative frequencies are included.

  • +
+
+
+

Other Parameters

+
    +
  • dt: When constructing light curves using `stingray.events.EventList <https://docs.stingray.science/en/stable/core.html#working-with-event-data>`__ objects, the dt parameter represents the time resolution of the light curve. It is a float value that needs to be provided.

  • +
  • skip_checks: This is a boolean parameter that, when set to True, skips initial checks for speed or other reasons. It’s useful when you have confidence in the inputs and want to improve processing speed.

  • +
  • min_freq: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.

  • +
  • max_freq: Similarly, the max_freq parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.

  • +
  • df: The df parameter, a float, represents the frequency resolution. It’s relevant when constructing light curves using `stingray.events.EventList <https://docs.stingray.science/en/stable/core.html#working-with-event-data>`__ objects.

  • +
  • method: The method parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are fast and slow, with the default being fast. The fast method uses the optimized Press and Rybicki O(n*log(n)) algorithm.

  • +
  • oversampling: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.

  • +
+
+
+

Attributes

+
    +
  • freq: The freq attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the cross spectrum.

  • +
  • power: The power attribute is a numpy array that contains the complex numbers representing the cross spectra.

  • +
  • power_err: The power_err attribute is a numpy array that provides the uncertainties associated with the power. The uncertainties are approximated using the formula power_err = power / sqrt(m), where m is the number of power values averaged in each bin. For a single realization (m=1), the error is equal to the power.

  • +
  • df: The df attribute is a float that indicates the frequency resolution.

  • +
  • m: The m attribute is an integer representing the number of averaged cross-spectra amplitudes in each bin.

  • +
  • n: The n attribute is an integer indicating the number of data points or time bins in one segment of the light curves.

  • +
  • k: The k attribute is an array of integers indicating the rebinning scheme. If the object has been rebinned, the attribute holds the rebinning scheme; otherwise, it is set to 1.

  • +
  • nphots1: The nphots1 attribute is a float representing the total number of photons in light curve 1.

  • +
  • nphots2: The nphots2 attribute is a float representing the total number of photons in light curve 2.

  • +
+

We can plot the cross spectrum by using the plot function or manually taking the freq and power attributes

+
+
[7]:
+
+
+
fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)
+lcs.plot(ax=ax[0])
+ax[0].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[0].set_ylabel("Power", fontproperties=font_prop)
+ax[1].plot(lcs.freq, lcs.power.real, lw=2, color='red')
+ax[1].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[1].set_ylabel("Power(Real Component)", fontproperties=font_prop)
+ax[2].plot(lcs.freq, lcs.power.imag, lw=2, color='blue')
+ax[2].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[2].set_ylabel("Power(Imaginary Component)", fontproperties=font_prop)
+
+
+
+
+
[7]:
+
+
+
+
+Text(0, 0.5, 'Power(Imaginary Component)')
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScargleCrossspectrum_tutorial_14_1.png +
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb new file mode 100644 index 000000000..8d23e408b --- /dev/null +++ b/notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb @@ -0,0 +1,308 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Cross Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle cross spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScargleCrossspectrum, LombScarglePowerspectrum\n", + "from scipy.interpolate import make_interp_spline\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "plt.style.use('seaborn-v0_8-talk')\n", + "%matplotlib inline\n", + "from matplotlib.font_manager import FontProperties \n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create two light curves\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make two signals in units of counts. The first is a sine wave with random normal noise, frequency of 3 and at random times, and the second is another sine wave with frequency of 3, phase shift of 0.01/2pi and make their counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "y2 = np.sin(2 * np.pi * 3.0 * (t+0.3)) + 0.1 * rand.standard_normal(n)\n", + "sub = min(np.min(y), np.min(y2))\n", + "y -= sub\n", + "y2 -= sub" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc1 = Lightcurve(t, y)\n", + "lc2 = Lightcurve(t, y2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAPzCAYAAADPqV/6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9e7xdVXkujj9zrbX3zn3nvgMhIGi4qFhA8GhRqh57t4rSc/y2QbxgiD3fc/SnqIVfo1IpWJVab60CjaIST21FLdRL8Y7UegW8IRAlwA6EhGQne+/s+1prfv+Ya645xpjj9o4xZrJXMh4+fDKz1pjvHJlrzjHe6/MmaZqmiIiIiIiIiIiIiIiIiJi3qB3pCUREREREREREREREREToEQ23iIiIiIiIiIiIiIiIeY5ouEVERERERERERERERMxzRMMtIiIiIiIiIiIiIiJiniMabhEREREREREREREREfMc0XCLiIiIiIiIiIiIiIiY54iGW0RERERERERERERExDxH40hP4FhDu93GY489hqVLlyJJkiM9nYiIiIiIiIiIiIiII4Q0TTE+Po7jjz8etZo+phYNt8OMxx57DBs2bDjS04iIiIiIiIiIiIiImCcYHh7GCSecoB0TDbfDjKVLlwLIfpxly5Yd4dlERERERERERERERBwpjI2NYcOGDV0bQYdouB1m5OmRy5Yti4ZbRERERERERERERIRVCVUkJ4mIiIiIiIiIiIiIiJjniIZbRERERERERERERETEPMe8NNzm5ubwjW98A29961tx3nnnYfny5ejr68O6devwkpe8BF/60pfIMq+66iokSaL9/7777qvgXxMREREREREREREREeGHeVnj9p3vfAe/+7u/CwBYt24dnvvc52Lx4sW49957cdttt+G2227DZZddho997GNkSv3f+q3fwllnnSX9bnBw0HfqERERERERERERERERwTEvDbdarYaLLroIb3zjG/G85z2P++6zn/0sNm3ahBtuuAHnn38+LrnkEpLsCy+8EFdddVXA2UZERERERERERERERFSLeZkq+cIXvhCf+9znSkYbALziFa/Aq1/9agDApz71qcM8s4iIiIiIiIiIiIiIiMOPeWm4mXD22WcDyHqhRUREREREREREREREHO2Yl6mSJuzYsQMAcNxxx5HPveuuu3DFFVdgZGQEg4ODOPvss/Enf/InVk3vTJiYmAgyJiIiIiIiIiIiIiIigkXPGW6PP/44brrpJgDARRddRD4/JzdhMTg4iA996EPkejkRS5Ys8To/IiIiIiIiIiIiIiJChp5KlWw2m7j44osxOjqKM888E1u2bLE+98lPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27RXOPiIiIiIiIiIiIiIiwg1JmqbpkZ6ELV73utdh27ZtWLVqFb73ve/h1FNPDSL3DW94Az784Q9jzZo12LVrF/r7+53k2KRBjo2N4fjjj8fo6CiWLVvmdJ2IiIiIiIiIiIiIiN7H2NgYBgcHrWyDnjHc3vjGN+JDH/oQVqxYgW984xtdgpIQGBkZwdq1a9FqtXDHHXdI2SxDgfLjREREREREREREREQcvaDYBj2RKnn55ZfjQx/6EJYvX47bb789qNEGACtXrsTatWsBALt27QoqOyIiIiIiIiIiIiIiwhfz3nB729vehve///0YHBzE7bffjnPPPTf4NVqtFkZHRwEgCLtkRERERERERERERERESMxrw+2KK67A+973PgwODuJrX/sazjvvvEquc+utt2JychJJklRiGEZEHO1I0xRTc60jPY2IiIiIiIiIiKMW89Zw27p1K97znvdg+fLl1kbbRz7yEZx++uklWv9HHnkEN998M6anp0vnfPGLX8TrXvc6AMCmTZuwbt26MP+AiIhjCHfuGsFXHtyL3xyIfQojzGg2gR07gJ/8JPuz2TzSM4qIiIiIiJj/mJd93G699VZcc801AICnPOUp+Id/+AfpuNWrV+O6667r/n3fvn24//77S8bXyMgIXvnKV+Iv/uIvcPbZZ2P9+vWYmprCvffe223m/YIXvAAf/ehHK/oXRUQcvZhutvDE5CwA4Kd7x/DkFYuP8Iwi5iuGh4HrrwduvBHYu7f4fO1aYPNmYMsWYMOGIze/iIiIiIiI+Yx5abiNjIx0j3/84x/jxz/+sXTcSSedxBluKmzYsAF/+Zd/iR/96Ef49a9/jbvuuguzs7NYvXo1XvziF+PP//zP8YpXvAK12rwNQEZEzFv0BC1txBHH9u3ApZcCMzPl7/buBa65BrjuOmDbNmDTpsM/v4iIiIiIiPmOnmkHcLQgtgOIONow3Wzhy78pwicvP+24IzibiPmI7duBiy+2H3/zzdF4i4iIiIg4NnDUtQOIiIiYv4ienwgdhoezSBsFl16anRcRERERERFRIBpuERERXogx+wgdrr9enh6pw8wMcMMN1cwnIiIiIiKiVxENt4iICC/EbOsIFZrNjIjEBTfeGNkmI3hMzDbRasf1JiIi4thFNNwiIiK80D7SE4iYt9i5k2ePpGDPnuz8iAgAeGh0Ev+x8wl88+F90VkUERFxzCIabhEREV6ISlSECmNjfuePj4eZR0Tv467HRwEA47NNjEzPHeHZRERERBwZRMMtIiLCC9Fsi1DBlzh36dIw84jgMdtq93TKYTs6iyIiIo5RRMMtIiLCC1GHilDh5JOz5touGBrKzo8Ii5GpWXz5N3vw1Qf3Yq4dE50jIiIiegnRcIuIiPBC9H5HqNBoAJs3u527eXN2fkRY/OCxA2inwEyrjV+PTBzp6TghLjkRERHHKqLhFnFUotVOo0FxmBDvcoQOW7YAAwO0cwYGgMsuq2Y+xzL2TMxgqllE2eZ6OF0yIiIi4lhENNwijjocmm3iK51UoNlWTAWqGtE+jtBhwwZg2zbaOdu2ZedFhMV/7ho50lMIgrjkRETMb+yZmMEvnxjDdLN1pKdy1CEabhFHHX7y+EHMtlNMN9u4b/+hIz2dox6poEZFlskIEZs2ATffbI68DQxk4zZtOjzzOtaRHOkJOEJccyIijhQOTs/h53vHMDYTmU5zzLXa+M9dI7h/ZAJ37xk90tM56hANt4ijDuOzhYdnJnp7Kodop8XsqwgZNm0CduwAtm7NiEdYDA1ln+/YEY22qnBUOVSOon9KRG/jmw/vw44DE7hj+OiIZofAxFyhd+0+NHMEZ3J0IpZ+Rxx1YGvbkqRXfcq9g7agRbXTFPWe9eVHVIkNG4Crrwbe+c6sufb4eEb5f/LJvUdE0mqnqNd65zlvHUWG29HzL4k4WhDLMiIOF3psq4yIMIM13GrRcKscMeIWQUWjAWzceKRn4Y6HRydx955RnLB0Ic49bvmRno4VmkfRi3kU2aAREUcdquwRmaYpRqbmsKBRw+L+Y9OEiamSESW00xT37hvHr/aN92R6Dbtm9JBDvGdRMtyiPzziKMdPHh9FOwUeGZvqGYOoV+Zpg8gYHDEfEJ9DOZppdXXvj45P4zvD+/G1h57ATPPYjHJGwy2ihIcOTuK+/Yfwq/2H8NDo1JGejhdixK16RHKSiGMZvaK8yQy3Xl0ej011LWK+oVfefR3SNMXEbDOozGabf0NDth354e6DADIH/a7x3tZPXRENt4gSWGPt4dHJIzgTf8SIW/WIqZIRxzJ6RXk7miJu0TkUMR/QOgoewx88dhD/sfMJ/PKJ8WAyxbWmqshYL9UYh0Q03CJKYL2wvb4uxYhb9RCX5F5RZCMiQqBX7KFmevTEqXrlnkcc3Tga9rrHDk0DAO4fCdc6Saxxm6mIuKXvGDXcjs3KvggtjqZX4Rh9rw8rRO93VKoijmaMTM1yfw+pvKVpih/uPoiD03N41vErsGJBXzDZVRIGHG4cDQpzRO+jfRS9UyEh1rjNtKppy3SsLgMx4hZRAhdxq+jNaDaznk0/+Un2ZzNsinUXyVFlhs5PiE9IVKoi5gMen5jG3Y+P4lDA+o2ZZgt3DO/nPgv5vO8+NINHx6cxMdcK3rj26EqVrEJmivHZ5lFl4EZUi15vsVGZfie8Q6Fq3MS1ttfvvyui4RZRAmvshH4thoezRrvr1wOnngqce2725/r12efDw37yd3fC/jlE4oyI8BDXznjHDz/mWm0cnJ6LtT8dpGmK7+06gJ2jk/iuYGj54LFDM6WIcsg6l5HpIpp3cHounGAcXYZbFcy1vzkwia/tfALfenhffI8irNDrNW5VLQmi8yPU6yTWyh1FSxoJ0XCLKIGPuIWTu3171rvpmmuAvXv57/buzT7fuDEb54I0TfFfjx4QPnOcrOE6EQVEL1iMuBVottu4d984HqqQ5Kedpvj6Q/vwzYf39TwLbCiwCtVUwMJ4WZPdkM/75FyRUtQIXJ8rM9x6VfEJvca02il+9sQYAGBstompZjWpXRFHF3p9r6uqdY+41oS6T+J72ev33xXRcIsogVUXQr0W27cDr3p1imf/wSSe9qwZ5biZGeDii92Mt0fGykpr6JLY3xyYwL//eg92BCzk7XWUUyWPyDTmJR4YmcB9+w/hrsdHg0dQcuyZmOluaKHT63oVYqR9OpAiLiuyr8pwW9RXDyYXKNedAOEVn0OzTTyw/xD376gCodeYvZP8nhSSvvxowNRcCwcqWr96Gb2eVluV3VPq4xZKbkUGYa8hGm4RHJpNYHKyMN1CvBjDw8CllwIveNkU3vCeUbzzEyM48VT9JnDppbS0ySlFTUjo6NhP945hrp3i5wGpc3sdZXKSY3MxleG+/YWBL6bxhoIsCnSsQ3wEx2bC1LnJDJKQuhvrUe6rh424yZTM0K/qd4dH8It94/jerpGwggWEXtdFT36zx3Lgmu02fvjYAfxk98Hg6++DByfw1Qf34lsP78POg73VHmh0Zg7ffOiJyhxavb7XVTX/ltDHLdT7GmvcMkTDLQIAX3v27W8Xn+/c6V97dv31WSTtxZdMAADqdeCSt+oNn5kZ4IYb7K8xNtuUKlDH6Ht9WCHe4njP5aiqM0WvRQcOBzGRqCiMByIomZgrywmpPLA/ZeiaNLEpLhA+VSo3gMYCN/QVEfqRF+XNSe5VCMy12pWk2v/yiXHsGp/Gw2NTeCRwuvTP9o51n5J9AqPqfMf3do3g4EwTOw9OlthgQ6DXDYfKIm4V1biJ72mPbX3BEA23iFLtGdvuZ+0JLfzte1Ln2rNmE7jxxux498NF6s/Zz1OnS+a48UZ7pU7lOQr5XsfaNjnKDbjjfZKhisDYgwcn8LO9Y+EFd9Bst3H//kPdXj8+qJqYiIV4q0MZQVWnSrKyQiuFR5NjK7TBKUYjqyByeWR0Ev/+6z34nlCHHQJsbWto44q9Fb22trP1rVWk7/a64XDYatwCyRXn22vPYyhEw+0Yx/btWU3ZDGNH1YXufq+5csy59mznzoKIZHSE9rjt2ZOdbwPVAhrS2Op171pVKJGTHKF5zDeIz9504F42eydmcM+e6ow2APjVvkP45b5xfP/RA3jw4ITz+1Q1MZGIMtNpmHdXlm4YspcTu8aErp+RKTmhe9CxqLL+J/RSLN6HKqLYP358FCmymtRQNZc52OdmQaM6te5YVZRVEHWCXnPuHr6IW6BUSUHusaqTRcPtGEZeeyaif4B/Gf5wU5HXTq09G2P0ykY/dYbAuGUpmWphCPlaV5mSlqYp7tt/CD/bO1YZbfdsq41fPDGGR8fDptKUyUmOzcVUhPi8iFTGvnhQUm9SD5yPuePARPf4nj1j0muaIDqHli5v4723PIFr/3kfjj+5ifWnZPWuPsREIkRDLdQjWSUzY5qmnKzQho9MWshLiKJCphtWXUcrKoBVpUrmqHKJ7KtVabhVJron0evkJFXt1aKTMtRVxLey4td03iIabscw8tozEY1+9WtGrT1btqw47uujv75Ll9qNU6ZKBlyXquyDtGdiBvfuG8evD0zgvv3VEJ/85PGDeGBkAj947GBQI0JUqqLdlkFMzZkObLiNzZYJfkITWoj4KTEtU+YcuuRtY3jy05o47aw5fPgrT+BDX97HMc1SnUMylNJ3/cRlMlJ53C6U11eUImOB9IFsjXzs0HSw+j9RfEjSnMkSDXgw0VJ5odd6UcGv0rlVZe/S6JTjId6PXrs7Vfyc7TTFbKua512MuB2rz2M03I5RsLVnIvo0hhtAqz07+WRg7drsuFEy3PTXGRrKzreBSkUImcM9VyF73+MTheK6Y2RCM9Iduw8V15CRLLgiRtzkEL32oVMlD82W5VXpbXeBzDn05KeXDc43v/9g95jqHJKhtNIEeCZVynwwpaQUVQqbeqUS9f1ANVdVpRumaYpvP7y/9FlIlOcedq0X19uQ0kXSmSpJZifmWj2XDphj96Hp4AQlIvlor90a8VEJ8dvKHJTByEnEv/faDQ+E+bXLRxw2sLVnIvoNKY2U2rNGA9i8uXMsyK0Z2hRt3pydbwP2BV6zqLhQlRG3kBsYm+JWxVI0U2FD2V4mJ0nTFI+Nh9/QAQlT3WGg7W/Uqo24UaB0DkkejwWL+A8pziEZqogCqwy3vfvCMGPKGOhDRt1UkkJF3MT3PlTEbXKuVSKFCf0miVHT3xyYxERAZsyJueoaB4sN5kPW/Yjv0eRcC/9ZcauHqjA8Po1vP7I/6O/a+xG38DOW1W8GS5UU1uDh8Wk8MWkmujvaEA23YxRjmownXapkDtvaMwDYsgUYGCinStY1htvAAHDZZfbXYNefVQsZw81ehBGiBzmk7KoVbrF5ashMIDGqGbIF0kOjk/jpntHKDM/h8Wl8/7ED+PYj+zEZMAoJyCMoxxJUziGbYAbFOSSDeK9D3HqVQvzBD6VBmDFlynzIGpqqHSrizxrKUZFI6jZD/1tkBDNsfacvxLTpkGuBeJ/DspyWP9s7ORvMKD8crUFE/Drg7yq+n1WmqVaBKuj1Zcy7wchJJPe3Vx0JPoiG2zEKtvZMhEhOIoNt7RkAbNgAbNtWjrjVG+rrbNuWnWcLdrNqsNGrgJuYmJISUneoV2y4VeuV5f8eSnEYm5nDXY+P4jcHJ3FPRZT3P959sHvsQryhQ5XeWCUZzzyKdqqcQ6mlzkdxDpWuIfw9xDN527/LZfT1p0GYMWXGQ0jDrepH43AwMxbXql5eyCi8aOiEfE/F+3w4jH3f9+lwtgapEqX7MH+WXyuU96hqUiVDRchlTuFjzSEKRMPtmAVbeybCxP5IqT3LsWkTcMYZ/Bsmq3UZGABuvjkbTwH78rJGUKWpkoFW6WYT2LcviCglRMUhLA04//dQisPIVPF8PDru30fMhARhjWfZJhPM86gQM5/2MJVzqJ2W77PstlCcQ2V5YVMlt28Hrr6mEPLAPX3d4z5mvfRhxpQpNyFTJSuPuAniQ0VlZOtsaAeFzJG1fEGfZKQbyutvMNGliFtIp5xKls81DndrkCpRagdwhObhCnG+IR4daapkKAKneeSYPJKIhtsxCrb2TIQ84lZ8Rqk9Y7FiFS/3XZ8awQlPzpTzoaHM07ZjB91oA3ilpMbVi1Xn2fTdfFmv4wc+yAv7wKcmgnodKzXcKmqKebiX6APTs0E3BnnfrDCyVc/1fPI+qpxDNhE3F+dQjp/vHcO3HxHILDyeppwZk63DOzRabJ1l0iU3ZszKI27BJMlRHTmJ7FpBRDPyqntXgWrX31LEreJUScD9uZT1jZUhZGuQEgL65+YE71xouyJN00qNlSp6sMpqgUP9E1TP9uFIsZ1PiIbbMYy89kyETBHJvcrU2jMWsnfu+lvH8MADwK5dwNVX09IjOdnMMRtxC7n5llIlPWSJXsc+wVg+8b+NBfU6innnIevQxHvcq00x907OBmX0lCnioRwJh6PhvC9UziEbw83VOTQ6PSetTfJZB3JmzIGFxcTHR4s1RsbC68KMKXtvwirh1T4bVaVMV904HFClYIW7xkxF9OiAJOIWkLlFtZ64PJeqvrE6hGgNUiUOzPBZQ0Edxa02vvXwPnzjoX3BG7bnKGV6BnguZc/GyPRcENljivT5Xkux9UU03I5h5LVnLJIk5VJ/cuTKCbX2jIXshV68JMXGjW5KGgt2I2RbWYXc3sXeJK4Lkczr2C8xoEN6HUse3wo9+fMp6kPFL/aF66En059C3Rtl38Iw4nFgeg7fecQ/f1fmHJLdA/af4+McEtn7uvLdxHHMmAsWKiJuitRyKjOm7L6E7Cd2uGvcQl1Pn/8RBrL3KeS9F9sLBE2VFGSPBMwcCBlxU/WNBYBlK+XvbYjWIFVhutkqkc6EfC7vHzmEgzNNjM028bOKarxFso8Q85fpeeOzTfziCb+9dft24F/+VT7DXkux9UU03I5xbNqU1ZTlypXMaAOAxUtTp9ozFrK1PlTkh6txq4icZKrpv0irvI4yr32eshrC6ygablVSRvdqxC00pBG3UMqsQk4ohfDO4f3YP1WuQaX295Y5h2QRN/bf4+McUvVtdF0HWGbMAYXhJrLl5qAyY0pZJQ9DO4BQKDHUBbqiPFUy7L+m6qheiZykwhT+ZjvFvfsPBZGtTE0j3htd39hL3jaGT3xvL159hdw48W0NIiJULbPI1AyEdY6wbTpGJNcKgXLEzV+myqj3YWnNnd2mNqWVptjOI0TDLQKbNmW1ZVu3AsefIH/pvvdffkYboNgcAzZpzcGRkwSRDkzMNrFngncXuixyKq+jmCoJAIsHs80+hNex1AepQoUwZF1OL0Om9IRSZpUGSgD5aZoq65NqEmp2E0TnUNqWy3AlJmKheqxd7wrLjDmgqHGTOV1yUJgxq1wfVfJDoqqIW9X1Z0DxrrJOv5ARt8NJTgIA9wcy3FTPDHWN1/WNfelrM4X+T14tV+x9W4NUhUMB+8HJwBqYVb275XfW/zqh58o6u6Vp6VPlc+Z7iq0vouEWASDzcF99NfDzX8hfunXHVfNCh/IoqyNuQcTjPx8t9wqhLnI6r6OMEGbJYLEh+3odyxE3d1kixPvQSw24q4QpJdAHSgMlgHwxsszCxXADeOdQn4Ssb8GAOzERC9V64qqQsMyYXKrkQbbGTX0+hRlT9k4GfU/DiZJCdCZUSVIUOqqfZxs2aoW6HG5vKjtCgkbzKnSUqaZJNdx0fWNt4NMaRESoaKcsLTtkhg/bIaiqLbVUlxpAZsg1C+Cd3TL+henJshkzn1NsQyAabhEckprCwxbEE1ONXIBXGuqBWSXTNMWhWckiTZSj8zrKPElLGcPNx+tYteJQJicJJrpSVB0ZlN3jcLUnYQ0UFrIUoBx1R8MNKJxDz352+bsFC9zTI1mo+065yWOZMdlUybED9e7xgsVydYfKjCn77XqJnKSKZr6A4r4Efnfz+1xLkm7GRqj7JWuLUHXELRRUKZHUVEld31gb+LQGERHqNZAabmFEA+CdZJVF3MQatxDkJAEfbtHZLasnrtXl1wudYjufEA23CA6qBTnEu1hlHQE7v1pgVkk1gx9Njs7rKCMnWTLIX8DV6yhXHKpLleyViJtY1J/jF0+EKQSXPu9BJKufyRDyRRIeFqYaAxuEkKFC6P52LDNm/wI2VTLBxHi2zgyukt91KjOmlFWyAnKShQ3+B/Axxnn5ghJYIYNqVTVu9aS4H5I+wk6QpR2HZNwUCTJCodlu4z93lTNNAPpzqWoNUm+IcspyfVqDyBDKGTIhSZUMa7gVx1X5GCupcQv4borObh3juYj5mmIbAtFwi+Cgyuv33WjSVL6Nh3IWskpDLSlatYRYQ5RefOIyrfM6ymrc2FRJwN3rKDPcKiUnCVW3WHFyl+pZf2BkIogyJE+VrPbehBCvm2MtcJPy7jUDyVH9pj73PWfGrBdBNrRaCUb3Z9vn8tXl98uFGbPKjASgeGbEdFe2JtgHlUXcJJ8FT5WsMOImtpEJKXv3oRlMVxRxe+igpHioA+r9V7UGEUsEGpI0atfWIGJNeo4QdaNpmsoZbAM+locl4iaWOQSQGdLZJDq72cykB+/NHgqZ7pQjZIrtfEI03CI4qF4634VDSStcQepYDQnyNS+E8q9OS6PJUXkdAd6bn2PJ8mIZ9fE6isQkALDn0ExAI4JHr0fcAPk9o0JKThLo1qgjSwGUEsfvbCE1UALdGJmSDPjNO2fGrDGGW7sFHHwi+2Dx0rSkgLowY1bNbJjfYtFOC2WKV0F0oJLTTsPKz4PM9VrCRNzCyBebNAPh1oGRqdkwgiTQrY8u76usNQibfgyUDTnX1iDtNFVHCwPc+9m2fKUN6WyscSUf1aAccQuQKtmR0QgQyRed3blh324DM1OZ/HpdnS4ZMsV2PiEabhEc2M2K3eB9FavDWV+RRdyyyYeJuMk/p4pWeR0BeY3b8U8qUjFcvY6APOJ2aK6FR8bUHlUKxHvcK+0AdLZZVexaoe6Man5BIm4O16VAdV98ZDebGbnJ7sdVjidn0QAy0pQXvrAQkqbAwX3F9jm4OvO++zBjSsmbKkiVTJDgOetXBJObQyS1CeakUHweap1hpdSSIgLZStMgz3uVqZJVrrW6SKyL8SNrDSIabmL0xLU1iM7oDnHPmorNI+SvId79R0YnA0rPSgLEvqUh5t813AJE8kVnd54q2ZwDZqcL+TJyt9AptvMJ0XCL4MDWuPXXi8fDdxOumiGelZ8khyviFsbrCMgXnudfOIVFS9teDYkBdc3STx4fdRfKoJRuESpFqgJvICev4lTMKlMldc4E32vozg8TcZNLcVGohoczpsr164FTTwX+7d/Dvasinvzk4njFcuDg/mJ9POXUNrZu9WPGlLNKhoy4ZbKSBDhuyQIs6atzn/tgcq6Fe/fxFPTBWCVVz0ugDEH2HteTRCC38ocsChzOgaP7zu8quoiJazRSbA2iirj5tgbRzS/Ec6lqlxJyixLn+eNA+zWQOVkeGCm3Xwji6O7cmxAp2KKzO3dwz80mmJvTM/v6OLvnO6LhFsGB3WT6a6zhNr8jbqwSXkuS7oM9nyJugNzrCAB9nY3swBM1PHRfJ3e7HzjjmbNeDYmBMGl/Ooj3oQpPOAB8/7EDQeTm0OkeVdVGhotCVGdc6c4PMX/VvaU+ptu3Axs3AtdcUxSwL1ikUKhooo0yvv2tBK95ZbE+/usX2rj6ar/3tOp+ZbmoPAUr6fwZ4hL37S8Xk1RtnPzgsQNhIsDMc1dLEq7JfIh0SZmMkOQkOc5ZN8h957sOayNumjRKE9jWIMcdz89x3fHwdoBk89NE3AL8pqo00pBaTpXO7vEZOd1iCGemrCeiD1hnd54q2ZxLMDfDGm78vH2d3fMd0XCL4MAuamzEzXcT0G1UodOvakmhlIQwWUJTr2/aBPzFX/Cf9TOepDu/vLD7+R//sX9vK1mqJAD0BSIlqKqPmyh396EZ/OeuEfz6gLxRKxW6eYZpf1GWESrKp/e0+wrXfVVdBJtyz7dvBy6+uNzMfuFiuYz9+/3nzT6PjQZw/Nqi6G0uDUFmU55jMKIfRnb+1uevf5i6lvJnwYwTxef7pmbxuIKAgiRf2DtYgyXEOiBT8qtII129sB/rFhfpHL7+Ot0cfe9L3hrkC//Gy/nWt1NvBwigr88LEnFTZLGEzAqhkp9RoGoe7vtcivWiIcA6u3MDrTkLzDKvfqgU215BNNwiOIwynpigqZKa71RpByT5jIgELKtkANkqBj9Hedu3Ax/9KP9ZvvDMzWT52zlu/3qK7dsdL9SBKuLG/r4+EO9DOwV2H5r2lit7LPZMzOBne8cwrWkS7SM/R1V9C1VMZ3TZuoib39x1ZweJRCo+H51R949jMTwMXHqp/LsFi+TSdz2anecD9p+eAOhjQjMhDKxK+1wyYroRN811qZB510PpsLo1XMrsRwRvuPGpkkGiM1JykvARt9LcK3S2hiJugdg3tpbivv2H8Msnxr3uve7fHoKchDUMq+HZra7pNgCMzykibgFJ6EJF3IAixTbv4yZG3EKl2PYKouEW0cWeiRmOsKKfUUy8UyU1i3CIBqLd+g2INW7+UDnvXPYVldKZG26zMwnazeK+NxrZeFelc67dxmPjciNqIJThJrkP//Wof1qjzgBRRRFJ8nWbewDFRKY8PDAyEYQJTvc6entNtWmY1UXcfrbXrn/e9deXI205VKmSSQLccIOVeCU4wy3hWyNU1ecyXNoxE3FL8j/DpUrKiAjCRd411w2gHLIrCdsOAAhEZCFNlfQWC0CIpCZ8D1PfuVe5xuQYmeadNffvP4R7943j/pFDXs4/nTM4xHPZVGQmhU2VrM5yG5+ROzx8r9gSHAkhsWkTsHJlJj9tZ9lJOYaOC5Ni2yuIhltEF3fv4Ytfg6ZK6pTwIH1Vsj9L9RtBIgTh0iLkSmeKgQXZ0dxMghazptbrKWZm3JXOR8enu7/dsn6+UjdUxK2qlA5tDVoQ+Yc/VRJAicQhpGzA/5mvNA0T6t/VxovfbAI33qj+fsFCuYxaI8WNN2bnu4L/txfOISCMkiV75kI4tQAxI4GPuAH+nnZZVlSwZvOatz1EOlYpVTJ0xK3CPm5iJJWtz/PtV6abY4j5T8w1cf9+fi1kU1/3TrpnJ2hr3AKnv7KR9yrJSUJhttXGvilFjzvPS3JEPxVYF/lacNrGBK/cVNz3L305TIptryAabhFdiIoTnyrpG3FTfxcielI0UM3+HjRVUkjDzEGVrFI6+xmWydmZBC0m4lbr2FquSudss7i3pyxfxH0Xgq4XqC6lQyc3SGqa5ruqUiUBuZJLlq35br6nSqreSZs1ZufOgohEBlkDXyDr9bNnT3a+K8SoVeg+S7Jn+uBME8MB2naknIKf/1ltn6hwfdbU3wV5l1j5aYJDo8W+NzHrvzfJoj+HZptB0g35/qUImyqpeSpCrI8Pj+qf66X97pSA2hq3APd9jC0pqbERt3BvUlXkJI+NT2tkh8usCpkqCWTPei69UU+waiXzZVJhXuk8RDTcIrpYILhIwta4VZv2lkvIlZFu4b23ZNGL5O5dUymd/UyUYHoqQYsx0Ood/gNXpZO97wv76tx34WpQwsgpydX8elWlpuUIU7OkTtvzRaWpkjrZgVMll/TXsbQ/p6U3nztmyKbM+/yIyN+j8TL5oRMS8EZD6PQrFj/afdBbdluaKsl87+tprzQdUP1d6HXgn25M8M4ri3XyzW9rYetWv/pIWTuAkek5fG3n3gD9UYvj0GmeVbPumhR7D+JKQ8TNXS6QNT3fxZQf9LGpkj0QcRtTEJNk1/STrdKVQqAlGIWs46lq1vL5hmi4RXQx0OAfh76g7QDU34WMuHWVkk5sLAx9udyLRPWuqZRONr1rdqqcKpnDRenk+9sBp61c3P17MIZDiZwQ9XNVk4dUrRCq5pgEKGevlpxEIztwquTvnLga9aTW+dwsfNky/fcNSSN7IEuVBIClS+3mKAM7vaTzX44qn5cQ4CJuFaRKyuYerGeh1oHjf43bb2fW2FFgZG9huPUtbOOaa7K2E64kUSoGwqlm25vESUzzrIWMuAnnr1hQhLNDPKsmvf7qq+FsNOtq3Hwbqz8iRMBDlRyIqCripiP2CrkOyAmL3OU3BaOQjy47i+1JRMMtogsxdY4nJ/GTrVvowxBNZH8WNW6dz4NECIpjn4ibSukcWFAImplO0GqVUyUBN6WTXShrSPDkFazhFgb5/VnUqAcjPAEM5CEV1qCFkq8SEcIRWXUdmlK27/lMusvKBX0YqNe46LhpYz/5ZGDtWvX3ulTJoaHsfFewM8tSJZnvQtS4aRbZkE3VRXISIAQpQfmzUDVu7D99iKG7F79zwfbtwN++t/h7cy7ByN5iDVs5lCm5MzNZ+wkX4222EzqqS9577/eJOU5KjJh+stnHceOKxXjBSau763sIo8KUKjoxCWejea6pl+2TpioaJP21cO8RC2k7mQDrzHRT/WD4Shd7IoaUz66PjSThiHhkUe2jGdFwi+hCXOjrAUPRugVnNsBL161x6/w994aHUGJZJb7hoeyolE4uVXIyQZvJZGh0IgWuSiefSsMra8FSmTp/JknRGy7EBqOTEKJOQRvR85SfpqlyM0kC5EpqG3B73hrT+T6/rYyWvkZ4JhsNYPNm9fdiI9Yc9UaKzZuz810h9kIL/S7l64zMsJ/SKFs2EJkTxev4ru/yVMnqIvohrpEz/LLptXNzwMieIuKWG245XBh+c4KZgUa99J2vE0es7WYdi/5ZMsX565dm7Fm5ThDit/3ZL/UyOoF4ktE8PJxF6W76tF62j7NYdHDzqZLhTDfZDEOsM3nErZEk+K21vDc5pINe9mz73B7W2K7XaljMlH6MKhqKH62IhltEF+xifMaqJXzxuvcLrf5OlUpCQf5OlyNuIXqT8CF62ec2UCmdXKrkNJ8qWeusTa5Kp+iRZV/4cDVumaBMmc0+q7LxOTC/I26zrTb+48EnlM98iMx/3QbrW4fGnv2kwYU4Y9USLB/ok35PBTu3giSD+d7ivm/ZkvXrEZEkqTbidtlllJmWoYu4haj9y40fWYrRpGe/MmnEjXkS/SNusuiAp9AO2GddlOmzzuQMv+wz05xLcGg0wUwng3HlGv4KVIbfVrtoSCzWkAP+lOnivheSnIQntOGNfV/DbXgYuPN7+l+vJvR4MxnN27dn0blrrgHSRC/bx1nMzurcdYN85N1ZquQ6knscYp2Z7hitCxo1PHnFYpwasHyCX99lETd3+ZwDvZZg1cL+7t/3B2ix00uIhltEF2wO8emrlgT1yOrO91VKss2xo/TUyvUbvmCnXvdML5IpnQMlcpLiGvVGNt5V6WTvO2tYAQFr3DpikiQJGunUskpWHNHzkX///kOY1NQRhEmVrDLiVgh40uAinLF6aTDKa77mUhZxMwvfsAHYtq38eV3j2Fi4yJ8qWqxxY/u4hXje8/VXxvaqe55sIG0HwKV6eonnfrfBgeyHCOE0A8S58fJc9yWW4ZeNuDXnEgAJDu7LPGaDq8sKPoXhl43siDXkQAjDjY+4sY+OP/GJzMkSpnb8459q4QUv17NK1oTbpTOat2/PonJ5q52Fi8sT/Nq/LOwef/VrPlkDxbkLGnUgoANEdZ2ufM8LNNvtbuRqQScCzLYJ8l8HimOp4eYhXyQn6a/XusyjB6fnghCK9Qqi4RbRRf7gN5Iki86wCpWnbN0Gu29qFqNCI04KJuaKXXRJJ3wekuo6FKskIFc6BxYWd3emxCqZYts2d6VT9JomgZVNoDAAs1RM/jM/uWqEZpMTtxifTWDKoGQHSZXUTC9kO4AiOsNc20O+ThnMvreTs2kTcPPNvBNElSYJZKmSvhDvS/A+bkzE7fwTVnLf+fZzY2cntkwBApASKGjAQywx7PO8QEg3dH1NWYbfPs5wy/6c6xgAMpZSCsMvG9npr9dK0VTvdzV3mnV+zbCskuXoSWG4uctuNoHp5QZ6WBSpkixkRnOe8spiQOjnePmFq7HrN4WBcsO2tjNTaHlPlX/nC9mz7bvOsPVtCzqOhJC1rqlkfWfhs4rxqZKZ8DxdMoVf3WKvIRpuEV2IUauwETf992zjTSrGGXrbJR0PTEiqa46chEsfdRMsKp0cOckUT05y0Z9m410hpqZVEXFrd5WHsLWF1dP1F8fiJuOj9IgRk4agrIVYdKtkfuQMlG50JozBn0qVweJ7yjqzaROwY0dW0zI0pCYmyeSSp1qCWOMWMpUc4NffocUD+G/HLy995wpZqmRIxxxbnxeyziqTURyfNLiQ+851DWYZfsVUSQDdrIeGwuC3ZfjlIm71Ghe5BsJFOmX1ot6ymWNZmx3Xe79zJ3Dei8xsmmLEDZAbzXnKK4t+Zk997flr8dB9fVx/vgWL26SUVxY6B07ImJvs3fFdx9jnMWfDDEmypNKVQsgXUyUBerbG0YJ5abjNzc3hG9/4Bt761rfivPPOw/Lly9HX14d169bhJS95Cb70pS85y/7617+OP/qjP8Lq1auxcOFCnH766firv/orHDp0KOC/oDch1lgkAV8K0/k+RsSh2SLCkYfOQ3qT25IFA/Bbolmlc80QY7hNJxhk6oWf9vQwHlkgT2WUf+d1DVZ+wNrCqlMluYibsMn4bJANQePoE2pbQkfczjtuOU4eXCT9zgV8SiD/p/g9FZyxnP/pQfKxYUNGG75rF/D9HxjWmMAbO+cc8q0NSdPuv70uUcJDOs4qaQfA7B1cdDawwVxPEjyXiUa63heW4bchibjlUR1V+q0twy+rKPfValyLHcDv/jSbRX14q5n9nZUecs/2iY6LMPVi7F6zJr8AazSzKa8s+geyc+dmgdH9WVRm/GBxd5YMtkkpryxKJEXcd3R5Ksjur/eeyhx3+QACtjXh91T99aloSqL6oXtp9grmpeH2ne98By960Ytw3XXXYdeuXXjuc5+Ll7/85VizZg1uu+02vPjFL8aWLVvID/Hf//3f43d/93fx1a9+FU972tPwJ3/yJxgdHcW1116Lc889F/v27avoX9QbKDy+2d9D1nAYDTcP+fKIW7jwfzstLxiA/z3Jlc5r3l0Ies+7E/zrv1Rz32sIe18AWRQigNAOqu7fJDNQcvhE9HRtNUKB/fcv7qvzNWgh+7jlaXWBIrW69CvxewoaDeCkJ5mcQ37gPe18jVvIBtZyb7KffPY3kzXg9n2diohbIkR9ArynzHEphd9RPMvwK424df7MvuMvQmH4nWUYivrrtdLa4PIu5cyJ69cDYx0j5je/TrB+PfDJT4bc94rjRKIouzrPZG1xHn6ggVYT+LdtBVGGLFUS4I1mNuWVRZ7FMjtdTJiNuC0ZTEkpryzESGRIkh/uOlJyknAya4HXdkBklQxc42aMuLnL7jXMS8OtVqvhoosuwh133IHdu3fj3//93/HZz34WP//5z/HP//zPqNfruOGGG/DpT3/aWubdd9+Nyy+/HPV6HV/60pfwne98B//yL/+C3/zmN/jv//2/4/7778frX//6Cv9V8x9ixO1wpkr6SJ9rS/K2Wdkhw/+1cApyV05SyDnh+IRjj6xi883/BVUoVSG9d4cz4iZuMiFTJcUGraGNzuC1i9KIWxj58nYAzPc+RqHh+1CkLfl0Q6YYyepoq1p/u+tA0FTJ7M96LREikf4Qo7QhnheW4VcXcQPKUTcKw+8cl5qWdNul5KD+rCxz4t69xdybc9nfb2ZUopC9/+QRNzf5J58MTI7z9+EtL1uNVz9nCD/+VlG0KkuVFI1mVfSuvyOGM9yYiNvS5dnvYpvyykJMO+YNn3CoJOKm0QfE733lB2eVlEbcYqrkvMELX/hCfO5zn8Pznve80neveMUr8OpXvxoA8KlPfcpa5rvf/W6kaYrXvOY1+MM//MPu54sWLcK2bdtQq9Vwyy234L777vOefy+inRavVL0Cb0aVL5VMGQypPKgibqE8PE3B2x5SYWMXStHDFibiVhyHrqET7+8ipm9LgJ7t3HMh7jE+970mxO/6BQ0kSP2fpnYxZDuARPI+hYu45X8y75TH72rq7ReKtEVaIxYw4iZXSvzkc0q48Kf4vQvajNMvfMRNVJTD3Jec4bfMKln8CfCGG5Xhd1qoKaqXDDf7f4DInAgUBmRek9dmeJF+8Uv7ecogS68Nsf81GkDSLNbyQ6MJ2q0Ek+M1rr5bFnETjWZZ9A4oeqPOzjCG21hxvHhZ9rvYpryy4BlaBQTSc56YnJE6D0PqYd2etxXpedX2cQsXAe5FzEvDzYSzzz4bADBsSQs0OzvbrYv78z//89L3J510Es4//3wAwBe+8IVAs+wtyBWH4vvKI24e8qWewYrSPPmIWxi0BMMwZPREHnFLgsgGeCMhdL6/qGg3AnvXeFZJP084J1eYdyniFoJxU/hd+eiPr2z+NwXE2hkf2cVxyIjb8DDwD/+oPzcUSVHazupT2X6LvkZhU7LGsAaQN0MgcyyLuPk+kd00+yQJ9qzk0D3rPutAzvDbKNpBYW62kyrJtGRhCUqoDL9sq5tFjXppnbH1U8iYE5Mk7RqVeaSQNXxu/xq9WTg3N6mTRf49FSsZ0tS//V/FX7j1QdBOZUYzm/LKIq9xYyNuXJudOi3llQX7r64lSfCIW5qm+K9dB6TfBa117UyczRBppn4eUVH+GauWcN/7zF6WKlmFI70X0JOG244dOwAAxx13nNX4Bx54AJOTkwCAc889Vzom//zuu+92ntfExITV//MRslSdkKk0ZnISH9nFsSziFjLyU+cU5DArRUvwJIWcu9TT3o24hTcgwlIL838PSXWdyVd7B32ki1MLzSSXpimemCwajtYQLpURECJu+Z+Bfte2ED0B/CNLefrYp27Wj/vXz9FlA0VN0f33Z3+fnExw6qnAhhOKMUFr3JJcKWHlh18HQjlZ+GyNsKRWoowsVTLcs75pE/Cyl7MRt+zPlpAqOTCQMQFTGX7zVjUJgIV99fI6Yzl/GXMiGwlsNnODk5PuzJwIFM90AveeiyrkdYVTEwl+9ZPCcmbtBpGcRGY0symvBdIuq+QME3Fj702tnpJSXjnpYqpk4Bq3vZOznCOHu7anbFmtK5sRMtfyu4Jo7J+2akm3fAXw05nYuT06nKDZDN+SpVfQc4bb448/jptuugkAcNFFF1mds7NTgbp8+XIsVcTGN3RWhJ0u1aodLFmyxPj/8ccf7yy/Sqj68HSVfG9PT3UvlawfV8jIT+URN0FpC0l6IDVqO38P8ZPoyElCM5HWAyuEM63yJpbDKwIsRtxKqZJ+c39icpbrFddXr4U19pljeR2Eu3x5jZu7Qc6mj+n6uAHA//7fKbZvJ4nnaoryf3eejrZ3b4K5jv28f7/fPZfXuFW0DnQdc8VnIWtPQkZ/ARkpTIEQa8ySE4pG0MuW5qmSxZjL35pixw63tix5xC0z2sR4m938VcyJDeZ5l0XcanVas3ARYnPv7DjMM5m/SwsG+F6MbKp0nippMprzlNccjb4sogYAs0zXAVZ2o4+W8srPnZkjwjM1H5ieVX5XRcSNdSzO+eSqQ3SyZGnT6xYXP47L9HPH2b98rpjbH/xeRsbz7W+F1Ql6BT1luDWbTVx88cUYHR3FmWeeiS1btlidN96pQF28eLFyzJIlWUh3zJar9iiDmK6Xo2i46SffnCrpIzs7mfUMhooQzDTb2DVerP4NztsbZqEQ06R4tjdfJbxsnOT3JghxAHOceR/Za/tBPJ+LuHk+kLsPTWP/FBu1ckthkkH8yUr1cx6yAWCCSb9au6gf/fVaUGNf9siFSgeSpV+5RrHF9DFdHzcgU2QvvdQ+fUysKcrtb1a3ydOvhh8F2ShkIae6DqeUyGpbQinhojLIyv3urhGMzcxJzrJHmQwi3LM+PDaFGaYO7bZbEzzwAPDCFxbXeOtbU1J6ZI7ZVhtznQnmjYLFViA201cxJ7LRopwFs80YaY0+d+ZEoIiO1zh9gPnex4HT+XPBQML1Ymy3iwssWZJ9bjKa85TXHHmaJMDXuLGpkmc8lZbyys+dX8NCOs0A/d4W0gmdrwN9QSNuxXEtgC7GOc6Yz2emEuzdC3zz6zFVct7j9a9/Pb7xjW9g1apV+NznPof+/n7zSYcRhw4dMv7/2GOPHelpSjEyXWyurIKcH1bfx81HdvYnu8GEMn52T/CNQtl6pVDrBLtYiuQkvteQFVKHjbgVxzUIqZIBNxmAdyh47i/4r0cPcH8PG3HjUSYkcBYNgL8vJ3b6t4VNGVEb+0AYJwugirjZyxLTx1iSCRnqjRQzM7BKH5PWFHUNt3L6VaORkoxCEcbav5Ce9jzixl3fJ4rK/6bsszjbauN7wrtGl18cl1glPe/LXY+Pcn/va2SK4qoV8utTwNW3dQ03fozNfVf5kmVsmGzdZa0TdXJhTgTk+2ooZ0KXoTXhezF+8QvFmFdekn1uY2Bt2pRF5QYG+Obbs1PMfBmHy9q1PnMvjkPWRudocfLBRayqYJetMzpH0IhbvncovjdBdJyxGRWzs+XI+B3fPXYst54x3N74xjdi27ZtWLFiBb72ta/h1FNPtT43T4/U1ZflDbiXqWiKLLB48WKr/+cjHjxQ3JvBgcJ1nS9MVbNKejHVdT2DxWehan5Y79e6xQOcdypUZH6ms9s2kgSNWq2Shph8NDL7LkiNm8j4xn7nXZfD/z1kzY+IoOQkQvro8oE+5fcu4KPj+Z8BI27MsSz12MvTLhj6gJsyKEsfaxhSJfP0qY99zJw+JqspyhVhlrkvry2qN2BtFMogY3+titU3hCdcLbscvWYNGBdwz2MSpo9bDpGeX3ZvXJ93Noqap0uLadM281epJNL+c0yqZP68uzAnArxxlSN0lJZ9VhoN4KSTijFJQrvApk1ZdO7Nl5cjbkNDwP//yvL1XcA/j+Uoqi9YneMFJ63GyoVFgMI3W0NV153rNbOedM0mvgFbyBxnfUwkda6zNudkQgBw47bUi4ynl9AThtvll1+OD33oQ1i+fDluv/32LqukLZ70pCcBAA4ePNhNmxSRM1TmY4815OlXtQQ4aXBh9/MiVTKcpycHq2z6aA5yzyDzvbtoIbqxMCjteo7pZjbDgbwHXcDUi1Ryb/KNJnTELTg5iSAhSZLuM+ObKimi5AkPJPe5G1aW7rOv7KoZYGUeZVlPHhdwRm3XQJF/r4MsfYxVZG//7CJ87ysLujVoQBZxA4B9+4APflAtW1VTlJMl8KmS+bWz71xriqSe8KpSJfP7rrg+WTZzXBNq3EJATJWsBVwfGwLjq0jglF3fTbYsTf3UlYuVY1RQMSfWGbbL/JlrN/nvXZkTAfO+6kMQJTMKAf9U+w0bgDe+qTjzD34vS33dtQu4+upqHBW+cxYh1ruG7Bcpvqs5+jsewDnPfVW+ztCd6DLHGRtJnesY5KzhliTujrNew7w33N72trfh/e9/PwYHB3H77bcrWSF1OO2007BoUZZS9OMf/1g6Jv/8nHPOcZ9sDyN/oRb3NaQLdUhykrOHBnHK8kU47/jlxfUDyGY3gXBpQMVxlgrIynUW20WrnXYXywWNch2E7zVyxUB2b4KzSiJcZCY7v/xZHmEK3bPlrKFB4drhnpllAzx1WchmzbJ0Q//efwW6qZLMZyHrodg/KbJl6WNsKs2D9zbwd29agW9/sXBCsSx8b3mLuiZNVVMki7jltUW5bNeaImkLBlZJ9lSoWpL7HspBxPbPqyVAQ9Y52QPi+xTyWW8IloP0mXSULTq1AGCgUcd5xy0vZFtMX86cqOg/J1DeuzInZnPL5LO/ZihnQn5PRYdQiEwZ9llfuybBxo3FPQihz+jJSfz3pRLZT9D65bIzASgibs126rn3ySL7zPcW64zKcdbfWd/nZot0dTZV8uK3jOGmT6XOZDy9hHltuF1xxRV43/veh8HBQXzta1/Deeed5ySnv78ff/zHfwwA+MxnPlP6/uGHH8b3vvc9AMDLXvYy9wn3MLoKvvB5N+LmKZ9dcE5cthBnDQ1iUaNowumz3umiSkBo71o4owoAppmihJw2NyxrWvYnl0ba3by8RGcyBK9yyPq8EskHivqc0KmSKxb04QUnrSqu7SFLvCd99RqeewLTq8hDNsC/S1UwEMqMiGBKvswj6xBxk6WPmRopi+Qlqpo0VU1R8d4UMptCxA1wqymSNYNPGBbCkKmS9a5CFWYt48kaklL6oS906di+96VRSpUsrtO9vuPNEXtc5hio09PtReZEQCAnydsBME6FRn/qzJwIlCNuzSawf3/52XdBN+ImfhHg0VExZGfi/bNNxLTmUMRNAPDI2BQePVTU1deTsGRlslR1INujcvhE3WQRPd6wNctQOc76Os8/G2Vjj5etSPGsP5xwJuPpJcxbw23r1q14z3veg+XLl1sbbR/5yEdw+umn45JLLil9d8UVVyBJEnziE5/AV7/61e7nk5OTuPTSS9FqtXDRRRfh9NNPD/rv6BXk75OYulAFOYmsaDWEccXXuMmvTZbNHIuF976FvEDGWpljQV2WKumHohcPY9Tmm5enbFY+0IlIBjJs0zQtR9WSYiP2JSeRYcWCfizrb3Sv7wre0579uXoRU6dQScSt+L6aiFug35U59om4ydLHuJqfbvE6a7jxwlU1aaqaImnEraO8stE8l5oikeSnexwsVd2w/vqskWzvrSThlMAQEAmWeIPW776Ic+0+kwGiHDzhTHHs4gQRmRMBeTsANlXymc90Z04EinvbnMvYHdevB/76ncX3b/j/pdi61Y2QR+ZQBMI8k9z6KFygqO92R/l5CLdh/3j3Qe7vWaqkf/S3e76yxo0xhjzq3KTrDNGJrnKc5WyhcwxTKLu+A8CLL5lwJuPpJTgG0avFrbfeimuuuQYA8JSnPAX/8A//IB23evVqXHfddd2/79u3D/fffz/WrVtXGnvOOefg7/7u7/DmN78Zf/RHf4Tf+Z3fwdq1a/Hd734Xu3fvxmmnnYaPfexj1fyDegD5+yY6vLrU8Z4LUovxsCWJRHPw8uJnf7KbLbs5fnd4BH9wyhos6qM/7mJqweK+OupJglaa4tHxaUzOtbqMYS6YYgy3gU4EMmSD2VRi1IZKfwXkSn7xnbv8PRMzHE03kD0uVdW4da/RdVS4y5DViFG9jjq0OY9y9mfIiBuL7vwD6SbyiBs9/SpPH+tsEwD4VMm5jiLbZGrcZKyTN94IvPOdfPQiNwpFr6+8xi2be15v5FpTpEphqiWZk6KK/k2hFEKRHl2MYvkif9frSbF31DprsO+7JE41pCNEtg4A7kZhTol/6aWZ04FrwC0hJzl+PW2+LNK0WL1/ek/Sfc9YRXlyKnv/rrsuMypt+9yxskVijxDOXH3ErZiDK1hdiXUiAOFqo3PUhYie9zrAHLP3no+4+RhuxbE84maev8pxlhtus9OM4Sa0vJuZTrB0jdVUexrz0nAbGRnpHv/4xz9W1qWddNJJnOFmwpve9CaceeaZ+Lu/+zv88Ic/xMTEBE488URceeWVuPLKK5XNuY8FqBZS1h+Zpqkzg1L+vrILaaURN2Gedz0+iuduWAUqxIWoUavh5OWL8OsDE0iRNctc1LdQeb4JM2yqZB5x467vs8GkmO4YPzJyiRCbjErhzL5zl/v4xEzps4Spb6mq2WYu30e6qnde0pHr6zWV9VwMWuMmOT1YBDtgtHDLFuC97y2MNHPErSwjr0nbuLH4TGYUAvKI21xHfm74udYUySKRxXFaEauk/HsqxAhwX+Aat1w+3180vEGbywXCpNrL1gHxmGpAbNoEXHBBFin+9g+Lc1tzmdNgy1+4y2bBnsmnphWf546SmZmMtj2fH0V2KeIWwOZnn0exhjHpvE8h1vdibS9/FwK5YcjrYH4yVayS7H3ySSSSR9yY61vIUDnOclbJWeYZZJ9NIKs5diXj6SXMy1TJV7/61ZlXxvD/Qw89xJ131VVXIU1TfPvb31bKftGLXoSvfOUr2L9/P6anp/HAAw/g2muvPbaNNklNS45Qnvx8MQ1N2c967ziFRxg3NuuWkC9TeBYzETZv0gDm/EY9V6j8lQYA+PkTRc4ArziEiaICZa+yC4OUDNL7mgC5YzCFjydcfV6IVB1Z7zyArZHyfGYkqUBhUyXLCmct0DMZipwEAO64ozDaAHlfK9X3LGSpNbKaotweSSV93OoNYGDAvaZIbCHRvWY3NdjXQCkrVKFaSIi/aegat67hxvUX7axhnrLFd6WI6KnH2CJVrgN+kc6879ln/7X4bMtlCXbtAt7x9jDv6SPD5XcpO2YcIUL7Dds+hqpIZP6JbBwF/Poolx6ylUGobArxOZPpNUEj74oMJR+2bKmDiPibqsh4+ixSJZctTZzJeHoJ89Jwizi8YN8lVY0bEIZpj920QnjXVJ5qUbbrpbiFqPNnyEbQsugJECal49dMbz6uboYZ491rTVOo7bMByM7cuGJxkE2sKezaJy9f1D0O2c4AEJ7JAIXxgEBO4mn8yCBTOEMYtEA4chJpnx+u5scu4gYA3/pW+TNZTZE0VZKRv+3j7jVFsrpIoEiFrSJVkjWEfBxQKbeGAX31AAs7gyJVko+4AWFr/9YvXVDIh/86o6JeD7X+JrXi3NWrM4WVj6I6i8YnbiqO2XeIZa0UFWTbPoaqOisgTEq2NlUyd5757E152UfA6CxQ3pdy8BFajwtAnSETqoZZ5rR0iUiWHWcpBjqv5yxjuM0JqZLr1oRde+YrouEWofWAhWu4Wd58+Tm4Rjfkm4D47yh79mzlF8dShcc3esLs7nLFxEu8FFWQnwAotQPwIrFgTv6ttcvw/BNXYUl/gzeaHW9Ok5G9pL+Os9YWSfUh+jepoyed7z3vurGPm2/vP+a4G4GohVkHZGuNy28q6/PDGmZzFuQkOf7qr+SRgk2bgJtvLhSIPFWyxTXgLo5f8f94GLTMccKtA2Gi423BuAL49CiV0mgDsdVA6HYAsohbqF6U7D/7WQxNfwhlWZXJEkoRl/2mIRwszSaw/TPyiFtL6BMnwqaPoepZB8TyCbf5c6mSImtoEFbJDLKykSoMN74WNbwDBwhfw5w5cd0jkqLjrK/g9uIMNzHitmhhNNwijhGocvGBcAqhifnRVbKscW12LAx0fJ9lHqpaAOOhe74q4uZZayVu2k1OiQjjXQPKSn4o7yN77rolA1i5MFu5Q0Q72Q1y5YJ+/rlhxrk+7zLDhz32VzZlUStmc/d8Jtnie/E64vWpkM2dWhiv7PMzUMguDLfi+z6F4aaLFGzaBOzYkbHq5fZI3kNoaAh40knFjblv/yHj3FXgak+Yz0NFllrcOhbWASWmR8lSJV2NiDQt6vtkjq1QKaSsopn93T/iploHQqUds3tPUbfoL3vnTuDgaPF3NsrGOUIkKWk2fQxVdVblccapSsGu73XhAkXEzR1FqmRHJvOdTwS1qVj7QkVRgTKRkOw4RGZViNZMrOOsj13bNRE3VWDgaEM03CKUufiA8NIFf6GZOTjLVUXceLi+zjIPVSNkxE1SrwQUL6az11RY4dlNPmTETfQqh9rEVFFgPvLjf2/KG7u/Uausben8GYqhlVU2Q1JGy5q28waz/zoAFHNmySxsegip+/wU5852WiHZpEoC+khBXlOUs/g99QzggQeAXbuAJz+luOYDIxNyARYwKfkpwqy/QPFbhoheZ7L5NThkJEIVPWHZZX3ui4z4BBBTvt3QZCKze/cWzxfnHAr8LmXHfrLHxuT1ooAQcSPUjLJoK9Z2QP7sUMHVjSe8iptL9yNu4dfHULaCMuLGOVrDOOUAwakYLFXS4KAnCs8dZ2/7S9Zwy/4cGspqO1mEZrSdr4iGW4SwqQqpBYFTJfn3yt+CUG9e6hQMknyJh4ot4fCNuMmo3QGGQMRRrhi5YL15oYwroJz24lt4n0MVBQ5x71vMvSixjrFzcPa0y+febcPgmyopUTZDkpPIEHodyGRmf9aT4r7PWvQQUvX5GVjAGm7liJsqVRIwRwrYZ2HJ4oyFstEARmc8uhAzUDmgKr3vwSJuxbGMvdZHflMSVQIKYz+F730pyxb/Tp368HAWob3yyuLEv3xb1gdt61bg8d1hlOSW4pnxraVdtkzezF48ritIIEw8b7qIG7f+GmcqB/vMiIq8byYLwGQkOJJvqKB6R9j31Kc5NiCv2Qfc6tB08lUOelcynre8rZjTC56fdB1nl79Z7XA5mhENtwhlYTzAPyA+LH75mZVG3JjPS++v4wttYsELGXGrS+6Nq/EwJ+QRtrjf2D+dJsdehra/BrHw3l0uF4FgjkNEfnQbe81zkwHU0cJgqZKdiakcFaHISbhIZ6joDHPMpnf1d9IlbRQTU58fAJi1bAfAQhcp4CNixbGNoWkDZYQ5QMqeeG63VjdQjZuObKI7xtXJooi4sceqFDMb5PMq9XNjxxDu+/btmVF/zTXAxGTxeauVYO/e7PPf/m1GdiAGP+ne4Sj75JOBtUPF39l3iI24NSQ1bjZ9DFWkLUAYxxm3p4qGm6ds9lxpqqSzVPU7yLJYH3Jkx86hKi0JxQYtc4SEkM3uOatWJl3HmciDVIHPcl4iGm4RfIRA+C6EQqgsiFXMgSabjW6UleTiWm6WW5WeavF8Ng3Q12uqqxUKFXGbarbw4MFCO0mScJ67KhVZ7cYeIFWS3xyZ486fc80UO3aYi/hVqDLi1mwCM526gTQt5lgPJF+l5Od1UXMWhlDe50dEH8NCRo24AfpIgep5XLd4QDKaDpVhyJT/BYuK5eJDpXzLjMKzhwa5Ma71qCqGQN5wCxshEP9ue2u2b8/6meWkOfV6cSLb+29qMqySDMhZK8dnW07re6MB/OmfFuexxhpb7yaLuNn0MdS1HwoRMWEN+VLErfNnqw3nNTiXLiNu8nFqqZ7jgXoN/Z1ruLY1yiGyQOcIkRrcTtOu3iFzJIjXp8kujvl9j/99fTOIegXRcIvQtgPoZzSHSTZpnwAbj2yIeqIq2gHIFLZQtSHZ+cWxlFXSUa4uchGqxm2v0CS7RE4SKuLGKbKssukmW5faFcao5Z/3PHXq1zsy6YcmgFNPLVKnbHofsegqm8zq7WvQ5nNcvx54cGd2/thoMcf9+8Ir+eyz0sdE3Ez3XdXnp1+aKslG3NRybSIFMpy5pgj/+RTGK5lIOVp6Z/FSEo5wNW7Fcf4cnrx8EU5g6PVDO1kagdLH8jWktA5wiqxZvqw9Rb0IlHCGG2sITU7ZzrQMbl9l1gL2vbp7z6iT7AtfXhyrIm4iq+TAAKz6GKqiPp1PukeuvyqXUdGRn69vP/1p9vdW230N7rYD6Py9n/FqzXpEf9XtABIsHcis4elm28q5pYIVq6Tjuzo+0+zKHxworHd+T3USrVwHxPc2TP7D/Ec03CK07QCWMS/g2MwcXKBeLPzdayqWpFCevKojbsp0l86f7qmSuohbGGVQ/LcnCElOwir4xechlE29x9dfcWCn9dl/TrqpUzMdwozcE5+nTm3cmHnrbSGLuLH/DuptYdO79u5l2ROLOf4/rwhlQBTHfM0STRGXNcjOUyXb7SLSxjcMVsvTRQqaTWDHr+VzWjrQ6CopPpFIlQMqNJunSna4iFvxeYh1Uh1xK1SXMBE3/nNqpomsPUWNMdxaTKSKbSfx6KM+Rqdi72D+LQ+NulmGa9YWspsMc19Lk3q8bZtdH0NV1AcIo+SL5FPs+lZEQ7OZuKzBRTpg9ucA49z2SZ0WU37ZaP7S/mJxGveIutm0T3K97wcY/XD5guLhCLGn8gyqkB4DMVUy4hiCrh0A6zlxLcSXpdIAYXLDqzQKWfkJVJ5qP/mqAvMum5zjjdEpv+x1HhmbclJ8xmeauGcPzxJRTpV0Bxdxg1zZDN0YN7tWAPnMaa96VaEs5Aobq9AB2fcXX2ynOKjo0ZMkcWKTE9O7AMZwaxXyJw6FcVaoiAmoLQFkDbJzwy1jHcsjbsX3qoibKlLARiGf+czi8zu+w3vpQzA/KgltArCoZudmf4rPTB6RCB1xE6/lKp6Nqqsibq41bmzttZZV0nDfVe0pamyqJNu0nTHiHt/jnjKtTpUM4BBlZKcpc68lEbeBgYy2fdMmumxdpNNZyWeM8f/7mYRb39iIIbsOk9bg7lwLfSB/HH0MN3Zd7a/XcPa6we7fF/UVethU0/0a6hKE4nPXusvRacZwG2AMN+76rnuqykmR4NnHryjke1ft9wai4RahbQewpL/RfandI27mqFjoBtzig+1b48Z5kgMRBojyZX3oXBdR2xq3e/eN4779Bv5mCX4lOaeGJFhql+qZDEFOoiXj8VAcckX/Rz9mFDYuRSoTnjUTLUu/9FJzyo5O6SmaNdvNXJbeBRSGW8o8QqzXfXw8kJLP/LL9bEsAyxxYsUF2bripGrSqyElkkYJSFJJR8qanEs5Lzz6TQRxQyppOR+Eo3hXxec+NoaaXUSh3zIXoLdhURNz6OMPN38FSepcIFOyq9hRsDRhrMHBrQjs19j1TQekQDeCzZGX/n/+drWtDQ7zRuXhJ9vmOHfZGG2BoP8SN83tmamlSWt/yHowAn8qaw7QGy7I1WHKl0ZkmHhhx6+fIPsf/7fjlWNgoJrigUayP044lK4CtLuYme4YxWllCFfZ5fHR82km2KroMAKsXFakUvsRcvYJouEUoewgB2YawoLOAzDoWFSkjHEE2GLnsUo2b47Vyw6mKFCOg8HSXPL6+5CTCb3UO470Tf2OX/lPSBbgUcfOIzKjaAQRIv1LVE2V/d0sZYRX93GZut3lvNauw1SQrr64RdA4dsUphuNnNWZbeBRSRAtb2Z42hBxRpgzZQkpMwdSI2EbccbIPsBYvKhlveiBsoR9xUkQJZFJKPwGR/5l76PXuK79ydCYqIW4AIcyY/+1NcZ/JnKGQfN9mxc6okcx7PKsmkSgZ2+ol/N90aVXsKvsaNNWKTghm2bu57poIqWyOE8srKWD6Y4OqrM/r173y7+PyPX5zi6qvt0iN52eoMHxaHJtwIRHIDaOJQrbS+tbmIW/lGmdZg9gxWJ2DTJX/xhNsPqnJSALzhNuNT48Ycq8jcgjifuMyq4nhkeg5TDoYnJ1tBOANEcpKIYwi6mh8A3s2gWW+rMq/aSbJdzrYPcvHiIsc2gPWBqQGsa/oVe1/OWTeIJw0uKmTTp1nCqoXlgqFWOw3iuRPPZWXyXnxH2Qp5AC1FKoeo6HcNH2F/YhnZxHTJHLpG0IBaWWP/bjNvVXoXACSSVEnWAHroYf/0rgT8O+VDNpE3yB5al503tCbr8/Pgg8BrX1OMyyNuQ0PqSIEyCqlgCASAn93jHxXjnWfFcajG50X6mGC45etYIMZKdr4hMhOqZJXk3yVxHbDfm1TtKdhnpiU8M3kErtFIjX3PVFDd9xB9HGUpzY0G8ORT/Pds1fo7PAy8/e2FUfuLX7gRiOTPzP4nyjsdu2fIIm6Afg1WMQaL+7fLb6CqcwWABcxkfSJu3VYGukyTwI4Q0YE7NediuDGyhe9CtjfqFUTDLULLKpl91vHkO8rnCURYTwwzB8c3jqe51kTc3MQri9dzB5t/O4Bcnhg9KY5drsCeMzjA54iFSKURaZaBLL8/1CKqigKHSZVUe3xrxPnr2OREZa0tqQ8RYWoE3dZ4ZSkRN1V6F8DUuDFy5pgoVhv+6V3l99Mt0skif5cWLcgIYU4+GXjD/ynk/t4rJvGL+1vYtQvKSIE6Csn8G4TfdYYJPoeoi6wiVVK9jhUOqODp6gHeVRtWSdcaN5XhA9Ainar2FKqIW/b37M+BBW5spuK8+PYF/uqrOv21GBPyeWEzFlImGgnQSJzSNO1GYCfGy3sUm+pZU5AR6dZglZN7WoiCuTgTdFwDfKqkP6tkubbbf51RPTNsyifgqM9wBrNGVzpGLLdouEVoc87Zz5yNK2adCd2AW0V2IP47nFMlFQtdsIhbtwGseiF1ue/6OgJ/y02miM210yAbO3uuOFM2xTBIjRvE+y4fp4KUTU4SsQKyJrw5+jTtv3SpU7pcf0rETZXeBcgjhnNMjVt/f+qc3pUrNH1CrqjOQ2uDNE2LqBJLFy2MO7hoVMseqYpCstNl62QAvo7O1XBTkpM4RIBLshlCG3GdyclJUviTQYjyWUPLmZykwoibLlWSosiq2lNwrJKK6PvKVea+Zyqo5h86VVJF+uUcXRbWXzFjoZtGmvAXsCEQYSsEpifL+xyni9TU/wDV+qZKNRSjYC7OBM5ZKXzHpmL6GW6dNVL4PESJg+qZWbGAdxy76AW64AL71xDR5l5ANNwilAx+3c+SfJzjC21F2R9i85VvMNm13IwV1UIXIsWIla/z+Dopspqm6iEibjKDNStIDhMhyE8tkSkESAlSPY/i9Uz3XaXo59E0MTKzd1ehyT3tPElYpwNd6hSrmIi5/vm9sbkvqvQugCHGYfQDrlas3z29K2ddY3sfAQEcFcyxrkHrngn1fddHIYsrpILexBtu5rnKoPIoh2g4z56lirgB4Uk+Qte48RE3loU0wN6hy3iwmLusPQWXKimk3uVrw/IV7oskT5HOR8R9oVojffclUfbYaDljIV93EoV2qiMQYQ2mmSlZxK04ljUQz6Fa31SO4lNXLhHm4eJ8Ko5LDsUkwYKO8TYtegEcrlHSjwJErZRlK0mC01YuZsZ5yha+i6mSEcckdKlj2Wf2KVgy6Ni7ijk4ymaOVUoDUEHELU8x8mRjy8+uC2+ir2eTVwRF2XR5Ith/9/KBPqxd1I8nDS7yTvHsnptvMMIGFqaPW3FcNmrtDQiVol9TpEr+8BtFQ+Jn/56cXcvUCFpFiwwUc7fhEFKldwHF/FkDpdUs/j2Ll7ild7XaRRpTv/DA84oD/XflIzPF55KMXiW0UUgu4sZ/x0Yj3VMl5YpJiFRJVdRK/HuIvoih2XdVc+dYJR3JGlTpqYBoCJkha0/BpUoKUdo8ZU9nPJigrnFzlymToSpvCOGk+N73klLGQtq5V6o6YB2BCPcMt8svP5sFISOIAvRrsMq4esqKxdw4n96CHeEl5GumVwPuLtka/znHBu0qm8mSKRuGfsYVH3GTBBfycTHiFnEsQqbnsA+Jk1JlERVzfd1UDFUBbBMAhVdRVQvVTt0XC13aG/s33whEOR3Q/+7kG1N/LcELn7Qaz92wCvVaIszbfRE13XfAzkCRQdfHrcaN019ApejnCoeYKvnz7xeELutOlHtNdY2gAXUjUoD2nqrSuwBVqmfSbQmwdih1Su+aZSyekuHGHLv8rKrIjMpRJIMuClnT1CsFibgxx6pUydBRK4A3ckPIV7cDcBLNMUayc2drfiYdyRrY9LY+IQLskvIttqdg61jZ+taBAWBwGU22DLpUT1/ooieJZIyr7DvvkHzfTZVUy1ARiLDP4sknSQw3jpxEPn/dGqxqHt5fr+E0JurmFnFTZ8kArLPY/bmxi7j5Rd5la65vyreRQK/z4bFhtkXDLQL6ws/sM2ask3y5N5wb4yA3k10csw9zOVXSRba6NiSEh3OcaWiub0TqsNApZGXXIosrocuGKVLzhiIn6UbcePB1M/4RAl000iRepejnCkGZSS5RNuEG1I2gWegibtSaIll6F1CkBYrKdk6zv3yl231nm9P218SIm32kUwaVE4RiuGmjkJqIW5AaN4UnP0jUSlcXGeB9ajHvqspwczYKmQe5wchr1Grd1LFDs26G2/hssf4u7ec1ddeMB7Y9xWIme67V4tlMFy8qHH+u6Pbmg3zfzuHGSlwcy1oEZXLJYkvnHTxYnndBTqK+gIpAhJ336acnpfWtZWD2Na3BPBkaDx9mXEBf4waE0TmUNW4ByKFUBEgh5Ov0mewz//eplxANtwhtPVT2ma9SVRyXSTg8BEMdQg/hgGRla/v8OJooP91bhGxKrJKetWImD5Uv1P3nCnj1ncrl6VK7KiEnsX/WVYp+EXErf5d/JiuMlzWCFmHTx00cp4IsvWvN8U0MLOzMtZQSmMnXKVQ6cIabLlXSQbaq3ofipNBFIRPm9yoZbqFTJbmIm7+ypro3AP8+TTjQdAPoMp2W0zCZMRVECxf3Zy/aTKvtRAYxzhh8ouHGRd6Jc8/bU/zP/1l89pUvJxybqW/deDav7E/xvovwdbYq244EqHETa/8Ac41bDhmBCPtbLVtSXt9M7QBMazDbv1Tcm1jDreVLTiL5SUMQFakc0SFKHHQRN29HtCm40B13bFhu0XCLIC0YLi+dikCEvZ77YqFO6fCFrjbPN0IA8I2Gj1uygPvON3VBH3HzvzeqiFsoal5VxI1LHXMlJdCQk1CedZWiX1ekSgLy2hZVI2gZWCeIjtDG1qjdtAn4i78o/n75Bw52j8W6nIUDfl5NreHGHLsoJar7Ql0HlFFITTsArsm6axSCOU4UhqdvRAyQpUoWf/+vRw9g/+QsqJCxeYrXChFxE7M1FvcVL5FL1K2KiBsvozjxSU/i0++6qV0ea2Q3wmHQ4lyuwddcyve+EBE3ueGWdK6jlyMjEBENfTF9lb1ejUlltV2Dh8emusfHC3u2b8SN327K//gQ75OyHUsQozCPuJXn7uuA4kpiJN93S1foonsS0XCLMLYD8GUK1NMul+dAgSp6Iv47XMTzi4VaSXaOLDGnnbhsoSA/kQ2zF63ZBMS+KtTUyTaTQioaDwOM7H1TdCUwh6rGLUTqmJ64hfas69jkZORf3fqNmr4RtApty+hJ2/JF3b4d+OhHi79vfMZcIV+ICu7fl/3pqjTMMhZEOeLm50xoCwqbDjpHiCwKCYipkrz8P3mxfB4UsIX93HUDPO+63n/ivfrB7gNk+UX0nf88SLRQ87su6S/Wmok5ekf4/JyBeg19wvMYhj1RLg8o9pMQqZImR5ybs7U4VtUBh2A5XbK4PHexj5sMKgIR2bzZ9NWBAcYp4rAG57VrtQQ4fqnacHNxKpoc6L7ZJmlaPAmh2w8BplRJfh5UsGdII3oesnsRHpxGEUcLVN7eHL5RFD2rZAI30ySXzRhXXIoRP84pr1qXLhKA9j4/TVRiAf8IhK6ZJ6vwAOZUGxHspiE24l7a38DgQAOjM00cmJ7DodkmlvTTlxmbGrfq+7iZ5eeK/sUXF5/pUiVzj++Tn5Ji1y56Dye+Xon/jrqxy5qHs1i0hJeR17i5Rjp1ETef1DRxTiZHRLOdlsgoWOQK3KWXFr2lZBG3gYHstz/7rAS/eKLzneczWY4As7+pk2hD7z/+7zMOPaK60XeN7DARN14++wy5kEHksvskD0wIo1O7znQzTXz2vuxPo+EW2tnqWU/ErqsveAHw5X8Wrm1BTqIiEGkp5p2nr961G3ioU6Fw663AU0+hrcH57yXbs7kWFb57tuR77n3yNAx92uCooEvd9edJYGRJvveNAvcaYsQtwlgP5ftS6zeBXK4bVJ4YcaMM7XUMwcKkMk5K8j1ky+SLhpQpQiGCU6Yk5w4tLkJQrnUz+RV0JDPurJLm55GdgwklNrluOwAhGjlQeJgbfW6Nd3W9p3ij1ixLbB7ev4A/aeFi/u/NTo1bCrdnfoph8VsQuMaN/031z/OcRf0J66UfGuLT3hYu5L30QZT8zp/lmk5mTJA6Mf67kvHvwFykSpsOWeNWS8LXuxbGstqDn41zjSypnWc1T+MnO1ce6SzPw0V2cayqhwrRqPn3frdMIJJ2a9zk8nUEIjryJoB//k/YQGfH1e3Z3hE3wym+5CQ6R0IIR3SXLEdyc7xr9jXvEhBZJSOOQZhC9L5hdG2NW3cOrsaP3OgU/x1O89bWQoVQ1joLneQ77z5uCllAWWkmR9w0XnAA6GM8j769oUrx2SQpGk2H6OOmSRlxZZPLWSXzyAybjrNgQXkOFNhGT0z3XdY8fHAlb2QvXMIbOHMMe+LsHMgYnSlOWjog1BT5so5xiib/3cmDi7i/z1la/LmXftcu4JZbis9f+5qCZALwjxYCxfMubshVR61MfzdBx7zLtwPwm3tDMi/vuhlFOnb2GUt7T5cNhI3sl2Wn3SijkZzEQX5ba3R2xng6KQBgzRo1gYgqVVJHIKJLJQf8WY9VDhaAN9xcyHJYyOT7ZpvYONABdzKb/DxjxM3DyQKU36Xssww+hGi9hGi4RRhfCn9yElaWwnBzjZ4oFLaS4eYtW+51BNzZtYpNoPydb+88XcRN18PFBrq6E/Ez53TGzp/yXH9P2ZoIs8+zniv6/R0P8mmnJnjgAQRlk2N7r+qUbtMGJmsevmwlr2z0C55wlj1x50O0+adpitFO+4uFjbqBVdJXKeHvy1lDy3ACU49iE3Fj0WgAJ5xQ/F2MdIZw4uQzUlGvA2U2S1to+7hp/i02UDWBFmW5RsfzPm7iPRfluxiG+Smq+sqQkSVdLa2LdPZ+NgzsJG6KeHGsqocK0o4F5YwFFTmJDYGIjsE6v14xD+LEoXe28oabw57NHMvk+xJzVZlBpC+H8a/Z1znRASZV0kF2LyIabhEW7QAKhCYnIVsNAlSRpVKqpKNXs5DNfxeCdaxIuwjvGWTPkt3i3zlxVWketmgaIm4hKfuljoRuI1JHhYqVJf6ukjlQwHoeFy8GNm4U2OQ6V/AtAAck5CTMam66N7Lm4YMr9ZYB2wNp/JB2aAmTzVb3uRkcKOcn+d53EwPsMuaabj2W7Ix9X2VWFd3wkU2pcTOl3Wllaxgrneeuibj5NA/n6pcVY/x7Q6n3Pf53pUtmIzpivebxS3iPS+gaN19GTNmezWYs5PJze5RCIMKnSpa/93UQaVMlE7+aS2MDbs/3SRdF9c6qMhlW7FhfR7TM0d19Jo8N0y2SkxzjaLZT/OCxg92/q9JGcoSOXHUjbg5yM9nyxS54xK2UE87I9l0sNAuRq3zee1e+wKqF/eiv1zjCCFuw91wkJwEEhco1nVHj2eymSoYgJ5Eo+bJxLpA6QXwjbtp6JXuDWdY8XIy4iWgyxH2Ll9DmP8XUOsrIavzXGL3Sw0YlvL3hJUXW30DpRn9K7LXhjB/AIlXSp97Vw5GglK+onxM/o8o3RQiyz/OxASJuxlRJ2n1nn2HRqD1raBCPHSrC6S5rDUfyoWoHgGzuVEZYlYGSZyz8x4PAxBywYmWKBx7I2CNta9F0ji127tlY0rQBMIabMVUy/Obhm8mii6L6ZhCx2QDGPm4e9x0wpUrSZfciYsTtGMeOEd51Lm1u6B1GVy+mXcPNM2olyhYf7PBexxARN7Vx4hvl1KVKip+TI26GzZHbYJwNtwzyVMlOxM0xdcw6ehI4LZi9XogaN11Nkem+y5qHUyJuG040zZSHKqU5R1mRpUGnlABijyWH5ria9ykkOUkV64y2j5tnqqSO5dTX6GTr52SRfZ97YyI7AAoF0T2ypIlwsHN3kM1GjRuCB2dBo86lBrvMn60DFSN6vs2a2XPkaW/Zn/V6OWPBBC5VUpZey83DPfIue2RqSfG5S42bydnKO+bI4oXefDyqjrjVPJ930/saUyUjjimwTUgBlRHhpzzoUyWzP9x75chfaNEAddpgtJEZZg6+dVyS7/yLqC0UE8d7ryOCAMJS9ptSJUPn43uTZLCydBuM4w5j25PL9J7KmocvWqo/qckQkog93kzglTWDc4gkOYN2jQFP+e4fcdN4q31TJYXPXZqqi9BH3CD83d1wExXlhBtHEluSLYu4+RiGpIibM3FWcaz7XV3WMC5VUnJvfPePPBOjlujTa51S9ozRE3cl3MQq6R35kcgpZCddB5FbqiQjS/K9dzsAS33G6b6bSGG4efg+M2X4yu81RMPtGIfCjuLg62GzSZV0dZVwRoQm3cSXWUvnCXddJopNQL/QeeeEK8a4Rn9onkE3T7s+4iafC0V+jtLzz8l2m7tKNvuZe6pkcaxLe7O572Lz8LxxuApNJuJG9Zqa74uvx7eAPOLmlyqpS8UMkc6Yn6Ztqn4YatwoEbdmE3joYWaNTEVlMOm+qy7kISb22lA1bqp/sS9lv87Y933euYibzHBj5+Egf6ZjuA3Ua8GYd7vzMUVP8nGhncQI4JjTOBQB+BluzLFp3/OtcdPVXLrpSqwsvSPBj2+zGvKTXkM03I5x6Gp8up8xx27eQfUG7Bvi1hGIcOMcZFuzSnpHlcrgFiLvyI/8xrjee9N82N/YN9dfNnNvw5CVr42kkkULCpWksXquyDreFl2Eg+qRzZuHF/IM12YibtRn3qSU+Keo6hU23/oT9pw+sXl4gHRGFTV9mFRJ9TNTTp00yxsezsgi1q8H/nxTIfv6jyXYujX7vns9j3pUUsSNeHN0BEU5uhkJzjVu8iiqeE2X573ZYiNu6nUGcMmoSLsRN1mjae/6a03kJ/usO5IsW+ek4GW7pkqW5bDI13y3fU/vTPBvB1Ac6zJNnLKq2vr119swNDn+AuhjvYRouB3jKOXeS8f4eTMOddIxEwALGgINuIM8FqoNuK+WYPlAX/fvvt67kpedW+gcDTeFsiZ+Fpr9qnuNrnyy9EKGQUkObVgBfgoboK+38o1wzLQKEo6Bhkyh8nNU6FjTXMggWCpusW/SP11dMJgMDADP/x13Z4IpPYqFd/F6BTVucy11alqQ1iAKT34QVsm25pnRRPhk2L49qzu65pqsnUR/UUqF0QMJrrkm+377dl6eyzpAY6+lyeYdfvJ/c77G+7IGm2s66bKbxoibuyLebBc7jslwc6pX4tYCzTgH2UaSDMU8bGATpe1G3BzS+E3D/VMl1fu2r77BR/P0z2MVjmjf96nXEA23YxziK2DyhtMXoxSH5jLDbXF/XZmK4+rVVClsSZLgghNXFuM8jB9ARjEuH+cqX0TNe6FTG4U5ipQU9w3GGBGrINef9zySxWs3YN9o4Uyz0BwGZEqPYh62aLXVG6Sr0ZlTcT/72cU5/7h1EF/Zvpij4j7t1OIcuhFh8sj6Pe+6wnvAv8ZNl5rmXTejSQ3mG0H7RX4AMxmJTpHevh24+GJgZqb4rK+/kD0zk3T+zMZt315E+Nxqo4tjKTlJze15F2Wr2wG4yc5R/KayyI/f825MleQUcRpYpmHZGsbP3U/JP+ypkh5OaFPWAODntDQZJ76ZJjqWbF/Dx9zHjRnrW4Jg+F19UzF7AdFwO8ZRzl+XjGGOqRvwVLPVPWeplAY8+zNEBEKce6NWw8JO1CP0JhCiriWHvI8bMw8HmVYRN8d7b9xgvCNu+kW6ylRJ35S6GaPSI5+HLXS1BD4G84YNwLOfU/z96r9qlJqH+6TtmQkJCrg14C6Oq6hxm2urU9O86/MMcy+iVnTZ2XnqyJX4d9UlhoeBSy8tf96/oDhjdpqXdemlQLtZnoMtzOtAcUyvcSuO1Q24i+i4Tx9QmXTvVElTSrZkHrZg1zBpxI059mU8ltWl+2QlGFMlmWNyurdF1oDP/mEaTSGfkqGtMX44BxFdtIXBXBx7R9wk3/umYvYaYh+3YxwlWliTd5Aof3yW6d/UJ2u8675Ii+fpimJDK8m+9LaAPl8+8VyIurI1ppsr3bVpEa064sYpPR5EE6ZaKBdlk424iWnBgETJ11nWEqSaudcCGrSnn55gxQL+e9+6GZkcqewKPO1cqqRDHwldapp3mpEm/RUAGvUEzWbqRDEO2PdaA9T3/vrr+UhbDs5wE76fmQFG9idYtLIagiUvVklDBFj83OFVNZBP+Rn7ZlZJuswcsybDzdNpaRO56o5NaX3izJEfn4ibfg0D+J56ZAeRxtAHAqRKKmTlSJJsCqGZmoGwzq0q3qdeQ4y4HeOgRtzI3rtmYbgt6quXvvdJixDno0278FSodDnhrj2KurIk34di7tKmSna/c1fCZfCPuBWoImVEVU+UyS6WxJEDKXbs4BtPm2DyVldZu+jrkaUpykTZzLEp1cVlKTApJbUk6SrivqmSJXISz3fVRMKRK+ZzLsIN8ssRt/I1mk3gxhvlsvsHivFzM+W579mdfdZ2UAhNUbEaEyWgRiNNimAuXzYXW+jeVd/aRVOqpM8zaTTcKkxVV31mC2MDbm4eNNk2tXk+kX2dIxfwizAD9oybLs+6rr+oeD3fVEmZ0cI7WY5+yy0absc4xFcstFJlookt4Pay6fK2AT/DUFfjVlOMs5bNHBvrCisiJ5HNhQr53BmFyreIWvJ9qFRMcfMaHgb+5uriwx/dleLUUzP2PJEtTwVjqiQ7D4/nxmjQOnlk7ZwggF9NkTFV0lMpUSnieYpj00G+LsLhm/5qSu9imerc6iKzPxPIanVFw62MnTszIhIZWMNNTJUEgMlJH2Nfvw4ADGslVUk2KILiNX3o10PXWgEWqZIe+wdrjMmMQl8CJ5Njzud94p0U5e99MllM8wY8UyUNe7bvfefrgNXGlW8bHOPzXoG+xL+rdPm9hmi4HeMovwQy710Bx+i/4lr+NW5GZTNPlXQKz6s3d+90EZMiG2ih06WZOKdKGuYOFMaVk2eQOVYZht2xHmkXrOycLe9v3lUwky1YmA3cuxcltjwVOMOtIYkwe6bY6upmfD2y1UbcTBs7O5YOkzcZYHssubBKMhG3Uo1bgdCEM9n1GGXQRX7nHFk0DwDOXLO0eywTPzamlt0oiHsxN1uWP8ekT4ZuIQEUyjn1ebdrwO37rmZ/VuGoMKVKyuZhCxPRj2+00Jwl4773mSJuXqmSVhE31nBzS21W7ak+ZDyAvS7mSyQkve/cPCrWl8jSew/RcDvGoetjJfuM6o0x9t/I5Tq+bW3DYtqV75kqqfNU+3p4pMYJc+wbLTRdl7yBsTIUY3LvYNNh7zIt0v6RJV42z5aXYGYq+3xgIS+bZctTwVh7ws7Dp3ZRtjl6RiJZyFPTmHl4FfZLrueZbmiKvAOFUjXnkN+Vk5NkUSv+O1+lgWuqLnlm2IiKy9y7hpvCQDlpcFH3WCZ92TLJhx3UG8UZTCeMLmZn3J9JGweRa584m3ol/zrjVCmfN37Ioi1YJT0MFIWcHL61tMY9W2+H+snmxoZ/ZoKQkyhk8/edJBqATRppws+DAGP6q68TxOigl8/laEU03CI4mF46HyILqWczcV8s2Pkk0KdduC1GZTk5vFMZDedwNXQe8rU1bux4wg9rs4H5RNxgkO9Pi1zcGxlb3nQnvWvBQrnsSy9Vp02ao1bMWNsJS+TLZDc8DVqTk8UnAmFSBn1r/2wibj4sgbkS1ldPtM4u3zRPmXHV5+nFz58FleFmWgdOPhlYu1Yuu87wTbWaEieLR92lVcSta7jRZJMjbh7OsypqOvPnsZGUn0dAcPwFJhLiUvZcHHPMsb58wiHNs/usq9aZMLqM0mHpER3XZVMAfEaFW+puAW32U4WyM/lk8UaD3LfOuNcQDbdjHOJLasofdunjJpOj+4wk32Cg+BTc6ppKhtrUAXME4pdPjDtTF2tZJR2NCJup5EZEJaySzKrlkzJSQyJly+tG3BbJtZKZGeCGGxSymeMq+jfpm7b7EXCYFGWv+hCDMhgywqxKD/ZZa/IIh6yeyJceXdcgG8hYJXO4/K75OyKr+QHM60CjAWzeLD+Xi7hJSHxOPsndyWJyJADFOkyP5lnIVszFFrpIp0/kBygMeFm0DfBTlE31qEFTJSXf8/oGTXbBGKwyxpmxZIO2OFaWCHiUUOSjVbpMyPIMeTqjmxOkJNuQGuwzd5OD3lV+ryEabsc4xGdcvlB7eNoNCpWPUQgUi4wqPcon4qbzynpvXsyxTYH2zoOT5GuIckrfBaDQVTOyZX9WcW/8+7gVxo+MLU+VKsnixhvlbJMmr2mo513dR8idgMOkmPh4NauuUbCjd3eff64oy6nX/eZuZpVkUiUdtKrc2FMpszrnTo4tW4CBgfLndaaMU4y4DQwAp24s/u5X46ZSlN1k20TcvKIzadq9hrR5uKcDp+tIkFn68FvbTfWoIduOhI5G5vqJ+jdl5uHwm8rk8PID7KkqXYY59u3jJlP8C13J0xg3PDMut8XkoPeV32uIhtsxDvEhl3rAfLx3BFICF3QVZWXErTzWFjqPr6/RY06p4z99ZGyKKF9vQAAeETdWhmKMT1qa6d54p+p05Dfn5Gx5U51UyYEFQK0mn/uePRnbXkl250+rjd12whL5JgKOKlglfZwVPLts+ftQBm0m30JpI9z9NqOES+uJmGPfVEl58/DiszniA5+mxb9UlSrJj5d/vmEDsG1b+XMuVVKocdu2DVi2lFHyHVn2APM6Q203YJPu7ROdMRnjPqnBaZoWqbuSCDAgPJPkunRGjuTe8FElkuhsPhaRK1eY9AEv5xNzrH4ei2OfBt8ysBkV3qySGmeCW/uhAkZHtFfEzSKSGiNuEUc7yKmSXukFMvh62jPYKWs06FIL/CNuesVB/MhG6eLly+WorkH5Xa3SjDwMFLMB4efxzTemdks++xmGwrxfE3UbHy9/pqtBEz93M/j1BnmeoupSC2VM3/WMQOhlM2NpogHY1bi53vsml8ooo173jLhpGmQDvHLeJLISmAwIwN6I2LQJuPlmPvImS5UcGMjGbdrkq+SbjSvXGjpqxI0eodX/pj4GBPubWqVK0sQb094O5963Y2SCJNs2A0echw1sIsB+hqHZ2eqaGgyI2U8y2dmfvuUNUiZSzxo025IYcS5HK6LhdoyjHHGTeUvcXwq+aNXkrabJzs6p7oXWKYPeNW6G78XrqZQuk3xdOwA43ht+A5OP8YrOGDyyofq41cts/QCKVElATVACAEuXlj8rDGaz4uBGOpPLkcvvRtyIEQhWNmBR2xJY6QkbwbZQxAmyWUWmIdkxebZNguBcPnOOnFXSPeJmMgoB2hq8aROwY0fW13BoiI+4LR9MsHVr9v2mTdlnPnU5lIgbQFsL7JxP8vE2MBlXPhEIE6NkJt/DyWIih/Jcf01EE6zE+0cOEWVnZyvTpb3SvWnPTOgaN8CdjAfQ1+yzslM4ZCdRWB+dyKeyP1UGy7EWcWuYh0QczSjVuMk8MZrxZvl6T7i/p70jx9rDZm8A6YxObwXcoGiK12toDTC1fK3ZRhNZkq27go+32mQY+i7S+XwWDCRYu7acLjnNGG6qOrehoYxtT0TVnkHT7yrSUfcpamB0sgFz7QndGKdE3Fx+U3PEzVURZ+sF67Jmx4p52MLUgLtP+E1psotjdcSNFjHcsAG4+mrgne8EvvubFAc6n9/+H8DKxfxYlhCFTE7CHKvr8wpQpNvI9oqKGXrz+ex77DNglSrpYTDLI27u6wDAZ4PInDgTc5LiYVvZ+fpoVePm43ySj/Fy6HbHq9dsv1TJ4thskAMNgn5g1GcUY63l53Isfle37nm9BSfDrd1u40c/+hG+8Y1v4K677sKePXtw4MABrFixAkNDQ3jmM5+JF77whTjvvPNQUywsEfMDotFhUqpCMzHxn9AMq/wMIHx6VDbeLuLm6+CxSpUkR9z0BoR4DdfeJ5V4Hg1Kvk8fN/E33bw5a67Ngou4LZLL37w5Y9sry8/+tPLi20xYlG/4XUU66j75MKX0HGaDmSRYKad7PXYWLt5k5r6rWSXd3lku4iZVwmmGj06+1BPuZbiZI25Adt8yT7u97EYDWLoMONBp0N3XF1bJt1mTXBVxzpGg2js8nAmswSyLivkYhXOtQjVVRtyYY+ozabo3/ozK+jXs0KykIaAlcv1EqQ84Rt0Bu6i+1/Oey9bs2a59CwFh7zMY5K00RYOgi5n7rCXdNcatmX3nmVF8X+PW9hhx47B3717ccMMNuP766/HYY48BkN+kL3zhCwCA448/Hq9//euxefNmrFU1gok4orB5xr3SDS3Y3lxlZ+cYIhweSpWWVZIb57eIyo1l/lOy4UaMuFH+BXaF/X6bu06+D6sk7zVNsGULcN11fEsAtmlwX39Z/sAAcNllevk2lPRVFGmzdPXODWAV8n02R97bqzd+XDZ2U4pUdo3imKKIc/VKGkU5M3z8ooUyyn6felGbVEkguzdp6lD3Q3GyUB1nwvxkcN2bTDU5gN8aZrrvPpGfJjVVkiTdnNbMBvF96qFCE5MAjANHFUWtPOLGzMUxnVx3V7qGm8Miyesz5e950q8UUJQSmGTrHCFp6rnvWThZjoU+blaG28zMDN773vfiPe95DyYnJ9FoNPDMZz4Tv/3bv42nPe1pWLVqFZYtW4bR0VHs378fv/jFL/C9730PP/vZz/D2t78d7373u3HFFVfgrW99KwZknMIRRwziMy576L0Keg0vtDcNeOckZTEyNxeqssl6qAS5zLx3j85hx0SWOieLwsjAK8lliNcjp0rmsrVedn+lRx1Zcvc8HpyeY+RLDAiPpr5iSl3OlnfxxcwYhrREwkWBbduy82Qw/VO9FKo0NXplxVRJmvziWPpMemyONvUhPsZPEYlUP++uKd+2ZBCZ4UOHKSrGfkJ9l2zISdhr+NQw65jqgI4ySIBdhIMZT2QKLWSYZYe+7z7GuFWqJGeg0OQbmx2HSpVUPI5L+uo4NEePuqWa/ToH/y65y1euYV6pkvqoEsAQiLg4iIw1bsUxvS9icazSxWpI0EZaSaoknwF19FtuVmrmaaedhkceeQRnnnkmXvva12LTpk1YvXq18bx9+/bh05/+ND7xiU/gHe94Bz7+8Y/jwQcf9J50RDiID7ls8/NJCyTlPtNEd84xRdzc5fNGZyFoeBjY9kngGf8j+3ur1sKfvGIWBx7tx+bNWc8jlWIvm4uJPlf2d/28zRuMKJMWcWNlhFV60jTFPXvHCvmSMT4RNybLqCsnJ1K49NIs8sZtQowGMDCQGW35eBnMNW7MWI8NRvW7sgZ+i0odb5HukiM0OQmQPTMZqQpJdDaf3IGjjSq5RfVYhk5V1MpHKTFFZ3zWX1Nz7xx5IpOLM6ErQyKfXQfo0XG9bMBdETc5FDPZoe57WGOcfR6tUiU97rupj5tXqqTi+2cetxzfeWQ/AGBA1TVeAhumUD+24wKh9z1OvuY9Fdvs6MnHBPkKfaYrm3OIVvCudjxzbpwA2TlKg5yLdB79sHorFi5ciH/913/FT3/6U7zxjW+0MtoAYPXq1XjTm96En/3sZ/jsZz8bo23zEOL7KY24sd8T5dNSJR28SIbUCHbzJUdnJHPfvh3YuBG47n389X77D6awd29WL7VxYzZOB9O/VaeAmmCT0gGIRjPBuLIY41rDIY6Vp0oWx9RUHVV0g2XLW7iAuVY9xdAQSmx5KpjSgHwcCTaKSbURN3dF1uTFzz4vlBIq2oaNHXBPT+NZJfW/q4tS0jL8rj41xtYRt+5XNPncMyn5nm8HEPZ5BNwj2DbkJF4OIsN994qIMcehSVvE+chTJd3vC1DMXzX3VQv7sbiv3pkLIYpqoWv4pKhSM03ITu6ubPV76tNew9SA26sEwSI6nj9LTo65rgz5975R4F6DVcTtl7/8pTfJyP/4H/8DF110kZeMiPAQFXbZexFssbOILNFkW6RGcPI9lJIkwfbtRUrdXJOf+Mq1xXY6M1OMMyn65Tl2PhP+7p7KqFHWnOWbI3rOETfhN5Kd6uMZ1ClUOVvez/YAvz6YfXbzduDMU+xTYHPY1FyGZtsEPA03Tr7EI8sc+3hktUpV6ufA0UbcHCMoTQvjJ7+sW7RQL9/PYNZHfkS4KpuA4pkJ9Lxb9ekkRva7MhRjfGjvjX3cPGo67YhV3CNLJgXfu49b17mlRn4NinSTrgF4tgOwqu0ujl0dFTb3JZdfJ9QJmhx/POmXtVgA4rsqH5N/7NO0XZkyLRl7NMPKGgvFDBkZJucf2Jeor5ZgzaL+0hiflBEjCQc7libaKnXB1TjJxhcnPPZolkqXo91KcMX/XNX9+7oTyxTGl16apVXKZcvn2P1M+PdQPO3WETfP+kKdfFeFTRw71SzXOvilSpoVWTY7Z/16mtFmSgNyjXKysnXyOXISsuJgmDunNJBEWylViYOyVshPORky8MQB9jCxSgJMtNBh8pS0OnI/MQNjZfcaTAoWBaZ2Lz7Gj5WDKEBkXxlxY+fuEdmX9nFjjv3o+uXwcrZyciRGp4fjLJNvflfz94n2mxIjbh71+ir4OSps1rBQTsuwsm2cCYUxHv6Z8elb2IuIltQxDvYZf9HJaxReU/l4G5jSOvwaZLOy5WNCsUpu+6eEYx4EgB0/68fuh7OUjuOe1CpdYWYGuOEGuWxuc7TwmpEiYqxn0PYckre6OLYhDaDWuLGYkBSp15LiqlSmOqvUsQB1EDaRyNDRDSBMxE21ObbbxRdjYymahHZLduQkHqk0VhE3+XxMsGKV9FBK+PTd8vc+0RmbPm5AcW/8UmD1e4dzzQ8MdTOS8WbZZkWTNdLJbRiMrJLuv6mVE0Qx3k6+/t74MIWy89ESZzm8T3zarmpfChMBVkf02PmEtyBqHvfeRMjj03Ox6lRJ0zPjw+bZi3Ay3B555BHceuut2LVrF/f5L3/5S7zgBS/AihUrcPbZZ+NrX/takElGVAd2kVZ6k328d9wmIxPOjSbKtlEGC/h4kW5UGGCPP5KFYxYuTjG4qrwF33gjpAquSSkRP3NNldSZbu5Kj1wGC17ZJGy+wt9VNUUFLbKPQiUf4xUVy2VY1FyGjl4DwsbuWOMmbrzDw1mN33P+W/HZl7+SRSO3blVHlTnZzLFJCfcxfvTtANwMchtWyZpDhCAHT+8uafDtsf5a93FzvPcmAyhU3YzqiXe9N9SIGzV6bWaVLI7JbMc2acdwe9YBc92id6pkHj3RjHFR8k0Gp3hNui5DW3/dUyXVd6buce9NzgS/NjsWEbfOny79HE0OUS82zx6Ek+F23XXX4WUvexkmJia6n01MTOBFL3oRvvOd72B0dBQ//elP8ZKXvAQ7duwINtmI8LBSqNh0FKL8tmGx8/EMsnNRKcp8qo67/D175PLHRopXaNGS8gX27AF27iyfZ9oEFjbqWNZf5Oi5kofo01EUJxnlUzcwgmxh7NPXLJOOy72DoUkDAC9fgrFOwStVRyFHLZ8GWcQtJ+O55hrg8ceLL+qNlEjGw8xRpYQ7Gj9tZmNXGVaAu7JsqlcC/NI8c5bABAoWP+bYt/2FCt2IG008jTreo25GrQy6GSimfQngnyVyqqQx/bX4bNf4NEm2XXSDGe+1zsiMTnfjBGCjJ+ox+TOfwv5dtSFtCRZxU4wJIb+qVEmTs8KndYcV+ZRrOjZzrFrD+Bq3o99yczLc7rjjDmzcuBGnnXZa97PPfOYz2LNnDy688ELcc889eNe73oWZmRl85CMfCTbZiPAgbwIe6S7yVEn5WBvYKCU8Pbqbhy3RnMZG02p1+cDxccOFFHN/1vHLmbkYZDCwbgfg6pW1GOyqJLO/6dpF/VixoE8hP7tAFTVufsZPWpLByWbHkpVwVo6F0ekYwc5l5GQ8eYpwa44x3JifJSfj0RlvVMY3CmwMK0CMvtvLt2KV7PzpojTk82/UEgWBk4cyyD4z2ntDj3Bk44tnxpRm71PjFrqWi6sTUzn9PPYOSsRtcq7F9a40waqWizkOnSrJpap7NIJWpTOK17Wd/uGscQvd+8/22fVqCk+qR6XJNul57DX92DzDG+S9CCfDbffu3TjllFO4z7761a8iSRJ8+MMfxjOe8Qxs3boVp512Gr75zW8GmWhENbBhe/PyIhk2AUofEhFWTVQ9iuNNrQYAoM2UYNUVJBZLl5Y/o+SEA26e/EyG3XfuEb2wCyk7dEGjrhyXK1XkVEmL1DG/dMZchhxeDbitUqTKc7GX35GRZOmPLBkPALQYJ0WjryzcnoxH8cx0/vRJAdJF3FzvvR2rpJvhAwBzXcNNvh27NpkGzAyBOVwjhkVtofx7r3YAzLFNLReJyMKmxs0jVZJ3JpS/F685Mj1rLdsm08Snho5SK1Y1OQlg/05xjq3Azwtgl2kSZM/WfOeTppqPryfy++OX1mxxb7rzIIm2SsP0Mch7EU6G24EDB7By5Urus+9///t46lOfivXr13c/O/PMM0t1cBHzCzYvkV/ucwGdhw3wi0ColHCfiFu+0DVqwNq18jEtpi1AXWJnDA0BJ59c/twq3VAyFxvYKMnidV1r6NQbWHFMmbsNOxXAKA7WkjNwETeb5rXBa9wKzKe+Vuz4BAmuvx4lMp7ZmUJ2/0BZujUZj2Hzpc6bN6zUWxr/vLs9k8oG3J2PXQrjcyW/T/k8ejgSWDkW0UjXjAqlA8enqW+Fz7tVxI1LlaStNGanIv9ZH4Fx28TkKUr3acCtrmHO/qyqHYCLIm4XoU2YZ91KLDMPVo56nMu9sZft/j7le59VtDBwKxn28xTu0XGlrhQjbmYsXrwYTzzxRPfvDz30EHbv3o3zzz+fG9doNNCkUI9FHHYUypouelIch6aJ9VGS2cXFxuPrE3HbvFk+psVE3GSpkps3y+nk7RRZR6XEQraffAujM0CNmzaVRjLeBlYRN05psIeV19FRtjjejk3O3Wt6443l75tzCWY7xpysnjM/T0rGY0Uc4Ba1sqHrB9zZGSmefLrzKe0+k2oiHn48Vb5MjghXozn/XVWKhA8DoZWnXTIXG9hEIn1YJTmHpWTygwP8phDaMeeRyGJVr5T/ri4NuE3GfnZdv4ibvvVFPg8fR4J5nXHd97SyPdIZ899K2QYnVMTNYOxTwad4hneI9iKcDLenPvWpuPPOO7vG22c+8xkkSYLnPe953Ljh4WEMDQ05Tez+++/Hhz/8Ybz61a/GmWeeiUajgSRJ8Dd/8zdO8q666qrM26L5/7777nOS3cuw6X/kk+tv8pb4KLI2L3SIPkK1JMGWLcDAQHlMu8VE3AQDbWAAuOwylezi2JRaII43wb7GzVE+K0N1AYY6/vG99tTxthE3183Xqh0AC8f7okLNQSEpxldsGHZOaLeAvXvlY6YOZVvGQoXhpiTjYY5VBrnrb2pD18/KB8J7fF0L702MkqxsF/m2CmH3X0Y1PPOzK3D6kT3trrIr3Dsy+eXva0mC31pbEC8F71cWKN3bFEn1Kp3QjHPpuWidreFIglRlxM0WrqyS080WpprZnawpHhqf593ERArwz2ToGmN2HTgG7DYQWssWeNWrXoX/+q//wrnnnotzzjkHX/7yl7F06VK85CUv6Y6Znp7GXXfdhRe+8IVOE/voRz+KD37wg07n6vBbv/VbOOuss6TfDQ4OBr/efEexSKtXonrN7YUDzPn4rOyZZhuQGEdK2RYeNnahI6dKdmUDGzYA27ZlJAws2LofMVVy27bsPBm4mVhFfhzTLjTjnOVrhg4PA9dfD/xkB7D5Xdln7353ih98OYs+btmivifZPArovKYuXk3AlpzEMRJpE5lxvOdl+fIxrsZ4Np8MbL82EZOHEgyuAhYtUatTMjKettXcHSNuqXljz+QXoF2DHvmxrd1lDTdVqiSQrUHt1CHiZlEXCTARQ1dCG6WX3cPpxxxbvU+UiJtlbXfSmQc14mYTtepjGme5p9VZGMzkdG+zM9fVOLGZu3ht29/Vdu9IOj+qT0aCDrXOU0P7TS2NTodUyTRN8d3hke7f1ene7noe+V1FCr12UqBpsb4fa33cnAy3zZs34/vf/z5uuukmDA8PY+nSpfj4xz+OpQwLw6233oqpqSlccMEFThN7+tOfjre85S04++yzcc455+Daa6/Fpz/9aSdZLC688EJcddVV3nKOFhRpC+ox7FfuUSv598sHCnq6A9NzWLvY3nKz8TzydQrUzZef+6ZN2Z+XXsow7XHkJNn4gYHMaMvHy2BV6OzoNbXdHLlzHNc6Vv727cW9Oe+FxeeNPnSp46+7Tn9v3KKF9oqyTUNiUbYLQkdRAdEgV83dIzrTOaOuycOYPJTJX7g47VyhPA85GY99tNAnaqVjlay5GuTMsS2RkN3TWLQCAICGqrFg97qpc/REnGNJvuO9NzEEssaPS/+m7vwUY1zfJ9v70qglmGunXkZnaAZCW8KZ7lwcnxldqrprqiTvbFWPc0uVtHNS1DqWG7nxOXNsY1y5knLpI5F046qdAuOzhYfZqqzEkYEbsNNnXCNuJnKobC72snsVToZbkiT4+Mc/jr/+67/Gnj17cPrpp2PJkiXcmFNPPRVf+MIX8OxnP9tpYq973eu4v9cIxbsR9hApwGVIkgT1JFN6QzeVXLmgv3tMYdYC7EgDQuRts4vlpk3ABRdkJAw33gi0GXKSVauzhsSXXaaPKmWyi2OTIgtQ8+UtjR/nyFJZfk4dn6PJsFuzDIQ5dTwgN96sN3bOe2evKFtF3JhjmoJvEZnxqJuxSQUKEdHr68vIeGTpknmqZKMP6B9At+Yth5qMh52jnSKr85qzYIkjbCNuNEVZLoNFTXhXbes55izSgHL5rZTuTbZJYQLco5120ZkErTStJDXN1Ri3NX7qHcONyipJbdZMqVeyibz7pI7l98bWOKE4zmwcluK1bdcxm3YprOwqaOkBN9p7fmjYNUwcVYmuxBzbrO8U8Vw6uUo2cxxr3AzYsGEDzj333JLRBgBnnXUWXvrSlzrXuEUcHuSPuElJ6vbNIqcb6iNuS/rrXYVldJpGZGOVKhmiHYCwkG7YAFx9NbBrF/D//u/i8+3bU1x9tdloE2FXzEtJuzDLBkQDxVE+5NTxTabnV0PSik1GHd9sArseZa6TmiIQ+TiLSXdg1YA7RKqkYgz7e/xy37jzJmOjJ7lG9GoJlGQ8ecQNABZK0iVVZDxdZVBzfbbGa46gydrQ9QNhHBVWLH4E6XyqpIYRs6sMWovujDcb+5x8mnhjOwCgiODSHWfFsU3fwtDphkChKFaR5ukcceNkqNYwdi5uc9fdF+fotWWk06XpvM17ChTPUhW09Nm13eTbyHapYRZ/f/W+Vxz7NfeWj3F9Jm1Yg316XfYinAy3er2OS0VNTYLNmzejIdvFjyDuuusuXHHFFbjsssvw1re+FZ/5zGcwbuyQbIeJiQmr/+cTCuNEjyI1gia/G3HTRCAWdvp1zRC7eVqlSjpGONI05RRZGRoNYPWq4suauu2YRH5xbJP2VgVDlaNdWDIMZdTxvOFWFs5Sxw8PZ5HK9euBy7YUY697X/a5rDeYa28rm4gbi6pTVMdm7J0VNv2VfPoistFxFRlPHnEDysySOjKeHDqFiq3xmiPQr9uySvJ1M9birZ4u11SdpnW00FXZLKCt+2HPcYgU2LDs0b345uiMqzFum1aXK7k+NW6he9zZMbSy461Fd+ZSliHCtXa8ymwQm76u2Xe5XB9Hghr5pSnRcVvZTuRWwjh16q57lNYqwlwpOQkzl1jjJkeapvYFo/MsbHnbbbfhtttu4z4bHBzEhz70IVxyySVesmWRx/kOm1QXoMNE1AqfKgkA/fViY2+1Uzu2P1TLKmmr8Dj3WrNKq5OPN8uWy9DLJ4AZ3GolCur44lhmuAFZqunGjZmynxt+Tzqz+H70YIJP/pO8Ls7Vw0ZtB0ABNc8fqOCZ4eZjLZqTnyRqMh4+4sZfQEfGY9PMno04zRF+VGtWSW4+YaMzroYPJVUymwvVgKBF3LJr2Kce26TV5e8ZnYFQPj8Wrsa4TforUPwmKWjpu1UqsjYpgX79HLMzzHVi+XzcooXWz6OlfKpsH9XUJhpJSSO1jea56ATiKNW/m4u4OUZpMzkWUWDCzbepYY4Rt4CYnJxEX58kT+oI4MlPfjKuvfZa3H333RgZGcHIyAjuvPNOvPjFL8bo6Che9apXYfv27Ud6mocdRURMv7g4FyNbbAL9DBvCLMHTbtOA27Xg1knhcY3OqGSz40kRN0uvpjP5STF4+BF5LZQpVRLIqONf9So+WpcTvAAF8UteF8e+nq73hk+VlI9xjj6wMhQ3fu2ifvkXNvItlM0QNW65iE2bgJtv5iNvUxPFBXJmyYGBbJyWjMciVbKPcePPEaLvtqyS7uld5rnzSo897FMlOwaEY/QEMEXfXdeCDFYMsFWkGzLHLlGrRCMbcGfa645NgV//OpG2Q3FNTWPfayUjJjcXx3XA8r441+cFfh7ZcXpnawBHgmYcH/2xlM0c6/ds+Xy0soWBquchRKsa/X1xW3+tIm6SuRzNqMxwO3jwIO68804cd9xxVV2ChFe+8pW48sorcdZZZ2HFihVYsWIFzj//fNx22234P//n/wAA3vSmN2F2lkaQweLQoUPG/x977LFQ/6Qg6HrZDeOc6X8tNoF+RmGZJShsZFZJR0ICPbWwqzLIyAjsNbVReLLv2HPcDJRDh+RjbCJuMtQZI6/V5OfO1sU558tXSU5i8Zv21Wt48vJF3b87M49ZRX7sZbPyWdmbNgE7dmQpq0NDwCSTKnnc+hRbt2bf64w2lWwRQSJuVaYD6iIQjkqPbapkfmfo9OvmNRJwrJ2xdBDl1/XqhaYY47tGmoIh/NfmK+Rp3z/7eTZ2bg449dQsDVxM+3ZNlbTZm3wibl02Zc0Y135itn00ffu4aYl4HKPXbpT91sIZhNU3xHGq99Cr56JEhgj2K4r8Zlo8AapnxqeVQS/C2nA75ZRTuv8DwOc+9znuM/b/E088EWvXrsWuXbvwh3/4h5VNPhSuuuoq1Ot1PPHEE/jBD37gLGfx4sVW/88n2CglAJ/uQlN6zIYhG3GjeNq5hVrxQrM1L64RtyoWI6UQxVfuDFV2l6VF9IrjpYrsYJuImwz1OhNxE7zUbF2ca/1fruQ3aokmpSOAwawZx24+tP55FSqyGtksGc/bLi++vf6f2tZkPGI0T4YgNW7WDbitxRdKvgVTXTbezejUz90/4mZb42b75NjKzveOFB4RbMUYV2O8IFUxuSxZ+frvt2/PUr+vuaYY2+5kDeTtUDZuLDIHXJVNSmsNm3mX5HdlaAwrrrer/QXY/V3Xt9Dld7WvcXOLuNmm1zr1WmOOtRk+7DkOsnVz8jP2yzLK8pk5OezZgLqG2TV63auwrnF76KGHusdJknQjSCr09/fjwgsvxLXXXus1wcOBlStXYu3atdi9ezd27dp1pKdzWJE/47qeLYAYuQIalvtd0cRaE3FjDLcZQt5Fy0JxCBFxsym8B8IpyiySJPuN3PxfhFRJJ+nASSclUup4NuLWP2AvneUyEiNuQFYX9853uhcj5xEOLYkFc0xTNO08si5pQE9MzuAHjx1k5AeOFrIyFHNvNIDjhxI89nj2d0odhE3KNNuQuOnIKmlj/GTzsYdNzY8rOQnLnqlLlexmPJDTX+3WAv4cu3G26eSigaJpV8fPgzm2a+prD5uoknhdnXyxHUpOVNVq8fNm26Fc+D/K87GBVcSNOXZtqm5b40ZJlbRtOO8UWWL3bILxY9/KgJVht3/YG272+oBsPlrZwkCVA9sr4kZMlaSsvzaOOdd9r1dhbbjt3LkTQPYDnXLKKfjTP/1TvO9975OO7e/vx5o1a+Ydo6QKrVYLo6OjAMA1ET8WkCsCprWr7EWyXOwsPO0hIm66tLcE2cvsyn5lnWLk4MUXZYioIUEbtB5I1t47R6WH/Xc2GhkF/DXX8GOmJ4vftH+hvfQaW+MmqQvZswfYuRNImMC1i/dOp+Bba7gCbGsgXO77d4dHeBkq2dx83KK0OqXEmezHwiPrGnGz9rRz83GYu2aMa/TamlXSMeLGDg+d8v2j3QeL8wnPTN167zAbhq4Gs21tt41CKGuHktfqytYwIBv/7Oc6RtwsHEQ+qWN2rJKOEbc2G3HT1HQyx/bkJLSIG0B0JDg4KqzvjO3e4VL7J8xC9TwkFmPU1+jIqMAhatPuJUmSrp4XI24MTjrppO7xq171Kjzvec/jPutl3HrrrZicnESSJDj33HOP9HQOK2yUEkCg/yV5B82GYT8jPHSNW9Y8PEEzTUmeQZteOYAPq2QBYwpWSvOa2kYLufmQFjt+A9uyJWN+ZElGpieL6y5Y5Bpxk48ZHweSJS4e2dTKcHNVwm0iBICfZ1Mmg4WzMa6QUZLvSWijexpda9x4T3tY44Qda5sGRImKWbNKMnOhRAmsSZaYY9u14PGJ4oXXK7LFsSuzr0q86/prEwEuzUchX9YOpd6JuLVb8gvMzAA3fxo4sxN1C90Q3t2Bk1o9765rGPe8aywml3WMuy/WDkuCE1ohQyvfJZ0xcF16KeKmSZXMjR8qwYeNse+6/tq2e6klCVpp6sUW2itwIif5xCc+gde+9rWh5+KNj3zkIzj99NNLtP6PPPIIbr75ZkxPT5fO+eIXv4jXve51AIBNmzZh3bp1h2Wu8wU2izQgeKkoSpXkfBEhWCW1NRbdXjxuRqF+kXZUBonRGZo32SFaaC++pFDl1PEs5mYLw4tiuLGskk1JqiQALF3qtjm202LuDa231/U3tRvtavyoZIjfuMi2TdVxVdisatwcWSWtSQm4+bgZhiq4k5MUg21YJYFq1xmq/Bw6h5t7v7LiODiBk23EzaDTN5uQtkOpdWp1c2ZcGT6+rRB+aCKVMk/KYMOI6VOv1JWh+Y5PlSQYbi27iJtLxJBfB3SOOddIp1yGCKfm4ZxsNVydiizOXKPOKitI6Ggy7VpIFMckchLLdi+uBHq9CCfDbXh4GJ/61Kdw//33K8fcd999+NSnPuVcM3bXXXfh2c9+dvf/L33pSwCA66+/nvt89+7d3XP27duH+++/H4888ggna2RkBK985SuxZs0aXHDBBfizP/szXHjhhTj11FPxspe9DCMjI3jBC16Aj370o05z7VVQ6h/qDgu1rXxWiZ4j1bjZpUbkhuEsQTb7T9RuAg4GBCB4yywiHJS1yNagde3FI1OoytTxSTfqtnBRsVkPDACf/CSwdq1cdp1pYt6WKD1DQ8DJJ7v1QLIngiiOq++f57bJqFPH3GTzP3/4Z8aGDKLhGnFTzE+EC013NrajKFfgBMmdSQkoSo+9fNYTbp3GZC++i6k5tYXCO/3sZdq8T67GuHWNm8GJs3OnvB1KvZM5oMoaAIDdjxWyv/9DOfOkDIWzVT2Ge9Yr2Dvqjr/pHOeosHwerfWN4th6HXB0iIaOLFUrm//7CcsWGuU7t5LRrjFuzi3bdi/5tSn1c70KJ8Ptwx/+MF7zmtdoX6g0TfHqV78a//iP/+g0sbGxMfzgBz/o/r9v3z4AwK5du7jPZ8QcBQk2bNiAv/zLv8SznvUsPPzww7jtttvw5S9/GYcOHcKLX/xifOYzn8HXv/71nmyg7QN+YzRE3ARyEqp869oTywVjqtnCzoOTjHz1WLbBt62yac8q6RjhoEbcSKmSdnPvczSYVQqVSB2fG24LFqUYGkKXOv6SS7K6OBnYdgAsM2WOzZuzdEoXRZmlFa4kVdIiQuAjXyXD5nMTbI1OVwPCxvhhf5Oqo+M0Fr/O+RU4cGxYTrNru8m3ue+ZfL8o8LQm4uYanbFqYu1qjNtG3CTnsBgbk59nSpUEyi1TZMyTMtg4QdhvXHvE2a8DbtGT0BFmvsZNPc41rVklQ/edU08xrb5Bl83+picNLrQyal0jbja6TDbeHmyqpK7dS7ftyDHQD8CJPeT222/HGWecgdNPP1055owzzsBTn/pUfPWrX3Vilnz+859PfuivuuoqXHXVVaXPV61ahb/9278lz+Foh63xALiluzg1sbaSDPzyiXHu77oXuk/oE7egUVeOzWEftWLOMUqVw8ZLRfOy20Yii+8otYVcjZvwTU4d/853Av/xmwQzANasS7FrF1+/JquLA/TtAAYGgMsuK1/Xdp2wjbjBcYOxN37oSokINaukqyPBzuPLM4PRI262TX0p98WWptvd+OmcX4EDJ49A6JRYwJ2RzZb2PkQUWAXXnl82jkVXY9y6xo37vnyBZcvkp9mkSqZpguZc1i6lr7+QzTJPyvoj2kQLXVMlXdiUSamSLBmPrsZNMScd+Bo322ihW1aCPlWS/kxWmdLMvUeGsXmVm2tz8ipSJbs8CdD/rgvqNUw325hptUl1wL0I51TJpzzlKcZxT3nKUzBsivtHHDHYeqgAgZzE8q22XowclJ69k7zGb11DZ2mg2FO7M+cELrwHaMXzOWyJVVxrC23+mY0GsHAgk58i5QwyQF4XBxQpRkCZSnvbtqJnmItiwhtu1da42f5srvn4dqmS9rA1Ol0UZa7mUjPOvX7ObmP37XFnPXeCdCuWU3ikZDP3RiufO8dafBfLB9Q+YPeIW3FsE2F26ePmG3E7+WR52neRKqmXn2cVyHpdXnqpPG2ycCTYzd21nlP3SLK1RhQln9r+ArB3JNjWdrPvmmtKduhUeF4fMDtyAfv31NbgBIr75k5OEnburGyT84l1yOsyAI4GOBluk5OTWLhQnSebY+HChRgfHzeOizgyoLw8LrUttpEfF2VzoRA106dK0mtnrBvXeiqDgF2UwMVDBRjuC5cqSTDcmGOd8pBvkCnkm3u5Lg5oSNoBDAxk41jvM1+nQI+46YqceSe7/X1nveujB6EkG6BGlmT/vtCKrLU32eG+s6Ps07usRHNjTU4OF9IAwLamiG6ctNO0O9ZkuLl48QG7PpqA2QiQgY1cPHPdcvU4RyXfxnnmW080NZGlb6veVe59knyft0MRkTuqZHW6LOZmsz/ZiFuOmRnghhvK59gwNbPfkyJu1qmSdH0A4FOgrfu4OUTcdHXprNOuSXgg25Z7ds1h7m5GYVjZ2ffZAKrZY5OS7dp7Nb/vprYNrE443YyGWwnHHXcc7rnnHuO4n/70p1irYiGIOOKwVcABN3IStmxKl8roomwuKhluavnsBmEbcbM1fpyjBMyxTYSDZhQWx/aRSLqSb1L1+JoluXyxLq7GOO4HlyXdujgxZchFyeeUhoCOhOHhbP4veWnx2U03JUqyAT56YpYvGxK6ITGcFDY7yZQaNBdmsEJpIEStHIhbdAaty7tkGwEG3CJu7TTFZIc0hGKX2Sub2cDBgQYGF0hCRh0croibzfM4PAy8453F3++6K8Gpp6qJQWwMwy1beOcTgKIBt4EpUhdxAzLGStGoLNLS7Ix9irFsS73u2h7Itv2Fi05g22ctRC2trePP/t7bDfS+L4ax3bYjxIibXR2wmwMnX05N6/uCRrGGTjcNHpMeh5Ph9rznPQ8PPPAAbrnlFuWYz3/+87jvvvtwwQUXOE8uomIQXmgXhZAzfqxZ/OzAvqSA3jB0afBt670LQU6iu/tFuou9bFtFuV4rFGVKjZst4QG3QaZq+Xld3K5dwGtfW8z9i1/IPs/TI1n4pkrqN17733T79oxM4JprgNHR4vN2C0qyAermKzNiVAt31WQ5Ln2zSKk6TjWdnXMtvcninEywed4HWMPN0tvLEzWYUpgYpcdKOnD3nuKB1K1hgGN6l4WyBlRb40bx4ufv6vuuK0f1rYhBFOJlad/dVEkNOQkANGdzw00ufM+ejLmSm4Zt+msecaNkDVgaJ64Rt9wwrCcGMh4nfUM+PxF9Fg5Fk3ytI9rjXQJMNW70fY8XoP86v2808ia295/dpV0YYHX3HOBTJaei4VbGG9/4RiRJgksuuQQf/OAHuXTI8fFxfPCDH8Qll1yCWq2GN7zhDcEmGxEWLiF0wF7p4en6tdLJssUFyDZVcta6Ps82SsCcYyW5PNZGvmsDbpPClqdLzlE4nS1RJ26QjQYwuJz9e1iPrK2izMnWyNu+PSMRyAlWakwdH5silZMN5AohdfOV/fOqrXEL6zXlFSr9WBdl06a+AhDYax0jPyqwa8yMQ1RfpyQDbs/7w6NTxfmm+87JN8u2VdYAsR0AXWGzVmQ1otl3laujFWrQSu8q851uDWbTvpMkRR5A1ZGTAAWzpCxVModYbUJNf6WsA/YMfmwU1V5+l1jF9Mw4pAbb1uxT96Uc7L2xb7NjJ9t6/WWO3YhP7Bw4rrXX+uwkuvOJnYvpmVnIRdxiqmQJ55xzDt797ndjamoKb37zm7Fy5UqceOKJOPHEE7Fy5Uq8+c1vxuTkJP7mb/4Gz3rWs0LPOSIQSC80d559qk6OKj1UmQyNh82BPdG6Po+bk5uqbKOYuLNK6sf69LgzPTNsxM2W0Ma6mbLDJmDrTbZJKxsezsgDWLDZbjI7OCcb4A0I87Vk/z5lQ2JONl1JFmWIcEkNtq2byeS7eXzFucng8swAdmQQA56GG8VxVgXbtSshT3auHq5Kfle+pxdffFdldbQi8neV4gjppn2/vfis7UFOkmOp0C/Z+nnvjtePY2G7RnJRVAeCjyrSmm1ZJVlSlKZrNDJ0ZMk64saeYqkrWeoaQPGuUl5TWyZSaomAKN/kqBhgIm62a3CvwslwA4C3vvWt+OIXv4hnPOMZaLVa2LVrF3bt2oVWq4VnPOMZ+PznP48rrrgi5FwjAoMScXPxlrDKq32Nm51sdti56wa1YzkSDsvIki0zo6sXyTo1gjuHvoGZFru+jsLZSlN7ttB8boZnppHQi8D5zVc9jmr8ZLLtjHEWqnt+/fXlVgY1puxS1r8pJxtgL23DQCglJ7GYfhURYCdvMiEC7FLjZh+BkM9JB1tGTBfmWsp76lrYX1xLfw41UmsbIQA8UiUtHEQ27VjEd5XvFSk/pyAGoWWDbNjA19Cdcw5w771y5kmgICdRpUoODWXMlSzYpuo6dN8lB5ZTQF+Dxhp1lBo3+8bnBUK/qyFq3PSlH3SdwPad9tWVaJF3B8MwtEELSpSWlW8tvifhbLgBwEte8hLcfffd2L17d7ch9u7du3H33XfjwgsvDDTFiKpAKVp1WTBsUyVNkRsZ2LkPDmjclXBL8+QMK93cOWWQ7nnMZNgpJrbSKQYKmzJoa9TaNNsE7MhJyrIL2DORhjVoTamMzWZGGiCiVmM8+YpbeeONQLtNex5lY/oVZBauvWtso+++NN3WETcrybx8klLiQtOtkT/gZLjZR8ZdvdU5TMo1VamipL+6KvmTTTOxiqmmU/au8hE3tfAbb3S71+z9W7YUOOMMOfMkUETc+voB2WqzeTPf/5JPUTU5KjrRE0rEzTJVssE5QylKOD83FbxZJbVzp+9LgBhxs1wjrY2fAnp9w0VXYs43jHUjn5Kfr5VtJ5p73o3OVu7ro9tyc2rALWJoaAhDQ0MhREUcRnCLhWGsi4HSsjQgXOpynL1IlvJtU/ZqRI+sbKw+4ibIt1i3Kf35fCIoNMPN0ii0ri102dhdUl3K3+/cmZEZiOAjbnLZe/YAe/cw8m0ibpIxSzV9sxJkz7m7I0E9zqktiOJ8uXya7Gxs51xjNM8vWqgzaOu1BPUkQStNCamSzNwsSVvE82xhiqaT6y4d0q8A+9/1sfHprlKtO8fkwJG9q+x7qqtB27MHGB9j5dtB5pTbsgW47rpylJ5ljKw3+NTNgQHgssvUsq1TJQlKrG2qJOfwcyC2Mu9LxbFtxNDWEeJqdHbZDUEpn7CTbasPOJFDMccmw0+873ULhcPaQe+gQ1KyElzue6/CK+IW0dugvNAubEYu9Ln2FLfyuZlPtBtWZQ+6bKytgSI/RwfbXP/ytWmrnXkToHvYrPPlmePgjgRWtuSejI2VPsrO4zYmtfypKXacclgXMt2CTc1TzYP0PFpG39nvXBpw29e4UQw3h4hb4DQgABho5PWiDhE3I6uk/DxbmGrLqEoPZf3lWslYPjS/eKJ4yXSnmBw4sne1oSEnETHHpFK61Hbnv5uMeRLgo+9iEH3btjKjLqUuvWimbJxyF03LiFufYy+0rtPP+K7SHXO2+oxrxC2v5TM7n+i6EjcutJObklnl7RDV7at+ss2OCvp971VYGW5///d/j9nZWa8Lzc7O4v3vf7+XjIiwcOnvARA87ZbekuoXI1Z+WMMwcVSobBUYN+8dIeLGHLtEIXRwuTfs7xOaoYoN+mk3X8PzuGyZYk4WETcAWLyQNneqnp5vYK5eR1OkM//aaR0wkiDR554PpTSZtl9n2LnpkUchrOtoLaP6gPi8h1dLqGsk5b7wqZJ287GNhJjWL9m7WmfqyVQ1bjn69Vn4UnAGBHN3WObJHOw6kbPSDgxk48TelYCbIkvrmVUMNtW45V9TGIlto+NuDku7aJ5rjVt+bzQ+MwCic4v+rtrGlVwMWhOcyKcs9Tz/KCrFCX10w8pwu/zyy3Haaafh+uuv56j/bTA6Oop/+Id/wMaNG/HWt77VaZIR1YD3UOnHuhhXtjnh3t41w1g+gmIH23RDp7mnKR6fKHJmlvZr0t6cIp3FcSXKbF7jRjAKQ9cpuNT82P+metknnywnG+DaASj0gaEh4LjjWPnmyYub3AlLF2jHu0TcbL2mAMM8Zv2uUiJu+Tl294bkpHB4ZvhhdvelnbrUiRGi1xW4k6nrGOU3ZZ8n2wjHqoX9VuNMCr7sXdW1A2AxNAQMDnoa+4L4LvPk1kw+u06sW5d9vmOH3GgDgDkmlXJyMik152ZRrANuDkXTOtDXbSVTQXTcZX3Po3kEtmOXGjfSnurgbNVmPLg4oRVzk8p3acPglCppK7s4tiUUy+Qf3TE3K8PtC1/4Amq1Gv7iL/4C69atw8UXX4xPfOITuO+++0o3KE1T/OpXv8LHP/5x/Nmf/RmOP/54vOENb0BfXx++8IUvVPKPiHADJe3CKczddnihA0fExO9DLxguXqSxmSYm5jJX69pF/VzjSBEu3juaV7YAtZDaGKV1qG1xSdmzTmGy7MNjep4aDTnZANcOQBFx27wZaNRpz6M45qyhQe34XLpr7z/bOgiXBtyhDRTb1Nrse/Y8l7nrx1KJhNg5PPZoprCrFHGX+hAKqI45yt7BtQWxnDtbgzq0eEA5zrQvyd5Vm3YAQHYeG11xyniQfL9hA3D11cCuXcBzzy/mf++vss/F9Egga02wdSvwW2cVsr/5dWD9+uzz4eHyOU7kJJblDUDxuzYtU4MpRBNcTaeV9OK+GyNuDo4EoHhfzY4t5pzAJEguzlBKdNyFWMVaV3L4TZ11GUv5vQorw+2lL30pfvWrX+G9730vVq9ejc985jN43eteh6c97Wno7+/H6tWrccopp2D16tXo6+vD05/+dGzevBmf/exnsWbNGrz3ve/Fvffei5e85CVV/3siCHCPuNm9FvYRN0Z2BV58lwi6ba6/i0E7zWx0KxboPcturJLM+ZSUFOJGYNvMkyI7FPOjl2zmWLV5bdnCpzwBQqpkuyw/JxsgK8nMqFOWL9LWtwGM4UbYvVzS9tzqFk2ymfMs7g6FiMcnupydrx9LcVQMDwP/8q/FmPe+J8Gpp6oV8eojbgWsIp3suYSIG7XlCACcNaTITUb2m+fSVaQw4rvKRtyaioib/F21VGSZY22tVQNYspiZl8J/t307sHEjcM01wMHR4vO52QR792afb9xYNA3Pkb/HttFrgBpxy76fa6dkZ4JpHXAisuj8aRMRy/9tts9jNjb703RfXPQZ+15o9DUMrmuYpXQnPoAqyEkcdKVehTU5SX9/P97ylrdg586duOWWW3DxxRfjhBNOQKvVwsjICB566CGMjIyg3W7jhBNOwCtf+Up8/vOfx4MPPojLL78c/f12qQ8Rhw+kGjcHxaFKJZxTHAxjXaIzLMFAv4aC0CmFlN0cjaQEzH23uPHNJjB+qBhnSuF32wjyk/Vfu9Tl2CrKLp5H+/YU7HzkkJEN1Jl2ALKIW042QFaSiekiXU+7cWQBl55iLhFgs4OIts5QIu8Aa9Q6eMINY23XyFwR//JXis/mZrNzVYo4tfaErEgTFTbK3uHSDsDW+ZQkSTfV/NBsU3pvxHe1zkTc2oqIm4wYxBYUMh6TYbh9O3DxxQUbZYOrzytOnpnJxrHPjMvexDak1tW4AUUP0BR2vyuNIZDuELVNwwSKiK5TDzoKOYlLlNZ2b3LIGqjEYLacuwsDty2hWIZjx3IjtwOo1Wp42ctehpe97GUAgP3792PPnj0YHR3F8uXLsXbtWqxatSr4RCPCg/eahvciUdIuqLIpqV0u7zNvuKn9Gy6pBXwkUj+W7Q813WxjscL/MTycNZq98UZgy7Upznpu9vlTz0jwyj/PvM4yRYS9PJVAhLIJuBj7OvmcbIdCZ20U1fJ5yetQLr00U5xU5CQDA5kimI+nKsmUiBUL54ibpUHuUidGaTRt8zxS5g1kv22aOtYrWbL4ifNikSvigKiE8+NyRRzInhuq44yqt1DXd8re4RZxszd+BgcaGJttIgUwPtuU9vVk31VdxK30rrJzImYkZOcT9lXhu+HhbL4sdM8MkI2/4ILcQSQoyhbvByXixhp2c+0UDUMYgNamRn6eDvl9t3FuZWNSkvMpH2kkJ/Hcm6ptnWRYw5xq3JjzLedue1/mmsW48VGguZpnhVXJP8rtNv92AKtWrcJTn/pUPOc5z8EZZ5wRjbYegrMnxmkxMsgnyibN3YEmlmXK0lKvOyx0FIN2IVP/NtWUF06xqTR79/KKyeOPJcpUGoBW8JujSJXUg/ew0X7XBPpNxs0jy8xN+++2l82SDSxfzlyrnWBoSE42wEcLLaInBCWWH0P3JgP2KSlOETfDWKq3mlLjBhTPZJWtDFTyRUW8wdgXbPSExaWXZudRWX2pZXDUxuq037Q4bhLXgUy+/grLGENtbEZdtJa/qxdfXAjPa9xU76pTSjZzTKIwFy5w/fXlvm99jONO9szMzAA33NCR7bBnU/YmtiWATS8317p0KkmGjVKbt99w2rOriBaycwu877kycNuu7/b9eu3nntd0vvTC4rOPfzzR13Qyx5T67l5E7ON2DINWJ+YX5jYudmT7gW4UAvZzn+3wVjeShOABs1zoCF7NBX16w01MpQHkXllZKg0gRtzMcweKO09q5mkt2y7dpUpHAn9ts+ycbOB91xWf/c3fZOQDMrIBqmeQyqzVdYKQIm721yiMH7oSbpbNzsnGQKFH3MTztPLZcw1jTXMXFXFT9AQoFHEq0Y/o0X7O+hXa8XRWSeZc47uadAkhXGrcTPKX9Bdr5OScpg8Hsndx08XF31//+gQPPKB+V/k52T7vbooyK7/ZzLInRNg8MzfemJ3v5FQkpPGzTbhtSD5oUf3imFoPZbNGdmvcbGVbElsBbsaPEzOjA/GJCU496BzSPG1Sya+5hi/7aM6qU8nLc7KYeA8jGm7HMCgPt1MPDtu+WSg2mdDFvJ0BDOwukKdK9lkSQQD0XHzAJuLGp0qykKXSAIUnv90uk2TkHvwcThuBZcTNh0CkCnr0bg0E9EYn77mzR8LUuK0b0qV0EJVkgiLIyqfM3SVVkmqMZ3Ozky3OSQVbT3Vxfdq94Q0IyjPJX0GmiDf6WSVcLfvGG4G0TXve2cuvWtiH45bYtZAA7O4NZ4xbPJX5OmdtuBEindQaOvZ5PGF9pgQq31X+RCtQnhnV/rFzZ6akirCJ0u7Zk53v0v7ClpQLABrEJtyktGMHo9PW6QfQ63TZ/oO27VKyOdnBjTjLTjbJycLNKey9sYnqi47oPmaNnDPVdDrR0PUmouF2DIO0wThsAi4RN7feJPqxVEU8TdOu4aYjJsmuzTQktpAN0O6LLlVSlkoDFF5ZmUeWTaUB3CKpsNwgXZp5poxxpYOLcWVrFLpsjuJY3RV4+TaKJnMuJeJGSZVkjm3r0FLYzb/KfmUUBR8o7o1TqqRhrG7uMkW8j1HCc3ISGfbs4c+lRiLZlDYV/J5J4/DCcHOIdJoMwzrV2Cc8j041RZQSAYWSPzYmH89G3HTPzPi4X6pkLSFGlmzSaylZMsSIW5qmThE3+56LzNwNk6e+SyX52oibS0SMnZvd2i6ep4Mt+ZTJYSmv6SyOm5LnnXVExxq3iGMCnCfcMNaH5Qkg1LhVoFBR595sF3fGRL0O0NOvKF7NBZzhVqjXqlQaoFjsVB7ZPJUG8C921sGpmWfnT5JCRczFNxHCuDJt/vKJcakMEXz02gyeYc8M6ruUXYMecRPnpkKVNRaU1hcAa3SGdxDpHBUyRdwm7S3H9CRzz/VDS2Ps6iJpzzw1CpynStr2zeLJp/Rj6b3/KPuSy77Hnq8HK/Ohh9LuurxM0QHB9plZutRt7vnv0yAb+2bZlBo3Ki09955ajKc8M80msPMh5nk3jPdt4WMbpXVJB7RJa+7OKTDpl6m2W17TqX/euZpOTr5uxr2PaLgdwzis5CQmL1WFKUxU42TWkpgkR64wumzsNk1O88WQLQBXpdIARYNZ1caep9IAbt7BIlWS4r0jRtwqVKiqiLhNzDY54gV9xI02d3JUiYmI2YJCTkImsuDOtVfY7MhJqPeG9q7SvNVqZVCmiDcMRBMsFi1i52QTgWDmZaHKUjMqqFFgNuJmG0HpyjeMJafXEu9Nd04O41T3Jidf+Of/W3z2xy8u+vg1GsDateXzbFIlh4aAk0+mv6cAa7jZOEHc31XTrkp14FDqaMUxqihw/hutXw+87KJizCc/kSgJMgDB+KnCyU11PpHeJfY8K/FObZ9EY9ymplMVYe46ormvj27LLRpuxzAom69LzjklL5wecePPs5FtK3+WmXi/jeexcwHrnHBCxA2Q5+OrUmkAc8QNyFJpMtk0zyZQPDckT7il7K5xRTEKrWWnpXlJ4bABTAusarqzqE4QqpJMrRcFqOlj1Igbe65+LLWWlh1BIm6xjrjZG4a6iNvJJ5cVcVVPLhFDQ8D644n3nMpEyp5LVJRt1uA69Zlhjs3tBopju35idCW5PCs1TIoyS74wMVGMqNUK8oUzzgCe85zyuaYIBABs3pwZfuy1bffsnE25z8Jw454Zm3eVsg4QnVvUtiCsP1a2b4tMzf1MA/fRg3qmZjdnKGvUmnQlovNJMTcZeD3PwUGvuYAuS0bliDaxqAKFI5p/Ho9uRMPtGIZ7xM0OLhTjVIXKRimhKuKsYUXxPFZBLQzIo5GqVBqArXFTy166tCOb+Sy0J9wlndE64kb0yLLjSOlRVpLL/75ZDT02NeJG8VQD9HepdA0PA8Uo2zC2yrQ3doxbxM0km3VU8BdoNDKFmvuM8yar5W7eDPQ1aAoVJS1NHGNza6iGIZlAxLLWFRDuO5EkgxR9t5gLoI8wi+QLbL9Htg/kzAzwb//G10ECZmN/YAC47LLO3Im/aZupE7PZ96hRWpc62nxeFNk2z7suSitjau4bKEd+VEzNPg5L8XwZqBkVFCeIC5eBrZ7Hs+7y39nVdKrnMD7uloXTq4iG2zEN+83XRQnna7kM8ruyrURbp+uJY2w3sO65BKXEtvCe2pg8f0nZeck8+DlytrqWwiObp9IAdIPchTZePE8rvytbP86n5rKKVMmWME7H4scbnWbZ1Ihb97yKIm4+zaBpLSSokR/7tYDa+gIg1uVI5G/ZkinWOWxSJXNF3KePG9W3Ra5XsmGVZO6NFQNhLtvKGHc39qtIyValNsvIFzjm5Vr5AuI1TamS27YVLQ2oe3aTc1jaZJoQjX3Cfa/agcM1hWfkq5ma1ZFOLVNz4KgVwOpKYSLAnGyH+m6XVElRtrKm0zKdfOlSSyf+UYKghluapvjkJz+JN73pTfjABz6AiYmJkOIjAoMUcXPYwLqU+rXEouC2HFXSgbKxk5US5riKnjAtgkELsKmYxWcyD373O0OqZJ5Kk8kmRn8cmcHorJIEz6A1Y1r2p7ne0kE28+OcsnwRFjH990Twl6dGT8xzoRh3OUgRN8V5YWRXq7DR60OYcw1jTTWdGzZkinWOPguiiVwRJyuyxIgYvW6RJr9Bjrh15kUgnLGVza9hlloyAapnRka+oIq45Wg2gZe+tDD4VQbEwABw881883Dqu8QZboS0Y8DOiKDUFpLTyQmOp2wMMy9mYiqm5jrz27RavHyRqdnJYUmKuLnpStm5+rHU3xSwX4N166PKEW1T48Y6orvyj/JkSSfD7e/+7u+wcuVKfOtb3+I+f9nLXobXvva1+NCHPoTLL78c559/PqampoJMNCI8XEPotmxDMx3DbaBBYGa0kkxLpaFHlWjKIL0nDDHi1l2oefmiB78rMycnaZa/Y1NpAM/aFgrRhFFyhnwDo20wZrl8DUFY2QD/my7pVzSF6sr3ME4s5tL1yFqMlc3DWF/oqIRncyMobBWkSJHJSUg1bubfddOmTMEeGNBHT0RF3CcSaUfAQXPg+NS42fRyy/cYq4wHH3ISUvTd7qFpStZ3FfkC22dTFeT6/veBX/0qI8pYsar4fG42wdBQ9vmOHbzRBtD3vSYT/iOnSlrIp7xL7NdVrJF8xK3YL1VMzXXGgGhJ9lVfpmaSQzSXbR0Blp2tkO0yd9uIm2bfUzmiG4b7DshrOmOqpARf+cpXUK/XccEFF3Q/+9a3voVbb70Va9aswRvf+EY84xnPwM9//nPcdNNNoeYaERgktiHuPLPsVjvtevAGbCj1JXPSoYi40TyDNssRvwnYR9xse8JQyUm6Rq0gWvTgd2V27IZWsyybTaVhZQPhjVq6slls7ZR0PRvjgSPKsbHG8zlZjnPpWZjJt7gv3LnhPeEArR6VrIQ7p0jZPTPFucbh3XUshfneNJvArl3MtQwFK7YR5k2bMkX7jKcy0ZOON1mliJMJYRTzUoF3zFnIJ0Y4qNH3biq8leOsuigt9y6ZRQMAZpi2LfnepyJfYCNu9br8Cnv2ZM/i1VcDV/11Mebv3589n1dfza/p0rmTUyVt1hnqfS+ObaJK+Ygqajplz4yOqZmLuEkyWTimZqLziZ2DODcZXGqYxXOV3ztkVrUs9w7TvidzRLM1njJ9RnREF/KPbjgZbg888ACe9rSnoc48zZ/73OeQJAn+7//9v3j/+9+PO+64A8uWLcN2Ge1OxLwAt7kbxlJzn2da5c1LL99eNsDWuNFA9ibbeHy5CIR5fL7QJbDcZDR1OawHHwCSJO1uMmzETZZKk83BffM1Rk+oXnzm2KQ3LGzUu2P2T80ZN0gaUQ71qeINGJIySIwWUpVwagQbMM+fGuHgf1d7g5za4y5U9J2lAX8tU+/ygQ/oacApzoQNG4CNpxZjvvkN4IEH1Io4NZWR+syYeiyV5LPRE7N4+jrdPc9GCS+O7VglmXNN8h3eJX7vyxZjFfkCV+Omzq7usgCzTcTWH590U95loKbBz5Fr3Ipjq/RagqMYYDJNAhvjgDxrQMvU3GAiPy35mC5Ts1OqZIURN8K76hZxs5u7KYoqc0TXDenkfE0nfd/uVTgZbvv378fxxx/PfXbnnXdi9erVeMELXgAAWLp0Kc4//3zszN0QEfMOFE8+1Ysk27y08okUt5RUGhd2rRzUnjA2imy3EbRl5KeocZPLzj34W7cCxzGvZbupT6XJ5l4cUxXC8BG34tiksNVrCVYvzCqXp5otHJpT7KaS61vVQnXnRI9YmX5X+vNYHFv15HIibmHON0XcmH9f00pRtlccVLUnKqTEd9V0b0QacJYwYnwcWhpwel+r4vjssxJs3AilIk5ves6ca/PMUIkmuHPN46lGhC27bC6bkq7uSk5iq8nOSpyWKvKFNlMvpbOVchZgGokQcx2LyVNTJalZOK51aDZzpzBWAnxtef486Jia68x7KYv8AAxTM3FPBURHi93+QXVyAxaGm2JOOnB9aQ3kJCajU3REs/edTSdXO6L18o8WOBlu7XYb09PT3b9PTEzg3nvvxfnnn8+NW7FiBUZGRvxmGFEZSIX3RGZGdvPqJ9W42S50nfMsfbndF9piLH0TYLx3FlpVfmts0iTZOaRQL6YbNmSe+t88WHx23nn6VBqAHv2h3Btdw025bJpxtWZRkVdxcFrB7pDLpir4xAgwtcUDRdEk9+Ry8Jq2CIYt/7ybZVMUNrJRyxxTSQnEtUZGA85GQfK0NjUNODOWaEAEb8FAfWaYY3pWgo3BzJxrFk9e34uWLDQHkW1aGmD/Lk2zqZKdvU9FvmATcWPJF5zTPC0mT06VJBv7ROcZIeJGjjBLnK06pmbecCt/zzM1+znObOsuqWUl4tx0ssXzdAjd9ol1RC9bxkQ6m+pUcor8owFOhtuJJ56Iu+++u/v322+/Ha1Wq2S4HThwACtXrvSbYURlIBULc4qDWfZMs4iA2KRKdudEfN9sy5WKOrGwHlnAvQGsdcTNalRnLkydxOJFag9+VzZ18yVvkOXz1LLl81Khr17efFWgbIwA3XNHrlskyKem7vKbL91raqxxq9nf92wOzNxMBgo3JxsniJsymMkvPlfRgLNREJZIAijTgNNrrTpzgvl5p9f+Fcc26we57pKY9uZa12mb/VQw+5rHute42b1Ls51cugRFI2sV+QLHKilpBwDwLMA0Zkba2s4abuQG3MQUVbs6tPw8mmxKXTpQrCE6puY6myopMdzY34i6honjbNmaK4m4EZ8ZgOiAssysyh3Rr3lt8dnn/jUxOqKPFTgZbn/wB3+ARx55BP/rf/0v/Nu//RuuvPJKJEmCP/7jP+bG3XPPPTjxxBODTDQiPKoModNr3Gjh/3yxoBg1tuDTjMyoERXZbqokMeKWydePpbPsFcc2ZA0PPcx8kFpsvpr6PBGuNRA28unMjLTnkUp+QnneuahSBQyB2TzsDU9qTy4XpSSbkxlciio18sNcQEUDXmMcIW1BYSvRgDtG3CiOhOw843AHQhvaM0MxxjP5zLmEtcBWQXFNlbS59zls36V87+uv17h7LyNfMLUDEMkXuLkbbg619s+vxs0M8vpO2Du4jAECU7MoX83UXBw3hVTJElOzk/HDzM2ydtypxo0UpQ3v9DOVfZRPKMaddJKFI5p4b3oVTobblVdeiXXr1uFjH/sYXv7yl+OBBx7Apk2bcPrpp3fH3HXXXXjsscfw27/928EmGxEWpBA6cTFiN4E+i2Zl1AWD6pGlvNDUjV1GLaxD2lXYzHMBhGin4e5TWfZsFDaWrOHlFxWDbvoEtGQNAC3SyY4IXVtIVTSL22K3A7hH3IjRDauoEnOueTgAmnFFjrhxDiLCOmOlsBXHNgqbLPKjowH/40uKXqRtSVooSwPOkxJQDDfjUHIdl19EzAzKb5rJJ0b2JefpQEmVJKV7W129QJqmRRscwWEpI18wtQMQWYApCj5HImSTwk+o0wX8jH1SurqV0Vn8qjbRQlWWjJqpmYm4CeXU4m/E9yszTgWAW9q0bVsmWsSNOc9KOnXuVAc9c67VOgOS/F6FwX6VY926dbjrrrtwww03YM+ePXjWs56FV77yldyYX/7yl3jpS1+Kl7/85UEmGhEe1M29lmQvEjWFqZHYtwOwBbnGLQGQ2noG2fOoaRc0+TagkB5QWB8B80K9fXuWEpZHI1asL747NJ7gI38LXHddtnnJyU+yG29HMU4zUGQF5mrZxbHVfZGcpwO9xi27L5UoyaqTNSCRk7BKD6EnF2CTSsPOiRY9sbrvEsY3FQ34ksE2nnpuUTvZbpXl5zTgGzc6pErmc7I1TpCgjZQk21Y+1XHmV0Nnb+zb7gtdw81q/aVEgGkGZystfh9Z/9J8jczXVD7iVlxhYEC+ppLadpD7LRKdfhIniA70/qid39Q8FHOMB6fPIlqoc/qJvxEg1Lh1SDJUvxEfHaetvwnsnRUuUaXQTNAAzWmZf2urA5GdlsWZdhfoUTgZbgAwNDSEt7/97crvX/nKV5aMuYj5BWoUInup04oKnfl5mc7INwr7iBt/ng4+1MKUmh/bBZqyEVALwHWKck7WwIL1POb0vDlZA6BuAkuvUzCD0tuK/KwTPXe8t9ryJNgq+D4Kle087KM/XKpk4NpFsqLMKQ3m8TJlU0UDvngprzKqjIIuDTjBkcCOsY2813LnUyVRWmJEjODFF+dgF3Gjre/5b09tB0Aia7BKg2fnJJe9aRNwwQVZmu1vRovPa7WMfGHz5iz1TlbHQ4qMS+q4dHCtAwYcanXNw0kR5iYx4sa3Ayh/z/5GN97ItwNYuiTLNFH9Rjl7Ymo5d6B43kmkLcgYlRc29Kzd3AyMjorynEygtDeikodQHVA5YqqkBK997Wvx8Y9/3Djupptuwmtf+1rjuIgjg5TyRoOmzFKphclpF0SPbHecjWzmmEotbFIcOK+meSqlOZjuDUVJFsewolVkDQ0NLbJI1gAwqRHUjZ1QvA7YRNxo0WVyjRtHkmE/dzsiCGZeFdQrAYXSZvW8Ex0VlPpCcuSHmNYsS8VU0YA3+vi/L1win09OA+7aCNpWIcnnTm0HYPe8y89VymeOQ7RhKMnP13diqmQK83NDiizZ64oA7A2rnHzhqncUgz7wQTMLMC0yTou4+bxLdj0XifIJ5Q1cfZ6FB8emF2X+G+3aBbzhDcXnn/50YiTI6O9472ZsUnBAXwty/HyvpvlcB5S9j7oOADSyNYo+wMrOzjWPP1ZSJZ0Mt5tuugl33nmncdx//ud/4pOf/KTLJSIOA+gRt855Nh4wZgw94lZB1IpCBkFcLCgbJPWei+NMee3UAnDVQq0ia+AibgayBqBYYKgU5tXed3tvsssGY1Xj5mrQWszFL+JGU3qonnwze2JxbBVxs4hwsJA97yoa8EY/P4MNTym3nGBpwOkRt/w8W+PEXjb5eSesMYCLI4Sdm9mw6q7vFrIBKlERc54xdYyZl8U8qH0F2RanQ0OpkXzBtRaVbrgZhzvXpQN2e1/h3DLLn2uxETebVMni2PQ+NRrA8pXFmD6LPLUFnTTZ6WabxLhp88xMMT1Ld41Pa0ZmoKwFLsQqlPZG+QhqCqk4N7V8msO1V+FkuNmi1WqhZvESRRwZ0GvcOh5fi7FsqqRdoTM7L/1Y6ry5cy3GUAtiawRFllqvlM1Bfr5UPjcvs2wqWYOpESlL1pDJrzDiRvDiU40fdJUGuy2AWthPMWjJfdzYc603yNxwM4/1acBNqSmiMpFSyUlyA0VFA94nGG4/+uaC0hiOBpwR/vDYFKdMykBPlczX3/CGFeVdAtxTj8VzTaDeG8BspNDaAdDui1e6oVk8rW1HxamStr+Nu3x7I4IjQ/NglVSBum8v6KQvpgBmCcy7Nu+SbRQvB2Xvc9k7uizZgdmUxTmQLImj3HKr1KrasWMHBgcHq7xEhAfcI27msTw5CS3twiTeKWqVn2u1SNMUZT51zCCbqIRn48xpHV35AYwfFVkDADT6igu0JD2vc7KGrvw8SkCtLTSO5lnYzBE3qvFDy7nIn/cENKWETO1uMReqMsjOgxpxs2Grc2kuC9jWFLGRTuNwpYEiowHv6+f//sOv84abSAMuKi6PT0hC1t1rpw4Rt2ycFQGS5DwdyDVoREWWYgBRCZYAvq7UtqdjAos1knhfqD1AfZpYG9t2GOq4RLi2TMnONY+n7qssduxISxkeLPgaNz9yEhmo2SAso+h0s6UZmc+hPK9Q4PY+w1gXBwulvRElayAbx55rv44d7Q24rclJ3vWud3F/v+eee0qf5Wg2m/jlL3+J733ve3jRi17kN8OIysArhGFfijziVk8SUmoaADw6Po2Tly9SjnWJWlHmTl0sSCl71MgPhPQxo9JD3HwlC7WKrAEA12tIpEXOkZM1ZPIJBoqH0Wk0mKmKJs1u6ypGtr35KM8jfe7FmP1Ts1jSr1/mm+2CwrzfQukhs9URlE2qIkuvy5HPK6cBZ8l42IjbLR9bjOYcL1+kARdJAnQ97qiRcaBIOW+lKdI01b4j/Ltklk01mMmOEIJC6OLcoijipDYMwsxMqJrgg3WImsRXTk6ieJdU4Hqtadax4eEsVX9gY4KnPTv77JxzgSULswj3li3l+jJq+yFqWjN1b1rQYA23NgYlveFYUPsWUkBxdPuwSlLaD9nKds02ObrNNoLhdtVVVyFJku6ifs899+Cee+7RnrN48WK84x3v8JpgRHWg9/qxf+nyFCqb+rZMdnF8955RPGlwoXKBdNnYmdw3I6jeNVKqJDsjoqc9m5seVPmJZANTkTUAPLuWLFUSKMgaADHNU69sku87gSSDGqXNo8RzNvzioKWLALSIGweisvnzvWM4aVDtBAGA8dkidLpswLwl8A24zfMh9fnhzjPLJvfP0zhBRBpwtsZtbrY4UUUDDgDPXDeInzw+2pGv/ge4NIFuCAazLpPBdW0HXCJuNJjJQ+iyeeeZ4fpdBr/whpUrmQI7Lxv5CYipklXUuBEcimma4jGmHmthn5wJkW0/c8U/Fp83Gin27gWuuUbefiZvB5CA0o4lAzkl2zy8myoJADOBI25DiwewpxPNXyBpOSGC4vijRtzaTD0qZf1NYdYHMvnMuRbzAdEw7FVYG27veMc7uobbu971Lpx11ll46UtfKh3b39+PE044Ab//+7+PtbKq74h5B6ti4c6fVuQkbaLhZjUqvz57HjXCQZRvFXErjm29vYD9v5niDfdqwN35MydrkKVL1hmmPVnqCkvWkM2B3yB1zlDq70rp+UVVZHNWsHaaPcum5ziXT03dzc/VRk8U56mwZlE/Hh6bAmBnSI7OFD/kINFwo7Z5sKWLBqqJjpuitCwN+I/u4w03E1W7OAfd7KnzBvi1dK6dQqezkR047Lk20XGqfFLEjSYboEVQKEoyPQLMzMkqhbSAVcSN4CCqE1LJAZdooX10ZnSmiUMdUo3VC/uxVJIFILafYR2DLMOrrP1M7mBr1OwyfKj9IqkR7AV1PuJmAiUKfNbaZfiPnU8AsNevujBG3AqQU9WtaguNQziwjgrqOmNCq51iYq6JJEnQX0swYGirMJ9AirjlyA23d77znVXMKeIwwTUFy46cpFhIbSBeX6fks9cn17hZjCWzShJSx6iRn2wO9t5BqoeK95p2jO0OWcM115THNySNSFmwZA0l+Ui1s6I29eUjbvqx/DNjFt7PbLyzrTYaNf2iXtTNOERRDQYtiEbniYOL8ONO1MfGmzzGGW59mpEZ2HeC4smn9CgCaIqsvfziWGUY5jTgDx0A7uo4L9721gTnfRRG1j92CjqFkLrGAHytMIUEiZ4yTYvOWK0zpBo3unPLJVWSWk5E3zvCG4YUBj9qqiSfyUI1xvXy2Rq0FQvKa4ys/UyTqaGu95XlX3pp5mTZsKFwFPdZNtGk7B0AvWaUncechVMxH2Fz3xf3N9BfSzDbtuupS2oHQIy4kTMeQNj3UKwV1i1T8vMsxo7PNvHNh/cBAE4eXISz1w1aXWM+wCmltt1uW/Vxi5jfoBoR3ZfCIi0if59ta37EFUW3EbiwShZzJ3oeLa5A2SBTomyAtkGG8rTLyBoAvh1AS4i4iWQNAM3o5O6NVQTYXlmjpl/1MzvKrAUbRC6e1Ey5AxNxC/etpfzFnVQkm+edZSlTpTBxU0iS7jNPqZ2xi4gVoPRxqyW2z7u9AZHUigFDa8xGG2CfPuYWcSvujq5+DqA7QVxqW0jyHdcw2/eJX4P1Y0kRN25iNIO2Ckp9WsTN3qEI+M5dP9aka8jaz3ARN8m7x7af6TqKbSO0hL0DoBOr8HXp4Z93CjsjRc+js6i6R9woDiLr+5LLJj7vVCfOkUbk6j+GQa+D6Jxn9K4V37umSureO7eFzm4cQH+h2X+jSaHyL7zXj6XXKcg9vjlZgwi2HUBTqHETyRrEOVDSSO3aMNjLZv91NvdFjLiZ0E2VNIvOxhEiS9zGax3Ry/60iY5T02vZcbSIGy0CYTN3CqNZJr84Ns2ci+YRaxcBvUFOrZkBxHVGf3fo2RTMuRZzqTIl0CUV3mWdoUYiR6YlNLol2eycwt93lvTLBK9+ixZzoUQLdenSqvYzXMStIb9C3n7GtSdiNjfqvbHZm+yNZhcnDsVAoewf3HtqRThTHFP6lwK0SKc12yZBz+P1yN6y3KxTJWV47LHH8K1vfQuPPvoopqfljQCTJMHb3/52n8tEVARydMaSUIHafFt2fZ1a4rKxU4pWqQspp1BVUHjPjqNFlvwiHCJZAyCSk2R/6sganBk3rbyaFIOWkW1xX8iGWy67CsWBGAEBin9jFRFmIL/3dqTLtFTJ4tjqXW2z8zHDpRaKIt/WQPElJwntIJKlTIeVb68YVc8qWT5HBXbEE5Oz2Dc5g9WL1BSBVIIl9go2mSzUnlnZW0pPaaZnaxCeR+E7VfsZ1jFYV2iqe/YADz5YSHfp+2fXkoX2u9IyTWgOdIB1optB0TmqT5WUz0sFeu04IRLpoIvNFzgbbm9+85vxkY98BK0OJ7j44uZEJtFwm7+gPri2DIF8xM3On1yOuKlfPadeaN1zzaAu0pQUJqqxnM2BEp0JE3HLwZI13HgjT06yZHGCrVvtyRoodWjUBrChWSU5w82CWZIccTOQZHCy2fOIETEyYxpxB6M4QugNiW08vsSIm2OtlU2POMD+efclJzGmShKdIDKSIh3I6ZSEc10UKj7CoR9Lq3HjB/3k8VH8/ilqwrUqI26sbNuUwEYtwVw7JZGTuDhBTNJ1afCq9jNsKn5DUuOWY/wQgMW57OojbqH3JicHUZ4qSTQ6Q6dK+pCT2PV27ZxH4pQMf1/mG5wMt/e///34wAc+gCRJ8Pu///s444wzsEzHIR4xL0FpzAiUNxnVOawXxlYRFDcWbaqkS9Sq66Gy9zwCDhE3Y42bu3cNMM+fwuAnzkE19Zys4Z3vBL7/YIq9nXE3fQJYP6iXT2qVQE7dLTzKFFZJG7D9zGgRNzv5tBoIl2em8Dwa2zAQn5lsXHluavkdT76FXFeabkv/EPFdokfFbOU7kZNQHESsMkhMO6YqbDZZFaQaN4fn0ZbplCWCoBpWNiA34BbmpkPL4XnMI+NWTduJ9USgOJ+4PZu/gEp1bFlE3ABg8ZK0uwBTasSKvcM8nro31QnrGLUelZ0DvQ+oQS5hXwLouh6VfIocceuOC2+Mzyc4GW7btm1Do9HA7bffjuc///mBpxRxuED15IvpKKqH3SWqJG62WnISB/kUTww117/GbAKk2pPAXvxMvo8xrhfeaAArVgB7R7K/9zXMV6C1SmDnZa+YtNLUfF+Ec0zgUyWr8FYzv6nVGTSI3nDdrKhRWoBNxTSPdY642SgOxIhbjeBRbjls7Lbyq464uTauzeZGU9is0vbYuRnfVboiyxruWsONPYf4PALm58yvIbwevLFsFA2g89u0aO0AqiHNUv+mqvYzzdniWBVxGxoCTjwJuPehXLa9Al7sHUc24pY6rAW0yBJ7ol4+955azIOLuFWwvpNr3HLZNmMcnOjzBU7kJL/5zW/w3Oc+NxptPQ5yPZRlOorLCyHqITq9xOmFo9RYMGlvthtBrlSRGnATw/+AhfHDHJPpqK02AZpSRWqV4BCFyA3DI8kq6cNyKp4vl8+e52AYmjy+LgZKN+JmhnM7AMNYlr3Wdt7svXzscXkvwhxth8wBdhrB2wFwtbRhyUm4cy3GsIYjlQbcJJ9ajwrYk0H4pAUD5jWPqoRTUtOo9UTsODtykvw9tXVSFPBJf83bz4iYZZre9w/IL7B5M1Cru/2mNcu9A3BwhJBqLh32DyajwoQqa9zorJI0h6U7q6SFbPa8Hou4ORluS5cuxXHHHRd6LhGHGdSIGxf+t8kvsJQLyCJuarhErbovtNVcsj8pXp5cqTLXnjh4kyk1bsR7Q/Ww0T2PBAOCnRcx198ccaPddzYtjWSMWyv4hCiqi3z2fILBTDU8bWTnI6ieanMNWnFsUmSHh4GtW4Erryg++8u/TLF+ffb58LBMPl1RtjU8qycnYedklp2njonnqlBpqiRz7NIOIGRtobgO0SJuRvEkenRqPRE7zibillKVZIqTRXFeDln7mdlpxnBbUJaZt59xIVcCit/fzoAojm2uQEmV9Iu4WZluxXkG8eQaN6oDh1vfbZ7J/Dza+kuNuLk4cY4knAy35z3vefjpT38aei4Rhxn0vO3iWLcRuHh7S4abZbqLS9TKtGDkOeeUl7meZK/STDPFjh16T353Ti5efEpdjoVsSq2VKN9m+hRaZH4TsBAOxqMcOOLmzhRKi1gBdh5fKii0+kXzcJcaNzvZAD01jdQ+QiN7+3Zg48asofzBg8W4eiNLz7rmmuz77dv95g7w75w+4kaXTatxc/Hil89VgR5xY+emH+syd9v3yadXWXaOyXBjxlrMnnJf3CJurHzT+5T96cag6vc8ytrPzHCGW1l+3n7GVQEnRdyIWTgkchKXGjfL9Te7PjMvwzNJcbAAQjsAq5RpihOacfoZJdNB1QnmE5zuxzve8Q78+te/xj/90z+Fnk/EYQTVK8v2MtLXEdA3XjEbTZsq6bHQZefrQfHy5J78n/+0MCBOPVXtyXeiXpfMTQWTZ1OED5uczQbP1bgZlE1qvnw2h3xelAiEWfbh7M1nfh79FFmzwkZ3VNjWuFHp0Sle/JaFwrZ9O3DxxUU7i3ar+K7OpFjNzGTjWOPNRr4I3qOsHkenja824gbQ6hZzI6KeWK4zAaMzMtiSIPkYVtl19OPphqHb824bcSOxbXZmUMmeqjiPxaZNwM03F5E3NuI2wBhuAwPZuLz9jGvKWzfiZvG8F0YtTXZ2rr3jz76+0P5dpTyTFEcCQN+zeVZJPfzbsdivkccEOcnY2Bje/OY3Y8uWLbj99tvx4he/GCeeeCJqCmqvCy64wGuSEdWAf65tlHC7TYBKRZ2dI0TcNGPdUgvsX0xbRXb79qLH2Ts/kQ2u1YCBhSn27k1wzTXAddfxPc7cjE7KJkCTz9fkmMdTFU5afyV3xcSklFCNH2fCmQrqFrnzbBUHCuNbV2Gzf0cKj6+dF58iP7/vlBYPssdleDh7P1k055iIWx9KuPTSrP3Fhg1u6Yy2NRx8/Rw9emKMMHN/I0RRU1qqZN2h3QutptMOtqlp1PVRnIDpGfYjJzE4thwibnzbkRSqO+pSL0prrSE/TwTbfuaenXzEbWgoq2kT28+41i0WhptFxC2fu4MBYa4xdnAQMfMysgYz55jmT3GwAA6Rd4JDMYSDXneaS23hfIGT4fb85z8feZ+2W265BbfccotybJIkaNrkjUUcdlBfDFslnPOuVZAqSc03F6HZvzj5Ou9X7snPMT1ZjF2wKMXMVHace/KBbFNyUUpc637oqToWGxhREbc19gE3xcQ23cUlAtHtgWSqW5TMxwTKb+qshHfl2xlXFK9jV3GoQCmpJdmzQqrnlNyX668vIm05uN5QjfIFZmYypfHqqx09vpb3nUoiBBDrTxzWmeI3Na8DzW7EzeG+GMZW2YDbJ3UXMKdw+1CMG1MlnWrcimN7tk0r0cFYJUXk7WceOQj8eE/22da3p3jWJzIiExGu95ySKklpaQJke2MtyeZGIs5yMAxNoFDqU/WBOSZVqs+ivoHC6usWcbO/My73fb7AyXC74IILeu4fGlEG1YhgF3SdMuuy8YridC+1vydGb7mZGrTKPPmi4Ta6n/8+9+T3r2TnZKv02HnxAfq9oXrYyDV0lum1gGuqZDbO5Hl0iYrVO4abucbNM4pqUnqcjH37Z6ZwVNjDtgg8dfhNkyQBUnOFhe5ZbzazhvEimha9oW68MetZ6NKA27axupOXnRlndlS4PpM2lS3F+m9DTAJ4RGeIDpzsfJ3BTLvv4vXNNW7u8k333cmx5fQ8ho8q8emAduhn2s2sWJlKjbZMNv1ZB/hUSVPUilI+wcpvp+ZWNS5p02KqvT6yVD5HBYqDBQDmmGyUPovoO7eGEer1K3HQO9z3+QInw+3b3/524GlEHAnwUQha9ETf5JSRazkXMfVH91J75z5bzkW1Oco8+dOTxaK1YJHak////iV9MeJr3OyiJwDFW23nGSzLt3lmimMSOYlDDUc7VSvYLopslS0eqA2Pu/JdHBWWKaqkVEnmWKf0+LyrPil1O3eW+0IBfMStLom4AcCePdn57QXsxu7wuwZew0h1kcwxPeJmkJ0Wzgzb95Sy/nJ9Ba2k25Mg+UbcSOQkRPmm+846kOzXR3ZugfdU1+fRNjXYspWMO6tkcWw0foj1f6z8KvqXiiUOuseB1I6FyCo5x0y+38K7RSMnKY6dMh4MY1301PmCKshaInoE1AfXNu3NZZEup0pq5Dt4Ymz7lbG5/rLNUeXJZyNuCxfLL3DjjUCTIUdwSwPSj3UpdM5/V2o/m9A1bk4Njy09eC6LdKMzh2Y71bOcuhjLpdoTNexiIDr5+rG5fBI5ieUG6dP+whxdZufDCx8bk5/TYiJuDUmNW47xcbfn0bbNg2/ErYref7l8St1iw0WhIqWOWYnn1urQkSUWplPoEb3imFLjZnvf7VNI3aIP1uRQDns2p29oCWdc507fV2mpmHb7KseKaSmbd4TYva826wA54taiRdxs92vxe2rtH2CTvsuc12MZhNFwO6ZBU6qsWSVdlGThzdQq4cxx6BfO1BtK5cmfmSrGqpqF7tkDPL6n+DtVoQLC1hLk6BJ8WDS0OTSbWZ4JgP66efngN1/9WF/WNB2HiAvzWE6/nsKe8MC+BoI9Xz/W5X2ipNW51bjZOUKqjbipn/Vly+TnNOeKY1XEDQCWLnWsz1PMT4QT8QnBGOdgrfTkiqZ+nMt7ysI0dT5FKnRkyd2wys45chE3zpHgmJGggmvUyjpKy57jYIxrI26gv0uAmNZst9ZQFGZb1kq3iBslcpU75qjPo3mRYSNu5H6OFUTceAH6r10N/vkAp1TJO+64gzTehVXy/vvvx+23346f/OQn+MlPfoJf/epXaLVauPrqq7F161ayvBxf//rX8f73vx8//OEPMTExgZNOOgkXXXQRrrzySixZssRZbi+CW0wtFmuuxk371tGNh/OOW4E7hovCMGtl0E689YJkUkpUnvw5JnWyT2G4AcDUVAp0mom6RWf0Y1024HotAVrmVMa5dhvjs1mu2eCCPqvFlBRxcyInYeRrI24OHl+hl1tdxcjGHLvQl1fRx82l3YB7xC2F6q66RZaSzrz043QG7cknA2vXlp0sXMRNsfsNDWXnP7KruC9OCpVmnDfxibEukv68d6MnBtlNh8gPRdGkNFbPYZsqSSUkEPfF4O0ACAqpK9GP7HwRrr3Qcu5d8xojnmOGfcSNkU24n7bELUDh+KPVuNnJpmaxADSD36UvbTYvM/KIW18tsbo37Htqamnikq1BSt91eCbnC7xYJW3gyir50Y9+FB/84AfJ5+nw93//93jzm9+MJEnwvOc9D0NDQ/jud7+La6+9FrfccgvuvPNOrF69Oug15zN8UiV1PblcIgSrF/XjSYML8dDoVElGWb7LC82crxlnagKt8uTPzhaDdYbbgoXFBOx7thTHPlEIFWybWI9OF+GKFQOaPDMG9sa+SE5iJZ5XTCzDENQaN6DzXNTl41yKqPkibT3cDENGvmXEjbJ52SoOTn0LuwaEHrr70mhk1OHXXMOf02L7uCkibps3Z+cXtSF0ZQ2oIFWSO18/lnfK2WFho46JuRZmWykm51pY1Cd/4F1qUbnnhUBKYHtvbNsBUMmVRJjeEV7ZDBvh4OdeXcSN3BYktdiXHJy51qUZrqmSJIco3fjJ5VNq3Jx0AstUydBkOUARcbNJkwSApf2FyTE6M4cNWKgc60JWxq8zerg8k/MFQVkl2+02Hn74YQx3ug4/5znPQV+fnYIn4ulPfzre8pa34Oyzz8Y555yDa6+9Fp/+9KedZAHA3Xffjcsvvxz1eh233XYb/vAP/xAAMDk5iZe85CX4xje+gde//vX43Oc+53yNXsMJSxdgxYI+pLB7qfmFVGO4MceUTWAJ81LrFiMX+bYvtGmxUHnym4zh1t8vv8LQELBmDTDcObeKGjeXlMD8tzeRcIzPFlrv4IDd0sHXntgpJpQIh3XfLJdIJOcdbENlufHPo5VoPiJmqYRT9hZbwypNizeNFnGzjSyxShXtXaX0/ZNJ3rIl66PIEgnx5CTlcwYGsj5RQKEsurRJAPTKrFsNWtFbsIr2F2sW9WPf1CwAYO/kDJ40uEg6zoUkg1I7wzU+d0oJtIvOUFn2AFr9X2gWP5fUMbcUUqLhhmqIIJzISZydLCaHaPYnZQ3On11Sj1FrJ47d+vvDxw50I1uU9TeF2RgHClZJm1YAADDIOHwPTusDOrPMjbMpyyiBYjD3mOVWCavkz372M7z61a/G4sWL8eUvf9nlEnjd617H/V3V3NsW7373u5GmKV7zmtd0jTYAWLRoEbZt24ZTTjkFt9xyC+677z6cfvrpXtfqFZyyYjFpvK0B4ZKmA9h7wFy8prY1OSalQeXJn51hIm79ctmbNwNJzS4qxIKPzthH3Kje6nyxVjMEFrJtacBtPeFAYTjaetcA+4ibD6skoE/rcFHC2efWmCrpkEpp226A/aYKA8UrVdJ6NvK5b9gAbNvG91tkG3A3+spX2LataO7r4mW3bd3B33d7+bY97vibZ3eBNYsG8Kv9hwAAI1OzSsPNhSTD1pEAuClUHHttQCKL0hCCEh6axc8tVdLSoHWkRu+mSlbgUHQhJyE5tyzvDevcIqVKCjKU+yp7jkvatGLqB6bnsGt8ujiHEM1LLdaYVrsgcrONuC1s1NBfr2G21cbozJx27AxTFG9ruNEcIW7PzXxAJeQkz3jGM/D5z38ed955J973vvdVcQkSZmdn8aUvfQkA8Od//uel70866SScf/75AIAvfOELh3VuvQT23bSPuNnLt00JdIroccPUsm3qrLZsyTzzLEw1brkn30VRdm1aGdqz6XLfbWtP2O8phAf2NW7WIrtoWN8XB4+pS8SNqODbyHepIxDHWkc6iVECUusLxZhNm4Cbby7eV1XEbWAgG7dpEyuf7kgA7Obvft9zo9YUcaPLX9AoFnhdlMCFnMS1lsu6f15SqKVapx9z7NIOwLSMUCP7pJQ37jyXSKRGtmP0oYi42TsUbaXbptm7R9zsnYo5KCsBv6+qxznVcjHHqnVmTmADs0/JtnOccT3cLF/UJEmwtD/LXJlptbUG86yL4WYZiRS/77GAW3Wskk960pNw3nnn4VOf+lRVl7DGAw88gMnJSQDAueeeKx2Tf3733Xc7X2diYsLq/16FWx83+iYA6F86vsDcUrbifBE2edW5J5/FnKHGLffku6SMkGrcmGN7bzXr2dTIdthgbJu2A+b+eXL5zDOpnbv8HB1cIm6h2xiwcI9eh1d6rFklPQrvbdsYAPrncdMmYMcOYOtWYPlgMbBez9KXt27NvmeNNqB4nqhpNF3FR5uVUB5vg3zDrqLGzXadmWsW3x0YSWBTwm4boQXc0/Zs6NfJSrIwSDfzZhOYnCpGtFuawbl4S9lAAHISS8cWKWplyUSqmpNWdpJ0DXfd3uFa48baGlWvkbb6kj0rsb2B0pVNjOaZjHGWUdI24ibOQ7cUsIbbgLXhVqCKyP58QaXtANasWYOHHnqoyktYYefOnQCA5cuXY+nSpdIxGzr5MflYFyxZssT4//HHH+8s/0jDrcbNXj6/0KnHuaVKFtC9z7beZNGTzxluTKqk6Ml3M37YqJIePuQkAOF3tRNtbewDhdHonCqpTQmke3xt74tLlNO23xfAbkCOThBbb6+1dPHZCqv02KZKUpTNDRuAq68G/vPO4rOXvDTFrl3Z53l6JIv8N6eysXXZ5GyfR5eIm/UzQ3gmDcb48HBm5L5uc/Hle98DrF+ffd4pbZfLtnTKAW7987Kx+fl2hptLxE02+fy+rF8P/PRnneu0gRNOSMz3hZBN4eYgYh1bVTyPduP4NdL+AjbEWS6phoBrpom1eKf6QqeafYVoUZS1vmGQm4M1pl3T7HVrpEuqJGUTi6mSEszOzuJHP/oRFi2S58kfToyPjwMAFi9W13TlrQDGVHzvEdbRDVdlkEvvCk1OYumhYiNOJgOC9eQvXlSM7e9PlZ58X084haHKmnbZdgPjIp0OioM2ApF6p0qG3nytm7Y7KD22/b4y+TTZgH1ti4syCNh7Nl02R9vojMs60Ncoxi1eom4JwJO2ECNuFsaVi7GfzaVzvjFVkpsQSbZM/vbtwMaNWW3vxFTxeXMuwd692ecbN2bjZCDVcnEKodXUO2PNETfq8y6OEPcl9r7s3QvU69n3rSbs7gtzgTndpgo3h6UTeZNDHVcVrJIAS/Bha4zby2ajRHOaXEZXBd+2vpt/Ju1kU1JsC9lhHWeu9912X+VTJV0MWvs1stcacDuRk+gwMTGBX/3qV/jrv/5rDA8P4+Uvf3noS8xbHDp0yDhmbGysZ6NuthEIFjQvvqWi7LhgFALUX3H1FRbC/z/2zjw8burc/1+Nx/uW3SGJAwFC0iWXEgjQsm+9bG2hQFsIFGggUC4UugFtQwlbL1sXKFAgpYWW8IMLl7VwKfsSKGugbC0JJCFOIHtiO7Zje2b0+0PW6OjoSDo658gex+/nefJkPCO9OqORjs67u5b81e3AS586733/v2z89TfiRaGS8hOyvwiVnjA+5UfWKisnWjpPgU2iTuJxU3k4qlg1TYcGJ8n9cy9YVY9YlHTVogSyC0JdZd9G+PdWUgqlreDe68Q5bgIZkdsnyimS87j59lHYjpU/f76/wEs5U9Ql1+O9393tbceHnSbK5ZIIVxfh5RbKyZZRfnhR7N/8eQG8vEm2X2DUeSnPWKjOZtCVK2B9Vy/ae3K+kun+sXuvTbcFUVVO3GHER4IE95Gh6HGTLQ6VQHg5c3KilGbVBb60x82n1Mo+m+LXSvwpS9zHLc7AojhHyhr9tEMlY7bVbQ0ykCgpbmVlIQ2NGGzbxrBhw3D55ZerHMIobnhkVH6Zq3Q1hDXqkiDKo+eSz0sEvpco8g8B77V6Fabw7VS8SrILB5Um0IDfkt84zA635GsWspAPq5M/97KNSFXD3iygr2Jl+HYLV7UWX8saBZxxsOMzuzCRbWKt5s3zXi/a0IGpI+uQDckTSLJId5Gv0Mrso2h1lPeKycnzK1fhCw4V2bK/qao1mR2LdHGSBLI9pTDGmqyk1AbPTUsLMGuWf7ss0+GHrdLpMmsWsO++/vDTZAsq77VKjlv075pMdjn/4/ftLzovgNcbUPSYF54Xy8L2w2rx/jonKmhNR3eE4qZnlJMt2pKoj5tEPif/uUqopHQrA2nJQHmZnMdNPYJIIepBUrZvjgzZhn+OJl0rpdFvkZUfdwxXcctYCfq4Jbh2VY0JpYCSomnbdui/bDaLbbfdFqeddhoWLlyIKVOmmB5zYrbbbjsAwKZNm4phkzxu7zl3WyJIRjomXC0swj8ZmZUvu3BQaQLtbMuem/DtVJRO2RBSR37yh1iaOW6A3IOAPe7GLdFlglmkQzHZ8UjKlvXO6CqFAPDp5u6QLdVCJdltl27qDJetkBPJbyurAKl5fkx7OsVj4/G1BUnqcZNQIFSt+NL5f759ZGUz+/d9/1tu8ffBA/xtFHKCW7W7G7j1Vk52ymXvnWME99eVbVkWvjJ+ePFvd2/ReQGcgjeAuDCJ6LwAQF2FZwiPLILEvDbdx81WeG4AjMetb/0XKl81VLIoP3wbVUWfVcp7JD1uylEJhscvM0fyv3fiqpKJ7tMkBnq58+IqbuWZjFIoY5I5ckgUJykUCqH/uru7sWTJEtx6660lowRNmTKlmGv3xhtvCLdx358+fXq/jWuwoRSWlkC+dKU6BUuJSh+3RLlWko2mlRZUkhNdUL6kx002VFJ1kS/5IHDZtrFaWra0VZMdj+EQVaU+PNzfMs1OE1UfZMaxqbsXG7f0CLdTaUzObxud/yceUxSy+ahqBpzkc0zyqpKuDPP3kreQlXfDyvcW9J/3XA6YNy+4nV9xE8ueNw++apOyij6gX1XS9L1ax3nAws4LAGT6NpU9L0CSRtO6HjdJI0iC69ENYbMB9EQ8O9jc8eWfBM9BGKyhQkZBSZTjxnjcpPt0phAqqRaFE78NX4xGpUdcpHzFOdK/adT17vyvHoYpb+QeXGrb4AvtVKKiogJHHHEEAOCuu+4KfP7JJ5/g5ZdfBgAcffTR/Tq2wYT8ROSh3g5ANrQg+WQU6XFTDJX0NYA1bNn09+SKm4zE+0Uh7XFT8HAAch63aqaH1OQEjeGVQiWlH46SyomSbP/fUQ8++SU6K8//92chHj0z4S7h6PZvkg8xMuuBUOkl5pJmcRKV0DRp2b5zAyxd6hTY4IkLlQSA1aud/YuyfWOLHpxqVUkv38q8wszuH3ZeAK84SVgrAP68APKVd9V6IkoaW0P2iaM663kLt+SCX9qtuHnvvd57//mfllQlUn4sYcNXHbvP4xbRB0c9/0/OAKX0u0oYc1Vz3NzNkrXtkJPNyndkhG/nHj/RfZrAQKRizC0VtirF7YYbbsDUqVPx3e9+N/DZhRdeCMuy8Oc//xmPP/548f3Ozk7MmjUL+XwexxxzDKZOndqfQx5UyFqr1cMiZB8y+g/fMJQ9bil6fnw5bjHbqjxkZBuFqngLAbliDe5H1dkMGirLwzfkZacYKinfaiC57GHcd5QJCVT1XgPhyd2q1mTZhbiuhzlywaMiW/JeUvX6ONu78uXOi1rD47jzruKNZPa3bYQVWI4LlXRhsxJUPW5JlOakCrNSWBoQel4ApjhJPlw2n62hFPEQPgQfSiXpJWUDQBWjuHVxihtbcbOn15NfyMtV3JQdv0o5fYDLcZMOlTTvcVMKJ5cwcgdy3BJ63NLyjEsrtCqyE2huKo3PSwWtqpLr16/HvHnz8Oyzz2LlypUAgPHjx+PAAw/EaaedhpEjRyrLXrhwIc4666zi3x9//DEA4JZbbsHf/va34vsPPPAAttlmGwDAunXr8OGHH2Ls2LEBedOnT8evf/1r/OhHP8Lhhx+O/fbbD2PGjMGLL76Izz77DFOmTMHNN9+sPN6hgFJxkgTy/QuH8O2UPG6SY5BpwC3CX5kxfDvVc5OxnEVHGiVupXv9aFkeo7PzisqJ4iIZMF/5UdpQoaD8WJaFLzU14O3VziowWiFPrrnxwwhT3FSrSkqHM6qcd0kPs0x4qQiZe0nV6wPIecVU76UMty4J21dlnuF/07A6XTIeNwBgW6aq57glmINd+XDOr+heVJHNbxZVv6xYnCRCoeVbybKGs5zEAt+C4twubZRL4nHz5pUtvd4sxlfcZOsusd7IqIqbgNz4lYuTSLYDUO51ybyWXs+o5HJJnBd+PFHIevV1PePOMeSud2nZzOtYj5tvHTm4UFbcnnjiCRx//PHYtGmT7+R/8MEHeOqpp3DNNdfgrrvuwle/+lUl+W1tbXj11VcD769YsQIrVqwo/t0tyhAO4Yc//CGmTZuGX//613jttdfQ0dGBiRMn4mc/+xl+9rOfhTbnJhxkrdWqDwHZUMmCijVZcqHJKl2JmnlKe9zUrDxubca4HDf32EkW4dJhnux4VLwEEovwpBOorKdTKS9SWilUXYQn89KqygbCv7NyngLz2rT3nb0G0gjvkrmXfIvBhBdlsSw9whUI5XuJV4BCdlWX74170iRgzJhgWKCMx62pCZg0iR0DO7boScxE7kzYqVEL7/I/O8LOC+AVJwkrHs2fF4B7dkRclO5H6gUyJJWTBPKryoMeN1HFzTJmpSnyRooqbgJ8WF2Yx817neyZ7V3v8u0ApMVz6yWz6xmZEFLZdiQ8ruTUqkomNIimEcLPfz7YQiWVFLfFixfjm9/8Jjo7O/Ef//EfOPXUU7HDDjsAAJYsWYLbb78db7/9Nr75zW/irbfewuTJkxMfY//9909sUZ07dy7mzp0buc3BBx+Mgw8+OPF4CAcZa7XyQjZND0fI/jxJ+7i5pOn5ceXnZTxuRedMggeYSgNuaelyFjz3sZnc4yZnUUZKD0f+M5UQUkDuek96vYhkBGWrelEZGRIJ5vw+0bIlFVrF61HmXlLtJQbIKRA6Y3cp2DbKDKfVF88NnD6Up5/uhLSxsIpbb4jH7fTT/X0sZedfgK/oKTlwBOcC0b4qxXj4sYedFyA+VJI/L0CC4iRwjXLpPpeS2Cl8HrecM4uLKm5mMt4BoipuXnYZt5/E/K5eGddCRVkG3fkCemWLkyjOwaY9bv5rMkyh9b8vu5xWCZVU6bcIhDsAbNt7qqgqVZERFQUbqzu8i1SpH/AAouQhvPLKK9HZ2Ym5c+fi7bffxrnnnosjjzwSRx55JH7wgx9g4cKFuOSSS9DZ2YmrrrrK9JiJAUQqDIjdXtFaEmmhUlj0+Mcht2BLVhbZKt788l4refnuhB6b41Z8uCeXDUTnWKiH1bljC0clj4sfh+mCOTLWXuczZjyKlR+lqgQmODl8lTQZq2w6HjdGvnQBETllXDeXNjrHTTyeJPJ5OX75qveSpDFBIcyIle+O+4wzgMpK/zZxoZKVlcDs2WK5gPyCMGMl9xYWjyGxmJU+74Jnh+i8ANGhkqLzAsi3klEJJ087VLKS6enbnS+EVtxkPW5hhVtEFTdlCnOpVAp1yfYdIBdVnEQrSsZB2rsvK1vCsxRQ3CTLXLnjjo/u8V6rPzvEB/E9NxKdczk+2ujv6ZxEIS8FlBS3p59+GlOmTMEvf/nL0G0uuugiTJkyBU899ZTy4IjSQyrxXtFCJV3FT1GB8PYPx+8hUFuwpRFWJxNu6Bzbv70Mam0eEiweivtHKVZ9C82Ev6dar5zksk2HA/LbyiyqkpwaXnELDTNKPcdNxdPJ7C89z8jjjkO+j1sC4Ui+MElCUkNF0vvJ3dw9783NwG23+beJC5W87bZgyJtPtuSCMHFuoUQov3a0Rt//ovMCAJliqGRQdth5kS1OohIGr9THTVG+jfCKm74ct4L4AKKKmxmp31Rt/mXlRxlxehllsnWTJd3KQLYatNo1Gf9s4i+lpB43Zx9JI7fhZ4d6uLTcc8lteO/tJ32IkkBJcVu1apVUv7Pp06dj1apVKocgShSZyl3KHjdWhqwCYXCiA/SUQvcBHNmAmx1TosR7OSuYSlidbNibuidV3sOh590wqzDLxsurXI8AH4oZf8EnOTNj6/zugDDpqonxMsoJL1++SXa6XgL3XpINmdZRIOLOu4VkY5e14qt6sEXz+8yZwJ13eh6mMI9bZaWznajIhCO7b2ySuTOq1TyBKO9M8vk97LnEnxfLsoU5bnHnhR1HdB+3vu1T8OoXFO5TflvbDq+4mcl6B8hHKD58xU2ZPGPfPBAuWkiUMcFtZXDUUd57f7oN0q0M5KsnKlyTEs9s/lqSNRbJnkPlqpLMa+Mh/D4hivsNApQUt9raWqwJa2TCsGbNGtTWyvdkIkofr7S7ea+SdPn1lEILAN0QqT4Z0vHy8kh73DRDJWX6qgBqk6npSRqQX/SoeDjUwjCTyE+ooCQQXp7J4HMj6zwZoVZZfW9hpFIbsk8UafbmY7eNXMgq9nME5Mav7mEOyogiaQhQ2L06cyaweLGzYK2r93vcmpqc9xcvDldOomTz5O3kc5gjP/5+UprfI7Zjz8s247z38zlL/rxYlmf0M+xxY6/dXFS1Y0NRA2EVN/0et3B5fH04uRw3ZjxJr/cQYwLbyqCt3fssUSsD5rXp/nwyyk8wx03uKZj2WklG6dSJfPJkyzMkipN86UtfwgsvvIB3330X06ZNE27zzjvv4Pnnn8c+++yjNUCitPAUiPBtdD0zcfJVvFZpV9cCWI9b1CJfzaPnhahGo5IHwW5pugeds627v4TFVMPjJnNNJvFwyFe/UgwZYV7LVZVMdm6qmYpvMg/IJJZ8lXMj7elUKVIkKRvwrpm0DDgy43ffT3LOgSTh5MXBJCIqFL652Ske8fIKG6v6UkSee8bCTtsHC26IcKt5xi2o3HOvozCHX++aHjfB5+55+cVFwGNLnfd2nwH8bIXceQGAsozjpZMpDpWoVxnbaiBCY1IpIhTcNrwSacabipDPiQ8gqrjpL+Aks8iPHbIPkYeZb2VQxo6dCYGNa2VgSSidgL/5d7nkRZk03DBqu4Bsfv4KGZKRUMmw+VEzn56XsbWh5HE7/fTT0dvbi4MPPhg33XQTNm/eXPxs8+bNuOGGG3DIIYcgn89jtigblxi0yMSEK+e4+WSYtbRLl7xXXMgCsjlu3muVkJT4qpJ9VllpyQmUH2UPh3tewuSyY5GXC/h/VxnvTJJxy3uAvdfJqo7JnXf30EltgkmtsuoetwhDiG8fWSMLs3+UkUVBNis/rRw3mevGfV81Bw2QvN6TiZcKhWfZYQdLWjlJO1RSZkGYlncDAMrKvA9ra+SVNgByHjeFaArLsooFOCJL3is+99htC7ZXcZOHPTdhwxBV3JSLSlA3tvK9/0StDHxKp6CwyqxZ4rBJWe94d5/iVlFmKVbJjjdSONtJifYXK4ucI8X7xMpnXofOj8oGRY+o7zu4/GtBlBS373znOzjppJOwdu1anHPOOWhsbMSYMWMwZswYNDY24txzz8XatWtx0kkn4dvf/rbpMRMDiEzInnq1N1ZGOP6bWlY28wCQCEfhxyODtzAJR1X58Rab0duplNWXVlCY14k8HKwMwXXj62OTQC7g/55S1mpF2fIeYHn5Kuc9CTLtDNj3U6kqqXuvGvbmOdvGKyfGctxijBVaoZIyHmZFxTC6xYOehzluAekW1tEpChPe80vhmuG8SmHoVDeUidZQzQN2G033RCRfmwiVdCWIKm6yyo+oqmRYxc3kOW5J71X/38JWBozSKcrPc1sZBGXLPT96ioqb/HJcJpwxmOMm9ySpZKyhPRHVNtU9bsyYQudHRWVccuPysoSTS4mh3DD8jjvuwE033YRJkybBtm2sW7cO69atg23b2H777fGHP/wBt99+u8GhEqWATJEM5Twu2cR7dh/JG1W25LKqFR9gPW6S8hPILlrCIeeNTEVB8YWkJFjkxzxkbEW5QIKKmK58hWqYjmxJD7C09CRhb/reGaPl0SEXquN8lvwBLOvNU1U6+QbZIthrKXEfN5+c6MVm0oWmTJU9HfkyofDK1nCJENWV7V2ebJ1QyRgPswX5ucZ3H0Vsp1Pd0O3lFqa46eQBV5Sl53ETzTGiipv+oi1B+WEVN6WMTz7PT+yQfbD3R09YKwOf0ik+gLCVAfM6bB7IF+yioaIyieKWMJ8TAMol5bMKpKzilmSOlKqIybxWNihGbJfNKKs+JYFSjpvLmWeeiTPPPBMrV67EypUrAQDjx4/H+PHjjQyOKD1kwl1UFCtWdqx8hQdkJsNOdPGyVdoM8A8x0XffkvPMjZVZ+cmD90aGDc+zykqLTqCgiPeJIy5m3lRxEtOhkvLKiXifOGTPuyoyVllVpVlGKVSVL+9xE48nDv53Fe2r43mXiRxQuR4B+fOu6qZNXnEz+TGiZH/S6iluo6orEslN0g4g2WJQblvVyoyAt/At2OJnh07OpetxK9iOolAm+NEKCgYWZ1vxHOnmfM2a5Xik3AbcvLetstJR2mQqbhr1orrbMzssW2pjzZqghDK2ImZIDzq3lcHkyWLZYdc8qxipe9zkzssXRtULt+Nhx9Edqbh5r80XJ1G8HpnXUfOjbC5hqaKluLmQsjZ0iMtXAsx4IKR7ckkeQTbHTaXksgu/UBZJ6Oh1Zv7Kskwiq49MwrBte9NgMoVZ1mtlIpwmOHi/50RerrO95DUj2D4OmTAdQOd6Z+WHb+eFeSZelgRk8Kg3nGdkRGyncm6kDQkGQrILti28Jvw5bkm9VvLWcNU82ijZgIaXtm/7qNDdYq9IqBnmZMMwpzJVUWWQK2Shbphz5EZ8plhQAYBPmcrbNrIBxU1dNhsW1lsooIyNW+xDJ+rBguu99r8/cyaw775OGGFllfOeq7g1NTk5bbNniz1tLjJFxXRMXuyc2tYu3iYuzNOFb2Xg946LR8kqRsk8bh4yc/sROzZJK4YqHjfVolxxoeRAUq8+IyNiu6Rzeqkhrbi9/vrr+Oyzz/C5z30Ok1mzgoBFixbh3//+N8aNG4fddttNe5BE6cA/HEWTvM8DkUB2mcQk7chX8LixoZKR5frVFjxAvHKVL9jY0leTuaY8+PCMgl9slsWc2STDV2t4bC40Qqf0L7t11DXjVlTLJnjC+K/18O1UFU9/cZJ4D7bqIpyVwaNsNZWt/BgynkjZSh43tbHLhBklrm7IvI5rwK33m0pcM8nEJ8r/SxzKKCWb2T6F3EJdA06k511jHvM/nwA+GMOExw0AevM2qgSrPr+3MBmW5Xx30fXoVtx8cgnQ3gtUVVlYtMipHilTvIUvfiKCvdYTPz+YzetCHFKZkKqSPHwrAxkFRdXjJhNCyqaEJPEwVSopbgmeqxJjV/W4+a8XOQPRYERKcVu3bh0OOugg1NfX4+23347dfvjw4TjrrLPQ2dmJJUuWYNiwYZrDJEoF3uIryvH0L9bk7zqfV8xwLzRZpVDlwe4SVID8MjqZMMnahIqbTBiQ6sM9qRXfGY+0eK4IR4xcebF947CQsZxxRytuzmdJFDclBUIh1wqI9lqpIqdAKFpNJRUIlfAxpf55itejVO5fwnQIueIkfQaiZKITX5Pqfa3CUaluyG6fhheVH094tbrkY/dvKrcYTPq7sh42UUSIaigj4F+0h+W56XgLi20eJJ4d2TJ/OGGsbIl7VcfYyn7XiRNtp7X2+AABAABJREFUYSsDX0XMkObhwlYGEvdqjxGPW8i1zhT5SfJcSjtU0i8j3ouaaC2TSTY/AsD+E0dKyy8VpK6UO++8E5s3b8Yll1yC0aNHx24/evRoXHrppdi0aRPuvPNO7UESpYPMgk0n98S972TCGZNY2GSLWBQ0HgJxi6rOXk9x0/G4ySzClUMZZfOV5MXHytexVAPxRWEKtl38LJHHTVY5UVQ8/Qv86EVJUtkB+SHbqHo75b2Ret7xaA+H2rnxK4bibXSqSsooEJ7Hzbw3z0fiRXi8fNXqhjLFm1TnGGd7CY+b4tjj5AKaId8xOdi2xvXIFqXoCVPcNOZgmRBYVQ9zkgbcKr8oe81kQlsZeK/DPG6iVgYyayUzOW5i3LknacRA2qGSST1uKv1ueRlh8sszFkYkzKUtBaSulMceewy1tbU4+eSTpQWfdNJJqKurw9/+9jflwRGlh0yYkY7V1LU85kKEr+/qwabu3sSy2QejTNl4lQd7XGhEN+Nxq84m9LglDO9K1ldF1uPGjMdgWJ3OYg2It+Sz11KZpZFXGIKyx415HdfmwZEtLdrZnnktleOWSNmXVa681/LtALzXaTSEZ3NLczHKiTOehAtZietGtQiSjOcdYHLckolPtKhSzUdNozcfP55QS76CYU7lWtdRyEVjV2mB4+LzuIWUVPYphgnlu9Kj5hg3tzt5FVVGjmEjiLMPI8cWtzIoYxQyUXGSsFYGMs9V1ZBsuTmmb9uE50U2VNJdRyUxoDvjCY6RRzUMXrYHnU5kVSkgdY++99572GOPPVBeXi4tuLy8HLvvvjveffdd5cERpYdMyWWdhXhcWeQ3PttUfC2z2C3KZQYS7c3rW5TIiy4SZ2GzQ7aVQcrjZsQDEaXUqi0G484L+0BWKRoQtyBkFTdVj5tsvLyq8hOXv9G3h7xwyFl8VSvhyXhmnOOy45GTr1KkKMmZyfoWsuKFCTtHJG35w37NuAazyRUr73XUPOD27NK5V+M8HKqeSBvxc5hSVV8ZL0Rxfje/YFMt9APEe5Z0PMC+HLcQj5uJNjhh53zxho7i61xES4Io2UDU9ah2rfP72LYtbGXA9nETFScJa2UgE8nCzjOq4YxdOXHFFNU5xu9xM2/klvPqqz1TpdsDaURWlQJS88uGDRswduzYxMKbmpqwfv36xPsRpYvMokTVEg4wjUhD7rqO3oiyThHINuBWtVIB8RY21f5H/HhCc9x826vJjrQoK8gG4sPqVK1rRfkxIVjsYkE1xy3qvKjnFnqvTYcd89vHeX748cTKllgk8/JlxcuGA6p69tlrIMyzbypUMvS89/2vU4wnTParn270ttfy0kafG73KieJtVHPzALnCBO7PvaXLwuLFwd5bYcR5lQC9516ckUingBMbbSIzD6guZsPm3/fXeeUWo3qoipBLEXBQy3ELzvEzZwJ33ul53vweN2/7ykpnu7BWBuzvtHothNebvxea/LjrKryInc094jWROz/qtDOJMli6Smdyw1b8c1X1XpI3trrbD07NTUpxq6ysREdHR/yGHJ2dnajk/c7EoMZfCU+8jU5eTpzHTfU2k2/AbcriK/K4qT8cpQpNKCoQzvbO/zJ93EwrnTrnBUgWKplEcQO8603mAQYke4jJFoUpjiWFB6R6o9P4eYA/rloft/jrEUh2TbIeiHDFTTweGeLCmvX6FrLzmHjsn27uFo5FBrm8SHeOVPPMsDJ4dBbhUSFYLS3AnDneTPPOO8BOOwHjxwNz5jify8iW7S9quq2Jqb6CcQotoO4Fjjo3qsilZgS3VYE9NTNnOorWnDlAYyPjccs5hUjmzHE+D1PaWlqAG2/w/n7gAVt4vanOv047IWf7jl6x9UHVCC0djq0oXyY/WtV7Lfvs0ImsKgWkxj127Fi88847iYW/8847Sp46onSRscj6F2vJ5PONSHn4oh6yFlP5G9r5Xy1ePnoxq+U9SRAyoiRfplS3mzeTWIHwXscVJ1Gq5gn3mjGvuBXDgKLOi6J3Ru5eUl8MpRmSIhOG6cj3XsvKlyke4hxXPJ44fKGSYaFjpjxusSHTyWTLeAt1kLtm3G3NepXYY6osqDIhC875851Khldd7b2XzznbrlkDXHGF8/n8+QoHZdAtqe/Jib5mVNswOLLF2+jIj3t2NFaqtwtOK29RKJ+7V91WBr/8pffeddcBK1Y474f1n3Ovt5v/4L3neu34642N/kkaZl/Xtxbq6M2HeGl17iXn/6iIB1Ujt1TUls/DLC+bvXY/WLcZW0LCSHUiq0oBqd/0K1/5CpYtW4aXX35ZWvBLL72EpUuX4itf+Yry4IjSI+zhyKIT+sY3InVxLKbAm6/4FTdZiylbsCnMUq2ToA3EhzGZCqUJzVfybZ+ex810kQydBQ/ghQKFh0qyiluyX1bG0q7cC83y7g6Zssg6i8HQkBTFHIu431QoX1a2dDEINUNFuYTyw4Zqa4UCxRhwki56siHzoyfb/55OLq3QO257d4KeVyl6DlMynDGv3fMwfz5w4olAdzeQrfCOmevx79vd7WwXprzJGLb05nf2uRq+CHe2TSQ6kfIDqBvmwk4NW4graRuc/qwqGfbbsvWsxo2zIvvPsdebaxwAgLKsX7h7vf3r3+oGoroKbyCiFBKttI+Y9AMd+XLVX9XOCz9Xv7W6VSxfI7KqFJBaxcycORO2bWP27NlobRWfCJZNmzZh9uzZsCwLxx9/vPYgidIhzjII6IW+sSGN7qLKtWBdcQXQ1el93t0lbzGVWjRoen7iLEl6pd0Z2TIeN8VFVZgyvrJ9i3JlsLiFuHaoJCNbZCFkKwcm97g5/8u0kAAUmjXHyfe9n8YDkhlLkuIkCfMikyAdKhkynjiyCUIlrYSyAcRXCFRsHwH4DVuisfPv6Hj2441PyWQnKjShMA/wUQktLcCsWd7nWaa2Wq5XfIBZs8RGQJnh6ClX0edGK8dN5ryz2yeeZ/pkSBifdh3bmEi2VB6wOw7NZ3Z4ASe5+5W/3vJMNFCYsvfc895rnTYPorlARzmRM+T23asJZUud85Dt4+DP4WdM2LhP/lDwuB188ME46KCD8MEHH2DXXXfFww8/HBLyZOOhhx7Cbrvthn//+9/Yf//98dWvftX4oImBIyOxGNQJCWQX1gXb9lmwACBb7gm/7DSvcWKcxTTDeDfCKtzqNDkF4s+NzqJHpoG4aoVAdjxhD1+dggdxC1lbY1EC+BezooWJanESQM7SnlcMdwG87xu3KHG2TSjbJ0fGWKEoW8ZLiwQ5bsxr2Ry3tEIl1Qw48h63xKGSjPlfVMApcLzE1nBWVsy9qhEqGR71oCabl2/Dxi23eM8NAMgyXo9cr1hGdzdw662CD2K8SoC5cxO2tipum0iybI6bjsfNncPEsGNvrJSvTA7IKp1qCgQQnRfpyRePh4e/3vwet5DjZzSUfXaMEfeqyr0klzrRNw6d55LEGjJZwa/4bXUjq0oB6eDju+++G3vttRcWLVqEo48+GsOGDcP06dMxZswYAMCaNWuwcOFCbNq0CbZtY8cdd8Q999yT2sCJgUHO48Zur24dXPGp7bNgAf6Qg0X/DD4EZs0C9t1XHH+esSzkbTsiXEQ8DlniLElaIaRsUYKQJ5j/AZNIPJMnlmw/GeK8M752ACrymXOZt22UcedWL8ctOEaeYtN2qIfAyljCtSybMYseZ/skHjdWRjjFRZWi1XRDV8gKG9zY5cWjnImniasqqWOtBsx73uM8bvzxtDxugs9NRVPEXe9qxaGYc5MH5s3zf8563NhFNc+8ecDFF/u9JEWvUlRxEnYeS9HjplUUJsXqtTKKj6pSCESFearJBswZonO54PXG5t/zoZIubPiuXrEf/2dsSLNO7p9U6kSKBZCApMVJ4rfRjawqBaTPyciRI/Haa6/hxBNPRCaTwcaNG/H000/j7rvvxt13342nn34aGzduhGVZmDlzJl577TWMGjUqzbETA4BMg1admHN2YX3v//otWID/YZoXFCYJtZjCy3MLs/bKhkSEEbdQ1lr0SDQQN5KnEGVi6yNqMhfKZl7HeyASiQYQb1H2KW5JPRCuNTnK8mi741C3bIaHSqpr0okfkIk8bvELHvazRD3imE3benL4tH1LpOyk8mVCJfNav6mHMKeT3Tah+Pgct/CxyBA7di2vUvwinDWCJIVdzKxfb2PNGv/nbLRGb7g9AKtXA0uX+t8rjkdiHgDUDTiOnGiFXKtpe8j4dfq4xeUBm/JExvYVVPEsxRhZALnn9tKlCFxvBaZ1QFlIah/bGjlxUZiIa0bHiMuOJaqqZPFeTWyk8F7/e/3m2GI8Sa5HmVQF3b6xpUCicj8NDQ34y1/+gksuuQR/+9vf8MYbb2Dt2rUAgNGjR2PXXXfFkUceie233z6VwRIDj//BHj3RqSzC2Rvvsf8Lyncfvr09/Gg8RBZTwJ2M7AjFjd82GbGhkhoKiij3j0enT5zMRO0SFmoaRpqeSCDekp/3edyS+fSK+XMR2kmxn42CuzCuepeWtZqVIxVem0C2xIIH8H7vJA9I/t57/bON+Eb9NoHtCor3U5JQyaQ5i85Y5OeBpPdp3DxgtjhJ9IIqlSIZff/r5it1CXR9VnELy3FzaW/n3uh7dkR6lzUMf+l63Fg50UY/HU+nnFc/mWyZ3nw66404QwX/ftj92tYWfE/K48ZckzpeWl667jNVyuMmGIcM/NYfb+zA5BF1vvdUDYpyoZLMWAapx02pTuukSZNwzjnnmB4LMQhIYgFTuSVYz1LnluAByvosVFGhLq7FdPJkbl9XOQkdt54lJm4x61uEJzw7cZZ2R77GA1JionZJ7HGLLXigd95jPW7Me2UJD2BJKLQ6+VBxCrP/mkmGb1ESJl8xzNOnLEecnILCXMD/RPFLh2TXu0xVyVRDJTXu07h2APxPkTiMKdb4pDPHSMxhBhQIAKisCn7ua6Qc8fwAgPp6TrY7voh9tKr6snJictx0znuccqKWD9UnA844+XnERI84QM74lBS5Xpfx576hQbAfm+MWktqXrfBem1TIdb1KXhuc6PsU0AvHBoAlmzoDipuq4ilzDnWKCJUKgzU3jxgg4ia6XA7o7iu1bNuWdJ81F3ZBWFEp8Lj1Wa5EYZIsAYspI7sQtlhjXquVo45+QOpMGDI5bjqhOjLJyC5Jn5O+RUmcx01D+QHEix6d0u5S/WzcUB0NL0GofN/bakpnQAyD6thlrPjscZPlz/m3rQjxkvq8PwnODXsv9cYqbubnAZ3r3W/ACWrMGpG1feNhZBn2jvvu07ACURrjZ6+SYcNs9KXfF/F73MLlNDUBkyaFfBgxPp2Iirg5LHWPm4EKhGEU5wCohGFGeyJ98rXDmsOUFHY8YjmTJiFwvfk8bmUyHjd1I0swx43ZLoUQfr/nXc/jJtpb3eMWv41OuHepQIobkYiwh4DbZ238eGDJEuf99jb5PmsurEekolqguPVZruJCXXiLKTv21Pq4+RY9MdsmlJ00x0218phrNTVJXO6fT2FWkB8fZsQqbmoPmbwNbNoiXu0VQyVVFj0JHpCqeYtAhLVaccHmMyREJrB7Hj1Z+Gu3PCQGVTVU0rKsWCNOMcdNYSUbt1DWKQTBVseVCZVM2sA9SZ5u8mvGex0XKqlbzRMZ4PTT/Z/LtAMAnP34MPu4PC7AnBcibg5LPrfHKz9eefSEwhGtQADMHKAgO26e0X9mM2MP2UbGWJHNBq+3AtNaLayqZHmF+v0U5Y3UzdePWw+YqELqvRHcxv/cM+tx042sKgVIcSMSIZqk2T5ra9YAroG8UJDvs+bCTtSjxwQnDDdWPMqTF2YxLbr/ETYZBbdNQmyCuYalJ2lVSR3Lplm1Ld3wKyD+vLMP/KShkmxj0/fWChIZmGPqeNzCvVYai0GhFE66ssctfjHIyk8inh9LRYhGrJdT5Pwf1+xYRRlPUkVV5Xp3vW7CdgD8sRLezJmYRbhe2Fu0V0nn93Tk+2WdcQZQWem9J+Nxq6wEZs8Ovu+KjjqdWqGSsc8Odc+MTHsNrVDJGIOljmzW2R5fxCKxeK6kvngb2dBm/noDrOJ1FpbjVsFsrzcH8wYbdbn8PlG/KaD3XArbP1WPm2/7wam5keJGJILvlcP3WQOATF8FJbaqUlyfNRd2obTvfiLFzfk/KkdBZDF1xh6zoNJUIGIVFEO5LfmQB4yeVVYsxwRJwq9UKoPFKRH+UMlk8tlQujWdPUGPhm1rhUrGGRN0fgq5Btxq1vCMhAcYUAtj4h++5RKhkqptR2K9GykYcHSvd9f4kItZ4KsQe6/6tjWr7OvIBoLXe3MzcNtt3ue+dgAhHrfbbhO3kikuLyNOb56ZmFevijYu8vhL9gdJMwzTOaaa5x2IDzc0VaxM9NzTLcIRd70D8kW/+OsN8FI6whpwT9pe47yz8wz3ma4x1IqZw0xUIWXeCWyj+rvKjEV3nVcKkOJGJIK9MdatQ6DPGgBk+uK52VABl1mzosMmWfl77c1bsDyraVKLqSPbex1nvUu9j1tC8TJVJXXkx4W76BBXbVO78XlcjhvzVlKP28SGat/f7T3+1Zi+ZVMsS/ReYstmjGyAyXFL7AFmZUQobgqhkvzDN6z3nk4BkShPp67nPd6AExxHEtyWFjIet6Rhz+kWJ/Fex7UyMFWkaOZM4M47nedCVDuAykpnu5kzxbK9UMkgbprAr/7be++s71uJ0gTiinD4i02Y947redzkvDNqPTo92jfbWLzYrxDr3ktxhbMAYH1Xj/Qx2OsNAPJ9xmve4+Zeb43D3DlM0yvGjd2vbCYn1siiEW7IP2tMetxk0DWclQKkuBGJYC+YZ561A33WAMYrJlDcovqsAf6JcdgwO2DBcq2myS2myXKh9C2Pwc91rINSOW7Ma51QnTRz3GKtyQryk4RKJpU/bUwDKpkcq41cnptO4RNnPPELh+K2GkngcdXB0rDiA97vrfPwDVc69Rc9QkOC5jwQq4xrWnyLHjdhjhv3d0LZsmFvgF64d1yvMrV5QDy/z5wJLF4MfOd47003x62pyVGuFi8OV9qixsOmCWQqvNmtbWMmUZrAQLcD0DKCMK+jcpiTzl8tLcBFF1no6WvtsGixjZ128ufN64bXxs2RG7p6fOHyMsdwr7c5czzjtdvHjb/eXKOiStuRqBBYvxHXfNSATtqHzHB0C8VFyqYcN2Kowd5E7y8WaGbwFLewBPB588LDSHjPD2/BCstxi7OYAkmLBuhZwIQKioZnyae4xVTCA9RzfoDwJG1V4kNpmG01LY/CRU/fm2WWlVh+ZVkGO4/xaj33cE3sUg+rSyzRQ67UtTsOdSt+WOguoGfJ92REhzDpnPe4fCK1Pm5iWS66Fl/XA2kL5Ect4GRgRxMXIqXTd0psxWfGoXDe2TYPfH++5mbgO9/x/j73BxYWLQJWrAAuuyzc2BcYI3Mn8WkCDSO852HbRm9pJZMmEF9VUn2xKVOAo9i3UGElGx9pktw4xCrEPd3Ojm4hD1Yh/p972XHojj3I6g6/ZVr2GM3NznU1coSz/YSJEF5vqqHqQPQ1ox3FEldwRqNIkczmrFGq3LB2pTvPlAKkuBGJYO+hI07Z7KuK5BJXst/tsxYn350cWAsWX1VS1mIKyCTem/S4xSmGyZCp4qdjlbUiHgK6Hrj4hsTmPBxRHjeVBtlA9MM9r3HO+X3E3kh1ZTzOEg7oWdrjKjMC6vktXxk/vPg6THxeY+xR1Tx1f9PYtiCai6oyy7uQea8bf7ikVSXjen6ZKAgDpFOchK0+yhtY+GNObHYW/mG5RzzueFwRLS3BNIHGEYzHbUNwsolKE0jfqOjKEZ/3YhXVNEKDi8YbOXiFuNdV3Li0ie5u4PvfZ8eRnLg1AR+mnbwPqPN/eYUtvN7cc6NrIAp42jWNQ37ZZtcyvLIkWs+w929YVWFVdHvclQKkuBFajNom6HUretwiCoiI+qwB4ZNRczNw6aV2scrUF78gtmBFEev+941DZbKL9nDoeJayEh43neqJUdW1dHPe4qyaun1V4nPcPI+bClELE/0KhN7rWAU5saWdkR2ygC8uqgx7rQLyEw5+RLXXmTbUW6gTZiTpcUulAbfGogfwGyDijCyJPW5x3hPftjpeWrPePMBvme8RNSfXMmz5/77lFgTSBBr6FLdcL9DRFpQflSYQ541kFfSVK5IVPmHlxxWFSSW3u7hdvOyWFuDUU/3v9fYZacvLg7IzTH803SIcorGz56s6m/GFzctQNG6F3Ihaxief0S/c867tzRN8ruO14jcXhXz3MopbhaZ2FWyV4L2mqpLEkKCh0m8yEhV8c8MZ8xFNTkV91gDOAsZ9xt5w9XVWIospkL7nJ8oCxstX8Z64+6zr6kFO0MGWVeiMetw0GwTElaPWCSEF4sP28kyopBIRiqd+qGRcSIpwGFLEedxs2zvzKg8C93xG9RX0Fm3JZCfLy1E/7zZED3a93zR2ngnZVpYo73ugEW9C2bEhUloetzjZ3mtVw5m7yOuN8bgln9+96yWXc8L9eVyPmxMmKT5AWJpA2BzpFj654w7v86OPSlb4BGAVt3DDFqDai9Ij6rknM8ecc06wcExvn4JcXhkU7uaOAYqFVZjXorGz52b62GGJ5WeL16Md2Q9NV2GOuu9TaW1kMFRSpLi5HrfyTPL0Bp6oZ/bgVNtIcSMSMryqAjXl3mzJWrwcbJT3GcvDPG5hfdaAaA+EUUt4TMKt0mTnk+WXn8sBbYyXUVRxMwrLsnwT0IcbOgLb+D1uyeRnoh4C2h63GE+kb8GWXL58qKSqx82Dvya1QyUjZDvvseNQV8bjPJ1KY8+EW/EDY0koO0krA21rNSefXUiEVbSMlM28TqdfWfjYA7OxhsfNdN+stEMlAS+sShgq6RtLwnup73/bdsL816zht7CLHjdRmKRLWJqA6Df15Xn1eucml0veH9UdkfC5p2HwA+Jz6GSLkyxdCjz0UPD93p4+j5tAccswipuKfTF+jtRbc1T0XY82gkYW7VYyPiNLULaLyr0U1xDe1HMJcM4L/+xzPeYVBsIkI8NIyeNGDBXG1HjB5rzHjZ1Iw3LcwvqsATFhaex22vlEAvc848VSWbCJHgKuxXT8eOD/Hve2nTHDSmQx5flw/ebAe6zHLZvw/Ph73EVb8ZMSpfg4x2PGodLXKiY/T+fhCEQ/+HyhkprXTOx5VvECF2UHhec0x+5a59PIuZRZ5JsoTgIE54Jen+KW/BEZ34CbHYfePMaHTQdCJROuZstirked3zSuqqSulwDwFnq9heBiUC8iwX1lo60t+Pn4SfmiwbJ1ffQ1I0oT4K93Ps+L7UHHFv2S7Y8aFSrpa5eilOPmEWV8ipN8zTXi973iJAB/R2Uy3t8dQVtmLHGh6n5vZPJz4yuYk+fvTQ9d41NUeoN2ZdyYcPKkp0W0OXuebdv2PG4Kitu+zSN9f0dFEA1SvY0UNyI57MVe5W9z5W9yKvC4RfVZA/jiJH70i1hEL0p0FB8g+BBgLaZr1gBljHdyzepkFlM+vEZkicrb6guTaCu+/43dtxmWSDY7lO6YECa1PIXwsRc0FyW8/Kiwi1TyodhxJBcfeT5zbAK4imcpJn9D5wGZJF/UdDij7nmJ9VppWsOjeugFGvEmlJ2mV4xt2h5XHEoVtll7L3cQ1jCnWqnOBtDQEHz/3Gs3Fl+zFSVFiNIE2Gu4sytY+ITtQSdKQYjrj5pmTmdcDrNMgaJcDrj77pDP+jxumYx/fQF4+fSODBWlM+aaZG4olXnGfz2mWJGYO/N+z7iuNy/4uc78W1GWwbaN/oUje6+yr1Xy20bVVKCp1nMuREUQDVK9jRQ3Ijnsxf7Li/13RZZpNCmK5Y/qswZEL3q0Q7tiFiW6IVLsQ2DhW36LKeD3RrqhknEWU9Zj9+4rXsGG9xdmAx47reIkkud9dE0FJnBNqeNgHxyLNnQE8vN0wi6A6IWszjnxxuRhOtE5PiRFM+TFzc0RyGYLOKhYNlkrvtgqy44jOVHeQu28nIhrpldzHojP+fFeq9gSono66hYn8StXMYaEhGNP0vpCtR5BBXMx8OGSeY3f1d3atp0w/zFj/J83DPeO9drTVaFywtIE2Hlg5afB/qhhHjeXuP6o0R43RoHQfO5FXe9RCsTSpcDGjeLPerz+18hyVaxZh3hFgnz34v4xSqfu84OdV3lDQprPDt08rrTDmncdOwwT6r37hL03fYVJFEMl01RqSwFS3IjEsNf6oYfyfda8z9gHjEyfNUC+gp/KhRu3SPYrbioLWe/1/ff7P9tlny2YcaD3NC4U/BOGyGLKe+yuO39Y8TOrzA547PzNoNU9boHFIDPVJa2qBQA12TLf363dfo3e7ylMLD6yqqTuAh+Itihre9yY16arSgLe2EUhc72anqW4sLrWbs81UFOefFUV2SRb0xIum+NWrhkqGVtwxvDYA/kcGrJFhX50KsDGVZXUNeAA/oUer7hpKeTM2LNZ4Mtf9n/Mhv6//H/hhq2wNAF2OKvXBM9NWYxBFIjpjyrpcdMuS899JlsASRR+6uJ63ACgglfcmCiWsIJnUUQZ5QD954c/VDLK45ZcdlQ4o24elz9vMcYop/hc9adnePQUTChu4etIE7m0Aw0pbkRiMpxyxfZZG7uNP6QjSZ81ILo8r99SrWsJT8Pjxsjnxj5nnt+cyOf/8RZTPscBADauKUPnZucoVdWF4n6ux07HOuhbhHPxVrrnfVhVORqZaqRRTaxVrJpRC1kdZdbF/3D3f+Y3Jpgde3cuj38zuYw6VdNEyo8/dEzPUCFaEK7v8kzlI6vLA5/HEaV0aocZhcgC9HNdRb0oWfRDJaOMLOHHkiHeK6a+2IwLVdcNmQaiPRw6hrnifQRnruWLaJT1hTKuWu43UrFEpQn4nx1B4jxuQFx/VKsoOxA1oGkEiVJ+ZD20ovBTFzfHDQCyFf7P2CgWJW9houIkKXrcVJ4dEeGMJis1C72oIdsmIey66WEsRirPJSB6fteJGigVSHEjEuMLZ+y7DZqbnX5qb7zpffbVQ6xEfdaA6MlI30IV53EzV5ykLPz57RxfUH7LtZiKmru6dHc6x6is9n+BWbOAjk7v7+QeN2ZsgXBAfQvVdo01xddBxY0dh95CmV/I6oYBAZwXmPtMN+wtylCxcHUrVnV4mrtayEtfiJTgM3YhUa5gTo4K2QOADV2ex21kdUXg8zi8vJzgZ2bngvAFvsp5iW/ALR6HLL57NbAYjFbk4ogtIKJhxIkKaQbMLAajjsF6PJYvtRL1QmNHM2uWwCPWN9+HFeQCotMELMsq/q5ZQb8y1uMWdYyw/qhh3g1A36sUpfzIelFF4acuvUyoZAVXWdKnuKmMnXktDMnWNPyl6XGLKqySdlqJCa9VmKeWvR5V1mGO7CiPG7PdIPW5keJGaMHfFGzoQkN9sj5rQExYGnscw8m8gL/Knq7HLZONXjKJCre4FlNRc1eXLV19Hrcav/zubmDlZ+oPmaiFrH9BlUhskagQJt2FQ9RiUzcMCEDkkynNPm6fbQ65CBQQNW33NzlVz3EDxMoVW4imtjzGkiEgKj9PpxAPvw8/dt2qkvGLHu+1rjU8mOMWfqykstPt4xZzXhLK9vYLLtjcPOFXXvcO8IXPJ++F5sLmXLm4KQJhBTK+8Y34iBP3/JRXBM9NNiQFgSe0P2rENal7L0V73OQ8P9msE0YqopfxuPHnhq0qqWbYiv5cVwGKKpajHUHkC2f0k2bLEf49dY+bWLnyjV1xIpDPcVOTP9CQ4kYkRtrCphsvH5F4r7vgic9x01MMVTxugJOgLWru6tLdp7hVVAW/wPoN6ha8qNwW3d8U4BS3CC+BTj8xR5b/M1ZHNBMqafYhEGfx9W2rYZXtzhewsr3L95lPQVHxuMXkLLF91tQWJn1yYnIsTFuUc5rVB+P6WmmHSkZc78FFSjLNLVa5Yl4nPe3+az34ueky3Tb8ecJuYYvuLqCQtxL1QmPHYwlWTa5HTFTxEQBeeSU8/6woo+8g1TXBz3xVJUPkRPVHjXr2pZvjxmwXc7WfcYaXK8/Sy+S4lXOfVzCOfKX1Rkz1RN38a9ZjH6gqqRF2zO8TVV02jeeSiXs1LNrEiAEnMg9Y31s40JDiRiQmKldMdzKSL06i94CJqyqp9gDz9snEKW4hDbhbW0XNXT26tzjHqKzyWxudYzp/l1mW0TAm3aIwQHS1tzQbnxupKhnlBWbHrpnjltQ7IsOWnHeuX/10k+8zfY+b9zqq6IGyRTaqOInJ8C7e48ZYLlQ8bs6YHPl8KCOgX5wkMsdN2+PmvRYr495rlca7UWXpTRiI2N1eeNH25QlX1zoH6Orw/6YyvdDY7xq8JOxiD7cwj1tU/pmLOz81DA+eGzeHzgkbFB8jqj+qbNVg7TyxgCGB3S5aTnOzE07K41PcOI/bRb9k5McNVECUoXjjlh5s3OJo4mWKxiefxy0fft7VjNxRyon3WjciQZjjZsQ7LpanG1kFRK9RffOvkvSBhxQ3IjGyC1kdKzsQtB7rN5WMnoxcxS2bSa74AP5JgO3ZFr+1Q1NTdJI24OW4AUAFl+fmeuH0C3xEeZUUPW6ZiFBJTYU5qoS5bh4BIG9MUPMCM7JivCOm4/F9OW6aoZKiUEx3naLq6XRHJFYKxeOQlh1x3l2PmwX1SqTuPRhXPVHlARy1CA94PBLKjqsUqlOchJUvVApZ2clFA/DPqjff7P+sutb5Xbs6xAOP64VWPAa3O3vrhBnkgPD8Mxe3d2hllR3wPLnFSUQh9oBEf9QIz5Juk2mf4SxQUCzZ9TJzpr9KNeDPcXMVN7dK9cGH6M2/UdFDC1o2FF8r51xKtu5QmgdCZAH6eemxRjnftnqGOcB/7k14xKL70orHMJggxY1ITNRCVncyilwk+9zzZj0zgLdgU2m+zY8pzuMm4vTTgREjordxc9wAoCpMcdNUaoOhkvoTKRsqab4scvjYdcMwgehqoexfaVg2feMw/IzxVZXUDJWMKiCirDBLetzSynErVzTgAN49KFJoC5phRlEKc9IqkkHZ3us08tCi+onp5v45+zG/Kxen6uYFhyluUb3Q2PHUNvoFyzaBjitX7y7yC7Bx223+E+T2Rw0Lk4zrjxpp3Crozb9+r5X/M793Q044W6W6qcmf4zamyfZVqda9HsO8PoDfsKXaHF7a02l4DjP5XIoN91Y2iIrlmfa8B4xbFCpJDEXCYpMB/clIOixNe6ITKW6ex00F9maqEMTqR+FaTKOqawFejhsQrCzpKnIqVtOySK+V91p1ks5mvMd2d0hxEguqoWPea9MPx+LA+ghek+YWPaqLA1X0czqj7yd3Qagc7tK3m8gTuaazO7CdimwgvKqkapgkEO1Z0q1qFl2MJ7E4H8ly3NQ9ncIQUs3z4uzHvGb+yJZ74YxbOsJ/17BeaKzc215cgy/s7l1/ZWz+WUiOW1T+WVEOM+DvHO95nmrqCxi/vePK4wuTyPZHla28q5QiEGnIZbZLINqtUr1iBXDeud6Ot9/hr1Ktez365t8I/7Sop6EM0cqVwWgN4/UAxLK843mvle/VkOeqbrqNs1+4J9V/zajJH2hIcSMSE2WlMho6FhVaoBkWEVWcRL0Erfd6v/2SzfSuxTSquhYAbGFCJXmPm2tRVguV9F5HV5VU90a6XrewWH/lkLrIhazZ8KvIhYnhXjxR4zBBmm0YnPec/9WLwog9bt25AhZt6GDGYVbpdP9W7P3at2+E4qa5YPPnuIXLViFJVUkd77jpHnHCYzHh6lW13uswjxsgl4sGAOf/fmPxNZtXFhbKGJV/5sLO2znbLnqerprnXeuuFzFpf1RZZV/f2GrWu5HNAmNGM3tmzMrne9Kaxj+/mz7v4cqJbu51XNEWE/dqeFVJdhtV2R7BdaR4DIMJUtyIxERWlWReq5UWDp9I06wkly94U1GZoqWdPS/jts0HYvVFiCymYdW1AM7jxrQEqKq2i+GZSnkKEQs2E33c2GPwi9liSJ1ynzVWlv8zI2WLI/bTNVREJcdHbatCJaeJmK1uKLLKuh43BeHwvq8N/1jXdvrbJKR1vSt7aJkxFWxR/on3Wsm4FXHe+Z+hKptsLov1ouoaKopzQPAz3fxoZz/mWEy4upvfBkQrboA4F40fT10j46Vie6wJctzi8s9c2BD9fMFGS4vTGmblOs8FuHJJFiNGAN/7niNTtj+qT9nnYt/8vS7l5LFEGnKZ17qedyAu/1pBNvN9RUYWXdLujxpW7CdNbx6QQjhjWFVJI8Zc/2emq9cOBKS4EYnxT9QRHg7dhWwgDNOMtRcIxm2baPrI3kxrOntw1HG5Yqw+T5TFNKy6FsApbkxLgD8yORG6xUmiKtXpLGbZhThLXnuBH16tzkxxEo+oClVp5BKEjyQ5/CLev+gxq/zYtnf3mliwseIrOAXUdONd97voWGMjixIwr1Ws4WxocMAIwm2757jh6rKFFTHNLAhTa+rLVn9khLBl493KvGHE5aLxsK1fRB63uPyzohxmwA8+ZBfbGJRXeb/qtecOx4YNwH//t1wbAxdZBUK3mnLAkGtCOYnw/uh6T6KqPpogeo4Ub5eEsKgEbeOQZP4yYD6SxUyoJCs7yuM2OCHFjUiMbB6aykSapvck6mY2scDnx7SuqwfNzcCllwZnvhUr/LH6PKLqWgCwpcu7ZSur7aLH7tjjvG2UctwirZpmLFTurmEeCOUG2QjPKTJfnMSPvjGBkR1j8VUpmjOp0WsKxZ9f93iqZz2qLH2aDVp5VDy1YQsTv8KZWGwRv4cjIrxLd1EVIXvP8cMxoroCSYgLJ9dd9Ljnhfeiuu9541AQzu3HetyyTBn5qAbWYblooj3cuZnNccv1+j+XyT9zYa+ZOb+0i20Mahsc+YUC0NHmbSPTxsAlyjDH/s5qOW4eafym0R43vXuJ7dPI91kzQXSvNXMKSmRaiWbrJFH4tZl7VazwmwhljGxOHjKGwQQpbkRipKtKKnncLGaB7/9M18qTZhNSAKgu95eSdI8hWgDF5TsAwepagN/jdvxMu+ixY5sGaxeaCCwGme00bFTusMKUHx1vXli1OtOhkkGLMrOdZi7Bu2vb0Z0LXzzUViQvVbpzk9dfIjD2vv9NWDX5ayZvQGEOW/SYKOISLpvdxpTHzf+Zdl5kVI4b87dKbz7AM+KkU5wkag5mZBspTsJEUYQoVzxhuWj8Vy2zrMDcDDget6T5Z0WZzDVTwURT1DU4c0Jnu4VCIXheZNoYROW4sYYF3Ry3wCLZ9CLcsPfEsqzi8zINxY1dz0SeG82QwGjlRF0uIGPAMWAQZY1nppt7k8eNIGI8bsxr9YWyK9us9yQyx83Qgm3XsY2BY+gsNNnqWosWAT/5sffZscfaRY8dW7pYpRpeZEl95rWex00c1uEuHHQ8HO6+nb15tPd4OSEmPKkskcYETY8bAHywLrzZU32FhLYfkM8aQsSWdtUHL7sY/KTFMSK4Ffl8hhDFp0yYwsxfn3xfQBnC2jCYul4im2T7xqEnOx0rvmsECc5bJq/3KO+JibBmtrKv2wcNCPe4yeaiAY5xzJ2bX3jRG/dR34iPpgiDVdzYisFu+4GONvGNFNXGwMWfF+n/TPc39Ycbhrd6MeKZ4Q0VIdslwR1/VKjkmJpknmuW4v1U4OdfPUM04J3TyMInSsYhVpb5eQAI9+qZMJ5FhtdSjhsxFIkKjTAxUWdCFvjaVZiimpBqNoEWjcuVqFuiG3CswJMnAxMneu+xj0i2tHu5kseNkRsRdqGluAkUcjY0zdR5/8cKr3GqGY+b9zpgTPBtp2Kt9u+zqTvcHVBTrtAcEOG5hcVQSYXT0tIC/L//5+34+xuAnXYCxo93vA0rVvafxy2ncIOFNeA25nGLCJXU9RiWRRRU8Fvx1eRL91rT9haGLzbVCx54+8080Xu/3BcqKd43KheN/67s78vayRob5aIpRGRsRnEretxs1NY7rze3hZ+TsDYGRdnMrlGGBJXzzubOLm/rwietncVr3G+kMDAPGK5aCQAVZWKPG/scnT52mKJ0JpwxonWSssctdK2k98yOqoYJmFGYwyp6mmnA7b027aUtBUhxIxIjGzqmGlZnhU506Vl7TVnaRceI6g+TWH7IZNerGSoZZsXP5YBVq73tbEGoTlL8Hg7vtamF8uZer7Sb6Rw3Hv3y6P6/2d+O/0x3/GHW6qQP3vnzHSPCXXd675VXOtLWrHEKKhz8Ve8z3XYAQLhXDAC2Y/L4ZAkLvzLhsQJiipNoXvPyoWOqC2VnP3ErA0a+trfQ/xmr4Krkc/LstquXJxzlcZPJReNHwyrPJqJMAGDTxqDHrbrWLjb47mgNX67FtTHwnfeIvEiVBSFbrba1O4c3V7Xik9auPtneduqL8PBrplfTYOnslynKZq9B91V9RVbZaAaEG0J0nx1AeHSS7hzjC38VLF9MVMQMi9zSnWMAbv7lr3dW/iBV3UhxIxLj97j5PzMZGhEdlqa34InyFKpUZXQRLTbjik4kks9OdqyCxT7AFGLT+IdjS4vjORk/HvjlLz3ZP/qh835cToWI4u/KvGciF4qXw2JiIS7bokJFPG/c8Ctu3usdh9cqSHcohqhy77vfJcm45893CiJ0d/sXwKxHA9zRjOTQhXjFJg+vVVpUsef2g3Wbsa6zBwC/mNIxJHivgwsHvTmS3SUQ9mbgvEfmuGku2GQanwPqczDvHXfzhE+YyXrcnI0S5aJxwwn1EGisA30Vg/sUt7pGTy3cHBIq6SJqY+ASpTDrhsJXZYP339urWwGYCUuLumbYMGm+2qws7JzLGkBV5kcRoRWPmdfqOW7O/4HnkuY8ELVW4o9nJgUhJOpBNYyf64noOxaFShJDkajQMV1LDxDuIdCvKsk8vLjPTOW4WYKHjIlQSU++2Nup63Fjd1mz1itFvWYNihZfANi4wcIVVyQrRe3iV/jdc8Mu1hIPu0hYuJz5UEk/ugt9fpes74Hpvf/F0QlrlAuOETBW9H0b2culpcUphODS080qbv5t2Sp+nTF9s8IIy21hr5nGSrW4NP47v9Cyvk+2+PhJkfW4qRwhqoCT0YIHIks7Nw5V2Y58/wFMtGTxzTF9/zc3+xW3s89y8oWT5KLxo8kbXmgCQG11UHFzK0oC/oqSIqLaGMi2e1G5IsszQb9FsXqoQQ8wELwmuw0obux+vT6Pm/Nad3GfEZwL5289TyfgnVPzFbjD10qAmVDJUI+bAUMI3xORxaAdfcAgxY1ITKQHwmSJ2xRDJfmb2ZTnR5zjZm6mYG9YX0ijZsgI2wtt2XKvFDUgbjCbpBS1i6gvl6lQyVxIRbC0+7j5w6SSy+a/M9v83V04NFZm9YwJRXl+PIuynOxbboHvuuhlFLeKSr90VpF79x39RXhYjpuJ5HWW/i9OorfoCRrO9Dxizpic//O2Hcj78YfCq8hmz4v/M19lXOPhtd7ric0WJk9OlovGhl8D/t/UlAV/bBOjuFUJPG4RoZJhbQxcohpNa3uALQuVXI/IjOWE2bO5rqqPQVmPW6Wi4uZrCcDIKxZv0tTcwnuMeq91lZ/IeUDpN/Vei3Le13X1FP9WDVENzXHzjUPf42Y6p7MUIMWNSIzvpuY+M5lgbtrjxla/4j00/nYAiUUz4wrKNOtx8177PW6stVrxtu5Ljue9J2yD2YJ//SJVitpFtKjK+867+okPKwjWnx43NQ+E/2/W0+COXUdpA8Qhqs7f8hblXM4pgMDS6z27fR42wB86+dab0YUTwvD3uPNem/5NvWPYxrwnPgUlYq5RVq5CLO1+pVBNNivjvbXt3Gd6C0J2auKNIOZDJT10Q/g3bfFXNGGLJ5oyPlVkg4pbTR3jcWsPn9fD2hi4RFUi1VXGAaCqzB8u2bHZwvjxwOlMlc5rr1ELs4+qEGgiVLJc4HEz4Q0r7h+SM2qyd2ykx02ziBAve1N3b/F+aKzMKlU7BqKqSuqf++g+mswYFOUPNCWvuN17773Yf//9MXz4cNTW1mLnnXfG1Vdfjd7eiGYsAm6//XYnxCTi3+OPP57St9i6iPJAmHH/98ky7HEry3heJd6SzCZs63k3gsqJKY9bLges+oyZkBglKsc8wFQtYN1bnP1470mGmZfzOb9smVLULqJF1T/7ciEAM7HyPGaKk0R4mDUXPbyy5+Us6C/uecLC6mROy9KlTtgsS7THzft700YrsnBCGL5m0Mz7Pu+44iQjuhbytjmPWzZli29o+KvvulGTzXoueIVFNxQzyhNpIlSSJTRvRmHcdVweZd62heHeOqNmz43bx62CaQvA5sCxyLQxiFqIm7geeY/bxo2WE2bPnLa2NrUw+6jwWjdU0oL6NSNqwu0/J0pii4QWJxFsk5SwtZh+VUmxXADYwvQaHVdXpT6H+Y4hfq0cKhk5/5rxkA8kioVr+4fzzjsP1113HbLZLA488EDU1dXhmWeewQUXXIBHHnkETzzxBKqrqxPJ3GGHHbD33nsLPxs/fryJYW/1RHkgjPTgKC5KeNn6i/DyTAbd+QJ68vyiwXutV5bee10siaypt7W0OGFq8+YBEz4H/OIW5/2rrrYxoRI44wygN6u36MnlgM1twPCqoPekrMz7O5/n93TGdfHF8aFHvokaNgALazo9t41KWfc4TPdxC8r3Xit53Li/iwVtmPd0Hy7h4TTuGOIP0NYWfK+3x9uP99KWM4pcb48VWTghjLDFg98iqzfHsOQLhX5pB2BiYeKMjf9FzXitpo6sw5pOp6VGVF6OivQoBaK/PG4qv+vOTY14ZeVGLkTSOQcm8roB/9gzfQpPJdOIO0xxi2pjIBpXMMdNX/HkjYVuywU2zL7Q53V3w+wBuQblvt80JFSyoiyjndPpyPf/D+hXHsxw47eKipz+eedz3t2/jOa4cfepr/qrTiE3QVoJ/1o5VJLZj19XbA0et5JV3B588EFcd911qKurw/PPP4/p06cDANatW4cDDzwQCxYswEUXXYRrr702kdy9994bt99+ewojHjqExSYDhqpKhiXcsmNQVdzKLHTnBR43nxXfzGRUKP6vrpDMn++EI7q5ReN28uRv6QauuBa49lrgr8/ZKBvuvK8SKrl0qedx4ysElkV43ACvFPXkyXFHCb9ugLQUN+91Gn3cdJsG8w8mV5rJhYOo8Xku5y3genqcv6MU74aG4Hs9PsWN97h5r3u7rcjCCaHjDlk8sK9VjSxij5ttri2Iz+Lr/8xn8VWU7y3QzHutRtVUOgoJAPBRD8xr3ZzOle1daKr1umSbaAcgulfyBRtLN3UyY0gut6m2El+b3ISXV2woGpvyBRuZMstYCwl218MOs/H/futvxO3Ozy6VlY7SJqP8sOH/gXYA7BgUx7+l07+ja9TJMB433ug3axaw777JlM6wUEnV/DZAnM9l0ivDj9/9LUwo/H5DMWP01q4qycoNn2NM5F4DUYY5NaJy3HxjGKQut5INlfzVr34FALjwwguLShsAjBo1CjfddBMA4IYbbkBra+uAjG8oE72Q9TCdeG9iUeXmueUKtm+y8Odaqcnmx+WF0qjJYkuvu+SZXCHXE9bdDbz3gV6oZFub97At4xbwrNWXzWtikfGo+C2nwc+3VejH5TKiqtz3tyiMyUxxEk/+stZOrGU8hiaqStqChYOup5A9BtvmwY02f/99r3F2WP7JpEnAmDH+93LMtRBU3Ly/q6uiCyeEkQmZZ/xGluRyHdnBk5or2NwiXP3ER1U1M2lM4O8j1/hhachmxxXsPcWMQUHtbKr1NPrlbV0+Y437uszSCCFlXrv30pJNHWjr8SZOdS+tJVwQ6oaPivadPMVpU3DY4Z7wnj6PW6I2BszYXdLo/ffBe2KPG6t4sqHVgHyYfVhbkFzBLhpFVPPbAP93LhTnd/Hn+vJD5jEjzyZWtve+2nMpaIB28a2VtIzc3us0PW7BiAd9w9lAU5KK28qVK/H6668DAE444YTA53vvvTeam5vR3d2Nxx57rL+HN+QRLWRdTLr/TRcnAfwFStiCHibCMAFxIrVKjhtfet2FtVqy1sz6YXrtABoavIctvwhvGOHJbtsgnjJkPCr8Qtz2KcsWxtdXyQ+YY9dthvn+diWbWSQHQzpWtm/BwlV+o5GKdP5sFr20hhaDgDeuLd3+Ng9uU+J8zio2zg7LP8lmnQIILL52AFyOGxtu+5UvW4kq+LmEWdpTC5XkipNotQNIOTStWGKce99dpOjmiIVVwtP1RAyvqije5wUbaGVy6Nx+S2Wq2jjEi8F3uQIrxqqFFoLGIZ2z7g8NdjxRBxzsyf7Nr63EbQxc/Nej/zPd3zSXA9583f+bub3y6hq8Z0e7oCrmvHnxhYvC5gEThUkc+d5r91zo9rYLk+9T3HzH0H82sfJMVpfdtKUX/1rXXqy4yQYr6aSVhPW83cBUrFSO2rKsogE+OsdYTf5AU5KK21tvvQUAGDFiBCaFmGp3220337ayfPTRR5gzZw5mz56NH/3oR/jTn/6EdevW6Q24j46ODql/g52w2GTAX05XdfHgXpQ2IlzoijdcBeNOY8eaNzUZGfK48aXXXdhQRdczli23MWFH5+m3pbVM6SEwaZI3kToLem/QjYzi1ro+2Gw1rhS1i0/hh//aGcZ5zJJSX5HFqGrPmi8qDKMzR7v7uuI+3LA5uI3Cea/Mlvl6kRU9bj6Lrx7usDo7vWvKspj7ijEGRLV5OOMMJzzL288qGhICOW7M3wfsbyIMKMSarDrHhHjcbANzDMCHSvrnMDavUz2c3JPH4ik/uopbn8eNe99EHtqYGu8i2rDFOxdFpdNY+JV4G1PtXkQeN1M5bq4CwXoLpkxO3sagOC5ftdooj1tyli4F1q/17+lGb9Q1esI7BA3E3TD7KMLmAROtABz5YgVCdHxd+ezcZaKQmyjCxzmO53k3kfv3r/Wb8cE6xwBiqhK06HpftKEDXUzxEx0FxZ2fonPcBqfmVpI5bkv77uSJEyeGbtPcZ25amrBc2UsvvYSXXnrJ915VVRXmzp2LCy64IOFI/dTV1WntP1gIc88D/n43teUmysSKFykl63ETWMD4c7T9sOiQQFHp9aJMZpHthko275hDRd9a6J1Xy/Gt6ckf7tksMGqk8zqTcbx57rEaRjrfJJ8HNrcGz01cKWoX3sLmX/AkG6+IoOXUKv6uGctMPHuwHETw2EmZsc0wPLXMMR55xUn0rOAsrvWb9dD68hbzwQOI8k+am52cGrewAOCEP5XV2AGPG+u1HT1Kbdxh4V1mymgH38sXbCMeWsAfbs0uvhdv8BvuVBcOYVEJJpQfINzjZiIPbThjpGGrVhZDJXXCr9g5JmQbrd9VkLtoLMdNoEDkDSjKAHc9Rnogkh+jrS2Y4+ZGb9QyHjfRswOID7MPU3xMNN8G/OsZL8eN/dzMvcTKd14zx1A24ASvGVa2lvGJ+/vjTZ3YuanRXKgk89oV+f46/8WgH/Vgb5VVJUvS49bedyfX1taGbuMqSW2icmcCxo4di1/84hd49dVXsXbtWrS1teH111/Hd7/7XXR3d+PCCy8s5tUR0YTGJts2NvflEtRky9Qrg0k0UVW938pZjxvj8/dPRorCIU50ZifrEVXl+OLo6LhCUen14jiZRba7EN/hi97i5703KpRKrwPANmM92VnGAdY4wtHg2jZkYNv+My9TitqFt7CxCx4T86eomIW5XmjRn5vq+eWeEf+1rjf2jRv6jpNhFpgRvfmA8PyTmTOBO+/0PG9uziMfXsvmRaon3osXbKZbPLiYLE4SVo6aX5joKp584SP3WMY8bpz24+WhWcqLqlqmtL67+LZtb4GlFeYpsavpUElT3nGRQdRXbMaUQTEkdFdVekMDsIWreJkretziG4jHhdmLFCvAnMdNpDD78xaVRQOQ9LiZKE7CzAVej04dj5h4X9aYYMpQwXv2vW3U5btzYCDHjZWvLn5AKUnFLQ0OPfRQXH755dh9990xatQo1NfXY7fddsMdd9xRrEx56aWXYvXq1crH2Lx5c+y/Tz/91NRXGjDCFKuevF30YtVVBEPqZIkrSqDjPWE9buzEby7HzaMYrse8t21jTWzVxyhbhK84SZ/XZNRYb+W9ckmZUul1AKipZhU393zYxRw3UX6bTClqF97CZiqpP0w+4L9m9GQ7Ajo7naIAvKdDZ/hii6+Zh2MuB6xb2yeH9bjFtHgAwvNPZs50zsGcOV7orqu4uYUTfvgjb3vV4Yct2NgcHRMLHpecQY9bVANuE4gqhRaYHD2dECYg3OOWM6BciRaypnq4iZQfXpqpNg8iw5y5UEkHUx43//Xo/8w9gurQJ00CKrP+nYs5bjGhkjJh9pblrTjCFLcKjYpiIuXHZAGL0MiBkDEkQfTMc46jJzdqX2OhksxrPiqpOAaNs+8aOrbGUMmSVNzq+0wwUflgmzc7OSYNojrVCTn33HMxatQodHd344knnlCWU1tbK/VvsCOKTQaAzb3eKq+2Qj0Kl13Es2WcTXhPWI/bhi7PU2Wqj5sV+2CPlxF1SbPeEdeDwoapdXdllEqv82OrrXNkVtXaqOyrGdLKKG6VlY7nRbaqGRDMjTRd3Ul0XRavGcUjuFUY+6YbLFkK7LQT8MEH/u30FmxBj5spK/7SpUC3W5qbme19HjdBiwcgOv+kudkpkDCuz0s7elwB73+YLxZOqGeuYRM5FmEeN9X1mmhMTqgkc6+qiQbgX2RHFSfSbsANxjtjqL8SwHrcOI+eiXBGwX3qy50zfC/xYzW1mPUW+ezx1WWLqhvmDC2SAS+ccAtnqXEPobqIzWaBA/bz7+t64t1QyUIB6GwPypcNsy8W42HOtbFQSfZ6FBhbdaM1Qr1i7PPPROEsgeKmo5iEfe80qkrqbBOGOzYb/nnM53EbnHpbaSpu2223HQCgJaw2NfOZu60OZWVlmNzXhGrFihXa8rZ2wqw87ERanVW/tNiiIWxFMBPekzF9PYoAp0x0sTKYz/1vxnonCnuTkS0qve7Chkq6HjdWcauvUyu9DviVm5f/4SgsO+zkryipUopahG3bRiyOLFEVPVV+0/nzUazC6Ho6M32eKt4TpbVg8y0cXI8b+7m68LY2T9ln89pkPG5AfP4J+xDvamgvLsJMJPdLFScx+OTNBUIlzXhmovoIqSKaZ3KGFlRAeA5dri+83FQBEZHHzXTeDP87GvOK2Y4iu7ZLryWIty8jW1CcRFcZr+8zpm7JFXzeKi+sTl32kYf7d3bPvRsq2dluoVDwb5MkzF7kATZWVVLYDiAtjxuEr00UJykIo5PMXI8sBVNGlpi+rs426oS1BKB2ACmxyy67AADWr18fWnzkjTfeAABfjzcd1q9fD8Dz9hHhhHa891mr1W+JDUzCOktxMtKQXVeRxZi+pq9527M+muvjFv0QkHn2ikqvu7Chkq4SUcEobl//mlrpdX5sY7excdllwLMveA/HbxyRUSpFLZLveAq8v42ESgo9bmrKPt9Dz02HDIty7ezQeEAyr4ULB41T09DgL9/sVpPM+Jqqh+8fNx3WM551tqediXCUsGpv69ly0UqSxZgsTpJhwrvSaCwvWvSYKBwCOEaJni19sgH09nrhY25kglY4I3Nuih4OYyXGPdw5gB+qXtNg//z+0ooNWN3RzXyujkjpzBswgLg0MPdqO9PXzvO4qbPNWP/E6M6TruImCpNMEmYvqnJqLsfNe+1eMya9MnLFSRQ9biHKT9i1ryqbxUSoOsDVAwgpJaRVnIT58qxRizxuKTFhwgTMmDEDAHDXXXcFPl+wYAFaWlpQWVmJww8/XPt4CxcuxKJFiwAAu+++u7a8rR3/A4a1ZDDbaNwQNeXi/Lhi2JvmE6yK8Qa6iypjeQrMa1E7ANlFLF963cVfVdL5ny29/q1jzYRGFM8HU9Bi5Ah1pRAQVZU0E5bmyffwctz65Cf4TUU99Ow+a3GY4rZ6FfDqq9KH8CEyhPitseq/6aRJQFYQIlnGhkoWxPJl8k92HuPFRHb25r1ePwZy9EQLnmWtXb5tTCj8LnxxEl3R7sJBpY9jHCJLu79Uf/I7im3O/tqr3gG22955/+UlnvtV1/vjhXr2eZYMzb/srVIMlQx43NTF816xdYwRwflcT6H1ZDsUQ1M1isG4NDBtR9q6GcVNcPyk8NeDc/nZqK13pLM93FTC7FP1uAmNrd7n+lUlxR43E3nMcUqh3rUe3DmXA9o2s25Ds95xk7D3feg6dZD63EpScQOAn//85wCAK6+8EgsXLiy+v379epx11lkAgLPPPhuNjY3Fzx544AFMnToVBx10kE9WZ2cnbrzxxmK1SpYXXngBxxxzDACnsTcpbvGIkqgBc3Hh07iqi3yjU92L1lfxrSjb+1z34evuLWrALTuRuqXXeUR93FiP2/hxphQ3///85yrw142JBqR++UHro4rHTdRDz1WYw9bDuV4Le+0l7n8WR3yoZHKZLtks0NTkCXDHz4ZKiqpKAnL5J41V5ZjU6LW3aO1bEJow4vhbazgC310rV0VYhVyBD9/VuybdhQNfDMIEwtLxGgU+2LDgNWu8cu4AsHGjjRtvyWN1zss5N1210kTeItAfoZLMNSnwpJoOmTZVJRRwok1cOph8dC8fSh3+evvc54GJ29nFZ1Rnm6UVZi+qcsq28zFd0MakASfNkO+46Ce9HLfge+PHA/94xTvSTpMtzJnjGH2SEtUP2ASiKtPOscz9tgNFySpuRx11FH7wgx9g8+bN2HPPPXHYYYfh2GOPxY477oh3330Xe+21Fy677DLfPq2trfjwww/x8ccf+97v6enB2WefjdGjR+PLX/4yvv3tb+OYY47BtGnTsN9++2HZsmWYNm0a/ud//qc/v+KghZ0MVrRvKVrZTcUOj6+vxpgaz43U0xdHY6q0e1bQy81UGXAgaE1WnaD50uuAPx/JXXxX1bCLHjMTtWphlSj4B6SpcECRjAIc+e4RZM97WA+94uImI37E5HPObxPWvDoK1qPmSjcZhz9uHHOsvmuGLU6SFxQnSZJ/wlry3QWh6VBJExbkOPIGG3ADTDlqVxk3aFZmh+beo6oFPviwYMCrCgg4rUEquD59un3i3L1FC2VTipULrwia6jaQF/ycpsIwXdFs+wVdykNaVJjIceOvh89/wcb7//KOsddXLCNh9qJ+jro9OkW9V8M+15bv8/zoz/EipdM5TvDYiWUL9l2zBqhgWr18usIx9kyenPy5l7bHLUy+qcJfA0nJKm4AcN111+Gee+7Bl7/8Zbz88st47LHHMGHCBFx55ZV45plnUF1dLSWnpqYGF110EQ488ECsXr0a//d//4eHH34Yq1evxsEHH4xbbrkFb7zxBrbZZpuUv9HWAX8/f7De8WSazFmqynory2L4lYHiJID/IcOHSlrQH3uUNTnp2NnS601N/uIk1TXO+/sfwIZI6Y/bGbP7v6EQJoiqSjKfGZhCfQqQraYwh/XQK3rc+i5LXlyOUX5mzUpmgfQpnKJQHc3zXl3lvfY8bt57ouIkSfJP/BUUgY6eHJa2etVgTYYBDa+qCNlaH6c4CXt8Ux63YDigLqLiJCqFLERhwQCnuFUEx/3qPzJKVnYXPmfJlzdj2Hti0uMW1Q+NP35y2d5rvmiLRq0vRj6juPmKNTj/68zBvEfQtj0jEQA01OuF2YuqnBa9kSYjQYTpDXrEFSfRWXOIrhm/wVJJbOS+rhGntwfFvq7d3cmNlqLcQpOE97hjxzA4VTeNW6l/+Na3voVvfetbUtuecsopOOWUUwLvV1RU4NJLLzU8sqELf6l/vLETO49pNJLX4sLGrPfk1bwnInI5YON6b/+enFlvHuBZQ7yeXMxnCvLd0usXXwx8tAT4oE/ggQcB+5wKPL/cBrrU5bv4FQg9b6FQPvPatv3h8SY8KcFQzOTXY1gPvUJMjhtb4MNtXs0FBIQiDNUxeC+xD6fqaqCrA8hkxaGSlZWO0paozQPzumDbeHHFhtDjJ0FU7Y31GjRWmn18BdoBmFLcBB4xXfyhkkHFUDa0ThQWDPhDJbPlts9DCwBvLQR+MjP5teJSjEoQeNyMhUpyxxJtk1g+s7NIETfd1ypv0OPmbwovOL7WIt9CbXkZOnq9ySRvqOAMIK5yauqZLawqaTCcLixU0oSnU9hKJuTzpPRs8e/rGvhcjxv/OeAYgfbdV87ol7rHTRBOzr4enCqbQ0l73IjSJGwyMOmCZhdovYWCtgLBJt7/7AJv//MvsDFnDtDda8abBwQfMv54efUDZLPAjjuyB3IXbH1/wqA1WVg0QFk0gKCFLdU+borek7AeenbfIsQKmTF7e/zyw5pXi0izjxu//+tvOvcB224inzeTfwI44+/s9bvwVMcfZ0jYY9xwRcli+OIk+qGSzv82nPGbVNxElUiThkqGhQUDQC8XKskrblW1tpKV3cVdLJv27Ivyr/lFoVZYHfNa1Fhdr6+V/z4qMMZKEzluYR43NtpEh32aRxRf2zDXqBnwzrsTqdE3FxTMPLOFOcYGo0HCPG4mPIa80Yz93zm2smh88on/b9fAV9EX9CBS3FyjpQz8c8M0vnuVSc0woTAPNKS4EYkJu95NWqv9HrcCVzEtmWw+8X5LJ6MU5m1ccQXgtu8z4nHrE+EqP2bzxIJWJO8BZsZDAIQVDTDrcTMZDgiIQiWTn/ewHnpeOwDxIybnLy4X2bxaBJ/DYTKcg9193DinzcPjj3tHOP470Mo/ES18WFSvS2G1N+bM6FY25MkZbAcABPsIpeZxY47hInNuwsKCAf/1nC23fcVsABSrBQLJQ4MBQVVJQ72hIJofNaQFpMeESpqKSrBt2+A5cfB73IKhY7q3UzkTjuC0jlB/ZvNEhfGbbZDt4J9/tcRzRhZWYXaPb8bY6hmKxZ8nIZcDlnzs37fAe9y6xbJljZYiD7NJ2Hv1+eXr8dzy9Y4xhDxuxFBENBe8vGKDr1m27mRXXuYvIJK3vcdvkgWbKPG+q8OTXVXbZ/Uqd/7v6oQ2QY+b95nJhwxfSlsnvy0gO41QSd6ibDAc0JHvvS5ALewtrIcen+PGw3vcgPjm1SyuQu4O2aQ30veA7Puf/R7Dh8dXj4xCFGrkO77iFxCFGJnOi2TJF2z0FtTmGRFl3EJZ5KFRReSNzDFzpMxCOSwsGAgWJ+FDhGvqvGMlsbK7uMMzPUf6d3WvGYOeTka+KNzQVL6VDbMN1YGohsR9x9a8n3hvp1/x1BItnAvc828qDBMIiZLRkh6eF5k3YHAV5YmZGPvSpUDHZv97bn59nOIma7QUecdNwt8yG7f0oqWtywuhHsSqGyluRGJEfaVWdfgTJXRvigrmrgt43CQnurDEe9bjVt2nuGX7FLc1qy2tpHsgmOPmUyD0RPswb3lkF5p+2c7nWuIFVSXZz/QnUd4bqboYFPXQi+vjJlLc4ppXs7ALNsBcaw0geF7Wd/Xg1U83evKNLtiCj2BV6X5rssgTqSg4hLxtozvnHWH5kox0uKuIgMeNUyD2ax6pLJv3LrvHcJGp+lhTE/6ZX3EL5rjde1Od7+8kocGAd03yRTgAvXlGZKRgT/teE0ZAB38D7uC1rm08Yww4phqqF2X7lE7W42YmdIyfw/vP46YlWhhuaCs+O0SEFyfpM7hqiBfm5xkYe1ubfw4APONleV+xol5BbqyLjNEyrHm4KURrii25AoVKEkMTmQteu/Ijs0Lmw4xkLeFhifdbOrz9q2qcJXK23Pm7t9tKbD3mcS14aVQIZPvEFRdsxiyP3mtxvLxZi6zpRXigOIniYlDUQy8QKsnJ6+VCJWWaV7MUcziKCweDHjdOsXp++Xp05QrCz1UIW5iIPteVa7JcP8+mNhvvfuCcl+4twNQpFsaPh3KfIp/iZtvIMd68L46ux8ga9QqZYo9b8jkyDLY4SXm57asQuGFNBh+84R970tBgPlTSVEi2MJS87xjlGQtNtZWi3eTlhyg/LqbmyALMhho6sq1ApVMgnWINtm04x42LpjBVrIzfv6jsp1ic5KMNHfi/j1cXWxEZ87j1ne+PN3n9FlUvm4YGYNM6v3rgTF92ca3EK3YsMkbLOIOfLqLTaoOKkxBDFJkLXr+kvvc6z8XLyyxKohLvWY+b2wPN9bj19ia3HvNk+EVJSiGBfH6I/sMxaE02W1WS94gZPi/M64JicRIXt4eeWzbfrajlFifhpeU4j5tM82qWorLf97df2ZeXI5TNvBZZNrUVQ+a1yRLponLO/jLdZh+9vXkbldXOL9DR5vzQa9ao9ymKCpU0ea8+t3w9PtrYkVh+Z0RYONvbjy9O8vL/VUH0qyYJDQ62TAl+pkJUcRIjebTsHCmwUphS3HiPm4kcN8DzCIpy3Ezm0trwX+9GlSvNuZ0nvjiJHrwB6p21bT7DmV5BG++1DaC1uxeLNrCKm5rsSZOALe1+N7tdsIpKGxC+RpI1WvLPJdN5bqLTyir8g7UVAECKG5ESpprXAs5iMOlDLCrxviuguPmtSEmtxzy8x83kQwbwh9M48s2ESpb5Ho5+2Y58LfGCqpLMZyb6uHHj1/UWzpwJvPSSo7y5omRCJZM0r3bxFmyikEB9L62L6NFo1MhicDEbV5zE9HO3stpGbYMj31XcXFQqKPpDJf3hryaVcQB4Z01b4gJOYRVUAb/HrSxr+677QkEsO1FoMPPaZCELXq7zf/AzE/JN9uXz5PfN7YBWQa4weI9barm0vMdNc/wWNxeYrHYsbgcgPraS/JAcN9HniWVzY1+y0W+NUZWczQIzvuRX3DJlNsqYNjJhHjdZo2Wgr6vSSCPkh3z7NMIy+xtS3IjEyExkugtxf5hR8jCgqMT7LZ1McZIaJ3/DXZi4C5Yk1mMe9qZyrIPpeNzcAhyudJPFSUQeN9NVJT/c4GU/mw+VNHPe99gDuOMOoNCXmJ0pc8Jr2QcY4FfckjSvdmEXbIDZBRWLyKqpvWBjTjyfx+V8riY3vjiJWcrKvJzXjjax9CQVFHmPm8m8GdHuSaMSwiqoAsHiJGxVybzA0p44NJhbiBubIwX7ut5aE3NvXHESXVgDjslQQ15OXmgg0pMdbGcQPK4q/FxgMoRfVPDLbHES73VBoJ5o9S3kvIXdeX8rlp6Cek3VbxzuV9yy5UAZo5CxXnmXJEZL3sjCK7Ujqsqhg9DjBmoHQBChGM2bKXAeN01rcs8WL/Stutb2u//7FixJrMc8wUWJ+DNV2KqVZnPQ/Mqy878t/FxXfkt7FzZu8cz6ugUygKBiaOq8z5wJ7LB9n5wMcNuCNRi/vf8Bmet1Hlp33qnWkDhQZc/3mblFvmitabKxusjjpiqdt1SzYS5AuqEum9vEj8YkFRT54iRpVapjj1E8tsQcGVZBFYhuwC1aCyYPDfZeO0YW72+tUEk2HNv932CoZFw7AG35YcVJTHncMpziZjjqwZVgw2yoJ+9ZMqkUsog8bkaLfhkOr+Xz83jxfE/NJGzf7FfcyrI2sozBUmTASWK0DOak+z/fXbNPp+h+t2GuiupAQoobkQraoZI+yyZXnERioouyJgNWMc+tqqZQzG8DHMUtqfU4IJ1blBhvNO3Ktp0QLBfTVk32f0e+lnjfd/9sM1eF1Ig1nH+ImfN0jhrlvXbzIln23MNSal7t4v2mggWV9nlnzotgrWlSiRCFj6kumNm91nf14omla9Hdd8Hr/p5xOawdreGPRtkc2IDHjfnMpLLsknSOBMQVVAFBOwBWccv7ZSuFBnMLcVPeJd544/xvBz4zId9kewcXLz/abKhhUQ4Txu8YQtIJPd60pRftPd5Nol9V0nsd9LhpieYKfpn37LPjE/Vy1DNUePDnBQC6cuqKWzmXF5AtB8p8Rm7vtYrRkn8usUMfW1uJmvKQ3jvS8gXYdvEZQh43guDQtWZkonLcNK3JABjFzeYUt+TWY56wMCALphLk+2TzlccMWjX/vX4zevMFw8VJwlm7Vq8gDC8/UJxEu+R99P4HHajWvJqX7xUnMaPs53JAW6v3d09OpFhpHIDb33STaXZoHb35ogVZd35ZuhRo3xQuo6M9/DPZHFi+qqTvNzUYkcAew/lMfp4RVVAFOMWtwvY1nueisZRCg/09I/2FPrTaAXBGM8C7p4zkFzMyNvdoTlgCXOkFzlhprjgJf00Gj60DO8zlbV3ecQ1e74HQWgNKrSuioxNYvBjI5dO5V0Xzo7lQyaDXqkZnIQNg17GNxdeZDHDK+V4OST7nGLnnzIGS0TLgdWeMCK2tfb+DVpG44In9mMkBHMR6GyluRDroTnaBUtoK1scwazLAK27e+3beSmw95glaB933zUwVoaGSug2DufEtb+tKLRSTZ87P9Uqv8/KDHrf0lE4T8k2HSra0OOdy/HjHEupy7HHmPGIucaFApmSz6N5KbW3AFbNHhCpvUR43QC4H1hc1UDBtSAi+5y4Kk/b8ciuosnMlHyrJ5ra4/Zx0QoPZIbq5ui7mPW7Bz5TlM0J6UvC4Fed2JM9ZlKGMUyJMhx6HGVRM5qEVbNuXX6gj250nN/cZapYus7HTTsAv5njbmCzeJPS4aVWVZBRa+J95WcvCl5oickYk2LaxBqOqvdYfex/pKeNHHG5hxQrgssvUjJbst97SDVx9tff3009a2GknaK0JhHMkc3625NTz/wYaUtwIJQ7YdlTk50bzZvh4f0vusg2zJgN+xc1tKAkAu+6q5zkBBNZBg8nxAJtHYKOn1xv75jY9CxX/kxkPSYn4LJ/XK70OiKyP5qymcfubKtzCt3hQkT1/vnMOr7jCOacFxkPS1W0uB020v+lKe2HXnO6YGxqAxe9U4LR9mvDwn2sDn7dvip5jZHJgg6GSBq9HwXvFtiAKN+rMmY6Fe84cp9BIL+NxK6/wV1OtrbGUrewufAVYUwtxFldkMeLBgNi0rfTFecA2myNWlMNFshgP4w8RYrSqpCFFn50ne/sMFW77F7ZVxssLlMQXsThlmUfnt40qhHb4jmMwolq9V2TxGCHDa2zQi0xiz8s77wB/+EPQq6+zJohbJaZRFba/IMWNUGJ4VTlqI2KQtReDltcstFBQ87gBYmsy4FWWzJZ7leQAYPtJBsIumNdpeNzcr9/ZBRx+pDf2O/+q57XiLYsb12V8YVG643/llfDP2ApVKqXXgfDzDpitiCk8tiFvpDtm1et9/nzn3LGN59ny7V/coyewj8nke5OhkrxsmfdlcXNgc70WujuDstZ+Gj63yebABouTeJ+ZPOcu7jWjukhubnas5ytWAL/9tff+1dfYuIlZVP3sQnUru0t05V0zHgib+990qGQauOLtFBpwA3EeN335YSLM9hjVz1/m50n3+bPNdnmMGZ/zVQ2+7no1Q6KL/5wHvTwmr3d3jimzLGTDetdoHEPm/STYfadjhy/2YtQ4b7GR4ypWqqwJBnOftjhIcSOUiZpwTDzg3FAjvnlt0rAR3poMAF0dnowzz2aaYZp4uIdYNU3NI6194V29vYCd9ca+aV2ZsoWqpQW44Tr/AOdcBLz4kpkFVUtLeEN0IJg3AyQrvQ7EhUrKywmRHvmpSW+krXi9t7Q454yH9bh97ZSOwOcbN8qOUgx7WZgPlQw5pqZcNgd2S1dQ2uoV4YqbbA5sMJ/InHfDZKgkTzYLbDfB+/55q4CxY73Py/RqBgCIDvHSbWtSlNyPHiVTsAactD1ueS4nymRVyajjquDPidQzgojmSVbEudds8l3jhZyV+FnE4guVFHh5dHLcwoq2mIruiZKle4yWFoANnvrP73huznyvYAckWxOYPAelBiluhDJRN4aJ54yrAJlI1GatyYsWAfvu7cmY+V1P+THT60f8cDShzM6fDyxb5rwuy9oY2eStyjeu8W7nJBYqN2Tklxdm0brBkzF55x5Mme55aO75f+rjvuUWoKc7/PsXBIpbktLrQFD5MZufF/25yfw/G1C63m+5xe9pc4lr5fP8c1LiQ2EfIuZDJcOsvfqy3RxYtgefy5oQxS1JBUU+T9e/2Ew01ABRi+wyA5b2yqwnoydfMJ8LxS3E8yncqzbMlnUH0i8hzv5yql73KFil3vH+mAvfdWSIhZj2uOlcL6J5srbBmySnTu8NFONJ+ixiiYtIMNb+wjZbiMclzBane4xbbvH/vdfhW4qv83mx7CS/w2Au9x8HKW6EMlE3rolbxmsWai5RO5t1lJTRIz0ZPXlWcTMRTuO9tg1awVxLoVuOu6ISOP48r0rC+tXBxWachYoPGfnjpV4y80HHeInI+Txw4omWUshILud420TKWVG+oJknIF96HYiusKXdgy7mc93flq+yl2e0LZnr3T3HIvjy7TzPv6CbGxm9MNEhbMFnQnlwc2BznHW3fZOFrg7xozFJBUV/qCTf7NicB4LHRCGLSsbttSVXMO65iurLpe2NZHqhmcxzBdK34rNjVGnvEEdFGauQm68qGUaaDbiTeKzC5slyLhUsIyjGk+RZxMIOz3iOG/vcAFLxuIVFUegcQ/Q7LF/knXRRjzgX2d9hK46UJMWNSAeT+QSBBtwGZLOLm16DpX+BcEu7biU511LIhhXW1ntjZz1uLlEWKlHICFsG3Pd+n+NNJWRk6dK+IhkRnh9RqCQgX3odiAm/0vVwpO1xY14XkDyn0z3HIuI8bnUjctLnWAS/eDDJyJDkelMPrpkzgVNO9p/fNSuDBhCVCop8qKTJBtxRip+JRVt5xrNXd+fz5nOhfNeMd27KLHNGFhtm+3EB6efNsF6C9V1etIMpjxuruPXmC77qtWaqSgbJZix9wxav6PvaR8gLj5onWSoqPfmuRz7Js4gl7rzqVZX0XrcwVaBNetzCoih0PFru7/C3O2qK72WZInFhhlxA/ndIOx91ICHFjVCGb/bIYkYBcv7nFz0mnmFsZUrzHjfemqxvBWMtVGHWqA1rxOFdYRYqUcgI731wcR9eKiEjbW3O/1Gen6jPZEqvA4KCB+xn2ovB6P21i5/wVfYSWtvdcywiytMJAK8+WSV9jkWkGZIydWSd+JgGD/nlPf1/sxUldfoU8W0S2OlSuzhJxGdGcpUsq+h1684XOAXI/BzpeiJMKChsgQ/TiknaCyZ2iGy5clM5bhWMBaunYN6TKqImW2bUwxzo0ZlAdtQ8ycIaRDvavV9dZ54MQ+eSr2SS8brzBfTkU1DcUvC4ub/Do3/xKvpWVrOKW/T+Mr/D1qu2keJGaBCVz6LrXQK8yYfN+UnSXDYK1uOWZqhkwfYqd+mMm7UUipSc7i6go00sX2ShCgsZCfW4Me8nDRlp6Iu+DPOqOfLDP5MpvQ4IipMYauoL9ENVSeY1n/Mjs5htiGjXE6a4bVyTwfUXNOKjd8ulz7GINMPHqsvLMGVEsFy/SWWR/+322cvCm286ubA6fYoCHjeT7QAi9jf1e7h5bt25gtGxA/z1zhZWMbgksf2N7E2cl6g5vNyE0hnyvqmFeHnGb7Bc0LLBO7aBQ4hWBDUR1adl8Sv6fE6kvJyoeZKFzXnrZJ6rOvNkGDpKeU15Gb44Ojgoo6GSYR43jXG7vwPbdqQqgeIm8zvEnQPdHncDCSluhDJR6SxGPG5sOGNfvJcpy6NPcSukV5wkpxjSwcNaCkVKU+uGMkSpF7yFKixkJNzj5r1OGjLS3OxcD1Gen7DPMhn5RTOv/LCLzfSLk2iJ9yv78BsqZMbulrcXwbYDYHnkjlo8/1ANmposqfL2YaQdPjZcEC5p8pC8rLo6YPp0JxdWp09RlltsmvS4lUcUIDG1yHc9bja4cHIDstkhFpgqqiby89gm1uY9heGf7Tl+uLb8sHvJ1EKcDZXs6s1jC2O0TMtzbkJxY89LnstdTHK9R82TLPXDvPOyuc05Z7JtQJKie79OHl6Lhgr/RGXS4xaWt6xzTbq/A1sYqrbBOw7fDoBF9neIei6Nq6vC9sOCBsHBAiluhDKFCM3NxLTBTj69xYVsCopb3twCn5eRM+T1YS2FmwXNgXu2BN7ywVuowkJGekM8bjxJQkZaWvoKBYQoEEB4FalCQa38r5Oo7f2dfnESc6GSLa1daO12tHNZQwVb3j7wWYX4Ps31PTRly9tHkabqJpJtUlnkowNM91sE+npmGQxLi1oMmzoz/gIlnmXFSMihLx/V1u5Bx+JKsPtke8fUFh16bncaUYvRNZUhn8ojGqOpKBPAr7h15/3Jr2Y8bsG5pjprwuPmvf5gXTveXdvOfCY/8Kh5kmVEk3duujabmydFmAizH1vnv/ZMetzCUmJ0oqrc3yEXbCsKINrjJvs7RI2uKju4VZ/BPXpiQIkKlTTxoOGbhfLv6eAvTmLa4+a9zhvyuLGWwk3rgretqKS5i8hCFRYyEhYq+coT1b6/k4SMeDlu4dtETdSySqKvOAlnldUvTpKuV4n1oLy3zvvCSRaybnl7HjYEhaW3J1l5+yjSTAQXiTb54OJPsanvYlleUYaC4ZzLSMXNVFgds8j/eJPXY8mIx415nWMMZ0Y8bn3/d/bm+604SX2FmRW96JFq6pkH+HPc1nT6V80mjiIav+lQSZ6kc3vYPMkyoq/NTke7hULBMjZPijDRJ3tElT8qoV+Kk2ge4owzwscZVpwkye8QdQ5MzDMDCSluhDJRxUlMIJqQTUxyAGDZnvDOnvSKk+RsM0ohaynctC74IIxS3EQWqrCQEVGo5CO31+Kv13qaWtKQEVdJjK4qGT5+6Rw35rVuk1ae8pjVge5lw4e6uCRpaO2Wt+epDFXcrETl7aNIU68VWXbNhkryHjdzsostTXiPm+Yxoq5nU+MPyzczHU7eWzCruLGXyxJW4UzBkyo4pBaiRbLJRXiZFV7h0cRxRDONCe+GyfYXonnyzl/7HzJucZLOvjBJU/OkCBP1AIZXl/v+Nhn2Ora2Svi+7vXS3Azceot4XRBmyE3yO0QNz6QxZCAgxY1QJp+u3iYsk6t7w7W0OFXivv0tT07bZu+LLPrQ0uppBYg9hYD+BO1aCkUet1yI4hZmoQoLGeE9bm88V4nbr2zwWcCShoy4SmJ0VUnx+0mURH/jc7OVSCtiLAa6j4H6SvEJ7U2guAFO5cM77/RblKtqxDJmn24lrpQYRpoGTNEtb7Y4Cfe3QdmuxzTHGxKMHSGI7prEnSN/dZlY0Pp1BrxijAi2OJSJfmVsNcaPNnYUX5u6RkXXnimlUGSoMam4WZYVmh9pmzDEijyGtgnFLcLjpvDD8vPkA/Pq8P7rwVzajnYrcRuQpJhQItiwZsDsfLxzSBEPE8eYOVNuJldpx0IeN4KIIcxjoINoQtN5iM2f7xQcuOIKYO0aT05Nnfe0ueRiYORIZ+GStF+ZN0bvNau46c7PrqVQHCop3ifKQiUKGeE9bj1d/kGrhIy4SmKUx60s5PJJoiSyYUC9ea5vlubJryiLnip18zhMhVoBzsNt8WLnGm5qCve47bO3wQVhilluIskmDab8nJKGx61gm23ADQAjqsqF7+sonuwcufpT8TV/5pnOdjr4PW5M2XtTIRUCTF2jQo+boWtG5HHTDfPmCZurcpqKW0sL0C2I2NhjRkbreQpE35Oqig8/T370bvB+mvb5TKpKG2CqMTw/h5m7aKqzZdh/4sjA+8byLrNBOfXDnTlBpx1L1OiyKc4z/cHgHj0xoLDljws9+nHsPKIJWXWSnj8fOPFEr29ZmCt+VUsWbW3OwmXyZLUFShpVJV1mzgR+cp4gVLI3qGDFWahEISO8x617i/9v1ZCRM84AonSfsmxw0ZBUSWQtyb2FQuJeaFFEKW5fGT/clw+kQnU2Y6ScuEtzs1PGfsUK4KuHihdkJheEqXrcRB4Og4oiL8l0aBrgFHIy3Yty93HDhe+rDp+fIzvaxYK6tzjb6ShvrORewzluocc05XFL0QOctscNAEbWiBX+sOqBMrgKfy4XlLHso4zW8xSINkboFLRh58nTvxeUU1eTvmcmjfxg07eR6L40pTyIvv/J3ytot2MxGV5bapDiRiTGDaW5+pzhyOeB1g0Z/PRU86VV6wReCJX7raUFmDXL/56oCMe6zzJY8r53zO5utQWKX3HzrMkb1juWI91QzKO/LvC4dTvHTGqh4kNG+JDL7j6Pm0qoAktzM/CLX4T/eCIDWFIl0d/iIXkvtCjCFLcdhtVgbJ04ByAJlmVhpKDsvS7ZLNBYL/7upkOw0kJYnCRFj1sa3rw81w7AxEK/prwMOwyrCbyv8luI5siONvE171aHnTVLJypB7HFLc0FlrOiM4LczNWyhx83gOcnlgO5NZhU3VuEXzePus1b1eQrEFSfRPz/ZLDBmdFBO28aMkWf2HuOGhX6WxiW/cYNlZNwuoisjjeq7LiNH6rdjCZsHq7MZjK4x/6ztT0hxIxLBhtIs+HslzjxgDL5/0Gi0bsgEttOlQZD3o/IQu+UWz4rsIirC8d6rlRA52JMuUNghfviRN+Xdc7eFnXYCxo/XC8Xk49kB4OCD1BsGsyEjIzgjfjZjKYcq8Bx+mPj9NSvLsPgdbzGhqiRaloWKvpPfm/c8bhb0HzIVIe4pk8qP6GEydWSdttwvjqoXPhxNJmj394PErHLF/23Q49Z3YmxAuWlwFKLFicpvIZojQxW3vnzU7m7g1lsVDoaIHLc0PW6G5PR/cRJ9ua6xdfx4YP/pYkNTLiqWPUIuq/DL3DoqCn9/eE9E8+Hd8zNGntnj66ux0wixcdvEfNPSAjB10PDgAzAybpe68uBazNQ0Kfr+Uww893ip2zVWY9exjTh4u9GoMtCiYiAhxY2Qhg+lAYANa8rQ3ZUJVDXUDaUBxHk/SSe5XA6YNy/4vqjcbE93SGhQwgUKO8a1G7zZ1PVerVmjH4q594QRvvdGjbC0LFRuyMiH//afg7O+bymHKvCEPWB//I1RKOQtrXh2FzdksbdQKC6CTFisw4qTmFQghlcFFbewh30SaiuyOGyHpkBopKj4jyrpetzSDZVMMz8kLGza1PkSSUkqO2yO7GgTy8kzhYTmzVOz6rN3U6/BkOYozIVKCq5HY8VJgu/pGlhYY+uaNUBXRwa3XREsOLF2fXKPG6/wZyTWwyoKf9T5NWWAev3VoJzW9c6VqvvMBsKff7rzjfv7bmHy0V2RJsYNOM/Q/bg8N1PzJP/7TRlRJ4y2Sgo/vjE1ldi2sUY7raEUGPzfgOgXRKE0LL3dwfd0QmkAcXha0kl66VJn8uIRedyieoklWaD8/XFvjPWN3sOwmyv0oRM6wntnTE2iFVwUTVwZ/CSETZgvPp/RjmcvHqPocbON9v4LC5U0ucjnc9zG1VUaS6KuLMsErIyDJ8dN8F6qHjdzskUVZk2eKhNhpGFz5OZQj5t3gNWrnf2Twi7E2T6aJsMCeUx5ZkRnJc1QSd2CXLyxFQDWrAhqWKvX2omeRSKFX3a6Sqrwh7cwMKM0z58P/O43QTmb1vu/kOozu6UF+Pv/iU/O1Verr5PY35ctUFbO2QB11houfDEkU9c8L6e2wow3jL8s4gqMDSa2nm9CpIoolIZF5K3SCaVxmTba318l6WThNn/m4Yt5ANGKm+wCpaUF+OVF3t+1jUGPG4+KghvoPWWqvx0n1+RCKqz4xvTp+vHsxWP0Tc42gO6+BaGJBVuYDJPhhvwxOjbrt6Zg4cdqMiwtRb0t9QbcwT5uaXncCsbli72RyQibI7s2iyXxEXXt7cLNImEvPeN93EIwZQRJ2wPMo3q9RBlbRc+6xe+UJ3oWhSn8MiRV+MPOgYn51z1P3V3B66N1vfiaSXKeXI/Yww+Ix/rray0ljxj/+/Yya7DySrH3VMeYzl/35qq0cmsOU7lz3PgqDfQTLBW2nm9CpEZYKA1Lb0iYoWoojcukBn+sc9LJokHcggR5keIW0WcMkFug3HIL0MkseNhWA1tCFDcTCm5aDSWN5kH1Q9NLtrKkux408R0sy0JtedASaGqd2dICXHOVX9j991nGchSAoBLeH8VJTBzBRDhgFPxDcN1ac0n9rFez6HEz6S0UvZfwAGFzpG2HhEpy56a+XrhZJOw87s9xS29JYqpqa5oe4KbaysB7qp7xKGOrKFXgjqsbEj2LwhR+ll9+d0ToZ0kU/rCfzoRh0T1PXR3hoZI8sueJ9YitXx3ShqFXzSPG/76s8bwiRHEzsdZwMedxS+e5xIsR1QYYrGw934RIDRnLWlh+mGooDZtMzXLLH6xEC1m3+TNP0lBJIH6B4iq4fL6fC98TjUVXwU1LKRpsZXNFRURMeQ2/PH44tmus9r1n4ry7Ftn/vsI/Hfd0W8ZyFIB0PW68qIqMUyhmn+Zg/5+kiHOKtMUCcOaRK67wC5vzc3MKM5tH6C6lTN5SwtL0CeWHzZEAcOdvgpOeW1UScKrYTpqU7HiAf4zsEtPENRnWE9GUUigao6mfdJemxmB7CoVzEmds5Z81995Yh01rHcVC9lkUpvC7PPznWrz/WlARdUmi8IfNs7o5kex5EkXEbFoXHrYXd554j9i7r4grGbJGZFmPmOj3ZStCl1eE5yvqrjVczFWV5D1uRsQG7iMKlSSGFDKWNVYRWr/af1klDaXhk6l5WUkWsm7z5+B4RaGS4TOGzALFVXBFSiEQ7nED1BVcl7T0q7Q8eWlRLlicmfoODZXl+NxI/2pDVzRrke3hrOOsMcREjgJ/jZj8bXlP+P7bjsLhOzZhlIGyy0IPh4GlsjvPXHWlX1au12BSf8phdcLS9Anlh82RAPDArXWYM9OvfBeY4iSnn64W4hy26DPhFdtz/PDUZAMQet5NeYBryssCRSBU7tM4Yyv//GMX8rLPoiiFH/DnXPEkVfgtiOcBXaMce562dAZltW0IXyLHnSfeI1bIW7j6nGGB7ViDsaxHTPT79kTkuLHorjVcTD0+eH3KlKE1zRD4gYYUNyKWOMuag4VLTh2Bv/+/Glxyiv/Bk8SyFpZM7eJOSEkWsmec4fUpcxF519hqaTwyCxRXwQ3zuIXluLmo5Iq4pDUppVksIA1ExVRMfgf+NOsoP8EcFL+sni1B2To5Cvx5MBpuyInKZqzUQl5Ex0sKO8/wcwGb/6qrMIuuD7M96ILvqZx20Rzpwi/A3XmyshKYPTv5sYBwD5XI8JKU+oosJtQHS96bKrRUIyiNbnIhxXv0VO6jOGMrf83zRkuZZ1GUwg8AdiF83EkVfsuyhJ5OXeMTe554w2pHmxX6LHcJO09hHs9Xn6zGQ7f5KwUXuPMk4xET/b4yOW4uOmsNl/Q8boNrzTEQkOJGxBJnWXN55x+VuPWSRqxc6s3ISSxrYcnU7MKBj92WWcg2NzvNnFkKBSugqIV53GQXKK6CG664Rd9uKrkiLoMhx60/SNPjBpi14sUV/BFVatXJUUjzt+TPi4kFeFG2YJmv8034eYZfxIq88aoKs+j6MKkwC/u4KcgXzZEu/Hzmetxuu029AmyY8mpKuRIZa0xdkzVCj5sR0QBEuajJZcQZW/lrnH8Wyj6LohR+O6QtnKrCL/pNdY1y7HniPW5R3jaXsPMU5fHsEnj2WGQ8YqLf94M3PDfborfFTdZddNYaRdT6tQdIsx3L9sNqYCFY5G6wQ4obEUucZS2KJJa1sIUsu3DgLUmyC9mZM52mzuxDhg9pDMtxk12guAquSqikaq6Iy2D1uIXlo6giimM3msvF/60oWqbgT1jeqHLvrBQVNz4MLf08LpMKczBUkkdVYRalVRitiCn5ngyiORIIno9s1sKdd6r3WgTCq2GaMi6IpJiaB+oE5cpNKuNVZXzbjuSy44ytAY8bo8gleRZFKfyFkIW9qsIvymfTvV7Y88TnoLdtir5To85TlMezEBHZ4xLnERP9vvfeVI+3F1TgvVcrcPfvwxUV3bWGS8GQ5pZmCP+XmhrxtclNmDxCv6F3KUGKGyFFlGUtjCSWtaiFLBsyVlkVnCxkF7IzZzrNnefMcSxWvIeNn1ArK5FogeIquIW8hU3rgrdWVHES1VwRl7T0qzQb4gJOwQ+TiPJY0qyeqLpgG4iCP2kq4Y2VfguvUa+S5HsyyCjMIo8boKYwp+9xE72nLp+dI5uanPdynMftySf0lDYgXLEydW5ESoMpj9vI6go0cAYnk3cWf5+qLGTjjK38s4+9rpM+i8IUft7jlvR5yiO+l9RkubDniQ9Z3ByjuEWdpyiPZyGmejUQ7xET/b49WyxcdtpIXHzySHS2h49dZ63BXvd8X1BVAh43w1pJmpVqB4qt7xsRqRBlWQsjiWUtaiG7fJE3WWxcK2gcmmAh29zsNHlevx6orfF/lut7mDU1OQuXxYuTP2RcBXfpv4KhCmEeN51cEZfB4nEbVe2Fc0wbXY86wx43UZPvNKsnqloHZQr+RKGSo5BmqOSwqujQHB1MVpWUUZjDPO8qCnPqOW6i4iSa8t05csUKYNEi4OGH/QLHj9OTD4jnK9G9q4qokbWpuSxjWThg21G+9wxFjQlR9WxEGVt5A4SrTKg+i1yF3yezT3HTeZ6yiO759m798ohh56k9QnGLO09RHs+oXHpA3iOWtjFdxJfHD8fEhmrM2GaYsfL6/Bw52NIzBgJS3AhpwixrPCqWtaiF7E0XNaJto4X1qzK472axyzvpQjabBSrL/RPE+T91FiorVjgLF5VwDlfBXfavoELSLSg2AejliqSNqdK8Lrtu04ja8jIMryrH9sNq43dIiMjjZvI78KJU14IyBX/KInRalRyFNKNeGyvNKuAsomGrGirkKuSGy046zwi9BCarSgo9bmZkZ7NOVc2dpwWOoC1bNEZTVR8BoCBQ3EwSUAJTPNyWXEiyWAxRxla+j6mryOk8i/j9zjrL0n6esojupQkN1YItkxF2nja3hl+PcecpyuMZFyop6xFL25guorYii922GYZmA+fdhX8+b03VH9MivactsVUycyaw775Ovse8eY4V2qWpyZl0Zs9OPjlELWTXrszi9H2bYNvhBUSUmsByE8S2Ey1MGpZcDs/MmUDZ8KAHoptLSq6sdCZS3bCjNFHpIRRFbXkWX5002mi4GIsox81sVUkurENxEetaZKO8P2Vl4tWgcu8sowFdfqqyZRhdU4G1nT2YYjifQKicKMqSUZjDclSB5POMyGhg8tIXFicx/DsHiweYlwmYLWiTV9N1lDEdjVVbXoaOXmeFL/IeyuI+W2bN8ud18h43C3phjCLGjwMm67dxLMJfd1NG1GLH4WaMf6LvLfK4JXlmn3EGcO21wbz9fESoZFKPWNjvK5JbqmsNPs+dPG7xkMeNSAwfSvPmm/qeqrhk6lyvFaq0qS5k+QeBSR3lwP38t1Y+71XHNBU6kha7jm1ExgImNlQbXUy5pKW0AelXleRRPT0yBX8yISkE6jkK6Xoh9powAodsNxqfH2VYcRNVlVT8SWUq5PI5XS4q84zIaGA2VDKI6cudV7JMiBfJMFVREgBqyv1nRtR7TZc9xw1HmWVhQn0VagUtAnSYsc2w4uudhuvdT6K8Rf5Z+utrLePPojSvw4aKLL4wusFoU2X++3e0ebJVntlhHrEoj5uKR0z0+7qU+loDAEZU+5vODbIORAMCedwIZdxQGlOyTj/daXqbFFNNYE3OF3xeVXmZhTfftFBf7yz+dAqRiDA59m0bazChvnrQ9XADnIVyxvIXJ0jze+h4N0QW2c7NFmrqnMF3bQ7K1slRSFdtc+6n+hRCJk2GSsrMM2GhkirzjGicJqP4hD3ujHvc+GPqy0/b4/b5UfVYtbkbW/IFjK+vwudHmS8HPq6+Cl+ra0oltGtEdQUO2m4UMjBzT7nG1osvdvI0W9uB5czno0eF7qqM6bPCyrNTn82Ai39p4fIfQeuZLfKIiYqT6HrE+N+3vV1v3P0Jb1RJ07C7tUAeN6Jk6O9k26DHzdyEIVLcpk93FN1Sn0iBwdd4m4VfAIr6LplC55oRWWSvmD0CPd3A6hVlePaBmsA+pZwPmRaiU6xTcCZunhGFSqrOM6Lrw2SVM5PeyNBjpOFxM/yb8lRly3DoDmNw1E5jsce44cbbjrikmY/TWFlu3BDiGlt3+RL3mw6CxTJ7rsNaDZhkmyYYeWbzHjHe42bSI+b+voNprWFZFib3hbyOr68a4NEMDkhxI0qG/k62DXjcDD67eMXH5KJEhMmKbIOdCi7kKq1FG6Af1sEX/Pn3wgqctk8Tzjl0tK9/oW4p7cGM6BTrKD9x80yvwOOmOs/YnHvNAtDcYG5xYrodgOoxkyL69UzPkRnLokIHIQSMlikcw/R1yI457eIzgFnjJZtecsWv/J+ZKNwy2Pni6Hr856TR2J0JESbCodUeUVKkWbmSh5+WTRZvyFr+W8tkxTSXfZpHIJuxMKq6AmNqKuJ3GCJUc2bGGkP9ZkSYWBjyFtmOtkwxB2Uw5CikjWgBqLvIj5pn2HYAuvNMnltfHrljE7ZtDHpSVRFdf2k7y03Mk+LflJYj/YWpfpSRxzAtrx88bjuPcaoXVWQsNNUmDP+RIJuNz7EdiliWhdqK7KDw/JYCg8CRSgw10qpcyZNGtTSXYKik+UXJ6JpKHLljEywMjlCX/mJcfSXWdHqJY2meG1PXTH/kKLDX+2CLhLXgz9EzYQhh5xkWu2BunqljwnQbK7PG5wHRWUj7pzXicUs5VJJIxmA49ez8xXuyTbH9sBrUVWRRX1GWmiGhP/LziK0bUtyIkqR/FrL+v00u8HnZaS1KKBQoyIT6ary/th29BRs7DDPn3RBh+vybLPjDs8OwWize0IG8bePL40ekc5CUsCx/UQ9T95M7z9z/offeq69Y2HF7M/NMY1U5po6sw8YtvfjSGIleBAkRFidJO1TSiAyBx43msgEjjVYhpn/O6qynSFWnlLdsWel42lj6IcqT2MohxY0oadJcyKZZVZJXAtMoq0+IqSjLYN/mkdiwpRcTDOYTiRhMinNlNoP/3H40evIFNFQG+wyWMhbnczNtDZ+xzTAsXNWK5oYqTB1rVnYaFQ1dRBUk074kzVSVDL5HHreBw9Spnz62EQtXtSJrWWiuN9ekGQB2GlGHT1q7kCvY2HXsMKOyCWIwQYobMWRJs6okDy1K+pfGqnI0VqWvnAy2n7UqW4aqFHP+0sLiYiVN30/NDdUYX181qBRxoH/aAfQXg7mS7WDHVLTJtg3VqMmWoaa8zHhYcEVZBoduPwYF2x7UxbjI4UboMnivfoLQJM2qkjxpFCchBh7KLewf+LOchiFksCltgPj6S+NrbNvoeE9GGDKGWFYwOI+MWwOHqYWgZVkYU1uJupQq+ZZlrEGttAEgzY3QhjxuxJAljf5EYVCo5NZDmWUhT4kK/YrFudwoH8qhTORxS+Hc7DymEePqqjCy2lz12ozlr7pZRr/pgEGnvv+g4iSELqS4EUOW/gyVpDCgrYf9J47Ex5s6MMFwDgcRDnv3ZC2LPJ19iHL90jg12YyFberM5otaXMUZ8rgNHIPR2zxYIbWN0IUUN2LIwueCpPnsosfi1kNjVTmmU3J8v8Lem7TA9xCdi8GS48arnNTHbeAgva0fIc2N0IRmSmLIEvC4pbjgIQ8BQajj87iR4lZEdC4Gy1TDz4kUlTBwDBZlf2tgXL3nuf7cyLoBHAkxWCGPGzFk4Rc9g2XBQxBDDXaRT54Zj4xlIWMBBcaKP1imMX6+pbzFgYNOff9RV5HFXhNGoKMnh20b0+0zSmyd0BOQGLLwC0DTBt/xjGVtRPXg6ptFEKVEoUC5UGGwCk/ZIMr/Y/OqLAy+1hpbE3Tq+5em2kpsP7yWvMyEEuRxI4YsAY+b4cfXzmMaUJHJoLEqi8ZB1vCYIEqJHFPEolxUSnEIk81k0FPIA3B6XQ0W+PDXwaJwEgRBDCSDZ5YnCMOkHSpZlS3DLmMbsf2wWrOCCWKIkWM8btRaww9rta8YREot63Ejz0P/M2WEk1/VUJEdVAo/QQx1Sv5uvffee7H//vtj+PDhqK2txc4774yrr74avb29SvLefPNNHHfccWhqakJVVRUmTZqEc845B2vWrDE8cqLU4RU3KolMEKUPedzCGUwLcL7FA9G/fH5UHfZtHoH9Jo4kbydBDCJKepY/77zz8K1vfQsvvfQSdt99dxx66KFYvnw5LrjgAhx44IHo6upKJO++++7Dnnvuifvuuw/bbrstvvGNbyCTyeCGG27Af/zHf+Cjjz5K6ZsQpQif40bPLoIofcjj5qfAhJEOJuMTO9TyQaRwbi1YloVRNZV07glikFGyd+yDDz6I6667DnV1dXj11Vfx97//Hf/7v/+LxYsXY9q0aViwYAEuuugiaXmffvopTj75ZORyOdxyyy147bXXcM8992DRokU48cQTsXr1apxwwgmwbWqyMVQIeNwoRZsgSp5yCqvz4VfcBnAgCWHDXweTp5AgCGIgKdnZ8le/+hUA4MILL8T06dOL748aNQo33XQTAOCGG25Aa2urlLzf/e536OzsxMEHH4zZs2cX3y8rK8Mf/vAHNDY24vXXX8cTTzxh8FsQpQy1AyCIwQd5CPywrQDKBtEk1ssqboNJ4yQIghhASvIJuHLlSrz++usAgBNOOCHw+d57743m5mZ0d3fjsccek5L5wAMPhMqrq6vD17/+dQDA/fffrzpsYpARrCpJEESpQx43P4M1VLI3Xyi+zpIyThAEIUVJzpZvvfUWAGDEiBGYNGmScJvddtvNt20U7e3txfw1dz8deWF0dHRI/SNKg2CO2+BZ9BDEUIUacPvJD9JQSTYpgZRxgiAIOUqyj9vSpUsBABMnTgzdprm52bdtFMuWLSu+DpOZRF4YdXV1yvsS/Q8tFghi8EEVCP00N1Tjk1anUNeomsoBHo0aVHCGIAhCjpJU3Nrb2wEAtbXh/a9cJamtrU1aXpTMJPKIrYPBFFZEEIQDH+I81PniqAb05guozJahub5qoIejBBnRCIIg5ChJxW2wsnnz5tht2traMG7cuH4YDUEQxNZHlvq4+ajMZrDn+BEDPQwtqOAMQRCEHCWpuNXX1wNAZD6YqyQ1NDRIy3NlNjY2askLI8pD6JLP55XlEwRBDEV2HtOAf65pw8jqCtRkywZ6OIRhyONGEAQhR0maubbbbjsAQEtLS+g27mfutlFsu+22xdfLly/XlkdsPXxxVD0yFjB1JOUnEkSpssPwWhy6/Rjs2zyCightJUwb7RhUq8oyGD1Ic/MIgiD6m5JU3HbZZRcAwPr160OLhbzxxhsA4OvxFkZDQwN23HFH33468oith51G1uHrk8fi86Pq4zcmCGLAqCkvI6VtK2LH4bXYe8IIHLDdKJSRx40gCEKKklTcJkyYgBkzZgAA7rrrrsDnCxYsQEtLCyorK3H44YdLyTz66KND5W3evBmPPPIIAOCb3/ym6rCJQQoVKSEIguhfLMvCmNpKVFPoK0EQhDQlqbgBwM9//nMAwJVXXomFCxcW31+/fj3OOussAMDZZ5/ty1d74IEHMHXqVBx00EEBeeeddx5qamrw1FNPYd68ecX38/k8zjrrLGzatAkzZszAV7/61bS+EkEQBEEQBEEQhBKWbdt2/GYDw7nnnovrr78e5eXlOOigg1BbW4unn34amzZtwl577YUnn3wS1dXVxe1vv/12nHrqqdh22219vdtc7r33Xhx//PHI5/PYY489sN122+H111/HkiVL0NTUhAULFhRDKtOira0NjY2NaG1t1SqEQhAEQRAEQRDE4CaJblCyHjcAuO6663DPPffgy1/+Ml5++WU89thjmDBhAq688ko888wzPqVNhuOOOw6vvvoqvvnNb2LJkiV44IEHkM/n8V//9V/45z//mbrSRhAEQRAEQRAEoUJJe9y2RsjjRhAEQRAEQRAEsBV53AiCIAiCIAiCIAhS3AiCIAiCIAiCIEoeUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEocUtwIgiAIgiAIgiBKHFLcCIIgCIIgCIIgShxS3AiCIAiCIAiCIEqc7EAPYKhh2zYAoK2tbYBHQhAEQRAEQRDEQOLqBK6OEAUpbv1Me3s7AKC5uXmAR0IQBEEQBEEQRCnQ3t6OxsbGyG0sW0a9I4xRKBTw6aefor6+HpZlDehYOjo6MG7cOADAp59+itra2gEdD1H60DVDJIGuFyIpdM0QSaFrhkhKqV0ztm2jvb0d48aNQyYTncVGHrd+JpPJYMKECQM9DABAWVlZ8XVDQ8OAX7hE6UPXDJEEul6IpNA1QySFrhkiKaV4zcR52lyoOAlBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQ4obQRAEQRAEQRBEiUOKG0EQBEEQBEEQRIlDihtBEARBEARBEESJQw24CYIgCIIgCIIgShzyuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuA1R7r33Xuy///4YPnw4amtrsfPOO+Pqq69Gb2/vQA+NKCF6e3vx9NNP46c//SlmzJiBYcOGoby8HGPHjsXXv/51PProowM9RGIQcP7558OyLFiWhcsvv3ygh0OUMD09Pbj++uux9957Y8SIEaiqqsKECRNw2GGH4Z577hno4RElxvLly3H22WdjypQpqK6uRlVVFSZNmoSTTz4Z//znPwd6eEQ/8+GHH+L3v/89TjnlFEybNg3ZbFb6ufPUU0/h8MMPx6hRo1BdXY2pU6fiF7/4BTZv3twPI5fHsm3bHuhBEP3Leeedh+uuuw7ZbBYHHngg6urq8Mwzz2DTpk3Ye++98cQTT6C6unqgh0mUAE899RQOOeQQAMDYsWOx6667ora2Fh988AHee+89AMDs2bNx8803w7KsgRwqUaK8/PLL2GeffWDbNmzbxmWXXYY5c+YM9LCIEmTFihX4z//8T3zwwQcYNWoU9txzT9TW1qKlpQVvv/02DjvsMNx3330DPUyiRHj11VdxyCGHoL29HePHj8euu+6KsrIyvP3221i6dCmy2SzuuusuHHfccQM9VKKfcNe3PHHPnd/+9rf40Y9+BMuysM8++6CpqQkvvvgiVq1ahSlTpmDBggUYNWpUmkOXxyaGFA888IANwK6rq7PffPPN4vtr1661p02bZgOwf/zjHw/gCIlS4umnn7aPOeYY+4UXXgh8dvfdd9tlZWU2APuOO+4YgNERpU5HR4c9efJke/z48fZRRx1lA7Avu+yygR4WUYJ0dnbaU6dOtQHYc+fOtXt6enyfd3R02G+99dbADI4oSf7jP/7DBmDPnj3bd73k83l7zpw5NgB72LBhdldX1wCOkuhP5s2bZ//kJz+x58+fb//rX/+yTzrppNjnzsKFC23LsuyysjL7scceK77f0dFhH3TQQTYA+5hjjumP4UtBitsQY8aMGTYA+/LLLw989uKLL9oA7MrKSnvTpk0DMDpisDFr1iwbgH3QQQcN9FCIEuQHP/iBDcB+9NFH7ZNPPpkUNyKUiy66qLgIJ4g41q1bZwOwAdhr1qwJfJ7L5ezq6mobgL1w4cIBGCFRCsg8d4477jgbgH3aaacFPlu2bJmdyWRsAPa//vWvNIcqDeW4DSFWrlyJ119/HQBwwgknBD7fe++90dzcjO7ubjz22GP9PTxiELLLLrsAAFpaWgZ4JESp8dxzz+H3v/89vvvd7+Lwww8f6OEQJUxvby/+8Ic/AAB++tOfDvBoiMFAZWWl9LYlE+JGlBw9PT3FXH3RunjbbbfFXnvtBQB44IEH+nVsYZDiNoR46623AAAjRozApEmThNvstttuvm0JIorFixcDALbZZpsBHglRSmzevBnf+9730NTUhN/97ncDPRyixFm4cCHWrVuHcePGYccdd8S7776LSy65BGeccQYuvPBCPProoygUCgM9TKKEqKurwz777AMAmDNnjq+wWqFQwNy5c9HV1YXDDjsMzc3NAzVMosRZtGgROjs7AXjrX55SWxdnB3oARP+xdOlSAMDEiRNDt3EnOHdbgghj1apVuP322wEAxxxzzMAOhigpfvKTn2Dp0qV44IEHMHz48IEeDlHivPPOOwCACRMm4MILL8TVV18Nm6mbdtVVV2GXXXbBgw8+GPn8IoYW8+bNw+GHH45bb70Vjz76KHbbbTeUlZXhrbfewsqVK3HSSSfhhhtuGOhhEiWMu9YdNmwY6uvrhduU2rqYPG5DiPb2dgBAbW1t6DZ1dXUAgLa2tn4ZEzE4yeVyOPHEE9Ha2opp06bhjDPOGOghESXCE088gVtuuQXf+c53cNRRRw30cIhBwPr16wE4Fu2rrroKZ511Fj788EO0trbiySefxE477YS33noLRxxxBLWsIYpMmTIF//jHP/DVr34VK1euxEMPPYT7778fS5cuxY477oj9998fDQ0NAz1MooQZjOtiUtwIgkjMmWeeiaeffhojR47Efffdh4qKioEeElECtLa2YtasWRg9ejR+//vfD/RwiEGC613r7e3F8ccfjxtuuAE77bQTGhoacPDBB+PJJ59EVVUV3nvvPdx9990DPFqiVHjppZcwbdo0vPfee7jrrruwatUqbNiwAY888gh6e3sxa9YszJo1a6CHSRBGIcVtCOG6gTs6OkK3cRsNkpWKCOPcc8/FbbfdhuHDhxet4QQBOD10VqxYgRtuuIEKAhDSsCFKIu/9xIkTccQRRwBweksSxKZNm3D00Udj7dq1uP/++3H88cejqakJw4cPx5FHHonHH38cNTU1+NOf/oRnn312oIdLlCiDcV1MOW5DiO222w5AdAVA9zN3W4Jg+fGPf4zrr78ew4YNwxNPPFGsKkkQgFN1K5vN4qabbsJNN93k++zf//43AOC2227DU089hbFjx5L3hAAAbL/99sLXom0+++yzfhkTUdo8+uijWLt2LXbYYQfssccegc+333577LHHHnj22Wfx1FNP4YADDhiAURKljrvW3bRpE9rb24V5bqW2LibFbQjhLrLXr1+PpUuXCitLvvHGGwCA6dOn9+vYiNLn/PPPx29+8xs0NjbiiSeeCK3ARAxtcrkcnn/++dDPly1bhmXLlmHbbbftx1ERpcz06dNhWRZs28a6deuEVQDXrVsHwMs3IYY2y5cvBxDtBWlsbAQAbNiwoV/GRAw+pkyZgpqaGnR2duKNN94QKvilti6mUMkhxIQJEzBjxgwAwF133RX4fMGCBWhpaUFlZSX1XSJ8XHjhhbjmmmvQ2NiIJ598sngdEQTLpk2bYNu28N/JJ58MALjssstg2zaWLVs2sIMlSoaxY8di7733BiAOhezt7S0aA3bfffd+HRtRmowfPx6A48lvbW0NfN7b24uFCxcCQGj7I4KoqKgohmGL1sWffPIJXn75ZQDA0Ucf3a9jC4MUtyHGz3/+cwDAlVdeWZzUAMcLd9ZZZwEAzj777KKliiDmzJmDq666CsOGDSOljSCIVLj44osBAP/93/+NV155pfh+LpfDj3/8YyxZsgT19fU49dRTB2qIRAlx2GGHoba2Fl1dXTj99NOLeUiA01T5hz/8IZYvX47y8nIce+yxAzhSotS58MILYVkW/vznP+Pxxx8vvt/Z2YlZs2Yhn8/jmGOOwdSpUwdwlB6WzTZLIYYE5557Lq6//nqUl5fjoIMOQm1tLZ5++mls2rQJe+21F5588klUV1cP9DCJEuDhhx/GN77xDQBOE8ovfOELwu1GjRqFa6+9tj+HRgwyTjnlFNxxxx247LLLMGfOnIEeDlGCXH755bjooouQzWax++67Y+zYsVi4cCGWLVuG6upq3HvvvUXrOEHceeedOPXUU5HL5TB69GjMmDED5eXleOONN7By5UpkMhnceOONOPPMMwd6qEQ/sXDhwqITAgA+/vhjrFu3DhMmTCh6aQEnH3ubbbYp/v3b3/4WP/rRj2BZFvbbbz+MGTMGL774Ij777DNMmTIFCxYsKJmCW6S4DVH+53/+BzfeeCPefvtt9Pb2YocddsCJJ56IH/7wh1TanShy++23S1m4t912Wwp9IyIhxY2Q4YknnsDvfvc7vPrqq2hvb8fYsWNx0EEH4YILLigZizdROvzzn//E7373O7zwwgtYuXIlbNvGNttsg7333hs/+MEPKLR2iPHcc89JFaJZunRpoNjIU089hV//+td47bXX0NHRgYkTJ+LYY4/Fz372s9Dm3AMBKW4EQRAEQRAEQRAlDuW4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEARBEARBlDikuBEEQRAEQRAEQZQ4pLgRBEEQBEEQBEGUOKS4EQRBEFsFlmUl/rf//vsDAPbff39YloXnnntuQL+DCa677jpYloX//d//VZbR2tqKkSNHYo899oBt2wZHRxAEQaiSHegBEARBEIQJTj755MB7q1atwt///vfQz6dOnZr6uPqTtWvXYu7cuZgxYwaOOeYYZTmNjY342c9+hp/+9Kf4y1/+Ijx3BEEQRP9i2WRKIwiCILZSnnvuORxwwAEAEOk5Wr58OTo7OzFx4kTU1NT01/CMc/bZZ+PGG2/Eo48+isMPP1xL1pYtWzBx4kRks1ksXboUlZWVhkZJEARBqEChkgRBEMSQZ+LEiZg6deqgVto2bdqE22+/HePHj8ehhx6qLa+qqgonnHACPvvsM9xzzz0GRkgQBEHoQIobQRAEMeQJy3E75ZRTYFkWbr/9dnz44Yf49re/jTFjxqC2thYzZszAQw89VNz21Vdfxde//nWMHj0a1dXV+PKXv4ynn3469JhdXV349a9/jT333BPDhg1DVVUVpkyZgvPPPx/r169P/B3+/Oc/o6OjAyeddBIymeDjvbu7G9dccw123XVX1NfXo6KiAmPHjsWMGTNw/vnnY8OGDYF9TjnlFADAjTfemHg8BEEQhFlIcSMIgiCIGBYuXIhdd90V//znP3HQQQdh5513xhtvvIGjjz4a9913Hx588EHss88+WLFiBQ466CBMmTIFr7zyCg499FAsWLAgIO/TTz/FHnvsgZ/85CdYvHgxZsyYgcMPP7yoXO2222745JNPEo3xwQcfBAAcfPDBgc8KhQKOOOIInH/++fjoo4+wzz774Nhjj8W0adOwdu1aXHPNNVi+fHlgvy996UsYPXo0XnvtNXz22WeJxkMQBEEYxiYIgiCIrZRnn33WBmDHPe72228/G4D97LPP+t4/+eSTi/tffvnldqFQKH52/fXX2wDsCRMm2MOHD7f/8pe/+PY977zzbAD2wQcf7Hu/UCjYe+21lw3AnjVrlt3W1lb8rLe31/7xj39sA7APOOAA6e/Z2dlpV1RU2JlMxifP5fnnn7cB2Lvssovw89dff91et26dUPbXv/51G4D917/+VXo8BEEQhHnI40YQBEEQMey+++74+c9/Dsuyiu99//vfx4gRI7BixQocfPDBOOmkk3z7zJkzBwDwwgsvoLe3t/j+3//+d7z00kv40pe+hJtvvhn19fXFz7LZLK6++mp88YtfxLPPPov33ntPanzvv/8+enp6MGHCBJ88l9WrVwMA9tlnH+Hnu+22G0aOHCmU/YUvfAGA43UkCIIgBg5S3AiCIAgihsMOO8yntAGOkjVp0iQAEFZwHDlyJEaMGIGenh5fztqjjz4KADjmmGOQzQa78mQyGey7774AgJdffllqfK5iFqZ8TZ8+HWVlZfjTn/6EG2+8MVHYoyvTPQZBEAQxMJDiRhAEQRAxTJw4Ufh+XV1d5Oeud2vLli3F95YsWQIAuOiii0Ibg990000AnL5sMrS2tgIAGhoahJ/vsMMO+O1vf4ve3l6cffbZGDduHLbbbjscf/zxmD9/Pnp6ekJluzI3btwoNRaCIAgiHagBN0EQBEHEIKrSmORzlkKhAADYe++9scMOO0Ru64YpxjFs2DAAQFtbW+g255xzDr71rW/h4YcfxoIFC7BgwQLcfffduPvuu3HxxRfjxRdfxDbbbBPYz1UKhw8fLjUWgiAIIh1IcSMIgiCIfqS5uRkA8I1vfAM/+clPjMgcM2YMAMS2EWhqasLpp5+O008/HQDw73//G9/73vfwj3/8AxdeeCHuuOOOwD6uzKamJiNjJQiCINSgUEmCIAiC6EcOO+wwAMC9994L27aNyPzCF76AiooKrFixAu3t7dL7TZ06FRdccAEA4O233xZu4xZI2XXXXbXHSRAEQahDihtBEARB9CPf+MY3MGPGDLz22ms49dRThXlsGzduxM0334xcLicls7q6GnvuuScKhQJeffXVwOfPPPMMHnvsMV91SwCwbRt/+9vfAADbbrutUPY//vEPAMCBBx4oNRaCIAgiHShUkiAIgiD6kUwmgwcffBBHHHEE7rjjDtx3333YeeedMXHiRPT09GDJkiV49913kc/nccoppwgrT4o46qij8MILL+DJJ58MNOF+55138MMf/hANDQ2YPn06xo0bh66uLixcuBCffPIJGhsbcemllwZkvvXWW1i/fj123313Yf4bQRAE0X+Qx40gCIIg+plx48bhlVdewc0334zdd98dH374Ie677z4sWLAAAHDmmWfi73//O6qqqqRlnnrqqaitrcWdd96JfD7v++xrX/sa5s6dixkzZmDJkiW4//778dxzz6GxsREXXngh3nvvPXzpS18KyLz99tsBAP/1X/+l/F0JgiAIM1i2qQB7giAIgiAGlLPPPhs33ngjHn74YXzta1/TkrVlyxY0NzejvLwcS5cuRWVlpaFREgRBECqQx40gCIIgthIuvvhiDBs2TBj2mJTf//73WLduHf77v/+blDaCIIgSgDxuBEEQBLEVcd111+G8887Dvffei2OPPVZJRmtrK7bffnvsuOOOeOWVV2BZluFREgRBEEkhxY0gCIIgCIIgCKLEoVBJgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBInO9ADGGoUCgV8+umnqK+vh2VZAz0cgiAIgiAIgiAGCNu20d7ejnHjxiGTifapkeLWz3z66adobm4e6GEQBEEQBEEQBFEitLS0YMKECZHbkOLWz9TX1wNwfpyGhoYBHg1BEARBEARBEANFW1sbmpubizpCFKS49TNueGRDQwMpbgRBEARBEARBSKVQUXESgiAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgShxQ3giAIgiAIgiCIEocUN4IgCIIgCIIgiBKHFDeCIAiCIAiCIIgSh9oBEARBEEJ6enqwadMm2LYtVaaYIEoF27YBAJWVlWhoaEAmQ3ZqgiAGPyWpuPX29uKFF17A448/jueeew6LFy9GR0cHRo4cid133x1nnHEGjjjiiEQy586di0suuSRym3/961+YOnWqztAJgiC2CgqFAtatW4exY8fSopcYlNi2jS1btmD16tVoamqi65ggiEFPSSpuzz//PA455BAAwNixY7H33nujtrYWH3zwAR555BE88sgjmD17Nm6++ebEVuCdd94ZX/rSl4SfNTY26g6dIAhiq2Djxo0YOXIkLXaJQYtlWaiurgYAtLW1YdiwYQM7IIIgCE1KUnHLZDI45phjcO6552KfffbxfXbPPfdg5syZuPXWW7HXXnvhu9/9biLZRx11FObOnWtwtARBEFsfuVwOlZWVAz0MgtCmqqoKbW1tAz0MgiAIbUrSlHrggQfivvvuCyhtAPDtb38bp5xyCgDgL3/5Sz+PjCAIgiCIwQTlZxIEsbVQkopbHLvssgsAoKWlZYBHQhAEsXVCi11ia4KuZ4IgtgZKMlQyjsWLFwMAttlmm8T7Lly4EBdeeCE2bNiAxsZG7LLLLvja176G+vp67XF1dHQY2YYgCIIgCIIgCIJl0Cluq1atwu233w4AOOaYYxLv7xY3YWlsbMT111+fOF+Op66uTmt/giAIgiAIgiAIEYMqVDKXy+HEE09Ea2srpk2bhjPOOEN63x122AG/+tWv8NZbb2HDhg3YsGEDFixYgCOPPBKtra04+eSTMX/+/BRHTxAEQZQizz33HCzLKhoFCYIgErFlLZDrGuhREEOAQeVxO/PMM/H0009j5MiRuO+++1BRUSG970knnRR4b6+99sIjjzyCH/zgB/j973+PH/7whzjuuOMSyWXZvHlz7DZtbW0YN26cknyCIIitglwOWLoUaGsDGhqASZOA7KB6HAEAFi1ahDvvvBNPPPEEPv74Y2zZsgU77LADjjvuOJx33nmora0d6CESBJE2a18Gnt4fqBgBfO0joJyir4j0GDQet3PPPRe33XYbhg8fjieffBI77bSTMdlz585FWVkZ1q5di1dffVVZTm1trdQ/giCIIUlLCzBnDjB+PLDTTsBuuzn/jx/vvD/ICk796U9/wm9/+1vssMMO+OUvf4lrrrkGU6ZMwZw5c/CVr3wFXV1kgSeIrZ4Xvg4UeoEtq4FF1w/0aIitnEGhuP34xz/G9ddfj2HDhuGJJ54oVpU0xYgRIzBmzBgAwIoVK4zKJgiCIADMnw9MngxccQWwZo3/szVrnPcnT3a2GyQce+yxWLFiBebPn49zzjkHZ555Ju655x784he/wDvvvIPbbrttoIdIEETadK/3Xve0Dtw4iCFByStu559/Pn7zm9+gsbERTzzxBHbbbTfjx8jn82htdW42E9UlCYIgCIb584ETTwS6u6O36+52tisB5c22bcybNw977LEH6urqUFdXh2nTpuGXv/xlcZvddtsNjY2NgX2//e1vAwDee++9fhsvQRClgD3QAyC2ckpacbvwwgtxzTXXoLGxEU8++SRmzJiRynEefvhhdHZ2wrKsVBRDgiCIIUtLCzBrVrJ9Zs0a8LDJk046CbNnz4ZlWfjFL36Ba665BgceeCDuu+++2H3dyI2mpqa0h0kQRElBihuRLiWbDT5nzhxcddVVxfBIGaXthhtuwA033IDdd98df/nLX4rvL1++HC+88AKOPfZYVFVV+fZ58MEHcdpppwEAZs6cibFjx5r9IgRBEEOZW26J97TxdHcDt94KXHZZOmOK4X/+538wf/58nHjiibjjjjuQyXg2zkKhELlvPp/HZZddhmw2ixNOOCHtoRIEUUrY0fMDQehSkorbww8/jCuuuAIAsOOOO+LGG28Ubjdq1Chce+21xb/XrVuHDz/8MKB8bdiwASeddBK+//3vY5dddsH48ePR1dWFDz74oNjM+4ADDsAf/vCHlL4RQRDEECSXA+bNU9t33jzg4osHpNqk2xrm2muv9SltAAJ/85x33nn4xz/+gV/96leYMmVKamMkCKIEscnjRqRLSSpuGzZsKL5+44038MYbbwi323bbbX2KWxjNzc244IIL8Prrr+Ojjz7CwoUL0dPTg1GjRuHII4/ECSecgG9/+9uxD2SCIAgiAUuXBguRyLJ6tbP/5MlmxyTB4sWLsc022yQOdbzoootwww03YPbs2fjZz36W0ugIgihdSHEj0qUkFbdTTjkFp5xySuL95s6di7lz5wbeHzlyJK688kr9gREEQRDytLXp7d/ebmYc/cDcuXNx+eWX49RTT8XNN9880MMhCKLfsFBU2ChUkkgZcjERxFDCtoGXvwv833Sg7cOBHg2xtdPQoLf/AFX53WmnnfDZZ59h9erVUtvPnTsXl1xyCU4++WT88Y9/hGVZKY+QIIjShDxuRLqQ4kYQQ4lPHwOW/RXY+Bbw4jEDPRpia2fSJKCvR2Zimpqc/QeAmTNnAnDa0fDFSGwuh+XSSy/FJZdcgpNOOgl/+tOfKOSe2DrJ5YDFi4E333T+z+UGekSlg8Xe86S4EelSkqGSBEGkRPtH3uvW9wduHMTQIJsFTj/daa6dlNNPH5DCJABw3HHH4dvf/jb+8pe/YPHixfj617+O4cOHY9GiRfj73/9e7M9244034uKLL8bEiRNx8MEH46677vLJaWpqwiGHHDIQX4EgzNDS4lSGnTfPyVfNAsjBMcicfjpwxhlAc/NAj3KAYTzsVJyESBlS3AhCla7PgPWvAdscCpRVDvRoJKH4e6KfOeMM4Nprk7UEqKwEZs9Ob0wS3HXXXdhnn31w22234dJLL0VZWRkmTZqE4447rrjN66+/DsBpOXPyyScHZOy3336kuBGDl/nznZ6K7r17BoA9AcwD8PIaxyBz7bXAbbcBfV7qIYllMY42UtyIdLFsPu6DSJW2tjY0NjaitbUVDbr5H8TAYReAh3cEOpYCnzsf2OWqgR6RHP/6DfDWj72/T6DbnxCzZs0ajFENc+SZPx848UT57e+8c2gvBAnjGL2ehwL8PVsDR2Fz4W/PoXzP3l0FFPqU2x3PBHan1lJEMpLoBhSMTxAqdK50lDYA+NfVAzuWRJCiRgwAM2c6C7vKGM90ZeXQXgASRCnQ0uJ42lgqYvaZNcvZbyjiK0ZEz1giXUhxIwglBmnIIZUqJgaKmTOdogZz5jiFR1iampz3Fy8mpY0gBppbbgmGNpfF7NPdDdx6a2pDGjyQ4kakCyluxMBTyA/0CJJjD8IxA0hV4Wz/yKlU+e/r0jsGMbhpbgYuuwxYsQJYtMipULdokfP3ZZdRkQOCGGhyOacQCY9MRYR584ZotUlmKU3ZR0TKUHESYmDI5YClS4HVLwKf/gQYuRtw4N+5kIMSZrB6rtJ8qLx4LLDpn0DL/cD4I4D6HdM7FjG4yWaByZMHehREmtg2kGsHYAHlA9OPj1Bg6VKneiRPucS+q1c7+w+1e5tCJYl+hDxuRP/S0uKERI0fD+y0E/DRLCC3EVj9JHDlCYMnRn6wKm5pPlQ2/dN73b44veMQBFH65DYDbYuAtg+BXMdAj4aQpa1N/L6smb+93dhQBg/Ux43oP0hxI/qP+fMdS9wVV3gWPTbh+dG7nc/nzx+Q4SXCTjEcpPNT4Mm9nbDDguHj9JfCaXrcBEEMLjqXM69XDNw4iGSEVbSLK07iUj8Evausx23QGnUHMZ/+H7B0/uBMu1GAQiWJ/kG2HHh3t7ddKRcpKPSkJ/v1M4G1LzmvP54HTP6+Odn99VAZtDmABEEYwReWPUhC4Alg0iSnuTYfLikTKtnU5Ow/5GCubzJa9i8bFgLPHe68tnuB7U8Z0OH0B+RxI9JHVFpYBPucL/XSwoXe9GSvetJ7vfGf4dsp0U9hHGl6JAmCIIh0yGaB008Pvi+juJ1+urP/kIP1uKW4NiCCLLrRe/3muQM3jn6EFDcifUSlheMo9dLCaSpuvgpVpj1k/aS4kdWRIIY45HEbtJxxRrDnYpw+VlkJzJ6d2pBKGjZUMtW1ARFk6OUUkuJGpEtYaWEZSrm0cJqTs8U0zDEdckihkgRB9Dektw0umpuB227zvxeX43bbbUO4nQfrcSvRNctWy9AzEJHiRqRLWGlhGdzSwqVImuEQFntbGla0tgbF7eM/Ae/8EujdnN4xiK0D26a+SgPG0FtQbVXMnAnceafneQsLlaysdLYr5Zz0tGGf2eRxG0CGxjwzFIORif4krLSwLKVaWri/PG7GqyQN8hy3tf8AXu3Ll8x3A7tclc5xCD+2DcDmjAolTiEPtP3bMSI0TAHKKuP3IcxB+nL/s/IxYMX9QMVIYOVDwBfmAJMkioKFMXMmsO++TtrC+9cBYJ7HTU1OTtvs2UPY0+ZCoZIDxhA0zA2ipzAxKAkrLSxLqZYW7i/FzbTHrd9y3FKqurnyYe/1v65O5xiEH9sG2j8ENr4N9GgaYvqT7jVAvsu5FjtK1HMfhW0DW9YAXatKdnFy3333Yeedd0Z1dTUsy8Jzzz3HfMqM2S7glFNOgWUNDYv4gGAXgOePAD6+zZkb2z4E/nGSvtzmZuCyy4DLLvK/v2KF8/6QV9pAOW4DSmnOjWlCihuRLm5pYRVKubRwqoobW5zEdI5bP+We5bekIzfth2Kuy/HqUS8ej9xmJyzVLgDtiwZ6NPKw18pgDKvt2Qh0LHd6oHWvH+jRBFi0aBGOP/54NDY24oYbbsBf//pXfO5znxNvrHk/Pfzwwzj11FMxdepU1NbWYty4cTj44IPx+OOPa8ndqkizRQ0AgIuiGJLVI8Ngn9mkuA0YQ8QwRHcekS5uaeErrki+bymXFk7zIZlmcZL+sgYWElYRlZab8vifOxxY8xww5Txg19+me6zBwmBVYn2e60FI91rm9RqgapRZ+V2fAj2tQO1EIFubePfnnnsOuVwOv/vd7zB9+vTgBr65S28emz17NhoaGvCNb3wDU6ZMwYYNG/DnP/8Zhx12GC6//HL84he/0JK/VZB2Jd+0jHFbBYzXhzxuYmy7HxSroaG4kceNSB9RaWER7D1X6qWF+83jZnjR3F9l+tN6yLPWzIxMY6EEFPKO0gYAH/7OrOzBTJp5bbYN9GxK53oZ5IpbV2cncsWquoYXJPkeoPNTINfhhNQpsGrVKgDAiBEjgh/atn/u0pzH7rrrLixatAjXXHMNTjvtNJx//vl48803sdNOO+GSSy7Bxo0bteRvFaTt6eHv0cFq0EkD1khBipuffA/w1P7A36YCm5eYl1+iYeRpQoobkT6i0sIi2HVWqZcWTrWqZJrtAPrpodIfoZKWYcUtV6KFcAacFK2Y3WuB9o+A1g/MGxUSKJxbtmzB3LlzMWXKFNTU1GDYsGGYNm0afvrTnwa2/eMf/4jp06ejuroajY2N+OpXv4oFCxb4tlm2bBksy8LcuXMD+8+dOxeWZWHZsmXF99z8r7Vr1+J73/sempqaUDtuV6z41KnI29begV/84hf43Oc+h6qqKowcORJ777037r77bp/szz77DN///vcxceJEVFRUYNy4cZg9ezbW8JV92XmAW4C/8MILOOSQQ9DY2Ijq6mpMnz4dt3Hzt2VZuPjiiwEAkyZNgmVZ2G677RiZ3LwVMY+tWrUKP/jBD7D99tujsrISY8aMwSGHHIInn3yyuM2BBx4Y2K+mpgZHHnkkent78eGHasrngLDkDuCDq8zPkf3tcTOtoORywOLFwJtvOv+XaisgEez1Te0A/Hz8R2DN806Y/csGci4DMIobhUoShEHcUsGzZoU3487A8bTddlvplxburwbca54HVj0DNB1gZlLqL2tgPqVQSfahaNrj1juICm/wFHLAohuBbA2ww2mGH2ApWjQ7lvcdouB43kyHA0ryX//1X/jTn/6E7373u/jRj36EXC6HxYsX45lnnvFtd8EFF+Dqq6/G7rvvjl/96ldob2/HrbfeigMOOAAPPfQQDj/8cK1xHHLIIRg7diwuuugidKxbgrraGmxqbcfeR56B9/+1GMceeyy+//3vI5/P46233sLf/vY3fOc73wEALF++HF/+8pfR09ODWbNmYYcddsBHH32EP/zhD3j22WfxxhtvoLGx0TlQiJX6kUcewdFHH42xY8fixz/+Merr63H33XfjtNNOw5IlS3BFX8j7X//6V9x///144IEH8Nvf/hajRo1CXV2dJ4j3xoR4Z5YtW4a99toLq1evxne/+13stttu6OjowCuvvIKnnnoKhxxySOT5WrFiBQCgqakp7tSWBmteBF45xXm9eSkw8VtA0/5mvNphCoOpEDU+/N3OATBQqbWlBbjlFqdvK2tgGDPGSZc444zSNuICfqWZPG5+OpZ5r9e9nPLBSHEjCLOwpYXnzXP6tLEceRjwl1vMTNKFHLD2RWD4l4CK4fryAvL7yePWsxF45iDg4BeBMXvry+63HLd+8LiR4ubx8R+Bhec5r6u3AcYfmd6xHt/NqXRoAp8HtUxvAVs9Fjj0De/vBCE0DzzwAA477DDccccdodt8+OGHuOaaa7DXXnvhmWeeQUWF05H4tNNOw+c//3mcddZZ+Pjjj1FWph6i+cUvfhF33nmn88em94D8Fpz10yvx/r8W45ZbbsFsLny8UPAUonPOOQe9vb146623MGHChOL7xx13HPbcc0/89re/ZTyAwXOTz+dx9tlno66uDq+99hrGjRsHwFFqDzjgAFx55ZU45ZRTMHnyZJx44on46KOP8MADD+Coo47ye9tE8kMUt7POOguffvopHn/8cfznf/5n6HcT8c9//hP3338/9tlnH0wq1SJWPJ/8P+/1R7c4/2bcDEw+Q192mMfNzpmJTgh43Ax4lubPDzfmrlnj5MZfe23pG3NtUtxCyaTdhoVCJQnCTyEHrHgEaP2XGXluaeEVK4BFXIW6Iw83Z1l75yLg6QOBJ/dOJxY/1eIkgtvyzXPMyPZZZVO0TvVLqKRhu9NgVtw+YPrZfTTPsHDuwdi1CuhaaeZf9xrv35bPNOXxyqSc8gAAjY2NeP/99/Hee++FbvPQQw/Btm2cf/75jtLWtQpo/RfGjW7Aqaeeik8++QRvvfVWwnPr5yc/+QnzVwGFQgF3P/AkPjdlh4DSBgCZjDNXtLa24m9/+xu+/vWvo6qqCuvWrSv+22677bDjjjviiSeeiDz2m2++ieXLl+N73/teUWkDgIqKCpx//vkoFAp46KGHJL+JYDHFKdIbNmzA448/jkMPPTSgtLHfTcTatWvxzW9+E9XV1fjjH/8oOaYSYMva4Huvn2lGdlgYvKlnVSDHTVNxmz8fOPHE8Agcl+5uZ7v58/WOlyaDOcdt2d3AwzsAd1nAK7PM5YzZNvDp407UEGEU8rgR0Xz8R+D17wOZCuCbq8x5r7JZYPJk4HXmPZP5Vx9c6fzf+oGzwKoZF719EjYvA976SexmyoiKKphSUnyKzyBX3DKkuHmk+FvyD/LqseZkm/a4+eAVt3yo/N/97nc46aSTMG3aNGy//fY44IAD8LWvfQ1f+9rXigrE0qVOL7gvfOELzrg7nTA9dCxx3gOwZMkS7LbbbspfYaeddmLGa2Pd+k3YuKkNhx68X+R+H374IQqFAm677bZAPprL9ttvz8gOKrG+78fBfj8phIs//3sfffQRbNvGLrvsIiezjw0bNuCQgw/Cp5+u/P/svXm4XEW1Pvx2nz7nZJ7JCYQTBgkBBGTWC4KioBcHRr1eDZPGEPVe9ecM1ygoRmVwBMUQI4PE6YoIovIhKCBymecxAQKcMARC5ulM3d8fu6v32tVVtVdNnT5Jr+fJk+7du6vr7F27qtZ63/Uu/Pnaq7PXrJntmcuAnt/Ha1+HgA32OqmG1rcfMMetpydB2mxs1qyEsdOMtEnqxMbIIx/YBDz9M2DkLkD38eHarVSAOz6cvn/2F8COxwI7Huff9qu3ALcc499OnmXmmhZVsmUtS5w2IInavfB7YLfZ8X4rVnL15sCO290BaC0ma5TjFhNwb0Q5gNDiJEPZccs44aGpI1J77/q/cDTV1wm1ccSOYZ1C2XkoD2j7fdxxx+G5557DX/7yF9x666246aabsHDhQhx++OG46aabarTImg1sTF8P1iMapkLTAwbRhREjRtA/gDSo/UpyZvVvPfnkk3Haaacpzxk+fDh5F1sRMA59aeXKlTjqqKPw5FNP4dpfXoh3HDhEctsA4K6PxW1fh4A1I+I2f34+0iZbb2+SZnHuue6/G8NkBdUYiNvTlwL3fz55/d4ngLF7hGl3YEP9sdfvCeO4PVAv7BTdWuIkLWuZZCFlwSsVYM1j0rFAjltZUjDb9HKYdoW9fnfY9mRTXedQG2W6qFQGgIfPBnb/L2CYY5F0nYVG3CrlRI3tpevTY60cN2JkwQouj6xArhD42qt+J3R7m5YlEWsNUjthwgScfPLJOPnkk1GpVHDmmWfi/PPPx7XXXosPfvCDNcTqsccewxu2z6Jqjz+WzGXiHCGRv3Llyrrf4aNWZUyaOA7jx43BQ488aTx1t912Q6FQQF9fH4466ihW27LRv0+2xx9/PHMO4wdyzxB9fvDBB1ktCqft8ccfxzVXnI93v+PfmH3ZRkwX+AzluA1IRexdA60DA0mOu4stWACcfXZz1XeVFVNjOG4ifxkAnvsl8CaHurgq63tdcWx1mLYbVo6llePWspYZLGA044kLgL/skz0WCnHrlfIINr0Upt1GmWrCC+WkyM7xo98E7oqAooZ23F69rT5iPdQct0oZWHE30B+h7EDG2Q+MpsiOYOgSFbV2Q6NAUr/71qT0RmKDg4NYvXp15lihUKhR+ITzdeyxx6JQKOCCCy5A/+Y1tXNffmUFLrv8cuy0006174wePRpTpkzB3//+9xoaBiRO2x//+Ed2/4vFIj584rvw+JNLlBRI0fbEiRPxnve8B3/4wx9w5513Ks977bXX6IG6cw444ABMmzYNl112Wa1GGwD09/fjggsuQKFQwHHHMSPxDKrkhAkTcMwxx+Cvf/0rbrrpJu3fBgCrVq3C0UcfjcceewxXX301jjnqsJzf2gYtNuK24XmpXUcHZenSrHqkjS1fnnzf1Ta8EH6eka977HIAIfPrexWOW/+a+mMuNsTraDazNVHYomVNbyERtwe/Un8s1IQnO2qPnAOM2weY9JYw7ceO8DQKcRP24nVh2kYBtWsT2nFbphBFCO64BVqwdPb4d4GHvgqM2RN476OBC1s3GnGLYMHbVVyH3hXAqJ0zh9atW4ftt98exx57LPbff39MnjwZS5cuxSWXXILx48fj/e9/PwBgxowZ+NKXvoTzzz8fR/z7h/Gh496Bdes34tIrr8H69euxaNGijKLkf//3f2Pu3Lk45phjcPzxx+Oll17Cz372M+y999645557kGvV+/it//kk/n77A/j4xz+OG2+8EW9961tRqVTwwAMPYGBgAL/85S8BAJdccgne+ta34ogjjsCpp56K/fffH+VyGc8++yyuvfZanHrqqURVsn7z2tbWhosvvhgnnHACDj74YJxxxhkYPXo0fvvb3+LOO+/E//zP/2D69On5/U46zzrr4osvxqGHHopjjjkGp512Gg488EBs2rQJd911F3beeWecd14iunP00Ufj/vvvx4c//GGsWrUKV/3uvrSRUY/j0MPeaoEGNpnFnNuBMBv9wc3Axhezx1zX67WeAbJ1joGvR+cBD88FJh4CHHlDuHx9OeAcU7gMSOawmG0NacStRZVsWcski/xQxHLcNr0E3HwkcMIrQMfYML8R1RQb+lA5bo0qwL3iDuDv7wLe/pcwIiKjFJuy0AtDbMTtoa8m/699Ion8Sg6ElzUyxy2GSmuMdpmXYcSIEfh//+//4eabb8ZNN92E9evX1xy5s846K6OweN5552G33XbDTy/6Ps489yfoaG/Hmw98I351xQIcflS2httXvvIVrFmzBr/85S9xyy23YK+99sLChQtx33338Ry3qo0fNwb/9/c/4Ns/uqpWO2306NHYa6+98OlPp2qz3d3duO+++3Deeefh2muvxVVXXYVhw4ahu7sb73//+/Ef//Ef5Nqor/X73/9+3HzzzfjWt76FCy64AH19fdhzzz3x85//HLOsxCR4F3+XXXbBvffei3PPPRd/+ctfcOWVV2L8+PF405velFHRvO++xFH79a9/jV//+td17Vx22WVD13FrCyAcAujXzxA1NTc8j/p5wHG9HjPGry+jR7t9r+fq5P/X7wYeORc48Pt+/RCmokpWyuECc3Igbj2Tas0xFeLW64iGyrZFELeW49aybdmU0bvID0UoqqQqp21wczJhb28u6OpsoYqcAmrkIXZU1tcqZdQt7K/8DVj+d2D7dwVoX3FNQv8tjcxxW7oE2HPHMLkag33A2qfIgcCOWx1VMpbj1gDETWEdHR34zne+w2519uzZmP0fb80m9o/Yse68UqmE888/H+eff37m+Pvf/36CfCV2+eWX4/LLL9f+5rixY5RtyTZp0iRccMEFuOCCC8x/hOEevu1tb8Pb3mZWsQSAc845p+7vSNuvv/aX/2IBLr/il3XHp06dip/97GfG36K0SVQGgZWk7MK4fYG2jvovDRULofgIxM1xUzkLrvPvLrskxbVd6JJdXcn3XWz1Q+nrlffqz7M1lQM72AuUhtcfd7G+Vdn3654J0y6gdtwUdHIn0zluIfdKor1tzFo5bi2rt40vAX+cBly7c/Z4qAiSLgIYaiPeVy8IAABod4zUcSzkZla1EARTlYzEv9fdu3VLArWv2HwMFcetpweYOzd77P3vAqZOTY739Pi1f7dU3yv6QrZ1OW5B2t64TK3QFuv3vC22qqTCgtWHkvu+Bf6WkFYakX8Ox2LmuK1X5JW5riWlEjDbMa969mz7YNeL1wN/f3d23IQULFMGFQOqKr96W/b95lfCPUsqcZLe18K0r3PcQl2bSqWq6EvVd7cNxK3luLWs3u77TDI5yJTDUM7JZk2kLRRVsn+9+nis2mIAgm4eVNchmDhJLMRNc+9CRe9Uzn5ox21wY/45trZoUVKvcJ6kAjYcScR53rzkc5/iskuvkA7EpkrGcogii6rEtjVPRGw8NIq6JcoBRHLcQt7ngQFgyRLgvvuS/w2lG4JZsTNMOzFz3FT5vz7r9Zw5QKfi7z4ZwEUA9lV8p7MTUBShz7Vb3w+8IhWf3xzQcVM5sCH3Go99O/u+MhguH1uV41bur1cQdTFdoD+EOFelAvzjXcD/jgaWXePf3hCzluPWsnpTRdeAcJt+HYc6lOOmm3QGN4VpX7UBCYkWKCOZgTYnsaiSuuirbixZt6/YfIR2QkM79osWASefnNQfkvco9H1vb3Kej/OWschUyVAOVnS1ygYibsGbj91+ZMctZv/lvm96yf/3BCo+dSqw++7AQQcl/4dCxU0Wat2LibipAmc+/e7uBmSV1OEAjgEwAYBCuwznnx+u+PbAhnDqvqrrEBJxW/No/TEVxdHFdO2EaF/HEgrhFG5YCrxyUzK2M3uaFuLWspZlLdSmf9NyTftDxHFTbXpCbYTKA8C6xYrjgZSqouW4kXs35SjUJtANER234IhbQMetpwegYg6jpM9V6Q+zZoXZIEZXlYyFnEQuB9CIpoNRkSOiSqr2g1sDEbe+VfV5QDZGUfFXXwXeBODtANoQDhU3Wah5TDf2QoiTlBVzo2+/Z84ErroqRd6GSZ/Le/AvfznsPdj0Sv45HFMFnEKuJarrHEpZUkfvDtG+jioZwmGOSktvfms5bi3jWyjnYbPGcYuNuA0EcNwqFTWlLhRa8H+nqI8PBrr2sWrM0E1DaSQwvKrEFxNxi+24+WyW589PkDRhcnqlih3V2wtceqn7b9YssuMWbNMvtRM6/zIqaqVpe/UjYf6OOic2MlUytrOvOeRmivGnytXhGEXFAWAqgC8DmA2A1jEPjooTC7WuNhpxCzHOZ85MkDQAkPVltpPeh74HoeiSSqpkwDwu1X0NhbjpkMEgiJvGcQvh1Gr3ci3ErWUty1qojbJOBCIY4qaJxoRA3AY3ahC3QI7b879RHx9KiFuhBHROSF4PBKKjqBaY0H+LHFV2RYAGBoAFC7LHOIgbkHzPO69mqCJug4FRty3guFUGk+R+X6ubC4dYjhujALd724HmWhkVB4C3ktenKr4TChWnFmxuj+m4KTbbIYKAPT0JkgYAe0uf7aT5Tqh7EEqgJCZVUrfGuQYqZNM5USHa14qThBiPEfLRh5C1HLeW8S1YZFAzGcVA3Hb6SPo6RKRHB/NH3wiFotM0yHETk3aoTdaWyHFz7fvSpfVS17LjJtOChC1fnnzfxwKNxZoEe6wcN9VGPuj43EIy0SGuvzwXRkfEGoC4xaJKcr8mX0MZFQeAvCUoGCpOLPa6GqL9GFRJIL0H+wD4mPTZBM13Qt2DmI5bKKqk7p6GokrqkMGYiFsQx00ThG+pSrasZZIFiwxq2gmG6AnHrQB0n5AeD4G4vfZP9fHgwgqShbr2sZQ1abS3GMFxo1RRUfcoOlXSse9rFYjy9tJ7neMGAOt8UcohIpyh2oCHvKdbgioZrPnIaoZbgioZrGl7x63OaVOh4kC+4wYEQsWJDQnELbA4CZC9B/+l+Ny0B+feA9O43hwgx+3V24G/KCQwoyBu5IIMBaqkLsAXYo4faCFuLWsZz0JtqnT5WqERt9IooI3UyAnhuD35Q/Xx2I5biBy38kA4GWHZ6hC3qqJUpRxmU0gXmIY5bo7jccyY+mOHSO9NjtvoiPUGLaxUKqG3txfR0Bkl5Tikw7IFxElCWcOpkkMIcXNAfDdv3oxOKj+vQsUBgDONh0DFqYWax6LmuKkQN89nld4DlQChBrABwL8HJic/BOL2zxPUx0MFSOm9G06if7EdtxBUyZjlKXR7uW2kGHfLcWsZ36IjboEdt/ZRQIkkE4Vw3HQqiSHoUWXDriHEte9bhWg7Th3iBgS6NhRxE7zDivma2VooxG2XXYDJk9P3kwBMk87ROW5dXcn3fSzQ4jV+/Hi8/vrrGByMpf4YGXEb0uUA5LEXW1UydgmJQD9RKQMbXrDoRgWbNm3C6tWrMYYGVFSoOMBD3IAAqDixcl+YZ1bnuAVRlYyAuNF7oPrzTY4bwLsHpj6GcNx0lMVQ4iR0PhzWlb72UVGlRvu5zzfT170r/duO6rhpELfYTIUmMcsS9C3bpi1YZDB2jltVnKRtJNAW2HETm/vR04FxbwJ6fp+8D4G4mSa0EJNdqCidyug9LciO2yDyV+EcKyuokuJ4Uaf0YWGVikKcxPGelkrA7Nlp0W2VH6Zz3GbPTr7PNaUTFcaxKhaLmDRpEl5/6o+obHoZBUHVGTENmDzS/GWObXwJePUO6eAdwKQ3A6M8nVcAePl+9cZqUPaiHaznLn1UfdzewLh2v/ZXPgysfTJ93zkR2F6X9ONgy+7MKrPtODH7XPnamqeAVQ9lj00uASN28Gt386vAK/KYATBsMjBlbOaQoEd2dnaiq6sLxSKJU6tQcYCHuAHhUfHKAFDwHDNRN8oRctzoPXBx3Dj3wDSHh8pxU1kwxI1c43by9wYLolcdt+HbA7t/Cnjk68n7/tUB2o44HnVUydjMpyaxluPWMr4Fy7NqEFWyfVQEx63aRttwyTkJ4NTK13fY5KpK3euBHLdACc0qK8tUSdlx8zQaGWwjG8xKP/QSjRZWGVCrHLranDnAhRcmifRcx62zEzjjDLvfUaHUAekiHR0dmLz5FuDpS9KDOx4P7H28f+M9/wKe/mz98acBfHgQKHgSQu7/AbDy3vrjh3zGr10A+OdX9c/T3mcDk9/h1/7S3wHPkALFEw4C3jTTr01qt345uznb633AqMna063t1UuBp7+WPTb1emDyfn7tLrtTPWbG7w/s+5/8dgQqLtMlOdoGLqh4Hkpd7gOKvo5bRKpkDMRNdw+EmR5/7j0w9TFEjpvOguW4kXtH171gaSvVfhY7gXYS+Ohb7d92TLEc3V4udEmZJrUWVbJlfBsKVMnBvrT9kuS4+dZxq1TSSFrbsOzG8q8H+lPI5Mm+3A8Uq8VtglAlYyJuJqpkYDSynUg0BlvAVHLXHv3u7gYWVjfeqv3FCMWxhQuT79mYcnEMTHuTn8tQ0WQTnSjEeI9JmzGNjRDKZjI6HjqSLG98gpfWUAUUAvwNulIvtrm7AhWvO874ri0qDuSvbTHHe7OWA9DdA2EmxI17D0zXvXeFf+54+zj18RiIm8w0CdJ+dQ5u60zWbZGGMGQRt5bj1rKWZW0oUCUHycIuO26+iBt1rNqGZZ2T/tXAqxrFSXb7ffXvQzpuJsTNN1csk+PWHtZx61uTVfOkgjPN6rgBSXHZq64CJlc38hsBiLQMyvLp7EzOm+mAqKg2JroC9y5WqQArJGpasGhyZMctVukLIGdsxHDcQqoYDqqDRCFNNccHcdzWq4+7iC7NmZM8e9RkX+B7AHYl711QcSD//oW4/g0vwB2gz+Ie2FAlbe5B3nX3ZaEMk6uEVy3UHEmfo0zAMhT7SSBuVQpIx7jk/xCI2xYRJ2k5bi1rWdZiUyVDIG79ZGEvBc5xo5t7mSoJ6DcV7PYjI26mHDdfqqeujhvgv2G7j1Dbiu1ZSlFMxy3EeJw5E9ixSkHZ2AaI/eUYJHSfuXOBJUvcnDZA/fevfxZ46sdu7cm29JfAmseyx0Il3pui0kEEFbaU4xYA8dz0UvZ9SApQrJpcmfZiIW46x22tPUWYouLCZGdhCoAzyXsXVBzIv75BAhURxUmU82OAPot7oLp1ut2pzT1QXZPM+uF5bTo0eafB5kgdVTIEQlvJIm5AiiBGddwCzDVacZJtI8et5bi1jG+hFnfdpBMiT4w+0G0jEmSs9llIx21YfQ6O76RRh7hRxy3AtTEibk3suC29MtsWXXiDFSZX5XAEWAQqZWCg6q1N3w/Y883J62EAnnsKOPdct41grX3NZu0+RR6Qi915Wv2xoYK4bSmqpG/fKxVg4zLpWMC/RUUZD+64RULc+jWOW7nfjZ4mUHGBvKnYdyPhh4oDDMQtIsIcqwB3qFpaM2cCo0bVH5edaJd7oLruRSKK0qeh3vJ/QH04RgHuts50zxF6vBSr418gboMb/WmkrRy3aNZy3FrGt6GQ40Yno7aOwIgb+X5xWD3i5ru5qrsulcYhbr4bN7kcQDFwjlutrXJWfS0m4vboQwka5lNst38Naot750Rg/E7pZwMBcg5jOif9Gsn0huS4RUTcQpQzMLXh+6z2vq6gMga8z6podagASK29BiButK4V4D5mZs5MnvO5c4ExquRT+KHiQP48FaJOZ6Opkrp8Qxcb1ll/TOxOfZgJqmuylMy773hb0nZPj127wui1PeRScjxCOYBiR9j9QCb1Q0LcAP+ar1sixw2VgOVqmtdajlvL+BbMcYuY4yYjP8W2FKEJibiVFFRJ342JanGkE7WvWqCx3EATI26yNYoq+V8nAbvvDkyd6r6403o4nROytXg2a9TUbCwmHfB1hSIjEIYG1LcGWGygc0bdyIbIJzKMad/rs+nF+mMblgJ3nAJsfs2vbUA9DwbPcWuA4/a264HtjyHte2zYursT9HvOLP3nPpa3toVwnBstThLScVM97x84AVi8GFi2zJ2ZoAp4UH9k7cqkbMv06cCiRQ7tV+9baRQwdu/0eAxxkmJ7WMeNzlMy4gb40yVjqpya9nLbAF2y5bi1jG/RqZKBETexwReom+9kSr9fVFAlvVErxXUREzXgf31M3/fdOBgLcId23Mg1CTUmb7iu/tgXAYxCIlfturj3EcetY2JS4kFYEMctIuI2oClwGyKa/MAX6umAoX8jRo5FT0/ixMekSuquy3NXZfM9Xa0RjlssqiR13EqjkrkmZPvsCtyWtiVz3EKiM5nUg0COW6Wizl2cOC6Zc20VPKn96Y/1xyiRQDTd2wucfLL9/C6ubbE9e21ilAMoBHbcVIgbddx8lSVjUiX7DWNvG6BLthy3ltWbTs56qFElBaVORJN8I+F0wyOrSsqfu5hqss84KZ7X33R9QyNuFTK1LH3aj24oW2jEbdEi4Dvnqj87irx2WdzrEDfquAVQf4xJldQFOkJEk2mNMpXFzPnpc8zNWbQo2Uh+e575vCVPuLUvzOTQPv8bv7YBNc1oKCJupZHZ4FkIilSoNa6u3ZznNATCrLuHvutepZxeFyrGocs3tLXBzVDmivmOyZ4e4Oy59ccp4ib7hLNm2TErRB+LHanzAwwNxK2sQNwoVdIbcdONR4++i8DZXQYF721AWbLluLWMb96I0iDQ80dgxf/FaV9uQ0Rja4u758KeqyrpmaytRNzazZ/bmGlCC5nj9tf/D7jmj+n7o97pRzeULaQ4SU9Pslh3aD7vUhyzWdwziNsEoJM4br0BaG8xqZK6zUeoaLLJgtBpNNdm3zfaj8VFixKnvbc3f9W84zY32pUwX4nyPFMFmELnuDVCnKQ0KjyyH8KBUlne9W3mOm70+50T09ehqJI6pVDfDfj8+cCA4rrT4S87br29wKWXgm06xC2UqiQdNzTHbeMy4MW/+LU9qELcSBHuWDlurnONCJzNmwcUDG387tdu7Q8hazluLeOb7wKw9ArgnyekG79CETjmwfTz0Dx/scEXjptvRFZWlZQfH51ELdee/239MYq4+W4qTFFfbxomuXc3/A3YSKN58KMbyhYScZs/P1ms2zWfq8r02CzusuOWWRg14h82ZnTGfXMudYhbAxw3399YtAjo1TyPq1fYjUXh3AvLWzVLsI/cU4sdMW4E4taIcgClkVLwLIToTKRAyFAuwE3nAYq4haJK6hxAHwbOwACwYIG6FhxtVsXCXLCAzxChiFuROm6BFDfpmk8RNwC49b1+wWIV4hZS+CukOAkNnAH69RoAPjHHf4/R5NZy3FpWbzoRDN8F4C4p8bvQDox/EzCqWuE0NOImJiGxuHs7bhJVshgQcVt5f+LYyhaSKhkTcbuDUBcGkd1D0VnGNZeAWqjFRSzugJ3jBvAXd5kqWSKy1yGoRqbNje/mwYS4LV4clv5a9xseY10s8roCvuI4dywK514Yx3GzjdxTi51c3xBxEkV7voEEIHXc2oZVGRWUKhmg/VhUyVzELcTaF8txI2O/fWy6njYz4rZ0aRIsVD2r9FKrHLfly5Pvc6yGuHUA7aTMQIigHCAhbpLjBgB9q9zbrgtEQ6Ieez5PoXLc5MAZoJ/bxWc+gbMhYC3HrWV8W/MosHZxuPbEJCQQlOBUSbEbj0SVDIm4PfML9fGQyfexHLeeHuCKy9L3g8imLKhmGZ+JNRTiJhZ3QE+V1NRXZS/um19JX3dOAkqj0/c68Q8bM20IfTdWqtpNwvaZEZb+WvfbjoibWOQLSMfd0wCWkHNs8lqocy+MjudHANwifUe0bxO5pxY7ub4h4iSRETcRABkqVMlcxM0TYX7+d+rAHxCAKilt8EvVQtChHDc69rreSY57PAdrq46TaoNPh4lO92Qdc26mVEmKAPvSDGvta6iStWMm6CnHVKqSIZ+nUDlucuAMMHsubfALnA0BazluLas3nTgJACy+ONzvtAnHLWDCbYYqKeW4+SJu8gIWMseNRuuEjdtHmkh968RFctzmz8+2bULchPlMrKFy3NaSqKiL2jdncd/wQvp6xDSgnThu/QEcty2BuAHAWISlv8rmOheIRZ5uyAYAUL/MJq+FOvfC6PRYBvBC9uNa+zaRe2rRETcVVTKgwzLYB7yoUGmN4rgNFXGSvDpuHo5b3yrgjo9kj9H1JCTiVuwM67gNDADPP5O+HzYlfe2z3o2p/v0uVEkAGD1a84FklCpZKCSIJJCUOwlhOnESYT7PlEpVMrPf8N0vVfs+4WDgODJJ2oxHVeAMMCNuYkpwDZwNAWs5bi2zs6d/Fq4tMQkVIiFuNaqkcNw8Nw4DeaqSgR23t/5votAozDcSH6McgCqXoIys46aLA7hMrMOmhEPcxOJ+EoB3a84xrV2cxX1j1WMolJIabpQqGR1x83TcHtbUcQMAolEQhP4qm8tGli7y9NasQ3azplr0dWNxrYLyRFdN1figQXBu5J5abMdtQIG4rX4oXPtLr1QfD+K4VZ0F4TyERtyiUSXzEDcPFcLNK+r/9vc+kToRvmgevSZtHUCbcNw8qN5CHXDqVOBDH0yP/+bq9LWP47bLLsDkyeodbp7j1tWVfD/PKpW0j2KvIa55MMRNKgfQFtBxi4m4lQntRnY4bZ4xVeAMMHsu4jPXwNkQsJbj1jI763pHuLZqcv3V/ysDAYpMG6iSQRG34fV13EIibof+GhgzIyxVkjp+2/+79JmjA6TKJeAgbgB/YqUJ8Uf+Vcpx89hoicX9RMM5uuHIXdyF4zZixyQnspE5bj4R8Z4e4Ka/6j9XUUhD5hW43Fe6yNPHaS3yN2u6sThGEVCRHTc5MEEdQ27knhp9zgs6SMDDVFTJ5f8I1/49n1AfD+lY1YJ+LcRNeV2LpfQa+dI/5VIvwmnuWwU89m175gBVB3z11ezzsoassS8rCtFzrVQCZs+uD9K8hPy5YPZsXu04ek+FQyXEp/pX++9lVL8hI24+wdxcxM3jeZVz86jDabPXUAXOgHyqpDCXwNkQsKZ03Pr7+3HzzTfjS1/6Eg4++GCMGzcO7e3tmDJlCo499lj8+c9/dm77pptuwnve8x5MmjQJw4cPxx577IGvfvWrWL8+UE2SrdGmvCt97YNwyHzsokSV9G0fqJ8wgHiqkiEdt9KI7Hsx0YWkStaig8XEAdr77PQz1+uuyiXgOm4Ab2IVC8jo3YHx+4VD3MTibjIdWshZ3Ac2pKqSI6pczGIb0Fa910EQt0hUyfnzgaJh4VY5bl70V3lD4rDZpIs8Ee/EGrjntQjnnhoXceM697LRe0olxkOZalysecy/bpMwKhlPzTtHt0KoaZLwVIj2gS2HuPnU/VL93QXiuHnnuElrajsJPj30VeDx8/htyeqAQHbtoNP5U0/4ofhz5gCd0sP+fZjFSTo7gTPO4LUvo2EAQTn7w9Ryq0gMopBUyaiIm4HiaTMeVYEzgEeVBNwCZ0PAmtJxu/XWW3HUUUfhwgsvxLJly/DWt74VJ554Irbbbjv86U9/wvve9z7MmTMHFcuIxg9+8AMcffTRuOGGG/DGN74R73//+7FmzRp8+9vfxkEHHYQVKyLXzxmqNoUkDPtE8QuS41bLcQtYl6ssRQcBMhkFVpWUo10+G2XZqaxNpBRxC+W4VdsM4QCpcglkqqRpluFMrGIBEfcxZDmAOXPMn6s2+dzFfQNBn0ZOS1+LPLcgOW4RqJKCcmjKex+vOe6aV1BHO3ZAIOgib0LcdIu+aiyqnHs6niuod+7FmOFG7mWjGyZa1DeELbsuQUmEiYACEI7eRfOUqHk7buT7clAOGNqImw+dUXVd24alYyek41ZoT6mSwh7LKUgvTKUOCGSfJ9mp8kHxu7uBz/xX+v7XAF6GOYizcGHyPY7JNdaA1HEDwjxPpnIAgKdzpVKVjOC40SACYDceVYEzwOy4iXvqGjgbAtaUjluxWMRJJ52E2267DS+//DKuv/56/Pa3v8UjjzyC3/zmN2hra8Oll16KX/7yl+w2H3jgAXzhC19AW1sb/vznP+PWW2/F7373OzzzzDN45zvfiaeeegqf+ISG4rGtmewQFzurKorwc9yK0iwpUyWBIYS4Da93pHwQN3mSrFGBaI5bIKqkynFzdZhVuQRcxI2dS1D9u4sB+y1sxx3zz5H7z13caYFtupkVdEmfHBFhJmfe9VkVlEPquC0DQIRDoQFV3PMKJO/HZbO5yy6p80YdtzUAaHMqX8g0FufMSZx1YXlUyRLsIveyZRwUndypo912XPZ9B/HAVblvLtY5SX08pEqdXOolRPvyb4S0RiJu+3wzYXDEQtxKI/XnmkylDgjUszXEpSrCXx3w8MOybQNqqmRnJ3DVVcDMmfy2ZacKCO+41TmH0mTjM+blYvZAPMQts4+xGI86Vgwnx801cDYErCkdt3e84x34/e9/j8MPP7zusw996EM4/fTTAQBXXqlJglbYd77zHVQqFXz0ox/FMcccUzs+YsQILFy4EMViEVdffTWefPJJ7/4PeatzIkphlKTkfA0lVTLwIgOEc9yoY9Y2rP46+RQklRf2oowWKs5x/Q2VA+S6YVHlEnARN+7EKiNuIYuEcpwn8bfZLu4ZhVMyxgXiFoIqacpxWGkQFzGZoBxSx20egNvIe4nZm7EQeQUuCMRvf5v2nVIl1wKgPomq76ax2N2dOOvCZFVJeQiVYBe5l43e02IEqiQ1mj/qI5BBTXfvQtaFGmpUydwct0CO2/T/Avb5WvK65rh5ipPISs1UGReoR8tVplMHBPQ0e3HcRx2QBjuPelcSoKFNjR2ZiKQsWWLntAFqxK1jXHoshLKkvJ+R9wA+ewK6/oh7Wgz0PMnPaqFAyj5ZPmNy4AzIr+PmEzgbAtaUjlue7b///gCAHiaE3tfXV8uL+8hHPlL3+U477YTDDksiM9dcc02gXg5hkx9YmpDs45zIOW4qqqTvRlxFlayJk/iqSpKJrjRGQZX0WCBlNE04iTHESWoU0kDXfc4coIPMpBzEzWZirVE8I1AlOYVSp2zntriXpQ2PMFHLrdzvN2ZEGzp74gI3OqZArejj2o8sxci0cIbIK/At0iojbtRxGy59lzMWZ85MnPbOznrE7V/IlhsYP9p+E0gtjyoZQvRAWCdx3ELk5ADZMTd6evo6JOJWV6MTTU6VJHPB7v8NTDoUGL8/+TwQVZI6UTEQt0I7MHyH7OclxvOuUwcE6h038eeEUAekjs37jgOWLQOuJHlz/z0HOPdctyBLOQ9xW23fZt1vSGNenu+9EDe6nxH3MFAB7sy1qc5hruNRDpwB+eIkPoGzIWBD0nFbsiSpprr99tuzzl+8eDE2bkw2wgcddJDyHHH8gQcecO7Xhg0bWP+a3lToTw1x86AD6sRJQiIoJqqkb45bvxShqot++USoZPSuep0bhrh5LO7d3cB7iUolB3HjTqyVSrohi+K4MaKiTz7utrjLamzCMiUBPOmSeWNiw/P2bQr6q8lx0wGlofIKbB1amYYl57jRaUtG3LhjcebMxHn/L0KpLyO5Lj+cDPQrHF4Xy1AlFY5bSOeCUiXv/TQvkJFnYp4sdgKHEJQlhuPWKMTNl6ZO16WxbwTe9S/gzeTahELcVI5bpezXf/m603xdICtWojOdOiCgp9mHUAeU0cJSCZi2m/pzW5OLYwOpqiQQhiqZcYA6wu45MohbYKrkoEKx0ieQQANnBZg9l6+d5Rc4GwI25By3V155BZdffjkA4KSTTmJ9Z2k1WjNu3DiM1kSDu6sL91KPug+jRo3K/bfDDjvkN7SlTUaSCiVSu2WDe8RXFiep5bgNEaok3dS0jwnsuEltbV8tLBa0jpugHFbbpIp1vnSaPXZPX5sQN2u6IWloSyFuRcfxrkPcQhbhzvv7XTYmgv5K06tEM2KI6xC3UHkFvkVa6VTTB73jNno08KEP8X+ruxv49H+n799/HLB4MdDzIrBd1WENSU2j1CthKjl/V6NUyZX3Ao98079NsSEcvkNYx8pUozM5wa99QD/uYohmVchzsupVdzpgxtEn15uitT7rqhwMHbFT9nMO4qZTBwTqafYy4ga4o/iq694WaL8hO1VAtqxPiCBIHeImjRGfPYEKcQtVgFt1bWqOm+OzJAJnXz3LfN6Rb3NrfwjZkHLcBgYGcPLJJ2PNmjXYZ599MCdPEa5q66rRmpEj9Um1o0YlEYe1psjQtmJKqqTY7VTco4OyOEkxBlXSkMDuneO2Lm2vbXh9fZxQiNub5qULQEiqpKwq2UY4Y77Fmulm87SPASNIFLaIBIlxoRuqosk0AOC7oeLkIbhGZXWIG3XcfPPcVH3bnTgWrgv7nDlAZzWZiw5zk+PmlVcgOce+RVrpVDMAPVVy3TrgM5+xVK4j88ikyUlNqlLJf2MijI754VPrP/d9Vql1SPKgT37Pv02xIWwfHW4jCGzZHLeQTJDVa5O58AhSE/WPv0+KUc+da6+imIe4AZ4OijSPyYgbZRDoTKcOCOipkuK4D4qfmYNF4I9eF5/0BsV4pGtqjHIA0RA3leMWuNRACOpudzdw9lzzOb57giFgQ8px+8QnPoGbb74ZEydOxO9//3t0dARW3PK09evX5/576aWXtnQ3862OKikpSbkKlMjiJDHKAcjUiOSF+NAvP0RE0NpGAV/7GvBrqcbMSy+6LbxAdpIcu3f6OiRVUizA4rrQ2nG+UXzat0/+N3Dm/6TvL7k4yS1wohsqNiUhHf0BKVAz8ZD6c1ydH53jRgUnvHPcFH3LoLSO16e7G9ixK3lNmzA5bjZ5BXINRNlsNlSqYButAFJBFnGTc9wuuSRxvrg1o7QbZTEuK37UNNr+CIXj5vqsquY+WSHQV8Wy3J/eO9lxe+qHfiiEiU0BBHAMDUFJXyYIDfJ94StJ8elXVqbH2pEEH+bNsxuLANNxC+igyI6bHHRRmalmZp44iQ+Kr0Lcgjm0ClQp47gFQMY3LiO/0V7vTIXOcQumKhmYKkktbx/ky0waAjZkHLfPfvazWLhwIcaPH4+//e1v2H333fO/VDVBjzTll4kC3GNMkH6OjRw5kvWv6c2kKgm4C5Q0ogB33uLOWWR0JjYdr6xJFtg+eZEvuy28gLTAkMkzKFXSgLj5LjIyLbBE7vWULveFN7bjRhG3fb4J7Hyyog+Ov6GjSoakBqv6lkFpPcbMyGo/6U+I5uhmy4b+2tOTBDf6ySb7TgCbpPEno9kmU83Z4hKI/uapSvb2JoWBOc9tZkySuYXeV58AVB7i5uy4KRwbucC3r+MmbwaLkof/UE603GSxc9z6Vunb8F6XyEZ2Y3VQ0ibp0mgzFoH4iJuMdLZLzxsXWVKpAwL1OW40OOSrDqgK5AZz3HIQN9/yGmueBF65OXndPhYYsWP9HsALcaPlAKqTYihVSSNV0jcdJmdN++cJwKqH/H6jyW1IOG5f+MIX8OMf/xjjxo3DjTfeWFOV5NrOO+8MAFi9enWNNimbUKgU527TJm/2CqUwiJvsuIn8ilAiGUB+HoTPZLRpdfX/6nsZdRDvbRdeuV+ZxTeCqmQxMlWyUAq3ocpcF9XCGzDHbcwMtaMTHHEL6HiqELsMldQn+b66IZvSnThbXV3ppqoEe/rrokVJUGPevKyk/kLUx1NsEAIVDUsMP9HfPMdNGKfgb1n3rAaax+h4G6GoM+jsuCnGglxuwNdxk+lXslT84ovd245dx23zK+nrXU4DdiQ173zXpVWEyitug85xE8YtPt1oqiQAHErWNq7jplIHBLK0ZipsVYS/OqBqDi4Gyv2LjbitvAe1iXH6JxLkKmQ5ABFkKY1K90hRqZKO5QBk4/zNt7zX7zea3Jrecfvyl7+M73//+xg7dixuvPFGrSqkyWbMmIERI5LV+t571bWNxPEDDjjAvbNbi5nESYBwVMnO7ZL/gxbgVkTYQtBpXlgKFKqTkZiP5adHfs9deAEpwZxcpxiqkuI+hKRKyot7FMdNgbj5UmvrBGcUfXW97rERt8HNwMMKBKMYCKUVG7KOUQnNddkyYLtqIfHtJ9vRXxctSoIZQvlRDI8lyNIYhT3/DL+fKhqWaJ+Kqoj9pUyVpMYp+JtLlYTfPBaNKqkY2zLipio/YGMy4lZX48uD8RCbKrmJOG7DurJrnu+6dO+d6et+6X9A7bhxi0/rxiO9lzYIdl37iuu+80dSNNim/h9VB6y1ST4fQBpsGTXcXx1QNQdTcRKf66JE3CgN3jPHja4No6pKmPJa5EPJFkEWmnM9FKiSnDVt04t+v9Hk1tSO25lnnokLLrgAY8eOxd/+9jccfPDBTu10dHTgve9NPPBf/epXdZ8///zzuOOOOwAAJ5xwgnuHtxbLo0o6O27SIj5MOG6RqZIhav38nESKuY4bd+EF1EnUQNbZjSlOEjLHrdhAxy0khaltmHpRcP0NLeIWyHFbdl39sSnvksZMAMdNLLylEtBRHTPFMp/+KtdY4wgBPvKAXa6oTMOSETcgfW5NiBuQX/A3OjUtT5wkIOLWJnmxqvIDNpYJhKgcNw+LLU5CEbfhU8KpDw4MJONZ2CD5X4x/3aPEKT7NGY8+ZUeUayrSecHWQRHqgALFp0NkzFhgYhU9LxWUX7cyJeIWKvcvMuKmVK0cmz0nRI5bKYbjZqBK+pan8A1gbwXWtI7b3Llzcd5552HcuHFsp+3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYI+jfMSRNSZUkux1Xx02OtgrErRCIYtS3Gnh6fvpeRadxkYweGAB+e0X6XkeVVK0znIUX4FElfXPc6qiS9J4OAaqk4N+HrPuXVycHCK8qGQyZkfo1dm/g364IN2ZE3+hGp0Z3sei3XGNNzmlRWaHMD3oA9TQscQlo+2KI5zlueQV/oyNu5J7RAtnCYiJuvlTJ3tfS153bIegWo6GI25Rw88zSpUAfmV9pU+K1rvYfp/g0x3G7mShY2prWcauOHRdkqbs7RfG/+Ln0+MLLge2rwYoQG/So4iR5qpKejhtFA0X7B/8se47r2lqppHXmKOIWqgC3SVUS8MwBbjluAQruhLfrrrsO8+bNAwDstttu+MlPfqI8b9KkSbjwwgtr71esWIGnnnoKU6ZMqTv3gAMOwPe+9z18/vOfx3ve8x687W1vw+TJk/HPf/4TL7/8MmbMmIGf/exndd/b5mxgABhUqEoOIzkk6x1r3ckTQQ1xC7RAyonvoRb3pUuBja+n78V8/P8BOJD+nuK7YuGdPt38G6oFBghHlawIeT3EQdwyi1hIx00l5xzRcVMibk1KlZRtv+8mSEEGcXNFCxXjBbB33FQ11jhxlDYk3zv7bD6yJ2hVs2YBbdWNAx16It40HMlG2fQnmAr+NhJxK5SAA34I3P//0mOuz6pqHId23GS6YUjELXqO2/L09fAp4e7n2rVZx2xAet0Jc9H2vOLTuvFIXw+sSzbrBQcUK08d1we1KpWACWMBwWwrdZI6dwE26KoUhIzglw9VnTjjYi2NRZUUY3HcG4EZnwWe+lHy3vUaPfz19DUt5xCsjpuBKgkkf5s897DbbjluTem4rVyZyuTee++92ry0nXbaKeO45dnnPvc57LPPPvje976Hu+++Gxs2bMC0adNw1lln4ayzztIW594mrKcniYwvWABc0JsdGQsWAieQYucr73H7DXlhreW4BYrELJEcfGWOm8PivnYtQOcYsW96DMBFAD4tfk/z/byFV+5XDKqkyokoUcfNE3EbqjluWwRxC0XBku5Z58T63wrudFavPfeaqGqsqRA3OfWpBH7Qg9rMmcARRwD/mA6gN7tJXgFAiBFPBPBK3bdTM64FiqLwQJwct0IbsMdnk2f17mrdUtdnVUmVDJzjRp2fYV31qpI+lkeD9y3AvVlC3ELdzzFjsuspbaoPwEiYHbe8fYlOLGfNY9nzKmU3RzoPcSv3J31wvdeZuaY9nW8q5WqfPVBb1RxcKFSDdH1+5VhUcvqxqZJAVrDIdW1d9sf0deck8jsNoEoCCZpoGvMmayFuzUmVPP3001GpVHL/Pffcc5nvnXPOOahUKrjlllu0bR911FH461//itdffx2bN2/G4sWL8e1vf3vbdtqo2turr9a787+4AjjkA0Cl+lC/frfb79QhblUUjy4GPsnCshUUi7tLFGnMmKygAQ2k3Qng6eprXRiEM7Zii5OoFrBQ0sXLbwFeuj5939AcN99EZ9lxU/TVddOW5/z4tA1kKculUcDEN9e3H8TppIEES8TNVGMNMCNuAC/oIVt3N9BZbYDeTgKaYxL0llfwV6sqGUPFr9p+iGeVRZUM6LgNn9LYHLfnfuWXO9NL6qp1Tgx3P3fZBRhFrquqvIZu7eAUn9YF/WTZfmeRJQXSCWTHjg/qVkezj5DXDWTnYJEm4ONcqQpYl2KxWMhYDLG2UuR1j8+HbRtQUyVD5Yy2ELfmdNxa1kCT1d5UTIpBABv6gOeqD/Lap9weHvk7HVWEICSCQi0UVXKXXYCJJClY7iJtUr5+nIUX4ImT+ExYNPekQJBIMan6LDI3H5l9X2jP/g0+mynVJjlkjhsNFLRpHLdmRdxoPcVDr0oX4xA5brn5ecwi06oaayqQ5PfSOeInXQNqYh6RETdhEw3fzSv4q6vjFmpcivYLxfSehojkK6mSsjiJJ1Vyc4Ookqq5vedq4Pl68TG2USSzNDLculQqAdPJGkAfG9Gs7rJzik/rHLe9zpLOCzAXZAJQVLXSgxaYcQxL2d+457+S3HXntjXzmMjZ92Ga9CscN1peIyTiRp2eIIyK6jVvHwtsdyhpO4KqpJhTQmkZtBC3luO2TZus9gaoR4SgMW0iB1w2JnQiGL17CsuHVJWkRh2U9Afs2ymVgH8/St8EfS9fP87CC/DESZwTkcvAjYep2xQbN1+qJLVoiJtILo+Y49Z9ouKcAHTD2FRJqvoaQlVSdd0B+82sqsaaiip5I4BfkuNt4Ac9ZKuQ+alMIinUcdMhbpyCv43KcctIuwdw3DhUSV9HK0OVnKxuz5VVkZfjBgD3fdatbSCLYLcND7su7UzUQVXiJKolglt8WjceJx6UovCA/yYfUFMlAT/HLeMYtmfnm2cWAM/8PFDb1HGrzpfOQmuQqJLVPLFie7rfeO12YNmf3Nuncwh1ekKsraJtubZuDMRNl+Pmai3EreW4bdMmq70BZseNOiguDzX9zjtuJL8ZkPpGTSkZ7ZgHcfQ709fyn65z3LgLL6DfKIegSm54PlvXRBl59IwOUmtkjltox23SW4C3XJF1hEKUA4hNlaQKoZmI7BameZpqrAHpszMI4AYA68k53KCHbPS670ry4ziOG6fgb6PquBUUARYgnKrkTh9BXQFuX8bDpqrj1j4u2dirHDehZmdrSsRNat8nH0oEr9qGV9kI5H4+co57uwDQQfpFp3GTqiS3+LRuPAJp3isQmSrpg7jJc42U8Lrh+TBtZ56n6nzpo6ZMqZIix03kzwm77Vj39nU5bkEcN4VicKi2AanvKqpkS1XSx1qO27ZqKrU3oF7inhp1UPodOO1iIuicCIzcKT0ekvpGLaRk9IRx6Wsu4sZdeAF1XgsQhu+//pnsexXi5lsOgFqhbeiKkwDArqcCe3+N/EazUiU1iFsxBOKWk+MG8J9VucaaqRyA+Nl28IMestF+TZmaFvyl6XajpO90dibncQr+RkfcRL1F0jYtxxKKKnngj+oRN9/5V1CyhWKwynFzpb4pc9ykLYwPYigCIeJaC/EsIMnr9hGyUFHHgHS8F5GuvTZjETA7biHWDxbi5pPjJlEl1y3R/75125p5TNzjcq87lV9FlQT81SSF0b+bOj0hWDixETfVeA89P27D1nLctlVTqb0BfMTt+WcUJ+aYXABaWKhIjGzKAtyudEPNJhyod9xsF165X6HruK1dnH0fHXErxHXcQiBKte/ropoBBD5ilwPQIm7UuQpN83Rw3OQaayZxEnG7J47nBz1kkxECUfD3/32xvg9dXUkh4CVL/DfKwRG3iFTJ3c4Ahk1SOG6emyIRTBCBBJUjRZEKG+Mgbj5bGhG8aqv2faf/yH7uQyen9NDHSfFperm3n2w/FgGz4xY63zUT9AtElZRVJWWEzadt+qzQZ6gtQCCEFjXP1EILZCzEzRNFjYW4taiSUa3luG2rplJ7A8wjgm6y1mm+bzLVhgQIl7QqW6gcNyA7WXzjW+nCKzf5pS/YL7xAXFXJdQbHrZbjtinJDQplUR23Qvo3xHLcigGcw9gFuHU5bkEQN814dEU7Z85MkS/6+Otox8M8KtWo7ml3N/C1c9Lj/3YwsHhxUgD43HPtnEQO4uaDBJdzHLcQqpK1fFHpOvv2W4xn0V+V4xYi16rQAMStfQyw4/Hp517OSXUjW+wApk1Li0//21vTc/76p6RuoW3Ago24BaZKhhInMQVFAT/FyswcOUL92tUhz1AlZQg/gG2RHLdABbhVVMkYiFv3B4Bp/wHs/hn39oagtRy3bdVUam+AmSpJn+ORw7WnaU3nuNHJ4+G57otA3SJeqD/uSpWkG5qJk9OFd/Fi4K1HpJ+d9RU3pICjKuk6kcrUExVVEghH8QACOm6a62JbCFpntQWkoL/uTStOQssBhBYnieB0CuTrE4QCKR5HgXxNe4Nb29R01C66+Rk5LCmB4pRDx0HcAmxMtM+p40ZTR8emtGCf665CN1SOVEjKXqgct0qlHi0EAqJKxHEDEmGwc84B/o+U1jn0zcDUqclz0NPDb7uRjpuWKunB2Mi0XwLeODf7uc91182R9LWrQImgShY76x2gEKZVlWxUjlugAtyhqZJ0Hhu3D/DW3wK7nu7e3hC0luO2rZpK7Q2oHxHrAbxcfU0Bme6psDaO4wYAL1zt0HZFjxiFmIyUBaxLyeZv3ATSvisVU7P4ZmT1HRdeSumQ2wxBGVFZTMQNSMdMqBy3YgcytW1C54nFoErScgA0ghyCHqWjefrmo3Z3A5/6RPr+xA9kka+O6obfy/HRbDSDOVZkDqEFa0OpEEajSmoEkPb9ZiILDjS346a8r3KwznFLU+5L+0XnxFCOm6COtXVm66ZupJtzJOkL8+Ylny9axGs7g47HoErqnieCuAXLQ2sH9voKsO+30mNe150EOXRUSdf8buG4xaBJAgaqZIj5vdp2QUbcYlIlI5QDEOM7huPcxNZy3LZVU6m9AfX5J3ORIm3U52lTFXzLMa3jJkV9BhxomIObUKdGlf4A6YMr4magcwSJgOkQjhARU+l7tI+hoqay0Q2EV+FwzaYkNOJWF3kMQGdsFFWy2C4hS6FpnrqcywBtT94+i3yFcMi1hWsJqhrCsUp+gLwMtTFRzJMhCvtmNjya4FlDHLeAyE8dwuRIldQK/QRG3DaXs3VT6VCiy0pvb3Iex3mLjrjplBkjICjFEtA+KlsUOgRVUp4jQ1IlS7Ect0gFuMuDqO2VoomT5FElQzn6LcetZduayWpvQNZxuwMAqdvsXQ5ATNByXkWdhLFOq9tgJrpDCN62DoEAwkx2WsQtsCoYkN2ARKuhF7GOG5A6VqEKcLdJjltohzmmOAmNHsu/FZMq6epc6Sh7tP1yv3vOZWbTIC3oIRzD6OIkChGnIDluhuBT7bp4BFmo4yY2xrGokro6bq5bmgylLgLiJsbkilXS75LXKp9z1qx82qTRcQvA2Fj/bPo6g7hFyFkS47ItUP6cYCW0jcweH3KIW8AcNx2SF6Lt2m80iCrZctxats2ZrPYGwCjVTR03l0VAh7jJmxyXTY/suO17bvo6hDhJRbFpqL0PgC7FpErKfdJJUwcVhmkQVTIU4lZ3TwOrscWQjVfl5AAIooiZ5zADHoibRvgEkAQ+AsuXA2Ec/i1RgLtQTCPXoamSQJjrokTcCsCOJ+j7YWObXk5fa8sBuDpulFKnyXHzQX4EdUweFjrETVhvL3Dppea2uaqSLnPBi38GVt1P2ovguCmRVFJHzyvHTcyRUnDLF3Er96fjQXbc9vwy+R0P0ZJYddx01NcQbQuLqSqpokqqRG22Yms5btu6UbU3QC/V3dkJHHZ4+t6nALe8uGx3aPa9y0aZOm67ng7sTRKcQ4iTcBE315ow2nyowMnlgDSpNgBxc70m8ndj57hRKwZwfkJK6quspoInOW4xc9xC9J2D/ADui7tOBY+2H8NxC1WPUqUqCWQVYJ3aZSCdPs/TgMJxA4DDrwbeQGj5LmNyw/PAM6TuaGiqZHTErTrnyn96nuMGJPVWBwzXLGYdt9s/oG8vJuIGpDTVEDluMivBV5xEV2YAAPb5evrax6HQqUr67gkGG4G4RVSVbCFuLcetZUjV3ubOBbYjQhuDyNY52m339LOQjluxHTjoJ+Q8F8SNCHDUcc4j57iFKIgZkyopT+5aqqTDZKpzymIjbu3jkv/7VrlTxwBDjlvgXK7QVMlKJaXq1CFuTaoqmdc2EMb5MVGBxPsYjluonB/RvhwgKnk6brrxCMTLcQMS1G3kTqQfDvPB4+dn34dG3LQ5bgEoe5VKGiyTH8c8qiQALF+e1F3Vts903FwcZvlvjoK46erEVa+9V46bVOKh1rYnVdIUHCqNBMa+MXntQz0Wv1Foy+akDgXELcPqqf5GVMSt5bi1bFu07u5E1e2G69NjHzk5W+fIe8IQjpsiCkUXel/ErW4jq4MRLayhOW6B67iZctx8a+jpnOzYjtv4faufl4E1j7q3L/7mGDluWucnwALWvzZtX84JDSEgokNnGpXjBnj03bAxiZnjFgpxq+W46RA3x5wcI1UyQF1EEwoRau0QFhNxC60qWRlATQxCvrz0zzJ1fd06/WcxqZJygfYoOW4aJ6jNE3GrlNPvynuCEFRJYSq0RzxPXo6bLqgYM8ctUB03cd2pWjP9rcEAgS2ghbi1rGUAACoWOX5Sts6Rz4RRqegRN8CfmpaJwpiKSg4FVcnIiFtZR5V0Qdy2kOM2br/09aoH3dvX1rOhm/AmpEr2rkhfy45baMQtZDkAU9uAlOPm2j7DcfNxUJb/nbTXoBw3gGxkHREIriiMq2VQK8lx83UgRki1MbUFuAPkuOnquJUdHQg6FkyIm4lVN9oggBFTVbJjor69KNQ3qtLq6bhlAgkRETeV0yDGu+vaARDHzZB/7eS4NQBx61uZ/N9BGFwhgn6Aei8mryNbubUct5ZlzegAeQhlUIdJ5bj5UtOMi1cIVUnuZOcrBlFApp5YCHES+XtacRKH665bsKMjbvulr18nRWyt2q4Yctzo4tiEVEmT41YM4HTq0JkgVEkD8hMix82Uw+HroPStAl78E2mPUOmCqUpqHDdfARGjKAxRlXRV89TluAH+84Es8qBD3JpRVZI62i6IW1dXUndVZ1zEzWUu6JQdN1rrMjD1rVDKtu9LldTdU/m9C+KWCQ511H9OETdfdVwT4uZyT9mqkh4FuHtfT/6n4ycmtbZFlWzZNm2xkCXT4gIEQNxM7Tc54jYwAGzemLY9oNnwOzuFBnES7xy32IibBiWYcGC6OXzhf92iphVaz8aU4xYacSO/tfxmYNl19m3HRtxiooUm2nEQxzCiquTGZdn3k48gvxUod1FHKa/l57m2zRSFcX1eo1Il5fslNvgy4uZax03T9xB13Kjj4ZLjNnt2lvlS135MxG2C/rNQ1Lca60F6Vn2pkjoUFfAvaM9F3AD3PYeWDeJLlTTNjwGC3AMb02uqc9y8qJItcZKW49ayrBlzuTwg+lzHrVGIWxPluPX0JMIvU6cCTzyWHOvtT97PnZt8HqSOm7RgZ5CgZnfcdOIko4Cd/jN53b8GeOVm+7aNIhYhJPUZyowAcNtxwKqH7No2Im6BSxmoCp/L57i2bUTcIua4OStWku/tNgfoGKf+LWen08BMqLVf0YsCmcxElQxBgTU6bp5jUu6TQEzkQuKuVEmVCh4QHnErS/3LU5Xs7ATOOMPcfsw6bh3j9Z8FE+MhiFum/eq1rww6CqvQEg9yrUvP8c7NcQM8gmdbIMeNtu+6bgu0DchSbWMVbAeySG1ywL39IWAtx61lWcuoJYVE3AyOD+CfU8R13JzruJkQNwfnatEiYPp0YN484NVX0yexjOT9vHnJ53+8Nv2OM/IjLUxv/kX62pea1kiqpDxuJhyUvu5fbd+2kTISWFUyIzhTqB9Dz15m13Yjc9xC13Ez5loFKE+hk9EG/CmBNFIsOydB8vNMtDfPHBEOVdK1bSAu4kbHwrh9gZHT6ttVvWe3r5kLgjhu5HuHHCZ9Rl6rur5wYSIMZrKY4iQmC019qxuTnjX0TFRJ33nMpCoJBHbc5DnMs+3cvns6bn3EcaNrU+zyEdmT/KieTW4tx61lWTM5WFGpkp45Rdyooy9tAfB3aBctAk4+OSmuKkw8ifTrvb3Apz5N2g6wCT/6dqDrSPK7QxRxAyTqhcPCbkTcItINVb8nyhtwjeu4hc5DC53jVjfHBK7jVqcW6kvJNuS2hMjP4wq3OCnAmhC3AGOmUY7b/heSDwKJk9Dr2aZx3FxzraioyfQ3Zuum6sRJOjuT82bOzG8/pjgJbXvs3tnPQhfgrqNKepZiMFElYyNuQZR9G4C4yfMjbT8E4hY7x81UJ89HGKbJreW4tSxrmcU9oOJQnuPmTaWJLE7CFW3Ja7+nB5g1q/64aEL2K2lzvsIq4w8AtjvMkGDu4jBrvhMq0msaN3Rh90ULY+S4ZZ4laaqVx5CJkqQyLlUyhNOpo3mGEG2JTZWsm8N8N2x0zMiR8ABoIRdxc3pWudfdccxQx01GOHzHpC5v0ciusLBGIW5tw7J1U0cQtcgSsnVTOU4bwHfcXOi19F4dcU32s2Ab8ep3dVRJwO3ac6mSLvOYaR4AAuVIx3LcIiNusR23PPaW6rytzLYtDc2W5Rs7l8tWVdJGnCQw4hZCnIR7XV66IYtoyTZ/fhZpk7sod4++d6KQVtJ7pZrkQiNu/3ZV8n9GbtmjQDYXcXOJhnMKNbu2DaT3S1ZLU/0ezZXiWN9q/XeDqEpGFCcZINfz1deBnQdS8YUgjiEjxw0IEGmPgLj1/CF9HdpxK2tQVLlt1+seU1VSh3DUlQMITJUMUYBbdtyAtG7q4m7g3jnJse+cCxxyplmIRGUxqZJ0/ujcTmo70Ea8f23yf/tYqX1PtLNvTfq6XSqn4B0EsREncVy3o4mTRM5xY1ElXdfUfuDRb6bvTYjbVuy4tRC3lmXNRAnMTEY+iJsqx80zQrVFc9zI7z1xPrB2ibqNgQFgwQL1Z9EcN9KAcoHxddwksYZdqlFiKt89sN6+XWHGTYkn4jZooIy0k/73G4rfmszkMFO0EKjf6Oa2Ta+Lqc5PCJpnoFplQoznrC+nx75yVlaMJwRqNRgRFTMibgGc2jtPT1+b6LXeiFuEwudRqZK6nMtA5QA4iJtrHTeV4yasnVynSRPsnTYgMlWSm4/qSmseAAaq86scgPKlSva+lr6Wnc7oOW4x69IGFPpRooXVZ8gFoQX04iTUMe9b5db26/dm32cUYKU11ackS5Nby3FrWdZi5biZBAmAALknkVUluY4bADz/a3UbS5cmwiMq0zlu9DJvcnCAKgZHHAggTkLabx+Tvm4bll53H8fNRIGNmeNWIhHaAU/HTXXdh+8on2zZdsTNmvw9Og/QXJF+i/tKxXg2kO/JYjyPPkE+c63jRkUJDLktLsjSZvL8ho6Ey2ZUfvTMcTPmFjpueFY/kr6uq//lG5jjIm6OWxpd7b8YVElqIXI6Y9ZxMwraBHDc+gkqJtPFfa89fVaHTc5+1tAcNxfnysQGaRDi5hrkpus9RTop+raZONU2Rud2AJhIBMr+XXLqWjluLdtmbEvluMUsBxCEKkknankBM0Svqa1dq2+fg7gNuDgnOYm83giEbkNVSFE3V8cHaFyOmzzWSwEQt7LBcRu1a/a97bjMyMbL+XMRxUkyDi3TcZPFeHQAeG8v8DtCFXTtO71fpYAUqVduBu4m0ux1m54A8wy1AWmT4k3vMlElPcfMhheAlfckr8fvBwyfkv08GlVyiKlKFiXHLbjYT0zELYLjRinfskCTbw29Xqbj5pTjxizADThSVLlFsgPXcaPtO9dz1AQqSsPTQFqvo+NG+77POdn+j9sb6D4xfd+iSrZsm7EY9crk85XiJDERtxCqkkzqguq9sDFj1FaqaKgAAQAASURBVMeBVJxEvqy0u0WH2iS5XPyAVEmd82ODzMjGpuo4OLWmSHixLV1kfBE3FVVypCTxbe24RazdJH+PjmdKIeVcF5UYj4m5TMe/s+NGAiRybosPsvSPd2Xf+4gUcaxvpfR7nuUGjGUYPOff1+9KX089tv7zWIIKQ0GcpGyaZyKXkPCdC7ilO1wLKtMyLnVUSc+1iSJunYERN5scN5frnskXlVFaz9quJmVcIIDjRtZiue+CsursuOUEon33kUPEWo5by7LGpQTa8p+bpgB3AFXJPKqkDnHbZRdg8mT1ZzrEjR7rcIgmWyFunlRJOU+shrgFynGrQzppDoRLjpthcQRStMY5x63ad9V1r1ORDEmVLKZjPjhVkjhCHIdcJcZD4w/yeKfdjY64WY4Z2bkOTWGSTc4D8aU1s8swOFx36tTI6Ib8e761pxoqThKaKinl4dC/xdX5aUSOW6GtXmApREFlk8iSr7Ofcdxk5d0mL8CdcfZN+aK+aF4ExI32Xc47qzluK91y6Kwc5laOW8u2FWPXK7NVlcyRcPVVwmsWcRJA77iVSsDs2erPTI7bYN0LvuVy8X1rQxmStKnj5lLsGMihSoZE3BTiIO2ejpuusCwAjJiWfW+NBBuokkB6L4IU4CbX3UZ0RifGQ7srDws6xF3VSCkS2C6h3CGoaaq2AP+NpvyMGB23wOIkJTL+qYw617j0KyAAShAZccvUcQusKmmiSkYp2h5IVVIZbI1MlfTNixSoTvu4+qBiSHGSGI6bEXHzCKADDJpnRMRtmBCJqWTVJ7lmYj4B/mNmiFjLcWtZ1owFYEOpSubUcQtegLuB5QAAveMGAHPmpMVXM98Rv6P6bUUfuJbrMHvSXUwKfoJWVxl03/REVZVkIm4D69wcT5M4SfcJ0oGAVEkgvdfBqZIWoi06MR4uVfLVl3M6qTHqaJtkwF03yrW2AueeyBs8Ktwg/57TZtMQfCoRB7ffkIurbZtZGwoInJcTaAujQ9wKxfS9q4S5kZIdom6hwSH3ptUZWAMhhFVocKIOcfPsu0DclAhwwBw31Xj3RX7YiJuvOEnkHDcd4ga4CZSYgAXAP1AxRKzluLUsa8Zcrpg5biHLAcjDOrA4SR7ipprIhXV3AwsX1h83OW4d1ZpovkpyygXGt36eIXpH0ZmbjrBvGzBvNn1VJbmIm6vjaXLc2oYBB15Ezg3suInfdEbcNLQ6G1VJnRiPyXGj3d3kiHRSh1JWlQyhnigspmiA8vciUiU7qFS35DByzAaB8JUwN+W4uSL7JjEI4WzFUJUMgVpFVZU01QBtS3/PWVVydfq6rh6lB8OnPJAGPmSFU0Aaj01YgNtUEzEo7diAuLmWAyhzEDe45bnlUSVbOW4t2yaNSwkMrioZUjEtIlVSxfW3pevMnAlcdVUWeRNfoZe1szM5b3jVAfLNQYtdgFueSKnjtvJetwibaaL2VZU01Z0C/EsCmKiSQHZRC6kqSX/TWalOVzeryBdt0YnxmB5HytIrOVIlBeJWGlV/bWJSJX0DRHlj2NfpNFElaY0lGeljtR2ZKsnNcXMOzJnk16vzzNongBf/7NB2ZMQtZo6bSRkXIGhkZKqkteNGc68VbIpiG2rJtrHLAbhcdxMbZCghbnJOJ801pPXeuJabs9/KcWvZtmjsHDfbOm45Bbh9J7rYqpIm9ETemHOuzcyZwJIlSeHhrsmpqmQFQFdXcnzJkuQ8n8WxkeIkJscNCEyRAqKqSgJZmp1LnptpzADSpjOgOAn9zRj0K67ojE6MxyROQoUUOx1yrYDUoZRpkkBgxy0y4rb/Bdn3bRGpkjQX0MVxa5YcN9fAHAdxA4Bb3wdsesWubXYdt8g5bqERNyCA4xaJKmkKQAsT4yiGqqSvw2xig8RSaK0dE8JWARA3mSrpGwy1ue6tHLeWbTMWqwC3KdoLBIgmR1aVNKEndXQd5oTR3Q2cey7wwgvpsf0OAJYtS453VyXjxeTnKx6imujaPHPcjJFq6fd8FbDkRSajKuniuOUgbjb5XCrLQ9x8ci+N1GCk98JZ8MAwD3DVNnViPCZ/lTpumz1z3GRFScAvTywvl9V3npGf793/W2o/IlXSF3GzyfkJqiopz72RHTcAWPWQXdtbkirprSopctw0ap2+jttm4gTLuWg+pQxMNQuFiXEUJcfNU2ytUYibLNqSad/xWRLjvdCmmGcsVYlli410DhFrOW4tyxo3x81nIpWLhAJxEbcQOW5iclcmaUu/Z3tt2ggEMWJUsuGl1ijEzbsQqTRe5DpUoSkpvpuePMStFBlxM3IG89qunq+j5fpEkwHzxqedibgBajEe05+9Fmme26YX89uXrVLhI262470uMCEjbgW/aDW9Vzv9Z3hanSl4RnPcfMVJYlMlZeouNdf5vRa0KtRfG/k+yPSv3LYbWIDbyDbxKQcQCXHbRIIzw6Si7T57ApOYmLCCxxwZuwA3F3ELmS8qt++rKpm3pvoEQ4F8wZyW49aybcaMOW4e1IXcySJmAe6AqpIhETfV+SbZ5dBURsA/im+KVMs5bb6LjGnj7ESVtEDcbB23SsWsyAaEQdxyI+EhqJIy4kZyLvNQWpUYj8lxqwBoq4oJbFzG7CyxwU3ptVQibh4b5TzHDfDb9JjQZfn3vJV3DYibizhJBtnPmSN9HLdCKZtjHJoqWeyoz2Guc7YU991kXFXJKAW4fUVhGuS4dUyod4ibmSppg/x4I26y41ZEjW/uneMWoxxAdbzLNEkgQPpBq44b0HLcWiabacPmleOWN1mQoehLlZQRvaDiJDnRZMCT1hHYccsrB+BLlaQ1n9pGZD8bvZvUl8C5BL6qZrmIG1EktK1tZaKlCYvquIlNiSv9ikGVBHiomyzGo3schRjPpOnJ+97X7CmwplIAgB8lO48KDHg6boZi9vLvhVbC86ZK5qjXeqsGV/9eEz0V8KdKqtYmE72R1XaTqEr6IG5agaVq/13WjkolddyGb1//uRfDJycYCjR5jltOqZpQ84xxDivDSaW13CDELTfHreW4tWxbMVPkNJTjpuRVF8hEOtQRt8DRQXG9KmVYS/TmlgPw3DgMEIemJDlu+5yTfe+NuKn6X3UGYuS4+Ww2ORFfqtLhrCqpmcJ9aECAeeMjqJIAf/GlYjwjybUuo16MZ8QO6eeiFhPXqCMpi+MAkvNjOd5NVN30YPJfFMTNEx0fMARZml2cpKxz3ALnuKnWJnkDavsbseu41a5noR4t9K2FxkbcHObf/tXp91SOW2yqZC3HLcK6FJMqCaR/k2/euAlxA9yep5iIW14dN995bIiYbkfRsm3VGoK4aXIECiUA/QFoQCaevyP8b+T6S1Ep60WGibgByXUsKiZybduRywEMbEhfy5vBEVOB3c4Anr40eR86hw5I+j+40RFxy4tqxs6xCKAqmUeVrAwkUVN5Q5dnHKokkL3/eSbEeO5+HXj6kuTY1VcDex+bzeukGxXbDWEGtVIVuvdB3GSnISdabWu5eTOem/xBQ5ClrTOZl8u9zV0OIA9xC0GVlK3OcbPsv9Fx61SfZ2OmucBbVTJnnil4OD80v234DvWfx6ZKhspxyy3APUQRt1r7mnuvbV8gbjmOWwxVSVqzz6XcwBCxFuLWstQqFWDFv9L3xgLcthvZnCgPkE6wTgsMrWsVQZyE5ljoPqu9t+z/ANmcbtwMDEjf93GurChMgTeDQDY/JEYitVgcvMsBGKKagGfe4hakSgIBqMdS/6mDPmBJIU0aT19O20UhxuPR90pORJZugjg0z0y/ZLXBiDlueQqwLvfUhLgBqUBJDHGSUKqS8hwQGnGL7bjVyaPTZ8kiCFLrSwVY9UDy2lQWBIhDlSx6rNkZxy0wVdIGcYtegNtlXc1Zm4LNM3mIm0P7ou9KqiQJ+jkhbjnrakfLcWvZtmYvXgeseTx9Lz8YRY8IGMdx8+KcN6gAt2qSlvvLXSB7ehKK2AFvSo/deDMwdWpyvKen+pseIhy5ogEFQndxiPhmqJIj6z/3zsthIG5AAMQthyppPd45VMkGqEoCjgi2CXHzyP0D8nM6fZClvOs+cpf09fpn7NrmiJMUY26oPKmSeVF8kedGiyJzjatUB7hdG12Om7yFieG4yc6Wq+OmEj4pFNO5x8Vx6/l9+lq1NnjnFubVohTHK/bXPpOPOq7+89iBs1DlAKIX4A7suOUKfHjMM5UKeZYUiJu345aHuE1IX8uq1luRtRy3lqX2zw9k38fKcdM6bh687S2Z4yZPbpz+L1oETJ8OzJsHrCSRoTKAV19Njk+fnpxHJ0AvxE2XYF7dxDnlieVE8b2T42PmuOWIk/jQXfJEYYDIiJtvYXWTOIkvSpBHDfZQmM277mN2T1+vXWzXdp38f0RxktwNlQc63jZcTZ3tqG56+tfY59JuLTluSsTN03ET1FOaf0NNBEJcnqXX/mX+3Mv5Ic6Y1vnxmCOpo5lLVR9iqpLRxUk8kM7BnL2YT55Y3j0tlkigwqGOW95+oIW4tWybM3mCCZnjljdZAH6cc3Ydtwg5bvLGOG8yXbQIOPlkoLe3rnsZ4KW3NznvhZf0v5VneQsMQBw3F8SNbDZUVEnfvJy8/reFQtwC57hFFyeJTZU0iJNQxM2JKklpzari4R597ydjeM36etrxsClp1Hedp+MWlSqpQn48ywGIe6V6ToHUcQMS4Qgbs1HZ86FM1zlukgPqOr+bHDdf8am+Vcn/HePVn4vnyQW9pnPY1GPrP/dJb2Ap43rMkZnAmQKdid739vRcW/XE2OM9JlUy1/kZl762ddxoAFWnZSDy3GLUcaM5bn0tx61l26I1UlWS/l5MxO2+z9qjM5WKXY6bqf89PcCsWdljeYy5f92ZvraVXWZFHqtOixdVsqCeqEPltgCaJPAAOW6FkoZG6hNNjixOgjyqpGc+lGnctHkibnliPC75IYJ2fALZvC68vJ52XCgAo6uo24alds9TbMQtJoUJSDf5qo0gkKUZ9VrSjBqFuMnXvNghzTsOiBud31WOm9xfm3msPJhufvMcN6dniYyD/b5T/3kwZVydOEkgx02ulSe37TP/5iFugAMlO0dIyIc1AEQWJ8lD3DxqOuaxWIC0JECMOm7tY1ELiNrOYUPInFQly+Uy7rnnHtx88824//77sXz5cqxatQrjx49HV1cXDjzwQLzjHe/AwQcfjGKx5RsOWTMlgltTaSwQt+COm/T+6UuBGZ+2aHsAtY21KjJo6ots8+enSJuwPMetlxy05pzn1D0B/BC3QRLFV9GvYtaeAkiOWz+s1RPzNrJbjTiJwyZ/Qw9pS3peKWITI8fNNj9v0aIkGNLbC+xFjg8ipR1feGFSCHzmTGDkNGDV/ck1730tUT/lmFU5ABcZ7TzEzfNZEkEWFaUZyDoWtvkhWyrHrVAE3vMQcP0e1fMiqHnKbdr0nyIWOsetjThu1nMYg5omzEcZNzpVMi/o50GVzBMnAarjy6I+X3RVyZjiJBznp2peVMnIiJtyP9CWPGd9K7dqxM3KcXv11Vdx6aWXYv78+XjppYS+VVFAzNdccw0AYIcddsAnPvEJzJ49G5MnTw7Q3ZY11IyIm8cknZfjFlWcBMCml2BleVGkXT8K3P+59L1uoh4YABYsqD9Ou6eah2lzXlTJvBw3D8RNJUwC+HP9a5H2NvWGpk3K/+M41sJM6leAX985iJuP2mkt9yRHphuwf55WPgCsvCd5PfaNQOek7Oe+VEkbxy2v74J2XPsu+Yw+S4J2DAA70Q2bzcZHGn9FFVoYE3HzRFEHLaiSPo5baLGGDCKmaHvMjOQZHtzs6LjlOMw+jpugSQL5iBsqyd9Qsij3YlKsBPzGDCtPNxRV0oAqubRdZqCFwRC3yDluqvEQqo6bshaah+OWh6ICaQ5duR8Y2GQ33vPquAEJXbJv5Vad48Zy3Hp7e3H++efjvPPOw8aNG1EqlXDggQfi0EMPxRvf+EZMnDgRY8aMwZo1a/D666/j0UcfxR133IGHH34YX/va1/Cd73wHZ555Jr70pS+hs9NiY9WyLWtbTFXSZTKycNx0yJPO8njbHWOBt/8VuOWY5L1uMl26NEEAZKPdVe076KX2QdxUkUEg67hZR3yr9B5dFN8718pAYZKPWztuOYibjxy1LeJmrSopEDcNo6FNui42tvLe9PUbPl4/HnypkqFUJVW047xnadYs4E//Tvpic18Z9yhqjpsHiloeTL+jRdyo47ZKfY7O8pB9H8Qtk6+km7vFcxDDcZOpkrEcNyTPk9VGNg9xC1VKJgLilreuBqN55uS4AQ5ObQMdNyWNNADiVmzXiBRFRtxoILD3NaA0jd9+3nUH0uesf439fmaIGMtxmzFjBl544QXss88++NjHPoaZM2di0qRJud9bsWIFfvnLX+Kyyy7D17/+dfziF7/As88+693pljXIGq0qKSa70AW45VROnQOjszKDtz2im/RFM1Gv1dRHytu/NwpxQzWyrctBVFme4EEsUYJa+wHGZB4CDAw9qqSXpD4ZYzLaBviXAwglTpJHO1YNh95e4OlnALE3saF8c+6RVzmAvM2gxz3NkxcHwuW4qca713OaQ0sD0nHkRFGl10ax2YyOuFHq8QYA+Xur9HwbxM026JcTYAE8WQkWqr4xyrHERNxo323z0gFSQqI9PLKft+7FznHrJOy73tcS6jrXWPeVijgN2O/3hoCxEtCGDx+O//3f/8VDDz2Ez372syynDQAmTZqEz33uc3j44Yfx29/+toW2NbOpFjxTjlsUVclQVEnZUYuMuAG8yOMYjRx0nuNGL0eUqCktkm1Bl6xUiMQ4A3HzqZcTw3HLKy4bW5zES1UyhyoZc1MSG3HjJPbraMd5iBsAPPW0ui95xrlHjVKVtHbcaL3FCDluVgiET75SBMetd0X6WhWokAeSjbOfcdwmqM/xoR7nSuq3oTbPeOVHx6BK5iFuPqqSLjluFpahG6rmSBIccRH9EsEEHd3QpxyATuhHmFeOW851AYBhxHHbrGAgGdtnIG6+weIhYCzE7bHHHvMWGfngBz+Ik046yauNlkW0fgUaVOcARUbcMvSuAcOGV2E2OW427QK8KBJnkdllF2Dy5Hq6pA3iZq2IyZBFpn/T4GZ9vSHZyr3pRik24qaNtPvQaQRqxaABxUbcbFUl86iSXhSpnMXRV5wkhKqkjnach7gBwAbyPLtSJYfvoD4lpmhApn6eZQ0k6hCwqJI+iJsBIQAcgiCMtcOHKkk3j53b1X8emyrZRh03y0CIWA8KRfX8Xigk16zc60mzj0GVzMtxi0yVDBLcKqgRMeq4DWyq/zzPxLXR0WZDzDM6Zo0XVZIRZKHPmK3jxgni1DnkFtTjIWIsbyyUMmRLYbKJrW91/TGZGxy9AHckWkddHR7LTTKHt81ZZEolYPbs+uMxqZIcSWfZceMaZzPoi7jp1OSEeY1JUZsvBg1oSxfg9rjulRxqWjOIk+hoxxzEjR53RdyOulVzkgfykzdH+tQoYiFu49LX1hu2nLyZzFi3fE7zakXS9p0Qt9fS18MUjtsbPp59HzvHzcZqlDpNQBFIx1IMtsZQoEpyEDdXx02r1EychUEXx42Zf+2D7HMQN1uqJMexGiZRJW2MI06yDSBuLU+qZYlxktG9qGNb0HGTh7ltzS+OUhIXnZkzB5Apw7S7qnk4E62OkKfg6rhlNoMMVclmy3HLzROjffegd2kLcPuIk+RRJT1odbGpkpkcN8dyADracd6zJP28s+M2ejf1OaEQNyX9alh67W0V0zg5biHGjBYZL7hfG4ouiuLpde17OG6byeaR5t8Im3I0MPHN6XurcgAkwEA3xNR8HDexlplEmQSyYl0DlMHWiCpOEogqGVOcRLcu+bISao5bDsPHq7SGLsdtXPraB3HTXXcfqiRHnMS3ht4QMCfH7YUXXsB1112HZcuWZY4/9thjOPLIIzF+/Hjsv//++Nvf/hakky1rgMkLxtH/qj8negFuSdrdxmyokrZ0Q1vEzXRturuTelLU8vbvHz6VfB7DcaPRwYiIm1Mdty2Y4zYUxEl0U7iXAmEeZc9TnMSUjyr/pm7MCNqxbBzHbRjNP7G4rzVn2bBshspx082RAnWzddwGGIibFzUt5zkFyLWxbDuDuOkCRD6IG9k8qhC3QgHYjTAlbPrPQSAyz5Mj4qbb4APuiFsjC3DnUSWt5186x3Dmd1fETZf24Yu4ifuaV2O0Yj/mhQOvG4+izhpgX2st41jp5Po9qJIcKmYmmOCw5xgC5uS4XXjhhTjhhBOwYUM6yWzYsAFHHXUUbr31VqxZswYPPfQQjj32WCxZsiRYZ1sW0eikvtdZwHaH1p8zZKmSMuJmmSzMESex2fTMnAlcdVWKvOkct87O5Ly3vJV83kSIG53UdRsqH+dnQ08a8dNG8h3HZCUH9QHiUyW9xElsCnCHRtxo/kYEqiQnEu5KOwaAvfZR9yXXRIMMxw0VB0o2Qz1ROG59r9u1zwqy+FDTbBw3H6qkZp7xynGjVElNvVnXeYaDQLgibgMDQF/1vg62Je9V1iiqZOgC3PRWrlml//uUbXOokgEQZg7iZi04Q0p3aMVJfAKWFiV2bFFaW8TNmSpZ0AfQfEsxDAFzctxuu+02TJ8+HTNmzKgd+9WvfoXly5fj+OOPx4MPPohvfvOb6O3txcUXXxyssy2LaJnNmk71sYGOm48IR91mUMq5sG2bI05i66DMnAksWQLMnQtMHJceLwPo6kqOL1mSnBe7Fk/GcbOIDlIaUIeGBuRDR/nnCenr0Ihb7BpFMcVJKpX0fBZV0gNxUzkQxbY0gLHiDmCjZUH73By3iLTjzk5g3/157cuW5ywDWaGCGHOkEBAp99sJlFBklFO30DpQwXHcRLmXJqNK0s2jSpwE8AgQMRwI25zRnp5kfZg6FVhbRV6XLkvez52bfE4tBOIWg5WgW1fF33fY4emxP12r//tUxkELaRDWmoWTQw32QdyoQ5snTgK4zzPaNbWQfuY1ZjjXxnafx5hnfFk+Q8CcHLeXX34Zu+66a+bYDTfcgEKhgIsuugj77rsv5s6dixkzZuDvf/97kI62LLJxaDoNVZUMiCzJOW02qJL8fRZVkrmAdXcD554LXHFZeuyznwOWLUuOd1drw8WuxVN0RNwy+Ru6UgceC/vK+0g7DFqE1YYqdo2iiOIkGbRQF3WMWFwWyC6+zyhk+Y3tBxAnAdS04zxxkoULgbHj1H3JMxuqpG3bQD7SCWQFSmzokpn5PUdiHHBAT3I2skB6bWzbjk2V3PRK+jqm48apO5U3vy9aBEyfDsybl6iqiiYHkLyfNy/5fNGi+vabTpxEwWTJ/H1kfBeh//tUxrnurkwTIN+BKHaiFjC2ddw4+aiu5TUqFV6QJeqYCSEoZlAGb4mTqG3VqlWYMCFbk+TOO+/EXnvthalTp9aO7bPPPnV5cC1rUmMVyB6iVEl54vQRJ+EgbraTBQUEt+tKaGDU2iLl/tXad6zjRhWndIn3oaJfrEXANfckAg2IE/GFq+PGccYjUiUBYPon0te2xZrzaKo2TqeJdkxvmaAdz5zpT681OW6ZexoDcXNUlmTNvz45RZzNYBNSJQc2AaseSF6PmBY+aGmtbmiY3xctAk4+OVt0XnSXPia9vcl5wrlxRtws88R8ygEUO+r/PnqZ6SMn/30q41x313UPYOReF1Kny5YqmXHcGFRJqzxdel10pTXgMWYYOW5BaJ5MxM1FyXoImJPjNnLkSLz2WkoveO655/Dyyy/jsMMOy5xXKpUwYMNLbtmWs9gLO6cAdyzHTZ44fRA3bY5bKAUsFQLhwTmPmePGQdxC8c11UUvnTTjH+fGhjtlSJW02nAzELWYdNwDoJjU5XdU8ASil422dTko7HkuodCraMeDhkNvkuMEe/eEg+yEQN21gLoD8emyqZFtgxG3FHel1n3KU/rwg84xHrlVPDzBrVvYYbU71tVmzku/RTbhNXmRmkx9DnKR63YudCctE/vvorVT9vPj7VBYbccujGwIpzdEacaOB4sBUSc7cDqT7HNsgd6MQN848I/dnKzInx22vvfbC7bffXnPefvWrX6FQKODwww/PnNfT04Ouri7/XrYsvrEcN58ovpikNXV+AERTlZSV72Igbj4FZnOpY3Rht+WEW0YercRJOFTJQIibLp8nZo6bl6pZRFXJRiJuoUVh6Pkha9AJ2vFZX0mP/fRn9bRj+XebiSrJEUHKOG4WSKe14+ZKlTRRmAKoSrYHznF7/a70ddc79OfFpEpyEOb587NIGwDQR1P1td5e4NJLs/fblZUQRZyEKGKq/j56K1WPnPj7lG1HXPcAHjVYiAB5USUDi5OwitkDYfIidWuHDyuBMc+0ygGo7bTTTsOmTZtw0EEH4YQTTsA3vvENjB49Gscee2ztnM2bN+P+++/HnnvuGayzLYtoLMfNUcSCts+ZLOT+cMwkMb79v2ff207SLFXJItk8+CAQigkp49CGFG2pmusCxqFKhop+6dTWMg5zxBw3H6pkaFVJluNGN2sRctwa5bjZOp0Fch2nTqunHQPuzIHoOW4MxI0qQtrMwRzGg1fwyUKcxPaexqZKCtMpSgKBqJKc8a5Y9wYGgAWKPNI8xw1IvlfIaV9nmQCOru8BxEmKneq/T0eVpLZggVptkpVbGMBxM413Z6okA3Fzve6coBzgkePGKZBd8NgrWcwzcn+2InNy3GbPno3TTz8dPT09uPbaazFs2DD84he/wOjRaf2H6667Dps2bcIRRxzh1LGnnnoKF110EU4//XTss88+KJVKKBQK+Na3vuXU3jnnnINCoWD89+STTzq1vVUYy3EjanLWEreWjpurqmShWI/ojZwGHHGde9scxG1gADU+x+YN7tLFqgXSK4l6S4uTBOKbh0bcYiumWVMlbShMHKpkqDpunGsTs/B5DKRzCCNumbwci3mMVUfT1aFlCh7UqGOWc1hMqmReMfjaZ45j0lacRDVHLl2aCHPIxnHcli8HekkfbOaCfsvAnCtVslJS/315VEkg+fuWLq0/HpMqWR5Ebb7mOG5RxEkCIG66eYB+Zp2awQlYAjXXI4Y4ic+6PUTMdGW1VigU8Itf/ALf+MY3sHz5cuyxxx4YNSpLYdh9991xzTXX4C1veYtTxy655BL86Ec/cvquyd70pjdhv/32U342dqxmctoWjAuhtw1PNgwxELcQqpK6xXfqe9PXIVUle3oSmseCBcB3+oFhAJ58HJgzNakzNWdOlqZl6jugcdw8ZItjipNkHLfYiFtox60JELethippe22EAxSQKimMpebp6lwxcty8ygEwELeMhLnNZpM6hTrErYgEBa5YOifk7zRuZAV1zDLoF1NVMq8YfO2zmKqSOc/q2rX1x4Ds7s10uwZJINNmI05zKDsnqc8JIU5S0VyXPKqksHXr6o9R9oWWKkmcIpt1L8NIMOxnRC23cm8yLo2iRsQGYlIluYhbgBy3vJqOlQF3quQ2Xg7AyXET1t3djW7NpnS//fbTOkgc23vvvfHFL34R+++/Pw444AB8+9vfxi9/+Uvn9oQdf/zxOOecc7zb2eqM67iVRgD9q+0X30ZRJbWb8GLyQJf7/XLcKDq1aFGSIC24+WKhaUMqXXzhhYkEuRBGMPUdUC8yPpQOTnK8szgJjcgGRtzkJHrdhsy5HIBlHTdbyeXFP8lvn1UtWtW+JVUyhjhJEKokBy20pXlGzMvh1HELRZWMibgZ5+BScs1jbAbFRrncn1x3Y0SeWMwcNw56Dbg75NaqkorxPkYzt9LbaHpM2gm91mYu6F2Rvqa5ldRClAPQ1SrjUCUBgDC9lH0JjrgxBT7kWm5amq/cfkxxEocct0pFr0sgG+e6AyTf1XbtEOIk23Y5ACfHra2tDaeffjoWyjV0JJs9ezYuu+wyJ2XJj3/845n3xaITq7NlXOPkQABp1DQKVTKAOImxOG6nm+OmioQL6WJqYg5SSRcDeuctT1XSS7aYIUvfKFVJq00ycwPmivyULRE3m7Zf+guw5lF1O5n2I9Zx83J+tnCOm08NupiqZtblACydCIGmF4oGlMAVcWPO74USgH5LqiRzI1siDsTgJqCo2HCrjEOVdM1x4wRB5M+iIm6KdW+XXYDJk+vphHmqkkCiqjp6HLDK0L7OYiJulUo6foeNUv99HKpkV1dyferaj7jusQMVZLwPWDhuLMTN8bqzVSUlQRvT36lrn+W42T6vHKpkqxyA0iqVCipMWVnueS3bwsblPvtK3MZA3NY+Bax5PHltWnzFJGgtTiLluKmkmYEs4iabUbo4jyoZCHHTJcf7Om7FTgO1y3ETzt0chaBKcuq42Wxkn/l59v2WECfxcn6GsDgJp45Qs4uT6NA2+TMb2jQ3MOei/OiKQHAtKlWSyceLOc/klQMolRLavWycHLfZs4ESDfy5Im4ax811jiz3opYn1j5S/fcB+ezk2bPVAkQxVSW5473kON45iJszAmyJuMnfyTNujpsr4tYqwA3A0XHj2saNG9HezvTUG2T3338/zjzzTJxxxhn40pe+hF/96ldYp+JIO9iGDRtY/5rS2DluROKWu0gObEwXX90CIP+uzabk9g+mr/s1+QBAuumxFieRKEwq6WLAvMhwpYtVE5JrlB2wz3FzcdzaDZFz502yNKF3Hak+L0gknKGYZrMAyFHS4OIkDaRKanPcIoqThMpxC15HyLaOm6M4iclxc95s2iBuiBPFzyAQFoyNjOM2Qn1OkBy3CIgbZzxyAhVz5qRF5oXl5bh1dgJnnOE+F8SkStJ72jZS/fcBahZLrU/Vv09lMamSXIQ5E6iwGO9RxUm4fXcMEHFz3IqOjps43+QUbgPlALxy3Ey2evVq3H777dh+++1j/YST/elPf8Kf/vSnzLGxY8fixz/+MU499VSvtmWBliFldEI3weIZustm/UJKbdPL6evhhvHgusCsfoR3npioremG5PxKSS1dDKSLjG79X7AAOPvs+ghhbh03x7yWurYZssg214ZDf3VFfuQJ982/0LQfsTAuFWuwWQDkjXdwcRIGSpAR+rGlBov7VNCjtF6IWw5yFV0UpklVJcV90qHX8mfOqpImRK96zWJIjLsiEFQ2XnvtXamSzBy3mAGiAiNQ0d2d5EpTej5tTtWlhQuT7y13ddyqVMlCEWgfpz7HNbhFHffSSPXfB5hZLOLvUxnLYfZc9wB+oMIKYbakSjYr4hY6x61SRi3AyUbctk6qJNtx23XXXTPvf//73+OWW25RnjswMIBXXnkFg4ODmDNnjlcHQ9kb3vAGfPvb38YxxxyDnXbaCQDw+OOP47vf/S6uv/56nHbaaWhra8NMk4jE1mxsmVg54dbWcdvB0LYHSsCxtgCI24vL1dLFQH5AXkgXT5+ePZ7ruLWj5kBYI24Ruf415IQpzfvidcCGHmBkjsombRsAtn83MGpn9XkxN1RAKtYQG3ELripJ76mts8+plROg4HwMxM1WnCQ0VdJHVZKDuLkKFdkibs6lNbgbWQcEQoc+AM2LuIXIcRMm9iZCEIsOQ9qlzs6sIJYv4tYxwRDACYC4iT2E/PcBasdN/vtUxgngRM9xc0WtGOWHXHO7uWih65ixznFzRa9z1mxh2zri9txzz9VeFwoFrF+/HuvXayS6AXR0dOD444/Ht7/9ba8OhrJTTjml7thhhx2GP/3pT/jMZz6Diy66CJ/73OfwwQ9+EB0dhoXNYKbrIWzt2rXYYQeD87KlzJYqCSRRMx2FgtrmyIgb12pUSY8ct/WGfploHcJUtNy8RaZQSCbwwU0OpQwiUiVZgjDS4vDEhcBBjDIfHERM/sxqEbBp31KsQV5stbSOiKqSrsgMkC6+HKqL3B+Oxcxx41B1XIu2x6ZKNgpxy1OVBCJRJYnjZUOVFHOSbhMLuDtu4CJurmIQdLOpExLKyXGjNnMmcMQRCe3+josAVJV9y0iEOmbPTuiDFIlyXVf7qoibaY13RdwGNXmL9O9bsAAYXF79Hej/PpU1g6qk63XP5KNq5gLXOYyb69qMOW6cfFHAb/0YIsZ23JZWixxWKhXsuuuu+MAHPoALLrhAeW5HRwe22247lFRJo01o55xzDn7605/itddew1133YXDDz/cqZ2RI/NVgwYHLRfzRplNHTdhXPh/40vpaxPi5qMqyTGXaDKQ3SCNNSxiJlqHMKV0MQdB6XRz3Kxz3CwoHSx5dGkOWHUfr21udC024uYi1iAvtltEVdIjL1IsdqZoctOKk9gibg5USR36kHzo1jbQJDluEcVJZFVJrnEQt9p1r8BOvrxBiFuhpO+T7Xjv7gbOPRd4bl/gjv9Ijn3hy8Ch89RCHZnccYt1Vah5lgw5zEEQN2nfJP6+s88G/jAZGFgF7NwNLHtW/feprBnESWwc8kz7jGfVeTw2SY6bk+PGpWG2ELeaCXohAJx22mk4/PDDM8eGsk2YMAGTJ0/Gyy+/jGXLlm3p7mwZs6njJoxLd2kaxE0M9wqsCmLSSX3XGWrpYiA/x00rXcxAf9qGJcphzSROUksUtkDcJhxk1zbA31DZRB650TsXsQb5+dEuMhFVJds8qJIcxG0olAPQqvi50owYkHrmuliiPxzEzVVV0poq6Ui/Mm2oXMVJbBC3pEPIPFsmi53jJsZjDISgQASNJk/ROzUuKQiVMglUmOYBV8eN3H9diYdSCSh1JsIrbQW+0yb3JSriZkKtmBTYuvYZz6orHXBI57hxqZJbP+LmpCp52WWX4WMf+1jovmwxGxwcxJo1CeVgtAoR2RbMlSrJsU2vpK+5jpvtZpNjzouviIR3AO3teuliMa/o5iuOdHHeRtxanISzkXVEZ1wQNzp+OG0DPMoFYLnZtOTLu7ZN25AtpqqkK6VuYADoqyIc5ULyXmVeqpI5uWKZTUkMxM1yHhgYAJYsIdcixgZ/kARCmIibs6BCE1AlQyNuQdDryIibtm3HDT57DnPYhLPVAV3FSRhKoUB63fo2Sc9gjnFZLMJiqEo654kxhIRiq0rGznETc2i09Abxna0TcXNy3Hp6enDllVfiqaee0p7z5JNP4sorrxwSCNZ1112HjRs3olAo4KCDmIjA1mZc7rOLMhg9r2RQ3oyNuLk+0FTVDNBLF4sm21Af8DVKF1sgKDEQt0LBLf+P5bgVgF1PJ9/hLrzcTUlEVUn6mdVGVhq7oamSnLwc201JTw8wdy4wdSrwWjXQ8tKryfu5c+trEEZF3DwWXlY5AGa0ml6T3XcHNlUDVU8+qb4mgH9wCGgSxM1xM8hWJGYG/coD6T3iIm6u6HXMOm5GAae2tP9WlDomuuGyrlaY9zQGVRJIn70Xq2kWK15LnkHdfCQbB3mn655VEKSBjltoqmSz1HFzKQfAbnvrLwfg5LhddNFF+OhHP2osrl2pVHD66afjpz/9qXPnbO3iiy/GHnvsUSfr/8ILL+Cqq67C5s31D+cf//hHfPzjHwcAzJw5E1OmTGlIX5vOYiJuXPg8tqqk62QnNkhi4yCki2Wjc4T8Z5qki1lFWh2FVbiUQ5dSCRzHDQB2naXuD6ftvPaD1FfiIG6OiyNto75x+iV++0KmGzBEk0vpZ3mI26JFidLpvHkJBVg0OYjk/bx5yeeLFql/N7SqZKFAHGaLjWz/euCl69P3nHIAOnqtfE2A9Hb1D6qvidy2q+NWNDgoNYVZRFaVjC1Owgz6ZRxaTo4bYCf0Q841Ur59qZI5c6RwjmwQZvZG1gVx4zongcVJgOyz11e9P+Ly6eYj2dh7juqYiqEq2ZSOG/e+uoog2ea42TyrDjluWylV0kk95MYbb8See+6JPfbYQ3vOnnvuib322gs33HCDk7Lk/fffj0996lO198888wwAYP78+bj++nRxvuaaa2q14lasWIGnnnqqzvlauXIlTjnlFHzyk5/E/vvvj6lTp2LTpk14/PHHsWTJEgDAkUceiUsuucS6n1uNxcxx40S/5N+1megKRd4EkKFgOWyqaCRcJV0sO279yJcuLg8AT5yfvudQJWMk37cNB/rXhEfcALfrzkbEAiBunBw31zyC5Ac0bTugBJUy8PejSBumzWZn8oyakJlFi+prJ4nLQS9nb2963syZ1fEnatwFRtyAZNEfHLDbyD75g+x7V6qk6poAKYoubpV8TQD3Df4gE3ErFJLPBzfbbagEo6JQNDsRNWc/gsS4y9rBqWkFNDHixqBKAsl1K/fGySfKrKvMMcOWdQ+Q40YdN/nZ0wm5qp49amzHzSF3nO38OOZasRw3V5VTbn6eo6BNzBy3VjmAmjk5bj09PSzlxd122w3/+te/XH4Ca9euxV133VV3fNmyZRn6ZW9v/kTU3d2Nr3zlK7jnnnvw9NNP4/7770dfXx8mTZqE973vffjIRz6CD33oQygWnQDIrcNiqkpynQdXVcniMN5GwDUfqkaVlDYOsnTxwPL0s+23Az4yJ1+6eOmV+j5Sy+S29Jo3MdRqk13BnHzvQsXkOm4u6AxbVdJVIdCyfR/HTbtZchAnWb9UasJ0T4XjprmnPT1J4KHue9X/VX/yrFnJmO/uTq5bZcAjxy0nL2dwk9088MjXpTZ06LVhYdddEyC9XTLRhF4TV1XJDOJmcNyA6nxn6biJ62ia2wG3nM6YOW6ZmlYRctzY5QAa4LgBkaiSDg4E9566OhCUKilYPKpnTzSp60Lm2SPGDRa7rHvcAtxNibiRto016Jqwjhs72Lr1i5M4OW4bN27E8OEm2kJiw4cPxzpV3SqGvf3tbzdSMVV2zjnn4Jxzzqk7PnHiRHz3u9916sc2Y2VmRDZDldygP4+aU2TQJspDHs43flV/nnPNL4PaG5Uu/tt7gVU3JscfuAcYw1Bd5aIEskog13HjOle2Cxg3qR9wu+7RZbqZiJ6LWIMcodRRil3ESeSNAov+qtngz5+fosWZ71X/V13O3t4kUHHuuW6OW3mQzAc5Tmc/7PK42oZnHQIXxE13TQBQxfmMydek1raFA8FF3MTn1igB03HLPKtM5V224+ZAs+cibjFrIgLuyBJHVRJI74vNRpNdM8vBuWILcATMcVM9e2L72AFgOADZ36fPHjU24iZSEGzK4AzlHDfS9zYm4tY0ddy4+8itH3Fzgpi23357PPjgg7nnPfTQQ5g8ebLLT7Ss0caOyLokOnMRNwdVyUo5nYyGTQbe9C39ua55ORw56lIJGDMhfV9kbh7kNoMrYEVy3LiImPw5W5zERVUyAu0iBOI28WBN2y4ogeQ1cBBsleM2MJCgxCozOW5AFV0ecMv/u/e/0tecucBm0zCsK/ueI35C76vpmgDpaqm6VeKaBMlxy3PcxLMaEXEDLDb59FniIm5cmn1kxM2lHIBV2ZEmQ9y41GMXxM3HcdM9e2vI6zGatsSzR42dniHmSFdUKXIBbp1zFaIcALvvTVLHjU2V3PoRNyfH7fDDD8fixYtx9dVXa8/5wx/+gCeffBJHHHGEc+da1kBzWdi5Dx2btuDgnNCJaIw+5xKA26aqTBCFXAqTA9WT67i5yoCz89CkHDpuu5y2Xa67bYFswDIvhxtM8FSVfMfNerlrl82m3I88qiSgfpaWLlXXIqSXQnerli9Pvu+y+D49P31t6rvJ6dTZMClIqMsD1W3CddcEyLBaleCofE2AODlugJtQUW1+z2nbJcjCLsBNHTdm3xuZ4xZTBCkPcROb6CgKfi5UycjlAKjjXhqpf/ao4zZW05Z49qjZsnxcHbcoiBsN4jSDOIkj+4mdm858XgfIdVm3gVeqplUOILXPfvazKBQKOPXUU/GjH/0oQ4dct24dfvSjH+HUU09FsVjEZz7zmWCdbVlEY1NpXDbhzMWRJikPMmmYgxaRapcoVUbVLIee6DJRy33WLcDORbKZGwc5hy63XSbVUP7tpqFKWtKMXKOaE/Y3nOhA75I3Xkan04DMrF2r/g69FKY/ed064rg5Lo4m1EU8SzaJ8Z1MdoduzOiuCZB13HS3il4Tue08s0LcHJxaJ6pkYMfNKXDGRNzos7T5Ff1psmU2jTFz3PICZw6IG1sIgjpuDlTJRpQD0D17HMcNSJ49avQ6PrNUv8kXz1JlkI+kOhXgDi1O0qTlALgosE3/RWmIdxNRrl/9Vl8aolUOQG0HHHAAvvOd72DTpk34/Oc/jwkTJmDatGmYNm0aJkyYgM9//vPYuHEjvvWtb+GQQw4J3eeWxTAxsURx3CwgbvH73Pw5mw2PS9+tHEMHqqcL4haTKslt3xVxcxIniawqyXEMK4M8JBLgL45OqpIy4mbKcSMbfLnvYzS8Iw7iBgCjR7shbtT61ug/c3FOOsbxztMFcHTXBMhH3IDkmsRWlQSIQ77Zfkya8loAt2h1TMfNBXH714d5bcv94Khtyt/htp8b3KreFxsVVTZVko73ZhEnIUGbtuH6Z49OEeMM7Y0enfwvNvn33p1+NmNPwybfgRLYyBw3V2Vcnbn03VVVMsRcQEtDrF6VHi/DUKpm6y8H4Cyj+KUvfQl//OMfse+++2JwcLCm9jg4OIh9990Xf/jDH3DmmWeG7GvLYpoL4saOUDGVDYEUdetfz2vbZsPjsshQJyYG4sZ13Kis1nNL9BFE2ZrNcQuNuDmXeHDZ9HDHO9Nxc1GVrIsgGspCmOguu+wCqPKPOY5bV1fyfV/Hrd/guNHcE65zwu2HbjzqrgmQXSlV3RHXpBGqkrV5rmKBikWkwjvRowIjbnRdWf2whXBWoxC3CDluUamSzHtKf/e5XwL9TDG6zBzZqX/2ODlu4tmjm/zB6rURt0q3yXehBDaqAHexw0D3dqWoctXDA+S4+TJlRGkIIVhDH09VqRpxX1viJGY79thj8cADD+Dll1/GXXfdhbvuugsvv/wyHnjgARx//PGButiyhlhtsjBMRIDfJjyPrgekjhuXKhkbcStbOIZtDouA3Gd5kRQRxPmXpcdO/qA+gihbUzhuzUiV5LZPNz0OC7txI+ugKilvvEyLamY8SueVSsDs2fXf4VAlZ89Ovl+jkcZw3OjGgbnZpP3Y9aP683TjUXdNgHyqZO2auKpKctUT4Ya+D1WqJBdxk9tbeR+v/WbJcas5bhaBCjYroUHlAADgxevV58kmIz+6Z49DlZw9G/jtb7ObfJ3AkrzJz+TVO9S4i4FacZ7V6IibZ45boU3vdAIS20TRf1VpCPp4qqbWWbOS720D5QCCFC7r6urCwQcfjIMPPhhdXV35X2hZ8xmntpL8uS1VMq9tACiNSv7nRkytKEYODkRsxE3uB71GNIK4klBLOqGPIOraz4v4+jhuJooR4CZ4YCsrLPcpVPtOtacYEVMgjDjJgKFPtO6galMyZ05SIJ4aHeKqYdDZmdQmBPwRN9P3TE6ntj1ybfY9V3+eaTyqrglgpkqqrglgd11U8ug6sw0mUOVdK0aFg+NmzIeKiLjJQYAV9TVgNT+Qvgxdx61SRm2wcBE3q/YdEDf2/Mvc4A/bLvt+gMmUUTk/qmePAnijFe10dgLve59+k6+bVsUm32XN5o5311pogxEdt0bluOWN97z+q0pD5LFBRGmIFuLWsm3Gahv8nCHh8lBwnQcg3bQMbOBFHp0RNwdxkhg5brJCpLi+Mk2ANke7IUcQ69rnJsfTTT7DQbFB3JpSnIQrmEMUIV0cN6M5iJPIOSqmPuU5P93dwMKF2WN0b6xqeuHCtNitr+NmMpeIL1cwx0T3Vl0TwEyVVF0TuT95RnN+8hy3DPWNMY9xEQIg+6w+/ACwhEHLjom4cQNnfauz7zcsVZ5WZ9x6lJkgi0OeLreOG+Cm/MilM4ZG3NqGATP+X/qe7ZArWAmqZ4/OQarld+FC4E9/qt/ki9ul605tk+8QIOIW4HZha9BzTYHo6KqSnnXcrJhb0tqnKw3BWS4XLADKJMq2LSNuP/jBD9DXZ3HzFNbX14fvf//7Xm20LKI1BHGzcNwqg7yJ1DXHrVkQNxndKrSpaQL0NNWfKSKIsrHLAVhy2mOLkzg5bg6FcQHzuKRRfhO6lWmbS0sLgLiZHDdO7b+ZM4Grrkoj3dRxy4y5zuS8mTPTY+Lax5BcdgqCcEWQcoJP8jUB1FRJ0zUB3BE3WqhaZbZ1uQaZqFVPD/DQo+n7E44Ddt89n5bNRWecHDdKlbRA3JwCRCbErWAfqOCqPgJum3wnVUmXHLecTfiEA0ifLB03mVInP3u6gKV49j70IfUmPw9xA5LvZXLFIua4WYnOMNaPEHXcuIibTb1I7l7PNBfoSkNwHLfly4FlL9X3ZyszluP2hS98ATNmzMD8+fMz0v8cW7NmDX7yk59g+vTp+NKXvuTUyZY1wGoPT86QcKK7iBw3BlWyjUSbOXRJV8SNLU7iIhoAC8dNMSmqaAL0rcp/FBFE2diOm6VTG1ucpFlUJZ2KBnMdNwdxEnnjZUTccqiSwmbOTJCVuXOB7UkiySYkif9z5yafUwcFSJ/nGIibL1XSl15Lr0lXV3ZabO/IvyamtlUm17Uyma3YBMf5EbRs6riJvzmPlu2CuHGFrTJOp2H+lRE3doCIibjRz0OrKQNuAiJOVEmXtmPkvRuQGfrsTepKc22HoX4+ytvkm7qzfDmwnqzTXAeFG6hoa8IcNzaS6pjjVqNkezhuutIQXMXjDeQ+bst13K655hoUi0V88pOfxJQpU3DyySfjsssuw5NPPomKRGerVCp44okn8Itf/AIf/vCHscMOO+Azn/kM2tvbcc0110T5I1oWwLgb/NiIW/uo9DXHcbNC3CJSdYAwiBs61RFEXeSR2oIF9bSmCtNptr02zShOwt0Myu2bFpmoVEkghXK4yokWiJuN89PdDZx7LnDJD9JjX/46sGxZclxQAalZb2SZfyPgny9qdPaZ41Fck2XLgLvuTI8f/S79NWkfl77evDy3yzXL5LjlIG62CEreHEZp2TR+ID92Olp21DpuzJpZdYibA7JvUmgF7Mc7N/gEuDlXbKqkQx03G3qtz33VoXn02eusBpNm7Fw/H+Vt8vPiYfRysKmSTDQyhKqkzrbmHDddaQhuZsHoceQ8P6ZgsxpjJw0cd9xxOOaYY/DjH/8YF110EX71q1/h17/+NQCgWCxi7NixGDNmDNauXYvVq1fXnLlKpYJp06bh05/+ND796U+jo4OzkWnZljFBlYyAuHGdQiAbbeYkOlvloPkW4LbIcWMvAmRT9db/BXpeVUcQ86iSQBJBXLo0iYwLC0FdUJkz4haaKulYDoAbDfcSJ8nZ8ADJ81YZ5CNuNo4bhyopG1VznbpbovamM1tVSbnvb/i4/txM3wNTJW3HY6kE7LIz8KDom6HtUW9IX69/Jr9tYRmqZB7iZpmzZELcZFq2yXETNmsWcMQR6eY58ywFdtxs5hlq1ohbwSwkRH/fpe8xctzYCLNnjlvotYO2nzdHlkpA52hg4xqg2Fs/H+Vt8vO600meNSeqpMm58sxxM7btWA4gttPplOMm3SRRGkLeB+nKAVDr6gJ22R14oPreppTBEDK2OElHRwe++MUvYunSpbj66qtx8sknY8cdd8Tg4CBWrlyJ5557DitXrkS5XMaOO+6IU045BX/4wx/w7LPP4gtf+ELLaWtmq1SaJ8fNhyoZG3ErWiBuXGqEaL99DDDtA/oIIgdxAwCZysxGUi0XAu4mGXAUJ+HSgEJQJbk5bkyqJEcVrPbb1SnYlSppyruj6Ap3ARsg46ekknEjZo1ASH3f/3z9uS5UHe5G2QmlJfdn9Vq9aMdo4rits3DcMlRJmxw3xrNqKjUg07Lp5dDtDmRadkzEjfuc1n0vcJ1Lek6MHLeiwybfBXELXYAbcMxhZjpugFlpOq8epWla7eoCJpDvhi4H4KIqWanwHDeXkiByP9qYiFujc9x0pSHoI6q7r7NnAx1kD2nT9yFk1qqSxWIRJ5xwAq644go8//zzeO211/Doo4/iX//6Fx577DG89tpreP7553H55Zfj+OOPR7HYEq5sfiMUptAbfHqeNeJmSZXMzXFzKabsirhZ5riJiVgXQczLcRM2Wtpsx6LANqU4iYXj9vKNvPajUyXF/OgoTrL9u/TntpOxsPIB/XnUaAHd9oiO25R3AR3j9ee6oNdcFNUWee/pAc77Tvr+7//Qi3Z0TADaq9QuV8TNqhyAhziJSr2N3krTY01p2VEdN4sAke57RmMyTYB03Niue/S72rYblOPGbtvGcXNZV10ct/X1dGvdJp+DuM2eDZRocIvrXLkoM7rcU8P6Ia4JwC/BIPfDWMqggTluquCZqjREHuImyrIU24hwVstxU9rEiROx11574d/+7d+w5557YuLEiSH61bJGGldZC/CLmrIKcFvmuLkibmxxEoq4RRAnEVRJgebpIogcqmRXV/J9ak7iJIxrYxMJzyu2KVt5EPi/U8n3Aztuqx8FVtyRvg9Zx40bMRVmi7jJEfO9vqw/d+px6evFF/PapyIPL682S8FTx42Tv8bdaAJuVMna/S+Y5zGbMSNEOy66KD0mbpVKtKNQAEbvlrze+AIfeadoro2qpDVVkmxUVcIOdBialgJBy5b7EBVxM8wDB/xQ/z1O+xynUDzPToEEG1VJh03+kM1xs1GaLqvRJdUmPw9xq23yXcoBRJTU5+agtbs6bpFz3MRcbVWaSTFmVKUh8nLcaFkW8fstxK1lW63FVgi0KsBtmeNmg7i5UPYy1IIIOW5iIRIbKl0EkYO4zZ6dzQHIUGC3YI4b/X1O20uvVH9X2a5D/txTP9K3IZstVbIyiBqCbaKipD9e/Z4D4nbwz8zozLg3AuP3T15veM7cbk9Pgh79+rL02Hs/YJaCN9XiUZnNZtApCMKcZ7hjnYp2mOq4yaIdY/aonlcGVj/M6bkd4haqHICKls2hSgoTtOwKM4rvqy5rcvZ3/xRwyHz190xWsUHcLDeDVuIkDtLxbOVduiZEKAcQWlVStrxgrmmTr+uO2OQ7lR3hBiocSg1k9jNMxI2yJPKs1veCOVc3prAKwBszcmkIHVVSVZZFrB8txK1lW61lJJFjipNYRNeAuOUA2OIkzAiV/LmtqiTdqKoiiHmIm4ggUsvk/ARWfrR23AQ6w7juK+9Rf9fUrtwnk3VMkNowIW6WVElu4nrtt8Xz5qAqydr0iP5X9PlcAlWaNw+ZgbYJZil420CIzWbQhyqZS9NhoMuyaIeqjptsopbipEPTY6/dbu6LMJrjZqpXBtiLTegQNxUtmyNOIkzQsjNj3uRAWCLv8nlG+ms7MO1D5HsRctxsN4OZZzWP8UCeBy5KG5UqaTHPuOQZu1AlAX0wV7fJl59VeZPvFCAi5xkDFYX073Np2xT4o/nHLoib1V6GO97L6bjJZT8x5wJaGmIc+ZsHkVOqpoW4tWxrN5tNuNMkzdxQARI1jZF0G7scQEzHrVJJJ0UqfKKKIPYhXYRUiBulCdTaj5iHZuu4FS0QN3njGlpVcth2/PZLllRJ7qJeO8dDnIQTCMlzUiiqBOgLcKuk4K1RWuYGH5AoTJbiJCEQN1m0gzpuOh9biHZs99b0GNdxE0GqtmF2m3zOs6pD3FS0bC5VktKy2QgEobDGUJXMqG3aqkpGQNxcxUmCI26WYjYA3xkHPKmSHMeNycKhm3wZcdNt8mNSJQFCr20SqiRXFMZJaM01iJ4zZkRpiO9+Oz323fPMpWpaiFvLtnpzKUIKxMkjsG3fCnFzEVaxQFAyeTkcx20gvfay2pscQQRSuiT9M1U0gVr7ESmwNmgebZ+zcZAdN99iyrLJaolBc9wsETFbcRLb9k3RdhlVArKOm2rNE6gS4PCsMmXjATcKk4uimQqFVIl2cGsILVgAjJyROijrl5r7UvtN4bjl5LcBDlRJDeKmomVzqZKUlu1Cq4uhzMhBUuvar95MzhxWJJtBVk6nRR5wzHIAxTbUIg9O5QBiUCVdEbccFk53N/DNb6Rjd583AYsX6zf5Lg6Kk+PGve5Mx61tOGr31IYqyVU8dkILHYPo3LWvQJ657Xc0l6ppIW4t2+qtwl2t4UY3tCkHYLsINBPiZiv/m1cYl0YQu7rSjfQwmGkCwqwivj7iJBaOG0d+Xb4WoamS8t8XMsfNRkkO8EPcWO0b7quMKgGA2If0QY0sUSl4a8fNNceNGwlniiBlkB/FWFeJdnAQNyAR7Xj+hXTclBmsASClSubltwEO4iQaxA2op2VzqJIyLdtKgdDWcYudfy3OY2yFMmOScd2dVSUdqJLc+d3FcQstTlIpE4eZ4bjZokv0uo8em9C8dZt8l3nGZrzHQtwKxXSuiIG40d8PnZ8H5AfPVGYz3luIW8u2erNC3GxzoSzaBuwdiOgFuF2pkowJg6NYKWgCy5YBXdOSY13jzDQBYY1C3EKLk9RRJQMjbvLmxYS+2pYDsFlcANSK/roU4GZRMTUoswpVAtLNuunxEFLwtkEcqw2PC1XSQgSpNh4V/VaJdpjESWRbty4dw6Y6e9QEkpBXww2AfTkAQx03mZbNieHJtGyXTX5sx41dlJhZvxSwp9U513ELTJUE0jETpRyARwDHOu+d4aRYXXcX5UcbFo647hFomKJcS4wcN3oOu+90rxQjiO6gStxy3Fq21ZprOQBOpMQagWgyxG0wYo5bhlqQU9y7VAKGVSOPhX4zTaDWvs2mp4nESaxy3EI4bobJ3YcqaSrUXDNLcRJbxE1Hq1OhSgAgmjRdSiEF70WVtNhQ2ZYD4GwGTdFklWgHF3EDEtEOMW64tf8EmtvGQdxsxUkMiBuQpWXT2yjvG3W07MwcH9hxs1k/CgW7eYb2g6MqSdcXzpjMbGRjlAOgdHWmY+iU4xYacbOke9NngiNYZlP7z6XsiJXIUnVd5xbJ3riM3zatb8c1G1GYmvMTmSoZI4gjfr9StgjiDB1rOW4ti4zMWBZQbVSOm1M5gMCOWx5VUjbrqOlQFSdxpEqyKRfS9Zv4FkNfLKiSPT3Aheen7//6N32hZmHWVElLRE8n2KBClQAe4gYkqJLt8xS7HIAN4tZmyIFQiXZwVCWBVLSj5rgxNmzlgbTvnHkg44xzxEkMiJswQcs+6r3pMXEL8mjZ3HIAQFzEDTAjqcr2IyJumaBijlKoV45bTt1CgCA/TZDjZjMPANkxy3GubHILnSjZTEl9gNAZGQ7ni38Gbn1f+j7PGReOW/86Xs4lQBw3G8RtC4uT1M6zCfw53NchZEEdt0qlgiuuuAKf+9zn8MMf/hAbNjAGa8uawCKKk9hMonL7nI24M+IWgyrpo/ZmsWGLEZGNTpW03LBRy028F33i3lNy3hHXmhdfbjkAIak//6fkd6r/myT1rQtwW0arCxrETYUqAanjlnebRo92GDOOVMkoiJuBSqMS7eBSJYVoh3ieo5SQ8KFKGhyI7m7gpJPT91/9glnYQRilg3JlwGNs1gCSyxUZcQtFha997pDjZqPWLK5djHIAXlRJS4EljhiPFaXOgSppJawyMm07b0xSpw3IH+/CcasM2OfQ2eS4sZFIxxw3F/Q9BmNjCJmT4/a9730PEyZMwD/+8Y/M8RNOOAEf+9jH8OMf/xhf+MIXcNhhh2HTJiZVpGVbzlypkkMZceOiMzaOm62qmc3Cnvl9Q00ualaUEdvcQsf7ysqFkpyY0OUA6MYhLxLOKQegK9Qsd0clqW+rKmmbH6JD3FSoEpBSJU23SaBKMXNb2izzRYH072OhJznRZFm0g4O4UdGOmjhJb75TbuPQyudYF+DOo2QTWtqUcWZhB2H9a6rfHc1fP6IhbrbtOyJuLKqkxXV3KQdgI/pVo0q6iJMEDvrZIm62yo8uIhaAPVXSxnEDeKgbtbzrLnLcAD5d0gZxa7NE3DLspMhUyTyk0wVJHULm5Lj99a9/RVtbG4444ojasX/84x+47rrrsN122+Gzn/0s9t13XzzyyCO4/PLLQ/W1ZbEsZjmATJ5VhBw3Z151DMTNMvfEJscNsF/cm1GchOUw2zhuHlLUACOanINuyJL6HJXjjKR+ZMRNJ3qgQpUAXo6bQJV8ctxyqZKWap5Aem36BvJzC01USaBetIOT40ZFOzK5kTkbB+uNbCTEDZAU/Jgbzf4q7bZdg+JSazqqpKuqpCXiZuO42aJiNo6bSxmc0FRJm3qOgEPueGTETZxnW4NukDmPCePmuAFM0ZYKGTOxVSWbiCrZQtwSW7x4Md74xjeirS29+L///e9RKBTw61//Gt///vdx2223YcyYMVgkU4Na1nxmg7hZy8bTSTSCqqTNZOFUPJw6bnkLmAfiZuu4cRZ3K8fNssadKwXWttRAXvtOznjAxHtZUt+EuAmjkvqwVJUMWYBbRpWA/Bw3iipZ50XaKKaNS18LREdnPT1JDtb6dcn7Z57Lzy3kqI5R0Q5THTeVaIeNqI3NHCOfYy1Okoe4WW4GgbiOm624lTVVUiBuFgW4Ad5mcNAiMOeS42ZDlfTJcbOZI1mCZZZUyQq5N6+9nCP2hPi5UM2CuNFnlVPLzTpARMRJODl00cVJWjluwpwct9dffx077LBD5tjtt9+OSZMm4cgjjwQAjB49GocddhiWLmUWIG3ZlrOGITNbGnGLXQ4gco6bbW6LlVx0ZMTNRpzEhipZ7EDN+eEqd1mpghnGjEpSn3bV9KfWJPUtVSW5RXeFmca8jCoB+VRJiirZBkJsNg4d49LX/av154ncwnnzUCvQyskt5EaThWjHx05Pj4lbZRLtyAgq5DlulhtZ6wCRBeJmLb1eBgaqm0Yrx42LMDcIcbMRtAGaI8fNqj6quC7NUA6AibyLgMxHP54e+8GF5oCM3H6MXKhGOW5Wwiqc/YDFXkY+hxUgskHciOvBDuI4qErK/dpKzMlxK5fL2Lw5nZQ2bNiAxx9/HIcddljmvPHjx2PlypV+PWxZfLOiSlo+cNZ1rTzKAUSpHdJMOW62jlvECFjM3BN5U2f6TqFgp9wFWOZvGMa7SlKfQ5UEiKS+TwHuAOgMRZUKSFcE+ZKrUCXrEhIWcwF13PpWq8+huYWAvu+q3EIbuejubmA22TyefHK+aIcV4mYpTtIwxI3xPFHnLgpV0jaX1tJxQ0TEzSbHzaUcQDMibqFEimhA5nWCuLfBHJAB7IJbTuq1Fo6bbSkDarlrk2VqhnUurUd5oxjiJDb3tYW41du0adPwwAMP1N7feOONGBwcrHPcVq1ahQkTJvj1sGXxzYYqCdgtvq4iFuz2qw9loWg50TkIWdhMRhzEzSfHjVVuIGJxcptEYcCPKpmHpNUcNya1y1qZUUO/yivUnDfE1q0jX3ApwO0hTkJNoEpzz0yPiVNNqFJMUYK2EWn7KsdNzi0EUrSQk1toXUyZNNq1fb5oR0bUJmf82jrj1si7RWHcDP2K8Tz1kU11+9j8871y3Gwo2ZbtxygH0E9ympavNFP8Yue4iTHjQidvdDkAOSBDu0z/VKXYExpIlWQEWWIibtYiRT6IW85+ozwI3POJ9L1VoDjC2tdC3Ort3//93/HCCy/gU5/6FK699lqcddZZKBQKeO9735s578EHH8S0adOCdLRlEc0GcaPn2CIzMQtwcxCr2OIkmQKwgSPhgP1E3VSIm4iEl/P58vJEnreg2hYitZaj1tA8VZL6XMQNqErqe9Rx8ykHIFt3N/C1s9L3B705H1WK6bgVCinqpqJKyrmFHNVHmltoG03OzJEcdMaCKumjKmntuAUWPOgnwYtmECeJmePG3QwKit/3z0uPfWxOTs6liyy9i6pkmTfX2KAbIcsBqAIyOsdNGA3IAHbBYidxEhuqJCknE9pxs85Lt62fZ4FGPncV0Ps6aT8G+6mFuAlzctzOOussTJkyBT/72c9w4oknYvHixZg5cyb22GOP2jn3338/XnrpJRx66KHBOtuySJZ5cAIjbq5UF277ZQvHrWjZNkAmrIJd/6PUcbPknDuXSrAVJwmNpEobCzbi5kKV5Dg/GrRQJanPRdxqkvqRxUk4iJuq7XET81GlmOUAgFSgRBYnUeUWmsRDqIncQuuILG2UMUdyykjUmo5cDqCmgteW76C0daT3phkcN2vGhm2OW+AC3JTi10cQt37k5Fw6lAOwokraKh7HzHEzUNXlgAyQnUdVtykj9gR3qqRtjputqqQ1VTIv/9pxHgAcELeca7M8WxosejmAVo6bvU2ZMgX3338/vvGNb+CTn/wkLr/8clxxxRWZcx577DEcd9xxOPHEE4N0tGURzVnaPaL6ILd98VDmTRRy27aIW7Ej3WSbrBbZbIIct5j5f66RcE778uc7HGM+X6AEg5t5FFjbyGNBg7ipJPW5iJuQ1IePOElgWp3twm6tKmnZd4G49a3OorR5uYWmISByC32okiwhC0eqpK04CYuSTeYwjtUQbMZGs6GIGwfptEXcbMoBUBRVMWZkih+9lfTRU1H8GkWVpN8zWcPKAZC2VQEZIB9xA9KAjNwHK9QqQo5bgYyZl5fmK2JSs0r9sLyn1vXzcubIjvH676qspSrpZYwnXm1dXV342te+pv38lFNOwSmnnOLafMsaabY0oGbMcWNRJT0QN+6mxybia5O8DjjktjQTVdKifToe9zs/W2hUZZlaORuAYs4G0hVxUy2Oc+YAF16YbtY4DkRGUt9DnMQWccsbk9YLuy06bumgiJypymDiRIgaY3m5hXmXct06aVMSgSrZTOUAbOew9lEJPZWFuNEct4iOW6GNFzizmX8rFdQCJr6qkiqKn85xEzZrFnDEEQkN2UmcRNxXC6okt32b4Ja1uizdE5C2VQEZIOu46W6TCMhMn25HqSsUkr1DuZe3wS8PpnNBniLm/PnAvRcBp1aPnfs14P6LkqDdnDlq+nmmbxY5blFUJS2cfSomBTBy6iNTJVuIW7197GMfwy9+8Yvc8y6//HJ87GMfc/mJljXSrNGTJsxxs0XcuBFZsalrY256bCK+NnV+gLiIm484ibXjlleHh7Q9ds/8tm0FFWzkogF9jhtQL6nPcdyopL5XAW7LDVuu4+aBuIXOcQP0JQFUuYU2jtvo0fbS7qsfSl9zHBT6PA9EVJW0ESVgI24WYj/RETcLVCnTPmcOs81bNGwGVRS/PMeNUvzabHMuK3b53dabfBpksSkR5IH8qAIyQHYeNQ2Ddevq+8AZN2Iu4GzwbRUxXyV/UyfyFTGp5Tpulmt2aEViajLiFoMquXl5+rqUE8zdyhE3J8ft8ssvx+2335573r/+9a86CmXLmtFiipM0E+LmUQ7AFnELLdMNbB3iJJz2K7b5RJZ5BNZUyZzNoE+hZltVSWu00CK3xUvdkLPZtCjDAGSLcFNlyV12qXfebHMLbRf2pb9MX089Nv9853IAERC3GrXLgSqZJyREHbe8zRRAniWGSBGQRdw4ZiOCZLvu6Zx9HcUvz3EDSD1H23s6gBpayApaWlICqQBHHtJpXRZEM95VARmAR5UEkoAMYO+4cWs6AvmsAZkuS6cWept0ipiZfuWhhZERN5v220Zk3wdPzagAq6pK9sOmAMO2y+lPy3FztsHBQRSLUX+iZSEsZjkA2xw3a9qFBeJmG6EC7B23GjoTO8ctcDkAa768h0Oel4dmm09kq4Tn6vyYxqOQ1D/xuPSYON0oqV993gY3MzeytnURbcRJLBd2GmXtY9Tr1FGkdEbl5Skl7+WXgQ2Sg26bW2hLlVzzWPL/2DcCY6bnn08dt3JOjpt1ICEyVVIEQiqD+Zse+jkVZNGZrQy4GDNcx801l9YHcdNR/DiOWy3n0odNwQj6UTS0X4NsUbMR4AiFvKvEnoB8cRIgDcgAdpQ6IL2vLKqk4VlV0WV1jpswWRGT2hZH3Gzal57l0DluG5ela8z4/fPPt625OMQsqle1ZMkSjB3LqO3Ssi1rMYspu6qCcdovDxC+eZMhbs2W4xZ6Im0UVZKzobJF3KzFIJj0q+5u4KTj0/dfOStfUp/+rY9+K78vtuUAbFBa2+vSOTF9TaWgOe2z5Kg1Kqrz5wOD0hjlUCXb2tLcQpuIbKWS3icaJDCZM1Uy9IYKhCrJaBuAXf0m20CC4zzD2YDLfcidZwIhbjqKH8dxA6o5lxHZFADQQerpcoIs4trFSG/Q5emqxJ4AHuJWE3tC4xA3+XlS0WXzHDdZETPTLwtVydg5bnnty0GY0AwfSlUfv1/++Vs54sYWJ/nmN7+Zef/ggw/WHRM2MDCAxx57DHfccQeOOuoovx62LL5Zi5PYJIBbRr9sNvi2i1cjxEnEZBclx82yHMCgxfXxctxsRTIsygGwEDfquG0hxK3WNrnvO+0K7JaDzqx+OH39yNeBffSCT0n7FrknAOzKAVgu7J2T0te9K/LPt6VKqsakjpbGQdxGjgS23776+xaKabYbfMCdKsmqKxgZcbMJELnSjgG7ecYFcSsP6BEa+fdtETe69ugoflzHbfRoO2cZsGNTAO5BFtt7ylH1Nc2/stgTkO+4UbEnwB5xc85xI/dMNy9xKi0tWACcfXb9cRtFzNBKofI5ufOAdN/z2CO2egM0v23Uzvnnb+WIG9txO+ecc1AoFFCp3pAHH3wQDz74oPE7I0eOxNe//nWvDrasARYTcfMpB5DXvu3i5SJOEhNxi10OwKaOW1OJk1gGEjJUSYscN65SnaDvWkveO4v2GtqnfecEWRwRN86GzdZxs6VKquYCHS2N3kbdtLF2bao8l9mE52yUbcc6kA3E5KJWlqqSsamSNvNMdMTNkirpOs9wyEc6eq2g+Mnjkt5KXVcExW+AoGChFYMBoNMScbOiShaQPIAVu3sK1I93IfZ08snpsTyqJBV7kttnBbcE4uZBldTNS3SI5Sli1vUroqokR2zNZk8gI26DOeswzYkb3Kg/Txhd1zmsB5v5fQgae2fx9a9/vea4ffOb38R+++2H4447TnluR0cHdtxxR7z73e/GZBVnuWXNZbYR5Zo8euRyAHntW6ux2SZRV9xz3Fh5YpHFSRqGuIUWJ/GhSlqoSrKV6hwRN277wjhjzCYSDkRG3GgUn+O4BUBndLQ0bo6bUJ6zoko6OG5WdMOI4iSVCqG9RXDcvBgVNoibC1XSZp7xEM4SFL9587Lni8touv2C4leOqBgMAB2WiJtNrTIguTaVAQeqpKJ9kQc8a1aCvOkQt87OxGmT84atVYNFjpuHOIluXuLGBsS8RM2qBl2TIW4T32w+n5b46Vf87bLRdZ2u9zprUSUTO+ecc2qvheN2tgrebdnQs8xDF1GcJPTCHhP1kdtnL2Bikx9ZVTI04ma7CGSuTTOJk1ggbjabEsCeGszZNIzfD1j1YPJ67N755/ugJ6HruGUQN4vNILd91Vygo6VxyjAAqfKcFVUysuOmo19p23ZEUdklTSLmRVrnQ3mIk+TNY671S4H6vqsofuJy6C5hpp6jx9xui7iFpkoCdo5bBj0ZoT5n5sykxt2llyZUwvLyZGvShgSlnD07uXZ5ecM25QAq5WTMmPYpFB2iYjy6eYm7tRo9uv6YDeLGyotsUI7bG/+HUXuVfM4JtvogblshVdJJnKRcLrPquLVsiBh96Gw24Vu8HIAtUkgmwsEcpTfAfqKjv9Fsddy2OOIWkcLkmuNm7Yzb0oAYm4Y3k3mU0x/XvtPvatu2HO/tY9P7aou4udLqdMpzHHESqjwXmypp4xh6lXgIjKICkhOR96w2CnGzLAcg901lz/9a3S9t24a+y/UcgXzHjVL8rHPcLGn2tuIkLo4bwHTcCMJiqv3X3Z2IOi1blq5fe88wiz0B9mPS5trTsiS0XIluXuIsZXReohYTcQstgkTv+/gD8ttup8FWDuJGHbcW4tbS6m+ZO+I2uBFY/xy/7dAiFtbJ5aTtZX8ENi3XngrAbdNTmxAr9bxv2TKLb+C6KoAl4uaBRtqKZIS+r9Tp5UTXXDcltmUSOO1P2N8O0XPNueS0b42IFVK6JEucxPLaqDbKOuU5juNGleealSppK06Si4j5zGFgOPu2tLQmUpW87zPke56IG5Ct5wjoHTdVPUcfNgULcXMUJ7EufM64p7a1/0oloCSuaTF9hnXW+xrplwVVEsifC2hZkg6imK6blziOG52XMv2yUJWMgbhZ7TdsWTK2VElLx20rR9y8sudfeukl/OMf/8CLL76IzZvVCEahUMDXvpajlNayLWs+6MltxwLveVh/rk+Om5VsPKPtzsnAsMnA5moS8UvXA2+YpT/fadMjq5oZvidy3IodTMfTso6bzeJunf8Xk6YaSKZb27xF4j1Ark3VGTfdK1uqpDivMmgXNWX33WLxHXQY7x0Tk+epL0I5AJ2YkIqWlleAW1aeayaqpNd1sXHcHMZM3oYwuqpkRKqkrl+cc3R9pxS/jnkAKqnjZqL4FQpVuuEgbxNOna8YiFstLzIC4kY36ibEjVpNrTnnWRrsAx74EvkehyppUdNRh7gB6nkpT5xEnpeohUbcbJ9VK6qkZbC1lePmZc6O2+c//3lcfPHFGKzW06lI8p9CyKTluA0FcxQnAYDVj5jPjUmVLNuiPm3APt8A7vlk8j4PJaCRQSrvbbK6iK9hAyw2jDEi4bR9wBJx29LiJJa5JzYRU4BsSiyjyUDSd1OfXMRJiqWk3zEQN6ucH8uFHUjRTuvEfg6tTjNmVMpzeeIksvKcK1WSO2babBw3W1XJQnJeuT88/VXuwxZXlbQVJ7FsP/1iuLYFxe+3Fyasil2mA4v/nNDhTGhRsT2pT5g3Xja+CPzzxPQ9h2ZfGlUNEA0Afavyz7cOEDkibnm5ULX2mbXW1j2Vfc+Zl1wRt3apRrFqXspD3OR5KdOvwKqStoE5V1VJ67x0S8StrYW4OTlu3//+9/HDH/4QhUIB7373u7HnnntijC45s2XNb2XLaAknIlhrmybHBy6S7RIJH717+ppGz1S24bn09chpvPZtcopsNyV0sg1dpNVHnCS0WqhPfSUbqiR3U1LnQBi+51IOwKpouy3NMzKtzianMwRVUpisPKejSuqU56JTJS0cQ1vEDaje10iOm5Wa3BDOcaPGyXm2oXlWKmmbo8YnJShy2+9IvpM3Xh6WAuGsUjiFxMEbWJ8/3suDAKqB+CiIG3XcmPtGMSbzxuPm17Lvh++Q37bN+kH3DB3j6j+X5yVdFopuXqKWty+wLuFji45HRNyKpWQ8Dm62Fyeh+XE6ayFu9bZw4UKUSiXceOONePvb3x64Sy1rvFlGS/oZD1qtaVteNXnorcRJmOmadLLNizyuJ7VVRimSh1VmFaWyRH6aCXHzknYPHL2jkzRLdMYxxw1AflFfR8RNtJ1nMRE3FwfChkZqnRzPyCkStLS//wRA9XkuI195zkr1sclUJYHkug+C4Yy7tO2IuMWgSsZUlaTGifpbsUFozSwGIgYkrI7+tflzGEV9AF5AFEjvfx4d0AV5dxUn4eS4AXzErVdy3KYcld+2DTqeoUqOVZ9D56XLLwVQTc0oIn9eopZLlbTNi/RQr7VRleQ+q6XRyVi3pUpy2E9bOeLmJE7yzDPP4K1vfWvLadtazDZawomQCPOJ4sdA3DrGp69tHLeRXMfNRpHNNpocMYHdVpwkc185xcMdxUlYhXFtqZIetdBMfR8YAF4nG4eK/tSMiftqEzV1QdyioDOOjmEo6XhBS/vdb9JjZ8zJV56zWdht6d5A3Bw3el4MVUnXHLeYVMkY4iTUOJtHK8eNBs0sHDcAGNxkPk+WQ+fMvwDf+XFCgB0Qt2Inv0SFOM8GcXvLFUy1ZldxknH688S89Mxz6bE3H5Q/L2X6FRhxs6Vk25SSsd1DAilN1oYq2TaC1/5Wjrg5OW6jR4/G9ttvH7ovLdtSZusARXfcmItAbMdtgwPiZqXiZ+m4xUTcbMVJMm1zkNSIZR7aHKmSLoib6p729ABz5wJTpwKXE3n/95+QHO/pMbfPRdzKg2lk0wVxC13Hzav9wJv8AvGSJ3blK8/ZLOy2ubQArMRPbB1aet7WnONWKaMW/XChSm5JxC1To5PpWAknYyDPcZNyfGwRt9Aqp4Cb48alSdJ+2CBuw7bjtW0TZOlfnb42OW7C2sm9GdaRPy9l+mWhKmmNuNmWHYmBuFUDEDaqkhxhEsBu/h2C5uS4HX744XjooYdC96VlW8psHzpOkWNhPo4bF7Gi38mz9jGoJaLnIm7Ppa9H7sRrv1GOm22OW961t6YwWcpRW12XiOIklQq57q45bsQWLUryV+bNA159NUujXLEqOT59enJeXvuh5frl83IdK0/EjUsNlvulbdtmk2/ZdjNRJX0QN6u8xQhKpFHvqcN1dxUnCY24ZRy3ZkHcuGPGMsACuFElbRw3F6pkJ9Nxswn89RnESVRWKKK237BBgAEGVdIHcbOkSuYi75YsGSBF3Mp9+fTdmuPGyG8DkuteYyW0HDcAwNe//nU8/fTT+PnPfx66Py3bEmYNc3M5YIiMuDlEeQrFNFKW57gNCnh+OH/xLdpEqTwct7yJDsiqVhZyVNPoAmOTayXaz7OY4iQ2C6+TeIhGln7RokRBjMo/q9QNe3uT83TOG9dxc8lXsirA7RJp38JUydrntvXEbMaMi+PWlo5dqxw3W6rkFhYniYmi2tYAlftgep7kGpvBETcPqmRlwPwsyZvX4Dluls44YLFmVwjixsxvAwilsmJeP0SpH8ARccujSq5O/i8ULZwIC6c2873AqpI+9SJz9wSOOW7C8lhc4nMu4gakc/xW6Lg5iZOsXbsWn//85zFnzhzceOONeN/73odp06ahWFRvso444givTrYssrk4QFxrGFXSIgbRMT5x2vIcN3FdbNq22siKxHuuA+GIuHEjsoW2ZNG2pkraqoUGFiexQdxsJekBNY20pydRDqs7l7yWL+OsWUnSupzfwKZKOqAnVuPREkUF7Ci2MTf5tm3HVpUEknE5uImBuHnc1xi1+VwRNxZV0kJ8yrYGqNwHo+Mm/TaHRWI1Hl2okkR0YXAzUNQ4BvLmNWaOW2iqZLk3bd+FKgkk/S9qBCpcEDcbBViBuJXG5AdDa+2XgMEcZ1z3PZPZ0oIzgjmcYKtN0M8jxw1IAiedE9TnVcopCm3juLV1Jg7fVkiVdHLc3v72t9fqtF199dW4+uqrtecWCgUMDFgO2JY11lxgbq455VhEzHED0jy3/tUwKuHZImKAW0Jvkdl+Rv2K47hVrz1341Bz3GLQLiLWcaNoqM0m3CfHbf78LNJW6wt5LdcT6+1NlMbOPVdq3wVxi1BM2dYZB9yokoUi777qkE6V2eZaxaZKit9gOW4eyo9W9NoI4iQ+qpI2yDtbeZe5mbVFP4DGUSWBZNzoZM/lZydmjltoxI1SUksOVEmg2n+d4/Z68n/bcKA0gte2DWOjtqYy7ynAuzYyAgzYIW6sQK4H4pbbvgviRpwwU+BkYKP6O3nWQtyydsQRR6DAjTa0rPnNdWPCMZeIb0xVSSB13CrlJCKji/y5OG4xc9xsVSUHLRG3WiFoyxy30OIk1qqSpWQzUylbKgS6KNUNJuqRCxZo+kJeq/7MBQuAs8/OJqk7IW4xygF4Im5cqqRtFB+IkOMWmSoJxN0oR6VKutJrLes55tETXdQ8XRE3VtuxHTdyninPTf5t2xw3QTfUBQxjlgMYpJtwpmMl98N0X10cq8xckFOKwVbVFyDXxnI8xkTcrMsBRFCVbGM6bvRZ4JQCECbuawtxS+yWW24J3I2WbVGzRThszBaeB+LmuAFZbvrAhrCOm81GNraqpNiI2yButF/GtvvS73AQQ6tEaof7WqOl5UVMXTaDEvKzdGkiRKIyE+IGAMuXJ9+nBXldEDdb9UGAgbg5bDatAhW2ap42KK2lQ94QqqTIKdqCqpKNokq6oKh/Pwr4iCFf2lecxAZx2+MLdm3HLAcA2Dlu7PxrCbXS0Q19ELfBzcCyPwE7vl/TtkP+HMDPHXdJb6AOZJ4wTC34ZLF15gSiVWM1by7wQdyaQlWS6bhlAooWDnnb1ou4Bd6lt2xIWkzEzSvHLUKUh7Yvt1HXvm+OW0RxEs5EbYu4FZjIj1PbNhQph0ACN7rmIk4i0zzXrtWfS2+l7s9cJyENdGGvGDayLkEQm0CCL1WSjbg5iMKEznFrFFWS074XBTZHrKFRqpIuKCpgFsrwFicxze3SZ/t8Pb9tG+puH9mIrl6foPR5VpJy3HQm0+rYDjlzzLsEEkAYWLcdC6xdoj7NhfEg94MjOmPznGYc5o3684D0vjshbqbxqPibmglxs1GV5K7ZXMeNPgvcdYmeuxUibi3HrWWwRjj2/172PXez2Qx13ORzOYu7K+K2peu4NQJxs72nQByHnBtdc9kMyn0fY8jNyKNKAsBoSU2Nu9l02VBZlQPwFSdh5qE55RY2iaokNx8VIEWDI6pKyt+XzVdVkisd76LQCvBRiNBUSers7vBenlAGZzyKmo4fPzU9dv4PkxqPeTUdXRE3rsx8kZkj7VIOgBamBoAeje5B2SFwJp9rRNzEtbHY2nKvO+BGleRQ4VXjKW/ts90P2M4zVlTJiIjboMO6RM8t95r3qEPQnKiSt912m9X5LVXJJjfbjfKMzwIPEGpJpax/WLc1x40dGaT1xJiPYZlENdetTqK4uoKelQpxrmwdN070ztIpdBYnsaBKAvk5Ci4bB5myt8suwOTJarpkHlWyqyv5vrb9AWin5dj5Si6RzahUSRvEzTbHrS1pvzIYnyoZU1USSP52XbdiF+CuIW7MZ0mW/ebm/YQuwO3UdgEJslRRj8dFixLl2N5e4DByvB/JXDFvHnDhhcDChcDMmfXfd81xY6ORkjKjtn2HQIIQBRGmQ66cETcuuuTAkmkjVMm84udOVEnGfsZWcRKwC5oB9rTpzNweoY5bbKpkRi20n89SGQLmpSrJMVdVyaeeego33ngj7rvvPtx333144oknMDg4iHPPPRdz5861bk/YTTfdhO9///u4++67sWHDBuy000446aSTcNZZZ2HUKGZdjq3NbBexYhuw3eHAa/8k3w/ouNUiVA1w3Ey/UXMgLBYBtqqZhXPS05OoGC6aD8yrHrv1ZuCjU4HZs4E5c+ol5jO0Okvnygpxc6BKxijz0OZAlXRB3MpVZ3n27GQjJlse4jZ7dr2zLY8Z7SbcJffEBhFzWCCdxEm4G82IiBsAtuqjTzkAwI4q6YSkctGTCFRJWxR144vZ91zHzYnWHNhxE+eqSqaImo7CaHfpJRQ1HYF6540iPyYHQqZKjts3r9eJ0fX34fuAiRuSIJI8H2WQTuZ9FfXNan3UPK+ujhuXOeBClSxZUCUrluMd4OUwO4nlNBJx24Kqki4UfqA+j3lbd9x0qpLlchnPP/88eqp0gH/7t39De7vFACd2ySWX4Ec/+pHTd3X2gx/8AJ///OdRKBRw+OGHo6urC//85z/x7W9/G1dffTVuv/12TJo0KehvDglzySnibsSdigZHFieJirgF3jjQKC6ds9pgjuKWXfKVqv2wUqx0QH5s6rhxnWau9K83/ap63+bMSa67XBLAhLh1dgJnnJHTPkMxDbAPggAMxK1B5QCiIG4O9C4haBNbVbIyCKOKX0znypeGyVWV5G7CN70kfZ+Z9+MiThLDcRM1uej3VTUd6eOp6oaqpiN13MqmHDfy20feCFY9sZ4e4OHHgXHV9yccC7yChDkgB/9cxqOpj9RcqZJc5kBtzY5AlayU07WpETlueWaLuMVUlXSp40Ydt0ET4uZQExHI/o2DvXYF35vcnHLcbrnlFvzjH/+o+3frrbfiueeewwMPPIA3velNGDlyJG666Sanju2999744he/iEWLFuGJJ57AKaec4tSOsAceeABf+MIX0NbWhj//+c+49dZb8bvf/Q7PPPMM3vnOd+Kpp57CJz7xCa/fGLLmq95ldNyasAA3twist6okh4tvaF9EcYVzQLtKvyKiuIsWpcdcNuHDplTbew3Y9LL5XNf8OYARXXRwyF1y3NgbfMVmsLs7cZbrziWv5T9z4cJ6ZBSwoHe5IG5E7S9XnIRSJWMU+I5IlXSJ5DvlRTo4bgAPFSuUeJtwwMJxc+i7lSiBcMaZ15wWSKbfV7btSZXkipO4BP3o91U1HekQVwGuoqYjNRfEjXPdFy1KVGwfeIT8VvV/EfybPj1dP1zmmbo+bmHEzSrHjakq6erQuua45Vlmbo+sKhmjjhu7HICDQisgUSW3LoGSKOIk++67L/7whz/g9ttvxwUXXODUxsc//nFccMEF+MhHPoI99tgDxaJfV7/zne+gUqngox/9KI455pja8REjRmDhwoUoFou4+uqr8eSTT3r9zpA0p5wiF5TAtiaMjYiFI+KmTESS2rcRJAiFuKmiuDrHTdisWWnyu4vQxJSj09cv3WA+10ecxIoCa4m4Vco5C2SAOm7CZs4ErroqQdKEqVQlOzuT81R5LQD/WXKRdgdSSk2u0IRwxodZOBAWojMxHTcXmXFuDloIx82E6jnVhmI6braFyW3aBkiOG7PvdcJWprXDhf4aMceNniu+r6vpqKNKUluwIKs26SROkjM/0uAf/Zp8OWnwLwTippvjYyNu8KRKDhioks75eZEQN9oPG8St0MZbV61yXX1VJQ3X3WUvI5/bctx4tvPOO+Pggw/GlVdeGesn2NbX14c///nPAICPfOQjdZ/vtNNOOOywJJv4mmuuaWjfmsJcHjonxC1wMc/o4iQuOW5MekFe31VR3ApSP1P159Iorgvitv2709cr/k9/XqVMNuExKHUu0TsSiTNN0r45bnLfZ84ElixJFOO6urL3ZfLk5PiSJXqnTe6H0dmPGPEF0utmk0dglUPnUQ6Ai+bZtM8uIRHAcePIr7vWtQqeJ2ZDkbJUldzxWAuEOaKqZCjHTVfTkd5KXTdETUdhLuIkpr7LwT/aD93tmjULeI2wLWwcFGpbCnETDmMMqqSrQ8sJROcFM3Um+mGDuDlRpptEVdKlHIDcxlZgUcsBbLfddnjuuedi/gTLFi9ejI0bE4/+oIMOUp4jjj/wwAPOv7NhwwbWv6Yzl4fO1nErlOydwq06x80QedRFcYF08dWteSKK6xKlGrZd+tqkzkgXCXY9MRvam0cdN8A8SfvmuKkW2O5u4NxzgWXLgH33Tr+z7MXkuIoeSY2LErjkiwIEccujSlrSXwELalrFIcfNRonUIZIfmyrZxnXcBHpt47hxqZIO492GKinGK9sZLwI7fYi0Hzo/2gFxs2JUSGuTrqYj7a7pEtKajja5VnJ/VCYH/ziOW28vcPON6XvumKwrp6BhsrgEWACLXF0XVUkHx41d3w4EFbNA3A6Zb9m2BeLmlJfeJHXcWogbAEdxEo719fXhnnvuwYgRI/JPjmxLq1GtcePGYbRcQ6lq3dXN1VIaAbO0IatK6SLlauu4WW006YRR1k8ELv0G+LS9LZXjpoviAindRdclEcWd6CFOIvdPNifhExvEzeG+cidplw0+V/CgVAI62oCN1bZ1pRrq2o9IOwYI4sYsB2AV1XTZKDdJjlt0qiQdkwzEzWoz6JLj5oK4cXPcHDay9PsqcxJtiSxOIjtuupqOeTluwuh+JONAMMVJdGujKvhHL4fpT77tH8CHq6+51/3tNwB/O1TdR2ou8y9gERB1KcBNywGYKHsOAki0L9zx+IaPA7spRKxU1jDELW8e8ETcjOIkAcoBtBA3s23YsAH33nsvTjrpJPT09ODII48M/RPWtq4a1Ro5cqT2HOF0rdVF0LZma4Q4iZXjZomIAW5R07z2XaJ33CKnpmtuGoPia6Z1Y906yblyKZJtuC4uuVZWm/CIiJvTRtYB+XGOJgfeyNJzueUAbBZHl024E0U1Ro6bQNz6USexnmm7UVRJizmSXQ7ABWGOqCop9yO4GE+DxUlETUfZODluck3HEhdxY/RdFfwz5bhR20DWH+6Y3O7fgGMeVPeRmkveImCfgmC1Zren5xuvu8McAxBUrAxtIWgXZBxI57DeFfnOiTXixqSnAm7B1kaXA9iKzAlxa2vLH1iVSgXjxo3Dt771LZefGJK2fv363HPWrl2LHXbYoQG9sbCYVEmxybepoVHXtmaSjJ7j5oK4MTdrpr7rorhAPuIGJFHcQSK7HVr50YWGaSNOUqPZFMAWyeBO0k4FuC0EOFwct5jlAGj73HIAURA3l024jePm4Bi2SYiYzmGNnePmIk7ioirplONmaLu/Px2vfQMJysNBmdnCVhHrFoZy3HQ1HTk5bnJNxyIzx42j4KcK/nGokgBASVLtYw0nSsZ5XkMgbsbx7pCXXigkaOfAhjhUSTlNQDU/uQQUAWDy4cDzvwH61wIv/C+wy8n6c22Rfer8xkbcjAW4XcsBtBC3jFUqFe2/UqmEnXbaCR//+Mdx//33Y8aMGaH7bG2CHmnKLxNO1xjTpjnHRo4cyfrXdNYIcRJXxC1UEWtd+9oFpuJGuwjhuOmiuEC6+Oq6JKK4PnXc5P7J5lTiwYEqaRU1pZO0iWbkK3jARH5i0IC8cyzyELfqdXPOceMqBEamSrIdlADPqrF96gAFFieJKfCRh+b19CSiO91T02P3PwxMnZocF8q2OuM+T06FyRusKgkkNdA6pWcmL8dNVdPRCXHTzJGqfUwzOG4hEDfjPOawZgMpXZJNlXSlBnOui0Xf3/Dx9PVr/zKfa424FfhUTCcl6Pa0/djiJFsZ4ubkuJXLZe2/3t5ePPvss7j00kux8847B+6um4l+rF69ukablE0UDW+WPjfMKhXghd+m750EGxgoQWyqZHDHzdEp5G7WTH0XUVyV5SFuIoo76ImKGVFUh4nURZzEKk/BRZzEAXF7ZnGiEjmgGfPeVEkT7c3BYR4YSMdMf6++3+WB9Lq7UiVD0zyj57i50Gtd5xkTFdMTcWNTJQMgbqIm2Lx5wEpSk20Q6ppgKos6ZhqMuAHqmo55OW6qmo5OOW6avquCf/QRMv3Jk0g/OsYZTpSMw6pwltS3RNxsgn5Aeu3ZVElHarB2v+GAjAPAcMLeynNOnAJETJq9Sx03IHWYjUinY44bd08wBC2qqmSz2IwZM2oiKffee6/yHHH8gAMOaFi/msJW3gdsXp6+Z0dLmizHzVWcRNu+Q54VYJHXkrOAqaK4gFlVkkZxoyJuvk5hZMTNKE5iuUD29AB//mv6/mtzgd1316MLvohbqI2sQEWmTgWergourV9j6LdrVNOllAHXgYic48YWtHHd5JPxy0GWrOhXEQtw63LcaE0wIDvlUr+U1gRTts8VEPF09mMibrJjItd01OW4mWo6hlSVVAX/uIjbPm9IXzcLVdK2/IWt4ybQzkEm4ubCeAD0fXfOcWPuN+jnVrm0TJq9C+IGqAMhsrUQtzrbJhy3jo4OvPe97wUA/OpXv6r7/Pnnn8cdd9wBADjhhBMa2rctbs9enn3fDOIkXDGIIBsqTSQ8el5LjrCKKooLmBE3GsWNibh5UyW54iQ2ks4OqpJ5EV+BLvz1/yO/U/1fhy74Im4hVCUpKvLqq9kxo+u36+LYLFRJpzpukamSbEq2izKjQzkAnxw3uSYYoC42T23WLDVtMmaOW/S1w7DRpDUdR5L+DiChsOfVdKSO24AnVRKoD/5xHLfOTmCXrvS9K+IWVZxEM94zwh+2iBsH+fGs4wZEuC4WjptPLm2MOm5AOn5NjIQQ5QBaiFtqr7/+Or773e/i3e9+N/bee2/svffeePe7343zzjsPr7/+eqg+su3iiy/GHnvsgVNPPbXuszPPPBOFQgGXXXYZbrjhhtrxjRs3YtasWRgcHMRJJ52EPfbYo5Fd3vI2atfs+2Zw3JqCKhnCcfOMhMtRXEDtuKmiuN6Im2ki9WybK07iKr1upL0xI5sUXTABuzK64KSy5+K4aa67jIoAaf9p3+V+ZxZHG8nlRlElmaIwcp9Mxl3YY1IlXWvzxUTcVDRMuSYYkO+49fYCl15af9wlx62ZqZLURE3HQ/ZPjz36VFLj8dxzzTUdQxfgloN/HFXJhQuBNjLPNAvixkKtyDNmozINpE5zuV8/jznTPBkocOxAcXkwvT5OVMktiLiFKAfQQtwSu/HGG7H77rvjq1/9Kv72t7/h8ccfx+OPP46//e1v+J//+R/MmDEDN954Y35DGrv//vvxlre8pfbvz3/+MwBg/vz5meMvv/xy7TsrVqzAU089hRdeeKGuvQMOOADf+973MDg4iPe85z048sgj8aEPfQi77bYbbr75ZsyYMQM/+9nPnPs7ZE2OqIUUJykPpp85O25McZLQ5QBcJOmB8FF8GsXt6so6bl2T9VFcbzrjEBMnoRM6V1VSt/jK6ALdc+u6JNCFGnoSgSqZ51ypUBHAXEJC9NtlvAAWG2UHqqRrAW6XHDc2ShuYKulCBwQsUCuH6yI7EKqaYEC+4wYk35PzKl2cfTZKuwXESZTti4BlZ0Kt5qhtUsStbMpxs0A3aPCPXg75azT417+6es4wy7mgUYgbw/mxRtwY+YXO5VgY85irQ0vVugdN+w3XAJELVTIw4uZK49+KETencgBLlizBiSeeiI0bN2LffffFRz/6UbzhDQkv+tlnn8Xll1+OBx98ECeeeCIeeOABTJ8+3fo31q5di7vuuqvu+LJly7Bs2bLa+145Cmiwz33uc9hnn33wve99D3fffTc2bNiAadOm4ayzzsJZZ52lLc69VZu86JtUlaixnB/HyaJzYvp67WJgxI6a9psRcQsgTiKbiOKefTbwlzcD6+9P1qUXngc6NBEoX1SMGwHj3tfY4iQuQhO6BVJGF+iaouuSQBf2jkmVzHGuVKgIUI8YyvlIl14KfJE4/q5UyeCbcAuU1qmOG3fTE3GecaZfRS4H0DYs2cD2r1XXBAOye2Pd7Vm+PPk+3QPEzHFjP0uRHbdBB4XWYil5nioDYaiSwmbOBI44Avj15wH8PjkmLlNXV5ILd8YZKRrYtzr53wZtq+uLLgXB4TkFwBMncQy2AryA6zMkeOFMlTSIQ6nOzzPbWpFAHHGSCie6qWrfMsfNtRzAVoa4OTlu3/3ud7Fx40acc845+PrXv173+Wc+8xmce+65OPvss3Heeefh5z//ufVvvP3tb0dFV6xQY+eccw7OOecc4zlHHXUUjjrqKOv+bLUmb7bG7sX7HmtTwszJkW27I4CnqxSbV24CprxDfV5McZLo1AWHibpUAkaMAUS5wKLh+YiKuJFFgFufz4r25qAMFirHTYUucNekBQuAHzYIcZOdKx0qAtQ7nvKeasEC4DPHkXNiiJM4bNgaWseN6+xHpEpGESdx3BC2j03GW98adU0wIBvEMATMISs5N0yJdAsibjXHzYLaBVTria0LQ5Wk1t0NzDwNuLXquH36k8D3P5eoT8poYP+a5H+b/Da5L6FVJTnlAFzzrIDsOqZat1fcBTxHcoKdqfCBg9zs/YZjDdCY5QCSH6j+z8xxayFuABypkoJaqHLahH3ta1/DjBkzcNNNNzl3rmUNMPpA7nMOUBqhPTVjnMWXRg257QLAlHemr5ffrD+vKRE3F6qk6wJmmEyjIm6eFKZcxM1TVZJdDkBxX1XoAjc+sHx52n50xE3aEOpQESBfBnz5cmDZc6Q/rlTJ0PlKNiitiwhHZFVJMKiSzvQr5jzgMs8MDACVKnWsdzUwQjN3c6iSACAzWbgCIt45bjHzoyuAKbAsNptFW8etej5XVdJmC0fXpimTEhRUdtrKgwnKCjggbpZUydAFuJ2dB+Sv28uulc53RNx0e6UQNeJiIG5sqqQYkwWgUOC3XwuEMKmSrRw3AI6O2yuvvMKSzT/ggAPwyiuvuPxEyxpldMPDRdsA3iQ9SIoqtlk4bsOnAGP3Tl6vvDelbsgWtQB3iBy3wKIBAD/S7oS4WcqXy/0xth2ZKumCuKk2Dip0Ic/xEVYAUmGVCOIkJsqIDhUBeI7nBvL9GLlWmUBCs9Rxc6FKBq7f5MpKiIG40RISjz+XHOtfC7ztCGDkyPrzOY5bV1eC6lCLWXA+dgFudhmc6nh3QdyA8IgbwBszAwQdbR/Hb1vuCyeXK3Rwy9WhBfIdN/k+hs5xcy41UEj7HgNxY1MlRbDVEums5bgxqZKuiFvLcQNGjhyJV3XRXWKvvvoqRqom/JY1j2Um0sAStzRfrmQ5DgTqVikDy29Rn7PVIG4RHDcnxK3Am0id6isxN1TJCaJxXtuAW46bauMwZkz9Ma7jRrsbnSopbSRU/a59j7zWdWs4GbfOEV9D33tJsebOScy2baiSEeu4ueZDZTb5gVUl2XRDptMpl5AQfkMRwNoVwIYN9d+hl1k3Fc2eXY/qcGutNbOqpNyGbC45bgCpJ+ZZgFtlnLUps2ZbBFvlvoQWJ2HldHpQJXMdt+HZ98Fz3BwRMYDpuHlSsvMQNzikNwAOiJtjjpspMDcEzclx22+//XDbbbfhkUce0Z7z8MMP49Zbb8V+++3n2reWNcKcqQscx80RcQOAyW9PX6+8V32OKzWCEzVtVseNK0rgqsTEkud1qZllg564qErSSdqw6cnbOOyyCzB5cvYY13Hbnnyv0eIkqn4Ly0PcurqAKdul751RJUPfN6Xqvxi2vUPbNjluzOfJydkPTJV0VpXkUiXp/K7pu6qEBAV8dFN3nuPW2ZmIXsjmpETaJIgbtzafM1WSg7hFVDx2FQ8B7BG30AW4y477AcDecYua4xbDcSOfcfPSgbTvlUEzNTgm4lbre8HuurcQt6zNnj0b/f39OOqoo/DTn/4U69evr322fv16XHzxxTj66KMxODiIM1QTd8uax1w24QCTKumBuFFlSd1DF2RDpVO/cs0jIJNuDKU6lxw3F0nnoUaVdJF2V21kS6UEJaDGddw+dhppOwJqZUJRVf2ufY+8VvV/9mygQEtrONKATH3fTCjzw6fw2nahShaK/E1bMxTgDpHjxqZKKuZ3XQkJKi48vP5jAADd/6ku38KF6rplMQtwN0qcxNR+uR9AdZPrSpUs9xkEPiIGFV2pjHJfglMlGeUAQqlKqtbtUiDELXSOG9AYxA3IeZ5iIm6itEa7Xf5cK8cta//5n/+JU045Ba+99ho+/elPY+zYsZg8eTImT56MsWPH4rOf/Sxee+01nHLKKfjQhz4Uus8tC2nOBTEtETdr2gVjQzikqZKukUemYxgTcXNSCLSp47YFVSUBYM4cddFzQO+4dXYCp52S37bKuIsjre2k2hDK/RZm6r9ARZwpTMz7uok6blzEjZlzSX87RkQ2xDyjU01zzm0JRAnUlZDwQdxoTTCVsQVtyPzmJIK0hRA3VzEF+XxtLTdHSiDH2XehHKv6ElOcRBew9FGVpOu2qn0ZOXWmSgbOcQPSvhtFuTxVJQFezn5MxM2m30BLVVJlV1xxBX76059il112QaVSwYoVK7BixQpUKhXsuuuuuOSSS3D55ZcH7GrLophrjhuH+uaT48aKysYUJ2lSqmSjELdNG5LC3nLxXMBRVdKBKrklctyABCVYuJC0Rz7T3aqFC4EdCJIUWjENSP+uQlHdvtzv2vfIa7n/AhVxpepQf2Tla+rxAkhUSS7iViCBhBxnX2wIrVArGmWP4biR8atDT5zV5BjS64DZITeVkMhD3EaOBLYjqoP9SCi3c+cm84bOaQMal+Nmui4hSjzo2neVLwd4haCdUwRiI24canCDCnDHqONGzZkKH1ikCLBH3ILXzwNxmh0RN1M5APG7to5bC3FT2yc+8Qk8/fTT6OnpwZ133ok777wTPT09WLJkCebMmROqjy2LaUEiYLpyAB45bpyorG8RVVPbrgu7bYRK7k9u+0zVSlvETSjKra6qij3/HLD77onC3Ny5yeeq340hTiIWAZvrnolUM8sBmMb7zJkJatDZmY9YCXTBdVPSToRF+lbqz6vlzRjuJ+23MFUBcRkVsUXcxHg57sT02GUL1eMFSKmShVKWBp1n4tlYeV9OjkU/v+/CMgv7FqJKujrMIWTvTSUkKOKmctw2bADO/p/0/ZlfA5YtA849V02PpBaTKsmuKxjxng7mIOMmyzhumjy3mEHFzDW3ddwKAKpUti1SDiCQqqSKySL/PVHFSWyRpYiqkmyqZPX62KzZyRey31cZpUpaNd1C3Iw2depUHHLIITjkkEMwderUEE22rFHWrDlunNwZ1wibbTkAq+LeBaLEtAXFSWwQN6ooV65ujsWf/OqryfHp05PzAEfRABuhCdH3GIibhTz6zJkJevDRj6fHxFdU6ILrpmQEmTM3vqg/jysxLvo9d27ST3q5t5ugRkVsNsl0vKxYRb4H9XgBUsdtWJfds0rHyuKf6M+rIW5NSpXUjfl+sjlfvU6PWMpWZGwG5c/k624qIZHnuAFAL5GOnzKtXj1SZ9wgjq96rem6DJC5+dUV/OsenSpJLvaAznFzpUoygn4+iBvtjzZ3PGI5AB9VybwC3PJvhg6yeOW4Vecx434jdi6tK+ImHDdOjpsHVXJbRdzuueceXHfddViyZEnuuYsXL8Z1112He+/VqAG2rHksRI6bjjISKsdNW7fFYUM1MAAsJ1FmXZ6Ys/AJUudqS5YD4CJusqKcbv7t7U3OW7QorjjJC/+bRppj5LjZIkvd3cB/fyZ9f9LxwOLFanTBdVMynDhumwyOm3BIOQhqd3fSv2XLgI+Q3LsbrlejItx5QDdegCwaSccLAPRXN/kdlkV96Vi579OG81wKnzeQKilTgQRi+RGSA37xz/SIZV3bzOeplntSqk/sN5WQ4DhuHaQ9q8K4DgW4XSjZKqdQXPczv5weO+urYa97BnGzpUqS68hC3ByFs7SIWyjHLTBVkhOwjEmVlP8e1yC3NggdSJxEx0oYdETc2FRJ1xw3jhiao+O2rSNuK1aswDvf+U588pOfxLhx43LPHz9+PD71qU/hXe96F1avXu3ZxZZFtah13ChV0hJxY0VlLSJstLjsZz+fHv/GOeoF28dxY3HOI+e4cWqfqBTl8gJns2YBq19X98dk3Ej47f+Rvt7wAq9twC3HjRuooM/FhLEJmqRCF1w3PcO60jFgRNxEbSiLTXKpBIwnddN0olyceUA1XvLy/2bNSr5HHYgY5pTjlkOVHBhIkMlXibCKaz4UHXcUsVy/hvwe9Iglt23ZxHVRzTGmEhJ0alFd0q4uYNyo9L3NmHQpwB2CKkmv+waCFpZhcd0ZTqep3mKeWVMlm6gcAJC/EXdlJdgW4G4mx822ALer4wYYrk2IsiMmVNpBCRqQ8iI1TqdzjhvpO92LbgXGGt1XXXUV1q9fj2984xvYbrvtcs/fbrvt8M1vfhOrV6/GVVdd5d3JlkW0mHXcMlRJS8SNQwXiOldycVka/N64XrNgeywCHM55iCTtV27Wn1dzXgy1T1SKcnmOW28v8ABB0mOIkwgbWJd/jrCQqpKysXn+rpuStlSwg4O42UbxOf3n5Laoxgu9laox09sLXHqpe0SWay45broxQ4M8u+8OXP2/6Wc/uSQflRGmGvMyYkkvB72WMmJZ17ZlvTLVPTWVkKBNqh7x2bORqQEg17kyGVeyPySyL193HRiae90bmeOmEydx3CSzctwc5zBhsRA3ljhJxALc8t9jCprKZpvj5qoqCejvK6Xd2jyr1qqSruIkMDi1jjluhUL6t666H1j/nN33m9hYV/kvf/kLRo4cidNOOy3/5KqdcsopGDVqFK6//nrnzrWsAeZMXbBE3Gxz3KypkpqhrCouSwM7AoGQF2xXRAwgiBtTnMQqik8mr8fm6X+jTDb5qtonOkU5DlX90YfS1zHESVyMi7hlUDHmdc/kW3rUzDKZyHPb/Gr+PbVVquP0P3NdFPc0b7wA+jGzYAGhMkZy3GrIkidVUg7yANm/a8HCfFRGWCaaXFYjljrHTZhALOva5lIlc667roQEHSYqQZ4zzsgiQq6IW/AcN1LHT7Stuu50SlSl1/hcd58cN06QxXWTzNmEB8tx29LlACIjbjbUu+g5bgzHzTWIbqsq6YW46UqmOFIlAaDrnenrpVfaf79JjTW6H330Ubz5zW9Gezt/QLW3t+OQQw7BI4884ty5ljXAXFWkWI4bmSx8VCVd67jpisuaNpsytUvXtsk4VEnX9uVFi15jann5UDpFOY7j1kt+k7u429TkcrEMeqKrfwQ3VIwrCOMTra7luVWAzcvrP69U0gi87WawwNkM5swDuvHCKZWwfDlZ2CNRJcXfZYV0SlRJVZAHqN/k56Eyte9Jc6QKsaTdVT0WArHMa1tneQ6troSECXETJSRckSWXHDeXvBwxJlTX3ZB+CEB/3TkiSz7lAFjqia75RMX0OxxVSZdntZjjuDWqHICPqiTLcTOsMbKxCnB7lAOgwiq6nH3XvZitqmRoxK08mK4dLo7b7v+VvrZh8DS5sa7yypUrMWUKs/YOsa6uLrz++uv5J7Zsy1lMlScfcRJrTrtiEdMVlzU5brUF24d2EVGcZO1iqR3dQpBDq9MpynEcNzpM2JHwAljFNl2tUEJth+1bx002OhaXXQOseVJ9XqZgsOWmhyLSqk1BZhMbGXFT3dO88QJkxwU16vhYy0UTM204xN/lSpVct1Id5AH0m3wdKiOMPtcDfWrEkl4O3b5owYJ61UOu88PZ5KtKSNCfEz8ll5Bwddxi5rgBBPUZ0CPFeY4boL7usamSLMTNEd0A8oOKrnRvYbmIm6uKNQf5iYi4yQ4Xp9ZbrW1GXnrFMUghn69F3Bz3YraqktZjMudB9LkuANAxjjRvQW9tcmON7s7OTmzYYJ/ct3HjRnSqaBgtax7L27DpLHY5AF/EzVRcNo/etWBBVi7adRGI4bjtLBW2zYvg6Tb5OkU5juNGP3ORRTZt1trH8dvLtF1IN+Ixc9wA4KYj6s8pDwI3vsW+bdVvKDcOHkp1LNpxzoZKN16oj6nrFh0vPlRJughTG+xNaXs2qpV0I7DkCXWQBzDnQ6lQGdUXX1+hRizzEDcgQSyXLs0e4+aJcZFIuYQEbXL0cHUJiYyD4pjjxi3AbSWcVUrb1iHFHMct97ozqJLWm3ALxM2lmlPe2tRIVcmo4iSRc9x2eI9b2zpELDZVMoO4WezFrFUlQyNuHkgkED9FYwsZ6ypPmTIFDz/8sHXjDz/8sBNS17IGWqNy3GypkqyJ2rG4bJ7jtnw58NIyfdt5FtNxkxcM3bXJo0rqFOXEtdGpDwLAKBJFdoqEGxCCTqKA2H0Sv20g/VtD57jJm8be1+rPWS4JxdhGq/NqLNG/yVapjhM1zQvg6MYLvdQ6x2178r0Yjhu9H5354lk1o8/G888YziOv5U2+CpWpfY/8rZs1lGYO4gYA6ySaj3U5AMZ1pyUk/vTX9PhHPqguIeGa48Yuku2qhCcCRIN6pJjjuAFu1901GAowac0eQj95+deNVJV0LQfgk/OuM5sC3DM+B4zsrj+H0zar8HkT5bixqZKRctz6SL839fPrLQpjq2IOLWON7kMPPRTPPfcc7rjjDnbD//rXv7B06VIceuihzp1rWQMsZo6bTRHouvY9xUlMxWWpOInuCdi4nrTt6LhVBtWTEeC+gBXbgGlEMt+VKqlTlOMgbru/gfTHBXFjbDQB4KCL+G0D9ogbd7xzzpPpjcERt0DPkhahzUHcdONlEKm4oA50+RgRtfLJcWvXoGmbHR03eh1Nzr5pk69CZYTReaNT85zQy2HaV4werW+bJU5icd1LJWDX3evbkM1V9p4j1gBIY9JGwIkg+zqkmOu4uVx3H7ohC3ETm2QXxC2Hxu+LuIkLGxNxy7sutB9cyy3ATf6eKUfZtW3ruEVRlQzguLHE1gIhbkLZd7+902M33cKvt1hrn4kYDjFjXeWZM2eiUqngjDPOwJo1a3LPX716Nc444wwUCgV8+MMf9u5kyyJaTMStdrxgv8j4UiVNxWU58/twshHx4stzioXaRqkY14ZTrFmlKJfnuHV2Am/YifTFAXHjKMkN3wEYvj2/bdoXI/3KYbxz/kYZcQiOuIXKm/GItOsUCEXXVN3q7AROPzV974O46e4XRdyGaeqSqYxec9Mtztvky6iMMPq3jh+nRiw5jltXV4J4Ztq2LAfgRR3TOLUhxEk4VMliO5TKuHntlwf0SDHHcVNed0vHzXYTbrPuRclxcwzkCqshbpqLGrUAd4OoklHKMDQQcbNhP7Edn4CIG1X2pTVjB8CvtyiMi+4PMWPtSI866ii8853vxOOPP44DDzwQ1113HSqKYnmVSgXXXnstDjroIDz55JN4+9vfjne9613BO92ygBYzx81rgfHktJuKy+Y5bl1dQBeJ3MeYqL0WgpyIdaWcXjMTOqNSlMtz3BYuBIaRcWJFYWJQJelmzdaKJNKuM6cC3IxpUnaQQyNuGaqkjziJI+IG6BUITY7bwoXADsQBtx3rh/6adlJ9jiviRq+j6XbRLqu6IKMy6Q+kLwsVNWJJh7luXzR7dn3Bd1tVSetAQk5xckDKu4xYx83a+SHiJDqkmOO4uV53H3VZVpAlgOOmzbVqYDkAW6aJ4O+zgqERVSVtBZby0DzAnRYMMBG3AOIkjVCVDFXnUhhHjXQIGvsq/+Y3v8Huu++OZ599FieccAImTZqEo48+GjNnzsTMmTNx9NFHY9KkSTjxxBPx7LPP4g1veAN++9vfxux7y0JYVMTNcdMAVCcAMVE7IG6m4rJ0oVYFcmfP9hNUoJOFjoIVCnFTTaaDFsnxsqKciMfIMwNVlHNWe2M4Vq6bNfodbpFsNuLGiPbL54RG3LyokjlOIcCnMKkUCFWOW2a8OOQVCtvpQ+nrsmaeySBuNo4buS7DDX8z9Uk2SZ+pUBlh8hypQizzxElEzbS8tnVW21B5jEfdHJYp6msxJrmqkhXHII48z6iue57j5nPdfWqhsZBUH6qkoPFzkPfY5QBCi37FrOPmMYexEDcPEY6Y4iSxVSXpfXpRUb4pj5GQq+xL55ptjCoJABMnTsTdd9+Nk08+GcViEatWrcLNN9+M3/zmN/jNb36Dm2++GatWrUKhUMDMmTNx9913Y9KkSfkNt2zLmuumKjalA8hHUPIibDpqlwlxEwu2F+2CEa0Ohbiprn3ZEp2hinJtZKIuINmYyopy3jLdkRE3bq21kMWg5ftgvWHLy3HzyIGgNDYd7c3mnsoKhMJx60QiRCKPFxeUU1ihgFp0RTduNhMRIhvErVBINz2TJ+rPE/ucfqT5fMJUqEytfbrJL6sRS/pV1bAVNdNkY5cDEDlutiiBBeJW7LDbKNvmuDk7btW2Vdc9z3HTXXcW4uZBN2QVyfZB3HJy3HxonrRPeYibLf0VYNA8G0WV9AnKRc5x0yGpIQpwmxwfV8SNPohX/dJc51K1DcxT9t1KVSWtRuCYMWNw5ZVX4hvf+Aauv/563HvvvXjttSTaud122+HAAw/E+973Puy6665ROtuyCCYexkKb3URqRZV0FCQolAD0Mx03xUQtFuyTT84eNzluYsHuuZe0bZvozCgG7RPBy6MauYjCCEW5G28BVtyeHHviUeANM+o3pq6LTI2mY1J97Muea2O1TQkTcXOJKHPaBTypkooF0qffHBEOW5RAjJezzwZuOBJYWx0zTz8GjJACdj5BCvGdyoB+nnHNcQOSwEa5D5gwGuhcrS4JIBy39dJxHSojTFV0Xjizs2Ylv6XbmHR2JnMRld/PtM2lGzqIkwB2OW42NEnALcfNpX3atnzddY5b3nXPsCk4zo8H4hZbVbJSqV/zfWietE95iJtL39s6kmckBlWyQs5fvSJRL6TrXtljDoud48ahYmYQN5t8VE7hc5I25bOX+c2v6j/n1rk8+2x1AG0rVZV02rnssssu+PSnPx26Ly3bEua8sFtw/V2RjYJiAabGibDJCzagdtzkBdsLEeNslH1QiMCIGzXalzfsqp4MXRPYRS0/Gv3Tte1Ts4UTGaTnhzD5PnhRJXMQN+uNLFmoVcW9fdovlYCxXUBNxFVqv9wP3PWx9H0Mx61vVfq6Y4Jd222dwMA6oK2sDvIAqeMmD1sdKiNMF9yaORM44ogkUrzme6jxLweQIJizZycOoUvbsrlu8gvF5PmoDBgED4TjZimWw3U6Rfu2c5iOkk2v+wpy3cvgX3eqbNqvEWrzyRNjIW4BqJKi/TYpQObjdAIMxM0nMGeBuHHJZD09wPz5wO9/Bny9euxPfwROnZqMhzlzkvHQKHGSQskdiTS1L9bctuF248YGAQYcctzI+Stfr/88j0oOpMq+06fXf8ZRIx2C5vDkt2yrsloemmMCOBBHnASwpEoafkOmdlFdnZGa4rI+EzWHmhYsx0269gMDwLNPkXMj3FeOkIXKhJrVwMZslK72e+V08fVx3NhFfUMibvKiYJtjYYG42fY7Mx51jptH+6VR6et+SWFx8U+AV24ibTs6boB+PFJn1IYGBKSbnvXPAie+oz5/rw1pjptA3Gj+HqffAOr4eAKx/NBJ6bHrb0hqqKlqppna1s6/ZdQmO6d8pRyEXNRxs3bcmIibEFQQAR92+wb1WnHdTyclKq7+A/+6d4xPX9OAATWfWmg29Ut9EDdAHeDyoXnSPuWVCLJ1xgHLHDfGtaHqhcuJ01BCvXphKMdNi9L6pAgw0HHnZ4lBlfShqNLzVUsmR3UXMCj7bsOqki3bis2lzg9gl6TtSknLq/tlM5nS4rLX/yU9/p//oV6wfWrC2CJuXqqS1Wss6p5MnQq8hyi5/u4ay7onNkiqZXSwtmhU1MiPD6qU+U4FWjnqQUfKSJ7Jm0RTLTmVxUTc2hiIm4+qWTtRVZQdN+q0AXGi+K6FoGV7/Pz6IA/d5wx0qIM8OlNRJeuMjJtdFbRkbdsWOcaAJ60uMOLGyc+rlNNn1XazWQv4GSLsBRI42mkX/nWnReB1jpsP3ZAlex8gxw1giHDEQNxy6osa286rQWeB/MjqhfQRon+2UC9c/CRpOyLi5u245VAlbUoByP3hzDPWddyo8q7icw5VEtAr+27rqpIt20qtNmEEFlMAwiFurI0JcyiXSsDOJAezoEB+6tr2SezXRastlB9lk6NINHL46qvZhWfdZru6JyyH3HGRoRswKk8sjI4jl8R4Di2CLmC2lBSTydE8nYOkszwZcNeyHQAvx80LcSOL5oCcCCZd49iIm20kf8KB6WshckKDPP/8a/r5ezRBHp3Rv1WniOk6D9jK0rtswmsF7fMcN8scN04UPIOi2jpuQjmxrL/urvO7LeJmTZXkIG6BqJIq9CdUOQBAHTzzoUq22SBuhmvTo1AvpMNE9Wff9g/S9hB03GpBEEvHjRVI8AlUkGs5SUFz51Aljcq+27iqZMu2UnPNcSuRxfqVZUkUekBaaHwdtzz5eFeI3qp4OGBdt4WDuNENbrsmWqRtn9yrm/6/bOQQyNaGEpeOW/fEhipp7biRRUOV55ZBlRwWdrrIaDeEm+r74mLypkQOLlg7bjkbKrroWG8GGVRJH3pXO6FKDkiIm7yBckIJmI5boWS/cTjo4vS1vOkplYDtSU7TMEuVZBNVUvWbVpL6lnOYF+KmmMMqlfR40SPHTRtgIYEdW5SAOpLa8d6sjltsxM1C9t6Jrq4oqEwtJlWSux+YP79ehEiHuKnaDp2/DJAcN0/HTUfFdEbcGI5PJvhkOxeQ8fIfH6j/nEOV/P/bO/M4KYq7/39md3aXZbmv5VoOAcEYonKpERXF5BGNV1ATRaOGR0l8UDFexAd/+kRNjJooXvGIBhMxXvFKNIpnFE8UTWJUvEAWVE6XY4E9+/dHb01XV1f1UVW9M8N+368XL2a6Z2p6+6iqT32vuJl9yeJG7DToxLjV1gI33uq9f/wvwK67um56vFuerhsmI1K4aQbFxo4PkXw+Dj4Lh2LiwAs3PkYoDvzxXP+b4P6wor5RdU9iJZ1Jy+Jm6ioZw+LWojmAiYjnRrxHVRNGFala3BImJzGxuImukuKzk4bFrVXTZU/8jmxS1bjRe81P2uMQx1WyVdPiFsvd0LQmV4jFjb+Pkp53vr9rrJN/xlcwOKHFjT8evtYcj69uVgIREUe4mcSJRVkjm5s9K2Jjc3CxNIrIGDdLWSUB+X1p4irJCzdpjHSM+UBzs5uFMLCdey37s03qusbJ+pizRKZgcWvlMnNnE1rH47ga8mNd4hqj3Lk8bnqwfFOUq2RkZt+Meh65cSnw9hzg638lOODCgIRbRyepuGJueTfe5m1jz7YY0NtqaHELc5V0HGDbKve1ifCJs1ptEuOmcpVsMhFu3LVqkZwb3oAn6qPIuicJhFviemKcWJIJN5M4KyBe3A9beUw6gImI50YUiqoJo4okMW4myUmUMW4mwpA7l2L7poXJgfiukjrCLarmoknGyljPkqaA8InClGLc2IRT5jXQaiDcSsu9sg3bV8k/YyTcYljcfOnRE/QFvHBrqpN/xlpWSa4dPoa5qe2e+c8HwcXSJO1LLfs2XSXFxS3HTlZJWdtAvLj05cvdeUrgu/CM4rJHxUS4xbG45cIPDM9L5CKLgauk0uJm0BfwJ7a6X3idS1k3F5XZF+DmkcLxPzUeWDbf/b/IIOHW0UkS48YH9PLPgDjPY255jSydcwoWt62fAdtXu6/77Juw3Qg/fMBejFscV8mkwo0/n7InmK9BvF6y/4471Cu1UZPNxq+BbSvbftvA4hbpKmmSnAQhrpKWLG6iMAxY3JImJ4nKKmlSDiCGBdioaHDYxMGCq2Sqwi1i0sMLiDKTBSJVshze4qaZATatGLfYFjeNRZDKQe7/27+Ux6HZEm6qBRTdgsTZrp5ojpVV0qTUS9szKcYws0eqFcHF0ijSXCACwscPXx9jYHEDFAIohpfM5s3y7YAnDGxb3NKOcSuNWHwyEVaxvFgM2hfvlxkz/Jl9VTFucTP7Ap74VC5wFZ8LJQm3jk7cGDcxoJd/hlWLREy4pWFxW/ui97p6SrJ2044PiVMOgAm3TIlZOm3ZofGhODLhxuqeSNuOODf/usx7HVaPTUaUxc00OYls0uNrv8nbbhzjJk5KhHv0G3OTtRc5obJVDiBOAe6kwjDk2EWLW5rCLWl8BSAcu8yypFlsHojpKslZIJImy4ksdmwxq6Tomma0yg6g82D3f6cF2LEmuN8nrAyEW4tCuPksbgn6gkwGKOvhvo4V45b0WRIWn8Tsh4BfuDHixjBHuUqauteGCjfubzBxlQQU8XkxkpN066Zuv12Em0L8pJmcxEi4xXCV9CWHMohxY9ePz+zbk098BTcRSZLMvkB0krsihIRbRydujJsY0BtmcWOwuyuN5CT1K73XPfZM2G7SGLcUXCWZcMt20ZiwRVjcooQbEFL3JOLcfHSD97pBUjAzDF+MW4TFTSwMG4coi5svbXyKMW67nQ90HZGsvTQtbklj3JJO2EJjOGxa3FRWKxOLW6n3fEclhUmj1mUuwYdOMp6orLumMW4hE07TEgxMuAGeyzuPLzmJQYybSrix7ZmS5NeVuUumUg6A+/yWumD2Q36okCVEjoxh5l0lZQsVpslJQu55k0zK4vFIhVuMGLfhw4F+/eT7CsHiZpqcJEq4JRZWKbtKqu4Xltn3isu8bdf8Nn69Rd9vKFwlixgSbh2dODFusoDeOMKtNPAiGWHCzTfJt9RZ8BjVWUvgKpnUTRLwTwbCLG5NADYp2lDVPYlzbnTJRlncDKwbQLTFrVnTPUqGeE/y73vvk7y9NC1uJVnvuiqFG+sHSgwXKqIsbpZj3BzHLDkJEJ6tzijRRBxXybbf1KprFWVxs1QOAAguQNmyuAGeyzuPz1XSIKuk6n7nXaaTLpzlhFud/Lrayiq57P1g9kP+0ZTdUlExzJELRCnGuOnGc+a+k8DippraZrNuFkIZYcKNH2cTzweiBKejlyQu137U2JGyq6TPkmrB4uaDu4cGDY1fb5GHndMidIlUQcKto8MmbGGTElVAL+sjoixujZoPDL/SHki/zg8CSeugxXBh8g1gKWSVbDIQbvzxhAm3DZCvyobWPYk4N2Xdg9viknqMW0RGthZN9ygZofEbOhOeiAmV8blpuydl96PjABuXtB2HqWWmnWPcnGavb0hDuJm4vSGOq6SJxS3KhdQgfk48JvHcGMe4DfReb/8yuN9WjFuUq6TOAk4uQYkDNElipoziRbnPf/qRZD//O4o2wmKYo7LXpirc2tNVMqSfmTUrmL0QCBduWb5QdNIFnBLO6pNCvCh/XjYutevWzD97myX3o2n7kVlIDcMngHADQJFCwq0j09qC3Mw+rDNSBfSyfl825+AXMVUDTBRhKa9NJrKRnUUz8M758s/HIcpV0nG8eldawo07L+JicRkA1vfXKb4ft+6J7Nx02817XZGwrlWSGDfT5CQy9zGbFjexfeNix0nqK+m03zagyu7HT7lMXjruJKExbjaEW1sbsvvR1PIDJLC4JY1XSpBVUssCwSYkirb52LFOCvew0PZDLKmm591XWzAiKYxJOQClq6RBkqKokgAm4oefnDZJntU4wi00hjlqgSjFGDdjV8mIWLG45YFqaoLZC4Fw4fatb3LHYRgvKmJiEePbBoB1LwMf/ta/3+RZ7f5NL5HQl08C2yTWcZ8rZtJyABEWN9PargCkWSUDhgDL3kUpQ8KtIxN3MqgK6GXPgWw+w/dtWc0HLiy9e5qxJ188KXw+4WMSlVWytcH73aSZ6gD/taoQrhvvASnT25F1TyLODf/bkx8MO8ogUTFujmEn7auBFOEqmWaMm1ZsSAKLm87KIxuwZRa3N3nXIZmJNgJfAVjhfrci3EIsS6ar1UA7uUpGWMWMLG6KlWTektVpQPL2w64rL4i0ksJEWcfTtrhtD342Lj7hVhfcb+rWzIhKSx/2qKpimKNcJVPNKpmyqyQSxKWL2QsBzyuPP+8se+GAaq5ty8LNeBFE6Dv4RWfT9kuywNAfuq+dVqDuveBnbJUDkNYV5M6XTtw74N3z/HMZdm8WASTcOjJxO2lVQG+YcOPvrMqEA2+ujZDBPU2Lm/hbti1uvhpuilizMPhr9SMhsxKvsWVjd1TdkzjWSEa/A8OOMojPVTKFAtxRddx0U4DLCBNu1t0NYS4Mw4SbKWHWQnECZbuOm1WLm+WskoiK34B3vtKIcdvxlfe6sn/y9sMybpqed98ii6wcAL/IknD84Gs0vjoD2LHOv99xvL5Ay1Wyh/c6yuKWeGyKEG5xPVlUMcyRVitTi1vIPV8orpIMPnthdbXf4iZmL7RWE1Em3AwT/UQJGtNnlb/fbVsM+XP5/HeC45NJSEzuNySukuK9T8KNKBriroCpAnrjCjediSYgDO6icDOJcYsQJ6KYMikHILO4mdRwA/znZfxe/pVD/tB54Ra37klUQgV2vjIlyYP6fa6SETFuWtm1IlaTrVrcQlwltTL4JYlxM6jJlYZwC51QpVwOwCRjGoNNIqMKEhdcVsm29retkvczvMWtUsfiFuJ6bGrp5M+N1K3ZwOIm3gf//j//+9Ym73qk4Spp0hfw57xSck/EcZUMi2FOlJykgLNKSp/VmK6SPCx74apVwDf3dLdlAdSu9GcvtFlaQ8RmjJuMVsM+Miou0ijGTbhOvNs+YD4nAORZJcPmk0UACbeOTJIVMFlAb1zhZloOAJDEFNmyuEX4Vas+E0ZYNjbAL9y0XCX542/2rxwO5kxum5G87klca6TONc1GuDClnpyE+82kK+099/K/D4u5TNviZuIq2SoTbgkFuEjqMW4hws00PgRIL8Yt0nrd4m3XcR3j77PXfhTc73OV1LG4hUzYjONyIp5Vk6ySWWHyu+Vj/3tTy3uqMW7c52sGBvfzt4kiYXFoDHPYNW1pBFY9xn22yFwl42SVVJHNAlXc2Fki+KGaJCsD2tdVUqTZ0KIX5cZvKzkJECwxZNNV0mdxE+eTqoepMCHh1pFJYrWSBfSGJSexIdziukomLoybQW6yGpXJCJCnqw7DVw5AMlG2aXFj54WtHF57qbfvst8kr3sSW7hZHtQB8+QkvpozUVklE65sivF8gZhLU1fJlC1uOeHWFFyI4F1hdGgvixsQPPb2TE6ik02OIV0gMnQD4s/LygeC+32ukhoWt7CFM+PJYERfwAsiXijFQXy2K3r53/tc00xj3GQWN4N7hu8HBlYHF0v520RmJIiKYQ7rZz7/s/99sWWVREJXySTtt7aTxU3LIpbA4qYlDKPGJt6SamhxE8+tVVfJFi/jJlnciKLF57oQoyMVA3r5e52fZ1dUALfexLWtMQAA6SUnAbxOYMsa1xrFp08WVyKTrlZHWtwMBATgPy9f/8u/r2mj93roN5PXPYkUbsxVUmdQj4hBa+YGmA116pTWKqJqzpi4SnYdAYz8iffednKSyFo8lpKTAP7n3nH81o0hxyVvO7SOmzgw285UZ1G48aUFcr+XpsWNX03WmchGTCC3twm30k56ZTzCJmymk8GovqCR68fKewX3hyH2qeL3TV2mk1jcTApwl5cGF0ujLG6RMcwh11RMalHQWSVlfaSGq2Tc9nN/S8asbalw4z1BUnCVNLbotaPFLUy46bpKygwAAddvEm5EsaBjhubd8vgOowx+t7xjjvb2pWFxa9FciamtdY9xeVtH3Pg5MH5XYNAgd3ttbbBzGnREwuOOyCpp3JFy5+Xze4G1i733DVwgfkXf5G3HTU6iteqouJ7smpwz29t22RX+axKHJMlJTONyAqvJFmPcouormcS4Af5Jd8sOfz+wz90abfPZByMsbjqptNtLuAESgZJijJtNixuAQEprJn7KeyePRwUi+l/TuJyI5CTMZSpTCpQpshqrEO+Dit7+9zZdJZvqgvtz94zGJL+kFLlnprUpuFiqEm5xY5jDJuFVQlxcmhY3HVfJ0pDn1N3IHUdKwk17LpOmxS2iX7Ip3CJj3AzKAQDBsY2/zqaukoD3bAZcv0m4EcWCbkfK3PIOPtTbtuQVv1ueL5jXgsUtYOHQWAlfuBAYNQq48krg39xEZDe4BcavvNLd/8o/vH0Tf5d8shllcTMdwMTz+fop3usGbqVanLDEajumxU1rNVZyPflrso3LptIM/zVZuDC6/cgBhnfVsRyX4xi4RwHJLG4mWSUB/0DLTzwHH6W34pskq6Sxq2Tawk10kTKxuEVkkjDtBwJuo0Km1qZN7v/lGtY2INw6Y5xVUojTFcmJzl4aSZCEe1h0R29O2VWS/T26nia5+nxt7fCLpf17eJ9rQPIY5rA+sutI//s0ywEUQlbJJO3bEm5OS3CBxfhZipjGmwrDJDFuiV0lE1jcTF0lAbXFjWLciKJB12rF4Cd5Qwb63fJMg3kBwfXNMDnJwoXASScBDW0P6EfcvsHc64YG4M7bk7UtwndeUoubqa9/yKqUbxDQWE32ZXuznJxE7EDFa8L/WfxPNzS4n4sSb1EWN5sWjjCLm+mEJzLbm2kMHdcWX4eqrEfydoGICZVt4SamGLeQVTKsXpmJII9aBDGNExPPdRO38NHa5LnAal/XkJhR0xTmUc8qs7iJ8WlxEMVYQOAaWtz4flWWZCnXR+pmwWN1p7h7jy2WLuDGpnMuSB7DHGZxE4u0axWaDvE2SRqaIeITEJaySvKEeQ6YCreKPt7r7av8+0yfpSgK2VUyanywLdzY8VOMG1G0mAYLq1bxAfNgXkC+UpJrP0HMT20tMHOmfxs/3orzMf69TmfhK8AtSU7Samj5Ec+nqm6cjmsB3/baF4L7jWLcuLbrtwSvCX8ZZZ4wM2eGu02GTTQB8/s91AJsWv8oEz9JhmmNO16M8MJNN0mJb0IlCh/hPBVyjBtg2eIWIdxMikwD4cKtabP3Wie+DZBPeBh8XKRtV8nWJqC57W8p1/AaEJ9tsX3TGLfIBSLLFjceh7vf+w/ViGEOmYSrSlYkgRfCvEAGBAuzzriaYlZJIMLiZrBgCQDdd/Neb3rfv8/U7TiKQhZuiSxuujFuknlBwBBAwo0oFkxXwPiHVEwzzg8CNpKTqFZIMiXRK4O33eZZdRj8GCV+nX+vVcumxOuA+QySDNuukj7XTMOUy3zH+f6vg1Y3WzFun38WvCb8WC7zXGhoAG6/XbJD0r40+5VFi1ug4zdMTsIfk1Tsm1r0FJNN3lVS2zJT6p0bZVA/O44idpVMnL02ouwILyBsCLdmXrht8l7rukqGLYSYZH0Ewl0lGwwSk4htAxKLm6GFI24tNN0QAda+NIGToegMTTjD/d7Yy5K3DfiFm1irM21XyTSzSppa3Lrxwu0D/z4bfVgYNrNKykIQjApwR1nc+IUz3Rg3ydgnK4VRRJBw68iYTmTDLG7t5SoZNZlqbgbuuCO4Pa5wC+yMCQuo51e+c79tWbipXL10BESg5pEQN2Mrxm21xHLGnwpVP3rHHepsk2FCH7Bw3kMEhKkrI+BZRvhJd6590yyqikk4b6UpEwrPJ2pfYS0sBuGmWvgAzLKF+soByFwleauVxiRcnGzw19KKC2zIQoixcAt5VvmMkjqukp2H+N+HWsd1shtG9DPsXJkuWMomySaFyYHwSTj/t9R8P3nbgP8+FoWbaf+bKMYtpeQkuteUF26bRYtbgbtKRsW4bXhTv/32yCop8zahGDeiaLHqKin4+jspu0qyBzBqMrV8uZvkQoQfy8WngO+b122EFqHCzSALExAcPGTp2EvK9AavXuP97wMxP5Ysbs2SgZc/FbI60QCwZo17TaXtR9WbMSzmGbuuoObgzibA/KQ7175puQHFIohpGYPcd9suXpRws55ivD1dJU3quEUIt0K0uPkmbCqLWyZ51kcg/JryRXh1XCUzGWDKU+r2TZ/VqIlsmhY30/i8sD7SRkKxNF0lw7K/AuYxbmFZK40tbrt6r7eu8O8rZlfJNS8C9Z/rtx+wuAnvc55VpXoxl4AiqyS5ShLFiqnFjc/W1SS4BNqwQISt+LbGFG6bJcIJ8Cd5Ew+P7x+2y4KtYsAmM82bkSv6mPvtNF0l29rWdSsYcrz/fSB20aQAN/cdWc8TVaOIsWWLfHs+k5OYxrgBXoxZy/agYDaebCpEp6kLJoNNelRB/bnf0LG4hQgg04xpQHqukoD398pcJU0n4WExbj6Lm66rpCIuEvCEW3kPvUly2LPKu+/qWPMAwbJk+VmNtLgZCrc0LW5hotNGXxDX4mbsKikZIAo5qyS/uCGGT5i6MkZhs9yAeM9seMP/PqnnQMCtWbHIYrKoGCurJAk3olgwdV3ghVugM7JgcQutr9QY/IyMborVYP65DbO4VWmsJgNAts3tzGkNWiNN09KHJSdhbetcTwCorAaGncS1p4hdNLWcyG6JuMKtq8KlLyo5SZqukjYmPb4043X+faaWMVWiCRuCE8ifq6SNSU9YVknjpDBtnUsaFjfxHlda3HokbxuQr1QzcsJNV1hFJCdh6NZuSjUDbIl3XcMsbqbJFNo7xs1GXxBmcePvz6yiDw8jqj5qqslJDIVbpsR7xsW5kml22SjStLjxbY843cwrAVALKt2FaEBuACCLG1G0mFog+JiYZsEKYqWOW0j637grMcOHA/36BbfzfXxYjNtAIV4iLvwKm+guaeqiKnaOshgdk44uNOmMSTkA7jsVknsiToxbdbV7TaXtp52cJMRKYMPlkI9FEgv7mlrcVFYCG5ZxIES4CZamQoxxi5tNTqeIdc7iFhXjpiHcRHwWN0646VrcWrm/96tVXmyp0+rdn7rCLSw5iY17MqyGno1nNWcVSyGrJGtbmsGvnWLc0rC4mWawjaqParMcgG3hBngL3e1tcTNtPxNyz/D977ATk7ctShBV7T+T+UxGsqCrMgQUCSTcOjKmAiKuq6Sub3KYz3nc5CTZLHD66cHt/HgbJtzKNH3Ow4Sb9eQkkgFN53oyVElnmps9S2pDszpJiIpMxhv4qvsE98exuJ1+ujoFdqQLk2k5gJSTk/CTGbGwr83kJLzotOUqGdviZlrjLk8xbtoCou3Y6/7lF1aAYHHTsJ6I8BNCX7bQhMKtttYt6nzued62//t/wKBB7vYVH3iCXFu4hSWesrHoF3LP2IhHDbOKmca4sb5JJk5MM5HGzSqZhsXNVLhFWdyQYnISk2zKDJVwsxHjNvoc7o2wwORzldTJZRAyDzNOfBLlKmnb4qaIcZPeT4ULCbeOjHGMW1yLm657gQWLGwDMmgVUCB1WmMXNV8dN13pSxBY3cYBkE7lBA5HL6vKv97yJXFhtNRE2menTO3hNoixuFRXAGWeEtJ0gOYlxNrmwyaBmtxrmKukTWBaKn8teF6OrZOoWN8MYC16cffAb/74Ww0m4iLKOWwJ374ULgVGjgCuvBDZy7ZXATfJ05ZXA5HHe9jRcJW1kJE47HjUsDs1U7LM4pNbGoMXaNBNpaB03C4s4/H0sWtyaDK3AUfVR2yPGzaSPZMJNXOS2kVVyr2u5N45/sYKdq5IyvUX0sHvGWLhFWdwsx7ix9ijGjShaTC0/ZSExbjZcJW3EuAFATQ1w553+bWHlAHzCTVMAhbmRmgYLi+eTH6RMY9wAfwf8zBPeRG7dOu534E3kRo1yJ3xxYANfNhO8JuyQdwAQ8rkAcD9fUxPdNqCwuFmscRfwkedW2XVc6oBwixs/GdRy2VO4kVq3uEUV4C5A4eZbUVbEuJlMHBjv/Z//vWmMmwgvBH0ZVGOel4ULgZNO8uorqha3yri203aV1BZWKcejsuMKs7jpHrvPVV2YUJqK/bQtbqUhFjdmBS7tZJ7FuihdJduuV2uD/1xbSbCUBfod4L13JO1rtx12z1iMGwfUsWe2LG6OwuJGwo0oGmxa3EQ3IFMLASB0GIYr4TNmAPfc41l5VMKtogKYMll+DElI0+ImTjb4Act2jNtvrvImcvx54id1DQ3uhC+OeMvF/DQHrwk7FWIfWlHhfm7GjPC2w5IpAMJCRUpZJU0m+PwkWIxxM50MxolxM1lNZvex0+pf7W3P5CS6E5NO1d7r9a8L7Vu4ripMrSci/P2dtG+vrQVmzhTa417zl43XCztslHoRnyUb3hppx7gxV0nRauVwk3xDV0kgaFny3TMabnVpx7iFFeBmXgTadQUjXCV9Nb904oAVwq252esHGluShwgwfMncuOvIz51MFnBksVyAdw9peyTEjHFLxeJmI8ZNMn5QjBtRtNiMcQu1uFnIKsl3GI6jtxI+Ywbw8ceue1+vvt72UrhJL+bNc/cP46w6ugN7Ns0YN4VfuNPqddi2Ytz4P5/vLSS5FjBzZrTbZEZYqeavSWXbD7DTw1+TKNHGtw0oXJhYTZgSTZeRGMlJTKxW/IQm4CoZM6ZTherYbScnAfyDoO06buIk3IbFbeD3vL/98z/DV77D4SydtjGNVxLh+/Ok2TBvu81boGHEEW5LlyU4QA5fDJrCeg3YiXFL0+IWsBa2BD+TFFWMMeCNs6WVen1Y7DpuunHpvHCr9+9jfZpultOo5CR8/b8Kjfp/vuyyjVyIwCCgoe06fLBML0QAUHsoNbR5spSU6dVEZKjKJ7VaFG5px7ip4lFtCzeKcSOKlhZD17GyEIubjZV8lcXNNzgmnMjW1ACXXw588JG3bf99gVWr3O01NcKkR9dVsh1j3NhExNSCmvsu1wHzP8X3sTJXxoYG4PbbI9qWTHjYNenZNugP2gX46CP/NYlDZB03QzfSOJNBE6tVaHISU4ubYjXWtqskEC7cxMD5OPDn/R9HARuXeu9tCLdOfYB+B7qvt60Cdqzx9tl0lRQxzRAYaE9hcYsS+83NwB13SNrjXquE24tL9CwQYW7NVixuYdZxg6LqufZVFrfm4GeSUhIi3Ng4y4+9idpOO8ZN4SrZ2uKFDFixuEli3JgAAoCKvsH9UfAu02+95oUIbF7rLWDugF6IAKBe6N6xtu2Y++m72QNCLJpFi5sqxq15O7D6Me+9VvvCRMLnDeJwFjeTGDeZxY1cJYlixScgDAtwp21x860gWRAo5ZybSadyf6bCJJMeFbxwa9jo32c7qyTr7EzbzcG1n8TiBrgTwLCJXC6oX5xMOd4KbZfe7qCoyh6pIsy1lt+me8+ECjcLlpnQ5CSGAiKOxc3IVZKbsPFunoHrLClEHQV/3retBBbt6703zZjG6Dbae711uffa1NIpwlvzbGeVVFncovr25cvdyahIHOH25Rb3+0kJdZUsohi3QKyMBVEYx+LGj71JCI0btxHjxo2rvEW5mVu81La4hcS4Lb8H+PJp93WmVO83+Gf8/ns9C3R/7jNfca+ThAgA8vmS0+oJzk6SskVJ8C2GcNfWpqskf8+8fpq/P9fpf0ULG/+sOi3ICTsji1uMrJIk3Ozy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTk8QVKoQFCxYgk8mE/nvqqadS+isKFNPA0mxn5FbQAxY3G8lJFBNxXwY/GxNZRakBQL8AbLddvddfL/XvM66rovALt2Vx47PJ8c3EEW5r1oRP5FT1j1q4jCS6k9gwKyfgCVtdN1J+YFz7JfD2264bZ3OznZXBOBY304km4B/UbVncuuzivd7yMfdbolCTmWojCLjTcPe5acY0RheuNmD9Cu+1jdhFHj6znnEdNzHtt0K4RfWRmyXPChBPuNUD2CL0/XEIc5W0UgOUF24pxLjlygEIYwe/gKlrRQ0TKGyc1SlgDSC0JlfuvGT0M+NmSrzj5y1upqUAgPAYt9dO9l5X9DZPTsLfdrxw44zxOeKECADy8kmNdd79bircpALFsZuchL9nVt4vfE5jXA2zttuaz8RxlSwy4ZaC47495syZg/nz5yObzeLggw9Gly5d8Pzzz+Oiiy7CX//6VyxatAiVlckCdEeMGIHJkydL9w0aNMjGYRcPLYYPRqbEHZyat0qKStpITqKyuBnWtALaJnkZAI6k87AgDLuNcV1CmuqAda+4HShzg2CDTqZEb2VTFHs5V0lDF0xGAzfR4f/8kFAjH2ETOXYviJM1Gxn2+BTT/ASZYWpx28iJqSuvAJ66wn3drx9w7Wb3/Ji4vIUlJzEVhmlb3HiL1eZlQP9D2toXFb6GcAsTZK2GkxJG1TDvdb3E4qZ7bg5aBLzwXe/9jnXexJVZJErK9UTn1OeBF6d5E7NWhatk1P3eTRFXE1e4ddUQEZk2ccDH5TJsjB38xD0Ni5tqAcqXaELXnVHhEtja5F3jMl2LW4yskib9AOBa31t2+C1uvHDTdpXkj5271x2hT9EuUcG1z992Kosbg4UIXH55ePsyi9sOztJdYWpxkwis1ibk+tw0YtwYmVK9Piwso6yNeR4QnZxk1JnAbhfot58HCla4Pfroo5g/fz66dOmCf/zjHxg3zq0ds379ehx88MFYvHgxLrnkElx77bURLfmZPHkyFixYkMIRFyE2JvplXduEWwp13JQxbpYe6JJs22AYkmFIe6JcAvT9NvDFk64rRP1yzyphHGtVAnz3Nc9ljHV2tlaoqnp4r1WukmHCLWwip3IxslHTqpwTbqKrIWAm3BYuBG6ZA/xP23v+ll671p3klgLYbBDknO3iTWbF42eLLLr3TNoxbqJwy/2WxCU2KWH9h6kbEIO3uG1d4b02dZUc8B23OO6y+e77hvUARrmvWf0m3YyS1VOAY+uABzq794zK4hbVhw0f7i4+iO6S/KXjn33+8azs7X5fh0wWcBrDs0qm4SppI8ZNaXHjxkHdODSVq6TPmqdrccu458ZpUce4mSbiyXYGGjf6YzhtnJdMxj03LTv85yXgTrodWjjcPcOfAi7prFS4AW6IwKWXhrv3y5KTNHDPXBoWN1PvHkAd48YTWKCLSSDWrJ0sbvzv9p0MdBmm334eKFhXyV/+8pcAgLlz5+ZEGwD06dMHt9xyCwDgpptuwqZNkpV1Ih42HoxcUckQ4aY9OKYY4wZ4HVJonIKBMKziJjS865uNWms9vuW9Zue6xZLFbcBQ77Wvph33WiXcqqvDJ3JiVkmGjdTopZ28wUm0WAH65z1X34q3TnH7M/BcSj9emSxgnSdT4lkNA3XcDN084xTgNpmwdY0p3EIVv4L2EG6duXu+/nP3f4ezxhu5wHIZ7hq5zHc2jr20wruf+Ulakj4ymwVOPz24nb90/K3BC7dDjop5oBL40iA8aRfgtmpxa/EvRtiwuKmEG1+4WTfGDVCLTlvCLXc/8in1uYU5k9IXuba5sU6sF9coxJTH5SsuuQl/2/Gnuk7x3agQASDa4mYc4yYRWDaSN+W8k6AWbroUgqukqYU5DxSkcFu9ejWWLFkCADjxxBMD+ydPnoyamho0NDTgySefbO/D23mwkcyCBSMHCu+mWMfNlrDKFVFVWNwypfq+/oD/2Hi3VNNJOCCfiNvq6Mq5gTVpjNvpp4evOpZwEx4eW8WIc8LHkqskX9+K1xz8ueAvYwPixzzIYG4+AVdJQ7FfIlmNBewNYJ36ec85P3EqFosbvxrOBJCNxSdAXVDZNE03g90TfH+e1Cth1iyvniIjyuLWCuCmu/TTo6sSFVkvB5BijJvYXpNlixsvxm1YrQBuwTIlV0nWftMOLwa4hbOCZTXqzzFKJfe6WC9ODNuIy3bu2eRPAX+LhOmWqFhPWYybr4RBn4gDjECWqdWGcAO8+11WZscEVVkdwN58JqoAt63EU+1IQQq3d955BwDQq1cvDFes3k+YMMH32bh88sknmDdvHs444wz87Gc/w1133YX169ebHXCxYuPByK3epZDSOc0YN/67AXO9hdoh4vd9CRWYcDPoSGXB/baySvLxQkli3CoqgDPOCG9bmZzEUk0rFj8UKGDt6Almvr4V/zfz54K/TRoRryyCChb/0VjniZzWFm/yqZ0RU1Xjx5LFLZORr+SLk/KuozQaDxmmbAm3qDgIk8FdZf2xdeylMisE628y8frfmhrgzjv926Ji3LbBDZ/RTY+uine1XYA7LGulqcUN8B9/s22LG3dNC93ixuqeffiJ+35HPbDrrq6w//Pd3ud0CoczcosUvKukINz2+JVe2116eK/5244/HWG6JSrWk/+7mSD3JUIz7cMiLG4mccCqe8aUUItbO8W4FaHFrSCPeHmbyXnIkCHKz9S01XZanjAV8SuvvIJXXnnFt61Tp0647LLLcNFFFyU8Uj/19fVWPtNu2Ihx4yfifAIOG4OjyuLGZ60zmlCxY1dklTTNJKcqIJ7L8mRicZNMTGytUMUpwC0TbnfeGV1zTSXcrFncerj/N21xxQ47T75V9pjnRqxvxf/NfEI/0eIGxIt5kMEsbk6Lu3Jc1tXOc6qqm2XTZSRTBmCH/17nB+J9FgBVMWvy+dpVTN4dx15yEt9CCHOnSWHi0JqCcAuzuJWUIXZtKFbkfuZMd/EhSriJQxlLj863FXrcir4g9XIAFmPcgLZz3TYpt2FxUyUnsWVxy03ChUx67DzpiOWFC737huXoYM2sXQs8+RjA1vRMhBt7VlpDLG67ztZru2YY8J+21yqLm6rSTVSIAOB/zlkcng3PJEaaFjexbqGO54SM2K6SKdZxM3UNzgMFaXHb0mZyrqpST+C6dHFXnDarUhkL9O/fH//7v/+LN954A+vWrcPmzZuxZMkS/OhHP0JDQwPmzp2bi6vTpUuXLpH/Bg4caPQbVhk9Bxh3HbDnVZbSjPMPXYoWt6Xnea+trDwqUsMaCzeJq6TjeEHbJrWbMpmgCLKVVZLv4A+a7LlQqYRbRQVwzz3xJmu5uJZWvwuTjRg3gMss6fhLAvgGgZjnRqxvpXKV5HUguwRxYh5k+EoC1LX9rgVB7ksDnkJyEkDuesz6hNLOwC6naLYr6T9Y/Bm7h4xXq2ULIWms+DJXnVaun0nB4qbbh82Y4bq3zZsH9OJct/hLwObdwnw5R1xXYWVNx5QLcNuMcRPbs52cxOcqmbLFTddVMhcD3Hb/sdPBhUb5FrfeEMrjJEG2SMFb3Mb8TD/jZhk37vC3HXuEwjLGR4UIAH7B2iITbqb9b0oxbnzbOeGmmYxEpOde/vf8+TAul9IGxbgVL4ceeiiuuOIKTJo0CX369EHXrl0xYcIE3H333bnMlL/4xS+wZo2sUMdOypDpwJg5wDcuir8qK6JMemCjFo/C4sanetedDAIxLG4WXSXZb7Rs99rXTVvMEF2NrFncuFF26EBvIte3l7e9Be4q47x57v44og1QC31bFjeZ8AEEN9KY50ZcFFJZIPhJCT+469S3ktVys+ECm3aMG6BwlWwTViarybLvtjbam5SIvyN1lTQ4N7J7nr+mJjE/gHwya9KH1dS4qc2XcBNsmeuYyvoQ11VY5SppPcYtrMB3ijFu1pOTWGgbCFpPGDquknwMMEPWT/K34S2/148Bli1SWEt8wl1T/hRE3e9xQgQAQbgxV0mbHg+yuPeUYtxsuUz2nwrUHOu95xf8rcV0Rgg3srjZoWubr3CYW+HWre7qUzdVDZoEnHPOOejTpw8aGhqwaNEi7Xa2bt0a+e+LL74wPt6CwrfKo5oQak7aShUWN/bwVQ0Deu6h1zYgt7ht/xLYttJ9bRq0KnP15LMF6tazybUvWNzSiHFr2eFN5P7+N2/7jJOBVavc7VHukTwZhXCzHeMG+AU+L2rjFlUX+xZVjJvMVRLQq2/F3xPs+LdzfYaNrJK+Z8niACabEJq4X+XalXy3ZYc/4YEV4SZYgHz3jIlbs8xVx1LsCaCwuFlw95bVtYpbEuSOO1xX49D241jcdIUbb0ENSU5iw9OEnevmZmAdJ0hKNAV5nHIAulYlwPP0aN7id3nTEW58DDAjSrjVN+vHALNxzWnhYrv5scNEuCkKcLPHQKVV4oQIAMJ1ZRY3C/c6QzYXS83iZjHWbc+rvNf8+eA9ZoyEm6xMgoXFmzxSkMJt2LBhAIDakFUZto991oTS0lKMGuUGza9atUq7naqqqlj/dip8E3FFbIu2u4uqjlvbQ2fsHiW4dtXXAo9xfuo2Y9zYb/DCzdjiFjLRtBXjxk+OeaNsz97J47cA/4TnLS4WwXZWScBvcWvVELWsvhWDH6v4W0NMTgLEi3mQ4XOTanDTRT/llUPRTyKksIxbdZWUZB5j96bu4g2gsLg12LtnxN/JWcV4YWhgFZMJN5vWQt9kVugLTPqBlau91zLhFuYtFcdVOE45AN37RmVx2/AWsOoxrn0L3iCrV7qeB4MGAX/+g7f90O/rZdv0LZzxyUksWdw6D25re4c/q2FSV0kxBji3nXvNmuL7y0bEE/YyxP4RSMfitguXXyHM4vbTn8b3Nol0lTSMcZMtzqUV42YzSYlqbLJmYY5KPEUWNyvstZfr97phwwZl8pG33noLAHw13kzYsMHtwLrqrJJ3ZFS+/razSsomg8bBvEIdt2XX+yf4VuuqSCxu1l0lbcW4cd/1CWYbhXG57316J7dabSvGjbOS8a4WLRqiVqxvxcf08PN4mcUtTsyDDP7YWhqB/wgZ0rSLtitcu1JxlZT0A2lY3GzF/Ii/Y1tcpS3cfM8ry4BqWDgcALbywlX4Hwi3uAHRrsKsL2hYD6x5wdtuxeKmEG7PTJYfQ1L4Z2XqFDer5tq1AH8pv9iol23Tdz1VMW4GCxWdOVHCvEuA5BY3MQaYIbO49eC2NUI/BtiXuKXtXk/D4raaOy9hFrff/S7+tc2m7CrJf/+TD90QhiZuXLWZVdKmcFM9qzYS/ajapxg3+wwePBgTJ04EANx7772B/YsXL0ZtbS0qKipw2GGHGf/e0qVL8dFHHwEAJk2aZNxeh0K5km+x1AAAfL3OqwljS7iJFjfRwtZZndU0FlKLW523zVS4ia6StguTi23aLowLeKultqwnKjcjn6hNMIDx9a24eSz4+YEo3OLGPMjw3TMNwZpENixurc2uG8riHwKr/+ptt2Vxs+0qKVttbSlSi5ttFybAP5nNCbe25zauW7CMblz/lNRVEoh2FebvyecO9l6nWYBbrDdqI8btO1wfyd8m7PZh2TbjTvCVrpL8/W6wUFHFjWv1nEBJanFTJYYTLW7jABzAbWOnSycGWLZIkYbFTZacRKVV4ibjKZG5SlryeKitBRY9572/4Dy3FMPsWd62QoxxA9TPqo3SGoDfak8xbuly8cUXAwCuuuoqLF3qBUlv2LABZ555JgBg9uzZ6N7dc4165JFHMGbMGEydOtXX1rZt23DzzTfnslXyvPTSS5g+fToAt7A3CbeEqGLcTDOy1dYCV3C+z6+/6tWEaWYFsm25drWVMugs+KlXmQq3KItbD7P2A66SturblXLWPIXFzcZKNeCtlvKDr5Fwk7ijAEI9mwRWK76+FS/c+Ama6CoZN+ZBhmjtFCeuNmLcnGbg3YuBlff7P2MrON62dbyiV3Bb6w77wq0kLeEmS06SksWtxaLFbReu5l5S4RbLVViREMt2cpJ1i4H1rys+p9n+Nu76TQXAdBR/KQWNGHuCn3aMGz/OmVjcVPkFRIvbecJ+NqToeDfJzo0tixv/rCRJThI3GU9W5ippYUxduNC16i563tvGbv/t3Jx3ybt67QOeIG7Z4XqCiDFuQ0/Ub1sV956mxc03HzBMQpcHCla4HX300Tj77LOxdetW7LPPPpg2bRqOPfZYjBw5Ev/+97+x33774fLLL/d9Z9OmTVi2bBk+/fRT3/bGxkbMnj0bffv2xb777osf/OAHmD59OsaOHYsDDzwQK1aswNixY/HAAw+055+4c6CKcTOx/rCO6KprvG3sZ9au9YLNN9Yla1dEzPYmTv6sWtzScJUULW6WCgYDnrjhr2OrjZVwYXBigq2Fn4QbDL5xhFvSifKMGW65g5IKb9VVZXGbdVb8mAcZPlfJhuB5tmJxawJq/xL8TKFa3Molwq2lwZ7rGCMtV0nZiq+twrhAuMXNZFJSVg44beJK5ioZFuMWx1WYPweAJzptuNmLonDRvvKP6S5WvP+R/z3rdtjpbkXQQhN3gi8mh2LYcg2WWdwch3tWY54TMQaYIYtx42mCfgywzFXSlsWt1fEWI9htl4H3N4QZmWIl45FcV9MxlS/FEJnN845kLrs8nQd5r7d/4Q89AIDx8/XaBeQeCYA9i5ss22bDRm+bbHwpcApWuAHA/Pnzcf/992PffffFq6++iieffBKDBw/GVVddheeffx6VlfFWQTt37oxLLrkEBx98MNasWYO///3vePzxx7FmzRoccsghuO222/DWW29hwIABKf9FOyGqGDddERHVEWXg3bWffKbfEQHBB1rMbtbZsOaerK5KqjFulgpWAt6Ez1fU10bsiSjc6v3/Aym5ShpOwll9q0zbxIDvenpxxzvl0ORt85REWNy0Y9z4+IfbgMaN4Z/R+g1mwW7xstXl7hmDoUYq3ASLm0mdH0Z7JiexlaYbCE5mWY07wEI/0PZ9dvniWNziugrzlhLATcQD2Ik/yWT8mSWVn9O4L5ubgfc+8G9j54JNlEVrGyPOBD+Wq6TB/V7JTcJ3fOX+z2fejJsQRowBZvDDqOzyNUA/BpjvCza+1fZ7lixuy5d7ojML13rKh0SGXbY4MXslpd7zJHOVTHqvi6UYZFmP+du7GfGtviI+K22tf5F+xEygU5/kbTJixbgZZI/3CcO29hu5pDwyj44Cp+CdO48//ngcf/zxsT576qmn4tRTTw1sLy8vxy9+8QvLR0YA8E8MVDFuceMsxI7IgTsIlMK7U8WsZjNnAgccoOeaJgorUbiZrsTILG5NdVz7lmLcGta52cFsuUoC7jVrgjrGzUa2N0DuKmkyCU/D4saoqQF6DAC2fgoM6AG8/Zzr7rPlDuDDNuuwycQBCN4z4sRS11VSvB9aGyWfsVwAtrTcTh03qaukEONm4jrGEIVbs6VyA7IC3GkmJ7FRpwxw++MWx+1zZf2vSrjFdRXmrx8A7FgDVNVYsrgBAaubrbic5cv9iVsA77ywS6Eq1swm+KNGKT4AeRwXYM/ixos+1u/qxvzMmgVce62/JAAvcGSXL1OuHwNc831g2XXu68/uAoafJLjZG/S/mzd7ojML4DT4hVvU7RMnZq+00r0P6792FwJ5y1XShTOxFIPsvIvJhJjVV/BWi0QUbvw9ZOzdo3KVtFUOQCIMWTbVsm5UDoDogKgK++pY3MJqwqhiLOK6n8jgO8rVTwTN/32FDGSJ25dY3LZ87G0zrePGH/+rJwvCzbR4uMRV0kZAr+gbb93ixgk3fuLNWw5NJsps5a91C7DXXu4EzGc9MRRu4qTNlqtk5PWKaaEIQ7aIY6McgGyBoz0sbr7rWgTlAFi7NpIUMXf17SxxE/z/A0FXyYoK16U4rqtws2hxa7P+2CpRIS7E8RNBE/gJPoOdlyiLGxA9wZct+AFAEyfcTPoZXtyYJsngY4AZoqukKPBvNYgB7rsf0Knafb3pfff/Fkuukt26ecdeCr9oA6KFW1jMXm2tWxpiY9u1X7XCjdn/093eZ5IsnMlKMcgsnTLXZp1SDFWCcLO5SCxb2ALSLcDdsN79v8LAUphHSLgRZtiKcYuqCRO24qtbE4bvcF49Afj4Ju/9Pn8wt0CUCgPwpg+AL/7uvi/rAXQZZtY+3yF9+Xf/+bflKslfx6VclLnuhEqMawlklcyYTWR9dX6439JNTiLC6sQ5Ld6kx9YAA0Rb3HSPPepetpESWeYabCPGTXY/iBk304hxa7blKilLTmKxeLiYnMR0UsW7q7Om2G0pKwfQvbs7Kf3442TxnWL9th1r2rZbKDsigxW0N6Vbt6AYYeeFXYqwSX5ktk1JHBfgxQGXVpothPi8Etr6X5O09CwGmGXfFUMctoqfPylZ+zyZjLeQk+t/eeFm8JwOHw44bf2t7BSETTHCYvbYIsiVVwI72lzI2fPUyI1LT/w9/rHKSjHw6yBMv8qEm04phsrB3uv6NIWbwlXSxMIstt/a4oWslPfWbzePkHAjzJDFuK17BVjOryTFeLCjasKEZTXTrQkjio/Ny7zXNjINieUA1r8O1/8TwK7/Y6GAuDB42+xMxRi37V8C9SvUvx2XFmEpmgk2NoEorXQHZ11UFjdbMUXlXIFvNhFs5CaEJr74QHDS1irMFnTTu0cJbRspkWUFYG2V7hARLW5pCDdb90x7WtxaG8wsbqK7OjvF7PTK+t/t213XN10rCmM7i7eyWJSYx5bFbfhwoJsgEMRkECqLW5ykHFEWN9OahSUVyLmRNhta3BgsBnjePKCCexazAHZYfvaZVS2X2Ip7lkxcJbNZoFPbuZUdcpgYV8Xs8YsggOdCyy4x/zydf1H8mH1ZKQZeuMmeV15QJy3F0JkTbju+tLtIHFUOIFtl5g0ilqxqqkNuHlZBwo3oiMjco8Qip3EmD1E1YaJiLHRqwoR1ODYmDGI9NH7i0P0b5u2Ly75Ws0oKFjfeQgDor4SLdZRyK77MJctQMKcZ4wYAWU6Ysevp88XvDiNEK61oodS2uEXcDzaEm68vSFu4tUMdN2sWtyjhZtA2YNfiJrqrs1PcGe5kVtb/Njbqu6vzsFVwG0mQpO1bsrhls8AeY/zbSuCeH3apVTFucZJyiLUcGcziZnqvZzKewLFhcWPU1LixU+f8zNu24PfAbhP02lPBjt1pdu91m4sg3driaZNY3FTJeMRFEMATf+yxFC1icZOHyEox8CGj7BaRWciB5KUY+HuuZYfdsIxMCXILCfx9aGuhQux/WXwbQMKN6KCIacaln4nxYEfVhImqI6RTEyZsUmBjolkqWNxspbdlNAtiympyEi7GzXGClh8xsUBcVBY3G7FQgDojm60YN97ixiaCzPKWKTGfVAWsJ2LBYAtZJaW/W8CukjJad9hL1sAo2gLcXD/jNOlb3GTu6vxjzsQbg1/B13VX52H3jI2yIzJsuUoCwJhh/vel8Kdel1nc4mbb5Oto8v2WrYks4N3PtgtBA0AZdz/372uesEmEj2Nr3ua3jJuW1ihvOy+qMgYyVMl4ZDH77NEsgz9DNuAageLG7MtKMYjPKiB/XnVKMYhlamwuEgPBvhfwxj6bnkkB4UYxbkRHREypLxu844iIqJowqqySAFBVpZdaONTiZuHRCLO4mbrUAf4BC0gnxg2Ot7LJs/lDvXZVFjdbE3x+gr32RS8tva3BnRfcTIiz65rtZubmCQgDZGMwgYOuq2SUMLPiKpmicJv4O//79rC42RJXUeUAjOu4ced98zJgMZeFOcmkSuauzscnzYV/QssvnOm6q/PkEtpYsP7IsCncKoTnvAT+eo4yi1vcbJtAMDmU0+r1lTbuddHd0KaVU+wH+LZHzzFrGxCSq2zjntOMvXGvk6QdUbiFJeNRxezzbZRDP3mIrBSDzOImmy/plGLwJc1qtLtIDHjPuU+4WahFCQT7X74UThHWcANIuBGm8J38H+4EBg0KfuaKq6LN/6qaMGGuBW1zctTXA7vtlrymW9ikwMZKr7hKtX4Vt8/QPQqQFLDlLATWhBvarG7CqNV7ol67geQkzOLWNlCZThp44batFnj/18Hf1U2pL343V+KhbUJYbugmCfjP+8r7gJX3C/uLyOLG14YyfZ5G/cQv3tojxs2WxU2W7tqmxY2fKL97kVffCkjWD8jc1XnhNgwA7/UmJujQcVfnEcU+YNfixjLJ2UD0OBAtbrxwS5ptE+A8HiRFpm1Y3LLM4iYpB2BcFkQYO3gL6l7XmrUN+C1uLdu9Z6m0k4WFM1a3UFJdng2B1dXRyXhUMfv8fVEGubCKuwgya5aXEAZwrbzsVMtcJVsQ3+or4otfbrS7SAxwfa+kpJRt4dZi+VnKAyTcCDP4h/bB++Sd1VXXuFmVooSV2BEBnsuJLJiXnzg0NLhBwEnEW9hqtBXhxrX/yEPAI3/23k+Z5nb+OsUwGSoRBNiLcQPaYq2EJeThp+i1K1rcxBVfY4ubMAn+58/d/21NlKW1+domvDasqLww3CF5lnTPT3skJxHjXW0KNwCoGuq9TlO45dwZ04xxs5hVMmzilGTSExU3AwDV3GtRuOm4q/M4KbtK2opxA4LC7ZSTgIHc6n0j4k3wVYgxxrxbsI2ahUz8sPvQVgkGQLKAwwtxC1POrOAqyQs3U9h5d8SbG8B/zwI++ghYtcqN5Quznqpi9sMsbklj9mWlGPiYVEjaT2L15clkuHvSQubaQPsyV0lLce9iAj1+LlOENdwAEm6EKf/8t/daDF5ntCCesJJ1ROwZK4HnF863KxI3uBdI3+L22N+81y0NAD/3W7XRTQ8cR9CqEIUbX+fHVowb4HZ0/Arb6HP14xbEGLc0XSVVv2vimhZYTW7yJj+miUnE9mWIKdRjt5uHrJK2J2y+Ug98OYCMeYIPgLv3HNfFNk1XSf5ZNc4SGCbcEvQDMnd1MZU7r1f4/lcnbqbfgf73AffaEjv3DYNfaTel5lj/+1N/BDz1uPf+Bz+KN8FXwSzrrN/ihZuNmoXseWltciezNjN5Brw1+OtpaBEDgjFuVoVbyPMyeLg7XsdxM1TF7IdZ3HRi9sVSDOwWl1ncfnlV8gUEHt5917pwazunmz90Fywdh7O4Wc5a6bMWWsgengdIuBH61NYCDzzkvWfiSsThXkcJK7Ej4uf5FVCvUDGSFOQOnTAZPhoLFwI/Pct7Xwq/cGNzQh1LIUOcxPODu3EBbiGzma2OOmBxa5sJtlpylVQlN7GV2l2MQbMdtxjlCikmiYlL1AQ4FVdJyy5vYqFp3tJpY0IYcKlJw+LWdv181sI0hVuCfiAqbgbwuwPy/a9O3My+dwPVB3PtMeHG+gLLCW10EyrJGPVT/3unGb5ZeZ+BenHXjIDFjTt2GxY3sQi3jaySue8L2WVtJyjKcs9iC5ecxDRWFAh/XpK4qUfF7ANuvKjMVTLpIghfiqGx7dpVwV3kruLOyRFHx29TBouvTiM5CcsoCwDvXCC47lp2lWwlixvRkbntNqCBm5zx6ZBVxBFWM2YAH3zgJh3hV6jKoV6h4omb4SysWLJJdkOWBljspNl404Jg8HoSS6GKZosWN5llyUbbXXbxvxddJU2zSqpIy1WST3jQLhY3mZnZAmmUA/AN7jaytIoWtzZ3IhuCGZAIN74+lGVXSZuub2ETp6TPquiuLn6df3RY/6sbN1M1FNj3T977XHISNtG3mJgEsCvcSsuBPa703rc2C+UjDDMpBmLcUrK4AW4fbDOrpGoBx5Zwy5fFLUn7qph9cU4gW4jWWQRhpRj25hZC/rMEmH60997WnCCNGDd+dX/5H81qUYoEhBtZ3IiOCsuaxM8jSyG3uInEEVbNzW7SEdHiFke4xQ3uDUvJbzLIsDTA4rlh/f4OyXeSWApVbONWrQpVuO3zB/97sRyA7VV2wLWM2UpOEhBuli1uUcfW2aDI8e4Xq/elYXFb/VfvfacB5u2LpR5sxhYCwSQivmQ/Jq6SkuQkvlIGhhPxsEyjSZPZiO7qnwv7ef3K+jfduBkA0nIyxWBxA4IZlX1JDwyFW8BV0rLFTUzw0VjH7TN0Ow64SlrypmCoskrajHGT7kv4LMli9vlpjxhaYpI8hMEnyBrSF75JkrEgT9FVUsSmcCsJs7iRcCM6Eixrko5wiyOsWHCvaHGLcpVkxAnuDZvw6U4a+DTAKoubUH4tR5JaSDLr3JcrvNdfrInXjgpfPTGLK2zdvwEcy6XjFbOa2V5lB4DGDX7hZjPGrbEdLW4jZwF999Vve8zP1PvSKAew4l7v/UjJ6nNS+HuyeZs3mU3N4tb2oGZKzO55Xx03iXAztaCEWdx0JrO8u/oKAMu4ffycvqQ0ebZEkdDafwVscQMkpXA44WZL/DjN7nHbrlkouhtu4S5y11FmbberxW2rNxFP3eJmuAgChLtKmiQPYfjGJ9HrwVK2UNFVMhXhZrPAN/d3b/kE2MrNPclVkuhQMGHFi6epAIbKPiwhSlix4F5fWmWEZzXjiRPcG+Yqqfto8GmA+ePjLW4q4RbXUrhwoRskLcKPW9/aSz/pCSDEcokdtWFHWtbDi7la+482n/YULW4NG/yxdSYDvFhU3ecqmXKM26RbzdoOO7dWXCWFiSxfL6fvZPP2+evWsM57nZZwY5PlbBezGDrfii+LcWtru7TS3D3Y5mSTwcfNPNvT287rkXPPMxNtgLz2H4u3su023SIItxGGiwk+a6Flixt/3Z4aDzRx46XNOm6Au0CxiavL2X03s7YD3hq2Y9y4Y+djowrN4gYEY/Z54VYGbyG6FeaLIIAgmhuRSpmH1ka/1cpGjJuIzTg0/r7buAT46EaubbK4ER0JJqx4i9sIACGL+j6ihBUL7uVdJQcAOId7rwr3iRvcm4bFTUwDzPROOcJdJRlRgnbhQjeZSUNDcB8/bm1r1E96AggCRXCNMO2oMxn/xOGDa7320xJuacW48ROH8p7BzyduP6UYPyBcnKXhKpm7plk7yUP4iVN7CDdbrpjSGLc2EWFjEm4rLkeExc088oS3bSiXcKFHb/22GWJcJJCixY0TVqPnAON+a9ZeqMXN1FWS62c2LwPq/uW9t2FxE2PcNnPCrdsYs7ZVFrdWAG+/7S4IxPUskVGqEG42kpOEPY82FkE6ce1nAVS03UOl5eaiDZBY3HjhZinTdLG5SobNKcjiRnQomLDSyZUQR1ix4F7e4naC8BmVxS1ucG8aMW5iGmDWb/JzepXFDQgXtCzpiQpZ/J9u0pO0YtwYqgHShnDbdbb/fcBV0mAgyAgrmraFW5qElr9IwVWSTcRtDY68COFr3KUm3NqsqaYusGHJSWxMwkOzShrEczLKufPrcJ2X7YQ2bJLZHjFuu5xqHiuWpsVNvG7buD7chtgXs0oyV8myHkBFX7O2+f5103rg6w3u63UbgQkTgF13BQYN0q9jyh97A2fVt2Fxq56q3mdjEeSCn3vbbr8F2L1NJNtYOAMkfbDNpDOc+y7vwZKG+Hmdm+ekKtzI4kZ0JJiw0hFucYXVrFlAC/fQieOVTLglCe5NI6ukmAaYnR/+p1YqvhslaFnSE8Zjis/xi5m6SU/SinFjqFakbQxg464Dhp7ovW/Y6Am3kgoz649oiSwm4ZYvi5s14aawuIUtwCTBF4vWaC+GTpacpMmicLMd4ybiK3jMeQTYuGcyJcgV5xRdJdOMcbNZewpwJ7NNXPtfbTS0KgkTyg1vea+tWNyEzIxsIaGij7l1nL8f7/o9sFUSVrF2rX4dU5/FzbJwG3S4Oj7RxiJIljvG/n2QOym2FilEV8k0YtwA+8+SyNoX5b+rAwk3guCYNQsoTdgZJBFWNTXACad678W7VSbckgT3hk7INB8NMQ2wbOz+SPHdMEHLJz1hPAZgo+yzwvskSU8YoTFuBW5xK8m6AzCjZZu3Qmg6uKftKpkmaQ9ggXIAlgqoMjJZLzbS4R7+NCxufJY9266STqtnnSkGi5tqImt7sim6StqyQjD4GDfbBecfexi4db73/oenmFmVxOtWz8U+WxFufIZWro6bjXPOi85MizeUququJnXpz6Yo3LJVQOVA+T4bz5JYB9TmeRfbFy1uxjFufHIo/lmy0L8f8Lh6n3FWybAFS3KVJDoaNTXA/5wT/TmepFmT9jtYvY8fCCoqkgf3plUOgE8DLLNILpNsixK0fNITRgOAv0s+K/5m3KQnPGGukqYddW2tuyItY/nn5vXsAP9ks2W7F69k6maUL+H2rSvM28hk1Pe1lUmJKsbNlnDLyI8zFeHG3Z82XSVbhVioQo5xY6jc/mxZxNjxp14OgDvvzzzv1go1sYrxE8JFT/nruDXC0KoU8jxaSU7Ce1RYzvy4dgP3OwgXbowkLv3lXGzl2pe537JwrwPq592kjIysjTRKJQQWz1JwlQT8yXJsLPoNPsLvJeP7XYvJSQJtk8WN6IgcdEi8z+kIKyA8yLsVrnvhvHlu8G/StsNWLk0GMD4NcJOwbxWAreIXEC1oxaQnDNm8Q7YtTnkEHnGAsWVxYxkxP/tCvv+zz/UmOiKiKxCzoJiKq3wJt2/+r512VPe1jUkJPzFIw1USkE/OUhFu3HW1bXGzWXwbCJ98WJlspmxxy4jCLaXkJHxdvjN+CnzjG0CPHsDZZ+stFr3ymve6BG7WYwafO0rHquQ46n1WrLRirTWLwu2Bh73XcYVbEpf+riOBykHuaz6u0EZyEsBfC43HtsWtNQ2LG9fXtjT6F0FMXWB5S2ojJ85Ds3MnQXGDUHKSACTcCDPidDi6wgoID/KefTawapUb9KtT+yQsjs10AGNpgFuEzlK0tsUVtGLSE4ZMpMmsfHHKI/AEBnYLwo3PiNmo+Ewr9CY6InydoqZN3gCfqnDrYda2ik79oj8TF9Vk2LbFzWm2n5wEaD+LW0NKFjdRuKXuKmmptpXsN6xNNtvaYZPM1pQsbjys36yvB268ERgxIll/U1sL3MyV5yiFmzmYIevfkliVeJEpYsPiJiZZsmX5aW4G7nvQe8/XKgsTbkB8l/5MBhg4Lbg9dYub5XID21baL4PDt9+4EdjYFhtpJZEQ1/fu4LP6WqhfCvhrovp+l2LcREi4EWbEcYPSFVZAuMWtb3W8JCc6ZCw8GjNmALvu7t/G4tuSWgrFpCeMOMItbnkEHp9AsRDjJmbEDBNuDN2MmIDfSrCds+7ZFG4tnHDLVtkTKPv+yf/e5gRWNdlOI6tke1nc0khOYtPi5qtv187CzYbFDZBb3WzHuIkWN9sxbjyiiGhqSrZYdNttQAPX+ZZCbXHLbUtgVWoJqRlj20pr0+K2fDmwlo87Q3zhlsSlv/vuwW22+hnV827jWeLP+39+CWxf7b5Ow1Xy9VO57TaEG3fsaZRjaSLhFhcSboQZaQ6uQLjFzcbEofs302sbADoJg+yVNwIffZTcUigmPWGIrphAULjFzeLJI2aQMo1xEzNiquCPXTcjJuAX/GkJt9ZGoKnOTrs8Q47zv7cp3BxFl/+n+/UTKTCUWSUtDo6yyZMNCwQQItxsWtya/YH9pvW+gPSzSgLy47Q12Qy4SlqwuEXdx6psyHEWi1iiKL6NErgFlRmyfhmIb1VqDekrP15pFpsHCNlxG7xkP6bj+ebN/sXEJBY3IL5Lv8y7ge/nTVA977ZdJXlsP0uAJ8bF7brIhFumxF7/2/0bit81jXELkTnkKkl0SGzHIYiETWxsTGinPCHfbmuyLE40R491Y7h0LIV80hNGlMUtSRZPni4jvNdfv2tmcZNlxFS524uDu05GTMDvKlnPTcTKeiRvi4cfvJwmb4JvU7gF7j1L3fTChcCGOvm+Ldv1EykwAoHxlpOTAHLXP9OaWQxlchLLMW4t3KTcivtVylklAfk5TiOrZEuDnRi3224L36/qUuIsFrFEUXxfxVvcWqEWbnGtSmGukruPNYvNAwSXujrvtek17dbNP/4ksbgB8V36ZeJqm8GiU1TbgH2Lm2+7rflGiu2LCW0AINvNPHaO8a3L5dvTtIqRxY3okKRtcQubNNkQjVVDgH5TJG3bmpQInb1pEU+W9IQRlZwkaRZPRq+9PPeoda+YxbjJMmKqeh5xcNfJiAn4Xbu2cYXzbFrcmrd7Lk223PWA4L1n415k8YWqnAfs8prEF6oC4626SubD4mYq3Lib3WmxX1oj7aySgHwBzXZChdYm4MPfeNurhui119wcLb7CRETUYhFLFCVa3FjXoHIDZ8SxKq1ZHb5fNzaPwfdj71/lvTbta4YPB3r28d4nsbglcemXWdzG/CzedyPb3kksbjythhZaQH7sqnOlQ2V/4GjJfZ+qcCOLG9ERsbmaLqOit3pfGkUrc21bejTEiabpRIolPWGWN9lg2AL9LJ6MkjKg9yT3df0KYNsq/74kyDJixrW4AckzYgJqS62xcOP+dt4nX5V5T4dMxn//md7nfHyh6rYWx3Wd+EJ+YuPL9pZyjJsNd0NAbXGzMTlhEzOnxX4x+3YRbpJJq7XJZls7rc3AF09523e/WK+95cuBdevCP6NylQSiF4tYoiiVxS3KIzzKqrRwIbDyU/k+8bCSxuYx0hIQ2SxwChfLnES4JXHpFz0nqg8C+sfMcB1GbS3wxAvyff/vMvNSNSqrXRoxbjytKhNwkrZTTAzF6NQ3uE1lRbQBWdyIDknaFrfSinSLNQMK4VaAFjfGjBluUpN584B+kkll/0H6WTx5uo70XvPxA0knm51lq/WKz8oG90oNUaQSUqaZH321bDhBamuCzODvP1M3Fz6+MK5w04kv9FkjuQQcaWeVtOEq2dwMbOIWCPisklkLkxN2PRs3eYXJATsTh7DFM1uukrLjTMNVkrm7lfcEeu6p156qdAojjvEhbLHotbYyAKJLYByLW5RVqbYW+PGPgecV+29QbE+60KIUbhau6ek/8V7zPxMm3JK69Iv9+Kifmi+2slI1Dz0p32/qSg6EuEqmUICbx7Eh3CRt28oomfuNsuB1TFNcpW14SAkSboQZYfVmAKDmWPPfKO8l355G7RNGWjFutib4NTVucpObfxPcN3QX/SyePHzGO18chIXOLonFTQfZAACYZ/HzCbeULG6A//4zuRfF+ELVeZeN60njC/l7vYkTbjYHR9sWt9padwFk0CBgwR+97cuWeq+tWNzaruHWT4APr/e2F4vFTSrcUnCVZFn2Ohv0X6rSKYwwaxtDZRWrrfUEBt9OGYAeba/DhFuUVem224DGRuAFAA8J+74GsFbyHSD5QkuaAmLIMMBp62j4WzPsvCd16ReFm6mA4EvVbAv5nGmpmjQFM5CuxU1m+bJtcQOC/Uqa4spWbGE7Q8KNMCMsiLrnOGDiLea/oXKXtFYAVjJYpWVxs1UklFFzlOQ3La1Q8ZbOrdyMIelkc5tkJJQVIQfkwm17yD2mIpORiynTiUlJqScI28viZnIvivGFqh5fNqlKGl/I3+tpWdyk5QA0hRtbYb/yymCyiU7cCfnrM3rt8/Cuo+te9l5bWQRph3TXsnZsTXrEbKSAmXAbPhzo2xe4UbHfJNaKt17z7XyHe60SblFWJT42rwXAIwBe5fZHne4kCy1pCwg2ya/gVopk513XpV+0gpsIN7FUTb36ozl0S9WkHeOWZsyW1FXSssUNCP4NabpKFikk3AgzOg9S75t4i9xnOSnlKQu3YopxE+nUB/j2n/3bbHTetbXAC9ysYctX3uvrb0w2aMlWwO+HPBbERvFwhswSM+BQvbZ42OCbqsWNG8hN7nPRbSyJxQ1IFl+YD1fJ0k56zyq/ws7gJ5b8Lffjs8zco8KwMSkJy+pmK+NbmhY3WTsmwi2bdQXS6wB+JdkfpW1UVjHReq2yIKm23357uFVJFpsnumOGkWShJXXLT1v7Nf29bbxzTtI6poH2heM0ERBiqZo4Q5tuqZp8uUqm1XaZxaRcDLE/KNI4tDQh4UaYUTkAmHQ7MPSHwX22ir8qLW4pZmIq5Bg3keoDhd80nCgzS8RTL3rbeF1y0++S+frLiodvBHAWgAeFz4qrsjrFwxmimDro6fRSOheqxU0UzXFj3BhJRDN/bvlaZWla3HTcJMUVdoYq0U8jzIrBh1EsMRbtEePGU2Xo6j1rFlBe7roXioS57IVZxUTrtcpy10Oxfd99Q34Y8ti897nXb4R/HUD8hRbVgoFty0+GMz9O3h94+229OqZR6Lozy0rVNMEdn6LQKVVT1BY3ybHbzKYMuOdTrDVKwi0ACTfCnJGnA/v9ORg/ZCswXhXjZm3ikKKrpCgUPv3cvHhq4DcEgWKSOZG3RKiyozUjma+/qnh4PYD1wjZxMqRTPDz3u+J5UdxHSZEKtxRj3Ey6aVE0q5qSWdySimaVq6TVGDdBqOm4SaqKwUvddNv+NykGH0axpKNO1eImOQeVA83arKkB7rpLfl+HuUqGxVqJwkolAPsotkeJKplnwstw493ehuulEEXchZb2srixcikAUNUNGDdOv45pGLqxVrJSNQBwRYzv6pSqSfu8p7kQJOtr+x0Y3KYDH2u8TlhtufuedBbNihgSboQ9xE7J1kpJ2jFushonNtqurQX+8Yp/2+jRbuc0b569zkgUDRWa7qmiJWKH4nP8hCWuJUJWPBwIxoPwkyrd4uEMcZJvy60jTYtbc7PrPtTMnQiTe1EUzUksbklFs8pV0maMgjh5SGpxk62wM2QTej48U7cYfBjFsprc3hY3GwshM2YAv5WkYZRdwrKy6FgrUVjFSXLCEyWqWGwejwPg9wB+C3VcMCPJQkvqLntt15SPgbedgXrIce7/lQP0ExSpMpCuAXBRjO8nLVWTejmAFPsTcWG+oi8w6Hvm7YqxxuJz9cd7zbN57mSQcCPsEYjnsuUqqVjCtDUQyBKs2Eot/Pzi4L61a+2kFmaInbVuXKFoiVBZ3PiONa4lQlY8HAgXbrrFwxni5M+WW0caFjd+xXHXXYH1G7h9q8xEPi+a4wo3HdGscpVM1eKWsPi2aoUdCLe4AfrF4MMoFoubTHynmdXX1nmZfkJwG99/VVUBZ58NfPppdKyVaL1WWe5elGyLI6pYbJ4uSRZa2svi5lhagJIx8XduHP3UF/VjOcMykEYkzAaQPP66vQRzGojCrf8h5jG0UbHGQHIPnw4ACTfCHgGLmyXh1v0b8u22BgKpcDNom++MwhbobXVGYuepY3GTWSLiCDcgviVCLB4OyIWbafFwhiimCtXiJq44iny+ykzkq0Qzj+hSpiOa2yOrpOj+mtRVMqzGV5RwA/SKwYdRLMKtvZOT2BL7sudyYA3wyCPA++8DdXXA/Pnx7nXReq2yuIlxu0B8UcVi85KSdKElH7FWtoVbRW+3flu3XfXbkMVfM6Jmxzrx18Uc4yaOn0kXzURUscbiVIJ/n1ascZFBwo2wRyARhyXh1nOcfHuqwk3z0RA7ozjlU2x3RjrCTWaJCItx40liieCLh1dXB4XbvvvZKR4OBCf1pgMNw6Zrl2zFUaQV5iKfiWYV7JqaiGb+vKSWnMTQVTJshT2OcNPNcKoiDdemgd9zz/n4+fbabG9XSVvnRSbcuvcEjj4a2G235LFWvPVadr88C6BO2JZEVLHYvKQkXWhpL4tbGm3bRBV/Dagz8DJ04q9V56AYskqKFjfTmqhxY435+YZurPGBfwN67wPs+evk3y1ASLgR9kgrxq1TH6DzkOB2W6tUYbXokiJ2RnFCYmwnPlC5loYhs0TEiXFjJLFEsOLhq1YBDz3q3zflYHuZxjr197+3VuJBIhZ0LG6qFUcRfiAzEfmh8Ts9zdJzA67lV1rvy6bFzTA5SdgKe1SMm0mGUxVprJDvfTtw3GZg9Nn22pRe1yJwlSzJBp97k7Z567WsH5T1mUlFFVtkiSMK4sTmyciUQqpMUi2xU4DCDVDHX/PrmEuEfbrx1yrXwq6jk7cloz1dJU2EW1issfhciXMonVjjQYcD//UaMCLGeFsEkHAj7CFa2Gyu/vSeFNxmayBolhSI1mpHkVo4DjYTH+jEuMksESFGoAA6lohsFhgmDFg2B3fZPWMDWeppHYubasVRhBcUaWU3/NvTdtJzy9yj04xxS2pxC1thj7K4mWQ4VZHGCnm2yn55ina3uNms/SecC9P7MSesJOeEv19MrNczZgCffQacdZYbhyeSJDZPhnKRJUXLj2OppqBtVK7kOwBcDtf19ffCPtP4a5EB37XTTrsKNwMPlrBYY1G4ie9NYo2LJRlUBCTcCHvwD0Wm1J6FA5B3bKaBsSwhxEfvBffpZH2UdUZxtZjNxAc6rpIyS4RMU8j+HqNaa+KkyqJw67OPvbZ4ynoEtyWdKIetOAL+wHhRUKSR3bDckhupNIlFmhY3jeNWrbCHCTfTDKcq0kjfrZthL4w0LSiyc2DVvVZcULQgTmbMAN79d3D7DpgXl2bU1AA33ODG4b3/vhuXpxObpyItMV5bC3y+Orj9/ofsZlO2iSz+GgA+BPAovIyeNuKvh50c3GZrrEpTmARi3AwsbmGxxlEWN0A/1jjbBeg82H29y4/12igASLgR9vCttlteXRtwaHCbo0rrFQM+IUSJxOdFJ+tjWGcUB5PEB92/6b3WqWkjs0TIhJvMRdzEEhEQbhYtGt128173/469dm1Y3MJWHEXE7GapZDe0NODLLG5pxrjpZApVrbCHuUraXmFn2Do332jLXV59kP2064DCgpI0H76qbcnxplm03VbbNcOC2y65wn5x6WzWjcc7+mj92DwZskUW0/6XjavLVwb3bdthN5uybcT4ax5bYhwA9r0b6L67976it717Ms06bmIfYGJxC4s1jiPcdGONMxngO4uBff8EjL9er40CgIQbYY80V3uqaoDdL/Zv0504iAkhnlF8LmlCiLDOKA4miQ/2fxgYPQc45GV9S6RoiWhEcDL7sfDeuNZaiha3klK3kx59DjDhRnvtlsmEW0KLWxKRLxMU1rMbWkoklLZwEy1uqhqPUchW2GVz1qasnQynKmz1mXv8Cpj2DjDlKTvticiOs1XMLKTbdorJSQD7rpK5diU3zKCR9t1p08K2xS0qmzLrxwo5tTsff/3RR8Dbb7v/2xTjmQxQOch7X9bTvE2Gqq/tu5952+K8oszA4hYWaxwl3ExjjauGAsNPspdlOg+QcCPsYSuLpIo9rvS/1xFusoQQT0OdiAOInxBC1hnF1VCmnVG3UcD464B+k/XbkFkieKtbK+ykjedJU7gB7oA1/nqgm6Xgb0Ah3BJa3JKIfJlws57d0NJkU9YH2JyEixY3XeEGBFfYZd3XL65JT7QBFlfaM0DPPe0WO+eRXcMqS4laZC5XVuMiU3CVBBShAAUaxyVDdo51+19xXJUNzWI/Vsip3bNZ1zI4bpz7v20x3vi197qil712Zc/psJOBb6cgkk1cJZPEGovCLY1Y4yKDhBthD1+MWzsMYDqukrKEEE0A/hzynbgJIWSdUdzTUCidkWiJ4IPteXFrq9aaaKFJw83LNjYsbmErjoDfPVJ0lUwju2GqacAL0OLG4FfY5/w0uL+/5fMsUqx13A5dGqypp0u5ZOJaDK6SADDkOP97vgxGoWMzOUmcbMricJ1WoqVigBdu5Sla3HqOA779R9fKZBvT8jqqWGPx3uEXAdKKNS4ySLgR9uAn4Y4420yBpBa3JCloReImhFB1RmEUWmfEWyK2cQN5A+z6+gNBgV+oKaN5bMS4ha04RpGGyJeJUR3aO8at3FC4MbJZoJvs2A1rFTH2ula+vViynInH2Wsve22nLdzEe3LzR/ba3u9+YJfTvPcDLMbSpo00xk2j/5WNq3EsbkA6iZaKgSZeuFm0uInXL2m5lCSYCre4scb8+7RijYsMEm6EPdJy01GR1OIWlhAiauyImxBC7IyWcfueVXynEDsjZokYf5C3rW8f+4H3IsUg3KQiR2OhIt8if+QsYNfZwEFP23NzlrpKFrDFjVFbC7z+YnD7EcfZyYS323nA0auAibf4txerxc0mMouDVeEmHPvmD+y1nckAE24Cxl3nxheyjHXFgNQ6rrEgFDebsmy4TiPRUjHQsNF7bVW4CQuhaWSYzf2WhbFaFmssE/22PHx2Eki4EfbgVzbTcpXsd6D3ms/MFIewhBBxFv3iJoTgO6MNAK4F8ACA+4TPFUNnVMm582Ua03fntJlVMi1E4VZaCXTWELKqFUcR/lGyKfK7jnKTttiqIQSkm30QsBvjxmCZ8N57N7hv9df2MuF1HgSUCqvUxSLc0lyUk8X42BSKLUKdTpaB0xbZzsCYOcDA/7LbbtrYSk4iG1dlM0vVOqvtREvFwJBjvdf9Dkjvd9K0uIl9mS5irLE4XNj08NlJIOFG2KM9rCXfvgcY/iN3lbP7mGTfTZKCVkaShBB8Z/RFNfAYvHgx2+6GacKnW2/Zrv6cLYrB4ibGzHz3NX2Llap+kGjAS0PkpzGoy1wld6yx2L4gdExdJflMeI9J9rM5v61MeOI5L1ZXSZukbXFr3OR/v9uF9touZmzFuMnGVVl3qBJuthMtFQPjfuuWqBl5RjBO0hQ+Y6WtzK+MAx535wRDjnMTotmCjzX+3pH+fWl6+BQpRbC8TRAcnQe7dVB0YAkhZO6SURY3nYQQrDO69FLXHWTLFneQGj68MBKRxIEXKa1iSskUKAbhJloFe+5h1t6MGcABB7iB+nfc4boP8YwZA3y8yM7gdcDjwEtHukXah59i3p6ITMA21tlrX7TkmyTIEDPhfQngcgCXcJ8R1ypmznSvle61EC2GadZdskmqwk1icbN5Xpo5i9DQH9rN4lfMyBZZdPpf2bgqy9UkE25pJFoqBjoPBg5elE7bVUOB7W0F0Os/t9v24COAYzeml0QsmwW693I9lQglZHEjLNIOCUlMCEsIEWVxM0kIkXZq4TRJ09VCRjFklew1Dugywn097jo7bYr1g/r39/bt/g17K46DjwCO+AQ48pOULG6SCf6on9j/HRvIMswuEz4jLuiYZsIThWaxuEqmKtx6SH4vJYubrSQ8OwMyAasj3GTjalyLW6FkU96ZqBrmva5fYb/9tMfoYlnMyiMk3IiUKNB6NnFT0PIUWtbH9iRptkRjiqBLKskC05YCh77lFve2CRP55dxE2XaG1q4jgDLDYvEqxFX8ff4AdB1p9zf2/j3QZSSwzwL9NlQZZuOcapNMeAGLW4H2kyJpCreSMr9LNmDX8t5FFopnAAAf7klEQVTKifO07vtipEJSjkQ3xlgcV2XCTVwc7cjjapoM5lwNh56Yv+PQpRgWb/NMEcySCMIiqoQQYfOwQsz62F70muC9HtAOwfdOkaSGLusG9Bqf3sS7WCb0IqKrZPVB8s+ZMGImcOTHwC4Grp5hGWajMMmE194WbFukbRnkrT8l5end/yTcPDrJhJumYBbH1TgWt448rqbJkOOB0XOAQUcAYy/L99EkhyxukZBwIzoelII2PgP+C9j1LKB6KjDx1vR/rz3i6Ij0ECfGheqaFpZh9gYAHwK4JuT7upnw0kzPnSopTxXKenA/ZXniNolZVjP+mmsdnU7VwW0m1g5+XJUJN3ZZaVxNl0wGGH8dcODjQOeB+T6a5JDFLRI6Q4Q92qPoti3EhBDNQkKIefNcN46OviKYyQATbmi/3ysWixshp/ck/3vRBa5QCMsw+0bbvzB0M+EVq8Utbcr4QueWrW27nOrG0VUNc0syEC42LW4MNq7eex7Q80H/viGdgHnn07hKhFMMJYHyDFnciJQoAlcvPiHEo3/176MUtPmBLG4SimhBpO9+/vclBZollGXC08EkE16xWtzSdt3NcsKttUH9OR1Ksm7drN4Toj/bkUhDuAHuuHnhfcC37wcGnoXcXOD8v9C4SkSTIVkSBZ0hgshmgeEWa5IQ+pBwa4OfKBeRcOs82HvNZzcrNMIyzEZhlGG2SIVb2gtxPuFGfUC7UNE3uM2WtSNTAgw7HphyAzD1BWDK34FB0+y0TezkFNF4lydIuBEEUDxpuXd2yFWyjSKwWKv47mtujbhv35PvIwlHlWE2DNNMeMXaz/DWGVn9L1N44Ua0D51kwi0FC3n1gcDAQ4s34RLRvjiqSu0Eg4QbYZEiXikhv+rCgFbbi58++wD7Lgi6TRYaqgyzYXTUTHhVQ4BvXgr0mgh852X77ZNwa3/Ke7oZWnkoMQSRd4p4HtlOkHAj7DGScz0ab6kwcXuRxkojEY89fuW9HnJc/o6jUCmmpD/FhizDrAybmfC+/Weg34HAlKfM22pPvnUZcOibQO+J9tsuI+GWF/b+vf89jYNEviGLWyS0vELYo9d44IDHgIZ1wPAf5ftokkEDVv4Ycy5Q0QfoMswtDk0Q7YmYYXYNl2G2utqNabOZCW/YD91/hAdZ3AoDGgeJfEMLlZGQcCPsMvjIfB+BHtmqfB9Bx6W0Ahj53/k+isKC4kHaF5Zh9tJL3eLaW7a4Kf+HD9dPRELEh4RbgUD9DhFCc7PbP27e7JZUSaV/JOEWRcG7Sj744IOYMmUKevbsiaqqKuyxxx64+uqr0dSkFwvz9ttv47jjjkN1dTU6deqE4cOH46yzzsLatWstHzlRVJR1Bfb4JdDjW8DU5/N9NARB5INsFhg1Chg3zv2fRFv7UFqZ7yMgANCkmZBSW+vWth00CNh1V2DCBPf/QYPc7bW1Fn+MvwdpIUFGQQu3OXPm4Pjjj8crr7yCSZMm4dBDD8XKlStx0UUX4eCDD8b27dsTtffQQw9hn332wUMPPYShQ4fiqKOOQklJCW666SZ861vfwieffJLSX0IUBbv/HDjsn0D1Qfk+EoLgoMkUsZNTmkKmSoIgzFm40F3EuvJKQDRwrF3rbh81yv2cDfgYN/I8kVKwwu3RRx/F/Pnz0aVLF7zxxht4+umn8Ze//AUff/wxxo4di8WLF+OSSy6J3d4XX3yBU045Bc3Nzbjtttvw5ptv4v7778dHH32Ek046CWvWrMGJJ54Ih/xrCYLIO9yARX0SsbOTRokBIjnU1xA8CxcCJ50ENDSEf66hwf2cFfFGFrcoCla4/fKXvwQAzJ07F+PGjctt79OnD2655RYAwE033YRNmzbFau/666/Htm3bcMghh+AMrg5PaWkpfve736F79+5YsmQJFi1aZPGvIAiC0IEGLKIDQRY3gigsamuBmTOjP8czc6a526RDwi2KghRuq1evxpIlSwAAJ554YmD/5MmTUVNTg4aGBjz55JOx2nzkkUeU7XXp0gVHHukm1Xj44Yd1D5sgCIIgiKSQxa1AIIsb0cZtt0Vb2kQaGtzsvEZw92CmICVK3inIs/LOO+8AAHr16oXhw4dLPzNhwgTfZ8PYsmVLLn6Nfc+kPRX19fWx/hEEQcSHJlPETk5Jeb6PgABAfQ0BwM0eeccdet+94w73+7rwJSlKO+m3sxNTkCmzli9fDgAYMmSI8jM1bTV12GfDWLFiRe61qs0k7ano0oVSGhMEQRBEIvii3qPOzN9xdHQoxo0A3JT/upnW16xxvz9qlN73vzEX+ORWoLUJ2P8vem3s5BSkcNuyZQsAoKpKXVuLiaTNmzfHbi+szSTtEQRBpApl0yI6EuU9gO++Bmx4E9jl1HwfTQeGhBsBt06bCdycOzGdBwLf+whoqgN67ml2HDspBSncipWtW7dGfmbz5s0YOHBgOxwNQRAEQRQJffZx/xH5o6J3vo+AKAS6dTP7fteuZt/vMszs+zs5BSncurZd9LB4MCaSusW4wbpyN1F9fT26d+9u1J6KMAsho6WlRbt9giA6CLyfP2XWIggiLQ55CXj5+0CffYG+++f7aIhCYPhwoF8/PXfJ6mr3+0RqFGRykmHDhgEAakPSirJ97LNhDB06NPd65cqVxu0RBEGkyj4LvNfjrs3bYRAEsZPTb3/gmK+AAx8nF23CJZsFTj9d77unn+5+n0iNghRue+21FwBgw4YNymQhb731FgD4aryp6NatG0aOHOn7nkl7BEEQqdJnb+DQpcDh/wG6jc730RAEsTNTUhr9GaJjMWsWUJGwTEdFBcDVSSbSoSCF2+DBgzFxoptl6t577w3sX7x4MWpra1FRUYHDDjssVpvHHHOMsr2tW7fir3/9KwDg+9//vu5hEwRB2KPXXkD3b+T7KAiCIIiORk0NcOedyb5z553u94hUKUjhBgAXX3wxAOCqq67C0qVLc9s3bNiAM8900wXPnj3bF6/2yCOPYMyYMZg6dWqgvTlz5qBz58549tlncQdXn6KlpQVnnnkm6urqMHHiRHz3u99N608iCIIgCIIgiMJnxgzgnnuiLW8VFe7nZsxon+Pq4GQcp3ALd5xzzjm44YYbUFZWhqlTp6KqqgrPPfcc6urqsN9+++GZZ55BZWVl7vMLFizAaaedhqFDh/pqtzEefPBBnHDCCWhpacHee++NYcOGYcmSJfjss89QXV2NxYsX51wq02Lz5s3o3r07Nm3aZJQIhSAIgiAIgiBSpbYWuP12t7j2mjXe9upqN6btjDPI0mZIEm1Q0MINAB544AHcfPPNePfdd9HU1IQRI0bgpJNOwrnnnovy8nLfZ6OEGwC8/fbb+OUvf4mXX34ZmzZtwoABA/C9730Pl1xyCaqrq1P/e0i4EQRBEARBEEVFc7NbXHvLFjfl//DhlIjEEjuVcNvZIOFGEARBEARBEASQTBsUbIwbQRAEQRAEQRAE4ULCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgCIIgCIIocEi4EQRBEARBEARBFDgk3AiCIAiCIAiCIAocEm4EQRAEQRAEQRAFDgk3giAIgiAIgiCIAoeEG0EQBEEQBEEQRIFDwo0gCIIgCIIgCKLAIeFGEARBEARBEARR4GTzfQAdDcdxAACbN2/O85EQBEEQBEEQBJFPmCZgGiEMEm7tzJYtWwAANTU1eT4SgiAIgiAIgiAKgS1btqB79+6hn8k4ceQdYY3W1lZ88cUX6Nq1KzKZTF6Ppb6+HgMHDgQAfPHFF6iqqsrr8RCFD90zRBLofiGSQvcMkRS6Z4ikFNo94zgOtmzZgoEDB6KkJDyKjSxu7UxJSQkGDx6c78MAAJSWluZed+vWLe83LlH40D1DJIHuFyIpdM8QSaF7hkhKId4zUZY2BiUnIQiCIAiCIAiCKHBIuBEEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwKEC3ARBEARBEARBEAUOWdwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCrYPy4IMPYsqUKejZsyeqqqqwxx574Oqrr0ZTU1O+D40oIJqamvDcc8/hggsuwMSJE9GjRw+UlZWhf//+OPLII/HEE0/k+xCJIuDCCy9EJpNBJpPBFVdcke/DIQqYxsZG3HDDDZg8eTJ69eqFTp06YfDgwZg2bRruv//+fB8eUWCsXLkSs2fPxujRo1FZWYlOnTph+PDhOOWUU/DPf/4z34dHtDPLli3DjTfeiFNPPRVjx45FNpuNPe48++yzOOyww9CnTx9UVlZizJgx+N///V9s3bq1HY48PhnHcZx8HwTRvsyZMwfz589HNpvFwQcfjC5duuD5559HXV0dJk+ejEWLFqGysjLfh0kUAM8++yy+853vAAD69++P8ePHo6qqCu+//z7ee+89AMAZZ5yBW2+9FZlMJp+HShQor776Kvbff384jgPHcXD55Zdj3rx5+T4sogBZtWoV/uu//gvvv/8++vTpg3322QdVVVWora3Fu+++i2nTpuGhhx7K92ESBcIbb7yB73znO9iyZQsGDRqE8ePHo7S0FO+++y6WL1+ObDaLe++9F8cdd1y+D5VoJ9j8ViRq3Lnuuuvws5/9DJlMBvvvvz+qq6vx8ssv46uvvsLo0aOxePFi9OnTJ81Dj49DdCgeeeQRB4DTpUsX5+23385tX7dunTN27FgHgHPeeefl8QiJQuK5555zpk+f7rz00kuBfffdd59TWlrqAHDuvvvuPBwdUejU19c7o0aNcgYNGuQcffTRDgDn8ssvz/dhEQXItm3bnDFjxjgAnMsuu8xpbGz07a+vr3feeeed/BwcUZB861vfcgA4Z5xxhu9+aWlpcebNm+cAcHr06OFs3749j0dJtCd33HGHc/755zsLFy50PvjgA+fkk0+OHHeWLl3qZDIZp7S01HnyySdz2+vr652pU6c6AJzp06e3x+HHgoRbB2PixIkOAOeKK64I7Hv55ZcdAE5FRYVTV1eXh6Mjio2ZM2c6AJypU6fm+1CIAuTss892ADhPPPGEc8opp5BwI5RccskluUk4QUSxfv16B4ADwFm7dm1gf3Nzs1NZWekAcJYuXZqHIyQKgTjjznHHHecAcP77v/87sG/FihVOSUmJA8D54IMP0jzU2FCMWwdi9erVWLJkCQDgxBNPDOyfPHkyampq0NDQgCeffLK9D48oQvbaay8AQG1tbZ6PhCg0XnzxRdx444340Y9+hMMOOyzfh0MUME1NTfjd734HALjgggvyfDREMVBRURH7swXj4kYUHI2NjblYfdm8eOjQodhvv/0AAI888ki7HpsKEm4diHfeeQcA0KtXLwwfPlz6mQkTJvg+SxBhfPzxxwCAAQMG5PlIiEJi69at+PGPf4zq6mpcf/31+T4cosBZunQp1q9fj4EDB2LkyJH497//jf/7v//DrFmzMHfuXDzxxBNobW3N92ESBUSXLl2w//77AwDmzZvnS6zW2tqKyy67DNu3b8e0adNQU1OTr8MkCpyPPvoI27ZtA+DNf0UKbV6czfcBEO3H8uXLAQBDhgxRfoZ1cOyzBKHiq6++woIFCwAA06dPz+/BEAXF+eefj+XLl+ORRx5Bz5498304RIHzr3/9CwAwePBgzJ07F1dffTUcLm/ar3/9a+y111549NFHQ8cvomNxxx134LDDDsPtt9+OJ554AhMmTEBpaSneeecdrF69GieffDJuuummfB8mUcCwuW6PHj3QtWtX6WcKbV5MFrcOxJYtWwAAVVVVys906dIFALB58+Z2OSaiOGlubsZJJ52ETZs2YezYsZg1a1a+D4koEBYtWoTbbrsNP/zhD3H00Ufn+3CIImDDhg0A3BXtX//61zjzzDOxbNkybNq0Cc888wx23XVXvPPOOzj88MOpZA2RY/To0Xjttdfw3e9+F6tXr8Zjjz2Ghx9+GMuXL8fIkSMxZcoUdOvWLd+HSRQwxTgvJuFGEERifvKTn+C5555D79698dBDD6G8vDzfh0QUAJs2bcLMmTPRt29f3Hjjjfk+HKJIYNa1pqYmnHDCCbjpppuw6667olu3bjjkkEPwzDPPoFOnTnjvvfdw33335floiULhlVdewdixY/Hee+/h3nvvxVdffYWNGzfir3/9K5qamjBz5kzMnDkz34dJEFYh4daBYGbg+vp65WdYoUFapSJUnHPOObjzzjvRs2fP3Go4QQBuDZ1Vq1bhpptuooQARGx4FyWZ9X7IkCE4/PDDAbi1JQmirq4OxxxzDNatW4eHH34YJ5xwAqqrq9GzZ09873vfw1NPPYXOnTvjrrvuwgsvvJDvwyUKlGKcF1OMWwdi2LBhAMIzALJ97LMEwXPeeefhhhtuQI8ePbBo0aJcVkmCANysW9lsFrfccgtuueUW374PP/wQAHDnnXfi2WefRf/+/cl6QgAAdtllF+lr2We+/PLLdjkmorB54oknsG7dOowYMQJ77713YP8uu+yCvffeGy+88AKeffZZHHTQQXk4SqLQYXPduro6bNmyRRrnVmjzYhJuHQg2yd6wYQOWL18uzSz51ltvAQDGjRvXrsdGFD4XXnghfvvb36J79+5YtGiRMgMT0bFpbm7GP/7xD+X+FStWYMWKFRg6dGg7HhVRyIwbNw6ZTAaO42D9+vXSLIDr168H4MWbEB2blStXAgi3gnTv3h0AsHHjxnY5JqL4GD16NDp37oxt27bhrbfekgr8QpsXk6tkB2Lw4MGYOHEiAODee+8N7F+8eDFqa2tRUVFBdZcIH3PnzsU111yD7t2745lnnsndRwTBU1dXB8dxpP9OOeUUAMDll18Ox3GwYsWK/B4sUTD0798fkydPBiB3hWxqasotBkyaNKldj40oTAYNGgTAteRv2rQpsL+pqQlLly4FAGX5I4IoLy/PuWHL5sWff/45Xn31VQDAMccc067HpoKEWwfj4osvBgBcddVVuU4NcK1wZ555JgBg9uzZuZUqgpg3bx5+/etfo0ePHiTaCIJIhUsvvRQA8Ktf/Qqvv/56bntzczPOO+88fPbZZ+jatStOO+20fB0iUUBMmzYNVVVV2L59O04//fRcHBLgFlU+99xzsXLlSpSVleHYY4/N45EShc7cuXORyWTwhz/8AU899VRu+7Zt2zBz5ky0tLRg+vTpGDNmTB6P0iPj8MVSiA7BOeecgxtuuAFlZWWYOnUqqqqq8Nxzz6Gurg777bcfnnnmGVRWVub7MIkC4PHHH8dRRx0FwC1Cufvuu0s/16dPH1x77bXteWhEkXHqqafi7rvvxuWXX4558+bl+3CIAuSKK67AJZdcgmw2i0mTJqF///5YunQpVqxYgcrKSjz44IO51XGCuOeee3DaaaehubkZffv2xcSJE1FWVoa33noLq1evRklJCW6++Wb85Cc/yfehEu3E0qVLc0YIAPj000+xfv16DB48OGelBdx47AEDBuTeX3fddfjZz36GTCaDAw88EP369cPLL7+ML7/8EqNHj8bixYsLJuEWCbcOygMPPICbb74Z7777LpqamjBixAicdNJJOPfccym1O5FjwYIFsVa4hw4dSq5vRCgk3Ig4LFq0CNdffz3eeOMNbNmyBf3798fUqVNx0UUXFcyKN1E4/POf/8T111+Pl156CatXr4bjOBgwYAAmT56Ms88+m1xrOxgvvvhirEQ0y5cvDyQbefbZZ/Gb3/wGb775Jurr6zFkyBAce+yx+PnPf64szp0PSLgRBEEQBEEQBEEUOBTjRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOCTcCIIgCIIgCIIgChwSbgRBEARBEARBEAUOCTeCIAiCIAiCIIgCh4QbQRAEQRAEQRBEgUPCjSAIgiAIgiAIosAh4UYQBEEQBEEQBFHgkHAjCIIgdgoymUzif1OmTAEATJkyBZlMBi+++GJe/wYbzJ8/H5lMBn/5y1+029i0aRN69+6NvffeG47jWDw6giAIQpdsvg+AIAiCIGxwyimnBLZ99dVXePrpp5X7x4wZk/pxtSfr1q3DZZddhokTJ2L69Ona7XTv3h0///nPccEFF+CPf/yj9NwRBEEQ7UvGoaU0giAIYiflxRdfxEEHHQQAoZajlStXYtu2bRgyZAg6d+7cXodnndmzZ+Pmm2/GE088gcMOO8yorR07dmDIkCHIZrNYvnw5KioqLB0lQRAEoQO5ShIEQRAdniFDhmDMmDFFLdrq6uqwYMECDBo0CIceeqhxe506dcKJJ56IL7/8Evfff7+FIyQIgiBMIOFGEARBdHhUMW6nnnoqMpkMFixYgGXLluEHP/gB+vXrh6qqKkycOBGPPfZY7rNvvPEGjjzySPTt2xeVlZXYd9998dxzzyl/c/v27fjNb36DffbZBz169ECnTp0wevRoXHjhhdiwYUPiv+EPf/gD6uvrcfLJJ6OkJDi8NzQ04JprrsH48ePRtWtXlJeXo3///pg4cSIuvPBCbNy4MfCdU089FQBw8803Jz4egiAIwi4k3AiCIAgigqVLl2L8+PH45z//ialTp2KPPfbAW2+9hWOOOQYPPfQQHn30Uey///5YtWoVpk6ditGjR+P111/HoYceisWLFwfa++KLL7D33nvj/PPPx8cff4yJEyfisMMOy4mrCRMm4PPPP090jI8++igA4JBDDgnsa21txeGHH44LL7wQn3zyCfbff38ce+yxGDt2LNatW4drrrkGK1euDHxvzz33RN++ffHmm2/iyy+/THQ8BEEQhGUcgiAIgthJeeGFFxwATtRwd+CBBzoAnBdeeMG3/ZRTTsl9/4orrnBaW1tz+2644QYHgDN48GCnZ8+ezh//+Effd+fMmeMAcA455BDf9tbWVme//fZzADgzZ850Nm/enNvX1NTknHfeeQ4A56CDDor9d27bts0pLy93SkpKfO0x/vGPfzgAnL322ku6f8mSJc769eulbR955JEOAOdPf/pT7OMhCIIg7EMWN4IgCIKIYNKkSbj44ouRyWRy237605+iV69eWLVqFQ455BCcfPLJvu/MmzcPAPDSSy+hqakpt/3pp5/GK6+8gj333BO33norunbtmtuXzWZx9dVX45vf/CZeeOEFvPfee7GO7z//+Q8aGxsxePBgX3uMNWvWAAD2339/6f4JEyagd+/e0rZ33313AK7VkSAIgsgfJNwIgiAIIoJp06b5RBvgiqzhw4cDgDSDY+/evdGrVy80Njb6YtaeeOIJAMD06dORzQar8pSUlOCAAw4AALz66quxjo8JM5X4GjduHEpLS3HXXXfh5ptvTuT2yNpkv0EQBEHkBxJuBEEQBBHBkCFDpNu7dOkSup9Zt3bs2JHb9tlnnwEALrnkEmVh8FtuuQWAW5ctDps2bQIAdOvWTbp/xIgRuO6669DU1ITZs2dj4MCBGDZsGE444QQsXLgQjY2NyrZZm19//XWsYyEIgiDSgQpwEwRBEEQEsiyNSfbztLa2AgAmT56MESNGhH6WuSlG0aNHDwDA5s2blZ8566yzcPzxx+Pxxx/H4sWLsXjxYtx333247777cOmll+Lll1/GgAEDAt9jorBnz56xjoUgCIJIBxJuBEEQBNGO1NTUAACOOuoonH/++Vba7NevHwBElhGorq7G6aefjtNPPx0A8OGHH+LHP/4xXnvtNcydOxd333134DuszerqaivHShAEQehBrpIEQRAE0Y5MmzYNAPDggw/CcRwrbe6+++4oLy/HqlWrsGXLltjfGzNmDC666CIAwLvvviv9DEuQMn78eOPjJAiCIPQh4UYQBEEQ7chRRx2FiRMn4s0338Rpp50mjWP7+uuvceutt6K5uTlWm5WVldhnn33Q2tqKN954I7D/+eefx5NPPunLbgkAjuPgb3/7GwBg6NCh0rZfe+01AMDBBx8c61gIgiCIdCBXSYIgCIJoR0pKSvDoo4/i8MMPx913342HHnoIe+yxB4YMGYLGxkZ89tln+Pe//42Wlhaceuqp0syTMo4++mi89NJLeOaZZwJFuP/1r3/h3HPPRbdu3TBu3DgMHDgQ27dvx9KlS/H555+je/fu+MUvfhFo85133sGGDRswadIkafwbQRAE0X6QxY0gCIIg2pmBAwfi9ddfx6233opJkyZh2bJleOihh7B48WIAwE9+8hM8/fTT6NSpU+w2TzvtNFRVVeGee+5BS0uLb98RRxyByy67DBMnTsRnn32Ghx9+GC+++CK6d++OuXPn4r333sOee+4ZaHPBggUAgP/5n//R/lsJgiAIO2QcWw72BEEQBEHkldmzZ+Pmm2/G448/jiOOOMKorR07dqCmpgZlZWVYvnw5KioqLB0lQRAEoQNZ3AiCIAhiJ+HSSy9Fjx49pG6PSbnxxhuxfv16/OpXvyLRRhAEUQCQxY0gCIIgdiLmz5+POXPm4MEHH8Sxxx6r1camTZuwyy67YOTIkXj99deRyWQsHyVBEASRFBJuBEEQBEEQBEEQBQ65ShIEQRAEQRAEQRQ4JNwIgiAIgiAIgiAKHBJuBEEQBEEQBEEQBQ4JN4IgCIIgCIIgiAKHhBtBEARBEARBEESBQ8KNIAiCIAiCIAiiwCHhRhAEQRAEQRAEUeCQcCMIgiAIgiAIgihwSLgRBEEQBEEQBEEUOP8f3beiewtLONcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "t0 = np.linspace(0,10,1000)\n", + "y01 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "y01 -= sub\n", + "y02 = np.sin(2 * np.pi * 3.0 * (t0+0.3)) + 0.1 * rand.standard_normal(t0.size)\n", + "y02 -= sub\n", + "\n", + "spline1 = make_interp_spline(t0, y01)\n", + "spline2 = make_interp_spline(t0, y02)\n", + "t01 = np.linspace(0,10,1000)\n", + "\n", + "fig, ax = plt.subplots(2,1,figsize=(10,12))\n", + "ax[0].scatter(lc1.time, lc1.counts, lw=2, color='blue',label='lc1')\n", + "ax[0].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[0].tick_params(axis='x', labelsize=16)\n", + "ax[0].tick_params(axis='y', labelsize=16)\n", + "ax[0].tick_params(which='major', width=1.5, length=7)\n", + "ax[0].tick_params(which='minor', width=1.5, length=4)\n", + "ax[0].plot(t01,spline1(t01),lw=2,color='lightblue',label='source of lc1')\n", + "\n", + "ax[1].scatter(lc1.time, lc2.counts, lw=2, color='red',label='lc2')\n", + "ax[1].set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax[1].tick_params(axis='x', labelsize=16)\n", + "ax[1].tick_params(axis='y', labelsize=16)\n", + "ax[1].tick_params(which='major', width=1.5, length=7)\n", + "ax[1].tick_params(which='minor', width=1.5, length=4)\n", + "ax[1].plot(t01,spline2(t01),lw=2,color='orange',label='source of lc2')\n", + "\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass both of the light curves to the `LombScargleCrossspectrum` class to create a `LombScargleCrossspectrum` object.\n", + "The first `Lightcurve` passed is the channel of interest or interest band, and the second `Lightcurve` passed is the reference band.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the cross spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lcs = LombScargleCrossspectrum(\n", + " lc1,\n", + " lc2,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has a real and an imaginary component." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 6.31032111 +4.52192914j 63.18701964+17.6050907j\n", + " 118.96655765-28.2054288j 84.8747486 -42.95292067j\n", + " -5.16601064+18.1110093j ]\n" + ] + } + ], + "source": [ + "print(lcs.freq[0:5])\n", + "print(lcs.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Properties\n", + "\n", + "### Parameters\n", + "\n", + "- `data1`: This parameter allows you to provide the dataset for the first channel or band of interest. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `data2`: Similar to `data1`, this parameter represents the dataset for the second channel or \"reference\" band. It follows the same format as `data1` and is also optional with a default value of `None`.\n", + "\n", + "- `norm`: This parameter defines the normalization of the cross spectrum. It takes string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: This parameter allows you to specify the type of cross spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the cross spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "### Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the cross spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the complex numbers representing the cross spectra.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged cross-spectra amplitudes in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points or time bins in one segment of the light curves.\n", + "\n", + "- `k`: The `k` attribute is an array of integers indicating the rebinning scheme. If the object has been rebinned, the attribute holds the rebinning scheme; otherwise, it is set to 1.\n", + "\n", + "- `nphots1`: The `nphots1` attribute is a float representing the total number of photons in light curve 1.\n", + "\n", + "- `nphots2`: The `nphots2` attribute is a float representing the total number of photons in light curve 2." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the cross spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQUAAAIfCAYAAADJ6rpzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3iTVRsG8Pvt3oMORgcte4uMMmRPWZ/IEAUBGUVENoooUxRFlD2U0YKAiIACyh6yZ1myoaWU0bK698z7/fGS1aRt2qRNx/27rmry5iR5WtqMO885RxBFUQQRERERERERERGVGSbGLoCIiIiIiIiIiIiKFkNBIiIiIiIiIiKiMoahIBERERERERERURnDUJCIiIiIiIiIiKiMYShIRERERERERERUxjAUJCIiIiIiIiIiKmMYChIREREREREREZUxDAWJiIiIiIiIiIjKGDNjF0CaZDIZIiIiYG9vD0EQjF0OEVGJJ4oiEhISUKlSJZiY8PMwgM81RESGxucadXyeISIyrMJ4nmEoWAxFRETAy8vL2GUQEZU6T548gaenp7HLKBb4XENEVDj4XCPh8wwRUeEw5PMMQ8FiyN7eHoD0D+3g4GDkaoiISr74+Hh4eXkpHl+JzzVERIbG5xp1fJ4hIjKswnieYShYDMnb6x0cHPgESkRkQJy+pMTnGiKiwsHnGgmfZ4iICochn2e42AUREREREREREVEZw1CQiIiIiIiIiIiojGEoSEREREREREREVMYwFCQiIiIiIiIiIipjGAoSERERERERERGVMQwFiYiIiIiIiIiIyhgzYxdARAWTnp6O2NhYiKJo0C3JiUoK+e++k5MTLCwsjF0OERERERFRicJQkKgEkslkiIyMRIUKFWBiwoZfKrtkMhmeP3/OvwUiIiIiIqJ84jsoohIoJiYGLi4uDEGozDMxMYGLiwtiY2ONXQoREREREVGJwkSBqATKzMyEpaWlscsgKhYsLS2RkZFh7DKIiIiIiIhKFIaCREREREREREREZQxDQaISiBuLEKnj3wQREREREVH+MBQkIiIiIiIiIiIqYxgKEhHpycfHB+3atVM71q5dO/j4+BSLWoiIiIiIiIiyYyhIRCVGTEwMrK2tIQgCNm3aZOxy8m3Dhg1YsmSJscsgIiIiIiIiYihIRCXHb7/9hrS0NPj6+iIwMNDY5eTq0KFDuHfvntoxhoJERERERERUXDAUJCoESUnAjz8CK1cCGRnGrqb0CAgIQPv27TFx4kScOHECoaGhxi4pRxYWFrC0tDR2GURERERERERaMRQkKgSrVgFTpwJjxwLbthm7mtLhypUruHbtGoYOHYqBAwfCzMxMa7egIAj46KOP8O+//6JFixawsbGBp6cnfvjhBwDSFOQRI0bA3d0dNjY26NmzJyIiItRuY86cORAEAbdu3cL48eNRoUIFWFtbo1mzZjh69KhO9WZfU9DHxwcnTpzAo0ePIAiC4uv48eOKy7WtBXj8+HEIgoANGzaoHX/y5Anee+89ODo6wsHBAb169cKDBw9yrOfIkSPo0qULnJycYGVlhQYNGuCXX37R6XshIiIiIiKi0oehIFEhuHhRefq//4xXR2kSEBAAOzs79O3bF66urujZsyd+/fVXyGQyjbFXr15F//790a5dOyxcuBDVq1fHtGnTsHTpUnTs2BExMTGYM2cORo8ejQMHDmDIkCFa73PIkCE4f/48vvjiC3z55Zd4+vQp3n77bRw5ciTf9S9ZsgS1atWCq6srNm3apPiqXbt2vm8rNjYWbdq0wV9//YXBgwdj/vz5sLGxQfv27ZGUlKQxfs2aNejSpQsSExMxffp0LFq0CFWrVsUnn3yCzz//PN/3T0RERERERCWfmbELICqNYmOVp4tq+rBMBkRHF819FUS5coBJAT+GSE1NxZYtW9C3b1/Y2toCAIYOHYqdO3fi4MGD6Natm9r4Gzdu4Ny5c2jWrBkAYMSIEahcuTImTZqEsWPHYtmyZWrjFy9ejHv37qFmzZpqx83MzHDq1ClYWFgAAIYPH45atWph3LhxuHPnTr6+h969e2PJkiVISUnBhx9+mK/rZrdgwQKEhYUhMDAQw4YNAwCMGTMGEydOxNKlS9XGPnv2DOPHj8f777+PLVu2KI6PGTMGEyZMwKJFi/DJJ5+gSpUqetVEREREREREJQs7BYkKQVyc8nRmZtHcZ3Q04OZWfL/0CSz/+usvxMbGYujQoYpj3bt3h5ubm9YpxC1atFAEgoC0vp+fnx9EUcT48ePVxrZu3RoAEBwcrHE7kyZNUgSCAODp6YlBgwbh7t27+Q4FDWnXrl0oX768RofjF198oTF2x44dSEtLw4gRIxAZGan21atXL8hksgJ1PhIREREREVHJxk5BokKg2ilYVKFgaRYQEAA3Nzd4enoiJCREcbxLly7Yvn07IiMj4erqqjiurevN2dkZAODr66v1eFRUlMZ1tE3trVOnDgAgNDS0QFN/DSE0NBRNmzaFqamp2vGKFSvCyclJ7Zg8vOzUqVOOt/fixQuD10hERERERETFG0NBokJgjOnDpdXDhw9x7NgxiKKIGjVqaB2zefNmTJw4UXE+e1imKqfLRFHUq059CYKg9Ximnqmy/PvauHEjKlasqHUMpw4TERERERGVPQwFiQxMFI3TKViuHPDqVdHcV0GUK1ew661fvx6iKGLt2rUaXXAAMGPGDAQGBqqFgoZy584dvPHGG2rHbt++DaBgQVpOwR8AlCtXDtFa5liHhoZqHKtSpQqCg4ORlZWlFnI+e/YMsaq/fACqV68OAHB1dc21W5CIiIiIiIjKFoaCRAaWmqreHVhUnYImJoDKDNpSQSaTYcOGDahfvz5GjhypdcytW7cwZ84cBAUFoWnTpga9/8WLF6NPnz6KdQWfPn2KLVu2oGbNmgWaOmxnZ4eYmBiIoqgRENaoUQN//vknwsPD4eHhAQBIS0vDypUrNW7nnXfewfz587Fx40bFRiMA8MMPP2iMfe+99/DVV19h9uzZaNeuHaytrdUuj4uLg5WVFSwtLfP9/RAREREREVHJxVCQyMCyNWpxTUE9HDp0CE+ePMGIESNyHNO3b1/MmTMHAQEBBg8FMzMz0bp1a3zwwQdISEjAL7/8gpSUFI3di3XVvHlz7NmzB2PHjkXLli1hamqKDh06wN3dHWPHjsXWrVvRqVMnjB49Gunp6di0aRNsbGw0bmfq1KnYsmUL/P39cfnyZdStWxfHjx/HuXPn1NZWBKTNUX7++WeMHDkStWvXxuDBg1G5cmW8evUKN27cwK5du3D79m34+PgU6HsiIiIiIiKikqnE7D78/fffo3///qhSpQoEQcjzDeyFCxfQqVMn2Nvbw8HBAW+//TauXbumdWxERASGDBkCNzc3WFtbo0mTJti+fbvWsWlpaZg1axZ8fX1haWmJqlWr4ttvv0UGF46j1xgKGk5AQAAAoE+fPjmOqVevHmrUqIGtW7ciJSXFoPe/ceNG+Pn5Yf78+Zg3bx48PDywf/9+dOnSpUC3N2nSJAwfPhw7duzAkCFD8MEHHyimI7/11lvYsGEDZDIZPv/8c6xatQoffvghvvvuO43bcXZ2xqlTp9C7d29s3LgRX3zxBZKTk3Hs2DHY2tpqjB82bBhOnjyJN998E6tXr8aYMWOwfPlyPHv2DN988w0qVKhQoO+HiIiIiIiISi5BNPbq+joSBAHlypVDo0aNcPnyZTg4OCAsLEzr2PPnz6Ndu3bw8PDA2LFjAQArVqzAy5cvcfbsWdSvX18xNjo6Gk2aNMHLly8xefJkeHp6YsuWLThx4gQCAwPVpuYBQO/evbF7924MHz4cLVq0wLlz5xAYGIihQ4diw4YNBvle4+Pj4ejoiLi4ODg4OBjkNqnonD8PtGihPN+rF/D334a9j5cvX8Ld3d2wN0oKc+bMwddff42HDx+yg66EyOtvgo+rmvgzISIyLD6uquPPg4jIsArjcbXETB9+8OCBYmH/evXqITExMcex48ePh4WFBU6ePKlYm+u9995D7dq1MWXKFBw6dEgxdv78+Xj48CH+/vtv9OrVCwAwYsQItGjRAp999hn69+8POzs7AMC+ffuwe/duTJ48GQsXLgQAjBw5Ek5OTli0aBFGjRqFli1bFsr3TyUHOwWJiIiIiIiIqLgrMdOHdd3pMyQkBEFBQejfv78iEAQADw8P9O/fH0eOHMHz588Vx7ds2YKqVasqAkEAMDU1xbhx4xAdHY19+/apjQWgscup/PzmzZvz+21RKcRQkIiIiIiIiIiKuxITCuoqKCgIANBCdf7ma82bN4coirh8+TIA4NmzZwgPD0fz5s21jlW9PflpDw8PeHl5qY318vJCpUqV1MZS2ZU9FORyk0RERERERERU3JSY6cO6ioiIAAC1LkE5+bHw8PB8j5WPr1Onjtb79fDwwNOnTwtUc8WKFdXOy2SyAt0OFQ9xcern2SlY8syZMwdz5swxdhlEBsXnGiIiKkx8niEiKnlKXadgcnIyAMDS0lLjMisrK7Ux+RkrP61trHy86lgqu9gpSERERERERETFXanrFLSxsQEApKWlaVyWmpqqNiY/Y+WntY2Vj1cdmx/Pnj1TOy/fUYZKJq4pSETFEZ9riIioMPF5hoio5Cl1nYKVKlUCoD7tV05+TD41OD9j5eO1jZWP1zYNmcoehoJEREREREREVNyVulCwadOmAIBz585pXHb+/HkIgoDGjRsDkNa98PDwwPnz57WOBYAmTZqo3XZ4eDiePHmiNvbJkyeIiIhQG0tlV/Y1BTl9mIiIiIiIiIiKm1IXClarVg1NmjTB9u3bFRuJANImIdu3b0eHDh1QoUIFxfEPPvgADx48wD///KM4lpWVheXLl8PJyQndu3dXGwsAS5YsUbtP+flBgwYVwndEJQ07BYmIiIiIiIiouCsxawpu2rQJjx49AgC8evUK6enp+PbbbwEAlStXxuDBgxVjly5divbt26N169YYN24cAGD58uWQyWRYuHCh2u1OmzYN27dvx8CBAzF58mR4eHjg999/R1BQENatWwd7e3vF2B49eqBnz55YtGgR4uLi0KJFC5w7dw4BAQH48MMP0apVq8L+MVAJwFCQiIiIiIiIiIo7QRRF0dhF6KJdu3Y4ceKE1svatm2L48ePqx07d+4cZsyYgQsXLkAQBLRs2RLff/89GjVqpHH98PBwTJs2Dfv370diYiLq1KmDL774AgMGDNAYm5qaim+//RabN2/Gs2fP4OHhgWHDhmHatGkwNzc3yPcqX5Q3Li4ODg4OBrlNKjoeHoBKkyq8vIDHjw17Hy9fvoS7u7thb5SoBMvrb4KPq5r4MyEiMiw+rqrjz4OIyLAK43G1xISCZQmfQEs2W1sgOVl5vmJF9ZDQEBgKEqljKJh//JkQERkWH1fV8edBRGRYhfG4WurWFCQypvR09UAQ4EYjpcXx48chCAI2bNhg7FKIiIiIiIiI9MZQkMiAsu88DHBNQX3JwzjVLzs7OzRq1AiLFy9GZjH8AW/YsEGtXhMTEzg6OqJVq1bYuHFjod1n9k2QiIiIiIiIiHJSYjYaISoJGAoWng8++ADdu3eHKIp4/vw5Nm7ciMmTJ+POnTtYs2aNscvTavz48WjatClkMhnCwsKwdu1aDB06FE+fPsVXX31l0PvasGEDwsLCMHHiRIPeLhEREREREZVODAWJDCj7zsMApw8bSqNGjfDhhx8qzo8ZMwa1atXCunXrMG/ePLi5uRmxOu1at26Nfv36Kc4PGzYMNWvWxA8//ICpU6fCzEy/h2BRFJGUlAQ7Ozt9SyUiIiIiIqIyhtOHiQxIWyjITsHCYWtri+bNm0MURTx48EDtsmfPnuGTTz6Bt7c3LCwsUKlSJYwaNQovX75UGxcREYEpU6agYcOGcHZ2hpWVFerUqYMffvgBWVlZBq/Zy8sLderUQXx8PF69eoWEhATMmDEDzZo1g6urKywtLVGtWjVMmzYNydkWp1Rd03DlypWoU6cOrKys8NNPP8HHxwcnTpzAo0eP1KYtZ9+VnYiIiIiIiEiOnYJEBqQtFMzKAkQREIQiL6fUk4eB5cqVUxx7/PgxWrRogfT0dIwYMQJVq1ZFSEgIfv75Zxw7dgyXLl2Co6MjAOD69ev466+/8O6776Jq1arIyMjAgQMHMG3aNISGhmL16tUGrTctLQ2PHz+GmZkZnJyc8OjRI6xbtw59+/bFwIEDYWZmhhMnTmDBggW4evUqDh48qHEbS5YsQVRUFPz9/VGhQgV4eXmhYcOG+PLLLxEZGYnFixcrxtauXdug9RMREREREVHpwVCQyIC0rSkISN2C5uaFfOeiCKSkFPKd6MHaWq9kNDk5GZGRkYo1BX/55RdcvXoVfn5+qFGjhmLcuHHjkJGRgatXr8LT01NxvH///mjevDkWL16MOXPmAADatm2L0NBQCCp1TZw4EYMHD8a6deswZ84cVKxYscA1JyQkIDIyEjKZDI8ePcK8efPw6tUrvP/++7C2tkaVKlXw5MkTmKv8cnz66aeYOXMmvv32W1y8eBF+fn5qt/n48WPcvXsX7u7uaseXLFmClJQUtSnWRERERERERDlhKEhkQNo6BYEiCgVTUoAFCwr5TvQwdSpgY1Pgq8+ePRuzZ89WO9anTx+sXLlScT4uLg579uzBsGHDYGVlhcjISMVlPj4+qFatGg4dOqQIBa2trRWXp6enIzExETKZDF27dsXmzZtx6dIl9OrVq8A1Dx8+XO28ubk5hg4dihUrVgAALCwsFJdlZmYiISEBWVlZ6NSpE7799ltcuHBBIxQcMmSIRiBIRERERERElF8MBYkMKKdQMCNDapSjghs1ahT69++PjIwM3LhxAz/88AOePn0KKysrxZh79+5BJpMhICAAAQEBWm+nSpUqitOZmZmYP38+Nm7ciJCQEIiiqDY2JiZGr5pnzZqF1q1bw8TEBPb29qhVqxbs7e3VxqxatQq//PILbt26BZlMluf9q3ZFEhERERERERUUQ0EiA8pt+jDpp3r16ujUqRMAoFu3bmjVqhVatWqF0aNHY+vWrQCgCPU+/PBDDB06VOvtqHYHTp48GcuXL8eAAQMwffp0uLu7w9zcHFeuXMEXX3yhEdLlV/369RU1a7No0SJMmTIFXbp0wfjx41GpUiVYWFggPDwcH330kdb7t9Gj25KIiIiIiIhIjqEgkQHlNn240FlbS1N0iysDt0q2bNkSgwcPxsaNGzF+/Hi0bNkS1apVgyAISE9PzzWMk9u0aRPatGmjCBXlQkJCDFprbvfv4+OD/fv3w8REuRn8gQMH8n1bAneyISIiIiIionxgKEhkQLlNHy50gqDXmn0l0cyZM/Hbb79h1qxZOHLkCFxcXNC9e3f89ddfOH/+PJo3b642XhRFREZGws3NDQBgamqqMWU4KSlJbQffwmRqagpBENRqkE9pzi87OzvExMRAFEUGhERERERERJQnhoJEBmTUTsEyqFq1anj//ffx22+/4dSpU2jdujV+/vlntGrVCm3atMGQIUPw5ptvQiaTITQ0FLt378aQIUMUG43069cPq1evxoABA9CpUye8ePECgYGBcHFxKZL6+/Xrhy+//BLdunVDnz59EB8fjy1btqjtRqyr5s2bY8+ePRg7dixatmwJU1NTdOjQgZuSEBERERERkVYMBYkMiGsKFr3p06fj999/x6xZs3Ds2DF4eXnh8uXL+OGHH7B7925s3rwZVlZW8PLyQq9evfDee+8prrto0SLY29tj27Zt2L17N7y8vDBq1Cg0bdpUp+nH+vr8888hiiICAgIwYcIEVKhQAQMGDMCwYcNQp06dfN3WpEmTEBoaih07duCXX36BTCbDsWPHGAoSERERERGRVoKYfe4cGV18fDwcHR0RFxcHBwcHY5dD+VC5MvD4sebxO3eAWrUMdz8vX75k2EOkIq+/CT6uauLPhIjIsPi4qo4/DyIiwyqMx1WTvIcQka44fZiIiIiIiIiISgKGgkQGkpUFxMdrv6xINhohIiIiIiIiItIRQ0EiA0lIyPkydgoSERERERERUXHCUJDIQLJPHTZT2caHoSARERERERERFScMBYkMRDUUNDMDVNf95PRhIiIiIiIiIipOzPIeQkS6iItTnnZyAkxNlefZKUhERERERERExQk7BYkMRLVT0MkJMDdXnmcoSERERERERETFCUNBIgNRDQUdHdXXFOT0YSIiIiIiIiIqThgKEhlI9k5BbjRCRERERERERMUV1xQkMpDsawpGRCjPs1OQiIiIiIqbxMREvHjxAjExMXB2dkb58uVhZ2dn7LKIiKiIMBQkMpDcpg+zU5CIiIiIioODBw9i165dOHr0KB48eKBxebVq1dChQwf07t0bXbt2NUKFRERUVBgKEhkINxohIiIiouIoKysLP//8M5YtW4YHDx5AFEXFZXZ2dnBwcEBcXBySkpIQHByM4OBgrFmzBtWqVcP48eMxevRomJqaGvE7ICKiwsA1BYkMJLc1BTl9uOwRBAEfffSRscsgIiKiMu7AgQOoV68exo8fj0ePHuF///sfVqxYgStXriAtLQ3x8fF4+vQpEhISkJqaikuXLmHZsmXo2bMnwsLCMH78eNSvXx8HDx409rdCREQGxlCQyEBU1xTk9GHDOX78OARBwE8//WTsUsqsOXPmQBAExZeJiQnKlSuHzp07Y8+ePYVyn0uWLMGGDRsK5baJiIjKku7duyM2NhY//fQTwsPDsXPnTowZMwYNGzaEuerUFgAWFhZo1KgRxo4di927dyM8PBwLFixAVFQUunfvbqTvgIiICgunDxMZSG7Th9kpWPakpKSUumk2c+fOha+vLzIzM3H//n2sXr0avXr1wm+//YaBAwca9L6WLFkCHx8fdlsSERHp6ZtvvsGkSZNgY2OT7+u6urpiypQp+OSTT7B48eJCqI6IiIyJoSCRgeQ2fZidgmWPlZWVUe8/IyMDWVlZBq2jW7duaNKkieJ837590aRJE8ybN88goWBWVhbS0tIK9KaFiIiItJs+fbret2FjY2OQ2yEiouKF04eJDITTh4tOWFgYBEHAnDlzsG3bNjRs2BDW1taoVq0a1q9fDwB4/Pgx+vXrh3LlysHe3h4ffvghEhIS1G7n7t27GDNmDOrWrQt7e3vY2NigcePGWLdundb7vX79Orp06QJbW1u4uLhg6NChiIyM1Lp+YG7Hzp07h7Zt2ypuZ+TIkUhMTCxwbfLpvbdu3cLkyZPh6ekJKysrnDx5Em5ubnjrrbe0fj8//vgjBEHAyZMnc/tx56hx48ZwcXFBSEgIACAiIgJTpkxBw4YN4ezsDCsrK9SpUwc//PADsrKy1K67YcMGCIKAI0eO4JtvvkHVqlVhZWWFbdu2QRAEPHr0CCdOnFCbthwWFlagOomIiIiIiEgTOwWJDEAUOX3YGPbs2YNffvkFY8aMQbly5RAQEIDhw4fDwsICX331FTp06IDvvvsOQUFBCAwMhJWVlVqodvz4cZw8eRI9e/aEr68vkpKSsH37dvj7++PVq1f48ssvFWODg4PRunVryGQyjB8/Hh4eHti3bx/efvvtfNV87do19OzZE8OGDcPAgQNx/PhxBAQEwMTEBGvWrClQbXKDBg2CtbU1pkyZAkEQULlyZQwdOhQLFy7EvXv3ULNmTbXxgYGBqFGjBtq0aZOv70EuMjISMTExqFChAgApNP3rr7/w7rvvomrVqsjIyMCBAwcwbdo0hIaGYvXq1Rq38dlnnyEjIwP+/v5wcHBAzZo1sWnTJkyaNAmurq5qXQlubm4FqpOIiIiUTE1N8dFHHyEgICDXcf7+/li/fj0y+ek2EVGpxVCQyAAyMgDVRigbm6LvFBRFESmZKYV/RwVkbWYNQRAMept37tzB7du3UblyZQDAgAED4OXlhcGDB+Onn37C5MmTAQCjR49GTEwMNm7ciCVLlsDOzg4AMHjwYIwePVrtNidNmoQOHTpg/vz5+OyzzxQLcE+fPh3x8fE4ffq0ovNu7NixGDBgAC5fvqxzzdevX8e5c+fQrFkzAMDHH3+M+Ph4rF+/HosWLSpQbXJOTk44cuQIzFR++UaNGoWFCxciICAACxYsUBw/c+YM7t69ix9++EHn2uPi4hAZGalYU/Crr76CTCbDkCFDAABt27ZFaGio2r/zxIkTMXjwYKxbtw5z5sxBxYoV1W4zJSUFV69eVZsy3KJFC8yYMQPly5fHhx9+qHN9RERElDdRFCGKos5jiYio9GIoSGQA2TsBzc3VOwWLIhRMyUzBgjML8h5oJFPfmgobc8OuFde7d29FIAhInWQ1a9bErVu38Omnn6qNbd26NXbu3ImwsDDUq1cPAGBra6u4PDU1FUlJSRBFEV26dMGJEydw9+5d1K9fH1lZWdi3bx/8/Pw0puJOmTIF27Zt07nmFi1aKAJBuQ4dOmDfvn0Fqk3VxIkT1QJBAKhRowbatm2LjRs34rvvvlNcHhAQADMzMwwdOlTn2jt16qR23sbGBpMnT8Y333wDALC2tlZclp6ejsTERMhkMnTt2hWbN2/GpUuX0KtXL7Xb+OSTT7iGIBERUTGUnJys8QEkERGVLgwFiQxAWyioms1w+nDhqFKlisYxZ2dnVKxYEZaWlhrHASAqKkpxLDExUbEu4ZMnTzRuKyYmBgDw6tUrJCUlaUy/BaD1WH5rdnFxKXBtqmrUqKH1PkeNGoVBgwZhz5496N27NxISErBt2zb07NkT5cuX17n2lStXokaNGjAxMYGTkxNq166tFgRmZmZi/vz52LhxI0JCQjS6C/JTMxERERlPbGwsTp8+rdHhT0REpQtDQSIDyCsU5FIshcPU1DRfxwH1aTADBw7Enj17MGrUKLRp0wYuLi4wNTXFvn37sHjxYshksiKr2RC15dRx17dvX4wfPx4BAQHo3bs3/vjjDyQlJWHkyJH5qt3Pz09t9+HsJk+ejOXLl2PAgAGYPn063N3dYW5ujitXruCLL77IV81ERERkONk/lNyxYweOHz+udWxmZiaeP3+OrKwsfPzxx0VQHRERGQtDQSIDyGv6cFF0ClqbWWPqW1ML/44KyNrMOu9BRSg2NhZ79uzB4MGD8csvv6hdduTIEbXzbm5usLW1xb179zRuR9uxoqxNF5aWlhgyZAiWLVuGiIgIBAQEwMPDI9+bpORl06ZNaNOmDbZu3ap2XL47cX4Yev1JIiKisiwsLExxWhAEJCYmIjExMcfxFhYW6N27N7777rsiqI6IiIyFoSCRARSHTkFBEAy+Zl9pJu/Yyz7F9dmzZ2o7FMvHduvWDTt27MCZM2fU1hVcuHChUWvTlb+/PxYvXowvvvgC58+fx/Tp03PtWiwIU1NTjZqTkpKwePHifN+WnZ0doqOjDVUaERFRmfbw4UMA0muLKlWqoF+/fvjxxx+1jrWwsICbm5vGOsVERFT68JGeyACyh37G2GiE8sfe3h5dunTB5s2bYW1tjaZNm+LRo0dYvXo1fH191db3A4Bvv/0WBw8exNtvv42xY8fC09MTe/fuxatXrwAYtrMtv7Xponbt2mjVqhU2b94MQRAwfPhwg9Ur169fP6xevRoDBgxAp06d8OLFCwQGBirWTMyP5s2bIyAgADNnzkTt2rVhYmKCXr16qW3AQkRERLpR3Zht6NChaN26tdoxIiIqmxgKEhmARqdgehIahR1ET5jjELogI8NS+xXJqDZv3oxp06bhn3/+wa+//orq1atj3rx5MDc3x7Bhw9TG1qxZEydPnsRnn32GpUuXwsrKCj179sTKlStRpUoVtQ03iro2XY0aNQqnT59G+/bttW54oq9FixbB3t4e27Ztw+7du+Hl5YVRo0ahadOmGjsX52XevHmIjo7GypUrERsbC1EU8fDhQ4aCRKr27wcuXgTGjQPKlTN2NURUQqxfv97YJRARUTEhiNnnepHRxcfHw9HREXFxcXBwcDB2OaSDGzeABg2k0yYmQNb+Qzg05yzOngP2oTvqDfNDYKDh7u/ly5dwd3c33A1SgV2+fBlNmjTB999/j2nTphm7nFxt27YNAwYMwJYtW/DBBx8YuxyDyutvgo+rmvgzKeFevQK8vIC0NOCrr4B584xdEVGZx8dVdfx5EBEZVmE8rrJTkMgAVDsFzc0BPHsGExPpvDNiOH24lEhJSVHrCBRFEQsWLAAAdO7c2Vhl6WzlypVwdXVFnz59jF0KEenr5k0pEASA0FDj1kJEJU5CQgJWrVqFI0eOIDw8HKmpqVrHCYKABw8eFHF1RERUVBgKEhmARigYE6MIBU2RVSS7D1Pha9iwITp06ID69esjKSkJ//zzD06dOoUBAwagcePGxi5Pq5cvX+Lo0aM4deoUTp48ie+//x6WlpzOTlTivd40AACQnm68OoioxImIiECrVq3w6NEjjQ3CsjPkmslERFT8MBQkMgDV0M/CTAbEx6uFguwULB3eeecd/PPPP9i0aRMyMzPh6+uLb775Bl988YWxS8vR7du3MXDgQDg5OWH06NGYMmWKsUsiIkNQDQXlHYNERDr46quvEBYWhoYNG2LatGmoXbs2p/cSEZVRDAWJDEA1FHQxiwNkMpiaSufZKVh6LFiwQDFduKRo165dnl0ARFQCsVOQiAro4MGDKF++PI4dOwZHR0djl0NEREZkYuwCDG3OnDkQBCHHL3Nzc53G/vTTTxq3LZPJsHjxYtSqVQtWVlbw8vLClClTkJSUVJTfIhVDqqFfOZNYAGCnIBERFR6GgkRUQDExMWjRogUDQSIiKn2dgn369EG1atU0jl+/fh0//vgjevXqpXHZ4sWL4erqqnZM2/pgkyZNwrJly/Duu+9iypQpuHPnDpYtW4arV6/iyJEjMDEpdRkr6UitU9AkBoAyFDRDJpIYChIRkSFx+jARFZCXlxdkMpmxyyAiomKg1IWCDRo0QIMGDTSOf/zxxwCAESNGaFzWu3dv+Pj45Hq7t27dwvLly9GnTx/8+eefiuO+vr4YP348tm7dioEDB+pXPJVYeXUKcvowEREZTEoK8OyZ8jw7BYkoH/r164c1a9YgKSkJtra2xi6HiIiMqEy0tiUlJWHr1q3w9PTE22+/rXVMfHw8MnOZ4/n7779DFEVMnDhR7bi/vz9sbGywefNmQ5ZMJYxq6OcsxAIo3OnDXCOOSB3/JqhMefRI/Tw7BYkoH2bOnAkvLy+89957ePnypbHLISIiIyp1nYLabN++HfHx8Rg/fjxM5bs/qGjQoAESEhJgamoKPz8/zJw5E926dVMbExQUBBMTE/j5+akdt7KyQsOGDREUFFSo3wMVb2qdgoI0fVh1o5HCWFNQJpNxyjoRwClQVPaoTh0G2ClIRPkyduxYVK1aFTt37kS1atXQpEkTeHt7a31dKQgCAgICjFAlEREVhTIRCgYEBEAQBAwfPlztuJOTE0aNGoWWLVvC2dkZ9+7dw5IlS9CjRw8EBgbio48+UoyNiIiAq6srLC0tNW7fw8MDZ8+eRXp6OiwsLPJdX8WKFdXO8w1uyaMaCjoiFoD6moKGnj7s7OyMFy9eoHz58gwGqUyTyWR48eIFXFxcjF1KscfnmlIkeyjITkEiyocNGzZAEAQAQGJiIo4fP57j2PyEgnyeISIqeUp9KHjv3j2cPn0aHTt2hK+vr9pl2acCA8Dw4cNRr149TJo0Cf369YOdnR0AIDk5WWsgCEjdgvIxBQkFqeSTh35myIC9mACgcKcPW1hYwMXFBa9evQIAxQs7orJEPmXYxcWFj71UtrBTkIj0sH79emOXQERExUSpDwXln2yNHDlSp/EuLi4YPXo05syZg7Nnz6JLly4AABsbmxzX3EhNTVWMKYhnqouFQ1rf0NHRsUC3RcYhDwUdEaeYNlzYG41YWFigfPnyhr9hIiqV+FxTijAUJCI9DB06tFBul88zREQlT6med5iZmYmNGzfCxcUF7777rs7Xk+9EHBkZqThWqVIlREZGIk3LFJ3w8HC4urqyU6UMk3cCOiNGEQYWZqcgERGVYWFh6uc5fZiIiIiICqBUh4L//PMPXrx4gQ8//DDHqb/aBAcHA4BaF1bTpk0hk8lw8eJFtbGpqam4du0amjRpYpiiqUSSdwI6IVa5wUghbzRCRERlFDsFichAbt++jXXr1uH777/H33//rTguk8mQzscWIqJSr1SHgvKpwyNGjNC4LDMzE3FxcRrHnzx5gp9//hkuLi5o2bKl4viAAQMgCAKWLFmiNn7t2rVITk7GoEGDDFs8lSjyUFBbp2BhbDRCRKWTTCbDhQsX8N1336Ffv35o3bo16tWrh9atW6Nfv374/vvvceHCBS7eXpbFxwPR0erHMjIA/k4QUT48efIEnTp1Qv369fHxxx9jxowZ2LVrl+LytWvXwtraGkePHjVekUREVOhK7ZqCEREROHDgAPz8/FC/fn2NyxMTE+Hr64vevXujdu3ait2H161bh8TERPz++++wtrZWjK9fvz4+/fRTrFixAn369EH37t1x584dLFu2DG3btsXAgQOL8tujYkZbpyCnDxORrl6+fIk1a9Zg9erViIiIAKDcSEXVzp07AUhLWowePRr+/v5wd3cv0lrJyLJ3CcplZAD5mBVBRGVXdHQ02rZti7CwMNSrVw9t2rTBqlWr1Ma89957GDt2LP7++2907NjRSJUSEVFhK7Wh4IYNG5CVlZXjBiPW1tbo27cvLly4gF27diExMRGurq7o1KkTpk6dCj8/P43rLFmyBD4+PlizZg327t0LV1dXjBs3DnPnzoWJSaluuqQ85NYpyFCQiHKSlpaGBQsW4IcffkBycjLMzMzQuHFjtGzZEnXr1oWLiwscHBwQFxeHqKgo3Lx5E2fPnsX169cxc+ZMfP/995g2bRo+//zzfC2TQSVYTqFgWhpDQSLSyQ8//ICwsDB89tln+OGHHyAIgkYo6OzsjPr16+P06dNGqpKIiIpCqQ0Fv/rqK3z11Vc5Xm5paYl169bl6zZNTU0xZcoUTJkyRd/yqJTJq1OQ04eJSJuaNWvi8ePHqF+/PoYPH45BgwbB1dU1z+tFRkZi06ZNWL9+PWbNmoXAwECEhoYWQcVkdDmFglz7i4h0tHv3bvj4+GD+/PkQBCHHcVWqVMGZM2eKsDIiIipqbG8jMoCMDMASqbBGijIMVN1oJENzGiARkbW1NbZv347//vsPEyZM0CkQBABXV1dMmjQJ169fxx9//MEuwbJENRRU2RCNoSAR6erRo0do1KhRnjOdLCwsEJ19DVMiIipVSm2nIFFRysiQugQBaHQKAoAsIwv8cyOi7G7duqX38hP9+/dH3759DVQRFXuqoWDNmsCLF9LptDTj1ENEJY6VlRUSEhLyHPf48WM4OjoWQUVERGQs7BQkMoCMDGk9QeB1GGhqqhYKiplZximMiIo1Q61Hy3VtyxB5KGhpCVSurDzOTkEi0lGtWrVw5coVJCUl5TgmMjIS//33Hxo0aFCElRERUVHjuwgiA1DtFDQxAVCuHENBIsq34cOHIzAwMM9xGzZswPDhw4ugIipWRFEZClauDFhZKS9jpyAR6ahfv36IiorC5MmTIZPJtI75/PPPkZycjAEDBhRxdUREVJQYChIZgGqnoKkpAFdXtVDQBFnIYi5IRHnYsGGDTjs9njlzBr/++msRVETFyqtXQHKydNrXV323YXYKEpGOPv30U9SrVw/r1q2Dn58fvvvuOwDAgwcPsGjRIrRo0QIbN25Ew4YN8dFHHxm3WCIiKlRc5IzIADQ6BbOFgmbIRGamcr1BIiJ9ZGVlccpwWaS6nqCvL2BhoTzPTkEi0pGVlRUOHjyI/v374+zZs7h69SoA4PTp0zh9+jREUUTTpk2xa9cumJubG7laIiIqTAwFiQwgIwNwVe0UdHFRCwBNkSXtUMwNQonIAIKDg7n4e1mUPRSMjVWeZ6cgEeVDxYoVcfr0aRw8eBB79+5FaGgoZDIZvLy80K1bN7zzzjsQBMHYZRIRUSFjKEhkABnposaagoKpAEAEIIWCmZlGK4+IirG5c+eqnb927ZrGMbnMzEzcunULZ8+eRadOnYqiPCpOwsKUp319gVu3lOcZChJRAXTt2hVdu3Y1dhlERGQkDAWJDCArQwZzZAB43SloZwdTCzNAfoyhIBHlYM6cORAEAaIofYhw7do1XLt2Ldfr2NraYtasWUVQHRUr0dHK0+7uQEiI8jynDxMRERFRPjEUJDKArHTlLiImJgBMTSGYm0I1FMzIME5tRFS8zZo1SxEKzp07Fw0bNsQ777yjdayFhQU8PT3RtWtXuLu7F3GlZHSq3YCWluprCrJTkIgKICsrC1FRUUhNTc1xjLe3dxFWRERERYmhIJEByDKUoaCpqfQfE3PlooLyjUaIiLKbM2eO4rQ8FJw9e7bxCqLiS/XTJQsLbjRCRAUWFBSEWbNm4cSJE0jL5fFDEARk8kUsEVGpxVCQyABUQ0F5p6CpSijI6cNEpAuZTGbsEqg4U+0GtLBQ372KnYJEpKPz58+jQ4cOiu5AZ2dnODg4GLkqIiIyBoaCRAagOn1YW6cgpw8TEZHesoeC7BQkogKYPXs2UlNTMXz4cMybNw/ly5c3dklERGQkDAWJDEBbp6CJhfLPi52CRJQfEREROHbsGMLDw3Nc50kQBMycObOIKyOjUg0Fzc3ZKUhEBXLhwgXUrFkTa9euhSAIxi6HiIiMiKEgkQForCloYgLBzBQmAiATpTUF2SlIRLqYPHkyVqxYgaws6XFFviuxnHxTEoaCZVBunYIMBYlIR5mZmWjYsCEDQSIiYihIZAiqoaBgZgoIgtQtaALIstgpSES6WbRoEZYsWQJBENC1a1fUrl2b6zyRUm5rCnL6MBHpqFatWoiMjDR2GUREVAwwFCQyALXpw/K1BE1NYWoKZDIUJCIdBQQEwMzMDIcOHUK7du2MXQ4VN+wUJCIDGDVqFMaPH48HDx6gatWqxi6HiIiMyMTYBRCVBmqdgvJQ0MxMWl8Q3GiEiHTz4MEDtGrVioEgaceNRojIAEaNGoUPPvgAnTt3xr59+xTLVRARUdnDTkEiA1DrFDRTdgqqhoLsFCSivNjb26NixYrGLoOKq9ymD7NTkIh0VKVKFQBAWFgYevXqBTMzM1SsWBEmJpr9IoIg4MGDB0VdIhERFRGGgkQGkNP0YflrKzNkMhQkojy1bt0a//33n7HLoOJKHvyZmEi7WrFTkIgKICwsTHFaFEVkZGTg8ePHWsdyMxIiotKNoSCRAYiZuYeCnD5MRLqYNWsWmjdvjnXr1mHkyJHGLoeKG3koKA8D2SlIRAXw8OFDY5dARETFBENBIgOQ5RAKmspPcvowEekgPj4ekydPxscff4xDhw6hZ8+e8Pb21jqlCwDatGlTxBWSUWUPBbnRCBEVQOXKlY1dAhERFRMMBYkMQNQ2fZgbjRBRPrVr1w6CIEAURfz555/4888/cxwrCAIy+WlD2ZJbpyCnDxMRERFRPjEUJDIA1enDphbcaISICqZNmzZcv4lyxk5BIjKw8+fP49ixYwgPDwcAeHh4oH379mjevLmRKyMioqLAUJBITzIZIIjcaISI9Hf8+HFjl0DFWW6hIDsFiSgfHj9+jEGDBuHs2bMApA1HAOXGIm+99RY2b94Mb29vo9VIRESFj6EgkZ4yM6VOQLmcOgU5fZiIiPTCjUaIyABiY2PRvn17PHz4EFZWVujatSuqVq0KAAgNDcWBAwdw+vRpdOzYEZcuXYKjo6ORKyYiosLCUJBITxkZOYSCZmbcaISI9JKeno6oqChYWlqiXLlyxi6HjE3+6RI7BYlIDwsXLsTDhw/RvXt3rFmzBpUqVVK7/Pnz5/D398e+ffuwcOFCzJ0710iVEhFRYdO+nSER6SwjAzCBTHHe1FzeHsg1BYmoYDZv3gw/Pz/Y2trC09MTn332meKynTt3YuDAgXj48KERKySjyN4paG6ueRkRUR527twJNzc3bNu2TSMQBIAKFSrgjz/+gKurK/766y8jVEhEREWFoSCRnnLsFMy2piCnDxORLkaOHImhQ4fi0qVLsLa2VqzzJFejRg1s3bo1152JqRQSRc1OQUFQnmanIBHp6OHDh2jbti1sbGxyHGNjY4O2bdvyAygiolKOoSCRnnQJBdkpSES6+O233xAYGIh69eohKCgIcXFxGmPq1q0LT09P7N+/3wgVktGofrKkOm1Yvq4gOwWJSEempqbI0OHT6szMTJiY8O0iEVFpxkd5Ij3pGgqyU5CI8rJmzRrY2dlhz549aNy4sWIXyOzq16/P7o2yRjX0Uw0F5acZChKRjqpXr47jx48jNjY2xzHR0dE4duwYatSoUXSFERFRkWMoSKSn3DYaYacgEeXHf//9h2bNmsHLyyvXceXKlcOLFy+KqCoqFlRDP9W1BDl9mIjyqX///oiLi0OPHj1w69Ytjctv3LiBnj17Ij4+HgMGDDBChUREVFS4+zCRnrKHgmaWyk5B7j5MRPmRlpYGR0fHPMe9evUKpvIHGCobcuoU5PRhIsqnCRMm4I8//sC5c+fwxhtv4M0334Svry8AIDQ0FNeuXYNMJkPDhg0xfvx4I1dLRESFiaEgkZ5UQ0ETARDMuNEIERWMh4cH7ty5k+sYURRx+/ZtxRs4KiPymj7MTkEi0pG1tTX+/fdffPLJJ9ixYwcuX76My5cvKy43MTHBgAEDsHLlSlhZWRmxUiIiKmwMBYn0pBYKmgDK9kBuNEJE+dOxY0esW7cOu3fvxjvvvKN1zKZNm/D06VO89957RVwdGRU7BYnIgJydnbF161Y8efIEJ0+eRHh4OADpw6k2bdrkuYwFERGVDgwFifTEUJCIDOWzzz7Dpk2bMHDgQMybN08t+IuOjsa2bdvw2WefwdbWllO6yhp2ChJRIfDy8sKgQYOMXQYRERkJNxoh0pNqKGhqCmUomG2jEU4fJqK8VK9eHb/++itkMhmmTJkCLy8vCIKAX3/9FW5ubvj000+RmZmJDRs2wNvb29jlUlHKq1MwK0v6IiIiIiLSEUNBIj3l1inIjUaIKL/69++PoKAg9O/fH/b29hBFEaIowsrKCr169cK5c+fQt29fY5dJRS2vTkEA/PSJiPLj9u3bGD16NGrVqgU7OzvY2tqiZs2aGD16NG7evGns8oiIqAhw+jCRnnLsFORGI0RUQPXq1cPWrVshiiKioqIgk8ng6uoKExN+lldm6RIKpqUB3BSAiHSwcuVKTJ48GZmZmRBFUXE8ODgYwcHBWL9+PX788UcuVUFEVMrx3QWRnrimIBEVFkEQ4OrqCnd3dwaCZV1e04ezjyEiysH+/fsxbtw4ZGZmok+fPvj7779x48YN3LhxA//88w/69euHrKwsTJo0Cfv37zd2uUREVIjYKUikp8zMvNcUNIEMmRkiAMEoNRIRUQmna6cgEVEeFixYAEEQsHXrVvTv31/tsrp166JHjx7YsWMH3nvvPSxYsADdunUzUqVERFTYGAoS6UmXTkEAyErPAv/kiCgvWVlZ2LFjB44cOYLw8HCkpqZqHScIAo4ePVrE1ZHRsFOQiAzk8uXL8PPz0wgEVfXr1w/NmjXD5cuXi7AyIiIqakwoiPSU25qC8pMAIGZkgn9yRJSbuLg4dO3aFUFBQWprPGkjCOw8LlNUF6ZlpyAR6UEQBFStWjXPcVWrVsXt27eLoCIiIjIWJhREespfpyARUc5mzpyJixcvwsPDA+PGjUPt2rXh4OBg7LKoOGCnIBEZSIMGDRAcHJznuODgYNSvX78IKiIiImNhKEikJ112HwYAWQZDQSLK3a5du+Dk5ITz58/Dw8PD2OVQcaLLmoIMBYlIB5MnT0bfvn2xdetWvP/++1rH/PHHHwgKCsL27duLuDoiIipKpXIrQ0EQtH7Z2dlpjL137x569+4NZ2dn2NraonXr1vj333+13m5cXBzGjRsHDw8PWFlZoW7duvj555/znOJFpVuOnYIqG40AgJjJUJCIcvfixQu89dZbDARJEzcaISIDady4MSZNmoQPP/wQ/fr1U9t9+O+//0b//v0xaNAgTJo0CU2bNsXjx4/VvoiIqPQotZ2CrVu3xqhRo9SOmZubq51/8OABWrZsCTMzM0ydOhWOjo5Yu3Ytunbtiv3796NTp06Ksenp6ejcuTOuXr2qmNK1f/9+jBkzBi9evMCcOXOK4tuiYkjXTkFOHyaivJQvXx5WVlbGLoOKI04fJiID8fX1BQCIooidO3di586dGmNEUcSSJUuwZMkSteOCICAzM7MoyiQioiJQakPBKlWq4MMPP8x1zJdffonY2FhcvnwZDRs2BAAMGTIEdevWxaeffoq7d+8qFnJft24dgoKCsGzZMowbNw4A4O/vj759++K7777DsGHDULly5UL9nqh4yrFTUBBgYmYCQAZAvtEIEVHOevXqhZ07dyIjI0Pjgywq49gpSEQG4uXlxc2qiIgIQCmdPiyXnp6OxMRErZclJSXh77//Rrt27RSBIADY2dlh5MiRuH//PoKCghTHt2zZAhsbG/j7+6vdzsSJE5GRkYE//vijUL4HKv5y7BQEIJgpT3P6MBHl5euvv4aZmRk++eQTpKamGrscKk7YKUhEBhIWFoaHDx8W+IuIiEqPUtspuGPHDmzevBlZWVlwc3PDgAED8O2338LR0REAcP36daSlpaFFixYa123evDkAICgoCH5+fpDJZLhy5QoaNWqkMa3Lz88PgiCoBYhUtuTYKQgAZmYAMgBwoxEiytuqVavQpUsXrF+/HocPH0bHjh3h7e0NExPNz/AEQcDMmTONUCUZhWrgp9pFyk5BIiIiIiqgUhkK+vn5oX///qhWrRri4+Oxb98+rFixAidOnMDZs2dhZ2eHiIgIANC6mLv8WHh4OAAgJiYGKSkpWsdaWlrC1dVVMbYgKlasqHZeJpMV+Lao6GWkizl2CpqYs1OQiHQ3Z84cCIIAURTx5MkTbNiwQWOM/PL8hoJ8rinh2ClIRMUcn2eIiEqeUhkKXrhwQe38kCFD0KBBA0yfPh1Lly7F9OnTkZycDEAK9bKTdwPKx+Q2Vj5ePobKnsx0GeRvz7J3CqpNH+aagkSUh9mzZxu7BCqudFlTkKEgEeXT06dPERERkeuSFW3atCnCioiIqCiVylBQm88//xxff/019u7di+nTp8PGxgYAkKZlqo38SVE+Jrex8vHyMQXx7NkztfPx8fGKac5U/KnuKpxrKMhOQSLKQ2GGgnyuKeF06RTk9GEi0tH27dsxY8YMhISE5DouP7sN83mGiKjkKTOhoLm5OSpVqoTIyEgAQKVKlQBA67Rf+TH5dGFnZ2dYW1trHZuWlobIyEi0bdu2sEqnYk41FOT0YSIiKhTsFCQiA9m2bRs++OADiKKIcuXKwcfHB/b29sYui4iIjKDMhIKpqal4+vSpYhOR+vXrw9LSEufOndMYe/78eQBAkyZNAAAmJiZo1KgRrl69irS0NLVpxBcvXoQoioqxVPbk2ilorvwTYyhIRPn1/PlzPH36FID0QVX29ZqoDNElFGSnIBHp4LvvvgMALF26FGPGjIGp6iZ5RERUpmhuZ1jCRUVFaT0+c+ZMZGZmolevXgAAOzs79OrVC8ePH8d///2nGJeYmIh169ahevXq8PPzUxz/4IMPkJycjDVr1qjd7pIlS2BmZoYBAwYUwndDJYHqrsLsFCQiQwgICECtWrXg4eGBZs2aoVmzZvD09ETt2rURGBho7PLIGLjRCBEZyL1799CiRQuMGzeOgSARURlX6joFv/32W5w/fx7t27eHt7c3EhMTsW/fPhw7dgzNmjXDuHHjFGO///57HD16FF26dMGkSZPg4OCAtWvXIjw8HHv37oUgCIqx/v7+WL9+PSZPnoywsDDUrl0b+/btw86dOzFjxgz4+PgY4bul4iC3TkHVUBA6rsdCRGWbv78/AgMDIYoiAKBcuXIAgOjoaNy7dw/+/v44d+4c1q5da8wyqaixU5CIDMTJyQmVK1c2dhlERFQMlLpOwXbt2sHBwQG//vorJk6ciNmzZyM6Ohrz5s3D8ePHYW1trRhbrVo1nDlzBs2bN8f8+fPx2WefwdbWFgcOHEDXrl3VbtfCwgJHjhzBxx9/jN9//x2ffvop7t69i+XLl2Pu3LlF/W1SMaKxpqCJ8s+KnYJElB/bt29HQEAAnJyc8NNPPyEmJgaRkZGIjIxEbGwsFi5cCGdnZwQGBmLHjh3GLpeKEjsFichA2rdvj6tXrxq7DCIiKgZKXafgO++8g3feeUfn8bVr18bu3bt1Guvk5IQVK1ZgxYoVBS2PSqGsDJnitGBmCqh0mJpYqPyJZTEUJKLcrV69GmZmZjh8+DAaNWqkdpmDgwMmTZqEdu3aoVmzZli9ejX69etnpEqpyGVkKE9zoxEi0sOsWbPQrFkzzJ8/H9OmTTN2OUREZESlLhQkKmqqnYKCqXrzLTsFiSg/rl69irZt22oEgqrefPNNtG3bFleuXCnCysjodOkU5PRhItJBrVq1cOjQIbz//vvYvXs3unXrBm9vb5iYaJ9ENmTIkCKukIiIigpDQSI9qW40IpirL9ZsaqFynp2CRJSHpKQkuLu75znO3d0dSUlJRVARFRu6rCnITkEi0tHZs2cRHR2Nx48f4+LFi7mOZShIRFR6MRQk0pNqKGhiph4KqnYKClncaISIclehQgWd1nm6evUqypcvXwQVUbHBjUaIyEACAwMxZcoUAECDBg1QvXp12NnZGbkqIiIyBoaCRHpSmz6cSygIWRZEUW3JQSIiNe3bt8fGjRtzXefp+++/x7179zB06NAiro6MSh4Kmpio7XLPjUaIKL8WL14MMzMz/PXXX+jZs6exyyEiIiNiKEikJ7VOwezThy2Vf2KmyEJmJmBuXmSlEVEJM23aNPzxxx+YPn06du7ciSFDhsDX1xcAEBoail9//RVXrlyBlZUVvvjiCyNXS0VKHvipdgZmP89OQSLSwYMHD9CmTRsGgkRExFCQSF+yzJzXFFQNCRkKElFeatasie3bt2PQoEEICgrCpUuX1C4XRREODg747bffULNmTSNVSUaRUyjITkEiyidnZ2e4ubkZuwwiIioGGAoS6UnMZU1B1Y1GzJCJjAzA2rrISiOiEqhHjx64f/8+1qxZgxMnTiA8PBwA4OHhgXbt2sHf31+nzUiolNGlU5ChIBHpoFu3bjh69ChkMlmOOw4TEVHZwFCQSE+5Th+20OwUJCLKi7u7O2bMmIEZM2YYuxQqLnTpFOT0YSLSwTfffIN9+/Zh/PjxWLRoESyyP64QEVGZwVCQSE+qoWD26cPZQ8GMjCIri4iIShN5KJh9DQpTU2kHK1FkpyAR6WTt2rXo1q0bfv75Z+zduxft27eHt7e31q5BQRAwc+ZMI1RJRERFgaEgkZ5ElTUFTbOFgmZWmhuNEBHp4vz58zh+/DiePn0KURTh6emJdu3aoUWLFsYujYwhp05BQZCOpaWxU5CIdDJnzhwIggBRFPHo0SNs2LBBY4z8coaCRESlG0NBIj2phoKcPkxE+nrw4AGGDBmC8+fPA5A2FwGkN2gA0KxZM2zcuBHVqlUzWo1kBDmFgoA0hTgtjZ2CRKSTWbNmKZ5TiIiobGMoSKQnXUNB+UYjREQ5iYiIQOvWrfH8+XPY2Njg7bffhq+vLwAgLCwMBw4cwPnz59GmTRsEBQXBw8PDyBVTkcktFJQfY6cgEelgzpw5xi6BiIiKCYaCRHpSmz5swU5BIiq4WbNm4fnz5+jbty9WrVoFNzc3tcsjIyMxZswY7NixA7Nnz8a6deuMVCkVKVGE4lOlnDoFAXYKEhEREVG+MBQk0lNunYImFmYQAIhgKEhEedu/fz8qVaqE3377TetukK6urti8eTPOnj2Lffv2GaFCMgrVNnN2ChKRgT1//hxPnz4FAHh4eKBixYpGroiIiIqK5hZTRJQvuXUKwtQUpq8PcfdhIspLdHQ0WrVqpTUQlLOwsECrVq0QExNThJWRUal2ALJTkIgMJCAgALVq1YKHhweaNWuGZs2awdPTE7Vr10ZgYKCxyyMioiLAUJBIT2JW7qGgyeu/MnYKElFePD09kZSUlOe45ORkridYlujaKchQkIh05O/vj1GjRuH+/fsQRRHOzs5wdnaGKIq4d+8e/P394e/vb+wyiYiokDEUJNJXHp2C8lCQG40QUV769++P48ePIzw8PMcx4eHh+Pfff9GvX78irIyMKq9OQU4fJqJ82L59OwICAuDk5ISffvoJMTExiIyMRGRkJGJjY7Fw4UI4OzsjMDAQO3bsMHa5RERUiBgKEulBJgMEkZ2CRGQYM2fORP369dGhQwfs2bNH4/K9e/eiY8eOaNCgAWbPnm2ECskodJ0+LJMBKt3rRETarF69GmZmZjh8+DAmT54MR0dHxWUODg6YNGkSDh8+DFNTU6xevdqIlRIRUWHjRiNEesjIkMI+OY1Q0MyMoSAR6axHjx4wMTFBcHAw3nnnHTg5OcHHxwcAEBYWhtjYWABAixYt0KNHD7XrCoKAo0ePFnHFVCR07RQEpG5BG5vCr4mISqyrV6+ibdu2aNSoUY5j3nzzTbRt2xZXrlwpwsqIiKioMRQk0kOeoWC2TkFOHyai3Bw/flxxWhRFxMTEaN1Q5OzZsxrHBEEozNLImHTtFJSPZShIRLlISkqCu7t7nuPc3d11WueWiIhKLoaCRHrIHgqaWea8+7AZMtkpSES5OnbsmLFLoOIov52CRES5qFChAq5evZrnuKtXr6J8+fJFUBERERkLQ0EiPeSnU1CAiMx0GbiUJxHlpG3btsYugYqj/HYKEhHlon379ti4cSPmz5+PadOmaR3z/fff4969exg6dGgRV0dEREWJoSCRHvLsFFRZUxAAMtOywFCQiIjyJT+dggwFiSgP06ZNwx9//IHp06dj586dGDJkCHx9fQEAoaGh+PXXX3HlyhVYWVnhiy++MHK1RERUmBgKEulBl+nDqqFgVnoWAPOiKY6IiEoHTh8mIgOqWbMmtm/fjkGDBiEoKAiXLl1Su1wURTg4OOC3335DzZo1jVQlEREVBYaCRHrIz/RhQB4KEhHlLC4uDqtWrcLRo0cRERGB1NRUreMEQcCDBw+KuDoyCk4fJiID69GjB+7fv481a9bgxIkTCA8PBwB4eHigXbt28Pf312kzEiIiKtkYChLpIT8bjQBAVhp3GiGinIWGhqJt27aIiIiAKIq5juVuw2UIOwWJqBC4u7tjxowZmDFjhrFLISIiI2EoSKSHzExlKGgiAIJZ7p2Csgx2ChJRzj7//HOEh4ejZcuWmDJlCqpXrw57e3tjl0XGphoKmmtZgoKdgkRERERUAAwFifSg2iloYgKotQUCGqGgtNEIEZF2//77L7y9vXHkyBFYWVkZuxwqLtgpSER6mjZtGu7fv48pU6bgrbfeynXsmTNnsHDhQtSuXRvz5s0rogqJiMgYuA0qkR5UQ0FTU2iGgoKgdoydgkSUm6ysLDRr1oyBIKnjmoJEpIdLly5hwYIFSEhIyDMQBIC33noLiYmJmD9/Pv77778iqJCIiIyFoSCRHvLsFIT6Ma4pSES5qVevHqKjo41dBhU3+ekUZChIRNls3rwZgiDkq+vv+++/hyiK2LhxYyFWRkRExsZQkEgPeXYKAoAZOwWJSDdjx47FyZMncfPmTWOXQsUJpw8TkR5OnTqFypUrw8/PT+frNG7cGD4+Pjhx4kQhVkZERMbGUJBIDxkZgAlkAHLrFFQu3clQkIhyM3DgQEyYMAEdOnTA6tWr8fjxY2OXRMVBRobyNKcPE1E+hYaGon79+vm+XoMGDRAaGloIFRERUXHBjUaI9KBTp6Dq9OF0hoJElLvRo0fjwIEDGDNmTK7jBEFAZiaXJCgT2ClIRHpISkoq0E72dnZ2SEpKKoSKiIiouGAoSKQHjTUFTTSbbwVOHyYiHd28eRNt27ZFbGwsRFHMdWxel1Mpwo1GiEgPTk5OePnyZb6v9/LlSzg6OhZCRUREVFxw+jCRHjLSxXx1CooZ7Oohopx9+eWXiImJQb9+/XDlyhUkJCRAJpPl+EVlBDsFiUgPVatWxYULF5ChuhRBHtLT03HhwgVUqVKlECsjIiJjYyhIpIeMdBECpG6dnNYUFMxVpg+zU5CIcnHmzBnUrFkTW7duRcOGDWFra2vskqg4YKcgEemhY8eOSExMxMqVK3W+zsqVK5GQkIBOnToVYmVERGRsDAWJ9JCZpgz5ct59WDlLX2QoSES5kMlkaNiwIQRBMHYpVJzkp1OQoSARZTN69GiYm5tj2rRp+Pvvv/Mcv3v3bnz55ZewsLDAxx9/XAQVEhGRsTAUJNKD6sYhOXYKmnJNQSLSzZtvvonw8HBjl0HFDacPE5EePD09MXfuXKSnp+Pdd99Fnz59sGvXLoSHhyMjIwMZGRkIDw/Hrl27FJdnZGRgzpw58PLyMnb5RERUiLjRCJEedOkUNDFnKEhEupk6dSp69uyJ48ePo127dsYuh4oLTh8mIj1NnToV0dHRWLBgAXbv3o3du3drHSffxOqzzz7DtGnTirJEIiIyAr1CwZMnT8LU1BRvvfWWoeohKlF06RSEyu7DyORGI0SUs7p16+KLL75A9+7dMWHCBHTr1g3e3t4w0bKzOQB4e3sXcYVkFOwUJCIDmD9/Pjp37oxvv/0Wp06d0tiwysTEBG3atMH06dO5liARURmhVyjYrl07tGvXDv/++6+h6iEqUVQ7BXOcPqyypiA7BYkoNz4+PhAEAaIoYsGCBViwYEGOYwVBQCY/aCgb2ClIRAbSsWNHdOzYEXFxcbhy5QpevXoFAHBzc8Obb74JJycn4xZIRERFSq9Q0NnZGZUqVTJULUQljmrIp8v0YTGToSAR5czb25ubjJAmdgoSkYE5Ojqiffv2xi6DiIiMTK9QsGHDhggODjZULUQljur0YcHUBNDyZl4wYyhIRLoJCwszdglUHLFTkIiIiIgKgV67D48fPx5BQUHYu3evoeohKlFUQ0G1tQNVqHUKZnCqHxER5VN+OgUZChIRERGRjvTqFHzzzTcxduxYvPvuu/joo4/Qt29f+Pj4wNraWut4LohOpY16p6D2UJCdgkREpBfVoM/cXPNyTh8mIiIiogLQKxT09fUFIG1dHxAQgICAgBzHckF0Ko3UQsEcOgUFC+WfGUNBItJFVFQU1q5di2PHjiE8PBwA4OHhgQ4dOmDkyJFwcXExcoVUpDh9mIiIiIgKgV7Th728vODt7Y3KlSvD29s71y8vLy9D1Zyr+/fvY9asWWjevDnc3Nxgb2+Phg0bYt68eUhKSlIbO2fOHAiCoPXrp59+0rhtmUyGxYsXo1atWrCysoKXlxemTJmicbtUdugSCppyoxEiyodDhw6hRo0amD59Og4fPozbt2/j9u3bOHz4ML766ivUrFkThw4dMnaZVJTkQZ8gaN3Qip2CRERERFQQenUKFscF0QMDA7Fy5Ur873//w6BBg2Bubo5jx45hxowZ2LZtG86fP68xvXnx4sVwdXVVO9a4cWON2540aRKWLVuGd999F1OmTMGdO3ewbNkyXL16FUeOHIGJiV4ZK5VAqrsP5xQKqq4piCyGgkSUs+DgYPTp0wfJyclo0KABhg0bhqpVqwIAQkNDsWHDBly7dg19+vTB1atXUb16dSNXTEUiI0P6v4WF1g2t2ClIRERERAWhVyhYHPXr1w9ffvklHB0dFcdGjx6N6tWrY968eQgICMDYsWPVrtO7d2/4+Pjkeru3bt3C8uXL0adPH/z555+K476+vhg/fjy2bt2KgQMHGvR7oeIvKz0L8shPp1CQU+iJKBfz589HcnIy5syZg1mzZmlcPn78eHzzzTeYPXs2fvjhB6xbt84IVVKRkwd92qYOA1L3oIkJIJOxU5CIiIiIdFbqWtuaNGmiFgjKDRgwAABw8+ZNrdeLj4/Pdc3D33//HaIoYuLEiWrH/f39YWNjg82bNxe8aCqx8tspyOnDRJSbo0ePombNmloDQbmZM2eiZs2aOHLkSBFWRkaVVygIKLsF2SlIRHn45ZdfkJycbOwyiIioGDBIKHjq1Cm899578PT0hKWlJUaMGKG4TL4G0vPnzw1xVwX29OlTAED58uU1LmvQoAEcHR1hZWWFli1bYv/+/RpjgoKCYGJiAj8/P7XjVlZWaNiwIYKCggqncCrWVENBtY5AFSYqG41w+jAR5eb58+do1KhRnuMaNWpk9OdVKkK6hILyyxgKElEexowZA09PT0yaNAnBwcHGLoeIiIxI7+nD3377LWbPng1RFBXHVE87Ojrihx9+gKenJ8aMGaPv3RVIVlYWvvnmG5iZmalN8XVycsKoUaPQsmVLODs74969e1iyZAl69OiBwMBAfPTRR4qxERERcHV1haXquj2veXh44OzZs0hPT4dFbi/Yc1CxYkW18zKZLN+3QcahS6egqYVKpyBDQSLKha2tLV6+fJnnuJcvX8LW1jZft83nmhIsP6Egpw8TUR7efvttHDx4EEuXLsXy5cvRuXNnjB07Fj169NDrdvk8Q0RU8ujVKbh//37MmjULHh4e2LZtG168eKExxs/PD25ubtizZ48+d6WXiRMn4ty5c5g7dy5q1qypdnz16tUYOnQo/ve//+Hzzz/H9evXUb58eUyaNAmJiYmKscnJyVoDQUDqFpSPobJFp05BleMCQ0EiykXDhg1x8uRJ3LhxI8cx169fx4kTJ9CwYcOiK4yMi9OHiciA9u3bh+DgYEyePBmOjo44ePAg/ve//6Fq1apYuHAhYmJijF0iEREVEb1CwaVLl8LS0hL79+9Hv3794ObmpnXcG2+8YbTW9JkzZ2LFihUYNWoUvvzyyzzHu7i4YPTo0YiNjcXZs2cVx21sbJCWw6fvqampijEF8ezZM7UvtvGXHGqdgjqEgtxohIhy4+/vj4yMDHTq1AmrVq1S+3AqMTERK1asQOfOnZGVlYVRo0bl67b5XFOCsVOQiAysSpUq+OmnnxAeHo61a9fijTfewMOHDzF16lR4enrC398f165dy9dt8nmGiKjk0SsUDAoKgp+fH+rWrZvrODc3N6OsfTRnzhx8++23GDZsGH755RedryffiTgyMlJxrFKlSoiMjNQaDIaHh8PV1bVAU4epZFPrFMxp+rAl1xQkIt28//77GDx4MF69eoVx48bB0dER7u7ucHd3h6OjIyZMmIBXr15h8ODBig20qAxgpyARFRIrKyuMGDECV65cwZkzZ/D+++8jKysLgYGBaNy4MVq3bo1t27Yhi69hiYhKJb1CwaSkJFSoUCHPcXFxcUW+psScOXPw9ddfY+jQoVi3bh0EQdD5uvJPtVQ3JWnatClkMhkuXryoNjY1NRXXrl1DkyZNDFM4lSiquwnnNH1YdU1BQcYXVESUu19//RWrVq2Cr68vRFFEZGQkIiMjIYoiqlSpgp9//hkbNmwwdplUVESRnYJEVCRatGiB5cuXY+zYsRBFEaIo4syZM/jggw9QvXp17Nixw9glEhGRgekVCpYvXx4hISF5jrt37x68vLz0uat8mTt3Lr7++msMHjwYgYGBMDHR/DYzMzMRFxencfzJkyf4+eef4eLigpYtWyqODxgwAIIgYMmSJWrj165di+TkZAwaNMjg3wcVf7qsKWhpozyenpIFlX14iIi0Gj16NEJCQvDkyROcP38e58+fx5MnTxAcHIyPP/7Y2OVRUVJddkLXTkE+0RBRPl29ehUjRoyAl5cXFi9eDBMTE/Tu3Rs///wzWrRogbCwMAwYMAABAQHGLpWIiAxIr92HW7Vqha1bt+LMmTN46623tI7Zs2cPQkJCiuxNzMqVKzF79mx4e3ujU6dO2LJli9rl5cuXR+fOnZGYmAhfX1/07t0btWvXVuw+vG7dOiQmJuL333+HtbW14nr169fHp59+ihUrVqBPnz7o3r077ty5g2XLlqFt27ZquxpTGZKVdyjoVU25QY1pejKehctQyVOvPJ6IyggPDw94eHgYuwwyJtXpwLmFgo6O0v9FEYiMBHJY55mISC4jIwPbt2/HihUrcOHCBYiiCCcnJ4wZMwZjx45F5cqVAQAff/wx9u/fj759++Knn37CiBEjjFw5EREZil6h4JQpU/DHH3+gT58+WL16NXr27Kl2+YEDBzBy5EiYm5tj3LhxehWqq6CgIADA48ePMXToUI3L27Zti86dO8Pa2hp9+/bFhQsXsGvXLiQmJsLV1RWdOnXC1KlT4efnp3HdJUuWwMfHB2vWrMHevXvh6uqKcePGYe7cuVq7Ean006VT0L2OKywtgLR0wAyZCA6KRSXPckVVIhEVc0FBQXj27Blq166N6tWr5zr2/v37uHv3LipVqsRlK8oKXUPBWrWAw4el03fuMBQkohyFh4fjl19+wbp16/Dy5UuIoojatWtj3LhxGDJkiNbNE7t164bu3bvjn3/+MULFRERUWPQKBRs1aoSFCxdi8uTJ6Nu3L6ytrSEIAv7880/89ddfSEhIgCiKWLZsGerUqWOomnO1YcMGndZasrS0xLp16/J126amppgyZQqmTJlSwOqotFFdU1B17UBVgrUVbCvYI+1xAgDg6dVXwLsMBYlI2tCqY8eOsLe312mXR2dnZ4wZMwbJyckIDQ2Fk5NToddIRqZrKKj6OuvOHaBNm8KriYhKNF9fX8XGId26dcOECRPQuXPnPK/n5OSEjIyMwi6PiIiKkN7tbRMmTMC+ffvQtGlTpKSkQBRFJCQkID4+HvXr18fff/+NsWPHGqJWomJHl41GAMDKW9mx8eLmq0KtiYhKjs2bNyMxMRFff/013HTo7HJzc8PcuXMRGxuLzZs3F0GFZHS6hoK1aytP375dePUQUYlnZWWFsWPH4t69e9izZ49OgSAALFiwAA8fPizk6oiIqCjp1Sko17VrV3Tt2hVRUVF4+PAhZDIZvLy8ULFiRUPcPFGxpUunIAA4V3dDxOlQAEBcCENBIpLs27cPtra2Wpe7yMngwYMxceJE7Nmzhx+6lQUF6RRkKEhEuYiIiICdnV2+r1euXDmUK8fZLkREpYlBQkE5FxcXuLi4GPImiYo1WZZMcTq3UNC9rhtuvT6d8pihIBFJbt68iWbNmsHc3Fzn65ibm8PPzw83btwoxMqo2FANBXP7PXFzA1xdpU1GGAoSUS4cHR3xxhtv4MqVK8YuhYiIjEyv6cMbNmzA06dPDVULUcmjY6egVyPltEDzuFeIjxMLtSwiKhmio6NRoUKFfF+vfPnyiIqKKoSKqNhRXb8rt05BQNktGBEBxMYWWklEVLLZ2NgU2XrvRERUvOkVCg4fPhyVK1dGrVq1MHbsWOzatQvx8fGGqo2o2NN1+rB3YzeYvv5rM0cGgi/FFXZpRFQCWFpaIikpKd/XS05OhqWlZSFURMWOrtOHAc3NRoiItKhevTpevnxp7DKIiKgY0CsU/Oijj+Dl5YX79+9j1apV6Nu3L1xcXNC8eXPMmDEDx48f5w5VVLplqYSC5jn/OZk52MDG1UZx/vFlTiEmIqBChQq4fv16vq93/fr1AnUYUglU0FCQU4iJKAcffvghTp06hQcPHhi7FCIiMjK9QsHAwECEhYXh3r17WLlyJd555x3Y29vj4sWL+O6779CxY0c4Ozvj7bffxsKFCw1VM1GxoWunIABYeiqnED+/wVCQiICWLVsiLCwMZ8+e1fk6Z86cwcOHD9GyZctCrIyKjfyEgtyBmIh0MHHiRHTt2hUdOnTAli1bkJqaauySiIjISPQKBeWqV6+OTz75BH/99ReioqJw4cIFzJs3D+3atUNmZiYOHTqEL774whB3RVS8qHYKWuYeCjpWU4aCscEMBYkIGDRoEERRxKhRoxAXl/eyArGxsRg1ahQEQcAHH3xQBBWS0bFTkIgMrFq1avjvv//w5MkTDB48GLa2tqhYsSKqVKmi8VW1alVjl0tERIXIIKGgqoyMDCQkJCAhIQHx8fHIzMwEAIgiN1agUkglFDTLo1PQrY4yFEwKYyhIxUtSEnD3rrGrKHs6deqEjh074vbt22jcuDH+/vtvrc+Xoihi9+7daNKkCe7evYt27dqhS5cuRqiYilx+QsGKFQFHR+k01xQkohyEhYXh0aNHAKTnF1EU8eLFC4SFhWn9IiKi0svMEDdy7do1HD58GEeOHMHp06eRmpoKURTh4OCAHj16oFOnTujUqZMh7oqo2MjKAkygEgrm0Sno0VAZCoovXyE9TYSFpVBo9RHpKi4OqF4dePVKxNy5AmbONHZFZcvWrVvx1ltv4f79+3j33Xfh5OSERo0awd3dHQDw8uVLXLlyBbGxsRBFEdWqVcMff/xh5KqpyOQnFBQEqVvw3Dng0SMgMRGwsyvc+oioxHn48KGxSyAiomJCr1Dw/fffx7///ouoqCiIoghzc3M0b95cEQL6+fnB1DT3oISopMrIAEyh+5qCvn7KUNBcTMPD6wmo2dSh0Ooj0tWBvVno+moLKuIZjq/qiZkz6+R9JTIYFxcXXLx4EWPHjsXvv/+OmJgYHD16FIIgfWgg7xw0MTHBwIEDsXz5cjg5ORmxYipS+QkFAWUoCEjtv02aFE5dRPl18CAwbx7wyScAlz8wqsqVKxu7BCIiKib0CgW3bdsGQRDQoEEDzJ49G126dIGNjU3eVyQqBbKHgnl1CtpVsIOVoxVS46TFnMOCXjEUpGIh9dYDVIW0A2Ht58eQmloHVlZGLqqMcXBwwMaNG/H1119jz549uHTpEl69kpYZcHNzQ+PGjdGzZ09UqVLFyJVSkStIKCh3+zZDQSo+pk0Drl0Dbt0C3n9f6mwlIiIio9IrFLS3t0dCQgL+++8/DBo0CK1bt0bnzp3RqVMnvPHGG4aqkahYyszMX6cgBAEWHm5IjXsCAHh2/RUALt5MxpccEas4XQ5RCA2RoU49gy85Szrw9fXFuHHjjF0GFSf6hoJExYV8bbroaOD5c2kNTCIiIjIqvULB6OhoXLx4EUeOHMGRI0dw7NgxHDp0CIIgwNXVFR07dkTnzp3RuXNneHp6GqpmomIhv52CAGBfxQ3xt6VQMOpeZKHVRpQfSS+TFKdNIMOj/2JRp145I1ZERAr5DQVr11aeZihIxUV6OhAbqzwfHMxQsBj4888/sX37dty7dw/x8fFaN7oSBAEPHjwwQnVERFQU9AoFTU1N0aJFC7Ro0QIzZ85EcnIyjh8/jiNHjuDo0aP4448/FIuh16hRA3e4Ex6VIgUJBV1ruyF8j3SaOxBTcZHyKlHt/LObUQAYChIVC/kNBb28AFtbaUtxhoJUXLx8qX7+/n2gTRvj1EIQRRHvvfce/vrrL61BICCFgaIoKta3JSKi0smg88NsbGzQvXt3LFq0CBs3bsSUKVNgaWkJURRx//59Q94VkdFlDwXNrfIOBSu9odxsJDPiJUSZ9hdiREUpLSZJ7XzkvSgjVUJEGvIbCpqYKLsFQ0OBlJTCqYsoP168UD/P9wVGtXbtWvz5559o0KABDh48iD59+kAQBNy7dw979uzBgAEDAAAzZsxAaGiokaslIqLCpFenoKqnT5/i8OHDii5B+QLp8l2JW7RoYai7IioWCtIpqLoDsUl6CiJCkuFRw7ZQ6iPSVWZsktqTQfxDhoJExUZ+Q0FAWlfw0iVAFIF794CGDQulNCKdZQ8Fg4ONUwcBADZt2gRLS0vs378fFSpUwJYtWwAA1atXR/Xq1dG9e3e0b98eY8aMQbt27bhbMRFRKaZXp+CuXbswduxY1KpVC5UrV8bIkSPx+++/49WrV6hXrx4mTpyIvXv3IiYmBsePHzdQyUTFQ0FCQbeqDjC1Ur6pC73AKcS6Or7pCZb0Oor/jnItRkOTxatPH055ylCQqNgoaCgoxynEuktLA3btUm6IQYbDTsFi5ebNm2jRogUqVKgAAIopwqpTiUeNGoUaNWrgxx9/NEqNRERUNPTqFOzTp4/itJeXFzp16oROnTqhY8eOcHd317s4ouIsI00GAdKLJxMBEMzyDgUFEwEWlVyQEvoMAPD0ehQAn0KssnSICk/FsRGbIWSkYef5u2jwYgwEE65xYwhJSYBZuvr0YTEqCunpuucPRFSIChIK1qypPM3wRXfz5gHffANUqiRNvba0NHZFpUf2NQVDQoCsLMA079dOZHgpKSmoqLLRi+Xr3/X4+Hg4Ojoqjjds2BCHDx8u8vqIiKjo6BUK9u7dG507d0anTp1QvXp1Q9VEVCJkpim7BE1NofMLW/vKylDw1R12ZOki5OxLCBlp0pnIV3gRloIKVWyMW1Qp8fJpOiyQrnbMQYxDWHAGatQ1N1JVRKSQkaE8rWsoqPqajNM0dXfqlPT/iAjp51avnnHrKU2ydwqmpwOPHwO+vsapp4wrX768YqknAIpmjpCQEDRu3FhxPDo6GqmpqUVeHxERFR29pg//9ddf+OSTTxgIlhDx8cC6dUBQkLErKR0yUpWhoIkJdA4FXWood3WNDY02dFmlUmRYgtr5xzfijFRJ6RP1OEnr8cfX+LtJVCyodgqa6xjUV60KyHcMZSiou/Bw5WlOITas7KEgwN9NI6pWrZraBiJNmzaFKIr45ZdfFMfu3LmD48ePo2rVqsYokYiIiohBdx+m4m3i4Cjs9v8HY1tewZUrxq6m5Ctop2DFui6K08lP2Cmoi9hH8WrnI27HGqeQUijmqfZQ8NkthoJUQH/+CWzbJm1yQforyPRhKyvAy0s6HRzMfwtdiKJ6KPjokfFqKY20hYKc2m40Xbp0wcOHD3H79ZqjXbp0gZeXFwIDA9G0aVP07dsXLVq0QEZGBoYMGWLkaomIqDAZZPfhO3fuYOnSpTh27BjCX7+g8vDwQIcOHTB+/HjUrl3bEHdDekhJAcz27kZjPAYyL2PZRCdsOFnF2GWVaKqhYH46BSu/qewUNEuMQXSUiHIuXB8vN/Hh6p2Cr4JjjVNIKRQXnqj1eNR9BtZFoUOHDgW+riAIOHr0qAGrMYCjR4F+/aTTMhnw/vvGrac0KEgoCEhTiB8/BmJjgagowNXV4KWVKvHxQHKy8jw7BQ2LoWCx8sEHHyAzMxMpKSkAAAsLC/zxxx/o3bs3Ll++jMuXLwMA3nnnHUyYMMGYpRIRUSHTOxTcsGEDRo8ejYyMDLUdq4KDgxEcHIz169dj9erVGDp0qL53RXq4eCIFFbOeKM6nnbqAEyeqoG1bIxZVwhW0U9DzDReYmQKZWYAZMnE/KA7N33YqnCKLkaQkwNa2YNdNfq7eKRgdGqt/QQQASHiuvVMw/iFDwaJw/PjxAl9XvltksbJ7t/L0kiUMBQ1Bn1BQHhoHBzMUzItqlyDATkFDk280YmsrvSAAGAoakbe3N6ZPn652rHnz5nj48CFOnjyJ6Oho1K5dGw0bNjROgUREVGT0CgUvX74Mf39/ZGVloWfPnhgxYoRi3YnQ0FAEBATgn3/+gb+/P+rWrYsmTZoYpGjKv+t/hyl2ygWAGriP77+IRZtzTiiO7ytLgqz0bJ2CJrrNxje1s4a9mxVinksLNz+6Gl3qQ8FPPwV+/hkYOhRYvz7/1099pd4pmPCUawoaSuJzZaegpQWQ9jp/SHnKULAoHDt2zNglGNa//ypPX7gAXL4MqCxaTwWgTygoFxwMtGhhuJpKo+yhIDsFDScrC4iMlE7XqQPcvQskJHBNwWLI2toaXbt2NXYZRERUhPQKBX/88UfIZDIEBARg2LBhapfVq1cP//vf/7BhwwYMHz4cCxcuxO+//65XsVRwT06FQXWvVgEiMi9cwv79ndC9u9HKKtFUOwUFUxOdQ0EIAmy8XBDzXHoD8uxmFIDSO5U7KgpYtUo6vWEDMHMmUCWf3256VAJUs+uUZ7EGqo5SIpWdgs4+jnh+XwpcZZFRyMwEzAyyyATlpG1patd++RK4dUv92KpVQECAceopLQwVClLuGAoWnshIaTkBAChfXjp9+bL0M05LAywtjVoeERFRWabX271Tp06hYcOGGoGgqo8++ggrVqzAyZMn9bkr0kNKCpB656EiFLS1AZKSgUa4gtnT2+Htt810zrNISTUU1HXqsJxjlXIID5LegLy6V7o3dHjwAPDAU7yB/3AT9XDtWuV8hYKyLBFifLxaKGieHIuYGMDZ2eDlljlpUcpOQec3vPH8/g0AgLUsCY/vp6JKHStjlUYljbap0Fu2AD/+CJQrp3kZ6YahoG7S04EdO6Tvu2nT/F8/IkL9/KtX0hqDNjbax5PuVNcTdHcH7O2lUFAmA0JDAa49bjRpaWm4dOkSwsPDkZqamuM4bjZCRFR66RUKRkZGon379nmOq1WrFm7cuKHPXZEeLh5LQrksaS0XUxOgTx9g02bABslIu3Ybf/7ZAP37G7nIEkiWUfBQ0L2WC26/Pp3wyLDTNEVRWle+uARmD0Oy8D62wg6JqIebuHl5Ivr00b0r4OXjVJjIMtWOWSEVobdT0fgtBlb6So9Jgvy316muByz33kZasvS7/fhqFKrU8TBecVSyqE6Frl8fuHEDSE2VWoQnTzZaWSVeQUPBKlWkDnaZrGyEgr/8AkyYIO28HBICeOTzsSt7pyAgrSvIwEp/qqFg+fKAubnyfHAwf8ZGsmzZMsyZMwdxcXkvycJQkIio9NIrFHRycsLjx4/zHPf48WM4Ojrqc1ekhxv/hClOu1W2RtV3qqL6+ZsIDgH8cBGbNjEULIiYyIKHgh71lV0zsshovTbhUJWRAXToAJw5A8yeLX2pio8HTp4Ezp/JQtL+k7B7ehc1BjXF4KWFt97ns1vRsIPUjWaNFDy9GAHAV+frPw9O0Hr86c1YNH6rgiFKLNOy4pWhoIOHPSzcnZEWJq399OxWNACGgsbw7Nkz7N69G/fu3UN8fLzaRl5ygiAgoDhNzZWHgqam0uKh8nWEV60CJk7UfYkFUlfQUNDCAqhcGXj4UApeRBFFvohwSIjUKdqkCeDvX7j3deKE9P/UVOl38cMP83d9hoKFR77JCCCFgqqb3nCzEaPYtGkTJk6cCEBq3qhduzYcHByMWxQRERmFXqFg06ZNceDAAfz777/o0KGD1jH//vsvzpw5g+5cuM5onpwKg/Xr0+Ua+QB+fnjzTSkU9MRTXL30DEBFxfiMDGDvHhEVKwlo1swYFRd/d+8CyxZnoffr844u+QsFvd90gQBABOCMGNy7I0OjJvq/YT58GLhwOh0V8QoL5lfEjBkmirzywQOgeXMgOTIJ/bEdPggDAIQs34/IKXXg6l04U6Si7kdB9acTe/Mp8hMKRobGaz0ecScOAENBfWRlAWKicvqwk6cdrDxckPA6FIy6z81GjGH58uX4/PPPkZGRoTgmDwXlOw6Loli8QsGICODePem0n5+0uUinTsCRI9KDz+HDABevLxh5KCgI+f4ACtWrS6FgQoIUzJQvb7i68ppau3cvMGgQEBcHrFkDtGunPqXZ0FS7IS9cMEwoyHUFDSN7p+DrTQkBMBQ0kiVLlkAQBKxfv55dgEREZZxeKcS4ceMgk8nQq1cvTJ06Fbdu3UJycjKSk5Nx8+ZNfPbZZ+jVq5diLBW9lBQg7e5DxfkqHXwBLy+41lOGKRWeXUGUynv/ldOe4HifpVjTPBBn/815fZGyKjYWeOcdIDlR6hQ0MwU6dMrfGzXLiuUUS2yZIgsPrhhmN90Th9MxBqvgj7XokrobISHKy379FbCIDMfHWK0IBAFAELNw49Azg9y/NnGh6sGSyfNwxMbqfv3oR9o7BaMe5ONGSKvol5mwFJV/4y7etnDwdVGcTwhjKFjUjh49igkTJsDKygrTpk1Di9c7xq5evRpTpkyBj48PAGDixIkIDAw0YqXZqK4nKF9WZMwY5bE1a9THiyLwxRdA797qgQFpkoeCFhb57/SrUUN52pBTiNetAxwcgL59pX9LVTIZ8M03QK9eUiAod/as4e4/u+xTpC9ezP9t5NQpSPrLHgqqhsMMBY3izp07aN68OQNBIiLSLxTs2rUrpk+fjpSUFCxcuBANGjSAvb097O3t8cYbb2Dx4sVISUnBjBkz0KVLF0PVTPkQ9G8CnLKkrh9TE6BuDx9AEODa8Q1YvF7SpRIi8N9/yutEbD0JJ8TCC49xenFQ0RddjGVlAQMHSq9hTSGFgv/7H+Dlk8/uDWtr2JdXdlg8uWaY8OXBoQdwQiwAoD5u4MZV5Vp8989H4yNsgAPiUd4dKKey5mDo6WwLrBtQcrj6RioeCMf1/zSnQuYk7on2TsGYsFh9yiIAkY+UOw8LAMp52cK1pjIUTAnP+/dSy6xW0sPSpUshCAIOHjyIefPmofrrN8/+/v748ccfcfv2bQwdOhSBgYFo3bq1katVobqeoDwU7NULkC8dEpTtuSQoCFiwANi9G/juu6KpsaRSDQXzq7A2G1m8WHpC/Osv4OlT9csmTABmzdJ8cLh0yXD3n114uDRtWO7aNWlXW11lZiqDKycn5XF2ChpG9o1GnJwANzfpfFlY77IYsrKyUnzIREREZZve8xW/+eYb7N+/H+3bt4elpSVEUYQoirCwsECHDh2wb98+fP3114aolQpAdT1B18q2sPaWXoSZVKqgmEXkikhcuyq9eI+LA7IilC/eXpwPLdCb/pePU7H+k4s4Gli8P2UXRWn9venv3MRsp6VY1HY3ZFk5f8Pz5wP790unTZGFt1oCDRog/1O6ANhVVoYvL+7ovwNxbCyQfEf58zaBDKHnVF6IX7kCc0jTEdu2E+DbVLmmz4urhRMKZmQAspfqwZI9EnD7gvbuP20SninHuqhsYJocHqtveWVe9BNlKGhhYwozOytUqKv8vZS9ikJWZs5/D4f+iMEwl78xvtkFtWXPqOAuXryIRo0aoVkOazdYWlri559/hpWVFebOnVvE1eVCHgqamwMtW0qnzcyAOnWk00+eACpT1XHtmvL0oUMFv9/gYGlDk5IgKUnacOXLL6XONl0Vt1AwKgq4fVt5/vJl5en4eGDlSum0IADTpysvK8xQMPv3lp4OtU878/LihfLfRPVvj6GgYWTvFASUXawREeqPDdr8/bc03SE/fzeUqyZNmiCYgSwREaGAoWBISAgWLFiAMWPGYNKkSXj+/Dn++ecfJCQk4Pnz53j+/DkSExNx+PBhvP3224aumfLh6ekwxWmXxj7KqUeurqjwegaxJdJw95L0guzSmTTYQ9mZZRP5GA/uKte10tWvA/bh0S/7cHLEr7h6oHhODfvtN6BePeCdVpEQ/t4FIS4G8Sev4sI27UFmUhLw00+ACyLRBEEYVv8yOnZ8fWEBQkGX6sqEK/aB/p2CJ08CnqL6xj/ysO/VK8AySjk1yqlnK9j3aqc4nxwcXigdX0+eAE6iZuAZfuGpltHapbxQhoJuNZTtjVkxcUhO1q++si42XBkKmtrbAoIA7zeVoaBZVhqe3kvSdlUAwLHP98En5grKXdyPvSvDCrPUMiMmJgZVVdbbMn+9S2dKSorimKWlJVq3bo2jR48WeX1aPXkirRsISAuXqq4zp7pJg3zNQUA9VLp7V7PbTBd37kihY4MGyk0mirPJk6UOu/nzgT//zH2sKEot6Rs2SA/gQPEJBc+cUT9/5Yry9OXLyg5Bf3/g22+VNVy7Jn1SVBi0fW/5mUKsOnW4ShWg4ut1ljl92DDkG42YmkKxdoquU9svXJDWbPnoI2D79kIrsaz58ssvcfnyZeyXf9JNRERlVr5DwSVLlqBOnTr48ssvsXr1aixbtgzDhw9HzZo1cefOHbi7u8Pd3R2mBQhJyLCyrydYtZPK5g52dnDztFScfXpNmmJ883ik2m2YIivHkCwnGWkyJF66CwAQIMO5dbd0vu6NG1JYl9eHxvq6elVag/z2bRH/w98wg3KabcgJLesKQaqrZux5jMUKvGO6F6O7PlRupvn6jXt+qHZkpYRH6/1e6eSRdFTAc7Vj8fektQKvXZGhEqSA0NICqNDcB3U7V1KMM0uJR8g1w//Qw+6nwwGa03+jb2j/GWuTHqm8foWmXpCvqOWEWISG6luhJCsLmDcPmDZN+f67LIiPUP6bmzraAQDKedvBzFoZPtw9+VLjegCQECeD6ZMwxfnHJ8O0jqP8KVeuHJKSlEGss7MUhD9+rB74Z2VlISqqmKz5qG3qsFytWsrTd+5oPw0ABQk4d+6Upn0CwObN+b9+UTp2TH1dxdzW14uLA958E6hZExg2TLkuX0G2qPfxkTo2AcOFgqdPq59X7RRUDeJer4ep2IU6NRW4pfvrgXzRti5dQUNBDw9p12YAePZMfVoyFYy8U9DdXbkLuWooePNmztdV7ST+91/D11ZGVa1aFTNmzMC7776LqVOn4uTJkwgLC8Pjx4+1fhERUemVr1Dw9OnTmDJlCjIzM2FjY4M333wTVatWhSAIePr0Kfr27QsZW/uLjaCj8XDIkrq0TE2AOt19lBcKAtxqK6ePxgRHIi0NeHBeMxEJOZS/5OX28ZcQMpVzCcNP63b90FCgXdMkTPvwCT75WPffo/iXqfh9wnkcXxeS9+DXduyQ/t8UQfDGY1gp81G8/E9zKq0oAquWpKMtpG6U+vVV3p+ZmEhv4PLJu6GyU9BJFqVotCmoO4efwgTqPzeTl88QFwfcOxMJS0jrK1WoAJh4VoJbDWdYO1kpxt46bPgpxBE3lV2CpiqPNukPwxXv5fOSGaPsFHSq7wUHB+m0DZIRetcwc1YXLQJmzAB++EGaOabaxFTSpacDOWVHiS9Upg87S7/QgokA+xrK3cjvH9Me4N44+hJmUCbZL28Uz47gksbb2xtPnjxRnK9Xrx5EUcSePXsUxxITE3Hq1Cl4enoao0RNuoaCd+8qT2cPBQ8fzv/9njunfv38tDsn6L6EgUJoaMGmKiclASNHqh9TDdKy++UXzamvFhZSp2F+mZkBvq8/EAwJMcwioKdOqZ9X7Q68cEF5XD4NVx4KAoU3hVjfTsEIlee/SpWkMFVO5e+RCkAUlZ2CqrtfN26sPJ19zVFVqpepLjtAevHx8cG3336L9PR0LFy4EO3bt0fVqlXh6+ur8VWlShVjl0tERIUoX6HgihUrIIoihg4diufPn+PSpUu4f/8+rly5gqpVqyIkJAQHDhworFopn27tDVOcLudjD2tPF7XLKzVwVXZdZUXi9m3g2XXNUDD2SqjOAQ4A3Dui/gLa7EU4Qm7m/Un7rs2JGJm2AiMQgJg/Dun8nm3tu/twb9kBHPffjPUzdQsg9+wBHBGLTjiCtm2A7t2VlyXe19yJ9/hxwOzOdVhDmsLn19JMekHbuzcwfjzQsKFuxaqw9XaBg7102gmxuHMzK9+3IRcVBSTf1ezodMdL3LyWifCLymDH3tcFsLYGBAF2NZTdgo/OGT4UfHVPGQr6qjSqumVG4P7dvIPf+JgsmKUrg6tyDTwVM48A4OnNWL1rzMoC1q5IQx/8iSH4Fe4Pz6Nji2QcOaL3TRtd6AMR77qewrAK+/HLAs2OzeSXyk5BK1c7xelKTT0UpyOCtIeC2TtqU8Oec11BA2jbti1u3bqFF687a3r06AFbW1t89dVX+Pzzz7F8+XK0a9cO0dHR6Nq1q5GrfU2+87ClpTR9WJXq9GF5KJiQoBm0HDmSv8BKFIHz55XnHz2Czp+sfPONtHPuiBG6319wsDRNuWFDYNcu3a8HSJtuZG9rvnpV+/poGRnAihXSaUEA5s6Vfr7R0cAnn+TvfuXk03eTkqTON30kJ2sGmi9eKEM1eRBnby91OgJFGwpaWQFNm0qn790DYmJ0u372TkHVUNCQ6woeOgR8+imwdWvp6kAMDgaWL9e+k3hMjHLauLu78rj83wlQD5NViaJ6uHvjhvSkTXrz9vaGt7c3KleurDid05eXl5exyyUiokKUr1Dw3Llz8PT0xOrVq2GrMo2lQYMGWLp0KURRxHnVF+lkVGrrCTbyUa4n+JqlpxtcXueEbniFnTsB8zjNUNAx9TmunFIGM3m98Q8/r/5mT4CIM7+FaR+s4tGeG4rQrUHWFfx7OO8XfuGPMhFzTtlxcubbY/jrz9zfWD56BFy/LqIn9sAC6ahdG6joqZzuLkZHIzpC/cX6sqUimkF60VrZG6jYtYG0s2bDhuo7FeZHuXKKzfdMIEPYtdiC3Q6k5bS8IU3vsLIEKrz+MN4UWQg5+xKxt5RveMrVUwY+FRopQ8FXWjok9RUXqmxRs6nuAafXG5FaIB13T0fmcC2lZ8GJEKD89yxfyxk25e0V51/ej9W7xkOHgOqPj6A+bsAXD/E2DmBk/EKs67INmxbnXaOhBQUBDx/mPU4Xv0+/iaYJR9Eo8wLufhGIjcti1S5PjVL+Xdu4KR/Ta3VU/o5kPnqKuFjNv6lnl9V/X+yzYnDzUil6k2sk/fv3R7t27XDtdUdMuXLlsGjRImRmZmLRokWYOHEirly5gsqVKxePTbzCwpShScuWUiijysdHuRaevDtQtWNQ7sWL/E0tDQkBIrP9feqS5GdmSq3BALB+ve7rBfz+uxSqyWTSRiG6BhMXLgBLlkinLS2BRo2k04mJ2qe87typXF+xZ09g5kygbduCTR2WM+S6ghcval8X8MoVKViTh2tNmyqnib75pvL1R2GEgllZykC4WjX1YFrX+8tp+jBguFDw6VPpdcOqVcAHH0jrFo4dK/0ul2SiCPToIX1A2rSpZjivbZMRQHrtJA+Oc9ot+ulT9eunpHC3YgMJCwvDw4cPdf4iIqLSK1+h4IsXL9CkSRNYaFnsulWrVgCAly+1rz9FRSstDUi9G6Y4X6WDj+Yglc1GXBGJgADp/wDgYA94KPMiXPnzIUQRWOAfjE+s1uPzVudyfE8Uf1tzwfj7B3Lv4EtLAxKvKV8YWyAdF//Me8rO3ysfw0xUvkHxxBN8NTAs1+Wa9u4FvPAE1RACRwfpNWq5gW9DUFkX8PZRZTdFWBhw8+9QuEF689isGdR3JywoS0vYV1J2Z4Vc1H0H4uPHpSbFVauk1+PHj2bBE9LP3ccHKF9R+acdejoC4lPlGx7PZsrAp0pr5emMRxFITdEMf+bPl96PmppK7+0t3R+h7lthCA3Nu6sn8bH0PWWZZiG2hgksfBwUlz09n/fGAi8fKNtFLWzMYelgCTtPJ8WxyAdxed5GXJz0PiInv65IwJu4CgAo5yxNczZFFmqJt3FzcgBWfReb530YyrRpgJ8fULeu/rOkMjPV/+6cEIurEzZg5/pYxbG0GGUoaOuuEgp28oTF6z8HWzERF49odhnG39HsILx9jFOI9dW0aVMcPnxYrQvQ398fQUFBmDp1KkaOHIlFixbh6tWrKKfaNmssqht8tG2rebmZmTKUCg6WfjFV5+erdmTJQ73kZODrr6UHuJxoe5DXJRQ8f17aqh2QHjx1nbZ88KDy9N27eW8UIjd9urIj8OuvgXffVV6mukGH3NKlytMTJ+p2H3kxZCioup5gjx7K05cvq3d0+fkpT9vbKztGr1/XHv7o49EjZVBZvbr6fes6hTi3TkFDbTby00/qn6rGxko7NTdqpDmdviR59Ej5e/XkCdCunXowqPq+QDUUBJSvpXLaLVrbtGJOISYiAwkPR75mwwHSw1VBViAhKs7yFQqmp6fDKYeuKIfXC32lc/5YsXDlWBzsM6VAxkQA6vbw0RykEgo6IB6xEUlwhjTVxtMTqFBPuebgo2OhCJgbjoR1W+ElPoLtmYM4ue25xk2+CE2CGK0ZbiVeD831AfT8yXRUyghTO/bwSEius8lEEbi4RXO6WPP0E/jf/4B9+7TPzvrnH6AKQhBcLRghnS4h1N0Mps2awLJyBcWYsHPKUHDVKsBPlDpgHeyBmm/7ar6wLaBKdZVv6q8fi9JofNEmPR3o3x/YvVuahTR0KHD90HOYv17fzcdXgEX9morxwf8+gTuksMbUBPB5SxkE1upQCSavGzisZYm4fkb9H2nlSmDJl8/RIfkf1JTdRobrZaTXXY/bFhvgP/O62tjEmAxs++oaLvylfHOV/iwKIkT898Z/OFfpHC43vwtRkP5RddlsJDJUGUaZOdsDggAnXyfFsfjHsTleNzUV+OrzDHRxvYx2brdw5bLmL9OTJ0Ds/nOKjWY69rDEh6OsYWP9+meCFFybvg3fzc3nK4YC2LtXWtMQ1lFIyUjBTz/pd3snTwLWcepTBR0RizMj1+PwNunvPCtWOX3YQSWgNndxgJuv8vzNg+r/Vq8iMmAarfkBUNh5zccEQJpZOGiQ1BTDF1IF06hRI3z//fdYvXo1Jk6cCEdHR2OXJJFPHQakMEAbeSCUkSG1waoGIJ9+qjwtn0I8YgQwZ450WU6hnep6gnL//pt3B1/2nTZVNzHISUyM+lRlQNpVN681lJOTpT9EQAqZpkxRX0ct+zTcoCBl2Fmvnub6jAVlyFBQdT3BCROUp3MLBQHlFOKMjJzXZdy1S/33KSfPnqlPP1f9nmrUUL/vnKalZief/mxjAzg65r9T8MULaUp4Tl6+VG40Y20tPSBav36iSUgA+vYt/B3WCkv23+OnT6UPCOQdkDl1CgJ5/1sxFCTKU2IiMG6c9BrSEMvGlhVTp0rvd/v10/06kZHSBvVubro/vZRl+Q1cyXjyvfswlQw39yo/2Xb2toetl5aOEmdntY6yGrivmKrp4SnAo7dyvZeMOyG49fUOmEL5huvGds0pYNf3Kbu/LKxNFd1GzrJIHNuVc1fX1Z1harcNAPYvH+T64fm5c4BVuLK78O2uUgDqgzDYRD1Gjx7SGvdLlypfaycmSu8bXZ0uIdwzHCYeifjbIQIiAOc6ys0VXlyTwpSUFOCvNZGoDulNR9OmgOlb2dbM0kPDji6wfj3bziEzSqcNNP/9V33W3KZNQHqI8t/bs0kFuPv5KM77pt5WbEDi4m4KC29l+Gld3gGOlZQdYneOKqeE7twJjBsr4j1sQ2NcxjsWm2FfVdkdc+zOFbVpris778Tt73dhX78A3DjyAvHxgGVSFBIcEhDvEA87N2tkeYmIc5B+D1JC8g4FY5+odAq6Sh88uFd3UhxLexmrdSbb2bNAzzqhSPppFbpl/oNuSduxdNAFjbxg4y/JaCRK08vs7YCaw9+C7/IpGLC2E+xfZ2KVEIFzs/fjq68K78XW8+fSJqOodAlothxosQh/7otSbDpaENt/z4Q7pODOzVXadRoA7GRxOPzRb4iPyUJWvLJT0MlDZXqiIMD1DWV4/Ois+r/VjcPPNTa1AYCXNzRDwYwM4J3/iTi75SH+XPkM77/PJaFKFXmnoKVlzh3U2XcgVu0U7NcPik+njh8Hfv5ZWm9N7q+/tN+mPBQ0MQHefls6HROjvftOlbZQMK8/7KNHNQPAGzeAv//O/Xpnzyo72Dp3lrom5dOHAc0wRbVLcMIEjSU/Ckw1FNQ2ZVlXmZnK0LJiRaBTJ+XyGVeuqIeC2X8X8lpXcNs2qYuyQ4fcOz7/+08KmatWVf4OqIaC1atLX/K6Ll7U7YFb3ino4SH93FVDwdw6BdPTpTUqvb2lf9vvv9c+bulSZcv6qFHSbtnh4dKuZYD0dzFyZMl8R6/6eyzfCSw8HOjYUQo8cwsFVX9PdA0FtXUUyhli3UyiEmbFCulr2rSC7dlVFp07B/z4o3R6927dV3H4/Xfp4S0tTWqcoJxNmCB9zrZwobErIV3kOxQMCQnBxo0btX7pcjkVjSenwhSnnd/00f7mwtQU7rWUYWFtKBO4CrWdUa9PDUWoZyfGw1FUX7D7+cn7Gq9fH55UfnpvUbMKKtZQrv92eUfOa5I8PabZvVARz3BkV86fnG9ZnYDyrzvgPD2A5p3t0bOndJl8l+DgYGkGVtOmUpB25AggS8+AtdNdmJgAzk5AnL0Fnic+h0cTZSiYeF8Kx3bvBmrESW90zEyBNzs4q7/B0pOFhxsaNJBO18JdBK7NyvM9wc6dmsfk6wnaWAOVWlRGlVbKud/mKjvE2viWl96YygkCHGsrxz65IH3fp09LSx654hXKIRp2tkCVEaEY3uUeHF43KIkOT7BomfQm5/TmMKRclt7oC6IMp5dfRdi9NNgiCZEuUoJp524DJ297RLtInaSW8S/xMlxLoqciPkIZClq7S79LFWoqO6QcZLHYskV6z751K/DZFBG9WkZhwVu70erhRkXnKwB43juKTctjFeczM4Frqy/AAlJ38xt+ljBr4QeYmaHywLcw6MeGijUQG+My9n9/FRs25FpugchkUrfnq1ci4P26C8c0A6nlLmHbtpyvl5Qk7T2gTWYmcGrHC0Vw59fCBD1+bAez10tn2qRE4q/v7sI0PVlxnXLedmq3oTq1PPHeUyQrhyL0lDIktLVRHs94/BxJypwRAPD9dyLKX96LofgVH2M1Xuy7hKlTc/6+SPLgwQNMnToVrVq1Qs2aNTFV5Yd24cIFrFmzBnH6pMaG8OiRcgHMFi001xOUy74DsfzTHhsbKUzp1Ek6n5QktZOq2rNHMyiJjwdu3pRON2ggraUgl1ug9Py5ZjfXs2d57yisOnV43Djl6blzcw9xtO3KXL68FDwB6puNRERA8Qfv4iJ1khmKtzdg9/rv+8iRgrfrXr+u/IStVSvpdYU85IyIAM6ckU57eEg7+KpSDQW1BT3yIFgUpXUUtf1cRVHqtoyLk8LWZcuk49lDQUFQdqC9eJH37sGJidLvFKCs28YGikV/c+oUPHdO+v5nzVJOC549W3NtzNhY5eYx5ubAZ59Jp52dpWno8iDtjz+kzTpKGtUg/tgxZdD5+LEUfqqGgqobjQDS36+lpXQ6+1RvmUz5u1KxIhS7jOXUKRgSIgXGnp4l8+dYyExNTWFmZob7rz8YMDU11fnLTPV1IxU7qqt47N5tvDpKiqws7S81dKH6892/P+8JA2VVRIT0MJyRAcybx47BkiDfoeCZM2cwbNgwrV+CIOR4+fDhwwujftIiIwNIuROmOK91PcHXHKq4Kt7UV4U0FddEADzfdINFeWe4VHNWG2+iki1aREXg/mX1NxdR15Qvvt0be8GrbRXF+ScnQrU+eCbEi5DdV35Eo7qW4Y3d2tciTEoCru5QTh2u19wO6NEDjRoBQwYDnX0foA1OoDruwwkxuHtXRO/ewI4d0nqCSQ6xcHYGTMxMAAcHBEcHo3pb5R2LUVGIeZ6GrRtS0RDXAEjrYdt1bKZcPN0Q6tbFm42lH6o9EpBx+36uSyBlZUkzrFrgLKbiB4xz3QJXvFKEgpUrAyY+3nCpUx62dppBsHN9T41jFZsov++oGxFYvlzajTktTfqdsDAH2g2OQ7j7czhlRaHVG6//zQUZAneHIDZGxLGv1D+afHHsNp5ckzYZiXKNgqWVAFNbKzhWskOsuxTUmUCGe8dz/0Q/+Zly+rBdRSkUtPVwgt3rpjZHxOGjj0RM7HQDf36wHVi0EI3PLUdDKN/4O75+v2WODJybuQ/RUdKbzX0701A1St6ZIAIfOuN85DVkyjIBQUCFET0wZGoFuLx+H9IDezF33CuDLS8lFzjnMUwP7UNzh21wswpGebtEqR6X+1i/Xvt1jh6WoZvLRbzncgTdyl+Bf5dH+OnrJEUH6b//Alax0s/WRABqtXJDg/HtUKGtclr5ndUn1TZxcfFW38igVidPRYhYPisC588q/3hfXFV2lFZpUR6mr/8kXMRXuHpJ2QZ4+TJweu6/aAJlZ1AP7MU/i+4jIEDnH1GZ8+uvv6JevXr46aefcPbsWYSEhCBSpT04OTkZn3zyCXZq+4SgKKm+E8lp6jCgvgPxtWvKnXhr15YeT+WhIKAMg+RrvD59KoVRqi5eVL4Sb9FC/fq5hYIHDihPV1B2TKuFftmJovJyS0tpkVV5EHb1qvSqNyRE+yte1VBQ9ecjn0IcH69ce+3nn5VdhR9/rJxaagimpsDAgdLpxETo1JIOSJuw9O4ttTGHhamvJ9i6tfR/1enQ8rUCs08dBoA33pDqADQ7BTMzpQctufPntbe7HDokfQIk988/0hRt1e5H+Yd2eXWgqcq+nqCcfF3B8HAp9IuJkaYAf/ihFLS2bKkZAGZkSJ2Aqi92Vq5Uho5Dh0qhlWq9qp82TZmi+zqI+ZGZKbW4/PabFOJl//QmJ2FhUmB76pQU7mUPa0VR2Sno6iptKrNpk/Lyn3/OvVPQwkK6DiCFu6qfdAUHK39ufn7Sxm6AFO5n3+U4IkLqxn3yRPrZT5ggveAjBVEUIVP5vRRFUecvGZOPYksmU3+I27u3ZDYcF6W1azUnFfzzT97Xi41Vf9kTGVk4e2fpKzVVCjmN2TS9fbvy9zAmRvuKL1S85CvdyGvLem5nXzz8dyoetunSCysB+D979x3fVPm2Afw66d6LFjqAFmgpZZTVsveUJYIsAUGWioAKuEFQ0deFIIL+XICCCwRxoQIiIEuGDNkt0EIps6UDupvz/vFwcpIm6YC2aZPr64ePbXKSPjkZT8597vu50XRgqNltJX91XUGlfLdmTcApWKwnWKt9PYPtu4ypDVd/NaPon6/UYF5ediFyzqvBggZdQxD9gHp73/RzOHjAeKba80sKPLUiUORgD7R9UP3CnHbwrMmkhvXrgcCseN1tmg6uL6J2NWuiXj3g4YeB76f+hTebfo0n8T5G4Dvs2iXjq6+AUJxDhmcGavhBnKHXaHAm5QwatPOHxkE9G7pjzRWkbj6oyyRr0lLvy2t58fJCrc4NdYHQWOzDZ5+Jn7VakXihv173nj1A3rWb6IktcEU2Fow9gy/bfAhXiDSu1q0hDlYcHeESUgNF6TcZUYR31ssqvJGMGTNk3T4P15zDsBEyDtZUMzGivRJ0x+tZzmfwVO8TKLxYpBQ4MwP/Lj+MbJds3Ha7DY2rMyBJkOw0yA4CcpxEl9ptz/2Gq+fMH5zkXFeffK/ad6J73t6616w7bmEsVmEo1qExjsMdamaptxcwcnoARr7fThfcCrx1Bh9OO4Hvvy3A91O3whliHHZtb2Bn8AX8Hv87diTeWQPMwQG+jw3HQxOd4egA2KMAnW9vxMQJcpnODMqyOA6/csX4jOKFk7dx4Y3ViMU+1Av4CR18TmBUgwOIwX64uF7EnsMpRo1a09KAZaN2onvuRnTETrS59hOCN69A5vx38XjUdpw9KxJOgiDei2FhgEeEyIJt/6S6JIBLpnpQZWcvwd3fMAjhFBakOz52QD4O/n5dfTxn1Ofbr1dL1KwlAtD2KMCx7SIYnJMDLHxwD9prRfajuxtQw090Ix+GtXj10UsGX65MWbtWJEzpxyKs3d69ezFp0iQ4Ojri7bffxj///AO5yDf8Ll26wMvLCz+X5ltsRSrNeoKA2mEUMDy1rgQLe/Qw3L55c8MyzF9/Nbxe/9tlu3ailDQsTPy+cycM0lr16ZcOv/66+nNx6wqeOqVmmnXuLDLI5sxRr3/ySRHYcXUVpdBKxtitW2qWU2SkyHRSFF1XMCtLBE8Akck9dar58dytxx9Xf1Y6VJXkxRdFWsTKleK5UrooAyJTEDAsh1aYCgq6uooOSoAIpOk/RwcOwGithPnzDcdYWAijFOPbt8VzqmQKururwV79MbzxhmGzi6LMBQWVEmJZBj7+WOyDRx8VgTX97MOWLcVrUglI7t4tjjoBEaxS9ptGAzz3nPHff+AB9bEVFIjnqrzXWHj5ZREYHjNGvP7c3UUJhZJxa0p6ugiujholXvu1aomy7Pnz1W0uXlTXM2nVSmRpRkeL9yUgsnA3blS3N7Ues34AVz+LVP/nmBhxvwr9EuLUVKBPH8OMTlkWj9WWJo8SaLVaaLVaREREGPxe2n9UNcXFiaCLIjHR+FwFqVJSRP8vhbI8844dxtNQUb/9Znz+T//jraqYNUs0uu/QwbC3VWX67jvD30ubiUmWU6agYFnb17OdvWX893OC7mevEA941C2mQ6W/v0HCBHDnJPadspnOk8LheacCOLazC7p88CD826vls+f/UM/Qn/jrKqSCO5kOkoRm9wXDv009BN05FnLHLXz7wXWjY5GTP6uBRd9wPzQcE6MrW65beBZb/zS8gSwDKz7Xoh5EtkmjRoBbdAPxZVRvYXZ/f/Fdu0ljUZrbAOLvBLoeQ4F9AXz9oFt36FLGJeTI2XCqo35hXf1mElprxek3VxcgfERLtcylPMXE6I6rwnAem7++jiNHxNJKPTtmo1lUgW5t9x9+ADpgFzTQIiRExDTv6ytj6uPAtCeA+jG+ujIxj4ZBRn8qvKtxUDC0fRCc7zwsV2TBC2JW9HAtxOxhCUivfxmX9YJtsRkOaNNYBOskv9PwOGj6gDp377+60mF7DzXg5NMwAKm+d7oSX7qMj9uuwIX/TM/EBalqpqBPnTsvRC8v9OoF1K8nugW38DwHdzcRBGwUCfToDox8zAdT1/VA5KJHETiuNxr3q6O7n4xvf8XeUYtR74Z6ajXnPgeRsQDg38v/Qivf+QLs6wu/sf3Ru7f4NQzncXnrCXz0kUjmeGXYMbwUtALLxuxBQb76Os2+rcXSIVvxtNdydHPYCV+PPAQGimOalBT18a1++iA0hXmQJRnpQdcRGQl4egF+Llloiv/g6HfUqGR59kwtwlKMy+8kyIi8vgO9OuWIoDnEKcLGjaEriYsaWB+eJj4PNO5ukOyKTAfOzvCPUgPL8dvFeqEXzuTA6Zb6IBr2DYNPPTWj+Pwesa7g0ilHEJEgMqy0Gi1CxmcgenwKXJxFkHF44dcYPyjV7JfX774Dhg8Hvv4a6N27+GWkrMnbb78NWZbx66+/Yvbs2YiJiTHaRqPRoHnz5jihvzafJShBweLWEwRE+/I6d96DSudfQA0KhoSoJ1zc3UUZ7dCh6nZFv03qBwXbtxf/V7IF8/LUMlZ9BQVq8M/bW5w5UoI+f/9tPpCon0WodIS+/34RpNCXny9KQb/5Rvy+c6d69FC0YUjRdQVXrVI/GEaMMAxMlZfmzdV9dexYycGSpCTgiy/U33Ny1FJxDw/o1r3QD3AqTAUFAbWEuLDQ8A2tnxWoZBPu2WOY9bl6tZox6udneLkSDFJKhwGxz5VS4MOHRWajuTTvZPVkpslMQQCYMcMwO83FRQSzly0TaTpt2wL/+596/XPPieBuvXpq0GzkSKBBA9NjeP11Nej1779qUBEQ2XJvvy0+DIt+gTpzRtTBff65+aO/W7dML3514IAoC7hiukEUvv7aOJiakSG6aCv7XD/dRv+1oB+E1t+/Skm2PnPNRooGBZVMQUAtIb59GxgwQA1uhoaK9xAgMlfvvx84fdr4bxJZiaI9sADj82ikeuklNSF59GiRvA2I6bq4ogHA9DLCVS0omJWlTt3nz5f8mCpCYqJxZqA1BQWzssR7zNIr+JQ3NhopI61Wi0WLFiEyMhLOzs6oXbs2Zs2ahdulLcWoBPrrCSLWHbsu7kZmrpk1hO50IE7zSsOphqdwMvIkzjY6gz9yj+Ng8kE4tayNad92xLRF9dHvm7GAlxeiBkfobp5/6izSbogDn9Nb1DPnDkEBcPdzAjw8ENxCXUPmxOqDGD6kwCD779ouNQstoH0DOEbW0yV9uOMWdq1Xv4inporve6e3X9ZlxzVvIYkv3oDIyBg+XBx01a0LycUZgwcDtUOAttgLB+TBzfM0PNzvNF7wEcEMGTLiUuPgHaUG0kIv74YnRFCqSVMJ9h3Lr8GIgXr1ENXZD0qSYqOsA2jeXIa8fTuewTt4LO99zH74GrKygE3rMnXlzI0aQbc+YECAqNzRHXgDCIgONPgzrr7O8AzzQ1EaLw/UCFPXfgxBktjHWy6iaWQetiNBHGi5uKARaqAP6qNNzUTYIx8h9nGw81IOtCQE9FEPdu1RgJQa4kDXydsVGkl83DTqGQJtD0/ddtrrN7Ci03K89OgNzJkr47WFKTh7vgB5uTJkvRdKjXpKHbADatZ3x9ix4jjt6afFEk1PvR+GEWsfRKcfZiLyoyfh2KOTOMCUJPRZMgDunuJg0xVZuoxCCUBUbw3s26hBy1t5t5CQlqDuoCZN0GpoKOrfeYn1wR94eloeprXZB/n77+FwORHXv/oDL3Xfg+xsID1Nxry2f+DGDzvglXEBXQu34CksRnvswuljeZgyRRzXHTtSiNQ/xEFPulc6ajSxh5OXCySIhAwXZCPG7yus/qJQF1vYtAnYsSIeHhD7pU0bCQMn1UKLVmLf2qEQbpfjkJkmmoxopDvLuSlZSpKERmP11vZSnisvN6PLAKB2WzVrN+XIJeTlAcc3qwd4Th6OCGxaA/5N1TML145ewQ9fpCNtlchikyUZN+8/i1MDHPFnWxnNxl6FnQZww20MyPgKD/S+bbTk1/79wPjx6u/Z2cCQIYZnw63Vrl27EBsbi45KJpYZtWrVwmVL1oZcuKAGidq2Nb+eoEJ/XUFFVJT68+rV4s28bZsI7oSGig68gDjquS4yVaHVqkdB/v7qZ79+CfHatcaZVnv3qgHJ3r3FZ6cS7c/Nhdm0Vf1v1EpDE41GBLK+/FJk091/v7rNokXiDW5qPUGFfvDkwAFxG8XMmabHUR70Oz1/+KH4/6VLIqWgVSvDtdree08tZ27Z0nAt2vbt1eBd/frqmniAmCtaG3/GADAMpOqXyOoH//QzRJVswexssc6g4ttv70x4EJmMynOtv96vm5soNVZKdc+cEdmNprqXlVQ+rK9/f5EJmJYmxj11qrpvundXP7jS00X2p1JSXaOGYYZdUfb26rqDgDhyTUkRH3q9eokg4+jRoqmJIjFRdPldtkw0KYmIEMHEosHBVavUMtxOncQYlcd28aIoEc/JMR6TUrYAABMmGFZKKA2A9JuM6Ae7hw0zDN4C4ndTa9OZK/XWf420bm06KPjSS+rRZ0CAeF+uWiX2GSC+NPbty+YjVuLAAcM+VeZs3Sri6B98ACxfLs7X6DfosyamgoLWFIApTxcuqE3g3d3Fa2TgQPX64vZbXp4aAPT2Vr++7N9vvJqBvsou5d640XB1iK+/rty/D8DkeugnTqgrx1RnaWniPNaAAWKasyYMCpbR008/jZkzZyIqKgoffPABhg0bhiVLlmDgwIFVIr2+sBC4dSwBAHAp6BKOtv4Xm89txprjZjoW+PnBu2YBjjU5hiuBV3C11lUk1UrGnsyT+PnMz3h3z0J8X/sakkdF44a3I7SyFi0frAd7J3FAYC/nYedXIiiUvE/tPOzTTC0XbzEmCGfaHMG+mH2I9NqEuhsWY2rTv7FrYzqSE/MhXVTP3kcODBeBxJYiY08raXHylzNYuFB8v27aVBzvKesfBvgDoe0CxQGAIioKGDRIrIM0dCjs7cUJ+tbeZ9EaB3DLMx01/CEO7DzUYFhcSpxBsxE3qJ+q4YOj1G6G5aBQq3fAKklw6dgaTZoAGZ4Z8Kq3Fn3dV6Ab/oIGWnggE20SvsWYB3NQK3Ev7CEiRA1buIouKh06iAO0Itk6ddsZZgq61Asy282y65hgyPVT4NEwE2ue/xfffgsEZp/DNdxGJvLEQV9YGHqjPlzggMY5+Rjktwv1cB4pfiLw59etGYZ80A0i1AbkO+Qj3UucRnH2dUFssMgGkDQSwib7IGSUGmSV09OR/8ln+HjdJ3j5lw/QcOxSLPskWVe6DQC1wtXnSndACAAODjjUoT62dgpBTmQDwwPUO1xDA9D6qQ4Gl4XV02Dc+y0R9F4MpCIZoEev6q1hJkmQ+t2HQYM1cHYCPJGBh/El+sHw9KDLzk14rOMxTI/ZC9djhmtYuSILvbAZj+MjbFqfiRUrgI+eOgX3O8G926E3ULtfM6BNG7iEhaPWnYRVB++zaHZjA5Z+IOPwYWDyZKAlRGaGfw2g5+PhaPXpY7j/hcbocye+0QgnEYBrsEMh/COz8L3bEfwv+SdczhQHRd2ebg5HF8MDM3tvwyYjiohuwdBIQJ5jHrykszhwAEjYpR5AO4T7YWfSbhS2VJ+nwuQr+G7KVt3r9GLzRHiMDRJBoxo1cKmvry6G4ocUdEn+GgP75OkCfklJIsZS9Bj13DlRDVYFPmYrVFpaGuroBffNyc7ORp6l6kKA0q8nqDAVFNRfazAqSgSi9ANmSucoWVZLf0+fVqPD7dqpn2ndu6s/f/qpuO+PP1YzAPVLh++7T/xfyfwDTJcQZ2erjzM42DCI6eUFjB0rMrx++EENeB05IgKb5tYTBESQXgnUb9umZjJ17Wq6HLe8DB2qZmqtWycCKG3biiOhf/8V8+a1a+Lo+eOPxXYuLmItxiNHREAsLEwEQhUajeGYGzUy+RkMQPwtxYoV6toKSlCnQQNR96Ts5927RdDRz08t1+3fXwSAlUxS/SOuok3AIiNF1uidckkkJYn5smgA2FxQUP/5dncXr6uffxavuzuZ5UbefddwfnJ1BZ55RmSyldSkrGNH8SEHiGDWjBkiG1E/ODZvnth3N2+K17F+ll9ioljPsEkTNZNPlg2DjUuWiNvv2aMGTP/5x7jz8aFDahZgTIzIRNQ/uly3TvzfXKags7MIJOozVToMiMC+EkBUukXn56uBvwYNRJORyEh1rdEjR8RankoGpIuLCOA3aCC2+f57NYiYkCD2lbWlddgQWRZxcSVhtLiq90OHxEfEc8+Jt9DEiWJlh8BAMaV8/bVhwnpZxcWJ+9NvFm9JSlBQo1GT33fvNt+IrjIdPGg6cb+iabXiPFDRc4ObNqkfc089JZLJO3dWDwU3bjS/csOOHeq5lf79xXSpMJWNd+uWOJldp07ZAnNarZiSS9sNuSilZ5fixx/vvrfY3dIvHdafBu41g/Xff8VqFkpg926ZC9RevSr2vXI+tKiCApF3pFQ4bd5sXaX6DAqWwfHjx/HBBx9gyJAhWL9+PSZPnoz33nsP7733Hv766y98W/SdaAH/7cqAS24KEuomIC4iDgF3OrVezLiIlKwU4xs4OyMntBAuvuIA3ssTcPF20p3N1cpanEk5g/Un12PpvqV4fcfr+PTk57jWLQdajTg6P/WTKCHOPKGm+9RpL75syrKMHSGXEdozDQ5BWTjW5BjsnW6gfuKf2Nx/EZbUW6wLHji62KNRXzGjRfRrgMQ6idjRZQdu1lmF2c/lYepUtQqlAeIREiw+HDTh9c3vkAYNgBo14OYmqsVmRP0Jr8YZqB0CwMsLdX3CdJvGp8ajXqcAo7vw8wUajGlX0q4vtQPJB/B/O/8PKw6tEE0tAKB5c0TGAkebHcWVOudQEP0N7FwLEBYqrvZFKtx+W4sYiMyymgGAX7824kClVy/g+efFwZTeulX1O9SCpNcZxqeJ6ZI0WZZxtO0NSGP+w62RB+HudEjs6LNncR5pd27sA/+6UfCpIYK9EfDTHU+k+KUA9vZ44IPuqBXuAeeGIqCR4psCWRKfvH4BPuhStwvsJBFMztfmo/uyCEQ8rmb3XK5/HI1qfosAXEGhQxrmfPsJbrmJjD5HB8AzWC8o2K2byAqIiMDpET3wo8NZ7LjwN9afXG92v3eZ0xkxjzRFWLQX+s1tjYcPzEDojEE4lm1cUnby+knkF+rNCjVrwqtXrC6WEAIRAA8KBOroLZda89i3CElQZ72waE88OtUeTz0pslV9cBNDsQ5PPK5F9jYROJQlGQ69ADs3kWnVpfsEeNYOhK+vuC7U5098M3MfWrRPxTXNr6jptQ8SRODMIfZO5kajRmjXDuh3HxCOONTBBaT4puBkp39xzjUPV7Kv4/sT36NQWwhnX1cE9Wps8HidfE1nCro0CIZdZAr2tN2Dc21/xpgn9+PUn+IAutCuECfaH8eWc1uw3esf3AgRQcfauIiGeSKoerXuJbiPt4ejj3r/Sb4OCJzSFL3vJHIE4xIan1yL8HqFaBYto/V9x3FZPgxAhkajxoUA8YVtwQKTQ7Uafn5+SCxFN5v4+HjUKrr2Q2Uq7XqCCv0AICAO3OsX89kNiG/eCuUUvqnSYUAEYpRmGoA4cnvsMRFs6N5dZPUplIy/Hj3UjDdT3+r//lsEBgERQDRzUgWSJLIcFa++qmZQNWliumTSVPCvIrMEAXHiaNIk8XN+vsiUTFJP5uHiRXEG7b331GDqpEli/FFR4jk4d04cRenTfyzmSocBUR6rXH/kiNjn27er38B79RJHti+/rN7m/Hn1OZAk0egFEN/MizIVdKtTRzyPSpabknmn3wxDPyio3zW5a1fghRdEVOHIEbEvzL0GFH5+osasXz+RxZaQINJRzAXEinr7bbVT9Ndfq92y9U98Tp4sxqZkPUZEqIFuQLz2hw8XWYp//aWmVnXsqAbKatUS43S902nuq68MszT1O0FNnCj+HxlpGLBNTlZf576+akRC8eijhr+b2wf63aJv3BDP+bFj6pkhJeDu6KiuS3nqlHjPKWn0s2cbZhJ6eoojUGVMR46II3Qlc5NQr169Uv2LjIxEx44d8fTTT+NQ0e7tlaCgQLzk335b/J6fb/hxXpSphvXK/fz6q0i49fER8f/evcVb3FwFfVE5OSIYtG6dCCoVXd7FHK1WVNQ3b266+frdun1bXVWhSRMRrFT+nn5frYo0Z444H1C0n9PBg+I8UMeOIpmjsmRniym/YUPjDsP6far69RP/d3RUzw+mpJjOvAQMS4fvv1+9PWBcQlxYKL6O/PCDmGJHjzZcXaI4b7whshdbtza/4oU5GRnGgbfs7MrtSB0fr04LrVqJ94lCPxPz9GnxGi1tJuWXX4qvfN9+K6aWHTvubnzLlolzVg8/bLg+5MWL4v05cKBIni8aHJZlcZKhaA80cw0hAXEf27YZLhtVlTEoWAbffPMNZFnGU/qvcACTJ0+Gq6srVpe2o18FOvJzAuIbxCMhLAFO7o5w9lHLIk/dOGXyNkmeMlo0F9+Zu0a7oI1fUzQNaAoXe+Puh4VyIa7dvoYbsVexv/V+pHmn4ebe03ir62/Q3kzTbRfVR0RK/rv2H04VXoVju9aI7lUTAaEFOBF1AlpJBBSdtWo2nlvTMGicxFlg99hauBmdAADQ+MTDq476aRylOYWxXZMwYcKd6l9za/QA4svmnewEHx9gyLA81Gp2SzQQ9vZGl9AuurLW3MJcODbOgcbBzuAuwjrXhlTbuGvv3dDKWvx57k8UaAuQmJ6IY9funO50cUF2V2/UCCmAJAFegflo/UQSRk5w1XXPrY+zusy5iCaOhgdfDg5GmQtOHo5w1lsjsUF309lH2xO346jmOuDmBhnAASSLsqjkZJzDnYwcHx/U860vDqY1GkTADz7eImmkMFCLFu90RnCUJ1KzUxEySJTzKaXDANAioilcHFxQ11s9aIhLicNDH3bE4BWD4dv3MgpiL6KWv4zG0inURzw8HK/icPPDyPDIgL2XGyR7veelbl1RtvXQQ/g3W12v9EzKGcPSXz2Sgz36Lx+KcYefRuyrAyD5eONG1g1cuaV+G5TuZDnmFuYiLjXO8A66dkV0ezeMHCHWLXzsUWDiLHdEr26OzN5nsbftXuxrvxN72+9GUkgSmrRzx5itExH4fzPg3a0FhgwRJeuhSMCAvHW6jtH2DW7Cv10N3d9vUrMpGnQYBP8wcWCY4peCjq7r4dPyLfiHrsPR5ocQ0SUTIQ3d1AyYO9kRsbHA8Afy0KTJalzt/h+8axXoDjBTslOwN0l82+ky23A9NFd/00HBHD8vXGgVB1kjQ9ZoIbstQ1bhv5Ah41TkKUihYkbVeLojuWUcMt0z4YB8SJBFsHhIEnybGK9tebiBB9o93hxt7yS2hiMOA9JWQXtrMXJrfIwakZ+iXZ238eeg9/Fj7Ot4o/FXCIE46TB/vmHSl7Vp27YtDhw4gOPFnH7ctWsXjh8/XmKJcYXSX09QPwPMnKKZghERpksJ9bVtK4INgAgg7dtnmJ7RrsjJmlWrxLdz/XLdnBwRGFGCXy1aqM0ovL3V7OqTJw3LZ3NyRO2ZQj+r0JQHH1Qzr7ZtU1Nai5YOK4quxRcRYRgErSiPPmoc2GrdWt0nf/2lBofs7UWwpST6r8OiAUN9kiROYCnefNPwG7ZS8vngg2pNl6enCCj36iVKzJWS8s6dxYkhfeYy8QICxHOiBIPz88URwYsviqMo/TXv9BvCSJI4QvvsM7VMvTTatRNHZgsWmA4IFycw0LjMODBQ1E3OmCF+LyxUIwH+/uIDceNGcTSrjHP/fpGhqP8aLnqE3KKFYSfql14SR77Z2erlrq7i7KtCf63PDz9U6+ZatjR+XdWvb/i+KS4wql9CvH69OJpW6H/XUQJ/SjoNIJ7fZ54xvs+gIPG5oWQhbt0qxv/996KD282b4u88/rj4rHnkkdLVplqJhIQEJCQkIDExUfdz0X+JiYk4c+YMdu/ejffffx8xMTFYUIln5nJyRHxbP0YNFB/k0F8udelSkfQ8e7Zh029AvO03bxYfQ40aibd5SQGKefNg0Pxt6lTRS6ckW7aIoNCRI+LtZKpa/24cOKBONW3bGk4hlbGu4OnTIln+33+Np4qVK9Wgy0svGTfoqAharXgbK8ngy5erCcKyrDa59/AwXM1C/+Szqf5tsqy+5hwcxMdau3ZqAdkffxg+vpkzje/n8ceBhQuLH39hobqyR3q6WL61LH76SX1t6X/FKG2mYk6OeE+8+KJ4fB4e4lzYrVsl31ahnyU4YoSYspXil23bRNbili1iWeL77jPs22ZKfr7o5zZunOE5nenTy/6aOn5cnEvKyxNfF6dOFc9tVpYIBConBzZuFOd29X3wgdoPzsFBTVpftcp0ZqFWK77KdOsmVvmojNf/vWJQsAz2798PjUaD2CJnwp2dndG8eXPsL8/TP3ehUFuIP858g0sh4qy3cy1vSJL6FJsLCl5wyYNGI7IEm2sC0K9ODwyNGorZ7WdjVJNRaBLQBF5OXga3CW7qh2zXbBxufhin6v2NQ1e+wOmI0zhb/yxuBRcirJUvMnMz8VvcnaN3NzdoGjdC+Ni28B3ohWttr6Do+fbw+9XspcOOKWjUTEJYKBBUU0b36I8wOHIznmuzDX888i26ddGKwJ6rq/FMX1SzZqK0BEAyMqHM+fa+NVDXqy7qeKnBsviMeGRGSTjV8BRONzyNAvsCtHiivYk7vTvJmcnILsjW/X78mnrgfyrECZENgc6dRHOUo3XzgJmPoftk44ORsOExusdUnPuW3AefJiFo8FAbtBltHDz97+p/2JawTXyZv/OpfQYpKDwXj0K5EAlIEweGnp4I8wkTwaennkKNSU/Ct1s/1B3bBe2eaovULmexaO8iLPlnCQ63/QP7Yw4gxVcEBSWNhNZRzQEA4b7qQVtcahwKtYVw7O+Im4+6oGGUPaKigDaNHVFHSkIkTqHAoQBHoo8gva7pb1DZ+dmITzXMsd9ybotRt1ZzdEFZAH4ufoisoQYu/rta5JueszPQuzciI8WyTDUaemBlG0f8rD0Mt0d94VtfzFZajRZ5vc4j/y135Hk4ioPaQYPg07ah7sxiY4jnXZZkeA7IgeQt3l9hPmFwd3RHRM0o1OrZBHUaOKKgXgrOxBxGI4eDCMIleHjJSOl0CoXRTdUsJ0dHoEEDFEKLs81OIWToMUQ1BjQSDErktyduR0ZuBsI6BsO3kZpl5h/ubXL/bE7YCr8mjrpquLpSAs41PoDTkadx3f86atTz0P19Zx87HG9yHLmOuTgXdg63BvyHmu3qARoN3B3dEROkfgM7cu0o5IH90fuJcLS6k2TkVmM/atT5EdE4isY4jog2W9CxWQo0hfl4sl8cZnp+jofxBerK5/H2W3Klr9NSWZ544gkUFhZi6NChOKwfpLrj5MmTmDBhAiRJwtSK6FJbGhcuqIvDlGY9QcA4KKhfmmmOvb2aAZWRIQIHSjDE3d147TpJEttv3SqOliZNUrsSK/QDHIBh0KJ9e1EievGieJMrQQc3N8M1C01xcDAOugClDwo+/bTIkqtodesaHgENGiS+qX//vXGQdswYg3Vqzbr/fnH08sILoqS6pG2VbtTbt6sroms06r6ysxNHN7m54sjoxAlR96WfCWpvbxigAtSTJKZ4eoqjNP0GGP/3fyJwpLzPAgLMlwVXphkz1OBnSIjYT5GRIoNzyBB1OxcX8ZiUQGCbNuJ5VJbD+OAD9Ug2KMjwtooHHjDsxK2sW6gcSQ8fblgOrn8f+t2oTTWcAQz3d9FMQn36QcFnnjFcO1H/6F2/A7Hi1VcN5jkDDRuK97HyfenXX8VCUEpJ8pAhIlrzzz8iiqGkW1kgI66ynT9/Hs8++ywkScKDDz6IH374AYcOHcLhw4exYcMGDBs2DBqNBrNnz8aOHTswf/58ODo6Yt68edhcNF2mAmRmiiCXEh92cABq36nMOHPGMDinKCxUk8kDA8VB/5QpwDvviKyr7dtFMKFTJ/V8EyDKiSdPFh9BS5aIbKKPPxYfjcp3jb17xeoA+rKzxctFKSs1R7/c8exZMZ7yoJ/VpmTlKW9XpVPu33+L8xMHDpTP39Snn424c6eadK3VGsb14+KMy1orwvz5hkEp/XUAjx1T+yZ16WI43fXrp57TWL9efKQ0bSq+2rRrJ5bjvSDO46N7d7GP7e3Vrw9paepzsWSJ+AeIbZS+R4AInM6da34ZnO3bDZc//eKLsp2n0N/H772nTt+bNqnLMptz+bL4eO3dW0yNe/eKYODnn4uvWspXr5Lo7//hw8V+Vb5y5OWJIPzgwerSt2++aT57NjNTfKVT9iegBmKPHlVXOSkNrVa8x/UDeJ9+Kp7rCRMMV8IAxOW//CIChtOni8Ck4rPP1POW166Zzsp9801gwwbx8/Hj1WOdTwYFyyA5ORk1atSAk4kOtMHBwbhx48ZdrfEUGBho8C+8pHVnzCjQFsDNLVE00AAQFlYPD0Y9qLs+KSMJt/IMw/2F2kIkOahBqjrw0p3ZttPYoWGNhngw6kE83e5pvNDxBUxqOQmtg1rDrYYLHL1E2UlKjRRcCbyCy0GXcanhNaS/kImvjn2F9SfX6wJg9hp71PepDzg5IbRbfdR6PRBhf4VC+5YjEiemIvsZV3SbJcrLZFnGv9eOwimyHurWFd+Fm0UXYsiID/F/ff9SY4AODsDgwciHFgeTDyIxzUyetaOj7gtr0p3GIbCzQ1BQQ9hp7BDhpx5I7E3ai1NtTojHE3gZSZ0vIrh7w7I/GWYUDWCdvXkW2fnZyCvMQ7ycIpqjODsBdesiOyoc/9w4jOhXH0RYjAfO1TuHY02OQROYizC99fiKE9TDDXXW+CH8LV+DUmIAuJh+ERtObVAvCAgQ5eQowHmkIRmZyEMh4C2Cy6HeoWI7T09IISGICG6mm0UT0xORkSv2rbuvI3Lr2kNrJ2Y9Oxc3hNcQ+zjcT31t38i6gTf+fgNrjq+B7O0NtGwJNxcvPOvXAk/VjdR9OBXaF+Jo48PYc3GPUbDvxPUTKJQNc7yTMpJwOqXkboOyLBsEBZsENEGzms10v59JOYOcgiLByOhoMZt16oTNPUJxsUAs2qLx9UHEoEZoHatBbDs71BvQGKcLr+Djgx8jOTNZ7KfBg9GsszcaNdYiKSQJh5ofwvEBO5HaGrr92CRAHAg28G0AjbML6g1ojKaxhWjVNRc9OhWgW7tctGgB3LC7jZ01DcugChqGYy1O4CjUFY+94ISHosfAyU58ZuUV5mHz2c2AJKHXJ52R3zENzr2AHk82Mdo/iWmJOHj5IBz9vdGkMRDTWiR6yHZaXKl1BW41XODi7YwarjUASYJ/qBtynHPwT9t/kN3qAuo09QRq1IC9xh4jm4xE57qddZmYt/JuIT79PDQjhmHg4yEY+2QWXEadQqNI0VW6USRQt1E+TkliZXBXV/HFqoHmPBY2/QK/P/pDiVV81VWPHj0wc+ZMnDlzBq1atUJERAQkScIff/yBZs2aoWnTpoiLi8MzzzyDtqXJ0NNTXnMNzpxRSxxLUzoMiBeP/rqsRcuJzdEPYCkiIsQ3LKX00ZRWrcQ3vnPnRAnnF1+I7KeiJbozZqgByuxscQQZEaEeQbm6itvpH0GaM2WK4ZgkSRx9mBufws9PZK5VlqVLxZHs66+LIyA3N7HWnn6QR5LEolyloZT8vvFGydmfGo3h/SqLe8XGGq/bW1KATv9oy9vbuLFFUfb24mj/vffUI8Dbt9XUioro+nw3HBxEndsXX4jglPI+tbMTr8UhQ0R05Pvvjbt+t2hh+Dwqc+Zjj6mpDUW98IK6L2/dMiwjVkqHFdHRahBSfzV7c0HBgQPFkXD//iJCY05srOmTC/7+huXp+iXCgPgcKTrGotq2FfWL+iXY5siyqA1t2VKkHFmx48eP45133sF3332HNWvW4P7770d0dDSaNWuGQYMG4bvvvsN3332HhQsXIi0tDS+//DK+/fZbyLKMD5V0JhPKa55JS1OXW3VzE/Fc/UItU9mC//2nrp/WoYNh8qpGIxKMlywRpYc3bohAj/55jO3bxcH/tGniLdOtm3hp/vCD6M+jBHPmzVNXJDhzRpxrevdd4NlnxZSiv+bhlSvGY33jDbVPV1G3bokAm7m17fQVDQoqWWyASIQNCxOPee5cMVWXd7+dosEQZanR/fsNV2UARGBSeUw3b4rpp6xlrUePio9wU709V682PJegUIKT+qXDPXoYbuPvrxY8xMWJ5/fYMXFeau9eNUMMMFxLUL+EeNIk0b9JP3j0ySfAN98YLnuzYIEIlpnKviua0afVlpxJp0hNVVdBCQkRAWLlPFphoenmH4rCQnEO8MwZw8uV6fz0afE+MLWWX06OCM6NHi2mKiVztm1b9TyQ/te4N94wfP60WhGUK7qyQ2qqOBerPG8ODuLv62fAzpmjBjtv3BDPlbkVIj76yLAnlUI/kOzubngea8wY8T7XX5b3xRfF1zX96aFoCfGWLYa90YDSl49bEoOCZZCVlWUyIAiIbEFlG0txsnfC4s//h/5Pd8PAkW3w0kNPopF/I7g5iC9CMmScSTF8x1+9fRX5LuKLtwQgBJ5my12c7J0Q4hmCARED8EjzRxAaoWae2TtqENi2Ljo8FYvgxt6IT43H+TR1xusR1gPDGw+Hn8udL+2ShHNIgCY2D3XH+MKlXxa2JIiF3s+nnUdqdqr4VGvcWPepdBY3cRJ32od5ewMTJ6KgQT18eeRL/HzmZ6w8vBLnb5qZZWNjAY1GDQp6eSHEW5xC0Q8KAkC99rVg7yBBowEcB7nhQmZS0Xu7a0WDglpZi1M3TuFs6lmxvmBYmDgtFRYGSBL2XNyDNE0eMuZJSGuejIygG8ialgt4mG4MoU+WZaw9vhZHrh7Bb/G/IS5FLYfNL8zHmuNrdAE1Jzsn1PII1J2GPYnrBqXDQR5BcLY3/MJedL/pq9FYLRMK8YyAk7143/i5+MHH2Ud3nX5Az97dE6MeeRc+XfpiUOMGmFWnMRztJNhpgLpRrvjj7B/YcGqDug4jijQE0fPnuT+hlQ1PxeUW5GLr+a1YfXQ1/k78Gyeun8CNLLUdXZOAJgj3C9c9zkK5ECeumzhF17w5TkeH4J9UNZMw1DsUgzpNwlOzPkGjB0boAghpOWn48siXokTZxQUY9iC0D5zB7U7xcGyQjvBoCdKdkip7jb0uU9HN0Q0hniGimcGd7BeNBghyFN2J4eWFHWlHce22OO2ZV5iHrwsO4ZSklmzXhiemSK0R0bA9uoWp2Ur/XfsPKw6twJqCtXB4zRs5L8i4IBm2/y3QFuDnM3dqH2rXhl/NMIwP7oCoWE/E9vFBw8410WJ0FLxdfPBI80fQpW4X+IS4o2ULoFFTLaIaA1KD+vBy9saYZmMQ4hkCDycPNPBVPzMOXzkMODoi/+Ex2NTNEe7NAlEzwgu1w+xRM9gekn8NHIj2160QHhCkRa0nj6H1A+lwahhq8nm3Fu+++y4+/vhj1KpVC/Hx8ZBlGZcvX8axY8fg6+uLDz74AG8qa6tZQs+e4lv9P/8YtokujiQZZguWJlMQEEc4ShaQ0i7wv//MB9tMqVtXfIsbPVrNrlV4e4sjmMceUy9TgkRhYeJb5ODBpfs7Pj6G+yM62nwwMfjOorj29uKUcnEBzvJWp44Ikrz4ouH+mDpVZCxKkgjkmGoOUx5GjzYOwJWUiWlKx45qgEq/6UxxlPUfjx4Vz7l+oKi0gerKEBAgXrP6TUsAMY+sWyeiGfpHpPoefVSsDalwcBApEuZIkkgHKRpwa9hQRFaKbmsq49BcgxyNRqRF/fJL8Vmnvr7iqHX0aBHke/ppkX3611+GVRFFMwXfeqvkQDQggpLnz4sIwcsvi2BlmzbiCP6XX0TkZuFCtYweKD7z1Aq8/fbbiImJwdCiGbd6hgwZgpiYGLxzJ7Vt0KBBaNiwIfbpN7+pILVriwyniAgRGOjVy7DRu5KFo0+/qUVJq2tIkvgbX34pgilFk8oVBw6Il7wSoIyNFcGItWvFVzRAZKM984x4qX/wgci2Us536JfRKsGInBzDAKfi2jXxNuzUybBZvCmyrAYFvbzUBGz9EmL9JWNv3y57OWpx9PtwKZTAk36WoDK1nT4tgi+JieJjZc4ckahc2qTc1FQx7U+bpi6Nqzh92vDcwDvvqOeINm4UY9Vvcl80KAgYBvsUSmaqwtHRcDtlRQplDPprAL70kggcSZL4efFidYpat07sA6UfFCCCWd9/L352d1dXsvjhB+P1GgHx+nrzTfGxdfq0OL+nvM5GjBAfvfrJ9cWVEL/1llpaHRQkApmXL4ssRWVayM0VU8uiRertbt8WU/djj4n712+OMnq0+nO3bsZfcTp3VgPrx46JYKHiyhURxFY+Znx8xFQwebIo6FDOoaaliYDigw+KcbdrZ9zfChDvgxdeUH9fs8Y461eSxNK6y5apRQjp6Wqg1NlZrF6jBHj79lWni59/VoOTSUniq51yAkGZnv74w7D78vXrIshZlaqeJLm0dXaEpk2b4tq1a7hqovf48OHDsXbtWuTm5sLxHstPMjIy4OXlhfT0dHia6+JX3O1zM+Bs7wxHOzGOH0/9iENXxKduhF8EHmqqfkrsTdqL34//COzZg1pwx2NSjJjZSnGAkns7CyteW440bToaDW0IJz93nL95HldvG+6fOl51ML75eGgkDa7euopP//3UILCjb1z0OBxIPoDj10V5Zah3KOSs20jctxlIS4MnnDAtdDgch4+C7OKCDac24MjVI7rbB3sEY1LLSZBMHBzI69dj4dH/4RbygPBwDO/9NKL8oyDLMj468JEuwCJBgiZHi9yCHNi7u6COVx080vwRk/dZFln5WXhn1zuQYfiWa+DbAK4OrroAVx2vOkjOTNbtIweNA/K1+SLnOS8PcHXFIy0mGKzPZ0piWiJWHFZPX4T7hmN0M/EpfejyIfx4Wpyi00gajG46GjdzbuKXkz8Ce/fCPV+CH1yQiHQgNhadIvugRz3DWVSWZXx77FucTjmNEM8QNPZvjEb+jZBTkIOzKWexeuHvyE3NxXPPz0DDJmqJ947EHdh6fqvBfdV0q4k+Dfqgns+dA7zCQuDUKcTv3orvc/5BTkRtXUlUPZ96GN10NG7l3cKivers1KteL2w+p5a0DIgYgFaBInvh5I2T+D3+d102Y1E13Wri8Rhxekj//RLsEYxxzcfp3ksAkJ6Tjv8d+J8uC7aGaw1MaTVFt41W1mJ7wnbsSNyhe67dHd0xocUE7L64Gwf2/yhORQLitGJoKPxd/dEltIsuUxAA/k78G3+ev3OKLC4OHS5p0AF1sAz7cDuyPlCrFvxc/ODp5Imrt68iKz9LHOimpqI+fDACTeBYoyYwbRoKtYX4+ODHutd4UfV96mNstHq6/K/zf2F7ovptb3zz8Qj1DsWB5AP45YzIgXfQOGBiy4mo5V4LWlmLr7csQvyuO4FEf3807zEafRv0NQgmH792HGtPiBWn7SQ79I/oj32X9hms69gysCX+vazm8U+LnQY/Z1/8tP1jHDr0G+xy8zHw4QVoHmwmM8WMe/1ctQRZlnHo0CGcO3cOWq0WtWvXRkxMDOxLcxBcCpW+Tx59VD3VfOJE6YMw+/aJo72RIw3XfCtvGzaIIwvlFPW335acfVbUmTOi7igvTwQfSjoKy8urGiWr+goKShdouReLFhlmbW7fXvx6hOacOSOCOiNHGjYJKa30dJFiEhcnxlOacunqIDNTHHX+958IfOlnD5pz4YKoE1OObt55x/Saknv3Gq7n6e0t3jOVlb7dvbs4QuzXTzz35fl3s7PFQmSffCLqLu/mO3g1mWu8vb0xYMCAEtdDHzNmDH755Rek3YlyDR48GL///jtySrkw3r3uj6IfR02biiCCJIl1AfXjuKNGqSWU+/cbrzBRnKws8bJKTxdfQW/dEi8D/VU8HB1FEEs5p/XDD6Zj5ICYSj75RAQ1z54Vlx06JF62SsbeL7+oQbycHBGs2r1b/C5J4u2r9NYpKjFRfIUERBBSyRK7fl1cruSodO0qGj9kZopzQMePqwHEe7Fpk+mldi9eFEGg+HgRmPrmGzUROSxMPE79jMXx44tv1qBYuFD9ONJoxONXKscef1zNxJoyRfw8aZJ4KwMiCDdunHhOAwJE0Knox8bt22IsqaninMHQoSIoeOmSCJgpXa2LnosZOlQE5AARzIuOFisUTJ9uvCLIr7+KQJ1Sbl6jhpj6oqIMX0tjx4qPb+VcZdeuYgySJIJI33wjpiv9cISjo1qSq//aV94vgDhEaNrUcEy7dolga2GhuP+tWw0LQHJyxH5XGr0D4vkaNUoESDdtUi93dhbnh3r1EoFQ/eT0++9Xm7VER4vHnZAgxqm8x19+WZy72bxZDWjXrCl+1x/3lSvifWWqq7IkifvVn8r1//akSaKIRJbFPlSmxgULxJgBcb+xseoSBbGx4uRB0ffNs8+qSwEsXCjed3PnqiXf990nAvwvvqhu/9Zb4nnq2VNMMRMmiHUkzeScmVUR8wyDgmXQp08fbNmyxWTGYIcOHXDmzBlcL6lovxTK+4k+feM0vjn2DQCRjfRsh2d1AYw1x9eIbKhz5xB7WYN+7ceZXwOpFGRZxqkbp7A9cTuu3LoCTydPjIseBz9X9cDqQvoFHLlyBA52DnBzcMPhK4eRki0ynLydvZGZm6nLIBvaaCgC3ALw8YH/QXvjOiDL8K0dgfvC++Hq7avYcm6L0RhGNRmFhjWMZ7y0tCtYvHaWmBVDQzGzw2x4Oon9e/XWVexJ2gMfZx9E14rG9dvX8dV/X5V4n2Vx7NoxfH/ie6PLNZIGDhoH5BaKnOchjYYgOTNZ1xTClCj/KAxvbKL7op61x9fqgquACHZObzMdPs4++Pjgx7pATPNazTE4cjBu5d3Cwt0LIScmqHUNzs5AmzYY13y8WFPQBK2s1TVrKQ2trMWJ6yeQnZ+NWu61EOAWoMskNCUjNwPfHfsOlzLVWoQ2wW3g6eSpCwJ6Onni6bZPY83xNTh546RuOweNAzycPETmaTF6hPVAp7qdAADnbp7Dl0fU1nZ+Ln54MOpB1HKvhYsZF7Hp7CYkZYjZyl5jj0ktJ6GWey2j+/zv6n9Yf3K9LjDoaOeIvMI7M/bNm6jtWAPd2j2EIM9goyxMAMjMzcT/DvwPt/Nvo3WtFuh/KAvS6dM44S9jTaTWOOMJAC5fRuTpFDyIKNhDI9bTvPMt4/zN8/jiyBcmH78ECU+3exqeTp7Iys/Coj2LRCAaIkg3qKF6avTo1aOIS4lDbHAsanupp1Gz87Lw29aPkZF5A207jkRkYFOjv1OgLcDC3QsN1tXU1zqoNfqH98fSfUt1nwltQ9rCy8kLf5z9Q8zieXloUrsVhjYaWqZAfXU5UCuttLQ0vPPOO3hdfz2wMqr0fRIfL9IfYmNN1/lUBenpIkDUsuXdr/G3c6c4mhs3rnIzAKuTW7fEt/abN0Um6I0bVS84Wt3l5IgGOs2amZ4vTNm9WxzR1qwpjg6LlnQDIgWiTh21PrB7d8PavIqWmirSt7p2rbjXjCzfdbCxusw1np6eaNKkCXYrUSgz2rdvj2PHjiHjTiRj2LBh2Lx5sy5IWJLy3h9z5qjLYH7yiWESbJ06Iijl5iayiO713IYsi2DCggUimLZ0qXEm0o4dIuji76/25VGCFS+8oFbj9+wpghvffKNmcHl5icfy6KPifvWbogPi65tSklvUd9+pCcFFzz/t3Sv+DRggls98/XW1DLW4+yyLmTPVrLHoaNFEBRDBUKUxjBLM6tzZsAGMPicn8ZwV15NJqzUMrgIi+PLqq2IKCQkRQVA3N/Gx5OUlAq7Kum9RUWqgZuRI8RyUl+xsETAMCBCJ6yV9bTh1SgSplAy08HBx3nPyZDVT8Pffxcdq48ZqDkFYmPg9PV0Ek8ypX1/cRvn4evNNNUvOw0OU0SpZfEePin2krJdY3HnMV18VZdWAeIxt2qjluJ6e4jXVpYv5VSr27hVB5IYNxXtKCebPm2fc1ENRp47I8DS1AsF77wGzZqm/6wdF9QN8O3eKwBwg/uaJE3ealEK8rr7+Wl37Uf8j/8IF8d5t3FgEZ019lpw8ab7opW5dsU5hQYF4febniyBwUpL4Gqy8RwIDRdC+rOe7GRS0sDlz5uD111/Hjh070El5hQHIycmBn58fOnfujN/KoS1meT/R+YX5eHvX27qD/BGNR6CRfyPIsoyFexbq1hkcGjkETWs1K+6uSk2WZdzMuQlXB1eTAQ99F9IvYMWhFUYZdK4OrpjZbibsNfb4I/4P7EnaU6q/XdOtJh5r/ZhRwEA/O87TyRMz2800dXPd+L848oWuk62/qz8ej3m8TMGvojac2iBKJgE0qtEICWkJRsERjaTBsx2eRX5hPt7/532DjMpQ71DdeDSSBk+2eRJezoYNYBSZuZlYtHeRUQlth9odEOEXYZBBOKXVFAR5iAyL5YeW40LqeXFAe+sWEBEB+1pBeL7j87DXVHDmSDEKtAVYe3ytwVqBzvbOujX/OtTugF71e+H67ev4cP+HRq8lhUbSIMo/CtduX9Nlzbk6uOKx1o/pAsRaWYvVR1fj3E01z9tOsoObo5tRpmH/8P6ICTbs5Ktv36V92Bi30ejyWu61ML75+BLfG7kFubiVd0sE1WVZ9LX39sba0z8YBHwVrXwbo/8Px6CR77z2lRZpd+y+uBv/Xv4XAW4BaFGrBX46/RMy88S31571eqJjnY4GmZzO9s54ss2TcHEoualNaW2M24h9l4xLjxr6NcSwxsNgr7HHnot7RBAQIpiaX5ive06DPILwSPNH4GBn5puHGdXlQK0kGRkZWLhwId5//31kZmaisDQLDxVzX9awT6ia2rJF1AxNnSrqf6hqKE1AbPp0daGl2bPLr3OCFagun6udOnXC7t278cMPP2CQqdpJAD/99BMGDx6Mjh07YseOHQCAtm3bIiUlBXFKtKIE5b0/9u9XG1L3768u4H/hgrqGWUXEqUsbJ/7f/wzXJVOsWSPi7bIsMqn0xxcSomZGubiIjDMlx+TAAdNLdj79tJrltHGj2pPLlNu3RXBQ6a66Z4+6ht7diooSQRGNRgRe2pvoybhkifio2LJFbS4PiK+ljRqpmXyvv65mU5nyxx+GpbqACPAkJoqPISU49MQT6sdSTo4INBZdu+/TT43LjytbWpoImCqBVCVrLDdXBBcvXRJBqDVrDJfOLWrwYJFR+PPP4jnQao0fX1qaeK5Pq4dPGDBA5H4c1zuM6NRJBHDNBdJlWZS86zf9AMTrddOmksv1AZGNqNEYvo/y8kS2oH4Xb0kS41m1ynzyfkGBOLecmCgC3VFRavAwPFw8XkkSJerKUgMrVpR+xZvSatvWuLy7aVMRbFT6helnMPfpo2b1OjuLjMki/WtLpSLmGa4pWAYjRoyAJElYXKQM49NPP0VWVhZG6xfQVyEOdg6o71tf97sSWEnLSTNoPFKnhHLUspAkCb4uviUGPQBRLhsbbPyOiK4ZrQtE9azXEzFBMbpGBfq8nLwworH6qXn19lXdWnCXMi7h1zO/Ysk/S3QBQQBivbYSxt+rnjqDXc+6rgvo3Q1Zlg3WE4zwi0Ajf+PSuTDvMDjbO8PDyQMdaou1fCRIuK/BfRjbbCw8HMXaWlpZiwPJaisxWZYNmnD8e/lfo4Cgcvmui+qiK3W86ugCgoAIVsLOTiwi0aEDEBCAOl51LBoQBERG3pBGQxDgpq4Oq98EpGlNkZXm7+aP/hH94e5ovOZibc/aeLTVo3gw6kFMjZmKGW1mYETjEZjUcpIuIAiIwOFDTR9Cm2B1AfdCudAoIBjlH4XWQcXXpsQGx6JbqGHmbQ3XGhjbbGyp3htO9k5qlq0kidNM9va4P/J+tAtph2Y1m6FHWA881PQhPN32aQxsNgyayDunrTQa8S1QT/va7TEtdhqGNx6OcL9wg8YqR64cQYG2wCBg1yqwVbkGBAGRDagE1yVIiPKPwsQWEzGq6Sjd6yy6lvrezyvMMyjDHtlkZJkDgtXBwYMHMX/+fDz++OOYP38+/i3SCi0nJwdvvPEGQkNDsWDBAmRkZKBRVVoDjaisevYURyEMCFYtpYl8TJyoHj3qL/RG1cbs2bMhyzIefPBBjB07Fr/99htOnjyJU6dO4ffff8fDDz+MBx98EJIkYdadqEtaWhoOHTpU5iZX5alVK3VJ0i1b1KCP/nqCRZfCLA+lTRydMsV4yVt/f/VtIkkiI0w/OKG/9t+qVWpGFiCytxRHjohMrg4dxNqFipKCCm5uoqGC4tln720ts8REERAERFCkXTvjslRAXY63Rw/15wcfFAHRl15S9+lHH6nr4Zmi39dGee6vXBHZafpNIKZNU392djZcX1Fhaj3ByubtLQJVyuokW7aoDTJGjFA/WocNEwHT2Fi1txsgylR//lmUHM+eLQJL16+LwHjRgKeybPK4ceplv/xiGBAMChLr6RWXWStJIjNUvzGPg4MonS5NQBAQh5dF30eOjiKD9q23RJB43z6Rabt9e/Gredjbi/fCypWijLlBA7XsOS5OZCbGx6vNbIKCDNdYLC/PPac+pl69RJbnkSNqQBAwXLJaCQgC4vHeTUCwolj2SL+aadq0KZ544gksXboUQ4YMQb9+/XDy5EksWbIEXbp0wUMV8WorJ5E1InHqhiiOP33jNLSyFhfSL+iu93LyMpt1Vhl61OuB0ymnkZaTprusZaC6cLWdRqw/1rxWc/wa96vo6AqRRTSq6SjUcq+FcN9wxKWKM5dbzm3B/uT9usy6osK8zaworCfYMxhR/lG6AONvcb9BK2vRKrBVmdcXvHr7qkEAtoFvA3g6eRqsnQbAIFDYNbQrwnzC4O7oLjq8QgRU/kr4CwBw8PJBdK7bGUevHsW2hG3QSBr0bdAXDWs0xMHLB3X30yqwFQ5fOYxCuRDZBdkGzWaKBmMja0TqMrSUT7nS7KvK4GTvhJFNRuKTg58YBAT9Xf1R001tbNI6qDVaB7VGVn4Wrt2+hpSsFHg7e6OeTz2D583XxRe+LqabANhr7HFf+H2o71sfG05tEOv13VHHqw6a1WyGloEtS/U66Fy3Mwq0Bdh5YSf83fwxuulouDmWogtiMRztHNGngYnFXAAxO9atK06jFlePAVE6rgSJr2ddx6azm3SvU42kQZuQNsXd/K4EuAVgXPQ4JGcmo2GNhiafA1cHVzT2b2ywXqjSxVg/gGstZs+ejUX6qzcDeO211zB37lzMnz8f+/fvx4gRI5CYmAhZllGnTh3Mnz8fD1dmx1oiIkXz5qL2LC/PuPkHVQv3338/3nzzTbz00kv4+uuv8XWRTgSyLEOj0eD111/H/XciWjdu3MCLL76IvkXTtiqRRiO+5nz0kQik/PGHWNdNvzy1tEGKihrfZ5+JIJmy7OL48YaV7t7eImtp0iSRKH30Ts+8BQvEY8nNFT21LlwQWYCLF4tAjqnsx1atSrf07YQJouTyzBmRlfb44+L3u1nhQj+wobwUhg83zPaKiVEbdUiSCOBdu6aWjdarJzLWfv5ZBEU3bBBZXcuWiSyrgQNFwOXSJTUbNCREBFJ69xa/T58uCmgAkYFVtDfWAw+onWWVv2muoUxlCw0VmYC9ext2mtYPJUiSyKB88UURxL14Uay00bix8Rp0vr7m+5p5eIjgWe/eIkCl36F71CjxN5WS2uJoNKLs1ckJ2LZNNOsoj4+CmjVFoPpejRsnxgUAX3whAodK8Hv69IpZbeKBB8Tr3snJKA9Dp3Nn8dpU1igExHM6alT5j+desHy4jAoLC7F48WJ88sknSEhIQI0aNTBixAi8+uqrcHc3zk66GxWRElq0yUXX0K7IzM3UBY+aBjTF0CjzHcgqw9nUs1h9dDVkyAZNMYrSylocvXoUSRlJaBXYCoEeohD/cuZlfHzw42L/hrezN5oENEHX0K6lyn5LyUrBh/s/NOiSG1kjEoMaDoKrQ+ln0p0XdurWP1SaWhRqC/Hu7nd1JcQSJMxqP8tklpviVt4tLNqzSDceb2dvg0AqYFhmLEHCU22fwp/n/zTq1Ovh6IGn2j4FO43hWkP/O/A/g8YPk1tORrBnkU6RFhSfGo+vjn6ley13D+uOznXvYoH6UsrMzcSB5ANwtndGlH/UXQfPcwty4WDncE8l6BXhk4Of6ILs+prVbIYhjcysoF0JLqZfxOeHPtf9PqTREIPMxrKqqiVdv/76KwbeWfjG09MT4eHhyMjI0DUXWb16NR5//HFkZGTA19cXc+bMwdSpU++5oRVQdfcJEVF1Vd0+Vw8fPowPPvgAO3bsQNKdlLXg4GB07twZ06ZNQ0tznaVLqSL2h345aUyMSDju2FFk6Gg0Yp05S+/6Dz4AZswQ4zh0SG2UXlRBgchmcnAQgTDlXPPy5YYddYtq1EgEeZ56Sm04UhIl8KaIjBQBOKULbGkNGaJ2GN63TzwHp08bBuX+7/+A558v/n70y4pbtBBBG/1SzA4dxFqCSiOS114TGYZRUYYBFsCwaYsiM1MU2ChrzU2erPY6qyref1/tRB0WJtZNrMieTUlJIguvUyfr6aulyMwUQeesLLGuZH6+utbkxYulC3xWlCVLRM8vQGQNr19/98tWA1xT0GZU1BeKr45+pcukA/S62gLoF97PZAlvZUtMS8SVW1cQXSu6VOWVRekap+gJdA9Ei8AWqO9TH74uvmXO8jt14xQ2nNpgkJ3m6eRpVHZanJWHV+oCdcr6dwDw0+mfdNmCdbzqYEILE73Ui/jh5A8GGVTFiawRiZFNRhoFWADzwbTtCdt12YjO9s54tsOzVS6QdSD5AH6P/x2+Lr54pPkj5V7iakv+SfoHv8Ubr4X6aKtHdQF3S/nr/F84fv042gS3KXbtxtKoqgdqgwcPxk8//YTp06fj7bff1jWxOnnyJIYOHYr4+HgUFBSgW7du+O6771CjRo1y+9tVdZ8QEVVX/Fw1VBH7Iy9PZOVcvCh+79hRlA/LskhiPXSoXP7MPdu/X2TxmQsIFqegQAT+4tWVh9CggQgs3H+/moVXVp99JoKV2XeWNHdwECXLxa1dp09pmJCRIf5/9aoa3GjeXF0n79Spkrscy7LIelNKkYtjby+e71q11ICron59kQFpKsgyYIDo+guIdd1K+zgriyyLRhtr1ojMu+LWhqSSPfywccOe6dON10KsbPn5IjtQWQvxXvPIuKYg3ZOBDQfCx1kNkysBQUAEpKqCut510SakzV0FBAGgV71e8HISmVz1ferj4eiHMaXVFMQGx8LP1a/MAUFABNYea/0Y6nqpay5m5Gbgz3OlW8U4tyDXoFS7ga+aX9yhdge4OrjCXmOPLnW7mLq5EVPB2wa+DeDvalwqGhMkAikhniEGHXLtNfZoFWhi5WKIklJl/7cMbFnlAoKAKBF+vuPzmBozlQHBe9S0ZlPYSYbZoqHeoRYPCAJAt7BumBY77Z4DglXZwYMHERoaikWLFhl0tW/UqBEWL16MgoICeHp6YsOGDeUaECQiIqqOHB1F2anSHHvnTrVMsCLWE7xbMTF3FxAERBBsxQqRPda+PbB2rQi0TZt29wFBQJQs//svoCSA5ueLktLU1NLdfu9eERAERKaifiDurbfEeGfOLDkgCIiMOP11AAFxu88+M85+HDpULT1++GHDsufp081nXc2eLQKf4eGm1xi0NEkSa0geP86AYHnQXzsREPtXydCzJAcH0Y9r0aJ7DwhWlKp3tE8VxtPJE+OajzPKbnOyczJo4FCd+bj4YFrsNLzQ8QWMjR5rtI7c3fJ29sa45uPQvrbaXuvo1aMGZbbmXLl1Rdf0w0HjgNpe6mzu5+qHWe1m4dkOzxo0gylOsGcwImuIHH1XB1cMaTQEo5uOxpRWUwwCfTXdaqKej/g2IkkS2oWoXWija0abXdfOy9kLT8Q8gYktJho0W6lqLN38xFq4Orgi3C/c4DL91zlVrOvXr6NFixbQmPhGqyzm3qlTJ3h4eFT20IiIiKqk6GhRRlx0arTkeoLlrWNH4Nw5kQX54IOiUUN5iIwUHYiH3FkhJi1NlPuWxt696s+9ihwi9OkjxrtwYenHMm6cKB12dgbmzAEOHxZl04cOiXUKAfG4Z85Ub+PlJToNA6KBRHEdZbt2FesOnjhRdYMxVH66dhVrTyoeeEBkklLJeFRtY7ydvTEuehxWHF6hayhQ26t2lcwGu1sV1ZlUI2nQI6wHTl4/iZs5NyFDxpZzWzCm2Zhib1egVVtquTi4GAWz7DR2sEPZZvphUcNw5dYV+Lv5w9FOrC3mYOeAgQ0HonFAY1xMv4joWtEGAdFmNZtBK2txK+9WiQ0kPJw84OHEIIStaBnYUteIyN/VH+G+4SXcgspLXl4evLxMr1OplAT4l9AwhoiI6G4cOHAA33//PU6fPo2MjAyYWlVKkiT8aarLhYXFxopGHH36iLXDAOsKClYkR0fRwGTjRtEQ5YMPRMZdSevMKfsZEA0i7pWbG3DwoCgJ12+e4e0tyn2nTRPbFF3a8s03ge7dRfmxma9QOjynajvs7MTakfPmiSzBZ56x9IiqDwYFbZCfqx8ejn4YP5z8Abfzb6NbaDdLD6nasNPYoUe9Hvj+xPcARNOLczfP6TLyTNFvUlK0TPNexmGu+Uc9n3omxyNJEloElnE1YbIJ4b7h6FmvJ5Izk9E1tGu5ZNcSERFR1aV0vlcCgZIkGQQFld+r8neCjh2B338H5s8H+vUzzBKi4tWuLdbme/tt0fF47lzRtbU4StMOoPy6uUqScTdd5fJOnUzfRqMpn863ZH1eekl0Yq5fH7hTcEOlwKCgjQpwC8CUVlMAoEpP9lVRY//G2O2xW9exdfPZzZjSaorZ/VioVYOC1pSRSdZDkiR0rMPT65YSHx+PL7/88q6uf/jhhytqWEREZKXWrl2L9957DyEhIZg7dy7WrVuHzZs3448//kBcXBy++uor7NmzB88//zz69Olj6eEWq1MnoAomMlYLL7wg1vBLTRUNGmbOFKXZ5uSry9HDoWIKs4juiZ2d8VqVVDIGBW0Yg4F3R5Ik9KrXC18cEafTLt+6jGPXjqFpzaYmtzfIFNSU04IgRGQ1du3ahV27dpm8TpIks9dLksSgIBERldknn3wCOzs7/PnnnwgPD8fu3bsBAL169UKvXr0wdepUzJ07F++88w6GK4u7kdXx9haZVbNmiWYtzz0nMi/NqYhMQSKyPAYFie5CmE8Ywn3DEZcaBwA4fOWw2aCg0mQEKL/yYSKyDnXq1OEJGiIiqlSHDh1CmzZtEB5ufg3hV155BatXr8aCBQvw/fffV+LoqDI98QSwZAmQmCiat1y4YH5tQWYKElknBgWJ7lKTgCa6oGBWfpbZ7fTLh5kpSET6EhISLD0EIiKyMZmZmaijF/lxvJP2devWLbjfadOq0WjQpk0bbN++3SJjpMrh5AT07w98+KH4/fp180FBZgoSWScucEZ0l/S7HOt3GC5Kv3yYawoSERERkSX5+/sjLS1N93uNGjUAGJ+oun37NjIyMipxZGQJLi7qzzk55rdjpiCRdWKEgugu2WvURNt8bb7Z7QwyBVk+TEREREQWFBoaisTERN3vLVq0gCzL+Prrr3WXXblyBdu3b0fdunUtMUSqRPpBwexs89vpBwWZKUhkPRgUJLpLDprSZQoarCnI8mEi0pNd3LdvC9wPERFZvx49euDUqVO6zMD77rsPvr6+eOuttzBs2DDMmjULbdq0we3btzF06FDLDpYqXGmDgvrlw8wUJLIeDAoS3SWDTMHCYjIFWT5MRGbUr18f//vf/1BYWFjyxiYUFBRg2bJlqF+/fjmPjIiIrNXIkSMxYcIEXLx4EQDg5uaGFStWwNnZGevWrcOiRYtw8eJFtGzZEi+88IKFR0sVzdlZ/ZmZgkS2h41GiO5SqdcUZPkwEZkRFBSEqVOn4vXXX8e4ceMwbty4YrtBKk6fPo2VK1di1apVSE5ORqtWrSphtEREZA0aNWqETz/91OCygQMHIi4uDj///DNSU1PRqFEjDBw4EHZ2/O5q7ZgpSGTbGBQkukv6mYKFciG0stZkJiDLh4nInP379+Ozzz7DnDlz8MYbb+D//u//EBISgnbt2qFRo0bw8/ODp6cnMjIykJKSghMnTmDPnj24dOkSZFmGv78/PvnkE0ycONHSD4WIiKq5oKAgPProo5YeBlUyrilIZNsYFCS6S/pBQUBkCzraGc+Q+uXDzBQkIn2SJGHy5MkYO3YsVq1ahaVLl+K///7DxYsXIUmS0fayLAMAmjVrhmnTpmH06NFw0f82T0RERFQGzBQksm0MChLdJf1GI0AxQUEt1xQkouI5Oztj8uTJmDx5MhISErB161YcOnQIV69eRXp6Ory9vREQEICWLVuiW7duCA0NtfSQiYjICiQlJSE5ORk5OTlmt+ncuXMljogqm35QsJiXgUGmIIOCRNaDQUGiu1Q0UzC/MB8wMUEaZAqyfJiIShAaGooJEyZYehhERGTF1q5dizlz5iA+Pr7Y7SRJQkGB+bWzqfora6agnR2gYZ4DkdVgUJDoLuk3GgHMNxsxWFOQ5cNEVIwdO3bAzs4OHTp0sPRQiIjISq1ZswajRo2CLMvw9fVFaGgoPDw8LD0sspCydh9mliCRdWFQkOguaSQNNJJGF/TL1+ab3M6g+zAzBYmoGF27dkXXrl2xdetWSw+FiIis1BtvvAEAeP/99zF16lR2GLZxZc0UZJMRIuvCxF+ie6C/rqC5TEH98mGuKUhExfHx8UFQUJClh0FERFbs9OnTaNeuHaZPn86AIJW5+zAzBYmsCyMURPdAf13B/MJSZAqyfJiIitG8eXPExcVZehhERGTFvL29UbduXUsPg6oIZgoS2TYGBYnugX5QsFRrCrJ8mIiKMWPGDOzfvx+//vqrpYdCRERWqlu3bjh06JClh0FVRFm7DzNTkMi6MChIdA/0m42UpnyYmYJEVJwWLVpg2rRpeOCBBzBlyhT88ccfOH36NC5cuGDyHxERUVm9/PLLuHTpEt58801LD4WqgLKWDzNTkMi6sNEI0T0wKB8uRaMRrilIRMUJCwsDAMiyjM8//xyff/652W0lSUJBgemTEUREROZERkZi06ZNGDlyJH788Ufcd999qFOnDjQa099TH3744UoeIVWm0nYfVsqHmSlIZF0YFCS6B6VpNMLyYSIqrdq1a0OSJEsPg4iIrNzu3buRmpqKCxcuYN++fcVuy6CgdXNyAiQJkGVmChLZIgYFie5BqRqNsHyYiEopISHB0kMgIiIrt3z5csyaNQsA0KxZM4SHh8Pd3d3CoyJLkSSRLZidzUxBIlvEoCDRPShNoxGWDxMRERFRVbFo0SLY29tj/fr1GDBggKWHQ1WAi0vxQcHCQkB7p/iJQUEi68IIBdE9KHOjEZYPExEREZEFnT17Fp07d2ZAkHSUZiPmgoL5egVRLB8msi4MChLdg9I0GjFYU5Dlw0RUCn///TeGDx+OkJAQODk5YeLEibrrNm/ejBdffBFXrlyx4AiJiKi68vHxgb+/v6WHQVWIEhTMyTF9vX5QkJmCRNaFQUGie1CaRiP65cPMFCSikixYsABdu3bF999/j+TkZOTn50OWZd31Xl5eeOutt7B+/XoLjpKIiKqr++67D3v37oVWqy15Y7IJJWUKKusJAswUJLI2DAoS3YOyNhrhmoJEVJzffvsNL7/8MoKDg7FmzRpcvXrVaJvY2Fj4+/vjl19+scAIiYiounvttdeQm5uLGTNmIE8/2kM2y9lZ/D87W3QhLoqZgkTWi41GiO5BqdYU1LL7MBGVzvvvvw8nJyf89ttvaNy4sdntoqOjERcXV4kjIyIia/Hpp5/ivvvuw0cffYRff/0V3bp1Q506daDRGJ+8liQJc+fOtcAoqTIpmYKyLLICnZwMr2emIJH1YlCQ6B6UeU1Blg8TUTH279+P2NjYYgOCAODv74/du3dX0qiIiMiazJ8/H5IkQZZlJCYmYuXKlUbbKNczKGgblKAgILIFiwYFmSlIZL0YFCS6B/pBwVJ1H2amIBEV4/bt26hVq1aJ26Wnp3MtKCIiuisvv/wyJEmy9DCoCikaFPT2Nrye3YeJrBeDgkT3oKyNRrimIBEVp2bNmoiPjy9xu9OnT6N27dqVMCIiIrI28+fPt/QQqIrRDwqa6kCsXz7MTEEi68IIBdE9KE2jEZYPE1FpdezYEYcPH8auXbvMbvPLL78gPj4e3bp1q8SRERERkbUqmilYFDMFiawXg4JE96CkRiOyLLN8mIhKbdasWZAkCUOGDMGGDRtQUGD4ufL7779j0qRJcHBwwPTp0y00SiIiIrImSvdhwHRQkJmCRNaL5cNE96CkRiP6WYIAy4eJqHgtW7bEwoULMXPmTAwdOhQuLi6QJAnr1q3D+vXrkZmZCVmWsWTJEkRFRVl6uEREVA18+eWX93T7hx9+uJxGQlUVMwWJbBeDgkT3oKRGI/pZggDLh4moZE8++SQiIyMxb9487N+/H7IsIzMzEwDQrFkzLFiwAAMGDLDwKImIqLoYP378XTcWkSSJQUEbUFJQkJmCRNaLQUGie1BSo5GimYIsHyai0ujTpw/69OmDlJQUnD9/HlqtFrVr10ZgYKClh0ZERNVMnTp12G2YilWWTEEGBYmsC4OCRPegpEYj+p2HAWYKElHZ+Pn5wc/Pz9LDICKiaiwhIcHSQ6AqriyZgiwfJrIuXOCM6B6U1GikaPkw1xQkouKsXLkSSUlJlh4GERER2RD9oGBOjvH1zBQksl7MFCS6B/qZgoVyIbSy1iDwZ5QpyPJhIirGhAkTIEkSwsPD0bNnT/Ts2RPdu3eHp6enpYdGREREVoqZgkS2i0FBonugv6YgILIFHe3UmdJoTUGWDxNRMcaPH4+tW7fizJkzOHPmDD766CNoNBq0atVKFyTs0KEDHHianoiISik7Oxsu+lEfC98PVT3OzurPXFOQyLawlpHoHuhnCgLG6wrqlw9Ld/4jIjJn+fLlSEhIwOnTp7Fs2TLcf//98PDwwL59+/DGG2+gR48e8PHxQd++fbFw4UJLD5eIiKqB+vXr43//+x8KCwtL3tiEgoICLFu2DPXr1y/nkVFVUZZGI8wUJLIuDAoS3YOiQcGi6wrqlw9rJA07vxFRqYSHh+Pxxx/H+vXrkZKSgn/++Qevv/46unbtioKCAmzatAnPPfecpYdJRETVQFBQEKZOnYrQ0FDMmTMHcXFxpbrd6dOn8cILLyA0NBTTp09HcHBwBY+ULKUs5cPMFCSyLlYVFLx06RL+7//+D126dEFgYCDc3NzQuHFjPPPMM0hJSTHafuXKlZAkyeS/adOmmfwbX375JVq0aAEXFxfUrFkTkyZNwvXr1yv6oVEVpd9oBDARFNTLFGTpMBHdjfz8fGRmZiIzMxMZGRkoKBCfM7IsW3hkRERUHezfvx8ff/wx8vLy8MYbbyAyMhJ169bFyJEj8corr2Dp0qX48ssvsXTpUrzyyisYMWIE6tSpg6ioKLz11lvIz8/HJ598gn379ln6oVAFYaYgke2yqjUFf/75Z8yfPx/9+/fHM888oyu5Wrx4Mb799lvs378ftWrVMrrdiy++iEaNGhlc1rBhQ6PtFi1ahJkzZ6JLly54//33kZSUhPfeew979uzBvn374ObmVmGPjaomjaSBRtLo1g7M1xqWD+uvKcgmI0RUWocPH8bmzZuxZcsW7Ny5Ezk5OZBlGZ6enujfv79ufUEiIqKSSJKEyZMnY+zYsVi1ahWWLl2K//77DxcvXjRZxaKcdGrWrBmmTZuG0aNHcy1BK8dMQSLbZVVBwU6dOiExMdEg8Dd58mS0adMGkydPxrvvvot3333X6Ha9evVC165di73vGzduYM6cOYiJicGff/4JOzsR4ImJicGgQYPw/vvv48UXXyzXx0PVg4PGAbmFuQBKLh8mIirOyJEjsXXrVqSkpECWZTg4OKBt27a6IGBsbKxu/iEiIioLZ2dnTJ48GZMnT0ZCQgK2bt2KQ4cO4erVq0hPT4e3tzcCAgLQsmVLdOvWDaGhoZYeMlUS/aBgTo7x9cwUJLJeVhUUbNy4scnLR4wYgcmTJ+PYsWNmb5uZmQknJyc4mvmU27BhA7KysjB9+nSDA7KBAweiXr16WL16NYOCNspeY68LChbXaITlw0RUkjVr1kCSJDRr1gzz5s1D79694erqaulhERGRlQkNDcWECRMsPQyqIkrqPsxMQSLrZROpS0lJSQCAmjVrmrx+0KBB8PT0hLOzM6Kjo7F69Wqjbfbv3w8AaNeundF1bdu2xalTp3Dr1q1yHDVVF/rrChbNFGT5MBGVhYeHB2RZxpEjRzB69GgMGTIECxcuxJEjRyw9NCIishI7duzArl27LD0MqkK4piCR7bKqTEFz5s2bBwAYN26cweWurq546KGH0L17dwQEBOD8+fNYtmwZxo4di7Nnz+puBwDJyckAYLLrVnBwMGRZRnJyMiIiIso8vsDAQIPftVqtmS2pKtLvQFx0TUH98mFmChJRSVJTU7Fv3z5s2bIFW7ZswV9//YVNmzZBkiTUqFEDPXr0QK9evdCrVy+EhISU6b451xAREQB07doVXbt2xdatW8v1fjnPVF9cU5DIdlXJoGBaWhoWL15c6u1nzJgBX19fk9ctXLgQa9euxZQpU9C9e3eD64YPH47hw4cbXPboo4+idevWWLBgAcaNG6dbSyMrKwsA4OTkZPQ3nO/kWyvbkG3RDwoW132YawoSUUns7OzQrl07tGvXDnPnzkVWVha2bduGLVu24M8//8R3332H7777DgAQERGBkydPWnjERERU3fj4+CAoKMjSw6AqpCyZggwKElmXKhsUfOWVV0q9/ZgxY0wGBT/77DM888wz6N+/P5YuXVqq+3JycsLs2bMxfvx4bNq0CVOmTAEA3ZpOubm5Rt23cu6sxnq36z5dvnzZ4PeMjAx4eXnd1X1R5XPQmC8fNsgUZPkwEZWRq6sr+vXrh379+uHIkSP46quvsHTpUuTk5ODMmTNlui/ONUREBADNmzdHXFxcud8v55nqy9ERkCRAlkvOFGT5MJF1qZJBwdDQUMiyfE/3sXz5ckyZMgW9e/fGunXr4FCGUxpKduCNGzd0lyln0y5duoQGDRoYbH/p0iVIksQzbjbKoHy4SKMRgzUFWT5MRGWQlJSEzZs367IEr1+/DgC6rsSm1rglIiIqyYwZM/DAAw/g119/Rf/+/S09HKoCJElkC2Zlldx9mJmCRNalSgYF79Xy5csxadIk9OzZExs2bDBZ8lsc5cyZfmOSmJgYfPLJJ9izZ49RUHDv3r1o2LAh3N3d733wVO0U12jEoPswMwWJqAQbNmzQrSeozEWyLEOSJDRp0gQ9e/ZEz5490aVLF3YlJiKiu9KiRQtMmzYNDzzwAMaPH4+hQ4ciNDTUqBpKUadOnUoeIVmCEhRkoxEi22J1QcGVK1di8uTJ6N69O3788Ufden+mpKSkwM/Pz+Cy9PR0vPXWW3B0dESfPn10l99///2YMWMGli5dioceegh2diLA8/PPP+PcuXN47bXXKuYBUZVX2kYjXFOQiEoyZMgQ3c+1a9fWBQF79OiBgIAAC46MiIisRVhYGABx0unzzz/H559/bnZbSZJQUFBg9nqyHsphMxuNENkWqwoK/vTTT5g4cSI8PT0xYsQIrFu3zuB6d3d3DB48WPd706ZN0aVLFzRt2hQBAQFISEjA8uXLcfnyZSxcuNCgs6O/vz9ee+01zJ49Gz179sSoUaNw6dIlLFy4EJGRkXjqqacq6VFSVVPaRiMsHyaikgwePBi9evVCz549ER4ebunhEBGRFapduzYkSbL0MKiKURJFmSlIZFusKij477//QqvVIi0tTdcgRF/dunUNgoKjRo3Ctm3bsGnTJt1CuLGxsVixYoVBlqBi1qxZ8PPzw6JFizBjxgx4enpi+PDhePPNN1k6bMOKazRisKYgy4eJqATr16+39BCIiMjKJSQkWHoIVAUVFxRkpiCR9bKqoOD8+fMxf/78Um+/cOHCMv+N8ePHY/z48WW+HVmv4hqNGHQfZqYgERERERFVQfpBQVkWzUcUzBQksl5c5IzoHpW20QjXFCSi0jp58iQee+wxXRMrd3d3NGzYEI8//jhOnjxp6eERERGRldHvM5Oba3gdMwWJrBejFET3qLhGIywfJqKyWrlyJVq0aIFPP/0UcXFxyMrKQlZWFuLi4vDxxx+jRYsW+OKLLyw9TCIiqub+/vtvDB8+HCEhIXBycsLEiRN1123evBkvvvgirly5YsERUmXSDwrm5Bhex0xBIuvFoCDRPSpuTUGWDxNRWRw8eBCTJ09GXl4e+vfvjx9++AFHjx7F0aNHsWHDBgwcOBB5eXmYPHkyDhw4YOnhEhFRNbVgwQJ07doV33//PZKTk5Gfnw9ZlnXXe3l54a233uJatzZE6T4MGK8ryExBIuvFoCDRPSp2TUGWDxNRGbzzzjvQarX4/PPP8dNPP+H+++9HkyZN0KRJEwwaNAg//vgjli9fjoKCgrtaF5eIiOi3337Dyy+/jODgYKxZswZXr1412iY2Nhb+/v745ZdfLDBCsgT9TMGiQUElU9De3nCtQSKq/qyq0QiRJegHBYvNFGT5MBGV4O+//0bz5s3xyCOPmN1m/PjxWLp0KXbs2FGJIyMiImvx/vvvw8nJCb/99hsaN25sdrvo6GjExcVV4sjIkooLCiqZgswSJLI+TF0iukfFNRoxWFOQ5cNEVIIbN26gUaNGJW4XGRmJGzduVMKIiIjI2uzfvx+xsbHFBgQBwN/fn2sK2pDSZAoyKEhkfRgUJLpHxTUa0S8fZqYgEZXE29sbFy5cKHG7CxcuwMvLqxJGRERE1ub27duoVatWidulp6dDq9WWuB1Zh9IEBdlkhMj6MChIdI9K22iEawoSUUliYmKwe/dubN261ew2W7duxa5du9CmTZtKHBkREVmLmjVrIj4+vsTtTp8+jdq1a1fCiKgqYPkwkW1ilILoHpW20QjLh4moJNOnT4dWq8XAgQPx7LPP4vjx48jKykJWVhaOHTuG2bNnY+DAgbptiYiIyqpjx444fPgwdu3aZXabX375BfHx8ejWrVsljowsST8omJNjeB0zBYmsF4OCRPeouEYjBmsKsnyYiErQp08fvPTSS8jOzsbChQvRrFkzeHh4wMPDA9HR0Vi0aBGys7MxZ84c9O7d29LDJSKiamjWrFmQJAlDhgzBhg0bUFBg+P31999/x6RJk+Dg4MATUDbE2Vn9mZmCRLaDQUGie1RcoxGD7sPMFCSiUnjttdewceNGdOvWDU5OTpBlGbIsw9HREd27d8fGjRvxyiuvWHqYRERUTbVs2RILFy7EjRs3MHToUHh7e0OSJKxbtw7e3t7o378/rl27hoULFyIqKsrSw6VKwjUFiWyTfcmbEFFx9DMFC+VCaGWtbv1A/fJhrilIRKXVt29f9O3bF4WFhUhJSQEA+Pn5wc6OJxeIiOjePfnkk4iMjMS8efOwf/9+yLKMzMxMAECzZs2wYMECDBgwwMKjpMrENQWJbBODgkT3SL/RCCCyBR3txGk0lg8TUWnEx8dj/fr1SEhIgJOTE5o3b47hw4fDxcUFAQEBlh4eERFZoT59+qBPnz5ISUnB+fPnodVqUbt2bQQGBlp6aGQBzBQksk0MChLdI/1MQUA0G1GCgiwfJqKSLF68GM8++ywKCwsNLp87dy42btyIJk2aWGhkRERkC/z8/ODn52fpYZCFmQsKFhYC2jt5DswUJLI+rGckukf6awoChusKsnyYiIqzc+dOzJo1CwUFBXB1dUWLFi1Qv359SJKEpKQkDB06FFqttuQ7IiIiKqWVK1ciKSnJ0sOgKsZc92ElSxBgpiCRNWKUgugeGWUKatWZ0yBTkOXDRFTE0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MIiKyIhMmTEDdunURGRmJadOmYcOGDcjIyLD0sMjCzHUfVtYTBJgpSGSNGBQkukcaSWOQBaifKWiwpiDLh4moiD179iAkJAQff/wx3NzcdJc3a9YM77//PmRZxt69ey04QiIisjbjx49H7dq1cebMGXz44YcYOnQo/Pz80LZtW8yZMwfbtm1Dvn56GNkEc+XD+i8FBgWJrA+DgkTlQL/ZiLnyYWYKElFRV69eRevWreFooh6nY8eOAIBr165V9rCIiMiKLV++HAkJCTh9+jSWLVuG+++/Hx4eHti3bx/eeOMN9OjRAz4+Pujbty8WLlxo6eFSJSlNUJDlw0TWh0FBonKgX0KcX2i6fJhrChJRUXl5efD29jZ5naenp24bIiKi8hYeHo7HH38c69evR0pKCv755x+8/vrr6Nq1KwoKCrBp0yY899xzlh4mVRJzQUGWDxNZN0YpiMqBfrMRs5mCLB8mIiIioiooPz8fmZmZyMzMREZGBgoKxPdZWZYtPDKqLMwUJLJN9iVvQkQlMcgU1Gs0YrCmIMuHiciE+Ph4fPnll3d1/cMPP1xRwyIiIit3+PBhbN68GVu2bMHOnTuRk5MDWZbh6emJ/v37o2fPnujZs6elh0mVhJmCRLaJQUGicmB2TUEtMwWJqHi7du3Crl27TF4nSZLZ6yVJYlCQiIjKbOTIkdi6dStSUlIgyzIcHBzQtm1bXRAwNjYWdnb83mpr9LsP5+SoPzNTkMi6MShIVA7Mrikoc01BIjKvTp06kCTJ0sMgIiIbsmbNGkiShGbNmmHevHno3bs3XF1dLT0ssjBHR0CSAFlmpiCRLWFQkKgc6AcFlUxBWZZZPkxExUpISLD0EIiIyMZ4eHggMzMTR44cwejRo9GpUyf06tULPXv2RHR0tKWHRxYiSaKEOCuLawoS2RIGBYnKgalGI/oBQYDlw0RERERkeampqdi3bx+2bNmCLVu24K+//sKmTZsgSRJq1KiBHj16oFevXujVqxdCQkIsPVyqRKaCgswUJLJuDAoSlQNTjUb0S4cBZgoSERERkeXZ2dmhXbt2aNeuHebOnYusrCxs27YNW7ZswZ9//onvvvsO3333HQAgIiICJ0+etPCIqbIozUaYKUhkOxgUJCoHphqN6DcZAbimIBERERFVPa6urujXrx/69euHI0eO4KuvvsLSpUuRk5ODM2fOWHp4VIlMBQWZKUhk3RgUJCoHphqNsHyYiIiIiKqypKQkbN68WZcleP36dQDQdSVu166dhUdIlUkJCrL7MJHtYFCQqByYajTC8mEiIiIiqmo2bNigW08wLi4OgAgCSpKEJk2aoGfPnujZsye6dOnCrsQ2xtlZ/D87W3QhliRmChJZOwYFicqBqUYjLB8mIiIioqpmyJAhup9r166tCwL26NEDAQEBFhwZWZqSKQgAubkiSKifKcigIJH1YVCQqByUqtEIy4eJiIiIyMIGDx6MXr16oWfPnggPD7f0cKgK0Q8KZmcbBwVZPkxkfRgUJCoHphqN6K8pKEFipiARERERWdz69estPQSqoooGBX18WD5MZO0YpSAqB6YajeiXDzNLkIiIiIiIqrKiQUGAmYJE1o5BQaJyYHJNQb3yYWYJEhEREVFVcvLkSTz22GNo2LAh3N3d4e7ujoYNG+Lxxx/HyZMnLT08sgBTQUFmChJZN5YPE5UDk2sK6mcKsvMwEREREVURK1euxGOPPYb8/HzIsqy7PC4uDnFxcVixYgU+/vhjjBs3zoKjpMqmdB8GgJwc8X9mChJZN6YvEZUD/aCgqTUFWT5MRERERFXBwYMHMXnyZOTl5aF///744YcfcPToURw9ehQbNmzAwIEDkZeXh8mTJ+PAgQOWHi5VImYKEtkeZgoSlQNTjUb0y4eZKUhEREREVcE777wDrVaLzz//HI888ojBdU2aNMGgQYOwcuVKTJgwAQsXLsQ333xjoZFSZeOagkS2h5mCROWgpEYjXFOQiIiIiKqCv//+G82bNzcKCOobP348WrZsiR07dlTiyMjSmClIZHsYqSAqB6YajbB8mIiIiIiqmhs3bqBRo0YlbhcZGYkbN25UwoioqmCmIJHtYVCQqByYbDTC8mEiIiIiqmK8vb1x4cKFEre7cOECvLy8KmFEVFUwU5DI9jAoSFQO9IOCWlkLraxl+TARERERVTkxMTHYvXs3tm7danabrVu3YteuXWjTpk0ljowsjZmCRLaHkQqicqDfaAQQJcQGmYIsHyYiIiKiKmD69OnQarUYOHAgnn32WRw/fhxZWVnIysrCsWPHMHv2bAwcOFC3LdkOZ2f155wc8X/9oCAzBYmsD7sPE5UD/UxBQDQbMVhTkOXDRERERFQF9OnTBy+99BJef/11LFy4EAsXLjTaRpZlzJ07F71797bACMlSWD5MZHuYKUhUDvQbjQB3MgW1zBQkIiIioqrntddew8aNG9GtWzc4OTlBlmXIsgxHR0d0794dGzduxCuvvGLpYVIlY/kwke1hpiBROSiaKZhXmGdQPsw1BYmIiIioKunbty/69u2LwsJCpKSkAAD8/PxgZ8eT2bbK1VX9OStL/J+ZgkTWzSojFaGhoZAkyeS/GzduGG2fnJyMhx9+GP7+/nBxcUHr1q2xdu1ak/edm5uLl19+GWFhYXByckL9+vWxYMEC5OufQiGbo5E0cLRTT53lFuYaZgqyfJiIiIiILCg+Ph5vv/02pk6diqeffhpffPEFsrOzYWdnh4CAAAQEBDAgaOP0m02np4v/M1OQyLpZbaZgZGQkXnrpJaPLPTw8DH5PTU1Fx44dce3aNcycORMhISH4+uuvMXz4cCxfvhyPPPKIwfYjRozAjz/+iAkTJqBdu3bYs2cP5s6di/j4eKxcubIiHxJVcc72zsgrFKfScgpyDNcUZPkwEREREVnI4sWL8eyzz6KwsNDg8rlz52Ljxo1o0qSJhUZGVYl+UDAtTfyfmYJE1s1qg4I1a9bEmDFjStzuzTffxPnz5/HTTz/pumxNnDgR7dq1w+zZszFs2DC4u7sDADZu3Igff/wRM2fO1C3IO2nSJHh7e+O9997DlClT0L59+4p7UFSlOds7IyM3AwCQW5Br2H2YmYJEREREZAE7d+7ErFmzIMsy3Nzc0LBhOeSaAwAAKN1JREFUQ2RkZODcuXNISkrC0KFDcfLkSWg0VllERmXg7a3+zExBIttg1Z/8BQUFyMjIKHabr7/+GvXr19cFBAHAzs4O06dPR2pqKjZu3GiwLQA89dRTBveh/L569eryGThVS052TrqfcwpyDMqHuaYgEREREVnC0qVLIcsyxo0bhytXruDAgQM4c+YM/v33X9SvXx/x8fH4/fffLT1MqgLc3AClgpyZgkS2wWojFf/88w9cXV3h5eUFb29vjBs3DsnJyQbbXL58GZcuXULbtm2Nbq9ctn//ft1l+/fvR3BwMGrXrm2wbe3atREUFGSwLdkeZ3tn3c8sHyYiIiKiqmDPnj0ICQnBxx9/DDc3N93lzZo1w/vvvw9ZlrF3714LjpCqCklSS4hNZQoyKEhkfayyfLhx48aYNGkSGjVqhPz8fGzbtg2fffYZ/vzzT+zbtw9BQUEAoAsSBgcHG92HctmlS5d0lyUnJyMqKsrk3wwODkZSUtJdjTcwMNDgd61Wa2ZLqsqKBgVZPkxEVQnnGiIi23T16lX069cPjiZqPzt27AgAuHbt2j3/Hc4z1sHLC0hNNc4UtLcXQUMisi5VNiiYlpaGxYsXl3r7GTNmwNfXFwDw66+/Glw3cuRIdO7cGaNHj8a8efPw6aefAgCy7vRZd3JyQlHOzs4G2yg/m9pW2V5/W7I9zBQkIiIioqomLy8P3vqLxenx9PTUbUMEqOsKpqUBsqxmCnI9QSLrVKWDgq+88kqptx8zZowuKGjKQw89hJdeeskgYOjq6goAyM3NNdo+JyfHYBvlZ1PbKtvrb1sWly9fNvg9IyMDXvqtn6haKBoU1A8Eck1BIrI0zjVERFSROM9YByUoWFAAZGerQUGWDhNZpyobFAwNDYUsy+V+n7t27dL9rpQR65cIK5TL9EuLg4KCTG6rbG+qDJlsh5O9mkWaW5gLZ0kNErJ8mIiIiIgsJT4+Hl9++eVdXf/www9X1LCoCtKP46alqeXDDAoSWacqGxSsCPHx8ahZs6bu98DAQAQHB5tcWFe5rHXr1rrLYmJi8NVXX+HixYsGzUYuXryI5ORkDBo0qAJHT1Vd0UxBB406c7J8mIiIiIgsZdeuXQbJEfokSTJ7vSRJDAraGP1K8/R0lg8TWTurCwqmpqaaLCNetmwZkpKS8PjjjxtcPmrUKLz77rv4+eefMXDgQABAYWEhPvjgA3h7e6Nfv34G23711VdYvHgxFi5cqLtcWftw9OjRFfCIqLooGhR0dVDLyVk+TERERESWUKdOHUjsEEGlxExBIttidUHBL7/8Ep9//jn69u2L0NBQFBQUYNu2bdiwYQPq169vtE7h888/j7Vr1+Khhx7CzJkzERwcjG+++Qb79+/HZ599Bg8PD922/fv3x4ABA/Dee+8hPT0d7dq1w549e/D5559jzJgxuu5dZJuMug9r2X2YiIiIiCwrISHB0kOgakQ/UzAtjZmCRNbO6oKCMTEx2Lp1K7777jtcv34dsiwjLCwMzz33HJ5//nmjzlt+fn7YtWsXnn/+eSxbtgy3bt1CVFQUvv32W4wYMcLo/teuXYsFCxZg9erVWLVqFYKDg/Hqq6/i+eefr6RHSFUVuw8TEREREVF1VrR8mJmCRNbN6oKCHTp0wE8//VSm2wQHB2PVqlWl2tbZ2RkLFizAggUL7mZ4ZMWc7NRGI3mFecjX5ut+Z6YgERERERFVdUXLh5kpSGTduNAZUTnRzxQEgKz8LN3PXFOQiIiIiIiqOmYKEtkWRiqIyklxQUGWDxMRERERUVWnnymYkgLIsviZmYJE1olBQaJyYq+xNygTzs7P1v3M8mEiIiIiIqrq9DMFr19Xf2amIJF1YlCQqJxIkmSQLShD1v3MTEEiIiIiIqrq9DMF9YOCzBQksk4MChKVIyd7J5OXc01BIiIiIiKq6pgpSGRbGKkgKkdF1xVUsHyYiIiIiIiqOmYKEtkWBgWJypHZoCDLh4mIiIiIqIqztwfc3MTPzBQksn4MChKVI3NBQZYPExERERFRdaCUEN+6pV7GoCCRdWKkgqgcsXyYiIiIiIiqM/0SYgXLh4msE4OCROXIyc50oxGWDxMRERERUXWg32xEwUxBIuvEoCBROWKmIBERERERVWemgoLMFCSyTgwKEpUjrilIRERERETVmanyYWYKElknRiqIyhG7DxMRERERUXXGTEEi28GgIFE5YvkwERERERFVZ8wUJLIdDAoSlSMnezYaISIiIiKi6ouZgkS2g0FBonLENQWJiIiIiKg6Y6Ygke1gpIKoHLF8mIiIiIiIqjNmChLZDgYFicoRG40QEREREVF1ZiooyExBIuvEoCBROXKyc4IEyehylg8TEREREVF1YKp8mJmCRNaJkQqiciRJEhztDGdMCRKDgkREREREVC0wU5DIdjBSQVTOipYQs3SYiIiIiIiqCzYaIbIdDAoSlTOjoCCbjBARERERUTXBRiNEtoNBQaJyVjQoyNJhIiIiIiKqLlxcjDMDmSlIZJ0YrSAqZywfJiIiIiKi6kqSjEuImSlIZJ0YFCQqZ072Tga/s3yYiIiIiIiqk6IlxMwUJLJODAoSlTNmChIRERERUXXGTEEi28CgIFE545qCRERERERUnTFTkMg2MFpBVM7YfZiIiIiIiKozZgoS2QYGBYnKGcuHiYiIiIioOmOmIJFtYFCQqJw52bHRCBERERERVV9Fg4LMFCSyTgwKEpUzrilIRERERETVWdHyYWYKElknRiuIyhnLh4mIiIiIqDpjpiCRbWBQkKicsdEIERERERFVZ8wUJLINDAoSlTOWDxMRERERUXXGRiNEtoHRCqJy5mRfpNEIy4eJiIiIiKgaYfkwkW1gUJConNlr7GGvsdf9zvJhIiIiIiKqTlg+TGQbGBQkqgD6JcTMFCQiIiIiouqEmYJEtoFBQaIKoB8U5JqCRERERERUnRTNFLS3N70dEVVvjFYQVQCDTEGWDxMRERERUTXi6an+7OAASJLlxkJEFYdBQaIK4GSnNhth+TAREREREVUndnaAh4f4mesJElkvBgWJKgDLh4mIiIiIqDpT1hVkUJDIejFaQVQBQr1DdT/X9apruYEQERERERHdhe7dxf87dbLsOIio4nC5UKIK0DKwJVwcXOCgcUCEX4Slh0NERERERFQmn34KTJoExMRYeiREVFEYFCSqAHYaOzQJaGLpYRAREREREd0VBwegY0dLj4KIKhLLh4mIiIiIiIiIiGwMg4JEREREREREREQ2xqqCgitXroQkScX+u3TpUqm2nzZtmsm/8eWXX6JFixZwcXFBzZo1MWnSJFy/fr2yHiIREREREREREdE9s6o1BTt37oxVq1YZXX758mU8++yzaNGiBYKDg42uf/HFF9GoUSODyxo2bGi03aJFizBz5kx06dIF77//PpKSkvDee+9hz5492LdvH9zc3MrvwRAREREREREREVUQqwoK1qtXD/Xq1TO6/P/+7/8AABMnTjR5u169eqFr167F3veNGzcwZ84cxMTE4M8//4SdnR0AICYmBoMGDcL777+PF1988d4eABERERERERERUSWwqvJhU2RZxvLly+Hi4oLRo0eb3S4zMxN5eXlmr9+wYQOysrIwffp0XUAQAAYOHIh69eph9erV5TpuIiIiIiIiIiKiimL1QcHt27cjPj4eQ4cOhbe3t8ltBg0aBE9PTzg7OyM6OtpkgG///v0AgHbt2hld17ZtW5w6dQq3bt0q17ETERERERERERFVBKsqHzbl888/BwBMmjTJ6DpXV1c89NBD6N69OwICAnD+/HksW7YMY8eOxdmzZzFv3jzdtsnJyQBgck3C4OBgyLKM5ORkRERElHmMgYGBBr9rtdoy3wcREVFxONcQEVFF4jxDRFT9VMmgYFpaGhYvXlzq7WfMmAFfX1+T97Nu3To0aNAAXbp0Mbp++PDhGD58uMFljz76KFq3bo0FCxZg3LhxCA0NBQBkZWUBAJycnIzux9nZ2WAbIiIiIiIiIiKiqqzKBgVfeeWVUm8/ZswYk0HBr7/+GtnZ2WYbjJji5OSE2bNnY/z48di0aROmTJkCQGQVAkBubi5cXFwMbpOTk2OwTVldvnzZ4PeMjAx4eXnd1X0RERGZwrmGiIgqEucZIqLqp0oGBUNDQyHL8j3fz+effw57e3uMHz++zH8fEB2HFUFBQQCAS5cuoUGDBgbbX7p0CZIk6bYhIiIiIiIiIiKqyqy20cjhw4fx77//on///qhVq1aZbhsXFwcAqFmzpu6ymJgYAMCePXuMtt+7dy8aNmwId3f3exgxERERERERERFR5bDaoOBnn30GAMWWDqekpBhdlp6ejrfeeguOjo7o06eP7vL7778fLi4uWLp0KQoLC3WX//zzzzh37hxGjx5djqMnIiIiIiIiIiKqOFWyfPhe5eTk4KuvvkJQUBD69etndrumTZuiS5cuaNq0KQICApCQkIDly5fj8uXLWLhwIUJCQnTb+vv747XXXsPs2bPRs2dPjBo1CpcuXcLChQsRGRmJp556qhIeGRERERERERER0b2zyqDg+vXrkZaWhqlTp8LOzs7sdqNGjcK2bduwadMm3UK4sbGxWLFihUGWoGLWrFnw8/PDokWLMGPGDHh6emL48OF48803WTpMRERERERERETVhiSXR0cPKldKgDI9PR2enp6WHg4RUbXHz1Vj3CdEROWLn6uGuD+IiMpXRXyuWu2agkRERERERERERGSaVZYPV3dK8mZGRoaFR0JEZB2Uz1Mmx6s41xARlS/ONYY4zxARla+KmGcYFKyCMjMzAQC1a9e28EiIiKxLZmYmvLy8LD2MKoFzDRFRxeBcI3CeISKqGOU5z3BNwSpIq9UiOTkZHh4ekCSp1LcLDw8HAMTFxVXU0KoF7gfuAwX3A/cBIPaBLMv4999/ERQUBI2GK2cAnGvuBfcB94GC+4H7QMG5xhjnmbvHfSBwP3AfKLgfKm6eYaZgFaTRaBASEnJXtwNg8wv5cj9wHyi4H7gPAHUf3M3nqjXjXHP3uA+4DxTcD9wHCs41xjjP3D3uA4H7gftAwf1QcfMMT2ERERERERERERHZGAYFiYiIiIiIiIiIbAzXFCQiIiIiIiIiIrIxzBQkIiIiIiIiIiKyMQwKEhERERERERER2RgGBYmIiIiIiIiIiGwMg4JEREREREREREQ2hkFBIiIiIiIiIiIiG8OgIBERERERERERkY1hUJCIiIiIiIiIiMjGMChIRERERERERERkYxgUJCIiIiIiIiIisjEMChIREREREREREdkYBgWJiIiIiIiIiIhsDIOCRERERERERERENoZBQSIiIiIiIiIiIhvDoKAV0Gq1WLRoESIjI+Hs7IzatWtj1qxZuH37tqWHVinOnDmDl19+GW3btoW/vz88PDzQvHlzvP766zazD0zJyspCvXr1IEkSpk2bZunhVKrU1FTMnj0bDRo0gLOzM/z9/dGtWzf8/ffflh5apbl16xbeeOMNNG3aFB4eHqhRowbat2+PlStXQpZlSw+vXP3f//0fhg0bpnu9h4aGFrv9P//8g549e8LDwwOenp7o27cvDh8+XCljra5sfZ4BONeYY6tzDecZzjPF4TxTdpxnOM+YY6vzDMC5xpbmGcByc4393Q2XqpKnn34aS5YswQMPPIBZs2bh5MmTWLJkCQ4dOoQtW7ZAo7Hu2O/y5cuxbNkyDBo0CKNHj4aDgwP++usvzJkzB2vWrMHevXvh4uJi6WFWupdffhnXr1+39DAqXWJiIrp27Ypbt25h4sSJiIiIQHp6Oo4ePYpLly5ZeniVQqvV4r777sPu3bsxbtw4TJ8+HVlZWfjmm2/wyCOP4OTJk3jrrbcsPcxy8+KLL8LX1xctW7ZEWlpasdvu3bsXXbt2RXBwMF599VUAwNKlS9GpUyfs3r0bTZs2rYQRVz+2Ps8AnGvMscW5hvMM55nicJ65O5xnOM+YY4vzDMC5xtbmGcCCc41M1dqxY8dkSZLkIUOGGFy+ZMkSGYD81VdfWWhklWf//v1yWlqa0eUvvfSSDED+4IMPLDAqyzp48KBsZ2cnL1y4UAYgP/HEE5YeUqXp2LGjHBISIicnJ1t6KBaze/duGYD81FNPGVyem5srh4WFyV5eXpYZWAU5e/as7ufGjRvLdevWNbttTEyM7OHhISclJekuS0pKkj08PORevXpV5DCrLc4zAucaY7Y613Ce4TzDeaZ8cZ4ROM8Ys9V5RpY519jaPCPLlptrrP+Ui5X75ptvIMsynnrqKYPLJ0+eDFdXV6xevdoyA6tErVu3hpeXl9HlI0aMAAAcO3assodkUYWFhZg8eTL69u2LIUOGWHo4lWrHjh3YuXMnnn32WQQGBiI/Px9ZWVmWHlaly8jIAAAEBQUZXO7o6IgaNWrAzc3NEsOqMPXq1SvVdvHx8di/fz+GDRuG4OBg3eXBwcEYNmwYtmzZgitXrlTUMKstzjMC5xpDtjrXcJ4ROM+Yxnnm7nCeETjPGLLVeQbgXAPY3jwDWG6uYVCwmtu/fz80Gg1iY2MNLnd2dkbz5s2xf/9+C43M8pKSkgAANWvWtPBIKteiRYtw6tQpLF261NJDqXQbN24EANSpUwcDBw6Ei4sL3NzcEBERYTNfKAEgNjYW3t7eePvtt7F27VpcuHABp06dwgsvvICDBw9i/vz5lh6iRSifh+3atTO6rm3btpBlGQcPHqzsYVV5nGeKx7nGtuYazjMC5xnTOM/cHc4zxeM8Y1vzDMC5BuA8U5zynmsYFKzmkpOTUaNGDTg5ORldFxwcjBs3biAvL88CI7OswsJCvPbaa7C3t8dDDz1k6eFUmvPnz2PevHl4+eWXS1yY1BqdPn0agDiznJqaii+++ALLly+Ho6Mjxo4dixUrVlh4hJXDx8cHP/30E3x9fTF8+HDUrVsXjRo1wrJly7Bu3TpMnjzZ0kO0iOTkZAAwOKOmUC6zhTVayorzjHmca2xvruE8I3CeMY3zzN3hPGMe5xnbm2cAzjUA55nilPdcw0Yj1VxWVpbJCRQQZ9eUbRwdHStzWBb31FNPYc+ePXjjjTfQsGFDSw+n0jz22GOoV68eZs6caemhWERmZiYAwMPDA3/99ZfudT948GDUq1cPL774IsaNG2cTi1W7u7ujSZMmGDRoENq3b4/U1FQsW7YMDz30EH788Uf06tXL0kOsdErZhanPTP3PSzLEecY8zjW2N9dwnlFxnjHGeebucJ4xj/OM7c0zAOcaBecZ08p7rrHuV5ENcHV1RW5ursnrcnJydNvYkrlz52Lp0qWYMmUKXnjhBUsPp9KsXr0amzdvxkcffQQHBwdLD8cilI5so0aNMvji6OPjg0GDBuHKlSu6M2/W7L///kP79u3Rq1cvvPPOO3jggQcwceJE7Ny5E7Vq1cLkyZNRWFho6WFWOuWz0NRnpq1+XpYG5xnTONfY5lzDeUbgPGMa55m7w3nGNM4ztjnPAJxrAM4zxSnvuYZBwWouKCgIN27cMPmCuHTpEmrUqGFTZ9Xmz5+PBQsW4JFHHsH//vc/Sw+n0uTm5mLmzJno168fatWqhfj4eMTHxyMxMREAkJ6ejvj4+BJbm1d3ISEhAIBatWoZXRcYGAgAuHnzZqWOyRIWLVqEnJwcDBs2zOByV1dX9O/fH4mJiUhISLDM4CxIWajYVDq9cpmpNHxbx3nGGOca251rOM8InGdM4zxzdzjPGOM8Y7vzDMC5BuA8U5zynmsYFKzmYmJioNVqsW/fPoPLc3JycPjwYbRu3dpCI6t88+fPxyuvvIJx48bhs88+gyRJlh5SpcnOzsb169fx66+/Ijw8XPeva9euAMQZt/DwcHz22WeWHWgFUxaoVhZk1qdcFhAQUKljsgRlMjB19qygoMDg/7YkJiYGALBnzx6j6/bu3QtJktCqVavKHlaVx3nGEOca255rOM8InGdM4zxzdzjPGOI8Y9vzDMC5BuA8U5xyn2tkqtaOHj0qS5IkDxkyxODyJUuWyADkVatWWWhkleuVV16RAchjx46VCwsLLT2cSpeXlyevXbvW6N+HH34oA5D79u0rr127Vj59+rSlh1qhUlNTZQ8PDzk4OFjOzMzUXZ6cnCy7ubnJERERFhxd5XnqqadkAPJbb71lcPnNmzflwMBA2cfHRy4oKLDQ6CpW48aN5bp165q9vnXr1rKHh4d86dIl3WWXLl2SPTw85B49elTCCKsfzjMqzjWcazjPCJxn6pq9nvNM2XGeUXGe4Twjy5xrZNm25xlZrty5RpJlWb6XKCVZ3vTp07F06VI88MAD6NevH06ePIklS5agQ4cO2Lp1q9UvQLps2TJMmzYNderUwWuvvWb0eGvWrGmzi5AmJCQgLCwMTzzxBJYuXWrp4VSKTz75BI8++igaN26MCRMmIC8vDx999BEuX76MX375Bb1797b0ECtcYmIiWrZsiZs3b2L06NHo0KEDUlNT8emnnyIhIQHLli3D1KlTLT3McrNq1SpdWckHH3yAvLw8zJo1CwBQt25djB07Vrft7t270a1bN4SEhGD69Om621y9ehW7du1CdHR05T+AasDW5xmAc01xbG2u4TzDeYbzTPnjPMN5pji2Ns8AnGtsbZ4BLDjX3F3ckqqSgoIC+d1335UjIiJkR0dHOSgoSH766acNzipYs3HjxskAzP7r0qWLpYdoMefPn5cByE888YSlh1Kp1q1bJ7dp00Z2dXWV3d3d5V69esk7d+609LAqVXx8vPzwww/LwcHBsr29vezh4SF36tRJXrdunaWHVu66dOlSpvf/7t275e7du8tubm6yu7u73Lt3b/ngwYOVP/BqxNbnGVnmXFMcW5xrOM9wnuE8U744z3CeKY4tzjOyzLnGluYZWbbcXMNMQSIiIiIiIiIiIhtj/XnYREREREREREREZIBBQSIiIiIiIiIiIhvDoCAREREREREREZGNYVCQiIiIiIiIiIjIxjAoSEREREREREREZGMYFCQiIiIiIiIiIrIxDAoSERERERERERHZGAYFiYiIiIiIiIiIbAyDgmTTQkNDIUlSsf8WL15s6WFSOTl06BDs7Owwffp0g8u3bdume76Lk5CQoNsuISHhrseRnp4OPz8/tGnTBrIs3/X9EFHVx3nGtnCeIaLKxnnGtnCeofJmb+kBEFUFHTp0QIMGDUxeFxUVVcmjoYoyffp0uLi4YO7cuRYdh5eXF1544QU888wz+PLLLzFu3DiLjoeIKh7nGdvAeYaILIXzjG3gPEPljUFBIgCTJk3C+PHjLT0MqkDff/89du3ahWeeeQYBAQGWHg6mTZuGt99+Gy+88AJGjhwJJycnSw+JiCoQ5xnrx3mGiCyJ84z14zxDFYHlw0RkExYtWgQAmDhxooVHIjg7O+Ohhx7C5cuX8d1331l6OEREdI84zxARUUXiPEMVgUFBolJS1utISEjAjz/+iO7du8PX1xeSJGHbtm267W7evIl58+ahefPm8PDwgKurK5o2bYoFCxYgKyvL5H0XFBRg8eLFaNq0KZydneHv74+hQ4fiv//+w8qVKyFJktGZv/nz50OSJMyfP9/kfSrrSnTt2tXk9cnJyZg5cyYaNWoEV1dXeHh4ICYmBkuXLkVBQYHR9uPHj4ckSVi5ciXOnz+PsWPHolatWnByckL9+vUxZ84c5Obmmt1/Bw8exLhx4xAWFgZnZ2f4+voiOjoazzzzDBITEwEAK1asgCRJ6NOnj9n7SU5OhoODA1xcXJCSkmJ2O32HDh3C7t270bZtWzRs2LBUtykL5bko6V9RynO6bNmych8TEVU/nGc4z5jDeYaIygPnGc4z5nCesV0sHyYqo4ULF2Lp0qVo3bo1+vbti+TkZNjZ2QEATpw4gb59++LixYsIDAxEx44d4eDggH379mHu3LlYt24dtm3bBi8vL939abVaDBs2DBs2bICjoyO6du0KHx8f/PPPP4iNjcWECRPK/THs2LEDgwcPxs2bNxEaGopevXohNzcX+/btw/Tp0/Hzzz/jl19+gYODg9FtDx8+jCeffBI+Pj7o0qULUlNTsWvXLrz++us4fvw4fvjhB6PbvPPOO3j++eeh1WoRERGB+++/H9nZ2YiPj8e7776Lxo0bY/z48XjooYfw3HPPYfPmzThz5gwiIiKM7uvjjz9GQUEBxo4dCz8/v1I93g0bNgAAevbsWbYdVUrNmzc3u47G6dOnsXfvXmg0xudgmjdvDn9/f+zbtw+XL19GYGBghYyPiKoXzjOcZ4riPENE5YnzDOeZojjP2DCZyIbVrVtXBiCvWLGi1Nva2dnJP/74o9H1WVlZcv369WUA8pw5c+Tc3Fzddbdv35ZHjRolA5AfeeQRg9stXbpUBiDXrFlTPnHihO7y/Px8+fHHH5cByADkcePGGdxu3rx5MgB53rx5Jsf7119/yQDkLl26GFx++fJl2c/PT5YkSf7www/lwsJC3XU3btyQu3fvLgOQX3nlFYPbjRs3TjeWl156SS4oKNBd999//8lubm4yAHn37t0Gt/vxxx9lALKzs7P83XffGY3z+PHjBo/7pZdekgHIM2bMMNo2Ly9PrlWrlgxAPnjwoMnHbUrHjh1lAPKvv/5q8nplX5X0kXj+/HnddufPny/x7yYmJsqBgYEyAHnp0qUmtxk0aJAMQF61alWJ90dE1Q/nGc4zssx5hogqDucZzjOyzHmG7h6DgmTTlInR3D/9CUjZdsKECSbv66OPPpIByAMGDDB5fWZmphwQECDb29vLqampussbNGggA5A/+ugjo9tkZ2frJo3ymkSfe+45GYA8bdo0k7dLSkqSHRwcZH9/f1mr1eouVybRVq1aGVyueOyxx2QA8quvvmpwefPmzWUA8sKFC03+vaIuXbokOzg4yF5eXvKtW7cMrvvmm29kAHK7du1KdV8KZYI/d+6cyev1J9HS/itpEr1586YcFRUlA5CfeeYZs9u98MILMgD56aefLtNjIqLqgfOMMc4znGeIqPxwnjHGeYbzDJUey4eJAHTo0AENGjQwujwyMtLosgcffNDkffz6668AgBEjRpi83t3dHa1bt8bGjRuxf/9+9O7dG5cuXUJ8fDwAYMyYMUa3cXZ2xvDhw7FkyZJSP5aSlDTO4OBghIeH48SJE4iLizNKeR8wYIDJ9SQaNWoEALh06ZLusitXruDw4cPQaDSlXhA3KCgIDz74IL755husWrUKjz32mO46Za2KadOmleq+AOD27du4ffs2AJQqPd9c2jwA3Lp1C+vWrSvxPvLy8jB48GCcOHECI0eOxFtvvWV2W2VMV69eLfF+iaj64jyj4jzDeYaIyh/nGRXnGc4zVHoMChIBmDRpktHCt+aEhoaavPzcuXMAgLFjx2Ls2LHF3sf169cBAElJSQCAGjVqwN3d3eS2YWFhpRpXaSnj7NSpU4nbXr9+3WgSrVOnjsltPT09AQA5OTm6yy5cuAAACAwMNFh3pCQzZszAN998g2XLlukm0aNHj2Lnzp2oWbOm2S8ypqSnp+t+9vDwKHH7lStXmr0uISGhxElUlmWMHz8e27dvR5cuXXQLK5uj7LebN2+WODYiqr44z5jGecYQ5xkiulucZ0zjPGOI8wwVxaAgURm5uLiYvFyr1QIA+vbti5o1axZ7H3Xr1i33cZkbj7nLH3zwQbi5uRV7H6bORJlaYLa8tW3bFrGxsdi3b59uMlLOqk2ZMgWOjo6lvi9vb2/dz5mZmbpJq6I8//zz+OabbxAVFYUNGzbAycmp2O2VSd7Hx6dCx0VE1QfnGc4zxeE8Q0T3ivMM55nicJ6xLQwKEpWT2rVr49SpU5g4cWKpz/wEBwcDAG7cuIFbt26ZPLuWkJBg8rbKRJKZmWny+sTERLPjjIuLw3PPPYfWrVuXapx3SzkLd/nyZaSnp5f57NqYMWOwdOlSREdH46uvvoK9vb1B+n1puLq6ws3NDbdv30ZKSkqFTqIffvgh3n77bQQFBeG3334zmMDNSUlJAYASv3gREXGeMcZ5xrvE23CeIaLS4jxjjPOMd4m34TxTvVV8iJzIRtx3330AgDVr1pT6NiEhIahXrx4A4Ouvvza6Pjc3F2vXrjV5W2UCPnnypMnrlbU2ymOcd6tWrVqIjo6GVqvF8uXLy3Tb4cOHIzAwEBs2bMDrr7+O27dv44EHHkBQUFCZx9GyZUsAwIkTJ8p829L66aefMGPGDHh4eODXX381W5ZQ1LFjxwAArVq1qrCxEZF14DxjjPNMyTjPEFFpcZ4xxnmmZJxnqjcGBYnKyZQpU1C3bl2sXbsWzz33nMkzXleuXMGnn35qcNlTTz0FAJg/fz5OnTqlu7ywsBCzZ89GcnKyyb/XvXt3aDQa/PHHH9i+fbvuclmWsWTJErNrRTzzzDPw9vbGe++9h/9v735Cmv7jOI6/ZqxCJnqQ2UFN8aIFohcLFdMRdNEoS8qUhnQaHQIREYM8iLhDKjjBgkoPXgxRCDz356BUoCD+AS87dRDyoBdNlPfvEEn9nH9aG1O/zwfsMPb5fL7vjbHXeI99Pj09Pdra2tozJhwOa2Rk5NDnfBQdHR2SpKdPn0asaXFxMeIXAbfbrUAgoO3tbT1//lzS323I+7uqqipJ0vT0dFTzD/PlyxfV19crKSlJY2NjKioqOvLcXzX5fL641Abg9CBnIiNnDkbOADgqciYycuZg5MwJl8ijj4FEu3jxokmyoaGhI4896Oj2+fl5y8nJMUmWlpZmFRUV9uDBA7t165ZdunTJXC6XZWRk/DFnZ2fHampqTJKdPXvWbty4Yffv37fc3Fw7f/68BQIBk2R+v3/P9Z48eWKS7MyZM1ZZWWm1tbWWl5dnbrfb2traTJJdu3Ztz7yPHz9aenq6STKv12s+n88aGhqsurra8vLyTJJduXLljzl+v//A12poaGjfOru6uszlcpkky8/Pt3v37tnNmzd3j7jfb82VlRU7d+6cSbLCwsKIY45iZmbGJFlJSUnEx9+/f2+S7LCPxHA4vDvu9/eBz+czSZabm2t+v3/f29/WBeDkI2fIGTNyBkD8kDPkjBk5g+ixpyAQQ5cvX9bc3JxevHihiYkJzc3NaXp6Wunp6crMzFRLS4tu3779x5ykpCSNj4+rv79fr1+/1ocPH+TxeFReXq6JiQnNzs5qcHAw4vX6+vqUnZ2tV69eaWpqSh6PR2VlZXr79q3W19cVDAYjzquoqNDCwoIGBgY0OTmpr1+/6sePH/J6vcrOzlZjY6Pu3LkTs9elvb1dPp9P/f39+vTpk8bHx5WSkqKsrCy1trbu+6uS1+tVUVGRPn/+rMePH0d9/eLiYpWWlmpqakpLS0sqKCiIeq1IdnZ2JP38RTIcDu877v8ngf26/y/PDYCzkDORkTM/kTMA/hU5Exk58xM5c/q4zMwSXQSA/Q0PD6upqUl+v//A4+VPo+XlZeXn5ys1NVXfvn1TcnJy1GuNjY2prq5Ozc3N6unpiWGV0dnc3FRWVpbcbrfC4fChp3oBQLyQM+QMAMQTOUPO4PhiT0EAx9azZ89kZgoEAv8UoJJ09+5dlZWV6eXLl1pZWYlRhdELhUL6/v27uru7CVAASBByBgAQT+QMjjuaggCOlXfv3unRo0e6evWqRkdHdeHCBbW2tsZk7VAopI2NDXV2dsZkvWitra0pGAyqpKREDx8+TGgtAOA05AwAIJ7IGZwk7CkI4FiZmZnRmzdvlJKSouvXr6u3t1dpaWkxWbu4uHh3v4xESk1N1erqaqLLAABHImcAAPFEzuAkYU9BAAAAAAAAwGH4+zAAAAAAAADgMDQFAQAAAAAAAIehKQgAAAAAAAA4DE1BAAAAAAAAwGFoCgIAAAAAAAAOQ1MQAAAAAAAAcBiaggAAAAAAAIDD0BQEAAAAAAAAHIamIAAAAAAAAOAw/wGlvKgWpm0YBQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lcs.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lcs.freq, lcs.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lcs.freq, lcs.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.html b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.html new file mode 100644 index 000000000..e24ceea0f --- /dev/null +++ b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.html @@ -0,0 +1,306 @@ + + + + + + + + Lomb Scargle Power Spectra — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Lomb Scargle Power Spectra

+

This tutorial shows how to make and manipulate a Lomb Scargle power spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
from stingray.lightcurve import Lightcurve
+from stingray.lombscargle import LombScarglePowerspectrum
+import numpy as np
+import matplotlib.pyplot as plt
+from scipy.interpolate import make_interp_spline
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+plt.style.use('seaborn-v0_8-talk')
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+
+

1. Create a light curve

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out Lightcurve for more examples.

+

Make one with signals in units of counts. It is a sine wave with random normal noise, frequency of 3 and at random times and make its counts non-negative by subtracting its least value.

+
+
[2]:
+
+
+
rand = np.random.default_rng(42)
+n = 100
+t = np.sort(rand.random(n)) * 10
+y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)
+sub = np.min(y)
+y -= sub
+t0 = np.linspace(0, 10, 1000)
+y0 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)
+sub = np.min(y0)
+y0 -= sub
+spline = make_interp_spline(t, y)
+
+
+
+

Lets convert them into Lightcurve objects

+
+
[3]:
+
+
+
lc = Lightcurve(t, y)
+
+
+
+

Let us plot them to see how they look

+
+
[4]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.scatter(lc.time, lc.counts, lw=2, color='blue',label='lc')
+ax.plot(t0, y0, lw=2, color='red',label='source of lc')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_7_0.png +
+
+
+

2. Pass the light curve to the LombScarglePowerspectrum class to create a LombScarglePowerspectrum object.

+

You can also specify the optional attribute norm if you wish to normalize the real part of the power spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘none’.

+
+
[5]:
+
+
+
lps = LombScarglePowerspectrum(
+    lc,
+    min_freq=0,
+    max_freq=None,
+    method="fast",
+    power_type="all",
+    norm="none",
+)
+
+
+
+

We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has only real component, and imaginary component is zero.

+
+
[6]:
+
+
+
print(lps.freq[0:5])
+print(lps.power[0:5])
+
+
+
+
+
+
+
+
+[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]
+[ 15.49526224+0.j 120.05686691+0.j  96.589673  +0.j 127.2231466 +0.j
+  30.42053746+0.j]
+
+
+
+

Parameters

+
    +
  • data: This parameter allows you to provide the light curve data to be Fourier-transformed. It can be either a `stingray.lightcurve.Lightcurve <https://docs.stingray.science/en/stable/core.html#working-with-lightcurves>`__ or `stingray.events.EventList <https://docs.stingray.science/en/stable/core.html#working-with-event-data>`__ object. It is optional, and the default value is None.

  • +
  • norm: The norm parameter defines the normalization of the power spectrum. It accepts string values from the set {frac, abs, leahy, none}. The default normalization is set to none.

  • +
  • power_type: The power_type parameter allows you to specify the type of power spectral power you want to compute. The options are: real for the real part, absolute for the magnitude, and all to compute both real part and magnitude. The default is all.

  • +
  • fullspec: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the power spectrum. When set to False (default), only positive frequencies are kept; when set to True, both positive and negative frequencies are included.

  • +
+
+
+

Other Parameters

+
    +
  • dt: When constructing light curves using `stingray.events.EventList <https://docs.stingray.science/en/stable/core.html#working-with-event-data>`__ objects, the dt parameter represents the time resolution of the light curve. It is a float value that needs to be provided.

  • +
  • skip_checks: This is a boolean parameter that, when set to True, skips initial checks for speed or other reasons. It’s useful when you have confidence in the inputs and want to improve processing speed.

  • +
  • min_freq: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.

  • +
  • max_freq: Similarly, the max_freq parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.

  • +
  • df: The df parameter, a float, represents the frequency resolution. It’s relevant when constructing light curves using `stingray.events.EventList <https://docs.stingray.science/en/stable/core.html#working-with-event-data>`__ objects.

  • +
  • method: The method parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are fast and slow, with the default being fast. The fast method uses the optimized Press and Rybicki O(n*log(n)) algorithm.

  • +
  • oversampling: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.

  • +
+
+
+
+

Attributes

+
    +
  • freq: The freq attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the power spectrum.

  • +
  • power: The power attribute is a numpy array that contains the normalized squared absolute values of Fourier amplitudes.

  • +
  • power_err: The power_err attribute is a numpy array that provides the uncertainties associated with the power. The uncertainties are approximated using the formula power_err = power / sqrt(m), where m is the number of power values averaged in each bin. For a single realization (m=1), the error is equal to the power.

  • +
  • df: The df attribute is a float that indicates the frequency resolution.

  • +
  • m: The m attribute is an integer representing the number of averaged powers in each bin.

  • +
  • n: The n attribute is an integer indicating the number of data points in the light curve.

  • +
  • nphots: The nphots attribute is a float representing the total number of photons in the light curve.

  • +
+

We can plot the power spectrum by using the plot function or manually taking the freq and power attributes

+
+
[7]:
+
+
+
fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)
+lps.plot(ax=ax[0])
+ax[0].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[0].set_ylabel("Power", fontproperties=font_prop)
+ax[1].plot(lps.freq, lps.power.real, lw=2, color='red')
+ax[1].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[1].set_ylabel("Power(Real Component)", fontproperties=font_prop)
+ax[2].plot(lps.freq, lps.power.imag, lw=2, color='blue')
+ax[2].set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax[2].set_ylabel("Power(Imaginary Component)", fontproperties=font_prop)
+
+
+
+
+
[7]:
+
+
+
+
+Text(0, 0.5, 'Power(Imaginary Component)')
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_LombScarglePowerspectrum_tutorial_14_1.png +
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb new file mode 100644 index 000000000..b376dfab3 --- /dev/null +++ b/notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb @@ -0,0 +1,278 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Lomb Scargle Power Spectra\n", + "\n", + "This tutorial shows how to make and manipulate a Lomb Scargle power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.lightcurve import Lightcurve\n", + "from stingray.lombscargle import LombScarglePowerspectrum\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from scipy.interpolate import make_interp_spline\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "plt.style.use('seaborn-v0_8-talk')\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1\\. Create a light curve\n", + "\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out [Lightcurve](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) for more examples.\n", + "\n", + "Make one with signals in units of counts. It is a sine wave with random normal noise, frequency of 3 and at random times and make its counts non-negative by subtracting its least value.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "rand = np.random.default_rng(42)\n", + "n = 100\n", + "t = np.sort(rand.random(n)) * 10\n", + "y = np.sin(2 * np.pi * 3.0 * t) + 0.1 * rand.standard_normal(n)\n", + "sub = np.min(y)\n", + "y -= sub\n", + "t0 = np.linspace(0, 10, 1000)\n", + "y0 = np.sin(2 * np.pi * 3.0 * t0) + 0.1 * rand.standard_normal(t0.size)\n", + "sub = np.min(y0)\n", + "y0 -= sub\n", + "spline = make_interp_spline(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Lets convert them into `Lightcurve` objects" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(t, y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let us plot them to see how they look" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA24AAAIlCAYAAACtuat8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOx9d3wcxfn+c9JJcu+2XJDBgG2aKaaExOAAgYTeCQmywcHYBhIgQEggGHAAU00JkBCbmC5KvpRQkhA6hF9CQjEdbAM2lsG49yLpyu+P1Whn97bMzM67tyvN8/n447vT3tzc3u7MPPM87/tmisViEQYGBgYGBgYGBgYGBgaJRUW5O2BgYGBgYGBgYGBgYGAQDEPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSDkPcDAwMDAwMDAwMDAwMEg5D3AwMDAwMDAwMDAwMDBIOQ9wMDAwMDAwMDAwMDAwSjmy5O9DRUCgU8M0336B79+7IZDLl7o6BgYGBgYGBgYGBQZlQLBaxfv16DB48GBUVwZqaIW4x45tvvkFdXV25u2FgYGBgYGBgYGBgkBA0NjZiq622CjzGELeY0b17dwDWj9OjR48y98bAwMDAwMDAwMDAoFxYt24d6urq2jhCEAxxixnMHtmjRw9D3AwMDAwMDAwMDAwMhEKoTHISAwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEwxA3AwMDAwMDAwMDAwODhMMQNwMDAwMDAwMDAwMDg4TDEDcDAwMDAwMDAwMDA4OEw5QDMDAwMDAwMDAwSDWam5uxZs0aFItFobTqBgaUYNdhr169UF1dra3dRBK3lpYWvP7663juuefw6quvYv78+di4cSP69u2LffbZB1OmTMERRxwh1ea0adPwu9/9LvCYTz/9FDvssEOUrhsYGBgYGBgYGMSIQqGAFStWYODAgaioMGYyg2SgUCjg22+/1XpdJpK4vfbaazjkkEMAAAMHDsR+++2Hrl274pNPPsEzzzyDZ555BpMnT8af/vQn6V2V3XbbDbvvvrvn33r27Bm16wYGBgYGBgYGBjFi9erV6Nu3ryFtBolCRUUF+vbtizVr1qBPnz5a2kwkcauoqMAJJ5yA8847D/vvv7/jb48++ijq6+sxa9YsjBkzBqeeeqpU28ceeyymTZumsbcGBgYGBgYGBgblQi6XQ01NTbm7YWBQgpqaGqxZs0Zbe4ncmjjooIPw2GOPlZA2ADj55JMxYcIEAMD9998fc88MDAwMDAwMDAwMDAziRyKJWxj22GMPAEBjY2OZe2JgYGBgYGBgYFBOmGQkBkmGzuszkVbJMMyfPx8AMGjQIOn3vvvuu7j44ouxatUq9OzZE3vssQeOOuoodO/ePXK/Nm7cqOUYAwMDAwMDAwMDAwMDHqkjbt9++y3uvfdeAMAJJ5wg/X6W3IRHz549cdttt0nHy7nRrVu3SO83MDAwMDAwMDAwMDDwQqqskrlcDuPGjcPatWsxatQoTJkyRfi92223Ha655hrMmTMHq1atwqpVq/DGG2/gyCOPxNq1a3HaaaehoaGBsPcGBgYGBgYGBgYG6nj11VeRyWTaRAyDjoVUKW5nnnkmXnrpJfTt2xePPfaYVEG78ePHl7w2ZswYPPPMMzj33HNx++234/zzz8dJJ52kXChvw4YNocesW7cOgwcPVmrfwMDAwMDAwMAgPuRywIIFwLp1QI8ewLBhQDZVq2eD9oTUKG7nnXceZs+ejd69e+OFF17AiBEjtLU9bdo0VFZWYvny5fjvf/+r3E7Xrl2F/hkYGHQgfPYZsGJFuXthYGBgYCCBxkZg6lRgyBBgxAhgr72s/4cMsV43+fEMyoFUELcLL7wQt912G3r16oXnn3++LaukLvTp0wcDBgwAACxevFhr2wYGBh0Y//gHsOOOwLbbAmvXlrs3BgYGBgYCaGgAhg8Hpk8Hli1z/m3ZMuv14cOt4wwM4kTiiduvf/1r3HzzzejZsyeef/557LXXXto/I5/PY23rokpHdkkDAwMDAMDhh1v/r18P/OEP5e2LgYGBgUEoGhqAceOApqbg45qarOOSQN6KxSLuuusufOc730G3bt3QrVs3jBo1Cpdffnm5u2agGYkmbhdffDFuvPFG9OzZEy+88AL23ntvks95+umnsWnTJmQyGRJiaGBgYBC6CjAwMDAwKCsaG4GJE+XeM3Fi+W2T48ePx+TJk5HJZHDppZfixhtvxEEHHYTHHnusvB0z0I7EhldOnToV119/fZs9UoS03XHHHbjjjjuwzz774P777297fdGiRXj99ddx4oknolOnTo73/PWvf8UZZ5wBAKivr8fAgQP1fhEDAwMDACgUyt0DAwMDA4MAzJwpv8fW1ATMmgVcdRVNn8Lwl7/8BQ0NDRg3bhzuu+8+VFTYmkzBzDvtDokkbk8//TSmT58OANh+++3xBx+LUb9+/TBjxoy25ytWrMDcuXNLyNeqVaswfvx4nHXWWdhjjz0wZMgQbN68GZ988klbMe8DDzwQd955J9E3MjAw6PAoFsvdAwMDAwMDH+RywF13qb33rruAK64oT7ZJVspqxowZDtIGoOS5QfqRSOK2atWqtsdvv/023n77bc/jtt56awdx80NdXR1+85vf4K233sLnn3+Od999F83NzejXrx+OPPJInHLKKTj55JPNBd4e8N//ArffbnkXDjyw3L0xMLBhdj4NDAwMEosFC0oTkYhi6VLr/cOH6+2TCObPn49BgwahtrY2/g83iB2JJG4TJkzAhAkTpN83bdo0TJs2reT1vn374rrrroveMYPkY999rf8bGozCYZAsmOvRwMCACsUikMmUuxepxrp10d6/fr2efhgYBMFITAbtF2ahbJAkGMXNwMCAAuPHA1ttBbzxRrl7kmr06BHt/eVKSj5ixAgsWbIES5cuLU8HDGKFIW4G7RdbtpS7BwYGNsxGgoGBgW7MmQM8+CDwzTfA/vuXuzepxrBhQGtJX2nU1lrvLwfq6+sBWOWz3MlIimbeaXdIpFXSwEAL1q4FOncudy8MDCwYxc3AwEA3Vq4sdw/aDbJZYNIkq7i2LCZNKk9iEgA46aSTcPLJJ+P+++/H/PnzcfTRR6N3796YN28e/vnPf+Kjjz4qT8cMSGCIm0H7xdq1gCnvYJAUmJ1PAwMD3TBxbVoxZQowY4ZcSYCaGmDyZLo+ieChhx7C/vvvj9mzZ+PKK69EZWUlhg0bhpNOOqm8HTPQDkPcDNovokYaGxjohCFuBgbJxiuvAI88ApxzDrDLLuXujRhMNmytqKsDZs8Gxo0Tf8/s2db74sIBBxxQYoGsqKjAz3/+c/z85z+PryMGZYEhbgbtF2vXlrsHBgY2jFXSwCC5WLECOOgg6/Ejj6Rn/jCKm3a0hoxh4sRg5a2mxiJt7HgDgzhgtmoM2i/SMvEatF/wiyqjuBkYJBNffgkMGWI/T5NbwxA3EtTXA/PnA1OnWolHeNTWWq/Pn29Im0H8MIqbQfuBe2GcpsnXoH2iogLI563HRnEzMEgmfv5zoLm53L1Qg7FKkqGuDrjqKuCKK6zi2uvXWyn/hw0rXyISAwNz6Rm0H7gXxkZxK8WcOcBDDwE/+xmw007l7k37h1HcDAySjzTXvzKKGzmyWWD48HL3wsDAgiFuBu0HLS3O54a4lWL0aOv/P/8ZWL26vH3pCOB3w43iZmCQTKRVbQNsRd/AIEkoFoE1a6yNhZ49zQaDRhiN3aD9IJdzPjfEzR9r1pS7Bx0DRnEzMEg+DHEzMNCLtWuBL74APv/c8pgaaIMhbgbtB0ZxM0gajOJm0NGQz6dvoZZm4ubesDQwSAK+/tp+vGRJ+frRDmGIm0H7gXsC27KlPP1IKswEHz8McTPoSGhqsmJna2uBN94od2/EkWbiZhQ3gySCd5gYm6RWGOJm0H7gVtwoJuNly6zCLWncQdq8udw96HjgJyz39Wlg0N5w333AvHnWWHPkkeXujTjSTNzMhpxBEmGIGxlMchKD9gP3BBZUOVMVJ50EvP46sOeewNtv62+fEoa4xQ9ecTPEzaC9Y/ly+3GarOppJm5GcTNIIgxxI4NR3AzaD+JQ3F5/3fr/nXf0t00NQ9zih1HcDDoS0qr+pJm4pfWcG7RvGOJGBkPcDNoP3BNYmidjChjiFj+M4mbQkcAnJNCNQgF46y0aJS/N96ZR3AySCEPcyGCIm0H7QRyKG4+0pXc3xC1+8BOW2Rk3aM945BHgrrvo2r/9dmCffYDdd9d/L3klDkpLMiFD3AySiAQSt8ceewy77bYbOnfujEwmg1dffdX32AkTJiCTkH67YWLcDNoP4lbcmpqATp1oP0MnDHGLH0ZxM+go+OlPadv/5S+t/xcuBObOBXbemfbzWlqAmhraz9ABsyFkkEQkjLjNmzcPP/3pT/Hd734Xd9xxB2pqarDjjjuWu1tKMMTNoP2AWnFzK2ybN6eLuL3ySrl70PFgYtwMkobGRuDkk4EhQ4CHHwayKVgGuMfeONwOuVw6iBu14lYoAGefDfzvf8Ddd1uKp4FBGBJG3F599VXkcjnceuutGD16dLm7EwnGKmnQfkBN3Nztbdqkt31K/Oc/wNSpztfSZvVMI4zi5o9iEVi5sty96Hi49FJrPHjsMeDOO/W06WUr1LlYW7rU+TwO90Ba7le34qZ7XP/DH4CZM4E5c/RdLwbtDps3b0aOvxYTRty+/fZbAECfPn3K3JPoMMTNoP2A2irpLi+gc/Fw553AmDF21kqd+M9/gO99r/R1ip1aQwb9kZaFYFw4+WSgXz/gllvoPqNYtBJarFhB9xlpAx/X8fzzetr0SkpSWamnbQD46CPnc51jr988oduCuGYNsH693jaB0nFcd7+vu85+/Le/6W3bQAlbtmzBtGnTMHLkSHTp0gW9evXCqFGjcNFFF5Uc++c//xmjR49G586d0bNnT/zwhz/EG2+84Thm4cKFyGQymDZtWsn7p02bhkwmg4ULF7a9xuK/li9fjtNPPx21tbXo2rUrFi9eDABYt24dLv3jH7HjSSeh05gx6Lvbbthvv/3wyCOPONpesmQJzjrrLAwdOhTV1dUYPHgwJk+ejGXLlgmfi9dffx2HHHIIevbsic6dO2P06NGYPXu245hMJoMrrrgCADBs2DBkMhlss802wp/B49tvv8W5556LbbfdFjU1NRgwYAAOOeQQvPDCC0rtqSAFHgkDA0FQK25UxC2ft6woAPD97+snP9de6/+5umxSGzYAP/iBpUK+8AIwcKCedtMOflFliJuNjRuB//s/6/EFFwDnn0/zObNnA5MmAQMGAIsWpcP6Ro1ttrHskoAVL6YDX3xR+ppOC2brgrANOonbxo3er+u8Xz//HNhtN0uB/+QToK5OX9tuotbSAlRV6Wt/wwb7MXVcYZqQzwNffWWtMwYMAGJUcn7+85/j7rvvxqmnnooLLrgAuVwO8+fPx8svv+w47je/+Q1uuOEG7LPPPrjmmmuwfv16zJo1CwceeCCeeuQRHP6971mbZ4o45JBDMHDgQFx22WXYuHEjunXrhjVr1mC//fbDxx9/jBN/8AOcdcIJyHftijkLFuDZZ5/FT37yEwDAokWL8N3vfhfNzc2YOHEitttuO3z++ee488478corr+Dtt99Gz549Az//mWeewXHHHYeBAwfiwgsvRPfu3fHII4/gjDPOwJdffonp06cDAB544AE88cQTePLJJ3HLLbegX79+6Natm/T3XbhwIcaMGYOlS5fi1FNPxV577YWNGzfizTffxIsvvohDDjlE/iQqwBA3g/aDtCpu7n5u3Ah07aqnbcDa6fWCTsVt2jQrBgIALroIeOABfW2nGYa4eYMRB2pMmmT9v2yZFeN56KHxfG6Ssc02wL/+ZT1esEBPm9SKG6VNfcsW79d1Klfnn2/3+bzzgCee0Nc2teLGk0CexKUFu+8OLFliXY8VGk1mxaLzXMuS5YEDgbffVvroJ598Eocddhjuu+8+32Pmzp2LG2+8EWPGjMHLL7+M6upqAMAZZ5yBnXbaCWefcw6+ePJJVG7cqLzJsssuu+DBBx90vHb22Wfj448/xsxLLsHk44+3Xhw0CBgyBAXOUn3OOeegpaUFc+bMwVZbbdX2+kknnYR9990Xt9xyi6cCyJDP5/GLX/wC3bp1w//+9z8MHjwYgEVqDzzwQFx33XWYMGEChg8fjnHjxuHzzz/Hk08+iWOPPVZZbTv77LPxzTff4LnnnsOPfvQjx98KMWahNcTNoP0grYqbu99vv20pb7rgRxh0TvB8QfIPPtDXbtrBn2ND3GzERdx4dO4c/2cmEX372o/91CZZeBEpnYqbeyzXqbj5jYM6x8dVq+zHuq99L8WNqn0Kqyc1liyxNm7aEXr27ImPP/4YH330EXbZZRfPY5566ikUi0X8+te/biNtADB48GD8bPx43HrHHZgzdy722mknZdXtV7/6leN5oVDAI488gh133NEmbUBbjFtFK3Feu3Ytnn32WfzsZz9Dp06dsIKzsm+zzTbYfvvt8fzzzwcSt3feeQeLFi3C+eef30baAKC6uhq//vWvceyxx+Kpp54q6aMqVq1aheeeew6HHnpoCWnjv1scMMTNoP3APYG5iVZUxKW4vfNOPMRNp+LGL9y6dNHXbtphFDdvuK1vulXmv/8dmDLF+ZrO9imh2+rmBkVsKzVxo4wv9iNoOu9XfkzUnVjF/XvqHmf4c0+luF1wgeXYuOsuQGeK9nzeuVGh874qFJznPpuVS8IRIZzg1ltvxfjx4zFq1Chsu+22OPDAA3HUUUfhqKOOaiMQC1rV9J097K07t57jL7/+2iJuihgxYoTj+YoVK7B69Woc6nY2uMI/5s6di0KhgNmzZ5fEozFsu+22gZ8d+P1aX/vyyy8D25DB559/jmKxiD322ENbm6owxM2g/SCtiht1tkpD3MoHo7h5w606rFihl1gdcUTpa7qtLDfdZMXp3XSTlVhIB669FrjySuDyy4FLLtHTphvu+75YjJ71zUu5M4qbDV7t1T2+UxK3YpGeuL38sp2g6Oyz9ZataW4G7r/ffr7XXvraXrbMiptl2HHH2DaHjjnmGCxcuBB///vf8dprr+HFF1/E7Nmzsf/+++PFF190KGwiCCo0nQu4D7oozvXFViI3btw4nHbaaZ7HdDYOCV8Y4mbQfuAeYHI5a7GmS8J2E7fjj7cmhqi7eO5Fie4YhTiskpTE7ZlngAsvBCZOBH7zG71tU8Mobp4ofNXoSGmcW7Ic2a231tN4HFkC168HmAVnv/30JRT67W/t/6mIm/s8FArR49G8yIjOFOCUm1txKG5UxG3pUvuaYdB5nedyzmubwirJZzjkM57qgO7NWx7lqC3IoU+fPhg3bhzGjRuHYrGIiy++GDfccAOeeuopnHTSSW2K1ccff4ztttvO8d5PPvsMALDtkCFtbQGWHdANGdWqX79+6N27N95//33nH1znZvvtt0cmk0FzczMOPvhg4fZ58N/PjU8++cRxjA6wPr/33nva2lSFKQdg0H7gNdHqnHy9rJc6knC4JxfdVqa4FTfdO2VHHw3Mnw9cfDFdsdnrrgMOOMCqVaQLxaIhbi40NlrlBF96cInj9XGHrsDUqZrCf9yp4xl0XjtuxcfvM6Pghhto4kXd50HHefEiI5Rjb9oUNyqr5Flnlb5Ged63bNG/sfjVV/ZjSaUoFO7+6yRX7rZiSk6Rz+exxpVwLJPJtFn4GPk6+uijkclkcOONN6KFuyaWLFmCex54AFsPGoQ9Ro4EAHTv3h0DBw7Eyy+/3KaGARZp++tf/yrct4qKCvz0pz/FJ598gtlPPVXyd9Z23759cfjhh+OJJ57Am2++6Xnc8uXLAz9r9OjRGDp0KO655562Gm0A0NLSghtvvBGZTAbHHHOMcN/D0KdPHxx22GH4xz/+gRdffNGzz3HBKG4G7QdeE0pzs74U4F7EzWO3RxrlUtyoFrKUVsm1a/WnXf7oI1vd+PWvrXIGOuCeyDs4cWtosETTpibgADgz+VWtXY7p04EZM6wM/vX1ET7Ij3zrvK/c987uu1vZWxVSTPviN7+x/hUKetUrL2dC1AWzF3HTqXaUwyqZhhi3J58sfY16s3LDBqBXL32fwRO3oUP1tQuUXjc6bMF8W0HPibB+/XoMGjQIRx99NPbYYw8MGDAACxYswJ133onevXvjqKOOAgCMHDkSF110EW644QaMHTsWJ598cls5gA0bNqBh2jRUckr7L37xC0ydOhWHHXYYjj32WHzzzTf405/+hF122QVvvfWWcP+uvvpqvPzyyzjj6qvx/JtvYr/dd0exWzfMWbgQuVwOD7Rudt95553Yb7/9MHbsWJx66qnYY489UCgU8OWXX+Kpp57CqaeeGpicpLKyEnfccQeOO+447L333pg8eTK6d++ORx99FG+++SZ++9vfYvjw4Won2Qd33HEHvve97+Gwww7Daaedhj333BObN2/Gf//7X2yzzTa4/vrrtX6eHwxxM2g/8JqwdC4evCax2tro7bYH4hZXjNuaNfqJ27PP2o89dtKUQZntbelS4NZbgf33Bw4/XF+7PL74wiKxJ54YqdYPYJG2cePs5zVw3kv9Ye2uNjXZxymTtzjKX7h/y3weePNNQNH2E/pZOpUICsXNK8Yt7cTtxz+2SIWOhT5vp6fewEkbcePjxHTZpRnc54JScYuJuHXp0gW//OUv8dJLL+HFF1/Ehg0b2ojcJZdc4siweP3112P77bfHH//4R1x88cWorq7Gd77zHTz05z9jfz5pC6yab2vXrsUDDzyAV199FTvttBNmz56Nd955R4q49e7dG//5z39wzbnn4olXXsGTr76K7t26YadddsE555zTdlxdXR3eeecdXH/99Xjqqafw4IMPolOnTqirq8NRRx2FH//4x6GfddRRR+Gll17C1VdfjRtvvBHNzc3Ycccd8ec//xkTJ04U7rMohg0bhrfffhtXXXUV/v73v+P+++9H7969sdtuu2Hy5MnaP88PhrgZtB/4KW664NWWjgksLqvkttsCvXvbqft1EkR+gqQMKl69Wn+bfIxF9+762nX/jjqvxQkTgOeesyyeK1Y4M6fpwtixwDffAM8/H6nuVGOjpbTxqIbzXHSFc+E/caL18Up1iuOI6fT6LamKe2/ZQkvcdJwXP8VNl8LhJhBxxLg1NgL//Kee2n9xqu06r3Mv4vbppwBXdysy+BqAnTrpaxcovdZ1xHMyuIlaY6OluOtMyuOB6upqXHvttcLHT5o0CZNYPUuG9euBuXPt5wsWIFtbixtuuAE33HCD49CjjjqqRPm69957ce+99/p+Zq+ePXHDuefihnPPtV4YMMBTTe3Xrx9uvPFG3HjjjcLfx43vf//7+L5AFu5p06YFKnhu+H3HIUOG4E9/+pNED/XDxLgZtB+UQ3HTMSHHpbhVVQF8zReqeDHKeiZ+akoUfP65/XjUKH3teiluuuIgnnvOfsxPwLrQ3GyRNsDbjiWBmTNLbx03ccvCea6amoBZsxQ/MI6YJQri5rdj71cgWhXu80AV4+YuUBwFlIpb0BjuLltB8Rm6Qa24/fCHeuO5+GtH93nyyqCqC+5z0NTkXYg+iXCfh5UrgdaEJSTtG2iFIW4G7QflIG462o+TuPG7jVTETXf/eVAobjwZpIyDAmiynOmMf2JYu1ZLM7mcVZrJDbdV0k3cAOt9Sj9HHNZgr98xanZZvy+ri7g1NQEPPwy4s6LpuOZ5qyRfGkHX9V4OqySgzz3QnogboK8sgPvapiZuOgmnFzkJSaiRGHj1nfrcGGiDIW4G7QfUVkmvSUxHke+4rJJVVU4bBxXBoiKEgH7FrVi0dhsZdBZt9zq/uovCAzTEbd06Lc0sWGCVO3IjTHEDrDC+1hqrciiXVTLqwsev37qumRtvBE45xcrQykOn4lZZ6UzQomv8LUdWSUCfdc/921KMA36fFQV+/dS1meDeiEs7cUsLqPvuPs9pPlcJhCFuBu0HXoO+zgkyLsVt1qxIMUUOFIvxK24623UP+DqThwCW159fuOm8XrzOg27bG5Boxc2P/7mJWyW8rxmlslF+C3FqxS1q+35jia5r5rLLvF/XGePWpYvTMkqluMUR4wboI27u/lPUQ2Og3qAA9F2T7rphuh0JlFbJNJMR6r5TK8zFonUNpvk3iABD3AzaD9qL4gYAJ5wQvV3AmrjY4EZF3CgVQ/dv+uijwH/+o699Xm0D9F4vcSluFHATt+uuU2qmRw/v10WskoBirhhqxe2ii6xsnrrb9+s3BdnnoVNx69LFmUgl7VZJXfG67t9W18LWq39xKG66zr+buOnsu1eMpVHcLFD33b0xofvzFi+2yvhIFAdvTzDEzaD9oL3EuOkEf06orJIrVjif6yRuXovWe+7R176buFErbmkhbm6p7JJLgLfflm5m2DAroZgbIlbJ2lrr/dKgJG6vv24Vm/NC1Ou+XMRNZ4xb165OxU3X9V4uq6Suscz92+oae70yJKbJKklJ3LxIGmVyEgo0N9PMGdTETVcMpB+WLrX+p4h5TwEMcTNoPyiH4pY24qZbcWtqAljKXwbqdNQ6U/a7SWcaY9wo4GWV/OAD6WayWcCdiRoQI26TJilm1qa0SgYVZ0+6VdIPaVTcdJ6ToPFK11hGpbh53SAdlLgV3WTE67pOk+LW1AR8+KH1T6c1GKDvu7u/lJ+XEuWz5PqMAEPcDEpB6b+nQrEI/Pvfpa+nwSrpN1np6Ds1cfu//wMef9z5GrXiprP99qC4Uez8ehE3xQx7U6aUZsoPs0rW1ADK9UwpFbeg0gtUihs12Y96XorF+Ikb9QYLA5WdXBchjJO48TexLsXTPf7q7LvXb/fFF/oW+tSEobHR/oyvvtLbtl/fdXynYpF2M9qNOJTPhMEQNwMnbr7ZKio9ZUq5eyKHjz4qD3GjVNw2bvR+XQZBVkkdixKvQqA6iZXXOdeUOANA+4hxo8gO6pVVRJG41dUBs2fbzyuQR9aVjMRN3GbPViy+DdCWA/j4Y/+/ddQYN75/VMTNfd8Yxc2Cl1WSKiFXz5724wQqbtlsFk18f72u62Kx9DNVUCjonYf8PsPrsQ5QErfm5tJ2KEluCohbU1MTqqKWi+FgiJuBExdeaN0Is2bRZR1ctQr47neBAw7QQ04AZ+HLrl3txzonMa9dRqrkJAANceMneh2Lkp12Kn2NWnHTWRLAS3HTNcnEpbhR3Kdei5IIBabr64EHH7SaqELp4owRt5oa67j6euWPoi3AHRS7kVarZNTzwve7utpJ3HRd7+WySqYxxk3nueF/v1699H+GO0YpAtHv3bs3Vq5ciTz7zSjvJ12F2YNQDnuhjs+MOxwg4cQtn89j1apV6MXfPxGhEkFg0FGwcqV3ZoGoOO884M03rce33gpcemn0NvmJsUcPm/TotF54ESlKxU1HgC+1VXKbbUpf06kAeU2yOnc63TFugHXO+MWnKtqb4hbxeqmvB8aOBe67rQlw5ffoVpPD1Isse6Sy0sZAaZUMWiSkNTlJ1H7z56SiwqnM6orNiYu49erl3BhKo+JGRdx4xU2XVdI9zkQ4LxUVFejXrx9WrlyJYrGIzMsvexfE3n13ay6Mgr/+1f9vQ4dGa5vh3Xft/vfqBfTvr6fdfB549lnv33DAgOglMD7/vDSRVV2ds75jVPDuqp49nddmglAsFpHJZNC3b19U6MpQC0PcDIKwbBkNcXvmGfvxJ5/oaZOf2HnFjZq4pU1x022V9GqD2ipJqbixz9RB3OJS3CiImxc51vA5dXXA1F83lxC3o4/I4dirIjdvgTI5SRBxS7JVMui7R+0333ZlJdC3r/1chy0NKL1vmB1LRw1D/vtvtRUNcYszxi0O4qbrMzQSNwCorq7GgAEDrPN9yineB82aZe0gRcF55/n/zZ2sSxV//CPwxhvW49GjgVNP1dPujBlWSRMvHHdc9DXf738PXHON87UTT7Ta1gX+/I8ZAwwfrq/tFMBYJQ38wVKu6sTttzsXhX366Gm3XMQtzYqbjsUDRSFiHnFbJQF9cTlxKW4UVkmva/2ii7wVSll4nIOKvEbySam4BZ3rJFslg5Qv3Ypbv372cx3XC+B9bnTdS/x14b5Gkm6VjJO4UVgl3YnQdM3XQWM4VQiIbvD91KjW+JI2QM895bXpR2ln1J1xMwUwxM3AHxTEzb0bpYu48QN+ly7er0dFe1DcdFslvc5vmpKTeC0sdS0I06y4eV2Tn38O/OIXNG3r/A6UyUnKYZXUcc0EjSW6FTeeuHlZ1VTgdc3oIg9BxE3Hdfnss8C8ec7X0p6cJIFWSd923KQn6dZjBn6s8fqdKaDj2iGw2Qe2ZYibgQGHZcvoP0OXN5mf2Hkvtc4sgWzxw/vj06y46RhMy6G4rV2rL3DbzyqpA2kmbn4LqEcfjd42NXGjTE5CqbhRWiUpk6rEobhRlWIBnNfFuHHOv+kYy446Kvgzo6BcMW5UVsl8Xo86w48x7vaok2foOjdpJW7Uipt7nNRlx04RDHEz8AeF4uaGrgV4HFZJtrPTo4c9kKa5HACVVZK6AHc+ry8bqRdxu/hiPW3HZZX8/e/17yLrvG/c8DoHcShu1MlJdGZn5KHjty2X4qaDuPnVhaJQ3EaPBk4+2ftvOpGW5CT8eacgbl41Y3Wcm6A2qBU3XWqke0MkDlApbjqJm3ssOOWUeNaqCYIhbgb+iONmoLBGUFslu3a1k1dQWiWN4uY/yb71VvS2N2/2tln85S96rv24FLd//cuqv6gTlMQtzVZJo7iVwr3A5LPf6SBu+bz3Bh8FcctmrUQK/GdTgIoQAnTEjY9xo7JKAvqJ26GHOv+WFuLm3hCJA2kgbl7Xx/XX62s/BTDEzcAfuq2SlAs2asVt8WLg22/t9hlxM1bJ0teoiBufCezGG6O3HRR/o2MCi0txA/SU1OCRZuJGaZVMazmAoLFEt+LWpYudUpwomU3g67JwEzfdCZy8oOv+8urf/fcDX3yhp33+Xu3e3X6s45psbvZuRzdx698fuOce+7khbv7QaZXUncGawev68CKL7RiGuBk4wRfZ1a24edl1KLJI8cRNV4zbYYc522fnKW3JSXQPptTEjT+/kybZC8JFi6K3fdpp0dsIQlyKG4Ou0hpA+7RKJr0cgN84oOOaiSurZGWllaKf2SV1EDfqwuRu4ka14PT7TIp2dKVe5899jx72Yx3n3ssmCegnblVVwK672s+pY9x0ELeNG4EPP4zejix0Km69e9uvUVolAZqyVQmGIW4GTvCWFN2KmxcRoShwqltxy+WAjz5ytt8eFLc0xLjxCwSeMOv4DH5iHDTI+TcdCzavPur4Tf2w887A3XfraSvNiltaywFQKm5BCzKdihuLxWGLttWro7UN+C+EqYhbmhQ3v2tO16Kf7ydP3HSQkziJG19UOg2K24UXOp9Tk00GHeeGKW68tZbaKqmrOHlKYIibgRP8RLV0qb7kIYD3ovWaa7D2J1OQWxVR6qa0SroHsy5d4lHcdMj/aS8HwJ/7mhp7N1y3WviTnzj/RhUPddNNtNlaJ07U007cxO2dd4DPPtPTfrkKcFPVcXvxxei/R9AGU1Ry4pX9jm1s6SA+fmqhrsUsf251K26Utl2d7fiBUnHzm98McQNmznQ+Z9e6zvWYF6LeU3fdZV8zvOJGbZWMy0qaEBjiZmCjUHBOwk1Ner3DPta/no/Owt1bXY6pU4HGRsW2KYmbeyBuatKruPn1UUe9sjitkuyc6Byk+XPfpYvdfx0LFtbGqFGl51pn+27Mnh2tXcpipgxxWyUBYP/99bTf3hS31auBZ56J1jZlQWIvxY2VTMnloi8206y4+fWRMsZNJ/h+6s4q6be20O1icRM3avWKov2mJuC226xSR5ddpr99/nOiYPJk+zGV4uZ1fVDOVwmEIW4GNrwmcI3qwAtP+tvETtp8H6ZPB4YPBxoaFBr3s0rqmATcC4c1a+JR3HTYjOKySlZX223rJG78bnuXLvZn6Og7OzdVVdZvyoMyA2HUa4Z6sQbEr7gB+mp+URG3YjGYhERt391vnsguXhyt7bgVN51lR/wUt//9L1q7DEExblTELe2Km4746zgVNz52PyrpDJsbdNaOZfjwQ+C886x74eqr1dsJ20TRSTr5OHRqq2Qcc2KCYIibgY1f/rL0NU0JShoagFum+w/2hdZLsanJqoEqTd7iVNxWr3YqblF3lP0GejeZUEFcWSV5NY+SuOlS3IpFu41stpQkU8W4AcCQITTtAs7i81FQDuKmC1RWybDFh06rZEMDcO653n+L2rYblIoboJe48ZkNr74aWLIkWttAsOIW9dz4qYW6FbeddtLTnhvuOm5MuQrKyCsKv41J3cStulqvVTKsf0lWf8KImU7ixpN7auKW5HNOAEPcDCy89BLwxz+Wvv7NN5Gbbmy0Qm96wN92WXBdihMnStom4yRua9bYxE3HZ1ASN7dlhIq48Yqbzt0vKuLGTyRVVaUZJikVt6h9D3r/4MHR2magmgg3bAAefpimbQYqxY2auPH97tPHOcZEJW5Bvye14hb1WuLHXz5uBgAeeSRa20D7UNz4PuuEmwDV1lqPdThxeOLG2zDHjwfmz4/WNqXixt+LBx8MPPig/99VQElCwpJj6SRul19uZZgF9G7mUie3SgEMcTOw8MEH3q+ffDJwyy2RBruZM4FCUzMewU99j8nDGVza1ATMmiXxIZQFuN3E7bDDnDvKSSZuQTFuabNKdu6sT9VzJySor3f+nVJxo4qFApyKBNVnRMGZZwIvvEDTNgNVOYAw4qbTKlldrZe4tRfFzU3cdIBScaOOcWP9oyJu/HWTzdpp11esiP67rlplP2aEELAyOB91VLS2veY9do6ikhP3fVpfD9x5p/1a1HvVL9sm/5mqCLO4RiW1FRylOP10+7lR3LTCEDcDAMDqNQF/vOACrPqD2i55LmclGvoBXgo8zq24Adb7hOcGfrDk7WIUMW433BAPcVu7NvqAxw/UNTXxKG6UyUl0qXr8+9nEzlvTdCtuhx6qr+2g706RaU/m88OgFMAqCapMfmG/m06rZFVVPKo+QKO46Rwf+TGgTx/n33RsbnmNBV5/U0HaFTd+fM9kbIJVLEaPSeUVN3cdrrlzo7XtJm6ArbrptEqytnVuskyYEPz3KGuCMMUtSuxisWj3bd99LdJGQdyM4maIm4G1lrpmevAxyy+6XmnNtWCBmKvCrbgBVnjdggWCHxSXVfJ3v7NilOJYVBUK0et+8ZaTYcPoygFUV6crxs2tuAH6zw3fR96qQ2mV1E3c+H5H/AzljLGyiMMqueuu1gbOTTfZr+lUUquqnOQnbYobVXISt9qgwcpPWoCbnztGjbIf65iXCgU7vpraKsmuRV4Zixr/7qe46YAXuWJxbjqtkqxtXffqnDnhGWSjXJNhxCzKRgjfL/ecahQ3rTDErYOjocFKBtKSzzheb0aV4/n7xV2VkoawxFFexIyHl+IGhLsG2kBpleQH+s6drf/jUNyA6DvK/M7liBF05QCoY9yyWeduuG7FDdBP3Pg2+AVn0hW3fN5eEPL3EoPCwqehwcoYK3JcZFBZVPn3DxwIXHQRsOee+tovl1Uy6YobT9zcZTsoiBtVOQDexqy73Egcihugl7gFKW5RQUnc3Pcp/z8Q7V4VySQdlt02CF7f/frr7cdR1hte1yPbyKGu42YUN4OOApY0xAv/xXccz7/EtgDkk4awDMKVCL5x/YibcMiOn+Km2yqZVuI2eLB1MtNaDoARCKoYNyA+xY2SuOmor+S3CaL4GWxzSIRTjh9XiEbeeNLphk6CwhYkOu+nclklqRU3nVZJdyxq0hU3P+KmY0OR7zdVAWK34sYTrKgJSnjFbeDAaG254aWKMeKmM8ZNt1WSX7sEQZW48ffST35iXUNnnWW/RkXcTB03rTDErQNj5kz/MWwhtnE8r4B148kmDRk2zBrrs7Bv6jcwpuQ4L+JWW2u9Xwh+MW66rZJxE7cotdxWrrT+AcDIkdb/lOUA4iBuvPUiymTgNclQKm5pskry1zO73nlIELegzSEvVCIvn1GWR9C9qJOgsGtF5zVTLqskteKm0yq5ww7A88/bz43iZsFNOHXBrbjxxC1qSQA2t3Xtqj/pjJcqpivGzYsU6iJuoteF6tzHf/fddrOu9W7dbIKli7i5x0dTx00rDHHroGBJQ/zQgiocCdtrzStmMklDsllg0iTn+1/BgSXHeVkpJ02SmIv4wbJTJzsNbdqJ21//qt4uvyNaV2f9r3M3OZ+3B2SqGDd27tl519V/r11To7hZ0Ki4BW0OeSGLnHxGWR7uc/PTn/r/TRZhiluSrZJxEVpqxa1LF+CQQ4BddrGe6ygEHVeMm27FzR1T9Prr/n9XBb8xBzjHsajXJFPcevfWlw2XIa1WSWrixl+P7HxkMkCvXtbjtFoljeJm0BEQljQkhyxWoF/bc554SSUNATBlCtA5a9/UW9Cp5Bi34lZTA0yeLP4ZbTduRYW1mGKDddqJ2913q7fL94tNuFTWrritkkC0/ocpbjp28PwUN+oYt6gF4fnrxsu6I8jEwjaHvMCUeamMsjz4vh96KDB7trNDURBWr4zSKmkUNwts/GXnRocVPi7FjXeCUChu3/0u8P3v26/pLGTNzreu37VYtBW3Pn3iIW7s/1wu2hgZZpWMct5FS73oUNx4N4UO4uaVnMRklSSBIW4dFCxpCEMGzoEsh6xDBXPHqAknDYEl9vz8TPv9m1Fqv3IrbrNn2yKRENyWDjagJj3GLZ8PXsivW6c+yXhZOnQqBH7ETdcgWiwGE7co/fdKTqI7cUs5skoCetWZCFZJ0YyyPBhxk90cakNQ3UKNylIhU4H584FP5hJaJU2MmwV3ZlnAPjctLdE3KsoR40aVnETnhiLgP69GbX/VKnsDaMAAJ6nVAS9ypet3jdMq+eijwNixwBVXAHvvbb+uU3EDnMRN9X6KK8aNt0ozGMXNoCOAJQ1hcBOzMOImu0G23772Td2CKhTgzGLJFLeaGuDBB0tj0EPhtnTwE3tUUBI3kfeqDnrUdkC3ZUS34sarR7oVtziSk5QjqySgN/g+glXSvTkkAj4WVmZzqA1uQq5TPeHuw2f+XokRI4Afn2K3//Z/89FKHrjvJxPjZsFr/NVJat2xOXHEuOlOTkJN3LzIT5Rzs3Bh28O1fYbhs69jUNwobPa6rZJ82wccAPz4x8BrrwHTpjmLW+tQ3HjixmIM83l1+3GQi0UXcfvPf7zDR4ziZtARwJKGMFTDOdgEETeppCEM3EB5yGFZtLjKDVRkKzB1qlV2TJq0Af6WjqQTN5FBXgdxY+eFytpFQdy8dtp1LariKAcQp+K2++7244QQN/fmkAh44qbknvriC66xrLXYYfGuEX/Tvz7OuQaarKkzB/t++vD9PIYPj1DSoFxWSQrFjaocgFtxA/QpzOxa0TlG+sW46VbcKMowFIv2Z2hW3Fa8vbDt8fV/2QYnTYyBuOmaOyizSvL9OvRQ59944qZ6z3qtZQBbcQPU7ZJe16PuGLef/cz7daO4lR8tLS146aWXcNFFF2HvvfdGr169UFVVhYEDB+Loo4/G3/72N+W2X3zxRRx++OHo168fOnfujB122AGXXnopNkQtdJwysKQhDDLETSppSFuD9k199LGVqO7ibGCnXSpx1VWS9kgefpaOpBO3NCtu7sK4fHKSqPYlwPu8p1Vxo45x41lS1OB7fiyMYJV0bw6JgBE3pc0hADj3XPsxGws0WHgbGoALzrfvQ+YQ4MdIllhFpd4lgPJZJalj/3QmJ/FS3HRtVHjFAUe9V/m+8fGiaVDcHn7YfuylWim239AAzPi57YNegGFYj1LiFqksiJedUdfcQVmA22tDkYFScdNB3OKIcfvqK+/XDXErP1577TUcfPDBmDFjBhYvXoz99tsPxx9/PPr3749nnnkGRx55JKZMmYKi5OLwlltuwSGHHILnnnsOO++8M4466iisXbsW11xzDfbaay+sWLGC6BslE1Om2HOVKHGTThrC4LqpM65BKVMZ8VJ0WzpSEOPW2AhcdyWh4kYd4/aTn9iPecUN0DNQe+20UyQniUNxo7ZK8rv5URayhYKzqHSn0kRCoufdvTkkAjbOKG0OAc4CzSecYHcEUD7vrKQBv3nFxka/zS2lkgblKgdArbjpVK3Y9ahTcWP3C7UrgSduaYhx460vmpKTsJqOW+UXtr22ENt4EjflDRCgfVgl3QOgjvnVT3Hj5w8VjztAb5UsFn03DQstxipZdlRUVOCEE07A66+/jiVLluDZZ5/Fo48+ig8//BCPPPIIKisrMWvWLDzwwAPCbc6ZMwcXXnghKisr8be//Q2vvfYa/vKXv+CLL77AD37wA8ydOxdnnnkm4bdKHurq7KRrosRNOmlIW4MuGd29mxS1gKjbKqkrxm3jRufsoYm4NTQAw4cDd94Wk1WSIgHHZ5/Zj3v10k98eK89ZTmA9lDHjQ/uj6K4ffqp87n7PvX7fB/wm0MiyCKnvjkE2N+9uho49ljrcUTFjZU0YLUsAW/FjSduSiUN2IKPZcatrLRtnpTlAJKuuLH+sfMC0NhIvYibzgROuhU3L4VDF3FzzzkarJJ8Tcc62LsaizDUk7gBihsg7r65lXcgHVbJOBU3Hdc8dTmAgPP6n9dbMHVqhPqfKUMiidtBBx2Exx57DPvvv3/J304++WRMmDABAHD//fcLt3nttdeiWCziZz/7GQ477LC217t06YLZs2ejoqICjz/+OD7jF6MdAPX1VjKQTpXOQdhN3Kor8mpJQxjck4x7N6lCk+Km2yrpDoTt29f5OfxnC4LtOjY1lRJmLzz6sMYYN52B9/yK/Mwz9RMfXgHv11qagiLGjYq4xVnHjbdKRlHc3C4GL+Im0X9+cwiuzLUX4YaS47PIqW8OAfZ3HzqUa7T191W4XviSBjxxY2MjH+PGx+cBCiUN2P3Kznkmoy/tfZoVN/Z+fs7QWU/MPXdQlUzh40WTrri536vBbsjXdKyBPUZtRFe0oNrzPco1HcM2LXVbJSmIW9AaSbfipmPuC4px06C4/eW+zY7nc7B72+NiSw7TpyNajHGKkEjiFoY99tgDANAoSK+bm5vb4uJOOeWUkr9vvfXWGDNmDADgySef1NTL9KC+Hpjw02DF7egj8uqkDQhX3KIQN15C103ceNvAz35m71IpTpD8riMgRtzO+Xkh+q4jhR2QLfK33x7YcUf96fS//dZ+XFtr/U8R40ZllYwzxk2X4uZ+b0TFDbA3hzpXOyfvm3FBybEzrs1FG2dY/712kxXOO1/SgFfUwhQ3QKGkgds1wD/uyDFuXsSNQnFj96iOJBDutoF0xbi5z2nE5Cfumo5etmM/KNV0bI9WSUrFTTdx0xzj1tAAnDfFJm5P4yiMxrttz6tgnbdIMcYpQiqJ2/z58wEAgwYNEjp+3rx52NQaL7PXXnt5HsNenzNnjnK/Nm7cKPQviehW7Rxsfn5uFq+8Zt/MXWo07srqVtzWrLEHPJYNgd+pjpIog+/3QQfZjxUnMH7XERAjbrnmvNquY1iAtq5yAFTEhyduAwda/8dVgDttWSX53dMoipt7fIqouDHU1wNzP7b7/RrGouCxYDvy0Ijnpm1Lnzvf7HdVWMjy+zZeilsQcQMkSxq443T5x0ZxoydurM1MRl9NSj/F7YUXgEsvjdY2ZVZJ9xjC4o0VCbm7piOvTvOqtReUajqWM6tklPNObZUUUdxUz42XdVdDjBvb7O4Ke27aiK4AMmhpvXbcbgdli21KkDri9u233+Lee+8FAJzAgs9DsKD1ru/Vqxe6++SYrmv15ixQqvpqoVu3bqH/Bg8erNw+KVyT35Ctsxi2vcaFLGWM2zff2I/Z+eXbj9J3/r18HxUmSPeuI+BP3Pg6dxUoRN91pLABuRUCnW0D1ozN4EXcdBfgTrPixrevk7h5ZQhR/G3rBtvfe+99K/HOOx4HRSXj7Nzyu8kRVCvegeqluPGLTi/iJlXSwL0RAui3Sg4YAPzpT8ARR9h/o67jpktx4+9PSuIGRE5oU9I2UFpa45prgP/+V73tOBU3lmlWkZC7813IKG6AQk3HtFoly6W4JTjGbeZMoEvTKnyO4W2vbYZFOllZKaa4MShbbFOCVBG3XC6HcePGYe3atRg1ahSmTJki9L71rXd9V96q4EK3VqvROtWMOmmHe7Dhdx0BvbuyuhU3nrgxFVZXRjaNxM296wg4idub+A7WoCdew1j8HYe3vV6BAs2uY5oUN2aVpNg19VLcdMeg6Mwq6XW98ZNwFKukm7jxmT0ZVPvPva9Lt0qMHu1xTJTz7rcoiUDc+JIGYYqbe9dXuqRBkFVSJzmZMsUibww6x/Y0WiXdWSUBesWNYe5c9bYpFTcR4ibRvrumo4ziBijUdIzbKqkrkZBojJuOOm4psEqyze5pmOZ4nRG3nI/iBihabFOCVBG3M888Ey+99BL69u2Lxx57DNX8QJsAbNiwIfTfNzzJSBLcg02hoNfrH7fipmti99pNBpQmMK89AZ64vYiDMQDLcABedUxmbMGoZddRF7kqFOxzQ0XcwhS3pJcDoMoq+cYbpa9RKW5eF51OK81WW+lpG3B+b/58RLAb8iUNZGPcpEsaBFkldcW4Uajj/BhJYZVk1w0Fccvn7f5TK241NaV1Eb2syKLgr/eIsdeBbQM2cVMcf901Hfl7pdh6Lx2Kfzjek2md95RqOoaVwtFtldSVSKhcWSWpkpNEtEqyze7t8bnj9TDFDVC02KYEqSFu5513HmbPno3evXvjhRdewIgRI4Tfy+yRQfFlrAB3D/fWkAS6du0q9C+RcA82+Tyt4qYzOYkXcdO1kPWK3wCUJkivS4snbs2obs2ulWlbGAI2cZPedaQsQkpdagCwFbeaGqBnz9LP0K246e4/hVVyyxag1SruAN++TsVt/Xrgnnucr+mc2J99Vk/bQLjiprigYiUNZMoBKJU0oFTc3G3rtDKmWXHj30utuFVXlw7iUTafeTVcY31RANoVN3dNR3av5Lj75584FK9j/5JjlGo6eqlilFZJ/nPSUMetqsrZHrXiptgm2+wuuKiKiOIGKGx2pwSpIG4XXnghbrvtNvTq1QvPP/98W1ZJUWyzzTYAgDVr1rTZJt1gGSrZsR0OXoqbTuLmXrQFDUqyiIu4RVTc3LuOgJO4sd0jACXETWnXMSzGTZddRPeOJgMrB9C/v21D0UGumpqA00+3n8dRgFsXcVu3zvt65omKbsVtwgTg8cft13Qobuxc77abM0kDheIWMTMjK2kgUw5AqaRBHDFuFMSNWnGLi7jx10yEEhK+7XsRtyiKm1eiCWriFoGQ8zUd2b3itkm67yflmo5xWyX5z0mD4uZWfnWQWi9HRUSrJNvsdsdBboE13wUpboDCZndKkHji9utf/xo333wzevbsieeff943K2QQRo4ciS6t/vK3337b8xj2+mjPwIsOAGriRqm4eWUf1FXnRyNxc+86AqWKG4ObuEXeddRNTrza5icDHSmd2MKEjw3RMcH84Q/O52kqwO3XL0rFDdCz6PG7l3TthPspbuz6zOWUFxD19cC0qeFWyZoaqNe79LJK6i4H4JW+3ChupW2y76HLKslixt0rySjnhpK4uTd/evcubV/yXuVrOjI1zb0gd8eMKtd09NrEobRKAvSKm86skvz4CCQ2xo1tdqsobkqb3SlBoonbxRdfjBtvvBE9e/bECy+8gL333lupnerqahzRmkXroYceKvn7V199hX//+98AgOOOO069w2lGuRW3KOAtI2xi1KW4aYxxA5y7joAYcetcXVDbdQzz+Uf5Tb3aPuAA+7W//EW9bQavmlw6Jl93Jrc0FeD2ey+V4nblldb/Os67X+C9BuKWywGL5tnErVDtYZUEIi1mf3iwPRZ06sLOR6YtA2zd4Dzmz1ckbcWi/d29dvELhWiEmb2XtacreRPrGwOl4uaXVTLK9e5H3HQrbtXVFnlzE7cofY9TcWOFsSK2z2o6ZjPexI1X3O6eGaGmI2WYAKVVkroAt9ecCtARt4gxbmyz232diMS4KW12pwSJJW5Tp07F9ddfj169egmTtjvuuAM77LADTj311JK/XXzxxchkMrjnnnvw3HPPtb2+adMmTJw4Efl8HieccAJ22GEHrd8jNSi34hal1prXTnsCY9wA564jIEbcbriuoLbr6GXpqKiwbYf/+Y/TAhe17eOOs8/LK6+otcvAF1X3S1usK2VUHMlJdGWV9HrvySfru96ZJQqwSNuYMdZj3VYaTYpbYyMwdSowZAhw8nH2977r/hpMndoq/OpSl7j+//ycCsybB7zzDpCpsvq/1cC82n0K+FukdChLXuSEz4LXkRU3R1FNQsWNtZ0W4sb3a8IEYOxY6zE/ByqOA/X1wPbbWO/NZ5wr68pq+/lJx0c493ymUJ02e8DfKpmG5CRsY86da4EqOYmGPk+ZghJHVpjipmyxTQkSyUeffvppTJ8+HQCw/fbb4w9ua1Mr+vXrhxkzZrQ9X7FiBebOnYuBzC7HYfTo0bjppptwwQUX4PDDD8f3v/99DBgwAP/617+wZMkSjBw5En/iUyR3NIQRtwgFFAGU3tTuCSxK+zxxYwvYBMa4MbBdxNNPB6qbw4nbMUcpnhs/S0dlpf17nHiiGmn2artHD8tSs2xZqXIjC/561F1vJpNxPk9TAW6+XwcfbM1Ohx4KvPWW/bouq+TJJ9vnSse50UzcGhqsQqvs9t4J9vdetbkTpk8HZswAvtihCkPYHzRlmK2oqsRwVlaostK6Hyh38dkx7tgUEfDjH3t/JmN9TnMzveKmixjGaZXUXficmrgxOzmF4rb99vZjdt20tERqv6pVcevVtxLz/m05srt3B7a7KAs81XqQjnhXLzIete0wq2SU805plSwW4yNubqskUJqpXBB1dUBxzwLATXFhipuyxTYlSCRxW7VqVdvjt99+2zcubeutt3YQtzCcf/75GDVqFG666Sb873//w8aNGzF06FBccskluOSSS3yLc3cIUJcDcCtuLEsg/3mqYAtVvj4cNXHTsIufyTgHHD/ipnxu/CaYbFZf8W1322xhGIU8AN6proH0Km4UVsmBA4GTTiptX5dVkp/cE6a4NTQA48Y5X6uB/b2bYJ2Ppibgrfer9RA3P/VdhzoTlvDAfYwMgmL/mptpFLc0Jifh29Q1jrmJm7uWW5S+x2WVdGe+zGYjEzf2m2ayWXsDBACqNNsZvRLOAPrju/nHUcZfUcVNpf9NTfYmrZu4USUn0bT5P7SvcyOYJSdxK241NRZpU7bYpgSJJG4TJkzAhAkTpN83bdo0TJs2LfCYgw8+GAcffLBax9ozvMoBZDLWYBElvoLBrbj16lX6earwstQlWHHjF50iVslnnirgqIukPqK1QZ9d/CgZPBn8Ji/2G0Rd8IjUm9FF3NKkuHmpG+72dSlu/OROtSPrfixwbhobLaXNjU6c4sYmdsB5X0VabPqdex2p48N28QH1RX5QmYSNG2kUN11WyWLRW3HTlXwqjLht3mz1wa3Sy7bPW9V5pMEq6SZuVVXWZ+twDrjnIl0bc6z/fsRNlzrutcmiq76obsWNH9vdGwhxKW6q4PMYAOjUqzOwxlbcqtGCqZcWMXlKpl0rbQyJjXEziBl+g7wur38cipsfcXv+efUYOr/FmuIE6V50ihC3yy4tqCVp9NvFd0+WKuc+jLjxiwoV+C02dUy+7vfFobhls/biT5fixveXIjlJXIqb5HmfOdP7K3opboCzzIYuq6TnJo4uhYO/n3QQcv5e9Mq2mWTFzWsXH6AvB8BbUqNshLiJm5sAJpW4+Z0X/jN0xItSETf3eXd/FsUmC59ISIdLRncdN7+x3d02FXGLMu+5Qi8anuyMefOAnXezz9FVv1PMBZBCGOJmYIGfQKqqgHPPtR7rIm5hihslcbv5ZuCll9TaFlHcJBYO7kWnCHHLtRQwa5bwR9gIinHjofLbhhE33pahAkrixqp6utvUqeZ9+qmV/AWwlWsd95Lf9ahLcWM7m+4EQgkpB5DLAXfd5f03EcUtt4nAKsnOva404PxikxUyAkqvW1EQFSZvQ5ji9qc/qY/vfgpEXFZJINomFCVx8yrATX1eAD0ZN73sr+7nlIobhVVS96ai7uQkcRI3jclJAJQQt2znagwfDnTrpTGWNkUwxM3ASibBih0DwMcfW0UwABrils3GS9wAZ8FlGWi0SnotOkXruN11l8JcIDLBADTEDYi2KBEhbqrXpHsBTKG4HXus/ZgRWB2WOmrFjfXNvWjQQWo1ELcFC6zhygsixO3rhZqskl6kOcp597ufKIlbXIpbSwvw2mv62gbIskrmcsD8+cDqphQQNy/FjSecLnuZFMKskkCyFbdyWiUB9XNDmZyEvx6CiFsCY9xKkp15EX9doRMpgCFuBsAbb9iPL7oIjmhhCqtkZWW8VkmgdPIRhUbi5rXo9CNufN2SChSwdKn1fimEFZdt+zCF39bP2sX/BlGUH0rFbe1a53PWpq4dWQCYN6/0NdZ+khU3kZ3wMsa4BXEXEavk5rWEipuuemL8/cSPk1SKW1TiFqa4AcAjj6i1HaPi9sJr1RgyBBgxAvj7KzYBunn6ZjWrerEYP3Hr1s1+LUpm3yCrJPsdNCQnCbQDptUqGaX9csW4UY3vRFbJtmuS/x6q42MKYYibgZO4sXotDElX3PzqfbknG5U02u5+RYxx8xpXRBU3wEqZLIW4rJJ+FiNdxI3/LXVMvu4fwmv3N8r1/te/er8el1VSh+JGsaDSoLjxApQbIopb1yqCGDfdipufVdK94SCKMMUtqlUyTHEDgJEj1dqOkbg9/1p128YaSzcOAPfcuRnDh9s1qIXB9531d/Ro38+Xhhdx45UUviajLIKskjqScHiMubkcsGaD/RvntkQgP+xeLZdVUpXUtherJCVx239/YM89rcdbb22/Lr2znV4Y4mbglIHcBcjjUtyiDBZsEAsibvzfZKBRcfNadPLEjVcGvIibdLWKclsl06K4sUlBx+TV1GQVIvdCGqySXhn83M/LGOM2bBgwYID33/wUN564DeqvpwC3r+KmGtfpdz+lVXFzZ090X0+iICZub7zsvXHGE7fO2IymJisTsBR58yI/p58O7LST/XpSFbcYrZKNjcDUqcCQIcC9DfZvfPThOUydCnm1kzvv65qqMX9+62XU0a2S5Yhx4xUx1esxn7evx1GjLNs1U6633dY+7ssv1dpPIQxxMwje5Um64ha2KPH6mww0EjevRaeo4lZba71fCuVMTgJEiw2hinHL50snEDa56Ji81qzx/xulVZK/3imskjoUN6+J3f1ZIW1ns8CkSd5/81Pc+A2RbF6T4uZXikF1weZnlYwrxi1KIiGva5LfCQfUyRUhcWtsBO6dZb+XJ/tu4sYwcaIEkfBa4GezwNNP26/rIG41Nfb1yC/Iqa2SGpKTrFxn1XGbPt3aP85xFarWrs5j+nRIqZ2NjcDVl9nn9P+9XYMRIyxS+NdnCKySEcqaeIJScRONcdOpuPXubb+2erVau/x1XFvrtBvzxO2LL9TaTyEMcTMI9lUnvRyA36KEWnHr3t0+V99+K9SU16JTlLhNmqSwaS0a40ZRDgBIpuLmXigdeijw3e9aj3VMXkFkldIqmcnosexRxrj5pXaX/E2nTCm9vQHBOm4U5QD4e0v13PtZJflxksoqCeivLVhRATz6qP06JXFTPOczZwKZnJjixn+UcIZfv/FXl62ZjTW8PT1Oq6QGxe3zBZWOU8ATN1ZUWVTtbGiwSN4dN5cq78uWAU/9nbt+zjhD/X5i35sv8QLEq7ipjMGiMW46k5PoIG5elmMGo7gZdFj4LagAunIAbt9gUomb32Itm7UHjXnzhPvvXnSKELdOVQVMnizXbQD+5MqNNFkloyo//Hc94ADgH/+wJ9+4iBtFAW7AvrCSqrhpquNWVwfMnl36uohVUou9C/BX3HQQt7gUN11xYn6/K9931fNOlFWSZfjlrxkR4gZAPMOvSG0+SuJGZZXknQMqSi03hvFEzf2cETeGILWzocEid01N/nOq+7Nw+eWyPW9t1CPxCUCfnCSNddx0ELegOY8nbibGzaBDwc/CxD/XrbhVVgIvvGC/llTi5rdYA6z0Y4BlQfj6a6Hm3ItOEeL224sVC0uyxVJlpXNn0D3Zpom4Rd0Z5L+r+xqhJm6UVknAWUNPFeycUqTp1hDjxlBfDzz4oPMn9FLcamqAH59CXICb74Rq++W0SgLRCK1IAqeEWSVZhl+/8TeIuAln+PVTrXQotIA3cctm7etRl+LmV4AbUBsLuPfw2ZOBYOLmp3Y2Nlqkrq27Phs47s9qeuN/Ut1uA7tX3JuhupOTpDnGLS7i1rWrHfzvVyemHcIQN4N4rJJe5PDgg+0BRLX9clklAWemNK/07z7gF50ixO2HByuSWr8Jxj3op7UcgEq/gyYB/vd9+GGn1UsU5bJKAvEpbmUsB8Cjvt6quTV1qhX6wC/YuvetwdSp1t/3/C6BsqRbceNTxvKLKt1WSX6RT6246WifiLgxDqxC3ADBDL8iVkkdWSXdGZNZghJdMW5BypICQck12deLDHEDvNXOmTOdt52fiupW3L5ZoVgiyG9e1WmVdG+2AumKcWPt8cRt0qTgGHA/BM3ZANC/v/X/8uXybacUhrgZlCfGjYHdiNSKm+46boCtuAHA559LNcsWnTsMK1041NYC3/2ehjS6fpYOHcQtznIAVIqbn7rM8JOfSBFyAMFFbymzSgLxxbglQHFjqKsDrroKWLwYOPZQ+5r511udcNVV1t8d16cuZUl3KYZVq+zHffvaj9OsuOk470TEjZ1WVeImlOGXUnErFu2xxk3c2KI8iuImYpUElMaChZ/b75GxSgKlaiezvPLgf1NecXN/1lff1qgNZX7zqs7kJF6hDZR13Kg25vr0cR5zxx3y7YYRN5bxbfXq6BlyUwJD3AziV9z4m4+1T03cVNv3W6wBzsyYQQt2H9TVAdsPtSeZ1/5djXnzrEXo2AMiDtKA/yJcN3GLM6ukzhi3MOIGAP/6l1z77cUqSaG4ERA3vonuVfb3znbzIShJVdz8iFunTnb/dScn0UVoRTLv6lbcIqpWLMOvX0KbIOImnOHXj7hVVNjnRvV6aW62Le/UiluQVVLhutmwVl1xA5xqJ7O88hC1Sm5orlYLi6JU3PzGX0Cv4laO5CSAJY9GaTdIcQOAFSvk208hDHEziFdxc1sA4lLcdAxGQdY61fPDDfB77FOF4cNbf4KogzTftnuCSUOMG7+g0am4iVolGWQLt/PErUsX6/233eZsP8lWSZE6bglS3BzwK9quyxIoUg5AB3Hjd6kzmeiEXERxozgvOs67n1ODn0cU2mYZflWIm3CG3yC7YVR1nBtn1rZ0tmuVAbbitnGjepmHb76xH7tL90QkKN272L+pWwXjyZUfcePVTi8RWjQ5STOqxSyvbogQN9VxjM9Y6UbUNYHDT0oQ3x0W4wYA220n366o4gZ0mDg3Q9wM4klO4pf0IC7ipjurGaBnwckm98pKZ/s6iJvf7l3SiVux6NyZK5dVEohG3GbMsFYW55xjPddR/0hEccvn1T6jWKQtwK05xq0E5VKWdBC3lSvtx257UdQxWIS4nXiiWtuAWIybbqtkJmO3r0gKp0wBulbIEbeaGohn+PU776whQOl6aWwErrvC7tMrb3Zuq1U2dSqwpapVcSsW1V0Pc+da/w8Z4izqDUS+X7ceopacBChVO93JqQF/xc2LuAlZXt0QsUpGvd4prJJBKqoO4sZf737Ebaut5NsVjXEDOkycmyFuBk5S5Q6I1a24+WVKSoPiFrTQ1x2HRknc3O0lrY7bnDnOhazuAtwMQUScIari5lYJ3H2QhYjiBqgRCJGyIID+e4k/x1F2TLnv/M4HVbYKoUtZ4n9bP2VJt+IG0BE3vt8ffmgF3arAz06u2yrpvt4jEre6OuDgMfZvypM1P+I2ezbEM/wGETfWd8nrhdUqm3Vbab+XLbMKWb/0ZsSSACtW2NfjDjuU/j2i4pbNqFsl3Wons7zy8EtO4v6syk7VYpZXN+JKTuJG1DpulIrbmjXAffeVtudmxir3alC4CmCIm0EHhR+pAuJT3CgXJfznyyJo0NCpuMVJ3JKuuC1a5HzO79LptEqKKG6ySW34xb2b9PH3kqqFSURxA9QIhGgNId0xbsOH21vnr7+udG4aG4ElC63rbTM6Ya+9M20qxP2PaLDsrV0LXHyx/ZwyOYl7lzrqGMxfk36KG6AeE+VnJ6fMKsm3H4GMbzdETHGrqbEyAdfXSzTul80TsK8Zib7ztcp4MrkJznil9YWIRbg/+8x+zGdOZog6BnPvCUpOUgnn9e6ldjLLKw/R5CTDdqgRs7y6IVIOIOrmlpfiFrWOWxBxi9r3V15xPmdzdkWFtZvAoDLGGKtkCQxxM/AnVfxrxaL6YhOIX3Hr1g34wQ/s50mNcWMTt3ug1kncKMoB+BE3HVkl+f58//vOgVlnchKRGDfZcx9E3PhrX0eyHL8C3IDauQ9SNzIZ+/MoYtzGjrUeL1sGfPKJVLNMhVi7zFqY8AvwZcuA+x/VQCB+/3vH0yVLK+zToCO9OyNu3buX3q9Rs5GKbm6p3q9+myGUVkm+fU0q6pm/7Iza2taXOeL2nVGbMX++JGkDtFol3bXKeOLG9xUA1sNWOb6dq5DQ5ssv7cd85mSGqMpSXk1x81M7p0xx3oKiVsmRu7nIiwjyeft6p0xOEqa4RSVu7ns/6lqGn/cmTnTaay+4wH5MQdz4GEzVzLspgyFuBsGZjHSQE/4z/FQO3cQNAB5/vPTzZRFXjFs5rZJUddxU4yv4/h19tPNvcce4yZ57PnOXn+Lm7ocMKK2SQYtk/jXdMW4AsM8+9uMvvhBuklchWKIJfrEGAC2wr8+P35dfUDU2Av/76zeO1846p7Itpmj1Jo2Km9smCei1SvLXiHvhqbro8dsMocwqCSjbDR3gzs1vruiExYutCiCPP2uPY7vv2CRuj+Thp3QC0sTNXassiLh9jSFtj1+4d7FYX3nwYxhfR5BBI3Hb93uVjkvSi7iFqZ11dRapYxC1Snbvo1AiyK8MDqAnOQmfxM2NJMe48e/ZYw/n32pq7L5HJG5rN1TgnXfgTMYT1WmSQhjiZhAPcYtbcXN/lolxs6HbKsn3XceuY5AqRhnj5jVZyn6GiFUSoLkeKa2S/OdR9J1fSAiec7cKwYgbr7gBzsXbS/9oRmOjWHcBW837aI6TeBRQ0RZTdPk1EYlboRBM3KISZr8Fmy7iJqK46c4qybcfRXFzzR/ZrPV777KXhsWgqOIW4mTxqlUWRNwWYWjb40/+/pX87Sq6geM+VqH9YcOzmD/f2gCprXUSt97dc5g6FUJqZ329Re5qasStkp52xDD4OU0APclJgsJWdClu2ax+91BQCEIm48x0KoklX9tt/9/jFdhrLziS8SxdE9FpkkIY4mYgXjtEdeGwYQPw1VfW47iySgJ6iJtoTFRHU9z8JjAdxI0yrjDIduFlw6CySlIrblGtkhSKm+ZNELcKwXba3YobT9yy+SbMmiXWXV7N4xeDgHP3fmMuInFbsMA+917STlTFze9edSviSrnRIRbjlgKrpNNvp2ExKELcisXQccyrVlkX2KqYm7h9ha3bHvdav0i+VlnYOKBRcUNlJerqgKuusuqX3vx7+/OuvCyHq64STwZTX2+RvKN/WKq41dYCPzsjZANTBH5OE/fzJFslveK2dSpuXvOoInFraACOPNz+rgWOsrCNs+NP0VSCKEUwxM2AXnG77jr7MR+EDySfuFGqPwAdcQtK7U5J3HST5aCdQd1WSXdGVffxInBnleSRdMUtSN3gP0+17yJlRwTb91Ih/BQ3/nkNmnDXXeEf4Vbz3MSNX0DwRHH1twrn/YMP7Me77Vb6d13ELZNxnmc3UdOtuPGPE5hVEoA9f3Tq5Lz/+Xvpww/VFuIiWSWB0P57/SyiitvW+EqejwepSoBWxY1vK5sFBtVxyUmK8m3X1QFHfN9OyHLlTd0wb55FCs8+x3X96HSaAHrXG5RWSbdNEqANQQBs4iaRLIdtnOVavIkbw7oWY5U06IigJm58ViH3Li9VVkm+bSC6dSGT8S+VACRPcQtahOsmbnz7cVolKSYYt0qmU3Hr29d+/Omncu0yJEFx00E6I2atLFUhir6KG0/cOmELli5FqArhVvO6wrlTzC8geEXvv69HJG677lr6d13Ezb0I10Xc/O5XDbXWhBS3lhb1xFnsfvXL+ghYxaj5RFeiEFHcgNDFpletsiDi1ghbohqKRfK1ymJW3BzQQX44crDdbt0wfHhrs+7vonPD0v08yVZJL+KmU3ELIm6Cihu/cVaBYOLGj/cbVxrFzaCjgJq4eUnn7r9RKG6ZTLTFZksL8NZb1mOvwSiq4lYo2P3STdyCJl/3IkdnHbc4rZJRvfhe12W/fs7nOmPc+MXfP/4h165Xf+JOThKVQIgu2ATad3OMKrSgAtZ17Vbc+ImdkbtHH/Vv20vN64uVjue8VZJvf86bTfJDzccf249HjSr9e9KJW9D9ypMrFYgQtyjt84obD550AsC//iVvJRUpBwCE3qtetcqCiFsTOmEZrNpWdRXfyNcqC1PcKImbjs1Q/nfiWav7s3Qm5XI/j+pKoKzjRm2VDCJuTU1C7fMbZ2HEjR/vF3xmFDeDjgKRcgCA+sJh7739/0aZVRKwB1OVgfScc+zHYedGlRgyBKXn1U3cdChufPu6iVs5FTe+mCegN6vkoYfaj//1L7l2GUStkklX3CLGuLlVCGaTBIKtkuy4yy6zrDhe8Iop6ocVjud+VsmWjU3yMUU8YRo4sPTvUS2qfsTNvfutW3HjP5NScYvSvh9x83rNy0ot0rZXWxLEzatWWRBxA+zabr06b5GvVRZjcpKS9jUrbo609DoUN/46C7JKqsx9xaI934StN3RbJSmTkwA2cQNCVTf3xpkMcfv6iy3Kl02aYIibgVgBbv44WfAL2Msvd/6NUnEDoi02Z860H3upM1HVn6BJgFJxS1OMm+4dWVniJntu+EWY+3ocPNg+V2sV6iu5+0OpuAUtHHSUA4j4u7pVCL/aTYA3cQMsK45Xhkkv/uImbn6KWzWa5WOKqJVOP+J2zTXO55SKG0VWSR318/yskkDp/RtFfY9A3IDSWmVBBbgB+5rsWqkwDviM7bmclfzj62UxWSVVr3dKxW3NGvuxu1RC1E1L/j5Ks1XSa63EE+gQ4ubeOOMLsYdZJTPNW+Q3zlIIQ9wM6K2S/KR6xRXOvyWZuPHw2m2NSiIoiZtfDBqgvxwApVVSt+IWZpWMStzCdh7ZAlFHjbu4ywEkKMbNrUKIKm4OgtcEzwyTXjFF3eFkY/xiwm3FlI4pCttMoCJu++wDPPKI/ZxCcYvLKhmH4iY7DmtS3IDSWmVhihu7Jitaoo8DjY1W2vUhQ6w07Lf+wf4dHnogJ1VeA0DwOKBj48+PuLnvH5X7iU+u5i7doVOJpMwqWc7kJEAocXMPQzKKWw2alJPjpgmGuBnQE7eg+iFpIW5e390obhbKZZWk8OKfcILzuey559v3IvvsGlVNWxx0bqiTkyQoxg1wqhBBilseWeRbpzqe4AHwzDBZGlNURCWc1wGfrISvD9Wjc04+pihswcbOTbGoloTDj7hlMsCxx9rPdRA33YqbSFZJ1fZzObt9L8XNvcCVve41ZZVk4GuVBRG3mhpgyDC5At8OcOf8ny9lMXy4lV+MqSB8QfunH2/B8OH+tuOw9qmTkziUHvd5VplXeeLGJ5sCaGP/gGhrgnzebr+cMW5AKHFzb5zxxM1dRB1wJofqhC3yG2cphCFuBvERN68BgzKrJKCPuHm9X6fi5l5UxZmcJGnEjbKOW9gEc8wxzjgjVcWtosKbuEVV3MpZgDvqvcQvqIKKkwue87o64PTTrcdBihv/mpu4eWWYdKt5FSi9/3gFjl/IjtqxRT6mSFRxcx8rCj/iBrRWLG4dl1WJG/tds1n/hA1JjHELmzsSpLgxsFplY0aXErfaWrQVrO47uMbus+z9yo3bl/6uqqR7/PVehRY0NVlp24XJG3VWSSa5dOrkbG/77f37IYqVXJIit+IWNTlJ2PgbZU3A3x/lzCoJhJYEcG+chSluQAZbmDU42yS/cZZCGOLW0VEo2IMAtVXSa8DQqbgFWQBUSQQDheL2zTf2Y/fuXVqJG3UdN2qrZCYD/O533sfLtO+XSZWSuEVV3MLquEUtwL2CixNzW1IVNkEaGoA777Qe84pbEHHjj2Pwstbwah5vi2TgFxD8Qnan4QrjDPu+mYz3dUNJ3ABblZAsjtsGdgJ79CjdrEiyVTKMuLk3GnUqbhHiUevqgH12scePhsc7t9UqaytYzfdddhOHO+e8muz1Whb2sX4xo0HtkyYncUsvVVXAP/9pP6e0SiZNceOvAa91El/uiCJbs4TiFrRx5k3c7PG9tqdCMp4UwhC3jg7RorvuY2UgkoY2KnHLZmlUgiBEVdzmzbMfjxzp/JtO4uZesLnb0xlDR22V5J9TKG7u12WveXa8H3HTaZUsVzkA1Xtp+XL7cRBxEzjn7gLZvJLmtkryr7kVN6B0fQc4Y4rcittCbI0ncVzbc564dauOsGDzW3HERdwkiuM6wJQ6rxNJmZwkCjkBgkt3ANE3uIiIm7vtnffsZNcq82pf9txz4zZ/bXu9VgX7WL+Y0RLEpbjxNkmG4cO9+yGKtFol+WvMax0GRFsrabRKAs6NMxHixsb33p1NHTeDjgDRxRpAq7gBavEbQcHlAC1xi6q48cSNn1CA9MS4ZbPOXXb+eqGwSrLPBOIhblSKW0uLfktKXOUAVMcBRtyqqkoDGSTvJXeBbF5J42MeGIIUt//8x/szWExRl2q7Px9hZ+yAz9DMkcPKak32XZHrMUrZEWri5pXVhX0mH2MjA34M0R3jFqa4Rd3gYu1XVcW/yRKh/UKzmuIGeMeMliCu5CReGwlR1zNBVknKMglAtDpuYVZJIFoMs2bi5rdxFqa4ZXOmjptBR4BoCnBAXRUTiXFTbT+MuEWp4xaGqAuq+fPtxyNGOP9GSdzc0LmLn8nYr1EobkA0AhFGCt2fqRrj5tc2v7OvYpdMguKWz6ttsjCrZL9+pZY6iQWVV4FsfgHppRL4xbgBwOTJ/hav+nrggzl2f77GEDQxW05rTNFLr0fcaQ+KMQaiLTaLRfs9IlZJ2bEml7Ov4yDFDVA7N0HlNaIStzDFLeoGF2vfa26Keq+GLZQjtL9hbTBx81PcAO+Y0RJoLAtS2rkW+/t6KW5RiVs5Fbcoa7EwqyTffgKIG2BvnHWqCiZuNTVA74ERnSwpgyFuHR1xWCVFFTcK4pZkxe3zz63/KyuBbbZx/i0txI3CnhqX4uanisWhuAHR49DKlZwEkD8vxaKtuLltkoDUgs2rQDYfh+aVeSzIKhlm8dpqkN32fmMr8c47cMQUDd5a04KNwrrrF4vKg1/gym4m8AGCXopbVOKmOTOjcNtA6blWVdzCiJtK3wmJW26zmlWSITQdO6VVkleNKRW3iorS6z1qcpJyxrjxn0mxISpRx41HfT1wz2xv4sYn4+nRP0IW1RTCELeODhnLhWrWMVHFTWXAKCdxi7o7yAaw7t2Ds0qqnJeg35UvLK7afpD9KqriFhboHCXWSsQqGeXci8a4AbSKW1SrZBBhBuR/2/Xr7QVqv36lf5dYUHkNQ2HEzbZKNgMoVQsDLV5cf7p2r8Do0XDGFOmySFEobrLETdYu6Vczy+szdZOruImbaoxbWOKThClu1Rl1qyTgfRk4GyBMTkJN3FgB7p49gxNnRVHe3W0x6Moq6Rfjpktxi5icxI3+fe3veu55FSUbZ3V1cMaOq7hBUgZD3Do6wgaLnXayH8+ZI99+oWAPYmFpaDua4haUlIBScTv9dOCQQ0r7odI+BXETtUomOcaNyipZzgLcUfoelFESkFpQeQk7osQN8I5zC7R4he0m67JI+V0zUcYZauLGs2ivhXLUhTglcZO1SkqOBcXWvm9BDebPd339BFslu1SrK261tQhPx665nqMD/EYChVUyaC2TluQkfopbXMlJZMcY7rv27e+xcQbY36lYjJ5BPAUwxK2jI2yxttde9uO335Zvn7+JdFsli0Vx4sbHeuhCVMUtaKedkrhls1bhHYYkK25Byg9F2mL361HquHlBp1Uy7gLcXbrYjzdtkmubJ25eipvEgq20QLZz599LJeAzTXrZJYEAi1fYoiTqgi3NihtP3LwYddSFeDkVN8UYt8ZGy8K1cY117r9orMaIEcCQIdbrjY1INHGryKsrbpMmhTvzSa2SYQpwVOIWdK9S1xhNslWSIMatDSJzdtRNy5TBELeOjrDF2qhR9gSpQtzC0tBGGYxyOfs9YcSNHa8TuuyMugdpvm2AJnYxiLhFVTmTpLil1SoZdTGom7jx35WfxBkkzrm7zg8QXXEDAixeYdeMrvpN1DFufhYpSqtk1M2tIHIV9V4KU9wUYtwaGiw1YPp0oLJofV+mUC1bZr0+fDjw2psa71WvsSbKWMD9TjKKW02NlehHpn1SqySF4hZE3HRt4Pi1T10OIKnETSQuPWpG5ZTBELeOjrDBoroa2Gor6zG/ay6KsDS0UQajsB1TgJa4ZTLR4q0oFTe/Omu62y+H4hZnjJtGq2QuB6zaYi8Q8xs0EzeN5QAWfZMttXdFIW6icYuufviBr/MDyBE3L8Ut0OIVtnCImpRARnGTbb/cilvUhXLQGB+l32FtA9KKW0ODZWRga2SmRrlVq6Ym4NpbIhK3sDEyCnHjrhmZrJKzZ7fGG4WhjIpbrmDfv5s2FuQ/Iii8IWoiHkrFjbocQNj1SK24Rd20TBkMcevoEMk+GCWlPqXixk+8foOR6qJKNMA1im2vXFZJgFZxo05OEkVxE5kEopwbD6sks04NGQLcdpdN3OpP2GJbp0RBpLg1NgJP/MU+n1dfny21d0UhbjKprgXOOV/nB4hO3IIsXrkmu+31mypLLzt+AyfJils5kpNQxrjxn0dB3CSSk7gLwgNFVPkQN8BVJD5hWSX53+nu+7IlU6vbKllTY6Vtr68XbD/ovBMRNzYGD9vePldvvZl3jm8iCJqzo1p3ZYhblDpuKUtOIlTCxyhuBh0KYZnkAHuQUlmUyChuFEUlVScCUbKUVMUtzcSNso4bdXISl1WSt04tWwZshk3cmtZubrNONTRItu/uJ6C8WGN9/MezpbEtvL3roy8JiZtCLBSr81NTIxfj5rZK+lm82GJvzHfta+Cvz1Z6L/aiXPPtOcYtLsUtNAe9B8KskoMGOZ8HjAXugvB80WCv69FRJD5hMW78NXPK+ErMn29d77W1rX/mFLfv7tWC+fMlSBsQfN4JrJL8GLxkuX2uKpF3jG9CYzAlcZOZs2XnJZFxIK7kJNQxboa4GbR7yChuUQuoeu30xDUYAXIDkuixRnEr/Vta6rgRFuBuKVTg6qud1inAqfx0hrWAaWqyjhNaOITZjNhrgpMXb+8KIj9NTcDDT8dklZQ45/X1Vh2fY45QV9y8LF78Ym/NKmfbnos9HddkGhU3fhHmFbuoKzlJRUXpOMYrbirELUxx4yVdwLf/YQXhwzYSCpsjELdMprSYPaBHcctmgUwGdXVW2vXFi6007A88ZH+ffffMidkjeVASN5fi5rav8mMDr9ILj8FJUdzSRtw6dbL7T0Hcop77lMEQt46OsIQEQDSrJGWMm4j8rzoRiC4ydMRbURM3r4E6agIOZiVNWzkAWaukxLlvbAQ2rLeOX/R1JS67rPQYXnFzE4iJEwUsO6I77QKLNbe9i19sepGfTYjJKin5u9bVAccdbbc/9fJKzJjhSrLpQdz8LF7uxZ6fDdOx2NOhuCWhHIDsoiqMuOlKTtKpUylBiWqVDFPcRo0CTjvNfu4zFngVhJchbutXRCBufteMDsXNdb1ks9ZmxY67RkzCEXTe+TE5ouK2bEt3l30VADIowLqO+PuaIXQMDrpXKyvta5RCRU0zcctk7PEhQjkAoRg3Q9wM2j1kFLdCQX82o7gGI/fxYRBdIHVExS0s8UmU64W9j6HcyUkEzw1TaJo2WccXfIZWnrgxxY2hqQmYNSvkg0R2NgEhxc1t7wpbbEYibkSKm9d7tt62EhdeCIfFi18oD+plxRZ6WbxKY5WcCzyv33XiRCBfGYG4BW3gAPSKW5QaS/x1wMdAMuhS3LwUMWrFDXDWHPTpv1dBeBniltuUMOIWZt2Nmj2Rv2bcxC2TQbH1O21clytNkBQG7jp48oVunl+dbb54EbfAMZgvKeR1bjIZe41DYZXUtVai2KAXIVdsnDGKW2QY4tbRIULcoqS7fucd+3GaFDfRY1VJRLGY3nIAYYvBqBM7ZXISghg3XqFhsS1+xM3LKsnjrrtCvpYmxU3F3sUTt/z68se4OeBxvfMWr7MvtPv+0J834aqrvDPgucksEJ74pKkJ2NgU4ZoMU9yi3Kv8GOlH3KJkxQwjbjoVNzeixriJEDeBcdizfJ0EcasupIy4RbUz+ihuLKa0KW+1P+/TfGmCpDBw18HDz3gky0EwcQMCxmARd1IU4kapuIU5cAD6eZX91rIxaLLEzWSVNGj3kFHcALmFeC4HnHWW/dwobjb476o7EBkoL3HTWYg0iLgVi8D/+39ybYtkqJJQ3NwKDSNuXgt8INgqCQBLl1rWK1+ETWKCipuXvYtfyIQRt1VflzerpEz72SzQb2tbVarc4r3j60VmAWeiCb/fde1GRcWtULBtx+UqBxDl3PPEjTLGLUxxo7BKAkLnJmpB+K7VERb5MVol2xB1Y87jvPMxpex8sXMolUCEuw6+WtXN85Aw4uY7BouslZJK3GTWSsWielIuwP+aVLWTG8WtBIa4dXTIEjeZhcOaNc7nurNKigxGqt5nasWN0hZB3X7Y7p1OxS1MndlvP7m2RYp5Sixk/bLJ+SlufjWQeASKB5oUNxV7F0/cWtaWt45bCTRkNfMis0C44gYAWwqKixLqgvCUCZyA8ipu1dX2gq2MiptXQfiwe4nPKlnR3LEVN3dMqZu4MQglEOGug/VQU9xczdigJm5xWSUpxgEZ4iZ7bgxxK4Ehbh0dlIqbe5HhtWCKoiyJWCVVJzBqxa3cxC3NVkm/iUEEGgtweyk0bDHgR9z4BVs1vCcYr3JYbRCNcQu51lXsXTxx61RIj+IGQKgGnReZBcSIW9v5ikLcyhXjFkUVK2eMG2DbJSnKAQDC595dEF5GcYuUyIKiIHGMitvilZ1LYkr9iBtDYAIRTnGLQtw8x+AkWSWTtoEjMq+yc2MUt8gwxK2jQ6aOGyBvleTx8celx1DvIql6n6mzSoZNAh2ZuMnEQ8lCxCopeG68FJowq2SY4lZba1mvPLFmDfDMM979ZOAVt4Ai8l72Lp5I8v1k4Ilbr6oIihsFcQsbxwQUNy8yC4QnJwG48xVFeS+X4hZFFaNU3PJ5u/9+xI2tsCkKcAPC47C7IDw5cWN9SWNyEo643fVg55LuhRG3wAQirQS+mM2iV3/vzdww4uY7BsdplQybs2fNUl+LUSipIuSKt0oGzE1KbZuskgYdCtQxbjwOPrj0GOrkJKoTGHUdt/asuEW10sSluEUsB+Cl0IRZJcMUt0mTAnjpjBn+/WQQnMC87F18shQ+Fo+BJ24VWyIobkFxi+5jVdr3OoECxM2LzAJiilsxq8EqmQTFTZW4VVaGjwWyfefHay+bPWATNyqrpMS55wvC85sybuJWUwPc92DWvg+iKG6UxI3iegHaiFsxk8Gf7i6dt8OIGxCQQKT13s507YpJkz3q28Eem/2Im+8YLLJWYuc9qlUyTHEDgMcfF287CYob/7kyY4HInG0UN4MOBZk6bkC0zIxnnFF6DLXiproTQ624tWfiplNx8xqoVevDuduOmJzES6EJs0oGKW41NcDkyb4fB9xzj+vDAqySQGiCEre9i0+Wwme/ZEhqHTeh9gWImxeZBcSSk/Sp5RQ3md1kWccDteKmapXs0sW7EHSUtkWIFbNKbtok3z5vldRA3AC7IPzPJ5cqbrW1cJahkKi5WII4irYTK27FTp2xbHnpNSNC3EITiFRVlYxvDOwe5u9rhsAxOEnJSQDgpZfE26ZM5AbIEzeZ82OySpbAELeODv4GFbnhVGPcTj3V2zgexbedhBg3ds6iKG4U5QDC6rYkmbiF2er4BZcsNJYD8FJoKiMobrNne6eob8OQIf79ZJC43t32LhnFLcl13EJj3ALqCHkt9sIUt5oaYMAgRXIlq7hRZJXUobh52SSBaH2XIW58X2Tbz2b9z73COFxXB5xzlv1djzkhi3nzrLIUjjIUUdSZMOIWhezHlJwkX+N9zbB7LIi4ASEJRLLZkvHN3b6X4hY4BssQN1k7ICAXPgFYaTZFkQTFjV+jyawLRMIbjOJm0KEgU98DoPVVyy7yZRW3KFbJ007zPk619olR3PwRtsh3L9Bkzo/I7p3gZkKpQmNP1DIxbjU1lsXKXQy6BCLETUJxA2x7V3V1MHGrrgZum8W9Rqm4Uce4BfTda7EXFuM2ezZQ002DnTwJWSVl22ck2KsUQNS2RYib6mIQsDeA/BKTAOrnnvtd+w/MYvhwj2GY9Z1acVMl+37XS0WFPUZGiXHzOe8iihvgk0DEZfPk7asMXsRNaAwWuVejXI+yVslevcTbpiZuIuRKdV1gkpOUwBC3jg6RG1qHVTLMEw7IT2BxKm633up9HBuk+HpMImjPxE1nHTevScBNSFQVDg0FuHmFRiqJBYDuNS1O61QYBg/27yeD4vWeyQRbJTMZoFgZYRFOXYBbQ4wbg3ux56e4ORZ7OlwJ5Ypx05GcpFyKW5SxJixjJaA+DsvMfRTETfW8iNQVBNRrcgFtxC3bvbNnTKkIcQtNIML1ndlXp0613scTtxL7ahBkFDdAnkBQznuUZZ/cfQlLTgIY4hYRhrh1dIgobjqSk/gNFvykqZq2GKDNKnnWWf67W6oLznITN12xhV5t87/Fc8/Jte3uj9dA7bZKykwyGmPcAKdCw8dMiFgljzm82WmdCoP7XAcV4AaErne+hlKQ4tbUBJw2MULpjhTUcePBL/b69XISN8/FnupCOWmKm0zfi8Vw4qar1IAfuYqy2BQhbhoUt1A3SJJi3ESuF0DdaQK0jd+Zzp09Y0oZcQtK1++bQMQnPq+uzrKpLl4MbLW1dW769sqX2leDQE3cwtrfbjv/48OQBKskZYxbB8sqqZRXu1Ao4K233sJLL72Ed999F0uXLsXq1avRu3dv1NbWYs8998RBBx2EvffeGxV+J9ogGQhbhAO0xE1HvRmAtgB30M6je4IUTVUfZzkAr3NDuRjkidVvfwtcfLF34gI/hO3euYmbTP9FJgGFhAQAcPbpBbCwNb9YqN/fXAX8vPXjcxGsNIB3//nrPcQq2dgIRw2lsOQkDjIqe02Wu44bb8sSIG6AvdjLjy4Ax1uv/fKCSky73uOWTarixt8rIqqYTPv89UWhuPEp/v2KG0ZZbLL5wC9jJdDxFDfReU9VcSsU7O/buTOmTLGS5fKnIExxE0og4tP3bBZAp1bFrZiXWwGXW3Hr3Bm49FJg+vTS48OQBOKmI8bNKG4AJInbsmXLMGvWLMycORPffPMNAKDoYQ978sknAQCDBw/GmWeeiUmTJmGAlyZuUH5QZhsS2U1Og1UyKP28e7ALWgTwiFNx071QDrtmBg50Pl+9GujTR7x92eQkuq2SCue+vh74/t4FYGTr2ziSU1tr7RBPngzUda9uI26RdmQvu8z7GInrfeZM5yFMccujwrOOm4O4yV4zYZNvlCRF7vf4Xe+dOllkQzI+j9/571db6T1r6iBuFIpbWJ01QH3BJtu2bN/57BMUxC0sCQegR3ErB3GjVAoB9b67ip4zx8K4cVwXQoibUAIRkd9UdwkfgJa4AcDuu3v3JwxJIG5xWSU7QFZJIeLW1NSEG264Addffz02bdqEbDaLPffcE9/73vew8847o2/fvujRowfWrl2LlStX4qOPPsK///1vfPDBB7jssstw7bXX4uKLL8ZFF12EGtGFrUE8oPQ+yypuxxwDvPcesNtuYu1TJicRJW5UE3tU4hZGaimJ209+Alx9tf18wQJ14iaSnES3VVLx3Gw1yD72u9+rwDu3W+vNYcO4n3hjhMQt/PE/+Yn3MYLJSXI5qxYSD0bcLJtkqULKE7divuBxRABEz3s+Hz05id9Y07WrdU4EFbc2iMRvUCZwinKv8t9VdwIREeKmS3Hjs0fy0JHcKmiRH4filstZbcu4k6gUNxEHDmD/3rJJilzEDbAdCxMnWlM0I24VKCKDAoqt405NjUXahBKIBJFOVeImoo5TWiXdrydJcePvDT93jYlx0wYh4jZy5EgsWrQIo0aNwumnn476+nr069cv9H0rVqzAAw88gHvuuQeXX3457r77bnz55ZeRO22gEbLJSXTbgNxE/ogjLCO6COIqwB00gVHFtkRVIPhz47VZEmUxGLYru/POlp3j0kut5wsXAnvuKd5+2CLfvYDSbZVUXaxxx3bpXonRoz2OoZ7YBa/3BQuAZcucrzGrpJdN0kIGBWRQgSKaNhd8j/KECHHLZtWJm0j7XbsCK1dGI24iu8m6NxJ0pOsH9JMrvm2/zIxGcRNf5AfF2rnB+iKykaC734A6ceM3k7hrpr4eGDsWmDULqLg+C1biMosc+tRW246FsFi0JClussqP7Kai7k10HYpb0CZ3XHXcOgBxE9ri6dy5M/7v//4P77//Ps477zwh0gYA/fr1w/nnn48PPvgAjz76qFHbkgjKlP2yC00A+Ppr8fbjSk6SRsWN/65xK26AM+XXwoVy7YsM1Dwos0rqJoVRFAIRG5Og4rZuXelrTsXNG0x1y7dotkoC9nmnSE4C2ItNauKWpHIAlFbJsM0hIFrfZRU3VeIWpM7EobgB8ot81hfdC3zR5CSMdG3eLJdNOaB9FlP6nf3s8/XJ+znxBCL5vFhGzDRbJeNS3FQLcAetlShj3ExyklJ8/PHHkZOMnHTSSTjhhBMitWFAgCSVA5CFrOImc0OrxriJIklWSYqivttsYz9esECu/TBr2sCBwLff2s8prZIy517EUpfJWOespaWsiluPHqWviRO3PCozmpOT8K9TKW6qKgFljSLq5CSyipvuTZAoxIoyOUmhYP+u5Y5xA+SIW7FoExTdC3xZxa1QsMYx0Xlc4HqvqLJf336bnHgmBtmEYkkjbrK26STGuIkqbsYqGQlCbExXZkiTYTKBKHc5gCjELa4C3OWY2HUSN69zTJ3Nk6855vbkhSFsodya/KgNqqqYhnIA0m0D6hnZNC4Ghw1DSQ2lcKuknS2zJhuhHAAFcZNxDujOiOn+zCSVA6BU3KgTq/BWST/FjXJTEVAfCyiJW1yWuiDFjb+WZDZCZK936t9UZ+1VoP0obkkibiIbooa4GXQolLscgIyv340kJCdRHUipywGEWSX5mJSQtPElkLWo6s5AuO++wHHHqbUvMgmoKm6iFk92bmQnGJF7VdAqmc3CVUOpiC4SVslMIUJgf5iNlEpxY5/LKxaybesuLps0xU1WtWIQsQYnSXFT2ZhLilUyrgW+iOIGqBM3kdCMmTPV2hZJTgKok3GRlPcUxI1ScYtSE5HdG0HzXlwxbh0gq6QScVu0aBGefvppLHYlkfj4449x4IEHonfv3thjjz3wwgsvaOmkASGSVA5AFkkrB6CT1FJbJfkFvju9fhhErpkoVkyRc88v5CjLAegmhUAiFDcAmDLFPrwG9rEixI1EtaKOcaO0BCY9xq2iwn+MzGTs6zUp8aKAmOJGGX8NxKe46bbxU6tW/MafzPwhslGxYoX9+Le/FW+73C4ZILlZJZOQnERHjBsFYU4hlIjbjBkzcNxxx2EjF+S9ceNGHHzwwXjttdewdu1avP/++zj66KMxf/58bZ01IECSygHIIglWSar2qa2SmYz9OgVx05VaWEQVU1UJypGcBNBD3ESu9xAlldVQAsKLb7c136X13MhekzK/KbXi5u6PjrZVd5OpFTc2R3fp4p+mm/9siXsp12T3ZfW6Su+3xlkOgMISmFbFjSfjFMlJKK2S//mPeHs8RNXCpBK3OBS3TIYmHtXEuMUKJeL2+uuvY/jw4Rg5cmTbaw899BCWLl2KY489Fu+99x6uvPJKNDU14Y477tDWWQMCUJYDSEJyEuqskjqIW1g5gKhWSb/fle2aRrFK6t4ZBOSJm25VTEM5AKGdxwTsyNbXAw8+CPSqtsm7l+JWU2MdV12joMy4jy9XjJsOQh5UaoBBJmulyEJWRzkAP5uk+7MFzktjIzB1KnDCsfaxd91TiSFDrNcbG7mDk1oOIGnqDGXGY8rkJIB+q+QvfiHenmzbQPshbioW2CAybohbaqBE3JYsWYJtt93W8dpzzz2HTCaD22+/HbvuuiumTp2KkSNH4uWXX9bSUQMiUCYnUanj5n5fEGQVN4qsklSKm+pOLwP7rlVV/jvtfEpnGcRplaQkbmlW3DSSk/p64N8v2+SdJ261tdZifP781sK3FYRWybhi3AD9ihuvCPFKkUzblDFuYcRNUHFraACGD7fKNK5bY/clj0osW2a9Pny4dVxJ36MobroTq4iqM6rXjEj7cdn4KZRISqvkRRfZjwcOFG+bOsZNdj1DvTGncr0nhbjpjnGrqLD7b4ibN1avXo0+ffo4XnvzzTex0047YciQIW2vjRo1qiQOThRz587F7bffjgkTJmDUqFHIZrPIZDK4+uqrldqbNm0aMplM4L/PPvtMqe1UQ1Y9iUNx43dag5CEAtxxWCVVYn5YX4IUTRbnllSrZBD5iZIGnIFygU+dnESzOjO4t30NHHFCJ7zzDjBvHkprKLHPpbRKJjnGza/vvCIkOn4B8cW4aSBuDQ3AuHH20FIJJ3FjaGqyjmtogPN6VK3j1q2b/uQnSVBnqImbiuIWZ3ISv74PHQpsv731WGaMTMJvGmcBbpW+UxE3kTmbso4b334HIG6iFTIc6Nq1K5YvX972fOHChViyZAmOOuooZ+PZLHIqkzCAO++8E7///e+V3huE3XbbDbvvvrvn33r27Kn98xKPJNZxW78e6NUrvP0kZJUUzOIX2L7XuenZ06739dVX4u0ysMHLj9ACeqySIsRN1VYnsiiRbZ9SzYurHEBlpb+Kqtp3jrz3rO2M0aN9jqNU3Khj3FRVbNlkOTLEjVJxKxa1WSUbG4GJE11v8SFuDBMnAoc8UIm2qhOyawF2Hv3i2wA9c1PaCnAnQXGjtEoCaovwJBC3KGV2KMuOsLkm6LyobtAD5bdKAtY1s2lTh8gqqUTcdtppJ7zxxhtYvnw5+vfvj4ceegiZTAb777+/47jGxkbU1tYqdWyXXXbBr371K+yxxx4YPXo0rrnmGjzwwANKbfE49thjMW3atMjttBvIJidJm+JWWWn9y+eTG+PmdW6qqoCddgLefx/47DOLXMmUTpAhbrKKm8jkHkUxFNm9o7RK6ohxE90ZLBaDk0bwoNw1FUkbD6hlHwSSUcdNR7ZQ3VZJSsWtudk+73wMnhdCFvkzZ5YOb2HErakJeOpvWbRVnVBV3Pzi2wD6rJJxLfJ1W8f4z02S4iayUQGoEbckJCfRVR9V9yZO0qySlIqbIW7eOO200/Cf//wHe+21F0aPHo2///3v6N69O44++ui2Y7Zs2YJ3330XBx10kFLHzjjjDMdzU7ybCOVOTuJFRkSJm2gGrOpqi5ykySoJALvuahG3fB749FNgjz3E25exSubz1rkMOoc8RM47y16VzyfLKimwCM/lgMqKCmQKBWzZmEc2F3wJeLYtWs8mnxdsHPb3pFiU8Ak1ghb5qlZJGaUzaYqbCOmkVNxUY0NEyTgQeO5zOeCuu0rfUgH7vBR8oi6efLpSjbgVi2KKW1Jj3GQzwFJaJZNUDkBkowKwF+EtLeKbW0kj47IEgjKLahKIm2oCEdmNCkWXX5qgxIYmTZqECRMmoLGxEU899RQ6deqEu+++G925yevpp5/G5s2bMXbsWG2dNSCAyASjI47A74aOoriJEjf2GdTJSWQshyKTwG672Y8//FC8bUBOcQPk+i563lUHUkqrZMAkwLLlDRkCtBSs9j/+qOCdLS+sbYoJTIS4qd6rosQtjuQkmzfLXe/ForySmqYYN75tGTWP/00jxLgtWAAsW1b6ljDFDQCWrVa8Hpub7eNFFbe0xbhRZ5WMqrglwSrpvrdF2xYlKJTETTYEYd06+3GPHt7HJFVxY/NBORW3KBt/KYOS4pbJZHD33Xfjd7/7HZYuXYoddtgB3Vw7BCNGjMCTTz6JfffdV0tHdeHdd9/FxRdfjFWrVqFnz57YY489cNRRRzlIZ4eCyM5j3FZJ0R08ftEbNAmoxBSpxLjpLAcAAFtvbT9eulS8bUCeuG3eHLxA4iE6uasOpGWwSjY0WDE57CdkCkIl8m3Z8mbMsOqe1deH9Dus76r3k0icgup5EdntBfRYJf3Ozfvv24+vuQZ4+OHwdtesAQ44wPne9hbjxrfNL+7CwI+jYTbrAOLm95EixM3xusw1I1J8G6Cv46ZK9v/xD/txuZOTUBDauKySgDWXibgSVMg45Ua0rOLGX/N+xC3q9R50ravGiwL270ox7xniVgIl4sZQV1eHurZ0Y07svvvuvklAyolnnnkGzzzzjOO1nj174rbbbsOpp54aqe2NAvV7RI6JFZRWSZFB2otYFIti7bOFSadOwVYKyno2lFZJPkHLmjXibfN9CbJKJl1xi4m4sWx5jsNaF5z84pRlywN8yJtsVkkgfYqbDquk36KHb/ORR8SI27RpTtJWUeE/FqQ1xo1fxMkQN/4+DdrA4T/b47z4bv4LELccFK9H0Y2EOBU30Wv+vfeAt94Kb7+9JCehsEq67cFhijEgbn+lVNxUN3IB+97OZv03WqIqbhRzB98XCsVNdF5VnZtSCCWrZGVlJSa6U0x5YNKkSciKxm8QY7vttsM111yDOXPmYNWqVVi1ahXeeOMNHHnkkVi7di1OO+00NLQVn1FDt27dQv8NHjxY0zfShHInJ/G6EUVvPLbTFxZ4r3JDlzs5CQD07m0/Xr1avO1CwW4/aMHGTw4yky81cROxXWiKcfPKlgfYihsfx8MwcaKPbZJacaOMceMXyhRWSREb6Ykn2o9FnRqffup8Tp2JlFJxEyFuqjbMsHk44F4dNgwYMKDkZSHi1ruvBsWtnFZJFbLvzoZdbsWNIjkJP3dQWiUB8c2tOBU3ihg3Rty6d/fffFIlnR0hxq0DKW5KxK1YLKIoqIqIHkeN8ePH45JLLsHuu++O3r17o3fv3hgzZgyeeeYZnHPOOQCA888/H80doAaEA5Q1uWQWDjxEF4VMJQjbjVOxd5W7HACgrrjxv6mo4kZB3JJolXT13StbHuCtuDE0NQGzZnm0LVsOwN2fMFBmleQVNwqrpMiu6R//aD8Oum55uDcmgs67jmyhfu136mT/TXeMW02N/ZurKm5hiYcC4qGyWWDSpJKXhYjb8T8mVtyi2o4B/Yqbm+XqzioZl+Imqs6oboiWi7glPcbNT+IG1EhnsZgM4masktpAmqpx06ZNqBLNVFdGTJs2DZWVlVi+fDn++9//KrezYcOG0H/ffPONxp5rALtBWRZAL0S1dgFyxE2U7LPFpqjiljarpKrixveDOjmJyASZpOQkXN9zxUrPbHlAsOIGWFn2Sr6WbNpiQL9VkjqrJGVyEn6jQrTvMsSNsvZfJmMTDBmrJN92UIZWtpiTIW6itjcgNB5qypRSLh1G3GpqgB//VIMCnDbFze2qSaviRl3fTlSdEV3ki17vqoqbCOnUEeMWRNxUSKfIGONumyITtA7ipvt6TynIiNuaNWvwxhtvYNCgQVQfoQ19+vTBgNZdssWLFyu307VrV6F/iYKI9zlu4iYyEfDFZcPOqcpiMwlWSb4gvIzi9uKL9uM0WyUpygFwSVsWLMx4ZssDghU3wMoVs2CB+00K5QB0WyVVz4uoVVI1jkCE1KosqNxsgiK1u+hYwAiGjOImugmiQtxE2+b/7nPe6+qsxDw8wojb7NnA4DrFRXJSkpOoKG7u+6fcWSWpCa3uwuRAfIqb7nOjGuPW0mLPwUEbFSpjpEq2TZl5qVi0N9uN4hYLhFfT2267reP5Y489hldffdXz2Fwuh2+//Rb5fB5TpkyJ1ME4kM/nsXbtWgDoeNklRSR0HcQt6Ib+5z+BH/3Ifi4yETQ32zdohBpFvkhCOYDKSmvBtm6dnOJ2wgne/XMjqVZJyuQk3PUetAZmC1E/xQ3wWJ+rlAOQndwBesWN2ioZlK4/k5FLAe6+/soV4waoETfRxSYjbqptiypuhYJv3SyWkIdlX+WJG1/HraaGy766WNGWlmbFzX2c7gyElIqbSrZNik0QlTVHEpKTqP6mIhkl3Z8r2neV8xIhbtwXqvUoDXErgTBxW7hwYdvjTCbTZv3zQ3V1NY499lhcc801kToYB55++mls2rQJmUwGe+21V7m7Ey9EdvEpVSUA+OEPgVtvBX75S+u5yETAB0SXMzkJZTkAwLKPyRI3Hmms4yaSnEQDcQuaH/lyAH4oWU+KTjBRayCVU3GjtEoCVv9bWuitkpRjAcUYyS62LVusRU9YlkhATXEDrO/rc3x9PTB2rBXjufn3BaB1vZlHJWprrVi4yZMthQ6A+n1KrbhRxri5v6ffDlFcWSXzefEi1nEWJhcp4QOkNzmJzJwqUsMNUOu77Hwt0zagRtw01V51wBC3Uixo9QUVi0Vsu+22OPHEE3HjjTd6HltdXY3+/fvHnlHyjjvuwB133IF99tkH999/f9vrixYtwuuvv44TTzwRnVxpVv/617/ijDPOAADU19dj4MCBsfa57IhLcQu7FmQnAtGYHL5tasWNYsHWuzewaJFllRSdfEWhapWUtV4kySrJXe8sW56XXTJMcauttbLtOd8kaJXkr1eZ8iAiyUmoY9worZKs/ZYW8d9UNTmJ6sJBZGHS0iJ+r4reS+7Mkn376msbKL2fAsakujrgqquAfG0esPJ64ZrrKjHrQo+36dhISEo5AJVC0ACw227ex6nOHaL3kjuBSNC1yxCn4pYEq6Sq4qZbRRVV3FSux6QQN9X2ZYkbs27qXCslDMLMamuuGPBpp52G/fff3/Gabrz77rs4++yz255/8cUXAICZM2fi2WefbXv9ySefbIujW7FiBebOnVtCvlatWoXx48fjrLPOwh577IEhQ4Zg8+bN+OSTTzB//nwAwIEHHog777yT7PskFiK7+KrETXSQBpw3pEhyEn6hmRSrpMxAzR8bZGdkCRuamy1yFfZd3ZPoihX+x6oqP3FZJSkUNy7GjWXLmz699LAwxW3SJI9LWnSBzxMj0fPOLGwAzaJENjkJhVUSCMxu6AmZGDcdipto7GIuF06W2HEMIlZJwNqdFyFuMoqbwv3E3xsDh1R6ryZ0KG6iVknVUjW6C3Dzx11xhf+YTZ1V0q3OiBC3OBU33VZJ6uQkInO26nqAV9yCrvdMxjr3fMmfMIieF9UC3CrqNSVxAwJdA+0BSt/snnvu0d2PEqxbt84zw+PixYsdCUSaBG6Ouro6/OY3v8Fbb72Fzz//HO+++y6am5vRr18/HHnkkTjllFNw8sknoyLoomivkFXcKFQlQH4ikLFKqti7RBfhqtYIUeLGZ5ZcsyacuLkXF37ZNwBn8pPWGE8hJCE5iQarJGBly5sxo/SyZopbFqV9r6mx7GAlULFKiipu1DYgpnDU1Igv2GR2NWUzgyVJcVOxArW00BI3EaiUA3D3KQgi54VacVNZbBaLljWfgdIqucsu/sfFZZUErHMjUmIjiclJVLJKUtjJ+TUHH2bAo6LCuiZbWmiIG2D1n4/xDwO14sZ/T7/C4VHaN8StBErfrLGxEa+88gq+853vYOTIkZ7HfPbZZ/jf//6Hgw46CFtttZX0ZxxwwAHSNeCmTZuGadOmlbzet29fXHfdddJ96BAQIW6Vlda/fD6ZVklqxS1osFCNcRMlbrITmAxxi1onrrIyeOEetRyA6CCtaJUE7Gx548Y5D1sPa/LsjvVwY/ZsLoaHB6VVkjrwXra0BiBuv3L3RWecgvv6K2eMG+Vik1/MiZYbkBl/VTZCRM6L6gYLv0gOGt9VFoP//Cfw1lvebbgRVXGjSFKkorjpXuQn0SpJPUby4QRB12RNjdUXmY1c/jsGkR9AfnOLOjkJ/z2TRNzaMZQkpttvvx0/+9nPAolVsVjEhAkT8Ee+qKpB8iBilQTsgZSKuPELsCQobkmxSsoORu5jgohBVOIWsTaUL0SSk6hOvpxVkqG+HnjwQefPsAa9AACd0IQaWBNTTY11HMuu59tvQD9xo1bcRIkbdTY5WbIvmsEPiF9xE4HooirqQjZtihv/HYPGR5X2H33Uvw03oipuFHMHZUxRnIobpVWSYozkiZuf4gbYv6uqO0n0XtVNxvm/UaxlVOdsQ9xKoETcnn/+eey4447YYYcdfI/ZcccdsdNOO+G5555T7pxBDBBdhEcdjMJ25imTk7hTXYtAYHLM5YD5i+yBqriFYLCTPS/uAWvWLP9jqYmbOzheFDFaJRnq64H584GpU63EI4y4AcDwfmswdar1d1/Sxvfb3T83ohI3UbuLzHlhu6Zh6rWOBB86FTf3wouiVIJschJAv+JG2bb77zqJW9RYVCA4g6ZKv92L7nIpbnGVA3C/JwiUsX/u9imzSlKMkaLETSW7rEo8qu6skiqx14BR3MoAJeLW2NiI7bffPvS47bffHo2NjSofYRAXkqK4xZGcBBAnEAGDRWOjtcAfMgQYsXMW+dbb6L3/bsHUqdbfQxGX4vbjH/sfq1rgW6SemPvvKlmqiMsBuMGy5S1eDBx4bK+21+e8sgZXXeVjj+ShoriJTpDUu8nsegxLM09tN5TdTVZV3KiTk6iQK9HdcArFLQ6rpGrCA91xOe75QncB7qRYJVXODXVykiRklVS9JkVi3IDom9yi86puMs7PS6J2bEBNcVPNWmmIGwBF4rZp0yZ0DrpwW9G5c2eslykYahA/RNWTOIkblVVStG3Ad3JsaACGD7cyEVrhYxk0wRqsKnNNmD7d+ntDQ0j7cRC3I44IHuiiEjeZxaDKDpvucgCsnhEQ2PdsFugxtJf9fMMa8fYZkpCcJKKF1BOqCzaq5CTu40RKGQDJsUqmWXET2ajIZOzrXWYtoKK4iZ6XpChumYzavBqX4tZerZJRFbfqajElVSbGTcYqGYfiJlOmxihusUOJuA0aNAjvvfde6HHvv/8+BgwYoPIRBnGgWLQvcFHiprozqDvGTVVxizD5NjRYSSzcp6AZ1rmphjXBNDVZxwWStziskmH21Opq+9xRWyVVrGm6B2nRxSCgZiOltErK7ISze0mG0LJzKEPcKJL9RNlNBoARI/yPpY7PSxpxS4LiBgB9+lj/r1ol1i5Aa5V0zxe6Y9xkCLOKOnP66fZjSsVNtxLp7ofurJLUaekZcQsTLVR+UxmrZJQYt7DzwohXkhQ32U0/wBA3L+y///6YN28eHn/8cd9jnnjiCXz22WcYO3ascucMiKEywXQUxc21y9PYCEyc6H1orjU5q7vm18SJAbZJfrDTWVBZhrgBNkGhJm5JsErKLGSjErdyJScB5OPE+PNSbqtkVMVtu+3C23b3JwwqxE23SkCZsdL9d50xboBdc27VKvEYY5WECmmLcQPkF/lr1gCrV4u1r7JxRq24JcEqGbUcQBhxY+SnpYWG7FMpboBdeoNCcYu7jls7hhJxO++885DJZHDqqafi97//vcMOuX79evz+97/HqaeeioqKCpx77rnaOmugGTK7PEmLcRPNOgZo2U2eOdN/bvWr+dXUFJAbhDVWUxOcUl92oZx24sb/9rqtktTEjbIcgErWMdHzIqNERrVKZjJi17uq4jZ0aHjbfH9EILpwoMwqSa24URI3prg1NYnHdFIqbu5zUa4YN0DeyeI+Luh9KgtlleQkSbRKUiYnCXP4qBRWT0JWScAmbhSKWyajlmnaELcSKBG30aNH49prr8XmzZtxwQUXoE+fPhg6dCiGDh2KPn364IILLsCmTZtw9dVXY5999tHdZwNd4G/oMPLDTzCiu6aUiluMNYpyxUrcdVdAV1oVN69izXfd5TNG8cQtCLI7vqrEbeNG+Z18CvvV/Pn2Y93xSkm0SupOTsJ/tsp5Cbgeczlgw2b7esw1KahWQRMvEL0cgE9d0ZLPVkloAwRfN5SqGHWMWxxWSUDcLkmZnMT9/dKkuLn78O67/seqEBTq5CRxZZVMglUSEI9zo8wqKUMK2dwkQ9xEFTfAEDdNUCJuAHDRRRfhr3/9K3bddVfk83ksXrwYixcvRj6fx6677oonnngCF198sc6+GuiGzEKWDUZ8XFwYkkLcIlolG7+uCKxjzRQ3t1USAJYuBRYs8HiTKHGLyyoJAGvXhh8P0CpuDz9sPz70UP/j0myV5Cd+CqukZsWNz6L64sv299p914J4FlWR2nz831XGmOHDge9+N7xtvj8i4M+PqG0vbVkl41DcAGDlSrG22XfMZoMV2qi1ytxtuEFJaIHoxO3ww/2PTaLiRmmVpCzAXSyKEzeevPAlBIJAmVVSRXHbtEn8dxVV3AD5uQkwxM0DIVdIMI4++mgcffTRWLp0KRYtWgQAGDp0KGpra7V0zoAY/A0XRtzcA2nY4AI4b86wnXbZ5CQx7iav3xQ8+QYpboBPMjW2SyWjuFFYJfnPF1lsFou0xO3NN+3HJ57of5zKokSVuPExJUGQSVvcqZN1DehOTsLad/cnCAHjQEODFavJDmGbFACwamUB06cDM2YAs2eH1LiTVdxUiNvLLwcv8qkVt6QlJ0mK4sZi3ABxxU00y6lKVklVxY3CKikbO+4e604+2f/YJJYDoLRKim5Eq8wdzc329wyzSnbvbj8WVa7iyioZNg643SCMyAVBRnFTIW6mHEAJIhE3htraWkPW0ggZxc1dcyZs8ALEa8QByVPcuBu/W08x4ualuAHOcbwNSVHcZM/Nhg32cT16BB+rMkHyRGbQIP/jotqAwiZHfldVdDdcdGcQsCZIGeJWBsWNZVHlUeBMGux6Z1lUgQDyJpJwhv97oWBtEgQRMUCdnCRRcWvvMW6AvFWSgri5v5/uJEiqipvI9c63XV8fPA8nvRwA5fWuOy5StPg24JzwRUtgUG7MqShugDU3iRA3asWNjb+VlYa4tULZKmnQDqBK3GR3B2WJm0gMHfVuMjcZDR1WiaCqFn7JSQCgthYYNszjTUkkbiLt87bB3r2Dj1UhV2z3LpPRm20TkLveI14zoeeeTf4UVpooMW6t58UviypP3CrgXLAFZlGVtUoC8te7zAaOiuIWtnBIGnFLQh03IJpVMmyhqZJV0v3biyb4oCRuvJNBV9tRbaTUVkndhFl0g0VlXpIhbvyG5rp1Yu1TbszJEDeVItwqipvK+EsRU59SCBG3W265Bc0y2QQ90NzcjJtvvjlSGwaaIZOZkf+7rB+/3IpbxMk3W12BSZMCuhKguE2a5NM9leQkFFZJ2fZ52yBvJ/SCysKBTQKdOoln26SYwCgXsvznUwSYa1Dc/LKo8lZJN3ELzKIqa5UExPpPPQ4AaiRCd1bJqHWtklDHDdBvlayosK8pVcUtaPOEUrUCnCRAZBNHZqMiahxwORU3yo05lbmDWnFTsUrm8/Kb3LKKmwioFTdR9d0QNycuvPBCjBw5EjNnznSk/hfB2rVr8Yc//AHDhw/HRRddpNRJAyIkVXFLmFUSlZWYMsV/TPJT3GpqgMmTPd5QKNj9L7fiJmsf44lbmOIWZYIMmxyprZJRF7KUxI04q2QuB98sql5WSR6+WVRlrZL8e4JAPQ4A4iSCMhMeZeIT92frtkrydj7ZLHth/eaPUY1xCxqDqRU3WeImGiMGJFNxUyFuou2rWCVFf1M++29YmIiK4qZSgBsQOzdJVNxUrJJGcWuDEHF78sknUVFRgbPOOgsDBw7EuHHjcM899+Czzz5D0cX4i8UiPv30U9x999346U9/isGDB+Pcc89FVVUVnnzySZIvYaCIKMlJRCBD3JKWnMRle6ursxIweHbFR3GbPRuoq/N4A3/eRdPnAsmIcRMkbrkcsGaD/bsIp47nFbcgpN0qya5ZStubouK2YAF8s6gGWSWBgCyq7NzIKG66iZvqxC5KIqKQK77Gka62VeJm+D6FQXSsiZJoIuw+5Y8Rbdv923//+/7H8nUHk0DcZNqOqrgF3auqtmPR/qu0L2qVTLripnsckxkHkqy4hY2/qtdkCiGUnOSYY47BYYcdhttuuw233347HnroITzcmra7oqICPXv2RI8ePbBu3TqsWbOmjcwVi0UMHToU55xzDs455xxUiwzCBvFBpRwAIG6VTEqMW9RaPK3vZ4kX+Cx7gK24VbUqbjU1IVn2ZAa6OK2SIucmhLg1Nlo2u7vuAn67LIvzWl8/8tAc9jobmDLFh8wyUBK3JFolKRfhilklgzaJg6ySDJ5rFRXFTdYqGdZ2nIqbLHEL+02jqnky17tugqJyXmSIm+y9xJ+XV18Nv1crK633UBA3Xr3RTdyiZJUMK8OQZqtk0mPcZOemsHukvShuxirZBuHkJNXV1fjVr36FBQsW4PHHH8e4ceOw1VZbIZ/PY9WqVVi4cCFWrVqFQqGArbbaCuPHj8cTTzyBL7/8EhdeeKEhbUlEXFZJCuWHOpuczwRZX2/ViJ461Uo8AtiKGwBcdmkB8+eHpEaXIW4pUtwaGqxSWtOnW4oNv8hftzqH6dOtvzc0BLSvYpWkiHGjtkrKTmAxKm5ByULDFDfAJ4uqaHIS2UUVtQIBiMdYRCnALUPcKMg+pVUySk0uaqukSPtRisLLKG68Hc8PMuNAz57246BCpDxU4oko6rhF3ZjTHePG/zZJySoJyLsSZLIpiybOSori1oGIm3Q5gIqKChx33HE47rjjAAArV67E0qVLsXbtWvTq1QsDBgxAX75ui0FyIZOcJM0xbpptb3V1wFVXAVdcYdnCBp5cCcyx/nbl5QI7YKrEjUJx0xTj5pU6nie0wqnjRRU3fhAXVYCpiZuMVZJ9Pgswl0l7LxO8LgIXcRs2DBgwwHutFxbj5plFtbkZWLzYeiyibjDIKG58kgqRtlUUN0qrJAVxU7lmAFrFTWTu4DMsUlglZVRa/pi0WSVHjLAfz50b3jYgvkiWDW1gED33KveqSlZJlTI1njtTHPidLwqrpGz/ZeY9FWeVjOImW4MOUCNuMtdkChG5jlvfvn0NUUsrkmSVlJ0IZHaooiYn8VkQZrOWgoRektYFVatkEhQ3j3IAfqnjeeLmTtwycSIwdqzLNsnbkcJ2Nfv1sx8vXx7ebyDeGDfZ7Ilhk1KMils2a2VDnT699NAwq6RnFtXrr7cfh1mHVHeTZTeHKBS3KKpYR1HcRPouqpwwRFHcRK6btBK3HXawH3/2WXjbgBxxy2Qskk1hlaSMcVOxSvK2wbDaZjyxo7BKyo4F1MQtrjpuxirZBlPHrSODOjlJOykHoN2C1V6skq3lAERSx7uJm1fq+Nx6e+GyqdApeGzv3t2OD1myJLzfQLwFiUVj3Nz98kOMWSUB+GZRDbJK+mZRvfxy+/HatcF9US0HQKEuM3Q0xU13TKfs3CFzn/Ltq5yXNCtuYdfMNtvY50a34gbYv3nSrJLZrHihZtFrnSdufByYF6itklEUt7C2qRU3Y5XUAkPcOjJUFTfRlM7tLDmJL2QH0jQnJ+EX3j17BqaO97JK8mCp4xsbrZjBXUfY19VL/+6EIUOs1z2LOmcywMCB1uNvvw3vN5Cculbuz5fdNRWd2EV3wz3GAb8sqkFWSd8sqiLXodexHUFxE+1/1DpuMovBcicnkZmX+PZVskqmTXGTLQew/fbW4/nzw9sG6ImbilVSdgOKIhGPjOJGXYC7PShuonNToWD/RkZxa4Mhbh0ZMhMkX2yZV12CkMQYN9FJRjR9ufvz27vixk8CNTWBqeODrJKAlTr+97+3E5psWGEvXDajM5YtQ3BCk0GDrP9XrxabZKiJG6WiR6kw+4wD9fXAgw86L1Evq2RNjXWcb0KevfcO7wODanISmQU4IGeZZsfKKG6y8VYUbcepMOtMTkJtlaRW3FQLcIskJ5Ed31kcclOT3Fggct6jEjfRcgOyMW4yC3wVxU3GKklRgDuKW4OCuMmsIynj8wxxM+gQkElOwscxrlwp1n4SiZvsrqmsBUtkMOIngbBinlEySFHYx1wDqWjqeC/iBgC/+pU9P3SCrbhtgW25YAlNSsgbU9wAMdVNNcaNIvMj5eQbRQF2nRd3FlVecevXu4CpUxGeRZXvzx13BPdFNTkJleImQyKSbJUsp508iuImY5XM5cTcGjEqbu++X4n58wMuZcpyAIDzmpXZ3KK2SoaVG4iycUaxSSFD3Cor7f6rbLKkLTkJ5QaRIW6eMMStI0NmIStL3IpFufgTygLcUZKTiPRdViXgzx+fZMMLcVolFYhbUOr4MMXNDT/ixjBxoss2yRQ3QIy4yUwCmYx9bjqo4sbAsqguXgxM+Jl9vTz9ZB5XXRVSlw+wrdWZDHD22cHHqhbgplLcZMbIpBG3tCpuqlZJQH/tP/4YgeuxsRFY+IV93L77VWLECPjbvqNYJUWuedmFeFxWSYrSHaKKm4pVks8qGUbcAFqVNi6rpKxrgJ8z/SB77qkTiqUUhrh1ZMgkJ+EJxooV4W3zgzml4iYyWETJEChilZRVCfjzF5aRNYpVkuK8u3YGWep4L4TFuLnRGU6rpBslCU14xU0kQYls0oMkTb6qxE3kehScHLNZoHdf+3rJVggu2Bhx69w5vOyBquJGEc8JyKk/SavjJkNQVBTmpFklRdsnUtxYHcuvG+3jmOvA1/ZNmVUSkF+IUxM3plzpdpoAajXoKJKT8J+h4tagzCpJkZxE1O7t/nyjuCnDELeODErFTXZnUDU5CZVFKimKG3UdN9lzwwbS1rpZLHW8Z1cErJI8whQ3wE5oAsBZYJbfEfWDzOQIyGfAissyojvRhIxlWkW14olbGFQ3KmQVt6RYJeMoBxBmS3N/flqtkqLtEyhurI5lU5Nzk6rgWmKV2L6piZuMVZJPBEFF3NimpW6nCZCc5CT8Z6iMM2mzSsqsxQxx0wJD3DoyKIkbtfJDbZGijHHjFTeZCSxJyUm4QdQvdXwL7GOqEL6g4ombl+IGWAlNFixofUJpNwSM4uYFlU0Q0aLqgPpvSjHGAHIkImlWScoFFSA+1lRW2sSR2iopcm5k56aQRbi7jiUjbnlUAPAmzG227zitkmHnXlbplCVuLS12VmKZDUvdVknq5CT8ZyRt7kgbcTNWSU9oJW7FYhH33Xcfzj//fNx6663YKLILblA+yOy019TYAxa14kZJ3CiskrI7eHFZJSmTk3ATgF/q+CbY11QNwicB3irpp7gBXKKupBE3md1BSuJGGUegQn7YglSEuFGWA0ia4sbHAYvEXLLvKKu4ydiCAfkxEggeJzMZucyPspZmWaukquLmM8a461jaxM2/7TbbN3VWSRnFTfa8y8YAr1plP6YgbqJWySiKWyYj5xxQIW6UpWQok5PIjsFGcVOGEnG76aab0KdPH7zyyiuO14877jicfvrpuO2223DhhRdizJgx2Cyyi2RQHsjubDKSQUHcVJOTUO20UypuSbVKypx31yDqlTqeJ19MTaupAWbM8G5axCoJcNmWKckPfwxFVskopFN3MWWZWNcoVklZxS1pyUl0k3HZOGDZemUyCypKxQ2wrysKxU3WKqkxxs2rjqUIcQMs4vbFNzYJKGwkjnGjIm6i9xLlhmWxKG6VjKK4desWbjvmP0OleLiMrbkjWSWN4tYGJeL2j3/8A5WVlRg7dmzba6+88gqefvpp9O/fH+eddx523XVXfPjhh7j33nt19dVAN2QWbICTuIXFoSUpxo26HIDsYMQmsGzWWfPFC3FaJWVi3DwmAHfqeJ589evW1JY6/rzzvBOahCUnAax2hw1rfRKF/FDUb+poihuFVTJpyUlUFTdZ5UeGuIkqbmx8D3NTANGTk4Q5E2T6Tm2V1DgOeNWxZPG8fHImLyxbBhxwhJ2k49nHNntnnuQhSzplEsOoJm9SIW66Y9z431R3LTHAJm4iiUkAdcVNZhwA9CcnkS0fAdAmJ5HZODPELRjz5s3DzjvvjEruRD322GPIZDJ4+OGHcfPNN+P1119Hjx490OBZOdcgEZCdIBnJyOfDJ4EkWSVVFmyqWSVlkpP06yeXZS+hMW48+NTxd8yyF4y/vXBLW+p4v4QmIorbpEncT540qySl4iYz+VLaUVTuU3b+KKyS1AW4ZRYOshn84iJuFEonf1xFRfg4JqO4UVslNSpuXnUsRRU3wLlBVdG02TvzJA9Z0pkkxY13muhW3GQ2WKKUAxCJbwPUs0rKXu9JsEqa5CSxQ4m4rVy5EoMHD3a89sYbb6Bfv3448MADAQDdu3fHmDFjsKAtk4BB4kC5syk7waQ5OYnsYMS8/n36hB9LXcdNQ4ybF7JZYMh29oKxsnmL4+9eCU2qYV+PfGIThpoaYPJk7oWkWSXTqrjJXDOy18sW7nfXnZyEjxGj2sCRWRDKJpqQIeMAreKmokKsWWP9LxNrlQSrpKriViiUuEG86ljKELdm2H1nCZxKMk/yoCwHQJ2cREZxi1KLktIqSaW4ydiaZesWypQyoI5xM8lJtECJuBUKBWzhJuSNGzfik08+wZgxYxzH9e7dG6v4gFSDZEF2guRvOhniVu4YtzitkmHtF4tyu3cpU9wcCJgEvBKa8Gm0vWxGs2e7ij2nWXGLUjQ4rO3eve3HX34Z3rbMNSN7vcgSN5nrXTZGjLoAN//9tmzxP44hzVbJV18FPv9c/HjV5CRJyCoZcN141bGUIW58uQB3rcu2zJM8KJOTyJZhSCpx06248fFzIvcS/xkUVkmZdRhgy8Jdu4rHogJGcUswlIjb0KFDMWfOnLbnzz//PPL5fAlxW716NfqIqAoG5YFMVklAbrGZVKuk6CRDVYCb34mXKeQJJIu4iZz3kIWsO6EJv3DhFz01NdZx9fWuBpJG3FTruOlO6cyPw6+9Ft62KnETOS/87y6SjU1mURVF1acowM2PobKp3WUsUqIZK1UVN5Fzw3udRWKSVRU36qySEa3wXrZvGeLGH+Mmbm2ZJ3lEKQdQbqsk7yvla3B6QXYjV3WBLztviGwk8J8hS9worJIsDXNYPD1gnXf2HQ1xSyyUiNuhhx6KRYsW4eyzz8ZTTz2FSy65BJlMBkcccYTjuPfeew9Dhw7V0lEDAlAqblHquKU5OUlY+3yJjC5d/I9joLZKakxOUgKeuPlMAnxCk57dnMStthZtCU1KSJu7D5RWScFrptBit//FV9ngeYmy71zSKLz+enjbSbJKyiyqVIk4IFd7iiFsjMxk7O9IUZNLJqtkLmePoxSK2xdfhB/DgzI5iWJWyWI2i3fescaXwK8cMn+4bd+6iBtgZax09C2K4qY7OYkscZPdKJYhP6qWOt3kwf0ZSbBKMsLs5ev1AvttqJOTUP6uhriV4pJLLsHAgQPxpz/9CccffzzmzZuH+vp67LDDDm3HvPvuu/jmm2/wve99T1tnDTRDNqtke1DcKIibzETAE7c0Km4yg7SjNoC/dYwlNLnk13bf//inSixejLaEJp6IS3ELabux0SKY/37VnuBH7VmFIUPgnyWOsu8DBgADB1qPv/46vO0kWSVlJvYom0MUihtgq4oiVknVGDeRvvNjO4XiNnx4+DE8VJOTaLZKNjYCSxqte6kpV4m99gJGjEDwvRoyBrtt36pWyQqU3k9Ll1qZKz0/P23JSVSzVupe4GcycjXoZMcAgDarpMwGerEop7gB6sTNKG6xQYm4DRw4EO+++y5+97vf4ayzzsK9996L++67z3HMxx9/jGOOOQbHH3+8lo4aECCu5CTlJm4qO+3sON2KG19kVZa4lTs5SbFot69JcXN0pWj3fXBdZfhPmwCrZEODtYadPt2puOWQxbJl8M8SR5nSGbDvZ9mYH91WSV55SpLiRpGcBLCJm2xyEpmFrMi1zhNHiuQk228ffgwPdu7y+fBxhsgqye7VFcus356Pow28VwXGd972rVNxA+x1d8nny1olk6S4idxLMuRHtu8yiadkxwAgOVbJzZvtPsgqbiKbLPyawBC32CBwpr1RW1uLyy67zPfv48ePx/jx41WbN4gDM2ZYAcNNTfpvuriSk8hMMIBaquswqCpuslbJcituspOjoOLWBtm+U1slQybfhgYr+1tbd2D3gV8UsixxAGf5pCadVMQtTqukjOImcp+qxLrKkgj2HUWud1WrOoXiJmsfE13AMrjv1aA+EVgl+XuV1VnzIlae96rgNVlfb7mUu43IAVvEiBuQQQEZVKDoS9wcQolsXKdqchKKrJKUxFC27zU11ntEVKUoVknZjMS667jxrJ9CcVMNP3C/1w/GKukJJcXt9NNPx9133x163L333ovTTz9d5SMM4sB3vgMccQRw/PHhdXiA+MoBhMW48WmZk1YOQCbGLW1WSdkJjDrLnuwkILtbHbAr29hoZX1zHN62IKxA0WNodWSJi0I6ZXZlZetaJckqGfab8p8vqy6nUXHjr8ewMZLaKslfV/ffH368aqyVBieI+15lBCmoQLbjXpUgtXV1QJdqq/2tt7Vi6D75pDTzJA9G8LyIW22tlbnSPjiCVbKjKG4ibctssKgQt7iySoaNkXxCGIoYN9l5iTK+0BC3YNx777144403Qo/7f//v/5VYKA1SDMpyADILwjgsUjJWSZnBSNYqmaTkJFGIm8gkINv3uKySHvWbZs4s/UpMcfOqQQe4ssRRlgPg2y+3VTKucgCyyrhKCnOR8h2UiptM//mLU7dFFXD2/bjjwo+X2aiIYpX0aNt9rwYpbgyOe1Vx86y6cyVGjwZ23LE08yQPFufmFeM2aZLrdqcsB9BeYtx0x6LK3qeA/FhDZZVMu+ImQ8gNcdODfD6PCpEJ1SAdSEpykihtU1glZQaj9qK4iQ7STMlNs1UScJybXM7K9uYGWxAG7eS3ZYmLUg4gKTFu5U5Own++iGNAZRz49FP78ciR4cezBWE+H37uVRU3IHycoVbcZBNbyShuUaySrra97lURxQ3g7lXVMZh7nzvzpONwH8WtpgaYPNl1cBLLAVAl+pFpX/Z6lMn+GsUqCYT3/+OP7WNEyJXMvMcrbrLErbk5XNmPQtx0lwbhz/nixeFtpxikrGr+/PnoGVavwyA9oCwHIBPjRp0GvFi0ByzdFizZGDdq4iZzbmQnMD49ehoVN5/2Fyywkhm4Eaa4AVyWOOrkJHwGwrDflTLGLUqslUjGNAYqxY0nblzWZF/w5DRsURilHEvYWBCFuMkqbiJjgUzKfo1WSa97VURxA7h7VQNxc2eedBzuQ9xmz/bIqJvmcgCyvyvveAgDf6+J1IuktkrKXDP33GM/FlGv47JKAnLXjMi81Lu3/Xj16vDjVa2Sd99t3cDtFMLJSa688krH8/fee6/kNYZcLoePP/4Y//73v3HwwQdH66FBctAeFLf588OPpyQQSbZKypx30QmsUydrUqVQ3OKySrr6xs+Fju4IKG5Aq3uFuu8yySAorZJRVFTdVknZvheLVoASAGy9tdj9yi8at2wJXiypWscA/YqbqlWyulo+PlpGcYtoHfO6V0UVN6D1XtVA3AA72cnEic6fhxE3ZpWsqbFIm2ftSspyAKrW3SRYJfn5RYS48VbJYjH4Go5qlQzrPxtjAOCEE8LbprZKuu21QeOH7LzEB3uKECtVxQ0A7r0X+M1vwj8jhRAmbtOmTUMmk0GxdZfzvffew3vvvRf4nq5du+Lyyy+P1EGDBCGucgC65Xn+hr75ZuDXv7aivv0guyBsL8lJdMe4AXJ++SRbJbm++a3FRRQ3oHX+pE5O4t5pFyVuYde7atkOQH+NIuoYtxUr7JW/iNoGOBeNlIpbUqySogtZ/rilS4HttvM/VqNV0uteFVXcgNZ7VWYMLhYD46NZ5slZsywr5tKldoxbdWUeUy+x7JG+tStNOQBvqCpugHUtB9m4oypuYfcq//1E1gSqVklRxU1GHZedl/h1l5dtJaj9sGvGPQeIEtUUQpi4XX755W3E7corr8Tuu++OY445xvPY6upqbLXVVvjRj36EAUHplAzShfaQnAQA/vAHwEctBhDNbqi7HAB1HTfKrJKAnCUlaYqbT/vDhlkbh34WrKCd/LYscfMiJCfRTWr5eM4w9YT6epRR9akVN34xKGr5l8mkGiXGTbdVMoriJgL++x1zDLB8uf+xsucl4Fr3uldFFbe2e1U1YY7P9V5XB1x1FXDFFZYVs/s+lcAaYNut87jqquDmScsBJC05iUyMm2y9SPd9qpu4ydyrqtmOgfB7VZbQAurETVZxEyFuMlZM9/0QtDmfckgpbgyMuF1xxRUUfTJIKlStkpSWPVlSKNKfKARCt+LG951CtaKMcQPsRaNsOQDdi3z3MREUt2zWyvY2fbqrOwKKW1uWONXkJJWVYtY0mclXpvQFtVUySYqbyvWeFMUtSgFumSx+Im0DltWUIcxRIXteAs65170qqri13asyxE1iDMtmrYLfqLGOywic90JLvi0xwaKvKzF495ChLI7kJEC43RCwf9dMRm5ukk2CJGOVBKxrplcv/2OprZKUm3IqY5iMrVk2xo0nUyJWSZXwDAbRDYUUQik5SaFQEKrjZtDOQKm4xZWcBAgf2KMsCHXHuPFtz54NfPBB8PFJVdxkSaduWx1g/zaZjPzv6pp8vbLEhSlujixxqslJRM6Lu/2wyZcnhWGgzoapqrjJZpV87LHwHV/ZRQmgrLgtWlKF+fNDvjJljJusei1rlTz/fLHjAPkkFvw4umFDyZ/d96qI4ua4VynVE0BIuWpsBKZOBRrut9s/8thKDBlivd5Wc86NOJKTAHIbIVVVYvdrXFZJ3co4IEfcKEMEVPouc83Iju/dutnnXrfitnKlf9/aGUyufgNxtIfkJED4wB6X4iZrlQSAH/84+PgklQMAnFbJsJ32uKySon0PaN8rS1yY4ubIEkfddxWrpMg55y2Da9aEH0+puMlmlXTbof7xj+DjVXZ7BRW3xkbgiUft73fVDdUYMQLBC/E0WyW7dLHjBMPal01OwhM3fnxthfteFVHcHPcq5SKcP86n7YYGS5mbPh1o2WKfuxyyWLbMen34cOu4EqgqbiK/qyxxY7+rLPmJwyoZhKQRN5m5Iypx0x3jlsnYqpus4hY2940d63zejmu5CVslvfDNN9/glVdewddff40tPhd/JpPBZZddFuVjDJKCuGLcKJOTAOEDO2WMm6ylw70gnTs38PBCc65tN+arxZUYsnPIKYorOQl7f9CCIK7kJKLkJ2TydWeJ81PcPLPEUfedyiopm845STFuffo4n3ss8h0gsko2NFjXzISmZhzPPqqV7LOF+IwZHteManIS3fXzAHmrJP8ZMsRNhEDwhdF9flP+Xq1s8lfcPO9VmUW4SkxRAEFpaADGjeMO5UoG8MSzqck+ztF3meQkqnXWADnFTZTsy8S4RbVKBoHaKimTHApIllVSdi0GWHFuX31lJX/K54PnBRli2KOHpezfcov13BC3UlxwwQW44447kG89OUXXYpslMjHErR1BZlElaxmJMzlJ2ABAmVUyCikMQGMjMHMmsMsjefyk9bVDj6zEqgFWrMaUKT6ZyuIoB8CwebNe4katWglMvnyWuKqrnYpbba117j2zxKn2nWLypSRuScoqCVgrYbayldmt1mSV5BfiTKEFgGY47wvPhXiSygHIWiUBceKm2SrJUF8PjN2/iMqtreuGJz6B96qqFV7EUcG37xp/Gxstouk41Ie4MUycaI1Hbd8hjuQkgLxVUgRx1HED6BU30bWSqEKrmt07CVZJwN5oKRat9oN+L9kxmM/+a4ibEzfffDNuvfVWZDIZ/OhHP8KOO+6IHqKpRg3Si7RmlXQv6mRIp27FLYqV0ec9bAe/qQm4n5vYeSuN5w6+uz2KGDf3zmZQdj7K884fo2KVDJgE6uqAq35XAK62zt+Oo7KY97iVkc73o6gVNyqrZJoVN9n2NStu7oV4NexFkZ+91rEQpywHwOI+CwWx886OoSBumq2SPOoG29fj7ntm8c4sK2t44L1Krbj5KEszZ5ZyrUrX+O5GU5O1idSWnTKu5CQyVklZ1aqjxLiJErckWSVVNrfcxDDg93I4iL6pwpBRIR8jc94//RQ48kjrvJxyCpCi0mVKxG327NnIZrN4/vnnccABB2jukkFiQVnHLc7kJKILWa/3ekFmII2quLkG38hWGurkJBKLKulzk8lY5z6Xo7dKSsR0dutVZWWLC4LMTjhgfz/RyV1m11Rm4cBnX6MgbqqKm0iyA9n2NQf2uxfiQYobg2MhThnjhtb2m5vlLNMqVsl8PjgLoaw1TVBxA+C4Tzt3q8To0eHNSy0GoyhuXNu5nFXnzQ1mxwb8Y/TuussqNVCSvTZJyUlEQBnjRm2VVHHhUChuSbRKCsxNbQ6ih1raHEQ/OjKL1WEOIpl7deNG4MsvrcciiVISBKXkJF988QX2228/Q9o6GuJKTqI7xk1WcYuSVZLaKskNeqpWGkfigyQRN9m0yID4Lj5/jEarZBtkdx5ldsL5Y0QWJQCd4pbN2oVNKaySMmOMbHIS2fZVbEY+14zXQlxEcQOs9+VykNtIUCFurH2ZtlUUNyD4fpIdZ6qr7ePCxhiBOmslKANxW7DAey0ZNr4DVs6HBQtan2Qy9u9PmZxkypTw42UVN8oYtzQrbnFmlSyDFZNPxpPjkvG0oCo8GQ/lnJ0gKBG37t27Y9CgQbr7YpB0qFoly13Hzb2zmybFzb0g5QbHMCuN18TOdvA926dITqKquMnaGctolSz5fJFzI0vc2OJClLipJCcRPS/MLpkkxU2UuKkqbhHJvtdCXERxA7iFOKVVEnAqYkFQUSD49oHgc8/ar6gQX8yycUaGuIleM3FZJbm+rVvn0xUB4gYA69dzT9hvRJmc5OGHw49XVdyKxfDN3DRbJWXKsQDxWiVjVtyYg4gNX7zCzFuDmYOohLyp1s+TrRFXZigRt/333x/vv/++7r4YJB1pLQfA74K63+8FynIAUdQ8oO038LPShMVAANwOvrsP5VbcVFJps36U2ypJrbjJEjeq5CSAk7jpLvGQ9hg3n4WD10JcVHEDWhfiqhsJste7TAyailUy7DNklRnATngQZpWkJm6aFDe/lAF+C1k3mCgOQE1xE7neRccLBtUYNyB8biK0Sua32Nf7kpXVYuXBVBQ3ivjlpBXgBnyJm5eDiN/c8rreSxxEqopbRyBul19+OT7//HP8+c9/1t0fgyQjrQW43YRB906+zHnRZJX0s9KIxEA4rDSqyUlEB2lq4pYUqySl4pbL2Z8vuotPZZUEbOLW0lK6KeJG0rJKUse4+VwzXgtxUcUNaF2Iy+y0qxA30XtJh1Uy6DNk08YDyVHcJIlbLgdsyVntF/P5ttMybJiVNb2kKwKKW22t9f42sLGGMsYtDMWifGZcGTcIgVWSFT2//ir7vEw5pyq86DnQMa2SEYmbl4OIX894bW6VOIgMcfPHunXrcMEFF2DKlCn48Y9/jPvvvx+vvvoqXn/9dc9/Bu0EKotBoPyKmyxxkyUQMotwTVZJPyuN6I5sm5WGuhyATOKANBM3SsVNdjcZoEtOAshlloxLcVNJThJjjJvXQlxUcWtbiFNmrwXitUqKKG4yiymeuAWpwLI1swA5pVOQuDFSMGQI8MHHrcQtl28jBUuWWEkY3BAhbpMmuYYg9htRZpUMg8Z7yRNsjKyuFusXT+58ynawOKumjfZ5EYqzcvdddzmAbNYe73STcfdxMlbJCO37OYjCFDfA5SDqIMRNKSLvgAMOaKvT9vjjj+Pxxx/3PTaTySAnpC0bJB6UO778wkt3cpKdd/Z/vxeSRNx8rJJ+VhoRqyTAWWlkiJtsDASQbqsk5SJfJqskv7Aod3ISwFnSwRFME9C2aPvUipuqVTIi2c9mrQX19OlcVwQVt7aFOGW9SP44Kquk6LmPorjlclb//PqVgBg3vnwLABRa988rUMSyZUVMn57BjBnADTdYX4MfHsI25mpqrFp0JS8CtMlJAL2ZQgE1q6To+OiuL8rBnamZ32Dh71PfTM0AbVbJTMbq/+bN4Rkxk664tbYv4iDy29xiDqLhw2GIWxDGjh2LjOgOp0H7AXU5gEzGGvx1K2777gsccADw6qvWc90LQhnipinGje3guwc7EcXNYaWhtKMAHccqKbvIz2SsCay5mYa4qSQnkU0EAchlCk1CVskyWSUBK/HejBlc7WoBxc2xEKdMgsS3L1NqICmKG4txA6xrUoS4lSGrpJsUAE7lrAIFFFCJpibgvPOAs84C7ryT60qI4jZ7tkea9DiSkwDBxI06wQcbI0XnJR+rZFicldd9WlL0HKC1SgI2caNIrFKG5CR+DiIRxQ3g9g8NcfPHq2wBbNCxQJmcBLAmgnxeP3EDrK3uMWOsx5RWybCBVJNV0msHHxAjbg4rjcyupgqB6IjETXQSqKmhI26UyUn4BWlYjFt7Udw0LDbr6qyFNVu4iyhujoV4XFbJsPMel1VSRXEDLEt2nz7ex5Uxxs2LFABOAlaJPArc87vvBn7/e+DXv7aGCT/iVlNjXSslyg/7I2A1oJNcudspFPzPqco1I7OpyJQnUeLms7HlFWcVRtxKip4D9MStc2fLpk6huJUhOYlIMp4gO3mbg6iDEDelGDeDDgrKcgCAPRFQEDfK3WoVqyRTGMMQUIB7ypTSjeWw5CQlVhoZq6QKgXDvhAeB/11kF+Iii3z2/SiumUWL7Mf9+om1L2phUkkxTmmVpCzxQJ1VUnUM06QS1NcDDz5o/fRBiltNjXWcYyGeFMWNOqtkFKskEHxNRiVuYec94F71IgVAqeLGo6kJWL4cmD/fin3rkrWv2QIqUFtrvT5/vg9pA+zfqFjUWz/PPV8EzR/UipusVdKDPPjFWflZJXk44qyAeBQ3gF5xiyk5iV8yHpFkaw4HkSFuBgYuUFolAXsi1R3jBqgnVhGZ3PnJQpS4iQ7S7s/nBj22g8+DDXQFZFD0uL1LrDTUxE1lkS9TDFNUcVOpESczCfDlUXbdVax9UeKWNKukjOImu4GTVMVN4zVTX28ttHcZWaq4BS7EqWPcRBW3JFoleQIZpBKUSXHzIwWAHeMGOBU1hrvuAgYNshSd3Xeyvluhugbz5mWweLH1eok9kodoPK3sQtZ9nQTNH9Qxbqx90Y0ED1XJL84qTHEDXJmagfZD3CiSk3i0zxxEbrBzn0MlAO+Nbl8HUTsmbkpWSdlMkWPHjlX5GIOkgTodtUchUm1tyyzYZL3+KoqbSnyFx3O2uGPB7mzid9skfa00SYxxk5nARIlblLpWfN/8wBO33XYTa5+SuInaXVRifijtr5WVdqwrdVbJEIKSb2pp2+NdsqIK/XMCl47gNVNXB2C7ZmCu9fyfL1WhS521c+z7GTLKT5QxUmZ8TIpVUrRtlaySGoibHykASq2SbvDJFzIt1rmp6FRjJWMQgXt+4u9fHrLJSdzjStCGK7XiJlvcWzHOKsiu58jTpHKvylolAXGrZEWF2uZWjAW43THAgL0RLRQDDNDGpScIkbJKisBklWxHiEtxo7ZKhvV9xQr7sYjtTSZDIPtuooOo+zgf+9XYsZbPvtN1OSBnE7faWmtHavJkn11ZGcVNJS29SjkAmQmMX2wGxW9Q22s//NDuzw47iLUfF3ELut5VlBlecdNtlWTHtbSE36dRk5P4/KaNjZatrfOtLbi09bUzz63Cm1db99KUKQEKh+LCYbe9q4HuAccK9t3zsylj3HRbJfN5+3eVWUyJbsyVSXHzIwVAOHEDOFLQltlGgtSKKiiUipssKQTENxV5G3wE4uYXZyWa/dVR9DwuxS2ft653v3tFltAC6lZJ0f77XI/uGGCAV9y8v1+Jg0iGML/7LvdBHUBx88sqWSgU8NVXX6GxtTLhd7/7XVSl7IQYBEB14SA6AVPGuMmQTn5rtH//8LYrKqz2W1r0K27u+8znvNfVWZaZ4hM54BOgpmsW8+aE7OC7+5EUq6SK4sbe7/dlqYnb2rXW//37yyUnAWhi3EQXayoLfP431W2VBOx7iSLGLWSBz6dqn+oKjGf1m2bMCEgEIbNgk1X2qa2SrA9sIex3Timtkny/ZdYOovcqdVZJn3vVjxQATqukO8aNoY0UqKiRoo4Q1jZTvcPgHldErZK6FTdNcVx+mZpFsr+WFD1XuVdlNir4eWDzZhdr5BCVuMVklWRwO4j8FDdfB5HoNXP//c44k5TxFJKskh988AEmTJiArl274u9//7vKRxgkEe1FcQtbEC5fbj/2ipj1Qk2NdU5Es0rKkBOv9/sg0/rdKquzYlaaJMa4qShuQPDOo8o1Q2mB5dtvaQleKLcXxU238qM5OYk7VbtfKurA+k2UMRZxKW6sfT9yoMMq6ffbqhB90baBsilufqQACFfcHKSAjUMySqes4ia6iFVV3FSIm+62PeyAfpmaRaySJUXP41LcAGt+CCNuqup1jIobA+8gqrk2B+QlHESi5/2005zPU0bcSJKT7LrrrnjiiSfwxhtv4MYbb6T4CINyII5yAED5k5Pws6sMcQNoFvg8RM+77DkH5IibqPLDHyeaOp5iwaYywfjU+vFEFOIGBC+oKJOTUCtuKsq7aKyVRsVNtX5Tq7nEhoriVlEhHv/HQEHcRMd3aqskg+o4oNsqKaOe+NyrfskXgHDi5iAFlIpbkombqOKmIc4qKFOzcNFz0b4Xi/Z6Jwpx8wO14hZlfA9onzmIth5s9b9X/yrMm4fwZDwy96pfn1IAsqyS22yzDfbee2/cf//9VB9hEDeoywHElZwkrO+84iZilQTsgVR3jJsbugOdVWrlAOIEghWaBsLPjUqQtuiCTeWakSFuKn0XXVBRJiehVtxUxgEVxS1icpIo9ZscoEyoEFdWSb5vXqC0Sqrcp0ByYtz4e83Vfy9SAASXAyghBbLZE93HihA30d/UfY0EbbiqWOpE5yaNmRO9MjXzZNqLuHkWPRe9ZlQ3KtxWST/EaZXUpLjxYA6i6s6Wg0hXcqgSGOJmo3///li4cKHSe+fOnYvbb78dEyZMwKhRo5DNZpHJZHD11VdH6tOLL76Iww8/HP369UPnzp2xww474NJLL8WGsMQJBh3HKpk0xa2hofT9Ye0TKG7FzTaBmN/YSajmNQBxUqvi9RddsFETt6iKmyhx013HLU7FTVb5iUlx80vVLlL8NVL9pijELSmKmwxxE2k/iYob/x2DsowAzt/UtZngRQqA4HIAJaQgjuQkotejTIwbZVZfzbXK+FqLgL/i5llrkUFUHVe93ikVN9XSSSpqZ1j7slZPQ9yiobm5GW+99Ra68LuzErjzzjtx7rnn4r777sNHH32EvMyP4INbbrkFhxxyCJ577jnsvPPOOOqoo7B27Vpcc8012GuvvbCCzyZoUArqNLFJSU7CFLeaGmcB6SBQErdTTgF69rQe67ZKCsQRNDZataXee9OaIArIYMQuVRgyxHq9xC7mBuW5UbFKUhI3GdIpStxUlE7K5CRxZJUEaLJK8t+xtX2R+k1+Wc201G9SuVcprOqi9xKlVVJVcRPtu0o5gFGj7MdvvBF8bIiV0U0KAG+rpCcpyOftMZoyOQmFVTIqcdNtwxSIs2orel7lJG5CRc+N4qa3fYoSEjw6OnHbuHEj3n77bZxwwglobGzEgQceqNTOLrvsgl/96ldoaGjAp59+ivHjx0fq15w5c3DhhReisrISf/vb3/Daa6/hL3/5C7744gv84Ac/wNy5c3HmmWdG+ox2D9XCu0lQ3GTi8xhx699f3IJFHeMmW69Mk+LW0GDVD5o+HajMWeRlCzoByLRl2Rs+3CkKliAu4tYeFbdi0enHS0JykjiySrrf6wUV9YSvZ9TaPln9prCFg6y9Nk6rZNC5jyurJLXiJtr+8OHA4MHW4zfeiKxa8aSgttZJ3Gr75v1JgSphNoqbd9tsbg+JsxrzHbvvH3xUKVb0XPReVU3Gk+YYN5n2jeLmCaWskpUCF1ixWESvXr2UrY1nnHGG43mFakxQK6699loUi0X87Gc/w2GHHdb2epcuXTB79mxsu+22ePzxx/HZZ59hB9E6TB0NlZXWhNHURLPTTpmcRCY+j63EmMolAjaRNjcH1xOLStxEF4MaiJs7y14nWBPEZjjteoFZ9gBa4tberZJz5jglnSQQtzRnlQSsc9PU1HZNiNRvCiJusdVvitMqKaq4URI3VcVNt1UykwHGjAH+7/+sjYqFC4ERI7yPFUwewkjBFVcAm06sAJ6yXn/j9QKyO/m8SZUwJyE5SZSNXECc/MgSlKam8DirvN3+8B2zYnIHteImOjfJKlbuY8uQVdKzfaO4OaDEhorFou+/bDaLrbfeGmeccQbeffddjBw5UnefpdHc3Iy//e1vAIBTTjml5O9bb701xowZAwB48sknY+1b6sB222WSEiRBceN32IIGo2LRth6IxhMB4pOjanISNiDFlJzEK8teZ1jnxVLcSuGZZQ/oGFZJquQkb7/t36cgxGWVTFtWSb4frvpNJYcJxLiV1G9KilVSxRIoSn7iskpSbOCoXjM8Ow8aZyTJTzYL9Ohtf89sJuCaUSXMotlr40pOort+noriBtjfU1RVymT0J7RJu1WSWnGLEvrRjombkuJWCFtYJwzz5s3DptYFxl577eV5zF577YV//etfmDNnjvLnbAwjM4LHJBpduwKrVqWPuAHWzdncHL4oYZ8fhbj5LbCTZpX0iSPwyrLHFDc/4say7F11lesP7NxQqFZJsEoWi/a5003cevVyPhddVFEqbhUV1rnZsiV9WSWBEmIoUr/JL8YtUv2mKFZJUeKmSn7KlVUyiYobIP67qqTrl20bULdK6lTc4rRK6o5xA+zzIqoqyVyPKsRNpn2RualYtNtPo+Km0n9V4iZz7hMA0qySScGCVqtRr1690N2nUGFdq2F5gSPSXA7dunUL/TeYeeXTCkrFTTQ5iUrdFv7YoMGI372SIW78QBo0OVJbJTVklfTLshdG3ACPLHuAvcjI5YJ/W8rFJiVx47+TanISvwnM/XvvuqtY25R13AD73gja7eXbz2TEyRVPrIJ28VWSkwCe44BXqvYwq6Rn/SaZ8hpRrJIURX1VFDfKcgBJKcDtbj/o3KgoHKKLTUqrZLGYXqukKnFjx+pWfQD6rJIiipvqeeHnPYqswaLEjTIu0o2UKW4dgritb41Z6soH1bvQrTV74LqwdL8dHTxxE7VGyCQOAGhi3AD75hQlbjIZUUWtkqrETcQqWSxqiXHzy7LnF+PGoyTLHiB+btJax0118hU5L3y/b75Za5FTAOp9Z+3r3khwHxvUfpQYN8Bxbr1StYcRt0j1m/i/U1olKTZB0hzjpmIhBeRtezILQdGSLKrnXWShrBInFqfiJkKWARqrZFyKm+4YN9Xzks3aa5+1a4OPjZooTsS6K9N2ByFukfTBlStX4q677sIrr7yCr7/+GgAwZMgQHHTQQTjjjDPQt29fLZ1MC0Rqwa1bty7dqhsjboVCsCWQX4SL7rRTWyVF7Iaqiht1jJtI31WUH49dTa+9i0rkUNUa8xOkuAGuLHtA6bnxO69RF/miC7a0EjeZjQRKqyQgb92NEq/k93tpinFjYIl1Jk60fg6/GLeaGou0hdZvKqdVknIThL9WVWPc/K7JOGPcZNoXJRGUVknV8y5yblQW+e55WjNxy/cb0JZvc9Ujz6PH98Z6vzUu4qZ6L6WNuAFWYrZNm8LrFsaluJnkJA4oK27PP/88RowYgUsvvRQvvPACPvnkE3zyySd44YUX8Nvf/hYjR47E888/r7OvymD2yKD4Mka6evilGBNA165dhf6lGnz/g+ySKrtUccS4AcELWd4aQEHcKK2SUe0orefd6xZgahsQTtxK3MiU5yYJVkkd9i6/31V1YqdMTgKIE7eolr333/c/Lipx8+g7n6q9a7Uzxk1r/Sb+75RWSZXxEUiG4paUAtzu9v3OvYrdEFCLcdN93vnfW7TtH/zA+TzIKSOxccbqho6eUY+WVm1h4533+dcN7eiKm26rJGBn1KZQ3IxVMjKUiNv8+fNx/PHHY/Xq1Rg1ahRuueUWPP3003j66adx6623YrfddsOqVatw/PHHY/78+br7LI1tttkGALBmzZo226Qbja2jATvWwAeixE1l4UBZgBsQy1anQ3ETUWcorJJRM3e1nnevLHuixK0kyx4gRtxUd8LTbJUU2cVXvdY9Ck17Ii7iptr3s87yPy5qcpLlyz0XmyxV+9h97fM258MqsfpNSSsHkOYYN1XlnSLGTfZeVVXcKKySssRNdBF7993O5xoUN75u6Acrh+Bj7AwAGIBl/nVDqZOTRB3DKOq4iWyyRCFubPd2/XqxuHRAv+KmWp/Pq29h6AjE7brrrsOmTZswbdo0vPfeezjvvPNw5JFH4sgjj8S5556Ld999F7/73e+wadMmXH/99br7LI2RI0eiS6vN6G13eu1WsNdHjx4dW79SiTQrbrLJSZIU4xaj4say7PHgiVsT/G06JVn2ALHELdQ77SrnJpu1z48ocdMdy6XadiYjpjBHPe+iWcdk2v7kE/txUJZfHerJZZf5HpbJ2d9t+x2rxE6/ilUybTFuOqyS7VFxU10oiybhoDzv/AJatO9DhwKnnWY/j0jcWN1Q/muyeOoaNKMC1rlhdUPbyJuO5CQi8foy4y+/dvARCwBEjzEGaIgbU9yKRSAoBIgyxs0obr5QIm4vvfQSRo4cicsvv9z3mMsuuwwjR47Eiy++qNw5XaiursYRRxwBAHjooYdK/v7VV1/h3//+NwDguOOOi7VvqUMcxC0pyUl0WyVVVSXASdz8zk+Uoueu/rmz7PGJGprhvdvrmWWP/YFBN3GjtEpmMjbpTILiJnvNiFiBkmiV9CwG6AHVrJK8OueuAcCDfbdMJpKC7YuOllVSJNZKh+JGXQ5AhPxQlwNIguIGiCdWCfldveqGAs5EWDVwzh1tdUOjKm582nkvqKxlBg60H3/7rf9xcRE32XT3fLxEkF1Spf9833VnCzXEzR/ffvutkDI1evRofBt00WrGHXfcgR122AGnnnpqyd8uvvhiZDIZ3HPPPXjuuefaXt+0aRMmTpyIfD6PE044ATvssENs/U0l0qy4iVglVWPcRBYlqosGQGxA0phy2Z1lj0/U4FfTyjPLHkBL3CgVN4CWuFEqbkA8ihuFVfKAA8SOU72f1qwRO46dNwqLlErtP2qrpGiCjyTGuIn2XTWrJKXiRl3HTcRGWmbi5lU3FHDa8jvDGcvF6oZGJm6AmPIjcz0OGmQ/XrLE/zhK4hZl7mCKGxBM3FSdLAy6N1tlN0MZOgJx69q1K5Z55Qt3YdmyZcrJON59913su+++bf/+9re/AQBmzpzpeH0Jd1OsWLECc+fOxaJFi0raGz16NG666Sbk83kcfvjhOPDAA3HyySdj++23b1MQ//SnPyn1tUNBlrjJDEZJs0rqJm6qgzQgtnDQZJVkqK8HHnzQWiMEpUavqbGO803YIJs9MW3ETbXvaVbcRDZB+L/LtD1jhv04KAOvKnFbtUrsOMpEEyoZYKmtkqILKnYPV1bqv1epywHoyCopQtxkCK0o+aEsfE7d94DxN5fzrhsKOBU33q7PcNddQH6LorIkWutSZRO6Z0977qAgbiJ9j7Le4BW3oMySKp+hMmfrVNy85kOZGOkEQJKGW9h9993x+uuv48MPP8SoUaM8j/nggw/w2muvYf/991fq2Lp16/Df//635PXFixdj8eLFbc+bguKJXDj//PMxatQo3HTTTfjf//6HjRs3YujQobjkkktwySWX+BbnNuBAqbhRJyeRLQcgE+NGuZvs1b7XjmvUHSqP815fD4wdCzx1VQ5onVwZcauttWLaJk8OSdggq7hRZMJLouImMsmkQXErFv0nPhUCseeeVoabBQtoEk2EFQ1noCRuKoScuhyArOIms8AH5JOTUJBOygLcKnFiAL1VkqocAOC870XrurrGMb+6oUCw4gZYdUNXLGlBLXtBJcYNENvckl3LDBwILFwobpXUPe9FWW9QKm7Mep7PB48zKlZPkXjRsCyiKYCS4jZp0iS0tLTg4IMPxh//+EdH/bINGzbgjjvuwCGHHIJ8Po/JnkEv4TjggANQLBZD//FZIKdNm4ZisYhXX33Vt92DDz4Y//jHP7By5Ups2bIF8+bNwzXXXGNImyjSHOPGBq+gODFVxY2auFGpMwI7pnV1wC+m2IPo8SdlMW8exLLsAR3LKqlbJYiiuMVB3ACxrGMUpFM1q6Qo2LmnWIRHjQ2hyIQnSn4oiVucipvuAtxpsEomMMYtSNAJU9wAoGlDTFZJ2TGM2SVXrvRvPy6rJBVxo7Ta85Z2mTJd/DrPCx2VuP3kJz/B+PHjsXz5cpxzzjno2bMnBgwYgAEDBqBnz54477zzsHz5cowfPx4nn3yy7j4blBNpjnETWWyqxriJLHqixLiVwSrp13b/wVUYPlzi1MeVnCQJxE234qbabyCe5CSA2HlXVZiD2lZNTiIKyhg3FYIiSqz49inuJXYPy5AHgHajQqUAN6XiRlEOgNIqqaoWaiBuQWvyMMUNADpnE07cAH/VLanETdQqSel+4i3tffrIt+03/kq49JIK5dnuvvvuwx//+EcMGzYMxWIRK1aswIoVK1AsFrHtttvizjvvxL333quxqwaJAD9Z67YXUBM3kUVVUhU3qt1q0VTUUTJUidS400EgKK2SuVx5UphHuWbiUtxE2qfoe5SNEBGoWCVF7ycVgiJKTvjPpvhNjeLmfQx1OYB2mlXSq24oQ5jiVlsL9OlBSNyKRfXNJ/5LLV/ufYyOjQpq4kZRzkAk34AqcesAiptSjBvDmWeeiTPPPBNff/01vv76awDAkCFDMGTIEC2dM0ggZGM4qGPcdCscqjFu1MlJZK2SmmLc2hClJkyarZLuIHCv91JejzoUN2riJnLeqa2SgovwXE5i0lMhboAdv5EEq2RSY9z8+k8d46Yjq2S5ygHwljVKqyR1chLX75rNWrHSXpU5eOLmpbhNmgRUFhSSWLiPFXHJqI6/AG0WVQrippKlVbdVkiduffuKt90BiJuWbcohQ4Zgn332wT777GNIW3sH5YJNVnGrqNC/a5oGxU3nIp+PDYpYQNUXIsSNV+J0B967/5aUIPC4ygEEFZilzuapqrix9gsF/+tSgrg1NgJTpwJDhgB/w+Ftr+dQialTfUrHqcS4AeELB/ffRH9XauImm1WSwipJvZEQV1ZJ3TFuhQJw3332cz4GKQxxKW6KyUmA0rqhDLxV0q24tdUNpSwHEGX8lU0+lSTiJprBlv0tk5Fbi4lkJV650n5sFDcHhM/0W2+9haeffhrz588PPXbevHl4+umn8fbbb0fqnEECIau46R6M+LZlB1KRCUwxxi2fsdte+nXOu/kkKm6AGGGmVty4TLGBKeDdoLZKUiqp1OUARAqdUi+Uo1olg9oXTE7S0AAMH27t6C9bBkzBzLa/rUIfTJ9u/b2hwfVGlRg3QIy4RbVKpl1x0z2GUVsly61affop8OWX1uNBgwCZbN0iY6SOrJIRNv7cdUMZgqySbXVDdRA3kTI1HZW4iWxAqa7FKGLcwsZf92/95JPibScEQiPXihUr8IMf/ABnnXUWevXqFXp87969cfbZZ+OHP/wh1ogWOzVIB0QmsELB3n2TuaH5xCc8gXJDlbiJDEa88tOpk/cxHNhO/rkX2H258vIWDBmC0p18XclJqFJpixIfCuLGn6jQNJUcqK2SIoseHXE5FIqbyI4y/3vIKCgii/xiMXpWSSBSsp+GBmDcOOfX/Bpb4XNsBwCohNW/pibrOAd5i2KVBPRbJWVS3rPxV7fiVizGF+OWpOQksvWhdCtuvBPkmGP0uxLKmJyEga8byuCVnKSkbqgqcevWzX7sF8cVhbjJju9JIm5JSD4VR4zbhRcCxx4r3nZCIDRyPfjgg9iwYQN+97vfoX///qHH9+/fH1deeSXWrFmDBx98MHInDRIEyrgcyoyVgPzkG7KQ5XfyV623+5JFDsuWoXQnP4lWScD+nkHZlqIkJ+EJsN9nLFpkP5Yhbmm2SsapuPn1nb/P+PsvDKIbOAwUC4eQrJKNjcDEid5vzcPqTwWci82JE7k9hLiIm4ytWWSThbo8BTvvslZJkXu1vShuuokb/zqFRbWMyUl41NcD8+dbm561tU7FbUD3LZg61fp7G2mL0neRlPdRxl+juPlDZByLwyopu/mUEAiNXH//+9/RtWtXnHbaacINjx8/Ht26dcOzzz6r3DmDBIKSQCSBuAlOAu6dfFaUGrCIG4NjJ5/aKqm6YBMhblEUN5EFmw7FjcIqGYfSCdDGuAHlIW66guMVFbeZMwNy4bQSN6a4MTQ1AbNmQd01ANBZJQHaTKEi5zzKoieuGDeKTKSym366k5NEIRApIm6ANfxfdZXlnr/2ZnvT77orNnvXDdVB3PxS3ndUq6TI3ASoK24iMW5McctmnepoGGSIm+wmSEIgNHJ99NFH+M53voMqiZuiqqoK++yzDz788EPlzhkkEJQEgs/i+P/bO/MwK4pz/3/PzDALw74N27AIKMYQlU2NoETUxCUu1+3qoGK4QGKIexQVfhoR45Yookb0kqgRrop7glEUNYq4sRhjjIJxkAER2YZlgFn790dPTdep03tV9ek+836ex8czZ6nT9Omuqm9933pfHcLNT2fkY/C1W8lv4HLV8cKNMWkSsGmD5tAF2ZT3brXKZBw3P9dMXEMlk+y4+QmV1CncZCY9Qfe4CZPwhgbgkUecm3cSboD5uYZ9Ens6dYVK8seSrUyhUQo3HY6bzqySOsWPqpA9nfvz3JKThPhdCwqAXgdYjlt+vcP4pNNxizI5SZD28/Ot/YXZTE6ic4/bjh3m/7t0cd3DnEGQPW657Lht374dPXv2DNx4WVkZtvF2J5F84hQqGXZCxbch4mNiYreS7yXcamuBp59UFDrmdN4rK+3f74Vux83PsX/zjfn/wkLARzi27bHo3uOmMzlJkh033Su+fhw3YWCvrDQTkTjhJtw2bwbWrY1QuIW5HrPluIXdEwlE517HYY+basdNph/QKTp1ZyXmw+z32RfgjixUUseCpYpQ+GyGSurc48YWkoNk9+aPxU9UVdDfNCb46rmKiopQ4zaRdmDv3r0oSqgVSTigc6Xdr3BjN56Ozshj5dFpJZ8Xbm1g35E+tyjkai/gPQg0NDTnRm4mTnvc/AxgfCcdZHUtyqySOpOTxMFxCxKOEqXjFiJU0inyieEm3ACgplqzcJMNlfTrKrUWxy1McpIklQPQHSoZg+QktvCTdqeIkCSHSvLZkOIk3II62Doct7BJkLz6X5lF6Jjga/bYs2dPfPLJJ4Eb/+STT0I5dUSM0TnI+BVubOUtSIFs8VhCZgZzWsn3ctwAYMc2jQ4Ec6zCtB9UuOlw3GQHACDZoZKq3Wsg+3vcZNwZv1krGYJw69DBvXkv4da+RMGELWmhknHY46bTcTMM4O23rb/jWIDbSfzE1XHTLdx0Om58J5GN5CTV1cDixeHbzwXHza1OZxTCLZcdtx/+8IdYt24dli9f7rvhd999F5WVlfjhD38Y+uCIGBJVchKncgCGAezZk/l+PwQRbnl5tp2R08KcU3KStK+HREfKD2Bue9FaDiKE41Zf72+PhY4QVZ31vsTX4uKK6XQgAL3CLWiKcZmwuhCO28CBQI8ezs1bWSUNAOl7c8rKgH69Yhoq6Ue46bwedYdKyuz5YTidm7ffBhYutP5WHSqpwnHT4bwnWbhF5bjpCJX0mitt2ZL+d5yEm9/kJCrKvXhdk6qFm8yYGhN89VwVFRUwDANTpkzBTqcLnKO6uhpTpkxBKpXC+eefL32QRIwIOsioDpWsrbUGiKDCLcgA5tBZOK3k+3HcpIQb7y7arTyKnbfT6qQdftL1y4RKBpmw6dgLJX5vUh23pCUnkdkELhkqWVAATJ7s3DwTbkCm6zZ5MlBg5EhyEtXXelwdt7w86xpwavuiizI/4xedCT50hmOL7/dTgFtHcpKoHLcgbWc7OYm4JcDH3DoNdt049e1RJCeRddyc2ufrRaruf1uL43b88cdj/Pjx+OyzzzBixAi89NJLMGxuUsMw8OKLL2LkyJH4/PPPMW7cOJx44onKD5rIIjrDu/xklQw70QSCOW4OnYXTSr4f4da9i0QBbn7l0Y9w4+uieeGnQLbu5CQqhFvSkpMEOS/i+/2Q7VBJVY5biKySADB1qvPXOgm3oqLmraIyocFJLQfgZ4KvSrjpEChe+//EibJOxy3IsftZYJFZwPEjauPquAVdVAxagJsdfzb2uInPffVVsPbjECqpa4sD/1xYx03H3uuY4Puon3zySRx99NFYs2YNzjzzTHTq1AnDhw9Hj+ZZ7HfffYdVq1ahuroahmFg8ODBeOqpp7QdOJElsp2cJGwyBSCYcHPoLNhK/uzZ6c/7SU5y5mmNwKM2x+IHL+EmDvhff+2/bT/CTXdyEhWhknFw3MKGd+nMOgZ4C7dUKlj2rrg5bjYJbcrLgfnzzTqKIk7Cbf785moUn0e4x011qGTYCZtXHwPIhUryk3xdIYG1tXqEm85xL6hwCzPZLCgw205aVkk//YDMsXfoYO41y0ZWSfG5Sy4J1n4cQiV1OW4yC0TkuFl07doVH374ISZMmIC8vDzs2LEDS5cuxZNPPoknn3wSS5cuxY4dO5BKpVBRUYEPP/wQ3bp103nsRDbIdnIS3Y6bj7hqu5V8L8etqAg4/VSJjjSo43bttf7b5v8xTvsIWqvj5mficM891uM4OW5BQiXbtg2fzVOH46agADcAVFQATzyR+fWicCsqMt9XUWHznUkOlQzSdvv21uPdu+3fIzOhSqW8s8mpmGw6nRvxGolL6Q7+POpwIvnPJC2rJH8sTn2YzL3K9j5kIzkJ/1y/fsDo0cHaj8px05lV0ql9mX6GubSGYZ8rIQeEW6Cj7tChAx5//HH85je/wV//+lesWLECW5o3WHbv3h0jRozAqaeeigMOOEDLwRIxwM9kkx/0+cmAF36EG0tMIr7fD0Emmy4DgN1KvldykvnzgbJuEQm3Ll2A447z37buPW65nJxk6VLg/fetv8NOBrNdDkDmXvJT80vHfiiXrJI8FRXAMccADz9slvLYvDlduE2/phEXXSbUfY97qKRhmO3bfVaFcOP7WR6ZCRVgHn9Dg54wJi9xEqXjFuS86w6VBLzPTZShkkHOux9RK7OoyLZn+FmwVB0qybd9yinBFs6AZDtuXgtzYfdcAsCAAcCyZebjykrgkEPSX29two0xcOBA/OpXv1J9LEQS8DPZ3L7dety5s/+24+C4+UxBy1bmJ01qjs5xcNyKikzRVlEB4E2JAty8cLNbReI7up/9LNjgmCt73HRk2vMaYP761/S/4+S4+fldw2ZoTYjjxigvB2bNAm66yRzLe1ySD7xrvnbj9Eagq/CBKB23sAsJ9fVqhVthodl+Q4Oz4yYTKglk13HTvcdNRVIYP4kmdDhuKpKT+BFuOvbpytyrXgk+otrjFkaMtxbHLehvOmiQ9fjLL3NSuAXMkEC0evwMYLxw69LFf9t+ygHERLgBphhbuxaYMQPo1DV9j1tZmfn82rVc+BX/nTqTkwTt6ILucdNRDkBXrLzdayodN/E6iavj5vS7qnDc4rDHzef9VFAADBkCdOzi0ReocJh1hkoC6sVPKmW5bj5CJas2F2LtWvfbLoMgwi3oeWd9pJN7Il4jih23pjrr+Q2b8v2fl1xx3PxklZQRbl6hkvn5wV0rdu51Z/P0Em5hBAQ7N0610HQnJ2lqsn7zOO1xGzzYevzll5mvk3AjWh1+Jmw7dliPwwq3bCUnYR24z8GLreQv/9A6Lz89qQEbNpjPp4VfyXSkUQk3HSEjOssB6A6V9BIQousQNjmJjnIA/LHZTXqamqxrKei9FGUdNz9ZJYNO2IKEMcksVPipi6jSARbbDnqvugi3qirgmYXWb3r7PYU48ECgTx9zkaqqykf7XgJC5npn44fT2KHJcauqMv/9f3jAev6/Lyzwf178CDdVk/xsJycJswjCficvxy3ofcp/pqHBXnhGFSoZRox7hZHqDpXUWRRelXD7z38yXyfhRrQ6dDpufsoB6NzjxtcOCdhZFBRbbbcvbrDvD3QKNxWbeQH9jlscQiXDCje7a0YUJKoLHvPnJag48XJSeZHO33t+SKjj1oLXNRnV9Q7ozXIa9H5iAl7Y47ZggelUvvKS9ZvWwry+vvvOzLI7ZIj5Pld0Om7sGt67134SrmGPGzsvs2cDdXut5xuR7/+8BN3HJeO4+SnzoHOPm4zo9HLcwgg3r3OfhFBJQL1w0x0NolO4DRxoPbZbNSHhRrQ6/KzE6BRuOkMlGxutAV9moqlj/0acQiV1Om4ybesQbl7tqwqV9HLcwgzsQYRbkFIAQLR73CSTk9gSJ+Gm2nGT6WeY41ZT0zIRX7DATMRUWwsUwvpN65B+7dfWmu9zFSk6HTc2fhiG/fWuOKskf16A9LIS/J5nz/MSVTkAsR2eqJKThDl2r3BGFY6bU/uqskranXdVLiqQPMfN69hlhBs/ltndTyTciFaHzuQkeXnWTZcN4SaTyShoaFfS9rjpTE5iGOFj5f1MegB9oZIywk2noAWCCTcdoYyqskpm23FTvdIO6A2VVCHcAGDPHlRVmQmYGG7CjTFpkkt4YBSOG2C/R1qh4yaeFyA9KRWftZTheF4oOYk7Oh03r3Mf51DJXHbcZOZiQcQ4CTeiVeBnJSbsHjfAe5+Czj1uMpmM/Ew0k+C4Oe1x05mcROa85OVZx++U0Eb83jgmJ8m248aHy/ohYVklM/CacKra46YzVNIpgYiKUEkA2LMH8+YJiSSRGSopUltrll6wJQrHDVAv3ITfVDwvgLPjxnA8L60hOYnMApROxy3IPjGdoZJxc9x09mHi+1VnlfSai5FwI1odQR23Tp2Cte8l3FTtcfMSbjoct7gKNz973FQlJ9ER68/Ojd15YehyOGTCr4KEo8hMeAC9wi1bddxyZY9b2Otx9Gj7ybIix61hx2488kj6y34cN8Csl2f7s3nttZKZDHolt1LkuDU1NGacF8DbcQMczkscCnDHOVTSK+19VKGSrclx8zM2xXWPGwk3ghAIkpykUyf1mcFUhUrqtOd1CDd+NTnbe9zi5LgBwYRb0CQfXr+r+FzYrJKqyyQA3lklc8lxU51VUrdwU7GQsH8/sHWre9ths0oC+OaL3fjuu/SX/Qq3zZvNenkZZNNxkykHwB3L3l0NGecF8HbcAIfzEgfHLazD4TOrpNH8vfsbC4KXkGDnJ9dCJeOcnIS/N3TMZ7zGVRnhlkq5LxCRcCNaHXl5VmftdEMzcRU0lBHwzgwmUwBWZ6ikn0l4k0QB7jZtrM+ozioZdI9b3Bw3ds34EW6qk5+Iv3WQ4+fvJR2Om85QST8LFbmSVTLoudeZ3l18r51glekLOOG2b8uejJf9hEoybCM5g+xxi1OoJHfeG2vt71U/jhtgc16iLgdgN65qctxYqYS9282+5quqNsFLSOh03IJklVTtWsU5VJI/Jj+LT6rHVZk+DHAvf0HCjWiVeBWYlelImYtmGPb7rXSuhMuu8rD2dawmA+7OUpz3uHmt3qk6L2573MIKoCChNED4vQS6Hbek7XHz077OrJIye9z8LISoCJUE1E96uMW29shUXn4dNyA9z0kLQRw31clJRELuRy1I2R8777i5CbeM88JHAeh23AB7Z4xdR3l5wRefHNplpRLuml2LUsNczN0Oc897oBIS2UxOonMxV2UdN7tjlxVuXmPTFVeEb19nchLAXeyTcCNaJV4rMSqEG2AfLilzQ+vMKgl479+QET+APuGme48b/xndoZJOG+RVOG5+QiXDDmBeq5pxc9z441m71v49ueK46c7SGnZfpNgOQ0Ywc/1vWfu96NEj/WW/wq2sLL2cUgvsXBqGvYDQ6bjJhEpy572ksDHjvADpjptTqKTjefEKB1TV/4ptMcKO2Q7JSfhSCV2xreX5beia9nFfJSSyWQ5A5l7SnZzEaw+zbsft+eetx//4R7i2AfWhknz7JNwIohmvlZiohJtMtiHVmYz49nWsJgP6hJufUB1Z0ek2CKgSbnwBdRH2vGrHTfz3hBUQOsoBRJWc5LHHgA0bMt8T56yS2RZuYSdt4r2vetLD/Vvzm+oxeXL6y35DJSdPdvhnBVkIiVNyEu56yWtsyDgvgD/HzfG8eIkTVZNwp+9QIdya70exVIKbcGO4lpBwC/Pka6/K9pF250Xn1gxZx81rD7Mqx81JuPEMHhysbd1zMXLcCELAb6hkmJtCp3DTGSrJH4/qzF0MNrlWLdz8TJJlj91NoKgSboDzPjcmUlQXmhafc6slZ4fXvZSEUEkAePbZzPdEmVVSZ3KSoP2YzlDJnTvT/1Yt3IRFnKlT0/85fhy3oiJgyhSH9r1+17jucROuF/G8AN6Om+t5ybbjxr43aN9uk5xELJXgR7i5lpBwE1ey45JXqKRO4SY77nn1M7pDJfmxdNq0YG3rTE7Ct0/CjSCa8ZtaOG6Om27hpivlsvgZnRkxvSYOqVRwdwOIxnEDnPe2MJEik4TDzx43p4m6E36TNciGSqrOKike77/+lfkemUlPth23uO5x27Ur/W+Njhvq61FeDsyfzzXnQ7jNnw+Ulzu0H0S4qd7jpiirJBoaMs4L4O24uZ4Xr31cqsoBAPpCJZua0NCAjFIJfoQb4FJCwm18kh1Ts+m4yf6muoWbV6gkE+0HHQSceGK4tgG9yUlIuBFEM24uQVOTFboQpiPlB9+ohZuqPW66QiXdOlKZ0AI/dYRkxDjg33ELc168SiXwzwd13HQLt7g4bkEnJYcdlv73Bx9kvkeVgMhGcpIo97gFueb9OG6K9xZWVABPPGH+s/hQSVG4FRWZ76uocGk/iIMdJ8fNJgMsf14AZ8fN13kJ4rjJhkq6Cbeg14sg3CorkVEqwa9wcywh4dYHyyywiJ+J2nFTGSqp03FzGpvYd9pmIfIgquQklFWSIJpxExCyK2C842Y3+CZhj1s2wg11h0qySX7QwYsRleNmJ9z4DKWqsyeK/564Om6qQyW7dUt32ewSlMhMevwU+NbpuKlaCNEdKql6tdphv2tFhfkTf3+gtZhWA7OvLiszU7uvXeshToDsOm6icAubSIg7bnZeZswwk5YwGpEf7Lx4CTfZxS3+/nYbVyWTk4iGMOBfuAEOJSSiCpX0cNz+XVkUrAad7nIAUTluTuKHtR9mTqA7OUmOO27JPGoiu+gSEIB3qCR/Q4dNvQ7oDZX85htzBBJXolQl+MiGcGO/RdCi54xs7nGrr7fcGd2hksOGBWtfp+OmMzkJAHzve8DhhwOrV2sP2bNFp3Dbw9UwC7qirDNU8txz0zO4RXjey8sB9NgNNLsib31YivadzCyJvuc/QRy3oL+pzuQkgPk71ddnXC/l5cCsWYDxdgPwtvncx/8swIChAc6LV3ISWXemUyfrcXV15utMzPHi1w+C49ahQ+ZbDsBXLY+9hJvtrZalUMmqKmDTO7UY3fz3BRML8TGAHj3MJDNTp7qEvgLe5QCSssfNrn/kvy/M2EFZJaUgx40IjtsNrVu48SuDOhMShOks1q+3Hs+alfm6yg3mYirtuAu3KMoBAPbCjX9OZ3KS//ovYPjwcO3bXY98yvQw10t+vnU+7QZ22cEXsCZudqndVe1x85OcRLVw460Du9moGzpDJfnaSWI7DJ3ZPJmgbdsWw0flY8iQgJeml5PKfgu+tplfvPa6ihkJg14zHu54qsm6jgYflB/svOhOTtK5s/VYFG6GEb5/F4TbwIFIK5XQC99gMv635W834eZZKgGILDkJq0H3r9WZWVR916DLlVBJr3DsMI5bkOQklFUyAxJuRHD8Oj9hbopu3azH77zj3H4YYaUzPApIn0j+8Y+Zr6sKlQQyz72q5CS6hVs2kpPIOEtBHLcbbwzWNqDXiQSsQVWH4wZYx2Un3GRWTYOGSqpexNEt3PjrNEhf0LYtcO211t+as0pmwGLZwuxrAfwvhOiYyIrfF1bse7nj/Hv9wicnsatFKdsX8I7bjh3pr/H1L7kC7L4QskoWFCCtVMIxzIJsZi2GODblWCpBp+Nm07/zNejcyl941qDL5eQkMvujgfR+hm+LoSpUsqkpc2wi4Ua0SnQ6bj/+MdCxo/n4z39OD1ni25cJNQT02PMHHWQ9PuSQzNdVhUoC7sJNdR23xkarc9URKsk7q7LCbc6czNdVCTcdG53dBkfZVU3+c6qzSjLY5NcwMiecul3gJDtun3xiPR7iPJm1RWc/5tdxCzrBZ/jd4xamH+CvYR3CzWsPMzv2MJl32e9kGN7ujGrHjR9jJR03AGmlEvgspLdgJuocav+5lkpwuyYVh0qKNej443eqW+hYgy5XHDcdYxO/8GO3MVKVcAPcE9qEXRDNMiTciOC4TTZlszx16GCllq2vB7ZuTX9dRrjpDpXkRQMTnzwqQyXF45dxC70ma7w7oNpx27sXOPJI6+8wHSm/L+OVV8w9hjyqQiW9CnDHLRyF/5wux81m4tYCO195eeEnyUB2skrySUCCihSvCZVhAKtWmY979QJ69gzWflTCLZuOm24HAgh+zbD2vfahyRaC9iqmHKZ9N8eNF25Br3Wb+58vlcBn2qyC84Yw11IJbudGcaikWIPOT8F5xxp0ueK4eY1NYcYOfn4kJlwC1P6u4vGzv/lMsQmDhBsRHLfJ5hdfWI/Dpo7nP+c0GdQh3GRDJUeOdG8/ro6bl3DjHTHVjtv//q/9+4IgijExp3RUoZI6SzyEWUgAoguVBDL/DTITWa/zfvvtwF//av2ty3Fr3z78BB+wn4SvW2e5HkH3RALe4kemHIDbfqK6Ouu5sI6bl4Mt47jx590u/Er8vqDfwc6NV8IZ2URCXv1MmPbdHDeZ/l3IKslgpRLaFlj/Fqei5J6lEnQ6btxnGvfXZ9Sg8yPcAIcadLlSgFtHqCQv3OwcN1XlAMS2ALlxKSaQcCOC4zTZ3LDBDHVkhBVu/GAgfkdUwk3HHjpZN9LvHrc4Cjena0bstMMMMOIKsij24yzcctlxY/8m1Wm6V68Grr/e+Tj84Fe4BQ2TBLwnVHwSo6FDg7evs3it23nnc7Un0XGTDZX0m7K/lTtujIoKYNZN9rXtQpVKALRmldz+bV1GDTq/ws22Bp3OmoVAspOTBHHcZKOTclC4JffIiezhdEOLmRRlizUD0Qo32VWeIO3LdkZJE25O14w4eQozwPTpk/63mKBEJlTSa0IlK9xYqEZ9PfDaa8AJJ9h/X1jHzc0lkF01BdJ/Lyd3XPW1ztePYwQNeXFbHAL0Cjf+dw2afh3QGyrpdr3LlEhgZHOPm6pQSa/Mj2GO3StEVaXjJgo3mf5dSE6S8bXtreO+8/dtcOWx5qUTqIRERI5b7Z7Msc+t4LxIRg26XAmV1LHHje9X7YSb7LhKjhtBCPCZ5Ph9Jtu3p78v7I3hNhlkg5ru5CS6haHs8TsJWkB9QgKdjptsUVwAOOus9L9F4SbjLBUUWMfotYovI9wA4N57019LmuMWVaik3bHKOG5iH9PYaIkUHcJNJpQRCJZKW5fjpjs5iew1o9Nx8wqVlHXcdPQzbnXcNDluANKOu1d5AYYPR/ASEhElJykucBZutSgE4L44lLGWEWWopJdLK+O4AZm/rewet3btrLFP9x43Em4EAWcBIWaApFDJdFSF1YltAXIdXV6e1bbdAKDSceNrk7HvtntfEIqLgblzrb9VCrdUyj1ESnbV9NRTrcdinI5K4dbUlHlNqmjfbXDXFSqpWriJ54Xvx3QLtzDnPcgClMo6blE4bjKuVSpl/Xv97HELK9waG9379zhOwvnQNJWOm5dwk40yASJLTtKltC6tBh1gCTcvt822Bp3u+UBUjhuQee/885/2x+GXvDyrbyXHLTAk3IjgOHVIqoSbn1BJ3XXcdIdKqnYM+WOXCdXR7bgB6ccuOm5hO1M+5ExlqCTg7lrJhjDdfLP1WJxQqUxOAmQev6zDDPhbZFEdKqlbuMmUAgCChUqG+V2zFSoZd8cNcL9XVYVKAu4ZZnXvzwt7P7H7RuwfVTludvXnZPd1i5/TGCqZ11ifVoMO4B03d3FiW4MuV5KTiG1t2gRcfbX9cQSBLSZkK6skCTeiVaHbcXNaxeeLKSZ9j5uuUMk2bcKluI1SuPHHrsJxA9yFm2xIoNveFhXFPAcNMv8vCjeVjpvYHpCerj/sedeVnIQ/HvGatLu+kyTconTcVIZKxt1xA6z720+oZNiskl7tx3ESzn9OvE91Om4q+ke/jpuCpDB8DTrAquPmJtwca9DFqY5b0P5RPCb+WMVM0GHHJta32mWVVFk6SezHZBeHYgAJNyI4Tje07lBJnY4VIO9ApFLWpDJboZKyq5q6k5MA7o6bCuHGHy8gL9zc9raomJiwxAE7dqRPfqJy3MK2DehLTpJKWdek04qp+P4g8Mf9yivpr8k4EED2HTf++m9Ne9wA/+44EPya8Zv5UecetzDFvRnsc26hwXEXbqqjBoTrna9BB/hz3Bxr0OlOTuJ1zagMleTbEu99Wcdt3z6tTiqFShIEkL1QSdmbWXeoJP8d2arjJpt9MBcdNz5UUsZx0yXcunQx/28Y6WEjKhw3t8Fd9poB9CUn4T/ntGLqdBx+4K+z554zS5kwZJ33KB038dwsXgx8+KH5OJWSc5VEccLfV2GyYQL+E4iE7QeC7HGzu47c8JthVqd7IjPZZPeIm+MWVJB7ZJVUsseND2/n+3IAuPRS67GiCT6rQVdU5C7cPGvQuS20AskNlezaNf19YRNbuZUEoD1urpBwI4LjJCDEfLiqQyV1CzfZCRv/HdkMlQwD+5xXcpKwE7YoHTe3UMkwe9x0JicBLOEGpIdL6g6VlMnQytCVnIT/nNPAyyMj3ACzFAND94RKp+PGJ7ux23Pkhd/9RGH7R36SZyeuZMoBAIH2uP3n6wLbS8mzba/2de5xC3te+M+K92lUjlvYfoDv23nhtm1ben95yCHB23YQ4xUVZo25tvmZws13DbpUCkbz+anZ3Yi1a4XbNanJScRrRDZUEsgMl5S9bki4EYSAkwASQ9TC3hi6QiWDOG6yolNHqKSf5CQ6QiVVrLQ7iU7xPMV5j5uO5CRAeo0lvqSG6lBJUXiqCJXUlZyE/5wfp0QmVBIAunWzbz/Mb+oVwiQryL3KAcjgVk9Mtv8F0hdO3FyxsNeMwx63qiqgsc46Vw9hKgaP7IQ+fcxJeFWVj7az6bipmGw6hUry/aWMcPNKTqLCceOPle8r+/cHjjsueNsu13t5XwNtGs3fYugPirByJbBmjWnOz5rlEB7ZTFWVeV3VN5nXwhefNeLAA5F+venuZ1TucXMbs1UsKrr1NbJ1EUm4EQTsJ+F2q22qQyW5m3vHnjaZK1he6NzUz/DruMmGLkS5x01FvS+nYxe/L6z44SccukIl6+oyJyfs35KXFy4pDJA9x032mgGcHTfDkB8ggzhussKNX/3VvRKue4+bDKmUc4iqioUtt7A3w1DnuDU2tpybBQvM2mH5TebfKzACv8BDAMwKHLNnm68vWODRts49bn7dExnHzSlUUuZ6jKIcgJPjxofXnXJKuLZ9iofijkW+a9Cx6232bKAR5u+VD/P346+3yi8lF/34UjVu10zYscmvcAvbF7jdT/zYIZNsDSDhRhAA7CfhdkJFoXCrqgJ+d7t1A776ZpvMFawQ7aYRVahk2MyPUYRK2gk3FQLCabKpSri5OW6yjiG7FngxwlAxCPDCjV9Fli3UDOhPTuI0ceMfq74mxWs/TOZH8TrjjzfujptO4QY4n3fVoZKicON/A9nkJABQW4sFC4AJE4C6Wqttu/1KtbXm+1zFm1ettbg7bk6hkqqE2733Atdfn/66ilBJJ7HPCzd+v1QQ3M57iP6XXW/so6Jw45v+YLmCMHs/ocFhx1Snfkbsc8RIK7/4yRYqG60BUDkAggBgf1PYTSAU7XFjK1jzHrAmDqwgZqAVU6/NwlGFSurojGSFm1tyEtXCzSn8FdAj3Pi9l2HSmLtN2FQMAnyoJO+4yRRStvtclMlJVKy0O4VKin937x68bXHhhD92WcctL8+6D6N23GQcGYbTnk7doZIqUt5zwnDjV7WYNMl8XADrPLHJtB2TJrksAvoNTZN13FS7eQynUEmZ31W8j26/3azzxVARKunUt0cp3Hz0v1VVaLneGE7CLeM5nXs6ZctH8G2Jj4Hwws2PK6a69l9TkxU1Q8KNaFXY7bFQ6bhxk8E3XmtsWcFqA+sGrEd6275WTL32V0QVKqlC0KrOKsmvsovhgCoEhO5QSbdyALLp3d0mbComVE4rj7qzSupMTqJiwubXcQsj3Kqr0/9W6bgB7hMqnVkle/QI3p6IH8dNR6ikikQ/3Pn88//WtpxqXrg1wLnt2lrg4YcdXnRzCPgJoU7HTUdyElWOG4Pvf1XvcYvScQvoMM+bZzM8NAs3/vpjpD0ne727iX0Vjht/LsT+94wzwrWv03FzEm4qFhRjAAk3Ijh2G3o1OW733WN1Em7CjeG6YsrvgxJLFwDRhUrG0XFzS3ig2nG79lrrsSrhVlhoTSJ0Om7iyKxyQgUkr46bk+OmIkTK7x63MMJty5b0v51WlHUIN52OGx92Gxan864iIsEtq6SKRD/c9f7MAuvc8+6Gm3ADgEcecYhAdXPFZEWn332RKu5VlY6bnXBTmVAMyJ7jFuB6bGgwrxsRv45bgxHyenfb4iAbDcKPlfwYyp+X6dPTI0aC4GePm2rHTcW4FANIuBHBsbsp7IRK2A6D6yQbG6yJrB/h5rliyjoLO+EWVahk2Ladwg2bmqy/VXd0gBrhtnGj9fjFF52/K+w1k0pZA7wo3GTSXQP6QyWdQlJUJyfhj72x0XIIdDhuOkMlxXtr2LDgbffu7dymCpcgKsfN7dzcf3/wtgF/oZJhBUSEjtuebZYw9BsqCQCbNwOVca79aAAAZypJREFUlTYvuLnXsqLTS7ixPi1sVl9Af3ISBi/I4+645edbv5dTNAV7nwuVlea2DRG2SOAl3L7eILFgCdg7buz8hNkDLH6OP9f8eTn44HBtA/5Kj5DjZgsJNyI4dislmkIl+c7Nj3ADXFZMAWvi7ibc8vLk48KjDJVUsaqpW7iNGGH/vCrHDbAGeCfHrbQ0XFpkPxO2JAg3vj0Vbh4QjeO2fz/w/vv2bQPAddcFb/u889L/1uW42U2oZEOP3dxx1nbHjsAvfxm8bb59HaGSbslJVDhuXPuseDLgP1SSIZYkBeDuEOis/WcYaoSbU6ikaseN/13jvscNcF5kCfCbimXIWppwcdz4a3L3PsXh5IZh7ZcO64g5FchW0T8C/rNKhsGPcCPHjWhV2N0UdkpJwabYMMLNccUUsPY42W2oVRGOko1QSRWdEf9v1iHcLrvMetypk/N3hRFWDPZvF69FJtLD7G8Dsue4qQ6V/NvfLJdNhXsCOGeVVLGyyV/LRx1lPebP0WOPhVtRLigA7rjD+lv1/jy/jpvqUEl23sM4y4yo9ri5JSdR4Ljxwi1IqCTgEFHtpx8A1IdK1tVZ16cKx80pVDI/P3j/6+W4qegHnBw3Xi3pEG58n+Axl3Hqgtz2uPHXZLuOih23ffus58KGTzsJNxX9I+Bvj5uK6CQSbgQB/46b3XN+4DrJPFidZyGsm9tNuAEOK6aANXl32+OmS7jpCpVUMQnX7bj17Akccoj52C05iV0tIL+w8yOee/Zbh9nfBrhPqlQkJ4nKcVu40HKuVIQFA3qTkzh9jm877HkBnN3CKPe4qQ6VVLH4lK1QScV73Hp2snfcvEIly8qAgQNtXvCTpAhQ77jJljNheCUnCdMP2JW1cQqVlInAYedHp+MmkeV04ED7vEA7YR5XT2zGFbgHh+DTltf4a3LAYMWOG5+dWIXjxotkVY6bzlprfNuqw+BjAAk3Ijg+HbdNGxrDlRnyESrJygE44ThH54WbU/ZEFRPZXAyVzMuT6+zsCvt6ZQwMAjs/4kXHVHxYx01nSAeg13ETP8fCCpMUKimiauLgJ921CuEm9jM6HTcVwi2q5CSa97ideZL9Hjcvx23yZIev99MPAOodN1XCzctxC3PNRBEqCViCX/UeN0BJqGRBgXndiHwHS83dg6vwKYYh1bwYzc9tCookk5PwxeuB9HqgYYWbnz1uSXDcVM+VYgAJNyI4Njfcpg2ZE+4rL28MViCbIRkq6bhiCliTd8PInDjoDpXUVcdNtXATO1E2oMm4G/x38MfuNgEKil0yi7o66/zocNxUZ5XU6bgB1jlQNYBFkZxERNVk0Om8qwyVBNwFkOpyACqFW1MT8MEH9uG1OkIlFTtup55Y1/InP464OW5FRcCUKd5tK9/j5ubmqRZuKh23KJKTAPb7l3kXKOyiHKBEuAHA1KmZtzMv3Fq+rjmEV0kdNyfxo9pxcwqVjOseNxJuBCEguDMLFgAnjrfffBuoQDbDR6hkLZwnPI4rpoB7SQDdoZIqV5GcnBmdjpvMeQHSQxntJoPsNRXtM/iYWRWOW1TJSbZtA554wnpelXBjq6hROm5hz41dmKH4PTrKMKh03AD3wr5h7teoQiUB4MgjgXfeMR+r2kvLwuvcHDcFtae6d27A/Pnm42JYYmI/isVPtTB/PlBe7vCi36yScXXcvJKTqHLcnPa4yUyU2b+bv2bY4+Jiub3RioRbeTlarjfGZpRlvC8Fc+xrcYHz8uxDTv3gNG7zwk31HrcoQiXJcXOFhBsRHK6DX/ZGHSZMAJrq3QtM+iqQzeA64eICq5PwM/i6rpgC6ZN3MUGJzlBJPpQhjp2RW3ISdl5UOW6AdfxeNbqCYBcqyYtzFY5bVKGSfMkEQE1yEsASbqqSk/jZ4xb2mhQn9qx9Vav4OkWn3/p5YSZsTlklDUPN4pP4e1VUmP9Xcc2kUla4pJvjpmilvaLCXP/o1MYSP/tQkvGxoiLzfeyfaovPrJLbd+Zj7dqAXVk2QyVVO252oZKplJy4snPc2PeUZP6egXAKaw4hUNj1xpq0c9zy0ISiImDQAMkC2YCz+FERKulHuOkIleSL2at23GiPG9Fq4TqLPz1sdhZ26W7fwdiM51wLZDO4jmzSRKvdElgDgpNwc10xBdKFm+i46QyVVNFhRLXHTVeopF2Ilw7HjT83Khw33clJ7ASEmBZVlePGBmNVyUl0ZpUUyzqw3zVJe9wAZ8ctbD/jZwFHleMGWAJL1TVjt18JUO64sXNTUQE8v9D6rr2wxE9ZmRnKv3ath2gD0n/TV19teVhVBdxzl/U7LF5SgAMPRLBtAm7XC3+edIRKyoh9v8lJJPrHhgZgf57luDXUGy2PAagTboaRfj+FvB4rKszracYMYH+HTOE2/ddNWLsW6NpBQZh9LoZKqlj0I8eNIAS4Gy7VYN5wonA7G4vwFQZlfNS1QDaD6wyOHNXYsoLl5rj5WjEF3IWbylBJftWIbxuIZ1ZJfkIgOpGq97gBehw3u1BJFY6b0wBTV2cdb7Fz+JUndgJC3GzPl1AIgng9sHOQhOQkTlkHde9xi0q4hb2fnCYlqn5T8feyW2SRmfSwe0VHchKHPrJHO2sRYNK0tli5ElizBtiwAZg1y2Oxj8Gf07ffBv7zHyxYYG4DmPeHzD10gbYJRBkqaRjW2LRokRmWDejd4xai7aoqU/z06QO8/4klzg7oU4sZM4DGGsXCDUg/9xL9QHm5eV3d/VimcJtxfaN5vamozecnVDKscCsttYR5lFklVe+PJuFGEEi74FnCED4s8j78Cs/ibMePuxbIBjJW8dkK1inHZQq3QCumgLNwMwy1oZLNx96CauGmujNyWl0DkuO48W4nm5iwSQkQrt4X4Dyw82137RqubcD+muF/36eeCr8Hwuk305mc5L33gAsusJ5X5bixa0P3HjcVwtBtP5Sssx+1cLNbZFHhuOlITuJ0bjiR2LVvCYYPNwVVoJ9XOKdvzFuLCRPMn9ctcZavbQJRhkoC5vVeVwece671nM49bgHvIyaIZ882BTAf3rp7yz7Mng3s3xFf4dbysV42NQJYX1Ndbf5fJiOmH8ct7B63vDxrzIwyVFLFop/O6KQYQMKNCA53w7EBy2/WLsCjQDZguxJeXg78+FhrQLhzTnHwFVPAOTkJP9nX4UCoEBA6O6MohJsfx00Gu9X2f//bem7w4HDtOk3CdQg3dtz87yszWRN/M9auTsfthz9Mjw9THSqpe49ba3fcxM+KiyxhCjXz+AmVVL3SrkL8fO97aX/ef4/Vd5XCilLgQzF5XLcJRJFVUlyoEEPiVYVK2u1xC/B7LliAFkHc0gxXwsFcJDZatk5s3Rtf4WbrdrFoHDbOygg3nXvcAMsdT/sxNIdK6nTcaI9bNCxatAjjxo1D586dUVpaikMPPRR33nkn6gNO+B599FGkUinX/1555RVN/4ocg+ssWKbHIAVOAZcC2YBzCBO3kjf4+8XBV0wB5+QkOhwI/tjXrbMeDxgQrm0/EzbVwq2pyfou3Y5b27b2xXDCtM/O/WefWc+xAuBBidJxs3OVVK1q8u3qLgfAozpUUvcetyiTk4TBqRyAbsdNRUQCkB4qyYeTT51qPdbouIV2aDp3Tj/GBuvct4UlrmpQCjtctwnk5Vnn9dNP01/jhFvl5rbBE5/w38FobMyMbgjzu/bpAxx/fPpzEnvcqqpMgSvCzyny0YhC1CGvOTvjvytLgpUbEtEp3EptroXGRvMcsXtXh3BTESoJ2O8b1x0qSXvcPIm15LziiiswZ84cFBQU4LjjjkO7du3wxhtv4LrrrsNf/vIXLFmyBCUBO+FBgwZhzJgxtq/16dNHxWHnPjahkrzj5lXgFPDYbuSU8IAfEMLuKeLdLhaqAOjfN/P119bj/v3Dte1nj5tq4aailhjDy3Fbu1bNIMPaLyoC/vUv8+9UCjj44HDtOmXcjMpxk7kenZLk6HDcnIRb2ON3CqNN+h43lamuoxBu7HeVPW4GG7NZFszCQtMZ//hj6z1xdNwAYOjQlod8eRpeuDk5boC5TeCmmxz+eaWl5phUUwO89BJw2mmoqgI+fW4vTmp+yzU3tcVzNwE9ephrXFOnBog2Ee9VUf2FddyWLDHr/R11lPmcXaikz2tm3jz7KiCicOMTldUYJXj4YTPyJhRRC7empvQxNuz+ZcBfqKRM+3a1V3WHSqp23FTPlWJAbIXbCy+8gDlz5qBdu3b4+9//juHDhwMAtm7diuOOOw7Lli3DzJkzcffddwdqd8yYMXj00Uc1HHErgrvh2OAVJFTStUA24MtxCy3c+Ak2H06gexVfhXDzEyoZdsIWhXBzc9w6dgR695Zr3+78fP65+f8BA8JP2JwGmK1brcc6hZvM9ThISBBkJ5hVlQNw2p+oKiRFtePmJDp1CzddxWVVZX10uh5UCzfAdMIKC9PvJUC948YLN5k9UTaLlkB6qKST4wZY2wSGDLF58dxzLUvuiSewYPdpmDQJuLbWEm5MFLLEJ3ffbWZS9rW/W3THVThugCneunWz/g4ZKtnQAMyd6/CaECrJC7d9KHEXxF5kQ7jxyT50Om4dO8r1keyEOjlilFUyK8Q2VPK2224DAEyfPr1FtAFAt27d8OCDDwIA7r//fuwU9+MQ+vFITuIl3FwLZAN6hRu/UZd3TDQLt6av1rU8/jo1IFyoSzaSk/Adqk7HTUUnKq6yGYY1QHbvHr5dP45b2A3ggF7HLS8vLXV5S/u6ywHwhG3/Rz9K/zsqx013qKRsCYlUyjqnYpZThkrHjaEi6y6Q3nezPl3sc1WLWlUp9W0WLQH/jhvgsk3gwQdbjr/mjQ9a9nm5tR22PioaG9U4bgy73xQIJNyWL0/XMzxujtt+FHvvm3dDp3Czu5caG9PHWJ173GQiWIDshErSHjdPYincNm7ciI8++ggAcAGfnayZMWPGoLy8HLW1tXj55ZejPjyC6+BL8jMdN7dQSc8C2YDzvhl+QAi7ahqx48ZSGr/7pBWEP+yn/YPV+GEkPVTSzXFTLdwaGtLPi8yxO9W4S8IeNyB98I4iOYlI2OOfPz/971yo48bXilIRZhRFqKTYvmrHDcgUtwlz3IIIN8dtAvn5wNFHAwBKt61HT2zy3XbQ+qi2oZIy95KXcPNxzTz2mPNr/JxCFG4s46Trvnk3dAo3O8RQSdVZJQ3Dctx0CzfdWSWpHIAtsRRuq1evBgB06dIFAx1i6kaOHJn2Xr98+eWXmDFjBqZMmYKrrroKf/zjH7FVDNMISU1Nja//Eg93wZ98QjDHzbNANuA8GUyY4/bsoqaWlMYF9dbguxvtg9X4gdn3VH1jtd1UF5HjpmuPmw7hJoZKqjp2pwEmCXvcxM9nIzlJ2OMfOBC46CLr76jquOl03PhzJHPsOh033aGSfN/NhJuYQVRnchINjpvfUEnPbQKHH97y8ECsAYAMd8kOX/VRvfa4yZRisRPjgO9yAA0NwAsvOL/OzynsQiWB8GU6067HqIQbv79eteO2Z4917LLCzW6PW5RZJSlU0pZYeoWVzZ53v379HN9T3jz7rwzoj7/77rt49913054rLi7GzTffjOuuuy7gkabTjs9YmMtwN9zBB9ThiSeAFyY2gmk3O+FWVBQyFl+1cOM7Ms2O269+2Qg2DDBhW48CAFYKZRbqAtifm6oqc8P2I48AB3xXgPean3/kDw2oKmnenK4i7I1P2hKF4xZFqKQO4eaUuUtnqKTspMFu758ux43PEsiQ+W3tRGfS9rg5rSarCDOK0nFTFSrJT/JZny4Kt7gmJ5F03Ly2CTSVlLasprP2i2D1Y7Vw7sc893l5hUrKlGbhr3f2mzY1+RZulZXpw7GIW6jkPpSgWzcPQexG1I6bylBJO/GjalwCsp9Vkhw3W2LpuO1u9rxL7TZ2NsNE0i6noGiBnj174sYbb8QHH3yALVu2YNeuXfjoo49w0UUXoba2FtOnT2/ZV0d4INxwFRXAH+63D5UMXCAb8BcqGVa45edbWZY0O258+CgTbk5hpHahLmIRUv6z7fdtbnHs3n9H0QoVm9Ak1XETO2sV1wvgHCrJt6+qMG42HDdVyUnsVvHF75dpPyrHTUUokNNkUNWxs9+Mvx7feivzdZm2RXQlJwHSS7MA8SwHANg6boWoxaV4sOV5J+HmZ5vAjt1ivbJ0Z89NuAWqj2qXnESs6xaEggKr/dpaMxnXkCG+w2u9pnFiqGQxrL53H0pw+ukSt1O2QyVVZH0ErPtTVQ03wDqpTU3WXCzKrJKqHTfa45YsfvKTn+DWW2/F6NGj0a1bN7Rv3x4jR47EY4891pKZ8pZbbsHmzZtDf8eePXs8//vmm29U/ZOyh80N162TdUNcd30+Vq5EuALZgHOoJD/4yogIFtbGd3Br1liPsyDcxFAXryKkF+D/0BdVqK0FHpuvaBLOVv4++8xatVO1ig/od9yiDpVUdW5073HzctxUJiexE26qHLds1HFT4bhdc43996gIlWT3T21tej70OO9x8xMqGdb9yYLjNgUPowe2tDzvFCrpZ5vA/oZM4ebXcQM89nnpdNyAdHdm8mTgq68yX3OAD/iwwytUko+oDgz/5d99x31pAhw3O+HGh2HKiELA/n6KMqskOW62xFK4tW8OVnbbD7Znzx4AQAevO94Hl19+Obp164ba2losWbIkdDulpaW+/ks8dp0F18l171WA4cMRrkA24B0qWViYPggFhQm3HTvM9j/4ADjxRPvvD0hTKpxwA8xQl4YGf0VIAXPCAKSH7Eh1Rs37RgEAc+aY/1cp3KJ03HSFSkYl3HQ5bqpDJcVjt5v8yRy/nVuow3FTHSrJn9M9e4AVK8zHuhw3PjxKtm2nTHgBEk24YhcqKY71opDziw/HbfXnJaGLWH9Xnem4zcVlae+xc9zmzPEXcVJU6u641cH9Xg1UH1U8ATKOG5Au3PiafPxrDgwcaNamc8ItVNIoKsEPfxj0YDm42nz47DPuSzU6bvz1LTMntBub+HFPxl0G7DNBR5lVkva42RJL4TZgwAAAQJVLmiT2GnuvDPn5+RjSXFhlw4YN0u3lPHadhcpOzku4yYS9AVbct2GYq1Pnn+/8/QHZsy+8cGOhLk5FSMXPGs175ZQJt1//2nrMHEidjhufYU9HqKQq4eY0wLBzk0qpc36YgNC1x011chI/jpvqUEkde9xUJycR9zu//766toFMx00Me+MjCIJid5/zsWwq97g5OW4KhVtVFfD1v632Ro8rwYEHIlRm35f+Zr/HjcfOcduyxeaNNnTuEd5xC1Qf1e5eVem4ifelRx9TUGCadE641XE76rgSubWtQw6xHv/rX9ZjHf0MYJ57HWH87PfTHSWjOmoAiM5xo1BJfRzenFlp27ZtjslHVjSvYPI13mTY1rzfqX3o1EStCLvOQuVE0ylpgCrhxv/GNTWZ8SUSx1/XFF64AebC+SOP2L+Wh/SsfWwVkp9ANOZJTMIPPNB6zFbAVa5QideNikKbPNkKlSwsNMVbWHSHSup03ETxYzf5Ux0qGeUet7B9wdix6X+vWGEuVPzpT/JtA5mOmyjcvve98G3b/V58aJfKUEnNjhvbJ7xtg9lePQrQAPP4w2T2fX5xpuO2FekZZe0cNxZN4UV+obtwc3PcPOujiveqyj1uQLpwEw/Ex306dapzN+3muB19vKSr1L27VefTSbjJRPiI97nKaJAohZvquV5entU+FeAORCyFW9++fTFq1CgAwMKFCzNeX7ZsGaqqqlBUVISTTz5Z+vtWrVqFNc0rlKNHj5ZuL+fxctxU7snR4bjxK75792amMZfojNoUyQm3nTvTw+x5qpC+QaITqgGkh9J8u02iM+JdguZQZK2rd6o7UTGsTtWqph/hJkO2ywHoTk4iMzHRmVVSZ3KS0lLTTWKfX7HCLIQ+fbp820C648Y714xLLpFvm0elcIvIcVvzWUPLPmE20bcTVX6LWFdWApt3ZDpum1GWfug23+G7QDR3bsVQySakHMePUPVRo3TcfPS/5eWZpRsZbsKta19J4QZY4ZKbN1uLCDr6GUCt4+YVKqkjE7TK6Cqv7Lhh+xq7SA3xe0i4qeeGG24AANx+++1YtWpVy/Pbtm3DpZdeCgCYNm0aOnIbO59//nkMHToU48ePT2tr7969eOCBB1qyVfK8/fbbOOusswCYhb1JuPlAt+OmW7jxm9P37VMq3Np3sj57GD5uecwGYbcad2Vl7pu0d6EjfoX7Wv7uDHNfC59hq6ZJYhDjJ1RROG46hVuUoZJxF25RJiexm/ypEoY6HTe+D1DVlxUXm/F4ALB1K3Dffemvq8rIJronEybIZZOz+710OW5OWSUVCLd33rR+R5au3y1Vv1cR61270h0vJqhE4cbqion4KhDNHb9YDsD8bntnP1R9VJ3CTby2ffa/FRXAE09kvl0MlWyfryhLKIMfeNm1x/cJcRVuuh03uz1uKscmu+y4KsZtctyywxlnnIHLLrsMe/bswZFHHomTTjoJZ599NgYPHox//vOfOProozGLz6IFYOfOnfjiiy/wn//8J+35uro6TJs2Dd27d8dRRx2F8847D2eddRaGDRuGY489FuvWrcOwYcPw9NNPR/lPTC6697jpDpUUV3wVCre8NtZnn8CFKGwedP04bpMne5ddeQZntzxmjhtfQ6iki8QglpdnbZROuuMWdaikDLrruNm5VlEmJ5FpX+eKr9MeNx0ryqr3/on7Q1RGPNjdi3ymuijquPXvH65t7t+earLOOXNonEQV4F3EukMHoB6ZjtsWdBfeaS+ufO3C4I5/6qQGFBVZws1uf1tRkSl0fJXa8dqPmmXHjVFRYZYPmjHDXMwE0hc8Lzy/EVddqli42bnAuhw33dEgUe5xk+0foxZutMdNP3PmzMFTTz2Fo446CsuXL8fLL7+Mvn374vbbb8cbb7yBEp83bNu2bTFz5kwcd9xx2Lx5M/72t7/hpZdewubNm3H88cdj3rx5WLFiBXr16qX5X5QjeGSV1BIqaRj6hJtYNFhhJ90bZvkHL+HGQl28smtVo1PLYybc+LCRXoMkUl0DlnBLouMmXjdJFm66ywFEmZxElXDTmVVSdXIS8fOqhZtYFF6l0Le7Hr791nosm8nZK1SySxdg5sxwbRekOzMMP44b4L4XbeBAoH2XTMfNcBBqPJ6JQxjc8R85ogFr1wJlnczv4YWbkvqo4j/0t7/12ZADbsItYP9bXm5Wt9iwwcyzM/nn1nm5eEIjOrbhhJvsfADQK9zOOy/97yQ5bnZ73HSHSqoYt/PyrH3n/PHmiOMWe8l57rnn4txzz/X13okTJ2LixIkZzxcWFuKWW25RfGStmLw887+mJquT0B0qyXdGsnHbGve4iZ8diEpchMfRuVlkOQk3PtRl8mRz07wd+1GC/ShCMWptHbeCDpLCrV07c5Mdc9xUdnRJddzy881BwDCSv8ctG+UAVIdK6kgaoMtxcxNuqlJpq3bc7H4vlcLNK1Ty668zs3L6xVa4Gb4cN8Dai9acZDqj6XMuaAPcb/7NHDd+L/PjuNC2Xc/EITbHj4YGc0worQWqgc5lhVj5suncDRwY4md2S05ywAHABRcEbFCAHVBjo5TjJjY5ZAiAcqEfUFVQ3a4N1cLtjjvSM45FKdx07HFTOdfT5bgB5rGLi1o5Itxi7bgRMYbdcDpWYexCJVUlUwC0hkqKn12CE/Eb3Nzytyjc7EJd3LJrAZbrxva48cJNehATHTedddx0CzdVgyOQeb0D6oSbXcheLpUDUJWcRJw4MEEdFtGBqK0FTj8d+Nvf7L8/DHYryiradsvQqsNx27TJeixTMBjwDpWUKZBtI9wKUYf85oy8Xo4b4L4X7YKJmY4bL9ym4/aMz/hKHMJwWWRpU1qkrj6qeK9Onqx2kUI8QNn+V+zDkiTcOncGrrvO+psPlczPV+e82yUn0RkqybtaYfESbiqiNUi4EUQz7IZiN5nuUEmVDoTG5CTiZwu4QR2whJtbqItbdi3AEm52oZJSkx7AWunety/TQYm746YrVBKwH2BUCbdUyhJASXPcdCcnccsqqXKBqLEReOgh4KWX0t+jcjIrhmSrnLDp2HfCwws3naGSxcVyLqqNcOMXtrwcN8B9L1qfAZl73HjhZpd8ylfikJZGM5NBGM392L6mwtCFwwG4L7Ko2O+jMFTSsW1Av3BjokpXbVrecZMVtNlITqKq/+Xbr683f9MpU4Crr7ZeV7Hox467sjLd+aQ9bkSrg03wWUhdUhwCIFLHTeTg7xdgzRozdn/WLOcB3Sm7FgDsgJkxriN2oaSwESOGKlqtBizHDTAnUzodN1WZDRm6QiUB6/jYMRuGdU3KnhcgU7jpcrB1lgOwy1Snsn3RcVO9QMRlL7Z9TxjYMTY1ZfYzuhw3HclJ+FBJWcfNLlSSXY8KJ/hMuPELW16Om+deNO5aLk5lOm68cAuUOKTloK3jr95ajxkzgNpdZj/2xbqi0IXDAbhnlVQxCVeUnMQWsR9IkuMGZIrmpAg3tzpuKoQPvyB6++2ZRWxVCrcLhTBmctyIVgcbvFm2MZWOm1eoZIKFW2nHAt+hLnbZtQBgF6wV7zWr9qCsfbNwS6XkO2qxlluSHDedwk0MlVQZugtY143ouLH9pDKkUlb7SSsH4Baqo3qByG7RQ0cNPbvvD4pOx80rVFKl48YmsKomgx6Om5dw89yLxp2bo48whVXbwnThFipxiM3x3/e7BsyebbSEZLLkJEELh7fgFioZd8ctyaGSQKZoViXcsplVUoXY58fVRYsyX1cl3OrqgHffTX+dhBvR6ujUyfx/TY15YyTVcbNLTiIzUeY7TTsCDpBidq2VK4Gjx1udfd/utVaYUdu28jHnvOO2Z0+y9rhFGSqpS7ixa5Hfx6UCPnEAoC85SZRZJVU6bk1N9sJNZSkG8dyodNyiTE6i03FTKNxOxt+wDEe3ZPYF3EMlfe1F4857caoOs2YB446xzv2KVfme0RSupF3vDShAA/JghtjyNeQA/4XDW3BLTqJSuAGZ45CsQHHbv5wE4RZlqGRUBbhVhkoC6cfNUCXcvv7a/bsTBgk3IhxMuAFmcVZdnVwUoZIqywHwK4F2hBwgWXat4cOBdl24zmz/fus7ZcMkgXTHraYm2Y6bjuQkOlY1gXTH7YkngNWrzb9VxeGLjpuu5CR2jptsRk+G6omDOJEV7x8Vm++dircDySoHwF/vCXHcAOBoLMfvYO2ZcXPcfO1Fy8+3rpvm3zOvyRr7Bh2YL/VP+G57umPIargB9nXcAO/C4S1EtccNyBxTdSUnyctTM3ZEHSrJRIpK4aZjbHIrwK0yVBJIH68ZKh03p9cTCAk3Ihz8qmt1dbKTk7h9f1DEQrIiKjoLvrOv5Rw3FSuPbo5b3Ou4RbnHTadw42PxVQ0uYry/ot+V39Oz89MqND32eOabVIdK6trjJk6iVO77AdQKt6gLcPOozCrJ+l9Nwg0ARmGF9XU2jlvgvWjiIo7CCf5LL6cLNxYmCWQ6bgyvwuG2xyYKN9XXuijcdIVKlpTIL66wdhhJDZXUvcdNZ6gkoFe42S0okuNGtDpEx03lIBD1HjeRuAu3IsFx40MlZXFz3FQPAjpDJXXvcdMp3HhUO26ig11QECo0uKrK3Mfz3xdYn+246H+R99STzt8dBrfi5KqdfZV7XRm6QiV1Om5e17Os41ZQYB2jauHm8W/nHbfQe9HEEg+KJvgNDcDzf7X6Qb+OG+BeOLwFt+Qkqh03EdWhkrxwU0GUoZJ1dda5T2JyEl2hknbCTVU5ADvHTXZOkEWS6xUS2YUXbqLjlqRQSTuhFcNQyTREx03lICY4bk3761pWd9ZvaoPeNiV6fBOl46Z7j1tUwk1cuQ6Lk+MW4rwvWGCGZ9XWAj/SvfbnVspA9pqxq+Pm9N1hcXPcVBXgvvVW4LTT1LQrtm2HrOMGmH3Vnj2ZoZKyvykLb3W4b351bQnOOE+iiDXg7rhJ7I+urAS+22EdUBvU+xZuboXDW4gqOQkQreOmgigdt3nzrMeqxiXAfmzSWYA7SaGSYt97yy3pc52EQcKNCIco3FQOAlHvcXP7/qBE7bjxmR8VO27PPFaD/a/VY0Lz3yefWYgtPczMa1Onhth8n+Q9buz4mprMazIq4WYX4hEGp+QkAY99wQIzIQLDrm6VUuwmDqr2dIoOhLgqmxTHbelS8z8V7QLu92Iqle7Kh4UJN9WOG2vD4b7p3q8tug+XbN/NcZMQbrt2WXU+Af+hkgy3wuEZx6Y7OcmOHemvqXTcdAg3u4Q5uoTb66/bf28YvJKTxL2OG398YsQDoGZ/tDjXuO46YObM8O3GAAqVJMLBr7qqTk7iFSopO8gkXbjxnT0/QKoQbtwq1Bt/2YPG/dbEoR5twqeiBtwdNxXix024qVzZfPxxfcJNzDKgSrg5JScJIJirqkynjafJxxASuN4Uj7iIYxjqJm1uWUgB7wyxfuDPr8owWLffTbb/ddsz1LWrfHkKwOrDdAk3J1T0kU6Om2Qymw4dMoWbX8cNcC8c3nJ8DN2O25o16a+pdNz4UElZ4cOIMlSSJ0mhkrqzStqhIzmJivE6y5BwI8IRdagkP8jIujM6k5NEESrJd2a8cFOw+vj2Kms1vRQ1aANLOPArvoFTUQPRlwPYts36u3Nnubb53+1nP9Mn3ERi5LjNm5epbfw4br4SJzhh59Kyf4PsJNxLuHndy36IIjmJ23eGwe289u0r1zaD9VWqs0p6taHCoXFy3CTHvYEDgY5dwjlunoXDxePTnZxEoGpLsfcePDec9i8nMVSSJ+5ZJaMqwO2EjlDJBCclYZBwI8JBoZL2zJ7t/nqMHbeqKuCuP1iOWzvsSZs41CPzvPtORQ1kxuPrDpX87jvzcWmpfDz7xo3pf0cl3FTtcXNy3Hwee0ODmQBBxI/j5itxghPib8o72rKTNtGBUOGwiegSbm6/m+wks21b4MEHgWOOyXytTx+5thm842YYVj+fZMdN8rwXFABnnRfOcfMsHA5kNTnJT88tRp8+ZjKYUA483/aePdbjpAg3XY6bTXkK7XvcdIVK2qFCuIl9Owk3otXSpYv1eMuWaEMlVdQTYze16uQkP/4xcO65zq9LZh1buxZY/52D4yY5KZk3D9hR789xY/hORQ1EL9w2bzYf9+gh3/bnn6f/rVq4qQg/c0MyOUllpaWDefwIN5Y4IRROSQkAtY7bW2/Zb46XJYrkJG7fGZZf/AL4+98zz7Fqx622Vm0YvFcbKh03xcINAM6bEDyrpK/C4UCm46Zzj5tALYrkwuz5Y9ct3Fg/kATHDci8HpkbmUqpTVTEwl+jCpXMy5O7LvnP8uMGhUoSrRZ+5XXjRv113FRP8llHrdpxS6WA885zfj3EuWGp1/v0AQ48ELj1bquzf/8VTrhJDALMUalBuuPGCzc7xw0I4Kjwq2c6hBv/u+3fD2zfbj4uK5NvW3S+HnzQeqzTcVOFmPwkYKjkrl32z/tNTuKZOMEJnY6b2M/83//JtWcHf/yiMIyr48YjnmNVjhvfLj8RT4JwY/u7WUZfhRPZ3v3Ss0r6CZX0VTgc0L7H7ct1zm3shzU2hQqzj1K4JSlUEnAuVVNYKF/jjr8ubrsN2LTJum50O24q3UJ+nkeOG9Fq6dnTunE3blQbL+8l3FQM7rqEG+DeGQU89gULzBXK2bMtx4Nfef1y5U7rzRKDAHNU9iDdcfMKlQQCOCpROm7/+pf1WIXjNn58+t/PPGM9ToJwExw3o/nc761vg7VrvYW3U+kuP44b4CNxghNO2eQAtY6bHa651X3CH7/o7sd1j5vb96hy3Pi+ilf1uoWbinu1e3frMR9tonifWGGeu+MWuHC4xlDJqirgzXfcHTeRQGH2/PHx14sq4cb3Jew+jSJUUsWiorjnMmTGYFvE62LuXLVZrN2OUeX+PL7vJceNaLXk5wO9epmPN2zQtzr17rvAWWepj1FmnU6MhRtLvS7mTOBXLzvCEm6frg2/QsUcFTfHzW1zvC9HhT8vYoiUauH29NPWYxXCbe5c59cSJNyMxkbMuNFAqvl++ueaQhx4IDz3nwwcaH8a/ThuvhInOCEmJeAHYJXlAEROPhl49FG59gH7dNqMJDhu4n3J+nxZsuW4qWg/IuF2wrgGTDjTut5Z8fDQhcM1JieZNw+obfLnuDEChdnrdtyKi61rvbra/D/fGepy3FTcT041RnUIN36gV1HP0W3cJ8fNERJuRHhY2MzmzekTKtnBUezknnvO/I8R51BJQIlws0u9zuBXLzvAimF7/uWi0KnXmaMSxnEDfDoquh03nauaBx8MDHcoAJUE4dbcvlHfgNtvsxZZmBj32n9SUGAmQBDx47j5SpzghBgqyd+vspM2tzCiZ58FfvhDufYBfSLCzV3XKdx0hKbxk0HVCzhBXvNLRMKtpE0Dzj2lpuXvK29sizVrzHXSWbNC1NHU5LixMPsGl7LATot+vsPs+XNbY50TZeUAUikr8/D27cCyZea+V4bsHmSnz/fuLdcu4Oy4yQofvm0Gv4rsFIYRhKhCJclxI4hm+LAZlatTdm2sXWs9VincVCcnAZQIN7vU6wxeuPGOW01jUejU68xRcXLc6lEAwH6i69tRiTJUkoefaMng9LsmQLhtqTbPTR4MFMPaayWKcbf9J1OnZo6lfhw3X4kTnBBDJVU6bm6oGtzd7neZ39xNVOoMlVS1Wp2tUMkECTfRYe5/cCmGDJH4J4h73BTtS2dh9k7CrQp9W9xCEd9h9vzx8YJK5SScJVzbsQO44IL013SFSuoQbmzioMNxS6pwW77cekyOG9Gq4YXbV19Zj1XcGOIKFd/xqRRuYlFc8bvCICncnFKvM/iwE95xq0VR6NTrzFFpQj72NbfPO25ubptvR4XPEhWlcAu9wUrA6Rh1uoUKqKoC1nxptV8Cy7VyWgm3239SXm4mQuDx47gFdgZ43EIlVbk/IgUF6rJ86hIR3bqZyQLs0Om4qZr0UKikPWJoLe8uqdzTqTA5CQuzdxJuY7AMhks/4SvM3uncqnCVGMxx273bykjs9f1+0em4RRkqyddGVSHcdIZK8otDr73m7zsTAgk3Ijz8phd+gFExURY7Sj6tncrkJH6+OyiSiQOcUq8znBy3WhRJpV5njgpz3XjHzWmC7zsVNYMNJjr2uOke3J0GwqFD5dvWKNzmzQPqDC4EixNuToLcaf9JRYWZEIGdUr/JSULD3y81NcDZZ1t/63LcVK7i6xQR06fraZdHvC9VnZskO278uKfTcauvT1+okK1F6RYqKXHsbP7uJNzWo7/r531NF6IQbnyJI7Gmow7h1ratWvETRXKSTZusxyr2uOl03CZODP6dCYGEGxEevqNjtG+vZnAU007zSkZlchI7suy4OaVeZ7g5bkD41OvMUWH73Pw4br5TUTP41UHVwk1nKCNgf4yDB6vZC6VJuDH3lg9p9OO4Ac77TyoqzMjlGTOAzl0jyoYJmIqRR5fjpnIyqDP7YyoFHHVU5vOt3XFTmNXXFt5xW7vWFG+AmvPOT/BFx01WuGly3FiYvd/SIDy+w+ydjk+H42aHjlDJXr3k0/UD1j25d6+ZyI2JfRX7/8Tj5oWb7lBJ2XH7xz8GPvgg83ly3IhWTdeumc916qSm7QMOSP9b9QZ2nY6b5MTBqz/kHbc2aMh4XsbwrKgAOvXxdtwCp6LmPwjoEW7durl/pwQNDcCeepvf9ZVX1Ay+moSb3f4TP44b4L7/pLzcTJCw/H3NQ4jbedHluKmcDOp2f+zOTxL2uDklJ9Gx6Mejon2+n3n2Weuxins4lUov3aEri6pC4cbC7N2SkzjhO8ze6dzq2OMW5Pv9Yue42c2fwsCfAz6Jm4qFLX5RBVAv3Nz6ExW/7ahRmZk7yXEjWjV2HZ0q4eYW+51k4eZjku+Uep1hl1oZMIWbVOr1Zjr1MR23ttiLkjxzMzKb4IdORc3Q6bg5nTSJjpovfv7K0vRjfPzcv6KqcFDottPQJNzs9p/4FW6At3tbUORx3Kef7v66F26TVV2OW1ShkjqSOKlqlxFFchLVYfDioh+PivadxjhV550XbiodNzFUUlFyEsAMs0d+sDYChdkn3XGzE25u3xcEp3tSRf+4c6fza7odNxV9TSoFjBunvt0sQ8KNCI9O4TZ1qvNrSRZudslQBJxSrzPsipmy56VSrzOaJ8t5MNANWwEAPfsXyaWiZugUbk6hISEn4mLxc9F1fPjpjo7p8wOjSbixsZUPY2oHaxV1H9wHd0/31i0c58c/DlCoyYFevZwnrEl33JIo3FSJWp2hkgMGOL+man+0XX+lQ7ipdNz44/v5z9P7X8nzUl4OnHlOsDYChdlHvcfN7/f7xe7zqoSb0z2pQri5rQLrruOmSmCJCzkk3IhWjV1Hp+JmBsy9G06TvrgnJ5EUboB96nWGk+PW1KZILvU6g+vYUk1NAIDiEd+XS0XN0JmcxIkQg7td8XPRndqPYtf0+YFQlcVQgLm3vOjkE9q4CTdf7q3bQs1DD8kXP8/LA773PfvXVE7adLXrdsOoCLG1u25UhkqKbSUhVFJ3tEYqZX/dqxJu7Bh1Om6AGebNUHDsw0f7++1ChdlHmVUyyPf7JamO29ixmaURGCocN34OIKKqrxGPk0IliVaNzj1ugGk72QnBJCcn8Zmr3y71OsPJcbv810VyqdcZdud3zBgFDUOv4+b1nT5xKn4uOm686Ln4Yvt90L7R5Lgx93Y3LOusDFaqa6dFAMDn/pM2bZxtOVW/6SGH2D8fNguPF1GFShqGfPsaHLeGBjMUeuVKYE9dBKGSvOOmon2+TI2IKlFrNy4lyXEDoi3DAMkwe6e2Vd6rg1zC3pMo3FQkJ0mlgD/9yf41FcJN3EPHo6qvEccnctyIVk1paeZNoFK4AfadW46HSjLE1OuMfShBk00x7BNO1Zj2XkXmRCA9Ock+a6+VkkHGiYCDu1Pxc9Fx44VbYyNw9NESzpvTNXf//SEbtJg6FdiTb000eeHm5LgF2n/iFGKkalL1/e/bP69qMUEkqqySuoRbyEk4v5/zwAOBkSMz93Uqm/Tw55h3lVQIiOHDnROUqBJuOh03doz19da5yc+Xv5/cXH2Nwm3lSsiH2UfhuI0eHfz7/ZLUUEnWvs1v+9XWDqFqxqaRDeFGjhvRqkmlMidtqoWbXXtxF258J3fooemvBezp+NTrZWXmc40owJcYnPlmVYOY3fnlU2DLwDpNw0h3THQlmgACnRe34udujhtgirfQYZN219y55wKXXhqisXTKy4Fxp1mro36EW6D9J04TEFUDr7i5HADuvlt9X8NohY6buJ+TIS5W/N8zmh03VZk2V6xwfk0FUQg33nFr21Y+tDZLwm34cMiH2Uch3AoKgMMPt39NNpTd7vPt2sm1ydAZKtlMU9vMMN3vje2CPn3MuUlVVciGjzvO+TVy3Bwh4UbIoVu42dnxcRduqRTw4Ydmj/bii+mvhViiYqnXN2wwVy5XrgR6nzgs842qXCu786tqpZqfFPMZq1Qlmrj+evfv9MCt+Lmb48YzaVKIgczumjvySDX7oAD8YIw/xy3U/hMn4aZKAB1+ONCzZ/pzRxyhpm07VC4iuN03zftHpVDguNnt52SI1/wFE9vg8ccDNW+PTscNsA9lzMtTt5c0qlBJdm5k97cB7scXQaiklrZV73N9+mn752X7Ybtzr6qf0SzcFiwANu1Kv/72oBS1KMZ335mLPaGTdA0b5hyKScLNERJuhBzihFtVchK39nQnJ1ExuI8aZaqt/v3Tn5eILSgoMDvI4cOBdn07Zb5Bp+OmQ7hVV5v/T6XUTfJvvNH9Oz1wK34uOm6OZRlqQyRT1LTHrQVuAWREn29bHrN/g9T+E6f7RdUAmZcHjBiR/pyqRYpf/jLzOZVhu7qFm925D3AtOe3nZGSWi0jh4ouByy6TWGUH9DpuTu2oFBbZcNxkcbpP8/LUTPJ1Crco6rgBwODBehaF7M69ylBGOxS0zxZ1apAu3LYhPb+BVJKuiRPtrx0KlXSEhBshhzjJUbEyyKPYcWMb7//zrcbkJCJ8pyQdFN7MKadkPqdKuNl1bKoGZf4YmXBTEQbEKC0F7rzT+Ts9cNtvLU5inZLEAGa4ZaCf2i5sRsXEnsEtgJQXWpbiDbeUyO8/qauzf17lRE4cfFVd63PnArfckv5cVI6bW70xv0g6bk77ORlOdf7mzpVYZQfSfz8dwi3qwuRO3ynTtmrHzUm4tWunpv/NhnDTkVlW/G3ffVe+TZ3CTVNyEn5RRxRuW9HN5hMho00A+zkHOW6OkHAj5BA7TtVJJhRllRQ33l8+XWOopFt7AZKTuHL66ZnHmTTHjYVKqt7fJg4CAVbY3Iqfi44bbBLEMDZvNsMufWO3gq9iDxSDV6SbrVDJAQeXyO8/cUrprEqMA5kTV1X9TCoFHHaYnraBzHupY0fgnHNM5eNZa8EHEnvc3PZzMtwKtEutsut23PLyMq8/lcKCu4daULXQwo6TT+CkwnFzuk89izX6JBdCJYHMe1bsH8Jgd0+OHSvfLqDNceMXdbwcN0aoaBPA/t+gyhkjx40gBHQLNwWOm93G+2/gUutHtXA79VTrsYpBADCP8amn0p9LmnBjE4kYCTe34uduk1g7AmWrj1K48SnGVZx7J8dNJaIjqXLCJvZZOkMlDz3U3EczbZqa9iWEm9t+Toafaz7UKrvuPW52bals2+4aUbUox46Tt0JVJLJwigNPgnDLpuOm4t8lOm5vv60uH4CGPW7ios5epC8cOAk3IES0CQD06pX5HDlujpBwI+TQOekBpB03p433/8Qw1MBhFVO1cHvwQTN70jnnAP/zP+raFTv+pAk3hqrEJE7fEXCFzan4eabj5k6g+ZDdda5SuDntPVVxv06dKt+GF+LEVWU/I7alM1RSVSY5hkRIoNt+ToYf4RZqlZ0/5/wsLynCbebMzPZUCzceFeKKTwbFo+qazIU9boCe60YUbir30WkQbuKijt9QSSBEtAkA/P73mc+pElji9U3CjWj1ZMNx89mRum28b0AbfAj7ui2bvlMs3Hr0AJYuNVfadW6QVzWIRS3cdDtuAYW4U/HzII5bWVnASLgoHTceFef+kkvsk8KoRAyV1Oi4bd9bjJUrzb2w0ltSxftGlbvBkHDc/KyX+L3mA6+yO/1+KidV4nlQ2fcefDCwbl36Ta5TuKkodsw7mzyqrkmdE+KCArOwoEgUjpuKZGU6r0WncV9iLiYu6vgNlWQEijYBgJ/8JDPmWmVyKx6VIfxZgoQbIYfYOajuSJ3SOvvAa+P9ctgXlV74lOYMf6oQz42qDimq5CQM3Y5bCFjxc368DSLcJk8OeMp0Czcnx02FcGvTBrj1VuDyy+XbciJCx+33D5Vg5EhzL6x0nSLdjptdX6hwUuj3mg+8yu40TiTFcQPMi4Mv9K0q8ZTdhFWFuHJaxVQl3MQMyipJpYA33gC6CU5PFMJNBeJ9qqosBaBlj5u4ThBUuIW6pC64IP3vHHDGdEHCjZAjasdt1KjM2nE2+Nl47ybcVI3BWtFVgNiuw1Q10GTDcQtJRYWZUIyJN7+T2KIiYMqUgF+mW7iVltoL+6gyKMoiCh6FIVIvLkk/B3yZB+k6RTF23Pitjk4EWawItMruNE4kSbgBehJP6QqV7NkTeOklPW0DwKBBatpxon174KST0p/TESoZhXBTidPCp0TfLibpEoXbDjjU7kSIaBMnSLg5QsKNkEP3HjexvXfe8eUs+dl4/z6OtH3+2635wWO0s4HqmnkMHZuzGdnY4ybBEUcAjz1mPk7Bn5CaPz9EWn074WYXGhSWvDz76yWqmmWyiKGSitzlBQuAX16Tfg7sCquHzqAo3ksx2uPmJ/quAf5/00Dzf6dJmcprSGd4mt13xF24AfZ9iqoSPlFk69NVFoRH93WiGqc+RUK4iUm6ggi3wNEmTqgUbgsXmgsLc+eqazOLkHAj5NDtuImug8+O2s/G++3oiir0zXi+EfnBY7Szga4VqaiFW0wdNwYLmywucJ+YFRWZ7wtcwBrIFG7XXw8cf3yIhlzobDPYJtVxUwDbAysWUncqrA6EyKAo/q4xctzcSl8w/DpugVfZnYQ3OW56hZvd/a7S2dfNgAHpf+sYA5PmuDkJb8m+nU/SJQq3anSy/UyoaBMnVP4O558PfPmlumy+WYaEGyGHbuH2/e9bj3/6U98f87uX+wS8ht9ietpzjchXPr/SBpt5HXywujZ1Cje7Hybmwg0wxdjsW+wnZmVl5j6otWtDijYgc4J/223qN1HbhRi3YuHG9sAGEW6BMyj265f+dxSOm0/h5lb6guHXcVO2yk7CTa9ws4tucKrvFob/9//UtWWHWLReR6KJXBFuknMxPkmXX+EWKtrECQqVdISEGyGH7uQkvXub9couvzzQjMnPajIAfIGhuAG/TXuua/d8NTHaUbBsmbkJ569/VdemKHxUTngOPTTzuRiHSvJ06ZC+8XHlSmDNGmDDBmDWLMkBS4MwyUC345aNyUlI+D2wolCzC5XkCZRBUZxYVlf7/KBPJEIlAefSF0FQusqetFBJvs0kCDe7ybBK4Xb99cCxx6prT0QUbjrIhVDJdu3MuZMkLNqkrsBduElFmzhBws0REm6EHOKoryPm/NxzgXvvNTdX+8TParITEy7O12oeKGXIEOCGG9QOaDodt+HDM57avKtETep1hq69FsLEbPhw8/QrOT15eUDX5kxdxxyjoEEbROGWl6f2t9UZcqVY2PJ7YBsFV8nNcQNCZFAcO9Z6XFYW4IM+sBPLASaJTqUvgqB0lV2n46ZjIqjDcdOVVRKwd6hUCrfiYuAXv1DXnkgUwi3pjtvEiWaBb0ULohUVwOx709tiwk1JtIkTUeyZTCgk3Ag5RMctRoon7GryxInKDyVZ6BRunTqhfsDgtKceXtBWTep1hq6VOt2pRt97D/jd74D/+z9lTTY0mIPqypXAznwhVLKkRG2oUVOTurZEFAs3tz2wXo4bEDCD4sKFwNChwFFHZaa8lkUiVJLBVtWD9pWxX2WPOlRSVf+g03Gzg9+OoIJx46zHV1yhtm1NCbn4fnL7noQJN7FvvPRS4PDDlX5Ft37p4vCdFW3VRZs4sGlrm2Rk984CJNwIOXQ4bIoIu5rctzz5BRql0CjcFiwA3v06vZdnE2Xp1OsMXYPkCSdYjy+9VH37Q4YAV12lJMSlqsoUwX36mPXIRo4EHnxScNxUh2fqdNwUh0q67YH1ctyAgPPovn2Bf/8bWL5c/X5OUaTl54e6/isqzInrjBnepqDWVfakhUombY+byJFHmn2OSsrKTMdn7lxzVq+a3/3O3BN8zz3STdn1k3/4X83OrGrEvlGHUyV8x/ARKXXRJrB+B55Lr2ijbjE3xyDhRsihOhmJYvyuJv86//fmgxNO8J/ZJAbwK4XKwg017XFbsMBMqb7bSB8ERIcjdOp1hi4BMWwY8Oc/myPJb3/r/f4ssWCBqQFnz04viSGmcN5aKiTOkEWn46ZYuLntgfUSbsrqFKlAnBBKiPHycnOevWGDuXdz5Upg5oz0e0n3KrvShcBcSk6ickzi+/f33lN+bwEww4OnTdOzd/eqq4Dt26XdPKd+UkzII7WIyIgyVDIC4aYS/nfgqUcbdYu5OQYJN0KOGDtuDLfVZLZ6fFnllcDXXwOvvJKdgwyI3UqhinDDhgbgmy3qHTeWeh3IzFAl/s0InHo9CiZMMGetMRX3TBzX1ma+th3poZJLvxqodjDU6bi1aWMmJzr2WLOWoyRue2C9QiWVZVBUgSjcFEywCgrMidLw4UCP7umvqVxlz2DUKGDECHXtRSHcokpOolIALV8O/OxnpiuWVCRDvN36SbEEhtQiIiPK5CQ6hJvqBGLN+P0dpBdzcwwSboQcCRBugP1qcsbqcb9+elfGFOG0UgiEDzfkheAlU9MHri078qUFFEu9DmQKtd2wDwMKnHqdwadg15nhLGbw4tgO0XGrxEC14lin4waYiumtt4AxY5Q057QH1s1xU5pBUQUahFtWWLgQ+PBDtaGkuRQqqfJ3HTHC3EPAJ81pRXj1k3a1C6X7SZ3zCvGe0SHcNPTtWfkdcoT4z1KJeBPzUEkRfjVZ6+qxJtxWqHiCrFCJQlDsMDdvK5AKVeBTrwPAXqSv3u2B82pyoNTrjI4dgZdfBq65plUt0fHi2I6N6JP2dyUGhhfHdugWbopx2gPr5rgpzaCoAnFCGEVZCR2o3vsHJDdUUtxjnJdHGfYU4tVP2tUulO4ndQo30X3Uca0MGmQ9PuccJU16/Q52wk3peJVgSLgRciTEccsFvFao7PBaobITgmKH2YACqVAFPvU64N9xA0KkXmecdBJw112mhdgKEMWxHR9idNrf62E6k6HEsR0JE26AtQeWx27ipiWDogp0O246w195dIwjSRVu4nG2baun0HQrxE8/acD+XEv1k1H+fjqEW7t2Zmjt7NnAgw9KN+fnd7ATboDC8SrBkHAj5EiaZZVgvFao7HBboXISgnVI7/j5iWyYUAUx9boo3NwcNyBg6vVWiiiO7TCQh7OxCADwLcqwDGbIYWhxLJJA4QaYYmz/WCtj6E5YKce1ZlBUgcLkJL7aV8mRR1qPhw5V337UoZK6ygFo2l/UGvHXT9qLLKl+Msq+UZc7O3asWTO2Wzfppvz8Dk7CTdl4lWBIuBFEAvCzQuWE0wqVkxC0c9wYYUIVxDweQRw3QG8Jo1zBrS4Zz7M4GwNQiYPwBfZw512JOI7KndFA8dOPA7Nno2H5h/j3mgL7PbBxRLfjdtFF1g24cKHathcsAM4/H/jDH/Sk6cwVxy2p+xZjiN9+0onQ/WSUwi0BUVB+fge7yAdGa1/MJbuEIBKAnxUqJ9gK1ZAh1nNuQtBNuAHm5266yf88aOBAc+5RU2P+HWSPW2lpjFKvx5ggSS6/xoCM55SI44Q6bgCAnj2BG25AAYAhnm+OEbqFW4cOZg26DRuA0aO93x+EAw5QLwZ5ohBuZ54JPPCA+fiaa9S0SY6bNmSTAYfuJzt1sh73U1yGBTAH97Vrzcc6XXJF+Pkdmlx8pda+mEuOGyEHhUpGguqVQjch6CXcwoQq8GZMUMeN8MatLpkXyuqS8T9yArKz5gRRJCfp0wc44ojk7bOKIlRy/Hiz0PT112dWEA4LCTdt+OknnUIlpfrJtm2B554DLrkEeO21kI248Le/AVdfbZZKScB96ud3cBJusaqjmSVodCXkYAXEADPkhdCC6pVCNyHoJdyAYKEKlZXA3r3W337ruAGmS9fa49n94FaXzAtldcn697cejxqloEHCk1wpB6CDKBw3wCw0fdtt6kSzmFWShJsy/PSTTsJNup8880zgj3+05ksqGTQIuPtuZaVSdOPnd3ASbrGqo5klSLgRcuTnA6tXA//6F/Dzn2f7aHIW1Y6KmxB0S07CCBKq4JWcpAnuoR2tPZ7dL051ydxQWpfsl780nZkBAzJTNRJ60J2cJMmIJQaSMtsjx00rXv2knXCLXf3GHMDrd7ATbvQ7mJBwI+Rp2xb43veyfRQ5jWpHxU0IejluQUMVvJKTeNHa49n94lSXzA2ldcmKioD33wf+8x9g8GBFjRKukOPmjChiSbgRiEE/SQDw/h3EvfAA/Q4MEm5Eq6ShwdzLu3Kl+f8k1AVR6ai4CUFRuDUKjljQUAVRJNp1yE5QPHswWF0yr+tEa10y2t8WHRqFWxL7yDRIuBEO+O0ngZjWb8wRxN/hTDyH3WiHJ1CBDbAUWmzraGYJGmGJVkVVlbmHvE8fM9ScbdHr08d8PmiNsihRvVLoJATdHLcwoQqiSAziuFE8e3AqKsyJ9owZpvDliX1dMiIYGkIlk9xHpiGKWHHvWFxJuHBLiuB36ifFUEnqJ/XC/w7vlZ2JLtiOC2GG2tN4ZQ8JN6LVsGCBmTV39uzMjIrffWc+P2gQ8Pjj2Tk+P6h0VJyE4D6k7w3hhVvYUAVeJIp76JygePbwlJeb9cc2bDDrkSWmLhkRDNHdlHTc/PSRQ4aY74s9oohNQH0rAIkVbkkU/Hb95ExFyUEJ//C/w2dr2tB45QEJN6JVsGABMGGCfcFpnvp64OKLgTPOiOdAA6h1VOyEYION4yYbqsCLxGp0anm+xiVskuLZ5SkoMCfaw4eb/yf3MsdQ6Lj57SNra833xV68ieeCr6UVZxKYVTLpgp/vJ3uUxT+dfq5C45U/SLgRoUlKSERVFTBpUrDPvPhivAcalY6KmxAEgO8NK1ASqsBE4r6izrgMc/AGfoRj8HbG+yienSB8Igq3kHVDwvSRkybFd3ELQKb7mBThptFx0zFm55zgP+aYlofbTpoQ67mNSFLmZIQcJNyIwCQtJGLePO9BxQ5VA43OzlTVCpUoBHkOH1WgzPliIrHjjMtwQdkbWIURLa9RPDtBBEQUbiFTsIbpI2trgYcfDvV10SA6bp07Z+c4gqJBuOkas3NN8FdVATOe/gGuaD8fv8NVGPK3ObGe2zCSNicjJDGISNm5c6cBwNi5c2e2DyUUTzxhGEVFhgE4/1dUZL4vDtTXG0aPHu7H6/VfUZFhrF8f/LvXrzeMG2/M/P4ePcznw7QZGfwBT5mi5Svq6w1jzRrDWLnS/H99vZavIYjc5YUX0u/VqqrATcj0kWVlMb5vX301/WDfeivbR+SP559PP+6HH5ZqTueYfeON4a6bGTOk/klaSNrchpHU4ybSCaINyHEjfJPEkIjKysyY+6CEWVlOesx/2j4LTendKZ6dICRR4LjJ9JGbN5ufjyVJ3eOm0HHTOWY3NACPPBLuuB55JF5hfFHNbVRH3yRxTkbIQ8KN8EVSQyJ27VLTTpCBJic60+Ji63FdXfaOgyAIZ8RFlRDJSWT7yN275T6vDXGPW1JDJUMKTt1jdq4I/ijmNjpCGZM6JyPkIeFG+CKpeyBC7tXPwO9AkzOdKS/c9u/P3nG0MmhzOREI0XET//aBbB8ZcludfpLquIlZJUMKTt1jdq4Ift3nSVf0TVLnZIQ8JNwIT7IZEiE7kR04EOjRI/z38/gZaHKmMyXhFim0uTy7JFYwhxBqIjJ9ZFmZ+flYIgo3BcXJI0F03EIItyjG7FwQ/LrPk67om1wKUyWCE3vhtmjRIowbNw6dO3dGaWkpDj30UNx5552or68P1d7KlStxzjnnoKysDMXFxRg4cCB+9atf4TvZjVA5TDZCIlRNZAsKgMmTg3+/HV4DTU51prxw27cve8fRCkj8fsgEk3jBrEC4yfSRkyfHeG+qGCqpaa+uchQItyjG7FwQ/DrPk87om1wJUyXCEeue7IorrsC5556Ld999F6NHj8ZPfvITrF+/Htdddx2OO+447As4oXzmmWdw5JFH4plnnkH//v1x+umnIy8vD/fffz9+8IMf4Msvv9T0L0k2UYdEqJ7ITp2aXmA6DH4GmpzqTMlxi4Sc2A+ZUHJCMCsQbkC4PrKoCJgyRcnX6yEBhattUSDcohizc0Hw6zxPOqNvciVMlQhHbIXbCy+8gDlz5qBdu3b44IMP8Oqrr+LZZ5/F2rVrMWzYMCxbtgwzZ8703d4333yDiy++GA0NDZg3bx4+/PBDPPXUU1izZg0mTJiAzZs344ILLoBhGBr/VckkypAIHRPZ8nJg/nz/x2CHn4EmpzpTEm7ayZn9kAkkZwRzmAKVNoTpI+fPh7L6jlrgHbaDDsrecQRFHGhCrDpGNWYnXfDrOk+6o29yIUyVCE9shdttt90GAJg+fTqGDx/e8ny3bt3w4IMPAgDuv/9+7Ny501d79957L/bu3Yvjjz8eU7heIz8/H3/4wx/QsWNHfPTRR1iyZInCf0VuEFVIhM6JbEUF8MQTQGFhsPYB/wNNTnWmJSXWYxJuWsiZ/ZAJI6cEc02NsqZYH+k1ES8qMt9XUaHsq/WxYgVw/fXA4sXZPhL/KLCiohqzky74dZ0n3dE3uRCmSoQnlsJt48aN+OijjwAAF1xwQcbrY8aMQXl5OWpra/Hyyy/7avP55593bK9du3Y47bTTAADPPfdc2MPOWaIKidA9ka2oAL78Ejj99GDf4XegyanOlBw3reTUfsiEkVOCWaFwA8w+cu1ac39fWVn6a2Vl5vNr1yZEtAHAiBHAbbcBgwZl+0j8I2aVDEGUYYxJFvy6zpPu6JtcCFMlwhNL4bZ69WoAQJcuXTDQYTY7cuTItPe6sXv37pb9a+xzMu05UVNT4+u/JKI7JCKqiWx5OfDCC8Bjj3m7b0EHmpzqTHkFqqqmAtFCTu2HTBA5J5j797ceDx2qpMnycmDWLGDDBmDNGjPT5po15t+zZsXHLclZmpqUNBNlGGOSBb+O8xRF9E3Sw1SJ8MRSuFU2z0r69evn+J7y5tGj0scMZt26dS2PndoM0p4T7dq18/yvd+/eodvPJrpDIqKeyF50kem+qR5ocqYzveMOc3N/mzamRUEoJaf2QyaInBPMY8YAv/wl8MMfAi++qLTpggIzOcvw4eb/Y7WwlMvs2aOkmajDGJMq+HWcpyiib5IepkqEJ5Zd8e7mWUmpmM6Xo11zTZZdPmZAu7lZjlObQdprrTARM2mSe6hRUZHZQQQRPdmYyLKB5qabzAnZ7t3mStfAgeEnKawznTDB/2di2Zn27m2OuLW1QM+e2T6anCOn9kMmiJwUzPffn+0jIFRy2GFmsfDqanN/ngQ6x2wnmOBPEqrPE4u+mT07+LEEib7Jxu9LZJ9YOm5JZc+ePZ7/ffPNN9k+TCl0hURkcyKremU5yTH/aXTuTKJNEzm1HzJBkGAmYk9xMbB8uZnKNEDmbCeSHMYYJarPU1TRN/T7tj5i6bi1bx4d3faD7WkOJ+jgYyRuz422NTU16Nixo1R7Trg5hIzGxsbQ7ccFHU4Vm8iGCWOK40S2ogI45hgzocEjj5hhVoyyMnNVbcqUGDptRCREtSJLpJNr/QyRoxx8sPmfInSM2bmIyvMUZfQN/b6ti1j+pAMGDAAAVLnkX2avsfe60Z/bwL1+/XoMGzZMqj3CRGVIRC5OZKkzJdyYOhW4++5gGQ5juR8yQeRiP0MQfkliGGM2UHWeog5lpN+3dRDLUMnDDz8cALBt2zbHZCErVqwAgLQab0506NABgwcPTvucTHuEHnImsYcAbfIn7KDN5dkhV/sZgiDiB4UyEqqJpXDr27cvRo0aBQBYuHBhxuvLli1DVVUVioqKcPLJJ/tq88wzz3Rsb8+ePfjLX/4CAPiv//qvsIdNSEITWaK1kTP7IRME9TMEQURJUjNuEvEklsINAG644QYAwO23345Vq1a1PL9t2zZceumlAIBp06al7Vd7/vnnMXToUIwfPz6jvSuuuAJt27bF66+/jke4Qj6NjY249NJLUV1djVGjRuHEE0/U9U8ifEATWaK1QSuy0UP9DEEQUUPRN4QKUoZhGNk+CCcuv/xy3HfffWjTpg3Gjx+P0tJSLF26FNXV1Tj66KPx2muvoaSkpOX9jz76KC655BL0798/rXYbY9GiRTj//PPR2NiII444AgMGDMBHH32Er776CmVlZVi2bFlLSKUudu3ahY4dO2Lnzp1SiVBynaoqSuxBtD4aGmg/ZJRQP0MQBEFkmyDaINbCDQCefvppPPDAA/j4449RX1+PQYMGYcKECbjyyitRWFiY9l4v4QYAK1euxG233YZ33nkHO3fuRK9evXDqqadi5syZKBOXuzVAwi0YNJElCEI31M8QBEEQ2SKnhFuuQcKNIAiCIAiCIAggmDaI7R43giAIgiAIgiAIwoSEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwh4UYQBEEQBEEQBBFzSLgRBEEQBEEQBEHEHBJuBEEQBEEQBEEQMYeEG0EQBEEQBEEQRMwpyPYBtDYMwwAA7Nq1K8tHQhAEQRAEQRBENmGagGkEN0i4Rczu3bsBAOXl5Vk+EoIgCIIgCIIg4sDu3bvRsWNH1/ekDD/yjlBGU1MTvvnmG7Rv3x6pVCqrx1JTU4PevXsDAL755huUlpZm9XiI+EPXDBEEul6IoNA1QwSFrhkiKHG7ZgzDwO7du9G7d2/k5bnvYiPHLWLy8vLQt2/fbB8GACA/P7/lcYcOHbJ+4RLxh64ZIgh0vRBBoWuGCApdM0RQ4njNeDltDEpOQhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxh4QbQRAEQRAEQRBEzCHhRhAEQRAEQRAEEXNIuBEEQRAEQRAEQcQcEm4EQRAEQRAEQRAxhwpwEwRBEARBEARBxBxy3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3FopixYtwrhx49C5c2eUlpbi0EMPxZ133on6+vpsHxoRI+rr67F06VL8+te/xqhRo9CpUye0adMGPXv2xGmnnYbFixdn+xCJBHDttdcilUohlUrh1ltvzfbhEDGmrq4O9913H8aMGYMuXbqguLgYffv2xUknnYSnnnoq24dHxIz169dj2rRpOOigg1BSUoLi4mIMHDgQF198Mf7xj39k+/CIiPniiy8wd+5cTJw4EcOGDUNBQYHvcef111/HySefjG7duqGkpARDhw7FjTfeiD179kRw5P5JGYZhZPsgiGi54oorMGfOHBQUFOC4445Du3bt8MYbb6C6uhpjxozBkiVLUFJSku3DJGLA66+/jhNOOAEA0LNnT4wYMQKlpaX47LPP8OmnnwIApkyZgoceegipVCqbh0rElOXLl2Ps2LEwDAOGYWDWrFmYMWNGtg+LiCEbNmzAj3/8Y3z22Wfo1q0bjjzySJSWlqKqqgoff/wxTjrpJDzzzDPZPkwiJnzwwQc44YQTsHv3bvTp0wcjRoxAfn4+Pv74Y1RWVqKgoAALFy7EOeeck+1DJSKCzW9FvMade+65B1dddRVSqRTGjh2LsrIyvPPOO/j2229x0EEHYdmyZejWrZvOQ/ePQbQqnn/+eQOA0a5dO2PlypUtz2/ZssUYNmyYAcC4+uqrs3iERJxYunSpcdZZZxlvv/12xmtPPvmkkZ+fbwAwHnvssSwcHRF3ampqjCFDhhh9+vQxzjjjDAOAMWvWrGwfFhFD9u7dawwdOtQAYNx8881GXV1d2us1NTXG6tWrs3NwRCz5wQ9+YAAwpkyZkna9NDY2GjNmzDAAGJ06dTL27duXxaMkouSRRx4xrrnmGmPBggXGv//9b+PCCy/0HHdWrVplpFIpIz8/33j55Zdbnq+pqTHGjx9vADDOOuusKA7fFyTcWhmjRo0yABi33nprxmvvvPOOAcAoKioyqqurs3B0RNKYNGmSAcAYP358tg+FiCGXXXaZAcBYvHixcfHFF5NwIxyZOXNmyyScILzYunWrAcAAYHz33XcZrzc0NBglJSUGAGPVqlVZOEIiDvgZd8455xwDgPE///M/Ga+tW7fOyMvLMwAY//73v3Ueqm9oj1srYuPGjfjoo48AABdccEHG62PGjEF5eTlqa2vx8ssvR314RAI5/PDDAQBVVVVZPhIibrz11luYO3cuLrroIpx88snZPhwixtTX1+MPf/gDAODXv/51lo+GSAJFRUW+3xubEDcidtTV1bXs1bebF/fv3x9HH300AOD555+P9NicIOHWili9ejUAoEuXLhg4cKDte0aOHJn2XoJwY+3atQCAXr16ZflIiDixZ88e/OxnP0NZWRnuvffebB8OEXNWrVqFrVu3onfv3hg8eDD++c9/4je/+Q2mTp2K6dOnY/HixWhqasr2YRIxol27dhg7diwAYMaMGWmJ1ZqamnDzzTdj3759OOmkk1BeXp6twyRizpo1a7B3714A1vxXJG7z4oJsHwARHZWVlQCAfv36Ob6HdXDsvQThxLfffotHH30UAHDWWWdl92CIWHHNNdegsrISzz//PDp37pztwyFizieffAIA6Nu3L6ZPn44777wTBpc37Y477sDhhx+OF154wXX8IloXjzzyCE4++WQ8/PDDWLx4MUaOHIn8/HysXr0aGzduxIUXXoj7778/24dJxBg21+3UqRPat29v+564zYvJcWtF7N69GwBQWlrq+J527doBAHbt2hXJMRHJpKGhARMmTMDOnTsxbNgwTJ06NduHRMSEJUuWYN68efjv//5vnHHGGdk+HCIBbNu2DYC5on3HHXfg0ksvxRdffIGdO3fitddew4EHHojVq1fjlFNOoZI1RAsHHXQQ3nvvPZx44onYuHEjXnzxRTz33HOorKzE4MGDMW7cOHTo0CHbh0nEmCTOi0m4EQQRmJ///OdYunQpunbtimeeeQaFhYXZPiQiBuzcuROTJk1C9+7dMXfu3GwfDpEQmLtWX1+P888/H/fffz8OPPBAdOjQAccffzxee+01FBcX49NPP8WTTz6Z5aMl4sK7776LYcOG4dNPP8XChQvx7bffYvv27fjLX/6C+vp6TJo0CZMmTcr2YRKEUki4tSKYDVxTU+P4HlZokFapCCcuv/xyzJ8/H507d25ZDScIwKyhs2HDBtx///2UEIDwDR+iZOfe9+vXD6eccgoAs7YkQVRXV+PMM8/Eli1b8Nxzz+H8889HWVkZOnfujFNPPRWvvPIK2rZtiz/+8Y948803s324RExJ4ryY9ri1IgYMGADAPQMge429lyB4rr76atx3333o1KkTlixZ0pJVkiAAM+tWQUEBHnzwQTz44INpr33++ecAgPnz5+P1119Hz549yT0hAAAHHHCA7WO792zatCmSYyLizeLFi7FlyxYMGjQIRxxxRMbrBxxwAI444gi8+eabeP311/GjH/0oC0dJxB02162ursbu3btt97nFbV5Mwq0VwSbZ27ZtQ2VlpW1myRUrVgAAhg8fHumxEfHn2muvxe9//3t07NgRS5YscczARLRuGhoa8Pe//93x9XXr1mHdunXo379/hEdFxJnhw4cjlUrBMAxs3brVNgvg1q1bAVj7TYjWzfr16wG4uyAdO3YEAGzfvj2SYyKSx0EHHYS2bdti7969WLFiha3Aj9u8mEIlWxF9+/bFqFGjAAALFy7MeH3ZsmWoqqpCUVER1V0i0pg+fTruuusudOzYEa+99lrLdUQQPNXV1TAMw/a/iy++GAAwa9YsGIaBdevWZfdgidjQs2dPjBkzBoB9KGR9fX3LYsDo0aMjPTYinvTp0weA6eTv3Lkz4/X6+nqsWrUKABzLHxFEYWFhSxi23bz466+/xvLlywEAZ555ZqTH5gQJt1bGDTfcAAC4/fbbWzo1wHThLr30UgDAtGnTWlaqCGLGjBm444470KlTJxJtBEFo4aabbgIA/Pa3v8X777/f8nxDQwOuvvpqfPXVV2jfvj0uueSSbB0iESNOOukklJaWYt++fZg8eXLLPiTALKp85ZVXYv369WjTpg3OPvvsLB4pEXemT5+OVCqFP/3pT3jllVdant+7dy8mTZqExsZGnHXWWRg6dGgWj9IiZfDFUohWweWXX4777rsPbdq0wfjx41FaWoqlS5eiuroaRx99NF577TWUlJRk+zCJGPDSSy/h9NNPB2AWoTzkkENs39etWzfcfffdUR4akTAmTpyIxx57DLNmzcKMGTOyfThEDLn11lsxc+ZMFBQUYPTo0ejZsydWrVqFdevWoaSkBIsWLWpZHSeIJ554ApdccgkaGhrQvXt3jBo1Cm3atMGKFSuwceNG5OXl4YEHHsDPf/7zbB8qERGrVq1qMSEA4D//+Q+2bt2Kvn37tri0gLkfu1evXi1/33PPPbjqqquQSqVw7LHHokePHnjnnXewadMmHHTQQVi2bFlsEm6RcGulPP3003jggQfw8ccfo76+HoMGDcKECRNw5ZVXUmp3ooVHH33U1wp3//79KfSNcIWEG+GHJUuW4N5778UHH3yA3bt3o2fPnhg/fjyuu+662Kx4E/HhH//4B+699168/fbb2LhxIwzDQK9evTBmzBhcdtllFFrbynjrrbd8JaKprKzMSDby+uuv43e/+x0+/PBD1NTUoF+/fjj77LNx/fXXOxbnzgYk3AiCIAiCIAiCIGIO7XEjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgCIIgCIIgYg4JN4IgCIIgCIIgiJhDwo0gCIIgCIIgCCLmkHAjCIIgCIIgCIKIOSTcCIIgiJwglUoF/m/cuHEAgHHjxiGVSuGtt97K6r9BBXPmzEEqlcKzzz4buo2dO3eia9euOOKII2AYhsKjIwiCIMJSkO0DIAiCIAgVXHzxxRnPffvtt3j11VcdXx86dKj244qSLVu24Oabb8aoUaNw1llnhW6nY8eOuP766/HrX/8ajz/+uO25IwiCIKIlZdBSGkEQBJGjvPXWW/jRj34EAK7O0fr167F3717069cPbdu2jerwlDNt2jQ88MADWLx4MU4++WSptvbv349+/fqhoKAAlZWVKCoqUnSUBEEQRBgoVJIgCIJo9fTr1w9Dhw5NtGirrq7Go48+ij59+uAnP/mJdHvFxcW44IILsGnTJjz11FMKjpAgCIKQgYQbQRAE0epx2uM2ceJEpFIpPProo/jiiy9w3nnnoUePHigtLcWoUaPw4osvtrz3gw8+wGmnnYbu3bujpKQERx11FJYuXer4nfv27cPvfvc7HHnkkejUqROKi4tx0EEH4dprr8W2bdsC/xv+9Kc/oaamBhdeeCHy8jKH99raWtx1110YMWIE2rdvj8LCQvTs2ROjRo3Ctddei+3bt2d8ZuLEiQCABx54IPDxEARBEGoh4UYQBEEQHqxatQojRozAP/7xD4wfPx6HHnooVqxYgTPPPBPPPPMMXnjhBYwdOxYbNmzA+PHjcdBBB+H999/HT37yEyxbtiyjvW+++QZHHHEErrnmGqxduxajRo3CySef3CKuRo4cia+//jrQMb7wwgsAgOOPPz7jtaamJpxyyim49tpr8eWXX2Ls2LE4++yzMWzYMGzZsgV33XUX1q9fn/G5ww47DN27d8eHH36ITZs2BToegiAIQjEGQRAEQeQob775pgHA8Brujj32WAOA8eabb6Y9f/HFF7d8/tZbbzWamppaXrvvvvsMAEbfvn2Nzp07G48//njaZ6+44goDgHH88cenPd/U1GQcffTRBgBj0qRJxq5du1peq6+vN66++moDgPGjH/3I979z7969RmFhoZGXl5fWHuPvf/+7AcA4/PDDbV//6KOPjK1bt9q2fdpppxkAjD//+c++j4cgCIJQDzluBEEQBOHB6NGjccMNNyCVSrU894tf/AJdunTBhg0bcPzxx+PCCy9M+8yMGTMAAG+//Tbq6+tbnn/11Vfx7rvv4rDDDsNDDz2E9u3bt7xWUFCAO++8E9///vfx5ptv4tNPP/V1fP/6179QV1eHvn37prXH2Lx5MwBg7Nixtq+PHDkSXbt2tW37kEMOAWC6jgRBEET2IOFGEARBEB6cdNJJaaINMEXWwIEDAcA2g2PXrl3RpUsX1NXVpe1ZW7x4MQDgrLPOQkFBZlWevLw8HHPMMQCA5cuX+zo+JsycxNfw4cORn5+PP/7xj3jggQcChT2yNtl3EARBENmBhBtBEARBeNCvXz/b59u1a+f6OnO39u/f3/LcV199BQCYOXOmY2HwBx98EIBZl80PO3fuBAB06NDB9vVBgwbhnnvuQX19PaZNm4bevXtjwIABOP/887FgwQLU1dU5ts3a3LFjh69jIQiCIPRABbgJgiAIwgO7LI1BXudpamoCAIwZMwaDBg1yfS8LU/SiU6dOAIBdu3Y5vudXv/oVzj33XLz00ktYtmwZli1bhieffBJPPvkkbrrpJrzzzjvo1atXxueYKOzcubOvYyEIgiD0QMKNIAiCICKkvLwcAHD66afjmmuuUdJmjx49AMCzjEBZWRkmT56MyZMnAwA+//xz/OxnP8N7772H6dOn47HHHsv4DGuzrKxMybESBEEQ4aBQSYIgCIKIkJNOOgkAsGjRIhiGoaTNQw45BIWFhdiwYQN2797t+3NDhw7FddddBwD4+OOPbd/DEqSMGDFC+jgJgiCI8JBwIwiCIIgIOf300zFq1Ch8+OGHuOSSS2z3se3YsQMPPfQQGhoafLVZUlKCI488Ek1NTfjggw8yXn/jjTfw8ssvp2W3BADDMPDXv/4VANC/f3/btt977z0AwHHHHefrWAiCIAg9UKgkQRAEQURIXl4eXnjhBZxyyil47LHH8Mwzz+DQQw9Fv379UFdXh6+++gr//Oc/0djYiIkTJ9pmnrTjjDPOwNtvv43XXnstowj3J598giuvvBIdOnTA8OHD0bt3b+zbtw+rVq3C119/jY4dO+KWW27JaHP16tXYtm0bRo8ebbv/jSAIgogOctwIgiAIImJ69+6N999/Hw899BBGjx6NL774As888wyWLVsGAPj5z3+OV199FcXFxb7bvOSSS1BaWoonnngCjY2Naa/99Kc/xc0334xRo0bhq6++wnPPPYe33noLHTt2xPTp0/Hpp5/isMMOy2jz0UcfBQD88pe/DP1vJQiCINSQMlQF2BMEQRAEkVWmTZuGBx54AC+99BJ++tOfSrW1f/9+lJeXo02bNqisrERRUZGioyQIgiDCQI4bQRAEQeQIN910Ezp16mQb9hiUuXPnYuvWrfjtb39Loo0gCCIGkONGEARBEDnEnDlzcMUVV2DRokU4++yzQ7Wxc+dOHHDAARg8eDDef/99pFIpxUdJEARBBIWEG0EQBEEQBEEQRMyhUEmCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiYQ8KNIAiCIAiCIAgi5pBwIwiCIAiCIAiCiDkk3AiCIAiCIAiCIGIOCTeCIAiCIAiCIIiY8/8BrlIMUgEQKCQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.scatter(lc.time, lc.counts, lw=2, color='blue',label='lc')\n", + "ax.plot(t0, y0, lw=2, color='red',label='source of lc')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `LombScarglePowerspectrum` class to create a `LombScarglePowerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize the real part of the power spectrum to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "lps = LombScarglePowerspectrum(\n", + " lc,\n", + " min_freq=0,\n", + " max_freq=None,\n", + " method=\"fast\",\n", + " power_type=\"all\",\n", + " norm=\"none\",\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can print the first five values in the arrays of the positive Fourier frequencies and the power. The power has only real component, and imaginary component is zero." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.05163902 0.15491705 0.25819509 0.36147313 0.46475116]\n", + "[ 15.49526224+0.j 120.05686691+0.j 96.589673 +0.j 127.2231466 +0.j\n", + " 30.42053746+0.j]\n" + ] + } + ], + "source": [ + "print(lps.freq[0:5])\n", + "print(lps.power[0:5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Parameters\n", + "\n", + "- `data`: This parameter allows you to provide the light curve data to be Fourier-transformed. It can be either a [`stingray.lightcurve.Lightcurve`](https://docs.stingray.science/en/stable/core.html#working-with-lightcurves) or [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) object. It is optional, and the default value is `None`.\n", + "\n", + "- `norm`: The `norm` parameter defines the normalization of the power spectrum. It accepts string values from the set {`frac`, `abs`, `leahy`, `none`}. The default normalization is set to `none`.\n", + "\n", + "- `power_type`: The `power_type` parameter allows you to specify the type of power spectral power you want to compute. The options are: `real` for the real part, `absolute` for the magnitude, and `all` to compute both real part and magnitude. The default is `all`.\n", + "\n", + "- `fullspec`: This is a boolean parameter that determines whether to keep only the positive frequencies or include both positive and negative frequencies in the power spectrum. When set to `False` (default), only positive frequencies are kept; when set to `True`, both positive and negative frequencies are included.\n", + "\n", + "### Other Parameters\n", + "\n", + "- `dt`: When constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects, the `dt` parameter represents the time resolution of the light curve. It is a float value that needs to be provided.\n", + "\n", + "- `skip_checks`: This is a boolean parameter that, when set to `True`, skips initial checks for speed or other reasons. It's useful when you have confidence in the inputs and want to improve processing speed.\n", + "\n", + "- `min_freq`: This parameter specifies the minimum frequency at which the Lomb-Scargle Fourier Transform should be computed.\n", + "\n", + "- `max_freq`: Similarly, the `max_freq` parameter sets the maximum frequency for the Lomb-Scargle Fourier Transform.\n", + "\n", + "- `df`: The `df` parameter, a float, represents the frequency resolution. It's relevant when constructing light curves using [`stingray.events.EventList`](https://docs.stingray.science/en/stable/core.html#working-with-event-data) objects.\n", + "\n", + "- `method`: The `method` parameter determines the method used by the Lomb-Scargle Fourier Transformation function. The allowed values are `fast` and `slow`, with the default being `fast`. The `fast` method uses the optimized Press and Rybicki O(n*log(n)) algorithm.\n", + "\n", + "- `oversampling`: This optional float parameter represents the interpolation oversampling factor. It is applicable when using the fast algorithm for the Lomb-Scargle Fourier Transform. The default value is 5.\n", + "\n", + "## Attributes\n", + "\n", + "- `freq`: The `freq` attribute is a numpy array that contains the mid-bin frequencies at which the Fourier transform samples the power spectrum.\n", + "\n", + "- `power`: The `power` attribute is a numpy array that contains the normalized squared absolute values of Fourier amplitudes.\n", + "\n", + "- `power_err`: The `power_err` attribute is a numpy array that provides the uncertainties associated with the `power`. The uncertainties are approximated using the formula `power_err = power / sqrt(m)`, where `m` is the number of power values averaged in each bin. For a single realization (`m=1`), the error is equal to the power.\n", + "\n", + "- `df`: The `df` attribute is a float that indicates the frequency resolution.\n", + "\n", + "- `m`: The `m` attribute is an integer representing the number of averaged powers in each bin.\n", + "\n", + "- `n`: The `n` attribute is an integer indicating the number of data points in the light curve.\n", + "\n", + "- `nphots`: The `nphots` attribute is a float representing the total number of photons in the light curve." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power spectrum by using the plot function or manually taking the `freq` and `power` attributes" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Power(Imaginary Component)')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABQEAAAIfCAYAAADAARoJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yT5frH8e/TQlt2y8YOygYZIrvIKFsQFJkuQMAicgAVOIgyj4oCylBBZRQREBUQQRGQLchQpgtkVwRk792R3x/8GpM2bZM2zRPK5/168TrNk7vpFY+S5pvrvi/DYrFYBAAAAAAAACDL8jG7AAAAAAAAAACZixAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOIIAQEAAAAAAIAsjhAQAAAAAAAAyOKymV0ApISEBJ04cUJ58uSRYRhmlwMAdz2LxaIrV67ovvvuk48Pn3fxOgMA7sXrTHK81gCAe2XGaw0hoBc4ceKEQkNDzS4DALKcv//+WyEhIWaXYTpeZwAgc/A68y9eawAgc7jztYYQ0AvkyZNH0p3/Y/PmzWtyNQBw97t8+bJCQ0Otf7/e63idAQD34nUmOV5rAMC9MuO1hhDQCyS2y+fNm5cXTABwI7Yj3cHrDABkDl5n/sVrDQBkDne+1nCABQAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWRwhIAAAAAAAAJDFEQICAAAAAAAAWVw2swsA4Jzbt2/r4sWLslgsbh0RDtwNLBaLJMnf31958+aVjw+fYQEAAACAKwgBgbtAQkKCzp49q6JFixJ+4J5lsVh08+ZNnTp1SkWKFOG/BQAAAABwAe+ggLvAhQsXVKBAAUIP3NMMw1COHDkUGBioy5cvm10OAAAAANxVSBSAu0BcXJz8/f3NLgPwCgEBAbp165bZZQAAAADAXYUQEABwV+FMTAAAAABwHSEgcBcg9ADs8d8EAAAAALiGEBAAAAAAAADI4ggBAcAF4eHhioyMtLsWGRmp8PBwr6gFAAAAAABHCAEBeKULFy4oR44cMgxDc+bMMbscl82aNUuTJk0yuwwAAAAAACQRAgLwUp999plu3bqlEiVKaObMmWaXk6qVK1dq3759dtcIAQEAAAAA3oQQEHCDv3+/pGkdVmrV+3vNLiXLiI6OVqNGjfTSSy/phx9+0OHDh80uKUV+fn7y9/c3uwwAWd2GDdLGjWZXAQAAgLsUISDgBvM6LdaJrzZr04tf6vD282aXc9fbuXOndu/erW7duumpp55StmzZHHYDGoahZ599VmvXrlVERIRy5sypkJAQjR07VtKdLcU9e/ZU4cKFlTNnTrVu3VonTpywe4xRo0bJMAz98ccf6t+/v4oWLaocOXKodu3aWrNmjVP1Jj0TMDw8XD/88IP++usvGYZh/bN+/Xrr/Y7O8lu/fr0Mw9CsWbPsrv/999/q1KmT8uXLp7x586pNmzY6dOhQivWsXr1azZs3V2BgoAICAlSlShV9/PHHTj0XAF7qp5+khg2lBg2k7dvNrgYAAAB3IUJAwA1uHjtj/frv3edMrCRriI6OVu7cudW+fXsVLFhQrVu31qeffqqEhIRka3ft2qWOHTsqMjJS48ePV5kyZTRkyBC99957atKkiS5cuKBRo0apd+/eWrFihbp27erwZ3bt2lVbt27VK6+8oldffVXHjh3Tww8/rNWrV7tc/6RJk1S+fHkVLFhQc+bMsf6pUKGCy4918eJFNWjQQIsWLVKXLl00ZswY5cyZU40aNdK1a9eSrZ82bZqaN2+uq1evaujQoZowYYJKlSqlF154Qf/9739d/vkAvIRt8PfLL+bVAQAAgLtWNrMLALKE2DjrlwnxFo/8yIQE6bwXNx3mzy/5pONjhps3b2revHlq3769cuXKJUnq1q2bvv76a33//fdq2bKl3frffvtNW7ZsUe3atSVJPXv2VPHixfXyyy+rb9++ev/99+3WT5w4Ufv27VO5cuXsrmfLlk0bN26Un5+fJKlHjx4qX768+vXrp717Xdvm3bZtW02aNEk3btzQM88849L3JjVu3DjFxMRo5syZ6t69uySpT58+eumll/Tee+/Zrf3nn3/Uv39/PfHEE5o3b571ep8+ffTiiy9qwoQJeuGFF1SyZMkM1QTABDdv/vt1fLx5dQAAAOCuRScg4AaWOM+HgOfPS4UKee+f9AaUixYt0sWLF9WtWzfrtVatWqlQoUIOtwRHRERYA0Dpzvl8tWrVksViUf/+/e3W1q9fX5J04MCBZI/z8ssvWwNASQoJCdHTTz+tP//80+UQ0J0WL16sIkWKJOtgfOWVV5KtXbhwoW7duqWePXvq7Nmzdn/atGmjhISEdHU2AvACtiGgg65oAAAAIC10AgIZZEmwSDYhoCXBMyFgVhUdHa1ChQopJCREBw8etF5v3ry5FixYoLNnz6pgwYLW64662oKCgiRJJUqUcHj93LnkW7YdbdW9//77JUmHDx9O11Zedzh8+LBq1qwpX19fu+vFihVTYGCg3bXEsLJp06YpPt6pU6fcXiMADyAEBAAAQAYRAgIZdPuG/bashDjenKXXkSNHtG7dOlksFpUtW9bhmrlz5+qll16y3k4ajtlK6T6Lxdyg1jAMh9fjbMLk9Eh8XrNnz1axYsUcrmErMHCXYjswAAAAMogQEMigG1fsgxtPdQLmzy+dOZP2OrPkz+/693zyySeyWCyaPn16si43SRo2bJhmzpxpFwK6y969e/XAAw/YXduzZ4+k9AVnKQV9kpQ/f36dd7Bf+vDhw8mulSxZUgcOHFB8fLxdqPnPP//o4sWLdmvLlCkjSSpYsGCq3YAA7kI3bvz7NZ2AAAAASAdCQCCDbl2zDwE9dSagj49ksyv2rpeQkKBZs2apcuXKeu655xyu+eOPPzRq1Cht27ZNNWvWdOvPnzhxotq1a2c9F/DYsWOaN2+eypUrl66twLlz59aFCxdksViSBYJly5bVV199pePHjys4OFiSdOvWLU2ZMiXZ4zz22GMaM2aMZs+ebR0MIkljx45NtrZTp0567bXXNHLkSEVGRipHjhx291+6dEkBAQHy9/d3+fkAMBmdgAAAAMggQkAgg8wKAbOalStX6u+//1bPnj1TXNO+fXuNGjVK0dHRbg8B4+LiVL9+fT355JO6cuWKPv74Y924cSPZdGFn1alTR0uXLlXfvn1Vt25d+fr6qnHjxipcuLD69u2rL774Qk2bNlXv3r11+/ZtzZkzRzlz5kz2OIMHD9a8efMUFRWlHTt2qGLFilq/fr22bNlidzaidGeYyUcffaTnnntOFSpUUJcuXVS8eHGdOXNGv/32mxYvXqw9e/YoPDw8Xc8JgIk4ExAAAAAZRAgIZFDSENASz5uz9IiOjpYktWvXLsU1lSpVUtmyZfXFF19o4sSJbv35s2fP1scff6wxY8bo4sWLqlKlimbNmqVmzZql6/FefvllHT58WAsXLtTHH3+shIQErVu3ToULF9ZDDz2kWbNm6a233tJ///tfBQcH64UXXlCNGjXUpEkTu8cJCgrSxo0bNWDAAM2ePVuS1LBhQ61bty7ZWknq3r27ypYtq3fffVdTp07VxYsXVbBgQZUrV05vvPGGihYtmq7nA8BkdAICAAAggwgBgQyiE9A9FixY4NS6ffv2Wb9OacDHrFmzNGvWrGTXIyMjU/yeXLly6YMPPtAHH3yQ6s+PiYlJdm39+vXJruXMmdMabDrSrVs3devWLdl1R/WFhYVp4cKFTtUiSQ899JAeeuihFH82gLsQnYAAAADIIB+zCwDudreuxtrdJgQEALid7WAQOgEBAACQDoSAQAbdvm7OdGAAwD2ETkAAAABkECEgkEGEgACATEcICAAAgAwiBAQyKPZGkjMB43hzdjcZNWqULBYLE3MBeDcGgwAAACCDCAGBDEo2HZhOQACAu9meCUgnIAAAANKBEBDIoGSdgAwGAQC4G52AAAAAyCBCQCCD4m7SCQgAyGScCQgAAIAMIgQEMihpJ6AlnjdnAAA3oxMQAAAAGUQICGQQnYAAgExlsdAJCAAAgAwjBAQyKPZ6rN3tBEJAAIA73b59JwhMRAgIAACAdCAEBDIo/lbS7cCEgAAAN7LtApTYDgwAAIB0IQQEMojtwACATJU0BKQTEAAAAOlACAhkUNJOwIQ43pzd7davXy/DMDRr1iyzSwEAOgEBAADgFoSAQAYl2w5MJ2C6JYZvtn9y586tatWqaeLEiYqLi0v7QTxs1qxZdvX6+PgoX758qlevnmbPnp1pP3PSpEmZ8tgAvBCdgAAAAHCDbGYXANzt4ggB3e7JJ59Uq1atZLFYdPLkSc2ePVsDBgzQ3r17NW3aNLPLc6h///6qWbOmEhISFBMTo+nTp6tbt246duyYXnvtNbf+rFmzZikmJkYvvfSSWx8XgJe6ccP+Np2AAAAASAdCQCCDEggB3a5atWp65plnrLf79Omj8uXLa8aMGRo9erQKFSpkYnWO1a9fXx06dLDe7t69u8qVK6exY8dq8ODBypYtY3/dWiwWXbt2Tblz585oqQDuNnQCAgAAwA3YDgxkUMLtpNOBeXPmbrly5VKdOnVksVh06NAhu/v++ecfvfDCCwoLC5Ofn5/uu+8+9erVS6dPn7Zbd+LECQ0cOFBVq1ZVUFCQAgICdP/992vs2LGKz4SumtDQUN1///26fPmyzpw5oytXrmjYsGGqXbu2ChYsKH9/f5UuXVpDhgzR9evX7b7X9kzCKVOm6P7771dAQIDeffddhYeH64cfftBff/1ltw15/fr1bn8OALwEZwICAADADegEBDIoWQhIJ2CmSAz/8ufPb7129OhRRURE6Pbt2+rZs6dKlSqlgwcP6qOPPtK6deu0fft25cuXT5L066+/atGiRXr88cdVqlQpxcbGasWKFRoyZIgOHz6sqVOnurXeW7du6ejRo8qWLZsCAwP1119/acaMGWrfvr2eeuopZcuWTT/88IPGjRunXbt26fvvv0/2GJMmTdK5c+cUFRWlokWLKjQ0VFWrVtWrr76qs2fPauLEida1FSpUcGv9ALwInYAAAABwA0JAIIMSbsXa3fZYCGixJD8nypvkyCEZRrq+9fr16zp79qz1TMCPP/5Yu3btUq1atVS2bFnrun79+ik2Nla7du1SSEiI9XrHjh1Vp04dTZw4UaNGjZIkNWzYUIcPH5ZhU9NLL72kLl26aMaMGRo1apSKFSuWvucq6cqVKzp79qwSEhL0119/afTo0Tpz5oyeeOIJ5ciRQyVLltTff/+t7NmzW7/nP//5j4YPH64333xTP//8s2rVqmX3mEePHtWff/6pwoUL212fNGmSbty4YbdlGkAWRggIAAAAN/DaEPDtt9/Wzp07tWPHDh05ckTFixdXTExMiut/+uknDR06VD/99JMMw1DdunU1ZswYVa1aNdnaEydOaMiQIVq+fLmuXr2qihUr6pVXXlHHjh2Trb1165ZGjx6tOXPm6MSJEwoJCVH37t31yiuv2L2Zx73LEmvfCZgQ76EQ8MYNadw4z/ys9Bg8WMqZM13fOnLkSI0cOdLuWrt27TRlyhTr7UuXLmnp0qXq3r27AgICdPbsWet94eHhKl26tFauXGkNAXPkyGG9//bt27p69aoSEhLUokULzZ07V9u3b1ebNm3SVa8k9ejRw+529uzZ1a1bN02ePFmS5OfnZ70vLi5OV65cUXx8vJo2bao333xTP/30U7IQsGvXrskCQAD3IAaDAAAAwA28NgR87bXXlD9/flWrVk0XL15Mde3WrVsVGRmp4OBgvf7665KkyZMnq379+tq8ebMqV65sXXv+/HnVq1dPp0+f1oABAxQSEqJ58+apU6dOmjlzprp372732J07d9aSJUvUo0cPRUREaMuWLRo+fLgOHjyoWbNmuftp4y6UNARkO3DG9erVSx07dlRsbKx+++03jR07VseOHVNAQIB1zb59+5SQkKDo6GhFR0c7fJySJUtav46Li9OYMWM0e/ZsHTx4UBaL/f9PFy5cyFDNI0aMUP369eXj46M8efKofPnyypMnj92aDz/8UB9//LH++OMPJSTp5HH08227HgHcw+gEBAAAgBt4bQh46NAh6xv4SpUq6erVqymu7d+/v/z8/LRhwwYFBwdLkjp16qQKFSpo4MCBWrlypXXtmDFjdOTIEX3zzTfWrp+ePXsqIiJCgwYNUseOHa3TN5ctW6YlS5ZowIABGj9+vCTpueeeU2BgoCZMmKBevXqpbt26mfL8cfdIFgIyGCTDypQpo6ZNm0qSWrZsqXr16qlevXrq3bu3vvjiC0myhnjPPPOMunXr5vBxbLv/BgwYoA8++ECdO3fW0KFDVbhwYWXPnl07d+7UK6+8kiyUc1XlypWtNTsyYcIEDRw4UM2bN1f//v113333yc/PT8ePH9ezzz7r8OfnTGcnJYAshsEgAAAAcAOvDQFtO3hSc/DgQW3btk09evSwBoCSFBwcrI4dO+qTTz7RyZMnVbRoUUnSvHnzVKpUKbttf76+vurXr5+6du2qZcuWqVOnTta10p1zw2y99NJLmjBhgubOnUsIiOQhoMVDnYA5ctzZcuutbAK4jKpbt666dOmi2bNnq3///qpbt65Kly4twzB0+/btVMO3RHPmzFGDBg2sIWKigwcPuq3OtH5+eHi4li9fLh+ffwezr1ixwuXHMtJ51iKAuxSdgAAAAHADn7SXeLdt27ZJkiIiIpLdV6dOHVksFu3YsUOS9M8//+j48eOqU6eOw7W2j5f4dXBwsEJDQ+3WhoaG6r777rNbi3tX8k5AD4WAhnHnzD1v/ePmoGr48OHy9fXViBEjJEkFChRQq1attGjRIm3dujXZeovFojNnzlhv+/r6Jgtor127ZjdhNzP5+vrKMAy7GhK3KLsqd+7cunDhgucCZwDm4kxAAAAAuIHXdgI668SJE5Jk1wWYKPHa8ePHXV6buP7+++93+HODg4N17NixdNWcdAJpRrchwjyWBIsUx5mAnlC6dGk98cQT+uyzz7Rx40bVr19fH330kerVq6cGDRqoa9euevDBB5WQkKDDhw9ryZIl6tq1q3UwSIcOHTR16lR17txZTZs21alTpzRz5kwVKFDAI/V36NBBr776qlq2bKl27drp8uXLmjdvXroGDNWpU0dLly5V3759VbduXfn6+qpx48YMEYEVrzNZDJ2AALwQrzUAcPe560PA69evS5L8/f2T3Zc4RCBxjStrE792tDZxve1a3JtibyVIsg/9CAEzz9ChQ/X5559rxIgRWrdunUJDQ7Vjxw6NHTtWS5Ys0dy5cxUQEKDQ0FC1adPGurVfunMmX548eTR//nwtWbJEoaGh6tWrl2rWrOnUduKM+u9//yuLxaLo6Gi9+OKLKlq0qDp37qzu3bun+GFDSl5++WUdPnxYCxcu1Mcff6yEhAStW7eOEBDIqjgTEAAAAG5w14eAiQfn37p1K9l9N///l+bENa6sTfza0drE9ek9tP+ff/6xu3358mXly5cvXY8Fc928Gpf8Ip+CpltkZGSqW1wrVKig+CRvfgsWLKh33nlH77zzTqqPnTNnzhTXJf2ZadVh69lnn9Wzzz6b5jpfX1+9+uqrevXVVzP883PmzJniRGRA4nUmy6ETEIAX4rUGAO4+d/2ZgPfdd58k+228iRKvJW71dWVt4npHaxPXO9pWjHuLoxCQTkAAgFsRAgIAAMAN7voQsGbNmpKkLVu2JLtv69atMgxD1atXl3Tn3Irg4GCHQwQSr9WoUcPusY8fP66///7bbu3ff/+tEydO2K3Fvenmldhk1xIIAQEA7sRgEAAAALjBXR8Cli5dWjVq1NCCBQusgz+kO0M9FixYoMaNG6to0aLW608++aQOHTqkb7/91notPj5eH3zwgQIDA9WqVSu7tZI0adIku5+ZePvpp5/OhGeEu8nt6462AxMCAgDciE5AAAAAuIHXngk4Z84c/fXXX5KkM2fO6Pbt23rzzTclScWLF1eXLl2sa9977z01atRI9evXV79+/SRJH3zwgRISEjR+/Hi7xx0yZIgWLFigp556SgMGDFBwcLA+//xzbdu2TTNmzFCePHmsax955BG1bt1aEyZM0KVLlxQREaEtW7YoOjpazzzzjOrVq5fZ/xjg5W5dc7AdOJ43ZwAAN2IwCAAAANzAa0PA6Oho/fDDD3bXhg8fLklq2LChXQhYt25drV+/XsOGDdOwYcNkGIbq1q2rBQsW6IEHHrB7jAIFCmjTpk0aMmSIpkyZoqtXr+r+++/XF198oc6dOyerY8GCBXrzzTc1d+5czZkzR8HBwXr99dc1ZMiQTHjWuNs46gR0dqAEAABOoRMQAAAAbuC1IeD69etdWh8REaE1a9Y4tTY4OFhz5sxxam1AQIDefPNNaxciYMtxJyAhIADAjegEBAAAgBvc9WcCAmZyeCYgnYAAAHdKOhiETkAAAACkAyEgkAEOtwMzGAQA4E5sBwYAAIAbEAICGRB7w1EIyJszAIAbsR0YAAAAbuC1ZwICdwNHIaDoBAQAuBOdgADc4OrVqzp16pQuXLigoKAgFSlSRLlz5za7LACABxECAhlw+1pssmtsBwYAuFXSMwHpBATgpO+//16LFy/WmjVrdOjQoWT3ly5dWo0bN1bbtm3VokULEyoEAHgSISCQAXE3ORMQAJDJ6AQE4IL4+Hh99NFHev/993Xo0CFZbIbW5c6dW3nz5tWlS5d07do1HThwQAcOHNC0adNUunRp9e/fX71795avr6+JzwAAkFk4ExDIAMfbgXlzdq8xDEPPPvus2WUAyIosFs4EBOC0FStWqFKlSurfv7/++usvPfroo5o8ebJ27typW7du6fLlyzp27JiuXLmimzdvavv27Xr//ffVunVrxcTEqH///qpcubK+//57s58KACATEAICGUAnoHutX79ehmHo3XffNbuUe9aoUaNkGIb1j4+Pj/Lnz69mzZpp6dKlmfIzJ02apFmzZmXKYwN3vbi45B8u8WETgBS0atVKFy9e1Lvvvqvjx4/r66+/Vp8+fVS1alVlz57dbq2fn5+qVaumvn37asmSJTp+/LjGjRunc+fOqVWrViY9AwBAZmI7MJAB8bcIASHduHEjy22bef3111WiRAnFxcVp//79mjp1qtq0aaPPPvtMTz31lFt/1qRJkxQeHk43JeBI0i5AiU5AACl644039PLLLytnzpwuf2/BggU1cOBAvfDCC5o4cWImVAcAMBshIJABDrcDWwgB7zUBAQGm/vzY2FjFx8e7tY6WLVuqRo0a1tvt27dXjRo1NHr0aLeEgPHx8bp161a63qQA95SkQ0EkOgEBpGjo0KEZfoycOXO65XEAAN6H7cBABjjsBCQEdKuYmBgZhqFRo0Zp/vz5qlq1qnLkyKHSpUvrk08+kSQdPXpUHTp0UP78+ZUnTx4988wzunLlit3j/Pnnn+rTp48qVqyoPHnyKGfOnKpevbpmzJjh8Of++uuvat68uXLlyqUCBQqoW7duOnv2rMPz/1K7tmXLFjVs2ND6OM8995yuXr2a7toSt+v+8ccfGjBggEJCQhQQEKANGzaoUKFCeuihhxw+n3feeUeGYWjDhg2p/eNOUfXq1VWgQAEdPHhQknTixAkNHDhQVatWVVBQkAICAnT//fdr7Nixik/SpTRr1iwZhqHVq1frjTfeUKlSpRQQEKD58+fLMAz99ddf+uGHH+y2IcfExKSrTiDLcdQJSAgIAACAdKATEMgARyGg4nlzlhmWLl2qjz/+WH369FH+/PkVHR2tHj16yM/PT6+99poaN26st956S9u2bdPMmTMVEBBgF6KtX79eGzZsUOvWrVWiRAldu3ZNCxYsUFRUlM6cOaNXX33VuvbAgQOqX7++EhIS1L9/fwUHB2vZsmV6+OGHXap59+7dat26tbp3766nnnpK69evV3R0tHx8fDRt2rR01Zbo6aefVo4cOTRw4EAZhqHixYurW7duGj9+vPbt26dy5crZrZ85c6bKli2rBg0auPQcEp09e1YXLlxQ0aJFJd0JSRctWqTHH39cpUqVUmxsrFasWKEhQ4bo8OHDmjp1arLHGDRokGJjYxUVFaW8efOqXLlymjNnjl5++WUVLFjQruugUKFC6aoTyHLYDgwgA3x9ffXss88qOjo61XVRUVH65JNPFBfn4HdbAECWQQgIZIDDENBDnYAWi0U34hxsE/MSObLlkGEYbnu8vXv3as+ePSpevLgkqXPnzgoNDVWXLl307rvvasCAAZKk3r1768KFC5o9e7YmTZqk3LlzS5K6dOmi3r172z3myy+/rMaNG2vMmDEaNGiQ9cDsoUOH6vLly/rxxx+tnXV9+/ZV586dtWPHDqdr/vXXX7VlyxbVrl1bkvT888/r8uXL+uSTTzRhwoR01ZYoMDBQq1evVrZs//413qtXL40fP17R0dEaN26c9fqmTZv0559/auzYsU7XfunSJZ09e9Z6JuBrr72mhIQEde3aVZLUsGFDHT582O7/45deekldunTRjBkzNGrUKBUrVszuMW/cuKFdu3bZbQGOiIjQsGHDVKRIET3zzDNO1wfcM+gEBJABFovF6V0q7GYBgKyPEBDIgITb5g0GuRF3Q+M2jUt7oUkGPzRYObO777y3tm3bWgNA6U6nWLly5fTHH3/oP//5j93a+vXr6+uvv1ZMTIwqVaokScqVK5f1/ps3b+ratWuyWCxq3ry5fvjhB/3555+qXLmy4uPjtWzZMtWqVSvZ1tqBAwdq/vz5TtccERFhDQATNW7cWMuWLUtXbbZeeukluwBQksqWLauGDRtq9uzZeuutt6z3R0dHK1u2bOrWrZvTtTdt2tTuds6cOTVgwAC98cYbkqQcOXJY77t9+7auXr2qhIQEtWjRQnPnztX27dvVpk0bu8d44YUXOAMQcBWdgAA84Pr168k+cAQAZD2EgEAGxN+MTXaNT1EzR8mSJZNdCwoKUrFixeTv75/suiSdO3fOeu3q1avWcwX//vvvZI914cIFSdKZM2d07dq1ZNtpJTm85mrNBQoUSHdttsqWLevwZ/bq1UtPP/20li5dqrZt2+rKlSuaP3++WrdurSJFijhd+5QpU1S2bFn5+PgoMDBQFSpUsAv+4uLiNGbMGM2ePVsHDx5M9u+9KzUDSAWDQQBksosXL+rHH39M1sEPAMh6CAGBDHDUCcibs8zh6+vr0nXJPpB96qmntHTpUvXq1UsNGjRQgQIF5Ovrq2XLlmnixIlKyIT/3zKztpQ66tq3b6/+/fsrOjpabdu21Zdffqlr167pueeec6n2WrVq2U0HTmrAgAH64IMP1LlzZw0dOlSFCxdW9uzZtXPnTr3yyisu1QwgFXQCAnBR0g8hFy5cqPXr1ztcGxcXp5MnTyo+Pl7PP/+8B6oDAJiJEBDIAEusoxDQM52AObLl0OCHBnvkZ6VHjmw50l7kIRcvXtTSpUvVpUsXffzxx3b3rV692u52oUKFlCtXLu3bty/Z4zi65snanOHv76+uXbvq/fff14kTJxQdHa3g4GCXh5qkZc6cOWrQoIG++OILu+uJ04Nd4c6zI4EshzMBAbgoJibG+rVhGLp69aquXr2a4no/Pz+1bdtWb731lgeqAwCYiRAQyACHnYAe2g5sGIZbz9zLyhI78pJuWf3nn3/sJggnrm3ZsqUWLlyoTZs22Z0LOH78eFNrc1ZUVJQmTpyoV155RVu3btXQoUNT7UpMD19f32Q1X7t2TRMnTnT5sXLnzq3z58+7qzQga6ETEICLjhw5IunO7xYlS5ZUhw4d9M477zhc6+fnp0KFCiU7ZxgAkDXxtz2QAWYOBoHz8uTJo+bNm2vu3LnKkSOHatasqb/++ktTp05ViRIl7M7nk6Q333xT33//vR5++GH17dtXISEh+u6773TmzBlJ7u1cc7U2Z1SoUEH16tXT3LlzZRiGevTo4bZ6E3Xo0EFTp05V586d1bRpU506dUozZ860nnnoijp16ig6OlrDhw9XhQoV5OPjozZt2tgNTAHuWXQCAnCR7SC1bt26qX79+nbXAAD3LkJAIAMcbgdmMIhXmjt3roYMGaJvv/1Wn376qcqUKaPRo0cre/bs6t69u93acuXKacOGDRo0aJDee+89BQQEqHXr1poyZYpKlixpNyDD07U5q1evXvrxxx/VqFEjhwNKMmrChAnKkyeP5s+fryVLlig0NFS9evVSzZo1k00WTsvo0aN1/vx5TZkyRRcvXpTFYtGRI0cIAQGJwSAAMuSTTz4xuwQAgBcxLIwyNd3ly5eVL18+Xbp0SXnz5jW7HLjgf7nGyXL9ut01n3x5NeLiALf+nNOnT6tw4cJufUy4bseOHapRo4befvttDRkyxOxyUjV//nx17txZ8+bN05NPPml2OW6X1n8T/L1qj38ed7FJk6SXX7a/5uPDlmDAZPy9mhz/TADAvTLj71U6AYEMoBMw67px44Zdx5/FYtG4ceMkSc2aNTOrLKdNmTJFBQsWVLt27cwuBUBGsB0YQAZduXJFH374oVavXq3jx4/rpqO/V3TnuJNDhw55uDoAgCcRAgIZEceZgFlV1apV1bhxY1WuXFnXrl3Tt99+q40bN6pz586qXr262eU5dPr0aa1Zs0YbN27Uhg0b9Pbbb8vf39/ssgBkRApv1pWQcKcjEABSceLECdWrV09//fVXsoFeSbnzzGMAgHciBATSKfZmvGRx0I1BJ2CW8Nhjj+nbb7/VnDlzFBcXpxIlSuiNN97QK6+8YnZpKdqzZ4+eeuopBQYGqnfv3ho4cKDZJQHIKEdnAkqEgACc8tprrykmJkZVq1bVkCFDVKFCBbbqAsA9jBAQSKebVx1sBZbYppVFjBs3zrr9924RGRmZ5qf8AO4ytp2A/v7SrVt3vo6Pl7LxaxyA1H3//fcqUqSI1q1bp3z58pldDgDAZHyEDKRTiiEgIQwAwF1sQ0Dbidl84ATACRcuXFBERAQBIABAEiEgkG63rhECAgAymW0ImDPnv18TAgJwQmhoqBL4+wIA8P8IAYF0SikEZDAIAMBtUuoEjI/3fC0A7jodOnTQxo0bde3aNbNLAQB4AUJAIJ082QnIOW+APf6bwD3DdjAI24EBuGj48OEKDQ1Vp06ddPr0abPLAQCYjBOlgXRKOQTMnDdmCQkJ8mESJKD4+HgZhmF2GYBnpLQdmE5AAE7o27evSpUqpa+//lqlS5dWjRo1FBYW5vB3SsMwFB0dbUKVAABPIQQE0un2dc91AgYFBenUqVMqUqQIQSDuabdu3dK5c+dUsGBBs0sBPIPBIAAyYNasWdYPzq5evar169enuJYQEACyPkJAIJ1SDAEz4UxAPz8/FShQQGfOnJEkuqBwz0nc/ps9e3YVLVqUMBz3jsQQ0DCkgIB/r9MJCMAJn3zyidklAAC8CCEgkE4phoCyyJJgkeHj3qDOz89PRYoUcetjAgC8XGIImCOH5Ov773U6AQE4oVu3bmaXAADwIrRSAOkUez323xs+vnb3JcQztAAA4AaJg0ECAiTbDlg6AQEAAOAiOgGBdLLtBDT8ssty8983ZAnxFvlmN6MqAECWktgJGBBAJyCADNmzZ482b96sM2fOqGLFinr00Ucl3Rk+FxcXJz8/P5MrBABkNkJAIJ1ib9psB/bzszu8nU5AAM5ISEjQtm3btGbNGu3cuVOnTp3ShQsXFBQUpCJFiqh69epq3LixatasyTmI9yrbEND23wFCQABO+vvvv9W9e3etW7fOeq1bt27WEHD69Onq06ePVq5cqSZNmphVJgDAAwgBgXSKu/FvCOjjn122G7Pi4wgBAaTs9OnTmjZtmqZOnaoTJ05I+nf4ia2vv/5aknTfffepd+/eioqKUuHChT1aK0yWUgjIdmAATjh//rwaNmyomJgYVapUSQ0aNNCHH35ot6ZTp07q27evvvnmG0JAAMjiCAGBdIpNJQSkExCAI7du3dK4ceM0duxYXb9+XdmyZVP16tVVt25dVaxYUQUKFFDevHl16dIlnTt3Tr///rs2b96sX3/9VcOHD9fbb7+tIUOG6L///a/8/f3NfjrwhMQzARkMAiAdxo4dq5iYGA0aNEhjx46VYRjJQsCgoCBVrlxZP/74o0lVAgA8hRAQSKe4m/YhoK34WN6cAUiuXLlyOnr0qCpXrqwePXro6aefVsGCBdP8vrNnz2rOnDn65JNPNGLECM2cOVOHDx/2QMUwVVzcvx1/dAICSIclS5YoPDxcY8aMkWEYKa4rWbKkNm3a5MHKAABm4IAhIJ3sQsAA+4OU6QQE4EiOHDm0YMEC/fLLL3rxxRedCgAlqWDBgnr55Zf166+/6ssvv6QL8F5hc9Ysg0EApMdff/2latWqpXmurJ+fn86fP++hqgAAZqETEEgn2xAwW44knYCcCQjAgT/++CPDAz46duyo9u3bu6kieLWkISCdgABcFBAQoCtXrqS57ujRo8qXL58HKgIAmIlOQCCd4m/9GwL6BtiHgHQCAnDEXRN+mRR8j7ANATkTEEA6lC9fXjt37tS1a9dSXHP27Fn98ssvqlKligcrAwCYgXcRQDrF34y1fp0tp/12YEsCISCAtPXo0UMzZ85Mc92sWbPUo0cPD1QEr5I4FESiExBAunTo0EHnzp3TgAEDlJDChwf//e9/df36dXXu3NnD1QEAPI0QEEgn207A7DkZDALAdbNmzXJqGuOmTZv06aefeqAieBXOBASQQf/5z39UqVIlzZgxQ7Vq1dJbb70lSTp06JAmTJigiIgIzZ49W1WrVtWzzz5rbrEAgEzHmYBAOtmFgLkYDAIg88THx7MF+F6U2pmAhIAAnBAQEKDvv/9eHTt21ObNm7Vr1y5J0o8//qgff/xRFotFNWvW1OLFi5U9e/Y0Hg0AcLcjBATSKeF2yp2AhIAA3OnAgQMc2H4vShoC2m4BZjswACcVK1ZMP/74o77//nt99913Onz4sBISEhQaGqqWLVvqsccek2EYZpcJAPAAQkAgnWxDQL9chIAAnPP666/b3d69e3eya4ni4uL0xx9/aPPmzWratKknyoM3SToYxPaMQDoBAbioRYsWatGihdllAABMRAgIpFN8KiEgZwICSMmoUaNkGIYsljsfFuzevVu7d+9O9Xty5cqlESNGeKA6eJWkg0Fu3fr3Np2AAAAAcBEhIJBOFtsQMDfTgQE4Z8SIEdYQ8PXXX1fVqlX12GOPOVzr5+enkJAQtWjRQoULF/ZwpTBd0u3AV6/+e5tOQAAuio+P17lz53TT9u+WJMLCwjxYEQDA0wgBgXSyxP4bAvrnTtIJGEcICMCxUaNGWb9ODAFHjhxpXkHwXqkNBqETEICTtm3bphEjRuiHH37QLduO4iQMw1BcXFyK9wMA7n6EgEA6JdiGgLmySTIk3Qn/OBMQgDMS6OZCapKeCejr++9t/t0B4IStW7eqcePG1u6/oKAg5c2b1+SqAABmIQQE0ut2rPXL7DmyST6G9P/bgNkODADIsNQ6AQkBAThh5MiRunnzpnr06KHRo0erSJEiZpcEADARISCQXnFJOgENw3qbwSAAXHHixAmtW7dOx48fT/GsJsMwNHz4cA9XBlMlHQxi2wnIdmAATvjpp59Urlw5TZ8+XYbN76oAgHsTISCQThabENAvZzbJ8JF0500ZnYAAnDVgwABNnjxZ8f8f6iRODU6UOESEEPAeRCcggAyKi4tT1apVCQABAJIIAYF0ibudYPcGzD93dvtOQAaDAHDChAkTNGnSJBmGoRYtWqhChQqc1YR/MRgEQAaVL19eZ8+eNbsMAICXIAQE0uHWNfvJaUm3A9MJCMAZ0dHRypYtm1auXKnIyEizy4G3YTAIgAzq1auX+vfvr0OHDqlUqVJmlwMAMJlP2ksAJHXjSvIQ0PDhTEAArjl06JDq1atHAAjHkp4JSCcgABf16tVLTz75pJo1a6Zly5ZZj54AANyb6AQE0iFpJ2BAbjoBAbguT548KlasmNllwFsl3Q5MJyAAF5UsWVKSFBMTozZt2ihbtmwqVqyYfHyS94IYhqFDhw55ukQAgAcRAgLp4DAEtPllKiGeEBBA2urXr69ffvnF7DLgrTgTEEAGxcTEWL+2WCyKjY3V0aNHHa5leAgAZH2EgEA62IWAhqHs/j52nYCEgACcMWLECNWpU0czZszQc889Z3Y58DZ0AgLIoCNHjphdAgDAixACAulw+7pNCJjtznmAho+hxOiP7cAAnHH58mUNGDBAzz//vFauXKnWrVsrLCzM4TYtSWrQoIGHK4Spkg4Gsf33ghAQgBOKFy9udgkAAC9CCAikw62rsdavjWz//5+RbSdgHG/OAKQtMjJShmHIYrHoq6++0ldffZXiWsMwFBcXl+L9yIIYDAIAAAA3IgQE0iH2ps2br2z/vz2LMwEBuKhBgwacwYSU3br179d+fmwHBpAhW7du1bp163T8+HFJUnBwsBo1aqQ6deqYXBkAwFOyRAh49epVvf/++/r8888VExMjf39/lS1bVr169VK3bt3s3mD99NNPGjp0qH766ScZhqG6detqzJgxqlq1arLHPXHihIYMGaLly5fr6tWrqlixol555RV17NjRg88O3si2089IDP84ExCAi9avX292CfBmid1+Pv9/7iydgADS4ejRo3r66ae1efNmSXcGhEj/DgJ56KGHNHfuXIWFhZlWIwDAM+76EDAhIUEtW7bU5s2b1a1bN/Xr10/Xr1/X559/ru7du2vv3r0aO3aspDuffkVGRio4OFivv/66JGny5MmqX7++Nm/erMqVK1sf9/z586pXr55Onz6tAQMGKCQkRPPmzVOnTp00c+ZMde/e3ZTnC+8QH2cT8hECAgAyQ2LQl9gBSCcgABddvHhRjRo10pEjRxQQEKAWLVqoVKlSkqTDhw9rxYoV+vHHH9WkSRNt375d+fLlM7liAEBmuutDwJ9++kk//vijXnrpJU2cONF6vU+fPipfvrymTp1qDQH79+8vPz8/bdiwQcHBwZKkTp06qUKFCho4cKBWrlxp/f4xY8boyJEj+uabb9SmTRtJUs+ePRUREaFBgwapY8eOyp07twefKbyJfSegYfe/kmSJ580ZANfdvn1b586dk7+/v/Lnz292OTBb0hCQTkAALho/fryOHDmiVq1aadq0abrvvvvs7j958qSioqK0bNkyjR8/3tooAQDImhyPH7yLXL58WZKSvaD5+fmpYMGCypUrlyTp4MGD2rZtmzp27GgNAKU7Z2F07NhRq1ev1smTJ63X582bp1KlSlkDQEny9fVVv379dP78eS1btiwznxa8nF2nX2IHoA+dgADSZ+7cuapVq5Zy5cqlkJAQDRo0yHrf119/raeeekpHjhwxsUKYgk5AABn09ddfq1ChQpo/f36y90uSVLRoUX355ZcqWLCgFi1aZEKFAABPuutDwFq1aikwMFDjxo3TggULdPToUf3555969dVXtWPHDo0aNUqStG3bNklSREREsseoU6eOLBaLduzYIUn6559/dPz4cYeH5CZeS3w83Jvspv8mdmbYdGhYEggBATjnueeeU7du3bR9+3blyJHDelZTorJly+qLL75IdXIwsijbMwFt/9f2PgBIxZEjR9SwYUPlzJkzxTU5c+ZUw4YN+bAJAO4Bd/124KCgIH3zzTd67rnn1KlTJ+v1PHny6KuvvlLbtm0l3RnyIcmuCzBR4rXESVmurE2PYsWK2d1O4NP8u45tp591OzBnAgJw0WeffaaZM2eqcuXKmjlzpqpVqyZf224vSRUrVlRISIiWL19u1yGYGl5nsgg6AQFkkK+vr2JjY9NcFxcXJx8f1/pDeK0BgLvPXd8JKEm5c+dWpUqVNGjQIC1atEgzZsxQ6dKl9dRTT2nVqlWSpOvXr0uS/P39k31/QECA3RpX1uLe5KgT0GA7MAAXTZs2Tblz59bSpUtVvXp1uw8TbFWuXJkOjXtRamcC8mYbgBPKlCmj9evX6+LFiymuOX/+vNatW6eyZct6rjAAgCnu+k7A3377TXXr1tXEiRPVu3dv6/Unn3xSlSpVUlRUlA4dOmRtgb9161ayx7h586YkWde4sjY9/vnnH7vbly9fZhLXXcZRJ6DtdGAGgwBwxi+//KLatWsrNDQ01XX58+fXqVOnnH5cXmeyiMSgj8EgANKpY8eOeu211/TII49o2rRpqlixot39v/32m55//nldvnxZnTt3dumxea0BgLvPXR8CTpw4UTdv3lTHjh3trufMmVOPPPKIJk+erJiYGOtBuI628SZeS9zq68pa3JvszvxLfFPm+++bMzoBATjj1q1bTr1hOnPmTLJtwrgHsB0YQAa9+OKL+vLLL7VlyxY98MADevDBB1WiRAlJ0uHDh7V7924lJCSoatWq6t+/v8nVAgAy212/HTgxlIt38Il4XFyc9X9r1qwpSdqyZUuydVu3bpVhGKpevbqkO+dbBAcHa+vWrQ7XSlKNGjXc8wRwV7LdDsyZgADSKzg4WHv37k11jcVi0Z49e6xv2nAPSW07MJ2AAJyQI0cOrV271np2+o4dO7Rw4UItXLhQO3fulCR17txZq1evth57BADIuu76EPD++++XJM2aNcvu+sWLF7VkyRIFBQWpdOnSKl26tGrUqKEFCxZYB39Id4aALFiwQI0bN1bRokWt15988kkdOnRI3377rfVafHy8PvjgAwUGBqpVq1aZ+8Tg1exCvsQ3ZbbbgZkODMAJTZo00Z9//qklS5akuGbOnDk6duyYmjVr5sHK4BXoBATgBkFBQfriiy905MgRzZkzR2PGjNGYMWM0Z84cHTlyRJ9//rny589vdpkAAA+467cDv/TSS5o9e7aGDBmi3377TQ899JDOnz+v6dOn659//tGUKVOsW6jee+89NWrUSPXr11e/fv0kSR988IESEhI0fvx4u8cdMmSIFixYoKeeekoDBgxQcHCwPv/8c23btk0zZsxQnjx5PP5c4T0S4h10AtoNBuHNGYC0DRo0SHPmzNFTTz2l0aNH2025P3/+vObPn69BgwYpV65cbNO6F9EJCMCNQkND9fTTT5tdBgDARHd9J2Dx4sX1888/q0uXLlq3bp369eunMWPGKDQ0VF999ZX69OljXVu3bl2tX79e4eHhGjZsmIYPH67SpUtrw4YNeuCBB+wet0CBAtq0aZPatm2rKVOmqH///rp06ZK++OIL9ezZ09NPE17GYjsYxDf5dGAL24EBOKFMmTL69NNPlZCQoIEDByo0NFSGYejTTz9VoUKF9J///EdxcXGaNWuWwsLCzC4XnkYnIAAAANzoru8ElKRSpUrp008/dWptRESE1qxZ49Ta4OBgzZkzJyOlIYtydCagbYcG24EBOKtjx46qUKGC3nzzTa1YsUKXL1+WdOccp2bNmmnkyJF68MEHTa4SpkitE5AQEIAL9uzZo/fff1/r16/XsWPHZLFYFBISokaNGqlv376qVKmS2SUCADwgS4SAgKc5OhPQfjswISAA51WqVElffPGFLBaLzp07p4SEBBUsWFA+Pnd9wz4yIrVOQLYDA3DSlClTNGDAAMXFxcli+fd31AMHDujAgQP65JNP9M4773DsBADcA3h3AaSDxfZMQN/kZwLSCQggPQzDUMGCBVW4cGECQNAJCCDDli9frn79+ikuLk7t2rXTN998o99++02//fabvv32W3Xo0EHx8fF6+eWXtXz5crPLBQBkMjoBgXSw7fQzEt+U2Z0JyJszAEAGMRgEQAaNGzdOhmHoiy++UMeOHe3uq1ixoh555BEtXLhQnTp10rhx49SyZUuTKgUAeAIhIJAOjs4ENDgTEEA6xMfHa+HChVq9erWOHz+umzdvOlxnGIbTZ9oii2AwCIAM2rFjh2rVqpUsALTVoUMH1a5dWzt27PBgZQAAMxACAulgG/I5mg7MmYAAnHHp0iW1aNFC27ZtszunyRHDMFK9H1mMxfJv0EcnIIB0MgxDpUqVSnNdqVKltGfPHg9UBAAwEyEgkA4OpwMbnAkIwDXDhw/Xzz//rODgYPXr108VKlRQ3rx5zS4L3sC2049OQADpVKVKFR04cCDNdQcOHFDlypU9UBEAwEyEgEA6OOwE9LXpBIzjzRmAtC1evFiBgYHaunWrgoODzS4H3sS2049OQADpNGDAALVv315ffPGFnnjiCYdrvvzyS23btk0LFizwcHUAAE8jBATSweGZgHQCAnDRqVOn1Lx5cwJAJOcoBKQTEICLqlevrpdfflnPPPOMFi5cqK5du6pEiRKSpCNHjmjOnDn6+uuv9fLLL6tmzZo6evSo3feHhYWZUTYAIJMQAgLp4LgTkMEgAFxTpEgRBQQEmF0GvFFanYCEgACckBj4WSwWff311/r666+TrbFYLJo0aZImTZpkd90wDMXFxXmiTACAhxACAulgiXdwJqAPnYAAXNOmTRt9/fXXio2NVfbs2c0uB94krU5AtgMDcEJoaCiDpQAAVoSAQDrYTv9N7AD0IQQE4KL//e9/+vbbb/XCCy9o8uTJdAXiX3QCAnCDmJgYs0sAAHgRQkAgHWw7AX3+fyCIYRsCxvPmDEDaPvzwQzVv3lyffPKJVq1apSZNmigsLEw+tmHP/zMMQ8OHDzehSpiCwSAAAABwM0JAIB0cdQLavjmjExCAM0aNGiXDMGSxWPT3339r1qxZydYk3k8IeI9hMAgAAADcjBAQSAdLgoPpwDadgLYhIQCkZOTIkWaXAG9FJyAANzt27JhOnDihmzdvprimQYMGHqwIAOBphIBAOlgcdAIanAkIwEWEgEgRnYAA3GTBggUaNmyYDh48mOo6pgEDQNZHCAikg8MzAX0JAQEAbsJgEABuMH/+fD355JOyWCzKnz+/wsPDlSdPHrPLAgCYhBAQSAfbkM/aCWgwGARAxpw8eVLHjh2TJAUHB6tYsWImVwTTpNUJyHZgAE546623JEnvvfee+vTpI1/bv0cAAPec5OMHAaTJNuSzngnoazMYxEInIADnRUdHq3z58goODlbt2rVVu3ZthYSEqEKFCpo5c6bZ5cEMdAICcIN9+/YpIiJC/fr1IwAEABACAumRYNsJ6GAwiIXBIACcFBUVpV69emn//v2yWCwKCgpSUFCQLBaL9u3bp6ioKEVFRZldJjzNNgT0ST6Fnk5AAM4IDAxU8eLFzS4DAOAlCAGB9LA9EzDbnf+MfDgTEICLFixYoOjoaAUGBurdd9/VhQsXdPbsWZ09e1YXL17U+PHjFRQUpJkzZ2rhwoVmlwtPYjAIADdo1KiRdu3aZXYZAAAvQQgIpEPanYC8OQOQtqlTpypbtmxatWqVBgwYoHz58lnvy5s3r15++WWtWrVKvr6+mjp1qomVwuPS2g5MJyAAJ4wYMULHjx/XmDFjzC4FAOAFGAwCpIeDTkDbEFCcCQjACbt27VLDhg1VrVq1FNc8+OCDatiwoXbu3OnBymA6204/OgEBpFP58uW1cuVKPfHEE1qyZIlatmypsLAw+fg47gXp2rWrhysEAHgSISCQDhZHnYA2g0ESOBMQgBOuXbumwoULp7mucOHCunbtmgcqgtegExCAm2zevFnnz5/X0aNH9fPPP6e6lhAQALI2QkAgHWxDQEedgEwHBuCMokWLOnVW065du1SkSBEPVASvwZmAANxg5syZGjhwoCSpSpUqKlOmjHLnzm1yVQAAsxACAulgsXnzlTgQxG47MINBADihUaNGmj17tsaMGaMhQ4Y4XPP2229r37596tatm4erg6nS6gQkBATghIkTJypbtmxatGiRWrdubXY5AACTEQIC6WCx2e6buA2YwSAAXDVkyBB9+eWXGjp0qL7++mt17dpVJUqUkCQdPnxYn376qXbu3KmAgAC98sorJlcLj0qrE5DtwACccOjQITVo0IAAEAAgiRAQSB8HnYCJ24IltgMDcE65cuW0YMECPf3009q2bZu2b99ud7/FYlHevHn12WefqVy5ciZVCVM4CgEN245zPmwCkLagoCAVKlTI7DIAAF6CEBBIhzTPBGQwCAAnPfLII9q/f7+mTZumH374QcePH5ckBQcHKzIyUlFRUU4ND0EWk1IIaBh3JtDTCQjACS1bttSaNWuUkJCQ4kRgAMC9gxAQSAfb7b5G4pmAvjYdGnQCAnBB4cKFNWzYMA0bNszsUuAtHIWAiV/HxdEJCMApb7zxhpYtW6b+/ftrwoQJ8vPzM7skAICJCAGBdLDrBPz/MwF9OBMQAOAuKYWAiZ08dAICcML06dPVsmVLffTRR/ruu+/UqFEjhYWFOewKNAxDw4cPN6FKAICnEAIC6ZHGdGDOBATgqq1bt2r9+vU6duyYLBaLQkJCFBkZqYiICLNLgxlS6wSU6AQE4JRRo0bJMAxZLBb99ddfmjVrVrI1ifcTAgJA1kcICKSDwzMBfW0+UU0gBATgnEOHDqlr167aunWrpH8/RDD+fwhE7dq1NXv2bJUuXdq0GmECOgEBuMGIESOsrycAABACAumRVicgISAAJ5w4cUL169fXyZMnlTNnTj388MMqUaKEJCkmJkYrVqzQ1q1b1aBBA23btk3BwcEmVwyPoRMQgBuMGjXK7BIAAF6EEBBIB0edgD6+hIAAXDNixAidPHlS7du314cffqhChQrZ3X/27Fn16dNHCxcu1MiRIzVjxgyTKoXHpdUJSAgIAAAAFxECAumRRicgb84AOGP58uW677779Nlnnzmc2FiwYEHNnTtXmzdv1rJly0yoEKZJqxOQ7cAA0uHkyZM6duyYJCk4OFjFihUzuSIAgCclHwsFIE0OOwGz+Ti8HwBScv78edWrV89hAJjIz89P9erV04ULFzxYGUxHJyAAN4qOjlb58uUVHBys2rVrq3bt2goJCVGFChU0c+ZMs8sDAHgIISCQHpwJCMANQkJCdO3atTTXXb9+nfMA7zUMBgHgJlFRUerVq5f2798vi8WioKAgBQUFyWKxaN++fYqKilJUVJTZZQIAPIAQEEiHtM4ElIUQEEDaOnbsqPXr1+v48eMprjl+/LjWrl2rDh06eLAymI7BIADcYMGCBYqOjlZgYKDeffddXbhwQWfPntXZs2d18eJFjR8/XkFBQZo5c6YWLlxodrkAgExGCAikB2cCAnCD4cOHq3LlymrcuLGWLl2a7P7vvvtOTZo0UZUqVTRy5EgTKoRp6AQE4AZTp05VtmzZtGrVKg0YMED58uWz3pc3b169/PLLWrVqlXx9fTV16lQTKwUAeAKDQYB0YDowAHd45JFH5OPjowMHDuixxx5TYGCgwsPDJUkxMTG6ePGiJCkiIkKPPPKI3fcahqE1a9Z4uGJ4DJ2AANxg165datiwoapVq5bimgcffFANGzbUzp07PVgZAMAMhIBAelgcdAL62jTWsh0YgBPWr19v/dpisejChQsOB4Bs3rw52TXDMJJdQxbCYBAAbnDt2jUVLlw4zXWFCxd26oxaAMDdjRAQSA+bTj/f7HQCAkifdevWmV0CvFVanYBsBwbghKJFi2rXrl1prtu1a5eKFCnigYoAAGYiBATSw8GZgHYhIJ2AAJzQsGFDs0uAt6ITEIAbNGrUSLNnz9aYMWM0ZMgQh2vefvtt7du3T926dfNwdQAATyMEBNLB0ZmADAYBALgNg0EAuMGQIUP05ZdfaujQofr666/VtWtXlShRQpJ0+PBhffrpp9q5c6cCAgL0yiuvmFwtACCzEQIC6WBYEpQYA/pm+/9OwGw2ZwKyHRgAkBEMBgHgBuXKldOCBQv09NNPa9u2bdq+fbvd/RaLRXnz5tVnn32mcuXKmVQlAMBTCAGBdLDtBEzsALTtBORMQADOunTpkj788EOtWbNGJ06c0M2bNx2uMwxDhw4d8nB1MA2dgADc5JFHHtH+/fs1bdo0/fDDDzp+/LgkKTg4WJGRkYqKinJqeAgA4O5HCAikh+104P/vAEzsCLxzPyEggLQdPnxYDRs21IkTJ9I8S5RpwPcY25DPx6bTnE5AAOlQuHBhDRs2TMOGDTO7FACAiQgBgfSwnQ6cLXknIG/OADjjv//9r44fP666detq4MCBKlOmjPLkyWN2WfAGdAICAADAzQgBgfRw0AloOx2YTkAAzli7dq3CwsK0evVqBQQEmF0OvAlnAgJIpyFDhmj//v0aOHCgHnrooVTXbtq0SePHj1eFChU0evRoD1UIADCLT9pLANhKiLcP+BwOBiEEBOCE+Ph41a5dmwAQydmGfI46AQkBATiwfft2jRs3TleuXEkzAJSkhx56SFevXtWYMWP0yy+/eKBCAICZCAEBFyUNARPDPwaDAHBVpUqVdP78ebPLgDdKqxNQIggEkMzcuXNlGIZLXX1vv/22LBaLZs+enYmVAQC8ASEg4KL4WPs3XdZOQLYDA3BR3759tWHDBv3+++9mlwJvk9aZgBIhIIBkNm7cqOLFi6tWrVpOf0/16tUVHh6uH374IRMrAwB4A0JAwEXxcUm2A2d3cCYgb8wAOOGpp57Siy++qMaNG2vq1Kk6evSo2SXBWzgTAjIcBEAShw8fVuXKlV3+vipVqujw4cOZUBEAwJswGARwUdJOwMTwjzMBAaRH7969tWLFCvXp0yfVdYZhKC4uzkNVwXRsBwaQDteuXUvXlPncuXPr2rVrmVARAMCbEAICLnKmE5AzAQE44/fff1fDhg118eJFWdL48CCt+5HF0AkIIB0CAwN1+vRpl7/v9OnTypcvXyZUBADwJmwHBlzEmYAA3OXVV1/VhQsX1KFDB+3cuVNXrlxRQkJCin9wD6ETEEA6lCpVSj/99JNiY2Od/p7bt2/rp59+UsmSJTOxMgCANyAEBFyUtBMwcRswISAAV23atEnlypXTF198oapVqypXrlxmlwRvQScggHRo0qSJrl69qilTpjj9PVOmTNGVK1fUtGnTTKwMAOANCAEBFyXEOe4ENHxsQ0C6MwCkLSEhQVWrVpVhGGkvxr2FTkAA6dC7d29lz55dQ4YM0TfffJPm+iVLlujVV1+Vn5+fnn/+eQ9UCAAwEyEg4KKUzgRM/F9JdAICcMqDDz6o48ePm10GvJEznYCEgACSCAkJ0euvv67bt2/r8ccfV7t27bR48WIdP35csbGxio2N1fHjx7V48WLr/bGxsRo1apRCQ0PNLh8AkMkYDAK4KKUzAe06ARkMAsAJgwcPVuvWrbV+/XpFRkaaXQ68iTOdgGwHBuDA4MGDdf78eY0bN05LlizRkiVLHK5LHDg1aNAgDRkyxJMlAgBMkqEQcMOGDfL19dVDDz3krnoAr5cQn0InYDbb7XwWWRIs9sEgACRRsWJFvfLKK2rVqpVefPFFtWzZUmFhYfLxcdyoHxYW5uEKYRo6AQFkwJgxY9SsWTO9+eab2rhxY7LhUj4+PmrQoIGGDh3KWYAAcA/JUAgYGRmpyMhIrV271l31AF7PqenAuhMW+hICAkhFeHi4DMOQxWLRuHHjNG7cuBTXGoahuLg4D1YHUzEYBEAGNWnSRE2aNNGlS5e0c+dOnTlzRpJUqFAhPfjggwoMDDS3QACAx2UoBAwKCtJ9993nrlqAu0JKnYCJU4Jt1/lm91hZAO5CYWFhDAWBYwwGAeAm+fLlU6NGjcwuAwDgBTI0GKRq1ao6cOCAu2rJkPPnz2vQoEEqXbq0AgICVKhQITVq1EgbN260W/fTTz+padOmypMnj/LmzauHH35Yu3fvdviYJ06cUNeuXVWoUCHlyJFDNWrU0IIFCzzwbODNknYCJnYAJu0ETDpABACSiomJ0ZEjR5z+g3sInYAAAABwswx1Avbv31+PP/64vvvuOz3yyCPuqsllf/31lyIjI3X16lX17NlTZcuW1aVLl/Trr7/aTV3cunWrIiMjFRwcrNdff12SNHnyZNWvX1+bN29W5cqVrWvPnz+vevXq6fTp0xowYIBCQkI0b948derUSTNnzlT37t09/jzhHew6AY1/34w52g4MAEC60AkIAAAAN8tQCPjggw+qb9++evzxx/Xss8+qffv2Cg8PV44cORyuz6wDzZ955hnFxcXp119/VbFixVJc179/f/n5+WnDhg0KDg6WJHXq1EkVKlTQwIEDtXLlSuvaMWPG6MiRI/rmm2/Upk0bSVLPnj0VERGhQYMGqWPHjsqdO3emPB94N7tOQJsz/wgBAQBuw2AQAAAAuFmGQsASJUpIujNePjo6WtHR0SmuzawDzTds2KAff/xR77//vooVK6bY2FjFxsYqZ86cdusOHjyobdu2qUePHtYAUJKCg4PVsWNHffLJJzp58qSKFi0qSZo3b55KlSplDQAlydfXV/369VPXrl21bNkyderUye3PB97P2U7ApNuGASAl586d0/Tp07Vu3TprB3twcLAaN26s5557TgUKFDC5QnicM52AbAcGAACACzJ0JmBoaKjCwsJUvHhxhYWFpfonNDTUXTXbWbZsmaQ7XYZt2rRRjhw5lCtXLpUtW1Zz5861rtu2bZskKSIiItlj1KlTRxaLRTt27JAk/fPPPzp+/Ljq1KnjcK3t4+HekxD3b7hn2HQCJg4Isa6jExCAE1auXKmyZctq6NChWrVqlfbs2aM9e/Zo1apVeu2111SuXDm7TnXcI+gEBAAAgJtlqBMwJibGTWWk3759+yRJUVFRKlOmjD799FPdvn1b48ePV5cuXRQbG6vu3bvrxIkTkmTXBZgo8Vpi94Ura9Mj6ZblBH6Jv6vYDvyw2HQC2gaCSdcBgCMHDhxQu3btdP36dVWpUkXdu3dXqVKlJEmHDx/WrFmztHv3brVr1067du1SmTJlnHpcXmeyAAaDAPByvNYAwN0nQyGgN7hy5YokKU+ePFq3bp38/PwkSW3btlXJkiX12muvqVu3brp+/bokyd/fP9ljBAQESJJ1jStrce9JsRMwG2cCAnDNmDFjdP36dY0aNUojRoxIdn///v31xhtvaOTIkRo7dqxmzJhhQpUwBYNBAAAA4GZ3fQiYOITkySeftAaAkhQUFKRHH31Us2fP1r59+6xnBN66dSvZY9y8eVOSrGtcWZse//zzj93ty5cvK1++fOl+PHiWXbjnk8p04DjenAFI3Zo1a1SuXDmHAWCi4cOHa968eVq9erXTj8vrTBZAJyAAN/j444/VtWvXDL13SQmvNQBw98nQmYCJNm7cqE6dOikkJET+/v7q2bOn9b7EM41Onjzpjh+VTEhIiCRZB3rYSmxRv3Dhgu677z5Jjrfx2h7CLsmltbj3pDQdmDMBAbjq5MmTqlatWprrqlWrlmmvo/BSdAICcIM+ffooJCREL7/8sg4cOGB2OQAAk2U4BHzzzTcVGRmphQsX6sSJE4qNjZXF8m/4kS9fPo0dO1aLFi3K6I9yqFatWpKkY8eOJbsv8VrhwoVVs2ZNSdKWLVuSrdu6dasMw1D16tUl3QkPg4ODtXXrVodrJalGjRrueQK46zg9HZgzAQGkIVeuXDp9+nSa606fPq1cuXJ5oCJ4jcQQ0DDu/ElEJyAAFzz88MO6dOmS3nvvPVWoUEEtW7bUd999Z3ZZAACTZCgEXL58uUaMGKHg4GDNnz9fp06dSramVq1aKlSokJYuXZqRH5Witm3bKk+ePJo7d66uXr1qvf7PP/9o8eLFKlu2rEqXLq3SpUurRo0aWrBggXXwh3RnCMiCBQvUuHFju27CJ598UocOHdK3335rvRYfH68PPvhAgYGBatWqVaY8H3i/lM4ETBoCWhIIAQGkrmrVqtqwYYN+++23FNf8+uuv+uGHH1S1alXPFQbzJQZ8tp1/SW/TCQggDcuWLdOBAwc0YMAA5cuXT99//70effRRlSpVSuPHj9eFCxfMLhEA4EEZCgHfe+89+fv7a/ny5erQoYMKFSrkcN0DDzyQae3nQUFBevfdd3X8+HHVqVNHEyZM0JgxY1SnTh3dvn1bH3zwgV29t27dUv369TVp0iRNmjRJ9evXV0JCgsaPH2/3uEOGDFHx4sX11FNPaeTIkZo2bZqaNm2qbdu26d1331WePHky5fnA+9l3AjIYBED6RUVFKTY2Vk2bNtWHH35o92HW1atXNXnyZDVr1kzx8fHq1auXiZXC4xJDQJ8kv6rZ3iYEBOCEkiVLWt8vTZ8+XQ888ICOHDmiwYMHKyQkRFFRUdq9e7fZZQIAPCBDIeC2bdtUq1YtVaxYMdV1hQoVytSzjHr16qWvvvpKuXPn1vDhwzV69GiVK1dO69atU/Pmza3r6tatq/Xr1ys8PFzDhg3T8OHDVbp0aW3YsEEPPPCA3WMWKFBAmzZtUtu2bTVlyhT1799fly5d0hdffGF35iHuPXYDP1IZDGJ3diAAOPDEE0+oS5cuOnPmjPr166d8+fKpcOHCKly4sPLly6cXX3xRZ86cUZcuXdS5c2ezy4UnOdMJyHZgAC4ICAhQz549tXPnTm3atElPPPGE4uPjNXPmTFWvXl3169fX/PnzFc/fLQCQZWVoOvC1a9ccDuRI6tKlS0rI5E+r27Vrp3bt2qW5LiIiQmvWrHHqMYODgzVnzpyMloYsxrbDz0hlMAjbgQE449NPP1VERITeffddHT58WGfPnrXeV6pUKQ0aNEjPP/+8iRXCFCmFgHQCAnCDiIgIlStXTsWKFdOECRMkSZs2bdLmzZtVvHhxjRs3Th06dDC5SgCAu2UoBCxSpIgOHjyY5rp9+/YpNDQ0Iz8K8BopdQIa9o2ADAYB4LTevXurd+/eOn78uN0UeibR38MSA77UQkC6dQCkw65duzR58mR98cUXunnzpnx8fPToo4+qRYsWmjNnjjZv3qzOnTtr2rRp7IACgCwmQ9uB69Wrp927d2vTpk0prlm6dKkOHjyoRo0aZeRHAV7DtsPPthPQ8LGf4MiZgABcFRwcrFq1aqlWrVoEgPc6BoMAcKPY2FjNmzdPdevWVY0aNfTJJ5/I399fAwYM0KFDh7Ro0SI9//zz+vHHH/Xdd9/J399f7777rtllAwDcLEMh4MCBA2UYhtq1a6fFixcrLi7O7v4VK1boueeeU/bs2dWvX78MFQp4C7sOv6QHttuGgHG8OQOQ3LZt2/TNN984NTBr//79+uabb7R9+3YPVAav4sx2YDoBAaTh+PHjGj58uMLCwtSlSxdt3bpV5cuX14cffqhjx47pnXfeUfHixe2+p2XLlmrVqpUOHz5sUtUAgMySoe3A1apV0/jx4zVgwAC1b99eOXLkkGEY+uqrr7Ro0SJduXJFFotF77//vu6//3531QyYyhL/b7hn2wn4/xck3bmfTkAASZ09e1ZNmjRRnjx5nJrEGBQUpD59+uj69es6fPiwAgMDM71GeAk6AQG4QYkSJayDPlq2bKkXX3xRzZo1S/P7AgMDFRsbm9nlAQA8LEOdgJL04osvatmyZapZs6Zu3Lghi8WiK1eu6PLly6pcubK++eYb9e3b1x21Al7BLtzzTbkTkMEgAJKaO3eurl69qv/9738qVKhQmusLFSqk119/XRcvXtTcuXM9UCG8Bp2AANwgICBAffv21b59+7R06VKnAkBJGjdunI4cOZLJ1QEAPC1DnYCJWrRooRYtWujcuXM6cuSIEhISFBoaqmLFirnj4QGvYrvNN3kn4L+3GQwCIKlly5YpV65c6tatm9Pf06VLF7300ktaunQpH6rdS+gEBOAGJ06cUO7cuV3+vvz58yt//vyZUBEAwExuCQETFShQQAUKFHDnQwJex7YT0EhyJqDhYyjxXjoBAST1+++/q3bt2sqePbvT35M9e3bVqlVLv/32WyZWBq/jTCcgISCANOTLl08PPPCAdu7caXYpAAAvkKHtwLNmzdKxY8fcVQtwV3C6EzCWN2cA7J0/f15FixZ1+fuKFCmic+fOZUJF8FrOdAKyHRhAGnLmzMnZ7AAAqwx1Avbo0UOGYahMmTJq2rSpmjZtqsaNGytv3rzuqg/wOnZnAiadDmxzm05AAEn5+/vr2rVrLn/f9evX5e/vnwkVwWvRCQjADcqUKaPTp0+bXQYAwEtkqBPw2WefVWhoqPbv368PP/xQ7du3V4ECBVSnTh0NGzZM69evZ6oUspzUpwP/e5vpwACSKlq0qH799VeXv+/XX39NVwch7mIMBgHgBs8884w2btyoQ4cOmV0KAMALZCgEnDlzpmJiYrRv3z5NmTJFjz32mPLkyaOff/5Zb731lpo0aaKgoCA9/PDDGj9+vLtqBkxldyZg0unAPoSAAFJWt25dxcTEaPPmzU5/z6ZNm3TkyBHVrVs3EyuD12EwCAA3eOmll9SiRQs1btxY8+bN082bN80uCQBgogyFgInKlCmjF154QYsWLdK5c+f0008/afTo0YqMjFRcXJxWrlypV155xR0/CjBdap2Ahm0nYBxvzgDYe/rpp2WxWNSrVy9dunQpzfUXL15Ur169ZBiGnnzySQ9UCK9BJyAANyhdurR++eUX/f333+rSpYty5cqlYsWKqWTJksn+lCpVyuxyAQCZzK3TgSUpNjZWV65c0ZUrV3T58mXFxcVJkiwWuqKQNaTWCWjhTEAAqWjatKmaNGmiNWvWqHr16powYYLatGlj9wGCdOc185tvvtHAgQN15MgRRUZGqnnz5iZVDVPQCQjADWJiYqxfJ74fO3XqlMO1SV+LAABZj1tCwN27d2vVqlVavXq1fvzxR928eVMWi0V58+bVI488Yh0aAmQFqU0HNgxDidEf24EBOPLFF1/ooYce0v79+/X4448rMDBQ1apVU+HChSVJp0+f1s6dO3Xx4kVZLBaVLl1aX375pclVw+MYDALADY4cOWJ2CQAAL5KhEPCJJ57Q2rVrde7cOVksFmXPnl116tSxhn61atWSb9JfXoG7nF2HX9IzARkMAiANBQoU0M8//6y+ffvq888/14ULF7RmzRprB0Zip4aPj4+eeuopffDBBwoMDDSxYnicbbiXWicg24EBpKF48eJmlwAA8CIZCgHnz58vwzBUpUoVjRw5Us2bN1fOnDndVRvglWw7AX2SdgIyGASAE/LmzavZs2frf//7n5YuXart27frzJkzkqRChQqpevXqat26tUqWLGlypTCFbbhHJyAAAADcJEMhYJ48eXTlyhX98ssvevrpp1W/fn01a9ZMTZs21QMPPOCuGgGv4mwnoO0AEQBwpESJEurXr5/ZZcDbpBYC0gkIAACAdMpQCHj+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEh7qoZMFVCfMqdgLYdGnQCAgDShU5AAG721VdfacGCBdq3b58uX77scGijYRg6dOiQCdUBADwlQyGgr6+vIiIiFBERoeHDh+v69etav369Vq9erTVr1ujLL7+0HmZetmxZ7d271y1FA2aypDIdWGwHBgBklLMhIJ2AANJgsVjUqVMnLVq0yGHwJ/3/YDuLhenAAHAP8El7ifNy5sypVq1aacKECZo9e7YGDhwof39/WSwW7d+/350/CjCN7TbfZNOBbW7bbRsGAMBZzm4HphMQQBqmT5+ur776SlWqVNH333+vdu3ayTAM7du3T0uXLlXnzp0lScOGDdPhw4dNrhYAkNky1Alo69ixY1q1apW1CzDxgPPEqcERERHu+lGAqRJS6QS0/QTVdoAIAABOoxMQgJvMmTNH/v7+Wr58uYoWLap58+ZJksqUKaMyZcqoVatWatSokfr06aPIyEimCQNAFpehEHDx4sXW8wAPHDggSdZW8kqVKqlp06Zq2rSpGjZsyNRgZBl2nYC+KZ8JSCcgACBd6AQE4Ca///67IiIiVLRoUUn/fmBtu/23V69emjRpkt555x01btzYtFoBAJkvQyFgu3btrF+HhoZaQ78mTZqocOHCGS4O8Ea24Z7hw5mAAAA3YzAIADe5ceOGihUrZr3t7+8vSbp8+bLy5ctnvV61alWtWrXK4/UBADwrQyFg27Zt1axZMzVt2lRlypRxV02AV7PtBPRJ0glotx2YEBAAkB7OdgKyHRhAGooUKWI9pkmStVHj4MGDql69uvX6+fPndfPmTY/XBwDwrAyFgIsWLXJXHcBdI9UzARkMAgDIKDoBAbhJ6dKl7QZ+1KxZUxaLRR9//LGmT58uSdq7d6/Wr1+v8uXLm1UmAMBD3DodGLgXpDYdWHadgLw5AwCkg20ImOzYCQaDAHBe8+bNdeTIEe3Zs8d6OzQ0VDNnzlTNmjXVvn17RUREKDY2Vl27djW5WgBAZnPLdOC9e/fqvffe07p163T8+HFJUnBwsBo3bqz+/furQoUK7vgxgFew7fBLth3YpjPQwnZgAElk5MB1wzC0Zs0aN1YDr8VgEABu8uSTTyouLk43btyQJPn5+enLL79U27ZttWPHDu3YsUOS9Nhjj+nFF180s1QAgAdkOAScNWuWevfurdjYWFks/4YeBw4c0IEDB/TJJ59o6tSp6tatW0Z/FOAV7KcDJ+nQ4ExAAKlYv359ur/X9sxRZHHObgemExBAGsLCwjR06FC7a3Xq1NGRI0e0YcMGnT9/XhUqVFDVqlXNKRAA4FEZCgF37NihqKgoxcfHq3Xr1urZs6dKlSolSTp8+LCio6P17bffKioqShUrVlSNGjXcUjRgJvvpwEk6ATkTEEAq1q1bZ3YJuBvYdvjRCQggE+TIkUMtWrQwuwwAgIdlKAR85513lJCQoOjoaHXv3t3uvkqVKunRRx/VrFmz1KNHD40fP16ff/55hooFvIHddOBsDAYB4LyGDRuaXQLuBnQCAgAAIBNkKATcuHGjqlatmiwAtPXss89q8uTJ2rBhQ0Z+FOA1bLe9JxsMYhsCMhgEAJAenAkIwM1u3bql7du36/jx47p582aK6xgOAgBZW4ZCwLNnz6pRo0Zpritfvrx+++23jPwowGvYDvxI3gloMxiETkAAQHo42wlICAjACe+//75GjRqlS5cupbmWEBAAsrYMhYCBgYE6evRomuuOHj2qfPnyZeRHAd4jwXYwSMpnAjIYBICz/vnnHy1ZskT79u3T5cuX7TqOExmGoejoaBOqg8c52wnIdmAAaZgzZ45eeuklSXcaMypUqKC8efOaWxQAwDQZCgFr1qypFStWaO3atWrcuLHDNWvXrtWmTZvUqlWrjPwowGvYhns+vpwJCCBjPvjgA/33v/9VbGys9VpiCJg4EdhisRAC3kvoBATgJpMmTZJhGPrkk0/o8gMAyCftJSnr16+fEhIS1KZNGw0ePFh//PGHrl+/ruvXr+v333/XoEGD1KZNG+taIEuwedPl45vymYAJcbw5A5C6NWvW6MUXX1RAQICGDBmiiIgISdLUqVM1cOBAhYeHS5JeeuklzZw508RK4VEMBgHgJnv37lWdOnUIAAEAkjIYArZo0UJDhw7VjRs3NH78eFWpUkV58uRRnjx59MADD2jixIm6ceOGhg0bpubNm7urZsBUth1+RrJOQM4EBOC89957T4Zh6Pvvv9fo0aNVpkwZSVJUVJTeeecd7dmzR926ddPMmTNVv359k6uFxzAYBICbBAQEWD9QAgAgQyGgJL3xxhtavny5GjVqJH9/f1ksFlksFvn5+alx48ZatmyZ/ve//7mjVsAr2E79TdoJyHZgAK74+eefVa1aNdWuXdvh/f7+/vroo48UEBCg119/3cPVwTR0AgJwkxo1aujAgQNmlwEA8BLpOhPw4MGDWrRokWJiYuTv76+qVavq22+/lZ+fn86dOydJKlCggHyT/uIKZAG24V7y6cCEgACcd+HCBUVGRlpvZ8+eXZJ048YN5ciRQ9KdILB+/fpas2aNGSXCDHQCAnCTV199VU2bNtXy5cvVsmVLs8sBAJjM5RBw0qRJGjx4sOKTfPo8fPhwLVu2TJUqVXJbcYBXSuVMQEJAAK7Inz+/rl27Zr0dFBQkSTp69KjKlStnvR4fH2/9kA33AAaDAHCTUqVKadiwYXr88cfVv39/tW7dWmFhYfLxcbwhLCwszMMVAgA8yaUQ8Mcff9TAgQNlsViUK1culStXTpcvX9bhw4d17NgxtW/fXnv37k3xRQXIClI/E9AmBIznzRmA1IWFhenvv/+23q5UqZIsFouWLl1qDQGvXr2qjRs3KiQkxKwy4WnOdgKyHRhAGsLDw2UYhiwWi8aPH6/x48enuNYwDMXFxXmwOgCAp7kUAk6ePFkWi0XdunXT5MmTlStXLknSr7/+qvbt2+vgwYNasWKFWrVqlSnFAl4h1enADAYB4LyGDRtq4sSJOnXqlIoUKaJHHnlEuXLl0muvvaaTJ08qLCxMn376qc6fP68nnnjC7HLhKXQCAnCTsLAwGYaR9kIAwD3BpRBwy5YtCgkJ0dSpU+Xn52e9XqVKFb333ntq3bq1tm7dSgiILM3ZMwET4gkBAaSuY8eO2rVrl3bv3q0WLVoof/78mjBhgnr37q0JEyZIkiwWi8LDwxmydS+hExCAm8TExJhdAgDAi7gUAp46dUqtWrWyCwAT1atXT5J0+vRp91QGeClLKp2AtrfpBASQlpo1a2rVqlV216KiolS9enUtWLBA58+fV4UKFdS9e3fly5fPpCrhcXQCAgAAIBO4FALevn1bgYGBDu/LmzevdQ2QlaXWCSjOBATgBtWqVVO1atXMLgNmcTYEpBMQAAAALmCCB+CqVKcDcyYgACCDnN0OTCcgAAAAXOBSJ6AkHTx4ULNnz07X/V27dnX1xwHex8kzAS0WQkAAzjl06JCmTp2qzZs368yZM3rsscc0btw4SdJPP/2kX375RZ07d2ZL8L2CTkAA6eTr6yvDMLRnzx6VLVtWvkn/DkkF04EBIOtzOQTctGmTNm3a5PA+wzBSvN8wDEJAZA3OngnIYBAATvj000/Vu3dv3bp1S9Kd18uzZ89a779+/bpeeOEF+fn56dlnnzWpSngUnYAA0slisdh9EO3Kh9J8gA0AWZ9LISAj5gHnpwOzHRhAWrZu3arnnntOOXPm1BtvvKGGDRuqdu3admsaNmyofPny6dtvvyUEvFcwGARAOiUk+Xsh6W0AwL3NpRCQEfOA7N50+WZLeiYgg0EAOG/cuHGyWCz67rvvVK9ePYdrfHx8VLVqVe3Zs8fD1cE0znYCsh0YAAAALmAwCOCiVDsBfW1us6UCQBo2bdqkWrVqpRgAJipatKj++ecfD1UF09EJCAAAgExACAi4KtXpwP/eTuBMQABpuHjxosLCwtJcd+PGDd2+fdsDFcErMBgEAAAAmcDlwSDAPc/CdGAA7lGgQAH99ddfaa47ePCgihYt6oGK4BUYDALATUqWLOnUOj8/PxUsWFA1a9ZU165d9eCDD2ZyZQAAMxACAq5yshNQnAkIIA116tTRt99+qz/++EMVK1Z0uGbTpk36448/9Mwzz3i4OpiGTkAAbpJ4prthGCl+QJ143/79+7V582Z98MEHGjVqlIYNG+bBSgEAnsB2YMBFdmcCJgkBbTsDmQ4MIC3/+c9/FB8fr/bt22v37t3J7t+7d6969OghwzDUp08fzxcIc9iGez5JflWjExCAC44cOaLBgwfLMAx16NBBX3/9tXbt2qXdu3dr8eLF6tixo3x8fDRo0CBt2LBBo0aNkp+fn0aOHKlVq1aZXT4AwM3oBARcZbHpBGQ7MIAMaNKkiQYMGKAJEyaoevXqKlWqlAzD0Pfff68qVapoz549SkhI0ODBg1WnTh2zy4WnpNYJaBiO1wGAA3/88YfeeecdzZ8/X+3bt7e7r0qVKnr00Ue1aNEidezYUQ0aNNCIESNUtWpVtW3bVh9++KGaNWtmUuUAgMxAJyDgKpsOP99sKW8HtjAYBIAT3n33XU2dOlVFixbVwYMHZbFY9M8//+j3339X/vz59cEHH2jMmDFmlwlPSisETOwOpBMQQBrGjRunmjVrJgsAbbVr1041a9bUO++8I0l69NFHVa5cOf3888+eKhMA4CF0AgKuSq0T0HZ7MJ2AAJwUFRWl5557Trt27dLhw4eVkJCg0NBQ1axZU9my8VJ9z7EN95KGgNKdEDAhgRAQQJp2796t1q1bp7mudOnSWrp0qfV2uXLltGLFiswsDQBgAt5ZAK5KpRPQx64TkDdnAJxnGIaqVaumatWqJbvv4sWLeueddzR69GgTKoPHpdYJmHgtLo7twADSlJCQoMOHD6e5LvEDqETZs2dXQEBAZpYGADAB24EBF9wZ9mEzGCRZJ6DNYBA6AQFk0OXLlzVy5EiFh4ezJfheklYIyHZgAE564IEH9NNPP+mbb75Jcc0333yjrVu3qmrVqtZrf//9twoVKuSBCgEAnkQnIOCChCTn/HEmIID02LFjh7799ludOnVKRYoU0aOPPmrXAXjz5k1NmDBB7777ri5duiSLxaL777/fxIrhUc6GgHQCAkjDoEGD9Pjjj6tDhw7q3LmznnrqKYWHh8swDMXExGjevHn64osvZBiGBg4cKOlO9/muXbvUqVMnk6sHALgbISDggvg4+2AvaSegD2cCAkjDoEGDNHHiRLtrb7zxhoYPH65Ro0Zp27Zt6ty5s/766y9ZLBaFhYVp1KhR6tq1q0kVw+Oc2Q4s0QkIIE2PPfaYxowZo6FDh2revHmaN2+e3f0Wi0U+Pj4aPXq0HnvsMUnS2bNn9dprr+nhhx82o2QAQCYiBARcEB9r/4Yr9U5A3pwBsPfdd99pwoQJkqS8efOqTJkyunz5sg4fPqw33nhD5cqV0wsvvKDLly8rf/78GjZsmPr06SM/Pz+TK4dH0QkIwI0GDx6s5s2b64MPPtCGDRt07NgxSVJwcLAaNGigvn372nWjly5dWiNHjjSrXABAJiIEBFyQZieg7W06AQEkMX36dElSv379NG7cOPn7+0uS9u7dq/bt26tbt26Ki4tTo0aN9OWXX6pgwYJmlguz0AkIwM2qVq2q6Ohos8sAAJgsSw4GuX79ukqWLCnDMNS3b99k9+/bt09t27ZVUFCQcuXKpfr162vt2rUOH+vSpUvq16+fgoODFRAQoIoVK+qjjz5i6MM9yqVOwAT+HQFgb8eOHQoPD9fEiROtAaAkVahQQZMmTVJcXJzy5s2rxYsXEwDeyxgMAgAAgEyQJTsBR4wYoTNnzji879ChQ6pbt66yZcumwYMHK1++fJo+fbpatGih5cuXq2nTpta1t2/fVrNmzbRr1y7169dPFSpU0PLly9WnTx+dOnVKo0aN8tAzgrdI2gnomz3lMwEJAQEkdebMGT3yyCPy8Un+GVydOnUkSfXr11eePHk8XRq8ibOdgGwHBgAAgAuyXAi4c+dOTZo0SePGjbNOuLL16quv6uLFi9qxY4eqVq0qSeratasqVqyo//znP/rzzz9lGHeCnBkzZmjbtm16//331a9fP0lSVFSU2rdvr7feekvdu3dX8eLFPfbcYL6knYB2g0Bk3wnIdmAASd2+fVv58uVzeF/evHklSYUKFfJkSfBGdAICcLPt27dr4cKF2rdvny5fvuxwV5NhGFqzZo0J1QEAPCVLhYDx8fGKiorSww8/rHbt2iULAa9du6ZvvvlGkZGR1gBQknLnzq3nnntOI0aM0LZt21SrVi1J0rx585QzZ05FRUXZPc5LL72kRYsW6csvv9TgwYMz/XnBeyTEp94JaBcC8uYMAJAedAICcKPEqfSJwZ9hGHYhYOLtxEYIAEDWlaVCwIkTJ+rPP//UV1995fD+X3/9Vbdu3VJERESy+xK3YSWGgAkJCdq5c6eqVaumgIAAu7W1atWSYRjatm2b+58EvFpaZwLaDgZhOzAARw4ePKjZs2en6/6uXbtmVlnwJnQCAnCTBQsWaMKECQoJCdHw4cP11VdfadWqVfr+++914MABffbZZ9qyZYuGDBmiFi1amF0uACCTZZkQ8MiRIxo5cqRGjBih8PBwxcTEJFtz4sQJSVJwcHCy+xKvHT9+XJJ04cIF3bhxw+Faf39/FSxY0LrWVcWKFbO7ncAv8XeNtM4EZDAIgLRs2rRJmzZtcnifYRgp3m8YhtMhIK8zdzlnQ0A6AQGkYdq0afL19dWaNWtUpkwZbd68WZLUrFkzNWvWTH369NHw4cP1zjvvqFOnTi49Nq81AHD3yTIhYO/evVWyZEkNGDAgxTXXr1+XJLuJjIkSu/0S16S2NnF94hrcOxLiUu8EtLvNmYAAkggLC2O7FdLm7HZg3nADSMOuXbtUu3ZtlSlTJsU1//vf/zR37ly9+eabWrhwoQerAwB4WpYIAefOnatVq1Zpw4YNyp49e4rrcubMKUm6detWsvtu3rxptya1tYnrE9e46p9//rG7ffny5RQPiod3cakTkBAQQBKOutQzA68zdzk6AQG4yZUrVxQWFma97efnJ0m6evWqcufOLUny8fFR7dq19cMPP7j02LzWAMDdxyftJd7t1q1bGjBggFq1aqWiRYvq4MGDOnjwoP766y9J0qVLl3Tw4EFdvHhR9913nyQ53MabeC1x+29QUJBy5MjhcO2tW7d09uxZh1uFkbWl1QloeyYgHRoAgHShExCAmxQqVEgXL1603i5YsKCk5B9KXbt2TZcvX/ZgZQAAM9z1IeCNGzd05swZfffddypTpoz1T2RkpKQ7XYJlypTRjBkzVLlyZfn7+2vLli3JHmfr1q2SpBo1aki684lYtWrVtGvXrmTdgD///LMsFot1Le4dSTsBfXztQ0D76cB0AgIA0oHBIADcJDw83NocIUkPPvigLBaL5s2bZ7128uRJ/fDDDypevLgZJQIAPOiu3w6cK1cuLViwINn1M2fOqE+fPnr44YfVs2dPValSRblz51abNm20aNEi/fLLL3rggQck3WmHnzFjhsqUKaNatWpZH+PJJ5/Upk2bNG3aNPXr1896fdKkScqWLZs6d+6c+U8QXsWuE9Aw7EM/MRgEQOpu3LihHDlyeM3jwEs52wnIdmAAaWjSpInefPNNxcTEKDw8XC1btlT+/Pk1duxYHThwQGFhYVq4cKGuXbum9u3bm10uACCT3fUhYPbs2dWhQ4dk1xNb3EuVKmV3/9tvv601a9aoefPmevnll5U3b15Nnz5dx48f13fffWd3YHtUVJQ++eQTDRgwQDExMapQoYKWLVumr7/+WsOGDVN4eHhmPz14GbtOQCN5Iy2DQQCkplSpUhoxYoSioqLk6yjcSUNcXJymTp2q0aNHWyfeIwuiExCAmzzxxBM6ceKE/v77b4WHhytXrlz65JNP9MQTT+irr76yrqtevbpeffVVEysFAHjCXR8Cuqp06dLatGmThgwZojFjxuj27duqVq2aVqxYoaZNm9qt9fPz0+rVqzVs2DB9/vnnOnfunEqVKqUPPvhA//nPf0x6BjCTXSegT/IJn/bbgXlzBsDefffdpz59+mj06NHq1q2bunXrlurExkT79u3TrFmzNGfOHJ04cULVq1f3QLUwDYNBALhJhQoVNH36dLtrbdq00YEDB/Ttt9/q/PnzqlChgtq0aZOuD6cAAHeXLBsChoeHpzidtUKFClqyZIlTjxMYGKjJkydr8uTJ7iwPd6m0OgHtBoPQCQggiW3btmnGjBkaNmyY3nrrLb399tsKCQlRRESEKlSooAIFCihv3ry6fPmyzp07pz179mjLli06fvy4LBaLChUqpGnTpqlnz55mPxVkJgaDAMhk9913n55//nmzywAAeFiWDQGBzGDbCZj0PEDJflAIZwICSMowDEVFRalLly6aM2eOJk+erN9++01///233XEUiRI/zKpSpYr69u2rp59+mrMA7wWubAe2WCQH/+4AAAAASRECAi5IiP832LP4OOgE9OVMQABpCwgIUFRUlKKiohQTE6O1a9dq165dOnXqlC5duqTAwEAVLlxY1apVU6NGjTiD9l7jbCegRAgIwGnHjh3TiRMndPPmzRTXNGjQwIMVAQA8jRAQcEF8rE0noIM3XXbdgYSAAJwQHh6uHj16mF0GvImznYCJax18KAUAiRYsWKBhw4bp4MGDqa4zDENxcXEeqgoAYAZCQMAFtp2Ajt50+Wa3ucZZTQDSsGHDBvn6+uqhhx4yuxR4E1c6AXmtAZCK+fPn68knn5TFYlH+/PkVHh6uPHnymF0WAMAkhICAC+ymA9MJCCCDIiMjFRkZqbVr15pdCryJbQjoaKuvDx84AXDOW2+9JUl677331KdPHyYAA8A9jhAQcIFtJyCDQQBkVFBQkO677z6zy4C3SQwBfXwch4C2b+JtA0MASGLfvn2KiIhQv379zC4FAOAFOEQGcIFdJyCDQQBkUNWqVXXgwAGzy4C3SQz2UurYoRMQgJMCAwNVvHhxs8sAAHgJQkDABfFxzncCysIbMwCp69+/v7Zt26bvvvvO7FLgTRKDPWdCQDoBAaSiUaNG2rVrl9llAAC8BCEg4AJLfBqdgNlsrtEJCCANDz74oPr27avHH39cvXr10vfff699+/bp6NGjDv/gHpFWJyCDQQA4acSIETp+/LjGjBljdikAAC/AmYCAC+ynA6fRCciZgADSUKJECUmSxWJRdHS0oqOjU1xrGIbi4uI8VRrM5Mp2YDoBAaSifPnyWrlypZ544gktWbJELVu2VFhYmHwcfJgtSV27dvVwhQAATyIEBFxgHwJyJiCAjAkNDZXhaPAD7m10AgJwo82bN+v8+fM6evSofv7551TXEgICQNZGCAi4wHYwSJpnAsoiS4LF4ToAkKSYmBizS4A3YjAIADeZOXOmBg4cKEmqUqWKypQpo9y5c5tcFQDALISAgAtsOwGNtM4E/P/1voSAAABXuNIJyHZgAKmYOHGismXLpkWLFql169ZmlwMAMBmDQQAXuNYJmGT7MAAAzqATEICbHDp0SA0aNCAABABIIgQEXOLSmYCS4uMIAQGkbePGjerUqZNCQkLk7++vnj17Wu9btWqVXnvtNZ08edLECuFRdAICcJOgoCAVKlTI7DIAAF6CEBBwgSWeTkAA7vXmm28qMjJSCxcu1IkTJxQbGyuLzWChfPnyaezYsVq0aJGJVcKj6AQE4CYtW7bU1q1blcDfFQAAEQICLnG5EzCWX7gApGz58uUaMWKEgoODNX/+fJ06dSrZmlq1aqlQoUJaunSpCRXCFK6EgHQCAkjFG2+8oVu3bql///66ffu22eUAAEzGYBDABWmdCeibPflgEABIyXvvvSd/f38tX75cFStWTHHdAw88oAMHDniwMpjKle3AdPcASMX06dPVsmVLffTRR/ruu+/UqFEjhYWFycfBh9mGYWj48OEmVAkA8BRCQMAFdtOBfdPuBCQEBJCabdu2qVatWqkGgJJUqFAhbd682UNVwXR0AgJwk1GjRskwDFksFv3111+aNWtWsjWJ9xMCAkDWRwgIuMDVMwEZDAIgNdeuXVPRokXTXHfp0iXOc7qX0AkIwE1GjBghw0j+OysA4N5ECAi4wNUzAekEBJCaIkWK6ODBg2mu27dvn0JDQz1QEbwCg0EAuMmoUaPMLgEA4EUYDAK4IMGmEzBp4Cc5OBMwjjdnAFJWr1497d69W5s2bUpxzdKlS3Xw4EE1atTIg5XBVK50ArIdGAAAAE4iBARcYKETEIAbDRw4UIZhqF27dlq8eLHi4uLs7l+xYoWee+45Zc+eXf369TOpSngcnYAAAADIBGwHBlxgNx3YQScgZwICcEW1atU0fvx4DRgwQO3bt1eOHDlkGIa++uorLVq0SFeuXJHFYtH777+v+++/3+xy4QkWy50/EoNBALhs9uzZGfr+rl27uqkSAIA3IgQEXGBJsJkO7KAT0DebfQhoux4AHHnxxRdVvnx5jRw5Utu2bZPFYtGVK1ckSVWqVNGbb76p1q1bm1wlPMY21GMwCAAXPfvss+keBGIYBiEgAGRxhICAC1zuBIzlzRmAtLVo0UItWrTQuXPndOTIESUkJCg0NFTFihUzuzR4mjMhIJ2AAFIQFhbGNGAAQIoIAQEXpNkJmHQwCGcCAnBBgQIFVKBAAbPLgJnoBASQATExMWaXAADwYgwGAVxgSWM6cNJrbAcGkJpZs2bp2LFjZpcBb0InIAAAADIJnYCACxJcnA7MYBAAqenRo4cMw1CZMmXUtGlTNW3aVI0bN1bevHnNLg1moRMQAAAAmYQQEHBBWp2AkiTDsE52ZDswgNQ8++yzWrt2rfbv36/9+/fro48+ko+Pj6pXr24NBR966CFlz57d7FLhKa52AhICArBx48YN5ciRw2seBwDgXdgODLjANtQzfFP4z8f497rtIBEASGrmzJmKiYnRvn37NGXKFD322GPKkyePfv75Z7311ltq0qSJgoKC9PDDD2v8+PFmlwtPcLUTkO3AAGyUKlVKH3/8seLT+XdDXFycpkyZolKlSrm5MgCANyAEBFxg2wlo+KTSCfj/6AQE4IwyZcrohRde0KJFi3Tu3Dn99NNPGj16tCIjIxUXF6eVK1fqlVdeMbtMeAKdgAAy4L777lOfPn0UHh6uYcOG6cCBA0593759+/Tqq68qPDxc/fr1U3BwcCZXCgAwA9uBARfYTwcmBATgfrGxsbpy5YquXLmiy5cvKy4uTpJksfD3yT3BNgR0cPZssut0AgKwsW3bNs2YMUPDhg3TW2+9pbffflshISGKiIhQhQoVVKBAAeXNm1eXL1/WuXPntGfPHm3ZskXHjx+XxWJRoUKFNG3aNPXs2dPspwIAyASEgIAL7DoBU9gObPgYSnyrTggIwBm7d+/WqlWrtHr1av3444+6efOmLBaL8ubNq0ceecR6PiDuAQwGAZABhmEoKipKXbp00Zw5czR58mT99ttv+vvvv2UYyT/ATvyAqUqVKurbt6+efvppzgIEgCyMEBBwgW2ol+pgkMT1nAkIIBVPPPGE1q5dq3PnzslisSh79uyqU6eONfSrVauWfFMKgpA1ubodmE5AAA4EBAQoKipKUVFRiomJ0dq1a7Vr1y6dOnVKly5dUmBgoAoXLqxq1aqpUaNGCg8PN7tkAIAHEAICrkhIuxPQYvPmjE5AAKmZP3++DMNQlSpVNHLkSDVv3lw5c+Y0uyyYybazj05AAG4QHh6uHj16mF0GAMALMBgEcIH9dGDHnYC2Wy1szxAEgKTy5Mkji8WiX375RU8//bTatWun8ePH65dffjG7NJiFwSAA3GjDhg3atGmT2WUAALwEnYCAC2wP5vdJoROQwSAAnHX+/Hn9/PPPWr16tVavXq1169Zp5cqVMgxDBQsWVJMmTdSsWTM1a9ZMISEhZpcLT3D1TEC2AwNIRWRkpCIjI7V27VqzSwEAeAFCQMAVtoNBUpoO7EMICMA5vr6+ioiIUEREhIYPH67r169r/fr1Wr16tdasWaMvv/xSX375pSSpbNmy2rt3r8kVI9PRCQjAjYKCgnTfffeZXQYAwEsQAgIuSLDZ3uuTLYXpwIbNdGAGgwBwQc6cOdWqVSu1atVKv/zyiz777DNNnjxZN2/e1P79+80uD55AJyAAN6pataoOHDhgdhkAAC9BCAi4wolOQNvBIJwJCMBZx44d06pVq6xdgGfOnJEk69TgiIgIkyuER9AJCMCN+vfvr8cff1zfffedHnnkEbPLAQCYjBAQcIHFxU7A+DhCQAApW7x4sfU8wMRODYvFIsMwVKlSJTVt2lRNmzZVw4YNmRp8r3A1BKQTEEAqHnzwQfXt21ePP/64nn32WbVv317h4eHKkSOHw/VhYWEerhAA4EmEgIALLDadgD4pTQf2YTowAOe0a9fO+nVoaKg19GvSpIkKFy5sYmUwjavbgekEBJCKEiVKSLrzAVN0dLSio6NTXGsYhuLi4jxVGgDABISAgAtsQz2D6cAAMqht27Zq1qyZmjZtqjJlyphdDrwBnYAA3Cg0NFSGkcIwOwDAPYcQEHCBM52Atm/ObNcDQFKLFi0yuwR4GzoBAbhRTEyM2SUAALxICq1MAByhExAAkKkYDAIAAIBMQggIuCLBtTMBCQEBOGPv3r3q3bu3ypUrp9y5cyt37twqV66cXnjhBe3du9fs8uBJrnYCsh0YAAAATiIEBFzgzHRgMRgEgAtmzZqlBx98UNOnT9eBAwd0/fp1Xb9+XQcOHNDUqVP14IMP6tNPPzW7THgKnYAAMsHGjRvVqVMnhYSEyN/fXz179rTet2rVKr322ms6efKkiRUCADyBEBBwgcWZTkDb7cBxvDkDkLIdO3YoKipKt2/f1iOPPKKvv/5av/76q3799VctXrxYbdq00e3btxUVFaXt27ebXS48gU5AAG725ptvKjIyUgsXLtSJEycUGxsri+XfD6rz5cunsWPHck4tANwDCAEBFzjXCWgzGIROQACpeOedd5SQkKDo6Gh98803euyxx1SpUiVVqlRJjz76qJYsWaKZM2cqLi5O48ePN7tceAKdgADcaPny5RoxYoSCg4M1f/58nTp1KtmaWrVqqVChQlq6dKkJFQIAPInpwIArnJoOzJmAAJyzceNGVa1aVd27d09xzbPPPqvJkydrw4YNHqwMpnE1BKQTEEAq3nvvPfn7+2v58uWqWLFiiuseeOABHThwwIOVAQDMQCcg4AJnpgMzGASAs86ePasKFSqkua58+fI6e/asByqC6VzdDkwnIIBUbNu2TbVq1Uo1AJSkQoUKcSYgANwDCAEBV9i82fLNlvaZgGwHBpCawMBAHT16NM11R48eVb58+TxQEUxHJyAAN7p27ZqKFi2a5rpLly4pgQ8VACDLIwQEXOBMJ6Dtm7OEeH6ZApCymjVravPmzVq7dm2Ka9auXatNmzapdu3aHqwMpqETEIAbFSlSRAcPHkxz3b59+xQaGuqBigAAZiIEBFzhTCegzXZgC9uBAaSiX79+SkhIUJs2bTR48GD98ccfun79uq5fv67ff/9dgwYNUps2baxrcQ9gMAgAN6pXr552796tTZs2pbhm6dKlOnjwoBo1auTBygAAZiAEBFzAmYAA3KlFixYaOnSobty4ofHjx6tKlSrKkyeP8uTJowceeEATJ07UjRs3NGzYMDVv3tzscuEJrnYCsh0YQCoGDhwowzDUrl07LV68WHFxcXb3r1ixQs8995yyZ8/Oh00AcA8gBARc4UQnoDgTEIAL3njjDS1btkyNGjWSv7+/LBaLLBaL/Pz81LhxYy1btkz/+9//zC4TnkInIAA3qlatmsaPH6+zZ8+qffv2CgwMlGEY+uqrrxQYGKhHHnlEp0+f1vjx43X//febXS4AIJNlM7sA4G5isfwb6vlkS7sT0MKZgACc8PDDD+vhhx9WfHy8zp07J0kqUKCAfFMKgZB1MRgEgJu9+OKLKl++vEaOHKlt27bJYrHoypUrkqQqVarozTffVOvWrU2uEgDgCYSAgAuMhAQlxoA+vil0Atq8OaMTEIAjBw8e1KJFixQTEyN/f39VrVpVnTp1Uo4cOVS4cGGzy4OZGAwCIBO0aNFCLVq00Llz53TkyBElJCQoNDRUxYoVM7s0AIAHEQICLrAN9ZzqBCQEBJDEpEmTNHjwYMUn6eAaPny4li1bpkqVKplUGbwCnYAAMlGBAgVUoEABs8sAAJiEMwEBV9h0XKTUCchgEAAp+fHHHzVw4EDFxcUpZ86cevDBB1WqVCkZhqFjx46pffv2SqCz695mG+r5pPBrGp2AAJw0a9YsHTt2zOwyAABeghAQcIHdmYBOhIB0AgKwNXnyZFksFnXr1k0nT57U9u3btX//fu3cuVOlSpXSwYMHtWLFCrPLhJkYDALAjXr06KHixYurfPny6tu3rxYvXqzLly+bXRYAwCSEgIALDNtOwBS2A8v33+sJcbw5A/CvLVu2KCQkRFOnTlWuXLms16tUqaL33ntPFotFW7duNbFCmM7VMwHZDgwgFc8++6xCQ0O1f/9+ffjhh2rfvr0KFCigOnXqaNiwYVq/fr1iY2PNLhMA4CF3fQi4f/9+jRgxQnXq1FGhQoWUJ08eVa1aVaNHj9a1a9eSrd+3b5/atm2roKAg5cqVS/Xr19fatWsdPvalS5fUr18/BQcHKyAgQBUrVtRHH31k1w2Ge4ttZ59vthQ6AQ06AQE4durUKdWoUUN+fn7J7qtXr54k6fTp054uC97EtrOPTkAAGTRz5kzFxMRo3759mjJlih577DHlyZNHP//8s9566y01adJEQUFBevjhhzV+/HizywUAZLK7fjDIzJkzNWXKFD366KN6+umnlT17dq1bt07Dhg3T/PnztXXrVuXIkUOSdOjQIdWtW1fZsmXT4MGDlS9fPk2fPl0tWrTQ8uXL1bRpU+vj3r59W82aNdOuXbvUr18/VahQQcuXL1efPn106tQpjRo1yqRnDFNZ0u4ENHwJAQE4dvv2bQUGBjq8L2/evNY1uIfRCQggE5QpU0ZlypTRCy+8IIvFou3bt2v16tVavXq1Nm3apJUrV2r16tUaOHCg2aUC/9feXYfHUe1vAH9347Jx17q7QwuF0kKR8sOlUIoVuVDctVzswsVuBS5WilwKFHctBSrU3dMmTSNN47bR3fn9MZ09M7uzm02yyTab9/M8fbo6ezKzydl593vOIaIO1OVDwIsuuggPPvggIiMjbbfddNNN6Nu3L55++mm8/fbbuPXWWwEADz74ICoqKrBx40aMGDECAHDVVVdh8ODBuOWWW7Bnzx5bFddbb72F9evXY/78+Zg7dy4AYM6cObjwwgvxzDPP4JprrkFmZmbn/rDkfe7MCchKQCIiaivOCUhEHaypqQnV1dWorq5GVVUVmpubAYCjnYiIuoEuHwKOGTNG9/ZLL70UTz/9NHbs2AEAqK2txddff41TTjnFFgACQHh4OK6//no89thjWL9+PcaNGwcA+PDDDxEaGoo5c+ZotnvHHXfg888/x8cff4z77ruvY34oOn6phwMHOKkE1KwOzJMzItLKysrCe++916b7r7rqqo5qFh0vWhsCshKQiNywZcsW/PLLL/j111+xcuVK1NfXQ5IkRERE4Oyzz8bUqVM1o6KIiMg3dfkQ0Jm8vDwAQGJiIgBg27ZtaGhowAknnODw2AkTJgCALQS0Wq3YtGkTRo0aheDgYM1jx40bB4PBgPXr13fwT0DHJfVwYGeVgH7qCg1+o0pEWqtWrcKqVat07zMYDE7vNxgMDAG7g9YOB2YlIBG5cNlll2H58uUoLS2FJEkICAjAhAkTbKHfuHHj4Ofsbw0REfkcnwwBLRYLnnzySfj7+2PmzJkAgIKCAgBAamqqw+OV2/Lz8wEA5eXlqKur031sUFAQ4uLibI9ti+TkZM11Kz/AdwlWizbQc1YJCA4HJiInMjIyNFMGdBT2M10YKwGJyIM++eQTGAwGDBs2DI8//jhOP/10hIaGemTb7GuIiLoenwwB77jjDqxZswbPPPMM+vfvDwAwm80A5BDPnlLtpzzG1WOVxyuPoe7D0qT9YOOsElB9u31wSETdW05OjrebQMc7VgISkQeZTCZUV1dj69atuOKKK3DSSSdh2rRpmDp1KoYPH+7t5hERUSfzuRDw0UcfxcKFC3HDDTfgwQcftN2ufOPV0NDg8Jz6+nrNY1w9Vnl8e75BKyws1FyvqqrSLGxCxydLs3uVgOo5AVkJSETewH6mC+PCIETkQWVlZVi3bp1tJeDff/8dP//8MwwGA+Li4nDaaadh2rRpmDZtGtLS0lq1bfY1RERdj5PxjF3TvHnz8NRTT+Gaa67Bf//7X819KSkpAKA7jFe5TRn+Gx0djZCQEN3HNjQ0oKSkRHeoMPk2dysB1XMCSlwYhIiIWqO1lYAcDkxELvj5+eGEE07Ao48+ij/++APl5eX49ttvcfvttyMpKQkff/wxrr/+emRmZmLgwIHebi4REXUwnwkB582bhyeeeAKzZ8/GW2+95TDn0tChQxEUFIQ1a9Y4PPfvv/8GIFYaNhqNGDVqFDZv3uxQDbhu3TpIkuR0VWLyXe5WAtrPCfjNU1vx/ND38duiPR3ZPJ9zNLsWu34v8nYziIg6V1sqASsrgUceAb75pmPb5otqarzdAqJOFRoairPOOgsvvfQS3nvvPdx9990ICgqCJEnYt2+ft5tHREQdzCdCwH/+85944oknMGvWLCxevBhGo+OPFR4ejhkzZmDFihXYunWr7faamhq89dZb6Nu3L8aNG2e7/fLLL4fZbMYbb7yh2c4rr7wCf39/XHrppR33A9Fxyb4S0M+/5TkBK/YUYuOjX8C84wD+uvcrNNWzYsMdudsq8Grfl/DJlNfwyT3rvN0cIqLO05ZKwOuvB55+GrjwQqCsrGPb50vuuguIjJT3HVE3kJeXh3feeQdXXHEFkpKSMGrUKLz44ouor69HQEAATjrpJG83kYiIOliXnxNw0aJFePzxx5GRkYGpU6fiww8/1NyfmJiIadOmAQCeffZZ/Pbbbzj99NNx5513IiIiAm+++Sby8/Px3XffaaoH58yZg3feeQd33XUXcnJyMHDgQHz//ff44osv8Mgjj6BHjx6d+WPSccC+EtDo3/KcgI0H88QddXUoy69DYu/wDmmfL/n73b22E+EDX+8EXhjXwjOIiHxEaysBt20DDh2SLzc1ATk5QExMhzXPpyxeLFdSvvMO8PDD3m4NUYf48ssvbfMB7t+/HwAgSRIMBgOGDBmCqVOnYurUqZg8ebLHVg0mIqLjV5cPAdevXw8AyM3NxezZsx3unzx5si0E7NOnD1atWoUHHngA//rXv9DY2IhRo0bhxx9/xNSpUzXPCwwMxK+//opHHnkES5cuRWlpKXr37o0FCxbglltu6fgfjI471mb3KgHVIaC98nwzQ0A31FeKYfgWc70XW0JE1MlaGwIqAaCitNTzbfJFkgRUVcmXKyq82hSijnTBBRfYLqenp9tCv9NOOw0JCQlebBkREXlDlw8BlyxZgiVLlrj9+IEDB+Krr75y67FRUVFYuHAhFi5c2MbWkS9xe3VgP+ej7KuK6jzaJl/VWNtou2w166/STUTkk1o7HNgehwO7p65ODgIBOQyUJM2cvkS+4rzzzsO0adMwdepU9O3b19vNISIiL+vyISBRZ3F3TkBXlYAMAd3TVKMKAesZAhJRN9LaSkB7rAR0T3W1uNzUBNTXAyEh3msPUQf5/PPPvd0EIiI6jvjEwiBEncFqcbMS0EUIWFPMENAdTapKQNQ3QLJKzh9MRORL2lIJqK5gYyWge+xXBVaGBhMRERH5MIaARG5qcyWgqrLAXGL2eLt8UbNZFQJKVpgrm7zXGCKiztSWSsDrrxeXWQnoHvsQsLLSO+0g6iS7d+/GTTfdhP79+yM8PBzh4eHo378/br75ZuzevdvbzSMiok7CEJDITe7OCRgWL1ZWC+yVhqjRfWzXzWWsBHRHc12j5np1CYcEE1E34U4IGBAARETIl/v1A267TdzHSkD3sBKQupElS5Zg5MiRePPNN7F//36YzWaYzWbs378fr7/+OkaOHIl3333X280kIqJOwBCQyE3urg485fahCBncG4E9UnHJ/85DULQIBesZArrFYmYISETdlLuVgIsXA5dcAnz2GaBe4ZOVgO5hJSB1Exs3bsScOXPQ2NiIs88+G1988QW2bduGbdu24csvv8SMGTPQ2NiIOXPmYMOGDd5uLhERdTAuDELkJm0loMHp3H/xPcJw/45ZtusrY8Rw4IZKhoDusNZrQ8CaUoaARNRNuBMCAsCFF8r/AKC5WdzOSkD3sBKQuol///vfsFqtePvtt3HNNddo7hsyZAjOPfdcLFmyBNdeey1efPFFLF261EstJSKizsBKQCI3aSoBXSz+YS80VoSATRWcE9Ad9iFgbWm9l1pCRNTJ3A0B1fz9xfBgVgK6h5WA1E389ddfGDFihEMAqHb11Vdj1KhR+PPPPzuxZURE5A0MAYncpKkENLj/q6OeI7C5hpWA7rA2aENAczkrAYmom2hLCAgAsbHy/6wEdA8rAambKCkpwcCBA1t83IABA1BSUtIJLSIiIm9iCEjkprZWApoSRCWgpZohoFsYAnYoc2UTlly9AkuuXsGVl4mON20NAWNi5P/LygCr1fVjiZWAnWHnTuDtt4Hqam+3pFuLiopCbm5ui4/Lzc1FZGRkJ7SIiIi8iSEgkZuslrZVAkYkihBQMnM4cEusFglSozYErK9kCOhJ3zyxCTnvrkDOuyvw5cPrvd0cIlJrbyWg1cpAyx2sBOxYDQ3AqacC118PzJvn7dZ0a2PHjsXq1auxfPlyp49Zvnw5Vq1ahfHjx3diy4iIyBsYAhK5ydIkKiucLQqiJzJJhIBobkZdFSuvXNGrTKuv4JyAnlS09YjtcuHalqsDiKgTtbcSEOCQYHewErBjFRQAxcXy5ZUrvduWbm7u3LmwWq2YMWMG7rvvPuzcuRNmsxlmsxk7duzAPffcgxkzZtgeS0REvo0hIJGbtJWA7oeA0amhmutl+RwS7EpteaPDbY3VrAT0pKYaEarWFZZ7sSVE5KC9lYAAFwdxh/0QVVYCelZFhbh88KDXmkHAGWecgYcffhh1dXV48cUXMWzYMJhMJphMJgwfPhwvv/wy6urq8Mgjj+D000/3dnOJiKiDMQQkcpN2TsBWDAeOD9KEhpVHGAK6ohcCNlQxBPSk5moRAlqKyyFZJRePJqJOpQ4BW9HXsBKwlTgcuGOpQ8CSEu5fL3vyySfx/fff49RTT0VQUBAkSYIkSQgMDMSUKVPw/fff44knnvB2M4mIqBP4e7sBRF2FphKwFcOBjX4GGEJCbPMBVhZyXkBXzBWOIWBTDUNAT2quFftTamxE8SEzEnqGebFFRGTDSsDOweHAHct+fx48CIwY4ZWmkGz69OmYPn06LBYLSo/9jYiNjYVfa/7OEBFRl8cQkMgFq0XCjl8KMWByorYSsBULgwCAMTwUlmMhYPVRVgK6UlfpGAI213BOQE+y1Gr3Z972coaARN7U0AAEBspV48rKvgZDq6ae0ISArARsGSsBO5a6EhBgCOgFWVlZ+Pzzz5GTk4OgoCCMGDECl1xyCUJCQpCQkODt5hERkZcwBCRy4eUTPkH1+t0ISE/GxEdOtd3emoVBAMAvPASWo/LlmmKGgK7ohoBmVgJ6klSnDQELd5UD56Z5qTVE3dzGjcDUqUB6OrBunagEbG11jno4MCsBW8ZKwI6lVwlIneaVV17BfffdB4u6shjAo48+iu+//x5DhgzxUsuIiMjbOCcgkRO15Y2oXr8bANB0uBCHNxSJO1szTxOAwEixQrC5lCGgK3ohoJUhoMdIVglSvTYELNnHqiEir/nwQ7lqavt24I8/2h4CshKwdVgJ2LHsKwEPHPBKM7qjlStX4u6770ZzczNCQ0MxcuRI9O7dGwaDAXl5ebjwwgthtVpb3hAREfkkhoBETpQe1s7dV5VbYbvc2kpAdQhYV+q5OQGtFgmfPbQB713/JyqLfGPIbEO1YwhoYQjoMebKJjHc8JjKHK4QTOQ1xcXicm7u8VkJWFAALF3quKJuV6YXAjIY8Ry94cDUKRYuXAhJkjB79mwcOXIEGzZswL59+7Bp0yb07t0bWVlZ+PHHH73dTCIi8hKGgN1ETVkjPrxlFb7713auBOqmigJtWFebXyGutLISMCg61Ha5vtxzlYDLX9uL7c9+i4NvL8end67y2Ha9qb7KMQSU6hkCeopeWGzOZwhIHrJrF/Drr4DEfsZt6hDw8OHjsxJw+nRg5kzgtts8u11vsg8BJQmorfVOW3wRhwN7zZo1a5CWlobXX38dYWFivt9hw4bhP//5DyRJwt9//+3FFhIRkTdxTsBu4r1Zv+Do9+sBAFGpYZg4q5eXW3T8s1/Ft6Gowna5tZWAITGiErChwnMhYM7KPNvlkm0FHtuuNzXWOIaAaGyApckKvwB+b9Fe1SWOgWpjEUNA8oBDh4CxYwGzGXjvPWDWLG+3qGsoKRGX2xMCRkbKC4lIkmcrAWtq5KHKgDxnoS+QJMcQEJCDK5Op89vji+wrAXNygOZmwJ+nHh2tqKgIZ511FgIDAx3umzRpEgDg6NGjnd0sIiI6TvCMuhuwNFlR/PsO2/Ws3w97sTVdh30IaClTfavdykrA0FgRAjZVeS4ENB8VJzHN1b4x12BDlX7VX02ZTjhIrVZd7FgJaK2sRn1NsxdaQz7l88/lABAAVvlGZXKn8FQI6OcHREfLlz0ZAhap5sP1lbkGGxrEflbjvICeY18J2NwM5OXpP5Y8qrGxEVFRUbr3RURE2B5DRETdE0NAH1Jb3oj5p32FF0YvRcEe8UF2y3f5kOpEQFR7lMNd3FFz1G7uPosISVpbCRgeL0JAS7Xn5gSsLxXH0lLjGyFgU63+B9OqYg4J9oTaUr25IyUc3l7R2U2hruqvv4A773Qc3vf99+KyOjgi1zw1HBgQ8wJ6MqyzDwF9Yai3XhUgwBWCPcm+EhDgkGAiIqLjAGvyfchPL2xH2fLNAIAPrzTgng2XAQC2fZ6leVxdiZMPv6RhLnER1rWyEtCUKOYEtNR6LqxrKhfH0urB7XqTsxCwppQhoCfoh4BA/o5y9D0hrpNbQ12OJAEXXywHQ+vWiYq/mhrgzz/F4xgCuqeuTjsP3eHDQNyx38O2hICxsUBWlhzAeGropfpYNjbKbQ4Ndf74rsDZAiesBPQcvRDwwAFgypROb0p3lJWVhffee69N91911VUd1SwiIjoOMAT0ISV7xJCimk37cPRgDRJ6haPwz/2axzWWMgR0R12J84rJ1lYCmhJEJaBUWwfJKrV6G3oslapj2VDvE/PmNZudhIAlvrH6sbeZy/T349E9PjLMjzpWZaUIhVavBnbvBgYOBJYvlwMiBUNA99gP262rE5WB7akEBOQQJs4Dwb79sSwr6/ohICsBO57evmQlYKdZtWoVVjmZlsFgMDi932AwMAQkIvJxDAF9SF2pqnJNsmL5f7Zjyu1D0XhIu2BEc6U23LI0WbHtxwIMmJyIkIiAzmhql1Bf7rlKwKhkEQLCakFtRRPCYxwnbG4Nq0WCtUZ7LCuO1CM2vWufnDkLAc3lrAT0hPpK/f1YfpCLg5Ab7CeTf/dd4F//An74QXu7XghYXw8EBLQt3PJV6vkAFfXHgvq2VgIqSks9EwIeOaK9XlYGpKW1f7vepA4BQ0PFXJasBPQMSRKVgBERYr8yBOwUGRkZMBja/0UzERH5JoaAPqShTBsIZX26BWHxjoGQtUr7DfiCKV+gYuV2fBsXgwcO34KAYJ6gAUBThfMQsLVVfDFp2uNQlmdudwhYXlAHWK2a2yoK67p8CGipYwjYkeor9CsBq3MZApIb1PPXAcD77wNPP+0YAtbWykFLeLh8fedOYOJEOaTavFkOBshxf6q1NwT01LyAepWAXZ06BExNBfYfGzHBSkDPMJvF3JbDhslVw1YrQ8BOkpOT4+0mEBHRcaxrjxskjaYKbQjYXFCEra+tdnic1NCAuqom+TGNVlSsklcOtpSUYduPBQ6P766aq1yEgH6t+9UJiwoAjOKErvJI++fvKznkOFy5qqjrzwvoLASsq+iYENBqkfDxnX/j1XO+R/5u368CaahShYBBwbaLdYUMAckN9pWABQXA/PnAoUOOj1WHR0uXygHLwYPAzz93bBu7Er1KQEV7hwN7aoVg+xCw3Af+VtiHgIqOrAQsKQHeegsoLOy41zheqOcDjI8H0tPlywcOeKU5REREJDAE9CGWKsdQqLlAf16m4hz5sUf2V2tW+ivNcTJZdjfkahXf1lYCGowGGMLEkGBPhHVluY5zGlUXd/1586z1+iGgswq29vrottXY/cqPOPrdOnx87U8d8hrHk0ZVCBjcM9l22VJcDsnqA6t+UsfSq1x7+GFxWT1XnDo8yssTlwv4ZZONp0NAVgK6Rx0CpqSIyx0VAlZVAWPHAnPmALNnd8xrHE/UIWBUFNCrl3y5vNw3QmQiIqIujCGgj5CsEqw1LuawMxg0lWilh+QPwEX7tR94Kw4zBATk6jDJ7Lk5AQHATxUCVh9tfwhYflgnBPTAdr1NahAhoEEVKDiby649dq8owr7Xl9uuV+/UqWbyMU3VIgSMGZQk7mhuwtFs54vhEAFwrAQE5MUsFBddJC47CwG7QyWUuzw9HLgzKgF9OQTsqOHAd94JKEM0f/9du4iOL1Lvx8hIEQICQHZ257eHiIiIbBgC+ojq0kbA0uz0/sCeaTBGmmzXyw7LJ/sl2drQr7qQKwcD8gIb6gpJewa/1k+47GcSgVbNURcBo5uqCh0Dm9qSzgsBq4ob8Nure1FZ5NkKPXUI6Bct3rMNVZ4NARvrLPjsyi/EvEUApOoalOS2/9gcz5prxH6MGxAnL9RwTO4WHzi5p46lDq3GjdPe16MHMHmyuM5KwJZ1xUrAzq7kKiryfGjWmcOBv/4aWLxYXG9uBvbu9fzrHE/sKwF79xbXOSSYiIjIqxgC+ojSXG0gFDqkt+Z62ql94R8VbrtemS9/AC4/pP3AW3uElYCACEmdMbShEjAgQlQCmkvbH9bVFDkGtnVlnRMCSlYJC8e+i79uWYoFo96B1eKZYaSSVYKkOtkLjBUhYNOx8Ko4pxaLzvoWb132KxrrLA7bcNf7161Ac/4Rh9uzVutUOvkQS60IbcNig+EfF227XrSHw7SoBepKwHvv1d535plAYqK4rqwqK0msBHTmeJ8TUFngRa0zKwG//16u1Bs4EGjw4BdB7lQCLl8O/Oc/jj9/axQXy0OA7e3Y0fZtdgWuKgG5OAgREZFXMQT0EerQyhAYiFE3jtXcP+KiPgiMESGgUvFXlacNAeuL2xYC5m6rwCd3r0XOZt8IEcrzXVeDtXZOQAAIihIhoCfCOvNRx6CyvrxzQsCCvdVoPCRX8zQXFCF3W4VHtltX3aypwAxJECuIKsNYP79rJYp/2IC8j1fi26e2tOl1Nn2dh8MfrdS9L3eDb4eAUp0IAUNjghGcLELAkv2uf3+3/lCA1y/4CRu/PNxh7aPjnLoS8PTT5ZU/FWedBSSphpgrFWSVlXKYpGhrJaAkARs36g9J7qrUIWBv7Zd3x0UloH0VoKe2665ly8Sqshs2eG676mAvWcyNaqsELCqS38933AG89FLbXkOSgBtvFO9XdcWhr4eAzuYEBFoOAZuagE8/BbZs6YCGEREREUNAH1FRIEIrQ3gYTr6uL/yTEwAAAT1SMWRaMkLiwmyPqT0WINUWakPAxtLWh4CWJivenfo+dr30A96f9h6aG61t+RGOK1VHWggBW7k6MAAER4sQsKG8/UNOG0odqxMaKjonBCw+qH2ftFQ56a6aMu2Qr/BkUQnYXCtXgZRtz7fdlrembWHU8if+soWNxsgImMYPst1XvEN/MR1fYVWFgOFxwTBlisqhqkPOQ8Cmegu+uvwjFH6xBt9e+ZFthXHqZpRAIygIMJmARx+V55wdNAiYOlVbCagESOoqQKDtlYDvvw+MGSO/VrWPVK0roWpwMDBggPa+46ES0NshoPq9oteWtlK/fyIi5PcyICrYtmwRlYerVrXtNTZuBL74Qr4cFwd89pm4b/v2tm2zq2jPcOC33gIuvhg48UTfCvyJiIiOEwwBfYR6fjj/yDAEhvjh1k3X4rTFV+L2jbNh9DMgNEFUAtaXyAFS/VFtCGipbP2wl7ydlbAUyycbltJyj1WFeZM6BPSLi3G4vy2VgCGxYk7Axsr2h3WN5Y7Bmye26w5lYRmF3iIlbWGu0IaAEakiBLSY5ROyxiIRVNUcattJrvmgGAY86r6pSJ2QYbteleW7Jx1N9Ra5yuIYU1wQonuJSsDaPOchYOG+algr5b8XUm2tT/yeUxsooVV8vBz+XXSRfNvWrXKQlZAgHussBCwrA+rbMJfozz/L/5eWAps2tf75xyOlEjAuDkhP197XlhAwIgLw95cvd1QI2JlzAqqrRj0ZAqorAcPD5SGrgKgEVFertXX+PnUl20MPyXNohh/7HObrlYD2w4Gjo8U+bqkScPVq+f+6OmDbto5pHxERUTfGENBH1BSJQCgwSg6bopKCcdI1fRAeEwgACE8UlYBKFVlTqTYElMxmNNQ6X2BET3G2NgA6mtUBE2t3stpiEQIGp8YC/gGa+9tSCRgaKyoBPRHWNVc4Bm9NVZ0TAlbkaatwKgs8UwmoCQENRkQki/esxdwAc2UTJFUFR1Ohi/m0nKivaYa1QrxHe09MQvpoEVw05h2FZPXMHIfHm8qj2jm1IhKCkdBfhICNRc4rfOyrP+0XFaJuwGoVIaA67IuNFcFTYKB8wg+IOQHtQ0D1fa2hDoTy850/rquQJG0ImJGhvb8tIaDBIKoBfWE4cEdVAqpDQJNJDk8BEV6pg6rcXO0K2O7KyhKXhwyRj82QIfL17GzfqWbVY18JaDCIIcG5uZovoxyojznnDyUiIvI4hoA+wlwsQpigmDDdx0SmikrA5spaWC2SrbJHrehA66q6yg5pP8iWZnf9ENBcIkLAoJgw+EVHaO5vSyVgeLwIAS017QvrJKsEqcYxeGuu8exKvc5UF2jfI/arSjfWWbBu2SF8NW8z3p75G+af9hV+fHFni9vVhICBgQiNDrJdtdY1IHertgJFqqtr9Wq+8jZEyJc5Ihp9ThSBhtTQgLxdXf89rKfqqPb9EZEQjLRhotJVqq5BdYn+5PtluR1T/UldSEWFWE07Pt7545Qhwc4qAYG2zQuoDgR8IQSsrJRXigXk/emJSkBAhIBdfThwY6N2zkS9tjQ1Afv3Az/8ALz6KvDnn+5t21kloNksHxP1kFVJkl+jtdQhYJ8+8v9Dh4rbdu1q/Ta7CnUlYFSU/L+yDywWOQR1hiEgERFRh/L3dgPIM+pKRRCinvtPLTpdhIDWqhoU59TKlR12SnJqkDEsyu3XrsjThgEVh7v+t9v1ZapKwJhQ1MVHoq5YnFC1pRLQlCBCQGtN++YELC+sB6yOK+NaazunEtB+Fela1SIlteWNeLHvf2Et1Z4o/r18CwaeloLMEdFwpq5ShICGoECExwXbrkv19SjY6TgMLXt9CeLsK2hcyNsm2mWIiEBoZABCTP4whIZCMsvH5cCao0gfEun2NruKmhJVCOjnj+Bwf2QOjwKMRtvfguwNpRg2PcXhufa/11UFDAG7HfX8XOpKQHtJScCePfJiILW1+iFgW07ufS0EVAdcnhoODIjFQWpq5CAtMLBt2wG0FZuBgfL2qqrkoMy/gz9C2od+9teXLAH+8Q9tlZ7BIA8VHzHC9baVENBgAEJCRCUgIP989kNW9+7VLoLjDiUEDAgQx1apBATkeQHHj2/dNrsKdSWgErD27y9u27sX6NdP/7kMAYmIiDoUKwF9REOZCGHCEvRDwJh0cbvU0IDcLfrf5pfmtC7Eqy7QPr46v+tXUan3Z2h8KEIS218JGJks5gSU6upgtbR9yGlJjn4AI5nrnA5llaySx4a51hVrX1+ZYxIAVr9/wCEAPNYC7P7NdfVPfZUIAY3BgQiLEZWAaG7GkR2Ow3/zt7Wu2uXoHtG2oGS5YsZgNCAoXYQaeZt8c3GQ6mIRAhpC5IA1INgPfvGiGvDwZv0h1vbVnjWFXT/sp1ZSrwzsTiUgIAc3eoFdaysB6+q01UUMAZ1TLw7S3qo9dfCmDm3UIU9HsQ+A7EPA5593HKYrScCKFS1vWwkBw8PlIDBS9aVPZaVjCLhvn1tN1rRDCQF79hSBqToE9OV5AdXvDyVgVS98s2eP/vPq67VzTjIEJCIi8jhWAvqI5koRWpkSQ3UfE98zXHP94Er9k7DWVvI5VIUVdf1woKlSVOqFx4eiqTYS6lOptlQCRiWLSkBIEqqKGxCVFOz8CS44XY3XakFtRRPCYwJRll+HL+5djdLtBWgoroK1vBIIDsbkf5+DU25w8g28m+xXkVaHpqUHVSfqISEw+PlBOnbCdXS368DOPgSMiA/S3H90m+M8YiV7WjcvYFmWOJJh6eJkObJfIur35gAASnf55uIgtaUiBDSGiH0bkhaHmiJ5Pzo7RrVF2hCw9igrAbsddysB7UNAT1QC2j/eF0PA1FTt/e2tBATkEDApqW3bAbTB24ABIrgqK5PbDMir4H77LXD4sPzPbAbuugs4//y2vy7gOgSUJHluOUAOPWfMAN59V77uTmCnDgEBbSXgwYOO8/W1dnGQoiK5ChYQw2AB7XBgX14hWAnsw8NFAGpfCajHfq5QhoBEREQex0pAH2GpEiFMZIp+JaApNlCzwMWRzfofrqryWxfiqavAAKChuOtXAlqqRQhoSgxFVEb7KwGjU0I01ysKWzd0t65KTKStHoJtjNS2TdnuxzevwOGlf8G84wAsRcWQGhshVVVh5bxfW9t0B03l2mOuXqREXQkaPa4fEk8TlQ/lWa5DwIZqEQL6hQTCFKcNAav3O4aAlQdbVwlYkytCwOjeIgRMHCpCjeoDXTME3PpDAZ5MWohner+NFW/sc6j8NJeL+f78wkQAHdUnzna5fL9+qFpfbBf8Fnf9sJ9aqS2VgEeOiBDQqPrI0dpKQF8MAe33Z1CQdt95ohKwvfMCKsFbZCSQopomQKkwzM8HTjgBmDcPePtteQXnlSuBG26Qg7r2cBUCVlaKkG3ECOCFF8R9bQkB1ZWAmzc7Pr61IaDefICAfJyVAL2rVgJKkny8L71UPtZ6lEpAZT5AQBsCOqsEtD/mDAGJiIg8jiGgD5CskmaOOWchoMFogNEk7qveq38SZl/x05LGMm0Y0FTW9cMBdQgYkRSK2F7a+eEMfq0PAUMiAjQhbEWBe/MCWi0SnhvyPp6LfhYf3rIKAFCZL45RYFIMYBC/ypVH5BCwbOth3e01FxajtrxR9z53WJqskKq17xF1CF1TKELAsGQT4vqLqpTaXPdDQP/QQASH+wNGcSJsOeoYUJkPt+4kt6FQhIDx/cXJcuZYEQI2HylGc6PjfJkA0FTvOBfj8eLnB3+HpagEjQcPY8WNH+K5we9h20/iJKquXFQC+oeLEDB+gDhG5sP6IWBjmfaY2wfB1A20Zk5AxcGDIhAYNEjc3tqTe/vQsKBAd07bLsW+EhDQDgk2tvEjmn0loLt++02e9+6ZZ8RtSvCWlCRWfQbEkM316/VXei0pAQ4dcv+19di/R2pq5CpDQBsCp6XJP7PSPncCO1eVgM5CwNaEms5CQEBUAx49qv2d6irWrweeeAL45BPgpJPkik/74FWpBFSHgCaTCJKdHSP7Y96WVcSJiIjIJYaAPqDyaINmkYjYDP0QEAD8o1QrBB9RnYCoghb7ip+WWCq0YYBUVd2u+e68raG2GWgUFVPRaWFI6GNfCdi2Xx1DqKgGrD7qXiXgxi8Po27nAcBqxb43V6Cp3oKaItVq0HHhmu1WFcnbbS6psN3WY/YpqmMsYd/Ktp94lB42A5LdyXdDPepr5FUu64+K909kWgSSh4gT0qbCEpfzEjbWqCoBQwNhMBpgCFZVA+qchFmKy5wGdg7br7PAUlZhu546VISAfSeqQg2LBQfXa8NFq0XC88M/wNOmf+HT+9e79XqdSbJKqN2nHXZZvycbn09/HZ89tEG+XqEfAqaNEJWAzUWlsDQ57s/mCu3fBWtl1w/7qZXaUgm4caO4PHSoXO0GtL8SsLlZ256uqKUQsLMrAZ96Sh6i+sgj8r41m8Ww2MRE/bkG1UHfv/4F3HGHuK4XprWG3ntECc3UIWBqqjyvn1JplpcnqgT1NDaK4LKlSkDlGFRWti6wcxUCtjQv4PLlwNixwH/+4/7rdabVq7XXv/xSDvhfeUW+3tgowtpIuwW2lHkBS0r035v2v+fV1a6PJREREbUaQ0AfUJqr/YAUl6E/JyAABEarA0IRqARkiMoN+8o+V5rqLZDsP6BZrfLKw24wVzahpqztVWkdoSxfG87FpIUiZaD2g6yxDZWAAOBncgzrWlK4U1XJ0dSEXb8Xwayajy0kLhzGUBHo1JTUo7a80bbSLQCc9I+h8E8WJ+0HV7f92/WjB/UrwEoOyce8qVQ1HDgzApmjRAgo1dejJNd5BWRjtQhfA0LlFS3Vc9fpslqQu60CAPDjCzvwz+iXMX/Kl7ph4+HtFZogUb1ScUR8EIzRUbbr2Wu1J3xrPsyGeVsW0NyEnYtWuG6TF2RvKnecJP+YXW//DQBoqBQhYGCEeM/0HCtCQDQ3I2+nal5HHKv+rNH+TksNDTBX6lQAke9qy5yA6hAwPR1ITpYvt3dOQEB/rsGuRB0CKqGqJ0LAtlYCKsGVJAFr1miH37oTAk6YAEyaJK5v2eL+a+vRO+ZKm9THPi1N/l+9cIk6hLNXo+rD9CoB1VVqEyc63l5fD8yZA9x8s34VpP3rO6sEBPRDwEcfBTZsAO691+nfdK9at05cVir9LBbg8cfl9456AR91JSDQ8ryAepV/HBJMRETkUQwBfYB6kQhDUBCCwpyv9xISH657e/QgMdePpdz9ELDogH4gVLS/5XkBd/52BM8nvIAXkv6Nzd8cPydzmkU3DEZEJQUjIj4IhiARRrVlYRAACIgQAW1lnnv7uexgheb6np9zUV8q2hieFK4JF2uK6xxCnNRBkYjoJ4LeI1vaHgI6Wz26NLdWHppeKY59XE8TUgZEaIZB52x0XpnSVCsC4YAw5yGgITAQhnDxXs7dVILGOgv+fuw7WCsqUfb7Fmz4wnE4dN42cUJsCA93mHMwJFMEGwVbtCHg4Y3iulRbi4oj9Tie7PlNVMYYoiIx/JFzbdctJWVoqregsUq0OShC/OwxqSEwhIkvCA5t0h6j4pxa3SrMoiz998LuP45i4Rnf4McXuuicV6RPHQK6WwmoHiaYliZCwNJSoKEBbtMLAtydF/D224GMDOCXX9x/vc6grmT0ZCVgnCrUd7fisrFRuz9Xr259CJiZKc/Pp+jIENC+EhDQhoCu5gVUL/qhFwKqh5lPny4uK6HVokXAW28B//0v8NVX+q+hhIB+fvJ+UVNXAtovDiJJ4ramJiA72/nP4S3rj1XCBwfL7ZswQb5eVSWHeOoQ0FklIKA/L6DeMXcWAkoS8PHH8qI0RERE5DaGgD6gslBUVhnCnQ8FBoDQBP0QMG28WJVQMpvRWOfevGfF2fohYPHBlgOuP17aKA+7bWrCny8eP8Mr1XP1GUJDbFV/xhjxYbatlYDhmaJCo2S3e0PZqnIrNNcL1h7WzMdmSgpDgCoENJfW4cge8RyDyYTgcH8kDhchYOXetoeA5Yf1j3n54Rq5ys8i3jtJ/SJg9DPAP1GcPBZsdxECmh1DQPUCFgq/+GgEpYh9WbijFGs/ztFUTeRudBy6VbRbhICBSTEO90f3FyFg2R7t80v3aI9X7pZWVNg4kfV3Cd6e+RvWLWvn3FkADv8tTorD+6fitNsGizutVuRuq9BUWgZFavdrYLLYnwXbtPMCOq3+zNG//bOZn6Hk5434+77PcHBD+/cTHSeU0CokBAhz0dc4qxJMS9MuLtGa+b7aGgIWFADz58ur1j7/vPuv1xnUlYBK9Z4nQkB1tdWuXe495/BhbdC/apVjCKg3J6ASAhqNchjXs6c89xvQ/uHA7lYC6oWAruYF1KsEtA+rADlMHTPGcZuffipu01vhV5JECJiZCQQGau8frPrbbF8JmJ+vDSkPHND/GVrrr788sxpxWZn42UaOlCv9xo8X9+/bJ+YABRwrAdUhoN4xak0I+PnnwGWXyStDr13rRuOJiIgIYAjoE6oKRVWYf6TrEDA8Uf/+fqekaK47q/CzV3ZIP+wrP9RyJWDVQXECVJN9/MztVF0kQkA/k6jcC4oXlQJtrQSMHySqZ9z9mc0FFZrrVTsPa1bjjUwNR2CkCAHryupQckB8Ex8QL5/cZI5XDfk+XKQ775s7nK0eXZFfq60MMxgR30N+v4WmiYCpeK/zENCiCgEDTfKJk3+YYyVgSEoMwnuIapeyfSXY9pH2ZLdsv2P4VJYlbgtLdwwBk4eL8MKcXaS5T/1+BYCCneW6P4O7muotWHrO/3B46V/4/ooPULCnfatql+0QFT+JI1Pk6lWTCP0PbylFc42oBAyJ1oaApp5if5bu0/6szn7Py3Id/07k7axEc8GxfSdJ2Pmj/gI11AUplYDx8fIcbM4EBWkDI4W6EhBo3TC/toaA6mqjnTvdf73OoISAUVFAwLFqaU+EgMnJInxx92fOydFeX79eDgYVLVUCpqbKP4PRKKoBDx9u++rEFos2hFToVQIqw4HV4aerSsCWhgMrevd2HL6alwf8/be4TW/YcWmpqIazHwqsvGbPnvLlHTu0lYe7d2sf64kQcOlS4OST5bDOfvuttWGDuDxunPy/fQWmu8OB21sJqK4A/P13/ccQERGRA4aAPkC9SERglPP5AAEgIkWnEtBgRJ8JcZohmyXZ7g1VrcjTDwudBUVqDQXi5KCpsOS4WUxEHQL6q4bvJo3NsF1Wh0WtkTZKPK8xv9jlIhm2xx2t0FyXqqo0Q25j0sM0IWBDRR3Kc8RzQpKiAAADT1Wt2NnchAPr2nZyVnNE/5hXF9ag5KBolyHSBL8A+U9MZC8RAlYecP66zaoQMChcDgEDwh1DQFNGNGL7iW1WHShGyUrtCUVltmMIWH1I3BbVyzEE7DFOHB9LSblmzrvGfG1oW7zXeYVbY50FW38ocLlgyR9v7oOl9FiQ2NSEP//rZsWOjuZGKxpyxIlS75PkypggVXXfkV1lLkPAmH4iBKy2CzydVX/qDWnf/r029DuyVedEnroei0UEOq7mA1SohwQr7CsBW7M4iN5j3QkB1WFQYaE2oPA2pbJSPXx3yBARnAwb1rbtGgxiJea8PHmYZkvsh502NAA//iiuJyU5hoC1tSLIVA95VQ8J3rq1VU23KS4W4Zh6/9iHgP7+4v2oDtzcDQGVqkW9SsBeveT3bMix/nXvXuCLL7SP2b/f8Xnq2/RCQEDMC1hTA+TmitvtQzpXcxsC8nFytWqxJAHPPSdfrqsD3n3X9fZasl41amPsWPl/+xBQXQlov1/T07X7055e4OesYnjlSnFZb25FIiIi0sUQ0AeYi0UIGBzruhIwOs3xfmNEOPwDjTBGmmy3OZv3zZ6zsK+mwPVJR01ZIyT1iUlTI/J3t68SylNqi0UIGKAKVS/89wT0uWkqBt55JqbdMVjvqS3qc4JqHq3GBuTtcv0zNzdaYa1w/ZjYzHCExGhDwOo8caJrSpM/hEcmBsMYI6pzsla2bUhwnZPVo2uP1qI0R7Q1IEa8nxIGiZM4c57zENBarwoBTc5DwJje0UgaIrbZkHXYYYGa+nzH16kvEMFdfH/HELDPhDi5kgUAIGHPH/IJZ3FOrWahFQCoyNavBLQ0WfHCoMX44qw38NKYD50GvZve2KC5nv1d20PAvX8dBZqVwNKAwdPkoEU9/LxsfymsZhEChsVqQ8Dkoar9WaDdd9WFzoNfezl/5mqul+9r+0rUdBwpKxOhjKv5ABX2IaAS1rSlErCxUQSQ6koid0JA+6ChvZVQntLUJMISdcgVESEPxV22DLjttrZvXz3k1J0hwfaVgIB2DsXERG1VV1mZ43yACk/MC6h+b6i3Zz8cOCVF/M0ODRWVlHv3Og/H3K0E7NVL3rYSch08CHz0kfYx+/c7vo46uOvdW78N6sVB1MOmW1MJ+MMPcsXtlCmaaTg01q7VBrGffuo6NGyJelEQvRBw/37XlYDq/XnggHZhFYtFVBurpxtwNixcvZ89MdSZiIiom2AI6APqykQ4ERLnOgSMzXSsBPSPlT/8BkSL+5xV+NmrLVI9TjU8rK7IdXB1cL1jQJOz3vnw2D8XZ+GTe9Zh20+FbaoYLMk14+WJn+LfIz/EynddD68xl4j9GRwj9mdYdCCufG0SLn1pPAJD2jZMK75HGAyhIlg8+LfrgKRgTxUguR62G98jTBMCNlXVoU41hDiqR5TtclhvUQ1YsKnlEFCySji4oQzVJWIuuYYSccwNIaphyCU1qFJVhqmHT6cOE2GU5WiZ06HIFlUIGBwhh4D2c9cBQEL/aGSMVK2ACcf3RHNxuea90txohaW0wnY9ZYhjCBgU5o+AVBFeZP0hhwwH15U4PLb2sH4l4M7lRWjMkZ9n3p6FI1k6Qdnmcph3aN+HDVm5bR4SvG+FqJLyS4xFRLwcnEb3EfuoOqcUUp0qBIzRhqvq/SlVV6OqWBzzmkInwe8Rx9vLtmhDwLochoA+Qb2IRVsqAVNS5OGtbakEVFcCDRokL0gAtL4SEHAdAprN8rDCo+14z/74IzB3rrywhivqVXvtQ9VBg4CLLnKcS6411CGgO0OC9ULARvH3GImJ8nBfpXKuvFwbAvboIS6PHCkut3VeQHXwM3y4uFxUJFe/KRWIynyACiVgqqjQzrmo5u6cgEqApwTPFovjca2ocFyB2dXKwAr1XIPq6rrWhIALF8rVfStWOA9b//tfx+21NZiVJBECRkWJny0tTfxOtlQJCIh5AZub5WBVcfSo+KJBHfzqhYCrVmmv79njfKVmIiIi0mAI6AMay0QFVFiC6xAwvqdjCBh8LKwJjheVW+4M5wWAuqPicf7JqqGupa6fn7/NMQTM36r/gf3vj3Kw/LoPsOvF7/H59NfxZMS/8fJJn7m9orBklbB4xueoXL0DtVv24der38eLEz5B7rYK3cc3lKtC1VjXw6tby2A0IChNnPDlb3E9L2DBrgrX2wsJQWCIH8LiRBjXXF2H5hLxvLje4kN43BARApbtch4C7v7jKN6e+RuejPsP3hs7Hy/1WiAv+gGgWbV6dHAPsb2G0lpU54sQKyxJhIA9RqsCO0uz06pPSRUChkQeCwEjHCsBU4dEI3NENGB0EcbavU7+rkrAKqolMobrzFkGIGqwOKks3CCHDHk6x6nxiH4IuH+FNpg4uNbxub8+t1H3uSvfbFuVUv468ZqRA0X7EweJ/V6fVwJJtRqrKV4brtrvT3XwWVesCn5VwUR9iTbgrCpuQFO+dvivVFWF8oI6UBfn7srAiqQk7XVl3ra2VAKqH5eSIoIfT1cCzpghV1UlJgKjRgEPPABs2+ZeGwE5zDnnHDmcmTgRuPpq50MZ1QGVuhLQU9oTAuot+qKEusqQYFeVgIMGyZWfgOvASZLk+fVuu00+rhkZYliyOiDu00eEdUVF2vuU95XCnXkB9ULAkBDHORh79XLcpsKo+vhsPyTYnRBQqaIDtNV19lWbOTn6VX7qQA7QP8bl5fLqufbUC5u0Rn6+eD+PGSP2gdEI9O0rX87K0s4DaV8JCDifF1D9ez5okDy3qP3tCvVQYEAOrPWGZhMREZEDhoA+oKlShICmRNehlSk2UHw4PyYsWQ5rQhJECKhX4aNHHfZFDBAVHi0NYS3a6Rj42a++qtj+ufaDnWQ2o3Lldnx10fsoy285XPjy8c0wb9POq1O9dhcWj16Er+Y5Vik0lov9GRrn2RAQACL6iLC0ZJfripOj+yrEFT9/h/uNEfIJTHicCHSaK2thrRInOYn9o2yX08eKE/O67CMOQ1WLc2rx/ND38fEpr+Lw0r9gLZdfX6quwYpFOyFZJc22oweK7TVX1KD+qDjuEani/RSTGqKpgDy0UT/wlRpUIWCUfAIQHGkfAhqQPjQK/oFG+MXrBHmq93fuZnEycnirCO0MoaGITgmBntSx4n1ctUc+2Sze5dhea2U16muaHW4vWK8NJvI2a9/XjXUW5H+ret+pqikPfNO2IcGVu8RrJo0WIWD6CFV1X1WVZhiYfQgo709RHZm3RfzMDarf88BMEeI0lmn/Tmz9Lk93qNn+VawG7PLaWwmohDVtqQRUhwDJySIErKyU56VzprHRca47ZyFgVRWwfLm4vnmzPJfauHGO29BTXw/Mnq0NbN59Vw483n7b8fHq/Xk8hYAJCXKAqRYRISq93AkBg4LEnIS7d8v7xt5338nB0QknAAsWyMf48GFgyRL5fvtjrryfior0VwZW2M9Pp0cvBDQYHKvWXIWAl10mLtvP26dcNxjENuylporfhQ0b5Aq40lLt+wKQq9vUC7QoDh3SBsl6Q77fe0/s+8suE6M1li1r25BgdcWisiiIQtnvTU3a4FwvBHS2QrD9MVe+SHCnEhDgvIBERERuYgjoAyxV4iQoMsV1JaDBaIDRpK0GjEiTQ0BTightlHnfqoobXA7BVa9SmzJGnNxJDQ2oKWvUewoAoEJncQj71VcVZTudVIs0NuCXF1xPOp67rQJbn/9J3KAO0pqbsPmZ79FQqw1ymqpEJWBLoWpbqFcIrm5hheCygxW2y2FDejoEuAFR8vE2JYggSaquhnp4bNpgcWLT72QR2km1tZqhqjt/O4LXRr3pMExVUbAuDxVH6gGL2F8po8T2LFW1aCwRIWBUhnaOpUDVIhWFOxyPv2SVIKmGn4VGyRVnShioMEZF2IZjh6TGau4L7JGKgDQRPhzZLYK/I7vE5YBEx6HAiv5TxEml5WgJKo7Uo+qA3nGSkLvVcV7Ayt3aYMM+6F2+aLeYv9BoxIQnz7Hd17A/F0f2uw7gq0sa8PzwD/B0xuvY/E0ezJVNaMoXr9H3FNH+HiOjAeiv4hqR4DjMOjRDhBHqoL65XD/4tVRoKwGzlmuHAityNzAE7PJaWwnoLASMiRHDXNUn943O+wunISDguhrwwAHtyquA8xBQXbGmnh+uoQF4803nr6F47DGx7T59RPhRVQXccINjRaA6wHFnf7ZWUpJYobmlELChQQSyPXoAJ56ovV99LJVtNjdrt6sOAQExJNhi0YYzkgQ8+6xcdak31FVZeddZCFhRoR1C6qkQENAe98BAEdLZh4AZGcCll4rrzioB1cNk9ShBWmWlvA1n7029xUHUgRzgeIwlCXj9dXH9scfkFYKV9rozh95XXwGXXCLPKwjozweoUCoB7R+nNxzYWSWg+nckOVlUDZeUaP8+1NYCmzY5bpfzAhIREbmFIWAXZ7VIkGpFaBWV6joEBAD/KG0IqIQ1kani9sbSGlQW1eM/g17H59Nfx4IpdiviQV4AQVJ9mO59Uorm/iP7nFcD1uY6hkD2q68CcjBUny1OBkY+/n+ImiQm1N7/0UanCy9YLRKWXv410CgPgTQEBmL22n9gyH1nA4Zjb/2mJuxarj05s1aL/RmR5PkQMH20qKJpyi92OcdhVW6FaEvPWAT30p7wBMXKxywySb+qzRASAlOcCNFSB0Zo5vHb+4f8s//8yi4sO/NtW+UfAPgnxSN8lPiwXrkzD0VZ6oDKgJ4TxMmhZDbDUiYmBI/tqQ0BwzJEYFe6T+f411k0J+zOQsDAJBHgRfbWVtBkTB+I0DRxf+k+EfyVZYnL6sfY6zcxHggQQ153/lKA+sP6YW3eNu2Q4NryRjQXagMv+wBxy1tiQZCIcQMx7baBMNhORCX89YbrIcHL7lgF87YsNB0uxNeXfYjfX9sj5o00+mHQqeKYBIX5wxgT5bgRgwHhMY7zjUX2Fseo4qB8jOTqT3HcU0aLSkCp1qxZAblovX4IeHQHQ8Auz1OVgAaDOLlXgqfFi+VFHS66SL9CSV0x2JoQUC8Eys7Wr0xThwovvCAHTcqXLosXu55vbPVq+TmAHB59+aX82tOny7dZrcCaNdrndPRwYINBVAPm52vnabN3+LDY7z16OFYCqod2q1cIVu+zjAztc/QWBzGbgZkzgYceEq930kny/lVeY+1aeX85CwEB7TyD9sOB1SGg3uqzgPMQUB1Y9ewphgertwkAF1ygDb3UIWBZmZgj0NlQYIX9kGB1CDhkiLisF5aqgzbAsRLwr7/E9k4+GRg4ELj4YnH/smWu21ZZCVx+ufy400+X96XeysAK9T5Sf2GgVwmofqyz4cDqSkBALAgDyD9787EvI6dMEbezEpCIiMgtDAG7uIoj9ZrgJDaj5RAwMFr7mLheclgTnSEqAS0V1fjywbWwlMgfZsv/2o7acm2lRkmuWXPCljo4SjPk8+gB/YomySqh6YhOJZjZbJt3TnF4RyWkOjHkd/wVfXDGUyfZrjcfKcaGL3SGygD4/KENqNslKgaG3H06eo6OwUXPjdVUi+1bLoYWSVYJVlWoGpns+RCw9wRV1UdTI/J2Vjp9rDlfVJpF9YhC3Kh0zf3KQjARifohoH9clOa6wWhAcE8R4hxefwRL567G6js/0Zzk9rpuCh7O/wfOefk0222W4lLkrBMf7g1hoUjsqw361JV89vfZL1Jhr7pU+/5SQkD7VWzD0sQQ4PgB2krAE68bhKie4iS1Klu8TlWOCOyiejkPAf0CjAjqIfbRnh+yYa0UgbZBddJ4dK+2EnDnr4UOIUZDfrEtqM76uwT1e3Ns9024dQz8AoyIP3mg7TZXQ4Ilq4S878VQK8lsxvqHv7RdD0xPRFCYtlo02K5aEgAMQUEw+jlWCCYMVK3inCuHFOWF9Zohjn1OUs3pBglHD8on1E31FtQfEL9LoUPFCXDlfoaAXZ6nKgEBbYVPaSlwzz3ye+yzz/SH3tqHA+ptuQoB1SGQ0jdZrfrhoDpYGjlSDoHOO0++XlQEfPON/muYzfLcf8rv/ZNPyuFbfDxw003icUqFm6KjhwMD7q8QrJ4PsEcPYPx47Zx36mOpDgGVfZ+QoJnWAIBjCFhSApxyinZ13aeeAv74A7jmGnlYMCCHT7t3a495YqK2Derw0b4SsEcPeQEToH2VgOphvBER2rksL7xQvl8ZXquu1FMHdi2FgOohtevXa4/RjBn621Q/Xi07W34vKtQLgijvwwsucH9I8Oefy4uOAHI167nnitdUz8upsA9KFXqVgOHh4nd4zx7RDvvfc/U+V1cJqocCz5olfrdZCUhEROQWhoBdXNlh7XxIsekth1bBcdpKQCWsiespQkCpthbZH6lOWiQJ23/SDnPUhHxGI+IyQuEXLbZRlqNfCVh0oMZWnQdAs6qw/SIK+/4QHwoN4eFI6mvCwMkJCOotwrDVCxwXWTBXNmHnAjG/U+iQ3rjgqdG269FDxUlkwXoRXFSXNmoCj6iUDhgO3IoVghuPVtgux/WJQq+TtSFgWKJ8LKOT9YccBSc6fgBXD+c8+L812LvwZ3FnQCAmzb8UV711MgxGA/pNjIchSFTi7f5CfGvvF2VCTGqIqKq0k9TXpLmuWaQi3zEENFdoQ0ClUs1+FduoniIEHHJ2pu39E9grHb3GxCC+vzhJrS8o070c1895CAgAscPECU7+D6r5jYxGRI0SJ4flB7SVgAf+1Akk6upwNFv+PV3/oagY8YuLwQmX9wAAjLxikGjn3kO2YM3ehi8Oa6o1AWgWO1EvaqIw9dAJAUP03y9pI0QYYTlaCkuT1S7MN6DPhDjNBPrF2XJbd/52RATJBgOGXzPK9pjGw0VOK3api2htJaCzhUEA7byAjz4qL2CgUIYeqjlbGATQzg9nTx0CKVV5gP6wSyVY8vcXVVg33CDuf+MN/ddYtEhUgk2YANx9t7hv/Hhx2f7n6ujhwID78wLah4AmEzBsmLjNWQiosB8KDGhDwN9/l6vRlBApPFyulnz4YdH/KyEgIAemyjGPi5OrK92tBPTzE+FbVpb+ohrVqr9pzioB7efyUyrO+vWTh0sHBYnqx/37RZDlzqIgCvUKwfaVgOeIaSIcQkCLRZ5HUE2SRFWdxSLPuQjIx+uCC+TLycnApEny5b17Xb8n/vc/7fV9++QwEHCsAgT0Q8DAQOfDoZV5AcvLxe+CqxBQfZ96UZCTThLv84MHXc8RSkRERAAYAnZ56hDQEBxsmyvNldB4bSWgEtYk9tGGNlBV4AFA1h/ak63SHPFB2hAeDqOfAUFx4pv0isPy/X8uzsJ71/9pCzZyNooAyBAYiIA0cbKoXowAAHLXig9+Ib3EB8LBV4lAr3zlTocFQr5/ZouoIPTzx8yPzoXBKMLGjBPFiUP1LvFzleVpKxHjMluurGyLoHRxEu1sheCmeoumAi1pQBSGna0NAU3J8glMQLAfEOi4im5YapTDbep5/CRV5YAhIgKX/HQdps4VVWlGPwOC+4h9VblBhFiBsfIxN4Q77iNDaCiCw7UVaepFKqzllair0g6v01aaGhBikp+vHs4MAPH9RAjYZ3wsTlp4GdIunYQrv7hQ/vmGitdpLi6H1SLBapHQXCyChpQhrkPAjAnqRW5EpaZffCyi+4qgrDpXWwl4ZJP+QgdZq+Wgt+BvMVw2/sS+tvfkuIszYbCtyCnhz9f1hwSvX6yqdDA6/vlOG+8YAsb2cwwB/cL0T8x6jlGv4mxB7rYKlB5SrQwcForAED/NvKLK34E9P4ufLSAtSfNelerrUbiv5bkOXxi9FE8lL8LWH9xcMII6T2srAe2DQr1KQEA7bxngOgT095dDIb3hwPX1wM8/awNFdSXg//2fuKweggjIFVRKFdbgwSK4OO00uSIQkLdtX6XY1ATMny9fNhjkBUDUK8wmJYmAbP16MYQR6PjhwID7IaD65+rRQ/5fPS+g3pyAaspz1KKixO27domAKyVFHj6tPh6ANgRcvVpUfinvFfX7SV3Jpw6UFUog1dCgv6iGO5WAvXtrn/Pqq8CHHwK//ir+9ipDgisqxIq4rQkBo6JEW7dsEQtqREbKVYLKcHT7OQH37NEPu5RjvH27COxOO02ssgu4NyQ4P18skpOW5hj82i8KAsjvYfuhv1FRmi95NfQWB7Gv/tQLAS0W+f0ByL9fvXoBQ49NESNJriteFT/9JAej9isMExERdRMMAbu4ykIR4hhN7gVWSnAEyOGdEhxGJgQ5LDyhVrRBGwKWHxYfpP1j5AAxJFF8iK7Or8Kmr/Ow/Lr/4eDby7Hk/C8BAAXbRQjonxiLsExxAlS8SxuIle4UQ0DihooPhFNvHwwEHTtRszTjlxdFtZbVImH3O6KKMW7KMM3iGAAwcJo4IbWWV8jViQDK81UhoH8AQiMD0BEieouT6NLd+pWABXuqHIZbx2WEwj9VnJClDhOhjTHMcUhwVKZjJWDviUkOt/nFxeCav67VzCenSBilOnlXVXAGx8nH3D/S8X3nFx3hcFuPUTEQi1RIyNmsDdDqKlUhYGCgLSALj9WGgEkDtSehp/2jP67/aCoyhkUBADJHqk5YLM3I21kpv5ZqQZOMEa5DwIFTHcM0AAjNjNNUGjYUaisBq/foD03M3yIPCa7ZJYKynpPFHFp+AUbEnSTC14Pf24UUkOdMLP5dzHk0YO7pCOqjnYer3ymOJ8TJgx1/VmchYHRKiCqMlCtz1b/nfsfmE/VXVfxW5Mn3568VJ9sxIzKQ1Cdcu/LxGtdDgj+e+xdqNu1F85FifH3NF6wcPN4olYBhYWL4nStBQSIUMBq1lYHq4MZ+4Q77YbOACAASE+Vt6YWAs2YBZ5whD6NU/m4qlYBJSdrgwr4ScPt20Y5RooIVRiMwZ458WZIcV/ldtkxUIp57rlgRV23CBPl/s1k7Z9nxFALaVwICwNSp4raB4m+T25WAgLYaEJADm5UrRWijNnq0+Pzxww9iIQglCLIfXg7I+y3I8csvzcITekOC3ZkT0L4SMCJCniMvXfVFnHpeQCWoU7+3WgoBAfG+bGgQ7/OBA+V9oRyLAwe0Q3fV8wEqi30AIgD76y9xm1L5p7jwQnH5yy/12/TRR+L1rr0W+OQTbbitVwloMDhWA+oNBVaoj5Hy3rSv/tQLAXfsEJWckybJr6ueP7GleQFLS+V98MUXciDqakEiIiIiH8UQsIurKhTfBuuFMXrUC1MEZ4oP1gajAX6RJr2nAABq9uZpTsyr8kVlT1CM/EE6PFk831xUjRXProGyUq15Wxbyd1ehZK8IAUMz4xDTXwRilXYrBJsPiG+G08eJD4ShkQFInCaGK+1TLRDy++v7YCkWrzHtMVWFwTG9xsRoFsjY8aN8IldZoKqsDPf8UGBFwhBxDKoPyifXX83bjCcTF+Kdq34HABTsqhBtCQ5GVJIc3Jy58BwE9++BtEsnYcz54oREL9iJ7R3lcFvfE+LEnEkA/FOTcOPaa20hmr3ep6Tr3q4MRQ6IDne4LyjO8X0UEhEAY7Q4Kcjbqh0SrA4BDUFi0YrolBD4xcknnoawMPQ90XUVUkxqCAyqIUiHt5Zh7XuiIsgYFYnYNP05FBUZw7TzW9ra0jdeU0VoKa2ApUkOD0pyzbCWiWBTHdAV7yrGgXWlYlVgAMNnaAO8oReLygjzrhxUFTdo7l+5JEtUtxqNmHrXMFz30yUwxsihaGDPNHlRE/ufZaRjJaB/uPMVK9UVt3u+3a/5PQ88FvYrC9IA8t8BySqhZqc24DQYDQhWVbwe3ug8BCwvqEPe52KOK0tRMdZ+csjp48kLlErA1gxdVU7OBw3S/M3RnNwD8ol87LH36ebNciCiaG4Wr608LzlZVBjl58vhx6efytdXrZKrqioqxPP695cru5SQyT4EVM8xpw4BAXm+Or0FQiQJePFF8bi77tLbAyIEBLQBpxKq+vu7DkvaIyFB7FclaCkrA268UZ67UAl69ELA884DnnsO+Oc/xdyIQOtCQHVYNHSoHAAqlZX2QkJEaGg//BvQDwHthwIrWlocRB0Cqv/OK4FcaKh2KLcz6pBv/345UPrhB/l6eLjjqsJ69AI1JXRVqhFra7WVuOr5AK++WlxWQkB1hZt9CJiSIn7Obdv05+BUDwW+4gq5mnDRIvm9OnCgPARXj30IqLcoiEL9e/bTT/J7UTnu6t9zhXKf+mdTFrBRh4AtzQu4YIGoojxyxHkQSkRE5MMYAnZxNUUiVAiMci+0Gn9JJjKuOBnho/pjxoLTNfepK3wAIHyk+FAnVdcgb5cYnlpbJD5IhyTIz4tMFxVgtVmFqFqrPdn687WdqFIFfdG9Y5E0RFRB1B8W9x3ZXw1JNXdP/1O0J46n3C2GBFsKj+KX+fJrrZ8vVmEMHdYX/Sc5nrQajAaE9BUnENkr5RCwNFv8fP6mjgsB00aKNjUVFuPvj3Kw+YmvYTlagkPv/4HN3+Th6L4K0ZZ4Uf02+rx0PLDnalz/0VTNEGd/k2Owldg/yuE2/0AjBt46FQgMgmnsQNy64Wok9HIM8hRDp+tXxZlS5GMeHOsYPocmOVYCAkBQigikNr+9Cbv/ECc26hDQGCxCQKOfAZd8cTkyrjgZ//fxTIRFO65qq2YwGuCfJF7nyK4y5HwvhgglnjpIs9+cbSOkj+PPnTg4DhnDVZWIVgvyd8vvmV2/iiGshqAgZJ4hQr2qA8XY8b0IyYyxMQ5zJo6/tIcY0m21YPV72iFgW98X1a7hw/sgLiMUCb3Ccc/Bf2DK21filjVX6i72kTY4UlvFASDQpFM9c0yvM8WJa8nKvZoQUJlPVPl9B4DaozXI3lSuWSlcGQoc0UeEgCW7nIeA3zy2XjtPKIA189c7eTR1uuZmseKpO/MBKt54A7j/fuCDD7S32w/hvOgi4Oyz5cuNjWI1WUAOP5QqPSUUCAgQ7cjPlwMKtY8+0laA9esnP0ep3Nq7VztXnKsQMClJrvID5CDiww/ly3/+KZ43erTzYEQvBLRaxYrHcXHOh0y2l3qF4MJCeaj0VVfJx+Wxx4Bvv5XvU0LAxERRvWswAPfdJ8/ZqB4hoDcc2FkIeNNN8nGdNQtYscIx/LV3guMXdi4rAe0Xp1Cow6jvvtOuLg2IEDA0VPu38aqrgB9/lOfbs5/TUo99JeDvv4tVmGfM0K9StKc3tFapKFUPSVbPC6hUAhoM8rBWJcjcuVMO05SgzH5uR4V6KLb9gje7dok5F8eOFfvyxhvl99D27c7n+VPvD8B1CDh+vPgd/vFH+fdYqcpT9r36GCghoHpRECXgVFeWuqoErK4Ww/cVr77q/PFEREQ+iiFgF2cuFiGgXhijx2A04NoPpuCejZc7DP/UVHAZ/XDpe2fDYBK37fxJDAmuOyrCAaUqLCZTPNZaXgFI2qFeB7/Zgbo8UQGWMDAWGaPiNM9R5obbs0K1GlxICNKH2A3pPSURgb1EkLf6rmV47dwfNKuvTrxH56TimMTR4rklW+QhZfs+FUGLqXcrTnZbqc+Jqm03NeGn65dBqZgEgLVv70DZwQrb9eCkqBa3GRDhGAKmDtKvMLn0pfF4zPwA7l53qa3C0JnolBD4JToOV4tKOxYIxTm+78JT9EPAiF6q1We37cfHp7yKZ/suxqav81BfpR8CAkD/SfG49oMpGHG2k5M+O6Fpolol968cNBwQQ1VHXTFQ7ykOEkY6vlb6qHhEp4Rohrke3iqHI9krxVDg4F4pSBsljnFj3lHkrhQhYNQwbRUgAASF+SNilKgs2fOlGBJcVdyAyvWiomXITHFiFxoZgJOv7YPIRP3j6BdghH+8tnonMML5MT/xGhECStXVOPqXeN2wJPn3W/l9B4C6ozVY9YYYamiMjkLKAPn4Jw4Tf1+qs4p0X6+mrBHZSx2HgFau3Y0j+13PI0idpLRUVI21phJw4EDgX/8Chg/X3m4fBj3yiPOKOfvFAhRKAFRYCLz7rnZ7H32knfdPqchSKqwaGrTVb0qYZzDohybqBUKuvVYOEuyrAJ0FeSNHykMb1T/X8uXyisOA/ut5knqI8j33iAUjADnQbGgQIZne3H72WlMJGBMjB43vvaf/PHvq94DCVQjorBJQXYH300/yAh4XXigCIiUENNlVrBuN8pDyge71EQ6VgJ99Jq6rh926MmKE4zQs9pWAgAgBGxrE3IEDBshVpMoxPnhQDvGU43nCCfpTvCihNgB89ZX2PvsqQLW4OIcvlDRaMxzYz0+0o65O+zusngdS+b0qLJSH1H//vXw9LEz8XUlMFBWvrioB//tf7ZyhgLw6tTvzCBIREfkQhoBdXH2ZmMNOL4xprdiBIriInzYC6UMiEd5fhCG5q0UI2FAqKn8iUuUP0/G99cMfRVNOPiwlYh61tOGx6DU2VrPC7IF1ckioWRSkR5Ju9dZpz04D/I59yJUkFH0jJpX3T03EiVc4GXoEoNfJ4gSi/kA+dvx6BA1ZIqgZf/Movad5RFxGqGbuNcluku+i5TtQmSM+rIanRbW4zaAouxAwIFBevdcJvaoxZyIHOw4Jju3hGAjZHp+mP6z85NtHagI0AGjIysU3M5dqqlrtQ8DWiuopTjgrV4sP+AaTCaPP0x/ebK/HRPsQ8NjKuAACE0Q1TNEe+TgVbxEhYOzwVPQcJ8ISqa4O5WtFZVL6RMcQEAD6zRAnr5Ub9qOpXq5WWvHabtuiAobAQJw8x41hZiohadohwUGRzkPAlAERCOypmjNTNcRZmU80IkUc88aSKmR/KlboTjldDM3KGCP+njQVFtuGTqt9+8RGsUCNn78Yhm214ufnNjs8nrygtSsDt6RXL1G9dMEFchCmHn7pLARUVxAqIaDV6rhIQm6uHDwplHBCHe4oQ4IbG0U41L+/do44xemnA5dcIl7v9ttFBVVamnaxBXtBQXIQCMgViOXlchihUOYc7CjqeQEXL9be9/XX2qHRng4BW8tVJaDJ5FiB5qwSMCFBDmaVBTwsFuDzz4HJk+VAWwkB9Y51a/TqJV5jzx4xtDQkRLsatSvBwY5BsPI+VYeMypyDW7eKIenKUGIlBJQk4K23xHPshwIrBg8Wcx7+8YcIxqxWEQIajcCll7r3MyhaMxwYAM4/X1xWLxCkHHN/f/H35sgR4OOPgcpjC3VdcomYYsBgENWAR45o59tU1NeL4N5gAG6+Wdz32muu20lERORjGAJ2cQ1l4uQnLKH9IeCMJ8ch7vTRiJ8+BrM/PAMAkDhGBAKlW0UI2FQuqnSUqjCHFYYBwGjUVBOqJ7juOSYWgSF+8IsTocrhTfIJZ/F2cfIXM1h/GNH4SzJx7udXw6DzYX7YDSe4HPapGeba1Ihv/vGD7ap/UjzGXaQf1HiKeoVge1J1DSrWigqsqB5RLW/PLgT0j41scdiru9ImOFZcxPeSj2lEsuP7Lranfhg8+LQk3J51GwbeeSb8ElUhWW0t9i8TgY9/aPtCwPgBqtBLVY0af/JAt8PPwdO0QxaN0ZG2hWJCVJWGZVllkKwSaveJEDDzhFSkDYqAIVD8HOqVmIeerf/eOnF2X1sgLtXXY/1nubBaJOxYssH2mOiJg1q9YE1kL20IGBzluvozQzWUWbOdY+FuVLr4fW48VCBX/R5z2r0iPO87UfUeb25G9iZtFUZDbTP2LVltu55wxkik/Z8Y5p/z6QY0NzoGh9TJWrsycEvCw+UKsSeeEMHU0KHiCwL1CsHOKgH1qsDuvVdc/u03cdm+EhAQ4deuXWIYov1QYIXBACxdCjzwgON9t92mne9Qj7rC7csvRViUlOS4Sq6nqUNAhRLAms3yHGmKtoSAUVGem9OwRw/Hij/lmBsMjvc5CwEBOfDJzpaHMyvbKCuTQzJPhYBBQXKVISAPoVXC8rPOkivV3KWeFzA4WISqepWA6kVBlKHE6mOsrqhzNkTdYBBVeBaLmMfwl1+AQ8fmYp02zb0h0Wr2w4Fbel+cdpqoxlSv4qz+PVcuHzmiDetuukm7rZYWB1m8WFTfXngh8Mwz4vfg3Xe180QSERH5OIaAXVxzpQgBTYntn8MuJjUEt/40A7f8cA7CY+QAo89kcbLVkFOIxjoLJKsEqUp8aIrrabI931aZd0zkCYOQds4Ih9cymEwwxclz5oRkiBPLop3yt7i1+8XJX+oY53MJjTo3Ddf9PQcBaeIDq8FkwvR7dVYgVIlKCtYEUQ37xUIE/WaO8ViA5kxkH+3JtF9iHIJ6q6rUVHOkxfWJanF7ITHaEDAwoeXnuEu9mrJCmUcwMtXxRCqul/OK0OiUEFz60ng8UvAPRE0Sx8hSKIKG9oaA6sU71EbOdHOYF4D4HmEwRkfZrgeni+MV2UNVaZhThrxdVZpqzoGnpcBgNCAgRWc+ytBQ9B7nuFgHIP/+BPcTAeG2ZXvx6X3r0JgtwvfR17R++GBcf+3rhUS7DgEnXK2/n2Iy5GMdm6l/8hw6pDd6jhb7JiopGMZI8V7IXqudF/C7Z7bCWnXsywSDEec8OxHTHhgNZRVpa2UVVryhs7ondS5PVwICwKmnyvPSKUFBQAAwZox8OTtbnLC3NBxYMWUK8PDDYuitwt9fLEahFwK6mg9QzWgEnn0WeP99MdebyeReJZ86BLzvPjEf4fXXtxwgtpd9CJiRIQeaivffF5fdCQFDQ7Vt9lQVICCHU/ZDgtXH3D4EdDYcWJGRIS9s8tdfYljpggVi4Zn2hoCA/grA7g4FVqjnBezfXwy5Va9QrISA6kVB7CsBAVHV5++vP9+gQh0+f/WVXE37j3+I22bPdr/9CpNJe7xaqgQMCpIDU3t6IWBzs/jZR4xwXFBFPS+g/ZDgpibg+efF9Ycekts2c6Z8vbpazPVJRETUDTAEbIHVasXLL7+MAQMGIDg4GOnp6bj77rtRaz/8yEssVaIdkSntrwTUM+T0FPEB2tKM3SuKUJpXB1jFxOpKVZjBaIBflLYacNKd43DCnCGwp14kIqqvmCuufH8xyvLrNNVF/Sa7nlA8bXAk7th2LRJnjEdgr3Sc8caFCAxxMXfNMZGDdU4iAgJwxn3DHW/3sIShqpNpgxEz3j4f/S8dofvY5IFRLW4vNFYbAoalem7FyX4T48WiFQAQEoLgcDnsjUl3fN8l93c9LByQ3ytTHtafs7G9IWDmSMcQ0BAWhrEXte6E1TRQvD+i+4vjFdtHVK7W5ZdjzTti/jGDKRypA+WfP7yXY2ASPijDZcDcY7qowitavgO7Fvxqux42vK/LIe7OpAzVhoCh0a4nrO8zPhb+SY4BpvJ7rvxvb+ScMQ63qVcgz/5DDLfP3VaB7S/9YrseM3koMoZFIWNYFMJHiWFlm17nAiFe5+lKQGfUQ4KVakB3Q8Bbb5UDRftQoVcvEVqp54prbQiouPJKeXGCm26Sw5OWgg5AG2wpQxWNxo4fCgzIoa06uH3nHXmxDmVfKkNLAfdCQINBWw3oyRAQcBwS7CoEdFUJqNa7N3DOOfLlfFGx7ZEQ0L76LTBQLHLjLvX7Qx1mhYSIIfAHDshDWpVFPwICxJx4etWeo0drVz62N2mSWOTlhx/kKtqDB8V9rR0KrFAPCXbnd0M9JFihPuZ61Yg33ug4B6e6EnC9XZ8xb56ocDzzTDE8Xz0keNEizSgVIiIiX8YQsAV33nkn7rrrLgwaNAgLFizAxRdfjPnz52PGjBmwWr0/TK3v1RORcuGJiJ48HKlDdFbt84DwmED4p4gP33t/y0PxQfWE/QbE9xBBkH+MCIAC0pIw5vx0DJyc4LC4hKmHCCYSB4sTy5o9+fjjNdU8boGB8ryBLQiLDsTNX5+Jhw5chwmX9XDnR9Md5ho7eajTRRY8afJNg2xVUgPmTsOIs1Mx+aaBYo4hdTuHRLW4vfB4bQgYmdHyc9zlF2DUrJbrHylOnuJ62J1IBQQgMsGNVREBDJueoq1+VDYR1r4QMDY91GHuwdiJA+Af2Lo/edOemASDyQS/2Gic8YioPEgaJE6CmwuKsOslMZQ8rF+aLeSLG+gYmKRMcD3MfMJs9cIcNeIkPSgYV3w0o00VqpmjtL8/YbEtv79TTnOsBlSqP+Xfd207DCYTTrmhn8Nz4oaKE7qCL/7Gb4v2oLHOgg/+bxmk+nr5Dj9/nPWvk22PG3uzCBPNOw7Y5gklLznnHOCTT+QTZb152zxFHYYoIaB6ZVdnIWB6urwaKwBcdpl2m+pQIixMDN9UFlBQh4BKONCS0aPloYmnnure4zMzHSsozz5btKWjPf20/FqvvCJXTPr56Yc87oSAQOeFgJGR2r/jra0EVJs71/G2jggBzzgDiGj5SzCNQYOABx+Uwzf7IefKkODiYjkkV4K6UaNERWpmpmPg52wosMLfX4SV1dViqG1wsDx0VudziFvUv2/uDBM/80zH6l29SkBFeLjjgiWAHJ4q23n/fXlxIEBeGOaZZ+TLfn5yZahi1CjxxcO2bcCaNS23l4iIyAcwBHRh586dWLBgAS644AJ8/vnnmDNnDl566SW89NJL+P333/GR8iHDi2YuPBE3fHo6bl9xPnqM7JgQEACih4gTroJ1eSjJEUOBDeFhmnAlYYw4sRl560QYjAYYjAakT9dWA8b0E6Fg5hjV/HBVVdj69De264EZSa1axKI1Bkx1PIk4+S7HaqaOEJcRintz5+LWQ/fhsv/IJz6x6aEIG9pb8zhDSAgi4lsO1cLjtMFOTE/PVQICQPxIsa8CYsVJTmx6KNSBkF9URKuCqhE3jne4rb0hIAAEJGqrAYdf5v5QYMWQqUl4tPwuPFx0GzKGRdluTx+m+l1TVw/4+WPakyLMSh3hGAIOOMP1SXOPkdHwT3asIBxx/xm2VXdbK6FnGAwmccLrTmXpmCu18wIagoJscxH6BxphCNdWgKafOxIBwY7Vt2c+NlbM2SlJ+OuOz7Bg8qdozBEVOcPuPxN9xoug8qRr+sAYo+xjA7Z9cwjkRT17yotf/OMfjqGHJ+mtEKxUAtrPCaeudLrvPrEK6jnnaAMRdfUfICqGqqrkwGLDsfk2e/Z0r3KpLfSGudrPadaRrr9eroS6/XZxm31YCrgf6HVkCDh6tDiW9iGf+viHhbUubJs61XHV344YDtzaocCKZ56Rhy3bV/Wpt6+sChwSIoItQA7s7H82Z4uCqOnNR/nUU+37HVcH6T3dqFqPiJCPjZqrEHDmTMdVnQH5tnnzxPXZs+Vh71deKW579lkx5YBCqQYMDuYqwURE1G0wBHRh6dKlkCQJd9xxh+b2OXPmIDQ0FB988IF3GuYF6oq5qm05WLtATE7tH6X9IH35aydj4J1nYvzzF+Gs+8XQlok3akPApMHipH/ItGSEDNT/wBg9yPVQ4PboPykeCBCBU2BmCoafmeLiGZ4VEhGAuAztN/gDL9buJ/+4KLe2FZGorXxL7O/e89w17YHR8smH0YgR14nFG/wDjTCEiZ9BHRC6Y+rcgTBGaD/UB4a3PwQMUy3egZAQTLi89cNoAXkVZfsQOqmvCfDXzuVljI3BRT9er3n/qFcIBgD4B2DI1JYnW0+Zog3gQof2wf89PqJ1DVcxGA2Y+Mw5CEhPRo/Zp6DXGP05E9WGnp4MQ5QIko2R2mPkp6oGhcFwbC4/R8n9TDjvk5liSGZzE6rXixVJIycNxflPaodhGv0MGHLTJKRffhKu3Xq7w/3ko1JTRYXfunXyMMX9++XrCQkiHALkIGrbNnkBkFtuEbeHhYmqQMBxxdL77hNhX22tqLR1Zyhwe6hDwMxMuWLMm8aN04Y0iYkO1dNORau+BPF0CBgWBjzyCBAXB9xzj/Y+dQiYluY4JNQVg8GxGtDTlYD+/mLBDU/prf1SEP36yVWyU6Zob1fPCwgAEye2vO0zztBW4U2YANh93m21a66RV2Z++mn32gBohwSbTNpFVexDwBtvdL6dBx6QA29AXuxn5kwx/P6cc4C773Z8ziWXAP/5j1wVrDyXiIjIx/m3/JDua/369TAajRhnN7lycHAwRowYgfX28454gSRJqGuu6/DXyTw1BuueOXayZC5Fw/ZS4Ng5fVBKCMxNYuVThAIznpPDP/XtqWNC4T88DXW7soGgIPQ/K05z/z82XIjvnt2K7QtWyKsWHhM3Nlq7fQ8LGJYM87YsAMCgq4d06Gu5Y8w1GVjzlNU2eXxQaohbbQpKAJoCxPxOUf0CPfqzxPYPwG35N6OqpAEJPcI027bEBMDSKL92WFIrX9cPSL5kKHLe/UPcZrK2u+1RI2NQvFZuU8xJg9Hk16CZ/qq9/AYlon53NgAgfFR/XP3pOYhMDNa0O7Z/AJpCYQsagvqluNWOIVdk4sAnxx4UEIjz3jsNdZY6wOL6ea6ceGMGTrxxFgC4vW+jTu6Boz/IlVJ+CXbHNSEQTUflNoYO64PY/gFOt9t3ahQmLDgHf839RHO7MS4GMz+ZovuzTZ8nKlvMTWaE+IfA0JqTfuqaJkwAPvtMXq1TPb+f3lDV3r0dQxJAXrH300/l4ZJnnqm9b/JkICtLrhp67TWxSIf9QgOeNnWqvCABIIeWfi3PWduhDAa5GvDZZ+Xr7lRtKeJUU3u4O4S4NR5/XF40xv73XT2k2t35ANVmzZKH3VZWytc9EQL26iUH0mVl8nst2sMjMiZPFpcvuURe3VivEk5dQThwoPYYOWMyyUOCv/hC/l1ZvLj978vgYHll5tY491w53LNaHY9riupL2TFjXIf1BgPw6qtAXh7w44/i9vR0YMkS/SHOISHy3wsiIqJuhCGgCwUFBYiLi0NQkONQzNTUVKxevRqNjY0ItJ/PpAXJdt9stmduwbrmOjy/6vmWH9hOklXCqpP/FidMioAA9DvfjOdXZbu1nfqnmnF4azkS+kTgjQPzgQN2DzgNsE5oxs4fDqNqXyH8I8JgGOeHHat+1N2eJ5Tdacben3IQHB0C/5N/wq5VP3fYa7lr/YW70Zgvr8gZMeQwGlYdbPE5kiRh7bk70VxagYCEaAQcfQ042uLT2iZfe3X1hK1oLpZXJYwYchi1q/a2anO1ZzVi/YE1tqG1B0wlOLDq93Y1sfFMC7aYD8LaZMGwC4DnV+1s1/bsVT5UjwN/5cOUbEKfEw/g9az5QJbj49acvhHWCnkOzchheXh+VYHjg+yFAFkPFKP8QBl6npyBDyteB1Z5tPluKb+0DltrNwAWC1JOLdW0fc+5hTgSuRcwGNDvEjOeX9XCkN3+wP77i3F05bHVfg1GDLpyFF7b+x/AjbfLfRPvQ2hA+1dA7y482c90qvHj5RBQLSNDhFXuOPFEefhrYKD+QiaxsfIqsTffLFcs1dV1/CIdY8cC//ufvOqx3vx03nD55WK/2g+bduWqq+RjNGpUx1VQ6gX+6krAtoSA4eHAtdcCL78srrdXYKC8QMyPP2pX1/WUSZOAX36R+8apU51XP6pDQHcr8AA5CB8+HJg+3XFIcWdJSJCrPhct0g5ZB+Tgb9gweajuU0+1vK2AAHn+0pNPBrZskaszP/5Y/p2nDuHJvmbMGODIkfa2iIjo+JSUJGah8TaDJHE5LGd69+6NpqYm5ObmOtx31VVX4f3330d5eTmiWjmPkF6HefToUVRWViKilRNKm5vMnRICAsDa9/agLlvunY2mMMSPSEWfExN15wHzBEmSum3lT3lBHbYt3QGD0YDhVwxBZIJ7C5VYLRJKDtUiLjOsw+ZR1LPt21yUbZSDyt7nD9fOmeemjcsOoHrXYcBgxMibxrn9Mx/v9qwoxJE/9gJ+fhg5Z2ynLDrjSQ3mZtTXNOsej+LsGgSE+CEqyc1hhAD2/nEEpftKkDYuFRnD3X+ftDYErKqqQmRkZJv+rvoCT/YznerAAXmS/7o6ecjj3Lny8F5vV875qpdeAlasAP7979YFgY2Njgs6dLTqarnysKxMDlRnzmz9NvLy5KShpkaeg8/dxWCOd/X18mIgOTnyEPlhw7zdotazWvWr9Zqb5Wp6d4erA/J75I035IVm1NWUHtbd+xnAs31NWpp2AW8iIl+Smip/DGmtjuhrGAK6MHToUBw9ehRFRUUO911yySVYtmwZGhoaWl0JaK89B7YzQ8DmRityNpYgJDIIKQMjum1AR46aG604uLYYQeEByBzZ8nxzeiSrhPxdlTDFB3e5oKwllUX1CA73R1AYi6/biiFg+3Sp/VFUBDQ0dN7qudR1FBfLKcHw4a2bE1Ctvl7+11ELwXiLJMlBGgPzTtOl/q52kvbsE1YCEpEva2slYEf0NTwjdSElJQW7du1CQ0ODw5Dg/Px8xMXFtTsAbK8Q/xDcN/G+znvBUzvvpaiL8cR74yQPbIN8Uoh/K6pAqGtTD/skUouP1x/i3RrBwfI/X2MwMACkLu14GSZHROTrGAK6MHbsWPz8889Yt24dTjpJpBP19fXYsmULTj75ZC+2TmYwGDhPFhERERERERERuaQz+QYpLr30UhgMBrzyyiua2998802YzWZcccUV3mkYERERERERERFRK7AS0IWhQ4filltuwcKFC3HBBRfgrLPOwu7duzF//nxMnjwZM9syKTUREREREREREVEnYwjYgldeeQU9evTAG2+8ge+++w5xcXGYO3cu/vnPf8Kot4oZERERERERERHRcYYhYAv8/Pxw99134+677/Z2U4iIiIiIiIiIiNqEpWxEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4hoBEREREREREREQ+jiEgERERERERERGRj2MISERERERERERE5OMYAhIREREREREREfk4f283gABJkgAAVVVVXm4JEZFvUP6eKn9fuzv2M0REnsV+xhH7GiIiz+qIvoYh4HGguroaAJCenu7llhAR+Zbq6mpERkZ6uxlex36GiKhjsJ8R2NcQEXUMT/Y1BolfX3md1WpFQUEBTCYTDAaD28/r27cvAGD//v0d1bTjHveBjPuB+0DB/SDvA0mSsGnTJqSkpMBo5MwX7Gfah/uB+0DB/cB9ALCfcYZ9TdtxH3AfKLgfuA8UHdXXsBLwOGA0GpGWltam5wFARESEp5vUZXAfyLgfuA8U3A9iH7Tl76qvYj/TPtwP3AcK7gfuA4D9jDPsa9qO+4D7QMH9wH2g6Ki+hl9bERERERERERER+TiGgERERERERERERD6OcwISERERERERERH5OFYCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgF2Q1WrFyy+/jAEDBiA4OBjp6em4++67UVtb6+2mdYp9+/bhsccew4QJExAfHw+TyYQRI0bg6aef7jb7QI/ZbEavXr1gMBhw6623ers5naqsrAz33HMP+vTpg+DgYMTHx+PUU0/FX3/95e2mdYqamho888wzGDp0KEwmE+Li4nDiiSdiyZIlkCTJ283zuGeffRYXX3yx7f3eo0cPl49fu3Ytpk6dCpPJhIiICEyfPh1btmzplLZ2Vexn2M/oYT/TffsZoHv1NexnOl5372cA9jXOdNe+hv0M+xlXPNnP+LfpWeRVd955J+bPn4/zzz8fd999N3bv3o358+dj8+bN+PXXX2E0+na2u3jxYixatAjnnnsurrjiCgQEBOD333/HI488gk8++QR///03QkJCvN3MTvfYY4+huLjY283odIcOHcIpp5yCmpoaXHfddejXrx8qKyuxbds25Ofne7t5Hc5qteLMM8/E6tWrMXv2bMydOxdmsxlLly7FNddcg927d+O5557zdjM96qGHHkJMTAxGjRqFiooKl4/9+++/ccoppyA1NRX//Oc/AQALFy7ESSedhNWrV2Po0KGd0OKuh/0M+xk97Ge6Zz8DdL++hv1Mx+vu/QzAvsaZ7tjXsJ9hP+OKx/sZibqUHTt2SAaDQbrgggs0t8+fP18CIP3vf//zUss6z/r166WKigqH2x9++GEJgLRgwQIvtMq7Nm7cKPn5+UkvvviiBEC65ZZbvN2kTjNp0iQpLS1NKigo8HZTvGL16tUSAOmOO+7Q3N7Q0CD17NlTioyM9E7DOtCBAwdslwcPHixlZmY6fezYsWMlk8kk5eXl2W7Ly8uTTCaTNG3atI5sZpfFfob9jB72M923n5Gk7tfXsJ/pWOxnZOxrHHXXvob9DPuZzuxnfP8rFh+zdOlSSJKEO+64Q3P7nDlzEBoaig8++MA7DetEY8aMQWRkpMPtl156KQBgx44dnd0kr7JYLJgzZw6mT5+OCy64wNvN6VR//vknVq5cifvuuw/JycloamqC2Wz2drM6VVVVFQAgJSVFc3tgYCDi4uIQFhbmjWZ1qF69ern1uKysLKxfvx4XX3wxUlNTbbenpqbi4osvxq+//oojR450VDO7LPYz7GfssZ/p3v0M0P36GvYzHYv9jIx9jVZ37WvYz8jYz+jriH6GIWAXs379ehiNRowbN05ze3BwMEaMGIH169d7qWXel5eXBwBITEz0cks618svv4w9e/Zg4cKF3m5Kp/v+++8BABkZGZgxYwZCQkIQFhaGfv36dZsPkOPGjUNUVBSef/55LFu2DLm5udizZw8efPBBbNy4EfPmzfN2E71G+Xt4wgknONw3YcIESJKEjRs3dnazjnvsZ5xjP8N+pjv2MwD7GmfYz7QN+xnX2Nd0r76G/YyM/Yy+juhnGAJ2MQUFBYiLi0NQUJDDfampqSgpKUFjY6MXWuZdFosFTz75JPz9/TFz5kxvN6fTZGdn4/HHH8djjz3W4mSivmjv3r0A5G+Oy8rK8O6772Lx4sUIDAzErFmz8M4773i5hR0vOjoaX3/9NWJiYnDJJZcgMzMTAwcOxKJFi/DZZ59hzpw53m6i1xQUFACA5lszhXJbd5lnpTXYz+hjP8N+prv2MwD7GmfYz7QN+xnn2Nd0v76G/YyM/Yy+juhnuDBIF2M2m3U7TED+9kx5TGBgYGc2y+vuuOMOrFmzBs888wz69+/v7eZ0mptuugm9evXCXXfd5e2meEV1dTUAwGQy4ffff7e978877zz06tULDz30EGbPnu3zk0uHh4djyJAhOPfcc3HiiSeirKwMixYtwsyZM/HVV19h2rRp3m6iVyhDKfT+Zqr/XpIW+xl97GfYz3TnfgZgX6OH/UzbsJ9xjn1N9+tr2M8I7GccdUQ/4/vvJB8TGhqKhoYG3fvq6+ttj+lOHn30USxcuBA33HADHnzwQW83p9N88MEH+OWXX/Daa68hICDA283xCmXFtMsvv1zzQTE6Ohrnnnsujhw5Yvt2zVdt374dJ554IqZNm4Z///vfOP/883Hddddh5cqVSEpKwpw5c2CxWLzdTK9Q/hbq/c3srn8v3cF+xhH7GfYz3bmfAdjXOMN+pm3Yz+hjX9M9+xr2MzL2M/o6op9hCNjFpKSkoKSkRPdNkJ+fj7i4uG71rdm8efPw1FNP4ZprrsF///tfbzen0zQ0NOCuu+7CWWedhaSkJGRlZSErKwuHDh0CAFRWViIrK6vF5ca7urS0NABAUlKSw33JyckAgPLy8k5tU2d7+eWXUV9fj4svvlhze2hoKM4++2wcOnQIOTk53mmclykTC+uVyCu36ZXWd3fsZ7TYz7CfAbp3PwOwr3GG/UzbsJ9xxL6m+/Y17Gdk7Gf0dUQ/wxCwixk7diysVivWrVunub2+vh5btmzBmDFjvNSyzjdv3jw88cQTmD17Nt566y0YDAZvN6nT1NXVobi4GN999x369u1r+3fKKacAkL9R69u3L9566y3vNrSDKRNKKxMoqym3JSQkdGqbOpvyx1/vm7Hm5mbN/93N2LFjAQBr1qxxuO/vv/+GwWDA6NGjO7tZxz32MwL7GfYz7Gdk7Gv0sZ9pG/YzWuxrundfw35Gxn5GX4f0MxJ1Kdu2bZMMBoN0wQUXaG6fP3++BEB6//33vdSyzvXEE09IAKRZs2ZJFovF283pdI2NjdKyZcsc/r366qsSAGn69OnSsmXLpL1793q7qR2qrKxMMplMUmpqqlRdXW27vaCgQAoLC5P69evnxdZ1jjvuuEMCID333HOa28vLy6Xk5GQpOjpaam5u9lLrOt7gwYOlzMxMp/ePGTNGMplMUn5+vu22/Px8yWQySaeddlontLDrYT8jYz/DfkaS2M8ounNfw37G89jPCOxr2Newn5Gxn8l0er+n+xmDJElSW1NJ8o65c+di4cKFOP/883HWWWdh9+7dmD9/PiZOnIjly5f7/KShixYtwq233oqMjAw8+eSTDj9vYmJit5w0FABycnLQs2dP3HLLLVi4cKG3m9Mp3njjDdx4440YPHgwrr32WjQ2NuK1115DYWEhvv32W5x++unebmKHOnToEEaNGoXy8nJcccUVmDhxIsrKyvDmm28iJycHixYtwj/+8Q9vN9Oj3n//fdswkQULFqCxsRF33303ACAzMxOzZs2yPXb16tU49dRTkZaWhrlz59qeU1RUhFWrVmH48OGd/wN0Aexn2M84w36m+/UzQPfra9jPdLzu3s8A7Gtc6W59DfsZ9jOd2s+0Pqckb2tubpZeeOEFqV+/flJgYKCUkpIi3XnnnZpvDnzZ7NmzJQBO/02ePNnbTfSa7OxsCYB0yy23eLspneqzzz6Txo8fL4WGhkrh4eHStGnTpJUrV3q7WZ0mKytLuuqqq6TU1FTJ399fMplM0kknnSR99tln3m5ah5g8eXKrfv9Xr14tTZkyRQoLC5PCw8Ol008/Xdq4cWPnN7wLYT/DfsYZ9jPds5+RpO7V17Cf6XjdvZ+RJPY1rnTHvob9DPuZzupnWAlIRERERERERETk43y/zpqIiIiIiIiIiKibYwhIREREW85TYgAADrpJREFURERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISAREREREREREZGPYwhIRERERERERETk4xgCEhERERERERER+TiGgERERERERERERD6OISB1Gz169IDBYHD575VXXvF2M8lDNm/eDD8/P8ydO1dz+4oVK2zH25WcnBzb43JyctrcjsrKSsTGxmL8+PGQJKnN2yGiroF9TffCvoaIOhv7me6F/Qx5mr+3G0DU2SZOnIg+ffro3jdo0KBObg11lLlz5yIkJASPPvqoV9sRGRmJBx98EPfeey/ee+89zJ4926vtIaLOwb6me2BfQ0Tewn6me2A/Q57GEJC6neuvvx5XX321t5tBHejTTz/FqlWrcO+99yIhIcHbzcGtt96K559/Hg8++CAuu+wyBAUFebtJRNTB2Nf4PvY1RORN7Gd8H/sZ6ggcDkxEPufll18GAFx33XVeboksODgYM2fORGFhIT7++GNvN4eIiDyAfQ0REXUk9jPUERgCEulQ5trIycnBV199hSlTpiAmJgYGgwErVqywPa68vByPP/44RowYAZPJhNDQUAwdOhRPPfUUzGaz7rabm5vxyiuvYOjQoQgODkZ8fDwuvPBCbN++HUuWLIHBYHD4Vm/evHkwGAyYN2+e7jaVOSFOOeUU3fsLCgpw1113YeDAgQgNDYXJZMLYsWOxcOFCNDc3Ozz+6quvhsFgwJIlS5CdnY1Zs2YhKSkJQUFB6N27Nx555BE0NDQ43X8bN27E7Nmz0bNnTwQHByMmJgbDhw/Hvffei0OHDgEA3nnnHRgMBpxxxhlOt1NQUICAgACEhISgtLTU6ePUNm/ejNWrV2PChAno37+/W89pDeVYtPTPnnJMFy1a5PE2EVHXxL6GfY0z7GuIyBPYz7CfcYb9TPfF4cBELrz44otYuHAhxowZg+nTp6OgoAB+fn4AgF27dmH69Ok4fPgwkpOTMWnSJAQEBGDdunV49NFH8dlnn2HFihWIjIy0bc9qteLiiy/Gl19+icDAQJxyyimIjo7G2rVrMW7cOFx77bUe/xn+/PNPnHfeeSgvL0ePHj0wbdo0NDQ0YN26dZg7dy6++eYbfPvttwgICHB47pYtW3D77bcjOjoakydPRllZGVatWoWnn34aO3fuxBdffOHwnH//+9944IEHYLVa0a9fP/zf//0f6urqkJWVhRdeeAGDBw/G1VdfjZkzZ+L+++/HL7/8gn379qFfv34O23r99dfR3NyMWbNmITY21q2f98svvwQATJ06tXU7yk0jRoxwOgfG3r178ffff8NodPx+ZcSIEYiPj8e6detQWFiI5OTkDmkfEXU97GvY19hjX0NEnsR+hv2MPfYz3ZhE1E1kZmZKAKR33nnH7cf6+flJX331lcP9ZrNZ6t27twRAeuSRR6SGhgbbfbW1tdLll18uAZCuueYazfMWLlwoAZASExOlXbt22W5vamqSbr75ZgmABECaPXu25nmPP/64BEB6/PHHddv7+++/SwCkyZMna24vLCyUYmNjJYPBIL366quSxWKx3VdSUiJNmTJFAiA98cQTmufNnj3b1paHH35Yam5utt23fft2KSwsTAIgrV69WvO8r776SgIgBQcHSx9//LFDO3fu3Kn5uR9++GEJgHTbbbc5PLaxsVFKSkqSAEgbN27U/bn1TJo0SQIgfffdd7r3K/uqpT9/2dnZtsdlZ2e3+LqHDh2SkpOTJQDSwoULdR9z7rnnSgCk999/v8XtEVHXxL6GfY0ksa8hoo7Dfob9jCSxn6G2YwhI3YbSCTr7p+5slMdee+21utt67bXXJADSOeeco3t/dXW1lJCQIPn7+0tlZWW22/v06SMBkF577TWH59TV1dk6CE91mPfff78EQLr11lt1n5eXlycFBARI8fHxktVqtd2udJijR4/W3K646aabJADSP//5T83tI0aMkABIL774ou7r2cvPz5cCAgKkyMhIqaamRnPf0qVLJQDSCSec4Na2FEpnfvDgQd371R2mu/9a6jDLy8ulQYMGSQCke++91+njHnzwQQmAdOedd7bqZyKiroN9jSP2NexriMhz2M84Yj/Dfobcx+HA1O1MnDgRffr0cbh9wIABDrdddNFFutv47rvvAACXXnqp7v3h4eEYM2YMvv/+e6xfvx6nn3468vPzkZWVBQC48sorHZ4THByMSy65BPPnz3f7Z2lJS+1MTU1F3759sWvXLuzfv9+hfP2cc87RnQti4MCBAID8/HzbbUeOHMGWLVtgNBrdnrw2JSUFF110EZYuXYr3338fN910k+0+ZZ6JW2+91a1tAUBtbS1qa2sBwK1Se1dL29fU1OCzzz5rcRuNjY0477zzsGvXLlx22WV47rnnnD5WaVNRUVGL2yWiro19jcC+hn0NEXke+xmB/Qz7GXIfQ0Dqdq6//nqHSWqd6dGjh+7tBw8eBADMmjULs2bNcrmN4uJiAEBeXh4AIC4uDuHh4bqP7dmzp1vtcpfSzpNOOqnFxxYXFzt0mBkZGbqPjYiIAADU19fbbsvNzQUAJCcna+YMacltt92GpUuXYtGiRbYOc9u2bVi5ciUSExOdfmjRU1lZabtsMplafPySJUuc3peTk9NihylJEq6++mr88ccfmDx5sm0SZGeU/VZeXt5i24ioa2Nfo499jRb7GiJqK/Yz+tjPaLGfIXsMAYlcCAkJ0b3darUCAKZPn47ExESX28jMzPR4u5y1x9ntF110EcLCwlxuQ+9bJr3JYD1twoQJGDduHNatW2freJRvzG644QYEBga6va2oqCjb5erqalsH1VEeeOABLF26FIMGDcKXX36JoKAgl49XOvTo6OgObRcRdS3sa9jXuMK+hojai/0M+xlX2M90LwwBidogPT0de/bswXXXXef2tzqpqakAgJKSEtTU1Oh+c5aTk6P7XKXTqK6u1r1fWaJer5379+/H/fffjzFjxrjVzrZSvmErLCxEZWVlq785u/LKK7Fw4UIMHz4c//vf/+Dv768ppXdHaGgowsLCUFtbi9LS0g7tMF999VU8//zzSElJwQ8//KDprJ0pLS0FgBY/ZBERAexr9LCviWrxOexriMhd7GccsZ+JavE57Ge6to6PxIl80JlnngkA+OSTT9x+TlpaGnr16gUA+PDDDx3ub2howLJly3Sfq3S2u3fv1r1fmSfDE+1sq6SkJAwfPhxWqxWLFy9u1XMvueQSJCcn48svv8TTTz+N2tpanH/++UhJSWl1O0aNGgUA2LVrV6uf666vv/4at912G0wmE7777junQwzs7dixAwAwevToDmsbEfkO9jWO2Ne0jH0NEbmL/Ywj9jMtYz/TtTEEJGqDG264AZmZmVi2bBnuv/9+3W+zjhw5gjfffFNz2x133AEAmDdvHvbs2WO73WKx4J577kFBQYHu602ZMgVGoxE//fQT/vjjD9vtkiRh/vz5Tud5uPfeexEVFYWXXnoJL774IhobGx0ek52djQ8++KDFn9kdjz/+OADg4Ycf1m3Trl27dDv9gIAA3HzzzWhubsYLL7wAoHWT56qdeuqpAIA1a9a06fktWbduHS6//HIYjUZ8+umnGDFihNvPVdo0ZcqUDmkbEfkW9jX62Ne4xr6GiNzFfkYf+xnX2M90cd5cmpioM2VmZkoApHfeecftx7paRn3Hjh1Sjx49JABSVFSUdPLJJ0szZ86UzjvvPGnQoEGSwWCQEhMTNc+xWCzSjBkzJABSYGCgdMYZZ0iXXXaZ1LNnTyk4OFi6+eabJQDS7NmzHV7v9ttvlwBIfn5+0imnnCJdcMEFUu/evaWAgADpgQcekABIkydPdnjeH3/8IcXFxUkApISEBGnKlCnSFVdcIZ1zzjlS7969JQDS+PHjNc+ZPXu2y331zjvvOG3n008/LRkMBgmANGDAAOnSSy+Vzj33XNty8862WVRUJAUFBUkApGHDhuk+xh2bNm2SAEjjxo3Tvf/333+XAEgt/fnLzs62PU79PpgyZYoEQOrZs6c0e/Zsp/9a2y4i8g3sa9jXSBL7GiLqOOxn2M9IEvsZajvOCUjURoMHD8a2bdvw3//+F1988QW2bduGNWvWIC4uDmlpabjnnntw/vnna55jNBrx+eefY/78+Xj77bexYsUKhIeHY9KkSfjiiy+wefNmvPbaa7qv9/LLLyMjIwNvvfUWVq9ejfDwcEycOBGffPIJqqqq8K9//Uv3eSeffDJ27tyJhQsX4rvvvsP69evR0NCAhIQEZGRk4Morr8SFF17osf3y0EMPYcqUKZg/fz7+/PNPfP755zCZTEhPT8d9993n9BujhIQEjBgxAmvXrsUtt9zS5tcfOXIkTjzxRKxevRq7d+/GwIED27wtPRaLBYD8bWN2drbTx9mv0qVcb8/PRkTdD/safexrZOxriKi92M/oYz8jYz/jewySJEnebgQRyZYsWYJrrrkGs2fPdrnUuy/at28fBgwYgMjISOTn5yM0NLTN2/r0009x8cUX46677sKLL77owVa2TX19PdLT0xEQEIDs7OwWV9wiIupI7GvY1xARdST2M+xn6PjFOQGJ6Ljw2GOPQZIk3Hzzze3qLAHgoosuwsSJE/H666+jqKjIQy1suwULFqCkpATPPvssO0siIi9iX0NERB2J/Qwd7xgCEpHXfP3117juuuswYcIEfPzxx0hKSsJ9993nkW0vWLAAdXV1ePLJJz2yvbaqrKzEv/71L4wbNw5XXXWVV9tCRNQdsa8hIqKOxH6GuhLOCUhEXrNp0yYsXrwYJpMJU6dOxUsvvYSoqCiPbHvkyJG2uS68KTIyEqWlpd5uBhFRt8W+hoiIOhL7GepKOCcgERERERERERGRj+NwYCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/HEJCIiIiIiIiIiMjHMQQkIiIiIiIiIiLycQwBiYiIiIiIiIiIfBxDQCIiIiIiIiIiIh/3/7cKdH8m+83AAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,3,figsize=(15,6),sharey=True)\n", + "lps.plot(ax=ax[0])\n", + "ax[0].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[0].set_ylabel(\"Power\", fontproperties=font_prop)\n", + "ax[1].plot(lps.freq, lps.power.real, lw=2, color='red')\n", + "ax[1].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[1].set_ylabel(\"Power(Real Component)\", fontproperties=font_prop)\n", + "ax[2].plot(lps.freq, lps.power.imag, lw=2, color='blue')\n", + "ax[2].set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax[2].set_ylabel(\"Power(Imaginary Component)\", fontproperties=font_prop)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.html b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.html new file mode 100644 index 000000000..ff83c1da6 --- /dev/null +++ b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.html @@ -0,0 +1,464 @@ + + + + + + + + Observations with frequent data gaps — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import copy
+from stingray import EventList, AveragedPowerspectrum, AveragedCrossspectrum, Powerspectrum, LombScarglePowerspectrum
+
+import matplotlib.pyplot as plt
+import numpy as np
+
+ev1 = EventList.read("nustar_A_src.evt", fmt="ogip")
+ev2 = EventList.read("nustar_B_src.evt", fmt="ogip")
+
+ev_tot = ev1.join(ev2)
+
+
+
+
+

Observations with frequent data gaps

+

Many X-ray missions are in low-Earth orbits, which means that their target is often occulted by the Earth. Additionally, these satellites can pass through the South-Atlantic Anomaly, where the flux of particles increases the background (and, in some cases, might even damage the detector, so the Science Operations centers often just switch the instruments off for protection).

+

This observation of an accreting black hole is an example. Here, transparent red stripes indicate occultation and other bad-data time intervals, while data in good time intervals are plotted in blue:

+
+
[2]:
+
+
+
lc_10 = ev_tot.to_lc(dt=10)
+plt.plot(lc_10.time - lc_10.time[0], lc_10.counts, color="grey")
+lc_10.apply_gtis(inplace=True)
+plt.plot(lc_10.time - lc_10.time[0], lc_10.counts)
+
+plt.xlabel("Time (s)")
+plt.ylabel("Counts")
+
+for g0, g1 in zip(lc_10.gti[:-1], lc_10.gti[1:]):
+    plt.axvspan(g0[1] - lc_10.time[0], g1[0] - lc_10.time[0], color="r", alpha=0.5, zorder=10)
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_2_0.png +
+
+

When we study the variability of this light curve, we usually use periodograms. It is well known that these gaps are like square windows, whose Fourier transform has infinite harmonics, and that gets convolved with the actual variability of the data. If we were to ignore the good time intervals and just get a Periodogram of the dataset, we would get something like this (the black vertical line indicates the orbital period of the satellite and some of its harmonics):

+
+
[3]:
+
+
+
ev_tot_dirty = copy.deepcopy(ev_tot)
+ev_tot_dirty.gti = np.asarray([[ev_tot.gti[0, 0], ev_tot.gti[-1, 1]]])
+pds_dirty = Powerspectrum.from_events(ev_tot_dirty, dt=0.01, norm="leahy")
+pds_dirty_reb = pds_dirty.rebin_log(0.01)
+
+
+
+
+
[4]:
+
+
+
plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 9):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_5_0.png +
+
+
+
[5]:
+
+
+
plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 30):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+plt.xlim([5e-5, 5e-3])
+
+
+
+
+
[5]:
+
+
+
+
+(5e-05, 0.005)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_6_1.png +
+
+

Yes, we do see a nice QPO there, but how can we be sure about the low-frequency continuum when it’s so polluted from the harmonics of the observing window?

+

A proper treatment of gaps is not possible at these long timescales, but gaps can certainly be ignored at shorter time scales. As we’ve seen in the AveragedPowerspectrum tutorial, we can study the short-term variability with

+
+
[6]:
+
+
+
pds = AveragedPowerspectrum(ev_tot, dt=0.01, segment_size=256, norm="leahy")
+pds_reb = pds.rebin_log(0.01)
+
+
+
+
+
+
+
+
+258it [00:00, 1671.53it/s]
+
+
+
+
[7]:
+
+
+
plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid", color="grey", alpha=0.5)
+plt.loglog(pds_reb.freq, pds_reb.power, drawstyle="steps-mid")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 6):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_9_0.png +
+
+

Note that, while the “clean” and “dirty” periodograms at high frequencies mostly match, at low frequencies the two diverge. The low-frequency periodogram cannot be trusted if one does not use some trick to avoid the gaps.

+
+
+

The Lomb-Scargle periodogram

+

Fortunately, a method exists and is called the Lomb Scargle periodogram (See this review from Jake Van Der Plas)

+

The method is slower than the standard periodogram, so we will limit its usage to the interesting frequency range.

+
+
[8]:
+
+
+
maxfreq = 1.
+dt = 0.5 / maxfreq  # Using the Nyquist limit
+ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm="leahy")
+ls_reb = ls.rebin_log(0.02)
+
+
+
+
+
[9]:
+
+
+
plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+
+plt.loglog()
+plt.ylim([1, 1e6])
+plt.legend(loc="upper right")
+for i in range(1, 6):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_12_0.png +
+
+

Now we’re talking! The Lomb-Scargle periodogram nicely connects to the low-frequency part of the periodogram. Now, we can try to model the low-frequency continuum more confidently.

+
+
[10]:
+
+
+
plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle="steps-mid")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.xlabel("Frequency (Hz)")
+plt.ylabel("Power (Leahy)")
+for i in range(1, 30):
+    plt.axvline(i / 97 / 60, ls=":", color="k")
+plt.xlim([5e-5, 3e-3])
+
+
+
+
+
[10]:
+
+
+
+
+(5e-05, 0.003)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_14_1.png +
+
+

We might still expect to detect the satellite orbital time scale in the periodogram, due to the imperfect frequency response during the orbit, but it’s a lower-order problem now.

+

Looking into more detail, the two curves do not exactly match, in particular close to the maximum frequency:

+
+
[11]:
+
+
+
plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.xlim([0.1, 2])
+plt.ylim([1, 10])
+
+
+
+
+
[11]:
+
+
+
+
+(1.0, 10.0)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_16_1.png +
+
+

That little “wiggle” happens somewhere between 0.5 and 1 times the “Nyquist” frequency when data are mostly evenly sampled as in our case. The solution is simply to use a smaller sampling time while maintaining the same maximum frequency.

+
+
[12]:
+
+
+
maxfreq = 1.
+dt = 0.2 / maxfreq  # smaller than the Nyquist limit
+ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm="leahy")
+ls_reb = ls.rebin_log(0.02)
+
+plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.xlim([0.1, 2])
+plt.ylim([1, 10])
+
+
+
+
+
[12]:
+
+
+
+
+(1.0, 10.0)
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_18_1.png +
+
+
+
+

The Cross spectrum

+

A great new addition to Stingray is the Lomb-Scargle cross spectrum. The cross spectrum is the basis for many of the spectral-timing techniques that Stingray was born for (e.g. the covariance spectrum, time lags).

+

Here we show a simple usage of the cross spectrum as a proxy for the (Poisson noise-subtracted) power density spectrum, using two datasets from two identical instruments onboard the same satellite.

+

Time lags measured with this cross spectrum make sense in our tests, only when the light curves are sampled at the same times. Also, we do not provide error bars on the time lags at the moment. Use with care!

+
+
[13]:
+
+
+
from stingray import LombScargleCrossspectrum
+from stingray.gti import cross_two_gtis
+gti = cross_two_gtis(ev1.gti, ev2.gti)
+ev1.gti = gti
+ev2.gti = gti
+lscs = LombScargleCrossspectrum(ev1, ev2, dt=dt, norm="leahy")
+lscs_reb = lscs.rebin_log(0.01)
+
+cs = AveragedCrossspectrum(ev1, ev2, dt=0.001, segment_size=256, norm="leahy")
+cs_reb = cs.rebin_log(0.02)
+
+# plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds="steps-mid", label="Powerspectrum, ignore gtis", color="grey")
+# plt.plot(pds_reb.freq, pds_reb.power, ds="steps-mid", label="AveragedPowerspectrum", zorder=10)
+# plt.plot(ls_reb.freq, ls_reb.power, ds="steps-mid", label="Lomb-Scargle periodogram")
+plt.plot(cs_reb.freq, cs_reb.power, ds="steps-mid", label="AveragedCrossspectrum", zorder=10)
+plt.loglog()
+good = lscs_reb.freq < maxfreq / 2
+lscs_reb.freq = lscs_reb.freq[good]
+lscs_reb.power = lscs_reb.power[good]
+lscs_reb.unnorm_power = lscs_reb.unnorm_power[good]
+plt.plot(lscs_reb.freq, lscs_reb.power, ds="steps-mid", label="Lomb-Scargle cross spectrum")
+
+
+
+
+
+
+
+
+258it [00:02, 107.72it/s]
+
+
+
+
[13]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x177fb2290>]
+
+
+
+
+
+
+../../_images/notebooks_LombScargle_Very_slow_variability_with_Lomb-Scargle_methods_20_2.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb new file mode 100644 index 000000000..41881ffa0 --- /dev/null +++ b/notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb @@ -0,0 +1,500 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1f2bd82", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import copy\n", + "from stingray import EventList, AveragedPowerspectrum, AveragedCrossspectrum, Powerspectrum, LombScarglePowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "\n", + "ev1 = EventList.read(\"nustar_A_src.evt\", fmt=\"ogip\")\n", + "ev2 = EventList.read(\"nustar_B_src.evt\", fmt=\"ogip\")\n", + "\n", + "ev_tot = ev1.join(ev2)\n" + ] + }, + { + "cell_type": "markdown", + "id": "c5a1d8f4", + "metadata": {}, + "source": [ + "# Observations with frequent data gaps\n", + "\n", + "Many X-ray missions are in low-Earth orbits, which means that their target is often occulted by the Earth. Additionally, these satellites can pass through the South-Atlantic Anomaly, where the flux of particles increases the background (and, in some cases, might even damage the detector, so the Science Operations centers often just switch the instruments off for protection).\n", + "\n", + "This observation of an accreting black hole is an example. Here, transparent red stripes indicate occultation and other bad-data time intervals, while data in good time intervals are plotted in blue:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "487d4764", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAGwCAYAAAC99fF4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLj0lEQVR4nO2deXwU5f3HP7NnNscmISeBhPsWBEEhaj0wBRGtB7XVH0W0HtWCVmnR0iIqtmKtRatFba2CrSKW1hMRBERRCSDhDCA3hCMHSUg2557z+2Ozm91k9pp9Zmdm9/t+vVbJ7Owzz/PMc3ye7/M834fjeZ4HQRAEQRAE4YdG7ggQBEEQBEEoERJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBdHJHQAm4XC6cPXsWaWlp4DhO7ugQBEEQBBEGPM+jqakJBQUF0GjY231IJAE4e/YsCgsLJQvfDGA+gJyOv88B+AMAi889FwJ4E8BxAE0CYeQBGAvgHgCfdAmza3i3Avg7gDIApwPEqetvAsURXa4LkQQgF8D9AA77XBeKY6jwLgAwBsCfAcwL8sxUAD8B8CCAoxDOs8EAxgH4PYDng4TVNa5CZAAYDuAuAJtDhPU2gNsBHAPwjcD32XC/758DWB9lvAoAXAx3vt8LYE8UYQHCZVNsWOkAJgB4CMB/g9x3KYBlAPYDOB/gnlQA/QHcDWBXkLDuAPA3ANUAtgKwB7k3VFqnAngFgBbA9gBx0wMYBHf+nw0RXqg80wEwAajp+H+wOD4I4Dm46/hhdMdTxmYDuBzB257fAXgS7nzdFyBuvr8L1p558n87gJMC4Qi9x0DhXQngnwB2AqgMEC9bx/+fg7sd8NC17WmEux04DWAHgDaBsDx16X4A/wnwPKHwhRjQEdajAF6OMqxwy344YXXtR6IJ61K40/k/AD8NEVYsOHXqFHr37s08XI48bgONjY3IyMjAqVOnYDabmYfPVVXB+OSTgKmj6Wtrg/XJJ8Hn53vv0f33vzA9+CAcP/gBXIMGdQ+jtBT6sjK0zZkDxxNPdIbJ8wDH+YWnmzsXpn/8A46RI+G68sruYbW2dotDoDgC8F7nk5OF03fqFHSbN6PtH/+Ac+LE7un2iWOo8Lh334W+rg5to0bB8fXXgbIUXFUVDHPnwrBuHRxXXCGcZx9+CP3p02i7+mo4PvwwYFhd0y8Yr/Jy6L/5Bm1/+hMc99wTNCzdoEEw1dTAYTLBdffd3cMqK4N+yxa0LVgAx5w50cVr0ybo9+wB9Hq0vfYaHD/+sfiwBMpFVGFt2gT9kSNou+8+OP7854Bh6f75T5geewyOyy6Da+RI4ecdPgz911+j7eWXg6ZRN2sWTG+/DT4tDY6pU8FnZwuHF0ZadU89BdPixQDHucuYQNy42lpot2yBc/RowGQKGl7IPKuthXbnTrj69QNfUOC+GCCOuttug+mzz+Do2xeu66/vHpanjD3yCHSVlcHbnilTYNq8GY6CArhuuSVkXgVrzzz57xg6FK6Sku5hCbzHQOFp//53mBYvhmPsWLiKi4XjdewYdIcOoW3JkqBtj+PkSZg2bwav18N53XVwCQyKPXUpVHntGmfBd7lqFfQnTqBtyhQ4VqyILqwwy35YYXXpR6IK6/XXobda0ZaVBcexY0HDkhKLxYLCwkI0NDQgPT2defhkSQK8U2xms1kSkYSWFsBgADIy3H87nTCkpQG+z0pOBjgO+pQUICurexhGo/s2o9H9O0+YRiNgtfqH13Gv3mQSDstg6B6HQHH03J+RAXj+7kpDA6DRICUlxT9NQnEMFZ5W606nXu8fVldaWgCdu/gGzLOO75MNhuBh+cY1ULxMJoDjkGwyhQ6rIw16jUY4XklJ7rCSkqKPl8Hg/WdycnLoPAsVllDZFBuW5116ymwgOvI24HsEgLNn3XkWKo0d+cFxHAxmc+DwwklrRz0CgpQxmw3QaqFNSQF0uuDhhcozT1h6ffC2wiedeoMheBkzGkO3PZ6w9Prw2otg7ZknrKQk4bCE3mOg8MJpx3Q6gONCtz2ecgFAk5YWODyEUV67xlnoXbJse8It++GE1bUfiSasjn4zWasNHVYMkGqpDC3cJgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIIgiCIAiCEIBEEkEQBEEQhAAkkgiCIAiCIAQgkUQQBEEQBCEAiSSCIGKG0+lCS5tV7mgQBEGEBYkkgiBixtV/+AgjnlqPynqL3FEhCIIICYkkgiBiRkWbAQDw3qZymWNCEAQRGhJJBEEQRFxgaWnHx6X7YXc45Y4KESfo5I4AQRAEQbDg5sVrcLRFjztzm/Ck3JEh4gKyJBEEQRBxwdEWPQBg44lWmWNCxAskkgiCIAiCIAQgkUQQRMzh5Y4AQRBEGJBIIghGHDtbi3MNzXJHgyAIgmAELdwmCAZU1lsw8aWtAIAT8kaFIAiCYISslqS+ffuC47hun1mzZgEA2tvbMWvWLGRlZSE1NRXTpk1DdXW1XxgVFRWYOnUqkpOTkZubi7lz58LhcMiRHCKB2fr9KbmjQBAEQTBGVpH03XffobKy0vtZt24dAODWW28FADzyyCP45JNPsHLlSnz11Vc4e/YsbrnlFu/vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAlnSEwn/+WoPvtx9VO5oEARBxIwjVefRanVg36lzckeFIMJCVpGUk5OD/Px872fVqlUYMGAArrzySjQ2NuKNN97A4sWLMXHiRIwdOxZLly7F5s2bsWXLFgDA559/jv379+Ptt9/G6NGjMWXKFDz99NNYsmQJbDabnEkLSk1DM/78TQ3ufPd7uaNCEN1ot9klfwYn+RMIJXKytgk8gC/KDkj6HJ5KGMEIxSzcttlsePvtt/Hzn/8cHMehrKwMdrsdJSUl3nuGDh2KoqIilJaWAgBKS0sxcuRI5OXlee+ZPHkyLBYL9u3bF/BZVqsVFovF7xNLzje3x/R5BBEudZYWXPHnLzHzpU8lfQ7tbktMrLx7GSzvcskcE4IID8WIpA8//BANDQ248847AQBVVVUwGAzIyMjwuy8vLw9VVVXee3wFkud7z3eBWLRoEdLT072fwsJCdgkhCBWzt6IePDh8dVbumBDxRovVARdZeAiVoRiR9MYbb2DKlCkoKCiQ/Fnz5s1DY2Oj93PqlHoW3W4sr8Adf/0ULhqJKQqeTCOi+Kb8OF5euxsul7wZuK7sEG549iPsPV4pazzimbrmziUQVF8ItaAIkXTy5EmsX78e99xzj/dafn4+bDYbGhoa/O6trq5Gfn6+956uu908f3vuEcJoNMJsNvt91MKeGhs2VQIbdtGib0IdnK1vCrhJ4a639+JMqxYOmUXSvSsPY2+DDvcs3cIkvHabHcs37kadpYVJePHAuWar3FEgiIhRhEhaunQpcnNzMXXqVO+1sWPHQq/XY8OGDd5rBw8eREVFBYqLiwEAxcXF2Lt3L2pqarz3rFu3DmazGcOHD49dAmTA0koNjhycrrdg/IIP8OKHm+WOimr4dH8t7nz3e5ytbez2nR3aqMNfV3YI739THnU4AHDeFn18AODhNzbgd2tP48cvfs4kvHigVgUiiQfwTukRLHz3K7mjQigE2UWSy+XC0qVLMXPmTOh0nb4t09PTcffdd2POnDnYuHEjysrKcNddd6G4uBgTJkwAAEyaNAnDhw/HjBkzsHv3bqxduxbz58/HrFmzYDQa5UpSSDiFTcsveHsjrl70Gc430aGQofjv1mOothnw4pbzfteV9k6VyPHqeu+/eYbzLfeuPIw5q06iouZ86JtjxMYKtyA43moQHQbP81i7uwI/ffGzuJher22KTCTZXS4mC/xdLldE+dfq1OLN3eQ5Pxo27TmGEb/7EIs/+FbuqESN7CJp/fr1qKiowM9//vNu373wwgu4/vrrMW3aNFxxxRXIz8/H+++/7/1eq9Vi1apV0Gq1KC4uxs9+9jPccccdWLhwYSyTIBPsOpl/lbei2aVH2fFaZmHGK3ZH9PnOA3C5eOw8RutfWHLqXIPcUWCKpdWKJgeHYy16VNU3yR2dqHC6eNS3hO+Wpd1mxxubDkfdytkdTny88zS2Hye/TFKy88hpPPT6WlTVu3eKP/Kf3Whx6fHS1gZ5I8YA2Y8lmTRpUsBRZVJSEpYsWYIlS5YE/H2fPn2wevVqqaInCUpdtKi0aJ2tbYTJqEdmWrLcUWFKVUMzcgGsPtiIMXJHJoYotdwrFZbWNrk532qDM4L0bD90GlZXFFOfHY86XdsIBzi0RxNWHOF5A9uPVOJihuH++J874YQGJ1/fiI8euxFOPn5M67JbkghCiFa7A5c+/w3G/HGj3FEJi0j6sza7U7qIREmoZDz3328w46+fwumMbvqHo/nJhCLS9UhK0YdV9RZM+/PHeO+rPXJHhQnnmlrBA9hcwXZDgbNDShxtVMiLYwiJJBnw7R8WvLMRP3r2I9ii7HTijTar9B7T7Q4n/vv1XtQ10g6kcHlleyO+rgTe/zbyhdKqsIyQdpOE2qYu9VkNZQHAb/61CWV1Wjz2mXLdxGzacwzXPP0hNuw8EvJem6N7P9PSbsPURR/hj+9tijou6nirkUEiSWb+tbcVexp0+GL3MbmjwoQNO49g1VZpjxxgxYJ3vsRvPq3A1L9EsAMpzjvRcJN3vkX5O5UI5aCGnW1d+d835TjXovzD0u9ZXo6jLXrc815kx1wdPeteg/riR1uwr1GH13eqe92bVJBIUgjtNuVXxlA4XS7c/d5BzP7gmOB2b6Xx+RH3IsMqm/gdSIQ4orUqvfjhZoz83Yf4pvx41HHZ+n2F99+chGPhaKYo1+44EvUUp5x4fCTp0ZmGt7/YiZWb9soVpZD8etVJ1LYr3zZi63CjEel5dZNfcrsxsbSxP6uxwalnHqZckEgimOHrD/BkTYNs8SCUg1RdzItbzqPJpccj7+3yXtOIXOf002XsO+quHdZv39qAHzy7DtXnxY3Wn/qiCsPmr8K+E4GPW1IqbTYnWqzuQaCec/+/zcVj/udnMXd1hbQHKkdZABvs0u1tOna2FnPeWIcTVXVh/8bucKKlzYrXVm/DSx+VRvV8BwMfZUJYWuLrbFLZd7cR4lDilL7Gp19w8SoY9TLMQ1qHHBnHatj4oXEqsB4IseJAO3Kgxc6T9bh2YF9RYdh4LRb+7zu89+sb2EZOYjxTbekmvXdUbuc7x+cOh3I3MkjJ9L9/jUqrAd+Xb0W4+7PHP/kx6h2dlu+bi6P3DcYzbAhbXHqMenpD6BtVBFmSCElgfRbXiap6/Pj5j/HZd5HNu8eKk+csckdB8fgK+3Un2I82XUocORBekZSdGr6D33CnY8+3tEv63qWcfq20usXOOXv40/2+AgkA6hTgALjVrv6lIsEgkURIgpOxSHrgzU3YXqvFA/9T3pl1lfUWvFBaH/rGOEIpW/i7dhqRcPRsHf7vr58xjE1ooq0VCsn2iDjXFLlI8qWlVVgIHDp9DnvONqHGIt30TqTrfGKNQ2C3WqxpkGBNk5IgkaQQPj/WBoeKF2Z2haVI+uea7TgrwS59VjHcdfQso5DkRw22GBYLmJ0uF3ZWtuJws7oWmCq7yxamttm9/T8nrVPQRlLOmpqFp2YPVrmtt65gueLzlZLLdrB1WXYXjzabA//+svvaOXuUdeGyJz7AlpPR7WoLmv9xAIkkBWFVwKiAFSzPmvrDl9VojHK3xJrtB/Hm2jJGMXJz7Gwtnl35NZrjfCQllnan/1qT/5Qe9v7byuvwyD/XiQr3pU+2CF6PZOH21oNnBK9beR0Wrfwa5xoiXzN1svo8Pti8z/2HRD2yUix44eJy8ahric6SFBVRvodop9vCPTeupT2wX7hjVefh4oHSs92ntZxRtrNnrAZUtNHu3mCQSCKY4Ws8Utr6kPv/ewQLN1Zh+yF2TuF+9Ldv8FqZBc+vD+3ELRgtbVbJDjBtaYvMPw3LLrje0ub396rj/o38B0fEOQz9+nD0ZwyebgicL38vs+COV9ZHFJ7DxeO70814ZmMljp31j188HE4bipc+2YL/fdPdwWhDmx1OFw+9VoN0k8iBjoxtSTQ7wHgAXx2oxFVPf9StDLRZwx9YOYKUn0hnH5TVKqsDEkkqQk0FXGkiycPhs9GuHeqUEc0ud6NfHYWfpR2HT2PEU+vx08WfRhmvTuosLbC0tGP5xt0Y8dR6zF0aWYefGAQvnwcskXXoviP6iS9t9fquAdxr1jzYo9RLpdXAopVfh3Uvz/NYs+s4jlZ2bjG3O52oFWElC8aZ2kb8e08zfr3qZLfvPOuRslINklrB6ppapHUlIJJWXouKNoNfGQCAp1ZE792aiA0kklSEb7MerTM+nuex+8gZ2H223zYzbGN+99EBnKqJfntqvLP4010AgO9qo6uKLh5YvKoM3+47jrHPfIkLn16PP65zO1pcedDK1IImFzzP48iZ8H3KBIPxvoKgFjiOoX2OB4e/l1nQYgttheMBHKx3YufZzoXPn+46gylLtjB19trUFjgu4exs+82/N0U9bfTge+UoXrgqqjBiyYGqCIQqS1clIb6vqrfg8Jlz7B7Yway/r8GzYYp7pUEiSSWcZTz623msCve8dwD/92Knhw4nw8b8vMOAR98VXjsSDL7j09iivFGhknG4XDhi0WD6v/cDcHemvm/zx2/uwSufbosozGl//hjP/Ed4xCvHyph2uxOLv6rAjrroneBZnLE7FZ7zdSDGKOfC2nUt0Lk6Op4/5YWNoteERYJHJOUEEUlltRocOBV9x3w+ip2OscDlcmHt9oOi1ruxIpTemvDc1/jhy9uwfONuZs9cv+MwPj3uxGtl6nSTQiJJJVQ2toW+CW7T/t6K6pCV4USDW4REa8EIxrnwouxHQ7s7Xuet0k/Xidk+znHSx2vu0vUYOu8jbNoT/nl+QrHq2h1/VB7ZWp6yOi3+sUN458vfyxqwsfxUTA+tZW39CcWOY5VhD+KDSR+tzzSTUiahG5160WvCumIN4gzSs7OtuyXJP8fa7f5h+Do4VEqeRYPLxePNz3fgF/89gonPrVd8mn639jQ27o5uraWHOf/bxyQcuSCRpBLsfPCRr2dh4NTFG7ClQn4HY2Lp2liyRuzRFbFi7/FKrDxoRTuvwy/eje64DFZJdTpduObpD3Hb4k/8rtdZgfKTNWwewoAV3x5iGt7XJ1rC78yCZPbVf44vD8RdOV4vLLba7U40dQx6stPCH5BsO3QWv/nE50w+EYqijdfB0qqs4zFW7XbvqGxyRbiAPUg9rrVI19Zv2i+8AzRSLCo/x41EkgqwOVxBnZo5XS5c//waXP/sR1E51+vK5n0n8Pz7m5l7z44VLnRvX1//+hh2HjktR3TCYtexzrO52vjoTg0So5GE3vTHWw7gaIseW2q6Nxen6gM7sIq01Jytj24a4qOjdmzYc9w7ZasUWiLtFBXI4TO1eCfAFEygYY1nqi0tSQ+jzn+QF6w9q2jqGqK4t/nFAeUI+K7sOR9B3Q6S/N+vDt/aHCmbKyRwTqdCSCSpgAaBhZG+uqWqvgnn7AaUN7A7iq/VasOvPjyC9w604sDp8NYLxHLqJRQulwv1DQ0AgPrmzhHlkWY9bv7nLkmf3RqFqGSZh5ouU4NiBfTyUnENcbMtsrRYInRXIERlu7szdjiUeVSCgqoIgPDcE1jtDuyuasOLm8+hzhJ+x+l1IpnaWe480qjameZ3rxT54lCYk0MpXr01yoFUMOodBjS2BF8zobDiLAkkkmTg++rIFHpja/dFzH/5ptr7b9YF9ev9FVhd3hl+YyubtQuHTtegNYjTNJY0Nzd73RDsON11wSCH+17xP47i/W/DmzcPZ6dSraVd1DspP14JB8MTW5XVRcSWRPBNxIL5b3+Jg5XB3WL47oBtag1fyIo5s02IeOiIFZOGCCPSGsSfk3oXdUSGdDKUCIiNj0ybCp2NI+WZQgfqHOjh+ywGNfxMbSOmv7UHWTob1kQfXNR8XuHfib741SncIlNcPFz/9x0yxyByr++JLMTigeX723BtswuDEfhdBqv+e09UB2yLvGe2pcngaVtCvt13HK++/SUWNzQjNysrrN888tbX4uuKjJUsaNsfR8doBYMsSSqgQcCSpDaO1bitOXUK3aYb7fqfeMDhdKLZ2b1J0JASUhxiFuW3MzitXdOlMJSeEraKu3gedQF3tqmbu/69FwebdPj2aPiOacvqtKhsEScqPIvfw2HdjsOhb4oAJS2hkAsSSSqgIcR0ly3IFtxY4lKOUTlu2LzvRMyeZQ2ws9DGcAowGEotPSzjxSosMX2XS+TI3/dA4dXbD2PDztAdsdXJw+FyQavhkJEc/sL15hhNx0eDx5t6pH7lxHpbr43AlcrvPjuJqnp2/oiUWidjCYkkFdAY4gDVXWfkc07mged5zFsenvPIxhbpt+ZKcQQCq1GVb8yqmoOP7n/1YXBfJU5I35DtrI+N40WWuyipce+O2Dz53sfL+bObzuG3q0+GPDPM48ojO9UYkdsNJa8ls0VpiQu2cYJla1XTyG61EFmSSCQpHrvThWZr8MrpUsDKEKeLR7XNf8QY6ATtbYfPxiJKTDnf1g67k8c5G9tpuSPN0W0Pb+jYwccCuZtDsdMRQjhc8tcJKREzBhD7fnkB8RpKzFh9RFK0KEU2DX58LRZ/8K3c0YgppJFIJCmeUFYkscgprFpieCQEKw5XKtOlvrVdWQ7ziNig9M6r05IU3hpEZxArosUem/aiviX0zr2XtjZI8uxYvc7In6PwghYDSCQpHCkWbVefFz5qQiyW1na/dQtC+LaBDmhCWscIaQj2nsi0Lkyi54qY9Lc73L/qakkKVPqarIHXVTY7OMnLZvX5JhyrF3GOUgDqYrCkIBBnG6P3N+aBmgQSSYqnMcgJ22I5eDb8XRmh4Hken39fC0sI0XOuS5tR1UgWEDnYH+Qg0f2nIjvbLVFQongMZ7qtW6xjlA4enee55XTZ/t/CR7671QUNTp9nJ2CEOHC6LvRNEVDbJt9mGqEdqmJRXsmPPSSSFE48bP8XoqZJWpEkxcJttSG0UDTY2XhWBlvEpaCq3oL1+9icI5XIsO3wQtevVKMOSfrwpspaQxS9/WeVOd0d7yhxgBBrSCQpHCFHkkpCbB0KZElSapVsj9DJolJRY5v32Z4zaHfFR1MV6bbxQHxztC5oXYnFaw61GzGSRdt2Pni+HK5phi1O6qAQTRLMGAjRZousP1Fhc8Gc+Gh54hgpLEksrSy8yGpU12pXVaPHsrFwOOWz2NQHKU8nG5Tpo8YhKvNj3LzHXH0Gr8OW9u7rUsRaBZrahcorj5qG7q5Hth+t9P5bjKftQFF0uFw4XMN2LaUvctud98XIUlYfoQG/TmKLvxogkaRgHC4XmiPwtqo0GpwGOANsFeZ5HlUW9VRAG0NLRmurMk89anOpb9dhIBJ9BMwy/SebhUMTuvp9XWd7Fe7ONl/aBM4K03Qs9+465SZmXZZSh2VKLa8nLcpwVCwnJJIkpKXNitL9J0Q7SLO0OcAD0GsV/JpC1O79FYEXCp9tELcYs/x4Zeib4og9x6vkjkJAAh34a3Moc32Tmmi3qTsPc0T4SPr6UHW3ayk6dyNzpqFN8LDveEBuSxYRGAX3vurn2j+txu3/2oe3NuwS9XvPzrYMU3QOB6OlslX8OKc1SEMvViTtPFaFLQdO4ssDZ4P6V4kXDtWz6xjanLFpjo+ePB2T58Qza/Z3FwzhUtso7W6wUN06x3HITI7ckiTkgF7PuVDUIxkAsD9Cf2Xhlna52xE1rhVUY5zFQCJJQk61uxuJV7aJ23LvWY8UydlHsSbkmqQgX1c1tsMloqZtP3YOv37/ezQ7uIhPrU90nODQ3MbOj0ogzp1LLHcCYspxV45W1uFodSNqG92Hxtp48c3zmSbpp0mCCZAknabbYbjRMLzADAA4UGnxrq1i2UnL3d+3R/Gu5cLpSoypOPW9GZUTybllHpGULmJExppA8RbbUOk1GticLu9J4ZHAcZ2HTAa+J74M2CzPNWtojsVasPjK/1CcOhf9wtvNFS1w8hz2nFH/dvdwt/6Hy4CcVBi0Glja7ZL4TIqz5oJgCImkGBNoIbMQnu3/rKfbapoiFyYWkR5kA3XteWb3egUxU26xNvMqwVfImdpGdoHFoENItE7HybOzaDolaJZj7QMrSS8uDfYAFhW9VoPBeWkA3NYkQKRDTSJiIumz4hHZRdKZM2fws5/9DFlZWTCZTBg5ciS2b9/u/Z7neSxYsAA9e/aEyWRCSUkJDh8+7BdGfX09pk+fDrPZjIyMDNx9991obu6+PVUNnG/tFCONrR1rkhhPt9XZ2L32/RU1on6Xm5YEADgr+dqJ6LG0ietgWDYtgRr7VnH749mRYGJIrdgdsZ0a4VzsRZlnyk0Sn0mkpgJyvLZF7ijIiqwi6fz587jsssug1+vx2WefYf/+/fjLX/6CzMxM7z3PPfccXnrpJbz22mvYunUrUlJSMHnyZLT7HOw5ffp07Nu3D+vWrcOqVauwadMm3HfffXIkKSShpoE8W2CdLh6WDv8kGabA022e9QtSEyje3x4PbuEItCAyP71DJDX4W6jCOXg31lYKsd7BHTFYDCrGOSHTqUjqXABQNnRF7I7eYPRMT0KGSQ+704UjNeocBKuRRPd2rpPz4X/6059QWFiIpUuXeq/169fP+2+e5/Hiiy9i/vz5uPHGGwEA//rXv5CXl4cPP/wQt912Gw4cOIA1a9bgu+++w7hx4wAAL7/8Mq677jo8//zzKCgo6PZcq9UKq7Vz8arFErtCUN8UwkdOR2vb1G6Hi+eh03BIMQrP77fb7LAGOWaCJY2tVvQW8btWu3BjmZtmBAd3OpvbHUhN0jGb1rI7XThW1wYzz6Z41zSJW+hsd/EQlrfyml9isV6L7RPIXBUtPNism5KDlo7NnRzHYXiBGZuP1mF/ZSOSRIbXbHWg4Xwrmq0ONLc70Gx1YM85Oy5nFuP4oqrJihpLO3LNYnNc3chqSfr4448xbtw43HrrrcjNzcWYMWPw+uuve78/fvw4qqqqUFJS4r2Wnp6O8ePHo7S0FABQWlqKjIwMr0ACgJKSEmg0GmzdulXwuYsWLUJ6err3U1hYKFEKu/P10fNBv29pdVuGPOuR0k2GgJ0az/Mx6z6qG4XFXagdOByETf0Gncbrkdcz5XbuXGCfSqGwOVw4WNWEVbvP4u9fHcWGQ/Wwh1jcHS7VIp1eOpwu70GfftdFVDuWloqYVPpEW5SkAr6tiJ31heXbd/mU2KE93VNup8+3od0R+VPsThfW7qvCf8tOY015Fb45UotdpxpYRTVuSeQ8klUkHTt2DK+++ioGDRqEtWvX4oEHHsBDDz2Et956CwBQVeV2opeXl+f3u7y8PO93VVVVyM3N9ftep9OhR48e3nu6Mm/ePDQ2Nno/p06dYp20bpyocoujUKKC7zBTN4a5/T+YVeBQtQVbj9Whor416jl8sZ00H+TXBekmAJ2Ltx1hOiDsanDaXnEef990FJ+VV+LIuWY4XDzSjGysSDzP45xISxLPA4erlTct4FTAQvS4Q6YsletdchxkMfCZk/Qo7PCZVC/yFB2NhkOGSY/emSYMzU/DuD49GMYwPjlY3RTU5108I+t0m8vlwrhx4/DMM88AAMaMGYPy8nK89tprmDlzpmTPNRqNMBoj9wYbDdvPNKPviPDvZ+EjqcnqROmxOgDu9iw7zegVJpFytNGFa0T8jkPg/qMgw4Tdpxu6rUsKxbE6/8Xe1Y1WOI08Mkx6DMpLw6DcVKRonajcHiCAADidrm62p2arA21RTGnuP2vBBb3SRf/eA8v+6EjVefTq24thiMrDFeLAVKVR1SDuqJpwJZIkOzRlEobDe5pxql5cfnEAbhrdC9yAfn7XD1Yklhf/SMhOMaDCzqP8TCMu6Zcld3RijqyWpJ49e2L48OF+14YNG4aKigoAQH5+PgCgutrf82x1dbX3u/z8fNTU+O+wcjgcqK+v996jRho6vG2nh9r+H6QvSNbyGJKXhrQkPXgA55qs2H26gVkcwyZAY1qQ4Z7jPtdsjcjS1TW4gbkpmD6+D2Ze2heXDcxGrjlJ1LqbM3XdF6FXW6JwvMi5pxLPtyrr4Fi9hl21D+RMVF0SRX6+PVondxRUw8Dc1KiOahIqm5zYg7pbbKhttnb7xBMjCtyDvN2nG2X3TC4HslqSLrvsMhw8eNDv2qFDh9CnTx8A7kXc+fn52LBhA0aPHg3Avch669ateOCBBwAAxcXFaGhoQFlZGcaOHQsA+OKLL+ByuTB+/PjYJYYxnZak4I4kg4kBk5bHlJE9AbgXSFc2tqOyoR0Hj8Z2232gapWWpEeaUYcmqwPVlvawVxCVN+iQ4/P3kLw0QMSJ410RWgR/LopTsHUdYuTAWQsuHZjtvW5zyVrtVIdTBe1yNFE8WdeCU+fbIOUYXexi/fqWIAI/ZkrYP3fdPpNScfyE/FvT/7fjNFoN3a3zU2SIi1T0y05GcmU7WqwOHKlpxpD8NLmjFFNktSQ98sgj2LJlC5555hkcOXIEy5cvxz/+8Q/MmjULgLtiP/zww/jDH/6Ajz/+GHv37sUdd9yBgoIC3HTTTQDclqdrr70W9957L7Zt24Zvv/0Ws2fPxm233Sa4s00NuHgeFsaOJNOS9Bicl4Yrh+SEvpkxwSz9PTM61yXJ7SVbaJAUjSVJp3WnZ3+lxe/YilDewoVQgU7w45RN3LSuEGIHr2rIMxfP4+vD4o9wCbfGiJ1u23Uq+EYTuRjeM/opbBaY9FokG3R+H53s3gfZotNwGNmxZCDaBdxSuIaQGlmHtBdffDE++OADzJs3DwsXLkS/fv3w4osvYvr06d57Hn30UbS0tOC+++5DQ0MDLr/8cqxZswZJSZ3bEd955x3Mnj0b11xzDTQaDaZNm4aXXnpJjiQxobndASfPQ8txSE0K9oq4oJuInE7ln61TkGHCoeomnG1sR5GJXesiTnB170jEbv8H3I2LUadBs9WB0/VtKMpKFh2Wmjhzvg0WPrZr/oRoszsRqxxvarNBjGnl+8om1DZboWN4zhkr2mxO7D9rCeDGQl48U/WhkVYqz5jQB0jzt6xs3nM4wN3qZVTvdHx3oh6VjW2otrQjT6Q7gHU7DmPyuCGMYyctstv9r7/+elx//fUBv+c4DgsXLsTChQsD3tOjRw8sX75ciujJgmf7v9mkhyYK64pLAq+3Ygh2CG5Bh1PJyoY28HkpsYqSIMdrW+FbfVusDrTaHKJnFXQAhuSnYc/pRuyvbIxKJCmvCxXG4XRh3QHxp9ezpMXqiJlIOtXMAxEKHYfThdKjbivS6N7pOL4/8oOwnTzPyNFFd/aeaYQjoK8veZHb6pxopBh1GJyXiu+rmrDrVAMmj8iHmFapTYU75OLMMBgfNERwHInam4rsVCP0Wvdht41WeU2xzU7/6uDxj9QjRXw34ZkWOFLTLOgzKd7YcqzeW35ZIbaMN1uVnd87TzWgyepAmlGHUb3ErfNoEHlkTiicLh6748A3jpX18SUxJtbHyQRjdKH7JIxDVU1osYord8OLckPfpDBIJCmQRq8jyTgQScF8AMDts6RnhzWptlU5DQLQOdXmOWdODHlmI3qkGOBw8VH5TFLD+ppqSzvKKtxrWMTuFhJC7MJtsQ15LGizOfHdcbfl6NKB2aKn2xrb7JL4rzlU3YQWmwMpjPyNycWxc8rzUxYJdgUtmchPT0J+ehKcvNsdgBjUaAAkkaQweIS/s00VhNHB9ezw3aQ4kdSxaDvXLH59DcdxGN7hJTiez0Byunis218NnucxOC8NJs7OLGwxHsoBt48rpbL1eB1sThdyUo0Ymp8mevqI54Gyk2wXV/M8jx0dYY4uzGAadqyRY3Bhd7Ar+5zChsGe8rDntDiRFM3yEbkgkaRAvCIpyp1tSimORyuDr7XwLMJkKZJYrFnwHGwbjSUJcB+lwEE5PpOCrRETy/YT9ahttiJJr8VVQ3LQyssv8JVqSWpss3s7mR8Myom6rO4+1cjUmnT6fBvONVuh02i8u5qEUEr7ojR4Fe7gCpdBuWlIMejQYnOEdRh5V9RYZkgkKQ0eaGwLf01ShdIPreSAfdXBveP2TDeBA9AS4DBcOWi1ObyWiJwofTClGnXok+VelH4gzqxJPIC6Ziu2dUwdXTU4B8kGZUzRKFUkfXfiPFw8jz5ZKVHveDTqODhcLmw/wc6atKNjynR4gRlJeuFl4aE8CvAuZViF5VmWxlAKKEBV+LqP0Go4jOrtFs5ihloaho5sY4X6Yhzn2FyAw8WD4zikJYUWSbYgc9aKWccSoqIbdBpkp8q/ZdwXz1RbZrIBBgaOT4YXdEy5VYoTSYGy0CpigyprE/66A9Vw8jz6ZacoytFcs9UpzXEcUXKs1r1O5nIfB6NirUmeTQV7TjcwEYXnW2w4Xut20jgmiqk2p5PdgCea0tru6lp3pS8P8b7z7oJe6dDGeRp9IZGkMGwdbYs5SQdtlL5TpNscHBmOEIf6Am5/SUqic9E2G/HWPzvF6zNJDIGadjsfuUjKy2C3Mf50C1DV2A6DVoOJQ3MV1UE4eR4tNmVYNLoyvKc5agsl4HZmmJ+eBIeLD2pNClcr7uxwHtk/OwWZQXd1Kk98RgPLUsu0Cigwm1OMOgwWORjSKNAfWChIJCkMl8bdMIW7aDv42asKrGEB6Bm2c7jY4F2PJNJpWld0Wo1irCxGPfvpsMsHZYdl+Yw1Hs/1SkKn4VA8gM0hJByA4v7usPacaYhqsXq7w+HdXDCmKDPovUdCrDNUU9vDGoZGNMUidkG/+iQSiSTF0d6x3zncRdunmuOjRirOkmRha0kClHOUAuv+q3emKegCXzlRoki6oFd6N0EZjfWhqEcyCtJNcLp4r1sBMbS0O+Bw8chJM6J3ZvD6WN8SX4e4sqSySf7NGVIj1uO2XqeM2Y1IIJGkMNo7Fi+nh+NIMkTDytJXjdSYk/QwapUxzmi3O2Fpd3euLKZEPHh8JsUbJcPyFDXN5ovnPSqJC3uzFZQc12mZKj/TiCaRaW7tmOu/qCgz5PtstamnbYk1LDtVKXaiygmJJCJqbI7wLUkNzeJPqFciWQzPbosGjxUp3aQPuLtHDL4+k+IJJfvzskjkkToajAIdRdfF9JEuOO+daUKvDBOcPI/vToizJrkApBh0GJwXelrYxfPqnDuJARzHUNjEl0aCgUQSwYpwOh6xjWFMiaCSK0YkMfKPJMTQOBNJSrdWNirQkiREV8NNbWNknqL9rUni3UxcWJgR1oaRrkf4EJ1oFF4n5IQsSQQzzKbQi2utYewaUxM9kpQxNPXubIvC03YgUlV+zENXlPHGAqPENUnhUN3QEvFvemcmo3dmstvKI5JRjKcCExGlDxzkRK9Vn0iKrxY7TkhL0kOnQqdb0ZKpFJFk8ViSlOW7iRUsfQex7g4+3HkGVocLNocLNocTVpFbhbQdUx5N7Q64eF6VxyGIobh/FlaWBXfeGgiTnmM6vUxEhqXNAXOXmc54k1tarfr6NRJJCiQcT9tqIZJKnpmRgSbJYhIeVocTDR3WBymm24jgnKiL3IISCA3HwcXzaLE6/HaTtduUZ11itfC9V6YJRT2SgYrIf5tqSGSBJL8cWbG9AsaMRvTJSkafrJSQOwyJ2EAiSYFEe2ZbJ/JX/EhQwg6p2mb39t20JD1MUXYaPJQ/HRUtrNP3w+F5MOo0MGi1MOg0MOg0WFF6RFS8UoxanIN7hO4rko5XsT0QVgqi8Yo+oX8WDu/yvxaO9VCFfv6YwdT/o8hmV8NxON9qw/lWG3adaoBWwyE7xQBleFdLXEgkKZB4siQ12jkoxPF3WNR1iKR4nWpTMhx4jCjoviZGz0U+5cYDSDXoAJfbDUAvqGtUHs3wpiDDhMPMYkLEihkTinDKrsOJuhacrG1Bk9WB6iYriSSZIZGkQNJNyt1SHe/UNbN3Iqk01GVfFE+KUQu0dV+8nSjp90UKK60Cj8VTNUadFgMzUzEwNxU8z6O+xYYthyvB17AJX4nnGKoB9a2iSgDiyZKkNs55RBKj40iUSKI0lSkdOwkbVbrDjSVSdJAnqhuYhlffJG7BOQvYSsjoQ+M4DlmpRvTPoL5AbkgkKZB0ZmuSiEjpXLStNEsSy05OXTKphRdnWfW4W7C0K8+hZKyx2tnngYOx8GpoiQ/nuOqqXaFJdAsUiSSFYdBx0DPaJpnA6zCjItWo81oh4hGhNk/sURZKJjXJI5K6pC0BG/19p+rkjkIUSP++9FzQk8LlQwGbWQKh3JixhUSSwjDp1fVK0vXx1+Eoz4oEBGqSWOX+1igORmUF65KUanCLpKZ2B1yuztBd8VdkQ6LgvjYk2hiIJAPYWdoMRlpTGk+oq0dOAJJ00rdmffVsvBGdPt/q3r0WZ+Qo0j8SSweQ/mE1tNqw/6z4oyxYwbozNOm10HAceJ5Hs1VdU25KcIcRDUqNfaB4sYxvklGJ7UdCGlCZQCJJYcTCkmROin4qqcXqwGd7qxjERnnkSXAciS8aRL6lPZqjJkKx9Xi9pOGHS7qmjWl4HNdZ1rtNuRGKI9HXvgihVLGZSJBIUhgmhpYkqSqYi+exprwKLTZ1jc7DRYmeto/WtqOZ0QJk376ovsWK7yvltyIB0kyrmDs2QST8DjfqbWOGUrdYdLUgR0uinFFHIklhmFWwYHjLsTqcOt8KvVaDCzIUuuBRJCa91u1fR0LE9FfH6tvxxjfH8NGuMzhS0wwno4U1pUfrwQMYkJMq6veuGPS+SRAvcDwiydKmLkGvitk2FfaRashWtaBRYwEQgfJ75ATDGIM1SdFwvLYF2zoW+ZYMy8P56tNokDdKTMlONXZbD6KEaYA0owatvDv/j9e2INmgxbCeZlF+pD3pqWlqx+Ea9/q04gFZeP/MOYYxZkcKZxP9W3PHcSS+022sR9RqIJpjTmKFFNUsSeMCr+JxnPLfWvxDlqQ4Rg+2rYOl3Y61+9zrkC7snYEh+fHnMD87VZk7UyYOyMAdxX0xtk8mkg06tNqcKDsZ3RlkW466t4UPyUtDdqoSd/S5iaajMJs61iRFOd3G2idQPBBPOWIwKLPes4SKsDjIkqQ0GNrZWY9CVu+pRLvdiTxzEn4wOFt0OEOSles0TslioUeKAT8YlINLB2TjRG0L9p1tBCI/+xU8gMrGNhyrbQEH94GoAJDOKfe9iKXTkhTddFur1QkziwiFSWpS/Hfa4ZLEST9VqtWq6IBJEVgdTmw9Vg9yUxw5ZElKRIKMKIJNLVVZ2mHUaXHdyJ7QacQXHXNy4A5AJ2LnF0uUKpJ8X4tWw2FAbip+NLqXyMCA0g4r0rCeZmSmuN9HEhd/i5s93uub2+2d67hEjKibrbHNG6OBbaetijVOAYjGh1FmUmJ3cS4Xjz2nG7Ds2xPYURGd5TlSrhbZPCkNsiQRfpypDb7T6doL8iQ9NoWVSBK7jihV4kXbYmFpKT/XbEfFeRs0HIfxHVYkJSBFP55s0EKr4eB08WhudyA9WS8qL5ttsV3Y4gxRDbQK8xBt1toRzoq2YOvLAq0VC1QuUjhryOelJulQ3ySNwE0L8HylTGtV1LVi0+FzqO04jzIzyOBUCtKSdABDJ51ykdgyOw5I0kQuKoLVYScfOLyL+/ZAv2xxu6DUgtqd+IXD9+fc/ogu6JUeteDN0rA8lDRAJynilXi2J3McJ7B4O/JejJX7hXA5URfcZ1QBGmMUk8DkmDu3Ddw6yl9sB9oenm8KZsaObMdUahQL+rsiptYreXfX2n1VeH/nadQ2W2HUaXHV4Bz8bEIR03WqodI/aVQRs2fJCVmSVI5JB7QyHCgFGwUVK8jqoGbEyTB2DbLdxUOr4XBJvx5Rh9W/h5j9ddLj24CbTXqcb7VFtXg71iIplIuHSDtoKaS/3mcdT/GQXsDh6pC/MeoCj8vPWdqg5xgLDwl1DMujTFhzsr4VGmMyRvVOx4T+WUjSa0VZ1/O4ZlHP72OyIT8zPgbUJJJiSH0Ty1G3eMRUlpIiPTSa7k2tJgEsL0og0CsTezDnhb0zkMrAJ1cSw7UzUpUkj9ftxii8btucLrTZnDAxXivki68/KOXaKDrxjSPHceifHNqyo9cFzr99tTYYIioEoW9ut4dZP0QUvpyUQPVH/rdX1CMZl4zsgx4p0U2xpWlCT2kKEYvjtWIFTbfFkDYVe6gOdFpKz8wUJDM0exPCBBK2Ykz+Og2HcX0zo40SALbTk1Kdq9XVoaTYNSOetR1SEetuJVnDtj167a5LmYYXinBe47nW8ESSVsNS/DKsEyKDunZEftQCiXAjq0h68sknwXGc32fo0KHe79vb2zFr1ixkZWUhNTUV06ZNQ3W1v0m3oqICU6dORXJyMnJzczF37lw4HMoUI0pwSggEb1wijSHHcSjQsDkwlwgMy5IzKCsJyQY2RuQUA7tF/Kz9enkQcigpBqlFklIJ5Bqia3vWIy05ZFgs28BwNnm0u8Lr4opErLVUgq3EFKV7hPvHxtKxhTqR3ZI0YsQIVFZWej/ffPON97tHHnkEn3zyCVauXImvvvoKZ8+exS233OL93ul0YurUqbDZbNi8eTPeeustLFu2DAsWLJAjKaFRhkaKmEwu8CJSpQi/eEcfZC1HOGRoOwXC0Fx2Z9Pp9eGPwC/JEbdzUa+NrjtK91qS3Hkg1gdRbXN8WUzDPXtrUErodHezeIh4ZXyEPwrWLkVKTnpKxL8JlHsMzg+XjK5x/u2tP4jZs3sa1Vl/ZBdJOp0O+fn53k92tttJYWNjI9544w0sXrwYEydOxNixY7F06VJs3rwZW7ZsAQB8/vnn2L9/P95++22MHj0aU6ZMwdNPP40lS5bAZlPeCwlHUASavjAzbBCCWpIE4miMgTM3IjjmZGFhE+6hsI9PGYgfJR/CQG0d9Frhat8rTVpXc//59Q2ifpeR1F2IpWrCtwp5vG43Wx1wuFzQdaSfA7Dql+PDDieWlqRoxx7GLj6vopkW1Wo4aIWsNhKMj6x8+F0SywNWWQ72itI4yayi4SDns4MxIFOdrixlF0mHDx9GQUEB+vfvj+nTp6OiogIAUFZWBrvdjpKSEu+9Q4cORVFREUpLSwEApaWlGDlyJPLy8rz3TJ48GRaLBfv27Qv4TKvVCovF4veJBfK6SQyPWNiFyPrEjnA7Cg5AUY/go+X0ZAOzjqevRthxXVoE4iYYpfOvDftek14LXcemg+Z2h7f8acEjLzP8o3Xqmq1wiSi7ozLjb5CRYeD9/BpxHJeQZ+IJoeE4Zo5ZU0RYPZXgmmDe9SORm+E/halW9yqyiqTx48dj2bJlWLNmDV599VUcP34cP/jBD9DU1ISqqioYDAZkZGT4/SYvLw9VVe7zw6qqqvwEkud7z3eBWLRoEdLT072fwsJCtgkLgFLEgVLiQURPepgehcN943pGUj6Vs8LEqKMQalyTIlgLxXGc3+Jta8eOJ0cE0ztaDQeHi0djhP42kjgHPn7sxoh+E4gJuS7cNiwJswdE7iMp2v6pZ5d1hwYtpwinieYwHEqGi+f4E6Om0xJj4JwRW2bCaV//+ZPBOPbMlJD3ZaaakMZwY4yei81Q/aoLB6Ao139zyLi+0bsckQNZRdKUKVNw6623YtSoUZg8eTJWr16NhoYG/Oc//5H0ufPmzUNjY6P3c+rUKUmf5yHUSEsDXvbzA6Ru+AZr5TlpXmi6oIfOhom91Tm68dD1eBglWS0MCvIK7Vm83dhuR+mx2oh/n9yx9T/SKbdL8v0XqGRzLWH9TqgaZqca8OzMa3BBYeSdTZ459KLqYAidn+br/qNnptk/0jESUKmclZmw93jQNvo0CZ/OLsbLPx7CJHxfjHotNBqNn9uHQKh59/Dm31yO6/pqce+YNMy+PvypbSUh+3SbLxkZGRg8eDCOHDmC/Px82Gw2NDQ0+N1TXV2N/Px8AEB+fn633W6evz33CGE0GmE2m/0+aqWFscd9sSbzcI8T6aNtEBV+tPzjp8P8/tbBiR1/uBmD88KfbgnGMLMyzj37ycXx4eWWNWafxdstDn9h/P7dF4b8vcenVKSLt7uOecIfyXevh0KNddi1tUs8bhnEYHu4T5hZ6Slhx4XlWiIAMDBeM3n1iJ4oMtnw1DU9MahXDq4dx14kqXXqKVIKstPxyv3X4vc/vQLaAGshlY6iYt3c3IyjR4+iZ8+eGDt2LPR6PTZs2OD9/uDBg6ioqEBxcTEAoLi4GHv37kVNTY33nnXr1sFsNmP48OExj3+kDErt3rFGWnVsAgsdjSFG8EGtRSLbL1MgR0oMYLFw/JoxA6OMQ3ARFO0OLFZwitiY7E8PoxMLS3oCEHvESPR4HEoKuQG4aFBvXFkQ/PedIilGi7eD1EMWHeziu38YdRgejBFO4WjBI1sTnkVNDnLNKdj0xM2Y+cOLvNeenxr+4IPjYlcLI3bZIkks4htZRdJvfvMbfPXVVzhx4gQ2b96Mm2++GVqtFrfffjvS09Nx9913Y86cOdi4cSPKyspw1113obi4GBMmTAAATJo0CcOHD8eMGTOwe/durF27FvPnz8esWbNgNCrzNHdfPnl0qt/fGsYu+TmN8OtVwFKCgHACFqmtv5+E3knympxzNK1BF0ROHhHYcqkE5FyHNu3igbij5KLQNwaCQcve1Q1AV96cNQX/uXMkrgkw/ZqaFFuRxPptSfH6u5apcJ/BccCMi3uyj5CE/PgHIyO6P1SR9ejcWIsWjU/76hm4EMGRVSSdPn0at99+O4YMGYKf/OQnyMrKwpYtW5CTkwMAeOGFF3D99ddj2rRpuOKKK5Cfn4/333/f+3utVotVq1ZBq9WiuLgYP/vZz3DHHXdg4cKFciUpKF0bka6LT2M3+gjcmgl1prGsyELPykg1ITclco+4nu3xQmtjPM+54+pRYceL4wJblPrkmLHl0R8gJ4yzjkJZ+rqSgsgEolBHr4RFtmIJt/zdOSrw7r2uXre7otVqcMnQIjwydYzg9ynGjjVNbXbYHGrYp+rP95XdF3sPzfS4QhCxdkxh5SlFG/u1eIGywLcNTdMJ523XnV/h8vWc6Lyap3Ssb7ok1xVy4NJfWxfVs+IFWUXSihUrcPbsWVitVpw+fRorVqzAgAEDvN8nJSVhyZIlqK+vR0tLC95///1ua4369OmD1atXo7W1FefOncPzzz8PnU7B3rwUgG+H+dG9Y3DHBcmC30XK1UXSucG/qDA94t+YOhqE/h3+Of778+6CqCA78nADkd/D7GcNDJSVGbrwRc9Pk/ehpzYyj+ZvzL4O+54o8bt2/fihAe6OLYEanEjXqWgFzhF88v+uwkCN8MYAz8LtFpsDLj6w7LqgX89ueccBSNJyXi/ldS3BrUlXCAzQhyS3wMy1I1UbWJBE6z05GA3W7sLutXsn4nJzHXJE+mDzvDFPbqYatTB1HHUi8HrijzAay7H9c/CToUZ8cM+F+O0P3IP/8TkuDOqVE/Zjkjj3PsyiFCd6ZaejyOTfftwyyOBXdkJasQBcOKRf0Hv2zL8al+hPA1CcHo45ilqTRMS+QF44oMCvVkXz/HsnjcHXcy7FLyRwdf/Yjy+P+Deewm3q6NzGDe509ZCkEen9OUCNcYU4td0XoQ4+EJ5T0yOdLksx+U83m4yxdeSWk5sreL1femcGTuzFoafRhvG6ExF3qhqNBseemYIBKf6WvUDONZP0Gq8TTWeIbqRr3nnITnUPAmqbgovc+dMu6Xbt3/dfhSmGg0HffQZDh7HhkJORil9PGQmtyNPsuxZJjuNQiHoGMYsfUgwGPHdnCcYM7I37p16CY89MwXt+TlXDcDAMHjrOhd/eOA4ajQZfPn4jCjq8V1/aS4/Fd/8Q+/54A2YMdu/2y9WEtmaHWtcWqA4kIiSSCL+tvNGuXSnMzcQ8ka7ugz072OnhkfDn64pQYLTh1f8LvaNJiJ+M7SXsfVgkeQZlb+8dktZ9evGpa3riEt0p9AngMBJwT4UL4ds2v/ngdSh96mboQnQUgZpzjUYTtrjiOM5rTQqHq3oB6Zo2v2fnpLk7jlDrkgKV43DXWwe0qkVhnWFt2An0xhLBgORBzAJ6TZd1oikifIlpNBp8+HAJ5l+Vh5fvKfFee+DaMbje+D1SDOK79QKjDX+c1Cui37Derag0SCQlIF3bcF3InoZlJQgvrNSOuXwWfow0Ph32rVeMxOanbsblFwQ3NweiMDcTy6aP6Hbd44l5YmF4U70ceJT0NWDzEzciX8FCKTe1u7CY+cOLMGloj5g5pmPlO8xzPEk4LHtwKvpy/laR7NTwRJIv3gW6Hf8IdxDCfOE2gzBMXdbGedLCaje7rxUwUY5CenJyEXpqLOilicxBaG5mGu65dpyfR+5odz1q4MLmp27G9ImjI/qdUaQlUi2QSIohTqcyFnx2baiT9J2dh1LGBL0yk/HOjOF4/YHwj58IRHpK5IdXRoonS//v8iFIDsNBHAAM7tmjm++QTK30gilYR91D0+r391/uuELwvkg7/WhIMfhbpa6KbKDrxbPDTSxZnum2ZmvY6Y6k2wo1Ii/sIW6xLyuW3DwAF2d3tmFdY8vS9881fU2yOZ6NJcMKc3Cl4Th6JKvzXDMg/q2HJJISkK6N25SxnYvlu60zAM90QWk61x7WfZxGg8tG9GPigKyriVsKfDtNITcG4fL2vcWRPtjvz2AdVchOjOeR6uPd16y1IzeCs83CQUyD2isrDZmaNmjhwuPXDsSbszqPcxiSawo7nEim24TokWIAx3GwOlxotko7enb6rHH73dU9cW0fLR6+cULYv5fCypeWbESfHp0HLbPWx77BcXBbruK9A44HOPDY9pjwYCoeIJEkMx7/Pz0YOFfzHB2QEkqIdGnceph9d7d1fvnq7aOwYIyT6YGJOta+oJiGFh7jhxYhW29Dv+ROQeHd6RPlaHpE33zMvyoPOjjx5DXR+TG5bZi7Q5txQXRHUiiBdK4dOq0GPXuk+YneRT+7ErcOMeKdGaGdx0Yy3SaETqPxjviDed7ukdaZ33qRIt/uY3W++dIReO2Ba73r8sIpY+k6B8JaFBxVeeW7/J8dkUbr5gvC3y1GsIf1YEpJ0F55mfA49Xpv9tVYun43hp2K/NDKrnz0y2Ks/PYAcjcEF1zhOtzW67RIMii3iOjhglYT+wlCg16HrU/eCI4D+v/uM/EBeaasuly+59pxuOuHLmi1Gry88b+ig3925jX4o9PF9DiAH/WPrjywPo0hLTkJf76rJPSNiN6SBABZqUbUtdhQ22xFv2zhadwcHx84Bp24vLdG6YtJK5HXZyFRJcVzXK7I0j957EBgY2zXxsSLlavIZENFmwGXCG9ITXjIkhRDeJ6HocMM/uvL3f6eemVnYP5tV3p9sETDkMJczL/typC7r3qkBPZn5GtC913PLafH5kCkadpj0lAJpV2r1fhZNFjnDythE0046fruaXrpvsnRREdWzFGuSQJ8Fm83hbd4W6wwszuVV9+6IuV0W6RoNRpM7cdmB2y4GPWxfZ5U/PehEjx6eTb+8YvOo2oS5Wy5cCCRFEN4ANqO6ab0lCS/72JZKNOTDeitacRvRgb3tKt0h3AuBRXfcYNEriZWID8tbMbAVDtemRn+Ghg1YNRpYIhSfOakeRZvB19g/8tx6RhmtuO30yL3kMyDg431Jo8gDjRFB8k8xE4U3vTEFbmZafjl9eNh7tInEW6UO5cShyjJGJPEOVCU093po28UNRzHVLxdkGZFmBu/wqLBFftK3TU/vp5zKRpb2tE3v4fg9+Fw14ReeHbTOYzO7D5dIMeI7sphvfCbH/1IkrDlPICX4ziYTfqozl/L6rAknW+1weFyBWxAH/3x5XhU9FOAVjtbkdTucxA2izfA81DOVliCkBASSQlMqA5Yw6iDNmlccDmBIantQGD/g6qkMDcThaFvC8r9112Cq0fWYGBBNpM4EYGJViSlGXUw6DSwOVw432JHIi8XJo1EJALKma9IAPQiF3FKja8U8rV20bR07BhSmMtkHRK9s+CYk6JdeM4hR4RTSSURTRnx/S0vcI2IDJaW4lj6LhPCs1O7XzLD6QIFoMxeO04x6kIdwCAPvnFqtXYW8GgqsKBvpSjbAwMn4rTyCNCJOQ2dUBXROpQExHneVhJq0DRi1kNe0p+2Z8nJu7+8CneMTMY7v7xa7qgwhUSSTGgibAVi1bCdPt/pcTma6bZZl+YBgHc3HxB9GqQ+I0jMOUqJBIsjYsTAcmTMxg1AeIu3lQrrDRmsgov2Lc+4ZjR+d2UuPrhH3LmMkRDv55WJoTA3EwunX42C7HS5o8IUWpOkNAJ0CB5HkT01Tcwf6dvI+Z5mH41ISuk4dV6nQZyf7OOP3K4SLhks3S67kb0zog5D7qkZ5m4A8sP3+M2KaKdoUvTix8btNre1tdYKpDncNVuK45bEJFGj0eC+KRczj4sQRdqGmDyHkB+yJMWaKPpQDkAuZ2EWlZDPi6It9goshppBDdMEcqHjOPz66iIMkHDxdyQCMNC9vdLl3WYcrddtoFMktdgcaIvS6aMcpOrF16Svjjd7/11bW8ciOj5wAf5NsEDuAZxaIZEUQ/zP95IenT66UXM0liQhjUQOyqSD44ABPbPkjkZIFv7fD3BlAfDn64pkeb5RF70DQINO47VINbSym3ILt3pE29klG8TXQ73Pur1mp7v7kMaztwSBMiQV6lyP5oHa4vCh6bYY085rIfVJWpoOcZSSHPmTuvpJEh0HgYUPkZ2Irk7M5u6+p4hO0pKT8NZDU2WNg1EbfenKTjXC0mZHQ6sd0Z2wF3sMPjox0s7Sdy1Okyuw5/5oCSdW+T17wlldDZ0u9t1YHy1bXyZk5VEuZEmKIe0+c/fHq1ibqjtRQkcthdNANQinvLw8uaMQkHA7xHDuU/NINCfF3amadeKnynI6Fm+Ha0lSc375wvvUQhvkPZZDp3U/3/d4oFgRH2+TCAcSSTHk5PlOE21za7uMMQmMnyUpim0wXp8dEOdPxWSQbpRKJDYpUUw3eej0vB37HZHRCi72Rgv2VpBo05ilU+fOw2iIFyGuNEgkxZBjdW3efyvJuBpoWi2a6TZtlPuM5ajwoQ4GZg01avKQqo9+LY1n8XZjm119UyVRlLtgKVVSee4eE/KBRoiDRJLqib6Bdvk08v5rksSH6eiYWmx3Kb+I3XeBDoXaBmTpE2/0mYgUputh5qzINooXxRnJemg1HBwuHg6XNCLJACcGGmK3mzUceIYTTSPSpXMOIoVeG5jq42hXUcNc9ihJ8MqN8nuwOCXS0ae2Y/69X//+ftc1ApU10gLuCtDIR1NPPi8/I/7HAZCq2v685EJcpj8JXRhrGxK58SjMkn+tGwuSdByKNOdh1osXSRqOQ1aK25pkk8gNQDJnh46ToDOOIkiWsfngN1MDOn5krTtZ1NoReVJvuSGUCIkkhRCq89V37FgzJvn7mWFyorf/Rn3vvzQcJ1oUCI2uo45r4uoTWVlY0hO3DjFi2uUj5I6KosjuWLxtk8CZIhD76d9w8K3Vnk2CYqulQa/DmIG9o42SIFI0FYN7xpcnaSI8SCTJhJKWMTh9BI2fOzcWziSJqFCC5eqOkovw57tKZNlFpGSy0zosSfZOMcPy/D8NJ5FI8ilSkZevzvtzk927BKXYgh9t+9g1WSymCf/vypFRh0GoD2r1YkhOsjKzOzO182iFnmmdDiij8pMk8NNoO/x4XwdAqIt0o7s+t9k7hZGeoUjSSlXeGU235ad1iCQN+3heUNTpGFXLRISxbXvlH7oQsUKZvXac8PCETBSZOhcD6x1tQe4OH9Zm+LTkzik8rdZ/uk0sWoHfKr1hUd0uJUJW7G3NoW+KAiVOt/nSJ12PQk0DCpLY7xy7sXh4VL9XelvjQQmWYiI4JJIk5OGbLsWmJ26WOxphYdK4d5r47nSjKTOCkA+hTRlMiKJa+05bcRyQzrVDy3BxOQceA7TSOdoNRDgDJBcNohISEkkyoQarRVQaSQJ9lZOk/DwjCFboAogkX+tDrNsRoaextIYY4GTSdCTi8I6sUtJAIkmFSNEseqqXb5sbTaUT+mW0lfhnlxRG9ftYw/Q9BeoMVSC24xXB8hxVEfd/l1JNt/1oUIok4UZCoLbAwHWfuhO1MFwKvcAH/COuUcOAXkrogNtY4lfWlKn6WR1LIjxVF11lM+rlPSsqHNQ8mkv0xlBuupYcDWORxAHor62Htoc+5L2BYOlMUgiDz8L3JJN7Q4lJxEHdUuA73RasmpvNZvLvHUeQJSmW+FSsXr0K5ItHEHz7SVZrkjzOKltaWpiEFw7U4RNywFJCsFzrAwB6DR/VOqdYDAAMXKcXbnO6eL9EUsQ01WT0/lsfRMCqeaBEdIdEkkzodErLet7nv26iEUlpSZ1GSk+YTRZpdwMRIfAcOhxCQFIjrwxYT7fpGbzW8dluG0kSpDlSxGNJUmIZNBn1+OdPBuPXo3jopfJhRSgOpfXUCQOnuOk2d3xcPNflijimXzEsyvgkAArsCIjwieTtie30oxULKZrO88b0DPwZ/fbGi3C1/ij6JLFxZ9IVA6OJKqlqVslFg/CD4dJ4CSeUCYkkwg8n11kktFrxxcOod1uS/B1ARtdIS6UpQnVENHXXHS5MqxQhDiE/Y2LQcQL/9gk7UhGm02qQp22GPoq2IRhCC7cJQk5ElfQdO3Zg79693r8/+ugj3HTTTfjd734Hm03cSerPPvssOI7Dww8/7L3W3t6OWbNmISsrC6mpqZg2bRqqq6v9fldRUYGpU6ciOTkZubm5mDt3LhwO6U6XZoVSbQiNbe5GKkvjP1KMtDMU3N0mNlLeOEQZAEGwREJLoEECDcLCkhQ2IisrK6/6ZKQlWCGqKv7iF7/AoUOHAADHjh3DbbfdhuTkZKxcuRKPPvpoxOF99913+Pvf/45Ro0b5XX/kkUfwySefYOXKlfjqq69w9uxZ3HLLLd7vnU4npk6dCpvNhs2bN+Ott97CsmXLsGDBAjHJiim9MpJC3xQAaVwAuENtsrnn2pMUOKLTKuDsMCYHCpPaI0Kg07Lp5X1DkXoZpBLXESUSLPOf3mUnoqrNoUOHMHr0aADAypUrccUVV2D58uVYtmwZ/ve//0UUVnNzM6ZPn47XX38dmZmZ3uuNjY144403sHjxYkycOBFjx47F0qVLsXnzZmzZsgUA8Pnnn2P//v14++23MXr0aEyZMgVPP/00lixZItqiJTWDdA3I45oxNM/fV0kkhdIo4QZTT/dt7NhlwrSyRBnUDeOHsIkHQTBAym7EIIG3Cz2D3XLUeSofGoSxRZRI4nkeLpfb4rB+/Xpcd911AIDCwkLU1tZGFNasWbMwdepUlJSU+F0vKyuD3W73uz506FAUFRWhtLQUAFBaWoqRI0ciLy/Pe8/kyZNhsViwb9++gM+0Wq2wWCx+n1hh0tiRprFGFcavRuuRybWhl7aJUaz80cEJHdPtx2waVr1O+X6SCIIFuiA+ysQKFcVtqO2Gf5ujdDmmZjFCYjd8RFWbcePG4Q9/+AP+/e9/46uvvsLUqVMBAMePH/cTLKFYsWIFduzYgUWLFnX7rqqqCgaDARkZGX7X8/LyUFVV5b2n6/M8f3vuEWLRokVIT0/3fgoL1eXJecKQAkw2HkKeWfyUXTBMHIM1XRIccJuIZ8lRY6YuUrnoBkAe9BIIGgNjv0usyeTaJQubFoQTYhFVFV944QXs2LEDs2fPxu9//3sMHDgQAPDf//4Xl156aVhhnDp1Cr/61a/wzjvvIClJms4+EPPmzUNjY6P3c+rUqZg+X+kkcfbQN4WAunYikUjXWJHK2fBgcb6o33e1SuijXJMkZOVgaUmSworCss3oOrYwIvo2TQpoEKR8RB1LcuGFF/rtbvPw5z//OexzdsrKylBTU4OLLrrIe83pdGLTpk3429/+hrVr18Jms6GhocHPmlRdXY38fHdDlJ+fj23btvmF69n95rlHCKPRCKPRGPB7qVBLdTBJ5CiOIOKVLJMGnK0J+hwzk/CCTbdFgm8oMd3dFgCW4ipYWKfaDMyeQyQ2osYW/fv3R11dXbfr7e3tGDx4cFhhXHPNNdi7dy927drl/YwbNw7Tp0/3/luv12PDhg3e3xw8eBAVFRUoLi4GABQXF2Pv3r2oqanx3rNu3TqYzWYMHz5cTNIIAEk06iKIkPiWRgPjoinFdJtnnSHVIoIIH1GWpBMnTsDp7D7Ha7Vacfr06bDCSEtLwwUXXOB3LSUlBVlZWd7rd999N+bMmYMePXrAbDbjwQcfRHFxMSZMmAAAmDRpEoYPH44ZM2bgueeeQ1VVFebPn49Zs2bJYimKhEAdvtyLAQ0ajvH8va/nE/lHsgTBCpdPcdZreaZDC72GY7qHlQOg5ZCwB68qfs06oVgiEkkff/yx999r165Fus8BhE6nExs2bEC/fv2YRe6FF16ARqPBtGnTYLVaMXnyZLzyyive77VaLVatWoUHHngAxcXFSElJwcyZM7Fw4UJmcVAiUlhUPCFmmDQAg/WTUhh9EnHhNqFcHD4DGlGjzSDoNWwFjV6jvIOQYos6B2hyD5qJCOv2TTfdBMDdSc+cOdPvO71ej759++Ivf/mL6Mh8+eWXfn8nJSVhyZIlWLJkScDf9OnTB6tXrxb9zFhi0HFgvdwnU9OOJqcevTSNTMJLN2oZiaTAu9sCVfx4aBCUPCUYbsyUnAYlkWXSwsy1w8g50MZ6uk3LsaiGXgysnFP6lA3W9VX9tV9eqN5KQ0QiyeMbqV+/fvjuu++QnZ0tSaTijQm6k0jlrBhZWIATx9mIGQ/D8lNx9kwNHrg4g0l4GUlatLGNIhzQQAsn+AQfy3aFGjV1w3EcCjQWGDkn2nyusSBJy4GlF7RonFPGavAS6EiSeBg8hSIR0qhWRE3VHj9+nARSBFzeNxX5mmboJDhWgwOQxDlgjNLRYqbODg48slPYOmz0rfrNruh2nJCmIBKFYNv1xQgxKTx4s0aJRyERhOip9A0bNmDDhg2oqanxWpg8vPnmm1FHjAgNy9HH5PRq9NOeR5K2N5PwhJpx1mMlDbPDMEl9EdISaRkLVrLF1Pto/S5JyY8yK9GDa0Pfgp6oqmwBoOw6qeS4EewRJZKeeuopLFy4EOPGjUPPnj2p0MQBWg3HTHQEonfvXkBVg+jfa7pY4gwsPINHCJV0N1LU+ZTUVOZhKo1wBQ6r3PWEY/QRSUprr8f2zUIPTSsYuYYiCKaIEkmvvfYali1bhhkzZrCOT1wSi0ZJaQ1fi80lcFVZcSSUQf9Bg4C1a6HX6+WOingYWHW1cEHPuWDibEgzGVDJIFoelGxJItRNrE/MiDWiFsnYbLawjx8hEhO7U0gkEYR6SJbBspXC2ZCjaWU26NFp3PUwTa9ckaS0AR4RHt73JsFaWyUhKnX33HMPli9fzjouCY1Smgkpd1mwDlkpeUbEJ/0Z+nxjSSSioq+xDb00jchlvCFDfdDuMUIcoqbb2tvb8Y9//APr16/HqFGjupnJFy9ezCRyhPIJ6PMoxvFIVCifpSMeLBycxr37NVBa/PwehRNekDyJNCyCLfFQXpWIKJG0Z88ejB49GgBQXl7u9x29KOkJlceJ8g7YHp+iTBLlXaqRRFxrSBCJhiiRtHHjRtbxIGSGfWPcGV6m1gabk8eITOBQFbsnpHMsfRITRPxBEkvZkAhWPqyPHCKIbvQ2tMHlbEM142URUrssIAi5kGJtoCdE6pgJInxEiaSrr746aEX74osvREcoHknERoknAcOUWBxbQEcjRI9S63qiv1sNaLctIQ5RIsmzHsmD3W7Hrl27UF5e3u3gWyJBSew2WdUotaMnIkdN71KqJsMIB7LSTADUlR+siVQoJ3Je+SJKJL3wwguC15988kk0NzdHFSFCGURbQUgjhZEHMW6EqNGLEMqvuKBAa4GGj29fPlJCVkiG/OxnP6Nz24KghsLGKoaJ2iGrId1qKIexQA3viogeWrvYHSr54cNUJJWWlsa9i/J4hXWHMSw/FWauHSbYJXtGrCBRQSgJtdYjuaDcIqJB1HTbLbfc4vc3z/OorKzE9u3b8fjjjzOJGKEsIhUKeq0GUwwH0UtrAWCSJlIEoRASRUZLIdBI9LHBk480qGOLKJGUnp7u97dGo8GQIUOwcOFCTJo0iUnEiMCopVFRSTQjyk+15D2hLJRabhKm7IeIOwkLIhCiRNLSpUtZx4MgCBWh6g4zkRB4T/TuooPyL7GIyplkWVkZDhw4AAAYMWIExowZwyRS8UYiVqpETDNBJAq+lheq60Q8I0ok1dTU4LbbbsOXX36JjIwMAEBDQwOuvvpqrFixAjk5OSzjmBjI3NCEcwCmWMiUHb/QuyUIIp4RtbvtwQcfRFNTE/bt24f6+nrU19ejvLwcFosFDz30EOs4xiU0+iIIN2qtC1LGm8QnQSgDUZakNWvWYP369Rg2bJj32vDhw7FkyRJauK1yErlxTuS0E/FJKCFHZZ4ggiPKkuRyuaDX67td1+v1cLnojBxCGLVaDOSE8kxd0PsiiPhClEiaOHEifvWrX+Hs2bPea2fOnMEjjzyCa665hlnkCHFQM00QhC+BLEaRijrf+7uGqESBaIBT7igERYl5RvgjSiT97W9/g8ViQd++fTFgwAAMGDAA/fr1g8Viwcsvv8w6joQKocpPEMrCI5QSqW4aOWWLJJYk0nuNJaLWJBUWFmLHjh1Yv349vv/+ewDAsGHDUFJSwjRyCYlMawSoghEe4r0sJNI6HDW9SZbv5f961sHMtSNdY4PCjUmKJd7bgXCJyJL0xRdfYPjw4bBYLOA4Dj/84Q/x4IMP4sEHH8TFF1+MESNG4Ouvv5YqrqqFdWFTW+FNpE4pEmL9FtVWbghCLCOLspCraYEWtEaWiI6IRNKLL76Ie++9F2azudt36enp+MUvfoHFixczixxBdCWJc8gdBSJRUKio7NWrl9xRUAQ0+CJiQUQiaffu3bj22msDfj9p0iSUlZVFHSmCCES/NGU3jGStIaRm0KBBckdBUVCNI6QkIpFUXV0tuPXfg06nw7lz56KOVLzCeuSj5JGUVGLhhlE9AQBmrl2S8ENBDXLsUXI5lwMS4pFDOUaIJSKR1KtXL5SXlwf8fs+ePejZs2fUkSIiR6jhjKRr8fxeyg6JReN+/3UX46aUQ/ih4TCDGLlRc6dD8oEISoiyLVXZF9P2EIQSiUgkXXfddXj88cfR3t59FN/W1oYnnngC119/PbPIxSU0Ko4KjUaDMUU9oOdoQSYRvyh1sEKCJjRk+YwvInIBMH/+fLz//vsYPHgwZs+ejSFDhgAAvv/+eyxZsgROpxO///3vJYkoQUQCNVTyQvnvD4kLQmqojElDRCIpLy8PmzdvxgMPPIB58+b5OSebPHkylixZgry8PEkiGu9Q8SYSnXiQVdRRKQMp34PS3zENUNgSscftPn36YPXq1aitrcXWrVuxZcsW1NbWYvXq1ejXr19EYb366qsYNWoUzGYzzGYziouL8dlnn3m/b29vx6xZs5CVlYXU1FRMmzYN1dXVfmFUVFRg6tSpSE5ORm5uLubOnQuHg7aJs0Jsg+B3fAFVWoIAEPu6oNTuXKnxIoiuiPK4DQCZmZm4+OKLo3p479698eyzz2LQoEHgeR5vvfUWbrzxRuzcuRMjRozAI488gk8//RQrV65Eeno6Zs+ejVtuuQXffvstAMDpdGLq1KnIz8/H5s2bUVlZiTvuuAN6vR7PPPNMVHFTMkofyRBEJFBplh4aqBC+UJ0LH9EiiQU33HCD399//OMf8eqrr2LLli3o3bs33njjDSxfvhwTJ04EACxduhTDhg3Dli1bMGHCBHz++efYv38/1q9fj7y8PIwePRpPP/00HnvsMTz55JMwGAxyJEuVxEJ4kbiLnFjmGXWkhJKg9oJQAqIOuJUCp9OJFStWoKWlBcXFxSgrK4Pdbvc7D27o0KEoKipCaWkpAKC0tBQjR470Wwc1efJkWCwW7Nu3L+CzrFYrLBaL34cgCIKQD0l39EkWMhHvyC6S9u7di9TUVBiNRtx///344IMPMHz4cFRVVcFgMCAjI8Pv/ry8PFRVVQEAqqqqui0U9/ztuUeIRYsWIT093fspLCxkmygVQ9YEgkbwkSNVraF3Ed/Q+1U+soukIUOGYNeuXdi6dSseeOABzJw5E/v375f0mfPmzUNjY6P3c+rUKUmfFwnxIlGo8rOFxCvhi5j65bsbWQoSrc5TnUwMZF2TBAAGgwEDBw4EAIwdOxbfffcd/vrXv+KnP/0pbDYbGhoa/KxJ1dXVyM/PBwDk5+dj27ZtfuF5dr957hHCaDTCaDQyTglBKJtE68QI9lAZShzoXbuR3ZLUFZfLBavVirFjx0Kv12PDhg3e7w4ePIiKigoUFxcDAIqLi7F3717U1NR471m3bh3MZjOGDx8e87gHQg2FTco4qn28JXbEGOhXso9A5X4+QfggRdujhjaXNZIdMZPg7YWslqR58+ZhypQpKCoqQlNTE5YvX44vv/wSa9euRXp6Ou6++27MmTMHPXr0gNlsxoMPPoji4mJMmDABADBp0iQMHz4cM2bMwHPPPYeqqirMnz8fs2bNIkuRAknEhotQL3KWV6V3S74dJ9VrIp6RVSTV1NTgjjvuQGVlJdLT0zFq1CisXbsWP/zhDwEAL7zwAjQaDaZNmwar1YrJkyfjlVde8f5eq9Vi1apVeOCBB1BcXIyUlBTMnDkTCxculCtJcUssGm01jFhCdQfUYRAEorJWJmIdUkPbl6jIKpLeeOONoN8nJSVhyZIlWLJkScB7PB7A1YBvNUjEhkCp0LsgCIIghFDcmiQiNGro1BP57CQicaGyGQIpLCaU54SEkEiKZ+LUhEumaUIJqFUQqTXeBCEHJJIINx0NJwkQgmCPUoVJNPGitoJIBEgkKYU4bES9SOzEjog9krxL6nSlg0HechynmjqslngSyodEUgygCksQcQ4JvKiR1DLFsA1Wanuu1HipHRJJhCRQhU0MWHRsVFYSG3r/hJIhkUTEnGg71kRqVGVJawLlL0EQRDBIJBEAQjtJJNiTSGKPiAxaFB1b5MpvagOUD4kkpUGNIyER1CAnHkJvXC3lQC3xJOIbEkkqJNEbDxplE0RwhOpIQtebBG8zxZDo/YwHEkmEH6waUt8KltCNM0FIAXVgRIRQOywOEkmE6pBzhBPRs6lRSjiUNvpmHZtg6VNa2gmCBSSSYkAsGg/Wz6AGjyAIQl6ksv5Q6x4+JJJUDMsKlMiiiGXaEzkfCUIMVGfYQPkoDSSSYgjNCRNEfKLWmi22Y6W2TLnQu2ELiaQEJBaViEY1BEEEgkX7QFJAIcR5W08iiSAIIs7xHRgpdeepkuJCEB5IJCkEpWpxJiM+avyIBCfSesSszsT5KJ8gpIZEEuFPAguaRBdzkaSfplMTB1H1Qua6ROWTYAWJJBUiRQOgRjcFhDTQWxJBggtsgohXSCTFgEQUB4mY5kihPHIjVz4kQv6rwX+a2t6D2uJLRAeJJIKIMYk+rUcoB+rw4wd6l9JAIokgEgRqRAlCWVCdVD4kkhSG2mwMiWAVUUIalRAHQt1QGSKIyCGRJBNKG0EoLT6EdFBnqR6oXqpv4EjEFySSiJgRDw1+PKSBIOIdqqcEK0gkEX4EsjJEan2gRoog5EfV9VDNcY8jEt3yTCKJSHhU3ZEQcUnIjkkBZTbRO08iMSCRFAPU4KuEYAO9m8TB710niGAIVr7Fln3v7xIkDwl1QSKJIAgizglk9UkUUZ8YqSSkgERSDFGyeTpRGkuCSCgE6jXV9fiE3qs0kEhSMTzPK1p4dYUqMUEQBKEmSCQpBYUKCBI2BEEQRKJCIimOEWNlYmmZIoGlTuR6b7GyisphfaW6EFu65jflPiEWEkkxRk3TY2pGDflMDXf84CltiSiGEjHNaofeWPiQSIoBamhE1BBHgiAIIjRqGCSqBVlF0qJFi3DxxRcjLS0Nubm5uOmmm3Dw4EG/e9rb2zFr1ixkZWUhNTUV06ZNQ3V1td89FRUVmDp1KpKTk5Gbm4u5c+fC4XDEMimqhISR8mH5jiR539QYR4SaOy+O4yQpQ2prh9QWXyI6ZBVJX331FWbNmoUtW7Zg3bp1sNvtmDRpElpaWrz3PPLII/jkk0+wcuVKfPXVVzh79ixuueUW7/dOpxNTp06FzWbD5s2b8dZbb2HZsmVYsGCBHEkigkCNC0HID9VD5UDvQvno5Hz4mjVr/P5etmwZcnNzUVZWhiuuuAKNjY144403sHz5ckycOBEAsHTpUgwbNgxbtmzBhAkT8Pnnn2P//v1Yv3498vLyMHr0aDz99NN47LHH8OSTT8JgMHR7rtVqhdVq9f5tsVikTShjqGIRRHwjhcVJKEw1W7YIf+hkB2lQ1JqkxsZGAECPHj0AAGVlZbDb7SgpKfHeM3ToUBQVFaG0tBQAUFpaipEjRyIvL897z+TJk2GxWLBv3z7B5yxatAjp6eneT2FhoVRJihlKLNBKjBNBJAJSi59YiTiCkBvFiCSXy4WHH34Yl112GS644AIAQFVVFQwGAzIyMvzuzcvLQ1VVlfceX4Hk+d7znRDz5s1DY2Oj93Pq1CnGqSEIgiDkggZoBCtknW7zZdasWSgvL8c333wj+bOMRiOMRqPkz1ETidyoJHLaxUJ5pi4UZ6Wh8kOoBEVYkmbPno1Vq1Zh48aN6N27t/d6fn4+bDYbGhoa/O6vrq5Gfn6+956uu908f3vuIcInFo1poGcoriEnEppE6MalErtMa7JC2wWW7RW1fcpFVpHE8zxmz56NDz74AF988QX69evn9/3YsWOh1+uxYcMG77WDBw+ioqICxcXFAIDi4mLs3bsXNTU13nvWrVsHs9mM4cOHxyYhIYj1qDsRGneCIMKALDZhQSKFCISs022zZs3C8uXL8dFHHyEtLc27hig9PR0mkwnp6em4++67MWfOHPTo0QNmsxkPPvggiouLMWHCBADApEmTMHz4cMyYMQPPPfccqqqqMH/+fMyaNYum1GRGKnFIUz3SQN1EFFAny75eUj0nFICsIunVV18FAFx11VV+15cuXYo777wTAPDCCy9Ao9Fg2rRpsFqtmDx5Ml555RXvvVqtFqtWrcIDDzyA4uJipKSkYObMmVi4cGGskhE2NFohCCISlOa8kQYoRKIhq0gKRzQkJSVhyZIlWLJkScB7+vTpg9WrV7OMWsyRu/EJ9HzFe3xmCIlYN0p/T0qG8o4g4gtFLNwmIiPRG2LVi5mO+Cf2Wwwf1b9vgogBid4vSAWJJJmgAk0QiUOk9Z2VMIzndiZYHsVzuonYQiKJ8IPlqJ0aKoIgIoXaDUJJkEgiVEesG9GIhaNCG3nqfKRDrROCVCbYQ9PD8QWJpBhADREhFrWWHeoo4h/WU4KJWGbUWr8TCRJJBACqrEon8boPggVC9VrOuh4P5ZjaysSCRBIRM6hxUQaJOGInIOjwMtKyQHVYHbCo4/Su3ZBIIsKCOlaCUC9UfwkqA+IgkUQkPDRiIsRA5Ua5JOK7ScQ0xwISSYQgVOGIYFD5iI+ROb3HxCSStx4P5TwaSCSpEKWd50QQhDopKiqSOwoEoWhIJBF+JPaYQX0k+ihPaTAbbMTovWo01AUQRDCohsSAWFtplGIT6ppuslapA3pP8Y3S3q/S4kMQvpBIUghimolYWBGoASMIYahuEET8QyIphtDUCEHEJ4lSs4MJw2hFI7WPhBIhkUQQBBGnqNnaFU3M1ZxuQlmQSFIbVPkJQnVQp00Q6oREEkEkCNRRE6wINTVGE2exh+q3NJBIihOUWEFodxsRDnFRLhS6niYOcpYgZIVEksIIp6mVslOhxZPKIi4EBEHIjFJrEdVv5UMiiSAIIs7xHfoooWP2jYMS4kN0h96LGxJJBEGIRmmWx+TUVLmjoFiU9q7UComHxIJEEgEgsSt+Iqc93sjLywMg33EbrMqS2gWNXquVOwoEwQQSSYRkkPggEoVoJQ1zUSSRyAq3TptMJkmeHy6J3vaoXWQrCRJJBEEAiKxhTfROSDXE4D35lgVzZqbocKhj7w7lifyQSJKJROxkEjHNhHqh0krEChJDyoVEEkHIhUJFI4lZglAfVG+lgURSDFBD4fXEkUY0hKpRQV2TG6W1R0qLT7hQW5kYkEhSCgptKKJpwNTa+BFExETQYTLpXBVQt0gkEIkAiaQYwqpRIfFBEIkB1XWCkBcSSYTqiHXHES8jZupwiaAotJyLiRWVdYIVJJII1REvooUg1Ea8io9Ea1Pi9T1KAYkkgiAIiYm0U2LdaatRBFA3TigBEklKQ6bGTIqRBY1WoicRdh3GQzmJ37dDEIkNiSSCSDDiWXDJjRoEH4s4KqEMKSEO0cKyvKih7KkRWUXSpk2bcMMNN6CgoAAcx+HDDz/0+57neSxYsAA9e/aEyWRCSUkJDh8+7HdPfX09pk+fDrPZjIyMDNx9991obm6OYSpC41t4Y1mxWT5JbQ2S2uIrlsRIJcECoToRTj2Rui517dyps1cG9B7cyCqSWlpacOGFF2LJkiWC3z/33HN46aWX8Nprr2Hr1q1ISUnB5MmT0d7e7r1n+vTp2LdvH9atW4dVq1Zh06ZNuO+++2KVhLhDDeKCdeWlxoAg5EfSlofqOCESnZwPnzJlCqZMmSL4Hc/zePHFFzF//nzceOONAIB//etfyMvLw4cffojbbrsNBw4cwJo1a/Ddd99h3LhxAICXX34Z1113HZ5//nkUFBTELC0EQRBKg6QBe2hQlVgodk3S8ePHUVVVhZKSEu+19PR0jB8/HqWlpQCA0tJSZGRkeAUSAJSUlECj0WDr1q0Bw7ZarbBYLH4fNaGkRdZyWJ7UYO0iIidW71WS56i0TFKHTxDBUaxIqqqqAgDk5eX5Xc/Ly/N+V1VVhdzcXL/vdTodevTo4b1HiEWLFiE9Pd37KSwsZBx79cOi8ZR72zMhDuo4CYLwkuDtsmJFkpTMmzcPjY2N3s+pU6fkjlJCQJ1vF1ScHwnxLkOkMSHyoAuh0pyIeaJEaMDJDsWKpPz8fABAdXW13/Xq6mrvd/n5+aipqfH73uFwoL6+3nuPEEajEWaz2e+jRnieT8jKIFVDnIh5ScQ3JFkIIjoUK5L69euH/Px8bNiwwXvNYrFg69atKC4uBgAUFxejoaEBZWVl3nu++OILuFwujB8/PuZxjgaljsCUGi+CiGekFOxUpwkifGTd3dbc3IwjR454/z5+/Dh27dqFHj16oKioCA8//DD+8Ic/YNCgQejXrx8ef/xxFBQU4KabbgIADBs2DNdeey3uvfdevPbaa7Db7Zg9ezZuu+022tlGEAShAki0sYHyURpkFUnbt2/H1Vdf7f17zpw5AICZM2di2bJlePTRR9HS0oL77rsPDQ0NuPzyy7FmzRokJSV5f/POO+9g9uzZuOaaa6DRaDBt2jS89NJLMU+L2pHi+AuqtESsoRJHCEJtESESWUXSVVddFbRT5jgOCxcuxMKFCwPe06NHDyxfvlyK6LGHTOgEEdfErB7SztGgUHtIsEKxa5KI+IMaLoIgAGoLCPVAIikGUINAEIkNtQEEoU5IJKkQVg2uXA13opn+o4E6V0JJSFkeaUcfoURIJMmE0iqtko46IQgiNrAQJlTPxaPkvFNy3GIJiSQi4Yl1Y6BUOxpZ+OIber8EETkkkgiCIAjZIIsFG0LlI4lkcZBIImIGNYbqIJL3pOaGl8pj/ELvNjiUP+FDIikeoQpAEKqGlfhk2Rl2DUvNAjkaSGAkFiSSYgDThopZSAEgj9sEQRAEAYBEEtEBCRoiEhKhvESUxgS1qnRF8aWC3hMRISSSEpGOhiIROjqCIPyJpt5Tm0EkGiSSFEIkjQ81VLElUddeEJGjtLqptPgEq0ty1rN4q+OxSE185VhgSCQRRIKgtA6TiB2BRIDYMsFSVFC5JJQMiSSCUDNxNgImCIJQEiSSYghrk67aRnM0YuwC5UfcEElNjKTexrLOxJPcTsS2JhHTHAtIJBEEQRAEQQhAIikGsPRgLPVYId4WMMYLLN8LveHYI9son6wLBBEVJJKIsCDxJA+JYEKnM6e6I2WKffM7EfNWSSRC/VY7JJKIhIcaKoJQgSNIIqZQu+iGRFICI3UloEqmTui9xZ5YWHRYPIHKBpFokEhSIVI0VNT4EUQcooJ6HbLtoSlBQkZIJBF+SDmiJSFGa0AIghXB6pKcbQ3V8fiCRBJBEAQj1DwQkLtr7yYuVJyXciBV2Ut00UciKQ5Rc0NNEGoksbsReYl1aydF+5roQkTJkEiKASwqVawrEYs4k1iLXxLi3cZBGtWfAoKQFxJJCkGpnY5S40UQRPj4DrKoThNE+JBIiiG0KJqQEyojhFKgskioBRJJCYxQQxWpkKO5dEJqqIwpBxI3RKJBIikBkaLTCafxZNXAUkNNKA7GdYqEYXRQG0GwgkQSIRnUUBEEEa8oWcgqOW5qg0SSCiHxIR3UuBDxBLUUBBEdJJIIAOoSXiRkpIHyVT0oorZSeVEUamrD1QSJpBhAhVfZMH8/DMNLiLIT4zTKIQaV9B5946LT6QSvJxpyDRCUnOd0pp4bEkmEH2RNIJTccCsVtdYarVbr/bfcbz0WbY9a3xMhHySSiKiI5JBJ2t3mT7ykg+hE7DsNVI9YlpFAzzAmJTF7BkHEG3EjkpYsWYK+ffsiKSkJ48ePx7Zt2+SOkuKhTpogiEhQa5uhzlgTSiAuRNJ7772HOXPm4IknnsCOHTtw4YUXYvLkyaipqZE7agRBKAyPRUWtHX68IcV76BYmvWtCJLrQtyifxYsX495778Vdd90FAHjttdfw6aef4s0338Rvf/tbmWPXicPpDHmP0+lEe3t7t+tCpnKe5+FyuQKG5QoQllMgHp5GxRkgvEBhORyOgM8PGC+XC+1WK6DX+1232WwwRhwaYLXbwXeJm9VqFRES0G61gmMUFni+W56JXXdht9kE8x9B3n/AsOx2wbCClaVAOAKUC1cYZV3o+azKGAC022wAo/BsdjtcXcKy2Wydf0TwXtutVmhClDGhOiqE0+mEU6i96PK3y+kMWfZ4QLjtCXB/sHx0CZR9IHj55wOUPz5AuXA5neFbiHxEktVm69ZeiCkTPM8LtmN2u11UxyoUlti2x2a1diuvdrtdXFh2O7RCbU+CoHqRZLPZUFZWhnnz5nmvaTQalJSUoLS0VPA3VqvVr/BZLBbJ4wkAVZWVIe+prqpC+ZYt3a4X+TbIHdhsNrTW1QV8iS3NzdgjEJbBakVygN9YGhsFr9fV1aFSICwAyAgQViBaW1uxo6wMNmN3STQqjN8nJ3fGnud5HDl8GOcE3uHwCOMFADt37BCMV76IsOx2O7YJ5FkvEWEdPnwYtoqKbtf7iRAjFSdP4khVVbfrwcpFIKoqK1FRXy8YVnqEYbU0N+NIgDKWHWFYLpcL5Xv3ouX4ccHvDRGGd/z4cVQK1MEUn+dBE55hftfOnYJlLMXn3+fCtIJbGhuxP1gZ6xAHdXV1AAB9tzs7aW1uxt4I2ouzZ88GDKvJYsFhgbCyW1sD/qalpUXwenNTk2CbaLBakRMwNH98xdT333+P89XV3e7pF2ZYHtrb2wO2Y0MjDMvpdAYMK9KyDwB79uwRDKtIRFgH9u8XDOtiEWGpEdWLpNraWjidTuTl5fldz8vLw/fffy/4m0WLFuGpp56KRfQAAP3790ezVgtNRyOalpYGk8nkd09BQQEAgNNovPf54qnkqWYzMvLzkZ2dDY7joNFooOM4FBV1Fv/MzMygYWk0Guj1euQWFnqvDRgwAO2eOHIcMtPdXVyfPn1Qp9dDEyAsANDqdH67ZDwMGTLE+7u05GTkDBiAsrIyb7wFwwvDLH7FFVegeteuzp9EERYAmEwm9O3bN2i8OIQ/LaD3GQ0Ge5dJutDVb/Dgwd44BQsrnLgNHDgQ6HjHgcqFwWBAz549Q4bVr18/tOh0QcPShJlf2dnubsCT/0JoO54VClOHgOY8cQgSXnp6cBmX4lNHg8UNcJdBY1IScnKEu22DwYD+/fsHLWOea95ncVzAOJrN5m6/84tPx/9zcnJgO3rUe4/JZEJWVpZ/Oj2DjiDxSupIm75LXeE0Gr84ZmRkePNDMF4dZSKrRw/vtT59+qDW5/162q8eHfEM1o5ptVpoBepRYWEhavR6uACkp6bC4GspCvAuwylfANCrVy9kZmZG3Y4B7rTm5+cHb3tClD1fhg0bBm7DhpDtRTgMGTIkeBo7SAozbmpF9SJJDPPmzcOcOXO8f1ssFhT6CAbW9OvXDxg5EvA0TnV13SrRwP79AYMBw4cOdd/bFasVOH0ayQYDYDBg5syZwPffA0aj+7tenfaJrI5GpnevXuh9xRXdw2pqcsfBp0EfNGhQ9zgCyM/PR/6IEe7raWnCCTx6FBAYVV522WXAqFGdcTSbcc8997jvDxTevn1AkNEmAGRlZeH+++8HysuBkycD59nx40BDQ9CwAHcjNG3aNGD79sDx2rYNOHkyZFgAYDaZgIYGJBuNuEIo/wGgoiKshrS4uNidh4Hi1dQEhGGhBICRI0d2vuNAYdXVBX7PPvTr1w+44ILQYXWUo2BkpKUBWi0GDxqEwRcHGJ/u3et+nyFINrhtRElJSRg7ZgwQSPB54hcEnY9oCRi3ykqgsRE9LrgA0OncZV0AjuNw8803u8tRoDyrrARaW5E7YAAwaJD7WoA49s532zZzs7ORG6SMZaSlIcNTfz3hdZnS8QiWrIwM4fLqySuDAehaV7rEMacjrIL8fBQIhbV3L1BRAUNKp90sPz8f+Z6y5BNelmegVlSEPoHitWcPcOBAt69ycnKQM2JEZ9vTUXd1Wi0uHDkSGDBAOLwzZ7pf70JycjJ+/vOfA4cPB36Xp04BAhbWrmi1WkyfPt3dlgUKqyPPwuG6664Dvv46cFgd/Ug4XH311cDnnwcOq7QUaG+P+7V9qhdJ2dnZ0Gq1qO5iPq2urkZ+vvAkidFohDFAY0YQBEEQBAHEwe42g8GAsWPHYsOGDd5rLpcLGzZscI/CCYIgCIIgRKB6SxIAzJkzBzNnzsS4ceNwySWX4MUXX0RLS4t3txtBEARBEESkxIVI+ulPf4pz585hwYIFqKqqwujRo7FmzZpui7kJgiAIgiDCJS5EEgDMnj0bs2fPljsaBEEQBEHECapfk0QQBEEQBCEFJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAIgiAIAUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAceNxOxp4ngcAWCwWScLnmppgtNmAhgb3BZsN1qYm8Ckp3nt0ra0w8TwcLS1w1dV1D8NqhR5Am9UKh8XSGabVCnCcX3g6qxUmAI62NuGwWlu7xSFQHAF4r/M2W8D06VwutLW0wOmTh0JxDBUe53S602m3wxHkfXBNTTA4HDAAgfPM4XCHZbMFDatr+gXj1dYGPc+jra0tZFg6p9Od/y6XcLza291htbdHHy+bDfqOf7e1tobMs6BhCZSLqMLyvMuOMhsIXVtb0LIPAFxLizvPQqRRZ7PBBHeddlgs4A0G4fDCSKunHgFBypjFAq3TCWdLC2AyBQ0vZJ51hOWy28EHaSt80+mw2YKXMasVulBtjycsuz2s9iJYe+YNq71dOCyB9xgoPG047ZjDAR3Ph2x7HJ5yAcDZ1CQcXkddClVeu8ZZ8F2ybHvCLPthhdWlH4kqLJ53h+V0hgxLSjz9tqcfZw3HSxWyijh9+jQKCwvljgZBEARBECI4deoUevfuzTxcEkkAXC4Xzp49i7S0NHAcxyxci8WCwsJCnDp1CmazmVm4aoPywQ3lgxvKBzeUD5QHHigf3IjJB57n0dTUhIKCAmg07FcQ0XQbAI1GI4kC9WA2mxO64HugfHBD+eCG8sEN5QPlgQfKBzeR5kN6erpkcaGF2wRBEARBEAKQSCIIgiAIghCARJKEGI1GPPHEEzAajXJHRVYoH9xQPrihfHBD+UB54IHywY0S84EWbhMEQRAEQQhAliSCIAiCIAgBSCQRBEEQBEEIQCKJIAiCIAhCABJJBEEQBEEQApBIkpAlS5agb9++SEpKwvjx47Ft2za5oxQWixYtwsUXX4y0tDTk5ubipptuwsGDB/3uaW9vx6xZs5CVlYXU1FRMmzYN1dXVfvdUVFRg6tSpSE5ORm5uLubOnQuHw+F3z5dffomLLroIRqMRAwcOxLJly7rFRyn5+Oyzz4LjODz88MPea4mSD2fOnMHPfvYzZGVlwWQyYeTIkdi+fbv3e57nsWDBAvTs2RMmkwklJSU4fPiwXxj19fWYPn06zGYzMjIycPfdd6O5udnvnj179uAHP/gBkpKSUFhYiOeee65bXFauXImhQ4ciKSkJI0eOxOrVq6VJdBecTicef/xx9OvXDyaTCQMGDMDTTz/td2ZUPObDpk2bcMMNN6CgoAAcx+HDDz/0+15JaQ4nLlLkg91ux2OPPYaRI0ciJSUFBQUFuOOOO3D27Nm4yodQZcGX+++/HxzH4cUXX/S7rro84AlJWLFiBW8wGPg333yT37dvH3/vvffyGRkZfHV1tdxRC8nkyZP5pUuX8uXl5fyuXbv46667ji8qKuKbm5u999x///18YWEhv2HDBn779u38hAkT+EsvvdT7vcPh4C+44AK+pKSE37lzJ7969Wo+OzubnzdvnveeY8eO8cnJyfycOXP4/fv38y+//DKv1Wr5NWvWeO9RSj5u27aN79u3Lz9q1Cj+V7/6lfd6IuRDfX0936dPH/7OO+/kt27dyh87doxfu3Ytf+TIEe89zz77LJ+ens5/+OGH/O7du/kf/ehHfL9+/fi2tjbvPddeey1/4YUX8lu2bOG//vprfuDAgfztt9/u/b6xsZHPy8vjp0+fzpeXl/PvvvsubzKZ+L///e/ee7799lteq9Xyzz33HL9//35+/vz5vF6v5/fu3St5Pvzxj3/ks7Ky+FWrVvHHjx/nV65cyaempvJ//etf4zofVq9ezf/+97/n33//fR4A/8EHH/h9r6Q0hxMXKfKhoaGBLykp4d977z3++++/50tLS/lLLrmEHzt2rF8Yas+HUGXBw/vvv89feOGFfEFBAf/CCy+oOg9IJEnEJZdcws+aNcv7t9Pp5AsKCvhFixbJGCtx1NTU8AD4r776iud5d4Og1+v5lStXeu85cOAAD4AvLS3led5dmTQaDV9VVeW959VXX+XNZjNvtVp5nuf5Rx99lB8xYoTfs37605/ykydP9v6thHxsamriBw0axK9bt46/8sorvSIpUfLhscce4y+//PKA37tcLj4/P5//85//7L3W0NDAG41G/t133+V5nuf379/PA+C/++477z2fffYZz3Ecf+bMGZ7nef6VV17hMzMzvfniefaQIUO8f//kJz/hp06d6vf88ePH87/4xS+iS2QYTJ06lf/5z3/ud+2WW27hp0+fzvN8YuRD145RSWkOJy6sCCYQPGzbto0HwJ88eZLn+fjLh0B5cPr0ab5Xr158eXk536dPHz+RpMY8oOk2CbDZbCgrK0NJSYn3mkajQUlJCUpLS2WMmTgaGxsBAD169AAAlJWVwW63+6Vv6NChKCoq8qavtLQUI0eORF5enveeyZMnw2KxYN++fd57fMPw3OMJQyn5OGvWLEydOrVbXBMlHz7++GOMGzcOt956K3JzczFmzBi8/vrr3u+PHz+Oqqoqv/ilp6dj/PjxfvmQkZGBcePGee8pKSmBRqPB1q1bvfdcccUVMBgM3nsmT56MgwcP4vz58957guWVlFx66aXYsGEDDh06BADYvXs3vvnmG0yZMgVA4uSDL0pKczhxiSWNjY3gOA4ZGRkAEiMfXC4XZsyYgblz52LEiBHdvldjHpBIkoDa2lo4nU6/jhEA8vLyUFVVJVOsxOFyufDwww/jsssuwwUXXAAAqKqqgsFg8FZ+D77pq6qqEky/57tg91gsFrS1tSkiH1esWIEdO3Zg0aJF3b5LlHw4duwYXn31VQwaNAhr167FAw88gIceeghvvfWWXzqCxa+qqgq5ubl+3+t0OvTo0YNJXsUiH37729/itttuw9ChQ6HX6zFmzBg8/PDDmD59ul8c4z0ffFFSmsOJS6xob2/HY489httvv917UGsi5MOf/vQn6HQ6PPTQQ4LfqzEPdBHdTSQcs2bNQnl5Ob755hu5oxJzTp06hV/96ldYt24dkpKS5I6ObLhcLowbNw7PPPMMAGDMmDEoLy/Ha6+9hpkzZ8ocu9jxn//8B++88w6WL1+OESNGYNeuXXj44YdRUFCQUPlABMdut+MnP/kJeJ7Hq6++Knd0YkZZWRn++te/YseOHeA4Tu7oMIMsSRKQnZ0NrVbbbZdTdXU18vPzZYpV5MyePRurVq3Cxo0b0bt3b+/1/Px82Gw2NDQ0+N3vm778/HzB9Hu+C3aP2WyGyWSSPR/LyspQU1ODiy66CDqdDjqdDl999RVeeukl6HQ65OXlJUQ+9OzZE8OHD/e7NmzYMFRUVADoTEew+OXn56Ompsbve4fDgfr6eiZ5FYt8mDt3rteaNHLkSMyYMQOPPPKI18qYKPngi5LSHE5cpMYjkE6ePIl169Z5rUie+MVzPnz99deoqalBUVGRt708efIkfv3rX6Nv377euKktD0gkSYDBYMDYsWOxYcMG7zWXy4UNGzaguLhYxpiFB8/zmD17Nj744AN88cUX6Nevn9/3Y8eOhV6v90vfwYMHUVFR4U1fcXEx9u7d61chPI2Gp8MtLi72C8NzjycMufPxmmuuwd69e7Fr1y7vZ9y4cZg+fbr334mQD5dddlk3FxCHDh1Cnz59AAD9+vVDfn6+X/wsFgu2bt3qlw8NDQ0oKyvz3vPFF1/A5XJh/Pjx3ns2bdoEu93uvWfdunUYMmQIMjMzvfcEyyspaW1thUbj32RqtVq4XC4AiZMPvigpzeHERUo8Aunw4cNYv349srKy/L6P93yYMWMG9uzZ49deFhQUYO7cuVi7dq037qrLg4iWeRNhs2LFCt5oNPLLli3j9+/fz9933318RkaG3y4npfLAAw/w6enp/JdffslXVlZ6P62trd577r//fr6oqIj/4osv+O3bt/PFxcV8cXGx93vP1vdJkybxu3bt4tesWcPn5OQIbn2fO3cuf+DAAX7JkiWCW9+VlI++u9t4PjHyYdu2bbxOp+P/+Mc/8ocPH+bfeecdPjk5mX/77be99zz77LN8RkYG/9FHH/F79uzhb7zxRsFt4GPGjOG3bt3Kf/PNN/ygQYP8tv42NDTweXl5/IwZM/jy8nJ+xYoVfHJycretvzqdjn/++ef5AwcO8E888UTMXADMnDmT79Wrl9cFwPvvv89nZ2fzjz76aFznQ1NTE79z505+586dPAB+8eLF/M6dO727tpSU5nDiIkU+2Gw2/kc/+hHfu3dvfteuXX7tpu8uLbXnQ6iy0JWuu9vUmAckkiTk5Zdf5ouKiniDwcBfcskl/JYtW+SOUlgAEPwsXbrUe09bWxv/y1/+ks/MzOSTk5P5m2++ma+srPQL58SJE/yUKVN4k8nEZ2dn87/+9a95u93ud8/GjRv50aNH8waDge/fv7/fMzwoKR+7iqREyYdPPvmEv+CCC3ij0cgPHTqU/8c//uH3vcvl4h9//HE+Ly+PNxqN/DXXXMMfPHjQ7566ujr+9ttv51NTU3mz2czfddddfFNTk989u3fv5i+//HLeaDTyvXr14p999tlucfnPf/7DDx48mDcYDPyIESP4Tz/9lH2CBbBYLPyvfvUrvqioiE9KSuL79+/P//73v/frBOMxHzZu3CjYHsycOVNxaQ4nLlLkw/HjxwO2mxs3boybfAhVFroiJJLUlgccz/u4iyUIgiAIgiAA0JokgiAIgiAIQUgkEQRBEARBCEAiiSAIgiAIQgASSQRBEARBEAKQSCIIgiAIghCARBJBEARBEIQAJJIIgiAIgiAEIJFEEARBEAQhAIkkgiAUx5133ombbrpJtufPmDEDzzzzTFj33nbbbfjLX/4icYwIgpAD8rhNEERM4Tgu6PdPPPEEHnnkEfA8j4yMjNhEyofdu3dj4sSJOHnyJFJTU0PeX15ejiuuuALHjx9Henp6DGJIEESsIJFEEERMqaqq8v77vffew4IFC3Dw4EHvtdTU1LDEiVTcc8890Ol0eO2118L+zcUXX4w777wTs2bNkjBmBEHEGppuIwgipuTn53s/6enp4DjO71pqamq36barrroKDz74IB5++GFkZmYiLy8Pr7/+OlpaWnDXXXchLS0NAwcOxGeffeb3rPLyckyZMgWpqanIy8vDjBkzUFtbGzBuTqcT//3vf3HDDTf4XX/llVcwaNAgJCUlIS8vDz/+8Y/9vr/hhhuwYsWK6DOHIAhFQSKJIAhV8NZbbyE7Oxvbtm3Dgw8+iAceeAC33norLr30UuzYsQOTJk3CjBkz0NraCgBoaGjAxIkTMWbMGGzfvh1r1qxBdXU1fvKTnwR8xp49e9DY2Ihx48Z5r23fvh0PPfQQFi5ciIMHD2LNmjW44oor/H53ySWXYNu2bbBardIkniAIWSCRRBCEKrjwwgsxf/58DBo0CPPmzUNSUhKys7Nx7733YtCgQViwYAHq6uqwZ88eAMDf/vY3jBkzBs888wyGDh2KMWPG4M0338TGjRtx6NAhwWecPHkSWq0Wubm53msVFRVISUnB9ddfjz59+mDMmDF46KGH/H5XUFAAm83mN5VIEIT6IZFEEIQqGDVqlPffWq0WWVlZGDlypPdaXl4eAKCmpgaAewH2xo0bvWucUlNTMXToUADA0aNHBZ/R1tYGo9Hot7j8hz/8Ifr06YP+/ftjxowZeOedd7zWKg8mkwkAul0nCELdkEgiCEIV6PV6v785jvO75hE2LpcLANDc3IwbbrgBu3bt8vscPny423SZh+zsbLS2tsJms3mvpaWlYceOHXj33XfRs2dPLFiwABdeeCEaGhq899TX1wMAcnJymKSVIAhlQCKJIIi45KKLLsK+ffvQt29fDBw40O+TkpIi+JvRo0cDAPbv3+93XafToaSkBM899xz27NmDEydO4IsvvvB+X15ejt69eyM7O1uy9BAEEXtIJBEEEZfMmjUL9fX1uP322/Hdd9/h6NGjWLt2Le666y44nU7B3+Tk5OCiiy7CN9984722atUqvPTSS9i1axdOnjyJf/3rX3C5XBgyZIj3nq+//hqTJk2SPE0EQcQWEkkEQcQlBQUF+Pbbb+F0OjFp0iSMHDkSDz/8MDIyMqDRBG767rnnHrzzzjvevzMyMvD+++9j4sSJGDZsGF577TW8++67GDFiBACgvb0dH374Ie69917J00QQRGwhZ5IEQRA+tLW1YciQIXjvvfdQXFwc8v5XX30VH3zwAT7//PMYxI4giFhCliSCIAgfTCYT/vWvfwV1OumLXq/Hyy+/LHGsCIKQA7IkEQRBEARBCECWJIIgCIIgCAFIJBEEQRAEQQhAIokgCIIgCEIAEkkEQRAEQRACkEgiCIIgCIIQgEQSQRAEQRCEACSSCIIgCIIgBCCRRBAEQRAEIQCJJIIgCIIgCAH+Hxv0Fo15d/gbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_10 = ev_tot.to_lc(dt=10)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts, color=\"grey\")\n", + "lc_10.apply_gtis(inplace=True)\n", + "plt.plot(lc_10.time - lc_10.time[0], lc_10.counts)\n", + "\n", + "plt.xlabel(\"Time (s)\")\n", + "plt.ylabel(\"Counts\")\n", + "\n", + "for g0, g1 in zip(lc_10.gti[:-1], lc_10.gti[1:]):\n", + " plt.axvspan(g0[1] - lc_10.time[0], g1[0] - lc_10.time[0], color=\"r\", alpha=0.5, zorder=10)\n" + ] + }, + { + "cell_type": "markdown", + "id": "f28ccbbf", + "metadata": {}, + "source": [ + "When we study the variability of this light curve, we usually use periodograms. It is well known that these gaps are like square windows, whose Fourier transform has infinite harmonics, and that gets convolved with the actual variability of the data. If we were to ignore the good time intervals and just get a `Periodogram` of the dataset, we would get something like this (the black vertical line indicates the orbital period of the satellite and some of its harmonics):" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "8cd9cfbc", + "metadata": {}, + "outputs": [], + "source": [ + "ev_tot_dirty = copy.deepcopy(ev_tot)\n", + "ev_tot_dirty.gti = np.asarray([[ev_tot.gti[0, 0], ev_tot.gti[-1, 1]]])\n", + "pds_dirty = Powerspectrum.from_events(ev_tot_dirty, dt=0.01, norm=\"leahy\")\n", + "pds_dirty_reb = pds_dirty.rebin_log(0.01)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "904a460c", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACChklEQVR4nO3dd3hUVfoH8O/09IQQCBASegsloYuABA0iIFJEsaxSFNc1qGys4K6oi+CKBUsUywK6P3VRV8C1A9Kkt9B7DYEUStokmXp/fwxzk8nczEwyN5lM5vt5Hp5nznnPnHvuFZPDveeeVyEIggAiIiKiAKb09QCIiIiIfI0TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOCpfT0AX7Narbh48SLCw8OhUCh8PRwiIiLygCAIKC4uRqtWraBUen9/J+AnRBcvXkR8fLyvh0FERES1kJWVhdatW3vdT8BPiMLDwwHYLmhERISPR0NERESeKCoqQnx8vPh73FsBOyHKyMhARkYGLBYLACAiIoITIj9kNBrxzjvvAACefPJJaLXaeuvPXVtXcalY1ToALsvenisRUWMg13IXRaAndy0qKkJkZCQKCws5IfJDer0eYWFhAICSkhKEhobWW3/u2rqKS8Wq1gFwWfb2XImI/Jncv78D9g4RNQ5qtRpTpkwRP9dnf+7auopLxaTq3JWJiEgevEPEO0RERER+R+7f39yHiIiIiAIeJ0REREQU8DghIr+m1+sRFRWFqKgo6PX6eu3PXVtXcalY1Tp3ZSIikg9XZpLfKyws9Fl/7tq6ikvFqta5KxMRkTw4ISK/FhwcjOPHj4uf67M/d21dxaViUnXuykREJA++Zca3zIiIiPwO3zIjIiIiklmjeGR25swZTJ8+Hbm5uVCpVNi2bRt38Q0QJpMJH3/8MQDgkUcegUajqbf+3LV1FZeKVa0D4LLs7bkSEVGFRvHIbNiwYZg3bx6GDh2Kq1evIiIiwuOdfPnIzL8xdQcRUWBi6o4qDh06BI1Gg6FDhwIAoqOjfTwiqk/XyszoODAVRrMVb605ib/d0curRH8qlQqTJk0SP3vT1lVcKiZV565MRETy8Pkdoo0bN2LhwoXYvXs3Ll26hBUrVmD8+PEObTIyMrBw4ULk5OQgKSkJ7733HgYMGAAAWLlyJZYtWwaLxYLs7GxMmjQJc+bM8fj4vEPk377cfh5zVhwQy5ueHY746BAfjoiIiOpDo1tUrdfrkZSUhIyMDMn48uXLkZ6ejrlz52LPnj1ISkrCyJEjkZeXBwAwm83YtGkTPvjgA2zduhWrV6/G6tWr6/MUyIfMVqtD2WSxVtOSiIioej6fEI0aNQrz5s3DhAkTJONvvfUWZsyYgWnTpiExMRGLFy9GSEgIlixZAgCIi4tDv379EB8fD51Oh9GjRyMzM7Pa4xkMBhQVFTn8ISIiosDm8wmRK0ajEbt370ZqaqpYp1QqkZqaiq1btwIA+vfvj7y8PFy7dg1WqxUbN25Et27dqu1zwYIFiIyMFP/Ex8fX+XlQ3TGUl+FCxoO4kPEgrKZyr/srLS1FXFwc4uLiUFpa6lVbV3GpWNU6d2UiIpJPg15UffnyZVgsFsTGxjrUx8bG4ujRowAAtVqN+fPn46abboIgCLj11ltx++23V9vn7NmzkZ6eLpaLioo4KfJnggBLydXrn+XoTsDFixfFz960dRWXiknVuSsTEZE8GvSEyFOjRo3CqFGjPGqr0+mg0+nqeERUXzRaHVpOfRcAoFB7vy9PUFAQ9u7dK372pq2ruFRMqs5dmYiI5NGgJ0QxMTFQqVTIzc11qM/NzUWLFi286jsjIwMZGRmwWCxe9UO+pVSpoI1tL1t/KpUKycnJsrR1FZeKSdW5KxMRkTwa9BoirVaLvn37Yu3atWKd1WrF2rVrMWjQIK/6TktLw+HDh7Fz505vh0lERER+zud3iEpKSnDy5EmxfObMGWRmZiI6OhoJCQlIT0/HlClT0K9fPwwYMACLFi2CXq/HtGnTfDhqaijMZhNKDqwBAIQmpnjdn8lkwhdffAEAuP/++92m7nDV1lVcKla1DoDLMlN3EBHJSPCxdevWCbAth3X4M2XKFLHNe++9JyQkJAharVYYMGCAsG3bNq+P+/777wvdunUTOnfuLAAQCgsLve6T6t/Haw+Jf2fi//qtcCqv2Kv+SkpKxP5KSkq8ausqLhWrWueuTEQUyAoLC2X9/e3zO0QpKSlu35iZOXMmZs6cKetx09LSkJaWJu50Sf5HEAScvVKG4Pb9AAAKpfdPgFUqFUaPHi1+9qatq7hUTKrOXZmIiOTh89QdvsbUHf7r7dXH8c7aEw51vz81DO2bhfloREREVF8aXeoOX8nIyEBiYiL69+/v66FQLZ3MK/H1EIiIqJEI2AkR3zJrPF4Z1x0RQT5/+ktERH4sYCdE1DhYTeV49u7hOPbedNlSd3Tq1AmdOnXyKHWHq7au4lKxqnXuykREJB/+s5r8mwDkXjgrfva6O0EQt4Fwt7zOXVtXcamYVJ27MhERySNgJ0TcqbpxUKg1eGHxN/hq+3mYZUrd8ccff4ifvWnrKi4Vk6pzVyYiInnwLTO+Zea30r7Ygx8PXMIr47rjjV+PoajczLfMiIgCBN8yIyIiIpJZwD4yo8ZBsFqw4/cfUXjoItBuoNf9mc1mrFixAgAwYcIEqNXV/y/irq2ruFSsah0Al2VXYyMiopoJ2EdmldcQHT9+nI/M/FDaF3vwv91nkPX2JABA/F+/xfrZI716ZKbX6xEWZvt+SUkJQkNDa93WVVwqVrUOgMuyq7ERETV2cj8yC9h/YjJ1RyOhUKBr74HIuloKKBRed6dUKjFs2DDxszdtXcWlYlJ17spERCSPgL1DZMdF1f6Li6qJiAIXF1UTERERyYwTIiIiIgp4nBCRX7OaDPj7lNE4sfgxWE0Gr/srKytDcnIykpOTUVZW5lVbV3GpWNU6d2UiIpJPwC6q5k7VjYQg4PyJI+Jnb1mtVuzbt0/87E1bV3GpmFSduzIREckjYCdEfMuscVCoNXhm0ef4ZtcFWGVK3fHbb7+Jn71p6youFZOqc1cmIiJ58C0zvmXmt/iWGRFR4OJbZkREREQyC9hHZtQ4CFYLMjf/jqLjFyC0Tva6P7PZjF9//RUAMHLkSLepO1y1dRWXilWtA+CyzNQdRETy4SMzPjLzW0zdwdQdRBS4mLqDqDKFAu269kJOUZlsqTv69esnfvamrau4VEyqzl2ZiIjkEbB3iJjc1f9xUTURUeDiomqZpKWl4fDhw9i5c6evh0JEREQ+FrATIiIiIiI7TojIr1lNBvzjz5Nwakm6bKk7Bg8ejMGDB3uUusNVW1dxqVjVOndlIiKSDxdVk38TBJw8sBsA0FSm1B1btmwRP3vT1lVcKiZV565MRETy4ISI/JpCrcETCz7CysxsQIbUHTqdDitWrBA/e9PWVVwqJlXnrkxERPII2LfM7LgPkf/iW2ZERIGLb5kRERERyYyPzMivCVYLjuzZhpKz5yE07+p1f/lFZVj635/RsVkYxo26BSqVqtq2FosFmzZtAgAMHTrUqa2ruFSsah0Al2VXYyMioprhhIj8mmA24bWZ9wKwpe7w1tRPN+Onp+4E4D49Rnl5OYYPH15tW1dxqVjVOgAuy0zdQUQkn4CdEFXeqZr8mAJo1a4TrpQYAO8zd+BoThE0TRNsXbtJBaJQKJCYmFhtW1dxqZhUnbsyERHJg4uquajab9XFoupOL/wEk8X2v8TZ18bINVQiIpIZF1UTERERyYwTIiIiIgp4nBCRX7OaDHj9yT/hzL9ny5K6w2oyIPc/f0Puf/7mUeqOESNGYMSIEdWm7qguLhWrWueuTERE8gnYRdXUSAgCDu3cDABoIsdyOEFA+blMAJ6l7lizZk21bV3FpWJSde7KREQkD06IyK8p1Br8ee7b+HH/JShkSN2hUGvQ9PanAHiWuuP//u//qm3rKi4Vk6pzVyYiInnwLTO+Zea3+JYZEVHg4ltmRERERDLjIzPySwcuFOLHA5cgWC04fXgfSrPPQWjS1ut+BasFhksnAQAWy21uU3fs2bMHANCnTx/J1B3VxaViVesAuCwzdQcRkXz4yIyPzPzSwPlrkFtkgNVYjqy3JwGwpe5YP3ukV4/MOjzzHU6/4VnqDr1ej7CwsGrbuopLxarWAXBZZuoOIgpkcv/+bhR3iNq2bYuIiAgolUo0adIE69at8/WQqI4VlJoAACN7tMCvCW2QU1gmS+oOKABVRHPbRw9Sd7Rp06batq7iUjGpOndlIiKSR6OYEAHAli1bxH89U+B4aWIffDL9LHq99CuKys1e96fUBKH1X5YAAEJCQly2DQkJwdmzZ2sVl4pJ1bkrExGRPLiomoiIiAKezydEGzduxNixY9GqVSsoFAqsXLnSqU1GRgbatm2LoKAgDBw4EDt27HCIKxQKDBs2DP3798cXX3xRTyMnIiKixsLnEyK9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxzR9//IHdu3fj+++/x/z587F///76Gj75WHl5OcaPH49z/3kZgtnodX9WsxF5381D3nfzUF5e7tGxx48fL9nWVVwqVrXOXZmIiOTj8zVEo0aNwqhRo6qNv/XWW5gxYwamTZsGAFi8eDF+/PFHLFmyBM8//zwAIC4uDgDQsmVLjB49Gnv27EGvXr0k+zMYDDAYKnJeFRUVyXUq5ANWiwWrVq0CAESOliGdhdWKshPbANhejXfFUunYUm1dxaViUnXuykREJA+fT4hcMRqN2L17N2bPni3WKZVKpKamYuvWrQBsd5isVivCw8NRUlKC33//HXfffXe1fS5YsAAvv/xynY+d6odGq8XHH3+Ml78/BIXK+7/OCpUa0SNnAgC0Wq3Lttrrx66urau4VEyqzl2ZiIjk0aAnRJcvX4bFYkFsbKxDfWxsLI4ePQoAyM3NxYQJEwDY/tU8Y8YM9O/fv9o+Z8+ejfT0dLFcVFSE+Pj4Ohg91QeNRoMZM2bgvWx53jJTqNQIT75N7NuTY9cmLhWTqnNXJiIieTToCZEn2rdvj3379nncXqfTMTEmEREROWjQE6KYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYGMjAyuxfBzVqsVhw4dQnneWQjhrbzuTxCsMOafF/tWKqt/78BqteLIkSMAgG7dujm1dRWXilWtA+Cy7GpsRERUMw16QqTVatG3b1+sXbsW48ePB2D7RbJ27VrMnDnTq77T0tKQlpYmbv1N/uGrHefx4qqDYkb68rIy9OjRA4AtdYe3BJMRl5akAQDK3p3iMj1GWaVjS6XScBWXilWtA+CyzNQdRETy8fmEqKSkBCdPnhTLZ86cQWZmJqKjo5GQkID09HRMmTIF/fr1w4ABA7Bo0SLo9XrxrTMKLOuO5omTobZNQxATpkNMTAyuXU/lIQdlsGc5caxWAWGR0RAEAXnF5WgnMUGJiYmp9vtSsap17spERCQPn0+Idu3aheHDh4tl+4LnKVOmYNmyZZg8eTLy8/Px4osvIicnB8nJyfjll1+cFlrXFB+Z+bc5o7ti+uB2UKuUyM/Ply91hzYI8U98CQBu78CcLjCj6aOfAwBWHriCv7Zo6hAPDQ1Ffn6+5HelYlJ17spERCQPn0+IUlJSIAiCyzYzZ870+hFZVXxk5t9CdWqoVb5dQ1NqrJhMl5k4sSYi8mdclUlEREQBL2AnRBkZGUhMTHS5ZxE1fOXl5bj//vtx/rt/ypa6I/9/C5H/v4Vu02MYDOViW5PR4BS3j+3++++XTN1RNVa1zl2ZiIjkoxDcPa9q5OyPzAoLCxER4dliWvKdRz7fhd8O5+LVCT1w/8A20Ov1CAsLA2B7y6xF00g8clN7PDy0fa367/DMdzj9xp0A3L/J9fuB87ilVxsAwNz/7sJLE/s6xCuPrWpfUrGqdQBclvmWGREFMrl/f/t8DRGRN7RaLd5++238648zKFKpkVdswPKdWbWeEClUajS5eYbYtysajVZsq1I772ptH5tUX1IxqTp3ZSIikgcnROTXNBoNZs2ahb/MtOC7PdmY/d0BeHPLU6FSI6L/OLFvV9QajdhWakJkH5urcburc1cmIiJ5cA0R1xA1Cjq1Cm2b8hESERHVTsDeIeJr942D1WrF+fP2VBveT4gEwQpzYZ7Yt7vUHebC3Ouf27ocW0JCglPqjqqxqnUAXJaZuoOISD4BOyGixqGsrAzt2rUDAKzdf67W/ew9fw2v/3IMxnIDshc/ZOv7jckuFy4bysvEtuYRu1yOTSp1R9VY1ToALstcVE1EJB9OiMjvhYSEeN3H17uysPX0FQCAQqPz+Hvu2roam1Ssap27MhERySNgJ0RM3dE42F9XB4Ctp67Uuh+L1bYUW6kNQkL6f8W+XQkOCRXbaoOcJyqhoaHYfzYX647mIa8MaBfqGLOP21WduzIREckjYBchpKWl4fDhw9i5c6evh0KN2PRlOzHvxyP487+dH6kREVHDEbATIiIpHZrZbuNoVApZ+jt3pRQAcDy3RJb+iIiobnBCRH7NYDBgxowZmDFjBowG5/QZNTWwTQSu/Pwu8n56FwY3/RkNBlz5+V1c+fldmE3OaUMMleKC2VTtuO3HqVrnrkxERPIJ2DVEDUlxuQn3fLwN56+W1ur7kcEaLP5TX/SIC7ztA8xmMz799FMAwL1P/N3r/qwWM0r2/yb2rdNVv2jaUqmt1TJfcmz2eJNbHql23IsWLYJOp3OqA+Cy7GpsRERUM5wQNQCHLhbh0MWiWn+/uNyMDcfzA3JCpNFoMG/ePACAWmK36JpSqTSIGvoAlMrqd6rOKy7H09/sx6ajFxE19AEAgFLl/L+SRqMR4wqVqtpx248jVeeuTERE8gjYCVFDfMssIToEn00fUKPvLPz1KH46kFNHI2r4tFotXnjhBQDevWVmp9JoEHnjZGhUimrzhW04lo+Nx/MBpa0tAKg1zm21Wq0YdzVuV3XuykREJI+AnRA1xJ2qNSoF2sXUbLO9cB3vFNQ3wZtkaURE1CAF7ISIGgdBEHD58uXrn71/M0wQBFhKC6FUKiAIAhSK6vsUBAHWsiLxc3V9AYAyOKLaccfExEChUDjVAXBZdjU2IiKqGU6IyK+VlpaiefPmALxL3WFnMpThwnv32/p+9Q6XmzMKJoPY1pTivM9QaWmpGI//67fVjtuehqNqHQCXZabuICKSD1+7JyIiooDHO0Tk10JDQ8XHVXIsqtYGhaDNcz9Ao1K4vQOj1AahzXM/iN+TGps9LhWr+phNqs5dmYiI5ME7RERERBTwAnZClJGRgcTERPTv39/XQyEiIiIfC9gJEZO7Ng4GgwGzZs3CrFmzZEndYTYZcXXNx8hf/bHb9BiC2YSraz7G1TUfV5u6wx6XSt1hH7f9OGVl5eh/+5+QdNt9yLtW4tRG6jtERCQPriEiv2Y2m/HOO+8AAO54KN3r/qwWM4p3fy/27So9hmC1iG2tlhcdYkazFTtP54nxqJserHbcr776KnQ6HY5cuoZdP34BANh07B+4rWcLhzYAnL5DRETy4ISI/JpGo8GcOXMAyJe6I2LQ3VAp3KfHUKhUiBh0NwDn1B3PfrsPK3afE+NSqTvs47YfR6FQi+0FlVKyTdUyERHJgxMi8mtarVa8eyJX6o4mNz3oMnWHnUJlaws4p+7Yff6aQ9zVuO00Wq3YXqPRSrapWiYiInkE7BoiIiIiIjveISK/JggCSktLxc9y9Gc1lsOq8ix1h2AyVHvsynGFRucUs487JCRETN1hNZZXfLdKGwBO3yEiInlwQkR+rbS0FGFhYQDkS92R9fYkW98vuU6PIZgMYlvTEOfUHZXjUqk77OO2p+EoKysV2xvuOu7UBoDTd4iISB58ZEZEREQBj3eIyK+FhISId0/2XSoDAJzMK0HW1VLERzun03BHowtG/F+/hUalEB9TVUeh0Yl3fjS6YJfxqo/MKo/bfpzg4BCxvS4oWLJN1TIREckjYO8QcafqxkGhsOUcCw0NhUpZsabmljc34JreebNET/pTaoOg1AZVu0Znf3aBR21dxSuP2x6r2r5qG6nvEBGRPAJ2QsSdqhufpPgojOweCwAwWqzIL5F/N2eD2YL/23Ze9n6JiMi3AnZCRI2D0WjECy+8gBdeeAFKwYKPHuiHpqGu9w9yxWIy4drGz3Fl/WcwGp3vMBnNVvGzYLG1vbbxc8nUHZXjgsUxdUflcduPYzIaxfYmk9GpjdR3iIhIHlxDRH7NZDJh/vz5AGy7OLvbTNEdi8WEoq1fX+97icv+BItFbGu1POsyHnnD3W7HbTJXHNtinufUBoCs50pERBU4ISK/plar8eSTT4qfa+pKiQE/HriEr3ddAGBLwRHe9w4olQq3/SmUKoT3vUP8nqu4QumYukNq3OrrxwYAlUol2cabcyUiourxpyr5NZ1Oh0WLFtX6+++sPYHPt1bsX6TWaBGd+gg0KoXb5KkKtQbRqY+I33MV92TcWp1ObK/R6iTbeHOuRERUPa4hooBWUGpy34iIiBo9ToiIamlccitfD4GIiGTCR2bk1/R6vazpLIzlpTj3z9ttfc9x3d/cUR3w7r19bN8b4Jy6w2osrzZ1h9S4S0v14rHLxx13agMwdQcRUV3hHSIiIiIKeLxDRA3S+mN5mPnlXuiNZrRrGorvHx+CMJ3zX9eQkBDk5eWJn72l0QWj9eNfQKN0n7ojJCQEc778A59vPVdt6o7Wj38hfnY37uDgELG9PXVH1TZynisREVXghIgapD9OXEaJwQwAOH1Zj+O5xeiT0MSpnUKhQLNmzWQ7rkKhgCokEiqVwm16DIVCgdDIaKhCCqpN3aEKiaz2u1XHXbm9PVVH1TZynisREVVoNI/MSktL0aZNGzz99NO+HgpRtfKKyzHm3U0Yl7EZxeV8w42IqKFoNHeIXn31Vdxwww2+HgbVM6PRiIULFwIAnnnmGe93qjaZULhlOZRKwGhMddmf0WjEuv8sRuHZazAPesopLlhMKNr+HQAgYuBEAMDOM9dw6GIRBIsJ6XPmom3TUHHcJqMRhVuWAwBMdyY6nRsAWc+ViIgqNIoJ0YkTJ3D06FGMHTsWBw8e9PVwqB6ZTCb87W9/AwDMmjVLltQdBZv+fb3vD132ZzKZsObf7wIArLOedIoLFovYV3i/cU6xT99e4DBuk7ni2Bbz353ODYCs50pERBV8PiHauHEjFi5ciN27d+PSpUtYsWIFxo8f79AmIyMDCxcuRE5ODpKSkvDee+9hwIABYvzpp5/GwoULsWXLlnoePfmaWq3Gww8/LH72llKlRlivWz1K3aFWq9Fv5CQcvVRUbeqOsF63ip+rxm6/609oERnkkLrD3t6euqPquf1pyjQUlJogKBrN024iogbB5xMivV6PpKQkTJ8+HRMnTnSKL1++HOnp6Vi8eDEGDhyIRYsWYeTIkTh27BiaN2+OVatWoXPnzujcubNHEyKDwQCDwSCWi4qKZD0fql86nQ6ffPKJbP2pNVo0HfWER6k7dDodJjzxCj7eeLra1B1NRz0h+V2FWoNnX30LQztVLJLW6nRie3vqjqrnlt3zQZzO1+O9DWcxe1S3mp4eERFVw+cTolGjRmHUqFHVxt966y3MmDED06ZNAwAsXrwYP/74I5YsWYLnn38e27Ztw3/+8x988803KCkpgclkQkREBF588UXJ/hYsWICXX365Ts6FqCae/+8BDO7YFC/d0R0hWs/+VzydrwcA7DhztS6HRkQUcBr0fXej0Yjdu3cjNTVVrFMqlUhNTcXWrVsB2CY4WVlZOHv2LN544w3MmDGj2skQAMyePRuFhYXin6ysrDo/DyIp2QVl+HrXBWw9dcXXQyEiCng+v0PkyuXLl2GxWBAbG+tQHxsbi6NHj9aqT51O5/ZRCPkPvV6P5s2bA7BtWihH6o7zb91p63vOFZf96fV6vDSxL8xWK4wDNjvFrcZyXHj/fgBA65lfVBsrnngYAFBaqhePXT7ugNO5ARDjPf/5Q63PkYiInDXoCVFNTZ061eO2GRkZyMjIgMViqbsBUb0oLS2VtT/BZHDf6DqToazWfUnFqtZVPbeajI2IiDxXowmR1WrFhg0bsGnTJpw7dw6lpaVo1qwZevfujdTUVMTHx8s6uJiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyUno3YWr4goODcebMGfGztzTaIMQ9+i+olQq3/QUHB+PpJavx1Y7zUGuDnOIKjRZxj/5L/FxdTBtk+25QUHBFnS5I8tzscZWGdzmJiOTk0RqisrIyzJs3D/Hx8Rg9ejR+/vlnFBQUQKVS4eTJk5g7dy7atWuH0aNHY9u2bbINTqvVom/fvli7dq1YZ7VasXbtWgwaNEi245D/UiqVaNu2Ldq2bQul0vslcQqlEurIWGiiYt32p1Qq0SQ2DupI6bYKha0vdWQsFFVek68cs39XqXSsq3puleMKGc6ViIgqeHSHqHPnzhg0aBA++eQTjBgxAhqNxqnNuXPn8OWXX+Kee+7BCy+8gBkzZng0gJKSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+vFt85qq64fmWVdLYXZKnjUNqewvE7G4I8sVgE/H7yEgxcLfT0UIiIKIB5NiH777Td06+Z6z5M2bdpg9uzZePrpp3H+/HmPB7Br1y4MHz5cLKenpwMApkyZgmXLlmHy5MnIz8/Hiy++iJycHCQnJ+OXX35xWmhdU3X9yOxP/9qOc1fkXdsSCLaeuoKZX+51qi8uN8NksTrVm0wmZGRkALD9N5WarNeExWxC0c5VUCkBk0l68l/52JtXfo6iU1dguXGmU1ywmFG850cAQHifMdXGzJN7if0V7Vxlq7uzu9O5ARDj1rj7vTlNIiKqwqMJkbvJUGUajQYdOnTwuH1KSgoEwfWdlJkzZ2LmTOdfOA1ZiFaNcJ3nS7QUCmB8clwdjsg/XCs1AgCahmpxa/dYfLPrAsxWAVOW7EDzcB06Ng9zaG80GvHXv/4VADBjxgxZJkTXfv/ket9vu+zPaDTip09es30v7c9OccFiFvsKSxpZbcxseh4AYDIZK+rMzzidGwAxbr397tqdIBERSarxW2Zt27bF9OnTMXXqVCQkJNTFmOpFXT8y+/nJoXXSb6DoHBuOBRN7IUijwtLNZwEAecUGaFSOa2dUKhXuu+8+8bO3lEoVQhKHQalQuO1PpVIhKWUMTuSVOKXmAGzrkUISh4mfq4spr5+T6vqxbeNQSp5bdf0REZF3ajwhmjVrFpYtW4ZXXnkFw4cPx0MPPYQJEyb43d4+fMvMP8wd2x1/H5OIG1/7HTlFzmutgoKC8MUXX0h8s3bUWh2ajX0GGpUCQUHOb45VPfbdzyzExxtPQ6N1/vuvUGvRbOwzkt+tHNPqbMfRBQU51Emdmz3Ot8yIiORV439mzpo1C5mZmdixYwe6deuGxx9/HC1btsTMmTOxZ8+euhgjBTilUgGFwtejICKixqzWGzP26dMHffr0wZtvvokPPvgAzz33HD788EP07NkTTzzxBKZNmwYFf4s1GE/+Zy9+2H+p2niLiCB899iNiI1wfVeE3LNaBWRddb1hIxERNSy1nhCZTCasWLECS5cuxerVq3HDDTfgoYcewoULFzBnzhysWbMGX375pZxjlVWg7VT984EcWFxsA5BdUIbMrAKM7O7dhpf1Ta/Xo23btgCAs2fPOqTaeHHVQXxwf19Ehzpnoq+OsbwUWe/a1u3o51x0m7rj1XsHo9xkgXHA72L9b4dzANjSc2Qvng4AiHt0icN3K8fKJ9reqist1YvHLh+3y+ncAIjxnq/+1+NzIiIi92o8IdqzZw+WLl2Kr776CkqlEg8++CDefvttdO3aVWwzYcIE9O/fX9aByi1Q1xB9P3MwWlS5C/TQZ7twINt/9/25fPmyQzkqRIMreiO2nb6KHw9cwgM3tKlRf9ayIo/blhZdc6rLK65Ir+GqL6lY1bqq51aTsRERkedqPCHq378/RowYgQ8//BDjx4+XfC25Xbt2uOeee2QZIMkrJkyH5lUmRBqV/z7aDA4OxsGDB8XPAPDRA32R+tZGAIDBVLM7gBptEFpOz4Ba5Vnqjic+WIVvdl2oNnVHy+kZ4ufqYpVTd4h111N3VD03e5yLqomI5FXjCdHp06fRpo3rf3GHhoZi6dKltR4UkaeUSiW6d+/uUNexeTjGJ7fCysyLNe5PoVRC26wNNCqFR6k7Ytt0gvacqtrUHdpm0v+vVI5VTt1RuU7q3OxxvnZPRCSvGk+I7JMho9GIvLw8WK2Ouwf7895E/qywzITzLnbGFuBZGhEiIqJAVOMJ0fHjx/HQQw9hy5YtDvWCIEChUPjNIuXGtqj6442n8fHG074eRr0zmUxYtmwZAGDq1Kmy7FRdnPkLVEqFR6k7dv7yDYqP58Nyo3PuPsFiRsmBNQCAsJ6p1cYqp+4ozvzFVnc9dUflcwMgxq1xk2p/kkRE5KTGE6Jp06ZBrVbjhx9+QMuWLf321frGsqg6NTEWa47kotyDtTLJCVFOC6r9ndFoxCOPPAIAuO+++2SZEF399f3rfS9wm7pj5Xtzbd97ZKpTXLCYxb5CE1OqjZlfsaXnMJmMFXVzn3A6NwBi3DpyXG1Oj4iIqlHjCVFmZiZ2797t8FYZ+c6IxFiMSBzh62HI4sCFQuw9X+CyzaVCx/19VCoVxo0bJ372llKpQnCnG6BUuO9PpVKh2w034+yVUizdch6PpXZ3WLCuUCoR3OkG8XNllWOVU3eIdddTd1Q9t+r6IyIi79R4QpSYmOj0KjCRt07nl2Ds+3+IZXWVN986NAvDpcJy2LdSah9jS/IaFBSElStXVtvv//ZfwtikVh5vOKnW6tB84t88Tt0xL+MzpH+9DwCw8+w1jOnVUowr1Fo0n/g3ye9WjlVO3VG5Turc7HG+ZUZEJC+PJkRFRRV7n/zzn//Es88+i/nz56Nnz55OjxQiIiLkHSEFhNwi2949QRol+iQ0wcND2zvEl0ztj+O5xQCAJqFaxEW5fiVedf0Oyr6sAjz02U788HjdJNud2Kc13ll7AudcLGgHAKV/PlkmIgoYHk2IoqKiHNYKCYKAW265xaENF1U3PoIgoNzk+BahQgEEabx/NFWd+CYh+HLGDU71WrUSPeI8X+v14KA22HzyMnKKypFXZHD/BS+0iAiSnBDd3LU5IoLUWJl5ER2ahdXpGCrLKy7H1lNXkNKlOSKDvVtTRUQUKDyaEK1bt66ux1HvGsui6roiCALu/WQbtp2+6hSbMqgNXh7Xo0b9bTt9Bf/dfQGVs4fc1DkG45LjvBpnaWkpEhMTAQCHDx9GSEgIACApPgpLpvbH6Hc31ag/k6EMFz6cDoUCKH3hjNhfdcfu0qsn8osNaDr1fae42mrE8qfvRH6xAe1nf+4Qs5rKcfHTxwAA5XduBQCUlZXiwoe2dB6GcZudzg2AGO/5cvVpcf78793Ye74AY3q1RMZ9fWznZbHCbBEQrK27ySwRkT/zaEI0bNiwuh4HNTAmiyA5GQKATSdqvoZswU9HsO+CY3qQH/Zf9HpCJAgCzp07J372liAIsBTledRf5WM3lWoqADnZWfbGTjH7ccwWK8a+9wf2ncmtODYEyXOzx536q8S+MH314VwAgMFswS1vbsBVvRE/PD4E7evxbhURkb+odXLX0tJSnD9/Hkaj0aG+V69eXg+KGpZts29BRLAau85ew4NLdtSqD/ujt3sHJKBZuA7vrj0Bg9mKce//AaVSgZ41eBxWWVBQEHbs2CF+9pZao0OLB9+CWunZouodO3Zgznf7cdzi/GhKpdXi0+9+w99WHoSyauoOtQYtHnwLAJBfasWB7EKHOo1WJ3lu9rhK43nC2rwiAy5cs72dd+RSMSdEREQSajwhys/Px7Rp0/Dzzz9Lxrkmp/EJ1qoQolVLrh36emcWDl2suPMTqlNj+pB2iAmTfgtqbK+W6NOmCZb+cQbFBrN418jd6/bVUalUsiYSVqpU0LXsDI1K4dFr9/3790f0HjMUZ5zvpimVKiT26gPddiMUSse+FErbcezHrFqnUqkkz80er9pfmdGCDcfzkBQf5fnJEhGRqMYTolmzZqGgoADbt29HSkoKVqxYgdzcXMybNw9vvvlmXYyRGqi8onI8+9/9TvVBGhXuHZCAvy7PxOUS24LmM1f0DvGfZw3FsZxi7MsqwLu/n6y3MbvTsbn/3D3JKSzH678cRXJCFM5fKcWnf5xB26bVr3kiIqLq1XhC9Pvvv2PVqlXo168flEol2rRpgxEjRiAiIgILFizAmDFj6mKcVA/OXdFj/4UCALY1RO6UXd8dW6NS4NFhHbDpxGVkZhWg1GjBHyfz8cdJ57VGra6/Lt+6SQhaN/H+l7fZbMby5csBAJMnT4ZaXbunwH+6IQF/vqkDIFhQcmgd1EoFzOZbnforq7QjuNlsxrfL/4Nz209AiOnj1KfVYsavq75ByaGTsDYd5RATrBboj2wEAFhGdHSuM/dwOjcAKDlke8HBGjcW/9l5Ht/tzcZ3e7PFR45n3bz+T0RE0mr820Ov16N58+YAgCZNmiA/Px+dO3dGz549sWfPHtkHWFf42n0F+5YK8386Wk3c9fd1ahWeurULyowWZGYVAADsOX97xkXiudtsu5rHNQlG25hQWcZsZzAY8Kc//QkAMH78+FpPiNrHhCE+OgSnLl7GlR/evN73S079vfT9IfGz0WAUjx3/12+d+rSYTHj5qb8AAE50GuSQXkUwm8TjmNOmONWZ5vzZ6dwAiHHrzbeh1FipPybvJSLySo1/e3Tp0gXHjh1D27ZtkZSUhI8++ght27bF4sWL0bJlS/cdNBB87b7C5H7xyCsuFycxlQ3q0BQRQbXfy6ZJqBZDOsV4MTrXlEolUlNTxc/eUiiVCGqTDIVCur9rehMAoH2zUARp1UhNTcWBC4WSs0aFUoGBQ4ZhX5Yt/vPBS9Da1yUpFAhqkywe06lOoZA8t4o4U3cQEcmpxhOiJ598EpcuXQIAzJ07F7fddhu++OILaLVaMTM3+Ze7+8fj7v7xvh5GrQQHB2P16tWy9hd7zzxoVAoEB1e/G/ZfUzuLx5780VZsl1hUrdYGYcuGdWg/5ycAQGGpCc3CbRMipUaH2HvmAahI3VG5ThcULHlu9rhKy9QdRERyqvGEyH4LHwD69u2Lc+fO4ejRo0hISEBMTN3dCSCqrbxiA+asOID5E3rW+7GVSgVu79USP+y/VO/HJiIiz9X6vrvRaMSxY8eg1WrRp08fToaoVqourI6Plu8tqRaRQWIOsS+3n0dxuUm2vomIqHGp8R2i0tJSPP744/jss88AAMePH0f79u3x+OOPIy4uDs8//7zsg6SGJbugDJM+3IJys/cL0ru0CMfvTw1DTmE5FAoFeidE1ej7paWl4l49O3fudEi1ER2qxYZnhmPo67Y3szxZdlxaWoqLnz52PXXHEbepO/r3748L18oQee9Cp7jJUIbu3bvjUmE5wia/7hCzmsqR81k6AMA4/EenOsO4tU7nBkBM99Hzb0s8OBsiIvJUjSdEs2fPxr59+7B+/XrcdtttYn1qaipeeuklTogasdgI27oVg9mKXeeuOdXXVvtmYbXePVkQBDHPl1SqjdiIGu5eLQgwXTlfbX/VHTuymtQd9nhY1bgA5+NUrrueuqPqudnjrlJ3EBFRzdV4QrRy5UosX74cN9xwg/i6NgB0794dp06dknVw1LC0aRqKn54YivNXHfe66dMmyqFsMFtQaqqf7QyCgoLE5MNypO7QBQUh9t75UHmYumPdunV4+ftDOK2WTt2xbt06vLPmOPYYHeMKtQax984HYEvTIVUndW72eE1SdxARkXu1St1h34eoMr1e7zBBosYpsVUEEltFuGyzdPPZ+hkMbCkuUlJSZO0vKKGXx6k7UlJS8OExHc5Uk7ojJSUF316MwN4qi6oVSttxAMfUHfY6e+qOqudmj1dN3UFERN6p8aLqfv364ccffxTL9knQp59+ikGDBsk3MvI7gzo0RZCm4q+USqnAsM7NfDgiZ0XlJvx2KMe2d1Ad2V+HfcvlcokBx3OLfT0MIqIGo8Z3iObPn49Ro0bh8OHDMJvNeOedd3D48GFs2bIFGzZsqIsx1gnuVC2/W7rF4tDLt8F6fX2LAoBaVbcbCJrNZvzwww8AgNtvv93tTtXpyzOx5kgeAODXWTdJ9ld6fCtU1aTukDp2duZRCOGJAACrVcC3uy8AAASrGStXrsTpXacgqDs5fFewWlB20pbJvnLqDrHueuqOyucGAKXHt9qOEzfC5Xm6YrJYMfyN9SguN+OLhwdicEe+IUpEVOMJ0ZAhQ5CZmYnXXnsNPXv2xG+//YY+ffpg69at6Nmz/vd5qS3uVF03VEoFVKi/R6cGgwETJkwAAJSUlLidEOUUlUt+tjMaDMhf8er1vp932V/lY9tTd1Re6nx37xYY3nNglbithWA2iccxPzLZqc70zBSncwMgxq1DU1yepyulRguKy80AgDOX9ZwQERGhFhMiAOjQoQM++eQTh7q8vDzMnz8fc+bMkWVgRJ5QKpW48cYbxc/eUiiV0MV1AwCUmaxwlXnNfuxjOcWSqTu6tIzEjTfeiNP5ejH+yv8OXz+QQjxO5dQdYt311B1Vz60iztQdRERyql0mTAmXLl3C3//+d06IqF4FBwdj8+bNsvUXGhKCFn+y7Sn0+NeH8NUjN7g9dnWpO+zxmV/uEXeqDtZWpO6wH6dy6g57nT11R9Vzs8eZuoOISF78ZyZRJc3DdejaIhyAbQNKX/low2mfHZuIKBBxQkRUiUKhwKs+yHlWVVk97eNEREQ2nBCRXysrK0P//v3Rv39/lJV5f0enrKwMD95xCy599ldYTAaPjr16wXRYJdra49/8/QGnuNVkwKXP/opLn/0VRkO5U53VZHA6t7KyMjFuMboeGxER1YzHa4jS09NdxvPz870eDFFNWa1W7Nq1S/wsR3+H9++1FQTX/VU+dphEKo3K8fiqcUGAMefE9cNYneogWCXPTfyOm7HVRlG5CRuP52NQ+6ZoGsY1SkQUWDyeEO3du9dtm5tuct7Xhagu6XQ6ca8enc77X+I6nQ6LlvwHr/50BEqV6/QY9mO/9vMRnJdI3WGPf7j+JA4onFN3NJs0FwCgvp6Go3KdQqWVPDd7XFnleAezi2p6qk5eWnUI3+3Nxo0dmuLLGdUvJiciaow8nhDZcyoRNSRqtRpjxoyp1XevlBjw/b6LTv0NuflWhBwLg8JN6g77sT+/EI0sibfM7PGfC/fgoETqjpAOtkz2qut7HVWuU6pUkudWEZftBVHR//bbrsWWU1dk75uIqKGT/6cqUQOV/PJvsFZ6cvWPHw6Ln7VqLqcjIgpkHv0WeO2111BaWuq+IYDt27c75DojqksWiwWrV6/G6tWrJdOwVN4v0VplGc+1UhMAIFijwuieLcX+tm1ah7IzeyFYXb/pZT92zuEdkm3t8awD25zigtWCsjN7UXZmL6zXx125TrBanM7NYnGMExGRfDy6Q3T48GG0adMGd911F8aOHYt+/fqhWTNb0k6z2YzDhw/jjz/+wP/93//h4sWL+Pzzz+t00JUVFBQgNTUVZrMZZrMZTz75JGbMmFFvxyffKi8vx6233grAlt4iNNRxb2mNSonHb+6IH/dfwunLesk+5k/sgehQrdjfzAfuBAB07Ol6Yl/52PbUHJ7GBbMJeV//HQBgmjbOqa5r0k9O5wZAjFtuWO1ybEREVDMeTYg+//xz7Nu3D++//z7uu+8+FBUVQaVSQafTiXeOevfujYcffhhTp05FUFBQnQ66svDwcGzcuBEhISHQ6/Xo0aMHJk6ciKZNm9bbGMh3lEolkpKSxM9Snrq1Cx4d1gHd5/7qUX+du/XAmSt6wE16DPuxz10plUzdYY9fuFbmHFcooGnezvaxUuoOex0USslzE7/D1B1ERLLyeA1RUlISPvnkE3z00UfYv38/zp07h7KyMsTExCA5ORkxMb5JEKlSqRASEgLAlmxTEAQIEq9AU+MUHByMzMxMWfv78ueNuPPDLVBpXL+1Zj+2q9QdmZmZDqk77JQaHVpNew+AY+oOe51Ko5M8NzHO1B1ERLKq8T8zlUolkpOTMW7cONxzzz1ITU31ajK0ceNGjB07Fq1atYJCocDKlSud2mRkZKBt27YICgrCwIEDsWPHDod4QUEBkpKS0Lp1azzzzDM+m5wRERGRf/L5fXe9Xo+kpCRkZGRIxpcvX4709HTMnTsXe/bsQVJSEkaOHIm8vDyxTVRUFPbt24czZ87gyy+/RG5ubrXHMxgMKCoqcvhDREREgc3nE6JRo0Zh3rx5mDBhgmT8rbfewowZMzBt2jQkJiZi8eLFCAkJwZIlS5zaxsbGIikpCZs2bar2eAsWLEBkZKT4Jz4+XrZzofpXVlaGlJQUpKSkyJa645HJY5Hz5fMepe5ISUnBujfTqk3dkZKSghXzHoHVZMDxvBLbeiPY0nTkfPk8cr58Hvrr6/BUViMif39VPHbVcysrKxO/w9QdRETyatD7EBmNRuzevRuzZ88W65RKJVJTU7F161YAQG5uLkJCQhAeHo7CwkJs3LgRf/nLX6rtc/bs2Q5pSIqKijgp8mNWqxUbNmwQP8vR357tm20FD1J32I/tlJqjavw2AbvPXqsICgIMWQcBAO+tPQGodVArFNi/c6t4bKlzs3+nLlJ3EBEFsgY9Ibp8+TIsFgtiY2Md6mNjY3H06FEAwLlz5/DII4+Ii6kff/xx9OxZfbZynU4nS4oHahh0Oh2+/vpr8bMc/b2WsQRv/Hbco9QdX3/9Nd5efRzZ1aTu+Prrr/GvP07jSKX4TZ2bYcPRHMSMex4AYFWqoQDQqmk4pr6/BG+tPi6m7qh6bvbvVE3dQURE3qnRhMhkMolvvvTo0aOuxlQjAwYMqNVbRhkZGcjIyJDczI/8h1qtxl133SVrf6ljxuPD81s8St1x11134durW3GxmtQdd911FzaY9uBopbfMdGolFEoVQrsOcWj/55ROaN+sNz7K2iqm7qh8bsdyisXv1EXqjsq2n76CZ/+7HxN6x2FWauc6PRYRUUNQozVEGo0GCQkJ9TaJiImJgUqlcloknZubixYtWnjVd1paGg4fPoydO3d61Q9RfcnMqnjk1rpJSJ0ea/GGUzh3pRSL1pyo0+MQETUUNV5U/cILL2DOnDm4etX5X8Ry02q16Nu3L9auXSvWWa1WrF27FoMGDarz41PDZ7FYsHnzZmzevNnlRF2lVEDpvHeiZH+Zu7ah/MJhj1J3bN68GZdP7q82dcfmzZtx6VimZOqO8guHHY5jtViwb9d2sa7quVktFd/RKut2ry29kXdOiSiw1Pi++/vvv4+TJ0+iVatWaNOmjVOqhD179tSov5KSEpw8eVIsnzlzBpmZmYiOjkZCQgLS09MxZcoU9OvXDwMGDMCiRYug1+sxbdq0mg7dAR+ZNQ7l5eUYMsT2GEkqdYddkEaFl8f1wLZTV/DjgUuSbez9PTxpNACgwz/cp+6wH7u61B3VxQWzCblfPCvGFFoVjEYDHrnbdmxt82+RV1DscG5Go0H8zjfNv4VSW387whMRNXY1nhCNHz9e1gHs2rULw4cPF8v2N8CmTJmCZcuWYfLkycjPz8eLL76InJwcJCcn45dffnFaaF1TaWlpSEtLQ1FRESIjI73qi3xHoVCgY8eO4mdXHrihDR64oQ3mFJRh8Gu/V9tffNv2uFRYBsB1f/Zj5xSWSza1x/OLDc5xBaBu0lL8bG/ftl0HXCgoBRS2dTyVz02hUDh9xxWjmW+iERF5qsYTorlz58o6gJSUFLepNmbOnImZM2fKelxqHEJCQnDiRM3WucRFBaNDs1CcyndO9hoSEoIV63fZUne4uQNjP3Z1qTvscXvqDmulv+dKTRDiHvnEob0uKBhnTp9Ez5d+RXG5GcVmlcO56YKCnb7jzjW90aF85FIRhnTiTu5ERFXVamPGgoICfPrpp5g9e7a4lmjPnj3Izs6WdXB1KSMjA4mJiejfv7+vh0KNnH0adCKvxKP27WJsj/3+vuoQFvx0xKtjmyyOd4l2nq37tX9ERP6oxhOi/fv3o3PnzvjnP/+JN954AwUFBQCA7777zmEDxYaOb5lRfekdH1Wj9vsvFIqfV2VelHUsoboGvfUYEZHP1HhClJ6ejqlTp+LEiRMICqp4pDB69Ghs3LhR1sERuVNeXo4xY8ZgzJgxKC8vl6W/J6dNRt43L8FqMrptO2bMGGx6/ykIZue29vjXr6Y5xQWzEXnfvIS8b14SY0aDrb29TjAbce6rv4vnZjSUO32HiIjkUeN/Lu7cuRMfffSRU31cXBxycnJkGRSRpywWC3766Sfxsxz9bV63GgAgCO5fu7cfO36E8wJmh3jiww7roAWrFWWnd4mfFbBtKWFvL1xP1ZFzcCt+OmjryyrxHSIikkeNJ0Q6nU4yQ/zx48fRrFkzWQZVH/jafeOg1WqxdOlS8bMc/c1d+D7eX3cSCpXr9Bj2Y3+w7iRyVWq8ufoYbuvRwimuN5jx+knH/9UUKjWajp4lfgYAtUaDpUuX4ulv9ol1/R98AY8N7witVgu1RuP0HSIikkeNf6recccdeOWVV8QcSwqFAufPn8dzzz2HO++8U/YB1hW+dt84aDQaTJ06Vdb+xt51H5Zd3uI2PYb92FuUu/Db4Vycztc7vElmj1/TG7HwH6sdvqtQqRHWM9WhTq3W4E9Tp+KloxX7H7W9cQymTh0kxqt+xx2LIMBg5qSfiMidGq8hevPNN1FSUoLmzZujrKwMw4YNQ8eOHREeHo5XX321LsZI5FNWq4Cnv9mHce//ga2nrzjFXxlXd3n9dpy5ii2nLtf6+2Pe/QOpb3FtHxGROzW+QxQZGYnVq1fjjz/+wP79+1FSUoI+ffogNbVm/3IlkoPFYsGBAwcAAD179oTKTUJWT/o7dugAjLmnIUR1AwCcuaLHt7svVHvswjITBKsFCqXKKZ6ZmYkiibhgtcCUfw4AoGnWBgqlCtbr7Y25p6Fp1gYAYMo/h6cX52DTa1NhtVhgzD3t8B13rurdL76+VFiGf/58FCZL3aYDISJqyGo8ISovL0dQUBCGDBkiphUg8pXy8nL07t0bgOvUHTXp7/4xwwAA7a6n7qhu49DKx7an3/A0LphNuLTsCYeY0WhA7xsr2gPApWVP4BKA8pfugdFocPqOHL7Ydh4rZX69n4jI39R4QhQVFYUBAwZg2LBhGD58OAYNGoTg4OC6GFud4qLqxkGhUKBVq1biZzn6axbbElf1BniSuqNVq1awCtJN7XFBKq4AVGHR4ufK7XOLKlKBqMKiobyetkOhUIjlri0jcPyKPK/eF5WbZOmHiMif1XhCtGbNGmzcuBHr16/H22+/DbPZjH79+mHYsGFISUnBiBEj6mKcsuOi6sYhJCRE1h3SQ0JC8PP2Qx6n7sjOzsZVvRF9qiyarhy/pjeid5W4UhOE1mmfO9TpgoKRnZ2Nts9XLKpunfY5okO1CAkJgS4oGK3TPsctXZvDZBVw/Eq+F2dKRESV1XhR9ZAhQzBnzhz89ttvKCgowLp169CxY0e8/vrruO222+pijESNipvUfX7DaLai1Gj29TCIiGRRq81Mjh8/jvXr14t/DAYDbr/9dqSkpMg8PKLG56Eh7bDmSK6vh+EVk8WKW95aj8vFRvwyayjaNPVu7RYRka/VeEIUFxeHsrIypKSkICUlBc899xx69eoly/oNopoqLy/HAw88AAD497//7ZBOprb9PffYVOSfuoLWD/zdo2MbzVYIHf4EhVrrFL9ryv1O8VZRQRDMRlz+4U0AQMztT0Gh1sJoKMddd92F/AOXEHP7UwCAyz+8iUK1EuXPDIXRUI78lQvwe7gONz78klfn6a2reiOyrpYBAI7lFHNCRER+r8aPzJo1a4bS0lLk5OQgJycHubm5KCsrq4ux1Slmu28cLBYLvv32W3z77beype5Y+9P3KD222aPUHd9++y2+X/mdmGrD07hgtaL02Gbbca7HrFYrvv32W7HO3qbg0CYxdUfpsc04u+t3WCWOVxtf7TiPr3dluWwjCAJyi8phtTaSZ31ERBJqfIcoMzMTBQUF2LhxIzZs2IA5c+bg8OHDSE5OxvDhw/1mc0Yuqm4ctFot3n//ffGzHP09+8rr+HTTaY9Sd7z//vvQG8zIuOT8v5I9Xmow4/1Lzqk7okc8Kn4GbKk73n//fby46qBYFz3iUYRo1WLqjugRj6JzbDhUbsbmqUMXndPwVDVnxQF8tcM2aXrr7iRM7NNalmMTETUktVpDFBUVhTvuuAODBw/GjTfeiFWrVuGrr77C9u3b/WZCRI2DRqNBWlqarP3d/eDDWK73LHVHWloaruqN+EDiLTN7/JreiIwq8RE94rBGdbtDnVpta78wq+Its/A+tyM6VAuNRoNjeWUI73M7Eq+/ZVZf7JMhAEj/eh+WbTmL9jF8REZEjUuNH5l99913eOKJJ9CrVy/ExsbiL3/5C0pKSvDmm29iz549dTFGIp84f7UUhaU126OnqMyz9hn394ZK6fm6u+yCMny+1baz9fG84hqNSW77LxRyI0cianRqfIfo0UcfxU033YRHHnkEw4YNQ8+ePetiXEQesVqtOHXqFACgQ4cOUCprPMd36u/i+dMwXc2GuklLJL3yG7577EaXxy4xmCAIVigUSjz02S6H+IkTJyAIghi30ygV6KgrxsHsQqibtIRCoRTb248NAOZrl1BersXJ3CIIghXma5eQVaRE2+i6y59GRBSIajwhysvLq4txENVKWVkZOnfuDECe1B1lZWW446Z+AOzpMYKwbPNZt8fu/eL3uGoAMrMKxLhaMIvx+av24qMt2Q7f/e2lexyOYzSUo3PnbmIdAFz85M+4COABZUUZAAZ9sN6r8yQiIke1WkNksViwcuVKHDlyBACQmJiIcePGeZ1Yk6g25F4UX7W/QhePwextJ/VtjY+3VDxGmnpjW6iUCpdj0wSHwVxlLVBkZCSKyis2O1ToHCd4Cl2om4QivqE3mGG2CogMlmexNxFRfavxhOjkyZMYPXo0srOz0aVLFwDAggULEB8fjx9//BEdOnSQfZB1gbnMGofQ0FAUFBTUSX///OUoPlx/yqO2b/52zCGmUioc4m+tPu703bFv/ord566JdUHBISgoKHBI3ZEwa7nD9xJmLYdWrYRGFwygpIZnVzdKDGYMWrAWBrMVG58djtgI7/aCIiLyhRovuHjiiSfQoUMHZGVlYc+ePdizZw/Onz+Pdu3a4YknnqiLMdaJtLQ0HD58GDt37vT1UMgHElvZ7tyolAp0ah7u49H4t0uF5SgqN8NgtuLMZb2vh0NEVCs1vkO0YcMGbNu2DdHR0WJd06ZN8dprr2Hw4MGyDo6orrwzORlPjeiMyGANmoS63r/IYOZdRCKixq7GEyKdTofiYufXfktKSmTZGI+oJgwGA/78Z9tC448++gg6nc6j7ymVCrSV2Euncn+dJqYDALadvur22N0mPeUynnjX006xXZ/Pw5USI5qOnAmFWgOT0YCpU6fi8u4LaDpyJgDgyq+2TScrl5VKBSyPzfXoPOvDwl8rHhcWlplQWGbiWiIi8js1fmR2++2345FHHsH27duvv04sYNu2bXj00Udxxx131MUYiaplNpvx2Wef4bPPPoPZ7H3m9cr99U2I8Litxep87MrxcG3FUujwIA3MZjPOb/sZ+oNrIVhtd6AsFgs+++wzsU6wWqA/uNapXLx/DazWhnnX6s//3o0b5q9FQanR10MhIqqRGt8hevfddzFlyhQMGjQIGo3tX4Fmsxl33HEH3nnnHdkHSOSKRqPB66+/Ln6Ws7+bE1thaKdcbDpx2W1bq8Su1pXj9w5qh6ZREYhrEozoUC2MRqDHhMdw4VoZFNffzlSr1Xj99dcx/6cjYl1UyjQAcCirlQq3u2j7UpnJguyCMkSF8I4xEfmPGv9UjYqKwqpVq3Dy5Enxtftu3bqhY8eOsg+OyB2tVotnnnmmzvpTKqp/yb1y26pvmUn1dXf/EIdYp9T7UHy+QKxTa2ztM65UvGUWOfBOhz4jB94JrVoJlZqPpIiI5OTxhMhqtWLhwoX4/vvvYTQaccstt2Du3LkIDg6uy/ERNVqn8mv/RpYgMPM8EZGcPF5D9Oqrr2LOnDkICwtDXFwc3nnnHVmTahLVhtVqRXZ2NrKzs2G1Wuu8v3CdGtGhWvRqHem2rau41WpFeUE+zMWXIQhWh/b2OkGwwlx82blcdBnaGuRBIyIi9zy+Q/T555/jgw8+EN+aWbNmDcaMGYNPP/3U6/xRRLVVVlaG1q1bA5AvdUfl/iprEqLBzhdSoVAooFIqoNfrxbavrnJObOxqbGVlZTi+6E8AKlJ3hKmsYnt76o7sD6ZKlt/ddQprj+V7da5ERFTB45nM+fPnMXr0aLGcmmr7xXDxon9mvc7IyEBiYiL69+/v66GQl9RqNdRq+RYZu+pPrVI6ZKl3d2yXcaXK9ue6YV2a2dpWqlOqHMtVv0NERPLw+LeI2WxGUJDjlvwajQYmU/V5nhqytLQ0pKWloaioSPZcWFR/QkNDZf07WJP+KreVWlTtqq/Q0FB0/9uPKDFUvK4fGREOk8nkkLrjw9+PYv5PR8Vym2dWIal1JDq3bgbgiEfjrKmuLbhzNxEFHo8nRIIgYOrUqQ4b35WXl+PRRx91eBTw3XffyTtCogBmlVg7vWBiL3SODcf3Mwfjjvc318lxd5yR3oySiKix8nhCNGXKFKe6P/3pT7IOhqixiHaTDsRTZovzYu3EVrYNIxOiQ5xiDcXKvdloEqJFqyi+hUpE/sHjCdHSpUvrchxEtWIwGJCebkux8dZbb3mcusPT/jxtmzDqUbF+yqA2mD64ncuxGQwGXPzpfZgsAqJvfhgKtUZsf2XrOUTf/DAA4Ot3XsKVrEKxHJ75JdLSfro+tpq/afb70Tws+eNMjb9XU59sOoOtp6/gnXt6I7eoHIPaN4XCxZ5ORES+phACfEMT+xqiwsJCRES4TtVADY9er0dYWBgAed4yq9rfY8sPYcNx29tcTUI02PvirZJtX121Bx9vsb1g8N1jN6JPQhOXY6sci//rt1Bqg3Do7ykOdQCQ9fYksfzjE0PQq10LsT+TQoPkV1Z7db5SurYIx9Ec53yFtaFWKmC2Cvji4YEY3DFGlj6JiAD5f3833P3/iTyg0Wgwd+5c8XN99le5raqa1B3V9aXRaNDspvthtFihUKkwfXA7sf2iNcfFVB2jHpyJLaeuQKFSoWV0mEN/Ju9Tt0kqKJVvkbr5+iKo7GtlsvVJRFQXOCEiv6bVavHSSy/5pL/KbatL3VFdX1qtFs1THhDfMntxbCIA4KWXXsKy8oq3zEZPeQKHfzsu2V+ZpW7e8MwpKq+TfomIGjLuqEjkpyKDNXhwUBtfD4OIqFHghIj8miAIKCgoQEFBgSz5vWrSn7u2ruKCIMBSXgJreYkYs7e31wmCgNKSIody1f5eGdcDr03s6fV5ExEFOk6IyK+VlpaiSZMmaNKkCUpLS+u1v8ptjQbnNTKu+iotLcXR1ych6517IJgMDu3tdYLJgOfG9RPLcp9rfXr2v/vx4qqDYvnL7ecx9PXfseZwrg9HRURUgRMiIqoXn289J36es+IAsq6W4eUfDvlwREREFfx+QpSVlYWUlBQkJiaiV69e+Oabb3w9JKpHISEhMBqNMBqNCAnxfqPCmvRXua1W57wBoau+QkJCkPjCD0h4eiUUGp1De3udQqPDzlN56PXijxjctRVim0TIeq4NQX6xwddDICIC0AjeMlOr1Vi0aBGSk5ORk5ODvn37YvTo0V7vR0P+QaFQyPK6fW36q9xWatNBV30pFAooVGooVM7tFZVe4e/Xvhn2vVyRVFmp9Pt/wxARNUh+/9O1ZcuWSE5OBgC0aNECMTExuHqVeZjIf80Y2g4AcFff1j4eifzKTRZfD4GISJLPJ0QbN27E2LFj0apVKygUCqxcudKpTUZGBtq2bYugoCAMHDgQO3bskOxr9+7dsFgsiI+Pr+NRU0NhNBrxzDPP4JlnnoHRaKzX/iq3NZuc27rqy2g0Imf1J7i2bgmE6/sJ2dtfW7cEfzw9FPPu6OrwfbnP1RduWLAWhWV1s38SEZE3fJ664+eff8bmzZvRt29fTJw4EStWrMD48ePF+PLly/Hggw9i8eLFGDhwIBYtWoRvvvkGx44dQ/PmzcV2V69exdChQ/HJJ5/gxhtv9Pj4TN3h3xpL6o7zb93p1B6Ay7K9v00n8vHAv3ZAp1bCYHZOBtvQ/PD4ENz+3h8AgCCNEkf/McrHIyIif9ToUneMGjUKo0ZV/wPxrbfewowZMzBt2jQAwOLFi/Hjjz9iyZIleP755wHYEmWOHz8ezz//vNvJkMFggMFQsZCzqKhIhrMgX9FoNHj66afFz/XZX+W21aXuqK4vjUaDpoPuhMkiiGk6pNq7KwPAkI4x+H7mYDQN02Hwa7/X4Gx945X/Hfb1EIiInPh8QuSK0WjE7t27MXv2bLFOqVQiNTUVW7duBWDbzG7q1Km4+eab8cADD7jtc8GCBXj55ZfrbMxUv7RaLRYuXFgv/VmF6ttWl7qjur60Wi1ajJghpu6orr27MmBbjN2rdZTkcRqiHWe5xo+IGh6fryFy5fLly7BYLIiNjXWoj42NRU5ODgBg8+bNWL58OVauXInk5GQkJyfjwIED1fY5e/ZsFBYWin+ysrLq9BzIv7VpWvF6O9e+EBE1Xg36DpEnhgwZAqvV83UTOp0OOp0OGRkZyMjIgMXCt178mSAIMJttd1nUarXk6+/e9Pfi7YkOGwpW17a61B3VjU0QBAgWMwSLGVCqJNsDcFn29lyJiKhCg75DFBMTA5VKhdxcx+39c3Nz0aJFC6/6TktLw+HDh7Fz506v+iHfKi0thVarhVarlS11R+X+1Krq/xep3La61B3Vja20tBSHX70d598Y75C6o3J7d2UiIpJPg54QabVa9O3bF2vXrhXrrFYr1q5di0GDBvlwZERERNSY+PyRWUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/XiW2e1xUdmjUNISAiuXbsmfq7P/iq3/XR7To36CgkJwXs/ZeLDDSdxz+Cu1bZ3VyYiInn4fEK0a9cuDB8+XCynp6cDAKZMmYJly5Zh8uTJyM/Px4svvoicnBwkJyfjl19+cVpoXVNpaWlIS0sT9zEg/6RQKBAVFeWT/iq31ajyxXrt9cdsrvpSKBSYOSoJM0cluTy2u3Jj8Mw3+7Dl1BUsndYfnWPDfT0cIgpQPp8QpaSkSC5IrWzmzJmYOXNmPY2IqOYm9onDqfwSxITpkNjSdxt8dm0RjqM5xYgK0aCg1D/eivtm9wUAwKrMbDwzsquPR0NEgcrnEyJf4SOzxsFoNGL+/PkAgDlz5kCr1dZbf1Xbvntvb4/7kopVrQPgsiw1tu9nDkFBqRFv/nYcy3f515YS5qobPRER1SOfp+7wNabu8G91nbojNDQUbZ//UYyffW2Mx8f2NHWHPVbb1B1Snvt2v99NiP48rD1mj+qGM5f1CNWq0DwiyNdDIqIGrNGl7iDyhlqtxmOPPSZ+rs/+3LV1FZeKSdW5Kzc2J/NKkPrWBmjVSux78VYEa1W+HhIRBQjeIeIdInKjujtEDZknd4juSGqFdjGheGftiXoalWt/vqk9TuSV4PejeQCArbNvxo4zV7H55GU8PbILmofzjhERVeAdIplwDRFRw3IqXy9Ohuye/E8mACAmTIdnb+OCayKqOw16Y8a6xJ2qiRqWMpO52lh+saEeR0JEgShgJ0TUOOj1emg0Gmg0Guj1+nrtz11bV3GpWNU6d+XGZvPJK74eAhEFsIB9ZEaNhz3hqS/6c9fWVVwqVrXOXbkx25dV4OshEFEA4YSI/FpwcDAuXLggfq7P/ty1dRWXiknVuSt7w9rA36d49P/2+HoIRBRAAnZCxEXVjYNSqURcXJxP+nPX1lVcKiZV565cHZPF6rZNTJjOo76IiAJBwK4h4qJqasz6tm3its3NXZvXw0jk897aExjz7iYcyyn29VCIqBEK2DtE1DgYjUa88847AIAnn3xSltQdnvbnrq2ruFSsah0Al2VXY+veyjlh8euTeuHC1VK8+/tJsa6hPzazEwC8ufo4AGDp5jN47c5evh0QETU63JiRGzP6NabukHboYiHGvPuHQ90Pjw+BVq3ErW9vBAB8Pn0AQnVq3PnhFvcXpgG5vVdLvH9fH18Pg4h8jBszElWiVqsxZcoU8XN99ueurau4VEyqzl25Ot1aROCRm9pjzeFcnL5c/Sv60aHe3VEjImosAvYOUeVF1cePH+cdIqqWP6busFt/LA9Tl9rWyUndIYqPDsHwN9a77ad/2ybYefZaXQ7VY7xDRESA/HeIuKiai6qJXOrUPAz920b7ehhERHUqYCdEROS5O/u29vUQiIjqFCdE5Nf0ej2ioqIQFRUlW+oOT/tz19ZVXCpWtc5duT51aBZWr8cjIqpvXFRNfq+wsNBn/blr6youFata565MRETy4ISI/FpwcDCOHz8ufq7P/ty1dRWXiknVuSu706FZGNRKBbRqJVo3CUYes8YTEUnihIj8mlKpRKdOnXzSn7u2ruJSMak6d2V34qNDsOtvqVAqFYgI0jhNiDQqRY36IyJqrLiGiKiRiwrRIiJIIxlr3SQEs1Llm1CSfxEEAZ9tOYtVmdm+HgqRzwXsHSImd20cTCYTPv74YwDAI488Ao1G+hd/XfTnrq2ruFSsah0Al2Vvz9VuVmpnhGrVePWnI1731Tk2DMdzS2QYVfUEAB+st6Uf+cuwDlAoeJertvZdKMTc7w8BAAZ1aIrm4UE+HhGR7wTsxox2TN3h35i6o2aO5xY7bMx4U+dmAIBPNp6udkLUqXkYVqcPc7gO1dn07HAMfX1djcdVE+2bheJ0vu0tuzXpN6Fj8/A6PV5jJQgCPlh/Cgt/PQbAlux3ydT+Ph4VkeeYuoOoEpVKhUmTJomf67M/d21dxaViUnXuynLp1lKefwzER4fI0o8r9skQAPxyMAdHLp3AE7d0QpcWnBjVxNojeeJkCAB+P5rnw9EQ+R4nROTXgoKC8M033/ikP3dtXcWlYlJ17spyGdIpBhufGY6bFtbt3R25vfGb7a27onIT/v3QQB+Pxr/8eijHoTygHXcjp8DGRdVEBABIaFr3d3fqyqm8ul231BhtOXXFoRwVLM+aNCJ/xQkREYm0Kv5ICBTtYrxbb0fU2PCnH/m10tJSxMXFIS4uDqWlpfXan7u2ruJSsap17sp14fvHBzvVNY/Q1cmxyLeCtbZ1aNyLisiGa4jIrwmCgIsXL4qf67M/d21dxaViUnXuynLr2iICm54djsUbTqHEYEZekQHPjuzq9nt/SemAGzs0rZMxeWpfVgF+PZSDBwe1RYtIvj7uqa4tInAgmylhiDghIr8WFBSEvXv3ip/rsz93bV3FpWJSde7KdSE+OgSvTujpVB+iVaHUKL1v13O3VT9p+u9fBuHOD7fKNr7qTF+2E1f0RlwsKMOie3rX+fEam98O5/p6CEQ+xQkR+TWVSoXk5GSf9Oeurau4VEyqzl25Pn1wfx98teM8CstM2Hb6arXtpt7YFsu2nBXLbZrWz1qVK3ojAGD/Bd7t8MTq6xOg2AgdDmTz0RlRwK4hysjIQGJiIvr350ZkRJ5I6dIcHz3QD0mto1y2e+mO7g5lpUKBoZ1i6nBkznacuYp1x7ivTnUqP3K1v25vsggwWay+GhKRzwXshCgtLQ2HDx/Gzp07fT0U8oLJZMKyZcuwbNkymEymOu1PqfC8rbu4VKxqnbsyVbhYWC5+vlZqxN0fbcW0pTtxPLfYh6NquA5fKhI/39ihYrL60YZTvhgOUYPA1B1M3eHX6iN1x3d7LuCnA5dwe69WGN87zuNj+1PqjppY8NMRfLTxtENd5ZQmABzSfOz5+wg8+Z+92HTico2PVRsqpQIWq+3H2n8euQE3tPftYu+GaMvJy7jv0+22z8/fjBtf+x0AoFAAZxaMcfVVogaDqTuIKlGpVBg9erT4uS76m9inNSb2aV3jY7uKS8Wk6tyVfUHNtSaNRpdYx3Qngf3PYwp0nBCRXwsKCsKPP7pPOloX/blr6youFZOqc1f2hfHJcfjlYA5OVcop1pDY7w4BtvQUvEPkbOvpil2qVVWfBRMFqIBdQ0REtdMpNhxrn0rBlEFtfD0Ut5ZuPit+/npnFiZ8sBmZWQU+G09DUW6ybZ9w9ooezcN1YnLftn6cvoXIW5wQEVFAePa/+7H3fAEW/nrU10PxOYXCdldoyo1toVAo8PfbuwEAtGr+SqDAxb/95NdKS0vRqVMndOrUSbbUHZ72566tq7hUrGqduzJ5xmi2Yt4Ph8VyXpHBh6NpWPiwjKgC1xCRXxMEASdPnhQ/12d/7tq6ikvFpOrclRuqm7s2x+9HG8Y+QL8eysGnf5zx9TCIqIHjhIj8WlBQEP744w/xc332566tq7hUTKrOXbmhuqtv6xpPiF4Y3Q2v/nRE9rF8vStL9j793bXru3oTUQVOiMivqVQqDB7snKG9Pvpz19ZVXComVeeu7EutooK97qNDs1DxbbUZN7WvkwkROfvffluSYIOZO1MT2TWKNUQTJkxAkyZNMGnSJF8PhShg3H9DGzx7Wxd8OWNgrfuYeXNHqJQKTBvcVr6BuXEirwQPf7YTmVkFOHKpCFZrw378WBdaRtomsx2ah/l4JEQNR6O4Q/Tkk09i+vTp+Oyzz3w9FKpnZrMZK1asAGCbGKvV3v2Vrkl/7tq6ikvFqtYBcFn29ly9FaZT47GUjpKxynvbqBTSS3efvKUTJvRujdu6t0Swtn43mlxzJA9rjtge6T00pB3+fntivR7flwxmC85ctt2V69DMcbfz47klEARBfAuNKJA0iglRSkoK1q9f7+thkA8YDAbcfffdAGzpLLydJNSkP3dtXcWlYlXrALgs+3pC5MqgDk0xpmdLxEeHIDJEI9lm+uB2AFDnkyF3KUP+9ccZPH5zR+w6ew1DOsUgSOO7XcDrw+WSivVD3VtFAgDim1TsP5RTVC7eQSIKJD7/ibpx40YsXLgQu3fvxqVLl7BixQqMHz/eoU1GRgYWLlyInJwcJCUl4b333sOAAQN8M2BqUJRKJYYNGyZ+rs/+3LV1FZeKSdW5KzdU4UEaZNzfx9fD8NjjX9lyrU0f3A73DUxAy8gghOp8/uOxTmnVSkQG2yar8dEVE6IG/gIjUZ3x+f/xer0eSUlJmD59OiZOnOgUX758OdLT07F48WIMHDgQixYtwsiRI3Hs2DE0b97cByOmhiQ4OFjWu4M16c9dW1dxqZhUnbtyIBjZPRb3D2yD9K/34XKJbQ+hZ0Z2wcJfj8l2DPtdpCWbz2DJ5jPo2iIcv8y6Sbb+G5KVe7MB2PZnqkyrVjrVEQUSn/8zc9SoUZg3b564RqKqt956CzNmzMC0adOQmJiIxYsXIyQkBEuWLKnV8QwGA4qKihz+EFHdGt2zZa2/+9ED/XBT52ZO9Z8+2M+bIbl0NKe4zvr2NXcTybLraT2IAo3PJ0SuGI1G7N69G6mpqWKdUqlEamoqtm7dWqs+FyxYgMjISPFPfHy8XMMlomrc0z8eq/96ExZO6uVR++bhOkQGa3Bnn9ZiXXSo41qk1MRY7Pn7CGx6drisY7ULtLfP7HeHtp++6uOREPlGg54QXb58GRaLBbGxsQ71sbGxyMnJEcupqam466678NNPP6F169YuJ0uzZ89GYWGh+Ccri5u2+bOysjIkJycjOTkZZWVl9dqfu7au4lKxqnXuyv5EoVCgU2w4dG4WLEcE2Z7i3zMgAZkvjsCbdyeJsdmjuomfO8eGAwCiQ7UO61/kdPBiofj5aE4Rvth+DqVGMwDbm1qPf7UXc1cdbPC7hldmtlQ8EntmZBeHWFQ1i9+JAoXP1xDJYc2aNR631el00Ol0yMjIQEZGBiwW3h72Z1arFfv27RM/12d/7tq6ikvFpOrclRubL2fcgF1nr2JSv3inV7+Hd22OrbNvxoVrZejXpolDbELvOKy4vjZGLpU3Lbz34224VmpCQakJE3rH4fzVUvxvn21zw8n9E5DYKkLWY9eVvVkF4ucHBrVxiPVvG43Vh3Pxf9vO4b6BCfU8MiLfa9ATopiYGKhUKuTm5jrU5+bmokWLFl71nZaWhrS0NBQVFSEyMtKrvsh3goKC8Ntvv4mf67M/d21dxaViUnXuyo1Nj7hI9Iir/v/HlpHBkq+Evz05GU/d2hlD/rlOtrH8uP8StColurWMwLVSEwDb+puFvx5Dy8iK6z/63U14555kjEuOc+rjmW/2Yc/5a1g2bUCt72QZzBYcvliEXq2jHPZ3qo0f918SP0cEOd4Rsj8yO3yJ6yopMDXoCZFWq0Xfvn2xdu1a8VV8q9WKtWvXYubMmb4dHDUIKpUKI0aM8El/7tq6ikvFpOrclf2NVlXxC13unQNaN3E94birb2t8s/uCx/0t23IWy7acRZjE6/eXCssdyh+sOyU5IbIf79dDOXh4aHun+JnLehy9VASNSon/7DyPKTe2xdBOjgvIn//vAazYm40/D2vv8NiwNjTXr3+zcJ1T7LGUDthwPB8AUGIwS543UWPm87/xJSUlYgZvADhz5gwyMzMRHR2NhIQEpKenY8qUKejXrx8GDBiARYsWQa/XY9q0aV4dl4/MiOrfkE7NcGef1mjbNAThQfW7ZuX5UV1rNCGyKzGY3bYxSzzCNJgrfrZYqizQLiwzwWCyYPgb6x3qt5+5igMvjXSosz8KXPrHWa8nRAezbXd/JvZ2nrwlxUeJn/dnFeDGjjFeHYvI3/h8QrRr1y4MH17xlkh6ejoAYMqUKVi2bBkmT56M/Px8vPjii8jJyUFycjJ++eUXp4XWNcVHZo2D2WzGr7/+CgAYOXKkLKk7PO3PXVtXcalY1ToALssNeafq6oTp1A4LpeU2fXA7/HooBx890Bf3fLxNnMw8P6ormobpoFQAdfHy2Kl8PTLWncQt3ZpDqVDgg3UnHZLfHrxYhM+3nsXk/vH4/Uge/vLFHsl+isvNOJhdiL98sRuje7Z0mAAJEHA6vwR7zhdgTM+KdCcXrpXil4M5uL1XK7SIdP0o9USebcfzUqPzPwSDNCq0bhKMC9fKsPPsNU6IKOAoBH96RaIO2CdEhYWFiIjwj4WRVEGv1yMszJagsqSkBKGhoW6+IV9/7tq6ikvFqtYBcFmuzbkezy3GrW9vBAB8Pn2A5P4+jcVXO87jxVUH8dStXfDosA4AgJFvb8SxXN/tMfTyHd0x9/tDLttM6tsa316/kzV7VFcs+PmoZLt543vg/oEJmPzRNuw4a3tV/ug/boNOrYTBbEWQRgW9wYxlW87iPzvPI+tqxZuJH9zfR3JvqM4v/Azj9TfRzr42plbnSFRf5P797X//xCSqRKlUol+/fuLn+uzPXVtXcamYVJ27MlXv3gEJmNS3NTSqimv16oQemLS4dnuYycHdZAiAOBkCUO1kCAD+tvIgNhzPFydDAND3H6uhN1qgUAA/Pj4UqzKz8dHG007fjQ7VSvY5fUg7LN5wCoBtR+vxEo/WiBqrgL1DVHkN0fHjx3mHiAJCIN0hqk7615n4bo9tXc5LYxNx5rIen2095+NRye/pWzvjh/2XJHfdPvTySMlcbdtOX8E9H28Ty8fm3QadunEnuyX/JfcdooD9Z2ZaWhoOHz6MnTt3+nooRPUmJqzi7aKWbtabNFZNK90dmTq4HdJHdHHRuvF58pZO1SauTa60sBoA9p4vqPsBETUQATshIgpE0aFarH1qGH56Yig6Xd/tOdBMG9wOo3u2wOsu0oi4SzHStUXDv3arj+TVOCdbkEblkCPuPzvOyz0sogYrYCdEGRkZSExMRP/+/X09FPJCWVkZBg8ejMGDB8uWusPT/ty1dRWXilWtc1eurQ7NwvxmZ+W60CoqGB/c3xd395POY5gUH4XberTAB/f3qbaP+RN7Yt/cWxEX5bxJZG1p1fL+ON5XaVfqmkhNrHiDd2XmRVzVGz3+rtUq4JONp7FS5l3DiepDwC6q5mv3jYPVasWWLVvEz/XZn7u2ruJSMak6d2Xynk7jOBF5dXwPhAdpJN/CqiwyWINJfVvjnbUnanS8xJYReGBQG8z+7oBD/bv39Maj/7e7Rn3VRnhQzX7s3/3RVnw14wbJzRyr+tO/tmPLqSsAgMslBsnNKIkaqoCdEFHjoNPpsGLFCvFzffbnrq2ruFRMqs5dmbwXpFHhnXuS8eR/MgEA6kq7aSsUgKvXTm7qHFOjCVH/tk3wzaM3otRodpoQDevcDL0TorD3fAGevKUTPtp4CuWm6ie+c0Z3xfyfqn8Lza5lZBC6tYzA70fzMKpHC0zs09rj8QLAybwSPPz5LqxKG+yy3durj4uTIQCY9+MRTojIrwTsW2Z23IeIiKxWAS/97xAEwbZXkPJ6zrDd565i7/kCpHRphoW/HsOvh2x5Fb977Eb0SWiC/RcKcMf7m132ndqtOdYcyQMArH86BW1jbPtH7ThzFe+vO4mN19NlnJo/2iFXmd5gxuB//o6C63nUKjuzYDQUCgVWZWbjwrUyZBeUYWC7aNzeqxU2HM/D9GW7AAC/PzUM7ZuF1fh6PPX1Pvx3j+Ou3hN7x2HBnT0l3zrLulqKoa8755E7+o/bEKThW2pUN+T+/c0JESdEROSBk3klSH1rA4CKCZHFKuC1n4/gk01nHNpOGdRGfJX/20cHwWIV0D0u0ik/2DW9Ec9/tx89WkXi8Vs6OR3ztZ+PYvGGU7i5a3PERgThq+uLnN1tmnj4YhHKTBb0bdOkVucqCAKulZrQ5x+rHep7xEXgkZs64I6kVg71W05exn2fbnfq58P7+2CUm0ePRLXF1+5lwkXVjYPFYsH69euxfv16WfLS1aQ/d21dxaViVevclal+tYwMQnSoFmE6Ndo2td3lUSkVeGFMIib1dXwMFaStuCsSolVjYPumkslSm4Rq8dED/SQnQwCQPqIz/u+hgXjnnmSH7QLcSWwVUevJEAAoFArJzRsPZhfhia/2OtX/d0/FIuoPKy1Gry5FCVFDxDtEvEPk15i6g+pTmdECqyA47eNzIrcYI65veJkQHYI5o7uJC6Ttj7e8lVdUjvk/HcGQTs2cJmB1pe3zP0rWn54/GvklBsRGBDm1O/vaGDy0bCfWHs1D1xbh+GXWTfUyVgo8TN1BVIlCoUBiYqL4uT77c9fWVVwqJlXnrkz1K1grvR6mU2w4NjyTgn9vPYfxvePQIy4Svz81DC0jg2X7b9U8IgiL7uktS1+e6t+2CXaeveZU337OTwCAMb1aoqvEflbTh7TD2qO2fZAEQeDfV/ILvEPEO0RERJIKSo04kF2Iz7acw5ojuW7b39A+Gv95ZBDOXtYj5Y31AGyLsd+anFy3A6WAxDVERERUL6JCtBjaqRkW/6kPvnvsRrftP76+y7X9TToA+G5vNi4Ver9pKlFd44SIiIhcUquU6JPQBM+P6lptm/kTeiIiSCOW/5raWfw8PmMzzBZuJkoNW8BOiPiWWeNQVlaGESNGYMSIEbKl7vC0P3dtXcWlYlXr3JWJ6tujwzrg7Gtj8PCQdm7bTuwTJ37OLTLgxwOX6nJoRF7jGiKuIfJrfMuMqP4Vl5uwKvMiCkqNeOO34wBsd4juG5jg0G7uqoPifkyhWhUW3NkLwzo1Q2SIxqlPopriW2ZEleh0Ovzf//2f+Lk++3PX1lVcKiZV565M5AvhQRr86YY2OJ5bLE6I8osNTu0eGNRWnBDpjRY88dVe3N6rJaYPaYf1R/Pw4I1tERPGv8vUMPAOEe8QERHVmn0Por+mdsaTqc4bTD7+1V78b99Fye8+cEMb/GN8jzodHzVefMuMiIgajHsHxKNt0xCMTZJO0fFXiUmS3b+3nUO5yYJjOcWwWAP63+bUAPAOEe8Q+TWLxYI9e2zpAfr06QOVyrtEkjXpz11bV3GpWNU6AC7L3p4rUX2a8MFm7D1fUG28W8sIpHRphiEdYzC4Y0z9DYz8FpO7yowTIv/GRdVE/kEQBOQVGzBw/lq3bU/NHw2Vkrtbk2tcVC2TjIwMZGRkMEmmn1MoFGjTpo34uT77c9fWVVwqJlXnrkzkLxQKBWIjgjB/Qk/MWXHAZdsOc35CarfmyLi/D3Rq3gml+sE7RLxDRERUrwRBwIHsQlwpMeJUfgnm/XhEst0nD/aDTq3EjR2aQq3ikldyxEdmMuOEiIjItwRBQLvZP1UbH9WjBd67tzcnReSAb5kREVGjolAocPDlkVg6VTpzwM8Hc9DxhZ/x2Zaz9TswCiicEJFfKy8vx/jx4zF+/HiUl5fXa3/u2rqKS8Wq1rkrEzUmYTo1hndtjs+mD6i2zdzvD+GBf23H1lNXsC+rAE99vQ+7z12rx1FSY8ZHZnxk5tf4lhlR43NVb8RtizYiLEiN0/l6j75T3caQ1HjxLTOiSrRaLT7++GPxc332566tq7hUTKrOXZmoMYoO1WLHC6kAbOuL0r/ehxV7s11+5+01x5F1rRRv3JUEADBbrCg3WxGm46858gzvEPEOERGRX3C3+Lo6KV2a4elbu6BHXCTKTRZoVEruc9QI8A4REREFJIVCgSdv6YR31p6o0ffWH8vH+mP5DnU3dmiKBRN7IqewHJM/3gYAWDCxJ+4dkCDbeMm/8A4R7xD5NavViiNHbHuYdOvWDUqld+8J1KQ/d21dxaViVesAuCx7e65E/k5vMAMAyk0W3P/pdhzNKfa6z/sGJuDIpSKHNCNhOjVKDGaM6tEC6SM6I65JMM5fLUXn5uE4kF2IwjITklpHITJE4/XxyXPch0gmlXeqPn78OCdEfoqLqokIAPKKyjHgelqQnnGROJBd6NPx3DsgAcEaFTYcz8Op6wvDHx3WAQ8PbYcwnRqCABSUGbFs81n0adMEI7u3EL9bXG5CmE7NHend4CMzmaSlpSEtLU28oOS/YmLkTQRZk/7ctXUVl4pVrXNXJiKb5hFBOPjySJzOL0HPuEgIAlBsMGP9sTxoVUp8v+8ifj6YU2/j+WrHeae6xRtOYfGGU9V+J1Srgt5YkU5qQLtoBGtUOHSxCG2ahmD3uWtI7dYcJ/JKUFhmwqPDOqBfmyZQq5S4cK0UN7Rvis0nL6NnXCQOXSyCxSrgSE4RHhrcDnnFBgBAm6YhCNWqca3UiIsF5dh86jJaRgahe6tIhAepsfvcNUQFaxARrIHBbIFOrcKWU5dxucSIpqFanM7X41R+CfKKDRjVowUSmoZgf1YhBAgY3qU5tp6+gosF5VhzJBfx0cGwWoF/jO+Om7vGyn+RZRawd4js+MiMiCgwlBktyLpWinYxofhh/0Vc1ZtwZ584RIVoYbUKWHs0D7lF5dhx5iruH5iA5hFB+HZ3FtYdzUdhmQktI4OgUAA7z3Lvo5o6+o/bEKSRNy8dH5nJjBMiIiKqiVKjGSFaNYrLTfj5YA5aRwVj34VCJESHQKNSICZch18P5iCnqBwmixWD2jdFSpfmmPzRVlwsLEdcVDCyC8p8fRr1at/cWxEZLO8aK06IZMYJERER+Uq5yYIjl4qQEB0CpUKBqBANDGYrlAoFzFYrdGoVTBYr3lp9HGVGC6YNbouYcB1CNCqczC/Bij3Z2HXuGm7u2hx9EpqgeYQO64/l43/7LmJgu2hEBGuw5I8zuLNva2QXlMFgsqB1kxAM79ocRy4VoVmYDtdKjYgO1SJIo8LgjjE4dLEQOYXlCNGqsP9CIYZ3bY7+baNRVG5CbmE52sWEepRXzmC2oMvffgHACZFf4ITIv5WXl+Ohhx4CAPzrX/9CUFBQvfXnrq2ruFSsah0Al2Vvz5WIqC4ZzVZ0/tvPADgh8gucEPk3vmVGRNQwVZ4QrUm/CR2bh8vaP98yI6pEq9Xi7bffFj/XZ3/u2rqKS8Wk6tyViYgaKpVSgSYhGlwrNfnFFgK8Q8Q7RERERHXidH4JMrMKcGv3FrLnleMdIiIiIvIL7ZuFoX2zMF8PwyOcEJFfs1qtOH/etgFaQkKCLKk7PO3PXVtXcalY1ToALstM3UFEJJ9G8cjshx9+wFNPPQWr1YrnnnsODz/8sMff5SMz/8ZF1UREgYmPzKowm81IT0/HunXrEBkZib59+2LChAlo2rSpr4dG9SQkJMRn/blr6youFata565MRETy8PsJ0Y4dO9C9e3fExcUBAEaNGoXffvsN9957r49HRvXBfmfFF/25a+sqLhWTqnNXJiIiefh8EcLGjRsxduxYtGrVCgqFAitXrnRqk5GRgbZt2yIoKAgDBw7Ejh07xNjFixfFyRAAxMXFITs7uz6GTkRERI2EzydEer0eSUlJyMjIkIwvX74c6enpmDt3Lvbs2YOkpCSMHDkSeXl59TxSIiIiaqx8PiEaNWoU5s2bhwkTJkjG33rrLcyYMQPTpk1DYmIiFi9ejJCQECxZsgQA0KpVK4c7QtnZ2WjVqlW1xzMYDCgqKnL4Q/7LYDBgxowZmDFjBgwGQ732566tq7hUrGqduzIREcmnQb1lplAosGLFCowfPx4AYDQaERISgm+//VasA4ApU6agoKAAq1atgtlsRrdu3bB+/XpxUfWWLVuqXVT90ksv4eWXX3aq51tm/olvmRERBaaAesvs8uXLsFgsiI2NdaiPjY3F0aNHAQBqtRpvvvkmhg8fDqvVimeffdblG2azZ89Genq6WC4qKkJ8fHzdnADVOY1Gg3nz5omf67M/d21dxaViUnXuykREJI8GfYfIvmB6y5YtGDRokNju2WefxYYNG7B9+3avj8l9iIiIiPyP3L+/fb6GyJWYmBioVCrk5uY61Ofm5qJFixZe9Z2RkYHExET079/fq36IiIjI/zXoCZFWq0Xfvn2xdu1asc5qtWLt2rUOd4xqIy0tDYcPH8bOnTu9HSb5kCAIyM/PR35+PuS42VmT/ty1dRWXilWtc1cmIiL5+HwNUUlJCU6ePCmWz5w5g8zMTERHRyMhIQHp6emYMmUK+vXrhwEDBmDRokXQ6/WYNm2aV8fNyMhARkYGLBaLt6dAPlRaWormzZsDkGehcU36c9fWVVwqVrUOgMsyF1UTEcnH5xOiXbt2Yfjw4WLZvuB5ypQpWLZsGSZPnoz8/Hy8+OKLyMnJQXJyMn755RenhdY1lZaWhrS0NBQWFiIqKoqv3/upyjs3FxUVeT3BrUl/7tq6ikvFqtZVJlXmZJ6IApn956Jcd8wb1KJqX7hw4QLfMiMiIvJTWVlZaN26tdf9BPyEyGq14uLFiwgPD4dCoRDr+/fvL7m+yNN6V2X7Z/sr/1lZWbK94Vbd+GrbntfBdVyq3pM6XgfnMq8Dr0NDvA6etOV1cN2mrq5DeHg4iouL0apVKyiV3i+J9vkjM19TKpWSM0uVSiX5l87TelflqrGIiAjZ/oJXN77atud1cB2XqvekjtfBuczrwOvQEK+DJ215HVy3qcvrEBkZ6dH4PdGg3zLzpbS0NK/qXZWr60MONe3bXXteB9dxqXpP6ngdnMu8Dp4d2xu8DjXv25O2vA6u2zT062AX8I/MfImbQtrwOtjwOtjwOtjwOtjwOtjwOtjU5XXgHSIf0ul0mDt3LnQ6na+H4lO8Dja8Dja8Dja8Dja8Dja8DjZ1eR14h4iIiIgCHu8QERERUcDjhIiIiIgCHidEREREFPA4ISIiIqKAxwkRERERBTxOiPxI27Zt0atXLyQnJzskxA00paWlaNOmDZ5++mlfD8UnCgoK0K9fPyQnJ6NHjx745JNPfD0kn8nKykJKSgoSExPRq1cvfPPNN74ekk9MmDABTZo0waRJk3w9lHr1ww8/oEuXLujUqRM+/fRTXw/HZwL1v39lcvws4Gv3fqRt27Y4ePAgwsLCfD0Un3rhhRdw8uRJxMfH44033vD1cOqdxWKBwWBASEgI9Ho9evTogV27dqFp06a+Hlq9u3TpEnJzc5GcnIycnBz07dsXx48fR2hoqK+HVq/Wr1+P4uJifPbZZ/j22299PZx6YTabkZiYiHXr1iEyMhJ9+/bFli1bAvL/g0D871+VHD8LeIeI/MqJEydw9OhRjBo1ytdD8RmVSoWQkBAAgMFggCAICNR/17Rs2RLJyckAgBYtWiAmJgZXr1717aB8ICUlBeHh4b4eRr3asWMHunfvjri4OISFhWHUqFH47bfffD0snwjE//5VyfGzgBMimWzcuBFjx45Fq1atoFAosHLlSqc2GRkZaNu2LYKCgjBw4EDs2LGjRsdQKBQYNmwY+vfvjy+++EKmkcunPq7B008/jQULFsg04rpRH9ehoKAASUlJaN26NZ555hnExMTINHp51ce1sNu9ezcsFgvi4+O9HLW86vMa+BNvr8vFixcRFxcnluPi4pCdnV0fQ5cV/37YyHkdavuzgBMimej1eiQlJSEjI0Myvnz5cqSnp2Pu3LnYs2cPkpKSMHLkSOTl5Ylt7GtCqv65ePEiAOCPP/7A7t278f3332P+/PnYv39/vZybp+r6GqxatQqdO3dG586d6+uUaqU+/i5ERUVh3759OHPmDL788kvk5ubWy7nVVH1cCwC4evUqHnzwQXz88cd1fk41VV/XwN/IcV0aA14HG7mug1c/CwSSHQBhxYoVDnUDBgwQ0tLSxLLFYhFatWolLFiwoFbHePrpp4WlS5d6Mcq6VRfX4Pnnnxdat24ttGnTRmjatKkQEREhvPzyy3IOW3b18XfhL3/5i/DNN994M8x6UVfXory8XBg6dKjw+eefyzXUOlOXfx/WrVsn3HnnnXIMs97V5rps3rxZGD9+vBh/8sknhS+++KJexltXvPn74c///auq7XXw9mcB7xDVA6PRiN27dyM1NVWsUyqVSE1NxdatWz3qQ6/Xo7i4GABQUlKC33//Hd27d6+T8dYFOa7BggULkJWVhbNnz+KNN97AjBkz8OKLL9bVkOuEHNchNzdX/LtQWFiIjRs3okuXLnUy3rokx7UQBAFTp07FzTffjAceeKCuhlpn5LgGjZEn12XAgAE4ePAgsrOzUVJSgp9//hkjR4701ZDrBP9+2HhyHeT4WcAJUT24fPkyLBYLYmNjHepjY2ORk5PjUR+5ubkYMmQIkpKScMMNN+DBBx9E//7962K4dUKOa9AYyHEdzp07h6FDhyIpKQlDhw7F448/jp49e9bFcOuUHNdi8+bNWL58OVauXInk5GQkJyfjwIEDdTHcOiHX/xepqam466678NNPP6F169Z+/8vSk+uiVqvx5ptvYvjw4UhOTsZTTz3V6N4w8/TvR2P771+VJ9dBjp8FatlGTHWqffv22Ldvn6+H0WBMnTrV10PwmQEDBiAzM9PXw2gQhgwZAqvV6uth+NyaNWt8PQSfuOOOO3DHHXf4ehg+F6j//SuT42cB7xDVg5iYGKhUKqeFr7m5uWjRooWPRlW/eA1seB0q8FrwGlSH18WG18Gmvq4DJ0T1QKvVom/fvli7dq1YZ7VasXbtWgwaNMiHI6s/vAY2vA4VeC14DarD62LD62BTX9eBj8xkUlJSgpMnT4rlM2fOIDMzE9HR0UhISEB6ejqmTJmCfv36YcCAAVi0aBH0ej2mTZvmw1HLi9fAhtehAq8Fr0F1eF1seB1sGsR1qNW7aeRk3bp1AgCnP1OmTBHbvPfee0JCQoKg1WqFAQMGCNu2bfPdgOsAr4ENr0MFXgteg+rwutjwOtg0hOvAXGZEREQU8LiGiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOBxQkREREQBjxMiIiIiCnicEBEREVHA44SIiMhLRqMRHTt2xJYtW2Tt95dffkFycrLXWbyJyD1OiIjIwdSpU6FQKJz+VM4zRI4WL16Mdu3a4cYbbxTrFAoFVq5c6dR26tSpGD9+vEf93nbbbdBoNPjiiy9kGikRVYcTIiJyctttt+HSpUsOf9q1a+fUzmg0+mB0DYsgCHj//ffx0EMP1Un/U6dOxbvvvlsnfRNRBU6IiMiJTqdDixYtHP6oVCqkpKRg5syZmDVrFmJiYjBy5EgAwMGDBzFq1CiEhYUhNjYWDzzwAC5fviz2p9fr8eCDDyIsLAwtW7bEm2++iZSUFMyaNUtsI3VHJSoqCsuWLRPLWVlZuPvuuxEVFYXo6GiMGzcOZ8+eFeP2uy9vvPEGWrZsiaZNmyItLQ0mk0lsYzAY8NxzzyE+Ph46nQ4dO3bEv/71LwiCgI4dO+KNN95wGENmZqbLO2S7d+/GqVOnMGbMmBpeZeDs2bOSd+NSUlLENmPHjsWuXbtw6tSpGvdPRJ7jhIiIauSzzz6DVqvF5s2bsXjxYhQUFODmm29G7969sWvXLvzyyy/Izc3F3XffLX7nmWeewYYNG7Bq1Sr89ttvWL9+Pfbs2VOj45pMJowcORLh4eHYtGkTNm/ejLCwMNx2220Od6rWrVuHU6dOYd26dfjss8+wbNkyh0nVgw8+iK+++grvvvsujhw5go8++ghhYWFQKBSYPn06li5d6nDcpUuX4qabbkLHjh0lx7Vp0yZ07twZ4eHhNTofAIiPj3e4C7d37140bdoUN910k9gmISEBsbGx2LRpU437J6IaEIiIKpkyZYqgUqmE0NBQ8c+kSZMEQRCEYcOGCb1793Zo/49//EO49dZbHeqysrIEAMKxY8eE4uJiQavVCl9//bUYv3LlihAcHCw8+eSTYh0AYcWKFQ79REZGCkuXLhUEQRD+/e9/C126dBGsVqsYNxgMQnBwsPDrr7+KY2/Tpo1gNpvFNnfddZcwefJkQRAE4dixYwIAYfXq1ZLnnp2dLahUKmH79u2CIAiC0WgUYmJihGXLllV7vZ588knh5ptvdqoHIAQFBTlcx9DQUEGtVgvjxo1zal9WViYMHDhQuP322wWLxeIQ6927t/DSSy9VOwYi8p7at9MxImqIhg8fjg8//FAsh4aGip/79u3r0Hbfvn1Yt24dwsLCnPo5deoUysrKYDQaMXDgQLE+OjoaXbp0qdGY9u3bh5MnTzrdiSkvL3d4nNS9e3eoVCqx3LJlSxw4cACA7fGXSqXCsGHDJI/RqlUrjBkzBkuWLMGAAQPwv//9DwaDAXfddVe14yorK0NQUJBk7O2330ZqaqpD3XPPPQeLxeLUdvr06SguLsbq1auhVDrevA8ODkZpaWm1YyAi73FCREROQkNDq31EVHlyBAAlJSUYO3Ys/vnPfzq1bdmypcdvpykUCgiC4FBXee1PSUkJ+vbtK/nGVbNmzcTPGo3GqV/7a+vBwcFux/Hwww/jgQcewNtvv42lS5di8uTJCAkJqbZ9TEyMOOGqqkWLFk7XMTw8HAUFBQ518+bNw6+//oodO3ZIPnq7evWqwzkSkfw4ISIir/Tp0wf//e9/0bZtW6jVzj9SOnToAI1Gg+3btyMhIQEAcO3aNRw/ftzhTk2zZs1w6dIlsXzixAmHuyJ9+vTB8uXL0bx5c0RERNRqrD179oTVasWGDRuc7tzYjR49GqGhofjwww/xyy+/YOPGjS777N27Nz788EMIggCFQlHjMf33v//FK6+8gp9//hkdOnRwitvvgPXu3bvGfROR57iomoi8kpaWhqtXr+Lee+/Fzp07cerUKfz666+YNm0aLBYLwsLC8NBDD+GZZ57B77//joMHD2Lq1KlOj4VuvvlmvP/++9i7dy927dqFRx991OFuz/3334+YmBiMGzcOmzZtwpkzZ7B+/Xo88cQTuHDhgkdjbdu2LaZMmYLp06dj5cqVYh9ff/212EalUmHq1KmYPXs2OnXqhEGDBrnsc/jw4SgpKcGhQ4dqcNVsDh48iAcffBDPPfccunfvjpycHOTk5ODq1atim23btkGn07kdBxF5hxMiIvJKq1atsHnzZlgsFtx6663o2bMnZs2ahaioKHHSs3DhQgwdOhRjx45FamoqhgwZ4rQW6c0330R8fDyGDh2K++67D08//bTDo6qQkBBs3LgRCQkJmDhxIrp164aHHnoI5eXlNbpj9OGHH2LSpEl47LHH0LVrV8yYMQN6vd6hzUMPPQSj0Yhp06a57a9p06aYMGFCrTZP3LVrF0pLSzFv3jy0bNlS/DNx4kSxzVdffYX777/f5WM7IvKeQqj60J6IqB6kpKQgOTkZixYt8vVQnGzatAm33HILsrKyEBsb67b9/v37MWLECJw6dUpycXltXb58GV26dMGuXbskN8YkIvnwDhER0XUGgwEXLlzASy+9hLvuusujyRAA9OrVC//85z9x5swZWcdz9uxZfPDBB5wMEdUDLqomIrruq6++wkMPPYTk5GR8/vnnNfru1KlTZR9Pv3790K9fP9n7JSJnfGRGREREAY+PzIiIiCjgcUJEREREAY8TIiIiIgp4nBARERFRwOOEiIiIiAIeJ0REREQU8DghIiIiooDHCREREREFPE6IiIiIKOD9P/y4sOr8Fg3lAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 9):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "07f28d13", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.005)" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAAGwCAYAAABfKeoBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACM8klEQVR4nO2deXwTZf7HP5M0SVuucpbDUlwRBVdBKSCKAlpEVBRUPFalgKKsRcGuF+iC6w9PFFCs4rGA1yrqCux6K6Iggty4WkVBRKCUQ6SlV87n90eZIUmTdOaZJ82Tyff9evFimibvfJ5nJpOnM8+hMMYYCIIgCIIgiAaxJToAQRAEQRBEskANJ4IgCIIgCJ1Qw4kgCIIgCEIn1HAiCIIgCILQCTWcCIIgCIIgdEINJ4IgCIIgCJ1Qw4kgCIIgCEInaYkOkGgCgQBKS0vRrFkzKIqS6DgEQRAEQeiAMYYjR46gY8eOsNka7zpQyjecSktLkZOTk+gYBEEQBEFwsGvXLhx33HGN9n4p33Bq1qwZgLqKb968eYLTEARBEAShh4qKCuTk5Gjf441FyjaciouLUVxcDL/fDwBo3rw5NZwIgiAIIslo7G42SqqvVVdRUYEWLVqgvLy8wYaTx+PBU089BQCYNGkSnE6n4fezkkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8sY8eORdu2bXV9fwuFpTjl5eUMACsvL2/wuZWVlQwAA8AqKyu53s9KDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKUlpbq/v4WScrequMhLS0NBQUF2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA92qM3CrjiAIgiAIOUjU9zdNgEkQBEEQBKETajgRBEEQBEHohBpOBqiqqkJWVhaysrJQVVWV8g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdww1SXl5Ojjh4rOQQ5SFHfDxWcojykCM+HnLExyMqCy/UcDJARkYGfvrpJ2071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhORY4lbdjh07MG7cOOzbtw92ux1r1qxBkyZNhL+P1+vFCy+8AAC4+eab4XA4UtohUxZZHDJlsZJDpiyyOGTKYiWHTFms5IhHlmuuuYYrh2kadZ7yOHHuueeyFStWMMYY+/3335nX69X9Wt4lV44cOcKVVZbp72WdQj/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyhZPvv/8eDocD55xzDgCgVatWcXsvm82GTqcPxh/VHtwwfx3evW2Q4VWZ7XY7rrzySm2bB1kcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7Zspgh4Z3DV6xYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvgCAJUuWYOHChfD7/dizZw+uvPJKTJ06Vff7G+lcVu3xoce0j7WfSx4cikxn0rc9CYIgCCLpSNnO4VVVVejZsyeKi4sj/n7RokUoKirC9OnTsXHjRvTs2RNDhw7F/v37AQA+nw8rV67Es88+i9WrV+PTTz/Fp59+2phFIAiCIAgiRUh4w2nYsGGYMWMGRo4cGfH3s2bNwvjx4zF27Fj06NED8+bNQ2ZmJubPnw8A6NSpE/Ly8pCTkwOXy4WLLroImzdvjvp+brcbFRUVIf8IgiAIgiD0kPCGUyw8Hg82bNiA/Px87TGbzYb8/HysXr0aANCnTx/s378ff/zxBwKBAFasWIHu3btHdT7yyCNo0aKF9i8nJ0d3nurqauwuHo3dxaMR8NZylam6uhqdOnVCp06dUF1dndQOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcwgdQedgwcPwu/3Izs7O+Tx7Oxs/PjjjwCAtLQ0PPzwwzj33HPBGMMFF1yASy65JKpzypQpKCoq0n6uqKjQ3XhijMFfeejoDwYLE+QoLS3VtpPZIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYsZpG446WXYsGEYNmyYrue6XC64XC4UFxejuLgYfr9f9/ukp6ejw5inAQBKGt88Funp6di0aZO2ncwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWcyQ8FF1wSiKEjKqzuPxIDMzE++8807ISLuCggIcPnwYS5cuNf2eNKqOIAiCIJKPlB1VFwun04nevXtj2bJl2mOBQADLli1D//79E5iMIAiCIIhUJOGXSyorK7Ft2zbt5x07dmDz5s1o1aoVOnfujKKiIhQUFCAvLw99+/bFnDlzUFVVhbFjx5p6X55bdV6vF5X/+wwA0KTHIK739Xq9eP311wEA1113HfeU8zI4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyDJ8+HCuHKYRMf24GZYvX65Nnx78r6CgQHvO3LlzWefOnZnT6WR9+/Zla9asEfb+RpZc2ff7YS1fzh3vsCq3/qVdVGSZ/l7WKfST3SFTFis5ZMoii0OmLFZyyJTFSo54ZEnZJVcGDRrUYM/4iRMnYuLEiY2UKDKMMdwwfx0y/pQHAFBsfHc57XY7LrroIm07mR0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymEGqzuGNSfCtup9++qnBzmXhHcMB6hxOEARBEImCOoc3MoWFhSgpKcG6desSHYUgCIIgiCQhZRtOBEEQBEEQRqGGkwEC3lrseWE89rww3tSSKyeeeCJOPPFEU1POy+CQKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQwp20GHZzoCMMD3x15tmwfGmDb9Am/3MlkcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspghZRtOhYWFKCws1DqX6UFJcyD7use1bR7S09Px1VdfadvJ7JApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDCk7qk5Fb698GlVHEARBEPJAo+oIgiAIgiAkhy6XGIAF/Kj+aTUAILMb31p5Pp8PixcvBgCMHDkSaWnGd4EsDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiVHPLKcf/75XDlMI2L68WTkmWeeYd27d2fdunXTNWV7ldvLcu54h5ZckTSLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKLrmSKHg6h0NR4Mr5s7bNg81mw8CBA7XtZHbIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgbqHE6dwwmCIAgi6aDO4QRBEARBEJJDDSeCIAiCIAidpGzDqbi4GD169ECfPn10vybgdaN0wW0oXXAbAl431/vW1NSgV69e6NWrF2pqapLaIVMWWRwyZbGSQ6YssjhkymIlh0xZrOSQLYspGrUruoSUl5fTqDqJRkkku0OmLFZyyJRFFodMWazkkCmLlRzxyEKj6pIAJc2Bdlf9n7bNQ3p6Oj755BNtO5kdMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspiBRtXRqDqCIAiCSDpoVB1BEARBEITk0OUSA7CAHzU7NgIAMo4/g8vh8/nw8cd1V66GDh3KPeW8DA6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyy9O/Pt/SZaRq1R5WEUOdwuTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncMbmeLiYhQXF8Pv9+t/kaLA2f5EbZsHm82GvLw8bTuZHTJlkcUhUxYrOWTKIotDpixWcsiUxUoO2bKYgTqHU+dwgiAIgkg6qHM4QRAEQRCE5FDDiSAIgiAIQifUcDJAwOtG2Wt3oey1u0wtuXL22Wfj7LPPNjXlvAwOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwQoaQ60HXmfts2Dy+XC4sWLte1kdsiURRaHTFms5JApiywOmbJYySFTFis5ZMtiBhpVR6PqCIIgCCLpoFF1KQRjDNUeH1K8zUoQBEEQSQddLjEAC/jh3v09AMB13ClcDp/Ph/Pumoef9h3B2WcPwDu3DoBicDJNv9+PlStXAgDOOecc2O12wzlEOGTKIotDpixWcsiURRaHTFms5JApi5Uc8cjSs2dPrhymadQeVRLS2J3D9x86bJkO5jJlkcUhUxYrOWTKIotDpixWcsiUxUqOeGShzuGNDN+SK4CjdWdtmwdFUYQ4evTooW0nyiFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGahzeCN3Dg/3UAdzgiAIgjAOdQ4nCIIgCIKQHGo4EQRBEARB6IQaTgYIeN3Y9+b92Pfm/aaWXBHhGDJkCIYMGWJq2nqzDpmyyOKQKYuVHDJlkcUhUxYrOWTKYiWHbFlM0ahd0SWERtXJNUoi2R0yZbGSQ6YssjhkymIlh0xZrOSIRxYaVZcEKGkOtL7kb9o2Dy6XS4jjtdde07YT5ZApiywOmbJYySFTFlkcMmWxkkOmLFZyyJbFDDSqjkbVEQRBEETSQaPqJCe1m5cEQRAEQQC05IouGGMYNW81WMAPz77tAABn9glcLr/fD/fen0w7Nm7cCAA444wzuKetN+uQKYssDpmyWMkhUxZZHDJlsZJDpixWcsQjS9euXblymKZRe1RJiJ7O4VVuL8u95z3qHC5xFlkcMmWxkkOmLLI4ZMpiJYdMWazkiEcW6hxugi5duqB58+aw2Wxo2bIlli9fHp83UoCczp1RerjW1HIp9ubtNB+vIzc3V9tOlEOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJIVsWM1iic3iXLl3w3XffoWnTpoZfq6dzWXCH7vX35yNvxmcAqHM4QRAEQSQK6hxOEARBEAQhOQlvOK1YsQLDhw9Hx44doSgKlixZUu85xcXF6NKlC9LT09GvXz+sXbs25PeKomDgwIHo06cPXn/99UZKThAEQRBEqpHwhlNVVRV69uyJ4uLiiL9ftGgRioqKMH36dGzcuBE9e/bE0KFDsX//fu05X331FTZs2ID//Oc/ePjhh/Htt9/GJSvzeTD6mlHY/+4MMJ+Hy1FbW4v9784w7RgxYgRGjBiB2trahDlkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUWjdkVvAABs8eLFIY/17duXFRYWaj/7/X7WsWNH9sgjj0R03HnnnWzBggVR36O2tpaVl5dr/3bt2kWj6iQaJZHsDpmyWMkhUxZZHDJlsZJDpixWcsQjC42qi4DH48GGDRswZcoU7TGbzYb8/HysXr0aQN0Vq0AggGbNmqGyshKff/45rrrqqqjORx55BP/4xz+48ij2NMx6uhgz3v8Bip2v6pxOJ1oNnaj5eB0vvPCCtp0oh0xZZHHIlMVKDpmyyOKQKYuVHDJlsZJDtixmkGpUnaIoWLx4MUaMGAEAKC0tRadOnfD111+jf//+2vPuvvtufPnll/jmm2/wyy+/YOTIkQDqJsYaP348Jk2aFPU93G433G639nNFRQVycnJoVB1BEARBJBGJGlWX9N/Yf/rTn7Blyxbdz3e5XHC5XCguLkZxcTH8fn8c0xEEQRAEYSWkbji1adMGdrsd+/btC3l83759aN++vSl3YWEhCgsLtRZrLNRrcowF8OMPJfAc2AlHmxyu9w0EAvAc2AkAphw//PADAKB79+6w2Yz38RfhkCmLLA6ZsljJIVMWWRwyZbGSQ6YsVnLEI0unTp24cpimUXtUNQCidA6fOHGi9rPf72edOnWK2jncKA0tuRIIBNiwOSuk7Rx+5MgRw68Pd8jU2S/ZHTJlsZJDpiyyOGTKYiWHTFms5IhHlpTtHF5ZWYlt27ZpP+/YsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKowdO9bU++q9VVfj9aNkbwUA4OT2zVDdpg3+qOKbRkDFlmHuXixjDM6mWfD5A7j+pW+weNJ5XFPPt2nTxlQOkR4rOUR5yBEfj5UcojzkiI+HHPHxiMrCS8I7h3/xxRcYPHhwvccLCgqwcOFCAMAzzzyDmTNnoqysDL169cLTTz+Nfv36CXn/hjqXBXfm/v4fQ6Eo0H5OVOdw6mBOEARBpDop2zl80KBBaKjtNnHiREycOLGREkUnQesJEgRBEAQhCQmfOZwgCIIgCCJZSNmGU3FxMXr06IE+ffrofk1tbS3GFtyAA/+dCebzgOcmZ21tLQ78d6bm4EGU47rrrsN1111negp9sx4rOWTKYiWHTFlkcciUxUoOmbJYySFbFlM0ald0CWloVJ263EruPe/VGxE3bM4KFggEDL2fiFF1sizbIspjJYdMWazkkCmLLA6ZsljJIVMWKznikSVlR9UlE06nE7NmzcILK35BtT0NJXsrUOP1G+qY7XQ60fK88QDMLbkiwjF79mxtmxcRHis5ZMpiJYdMWWRxyJTFSg6ZsljJIVsWMyR8VF2iCJ6O4KefftI1qk4dvVbl9uGU6Xwj62hUHUEQBEGYJ1Gj6lK2j1NhYSFKSkqwbt06w6+l0XUEQRAEkZrQZQoDBAIB/Prrr6jx+MBYAIpirN3JGENlrRe+8rolZOzN23LnEOH47bffAACdO3c2NYW+WY+VHDJlsZJDpiyyOGTKYiWHTFms5IhHlqysLK4cpmnUHlUSYqZzeO497+numB0IBNjlz66SctkWmTr7JbtDpixWcsiURRaHTFms5JApi5Uc8chCncOThMzMTK7X1Xj92LDzDwCA4nCZziHCoZaFmezmxlsnVnWI8pAjPh4rOUR5yBEfDzni4xGVhRfqHM7ROTzSYw0R3qFbJVGdwxljuHLeamzY+Qfyclvi7Qn9uda7IwiCIIhEQJ3DGxkzncOtQPAVsPU7/0CNN/ZixwRBEARBpHDDKZGsvLv+osYEQRAEQcgPNZwM4Ha7MX78eBT+9RYwn5fLwXxeTC2aiN8/fJrb4Xa78fuHTyfcoXrGjx+P8ePHw+12p7xDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZeQxhpVp3p4R9UFAgFW5fayQCAgzbItjMkzYkMWh0xZrOSQKYssDpmyWMkhUxYrOeKRhUbVNTLBncP14nA4MGPGDHj9ASw4Yud6X8Vux5RpD+C55duh2PU5WFhH7hev74Wsc27QfDw4HA7TDtUzY8YMbTvVHTJlsZJDpiyyOGTKYiWHTFms5JAtixlSdlSdSkO98uMxqm79/fnIm/GZ7teHj6ILfr2RDLGctGwLQRAEkUzQqDqCIAiCIAjJoUsMBmCM4cCBA6j2+MAY45r3iDGGgwcOwF9dDlsGXwuZMQZ/dTkAJNSheg4ePAgAaNOmDX+dWMQhUxYrOWTKIotDpixWcsiUxUqOeGRxOp1cOcxCDScDVFdXo127dgCAnDvegeJMN+xgXje6/ylHc/Dm2D33uoQ7VI9aJ5WVlWjSpElKO2TKYiWHTFlkcciUxUoOmbJYyRGPLKWlpVw5zEK36giCIAiCIHRCV5wM0KRJEzDGoi6fogebMx0HjtSGdO7myZF7z3vcrxflUD1mxxdYySFTFis5ZMoii0OmLFZyyJTFSo54ZKmoqDCdiQe64kQQBEEQBKGTlG04FRcXo0ePHujTp0+io6Q86lU8tdM9QRAEQchKyjaceBb5dbvdmDx5Mu76W5GpJVfuu+dOHPrsBVPLpRz67AXDDrWBwhjjdkTKMnnyZEyePJlr+nvGGEbO/RLtz7oC7c+6ApfP/ZKr8WQ2hyiHTFms5JApiywOmbJYySFTFis5ZMtiCtNzjyc5ybDkSnCG3HveY7+W/W7YEQgE2OXPrmK597zHrnh2Fdv3uxxLrlS5vdzL0IjMIcohUxYrOWTKIotDpixWcsiUxUqOeGShJVeSAIfDgalTp8LrD2CRn3/Jlcl33o35q341tVxK8/5XaT491Hj92LDzDwDA+p1/wAebYUe0LFOnTtW2eVDsdtNZROQQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxAS66kyJIr8Vi2RQSRRijS8i8EQRBEQ9CSKwRBEARBEJJDf9YbgDGGqqoq00uuVFVVIeCpheJwcecIeGoBIKEO1VNdXQ0AyMzM5K4T5nWbyiIqh1mHTFms5JApiywOmbJYySFTFis54pElUTfM6IqTAaqrq9G0aVO0a5WlfdEbhXnd6NK+NXbNvpLbUV1djV2zr0y4Q/U0bdoUTZs21Q5mozCvW0h5zOYQ4ZApi5UcMmWRxSFTFis5ZMpiJYdsWcxADSeTpHYPMYIgCIJILehWnQEyMzNRWVmJao8PeY+uBACMmrca798+QPclR8Xhwq9lv+Ocx5brvi0V3jjLzMzUFublvbUlwqF6KisrtW0eFIdLSHnM5hDhkCmLlRwyZZHFIVMWKzlkymIlRzyy+Hw+7ixmSNmGU3FxMYqLi+H3+3W/RlEUZDZpgsxMhlM6tkDJ3gqU7K1AjdevexSYoiho0qQJbM50Xc9njGHUvNX1HHpfHyuHWYfq4V0pO9ihCCiPiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlqrrpHhmTlcRVEUvD2hfxxS1afG60fJ3tCDo8ajv7FHEARBEIQ4UrbhxIPH48F9992H++67D16vh8vB/F489I9p+GPFK2B+vqVOBjzyCf5Y8Yoph8fjMe1QPWqdeDz8dSKiPGZziHDIlMVKDpmyyOKQKYuVHDJlsZJDtiymiPfU5LLDu+TK/kOHtcdjLRESCARYldvLDhyp5VpyJfj9h81ZkdBlWyJBS67Im8VKDpmyyOKQKYuVHDJlsZIjHlloyZUkIC0tDZMmTdK2G4IxhivnrdaWOgEAxWbHzbdOxBvf/AbFZmx5kbcn9EeN14/eD3yIZr0v1Xw8pKWlmXaoHiN1EgnFZhdSHrM5RDhkymIlh0xZZHHIlMVKDpmyWMkhWxYz0JIrHEuuxHo82muDMbLkSvj7AOBaooSWXCEIgiCsBC25QhAEQRAEITnUcEoyMhx25OW2THQMgiAIgkhJqOFkgKqqqro5hxQFVVVVXI6ApxZtm6Vj52OXaGvFGUFRFCy84TTsfOwSbgdQVxazDtUjok5ElMdsDhEOmbJYySFTFlkcMmWxkkOmLFZyyJbFDNRwikEgwBCQsAcY7wKLBEEQBEGYg3rgRiEQYPjT1A9CHsvMzMT+/fu1bR4Uhws//LILQ2avMLW8yK+7SzHAwLItkRzH3fa6lokXUXViNouIHCIcMmWxkkOmLLI4ZMpiJYdMWazkiEcWp9PJncUM1HCKwqHq+hNrKYqCtm3bAqgbDcaDoiho07Yt7JktuLOpOcw6jL6eMYYarx8ZDrt21Su4ThozSySHiBxmHTJlsZJDpiyyOGTKYiWHTFms5IhHFlpyxSTV1dXIzc3FnXfemegolkSdk6rHtI8xat5qpPgsFgRBEESKYpkrTg899BDOPPPMuL6Hx+PB7JmPAQAKJ93B5WB+L2bNfBTlX29H836Xc+d4/NHHUP71z6Yc5V8vAgBdjhqvX5vIc/3OP7SFjT0eD2bOnAkAuOuuu7gunTK/FxXfvKs7SyRE5BDhkCmLlRwyZZHFIVMWKzlkymIlRzyy3HLLLVw5zGKJCTB//vln3HvvvRg+fDi+++47PPHEE7pfG20CrYOV7pAJIgFg3T0D0K5VFgBg/6HD6PPYVwCMTYAZ8NRi1+wrAQA5d7yDHx+9zNAEmJnONFRVVaFp06a6HZGyfHlHf3Rp35orR7QslZWVhle+rvb4cPK9Sw3VSSTM5gh37D90GG2ymnN1xBedhRxyZZHFIVMWKzlkymIlRzyylJaWomPHjo0+AWbCrzitWLECM2fOxIYNG7B3714sXrwYI0aMCHlOcXExZs6cibKyMvTs2RNz585F3759td/feeedmDlzJr7++uu4Zk1LS8NNN92kbfOg2Oy4vmAslmzaY2p5kTHjxuGd9btNOZqedoGWiRdRdWI2i4gcdrsdXc4ejoNH3Mh7aDn6nNAOb0/ob7jxJCILOeTNIotDpixWcsiUxUoO2bKYIeFXnD788EOsWrUKvXv3xuWXX16v4bRo0SKMHj0a8+bNQ79+/TBnzhy8/fbb2Lp1K9q1a4elS5fiq6++wsyZM7Fw4cIGrzi53W643W7t54qKCuTk5Oi64iTDkitG3j9WFqNLrkS74gRE7jSuF5mWXJEpC0EQBBGbRC25kvBvhGHDhmHYsGFRfz9r1iyMHz8eY8eOBQDMmzcP77//PubPn497770Xa9aswZtvvom3334blZWV8Hq9aN68OaZNmxbR98gjj+Af//hHXMqSigQvZJyX25LrCg1BEARBJAtSj6rzeDzYsGED8vPztcdsNhvy8/OxevVqAHUNoV27duHXX3/FE088gfHjx0dtNAHAlClTUF5erv3btWtX3MthZSJ1GicIgiAIqyJ1w+ngwYPw+/3Izs4OeTw7OxtlZWVcTpfLhebNm4f800tVVRWaNGmCJk2amFpeJDe7FX6bdYWp5UXatmxh2vHbrCtMOUR5Ap5a0w4R+0ZknYjIQg45s8jikCmLlRwyZbGSQ7YsZkj4rTqRjBkzRvdzi4uLUVxcDL/f2BWS6upqg6nkdTCvu+EnNZJHhEOmOpFlH1vJIcpjJYcoDzni4yFHfDyisvBiqOEUCATw5ZdfYuXKldi5cyeqq6vRtm1bnH766cjPz0dOTo7QcG3atIHdbse+fftCHt+3bx/at29vyl1YWIjCwkKtc5keMjIysGPHDm2bB8XhxIbvfsSlz6yC4uCbCyMjIwMlW38+umwLv6PThH9qmXgR4VEcTtMOEftGZJ2IyEIOObPI4pApi5UcMmWxkkO2LGbQ1XCqqanBk08+ieeeew6HDh1Cr1690LFjR2RkZGDbtm1YsmQJxo8fjwsuuADTpk0TNhGl0+lE7969sWzZMm2kXSAQwLJlyzBx4kRT7oauOEUaa2iz2dClSxcAZpZcsaFzbhektdjG9Xo1R26XLkhrsdWUI61FdsNPbASPoph3BO8bMw5RdSIiCznkzCKLQ6YsVnLIlMVKjnhkSdSSK7oaTt26dUP//v3x4osvYsiQIXA4HPWes3PnTvzrX//CNddcg/vuuw/jx4/XFaCyshLbth1rROzYsQObN29Gq1at0LlzZxQVFaGgoAB5eXno27cv5syZg6qqKm2UHS+xrjgxxnDV86tN+QmCIAiCsB66Gk6ffPIJunfvHvM5ubm5mDJlCu6880789ttvugOsX78egwcP1n4uKioCABQUFGDhwoW4+uqrceDAAUybNg1lZWXo1asXPvroo3odxkVS4/Vjx8H6nc68Xi/mPPsMAGDseL6p3pnfh3nFc1Gx7ic0O+NiLofX68UzTz+NinVbTTkq1i0FAG6HKA/z+3Bk4/umHF6vF8XFxQDqGsWRGvd6HMFlUex8XQBFZSGHnFlkcciUxUoOmbJYyRGPLDfccANXDrMkfALMRBNpAq1oE1fSkiv1J8A88Ee5Vic8y6XItORKeFlsznSuCTBlWeLASg6ZssjikCmLlRwyZbGSIx5ZkmbJlS5dumDcuHEYM2YMOnfuHI9MjQLPqDq73Y6//OUv2jYPis2GK666Gh9+VwbFxjcbhN1ux1XXXIP3vt1rypHZY6CWiRcRHsVmM+0QsW9E1omILOSQM4ssDpmyWMkhUxYrOWTLYgbDV5zmzJmjLW0yePBg3HjjjRg5ciRcLle8MsYVI1ecrLTkysq7B+Ocx5dHLJue16vPj7UUix5kWuZEpiwEQRBEbBK15IrhP6snT56MzZs3Y+3atejevTtuu+02dOjQARMnTsTGjRvjkZEwCWMM1Z7QK2vBjSaCIAiCIPTBfT/ijDPOwNNPP43S0lJMnz4dL730Evr06YNevXph/vz5SKWuUzIXVV1LLnzBYoIgCIIgjMPdcPJ6vXjrrbdw6aWX4m9/+xvy8vLw0ksv4YorrsDUqVNx3XXXicwpnOLiYvTo0QN9+vTR/Zqqqiq0bdsWbdu2DZnqfdS81bobigFPLU7uchx2Pf0XU8uL5HbqoMsRvJYcAPTObYl19+XXdVJ/+i+mcqhZzHpEZIm2b4w6RNWJiCzkkDOLLA6ZsljJIVMWKzlky2IGw503Nm7ciAULFuCNN96AzWbD6NGjMXv2bJx88snac0aOHGmoQZIIeGYOB+rWzwOADIcdPTo0R8neCpTsrUCN16+7L8zvvx/kyhwphxHW35+P1k2c2kK8gRoxk4eJ8Ihw8NRJPHIAYrKQIz4eKzlEecgRHw854uMRlYUXww2nPn36YMiQIXjuuecwYsSIiPMwHH/88bjmmmuEBJSJjIwMfPfddwCAzMxMvD2hP06ZXr/zdywUhxMr127EVfNWm1peZN2mzbh0rrFlWzKddiiKouXoMK5Y2+YlIyPDtEdEluB9Y2Yqf1F1IiILOeTMIotDpixWcsiUxUoO2bKYwXDD6ZdffkFubm7M5zRp0gQLFizgDiUrNpsNp5xyivazogQMOxTFhpO794CzbampHD16nAJn293cDkWxwdk29n7Um8WsR0SW8H3D6xBVJyKykEPOLLI4ZMpiJYdMWazkiEcWqZdcCUZtNHk8Huzfvx+BQGjjIVnmduKZx4kgCIIgiNTGcMPpp59+wo033oivv/465HHGGBRFSZqGCE8fJ6/XixdfrruSNmbMGACK4fdlfh9eXfBPHNn8A5qemm/49WqOBf/8J45s/p7bwfw+VP6vbqQdr0PNcmTzR6Y8IrJ4vV4sXLgQQN2+4Z3KP7gsZpZcEZGFHHJmkcUhUxYrOWTKYiVHPLJcfvnlXDnMYngCzLPPPhtpaWm499570aFDB63PjErPnj2FBow3kSbQqnL7IvZdCl5ypbKyEorDFXMSysZacuWHRy5DE1dkR6TX8yxzEl4WtaP5wcMVtORKHLKQQ94ssjhkymIlh0xZrOSIR5akWXJl8+bN2LBhQ8goOivBGMOoeasj/s5ut+Oyyy7TtgMhr9PnV2w2DLt4OL746YCp5UUuGX4plv24H4rNhlHzVuP92wfUa8Q2lCPjxDO1baPkzfgMebkt8fxfTjPlEZEFqL9veB1mc4jMQg45s8jikCmLlRwyZbGSQ7YsZjB8xalPnz6YPXs2BgwYEK9MjUr4FafgKyvdOzRHptOODTv/QF5uS7w9oX9I4yT4uT06NK/XeInnkiuMMVz89Fco2VsR0xPtipPRpUX0lEWPR4+XllwhCIIgGkLqJVcqKiq0f4899hjuvvtufPHFF/j9999DfpeoHu7x4p0J/fHOhP4oeXBovUYTcGwuJwDaXE6NhaIoeHtCf67XZjjsyMttyf3eK+8ezP1aovGoW2rHp/1Lpdn8CYIg4oWuP6WzsrJCGg2MMZx//vkhz0m2zuHho+qOfckcy68odQ2UaFcc1MaL0bmcRGHgzlzY6+py/17l4VqKJcOZmMujhH7UpXaCZ42PdNWUIAiCMIauhtPy5dZbEDZ8VN0N/1yLb/d7Yr6muroaPXr0AACUlJQgMzPTcOMl4K3FGad0Q+nhWnS86Vmu7GoOBoBd8SRsjnTDjpqaGvT+cw/s+aOGO4eaZfdz4wCgQQ9jDDVePzIc9pAv74C3FqUv3arLEStH+L7hcQSXhadeRWYx46jx+rFu296Qel2/8w9DM9yLyAHUdebscXTelQ2bv0XrFs24Gm8y1KtMDpmyWMkhUxYrOeKRZc2aNVw5zKLrDDpw4MB450g4m3cdhs0VeycyxrBz505tmwsG7PrtN22bSxGUI8eE47ejDt4cqsdfsb9BT/AVkHpXPhh0ORrKYXbf6C1LY2URcawlul4ZY/jLi2u0Y+2MBz9F3xM7cF35kqVeZXHIlMVKDpmyWMkhWxYzcPd6ra6uxm+//QaPJ/QqzWmnnWY6lCyE75P09HSsXbtW2+ZBSXPgky++wuj5a6Gk8c2Foeao9fpw/ZID3I4Vq77GVc+v4c6hetqPngUAMT3Biw2HX/lQ0hy6HA3lMLtv9JalMbK4XC6sWPW1ts2DWq+vjOuLm97/ncthtiw1Xj82l1aF1CvPlS8RWazmkCmLlRwyZbGSQ7YsZjDccDpw4ADGjh2LDz/8MOLvk6WPUzSym7uwr8INoO6kHzw/kt1uN714sWKz4/TeeXB9eJjboeao9vig/Ievf5XdbkfvvD5w/ecQdw7V4+rQzZRDsZl3iNg3IsoCHF0SoOfpAAC3nyHDxgxdXWGM4eoX12oNzbwta7mu0Kj1enrvPCgfGu/LBog75l0dumHl3YNxzuP8t/1F7WOrOGTKYiWHTFms5IhHlkQNSDM8Wc3kyZNx+PBhfPPNN8jIyMBHH32El19+GSeeeCL+85//xCNjo/L2LWfFxauOvsvLbYkMh/7O1TQQKrlQb0n2mPax9m/UvNWGLikHX50Djl2hS3ZoUAFBEFbA8BWnzz//HEuXLkVeXh5sNhtyc3MxZMgQNG/eHI888gguvvjieORsNGL9Ue/z+bBo0SIAwNVXX420NP3VV3fFAHAoDK/+61+o/P5bNOl+bszXRJuMU83h9vnBAllQbMa/kHw+H95841iOak/9Ttt6PZXf111FaKg80WABP6p+WGHKYWbfBDuCy8JTrzVeP9bvOBhSHp5bUyLqRHW8s+gAWKAV93Fitl5F5BCVxUoOmbJYySFTFis54pFl2LBhXDlMwwzSrFkztmPHDsYYY507d2ZfffUVY4yxX375hWVkZBjVJYxnnnmGde/enXXr1o0BYDmT32K597zHfvu9iuXe8x7Lvec9duBIbchrKisrGeq62bLKykrGGGNVbq/2/Cq3N+T5kX4X7Mi54516r4n2+mFzVrBAIBDREem9Y2WI5rji2VXae8TyHDhSq23/Wva7rvIEvz6kPmq9LOeOd3TXSTQi7Ruj7D90WHe9RqPKXb88Rj2RHInIwZj5ehWVQ0QWqzlkymIlh0xZrOSIR5bS0lIGgJWXl3Nn4sFwc++kk07C1q1b0aVLF/Ts2RPPP/88unTpgnnz5qFDhw5GdQmDZ5Ffm82G/Px8bZsHm82Gweedj9Xbfzc0EVNwHxc1hz/AsI1zTh7V8e3uw1oOnisjNpsN6bm96n7gGCU1at5qQFG4HcE5ROwbsznU16bn9kK/P7XCL/yTbZnPIiCHiHoVUh+CsljJIVMWKzlkymIlh2xZzGC44TRp0iTs3bsXADB9+nRceOGFeP311+F0OrUVi61KRkYGPv3006i/19ONJSMjA+99+FHE5UtiEfx9o+aItgyKHlQHY4x7IkzVk33NDK7X1nj9KNlbAZvDhTMnzsaOg1VcHjVHrH2j18FblmBsDheyr5mBd8KWo+FxJDqHiHoVkUNUFis5ZMpiJYdMWazkiEeWRHUON9xwuv7667Xt3r17Y+fOnfjxxx/RuXNntGnTRmi4ZINnsd1EUzczeuI77b51S3/0eYj/S5UgCIIgGgPu61wejwdbt26F0+nEGWecYZlGU8smTm27VaYzxjPrSOR6dVYiidqaBEEQRApjuOFUXV2NG2+8EZmZmTjllFPw29FZsG+77TY8+uijwgM2NjYF+OXhi/DLwxfBZgv9Nq+ursYpp5yCU045BdXV1QCML7ZbXV2NvF49UfrSrQh4a7kyqjnyevU07QguC6+n9KVbTZUn4K3FgD6nC6kTM+URURbg2BIyA/qcbqpORNSr2Rwi6lVEDlFZrOSQKYuVHDJlsZJDtixmMHyrbsqUKdiyZQu++OILXHjhhdrj+fn5eOCBB3DvvfcKDZgIwhtMKowxlJSUaNsqRq6WMMbwww8lR3/gyxecI+fCBp6sw8FMTqHv/d3cEjJgwNYffzDlEFEeIWU5+lrv779h6+9ADu9o2aMOU1kE5BBynIioD0FZrOSQKYuVHDJlsZJDtixmMNxwWrJkCRYtWoQzzzwzpC/PKaecgu3btwsNJxvp6enagsdmpov/8JPPMGaBuSVXli9fjlqvH7d8ytehWkRZ1NdmX/swAP5lSpQ0B5Z88DFueXWD6TpRt3kdZsuivjb72ofx/A29cftyvissqsNMFhE5RNSriByisljJIVMWKzlkymIlh2xZzMC15Eq7du3qPV5VVZVUnaJ5sNvtGDRoUMznMAZUe3xRZwe32+04d+BApC/j/wJRc1R7fFCWxR5VF61BHlyWao/PVJb0zubWJ1Rsdpx9zkCkf+k1laOhfaPHYbYsQF150jufhrPPGQjlS74O76oj0TlE1KuIHGazMMa0/od9zxoAgH8os6hjzaxDpixWcsiUxUqOeGRJmlF1eXl5eP/993HbbbcBgNZYeumll9C/v/6+PjJidDmUSFw5bzV+2FuBvNyWeHlcX0HJ+NDmSSKIFIYdXQYneBkboO7zzrMGIEEQqY3hhtPDDz+MYcOGoaSkBD6fD0899RRKSkrw9ddf48svv4xHxrhQXFyM4uJibVHitfedj+zWLWOeRH0+H9577z0AwCWXXBJxuvgf9ta1gKOtL+bz+fDfpUtR/dMmZHTla1ipOdxeP1jAEXUJC3WeJKBurbzgRmFwWc67gLOj1FFP9U91jTPe8rCAHx/89z+o/mmL6ToBou8bPY7gsvAuDcICftRsW4sP/lsNFnBxeVSHmiVROUTUq4gcZrIEr/0XXK/rAn0NT/hqJodoh0xZrOSQKYuVHPHIcu65fMtRmcVw6gEDBmDz5s149NFHceqpp+KTTz7BGWecgdWrV+PUU0+NR8a4ED5zeKYzrcG/PN1uN0aOHAkAqKys5Nrpbrcb11x1JQAg5453uBbxDc6Rc8c7UHTMwxT+l3WwY/+hwzFfyxhDtSfyNAtutxsHFj+kZeGB+bwo+MtVphyi9k1wWfTUaySYz4sDix9CwWJ+j+pQsyQqh4h6FZFDVJYVfxuALu0vA5D4Y82sQ6YsVnLIlMVKjnhkKS0t5cphFq7Sn3DCCXjxxRdDHtu/fz8efvhhTJ06VUgwGbHZbDjrrLO0bV7Hmf37Y9NvhwFF4Zo0U80RYAx7dL4u/Gl6yxLtNkewx9Wpe+Q30YuioE+/M/Ht7nJTS66I2Demy3L0ta5O3XHacS1QZqJORNSr2Rwi6lVIfQjK0jTdEfL5S1QOIfUqURYrOWTKYiWHbFnMwNdsjMDevXvx97//3dINp4yMDKxatcq04+tVq3Dx01+hZG+FNmmmkdsFag6zS66oZYnVOTz4NgdQvx9YRkYG2l8/0/D7V3v8msfmcOGDz77QluNQf2ekMSlq3/CUJRybw4X218/EByaXXDGbRUQOEfUqIoeoLBkZGVj2xQruz43IHGYdMmWxkkOmLFZyxCNL0nQOJ8yjTpp5ynT+k3ciWH9/Plo3cQqZHT1vxmfajOuRfkcddwmCIAgZScx1LiIplxjJdBq7CtQQasd1oG7pmrzcltrP0TrXEwRBEEQioYaTAWpqatCnTx/06dMHNTU1phznnHUmAl53wh1myqJ69r58B/a+fIfuLCvvHhzyc8Drxrlnn4md8ydh5d/O5s4hYt8YLUskAl439r58B4YMPJvbozrMZBGRQ0S9isghKktNTQ3OOetMU/Uq8jxg9vNXXV2N3nl56J2Xh9/Lj3DNpCxLeWRxyJTFSg7ZsphB9626oqKimL8/cOCA6TCyEwgEsH79em3brCPnXL7p4kU7eMuivtZT9nPdDzpP2hnho6oYw8YNGwAA6Wl8V7RE7RujZYkIY/CU/YzNZUDOQKbp1L5kuvpvHXWYyhIhh1GEHCcCcojKEggEtGONt15Fnwd4HYwxXPvCaq08p//jE/Q9sYPhW9yylEcWh0xZrOSQLYsZdDecNm3a1OBzEjWnQmPhcrm0+SNcLleDz490XlYdbq8fd3xtLocIh7rNi8vlQtsrpwMwtzTIvxcvhcth584iojwiyqK+tu2V0zHn6l6Ysrbuoq46MSqgb+JF1WEmS6QcRhFRryJyiMricrnw78VLMeH1jdz1KiqHWUeN14/NpVUhx4l6i9vIYBNZyiOLQ6YsVnLIlsUMuj9d6towqUxaWhouvvhi3c+/6vn6s3arjmqPD0Vr+DqHi3QA5pZcSUtLQ+YJfbhfD9QtyXHhRUOR6UzjzmJ030RzmC0LUFeezBP64IIL8zF1fd0osh+C+nPp+XJTHaJzGEVEvYrIISpLWloaLrzoImSu4V8hQFQOsw7gWN2uvHswznmc7xwtS3lkcciUxUqOeGRJ1Kg66uMUR3YcrFuAN3zWboIgCJHUu/1NEETc0HXF6dFHH8Xtt9+OzMzMBp/7zTff4ODBg0Jap7Lh9/vx+eefAwDOO+882O11J6sMhx09OjQPGSUWTPBtGdVR6/WDBfxcy0+IdADAmQP4b7H6/X7U7Ki7jZuey7coLQv4seyzz5DusHNnibZvjDqCy2JmyZXand/ii8/BvX9Uh5olUTlE1KuIHKKy+P1+fLF8OWp2bOKuV1E5zDoAefaxlRwyZbGSIx5Z8vLyuHKYRVfDqaSkBLm5uRg1ahSGDx+OvLw8tG3bFkDdujElJSX46quv8Nprr6G0tBSvvPJKXEMHc/jwYeTn58Pn88Hn82HSpEkYP358XN6rtrYWF1xwAYC66eKbNGkCoOF5mYK7sgQ7eJefEO1oaMmVhjz73/q7loUH5vPi0osvM5Ul2r4x6ggui5klV/a/9XeMesvckivh9coY06Zo0NPBXEQOEfUqIoeoLLW1tbj04mEA+I9XUTnMOgB59rGVHDJlsZIjHlmkXnLllVdewZYtW/DMM8/gL3/5CyoqKmC313Xkra6uBgCcfvrpuOmmmzBmzBikp6fHNXQwzZo1w4oVK5CZmYmqqir8+c9/xuWXX47WrVsLfy+bzYaePXtq28HoHcSiOgKM4bCJJR9EOdRtXmw2Gxztjq/7wcTSIKeedhpsimJqGn6z5RFSlqOvdbQ7Ht2ym6HCRJ0EZ2EMIUvf6JogVEAOIceJiPoQlMVms+HU007Dj2VHTC25IiKHiM+fLPvYSg6ZsljJIVsWM+juHN6zZ0+8+OKLeP755/Htt99i586dqKmpQZs2bdCrVy+0adMmnjmjYrfbtVuIbrcbjDGuuUz0kJGRgc2bNwtxmF0uRZQDMNc5PCMjAx3HzuV+PVC3JMeadRtMdQ4XtW/MlgWoK0/HsXPxhcklV4KzhC99o6eDuYgcIupVRA5RWTIyMrBm3QbTS66IOg+YRZZ9bCWHTFms5IhHlqTpHG6z2dCrVy9cdtlluOaaa5Cfn2+q0bRixQoMHz4cHTt2hKIoWLJkSb3nFBcXo0uXLkhPT0e/fv2wdu3akN8fPnwYPXv2xHHHHYe77rorYY24VCRObVSCIAiCkJKEj6qrqqpCz549UVxcHPH3ixYtQlFREaZPn46NGzeiZ8+eGDp0KPbv3689JysrC1u2bMGOHTvwr3/9C/v27Yv6fm63GxUVFSH/iOg01DCKNOVCfQdDtefY8inhy6uELxxMEARBELKS8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz+/3nOzs7PRs2dPrFy5Mur7PfLII2jRooX2LycnR3fWmpoaDBo0CIMGDTI1XfygQYNw4ZDzTS35IMoRqyyMMYyaV79hpI4iBIDtew+h7F/3ouxf90bMwhjDlfNWh9xGUJS6kYYlDw5FyYND8UpBLwwePFhIvZp1xCqLXgJeN8r+dS8uGzbE1HIpZrOIyCGiXkXkEJWlpqYGFw4531S9ijwPmHEA8uxjKzlkymIlh2xZzKB/etkE4PF4sGHDBkyZMkV7zGazIT8/H6tX132h79u3D5mZmWjWrBnKy8uxYsUK/PWvf43qnDJlSsjyMRUVFbobT4FAAF9++aW2zUOwI6f37VI4opWlxuvXplgInosqZBQhY3Dv+q7uBREuT4X3zVGvLimKovXPqfK6hdarGUessujmaJ18vQvI6TPJlMNUFgE5RNSrkPoQlCUQCGDlihVarkTmMF2vgDT72EoOmbJYySFbFjNI3XA6ePAg/H4/srOzQx7Pzs7Gjz/+CADYuXMnbr75Zq1T+G233YZTTz01qtPlcpma6v2tt97Sts043D4/7tvEv+SDKIe63RDhI7jUTSXNgTaX3attx2L9/flo3cRZbySYyHrldTDG4FfSdJclFmqdPHrFqXjwf/zLpZjNIiKHiH0jIoeoLC6XC6/+6w3csWiLqSVXEn28qsiyj10uFxYtWgSPPwC/Yje2LqPgHCLqVZYsVnLIlsUMhhpOXq9X69H+5z//OV6ZDNG3b1+uXvrFxcUoLi6G3+9v+MlHSUtLw6hRowy/VyRHtceH+7fwL5ciygHoG1UX7dyn2OxocvIAXe+Z6Yx8EjWaJRJm9o16O3HDzj90lyUWap1cNjIf//c930gnI/UazxwijnkROURlSUtLw+VXXIn7tzRLeA6zDkCefWy327Ho9+OwYecfuH/LMu1xXdNmCMwhql5lyWIlRzyyJMWoOofDgc6dOxtqbJihTZs2sNvt9Tp779u3D+3btzflLiwsRElJCdatW2fKQyQ/4bcT1f5bBEHoI/wzpKJOm0EQVsLwrbr77rsPU6dOxauvvopWrVrFI5OG0+lE7969sWzZMowYMQJA3T3NZcuWYeLEiXF970j4/X6sWbMGAHDmmWeGTBevjhRbH+HkEclR6/WZWiJBlAMATjuDf9p6FvDDXboVAODqeBKXI1qWao9f96X+WPtGLyzgx7NDmsGVFsCNe0LrNXjWbiD2LQi1Tr5ZnWlqyRWz9Soih6h6NZtDVBa/34+136xB7e4SIcermRxmHYA8+9jv96N2dwkAYEtxIex2u+F5pWSqV1myWMkRjyw9evTgymEWww2nZ555Btu2bUPHjh2Rm5tbb8r0jRs3GvJVVlZi27Zt2s87duzA5s2b0apVK3Tu3BlFRUUoKChAXl4e+vbtizlz5qCqqgpjx441Gj0Enlt1tbW1GDBggJY7uOxqh+lqjx9XzluNH6KsWxfsMLNEgkiHmSVXmM+Lfa/frWXhIVqWvBmf6b7UH2vf6IX5vLjkgvMAhNZr8K08LVuMXGqdXPJ69P2jTs8QrQEmol4j5WjofcMRVa8N1YceRGSpra1F/uBBAMQcr2ZymHUAYupWVHnU49U292ZkZjgTlkNEvcqSxUqOeGSResmVYNQrP6JYv349Bg8erP2sjngrKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhaioqECLFi10vUZRFHTt2lXbjvT7Jq40vBNz3bo6B2OAh3s1DnEOdZsbBUhr2UHbNpsl05kWcuVOzwzZ4Q7u8ijACSfUOYLrNdJtiJi5jtZJTqtM+KJEUf8aj9oAE1CvkXI0+L7hCkH1Gp7DyNVEkVkURcEJJ3TFzkNVQo5XMzlEfv5iHWuNkUVRFO14TWSdiKpXWbJYySFbFjMYbjhNnz5daIBBgwY1uETKxIkTE3JrLpzMzEz8/PPPDT4v1r5UHWaWSxHpAEI7ZBsdoW1zpKPTzS9yZYiUBagbwfd7lUf7kmcsNGOkL1y9+yYWNkc6vi35AQCi1uvKuwfjnMeXA4j+5a/WydoIy2D06NBcm+IBiN4AE1GvquN//xiKgvlrQ24j622QiqrX8PowcjVRZJbMzEx8W/KDqSVXROUw6wBiH2uNmSUzM1M7XtUlsBKVQ0S9ypLFSo54ZElU53Cu6QgOHz6Md955B9u3b8ddd92FVq1aYePGjcjOzkanTp1EZ4wLPLfqUoFR81bj/dsHJKwlD+DoHE/HbjmE3/o0+oVrBsYQ2rcpKBfPl3/dc+saXWbWbTOCcnTC0Rqvv1HfN5zwfoB6G28EQRAyYXjm8G+//RbdunXDY489hieeeAKHDx8GALz77rshE1XKDo2qO0bwTOAleyukGwUT3l+sMUfqhM96Hr5cjNEsilJ3OzKTs58PL+qEo439vqEZ6hpw6+/PT1gGgiAIsxhuOBUVFWHMmDH4+eefkZ6erj1+0UUXYYU6I69Fqa2txcUXX4yLL74YtbW1phyXX3YpmM+TcMfFF18Mt9uNtyf05/Iwnwf7334A+99+QEiWWPW68u7BUX8nYt8wnweXX3ZpSL2GX+nKdNob/PJX6+TaK0Zw14meeq32+GPe5lYdl192qenj1Wy9qjncbjd3403U5+/yyy5tlOM13g5AzLEmqjzq8ZrIOhFVr7JksZJDtixmMHyNfN26dXj++efrPd6pUyeUlZUJCSUrfr8fH3zwgbZt1pHT/Uau/qmRHEY724aXRXHw3S5hgQBqflmvbfOgt14zYnzhitg3LBDAxx99CKD+vgmf9TzWl79aJ5/9AuScchPXPtZTrw3dKlQdH/8i5ng1U6/BORQb37Em6vOn7uN4H6/xdgBijjVR5VGP10TWiah6lSWLlRyyZTGD4TOYy+WK2CHrp59+Qtu2bYWEagx4+jg5nU4sWLBA2+ZBdbh9fjy8le8LJJLDaH+b8LJ4OZdDU+xpaH3RZG2bB5H1asah2NMw78WXAKDevok263k0T+uLJmP68B54YjtfncSq1+AO5rH6CamOh0b+OeH1GpyD91gTdZzMe/El3Lf4u6Q/XgExx5qo8qjHayLrRFS9ypLFSg7ZspjB8Cft0ksvxYMPPqitFaMoCn777Tfcc889uOKKK4QHjBc80xE4HA6MGTPG1PuqjmqPD49EGNmjTrSoLqgby8EYw6fzVnN1tg0vi5dzqRPFnoamp5rrs8JTr8Ej7TIcdiH7RrGn4YbRBQAQcd8Y8TQ9NR/XXp+PJzk7YseqV7Wjd0OdvFXHDaOHwsF5RTH4WKvx+rXjxMjVzfAcvMeaqM/fDaML8Mg2/v0r8jxgFhHHmqjyqMerw8G3Zp5M9SpLFis54pElaUbVPfnkk7jyyivRrl071NTUYODAgSgrK0P//v3x0EMPxSNjyhA80WJebku8PK5vzOerk24GD91PFYJH2jXmKDsZqOtg3nidvI1OAErExsgs9ARByIfhhlOLFi3w6aef4quvvsK3336LyspKnHHGGcjPt/5IGb/fj//9738AgFNPPZV7uvj//e9/qImwXErwRIvrd/6BQ1WRO3uG5+D5Eg138MICfngP7AQAONrmcjl46vWHsLmQKms92L71B0OOcFjAjy1bNmvbvEuDqHXyv2+3mFpyxWy9qo4tWzaj7xmn8y9RsnETVq/dAEfbXK0sRq5uhufgRdTn77vv/gfPvl8a9XhVURuh63cc1PZv/7xeeOdWvilARBxrourVs+8XbdvMudFsDrMOmbJYyRGPLLm5fJ9hsxhuONXW1iI9PR0DBgzQpj1PRniXXDn99LoTv5np4lVHQ0skqBMtNpRDcbhM5eB1AHVLPuxdeDsAc0tYiKxXM0uDnNW3DwDgstmfYXNZ3YiNvNyWMW+dRvLsXXg7zlvIvwyGiHpVHWctjFwnegYU1NbWanWSc8c7+Or+/KjHpd4cvMeaqOMkuDyNnUP94yh4/65r+Q73fFYijjVR9aqWp3bW6IR9hkU4ZMpiJUc8siTNkitZWVno27cvBg4ciMGDB6N///7IyMiIR7a4wrvkSseOHbVtHlQHA0wt+SAqRzQHY0xb1yy2CLA3baVtxyNLYzmgAB06doQC4PXxZ2pf8IZvpRytk7bN0k0tl2K2XlVHu+bpEfPrGVCgKAo6dOyI/RW1gBJ7ZCNvDt0aQcdJcHkSlQMKkN2+Aw5Wuvn371GP2WNNVL2qx2siP8NC9o1EWazkkC2LGQw3nD777DOsWLECX3zxBWbPng2fz4e8vDwMHDgQgwYNwpAhQ+KRUwoyMzOxZ88eIY6GlksJXtqjoRzVHJ1tYzkYQ70+LdGwOdJxXOErht8/VpZEOWyOdGzbsdP0TNZqnaw3sQyGiHpVHSUPDtXKZHT27szMTGzbsdPUEiXhOXiOVzWLiOPEbHlEHWvf/bzDdN9EEceaqHpVj1czS67IcB6QKYuVHPHIkqjO4YYnwBwwYACmTp2KTz75BIcPH8by5cvRtWtXPP7447jwwgvjkTEl4frLXhDhi9oavVVFyIs6oIBm7yYIQg91dx989f41tMasleH60/qnn37CF198of1zu9245JJLMGjQIMHxiEQTPvEjkfyErwVIEAQRiUgjalVSeWSt4StOnTp1wplnnomPPvoIZ555Jj788EMcPHgQixcvxqRJk+KRURpqa2sxatQojBo1ytR08aNGjcL1115jaokEUTkacjQ08SPzeXBgySM4sOSRpChPLJjPg+uvvcaUQ/UcWPIIxt3wF1NLrpitV9Vx/bXXmKrX66+9JuE51CwijhPe8qh/eR+qqMTlV1yJy6+4EjU1NVw5mM+DcTf8xVS9qh6zx5qoelWP10R+hoMdhyoqua+QyHJOSrTj2GCG+ucjnjVDE10eURi+4tS2bVv8+OOPKCsrQ1lZGfbt24eamhru+9qJgmdUnd/vxzvv1I3EWbhwIdf7Bjty7riWe4mE4Bw8S1iIcAB1Sz5Ub11Vt33RHVwO0fXK62CBABa/+29TDtVTvXUV/rsVyLnjL9xLrpitV9WxeCvg97/M5fD7/VqdiMphZskVEccJT3mC//IOeGqx66jj2uf/isWTzjP8VzcLBPDfJe8azhHJY/ZYE1Wv6vFqZikNkeeBb3Kugc15bD3Vhq6QBM+vVVXj1jzqLNVmsiTyvCbq3Kju3xVf/gcDZ69OWJZgx9NPP83lMIvhM9jmzZtx+PBhrFixAl9++SWmTp2KkpIS9OrVC4MHD06aSTB5RtU5nU4888wz2jYPqsPj82PObv4lEoJz8CxhEctRo2c03VEUexpaDZmgbfMgsl71OoJPkuofooo9DbPmPAVnmt30MhithkzA3ReejGf38i+5YrZeVcf9F3c3Va+z5jyFGe//ICyHmSVXRBwnPOUJ7vcXvG827ankmkpAsafh0Sfn4PGPfuSu1+AsZo41UfWq1kljfYajOaLt31gDIcJvSTG/TyvP6IUb8e/Ccww3jnnLE3xu8sGGWXOeAsA/I7uIeg0+N2Y15R9Fn4hzfTzg+qRlZWXh0ksvxdlnn42zzjoLS5cuxRtvvIFvvvkmaRpOPDgcDhQWFgpxVHt8eOroyB6jfezCc3jDRsSZdeiZpyd4dFazMy7R96Y6s8TbEX6S7NGhOYC6k8Mtf73V9Kg6xZ6GZmdcghtvzsdzJpZcMVuvquOWv5pbcuWWv96Kp/aaW4ImOIeZJVdEHCfB5VGn3DAy5cSG6RcCuNDUiDjFnoYbb56A5/abG1Un4lgTVa/q8WpmyRXR+1cdBNHQvgofEBP8+du4+whX45inPJH7FJ0AAFj1z/VcfYpE1GvwuZF3VKyoLMGOpFly5d1339U6hZeUlKBVq1YYMGAAnnzySQwcODAeGS3PJXO/wrIiMXU3at5qvH973SzERhpk4cPUG0IdnVXj9aPa0/C6aYkm/ApT8ImpZG9iPnxE4lGPWyMdXaljffLAs6/W35+PTKc9Iee18AZcSC4Ds/UT8cXwHpgwYQLOPfdc3HzzzRg4cKCp5TqSjUAggO3btwMATjjhBNhshvvWaw7GGLpnN8UP+yqx42AVLpn7Fd6e0J8rR4bDjh4dmqNkbwVK9lZoiwSPmhf9PnSkshhd905RFKSn2bDt55/hPbQHaS076Hqdniw8jp9//jmiI9oVpnAYC2Dbzz8jw5nGnUP1+P7Yi+3btoGxABTFuEd1AEBayw6Gbp+GO7b9/DP+3P0kw+VhjKHK7cX3P5rbv+E5eBF1nJT+9itOyqjEj9WZ2r4x8qUUCATwy/btputk+7Ztphyqx+yxJqpevYf2aNtmzo1mc5g9H2U67VKc19bfn4/0NAXf//gzLn92VULPr8Hnxg45/MuciPwOBer6XCcCww2n/fv3xyNHUlBTU4Nu3boB4J8uPthRUXEElz6/HjsOVmkNHt4cb0/oj1OmH7udUuP1a1dSenRoXm8epkgOnmHqNTU16PnnHgD4l7AQXa/hjvC/4qJdYWJej1YWM8sKMK8HpS/egjNfVJfBSG/4RVEcQJ3D6DInwY6eLxovj9rYXPfzXuyafaWWg4fwHLxLrog6Tk46qa7xtv/QYSiOdMNXFUQc88zrwZmn/9mUQ/WYPdZE1at6vNY8drXwz7ARh9l9I8pjtjyZTjuY1x1ynISv5qDnFrOIeg0+N+4/dNjw60VmCXYkzZIrQF2v9iVLluCHH+oWVe3Rowcuu+wy7oX/kgm9Hcn1OGw2Be/dNiCkwcObI9ZnJ9otCBFlUT0Vtfz3vUVlkcUBAIqrCZqlm+wr5WoCe9h+Uycj1dvIVlxN0JwjR0hnaFfdye2MzlncE6Hy5ghH5D7OdKZB4SyPiGO+eYsWOGLSAYg51kTUq3qcJDqHiH0jyiO6POGNfL23mGU6N8qUhRfDn7Zt27bhoosuwp49e7S/3B555BHk5OTg/fffxwknnCA8ZDzgmY6gSZMmOHz4sKn3DXfwdLQzmiPSZ0pEWVRP6f6DppawiEe98mBzpqN0/0HzS64409F58iJzS64cdXz/j6Eh+0/PX5jqOoOqI3jJFZ4c+w/+jkyn3VCDLdwRnIO3c6lMnz+zx7zNmY7tu/eZX3JFwLEmql47T16kbScyh9l9I8ojqjx//PEHRs1bHbH/qZ5bzKLPjWY6h4v+DCdN5/Dbb78dJ5xwAtasWYNWreoWdfz9999x/fXX4/bbb8f7778vPGQ84JmOQC/BHa1puRJxhHdgV/t1AXUdvtUPtOFFeSVGUWCo0RNrpl9eMp126pBKEAkieCCOSjIMyLEyhs+GX375ZUijCQBat26NRx99FGeffbbQcMlK8IFu5Es8hZf+0YWiIOQEwhi025xXzluNH442olJ5KQBaZ5AgrEdd/9PU/eMleFR0MGaufpnBcJd2l8uFI0eO1Hu8srIyYZNRNRZutxtjxozBmDFj4Ha7Yz5XPdDDv7xjOa56Xt9srEZyxNOhem6+aRwOvj8bzOeNexa1Xuvq9tjjJbt+x8H3Z+Pg+7Oxbvt+rltKzOfFzTeNM10nzOfFwfdnY+ItN3HXieq4+aZx3FlW3XUOmn7zAsaOHcvtEFEnIsoCyHPcizjmmc+LibfcZMqheswea6LqRP38Jfu+EeWR6Xg16xB1buTJol5F7zHtY/SY9jG6T30P7XpfiHa9L0Sff3zEncUMhhtOl1xyCW6++WZ88803YIyBMYY1a9ZgwoQJuPTSS+ORURp8Ph9efvllvPzyy/D5+Fq64Q51KgEA2HGwSkiOao+/3ugLvQ71dhig72qFz+fD66++iqrvloEF+JZaEFGvLOBH1XfLTOVgAT9ef/VV7hxq3yI1y6J/vWYqS9V3y/D6q69y14nTxoTUq5k6UR1mywLE5/PH6zB7zLOAH4v+9Zoph+oxe6yJqhP185fs+0aUR6bjVYbzAG+W8KvoIs71ZjF87e/pp59GQUEB+vfvr80Q6/P5cOmll+Kpp54SHlAmHA4HHn/8cW1bhEO9rWdkZF1DOfTc+47mMHqb0eFwYMbDj+KJT7ZCsdvr9TUSUR49KHY7sgaN1bZ5HTMefhTONJvhHMF9i9Qsk84/EQvK+bNkDRqLOy84SdixxpsjuE54TpnhZeE97cbj88eTJfyY50Gx2zH9/x7GU8t+5naoHrPHmqh6VT9/iTxeRewbUZ54HK+Jcpg5N4rMsv7+fKTBj+K2j8LrD+Cf+xPTDcFwwykrKwtLly7Ftm3btOkIunfvjq5duwoPJxtOpxN33XWXcIfRrjjxynEsj/776U6nE3f87W94sTxyX6OXx/U1lUUvit2BFv2uMO24429/M9yXoNrjD5mNXLE7cP5VN+GucX2xUEeDuNpTv5GqlueOvw2Fk7Nvg6h6Da4TH0efgvCy8DiA+Bz3PFnCj3keFLsDEycXYWGl2SVX6up24uR8LOTsLCyqXtXPn5k1yETkMLtvRHnifZ5uTEfwecBMvyKzWeoGqrhw35R7UO3xYf49i7ldZtB9Rg4EApg5cyb+85//wOPx4Pzzz8f06dORkcG/4B9hPX4Imlxy/c4/cKjKk8A0jUPejM9CZiNff38+Wjdx6u5nlTfjs6Ts0M6zzhtBEESyo7uP00MPPYSpU6eiadOm6NSpE5566inTi/UlG4FAAHv27MGePXsQCATi6ojV16gxc+jxlO7ZA9+Rg2CsvkfPjNe8WYLriLEA/pThjppDD4zVlUVPjuD3BkJnI09PU1BaWorSPXuiZgl/vTofS3AW35GDKE3wPo5VJ3kzPkOPaR9j1LzVYDGGhIooCyDPcd/QMa8HxgLYW2rMUdeHzhf0z6/V7d7S6MdaQ4iqE9+Rg/AdOZj0+0aUR6bjNZ7ngcbOojpinV/jje4rTq+88gqeffZZ3HJL3bT6n332GS6++GK89NJL3Gt6JRs1NTU47rjjAJibLl6PI3joffhf9I2ZQ4/nxD91ARB7yYdYHc15swT3x6qqqkK7VllaDh6Y16OVpaEc6ntHWtsvuDzR6iTW69Use54dgxOfTew+Dq+TzMzMeotBNzQJX3hZzCy5Ivq458kSfszzXHljXg9OO+kEzdHg86PMz6XW7WnPmltyRUS97nl2TN32jBEJO17D9w0vIjyynKdFnwfMLrkisjydbn2FO4sZdDecfvvtN1x00UXaz/n5+VCUur+s1UIkEzwzhwNAWpr5uTT0OmL1NWrMHHo8vkD0Kw7qratYXyq8WdQ6Yt60kBzBndSNzI9lJEestf30eBpcG9BmR5rN3C0w0cdJcGPV0CR8AsoSniXRDvVYU+vA6O3Whj43wYSPLApGsdlhl+A4gc18R13R+ybRHpmOVxkcojyisnC/v94n+nw+pKeH/jXjcDjg9fLPlZFIeGYOb9KkienyWsmhesqramIuTZDpjP2XuKjyBOcI7qR+fJvof9UEzz7e98QOeNvjMdRfJ3w287zclmiT1RxerxfVHh/3kg02Zzpy71pqarkUEfVqc6ajvKomJIPRyfjCy2JmyRXRxz3vkisej6feMhh6lr9QsTnTsfePSq7Zn9ffnx/S4M540osar5/7WOOt1+BJCRVH3T5WfY2ZI9zR0PmosTyynKdFnwfMLrkiqjzVHh9Olr1zOGMMY8aMgct17NJ2bW0tJkyYEPJBeffdd8UmJAgOgjupx5ofq+4KQd02Tyfn8OUQqKN0asB95U0AMiyBE4+lfQgiWdD96SsoKKj32PXXXy80DCEO9UpKqi+5cXybJlrDKfjqkorRteAiIWo5BPX2YkOTl6YK4cssyNYoTeVlMKLdOlTPNzwz9xNEsqD7U79gwYJ45kgK3G43ioqKAACzZs0Kufomm0O9khLty0ZEDtVzx6TJ+H3tLrQ67yYoacYnNRNVJ5FyvHfbAO2KUnqaHVc9vzrktlpwo1JknRQVFcHnD4A1Haq7ToJvLzKfF4c+fwl3HH4PTz81h7tO7rpjEgD+8jCfF3fcfhvS7DZTjuCyQGm4IR/pisZJbdOR+/M7UAA8OvMJZDXNNNyQCq8TPVni4WA+L+4umoTf1+9Gq/NuMvz64Cw8x1okB8B3nKy/Px925sO9d90Je4UCj6c3d72KPg/wIsKTTN8XDRF8Hpjx6OOGXy8yS8gx7ziHO4sZUvPPJU58Ph+effZZAMDjjz/OtdMby9HQlRQROVTPC8/PAwC0HDQWCoyfuEXVSaQc4fUQ67aayDpRPTl35Ouuk+DbiyzgR+Wm9/HCJmDWk08k7FhjAb9Wr2YcwWVRdFwBjXRF44c9h/HJ0SwfZubX9UkzOPdVeJ3oyRIPBwv4seDF5wHUHa+88B5r0Rw8+zjTaQfzHvv8zZw5U0i9GsmhXp2sqq4NOQ/wEn4+4XUky/dFQwSfBx6Y8bDh14vMEuzodOtZ3FnMQA0nAzgcDkyfPl3bTnWH+tqp9/8dxcu3hSxNYORWoajyRMoRTqzbKyLrZPr06fD6A3it1vgXiLqswOxm06Aoiq4s6hdH8G0+EeVR7HZMvf/vcNiNLbUQnEex29Hi7GtROLgr1zIn6+7LR8H8tfh+txctzr5Wy9XgNAg66oR3yRWzDsVux11T7sMLK34xvTSI3mMt0grzGQ57XM4nIupVL8FXJ5k/9BjhRe/5JFYmL1Mw9f6/AwC8TEG1x2f4drMs53re80A8sgQf869wLjNkFmo4GcDpdOKBBx4gR5jnvr9Pw+ve0NEnDd0qFJ0lWg6jDlF18sADD4Axhq3zot8ajIa6rMA//vEPXe/HGCJ21BVRHsXuwH1/n2aoL0/4bTbF7kDWgOtw39/5llxp4rLj/dsHHP3Sv0RXZ+xonZfD64R3yRWzDsXuwN1T/463AuY6latZqj0+vB5jBFi0+lCnUBB9PhFRr3oJvjqpHmuAuf5WZs4noXXdDwDw+ozlWiYjV0llOdcHnwfMLrkiqjzVHh9elX1UHUEYQUSn62SnsUbcRbqtlchBAfHIY7Qjtmx1kmiideY2MoVCMhA8VUOiBhPEmnPLavWdqtDeMwBjDOXl5QCAFi1acH0oreRQPYcPH0agthKKq0lCyyNDjkgenpMkbxb1i0NtIBw+fNiwIzzH4cOH4XGmcTnW35+PDIcNnupKlJeX654zLVqW8vJyVHt8YIwJqRPeHCIc5UHHKy88dbL+/nwAxybuDC+PiM8ODyI+f+qxBgAZJo+1wyb3D2MMn9/WBxlOOxwZTdHnoWVcDhnO9cHnAUeG+ePVbJbgYz4RpMZaKYKorq5Gy5Yt0bJlS1RXV6e8Q/V0ym6LXU9dA+Z1JyyLLDlEeXgd6hw/iqIIycG8bnTKbsvtyHTaAZ8HrVq1ElavnbLbGtrHZurk2Ppwx273iKrXrjntTR2vwVmM1EldfRy78ibL+UQWh+oxez5R93Gn7LaAL7HnxkSfB0Rm4T0PiISuOBEEQUSAJnkkCCISSX/FadeuXRg0aBB69OiB0047DW+//Xbc3iszMxMejwcejweZmZkp71A9hyur0fnOJdyLt4oqj9vtxsi5X2o5jPZpEVknMuwfEQ7F4cLhyuqE5wj2HK6sbpRjLVo/qdYtmgmp19JDR0x9boDGr5NUcKges+c1WT47spwHRGURccybJemvOKWlpWHOnDno1asXysrK0Lt3b1x00UXc6yXFQu/Q8FRxBHsUO/+hJKo8TqcT/y48h7sztug6sZLD4Ujs/g3JwhTu/me8WYL7SSmKApvN3N+cIj43wR7zdSImh1lHWloaarx+eCNMm6CnfCLKcswj5rzmcKTByzkSTcbzAG9ZhGcxccybJekbTh06dECHDh0AAO3bt0ebNm1w6NChuDSciMYj0uK5eq4epfIyGET8kGF9OKsT69ao0WH8BBFPEn6rbsWKFRg+fDg6duwIRVGwZMmSes8pLi5Gly5dkJ6ejn79+mHt2rURXRs2bIDf70dOTk5csno8Htx1112466674PF4Ut6heqbeew/+WD4fzM+36nWkLOpQ/pIHh6LkwaENnjRlqxMZsohwML8XU++9J+E5gj1T771HO9aqPX5Do2sSUa/HOpgf62TO/F48cN8UU5+b4CzBdcLrSPQ+Lq+qwWcLn4xYJ+ow/sbIoXrMntdk+ewk+jwQfPwfrqzG5KK/YXLR33C4spprVJyIY94sCf8TqqqqCj179sS4ceNw+eWX1/v9okWLUFRUhHnz5qFfv36YM2cOhg4diq1bt6Jdu3ba8w4dOoTRo0fjxRdfjPl+brcbbvexnvgVFRUxnh2K1+vFE088AQB44IEH4HQ6db/Wig7V89TsWQCAFmf/BYrd+GXYaFmMXD2SrU70eqJdWauudktRHub3a/tXVA7efgnBnpw7zoJid2hD6vVekRCRxYgj2lUU5vej+OnZAOo+N7xEqhMzjkTuY6/Xi4q17wIAvv3Pi2jbsrmuyU5j5RB1Xgsm0gzsQP3bicGfnbun3s+dQ7bzgJGyhB//AU8tdh31vIuzuJZNCi5Pp1tf0f06kSS84TRs2DAMGzYs6u9nzZqF8ePHY+zYuvWC5s2bh/fffx/z58/HvffeC6CuMTRixAjce++9OOus2GvXPPLII7pnZA7H4XDgzjvv1LZT3aG+dtIdRViw6lfuJQ5kKY/IOtHriTZJpizlUex2TLqjyNRSC+E5eHtIqB7GGH7JbYONeyq13+mdWFBEFiOOaJMh5h3fBpeb/NwEZ/H6A1gc589fcIMheHqGSA7eem3et+6P5xZN0rlujcb7vKbndqJKPD47iXLwliX8+Ffsdm0f61k2KRLBx/y/fbTkSj08Hg82bNiAKVOmaI/ZbDbk5+dj9erVAOoO5DFjxuC8887DDTfc0KBzypQp2urMQN0VJ7239pxOJ2bOnGmwFNZ1qJ6HH30MS2Is99AYWWRx8HgiXVmTpTyK3YGHH3rMVP+e8Bw8y3GEe4LXoTNyRUJEFl5H+KzWNd6ztc9NcEPEyKAGNUu1x8f9GdRznDQ0NYOoem05eJy2zUO8z2t6ZgVXCf7s8C5TIuN5gLcsx45/fcsmRSP4mH+Xllypz8GDB+H3+5GdnR3yeHZ2Nn788UcAwKpVq7Bo0SKcdtppWv+oV199FaeeempEp8vl4l71Pl5kOOzaorgEkWjq+iQYX9+rMUnGQQCxOpgHf4nI2BE66pWzFF7GRm0ImGkEpBJWGmCR9KUYMGAAAoGA4dcVFxejuLgYfr/+LwjGGHy+utZ2Wloa93Tx4Q71ds0p0/X9xRivHDwwxuD1esH8PsDGtzaULOURWScyZOFxhF9ZUPevV2HCcvASjzoRkYPXkYYAzjiuGTbsqggpi5HbF2oWr9fYMjThDq+3rpOtnnqNtB6cqDphfp+2zeswUpaGPOp5LRINNQSCPzu8K4PIdC4xW5bgLGaP12BHIkj4qLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3Trdr6murobT6YTT6TQ1XXwkh5HjJ545eDxZTTPx2xMjTC11IkN5RNaJDFl4HOFXFk7vkIGsppkJL4soj0wOl8uFxbcNxPp7z0HJg0O1NeR4smQ1zWy0z5/aYFCXseFxRMvx2xMj8NsTI6Q41sye15jXLcVnR4RDRFmCs4g4Xs04zCJ1w8npdKJ3795YtuzY4oiBQADLli1D//79Y7ySIAizrL8/H6/d1C/RMSyP2ggJXj+OIAh5SfitusrKSmzbtk37eceOHdi8eTNatWqFzp07o6ioCAUFBcjLy0Pfvn0xZ84cVFVVaaPseOG5VZeZmYk//vhD2+bBSg71tYcOHULB/LXYsr/uEjnPUicylEdknTRmlpoo/ZHM5qibKdspvCx65uPR40lUlng4eFE91R4f+j+5hk+S5sKefQcAABkZGaZyqNu8dZIz6U1tW0QOXjIzM7Fn3wGc+fAyU0uu7Nl3AJnONDgykvu8JqIswVnMHK/Bjn4Pf86dxQwJbzitX78egwcP1n5WR7wVFBRg4cKFuPrqq3HgwAFMmzYNZWVl6NWrFz766KN6HcaNUlhYiMLCQlRUVKBFixa6XqMoCrKysky9b7wcwfMB6Wm4iMihelq2bImlRReYWupE1npNhiznPL5cihzxdDRGlvCRbYnKweNxenzc/Xn6PHTsij5vx3RRdWJLb6pt8zpE1quax4zDzEg0WY41EWUJ9pg5XkU4zJLwhtOgQYMa7OA1ceJETJw4sZESJSfB8wEZbbiIen+rjJhIBsInzgQSP8IpeIoAvajPTcQxG07wyKgeHZrj5XF9E5gmvkQ6fgBjHdMJOQj/vMnwWbI6Kfvp4LlV5/F48PDDDwMApk6dyjXXSDwdRhovInKI8ljJ0VhZwifOBOqfMBuzThhD1Hl+wh3BXSuNzPwdj/JkOBwRGxAleyvQ56HIQ8xjlYc3h9ljzesPgPnP0D1zePDxozpeWPELWvS/ylQOwFydHP7q9aPbg7kabx6PB48/PEPLYaZeH/q/GTj81TbuOmF+Lx76vwfhsNsw+c67uXM0dJyET4UQ/lkScayJKEtwFqPHa3THydxZzKCwRI3nkwT1Vl15eTmaN28e87lVVVVo2rTu0m1lZSXXQsLRHNUeH3oETbZW8uDQqCeOeOZIhMdKDpmyxHIEH2/Bx1r448zr1uVYf39+1BN4dXV1iCMzMxOj5q2u31iJkSPTmRaxPHrLoT4eyRE8IzZjwKh5q0PmVAv/Igp3KA5XxPcymiPac/V6cu54BzZnesRzRyx3uOPHRy8z9HqjdRKNA3+Uo12rLADA/kOH0bZliwbfNzzbunsGaI6G6jV8JnT1+A0/7oPrJJIr/DEA6DHt46PLi1yplafPY18BCJ3OAQj9g0fv548xFvEzpNLQsaYXNU+0sjS0b2OVJ9bxqtfR6dZXsOfZ0bq+v0WSsleceEhLS8Ott96qbae6Q6YssjhkypIoh/rFoH4hhDuCr3YYmTwwXuUJv1L7/u0DYl7JC3fwdHUXfaz5/AF8FGW+IT2Om2+ZgH+t3QXFhENEnTQ9/WJtW0SOaDQ0E7qIOlFsdtx8ywSk2W0hWRq6QhSeI1J5Il1xjvZZEnGsRSuLUUQdr6rjA06HWajhZACXy4Xi4mJySJhFFodMWRLlCJ8YMJKDp09cY5WnoWzhDp7OsqKPtWqPDx9zLrnicrkw++m53K8PzqHCWyetL/irti0iRzQamgldUdJM14mS5sDsp+ci05kGxljEW8JA7H5lscqj9zMk4lgLLouZzuGijlfV8SEtudK48PRxIgiCIKxFpJnQRWPkChEhP1JPgBlPeGYOJwiCIJKXao8f1R5fyEi0SDOhxwP1ChFNeJr8pGzDiYeqqio4HA44HA5UVVWlvEOmLLI4ZMqSjI66BYZDv9iMeGK93miWaMjiCPa0aJKBgKeW29GiSQZ2zrzMlENEneyceRl2zrwsbvWaN+Mz9Jj2cYNXekTUScBTixZNMhJ+nIhwRCvLsYbosX+xxpuJOl7NOsySsrfqeFEXSySHWI+VHKI8jeUInkspkTliTWmgx6Pn9XqzNIQsDlGeeDoMzTMUMN91IjxHtDmrgNhzn8lerzI4IjVAG5paRJbymCFlG048fZwyMjKwe/dubZsHKzlkyiKLQ6Yseh3BcymFT/rYmDkOVXnqNXqCv9ga8kTq8Bv+xRiP8tT6AqYdvKieGo8P58/7ltvx8y+/YtATX0Bx8M17FKtO9I4iy8jIQKdbF2rb4YTP7B7pizlSvUbqX6THY7ZOFIcTP//yKzKcaUlxHohFcFlaNW8atSEKxO7sLup4VR2Dn+JcZsgkKdtw4llyxWazoVOnTqbe10oOmbLI4pApSyxHpL/C1RNeY+YIJnjpmPApDYxmifR6o45o1HccayToXbZF9LFW7fFBUb7jdnTs1AlpzdqYzqGS4VAMjyKz2WxaBputfi+S4AZYtMZXtHo1OopTRJ0oSp3DzCzsspxLwssSqSGqp7O7qOP1mCMxvY1StuFEEKlMtLmUoi0YHC+iLR3TuonTVEfd8CkRGovwL3crL9sSC1GjyFJlaRi1wW1kuaJEkupLbKVuyTnweDx46qmnAACTJk3iXvLBKg6ZssjikClLQ45IJ7/wBYPjnUPP0jGNlYXXEW3ZlkhX8ETmCPZ4fAEw/0ncS1jMfnI2yr/ZiuZ5l5rKARwrj54v1+DZuw9X1qD8m38f9Q3WRrkFHx/Bja9IjQ2Px4Pip2aH5OAtj9k6YX4vZj/5JJxptgazRGtQynLMGymLnixmj9ennnoKjDH07PBn7OJKYg5acoWWXLH88iKN6ZApi15HpOUboi2XomfJlVhLeoiuV70ZRGZpaNmW4C/3aJn0lCV4bqEarz+pllyJVK/hjgyHPaQzf/iyHm1b1u9CEX6eDCfSkis8RKsT3iVXImWJtWyKns9fOEaW99FLpCVX9O7fSHUjesmVPXv2oFOnTrTkisykpaWhoKBA2051h0xZZHHIlEWvI9ZVH1nKIsoTL4fRWxcN5dB7y0/1+AIBrDSxhMV1N9yAJZtKTS25YrRewzvzKzY7mvz5fLRp6kSzjMgzhzc0Qq5ZhkvYsRZcJzy30hSbHdfdcAPSbJGXKdHTaV2WY76hshjNYvZ4VcvjcBi/YiWClG048Yyqc7lcWLhwoan3tZJDpiyyOGTKYsQR7YtflrLIlCVejob688TyNHQlpqEsL7w0H1+ZXHLFTJ1oV9geviTmdAV6GhuijrXgOuGZ4VtJc+CFl+bHbFDrWd5HhuNVT1mMZDF7vKrlqaioiP3kOJGyDSeeUXUEQRDxIlZ/HqtjpDN/Y3VM5p3/KZkJvuUMJE9n9cYmZRtOBEEQsiGiUaBnvqN4vt4q8Mz/JCPhjSGV8DIwxnRNIEvQkiuGqKqqQlZWFrKyskxNf28Vh0xZZHHIlKUxHbGmMaB6jY8j2NOxXRtt+Ql1WZEe0z7GqHmrYy6BoTo6tmuD3+ZcjYCn1vDrRZVHFkewp2XLlmBed9gac/rWtAt4atGxXZuElocxhhFPfY6mzbPQtHkWTr53adR9G2kCWZVe7dNNlyW4PMHHK6/DbBYz0BUng5SXl5MjDh4rOUR5kskRPo1BPHKI8jSmI1aDUnSdDOqchc1loV9GsfpH6cmi9/WxHEaQxSHKk2hHjdePTb8dBnPXb2DEmgsreFQnUNcIbHaH2Ho1MwZO1D7mhRpOBsjIyMBPP/2kbae6Q6YssjhkyhJvR7TJK8P7fqRyvUZrUMajTv70pz/B7a+7gmCkf5TqYIyhY+cusNlshvtXJeO+ibdHcTix5bsS00uuiMjRcfzzePfWs3HKySei1sca3Lfhfc4CaZlC67XG48PwV7aZcpjNYgZqOBnAZrPhxBNPJIeEWWRxyJQl3g69k1emWr3qaVDGq04yOforJ0u9NpZDlEdRbOh64omml1wRkcPRqhNO7XESMp1psHmML5Arul7rlkv5BYDBRaDDstCoukaGZzoCgiBCSfWlFyJhZDZ0gkh19C4CLRMpe8bjmY7A6/XihRdeAADcfPPNXJNvWckhUxZZHDJlsZJDpix6HA01KI3miNZXKpnqJFkcojzM78Pzzz0LZ5o9oeVhfh8qt3yE55/bjom3/hWA8QaJ6HpljOGM407Dxt1H6j2noXUIg7Ncc801XDnMQkuu0JIrKbW8SLwdMmWxkiOaR5YlV+LhiDZJoJ7lNKItAxL++mgOI6/nKU8kZ/BSGjIea9HgXXIl3jnUJU9OvndpSA7F4Yq4L/UuyyNqyZUjR47A5kwPer0/4uc3lqO0tBQdO3akJVdkxm6348orr9S2U90hUxZZHDJlsZJDpiyN5dDTVyqZypMsDlEexWbDyMuvgN2mJLQ8is2GzJPOxtBT2sNutyOQoBzhnrS0NKRHuTgQ3O8pvA+UqCxmoIaTAdLT0/H222+TQ8IssjhkymIlh0xZGsuhp6+UHk9Dsz8nU500hkOUR0lz4rU33jTVB1BUjrYjpuC1B4ci/ehVoETkMOKJNeov2EGdwwmCIIgQRHS+N7tsSzyW3aClPOQg1pWdxibWEjeAXMvcUMOJIAjCYkT7EuL58onHenmpsgaf7Mi0H2ItcQPINTKVllwxQHV1NTp16oROnTqhuro65R0yZZHFIVMWKzlkyiKLI5ZH/RIqeXBoyL9Iw7wjOdSGVzjRGl56ytOQMxnqtcHXefzalZuAtxZdj89NeHkC3lrsLh6Nrsfnorq6Oup+UIm0jxurXtUrrJH+qcetqCxmoCtOBmCMobS0VNtOdYdMWWRxyJTFSg6ZssjiaMij9zZfJEe0v/6j/dWvpzwNOZOlXmMRcgWHAXtlKA8D/JWHsLeyzsFzZSfR9RqPLGaghpMB0tPTsWnTJm071R0yZZHFIVMWKzlkyiKLI95ZjPSv0psjljNZ6zXabdE+J7TD0o0boShKQsujpDnQYczT+Pet/TWH0b5zyXC8NiYpO49T8MzhP/30U6PPAxGOkXmcCIKow+g8TgQRDxhjuq/OxQs98yjF8zORiPc3Mg+jSFK2j1NhYSFKSkqwbt26REchCIIgkphIfXNk6chMiIf+JDOA1+vF66+/DgC47rrruKfQj+QIvtzb0MiXeOZIhMdKDpmyWMkhUxZZHDJlsZJDpiy8DrWDerXHD+b3oarkC7z6ShnGFYy2VL0OHz6cK4dZUvZWnYosS64Axy73NnSJV5ZlI2TKIotDpixWckTzWHnJlWTKYiWHTFl4l1wJprGWfjG65IqILLTkShJgt9tx0UUXaduiHXo77MU7R2N7rOSQKYuVHDJlkcUhUxYrOWTKYsQRrZO6YrOh/Sn9cUZuS6pXQdAVpwR1LiMIwjzUOZwgjhGpkzrQOB3VU6lzOJ1ZCIIgCMICiFiih2iYlB1VRxAEQRAEYRRqOBmguroaJ554Ik488URTU+hbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGeiangEYY9i2bZu2neoOmbLI4pApi5UcMmWRxSFTFis5ZMqSrI7g6RASnSUeUMPJAOnp6fjqq6+07VR3yJRFFodMWazkkCmLLA6ZsljJIVOWZHWErNmX4CzxgEbV0ag6gkhaaFQdQcgBYwyj5q2uNx0CAOTltsTbE/oLH9lHo+pMMHLkSHzxxRc4//zz8c477yQ6DkEQBEGkFIqi4O0J/RM2HUJjYomG06RJkzBu3Di8/PLLcX0fn8+HxYsXA6hrrKWlGa8+KzlkyiKLQ6YsVnLIlEUWh0xZrOSQKUuyORqaDkF0lvPPP9/w64XALMLy5cvZFVdcYfh15eXlDAArLy9v8LmVlZUMAAPAKisreWJayiFTFlkcMmWxkiOap8rtZbn3vMdy73mPHThSq21Xub1Sl4eONXkdMmWxkiMeWUpLS3V/f4sk4VecVqxYgZkzZ2LDhg3Yu3cvFi9ejBEjRoQ8p7i4GDNnzkRZWRl69uyJuXPnom/fvo2e1WazYeDAgdp2qjtkyiKLQ6YsVnLIlEUWh0xZrOSQKYuVHLJlMUPCO4d/+OGHWLVqFXr37o3LL7+8XsNp0aJFGD16NObNm4d+/fphzpw5ePvtt7F161a0a9dOe94XX3yBZ555psE+Tm63G263W/u5oqICOTk51DmcIJIQ6hxOEKlLojqHJ3wCzGHDhmHGjBkYOXJkxN/PmjUL48ePx9ixY9GjRw/MmzcPmZmZmD9/Ptf7PfLII2jRooX2Lycnx0x8giAIgiBSiIQ3nGLh8XiwYcMG5Ofna4/ZbDbk5+dj9erVXM4pU6agvLxc+7dr1y5RcQmCIAiCsDhSN5wOHjwIv9+P7OzskMezs7NRVlam/Zyfn49Ro0bhgw8+wHHHHRezUeVyudC8efOQf3qpqalBr1690KtXL9TU1BgvkMUcMmWRxSFTFis5ZMoii0OmLFZyyJTFSg7ZspjBEp0APvss8iylsSguLkZxcTH8/vpzTkQjEAhgy5Yt2jYPVnLIlEUWh0xZrOSQKYssDpmyWMkhUxYrOWTLYgapG05t2rSB3W7Hvn37Qh7ft28f2rdvb8pdWFiIwsJCrXOZHtLT0/HJJ59o2zxYySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LGRI+qi4YRVHqjarr168f+vbti7lz5wKoa2F27twZEydOxL333mv6PWnJFYJIXmhUHUGkLim75EplZaW20jEA7NixA5s3b0arVq3QuXNnFBUVoaCgAHl5eejbty/mzJmDqqoqjB071tT78tyqIwiCIAgitUl4w2n9+vUYPHiw9nNRUREAoKCgAAsXLsTVV1+NAwcOYNq0aSgrK0OvXr3w0Ucf1eswbhSeW3U+nw8ff1z31+3QoUO5p4u3ikOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8s/fv358phmkadp1xCaMkVuabQT3aHTFms5IjmoSVX5MhiJYdMWazkiEeWlF1yJVHw3Kqz2WzIy8vTtnmwkkOmLLI4ZMpiJYceT42n4c+yLOWhY01eh0xZrOSQLYsZpOocngioczhBJC/BncODoc7hBGF9UnbJFYIgCF4yHHbk5bYMeSwvtyUyHPYEJSIIwurQn2QEQSQtiqLg7Qn9UeM9dpsuw2GHoigJTEUQhJVJ2StOxcXF6NGjB/r06aP7NTU1NTj77LNx9tlnm5ou3ioOmbLI4pApi5UcsTyKoiDTmab9i9VokqU8dKzJ65Api5UcsmUxRaN2RZcQGlUn1yiJZHfIlMVKDpmyyOKQKYuVHDJlsZIjHlloVF0S4HK5sHjxYm071R0yZZHFIVMWKzlkyiKLQ6YsVnLIlMVKDtmymIFG1dGoOoIgCIJIOmhUHUEQBEEQhOSk7K06ngkw/X4/Vq5cCQA455xzYLcbH/JsJYdMWWRxyJTFSg6ZssjikCmLlRwyZbGSIx5ZevbsyZXDNI3ao0pCqHO4XJ39kt0hUxYrOWTKIotDpixWcsiUxUqOeGShzuFJgKIo6NGjh7ad6g6ZssjikCmLlRwyZZHFIVMWKzlkymIlh2xZzECdw6lzOEEQBEEkHdQ5nCAIgiAIQnJStuHEM3M4QRAEQRCpTco2nAoLC1FSUoJ169bpfk1NTQ2GDBmCIUOGmJou3ioOmbLI4pApi5UcMmWRxSFTFis5ZMpiJYdsWUzRqF3RJYRG1ck1SiLZHTJlsZJDpiyyOGTKYiWHTFms5IhHFhpVlwS4XC689tpr2naqO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxA42qo1F1BEEQBJF00Kg6giAIgiAIyaFbdQbw+/3YuHEjAOCMM87gni7eKg6ZssjikCmLlRwyZZHFIVMWKzlkymIlRzyydO3alSuHaRq1R5VEPPPMM6x79+6sW7du1Dlcos5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/BGprCwEIWFhdo9Uj0oioLc3FxtmwcrOWTKIotDpixWcsiURRaHTFms5JApi5UcsmUxA3UOp87hBEEQBJF0UOdwgiAIgiAIyaGGE0EQBEEQhE6o4WSA2tpajBgxAiNGjEBtbW3KO2TKIotDpixWcsiURRaHTFms5JApi5UcsmUxRaN2RZcQWnJFrlESye6QKYuVHDJlkcUhUxYrOWTKYiVHPLLQqLokwOl04oUXXtC2U90hUxZZHDJlsZJDpiyyOGTKYiWHTFms5JAtixloVB2NqiMIgiCIpING1REEQRAEQUhOyt6qKy4uRnFxMfx+v+7XBAIB/PDDDwCA7t27w2Yz3u60kkOmLLI4ZMpiJYdMWWRxyJTFSg6ZsljJEY8snTp14sphmkbtUSUh1Dlcrs5+ye6QKYuVHDJlkcUhUxYrOWTKYiVHPLJQ5/AkoU2bNuSIg8dKDlEecsTHYyWHKA854uMhR3w8orLwQp3DqXM4QRAEQSQd1DmcIAiCIAhCcqjhRBAEQRAEoRNqOBmgtrYW1113Ha677jpT08VbxSFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKRq1K7qE0Kg6uUZJJLtDpixWcsiURRaHTFms5JApi5Uc8chCo+qSAKfTidmzZ2vbqe6QKYssDpmyWMkhUxZZHDJlsZJDpixWcsiWxQw0qo5G1REEQRBE0kGj6giCIAiCICSHbtUZIBAI4LfffgMAdO7cmXu6eKs4ZMoii0OmLFZyyJRFFodMWazkkCmLlRzxyJKVlcWVwzSN2qMqTvz3v/9l3bp1Y127dmUvvviioddS53C5Ovslu0OmLFZyyJRFFodMWazkkCmLlRzxyEKdwznx+XwoKirC8uXL0aJFC/Tu3RsjR45E69at4/J+mZmZ5IiDx0oOUR5yxMdjJYcoDzni4yFHfDyisvCS9J3Dv/76a8ycOROLFy8GAEyePBn9+vXDtddeq+v11DmcIAiCIJKPlO0cvmLFCgwfPhwdO3aEoihYsmRJvecUFxejS5cuSE9PR79+/bB27Vrtd6WlpejUqZP2c6dOnbBnz57GiE4QBEEQRIqR8IZTVVUVevbsieLi4oi/X7RoEYqKijB9+nRs3LgRPXv2xNChQ7F///5GTkoQBEEQRKqT8IbTsGHDMGPGDIwcOTLi72fNmoXx48dj7Nix6NGjB+bNm4fMzEzMnz8fANCxY8eQK0x79uxBx44do76f2+1GRUVFyD+9uN1ujB8/HuPHj4fb7db9Oqs6ZMoii0OmLFZyyJRFFodMWazkkCmLlRyyZTFFo3ZFbwAAbPHixdrPbreb2e32kMcYY2z06NHs0ksvZYwx5vV6WdeuXdnu3bvZkSNHWLdu3djBgwejvsf06dO1HvnB/2hUHR+yZJHFIVMWKzlkyiKLQ6YsVnLIlMVKjnhkoVF1ETh48CD8fj+ys7NDHs/OzsaPP/4IAEhLS8OTTz6JwYMHIxAI4O677445om7KlCkoKirSfq6oqEBOTo6uPA6HAzNmzNC2ebCSQ6YssjhkymIlh0xZZHHIlMVKDpmyWMkhWxYzSDWqTlEULF68GCNGjABwrOP3119/jf79+2vPu/vuu/Hll1/im2++4X6v4uJiFBcXw+/346effqJRdQRBEASRRKTsqLpYtGnTBna7Hfv27Qt5fN++fWjfvr0pd2FhIUpKSrBu3TpTHoIgCIIgUgepG05OpxO9e/fGsmXLtMcCgQCWLVsWcgWqsWCM4cCBAzhw4AB4L9RZySFTFlkcMmWxkkOmLLI4ZMpiJYdMWazkkC2LKcR0leLnyJEjbNOmTWzTpk0MAJs1axbbtGkT27lzJ2OMsTfffJO5XC62cOFCVlJSwm6++WaWlZXFysrKTL3vM888w7p37866detGncMl6uyX7A6ZsljJIVMWWRwyZbGSQ6YsVnLEI0vKdg5fv349Bg8erP2sdtwuKCjAwoULcfXVV+PAgQOYNm0aysrK0KtXL3z00Uf1OowbpbCwEIWFhSgvL0dWVpauaQmqqqq07YqKCvj9fsPvayWHTFlkcciUxUoOmbLI4pApi5UcMmWxkiMeWY4cOQIAjX7lSarO4Ylg9+7dukfVEQRBEAQhF9u3b8ef/vSnRnu/lG84BQIBlJaWolmzZlAUJdFxUgp1Kohdu3bRiEYJoP0hF7Q/5IL2h3yUl5ejc+fO+OOPP5CVldVo75vwW3WJxmaz4bjjjkt0jJSmefPmdCKSCNofckH7Qy5of8iHzda449ykHlVHEARBEAQhE9RwIgiCIAiC0Ak1nIiE4XK5MH36dLhcrkRHIUD7QzZof8gF7Q/5SNQ+SfnO4QRBEARBEHqhK04EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EN8XFxejSpQvS09PRr18/rF27Nubz3377bZx88slIT0/Hqaeeig8++CDk94wxTJs2DR06dEBGRgby8/Px888/hzznoYcewllnnYXMzMxGnSk2GWjs/fHrr7/ixhtvxPHHH4+MjAyccMIJmD59OjweT1zKl2wk4vNx6aWXonPnzkhPT0eHDh1www03oLS0VHjZkpVE7BMVt9uNXr16QVEUbN68WVSRkppE7I8uXbpAUZSQf48++qix4I26pDBhGd58803mdDrZ/Pnz2ffff8/Gjx/PsrKy2L59+yI+f9WqVcxut7PHH3+clZSUsPvvv585HA72v//9T3vOo48+ylq0aMGWLFnCtmzZwi699FJ2/PHHs5qaGu0506ZNY7NmzWJFRUWsRYsW8S5m0pCI/fHhhx+yMWPGsI8//pht376dLV26lLVr14797W9/a5Qyy0yiPh+zZs1iq1evZr/++itbtWoV69+/P+vfv3/cy5sMJGqfqNx+++1s2LBhDADbtGlTvIqZNCRqf+Tm5rIHH3yQ7d27V/tXWVlpKDs1nAgu+vbtywoLC7Wf/X4/69ixI3vkkUciPv+qq65iF198cchj/fr1Y7fccgtjjLFAIMDat2/PZs6cqf3+8OHDzOVysTfeeKOeb8GCBdRwCiLR+0Pl8ccfZ8cff7yZolgCWfbH0qVLmaIozOPxmCmOJUjkPvnggw/YySefzL7//ntqOB0lUfsjNzeXzZ4921R2ulVHGMbj8WDDhg3Iz8/XHrPZbMjPz8fq1asjvmb16tUhzweAoUOHas/fsWMHysrKQp7TokUL9OvXL6qTqEOm/VFeXo5WrVqZKU7SI8v+OHToEF5//XWcddZZcDgcZouV1CRyn+zbtw/jx4/Hq6++iszMTJHFSloS/Rl59NFH0bp1a5x++umYOXMmfD6fofzUcCIMc/DgQfj9fmRnZ4c8np2djbKysoivKSsri/l89X8jTqIOWfbHtm3bMHfuXNxyyy1c5bAKid4f99xzD5o0aYLWrVvjt99+w9KlS02Vxwokap8wxjBmzBhMmDABeXl5QspiBRL5Gbn99tvx5ptvYvny5bjlllvw8MMP4+677zaUnxpOBEGYZs+ePbjwwgsxatQojB8/PtFxUpq77roLmzZtwieffAK73Y7Ro0eD0QIRCWHu3Lk4cuQIpkyZkugoxFGKioowaNAgnHbaaZgwYQKefPJJzJ07F263W7eDGk6EYdq0aQO73Y59+/aFPL5v3z60b98+4mvat28f8/nq/0acRB2J3h+lpaUYPHgwzjrrLLzwwgumymIFEr0/2rRpg27dumHIkCF488038cEHH2DNmjWmypTsJGqffP7551i9ejVcLhfS0tLQtWtXAEBeXh4KCgrMFyxJSfRnJJh+/frB5/Ph119/1Z2fGk6EYZxOJ3r37o1ly5ZpjwUCASxbtgz9+/eP+Jr+/fuHPB8APv30U+35xx9/PNq3bx/ynIqKCnzzzTdRnUQdidwfe/bswaBBg9C7d28sWLAANhudUmT6fAQCAQAw9Ne0FUnUPnn66aexZcsWbN68GZs3b9aGzy9atAgPPfSQ0DImEzJ9RjZv3gybzYZ27drpL4CpruVEyvLmm28yl8vFFi5cyEpKStjNN9/MsrKyWFlZGWOMsRtuuIHde++92vNXrVrF0tLS2BNPPMF++OEHNn369IhDSbOystjSpUvZt99+yy677LJ6Q0l37tzJNm3axP7xj3+wpk2bsk2bNrFNmzaxI0eONF7hJSQR+2P37t2sa9eu7Pzzz2e7d+8OGd6b6iRif6xZs4bNnTuXbdq0if36669s2bJl7KyzzmInnHACq62tbdwKkJBEnbOC2bFjB42qO0oi9sfXX3/NZs+ezTZv3sy2b9/OXnvtNda2bVs2evRoQ9mp4URwM3fuXNa5c2fmdDpZ37592Zo1a7TfDRw4kBUUFIQ8/6233mLdunVjTqeTnXLKKez9998P+X0gEGB///vfWXZ2NnO5XOz8889nW7duDXlOQUEBA1Dv3/Lly+NVzKShsffHggULIu4L+nusjsbeH99++y0bPHgwa9WqFXO5XKxLly5swoQJbPfu3XEtZzKRiHNWMNRwCqWx98eGDRtYv379WIsWLVh6ejrr3r07e/jhhw3/YaEwRr0GCYIgCIIg9EAdEgiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIAiCIHRCDSeCIAiCIAidUMOJIAiCIAhCJ9RwIgiCIAiC0Ak1nAiCIEzi8XjQtWtXfP3110K9H330EXr16qWtOUcQROKhhhNBECGMGTMGiqLU+7dt27ZER5OWefPm4fjjj8dZZ52lPaYoCpYsWVLvuWPGjMGIESN0eS+88EI4HA68/vrrgpISBGEWajgRBFGPCy+8EHv37g35d/zxx9d7nsfjSUA6uWCM4ZlnnsGNN94YF/+YMWPw9NNPx8VNEIRxqOFEEEQ9XC4X2rdvH/LPbrdj0KBBmDhxIiZPnow2bdpg6NChAIDvvvsOw4YNQ9OmTZGdnY0bbrgBBw8e1HxVVVUYPXo0mjZtig4dOuDJJ5/EoEGDMHnyZO05ka7QZGVlYeHChdrPu3btwlVXXYWsrCy0atUKl112GX799Vft9+rVnCeeeAIdOnRA69atUVhYCK/Xqz3H7XbjnnvuQU5ODlwuF7p27Yp//vOfYIyha9eueOKJJ0IybN68OeYVtw0bNmD79u24+OKLDdYy8Ouvv0a8ujdo0CDtOcOHD8f69euxfft2w36CIMRDDSeCIAzx8ssvw+l0YtWqVZg3bx4OHz6M8847D6effjrWr1+Pjz76CPv27cNVV12lveauu+7Cl19+iaVLl+KTTz7BF198gY0bNxp6X6/Xi6FDh6JZs2ZYuXIlVq1ahaZNm+LCCy8MufK1fPlybN++HcuXL8fLL7+MhQsXhjS+Ro8ejTfeeANPP/00fvjhBzz//PNo2rQpFEXBuHHjsGDBgpD3XbBgAc4991x07do1Yq6VK1eiW7duaNasmaHyAEBOTk7IVb1NmzahdevWOPfcc7XndO7cGdnZ2Vi5cqVhP0EQcYARBEEEUVBQwOx2O2vSpIn278orr2SMMTZw4EB2+umnhzz///7v/9gFF1wQ8tiuXbsYALZ161Z25MgR5nQ62VtvvaX9/vfff2cZGRls0qRJ2mMA2OLFi0M8LVq0YAsWLGCMMfbqq6+yk046iQUCAe33brebZWRksI8//ljLnpuby3w+n/acUaNGsauvvpoxxtjWrVsZAPbpp59GLPuePXuY3W5n33zzDWOMMY/Hw9q0acMWLlwYtb4mTZrEzjvvvHqPA2Dp6ekh9dikSROWlpbGLrvssnrPr6mpYf369WOXXHIJ8/v9Ib87/fTT2QMPPBA1A0EQjUdaYpttBEHIyODBg/Hcc89pPzdp0kTb7t27d8hzt2zZguXLl6Np06b1PNu3b0dNTQ08Hg/69eunPd6qVSucdNJJhjJt2bIF27Ztq3dlp7a2NuQ21imnnAK73a793KFDB/zvf/8DUHfbzW63Y+DAgRHfo2PHjrj44osxf/589O3bF//973/hdrsxatSoqLlqamqQnp4e8XezZ89Gfn5+yGP33HMP/H5/veeOGzcOR44cwaeffgqbLfRmQEZGBqqrq6NmIAii8aCGE0EQ9WjSpEnUW1PBjSgAqKysxPDhw/HYY4/Ve26HDh10j8ZTFAWMsZDHgvsmVVZWonfv3hFHmLVt21bbdjgc9bzqcP6MjIwGc9x000244YYbMHv2bCxYsABXX301MjMzoz6/TZs2WsMsnPbt29erx2bNmuHw4cMhj82YMQMff/wx1q5dG/GW36FDh0LKSBBE4qCGE0EQpjjjjDPw73//G126dEFaWv1TygknnACHw4FvvvkGnTt3BgD88ccf+Omnn0Ku/LRt2xZ79+7Vfv75559DrrKcccYZWLRoEdq1a4fmzZtzZT311FMRCATw5Zdf1rsSpHLRRRehSZMmeO655/DRRx9hxYoVMZ2nn346nnvuOTDGoCiK4Uz//ve/8eCDD+LDDz/ECSecUO/36hW1008/3bCbIAjxUOdwgiBMUVhYiEOHDuHaa6/FunXrsH37dnz88ccYO3Ys/H4/mjZtihtvvBF33XUXPv/8c3z33XcYM2ZMvdtR5513Hp555hls2rQJ69evx4QJE0KuHl133XVo06YNLrvsMqxcuRI7duzAF198gdtvvx27d+/WlbVLly4oKCjAuHHjsGTJEs3x1ltvac+x2+0YM2YMpkyZghNPPBH9+/eP6Rw8eDAqKyvx/fffG6i1Or777juMHj0a99xzD0455RSUlZWhrKwMhw4d0p6zZs0auFyuBnMQBNE4UMOJIAhTdOzYEatWrYLf78cFF1yAU089FZMnT0ZWVpbWOJo5cybOOeccDB8+HPn5+RgwYEC9vlJPPvkkcnJycM455+Avf/kL7rzzzpBbZJmZmVixYgU6d+6Myy+/HN27d8eNN96I2tpaQ1egnnvuOVx55ZW49dZbcfLJJ2P8+PGoqqoKec6NN94Ij8eDsWPHNuhr3bo1Ro4cyTVJ5fr161FdXY0ZM2agQ4cO2r/LL79ce84bb7yB6667LubtQoIgGg+FhXcqIAiCaAQGDRqEXr16Yc6cOYmOUo+VK1fi/PPPx65du5Cdnd3g87/99lsMGTIE27dvj9hJnpeDBw/ipJNOwvr16yNOQEoQRONDV5wIgiCO4na7sXv3bjzwwAMYNWqUrkYTAJx22ml47LHHsGPHDqF5fv31Vzz77LPUaCIIiaDO4QRBEEd54403cOONN6JXr1545ZVXDL12zJgxwvPk5eUhLy9PuJcgCH7oVh1BEARBEIRO6FYdQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6oYYTQRAEQRCETqjhRBAEQRAEoRNqOBEEQRAEQeiEGk4EQRAEQRA6+X/DiLPOFtt7bAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 5e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "42b87c7c", + "metadata": {}, + "source": [ + "Yes, we do see a nice QPO there, but how can we be sure about the low-frequency continuum when it's so polluted from the harmonics of the observing window?\n", + "\n", + "A proper treatment of gaps is not possible at these long timescales, but gaps can certainly be ignored at shorter time scales. As we've seen in the `AveragedPowerspectrum` tutorial, we can study the short-term variability with" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a71841b4", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:00, 1671.53it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum(ev_tot, dt=0.01, segment_size=256, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.01)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "11aff354", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAG1CAYAAAAYxut7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2e0lEQVR4nO3deXxU1fk/8M/sk8lCEgLZSAi7rImGgChKsFFERKEVrbUaELG2waVUq6hfqf1RbOuGfo1SV2xrFbUF+1WLC7Ioe8CAENkDJEA2ss++3N8f6VwzZDJL5s5MJvN5v168nLnnzLlPLpg8Offc88gEQRBAREREFMXk4Q6AiIiIKNyYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT1luAMIN4fDgbNnzyI+Ph4ymSzc4RAREZEPBEFAW1sbMjIyIJcHPr8T9QnR2bNnkZWVFe4wiIiIqAeqqqowaNCggMeJ+oQoPj4eQMcFTUhICHM0RERE5IvW1lZkZWWJP8cDFbUJUWlpKUpLS2G32wEACQkJTIgikMViwQsvvAAAuP/++6FWq0M2nre+ntqljpuIKFpJtdxFFu3FXVtbW9GvXz+0tLQwIYpAer0ecXFxAID29nbExsaGbDxvfT21Sx03EVG0kfrnd9TOEFHfoFQqUVxcLL4O5Xje+npqlzpuIiIKDGeIOENEREQUcaT++c19iIiIiCjqMSEiIiKiqMeEiCKaXq9HYmIiEhMTodfrQzqet76e2qWOm4iIAsPVnBTxWlpawjaet76e2qWOm4iIeo4JEUW0mJgYHDlyRHwdyvG89fXULnXcREQUGD5lxqfMiIiIIg6fMiMiIiKSWJ+4ZVZZWYk777wTtbW1UCgU2LFjB3f+jRJWqxWvvvoqAODuu++GSqUK2Xje+npqlzpuIiIKTJ+4ZTZt2jQsX74cV1xxBRobG5GQkODz7r+8ZRbZWLqDiCg6sXTHBQ4ePAiVSoUrrrgCAJCcnBzmiCiU7HY7rrnmGgiCgNOnT+Oiiy4KqNCfQqHATTfdJL4OpK+ndn/OQ0REwRf2GaItW7bg6aefxp49e3Du3DmsXbsWc+bMcelTWlqKp59+GjU1NcjNzcX//u//YtKkSQCAdevWYfXq1bDb7Thz5gxuuukmPProoz6fnzNEke3s2bPi01oAMHnyZD61RUQUBfrcomq9Xo/c3FyUlpa6bV+zZg2WLFmCZcuWYe/evcjNzcWMGTNQV1cHALDZbPj666/x8ssvY/v27fjiiy/wxRdfhPJLoDC6MJ/vA3eAiYgoDMKeEM2cORPLly/H3Llz3bY/99xzWLRoERYsWIAxY8Zg1apV0Ol0ePPNNwEAmZmZmDhxIrKysqDRaHDdddehvLy82/OZzWa0tra6/CEiIqLoFvaEyBOLxYI9e/agqKhIPCaXy1FUVITt27cDAAoKClBXV4empiY4HA5s2bIFo0eP7nbMp556Cv369RP/ZGVlBf3roOAxGo2YN28e5s2bB5PJFPB4BoMBmZmZyMzMhMFgCKivp3Z/zkNERMHXqxdVNzQ0wG63IzU11eV4amoqDh06BABQKpVYsWIFrrzySgiCgGuuuQbXX399t2MuXboUS5YsEd+3trYyKYpggiCgoaFBfC3FeGfPnvVpPG99PbX7cx4iIgq+Xp0Q+WrmzJmYOXOmT301Gg00Gk2QI6JQ0Wg0eO211wAAarU64PG0Wi2+/fZb8XUgfT21+3MeIiIKvl6dEKWkpEChUKC2ttbleG1tLdLS0gIau7S0FKWlpbDb7QGNQ+GlUCgwfPhwScfLy8uTpK+ndn/OQ0REwder1xCp1Wrk5+djw4YN4jGHw4ENGzZgypQpAY1dUlKCiooK7N69O9AwiYiIKMKFfYaovb0dx44dE99XVlaivLwcycnJyM7OxpIlS1BcXIyJEydi0qRJWLlyJfR6PRYsWBDGqKm3sFqtWL9+PQC4LL4PZLx33nkHAHDbbbd5Ld3hqa+ndn/OQ0REwRf2jRk3bdqE6dOndzleXFyM1atXAwBeeuklcWPGvLw8vPjii5g8eXJA5+18y+zIkSPcmDFCHT16FCNHjgQAfPrpp5g2bRp0Ol2Px2PpDiKiyNDnSncUFhZ6fcpm8eLFWLx4saTnLSkpQUlJiXhBKfIIggCz2Swmx1KUwFAoFLjuuut8Gs9bX0/t/pyHiIiCL+wzROHG0h2R6+TJkzh58qTLsUmTJgU0Q0RERJGhz5XuCJfS0lKMGTMGBQUF4Q6Fekiv14c7BCIi6iOiNiHiU2Z9x4gRI6BUhv3uLxERRbCoTYiobzCZTJg6dSpuvfVWyUp3jBgxAiNGjPCpdIenvp7a/TkPEREFH3+tpogmCIK4jkiq0h3ObSB8Kd3hqa+ndn/OQ0REwRe1CRF3qu4b1Go11q5di7Nnz0pWuuObb74RXwfS11O7P+chIqLg41NmfMosYh08eBD19fUYMWIEKisrYbPZ+JQZEVGU4FNmRERERBKL2ltm1DfY7XZ8/PHHqKurw2WXXRbweDabDWvXrgUAzJ071+PTa976emr35zxERBR8UXvLjKU7It/Bgwdx+vRpccdnlu4gIooefa50R7iwdEffIJfLcemll8JkMkEuD/wOsFwux7Rp08TXgfT11O7PeYiIKPiidobIiYuqIxcXVRMRRS8uqiYiIiKSGBMiIiIiinpMiCiimc1mXHPNNViwYAHMZnPA4xmNRuTl5SEvLw9GozGgvp7a/TkPEREFX9QuquZO1X2Dw+FARUWF+FqK8fbt2+fTeN76emr35zxERBR8UZsQ8SmzvkGtVuMf//gHampqJCvd8fnnn4uvA+nrqd2f8xARUfDxKTM+ZRax+JQZEVH04lNmRERERBKL2ltm1DfY7XZs2LABNTU1yM/PD3g8m82Gzz77DAAwY8YMr6U7PPX11O7PeYiIKPj4XZgimsViQXFxMYCO0h2BMpvNuP766wF0lNTwlKh46+up3Z/zEBFR8PG7MEU0uVyO3NxcmM1myUp3TJw4UXwdSF9P7f6ch4iIgi9qF1WzuGvk46JqIqLoxUXVEikpKUFFRQV2794d7lCIiIgozKI2ISIiIiJyYkJEEc1sNmPOnDn45S9/KVnpjssvvxyXX365T6U7PPX11O7PeYiIKPi4qJoimsPhQFlZmfhaivG2bdvm03je+npq9+c8REQUfEyIKKKp1Wq8/vrrqK2tlaR0h0ajwdq1a8XXgfT11O7PeYiIKPii9ikzJ5buiFx8yoyIKHrxKTMiIiIiifGWGUU0u92Obdu2oaamBmPGjAl4PJPJhPXr10On0+FHP/oRFAqFx3N//fXXAIArrriiS19P7d4+S0REocWEiCKaxWLBzTffDECa0h1lZWWYO3cugI6SGrGxsd32NZlMmD59erd9PbV7+ywREYVW1CZEnXeqpsglk8kwcuRIWCwWyGSygMfT6/UYPHiwOLa3cztnpdz19dTu7bNERBRaXFTNRdURKxiLqjdv3gzn/xKFhYUSRUpERFLjomoiIiIiiTEhIiIioqjHhIgimtlsxq233opf//rXkpTuMJvNePDBB/Hggw/6VLrj6quvxtVXX91t6Y7u2r19loiIQitqF1VT3+BwOMTH16Uq3bFnzx6fxnM4HPjyyy+77eup3dtniYgotJgQUURTq9V48cUXUV9fL0npDpVKhUcffRSAb6U7/v73v3fb11O7t88SEVFo8SkzPmUWsfiUGRFR9OJTZkREREQSY0JEEamtrQ319fWw2+0oLy/H999/L8kmm3a7HYcOHcKhQ4e8jme327F7927s3r3bbV9P7d4+S0REocU1RBSRvvvuOwAdpTuuv/56ANKU7rBYLPjlL38JALj99tu9lu6YNGkSgO5Ld3TX7u2zREQUWn0iIcrJyUFCQgLkcjmSkpKwcePGcIdEQWaz2QAAAwYMwODBg2E2myUpgSGTyZCamiq+9tbXU5kPT+3ePktERKHVJxIiANi2bRvi4uLCHQaF2Lhx43Dy5El88803YpIUCK1Wi/feew8AvC7O1ul0OHnyZI/avX2WiIhCi2uIiIiIKOqFPSHasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS7tMJsO0adNQUFCAd955J0SRExERUV8R9oRIr9cjNzcXpaWlbtvXrFmDJUuWYNmyZdi7dy9yc3MxY8YM1NXViX2++eYb7NmzB//+97+xYsUK7N+/P1ThU5iZTCbMmTMHS5cuhcViCXg8s9mMxx9/HI8//jhMJpNP554zZ47bvp7avX2WiIhCK+xriGbOnImZM2d22/7cc89h0aJFWLBgAQBg1apV+OSTT/Dmm2/ikUceAQBkZmYCANLT03Hddddh7969mDBhgtvxzGazS82r1tZWqb4UCgO73Y6PPvpIfB0oh8OBrVu3+jSet3N7apc6biIiCkzYEyJPLBYL9uzZg6VLl4rH5HI5ioqKsH37dgAdM0wOhwPx8fFob2/HV199hZtvvrnbMZ966ik8+eSTQY+dQkOtVuPVV1/F0aNHoVKpAh5PpVLhN7/5jTi2L+furq+ndm+fJSKi0OrVCVFDQwPsdrv4GLRTamoqDh06BACora3F3LlzAXT8pr1o0SIUFBR0O+bSpUuxZMkS8X1rayuysrKCED2FgkqlwqJFiyR7ykypVIr7GnlLsJzn7km7t88SEVFo9eqEyBdDhw7Fvn37fO6v0WhYTJOIiIhchH1RtScpKSlQKBSora11OV5bW4u0tLSAxi4tLcWYMWM8ziZR7+dwOHDw4EFUVlbC4XBIMl5lZaVP4znPffDgQbd9PbV7+ywREYVWr06I1Go18vPzsWHDBvGYw+HAhg0bMGXKlIDGLikpQUVFBXbv3h1omBRCZ8+exebNm8Ukwmg0Yty4cbjjjjtcFsv3lNlsxp133ok777wTRqPRY1/nuceNG+e2r6d2b58lIqLQCvsts/b2dhw7dkx8X1lZifLyciQnJyM7OxtLlixBcXExJk6ciEmTJmHlypXQ6/XiU2cUXRobGyEIAgAgJiYGarUaKSkpsFqtkp2jX79+PvUTBAHJyckAOh4AcFePLCUlpdvPe2ojIqLQCntCVFZWhunTp4vvnQuei4uLsXr1atxyyy2or6/HE088gZqaGuTl5WH9+vVdFlr7q7S0FKWlpXzkOUINGzYMgwYNgkwmQ319vWSLqmNiYsTNQb0VXHU4HPjnP/8JAGhpaUFSUpJLe2xsLOrr691+1lMbERGFXtgTosLCQvE3/u4sXrwYixcvlvS8JSUlKCkpQWtrq88zAtR7KBSKsBdF7bz2h4k1EVFk69VriIiIiIhCIewzROHCW2Z9g8lkwsKFC1FfX48HH3ww4PHMZjP+/Oc/AwAuvfRSaLVaj+devnw5AODFF1/sNjYAeOONN1zG8tRGREShJxO83a/q45y3zFpaWpCQkBDucMiLAwcOoKGhASNHjkRGRgb0ej3i4uIAAJ9++in69euHrKysHm+2uX79erGUTHt7u8d1RGfOnMGgQYMAAPv378f48eNd2jvHduFYntqIiMg7qX9+R+0MEfUNarUazz//PKqrq6FSqWCxWHDu3LkeJ0QqlQolJSXi2N7O7ezrbldrZ2zuxvLURkREoceEiCKaSqXCAw88AIfDgZqaGhw5ciSg8ZRKJW666SZxbG/n9tTXGZunuImIqHeI2kXV3Km6b5HL5dDpdOEOg4iIIlTUzhDxsfu+weFw4PTp0wAgyT1kh8MhlopxOByQy7v/ncE5KwUAmZmZHmPLzs52GctTGxERhV7UJkTUNxiNRgwZMgQAUF1d3eNxWltbceLECZhMJtx6660AgNmzZ3tc7Gw0GsW++/fv9xjbhQunPbUREVHoMSGiiCfFrbJz586hubkZAPx6BN5bX0+x8RYfEVHvEbUJEfch6htiY2Oh1+sBQExoeqJzfbT//Oc/4tjezu3s6y65cZbnOH/+fJddtTvHTURE4Re1CxdY7Z5C4bvvvsPx48dx8ODBcIdCREQeRG1CROSOc6ZHqjppRqMRADgbRETUy0XtLTPqG8xms1j411lGIxCxsbH4/e9/D6CjdIdGo/F47meeeQYAxHIf3bXfd9993cb90ksveTwPEREFH0t39ILSHTabDeXl5TCZTD36vFKpxNixYxEfHy9xZL2Pp9Id1dXVOHr0KHQ6HSZNmuTXuIcOHUJNTQ2SkpKQl5cHQNrSHZ9++qlYEuTCNj5lRkTkP5bu6IPa29vR3t7e48/bbDY0NjZGRUJ0IZVKJc4MedtZ2hdKpVIsutrdeBaLBYcOHUJtba3YV6ns+r+SSqXqtl3quImIKDBRmxD1xqfMtFotJkyY4NdnKisrUV9fH6SIej+1Wo3HHnsMQGBPmXUe7+c//zlkMlm3NcYaGxvR2NgIlUqFn//85+LnuhvLW9xERBR+UZsQ9cadqntSfsLdzAQFV5TfZSYi6pP405QimiAIaGhoACBNcigIApqbmyGTySAIgsenzQRBQEtLCwCIa4ncjQWgS9LdOe6UlBTJnmojIqKeYUJEEc1gMGDgwIEAAivd4WQ0GjF37lwA3hc7m0wmsa+70h0Gg0Fs//TTT7uNm4uqiYjCj/sQERERUdTjDBFFtNjYWHFNjxSLqnU6HTZu3AiZTOZ11iYmJgYbN24UP+cuNme7uzauRSIi6j04Q0RERERRL2oTotLSUowZMwYFBQXhDoWIiIjCLGoTIhZ37RvMZjMeeOABPPDAAzCbzQGPZ7FY8NJLL+F///d/vY7n7PvSSy+57Ws2m8V2i8XiNW5BEHD48GEcPHgQVqs14K+FiIh8F7UJEfUNNpsNL7zwAl544QXYbDZJxvvnP/+Jf/7zn17Hs9vtYt8LN/h0OBw4f/58t+3u4tbr9Th37hzq6+vR1NQU8NdCRES+46JqimgqlQqPPvqo+DpQSqUSt912G2QymdfxnH2drzs7fPgwqquru213F3fnRdZccE1EFFpMiCiiqdVq/OEPfwAgXemOu+66y2PpDieVSoW77rpL/FxnLS0tLu2e4iYiovDjLTMiIiKKepwhoogmCAIMBoP4WorxjEajz6U7TCZTt+fu3K7VaruNW6fTsXQHEVGYMSGiiGYwGBAXFwdAutId1113HQDfSnc4+7or3dG53V3pDmfcLN1BRBR+vGVGREREUY8zRBTRdDod2tvbAUDc68dgMMBkMnW5TeWLmJgYfPrpp5DJZG7LcXSm1WrFmZ+YmBiP7RfG0jlub+chIqLgi9oZIu5U3Tc4a47Fxsa6rMPZuXNnjzY3lMlkiImJQUxMTLfretra2nzq66m9u7iJiCg8ojYh4k7VfU9CQgJSUlIAdCxavnB3aCk4HA6cPXtW8nGJiCi8ojYhor7BYrHgsccew2OPPQabzYZx48YFtEGjxWLB66+/jtdff91tQuVwOMTXVqvVY9/O7RfOVnWOOxiJGxER+YcJEUU0q9WKFStWYMWKFZLU/7LZbHjnnXfw97//3et4zr7vvPOO2zIfntqljpuIiALDRdUU0ZRKJe6//37xtb8sFgvq6+tRU1MjjvGTn/zEp/EUCoXYV6FQ+NUeaNxERCQtfiemiKbRaLBy5coef/7UqVM4c+aM+F6tVmPx4sWQyWTQaDQeP+vs64zDU7vUcRMRkbR4y4yiGm9XERERwISIqMcGDhwY7hCIiEgivGVGEU2v10taAsNgMGD69Ok+jZeVlYWxY8cCcF+6o3MZkAtLd0gdNxERBYYzRERERBT1OENEvVJjYyMOHjwIu92OmJgY5Ofnu30aS6fToa6uTnwdqJiYGKxdu9an0h06nQ47d+7E2bNnuy3dsXbtWvF1MOMmIqLAMCGiXqmxsRF2ux1Ax60ng8GAhISELv1kMhkGDBgg2XllMhkSExMhk8m8ltSQyWTo378/DAZDt6U7EhMTu/2slHETEVFg+swtM4PBgMGDB+PBBx8MdyhE3bJYLCgrK8OePXvcbuZIRETh0WdmiP7whz/g0ksvDXcYFGIWiwVPP/00AOChhx6CWq0OeLy///3vAIApU6Z4HM9iseDll19GS0sLfvOb33Rpt1qtWLNmDQDglltuAQA0Nzejvb0dVqsVy5Ytg06nkyRuIiIKTJ+YITp69CgOHTqEmTNnhjsUCjGr1YrHH38cjz/+uGSlO9544w288cYbXsezWq147rnn8MYbb3RbusM51oXtNpsNK1askCxuIiIKTNgToi1btmD27NnIyMiATCbDunXruvQpLS1FTk4OtFotJk+ejF27drm0P/jgg3jqqadCFDH1JkqlEnfddRfuuusuSUpgKJVKzJo1C7NmzfI6nlKpxM0334xZs2Z1W7rDOdaF7QqFArfffrvfcVssFjQ1NbkUmSUiosCF/ZaZXq9Hbm4u7rzzTvz4xz/u0r5mzRosWbIEq1atwuTJk7Fy5UrMmDEDhw8fxsCBA/HRRx9h5MiRGDlyJLZt2+b1fGazGWazWXzf2toq6ddDoaXRaPDaa69JNp5arcaDDz7oU+kOjUaDFStWoKqqqtvSHd2taVOr1Vi5ciWSk5P9iq+8vBwGgwFZWVkYNmyYX58lIqLuhT0hmjlzpsdbXc899xwWLVqEBQsWAABWrVqFTz75BG+++SYeeeQR7NixA++99x4++OADcW1GQkICnnjiCbfjPfXUU3jyySeD8rUQ+ePw4cNISkrCiBEj3M4wuWMwGAAALS0twQyNiCjqhP2WmScWiwV79uxBUVGReEwul6OoqAjbt28H0JHgVFVV4eTJk3jmmWewaNGibpMhAFi6dClaWlrEP1VVVUH/OojcMZvNqKmpQXNzc7hDISKKemGfIfKkoaEBdrsdqampLsdTU1Nx6NChHo2p0Wi83gqhyKHX68WaYnV1dZKU7nDOWDY0NHgcT6/XY/z48RAEocu6NqBj/yTnbeB//etf3bZ9//336N+/f0BxExFRYHp1QuSv+fPn+9y3tLQUpaWl4uZ/FLmct5GkYjKZfO5rNBp7PJY/5yEiouDyKyFyOBzYvHkzvv76a5w6dQoGgwEDBgzAxRdfjKKiImRlZUkaXEpKChQKBWpra12O19bWIi0tLaCxS0pKUFJSgtbWVvTr1y+gsSh8YmJiUFlZKb4OlFarxbvvvuvTeDExMdi0aRPOnTvXpTQH0DEb6RzrwlnJzm1SxE1ERIHxaQ2R0WjE8uXLkZWVheuuuw7/+c9/0NzcDIVCgWPHjmHZsmUYMmQIrrvuOuzYsUOy4NRqNfLz87FhwwbxmMPhwIYNGzBlyhTJzkORSy6XIycnBzk5OZDLA18SJ5fLkZaWhvT0dK/jyeVyDBo0CGlpaW77Osdy1+6pjYiIQs+nGaKRI0diypQpeO2113D11VdDpVJ16XPq1Cn84x//wE9/+lM89thjWLRokU8BtLe349ixY+L7yspKlJeXIzk5GdnZ2ViyZAmKi4sxceJETJo0CStXroRerxefOuupYN8yM5lMPu8V03kbgGgnCALq6+vR3t4e7lCIiCiK+JQQff755xg9erTHPoMHD8bSpUvx4IMP4vTp0z4HUFZWhunTp4vvlyxZAgAoLi7G6tWrccstt6C+vh5PPPEEampqkJeXh/Xr13dZaO2vYN8y27dvn9f1JdRVc3MzKioquhy32WxuE0yr1YrS0lIAHX+n7pJ1f1itVnz44YcAgMsuu8zjeFarFW+99Raam5uxePFitzE7NxqdM2dOt20jR44MKGYiIgqcTwmRt2SoM5VK5deGcYWFhRAEwWOfxYsXu/2B05spFAqf95YBOqqfB5rk9QXOMhYqlQopKSmoqamBIAjYv38/1Go1dDqdS3+LxYJf//rXAIBFixZJkhA5E6w//elPHsezWCz4wx/+AAD4xS9+4XGsWbNmddvGgsREROHn91NmOTk5uPPOOzF//nxkZ2cHI6aQCPYts4kTJwZl3GgRGxuLUaNGQaFQoLq6GkBHAiKTyVz6KRQK/OxnPxNfB0qhUOBHP/oRZDKZ1/EUCgVuuOEG6PX6bkt3/OhHP3Ibm6c2IiIKPb8TogceeACrV6/G73//e0yfPh0LFy7E3LlzI25vHz5lFhmGDx+OYcOGYceOHW7XWmm1WrzzzjuSnU+j0eDxxx+HTCZz++TYhed+7rnnPJbuePzxx91+tnObt/MQEVHw+f14ywMPPIDy8nLs2rULo0ePxr333ov09HQsXrwYe/fuDUaMFOUunBUiIiKSWo83ZrzkkktwySWX4Nlnn8XLL7+Mhx9+GK+88grGjx+P++67DwsWLOAPsl6koqIC9fX13bZrNBpcfPHFETfT1xsJgsBNF4mIIkyPEyKr1Yq1a9firbfewhdffIFLL70UCxcuRHV1NR599FF8+eWX+Mc//iFlrJKKtp2q6+vrPS5eN5lMaGtri7iESK/XIycnBwBw8uRJl1IbR48exdixY/1aaG0wGMQnws6cOeO1dEdBQQEcDge+/vpr8XhDQwOAjv27br31VgAQN2F06txWXl6OAQMG+BwjERFJz++EaO/evXjrrbfw7rvvQi6X44477sDzzz+Piy66SOwzd+5cFBQUSBqo1KJ1DVF+fj7UarXLsQMHDqCtrS1MEQXOmYA4qVQqWK1WNDc3o66uDpmZmX6N508l+aampi7HLBaLT2OxYj0RUe/hd0JUUFCAq6++Gq+88grmzJnj9rfvIUOG4Kc//akkAZK0VCpVl1mgSL61GRMTgwMHDoivAWDs2LHYvXs3APi8OaaTVqvFm2++CZlM5lPpjk8//RQ1NTXdlu548803xdfdtbF0BxFR+PmdEJ04cQKDBw/22Cc2NhZvvfVWj4Mi8pVcLsfYsWNdjsXGxiI1NbVLDTxfxxsyZAhkMplPpTtGjhyJmJiYbkt3DBkyxON5nK+JiCi8/E6InMmQxWJBXV1dl9/AI3lvokhms9m4MzYREVEP+Z0QHTlyBAsXLsS2bdtcjguCAJlMFjGLlPvaouqqqipUVVWFO4yQs1qtWL16NQBg/vz5kuxU/fHHH0Mmk/lUuuO9995DU1MT7rrrri7tNpsN69evBwBce+213baxdAcRUfj5nRAtWLAASqUSH3/8MdLT0yN2/UlfWVTdv39/NDQ0+LRWJiEhIeKeIvPGYrHg7rvvBgD87Gc/kyQhevbZZwEAv/vd77yW7nBurlhcXOxxLOeu1O7aIq0sDRFRX+R3QlReXo49e/a4PFVG4ZOSkoKUlJRwhyGJtrY2tLa2euxz4W7VCoUCN954o/g6UAqFApdffrlP4ykUChQVFcFoNOLcuXMYOXKkS8LpaSx/zkNERMHnd0I0ZsyYLo85EwXKYDBgz5494vsLZx51Op1LMuQs8qrVasWq8e7U1dVh4MCBPs+MaTQaLF++3OfSHX/7299w6NAhAB2P0Q8cOFBsV6vVWL58udvPdm5j6Q4iovDzKSHq/Fv7n/70J/z2t7/FihUrMH78+C63FBISEqSNkKKCc+8euVyOhIQEZGVlubSPHz8eer0eQMfWAd6SCGdC1dbWhu+++y5oxXbT0tJw6tQpLmgnIopwPiVEiYmJLr+xC4LQZU0EF1X3PYIguF2bFMxbPFqtFnl5eV2Oy+VyxMfH+zxORkYGmpqaYDabXTZKDAaNRuM2Ierfvz+USiVqa2vFGa1QsFgsaGpqEs9PRETe+fTdcuPGjcGOI+T6yqLqYBEEAfv27UNzc3OXtszMTIwYMcKv8Zqbm1FTU+NyLCkpCampqYGECYPBgDFjxgDoqNfmTDwSEhIwfvx4lJWV+TWe0WgUNxU9ceKEx0TGYDBg3LhxsFgs4iaLnZnNZsyaNQsWiwXvv/++S5vJZML8+fMBADt37vQrRm8OHDiA1tZWDBgwQNyjyeFwQBAErlciIuqGTwnRtGnTgh0H9TKCILhNhgCgsbHR7/GOHz/epTxIXV1dwAmRIAg4deqU+DpQgiCIGzp6G8/buQVBELdCuLC983kcDgf27NkjWfkU5y3u8+fPi+Pv2rULVqsV+fn5IZ2tIiKKFD2eTzcYDDh9+nSX2xETJkwIOCjqXaZMmQKlUomWlhbs37+/R2M4b72lp6dDrVbj1KlTYiIgk8n8uh3WmVarxa5du8TXgdJoNHjllVd8XlS9a9cuHDlypEt9OOdYGzZscNuuVqvxyiuviO+DWUvOYrHAZDIBANrb25kQERG54XdCVF9fjwULFuA///mP23auyel7FAoFFAqF2xIT586dQ3t7u0vfQYMGuU0QAGDgwIHo168fqqurYbfbxUTA2+P2nmKTspCwQqHARRddBJlM5tNj9wUFBVCpVG5n0xQKBS655BLI5XK3j907t66Q4jaW3W5HY2MjH2ogIuohvxOiBx54AM3Nzdi5cycKCwuxdu1a1NbWYvny5eJGcxQdzGYzDh8+3OW4XC5HRkYGvv/+e3EGsfOiY7lcjoKCAuj1erS2toq3nXqDSJo9MZvNOHHiBBISEmA0GlFdXc1CsUREPeR3QvTVV1/ho48+wsSJEyGXyzF48GBcffXVSEhIwFNPPYVZs2YFI04KAaPRKM7Y+LLztbOPTCZDdnY2mpqa0NraCofDgaamJjQ1NXX5jPM2lFarleQWl81mw5o1awAAt9xyS4+fqsrIyEB2djbsdju++OILyGQyXH755V3G63xdbDYbPvjgA5w6dQqTJ092G9v777+PU6dOdfn/wm6346uvvgIALFy4sEcxnzt3DrW1taitrRVvOfLxfyKinvH7p4derxc3n0tKSkJ9fT1GjhyJ8ePHY+/evZIHGCx87L6r48eP9+hzzsrtdrtdvPXlXEQcHx+PoUOHAuhYUyP1DIbZbMbPf/5zAMCcOXN6nBDpdDpotVo0NjZixYoVAIClS5d2Ge/o0aNuz/3pp592GdNiseAXv/gFAGDq1KkuyZTFYhHPc/vtt/co5s7/dqVYUE5EFM38/ukxatQoHD58GDk5OcjNzcVf/vIX5OTkYNWqVUhPTw9GjEHBx+5/kJ6eDovF4vaHalJSUkB72ahUKiQlJQUSnkdyuRxFRUXiaynGy8/P73Y8q9UKoCOBUiqVKCoqQltbm9u+crkchYWFYnt9fb24n5e38xARUWj5/ZPu/vvvx7lz5wAAy5Ytw7XXXot33nkHarVarDpOkSU9PT2iktnOYmJi8MUXX0g63jPPPAOZTOZxNisnJ0c8d3l5udtF1VqtFl999RU2b94MoCOZci4212g0eOaZZ8R+REQUXn4nRM5bBACQn5+PU6dO4dChQ8jOzu4zRUapb7FYLDhy5AhGjhwZ8nPLZDIMHDgQdXV1IT83ERH5rsdz9RaLBYcPH4ZarcYll1zCZIh65MLZESnXGHUu6Hr27FnYbDbJxiYior7F74TIYDBg4cKF0Ol0GDt2LE6fPg0AuPfee/HHP/5R8gCp9zGbzfj2229x8ODBgMeKjY3FpEmTkJubi7y8PLEMh68MBgPGjh2LsWPHwmAwuLSpVCpceumlfo83f/58zJ8/v8t43Z37Jz/5ibjxYWdGoxFjx47FDTfc0KXdWbpj/vz5fDKMiKgX8DshWrp0Kfbt24dNmza5/HZfVFQkPv5MfZNzxsXhcKClpUXckLHzTExP6HQ6JCUlITEx0e9NCgVBQEVFBSoqKtwuCu9ug0hP4506dQonT570qXRHRUUFTpw40W3pjoqKChw/ftxt6Y5Tp07h1KlTfEKMiKgX8HsN0bp167BmzRpceuml4hMzADB27NgeP7ZNkSEmJgYTJ07sMqNx4VN6DocjZNsZaLVasfiwFIuTtVotnn/+eZ/Gc5772LFj3Zbu2LhxI06ePOm2dIfzPIEmlEREFLgele5w7kPUmV6vd0mQqG+Ki4tDXFycxz7V1dUhiqaj7EVhYaGk4+Xl5flcuqOwsBCJiYndlu4oLCxERUVFl0XVzvM4XxMRUXj5fcts4sSJ+OSTT8T3ziTo9ddfx5QpU6SLjCJOUlKSy546MpkMycnJYYyoK5vNhoaGhqAWUw3m2FKxWCzQ6/XhDoOIqNfwe4ZoxYoVmDlzJioqKmCz2fDCCy+goqIC27ZtE/dbiQTcqVp6/fv3xxVXXCGuiZHJZEGfNbTZbPj4448BANdff73XTSS///57nD9/HgDcFoW12Wz45ptvAMBt6Q53566srMSECRMAdKwNqqmpAdCxk/S6detQVVXVZbG43W7H9u3bAQDZ2dm+fKmScTgc2LVrF2w2G3Jzc4O6cSYRUaTwOyGaOnUqysvL8cc//hHjx4/H559/jksuuQTbt2/H+PHjgxFjUHCn6uAIRRLUmdlsxty5cwEA7e3tXhMis9ns9nXnY//zP/8DAPj1r3/tcbzO53ZXuqN///7Izc11226xWMTz3HTTTR5jlprD4RC3IDAajUyIiIjQg4QIAIYNG4bXXnvN5VhdXR1WrFiBRx99VJLAiHwhl8tx2WWXia+lGG/s2LEAvNcHc55br9e7PXd8fDwuu+wyGAwGsf3YsWNdzsPSHURE4dfzIlUXOHfuHP7nf/6HCRGFVExMDLZu3SrpeC+99BKAjuTFufDZ07m7K93hbO+8qNq5gFqj0YjnYekOIqLw46+mRJ2o1WrExsYCgNvNFkOlqqoqbOcmIopGTIiIOpHJZGGpeXYhLvYnIgotJkQU0YxGIwoKClBQUCBJCQyj0Yjp06fjnnvu8TpD5Dz3bbfd5naBtrP95ptv7tJuNptxzz33+HQeIiIKPp/XEC1ZssRje319fcDBEPnL4XCgrKxMfC3FeN9++y0A74uqvZ3bU7vD4cDhw4cli1sKNpsNjY2NSExM9LvkCRFRpPM5IXL+kPDkyiuvDCgYIn9pNBpxHyIpSmBoNBqsWbMGx48fh0ql8uncJ06c6LZ0x8cff4zTp0+7Ld2xYsUK8XWgnHXlAnH06FHU1tYiMTHR42JyIqK+yOeEyFkviqg3USqVmDVrVo8+a7FYupTUUCqVmDFjBr799luvexo5z93dU2bO9u5Kdzh3dvd2nlBxxujuayEi6ut6x3diohBw7kDt1LkYMfcCIiKKbj79FPjjH/8Ig8Hg04A7d+50qXVGFEx2ux1ffPEFvvjiC7+fzLJarQA6kqEBAwaI423cuBFlZWVex3Oee8eOHW77Otu3bdvWpd1ut6OsrMyn8xARUfD5NENUUVGBwYMHY968eZg9ezYmTpwo/gCx2WyoqKjAN998g7///e84e/Ys/vrXvwY16M6am5tRVFQEm80Gm82G+++/H4sWLQrZ+Sm8TCYTrrnmGgAd62icewg5yeVyDB48GHV1dd0+hTZq1ChxvZDJZBLLcXz11Vc+n9td6Q5P7RaLBQ899BCAjhpsREQUXj4lRH/961+xb98+vPTSS/jZz36G1tZWKBQKaDQacebo4osvxl133YX58+eHdOfd+Ph4bNmyBTqdDnq9HuPGjcOPf/xj9O/fP2QxUPjI5XKxXlh3t72GDBmC7OxsfP311z6NN27cOBiNRq812ZznNhqNbs/tbDeZTF3a5XI5hg0b5jFuIiIKHZ/XEOXm5uK1117DX/7yF+zfvx+nTp2C0WhESkoK8vLykJKSEsw4u6VQKKDT6QB07O0iCILXx6Wp74iJiUF5ebmk433zzTf49ttvvSb2znN7Kt1RXl7udlG1RqPB66+/DoClO4iIegO/fzWVy+XIy8vDjTfeiJ/+9KcoKioKKBnasmULZs+ejYyMDMhkMqxbt65Ln9LSUuTk5ECr1WLy5MnYtWuXS3tzczNyc3MxaNAgPPTQQ2FLzoiIiCgyhX2uXq/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDJffuBMTE7Fv3z5UVlbiH//4B2pra7s9n9lsRmtrq8sfIiIiim5hT4hmzpyJ5cuXiwtZL/Tcc89h0aJFWLBgAcaMGYNVq1ZBp9PhzTff7NI3NTUVubm5HteKPPXUU+jXr5/4JysrS7KvhULPaDSisLAQhYWFkpXumDVrFh544AGfSncUFhbirrvu6rZ0R2FhIebPnw+z2QyDwSDGaDab8cADD+CBBx4Qj8lkMowbNy7gr4GIiPzXq/chslgs2LNnD5YuXSoek8vlKCoqwvbt2wEAtbW10Ol0iI+PR0tLC7Zs2YJf/vKX3Y65dOlSlzIkra2tTIoimMPhwObNm8XXUoy3detWAL6V7vB07gvbW1paXNr27dsHAKisrIRWq4VMJus1mzQSEUWbXv3dt6GhAXa7HampqS7HU1NTcejQIQDAqVOncPfdd4uLqe+9916MHz++2zE1Go0kJR6od9BoNHj//ffF11KMt3r1alRWVvpUuuP999/HyZMnuy3d8f7776O6utqlPTk5GfX19Vi2bBkAiOfh4moiovDxKyGyWq3ikzO9ZWp/0qRJPXrKqLS0FKWlpdwUL8IplUrMmzdP0vHmzJnjc+mOefPmeSzdMW/evC5PmcnlcigUChQWFrr09zZTqdfrff46AtXc3IzDhw8jNTUVOTk5ITsvEVG4+LWGSKVSITs7O2RJREpKChQKRZdF0rW1tUhLSwto7JKSElRUVGD37t0BjUMUKp0fAAj2bNLp06dhNBpx8uTJoJ6HiKi38HtR9WOPPYZHH30UjY2NwYjHhVqtRn5+PjZs2CAeczgc2LBhg1gYk6Kb3W7H1q1bsXXrVkkSdbvdjh07duC7777zqXTH1q1bUV5e3m3pjq1bt2Lv3r1uS3d89913Pp3HnWBv5siZUyKKNn6vIXrppZdw7NgxZGRkYPDgwV1KJezdu9ev8drb23Hs2DHxfWVlJcrLy5GcnIzs7GwsWbIExcXFmDhxIiZNmoSVK1dCr9djwYIF/obugrfM+gaTyYSpU6cCcF+6w0mhUGDEiBFobm5GfX29x/GuvfZaAL6V7nCeu7vSHd21WywW3HfffWJbTEyMS7vRaITNZuv2tl1NTY3H2IiIyD9+J0Rz5syRNICysjJMnz5dfO98Aqy4uBirV6/GLbfcgvr6ejzxxBOoqalBXl4e1q9f32Whtb9KSkpQUlKC1tZW9OvXL6CxKHxkMhmGDx8uvvYkMzMTmZmZMJlM2LFjR7fjDR06FGaz2et4znN319fZbrFYurTLZDJkZmZ2ibvzwvCmpiaxZmBPSPHUHRFRtPA7IXI+GSOVwsJCr483L168GIsXL5b0vNQ36HQ6HD161K/PaLVa6HQ6sQ7fhePt3bvXp9IdznN3t6ja2e5cVN3537lWq8Xf//73Lp+JiYmBUqmEzWaDxWLx6+tyx2q1urzX6/VITk4OeFwior6mRwsRmpub8frrr2Pp0qXiWqK9e/fizJkzkgYXTKWlpRgzZgwKCgrCHQr1cc5EyF0C5o7z9tnRo0dx/PjxgM594SxR572QiIjoB34nRPv378fIkSPxpz/9Cc8884z4m/G//vUvlw0Uezs+ZUahkpCQ4Ff/trY28fWFRWEDpVAoJB2PiKiv8DshWrJkCebPn4+jR4+63FK47rrrsGXLFkmDI/LGZDJh1qxZmDVrltdSG76Od/PNN+ORRx5xW47D3bnvvfdet7e3nO2/+MUvurRbLBY88sgjeOSRRzzeGuNmjUREoeH3GqLdu3fjL3/5S5fjmZmZfPKFQs5ut4tPcEn12P3nn38OwPuiZG/n7tx+7733dmnbuXOnZHETEVFg/E6INBqN2wrxR44cCeiJmFDjY/d9g1qtxltvvSW+lmK80tJSnD592mvpDue5nX1Pnjzp8v+As91ut3cZS6VS4eGHHxZfExFRePmdEN1www34/e9/L9aPkslkOH36NB5++GH85Cc/kTzAYOFj932DSqXC/PnzJR3vtttu86l0h/PcBw4cQENDAwwGg8uTZM52q9UqFox1UiqV4n5Hwcakn4jIO7/XED377LNob2/HwIEDYTQaMW3aNAwfPhzx8fH4wx/+EIwYicJKEAQcOnQIe/bscft4/YgRI4J27paWFjQ1NfX482VlZXxwgIjIB37PEPXr1w9ffPEFvvnmG+zfvx/t7e245JJLUFRUFIz4iDxylsAAgPHjxwf8FJXdbsf+/ftx7NgxjB49GkDHrtHu1sc5z221WmG327uc22634+DBg27b7XY7KisrAQBDhgzxGPexY8d6vD3EhfsQuWM2m3HixAmv+4EREfVlfidEJpMJWq0WU6dOFcsSEIWLyWTCxRdfDMBz6Q5/xrvyyisB/FC6o7tEofO53ZXf8NRusViwaNGibj/bmRQbNHpy9uzZLgWUiYiijd8JUWJiIiZNmoRp06Zh+vTpmDJlisdv5r0VF1X3DTKZDBkZGeJrKcZLT0+H1Wr1qXSHp3N7apfJZEhJSelR3Gq1Gmq1Gu3t7X59rjs2m02ScYiIIpnfCdGXX36JLVu2YNOmTXj++edhs9kwceJETJs2DYWFhbj66quDEafkuKi6b9DpdJLukK7T6fD999/7XLrjzJkzbhdNe2vXarX44IMPehRjfHw8b28REUnM70XVU6dOxaOPPorPP/8czc3N2LhxI4YPH44///nPIXtqhiiS9ZVkxuFwcIaViPoMv2eIgI49hzZt2iT+MZvNuP7661FYWChxeER9T1ZWFs6fPx/uMALicDiwa9cuWCwWFBQURORtcyKizvxOiDIzM2E0GlFYWIjCwkI8/PDDmDBhgiTrN4j8ZTKZcPvttwMA/va3vwVc6sJkMqG4uBjNzc148sknfTq3w+HAL37xiy4bQ5pMJvzsZz/r0q7RaGCxWLBixQoAwKOPPirJppKhZLVaxVIper2eCRERRTy/b5kNGDAABoMBNTU1qKmpQW1tLYxGYzBiCypWu+8b7HY7PvzwQ3z44YeSle746KOPsHnzZp9Kd3z44Yf417/+1W3pju7a7XY7Nm/ejM2bN4f1ttPZs2dx7tw5j30EQYDZbO4zt/qIiNzxe4aovLwczc3N2LJlCzZv3oxHH30UFRUVyMvLw/Tp0yNmc0Yuqu4b1Go1XnrpJfG1FOM9/fTTqKqq8ql0x0svveS2NIe3dpVKhfvuu098HS6+PKl25MgRMWm66KKLkJaWFuywiIhCrkdriBITE3HDDTfg8ssvx2WXXYaPPvoI7777Lnbu3BkxCRH1DSqVCiUlJZKOt2jRIp9Ld5SUlHT7lJmn9tTUVMydO9ev2KR6zN5fnWeQDh06hDNnzkCn04UlFiKiYPH7ltm//vUv3HfffZgwYQJSU1Pxy1/+Eu3t7Xj22Wexd+/eYMRIFBYmk8mnnZ4783VPn7Fjx/q17s5kMonbC+j1er9iklpbWxs3ciSiPsfvGaJ77rkHV155Je6++25MmzYN48ePD0ZcRD5xOBw4fvw4AGDYsGGQy/3O8buMd+LECVRXVyMjIwNbt27FJZdc4vHcNpsNDocDcrkcBw4ccGk/evQoBEEQ2ztrampCe3s7MjIyvMZtMBjE1xaLhTM0REQS8zshqqurC0YcRD1iNBoxcuRIANKU7jAajWIC5CypUV1d7fXcX375JQCgtbVVbLdarWL7gQMHUF9f7/JZ5y0zb6U7nPXViIgoeHq0hshut2PdunX4/vvvAQBjxozBjTfeGHBhTaKekHpR/IXjeboN5uyblpbmkvBkZmZCJpN5jC0uLs6nJ7e8Pe3WG9jtdgiC4HXdFRFRb+X3d69jx47huuuuw5kzZzBq1CgAwFNPPYWsrCx88sknGDZsmORBBgNrmfUNsbGxaG5uDsp4J06cwOnTp33q66xc7ySTyTy2x8bGYvPmzS4zSpHKZrNh+/btcDgcmDx5MjQaTbhDIiLym98LLu677z4MGzYMVVVV2Lt3L/bu3YvTp09jyJAh4mPEkaCkpAQVFRXYvXt3uEOhMIiLiwPQkbhwPU5gzGazuI4qEvckIyICejBDtHnzZuzYsQPJycnisf79++OPf/wjLr/8ckmDIwqW0aNHY8iQIVAqlV73AYqEW1ZERBQYv2eINBoN2trauhxvb2+PuPIDFPnMZjPmz5+P+fPnw2w2+/w5mUyGmJiYLsmQu/G6uyXn7dye2s1mM5YtW4Y//vGPsFgsPsfdG3W+HWiz2XzeeoCIqDfxOyG6/vrrcffdd2Pnzp0QBAGCIGDHjh245557cMMNNwQjRqJu2Ww2vP3223j77bcl+UHceTznbTVf+rpbi9a5vfNj9UqlEjabDR9//DE+++yzPrWO7cCBA9i2bZvf+zcREYWb37fMXnzxRRQXF2PKlCnib9c2mw033HADXnjhBckDJPJEpVLhz3/+s/hayvFSU1PR2NiIpqYmr33dPV3VuT0rKwvx8fHQarVQqVQQBAH3338/TCZTn3syy+FwwGw2h7UkCRGRv/z+TpyYmIiPPvoIx44dEx+7Hz16NIYPHy55cETeqNVqPPTQQ0Ebz9Nu0p37XvgUmbuxOu81pFarcccdd/SJp8yIiPoCnxMih8OBp59+Gv/+979hsVjwox/9CMuWLfO4oRwRda/z7tP+YuV5IiJp+byG6A9/+AMeffRRxMXFITMzEy+88IKkRTWJesLhcODMmTM4c+aMJE+DeRtPoVBApVIhPj7ea19P7Q6HA3V1daivr+9R3IGWKCEiIlc+zxD99a9/xcsvv4xf/OIXADpKFcyaNQuvv/46vzlT2BiNRgwaNAiAdKU7Oo/XmUqlwmWXXQag41aaXq8X+3auYeZLbEajET/5yU8A/FC6w581NxkZGTh//rwfXxkREXnicyZz+vRpXHfddeL7oqIiyGQynD17NiiBBVtpaSnGjBmDgoKCcIdCAVIqlZIuTPY0nkwmc1lX5O3cntoVCoVLuZv+/ft36RMpO78TEUU6n3+K2Gw2aLVal2MqlSpiH68tKSlBSUkJWltbJa+FRaETGxsr6b9Bf8br3NfdompPY8XGxmLjxo0uj9x7WsB94Wcv/H9RSoHOshERRSKfEyJBEDB//nyXOkUmkwn33HOPyzfQf/3rX9JGSBTF3C2eHjVqFGJjY5Gfn489e/YE5bwtLS1BGZeIqLfyOSEqLi7ucuznP/+5pMEQ9RVS7cHjLiFybhgZzFmiQNXW1kKpVPbqGImIOvM5IXrrrbeCGQdRj5jNZixZsgQA8NxzzwVcaf3C8Xzte++994rHMzMzMWjQII+xmc1mPPfccxAEAb/61a98LnszYMAAv76eC50/fx7V1dUBjeGLqqoqNDU1YcyYMTCbzUhMTPT5liARUTjIhCjf0MS5hqilpQUJCQnhDof8pNfrxRkTKZ4yu3C848ePo7GxEUDHrE/nAsad+x44cAD19fUAgEsuuQQJCQkeY+vc5nzKrLCwEACwadMmsd+QIUPE9UmTJk1CTEyMmFhYrVZs3bo1oK/XndjYWOj1eknGkslkEAQBubm5SEpKkmRMIiJA+p/ffatmAEUdlUqFZcuWia9DOV7nvt2V7uhuLJVKhfnz50MQBCiVSvHxfE/UanVIZlmkLM7q/H3LZDJJNiYRUTAwIaKIplar8bvf/S4s43Xu213pju7GUqvVuPPOO8WnzHpS+iZYyZHZbA7KuEREvRl3VCSKUEqlEpmZmeEOg4ioT+AMEUU0QRDER8T79esX8KzJheP52tfdUjxPsQmCgLa2NjgcjoDWPY0YMQJxcXE4fPhwj8cgIiLOEFGEMxgMSEpKQlJSUkDFUnsyXue+RqPRr7EMBgNmzZqF2bNnR8X6msOHD+Po0aPi+7Nnz2LHjh1oaGgIY1RERD9gQkREIXHmzBnx9ZEjR2AymXDs2LEwRkRE9IOIT4iqqqpQWFiIMWPGYMKECfjggw/CHRKFkE6ng8VigcVigU6nC+l4nfvGxMT4NZZOp8NXX32FL774wuPmhUlJSVAqlUhMTHSpe9ZXWCyWcIdARASgD6whUiqVWLlyJfLy8lBTU4P8/Hxcd911rMcUJWQymWS7Qvs7Xue+7tYueRpLJpNBqVR6XfOUkJCAqVOn+hQPERH1XMTPEKWnpyMvLw8AkJaWhpSUFHEjPaJIlJWVBaDj33Nf07mYLRFRbxL2hGjLli2YPXs2MjIyIJPJsG7dui59SktLkZOTA61Wi8mTJ2PXrl1ux9qzZw/sdrv4A4X6PovFgoceeggPPfSQJLdf/BnPW19P7RaLBS+//DJWrVoFq9Xq0jZ06FBMmTIFo0aNCvjr6W22b98u6caPRERSCXtCpNfrkZubi9LSUrfta9aswZIlS7Bs2TLs3bsXubm5mDFjBurq6lz6NTY24o477sCrr74airCpl7BarXjmmWfwzDPPdEksgj1e577ufsh7GstqteK9997DmjVrunxWJpNBo9H4vIWAs0aaXB72/529stlsbp/IIyIKt7CvIZo5cyZmzpzZbftzzz2HRYsWYcGCBQCAVatW4ZNPPsGbb76JRx55BEDHzrpz5szBI488gssuu8zj+cxms8tOvK2trRJ8FRQuKpUKDz74oPg6lON17ttd6Y7uxlKpVPjpT38qlu4IRFJSEvLz86FSqbBjx46AxgoFPllGRL1R2BMiTywWC/bs2YOlS5eKx+RyOYqKirB9+3YAHRvczZ8/H1dddRVuv/12r2M+9dRTePLJJ4MWM4WWWq3G008/HZLxLtx8sXPf7kp3dDeWWq3Gr371K0nW1MhkMsTHxwc8Tqg4N6skIupNevUce0NDA+x2O1JTU12Op6amoqamBgCwdetWrFmzBuvWrUNeXh7y8vLw3XffdTvm0qVL0dLSIv6pqqoK6tdAka3z4/Rc+0JE1Hf16hkiX0ydOhUOh8Pn/hqNBhqNBqWlpSgtLeVTLxFOEAQxUfHlMXZ/xxs+fLjLhoLd9e2udEd3sTnb7HZ7n9xfiIgo0vTqGaKUlBQoFArU1ta6HK+trQ34keSSkhJUVFRg9+7dAY1D4WUwGKBWq6FWqyUr3dF5PE8JVue+3ZXu6C42g8GAq666CldffXVUlO4gIurtenVCpFarkZ+fjw0bNojHHA4HNmzYgClTpoQxMiIiIupLwn7LrL293eWpk8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq8XnzrrKd4y6xt0Oh2amprE16Ecr3Nfd5uBehpLp9PhwIEDOH36NIYPHx5w3EREFBiZ4G7xQwht2rQJ06dP73K8uLgYq1evBgC89NJLePrpp1FTU4O8vDy8+OKLmDx5siTnb21tRb9+/dDS0oKEhARJxqS+ZdOmTeLrwsJCt31OnjyJkydPAgDy8/PD9tRX51gjgVwux8CBA9HU1IQJEyaw5A4R+Uzqn99hnyEqLCx0uyC1s8WLF2Px4sUhiojIf6mpqeKaobi4uLDFERsbC71eD6VSGTFPxTmfGK2trcXQoUPDHA0RRauwJ0ThwltmfYPFYsGKFSsAAI8++ijUanXIxruw75gxY3weS+q4nfLz82G1WnHy5EmcO3dOkjFDJcyT1UQU5cJ+yyzceMsssun1enFGpr29PeBbLu7G6+6Wmbdze2qXOu4LHT58OOISoqysLAwbNgwGgwEKhUIsSUJE5E6fu2VGFAilUolf/epX4utQjuetr6d2qePuKwwGA3bt2gW5XI7LL7+cezQRUchwhogzROSFL4uqextfZogGDhwInU4nLgYPt6ysLBgMBpw/fx4AMGXKFDQ3N6OpqQlDhw6V7LYiEfUNUv/87tX7EAVTaWkpxowZg4KCgnCHQkSASzLk9P3336OmpgbV1dVhioqIokXUJkTcqZqod/FUgsdisYQwEiKKRlGbEFHfoNfroVKpoFKpoNfrQzqet76e2qWOuy9wbmJJRBQOXM1JEU/q/Xb8Gc9bX0/tkbJPULi0traGOwQiiiJMiCiixcTEiOtLYmJiQjqet76e2qWOuy86ePBguEMgoigStQkRN2bsG+RyOTIzM8Mynre+ntqljvtCntbjOKlUqqCdn4go0kTtGiIuqqa+rF+/fl779O/fPwSRSOfUqVMoKyvjmisiCoqonSGivsFiseCFF14AANx///2SlO7wdTxvfT21Sx33hdzVUxs1ahRMJhNOnTolHoukbcgqKysBANXV1Rg1alSYoyGivoYbM3JjxojG0h3utbe3o6yszOVYfn4+5HK5OCs6YcIEKBQKfPvtt5KeO9gGDhzYpW4cEUUflu4g6kSpVKK4uFh8HcrxvPX11C513BeKjY1FVlYWGhoaYDQau+3HdURERB2idoao86LqI0eOcIaIuhWJpTucGhsbsX//fgDuZ4i0Wi127drldRznb2G9AWeIiAhg6Q7JcFE1kW90Op1Pi7SJiCJZ1CZEROS7tLS0cIdARBRUTIgooun1eiQmJiIxMVGy0h2+juetr6d2qeMONp1OF+4QiIiCiouqKeJJvbbFn/G89fXU3lvW5BARERMiinAxMTE4cuSI+DqU43nr66ld6rg9xSiTySCXy6HValk1noioG0yIKKLJ5XKMGDEiLON56+upXeq4uxMTE4PLLrsMMpkMSqWyS0Ikl/OuORERwDVERH2eSqXqdq8jrVaLnJyc0AZEvYYgCDhz5gxqa2vDHQpR2EXtDBGLu/YNVqsVr776KgDg7rvvDnijQX/G89bXU7vUcQciJycHCoUCx48fD3is2NjYoC8SFwQBp0+fBgBkZWVBJpMF9Xx9WVtbG44ePQoASEpKkryEDFEkidqNGZ1YuiOysXSHf/R6vcvGjMnJyQCAqqqqbhMinU6HSZMmuVyH7kyePBk7d+6ULN7u4jEYDACAgoKCkF27vkYQBJw6dQqHj3XUiEsf2B8TJkwIc1REvmPpDqJOFAoFbrrpJvF1KMfz1tdTu9RxB8pdMdieCOYCcSdnMgQADQ0NOHnyJHJycpgY+amhoQF3vfc9jjU7AAAjEk34fPx4zrhR1GJCRBFNq9Xigw8+CMt43vp6apc67kAlJSWFZHZHapWVHbMbNpsNubm5YY4mspypqReTIQA42uyA0WqHTs0fCxSduKiaiACEZnYnWDrPGpFvmpqbwx0CUa/ChIiIRLxdEj10ushNgImCgQkRRTSDwYDMzExkZmZKMkvgz3je+npqlzpuqeTn53c5ptFowhAJBVtvWLtG1JvwZjFFNEEQcPbsWfF1KMfz1tdTu9RxSyUuLg6TJ09GVVUVbDYbLBYLhgwZ4vVz2dnZSExMDH6AHrS2tqKhoQGZmZlM4nzQi/7ZEfUKTIgoomm1Wnz77bfi61CO562vp3ap45ZSTEwMRo4c2eW4QqHodt+uoUOHdjvexRdfLH6twfTdd9/BarXCbDZj9OjRQT9fJBMEAQ9/XhPuMIh6FSZEFNEUCgXy8vLCMp63vp7apY47FMaOHYuzZ8/CZrOh2cOC3MzMTJw5c0Z8H6rF2larFUDHTBF5ZrTacaKp43plxCtxts0W5oiIwi9q1xCVlpZizJgxKCgoCHcoRBEhOTkZ48aNQ3x8vMd+F9Zok8lkSEpKCmZoXTQ3N+P8+fMhPWck6Xyb9pWbfvj7cjgc7roTRYWoTYhKSkpQUVEh7tpLkclqtWL16tVYvXq1OEMQqvG89fXULnXc0c5sNouvbTYbysvL8d133wW9jEik0ut/WMjfr18/8XV19Rl33YmiAm+ZUUSzWCxYsGABAGDevHkB1wRzN95FF12E+vp6DBw40K9ze2qXOm76gc32w+0fJpvu2TpdF5Xyh397p06exEXDvS+iJ+qLmBBRRFMoFLjuuuvE18EYLy0tDWlpaX6f21O71HGHEvcqIqK+iAkRRTStVotPPvkkLON56+upXeq4Qyk1NRUNDQ29av+kzjqvj2loaAj7dgC9UXNLi/iaCS5Rh6hdQ0REPRMbG4tJkyYhMzMz3KF4VV1dLb4+d+4c9u7dy6fQ4Lp4WqX+4ZaZNoLLtxAFigkREUWFw4cPo7W1VSwISx06zxDJ5fyRQNGL//opohkMBowYMQIjRoyQrHSHr+N56+upXeq4qXsOhwPHjh0T33d+Io2IyIlriCiiCYIg/rCTqnSHr+N56+upXeq4e5v+/fv3mn2AGhoaXG6dRTtBEPDA/51y34a+92+RyFdMiCiiabVafPPNN+LrUI7nra+ndqnj7m3S0tL8ToiGDRuG48ePSx7LuXPnJB8zkhmtdhw73zFLNry/BjGqH55yfGJTMzZeKnChNUUlJkQU0RQKBS6//PKwjOetr6d2qeMOBykKqOp0OvGWYVZWVlASIurec7OyoFMrMGpgLA7X6XGyxQaj1Q6dmj8aKPr0iTVEc+fORVJSEm666aZwh0IUNTIyMjB06FDk5ub2eIzBgwdDJpNh0KBBEkbmmcFgwHfffYfW1la0t7f3yVuWvtLpYiCTyfDmbePCHQpR2PWJXwPuv/9+3HnnnXj77bfDHQqFmM1mw9q1awF0JMZKZWD/pP0Zz1tfT+1Sxx0OSqUS2dnZbtt8ueWSk5OD1NRUpKSkhHxzyvPnz4u39AYNGoThw4eH9Pzh1PmRe12MDgDQ+W8rmhNEim6R913YjcLCQmzatCncYVAYmM1m3HzzzQCA9vb2gBMLf8bz1tdTu9Rx9zaJiYkYMGAAYmJiui1L4tzHKNjJUFNTk8f26upqDB48GC0tLUhKSoq4ncP9ZbH8ULYjLj4OgOv+QxaLFbEalpKh6BP2W2ZbtmzB7NmzkZGRAZlMhnXr1nXpU1paipycHGi1WkyePBm7du0KfaDUK8nlckybNg3Tpk2TZA8Vf8bz1tdTu9Rx9zZKpRJjx47F0KFDwx2KTyoqKnDgwAFUVlbCYDDAbreHO6SQcCbiWu0P68E4Q0TRKuy/lur1euTm5uLOO+/Ej3/84y7ta9aswZIlS7Bq1SpMnjwZK1euxIwZM3D48OEuxTYp+sTExEg6O+jPeN76emqXOu6+LCUlBRkZGTh06BAsFgsAYMiQIZJusOicRaqurkZ1dTViY2NRUFAg2fi9SV1dXbhDIOqVwv6r6cyZM7F8+XLMnTvXbftzzz2HRYsWYcGCBRgzZgxWrVoFnU6HN998s0fnM5vNaG1tdflDRME1YMCAHn923LhxSE5Odns8WPR6fdDGDrdTJ096bLc7omN2jOhCYU+IPLFYLNizZw+KiorEY3K5HEVFRdi+fXuPxnzqqafQr18/8U9WVpZU4RJRN9LT01FQUICLLrrIp/5qtRpKpRJpaWnisQvXIqWkpODyyy/H5MmTJY3Vqa/eOvL2Vf3s9bI++7UTedKrE6KGhgbY7Xakpqa6HE9NTUVNTY34vqioCPPmzcOnn36KQYMGeUyWli5dipaWFvFPVVVV0OKn4DMajcjLy0NeXh6MRmNIx/PW11O71HH3djKZDLGxsV7XSznXtKSnp+Pyyy93SaA6r0eKjY0F0JEkxQSpIGl7e7vL67Nnz4prixwOByoqKnD06NGISh4cDgdW7DR1OR6jUmBwQsffzdEGI4xWzhJR9An7GiIpfPnllz731Wg00Gg0KC0tRWlpadQsnuyrHA4H9u3bJ74O5Xje+npqlzruYBIEoUc/IGNUCr93PM7NzUVLSwvS0tK6fLZ///6YMmUKTCYTEhISXNpSU1NRW1vrd4yedP572bdvH6xWK6xWK1JTU2EymcS1OOnp6YiLi5P03MFSe74Zp9s6vq7R6fHiLtUymQzPzMzEvDX8BZGiV69OiJz7k1z4ja62ttZlKr0nSkpKUFJSgtbWVvTr1y+gsSh8tFotPv/8c/F1KMfz1tdTu9RxB5PRaseYJz7z+3MTByfhg3um+JUUxcfHIz4+vtt25y80Fxo9ejSGDBmCHTt2+B1nd+rq6iCTyRAXFwerteNR9crKSlRWVrrEUFZWhtGjR3eZyQaAQ4cOobW1FRMmTOjx37PD4UB7ezvi4+MDKqkhCAJ+/tZe8f2H91zmMp4g9O7EnCjYenVCpFarkZ+fjw0bNmDOnDkAOr45bNiwAYsXLw5vcNQrKBQKXH311WEZz1tfT+1Sx90blZ1q6lIGovMPYKnrZXlLONLS0lxutXtz5swZnDlzxu2+RGaz2eX96dOn3SZEzvPV19e7Xa9oMBig1+shk8lw7tw5ZGZmdllAfvjwYdTW1iIrKwvDhg3zOf4LGa12HG/siHtwggI6tevXlTUoC8AZAB0bh4LlOyjKhP1ffHt7u1j1G+j4Day8vBzJycnIzs7GkiVLUFxcjIkTJ2LSpElYuXIl9Ho9FixYENB5ecuMyDcxKgUqfj/D5/4Gix0Tl7u/jZ2UlIS0tDTExMSEfDPKoUOH+pUQOfnyPcLdOqLOt9wubLfZbLDb7V32VGtpacHUqVNdjjlnyKurqwNKiDor/fGwLglpfMIPM3Ptbe1I0PXumUsiqYU9ISorK8P06dPF90uWLAEAFBcXY/Xq1bjllltQX1+PJ554AjU1NcjLy8P69evd/jbmD94y6xtsNhs++6zjds6MGTMkKd3h63je+npqlzruYJLJZJIV+1QqlT4/adYTgwYNQn19PcaNG4fy8nIxmRk6dCjUanXQzmswGHDq1Cn0798fMpkMp0+fdrmt1t7ejjNnziA9PR3nz5/HwYMH3Y5js9nQ1taGgwcPYsCAAV0SIIPBgNbWVgwYMECcuTKZTKivr8fAgQN9LrjrLsnrvOC9pbUVGakpPo1F1FfIhEh6RCIInAlRS0tLl4Wa1Pvp9XpxQWt7e7v49FEoxvPW11O71HH7Sq/XY/fu3QCACRMmuN3fJ1AGi01cc1Tx+xlhq5x+9uxZHD16FEOGDBFrru3evTusewyNGDECR48e9din8629oUOH4sSJE277jRw5Eunp6SgvL0dLSwsA4Morr4RMJoMgCJDL5bDb7aiursa5c+fQ3G7EPV8aAABb7stHdobrOszOf29/KdJhRtF0EPVmUv/87r2/lhL5QC6XY+LEieLrUI7nra+ndqnjpq4yMjKQlpbmcn1HjhyJb7/9NmwxeUuGALjc1jtx4gQEQYDFDqgVruuujhw5gsbGRjQ3N4vtW7duFWd/Jk6ciNraWlRVVUEQBJfH7VVKz7XKzPaOOAJ9eIUokkRtQsQ1RH1DTEyMOOMR6vG89fXULnXc5N6FyWa/fv1cHtEfPnw4jEYjzpw5E47wxGQH+CHh6ZwAAcAfdppwrNmBEYlyLJ2shbVTclRfX+/S/uhkrZg0nT9/HufPn4fZJsBsh/i4fXa8HAOSPS8TuG+jAdll3+Krh6+BUtm3i90SOUVtQsQ1RBSNOq+j8XW9SV/T+RoMGjQIVqs15AmRIHQkKSt2mlwSld9dpsWK/yY42fFy/GaiFseaO9qPNjuwbJsJVW0/JD9mO1zazXZABgFqRcc5/mdzMw6ft7qce9XNI92uWYtRKZA/OBF7TjUD6EigZr34Ndb/eprkTwQS9UZRmxARRSOVSoVJkybB4XCEbN1Sb5OZmQmTyeRx/dRFF12EQ4cOddseGxvb7VqkzrM+Tp1nfy5MhJxOtzmw9Gsjag2C+P7+jQaXPlVtPyQ/rRZgxU7XXc6Xbev4/PBEOZaq67okQwAgg/vkRiaT4cN7LkPVuTrMe30Pag0CDtfpu2yd4IlzE8+ebMpJFG5RmxDxllnfYDQaxVp3X375ZcBlHPwZz1tfT+1Sx+0PnU4XsnP1RlqtFmPHju22PT4+HikpKRg7dmy3T4ONGjUKOp0OZWVlMJl+WJsjCIJ4C6uz4Ykdsz1PuUmEsuLlsNgF1BoEMRnyxYXJEgDx88eaHVj4f/U+j+Ukk8mQnZGKJy+LERdgt+hNiFHFek1wBEHATau2Y8+pJkzIiMNH917JpIgiStQmRLxl1jc4HA5s27ZNfB3K8bz19dQuddzUc503XhQEAYNyhsHiAGL7JUEQhG5/qDuLz57sVD3e0ukWVmfHmh345ZeuCUx2fMdtL42iYxHzPRe0vzBdh2fLuiZQF8qKl0OjcH/ezuc6/d9bbbEa/77tT/nTZlyS1Q///NXlHhMco9WOPaeaAAD7z7bjyIlTGDUsx69zEYVT1CZE1DdoNBqsXbtWfB3K8bz19dQuddzUc3K5HKNHj0ZFRUXH7M5nW8U2Z9JyYRpgsNihtNigiU2A2dYxK3PBxs94cXrHTNx9F8zkjElPwHuLJmHPzm1igqFRCC7rd8al6ZColePJyzrWCT1T1nXWaUSKFr/J60iGgI5kTID7vs/MzEBTYyMy0wYgPT3d6zW58Jbf3qoWr7fOTp465fJ+0XvfY/OjgzlLRBGDCRFFNKVSKZZ1CfV43vp6apc67t7KcOFPVglJuU5l4MCBqD3fjGPNx1yOn25zdJm5AQB8ua3LIeciaCeNm4ezvnlwKjL7J0Amk+Hiiy/G6dOn0djYCJlMhg9+MQUmW0ciE6NSwOFwYPv27ZDJbHhsslZMUlQKYPJlU6FTK1FXVweTyQSz2Yx+/fph4MCBmJh3Htv2fOeSiI0bN9av/aCGZ6cBcN3/6PChw8gdN9rtNhFGoxH3vH/E5djpNgfaTRbExzDhp8jAhIiIgqa7Eh5SGJOe8N/isb5/prskSiaTYfjwYQA6EqLdjxWh+M1dqDjX6vPY7hZBqxVA3qAElFe3Ij87UUyGACAxMRGxsbE4fPgw4uPjIZfLoVP/kGwoFApkZGTg9OnTSElJgVqtxrlz5wAAsZqOfYTc7difkpKC6ZdNRN7RcpRXt2Li4CSxqr2vRl90Ebb9NguX/XmzeKymrg76XQaMGJLd5bxNrXrx1l6qTiauZWpqakJ8DPcyosgQtQkRF1X3DXa7HV9//TUA4IorrnBbiDNY43nr66ld6rh7kxiVAhMHJ6Hsv+tJgqXiXCvGLvvMr894SqI6z2bFahT45L6pMFp/ONZRe2w3HA4HJk0qgErVkZQIAnDDCxtxvNEi9h2XGiM+Wfa34jwoNDFukzGVSoVx48Z1G29OTg6SkpIQHx+Pqqoqn7/O+Ph4rC2Z2uMnvmQyGdISXZ9C7FgDZcCIxAZ8/vC1LmPW1dWJr9++Iw/XrurY/LKi4vsuO2IT9VYs3cHSHRGNpTt6J+fj18EZG5i3artfszf+6q7kiPMXqAsT2Pb2dmzd0bHRpkarxZiRw1BRUQEAmDZNmn18zGYzTpw4IRbIDYX/fLmxy2JwADj45DVQwiGuf1v/5Ubx1mLZ40XizGBOPyU2PnIN1xFRULB0B1EnMpkMY8aMEV+HcjxvfT21Sx13byNlQVh3Lpy98cafJMrTLabuZvLi4uJw5eWX4syZM0hNTUV8fDzi4uKg0Wgk+/vVaDQYPXq0JGP5KjW5H4Yndl2kvWHTN9AogMy0AYiLi3MpCxKjUmDUwFgcrtPjZIsNBotNvMVH1JtxhogzRERRwddZK24q+AOr1YrW1lYcP1WNc/WNXdZIZcXL8ZuJGjywsWODyCGJKnz18NU439qOiU9tAQD862c5uGRC9/s+EfUUZ4iIiHog2LNWfZFKpUL//v2RnJyM1tZWjPh2G452mi2qanOIyRAArPvvZoy6ThuN/nLdKWwaMQwxMVoQ9WYss01ERB7JZDL069cPr986Bn8p0uHpK93vrK5SdSScMSoFhvfvSIBqDQKufX4TNyClXi9qE6LS0lKMGTMGBQUF4Q6FAmA0GnH11Vfj6quvhtFo9P4BCcfz1tdTu9RxE4XC4MGDMaNoOnJHZHVpm5AeK669kslk+HfJZUjVddx6PNVqx6kzNSGNlchfXEPENUQRjU+ZEYWezWZDTW0tLBYrTp6shNUOjBs9EpmZmS799lccxg1/7djbaXCCHO8vvATJycnilgVEgeAaIqJONBoN/v73v4uvQzmet76e2qWOmyiUlEolBmVmQq/X4/Spk9AoOxZgX2jY4EHIjj+B020OnGp1YGd5BYYNGoisrCycP38emZmZUKvVYfgKiLriDBFniIiIemzTpk0AOjaRzMnJ6dK+Z98B/OTdH+qcZXUqapuRkYGLRo0KUaTU13CGiIiIeo309HQ0Nzdj4MCBbtsvGj4EIxKrxKfTqtocnTZ7PIaj/28YLBYzdDodtzugsOIMEWeIIprdbsfevXsBAJdccokkpTt8Hc9bX0/tUsdN1JsJgoBtu/ag5NM6NJtdf+Q8fWUM+sfIoI6JQ/qAZCQnJyMpKSlMkVIkkfrnNxMiJkQRjYuqiSKDIAg429iGy5/+uts+wxPleHCiFtdcNQ1yedQ+BE0+4i0zibC4a98gk8kwePBg8XUox/PW11O71HET9XYymQzpSfHi+6x4OaraXPcmOtbswD1fGjC87DM8e10mxo8bx8SIQoYzRJwhIiIKGYdDgCAI0Ovb0aI34c53vsPRBpPbvpvvm4g4jRLJycn8xYG64C0ziTEhIiIKH0EQoDfbMGfll12KyAJAdrwcz80ahEsmjOVsEblgQiQxJkREROFntVpx8tx5XP3yHrft2fFyvFM8Hv0HpiFGpYDzJ5dczpmjaMU1RESdmEwm/PSnPwUAvPfee9BqAysg6c943vp6apc6bqJIp1KpMDwrFaMG6nC4ztCl/XSbA1e8tA/APkzIjMf+M20AgG8fuRwaXRxiVAreVqOAcIaIM0QRjU+ZEfUtDoeAWS9+je9r2jAqWYmF41T47Zbu6/2l6mSoNQgYl6bD/91fyKQoinCGiKgTtVqNV199VXwdyvG89fXULnXcRH2FXC7Dp/dfAaPVjhiVAg6HgN9u+U+3/WsNHb/TH6gxYEf5QUzOHQuTzQ6tUg6bzQ6lUsnbauQTzhBxhoiIqFdzODp+TBksNsx89ssuj+u7MzxRLi7Sfm9eJsaMGIqEhAQ4HA4IQsc2AEyUIhsXVUuMCRERUeQ4UVmJ+f84hNM+JEWdZf+3hppaAdz5WccapQP/Mx2teiP2798PGYDhI4ZjaPYgyGQyMQnrmG3q2EleLv/hOJOp8GNCJDEmRJHN4XDg+++/BwCMHj064Mdy/RnPW19P7VLHTRRNBEGA0WqHSgYYrHbk/v5LycYelqzB76cl4ra1tV3a/n3bYNzwTkeh2p0PXY6UxATUN7XAarUhLj4OapUKMaofkifgv/suAZCBSZTUmBBJpPNO1UeOHGFCFKG4qJqIHA4BJrMZN7yw0e1eRuHwafEw2AQ5bvjrUfHYF3ddhJTUdLF2oc1mw/m6c9Dq4pGZ1lEcVyYD2oxmxGnV4i9KnWel/JmhCsZsli9jOvvIZIDR2lENIhhPATIhkhhniCKbXq9HTk4OAODkyZOSJES+juetr6d2qeMmoo69jBpb9UhJTIDJ1jGDdLauHjFqJarO1uLXn1R3u/7oz1fGeHyaLVScJU2y4+X449UDIVco8NMPzgAAXinS4Zdfdtzue+3aBGRnZSEhIQExagVa2g3o1y8Rzc1NiIuLR1t7O6a/1FFAumLZj9Bm6NgNPCk+FlYBsFptMJvNaG5uhkajRlxcPBQKBdraWqFUKKFQKuFwOCCXy9HS0gKLxQKlUolrX68AALw1KxkDBqQgJkaL9rZ2CIKA5P7JaGpqwY1/OwYAWHVtEu5Z39QRw+9nQKeW9jkuJkQSY0JERBQdbDYbGtv00Gpj8PNXt2H/OT0uyU7Eh/dcBkEQMOyxjqfZPrx1MDLS06FSqTB/dRkO1oY/UYp03y0rQnyMRtIxmRBJjAkREVH0ca5D6nwrx93tIGc/rVIhLrDWmy2I1ajRbjKjrbkRGo0WbW1tiInRwmwH7n7vexyu02NokhonmiwAgFGpcThc2x76L7QXGJEox6e/KYJKpZJ0XO5DREREFCCZTNblFo67dTGd+zn/65zpSNBpkaDLAACk9E8WP7P+1wPFZMs55eBcT+N8Ys1Jb7bAbjFBkKsgk8mgUimhUchhstkhCALkcjnsdgdOnz4Nu92OjMwMqFVqKJUK6PUG/OyN3Th23ozhKVr89Y48qNVqNDU1or6+HvHxCfj1x1U4dt6EYckaOAQHKpusGJaswdt35EKv10OtVsFqtUGlUkKhUCAxMRHtbe0wW8z/vYXWjuTkZPTrlwCbzQaT2QxdjM7jGiLn1ywIDmz9ZivUCkTEhpmcIeIMUUQzmUxYuHAhAOCNN96QpHSHr+N56+upXeq4iSg6uZvp6q4dgMe+UnM4HNiyZQsAYOrUqVAquYaoV2NCFNn4lBkRUe/UOSEqKCiQ/Pscb5kRdaJWq/H888+Lr0M5nre+ntqljpuIqLfpuAWogtVq5S2zSMAZIiIiouAwGAxobW1FSkpKr79lxhkiIiIiCgqdTgedThfuMHzChIgimsPR8fQFAGRnZ0tSusPX8bz19dQuddxERBSYPvFd+OOPP8aoUaMwYsQIvP766+EOh0LIaDRiyJAhGDJkCIzGwDdP82c8b309tUsdNxERBSbiZ4hsNhuWLFmCjRs3ol+/fsjPz8fcuXPRv3//cIdGISL1dKw/43nr66k9UqaRiYiiQcQnRLt27cLYsWORmZkJAJg5cyY+//xz3HrrrWGOjEIhNjYWer0+LON56+upXeq4iYgoMGG/ZbZlyxbMnj0bGRkZkMlkWLduXZc+paWlyMnJgVarxeTJk7Fr1y6x7ezZs2IyBACZmZk4c+ZMKEInIiKiPiLsCZFer0dubi5KS0vdtq9ZswZLlizBsmXLsHfvXuTm5mLGjBmoq6sLcaRERETUV4U9IZo5cyaWL1+OuXPnum1/7rnnsGjRIixYsABjxozBqlWroNPp8OabbwIAMjIyXGaEzpw5g4yMjG7PZzab0dra6vKHIpfZbMaiRYuwaNEimM3mkI7nra+ndqnjJiKiwPSqjRllMhnWrl2LOXPmAAAsFgt0Oh0+/PBD8RgAFBcXo7m5GR999BFsNhtGjx6NTZs2iYuqt23b1u2i6t/97nd48sknuxznxoyRiaU7iIiiU1RtzNjQ0AC73Y7U1FSX46mpqTh06BAAQKlU4tlnn8X06dPhcDjw29/+1uMTZkuXLsWSJUvE962trcjKygrOF0BBp1KpsHz5cvF1KMfz1tdTu9RxExFRYHr1DJFzwfS2bdswZcoUsd9vf/tbbN68GTt37gz4nCzdQUREFHmk/vkd9jVEnqSkpEChUKC2ttbleG1tLdLS0gIau7S0FGPGjEFBQUFA4xAREVHk69UJkVqtRn5+PjZs2CAeczgc2LBhg8uMUU+UlJSgoqICu3fvDjRMCiNBEFBfX4/6+npIMdnpz3je+npqlzpuIiIKTNjXELW3t+PYsWPi+8rKSpSXlyM5ORnZ2dlYsmQJiouLMXHiREyaNAkrV66EXq/HggULAjpvaWkpSktLYbfbA/0SKIwMBgMGDhwIQJrFyf6M562vp3ap4yYiosCEPSEqKyvD9OnTxffOBc/FxcVYvXo1brnlFtTX1+OJJ55ATU0N8vLysH79+i4Lrf1VUlKCkpIStLS0IDExkY/fR6jOuz23trYGnOD6M563vp7apY6biCjaOH9uSzXL3qsWVYdDdXU1nzIjIiKKUFVVVRg0aFDA40R9QuRwOHD27FnEx8dDJpOJxwsKCtyuL/L1uKf3ztfOR/6rqqoke8Ktu/h62p/XwXO7u+O+HON16Pqe14HXoTdeB1/68jp47hOs6xAfH4+2tjZkZGRALg98SXTYb5mFm1wud5tZKhQKt//ofD3u6f2FbQkJCZL9A+8uvp7253Xw3O7uuC/HeB26vud14HXojdfBl768Dp77BPM69OvXz6f4fdGrnzILp5KSkoCOe3rf3RhS8Hdsb/15HTy3uzvuyzFeh67veR18O3cgeB38H9uXvrwOnvv09uvgFPW3zMKJm0J24HXowOvQgdehA69DB16HDrwOHYJ5HThDFEYajQbLli2DRqMJdyhhxevQgdehA69DB16HDrwOHXgdOgTzOnCGiIiIiKIeZ4iIiIgo6jEhIiIioqjHhIiIiIiiHhMiIiIiinpMiIiIiCjqMSGKIDk5OZgwYQLy8vJcCuJGG4PBgMGDB+PBBx8Mdyhh0dzcjIkTJyIvLw/jxo3Da6+9Fu6QwqaqqgqFhYUYM2YMJkyYgA8++CDcIYXF3LlzkZSUhJtuuincoYTUxx9/jFGjRmHEiBF4/fXXwx1O2ETr339nUnwv4GP3ESQnJwcHDhxAXFxcuEMJq8ceewzHjh1DVlYWnnnmmXCHE3J2ux1msxk6nQ56vR7jxo1DWVkZ+vfvH+7QQu7cuXOora1FXl4eampqkJ+fjyNHjiA2NjbcoYXUpk2b0NbWhrfffhsffvhhuMMJCZvNhjFjxmDjxo3o168f8vPzsW3btqj8/yAa//4vJMX3As4QUUQ5evQoDh06hJkzZ4Y7lLBRKBTQ6XQAALPZDEEQEK2/16SnpyMvLw8AkJaWhpSUFDQ2NoY3qDAoLCxEfHx8uMMIqV27dmHs2LHIzMxEXFwcZs6cic8//zzcYYVFNP79X0iK7wVMiCSyZcsWzJ49GxkZGZDJZFi3bl2XPqWlpcjJyYFWq8XkyZOxa9cuv84hk8kwbdo0FBQU4J133pEocumE4ho8+OCDeOqppySKODhCcR2am5uRm5uLQYMG4aGHHkJKSopE0UsrFNfCac+ePbDb7cjKygowammF8hpEkkCvy9mzZ5GZmSm+z8zMxJkzZ0IRuqT476ODlNehp98LmBBJRK/XIzc3F6WlpW7b16xZgyVLlmDZsmXYu3cvcnNzMWPGDNTV1Yl9nGtCLvxz9uxZAMA333yDPXv24N///jdWrFiB/fv3h+Rr81Wwr8FHH32EkSNHYuTIkaH6knokFP8WEhMTsW/fPlRWVuIf//gHamtrQ/K1+SsU1wIAGhsbcccdd+DVV18N+tfkr1Bdg0gjxXXpC3gdOkh1HQL6XiCQ5AAIa9eudTk2adIkoaSkRHxvt9uFjIwM4amnnurROR588EHhrbfeCiDK4ArGNXjkkUeEQYMGCYMHDxb69+8vJCQkCE8++aSUYUsuFP8WfvnLXwoffPBBIGGGRLCuhclkEq644grhr3/9q1ShBk0w/z1s3LhR+MlPfiJFmCHXk+uydetWYc6cOWL7/fffL7zzzjshiTdYAvn3Ecl//xfq6XUI9HsBZ4hCwGKxYM+ePSgqKhKPyeVyFBUVYfv27T6Nodfr0dbWBgBob2/HV199hbFjxwYl3mCQ4ho89dRTqKqqwsmTJ/HMM89g0aJFeOKJJ4IVclBIcR1qa2vFfwstLS3YsmULRo0aFZR4g0mKayEIAubPn4+rrroKt99+e7BCDRoprkFf5Mt1mTRpEg4cOIAzZ86gvb0d//nPfzBjxoxwhRwU/PfRwZfrIMX3AiZEIdDQ0AC73Y7U1FSX46mpqaipqfFpjNraWkydOhW5ubm49NJLcccdd6CgoCAY4QaFFNegL5DiOpw6dQpXXHEFcnNzccUVV+Dee+/F+PHjgxFuUElxLbZu3Yo1a9Zg3bp1yMvLQ15eHr777rtghBsUUv1/UVRUhHnz5uHTTz/FoEGDIv6HpS/XRalU4tlnn8X06dORl5eH3/zmN33uCTNf/330tb//C/lyHaT4XqCULGIKqqFDh2Lfvn3hDqPXmD9/frhDCJtJkyahvLw83GH0ClOnToXD4Qh3GGH35ZdfhjuEsLjhhhtwww03hDuMsIvWv//OpPhewBmiEEhJSYFCoeiy8LW2thZpaWlhiiq0eA068Dr8gNeC16A7vC4deB06hOo6MCEKAbVajfz8fGzYsEE85nA4sGHDBkyZMiWMkYUOr0EHXocf8FrwGnSH16UDr0OHUF0H3jKTSHt7O44dOya+r6ysRHl5OZKTk5GdnY0lS5aguLgYEydOxKRJk7By5Uro9XosWLAgjFFLi9egA6/DD3gteA26w+vSgdehQ6+4Dj16No262LhxowCgy5/i4mKxz//+7/8K2dnZglqtFiZNmiTs2LEjfAEHAa9BB16HH/Ba8Bp0h9elA69Dh95wHVjLjIiIiKIe1xARERFR1GNCRERERFGPCRERERFFPSZEREREFPWYEBEREVHUY0JEREREUY8JEREREUU9JkREREQU9ZgQEREFyGKxYPjw4di2bZuk465fvx55eXkBV/EmIu+YEBGRi/nz50Mmk3X507nOELlatWoVhgwZgssuu0w8JpPJsG7dui5958+fjzlz5vg07rXXXguVSoV33nlHokiJqDtMiIioi2uvvRbnzp1z+TNkyJAu/SwWSxii610EQcBLL72EhQsXBmX8+fPn48UXXwzK2ET0AyZERNSFRqNBWlqayx+FQoHCwkIsXrwYDzzwAFJSUjBjxgwAwIEDBzBz5kzExcUhNTUVt99+OxoaGsTx9Ho97rjjDsTFxSE9PR3PPvssCgsL8cADD4h93M2oJCYmYvXq1eL7qqoq3HzzzUhMTERycjJuvPFGnDx5Umx3zr4888wzSE9PR//+/VFSUgKr1Sr2MZvNePjhh5GVlQWNRoPhw4fjjTfegCAIGD58OJ555hmXGMrLyz3OkO3ZswfHjx/HrFmz/LzKwMmTJ93OxhUWFop9Zs+ejbKyMhw/ftzv8YnId0yIiMgvb7/9NtRqNbZu3YpVq1ahubkZV111FS6++GKUlZVh/fr1qK2txc033yx+5qGHHsLmzZvx0Ucf4fPPP8emTZuwd+9ev85rtVoxY8YMxMfH4+uvv8bWrVsRFxeHa6+91mWmauPGjTh+/Dg2btyIt99+G6tXr3ZJqu644w68++67ePHFF/H999/jL3/5C+Li4iCTyXDnnXfirbfecjnvW2+9hSuvvBLDhw93G9fXX3+NkSNHIj4+3q+vBwCysrJcZuG+/fZb9O/fH1deeaXYJzs7G6mpqfj666/9Hp+I/CAQEXVSXFwsKBQKITY2Vvxz0003CYIgCNOmTRMuvvhil/7/7//9P+Gaa65xOVZVVSUAEA4fPiy0tbUJarVaeP/998X28+fPCzExMcL9998vHgMgrF271mWcfv36CW+99ZYgCILwt7/9TRg1apTgcDjEdrPZLMTExAifffaZGPvgwYMFm80m9pk3b55wyy23CIIgCIcPHxYACF988YXbr/3MmTOCQqEQdu7cKQiCIFgsFiElJUVYvXp1t9fr/vvvF6666qouxwEIWq3W5TrGxsYKSqVSuPHGG7v0NxqNwuTJk4Xrr79esNvtLm0XX3yx8Lvf/a7bGIgocMrwpmNE1BtNnz4dr7zyivg+NjZWfJ2fn+/Sd9++fdi4cSPi4uK6jHP8+HEYjUZYLBZMnjxZPJ6cnIxRo0b5FdO+fftw7NixLjMxJpPJ5XbS2LFjoVAoxPfp6en47rvvAHTc/lIoFJg2bZrbc2RkZGDWrFl48803MWnSJPzf//0fzGYz5s2b121cRqMRWq3Wbdvzzz+PoqIil2MPP/ww7HZ7l7533nkn2tra8MUXX0Aud528j4mJgcFg6DYGIgocEyIi6iI2NrbbW0SdkyMAaG9vx+zZs/GnP/2pS9/09HSfn06TyWQQBMHlWOe1P+3t7cjPz3f7xNWAAQPE1yqVqsu4zsfWY2JivMZx11134fbbb8fzzz+Pt956C7fccgt0Ol23/VNSUsSE60JpaWldrmN8fDyam5tdji1fvhyfffYZdu3a5fbWW2Njo8vXSETSY0JERAG55JJL8M9//hM5OTlQKrt+Sxk2bBhUKhV27tyJ7OxsAEBTUxOOHDniMlMzYMAAnDt3Tnx/9OhRl1mRSy65BGvWrMHAgQORkJDQo1jHjx8Ph8OBzZs3d5m5cbruuusQGxuLV155BevXr8eWLVs8jnnxxRfjlVdegSAIkMlkfsf0z3/+E7///e/xn//8B8OGDevS7pwBu/jii/0em4h8x0XVRBSQkpISNDY24tZbb8Xu3btx/PhxfPbZZ1iwYAHsdjvi4uKwcOFCPPTQQ/jqq69w4MABzJ8/v8ttoauuugovvfQSvv32W5SVleGee+5xme257bbbkJKSghtvvBFff/01KisrsWnTJtx3332orq72KdacnBwUFxfjzjvvxLp168Qx3n//fbGPQqHA/PnzsXTpUowYMQJTpkzxOOb06dPR3t6OgwcP+nHVOhw4cAB33HEHHn74YYwdOxY1NTWoqalBY2Oj2GfHjh3QaDRe4yCiwDAhIqKAZGRkYOvWrbDb7bjmmmswfvx4PPDAA0hMTBSTnqeffhpXXHEFZs+ejaKiIkydOrXLWqRnn30WWVlZuOKKK/Czn/0MDz74oMutKp1Ohy1btiA7Oxs//vGPMXr0aCxcuBAmk8mvGaNXXnkFN910E371q1/hoosuwqJFi6DX6136LFy4EBaLBQsWLPA6Xv/+/TF37twebZ5YVlYGg8GA5cuXIz09Xfzz4x//WOzz7rvv4rbbbvN4246IAicTLrxpT0QUAoWFhcjLy8PKlSvDHUoXX3/9NX70ox+hqqoKqampXvvv378fV199NY4fP+52cXlPNTQ0YNSoUSgrK3O7MSYRSYczRERE/2U2m1FdXY3f/e53mDdvnk/JEABMmDABf/rTn1BZWSlpPCdPnsTLL7/MZIgoBLiomojov959910sXLgQeXl5+Otf/+rXZ+fPny95PBMnTsTEiRMlH5eIuuItMyIiIop6vGVGREREUY8JEREREUU9JkREREQU9ZgQERERUdRjQkRERERRjwkRERERRT0mRERERBT1mBARERFR1GNCRERERFHv/wMSzZujiI3MSAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.loglog(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.loglog(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "b7af40af", + "metadata": {}, + "source": [ + "Note that, while the \"clean\" and \"dirty\" periodograms at high frequencies mostly match, at low frequencies the two diverge. The low-frequency periodogram cannot be trusted if one does not use some trick to avoid the gaps. \n", + "\n", + "# The Lomb-Scargle periodogram\n", + "\n", + "Fortunately, a method exists and is called the *Lomb Scargle periodogram* ([See this review from Jake Van Der Plas](https://iopscience.iop.org/article/10.3847/1538-4365/aab766/pdf))\n", + "\n", + "The method is slower than the standard periodogram, so we will limit its usage to the interesting frequency range." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5d995bbd", + "metadata": {}, + "outputs": [], + "source": [ + "maxfreq = 1.\n", + "dt = 0.5 / maxfreq # Using the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "69759093", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGpCAYAAACTcAx5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACfV0lEQVR4nOzdeXhTxfoH8O/JnnTf6AJdWAtFbNmFIqCCLIqCgrgDItcFVC6ignpZVEABlatUwQVwwSuKgv4EUUE22bciFigUCpRCWwpdsy/z+yPkkDRJkzRp07Tv53n6eHJmzpxpic3bOTPzcowxBkIIIYSQACLwdwcIIYQQQjxFAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOBTAEEIIISTgUABDCCGEkIBDAQwhhBBCAg4FMIQQQggJOH4JYPLz83HbbbchLS0NXbp0gVKp9Ec3CCGEEBKgOH8kcxwwYADeeust3Hrrrbh27RpCQ0MhEokauhuEEEIICVANHjXk5ORALBbj1ltvBQBERkY2dBcIIYQQEuA8foS0Y8cOjBgxAgkJCeA4DuvXr7erk5WVhZSUFMhkMvTu3Rv79+/ny06fPo3g4GCMGDEC3bp1w/z58736BgghhBDS/Hg8AqNUKpGeno4nnngC9913n135mjVrMG3aNCxbtgy9e/fGkiVLMGTIEOTm5qJFixYwGAzYuXMnsrOz0aJFCwwdOhQ9e/bE4MGDHd5Pq9VCq9Xyr00mE65du4aoqChwHOdp9wkhhBDiB4wxVFVVISEhAQKBD6bgMi8AYOvWrbM516tXLzZ58mT+tdFoZAkJCWzBggWMMcZ2797N7rzzTr584cKFbOHChU7vMXv2bAaAvuiLvuiLvuiLvprAV0FBgTehB8+nc2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv2AAB69uyJkpISlJWVISwsDDt27MBTTz3ltM2ZM2di2rRp/OuKigokJSWhoKAAoaGhvuw+CQDZ2dmoqqoCAISHh6NLly5+7hEhhBB3VFZWIjExESEhIT5pz6cBTGlpKYxGI2JjY23Ox8bG4uTJk+YbikSYP38++vfvD8YY7rzzTtx9991O25RKpZBKpXbnQ0NDKYBphoKDg2Eymfhjeg8QQkhg8dX0D7+sXR42bBiGDRvm0TVZWVnIysqC0Wisp16Rxk6n0+HLL7+ERqPB/fff73Vb//3vfwEAL7zwAiQSSZ3rOiv35B6EEEI849U+MBzHYd26dRg5ciQA8y9shUKBtWvX8ucAYNy4cSgvL8dPP/3kbX9RWVmJsLAwVFRU0F/fzYxSqURwcDAAYOPGjUhISEB6errXbVVXVyMoKKjOdZ2Ve3IPQghp6nz9+e3TERiJRILu3btjy5YtfABjMpmwZcsWTJkyxZe3Is2QSCTC3XffDb1eD6FQ6HVb48aN44+9qeus3JN7EEII8YzHIzDV1dXIy8sDAHTt2hXvvfcebrvtNkRGRiIpKQlr1qzBuHHjsHz5cvTq1QtLlizBd999h5MnT9rNjfGE9SOkU6dO0QhMM3X48GFUVlYCACIiIuo8AkMCg9FohF6v93c3CCFuEIvFtf5x6esRGI8DmG3btuG2226zOz9u3DisWrUKALB06VIsWrQIRUVFyMjIwAcffIDevXt73VmAHiE1dxTANA+MMRQVFaG8vNzfXSGEeCA8PBxxcXEOJ+r6PYDxNwpgmi+VSmWzqzMFME3X5cuXUV5ejhYtWkChUNCmlYQ0cowxqFQqlJSUIDw8HPHx8XZ1GvUcGELq0759+zBixAgAwPfff4+IiIg6t6VUKtGyZUsAQGFhoctJvLXVdVbuyT3IDUajkQ9eoqKi/N0dQoib5HI5AKCkpAQtWrTweq6iKwETwNAyaqLT6aBUKn3WXkVFhc/qOiv35B7EzDLnRaFQ+LknhBBPWf6/9cViC1cCJoCZPHkyJk+ezA9BkeZHKpXiq6++QmJioteBrFwux6lTp/hjb+o6K/fkHsQePTYiJPA05P+3ARPAECIQCNCqVSu0bt0aZ8+e9bqt9u3b+6Sus3JP7kEIIcQzPkgHSQghhDQtq1atQnh4uL+74Rfjx4+32Yy2sQqYACYrKwtpaWno2bOnv7tC/MRgMGDdunX44osvYDAYvGpLr9fz86pc7TPiqq6zck/uQQLf+PHjwXEcOI6DRCJBu3bt8MYbb3j9Xm1qAuXDcezYsfwj4Kbq3Llz4DgO2dnZNuf/+9//8tuiNGa0jJoEjN9++w1Dhw4FQKkEmjKNRoP8/Hy0bt0aMpnM391x2/jx41FcXIyVK1dCq9Vi48aNmDx5MubNm4eZM2f6u3vQ6XSNIh/X+PHjUV5ejvXr19daT6/XQywWN0ynGjGj0QiO4yAQ+H684dy5c2jdujWOHDmCjIwMn7RZ2/+/vv78DpgRGEIEAgEGDBiA4cOHez27XSgUYvTo0Rg9erTLtlzVdVbuyT1I0yCVShEXF4fk5GQ888wzGDRoEH7++WcAQFlZGR5//HFERERAoVBg2LBhOH36NADzHhoxMTFYu3Yt31ZGRobNXhp//fUXpFIpVCoVAKC8vBxPPvkkYmJiEBoaittvvx1Hjx7l68+ZMwcZGRn47LPPbD5M1q5diy5dukAulyMqKgqDBg3iV/dZRkfmzp3Lt/v0009Dp9Px7ZpMJixYsACtW7eGXC5Henq6Tb8BICcnB3fffTdCQ0MREhKCW2+9FWfOnMGcOXPwxRdf4KeffuJHq7Zt28aPBKxZswYDBgyATCbD6tWr+e/B2pIlS5CSksK/tvR5/vz5iI2NRXh4OD/y9dJLLyEyMhKtWrXCypUrPfq3dPQI6a233kKLFi0QEhKCJ598EjNmzLDpn6UvixcvRnx8PKKiojB58mSbEdja3gfW9/3555+RlpYGqVSKCxcuQKvVYvr06WjZsiWCgoLQu3dvbNu2rdbv4eTJk+jXrx9kMhnS0tKwefNmcBzHB4+tW7cGYN5Vn+M4DBw40Ob7sKjtPeNPNImXBAypVIo5c+agTZs2Xk/ilclk+P77731S11m5J/cgtWOMwWQyNfh9BQKBV6sq5HI5rl69CsD8oXD69Gn8/PPPCA0NxSuvvILhw4fj+PHjEIvF6N+/P7Zt24bRo0ejrKwMJ06cgFwux8mTJ9GxY0ds374dPXv25JepjhkzBnK5HL/++ivCwsKwfPly3HHHHTh16hQiIyMBAHl5efjhhx/w448/QigU4vLly3jooYewcOFCjBo1ClVVVdi5cyesB+K3bNkCmUzGBxYTJkxAVFQU5s2bBwBYsGABvv76ayxbtgzt27fHjh078OijjyImJgYDBgxAYWEh+vfvj4EDB+LPP/9EaGgodu3aBYPBgOnTp+PEiROorKzkA4rIyEhcunQJADBjxgy8++676Nq1K2QyGZYvX+7Wz/nPP/9Eq1atsGPHDuzatQsTJ07E7t270b9/f+zbtw9r1qzBU089hcGDB6NVq1Z1+rdcvXo15s2bh48++giZmZn49ttv8e677/JBgMXWrVsRHx+PrVu3Ii8vD2PHjkVGRgYmTZrk1vsAMG/a+c477+Czzz5DVFQUWrRogSlTpuD48eP49ttvkZCQgHXr1mHo0KE4duyYw8UCRqMRI0eORFJSEvbt24eqqiq8+OKLNnX279+PXr16YfPmzejcubPDETp33jP+QgEMIaTRM5lM2LlzZ4Pf99Zbb63T6BljDFu2bMFvv/2G5557jv/A2rVrF/r27QvA/IGYmJiI9evXY8yYMRg4cCD/gb1jxw507doVcXFx2LZtGzp27Iht27ZhwIABAMyjMfv370dJSQmkUikAYPHixVi/fj3Wrl2Lf/3rXwDMj42+/PJLxMTEADCn4jAYDLjvvvuQnJwMAOjSpYtN3yUSCVasWAGFQoHOnTvjjTfewEsvvYQ333wTer0e8+fPx+bNm9GnTx8AQJs2bfDXX39h+fLlGDBgALKyshAWFoZvv/2W/0Du0KED375cLodWq0VcXJzdz23q1Km47777PP55R0ZG4oMPPoBAIEBqaioWLlwIlUqFV199FQAwc+ZMvP322/jrr7/w4IMPetw+AHz44YeYOHEiJkyYAACYNWsWfv/9d1RXV9vUi4iIwNKlSyEUCtGxY0fcdddd2LJlCyZNmuTW+wAwPz776KOP+EfkFy5cwMqVK3HhwgUkJCQAAKZPn45NmzZh5cqVmD9/vl1///jjD5w5cwbbtm3jf9bz5s3D4MGD+TqW90VUVJTDfw/AHMC4es/4S8A8QqJJvISQxu6XX35BcHAwZDIZhg0bhrFjx2LOnDk4ceIERCKRTU64qKgopKam4sSJEwCAAQMG4Pjx47hy5Qq2b9+OgQMHYuDAgdi2bRv0ej12797ND/EfPXoU1dXViIqKQnBwMP+Vn5+PM2fO8PdITk7mP6QAID09HXfccQe6dOmCMWPG4NNPP0VZWZnN95Cenm6ziWCfPn1QXV2NgoIC5OXlQaVSYfDgwTb3/fLLL/n7Zmdn49Zbb63T/JUePXp4fA0AdO7c2WaOSGxsrM2HrFAoRFRUFEpKSurUPgDk5uaiV69eNudqvrb0xTrojY+P5+/rzvsAMAeRN998M//62LFjMBqN6NChg83Pffv27Tb/3jX7m5iYaBOYOOqvK+68Z/wlYEZgaCM7otFo8Mgjj0AoFHo9Q16lUvHDrqdPn65111dXdZ2Ve3IPUjuBQIBbb73VL/f1xG233YaPP/4YEokECQkJEInc/xXbpUsXREZGYvv27di+fTvmzZuHuLg4vPPOOzhw4AD0ej3/V3t1dTXi4+MdzoGwnrdRc+K4UCjEH3/8gd27d+P333/Hhx9+iNdeew379u2zexTiiGW0YcOGDXyaDAvLSJA3mzbW7K9AILB7VOFoRV/NYInjOIfnGuIxpC/uK5fLbR5dVldXQygU4tChQ3YjgpaFAvXF2/dMfQqYAIYQxhhKS0v5Y2/bsjx3d9WWq7rOyj25B6kdx3EBMRE6KCgI7dq1szvfqVMnGAwG7Nu3jw9Crl69itzcXKSlpQEwf4+33norfvrpJ+Tk5KBfv35QKBTQarVYvnw5evTowX/Ad+vWDUVFRRCJRDYTWt3BcRwyMzORmZmJWbNmITk5GevWrcO0adMAmEd31Go1H4js3bsXwcHBSExMRGRkJD+p1PI4q6abb74ZX3zxhdNVRBKJxO2dtGNiYlBUVATGGP+BXnPJb0NJTU3FgQMH8Pjjj/PnDhw44FEb7rwPHOnatSuMRiNKSkrcDuRTU1NRUFCA4uJixMbGOuyvZc6Lq38PV+8Zf6EAhgQMiUSCTz/9FC1btvR6OahMJsORI0f4Y2/qOiv35B6kaWvfvj3uvfdeTJo0CcuXL0dISAhmzJiBli1b4t577+XrDRw4EC+++CJ69OjB/2Xdv39/rF69Gi+99BJfb9CgQejTpw9GjhyJhQsXokOHDrh06RI2bNiAUaNGOX0Us2/fPmzZsgV33nknWrRogX379uHKlSvo1KkTX0en02HixIl4/fXXce7cOcyePRtTpkyBQCBASEgIpk+fjn//+98wmUzo168fKioqsGvXLoSGhmLcuHGYMmUKPvzwQzz44IOYOXMmwsLCsHfvXvTq1QupqalISUnBb7/9htzcXERFRdU6oj5w4EBcuXIFCxcuxOjRo7Fp0yb8+uuvftlC47nnnsOkSZPQo0cP9O3bF2vWrMHff/+NNm3auN2Gu++Dmjp06IBHHnkEjz/+OD/J+cqVK9iyZQtuvvlm3HXXXXbXDB48GG3btsW4ceOwcOFCVFVV4fXXXwdwY7v/Fi1aQC6XY9OmTWjVqhVkMpndv4c77xl/CZg5MIQIhUK0a9fO7hlzXdvKyMhARkaGW8uoa6vrrNyTe5Cmb+XKlejevTvuvvtu9OnTB4wxbNy40WaUYsCAATAajfxcF8D8IV7zHMdx2LhxI/r3748JEyagQ4cOePDBB3H+/Hn+r21HQkNDsWPHDgwfPhwdOnTA66+/jnfffRfDhg3j69xxxx1o3749+vfvj7Fjx+Kee+7BnDlz+PI333wT//nPf7BgwQJ06tQJQ4cOxYYNG/jHCVFRUfjzzz9RXV2NAQMGoHv37vj000/573PSpElITU1Fjx49EBMTg127djntb6dOnfDRRx8hKysL6enp2L9/P6ZPn+7uj7xWAwcOxPjx492u/8gjj2DmzJmYPn06unXrhvz8fIwfP97jP07ceR84u+7xxx/Hiy++iNTUVIwcORIHDhxAUlKSw/pCoRDr169HdXU1evbsiSeffBKvvfYagBt/UIlEInzwwQdYvnw5EhISHAZR7rxn/IU2siMBY8eOHTCZTPwy6oiIiDpvZEcar0DdyK4pcHeTuaYgOTkZc+fO9SiIqWnw4MGIi4vDV1995buO1aNdu3ahX79+yMvLQ9u2bevlHg25kV3APEKybMnubRZiErgMBgN+//13xMTEeB246PV6rF69GoD5L6va/vpxVddZuSf3IIQ0nJycHISFhdnMZ3FFpVJh2bJlGDJkCIRCIf73v/9h8+bN+OOPP+qxp95Zt24dgoOD0b59e+Tl5eGFF15AZmZmvQUvDY1GYEjAoFQCzQONwPhPcxqB8ZRarcaIESNw5MgRaDQapKam4vXXX6/TvjUN5csvv8Rbb72FCxcuIDo6GoMGDcK7776LqKioersnjcAQ4oBAIEDv3r2hUCh8Mgdm+PDh/LE3dZ2Ve3IPQhqDQEjg5y9yuRybN2/2dzc88vjjj3s0yhRoaASGBAyaA9M80AgMIYGLkjkSQgghhNSCAhhCCCGEBBwKYEjA0Gg0ePTRRzFgwABoNBqv2rJs89++fXuoVCqv6jor9+QehBBCPBMwk3hpGTVhjKGwsJA/9ratvLw8t9pyVddZuSf3IIQQ4pmACWAomSORSCT44IMPkJCQ4JNUAn/99Rd/7E1dZ+We3IMQQohnAiaAIUQoFKJLly78KiRv28rMzPRJXWflntyDkEA1Z84crF+/3m9JFknzRXNgCCHEx/bs2QOhUOgwyV5TN2fOHHAcB47j+GzZ//73v1FdXe3vrjUqc+bMQUZGhr+7EdBoBIYEDIPBgB07duDEiRPo0KGD122tW7cOADBq1CiIRM7/V3BV11m5J/cgTcvnn3+O5557Dp9//jkuXbqEhISEerkPYwxGo7HRvbc6d+6MzZs3w2AwYNeuXXjiiSegUqmwfPlyf3cNRqMRHMdBIAiMv9/1ej2lIXGGBZiKigoGgFVUVPi7K6SBbdq0iQFgANjGjRtZdnZ2nduqrq7m26qurvaqrrNyT+5BblCr1ez48eNMrVb7uyt1UlVVxYKDg9nJkyfZ2LFj2bx58xhjjD300EPsgQcesKmr0+lYVFQU++KLLxhjjBmNRjZ//nyWkpLCZDIZu/nmm9n333/P19+6dSv//u/WrRsTi8Vs69atLC8vj91zzz2sRYsWLCgoiPXo0YP98ccfNve6dOkSGz58OJPJZCwlJYWtXr2aJScns/fff5+vU1ZWxiZOnMiio6NZSEgIu+222+z+P1uwYAFr0aIFCw4OZk888QR75ZVXWHp6Ol8+e/Zsm9eMMTZp0iQWFxfHGGNMo9Gw5557jsXExDCpVMoyMzPZ/v37+brdu3dnixYt4l/fe++9TCQSsaqqKsYYYwUFBQwAO336NN/eiy++yBISEphCoWC9evViW7du5a9fuXIlCwsLYz/99BPr1KkTEwqFLD8/n23dupX17NmTKRQKFhYWxvr27cvOnTtn8z0sW7aMtWrVisnlcjZmzBhWXl5u8319+umnrGPHjkwqlbLU1FSWlZVlU15QUMAefPBBFhERwRQKBevevTvbu3cvW7lyJf+7wfK1cuVKxhhjANhHH33ERowYwRQKBZs9ezb/PVhbt24ds/4It/T5888/Z4mJiSwoKIg988wzzGAwsHfeeYfFxsaymJgY9tZbb7H6VNv/v77+/G5cYTshtRAIBEhPT4dcLvf6ryeBQIABAwbwx97UdVbuyT1I7RhjUOsbfgWiXCwEx3EeXfPdd9+hY8eOSE1NxaOPPoqpU6di5syZeOSRRzBmzBhUV1fzObJ+++03qFQqjBo1CgCwYMECfP3111i2bBnat2+PHTt24NFHH0VMTAz/XgKAGTNmYPHixWjTpg0iIiJQUFCA4cOHY968eZBKpfjyyy8xYsQI5ObmIikpCYB5W/nS0lJs27YNYrEY06ZNQ0lJiU3fx4wZA7lcjl9//RVhYWFYvnw57rjjDpw6dQqRkZH47rvvMGfOHGRlZaFfv3746quv8MEHH6BNmza1/xzlcuh0OgDAyy+/jB9++AFffPEFkpOTsXDhQgwZMgR5eXmIjIzEgAEDsG3bNkyfPh2MMezcuRPh4eH466+/MHToUGzfvh0tW7ZEu3btAABTpkzB8ePH8e233yIhIQHr1q3D0KFDcezYMbRv3x6AeUuDd955B5999hmioqIQGRmJjIwMTJo0Cf/73/+g0+mwf/9+m3/rvLw8fPfdd/i///s/VFZWYuLEiXj22Wf5BK2rV6/GrFmzsHTpUnTt2hVHjhzBpEmTEBQUhHHjxqG6uhoDBgxAy5Yt8fPPPyMuLg6HDx+GyWTC2LFj8c8//2DTpk18egLrxSlz5szB22+/jSVLlkAkEuHPP/9067135swZ/Prrr9i0aRPOnDmD0aNH4+zZs+jQoQO2b9+O3bt344knnsCgQYPQu3dvt9ps1HwSBjUgGoFpvrZv3862bt3Kzp8/z7Zu3erVCAxpvBz9BafU6lnyK780+JdSq/e4/3379mVLlixhjDGm1+tZdHQ027p1K3/85Zdf8nUfeughNnbsWMaYeSRBoVCw3bt327Q3ceJE9tBDDzHGbozArF+/3mU/OnfuzD788EPGGGMnTpxgANiBAwf48tOnTzMA/AjMzp07WWhoKNNoNDbttG3bli1fvpwxxlifPn3Ys88+a1Peu3fvWkdgDh48yKKjo9no0aNZdXU1E4vFbPXq1Xy5TqdjCQkJbOHChYwxxn7++WcWFhbGDAYDy87OZnFxceyFF15gr7zyCmOMsSeffJI9/PDDjDHGzp8/z4RCISssLLTp0x133MFmzpzJGGP8aIf174urV68yAGzbtm0Of3azZ89mQqGQXbx4kT/366+/MoFAwC5fvsz/XL755hub6958803Wp08fxhhjy5cvZyEhIezq1atO71FzpIox8wjM1KlTbc65OwKjUChYZWUlf27IkCEsJSWFGY1G/lxqaipbsGCBwz75Ao3AEEJIAMrNzcX+/fv5uU8ikQhjx47F559/joEDB+KBBx7A6tWr8dhjj0GpVOKnn37Ct99+C8D8F79KpcLgwYNt2tTpdOjatavNuR49eti8rq6uxpw5c7BhwwZcvnwZBoMBarUaFy5c4PslEonQrVs3/pp27dohIiKCf3306FFUV1fbZSpWq9U4c+YMAODEiRN4+umnbcr79OmDrVu32pw7duwYgoODYTQaodPpcNddd2Hp0qU4c+YM9Hq9zeo8sViMXr164cSJEwCAW2+9FVVVVThy5Ah2796NAQMGYODAgXj77bcBANu3b8dLL73E38doNNrNidNqtTbfh0Qiwc0338y/joyMxPjx4zFkyBAMHjwYgwYNwgMPPID4+Hi+TlJSElq2bGnzfZpMJuTm5iIkJARnzpzBxIkTMWnSJL6OwWDgR1Kys7PRtWtXREZGwlM1/33dlZKSgpCQEP51bGwshEKhzQhwbGys3chboKIAhjRbJpMJOp0OUqnU48cEpGHJxUIcf2OIX+7ric8//xwGg8Fm0i5jDFKpFEuXLsUjjzyCAQMGoKSkBH/88QfkcjmGDh0KAPwqnQ0bNth8cAKAVCq1eR0UFGTzevr06fjjjz+wePFitGvXDnK5HKNHj+Yf27ijuroa8fHx2LZtm11ZeHi42+0AQGpqKn7++WeIRCKbfZuKi4tdXhseHo709HRs27YNe/bsweDBg9G/f3+MHTsWp06dwunTp/nHadXV1RAKhTh06JBdxnfLYzrA/Air5v/jK1euxPPPP49NmzZhzZo1eP311/HHH3/glltucdlHy7/Vp59+avcoxtIPuVzush1nav77CgQCu80w9Xq93XU1J/tyHOfwnMlkqnPfGhMKYEjA0Gq1eOaZZyCVSvHee+951ZZKpUJGRgZMJhPWrVuHLl26OK2rVqvRp08fAOblsTV/MTkrd3UdcR/HcVBIGvevK4PBgC+//BLvvvsu7rzzTpuykSNH4n//+x+efvppJCYmYs2aNfj1118xZswY/gMmLS0NUqkUFy5csJnv4o5du3Zh/Pjx/Fya6upqnDt3ji9PTU2FwWDAkSNH0L17dwDmEZ+ysjK+Trdu3VBUVMQvfXakU6dO2LdvHx5//HH+3N69e+3qSSQSfo6KtbZt20IikWDXrl1ITk4GYP4gPnDgAKZOncrXGzBgALZu3Yr9+/dj3rx5iIyMRKdOnTBv3jzEx8fzIy5du3aF0WhESUkJbr31Vvd+WFa6du2Krl27YubMmejTpw+++eYbPoC5cOGCzQqyvXv3QiAQIDU1FbGxsUhISMDZs2fxyCOPOGz75ptvxmeffYZr1645HIWRSCRu7ywfExODqqoqKJVKPrihfXcCKIChVALEZDLxQ9ne/gVhMBhw+vRpAEB5ebnL+x49etTpfZ2Vu7qONC2//PILysrKMHHiRLvdwu+//358/vnnePrpp/Hwww9j2bJlOHXqlM2jl5CQEEyfPh3//ve/YTKZ0K9fP1RUVGDXrl0IDQ3FuHHjnN67ffv2+PHHHzFixAhwHIf//Oc/Nu+5jh07YtCgQfjXv/6Fjz/+GGKxGC+++KLNyMSgQYPQp08fjBw5EgsXLkSHDh1w6dIlbNiwAaNGjUKPHj3wwgsvYPz48ejRowcyMzOxevVq5OTkuJzEaxEUFIRnnnkGL730EiIjI5GUlISFCxdCpVJh4sSJfL2BAwfiww8/RExMDDp27MifW7p0KcaMGcPX69ChAx555BE8/vjjePfdd9G1a1dcuXIFW7Zswc033+x0H578/Hx88sknuOeee5CQkIDc3FycPn3aJjCTyWQYN24cFi9ejMrKSjz//PN44IEHEBcXBwCYO3cunn/+eYSFhWHo0KHQarU4ePAgysrKMG3aNDz00EOYP38+Ro4ciQULFiA+Ph5HjhxBQkIC+vTpg5SUFOTn5yM7OxutWrVCSEiI3UibRe/evaFQKPDqq6/i+eefx759+7Bq1Sq3fuZNmk9m0jQgmsTbfP35559s0aJF7Ouvv2abN2/2ahKvVqtlixYtYosWLWJ79+6tta7BYGC///47+/3335nBYHC73NV1xLFAXUZ99913s+HDhzss27dvHwPAjh49yo4fP84AsOTkZGYymWzqmUwmtmTJEpaamsrEYjGLiYlhQ4YMYdu3b2eM3ZjEW1ZWZnNdfn4+u+2225hcLmeJiYls6dKlbMCAAeyFF17g61y6dIkNGzaMSaVSlpyczL755hvWokULtmzZMr5OZWUle+6551hCQgITi8UsMTGRPfLII+zChQt8nXnz5rHo6GgWHBzMxo0bx15++WWXy6itqdVq9txzz7Ho6GiHy6gZM0+y5TiOn+DM2I1Jq9b9Zcw8CXjWrFksJSWFicViFh8fz0aNGsX+/vtvxpjjCbBFRUVs5MiRLD4+nkkkEpacnMxmzZrFT3a1fA8fffQRS0hIYDKZjI0ePZpdu3bNpp3Vq1ezjIwMJpFIWEREBOvfvz/78ccf+fJz586x+++/n4WGhjKFQsF69OjB9u3bxxgzT9q+//77WXh4uN0y6nXr1tn93NatW8fatWvH5HI5u/vuu9knn3zicBm1tXHjxrF7773X5lzN94WvNeQkXo6xwMoyZ8mFVFFRgdDQUH93hzSgHTt2wGQy8akEIiIikJ6eXqe2jEYjdu7cCcD8rLyuk+aI72k0GuTn56N169aUQ6oeXbx4EYmJidi8eTPuuOMOf3enUaH0CHVX2/+/vv78DphHSIQQQuruzz//RHV1Nbp06YLLly/j5ZdfRkpKCvr37+/vrhFSJxTAkIBhMBiwb98+5Ofn85tzedPWnj17AAC33Xaby7q//fYbAGDIkCEOUwk4Knd1HSENSa/X49VXX8XZs2cREhKCvn37YvXq1bRNPQlY9AiJBIzffvuNX3K6ceNGJCQk1PkRkuV9BJgfTdW2gkGpVPJLMqurq+2WODord3UdcYweIRESuOgREiEOWJYwSqVSn6QSSE1NBQCXe8AIBAJ+joyzVAKOyl1dRwghpO4ogCEBQyqVYtmyZfwkXm/I5XIsW7YMAFz+lS+Xy3HgwAGPy11dRwghpO7oz0JCCCGEBBwKYAghhBAScCiAIQHh2rVrUKvVmDJlCu677z5otVqv2rO0NWXKFGg0Gpd1MzMzkZmZCbVa7Xa5q+sIIYTUHc2BIY2eWq3G33//DZPJhJycHADeb81v3ZarhXgmkwm7d+92el9n5a6uI4QQUncUwJBGz5J1VSKR4JNPPoFYLOaz29aVVCrFm2++CcA+g6ujuuvWreOP3S13dR0h3tq2bRtuu+02lJWVeZwxurE6d+4cWrdujSNHjiAjI8Pf3bHjq595SkoKpk6dapPEknjGLwFMSkoKQkNDIRAIEBERYZPQjBBngoKCMGnSJBQXF+PEiRNetSUSidCvXz/+2FXdkSNHelzu6jrStIwfPx7l5eVYv369v7viktFoxKJFi7Bq1SqcP38ecrkc7du3x6RJk/Dkk0/6u3uNWt++fXH58mW7hJ2k4fltBGb37t38Jl+EEEIazty5c7F8+XIsXboUPXr0QGVlJZ9Jub7odDqvR079Ta/XQyKR8BmpG7um8DOvDU3iJQHDaDRi27Zt2LVrF4xGo9dtZWdnIzs722Vblvtu27bNYV1n5a6uI83L9u3b0atXL0ilUsTHx2PGjBkwGAx8+cCBA/Hcc89h6tSpiIiIQGxsLD799FMolUpMmDABISEhaNeuHX799Ve7tnft2oWbb74ZMpkMt9xyC/75559a+/Lzzz/j2WefxZgxY9C6dWukp6dj4sSJmD59Ol/HZDJh4cKFaNeuHaRSKZKSkjBv3jy+/JVXXkGHDh2gUCjQpk0b/Oc//+Ef9wLmhIgZGRn47LPPbHZlPXnyJPr16weZTIa0tDRs3rwZHMfVOnL1zz//YNiwYQgODkZsbCwee+wxlJaWOq2/atUqhIeHY/369Wjfvj1kMhmGDBmCgoICm3o//fQTunXrBplMhjZt2mDu3Lk2/yYcx+Hjjz/GPffcg6CgIMybNw/btm0Dx3EoLy/n6/3www/o3LkzpFIpUlJS8O6779rcp6SkBCNGjIBcLkfr1q2xevVquz5fuHAB9957L4KDgxEaGooHHngAxcXFNnXeeusttGjRAiEhIXjyyScxY8YMm8ds48ePx8iRIzFv3jwkJCTwm3V+9dVX6NGjB0JCQhAXF4eHH34YJSUl/HWW7+m3335D165dIZfLcfvtt6OkpAS//vorOnXqhNDQUDz88MNQqVROf+4NztP01du3b2d33303i4+Pd5r2e+nSpSw5OZlJpVLWq1cvPn24RUpKCuvWrRvr0aMH+/rrrz26v6/TcZPGr6Kigm3dupX9+eefDAADwDZu3Miys7O9atPS1o4dO2qtW11dzdetrq52u9zVdcQxtVrNjh8/ztRq9Y2TJhNj2uqG/zKZ3O73uHHj2L333uuw7OLFi0yhULBnn32WnThxgq1bt45FR0ez2bNn83UGDBjAQkJC2JtvvslOnTrF3nzzTSYUCtmwYcPYJ598wk6dOsWeeeYZFhUVxZRKJWOMsa1btzIArFOnTuz3339nf//9N7v77rtZSkoK0+l0Tvs6ZMgQ1r9/f1ZSUuK0zssvv8wiIiLYqlWrWF5eHtu5cyf79NNP+fI333yT7dq1i+Xn57Off/6ZxcbGsnfeeYcvnz17NgsKCmJDhw5lhw8fZkePHmUGg4GlpqaywYMHs+zsbLZz507Wq1cvm8+S/Px8BoAdOXKEMcZYWVkZi4mJYTNnzmQnTpxghw8fZoMHD2a33Xab076vXLmSicVi1qNHD7Z792528OBB1qtXL9a3b1++zo4dO1hoaChbtWoVO3PmDPv9999ZSkoKmzNnDl8HAGvRogVbsWIFO3PmDDt//jz/My8rK2OMMXbw4EEmEAjYG2+8wXJzc9nKlSuZXC5nK1eu5NsZNmwYS09PZ3v27GEHDx5kffv2ZXK5nL3//vuMMcaMRiPLyMhg/fr1YwcPHmR79+5l3bt3ZwMGDODb+Prrr5lMJmMrVqxgubm5bO7cuSw0NJSlp6fzdcaNG8eCg4PZY489xv755x/2zz//MMYY+/zzz9nGjRvZmTNn2J49e1ifPn3YsGHD+Oss39Mtt9zC/vrrL3b48GHWrl07NmDAAHbnnXeyw4cPsx07drCoqCj29ttvO/25M+bk/9/rfP357XEAs3HjRvbaa6+xH3/80WEA8+233zKJRMJWrFjBcnJy2KRJk1h4eDgrLi7m61y8eJExxtilS5dYWloaO3r0qNv3pwCm+bEEMFu3bmVpaWmsQ4cO7Ndff/UqgKmsrGTJycksOTmZ7dy5s9a6SqWSpaWlsbS0NP6Dw51yV9cRxxz+AtRWMzY7tOG/tO4HnrUFMK+++ipLTU1lJquAKCsriwUHBzOj0cgYMwcw/fr148sNBgMLCgpijz32GH/u8uXLDADbs2cPY+zGB8+3337L17l69SqTy+VszZo1Tvuak5PDOnXqxAQCAevSpQt76qmn2MaNG/nyyspKJpVKbQIWVxYtWsS6d+/Ov549ezYTi8U2QdKvv/7KRCIRu3z5Mn/ujz/+qDWAefPNN9mdd95pc6+CggIGgOXm5jrsy8qVKxkAtnfvXv7ciRMnGAD+D+o77riDzZ8/3+a6r776isXHx/OvAbCpU6fa1KkZwDz88MNs8ODBNnVeeukllpaWxhhjLDc3lwFg+/fvt+uLJYD5/fffmVAoZBcuXODr5OTk2FzXu3dvNnnyZJv7ZGZm2gUwsbGxTKvVOvy5WBw4cIABYFVVVTbf0+bNm/k6CxYsYADYmTNn+HNPPfUUGzJkSK1tN2QA4/EjpGHDhuGtt97CqFGjHJa/9957mDRpEiZMmIC0tDQsW7YMCoUCK1as4Ou0bNkSABAfH4/hw4fj8OHDTu+n1WpRWVlp80WaJ5lMhpycHOzYscPrJH8KhQKrVq3CqlWrXLalUCiQk5ODnJwcKBQKt8tdXUeajxMnTqBPnz42ebcyMzNRXV2Nixcv8uduvvlm/lgoFCIqKgpdunThz8XGxgKAzfA/APTp04c/joyMRGpqKj/RPTg4mP96+umnAQBpaWn4559/sHfvXjzxxBP8Iw7LBN4TJ05Aq9XijjvucPo9rVmzBpmZmYiLi0NwcDBef/11XLhwwaZOcnIyYmJi+Ne5ublITEy0mUPSq1cvp/cAgKNHj2Lr1q0230fHjh0BAGfOnHF6nUgkQs+ePfnXHTt2RHh4OP9zOXr0KN544w2bdidNmoTLly/bPCax5DNz5sSJE8jMzLQ5l5mZidOnT8NoNOLEiRMQiUTo3r27XV+s20hMTERiYiJ/Li0tzaa/ubm5dj8rRz+7Ll262M17OXToEEaMGIGkpCSEhIRgwIABAGD372X9/ouNjeUfD1qfq/ne8yefTuLV6XQ4dOgQZs6cyZ8TCAQYNGgQ9uzZA8CcoddkMiEkJATV1dX4888/8cADDzhtc8GCBZg7d64vu0kICTRiBfDqJf/ctyFvV2NJP8dxNucsAZAn+wplZ2fzx9YZgAUCAXr27ImePXti6tSp+Prrr/HYY4/htddeg1wur7XNPXv24JFHHsHcuXMxZMgQhIWF4dtvv7Wb++GLDOzV1dUYMWIE3nnnHbuy+Ph4r9qdO3cu7rvvPrsy6z9qAi2LfM3+KpVKDBkyBEOGDMHq1asRExODCxcuYMiQIdDpdDZ1a77XHL0fG9OeVj4NYEpLS2E0Gvm/EixiY2Nx8uRJAEBxcTE/emM0GjFp0iSbKLmmmTNnYtq0afzryspKmyiVENIMcBwgCawPEmudOnXCDz/8AMYYH4Ts2rULISEhaNWqldft7927F0lJSQCAsrIynDp1Cp06dQIAtGvXzq020tLSAJg/8Nq3bw+5XI4tW7Y4XFa9e/duJCcn47XXXuPPnT9/3uU9UlNTUVBQgOLiYv5zwlXC027duuGHH35ASkqKyy0PrBkMBhw8eJAfpcjNzUV5eTn/c+nWrRtyc3Pd/vk406lTJ+zatcvm3K5du9ChQwcIhUJ07NgRBoMBhw4d4j/rLH2xbqOgoAAFBQX859vx48dRXl7O/7ukpqbiwIEDePzxx/nr3EkWe/LkSVy9ehVvv/023/bBgwe9+p4biwZfRt2mTRscPXrU7fpSqRRSqRRZWVnIysqi1RzNmEajweDBg6HT6fDqq6961ZZareZXXCxZssRl3XvuuQeAefVGzb9OnZW7uo40PRUVFTYjHgAQFRWFZ599FkuWLMFzzz2HKVOmIDc3F7Nnz8a0adMgEHi/GPSNN95AVFQUYmNj8dprryE6OrrWPYhGjx6NzMxM9O3bF3FxccjPz8fMmTPRoUMHdOzYESKRCK+88gpefvllSCQSZGZm4sqVK8jJycHEiRPRvn17XLhwAd9++y169uyJDRs28Js21mbw4MFo27Ytxo0bh4ULF6Kqqgqvv/46ANg8XrM2efJkfPrpp3jooYfw8ssvIzIyEnl5efj222/x2WefQSgUOrxOLBbjueeewwcffACRSIQpU6bglltu4QOaWbNm4e6770ZSUhJGjx4NgUCAo0eP4p9//sFbb73l8nuxePHFF9GzZ0+8+eabGDt2LPbs2YOlS5fio48+AmAOPIYOHYqnnnoKH3/8MUQiEaZOnWrz+2DQoEHo0qULHnnkESxZsgQGgwHPPvssBgwYwD/Ceu655zBp0iT06NEDffv2xZo1a/D333/bPOJxJCkpCRKJBB9++CGefvpp/PPPP/wmngHPmwk0qDGJV6vVMqFQaDex9/HHH2f33HOPN7fi0STe5ufatWu0CqkZqW0SYGM2btw4/t/b+mvixImMMca2bdvGevbsySQSCYuLi2OvvPIK0+v1/PUDBgxgL7zwgk2bycnJ/ERPC+vfu5bJl//3f//HOnfuzCQSCevVq5fLhRGffPIJu+2221hMTAyTSCQsKSmJjR8/np07d46vYzQa2VtvvcWSk5OZWCxmSUlJNpNeX3rpJRYVFcWCg4PZ2LFj2fvvv8/CwsL48tmzZ9tMMLU4ceIEy8zMZBKJhHXs2JH93//9HwPANm3axBizn8TLGGOnTp1io0aNYuHh4Uwul7OOHTuyqVOn2kyKtrZy5UoWFhbGfvjhB9amTRsmlUrZoEGD2Pnz523qbdq0iV8RFBoaynr16sU++eQThz9ri5qTeBljbO3atSwtLY3/OS1atMjmmsuXL7O77rqLSaVSlpSUxL788ku7f9vz58+ze+65hwUFBbGQkBA2ZswYVlRUZNPOG2+8waKjo1lwcDB74okn2PPPP89uueUWvtzZRPJvvvmGpaSkMKlUyvr06cN+/vlnm5+xo+/J8jO05uzf1FpDTuLlGHORCKYWHMdh3bp1NpF+79690atXL3z44YcAzM9qk5KSMGXKFMyYMaOut+JVVlYiLCwMFRUVNs9zSdOUm5uLy5cvAzBPyjt//jwqKiqQmpqK6OhopKen16ldrVaLN954AwAwYsQI3HLLLU7rGgwGrFmzBgAwduxYu2FsZ+WuriOOaTQa5Ofn2+wdQpquXbt2oV+/fsjLy0Pbtm190uaqVaswdepUm8c0TdHgwYMRFxeHr776yt9d4dX2/6+vP789/o1aXV2NvLw8/nV+fj6ys7MRGRmJpKQkTJs2DePGjUOPHj3Qq1cvLFmyhN+IiRBPWf8Cio2NRb9+/XyWSmDw4MH8sau6d999N0pLS6FWqxESEmJX/sgjjzi8ztF5QpqzdevWITg4GO3bt0deXh5eeOEFZGZm+ix4aapUKhWWLVuGIUOGQCgU4n//+x82b96MP/74w99d8xuPA5iDBw/itttu419bJtiOGzcOq1atwtixY3HlyhXMmjULRUVFyMjIwKZNm+wm9nqK5sA0bxkZGX5NVnf06FGYTCZcuXKl1tEaQkjtqqqq8Morr+DChQuIjo7GoEGD7FYvEXscx2Hjxo2YN28eNBoNUlNT8cMPP2DQoEH+7prfePUIyR/oEVLzsm/fPqjVanTt2hXBwcE4fPgwrl69CrFY7NUjJJ1Ox+9N1LVrV/Tu3dtpXaPRiE8//RQA0L59e7u9MYxGI7+XUbdu3fhJhc7Ok9rRIyRCAlejfoREiL9oNBp+BcHGjRu9buuZZ54BAOzYscPtuo7ua92v6upqfh8GZ+cJIYR4L2ACGHqERDiOQ3JyMoxGo9Mll560ZXms6aotV3Ut/apZ7uw8cU+ADQ4TQtCw/98GTAAzefJkTJ48mR+CIs2PQqHAuXPn+Em8arUaly9fRlxcnMcBgkKhwLfffgsAbqUSsNStrV/unie1s+z+qVKpaO8cQgKMJQ1DzV1860PABDCEWFjmkmg0GuTm5kIikSAqKsrPvSK+IhQKER4ezudcUSgUNIJFSCPHGINKpUJJSQnCw8MbZM4fBTAk4ERGRiIlJQWXLl2CTqeDwWDwd5eIj1mS/TWmxHGEENfCw8NtknXWp4AJYGgODNFoNHjwwQcBAN9++y0qKirskpF50pZlC3NHSeKc1Z01a5bLflkeSTk7T1zjOA7x8fFo0aIF9Hq9v7tDCHGDWCxu0NWWARPA0BwYYjQa8dNPP/HH3rZlScDmKruqdV1H93XWL1/2t7kSCoW0/JwQ4lDABDCESCQSfPLJJ/yxt229+OKLAFxPNnNV11m/fNlfQgghtiiAIQFDLBZj0qRJXrdTWFiI06dP4+677wbgOpWAWCzm63rSL1/1lxBCiD3v87gTEmCuXr3q7y4QQgjxUsAEMFlZWUhLS0PPnj393RXiJyaTCTk5OcjJyXE5b8WdtvLz85Gfn++yLVd1TSYTDhw4gM2bN0OpVNZLfwkhhNgKmEdINImXqNVq3HTTTQDMW/N7Q6vV4oknngAA/PXXXy7va6nrKJWAWq3mUwbs3LkT/fr1c9hfSiVACCG+EzABDCEAEB0d7bO2wsPD3d722lXQbCmvqqqyOe/L/hJCCLmBAhgSMIKCgnDlyhWftCWXy7Fz506Ulpa63K4+KCgI69ev97jcl/0lhBBiiwIYPzOZTDhz5gy0Wm2dro+Pj6dt9AkhhDQ7FMD4WWVlJQoLC+t8vUajoQCmHlVVVaGsrMzf3SCEEFJDwAQwTTWVgGV1ilQqRXJystvXqVQqXLx4sUFTl/ubRqPBxIkTAQCff/65V23pdDq88sor0Gq1ePPNN53WO3LkCDQaDRYuXAgAePnllx3266233rIrr9lfSiVACCG+EzABTFNfhSQWi5GQkOB2/bKyMly8eLEee9T4GI1GfPPNNwDA73DrTVuWFUVz5851Ws9kMsFoNGLLli0AwO/IW7MtR+W+7C8hhBBbARPAECKRSPD+++/zx94Qi8V4+eWXoVQq3dqJd/Lkyfyxo345KvdlfwkhhNiiAIYEDLFYjKlTp/qkLZFIhMceewylpaUucyGJRCKMHj261n45KvdlfwkhhNgKmJ14CSGEEEIsaASGBAyTyYQLFy4AAJKSkrxuq7CwEGVlZQgODnZZt6SkBADQokULh+VFRUV25TX7KxDQ3wuEEOIrFMCQgKFWq9G6dWsAvkklMHz4cACuUwlotVo89NBDAJynEnBUXrO/lEqAEEJ8hwIYElAUCoXP2pLL5W4vQ3e1BNpZuS/7Swgh5IaACWCa6j4wxH1BQUE22Z69IZfLsX//frdSCcjlcvz666+19stRuS/7SwghxFbAPJSfPHkyjh8/jgMHDvi7K4R4paKiAseOHUNpaam/u0IIIQErYAIYQhorg8HgUf1Tp07h6tWryMnJqaceEUJI0xcwj5AI0Wq1mDJlCgBg6dKlXrWl0+kwZ84caDQavP766y7rfvDBBwCA559/3qbswoULOHnypMPymv2VSqUAzJN7ATSrNBCEEOJrNAJDAobBYMBnn32Gzz77zONRj5qMRiN++OEHbNiwweW8KqPRiA0bNjisW1pa6rTcl/0lhBBii0ZgSMAQi8V80kRXu+e6IhKJ8Nxzz0GlUrlMJSASifikjI7qOiv3ZX8JIYTYogCGBAyJRILXXnvNJ22JxWL861//ciuVgFgsxqOPPupxuS/7SwghxBY9QiKEEEJIwKEAhgQMxhiuXLmCK1eueD0BljGGa9euoby83GVbjDGUl5c7reus3Jf9JYQQYoseIZGAoVKp+FxD3qYS0Gg0bqcS0Gg0GDVqFADHqQScldfsL6USIIQQ36ERGBLwzp49C41G4+9uEEIIaUABMwJDqQRIUFCQzaMYoVAIwLzfyoULF9ChQwe325LL5fxuuM5SCahUKr7u1q1ba23LUXnN/hJCCPGdgBmBoVQCpKa2bdvyQUx9BLaFhYU+b5MQQohvBEwAQ0hNcrkcycnJ9da+yWSqt7YJIYR4hwIYEjC0Wi2mTp2KqVOnQqvVetWWTqfDO++8g6VLl0Kn07msu3TpUqd1nZX7sr+EEEJsUQBDAobBYMB///tf/Pe//63T1vwGgwHFxcW4du0ajEYjvv76a/zwww9upRL44YcfnNZ1Vu5tfwkhhDgXMJN4CRGLxXj11Vf5Y0/l5+fz81pEIhEmTZrkdiqBRx55hD92t9zb/hJCCHGOAhgSMCQSCebNm1fn660f74jFYjz//PNupxJ48sknPS73tr+EEEKco0dIhLhgvcyaRlIIIaRxoACGBAzGGJRKJZRKpU9SCahUKqjVapdtxcbGIiEhAWq1ml+2XbMttVpt15Yv+0sIIcQWPUIiAUOlUiE4OBiA91vzazQa3H777QBcpxJQq9VIS0sDAIcb1lmnJaiZSsBX/SWEEGKLAhjSKBiNRly+fBkGgwFyuRyxsbH+7hIhhJBGjAIY0igUFRUhLy+Pfx0cHGw3YqFQKPgkjgqFwqv7yWQy7Nu3D1evXoVMJqu1rlwux8WLF/H33387rCuTyfiRF+tyX/aXEEKILQpgSKNQc58UR/umcBzns8cwHMdBoVBApVKB4ziXdYOCgiCXyx3W5TjOLp8SYwzV1dWQyWQ08ZcQQuqB3ybxqlQqJCcnY/r06f7qAiH15tKlSzh06BD2799PE3gJIaQe+C2AmTdvHm655RZ/3Z4EIJ1Oh9deew2vvfaay+3/XdHr9fjggw/w2WefQa/Xu7zvm2++6bSuXq/HZ599ZlOuVCqh1+vx8ccf49VXX/W6v4QQQmz5JYA5ffo0Tp48iWHDhvnj9iRA6fV6zJ8/H/Pnz3cZdLhiMBjw6aefYvXq1S63+TcYDHjvvfec1jUYDFi9erVdueX822+/7XV/CSGE2PI4gNmxYwdGjBiBhIQEcByH9evX29XJyspCSkoKZDIZevfujf3799uUT58+HQsWLKhzp0nzJBKJ8MILL+CFF15wuf2/K0KhEI8++ijuv/9+h3u71Kz79NNPO60rFApx//3325Vbzj///PMe9Vev16OkpISCHkIIqYXHnwJKpRLp6el44okncN9999mVr1mzBtOmTcOyZcvQu3dvLFmyBEOGDEFubi5atGiBn376CR06dECHDh2we/dul/fTarU2mXwrKys97TJpIqRSKZYsWeKTtiQSCV555RWUlpZCIpG4vO+CBQuQnZ3tsK5EIsGUKVOcnr/11ltdBknWcnJyUF5ejqioKHTp0sXt6wghpDnxOIAZNmxYrY9+3nvvPUyaNAkTJkwAACxbtgwbNmzAihUrMGPGDOzduxfffvstvv/+e1RXV0Ov1yM0NBSzZs1y2N6CBQswd+5cT7tJSKORm5uLyMhIxMXFuVW/vLwcAHD16tV67BUhhAQ2n86B0el0OHToEAYNGnTjBgIBBg0ahD179gAwByQFBQU4d+4cFi9ejEmTJjkNXgBg5syZqKio4L8KCgp82WVC6l1JSQlOnjzp724QQkiT4tN9YEpLS2E0Gu12UY2Nja3zL3CpVAqpVOqL7pEAp1QqfbY1v1qt5h/PuEoloFKpkJKSAsBxKgG1Wu0wlYCz84QQQrzn143sxo8f73bdrKwsZGVlwWg01l+HCCGEEBIQfBrAREdHQygUori42OZ8cXGx28//nZk8eTImT56MyspKhIWFedUWCUwKhQIlJSX8sTdkMhm2b9+Oa9euuZVK4PTp0/jnn3+cphJYt24df+zqPCGEEO/5dA6MRCJB9+7dsWXLFv6cyWTCli1b0KdPH1/eijRDHMchJiYGMTExLrf/d6etyMhIhIeHu5VKIDo62mldjuMQHh5uV+7sPCGEEO95PAJTXV1tk3QvPz8f2dnZiIyMRFJSEqZNm4Zx48ahR48e6NWrF5YsWQKlUsmvSqoreoRECCGEEAuPA5iDBw/itttu419PmzYNADBu3DisWrUKY8eOxZUrVzBr1iwUFRUhIyMDmzZtspvY66lAeoRUUVHBP+pwxXqPm+bIZDLh2LFjbu3vo9PpsGjRIgDASy+95HL/ltro9Xp88sknUKlUmDRpksv7Ll68GEVFRQ7nben1eqxZswYAMHbsWJfnCSGEeM/jAGbgwIEuk9NNmTLF4cZezYVSqURhYaFH13iy0VlTolKpUFZWZnf+ypUrduf0ej1ef/11AMDUqVO9CmAMBgM+/PBDAHA5OmgwGDBv3jwAwKOPPuqw/PPPPwcA3H///S7PE0II8Z5fVyE1VcHBwUhOTvbomhYtWtRTbwKDWCxGRkYGcnJyoFKpcPHiRRQWFtpswS8SifDkk0/yx96wbPOv0WjcSiXw+OOP4+rVq05TCdx11138savzhBBCvBcwAUwgzYEJDQ1FaGiov7sRUDiOQ1BQENq2bYuioiJcuXIFjDGb5IhSqRSffvqpT+4nkUgwZ84ct1MJ/Pe//601lcD06dPdPk8IIcR7fslGXReTJ0/G8ePHceDAAX93hdSjqKgodO7cGQJBwLw1CSGE+EHAjMCQuqttzhIt7yWEEBKIKIBpwhhjOHbsGK5du+a0TosWLZCWltaAvao7pVLJzxUqKSnxOpVAr169wBjD5s2ba62rUqmQlpYGk8mEX3/9lT/PGEN1dTXUajWfmf3HH3+0uYej84QQQrwXMAFMIM2BaSwYY7UGL4A5f1UgUalUDs8XFxcjISHBoyX2arXaq/tWVlbCZDIBADQajcPrnJ0nhBDinYAJYAJpH5jGqHfv3jYrdzQaDQ4dOuTHHnlOLpcjPz+fPwZsVyOdPn0aPXr0cKstqVSKTZs2oayszGWyUJlMhqNHj+L48eM2dS17+EilUvzvf//jj63v4eg8IYQQ7wVMAEO8IxaLbT7sA3EkSyAQ8FmhLWJjY3Ht2jU+E7onbbVs2RJSqdTlhGGBQICkpCRcu3bNYV2BQOAw15ez84QQQrxHSz1IQBMKhWjVqpW/u0EIIaSBUQBDAoZer8eSJUuwZMkS6PV6r9oyGAz46quvsHbtWpdt6fV6fPzxx1i7dq3NvjTWba1du9au3Nl5Qggh3guYR0g0idcxjUaDv//+29/daBA6nQ7//ve/AQCTJk2CWCyuc1t6vR4LFy4EADz00EMu67766qsAgNGjRzssz8rKAgB+593azhNCCPFewAQwNInXlmVHWKPR6HKlkVAobBIbwwmFQjz88MP8sbdtDR8+HFqt1q05MKNHj0ZZWZnDukKhEHfccYddv5ydJ4QQ4r2ACWCIraCgIGRkZLi1FDgkJKRJBDAymQyrV6/2SVsSiQTvvPMOSktL3VqF9OmnnyI7Oxsmkwkmk8nm5ymRSPgkkzXv4eg8IYQQ71EAE8DCw8MRHh7u727UWWFhocOs08CNHYItuwj7e8dg6/tfuHDBbjUUIYSQhkUBDPELxhjy8vL4AKVmksTk5GQ+uJHL5QgODnbZplqtxrlz55CcnOzzgCckJIQ/tuz/UpumMOJFCCGNGQUwxC8YY3zw0q5dO0RFRdmUJyUlISkpyeacUqnkRz7OnTvHpxKwnsx77tw5REZGuswGrlar0b9/f5hMJmzYsKHWuiqVCrGxsTCZTPj6668dtmWZCLxu3ToA5hEb6/OWDe0IIYT4RsAEMLQKqeFotVp+i3wLdzZ8q6vY2Fi3VxQ5Sn0QFBSEzp07IycnBwDs+u5MWVmZ232sLeVCWFgYKioqAMDu+7Cc97Vr165BpVIhPj6eJggTQpqlgAlgaBVSw7h48SLy8vLszsvlcvTq1cvtRzOMMZw5c8ZmkrFYLEabNm3sHhe5Sy6X459//uGPrcXExEChUDjNlVSTVCrFunXr3E4l8M8//+DSpUsOgwWpVIq//voLp06dskslsGLFCv4YqD0zuLtMJhO/dF4oFCI+Ph6Aedm2SCTy+3whQghpCAETwJCGUV1dDcD8CMQy4mI0GqFWq2Eymdz+a7+qqgoXL160Ox8SEoKWLVvWqW8CgQCdO3eu07WO2mrXrh1KS0vdWkbduXNnBAcH87mYapZ37NgRer3epi2BQIDWrVvzr0tLS3H8+HG3R4icsb7esglfUVERTp48iZiYGJ/9jAghpDGjAIY41Lp1ayQlJcFoNGLnzp0eX28ZabCMuly6dAlVVVUoLCzE1atXbSbFNhfFxcVeBy/OXL58GQCcruoihJCmhgIY4rHKykp+pAYwBynR0dEOH12IRCLEx8dDqVSiqqoKKpUKKpXK5eZ7juj1eqxatQoAMH78eK924rVs819dXY0xY8a4vO+nn36Kq1evOsx2rdfr8eWXX6KwsNCmLYPBgE2bNgEAhg4d6vXjI8YYNBqNw+/bF4+mCCEkkFAAQzxiMBhw5MgRuw9MyyOWwsJCmEwm6HQ6m/KUlBSEhobCZDLh5MmTdbq3TqfDv/71LwDAww8/7HUqgblz5wIARo0a5bKu5b4bN260KzcYDJg2bRoAYOTIkTbXvfvuuwDA78jrKaPRiOLiYgQHB6O4uBiFhYVo0aJFndoihJCmhAIY4hGj0cgHL9HR0aisrIROp4NOp0NBQQEuXbpkU18kEvH/tXzw5ubm1mnEQCgU4t577+WP6yoiIgIdO3bE0KFDUVVV5dYcmHvvvRcqlcrhfQUCAYYNG4bKykqbtoRCITIzM73q76VLl3DmzBmbcyUlJXVqixBCmpKACWBoGXX9MJlM2LdvH/+65siJMxzH4aabbkJOTg4/78IyvyMiIoJfKRYTE+OzvspkMqxfv97rdqKjoxEXF4cvv/wSOTk5DlchGQwGfl6J5b7nz593OIlXKpXiq6++wrFjx2xWWEkkErz11lte9VWj0Xh1PSGENFUBE8DQMmrfEovFEAqF/AqjmmouU/ZERESE3SZ0gaaqqoo/dmcXYIvq6mq3l3ITQgipu4AJYIhvCYVC9O7d22HwIhKJ+F1umzuJRGK3S7Aj1kGOdfBDCCGkflDClmZMIpEgLCzM7quxBi8qlQopKSlISUmpdZTDnQzdKpUK3bt3x4MPPlhrfbFYzN83MzPT4SMdtVqN1NRUPPzwwzblGo0GDz74IB588EGH19EOuoQQUnc0AkP8zpPdfc+fP88fO5Obm4ugoKBa8yExxlBQUOCz+zoqZ4yhuLjY6XUymcyt+xNCCLFHAQxpcC1btuRzC4WHh/MrlVyRyWTYv38/f+yo3dOnTwMwj4rUFsDIZDL89ttvOHv2rMvUBpb7Xr582WFdiUSC/fv349SpU3aTeD/++GP+mBBCiO9QAEPcVpcdeR1p164d2rVr5/F1QqEQPXv2dFpuCYzcSdIoFArRtWtXSCQSl49yLPd1tgrJui3rewuFQnTs2NFlXwghhHiO5sCQWgkEAoercGglGCGEEH+iERhSK47j0L17dz5poEXNXXCNRmO95fmxMBgMWLNmDQBg7Nixbj96ctbW2rVrcfHiRX5zPFf3LS0txU033eSwfPXq1Th//jx69+7Nnzcajfjzzz8BALfffnud+0oIIcQeBTDEJY7jXM7hOHv2bL33Q6vV4tFHHwVg3rLfmwBGq9Xi2WefBQAMHz7c7fs6SiWg1+sdlut0OsyfPx8A0K9fvzr3lRBCiD0KYIhXIiMjUVpayq+yEYlECA8Pr5d7CQQCDBo0iD92hTHGb/9fc9KvQCBA//79oVQqXa6CstxXo9HY3NcyKsVxHAYNGmSXlkAgEKB79+5u99fXdDodxGKx26u8CCEkkARMAEOpBBqn+Ph4xMXF2Zyrrw9MuVyOP/74w+3658+fx7lz5wAAGRkZdm2tXbsWOTk5LpczW+5bcxJvXl4eAHMqgT/++ANHjx61mcQrlUqxePFit/vrS5a+tmrVqk4TpgkhpLELmEm8kydPxvHjx3HgwAF/d4XUwHGczVdjYb3ZXX1s72+ZBxQdHe3ztr1lCdwuXrzo344QQkg9CZgAhpDGKjIy0u6cu5vk1Ze6ZPsmhJBAQgEMCRgqlQqdO3dG586dvR5RUalUuPXWWzF+/HiUlJTg6tWrLu87ePBghykBLOX33XcfNBoN/5hTo9Fg/PjxGD9+PGWVJoQQHwuYOTCEMMZw/Phx/tjbtnJzc/njK1euOE3a6Oq+zspdpSBQKpVgjDWqx26EEBIoKIAhAUMmk2Hr1q38sS/aKiwsdCuVwNatW1FUVOSwrqU8Ly/PLpXA+++/zx87UllZSZsCEkJIHVAAQwKGUCjEwIEDfdrWhQsXXO5hY6lbWyqBgQMHIiIiwi6VgPXqp5qb/wHmTfAIIYR4jubAENJA/LEXDCGENFU0AkMChsFgwC+//AIAuPvuu71OJfDLL7/gypUraNOmjVt1S0pK0LZtW4fl69evR35+Pm6++Wb+vNFoxJ49ewAAffr0qXNffUWr1eL8+fOIjIxslEu/CSHEExTAkICh1WoxatQoAEB1dbXXqQQsbTlKD+BJXWflOp0O//nPf9y6R0MoKCjApUuXcOnSJZ89iiOEEH+hAIYEDIFAgL59+/LHntBoNLhy5YpdW1qt1mVbrupaypVKpV0qgc6dO9epv/WBlnITQpoSCmBIwJDL5di1a5dbdU+cOGHz+sKFC/yxUCjk23JnEq+lrrNJvJZyR6kEli5d6lZ/CSGEeMb/fxYS4kOu9lSRyWSIiYlpoN4QQgipLw0ewJSXl6NHjx7IyMjATTfdhE8//bShu0CasJYtW9a6r0pycjKEQmED9ogQQkh9aPAAJiQkBDt27EB2djb27duH+fPn17qNOyEWarUaPXv2RM+ePaFWqx3WiYqKQteuXaFQKNxqa8SIEdBqtW7VveeeexzWtZQ//PDDNuVarRZPP/00nn76aZf3IIQQ4pkGnwMjFAr5DxetVgvGGCWeI24xmUw4ePAgf9xQbbmq66zcZDLx6Qq87S8hhBBbHgcwO3bswKJFi3Do0CFcvnwZ69atw8iRI23qZGVlYdGiRSgqKkJ6ejo+/PBD9OrViy8vLy/HgAEDcPr0aSxatIj2pCBukUql/D4wUqnUJ22VlJS4TCXgqq6l/OzZs3apBObPn88fE0II8R2PHyEplUqkp6cjKyvLYfmaNWswbdo0zJ49G4cPH0Z6ejqGDBmCkpISvk54eDiOHj2K/Px8fPPNNyguLq77d0CaDZFIhLvuugt33XWXV3vAWLd1xx13uJwTY6l7++23O6xrKe/fv79NuVAoRJ8+fdCnTx+ad0MIIT7mcQAzbNgwvPXWW/zGXTW99957mDRpEiZMmIC0tDQsW7YMCoUCK1assKsbGxuL9PR07Ny50+n9tFotKisrbb4Iacz0en2t5WKxuFHsC0MIIYHMp79FdTodDh06hEGDBt24gUCAQYMG8VuqFxcXo6qqCgBQUVGBHTt2IDU11WmbCxYsQFhYGP+VmJjoyy6TAGI0GvHHH3/gjz/+gNFo9ElbO3fudNmWq7qW8j179sBoNOLSpUv8+YMHD+LgwYMwGo0oLCwEACQkJCAoKMir/hNCSHPn00m8paWlMBqNiI2NtTkfGxuLkydPAgDOnz+Pf/3rX/zk3eeeew5dunRx2ubMmTMxbdo0/nVlZSUFMc2URqPBnXfeCcCcSsCbIMC6LVfb/LuqW7NcJpPxZS+99BJ/Xi6XA6D5MIQQ4gsNvgqpV69eyM7Odru+VCr1esImaRoEAgHS09P5Y1+0pdfr3UolkJ6eDp1O5zSVQHp6OtRqtU15dHQ0n/zR+nxCQgKKioq86r8vqFQqyGQyepxFCAlIPg1goqOjIRQK7SblFhcXIy4uzqu2s7KykJWV5fWjAxK45HK5R8GvO225m0ogOzu71lQC2dnZdqkEZDIZPvvsM5u6HMfVuluws/1tfO3y5cvIzc1FWFgYunbt2iD3JIQQX/Lpn14SiQTdu3fHli1b+HMmkwlbtmxBnz59vGp78uTJOH78OA4cOOBtNwlptHQ6HX8cGhpab/exJLasqKiot3sQQkh98ngEprq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiUmTJjg044TUhtvl1k3BrT0mhBCnPN4BObgwYPo2rUrP+w8bdo0dO3aFbNmzQIAjB07FosXL8asWbOQkZGB7OxsbNq0yW5ir6eysrKQlpaGnj17etUOCVxqtRoDBw7EwIEDXT5qSU1NRevWrZ0+rrG0NXbsWLdSCdRW11I+ceJEm3KNRoOpU6di6tSpTu9hGQlxpKysjF+5RAghxJbHf6YOHDjQ5db/U6ZMwZQpU+rcKUcmT56MyZMno7KystZkfaTpMplM2L59O39cm6CgIAQFBSExMRE7duzwqi1XdZ2Vm0wmHD161OF1lr1iVCpVrfd2pby8HElJSV61QQghgSjwx9lJsyGVSvHdd9/xx+4QCAQICwuzm+thaau0tNStVALfffcdrly54jSVwHfffYdz587ZpRKYPXs2f2ytdevWOHHiRK0Tet1RXV1td45yixFCmoOACWBoFRIRiUQYM2aMT9tyZxWSpa6zVUiWcssqJMvoikgkwsCBAx22aVm6XFFRgezsbKSnp9cpmLHMk7GeL+PtqA4hhASCgNkAglYhkcaurpNuy8vLXc7DccWS4R0ADAaDV20RQkggCJgRGEKMRiP27t0LALjlllu8WqVjaauoqAjh4eFe1TUajdi1axfUajU4juP7ZTQacezYMQBAWloarSoihBAfogCGBAyNRoN+/foB8E0qAUtb7qQSqK1uzXJLygCtVovnn3/e7jwhhBDvUQBDAgbHcWjXrh1/7Iu2DAaDy7Zq1rUkI61ZzhizaYvjOLRs2dIn/SWEEGIrYAIYmsTbTDEG6M2TUhVyBU6fPu2TZhUKc1vuTOKtWbe6utpmoqylXKlU2szRksvl+Prrr33SX0IIIbZoEi9pvBgDVgwB5ieYv1YMNZ+rZxqNhl9JZC0mJoY/tt7y3xfquvTZZDKhqKjIblSIEEKauoAZgSHNkF4FFOy78bpgr/mcpO5zX1y5dOkSTp065bBMLpdDoVDUyzLlQ4cOITMz0+PrtFotTp486fP+EEJIYxcwIzCEaAwMd917P+666y5oNBrv2tJocNddd2H8+PE2oylKpdJp3bvuusvhcmdL+f3332/TllarxYwZMzBjxgyXIzYGg8HljsB1ZTAYsH//fpSWltZL+4QQ4g8BE8BQLiRiNAEbN/2GjRs3ej0Xymg0YuPGjdi6dWutbTHG+LobN250GGRYyn/77TebtoxGI/bt24d9+/b5de6WUqmkze0IIU1OwDxColxIRCIEVn66DBBJXW7/77ItiQQrV67E1atXIRaLndZTq9V8XQAQi8V2oymWcq1Wa9OWWCzGK6+8wh97Qi6XIzg4uNZkj4QQ0pwFTABDiFjIYfzjj/pkDoxYLMb48ePdWoVkqQsA+/fvtwtgLOU1VyGJxWIMHTrU674SQgixRwFMfbFa/usTYgVAe4kEFE9HXRqbmvvaEEJIY0IBTH2wLP+1XkHjrcRbgCc2NesgxmhiOHb0b0AsR5cuXbxOJXDs2DFcvnzZ5eMo65QAjuayGI1GZGdnQ61Ww2g08v1q0aIF/vzzTwDm7NOBlEqgqqoKR48eRUREBDp37uzv7hBCiB0KYOpDzeW/vtAAS4gbO40B6NqrLwDfpBLo2rUrAPdSCVjqbtu2zWVblpQBBoMBkyZNsjsfCEpKSmAwGGgODiGk0QqYACZgd+KdngdIFK7rOaNTAYvb+a4/AYzjgISEeACcT1IJJCQkwGg0upVKICEhgT+uuemcpdxRKoHo6Gj+2F+qq6v9dm9CCKkvARPABOwqJImiWY+a+JJCzKEw/7RPfp4KhQKFhYVupxIoLCwEYJ7EW3NJsqW85iRehUKB77//3uu+estV+oWLFy8iLy8PwcHB6NKlC6RSaQP1jBBC6i5gAhhCAk2gTIDNy8sDYB6pOXv2LMLCwhxu2EcIIY1JwGxkR0igEYlEaNu2rUfXWEZL1Gp1fXTJpeLiYpw6dQolJSV+uT8hhLiLAhgSMDQGhjEPPYoxY8b4JJXAmDFj8Mwzz0Cn06GoqMhp0GCpO2bMGH5koqCggN8PxlL++OOP2+wRo9FoMHXqVMyZM8et5I+MMZqvQgghbqIAhgQMowlY++N6rF271iepBNauXWuTlsDZlv+WumvXroXBYAAAXL16lS9njGHt2rX48ccf7a778ccfsX37drf6W1FR4c23ZCOQVjwRQkhd0BwYEjAkQmDpknd9lkpg6dKlYIwhLi6ODx4cjYBY6gJAx44dkZuba1MeFhbGl0dFRaGqqoq/bsmSJTh79qxbm9pZ9prxhaCgIL89hiKEkIZAAQwJGGIhh8nPPOWzVAKTJ08GYB5B2b59O39cW13rkRcAiI6OhkQi4cv//vtvm+ueeeYZ7N692+v++pPRaMS1a9cQFhbmdeBICCG+EjCPkCgbNakvHMdBofBir54m7syZM8jJycHx48f93RVCCOEFTAAzefJkHD9+3GafDdK8mBjD6dN5OH36NEwmk9vXxcTEQCQSQS6X83sImUwmnD592q22XNV1Vm45f/HiRY/629hYduMtLy/3b0cIIcQKPUIiAUOtBzrclAHAs1QCrVq1QqtWrWzbUqvRoUMHvq1a72tV9/z587WW79mzx+b8TTfdBCDwUgkQQkhjRwEMCSi+3IXZui3L3BelUlmn+zorDwsL41cuBSq9Xs8fWyerJIQQfwqYR0iEBEk4lF88jfKyMq8SOQJAkEKB8pJCvq3Q0FDndYOCUF5ejvLycof3tS6PiIiwOV9SUoJffvmlyYy+7Ny5k0+rQAgh/kQBDAksi9sBK4YCDlYLuY0xYMUQYH4C31a7dr5JmNm6dWu0adMGGRkZPmmvMcrPz/d3FwghhAIYEiDiutw4LtgL6FXO67qiVwEF+3zSVs3JuRKJBElJSQgPD697/xq5gMsITwhpkiiAIYFhwiZon8vB+PVqjF+v9jrZoNbA3G5Lq9Vi/PjxGD9+vF1dvV7vtFyr1eLJJ5/E22+/zacScLTPDCGEEM9RAEMCA8fBIJDgi6N6fHFU7/XEWIMJbrUVGhoKg8GAL774Al988YXDus7KDQYDvvrqK/z22291GrUI9Mm/hBBSn2gVEgkYYrEYCwdJ+eM6YQzQqSAWota24uLiEBERwU/KXbhwodO6YrHYYblYLMb8+fNx/vx5iESe/6/WsmVLlJWVeXwdIYQ0BxTAWDDm3bwKazoftUNsSCQSvJQptbzwvAHL5N2CfZAIOZu29DWqSqVSxMbG8q9feuklAPapBPh+XS+vef7FF190mUqgXbt2yMvLszsvENAAKSGEOBMwAUxWVhaysrLqbwKhXmVelUKaLuvJu35Sc0M9AE73VeE4rr67QwghAStg/sQLyFQCibcAYsqx4ysmkwmFleYvb7fmNz13xO22TCYTCgsLUVhY6DSVgKNyy/krV6543N/g4GCEhoYiJCTEo+sIIaS5CJgRmHonVgCvXvJ9m/RXtM+o1Wq0et+87X/1f9QIktX9w11tENi0JQmW1X7f6yMnzlIJWMqtUxyo1Wq0adMGgOepBLp06QKhUIguXbrUSzbra9eu+bxNQghpSBTAWHAcIPFud1dS/0Q+HDP0pC1nk3AjIyNrLReJRHVaOt2Y578wxnDp0iUkJNAjV0KI/1AAQwJGUFAQ9P8JtbzwaVs1J/Ha1b2eD8h6Em9iYiJSUlLAcZxNviDr65RKpccjKNHR0XVatWSRk5NT7/mKTp06BYVCAY1G43V/CSGkLui3DiF1JJPJfD7RtnPnzoiJifGqDcumefXt2LFjMBqNiIuLQ8eOHRvknoQQYtF4x6kJaYJatGjh7y74jGVF4JUrV/zcE0JIc0QBDAkYWq0WkzeoMXmDD1IJeNCWVqvF5MmTMXnyZId1nZVrtVo8//zzWLJkCXQ6HVq1alVr1mtCCCHuowCGBAyDwYCPDurx0UEfpBLwoC2DwYCPPvoIH330kdNUAo7KDQYDli9fjp9++qnO+xeJxWJERUXV6VpCCGnKaA4MCRhisRizB0j444ZqSywWY/bs2U7rOisXi8V4/fXXUVBQUOdJrhzHoUuXLjh16hQuXfLxMn9CCAlgFMCQgCGRSDBnoMzywqdt1bYKSSKRYM6cOQCcpxKwlNc8/5///Kde9nFpTIxGIwoLC9GyZUsAgFKpRElJCeLi4jza+4YQQjxBj5AIIV47ffo0P//n+PHjOH/+PE6fPu3nXhFCmjIagSH+ZZ1E08XOxYwxVGjMm8KFMQZvFjDXbKu2xhhjqKio4I9rKw8LC+OXVjPGUF5ebrM7ryPWj5e8fTTmT5Z0CUqlEgDt9ksIqV8NHsAUFBTgscceQ0lJCUQiEf7zn/9gzJgxDd0N0hhYZYcGYM4d9cQmp0GMSqVCxDtVAIDqV1QIkgbX+dY125IES532UVV+BRGR5szUjlIJqFQqREREmNuyClZUKhWf0Xrjxo1O+yKRSJCRkQGDwYCwsLA6f0+EENKcNHgAIxKJsGTJEmRkZKCoqAjdu3fH8OHDa/0LlTRRNbNDF+w1n2ssKR0sAdaZvT5v2noDPIFAQEkbCSHEQw0ewMTHxyM+Ph4AEBcXh+joaFy7do0CGOKSQqGA7nXzB71I4V2W75ptOVxIfT3AUohhrjvjAirU9jUVCgW/+6314yCFQoHq6mrs2bPHbmv/iIgIxMfHQygUIji47iNJjcnVq1f5ibyEEFLfPJ7Eu2PHDowYMQIJCQngOA7r16+3q5OVlYWUlBTIZDL07t0b+/fvd9jWoUOHYDQakZiY6HHHSRPGGKBTmv9rheM4iIXmL2+38PekLb6uWOywLseZy2qWW86LRCK764RCIVJTU9GuXTufpyPwl7y8PJSVlfm7G4SQZsLjAEapVCI9PR1ZWVkOy9esWYNp06Zh9uzZOHz4MNLT0zFkyBCUlJTY1Lt27Roef/xxfPLJJ7XeT6vVorKy0uaLeMESHDj7qkPmZJ/3b8UQYH4CsHKof/vSiLRo0QICgQBSqZO5Oo2ERqPxdxcIIc2Ex4+Qhg0bhmHDhjktf++99zBp0iRMmDABALBs2TJs2LABK1aswIwZMwCYg5KRI0dixowZ6Nu3b633W7BgAebOnetpN4kjNSfNOuJiIm2906tv9K/omE2RTqfDa7+bPyDnTddB4sVcmZptcVIH+8pcD+Z0RobXtmiBytcw7aVXHLf12mvmtubNg+T6HjU6nQ4zZszApUuXMHHixDr3FQDCw8PRr18/KJVKHDp0yKu26tOpU6f83QVCSDPh031gdDodDh06hEGDBt24gUCAQYMGYc+ePQDMS0vHjx+P22+/HY899pjLNmfOnImKigr+q6CgwJddbl5qTpp1xDKR1lM1R3bqYSRHr9dj8R4dFu/RQa+vbes5H7TFGD8CpDfCXPf9/zqsq9frsXjxYixevNimXK/X4/3338eaNWu8Tn0AmP9fIoQQYubTSbylpaUwGo380lGL2NhYnDx5EgCwa9curFmzBjfffDM/f+arr75Cly5dHLYplUob/bB5QJqeB0isJsLqVMDidnVry9HITj2M5IjFYkzvU8dUAoyZv0cnbdWcZMsZNPwIkFgIc91bnnGaSmD69Ol2/RKLxfj3v/+NS5cu1TmVACGEEMca/Ldqv379+A2vPJGVlYWsrKw6J8UjNUgUvluu7Ghkpx6WREskEiy68/r2/2KxeaTHxeZ3ABwGWDZtSSSAQICOHTvygTZwYwRJIuTMdWe+havV9tmoJRIJFi1a5PD822+/3eRTCRBCiD/4dEw6OjoaQqEQxcXFNueLi4sRFxfnVduTJ0/G8ePHceDAAa/aIfXshaMNc58VQ80TfVcMdf24Sqe0Hx0S2+fo4UdJGEP8pgn27ax0416EEEIahE8DGIlEgu7du2PLli38OZPJhC1btqBPnz6+vBVprMRWIy46lU8/8Blj0BvNX6zob/NJV3N2rOayADA/OntiExhwo60afRSYtJBeyzW/iO0C1uImc93Cv8Ec3IsxBr1eD71eb9OW5bzBYHCYgoAQQkjdefwIqbq6Gnl5efzr/Px8ZGdnIzIyEklJSZg2bRrGjRuHHj16oFevXliyZAmUSiW/Kqmu6BFSAFrczqdzYVQqFYLfur79/8wQBLmTkFqvurGaKa4LEBQNcJxtW9NqSUvwxCaolEoER5lHEM9PUDvu1/XN6GqmErCc37hxI2VmJoQQH/I4gDl48CBuu+02/vW0adMAAOPGjcOqVaswduxYXLlyBbNmzUJRUREyMjKwadMmu4m9npo8eTImT56MyspKyhfTmInl5qCl4Pr2+40pPcCEOgRSHOeT4Ktbt25oERMNmExAM1pNdPXqVWg0Gn7jS0II8RWPA5iBAwe6HA6fMmUKpkyZUudOkQDGceYRF2Vp7auaaqwKcodCoUDZK+bt/xV1Sdps9QFq05aLtATWdaVRUTh3sRiMMX50RaFQ8DvQWrdlfT4sJATcG5HmglllN4IYSzZudyYjA3arpRq7Y8fMo19yuRyRkZF+7g0hpCmhtZ1NjeUD0REPA4Y64zjbJdo1ubOhnrXEWwCxApxehXCZb/6K5zjuRltupBLg68rlyMzMBGOMn/TLcRzCw8MdX2c5X33lRoHqKhAcY/tzcPNRm1wuR7t27WAymXD27Fl3vtVGwRf74BBCiLWACWBoDowbPA0M/KXmsuu4Lna77gK4sVeNq9EJyyZ6YsWN9t0c0agLm1EQy5YABrXn97T+Obj5qI3jOLRq1QoAAiqAIYQQXwuYAIbmwLjBnZ12AX5EwylnIzX1ERRMzzPPm1ngIItxjb1qdDod5m8zb///6q1SSITX+7JiKFB8DEjsbX5tPaLhhE1bLtISOK1rMgFvREBnZJi/UwuEtsKr3x+H5PrGizqdDvPnzzdf9/wkuDPnuCnT6/W4dOkSIiMjERIS4u/uEEICXMAEMMRDNXfateYqEHE2d6U+8iTV9qipBr1ej7nbdQCAl/pKIbEMhBRfH72xDt5cLK+2aUuvtwkuuBpzvJzWVV01lxtxvfwsXlJVQCKJAfQq6HWMz+P10jPj/RLAJCYmNpr0G+fOnUNhYSEuXryIzMxMf3eHEBLgKIBpqjzdaVessF095IifVxSJRCI828M8e1fk5UIem7ast/lnDBnZM92raykX4Ea5UMg/xhPF9cKzzzwDcJx7qQSsH4X5KEiMiIhoFAGMXq9HYWEhf6zX63H8+HEoFAq0b9/ez70jhASigAlgaA5MPbOsHnI0auFNniQfkkqlyLrLN3up2LRllWtLYNIipDrf/CKuCyBWQAo4rMu3JeJulAtM/EiQtGg/shZ+Y957RlnqulP8ozA/ZwSvB5cvX7Z5XVZWxn+1bt2ackURQjwWMBtSUCqBBsBx5tEVuy/3H/M0KS73jXFjd93F7a6nO3Aj/xf/KKyOGcEbMVqFRAjxtYAJYAjhH3M1FFcrn1YMdV5urWAv8MkA3/QpQGk0Gn93gRDSxNC4LWlc9EqnRUqVCuFP/wkAKL94GkEfp9f5NkqlEuFvVprbekGJoFrm9Tisq1cB186Yy3UM4e+Y0xKUP6OEpSWb868wBEmuB0QOEkk2N3XJSE8IIdYogCGNy39rD0r4RxE+eKxl8OAz1K5ujZVKztpyeL4JzW2pq5MnT/q7C4SQABcwAQxN4m3CHK2AcrBXjVwux8WLF/ljb8jlclz8d7BbbdnVrZHhWi6Gw7Zsztcl9YEPBFrqAUIIcVfABDC0kV0T5mgFlIOlxAKBAC1bXt/wTuf8UZM7BAIBWoYKLC88q2ud4RqAgOPQMpSza8vmvJ8EQgJFk8mEwsJChISEIDQ01N/dIYQECJrESxqHmiugAuCDFwAw86J500BPuEiG6q6YmBi3zjV2RUVFOH36NA4fPuzvrhBCAggFMCRg6HQ6LFq0CIsWLYJOp/O+rV1aLNqlddlWrXU5AXQQOSzXGdmN80aroGXlUJ8FMTV17tzZ5nVQkH82HfQE5XQihNRFwDxCIkSv1+Pll18GADz75DivtubX6/V4ebPW3JayApKgcPfq6vWQSCS1lOv4fumNuHG+p+RG6oOiYz7Z5yUqKgpXrlyptQ7NgSGENFUUwJCAIRKJMG7cOP7Y67bSr2///+HNQOs+wD1fu67rKJWAdfnqUTfOC3DjfD2MdcbFxSE8PBx799aS/oEQQpqogAlgaBUSkUqlWLVqlfmFl5N4pVIpVo20Wn1UsBcwqF3XdZRKIDgCq57uZR5Zqcy/cV7E2d7DGmOA3vH9bOuoas2NJJPJwHEcmBePpBQKBRhjUKtd9IcQQhqRgJkDQ6kEGiFL8kFdI932Xqeqn77VDBY4zpx2wBMrhtaeX4oxc1LI+QnXUxHUz5wZwLzKKjg4uN7aJ4SQ+hAwIzCkkbF8wF5PXNgo1UcCyhp7wPA8XTVVfKz2cr36xs/W3SzgzATUcYfbtm3bupxPQwghjUnAjMCQRkavsg9eHGw+50tKpRLh4eEIDw+HUundIySlUonwtysR/nYllLraRzds6paX3tgD5nq2aqVSifAWLe3aUuqY63u8cNSr74PHTBi4fRTwRoR7iSNrkMlkvukHIYQ0EBqBId6bnmfe2r+WuRq+UlFR4bu2tPbnOCePahzVtc5W7axfdtdFtuVzKAEAxN4vc+Y4DiJ95Y0m9ZXQS8K9bpcQQhozCmCI9yQK1483fEAul+PUqVP8sddtTTH3md/mnzFkZM+sva71fa8HL3K5HKf+yQaWZdqkDJCLYX+PJzYBi9u70UP357wkJSWh8NQ1t+sTQkhTQAEMCRgCgQDt21//8Hd3FVJcF/MjnxqPtwQCAdpH2e6RItBcQ0i1eRWRNjIV0uv1beo6SDtg7lc7oGZ7U/9Ge7vklG6OUK1wMM/GiZSUFMSFCIHdbl9CCCEBjwIY0rRZHvO48Xgr8suB/PHloSuR4u3jMG8eD1k/ZnKDTOp8DkuHDh1w5swZ2oKgiWOMoaqqCjKZzG6zRUKaooCZxJuVlYW0tDT07NnT310hfqLX6/n9gPR6vXsXWXIs1QhG9Ho9svbrkLVfB73R0eMaznFdB/fV6/XI+ni5bVtxXaAXhyLrZHQt9wA8eVRkrn596boHy6oTEhKQnl5zJKhxMhgMKC8v92pfm+bq2rVrOHz4MA4dOuTvrhDSIAJmBIayUROdTocpU6YAAMY/PAZiF/VdtvWrxtxWhhjiWnbct6mr09ndV6fTYcrUF23bmrAJOoMBU9acvXE+5RZAXGPujicpBayXrifeYp5P42CUiGPMvBKJ8+3fJ3FxcSgqKvJpmzX9888/KC8vR+vWrZGcnFyv92pqKisrodUbwUwqVFZWUmZv0uQFTABDiFAoxOjRo83HshDzh3hB3bbRFwqFGJ1mfvsLXXzO29R1kFtIKBRi9H0jgZO/3GiL42z7O2MZEBLpXQ4k66Xr1nvDmEw2S6f77hkPANg2YB1/TuBg7k5dREVF4erVqz5py5Hy8nIAwJUrVxAVFQWFQuGzvjdl1dXVmLTmJPLKTejB5WJWVBRuTs/wd7cIqVcUwJCAIZPJ8P3339848cQm84e4TuXxpnUymQzfj3Fvzxqbug72S5HJZPj+f1+bd82trb/1wWQy7/3igNhqaXVQUBDatm2LM2c8m1vjL9XV1Th48CAiIiIC5vGXP50+ex555eYg9iBLBWdopLtjE+JD9KcNCVyW+S2S+ts8r94pom4cv3jKeT1mcrxBncq90RCO45CYmOhh5/yvrKzM310ICMXFxTavxSJvHrASEhhoBIYQf+IEwKzrH9JOkkkCABa0apj+kIDDGMOC/bbvHSainZVJ00cjMCRgqFQqtGzZEi1btoRK5d0QuUoPtPyvFi3fq4JKX/uKF5VKhZbvVZnrOrivSqVCy9bt7dpyu78CgcP9ZepDQkKC60okoKh1Bpyvqnm2fnfEJqQxoBEYEjAYY7h06RJ/7FVbAC6Vm/f5ZzMKAU7jdB4NYwyXqpjT+5r7dfn6sRf9FStubLznDp0Kni7D7tChA6RSKfLz8/lzISEhbl0bFhaG0tJSj+5HGoDe0cgdLUMnTR8FMCRgyGQyHDlyhD/2WVsKBWB0PgIik8lw5Kkgp/eVyWQ4sn838PlgyEQ1znvSX44zb7y3oKV738TidubcSu5iDNCrkNiqFYKCzN+PUqlEfHx8rZcJBALcfPPNfgtgKisrcfHiRbRs2ZK2UHBT3O9PA2l/1XtuMkL8iQIYEjCEQiEyMjLqp61aNqkVCoXIiLu+fNrBmmuhUIiMHrcAf2ealzdfT1sg5DjP++vpB467O/Za7SEjSLwF0df3kImOjnZ5qUQiQXh4OAD7ZeTJyck4f/68Z332UG5uLpRKJSorK3HLLbfU672aCmn56RvL7AlpoiiAIcQTznIUcdyNZd2+zMpdM3t1XTnbQ8bKTTfdhIqKChQUFDhtJjExESUlJTbnQkNDUVlZ6eQK7ymV5rxXGo2m3u7R1NADJNIcBMwkXkolQPR6PVatWoVVq1a5l0qgRgLHuralhxir8ltgVbYO+it5ztv64gvoOQkfvHjcX0ee2FS36+ogOjoabdvW/kgqJCTELhN4Q04MVqvVqK6ubrD7BQKTyX55/RjdbErHQJq8gBmBoVQCRKfTYcKECQCAMWPGQCyuZa+L6XlAULTTkRD7tmzLrS/T6fWY8KU5cBmTZp92wFm/HJ4XK27sIFxLgGXVExflzcu+feZRpF69ekGhCOD9f3yoyiqgSwoT40KFHsdZCkrKKhEbF+zHnhFSvwImgCG4vurEi/IAJxQKMXz4cP64VpLaH+PYt2U7CSY6Osa27tAhwJktDtMOOOuXw/P19ajJU442xQsgWq2WApjrDAYDf/zZqATcuco8J6m6qgqxcf7qFSH1jwKYQOLhdvlNjUwmw4YNG+qnLZ3SpjwoSGFb96cf7FIFuOqX0/5adhB2xG6ERu64nrcWtDJvoEd5hpoU63C4tLQUbdun+q0vhNQ3CmAaO+sPNHe59WiCNEo1R2i8Sf7oiuoqEBxjd7ply5YoLCysv/v6gPWoQ3On02odnhfV9oiVkCaAApjGzvoDzV3+fDThDzWDvEAP4GobofHU9b1f4MGEznbt2iEhIQEHDhzwTR/qQU5ODgYOHAjAvOOxVqtFeHg4uOb0vr+uqvrGNrxy+Y33vUjk4jErIQGOAphA4MsPtACmUqn4zMRHjx69MQeiZpDnRgBn11Yt/yeY62YAFTocnSSGQsw5KLfvl9P+NqTre78grot9mZN5MBzH8RvdNXaMMRw8eBAmkwk333wzIiMj/d2lBicU3njzervBIyGBhAIYEjAYY8jLy+OPbXgY5NXaVq117YflnbXlyT3qg9CovbH3i6P0BO92CPh5MIwxfhmxSqVqlgEMIc0VBTAkYMhkMvz111/8sU/bMjrfJI2vq1dD9ud9bvfLl/2tN07mwdQmNjYW586dq5/+eKCqqgrZ2dn+7kajRdvAkKaOAhgSMIRCITIzM+unLRepBDIzM80rlbbZP5py1i9f9rdBWc+bcfAoLjk5uVEEMPn5+TAaa/mHawYYY5i6qcRh2Yu/l2JzBmuW84JI8xC4Y8ckcOhU5g9/+pOw8bPkTJqfgK5HZjr8N6vLB6KvclhZKysr83mbgUatN+LMNfMuz2ncOUQqREjjzgEAzpQZoNY37wCPNG00AkPqn2X/msRbvNoa32AwYN26dQCAUaNGQSSq+9vXri136ho0GGViEAk4x+U1+uXL/jYYq5xJYZUnIDBpEROTZC6zjMy4ucJLIpFAp9MBqJ9HaBzH0Xb5Vt//95K5EHAP4HvJXHTWrrQrJ6SpCYDfqCQgOdq/pmAvoCytc5NarRYPPPAAAKC6utqrgMCurVq2zLCpOzMEIol7/fJlf+sPs31UVGNlUufOnRHRoqVNNmsk3gK0meFypVf79u1x5swZpKSk1FPfbZ09exZlZWVo27YtOI6zy9nUJOnV/KExqiOgiII+ogNQZFUupf1gSNPkl9+oo0aNwrZt23DHHXdg7dq1/ugCqW/WS5t1qhujMF7sJiwQCDBgwAD+2Bv2bTnfWp+vy4wQcEfd7pcv++vUC0eB/6bX/frF7c0ByYRfAb3SvEOvlajISPMqJZ3SJpu1IEULk1DmNKVDy5YtERMTg5gY8wTh+sgkLZPJoFLd2B/JZDLh6tWruHr1KgCgZ8+eAbMcvK6sEzkqR69GqECA4iHLgS/O+a9ThDQQvwQwL7zwAp544gl88cUX/rg9aSiWpc3OdhP2cMM5uVyObdu2+aRrdm3VSCXgsK5O6TCdgLN++bK/Tol98AFdsBdY3h8odrDU2om2bdqgXKVHXFwcrl27ZlfesmVL7/vlgnXw4oharYZQKIRQKKw98WcAszyiA4Aghfm9QJN2SXPhlwBm4MCB9f+LnTQeznYTbm47BteFdfAX2Ra4dqZ+7uNB8AKYA5SWPtpcMSgoCEql8wCyrtRqNf755x9+NRjHcU36w93yiDIsPNy/HSGkgXg8rr1jxw6MGDECCQkJ4DgO69evt6uTlZWFlJQUyGQy9O7dG/v37/dFX0kgs4zGWH81pg8TS6AANK5UBJbg79VLXk2AbqzCwsLQoUMHm3O+mrty5ow52DMajTh06BB2795dL4+y/Emn1/u7C4T4jccBjFKpRHp6OrKyshyWr1mzBtOmTcPs2bNx+PBhpKenY8iQISgpcbxXgStarRaVlZU2X6R5UqvVyMjIQEZGBtRqtesLPGmrZqBgFVzxdXv2gVpvv6rDWb981l9+l2HPAj5hzc35nj9S9z7Uoq6PZyQSCbp27QqJxHZWdMeOHX3RLRtKpRJ6vd7h465AduzY3/7uAiF+4/EjpGHDhmHYsGFOy9977z1MmjQJEyZMAAAsW7YMGzZswIoVKzBjxgyPO7hgwQLMnTvX4+tI02MymXD06FH+2OdtOUlHYFP3rhC3++XL/tZFz4PP257g6mcicWRkJDp27AitVov8/HyX9QUCAUwmE+Li4hyWh4WFoVevXrh27RqfioE4Yap9mbSesnaTJsync2B0Oh0OHTqEmTNn8ucEAgEGDRqEPXv21KnNmTNnYtq0afzryspKJCYmet1XEnhkMhl+//13/rih2uLr6jWQ7X3E7bZ82V+/0bne94XjOMTFxaG8vNytJtPS0iAUChEWFgbA8QiOQqGAQqHweQBTUlKChAT7idgWluXugfDvxUwmvLuzEIDt9xNklTR07Iqj+PXfA5v03B/SfPk0gCktLYXRaERsbKzN+djYWJw8eZJ/PWjQIBw9ehRKpRKtWrXC999/jz59+jhsUyqVQiqV+rKbJEAJhUIMHjy4wdvi6+qUwH7HqQQcteXL/vqE9YTgxN7Aoz8AK4aBFR2DGk7+H1vUGWjVE3jwG4DdqCNnzKMHWlKpFFFRUdDpdAgPD7fZE0ckEuGmm27CmTNn0LZtW5vrQkNDffrY2Pq+ly5dwrlz59CuXTu0aNECSqUSBw8eBMdxuPXWW+tv6buPlJdfw0mjOXhJExdBrggGAARJzbvxHmcpOFmiglpvhELSGPcgIsQ7fnlXb9682eNrsrKykJWV1exznxA/sgkAGtFEX7dZrQazrAB7YhPU89sgzbJzqyNnAMz7C8CNOj0+P4Lvn+ln+5c9YxAYNTAJ7IMhjuPQpUsXp7eIjo5GdHS03fmbbroJx48fd3t0xxOnTp0CAJw4ccJmSTZjDKdPn0a7du3s9rlhjKGqqgoymcxu7k5DYozhwZU39iT67qX7wV0PuDiOs92Nl5AmyqcBTHR0NIRCIYqLi23OFxcXO33e7a7Jkydj8uTJqKys5IeeSfNiMBjw22+/AQCGDBnidSoBd9uyqfv4LxAxnc0ScGdt+bK/DiXeAog9XLFTc55PHR8tHLxQCbXOAIVll1fGEPzd/eh/+RAqQjsBvbbUqd2aJBIJMjIyfLbtQmlpKfbu3YvWrVvz5xhjdskpL1++DJlMhuTkZLvrc3JyIJPJcMstt9R6L8YcJ1IsLy9HWVkZWrVqVecJ0GqdAblXzJO007hzCJIOsCmnB0akOfDpb1SJRILu3btjy5YtGDlyJADz5MUtW7ZgypQpvrwVaYa0Wi3uvvtuAL5JJeBuW3Z1a+zu6qwtX/bXzgtHgfBk+7116kAOLY5LJ9Re6Zk9wMd9oIIUPbTLzOest6nXqyC6fAiAOYeSHm4u77XOr1THYCo+Ph6XL192u75Go8GJEydc1quurrY7V1FRwbfh7JrCwkIYDAZcuXIFCQkJdsvEjx49CsYYGGNo06aN2/22YZVC4Iuor8FJnnVel/IhkSbK49+o1dXVNhPr8vPzkZ2djcjISCQlJWHatGkYN24cevTogV69emHJkiVQKpX8qqS6okdIRCAQoEePHvxxQ7Xlqq6zcl/21464DvvoKKIcnuY4QAFt7dcu62b+s97Nz0K3RhZq5leqsXzdkZqb3olEInTo0MGjAMZdjv7NnC3D1mg00Ov1OHTokM35S5cuoUOHDjAajRAIBDYJKF3tJOyuy4OyEGP9cxMrYIzuBBRef035kEgT5XEAc/DgQdx22238a8sKoXHjxmHVqlUYO3Ysrly5glmzZqGoqAgZGRnYtGmT3cReT9EjJCKXy3HgwIEGb8tVXWflvuwvANsAxEkwYq0quDVCqvPNE3YnbDLnNKrJ07/OQ+LgMNZhdVgmbpX5GgV7za+d7O570003obi4GK1bt8ahQ4f4P2S6dOlSbytsLI/CW7ZsibKyMpSVldmMvJw5cwaRkZEIDg7G3r17nTWD8vJy/P3334iMjMRNN91k87MqKSmBwWBAfHw8H9xcvHgRHMehVatWTtu0ZjTV+KOO42B4+Htgkfm9p9PpEGiztQhxh8cBzMCBA12msJ8yZQo9MiLE1wQCYFbZjWMXsjMW4Nb+/Wt/PKN3sMFebBfnqQUeXQcsOWl7zmSySwLpa9aTfFNTU5Gfn482bdrU+x8zxcXFdnP6LAoKClBQUICkpKQbJxmDwKQ1T2S+/jMvKiqCyWRCaWkpzp/Lx8DtowAA2wasQ2mpOTv72bNncdNNN0EikfA7CMvlckRFRcFkMkEgEIAxhuLiYpw6dQpazY1RqIiISLu+SSQ3JlIXXLyI8Ej7CdKEBDpaW0dIIPHgURRzsjGfDeuRnFnXAIPGPCqzwEkyRptVRyZz8KK66uDm9TfvokWLFmjRooXNuc6dOyMnJ8f7xi2jI842/XMQoFy4cIEv63pkBsIqT6IiNBVHur4NcAIUFRXx7V48dRRJDFBDCpGuEgZpOADzhO/s7Gy0bt0ajDHojMDff/+N4OBgKJVKtG7dGiEhITbbUVg4yghuPSp1/uIlpHXu4jRzOCGBqnFvdGAlKysLaWlp6Nmzp7+7QvxErVYjMzMTmZmZPkkl4G5bruo6K/dlf+uNZVRnVhkgEN7IU5VY+wobAMDiDsAbEY4fH60cah/EmK4HPIC5TOebOSAAEBMTw7crMGqQWPPxCzO5fszFTBi4fZR5hKRm3evXdz0yA/13jkXXIzNtvz/GINZXIKzyJBgDxBXnMGDbKP46vl0Tw2jdbKRpV+K9HRdhMpmg1ZvAGdQAYzh79izm7dPgqc0qzN+n4ScS5+fnQ6vV3vg+rHbgDQkOrvXbmrKDYfi7m12OnBMSaAJmBIbmwBCTyYTdu3fzxw3Vlqu6zsp92d+6iIpyPU8GgP2ojiUvlLIUWNzO9fXvp9mfKzpmO6fFZDIHO4A5WFo59Mb8FwvGzJsFiuSAQe340Vdtq5asRkBw7haU3fwWqpVKPoAAzI9tnI2uiPWVNsd6Sfj1dm9cbxFWecI8EiOUAYwh4/AMSCrzoYQUY3SzcZylII07h+/2TcHRjHlQXd8EsPXB/+AQewcAcNjYGnN2q3GhGujB5eKz6O+w9+b5yCs3v1dOl5ugNZjAcQJIhAAzGdFr24NgAO4zvAXAPErmaD8auSIY3SUFOKQz71qee81AG9qRJofezSRgSKVSrFu3jj9uqLZc1XVW7sv+1kWH9u3rfjHHARI3p36a3Mi3Y/2YqeKCffACACuG2s69qbkyqeaqpQm/2gQ6ndolI2z79UcsBXsh6GyecGsdmLRvGYnTl8rt780YhEbHK7FEuko+ALGQW81kFhhUmFg6FodYqk2d4ywFYyomQ7azEEeM1zeVq3GLC9dXah9kqdBXFmLOHtuRujm71ShSc2gXLoDs8HH8U2Nzuk6iy/wOvNY4gQBrX30EVxek8cvejQYDQAEMaULo3UwChkgk4vcXasi2XNV1Vu7L/tZFXTdJ8xlmAkxGuL2tWs2JwwV7zaNAQdHmIKbmqqXl/c3XXA903FnpGBlsHjGxnctjNXJT81tgDHMPC3G6RuDQg8vFcyYT9AYluu5+GofYMof3O8FSADd3fuiptW+jSG3up3lUxn4U763hbfkdeGvipMGQxrQBLppf5508hq7d3HsEzxhDhVIDhUTo1x2HCakNzYEhhNSPBa2ANyKdz5Nxx+J25pEZR/M3LAGPZQl2DdLrCRkZA1RMChWTgi3vj9TDs8D4uTgmCI1qh8ELGINBr8HpCvtfkwdZKuZvu4RJW3FjYz8AB6VP47h0Av6RPmF3zQHp00jjzrn8ljtx59CNO+W0vDVn3vOmB5cLcVCE84Y4DurR/+NfllwphVKrdzkXhjGGUVl/IeOtP3HXe1scbuhHSGMQMCMwNAeGGI1G7Ny5EwBw6623erWqwpO2XNV1Vu7L/jYaCvslu25RXqn7PS0BiqtJqDXKW6e0RsmRY/YjKFeADvuUmNlbjoHb74caUqiuJ7OUQwuOA7jrozLiinxYckAdlD4N4EbAkmuMt7lfDy4XUagEx5m70l10FocMbfgyhTwYG/AqriLUJuixSOPO4XvJXCigxc5+3yA1ew6Cq8/jcd0Mm8dT30nmIghaHOy3Ei1bJbr44d0YaXpqqwnY+ju6JYbhh2czne6fo9IZkH3R/NjtdLkJf+09gKGDbnNYlxB/CpgAhhCNRsNvolhdXY2gIBdLhH3Ulqu6zsp92V+/qJm9esImQHXjr3EVpPY78z6fDXyQYd/Wx7cDlozXWqNNZuuaLEGEDWYClg9wWN9czswjNVYUCjmi41ridMVpu+qnKgS4afsE3KWbj+MshT9vCSIydj8FAHxgAzjfrfig9GkooLXpN8cBK54ZAsEvz0N46TBkiRm4PPR3mL4dgaiqfGSILyBbb94/JkNcgHcnDkfS/70F8VUtKkI7gYmDIJn4G4oLT2Pt2jtxkcXgVt1/zW0DkMd1QN+Bd0Lk4jGhdWZqi8MFFVDpDAhysjvvzp1/2byev0+DIXc4zutEiD9RAEMCBsdxSEtL448bqi1XdZ2V+7K/fmFZjeRk1Y+jUQQsOgLrrNUOLTlZa50eXC6+l8y1vd3yAcC1M87b1Kvt59AwhjZtWgMwBzA1R1AczTk5zlI8zuKsgBYKzj64kUa2guxfv/I/v5Ych+09loAzavCiWAGV1gAB00Ik6oC2KUnAlN2AXoVQkRyZJhNEIhEiInpBt6sb5JfzbNrmntjkMngBAEVYFFbH/g9di2banM/JzUPPLh3t3pdqtRrz99nmebpQZUJ5tRoRIbSfL2lcAmYODCEKhQI5OTnIycmBQuHdL1NP2nJV11m5L/vrN5bN8K5/0MnFAvTgcuv1lgdZKq4ilJ+3omJSqK5eNP83PNX2vGVui9XjI37Oy+cjoNbeWCGlgBZRqLTrfxp3Dv9In6h1fkoPLhfy66Ms1tf3SA6HPO56ssbE3sDMQqheKoRy+kXI5Aq7n1+ntDTIQiLRKS0NUrEAYon8xiTc63U5geBG4k+Og+SpPxE54zh/z8jENNcbFF7HCQSQTtxgd/6Bb85iyKLf7PIxKbUGXKgyzw9K4Yr480XFRSCksQmYERhK5kiIG+K6mPdgSbzFPGriYxzH4XvJXKjh5BHQS9dHCha5sX9MDdaZrh2O7gCAk8/RtM9y8P31x1KWfVhwAcD8P29UikgBFxyG7wts+2959LNB8qrT78v68dD3krlQTz8PiBWQS8XgsNNmlEpRy4p5612EY2JicOXKFbtdhe1wHATyEJydNwzQqyCQDvcokac8KMRmTxiLU9eMKLhcgtS2Kfy5iwUF/PH3kjn8KNXT353CtpmtA3MkkTRZARPA0CReQhywmadivzdKfdyPi+sChbNcSRKh+d7xHcyBlAfkzDy6cbDGfiruOF6sQmcXj6XkT28BpMHglKVQ1Nyg75k94D7uY57nEtkWuHYGphadUaUxIKwyF5oWGeAASEuyYUjoDkVwmO3P180REWsdOnRATEwMIiJqWUlkRSAUAMLad911hBMI8Mkzw6H6+HZ+Ho2FiZlQXl6O4OBgCIVCPP9zPl+mgJafP3O+0kgb4ZFGh96NJGCo1Wrcc889AICff/4Zcrm8QdpyVddZuS/765SjeSp1+DD16H6P/Qgsvr5JXkg8UHXZvs6ETc7zKdXSdK2jOwDwwt/mDfauj/AwWI24WLFMxrWEGHJowQmecr5BX7jV6MSUg4BBDYFYAblOh6tlJYiISYBAIAD0Koh9FByKxWLXoy8+EhQeA6lCAuhsz4//5iTm9pVDKgSi41riQpX5fBp3Dgpo8b1krsdzgghpKBTAkIBhMpmwefNm/rih2nJV11m5L/tbq/oOWuxveONwwq+OVx05+4C3POJy1jIHKF48BrzbwXGF8BbmESarSbM2j34iWgMTf4N88cO2XYjrcuORmlhhnq9i2RQvsTcgCbbN9H395ymRShEVZxXcNOjP2XdkcjkML2bj7FstwADcrZuHEywFxSqGpzerkBgiwIs9LvL1v5fMBTf9FLjFXfhz586fR1r7tn7oPSGOUQBDAoZUKsXXX3/NHzdUW67qOiv3ZX8bLUviR8sjLGfzbmZeNOcgEsmBlcNuLM12lFLAWSboF085zMbNcVZLnJ/fcz3AqVFpglVKAo4DnvjNnHfJ8j1wXP08cmtERGIJMPsaTNoqbHg7GXfr5vEjVwVVJkzdeiONAQfY/TtM+F8udr2aApGoCexnRJoECmBIwBCJRHjkkUcavC1XdZ2V+7K/jYrCKkmkItrxUuuac3MkwTfKrOvrqs079rrDWWBjMfOiwwDHfC1n/1rq+XySgCcQQCALhbFFGjaUvGqzv4yN2M6AIgryuA5Iu2CeB1OsYhj6/jb8Mf12msxLGoWAWUZNqQQIaSQEAvPjllll5uMaS4UB3Jib8+ol24SMljJ+1MPBryCx3Bz0AOYJtXblihvl1ixtiRXmR0bEMY6D8Jm/wIXGoyVXalfcg8uF/ImfAYEA3BOb8IvkNT59Qd5VDcqr1XbXEOIPARPATJ48GcePH8eBAwf83RXiJ0ajEQcOHMCBAwe8Xk7vSVuu6jor92V/Gx2BwPloh4WjwMYdNYMfZ+XT8+zLLOUTHFxHbhAIgH8fh4BjOCO9MUr4j/QJrI5aCc4yOsVxEHAMv0he5euUlJQ0vfczCUj0CIkEDI1Gg169egHwTSoBd9tyVddZuS/722RZRktqTuy1BD86+ySNN8pr2eeGHnG4JhAAs65B+EYkzl4PYgQcw9G+7yG9xs/P+tWT357AG5nn0L1bN8hkMnAc5//M56RZogCGBAyO45CcnMwfN1Rbruo6K/dlf5ssjgP+tQP4pL/jDfhs5ttE2V/vTM05OPWwqV+TIBACs65B8MaNJJ0Gg9XoyvUAU375GL8nTEGVCRM2KbGCHYLeCMjEAmRmZt7YPZiQBsIxV7nVGxnLRnYVFRUIDQ31d3eaB50SmJ9gPn710vW/jB2cI6SuGHOacwmWJeg1H1lZEjhagpSac21qa5PYMhmB60FM/uOH0bqN1dwjkwlY2gPKqxcd7gmTFCLAhhduRUhwM5wUTTzi689vCpkJIf5X2142ta0sqiXZZMPvjxPABELoXy1BVVUVkiMia5QJgKe2QzG/FbpzuThUY6fkC1Um3LnkL6wc0wZSqQStU1Iart+kWaMAhhASuChI8RmxRIrIKCf7Fek14DhgrWQulJDhdu27KMGNFAiXq40YutKc9fvjQfkID5KhW7duTXf/I9IoBMwqJFpGTTQaDUaOHImRI0dCo9E0WFuu6jor92V/CfGr6/OPOA4I5jTYK53itOozm1V45c9ynMzNhcFgcFqPEG/RHBjiWiOZA6NUKhF8/Tm7t6t6PGnLVV1n5b7sLyF+Z5mLpLoKLG4HE+PAALTVrnZYPVbBYU5fObrf3LnBcj6Rxo3mwJBmSyKR4JNPPuGPG6otV3Wdlfuyv4T4nWUuUlA0kNgbgutpIM5KH3EYyBSrGJ7ZrELygcP46tHOaBETA5lM1sCdJk0ZjcAQ1xrJCAwhpJFgzJwGYnl/4NpZAKh1RCZWwWFuXzlu759JwXwz5uvP74CZA0MaCZ3KHLw422CMENL0cRwgDQGe2smfEnAMQo7hrPQR7Jc+Y1PdkvV6+HtbcOp0HlQ6AxhjMJnMX4TUBT1CIp5Z3M5vtzaZTDhx4gQAoFOnThC42sreR225quus3Jf9JaRRss5GHmvOPyUoPoZoVumwel65CXd+ngsgF+ktQ3C0sAoAcGLOIEglEggEtF8PcR89QiKuWW8YVpOjDcTqCU3iJaQRst4wEDAf61QwLmrPP046IH0aPbXLXDaVPbMfwsPC6rO3xI9oEi9peNYbhtXUwLucRkdH+6UtV3Wdlfuyv4Q0SjX34pEEAWIFhEm9cfaCOccSB+ZwE7yaBr63Czum90ewVbBPozLEGRqBIYQQ4nuWkRn+JYOKSVGtNaD3gj/dbubjQQqkpCQjPjoS4eHhAMDPm6HgJrDQCAwhhJDGr8bIDAcgCIBCKkJqlAi5V93b5O6ZzSoAJ9AuXIC5t8VAqVLhX7+Z584cn30HTJwQ+fn5MBgMSOvQlt/9l4Kcpo9GYAghhDQoxhiuVSohFAqhVVWhUqXF4GV/e91uYogAv04dAIFAgLS5WwAAh14diGCpGGqNBlKJBEwogkwkhPUHHwcKdBqCrz+/AyaAycrKQlZWFoxGI06dOkUBTDOk0WgwceJEAMDnn3/u1aZYnrTlqq6zcl/2l5CmzmhiaPvqRr/df9OTaTAajeA4DgkJCQhVyKBSqyGRSKBSKSGSyqGQiAEAGoMRMpEQKp0eQVIxOMp27pZmG8BY0AhM80WrkAhp2oxGE87m5wNgCI2IxvkLF/DAmgJ/d6tWHSJFWPNsf4jFYly+dAkmkwmtE1tCJBJBYzACACQCDhqDCeA4cADkYvMIEIcbwRCuH8vF5mO13nzeUm4pcxQsMcag1tuWm0yMv4dab+RHnKyv5jjwbVvaMZ/nnN7LGzQHhjRbEokE77//Pn/cUG25quus3Jf9JaQ5EAoFaN+uLf86NiocZ9PN+8toDEaY9Frk5eVBJFXg3z/l4XSZCe0jhFg3pT80Gg1GLduHgipTg/b51DUDur5Vc1JyTp3bSwwx7xfl6PtoHS7CrMwQ6LRa/hwDsGC/BucrTUgKEeDV3jIwWOYO1d3e6X0RFx3huqIf0QgMIYSQgONo1IExBpXOCL3BAKFQCAHHQcwxlFerIFeY96npMud3h+0lhggaPPhpzH56tA3Sb+rk0zZpBIYQQkizx3EcFBKR3bkgqQiQ2p5vEXljc7yz84fzxybGwEwmaI0miGCCRCI1P2q5HhwZTSZwHAehQACjTo1KpQZSqRQ939kJZ6wDodpGUxqDlDARzlUY0CFGjg9HtkF1VRVKS0sBACEKqZ975xoFMCRgmEwmXLhwAQCQlJTkdSoBd9tyVddZuS/7SwjxDevVRgJwgFAAsbhmLQ7Bwhr/v0pDEPr/7d1/TBvlHwfwdykDxq/O0u/AFlg1yhKYaxOgaDLiMCSkf6yZUf8UtkT+MNOYdKgYE4mJkT/czOIkMWr8lcyEzAQ0U5NFZCFuGpSF6f5YHAkaLFJGcFsps2Pt8/0DaaC0tF2fu+Po+5Vcwj3Ps+PzvmvDs+tdr6QEwPIkKPYalpV1gwFYvL18TUlhnhFCCPwTWISpaDsMOTnRa1JuLy1haek2LKZS3FpaHm8IL2F2/h+YzWYU5m2Df24eZlMJbi2FkZ9rAIzbEIlEEIlEkJubi0gkAqNx+ZqZlYuKc3Jy/ruWxRCtaeWaG2D9NTCxZ7GuXr0Kn8+niwuTOYEh3bh16xbuu+8+AJlfFJvOtpKNTdQvs14i2jxWT4JizwIBWD4L9B+DwYAyU/G6/uUx22PG58JeuD06zlbxPwDA9u1ISXFB+tfaxatfL/RbOWWlwv8+x1Z7W8nGJuqXWS8RkVqmp6ej/wHbrDiBId0oKipCMBhUfVvJxibql1kvEZEaVu6YNJvNGleSHCcwREREBACoqqpCUVFR9JEMmxknMERERAQAyMnJgcVi0bqMlPC2CNKNUCiEzs5OdHZ2IrTqi5yU3laysYn6ZdZLRERr8YvsSDf4KAEiIv3aEl9kd+bMGRw9ehSRSAQvv/wynnnmGS3KIJ3Ztm0b3njjjejPam0r2dhE/TLrJSKitVQ/A3Pnzh3U1tZieHgYJpMJ9fX1uHDhAsrKylL69zwDQ0REpD+y/36rfg3M6Ogo6urqYLPZUFxcDLfbjbNn4z+bgoiIiCietCcwIyMjOHDgAKxWKwwGAwYHB9eN6evrg91uR0FBAZqamjA6Ohrtm56ehs1mi67bbDb4fL67q56yihAC165dw7Vr15DpicN0tpVsbKJ+mfUSEdFaaU9ggsEgHA4H+vr64vb39/fD6/Wip6cHFy9ehMPhQFtbG2ZnZzMulrLb4uIidu7ciZ07d2JxMbNHxaezrWRjE/XLrJeIiNZK+yJet9sNt9udsP/tt99GZ2cnDh8+DAB477338PXXX+Ojjz5Cd3c3rFbrmjMuPp8PLpcr4fZCodCaW1Bv3LgBYPmzNMouq7/V9ubNmwiHw6psK9nYRP0y6yUi0ruVv9vSzkiLDAAQAwMD0fVQKCSMRuOaNiGEaG9vFx6PRwghxNLSknjggQfEX3/9JQKBgKipqRFzc3MJf0dPT48AwIULFy5cuHDZAsvU1FQmU48oqbdRz83NIRwOo7y8fE17eXk5rly5AgDIzc3F8ePH0dLSgkgkgpdeemnDO5BeeeUVeL3e6HokEsH8/DzKysrWPe67sbERP//8c0q1JhubqD9ee2zbRusrP9+8eRNVVVWYmpqScjX2Zske2xZvXwwNDWmWPZXxPPbMnqyd2Zk9Xttmy55sfLp9qRzr2L7V+UtKShAIBGC1WlOufyOafA+Mx+OBx+NJaWx+fv66ZzLs2LEj7lij0ZjyCyTZ2ET98dpj2zZaj+0rLS2V8qLeLNlj2zbaF1pkT2U8jz2zJ2tndmaP17bZsicbn25fOsc6UX6TyZRy7clIvY3aYrHAaDTC7/evaff7/aioqJD5q+I6cuSItLGJ+uO1x7ZttJ5OjenYLNlj25LtGxnS3SaPffr9zL5xG7PHX9/q2WPbNlv2ZOPT7UvnWCuVf7WMvsjOYDBgYGAABw8ejLY1NTXB5XLh5MmTAJY/8qmursZzzz2H7u7ujAveKrL5C/myOTuQ3fmZndmZPbsomT/tj5AWFhYwMTERXZ+cnMT4+DjMZjOqq6vh9XrR0dGBhoYGuFwunDhxAsFgMHpXEi3Lz89HT0+PLh5ZLls2ZweyOz+zM3u2yebsgLL50z4Dc+7cObS0tKxr7+jowCeffAIAePfdd/HWW29hZmYGTqcT77zzDpqamqQUTERERKS7p1ETERERqf4sJCIiIqJMcQJDREREusMJDBEREekOJzBERESkO5zA6ITdbsfevXvhdDrj3gW21S0uLmLXrl3o6urSuhTVXL9+HQ0NDXA6ndizZw8++OADrUtSzdTUFPbv34/a2lrs3bsXp0+f1rokVT3++OO455578OSTT2pdiirOnDmD3bt348EHH8SHH36odTmqyrZjvULGe5x3IemE3W7H5cuXUVxcrHUpmnj11VcxMTGBqqoqHDt2TOtyVBEOhxEKhVBYWIhgMIg9e/bgl19+2fDZYVvF33//Db/fD6fTiZmZGdTX1+P3339HUVGR1qWp4ty5cwgEAvj000/xxRdfaF2Oou7cuYPa2loMDw/DZDKhvr4eFy5cyIrXOZBdx3o1Ge9xnoGhTe/q1au4cuUK3G631qWoymg0orCwEAAQCoUghJD3GPpN7t5774XT6QQAVFRUwGKxYH5+XtuiVLR//36UlJRoXYYqRkdHUVdXB5vNhuLiYrjdbpw9e1brslSTTcd6NRnvcU5gJBgZGcGBAwdgtVphMBgwODi4bkxfXx/sdjsKCgrQ1NSE0dHRtH6HwWDAo48+isbGRpw6dUpS5ZlTI3tXVxd6e3slVSyPGtmvX78Oh8OByspKvPjii7BYLJKqz4wa2VeMjY0hHA6jqqoqw6rlUDO7HmS6P6anp2Gz2aLrNpsNPp9PjdIzls2vBZnZ7/Y9zgmMBMFgEA6HA319fXH7+/v74fV60dPTg4sXL8LhcKCtrQ2zs7PRMSvXOcQu09PTAIAffvgBY2Nj+Oqrr/Dmm2/i119/VSVbMkpn//LLL1FTU4Oamhq1IqVMjeO+Y8cOXLp0CZOTk/j888/XPShVK2pkB4D5+Xm0t7fj/fffVzxTqtTKrhcy9odeMXvm2TN6jwuSCoAYGBhY0+ZyucSRI0ei6+FwWFitVtHb23tXv6Orq0t8/PHHGVSpDCWyd3d3i8rKSrFr1y5RVlYmSktLxeuvvy6zbCnUOO7PPvusOH36dCZlKkKp7P/++69obm4Wn332maxSpVPyuA8PD4snnnhCRpmquZv9cf78eXHw4MFo/wsvvCBOnTqlSr0yZfJa0OOxXu1us2f6HucZGIXdvn0bY2NjaG1tjbbl5OSgtbUVP/74Y0rbCAaDCAQCAJYfpvn999+jrq5OkXplkpG9t7cXU1NT+OOPP3Ds2DF0dnbitddeU6pkaWRk9/v90eN+48YNjIyMYPfu3YrUK5OM7EIIHDp0CI899hiefvpppUqVTkb2rSSV/eFyuXD58mX4fD4sLCzg22+/RVtbm1YlS5PNr4VUsst4j3MCo7C5uTmEw2GUl5evaS8vL8fMzExK2/D7/di3bx8cDgcefvhhtLe3o7GxUYlypZKRXa9kZP/zzz/R3NwMh8OB5uZmPP/883jooYeUKFcqGdnPnz+P/v5+DA4Owul0wul04rffflOiXKlkveZbW1vx1FNP4ZtvvkFlZaVu/+Clsj9yc3Nx/PhxtLS0wOl04ujRo1viDqRUXwtb5Vivlkp2Ge/xXGkVk2Luv/9+XLp0SesyNHfo0CGtS1CVy+XC+Pi41mVoYt++fYhEIlqXoZnvvvtO6xJU5fF44PF4tC5DE9l2rFfIeI/zDIzCLBYLjEbjuosv/X4/KioqNKpKHczO7Ksx+9bOHk827w9mVz47JzAKy8vLQ319PYaGhqJtkUgEQ0NDeOSRRzSsTHnMzuwrmH3rZ48nm/cHsyufnR8hSbCwsICJiYno+uTkJMbHx2E2m1FdXQ2v14uOjg40NDTA5XLhxIkTCAaDOHz4sIZVy8HszA4we7Zkjyeb9weza5z9ru5dojWGh4cFgHVLR0dHdMzJkydFdXW1yMvLEy6XS/z000/aFSwRszM7s2dP9niyeX8wu7bZ+SwkIiIi0h1eA0NERES6wwkMERER6Q4nMERERKQ7nMAQERGR7nACQ0RERLrDCQwRERHpDicwREREpDucwBAREZHucAJDREREusMJDBEREekOJzBERESkO5zAEBERke78H1FGNSxfcukbAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "\n", + "plt.loglog()\n", + "plt.ylim([1, 1e6])\n", + "plt.legend(loc=\"upper right\")\n", + "for i in range(1, 6):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "06d734f5", + "metadata": {}, + "source": [ + "Now we're talking! The Lomb-Scargle periodogram nicely connects to the low-frequency part of the periodogram. Now, we can try to model the low-frequency continuum more confidently. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "59da1227", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(5e-05, 0.003)" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAGwCAYAAABiu4tnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACO7klEQVR4nO2dd3gU1frHv7MtDUKIgVAMoNgIYighGEQJGqQpRcWGEooo16BorqioF9QfilcUsUSxXIpeVMAr4BVBBUWQJh019Iv0UKTE7CZbz++PZYbdzW6yZebM7O77eR4eJ5t1PvOemZ19c+ac8wqMMQaCIAiCIAgiZHRqHwBBEARBEES0QokUQRAEQRBEmFAiRRAEQRAEESaUSBEEQRAEQYQJJVIEQRAEQRBhQokUQRAEQRBEmFAiRRAEQRAEESYGtQ9AbVwuF44ePYr69etDEAS1D4cgCIIgiCBgjOGvv/5Cs2bNoNOp1y8U94nU0aNHkZWVpfZhEARBEAQRBocOHcLFF1+smj/uE6n69esDcJ+I1NRUlY+GIAiCIIhgqKioQFZWlvQ9rhZxm0iVlpaitLQUTqcTAJCamkqJFEEQBEFEGWoPyxHivdZeRUUFGjRogHPnzkWcSNlsNrz55psAgLFjx8JkMslxiOQkZ8z4yElOcmrXGW0xyvn9HQmUSMl4IsxmM+rVqwcAqKysREpKihyHSE5yxoyPnOQkp3ad0RajVhKpuH20pwQGgwFFRUXSNjnJqXVnPMRITnKSU5s+tZxyQz1SGsloCYIgCIIIHq18f9OCnARBEARBEGFCiRRBEARBEESYUCIlI2azGWlpaUhLS4PZbCYnOTXvjIcYyUlOcmrTp5ZTbqJzZJeGOXfuHDnJGVXOeIiRnOQkpzZ9ajnlhBIpGUlKSsLu3bulbXKSU+vOeIiRnOQkpzZ9ajnlhmbtaWTUP0EQBEEQwaOV728aI0UQBEEQBBEmMfFob//+/RgxYgSOHz8OvV6PdevWcVmR1Re73Y4PPvgAAPDggw/CaDSSk5yadsZDjOQkJzm16VPLKTcx8Wive/fumDRpEq6//nqcPn0aqampQa+QqlSJmBOnzyIjLVXxYorRtqQ/ObXljIcYyUlOcmrTF6lTK4/2or5H6vfff4fRaMT1118PAEhPT1ftWHQ6HZp36IEzFhtyX/oBnVtnYv7ofEWTKb1ejzvuuEPa5gE5Y8cZDzGSk5zk1KZPLafcqN4jtXLlSkyZMgWbNm3CsWPHsGDBAgwcONDrPaWlpZgyZQrKy8uRk5ODt99+G3l5eQCAhQsXYtasWXA6nThy5AjuuOMOPPPMM0H75cxoLTYHsid86/Va2Yu9kGyK+nyVIAiCIDSFVnqkVB9sbjabkZOTg9LSUr+/nzt3LkpKSjBx4kRs3rwZOTk56NWrF06cOAEAcDgcWLVqFd59912sXbsW33//Pb7//nueIRAEQRAEEaeonkj16dMHkyZNwqBBg/z+furUqRg1ahSGDx+O7OxsTJ8+HcnJyZgxYwYAoHnz5sjNzUVWVhYSEhLQt29fbN26NaDParWioqLC6x9BEARBEEQ4qJ5I1YbNZsOmTZtQWFgovabT6VBYWIi1a9cCADp37owTJ07gzJkzcLlcWLlyJdq0aRNwn5MnT0aDBg2kf1lZWbIdr8ViweHSoThcOhQue7Vs+63L2bx5czRv3hwWi4Wc5NS0j5zkJKd2nfEQoxJoevDOqVOn4HQ6kZmZ6fV6ZmYmdu7cCQAwGAx4+eWXccMNN4Axhptvvhm33HJLwH2OHz8eJSUl0s8VFRWyJVOMMTgrT5//QZZdBuU8evSotE1OcmrZR05yklO7zniIUQk0nUgFS58+fdCnT5+g3puQkICEhASUlpaitLQUTqdTtuNITExE02FvAQAEA5+1MBITE7FlyxZpm5zk1LKPnOQkp3ad8RCjEqg+a88TQRC8Zu3ZbDYkJyfjiy++8JrJV1RUhLNnz2LRokURO2nWHkEQBEFEHzRrLwhMJhM6deqE5cuXS6+5XC4sX74c+fn5Kh4ZQRAEQRCEBh7tVVZWYu/evdLP+/fvx9atW5Geno4WLVqgpKQERUVFyM3NRV5eHqZNmwaz2Yzhw4dH5FXi0Z7dbkflr8sAACnZBRD0yjev3W7HnDlzAABDhgzhtqQ/OWPDGQ8xkpOc5NSmTy2n7DCV+fHHHxncQ7O9/hUVFUnvefvtt1mLFi2YyWRieXl5bN26dbL5z507xwCwc+fORbyv43+elY4/6/EvWMunvmZmq12GowxMZWWl5KysrFTURc7Yc8ZDjOQkJzm16YvUKef3dySo3iNVUFBQ50j9MWPGYMyYMZyOKDwYY7h/xgYkXZoLABB0fJ6a6vV69O3bV9omJzm17CMnOcmpXWc8xKgEmhpszhPPR3u7d++OeLCa50DzSzJSsP+UGQANNicIgiAIJaDB5ipTXFyMsrIybNiwQfZ9z3uIBsITBEEQRDwQt4mUkgiC2kdAEARBEAQPKJGSEZe9Gkc+GIW89m25loi5/PLLcfnll3Nd0p+cseGMhxjJSU5yatOnllNu4nbwjhLLH4ABjjPHsP8MkMWxRIy4fASv4W7kjB1nPMRITnKSU5s+tZxyE7eJVHFxMYqLi6XBanIgGIzIHPIq/lWUi4e//0uWfdZFYmIifv75Z2mbnOTUso+c5CSndp3xEKMSxO2sPRG5Rv17ztrb+Fwhcie5F+akWXsEQRAEIT80a48gCIIgCCLKoa4SGWEuJyy712LRgnNgrnoQdMovLuZwOLBgwQIAwKBBg2AwKH9KyRk7zniIkZzkJKc2fWo55SZuH+0psSDnVU8vwqE37gAAZD3+BXSmRMUf7ZnNZtSrVw+Au25hSkqKYi5yxp4zHmIkJznJqU1fpE6tPNqLvtRPJpQYbA5BQELW1ejUsiEOcVpMSqfToXv37tI2OcmpZR85yUlO7TrjIUYliNseKREabE4QBEEQ0YdWeqSiM/0jCIIgCILQAJRIEQRBEARBhEncJlKlpaXIzs5G586dZduny27F0ZmPoKBrHlx2q2z7rY2qqiq0b98e7du3R1VVFTnJqWkfOclJTu064yFGJYjbwTuKDDZnDPYT+/H7CSCrkM/QM5fLhW3btknb5CSnln3kJCc5teuMhxiVIG4TKSUQDEY0vvP/UDqkA/7+s4w1/GohMTER3333nbRNTnJq2UdOcpJTu854iFEJaNYezdojCIIgiKiDZu0RBEEQBEFEOdRVIiPM5UTV/s34bqkdzKXjViLm22/dPWG9evXitqQ/OWPDGQ8xkpOc5NSmTy2n3NCjPRkf7VGJGHJGmzMeYiQnOcmpTV+kTq082ou+1E8mPGvtyYYgwNTkcmQ3S8WfHEvE5ObmStvkJKeWfeQkJzm164yHGJWAeqRosDlBEARBRB1a6ZGKzvSPIAiCIAhCA1AiRRAEQRAEESaUSMmIy25F+b/HoW9hAdcSMddddx2uu+46rkv6kzM2nPEQIznJSU5t+tRyyg0N3pETxmA9sgMbjgBZXfmViFmzZo20TU5yatlHTnKSU7vOeIhRCSiRkhHBYESjQc/itcE5+McWIxdnQkICFixYIG2Tk5xa9pGTnOTUrjMeYlQCmrVHs/YIgiAIIurQyqw9+oaPchhjqLK718JKMuohcFq/iiAIgiAISqRkhbmcsB7+HatXGcFcTsVLxDDGcPu7P2PN6p8BANdd1w1fPNxN8WTK6XRi1apVAIDrr78eer3ypXDIGRs+cpKTnNp1xkOMSkCP9qK4RIw/585XBij+KDHaygiQUzs+cpKTnNp1RluM9GhPZZQpEQMYL2qBSxulwMLrCdt5p7jNRSkIyM7OlrbJGb3OeIiRnOQkpzZ9ajnlhnqkoniwuadThAa3EwRBEPGAVnqkaEFOgiAIgiCIMKFEiiAIgiAIIkwokZIRl92K458/hzv69+VWIkZ0Hv/8Oa5laXr27ImePXtyLSNAzuj3kZOc5NSuMx5iVAIaTCMnjKH6wFb8dADIav8wV6e4zQOXy4Vly5ZJ2+SMXmc8xEhOcpJTmz61nHJDiZSMCAYjLrrl75g08GpM3sWnRIzoFLd5kJCQgH//+9/SNjmj1xkPMZKTnOTUpk8tp9zQrD2atUcQBEEQUQfN2osx4jsdJQiCIIj4hLouZIAxhsHT14K5nLAd34ctm9K4lIgBIDkBwJTZWnEf4F7Sf/PmzQCAjh07cisjQM7o95GTnOTUrjMeYlQCerQnQ9eg+IjNZaumEjHkjCpnPMRITnKSU5u+SJ1aebQXEz1SrVq1QmpqKnQ6HRo2bIgff/xRnQMRgBYtWgICwDiWiNGnNpa2uSgFAS1btpS2yRm9zniIkZzkJKc2fWo55SYmeqRatWqF3377TcpqQ0HOHinAPdgbgNfPNNicIAiCIORFKz1SNNicIAiCIAgiTFRPpFauXIlbb70VzZo1gyAIWLhwYY33lJaWolWrVkhMTESXLl3wyy+/eP1eEAR0794dnTt3xpw5czgdOUEQBEEQ8Y7qiZTZbEZOTg5KS0v9/n7u3LkoKSnBxIkTsXnzZuTk5KBXr144ceKE9J6ff/4ZmzZtwldffYWXX34Z27dv53X4XjCHDXfdcTvuuuN2MIeNm/PEl5Nw4stJ3JzV1dUYOHAgBg4ciOrqanJGsTMeYiQnOcmpTZ9aTtlhGgIAW7BggddreXl5rLi4WPrZ6XSyZs2ascmTJ/vdxxNPPMFmzpwZ0FFdXc3OnTsn/Tt06BADwM6dOxf2cZutdtbyqa9Z1uNfMAAMAMt6/AvW8qmvmdlqD3u/wXh9nUr6RCorKyVnZWWl4j5yxo6PnOQkp3ad0RbjuXPnIv7+lgNNj0q22WzYtGkTxo8fL72m0+lQWFiItWvXAnD3aLlcLtSvXx+VlZX44YcfcOeddwbc5+TJk/HCCy8ocryC3oB33n0PAPDq//g0raA3IL3XGGmbByaTCR988IG0Tc7odcZDjOQkJzm16VPLKTeamrUnCAIWLFiAgQMHAgCOHj2K5s2bY82aNcjPz5fe9+STT+Knn37C+vXr8b///Q+DBg0C4F7Ya9SoURg7dmxAh9VqhdVqlX6uqKhAVlYWzdojCIIgiChCK7P2ov4b99JLL8W2bduCfn9CQgISEhJQWlqK0tJSOJ1OBY+OIAiCIIhYRtOJVEZGBvR6PY4fP+71+vHjx9GkSZOI9l1cXIzi4mIpow0XxhgsNuf5bRfKyn6XtgVB+bH8jLlgP3UIAGDMyFLcBwAulws7duwAALRp0wY6nfJxkjM2fOQkJzm164yHGJVA04mUyWRCp06dsHz5culxn8vlwvLlyzFmzBh1Dw7uJOqO6Wux6cAZ9892Gzp3aA/AXa5FMCUqfwx2G47NKJacPLBYLLj66qsBAH/99VdYC6GGSlVVleTkVbogHpzxECM5yUlObfrUcsqN6olUZWUl9u7dK/28f/9+bN26Fenp6WjRogVKSkpQVFSE3Nxc5OXlYdq0aTCbzRg+fHhEXjke7VXZnVISBQAdW6ShKiMjouMKB10Sv2fDjDEM+Wi95Lzvo/VYMPZGLkv7Z6jQtvHgjIcYyUlOcmrTp5ZTTlQfbL5ixQr06NGjxutFRUWYNWsWAOCdd97BlClTUF5ejvbt2+Ott95Cly5dZPFHMljNc7D3xucKcVGKCYIg1Bh8HkuDzWmAO0EQBKEFaLD5eQoKClBXLjdmzBhNPMqrjWSTPmoLLhIEQRAEER7RN6qLIAiCIAhCI8RtIlVaWors7Gx07txZtn1WV1djyJAhGF50v1SuRekHp8xhw8n/TsHJ/07hWpaGt1Ns2yFDhnAtXRDrzniIkZzkJKc2fWo55Ub1MVJqI9cYqbIXe4HZrdIMtqzHv4DOlIjspqlY/Gg3RR77WWwOXPX0Ihx64w7JufOVAYqPkeLtBNwr2Itty2tmRzw44yFGcpKTnNr0ReqkMVIxiMlkwhtvvAHGGL5l6dh5woKyYxWosjsVSzQEvQENbxwlbfNADafYtuI2OaPTR05yklO7zniIUQnitkfKc/mD3bt3y9Ij5Zksma0OtJ2o7Mw9mrVHEARBxCta6ZGK2zFSxcXFKCsrw4YNGxTZP03gIwiCIIjYh7oRZMTlcuHgwYMAgIwmzRTzMMZQZXfCYnOCMRecFScBAPrURoo5vf38nZ5t26JFC26lC2LdGQ8xkpOc5NSmTy2n3FAiJSNVVVW45JJLAAAnTp9VxOGvLM2R6SMB8CsRo4bTs215li6IdWc8xEhOcpJTmz61nHJDiZTMJCcnK7p/37I0ACAYExR1+oO3kzEmtS3PYX1Kn08tOOMhRnKSk5za9KnllJO4TaTkqLXnS0pKCsxmMwD3oGwe6EyJaFHyHy4utZyMMRR9sh2NHpkHABj2yXbMH52v+ErynueTF7yd8RAjOclJTm361HLKTfQ9jJQJpQeb8yC7aarXf2MV3164jQfOoMouXwJMEARBEOEStz1SsYC7V8a9erq41AJBEARBEPyI2x4pJbBarRg1ahRGjRoFq9WquE8QAD1zYszDD+HPJW+BOeyKOwGAOez4c8lbMe/kfT7VcMZDjOQkJzm16VPLKTsszjl37hwDwM6dOxfy/2u22lnLp75mLZ/6mpmtdlZZWckAMADsxOmzXr+Ti9qcWY9/IavL5XIxs9XOzFY7c7lckj/r8S8Uc/pDDSdjzKttKysrFfep4YyHGMlJTnJq0xepM5LvbzmJ20d7Sgw2NxqNmDRpkrTNA6PRiIkvvIg3l+2BoNfLtl/ms8xCbsuGmD86HwAg6PVIu/5+aZsHajjVOp88nfEQIznJSU5t+tRyyk3clogRkbNosWeZlNp+Fwn+9quEK1ApGABUloYgCIJQHSoRQxAEQRAEEeXQn/QywhjDqVOnAADJqWncnCdPnoTTcg66JD4ZOWMMrqoKAIh5p3g+MzIyFF+3Sg1nPMRITnKSU5s+tZxyQ4mUjFgsFjRu3BiAciVi/DlbXeyu68evRIwVh98eEvNOz/PJq3QBb2c8xEhOcpJTmz61nHJDj/YIgiAIgiDChHqkZCQlJUWqA8erRExKSgrMVnuNwdhKojMlouVTX3PzqeX0PJ+x6oyHGMlJTnJq06eWU26oR4ogCIIgCCJM4jaRKi0tRXZ2Njp37qz2oRCEBGMMFpsDFpsj6v9KIwiCiAfiNpFSomix1WrFY489hscee4zr8vrj/l6C08s+4Fqu5fSyD2R31pZEKOWsDd7nkzGGQW//hCZdb0eTrrfjtrd/UjyZUuuaJSc5yak9ZzzEqAS0IKeMC3IyuxX16tUD4J611/mfP0u/U2pBTk9n1uNfYOcrAxRfkPOqpxfh0Bt3yOoMtJK6IAiw2ByKOOvCbDZLbctlxowKcfKOkZzkJKd2ndEWo1YW5KTB5jJiNBrxzDPPSNu8nOOeehrvr/wf13Itqfl3SttyUGV3SkkUAGw8cAZVdqeURCjhrAs1zifvONW6ZslJTnJqzxkPMSoB9UhRiZg6PSJKloiprQxMvJSIiZc4CYIg5EArPVJxO0aKIAiCIAgiUuhPXRlhjMFisbh/MJi4Oc1mM1y2agjGBG5OZncPCox1p3g+k5OTuZVL4BmnWjGSk5zk1J4zHmJUAkqkZMRisXgNNuflbJyeBoBvuRbPAdGx6vQ8n7wGXvKOU40YyUlOcmrTGQ8xKgE92uOAxeakNYEIgiAIIgahHikZSU5ORmVlpfsHj0d7uZOWeU3nl9t54vRZdPq/ZbI9CnKv5+QM+HvBmCD1lvB6zKaG0/N8Jicnc3HyjlONGMlJTnJq0xkPMSpB3CZSpaWlKC0thdMZOGEIFUEQpG5JxhhyWzbExvNT+n2n88vt1JkSZdmf73pOgZyCTL5gUcvJu5uZd5xqxUhOcpJTe854iFEJ4vbRnhIrm3siCALmj87HxucKFdm/Uviu55Td9MKUUvcjSjWOiiAIgiC0SdwmUkpgs9nw7LPP4tlnn4XNZoMgCEg2Kbuoos1mw/MT/oEzKz8Gc8pbOmXjc4WYPzpf+jl30jIMnr4WzGnHmZUfK+IMhBpO3/PJA95xqhEjOclJTm064yFGJaAFORUqESPOPpBjsUzGGKrszvPbQNuJypWI8T3eJKMeg6evlR5RAoDLVi17GZO6FuSkEjHKEG0lIchJTnLGji9Sp1YW5IzbMVJKYDAYMHbsWGlbDnzHLHk+ahM9D495BJ+sPQBBJ3/vl/iI8k+zDbmTlrlf0+lRv1N/aZsHajiVOJ91wTtONWIkJznJqU1nPMSoBNQjpVCJmFDeE6zDFyVKxATaVzDHEQlUIoZKxBAEQYSCVnqkaIwUQRAEQRBEmFAiRQRFklGP3JYNpZ99HzESBEEQRDxCiZSMmM1m9zpAggCz2czNmZJgxIF/3gKXrVoxjzhWquzFXtjwVDcseewGxZ2euGzVOPDPW7g61TifvONU65olJznJqT1nPMSoBDT4IgQ8Z88lGfkMeNYS7uUcDGB2umwIgiAIAqBEKmh8Z8/ltmyI2SPyvN6TnJyMEydOSNs8SE5Oxh+Hj6LbP3/kWjqFt1MwJuDiR+ZI2zxQ43zyjlOta5ac5CSn9pzxEKMSUCIVJL4rfoslXzwRBAGNGjXielyiU5/cIOadcvp8exf91UBU63yqcS55Qk5yklObzniIUQliZoyUxWJBy5Yt8cQTT6h9KITGEXsXsyd8i+wJ37pXa4/vVUAIgiCIMImZHqmXXnoJ1157rarHYLPZMGXKFADAuHHjYDKZuDhffeWfOLdmD1K73Ka4Ty0nc9pRsf5LAIjYGah30Xe9JjXOp5xxBoNa1yw5yUlO7TnjIUYliIkFOffs2YOnn34at956K3777Te89tprQf+/wS7o5W+xxI3PFUqrfStVIqauhTCVLhHjb1+eS/pHY4mYYBe+pBIxylBZWYn69esDAE6cPouUlJSAj1flItpKX5CTnGo4oy1GrSzIqXqP1MqVKzFlyhRs2rQJx44dw4IFCzBw4ECv95SWlmLKlCkoLy9HTk4O3n77beTlXRjo/cQTT2DKlClYs2YN56P3xmAw4IEHHpC2eTmHjRiBLzYe5lo6hbdT0OlR75qbpW0eqHE+ecfJO0bGGO6bsVGKMfelHyEYjMht2RDzR+crlkyp9dkkJzmjyRkPMSqB6kdtNpuRk5ODESNG4Lbbaj7KmDt3LkpKSjB9+nR06dIF06ZNQ69evbBr1y40btwYixYtwhVXXIErrrgiqETKarXCarVKP1dUVMgWS0JCAj788EPZ9hess/S99/FjgF6rWHEKBiMu6vMoNx8AmEwmvFn6HgDACXcSoGSvCcA/Tt7XbJXdia1HzTViDPR4VS7U+mySk5zR5IyHGJVA9USqT58+6NOnT8DfT506FaNGjcLw4cMBANOnT8fixYsxY8YMPP3001i3bh0+//xzzJ8/H5WVlbDb7UhNTcWECRP87m/y5Ml44YUXFImFiB18l7sAoHivSbyx8blCAJAejxMEQUQjmp61Z7PZsGnTJhQWFkqv6XQ6FBYWYu3atQDcidGhQ4fwxx9/4LXXXsOoUaMCJlEAMH78eJw7d076d+jQIcXjIKIP3wHpgP8lL4jwSTbpkWyKv4VtCYKILTSdSJ06dQpOpxOZmZler2dmZqK8vDysfSYkJCA1NdXrn1yYzWakpKQgJSWF6/L6jRo2wMGpt3MtncLb6bJV4+DU21Vxnnj7zpiNU41rVoyxUcMGfEspqfDZJCc5o8kZDzEqgeqP9uRk2LBhQb+3tLQUpaWlcDrl7WGwWCyy7o+cF2B2a91vUsBZZefv5Ila59LCuV3j5XNCTnJGk08tp5yElEi5XC789NNPWLVqFQ4cOACLxYJGjRqhQ4cOKCwsRFZWlqwHl5GRAb1ej+PHj3u9fvz4cTRp0iSifRcXF6O4uFiaPikHSUlJ2L9/v7TNg6SkJJTt2oOeb6yEYOSz/oYaTsFoQvPR/5K2eTq/GnMdBn28m6tT3FYaNa5ZMcbvH7+B6+dEjc8mOckZTc54iFEJgkqkqqqq8Prrr+O9997D6dOn0b59ezRr1gxJSUnYu3cvFi5ciFGjRuHmm2/GhAkTZFsY02QyoVOnTli+fLm0JILL5cLy5csxZsyYiPYdao9UMKtt6XQ6tGrVKqLjChWdToeWrVrB0GBXTDsFQQdDg8y636iAs0XLVhCEvVydvFDjmhVjbMnRq9Znk5zkjCZnPMSoBEElUldccQXy8/Px4YcfomfPnjAajTXec+DAAXz66ae4++678eyzz2LUqFFBHUBlZSX27r3wJbV//35s3boV6enpaNGiBUpKSlBUVITc3Fzk5eVh2rRpMJvN0iy+cAmlR4oxhsHT10bkIwiCIAgi9ggqkfruu+/Qpk2bWt/TsmVLjB8/Hk888QQOHjwY9AFs3LgRPXr0kH4uKSkBABQVFWHWrFm46667cPLkSUyYMAHl5eVo3749li5dWmMAupJU2Z0oO+Zeb+qSjBTsP+UeEOfbS2W321FaWgrAnaj5Szjlxm6345233kLFhl2o37Gf4j61nMzpwF+bFwMAd+f00h1gzssh6DksWMk5TjWuWTHGd97aiYf+9rDiPkC9zyY5yRlNzniIUQliokRMJASzxLxnSZENzxai80vudW88kyoqERNbJWL8OXWmxLDOYSjHFeslYnxjPHH6LDr/82cA4X0+giXaSl+Qk5xqOKMtxqgtEdOqVSuMGDECw4YNQ4sWLZQ4Ji6EO2sv2aRHdtNUlB2rkJIoEb1ej3vvvVfa5oFer8edd9+Nr7cfg6Djs5qFGk5Bp0Nydndpm6ezz9VNsCFG41TjmhVjvOWaplw/J2p8NslJzmhyxkOMShByIvXYY49h1qxZePHFF9GjRw+MHDkSgwYNQkJCghLHpxjhztoTBGD+6Hy0nVizlygxMRFz5syR8zDrJDExETNnfxKw1yqanRabO8llDBAMJjS6dZyiPl9E53SP4tS8nLxQ45oVY5z5Yi9uTrU+m+QkZzQ54yFGJQj5T97HHnsMW7duxS+//II2bdrgkUceQdOmTTFmzBhs3rxZiWPUHFQhRD4YY7DYHFLS5EnupGXInvAtDfQnCIIgNEvYzw46duyIt956C0ePHsXEiRPx0UcfoXPnzmjfvj1mzJiBOB965ReLzUnt4oFYzy57wrdePT7ZTb2fdYsD/QmCIAhCa4SdSNntdsybNw/9+/fH3//+d+Tm5uKjjz7C7bffjmeeeQZDhgyR8zhlp7S0FNnZ2ejcubNs+zSbzWjUqBEaNWrkd6n73EnLMHj6WlmTKbPZjJbNm+LQW/dyLREjh9NfPbvclg3x9SPdUPZiL6moLeAuK3LorXu5xik6r2p1MXcnrzjrumaVQIyxZfOmfEspcY6TnOSMNmc8xKgEIY+R2rx5M2bOnInPPvsMOp0OQ4cOxRtvvIGrrrpKes+gQYNkTVCUQImVzQF3fUBPkox65LZsiI3nEwax8K2cs5N8nTyQ27nxuUIkm/RIMuohCILf9nFV8e+ZclVV4M8qIJmzkydqXD+uqgqcquLrjIXPCTnJGWs+tZxyEvK3eefOndGzZ0+89957GDhwoN81Hy655BLcfffdshxgNJGUlITffvtN2gYAQRAwf3Q+/jTbFBmwnJSUhA1btqL/26u5loiR25ls0teaXApGE5qOKJW2eSA6543Ox5AvDnN1ittK4++aVRoxxq8euY5rGQrecZKTnNHmjIcYlSDkROp///sfWrZsWet7UlJSMHPmzLAPKlrR6XRo27ZtjdfdPSzKTOvU6XTIzm4LUyM+X/RqOQVBB1Oj2q87pZxXtcmGIBzl6uRFoGtWScQYs7P5edWIk5zkjDZnPMSoBCEnUmISZbPZcOLECbhcLq/fR8vaUuGuI0UQBEEQBCESciK1e/dujBw5EmvWrPF6nTEGQRCiJjFRYoyU3W7HrFmzAADDhg3jtrz+zH/9C39t/R312hXW/T9EqZM5Haj81f1olLfzk5kHwJzNuZWI4RmnGtesGOPMfx3CfUOLFPcB6n02yUnOaHLGQ4xKEPI3w/Dhw2EwGPD111+jadOmEOJgUaVgJ9nZbDY8+OCDAIB7772XywVhs9kw5uG/AQBSsgsU9/lzWmxOaZC4UjCnA6e/fUdyyo24jpVnHKKz5Ft3uRZeiZSScfqixjUrxjjmW+DOu+9R3Aeo99kkJzmjyRkPMSpByN8MW7duxaZNm7xm6cUyjLGgF4TU6/UYMGCAtB14n7IcmuS55db+WL7zBNcSMZ7O3EnLkNuyIeaPzlcsmRJ0OiRdfq20LTfiRAAxDk9nwRWN8DvHEjFKxulLsNesnIgx3nRVY65lKHjHSU5yRpszHmJUgpATqezs7KifqhgKVXantCBkdtNUJBndJ9pzSYPclg3P92QYsHDhwjr3OXj6Wix+tJssSUdiYiLmfvEf7iVivlq0EIOnr1V0WQdPBIMJjW97Tvb9inUTRcQ4PJ0fcy4Ro0ScgUhMTAzqmpUTMca5nEvE8I6TnOSMNmc8xKgEQX3rVVRc+KL55z//iSeffBIvv/wy2rVrV6MbTs0KzErj2eMyf3S+9IUbzGOtJOOFYsdlxyoUTTp4oPSyDkDNNbh8kx45cJ9T96M9XskSQSgFY0y6L4ko/didIOKdoL7J09LSvD6IjDHcdNNNXu+JtsHmgWbted6IxN4nEc97UaBFIwMhJh7+ih1HK0ou6yDu3zNhZQyyt58gIKoTWoIQEUsu+asWoORjd4KId4L6Bvnxxx+VPg7u+Ju153sjym3ZELNH5AW9T4vFguzsbABAWVkZkpO918NW4j5msVjQJjsbR85UodkD78ovCOAU49y4dbuiLjFhFZ0843TZq3H0o4fR8bNE4I6p0BkTQ96Hbw9BXb0DohMAlzjrumaVQIyxzedJ2KTw9SOiRpy8nVV2JzbsPeZ1/eiMiYo/ducZp/h5slgs6NT+GgDApq3bcVGD+oonivFwDcVDjEoQ1Cere/fuSh+HJvCt/bbxwBmcNtuC/v8ZYzhw4IC0zQPGGA6ed4JTPeR4iRMMcFacwKEKICsMp78egjp7B847xW2lUeNcijEerOB7/ahxzarVtgCw6ske6P5GcBNlIlJyitPz8+SyVePQeWfHF79H3uVNFe91i4drKB5iVIKw/0SxWCw4ePAgbDbvROOaa66J+KDUwGJzoH5CzdevfzX43rjExET88ssv0jYPEhMTsXL1Gtz5/joIBj7TRuMlTsFgRJOhU/HxiDw8sPjPkP9/f0WZ6+odEJ3ittKocS7FGOc9dC3X64dnnIwxuHQGrFztXm/PpTNIwx+UxLNt01NTFHWJ8Gpbz8+T7+dE6V43QL37Hk9nPMSoBCFfdSdPnsTw4cOxZMkSv7+PljFSvuS9tBxtWzWRfg5nYLNer+derFmv16NTbmckfHWaq1OM02JzcHPyjlPQ6ZHQ9Ap06JQLYUlkA9FXPdkjqKRcdPJCjWtWjLFTLj+vXq9Hbm4uquxOWJ0McLqvWyUGYvsdq/SV8kuEAOq1Le9raNOEXkg26blOElHr/s7TGQ8xKkHIidRjjz2Gs2fPYv369SgoKMCCBQtw/PhxTJo0Ca+//roSx8iNHR6JkzjIWUszuTyTO3HJBTlhjEkLUxLykqTgoHyibngOxPbXEwkov0RIPFFXkXOC4EnIV+IPP/yARYsWITc3FzqdDi1btkTPnj2RmpqKyZMno1+/fkocJ1eym6Yi2aQPeXC4w+HA3LlzAQB33XUXDAZ5P+jiVH3gwl/SDocDn3/2KSp/346UNjeEve9AXzT+8Izz1kG3h+0MBd84/a1ELjfM5YR5x0p8MfckmCsdgk75ZEh0AojofAaL0tesP8QYP//sT9wx+E7FfQDwV5UVP33zJQB3u4rnUsnkhrmcGH+luwd18i6+1w/PtlXjGnI4HJgzfy6sDieYK41L26oVJ09nPMSoBCEfsdlsRuPGjQEADRs2xMmTJ3HFFVegXbt22Lx5s+wHqBS1FS0O9y9Uq9WK++67DwAwcOBA2S8If1P1rVYrRg5z1ytLvjw/7H37/hVdW4+XZ5wnTt8StjMUfOP0XYlciWSKOez48+vX8bevz5eIUahXSZqJZHNKTiCy8xksSl+z/hBjHPk1cGv/AYr7AHecYrtu+ugZpKSkKN7bzBx2/O2B4QCUvX58nWq0Le9ryNPJq23VjpOHMx5iVIKQj/jKK6/Erl270KpVK+Tk5OD9999Hq1atMH36dDRt2lSJY1SE2ooWh/udrNPpUFhYKG3zQKfToceNN2Htvj9lW19h43OFuCjFFDA5USvOwsJCbD981itORR+XCAISW7ZHl0vT8T+ler18ewLPO8VtpVHjXIox5re+iOv1I7ZrvUQjn0etgoAeN7rX29vLaw0nldpWrfuB08W4ta2acfJyxkOMShDyt8/YsWNx7NgxAMDEiRPRu3dvzJkzByaTSargHK8kJSXh+++/D+q9chX6TUpKwtdLlspaIsb9WDPwcXnGyWuwuej07L1RukdBZ0xA5t2T8IWCJWJ8ewJ1xgT0ePwt2VdwD0Qo16xciO36NccSMUlJSci8e5K0zQOdMQFfL1kKANxKOKnVtryvIdFpsTm4ta2accaqTy2n3IScSIldcADQqVMnHDhwADt37kSLFi2QkZEh68HFMjwK/cYioa4oH01sfK4QySa9Iiu4EwRBEMoQdj+azWbDrl27YDKZ0LFjx5hMosRab4A8s+Q89wd4F8glCHEmEuXVBEEQ0UPIiZTFYsHIkSORnJyMtm3b4uDBgwCARx55BK+88orsB6gmYq23shd7BdVzZLFY0LZtW7Rt2xYWiyXg/jY+VyjbMVosFuS2z8HRjx6Gy14t237rctYWZ6w4xVIm3Tp34Nq2PM+nmu2a2z6H6/Vz9KOHcfSjh7nGmds+B7ntc7hdP2q1rVr3A55tGw/3vXiIUQlCfkYyfvx4bNu2DStWrEDv3r2l1wsLC/H888/j6aeflvUA1SaUR0mMMZSVlUnbgfcn30BXxhh27Cg7/4Nsu63TWVecSju5dNowwP7nQez6E8jqw0PI/3yqcS7Fdt3xJ9/rx/7nQWmbjxTSuczqXcd7ZXSq0bZq3g94ta3acfIqERPrMSpByInUwoULMXfuXFx77bVePTRt27bFvn37ZD24aCMxMVEq8Mxzef0l3y3DsJm/cC0Ro0acnk6rU/kPnGAwIvOel/H+/Z3w6I98/urlfT7VOJdiu84ansf1+sm852VpmweCwYgl37knKTz0vZmbU422Vet+UG13cmtbLdz3Ys2nllNuwioRI64j5YnZbI77QdN6vR4FBQVh/b/ibDQgtEUm9Xo9bujeHYnL+XzRi04xznBn7YW6inqNtnUqP1tQ0OmR2OIaXHd9dwg/8StDwfN8RnLNhovYrjdwLIau17ud4jYPBJ1eilFYzmfygFpty/saEp0Wm4Nb2/KK0/O7AADyunYDwGdpADXPZTQTciKVm5uLxYsX45FHHgEA6Qv/o48+Qn6+8gsIKkWHrDRsO2FTpPRKXfiuJRTrs/lCWUWdIAgiXqjt3hjr3wvRTMiJ1Msvv4w+ffqgrKwMDocDb775JsrKyrBmzRr89NNPShyjIviubP7xyDwYk1IiWtvJ4XDg66+/BgDccsstQa/Q6ruWUCiLTDocDvx30SJYdm9B0mV5YR13qHjGeePNoQ9QCGUVdX/OW27hs5o6czlRtfcXfPNfC5grgVsZCp7nM9xrNhLEdv3vomr04VRSyuFwwLJ77fntm7jF+d9Fi85vG7mViFGjbXlfQw6HAwu/+RpWu5Nb2/KI0/feKJ5PANjgylO8VqNa55K3U25CPuJu3bph69ateOWVV9CuXTt899136NixI9auXYt27dopcYyK4LuyuRzrE1mtVgwaNAgAUFlZyW15/bvvvAOAu1SCXAt91uUU4zxx+mxE+6prFXV/zsrKSgjGhJBdnot5BvV+hx0nF7yEogV8y1B4nk8ePt7XrNiudy+I/PoJFqvVipMLXjq/PY5bnJ7nkleJGDXaVo37nujk+dnkGefG5wrB7NVonO4u9ROr9wM1nHIT1hG3bt0aH374oddrJ06cwMsvv4xnnnlGlgOLRnQ6Hbp27Spt83Jem5+PLQfPAoLAZaFPOeOsaxX1QM5Qh5qH9ThREJDQvA2uubgByjmWofA8nzx8vK9ZsV07tEjj+jlJaN5G2uaCIODa88MdjnAsEaNG26px3+vatStcjHFrW95xJpv0EPSmmL8fqHIPkhnZUr9jx47hH//4R1wnUklJSVi9ejV355rVqzF4+lpsPJ8kKFp/Dt5x8iwR49m2oXp9u8yBuh8p6owJaHLfFHwjc4kYsUfMnzspKQnLV6yUyl549p4p0dOoxjUrtutyzmVMmtw3Rdrmgc6YgOUrVgLgWyJGjbZV4763evVq7iVi1IjT837Aw6fWuYxmoq8PjaiBuNDnn2ab4vXnYgGxFIvSj0ADIZ6j3JYNMXtE7eOgPM8nDTYlCILQHtHZj0bUQO6FPmOZC6VY+CUkvuWBgMAlgvy9t7b3EwRBEOpBiZSMVFVVoXPnzujcuTOqqqrIGeVOl92KY7MfR8/u18Flt0a0L0GAVG6othJBVVVVyMvLw4EZY7Fp/A11vj9S1GzX67tey/X6OTb7cRyb/TjXOK/vei2u73ptxNdPKE412lat+wHPtlUrzuu7Xotjsx/nEme83NvlJuhHeyUlJbX+/uTJkxEfTLTjcrmwceNGaZucyjkFHp1vjMFWvgdby4Gs7pGvpB7MzFDPOBMNOkWnOvv6eJ1LsV03l/O9fmzle6TtmofEavT2RfzolzFs3rQJAJB1A7f6Taq0rZr3A15tq1ac4jUEDuVT1D6X3O5BMhP0XXrLli11vueGG26I6GCinYSEBGk9jISE0Kfn+xLM6t9yO4NBC04bh8+bYDCi0R0TMe2u9hj/C5/OW95tq8a5FNt1+pCOXK+fRndMlLY9YQx+Z3RGOiZNMBjxnwXudaQeXxPWLsJyqtG2at0PrHYnt7ZVK87/LFiE0XM2cykZpYV7ezQSdCIl1sIhAmMwGNAvxEXwAiVKgW7utTl5zaBT2wkANg5eQadHcuvOuLl3IZ7ZyGcQfzjXUDT5gAvt2rsvv5llBoMBya07S9ue+JvRCUQ++1XQ6aUYS9bxKxGjRtvyvoZEp8Xm4Na2asXZu29fJK/jM/5VzXMZzdCsPZUJNMsunNW/CYKIDHE8Gs1+JQgiWIJKpF555RU8+uijSE5OrvO969evx6lTp6I+wwwHp9OJH374AQBw4403BiyOKs7K2hjk4pC1rf7t6by2G59Hq2o7b7zxRi5O5nKi+sB2rPjBvc2jDEWw11C0+oAL7bp8mR4FPXoo7gPccVbt33J+uzBgnHLOfGUuJ5YvWyZt8yoRo0bb8r6GnE4nvv/+R1TbnTH72RSdy5ctQ9X+LUhseQ0Xnxox8nbKTVCJVFlZGVq2bInBgwfj1ltvRW5uLho1agTAXSenrKwMP//8M/7973/j6NGj+PjjjxU9aE/Onj2LwsJCOBwOOBwOjB07FqNGjeLm96S6uho333wzAPdS9ykpKX7fJ677JJYrqeuv39pW//Z08ioJobYz3BIxocIcdpyY9w8MnsevDEWw11C0+oAL7dp/Ht/r58S8f7i3pz/CLc7+/S6U9/C8fhQZ3A712pb3NeTpjNXPpujs368PAD4lYtQ+l7ycchNUIvXxxx9j27ZteOedd3DvvfeioqICer0eCQkJsFgsAIAOHTrggQcewLBhw5CYmKjoQXtSv359rFy5EsnJyTCbzbj66qtx22234aKLLuJ2DCI6nQ45OTnSdm3IUdsvVKdcaMHJZZ6OIMDY+BJckVkfFRzLUPBsWzXOpdiuVzWpz/X6MTa+RNrmgiCg3TXuXoSzHtdPoHJFsiy4qlLbqnU/cDHm1bY8nOI2L2e7a67BzvK/uJWIUfveHo0E/U2ek5ODDz/8EO+//z62b9+OAwcOoKqqChkZGWjfvj0yMjKUPM6A6PV66ZGj1WoFYwyMwzRRfyQlJWHr1q2qOXmWa1HTycurMyag2fC3sULmEjGeVPlMNuB9DalxzYrtuo5zGZNmw9+WtnmgMyZg3Qb31HXPEh9KDW4XnWq0rVr3Pd4lYtSIc92GTTEfI2+n3ISc/ul0OrRv3x4DBgzA3XffjcLCwoiSqJUrV+LWW29Fs2bNIAgCFi5cWOM9paWlaNWqFRITE9GlSxf88ssvXr8/e/YscnJycPHFF2PcuHGqJXVEbGCxOXks2QIAuP5Vmg0bz2x8rlDRBVcJglAe1fvRzGYzcnJyUFpa6vf3c+fORUlJCSZOnIjNmzcjJycHvXr1wokTJ6T3pKWlYdu2bdi/fz8+/fRTHD9+PKDParWioqLC6x8R2wSzHpcnuZOWYfD0tRH6HAGd/krA0KzM+MRdrojOO0FEM6onUn369MGkSZMwaNAgv7+fOnUqRo0aheHDhyM7OxvTp09HcnIyZsyYUeO9mZmZyMnJwapVqwL6Jk+ejAYNGkj/srKyZIulqqoKBQUFKCgo4Lq8PjkDI45HqevRnG9yU3asAi67FeWfPo0BfXoGXZ5B9GVP+DagU5xsUPZiL+mfODaGd9uqcS7Fdu3d8yau10/5p0+j/NOnucbZu+dN6N3zJq4lYtRoW7XuBzzbVq04e/e8CeWfPs2tREy03Nu1hKbXkbLZbNi0aRPGjx8vvabT6VBYWIi1a909BsePH0dycjLq16+Pc+fOYeXKlfjb3/4WcJ/jx4/3KndTUVEhWzLlcrnw008/Sds8iFdnsCVigl2PS0xu/jTbLiRAjMF66DesOQRkdR4bli+QM9BkA95tq8a5FNt11SG+14/10G/SNhcYw6qVKwEAWZ0e5eZUo23VvB/walu14hSvIV4lYtS+t0cjmk6kTp06BafTiczMTK/XMzMzsXPnTgDAgQMH8OCDD0qDzB955BG0a9cu4D4TEhIUW4Y+ISEB8+bNk7Z5EK/OcErE1LYeFyAmNxcSHsFgRMaAp/HK7e3w4q+hl2fY+Fwhkk36kKa1825bXj5xur/F5pTa9Y27crhePxkDnpa2eSAYjPjk088AAM9uUb68h+hUo23Vuh9YHU5ubatWnJ98+hken7uNW4kYte/t0UhIiZTdbpdG2F999dVKHVNI5OXlhTXiv7S0FKWlpXA6gx87UxcGgwGDBw+WbX+hOnmWa1HTCYRXIqa29bj8Iej0SLmqGwYMKsT//R76rD33+JfQ/lbhfQ3x8PlO9xfb9bbb+ZYxSbmqm7TNA0Gnx2233wEAeG4bvxIxarStWvc9i83BrW3VivO22+/Ac9vqc/Op+R0WrYQ0RspoNKJFixayJh+1kZGRAb1eX2Pw+PHjx9GkSZOI9l1cXIyysjJs2LAhov0ohe+0eIKIVoJ93EkQBBGNhDzY/Nlnn8UzzzyD06dPK3E8XphMJnTq1AnLly+XXnO5XFi+fDny8/MV94eK0+nE6tWrsXr16qCTTc9BztlNU6XXg50WH44zUuLFyVxOVB8uw/q1a8Bc2ojTYnPCYnPItlYa73bd+Fwhfp1YiMfaubBmzZo6nRdmQF74F07sTqf7XFYfLuN6/axdsxpr16zmdv2I1+zaNbH92RSdPNtWrTjXrlmN6sNlXOKMl3u73ITcx/3OO+9g7969aNasGVq2bFljOffNmzeHtL/Kykrs3btX+nn//v3YunUr0tPT0aJFC5SUlKCoqAi5ubnIy8vDtGnTYDabMXz48FAP3QslHu1VV1ejWzf344Ngl7r3LBeTaNDjzvfXBl2Dz9fJsySEmk6eJWKOz3kSt8zhW4aitmtIHAgvyyrYQfjkJtmkB7Nbcf311wOo/fqRcwXw6upqHJ/zpHv77QeDjtNzCYtQS7gwhx2FPQoA8Lt+xGu2cI532/ouxSFHORoR3teQr1Mrn02lnJ7XEA+fmucypkvEeDJw4EBZD2Djxo3o4VFcU5xRV1RUhFmzZuGuu+7CyZMnMWHCBJSXl6N9+/ZYunRpjQHooVJcXIzi4mJUVFSgQYMGEe1LRBAEXHbZZdJ2KP+fOJamxswxhZyREC9OCIChYVNkpSfDwUvpJ05/Ra7lWAU7kE9pgnXKuQK4IAgwNGxap9MXz89hyAmcALRu7Y7Txun6Ea/ZlukpXsfpez+RKxEH1L2GGLvQtkomi55OcZsHgiCgdevLcOC0GeCg1PL9QMuEfBeeOHGirAdQUFBQZ1f9mDFjMGbMGFm9SpCcnIw9e/ZEtA/fmWOhOHkN/Fbb6eu12Jyy3zQBQGdMRPMHP8QvCpaI8cXfNVRbkWt/xW9FgmkTOa7ZUAnn+hFX/xZjD7WnKDk5Gc0f/FDarg1/iSsQegKnMyZie9kOAOBW4kO8Zre/2CtgHIB8iTig7jXkWSJGyWTR08mT5ORkbC/bwe36Uft+EK2E9Sk6e/YsvvjiC+zbtw/jxo1Deno6Nm/ejMzMTDRv3lzuY1QEJR7tEeqQO2mZ7DdNreFv3SnG4PfRl0i0tonnUgkivn9cRNRTVAeeiSuAGslrtOAbBxC9sQSCV7JIELUR8hW2fft2FBYWokGDBvjjjz8watQopKen48svv8TBgwfx8ccfK3GcsqPEoz2CH7430Hi8aQZ69CUSjW0SaFwUIF9PUTAEWjA12oiVOAIRD8kioX1CnrVXUlKCYcOGYc+ePUhMTJRe79u3L1aKK7DGKdXV1ejXrx/69euH6upqciroFG+gShZ8ZQ4bTsx/HvfcPhDMYVPM40m4bbvxuUKp3EwobaKFc+lJbUsl+JbWCTXOE/Ofx4n5z3OLkzlsuG1Af9w2oH/Q1484KzPcGYriNXvbgP6aOJ88nFarFckmg8c/ZQaeqxXnbQP648T857ncg9Q+l7ycchPynyobNmzA+++/X+P15s2bo7y8XJaDilacTie++eYbaTvenOKjGCXGK/lzhjqeLFSYy4Wq/23Esv8BWW0f4DHWM+zzGc7in5H4IiFYp7+V4cPtYXE6naj638Y6nXLCXC58u3QJACCrzcigrp9Ix/mI1+y3/9Pe+SRneE7xGmIcyqfES7vKTch3pISEBFRUVNR4fffu3WjUqJEsB8UDucZIMcZQ5XAXWjQajZg5cyYA9xpYPDCZTJpxyj01Pxinkgh6Ay7q+xgm3pqN1/bxeTzCO04tXT++hJscBnJe1PexOp1yIugNmP7hRwCAl3cFjkPOcT7iNfvSoKs1dz7JGZ5z+ocf4dkFv0HQK38Pipd2lZuQz0z//v3x4osvSrVxBEHAwYMH8dRTT+H222+X/QCVQo4xUowxDF0yFFtPbgUAdGjcAbOLZnMd3Gs0GjFs2DAAwc+A8pzpFU7vkaeTMabY1PxATl4IegPqtSvEPfcV4nVOYy6UiNN3Zp/nOVejXcO5ZuVw1mtXKG3zQNAbcP/QIgDA5FpmXck5zke8Zu8f2gtGI5/kXzyf4nVm9zmnSvRQq33d8nTeP7QIk/fymbUXL+0qNyF/0l5//XXccccdaNy4MaqqqtC9e3eUl5cjPz8fL730khLHqFmqHFVSEgUAW05sQZWjCsnG2qdXq4nvYF6x9yhcapuaT6iPv5l9Wp3N57sOUDwR7YPCa5skoNXrjVCPSJdt0Rohf3IbNGiA77//Hj///DO2b9+OyspKdOzYEYWFyg36jRaYi2Hb1m1IMiahXbt20OuVX23X6XTi119/BQC0vrJNne/3Hcy78cAZ/Gm2hVT3zNMpxqn0l4A/p9IwlxP2kwfw6/ZtYC4nBB3f8ylHnP4Gb3v2GKrRroGuWSWTcKfTCdvx/0nbvK6fbdu2Sts8rh/xmt22bSvyOnbgdj5/2bwFa3/ZBGOjljXiVKKH2ul0YuvW3wCoc93ydG7bthW24/+DsVFLLj6lY/RNusVrFgCMjVqi8yUZUZd4h3xlV1dXIzExEd26dZOWdY9GlFhHitkZuuZ1BcB3ef0OHToACL9cS+6kZV51/kJxqhEnLydz2HFs1qO4cRbfMhRKxbnqyR41ajiqfS7/+usvv+OD5C5qXF1djWOzHnVvTx3K7frpmtcZAN8SMcdmPYqus+o+n5GUv/GkurraK85NL/ZCskmvaA+12tctT6dn2/LwKR2j7x934jULuGOMxmVbQj7StLQ05OXloXv37ujRowfy8/ORlJSkxLEpilLrSDVt1hQCBK7L6zdr1kzaDoXspqkoO+aeOCD+V2lnuITq9LeoY+hSQF8vHY3qJ3IpzwAo27ZJfr7I1T6XOp2uxvggQJnyHvp66dI2FwSg6fk4eV0/4jXbODWxzjjlWtRUEAQ0bdYMJyqqAUHeSQK1ObV+D5LL6dm2PHw8Y9z4XCHgsOKauc3AGPh9TmQm5Kt92bJlWLlyJVasWIE33ngDDocDubm56N69OwoKCtCzZ08ljjMq0CXosPePvVzHSCUnJ+PIkSMAQh+4K36BhfpXo6eTF6E4axuvEQo6YyIuLv4YGzmXiOHZtlo5l0p/8SYnJ+Pi4o+lbR7ojInYu9/9yIJniZiLiz9G2Yu9/LapEouaJicnY+/+A9xiFJ1auG55OHm2Lff7j0mP5HqpOHrkiFe5n2gj5E+N+EjvmWeegcPhkNaVevXVV/HKK69E7ToQ8Ygg1Cy9EQvUtqgjQcQzsVL+hiC0RFh/Bu7evRsrVqyQ/lmtVtxyyy0oKCiQ+fAIIjL8LepIEPFMtM8QJAitEXKJmObNm+Paa6/F0qVLce2112LJkiU4deoUFixYgLFjxypxjFGDy+bCfXffh8GDB3NdXn/w4MHkDIA4XiOcJIo5bDi5cDJG3H8v1xIxPNs2ms5lpM6TCyfj5MLJXEvE3HfP3bjvnru5XT/iNXvfPXdzbdv77rkbJxdOjtnPiZpOpduWMSaVJDpdUYnbbr8Dt91+B05XVIZcoigcxHbl+TmRm5D/LGnUqBF27tyJ8vJylJeX4/jx46iqquI27kAulJi1BwYs+HIBAGDWrFny7bcWnE4nvvjCPZvj3Q8+4u5UI05eTuZywbJrNf67C8h6/F5uJWJ4xhkv59LpdMKya7W0zQPmcmHBl/8BAGQ9fg+X60e8ZhfsApzO2RyM7vYU42R9H+fmjJfrVsm29R1P6rJV49B538aW9yDv8qaKL0Xg2a68PidyE3IitXXrVpw9exYrV67ETz/9hGeeeQZlZWVo3749evToETWLcioxa0/QC5j65lSY9Cauy+u/88470nY8O8UZenL9ESXoDUjvORpP9r4K7x7jVyKGZ9vK6attBXWlnMFiMpmQ3nM0V6egN2DqtDcBANMO87l+xGv2uX5tuLbt1GlvYtLiHVzKmIhOLd6DlHAq2ba+40nF60fc5rEUgdiuNoeT2+dEbsI66rS0NPTv3x/XXXcdunbtikWLFuGzzz7D+vXroyaRUgLBIOChvz3Eddae0WhEcXExAO9ZexabU7FxQZ7OQMjdIxyMUxw0G8qaWL54zmoS9Ab0GHQ/xozIw3sT+ZVoqCtOLfr8zZQMtGo+7xhFZ/2Ot0jbPBD0Bjz0t4cBAG9ymo0k6A2o3/EWPPQ3viViHvrbw3jzGL8ZV2pdQ2o4PdvW33Iuct3nxfGkQD+ukxDEdrXYHNw+J3IT8iftyy+/lAaZl5WVIT09Hd26dcPrr7+O7t27K3GMRBiIi2x+/Ug36HT8O0sHT1+LxY92q/EBdz+Pl+/Rir/p3KGsieWL76ymJKM+YCmDeMRfaQexjQKtoE4QhDz4S27kKsHDY/2vWCXkVhs9ejRuuOEGPPjgg+jevTvatWunxHFFJczFsHfPXiQZk9C6dWvodCGP5Q8Zl8uFffv2AQAuvfRSr6Si7FgFbnn7Z78JjVxOzziTjHppkc+yYxU1uoQjWd8pkFOJWn/irCaXy4W9e/eiyuYAYy4IAt/zyeMaCsUX6PzltmyI2SPypJ/9raAerlMuXC4X7KePSNs8nIy5sHfPHmlbEHSK1xNkzAXHmWPYu2cPrm5zpaJxikm1y+XC7zv3wH76CAwNmyrm88TlcmHP+bZV417L03n4j//hyqRK7LQk+70Hyfn4TYxRjXseT6fchNzyJ06cUOI4YgJmZ8hpmwOAXwmBqqoqXHHFFZJz/uh8WGxO3PL2z9h/yuw3oZHbKcYpJjVtAzwG8+21CGVtp0BO0avEX1KeTneJj0TZHbU5eVxDofj89ToBNXue/K2gHq5TLqqqqnD0w4fc2/+8i0+JGLsNOVdnA7hw/Sj9uITZbTj64UPI+VDZtvVMql22ahx64w4AfMqYAOpdQ2o4r7zySgDuEmCeTiUev6l9z+PllJuwvn2cTicWLlyIHTt2AACys7MxYMAALkUctY6c5WbCcQqCgJQEA75+pFvAhEZupyfBdnxtfK4QF6WYQuopU7tto9FZFUQPSDi+jc+5i5SHeyNXo12FBOW/+HwR4+zYIg1by72nzCu1SKyQkILURGUf0dQYpHy+bTu2SOO28G20fzZDdSabDFwevcVLu8pJyGdl79696Nu3L44cOSJlypMnT0ZWVhYWL16M1q1by36QSqDE8ge6BB2OnjzKdbB5SkoKzp49W+N1JdeeDOQMhWRTaAMk5XCGiujkWbpA7jhre8QWiS+SFfHVOpctHpsrbfNAZ0rE0ROnkGwyBBxbFskjd999WmxO6EyJaPHY3IAlYpRg84u3IPmVswDkr5EYCDXvB7HsVPOeF1clYh599FG0bt0a69atQ3q6uwjon3/+ifvuuw+PPvooFi9eLPtBKoFSRYvlwHMANZU2IULF3wD8QNdRsEsWEJEh9+NnuepJygENUibinZCv/p9++skriQKAiy66CK+88gquu+46WQ8uXvEcQC3HF5uSSyEQ2sN35iHgf/ZhbUsW0LWibQKNVwOoriRB8CbkRCohIQF//fVXjdcrKyu5LVKmVVx2Fx4c+SAMOgPef/99JCQkhL2vYP+CtVqteOgh9yDaQM7cScsCrukTDsE45UZNp8PlAmt8GwSD8usPyRVnMNdPld2JjftO4M9v3YsMXtRrDJcF+NQ6l6cWv+HefraAi5M57HjwgREw6HSKxnlh/R93nI8/Uozh6z/g2rYPP/gAAL7nUw1nrN/31Lzn8XTKTcjzDG+55RY8+OCDWL9+PRhjYIxh3bp1GD16NPr376/EMUYPLmDOJ3Mwe/ZsOByOut8fAYwxWOwWVFRVYPbs2TWc4uMdETnX9HE4HH6dAY/zfB2nSBbpDMbpG3Okf5mLzjmffALm4rMeUihtKwfM5YT5t+Uw/7Y85mL0vPYqLFYpTh7tCrjbds4nnygep/hoLdlkgEkHrtcPwP+aJafyPjXueTydchPyn51vvfUWioqKkJ+fL60Q7HA40L9/f7z55puyH2BUoQcy78xE83rNYTAo9xc9YwxDlwzF1pNb4XK40HFER9x15V1eKzaLj3f+NNtknyJrNBrx6quvStuBjxNej44iWXE8GKe/xTQjeUQlOm0OFz44fSEhU3JcUbBtKxeCXo+0guEYe9PlmHmOz+MgHjH6PrZkTjvSCoYr6vRF0Osx6eVXYDLouDl5Xz/kjC1noHterDnlJuRv+7S0NCxatAh79+6Vlj9o06YNLrvsMtkPLpq4Kv0q7Dy9E436NoINNjh1ymXWVY4qbD25FQCgM+hgu8GGMfeOgcno/WjV/XhH/gvTZDJh3LhxdR+nzziOSFYcD9Yp56Be0WmxOfDh+dkkvskhIO+4omDjjBRxYUhBb0SDLrdjzGOFmMWpJIQSMYrxiEltzRpi7jhzWzZEg5SksHtnPRfUrCuBFvRGPP73v3MdiM3r+iFnbDr93fNi0Sk3QX/CXS4XpkyZgq+++go2mw033XQTJk6ciKSkJCWPL2qY3Xs2qhxVKJhXoPahEApSWymUJKNe8ZWr5YJXHS1eiPH4GwvoOYYo0t5Dz3ajgfnB4/u5oMkvRCwRdCL10ksv4fnnn0dhYSGSkpLw5ptv4sSJE5gxY4aSxxdVJOgSYD9jB+BOPOWEMYYqRxUASP8F3GVpHOccOHrkKC5tcWnIZQt8p8oHM67I5XLh2LFjAICmTZtyK5WgljNQ6QLPUij+eqoicQLyx+lvWQTGXLg6zYUzJ8q5loSQI0Z/8fgbC5hs0iPRoMOxY8dw5rwzUo+nK1CPE2MuHD1yBEkmQ8x/To4cOVKr0zdxjzQJDcYpN/Fw36vrnhcrTrkJOpH6+OOP8e6770ozCJYtW4Z+/frho48+4nJBRQNVVVXY9fgu9/awKtRLqCfLfj3HRNX4nZ1h1+O7cPnjl4dVtiCccUVVVVW4+OKLAfAtlaCm01/pAs9SKJGUvwnklDtOf8simM1mNE5PwzfPKFOewV8PnVwxBqqzGIxTMAY/+8m33YItzcHsNlx+aSvJGQ+fE09noAQUiLw+nJbijCWnv3uev8+TnD2Kdd1no4Ggr+KDBw+ib9++0s+FhYUQBAFHjx6VGiGaUGJlcwCAAmPlPMdEeXJV+lUoO1YG6AGDEP44jHDGFSk5mD7aneGUv4nUGSy+55rZDX59/gbUh0OghEOuGP1du0o4wx17Fy3XrBJOf4m7nPXhtBJnrDl9ff7Ol9yPtdVoVzkJ+ugdDgcSE70zRaPRCLvdLvtB8UCJlc1TUlJw9b+ulraVYMWdK5BkuDAurcunXXD1v67G+nvXcytNk5KSwv28q+kMtXRBqOVv/Dl54S9Gf48ps5umYvaIvKD2GagnQuylE0zyxxiq02JTfiq5zpSIc+YqroPNtfbZVKqguNbijBWn6GOMYfD0tX57E4HIexT9OeOiRAxjDMOGDfNaEKy6uhqjR4/2Shq+/PJLeY+Q8CLJkCQlTBa7ReWjIWIRfwPqy45VoPNLgXsSPIsjCwJq9EQAyg4w9tf7obSTIGKVQJ8nOXsUY4mgE6mioqIar913332yHgwRu2Q3TZWWP6ASFtHDhmcLUTTjF6+lK8Tz53mT9S2OrFRPRG2o4RTxfBQaLTM3iZr4Ky4tEm9JuZqfp2gj6FaaOXOmkscRE1itVhz9+Kh7+3Yrl0dtLrsL5Z+V4/F1j+OtaW9xK1tQUlICAJg6dWpQTvfzdPd2ODekcJyRIjodThdYvV61li6okunLk3ecdcWYkqDH4ke7+V2ANJTiyP6cAP9zKTohyJfIByogzBx2PP7oIzDodarFycs57vGxUe+sqxD0lY0S0XLPFxAAvDLlNSQkJCieXKl1P+Dl83QGc5/VKpRuyojD4cDpH05L21xwAad/OI0PfvgAU1/jc+E7HA68++67AIBXX301KKcgIKK/bsJxRoqnM+vxQggI/AH37ZGRw8kjzmBiDPSXaaDiyHV9sah9Ll999VUIHslepElwoALCHS6ujw8eny45tfrZJKeb2gpBA8COI2fx3fvu87kkuRA6U6Lia4mpeT/Q4n1Wq1AiJSNGoxGNBjSStrmgBxoNaIRR7UZxLVswceJEaTvWnXanC/+urtmDEW6PTDBOcVtp6oqxLsLp/tfC9eP5Z45cSTDgvfinnjkx+ax8cQbz+FALbSsXvo/ZPGNWOk7P88gYMHj6Wvx+2I4G190DwF3+B4hs0LW/x4i+51Wt+wEvn6cz3HuQFqBESkZMJhMyB2VK2zzQGXTIHJSJZ+99tkaJGKUwmUx4/vnnubi04LTYHJjjZzaJv0HVkXb1846zrhiVdPLE12lkTPYkGLhQQNiNQbY463rsJKKFtpWDuuJVOk7v8wiPx9u3AIh80LVWz6cW77PRACVSBBEBNCAzOgn3saRaBHrsFKsTN2p7zKZGzHJ/zut6jBir5zVWoW8AGWGMwWl2Stu8nC6LC2fPnkVSRhKXLwLGGM6dOwcAaNCgQcw7LTYHGGMxGWc8xBjIqXQSrFSctdUOVKttz549q5jTM17gwuKwSjr94dm2xiT51gn0jQ+4cF7Vuh/w8nk6ed6D5IZqu8iIxWLBjuId2FG8AxYLnzWemI1hR/EONG/cnJvTYrGgYcOGaNiwYVw4m2c2ArNbuTp5xekvRrlmINbljJfrR26n+Ngp2WSo8aUTS3GKeMYrxhxLcfrG53le5XQyxmCxOXz++YzRipP7rNxQj1SQiEWDkwx8en0IQi3kHHxNEIT6BDsmiwiPqO+ROnToEAoKCpCdnY1rrrkG8+fPl90hFg3u8mkXFC0tCvjYLjk5GW0/aou2H7VFcjKfci2CSUDbj9rirPms7E7GGCx2i/RPjDs5ORk2mw02m41bnGo6z1ZaQipyK4czmDjl6DkSfVarFZ0va+L1O6XGacTb9UNOcqrtDHZMVrzcZ+Um6nukDAYDpk2bhvbt26O8vBydOnVC3759Za1151k0eMuJLahyVPldbFMQBAgGQdrmgSAIgME9hVROp5g8ehZL7tC4A2b3ng1BEPgt73AeNZ1GJnA9n8HGKUfPkafvi7915TL4Ot6un/hw8l/FXs22tXOo1ejrlIvaxmQBHJfuOY8a91m5ifpEqmnTpmjatCkAoEmTJsjIyMDp06cVKxocL3gmjyK1JZEEH5RYu0qEZiCGDpWDIaIN36UdiMhR/dHeypUrceutt6JZs2YQBAELFy6s8Z7S0lK0atUKiYmJ6NKlC3755Re/+9q0aROcTieysrIUPmp3weAqR5XXazabDeWfl6P883LYbDbFjwEAXA4Xyj8vxzNPP6OYc8ltS7x+ttlsGDduHMaNG8ctTjWdzzz9FJiTTwX2uuIUp+2XvdhL+hfJysrxdi7lduZOWhZwPaFYipOcgZ0Wm9NrALecM7Z5xym3L5gB7mrcZ+VG9bTUbDYjJycHI0aMwG233Vbj93PnzkVJSQmmT5+OLl26YNq0aejVqxd27dqFxo0bS+87ffo0hg4dig8//LBWn9VqhdV6YWZARUVFLe/2z9AlQ7HrzK4ar9vtdpxaekra5oITOLX0FN5c+iZeevElRRYCTTIkef1st9vx2muvAQCef/55LouPqu3MerwrBL3yXd7BxClnz5Ha7RqNTn+9gkDNnsFoj5OcgZ1PPvOc9LpvIi1n2RjeccrpC3aAuxr3WblRPZHq06cP+vTpE/D3U6dOxahRozB8+HAAwPTp07F48WLMmDEDTz/9NAB3cjRw4EA8/fTT6Nq1a62+yZMn44UXXqjxujiwGkCdM/P8JVGA+9lyRu8MaZsLeiCjdwaGZA+p02mxOYN6BCTOUAyE0WjEE088IW3zQE2n3enCAj2fxfF4xxlv51IOp7/FPIGaY8qiPU5yBnamJif6TaaByMrG1OaMtvtBsAPc7eB/n5Ub1ROp2rDZbNi0aRPGjx8vvabT6VBYWIi1a9cCcH/pDxs2DDfeeCPuv//+Ovc5fvx4qbo14O6RysrKwoPfP4gycxkA70HVoWAymdDk7ibSdqSICU1tSY3OoEOTu5vg5XtfrrNETO6kZchumlqn03eQuS8mkwlTpkypdT9yo6bTYnNgIcfyKTzjjLdzKRfB9ArGQpzkDOz0TaYjLRsTjFNplPLVNsDd333W39hDLVce0HQiderUKTidTmRmZnq9npmZiZ07dwIAVq9ejblz5+Kaa66Rxld98sknaNeund99JiQk+K1o/eupX6FPcp9ouQZVW+yWsNedCiahCQbfxxBlx2p/lOk7yLxD4w5ej/bEpI7W0yKI+KG2AsLxCk3OCJ5QB7j7S0jlfGQqN1F/FXTr1g0ulyvk/6+0tBSlpaVwOuW7ITDGwBzugYb3f3M/dp/dHVbvFmMMp6tP10iifJMa8b1wup8zM0PN5fXFxxB/mm21/rXkr/drxZ0rkJ6Y7vVawbwCMMbQ/qL2mNFrhuzLLtR2fA6He8qxwVBzRWclnXY73/IpPONUs13JGR3Ousa6MMakMaHRHCc51Y3RAIZOLdKw6eBZv++T85Gp3GjviDzIyMiAXq/H8ePHvV4/fvw4mjRpEuD/Co7i4mIUFxejoqICDRo0iGhfIhaLBb8/8DsAgL3PoEvQhdy75a8nasWdK5BkSPLbC8RsDGUPlSHtgTRUVlb6XfbB/ZdT4GfPgXq/RF+SIQkdGnfAlhNbJOec/nMwB3MCOuXGYrGgXr16AKCKM+vxLyCYErmUT+EZp9rtSk7tO+sqIMzsVpjq15fVWRex0rZac6od419//QWdKdH79wo8MpUbTSdSJpMJnTp1wvLlyzFw4EAAgMvlwvLlyzFmzBhF3UVLizDvlnncuxH9PVpLT0xX9Dj8rRnl2fslCAJm954t9Vjd8MkNwe03Brv/qXwKEc/4KyDMqyYbEftE6+NS1Y+4srISe/fulX7ev38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7gEerTXMrUlDlQcwM7TO0MeJ5WcnIw2pW0AuEu3RIr4aK22JEowCWhT2gbLBi+TZUn/QL1fgiBIbRGsU86kIzk5GWfOnJG2eSA6GWN44LMyry7nQItg+pvxGMp4Mt5xqtmu5AyOUMYjKR2nv7Eu0dy25FTXp5ZTblRPpDZu3IgePXpIP4sz6oqKijBr1izcddddOHnyJCZMmIDy8nK0b98eS5curTEAPVQCPdqb1XsWesy7cDx1LQXgiSAI0KfIN30zmC9g0ZmWliZLr1WSIanO5LE2p1IrbwuCgLS0tIj2EYkzmPIpgR6RhjJOLtI4A12vga4ltduVnHUTymONaI6TnOE7fZPtcGe4aTlGLaN6IlVQUFDnSrBjxoxR/FGeiADvi6+2mXNXpV+Fnad3So/Bgk24Yhl/a+xoedpqsATT5ezvESnAr7RObTM9w13Sg1CHYBf9jBWUmhXouZ9YuA8FwjfZzm6aen6Gm/tnmmWpLKonUmoRzKy9QF+MIrN7zwZw4a99m82G4wvcA+Mb3doIOsOFCjyei32K+/b8f8PF5XDh5H9P4qW9L2HiPyZyWeG3Lmcoz7l9e1DE9vB9Xe/SY/LkyQCAZ555hkucNpsNL7/8cljOFXeuAOCe5cjLWdv1GiiZi8QXLuSsm2AX/ZTTGS6ROoNdATscp2eCEen0ea21baBkG3Avc9N2Yuhr32ktxmhBYHIWBopCxEd7bd5rA32SHivuXCF9+XluL7ltCfp86b0C+/p713t9MZ08exKNG7rL1mS/nw1dgjuRurLhldJq6O0btQcA6QvPt6fAYregy6dd/O7fF4vdgs4zO6PsIfdCorXNsrDYHMj2WVSy7MVeSDYZFHPWhb8elA6NO2BW71koWlLk9frVqVfj89s+j9gZCmazOaQZLL7tCCDodg3XGcgvjnWrclRJ17C/Y4jEFy7k1I7T874g3g9CfU8oTn/78ndvEgmU/NTmZIxh8PS1/hOMADHKEWcwbRnqe+ty+vbkMQYMnr424HqBdSWTWoyxtv2I39/nzp1Damrti00rSdz2SIWK7/pN/jAYDEi/Md39g0c5aM+SMr49BhE/9tEB6Tem444r7oDBENrpFMvihPxIMgKnJ/56ULac2IIz1WdqvL79z+14cPSDMOgMITkjGfxtMBjw8MMPS9s8kMsZzFg3OX2hQE5yBsLfrEB/n9XanL69eXJNn9di2/rr/V/8aLcaPZkidfVoajHGaCA6j1qjJCQkoNnQZlydOqMOzYY2wxv3voEEY80V2wPD8OCy4dh+ahtHZ2D89fh5vq4z6vDGW2+ElHBGOvg7ISEBpaWlQfvkgLczGF8oEy6AuhPVeGhXcoZHsCtg1+VUYhp9tLRtJLFHS4xaI24TKSVWNo8qBHuNJMrfyuly4/ml7Ds2yh+RHE9dg7/9TRCg0jfehFOqiAa2EwQRT8RtIqXEyubRSm0rp8uJXPUDw8Hf4O9IlyoAAieGsUJdEy78wWuWIkEQhBaI20RKCVxWF34f+TsYGLLfvTDYXGln2cNlaPBAA5w9ezasAa3BjqeJ1BnoSzmYnjCX1YUGye6EN5w4ffcfzFIFZrNZWt/En1OJxLAup9yE4hMT7kB4DmyXyykX5CSnL6EuuRCu09cTjCtSZ7hE67lUG0qkZEQQBDCnexLkktuWoN/ifnzETsABBx+XTE7PL2XfR2yBenbEYppyU9tSBbU560oMw+2hUirOSH2hJtxyOOWEnLUTyaKO0RQnEN6SC+E4w/VE4oyUaDuXWiBuE6lQx0j5Fu7114uSlJSEw4cPAwAa1OfzuFAwCrjyjSvx9cCvkZSk7PimcJ3i4y/fMVGBvpT9DToXjAL27N+DJGOS7HEGHJ/lcT7rcvomhuE+Ig3FKQe8feTUrtN3Zps4VV5JZ7iE6xSTRYut9kLM/hY9DcdZW8Hn2lyROCMhms6llojbRCqcMVJi4V7A/5elTqdD8+bNAVxYgFNpBJ0AY0MjmjVvBp1O+UeJoTqDffzlm6gCPoWTdQKaNW/GddyN5/msC7l6a0JxygFvHzm15axtUceNB84EnEYfiVMOwnX6WwYh2CUXIo3T11ObSy5nqITi8/d4MpzV49W4fuQmbhOpcPAs3EsEh7/HX/568wRB8EpUgZqP/KIZmh1IaBF/K6h7rrsUC6VFaksWc1s2xEUpJi6fxWCXdogW/CWlka4eH63EzlnVADabDW+++SYAYNTDo7g4XQ4X/vzuT7xx7A2MKxnHrURMOM66ZgfWlqi6HC688fobMOlNGDt2LLfSBeL5jNTpO/4q0OxAOZ3BwNtHTu05a1t3KJiFLLUeZ6ByO0BoPShaj5OHr7akFLjQixlKwqhGu8oNJVIyYrfb8eSTTwIAho0axkfqBI7PO47n5j2HB0c/iBTBPeNB0R4PD+djjzwW9IUf0eMvJ/Dc+OcAuNs2w5jhNz45lyPwPJ8PP/xwyB9wf48rRQItERCpM1R4+8ipfWeoBZOjIU45FuiMhjiV9gVKSiNZPT6UGH17SC02bQxSp0RKRgwGA4qKiqRtLuiAtOvS0CChAQq+KIDO6B6zpOiiiOed/S7txz1OACj4ogCdmneqEZ/cyxFEej79Pa6sa4kA3teQGtcsObXtDLVgcrTGSc7wfHKvGh9KjL7JmsvKZyxyXcRtIqXEyuYJCQmYNWsWAH6DzXVGHS4edXGN15VcFFF0fnDvB7KViAmEZ6+OZ5z+4pN7OQLP8xkuoY6rC+QMpkxLOD1wcsTIy1lXG9TWCxtNcWrBGcqXZTTHSU51fcE463qcqAXiNpHS2srmciVegWrW8cbfkgfh4NurE+yij3ItR6AF1FwRXisE0wZUmiZ+CLb+Y7R/9onaHyd2/MdXKh2VN3GbSGmJoUuGYteZXQCAq9KvimhfStfKCwa5v/jDmS1Z13gsLcwGDHYmX6hlWnjUTORNMG1ApWnig1DuL5RcxwZKFKGWE+0emQpclX5VRF9AZrNZWg9jzx97gv7/xCQKAHae3hmS02V1Yedj7v/nqmmRJWGhOpuNbYYjR47UWNI/2CUPQsGzbZu/2jzi8jvB9Np5Ov3FGSn+ZvK9e/27uPjiiwM66yrTAoT2V7jSMSrh9G2DYHopozHOWHd6Lo4ZClWOKmw+vNnrvhfofiBnch1NbRstPrWcckOJlAeze8+OeB/nzp2T4UhCw1XlCuHdDBDsEHS2iJ3nquqOVc6CyGLbNkd4i7fVtuhnoB4quc9nMDP5anPKWaZFRI1rNhJnuG0QbXHGujPcWV4i4n1vxZ0r/P4xF8wQgFCJlrZV0xdOgqxGu8oJJVIykpSUhN27d0vboXJV+lVSj1SwPTiCUcDlr1wubdcOQ3LL6dAnHwj52Pw5v7j1izrjlOuLX2zbKnsV7l1/b1j7CLToZ6AEL9LzGewxeN70lXDWBm9fME5/418ifRSrxTjj0VnX4pi1lUvxxPMedFHqRVyqOmi9bbXiCzVBVqNd5YYSKRnR6XS4/HJ3UhPO4HHPHrFge3AEnYCEJoFnzonHUeVwAoKtRhIVziM30XnZ5ZdxK0sjtq3FboGwwbtdQhnYHsx4K8/9NG/l7v2qdlYD5//AirR3rbZjEOOUkgmnMuO5PJMV3xiVHqDr+Tnxd1xKDKyvzakU5KyJXItjqnkP4glvZ7i+SBJkNdpVbuI2kVJi+QM5kPOxjecgdgBIbtVU2q7c/Rw2PtsX6Un1onogphJfvHU9Ergq/aoavUpyovQsvbr2r+YA3boGlcfaQPpIlnSIVrQ+cJgIHbkS5Gglbq9mJZY/sNvt+OCDDwAA9w2/T5Z91gVzMJxecRoAkF6Q7vU7zyQKAPSJxy78fy5T2Ddp0fn+ufcx5m9jYDQawzjy0BDb1ua0gaUwCAb3ccs1sN3f2CXfthWdO0/vRJdPu0QQTWDsdjvef+99LN+w3MsJyJdEeLaZvxi3nNiC09WnFat16Pk5GTVqFBzChdWJPX3+BtbXdc36O94kQxIcDofkfPDBB7les4GcSizpUJdTCdRw8rwHicmu3W7HjI9mAABGPDDCz/mU/xh4t20kvnATZDWuH7mJ20RKCWw2G8aMGQMAKCoq8vpi9hz/JCfMyXDs3+4EqeH1Df2+R+61pURnyb9L8OBIPhe+Z9tmv5/tlWCIRDKw3d/YJbPZjMYPNAYAbHt7G1JSUlC0tKjGeZSzl8Rms6FkbAkA9/n86d6fZFsPy1/pnG8GfIOWD7QEAKx7Yx36Le4HoO5euUjwPJc/N/0Zv/31m9/3hTO+zt9xi7MhReewYcO4X7P+nEos6VCXUwl8nQaDoc4EPNJrmdc9yDPZdVldKBtbBgD4KPGjGjMFr8loD+AuAPL1vvA+n1q4fiiRinP0ej3uuOMOAO6l7n2/mBXpxRCA1NxUadsfsj8KOe+8qcVN0OuDGxwaKWLbOl1O7BJ2+X1PpAPbfccu6RJ10vmsn1gficZEzLtlXtDrP4WDXq/HoNsGYfnB5YAg7yw9f0lGvYR6UoyNUhoFnFEoZ7LoeS63/7kdOlPNMS6h+GqbCQm4kxEbs0lx8r5mg3GGs6RDpE658HTqdLqgHktH/PiY0z3IK9mt4167/dRWQLgNYPLVw+N9PtW+fkJxJhn16JCVhkNKHVgIUCIlI4mJiZg/f77Xa+KXoFIlY3QmHVqMaaHIvuty/vvefyPRmMjFKbatxW5R7LFaIKcn4SwOGqrz35//W7YYa0syOjTugIb1GnrFGGjsl5zJor9z6ZtIhOLz15sIeCcj/s6lP8Ids+T3/9MDsz91TyBJMNReSkmuhDnYOOXE02mxW4Ia2xfp+k5q3INW3rcSScNqJvdKLbUA8D+fal8/oSAIAj4emYe0vytwUCFCiRRBxDCBkgzAf1IgV6IYajImd29iOIQ7ZonK1/jH3xg3JZMOpVFiDTciMrTyeaJEKorx7W3o0LgDGiY2rPFaLM1y8kQLZV6iAaV70fwRaKySlpOJcMcsUfka/1DiQcQLlEjJiMVikdbD2LNnD5KTlb2JCIKA9254D5df4Xa+t/s96ASdVw+EEjOvXFYXdj+1G5c9cxn27tmreJzAhbZlYGg4sSF0CTrF/7LlfT5F5zXZ1+Ck5SSu+OcVXHxyxRjMWKUqRxVgR41zqTQWiwWXZwcfZ7hjljz/P4vFgnZt2uFU1Sku51J0im27vWx7wDjlfFTreQ1tK9smyz7rQrV7UAjXkGxOjvcgte55vJ1yQ4mUjDDGcPToUWmbF8eOHvP6mUcPhOOsA8fOHoPZZkZSkvJr3Xi2bfdG3fFbhfdMLyV63tQ4n4yxGudTaZ9cMQYzVsnX2RD+Z5rKjcVukZxmmxkwKvOo0fP/YwaG8mPl4R90GLhcrgufk7ndAyapcvYOqnXfE+9BPD+batwPeDrjIUYloERKRhITE7FlyxZpO1adglFA6xdaAwB6LOiBjk06Kv7IxjPOq6++GjbmXStQiYUL1Tqfa35Zg/uX3B9EyR95fHLGGEwSLzqr7FUY9duoiJ3B0Pe/fb2uWUEnKP6okfe5BNzJmxhnbU45HzWqeQ/6pM8nMX2v5e2MhxiVIG4TKSVWNtfr9Wjfvn3Q7w+ntl6kzkhJMiShY5OO2KK78PiGx/gP3zgNHC5d3m0LADZmwxVXX4GkMj7j2tSIUXRa7BYIZcolGJ6PGgWdgKSW3m0a7nUbbB1AvV6PnPY53M6l6BTj5DXY2/MaUmp2si/i+cxpn8N1mr5an5VY9anllJu4TaSUWNk8VMKprac2no9vonkGjlah9pSPYB81hkq0nCMa7E0QfIjbREoJ7HY75syZAwAYMmRIUCu0RnqjC8cJAB1bpAVdad0Xh8OBeXPmweq0goH5XWVcbsKNMxqcnj0nzMFwdu1ZAEDBgALFZ1zyblex1Mbnn30Ou9MOplf2+hEfNXrGOejOQSHvp66B9EDNXmW73Y5PPv4EZ9aeQVp+WshOkUA9Xv7++LLb7Tizyl041j7YDnBYJDrStg0H8XPyieMTjBhas1yLEtjtdsyaMwtA7N2D1PKp5ZQbSqRkxGazYfjw4QCAwYMHc1tePxznJyPzwu4B83QGKtciN9HUtqHi2XPiWZZm+rTpivdS8m7XgnkF7lIbD7lLbahx/fQb2C/k/7+29bhEfBMbm82G0Q+MBgA0yAu/1ztQD5i/MV42mw1H/nXEvf2aDeDQIRVp24YDczIc+dcRjP7XaNx3930xdT9Q0xkPMSoBJVIyotfr0bdvX2lby85IvqBFp5M5cUhwL9DvudyCEkRT24aD2HOiS9RJToOBzzgwpWOs0ZsjAPWuqSdt81jrTI44Q50Nq9fr0atPL6w+sjrk8mvB9ID5G+Ol1+ulto3Fz4nE+WvouubXxXScvJ3xEKMSUCIlI4mJiVi8eLHf3/lbPFOOL4/anEohOj1LfIh/NXdo3AHTC6cr5uRJPDh5+Pz25gy7sMljfKBnnLwGRCcmJuLLRV+GVe6nth6w2sZ4JSYmolVJK2m7NsIphRPIybttdSYdWpW0wpf3fsm1TFUs3w8YY3DpXZi/0F2uxQVXredTrs+tGu0qN5RIccL3xhgtg8trw99fzdKiiwThgRqrq0c7SrdZbYPmtb4KPSEvwZQ58oWukQtQIsWRWPsyoRl8BBFdBPPIEIjPkjbxTDBljnyha+QClEjJiMViQU5ODgBg27Zt3JbXJyc5o8WnBefajWsV94nOa3KuwaG/DuGyFy/j5tz91G739kALkht4t21dg+bD+YNIjbZ1WV3YO2Evrpl0DbZvC1wKR04sFgtycmP7s+KyulD1ahV0gg7rNq7z65P7j2Y17gdyQ4mUjDDGsHfvXmmbnOTUujMeYlTTuW/vPi4uT6ftuE3a9kewPePBPqI328xS2/IaIwUAtuM27Du+L+avId7O/fv2A+C3DpkaMcoNJVK1wBDaSU1MTMTPP/8sbfOAnOSMJl+8OZetWIZR34/iViImMTERlzx7ibQdCcH2OjAXk5x9/9sXgk75WAWjgEuevQQf9vww5q+hSJ2MsTqTYvH3glHAshXLkGhIjKoY1YYSqVq46+u7Qnq/Xq/Hddddp9DRkJOc0e/TgpNXr4ler0d+13yk/JHCxSc6Uy5PkbZDJdgxVJ4IOkFyiii9pIXozO+az3WafrR9VkIdRC7oBOR3zZetJyqYJA4AOuR1AABYXVbAFdy+lV4yJRRiIpEaNGgQVqxYgZtuuglffPFFRPtKMiRJNfBOWE7IdIQEQRDaJ5iFR4MhFmYlxwKhDiKXMwEOZyZgKHRo3AFvd31bkX2HSkwkUmPHjsWIESMwe/bsut9cB4IgYO4tc3HX13eFXFDY4XBgwYIFANzJHY8FFclJzmjyacHZ65Ze0uueCYPcy3Y4HA58+cWXOPfLOaR2SpV137U5z/1yzr19pyOsEjGhzi5W43wyJ0PFpgp8afoSdw++m9s1JK6xFI2fFX9FrH0xwih1RkTqCzaJE88lAKR2SoWgDy4B33JiC85Unwn7+OQkJhKpgoICrFixQrb96QQd5t0yL+Q1n6xWK+68804AQGVlJZcPGjnJGU0+LThPnLnQ06zkkh1WqxX333s/AHcpHB5YrVYcetddbcD6khXg8PRDjfPJHAyH3j2E+9+9H4P680lq1L5uI3UGM3jcbDYrEmNtSZzZbEbjke6yWCfOnEBKSu2Pwj1nDfZd0FeW44sU1ROplStXYsqUKdi0aROOHTuGBQsWYODAgV7vKS0txZQpU1BeXo6cnBy8/fbbyMvLU/S4wlnzSafToXv37tI2D4Jxyr2qulbjJKf2fVpwpphSah0HJNfjDZ1Oh+tvuB6bjm8KuURMJM7kK5OlbV5O3ucTApB8ZTI6ZXaK6Thj5X5QWxInJAiSs15CPSQZa//shTOOT2lUT6TMZjNycnIwYsQI3HbbbTV+P3fuXJSUlGD69Ono0qULpk2bhl69emHXrl1o3LhxyD6r1Qqr1Sr9XFFREdHxe5KUlCRrz5hcTrlXVddqnOTUvk8rztrGAck1vicpKQlLly0Nq0RMJM5Lx18qbfNy8j6fOpMOl46/FEvvXVrnF69caOG6jTVfOE7P77OKigo0/VtT5Q4uSFRPpPr06YM+ffoE/P3UqVMxatQoqTr09OnTsXjxYsyYMQNPP/10yL7JkyfjhRdeCPt4o5VYW1WdICKBPg+EVgl2phsQv4P6xc+vw+hQ+1AAaCCRqg2bzYZNmzZh/Pjx0ms6nQ6FhYVYuza8FXTHjx+PkpIS6eeKigpkZWVFfKzEBajWHkEQhDeMsaCW3ihaWiRNdKoLqnenDTSdSJ06dQpOpxOZmZler2dmZmLnzgsXWmFhIbZt2waz2YyLL74Y8+fPR35+vt99JiQkICEhQZHjraqqkrxr167l0rWuRWefLwP3MCrlVIJ4cMZDjGo6r732Wuw9sxeX/uNSZRw+f7Sc/us09v7DvUp01SA+ddDUaFuXzYX//d//cO3Ua7F+3Xpu57Nr564AAscp6GxgrvPnRdCjyuEEBBsAhqFL78Hus7tCcopxAsCl/7gUOpP3uCW5693Fy2dTbjSdSAXLsmXLQv5/SktLUVpaCqfTKdtxuFwubNu2TdrmgVac/gYAyrkmiVbijDVnPMSopvPX7b+6f1Co8oXvrEOX1YXqQ9WSnwdqtC0YUH2oGr8e+lVTcda7YhIAoGD+BOm1+le5/7v7bPCuq9Kvwuzes90z2h50jwVeMXiFNKNNqSLx8fLZlBtNJ1IZGRnQ6/U4fvy41+vHjx9HkyZNItp3cXExiouLUVFRgQYNGkS0L5HExER899130jYPtOL0t5CfnM/vtRJnrDnjIUY1nV998xUe/eFRWUvE1DZrSTAKaPVEK7ROa42G9RrK5qwNudu2rjFCVY4qKc63bnxL9WsolFlkYoJUF+K9M6F+guRMr5/udxX3utoqFEI9l3K41fhsyo2mEymTyYROnTph+fLl0pIILpcLy5cvx5gxY9Q9OD/o9Xr07Nkzbp1KDuDVUpyx5IyHGNV03lR4E+qdqAeg5hdLuGMJg1l9nOcgZDnbNtjVsAWdgHpX18NNhTdxLRET6L43u/dsnK6qRKf/cz8d2fSPQiQZ9aiyO71eS0+qF9J5CaZt5eyZCvVcyuFW47MpN6onUpWVlVLlZwDYv38/tm7divT0dLRo0QIlJSUoKipCbm4u8vLyMG3aNJjNZmkWX7go8WiPIAgiEHJ+4cXqrMNQSpooXc8vFARBcB8LMwEQ100yAMzh9ZpcyW2oaynJ2VZqurWK6onUxo0b0aNHD+lncUZdUVERZs2ahbvuugsnT57EhAkTUF5ejvbt22Pp0qU1BqCHihKP9hwOB7799lsAQK9evbiVECAnOaPFF2/OH779AY3+aIQTWScClr6Q84smltq2ttWwHQ4HVi5fiW+++YZrnIu/WwxA/bYNtSZisElcMOdSbrca16zcCIwxhYZBRgdiItXmvTbYOHJjRH/lmc1m1Kvn7savrKysc6l7OSAnOaPJF6/O2kpfyNlToXacdTktdou0QOn6e9fXuN/W9ftgncHupy489/PDgB/QuGHjwE6bA9kT3AlB2Yu9kGwy+H0tFOh+UDvi9/e5c+eQmsqnnqU/oi/1kwklHu3pdDrk5uZK2zwgJzmjyRevzmBKX8jtjJe21aLTYnN6/ZeHUw603q5ahXqkZOyRIgiCIAIjV49UpB4l9uPZ++SPcHqkiNrRSo9UdKZ/BEEQBKEhkox65Lb0v+REbsuGSDLymV1I8IfSY4IgCIKIEEEQMH90PqrsNR/nJRn1VMYlhonbHqnS0lJkZ2ejc+fOsu2zqqoK1113Ha677jpUVfGpN0dOckaTj5zk5O2sclTBYrcE/Bfs6JZgnIIgINlkqPEv3CSK7gfRQdz2SCmx/IHL5cKaNWukbR6Qk5zR5CMnOXk761q/K9jCv1qPMxp9ajnlJm4TKSVISEjAggULpG1yklPrzniIkZzx5wxl0chgC/9qMc5o96nllBuatUez9giCILjgOQvO34KbnsV4I5ltBwRXs090BVr8U87jIeRHK7P2qEeKIAiC4I6cJXP8EUoZHaWPhYht4jaRUmJBTqfTiVWrVgEArr/+ei7FNMlJzmjykTO+ncE+cqurbI4ccYby+K9D4w4wCSasWLEiImeo0P0gOqBHe1Qihpxx7IyHGMmpLWddj9yAusvmyBVnMMciHo/FYtF820abL1InPdqLQQRBQHZ2trRNTnJq3RkPMZJTW85QHrnJ5ZTjWKKhbaPNp5ZTbqhHigabEwRBEETUoZUeqbhdkJMgCIIgCCJS4jaRUmJlc4IgCIIg4ou4TaSKi4tRVlaGDRs2yLbPqqoq9OzZEz179uS6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZSUhIwL///W9pm5zk1LozHmIkJznJqU2fWk65oR4pmrVHEARBEFGHVnqk4naMFEEQBEEQRKTQoz0ZcTqd2Lx5MwCgY8eO3JbXJyc5o8VHTnKSU7vOeIhRCeL20Z5nrb3du3fTYHNyxqUzHmIkJznJqU1fpE6tPNqL2x6p4uJiFBcXSydCDgRBQMuWLaVtHpCTnNHkIyc5yaldZzzEqARx2yMlQoPNCYIgCCL60EqPFA02JwiCIAiCCBNKpAiCIAiCIMKEEqnzXNPoGiQZkiLaR3V1NQYOHIiBAweiurpapiMjJzljx0dOcpJTu854iFEJaIzU+WesZ8+ejXjQebTNeCAnOeMhRnKSk5za9EXq1MoYqbidteeLHLMFTCYTPvjgA2mbB+QkZzT5yElOcmrXGQ8xKgH1SGkkoyUIgiAIIni08v1NY6QIgiAIgiDCJG4f7XmubC4XLpcLO3bsAAC0adMGOp3yeSo5yRlNPnKSk5zadcZDjEpAj/Zk7BqMtoF65CRnPMRITnKSU5u+SJ1aebQXtz1SSpGRkUFOckaVMx5iJCc5yalNn1pOOaEeKY1ktARBEARBBI9Wvr+j72EkQRAEQRCERqBEiiAIgiAIIkwokZKR6upqDBkyBEOGDOG6vD45yRktPnKSk5zadcZDjEpAY6Ro1h4549gZDzGSk5zk1KYvUqdWxkjRrD0ZMZlMeOONN6RtcpJT6854iJGc5CSnNn1qOeWGeqQ0ktESBEEQBBE8Wvn+pjFSBEEQBEEQYUKP9mTE5XLh4MGDAIAWLVpwW16fnOSMFh85yUlO7TrjIUYliIlHe19//TX+/ve/w+Vy4amnnsIDDzwQ9P9Lg83JGc/OeIiRnOQkpzZ9kTq18mgv6nukHA4HSkpK8OOPP6JBgwbo1KkTBg0ahIsuukiV40lOTiYnOaPKGQ8xkpOc5NSmTy2nnER9j9SaNWswZcoULFiwAADw2GOPoUuXLrjnnnuC+v+1ktESBEEQBBE8Wvn+Vv1h5MqVK3HrrbeiWbNmEAQBCxcurPGe0tJStGrVComJiejSpQt++eUX6XdHjx5F8+bNpZ+bN2+OI0eO8Dh0giAIgiDiHNUTKbPZjJycHJSWlvr9/dy5c1FSUoKJEydi8+bNyMnJQa9evXDixAnOR0oQBEEQBOGN6olUnz59MGnSJAwaNMjv76dOnYpRo0Zh+PDhyM7OxvTp05GcnIwZM2YAAJo1a+bVA3XkyBE0a9YsoM9qtaKiosLrn1xYrVaMGjUKo0aNgtVqlW2/5CRnrPjISU5yatcZDzEqAtMQANiCBQukn61WK9Pr9V6vMcbY0KFDWf/+/RljjNntdnbZZZexw4cPs7/++otdccUV7NSpUwEdEydOZABq/Dt37lzEx19ZWSntr7KyMuL9kZOcseYjJznJqV1ntMV47tw52b6/I0HTs/ZOnToFp9OJzMxMr9czMzOxc+dOAIDBYMDrr7+OHj16wOVy4cknn6x1xt748eNRUlIi/VxRUYGsrCxZjtdoNGLSpEnSNg/ISc5o8pGTnOTUrjMeYlQCTc3aEwQBCxYswMCBAwFcGEi+Zs0a5OfnS+978skn8dNPP2H9+vVhu0pLS1FaWgqn04ndu3erPuqfIAiCIIjgoVl7QZCRkQG9Xo/jx497vX78+HE0adIkon0XFxejrKwMGzZsiGg/BEEQBEHEL5pOpEwmEzp16oTly5dLr7lcLixfvtyrh0orMMZw8uRJnDx5Erw6+shJzmjykZOc5NSuMx5iVALVx0hVVlZi79690s/79+/H1q1bkZ6ejhYtWqCkpARFRUXIzc1FXl4epk2bBrPZjOHDh0fk9Xy0JxcWiwWNGzcGwG95fXKSM5p85CQnObXrjIcYlUD1RGrjxo3o0aOH9LM4ELyoqAizZs3CXXfdhZMnT2LChAkoLy9H+/btsXTp0hoD0EOluLgYxcXFOHfuHNLS0mRZBsFsNkvbFRUVsiZp5CRnLPjISU5yatcZbTGK39tq92RparC5Ghw+fFi2WXsEQRAEQfBl3759uPTSS1Xzx30i5XK5cPToUdSvXx+CIKh9OJpGXCri0KFDNMNRBqg95YXaU36oTeWF2lNezp07hxYtWuDMmTNIS0tT7ThUf7SnNjqdDhdffLHahxFVpKam0k1ARqg95YXaU36oTeWF2lNedDp1581petYeQRAEQRCElqFEiiAIgiAIIkwokSKCJiEhARMnTkRCQoLahxITUHvKC7Wn/FCbygu1p7xopT3jfrA5QRAEQRBEuFCPFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJVAxTWlqKVq1aITExEV26dMEvv/xS6/vnz5+Pq666ComJiWjXrh2++eYbr98zxjBhwgQ0bdoUSUlJKCwsxJ49e7zec/r0aQwZMgSpqalIS0vDyJEjUVlZKf3+jz/+gCAINf6tW7dOvsAVQo32fOmll9C1a1ckJycHXLn34MGD6NevH5KTk9G4cWOMGzcODocjolh5oNX29Hd9fv755xHFygPe7fnHH39g5MiRuOSSS5CUlITWrVtj4sSJsNlsXvvZvn07rr/+eiQmJiIrKwuvvvqqfEEriBbbk+6fFwjm896/f3+0aNECiYmJaNq0Ke6//34cPXrU6z2yXJ+MiEk+//xzZjKZ2IwZM9jvv//ORo0axdLS0tjx48f9vn/16tVMr9ezV199lZWVlbHnnnuOGY1G9uuvv0rveeWVV1iDBg3YwoUL2bZt21j//v3ZJZdcwqqqqqT39O7dm+Xk5LB169axVatWscsuu4zdc8890u/379/PALBly5axY8eOSf9sNptyjSEDarXnhAkT2NSpU1lJSQlr0KBBDY/D4WBXX301KywsZFu2bGHffPMNy8jIYOPHj5e9DeREq+3JGGMA2MyZM72uT899aBE12nPJkiVs2LBh7Ntvv2X79u1jixYtYo0bN2Z///vfpX2cO3eOZWZmsiFDhrDffvuNffbZZywpKYm9//77yjZIhGi1Pen+GdrnferUqWzt2rXsjz/+YKtXr2b5+fksPz9f+r1c1yclUjFKXl4eKy4uln52Op2sWbNmbPLkyX7ff+edd7J+/fp5vdalSxf20EMPMcYYc7lcrEmTJmzKlCnS78+ePcsSEhLYZ599xhhjrKysjAFgGzZskN6zZMkSJggCO3LkCGPswo1gy5YtssTJCzXa05OZM2f6/eL/5ptvmE6nY+Xl5dJr7733HktNTWVWqzWkGHmi1fZkzJ1ILViwIMSI1EXt9hR59dVX2SWXXCL9/O6777KGDRt6XYtPPfUUu/LKK0MLkDNabU+6f0bWnosWLWKCIEiJp1zXJz3ai0FsNhs2bdqEwsJC6TWdTofCwkKsXbvW7/+zdu1ar/cDQK9evaT379+/H+Xl5V7vadCgAbp06SK9Z+3atUhLS0Nubq70nsLCQuh0Oqxfv95r3/3790fjxo3RrVs3fPXVV5EFrDBqtWcwrF27Fu3atUNmZqaXp6KiAr///nvQ++GJlttTpLi4GBkZGcjLy8OMGTPANLzcnpba89y5c0hPT/fy3HDDDTCZTF6eXbt24cyZM6EFygktt6cI3T9Db8/Tp09jzpw56Nq1K4xGo+SR4/qkRCoGOXXqFJxOp9eXKwBkZmaivLzc7/9TXl5e6/vF/9b1nsaNG3v93mAwID09XXpPvXr18Prrr2P+/PlYvHgxunXrhoEDB2r6ZqBWewZDII+nQ2touT0B4MUXX8S8efPw/fff4/bbb8fDDz+Mt99+O6R98EQr7bl37168/fbbeOihh+r0eDq0hpbbk+6fobfnU089hZSUFFx00UU4ePAgFi1aVKfH0xEMhqDfSRAykJGRgZKSEunnzp074+jRo5gyZQr69++v4pERhJt//OMf0naHDh1gNpsxZcoUPProoyoelbY5cuQIevfujcGDB2PUqFFqH07UE6g96f4ZOuPGjcPIkSNx4MABvPDCCxg6dCi+/vprCIIgm4N6pGKQjIwM6PV6HD9+3Ov148ePo0mTJn7/nyZNmtT6fvG/db3nxIkTXr93OBw4ffp0QC8AdOnSBXv37g0iMnVQqz2DIZDH06E1tNye/ujSpQsOHz4Mq9Ua0X6UQu32PHr0KHr06IGuXbvigw8+CMrj6dAaWm5Pf9D9s/Z9ZmRk4IorrkDPnj3x+eef45tvvpFmOcp1fVIiFYOYTCZ06tQJy5cvl15zuVxYvnw58vPz/f4/+fn5Xu8HgO+//156/yWXXIImTZp4vaeiogLr16+X3pOfn4+zZ89i06ZN0nt++OEHuFwudOnSJeDxbt26FU2bNg09UE6o1Z7BkJ+fj19//dUrgf3++++RmpqK7OzsoPfDEy23pz+2bt2Khg0bql4YNRBqtueRI0dQUFCATp06YebMmdDpvL9S8vPzsXLlStjtdi/PlVdeiYYNG4YftIJouT39QfdPN8F83l0uFwBIfxTJdn2GNDSdiBo+//xzlpCQwGbNmsXKysrYgw8+yNLS0qTZXffffz97+umnpfevXr2aGQwG9tprr7EdO3awiRMn+p1umpaWxhYtWsS2b9/OBgwY4Hf5gw4dOrD169ezn3/+mV1++eVeyx/MmjWLffrpp2zHjh1sx44d7KWXXmI6nY7NmDGDQ6uEj1rteeDAAbZlyxb2wgsvsHr16rEtW7awLVu2sL/++osxdmH5g5tvvplt3bqVLV26lDVq1Cgqlj/QYnt+9dVX7MMPP2S//vor27NnD3v33XdZcnIymzBhAqeWCQ812vPw4cPssssuYzfddBM7fPiw13R8kbNnz7LMzEx2//33s99++419/vnnLDk5OSqWP9Bie9L9M/j2XLduHXv77bfZli1b2B9//MGWL1/Ounbtylq3bs2qq6sZY/Jdn5RIxTBvv/02a9GiBTOZTCwvL4+tW7dO+l337t1ZUVGR1/vnzZvHrrjiCmYymVjbtm3Z4sWLvX7vcrnYP/7xD5aZmckSEhLYTTfdxHbt2uX1nj///JPdc889rF69eiw1NZUNHz5c+pJizH0jaNOmDUtOTmapqaksLy+PzZ8/X/7gFUCN9iwqKmIAavz78ccfpff88ccfrE+fPiwpKYllZGSwv//978xut8sev9xosT2XLFnC2rdvz+rVq8dSUlJYTk4Omz59OnM6nYq0gZzwbs+ZM2f6bUvfv8+3bdvGunXrxhISEljz5s3ZK6+8In/wCqDF9qT75wXqas/t27ezHj16sPT0dJaQkMBatWrFRo8ezQ4fPuy1HzmuT4ExDc/rJQiCIAiC0DA0RoogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCIIgCCJMKJEiCIIgCIIIE0qkCIIgCIIgwoQSKYIgCIIgiDChRIogCCJCbDYbLrvsMqxZs0bW/S5duhTt27eXaoQRBKE9KJEiCMKLYcOGQRCEGv+0XGFebaZPn45LLrkEXbt2lV4TBAELFy6s8d5hw4Zh4MCBQe23d+/eMBqNmDNnjkxHShCE3FAiRRBEDXr37o1jx455/bvkkktqvM9ms6lwdNqCMYZ33nkHI0eOVGT/w4YNw1tvvaXIvgmCiBxKpAiCqEFCQgKaNGni9U+v16OgoABjxozBY489hoyMDPTq1QsA8Ntvv6FPnz6oV68eMjMzcf/99+PUqVPS/sxmM4YOHYp69eqhadOmeP3111FQUIDHHntMeo+/Hpy0tDTMmjVL+vnQoUO48847kZaWhvT0dAwYMAB//PGH9Huxt+e1115D06ZNcdFFF6G4uBh2u116j9VqxVNPPYWsrCwkJCTgsssuw7/+9S8wxnDZZZfhtdde8zqGrVu31tojt2nTJuzbtw/9+vULsZWBP/74w2/vX0FBgfSeW2+9FRs3bsS+fftC3j9BEMpDiRRBECExe/ZsmEwmrF69GtOnT8fZs2dx4403okOHDti4cSOWLl2K48eP484775T+n3HjxuGnn37CokWL8N1332HFihXYvHlzSF673Y5evXqhfv36WLVqFVavXo169eqhd+/eXj1jP/74I/bt24cff/wRs2fPxqxZs7ySsaFDh+Kzzz7DW2+9hR07duD9999HvXr1IAgCRowYgZkzZ3p5Z86ciRtuuAGXXXaZ3+NatWoVrrjiCtSvXz+keAAgKyvLq9dvy5YtuOiii3DDDTdI72nRogUyMzOxatWqkPdPEAQHGEEQhAdFRUVMr9ezlJQU6d8dd9zBGGOse/furEOHDl7v/7//+z928803e7126NAhBoDt2rWL/fXXX8xkMrF58+ZJv//zzz9ZUlISGzt2rPQaALZgwQKv/TRo0IDNnDmTMcbYJ598wq688krmcrmk31utVpaUlMS+/fZb6dhbtmzJHA6H9J7Bgwezu+66izHG2K5duxgA9v333/uN/ciRI0yv17P169czxhiz2WwsIyODzZo1K2B7jR07lt144401XgfAEhMTvdoxJSWFGQwGNmDAgBrvr6qqYl26dGG33HILczqdXr/r0KEDe/755wMeA0EQ6mFQN40jCEKL9OjRA++99570c0pKirTdqVMnr/du27YNP/74I+rVq1djP/v27UNVVRVsNhu6dOkivZ6eno4rr7wypGPatm0b9u7dW6Pnp7q62uuxV9u2baHX66WfmzZtil9//RWA+zGdXq9H9+7d/TqaNWuGfv36YcaMGcjLy8N///tfWK1WDB48OOBxVVVVITEx0e/v3njjDRQWFnq99tRTT8HpdNZ474gRI/DXX3/h+++/h07n/bAgKSkJFosl4DEQBKEelEgRBFGDlJSUgI+yPJMqAKisrMStt96Kf/7znzXe27Rp06Bn+wmCAMaY12ueY5sqKyvRqVMnvzPYGjVqJG0bjcYa+xWXD0hKSqrzOB544AHcf//9eOONNzBz5kzcddddSE5ODvj+jIwMKVHzpUmTJjXasX79+jh79qzXa5MmTcK3336LX375xe8jwtOnT3vFSBCEdqBEiiCIiOjYsSP+85//oFWrVjAYat5SWrduDaPRiPXr16NFixYAgDNnzmD37t1ePUONGjXCsWPHpJ/37Nnj1QvTsWNHzJ07F40bN0ZqampYx9quXTu4XC789NNPNXqKRPr27YuUlBS89957WLp0KVauXFnrPjt06ID33nsPjDEIghDyMf3nP//Biy++iCVLlqB169Y1fi/2uHXo0CHkfRMEoTw02JwgiIgoLi7G6dOncc8992DDhg3Yt28fvv32WwwfPhxOpxP16tXDyJEjMW7cOPzwww/47bffMGzYsBqPr2688Ua888472LJlCzZu3IjRo0d79S4NGTIEGRkZGDBgAFatWoX9+/djxYoVePTRR3H48OGgjrVVq1YoKirCiBEjsHDhQmkf8+bNk96j1+sxbNgwjB8/Hpdffjny8/Nr3WePHj1QWVmJ33//PYRWc/Pbb79h6NCheOqpp9C2bVuUl5ejvLwcp0+flt6zbt06JCQk1HkcBEGoAyVSBEFERLNmzbB69Wo4nU7cfPPNaNeuHR577DGkpaVJydKUKVNw/fXX49Zbb0VhYSG6detWY6zV66+/jqysLFx//fW499578cQTT3g9UktOTsbKlSvRokUL3HbbbWjTpg1GjhyJ6urqkHqo3nvvPdxxxx14+OGHcdVVV2HUqFEwm81e7xk5ciRsNhuGDx9e5/4uuugiDBo0KKxFMzdu3AiLxYJJkyahadOm0r/bbrtNes9nn32GIUOG1Pp4kSAI9RCY76AEgiAIDhQUFKB9+/aYNm2a2odSg1WrVuGmm27CoUOHkJmZWef7t2/fjp49e2Lfvn1+B92Hy6lTp3DllVdi48aNfhdEJQhCfahHiiAI4jxWqxWHDx/G888/j8GDBweVRAHANddcg3/+85/Yv3+/rMfzxx9/4N1336UkiiA0DA02JwiCOM9nn32GkSNHon379vj4449D+n+HDRsm+/Hk5uYiNzdX9v0SBCEf9GiPIAiCIAgiTOjRHkEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYUKJFEEQBEEQRJhQIkUQBEEQBBEmlEgRBEEQBEGECSVSBEEQBEEQYfL/ol9URXwtYe8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.semilogy(pds_dirty_reb.freq, pds_dirty_reb.power, drawstyle=\"steps-mid\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\"Power (Leahy)\")\n", + "for i in range(1, 30):\n", + " plt.axvline(i / 97 / 60, ls=\":\", color=\"k\")\n", + "plt.xlim([5e-5, 3e-3])" + ] + }, + { + "cell_type": "markdown", + "id": "81a65e58", + "metadata": {}, + "source": [ + "We might still expect to detect the satellite orbital time scale in the periodogram, due to the imperfect frequency response during the orbit, but it's a lower-order problem now.\n", + "\n", + "Looking into more detail, the two curves do not exactly match, in particular close to the maximum frequency:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "afa946e8", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNsUlEQVR4nO3de3hU5b03/O89k5nJ5DThfNAQUREECQkEAxFEHvDAtm69nmd7etVSradu3Oi22or7UUqtRi27B1svaX0V2K1KRUX7tgoV5RwSCYSTBwqWQmxBFMlMjjOTNff7x2StzJpTMsmazKzM93Ndc5lZs2ate1YWmZ/3/bt/t5BSShARERGZgCXVDSAiIiLqKQYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBCxEREZkGAxciIiIyDQYuREREZBoJBy5bt27FNddcg9GjR0MIgbffflv3upQSjz/+OEaNGgWn04n58+fj8OHDRrWXiIiIMljCgUtLSwumTJmC559/Purrzz77LJ577jmsWLECtbW1yM3NxZVXXon29vY+N5aIiIgym+jLIotCCKxbtw7XXXcdgGBvy+jRo/H9738fDz30EADA7XZjxIgRWLVqFW666SZDGk1ERESZKcvIgx09ehQnT57E/PnztW0ulwsVFRXYuXNn1MDF6/XC6/VqzwOBAL755hsMGTIEQggjm0dERERJIqVEU1MTRo8eDYsleSm0hgYuJ0+eBACMGDFCt33EiBHaa+GqqqqwbNkyI5vRa8LmwJgH3wQAHP/Z/4H0ew3dn4iIaKBraGjA2WefnbTjGxq49MaSJUvw4IMPas/dbjfGjBmDhoYGFBQU9Fs7FEXBls0f4oHa4PNjhz+Fa9CQuO9p9pxB5a8PAgC++Nsh5BUMSnYziYiI0pLH40FRURHy8/OTeh5DA5eRI0cCAL788kuMGjVK2/7ll1+itLQ06nscDgccDkfE9oKCgn4PXHJzcwAEAAD5+fndnl9IRfs5P78A+f3YXiIionSU7DQPQwehxo4di5EjR+KDDz7Qtnk8HtTW1mLmzJlGnoqIiIgyUMI9Ls3NzThy5Ij2/OjRo9i7dy8GDx6MMWPG4IEHHsBPfvITjBs3DmPHjsVjjz2G0aNHazOPiIiIiHor4cClrq4Oc+fO1Z6r+SkLFy7EqlWr8IMf/AAtLS24++670djYiFmzZmH9+vXIzs42rtVERESUkRIOXC677DLEK/0ihMCPf/xj/PjHP+5Tw4iIiIjCca0iIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgUsMNpst1U0gIiKiMAxcYkj2IlFERESUOAYuREREZBoMXIiIiMg0GLgQERGRaTBwCRVn8UgiIiJKPQYuKilRsn9pqltBREREcTBwUflbkd98rOu5zZm6thAREVFUDFxiSXA6NAeZiIiIko+Bi0FuWrkPkjkyREREScXApQ+cNgsmir8DAD452YI2v5LaBhEREQ1wDFz6QAiBtfZlqW4GERFRxmDg0kdcGICIiKj/MHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi4hWD6OiIgovTFw6SSlxPU+LrJIRESUzhi4dGrzK/hEngMAmDgyF06bNbUNIiIioggMXABASlh+/3+0p2tunwKR4CKLRERElHwMXADA3wpx6mPtqbA5e3ccLrJIRESUVEkJXJqamvDAAw+guLgYTqcTlZWV2LVrVzJOlRw97W2x5aApr7jrub8tOe0hIiIiAEkKXO688068//77+N3vfocDBw7giiuuwPz58/GPf/wjGadLHSGwv4SLLBIREfUXwwOXtrY2vPnmm3j22Wdx6aWX4vzzz8ePfvQjnH/++XjhhReMPp0hZF+GeJgLQ0RE1G+yjD5gR0cHFEVBdna2brvT6cT27dsj9vd6vfB6vdpzj8djdJO6FQgEdM8tFqb+EBERpSPDv6Hz8/Mxc+ZMPPHEE/jnP/8JRVHw+9//Hjt37sSJEyci9q+qqoLL5dIeRUVFRjcpYZxRRERElJ6S0rXwu9/9DlJKnHXWWXA4HHjuuedw8803R+3JWLJkCdxut/ZoaGhIRpOIiIhoADB8qAgAzjvvPGzZsgUtLS3weDwYNWoUbrzxRpx77rkR+zocDjgcjmQ0g4iIiAaYpCZz5ObmYtSoUThz5gw2bNiAa6+9NpmnIyIiogEuKT0uGzZsgJQS48ePx5EjR/Dwww9jwoQJuP3225NxOiIiIsoQSelxcbvdWLRoESZMmIBvf/vbmDVrFjZs2ACbzZaM0xEREVGGSEqPyw033IAbbrghGYdOa32qB0NERETdYsGSPrBYLMjNydWeh9eDISIiImMxcOkDIQQmT56c6mYQERFlDAYuREREZBoMXIiIiMg0GLgQERGRaTBwISIiItNg4EJERESmwcCFiIiITIOBC4KF41rBhR6JiIjSXVIq55qJlBI3rNyPPd4VqW4KERERdSPje1za/Ar2NHi059OKCuC0WVPYIiIiIool43tcQtU57kXh7QchhEh1U4iIiCiKjO9xCZUDL4MWIiKiNJbxgYuRKzofOHCAK0QTERElUcYHLuErOlssiV2S0P1bWlu4QjQREVESZXzggrAekkSHiji0RERE1H8YuPjbtB/l8EmALSeFjSEiIqJ4GLiECNz6JsAeFCIiorTFwEWHQQsREVE6Y+BCREREpsHAhYiIiEyDgQsRERGZBgMXA3kVYwvaERERkR4DFwPdtyWAG1+sZfBCRESUJAxc+shps6BcHNKe7z7WiDa/ksIWERERDVxpG7hIKaEoStr3XgghsNa+DHWOe1PdFCIiogEvK9UNiGXfvn0IBAJwuVwoLS1N69L6QgA50pvqZhAREQ14advj0tTUBABwu91cuJCIiIgApHHgQkRERBSOgQsRERGZhuGBi6IoeOyxxzB27Fg4nU6cd955eOKJJ9I+yZaIiIjSn+HJuc888wxeeOEFrF69GpMmTUJdXR1uv/12uFwuLF682OjTERERUQYxPHCprq7Gtddei6uvvhoAcM455+C1117DRx99ZPSpiIiIKMMYPlRUWVmJDz74AH/9618BBKc1b9++HQsWLIi6v9frhcfj0T2IiIiIojG8x+WRRx6Bx+PBhAkTYLVaoSgKnnzySdxyyy1R96+qqsKyZcuMbgYRERENQIb3uLz++ut45ZVX8Oqrr2LPnj1YvXo1li9fjtWrV0fdf8mSJXC73dqjoaHB6CYRERHRAGF4j8vDDz+MRx55BDfddBMAYPLkyTh27BiqqqqwcOHCiP0dDgccDofRzSAiIqIByPAel9bWVlgs+sNarVZWvyUiIqI+M7zH5ZprrsGTTz6JMWPGYNKkSaivr8fPfvYz3HHHHUafKn2xZg0REVFSGB64/OpXv8Jjjz2Gf//3f8epU6cwevRo3HPPPXj88ceNPlV6sOVAFlUAx/d2bfO3AQ5byppEREQ0UBkeuOTn5+MXv/gFfvGLXxh96PQkBAIL38XO9/8EbEl1Y4iIiAY2rlVkBCEQsDLBmIiIKNkYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5ERERkGgxciIiIyDQYuBAREZFpMHAhIiIi02DgQkRERKbBwIWIiIhMg4ELERERmQYDFyIiIjINBi5JIKVMdROIiIgGJAYuBrBYLMjNydWeBwKBFLaGiIho4GLgYgAhBCZPnpzqZhAREQ14DFyIiIjINEwfuEgpmVNCRESUIUwTuCiKEhGgSCmxZcsWbNmyhcELERFRBshKdQN6or6+Hs3NzXC5XCgtLYUQAgDg9/u1ffx+P+x2e6qaSERERP3AFD0uzc3NAAC3280ZO0RERBnMFIELEREREcDAhYiIiEwkowMXKSUURUl1M4iIiKiHMjZwkVKivr4eu+p2GX7sAwcOcJYTERFREmRc4KL2sgQCAXg8HsOOa7F0XcqW1hYmERMRESWBKaZDG0XtZfF4PMjLyzP02OoUbSIiIkqejOpxCe1lUadYExERkXkYHricc845EEJEPBYtWpTYgaSERWkHwnJFolXQJSIiosxg+FDRrl27dDN1Dh48iMsvvxzXX399Qscp2f8jFPkOw11wIerLqoDOoZjq6mqtgi4RERFlFsMDl2HDhumeP/300zjvvPMwZ86chI7javor4BBweT6FJeBFwJqtvdabCrqc+kxERGR+SU3O9fl8+P3vf48HH3wwZvKq1+uF1+vVnhs500cVmpRLRERE5pXU5Ny3334bjY2N+M53vhNzn6qqKrhcLu1RVFTUq3PV1dXFzH0xeupzTzAPh4iIyHhJDVxeeuklLFiwAKNHj465z5IlS+B2u7VHQ0NDj48fOvTj8/mwe/futAkYtm/fnjZtISIiGiiSNlR07NgxbNy4EW+99Vbc/RwOBxwOhyHnbG5uRiAQ0IrBJVpbJbSInBH8fj/sdruhxyQiIspkSetxWblyJYYPH46rr746WaeISkqJLVu2YMuWLQn3eLCIHBERUXpLSuASCASwcuVKLFy4EFlZ/Vuc1+/3R/2ZiIiIzC8pgcvGjRtx/Phx3HHHHck4PBEREWWopHSHXHHFFaZJTDVJM4mIiAgmXqvIiMBISomf1HEVZyIiIrMwbeCyffv2Ph/DpwDHm4I/TxR/h9NmzOXwKqzjQkRElAymDVwAY5Nv19qXGTar6L4tATxV287ghYiIyGBpG7hICbRKB1qlI6EAoLa2tlfn62vI4rRZUC4Oac8PNwbQ3O5n8EJERGSg/p2rnICF+BH2escDAMbVBfBohUzrOitCCKy1L8NpFKDcuwIAULdrF4YPKURpaWlat52IiMgs0rLHRdgc2Ivx2vPDjcF8lHDp1pshBJCDrgUjvQrQ2NiY8ErWREREFF3a9rj0RH19faqbENfiTa0YV2jB7NnpFWARERGZVVr2uJiZE16UZf1de364MYA2f5TuIiIiIkoYAxej2HKAkZMhBPCW9VH8eg4vLRERkdH47WoUIYDb12s/Oqwpbg8REdEAZOrARUoJb0fw0atEXaOTe2PMHNq3b3/aJRITERGZkWmTc6WUeLK2HUcagzN2xhVa8GhFdkLTji2yawYQRkwKDvckQUtzMwKBAKxWdsMQERH1hWl7XHwKtKAFCCbBRpsy3WO3vR2zx4SIiIjSg2kDF8MxaCEiIkp75gpcpIRFaY+dmyJ7XuhNSglvEmcpWxRv9zsRERFRQsyT4yIlyuqXwOX5DO6CC1Ez+amIXbI6mgBbYQ8Opc+PSYaZNXcDWJm04xMREWUi0/S4WKQXLs9nAACX51N9Ym2CwvNjysUhOG0GXApbDmRRRcRmr5J+yxMQERGZkWkCl+CXv/HHrXPci7X2ZcYsgthZy+XAVet0mxdvasWNL9YyeCEiIuoj0wQu920J4Hrf0t4HLzHyY3LgNTQvV1gsuKjsYjjhRbk4pG3ffayRpf+JiIj6yDSBCwDUyfFogyPxN0qJsvpHcOm2G1FWvyQieAmMuMjQGi5CCAgBrLUvY+l/IiIiA2XGt6q/NW5+TMdt/19SpkOz9D8REZGxzDOryABSAm1wRBluYg0XIiIiM8iYwCUgBb7lexKfyHMwpi5506CJiIgoedJ0qKj3PSDqwouhM3iklFrQAgDHm/raPiIiIkqFtOxxEbbuE3Cjzi6S0ArLjSu04E+VwZ3a/AEtaCEiIiLzSsseF4stO+7rUgI/iTLc4w10FZY73BhAmz8NhoRYu4WIiMgwaRm4nHXvS3Ffb4NDG+4ptnzVDy3qvZL9S1PdBCIiogEjLQOXRLxhe0z7OWCxp7AlIWw5wMjJAID85mMpbgwREdHAYfrARZfGm4RaLL3SWfqfiIiIjGX6wCVtpUsQRURENIAkJXD5xz/+gVtvvRVDhgyB0+nE5MmTUVdXl4xTERERUQYxfDr0mTNncMkll2Du3Ll47733MGzYMBw+fBiDBg0y+lRERESUYQwPXJ555hkUFRVh5cqV2raxY8cafRpTkpwaTURE1CeGDxX98Y9/RHl5Oa6//noMHz4cZWVlePHFF2Pu7/V64fF4dI94WuFAa4wVov0+b9Tt6WL//v0MXoiIiPrA8MDlb3/7G1544QWMGzcOGzZswPe+9z0sXrwYq1evjrp/VVUVXC6X9igqKop7/HLvCpR7V0R97T932vQbZCCtAgWP24NAIA2K4hEREZmU4YFLIBDA1KlT8dRTT6GsrAx333037rrrLqxYET3YWLJkCdxut/ZoaGgwrC27t7+PLVu26IKXieLv2s/l4hCcSO9eGiIiIupieI7LqFGjMHHiRN22Cy+8EG+++WbU/R0OBxyO7tcmimXvlCeBj7qeb7Pfj9m+X+r28fv92s9r7csgADTlFWN481/hcV0Ipy2n1+cnIiKi/mN44HLJJZfg0KFDum1//etfUVxcbPSpAACKVb+ukVPE70ERAHKEF7vLfoxDQiBgcaCSNVeIiIhMwfChov/8z/9ETU0NnnrqKRw5cgSvvvoqfvvb32LRokVGn6rHAoHIPBcpBALWbBaKIyIiMhHDA5fp06dj3bp1eO2113DRRRfhiSeewC9+8QvccsstPT5G+xcfA9Dno4RSt5eLQ8i3SZSLQ9rzaDkre/fVJ/YhiIiIKC0ZPlQEAN/61rfwrW99q9fv//KVH+LED4ci3y4wybsy4nU1T8UJL6qzVuP/Hfo67J6/wQkv2kKmSgeEHR0dEiJ9JhYRERFRHyQlcDFCjvBCIDvqa2qeimrv1CrY/G5cUr0QCAlSnqiTON7cijH5SW4sERER9Yu0DVwSIkREki4AHG/u/G9TP7dngJFSos2vQEoJh1XAarVCMDeIiIhSYGAELpQ0Ukr824qd2H3sDABgXKEFz1wxAmVlZQxeiIio3yVldehkKrUdZ9G4ftTmV7SgBQAONwbw1TduVgAmIqKUMFWPy68vFcjNHo+28TXIeXFGqptDRERE/cxUPS6OLAFhsUBGqXQ7o6Ki18e12Wzd70REREQpZ6oel7hsOQicfTHQsK9Hu8+eNQuw5wIAczWIiIhMwlQ9LiqbLUq8JQQ6bvsTds74bY+OIYTQHtQ7iqKk1erbREQ08JkucJkzZ07sF4VAls2hVdJNN14FaPV1DIgv+/r6emzbtg179+4dEJ+HiIjMwVRDRdPLp3fbQyKEwFr7MrTBgVY4UO5dEblT0QwgBStCL97UCmzaiPLiQXj9nplo71AAAE6b+eqiNDcHi+S43cEZRlarNcUtIiKiTGCqwKU7apKtEEAOvLoqupr79wODRqR0ccW6Y2dw9a+24dMTwcp45cWDsPbemWkZvLA3hYiI0klaDxU54dUvoGiL31whRDDpNh57Tv8ELWqycAxq0AIEA5k2v5L8NvUC67UQEVE6SeseFyGgDfs44YVf3A4AsLlGavv4bQVh70mTXovOZOE9m99D+eZDqJPjMSbfXMsPSCnR6kvPgIqIiDJTWgcuQMiwT+g2ixXy8W/g9/uBnTUpalkPCIFAVrYWfG0vX427N5mjByO81H+oyksq4bAKVFdXp6BlRESUydJ2qGjbJa9g26zXYr4uLFbY7A7teToXkROic7XrNOkM6onwUv9j8rtuFavVymRcIiJKibQNXCAskKL7nJY5c+Zgzpw5XUNEthzIEZP7oYGZ47m5OXi0Qr/6tpQS3o7gY8+ePUziJSKifpH2Q0XdichpEQKB7/wZ1mfGpKZBA0RoIOKwhr8G3PjiR9h9rBUAMK6wHe+VKcjKMv3tREREaS59e1wABCwOKGdNBwC4Cy5MoPZKeo7JTC8vT3UTeix8NlGBqysJ+psWX8SK0ek6K4qIiAaW9P5fZCHQfvPb2F27HQGLA5VmShJBZN6N7bUbADyUmsYkQEoJRekKXCpmzAgus/DmSQDA7Gc3pappRESU4dK6xwVAcOjHmp3SgnG9JYTA7LlXQI4M5tyIUx+nuEXdk1Kivr4etTVds7WsVgty7FkoLx6k23fiqPz+bh4REWW49O5x6SWLJX3iMWGxALevB6rOSnVTeiQQCMDj8URsF0Jg7b0zdUNCHR0KSn68sT+bR0REGW5ABi5pU4ROlW7tiUHtbYlFCIEce9ct06Qwr4WIiPpX+nRNGMmWE1xIkXpMSgm/368tnkhERJSOBmSPC4QA7lgPtDQBP9mW6takPbWnJdoQERERUToZmD0uQDB4sfd0+nRmC89rycvLS2FriIiIYhu4gQslRK2EW1pegdLS0oTfrygBVs8lIqKkG5hDRelGzbk5HjvxNVg7RYHFYun35GIpJZ6sbceRxgCw8UNMHJWPeyYkdoytO2pw9jAXysrK0i85moiIBozMC1xszv4/p5pzc+ZL4NndUXfZt28ffK3NcLlcKC0t7dcv/za/EgxaOn1yogn3n+j+faHTzhdvag2W/i9h6X8iIkqetB8q6suqz06bVVc0rbx4EJz2FH2pdpNz0+RpAgC43e6Icvv96Zwh+jaOK7TAaYu+EnR4UTqW/iciomRL2/81njVrFgoKCuD3+3t9jPCiaU6blcMY3fjjokoIAVTvqAYA2K2x6+Ko1/eUpw0VVVwGgIiIks/wHpcf/ehHEELoHhMmJJgwAWjv7Su1aFqOPYtBSw8IEexJcWQJOLK6/x0Er2/0HhkiIiKjJaXHZdKkSdi4sasUPHMezMViscDlcsHtdsNVUABLRxugdAYwthzTVAImIqKBJykRRVZWFkaOHJmMQ1M/EEKgtLQUAUWBZfW/QPyxtuvFohnBRGMGL0RElAJJSc49fPgwRo8ejXPPPRe33HILjh8/HnNfr9cLj8eje1DqCSFgDXghGmr1LzTUAP7W1DSKiIgynuGBS0VFBVatWoX169fjhRdewNGjRzF79mw0NTVF3b+qqgoul0t7FBUVGd2k9JGKqdhGuX9f18++VoDF5oiIKAUMD1wWLFiA66+/HiUlJbjyyivx7rvvorGxEa+//nrU/ZcsWQK32609GhoajG5S2nDaszCtqEB7Pia/+/eohelSXpXWltv18/LzgZevYvBCRET9LulZs4WFhbjgggtw5MiRqK87HA44HI5kNyMtCCHwh9tL4HtmHABge/lq3L0pds2W0MUPU1GYTsfmDOa3NNQEn6tDRvbc+O8jIiIyUNIL0DU3N+Pzzz/HqFGjkn0qUxBCIEd4kSO8cfNbpZRobvfhq2/ckFKmvDCdVv33oegBqGrfvv2p7x0iIqIBy/Ael4ceegjXXHMNiouL8c9//hNLly6F1WrFzTffbPSpBiwpJf5txU7sPnYGQLB67aMV2SluFWJW/w0t/d/S3IxAIACrlbVdiIjIeIYHLl988QVuvvlmnD59GsOGDcOsWbNQU1ODYcOGGX2qAavNr2hBCxAspe9L40r6LOxHRET9xfDAZc2aNYYeL3Stor6sW0RERETml/YlbYUQmDNnjvbzQOVVAEDCVNXzfZ31XKRdt7m+vh7Tpk0b0L8vIiJKjbQPXICBHbCoFm8KBgHjCi143Lmvm72NE5xu3cuk3+XnB/971iwA/65tbmaeCxERJYkpApdMcrgxgDPuln45lzrd+qtv3D1/ky1HPy0aAL7YZXzjiIiIomDgkkIWxQsgdXk7gUAgcokFXytg7Qj+HG1aszot2t8a3FftdSEiIuoHDFxSaGbN3QBWproZOtafjQeEN/hk5OToOwnBwnNERJQSSS9AR2FsOXAXXJjqVvTMyQMJv8WrAN4OySJ0RESUFAxc+psQqC+rwo7K1aluSWz39z45ePGmVtyzsRU3vljL4IWIiAzHwCUVhIBiTYNKuLHYEhsGcsKL8jEFum27jzWizZ/GVfOIiMiUGLikkBNelItDAICJo3qwVHR/URdUVBXNCM4mikEIYO13y3Bg6Xw8Nzf2fkRERH3F5NwUEgJYa1+GtvsPocNRiJInPgAAeJUUD7GEzhwCgkFLN7V0hBDIsWfBwdItRESUROxxSTEhgJznxsP66v/Wtj28tS2FLeqkzhyy53YbtBAREfUXBi79zGKxwOVyIWBxoHnwRdr2nC924AKXvoLtxFEF4W83nJSyc7kBIiKi9Mehon4mhEBpaSkCgQAsc7YBraeB5edDCGBD+61oczjgLhiPvO+9D4s1C5OWbkhaW6SUeLK2HUcae1nyn4iIqJ8xcEkBIUTXOj72nJDtQA68yGnaD0X44BXJ/fW0+RVd0FIuDsEJb1LPSURE1BccKhoAggslKn2qm/LrORastS9jOgsREaU19riYnLpQosfjgcvlQmlpaa9W03ZYmYNLRETpjz0u6crfGn2RwzChCyW63W4EAj3LVwn20iQ3t4WVc4mIyGgMXFLNlqMVe2vKG6tttv5sPPA/1yXllGovTW1NjbZtevl0w8+zf/9+Bi9ERGQoBi6p1lnsTS75B478r5f0CzB+sUv70atE9mCoAUiiQntpVFqycG/5WmHpaENBQVcF4K++8UBRONeaiIiMw8AlHQgB4chDadlU5C3eDvnQ4YhdFm8KLlwYCAS0RNxAIIDm5ua4hzYicbdHlp8PUXUWSvYtjWgze12IiMgoTM5NI0IIWLOygtVqEVzLaNrZudj9RQuA4MKFNXV74GttRkFBQcx8FkVRYLEEY1IjEndjUoe5GrqGnHK+2I5pRY9gd4NHa3ObX0GOnbcaERH1HXtc0pgQwBtfXYsPh/63tq3J0wQA8Hg8Wm+L0+nUXq+vr8e2bduwd+/euIm7hlTMVdc0evSfwENHtE1/uL2Eiy0SEVFSMHBJRyEJu0IAI5sOxtxVSonxk0rg7ZCQUmrBjNvtjplfolbMXbyptWujvzXqvt3S1jQKLaQndIst9stQFRERZQT236cjtSej5Wtg+fkxd9NK9m/4EAAwrtCCRyuy4w4HSSlRU1evq5hbZm9A3q/+H8CgUSSLxYLcvDwAwWCoekc1hg8pNH6oioiIMg57XNKVELpeDNWk0qnwdkh4OySafNAFIIcbA/B1M/wTCATQEpLQW/tQBd4SP+wqPlc0I9jj06emC5SVleq2JVJjhoiIKBb2uJjMrOXbDT1efra9K2h56AiQO9SQErrsWSEiomRgj4sJOOHFuMLYr184Mj/2i4mw57DuPxERpTX2uJiAEMD/LbegHdmomDFDV/EWAC6uKEfZk5tS1LoofK2AzZ7qVhAR0QDEHheTyAp4MXywC67cbAwpzIcjS2iPWMMyvamqa4jl5ydtuQIiIspsDFxM4pLqhSitXwIBYNq0acjLywMAuFwuWK1dv0YJaMm7ra29nOLcGyFTuAHolitQcVo0ERH1VdIDl6effhpCCDzwwAPJPtXAExYMiIYawN8KIQSmTZuG2bNno7S0VPeWJ2vbcc/GVtyzsRVP1bYjIKUWyEQNGnwGBTfqFO7OQnShvEowmNqxYwf27t3L4IWIiHotqTkuu3btwm9+8xuUlJQk8zQDV5x6LkKIqAsjNjTpp0cvrW7Xtk07XIs/3FWhf8MvSwyr3xJrCrda6C5YZ6YRgUCg74s6EhFRRkpaj0tzczNuueUWvPjiixg0aFCyTjPwhQcDvlYggR6L0EBm97FGtPqU6KX+DajfEsoJL8rHFOi29aTODBERUTxJC1wWLVqEq6++GvPnz4+7n9frhcfj0T0ojuXnAy9f1RW8SJnQcM8Nv63Rl/oHgsM7d6w3dCq0EMDa75bhwNL5EesWMdeFiIh6KymBy5o1a7Bnzx5UVVV1u29VVRVcLpf2KCoqSkaTzC088bUz1wVSAi9fCevPxvf4UJ+d7KqaWy4OwQlv0uq3CCGQY8/SrVsEANXV1cx1ISKiXjE8cGloaMD999+PV155BdnZ2d3uv2TJErjdbu3R0NBgdJPML1riq68V8LUADbW9OuSv51iw1r6s3+vNqbOeTp1ujLkIJBERUSyGJ+fu3r0bp06dwtSpU7VtiqJg69at+PWvfw2v16tLzHQ4HHA4HEY3Y+AJz3VZfj4wcjKAznwScQh1MtjzMnFUPj450RT3cA5r/xTJtVgsKHAVQF1w8RcHLVqvz7TDtXjj3kouD0BERD1meI/LvHnzcODAAezdu1d7lJeX45ZbbsHevXs5m6QvwoeMTh4A0JlPYl+GTxy348X/ZcGa8JlDKSSE0M0qCx2q2n2sEW1+9roQEVHPGd7jkp+fj4suuki3LTc3F0OGDInYTgmKOz0ayIEXDquI2pMyJt+C450zjMYVWmDvx9KD7FEhIiKjcK0is4lRK0V7OcYso0crsiEAVMyYgfpdNRABbxIbqee0WVFePAh1x84A0AdRUkooigKLxcIAh4iIutUvgcvmzZv74zSZQx0yaggutihHToboHDaatv+/4Nz2OcrFUi3nZVpxIRxWX+csH2u/BwhCCKy9dyba/AoURcGOHdW4d2MwuNq3bx98rc1wuVwoLS1l8EJERHGxx8WM1CEjf/DLX0gJVJ0FAMjxfA505ry0wQE8fAT27Bxs3769/9up9vzYcrSp0YoidIV6mzxNcGQJuN1uVtQlIqJuMXAxKyEAe27wZ19L1Jdz4AVsFij+VliUdgQsDkBKWJR2WJX25LdRzcMpmmF4gTsiIspMDFwGupevgvXLA7gUgLtgArI+z8elUVZuNkzYMBaAroJ5aqBFRETUSwxcBrovD2g/ujyfAeErKhi8RpFuGMvXGjH7yWKxIDcvD2pdFyIiokT046RYSic7KldD+WFDcoZw1GGsKLOfhBCYMoWrhRMRUe8wcMlQijU7GFww74SIiEyEgQulDa4aTURE3WHgQmmDq0YTEVF3GLgMBOFrGHUuvmgGXiW4WrQarKj1XIiIiKLhrKKBIKwgHUIK0qW7xZuCbb5wZB7uvygAB+vPERFRHAxcBopuCtKlk1yHDROG2vHZ1z5t26cnm3HvyeACkLNnxx4qklJqPTJc34iIKPMwcKH+EVL+32Kx4N0H56HF64eUwE0vfoRPTgQLzBxuDKDNryA/K/LWlFKivr4eHk9wX65vRESUeZjjMhClY87L8vOBp0YDL18VXHbAYkG+04GCHAf+vHgWapfM7fYQgUBAC1oA5sMQEWUi9rgMROmS89LD8v/qqtVERETdYeAyUKVDzks35f/jUXNZmMdCREShGLhQcoUGUAlQc1mSkcfCBF8iIvNi4EJpx+fza7ksah6L1WqFlBLejq4ZR70ZXWKCLxGRuTFwof4XMsMo2lpJdbt2wZGl397R0YEbflODPQ1dq0p3N3U6mlgJvlYrc2yIiMyAgQv1PzXXpWhGzNWppZTwKcGft9fsQltbmy5oAYJTp5vb/ch3ClgswQlyzIshIhrYGLhQ/+jhDCMAkACe+8SG+gZ355ZWjMnvmrn/00udeHhrGwCgtqYGjiyBgoICAIibFyOlhKIohn80IiLqPwxcMoEtB7JoBkRn0OAuuBD5g4ZrvRT9opsZRrq2OPJQ33BK9/rxpq56LQ5rZG9Kd8M/4bktRERkTgxcMoEQEHesh/S1IBAIIM+Wg1Krtf+HU+LMMApty71/7gpaNn//Ulz231vjHjZ0WMluRdTPFZ7bkpeXh+bm5kRaT0REaYCBS6YQAsKRh3RNQXXarCgvHoS6Y2e0beXFgzBmSJ5u+7hCi242kQTwZG07jjQGtNcfrcjuel1KtPkVKIoCb4eE3QpccsklsFqt2LZtW798NiIiMg4DF0oLQgisvXcm2vxdOShOm1Xb3tzuQ/WOatit0HpXAKDJJ7WgBQgm7KqvSynxbyt2YndIMDQm34I/VUgIpQNSSibxEhGZDAMXShvB0v+Rt6S6vWuKdNcUaDVJN5o2v6ILWoBgrkzJjzcC6OqdkVKi1deh7aMGTERElH4YuJDp2K3AtOJC7D7WqG0bk2/RJfCG++XcHPx3Xbtun8ONAXgV4Ibf1mLP8a5jlRcPwtp7ZzJ4ISJKQwxcyBQsFgtcLhfcbjcKCwux9p4paO8IQFEUVO+ohgRw78bWmO/PtgLLKrNRPqMSXgUo/0mw18WnQBe0AEDdsTNo8ytRe3+IiCi1+JeZTEEIgdLSUl2BuRy7BVJaMXxIIU6dbtT29SpAU5sPWVlZEcfIsWfBqkSvthtaH4aIiNITAxdKPSmD9V1UMZYCEEJElOZXA5rmdh+wMdiLsnhTK7DpQ4wt7P729oYEMdHqw3Tf9K4FG1Ws3EtElDwMXCi1fC3Ay1cCJw90bYuzFEA0QgjkZdsjplMfbeyI866gvvSwxCpqx4UbiYiSx/DSqS+88AJKSkpQUFCAgoICzJw5E++9957Rp6GBYvk4fdACdC0FkAB12vTHy67Azh/MibqPy+WCxWKB02bFtOJC3Wvh9WF6IryonUqt3EtERMYzvMfl7LPPxtNPP41x48ZBSonVq1fj2muvRX19PSZNmmT06ciMoq1bNHIycOtbwUCml4QQyHXYogYNFTNmwJWbrfWC/OGuCnywuasAXXh9mERVVlYCAKqrq3v1/vAhJw43ERFFZ3jgcs011+ieP/nkk3jhhRdQU1PDwIWCQtctUtlyIntZwnNf4omRF6OyWvWBgBAipC6MdkLtJ0VRIGXsei7qgo3qcgNqrkysonahgUl4UBJtyInDTURE0SU1x0VRFKxduxYtLS2YOXNm1H28Xi+8Xq/2nIvgZYg46xYBiJ77Ek+CeTHd2bGjGi5XAUpKSiCE0BWlCwQCqKnbA4+nCU/VdtaG2agvahcqPDAJD0qiDTlFWyiSiIiSFLgcOHAAM2fORHt7O/Ly8rBu3TpMnDgx6r5VVVVYtmxZMppBZpbokJGaF2PPRa7DhglD7fjsax8AYMJQO3IdtoQO92RtOxqaWoE3TwIIFrz7w10VACIL1oVSlxyQUqKprSsgd7vdWqASLyipqKhAbW1tQm0lIsokSQlcxo8fj71798LtduONN97AwoULsWXLlqjBy5IlS/Dggw9qzz0eD4qKipLRLEp3sXJfbo/Tk+JrBZaf3/UzAIstB+8+OA8tXj8AINdhg8WSWB56Q1gV3t3HGvHuB8GcmD3H9cNXE0cVYPUdF2P6k8FeFwng6p9/iEOn/do+oT0xPgVo9XXAapVw2vTBC3tYiIjiS0rgYrfbcf75wS+TadOmYdeuXfjlL3+J3/zmNxH7OhwOOByOZDSDzCZW7ktPh3/UAKZoBix3rEd+tj14rI6QadFxjpeblwdAH5SEFqVbvEn/2nNzczD30krkZdt1i0P6FOiCFiDYE+PxoWvZgc6hpfLiQVhz18U9+3xERGT8dOhoAoGALo+FKCY190V9dBe0qL00oRpqunJknhqtf7x8FSCltoSAyuVyofLiabpp0uMKLRjiFJgwJHKYaVyhBWcPcyEv2x43gfanlzq1n+/f1BqxnpK6vICUEt4OiVafAm+HhJTRq/sSEWU6w3tclixZggULFmDMmDFoamrCq6++is2bN2PDhg1Gn4pI30sTOmzkbwMaouSKdObCCHuutoQAAFiEgOhowxt3TEGbPwApJRzZORAWCy6bI9DeEdxPnR3ktFlhtUafdRRajXf0kAKMK/TicGNXwDIm34K1981BRdWmzmMGc2qONAaAjR8CCAZGs2dLbeVqtZ29GfYiIhpIDA9cTp06hW9/+9s4ceIEXC4XSkpKsGHDBlx++eVGn4ooqLsZSg8dCf5XDWq0t3UuISBlsHemoRYCQI66Q8hMpRx7z4OF0Gq8paVT8N40oQ0lVe+oht0K5IRUu2vzK8GgJcThxgBOt/hw+6o6fHKiSds+Yagd7z44j8ELEWUswwOXl156yehDEiXO39L1sz0n9n5AsLcmTu9M3KCok9NmjVhyoLx4EHLsWRBCID8rC4qiaLVjFCV6Zd0P/nMW5v18OwBoPTKhPvvahxavH/nO6HlhLGRHRAMd1yqigemXU2K/1jn7KGqibozeme6oSw6EJumG1n4JV1tTE3X74BwbxhVaIoaW/mtWIe5575u4bWAhOyLKBAxcaOCINp26aEZkVd6Q2Ue4Y73+GN31zsQhhECOPfY/KTUh2O1267a3haw1IITAoxXZuuUHLptdCV8AwHsb455fLWSnVvMFgFOnG9Hc7us2iZiIyCwYuNDAEW86dbSgpqeLOUZbeiCRadpa8wRKS0vh9/uxaesObftl/701Yj9HyL/MrKws+HzxV7oOXYJAS/RVbdyI8uJBWHvvTAYvRGR6DFxoYImVqBtr9lF3QhJ3dXq5xIAQAjabDcMGuzCusF03JDSu0AKnrfukW0UJQFEULX8ldIjIpyAi0RfomnYdr0eIiMgM+FeMMkd3s4+i6WZadcLHQzB4KSsrw58m+bB5W9dq0nZrsHcldDjJ5XJFzCDauqMGDitQ4CpAxbQySCmjrvH13NzgsFd44TwiIjNj4EKZzZfAl3qsxN1eDCUJIZCVlRVlhWro68t09qqEBi9dgUgrptXt1NZQAoCKGTO0WjCOKKsHSCl7nECs7h9rVWsiolRg4EKZLZHZQ9ESd/swlBSerKv2rmj1ZULk2LMiplsDwTWU1Mq7PkVf/C5aU/9txU7sDjnGxFEFnbkvweehgUx3q1oTEaUCAxfKPNESdYHoM5Di8XXmy/RyKElN1u1Jj0bodGtFUbBpa7XW87J3376QyruRtV9UbX5FF7QAwCcnPJi0tKuqdWgSrzpLSRVvVWsiov7CwIUyT7TZR0DiM4XCe2t6UQMmWu9KvH1z7FmQ0ophgwugLgh5xt0SkZA7rbgQdqtPN61aUbqefPToPHxn5Ue6qrxAMIlXnT5NRJSOGLhQZuppom5oBV4gfm9N7lB9MOTr5SrX3RBCoKSkBHjzZMRrtUvmIt9ph90CbN++HUDX0FFtTVfP0JHPDuLhEgW+ScHhL6/SlTtTvaMaw4cUBs9BRJRmGLgQxRNegTeR3prQnpeRk4HbQ3Je+hjIxBpSyrFbkWPP0vWuRNPkaYIjK1gvJi8vDxdMvAjY9AGAYBBz6nQjOjq6aseoOTStvg5YrcFgKDwfhksNEFF/YOBCFC5eBV4gfm9NrB6ZkweAqrP0xwtN3jWoyF08U6dNBTZt122rrKyEzWbTzTRSe16m/rUO/3FhMEjpyqHpqt6r5sNIKVFTtwdNnq5hp2GDXSgrK4savDDIIaK+YOBCFC5eBd5E3yslsPKqYOASqqEGaPk6OFMp1j497KUJnUkUb9VoqyUyl8ZqDfaaRFskcs/xRvguCAZrsYrafdXkxcKXP8KnJ/W5MuMK2/FeiYKsLP2fGK6nRER9xcCFKJreFKuL9d57tnUFMqFVe7tL4g3vpQkNZEKybh/e2tZ16t61WJu11Nzu081Y8oaNOIUXtbv4qQ+iHu9wYwBtfgX5YYFL+EwlgLOViCgx3dcXJ6K+UQMZe24wgbdoRvT9Rk4Glvwj+Bg5OfJ1NZB5ajScPy1CuTike7lcHILzd98CpNRqxISyWOP/cxdCIC/b3jljKWjxplZd5d1LL5mBfHtweYJQY/ItePV/j0TtkrnaNkUJQMrYdWUqKipivkZEFAt7XIj6U6zkXkA/FBTaSxNlKEkIYK19Gdrg0LY54YX4AoC/FcKei9LSUjS3+7S8lNBVqGM3T6BiWhmm1e3E7mONutfKiwchL9sWcwVru90ePF+nrTtqMGxwAUpKSpBjz9LWVfJ2BIMZrwJ4OyTsvexoCa8CDHRfCZiIzI+BC1F/68kwVLzhJnUXAFot3ygLR4bXiAlfhTraOkhAME/mjXsrowYF6vvcbre2grXL5YLdbo+xNEEr8OZJlBcPwmt3Xowbf1uDPQ2dn6NzaYJxhRbMnh27ZyYaKWVEFWAgWL9m7T0z4+b69AWDJaLUY+BCZAaJ5NyE1I9xSonyMQWoO96VVzKtqADzKkuCibkxEpDVYnfRhFb7BfSzgmItTVB37Aze+3BbV9AS4nBjAF952pHntAXbbLNqScOxRKsCDASXQKjdXY8Z5VMNDybiBUt/uKtCC9wYxBAlFwMXooEmpOdFAFgrgTZHyJDSKS/Es1He14P1lYD41X5Dk3yrd1TrCtuFWnntCEycOBEVVcElCmY+u0V7bVyhBU/NG4qpU6fq3hPa29EaMk4VnjDscXuSkuwbL1j6YPM2OLKENkMKAKd8EyUJAxeigSBW/RgE45AceLs/RugUbfWYoV+24bVmYkzPVntrgitfRx8CunjqFDhtVkwYasdnX/t0rx1uDOAbdzO2bdumFb6TAJ6qbcfxpshp2dFWwe6NROrL7PzBHOzatSsiKFNnSO3bt083eyovLw9lZWU9OrbaFg5JEUXHwIVoIIiX9NudWFO0Q6dfR6s18+g/Yw5fqbOaTp1u1LbZc/Kgrq+kDqu8++A8tHj9AIK9KGoPjFcBJGTMYEU1rtACuxXIzutauwnoWpeppz0dPakvEzpDav+eXbqAqWLGDOytq9XOHT7lu7k5GIjFOnZoOxRFwQ2/rcWe44261yaOyseauyq0WNFisWhJz0SZhIEL0UDR29ozPa32m1BTRMSspnv/fCpiP4vFgnxncBjLau1aYiDa8BIQ+eWt9kK0dwR0azdVV1cDQI+HbnpSXyb0/eGsnVPNpZRo9SnazKmKGTNw+NODaGnRr3nldrvh9/thtVq1tqjB01ffuLHneOTn/+REE0p+vFG3LXQ1b6JMwcCFKNP1tNovoO+FseVEvq47bLAuTHiybnnxIG2GUqho1XsBYOKogs4v59jDJUKJPiQVa+gmXrXeiooK1NbWRmzX7TNjRjBYCVkCQUoZXBphw4ddO278EBNHFWDNXcH2K0oAtTU1sFu7gquCggKMnzQZgUAAX33j1hX9e25uDuzW2MNkdcfOoM2vxEykJhqIeLcTUY+mXwNIeP0kNVk3NF8jZvARZd94+8dSOr0CDqtAbU2wB6mjoyOhar09Seq1Wi26/Vp9Cpp80ZdG+OSEJ6KnZFyhBY9WZAMAfvCXL3Hk9RNRz+OwAo4sgWWV2bA58zBlSgkUJYCtO2pi9kqF5+oATA6mgYWBCxFF6suSBxGHij21ui/7xqLmyaguPFiL+y+SEADKp0/H/j27dHkrbX4FitI1vBOv2m9Pz6n2lDz3sRWfnGiK2P9wYwBl02egtqYmarADBHum5l12sdZWNfhQFCVmQnK0XB2A60HRwMLAhYhML9YwEwB8erIJ96rpLxu3YEx+sLejxduBm178CJ+c0H/JhwY6TW0+rVqwougDjFjnnDqmEPl2H4QQ+OOiSvhC3tbqU1D+k2Dvi1eRumGh2iVzsXdXcIiq8pJK5GXbEwo0pJRobvfhq2/cuu12a1cPk8ViYW8MmR4DFyIyvfBhJkVRsGNHddTckONNAdy7sVWXnxJKH+h8qAU64SsmhJ5TURRU7wjmrMyuLMNHH32k7ZMTY02D8F4ah1V0TiFHwrOFAoEA/m3FzoiZSAC09je1+XDw4EG0NDfDboV2/HTpjTFiiIvDZJmBgQsRDQihw0xSWjFiSCGWVTZqAUd+QQF+srMlYuhG/WIHoifBaoFOCHVJAfWcitIVdKhBSzSxemnGFVpQv6umV1+wiqKgek991KBF1/6NXUnDao6NECJqvo86hBYeCOQ6bD1eTiGRIEId4nK73boAscClX+uqu/N1N0wWrU3x2tUX/XmuTMPAhYgGHHU6dvgU6D+VS9TurofH3fXlFtr78IsFIzB+UnBlbkUJ4KYXayMCnfLiQRF5OGrdGre7a5gm2lpQob00Ukrs378fHrcnogckkbWWNm2t1j1/bm4Ohg0uwOTJJbjhNzURQ2FAV46NWnsmOI27o/Nn4PoVO6O+b8JQO959cF7c9qnH2rdvH5o8+muXmxdMMNaedwZCgUAAbrc7OCtLl/MTXOtKXVYh3lIQ0aa0A/phMjWwUQsbxmpXeHDRkwTx8EClvr4ezc3NEfulSw+XmTFwIaIBKdrSBEIIzCifGrMmS/gX1p8Xz+7RLKdYgVKs2VNq4BOtLd39H7nFYkGBq6vgXvjsormXduXH/HnxLLT6OrRzhBb5C609E63gXTSffe1Di9ePfKcjao9C98dqBd7uGqJTAyEA8CnRZ2UBXcsqDB9SGPNLP3Tl8YoZMwBAm1mmtlUNWqIGSG9HHzoEul+8M1aPkSo0MI03o416hoELEWWUeGstRds3kRlRiX4Z9fY9FdPKMK1uJ3Yfa9S9Vl48SJfUK4RArsOmvR5a5E/lUxA10LhwZD7uv0iBADCpdCpmLd+uvRbri9qrIGrxvFg++9oHT6s3Ig9o13/Nw5HPPsZX33h0gVmsL/2ugEm/8rhq4sfVWHNXBbwdwYToWAFSLOGLdwYCAa3iMxDsnTv1jTtmvZ1pxYV49Y5y7Ny5M6HzxtPbfJ5kDGGpx1QrVieb4YFLVVUV3nrrLXz22WdwOp2orKzEM888g/Hjxxt9KiKijGSxWPDGvZV9qnmjVvgNndn00reGoaM9WOXXblW0Y+Vl23XvjT2000UdsiopKYnIL2lu82sLa9bW1Gj5QapcRxZmlE8NVl7eFNkTEr6WU6tPidtjFK3qMADU/d/5cNr0M6327duPls4hntBFQtXFO4UQWPDfG3HotD/ieLHsPtaIxvauKfetvg5YrbLHv69owUa0oajuhqFi5QH15L3x2qYeM7xCdLIYHrhs2bIFixYtwvTp09HR0YFHH30UV1xxBT755BPk5hpTF4KIKNP1teZN+KwmAOhob4kIIlwulzasBHStzB2r4B4Q7GH4l3mxc1J6ksMT3hsVDLBkzGnsqufm5mDupZUAEHNmGRDsnRqSGznl/JKK8pChtY6IwKnF648btIRWeg6d/q673p0z2robggKCgcGePXvw9ZnonzfeMFR4wNPR0RExXV516nQj3C3tut+12gsTL8CKlVuUTIYHLuvXr9c9X7VqFYYPH47du3fj0ksvjdjf6/XC6+1auba/LwARUaaIV+9GXbAy2krWze1dK3hHC3jq/u983XBPdz0Joa+VTq9Ajt0aDIg2Rh5bpQ0ZxZjGrn6GfDu0gC67s+pw2XR9zku8OjmhAZPVGr8Y4c4fzEGes2soLnzhy3jXGwj2xFR/tBszp0/VbQ8dtlEUBT98/1TMIHHiqHy8ckc5PupcpkLtzcnOsmDv3r3ad2r03J4wYUNsqp6uiVVRURH3daMkPcdFzbIfPHhw1NerqqqwbNmyZDeDiCjjhde7Cf0/cjXYiJbr4LRZMa7QgsNRvvSmFRdG7bnoqWiBUOh5Y33xq9PYQ89qtwKFhYW6QntCCG32VG/r5ADBHp+mNh/aQpJ68pw2bZHQaGLNIgsdgvrG3YyNm7bq3qdOAxdCoKnNFzfY+OREE8qejOzNCc1RUtufaG6PKtqaWNGqTkdLTE4GIXtT37qHAoEA/vVf/xWNjY3Yvn171H2i9bgUFRXB7XajoKAgWU0jIqIeUhQFW7dujfrFNO+y2cjKSuz/gaWUuH7FzqgBSfj/3avTq9UvfZU6RBKth0jNqdm7d69uijqQWC5Hq68DEx/fEPP1A0vnxw1cwqmBYquvA5OXxe45iqV2yVzkO+2dx4o9bb07u/5rHnId+iAkdEhJXQw0NMAKzQeSElFLBQDAsWe+lfTv76T2uCxatAgHDx6MGbQAgMPhgMPR8188ERH1L4vFgsLCwqhBQG+m9cZaUBOIHGZSZ0bFmsYeb9p5+BT1ePtHE6/HZ8JQu27GVk+ow1B52Za4Q0jRjCu0YEiuXRck/nnxrIjeHInYq4kDwcBwaJ4j7jVQFKWzd6qrX0PN1UkHSetxue+++/DOO+9g69atGDt2bI/f5/F4tEJO7HEhIkoPmVpOX+3xCf/siVQRjnXc8MAtNAAJN2ywC2VlZXFnDKltDD12b4rpKYqCbdu2QUqJX31qjzljK3S4rsBVgHPOGYvRw4eYr8dFSon/+I//wLp167B58+aEghYiIkpPvak5MxCE18Ix8rjRZoUl2rMUerzQ309+gsN3sY75Hxf64LsgR7e9YsYMWK0WXRBksVjQ1BQ5dJQMhgcuixYtwquvvop33nkH+fn5OHkyuFqZy+WC0+k0+nREREQDRjoEiKFLWAghEJIOA5fLBVdudkp72gwfKor1YVauXInvfOc73b6fQ0VERESp1ZsKu/31/Z2UoSIiIiIyr3To+Yml95lFRERERP2MgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkYHrhs3boV11xzDUaPHg0hBN5++22jT0FEREQZyvDApaWlBVOmTMHzzz9v9KGJiIgow2UZfcAFCxZgwYIFPd7f6/XC6/Vqz91uNwDA4/EY3TQiIiJKEvV7W0qZ1PMYHrgkqqqqCsuWLYvYXlRUlILWEBERUV+cPn0aLpcraccXMomhkRAC69atw3XXXRdzn/Ael0AggG+++QZDhgyBECJZTes1j8eDoqIiNDQ0oKCgINXNSQleA14DgNdAxevAawDwGgDBEZMxY8bgzJkzKCwsTNp5Ut7j4nA44HA4dNuS+YGNUlBQkLE3p4rXgNcA4DVQ8TrwGgC8BgBgsSR3wjKnQxMREZFpMHAhIiIi0zB8qKi5uRlHjhzRnh89ehR79+7F4MGDMWbMGKNP1+8cDgeWLl0aMbyVSXgNeA0AXgMVrwOvAcBrAPTfNTA8OXfz5s2YO3duxPaFCxdi1apVRp6KiIiIMkxSZxURERERGYk5LkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTyPjA5fnnn8c555yD7OxsVFRU4KOPPoq574svvojZs2dj0KBBGDRoEObPnx+x/3e+8x0IIXSPq666Ktkfo08SuQarVq2K+HzZ2dm6faSUePzxxzFq1Cg4nU7Mnz8fhw8fTvbH6LNErsNll10WcR2EELj66qu1fcx0L2zduhXXXHMNRo8eDSEE3n777W7fs3nzZkydOhUOhwPnn39+1FmDiVzTdJDodXjrrbdw+eWXY9iwYSgoKMDMmTOxYcMG3T4/+tGPIu6DCRMmJPFT9E2i12Dz5s1R/y2cPHlSt5+Z7oVEr0G0f+tCCEyaNEnbx2z3QVVVFaZPn478/HwMHz4c1113HQ4dOtTt+9auXYsJEyYgOzsbkydPxrvvvqt73Yjvh4wOXP7whz/gwQcfxNKlS7Fnzx5MmTIFV155JU6dOhV1/82bN+Pmm2/Gpk2bsHPnThQVFeGKK67AP/7xD91+V111FU6cOKE9Xnvttf74OL2S6DUAgiWtQz/fsWPHdK8/++yzeO6557BixQrU1tYiNzcXV155Jdrb25P9cXot0evw1ltv6a7BwYMHYbVacf311+v2M8u90NLSgilTpuD555/v0f5Hjx7F1Vdfjblz52Lv3r144IEHcOedd+q+tHtzb6Vaotdh69atuPzyy/Huu+9i9+7dmDt3Lq655hrU19fr9ps0aZLuPti+fXsymm+IRK+B6tChQ7rPOHz4cO01s90LiV6DX/7yl7rP3tDQgMGDB0f8PTDTfbBlyxYsWrQINTU1eP/99+H3+3HFFVegpaUl5nuqq6tx880347vf/S7q6+tx3XXX4brrrsPBgwe1fQz5fpAZ7OKLL5aLFi3SniuKIkePHi2rqqp69P6Ojg6Zn58vV69erW1buHChvPbaa41uatIkeg1WrlwpXS5XzOMFAgE5cuRI+dOf/lTb1tjYKB0Oh3zttdcMa7fR+nov/PznP5f5+fmyublZ22a2e0EFQK5bty7uPj/4wQ/kpEmTdNtuvPFGeeWVV2rP+3pNU60n1yGaiRMnymXLlmnPly5dKqdMmWJcw/pRT67Bpk2bJAB55syZmPuY+V7ozX2wbt06KYSQf//737VtZr4PpJTy1KlTEoDcsmVLzH1uuOEGefXVV+u2VVRUyHvuuUdKadz3Q8b2uPh8PuzevRvz58/XtlksFsyfPx87d+7s0TFaW1vh9/sxePBg3fbNmzdj+PDhGD9+PL73ve/h9OnThrbdKL29Bs3NzSguLkZRURGuvfZafPzxx9prR48excmTJ3XHdLlcqKio6PF17W9G3AsvvfQSbrrpJuTm5uq2m+VeSNTOnTt11wsArrzySu16GXFNzSgQCKCpqSnib8Lhw4cxevRonHvuubjllltw/PjxFLUweUpLSzFq1Chcfvnl2LFjh7Y9E++Fl156CfPnz0dxcbFuu5nvA7fbDQAR93ao7v4uGPX9kLGBy9dffw1FUTBixAjd9hEjRkSMzcbywx/+EKNHj9b9Eq666ir8z//8Dz744AM888wz2LJlCxYsWABFUQxtvxF6cw3Gjx+Pl19+Ge+88w5+//vfIxAIoLKyEl988QUAaO/ry3Xtb329Fz766CMcPHgQd955p267me6FRJ08eTLq9fJ4PGhrazPk35cZLV++HM3Nzbjhhhu0bRUVFVi1ahXWr1+PF154AUePHsXs2bPR1NSUwpYaZ9SoUVixYgXefPNNvPnmmygqKsJll12GPXv2ADDmb62Z/POf/8R7770X8ffAzPdBIBDAAw88gEsuuQQXXXRRzP1i/V1Qf89GfT8YvlZRpnj66aexZs0abN68WZecetNNN2k/T548GSUlJTjvvPOwefNmzJs3LxVNNdTMmTMxc+ZM7XllZSUuvPBC/OY3v8ETTzyRwpalzksvvYTJkyfj4osv1m0f6PcC6b366qtYtmwZ3nnnHV1+x4IFC7SfS0pKUFFRgeLiYrz++uv47ne/m4qmGmr8+PEYP3689ryyshKff/45fv7zn+N3v/tdCluWGqtXr0ZhYSGuu+463XYz3weLFi3CwYMH0yYnJ2N7XIYOHQqr1Yovv/xSt/3LL7/EyJEj4753+fLlePrpp/GXv/wFJSUlcfc999xzMXToUN3Ck+miL9dAZbPZUFZWpn0+9X19OWZ/68t1aGlpwZo1a3r0hyed74VEjRw5Mur1KigogNPpNOTeMpM1a9bgzjvvxOuvvx7RVR6usLAQF1xwwYC4D2K5+OKLtc+XSfeClBIvv/wybrvtNtjt9rj7muU+uO+++/CnP/0JmzZtwtlnnx1331h/F9Tfs1HfDxkbuNjtdkybNg0ffPCBti0QCOCDDz7Q9SiEe/bZZ/HEE09g/fr1KC8v7/Y8X3zxBU6fPo1Ro0YZ0m4j9fYahFIUBQcOHNA+39ixYzFy5EjdMT0eD2pra3t8zP7Wl+uwdu1aeL1e3Hrrrd2eJ53vhUTNnDlTd70A4P3339eulxH3llm89tpruP322/Haa6/ppsPH0tzcjM8//3xA3Aex7N27V/t8mXQvbNmyBUeOHOnR/8ik+30gpcR9992HdevW4cMPP8TYsWO7fU93fxcM+35IKK14gFmzZo10OBxy1apV8pNPPpF33323LCwslCdPnpRSSnnbbbfJRx55RNv/6aeflna7Xb7xxhvyxIkT2qOpqUlKKWVTU5N86KGH5M6dO+XRo0flxo0b5dSpU+W4ceNke3t7Sj5jdxK9BsuWLZMbNmyQn3/+udy9e7e86aabZHZ2tvz444+1fZ5++mlZWFgo33nnHbl//3557bXXyrFjx8q2trZ+/3w9leh1UM2aNUveeOONEdvNdi80NTXJ+vp6WV9fLwHIn/3sZ7K+vl4eO3ZMSinlI488Im+77TZt/7/97W8yJydHPvzww/LTTz+Vzz//vLRarXL9+vXaPt1d03SU6HV45ZVXZFZWlnz++ed1fxMaGxu1fb7//e/LzZs3y6NHj8odO3bI+fPny6FDh8pTp071++friUSvwc9//nP59ttvy8OHD8sDBw7I+++/X1osFrlx40ZtH7PdC4leA9Wtt94qKyoqoh7TbPfB9773PelyueTmzZt193Zra6u2T/jfxR07dsisrCy5fPly+emnn8qlS5dKm80mDxw4oO1jxPdDRgcuUkr5q1/9So4ZM0ba7XZ58cUXy5qaGu21OXPmyIULF2rPi4uLJYCIx9KlS6WUUra2tsorrrhCDhs2TNpsNllcXCzvuuuutP3HqUrkGjzwwAPaviNGjJD/8i//Ivfs2aM7XiAQkI899pgcMWKEdDgcct68efLQoUP99XF6LZHrIKWUn332mQQg//KXv0Qcy2z3gjqlNfyhfuaFCxfKOXPmRLyntLRU2u12ee6558qVK1dGHDfeNU1HiV6HOXPmxN1fyuA08VGjRkm73S7POusseeONN8ojR4707wdLQKLX4JlnnpHnnXeezM7OloMHD5aXXXaZ/PDDDyOOa6Z7oTf/HhobG6XT6ZS//e1vox7TbPdBtM8PQPfvPNrfxddff11ecMEF0m63y0mTJsk///nPuteN+H4QnQ0kIiIiSnsZm+NCRERE5sPAhYiIiEyDgQsRERGZBgMXIiIiMg0GLkRERGQaDFyIiIjINBi4EBERkWkwcCEiIiLTYOBCREREpsHAhYiIiEyDgQsRERGZxv8PlCOWE1nGswQAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "f26a6319", + "metadata": {}, + "source": [ + "That little \"wiggle\" happens somewhere between 0.5 and 1 times the \"Nyquist\" frequency when data are mostly evenly sampled as in our case. The solution is simply to use a smaller sampling time while maintaining the same maximum frequency." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e0fece49", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1.0, 10.0)" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi4AAAGiCAYAAADA0E3hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABNJklEQVR4nO3deXxU5aEH/N9zJjOTyTIT9qWGiIrsIYFgSASRF1y41qv3vnW7tkWtCy1WvVar9FYxdQkut622vqJeC9xWRalF78cqVFDCHgiETRTBIkQFUSAzWWcmc573j8mczMnMZD2TzMn8vp/PfMw5c+acZw5j5pdnFVJKCSIiIiITUHq7AEREREQdxeBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESm0engsmHDBlx55ZUYPnw4hBB4++23dc9LKfHwww9j2LBhcDgcmDNnDg4dOmRUeYmIiCiJdTq41NXVYdKkSXj++eejPv/UU0/hueeew5IlS1BeXo709HRcdtllaGxs7HZhiYiIKLmJ7iyyKITAqlWrcPXVVwMI1rYMHz4cv/jFL3DfffcBANxuN4YMGYJly5bh+uuvN6TQRERElJxSjDzZkSNHcOLECcyZM0fb53K5UFhYiK1bt0YNLl6vF16vV9tWVRWnT5/GgAEDIIQwsnhEREQUJ1JK1NTUYPjw4VCU+HWhNTS4nDhxAgAwZMgQ3f4hQ4Zoz7VWWlqKkpISI4vRZcJqx4h73wIAHPvt/wvp9xp6PBERUV9XVVWFs846K27nNzS4dMXChQtx7733attutxsjRoxAVVUVnE5nj5UjEAigbP2HuKc8uH300Cdw9RvQ5mtqPWdQ/Mf9AIAv/3kQGc5+8S4mERFRQvJ4PMjOzkZmZmZcr2NocBk6dCgA4JtvvsGwYcO0/d988w3y8vKivsZut8Nut0fsdzqdPR5c0tPTAKgAgMzMzHavL2RA+zkz04nMHiwvERFRIop3Nw9DG6FGjhyJoUOHYt26ddo+j8eD8vJyFBUVGXkpIiIiSkKdrnGpra3F4cOHte0jR45g9+7d6N+/P0aMGIF77rkHjz32GEaNGoWRI0fioYcewvDhw7WRR0RERERd1engUlFRgVmzZmnbof4p8+bNw7Jly/DLX/4SdXV1uP3221FdXY3p06dj9erVSE1NNa7URERElJQ6HVwuvvhitDX1ixACv/nNb/Cb3/ymWwUjIiIiao1rFREREZFpMLgQERGRaTC4EBERkWkwuITr+rJNRERE1AMYXEKkRO7eRb1dCiIiImoDg0uIvx6ZtUdbtq1pvVcWIiIiiorBJRauTE1ERJRwGFxisFp7ff1JIiIiaoXBJYZ4LxJFREREncfgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgYhCuckRERBR/DC6a7kWP65fugeQijURERHHF4AIAUkJZdkWnX+awKhgnvgAAHDhRhwZ/wOCCERERUTgGFwDw10N8s6/TLxNCYKWtJA4FIiIiomgYXLpJtzAAm4qIiIjiisGlO6xpqMnIadn2N/ReWYiIiJIAg0t3CIG9uWwqIiIi6ikMLt3FVaSJiIh6DIMLERERmQaDCxEREZkGg0sYjgkiIiJKbAwuzaQErvEt6u1iEBERURsYXJo1wI4D8mwAwLhhmXBYLb1bICIiIorA4BLFitsKIThaiIiIKOEwuETBzEJERJSY4hJcampqcM899yAnJwcOhwPFxcXYsWNHPC5FRERESSQuweXWW2/FBx98gD//+c/Yt28fLr30UsyZMwdfffVVPC5HREREScLw4NLQ0IC33noLTz31FC666CKcd955eOSRR3DeeefhhRdeMPpyhpBcHJGIiMgUUow+YVNTEwKBAFJTU3X7HQ4HNm3aFHG81+uF1+vVtj0ej9FFapeqqrptRWHXHyIiokRk+Dd0ZmYmioqK8Oijj+Lrr79GIBDAX/7yF2zduhXHjx+POL60tBQul0t7ZGdnG12kTuOIIiIiosQUl6qFP//5z5BS4nvf+x7sdjuee+453HDDDVFrMhYuXAi32609qqqq4lEkIiIi6gMMbyoCgHPPPRdlZWWoq6uDx+PBsGHDcN111+Gcc86JONZut8Nut8ejGERERNTHxLUzR3p6OoYNG4YzZ85gzZo1uOqqq+J5OSIiIurj4lLjsmbNGkgpMXr0aBw+fBj3338/xowZg5tvvjkelyMiIqIkEZcaF7fbjQULFmDMmDH48Y9/jOnTp2PNmjWwWq3xuBwRERElibjUuFx77bW49tpr43HqhMb5YIiIiOKLE5Z0g6IoSE9L17ZbzwdDRERExmJw6QYhBCZOnNjbxSAiIkoaDC5ERERkGgwuREREZBoMLkRERGQaDC5ERERkGgwuREREZBoMLkRERGQaDC4ApFRRDy70SERElOjiMnOumUhVxXVPvoGd3iW9XRQiIiJqR9LXuDTU12Kn9yxte8qILDisll4sEREREcWS9DUu4f54kcDllxZCCNHbRSEiIqIokr7GJZw9RTC0EBERJbCkDy5Grui8b98+rhBNREQUR0kfXMJXdE5PS4eidO6WhB9fV1/HFaKJiIjiKOmDS7iJEyd2uqmITUtEREQ9h8GFiIiITIPBhYiIiEyDwYWIiIhMg8GFiIiITIPBhYiIiEyDwYWIiIhMg8HFQN6AsRPaERERkR6Di4HuLFNx3cvlDC9ERERxwuDSTQ6rggJxUNveebQaDf5AL5aIiIio70rY4CKlRCAQSPjaCyEEVtpKUGGf39tFISIi6vNSersAsezZsweqqsLlciEvLy+hp9YXAkiT3pYdCR62iIiIzCpha1xqamoAAG63O7EXLrSmQWYX6vf5G3qnLERERH1cwgYX0xAC6rz3sHXaS71dEiIioj6PwcUIQkC12Hu7FERERH2e4cElEAjgoYcewsiRI+FwOHDuuefi0UcfTfhOtkRERJT4DO+c++STT+KFF17A8uXLMX78eFRUVODmm2+Gy+XCXXfdZfTliIiIKIkYHly2bNmCq666CldccQUA4Oyzz8brr7+O7du3G30pIiIiSjKGNxUVFxdj3bp1+OyzzwAEhzVv2rQJc+fOjXq81+uFx+PRPYiIiIiiMbzG5cEHH4TH48GYMWNgsVgQCATw+OOP48Ybb4x6fGlpKUpKSowuBhEREfVBhte4vPnmm3j11Vfx2muvYdeuXVi+fDmeeeYZLF++POrxCxcuhNvt1h5VVVVGF4mIiIj6CMNrXO6//348+OCDuP766wEAEydOxNGjR1FaWop58+ZFHG+322G3cygxERERtc/wGpf6+nooiv60FoslsWe/JSIiIlMwvMblyiuvxOOPP44RI0Zg/PjxqKysxG9/+1vccsstRl+KiIiIkozhweUPf/gDHnroIfzsZz/DyZMnMXz4cNxxxx14+OGHjb4UERERJRnDg0tmZiZ+//vf4/e//73RpyYiIqIkx7WKiIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhc4kBK2dtFICIi6pMYXAygKArS09K1bVVVe7E0REREfReDiwGEEJg4cWJvF4OIiKjPY3AhIiIi0zB9cJFSsk8JERFRkjBNcAkEAhEBRUqJsrIylJWVMbwQERElgZTeLkBHVFZWora2Fi6XC3l5eRBCAAD8fr92jN/vh81m660iEhERUQ8wRY1LbW0tAMDtdnPEDhERURIzRXAhIiIiAhhciIiIyESSOrhIKREIBHq7GERERNRBiRtcpIQSaATiNFpISonKykrsqNhh+Ln37dvHUU5ERERxkLCjinL3PoJs3yG4nWNRmV8KNI8k6i4ppdbB1+PxGHJOIDjtf0hdfR1UVYXFYjHs/ERERJTAwcVV8xlgF3B5PoGieqFaUrt9zlAti8fjQUZGhgGlbCEMClZEREQUW+I2FcWBqqpaLUtoiDURERGZh+HB5eyzz4YQIuKxYMECQ84fbQZdIiIiSg6GNxXt2LFDN1Jn//79uOSSS3DNNdcYcv4tW7ZoM+gSERFRcjE8uAwaNEi3vXjxYpx77rmYOXOmYdfoygy6HPpMRERkfnHtnOvz+fCXv/wF9957b8zOq16vF16vV9s2cqRPSHinXCIiIjKvuHbOffvtt1FdXY2bbrop5jGlpaVwuVzaIzs7u0vXqqioiNn3JbxTbk9hPxwiIiLjxTW4vPLKK5g7dy6GDx8e85iFCxfC7XZrj6qqqg6fP7zpx+fzYefOnYkRGKTEpk2bEqMsREREfUjcgsvRo0exdu1a3HrrrW0eZ7fb4XQ6dY+uqq2thaqqkFJ2KTSETyLXHbl7FwFSwu/3G3I+IiIiCopbcFm6dCkGDx6MK664Il6XiEpKibKyMpSVlXU6vHRrEjmrQ/sxs/YoFNXbxsFERETUFXEJLqqqYunSpZg3bx5SUnp2ct7wWo4erfHgzLlERERxF5fgsnbtWhw7dgy33HJLPE5PRERESSou1SGXXnqpaTqmmqSYREREBBOvVWREMJJS4rGKzk1k11GWQCNTERERkcFMG1w2bdrU7XP4AsCxmuDP48QXcFiNuR31sKN48zyk/Pn7DC9EREQGMm1wAYztfLvSVtK9UUVhCrxLcI1vEUTVdsBfb8g5iYiIKIGDi5RAvbSjXto71SxUXl7euYs0625kcVgtmJKTpW1XyNFoQOfKTkRERG1L2OAyD49gnHcpxnmX4rEKNS4BQJFhc60MGQ9Y07p8LiEE3ritEM/N0p9j7969DC9EREQGScjgIqx27MZobftQdbA/SmuGBoIfvd3tuViEELBbWrbrYUd1F1ayJiIiougSMrh0VGVlpXEnM6B/i6IoSM/I0LYLvEviVltERESUjEwdXBKNEALTCvIxKqtl36FqoMEfpbqIiIiIOq1vBBepBh+dfp3xNSFCCPy6QEGFfb7h5yYiIkp25g8uUsXFZf+Gi8v+rXPhRcrgKs5xIIRAGrjIIhERkdFMHVyklAg0epqHTANWv6fDr1VULzJrj7bsCFvd2Wh79nBkERERkRF6dulmA0kp8Xh5Iw5XWwEsRYE4iHu6kw3iuLpzXW0tVFWFxWJp/2AiIiKKybQ1Lr4AcLi6pWmoQo6Gl6OOiYiI+jTTBhciIiJKPuYKLlJCMWjVZSkl6mE3oFBERETUU8zTx0VK5FcuhMvzKdzOsdg28YlOv15RvVAVOySAx3eoOORdEpeiEhERUXyYJrgo0guX51MAgMvziX6dofZIifzKB5tDzxhsH78Ih9wtT08+KxMOa/w6znoDBi9PQERElKRM01QU/PLv4ov99WGh51NcuOUm7akK+3y8Pm8ChEGjihRFgcvp1O2766N6XPdyOcMLERFRN5kmuNxZpuIa3yLDJ7tNg9ew0AIEJ5/Lzc2FA14UiIPa/p1Hqzn1PxERUTeZJrgAwSHPDSboUCuEgBDASlsJ/jjTVLeYiIgoofFbNY6EAOwKm4eIiIiM0qeCi6rY2nxeSgSXB+ih8gCI23pIREREycg0o4o6pI2+KqoU+L7vcRyQZ2Oc+CK+5bCmAUMnAif26ddDIiIiom5J0BqXrneWlVLC2yR1I3iklFpoAaD9N26EAG5eHd9rEBERJaGErHER1vY74EYbXSQlmhdeVDEqS8G7xcGDGvxq/MNKa3FctJGIiChZJWSNi2JNbfN5KYHHKiJXVPSpLQsvHqpW0eDnqotERER9SUIGl+/Nf6XN5xtgx7Ga4M8jxfEeKBERERElgoQMLp3xpq2kt4tAREREPcT0wYU9SYiIiJKH6YNLOCXQiYUXiYiIyHTiEly++uor/PCHP8SAAQPgcDgwceJEVFRUxONSOhfs+Hncr0FERES9x/Dh0GfOnMGFF16IWbNm4f3338egQYNw6NAh9OvXz+hLGcLtHI0B1rTeLgYRERF1gOHB5cknn0R2djaWLl2q7Rs5cqTRlzHM3twSzOqhOVek0UtbExERJRnDm4r+7//+DwUFBbjmmmswePBg5Ofn4+WXX455vNfrhcfj0T3aUg876sNWiN496XHt5wbZauI62YF5XHpwori9e/cyvBAREXWD4cHln//8J1544QWMGjUKa9aswU9/+lPcddddWL58edTjS0tL4XK5tEd2dnab5y/wLkGBd4m2HbC0TFY3w/es/uD6UwkVFDxuD1SVk+IRERF1leHBRVVVTJ48GU888QTy8/Nx++2347bbbsOSJUuiHr9w4UK43W7tUVVVZVhZdu7ahbKyMl14CV9gcVSWApvFsMsRERFRnBnex2XYsGEYN26cbt/YsWPx1ltvRT3ebrfDbm9/baKO2mi7O6Lmxe/3az+vtJVAANh84XKkWFMhuKYQERGRaRhe43LhhRfi4MGDun2fffYZcnJyjL5UVA7RMpeLqtginhcA0oQXdotgaCEiIjIZw4PLf/7nf2Lbtm144okncPjwYbz22mt46aWXsGDBAqMv1b7mYKKqidPPhYiIiLrO8OAydepUrFq1Cq+//jomTJiARx99FL///e9x4403dvgcjV9+DEDfHyVcaH+BOIi0VBvyrMe0bQciZ8/dvaeyc2+CiIiIEpLhfVwA4Pvf/z6+//3vd/n137z6AI4/MBCZNoHx3qURz4f6qTjgxRaxHHfPGo0mfyOm7n8DImw0tZSAt0lCsMKFiIioT4hLcDFCmvBCIDXqc6F+Ktq2osBqT8PuyYsRaHQDZcH9j+1Qcay2HiMye6DAREREFHcJG1y6RAioFjuA4Fwpx2qDu4/V9F6R+gIpJRr8AUgpYbcIWCwWdmwmIqJeYcrgUn/bVqT9z+TeLkbnJdBkeB0lpcQPlmzFzqNnAATnvnny0iHIz89neCEioh4Xl9Wh42lUloJUa/dmjXM7x0JVjJs7JiprGmR2oW6XIiM7Die6Bn9ACy0AcKhaxben3ZwBmIiIeoWpalz+OFNBemr3Jo1ruGM79h08Ev81ioSAOu89bP3gXa3PDREREXWPqWpc7BbEDC3FxcUoLi5u9xypmf0iQovVajWkfBG0PjdERERkBFPVuBhBCIGZM2dG7CMiIqLEZ8rgYrV2r9gMKsYIBAJQFIX3k4iIeoypmooARNSWtGZTgjPoJiJvAKj3NelWqzaryspKbNy4Ebt37+4T74eIiMzBVDUuUwumtvvXvRACK20laIAd9bCjwLukh0rXvjvLVKBsLQpy+uHNO4rQ2BQAADisCTwvSoxQUlsbnCTH7Q6OMLJYujfSi4iIqCNMFVzaE+pkKwSQBi+QoBUBFUfP4Io/bMQnx4Mz4xXk9MPK+UWJF16khPzfqwAsiNgfnL+YiIioZyVsU9HGC19FxfSlWrNPgTgIh7Xt4gohMGP69J4oXocEAoGYz4VCCxAMMg3+2Mf2Gn89xJcVEbvNOB8NERH1DQkbXCAUQLFgpa0EB+w3BxdWbK6RaGv4srClQw6Z2FOlbFdKih35KV8AiL3adaKSUqIeHM5NRESJI3GDSzMhmhdcDGuZEGkDtZ/9VmfEC9Sb/t5DpWufUBT858yRWvgyCyklfvA/lVH7CE2bnIvioqJeKBURESW7hA8uUSkK8PAZyIdPB2tm0LoWJsH6XyhK82rX5tHgD2BnlUfbzslo6TBk+UM+rH+50pRrLxERkbkldHBRFTuahk8FEFxfCNa0licVBUKxYObMmZg5c2bidWztQyrs8/HrglYflWPl8Psb4W2S2LVrF4dEExFRj0jsUUVCwPsfb2NL+Saoih3FUcKJGQKLqthR0288LKcP93ZROiw8iKTBCygCoWFaEsAPfIuw80MVQD1GZTXi/fwAUlIS++NERETml9A1LgCa1/tJ7dyiiNa0YA1NohAC9vkfwfezyBE6iar16s/OzJa+RKelEzvlaG37ULWamKOiiIioz0n84NIVQqAyvxSbL1zeq8UI73djtdlgSc3sxdJ0nJQSgYA+uEyYMEH7eYbv2WgvinexiIiIErypqDuEgKqkAqjvxSK0LOhohiYtIBhaKisr8e1pt25/ms2Cgpx+qDh6Rts3TnyBA/Ls4Ia/AUBqzxWUiIiSUp8MLoqiwOVy4eSp6t4uimkCS4iqqvB4PBH7hRBYOb8o2CQkJeBvQFNjHnKf2d3zhSQioqTVJ4OLEAJ5eXmobfQBa9f2dnFMI1TbEosQAmm25o+M3YqaNmYGJiIiioe+2ccFwS/ZRFv4T7Gn93YRYpJSwu/3a4snEhERJaI+WeOSqISSmDkxVNMSrYmIiIgokSTmNyn1KK1fi5RQAo1wplqgqI29XSwiIqIIyVfjYnX0dgkSklRVjKl8GC7PZ3DAiwbYASzt8OsDgQCklKbrjExEROaSfMElQb9Yg3OnBKAoSo9/+Usp8UR5Aw65FwIIDnNeblvcqXNsKt+B4UOGID8/n+GFiIjiJvmCS4Las2cPfPW1cLlcyMvL69Ev/wZ/AIfCpm05IM/G1CirQremhPXZubNMxaisb/B+Lqf+JyKi+En4Pi76VZ87x2ENTpoWUpDTDw5rYo00Cqnx1AAA3G53xHT7PWmkOK7bLhAH4YA36rFpNgsKxEFtm1P/ExFRvCXsn8bTp0+H0+mE3+/v8jl0k6YhGGTYjNG2d22/gvrzSlj+kA8AcMAbs3VNCIGVthKcghMFHaihISIi6i7Da1weeeQRCCF0jzFjxnT6PKHXdldo0rQ0WwpDSwcIBGtS0oQXaSJ2aNGOF82rRxMREfWAuNS4jB8/HmvDZqxlnwdzUezpqO0/ARmn9wMAZPY0CGtaL5eKiIgoTsElJSUFQ4cOjcepqQcIoSD9zo0IeGuDo5xs6Qk7GouIiJJLXDrnHjp0CMOHD8c555yDG2+8EceOHYt5rNfrhcfj0T2o9wlFgcXhhLBndC60SBm/QhERUdIzPLgUFhZi2bJlWL16NV544QUcOXIEM2bMQE1NTdTjS0tL4XK5tEd2drbRRaIepLz67wwvREQUN4YHl7lz5+Kaa65Bbm4uLrvsMrz33nuorq7Gm2++GfX4hQsXwu12a4+qqiqji5QwHFYLpmQ7te0Rme2/JjQxnUzEMGBNA7Kn6XaJLysAf30vFYiIiPq6uPeazcrKwvnnn4/Dhw9Hfd5ut8Nut8e7GAlBCIE3bs6F78lRAIBNBctx+0ex52wJX/ywNyama5cQwC2rEfBUA6Vbers0RESUBOI+AV1tbS0+//xzDBs2LN6XMgUhRIeGGkspUdvow7en3ZBS9vrEdDEJAdj0I44SsnaIiIj6BMNrXO677z5ceeWVyMnJwddff41FixbBYrHghhtuMPpSpqcEvAAiZwaWUuIHS7Zi59EzAIBRWQp+VZjaw6XruPCp/4HgatOJOT8xERGZneHB5csvv8QNN9yAU6dOYdCgQZg+fTq2bduGQYMGGX0p0yvadjuircDc4A9ooQUITqXvS+CZ9BOq+YqIiPo0w4PLihUrDD1f+FpF3Vm3KGFY0+B2joXL84l+v5QIzltLREREsST8IotCCMycORMzZ87sG3/ZC4HK/FJsLl6u2z1qz2Pw+tU+0T9kz549feJ9EBFR4jHFXPx9IrCEEwJ+qwtu52jg2+Cu/+e7XwDrGjAqS8HDjj09VpTgcGtjO/3W1tUF+7lY2NOFiIiMZYrg0icJgb25JcC6Bt3uQ9UqzrjreqQIoeHW355298j1iIiIuivhm4r6tFg1ST3UzKKqKpdYICIiU2FwSUAT9j/W20UgIiJKSAwuCchZc6i3i9Bl9bDDG5DsnEtERHHB4EKGKvAuwW0fqrju5XKGFyIiMhyDC3W7T43DakHBCKdu386j1WjwJ/CseUREZEoMLr3IZgGmjMgCAIwTX/ROIaRE7t6Hu3UKIQRW/iQfB+w3o8I+36CCERERReJw6F4khMAbtxfCF5BoaqxFbvMKyw0yymrZcWp2UVQvXJ7PWi5zVgFgTWvjFdGFFo8EW4eIiCiOWOPSy4QQSLNbIcJWWJ7hezbiOEV6e6Q86o1/iz1Mu7PYx4WIiAzG4NLDFEWBy+UCALhcLm1lZYfVglFZ+n+OcSnH414eKSXqEVbD09XQYk2DzC7U7/M3RD+WiIioi9hU1MOEEMjLy4OqqlAURVvOQAiBXxWmwtckoUgvphVOgyIUjH9iU9zKIqXEYztUHPIu6f7JhIA67z1s/eBdoKz7pyMiIoqGNS69QAgBi8USsQaTEAJ2qwKrzYG0DCeEEt81mhr8ARwKm+1/VFaw5qfLhIBqidI/h4iIyCAMLn1AcKHEQOfnTQk7vsI+H78uUPregpZERNSnMLiYXGihxI0bN2L37t0dDy9SQvnLv2mbafAytBARUcJjcDG58IUS3W43VFXt0Oukrw7iq53atts5Gpn9BmudhY3AmXOJiMhoDC5JSEqJPXv26PY5bl+DvPx8Q2td9u/fz/BCRESGYnBJELGGSYf4fV7IVrUpoWaizlJVFZ6aGt0+S0pkZ+HOUhQFzsyWqf+/rfYgEOC0/0REZBwGlwQRGiY9Y8YM5OXlRYSIn22y4vrHl0ENBLSOuKqqora2ts3zdrnjbhcIITBhwgRt+84yLrZIRETG4jwuCSQ0TDrEkZaBgtSvUdE4HABQ0Tgc28u3otHXBKfTGbM/SyAQ0GpsKisr4fF44HK5ogYio6XZLCgQB1EhRwNoWWwxzcaPGhERdR9rXBKYUBSs+K+b8P9N92v7amqDTTwej0erbXE4HNrz4SOM2uq4GzFjrlFlFgIrbSVcbJGIiOKCwSXBCUWB1RY7YEhVxehR58Lva4AMazpyu90x+5eEZswtMGLG3GhlFsHh1SE91VRFRER9H+vvTUyqKp796DPs/kdwTaA860HcPWs0RBtDmqWU2FZRqZsxd+wAC9Lt1riVc8vmLRg8IKtHmqqIiKhvY42LyYydkAdvk4S3SaLO68Vuf7b23G7/CDQ1tb2KtKqqqAvr0Fthn4+///xCQ+dviaYzc8wQERHFwhoXk5n+3C5Dz5cGb9xDCxERkVH4jWUCNgUoEAdjPj9OfNFzhSEiIupFrHExAWlJxf8MfBM2zz+jPw9gvHdpzxaKiIioFzC4JDhFUeDKysLuyaXol2FHbm4u9lRsRd4HP9COqZdho46khBJoBABU7toV3Fa92nMAoKiNPVb+luuyUy4REXUfg0uCC82oq6oqFEWBEAKTimajpmICMs/sBwDIweOBquDxk/Y8goy6LwAAPudICAG4PJ8GjztyAQDgwqo9AHquhiZ37yIcnPwbbWI8jiwiIqKuinsfl8WLF0MIgXvuuSfel+qzQjPqhr7whaIg4+cbEXigCnLhV1B/+JZ27Lwz8zDOuxTjvEtx63fXIdN9EPXSHqyVqdoO8eV2/cnPmgpY04wrrDUNyJ6m3+X5An5/IzZv3ozdu3dzThciIuqyuNa47NixAy+++CJyc3PjeZmkJBQFFkfzgoaNZ7T9n8iztZ8r5Ghc4Xtc21cgDmKlrUR/oh+/HZwxzrCCCeCW1UBdDfDYxuB1vUuAD1WMymrErwqroaqqbmkDIiKijopbjUttbS1uvPFGvPzyy+jXr1+8LkPtaB1k6mHXT/Ufj2YbIeBIz0TBCKdu96FqFT4uFk1ERN0Qt+CyYMECXHHFFZgzZ06bx3m9Xng8Ht2D4ucHvkVxm+o/nBACK3+SjwP2myPWLeISAERE1FVxaSpasWIFdu3ahR07drR7bGlpKUpKSto9jowRXgMzJScLDmv8mmyEEEgT3uB47RApsWXLlh5brZqIiPoWw2tcqqqqcPfdd+PVV19Fampqu8cvXLgQbrdbe1RVVRldJIrijzMVvHFbYY8Hh9w9i+D1qzh5qjrmIpBERESxGF7jsnPnTpw8eRKTJ0/W9gUCAWzYsAF//OMf4fV6dR0z7XY77PbYqx9T+xxWBQXiICrkaADBmXQPhNWsRGO3IP6hxZoGmT0NOFap7brl1PX4ZF1wUcgph8rx1/nFrHUhIqIOMzy4zJ49G/v27dPtu/nmmzFmzBg88MADHE0SB0IIrLSVoKG5023CzKQrBMQtqyFrPcDjmwDom6p2Hq1Ggz+ANBunEyIioo4x/BsjMzMTEyZM0O1LT0/HgAEDIvaTcYQILpgItJpJt1l4LUyBOAibMrbHCibs6T1zLSIi6vP4p26SWGkr0Sbdd8CLjeKNHru2w2pBwQgnKo4FR4yNyASO1QSfk1JyRl0iIuqwHgku69ev74nLJC3FnoHa/hOQcTq4BEBqdh4KvvwaFY3DAQAF9iqkwRuXKVs6IjQ0uuGJcwAAmwqW4/aPVADAnj174Kuv5SgjIiLqENa49AFCUZB+50YEvLVQFAWKLR0rpURDfS0AwKaoEE890LtlDA2NBmBRvQCsAIAaTw3sKQJut5sz6hIRUbvivlYR9YzQEgDCnhHsV6IoSMtwIi3DCSES65+5aNvtLRuciI6IiDohsb7RqO+KsvgiACjS2wuFISIis2JTEfWM5sUXpa8Oe7dtAd7393aJiIjIhFjjQj1HCAh7BsbnTe3tkhARkUkxuBAREZFpMLhQwuCq0URE1B4GF0oYW7Zswe7duxleiIgoJgYX6lXeAOBtklpYCc3nQkREFA1HFVGvurNMBVCPsUMzcPcEFXbOP0dERG1gjQv1uHR7CgrEQd2+T07UYv7aejxR3thmU1FobSP2hyEiSk6scUkCipJY+VSxZ+DNc9egsWoxJIBrfIu0lasPVato8AeQmRL50ZRSorKyEh5PcLFGrm9ERJR8GFySQMJ9sQsB5SerkeavB3z1+PvT5+EUnCjwLmnzZaqqaqEFANc3IiJKQgwu1DuEAGzp2o9pnPqfiIg6ILHaECg+rGmQ2YXapts5Fqpi78UCtUNKrS8L+7EQEVE41rgkAyGgznsPm8vWAkAwtCRa81EY5dV/R+XkR+GpqYlLPxYppTbkWlGUxGtKIyKimBhckoUQUC2pvV2KSKFVo49VarvElxWoPedbwJKq68cipYS3qaUGxtaFri3s4EtEZG4MLtS7mleNDniqgdItMQ9ramrCtS9uw66qem3fqCwFM2Z0rimJHXyJiMyNwYV6nxCALU23K7x2ZdO2HWhoaNCFFiA4dLq20Y9Mh9CGfKuqyuYfIqI+jMGFEo4E8PsDqaj8OhRU6jEis6Uf+dMzUnH/xkYAwI4t62G3CGRkDQKEgMfjidn8E+rwS0RE5sXgkiQURYHL5YLb7QYQ7NuRSBPThZfltHSGhZagYzUt6xdN+eQxAPcBAC7cPA9pwgu3cywq80sBIaI2/7Tu20JERObE4JIkhBDIy8tL2NE04WWZ4XtW+3mj7W7dNgA4aw7rtqUErO5/wu9vRIo1Ner7at23JSMjA7W1tUYVn4iIekji/MlNcSeEgMVigcViSajQAgAOqwUFOf10+wrEQXxPfKdb1+h8F+BAy2R1Wwtfwg98izDOuxS3fahGrHUkpUS9rwn1viZtFeri4mLk5+fH/00REZHhWONCCUEIgZXzi9Dgb+6DIiUcf34O4kuJlbYSNCA4Yd6eSX+AKG95XbVqx045Wts+VK3Cp51C4gdLtmLn0TPa8yMyFbxbKCECTZBSJlyAIyKitjG4UMIQQiDNFvaR/MlqwF8P4atH2jPnAQCKtt+OerTM+vuLTWrr0wTbjgA0+AO60AIE+8rk/iY4Ed+oLAW/KkzVamVCHNbEq5EiIqIgNhVR4gqtZ5Q+ULdkgQNeFKR+rTt0nPhC+zl37yItvIQ8OytNNzIJCNbOeAPAtS+VY9zDa7THNUu2cqkBIqIExRoXSnxCADevxp6d2+D2eOByOvHm5EI0BiQCTU2ofeESOD0HMd67FADg8hwE/PWApWVumFQLUFKcioJpxfAGgILHgrUuvgCw61i17nIVR8+gwR/Q1/4QEVFC4G9mMgWhKMgtKNJNMJdmAaTVgsOznsX+774BPgw2G9XDDp+nGimOlloTRW2ERQikwYtYc+Q+fZED929o6IF3Q0REXcXgQqYRGhXVel9efj5qG33Ah8FalALvEuB3+5qbj84G0DLfCzYCkHYAwdoZb1NLHxm7pfP9WsIXbAxJtKHmRER9CYMLmZ4QAhmpNhTk9ENFWGfcA/Lsdl8bmoG3K2JNaseFG4mI4sfwzrkvvPACcnNz4XQ64XQ6UVRUhPfff9/oyxDphIZTf/zIJdj6nwURz2++cDn2XPE+5MKv4Lhvv25uGCA4wqizq023ntQuJDRzLxERGc/wGpezzjoLixcvxqhRoyClxPLly3HVVVehsrIS48ePN/pyRBohBNJTbVBlVsRzU4svhiu9eVZdIbS5YbZOewmqxQ6bAvjUsNoXXz1gzQx2DO6A4uJiAMCWLbFXuG5L6yYnNjcREUVneHC58sordduPP/44XnjhBWzbto3BhXqNxaIPAkIAafBidvk8bV99WN8XPH0e5Ih8iFtWRw0voQUbpZTwBQBvQGr7owWO8GDSOpREa3JicxMRUXRx7eMSCASwcuVK1NXVoaioKOoxXq8XXm/LFO5cBI/izpoGmV0IUVUe8xAJoOFYJWStB8KerpuUTlVVbKvYBY+nBk+UNwYXgFwbmtQO+HWBoptHpnUwaR1KojU5RVsokoiI4hRc9u3bh6KiIjQ2NiIjIwOrVq3CuHHjoh5bWlqKkpKSeBSDklS63YoxA2349DsfAGDMQBvS7daWA4SAOu89bC5bq3udNyC1IdU/8C3CJ/Js4PFNAIApOVl447bgJHjXvlQeMfdLyKFqYOrGeRBf5KHmP/5Pq61xu91aUGkrlBQWFqK8PHagIiJKdnEJLqNHj8bu3bvhdrvx17/+FfPmzUNZWVnU8LJw4ULce++92rbH40F2dnY8ikVJQlEUvHfvbNR5/QCCQUZRWvVDFwKqJVW3S5USQD0ABENLmJ1Hq/Heuo0AgF3H6nXPjRNfYLltMaZ6lwAI1tZc8/nl2PmbddoxoeUFgOCkd/W+JlgsEg6rPrywhoWIqG1xCS42mw3nnRdcW2bKlCnYsWMHnn32Wbz44osRx9rtdtjt9oj9RN2hKAoyHZ37XKVnZCAUXEL+e7qirYd010f6556blYZZ0/KQ8dv/0BaBBIAG6Bd+BILLC3h8wH9X6JuWCnL6YcVtF3SqnEREyaxH1ipSVVXXj4WotymKApfLpW27XC4UXzAFU3KytH0F4iAG2iXyrVURr89P+QIj+lmRYfG3OfDo6Ysc2s93f1QfDC1hQssLSCnhbZKo9wXgbZJcK4mIKAbDa1wWLlyIuXPnYsSIEaipqcFrr72G9evXY82aNUZfiqjLhBDIy8uLGOnz1/nFaKirAZ4+Dw54oRYexEWbbkBDq1pBB7wQ7wF4L/LcDbLl2LOybBiV1YBD1S3Pj8gEVi64GIWL1wMI9uN9vLwRh6tVYO2HAIJNSzNmSG3l6lA5ozZ7ERElEcODy8mTJ/HjH/8Yx48fh8vlQm5uLtasWYNLLrnE6EsRdUusJQTSbBZABGsILYoFaB46jfsOA1YHsPRy4MQ+/cnOmgp8Hvxxhu9ZbfekNf+Of8CrCz4Onxf1Ky8EsAAA0OAPBENLmEPVKk7V+XDzsgocOF6j7R8z0Ib37p3N8EJEScvw4PLKK68YfUqixGBLA2zpwB0bg6tPh3GkOFDw4jbdkgMF4mCwZiYUfMKILyuiXmLdgsmY/fwuAEBh6UcRz3/6nQ91Xn/M/jucyI6I+jquVUTUFn9d5D4hggEmfBeAlfOL0OAPBNt+/A1wWGdCiDu0YwKBALZt/BAXbpmnP19Yf5ah/zMJBeJBVIR17h2RqeC/pmfhjvdPt1lUTmRHRMmAwYWoLc9O6vChwWam5v+lwueNaaZIiYx+gyP2N9S3hCMBaMsRAMDWaS9h+vSL4FMF8H7bywmEJrILzeYLACdPVaO20YeMVBvDCxH1CQwuRK1Z04DsaUDVtpZ92dOC+7tBCIHc3Fzg7/r9Fz+3Q/vZ97MKVO7ZpdXKzC6fB5QDgfDlCKIIX4JA6+gbsnYtCnL6YeX8IoYXIjI9Bhei1oQAblmt78diTevwgottnzp4Dge8ON+l4jN3SyfbAnEQjrQi+K0uuJ1j4fJ8EvUcgYCKQCCg9V8JbyLyBRDR0RdoGXat1QgREZkUf4sRRROlH4vRp1/T+EP9aCN4oabcCldWFirzS6GoXricTuSOPQ94eoJ23IbN22C3AE6XE4VT8iGljLrG13OzgjVErSfOIyIyMwYXop4U1gzVerSR2zkWGda0yPllWo1gagki9ZiyYyveuL1Qe65w2jRtLhh7lNUDpJTBDsTNwhePjKatVa2JiHoDgwtRTwprhpJSYu/evXA315Zk9huMPIsl6vwyDnhRIA7qRhsBwM5j1WjwNWkdcr2B2DPuSgn8YMlW7Awbsj1umLO570vzdcKCTHurWhMR9QYGF6Ke1twMJQDkFhS1X6NhTYMYMQ0rj7WMNqqHHQXNizru3bU9bObdlrlfFLVRd5oGf0AXWgDgwHEPxi9qmdU6vBNvaJRSSFurWhMR9RQGF6JeFK12JcpBwC2rIfz1SEOwJuTjHeXAu8FgcqamLqJDboE4iDmbQ0EnOBopEGhpItr+q9m4ael23ay8QLATb2j4NBFRImJwITKDsM7CAsC4SQXAu5siDquwz0cavNqMvQhrOSrfVq79fPjT/bg/NwDf+GAHXm+gpe/Mls1bMHhAVnDoNhFRguGCJ0QmFN6kpARaOvimwYu0+z+G+mAVNhcvj/n6Gk8NhBCwpwgMyMrExTOKtOe8geDEdU1NTdq+ltWrm7RH+ArWoXlkQg+ubk1E8cIaFyKTu2DHzwEsadlhSwMsqQhYUnXHTZ4yGfgoWEujqI1QAgLTCgthtVrR4Pdpx4VqXiZ/VoGfjw0GkJY+NGu140L9YaSU2FaxCzWelmanQf1dyM/Pj9pnh+spEVF3MLgQmZHVof3YIFvmgpFnTQ0OuVYjJ6GzKC19aS7cPA9pwgtsDG47JFBgfxIV3mztmF3HqtF0XrBSNtakdt/WeDHvT9vxyQl9X5lRWY14PzeAlBT9rxiup0RE3cXgQmRGYV/yM3zPtuz+8dtdmuFXCGClfAANdrtuxFL+5tubjwhufzjwv7F/wq9x1/oGAMAFT6yLer5D1Soa/AFktgourUcqARytRESdwz4uRCbksFpQkNNPt68gpx8czVP6K4oCl9Ope16x6P9331y8HIEHqoCFXwFDJwYnxBNe3aR4Bd4lWogBgKE1++FK8WJUlv5cIzIVvPbvQ1G+cJa2LxBQ2+zrUlhYGPM5IqJYWONCZEJCCKycXxRzFtzQgo4N77a8psEX0J0jYEkNjlSyWIA7NmprM6WqKqa8shs7q/Q1IwXiYPNoJYFfFdoRfrqLZxTDZrOhtrGlr8yGzdswqL8Tubm5SLOlaOsqeZuCYcYbALxNErYuVrS0ngW49T0gor6JwYXIpIQQbS6a2PoL/OL/3qDbdjmdUBQldLA23FoB8NefTdeHAl89HE//B4QA+qXbcKbOC7vFDggBl8sFm80GIUTL+RDq5FsPvHUCBTn98PqtF+C6l7ZhV1XzkgXNSxOMylIwY0bnRiFJKSNmAQaAKTlZWHlHka4cRmJYIup9DC5EfVi0pQJCNSe5ubkxv3AjQ5ElOIEMgImr/w0Ags1MtnTdqKA0WwoKcvqholWgqDh6Bu9/uLEltIQ5VK3iW08jMhzWYJmtFlgsbYeBaLMAA8DOo9Uo31mJaQWTDQ8TbYWlN24r1IIbQwxRfDG4EPVVUZYKAIJhRoyY1rnVr8MWhwyxWCzBZqYwoSas2kYftmzeopvYLtzSq4Zg3LhxKCwNLlFQ9FSZ9tyoLAVPzB6IyZMn614TXttRH9ZO1XoVbI/bE5fOvm2FpXXrN8KeIrQRUgA45JsoThhciPqqVksF6FjTOjf6KGxxSN05oh4arK2xp7SaujfMBZMnwWG1YMxAGz79zqd77lC1itPuWmzcuFFbPFICeKK8EcdqIodlR1sFuys6M7/M1l/OxI4dOyJCWWiE1J49e3SjpzIyMpCfn9+hc4fKwiYpougYXIj6srC+Kz15LkVR4HK5cPJUtbbPlpYBoL75VMFmlffunY06rx9AsBYlVAPjDQASMmZYCRmVpcBmAVIznNq5gZZ1mTpa09GR+WXCR0jt3bVDF5gKp03D7opy7dqth3zX1gaDWKxzh5cjEAjg2pfKsetYte65ccMyseK2Qi1vKoqidXomSiYMLkRkOCEE8vLygqOMmmfbnf/3kxHHKYqCTEewGctiaVliIFrzEhD55R2qhWhsUoG3TmjHbdmyBQA63HTTkfll1CiT+oVYmoeaSylR7wtoI6cKp03DoU/2o66uLuLcfr8fFotFK0soPH172o1dxyLf/4HjNcj9zVrdvvDVvImSBYMLEcWFEAIZqbaIzroFOf3gsEa274TmpmndsXfcMGfzl3Ps5hIRiN4kFavppq3ZegsLC1FeXh6xX3fMtGnBsBK2BIKUMrg0wpoPWw5c+yHGDXNixW3B8gcCKsq3bYPN0hKunE4nRo+fCFVV8e1pN7xhLUTPzUqDzRK7mazi6Bk0+ANtji4j6mv4aSeiuGlvvpn2jm3r+FjyphbCbhEo3xbsSNzU1NSp2Xo70qnXYlF0x9X7AqjxRV8a4cBxT0RNyagsBb8qDK4l9ct/fIPDbx6Peh27BbCnCJQUp8LqyMCkSbkIBFRs2LwtZq1U6746ADsHU9/C4EJEcdXefDNdPTaWUD+ZkLH7y3H3BAkBoGDqVOzdtUPXb6XBH1zROtS805WVrVtfM1RT8tzHFhw4XhNx/KFqFflTp6F827aoYQcI1kzNvvgCrayh8BEIBGJ2SI7WVwfgelDUtzC4EJHpxWpmAoBPTtRgfqj7y9oyjMgM1nbUeZtw/cvbceC4/ks+POjUNPiQkWptDgz6gBHrmpNHZCHT5oMQAv+3oBi+sJfV+wIoeCxY++INSF2zUPnCWdi9I9hEVXxhMTJSbZ0KGlJK1Db68O1pt26/zdJSw6QoCmtjyPQYXIjI9Fo3MwUCAWzevCVq35BjNSrmr63X9U8Jpw86H2pBp9WKCbprBgIBbNkc7LMyozgf27dv145Ji7GmQetaGrtFNA8hR6dHC6mqih8s2RoxEgmAVv6aBh/279+Putpa2CwtMysnSm2MEU1cbCZLDgwuRNQnhDczSWnBkAFZKCmu1gJHptOJx7bWRTTdhL7YgeidYLWgEya0pEDomoFAS+gIhZZoYtXSjMpSULljW5e+YAOBALbsqowaWnTlX9vSaTjUx0YIEbW/T6gJrXUQSLdbO7ycQmdCRKiJy+126wKi06Vf66q967XXTBatTG2Vqzt68lrJhsGFiPqc0HDs1kOg3y2QKN9ZCY+75cstvPbh93OHYPT4iQCCI4Cuf7k8IugU5PSL6IcTmrfG7W5ppnG5XBFf8uG1NFJK7N27Fx63J6IGpDNrLX20YYtu+7lZaRjU34mJE3Nx7YvbIprCgJY+NqG5Z4LDuJuafwauWbI16uvGDLThvXtnt1m+0Ln27NmDGo/+3qVnBDsYa9vNQUhVVbjd7uCoLF2fn+BaV6FlFdpaCiLakHZA30wWCjahiQ1jlat1uOhIB/HWQaWyshK1tbURxyVKDZeZMbgQUZ8khIgYISSEwLSCyTHnZGn9hfX3u2Z0aJRTrKAUa/RUKPhEK0t7f5ErigKnq2XCvdaji2Zd1NI/5u93TUe9r0m7Rvgkf+Fzz0Sb8C6aT7/zoc7rR6bDHrVGof1z1QNvtzTRhYIQAPgC0UdlAS3LKgwekBXzSz985fHCadMAQBtZFiprKLREDUhvR286BNpfvDNWjVFIeDBta0QbdQyDCxEllWiBpq1jOzMiqrNfRl19TeGUfEyp2IqdR6t1zxXk9NN16hVCIN1u1Z4Pn+QvxBdA1KAxdmgm7p4QgAAwPm8ypj+zSXsu1he1N4Cok+fF8ul3PnjqvRH9gHb812wc/vRjfHvaowtmsb70WwKTfuXxkHEfb8GK2wrhbQp2iI4VkGJpvXinqqrajM9AsHbu5Gl3zPl2puRk4bVbCrB169ZOXbctXe3PE48mrNA5QzNWx5vhwaW0tBR/+9vf8Omnn8LhcKC4uBhPPvkkRo8e3f6LiYioXYqi4K/zi7s1501oht/wkU2vfH8QmhqDs/zaLAHtXBmpNt1rYzfttAg1WYVWIQ//wqxt8GsLa5Zv26b1DwpJt6dgWsHk4MzLH0XWhLRey6neF2izxijarMMAUPHrOXBY9SOt9uzZi7rmJp7wRUJDi3cKITD3v9fi4Cl/xPli2Xm0GtWNLUPu631NsFhkh/+9ooWNaE1R7TVDxeoH1JHXtlW20DlbzxAdL4YHl7KyMixYsABTp05FU1MTfvWrX+HSSy/FgQMHkJ5u0JopRERJrrtz3rQe1QQATY11ESHC5XJpzUpAy8rcsSbcA4I1DP8yO3aflI704WldGxUMWDLmMPaQ52alYdZFxQAQc2QZEKydGpAeOeT8wsKCsKa1pojgVOf1txlawmd6Dh/+rrvfzSPa2muCAoLBYNeuXfjuTPT321YzVOvA09TUFDFcPuTkqWq46xp1/9ahWpi2AlasvkXxZHhwWb16tW572bJlGDx4MHbu3ImLLroo4niv1wuv16tt9/QNICJKFm3NdxNasDLaSta1jS0reEcLPBW/nqNr7mmvJiH8ubyphUizWYKBaG3kuUO0JqMYw9hD7yHTBi3QpTbPOpw/Vd/npa15csIDk8XS9mSEW385ExmOlqa41gtftnW/gWBNzJbtO1E0dbJuf3izTSAQwAMfnIwZEscNy8SrtxRge/MyFaHanNQUBbt379a+U6P37WmlVRNbSEfXxCosLGzzeaPEvY9LqJd9//79oz5fWlqKkpKSeBeDiCjptZ7vJvwv8lDYiNbXwWG1YFSWgkNRvvSm5GRFrbnoqGhBKPy6sb74Q8PYw69qswBZWVm6ifaEENroqa7OkwMEa3xqGnxoCOvUk+GwaouERhNrFFl4E9Rpdy3WfrRB97rQMHAhBGoafG2GjQPHa5D/eGRtTngfpVD5O9u3JyTamljRZp2O1jE5HoTsyvzWHaSqKv71X/8V1dXV2LRpU9RjotW4ZGdnw+12w+l0xqtoRETUQYFAABs2bIj6xTT74hlISenc38BSSlyzZGvUQNL6r/vQ8OrQl35IqIkkWg1RqE/N7t27dUPUgc715aj3NWHcw2tiPr9v0Zw2g0troaBY72vCxJLYNUexlC+chUyHrflcsYett2fHf81Gul0fQsKblEKLgYYHrPD+QFIi6lQBAHD0ye/H/fs7rjUuCxYswP79+2OGFgCw2+2w2zv+D09ERD1LURRkZWVFDQFdGdYba0FNILKZKTQyKtYw9raGnbceot7W8dG0VeMzZqBNN2KrI0LNUBmpSptNSNGMylIwIN2mC4l/v2t6RG2OROzVxIFgMByYYW/zHgQCgebaqZZ6jVBfnUQQtxqXO++8E++88w42bNiAkSNHdvh1Ho9Hm8iJNS5ERIkhWafTD9X4tH7vnZlFONZ5Wwe38ADS2qD+LuTn57c5YihUxvBzd2UyvUAggI0bN0JKiT98Yos5Yiu8uc7pcuLss0di+OAB5qtxkVLi5z//OVatWoX169d3KrQQEVFi6sqcM31B67lwjDxvtFFhna1ZCj9f+L9PZieb72Kd8+djffCdn6bbXzhtGiwWRReCFEVBTU1k01E8GB5cFixYgNdeew3vvPMOMjMzceJEcLUyl8sFh8Nh9OWIiIj6jEQIiOFLWAghENYdBi6XC6701F6taTO8qSjWm1m6dCluuummdl/PpiIiIqLe1ZUZdnvq+zsuTUVERERkXolQ8xNL13sWEREREfUwBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg0GFyIiIjINBhciIiIyDQYXIiIiMg3Dg8uGDRtw5ZVXYvjw4RBC4O233zb6EkRERJSkDA8udXV1mDRpEp5//nmjT01ERERJLsXoE86dOxdz587t8PFerxder1fbdrvdAACPx2N00YiIiChOQt/bUsq4Xsfw4NJZpaWlKCkpidifnZ3dC6UhIiKi7jh16hRcLlfczi9kHKOREAKrVq3C1VdfHfOY1jUuqqri9OnTGDBgAIQQ8Spal3k8HmRnZ6OqqgpOp7O3i9MreA94DwDegxDeB94DgPcACLaYjBgxAmfOnEFWVlbcrtPrNS52ux12u123L55v2ChOpzNpP5whvAe8BwDvQQjvA+8BwHsAAIoS3wHLHA5NREREpsHgQkRERKZheFNRbW0tDh8+rG0fOXIEu3fvRv/+/TFixAijL9fj7HY7Fi1aFNG8lUx4D3gPAN6DEN4H3gOA9wDouXtgeOfc9evXY9asWRH7582bh2XLlhl5KSIiIkoycR1VRERERGQk9nEhIiIi02BwISIiItNgcCEiIiLTYHAhIiIi00j64PL888/j7LPPRmpqKgoLC7F9+/aYx7788suYMWMG+vXrh379+mHOnDkRx990000QQugel19+ebzfRrd05h4sW7Ys4v2lpqbqjpFS4uGHH8awYcPgcDgwZ84cHDp0KN5vo9s6cx8uvvjiiPsghMAVV1yhHWOmz8KGDRtw5ZVXYvjw4RBC4O233273NevXr8fkyZNht9tx3nnnRR012Jl7mgg6ex/+9re/4ZJLLsGgQYPgdDpRVFSENWvW6I555JFHIj4HY8aMieO76J7O3oP169dH/X/hxIkTuuPM9Fno7D2I9v+6EALjx4/XjjHb56C0tBRTp05FZmYmBg8ejKuvvhoHDx5s93UrV67EmDFjkJqaiokTJ+K9997TPW/E90NSB5c33ngD9957LxYtWoRdu3Zh0qRJuOyyy3Dy5Mmox69fvx433HADPvroI2zduhXZ2dm49NJL8dVXX+mOu/zyy3H8+HHt8frrr/fE2+mSzt4DIDildfj7O3r0qO75p556Cs899xyWLFmC8vJypKen47LLLkNjY2O8306XdfY+/O1vf9Pdg/3798NiseCaa67RHWeWz0JdXR0mTZqE559/vkPHHzlyBFdccQVmzZqF3bt345577sGtt96q+9Luymert3X2PmzYsAGXXHIJ3nvvPezcuROzZs3ClVdeicrKSt1x48eP130ONm3aFI/iG6Kz9yDk4MGDuvc4ePBg7TmzfRY6ew+effZZ3XuvqqpC//79I34fmOlzUFZWhgULFmDbtm344IMP4Pf7cemll6Kuri7ma7Zs2YIbbrgBP/nJT1BZWYmrr74aV199Nfbv368dY8j3g0xiF1xwgVywYIG2HQgE5PDhw2VpaWmHXt/U1CQzMzPl8uXLtX3z5s2TV111ldFFjZvO3oOlS5dKl8sV83yqqsqhQ4fKp59+WttXXV0t7Xa7fP311w0rt9G6+1n43e9+JzMzM2Vtba22z2yfhRAActWqVW0e88tf/lKOHz9et++6666Tl112mbbd3Xva2zpyH6IZN26cLCkp0bYXLVokJ02aZFzBelBH7sFHH30kAcgzZ87EPMbMn4WufA5WrVolhRDyiy++0PaZ+XMgpZQnT56UAGRZWVnMY6699lp5xRVX6PYVFhbKO+64Q0pp3PdD0ta4+Hw+7Ny5E3PmzNH2KYqCOXPmYOvWrR06R319Pfx+P/r376/bv379egwePBijR4/GT3/6U5w6dcrQshulq/egtrYWOTk5yM7OxlVXXYWPP/5Ye+7IkSM4ceKE7pwulwuFhYUdvq89zYjPwiuvvILrr78e6enpuv1m+Sx01tatW3X3CwAuu+wy7X4ZcU/NSFVV1NTURPxOOHToEIYPH45zzjkHN954I44dO9ZLJYyfvLw8DBs2DJdccgk2b96s7U/Gz8Irr7yCOXPmICcnR7ffzJ8Dt9sNABGf7XDt/V4w6vshaYPLd999h0AggCFDhuj2DxkyJKJtNpYHHngAw4cP1/0jXH755fjf//1frFu3Dk8++STKysowd+5cBAIBQ8tvhK7cg9GjR+NPf/oT3nnnHfzlL3+BqqooLi7Gl19+CQDa67pzX3tadz8L27dvx/79+3Hrrbfq9pvps9BZJ06ciHq/PB4PGhoaDPn/y4yeeeYZ1NbW4tprr9X2FRYWYtmyZVi9ejVeeOEFHDlyBDNmzEBNTU0vltQ4w4YNw5IlS/DWW2/hrbfeQnZ2Ni6++GLs2rULgDG/a83k66+/xvvvvx/x+8DMnwNVVXHPPffgwgsvxIQJE2IeF+v3Qujf2ajvB8PXKkoWixcvxooVK7B+/Xpd59Trr79e+3nixInIzc3Fueeei/Xr12P27Nm9UVRDFRUVoaioSNsuLi7G2LFj8eKLL+LRRx/txZL1nldeeQUTJ07EBRdcoNvf1z8LpPfaa6+hpKQE77zzjq5/x9y5c7Wfc3NzUVhYiJycHLz55pv4yU9+0htFNdTo0aMxevRobbu4uBiff/45fve73+HPf/5zL5asdyxfvhxZWVm4+uqrdfvN/DlYsGAB9u/fnzB9cpK2xmXgwIGwWCz45ptvdPu/+eYbDB06tM3XPvPMM1i8eDH+8Y9/IDc3t81jzznnHAwcOFC38GSi6M49CLFarcjPz9feX+h13TlnT+vOfairq8OKFSs69IsnkT8LnTV06NCo98vpdMLhcBjy2TKTFStW4NZbb8Wbb74ZUVXeWlZWFs4///w+8TmI5YILLtDeXzJ9FqSU+NOf/oQf/ehHsNlsbR5rls/BnXfeiXfffRcfffQRzjrrrDaPjfV7IfTvbNT3Q9IGF5vNhilTpmDdunXaPlVVsW7dOl2NQmtPPfUUHn30UaxevRoFBQXtXufLL7/EqVOnMGzYMEPKbaSu3oNwgUAA+/bt097fyJEjMXToUN05PR4PysvLO3zOntad+7By5Up4vV788Ic/bPc6ifxZ6KyioiLd/QKADz74QLtfRny2zOL111/HzTffjNdff103HD6W2tpafP75533icxDL7t27tfeXTJ+FsrIyHD58uEN/yCT650BKiTvvvBOrVq3Chx9+iJEjR7b7mvZ+Lxj2/dCpbsV9zIoVK6TdbpfLli2TBw4ckLfffrvMysqSJ06ckFJK+aMf/Ug++OCD2vGLFy+WNptN/vWvf5XHjx/XHjU1NVJKKWtqauR9990nt27dKo8cOSLXrl0rJ0+eLEeNGiUbGxt75T22p7P3oKSkRK5Zs0Z+/vnncufOnfL666+Xqamp8uOPP9aOWbx4sczKypLvvPOO3Lt3r7zqqqvkyJEjZUNDQ4+/v47q7H0ImT59urzuuusi9pvts1BTUyMrKytlZWWlBCB/+9vfysrKSnn06FEppZQPPvig/NGPfqQd/89//lOmpaXJ+++/X37yySfy+eeflxaLRa5evVo7pr17mog6ex9effVVmZKSIp9//nnd74Tq6mrtmF/84hdy/fr18siRI3Lz5s1yzpw5cuDAgfLkyZM9/v46orP34He/+518++235aFDh+S+ffvk3XffLRVFkWvXrtWOMdtnobP3IOSHP/yhLCwsjHpOs30OfvrTn0qXyyXXr1+v+2zX19drx7T+vbh582aZkpIin3nmGfnJJ5/IRYsWSavVKvft26cdY8T3Q1IHFyml/MMf/iBHjBghbTabvOCCC+S2bdu052bOnCnnzZunbefk5EgAEY9FixZJKaWsr6+Xl156qRw0aJC0Wq0yJydH3nbbbQn7P2dIZ+7BPffcox07ZMgQ+S//8i9y165duvOpqiofeughOWTIEGm32+Xs2bPlwYMHe+rtdFln7oOUUn766acSgPzHP/4RcS6zfRZCQ1pbP0Lved68eXLmzJkRr8nLy5M2m02ec845cunSpRHnbeueJqLO3oeZM2e2ebyUwWHiw4YNkzabTX7ve9+T1113nTx8+HDPvrFO6Ow9ePLJJ+W5554rU1NTZf/+/eXFF18sP/zww4jzmumz0JX/H6qrq6XD4ZAvvfRS1HOa7XMQ7f0D0P1/Hu334ptvvinPP/98abPZ5Pjx4+Xf//533fNGfD+I5gISERERJbyk7eNCRERE5sPgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbB4EJERESmweBCREREpsHgQkRERKbx/wM3J5Fg0MWcegAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "maxfreq = 1.\n", + "dt = 0.2 / maxfreq # smaller than the Nyquist limit\n", + "ls = LombScarglePowerspectrum(ev_tot, dt=dt, max_freq=maxfreq, norm=\"leahy\")\n", + "ls_reb = ls.rebin_log(0.02)\n", + "\n", + "plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.xlim([0.1, 2])\n", + "plt.ylim([1, 10])" + ] + }, + { + "cell_type": "markdown", + "id": "81bffa81", + "metadata": {}, + "source": [ + "# The Cross spectrum\n", + "\n", + "A great new addition to Stingray is the Lomb-Scargle *cross* spectrum. The cross spectrum is the basis for many of the spectral-timing techniques that Stingray was born for (e.g. the covariance spectrum, time lags). \n", + "\n", + "Here we show a simple usage of the cross spectrum as a proxy for the (Poisson noise-subtracted) power density spectrum, using two datasets from two identical instruments onboard the same satellite.\n", + "\n", + "Time lags measured with this cross spectrum make sense in our tests, only when the light curves are sampled at the same times. Also, we do not provide error bars on the time lags at the moment. Use with care!" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b047a2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "258it [00:02, 107.72it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABE6klEQVR4nO3df3xT5dk/8M9J26Qt0ApUWsqvggpbQNvZ0q5Mt6LdWJ04cfCwZ5tWfMbEpVPXR/cA7kvHprIfythctioOQacb1s1uAwVGdUOlrrRYpxYQtEAFWiiFhqYlocn5/nHaNGl+pyc5ycnn/Xrl1eScO+dcJdZeve/rvm9BFEURRERERDFCo3QARERERMFg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFlESlA5Cb3W7HyZMnMWbMGAiCoHQ4REREFABRFHHhwgVkZ2dDo/Hdt6K65OXkyZOYMmWK0mEQERFRCNra2jB58mSfbVSXvIwZMwaA9M2npaUpHA0REREFwmQyYcqUKY7f476oJnkxGo0wGo2w2WwAgLS0NCYvREREMSaQkg9BbXsbmUwmpKeno7u7m8kLERFRjAjm9zdnGxEREVFMUU3yYjQaodfrMXfuXKVDISIiojDisBEREREpjsNGREREpFpMXoiIiCimMHkhIiKimKKa5IUFu0RERPGBBbtERESkOBbsEhERkWoxeSEiIqKYwuSFiIiIYgqTF4ouppNA52FAXaVYREQkI9XuKk0x6OB24E/fkJ5PLQbKtwEJqvlPlIiIZKKanheDwYCWlhbs27dP6VAoVKdbhp4frwde+C/lYiEioqilmuSFVMg5mSEiIhrA5IWiT/a1SkdARERRjMkLERERxRQmL0RERBRTOJUjkjqPAG+uBy71juw6E/TA5x8EBEGeuIiIiGIIk5dI2rcRaH5+5Nf54GVg9m1AxpUjvxYREVGMUU3yEhPrvPRbpK9XfQm48ouhXaNuLWDtAWwW+eJSm3PHgH1PA+NmAAXLlI6GiIhkpprkxWAwwGAwOHaljGqTCoCi74T23j2/kJIX8m7vE1IvFwBccQMwdpqy8RARkaxYsEvq41xTNNL6IiIiijpMXoiIiCimMHkhIiKimMLkhdStaTNgOqV0FEREJCMmL6Ru/64Gtt2vdBRERCQjJi+kfuZOpSMgIiIZMXkhIiKimBJ1yUtbWxtKSkqg1+txzTXXoKamRumQiIiIKIpEXfKSmJiIDRs2oKWlBbt27cL9998Ps9msdFikhAungGe+AlzqUzoSIiKKIlGXvEycOBF5eXkAgKysLGRkZKCrq0vZoCiy0icBSanS82NvAu3vKRsPERFFFdmTlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHB47Wamppgs9kwZcoUucOkaJYyDvj+B0OvRVG5WIiIKOrInryYzWbk5ubCaDR6PL9161ZUVlaiqqoK+/fvR25uLhYsWIDTp0+7tOvq6sIdd9yBp556yuf9LBYLTCaTy4NUIHWctLEiERHRMLInL2VlZXj44YexaNEij+fXr1+P5cuXY9myZdDr9aiurkZqaio2bdrkaGOxWHDrrbdi5cqVmDdvns/7rVu3Dunp6Y4He2mIiIjULaI1L1arFU1NTSgtLR0KQKNBaWkp6uvrAQCiKOLOO+/EDTfcgNtvv93vNVetWoXu7m7Ho62tLTzB223ApYsje9j7wxMbERFRHEmM5M06Ozths9mQmZnpcjwzMxMHDx4EALz11lvYunUrrrnmGke9zHPPPYerr77a4zV1Oh10Ol1Y4wYAfPw68Ievhf8+JJ+pxcDxeqWjICIimUU0eQnEddddB7vdHvT7jEYjjEYjbDZbGKKSUWIyMLVI6SiIiIhiVkSTl4yMDCQkJKCjo8PleEdHB7KyskZ0bYPBAIPBAJPJhPT09BFdy6PpJcBKGYakErRAUvLIr0NERBSnIlrzotVqkZ+fj7q6Oscxu92Ouro6FBcXj+jaRqMRer0ec+fOHWmYniUkAslpI38wcSEiIhoR2Xteenp6cOTIEcfr1tZWNDc3Y9y4cZg6dSoqKytRXl6OgoICFBYWYsOGDTCbzVi2bNmI7hv2nhciIiKKCrInL42NjZg/f77jdWVlJQCgvLwcmzdvxtKlS3HmzBmsWbMG7e3tyMvLw44dO9yKeImIiIg8kT15KSkpgehnRdSKigpUVFTIet+YKdil6NFvkWaQHdsLLP49MNvz2kRERBRdom5vo1AZDAa0tLRg3759SodCvogicGI/cPgfwNE3AZuCa9+cbgGOvgGINqDmTimZGXTqP8Bjs4A/LOb2BEREUSbqpkqTyh3+B/DCkqHX838IfOFBZWIZnpT0XwQSB9YM+qgO6GkHjrQDFhOQzDoqIqJooZqel7DPNiJ5dLf5fk1EROSHapIXDhsRERHFBw4bxaNzx4Dzx9yPXzYVGJsT8XDQ2wX0nQP6zkf+3kREFHOYvMSb7hPAr/MA0cMWDIIGuP89IH1y5OJpfw94bCZgvxS5exIRUUxTzbARa14CZDohJS6aJODyTw09NEnS8e5PIhvPmYPKJS4nmpS5LxERjYhqel64wm6Q0icDhn8Pvf71tUDXR8rFo4Q3Hlc6AiIiCoFqkhdSQM8Z4O/3AebTQ8euWQoULpf3Po2/B47sBmZ+GZic771dvxXYXgk0P+//mqaTwIVTwcXR0QLU/Ri4Yj5QdHdw7yUiItkweaHQHfkHcGi767Fzx+RPXv6zVfr6Xg1wX7P3dicagXee8389ux3YsSr4OOp/A3z4qvTwlbzYbdIaMgn88SIiCgfV/N+V2wPITBSlYtqL512Pj5sxVNBrH/i3npgH5H0DePUH0oJuOx8Cxl8J5N8JCIJ8MVlM3s/t/Q3Q8GRg13nlf4GWWun5mImB98Bc7Pbf5tJF4HfF0uyp4grgk33AjWuAzNmB3YOIiPxSTfLCmheZffAy8JKHnb4TtEDlQWDU+KFjozOBWWVS8tJ/UeqhAIBp84DLZ4U/1q5WYNdDgbf/cOfQc/1XgX9X+27f1gBccYPrsRfvAOZ+Gzh7BDjfBlx3v7QKb3cb0PWx1Oa1nwzcbwfw/Q8iO4uLiEjFVJO8kMwG14HRpQNp2dLzzg8Bm1VaNt85eQGkNWIWPSntF9T4jNRLYumJTKz9F8N7/ecXS9sYOGv5K3DoVenfAwDGTQeuvcP7NY6+BeQuDV+MRERxhMmLWplOAmc9zB46czC463z6ZuDW30rPf3GVa3HucLlfl75+8LLnIZ7Ow8DJ/f7vmTref5tIa/+P+7HBxAUATr4DfOb2yMVDRBTHmLyo0cVuaepzf5/3NkKEl/jptwBPzQesFzyfz5wDzP0fab0Z/Vf9X892SRqeiZahmMZNQFKqVOdDRERhxeRFjXrODCQugpeaE0FKFCLpUu9Q4nLFjVLydOQfQ+dHZQAFdwV+vWe/Chx7Cxg1Afhmje+29ktScbEmIfDrv+2nDsaTps1MXoiIIkA1yQtnG3mQnOa6EF20+MaLwFu/dE1egtXxvvTVfBro6/Ld9tS7wOOfAu7eA6RNDOz6vZ3BxySKwb+HiIiCpprtAbirNPlkPu25bsUbTVL4YiEiohFRTfJCRERE8YHJC8W+916S71rvbgUeznIvdtYkAge3yXcfIiIKGZMXin2B7GUUqHee8zxLKzFZvnsQEdGIMHkhZV3qVToCV8FMIR81IXxxEBGRV6qZbUQxJvNqAAKAgRk6E/P8v0e0A7XfBTo+CGyfoVCMDiIhSWBRLxGREpi8kDJmfRl44LC09osmKbDF5vrOyTtENNyex0Z+jWjrSSIiUiEmL+Rq7xPAf16U1kYJt9GXA7g8/Pfxxbn35NxRIFEX+HtNJ1xfXzIDT37eS2MReONxwNoLlKwCEvz86PWdA1LGBh4LEVEcUU3Ni9FohF6vx9y5c5UOJTYlp0lfD24DGn8PnGiUXuvSlIspUm6SocfFn66PgbofA288Ju395MvuHwE/y5ESSSIicqOanheDwQCDwQCTyYT09HSlw4k9XzUCB7dLdSWDEpOBvG8oF5OaWM1Dzw/+Hbhmife2b/5S+vraw8C874U3LiKiGKSa5IVGKHO29IhWgsY1sYq0d18Y2fvrfzP0XDs6sPf0XxzZPYmIVEo1w0ZEREQUH5i8EPlyzdeVvf+vrwUumpSNgYgoyjB5IVLChXZpF+qzHwGmU97bdX0EnD4QubiIiGIAa16IIq35eekx/QtA67+kdW7+rxXQjVE6MpKTuRMYlaF0FESqxJ4Xih+n/gOcfEfq8QiEdjSQqQ9fPK3/kr7aL0m/6CwXpBlfFPtefxT4xRVAvVHpSIhUickLqUvO9d7Pvf4w8FQJcOGk/+sUfgf4/vtA4d1SD0kkbH8A+BOnpsc8qxniP3+GXlEHccdqwK7gLDkilYrK5GXRokUYO3YsFi9erHQoFFMEIP9OeS41drq0wm1SMvDNl4DxV8pzXV/+86fw34PCTnx1FRZbq6C3PIMl1iqIpgCSZSIKSlQmL/fddx+effZZpcMgkiRqgU8v9HwuQRvZWEQReHkF8MxXOAspSvXt/xOaxFkAgEZxFvouseeFSG5RmbyUlJRgzBgWLxK56e0C3v0jcOxNoK1B6WiIiBQhe/KyZ88eLFy4ENnZ2RAEAbW1tW5tjEYjcnJykJycjKKiIjQ08H/CFGGXTZMKcmeUjPBCgvuhaZ8b4TWHObzT6YXo5TkRUfyQPXkxm83Izc2F0ei5yn7r1q2orKxEVVUV9u/fj9zcXCxYsACnT58O6X4WiwUmk8nlQeTX3XuA1SeAK0tHdp15Fe7Hsj8z9Hx05siuDwD2/pFfgyJnTJbSERCpnuzJS1lZGR5++GEsWrTI4/n169dj+fLlWLZsGfR6Paqrq5GamopNmzaFdL9169YhPT3d8ZgyZcpIwicamc98Cxg3Y+j1/IcCe9/GG8ITD0WcW3/YJe5RRSS3iNa8WK1WNDU1obR06K9djUaD0tJS1NfXh3TNVatWobu72/Foa2uTK1zy5t0/Ant/A3xUp3QkgP6rSkfgauq80N7X1+X7fNNm4LfzgNY9oV2fIkIURSw5e7frwfZmRWIhUrOIrrDb2dkJm82GzEzXrvTMzEwcPHjQ8bq0tBTvvvsuzGYzJk+ejJqaGhQXF3u8pk6ng06ng9FohNFohM1mC+v3ENcSk6Wve58YdlwX+VgGlawGWv7qv13ufwMf7gD6zoV2n/TJ/tt88SdA3jeAo29Kr1PHA9pRQ+cTU4D+vtDu//f7pK//WDN07NS7wFVfDO16FBZ950+jRcxROgwi1YvK7QF2794d9HsMBgMMBgNMJhPS09PDEBXhpp8D7//F9ViCFij6TvjvLWgAcQRTTlPHA5PnAod3hfb+a8ulIt/nfaw9lJ0HCAIw/Xrg3mZpnZjBVXQBQJMQ2r2ddTv1LL72E+DaO4DRE0Z+XZJH54fux7Y/AFz7X5GPhUjFIpq8ZGRkICEhAR0dHS7HOzo6kJXFIregXOoDrGYv53rDc89ZZdIjUM8vBsbmAN/6s/RLfSQm5QPJ6cC5Y0DnoZFdKxQJSVIvx5jswFboHTfd/VjGVdL2BHJqfgGYdy+gicpVD+LPuaMAxrke62fNC5HcIpq8aLVa5Ofno66uDrfeeisAwG63o66uDhUVHmZtBCHuho2evlHpCLy7/FPA+eNSHUdfF3Dg7yO/ZlIK8M0a6fnPpvuvEYlG0z4nf/Kyu0rq8Rk+5bv9PWnDxwmfkvd+5JvgnkSKAGDtBbSpEQ+HSK1k/3Otp6cHzc3NaG5uBgC0traiubkZx48fBwBUVlZi48aN2LJlCw4cOIB77rkHZrMZy5YtG9F9DQYDWlpasG/fvpF+C9HtyiCSlisUSnC+/gKw4k1gwmzp9d/vlR6A9D/3kfbCkKuGjUC/dej1+Tag+jrgt0XSonYUOYdedTu0xFoF8VKItU5E5JHsPS+NjY2YP3++43VlZSUAoLy8HJs3b8bSpUtx5swZrFmzBu3t7cjLy8OOHTvciniDFTc9L4uqga+sD6ytUn/pJSQBWVe73z/7M8CcxfLUfgwSNNJic9YeaVgmHh3cBvz7d8DnBop6e5zWTDJ3AqnjPL+P5Jcy9G89PQ1oNQEtYg76LtnBfhci+cievJSUlEAUfa/8WVFRMeJhouHiqmA3Vrufv/xTYOpn5b2mIAAr3gA+aQKmzQOOhzblHgBw4G/yxeWJLoxbXhx9ayh5oajwomE+5q57XekwiFSJVX4U+8bNAK5ZAqRPUjoS32bM998mnFr3APW/BfotysahYs5/tnF0lCh8onKqdCjiZtiIfJtSCIydDtisUhHrSHpiYsng/ke2fqD+N57bbBnYGTvlMmk9GpKVKIpY8oHMPYtE5JFqel7ipmCXfLtsKnBfM1DZAkzMVToaV2OygIl5wb/PFuDeRp80AdvuBz74i+923SeCj4H86rtkQ0uvNGStT7uIlCQZa7uIyIVqkheKI9rRTs9HeW83nCbJ6bkCv1gEDXBHAKsBD+cvGRn09A3AO8/5b3fmoP82NCI1xcc4bEQURqoZNqI4suh30pTUzDlAWnbg7yu6G7h4HphSJF/xbGrG0PNRl8tzzeEunJL3emePyHs9ciMkBZFUE1HQVJO8sOYljuRcJz2CNeML0kNOl88Ebq8FIAITPj2ya827F9j7azmiGnKiCRh/JXCudehYsspn4ynl4oWh51OLXM+ZTgCXhSm5JYpDqhk2Ys0LKeaK+cAVN3g+lzlHGuYamwOM9rOW0We+JXtoqF0hJUTOvTf+4qDQOC9ElznbdbXd89ztnkhOqul5IYpK468AHjwi1dskJIZv3ylfml9wnbf73ovAwg2u9UKiCLxXIy2ydlVpxENUHbeCFxbAEMlJNT0vRFErKUVKXPzxsC+OLDoPAaeHFek2POX6uv094C/Lgee/BlzsDk8came54PWUePF85OIgigNMXoiiwbV3AOlTwnf94TOWdv8I+Om0oU0zP3h56Bz34QmJ+OT1Xs8t2aHxu/I4EQVONcmL0WiEXq/H3LlzlQ6FKDifNQC3PBHeJVn7L7ofu3ge2PVD6fmbAe6XRR6Joogl1iqXYylJCdAndwIAWnrT0XeJkwmI5KKa5IUFu1EofbLTCyG4ac0UFFEEekVdQA+XDoC+c4rFrCZ91n60iDkAAP2YXqQkJUAQBNQUHVU0LiK1YsEuhc+tvwOuLQdEG3BZjrT6LYVFH3TQW54JqG2BcAg12rVSR0+/Fag3hje4eHCh3fG0ZvlcCAO9aIIY4OrIRBQU1fS8UBRKSpGmEV9ZCmRcqXQ04SHE3hLwjeIs9EEnvejvA3auDu4Ch3YA1dcDH+4aOnbqXeDt3wGWHvkCjSXt7zmeCs49jFxThygs2PNCFKpP3Syt1hsFUmBBi26Zzza90KHAUj3ym9WukIab/vpdaRo4ADx7K9DXBVh7gM8/OPJ7hIN9oObE29YQtktAQpLnc34JcOwprXH6m/CqLwK7PpGed34MZM8M8fpE5Iw9L0Sh+vrzgDZV6SgASLW+qYLF9wOW4C7aeRj487eBj16DS6HMYJ2M+Qzw+y8Brz8qJS6A1APjzG4DTr4jJQaR0HfOcx3P4d3Aj8dJj+Y/um92eaIJ+FkO8PKKkG7rdR7RBP1Qm+7jIV2biNypJnnhbCMime18SFq47rlFwOabXROYQW3/Bv71M8/v/6RJShaeKgG2fd/1XOdhwGqWN96+88B6PfCz6cBFk+u557829Lx2BdBS63p+/7NSr9G7fwz6tqIoYkmtlzVenGaQLfnLOU6XJpKJapIXzjaiuJAxa+i5VqbNJb053TL0/NibgMXkve0g5wXutlcOPXfe7frDncBvCoBHs4FXHpSSDn/e3AA8/UWg62PvbUwnB1YwFqV7+NLxgbRw39ZvAYf/MTSkFAxLD9D8AvoatqClR1qtWC8cRUrS0LBUSlIC9Bppa4CWC6nos7KAl0gOqkleiOLCXTuAm38pDUeUVvlvL7fuE77Pt+4BjuyWnnd84LnN4HlAWul3/7PSc2sv8IfF7r00ALC7CvikAdixCvjnT4HuT1zPiyJcBm+sA4XDtn7gH2s8x7Hj/6RF+p5f7Hr8PzVSUrPr/0lDUCf2A0/kA+/8AehqBf72PeDom8Cr/wfU3gO88gPHW2vGbHDMNAIgTZe+dqiYV2z38m9CREFhwS6R0lLHBtYuMQVIHQcU3CU9Olr8vycUjZuA8Ve5H7fbgF/q3Y8P17RZmmEWqJ4O6esnDcCRf0jPb6wCUi4D7HbXGpYPd0iPTxqBb70kHbP1A78vlWprhju8C3jrVwCk/GZwllXyG7/ERWgB6JACC4QDf3OcT/nzt4dGe2xWiPv/gD7rJaTUGgAMtHn/rxCsUi+T80CQcOWNbiEITvEv2XoC2x/MdUlwiCh4TF6IlDIpH8i6Bsj3PUvI4ZYnAmuXlArMfwjY9VBocXmrYXEe+vEl1LoO0T70/OR+oOVv0vCP847Yg478Q+oJ6TwM5Jd7TlwAx3vtooCbrY84FpJzpheOYhsewhJrFZrEWcgXDuFZ7U+lAue3q7HY6TgANImzUGCV1soRIeBm66NDF/PQG5Zy00+gb9mBFjEHLV1A3yUbUrX8Xy/RSPAniCiStKOB0ZlSb0Ppj4Dpnw/sfd99G5jwaddjY3M8t13wiDQEI7fXH/XfZpDdDthHMMPouUX+2/xV6gnBWxs83L8fsNscKw/fbH0UreJEj5dpEXMwz/JrtGM8ACk5mW15BnrhKLZof4omcZbj+KBGcRbMSMZC6yOO6+qFo0gZe5Pb9YXxV6BGuxazA1xEkIj8Y80LUSQlJALfawLufz/wxMUbbSrw9WGzY6Z/QRpSCgdP+yN5s+fn7sf+/G1pSOr8sCnD9b+RemtGsKu28/YIogjglQcg/vZzWPzPsZhtecaRYGThrMv7Bl8PJi7OWsQczPWxLo5zQjRdOIVt2oe8DgcJhcuHXhzdG8y3RkQeMHkhijTdGOAymXaQ1gzrPE3QynPdkXpzg/ux92qkYtwPd7ifO38cgOBxjyZ/o1CiCCy2VkFveQZ6yzNYYq2CXRRw9swJNHXpHO30wlHs1d2LgoHhnwLhEPbq7oVeOBrSt3hUzAIgJS512gegEXwEWvA/Q/H+7V6/1xZFEb0XutF7+A2IPZ0hxUekZqoZNjIajTAajbDZuHMrqZB2dJDtR4UnjkDZrMG1P7gd4tmPHPUlzvTCUWkvJqdjKbA4imr7oHMb0vmK9REccKpvadStwHiYIAhAjXatVHQ7cI3t2tXog85tBeJ9uhUot65Ei5jjqIMBpETJ+drbtKt9Jy7DLDm7HNtPH4IwYZbH86IoYvETr6HppNTTVXB5PWoqb2aRL5ET1fS8cJ0XUq1bq4PvqZm9CEibJMvtA9mx2q13RAzyj4idq9C37zm3xAWQhm9mD/SqDD6+Yn0UZh+9Ms7JRYFwyJG4AAOrEX/hPtfXHlYgHgULtmtXo0W3DC9p12KUYMEowYLt2occvTUFwqGh9/mYYZWSJDje0yLmoHfXI17b9lr6HYkLADSe0aDvEv8oI3Kmmp4XIlUaNQHI++/g35dyGbCoGtiycES3HxyS8ZRUOHPdqTqI2hgvGnUrkAILllirPM4QciQ0A0W1vq7jnLg43PAQULJS2ufo/HFgyy2ATQOcdm0mjL8CqV0fSYsDlv0UGJMNzW+LHL01jh6gadcB33zJaxxCYrJL0e6SD4qw/aIJQnKaSztRFLHkl9sARMnwH1GUYvJCFId6ofOxIY9rO3+JCyAN1ZxFGlJFC3D4DWBgPRXn4R1PnNde6cVQfUoqpP2YBpMER3vAJaEZXlSrF446zg3vcXEzuEHjZVOB7zUhRRRR8PBmNPZNRIFwCCkPHZM2WTSdAMbNcHmrIEgxwtAApI4HUsbB5zeaNhGpsDjiaxFz0Fl9MzK+UwshdZyjWd8lG1q6pcRlunDKURDMXQWIXDF5IYpmw6dHB0PwsnsyENLu0o26FW5DK851Ip6u6dIjM0wgvTqOJMHJdu1q9ELn1itTIBzCi9ofDyw+5yNx+uKP3Y9pEiAAqJnyMvqO7ZPeqx3Y3mBY4oLCu6WF+P77j8Dl/hM7x/dSdQ41W76G2Ye+DQCY2/5/yP/JZrz0X1kQPvMNt/Yvatc6ErMl1fXYfu91rHshGsDkhSgaXbUASBkLXHd/6NeYlA98+hbg4DZAtCMFFhSM7kRjT0bQl/LWi5EiWlAgHEKjlwTEpUdmGG+9OgXCIaT42AFbEIbqUZx7ZQaTFUeyMykfOHdUKnY+f0w69q0/+6xNEWZ9CanH3wSyr/XaBjf9HPjST4BEnfc2nmg0SB2V7tKj0iTOQl/tMqR6SF5S590N/cE0tJwyoeWUiYvbETnhTwJRNJpRAhR/d2TXSEoGlj4HfPQa8NwiCEkpqNE9gr5L54O+lLdeDOfZO8789cgM59yr42+oyfnew3tlAAB3vyH1iCTqpC0NRLu0s/VFEzC50PdFi+6R6lsm+UhegOATF6eY67QPYIblec8N+odmaQmn3kHNipWYXeVnk0miOMTkhUjtZswHyv8OpE2C8MS1SJV55MFTEuGvR8aZ39qUUAIaTC40CQASgBVvSuNUGj8TLBO1wKwvyxSIBwlaaAQR7+vuwhzLJgDDSo+cp5j3dMr3b0KkMkxeiNROEEa+mm8It/TUI+OJx56W9KnA7X8BGp8B3jYGfuPEZM9TxAXBd0FtpMz9NvCfrdA4pSw3Wx9FXds+aDreA8bNVjA4otgRleu8bNu2DbNmzcJVV12Fp59+WulwiCgEggCkXnePtIaKj4fXnCLjqsB33AaAT90MVB6Qdt6OVlMKgTVdSKlqh35MHwCgVZyIG3/7Lsx/Xwn7lluG2k68RqEgiaJf1CUv/f39qKysxGuvvYZ33nkHv/jFL3D27Fn/bySKR9mf8b5BYyAW/gpIH+FWBV/+KQAvGUgQs3FG7EsPR3fiMkiTAEGjwbab7cgR2gFICcxsyzOOoSQAwOcfcHkbp0sTDYm65KWhoQGzZ8/GpEmTMHr0aJSVlWHXrl1Kh0UUnUZfDtz37siucf3AlODPfEsa1hhutp8dnke4qWLIStcOPdffCoybHvkYRkAz4/Oo0f7I4zm9cBQpGVNdji2profIDIYIQBiSlz179mDhwoXIzs6GIAiora11a2M0GpGTk4Pk5GQUFRWhoaHBce7kyZOYNGlozHrSpEk4ceKE3GES0aCCu6Rdrhc+4fn8+Ct9vz/VfUfmkF3+KenrFSWBtV/8jDSt/IYfyhdDpIzJwvgFK90OZ6IL225JgCAISElKgH6itApvyykTeq3cJoAICEPyYjabkZubC6PRc5Hd1q1bUVlZiaqqKuzfvx+5ublYsGABTp8+7bG9PxaLBSaTyeVBREG6bIo0E+eyacG/N1MvXxz/9Zy0iNyNP5JeZ/gZdppzG/DNF6X6mBikmWfAx/dPQ4PuHsexbbrV0Fw2GQAgCAJqVhQ7zrH3hUgie/JSVlaGhx9+GIsWee5qXr9+PZYvX45ly5ZBr9ejuroaqamp2LRJGuvNzs526Wk5ceIEsrOzvd5v3bp1SE9PdzymTBnh+D2RLwlJSkcQXgXL3I+NmRi5+18+E/jcfcCogd6cT30F+NrvPbeVs8dHQRpNAjIw9EfXeFxwOZ+qde194SaNRBGuebFarWhqakJp6dAKlxqNBqWlpaivrwcAFBYW4v3338eJEyfQ09ODV199FQsWLPB6zVWrVqG7u9vxaGtrC/v3QXHsc/dJy+4X/I/SkYSHboz7sfFXAPPulVaq9UbO3hdnmgTg6sXAD88Aq08CMwfWYPnsd6VeFzUYkwVNYhI+1n0TH+u+CY0gApf6HKeH977YRcBuZ+8LxbeIrvPS2dkJm82GzMxMl+OZmZk4ePCgFFBiIh5//HHMnz8fdrsdP/jBDzB+vPe/sHQ6HXS60Fa7JAra3P+RCltDXGE1Zn3pJ9LjR+mez9+8AXj9Uam4928V0rGkUb6vmX+ntEdQIBK1ALTAN7YG1j6WpIwFvt8Cjb0fWD9Q89Pf59LEeTr5nIEVdz9+9CZoNFGwdg2RAqJykbpbbrkFt9xyi/+GToxGI4xGI2w2dqlSmMVb4uJPxkzp3+T2vwCmk0PHb/+LtCS/J3MWAwvWBZ68qN3oywG7Pai3dPVakTGa/y1SfIrosFFGRgYSEhLQ0dHhcryjowNZWVkjurbBYEBLSwv27ds3ousQUZC8JnMCMOFTnk8t/j2gTQ1bSDFP69pr5TzraFCf1cbiXYpbEU1etFot8vPzUVdX5zhmt9tRV1eH4uJiH+/0z2g0Qq/XY+7cuSMNk4i88TcURKHTaKTeqLxvDdX2DBhe9wIA1//8dXzl12+y/oXikuzJS09PD5qbm9Hc3AwAaG1tRXNzM44fPw4AqKysxMaNG7FlyxYcOHAA99xzD8xmM5Yt8zDLIQjseSEKQVKQvR+3PQlkXg1c/unA2icmBx9TPCv+LnCr0a3nBXCddTSo5ZQJNz/xJntgKO7IXvPS2NiI+fPnO15XVkqrd5aXl2Pz5s1YunQpzpw5gzVr1qC9vR15eXnYsWOHWxEvEYXZmGy3v/D9+vRC6XF4N/D814DMOb7bj54AfPlngOUC8PrD7udTxgF9XcHFEKcGe19mDxTsDhqcPp2qjcoSRqKwkP2/9pKSEr9/BVRUVKCiokLW+7JglyhItz0JJKf5b+fJVaVARWNga8B8doX09aPXgON7gQlO06oX/x54zs/2A+TgbRNLs8UGUZR6Z4Ro2D2bKMyibm+jUHHYiCjCMq4CdMPWfknNkFbpTU5331Zg4a+Awu8Atz01dOyKG4BZN4U/VpVISUpAwTRpp23nIaS5j+zG7KqduIk1MBQn2M9IRK4+/yCw5xehvTdRK/XIiDYgKcX13OUzgZtCvC4BGBo66rsk9bQMH0I6MFADs/3e69gDQ6qmmp4XzjYiihKJWvfEhWQjCAJStYlI1Q71wjjjFgIUD1STvHDYiChIY3P8txk3A8i6JuyhUPAGe2HeX+t9+xQitVJN8kJEAdA4jRRfNtV/+3vfAVLHhS8eGhFBEDBal4iPHmXdEMUXJi9ERDEuQSO49MBw2RdSO9UkL6x5IaJ45rxH4+Lqes46IlVTTfLCmhciimfO+x8dOGXCjNWvMIEh1VJN8kJEFM887X904nwftw4gVWLyQkSkEsP3P7r+569jSXU9ExhSHdUkL6x5IaJ456n3pfHYOa77QqqjmuSFNS9ERJ73P+q12tj7QqqimuSFiIg8K3h4N4ePSFWYvBARqYjz5o3OOHxEasKNGYmIVMR588bkxAR09VpR8PBuAABnTpNasOeFKJ4kpSodAUXA4OaNGo2AVG2C4/icqp2w20X0Wvs5hEQxTTXJC2cbEQXghv8nfb3+f7230SRFJpZBoy6P7P3i3A2P/xP6NTuxuLoeZguTGIpNqhk2MhgMMBgMMJlMSE9PVzocouhU9B3g6sW+N1u8ejHQ/DwwoyQyMV13P9D9CTD71sjcL84dPdsLAGg6dg6zq3aiYNpY1KwohuBpmhJRlFJN8kJEAfK3S/T4K4D7/xOZWABg3Azg9r9E7n5xZnDbgJZTJo/nBwt5U7VDvw4GtxXQaJjQUHRSzbARERG587RwnS92u4gZq1/h3kgU1Zi8EBGpXDAjQl29Vo/PiaIJkxciIpVzXvtFPzENHz96Exp/WOo4z5pdijWseSEiUjnntV9SkhIGplIPTaFeUl2P7fdex6JdihnseSEiigODa78MJiiDhbwA0HLKBLNVWn3Xzm4YigFMXoiI4tDwQt45VTths4sofKROwaiIAqOa5IWL1BERjcyHHReUDoEoIKpJXgwGA1paWrBv3z6lQyEiignDN2os+9UbCkVCFBzVJC9EREQUH5i8EBERUUzhVGkiojg1LlUbVHtRFNE7MCspVZvAqdWkGCYvRERxSqMR8P7aBZhTtdPjebsowm4XodEIsNtFfOWJN3FgYI+k/Glj8RI3dCSFcNiIiCiO+dp7sfCROsxY/Qp6LP0uiQsg7Uo9vOCXKFLY80JERD5565khUgp7XoiIiCimRGXysmjRIowdOxaLFy9WOhQiIlVz3rRxesYohaMhCkxUJi/33Xcfnn32WaXDICJSvcFtAlp+vADbvned0uEQBSQqk5eSkhKMGTNG6TCIiOLC4KaNqdqhzRoDMbiHo90uwmaXZiZJ06n7IXKDRwqjoJOXPXv2YOHChcjOzoYgCKitrXVrYzQakZOTg+TkZBQVFaGhoUGOWImIKIyGb9boz5LqetjtImasfgVXrH4FM1a/gtt+txf6NTuxpLqeCQyFTdDJi9lsRm5uLoxGo8fzW7duRWVlJaqqqrB//37k5uZiwYIFOH36tKNNXl4e5syZ4/Y4efJk0N+AxWKByWRyeRARUWj8Ldvy/toF+PRA70zLKRM+Odfncv6d4+cBAI3HzuGs2coEhsIi6KnSZWVlKCsr83p+/fr1WL58OZYtWwYAqK6uxvbt27Fp0yasXLkSANDc3BxatB6sW7cOa9eule16RETxbLCAt/HYOY/nNQJQs6LYMX369k3/9nqtgod3I3/aWDx7VyFX5CVZyVrzYrVa0dTUhNLS0qEbaDQoLS1FfX29nLdyWLVqFbq7ux2Ptra2sNyHiCgeOBfwfvzoTWj8Yalbm4tOi9MdO9vr83pNx85hdhWHkUhesi5S19nZCZvNhszMTJfjmZmZOHjwYMDXKS0txbvvvguz2YzJkyejpqYGxcWex2F1Oh10Oh2MRiOMRiNsNq74SEQ0EoMFvIC0h5GzUPOPxmPnHPsiDV6XPTEUqqhcYXf37t1Bv8dgMMBgMMBkMiE9PT0MURERxZ+UpARMzxiF1k4zAKDvki3oDR0Hfe13e3Gw/QKAob2RBq+ZksRkhgIn67BRRkYGEhIS0NHR4XK8o6MDWVlZct6KiIgiQBAEvHi3a8/34IaOwRpMXABpOMlstWFxdT1nJ1HQZE1etFot8vPzUVdX5zhmt9tRV1fnddhHLkajEXq9HnPnzg3rfYiI4o2nDhFfGzoGak7VTjQNFAYPH1Yi8iXo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF4PBgJaWFuzbty+s9yEiouD868GSgNqx94UCFXTNS2NjI+bPn+94XVlZCQAoLy/H5s2bsXTpUpw5cwZr1qxBe3s78vLysGPHDrciXrmxYJeIKHKcp1TnTxsLURSxf2CNl+HGj9YFdM2WUyb0XbI5ioWJvAn6v5CSkhK/mXFFRQUqKipCDioULNglIoqcwSnVg8W2ABzDPslJCbhi9SsAgI8evQmWfv5RSfJiektERD45zy5yfu48pRoARumGnn/86E0ApOLeYNntYsjvpfigmuSFw0ZEROGh0QhBJyPO7fyt2uusx9IP/Rpp9d6PHr0JCUxgyIOo3FU6FCzYJSIKH41GCLknZHCI6Y0fzPfbtvCRodmqV6x+xdELQ+RMNckLERFFL0EQkDJstd5AdPVawxANxTomL0RERBRTVJO8cJE6IiL1GZzJRORMNckLa16IiGLH9IxRAICCaWN9bjUwuLqv3S6y/oUcVDPbiIiIYseLdxdjlC4BKUkJ6Lvke5ao3S5ixsC6MR8/ehOnUJN6el6IiCh2CAKQqk30u5N0r9WGTrPF8ZoFvASw54WIiKJYwcO7lQ6BopBqel5YsEtERBQfVJO8sGCXiEgd/C1mN7x4VxRF9Fr7uSN1HOGwERERRZVkH9Oj7aJr8a4gAIur69F07ByunXoZXloxjwW9cUA1PS9ERBTdvG3wmJKU4Jg6DQAXfcw+umi1O56fNVtx1mxF08CeSfuPn8cMbikQF9jzQkREEeFtg0dBEFBX+QVHj8rYUVqP75faDj1fXL0Xx872urXp6rUiY7ROpqgpGjF5ISKiiPE2pOOc2Fzs997z4lzW4ilxofigmmEjzjYiIoptgexcvbh6b4SioWimmuSFs42IiNTv9AWL/0akeqpJXoiIiIbjNGp1YvJCRERR718PlgT9HlEUsbi6Hvo1O7Gkup4JjIoweSEioqin8bMHkid9l2yOadSNx8753QCSYgeTFyIiUh1puMg27Bg4hKQSnCpNRESqIopDq+46W1xdjwOnTCiYNhY1K4r97mhN0Ys9L0REpCoXnYaLnB04ZQLAISQ1UE3ywnVeiIjUISUpAQXTxrocm3RZiuNY/rSxyBmfOqJ7cAeB2KaaYSODwQCDwQCTyYT09HSlwyEiohAJgoCaFcXou2RDcqK0SaNGM3QsJSkBnT1WzH1kd8j3mFO1Ex8/ehM3cYxRqul5ISIi9RAEAanaRJdVdwePCYIAOcpVunqtI78IKYLJCxEREcUUJi9EREQUU1RT80JERBROzmvHpGoTONVaQUxeiIiI/BjcamBwCnb+tLF4iWvFKIbDRkREpCrhWEC3b9jaMU1cK0ZRTF6IiEhVljy5V+kQKMyiLnlpa2tDSUkJ9Ho9rrnmGtTU1CgdEhERRZlxqVqv5zpMlghGQkqIuuQlMTERGzZsQEtLC3bt2oX7778fZrNZ6bCIiCiKaDQCGh66cUTXEEXAbOmH2eJ7s0a7XeSKvFEm6gp2J06ciIkTJwIAsrKykJGRga6uLowaNUrhyIiIKJponIplp2eMQmtncH/oLqnei6NnewF4L8C120XMWP3KyIMlWQXd87Jnzx4sXLgQ2dnZEAQBtbW1bm2MRiNycnKQnJyMoqIiNDQ0hBRcU1MTbDYbpkyZEtL7iYgoPrx4dzEaf1ga1HsGExfAewEuV+GNTkH3vJjNZuTm5uKuu+7Cbbfd5nZ+69atqKysRHV1NYqKirBhwwYsWLAAhw4dwoQJEwAAeXl56O/vd3vvrl27kJ2dDQDo6urCHXfcgY0bN/qMx2KxwGIZGt80mUzBfktERBTjBEFae2Wk7APjQ3LteST39UgSdPJSVlaGsrIyr+fXr1+P5cuXY9myZQCA6upqbN++HZs2bcLKlSsBAM3NzT7vYbFYcOutt2LlypWYN2+ez7br1q3D2rVrg/smiIiIhrGLcAwRybFpo/OQEzeBlJesBbtWqxVNTU0oLR3qutNoNCgtLUV9fX1A1xBFEXfeeSduuOEG3H777X7br1q1Ct3d3Y5HW1tbyPETEVH8uvHxfzqeDw4XpSSF3pvjPOTE4Sd5yZq8dHZ2wmazITMz0+V4ZmYm2tvbA7rGW2+9ha1bt6K2thZ5eXnIy8vDe++957W9TqdDWlqay4OIiChQ0zOkCSGeplhzAd3oFHWzja677jrY7fag32c0GmE0GmGzccVDIiJylZmm87r+y4t3F2PuI7tdjtkHpk6HY7VeURTRd8mGlCTujxQqWXteMjIykJCQgI6ODpfjHR0dyMrKkvNWbgwGA1paWrBv376w3oeIiGJPzd3e6yc95Q+Fj9TBbhexpNp7yUMwiY1dFGG3i449kvRrduJrv9vrKOil4MiavGi1WuTn56Ours5xzG63o66uDsXFxXLeyo3RaIRer8fcuXPDeh8iIoo9oXRwnDjfh5ZT3mewLqmu97m4nbPCR+owY/UrMFuH9kjaf/w8Zqx+BbaBBMZuF5nMBCjo5KWnpwfNzc2OGUOtra1obm7G8ePHAQCVlZXYuHEjtmzZggMHDuCee+6B2Wx2zD4KF/a8EBHFt3AM8fjScsoU9OaM58zuhbtXDCQwM1a/ghmrX2ECE4Cga14aGxsxf/58x+vKykoAQHl5OTZv3oylS5fizJkzWLNmDdrb25GXl4cdO3a4FfESERHJKZZ3eT5yusfxvKvXiozROgWjiX5BJy8lJSV+u8kqKipQUVERclChYMEuERFRfIi6jRlDxWEjIiJSM1EU3TaSFEURvVbfG0uqUdRNlSYiIop1oiiizyrfSMDgLKXBYt/8aWNRc3cxljwpHSuYNhY1HjaWVCvVJC8cNiIiii/jUrUuz6NlFdvhiYYc+i7ZXK7XdOwcunqtjmONAxtLpmpV82vdJ9V8lwaDAQaDASaTCenp6UqHQ0REYabRCPj40Zscz6PF8ESD5Kea5IWIiOJPNCUtFDmqKdglIiJSihoLZ6P5e1JNzwtrXoiISAnONS4F08Ziy12FSoc0YsO/p2grBlZNzwunShMRkRKca1wGC2djiadtCaL9e1JN8kJERETBscfotgRMXoiIiEYghn7nu3GeXh4tU80DoZrkhbtKExFRpNlFYE7VTqXDiDuqSV5Y80JERJHmaZdou9PsnDd+MN/tvBKieeZQKFQz24iIiCgaFD5S53ieok1QMBJJtM8cCoVqel6IiIjUxtNMoGBF+8yhUDB5ISIiikIuM4E85C+eNn6UI9mJBUxeiIiIopDz7B9PtTXX//x1l9d2ETE57TkUqkleONuIiIjimXOCE0vTnkOhmuSFs42IiIgkfVabz5lFQ7OPIhiUjDjbiIiIKMoFkmQ4t7n+5687ZhZ5ajc4+2h6xiiP1/I26jQ4HKX0bt6q6XkhIiKKNHuEui4WV+/122bJk65tvM0scp591Nppdjtvt4seF96Lpq0EmLwQERGF6Au/+Kcs1xHhOxk4fcHi9xodJv9tAuGtXiaathJg8kJERBQh3jpqbv71m5ENxAu7XYxYb9JIsOaFiIgoTFKSEpCZpnP0inhbIK7faRgmJUmZVXntojQsFAvY80JERBQmggDU3D0v6Pco4WxP7EyvZvJCREQUJqKoXDISrLJfveHzfDQNJ6kmeeEidUREFG3UsI8QIE2ddt5wUmmqSV64SB0REVF4eNqeQEmqSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGJK1CUv58+fR0FBAfLy8jBnzhxs3LhR6ZCIiIgoikTdxoxjxozBnj17kJqaCrPZjDlz5uC2227D+PHjlQ6NiIgoYpTaoDEWRF3PS0JCAlJTUwEAFosFoihCjKL9FIiIiCIhVvZEUkLQycuePXuwcOFCZGdnQxAE1NbWurUxGo3IyclBcnIyioqK0NDQENQ9zp8/j9zcXEyePBkPPvggMjIygg2TiIiIVCro5MVsNiM3NxdGo9Hj+a1bt6KyshJVVVXYv38/cnNzsWDBApw+fdrRZrCeZfjj5MmTAIDLLrsM7777LlpbW/HCCy+go6PDazwWiwUmk8nlQUREpEYND92oyH2jbQAk6JqXsrIylJWVeT2/fv16LF++HMuWLQMAVFdXY/v27di0aRNWrlwJAGhubg7oXpmZmcjNzcUbb7yBxYsXe2yzbt06rF27NrhvgoiIKAZpFBpLWvLkXkXu642sNS9WqxVNTU0oLS0duoFGg9LSUtTX1wd0jY6ODly4cAEA0N3djT179mDWrFle269atQrd3d2OR1tb28i+CSIiIkRfb4OSOkwWpUNwIetso87OTthsNmRmZrocz8zMxMGDBwO6xrFjx/Cd73zHUaj7ve99D1dffbXX9jqdDjqdDkajEUajETabbUTfAxERERB9vQ2hsKs0AYu6qdKFhYUBDys5MxgMMBgMMJlMSE9Plz8wIiKKK9HW2xCKOVU7lQ4hLGQdNsrIyEBCQoJbgW1HRweysrLkvJUbo9EIvV6PuXPnhvU+REREscyugvEwWZMXrVaL/Px81NXVOY7Z7XbU1dWhuLhYzlu5MRgMaGlpwb59+8J6HyIiolhW+Eid/0ZRLuhho56eHhw5csTxurW1Fc3NzRg3bhymTp2KyspKlJeXo6CgAIWFhdiwYQPMZrNj9hERERHRSASdvDQ2NmL+/PmO15WVlQCA8vJybN68GUuXLsWZM2ewZs0atLe3Iy8vDzt27HAr4pUbC3aJiIjiQ9DJS0lJid/l+isqKlBRURFyUKFgwS4REVF8iLq9jYiIiIh8UU3ywtlGRERE8UE1yQtnGxEREcUH1SQvREREamAXAbtal8aVCZMXIiKiKDKnaidmrH5FtUv7y0E1yQtrXoiIyJPpGaOQnJSgdBhBO2e2Kh1C1FJN8sKaFyIi8uTFu4shCEpHQXJSTfJCRETkCRMX9WHyQkREFCFq2BQxGjB5ISIiipCyX72hdAiqoJrkhQW7RERE8UE1yQsLdomIiOKDapIXIiIitWPJjITJCxERUYy4eMmmdAhRgckLERERxRQmL0RERBRTVJO8cLYRERFRfFBN8sLZRkRERPFBNckLERERxQcmL0RERFGIWwl4x+SFiIgoCn3hF/9UOoSoxeSFiIiIYgqTFyIiIoopTF6IiIgopqgmeeE6L0RERPFBNckL13khIiKKD6pJXoiIiCg+MHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYkrUJi+9vb2YNm0aHnjgAaVDISIioigStcnLI488gs9+9rNKh0FERERRJiqTl8OHD+PgwYMoKytTOhQiIiKKMkEnL3v27MHChQuRnZ0NQRBQW1vr1sZoNCInJwfJyckoKipCQ0NDUPd44IEHsG7dumBDIyIiojiQGOwbzGYzcnNzcdddd+G2225zO79161ZUVlaiuroaRUVF2LBhAxYsWIBDhw5hwoQJAIC8vDz09/e7vXfXrl3Yt28fZs6ciZkzZ2Lv3r1+47FYLLBYLI7XJpMp2G+JiIiIYkjQyUtZWZnP4Zz169dj+fLlWLZsGQCguroa27dvx6ZNm7By5UoAQHNzs9f3v/322/jTn/6Empoa9PT04NKlS0hLS8OaNWs8tl+3bh3Wrl0b7LdBREREMUrWmher1YqmpiaUlpYO3UCjQWlpKerr6wO6xrp169DW1oajR4/isccew/Lly70mLgCwatUqdHd3Ox5tbW0j/j6IiIgoegXd8+JLZ2cnbDYbMjMzXY5nZmbi4MGDct7KQafTQafTheXaREREFH1kTV7kdueddwbc1mg0wmg0wmazhS8gIiIiUpysw0YZGRlISEhAR0eHy/GOjg5kZWXJeSs3BoMBLS0t2LdvX1jvQ0RERMqSNXnRarXIz89HXV2d45jdbkddXR2Ki4vlvJUbo9EIvV6PuXPnhvU+REREpKygh416enpw5MgRx+vW1lY0Nzdj3LhxmDp1KiorK1FeXo6CggIUFhZiw4YNMJvNjtlH4WIwGGAwGGAymZCenh7WexEREZFygk5eGhsbMX/+fMfryspKAEB5eTk2b96MpUuX4syZM1izZg3a29uRl5eHHTt2uBXxEhEREYUi6OSlpKQEoij6bFNRUYGKioqQgwoFC3aJiIjiQ1TubRQKFuwSERHFB9UkL0RERBQfVJO8cLYRERFRfFBN8sJhIyIiovigmuSFiIiI4gOTFyIiIoopqkleWPNCREQUH1STvLDmhYiIKD6oJnkhIiKi+MDkhYiIiGKKapIX1rwQERHFB9UkL6x5ISIiig+qSV6IiIgoPjB5ISIiopjC5IWIiIhiCpMXIiIiiimqSV4424iIiCg+qCZ54WwjIiKi+KCa5IWIiIjiA5MXIiIiiilMXoiIiCimMHkhIiIKk3GpWqVDUCUmL0RERGHw/toF0GgEpcNQJSYvREREYcC8JXyYvBAREVFMUU3ywkXqiIiI4oNqkhcuUkdERBQfVJO8EBERUXxg8kJEREQxhckLERERxRQmL0RERBRTmLwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCREREMSVR6QDkJooiAMBkMikcCY3YRRtgkT5P9F0Cgv1Me3qH3m+2eH9/T99Qu0HmvuDvN1L9Fqd4g7z/SP6diFTigtnq+fiFC77f5+d8qEymC+jXJuBCz0XZrnmhp0e2a43EhQsXoLVbZL3m4O/twd/jvghiIK1iyCeffIIpU6YoHQYRERGFoK2tDZMnT/bZRnXJi91ux8mTJzFmzBgIgqB0ODTAZDJhypQpaGtrQ1pamtLhUBD42cUufnaxKx4/O1EUceHCBWRnZ0Oj8V3VorphI41G4zdjI+WkpaXFzQ+i2vCzi1387GJXvH126enpAbVjwS4RERHFFCYvREREFFOYvFBE6HQ6VFVVQafTKR0KBYmfXeziZxe7+Nn5prqCXSIiIlI39rwQERFRTGHyQkRERDGFyQsRERHFFCYvREREFFOYvBAREVFMYfJCUau3txfTpk3DAw88oHQoFKC2tjaUlJRAr9fjmmuuQU1NjdIhkQ/btm3DrFmzcNVVV+Hpp59WOhwKEH/OOFWaothDDz2EI0eOYMqUKXjssceUDocCcOrUKXR0dCAvLw/t7e3Iz8/Hhx9+iFGjRikdGg3T398PvV6P119/Henp6cjPz8fevXsxfvx4pUMjP/hzxp4XilKHDx/GwYMHUVZWpnQoFISJEyciLy8PAJCVlYWMjAx0dXUpGxR51NDQgNmzZ2PSpEkYPXo0ysrKsGvXLqXDogDw54zJC4Vgz549WLhwIbKzsyEIAmpra93aGI1G5OTkIDk5GUVFRWhoaAjqHg888ADWrVsnU8Q0KBKf3aCmpibYbDZMmTJlhFGTJyP9LE+ePIlJkyY5Xk+aNAknTpyIROhxT86fw3j9OWPyQkEzm83Izc2F0Wj0eH7r1q2orKxEVVUV9u/fj9zcXCxYsACnT592tMnLy8OcOXPcHidPnsRf//pXzJw5EzNnzozUtxQ3wv3ZDerq6sIdd9yBp556KuzfU7yS47MkZcj12cX1z5lINAIAxJdfftnlWGFhoWgwGByvbTabmJ2dLa5bty6ga65cuVKcPHmyOG3aNHH8+PFiWlqauHbtWjnDJjE8n50oiuLFixfF66+/Xnz22WflCpX8COWzfOutt8Rbb73Vcf6+++4Tn3/++YjES0NC/TmM958z9ryQrKxWK5qamlBaWuo4ptFoUFpaivr6+oCusW7dOrS1teHo0aN47LHHsHz5cqxZsyZcIdMAOT47URRx55134oYbbsDtt98erlDJj0A+y8LCQrz//vs4ceIEenp68Oqrr2LBggVKhUwDAvns+HPGYSOSWWdnJ2w2GzIzM12OZ2Zmor29XaGoKBByfHZvvfUWtm7ditraWuTl5SEvLw/vvfdeOMIlHwL5LBMTE/H4449j/vz5yMvLw//+7/9yplEUCOSz488ZkKh0AES+3HnnnUqHQEG47rrrYLfblQ6DAnTLLbfglltuUToMChJ/ztjzQjLLyMhAQkICOjo6XI53dHQgKytLoagoEPzs1IOfZeziZxcYJi8kK61Wi/z8fNTV1TmO2e121NXVobi4WMHIyB9+durBzzJ28bMLDIeNKGg9PT04cuSI43Vrayuam5sxbtw4TJ06FZWVlSgvL0dBQQEKCwuxYcMGmM1mLFu2TMGoCeBnpyb8LGMXPzsZKD3diWLP66+/LgJwe5SXlzvaPPHEE+LUqVNFrVYrFhYWim+//bZyAZMDPzv14GcZu/jZjRz3NiIiIqKYwpoXIiIiiilMXoiIiCimMHkhIiKimMLkhYiIiGIKkxciIiKKKUxeiIiIKKYweSEiIqKYwuSFiIiIYgqTFyIiIoopTF6IiIgopjB5ISIiopjC5IWIiIhiyv8HsaIGE8ncHK0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray import LombScargleCrossspectrum\n", + "from stingray.gti import cross_two_gtis\n", + "gti = cross_two_gtis(ev1.gti, ev2.gti)\n", + "ev1.gti = gti\n", + "ev2.gti = gti\n", + "lscs = LombScargleCrossspectrum(ev1, ev2, dt=dt, norm=\"leahy\")\n", + "lscs_reb = lscs.rebin_log(0.01)\n", + "\n", + "cs = AveragedCrossspectrum(ev1, ev2, dt=0.001, segment_size=256, norm=\"leahy\")\n", + "cs_reb = cs.rebin_log(0.02)\n", + "\n", + "# plt.plot(pds_dirty_reb.freq, pds_dirty_reb.power, alpha=0.5, ds=\"steps-mid\", label=\"Powerspectrum, ignore gtis\", color=\"grey\")\n", + "# plt.plot(pds_reb.freq, pds_reb.power, ds=\"steps-mid\", label=\"AveragedPowerspectrum\", zorder=10)\n", + "# plt.plot(ls_reb.freq, ls_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle periodogram\")\n", + "plt.plot(cs_reb.freq, cs_reb.power, ds=\"steps-mid\", label=\"AveragedCrossspectrum\", zorder=10)\n", + "plt.loglog()\n", + "good = lscs_reb.freq < maxfreq / 2\n", + "lscs_reb.freq = lscs_reb.freq[good]\n", + "lscs_reb.power = lscs_reb.power[good]\n", + "lscs_reb.unnorm_power = lscs_reb.unnorm_power[good]\n", + "plt.plot(lscs_reb.freq, lscs_reb.power, ds=\"steps-mid\", label=\"Lomb-Scargle cross spectrum\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d7fe119a", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.html b/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.html new file mode 100644 index 000000000..d9e79caef --- /dev/null +++ b/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.html @@ -0,0 +1,666 @@ + + + + + + + + Gaussian Processes Inferencing in Stingray — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Gaussian Processes Inferencing in Stingray

+
+

Gaussian Processes in Astronomy

+

Please Note: this functionality is still under development. Testing and comments are welcome!

+

Gaussian Processes (GPs) are a powerful class of Statistical Models, that help us model both the deterministic and stochastic part of a random process. We model the covaraince between pairs of samples (using the kernel function) and the underlying deterministic function (using the mean function) and fit or infer from the data set.

+

GP Regression and inferencing (GPR) has become increasingly popular in the astronomical community over the last decade as it can model non-trivial random or unkown signals. Sometimes, we are interested in the stochastic behaviour itself, and we can infer its characteristics or predict its behaviour using Gaussian Processes.

+

While we can use GP’s to produce models for various signals, we often have to identify if the particular time-series has a particular signal and we resort to Bayesian Model Comparison. We compare the two models by the Bayes factor, which is the ratio of the evidences of two comparing models. Since Evidence Calculation is a difficult problem, we will use Nested Sampling, with the Jaxns library to get the Bayes Factor.

+
+
+
+

Sample Lightcurve

+

As an example demonstrating the use of gpmodeling in Stingray, we will make a sample lightcurve based on a QPO (quasi periodic signal), and use the ratio of Evidence of the following two models to identify whether the signal contains a Quasi-Periodic Signal or not.

+

The two models being:

+
    +
  1. A RN (Red-Noise) model, which has a Red noise kernel and Gaussian function for its mean.

  2. +
  3. A QPO_plus_Rn (QPO + RN) model, which uses a QPO kernel and a double skew gaussian function for its mean.

  4. +
+

Note: It is important to enable 64 bit precision for the Jaxns sampling to work properly.

+
+
[2]:
+
+
+
# Importing the necessary libraries
+import numpy as np
+import matplotlib.pyplot as plt
+
+import jax
+import jax.numpy as jnp
+import seaborn as sns
+sns.set_style('whitegrid')
+
+from tinygp import GaussianProcess, kernels
+from stingray import Lightcurve
+
+# suppress warnings
+import warnings
+warnings.filterwarnings("ignore")
+
+# Important to enable 64-bit precision
+jax.config.update("jax_enable_x64", True)
+
+
+
+

For making the Toy Lightcurve, we will use a GP with a QPO_plus_RN kernel, and a Skew-Gaussian Mean function and take a sample from it. We will also add a jitter term to introduce some noise into the sample.

+

We will need a kernel and a mean function to make the GP. We can either make our own kernels using Tinygp or we can get some useful kernels using the gpmodeling.get_kernel function.

+

``get_kernel`` function takes the kernel type (QPO_plus_RN and RN), and the kernel parameters and returns a TinyGp kernel for it.

+

Similarly for the mean function, we can make our own or use gpmodeling.get_mean function.

+
+
[4]:
+
+
+
from stingray.modeling.gpmodeling import get_kernel, get_mean
+
+times = np.linspace(0,1,256)
+
+# We will take suitable parameters for a high amplitude QPO with a double skew gaussian mean
+kernel_params  = {"arn" : jnp.exp(1.5),    "crn" : jnp.exp(1.0),
+                  "aqpo": jnp.exp(-0.4),    "cqpo": jnp.exp(1),    "freq": 20,}
+kernel = get_kernel(kernel_type = "QPO_plus_RN", kernel_params = kernel_params)
+
+mean_params = {"A" : jnp.array([3.0, 4.0]), "t0" : jnp.array([0.2, 0.7]),
+               "sig1" : jnp.array([0.2, 0.1]), "sig2" : jnp.array([0.3, 0.4]),  }
+
+mean = get_mean(mean_type = "skew_gaussian",  mean_params = mean_params)
+
+jit = 1e-1
+gp = GaussianProcess(kernel = kernel, X = times, mean_value = mean(times), diag = jit)
+
+
+
+
+

Plotting the Sample Lightcurve

+
+
[5]:
+
+
+
# Sampling out a lightcurve from the GP
+counts = gp.sample(key = jax.random.PRNGKey(6))
+yerr = (jit)*np.ones_like(times)
+
+fig, ax = plt.subplots(1,1, figsize = (14,6))
+ax.errorbar(times, counts.T, yerr=yerr, fmt=".k", capsize=0, label="data")
+ax.plot(times, mean(times), color = "orange" ,label = "Mean"); ax.legend()
+ax.plot(times, counts, label = "Sample GP", alpha = 0.5)
+ax.set_xlabel("Time"); ax.set_ylabel("Counts")
+
+lc = Lightcurve(time = times, counts = counts, dt = times[1]- times[0], skip_checks = True)
+
+
+
+
+
+
+
+../../../_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_7_0.png +
+
+
+
+
+

Parameter Posterior Analysis

+

We will now make our two differing model and then compare the evidences (log evidences $log(p(D|M)) $ ) of fitting the data to the model to check which one fits better.

+

The main function that we will use will be:

+
    +
  • gpmodeling.get_gp_params: This function gives us a list of the parameters of the model based on the kernel and mean type we select.

  • +
  • gpmodeling.get_prior_dict: This function will be can be used to get a suitable generater prior function for a jaxns model. We have to give it our parameter list, and a dictionary with suitable tfpd distributions for the priors.

  • +
  • gpmodeling.get_log_likelihood: This function will give us a log_likelihood function which calculates the log likelihood probabilty of the data for the given parameter \(p(D|\theta, M)\). Here we will have to provide the parameters list, the kernel and mean type of the GP model, as well as the Times and counts of the lightcurve.

  • +
+
+
+

Model 1

+

The first model which we will make will be a Red-Noise model ,we will use the get_prior and get_likelihood functions to make a suitable prior and log_likelihood function for our Inference.

+

The model will have a Red Noise kernel

+
+\[k_{rn}(\tau) = a \; exp(-c\tau)\]
+

where \(\tau = |x_i - x_j|\) and the mean function as a gaussian distribution.

+
+
[6]:
+
+
+
import tensorflow_probability.substrates.jax as tfp
+from stingray.modeling.gpmodeling import get_prior, get_log_likelihood, get_gp_params
+tfpd = tfp.distributions
+tfpb = tfp.bijectors
+
+params_list = get_gp_params(kernel_type= "RN", mean_type = "gaussian")
+print("parameters list", params_list)
+
+
+
+
+
+
+
+
+parameters list ['log_arn', 'log_crn', 'log_A', 't0', 'log_sig']
+
+
+

We make a parameter list as jaxns requires the parameters in the prior function and log likelihood to be of the same order. Thus if one is using the standard kernel and means then parameter list comes handy, otherwise one can make our own prior and likelihood function.

+
+
+

Prior and log likelihood

+

We use Tensorflow_probility to make the parameter priors and put them into the prior_dictionary. The prior types and bounds can be set according to the user discretion.

+

Note : The priors can be Tfp priors or bijected priors, but we cannot use tfp.joint_distributions in our priors. To make multi-parameter priors or conditioned parameter priors, one can use the priors in jaxns.special_priors.

+
+
[7]:
+
+
+
total_time = times[-1] - times[0]
+f = 1/(times[1]- times[0])
+span = jnp.max(counts) - jnp.min(counts)
+
+# The prior dictionary, with suitable tfpd prior distributions
+prior_dict = {
+    "log_A": tfpd.Uniform(low = jnp.log(0.1 * span), high= jnp.log(2 * span)),
+    "t0": tfpd.Uniform(low = times[0] - 0.1*total_time, high = times[-1] + 0.1*total_time),
+    "log_sig": tfpd.Uniform(low = jnp.log(0.5 * 1 / f), high = jnp.log(2 * total_time)),
+    "log_arn": tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)),
+    "log_crn": tfpd.Uniform(low = jnp.log(1 / total_time), high = jnp.log(f)),
+}
+
+params_list2 = ["log_arn", "log_crn", "log_A", "t0", "log_sig"]
+
+prior_model = get_prior(params_list2, prior_dict)
+
+log_likelihood_model = get_log_likelihood(params_list2, kernel_type= "RN", mean_type = "gaussian", times = times, counts = counts)
+
+
+
+
+
+

Sampling Model 1

+

We can initialise the GPResult class using a stingray lightcurve, and then perform a Nested Sampling for the given prior_model and likelihood_model.

+
+
[8]:
+
+
+
from stingray.modeling.gpmodeling import GPResult
+
+gpresult = GPResult(lc = lc)
+gpresult.sample(prior_model = prior_model, likelihood_model = log_likelihood_model)
+
+
+
+
+
+
+
+
+INFO[2023-10-19 22:11:44,231]: Sanity check...
+INFO[2023-10-19 22:11:44,432]: Sanity check passed
+
+
+
+
+
+
+
+Simulation Complete
+
+
+

We can check the Evidence for the data given the model \(Z = p(D|M_1)\), as well see the sampling outcomes for the used parameters.

+
+
[9]:
+
+
+
print("log Evidence: ", gpresult.get_evidence())
+
+
+
+
+
+
+
+
+log Evidence:  -252.0393784723225
+
+
+

Using the plotting functionality of the GPResult class, we can visualise the posterior distributions of our parameters, look at sampling run summaries and diagnostics.

+
+
[10]:
+
+
+
plot = gpresult.posterior_plot("log_A")
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_19_0.png +
+
+
+
[11]:
+
+
+
gpresult.print_summary()
+
+
+
+
+
+
+
+
+--------
+Termination Conditions:
+Small remaining evidence
+--------
+# likelihood evals: 309792
+# samples: 7500
+# slices: 75000.0
+# slices / acceptance: 15.0
+# likelihood evals / sample: 41.3
+# likelihood evals / slice: 3.9
+--------
+logZ=-252.04 +- 0.12
+H=250.0
+ESS=1590
+--------
+log_A: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_A: 0.99 +- 0.15 | 0.82 / 0.99 / 1.16 | 1.13 | 1.13
+--------
+log_arn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_arn: 0.39 +- 0.32 | 0.06 / 0.33 / 0.75 | 0.14 | 0.14
+--------
+log_crn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_crn: 3.69 +- 0.34 | 3.29 / 3.75 / 4.05 | 3.95 | 3.95
+--------
+log_sig: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_sig: -0.15 +- 0.54 | -0.81 / -0.11 / 0.51 | -0.84 | -0.84
+--------
+t0: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+t0: 0.63 +- 0.27 | 0.22 / 0.65 / 0.97 | 0.63 | 0.63
+--------
+
+
+
+
+
+

Model 2

+

For the second model, we will make a QPO_plus_RN kernel

+
+\[k_{qpo+rn}(\tau) = a_{qpo} \; exp(-c_{qpo} \tau) \; cos(2\pi f\tau) + a_{rn} \; exp(-c_{rn} \tau)\]
+

We will also use a gaussian mean function with two modes as the mean function.

+

For this model, we will be making the prior and log_likelihood function on our own instead of using the get_prior and get_likelihood functions. This will give us more flexibility.

+

The prior function must be a jaxns compatible prior function. It is quite similar to making the prior_dictionary, just that here, we will wrap each parameters (tfp) prior into the jaxns.prior function and use yield to make it a generator function. Then we will return all the parameters in a specific order.

+
+
[13]:
+
+
+
# Prior Function
+from jaxns import Prior
+from jaxns.special_priors import ForcedIdentifiability
+from jaxns.types import float_type
+
+params_list2 = get_gp_params(kernel_type= "QPO_plus_RN", mean_type = "gaussian")
+print(params_list2)
+
+total_time = times[-1] - times[0]
+f = 1/(times[1]- times[0])
+span = jnp.max(counts) - jnp.min(counts)
+
+# Here, we have made mutiple mean function with 2 gaussians.
+def prior_model2():
+    log_arn = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)), name='log_arn')
+    log_crn = yield Prior(tfpd.Uniform(low = jnp.log(1 / total_time), high = jnp.log(f)), name='log_crn')
+    log_aqpo = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)), name='log_aqpo')
+    log_cqpo = yield Prior(tfpd.Uniform(low = jnp.log(1/10/total_time), high = jnp.log(f)), name='log_cqpo')
+    log_freq = yield Prior(tfpd.Uniform(low = jnp.log(2) , high = jnp.log(f/4) ), name='log_freq')
+
+    n = 2
+    log_A = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span)*jnp.ones(n), high = jnp.log(2 * span)*jnp.ones(n)),
+                            name='log_A')
+
+    # This is special conditional beta function for the peak times of gaussians which prevents degeneracies
+    t0 = []
+    scale_bij = tfp.bijectors.Scale(scale = times[-1] - times[0])
+    shift_bij = tfp.bijectors.Shift(shift= times[0])
+    for i in range(n):
+        underlying_beta = tfpd.Beta(
+            concentration1=jnp.asarray(1., float_type),
+            concentration0=jnp.asarray(n - i, float_type)
+        )
+        t = yield Prior(shift_bij(scale_bij(underlying_beta)), name=f"t{i}")
+        # Updating the shift and scale here
+        scale_bij = tfp.bijectors.Scale(scale= times[-1] - t)
+        shift_bij = tfp.bijectors.Shift(shift=t)
+        t0.append(t)
+    t0 = jnp.stack(t0)
+
+    log_sig = yield Prior(tfpd.Uniform(low = jnp.log(0.5 * 1 / f) *jnp.ones(n), high = jnp.log(2 * total_time) *jnp.ones(n)), name='log_sig')
+
+    return log_arn, log_crn, log_aqpo, log_cqpo, log_freq, log_A, t0, log_sig
+
+
+
+
+
+
+
+
+['log_arn', 'log_crn', 'log_aqpo', 'log_cqpo', 'log_freq', 'log_A', 't0', 'log_sig']
+
+
+

For the log_likelihood function, we have to take the paremeters (same order), and return $log(p(D|M)) $ the log probability of fitting the data to the model. This can be done by making the suitable Gaussian process and returning the gp.log_probability(lightcurve_counts)

+
+
[14]:
+
+
+
def log_likelihood_model2( log_arn, log_crn, log_aqpo, log_cqpo, log_freq, log_A, t0, log_sig ):
+
+    kernel_params = { "arn": jnp.exp(log_arn), "crn": jnp.exp(log_crn), "aqpo": jnp.exp(log_aqpo),
+                    "cqpo": jnp.exp(log_cqpo), "freq": jnp.exp(log_freq)}
+    mean_params = {"A": jnp.exp(log_A), "t0": t0, "sig": jnp.exp(log_sig)}
+
+    kernel = get_kernel(kernel_type="QPO_plus_RN", kernel_params=kernel_params)
+    mean = get_mean(mean_type="gaussian", mean_params=mean_params)
+    gp = GaussianProcess(kernel, times, mean_value=mean(times))
+
+    return gp.log_probability(counts)
+
+
+
+
+
+

Sampling Model 2

+

Similar to the previous case, we will make a GPresult object by initialising with the lightcurve. Then we will sample the posterior using the prior and log_likelihood model.

+
+
[15]:
+
+
+
gpresult2 = GPResult(lc = lc)
+gpresult2.sample(prior_model = prior_model2, likelihood_model = log_likelihood_model2, max_samples = 2e4)
+
+
+
+
+
+
+
+
+INFO[2023-10-19 22:13:04,424]: Sanity check...
+INFO[2023-10-19 22:13:04,601]: Sanity check passed
+
+
+
+
+
+
+
+Simulation Complete
+
+
+

This time we get a lower log evidence than the previous model.

+
+
[16]:
+
+
+
print("log Evidence: ", gpresult2.get_evidence())
+
+
+
+
+
+
+
+
+log Evidence:  -241.34533744186058
+
+
+
+
+
+
+

Evidence Comparison

+

On comapring the evidences of the two model we get the Bayes Factor.

+

For \(M_1\) being QPO_plus_RN model and \(M_2\) being the plain RN model.

+
+\[ln(BF) = ln(Z_1) - ln(Z_2) = -245.70 - (-251.77) = 6.06\]
+

As BF is greater than 5.0, this gives us a strong indication that the time series has a Quasi Oscillatory behaviour.

+

Also, as we can see in the weighted posterior plot for the frequency, We had used a frequency of 20 Hz for our sample and this has been captured very well by the Nested Sampling Inference.

+
+
[17]:
+
+
+
plot = gpresult2.weighted_posterior_plot("log_freq")
+print("Mean of freq:", jnp.exp(2.963))
+
+
+
+
+
+
+
+
+Mean of freq: 19.35595259854821
+
+
+
+
+
+
+../../../_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_30_1.png +
+
+

For more information on the posterior, we can see a comparison plot between two parameters. (Here the peak times of the gaussian means, which we had conditioned as \(t_1>t_0\))

+
+
[18]:
+
+
+
# Corner Plot between the two peak times
+plot = gpresult2.comparison_plot("t0", "t1")
+
+
+
+
+
+
+
+../../../_images/notebooks_Modeling_GP_Modeling_GP_modeling_tutorial_32_0.png +
+
+
+
[19]:
+
+
+
gpresult2.print_summary()
+
+
+
+
+
+
+
+
+--------
+Termination Conditions:
+Small remaining evidence
+--------
+# likelihood evals: 1317371
+# samples: 14500
+# slices: 396000.0
+# slices / acceptance: 33.0
+# likelihood evals / sample: 90.9
+# likelihood evals / slice: 3.3
+--------
+logZ=-241.35 +- 0.19
+H=240.0
+ESS=2411
+--------
+log_A[#]: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_A[0]: 0.81 +- 0.25 | 0.57 / 0.81 / 1.12 | 0.87 | 0.87
+log_A[1]: 0.89 +- 0.25 | 0.62 / 0.89 / 1.19 | 0.99 | 0.99
+--------
+log_aqpo: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_aqpo: 0.23 +- 0.47 | -0.26 / 0.11 / 0.86 | 0.19 | 0.19
+--------
+log_arn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_arn: -0.23 +- 0.11 | -0.33 / -0.27 / -0.1 | -0.33 | -0.33
+--------
+log_cqpo: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_cqpo: -0.69 +- 0.76 | -1.75 / -0.71 / 0.32 | -0.48 | -0.48
+--------
+log_crn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_crn: 4.21 +- 0.17 | 4.0 / 4.23 / 4.41 | 4.34 | 4.34
+--------
+log_freq: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_freq: 2.967 +- 0.024 | 2.935 / 2.968 / 2.998 | 2.954 | 2.954
+--------
+log_sig[#]: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+log_sig[0]: -1.1 +- 1.5 | -3.2 / -0.4 / 0.5 | -0.4 | -0.4
+log_sig[1]: -1.8 +- 1.6 | -3.3 / -2.7 / 0.4 | -3.3 | -3.3
+--------
+t0: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+t0: 0.56 +- 0.16 | 0.33 / 0.6 / 0.7 | 0.58 | 0.58
+--------
+t1: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.
+t1: 0.751 +- 0.097 | 0.678 / 0.702 / 0.928 | 0.691 | 0.691
+--------
+
+
+
+
+

Credits:

+
    +
  1. Gaussian Process regression for astronomical time-series, Suzanne Aigrain, Daniel Foreman-Mackey

  2. +
  3. Bayesian Model Comparison, Roberto Trotta

  4. +
  5. Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes, Moritz Hubner et al.

  6. +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb b/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb new file mode 100644 index 000000000..81c6082c9 --- /dev/null +++ b/notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb @@ -0,0 +1,732 @@ +{ + "cells": [ + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gaussian Processes Inferencing in Stingray\n", + "\n", + "## Gaussian Processes in Astronomy\n", + "\n", + "Please Note: this functionality is still under development. Testing and comments are welcome!\n", + "\n", + "Gaussian Processes (GPs) are a powerful class of Statistical Models, that help us model both the deterministic and stochastic part of a random process. We model the covaraince between pairs of samples (using the kernel function) and the underlying deterministic function (using the mean function) and fit or infer from the data set. \n", + "\n", + "GP Regression and inferencing (GPR) has become increasingly popular in the astronomical community over the last decade as it can model non-trivial random or unkown signals. Sometimes, we are interested in the stochastic behaviour itself, and we can\n", + "infer its characteristics or predict its behaviour using Gaussian Processes.\n", + "\n", + "\n", + "While we can use GP's to produce models for various signals, we often have to identify if the particular time-series has a particular signal and we resort to Bayesian Model Comparison. We compare the two models by the Bayes factor, which is the ratio of the evidences of two comparing models. Since Evidence Calculation is a difficult problem, we will use Nested Sampling, with the Jaxns library to get the Bayes Factor." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Sample Lightcurve\n", + "As an example demonstrating the use of gpmodeling in Stingray, we will make a sample lightcurve based on a QPO (quasi periodic signal), and use the ratio of Evidence of the following two models to identify whether the signal contains a Quasi-Periodic Signal or not. \n", + "\n", + "The two models being:\n", + "\n", + "1. A RN (Red-Noise) model, which has a Red noise kernel and Gaussian function for its mean.\n", + "2. A QPO_plus_Rn (QPO + RN) model, which uses a QPO kernel and a double skew gaussian function for its mean.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note:** It is important to enable 64 bit precision for the Jaxns sampling to work properly." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# Importing the necessary libraries\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import jax\n", + "import jax.numpy as jnp\n", + "import seaborn as sns\n", + "sns.set_style('whitegrid')\n", + "\n", + "from tinygp import GaussianProcess, kernels\n", + "from stingray import Lightcurve\n", + "\n", + "# suppress warnings\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "# Important to enable 64-bit precision\n", + "jax.config.update(\"jax_enable_x64\", True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For making the **Toy Lightcurve**, we will use a GP with a QPO_plus_RN kernel, and a Skew-Gaussian Mean function and take a sample from it. We will also add a jitter term to introduce some noise into the sample.\n", + "\n", + "We will need a kernel and a mean function to make the GP. We can either make our own kernels using Tinygp or we can get some useful kernels using the `gpmodeling.get_kernel` function. \n", + "\n", + "**`get_kernel`** function takes the kernel type (QPO_plus_RN and RN), and the kernel parameters and returns a TinyGp kernel for it.\n", + "\n", + "Similarly for the mean function, we can make our own or use `gpmodeling.get_mean` function." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling.gpmodeling import get_kernel, get_mean\n", + "\n", + "times = np.linspace(0,1,256)\n", + "\n", + "# We will take suitable parameters for a high amplitude QPO with a double skew gaussian mean\n", + "kernel_params = {\"arn\" : jnp.exp(1.5), \"crn\" : jnp.exp(1.0),\n", + " \"aqpo\": jnp.exp(-0.4), \"cqpo\": jnp.exp(1), \"freq\": 20,}\n", + "kernel = get_kernel(kernel_type = \"QPO_plus_RN\", kernel_params = kernel_params)\n", + "\n", + "mean_params = {\"A\" : jnp.array([3.0, 4.0]), \"t0\" : jnp.array([0.2, 0.7]), \n", + " \"sig1\" : jnp.array([0.2, 0.1]), \"sig2\" : jnp.array([0.3, 0.4]), }\n", + "\n", + "mean = get_mean(mean_type = \"skew_gaussian\", mean_params = mean_params)\n", + "\n", + "jit = 1e-1\n", + "gp = GaussianProcess(kernel = kernel, X = times, mean_value = mean(times), diag = jit)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting the Sample Lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABH4AAAINCAYAAABI07hMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXwU9f348dfM3tlcnCFkuS9BLgVvrQcoalU82p+1h7TSSm3VamutWDWittazHm0VKyrf1l62ile973qjoiiggAgkECCQc+/dmd8fs7PZJJtkk+yV5P18PPZBluxuPpvs7M68530ouq7rCCGEEEIIIYQQQoh+R831AoQQQgghhBBCCCFEZkjgRwghhBBCCCGEEKKfksCPEEIIIYQQQgghRD8lgR8hhBBCCCGEEEKIfkoCP0IIIYQQQgghhBD9lAR+hBBCCCGEEEIIIfopCfwIIYQQQgghhBBC9FMS+BFCCCGEEEIIIYTop6y5XkCmaJpGJBJBVVUURcn1coQQQgghhBBCCCHSQtd1NE3DarWiqp3n9PTbwE8kEmHt2rW5XoYQQgghhBBCCCFERsyYMQO73d7pbfpt4MeMeM2YMQOLxZLj1fRMNBpl7dq1ffo5CJFusl0I0ZpsE0K0JtuEEO3JdiFEa/1hmzCfQ1fZPtCPAz9meZfFYumzf0hTf3gOQqSbbBdCtCbbhBCtyTYhRHuyXQjRWn/YJlJpbSPNnYUQQgghhBBCCCH6KQn8CCGEEEIIIYQQQvRTEvgRQgghhBBCCCGE6Kf6bY8fIYQQQgghhBBCZJeu60QiEaLRaK6X0iFzbYFAIG97/FgsFqxWa0o9fLoigR8hhBBCCCGEEEL0WigUYufOnfh8vlwvpVO6rmO1Wtm6dWtaAiuZUlBQQHl5eZfj2rsigR8hhBBCCCGEEEL0iqZpbNmyBYvFwsiRI7Hb7XkbVNF1Hb/fj8vlyss16rpOKBRiz549bNmyhUmTJqU0tr0jEvgRQgghhBBCCCFEr4RCITRNY9SoURQUFOR6OZ3SdR1N03A6nXkZ+AFwuVzYbDa2bt1KKBTC6XT2+LGkubMQQgghhBBCCCHSojeZKaK1dP0u5S8ihBBCCCGEEEII0U9J4EcIIYQQQgghhBCin5LAjxBCCCGEEEIIIQasKVOmMGXKFHbs2NHue3//+9+ZMmUKd999dw5Wlh4S+BFCCCGEEEIIIcSAZrPZePnll9v9/4svvpi3DaBTJYEfIYQQQgghhBBCDGhz585tF/hpbm7mo48+Ytq0aTlaVXpI4EcIIYQQQgghhBCZoesQ8Wb3ouvdXua8efN47733aG5ujv/fq6++yty5c3G73a1u+49//IPjjjuOAw44gO9973t8/vnn8e/t2rWLiy++mIMOOojp06dzxhln8MEHHwBQVVXFlClTeP7555k/fz4zZsxgyZIl1NfX9+x3myJrRh9dCCGEEEIIIYQQA5OuwwtHQu1b2f25w46A+W9AN0q0Jk+eTFlZGa+//jonn3wyAC+88ALz58/nySefjN/u5Zdf5g9/+APXX38948aNY9WqVZx77rk8//zzlJSUcNlll1FcXMw//vEPdF3n1ltv5dprr231GPfeey+33347uq5zwQUX8OCDD3LppZem7/m3IRk/QgghhBBCCCGEyIw+1B9n3rx58XKvUCjEm2++ybx581rd5v7772fJkiUce+yxjB07lksuuYSKigqeeOIJdF1n/vz5XH311UyYMIGJEyfyne98h02bNrV6jIsvvpiZM2cya9YsTj31VNauXZvR5yUZP0IIIYQQQgghhEg/RTEyb6K+7P5cS0GPAk7z5s3j4osvJhKJ8PbbbzN58mSGDBnS6jabN2/mlltu4fbbb4//XzAY5KuvvkJRFM455xz++9//8uGHH7JlyxY+/fRTNE1r9RhjxoyJf11YWEg4HO72WrtDAj9CCCGEEEIIIYTIDEUBq7vr2+WBOXPmAPDBBx/w4osvcvzxx7e7TTQa5corr+Swww5r9f+FhYVomsZ5551HY2MjJ598MscddxzhcJgLL7yw1W1tNlvmnkQSEvgRQgghhBBCZITX66WwsBAwpuO0bZAqhBD5xGq1cvTRR/Pyyy/zyiuvcP7557e7zbhx46ipqWmVtbN06VLmz5/PqFGjeP/993n77bcZPHgwAA8//DAAeg8aTqeL9PgRQgghhBBCCCGEwCj3euSRRxgyZAijRo1q9/0f/OAHrFy5klWrVrFt2zZuueUWnnnmGSZMmEBxcTGqqvL0009TXV3Ns88+y9133w0YPYNyRTJ+hBBCCCGEED3SnYye6upqJk+enK2lCSFEjxx55JFEIhHmz5+f9Psnn3wytbW13HXXXdTW1jJx4kTuuecexo4dC8C1117LH//4R26//XbGjRvHVVddxa9+9SvWrVvHsGHDsvhMWkjgRwghhBBCCJERK1eujH89depU7rvvPhYvXpzDFQkhRHuff/55/Gu3280nn3zS6vt/+ctfWl0/99xzOffcc5M+1tlnn83ZZ5/d6v9OOeWUpD8L4KKLLurRmrtDSr2EEEIIIYQQaVdVVdXqgEbTNJYsWUJVVVUOVyWEEAOPBH6EEEIIIYQQvVZdXd3q+saNG9uNMI5Go2zatCmbyxJCiAFPAj9CCCGEEEKIHmlbyrVixYr49UmTJqGorQ83LBYLEydOzNr6hBBCSOBHCCGEEEII0QNdlXJVVFTw7UuXAQpgBH2WL1+Ox+PJxXKFEGLAkubOQgghhBBCiG7rrJTL4/GwpynIzONO54nXPkALNPHKX+/koFn752i1QggxcEngRwghhBBCCNFtkyZNQlXVVsGfxFKuTXuaAVAdBaiOAgYNG5GTdQohxEAnpV5CCCGEEEKIbvN4PFx/8+2YpVyKqvLb2+6Kl3Jt3uNtdXt/OJrtJQohhEAyfoQQQgghhBA9dPKZ3+J3/3gVLdDExb+8gmmzpwFQ7wtR2xTEYXew/Pc3sqM+gGJ15Hi1Qoi+wuv1UlhYCEBzczNutzvHK+rbJONHCCGEEEII0SNNwSiqowDFaqd06Ag2VNeh2p2MmDyLcDiEZ5CL0gI7IBk/Qoi+4+677+Z73/tel7cLhUL861//ysKKekcCP0IIIYQQQoge8QYjAETqdjC8yIGm69iHj8M6eBQAE4YX4rJZAPCHJPAjhOhfnn76ae69995cL6NLEvgRQgghhBBC9EgIK5WVlbzzxqvMGTccAHv5FKzFQwGYMMyNy24EfnwS+BFC9DO6rud6CSmRwI8QQgghhBCiR5oCYQAKnVYmjyjEZlEBhUj9bqz+OoqctnjGT0BKvYQQPVBdXZ3xn7Fp0ybOOeccZs2axbnnnktdXV38e4888ggnnngi06dP55BDDmHZsmVEo1Heffddli5dSnV1NVOmTKGqqorm5maWLl3KYYcdxvTp0znxxBN58cUXM77+rkjgRwghhBBCCNEjzQGj1KvIacVhtfDlm0/RtHoV3s9e4pf/7xhWrFgRz/iRHj9CiFStXLky/vXUqVNZsWJFxn5WKBTi/PPPZ9SoUTz66KMsWLCAf/7znwC899573HDDDfz85z/n2WefZdmyZfz73//mpZde4oADDuDKK69kxIgR/O9//6O8vJzf/OY3bNmyhQceeICnnnqKuXPn8utf/5pQKJSx9acirwM/oVCIZcuWcdBBB3H44Ydz++2395lUKiGEEEIIIfqzcFSLl28VO21UVVXxp98sjX9f0zSWLFlC3e6dgPT4EUKkpqqqiosuuih+3XwvqaqqysjPe+utt6ivr+faa69lwoQJfOc732H+/PkAFBQU8Jvf/IYTTjgBj8fDiSeeyLRp09i4cSN2u52ioiIsFgvDhg3DYrFw0EEHcd111zF16lTGjh3LeeedR319PXv37s3I2lOV1+Pcb7jhBt59911WrFiB1+vl0ksvZeTIkXzrW9/K9dKEEEIIIYQY0MxsH5tFwWFV2bhxI5qmtbpNNBpl57avwDpGMn6EECnp6L1k06ZNeDyetP+8TZs2MXbsWAoKCuL/N2PGDF577TWmT5+O0+nkrrvuYtOmTXz++eds3bqVI488MuljnX766bz44ov861//4ssvv+Szzz6Lrz+X8jbjp76+nv/85z9cf/31zJw5k8MOO4zzzjuPjz/+ONdLE0IIIYQQYsBrDpplXjYURWHSpEmoauvDC4vFwtT9JgMQimhEolq7xxFCiEQdvZdMnDgxYz+zbWWRzWYD4I033uDMM8+ktraWo446irvuuosDDzyww8e5/PLLuemmmyguLuacc85h+fLlGVtzd+Rtxs8HH3xAYWEhBx98cPz/zj///ByuSAghhBBCCGFqjDV2LnIahxQej4e7776bn/70p4BxoLZ8+XImjB2NunkTmq7jD0cpsuTtuWchRB7o6L0kE9k+YASavvrqK5qamigqKgJg/fr1gNHY+ayzzqKyshKASCTCtm3bOPTQQwFQFCX+OM3NzTz11FP861//YubMmQC89tprQO6nf+Xtu+727dupqKhg1apVnHjiicybN48//vGP7VK+hBBCCCGEENnXFCv1KnS0nEtetGhR/Ot169axePFiFEXBZTcOO6TcSwiRimTvJZly+OGHU15ezq9//Ws2b97Mo48+yn//+18ASktL+eijj/j888/ZuHEjV1xxBXv27Ik3a3a5XDQ0NPDVV19ht9txuVw8//zzVFVV8cYbb3DdddcB5Ly5c95m/Ph8PrZu3co//vEPbrzxRvbs2cM111yDy+XivPPOS/lxcl1L1xvm2vvycxAi3WS7EKI12SaEaE22iexp9IXQdQ23XU36ex8xYkT8usOi0qyHafaHGVJgy8l6BzLZLkQ2RKNRdF2PX3oj8f4jR45Me8aM+Xi6rmO1Wlm+fDlXXXUVZ5xxBlOmTOHb3/42n376KT/96U9ZunQpZ599NoWFhRx99NGcc845rFu3Dl3XOeSQQxg9ejSnnnoqDz/8MLfccgs33XQTf/nLX/B4PFxwwQXccccdrFu3jvHjx/donbquE41G222/3dmeFT3XOUcduO+++7jtttt4+eWXqaioAOChhx7i73//O88991yX949Go6xZsybDqxRCCCGEEGJgem2rn5rmCAeNdDJ+UOfBnJe/8rHHG+VQj5MxJRL4EaK/slqtjBo1CofD0avH8Xq9lJWVAbBr1y7cbnc6ltfnBINBtm/fTiQS6fA2s2fPxmKxdPo4eZvxM2zYMBwORzzoAzBu3Dh27tzZrceZMWNGl7+EfBWNRlm7dm2ffg5CpJtsF0K0JtuEEK3JNpE9awNboTDEnJkVjBlS0Oltd1hqsOxuYsz4YcweVZqdBYo42S5ENgQCAbZu3YrL5cLpdPbqsRLzUwoKClpN3EoHXdfx+/24XK5WfXryjaqq2Gw2Jk6c2O53am7XqcjbwM+sWbMIBoNs2bKFcePGAfDll1+2CgSlwmKx9Pk3t/7wHIRIN9kuhGhNtgkhWpNtIvO8IQ1FUSl1O7r8XbudVhRFJRjV5e+SQ7JdiEyyWCwoihK/9EZhYWFWGiKnY62ZZK6vt9tu3jZ3Hj9+PMcccwxLly5lw4YNvPHGG9x3332cc845uV6aEEIIIYQQA1ogHCUUMYauJDZ37ojTZonfTwghRHblbcYPwK233sr111/POeecg8vl4jvf+Q7f+973cr0sIYQQQgghBrTmoNFvwmmzYLd2fS7ZFQv8+EIS+BFCiGzL68BPUVERN998c66XIYQQQgghhEhgjnIvcqZ2OFFgN27nl8CPEEJkXd6WegkhhBBCCCHyU1MgDKQe+HFJqZcQA0aeDg7vk9L1u5TAjxBCCCGEEKJbmruZ8eO0G4cdfgn8CNFv2Ww2AHw+X45X0n+Yv0vzd9tTeV3qJYQQQgghhMg/jfHAT2oHI2bGjz+koet6Xk/REUL0jMViobS0lN27dwPGGPZ83dZ1XScYDKKqal6uUdd1fD4fu3fvprS0tNfT+CTwI4QQQgghhOgWs9QrlYle0BL40XSdYESLT/kSQvQvI0aMAIgHf/KVruuEw2FsNlteBn5MpaWl8d9pb0jgRwghhBBCCNEt5lSvVEu9rBYVu1UlFNHwh6IS+BGin1IUhfLycoYPH044HM71cjoUjUbZsGEDEydO7HU2TabYbLa0rU0CP0IIIYQQQoiU6bre0uPHkXrfCZfNYgR+wlEGZWpxQoi8YLFY8jagAkbgB8DpdOb1OtNFmjsLIYQQQgghUuYLRYloOooChSlm/AC47Jb4/YUQQmSPBH6EEEIIIYQQKfF6vZQMLWPZsmXY0LCoqffGKLDLSHchhMgFCfwIIYQQQgghUqY4CgBwO7pXHmH29ZGR7kIIkV0S+BFCCCGEEEKkTHW4AShKcaKXqWWkuwR+hBAimyTwI4QQQgghhEiZolqJ1O/C37CnW/eTHj9CCJEbEvgRQgghhBBCpGTlypUEqz7D+9lLLDrxMFasWJHyfc2MH+nxI4QQ2SWBHyGEEEIIIUSXqqqquOiii+LXNU1jyZIlVFVVpXR/M+NHevwIIUR2SeBHCCGEEEII0aWNGzeiaVqr/4tGo2zatCml+0uPHyGEyA0J/AghhBBCCCG6NGnSJFS19eGDxWJh4sSJKd3fJVO9hBAiJyTwI4QQQgghhOiSx+Nh2U23AQpgBH2WL1+Ox+NJ6f5mqVcoohGJal3cWgghRLpI4EcIIYQQQgiRknmnnU3R3IU4Rs9k3bp1LF68OOX7OqwqqmIEjSTrRwghskcCP0IIIYQQQoiU1PnCqI4CFEWhoqKiW/dVFAWX3Tj8kMCPEEJkjzXXCxBCCCGEEEL0Dd6IQmVlJQv2H4Hb7e72/V02C95gVBo8CyFEFknGjxBCCCGEECIl+7whAIYU2nt0f1WPsmzZMibttz9erzedSxNCCNEBCfwIIYQQQgghuuQPRfHFMnUGFfQs8OOyGYcfis2RtnUJIYTonAR+hBBCCCGEEF3a6w0CUOyyYbf27DDCGRvpLoEfIYTIHgn8CCGEEEIIIbpU5w0DMMTds2wfAKdNRQv60CMhqqur07U0IYQQnZDAjxBCCCGEEKJLZsbPoF4Efl5c9U+aVq8itONzpk6dyooVK9K1PCGEEB2QwI8QQgghhBCiS/HGzj0M/FRVVXHTNZfHr2uaxpIlS6iqqkrL+oQQQiQngR8hhBBCCCFEl8zAz+AeBn42btyIpmmt/i8ajbJp06Zer00IIUTHJPAjhBBCCCGE6FQwEqUpEAF6HviZNGkSqtr68MNisTBx4sRer08IIUTHJPAjhBBCCCGE6JSZ7VPosMYnc3WXx+PhptvuABTACPosX74cj8eTplUKIYRIxprrBQghhBBCCCHyW2/LvEzf//4irnv4ZbRAE+8/8kem7jclHcsTQgjRCQn8CCGEEEIIIToVD/wU9i7w47CqqI4CVEcBQ8vK07E0IYQQXZBSLyGEEEIIIUSn4oGfgt4FflRFQY+GAQhFtC5uLYQQIh0k40cIIYQQQgiRlNfrpbCwkKI5p3HVdb/pdamX2+3mtpt/R1Mggmp3pGmVQgghOiMZP0IIIYQQQoiOqRZUpxuAIb0s9QLizaGDYcn4EUKIbJDAjxBCCCGEEKJDqqOQSP1uAvV7KLD3vmDAYTUOQQKRaK8fSwghRNck8COEEEIIIYRIauXKlWj+BryfvcS135vPihUrev2YkvEjhBDZJYEfIYQQQgghRDtVVVVcdNFF8eu6prFkyRKqqqp69bjxjJ+wZPwIIUQ2SOBHCCGEEEII0c7GjRvRtNZZOdFolE2bNvXqceMZPzLVSwghskICP0IIIYQQQuQZr9eLoigoioLX683JGiZNmoSqtj5csFgsTJw4sVePKxk/QgiRXRL4EUIIIYQQQrTj8Xi4++6749dVi4Xly5fj8Xh69biS8SOEENklgR8hhBBCCCFEUosWLcI943jc0+fx6jsfsXjx4l4/psNmHIK0DfzkQ5aTEEL0RxL4EUIIIYQQIo9VV1fn9OdbCoqxlpQxdnTvMn1MTquR8SOlXkIIkR0S+BFCCCGEECLPrFy5Mv711KlT0zJGvSd0XUex2oGWTJ3e6ijjJ1Gug11CCNGfSOBHCCGEEEKIPNJ2jLqmafzwhz/MSQmU1eGisvJaKisrGVxclJbHdHSQ8ZMvwS4hhOhvJPAjhBBCCCFEHkk2Rj1XgmFjHTaLgtWSnkMHZyzjJxTR0DQdSB7sWrJkCVVVVWn5mUIIMZBJ4EcIIYQQQog8MmnSJBQ1P3bTgxEjK8fM0kmHxMcyy72SBbui0SibNm1K288VQoiBKj8+UYQQQgghhBCAMUb9B7+8AVAAUFQV+8j9QLVkvfdNIJbxk67+PgAWVcFuNfv8GIGlSZMmobYJdlksFiZOnJi2nyuEEANVXgd+XnjhBaZMmdLqcvHFF+d6WUIIIYQQQmTUgcefQdHchahFQznlBz8jtGMDaNGs974xAzPONGb8ADhigR8zsOTxeLj77rvj31dVleXLl+PxpGeSmBBCDGTWXC+gM5s2beLYY4/l+uuvj/+fw+HI4YqEEEIIIYTIrKim4wtGUR0FaP4mnn7wzvj3zN43CxYsyEpQJBMZP8bjWWgKROKBJYBFixZx+X1PQjTMDcsqWXzmUWn9mUIIMVDldeBn8+bNTJ48mWHDhuV6KUIIIYQQQmRFUyCMjg5aFCJB2rZ5NnvfZCPwk4keP8bjtc74AdB0HWvhIEChYNDwtP48IYQYyPK61Gvz5s2MHTs218sQQgghhBAia5oCEWw2O3fe+ju2b9+e0943mcr4cdqMQFJixo8/FMXsa+RrM+pdCCFEz+Vtxo+u62zZsoX//e9/LF++nGg0yoknnsjFF1+M3W5P+XGi0b77oWGuvS8/ByHSTbYLIVqTbUKI1vrDNlHnDaLrGm67Snl5OXfeeWd81Lmqqtxzzz2Ul5dn5Tn6Q2F0XcOupvd3alNB1zX8wUj8cSOKlWuuuRoADQiFI1hUJW0/cyDrD9uFEOnUH7aJ7qw9bwM/O3bswO/3Y7fbueOOO6iqquKGG24gEAhw1VVXpfw4a9euzeAqs6M/PAch0k22CyFak21CiNb68jaxdneQmj0hCoI21ih7mD17NmpBKa7xc/j+eT/kwAMnsWbNmqys5fOqADUNYbZRh7Nxe9oet7omSM3eEJ9F9mGtN3p47miKUFPjj9/mvQ+acKU502ig68vbhRCZMFC2ibwN/FRUVPDuu+9SUlKCoihMnToVTdP45S9/ydKlS7FYUqsznjFjRsq3zTfRaJS1a9f26ecgRLrJdiFEa7JNCNFaf9gmdq/bxT5LI7MnDGH22MF4vV70cABrSRmjJu/PjJlTs5YJs0WvJuTyMWNaGVPLi9P2uMEt+2j8ci+ekSXMnmr087FUNzAitDt+m4n7jWZYkQx2SYf+sF0IkU79YZswn0Mq8jbwA1BaWtrq+oQJEwgGgzQ0NDB48OCUHsNisfTZP6SpPzwHIdJNtgshWpNtQojW+vI20RyMoigqJQWO+PPQwwHQNRRFIRDVKbZlZzc+rIGiqLgctrT+Pl12K4qiEtL0+OP6wzqK0pLhE4zqffZvmK/68nYhRCYMlG0ib3Mn33jjDQ455BD8/pZ0z/Xr11NaWppy0EcIIYQQQoi+pjEQAaDYZQPA7Xaj6zq33fRbbDY7zbHvZ0Mg1mTZbMacLvHmzglTvXyh1s/LLw2ehRAiLfI28HPAAQfgcDi46qqr+PLLL3nttde4+eab+eEPf5jrpQkhhBBCCJERmqbHAzvFztZZPUUO43pzMHuBn2AkNtXLmt7Dhvg494SpXm2fly8kgR8hhEiHvA38FBYWsmLFCvbt28dZZ53Fr3/9a84++2wJ/AghhBBCiH6rORRB03VURcFtbx34KXRmN/Cj63o8IycbGT/eoBHoMTOd/BL4EUKItMjrHj+TJk3iwQcfzPUyhBBCCCGEyIpGfxiAIqcVtU0D50Iz4ydLpV6hqIam60B2Mn7MUq+hhXYa/WEJ/AghRJrkbcaPEEIIIYQQA01Tm/4+ibKd8ROIZeNYVQWbJb2HDWbGTyiioes6mqbHM36GFRqTvHzS40cIIdIirzN+hBBCCCGEGEgSM37aKspyxk8wlo3jsKX/XLGZ8aPrRh+hqKaj6TqKAkNigR9/KHu9jIQQoj+TjB8hhBBCCCHyRHyil7PjjJ+mLGX8ZKq/D4DVomKzKPGf440FeVw2C25HbLy7lHoJIURaSOBHCCGEEEKIPNEUMDJ+il3tM34Se/zosd47mRTP+Elzfx+Tw2oEeAKRaLzMy+2wUhBrai2lXkIIkR4S+BFCCCGEECJPmKVeyTJ+3HYrigKarmdl1LnZ48cM0KSbM1ZCFgxreGNZTIUOKwX2lolfUS3zAS4hhOjvpMePEEIIIYQQeUDX9ZbmzkkCP6pqjHhvDkZoDkZwOzKwKx+ohbqPoOFTgtsaYbsN5+7NUPU/0EKghY1/FQVspWAfZFxcI6BoChRPgeL9oGgiqO2fQyIzoBSMROOBnwK7BYdVRVUUNF3HH47GM52EEEL0jLyLCiGEEEIIkQd8oSgRzWhwXJikuTMY/98cjNAUiFBW3MsfqOvQuB52vgC7XoZ9H4C/Ov7tQNMs8O6PI/wFKF+0v39gd8ePbXHB0MNg+Ndg2FEw9FCwFrS6idk0OpDQ46fQYUVRFFx2FW8wii8UkcCPEEL0kryLCiGEEEIIkQcaY/19Ch1WLKqS9DbxPj89bfCsRYwgz9Z/ws5nwb8jyQ+ZCINmEmyYA00VOMacAROGgcVpZPGoNtA1CNVDqM64+LZD4+fQ9Lnxb6TZ+Dm7XjYeU7XB4LlGEGj412DYEa0yfpoTevyA0eTZG4xKg2chhEgDCfwIIYQQQgiRBzor8zKZmUDdGumu67D3Pfjqr7DtX60zdSxOIxgz4ngjQ2fQTLAZqUSBtTuhpglHxTAoG9SNn6dBw3rY8wbsft24+Kuh9m3jsv5mQMGhfQOiRxAo8OBlP8DWEvixW4EQfmnwLIQQvSaBHyGEEEIIIfJAvLFzkolepqJ4xk+46weMBozMni/uNsq4TI6hMPqb4DkDhh0JVlfSu5tTvcwmzClTVCjd37hM+rERePJ+BbvfgD2vG/82fYHTtwGabQT9D+MNjgTbWNx2KwQOo4DpgJKVJtZCCNHfSeBHCCGEEEKIPGCWehWlkPHT1FnGT6gONtwJG/8EwT3G/6kOI9gz9tswYn6XjZchjVO9FAUKxxmX8eca/+evwbH2TVhfRQAFnz8KgT24t62C6ttwNc4F7SgCkRJQZxvlYfZuZB0JIYSIk8CPEEIIIYQQOeb1ejn1zLOxDa7g+Ydu6/B2nfb4CdXBhjvg8zsg3Gj8X4EHJv0EJvwInEO7taZguIcZP6lwjcDpOR4aaqgvPp1oXR14t+IePRh2v4KrOQC+Xfi2vgl11wIKDJoNZccal2FHgb0k/esSQoh+SAI/QgghhBBC5AHV6QZayrmSKXIYmTrNgQi6rqMoCkR8sP422HBrS8CndAbsfxWMOhPUnu3yByJpyvjpgDnVa19zCCwFuIZOx3LQQgAKNm+Bjz7Gp64FeyM0bjDGzNd9BBtuN8rJBs2JBYKOMUrWbEUZWacQQvR1EvgRQgghhBAix3RdR3XEAj/OjgMtbofxvYimEwhFce38F6z5FfiqjBuUzoDplTDqDCM40ov1BGOlXhnJ+AGctpbnAi0TvQBchUOhZBqB0jlw0NXg3wm7XoVdr8DuV6FpI+x737isvxkUCww+yAgEjTgOhh7RYe8iIYQYaCTwI4QQQgghRI4FIxp6JEy0aR8NtbvwDEvez8ZqUSmwW/A1bKfpuZ/gan7J+IZ7DMz6HYz5f70K+JhCUQ1NNwIyGcv4sbZeZ6Gj5ee47MbXvlCspM1VDmPPMS5gBLrMQNCuV8C7Bfa+Y1zW3Wj0NBp2hNHPaMR8GHQgqJl5HkIIke8k8COEEEIIIUSO3f/AQzStXgXAzOn7c99997F48eL2Nww3U7jrMXzVa2guXc9wtxv2vxKmXBrPcPF6vRQWFgLQ3NyM2+3u9nqCsTIvi6pgsyg9e1JdMDN+TG57y6FJQexrX0fj3As8MO67xgXAu7UlCFTzkjE+ftfLxuXjK8FWamQClc0zAkFFk4ym00IIMQBI4EcIIYQQQogcqqqq4spfXhq/rmkaS5YsYcGCBXg8npYb7ngG3r+Awj1j2K17aC47C45damTDpFkwPtFLNfoIZUDbjJ9WpV6xoFAwrBHVdCxqF2twj4Hx3zcuug5NX0DNi8Zl1ysQroftjxoXgIJRRgCobB6MmAeuEel7YkIIkWck8COEEEIIIUQObdy4EU3TWv1fNBpl06ZNRuAn3AirL4YtKwEock+H8u/QPPlgcHVvUleqAvGJXpkrj7KqChZVIZqkx4/TpqIqCpqu4w9H49PMUqIoUDzFuEz+KWgR2Pch7IoFgva8Cb7t8OWDxgWgZHqsLGweDD9aGkULIfoVCfwIIYQQQgiRQ5MmTUJRVfSE4I/FYmHixImw+w14+1zwfmX07plyCYXFP4ctXpqSjXRvo7q6msmTJ3d7TcFIS8ZPpiiKgtOm4g0aQabEHj+KouCyG9/zhSLdC/y0pVph6MF4XftTOP3XuOywb8PjOOvfNAJBdR9Bw6fG5fM7QLHC0ENaysKGHgqqrZfPVgghcidz7+RCCCGEEEKILnk8HpZc8RvAKGeyWCwsv+ePeGr/CC8ebQR93ONg/utw4G0UFhjZKM2B5IGflStXxr+eOnUqK1as6PaaspHxA60bRxfYWwd3zHKvQKh1NlRv+UMQHT4PDrgJTvoAztwNR/4LJi6BwgmgR4ysoE+vgxe/Bv8eAq+fDhvvgeYv07oWIYTIBsn4EUIIIYQQIscOXnAWDz//Lt4Nb7D+f48wqeYKWPee8c3xP4A5d4CtGACLFmLZsmVo/kZOfP0frZo3V1VVcdFFF8Wvd9gvqAvZyPgBULQIy5YtA+Bbj/8RaBnB7rJbgRC+cNeZTb3iHAqjv2lcAJq3GA2id70ENS9AcC9UPW5cwAgOlS+A8hOg7DgpCxNC5D0J/AghhBBCCJFjjYEIqqOA4/ePMPGLsyBcZ0yiOuR+GH1Wq9uaZU+K3YUeG7lu6rJfUIqCWcv4aQksFdhb/6yC+Ej3DiZ79UKnJXCF42DiD42Lrhn9gWqeh53PwZ63oHkzbPyTcVGsMOxwGHGCEQwafKBRkieEEHlE3pWEEEIIIYTIoWAkSjAcZt50ePxCL0q4DgYfBCd92C7oA1DgsKAFfUSb9rFl2/ZW35s0aRKq2noXP94vqFtryk7Gj8OqogV9hPduZ9fOna2+11LqlZ7Az0MPPRT/OuUSOEWFIXNh/yth/mvwjX3wtcdh0k+gcKJRFrb7dfjkKnjuIHh0OLx5Dnz5EPh2pGXdQgjRWxL4EUIIIYQQIoeaGmqxVT/C/P2CONQITL4Ijn/DyDxJ4u9//QtNq1fh/ewlZs+Y3iqA4fF4WLK0pV+QqlpYvnx5t7J9oKXHj8OW2cOFV5/8F02rV+Hb8Ea7YIwrjRk/VVVVXHzxxfHrZglcVVVV9x7IVgSe0+CgP8JpG+G0zXDQPeA5HaxFRlnY1n/AOz+AVRXw9Az48DLY+QJE/L1+HkII0RMS+BFCCCGEECJX6j+l8cWF0PwlxbYwHPFPmHsXWBxJb95RD5/EAMaM406naO5C3NPn8e+X32Hx4sXdXlZLxk/mSr2qqqq4+4al8ettn0u81Cvc+8DPZ+s3dFgC1yuF42HSj+Frj8E39sL8N2D/q2DIwYBiTArbcBu8cgL8ZzC8chJ8fjc09fLnCiFEN0jgRwghhBBCiFzY/hg8fyiNTXVgL6Vo9lIY8/86vUtnPXwAmoMRmmL9gqwlZRQNLuvR0lqmemXucKGr59LbUi+v14uiKCiKwl6KUZTel8B1SrXB8CNh1vWw4F04aw8c8Q8Yfx64KiAagJ3PwgcXw5OT4MnJsPpnsONZyQYSQmSUNHcWQgghhBAim3Qd1t8Ma64AoKn4cKj4EcVDR3Z5V7OHT2LAJDGAUdMQwGazU1lZCYCm2nq0xGxk/HT1XFpKvXo31UuxF7Az6ubMiyr5z13XAjoWS89K4LrFMQTGnG1cdB0a1sHOZ2DHf2H3G9C00bh8cRdYXFB2LIw8GUaeZGQSCSFEmkjGjxBCCCGEENmiheG9JfGgD5N+QuOU68BaQLGr6yCNx+Ph7rvvjl9XVJW7/3hPPIBR0xAAwGYxevz0tD9ONnr8tH0ubYMxejjIsmXL+NkvLsfr9fb45zhHzyCq6Zz+/75NwdSv4Z4+j/++sbpHJXA9pihQuj9MvQzmvWyUhR31KEz4ERR4IOo3AkKrL4QnJsCTU+CDS2Hn80amkBBC9IIEfoQQQgghhMiGUAO8egps/jOgwJw74aA/0hg0RrIXO1NLxl+0aBEAzgkHc8WDz3HMaWfHv7ezwSgZGjPEDfQs8KPrejzjJ9Pj3M3nArBu3bpWwRgz40ex2olqerv7pkJxFqI63NTX1nDouEHokRDWkjIcJcN6t/DeshXDqDPgkPtg4TY4+ROYfRMMP9oYEd/0BXx+B7yyAP49BF49Fb74EzRvye26hRB9kpR6CSGEEEIIkWm+anj1JKhfC5YCOOLvxnQooCkQBqDY2c2yrEiQ0qEj2FLrZWp5MZqms6vRyA4ZP8zNpt3NPSqTCkf1eKAl0+PcE1VUVLS67rSqaIFmtICXL7/axuwZ07r1eCtXrkQPNOP97GV+94NXmXDffbz63FO8uakWv5bZgFa3KAqUzjAu0y43AoQ1L8bKwp4B/w7Y8ZRxASjeD8pPgoqvw7CjwGLP7fqFEHlPAj9CCCGEEEJkUsMGI3PDtw2cI+CYp2DwHADCUQ1v0MjKSaXUK1F4XzUAX+31EtV09nqDhKM6dquKp7QAMDJ+dF1HUZSUHzcYMdajKgp2S+4KBP7v//6Ppg+eAGDO7Bncd999KZdntZ1+pscmhr3y/hGASp0vlIklp4e9BEafZVx0Heo/MQJAO/4LtW9B4wbj8vnvjRHy5Qug4hSjN5BzeK5XL4TIQxL4EUIIIYQQIlNq34XXvg7BvVA0GY59DgrHxr/dFDAycuxWNeXsGrfbja7raJrOfW98iT8UZUe9Px7MGFHsxO0wMlqimlG21Z2SrX0NzSxbtgw9HOSHh63E7XanfN/uMp9LWx2NrV+wYEFKDZk7mhi2r2YbWMeyzxvqdkAsJxQFBs0yLvtfAaF6Ixtox3+NS2AXbP+3cUGBIYcYQaCKU6B0pnF/IcSAJ4EfIYQQQgghMmHHs/DGWRD1weCD4Jinwdm6t0xLmZe120EIVVUYO8TN+p2NbKn14o81ZC4vcWK1qNitKqGIhi8U7VbgJxTr76NHgt1aTzp1Nuo9lcBPRxPDZk3bjy0bA/Hfi9vRxw6H7KUw+hvGRddg3wdQ/SRUPwV1H8Hed4zLJ1dBwahYJtApMPRruV65ECKHpLmzEEIIIYQQ6bb1X/DaqUbQp3yBMcnJ2b6hcKPfyPjpbpmXafwwN+FwiFPOOY9vnvsjwuEQI0qcALh7OA49ECv10qPhHq0pHczATaLEUe9d8Xg8XHjVjYASv+/y5csZO2Z0vJfSPm8el3ulQlFhyEEw8zo46UM4fTscvBwqTjXGw/u2w8Z74LWvo64azoSqS1E2/9noNyWEGFAk8COEEEIIIUQ6bX4A3joH9AiM+RZ87QmwFSa9aWMs46coxYlebY0eXICiKKiuYlRXMQDlJS4ACuzGY3Z3slcwoqEFfUTqa6iuzk2QoO2od1VtPeo9FYef9A2K5i7EOmhkq4lhg91GM+R6X+4CWxlR4IGJ58PRT8BZe+Hop2Hij6HAgxL1U+p9A3X1BbDKA88cCJ9cA3vfNzKHhBD9mgR+hBBCCCGESJcNd8K7i42D6Qk/gsP+2unUpR5P9Ipx2iyMLHHGAjW70Jr3xsegu+IZP90L/PznHw/TtHoVga0fM3XqVFasWNGjtfXWokWLsJdPwT19Hiue/l/KjZ1NjYEIqqMAtGiriWGlBbGMn3xu8NxbVhdUnAwH3wMLtxE94QOqh16APuQQQDHKwj69Hp47GB4bCe8shqrHIeLL9cqFEBkggR8hhBBCCCHS4bPfwoeXGF/v93Oj7EbtvLdOb0u9AD59ZRVNq1fh/ewlrjznuHigxmzw3J1Sr6qqKm6+5vL4dbOpclVVVY/X1yu6hrWkDPeg7k2r0nU93jhbC3pbfc/M+Knr66VeqYo1iK4Zshht/ptwZg0c+iCMOgushUaD6C8fgNdPh/8MhdcWGllrgd25XrkQIk0k8COEEEIIIURvrb0OPv618fWMa+GAW1OaqNTbUq+2gRo9IVDjssVKvYKpZ/x88cUXHTZVzgU9HAAgEOleOZI/HEWxWLn22kqCzQ2tJpMNKogFfvpzxk9nnMNh/PfhqH8bJWHHPg+TL4KC0RD1Q/UTRtbaoyPg+SNg3c3Q+HmuVy2E6IU+1sZeCCGEEEKIPLP2OlhbaXw960Zj7HYKoppOczCW8dPDUq/Opl8NnjgbAF849cBPyYhRKIqKrreehpVqU+V0crvdfLlxA4+sriJK6lPJoCWTqtBhxWppfa57UCzjp8EfJhLV2n1/QLHYofx44zLnTqj/xCj5qnoc6j6E2reMy5pfQfEUqFgIntNgyKFdZrMJIfLHAH6XE0IIIYQQopfWLmsJ+sz+XcpBH4DmQARdB6uqUGDv2UF0Z9OvzMf0d6PUq14p5syLKls9VnebKqeTKzaGvjvBK2jJpEoWUHPbLditKroO9f5+1uC5N2IlYcy4Bk76ABZug7l/hBEngGozsn7W3wwvHAmPlcf6Aj0hfYGE6AMk8COEEEIIIURPfHItrL3W+Hr2TTDtV926e2KZl5JCWVgybadfJQZqXLGpXt4US73CUY3PdzVx8IIzsRQNBWg1DSsXzMlkwbBGVNNTvl9jLKBT7Gpf4KAoSsJkrwFa7pUK9yiY/BM47jk4cw8c8Q8Y822wlUBwT6wv0ELpCyREHyCBHyGEEEIIIbrrk2vh02XG17NvhmmXd3brpOJZKb1o7AzG9CtTYqDGbWb8dJEt4/V6URQF94jxNPsCFDmtRJtqAVpNw8oFp02Nt0rq6nkk6izjB2CQOdnLKxk/KbGXwJiz4YiH4aw9cNyLHfcFeuFIWH8rNG3O9aqFEDHS40cIIYQQQohU6bqR5fPpdcb1A26BqZf16KHiE7162N8nmcRAjTnOPRTRCEU07NbOz/nay8YDMKWsMG3r6S1FUXDZLPhCUXyhCIWO1A5fupqWNuAbPPeGaoMR84zLnDuh/mOj5MvsC7TnTePy0S+hdCaMOtO4lExPqeG5ECL9JPAjhBBCCCFEKtoFfW6Fqb/o0UN5vV7mnXQK9uHjefy+m9O3xgR2i4rNohCO6vhD0U4DP4q9AGvpCADmjCtD11Mvq8q0ArsR+AmEUp/s1WXGj9tOOBziG99eRPMnz9Pc3Nxq8pdIkaLAoNnGZcY14N1uZP9sfwx2v2o0i67/xNhuCie0BIGGHAyKFJ8IkS0S+BFCCCGEECIVn16fEPS5Dab+vFcPpzoKgJ6Pcje53e6kgRpFUXDZrYT9YXzhCCV0nFlkG+whUr8bZ6iOkoL0ZSClgzPe4Dm1JtW6rnfa4wdaMn5UV3EaViji3KNg8k+NS3AvVD9pBIF2PgfNm2H9LcbFVQ6eM2DUGTD8aCOLSAiRMX0mzHr++edzxRWpT0kQQgghhBAibdbf2jK9Kw1BHwAUC5H6XXj3Za4hrjnZq7MGzw899BChmi/wfvYSl551DCtWrMjYenrCbPDsC6XW48cfjhKO6igKHZaGlRbYUFBQrHYUmyNtaxUJHENg/Pfh6MfhrFo48hEYcw7YisG/Ezb+CV4+Hh4tg7cXGaViEX+uVy1Ev9QnAj9PP/00r732Wq6XIYQQQgghBqKN9xj9SgBm/SYtQZ+HHnoI79oX8H72EsccMjtjwZaWke7JgyZVVVVcfPHF8euaprFkyRKqqqoysp6eMJ9DIMXAj9nfp9BhxWpJfrhjs6gUOi1oQR+KzUl1dXV6FiuSsxXC6G/AEX+DM3fDMf+FCT8CxzAI1cGW/4PXTzcmhL3xDdjyMITqc71qIfqNvA/81NfXc/PNNzNjxoxcL0UIIYQQQgw0X66E939ifD1tKex/Za8fMpvBlpZsmeRlUhs3bkTTWvfOiUajbNq0Ke1r6al4qVeqgZ8u+vuY1rz4GE2rV6H5Gpg6dWreZTr1WxYHjDwJDrkPztgJ81+DKZfEJoT5YPt/4O3vwqPD4ZWTYNN94N+V61UL0aflfeDnpptuYuHChUycODHXSxFCCCGEEAPJtn/Du+cZX0++2Mj2SYNsBlvMbJmOgiaTJk1CVVsfElgslrza9y7oYCy9OYZeURS8Xm/8/7vq7wNG8O3PN10Vv942+NbRY4s0Uy0w/Gsw5/ew8Cs48QPY/9dQMg20MOx8Ft5bAo+VwwtHwYbfg3drrlctRJ+T182d3377bVavXs2TTz7Jtdde26PHiEZTOzOQj8y19+XnIES6yXYhRGuyTQjRWtq2iR1Po755DoquoY07D332raClPlWqM+PHj0dRVfSEx7NYLIwbNy7t27LTqqDrGs2BcNLHLi8v5/wrbuDe3/4a0LFYLNxzzz2Ul5fnzfuKI/YcvG2eQ9uvzev13iC6ruG2Wzp8Dhs2bGj1+zcf4/PPP2/33BMfu6/qM58VJbOMy/Rl0Pg5SvUqlKrHUPathj3/My4f/hx98Fx0z1noo86CwvG5XrXog/rMNtGJ7qw9bwM/wWCQyspKrrnmGpxOZ48fZ+3atWlcVW70h+cgRLrJdiFEa7JNCNFab7aJIu/7TKz+GYoeYV/RCWyxLYGPP0nb2vwRjfnnXsILD/0e0FFVlaVLl1JbW0ttbW3afg7AtoYwNTUBoo17GBmtSXobz/6HUDR3Ib4v3uRfD97LmDFjWLNmTVrX0Ru7vRFqavx496mssbb8fvz+lkbAn3zyCS6XC4C1W/3UNEeoUetZ07Q96WOGQiFUVW2VeaWqKsFgkDVr1rR67BdffJExY8ak+2nlRN/7rFgAwxZgK62htPlVBjW9TKF/Dcq+1UYw6JOleB37UVc0n/qieQTto3K9YNHH9L1tomfyNvDzhz/8genTp3PUUUf16nFmzJiBxWJJ06qyKxqNsnbt2j79HIRIN9kuhGhNtgkhWni9XkpKSgDYt28fxcU9GNVd+xbqa5eh6CH0itMoOfyfzE7zqOkPttZx3Fnf58133se34Q0+/fRTJk+enNafYRpa52NLpJpBBXZmz04evHin7gtjtLyuMX/+fNxud0bW0lN7vSHWB7bitFmYPbsluyOxBGvIkCHx3+HawFb0whBzZlYwZkhBh4975513ctFFFwFG0Ofee+9lwYIFANxzzz3x233zm9/k3nvv5bzzzkvr88qm/vFZcSIAWmAXStUqlKr/wO5XcQc34A5uwFP7B/TS2eijzkQf9Q0oysw2JfqH/rBNmM8hFXkb+Hn66aepra3lgAMOAIyoPMBzzz3HRx99lPLjWCyWPvuHNPWH5yBEusl2IURrsk0IQattoEfbRN0aeP0UiHhhxAkoR/4LiyW9o751XefzXc2oqkKkbgcAo0ePztj2W+i0oygqgYie9Gfouo4vbGS9aEFfXr6XFMWeQzCig6JiURUA/vrXv8ZvM336dO677z7OO+88moNRFEVlkNvR6XP5wQ9+wM8uvwrXhLlcevlSvvetY7BYLFRVVfGzn/0sfjtN07jgggs46aST8Hg8mXuiWZCPf99uc4+EKT8xLoE9ULXK6Me16yWU+jUo9Wtg7TVQOgNGfdOYJlYyNderFnmqX2wTKcjb5s5/+ctfePLJJ1m1ahWrVq3iuOOO47jjjmPVqlW5XpoQQgghhOhvGjfCKwsg3AjDjoSvPWZMH0oTs1mwrXgoO+uasagKodptaXv8jphTvQLhKFFNb/d9XyiK1Wrj2msrifi9eZftA+C0qShGrCfe4LmqqiqerQMtzZk3bdlKOGo8zyJn1+e4NX8DitWOo2gwJaP3Q1EUPvnkk6TNt0eNGiXNnvONcxhM/BEc9xycuQsOWQHlJ4Jihfq1RgDo6Wnw9P7wybVQ/yno7bcDIfq7vM34qaioaHXd/BDqL/W1QgghhEjO6/VSWFgIQHNzc14eiIr8V11dnXqpl28HvHICBHZD6Sw4+imwdlwi1Bu24Uap0tSKweiRUEZ+RiKnTUVVFDRdxxeKUNRmxHlz0BjzXuiwosYyafKNoii4bBZ8oSj+UJRCh7XDyWhr130BjrEUOqxYLamd4w7v2QKAffh4QjWbmDBhQrvm26pqQdP6bhPYAcExBCacZ1xCdVD1uJEJVPM8NKyDhmXw6TIo3g9GfQNGf9PIClLy83UvRDrlbcaPEEIIIYQQ3bFy5cr419OnT2fFihVd3ylUZ2T6eL+Cwglw7HNgL8nMAhUV+zDjJOa08h70H+rJj1SUlnHoSUa6NwVaAj/5rO1z6GgM/dCK0UDno9xNbrcbXdfZu3ktDocdS9FQVFcxdWoxZ15YCRgBAUVV+cbFlajOwjQ+I5FR9kEw/vtwzFNw5m447P+g4lRQ7dC4AT67AZ6ZBU9NgY9/Dfs+kkwg0a/1mcDP7373O373u9/lehlCCCGEyKLq6upcL0H0ER2V/lRVVXV8p4gXXj0FGj4FVzkc9wK4yjK2RkvJcKLN9YQaahk9ODMZRckUOIygiTdJ4Cee8ZNCWVQuOW3Gc/CFjfV6PB6uvOEWEoMzl1b+jhNOPZNly5ZhV7SOHqodt8PK6EEutKAP25BRPPPueg5ecCa24WMBuOM/rzLn+DNwjpsDKPK+1NfYS2Hc9+DoJ+CsPXDYX8FzOqgOaNoIn/0Wnj0QnpwEa66QIJDol/pM4EcIIYQQA0Ni1sbUqVNTy9oQA15HpT+bNm1KfgctDG98E2rfAlupkelTOC5j61u5ciXR+hq8n71E5Xfn8eCDD2TsZ7VlZsv4QpF232vuMxk/xvoSs5a+dso3KZq7ENfkw7niweeoOORkVHcpAMXdDGStf+1xmlavIlj1GdefezxfvPEk4d1GCdj/O2omH774GL71rwG6vC/1ZbZiGPcdo4fXWXvg8L/DqDPB4oTmzbDuJiMI9NQU+PhqqP8s1ysWIi0k8COEEEKIvNGjrA0hMEp/lCSlPxMnTmx/Y12Dt78PO58BiwuOedro9ZEhuX5dq1qEZcuWMefgw9s1Jm4OhoHUGiHnUrJytXpfGNVRQLR5L2NHjyIU0bAPGwt07/lUVVVx/ZWXxa/rusZDt1wdv964dxeP3Hlt/Lq8L/UTtiIY+y046j9w5h444p8w6iwjCNS00SgH++90eHo6rL0eGr/I9YqF6DEJ/AghhBAib3Q7a0MMaOakLEVRUJyFnHVR674sv7rhtvbjt3UdPrgEtv7NmPxz5L9h2OEZXWeuX9dm0ESxO9t9r6XHj63d9/JJvNQrIfBT5zeCVpqvgbmjS42vg34i9bvw7tud8mN39Pd55ZVX0HWd6upqeV/q72yFMOb/wVH/jvUE+musJ5ANGj4zpoM9NQWeOQA++x00b8n1ioXoFgn8CCGEECJvdNSwNWnWhhAJPtzWwEEnnIlr0iFYSsr41YpnGXnQAhTV0noE96c3wBd3G18fthIqTs742nL9unbFgiaKrf14+r7S4yee8RMb565pOoGoSmVlJbU7tjF77HA+fcUo1/J+9hLzDzsg5XKsrv4+uf77iSyzFRnlYEc/YQSBDn2wZUR83Rr4eCk8MR6eOwTW3w7e7blesRBdksCPEEIIIfKGx+Ph7rvvxszaUFULy5cvb5+1IUQC1eFmw65mAEI1G4k27mHEyAq8wQi2IQmvnY33GGfuAebcBWO/nZX1eTweliY0IrZYsvu6LrBb0II+9FCgVWNiXdf7UI+f1qVeDf4wUU3HZlEodlrZsaOah2+/Jn777pRjtbzvGNr+fdp+X96X8l9iNmDb8sZusZca08GOfQbOrIGD74Oy40BRYe978NEv4PHR8MKR8Pnd4K9J11MQIq0k8CNyKm1vykIIIfqN737vXIrmLsQ9fR6PvPQOixcvzvWSRJ6zDhlF3Z6djB7kItq0F3SN/UcYo7ft5VMAsFT/G97/qXGH6dfAlIs6eriMmHfa/6No7kLsI/dj3bp1WX1d//c/f6dp9SoCX33UqjFxIKwR0YzpRfke+Gkp9TICVXW+EAClBXYURel1Od2iRYviXyf7+yxatAj7iIm4p89j+RNvyPvSQOQYAhN/BPNegtN3wNw/wLCjAAX2vAkfXAyPjYQXj4WN90JgT65XLEScBH6EEEIIkVfCUQ3VUYC1pIySoSNyvRyRx8wJcKEdG/jd9xdQvfp5IpEIq1ev5qCJZSiKgupwM3tyIXue/yGgw6SfwIxrs77W5mAU1VGAYrFSUVGRtZ9bVVVF5RW/iF9PzIRpijV2djssWFQla2vqiZZSLyO4YwZ+BhXYgfSWY3X099EjYawlZThKh3X7MUXmdXRCOTHLLW1cZTD5p3D863D6djjw9zDkUECH3a/C+xfAY+Xw8gLY/ACE6tK/BiG6QQI/QgghhMgr4age/9rs5yFEW20nZem6xq8uvShe2lPosPLVW0/RtHoVa75oZuzFEVZ8chDMvRuU7Ac5wliorKzkg3f+h9vtztrP7SwTprmPNHYGcMUCP4FwlKimU+c1glaD3MbauyrXSgctaAQTzIbYIn89/PDD8a8Ts9wyoqAC9rsEFrwNC7+C2TfDoANBj0LN8/DuYni0DF49BbY8DOHmzK1FiA5I4EfkjYxE44UQQvQ5NoeTyspKKisr0dX8PyAVudFVaU9VVRX3/vbK+Pc0HZbc+iFV1Tuyuk6T2US5KMtBls4yYfpKY2cAp9USj9f5w1H2tcn4ga7LtTrjdrvRdR1d15MG5txuN/V7dlJZWUlIV9E0PcmjiHxx2WWXxb/uTr+nXnOPgWm/hJM+gFM3wswboHQGaGHY8TS8/V14dDj871tQ9QREQ5lfkxBI4EfkQGIa5n333Rf//4xH44UQQvQJkvEjUtFVac/Gtf/LqxHc8bHpWQ6ydNaYuCXjx5LVNfWEqirx6WT+UJT6WOBnsNue9PaZKKdz242SOF2HpqBk/eQvJT+2/aKJMP3XcPIn8PXPjN5ihRMh6odt/4TXF8JjI+DdH8GuV0CTzzuRORL4ETmVs2i8EEKIvBWKtOywByTwIzrQLqCRUNpjjexjyp6radu2JlcjuIORaPx1nYsmyosWLcJWNh739Hn8YdVr8UwYM3jRF0q9oKXcq94Xwhs03htKC7K3dkVRKIoF7poC4az9XJEas+cXtM/GytW2H1cyDWYug1O/gAXvwZRLwVVu9P7ZfD+8dBw8Pgo++DnsfR90ySgT6SWBH5FTeRGNF0IIkVdC0ZbPBnN0sxDJLFq0CPeM+binz+PVdz4yAhrhRiZWXcwoxxbuvWBw/LaKqnL1736fkxHcZmaNw6Zit+Zm91vzNWItKSPqGoweO6jsK6PcTWbGT3W9HzDW7bC2ZCt1Va6VDkVOI9DU6JeMn3zStudXosQst5xTFBhyEMy5HRZuh3kvw4Qfgq0U/Dvh89/DcwfDk5Phk2ugYX2uVyz6CQn8iJyxlBjTNlr9X66j8UIIIXIunBj4CUfjB6lCJGNxFWMtKWPMaA9EA6j/OxN3cAO6YxjfueYlwBj3fsWDz1E+94SkU38yzSzzKsphgCXqrQNdwxeKxjN94n2H+kCPH4ACu7HOHfUBILvZPibJ+MlPyXp+ATjHHsi9T7zRrX5PWaNaoOxYOOTPcGYNfO1xGPMtsBRA8yb49Hp4eho8cwCsuwW823O9YtGH9Y13edGvmGmY0YZdQEvgR1FV7r333vyIxgshhMiZxMCPrkMwouG05X8PEpF9uq6jWI0eLw5Vgze/jbL7VaKqG772FHrBJAAi9TsZPmIk9b4w1sEVRPZld6BES4AlNyVVbrcbPRrh4Xe3srsxyK6GAEUOa0tz576S8WM3zlnvaQoCHff3yaTi2N9QJnvll0mTJqGoKnqb4I9t6GhKhpblaFXdYHGA5zTjEm6G6ifgq7/Dzmehbo1xWXM5DDsKxp4Do74JzqG5XrXoQyTjR2RV+zRM4yyua/IRXPHgc3zn3B/kZmFCCCHyRmLgB6TcS3TM4Sqg8tplVFZeQ+kXS6HqMXTVwaaK22DwnJYbRiNMLy8y7lMxNevrbMqTkqoRxU4AahoDBCNaS9+hPpLx47IZ69RiWYClBdkP/JgZP42S8ZNXPB4P3/35dZgnlS0WC5bCwaiOglblw32CrRDGfhuOedLIBDroXhh+NKDAnjfg/Z/AY+Xwysmw5a8Qbsr1ikUf0Dfe5UW/0VEaJgqUDh1BvT+Ey+7K/sKEEELkjVCkdWmXPxxlUI7WIvJbMBa4UHa9hF35M6gq2mF/o7l2DNDS8wWM0pyPqhpRHYWozmKqq6uZPHlyVtaZL2PTy4qdQAM1DYH4mpw2CzZL3zgXXGBvnfmXi4yfEpdk/OSjqKYz47jTKXp1NU1r/su6z9ZiHTSSx9fsQLVk/3WSNo4hMGmJcfFVwdZ/wld/g7oPYeczxsXigopTYex3oPxE6MvPV2RM33iXF/1GstGrBmOnrM4rZ0+EEGKga5fxI5O9RAeC4SjUvoWj9mUUBTj4z+BZmPS2RU4bW996iqbVq9ACjUydOpUVK1ZkZZ3NQWP/JtcZP2WxjJ/dTUEa/bE19ZFsH2iZ6mUalOMeP9J/LH80+o2/h2KzQyRERUVFPKDZ9jOlzyrwwNRfwEkfwCkbYHolFE2OjYf/V2w8fLmREbTnTZkMJlqRwI/IKo/Hw0+u/C2JaZj3338/Tzz6KDabnXp/KLcLFEIIkXOJ49xBSr1Ex4KbHoadL+BQwzD7JphwXoe3raqq4p7fXhm/rmkaS5YsoaqqKuPrNKdn5bqJ8hC3HbtVJRTR2F5nTMbKZcPpbosEWbZsGcuWLSMaCcf77WSTGbwLR3UJSueROp9xDKH5W8qeHLEJem0/U/qF4ikw81ojAHTiamM8vHMEhPbBxnvghSPhiQnw8dXQsCHXqxV5QAI/IuuO/Po3KZq7EEtpOevWrWPx4sUMchsf3PU+yfgRQoiBru3Z2YAcXKWd1+vNyXSrtNr2CMGPrgbAMfJYmHZ5pzdPVm4ejUbZtGlTxpZoasyTHj+qqjCsyAHApt3NQO7X1B2uhCbvJS4bqqp0cuvMsFrU+O9Myr3yR50vhM1m5x8rV6DrOm63O57x0+d6/HSHohj9zObcDqdXwbHPw7hzwVoI3i3w2Q3w9FR49iDYcCf4d+V6xSJHJPAjss4XjqI6ClAUhYqKCgBKXEYtqgR+hBBCmDvp9tjZ2q7OqveLIIbonh3PwVvfIajZYPAcHGPP6vIuycrNLRYLEydOzNQqAQhGonnVRNls8NwXS72cNgta0EekfhdaU23O1hFv8OyX/dZ8YbaLSCz/s1lbSr0GRFmeaoHy4+GwlXDmLjj87zDy66BYYN9q+PASWDUSXjkx1hS6OdcrFlkkgR+RdWbKvh4Oxv+vNPYmXecLDYw3ZiGESMFADWiEo8bnQHGsiWpfKvUaqH+zrNrzFrxxJmhhgmVfh5En47BZurybx+Ph7rvvxiw3Vy0Wli9fjsfjyehyzTIvh03FYe16nZk2osRJOByKl0xZtb4TvPjX3/5C0+pVeD97iZ+cflTWejS1Zb43NUrGT94wS70GJTT8tscyfnS95XNlwLAWwNhvwTFPwRk7Yc7dMORQ0DXY+Ry8/T14tAze+i7seAY0eS33dxL4EVml6zpRLFRWVrJ3907cbjcApS4bimLU4PbXemk5GBBCiNSYpV7FsbPq3flcqK6uzsia+rPq6uq+8xlV9zG8ejJEfVB+EsGp14Cixnt5dGXRokUUTDsa9/R5vPjWhyxevDjDC26Z6JUvvXTKipytrrvzZF1dqaqq4uKLL45fz2aPprZkpHv+MasGBhW0BH5slpZSwH7T4LknnMNgyoWw4G04dSPMuBYKJxrvo189bLynrqqA1T+Dve9LU+h+SgI/IqtCUY2IZryZJNZpJ9ZLS7mXEEIMbPHAT+yselc9flauXBn/OpuTmvqytr+zxOt5q3EjvLIAwg0w7Ag46t8ENWNXNpWMH5NisWEtKWPw8BGZWmkrZh+YfCmpKnZZcSb8vgoduc9CSkUuezS1ZTaVlh4/+SEYicYDrKUJpV6KosRLhgd04CdR0USYUQmnfgEnvAuTLwLHMAjshi/ugucOhqf2g7XXQ/OXuV6tSCMJ/IisMtP17VY1/kZsMiP0ZqqmEEKIFgMpk8Xsh2IeXHVW6lVVVcVFF10Uv57LLIC22v7N8iWrJtnvLDGTIi9fa74qeOV4COyCQbPh6KfAWhB/raSa8eN2u/nrygeprKzEYnNkcMEtzAPSQkf2J1AloygKZUWOeK+chtq+0ew1Vz2akkkc6S4yJ9X3zIbYSeMCu6VVUBNayr365WSv3lAUGHowzL0LzqiGo5+GMeeAxQVNX8Daa4ypYM8fDl/8CQK566kl0kMCPyKrfLGdd1eSM3NmhL5hAGT85OVOtRAi7wzUTBazuXOJyyz16niHPZ+yAKBv/M06+p2Z8m7dgVp4+QTwboWiSXDMs2AvBSDYzcAPtDQNz9akn+Y8meiVaPXzj8Z75cyasX9+/b070NKjyWDJUo+mZIpiQelGv2T85IN9Zn+fhDIvk1nu1a8ne/WWaoOKk+GIvxlNoQ/7PxhxAigq1L4Nq38Kj5XDa6fB1n9CxJ/rFYsekMCPyCoz8FNg7zjwU9dPAz994WBACJE/OspkyYeMkUzSdZ1wJNbcOXZwFYxE0bTkPQfyKQsgn7OPEiX7nSXKq3WHG+HVk6BxPRR44LgXwFUW/3Yw0pJJnCpzxHM4SxkATUFjv6YoT0q9qqqquH3Zr+LX8+rv3YVFixbFv163bl1WejQlUxwLSgfCUckkyQPxiV7uJIGfeKmX9K1Jia0Ixn0PjnvOGA9/4O0w6EDQI1D9JLz5LaMp9Dvnwa5XjWbRok+QwI/IKjNd35U08BMb6e7vf6VefeVgQAiRfj0t7+kqK6O/imo6WqyxZJHTaPyv6xCIJH/uHo+HH1x+A+akplxmAXQn+yiXmZ8ej4ff3vp74tOtkgSBcpk1FRfxw2sLjTHEjqFw7AvgHtPqJsGwmfGTep+aXGX85EvgJ9+y5HqqoqIiZz/bYbXgsBmvI2nwnB2dNaGvj2f8tC+ntEmpV8+5ymG/S+GkD+Dr62D/XxvvwZEm+PJBeOlYeHwcfHwVNH6e69WKLkjgR2SVN2Ts/BTY2+/8lMaaeNb7wv1upPsXX3zRL3ayhBDZkywro7Msjf4i8aysw9oy/rqjPj9RTWfq0adRNHch7unz+PSzz3KWBdBV9lE+ZX6e+o1zKJq7EOeEg3nllVfyJmsqTgvDm2fD7lfBWgTHPgsl+7W7WY9KvbJ8INgUzK9Sr3zKkuvLpMFz5qXahN6sFihNUurlkObO6VEyFWbdAKd9CfNfhwk/Alsx+LbBZ78xGkI/d6jRDyi4N9erFUn0/z1IkVf8nZR6lSSMdPd10sizL3IO9aAospMlhEidx+PhjrvuwszKUFSVMy6sxD5iMtB/e4WZWRhWVUFVFVyxs+odjXTf3RQgqumojgKsJWUMH1GetbW25fF4uPjqG0mWfZRvmZ++UBTVUYDF6WbOnDmx3im5z5oCjNKBd84zygosTjj6SRg8J+lNzVIvM/siFfGMnywEfkIRLZ6VlC9TvfKpV053ud1udF1H13XcbndO12JXoixbtoz9Zszut6W3udRVE3qTruvxwTCdZvxI4Cc9FBWGHwWH3Adn1MAR/4SRXwfFAnvfbekH9PqZsP0xiOZnJYfX68VqtTJ37twBs/1K4Edkla+TUi+rRY03y6v39/202cR01C8aFM68qJK82akWQnQok5OXuhusOevs71A0dyEF047hyVffByBU8wWQ+4yRTDHPypp9GczPi45Guu+oD7S6HsxxOv9xp50dz6RJ7EGSb+U1usVOZWUl//7H33C73SxatAj3zPm4p8/j1Xc/ylnWFLoO718AX/0VFCsc+QiUHd3hzXtS6uXIYqmXOdHLnpC9lg/ypVdOX1YUy+BSHbkNQPVXXZU7m5+nvpDRZ0lRjJPIbWW7p9eAYnXBmP8HxzwFp1fDgb+HQQcYGZtVj8EbZxpBoPd/CrXvGu/vImck8COyyhcv9Uq+82OWe9V58zM63BPWQSPZ3RTk8JO+gXvGPNzT5/H06+/LTpYQA0Rvynu8wVhWhquISWWFPPqHZfHv5TpjJFPMwI9ZjmOO5vWHku+072zwY7MZQYzKykosdmd2FtqBSCz7yDZoRKseJPlWXuNNUn6kqFasJWUMGZ6jrCldhw9+BpvuM84qH/YXqDilw5tHohqRWNPv7pR6ZbPnR77190kml71y+jLzbyqBn8xI2oReUeJfmp+n+2LHDMVOG1ZL+/eBbPf0GrBcZbDfJXDSh3DyWph6ObhGQmgfbPwTPH+oUQ726W+MCY0i6yTwI7LKTNV3J+nxAzDIHRvpHsv4yeSZ92xxjp4BwPSRRUS9dVhLytDdQ3K8KiFENvS2vMfMFtCCPjZt2oSeRxkjmWJO9Ipn/JiBnyQZP7qus6PeGCtrHg8EOxn9ng2R2MGFYml95rmlvMZsqJzbzM/4lE1Hy4kYPWq83nLSC0PXYc3l8EWsBOmQB2Dstzq9i5ndpSj5Oc7d6/UycdoMli1bho38KmHPp5KpvqrIYUUL+tAiwX5beptLHo+HGxOa0LdtmWB+nm7Y/BUAg5NM9IKWce7S4yeLSqfDATfBwm1w7PMw9rtgKYCmL+CTq+DxsfDisbD5QWNyY44NlO1XAj8iqzor9QJwxOqlTzj1jD4b6ElkKSlDj0Ro3rubA0aVEG3cA8DOhmCOVyaESEVvdwZ6W96jWWxGOc7f/8LMmTPzKmMkU0KxVH57bGfd/LxIFvhp9EfwBqNYVIWhhQ4g96Vellj20fW/ubHdAfWiRYsonL0A9/R53PXoqznN/DSDiuaJGLfbzV9XPhjLmnJkf0GfXAPrbzW+Png5jF/U+e1p+VvbrSpKQiZAV7LZ40d1FAD509hZpM8zj/6DptWrCHz5Qb8tvc21b3zruxTNXYhr8hE89NCD7UqFotEoXz91IcuWLcOpJg+utjRzlzKjrFMtUH48HP4XOLMGDn0Iyo4DFKNx/7vnwaMj4M1vw45nQcteo/TEbOzp06cPiO1XAj8iazRNj/do6KrUS3UWZW1dmfLQQw8RbdiF97OX+M33j+eJRx9h7/ZNVFZW0hDS4w0phRCZ153swXROXupteY85LcbtsLZryKqoKkt/e3u/6xVm7pyb5TjxjJ8kTf93NBjZPsOLHLhjmSu5fm+NxKaSRTU9nv2TyOIqwVpShmvQ8GwvrRVfsH3pdc7GHn96A3x2g/H1nLtg4vkp3S3e2LmbvXPMA8FsZACodjPwkz/9fUTvVVVV8evLL41f76+lt7kWjmpGubO7lEMPPbT9pEuLBUuRkUVfmqSxM0ipV96wFRkB/XkvwcKvYNZvoXg/iPph69/h1ZNg1Sj48DKo+ySjS8m3YQvZIoEfkTX+cBRdN1KynR3spJW4YvXSzsJ2I937UhpeVVVVq8kD5htKQ+0uil02dB1qGgKdPEL+6g/ld0J0pKOdgZ6+5j0eD1f95lZ62ti9uU0fFrMhq3XQSK548DlGHHgCVpu9X02liDd3btPjJ1lAZ2cs8FNe6oof/Oc64yeckOGVOJoejGAQqrFObzC3ASpvLJDmTshEyWYmTNz6W+GTq42vD7gFplzU+e0ThHowyh2yPM5dVYnU78K7b3fmf5bImo6yOUeNGiX7R2lk9vBCi1BRUdHu5Mf3fr4MW0kZ0HLyuC1p7pyH3KNh/6Xw9XWw4H2YfBE4hkCgBjbcBs/Mgv/OhvW3g78m7T8+34YtZIsEfkTWxMu8bBZUNXlKdrHThhb0Em3ax6Yt29J65j2bOntDqSg1Go+2nUQjhMi9rqaI9MQp3ziHorkLcU+fx/NvfdCt8p6OGsNG6muoGOnBG4pgGza2V+vLN20DP/FSr2QZP7H30ZElzvjBf+57/LQEe9oGFmwOV7wJdVSxoGm5KT0IR7X42hIzfszAT9uAVTJpOQnw+d3w0S+Nr2deD1Mv69bdE0u9uiPxeWbyb7By5Ur8G9/B+9lLLDzmoD6zDyO6liybU1UlqyvdrHYnlZWVPHD/n+PTBwGw2Lj2Ly8y7ZiFoBjBVV9d8uCqLYsZfqKbFAWGzIW5d8HpO+Brj8Oos0C1Q/3H8NEvYFUFvHIyfPV3iPjS8mPzbdhCtkjgR2SNudPeUZkXwF//8n80rX4c72cvccCs6Vx44YXx7/WlNLxJkyahdPCGMrLUBRBvSCqEyK7OsgeT7QwoqgrWnvc8Mac8WUvKKBxc1q37tmT8tDmTqWvM8hQDYB8+DuhbWZGdMdPx7dZYj58kzZ29Xi+K1caFly0lHA61yfjJbSZN4sFFsE3QMDEQpOvgDWWvn0EiXyzbyKoqrbJl4pkwvQx2pmTTffBBLDN2/6tg+lXdfoiWUe49C/xA5so/BmopwUCRrPT2mxdXgt3Yx+sv78e51vZEQFw0zCmHTuO95x6lafUqvJ+9xEGzZyQNrjqk1KtvsNjBcxoc9W84YyccdA8MPQx0DXY+A2992+gH9M5i2P268f895PF4WHrDLfQ0G7uvksCPyBpf2NjBdXUw0avtThKxaROJ+koansfj4Qe/vIFkbyjlJcZOQU1jIGdne9NFdmxEX5Fq9qDH4+Guu+6iZfKSypkXVuIadwDQs9d8YiDA7NmTCk3T4+VAZv+axEk8B00s48MXH8P76UtA/2lOaGab2C3Gc+5oqpe1aCigUOy0Ueiw4rDFMn5yXeqVkC3TNnOmbSDIlySLKRvMgJPbYW3VFNkMtmW8BGrjvfDeEuPrqZfBzOt69DA97fFjURWssczjTB0MDtRSgoEknn0C/P7frxplSSHjpF5fylLPZx0GfgB3uJ5H/7Asfr2j4GrOepeJnnMMhkk/hhPeglO+gOnXgHssRJrgywfgxaPhiYnwybXQ/GWPfsQJp59N0dyF2CumsXbt2pwOW8gWCfyIrPF1kfGTbCeprb6Uhjdr3ukUzV2I6ixk3bp18TeUoYV2FD3Cr6+uxF4ytM/VgffV8jsxcHX3zPs3zjGmiLj3P5b/rV6DqoJ/4ztAz17zVpsjXt4TJvUDVF84iqbrqIoSn7yUaE/NTh6589qUn1dfYfZhsLWZ6hUMa0aPnBjVVUqkfhdW/z6g5axurgM/iQ2d2x5otL1uZnRlmy8e+Gn9ejSDbcl+h52VdnUrIPr5H+D9C4yvp1wCs2820v17wFynGfTrDluG+xkN1FKCgeqICYN59O6ugxCie8zguTX2eZB48mPHjh3oKQRXW8a59+2TrQNW8SSYuQxO2wzzX4cJi8FaBN4t8OkyeGKCEQja/ACEm1J+2GDEaByu2p1UVFRk8AnkDwn8iKzxdzHKPWmJRcLOoKr2nTS8QDhKIBxFdRSghQOt3lAURaG82OjzYykamqsl9oikrou+qLtn3hv8YWNnwFnEELeD/9zVu535cEKworEbGT/NgZaD82R90VJ5Xn2xGbuZgWEemDusajwuYE6GXLlyJaGdG/B+9hJLTjuSFStWtJR6JRn7ni26rrc0I6V9T4m2QQZfjho8m5lkBW0Cit3p8dOjkwAbfg8fxD5Dpv4SDry9x0EfSMz46f7ubKYbPHs8Hm667Q4GWinBQLW7aiu6Lhle6WYG0u1JMn5SDa4mNq1vW0kg+hBFheFHwSH3G6PhD/srjDgeYzT86/DuYni0DN76HtS8CFrnn6+BWKmwHg5mYfH5QQI/Imu85uhYW/LAT9t6aYvFwh/+8Aec4+finj6PR195t8+k4dX7wgDoYT9E2x/olZcY/UKsxcOyuq7ektR10Rd198x7CBuVlZU8dN8fqa6u7vVrPjEDpNEfTvl+bSd6tdVfMwrCbXb0FUVpVe7VUQB63+6dQG4zftoGTNpl/ETzI+PH21HGT4pZMO+9v7r7JwHW3QIf/tz4ev8rYfZNvQr6QGKPn+431c3GBLMzzv42RXMX4pp8eKvMX9E/JGafzJw5s1++H+daqJNSr2THDcmCq+Z9NV1vlTUq+jBrAYz7Dhz3PJy+DWbdCMVTjNHwX/0VXj4enhgLH/8aGr9I+hC6xcY111zNygfux+12Z3f9OSKBH5E1Zn+GtmcYEyXWS69bt45FixahqBasJWUMGjYi42tMl3p/CJvNzp//eCe6rrd7QxlR7EAL+tBR+lS2TGdNq4XIVx6Ph6sTRqp3lT3YEAvOlBbY0hJcScz68AajKff2MoMC7g4CP213etV+klEQirTf0TdHuvtD0Q4D0Du2bQFyG/iJtFlX27WEI63/9r4cNXfuKOPHLIkIJWmQnZjhc9xxx3YvIPrZb2HN5cbX06+BmTf0OugDCaVePcn4yULD12DYKCWwuIoHTCnBQOXxeLjjzpb+cJLhlR6RNqVebbU9bkgWXE3MFpJyr36owAP7XwFfXw8nvAOTLgBbKfiqjM+ep6bAc4cZveVCdfG7mRnEncwc6nck8COyxtdFqVdb5k6SHjUOwvrSm7WZ8VPqsiX9/nOP/ZOm1avwf/4/pk2b1mf65Hg8HhZfnrxptRD57KSzvhUfqX7fk290eubd3H5LXLakk1sWXXY9o0aNipdPdVVOlfjepek6zSke7JulXoXOzoPlrsmH454+j8dfeafT51VdXd0nSr/M35ctYUffzPgJhKMdBqAnT54E5LaBZ9vPqXalXm2aO+e8x08HpV5tgyHJhi+01WFAdO11xllXgBnXGb0a0hD0gZZSL2cPevxkutQLQIn193poxZ8HzBnlgey8H3yfogNPwT19Hu9+9LFkeKVBZ82d2+oouKqqSkJQWxo891uKAkMPgYP+BGfuhCP/BSO/DooF9r5j9JZ7tBz+dzZU/5dA0NjXs3cQVOyPJPAjsqar5s7QOm3W7Xbjdrt56fnnqKysRLXZs7XUXqv3hQAY5G6/5qqqKi752cXx632tT47ZtNo9fR7Pv/mB7NiIPsFs4mctKUMrGNLpbc2MnxKXsf3Gzyha7Vz10AtM+dqpWAenfva+bRZIqpO9mmM7JUUdZPzE6XqHo+Lb9mFJvJ6vku3oO+0tpV4jykdy9s+W0TYAPX7MaMAIBuSqj0Oki54+ZoZKUSyY5811j582pV6OWHPntgGsroYvJD0JoOvwyTWwttK4PutGmHF1GlbfoiXjpxelXhnM+DHPKDs7KHEX/Y9itWItKWPIsPK0Pm5fCNpngtkjz9bLg/P4ZC8Z6T4wWJww+ptwzFNwehUccCuUzgAtCNv+Ba99ncCaZVDzIoV6ba5XmzUS+BFZ4+/gDGNXzAaf4T4Upe8s4yff++R0tnMRCEfxhaLxA+jCIe0PNIXIR4kH4PW+cDxTIJl6vxG4LS1os/1GQnxttpFVYi+fArSfZpRsulHb8p5U+/w0xw7OO8v4gVgvMdqPBk/WC+fiiy8m35mBn8TyHVdCqddXe30cMP903LMWAC3p/ebtdT13O/dd9viJXR9UYAQVc1Xq1WXGT0RrVZLYUcmje+YC3NPnsWbtp61PAug6rLkCPr3euH7ALUYqfpq19PjJz4wfs3loTzKSRN+khY3Pj1xPF+yOfA4qhZOU/iZqe8K4I+b922ZhigHANQKm/gJO+hhO/BAmX4xuH0ogFEKpfZtJe27I9QqzRj6JRFaEIlp8hzjVUi9TX4zS15mlIm0PHOnbDVn3eo3eReZo6gjdC+IJkSuKteV1a7XZ2N2YfIpDIByNH0yWJAncHji6hI9eXIXvs5cBI4tmyZIl8e8nm24UjgV6zWzHlDN+Asb7SGfBcrfbzesvv8D55/8ITW293o6CzKZujeDOomTNPBObO2+oaQQg2rALaEnvt1pULLHpZ7k66Gp7UNHRVK9BbuNv5Q1mPztJ1/V4xk/b5s6JZ9UTP3M9Hg+/XHYziVlWd911F5aCYqwlZZQkngTQIvDej2D9zcb1A38PUy/LyHMJRdOQ8ZPJwE9EMn4GErfbzf3L/xTLUndk7Ofk63t3JpgZs73N+MnG9i7ynKLA4ANg7p2ETt1OdPS30Utn0TzopFyvLGt6HPjZvHkzTU1NALzxxhssW7aMRx55JG0LA9i6dSuLFy/mgAMO4JhjjuH+++9P6+OL7DFHudssSrffvM3b95UovTnKHaDU1b7Uq11DVlXN2z45bXcu9jWHWl1vylF/CiG6q20gYHdTIOntzGy9Qoc1HnhIPKPoa2rkX3dWxm+vaRoPP/xwq+ttSzfN5pSDY6WfTYGuM350XY/3fynqIuPHbP7sbbM9JgsyJ/ZWSXkEdxbput7S3DkxiyMaYtmyZZxy5tlsqDaaM4b2bGl3fzPzwwzeZVukTePuticszOulBXYUxej55M/y+PlAWEOLBZvaNndODJ61Xfvxp59N0dyF2Monx4cvaEEjOyD+WRANwJtnw+YVxujdQ+6H/S7JyPOIai2vFXsPMn6ykQEQDPe8B5Hom8wgX7qDz23LdvPtvTtTQvGeb73bhuyS8SMSBDQLFE/BMvp0GktPzvVysqZHW9E///lPTjvtNNavX8+6deu44IIL2L59O3feeSd33nlnWhamaRrnn38+gwYN4rHHHmPZsmXcc889PPnkk2l5fJFdvrCxU+iyW1G62dQx/mYd6RvNneti/X0KHdYOd0YXLVqEpWgo7unz+O0/Xs6rPjmd7Vzs9RpZEmbmQnOKmQtC5JpZ2mUGX3Z1kPFjlnkly9aDrnudQPvSTXNHsyXw0/V2E0zIkuxoqpfJHdsevW1KvTweDxdffSNmlkbb99587C8W0fR43+DEkwTmgbN1UDmarlM+qJBI07526f3xwE8npXyZ1FWPH/O602qJZzFlu8GzOcrdZbfEgzyJ7B2UVwfCRpmvanVQUVGB2+3mLyvuo7KyEk21Q7gJXv06bH8UVDsc+W+YkLnPtsTfba+memUwA8AM6vUkI0n0TeZrMZDGgG6yst1MvXfnWzaR+Z5q7WXgx2ZNHtAWA1MgISjf3ePSvqxHW9H999/PTTfdxMEHH8x//vMfpk6dyv3338/vf//7tGX91NbWMnXqVK699lrGjh3L0UcfzWGHHcYHH3yQlscX2ZVKY+eO9LVSr3h/nw4OHE16OIi1pAxb0bCcNSJtq6udi31e46B4zJACIHcTaVKRzzXrIvvMXhujY6/dmobkGT8NCRO9kkmaRdNG29LNcJuMn8YUMn7Mbctlt3R5ptPM2kjWL+bIk79J0dyFWAd7ePDBB9tNY8qn/mLQ+mysTW1f6mUGsfYrL066s+bI0Nn2VJl/a3Np7TJ+EjJUzICeL8sNns2f5+7g89jewWeu+TvVIy1BUzMbrbGxFl46Dna9DNZCOOYZGHVG2tfeej2xUbxWFTVJAKsrjqw0dzZ7/EjgZ6DIxHtQpntDtj3h96c//Slv9p9amv2np7lzX5oQLDLHDPy4Bth7c48adOzatYs5c+YA8Morr3D22WcDMGLEiLS9QQwfPpw77rgDMFK/P/zwQ95//30qKys7v6PIS/7eBH6sfSs9syXw0/kUMi3kA4z65WBEy4sdw852LjweTzzwM3qwm/U7m2gKhNF1vffRci0CkSbjjHG4CbSA8X9aGPSIcdHCxv9FQ5Q2bYHq7WCxGWMak1zUYIg54yAcBaXpC2CI0eXf4jIuqvQnGkjMkovRgwtYs62eBn8YfyjarudYvb/jxuzQUqr505/+FDCCPN/61rd4+OG/ATpqkulGkSQZP11tN2Y2XVfZPom3CUU0QhGtVaZhUzCC6igABQ477DBUVW21jedbfzEzs9NmUVodzDttKlrQh+ZvoqF2F1NGTEl6/9yXehk/12Wz4AtF22f8JDSudjss7GnKfgDd/Hlty7xMtg4yYXTVRmVlJQv2HxHPsip0WCHcQNN7N4FtNTiGGkGfIXMz+AwMLRO9epYJYI9nh2VjqpeUeg0Umcj4MU84ZOK9O9+HAJiBGlsXJ1y6ko1m7qLvMIPyjgH23tyjI5/x48fz5JNPMnjwYHbs2MH8+fMJh8M88MAD7LfffuleI8cddxw7duzg2GOPZcGCBd26b2Ijy77GXHtffg6m5kAIXddwWJRuPx8LOrquEQxH+8TvYl9zAF3XKHZaOlyv0+kkEgpy3xtb8Ici1HuDDCvKXCPAVI0fPz7pzsW4cePwBUI0xspgPKUOdF0jFAFfMNw6aBUNgb8aArsguAclsBuCuyG4BwJ7UIK7Ibi3JdATaUKJ+lNeowWYALCj89u5gNVmo/6XD2z3fV2xtASBEgNCVjfYitFtJWAtBnux8a+tpOX/bUWx6yXgGGL8qwysD4++xh+OousahXaVYqeFBn+YnfW+ePaaqa45iK5rFDk63n6/+93vxgM/a9eupaKigsfW7EBRVJ748y0cfdDM+H01TScc+7rEaYm9l2ntt5s2GnzGOtw2tcv3PQsaFlVB03Sa/MFWQWezn5Ae9DFixAgqb7yVyl/9AtCxWCzcc889lJeX5817ayAcRtc1LKq11Zoe/cdfaVq9CoAbf/AKY4P3ct5557W7v01V0HUNfyick+cUDEfQdQ2XzYY3GG73uRUIGd+3KDouq4quazQHQllda1Ps89hlS/55bFOI/Q4jrb7vCxl/G7ulZb/EHd4Gmx+gWa1DrxiFdvQzULwfZOH5+ILGemxq++eRyv6TRTH3LSIZ+/37Y39vew/2fUTfZI+/B6XvdVVeXs7Nt/2eyy69BNBRVJXf3X5Xt9+7k20XGzZs6HQIwLZt25g8eXKv1t9Tuq4TCkfR0VEVvVe/T0vsfS2Qwe1d9B3e2OegPXaCqS+/Jrqz9h4Ffn71q19xySWX0NDQwLe//W0mTJjAddddxwsvvMC9997bk4fs1F133UVtbS3XXnstN954I1dddVXK9127dm3a15Nt/eE5fFoTpGZviNLIPtaEdnbrvs0hjZoaL1ZVYc2ahgytMH3Wfuljnz9Kja2BNXWdb2L1u33UBaK8v6aBkUX5kYFyyc8v4/Zbb8HcuVi6dCm1tbV8vm0XNTU+CixRqj5ag786QDjk5Sv/bZSrW7GHd2IP12CL7kWhZ6m0GlY0ixtNcaIrVnQs6Iol9q8VYl8DKERB14x/0VH0KKChxP5P16J88nkN2/bC3EkFjB4SQdVbmlMrehQizcYlie7kMOlYiFhKiFhKO75YSwlbBhO2DiViGWRkJoms0HWdrdu9aLrO5+ub8O8LUdMQ5n8f1lE3rHVm3vrNXvwRjaqCRvw1yf9Gfn9LoHLv3r3s3bsX1WLFUjSMPXWNrFmzJv79cFSnpsZ4jX2+rpm6Wh/BiMbbHzQyyNnxa+DT3UFq9oQoCNpYw+4un6PTqrB79y7eX9PEsALjcaO6TtVOL+ef/yNOm3IJGzduZNYBcyiau5BI427+euMvGDNmTKv15lqtL0pNjQ+3XY2/3+/atYsrLvt5/Da6pvHjH/+YiooKysrKWt2/ekeAmrown2l1sLfzrMtMWL8nRM3uILrbyi5vBEubz62tVc2EozpfrG9iZ32YmtoQn4T2YavPXuB/bezzuCS8jzXhmnbf31ntp6Y5wqeWerw7WjLfvtzqxRvS2OxqpKHKQoH/U9xf3gDhg9nnGMXaET8n/GUAWJOV57G9MUJNjZ9IgYU1a/YlvU1n+097Yq+15n0qa+zJ798b5vuOjvH3dvUwM0n0LV/Vh6mpCaA311Ieab99dcTv93PUUUcBxtAcl8vV6vv7zZhN0dyFaIEmvnXuYvSyMqxWa4e370zidhEKhdqd8ENR4mXB06dP58orr+T0009P+fHTJaLp7Ix9fq7/tLlX5V7bdgWpqQ3xeWgf7qbt6Vqi6KM+i31WFwRtjB7p7BfH2qno0ZHmYYcdxttvv01TUxMlJSUA/OQnP2Hp0qXxSV/pNGPGDACCwSCXXXYZl19+OXZ7ajt0M2bMwGLpmwdY0WiUtWvX9unnYKr5tIZGWxMzJg1l9uhB3bqvLxThgyZjesusWRPzugmXruu807AFeyTKoQeOZmhh5zvz29WdfLmnGc+44cz0lGRplZ0r84zl/te+wKk18cMfnsOVRzbj8D3Auto6yhtKGaNuYNrWV/iw+ST2hAfh2vcqgx2t0290ixOcI8AxDBzD0J3D41/jHI5uHwy2YuNiLTIyaKxFYHGgAJ292lPdLu655x4uqjTSl1U1wL333st5P/g+RIMQ9RsXLQARf8v1qB+iPpRQA0QaIdwA4cb4RWlznXA9SqQZhSi26D5s0dQOHnTFAs4ycI4EVzm6ayS4RoBzJLqrHFwjjYtjqGQSpUE4qvH6vs0AHHTABFw7Gmj+bCcX/PxCfOtfp6GhAbfbTSii8drezZQAR8wd32FGTmJJ88yZMwHQo0b5zPiJk5g9viUY4Q1GeKt+CwoKcw6YwMZIFbubAoyeUM6EYYUdrnnv+t3stTQwY9xgZo8f0unzi0ajvLTlXdylZYydOJJJw43HbfSHKdv3FaqicOicCSiKwtA99aiOAmyDRjJ//vxWjZHzwda9Pj7zVzOs0MHs2aMBo6S87RlpTdNwOBzMnj271f83F9bi21rHqNGlzJ40LFvLjvNuqqVWrWO/EUUoNcb+0MyZE1FVBV3XeX3vZnR0Dpg9juLdzdR9sYcRwwuZPaM8a2uMfx5PHMrsMe0/j3daa9B3NTFuwjBmjyqN//87DV9SFIly4KwxDN73JOq7P6YRC7hG4hv3babNnZHVz2drdQNfhnczbqib2bNGtvpeKp8Ttc1B1vm34bJbmT17XNrXFwhHKdv3JWC87/S2Oa3oG4r3NLMtupOyYiezZ49K+X5tP1favjd/Ub0X1VGAYrEyadp0ojqormI0f2PS2yfT0Xax7MZbuTqWCaooKnrCyTtN07jxxhv54Q9/mPXps/5QlDfrjG1ozgETe9TLyxT5qo46ay2e8mJmTyvr+g6iX6v/fA+1aj1TRpWAb0efPtY2t+tU9CjwM3XqVN58800GDx4c/7+hQ4dSXV3NKaecwkcffdSTh22ltraWNWvWMH/+/Pj/TZw4kXA4THNzc6uf3RmLxdJn/5Cm/vAcAhHjw6TQae/2c3HaFZTYwa+GGq/TzUf+UJRQ1HiugwudWLpYa0mBHUVR8Ya03P2Nw81QvxbqP4a6j7Ht/Jwrv1GO3VoAvpepfu91Jjqr2Nd0AISnMtjdAPbBFBWXsScygWbPRBg1GNyjjUvBGBTHkFZjozNxKNDZdlFVVcXPfvaz+HVN07jgggs46aSTYjsuHR9wd1s0aJSuBfdAsLb1JdDm/wI1ENhtZBv5dxiXuk5+P6oj9nsdY1wKxrR87R4DBR7pVZQCf+z9R1UUnHYr5aUFqKqCpdD4HDFfS82+CIqi4rCpuJ0dn1woLi5u15D97w//lU27m7E5C1q9LjWiKIqK3apitVopKbCzpznU5TbvC2soikpJgSOl9wanVSGiKvjDLY/ri4RQFJVily1+ZtgV6wekWG2oqpp3ny0axP4G1vja9ttvv6QlqFOmTGm3fpfdhqKohKPk5LlFUeKfdebnVhQFm8Vi9JZQFBQUXHYbRS7jNol/s2wwt4figuSfxw6bFUVRiWgtv0NN02OfbQruL+/Csu4KANyeUyG8CE21E9J61scvFV6vl8JC4327ubkZt9tNRDdeKy67tcPfX2efE87YayUS1TPy+w8HW7Z9h73zYQ+i/3A5jNdVqJuvq8TbJnvdmm3LNH8DE4YV8mWtF4dnGv6N73T7OKHt7eed/i1ufuR1Qru/5L7rf8GiRYta3T4ajbJlyxbGjBmT8s9IhyjG56BVVbDZerev47Ab72tRPTefDSK/hDXjc9DtsIGvfxxrpyLlrWjVqlU8+uijgJHV8NOf/hSbrfUH2e7duxk2LD1n2Kqqqrjwwgt57bXX4qncn376KYMHD0456CPyg9fr5fs/WoKloJQT/35nt+9vVZV41mkoqnU4Ij0fmKOgi5zWLifxABTFDsKag11P+UmLcBPsWw217xr/1n0MzZsh4exONDQUu7WcqAaqcwhbi85g4qQC9u2aCYEyhsyYCOPHULRhF2xvoHncYJg4NDvrT1FXTarTyuKAgpHGJRVaBAK7WwI//p0JXydcD+wGLQhNG41LMooFXBWxQNBYKJoYu0wy/rV3L7uuvzKbbDpiYzuHFzlRUFDtBSj2lvT4hnhj5+6XCNk7aEJvNqa0xs5UFseaRnc10r0p1oC3MIXmzgBOq0ozLRMUjZ9hPB9z8hLAoOKi+JAEmzP10oBsMRvtmqN3IXlD7bYNtE2OLDTs7Uwk9vd2WFUsqkJU0wlFjeb9ZmNnRTGaV5tNub3ZnuoVm/7m7qC5sz3JtKtgRAM9CtVP49h9pRGtnvIzrAfchvt/X+ENRmkORDpsGJ0JZgPvno5KN18rEU0nqulJR9v3Rrx5aB7vs4j0c6Zhqld1dXW7vjqqzUFlZSXjh7k5eNxgvqzdjLV4OFgdSW/fHfu8ISObSFE49NBD82YIQLpGuUPLVLC+MihGZFbixMUsHYHlhZQ/oY8//vj4SOf33nuP2bNnt0srLCgo4Pjjj0/LwmbMmMH+++/PlVdeydKlS6muruaWW27hxz/+cVoeX2SXanMC4LJ3/81bURRsFpVQRCMc0SD3PZA7VOdNbaKXqchpHAQ2dnEQ2CNaFBrXGUGevbFLw2egJ/nQc5VD6SwYNIuwMhu2j8JiHwKKylcuG/qssdT+bwuoEQYPHg5AoSODa++lTE7A6DXVmlqgSAuDrxq8X4F3a/uLbxtoIeNf3zbY80b7x7APbgkCFU2CwoSgkGPgBNDbTv+xW1UGuW1oQR+Kwx3faW6IBW5LC7p/dt7MRAy32dk3pzyZgWAzCNNV4Mec6lXoTO1j2mVVaMYoLWv7GImBH6uqxAMSwYjW44PmTIlPcGmzo79o0aJ44GfdunUdHuSYEzpyNbnFPFCxWVVsFpWoFo2/JhJHuSuKEg+8eINdT3lLJzPQ1FF2Tvy1nHCAFPDtha/+it23EUsZMOcPMNn4exQ5bXiDURoDEYYXZ3btiXo71SvxNRaOaljU9G4LLRO98msbE5mVOFmwO9t125Hq9913H4sXL47/X/wEhtVCeYmLL954kqYPnujw9t3hjahUVlZy4vQRTC4vbhVoV9WOA+2Z1vJ50Pv3RkcH0wrFwORPmLgogZ8k3G43F154IQAVFRWcfPLJOByZOwK3WCz86U9/4vrrr+fss8/G5XLxve99j3PPPTdjP1NkhqbrKDbjtVLQwx0guxn4yeNIvdfr5cDDjsQ5agZ/vfu3Kd2nMMWDwJREQ0YWz+7XjMueN5M3Li4YBUMOgSEHw+ADjICPsyVTL7y7CXbvZFiRgzpviEZ/mF2NwfgaB8eCWubBZLZHEafC4/Fw02138MtLf4bZpPqa3/0+JzsuPabaoHCscUlG18BfkxAM2gJNm6B5k5Eh5N8JoX0tQb+2HEOheCqUTIXiaca/JdOMDKI87qPVE8GEHWbTxy8+Fp8SZe40jzviFABKOhjl3pn4aOi2GT+R1juuxbHtpjGQfFfD6/VSWFxCyWFnc+WVS7uR8aOABt5Qy/ZobrNmkBaMQLrDquILRY2MCWdKD5815nt8ZxmTFRUVHX7P/BvnKuMnrLWMHrZbVQLhaDxzJh74iT03t8NYayQWhMtGgCAS1eIHkO4OXlv2tgdITZsJvnQONE/CYVPga09Cxcnx2xc5rdQ0tGSYZZoZqA0mBNJ6wqIqWFUlY7//QEQCPwOR+ffWdCPbL5XgerKR6kuWLGHBggXx/RbzQNVlt1BVVcWDN1/V6e1Tpes6e73GSY8hhcb+3aJFi/j5b+7GOriCP95yA4tOPLRbj5kuqXwepMp8jFC0JcM9WQmpGBjMz0GXzUL6uxPnrx7l5J5xxhls3bqVTz/9lHC4/Qd9ujq/l5WV8Yc//CEtjyVyJxDW0IJ+NH8Te3fXMHxw95sYmwdNoTwO/ABYXMbpzlQPHM3gSY/O+EYDsPc92BUL9NS+ZTQnTmQthCEHxQI9h8DQQ4zsnk6EYgeqboeFAruLTTX1TDh4HrZhY7nh2qtwxc4SmwekzVna2e+uBWeczXUPv4wWaOLiX17BlKm5GUeaMYrakjk07LD23w83G2V8TbFAUPOmlq/9O4yeQ3veaJ8pZC0yxjGXxIJBxbGAkHscpPmMeLa0zQyoqqriT7+9Mv59c6fZPuFg7MPG8eJDt3X7Z9g6yPgJa61T1YudZqlXx9uNGis/s6pqytkMTqsCodZlQ2a5WFGbrKF44CeSf+NLw22CI93VUuqVm+fWUpqgYDdLC2LvqaE2r0OrxegnFQxreIORrAQIvLFSQIuqdPjaMn/3wYhmnEB4/XQCjTawzcG5//eg4vBWtzc/C9JyAqMDybIhhs45Eeh5qRcYQaNIKJqRLICWUgIp9RpIepJVmUp5evz1ZFXTWs7uDUUJhKMoSsuJPQA9GsZaUoajJPtN8k2ZCPy0/YwWA5M/3gKgb+7X9lSPAj/3338/t956KyUlJe2io4qi5GTkn8hfDz70UPzM+vT9p/UoHdUW75/RszHh2aI6jTMHpa7UNq1CuxVFgaim4w1FOz+7r+vQsA52Pgc1zxvBnmig9W0cQ2H412D40ca/JTO6fbCe+EFbXmIEfmxDjek6gxJ2ChJLVrJZppCqfd4wqqMAzd/IoKHl7KgPsM8bYrA7+yOec8JWCIOM8r12Il5o/MJ4PTWuNy4N64zAUKQJ9r1vXBJZCqB0OpTOjJUFzoTSGX2ij1A88BM7AOtop9lss92TjJ+OgtORNqVLZnmnNxglEtWS9i5Q7AUAFDosKW9Xrljgx9cq48cILrUtF7NbLUA4L1PeQx3s6Lvd7nYNtZPJlx4/NouS0Csn2urfxAyVQoeVYDiENxhlSBp7znfEfH0U2Dt+bcXXvfM12PAD0EIEik6CET/EWdJ+Go75mk7M/kznmfSOsiHufvwtsJfGt+uesMeCoJk4qRQv9cqzckqRWYlZlYFwNB7s70wq5emJpYMVaSxn39scBIz9u8TPIy1gZIw35jCrOxLLoLSmodQrWe8yMTBpmh7vEecaYIH5HgV+HnjgAX75y1/2uJZUdF9fTUesqqpi6WWXxq/3NB3VlqTnQL7RdR0UC5H6XfjqdsOY4V3eR1UVCh1WmgIRmgOR9oGfQC3UvGgEenY+D/7q1t93lsWCPLFLydRej/9ODPyMHWIcgJqPOTih94m51oimEwhr8UygfGGmLkfqdzJ6sIut+3xU7H8wga0f96ltKCOsbqPMb/ABrf8/GjIygxrWtw4KNW6AqM/IMNv7Xuv7FIwygkGDZsWCQjONPkJ5NG0s2OYALNlOtqpasBYZTcqLUwzcJuq4ubO5PRk7rk6bih6NcN0Nv+Gy056gsbam/QkUq51I/S4CDXuAKSn9fKfNeHxfKIqm6aiqkrTHD+Q+ONIZM7jf0/Idew/7a6RLPMMrVuoFLb/nZKVJBXYrewm1KtHLFK/Xy+jx++Ge+jXuuPHaDm9nVyKw42nCjc/BkBB4ziAw+o+wsSlp9kpx/CRAZrI/OwrUbt/6JcMmHdir5smZzAKQHj8Dl9NmaSmnTUFLA/sLAT1pX53E15NnROvbd9bwviu1zca+UuJJMbfbTe2O7Tzw5haCUSVnJ/falsf2Rlfbem8bZIu+I3HfZ6AF5nu0Zx4MBjnhhBPSvRbRD6UrHbUvNGW7/4GHaF7zXwAOnzMr5cymIqcR+GkKhBlR7ICGT6HqCah+MnaQnXCW2+I0AjwjToDyBUYJTpo/jM2zIXaLymC3nUKHFS3oQ/M3EW7aAxjZP1aLSoHd2LlpCobzLvDTHFGorKzk9AMqiEQ1tu7bim34OAJbP8n10vKXxR4r8ZoGnNXy/1rUCAjVfQz1n7RcvFvBt9247Hg64XGcRlbQ4Dkw+EDj3+JpxuPnQKBNxk/bKVGKqnLWRdfw7JsfEanbQf2eGsq6WZLa0ty5dVaKGfixqsb3FUWh0GlsK6qjffBx5cqVRPZVEdlXxSVnvYI7xfcRh8UYE67r4AtHccbOOAMUOVqfcTZ/D/kZ+GkdKOsus6xC03XCUR27tevHSeeJFfOgwmpREk5YtC71sieMjC2M9fnxZumsumo3mjp1OHbdX4P9vcWwt5SQ1Q4zroPpvyawpQ5IXlZVFC9fzMxz6CgborRsVIdrSlUmswCk1Gvg6knJ6aJFi/jV/f9FDwe45bfLWHzqEa2+b36Oma+nRYsWcfk9xrTlZx74PUcdNKNHazUzfsz+PqZCp5GRHtF0fKFohz3BMimcUDrbW+ZndETT4ydHumqoLfons8zLblVR0zzNMd/16NPo1FNP5W9/+1tKaddiYDN32BL1JB013zN+qqqq+MWlP4tfNzObzEl4nSm0KdC8mcY1N8MT4+C/M+GTq2INeXWjnGbqZXDs8/CNOjj2WZj6cyjdPyNNeBOn6iiKwobXn6Bp9Sq8n73EGccczIoVK+K3zfQOf09Folp8wtrQQjvjhrqNgwMdVPcgqquru3gE0YpqgeIpMOb/wawb4OgnYOFXxutx/hsw9w8w8XwYcqiRTRQNGK/fjX+Cd38IzxwAjxTBswfBe0tg032wdzVEg1lZfrLmzosWLYp/fcd/XkPTMV7n615l2rRprV7nqeiouXOyVPXiWDBVV9RWr8W2JS16N95HVEWJB199wUi87MaqKu0OPOM9XML51+PHDI70tKeDzaKgxt4Xc9Hnx/x72yxq/PdsPqdQBxk/0NJ7J+MUK5H6Xfjrdrf/3u434Nk52Pa9BRYHoXHnw4yrQVHjQcJkQYzChEb/mtZ+v7C377cej4ef/PpGzFJMMxvCPdgoO+tNxk8mTyoFpbnzgGX+zQMpZvyAMQHSUlCCtaSMgkHtM8aDSTLIFNWCtaSMQcNH9Hit+2LZ0UMLWw/sscQy0qHjYQSZlvh+2luJ77uhqNZhCWkqn7eib0ts7DzQ9Ch829zczL///W+eeuopPB4PNlvrs4n/93//l5bFieSSpSPmaymYx+Ph/KW/4d7fXElv0lHbnjnNN93ObAo3Q/VTUPUYRZ9XQ8MYmt0boGirkS1RNh88p8HIr3c99jvNwpGWM+5VVVX88Yal8e+1LdUrdFrZ1dgyNjpf1PnCaLqOw6ZS6LCiKApb3nyy3RQnObPTS/ZSGH6kcTHpmtEraN+HUPeB8e++DyFcb0yd27e65baK1egbNPggo/H4kEOMZtJpbiLd1djnoycO4ZKzlsWv96QktcPmzklS1d969j9JX4u9zZB0Oyz4wxreUDT+nIuc1nYp+mYzw3zsdRDPOOzhwbyiKDhsKv7Y76AonYtLgfkZZVWVdtOxkpWxmWfRs5Hxs3LlSkI7NxDauYHzvv4KEfM9UNdh/S3w8ZWgR3GUHAhDfkiooKWpa2dlS267Jd7MtjkUodhpS/uZ9CNP/gYrn3kbLdDEpZcv5TvfOoZ7Xt0M0LseP4mNrNPMH2oZFywGlp5k/CQGiZIFjNr2jHK73fzfQyv4qtaHYutZNm2riV5J+h8Wu2w0BSI0+iOUd38uS6/1ttl/IktC0+1QVEtrg2zRt/gHcBlujwI/Y8eO5cc//nG61yI60ZfTEecefyZFz72Ld8MbrPvgrR7V0MYbp+ZhaQKk1piPcKMR7Nn2COx8Nt6YuUifDNZpNA09BQ6phBHzwVqQ7afQskyz1CKFyRFFjpYzvfmkNpa6PNTtQFGMANbdnQSwRBopKhRPNi5jv2X8n64b4+b3mYGgD6DuQwjuhbo1xmXzn43b9mASXVfaNnduq3rbFvRe7gB2lJUYbpPx01kwNaX3kU647VZqCeMNRuJZL4VJGos6Evrg5Jt0THFxWFsCP93V2z4PkYT3T3ub14TZ3DmxjM2ihVi2bBmRhl3seufxjJ206XBc9LGH4Nl+pVFaDDD2O9hn/RHe2kU42lIS0VmjYkUxMgMa/GHjILF2V5ejqbvLF46iOgpQHQUUDSnj85qWAby9OSjMZDZxIEmmoRgYzAPK7rzHqjYnlZWVAETaFGSEo1o8cJz4OWa+tnoauGwMRAhFNCyqQmlBksCP00Y1/pxl/LT9/Owtm0UlqkUJR7Ref96Kviue8WMfeEH5HgV+LrzwwnSvQ3Siwx22PnDQqus6Df4IqqMAIkEqKip69Dhtd6Dzjcfj4bJlN3Hz1ZfTKrNpeBFs+Qts+7cxjUtLKG0pnAijv0GR6xTYNpTmEhd4RufsOZgSe/x09cFYlKSpZz5kn+2NNSs0a9blzE6OKQoUjjcuo79p/J+ug2+bEQTa+x7UvmtMEos0w65XjIupYFRLEGjIIUbPoG4ER82zrokHYIlToqqqqnq9A9g2u8MUadPjp7PX4jHHHMOllTdxW2Wb95EUX6Nm3xZvMBLP8mnb2BnyvLlzQsZhTzliU8tSLWVL14kVTdNbShOSNHduO84dWv5mqt3V7Z/XHR2+7v42H8/4XaDaYc5dMPF8bJoO7DLWHNVwqpb4AWxH2StFTjPwE2ZnBt5vzeyZSP1OANZWNwDG6yTZZLxUdbTdpoPZkyXf+t+JzDO38UC3Mn5abhuKaISjWjwwaX5PjU0Ma/tzehrEb5noZcOSpNeJOeig0Z+jwE8vS3/bsltVAmFjip/H4+GaG2/l2l/9AtBRVJXf/f5u2SccAOL91wZgUL5HgZ+lS5d2+v0bb7yxR4sRyXX3oDWfOtM3BSNENA10DS3g7fHj2DLYgDFd5i88m3sef5PIjs/45B8XMlF/Gh79CWihlhsVTTYOfEd/05h+pCgUNQZg27a86ZOT2OOnZXKE0QS37YFoYcJI93yy12s2KzRq1uXMTh5SFHCPMS6jzjT+T4tC4zojCLQ3dmn4rKWB9PZ/x+5rMXpfDTkEhh4KQ4+Aookd9rzq6qC1bbPnnpSkJmscCS3BarPJcGevRV3XmXTUqRTNfRPfF2+z7v3Xu/VebpYN+UJR9FhT+KIkDTnbjhnPJ/FyqF5m/EBqga10nliJJPS3ad3cuc1Ur4Tmzm670e8p6m/K6Gd30tedChNLdhkB2SMfMRqxx9aeWBLhtFniB7AdZa+YAcbmQCTt77e6rhPBQmVlJafNHskTa3awY18Tv/3tjWghPz945S89PsGQqcCPrusy1WsAc/Qg48ffJlDtD0cTAj8tn2GJpbstGT89ey83+/sMadPfx2SOos9dj5/enwhIZI89jjmE4bjTzua2R15HCzRx8S+v4KBDZ6Xl54j8NpDfm9MSQo1EImzZsoX//ve/DB48OB0PKRKk0iC57RnL7jYmzZQGXxibzc4dN/8WXdd6vHOW782d0aIEaz/h9MMLeOpXdiZu/xlUPWYEfYr3g+lXw8mfwCkbjOa4g2bFD1LN5nneUIRoksaY2dZ2qk5iE9x169a1OhNemLelXmazQiPjxzywNyUblSrygBoL6Ez8IRzyZ2Ob+UY9zHsZZt0IntONsi89apSHbVoO7/wAnpoMj5bB62fA+luh9h1jNH1MVwet0PnrPBWJO6aJAeqWni+tJ4rFn7Kqxl+LuxqDNPjDKDY70ea93c6QdMcyC5qDkXgwtihpqVf3D0qypbc9fqB7U8s6O7HSXZGEx0nW4ydZc+f//ONhmlavwrf+tYx+dns8Hn5/x52YDZItKixfDJ6558JJH8WDPqa2a+8646el0b/H4+G8y2+gbTPmnr7fBiNa/LNxzOACBhW0vKb1SKiju6UkU1O9ghENc/5Jb5pPi76ptxk/0JLllvi9tgeqvZ3QaO4rJevvA1DiigV+/LnZxwslnIhMB/NxzO293hdGdRSgWO2UDh3Bpt3NORtc5PV6URQFRVHwent+olx0bSAHfnqU8dNRRs/999/PF1980asFifY8Hg9X//ZWll1hpCMmHihAfpeC1fmMD5VktcPdYR5U5V3gp24NbPkrbP072s6JHDDGw9CCIJqzAnXcd2Dsd2DQzE4fosBuwaoqRDSd5mAk/kGbK5312Gh7IGru7DcHIui63q6JbC6yz4KRaDwteYi75SzWokWL+Nmvb8DhmcZ111ay+Kyjsrou0UO2Iig71rhArESsqiUjqPZt2Ps+BPdA1SrjAkaT9MEHoQ89gtC+I6HAk/IBWE9KUq0WtV2WBLQEAxJ7FCxatIifXnoZ7smHcfEvl7LwTOO1+Pkuo29JZF81aN3f0S6IZ/xE4gGnwj5U6qXrepp6/JiBra4PutKZndKSLWnsvLcNKrQNalVVVXHpJRfH75/Rz25d58zD7excupBg414u3f9DRp10H4z9dtKb2y0qfqKEIlqr7BVHBzvKZsZPY8Ao95p81GkUvfgeWqCJ315XyeIzev5+6wuZP1vFalGZVFbE7gYvWtBHpGFXrz5nMlVGbgbKbAmZX2Lg6EmPH3+byX6+hOstE+Jav5Z6+l7u9XopKSmhcNb/Z++84+Sq6vf/3DZ1+26yKZME0iAQIEAEVEDpiHTs4DcgdpqKUtVlBaQK0stPhEVRQIWgiCCGKCIgBAmEBEgnmU221+m3nN8fd86dO7PT594pu+f9evEis7M7c6fcc8/5nOfzPCfiJz+/JbfiJyynnePZTWqrdKmkFrQjGo+Ojg4cu6Qd/9rYh7GwjP7xKKY3uCx5PkZ1kjB3nnpjs6Wv+MQTT8SLL75o5UMy4hx24lmoX34avEuPwQ2Pr07ajbZyx9JqRkL6ArzJU1oxw5icKZVXxCAyAHxwB/DcMj2m+oNfAOFdiHBNQMtBcH/iQfBn7AAOvCln0QeIG2Om8cqpFOl2pTNR5xShyDJ+0nENBKcbwWAQjzzyiHF/JdRn1N+nzilO8FbQokGIje3g61ortqvDKBGOA7xzgLmfAw68BTjuFeDzY8Bx/wGW3QzMPhVwturm6f3/RnT9L0C2/w7YcDOcLx4I/PebwNZHgfEtgMXfgXTJXnTMmtC6FAuDKDE0tc3Aaxt7wHE8TjnnWwCAd//9PAghBSskvYbHj2oofurStHoVkzhTDmSVGB9JqebOQH6LIZ/PhzvvvBNWqFNo8YB6zkwwd04ZW8t27Q7vBv51KiLvXIvpbR60NLnRetbrGYs+5mOUVQ2Kybso00SZfs/GIwo29gZAQMCJEsTGdriaJkZTFwJNPPPEF9OL2uvwxgtPYXzNSkS2rinpOpPqw2QVERblPqUxFD95+owBE1u9QrFE8T/R6pX8fUoUmIoZyzkIHj2qK5Pip84lguP0NtZQrPzXi9RW6VJJ7R6ga5Rp9U7Ma/VClmOYu98hTHUzyaHn01T0XytK8ZOOUCiEJ598Es3NzVY9JMPErtGIkWgh1LcmVd6r2b+EKn6aS1b8VNjjR1P0JK6tD+vpJ1q8QMM7gNmnAHucg8iOpUBIg2uGT082KoA6p4iRkFwVLVNyirTWbIKbisBzhis+7/Do6rOLy7SDnYFUY2czWiQAEA0xVUMgqqRtg2HUIIITmPYJ/T/8SC/ojG8E+l9BtPsNYNQJMdYHcew9YOy9RIKYawYw7XBg+qfgnX4kiKYWfO6aMRtHUmQtuRhgJrrrQwDAxr4ApFYfeIcbDpHHvJbiUv28ptZL2hqT3tw5HudeZYofs+qiNHPnwnxbvnj2V3HlI//Q1SnXduD804tTpyimKHdg4u6yUfiJfxdsv3YTAmz/HfDWxUBsCCNkP7z4HvDyqwF8/8o9s/4pPcaYoiUZy2byXhI0GZ2dnSByFL+89QZIkgPPPHI33t4xArnEPUa64KSKtuhIP566u9O4v5TrjPl1WkkuhRRjcmMUZAr4XqVGuJuLRpkS4hItZROfJ1fQBuf0QBkbwPhgLxrd+6Y9JoHXE/vGIwrGIrJxjSkXqa3SpWIu/EQV1ZhzN3kkLJxeh/e7hyC1zkF0xzpLnq9YqsmrdTKSLaVyslPUGbz33nunlfs5nU5cd911JR8UI5mIrGIwQJUgBKpGEIypxg6bz+fDldfdguuv+iH0VrDq8S+xTPEjJlfpy8bYh8CWh/RkrkhP4uctBwN7nqvvmDp1X6vw1i0Aitvh0wsQ4aowSU71+MkF/R5yTg+e+ffakmOxS2UgxdiZ4vV6QTQVXa9ux1AwhqFgjBV+JiscBzTsBTTshej0s4HoDjj5MLD4S8DAf4D+/wBDa/RzeucfE6bRjhZg+hHAtCOB9k8BTQcAfP6XyVTjSGBiMQBIFFMJIfjdGzvQPTgO55z9oIz0olEdKzqliCZE0aKPQ+TTtrdRXwhZ1a8n6dJcKoFsaoUqpaXAWeCiK2KKCpcaphX9vHJKK1fqhkWq4ifVVNzSa3fwI+CNb+sbFgDQfBDGFt+H4+Y24cdXteRUk5mVMJmMZc3Uu/T3nJOc6B+Pwulw4sA5zXh7xwhiioaYohXt20SVD16Hfi5u3rzZsuuMXebOidSYqddKwEiMsRFZy7tFKlEs5BGVtSSFTSSDx1Yhba1mHn30UZBoEMH1q3D9uauxRyxzkmGDW9ILP2EFMxsLepqSMeajFp1HVDkUUzWMxtcnHocAlyRgzzYvOI6D4GkC76q35PkKwap0SUZumMdPgTz66KNJtzmOgyRJWLhwoVFdZljHrpEwREnCHTdfD1UjGA3LGA3LSRL+Iz/7edz51L+hRcarxr9Eix8rYIXHTxkLP2oU2PmUbhzb96/Ez51twB7nAPPPm9DCpXsgZDe/zEZDlbR6qRoxFo35tlrUOfVUGrF5JnYENHAcD0LKrz6ju1vepUfjpzfdYRg7p9LsdRiFn3mt5Y+aZ5QXw5TW0wjMOV3/DwCUsB4f3/dv/TwfeBWIDQH+Z/T/AECs1xVB7Z/Si0GtywE+c7EwsdBPTMJTiwFmOI7DgXOa8fTvuhBY+xwA4Osnr4ZW5IRPEnhj0QDoap90Cw6zaiOqqPA4yruLm4lYgUXnTBTayhY27bQHImrRxTDaDkV3p81FBdXULmUuxq1YsQI/uOEeiE0zcd8vrsdXjz+04OdNQlOBjXcD714NKEGAd+rhAvtchtF3egGE0JCHj5zZnyihNsh8TXAIPIgqgxP0x57X6kGjR4JD5BFTNIRiChxicfMAQ/ETL2xaqZSyy9x5Ki8sGAklgUYIZJXk1apEW71avQ7sGomkFH4ymDsX0arY29uLSy65xLhNcijmGlwSuhGuSLKXYvJNswKaqBhTNAzHCz+0I8ElCfA1uaBFQxDqWixX3WRTYGXyav3617+e9vcZpUHPJ/cUHJ+Lmu0dcsghAIDt27djy5Yt0DQNe+65Jyv62IR/JAwAmN3kNoo+oyEZs5vcxu+MhmVjxxLe1oqYsKUyHlGMCXS6SOFCsEuOncTYRmDzg8C2R4DooP4zjgdmngQs+Bow67OAkH7iGlU0aPF2qGIGEoHoMnl5yI++N5+r2ACf3GqRX+HnP8/9AeNrVgIA7v3BOfjkiafjlb89DYAUFYtdKoKnCQDQlsGssNXrwBYkYkwZk5uokmHRKrqB6Ufq/+FqvX1z6H96EajvZaD/34A8Buz+m/4fAAgeoO3jwPRP6cWg1kN0E+k4iYV+QvEjp1H8mPHII5a1rQC6KiIqJ3yu0sHHE6eoEqPEurxlpLaZFkuhiyFOdKKjo8O4HYgoaCxCpWoYkcYXKfS6RYie2khJfX1EVSA2tsNTohcO+l8D1lwADL+t355+JHDIg7r6DTB2uPMJEHCY/Kro+5itiMFxHJTxQXDgMDLQg70OnAtAL9bEFL21ttgNIMPjJ174SVVKlXKdSefLZQWs8DO1kQQOPMdBIwRRRc1L7Ua/M80evfCTlOqlpF+oUmVRTNGgaQR8huuMuYixc+fOjN5iaQs/7rhxe7j8hR9jM8CyVi8aFEMMKwrzWP/e6pXGfLacqptMfm8M65FVzZhrOKeguXNRq/GxsTFceeWVWLVqFRobG6GqKoLBID72sY/hnnvuQX19+SVyk5nu4QgAwNfiBob0n42mDMDhuDM9ZSxc3MTVSkbCNNFLyngxyhdJTAzW2S5uBaPG9Nj1zQ8AvasTP/f4gAVfB+Z/TTeSzYE5waOYNg1aGOOdla3ox4wEBS6vHW+/3487r73SuE2Ihlf//gy8+x8PNTSKd/7aVd4+ZdEJNTiK0YFetHj3SfsrdHdnkBV+pgRUiZctyh2AruRpO1T/b5/LdOXEyLumQtDLekG4d5X+3zroaoq2Q43WMIlbACC5gKqkGP6msm3rFkvbIz0OAUNxT8pMhR9AL47ETIv6akBWMqujCsFZoOFpqgHrWEQu6vopp+xO6+le8cJPvHiRbmwlMX1zJ1iseWqkD1h7ObD1Ef221KSHCyz4uuFZpWkEY/FW4nxem5RG8ZOtiNHV1YXQ+pcAADeeuxpz778fS775DXgdun9dKcawVAlh9hdZsWKFUfjZsGFD0dcZWiRUNGvbHiNGsWzqLSwYeiHUJfEIxVREZA31eYREGYqfuFrZfM7QItBExU/idkzV4OITt1ODNszFUo7nk6472RRzNNkrdd1hN0kpjxa1ekkm24iRFA9Sv9+PG39ymfG75fSo3GP+ggmfCc8L0DRW/LEas2edU+QnFNwmO0WdSddddx16enrw3HPP4b///S/WrFmDv/zlLwiFQhmj3hnFEVMJ+sd1z5LZTW5jwmYegDWNGDt59KJAfU4qyXDImjYvIHmHVLbiJA3vBt69BnhmHvCfL8WLPpyu6jnyz8Cp24D9OvIq+gDmaMDidvfohJZ3FGfqahV04ZXvRTbdLoWmqoCmQGqeWVQsdrF0dXUBShTB9atww3nH49FHHk77e3RSNcwKP1MCWtjIN8rdgBeAlgOBvb8HHPkUcGYfcNI6YPk9wNwvAK52QIvqRaH11wEvHQfHf78KbHkIsQ/uBbqfgxYdNdp7Mpni0rYVM6W0RwpEQWdnJzo7OyEhs2eYoYopIG7YbqyIcgcS73W+Ra3UNJ1iFzgKNfKOf54cl4jyDsSLLqlFLa/Xi4+2fIiOjg7ESIGvW40C7/8C+MviRNFn/teAUzYCC7+ZZFQeiCUUuHV5tPaZVbaZoqQpqW0KhGi48Lvfgd/vh8dJk+aK968LRuNqhwwJLKVcZ8znpZWKYqb4YRTScqppxBiLaSEiKdUrQyFR4Dmj0Gwey/1+Py5OCdqgt3l3A077ztWgSYa5FHNUIVhuxY+qJVIeMylmC8U8ro0YrV766ytnQnJ3dzeCwSA4jgPHcdgdEXHmhR2gnwnH8zjjwp9CaJph/H6tYn6d1ZCUlo9n3WSmqNnVSy+9hGuuuQbz5883frZw4UL89Kc/xapVqyw7uKlMMBiEKIo48sTTEI3F0OSRUO+S0g7A41EFSnxCt0erXjigyUaVhMoom/KQledC5PWdUyCxq1owhAADrwP/OVsv+LzXqZu7umfqHginbQc+/SzgO6UgQ1eg9ElevUuAFg1BDY5g+46dRT2GFRTaapFp0XrplT/F9TfcVLaWtQkLj/hOjd/vn/C7iUmVmiSlZkxOjFavUnfeOR5oWgos/i5w+BPAGbuBkz/UW2n2OAfwzIEDUSDkh7ztCeBfn4X8x+l6++juFyDufjbRQmqCtq1QSm2PNKsisil+HAX64JQDqjjMVCTLF/pZRxUtYyKhmdRxoNgFTqriB0gs/mh6TDo1E/2cglE1r+MFIcBHTwDPLgHe/iEgjwLNBwHHvwYc9hDgmmhQTTeHGlxiXopZsz+RoZrLcH3LtmCi38dSFD+p5s5WwpsWzrYUfqZgagxDh84HU9O60kFbuTgOaIlHq4djifEgmmWOmUgQS5xj2VqH3AsPxUHHnAbXQt22Y8OGDVnbmajiZzyi5Dc+WYR5rl/qNcF4HJOScYiuUeJzQqs3YVJJNW82bvMC/rdzFIeccCakNr1F9tHnXwMAqCM9xu8/9NBDlhzHVGeqF+WLOpOcTueEkwPQd7dYT6K1iI16zz/186GFH/OOJJUrNroltNXrviaDgcorfkZTjNNKwbxzWnAvvhrVU7leOAT4+8eBj36n+3m0fQL4xO+BU7cD+/8M8M4t+vjCJRqFPf7YbzG+ZiWC61dh/6X7VmyAN4xo8zTSS7dovfve+9A0bQYUjRhtLnZTyE6NQ+SNiGt64WdMXhKKH4sv8hwHNCwGFn4D+MRvgNM+gvSJhwHf6Yi1fxaoWwBF44HwbnCDr0F85XTgT23Ac/sDay4CdvwBCPcC0NtWKLkm4bnwmFQR2Vu9Co8bthu68LbK48dsqJyNVMVmsSamspqs+AESryVb4cfrEMFxuhFs1gIJIUDPKv069p8vAcFtgHsWcOivgRPeANoOy/indM6QbwubswBz52wLJlqsCRSp+CGm94Sqh4DkZLxSNxhS09esILG4YK1eU5VEATr3uogWn52iYJjtKxoxih/ZColGpLupwJTunOR5HlL7AkDTEBzqNyLLcynm6lz6+KTEE4XLBVX3Czxnmb0DPdfHwrKhkKKpw6nzWStTFtOZN1MFlmPGQoRiKupdIuRBfeP34DmNab3/0m1m1hLVoFyaysbOQJGFn6OPPhqdnZ3YsWOH8bPt27fjuuuuw6c+9SnLDo4BiA164cfXrCt5aOEnEFWMSaY5Mr01vlMwUAVtLIbixyKvIUehyV6hXcC7PwWemQu89n96fDPvAPZcAZy4Bjj+P8AeX8po2FwIpVSQM7n5V2KAjxXRapG6aP3WN75uqLMiZVpUFrpTQ3fUhqpAGcewl6jh8WPzAozj4KifBTQfgNjCi4FTN0M56QNgzlmQWg8C17hE/72RdXrq0itfAJ6eATy7BI61F+HLnwBmt5TWtgIAHklXDyojvRgf7Mn4e8WkwdhJMBjExz95BDo7O6EppZ2XDoE3xqB8Xh8dv2c06hsnRbd6USNvU+GcFnpoq1O6nWue53IXSPpeAVYdDbx0LDD4X0D0Avv9TG/rWnCe3pqYBapiysfYGTAVQ/Iwd86mWqOFSHPbSiFE44logP7dtgM7kr0S7QRTc3HBSBRp8lH8JDYPeThE3lChhWMqlBxmtIkifqIo4/P58N2rbwBtHeJ5HsuOOhly7xYE16/CLd/8LEgslNfrEHjO2EQoZ7uXbNFGgBl6ro/HW2/rXWLS469YsQLOWXvDu/QYPPzcfywzds6owHK4ITZMw8hADw6e2wTEE3Gzef/VGqlKp3vvvbeirV/0XJuKxs5AkYWfH/3oR3A6nTjhhBNw6KGH4tBDD8WJJ56IxsZG/OQnP7H6GKcunACiyhgd6MHsZl3x4xR548tKB+Bhk1yxNZ5kNByMGZOlSqBqBGNhJX5c1hR+DDl2rslZ/6vAK1+Kt3NdqxtfumcDB1wPnO4HPv4I0HKwJcdECZewu1fOvuJclOqxMXv2bHAcl5iI5GmuWio+nw+XX3sz8u1ZNwo/TPEz6Un4k9i/ADMnhgBAzDEDaFoKcd4ZwMkbgDN7gcP/ACy+CGjaX/+jsQ8gffQwfncB4L8LcL+4H/D613TPlsA2oEBp/d+e/r2hHvz4wQdkVA8WshtdLjhBX1yUGt1b6BhEd9vb4w6s9NpVKHSH2lzcoWPpeAaPH0pdXIVIfw+A/tn3vQysPhH4xxFA3z/1zYvFFwOnbAb2+4leAMqD0QILP+ni3LO1LWVSrZnb2IqBqn2cEl9UcEI+mNvarGKqtxMwChtjUwuF7nghOCQrxgYaNaPN/DzJ39/DT/oc6pefBrF5Fv76/It4e/Wzxn2apkEQBOzcuTMvxZxhM1HGSHeq1rQqyj3dY6XrSCCqDLGxHc7GiS2zxZJucxIcB8TCCH3wCm487wS8s/pZQ8W4//7729p2Vi6yKZ0qBT3Xpqrip+CG6Y8++gizZs3Cb37zG3z44YfYsmULnE4n9thjDyxYsMCOY5ySdHV1AURFcP1q3HT+v7BQ1SMFOY5Do1tCnxzFaFhGa50zyaCswSUaMb0joZhRCCo3Y2EZGiGQBC5ru0EhOEQBgJze40dTAf9K4P1bgcHXEz+fdgSw10WA73Q9tacEgsEg6urqAACBQCDpYhktYSChFwQtz4QFO5HjMdSlJii4JB4RWS2b4gcA9j7yNNQvfwXhbW9h/av/yJry0urVz4uhKjBBZ9hL2RQ/MC+W9Ym+YfZLF6yu6cDcz+n/AUB0COh/JZEcNvw/8KFtwNZtwNa4OblnTjx2/lP6/+sXAxkMCf1+Pzouv9S4nS2VxCHoY5WVi92SMQo/pX9WTlEfg/JR/NDC/fQGvfATiCpQVK3gQkNC8ZP4u1TFT6bvodcokCh6wWfXX4H1NwADr+q/wInAgq8B+/4479ABM0UXfhQNXLygnu/Ghlm1Vqq5M/07O/x9KGbDVysghCQZiDKmJi6j+Jy/6pAamHscAsbCehoeHQ+dGcxoM5lIh2QVvNMDcBw0OVJSeqSTU9HZ2YkrP3oHgx/8tyz+jVa1/ppJVVymbkx7vV5sWv8u/vQ/P6KFmu1ngaoiL7jgQgAEHM8DhICuZoim4Tvf+TY+85kT4fP5Jvx+qd5/laIaY+qnelE+7281IQTXXXcdPvOZz+Dtt98GAOy111446aST8Kc//Qknn3wybrzxxrIaf01WchnVpvr8mCMJOY4z2r0qGVdNVUiN8WOygsRuumkQUULAxnuBZ/cCXvmcXvThHcD884DPvA0c9zIw9/MlF31ykZAOFj6QTOwr5is2wMcK9PgB0nstlFvxMxKKoWcsAt7phjo+kLNdptmrfx+GguVNqWBYR75JEYa5cxlMVo121HgBlRYCMp5PzhbAdypw0C+AE98EPjcMfPo5YJ8rgLaP64v90E5g+2PAG98Ent0beHqm3ib24d3A8Fq96B2nEPVgpl3iiqKpUEZ6Mdy/u+SHKuT10fG7xeswCh5jkcILFdTTLKnVKw+PHwCod4qAJiOw9RndB+pfp+hFH94BLPwWcMqHwCEPFFX0ARLzhYZ8Cz+m1up8JsqZPHdowSYsq9CyqJAznc9U8ZMp0csK6GdC5xalptDEVA1afC48VRcXjAI9flLOMdoiGY6pOT1JnBkKTCoEdHR0YOfWzSUrSKgvIu8sT2AHkFD8iBYqflLH33Spww3uRFublWva//u//0P9wafAu/QY3P/gryY8duq1esWKFfDsexS8S4/BP17734S2s2pLy0pHJq8piPrmayU8f8Ky/deUaibvws+jjz6K5557Dvfccw8OOeSQpPvuvfde3HPPPXj66afx+9//3vKDnGrkmrybCz+aRjAal6VT00aq8hmokMFzMBjEkmXL0dnZCQ9v3aIiSY4d7k3496y5AAhsARwt+m7oaR8Bh/0aaF5m2XPnolSzsBUrVoD3NMG79Bhc89t/WNZXXChWxSnTXc58ettLgV74Zux9MGIxGcpID0gsnPPvqOJnLCwbu0q1cBEthsn6uvLFMHcuw857qklszCgE5PncUgMw6zPAshuA418FPj8CHP0PPXVw+pEA7wQivbox9FsXAX87EPhjE/h/noCZAw9gUePuvCf31ebx09XVhcj2tQiuX4UvHntY6Qb3qh5rv9eSfbN+71VTjLJbEtDgKt7LQqatCabPwCEmt/9RpVUSwR2o2/kQ8MHtGN/wADD6HiDWAUt+pKdNHnI/UDd/4t/lSVRRjQIKTejJRVKql1E8LfwccksCeI4DIboCoVDsTPSi0CKXVecCve6JPGdZDDWj9nAW4PGTWlyl/w+ZCj+Z1GPpitxmU3S3Qyg5PbLeJUKLhkDUWNkW61bNR82kPlZzGiuKOqduZi2rxCgSWIFKCHhXHcTGdnzi4x/P61rNARAb21Hf0m7ZcZQTn8+HW277Jcwx9cuOOhlQ9PVpudPKgsEgzvz8F9HZ2QlSopdgrZL32fTkk0/iJz/5CY466qi09x999NH44Q9/yAo/FpDLqNZc+BmL6C1VIs/pO4YAWuviip8KGtcKrnoAQKPbusmaJPBAdACxd3+e8O+JDgLePYGD7wJO3wEccC3gnmHZc2Yi9cJXiscPRYsGjL7iSJmUMqlYdaFNZzZoJ45pe8DhkPDG31fmlfLidghGtX+E+fxMahKpXmVs9Yo/p9H6U+ziT/QCM47RUweP/ZdeCDr2X7qp74zjAbEeUALgeldh1uD/w7xN/4cHziegTyfwPB648+dpJ/flVuVlww6De/p5c2J28346dnOc/jcNJXhZpFf8JBd6jB1nTQZ2PgWs/gzwzB7w7vh/gBpGUJoDHPgL4PSdwIE3A+6ZBR9HKtSzyO0Q8lagJBQ/xPg+F6Ne4XnOUC/k2+5lvr4aiV5lUPwU0+qVrrBujt62SvHMqD1cRaR6uVMUP6GYktMoPN18y2yK7o0/ltmHa926dQVtML7w9OMYX7MSke1ry7ZYT6TMWnftjoZD6Oy8Bp2dnZDlWFqPH1HgTWbWxbWopiOmJBQ+e8zNrxCnyfpGZjFF82rh1M9/BfXLT4N78Sfwl+f/PsFrqtxhNrykb/yWY05YjeT9qru7u7H//vtn/Z3DDjsMO3fuLPmgpjq5KvOGyVpYxjBN9PImWqravJWPdOfdeuGnKU9ZeVYIAfr+Den9nwMb74G886+AFgVaD9GNUk/ZBOx1Yd4ml8WS6kxvvvAZZmGlTE5VBVo8ZWGoQm16tab4AQChvhW8uwEiz2Ph9Lq8/65OJOjs7IRv4ZIpqYSZTGTagVS1xKK1HK1ekqk9xvz/TO09BSO4dOXPfj8Bjn5Bbw37zFpoB92FwfoTQTzz8PVPE3x0B7D6amD7LzWc33Q5sHKO3h72/q26l5AcsCXJqFjsMLg3Cj9C9msQXXC5JAE8zxmFn2KSvWihz2wgmmwmSuAIfQj871L9M/n3WcDu5wEQ1LcfAMz7IgJLbgCW/ABwNBX8/Jko1N8HSP7O0o6EYtuW8vH5yXR9pX9TlsJPmnOhu7u7YNUk8/dhAIUpfsJy+sJPRE4ofjJdw9LFudOCqUNMb4peSHqk3+/HT9N4x9m9WJfTpCSWCsdxIIps/DtT6ytVRlppZi05Xejo6MD113airq4uoyE+xev14oVnn0FHRwdULvsmejXEpGciGNO9pgSXF5wcrXhaGRdvM3NP0fE571fd2tqa84vV09ODpqamUo+JgeyVebPix0j0Mg1erXUOyHIM37v8anCCWJlFrSBCGelFeKS/+McgGuD/C/D3TwD/OBLSsG5yKbcdCRz7b+D413WT1BwxtlaQa0c6n9STbFB/hEfuvwuS5KhY4YfuSND2hGIpp+JHbJ4NZaQX9epoQQtsauonuBsm3FfNF9FSmEyvK1shlmL+/lVC8UMLP2JqmodV8ALQfADIou9g+6zroJ2yBaHjN+IHjwHv7ABmLjgI4AQg5Nfbw97+EfCPTwF/bITz5RMA/58R3fUKMPS2rkCpELlUrsXgEHlo0RA0JZr1e5/apmtM+IvY6Y2l+bwdAg9E+3UD7433QHr9bOCD2/SWPdcMYJ8rgVM2oe6oJ4CGvRGIWV+IK6bwI6S0KTlEHkKRyjW6e04Xo6lku77SBbHXopCIdKSaO6eOLebb+WC0xjF/nylNIR4/0ZRioVtKnDO5ConplEUJU/TEd9Dr9UJRFKxZs6Ygc+ZKJc/a0eoFAESL22O4xIxjmtnnxyro+JJOwZSpEOdxZB4785kDVQP0u6jFwli4cGHF08qIpkAZ6cVQX0/ZnrOayPtsOu6443DXXXdBltOfBIqi4O6778bhhx9u2cExdFIHhHqXZPSf7hrRZYBmuaLHkHNzaRe1dvPrRx5B8N0XEVy/Cp8+dFnhg5GmANt/B/xtGfDyqXHDZiccs08EFl8AeZ9rgOmHZ0y2sYNsFz6zqqBUs7BmGjPOFD958fAjjyC6410E16/Ct089vKDvWotH0nvWCUF3d3fNXEQLZTK+rnxbg+hk2iHy4MvgtUEndIpGoGnEFnPKXHjaFuHJ1wkueZRAOOkt4POjwDEvActuBOacCXh8ANHgDKwDht9G9KOngecPAv7QAPz9k8Bb3wO2PQaMvp9kHG0nPp8PN9x6O6gPgBUJJv945gmMr1kJuXdL1u996k57KbHFRqsXR4D+14C3L4fj1TP0AILefwLRQb0oPveLwJHP6O3Jy34O1C80ChsxRbO8YD5WROEHSFb9lFI4pYuXQAbFT7brK42Bt9OIU5Wj6OzsxOlnnoWNGzdmjR/OVkSk90311BiGDv38I7KW0yQ4k7lzssdPrlavxDlEH89jQcHUjsJ8PiTmo9ZeP7XwOJSRXijjAxl/xw7FTyxFAZzJEN8MLZqnjp12tEfbhcpL6OjowF9X/gmLFy9ODrMpc1rZI488gsDa5xFcvwqfXH7ApJgPF0reV/Lvfve76O3txZlnnoknn3wSGzZswM6dO/Hee+/hiSeewBlnnIGdO3cmfREZ9iDwHOrjg9KOIb01yBxJyHEcWuKpRbynqazH5vf78T3TJKmgwUiNApsf1BO6Xj0bGFmne1jsczlw2nZISy8FnG0VaU3IduFL9YgohdZJUvgph+LH7/fjkmK/awBW/flJjK9ZiejOddh7771x4YUXFv1Y1UotTQ4KId8dyHL6+wDJE9SYqtniUVAwohdoP0ofR4/4k+4dc8YuOA7/DTD9CMS8e4OIjYAa0VOkPrwDeO0c4K/7AH+oB144FHjjW8Cm+/Rihhyw5TCPO+2LqF9+GlzzD04rey8Ev9+P26653Lid7XtvtHrFF1p0p7fgVq+QH0rff4Edf4Tjhf2BFz8BvH8zHOGtuuqqfhEw5ww4TvwPcPjjepqbKW3SIfKGQiBQRKJYNopR/ADJ14FSihhek19JOrJdX8tp7swJEjZ8uDFr/HBqETG1sH7vvffikI8fjs7OTnAqS42cytDrjmraBMhEatJQUqqXkqvwE1f8mDbarGyRTNhP6Ne3ci3WZaN11rrrZ1dXF4LvrUJw/SpceMaRGRf+9SUoPzNRTDy9UQBMKfxUSoVVDPR6RotYK1asgHvxx+Fdegz+8s83yxZm4/f7k4r4k2U+XCh5X0kbGhrw5JNP4tZbb8WNN96IcFhXmhBCUF9fj5NOOgkXXXQR2trabDvYqQSVZK5duzZtJbjRLWEsLBsDfVOKM32rxwEtGgJ4Ht3d3Vi8eHFZjjvbYJTxIiEH9ILPB78Awrv0nzlbgb2+Byy+AHA0AwAkYUT/9QoUfnw+H269/Zf4wSWXACDg+cSFj6anWWHkSJVbtV74MaTHORQ/wWAQdXW6L08gELBMfpxrQuL3+3HNFYme9XS7cfk+VjVTyntUzdCFovm1pduBjJa55UIU9HYYVSPxwk/5FT954Z4J59yTgS2boQGQP32NXqAYfAMYfBMYehMYeRdQgvGfvWH6Y05PmGrcF2jcJ/Ffw94l+awNBmPgnR5wHF+Q/0Q6Cvnepyp+6E5vOKYipmjp20eJBoxvBvpfAfr/rfsmBbZC7jsL0JwQpUHA3QDMOgmO+jOB3XvriWwAHK7MKtx6p4ioHEMwqqI1f7uynBhR7nkmelEsU/zEJ/xUvZOKz+dD542/wE8u+wHM19fZs2cj9OHm+GPYdw5LJiPwnWoTOI4HIemvXXSxcMIJJwBAWnWQOHNvAFPXPJSh4xB48BwHjRBEZDXjvIrE7wdMqV4mxU/ChyxDqleajTbaGmRVwXTFihX40b1/BMfxePbXt+HTH8vu+WoFisWt0qkbYcR0LqdeF4xWLxsVP/lAlaDBlFavRYsWgeP5JL+ccrdM5QtVK9W5kr+LYmM7GtrKl1aWbV4wlWxqChoRmpqacN111+GnP/0pdu7cibGxMTQ1NWHu3LkQ0kWUMmzDyano7OwEAFx11ZUTnOn//dwfML5mJQB9F+rBBx8sS1U13wUZACA2DHx4N7DxDj2dCwDcs4ElPwQWfmPCIsKRYpxabr74la+i4zcvQYuM48Hbfo6vHHcIANOOsQWTPJrINhaRIaua5b3NuYgZkcPVr/gp5cKX7gKQSrVeRAuhoPOxhvD5fLjqultx3VWXQl8o8ml3IMut+AH0oqmqqZAVzfKJq5VIAmcsSqIqgaNhMdCwGNjzHP0XiAaMbwFG1uoeQMNr9X+HdwOBLfp/3X9OekzNPRfPv7YDG3cD37nsFjhblgB1C4C6PQHBmfV4BoP6BFsNjZb82gr53qcWflyS3iodkVWMRWS0eXi9yDP6HjD0v3hhbA0gpxwnx0Nx7wF4F0H89HeAWYcBvAjHaBjoTYReZJv0e50iBgIxjEetWWzQwnrjJ76Eq66+uqRWr1IUP3XO7IofAPjsWV/GzU/+C1pkHD+7pgPnn3UEIrJqJBN5bCzeOgQ+HlWtYvdYBJ+/5Bo8+cufAsCEawyQWCwQQtIuJHglBmWkF2ODPQDm2HbcjOqG4zg4JR7hmIqooqE+w+9FFc0wUDfMneP/1wgxCrfuTIofKZHAp6gaRIFPinK3Co4XITZMQ/M0+5NzAXM4gjUbJ4VsCCS83mQQQixJ5zM8fgoq/AjG35o3Inw+H86/7Dr86sarARBL2qPtIuE3lSg5EFnfMC9ngnG2ecHAQOa2v8lGUaVgh8OBBQsWWH0sjAIwx6RLAp8k5/T7/bjpJ5cZt7UsVW2r8fl8+PH1t+JnV+oLsrSDUbhXN7fcdC+gxNsG6hYA+1wB7PnVjAsEOvjLSnbJrF0oGgHv9IB3euBsnGb8nBY3rLjAehwi3A4B4ZiK4VAM0+tdJT9mIchUilrihbYYj59ClWmNbTNw5oUd+NOd16DQC1+6CwDHcYbyp9x9x3bh8/nw81tuxxWXfg+pSrVa55MnnYX6p16GFhnHpZdfha+dfdSE36GKs3IWfhwij4isJil+rJq4WknORQnHAw2L9P/mfj7x83AvMLoeGN0AjG3Q/z+6AYj2gw/vwEnLgJOWAVj3I/ODAZ7Z8SLQAv3f7lnx/2YC7lkYj2no6OjA55f74PV6SnptPp8Pd955Jy688CIAJOv5HImpAFHgVnqB3vVAYDMaBgKIjAYwOroKbcp/AC2NApN3Aq3LgWlHAtOPgNbycSj/7gMASNMXGKEDqcX7bJN+w8/BwlYvzuEGOB4cx6HeVdiUz2lR4Sfh8ZN5kh9RNOP6qnpaEFM0Y8HglNInE1nFyicfMzbKbjx3NTpuvNW475+rV+Ooo47KWERMvY6A4yD3bILcswlfPPawsm26MaoTp6iPsdkWuGFTAhc1GxYFHg6RR0zRMB4fD7K1enGcnr4XMwo/1rdIEkUfB2NKeTZfDcWsRRsnhWwI0LFSVgnCsmqMYaVQTOu3Q+AhCRxklSAYVeAQE5v8Bx93Jp74xxtQxgew9s8Pla2zoxAIIYbih76nXq8X/1r1Iv6zeQAaX9hmRCn4fD5c/rObccOPf4TUNQMr/DCqngbTBK7JLSVVoyvd3nHSWV/C7X96GbG+rXj3xT8kBqNwD7DhZmDz/YAajh/8fsA+V8XTubJ/HekEOlohxY9q6tEeM03MwzGauGDNzkqLx4HuWBhDwQoUfsrs8ZPqj1DIJNk/HMIhJ5yJv734EkLv/wsbNmzI+8JHe9YvuOACAPrF/84778Slt3VBcNfjsXtuwmlHHpzXY1U7J3/uy7j+96uhRcZxx03X4vyTPl7pQ7KEgXhrEO/0wNsyHWMRZYKiwUjXKUOUO8UhJArUtqd6lYhD4BGGWthE3t2u/zfj6OSfRwYQ7vsfvnfeCVjYDnz/G6dADO/QlUFKQE8WC/n1dKsUIpqE8b7PA2Id2iJvAe56Pc5caoz/vylxW/Tq1wpOiv9fTPyfE/UijRrG+ce34PHjD8W45sV13zgKJ+83DKzrBKJDQHQg/l8fwjvmAsE6uHa+Bri3AQAaRo5AX2QOxkg34IkBYp3e2ta0P9D6MaBlOdC0NMmjR1E0AHrhx9zal1royTbpp1L4YBZlTC7M7bO9vb3gXfq/651iwQbnyR4/xX+H6eIzFFUy7p6HTQtjQgh2j4bBx3/PTn8fv9+PH1/2A9Nza7j2qkTR8uCDD8bPb70dV/zge0i3wWAuMHIcD4LEPKGcm26M6kSfF8pJxsupZPLw8TiEpLE5U2osx3FwiDyisoaIrMHjgOWKH6/Xiz89+Xu8v3scvJRdvWkVVqd6pZv3ZdoQEAUedU4RgaiCsbBiSeGnGAUyx3HwOkWMhGQEY4oRAKNpBONRBbzTA4fDh1mzZpV8fHYQVRIbYOZkRsPDqkTFT6F2EUed+gXcvfIVRLo34L1//gWLFy9O8nCbCrDCT43S4NITibTwOJSxfgCLjPsq3d4RNe3czZ49W28N2HATsPkB3UAUAFoPAfb9MTD75LzTuejgL5dpt2HC8ztd6OjoAACEVM6YwOYy3iuUFq8D3SNhDAXK7/NjWeEnjfQ4lUzGw/lOkncO68VDLTQCIHMcZiZWrFhhTAA2bNiA2bNn49JbH4LY2A5X0/SCHquaCcQnB7zTA6lhWu4/qAEIIRiNAh0dHcZu2FAwNqHwkxqRWw7ouRNTNSjxMbjqPH7iOCUeCCProiRvXG3QWj+JB1/Sb552za16IZYQvcgS2AIEtur/hXfp/4V2AZHdGBzVWxnqSR9c428B4xYcDoCbz9oPrwfmQxp8Fnj79bS/F47pbQtugQB1C4H6BfB6DsYLK7djZXcd/va79fC07a0roLKgmK63STHoprGP47In1FDFz7iVih/JBWWkF/JYP4C9Cvpbh2CN4oe2KygaQVTR0j4WiSe/ULqHw2it0xeYdiZ6ZdooM3P+eefi+t/pxfM3/nA39tl7b+O+L5/zVVz5yD+gRcZx16VfxdfOO3fCY9W6pxqjeNIZL6dCFT+prVweh4CRUKLt05nlOuYUBUTlRCKg0V5joTcWLWLb2cJvRjHMna27fqbO+7JtFja444WfiIwZjaVvwhZj7gzohe+RkJzkkTYeL6IDADgecg7z8EoRMKk204UFhNPE1NvJeESxzEuwVmGFnxrlz3/8nSFN/vZpq8GblBKpVe1yt3fwohMdHR04sF2F9/0rdeNmTe/nROthwH4dwMwTCo5jlyrs8UMvQgCN3NUnsAnjPWsusEake6i8hR9NI4nWlJIVPwnpcVRJX/gpRZlGCMHOeKKdMtpb0rECiaKRFtFbD61ceFUasylgwUlFFSbTbs5oWEZM0SDyHOa1erG5L4ChYBR7tiXv9kQrofiJT45jpp2uiqZ6ZcFqL66MCj7XNP2/tsPS/t3gjiFg/Xa01oWBBd8EYqO6h448AsTi/8mjui+cGgaIAmhK8v+JAmiyrsIR3FDhxNZ1O7FRBZqXHgXssQgQPXpwgKMVcLYBzjaE1zcAWh3chy0GmvQWM/fG3Xj91h9CHqoD8czLWfQBEi3IksAlKVrMn71D5LN6RWSK7i2Wxx57DMrgTiiDO3HJWavhKbDtyCpzZ1HQE8uist6+le5aSXd+p9U70T8ehX8kbBjc2qn4ybRRtn37duM6RAIB8JITvNODprZkf5NAVNUXEoKAT37i45PSU41RAqqMzs5OXLHtLQxtfCutIiGR6JV8jrlN33ue47Keg+YCEyHEmJd6JOvOnXSx8XYSs1jxk0quhX+DS8IuRDBm0bypGI8fwGzwnLgujIVlSJLDKJbzUnm7A/KFFiDrncnfQ4/JvLycxIiAjo4OnLz/zILCZCYTrPBTg/j9flz6vUuM2+mUEitWrMClNz0AoWFakhFxOYgG+4Bdf4dz+6OA9239h9M+CSztAGYcW3DBh1Jpc2clpUgxGpYNE1Ags/FeoVQq0l02vb5Sd1g4joNT1N+biKwmSTwppSjTAjG9b9jldCI00G3JxMDr9eL9d97CM2t3IUqqc6FeDCqX2ElXoJvpWVWkrBT943ohubXOiWn1TmzuC2AwjULOkFZXQPEjm+Lc7fQnKQVzkapU8lHwZSrkDYRkvc1rxhxgljWqNAHAaUcr6Ht5K0Y4IHbIwrQT7siHmwCVJC2yGlyirqiNRfL2HpO19J81z3OGKi1XAdBo9bKo8HPppT80/p0twSYTVpk7A3rxJirHEIqpaE1zP12oLpxeh/7xKHpHI2hv0BczdiZ65dP+wXEctFgIvKt+QroO3YXXYmHMnj0771YSxtSAFmQ4wZHxd6gXYmorl9nQ3CllLxobhZ/4piSNj7fy3MlHvWQlNBxBstCjz+v1pk1xTUdDXEFs1UZgMaleQOIzDEUzb+JFZLVg8/5yEDCUZ+kLP6W2epnJ51pNP8uGKnyvykV1zkYZWcmmlDCjyRGIje0QG9rKc2DBHcCb30X09e8Cg2/CiRAw7Qjg6H8Ax/4bmHlc0UUfIGE4LKsEWvyiFgwGwXH6DmswGLTkZWRCVpMvFlSCGzZiOK05najiZyQkG6+zHNDXx3OcYTBYCuaJSDp8Ph9uvu2XAPTnKkSZ1hvU3/OZja6iiz50AkAIMRag9GJQa8qYbARSEoImw2vrixd+ptc7jULpYEqhNBgM4gtf+go6OzuhxRMkygGd1MmqZqgERQvOJztIPUdTx9NCxtdM16U5c+bk/PuBeNGu1Wutd0SdU0SdUwQhQH9g4ndANhlwmwsbz/3p9xhfsxKRLW9gyZIleOihh3I+V6ItYeJ4RH+WSzVTZ4o9V4sc+82qq9RI8nTzhGyochSdnZ2WnEPpdq3N0A2UWY1ueJ0CFI1ga7+uwLQz0QvQN8ooGzZsmKCK8nq9+NX996CjowMan7yAV+Mtao8+9AC8Xm/Ox2JMLei4wknZCj/xOWRKS6O5xTFXaqxTSqg3QyazaCvVMlTxEyvT5isdm6UKXT+NZC+LIt2LMXcG0itBU4+pnOlYhUCDCupSCj/0vNCV0cV/n1JVxtmu1YqqTTCanoqwwk8NQpUSZtIpJbR4LO5wyOaFXnAn8Ma3gb8sBDbdh6jKAd55cB52D3Dsv4AZx5RU8KGYL2ByjihuO0idiNMFNN39sErx0+AS4RB5qBrBSBkX6eZELyuiK+nAnu2CdPoXvoL65afBu/QYPPzcf/KeJPcG9cF7Tktp6T+p0Au9bpJYnRfSQqFJOvQjHbF7PLCJ7u5u499947pX2LR6J1pMCrnUnTwunoBR1lQvIaGikYvc4SsXVu7gprsu8ULuMZEQYqi12uozL46KZXqDXkzqHYtMuI8W7c1tFH6/H1f88PvG71Dlkt/vz/o8CX+05LEzGAziR5d+Xy+eqNnPPbckGEX3Ytq9UlVXqRTadpTk8VPid9gbX8RmUjMZGygOHrPjLXd0rEqnGLWLTO0f9cbiK/kzpJ9TnXPiDvJU9ZBgJHCIvK4ejIaTrmFmMnn8JBV+cswvXaYiPk308ljsjWV4/JRpbmR3q1cuGuLpyda3ehU2v060RZlbvZLHUSuVM1ZCC/2phR+nKcGu2GPPpDLOdK2mY7UkcJat12qR6pyNMrJCpcmUdHJir9eL4V4/Ojo6EFY5QzJpKeHdwJqL9ILP5gd0f4X2oxDb+2pg/rlwth9qScGHIvKc8XCp6ptykFqVpoWfhOLHmoGE4zh4RILOzk60z1tgu5KJUuxuRCZyKX4AfWebd3ogNrbD2Zi7xSMYDEIURfzkhl8iFpMx1+LCj0PkjcmWVbs8lYYutGhC3EiZvaNKIdNuDm31mt7gRJPHAZ7j9NjblEVlJQo/ZnNnueoVP/l7/GRatFB8Ph8uv/ZmUAUfx/P4yvc6jVjz1L+ntwNRBRFZBc9xaPFYX/ih7UJ9aQo/ESP5JtFGka+iNhXaWpEuwY0o+liSa2zlOM6k+im88JPu2CnFtB2Zj7fUdkmPSc2Uiu5Joh+3xyFidrMbshwz1EacWvkxi7bhpbZ92GGiy5g8vPD04xhfsxKx7g0ZFQnZUr0oueaXhuJH1gzFj9XeWPnM6ayCEJJQzFYoHCGh+FHybg/LhlH4yWNDxEy6awKdn9Lkw0iZ2u8KhY6XdSkKG47jEu1eRfr8FHqtpsWyepdkyeZ2rcIKPzVKPnJir0OAU+JBiMWqn0gf8L9LgT/PBzbercfnTv8UcOzLwDEvIerRdxStXmzRyEogfbJXroVJqSQm9vqAQQs/EYsLPwDQHG85EtyNlj1mLqzeXclH8RMy3TeWpo86XauJ4G0GJzkhCZyxqLMS2ieduqNSiyiqZlxUZze7AaCsKrJSyLSb8+GW7QhGVXAc0FbnhMBzaPbqn1lqEh7RFCgjvRjq6ynbcZt9c5Qa9vjp7u4uSEYNAMef/iXULz8NzjlLcd3vVulFcU01/v68878+4fGo2qfZK9nyPhmFn/GJrUrhNP5s+SpqU0l81hMnlETTx5J8iuqlGDwvWrQIXJrCE1Bc25EkctCiISgjvRjsLe0cqnNO3LWmRBUNWnxh5RJ5zG5yJ91v9+5surbfVOoyFK6M1oG44iefx2JMDfx+P2748Y+M25kUCZkUP1BMxU8t+3Wbzrcjsmp5lLvxHFL5Cj+qRowxoVKKH9oOFFM0Swor0SLNnWmUvNlfjKqQWuv0zZJyp2PlCx0v06k26RqhWIPnQq/VtFhGlVxTleqcjTIKIpOcmOM4a42Co0PA2iv1gs8Ht+nR7G2fAI5eBRyzGph+hP5rsn2GqqkGz4UuTEqBPif14BkNyyCEJIz5LHy9LfGFLO9psOwxcyFn8agohnx2h7S48XBHRweiGpfXrorY1A4AmNXkssSLKBW6yzMZvHDoRVfkOcyIL4BHa6TVK9Nuzlvr3gcAtHgdxne1JY3PzyOPPILA2ucRXL8Kn1x+gK1jgxna6qPHuVd7qlfyOWoeT/fee29ceOGFxu18Wp4iMk04EnHE/FY8dVdn0t//4YnHJzze+k1bAVjv70OZXq8/7lAwNkHZlE6tmaqo5Xke999/f06ljJwlelgNB6CM9GJsMHcCYSZlST74fD585fudoKorwbSzXEzb0con9fTQ4PpVOGC/fUs6h7h4utHnvnzOBBVr2ORJIgo82uoccIqCUXQaGShf4TYTdRlavejnxBQ/jFTyVSRkCggx3861kWoey0M2qdDMbcx2o5isFSpV+BEF3jjvrVCAGymfBRZ+6DGEY7r3m6oRo+BMNzYiFiVzWg0dL1NTvQCUrPhJXKupTyifVdVKP8P6NG25U4nqnI0yLKPZQxdEJRgzxkaAdzuAZ/YANtwIKEGgZTnw6b8Bx70CzDg6qaXLiFAuUM6YD/QCEFW0gvs7S4XKTtviFfbxiIywrBq7ElbuSja5JWjREIgq265komTyqCiWfBQ/5h0MWSV59fryniYoI71whIdLP8g0GH3dk6DVazx+0a1ziWjy6Be7kXDl2ybyIZ16QRAE1E/TL+p0QQ8kigaDcQNfv9+Piy++2Ljf7rHBDB2jzAkclZKq58Jl7OCqE8ZTqlowk6vliRbBiRzFeP/OCebCqaiqijM//yXIcswYV63G6xRR74obPKeofsIZdsZXrFgBcAK8+xyFyx9+Aad/6atJ96dTItLUx9RWr66uLkQ2v47g+lU4/+RP5iyeCERBZ2cnDv/0MQW3+SqqhgOOPgP1y08DBAkbNmwoWn3i9/vxk8t+YNwu9Ryik3xOck+4L1V5xXEc3v/XM0bR6WPL9itb4TYTuVq9UlsZGIx8FQmZNg/N8e45W71MbbuG4sfCKHcg2UDaitanbFAFusBbEzZSLE5eQ2dnJ+bMX1yS7QIhxCiYFTrHdkkJP5xgTMF4RAYh+uPQTeJIFSp+NI0k2g6zFX7k4tX1K1asQN1Bn4V36TH42WOrsqpa6dg9lY2dAVb4qVnylRNTGeBwsIhFrDwOvHc98MyewHs/A5RxoOkA4MhngBPeAGadOMHDRzH5Wtih+DFHJRfrxVAs1Ny5wSVBEjgQAvSNRePHxVnapvD3lY/HU2XW2K5kosSKlKFmIh9ZcKqPRbb2qu7ubjz8yCMIb9IXUV847jBb3pdEq1ftF37MMlv6uoJRNS9Pl0rj8/nwrSuvh9kzRtUIvvT1CyDLMUyrT7T50XGOKhvLPTaYoTuv5paWavX4oV4DMSX9eJpKzpYnQVfwrfnva9h///0nLHrSITZOBwC01tmj+AGA6Q0uyHIMC5YenFSsSdfqZUBUAARNbTOwbSD3hD9d4XxCMS2P4gltieKdhfuXjUUUEBBwogSocknmwlafQ3SSzzsmtucan0P8d/x+P/7fjVcb95ezcJsJc6sXXfQqasJPZarvIjMmkk49eN99yepBQojJ2Dx5HHKZVG+jOVRv5vkWNdS1WvFDr22E2J/sVWl/HwotEvCu0to2FVPrWqFzbLMfTjCqGPPkBrdkFASr0dw5GFNAiO5DlM5o3B1vYSu21QvQN1wEdwPExnY4GqZlTcNkUe46rPAzyWnxUpl7AYofJQRsuEVv6Xr3x4A8AjQsAQ7/A/CZ/wG+UzOaNpsvBna0N9BJtaySor0YisWY2Iu8sYimSTFW+vv4/X5cfmnhqTKlIlvt8SPmo/hJKfykqGzMrSd77b13WRRehqHfJCj8JBJnRLgkwbj41kob2xEnfd5Ifbv0gb/COWtvCHXNAJIVP+ZWL0IIFixYmFYtZNfYYIaeP1TNJgnWpOTZgXmxkG48NR93Lhk1kNw6lS6E4Oyzz048Ns9DbJoJqVFv3ZxmY+GnPf5dEetakn6eqcWCIg/pastt/ZkLP1SRma5VtpjiSV18Msw5Ci/8UON2LRIo+G9Tsfr66nXoi1g1MIKPdu5Muo8qr+j4VMnCbSa8DhEcB2gksYtNz3GR5yxt9WZMHnQ/Tg6eJUfi8odfwHFnfDnp/piqGYvV1HHot7951FC9nXnUIVk3upymxK2QcT5Zq2wQTeobu9u9rA4bKZaGeOGHc9aV9Djm96uY1+Q1FZ7p/K3BJRnfmWo0dw6YWg7TzYHosZfiTyQ43IZdhChJWb3x6JyeKX4YkxqakjIckqFlqYQC0D17PrhDL/isvQyIDgD1i4CP/xY4aR0w93MAl/0rQ/19HCIP3oZdbsPcWdXg8/nw9csTioBiUksKwWzuTCvGPTYUfio16bXc46cAxQ9VbJiLLROiiQnR/zNhx/tCP1urkhwqibnwA8Bo96oVn5+oqoF3ekDkCBrb2uH07QM+PgGbZir8NJuSvQJRBYq7GWde2IFyjQ1mUg2TK+VPkA9mXwifz4cLf3wDzO/Z3XffDTjc8C49Blc88nd8dcV5WR8vYXSvP25qCMEDDzygP3bTDFz6wF/hXvAxKGMDCA712Wq4SH0QhJTCD02SSm31oora/m3rIUkO7BoNJ01O03nLJXaoE593McUTj1OIxz8HC27zHQ7JkCQHft/1q5LNhfNJDy2Exx/7jbGI3W/fZL+gVK+lcm/q5APPc0ZKEh1XEwsbsWqLu4xqgECLBNDUNgNrtvYltYnSBbvIc0nXikKtDFxGG5ZmKvxYq/gxB6zYbfBMCz+VVsvWu0TddkGJlWS7YBSyRL6oscJrSvaiG6SN1a74SZl/ppJo9Sr+2FM3ljNt2BKS8EViip8qpre3FxdffDEOOeQQHHHEEbjhhhsQjZbgVTMFaXCLkAQOqkYy7/JrMrDpAeDPC4H/fQ+I9ALePYBDfw18dgOw59lGJG8u6MXArvhkc1QyIQT7HnWaoQj453/fLji1pBASFyJ7FT+VmvRa7vFDe84zDOrm/t+Zjbrvg1nxY0nrSRE0WJzkUEmCpoUJADS69QJbrSR70eJJdPcmNLpFEFVP6VLHB5POOYHn4Bb1XvyWmXPx5pY+HHLCmXDO2RdAcYlGxZJa6KnWRC8g4QsRU/Rd50VHnIL65aeB97Zgw4YNeuEmFgbvqkNjazt6RidGopvJ1jplbjtSR3rQ98EbGH/rzwiuX4VrVxyHX//61xa+smSmN8SLhLwI8IIxgU9tMUqlwSVhWr0TsVgMjb5F4DgOGzduTLsg27VLX5BJpoVKMcWTP/9BN1QOb3y14Dbf0bh/F/X2K5V80kPzIZfnVmqqkdVFJ6tI9fkJRLIvbBgMSqx3CwBg22AInKQXooPBIFqnz0BnZyd4JM+TCt0ATKR6mcydLVb8mJ/H/sJPfCPSprVEvvz9ad12Ibrj3ZJsFxJR7sW9Hi9t9YopRnGjwS2aFD/VV/jJFOVOodfdUlq9JhR+MnhzBqIKVI2A5zhDVTtVqdoZKSEEF198McLhMB577DHcfvvtWL16NX75y19W+tBqCo7jjBSqwdRkL6IB238HPLsEePPbQLgb8PiAj90PnPwhsOA8faJcAIaxs03xq4bHj6JhLKIYKTJiYztap8+05Tkp5p7jpvjEmnqoWGnsPKEvvEyT3pjF0tpcip+QrIIQvWuQJk6ZPX5ytZ7YtRiwOsmhkhhRw65kxc9IjSh+wIvo6OjAbv8O9L/9D0MxcPVXjp4wAWuNn5Niiw8fDYUAAHL/dgDFJRoVS+r5Y1Uh1Q7MXgM7hkIIxVRwogQtNJL0niljfQAA/0go42NpGjEUn5kK4VRJs3PnTvz29kTiVz7eN6XgcYh496WVGF+zEtBUYwKf1eMnzvw2XTUjtcwCAGzevDntgmzHNj2dLLXQV0jxxO/347IffM+4XWg7Kz2vG23Y0bTTLyhdAc6qopOV1Jl23QGTonKKtw4wMkPHPDU4grltDSCEwDF9T+N+TtSL0u6UVsFCNwBpEV8jxFCnWx3nbn6eTBt6VqFYbD1QDH6/Hx1XXGrcLsVeoNgod0rGVi9H8uZNNZEtyh2wptUrdXM2UxqmuQhlRzdKLVG1hZ+tW7di7dq1uOGGG7Bo0SIsX74cF198MZ599tlKH1rNMSHSnRCg+1ngbwcCr54NBLYAzmnAQb8ETtkELPoWIBS3Y2i/4ifh8dM7FoEkORL9nQ77PCKARGqLJHATJtZW9/evWLECniWfgnfpMXjhlbfKMumVaWuKRZ9dLo8fuivlcQgJQ2VToSVdK9/dd99t3L9u3Trb3hfadlIrXjiZCESSFT+08DMcqv5kL0KIMZ4M9O7C9Vf/MHFfmglYczzdwjlDnxgvntkMNTxecstLoaRO7Kq51UvgOWNM3bBrTG8TevAOEE2F1+s1Fi3/XfU3SJID3cPhjI9lLvDSwk+mEIJyt7P6/X787vYO4zadwO+Of3+yFX72nKYft9g8C+B4cI0zwXETF2Tts+fpv5el0JereFLq+0ILP/Q8L5V8QyRykWsRm8trqZyF22wkIt1TCj9M8cPIg6WzGwHExxIAu3btAjgeykgvAkN9Sb9bqOpNEjjwpo0xh8hbFtRhhs7t7TZ3jlmsQC8GK69TMbXEwo9hhJxo9WpwS3CKvGG5Wm3tXtmi3IHMrV7pUjMzkRpUkqnVy4hyZ0X66i38TJs2Db/61a/Q1taW9PNAoHTTwqkGlX0PBWNA77+AFw8H/nUKMPIuIDUA+18LnLoV2PsSQJiYuFEIdMfXrsKPw5TqRdusjOe2WXqa8PjhJxR+rFT8UDhBhNjYjrb2GZY/djrs8viRVZJ2J8Lsj2BEqIflJF+d/Y85XW89cTcmWk/i2LkYqCWD50wXSUJIosc6Pmloird61YLHj6Ilvjc7tm/JOQFr8Uh6AspoP0YGerC/r7Gsx0tJnahW2qMgG8FgEFddcTk6Ozvxwa4hAMCCaRNNLGc16deFntFIxl1FOnlziHzO+N1yt7Nu2rQJJM33Z+dH2wBMTNMxM6PBBbckgCgypNY5eHXrEM68KOEfxfP6gqwxrjiVUl5XIcWTUt4XVSPG5LbJolYvq5iYbpS8iDXip21QKFhJaqtXaistg5GNxe31eOvFpxF8bxUA4KCDDoIy3I3g+lX43lmfmqBiLUT1xnFcUpKuHXNSIFG4iNrcBq9YPB8tBiuvU6WaVXuciWAOqqRpdEvgOM7YaKm2dq9ALsWPSa0kF1lIpIofWvTMpfhpYIUfVO070NDQgCOOOMK4rWkafvvb3+Kwww4r6HFUtbpOhEKgx17qa2hyiyChbgz+735AvB0AQAQXyKILQfa+DHC20Ccs6XkAIBSTQYgGiedsee8FHiBEQ0RWMDauPxfPcdAIQSSm2Pp5x2RVfz4QeCUOIAQE9OJk7XdNVVVA0x8vKqtl+R5HZQWEaBBALHk+kSPGexSMxCYM/uPhGAjR4BZ5eCQeIEQ3543E4HGICMUUjIdl8E4PtFgQM2bMSDouVbXvffE6BRCiYSQYrfoxJNN7Eo6pkOP/don6ffVOHoRoGI/EEI7KtuwIWkU4qn8fOXDYa9FC8DyfVPwRBAF77rmn8Xqff+r3eisPgBvPW4097ruvIu0hHAAOiehWgbP/OlTstUJVVUCVAbghKxpcAsGcJueEx2l0CXCKHCKyil3DQcxqck94rGBEP5+dopDzOGbOnIk77rjD8MoRBAH33XcfZs6cact7NX/+/LTfn+YZPhCiwcFnf+8+fPkZ47t1/Yrj8fUrroNz7lKIDdNxz83X4pzjD8HTb3fHr0fFj5+p74se/5zf+zIUjEHTNEgCD5fF1yMrOOecc3DJT2+Cc+Yi/PxnHTj31E8YxxiMyhM+B5fLBUVJTOKL+m4X8XfZ8Ej6+DkWjkFVVYyF9O+8R7JnvsOYXOzu9uMPd15j3DZvclEV67HHHmsURM3fqdT5TzokHgiRuGG9xKf9/VLPCyk+Bw/HZFu/85H4fJRH5cayieNx8dcpOp8RclxrMuEWORCiYXA8CgICh8hDjF9rHAKHENEQjMTQbGNIQqEk5vjpx0cBxJgrBSMx1Mc3XAuZ54fi145mrxMDgShGQunn7KPBKAjR4HVMnJ/Yca0oN4Uce/V8Q3Jwyy23YMOGDfjjH/9Y0N+tW7fOpiMqH6W8Bmd0Ozy7Hwb3USNGeBmxZmCw+TT0t38bMpkGvL8DwA7LjnVDbxQ9AzHUx4awVt5t2eNStg/J6OmJQAgOoC+oQtYIWj0CBkMqNmjD4Ibs2+n8aGcQIVnDBx+Mod8toL9nBPc+qBuS3nPVN8EPlRb3mMrPr78W/jEF2z76COK49e9lKlu2hdAfUrFFGkWsz5qhYaA/AFkleGvtOBqcyUWG9f0x9PRF4YlKWIc+jAwGEZY1vPbWGFrdAnoCCnp7x6FFxgFVwbvvvgu32401a9YA0NtB7aJ3WP+ecYEBNEd22fY8VhAOJ9pv6HsEACMRFT09ITgFDu+tSyiBhvoDiKkEr64ZQ5OrenfYx6IaenqCkAQOg611+NGPfoSbbroJgL4gvvLKKzEwMICBgQH09vbi6ssSvfhE0/Cd73wHPp8P7e3tZT/2gT79PQYAKSRhLfpy/IU1FHqtCIfDIIre9tfb24s5zS68vz69qlYZDaNnTMG/1gxjSdvEcbZ7XEFPTxhRt4C1a0dyPveyZcuMfz/55JOYN28e1q5dW9DxF4L5+8PxPH5w2RWIqEB/Xy/Wr8ssJ+/t7cW9119t3CZEw0M3/Rh840y45uyHHUNhrF27Flu2hzAYUrFZGkWkp/jxc9myZQAvwLvkSHxpxTew19KFeb0vu+Lvf5NLwDvvjBf9/HYRDodB5AjExnb0B2JJr2nbRwHIGsGWD8fR57S2GG3lHLAvqL/HwWEea/l+fLg1iKCsYYd7DKHd1TuWMqqDNWvWTFAemlFVFc8//zyWL1+e9DeArlrMRV9PCMNhfQEohkSsXTuQ8XeLPS/8PVH0DMawQRmCNGKfvcL7fVH09MdQFxu0ZS2RL8uWLYNr7v4QGqbh6ku+hYMOnF/UdeqDgRh6eqNwRSSs1XoL/vuQrM+HKI2mcb6/R7/2rF03ioGG6lnWb9oegKIRbN80jsEM4/rwgD7vf/PtMbS4461fpjntP/7xD8ybNy/jc7y/O4KeIRmuJgk9IzL6OA5vu4cnJKet+yiMnoCC3fwI1o7vTPtYk6FekA/V8w3Jwi233IKuri7cfvvtWLx4cUF/u99++0EQavOCrKoq1q1bV9xrCO4At/5acB91QdMAnvsi1nwk4Re3erB2w6OYbpPnxfAHfRgWR7FkzxYsm99q+eM7d4+hm/TC45LQ6pUh8jyWzm7A2p0jmDevGcsWtuV+kCL579hWRGQVB+w3F211TqwPbTHu22/JXth37jRLn69X6oXSM4Y9F7Rh2bxmSx87HRtiOyCMR7HfvrOwR6s134+3Q9sxFpaxcC/fBJXA8Ad9GOBHse8eLVi2oBWbFD92jYYxZ/4MLG6vx5qPhjEnOoDHfnUfTtrvaePvSjov8qRlKISdWjeaPA4sW5b5olMNmNu7WltbjTFy+2AQM4K70FbnxLJlc43feSewGT+4+me4/YOXMbh1fVn9bwph92gEbwd2osElYdmyPbBo0SJj4f7ee+8lXQtWr149oRVM0zQ4nc6kAkO5+F9wO8bjbTcLZzZg2T72Fp+KPSeCwSDU8BiIqsIlEBx18D4ZW+RIywhe3tQPT6sXy5bNmnC/Y9cYNsd6MS/D/emem3Lsscfa/j1ctGgRbrnrAbjnH4xLfnQFzjvhEPz5nV2oj3+/MrF69WoQMvG7RQKDAABX83Qs3W8vbIj6IQWi2G/f2ZjX6in6OIPBIKCp4AQRC5csRePs2YY3SDbIjhHMiPVj4fQ6LNvP3qCDYggGg9Ci+mfe0NqO/fffGzzPQVE1/GtQv5Z+7KD5liVk2nGdGA7F8H7kI0gCjwMOmI9/D21BPSE45MA9pnxEMCM3bW1tE5SHZgRBwIknnlh0YMU20o0d8WCDJbMbsWzv6RN+p9TzIrJ1EGPbhjAnw+NbxfimAQwJw1g8txnLFtk3r89FMBiEpsTgbGzHov0OynqtyEZoyyB6uSEs9jVh2V6FrxU0jWDN2Bajy2D+tDos218f53dwu7BtIIh5C6ZjvzyuFeUgqmhoi4/rhx68IKO6fENsB/rHo9hz0SzsGQ9SuO+++4z7P//5z+P+++/H1772tbR/v1vsQcAxjuUL2xDdPAgCgkX77DnBd+29yA6QuiiW7z/x+lyONYXd0NeQD1Vf+Ln22mvx+9//HrfccgtOOOGEgv9eEISa/SApBb2GSB+w/ufApvsATd/JFXynwtv6TTz9p/+HYLDR1vdEIQDH8XA7JFuew+UQwXE8AlEVHMdjRqMbHqcEjuOhaLD1s9bir80l6a+t2ZvY7fC6rH+9TkkAx/HQCFeW77CqxV+fhZ+d2yFiPKJCTvPZhBQCjuPR4HZAEAQ0eR3YPRZFMKZBEAQMBWVwHI/2Rnfa47Hze9zsdRrfM57nJ+weVBO//e1vjX8vXboUDz74IM4//3yE5eT3l0K/t4KrvqrHRzV+vjkd4oTjnDt3btLtvffeO20rz1577VWR1+eSBKO/3SmV7z0u9PP87W9/i/Cm1wEAN31tNXz33ocDv/3NtL87t9UL5f3dOO/CSzH2+h8RCIwnFWtimv5988Q/r3yOtdjjLgZBEKCFRsAJItwNrVh23FkQG6bj9p9fk/W5M323tm3ZiOe2xhCKqRgKKxO+r8XS0KAn/7y6ZQD/3TqE7tEoDpib+/HG49fEFq+rKs/phoYGKKFx3PXSZmiEIKwSNEgiwvHrAM9x8Wu5tWOtld+tRo/TmGsEYhoIdG+1Bo8zp68VgzFv3jzcdddduOCCCwDovjy03YuaN2dTN+TC7ZAM4/k6lyPr977Y88Idn2+nm9NZiTGeSqWNp6XS0NCADWvfxJ/X7kIUxR+LaqyNinsMQQA8TtHwQ2vyJD5fugaKqfZ+JoUQDivxz4+H25m5KO51ShgIyIiqBIIgwO/345JLLjHu1+Lq7c985jNpC6IxVb9+1LkcqHdLGI8oCMkaGj2J94EQgkBMvz42eZ0Z36Nqng9bSfUaPAC4++678fjjj+O2227DZz/72UofTnUTGwXe+Qnw5/nAh3foRZ/pnwaOexX41DNobpkHLRoCBBHd3d22HYb9qV7Jj9ve6DIqyTEbzZ2JKSKTprY0uETdTHakF0N9PZY/J40FLldEY8Lc2boJLE32Sme8HTKMMfXfMQyV40qJ/kAUADCt3t60tnTUuyRwnG4wHCoharJY8k018Pv9Rv85kBw3GshgPNro1r+3hBBbx4JSSR1LspnkFpqAYjfmcapaU71SvzuEaLjkwu9mjKptq3PCIfDgBAmCt2nC/dRkMZtRshmrEqMKJbp7IwBAbNB3q3MlMmb6bs2ZMwczGnXT692jEeP6IFlUAJjbou9K7hwKJXmBZGIkrG/0WJXoZQc8zxmpKtQ4PxTTxym3o7oL7IB+LlNF0u5RPVzC4xBY0YeRN2bD5v/973/Gv3OZN+eDed7tsckonT5HapqS1dgxHy2WpriabyQk5xyLM83d6PqklPmAxKno7OxEZ2cnHEj4n7mrzNw5GAxihm8eOjs7ISH7uox+T+mxF5qkZsw7JN4UypJs8BxVNOP9Z6leVVz42bJlC+6991584xvfwMEHH4z+/n7jP4YJJQRsuEUv+Ky/DlCCQMty4Ki/A8e8BEz7OADgtef/hPE1K6EM7sSSJUsmpAdYRdR0EtqBHI0YA58sx9De4DRc8u2Ml1Q1Ajre08LPS39+EuNrViK4fhUOO2h/y99TuoCQs/SEW0msxNSBdNCUiXQXpNTCBJXKj4UVyKqmp9ChMoUfgefg4DR0dnaicdrMnJGSlSLbRTKYIWp49Z//gPE1KxHb9YGtY0GpFJoQWEgCit2YZc0iX52X2UInWDzPYWa80CE0TpT4h2PUSLw6d8xooSm4azPqPS6jaJ8ao5yOTN+tGQ2JtDO6UBEtGj9nNrohCRxCMRUDgVjO3x8OWhvlbhc0EXM0XviJxKgZbXV+b1Kpi29U9MRTRevYQoJRJLNmJVpirUgpJWrMmB9zau4xoxicdDPP5lQvWS29UGIVenqWXrwpdiOw1Dh3APCYxkhzAYMWo6spzp1z6BsXdLzMhNuIqdePfdGiReAKSFKjawuXJBjpwLTNnkI3GTwOoSq+T5Wmat+BVatWQVVV3HfffTj88MOT/mMA0GRg0/3AXxYCay8DYkNAwxLgiD8BJ7wBzDwOiO+e+f1+3N55eeJPTaoAq6G7AA6b5HKpJ+2MhoTix844d8WkuhF5Hn6/H9dd/UPjZ3a8p3QBQWMt7YQQYsuFNpPih5CEksYTH/jNip+BQBSE6Gqg1MJFuaCxj7yzdDVC6i5QvoqeXGSLGw2kKfz4/X78/Mf2fm+tIhZPKShGPWjFJLoUkhU/ld+xTEcxUbUzG53QoiFwgmOCWiyi1EYktyTw+Oi1Z42i/bdOPbyg4qf5u0UVPz2jESjx8VO06PMWeA6zm3VftJ3Doay/W81R7qmYC/xAYrFilbeP3dBCT29c8VOp6xOjNrFT6Wi+Vto1DtPnsHOjNRgM4stfORudnZ1QYlHbnidfRIE3EqdGwnKO305gvkZSxUkpG6tm9TadLwPVp/gBAE6QoIz0IjycfWOFHjtdD/h8Ppzzg59Bz0cF+BzqbTrvcEmC8RmNmQo/wWAQs/dcpKuk+PJsolc7VVv4+eY3v4kPP/ww7X9TGqIB2x4Dnt0bePM7QHg34J0HHPYIcNI6YM6ZRsGHUujObikY7Rk2KX7MiyinKKDRLSUUPzYWfmhRhOc4CDxXlveULiAUGy+wFMWkaLKy8JNJ8RORNaOFzRufoNBq/VhYRt9Y5dq8KHRHhXdZm9ZWKNnasRJtKPp3heN5XH/rnfD5fCZFVWICWM6xoFQSip/aWBCaqYVWr2La41557o8YX7MS0Z3rJqjFDMWPTWO/Vfj9ftzxsyuM26SE4md7XPEzGpZNrV7Wvf45zR7IcgxHnHhG1iLxWFgGIfr10VvlhbdUxQ8t/FR7wZBSF/er6BuPxm+zwg+jOKwuAjlE3lAyjgxYbz8AmFq9bFb8QNDPM6sK6aWSaPfKrqTq6uoy/m2+RspWKH4cgvH5jg8mksHcjszK+krQ1dWFWM9GBNevwjdOyb6xktrqFZFVLD3qNNQvPw3epcfgT6tez6je1jSS1GVCi2HjkeRWL96ln1sNbKwGUMWFH0YKhAD+PwN/Wwa8dg4Q2Aq4pgMH3wmc/CEwfwXAp584FbOzWyzl8PihA58QHgTHcWXx+FHUZH+fcrynotHqZb/ih16UOM5ijx8pveInGPd1cEmCoWyivjqySoxkiml1LsuOpVCohxPR1LJ74WSaPKTj//7v/1B/8CnwLj0GVzz8Ag4+/iwAQCB+8TO3IpRzLCiVQseSSnnGpMN8zNUycU1HIe1xfr8fP7nsB8btVLVYRKmNlp1iip+ZvlsuSUCLN1lhY+XnTX1+xMbpAJf5PKC70I0eR9X75BgF/viuLC0YVvv3hkILPXTjghV+GNXC3/70eMJ+4EDr7QcAU6tXisePVSpmClFkKCO9GOyrXJS7GdpCOxrKrPjJ5rloheJn1TNPGJ/vAfvta3y+9DOJ2F2My4Ns70E6aMGfKn564kpK3umB2NgOoT5zApp5XeEShQn+cRSq2mdtuTqs8FML9P0TePGTwMunASPrAKkROOB64JQtwF4XAUJ2VYTP58Ntv7wDVBVgl/GpqhFjcLNrl/7x3/3GGPguOfNTeOihhxKFHxuVMcZubnxSXw4zWeoNUg7Fj6zQ12etwSZdAKfuRATTqFEEnjMm0R8N6hOHSip+qIeT1V44qUWk1NuFXjgjigbeVQexsR1NbTOwdSAARU30opsXJqkKoUqbIGeDXtRL2SGrFLWg+EklV3tcroJJJFYbLTtWFz9puxegF85FC41+p9U74RQFEEUG76rLWICmu9BNNRAp3mi0esU9fmpO8ZO8eEg1z2cwKkE57AeAhIpbVoltwSNdXV0Ivf9PBNevwnEfP6gqfAhp4Sdbq1e2a2Sp8xm/34+bfnqZcdv8+dKxs1IeP+ai37vvvlvQxkpqqxf1TiOq/j4PBjMrrOi1wyHy4Hku0UYcUZJNuHkBykgvIiO5/fymArUxI52qhHuwcOeFEFYfCwy8BghuYJ8rgFO3AvteBUj5t6Ccf965qF9+KrxLj8Gate/aYnxqVtzYofjx+/343sUXG7fpwNffs2vC81uNEh/IzEatdpvJSkarl/2Kn5jh72PtbnFGxU886trrSJ40U6kmNUqtVOFH98L5kXG71ElUqoLn3K99Pem2eWJTqCKB7pgTVYZD5BGMqtjSrxfOBJ6bsJO+YsUKePb9NLxLj8E/XvtfRU2Qs0F3FGux1cs8uauVwk8ushVMCCFJJovVjNVF+5mNLsiybqra8ZMfIxTK7sdTCBzH4cOXn8H4mpXQwmMZC9Aj8V3o5ir39wESY3wgqiQVqGtG8ZOya8xSYhjVQLnauM2KlUxz7lIU0oVufJWLRrc+tg5nafXKZkxcqrlzts/X7PGTTwKkncxfsKAgc+bUVq/esQgkyYGnfn0XOjo6EFS4jK/J7O8DJMbimKIZa46uri5EtryJ4PpVOPOoQ6qiiFhpJseMdJLCbfs1GkOvg3AisOi7wKlbgGU3AM6Wwh+L48DxIsTGdrROn2nD0ZqMnePVV6vJNPDt3L5V/7dGbFPHpLZ6pWKHmSxtgSpHqpddCQqJfvAUxU9souIHABymuEpoSsV2sK2cRKWbyPzxyceTbpsnNoWmGkB0oqOjA3f+4mbsNbMZshzDwcefpUdpcmpaBRfH8XGFUHvBr6dc2O0XZifmAqqVChCrKaQ9LrVgwvOJgomsEkMVWe0eP4C1RXua7AUA0KzdcfX7/XjghqsTD59mERQMBnHKWV9EZ2cnnJyS7mGqCj1ZhQMhuhdD7Xn8iFlvMxiVoFxt3DzPmQJVEuNdIe3p2ahWH8JmqvjJEunu8/nw9cuuQ6qievbs2YaqvtjCT7bPlxY+CLE35CYf+rQ6nHlhB/JVldNxP6ZokFXNaPXaa0Y9BJ5DTNEmxLNTIikp0pLAG4WksYhctUXESlP9M7QpDFn4HeyY/kNoJ20APnYP4C6tYEMU3YzQrj5Qu/19Mg18ey9ebNy2q92LFkbKGc1MF4zlUPzYVfjJrPhJjnKnmHdPW70OWwqI+WDlJCrdRCYV88Rm9uzZ+PL3O5HvhdO8cFo4XVcBig16X3SqoopCx4JwFfSEZ8KKnvhKocaiRgFTjkYqfTiWsWLFCjhmLIR36TG4/8//NgomdOdN4Lma+7xKLdq31Tkh8rr3nDzSY6kfWL6LIN5dDwBodFd/EYLjzJJ8OTF+1Yjih1dN57YcY61ejKqgHPYDFGdKkq6VC+xq9SE0R7pna6k65MSzUL/8NHiWHGlsKigagUaS7SIKJdvnK5iKceEi4+atgHN68fc1H+CQE86E2KJ/73JtrDgE3ljr9I5FEIqp4DkOMxpchn/eQDB9spuhMjapwo1kr7BStUXESlNbM7SphqMZ/c1fAurml/xQXq8XD953Dzo6OsBJ9rTPJFJ47PlaZRr45s6dYwx6tKpuNXQ326z4sdtMlhZh5HJ4/Kj2LLIze/wkR7lTqKGyMtILBActPZZCSP2ucTyP++67v6hJVLqJTCrmic1oWMYBR59upBr89eU3s144aauExyFgXqsXgqlYVuecuJjyer34y9N/REdHB4hQvZ4gNa34SWr1ql7FTzEQOQqxsR3OxoTpYsSU6FXt5sJWw/McNvxLb8cKb3zVUj+wfBZBus8GB2WkF8Gh2vAwMCd7RWqs1csp8oaySxJ42+Y7DEah2G0/QEkNVLFyge3z+fCdq36OavMhFAXeUPeNZDF4DkZV8E4PpBYfprXrm/X0feK40ubY2T5fuskaUcpf+KFqLxIN4ucrjsfW/zwLZWgngNwbKxzHGaqfbQMJb09R4NFWFy/8jOco/JiuHTQ8YDwiY+HChYWp56cI7Io1hXBJyb2UVlMOT45MAx8dTKOqPa+Nqm7KuYgz4twtNtBLl74Qo+bOoj0eP6lGgLTVK1Um/8LKRCrFeSd9oqL9uPS75tn7CFzx8As47owvF/U4Pp8Pt97+S5gnMmeffbZxP8/zSRMb/3BY/3k81cDRmDnVAABCVD3lEOEQecxpdhvFs+Bw+oUg/VwquTuUi1r2+Elq9ZpEhR+v14udWzeio6MDUS0xfaAq0lpZvFtZtPf7/Xj45h8bt62Uk2drr6M8+NDDGH/rzwiuX4Xly/arCQ+DBtOubK21enEcByUwCGWkF7HR/ilX6GTUBnbYD1CcKa1eVqp0VI1g4RGnoH75aeDdjbYWsAqlKe6hlqnwo6haUvtbID43o4UfK8NTUj9fd4XmdKlqL0I0/OqmH2f5i4mkFn5mNOrihNY6/f+ZDJ5TW70Ak+InooCvbyuo7WyqwAo/Uwh6cqTGMFpFuXfozQOf3ZHu6cyd7UYqZ6qXTa1ecjRsyOIHR8eMn9Nihcc02ff7/ei4/FLjdrX042qxMJraZuCDnvGiH+OML56ty3/3PhwbNmzAAw88AEiueAT73/GVr55r/G73iF74oakGIxn6mymGOWr8vVz30kqjeHbuZ9IXz6jSqlIpELkgJJEQWIupXg6BN4pvfburI47WKlLNeYHE98hZI4UfK7FbTr5ixQpI0/aAd+kxuOOpfyYtgvx+Py6/9HvG7WoZM3NBW736AxFjQ6DaTcEpXV1dCK77B4LrV+HKLx9dE4U2BsNKUuPDfT4fLvzxDbBige0fDiGmaOB4Dlp4zNYCVqEkfH7SFyJCsgpJcqCjowMdHR1Qeb1QRC0oSlUHZtuwcDvirV5lntNluv6tXr06740Vug4YDOjva3vcN6+NFn4CGRQ/ykTFjwMKOjs7cdJpZ+K1jT045IQz4drjAAD2quBqidqbUTOKxiklD9ZWk9ihL//XihYs7Cr8yBVU/Mgqsd2p367CD89xIIo+mJs/m2CaqPFq68elF9nNb70MSXLg/e4hcIKYpJTKl4isgXd6wLsbEhMZOQJOdKCxrR07hhJJQN3DYUiSA08/rKcahNTs37mQnGj1yjeNLDVCs9qIqRroV74WWymeeuIxo/h20AFLJ9Xi0CXxRjFuLKIXJSM15tNiJeXwpFCDIxAb2yG7WpKUk9U2ZuYL9SLqGdUn9A6Rr4n0uwm72zVSaGNMDey2H6CkevwAwGFxbxvv0qOxfv36ohfYm/sCAAB5sBtAZROqUskV6U69KynjkYmKH7twifau7zJhxfWPU5Uk3zQamNAab/UaCspJ1z1K1Gj1Sjw/tTcQ6qdh24A+r4716gFA1VRErCTVf6VlWEZiYLBZ8WNja0amC5uh+LEt1Ut/XKGc5s6mIpPV7V4UakQas8njBwCIqhd+6AUppmjGhdBj8qCpVlO/WY0u1LtEyKoGqXlWUY/BxZO3fv3g/UnfW2WkBwCwfVAvJI1HZIyGZXAcsO+sRgDZUyQAIBxLqKfyXQimRmhWG3QsEXiuqlOx0uH3+3HlD79v3K4VFUa+cByHhrgJ+1h8AhyukSh3OyiHqaoWGgFRopBVDf0mv4OCEwCrBKr4SefRUM3UaqGNwbCSdAr7sYgSb0+fgekzi5snEUKwpT8ASXJgw+sv2V7AKhQa6Z6p1Yt6V1LGI/rvlRrlng+uCs3pEte/4tVe5jZfh8Abps71Tt2+QCMEQ2navSLyxDUnDYjhHW4QEMxr8UALj03426kMK/xMIWhVtFZTvbJhf6tX9jh3OzC3lVmZ7JUudjOhaLL+s1ODY1BGerFjp77wpbsiDpFPGrDLmUpRCBzHYe8ZDQAAadoeRT1Gqo8FLWB+uOYVSJIDOwZDIIQYbV7T611oq3OC5/Q4y0A0c7tXotVLzLt4VimPn3T+Uukwt3nVmofGVFgcmlOZgKmt+AHsNVWlY8Wj998BSXKgeyShDvQ2T69JDwPaLkiple9NtW5OMBjlhM7bqMpf04ih/gQAucB5OJ0XSI3TMRIIwynxmNPise6ALSKh+Iml3YyboPhJ8fixM/HS7o39bJzz1f9D/fJT4V16DNasfbfg65/bpNiZVu805nwcxxkGz4Npkr3SbRzUOxMBMSMDPfj4ohllUcHVEqzwM4Vw21wRNlK9KpDC47C91Ssu1Syj4kfgOSOhSc4RB54vmWI3Tzz+eHR2dkKV0/fSFktXVxdC7/8TwfWrcNwnDsK9996LabN86OzshIiJ38NypVIUyuIZeky64GkCeKHgyOZwhuSaWU0uSAKHQFTBQCCG7rix8+xmNwSeMyYaw8HMKRJGqpck5F08o2NBWFZtbyMshkoWkUtlKiwOjcJPOLnVy1WDCWxWY5ec3NfsBpAwfweALf0BHHLCmXAv/jiA6hozs+GShKTJOvWnqHaqdXOCwSgnTim51Ws8okAUJcPbRnC4inpcqXUOAGB+W3I6abXQ6JYgyzFc9eMOCA73hM0rGlpC35/UVi87FT/mOV25CcVU8E4vxIZpWLjH3IL/3i0JRrGGT0nzTfj8pFP8TJx3PP7Yb4w2+xvPOwF/f/p3BR/PZKc2rrYMS6AVYbsGBlr9dwjl371z2qz4USug+DE/n2qR4ieTGoEaCVvpYZSuyHTxxReDE/QKvjdHiks19eNOq3Ni/epnMP6/vwCaWnBkc6aWBlHgMbvZDVmOYc6SZTj97PMhyzHMbtIXebTwM5TBTFBWE21z9MKfT/GMFqAIKX9PeD7Q3u1aTPSaCotDqtgYDVPFD03XqL3Pq1aY3aTvgO8aiRjF2i39uh+GOtav/04VjZm5oLG7AOCWxCy/WV1U6+YEg1EuUj1+RsLJ85NiLRdo4WfBtLoSjs4+JFOkO++un3A/bfVqr9cLX7TVSy5Dq1elUr2ARHqZFgsVpdD+21OJNN9zTvx40ty6tc4JWY7h+FPPmqAUj6TYi/j9flx88cXG/UTT8O1vf3vStNlbBSv8TCHsj3OvoOKHXohs8viphLkzkFAYWaX4SadG4HgeQn2b/nwWSlEzFZkQf35PjcT3AroX0m9v+6lxu1DflmweKPNadfmpNG1PCB7d14cWfmiv83CGOEv6uALPpVXHZFoICjxnnKehWPbUMLvIppoqR0+8nUz2xSE156WtXlPZ4wcoj6nqtHonHCKPiKxiIBBDIKpg10gEACAP1d7E1sVphqEnp2VWNFYztVRoYzCsItVaIdXzppgNWM7dAC0SxPhgrzEnqkYa42pX3jWx8EPnUjMb9cJPIKIkJ5Ta2epFrTxs2vzOhiboSWa/uvfugq9/fr8fnVdmTvNtjc+BBW9T0t8RQowuE/rap0KbvRXU5qyaURSuFHmm1Uxuj5/ymzsDCcWPVR4/qUZsPM/jzAs7IHiboYz0YqjPuujpTEUmsWU2lJFeBIf7JvxNuVIpCqXUC0o2D5R58V52wdsMQL/QUfVOsyde+Mmg+KG7Ox6HUPBOi0cqvzQ4nb9UOoy20Rot/JiZjIvDRKtXisdPDRVzaw2B54wFRfdIGFvjap+5bQ3QoqGqGzNzQU04gWSPBwaDUd2kevyMhksr/HR1dYGExxBcvwrXn3s8ftP1sDUHagONbt1DBtzEzSuqfJne4ATH6d6gYVk1NqTLofiJVEDxQ1va6lyFKzdzza1pqxfvrAOExOPHVA1aXPlKN5ymQpu9FbCr7RSCnhwxRUsbjVcqlWzPoJV02bZUr3irV5n7jsX467LS3Pnsr341Hrt5DP795lqIAmfILE86Yrll0dOpLS88L+DAo05GZNPrCK5fhXM/84maibku9YKSau5spsXrQJ3JkM4RGU66D0DaRAMgYSZoftx8i2dGT3iZJgqZ/KXSqaZq2eNnKkBbvUIxFTFFSyh+2OdlK7Oa9LbQTx53Mj5xwhmQ5RgWTK/OtohcmFu9akkpVq2bEwxGuTBavWTa6pVc+Clkczl1XkCqPAXz33/9I8bXrITct23C5lUo3urV4JLgdejj23hEKYvHj9PU0VFu30Y6D6VtcIWQa27tdgjwOvT5Me/wGMU22l4u8pzRqTAV2uytgM3SphBOkQcVBdjR7jWZFT+GubONUs10iBabOwP6gMk7PRAbpqHV68Af7rjGuM/q6Glzy8tLL63C26ufte257MTn8+GXd9yJYtNzMpk7A3pywfv/+rNRfDv3pERBjCp+zJMHM9TYmU4yCsEd/5tyKX4KUU0ZfmE1WkiY7ItDlyQYrYKjYdlYADDFj73QFlCxcQbEphkAqtcPIxcNpmL3aH9PpQ+HwWDkiTHfjs+LqeKHFnALKfzUUnuO3+/HrR2XGbfNc1hNI4a5s8cpGuqX8Yic8Pixcf1A55aKRgxrinJBlU7FKH7yKda889LTGF+zElp4zCi2RTO0l0/2NnsrqM1ZNaMoOI4z1DhWF340LdHHWkmPn0ln7sxb2+oFAJzoREdHB26+4Trs2rWrbBfdYDAIUiMX+HR87bxzUbfsBF0p9cbbBV1QsrV6+f1+3Hv9lcZt82TC7RCMxXSqgSKQXUmUC3osoTIpfhYtWgQuT9VULMW0j1F9UNVP33jE+JmLfV62MqPRBZ7jwElOgOPR7HEYqsBa47mnfm8Uu088/OCaUX8yGFMds+KHEILReCv6tHq9LaeQeXgttedkK1LpCakAx+lt9PWuiYofOzeOY5EQOjt+is7OS+WGiAAASu5JREFUTgyOjtn2POkIRIpX/ADZizV+vx+/uunHxm06P9720U4A2ZNEJ2ObvRWwws8Uwy4DMLOLfyVbvYpNE8iFHC/8lDPOHUhcKKxsYQubihDlvOguXLiwZi7wGSEEYmM76lrb8/4TWdWMHRhXmtjiXDteLdTnJ02ke8jk8VMonjLHf/p8Pqz44c+Qj2qqkkbxjPygJpd9Y1EA+mfFV2EE72RCEni0NzgNpUy9MlrpQyoKv9+Pyy/9vnG7ltSfDMZUh87xNUIwGpYhqwQcB7TV6XOVQubhPp8P1950G4pVU5eTbPNl2u7kcQjgeQ718Y2RcrV6cRwHTdELcNEyJ7WOl9DqlUpqsWbTpk1pN4w3btoEINHiRpnsamsrYLPqKYbbpmQvOtBIAgehApN/282d4xcyoUJx7oqFnkwJlYhoe0+seRBevHhxTfffer1e/P7RX6OjowMKJ+X9d+bkrXRS31zFt+YsPj/hWGKyUSiuMpsBRmQV+3zqdMNf6uUsqina6sU8fqoXavDcO6Yrfpjapzy8s2qloZQ5+4TDalIpU0vtHQwGIxlJ4MDHfSP6xvXCf71LgifePl7oPPy407+I+uWnwbXHsqpuz5kQjmKawwaNTTj9PUhS/KjlscEgsn4tDpex8EMISXj8FNHqlYtM8+MZc+YBqC1/uGqBzaqnGPQksdrQNbFQq8xJSBfUdiWW0VYrqdzmzjw1d7ZQ8ZPiN1POntha77+luzhjkfwj0COm9ztd8lau4luzR3/OdMleIeOxi/D4ybPVKxgMguM4cByHYDBY8PNQ/MMhEBDdX6qxHS3TZ2b83Rgzd656GuKTvIGAPvFn/j724/f7cXvn5cbtWlXK1FJ7B4PBSIbjOGOzlRb+m9xS0RuwI2EZvNMD8GLVt+esWLECroWHwLv0GDz10n+NOWyqwXG9M+HxUw7FDwCo4TEoI73YsXOnrc9jJhRToWq64qsYr0kgu0rH5/Phzjsn+ms2tunzRxYoUTjsHZtiJCLdrS78VLY1gw6osqrZ4mhPzZXFMps7S3HFj5VmbUbhJ03bUTkvutV+gU9Hg8mwL1+MxKMsC+NsBbFmrwOyHMMXv/q1CcWXWmr12jkUTrqdTY4cZR4/VQ9V/BhtjKwtz3Ymi1KGpa8wGLUN3ZShrb6Nbsm0AVvYnCKiCejo6MCrq/9eG+05cgRiYzukhmnGj8ytXkBikzAQTSh+7PT46erqQvjD/1iezpsLauzsdYi2dXuce+65cC86VC+2rdaLbZEM5s6M3Fivy2JUNYnIP2uVMZVuzaCFH0L0/mKrF4yqWiFzZxrnbmGqV8LjRz/9abWdkRtz33a+hLMYO6cjtSBGPX54T8PExy6h8FP2OPfhECTJgWs7r4GiEfCSM+Pv0qIQU/xUL9TcmZLv95tRPFQpYy7+1KpSZsWKFbjgggsA6MXuxYsXV/iIGAxGvjglHggnWr2aPCUofuJqZppiWu2oId08ecikwqaJXobiJ75JSAsjgH2KH7/fj4suusi4TZWgJ5xwgu3F9FISvQpBiwThmD4fxNMKAKzwUwJsVj3FcNmU6lXpHXqRT/QcW+3zo2nE8Ngpu7mzDalepSRBlUqtG681uPWL21i4AMVPlij3/J5T0luteBGcw2P8nBCSaPUqpfAjq3kX/rq7uwt+HgAIxRQMBPRJ0txW/TVEsuwK0h2yWo1znwrQc4GSarLIsJ7JqpSpRfUngzGVSU0IbvJIxkZNIebOhBCMhGTjMaodr9eLHZs2oKOjAyElsREcjMY34eKFH49DgMBzIETfkAbsi3OvpBKUJnp5LTB2zoY6PgAA6I0rzGhAEVMaFw57x6YYRqqX5Yqfyu7Qm3uOrS78mI2VK6X4sTLVK1RiIWIqQ1UOoZia92eSKLRlPjeyFcQEnkOjW4QWDYGTnEbxJapo0OIzCk8RvdX081c1ktUbq6ury/j3kiVLipIQ+4f1Nq+2eqeRBpWp1UvTCItzrwGcopBUcGTjSXmodZ80BoNR+6RuyjS4TYWfAubgYxEFikYg8NwEFWm10uzVjzMYVY3CV8hQ/OjXQY7jklKuOC5h3WA1lfRMo4qfehsLP16vF+N9O9HR0YGgwiEcU5nipwRY4WeK4bI51auSO/QJnx9r25bMbVZiuc2dbUj1op99Me1BUx2nyBvfs0Ce7V5WXKDefvFpjK9ZCS04bBRfaE+5SxKK6q2WhMRryTQeZJIQ52smS42hl33yGMhyDHOa3RN2ClMxF6GY4qe6cfIaOjs70dnZCaJMNB9n2EstK2VqXf3JYExlUjd5G03mzoWErIzG1T6Nbgl8BRKBi8EpCkYrF01bDVDFj2kTrt7U/iQJfNpwDytIVYLyPF82JSi1PbC71cslCWiJJ9z2jEUQpfNqtjlYMGxWPcUwCj+WmztXNtULsC/SnRaSRJ6zbeDOBG0ts1LxQ1uPWKW8cDiOMwyex/I0eA7H9M+uWEWE3+/HgzdebdymxZct23YAKK2A58qR7GWVhFhsbAcA+Jo9JoP59N9pev5KAmebWSDDGhpMu3xuJrkuC6xgwmAwKo258ON1CnCKQtIcXMtzs5KmldZCm5cZWoQYCsb0tvvoxJanepOCye5uiBUrVoBzuOFdegyufuRFfO1rX7P1+SiBlDQzO5nR6AIA7B4NG10rrNWrcNg7NsWwvdWrgiehU6D9xdYWtVSNGjuX/7VRxY9qkeKHEFJRj5/JQKEGz+ESFT+Zii8fbtoEoLTPMVey16JFi8CVKCHmHG7w7gZw4ODLS/FT+SIyIz/MPj/s82IwGIypgVmNS9u3zR42+fr8DNeYsTOl2VT4iSqaocr3muZjZsVPOdTLRI5CbJyOutbpZUtrDcQ3QMtR+JkZL/z0jEaM+SPzFiwcVviZYrhtaPUKBoM48/NfRGdnJzQ5atnjFook6kWSQmSm+aCoCQVCuaHPaZW5c0TWDKM55slRHPRinq/Bc6TAVK9UMvVvT/fNA1Ca4oceU6Zkr8a2dpx5YQcAznjeQiXEgrcFykgv+NAQXJKQU/FTDUVkRn7Uu3TvKWWkFyP9uyt9OAwGg8EoA0SJGW2+Ll6/ZosCb9gh5Fv4qSVjZzOtpsKPue3evEGcVPgpx8Yx0aDFIgAKS54t+ukISXj82NzqBZgVPxGj0MYUP4XD3rEpBlUdxBTNMhUJAHCCPmhXMn7ZISRem5XIWqLVq9yItNXLojj3sFEl51kbTZE0xHe3xgr0+ClWmTOhfztefKlv1dunrGj1yrQ7tHs0gkNOOBP1y0+Dd+kx+Nsrawoyk+3q6oIy3I3g+lW47IufxkMPPWTs0OTy+CnLRIlREi8+/QTG16xEcP0qHP6xZUUZfzMYDAajtnCars8NaZQt+c7Da1bx4zEXfvS5jNeZPBcTNdkojmlK/kmwxUBbgP/fPb+EJDkKSp7NB+rXyHEcgsEgAH2uRq0w7E71AoA2rxOSwBnfLZ7j2DyxCNg7NsVwCDyoTY2Vqh9O1AfBajB3tjzVK75zIVSw1csqxQ9NHmBqn+KhOxvjeXj8EEIs8VRasWIFnHOWwrv0GDz07Cs4//zzTTHxxV9wjVavDIqf7hE9jYt3eiA2tkOsb8v7sTMZQw/17gKQTfGTKE4yqhe/349rrrzUuF2o8TeDwWAwahOHyBtqz8hIf9LPgfyU96pGMBbW56Q1p/ip09c8YxEZo/EiizclXdVcDCnX2ohaEeS7MVkKAZPSSSrD+ojnOTQ5OaOYxhOl7L6rkwE2s55i8DyX02OjGIimQBnpxVBfj2WPWShG4cdCI2QgYe4sVVLxY9FrYolepVPIhVVWiSFJLbXYpgaGIDa2I+xo0s0EY6V/llSFlMnceVe88KOO6xO7gUD+yU2ZvIn8H20HoBd4CJlY0IyyKPeawCrjbwaDwWDUFn/+4+8MtefJRy431J6FbMCOhWVohEASuLJ4xFiJWxLgkgQQAnSPhABMVPzUuxK3HWWyiihkY7JUAmVK9DLT3uA0/l3JDpNahr1rUxDD4NkiZUxXVxeC776I4PpV+NQhlZP7U8mf5YofLdG/XG6sjnOnCVMs0at4qKw5EFFyJlfQFiqR50r2iFJG+wCiYTyiYCQkGyodKzx+0hWBo4qK/vEoJMmBN1/4Izo6OjAm5/8aMnkTLdlrEQCAkPS7gjHW6lUTZPp8CzH+ZjAYDEZt4ff70XF5erVnIfPwRKKXo+aUGxzHGT4/O4f0DbLUdienKEANjUIZ6cXoYG9ZjquhDIqf7u5uAAnFT30Zi3bt9abCD1OFFwV716YgLgsNnjO1c1RC7m9fq1dc8VMJc+f4wkqxSPHDWr1Kx+sQwXMcNEIQjGW/uJr9fUqZ2Hi9XhBVxq/uvAWS5MBHQ6HEZ2mT4qdnNAJCdE+jPVr12OixsJz3uOHz+XDdzbch1Rh6j3lzDb+saJp0QWbuXBukek8VY/zNYDAYjNoim9rTKeXvtTlco8bOFJrsRQsgnpRWr66uLgTe/iuC61fh3M98oiyb4nYpfrq6uox/L1myBA899JBhIF1OtdaMBqfRYhgc6ivb804m2Mx6CpKIdC+98FNNcn+nTa1eimHuXDnFj6yStG0xhcKi3EuH5zlD2pprV8UKfx8zc1s8AIAdQyEEDcWPBR4/acYC6u8zu8kFlyQYka394/kn95101pdRv/w0uOYfjA0bNhjG0PT9oH4+ZqLUgJy1elU9K1asMP5t/nwZDAaDMTnJpvY0FD9q7vXFSI0aO1NavMkFK3MBpFKb4tSKwMpUr0yvZdtHOwCUt9Xrj48/ZrQYXnjGkSxQoghY4WcK4jI8fkovkFST3N92c+dKePyYVEZWtHsxjx9raEjZVUmXeACYCm0WFX7mteqFn51DIeN7bk2c+8RJwu4RPRZ0VpMbADAtLrHtD+Rf+AnFVPBOD3iHB7NnzzZ+7jSKz2laveLnWyWN4hmFY/58GQwGgzE5yab2pBuw6dS8qdRqlDulxeuELCdi7Tk1MTeq1KZ4g1ufm4ZjqmVroUyvZesW/bWUS/GTWoAiLFCiKNjMegriii8UoxYofnw+H269/ZdIbeeohNw/sdNgk7lzBVu9AGuSvWghgnn8lEa+uypWK6ym1zvhdggIhiP6ZOOaDijRcNGPR78HskqSDMRVjaBnLEPhpwDFD20h02LJx0iLz+kVP9TcmV2eGAwGg8GoNjKpPY1UryzzcLpRdt63L4Qsx2pX8ZNy3OZUr0ptijtFwdhYs6rdK9NrqW+fA6B8hZ9q6jCpZdjMegpCF13p2juK4Qtf+Srql58Gz5JPVVTub5vip4LmzjzPGUojWSv9dYVi1ipQpipU8TMWzn5hjVj8fnMchznNHuO2JkdK8g5yirzx/aLjQTAYhLOxDVf/pAMcUQwDw2IKPyonoqOjA/988Xl4vd7E82ZR/CRSvdjlqdrxer0gRG9DNX++DAaDwZgamNWeec/DeQG8U79m1Krip8EtJllAmNXXlfTAs7rdy+fz4YedN4Fu8HM8j5t+cTt++vNb9Vh1Lf+011Kopg6TWobNrKcgriyLrmJQNQLe6YFY31ZRub9kW6pX5eLcAVOylxWKHwt8YRi64TGQ/sJKEw8AexRWtN1Li4YgD3UnPV+hcBxnavdKFIKFhmkAgJkNLqOwRAs/Q8EY1DzbDmmhMV3aBZBe8ROL/4y1ejEYDAaDUTs48yz88K56APp1vlY3IjmOQ5NH1Odiw7vQ17Mr6f5KeeAZG5MWGjyfcMaXUL/8NHiXHoMrHn4BCw8/BZyozwnrnOX5/FighDWwmfUUxMpULwDGIpAQax6vWOxO9aqE4gewNtkrYrHnzFQlNTkhXeIBYI+Z9txWD9544SmMr1mJyJY3k56vGOixmQs/vLsBykgvhPCg8bN6pwiXJEDVCAaD+al+aNrFhMJPXoof9h1lMBgMBqPayKT2NFq9cszDOYcLykgvtPHBmotyN/PWi09jfM1KhDb8E/vss0/GuVg5N8UbbDB4VlR9g5/jeTS1zcCHvQEAAFFlw2ajHLBAidJhhZ8piFH4SbPbXgwOlxsdHR248/bbKir3pzsNikbyViTkQyXNnQFTsleJrymmaIZfkcvBTv1SqHdJkOUYLvzBZeA4LmN6Q9iG1rqxgV48dXdn2ucrBnpsVJ3zyCOPILLlTQTXr8IXjz3MmMhwHFdwuxeNnPemFL6yevywOHcGg8FgMGoORx7K+66uLqgjPQiuX4UffuHTNZvM5Pf7cf/PrzJulyu5Kxf1eVoRFAL1gJSHezCryQUgrjof3Ildu3Zl+1PbYIESxcFm1lMQy1u94sUEoUKKGIq56myl6ocWXCph7gwklEalKn6o+kTkubJW6Ccj9MLKCRLAixkN5+xQWG3atAnEQoM7nijo7OzEgR87FBs3bsTFF19s3Jc6kamXCDo7O7H88KOT0svSoWkkc6tXhjFIUTWjaMu+owwGg8Fg1A4J5X36jeXJlMyUy2y4Uh542awIikWQnOjo6MArL/8Tn9p7lqE6D296vWTVOaO8sJn1FCQR526N4scwP66QIobC85xRnLGy8EMLLiJfqVavuMdPAYqfdPHiEVPbUS1La6sBSUj0pYuN08Fx6Q3naGHDZaF6xWqDO3f82HjJiU2bN2edyLTFjZ4Fb3POxw3JKggBOG5i4SuT4mdobDwejXpNSWllDAaDwWAwygtt0c6UrjuZkpmq1Wy43gaPH7rOkwQeXGjIUtV5IbBAidJhhZ8pCG31iimaJS1R9DEq1QplJhElaZ3fkFI1ip/SPiuqvmBR7tZQ59JN/RwzF+P4ryZUMhzP49pb7sDs2bMT5s4WevxYbXBHizKc5MSQ2JqxiAUAbXUOaNEQiCLnvMiHqL+PQwSfMjZkUvzQgi1RZFacZDAYDAajhsjltVmtxZJiqFazYZrqFYgqltleJLxOOctV54zywgo/UxCnyIOuqdJ5bBQKLYxUWvED5NdfXCgVN3emHj9FtnrR1KdEohcr/FjBmy/8yTD1+/tv7gR4EdLMxbji4Rdw8PFnIWZqW7LaTNtKgzuXxEOLhsCJLrzfM44zL+ow7kudyPzlj7/TX/MHL2c1MgQSxs6eNIkPtPiYOv7ElLhRvGrdThWDwWAwGAz7oV6bsprea9Pn8+H2X94BGg1eLcWSYqlGs2GvQ4DAcyAkMQ8rFbr+kAR+UhXvpiI1UfiJxWI4+eST8d///rfShzIp4HnOkGNa4fNTXYqfhJrJKirdykZbzApp9UqXMhVmiV6W4ff7cf8NVxu3CdEATYEWGEJT2wxsGwgiFNXfb0ngINlYNCzV4O5vTz1uFHNuPPcELJiWkM+aJzJ+vx+XZPH/ScXw93GIE+6jk8PU8SeqaPFo1N0lxdQzGAwGg8EoL/l4bZ7y+a+gfvlp8Ox9eNUUS6ygWsyGOY6bkDxbKjQYRuS5qlU6MfKj6gs/0WgUP/jBD7Bp06ZKH8qkgnqOhC3w+ZEr7IFjxmHabbAK2SRxrAT0efM1d041z6ML9I927ARgbdvRVCWd1BUA1PFBOEQeoZiKrQO6t1I1t9b5/X5ce9UPjduEaPjFNZcbt80TmUJ78zNFuQPJih9CEufqE4/9Jh5T/wYzDGQwGAwGo4bIx2tzJCTr0eCSq2qKJZMN2u41FrZG8WP2+AGqU+nEyI/Kr9SzsHnzZnzhC1/Ajh07Kn0okw4j0t2Cwk91KX7saPWqbGGLKo3yLWZlWqBv3aIv0D1VXIioFTJJXXfu3IG9ZurGxxt2jQLQzbStxiqDu0zflXQUKu/NFOUOJBQ/hCTi2/1+P669OlGEqpZoVAaDwWAwGPlBOwoyeW1GiIiOjg489fvf1LxBb7WaDdul+EmnXmfFu9qiqgs/b7zxBg499FA88cQTlT6USQenyujs7MSSpfvnjGXORXV5/MR3GiajuXMahUk6Fi5cCC7NAr1l1lwA9hQiphrZpK4LptdBlmO46EdXo7OzE7xmXaSm1WQuYO2cMJFJfc08z2eV9waj6aPcAX3yQMcLWviZTGkfDAaDwWBMRXJtwI6EYgCA5nhKKMN6GlzWRrobG+AVWgcxrKOqCz9f+cpXcNVVV8Htdlf6UCYdTprkIzpLfixD8VMFA4KR6mWR4ocQUnlzZxrnnqfiR2qYhjMv7AA1z+PjRQlv83QAzOPHKjJJXee1esCbEqmqudWr0F7tFStWgHc3wrv0GHT85h9Z5b1Bo9Ur/eunyV7RuOpw0aJFaQuWzDCQwWAwGIzaINc8fCSsq1CaPVLZjmmqIRF9c//0L3y55M19wLQBHp+jVavSiZGbiVuxk4xMbQu1AD12O16Dg0c8ljmGHTt2YPHixUU/VkxRQIgGHqTi77fI6T4lkZhiybGoGoGq6Y/DE60ir4/nCAjREJXze03v7x7B8uPOwN9f/R+0SAC3/bwT5550GLpe+wiEaHAKXMU/p1Kw87wo5jgAYMaMGcZtkQNmNuix51p4HGMDu6Gqcyp1mDk555xzcMEFFwAA1q1bh8WLF2d8b1VVhRYLQWxsh6OhDaGobLRtpRKIyFm/bw6BQ4BoCEVlqKqEmTNn4pzvd+I3v/gpAAJBEHDfffdh5syZFf+sq51qOScYjGqBnRMMxkTKcV6IfOZ5OCEEQ4EoCNFQ7xTY+WkTHim+8ev0QlXVkt5nQghisgoCAg6VWQfZyWS4VhRy7JO+8LNu3bpKH0LJ2PEannhYT/IBgKVLl+Kqq67C6aefXtRjbdodQc+QjO3qEOoClfXj2Ogfx89u+X+I9W7B3x++tWS1WEwl6OkJAADeWxeoiI/RtsEYenqicIQHMS22O+vvEkLwz00hjIVikPu3w+nbF5sHw3jr7bex9aMgYirB5o3j6HdWtdgvLyp9bofDYePf7777btJ3bdUTifPrvJNWY/PVxZ9fdmN+HYODg1i7dm3231VlEDmK3t5evLomjGbXREUPIQSbPwpCIwTbNo6jzzHx+9a7O4TBkIq1741isEGERgim73sY6pefhsA7z+PJxx/DvHnzsh4PI5lKnxMMRrXBzgkGYyJ2nhe7/WH0jCl4jxtBpCdZ1RNRNHzkD4IDh+0bA/BXgUXEZKR/VFf5cE4P3nnnHXg8nqIfS9EIdsfXQRveC1TM9sJupsq1YtIXfvbbbz8IQvW2WmRDVVWsW7fO8tfg9/vx2H23Gbc1TcMNN9yAr3/960XF8fU7ehFwjGHvBW1YtkezZcdZDBFvDwCAEyXsv//+JUsQA1EFr41sAwcOBx24ABxX/gFP6B7FbvRhdpsXyw6YlfV3d42E0TjkR2OzisjO9+Bon4+Wtna0zJmHlqFdAICPHbgnPGkitmsFu86LYlCUif3Tfr8fXfckzi9CSju/7MYsA87nnFEUBU+8uRM9YxH45s/Eoul1E34nIquYPrQVAHDowQvStknu4HZh20AQey6YjqWzGzEWltHWswm8wwUiR3HssccyCXGeVNM5wWBUA+ycYDAmUo7zot/RC2X3GPaYP3FNsGskjBmjftS7JCw/aA9bnp8BjI4HDNW5t7EZB+y7pOjHCsdU/GdYn88dfOBC8JOsWDcZrhX0NeRD7a7+8kQQhJr9IClWv4atW7emNVHdtm0b5s2bV/DjEXDgOB6SVPn32iWJ+mAXCaCnp6ekFjYAIFDBcTwcIg9RrMzp4pREcBwPjXAZ399gMIi6ujq45i9H510PY/+5bSCqglXv9+Jd/yg29ATAcTw4DvA6HZNi4K7Wc9vq88tuGhoakiLV86HZ60TveAyBqJr2MwiHFXAcD5ckwOlI38fvdujfa1nTP8uxaAROpxN33HIDVnzi90W9lqlOtZ4TDEalYOcEgzERO88LV8q13cxoRJ9Tt3id7Ly0kcd/95ihOv/YgQfgwQcfLDpyXeM0cJweyCFJk7dsMFWuFbXf78EomEJjmXNRTalez/7pdxhfsxKR7WuxZMkSPPTQQyU9XjW8NiqrzJ3qxcHRpnvJ7DWjHgCwYJqeMPV/371UT5gi6qQo+lQzVp9f1Uhj3JRxJJQ+KjRkJHplvohSg3lqAEkfq4kZPjIYDAaDUZMYqV5pfEdGqbGzl13n7cLv9+Oiiy4ybmuahm9961vw+4uz4qh0wA3DWtinOAXx+Xy4/Y47QVOfciX55MJI9apwQcHv9+NnV/7QuF3qYAdUx4AnxosIco5UL7FxOjjJDacoYG6L3s87p8UDh8ADnP4YLomd8nZTaFJWLdLk1mNYaTpHKsGY3gKXraWQmkJH4qlew/GI1yYPi3hlMBgMBqMWcWaJc2fXefvZtGlTWtX55s2bi3o8OR7lPlm9faYaNbMK/PDDD3HooYdW+jAmDeefdy68+x8L79JjsPq1t4uWAAJmVUxlv05WD3ZAYsCrpOJHpIofNbviR2yaCWWkFw3qqFGEE3gO81oTpm4syr08ZIp6nyxQxc9opsJPPMq9Lovix5Wi+BllEa8MBoPBYNQ0TjH52m5mOESv86zwYxdWq86rYR3EsI6aKfwwbECR9VjmprbSHiY+KFRa8WNHi41R1KpgpVuKq43osaTj4UceQeSjtQiuX4Wvn/zJpBa3+a0eaNEQlJFehIb6bD9eRjKzZ8+u9CFYTpNbL86MR+S0BclgTFfxFKT4Ceo7gWxCyGAwGAxGbeLIoPghhGCUKn7cbIPHLlJV5xzPo+OmXxatOqedD5LISgaTAfYpTmHU0CiARAW+WKrBBwdIP9jddc99JbXY0EWtVEE1E31fMxV+/H4/Lrn4YuN2aovbv/76B4yvWYng+lX4zulHlOx7xGB4HAIcIg9CgLHIxGQzqvjxOjMXfsyKH00jGA3rf9PIFD8MBoPBYNQkjvhmZariJxBVIKsEPMehgRV+bIWqzqW2PXDFwy9gyadPL/qxqL9oJddBDOtgn+IUxev14s1XVqOjowNBpbSvQbV4/ACJwc614GO44uEXsPiTnwHHceA4Lim2Ol+qQfFD/YUytXp98OHGjC1ufr8f378kURQiFvgeMXLj9XpBCAEhZFJGknOmiVu6dq9E4SeLubNJ8TMWkaERApHnUJ+lWMRgMBgMBqN6yaT4oQEOjW6xKtYLUwFlrA/NbTOxcyiUsTU/F7Ja+XUQwzpY4WcK01qnt1QMxVssiqUaiiOpKCO70dQ2A+u6xwCh+J2FajB3poZqskqM2O1gMJgoaEmN4Lj0LW52+B4xGEBCqj0Smjh+hOKtXt4srV5mxc+wKdGL46pnHGEwGAwGg5E/iVSv5LknNXZu9rJ27nJBYiHMbnJBlmNo3+ugojbBDY8fluo1KWCf4hSmJT74BqKK4bNRDKpGjb+q5+ukDPrR7HEgpmpwTNsTANDd3V3w48iGxLGCih/T+5ra7sWJDnwU9eDMizqMn5lTpKZCtDijMjRmUfwE8mj1ooqfqKyxpA8Gg8FgMCYB5lQvulkJJGwlGlmbl+2YVecH7jkNAOCYPr+ox6KKn0qugxjWUT0rdUbZcYoC6l36wqwU1U+1ePwAyYPdEXvPwBsvPIVYz0YAwJIlSwr2t6GKn0rKUs3vq5IS6e707YuIrOKEM75k/MycIjUVosUZlaEpQ7KXrGqGxNvjyJ3qpRGCvrEoAGbszGAwGAxGLUMVP6pGDCsIIKEOZtf58rJgWp3uu8Tx4D2NBW+CK0zxM6lgn+IUh6p+Sin8qLQ4UkWtXgDgiY3iqbs7jduppsf5YJg7V3DA43nOKDzJprYtzumB4G3CyEAPPjm/2fh5aorUZI8WZ1SGJrc+doykmMNTfx9J4Iydv3SIpu9171hEf0xm7MxgMBgMRs3iEHjQjm1q8BwMBvHV87+Nzs5OOLmJgRAM+3CIPLb851mMr1kJLTRa8CY43dyXqmyNxygOVviZ4tDCz2CRhR9CSFUpfsxs2bIZpER/m2rxL6LPTxU/XV1dINEQgutX48bzTsDqvzyZ1+NMxmhxRmUwt3pppl09c5R7Nr8ejuPgkvRLEC08s8IPg8FgMBi1C8dxxmYpVf9qhIB31QFgUe7lxu/3497rrzRuF7oJLlfBBjjDOtinOMVpq3MCAIaC0aL+3izjrDaXfiv8bZQq8S+iMYqKqsHv9+Oiiy4y7iOahksuuQQ7d+5MmyI12ROmGJWh3qUnc6gaQSCm7+AFg0HsuXAvdHZ2QkRu3zCnmNwKxjx+GAwGg8GobZwpBs9jEQVaLAJleBdGB3oqeWhTjlJDXoxUrypb4zGKgxV+pjiG4idQnOLHbDZc6eJIKj6fDzf94pcA9MGqGH8bw9SsShQ/skZYUhejKuB5Dg1xj7BRU7sX53ADALxZ/H0oVPED6HLkfP6GwWAwGAxG9eJMiXT/9a8fwfialQhu+Cf22Wefgv02GcVT6iY48/iZXLBPcYpDCz/jEQVRpfBkL6r44TigGovB53/tXNQvPw3epcdg7br3CvK3CQaDOPOsz6GzsxNyrDhFlFXQAVdRNZbUxagaGtMYPPPxwk82Y2eKWfHDotwZDAaDwah9qMFzVNFV6tdcealxXzF+m4ziSQ154fnCNsFl5vEzqWCFnymOSxJQF49cHg5OjGXOhWKSAFbjos0h8OBECWJjO5qnzSj8AXj9vam0xJHGKMoqgc/nw9cvvx6lKJkYDCtIa/DM8VBGehEc7s39AKqMzs5OdHZ2ws1ruX+fwWAwGAxGVUMU/dq+z377439r32Eq9QqzYsUKuPZYBu/SY/DEP14raBO8GkJuGNbBPkWGyeC5cFUL9cARqqzNywyR9cSgULRwRRMn6IqEShd+DMVP/P3e/5jTUb/8NPDuBpbUxagYTk5BZ2cnTjj1DASDQXR1dSGy/W0E16/CF489LKec25z61cgMHxkMBoPBqHmo4ocTJIxIbeA4plKvOBwPsbEdDa2FbYIrVWJ5wbCG6l2tM8pGS13xke5qlSZ6UbxeL3513z3o6OgAEQs3jiWKDGWkFwN9u204uvyRTKle4ZiKYFQB7/RAi4VYUhejYjS49GIN76xDd3d3kul4PnJup2Qu/Ij2HSiDwWAwGIyyQNUhUqsPPaoXZ17UYdzHVOqVgcj65n5UKUxdTQ26q83HlVEc7FNkoNXrgCzHcOJpnwfHcQgGg3n/LTV3rrZELzPeeCtbMKoU9HddXV0IffBvBNevwomfPLiiZnR0wJVVDQOBKCTJgdtuvA5EkVlSF6Ni0GIN767Hhg83Fizndoo8tGgIykgvwsP9th4rg8FgMBgM+6HXdhAOIwM9+Np55xr3MZV6+fF6vfjvq6/om+BCYerqhLlz9a7zGPnDCj8Mo9VL8DQW/LdqDZh+eZx6u1Yoln+rV2pkeqXN6OiAq2gEAwG9at9W76zIsTAYlAa3CC0ahDo+hNd3hguWcz//1ON60sf6Vfj0octY0geDwWAwGDXOi888YVzbbzzvBGx+5S/GfUylXhlckr4WisiF2V4oxjqPlQwmA+xTZKDVqxcQeJfXMDPOl4Tip3q/Sl6H/poCBSh+qi0y3dzqNRDQW/La6gpvXWMwrOSx3/wG42ueQXD9Ktx84ZdwyHGnGvflknP7/X78/Mc/Mm5XurjKYDAYDAajNPx+P2675nLjNtE0/OB7l1TwiBgA4JISSWuFIKus8DOZYJ8iA26HALckQIuGwTtc6O7uzvtvVY32flax4sdBFT/5F36qLTKdtnopmmYofqbVMcUPo3KkquII0bBmVWJXL5ecu9qKqwwGg8FgMEoj07V99erVIIQwe4IKQRU/0UIVP6zVa1LBCj8MAMA7L63E+JqV0CIBLFmyJO+Wi9ry+Ml/sPP5fLjh1ttRLZHpdMCNKRoGaasXK/wwKkimyR0ll5y72oqrDAaDwWAwSoNd26sTl1h4q5emkUSrVxV3djDyh32KDPj9fvz65h8btwtpuaAxf9VcCfY6C1f8AMBJZ34Z9ctPg2vBxypuRkcllgOBKGSVQBI4Fn/NqCiZJnf54vP5cNdddyX9LUv6YDAYDAajdmHX9uqEpqjKKoGs5tfuJZs296p5ncfIH1b4YWDTpk0gRbZcqLWg+Il7/IRiKrT48ebDeDwynZecFTejo610fWO62qe1zgm+it9zxuQn0+SOEJK3nHvFihXGvytdXGUwGAwGg1E67NpefThFHjynrxvy9fmhm/scV92WHoz8YYUfRkmyTCoBrOYBwS0J4DiAECBUgMRxNCwDALRI/vH2dpHw+NHfb9bmxagGrJzcVbq4ymAwGAwGw1rYtb064DjOUP3k2+6lmIydOa5613mM/GGFHwZ8Ph9+cv2tKMbPhpp+VXOqF89zCYPnApK9YhDR0dGB115+qeJmdKkSS5boxag22OSOwWAwGAwGozpxiYUVfuQaCPBhFEZh2d2MScsXz/4qbvvTy5CHd+Gd536DxYsXG/cFg0HU1dUBAAKBQFIRRK0BxQ+gGzwHoyqCsfwVP2NxxU+Dq/KniTSh8MMUP4zK4/V6QUj+7ZNW/z2DwWAwGIzqgl3bqxM92UtGRM7T48dI9KrezX1GYVR+RcuoClwSD97pgdQyq6Cd+1pI9QKoz08UwQIUP2MRvfBTDSbKsWgEnZ2dAICrrroS0+pZ4YfBYDAYDAaDwWDkhka6F97qVd1rPEb+sBIeAwDgiMv/OKGwIoeh+KnyQcFo9cpT8RORVUTjFfF6V+ULP+YYxTqnaAzeDAaDwWAwGAwGg5ENV9zjJ6rk2epFFT9VbOfBKAym+GEAAFob69HR0QEAcLk9GX+vu7s7qQ0sYe5c3YOC16l/1fNV/FC1j8chGEWxSmIurLV6mb8Pg8FgMBgMBoPByA+nofjJM9WrRjb3GflT+RUtoypwmPo3UyvBXV1dxr+XLFmChx56yLitatTcuboHBar4CcbyLPxQf58qaPMCdA8lLRqCMtILEhis9OEwGAwGg8FgMBiMGsElFtbqRRU/DubxM2lgnyQDgJ58RZUtUVMl2O/346KLLjJua5qGb33rW/D7/QBqI84d0NujACAUTQx2wWAQHMeB4zgEg8mR7aNhvUDUUAVtXgDw5O9/i/E1KxFcvwpnn3BYUvGNwWAwGAwGg8FgMDLhMuLc8zV3ZoqfyQYr/DAMDNMvk+Jn06ZN0LTkAUJVVWzevFn/d42YO3toq1e+ip8IVfxUvhvS7/fjsh98z7idWnxjMBgMBoPBYDAYjEwUbu7MPH4mG+yTZBg40yh+Fi1aBD7lhBcEAQsXLgSQcHyv9mqwl7Z6RZW8IiZpq1c1JHrlKr4xGAwGg8FgMBgMRibSbfBnQ2apXpMOVvhhGBiFHyVRZPD5fLjzzjsB6Cc9zwt44IEH4PP5AJhSvapd8ePQlTuyShBTJ0ocu7u7k26PRaqn1StX8Y3BYDAYDAaDwWAwMlFoq5cS33QWmcfPpIF9kgyDTBLAL539VdQvPw3epcfg0edfxfnnn2/cpxitXtX9VXKIvOFhRH1+MplWE0KqytzZ5/PhrrvuMm4LQnLxjcFgMBgMBoPBYDAykcncOZPnqcIUP5OO6l6tM8pKOsUPoFeGeacHYmM7Glrbk+4zqsFVrvgBTO1eMSWraXVU0RCLvwf1rsp7/ADAihUrjH9v2LAhqfjGYDAYDAaDwWAwGJmgG/wxRTM6NrJBOyQkpviZNFTHqpZRFWRS/HCSEx0dHQAAXnQk3UerwdVu7gzoBs/DIRmhmIruLL45UkMbAMDrFKpysJs9e3alD4HBYDAYDAaDwWDUCHSDHwCiimrYYGTC8HGtgTUeIz+qb1XLqBiZFT+JQlBMTS4K1YrHDwB44wNcIKpk9c0x2ryqwN+HwWAwGAwGg8FgMEqB5zk4c/j8mD1PaVdHNW6CM4qDfZIMA2dc8RNNcXsPmws/KUUh6vFTC8ZfHqf++kJRFT6fD1dffyuoaTXH87ju1jvg8/lMUe7VU/jxer0ghIAQAq/XW+nDYTAYDAaDwWAwGDVEOp+fTJ6nco0kNzPyp/pX64yykcntPZKl8KPGq8G10OpFFT/BmJ7YddCxZ+im1fsehSsefgHLj/8cAGAsrN9fDVHuDAaDwWAwGAwGg1EqqbYe2TxPFebxM+lgnyTDwClmUPzEEsUecxsYISSh+KmFwg9V/MQUEEKwczgM3umBGhhCU9sMbBsI6oleEdbqxWAwGAwGg8FgMCYPqZv8m7J4nsq08FPlyc2M/GGfJMPA8PhJUfwktXqpifs0ApC4KXxNKX6iKvrHowjLKogqI+JfD0ngEYgq6BuPmqLcmfc5g8FgMBgMBoPBqH0MxU98kz+b5ylr9Zp8sMIPwyB1MKCktnqReLVHMVWIa0HxQz1+glEFHw2FIEkOPHrf7SCKjIUzmgAAW/oDGGXmzgwGg8FgMBgMBmMSQTf56drO5/Phh503gXqe8oKABx54AD6fz1jnscLP5IFJGhgGdDCgxR2O0090s+KHEF314xQFI9ELqC3FT1hWsa0/CACY16obJc+f5sX73UM48Uvng3fW4aqrrkS9i50eDAaDwWAwGAwGo/ahm/zm7o5PfuZzqH/mP9Ai4/jD/bfgM588EEDC3Jm1ek0e2CfJMKCFH0KSvXzMih8gYfBs9vehRaJqxi0JUGQZ11zTiW9+/wrIcgx7tHoAAHu2ecGBA++sA6AXiWohqYzBYDAYDAaDwWAwckE9fsx+riNhBbzTA7GxHd6W6QDiPq608COy9dBkgX2SDANR4CHF5XzmSnA4lr7wo8YHBKFGJIA8z8HjEIzbDS4JTR4HAMDjENHe4DTuY2ofBoPBYDAYDAaDMVlwGnHuiXXecEg2/h2I6ms+jQAaqZ0AH0Z+sNUtIwmnKEBWlXglWAIhxBgcRJ6DohHD4FnWEj+vFcyFn7kt7qT79mh1Q4uGoIXHERvtB7CwzEfHYDAYDAaDwWAwGNaTGucejqnQOAEdHR0AABn6/bIpzIfFuU8e2CfJSCI15i+qaEbFt8Gtmx0bip94q5dQQ72fHocALRqCMtILKTKUdN/rz/8J42tWIrh+Fb516uF46KGHKnSUDAaDwWAwGAwGg2EdiXWeXvgZCsWS7g9EFQCJwg/PcTXh48rIj6pesUejUVx11VVYvnw5Dj/8cPz617+u9CFNeqgEkPZ+0oHBIfJwx9UyhscP7f2skVYvAHjluT8axZ0TP3mwUdzx+/248offN35P0zR861vfgt/vr9ShMhgMBoPBYDAYDIYlJBKc9bXccFAv/NCOiEBEL/woLMp9UlLVhZ+bb74Z7733Hrq6utDR0YG7774bzz//fKUPa1LjNEy/9AGBJnq5JMEwf45OUPzUxqDg9/tx7/VXGrfNxZ1NmzZBM8XTA4Cqqti8eXO5D5PBYDAYDAaDwWAwLMXc6kUIwUjc32dOix52E4qpUFTNsPOopc19Rm6q1uMnFArhD3/4A/7f//t/2HfffbHvvvti06ZNeOyxx3DiiSdW+vAmLQnTr0TvJ6AnYjmE5MKPOdWrFshW3Fm0aBF4nk+6XxAELFzIfH4YDAaDwWAwGAxGbeNKSXCmrV4zG13Y0heAohEEo6qpq6OqNSKMAqnaT/ODDz6Aoig48MADjZ8dfPDBeOeddyYs3hnWkVnxw8MRHyxq1eOHFnfM0OKOz+fDXXfdlfTzBx54AD6fr9yHyWAwGAwGg8FgMBiWkprgPBIv/LR4HaiLJxqPR2XD40dkhZ9JRdUqfvr7+9Hc3AyHw2H8rK2tDdFoFCMjI2hpacnrcVRVzf1LVQo99nK+BokHCNEQispQVRWhqAxCNDgFDmL8vois3xeTFRCigQepifd55syZuOOOO3DRRRcB0Is79913H2bOnAlVVXHOOefgggsuAACsW7cOixcvronXNdWoxHnBYFQz7JxgMJJh5wSDMRF2XjAAwCFwiCkqxiMxDAWiIISgwSnA6xAwHIxiLBSDKHAgRINQI2u8YpkM50Qhx161hZ9wOJxU9AFg3I7FYun+JC3r1q2z9LgqQTlfw87BGHp6onCEB9ES2YX3eqPoGYihPjYEp8ihpy+KD6ODaAh2Y/OQjJ6eCMSQiLXoK9sxlsKyZcuMfz/55JOYN28e1q5dC0D/zlEGBweNnzOqk8lwbjMYVsLOCQYjGXZOMBgTYefF1Ka/N4TRiIr/vDWCXbsjEDgOWz4IYGB3FD0jMt4mw3BLHHp6ItDGRayVBit9yLYzVc6Jqi38OJ3OCQUeetvlcuX9OPvttx8EQbD02MqFqqpYt25dWV+DY9cYdqMXM1u9WLZsFgbf78OwOIp957fCKfIY4Psxe3o9lu03A2THCLpJPxa012PZ0hllOb5SCQaDxr+PPfZYeL3etPftv//+SfcxqodKnBcMRjXDzgkGIxl2TjAYE2HnBQMANmt+dA+HUd/egBlkDG11Thx44FyEGgYR2T6EGb4mtNU5sF3pw55tXiw7YFalD9k2JsM5QV9DPlRt4ae9vR3Dw8NQFAWiqB9mf38/XC4XGhoa8n4cQRBq9oOklPM1eFwSOI5HTCUQBAFRlYDjeHidEiSBB8fxUIh+H+E4cBwPSayd99h8nKnva0NDAwghlTgsRhFMhnObwbASdk4wGMmwc4LBmAg7L6Y2HocEjouibzwKjuPRUueEIAhodDvAcTyCsoYW6Gs8pyROie/KVDknqtaxacmSJfj/7d1/bFX1/cfx173n9hel6nRIlnYWZ0G7WUpFw74J3+8SUSdE1hKVUEhaIrJmi5R8mQOdGbabJsLcN5lsyToDE6JzdANR94VFha9Z4uaYbONH+y1p3QLcYJoyy9eO2/Zy7znfP+i93NML2DPuPefe0+cjadJ77ml539z7vpfz7vvz/oRCIdtym0OHDqmmpiZtQC8yJ7lle2JXr5Tt3McPd744+Cs/dvWSpNLSUlmWJcuy6OgBAAAAMGkktnQfHNvK/fopF0apJIY7/3MkpvPx/Nq5GROTsxWUkpISNTQ0qK2tTUeOHNE777yjbdu2qampyevQfC2xnXtiV69EAaikwEgWhfJ1Vy8AAAAAmKyKC+zXbdeNFX7KisYKP6PnFRv74z7buftLzi71kqQnn3xSbW1tam5u1tSpU7VmzRrdd999Xofla4k3g5HzpizLutjxUxhUYhVUoigUM6kGAwAAAEA+SHT8JFxfau/4iUTjyWu9fFrVgU+X04WfkpISbdq0SZs2bfI6lEkj0fFjWpaicVPD0QuJX1JgKDbW9pd4M4jTBggAAAAAeaE4ZC/8XDelQNKFaz0jGFDctHR2+MKGSiFWdfgKzyZsCoyAgoELhZyhkZjMsTaf1Bk/5+MXuoGSHT9UgwEAAAAgp5mxUbW3t6u9vV0FgXiyAygQCGjq2HKvwXMX5v8UhrjG8xMKP7AJBALJ5V5nx4Z+FRgBFRjBZOHHsqRo3GTGDwAAAADkieLQxeu260oKbPcllnt9MnLhGpCOH3/h2USaxBDn/xtr80tUgkPBi91A0ZipmGkmjwMAAAAAcldRynDna8cVfhIDnhNzXVnV4S8UfpAmUehJdPyUFF5sAUy8WURjqR0/vCkAAAAAQC4rDhkyRyOKne3X+U8GbPeVFdsLQezq5S88m0iTKO4MJgo/KdPfC8feAKJxk129AAAAACBPdL76soY+2KNzXfv18IJ52rp1a/K+xFKvBK7x/IXCD9IkdvY6G7Ev9ZKUnPNDxw8AAAAA5IdwOKz/XNuavG2aplpaWhQOhyUpOdw5gY4ff+HZRJrEcOd/jsYkjev4GSv8jMZSO354GQEAAABArurt7ZU5NqM1IR6Pq6+vT5JUVkzhx894NpEm0fGTGOyV2vFTlNLxE4tfeOMwGPwFAAAAADlr5syZCo77g71hGKqqqpKU3vHDcGd/ofCDNEUh+8siMdxZujjjZzRlqRfrPwEAAAAgd1VUVGjLli3J24ZhqKOjQxUVFZKkKYWGbYRHAas6fIVnE2lSO3ykSy/1iqYs9WLGDwAAAADktubm5uT33d3dWrVqVfJ2IBBQaUrXDx0//hL69FMw2Yzv+EnM/JFSCj/xix0/VIMBAAAAIH+Ul5enHSsMxNXe3i5JWvnfP1VpUZnbYSFLKPwgzZU6fhLzfy7M+Bnr+KEaDAAAAAA5rbS0VFZikOul7k8Z8UHHj7/QqoE0aR0/helLvUbOx2VazPgBAAAAAD+YWhSSORpRbPC0Pjp92utwkEEUfpAm0dWTYJvxMzbceTgaTx5jxg8AAAAA5Lf/ebNTQx/s0bnud1VdXa2tW7d6HRIyhMIP0hSlzPQpMAIqMNJn/JyLxpLH6PgBAAAAgPwVDoe1eeP65G3TNNXS0qJwOOxhVMgUCj9IExsdVnt7m9rb2xWw4rb7EsvAImMdP0YwoECAwg8AAAAA5Kve3l6Zpmk7Fo/H1dfX51FEyCQKP0gTCARkxc5LkkoK7C+R1O3cJZZ5AQAAAEC+mzlzpoLjdms2DENVVVUeRYRMovCDS7JiUUlS8bh5P4WG/SXDMi8AAAAAyG8VFRXasmVL8rZhGOro6FBFRYWHUSFTKPzgkuKRTxQ7269zH/fbjheO2/GLjh8AAAAAyH/Nzc3J77u7u7Vq1SoPo0EmUfhBmu3btyvyv+/qXNd+tdT/u22a+/it3un4AQAAAAB/KS8v9zoEZBCFH9iEw2GtWbMmedsaN83dCAZsXT4hg5cQAAAAAAC5iqt22HzaNPdAIGBb7kXHDwAAAADkv9LSUlmWJcuyVFpa6nU4yCAKP7CZyDT31AHPzPgBAAAAACB3UfiBzUSmuds6fgwKPwAAAAAA5CoKP0jzadPcUws/RpCXEAAAAAAAuYqrdlzRpaa5FzHjBwAAAACAvEDhB44x4wcAAAAAgPwQ8joA5J7ENPfLKSqg4wcAAAAAgHxAxw8cKzSM5Pd0/AAAAAAAkLso/MAx265eDHcGAAAAACBncdUOx+y7etHxAwAAAABArqLwA8dShzsXGBR+AAAAAADIVRR+4BgdPwAAAAAA5AcKP3CsiBk/AAAAAADkBbZzh2Ox6Ija29slSf+x/b8kXettQAAAAAAA4JJo14Bj9l29WOoFAAAAAECuovADx1KHOzPjBwAAAACA3EXhB44VhgIyRyOKne3XQP9HXocDAAAAAAAug8IPHHt5xw4NfbBH57r2655/q9PWrVu9DgkAAAAAAFwChR84Eg6H1dramrxtmqZaWloUDoc9jAoAAAAAAFwKhR840tvbK9M0bcfi8bj6+vo8iggAAAAAAFwOhR84MnPmTAWD9peNYRiqqqryKCIAAAAAAHA5FH7gSEVFhbZs2ZK8bRiGOjo6VFFR4WFUAAAAAADgUij8wLHm5ubk993d3Vq1apWH0QAAAAAAgMuh8IOrUl5e7nUIAAAAAADgMnK+8GNZlh555BHt3r3b61AAAAAAAADySk4XfkzT1DPPPKP33nvP61CQorS0VJZlybIslZaWeh0OAAAAAAC4jJDXAVxOf3+/Hn/8cYXDYV1zzTVehwMAAAAAAJB3crbjp6urS5/73Oe0a9culZWVeR0OAAAAAABA3snZjp+7775bd99991X/nng8noFovJGIPZ8fA5Bp5AVgR04AduQEkI68AOz8kBNOYves8DMyMqL+/v5L3jdt2jRNmTIlI//O0aNHM/J7vOSHxwBkGnkB2JETgB05AaQjLwC7yZITnhV+Dh8+rKampkve95Of/ET33HNPRv6dmpoaGYaRkd/ltng8rqNHj+b1YwAyjbwA7MgJwI6cANKRF4CdH3Ii8RgmwrPCz7x583T8+PGs/zuGYeTtE5ngh8cAZBp5AdiRE4AdOQGkIy8Au8mSEzk73BkAAAAAAABXh8IPAAAAAACAT1H4AQAAAAAA8Kmc3c491YEDB7wOAQAAAAAAIO/Q8QMAAAAAAOBTFH4AAAAAAAB8isIPAAAAAACAT1H4AQAAAAAA8CkKPwAAAAAAAD5F4QcAAAAAAMCnKPwAAAAAAAD4FIUfAAAAAAAAn6LwAwAAAAAA4FMhrwPIFsuyJEnxeNzjSP51idjz+TEAmUZeAHbkBGBHTgDpyAvAzg85kYg9Ufu4koA1kbPyUDQa1dGjR70OAwAAAAAAICtqampUWFh4xXN8W/gxTVOxWEzBYFCBQMDrcAAAAAAAADLCsiyZpqlQKKRg8MpTfHxb+AEAAAAAAJjsGO4MAAAAAADgUxR+AAAAAAAAfIrCDwAAAAAAgE9R+AEAAAAAAPApCj8AAAAAAAA+ReEHAAAAAADApyj8AAAAAAAA+BSFH4+Njo7qO9/5ju68807Nnz9f27Ztu+y53d3devjhh1VbW6sHH3xQx44dczFSwD1O8uLdd99VfX296urqtHjxYu3fv9/FSAF3OMmJhHA4rLq6Ov3xj390IULAXU5y4vjx42psbNTs2bO1ePFivf/++y5GCrjHSV68/fbbWrhwoerq6tTY2Kiuri4XIwXcFY1G9cADD1zx/0R+v9am8OOxzZs369ixY9q+fbuefvpp/fjHP9Zvf/vbtPMikYi+/vWv684779Tu3btVV1enlpYWRSIRD6IGsmuiedHT06PHHntMDz74oPbs2aNly5Zp7dq16unp8SBqIHsmmhOp2tra+IyAb000J4aGhvTII4+oqqpKb775pu6991499thj+sc//uFB1EB2TTQvent79a1vfUstLS16/fXXVV1drZaWFg0PD3sQNZBdo6OjWrdunXp7ey97zmS41qbw46FIJKJf/epXeuqpp/SlL31J9957rx599FG98soraefu3btXRUVFWr9+vW655RY99dRTKi0t/dT/+AP5xkle/OY3v9GXv/xlNTU1qbKyUitWrNC8efO0b98+DyIHssNJTiS88cYbOnfunItRAu5xkhOvvfaapkyZora2NlVWVqq1tVWVlZW++0su4CQv3nvvPVVVVamhoUE33XST1q1bp4GBAfX19XkQOZA9fX19Wrp0qU6ePHnF8ybDtTaFHw/19PQoFouprq4ueWzu3Lk6fPiwTNO0nXv48GHNnTtXgUBAkhQIBHTHHXfor3/9q5shA1nnJC+WLFmixx9/PO13DA0NZT1OwC1OckKSBgcH9YMf/EDf+9733AwTcI2TnDh48KAWLFggwzCSx3bt2qWvfOUrrsULuMFJXlx33XXq6+vToUOHZJqmdu/eralTp+qmm25yO2wgqw4ePKh58+Zp586dVzxvMlxrh7wOYDIbGBjQZz7zGRUWFiaPffazn9Xo6KjOnj2r66+/3nZuVVWV7edvuOGGK7asAfnISV7ccssttp/t7e3VH/7wBy1btsy1eIFsc5ITkvTcc89pyZIlmjlzptuhAq5wkhOnTp3S7Nmz9d3vflcHDhxQeXm5NmzYoLlz53oROpA1TvJi0aJFOnDggJYvXy7DMBQMBtXR0aFrr73Wi9CBrFm+fPmEzpsM19p0/HhoeHjY9uYsKXk7Go1O6Nzx5wH5zklepPr444+1Zs0a3XHHHVqwYEFWYwTc5CQnfv/73+vQoUP65je/6Vp8gNuc5EQkEtHPfvYzTZs2TS+++KLuuusurVq1Sh999JFr8QJucJIXg4ODGhgY0MaNG9XZ2an6+no9+eSTzL7CpDUZrrUp/HioqKgo7cWUuF1cXDyhc8efB+Q7J3mRcObMGTU3N8uyLL3wwgsKBnlrg39MNCdGRka0ceNGPf3003w2wNecfE4YhqHq6mq1trbqi1/8or797W9rxowZev31112LF3CDk7x4/vnnNWvWLK1YsUK33367vv/976ukpES7du1yLV4gl0yGa22ujjw0ffp0DQ4OKhaLJY8NDAyouLhY11xzTdq5Z86csR07c+aMbrzxRldiBdziJC8kqb+/XytWrFA0GtWOHTvSlr0A+W6iOXHkyBGdOnVKra2tqqurS855WL16tTZu3Oh63EC2OPmcmDZtmr7whS/Yjs2YMYOOH/iOk7zo6urSbbfdlrwdDAZ122236fTp067FC+SSyXCtTeHHQ9XV1QqFQrahUYcOHVJNTU1ax0Jtba3+8pe/yLIsSZJlWfrzn/+s2tpaN0MGss5JXkQiET366KMKBoN6+eWXNX36dJejBbJvojkxe/ZsvfXWW9qzZ0/yS5KeeeYZrV271uWogexx8jkxZ84cHT9+3Hbsb3/7m8rLy90IFXCNk7y48cYb9eGHH9qO/f3vf1dFRYUboQI5ZzJca1P48VBJSYkaGhrU1tamI0eO6J133tG2bdvU1NQk6UKVfmRkRJJ0//3365NPPtGzzz6rvr4+PfvssxoeHtbChQu9fAhAxjnJi46ODp08eVKbNm1K3jcwMMCuXvCVieZEcXGxKisrbV/Shb9i3XDDDV4+BCCjnHxOLFu2TMePH9eWLVt04sQJ/ehHP9KpU6dUX1/v5UMAMs5JXixdulSdnZ3as2ePTpw4oeeff16nT5/WkiVLvHwIgKsm3bW2BU9FIhFr/fr11pw5c6z58+dbP//5z5P3zZo1y9q1a1fy9uHDh62GhgarpqbGeuihh6yuri4PIgayb6J58dWvftWaNWtW2teGDRs8ihzIDiefFalmzZplvf/++y5FCbjHSU588MEH1pIlS6zbb7/dqq+vtw4ePOhBxED2OcmLzs5O6/7777fmzJljNTY2WseOHfMgYsA94/9PNNmutQOWNdbPBAAAAAAAAF9hqRcAAAAAAIBPUfgBAAAAAADwKQo/AAAAAAAAPkXhBwAAAAAAwKco/AAAAAAAAPgUhR8AAAAAAACfovADAAAAAADgUyGvAwAAAMglTzzxhF577bUrnrN//35VVFS4FBEAAMC/LmBZluV1EAAAALliaGhIIyMjkqS9e/dq27Zt+vWvfy1JMk1T8Xhc06dPl2EYXoYJAAAwIXT8AAAApCgrK1NZWVnye8MwNG3aNI+jAgAA+Ncw4wcAAGCCwuGwbr31VoXDYUnSrbfeqn379mnhwoWqra3VunXrdOrUKTU1Nam2tlbLly9Xf39/8ufffvttLVq0SLW1tXrooYd08OBBrx4KAACYJCj8AAAAXIUXXnhBzz33nDo6OvTWW2+psbFRjY2N+uUvf6mBgQG9+OKLkqSenh5t2LBB3/jGN/TGG2/oa1/7mlavXq0TJ054/AgAAICfsdQLAADgKqxcuVK1tbWSpOrqat18881auHChJOm+++5TT0+PJGnr1q1aunSpFi9eLElqamrSn/70J7366qt64oknvAkeAAD4HoUfAACAq/D5z38++X1xcbHKy8ttt6PRqCTpww8/1L59+7Rz587k/efPn9f8+fPdCxYAAEw6FH4AAACuwvjdvYLBS6+kj8fjWr16tRoaGmzHi4uLsxUaAAAAM34AAADccPPNNyscDquysjL5tXPnTv3ud7/zOjQAAOBjFH4AAABcsHLlSu3du1c7duzQyZMn9dJLL+mll17SjBkzvA4NAAD4GIUfAAAAF8yZM0ebN2/WL37xCy1atEidnZ364Q9/qLvuusvr0AAAgI8FLMuyvA4CAAAAAAAAmUfHDwAAAAAAgE9R+AEAAAAAAPApCj8AAAAAAAA+ReEHAAAAAADApyj8AAAAAAAA+BSFHwAAAAAAAJ+i8AMAAAAAAOBTFH4AAAAAAAB8isIPAAAAAACAT1H4AQAAAAAA8CkKPwAAAAAAAD5F4QcAAAAAAMCn/h9kSyh5xotarAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Sampling out a lightcurve from the GP\n", + "counts = gp.sample(key = jax.random.PRNGKey(6))\n", + "yerr = (jit)*np.ones_like(times)\n", + "\n", + "fig, ax = plt.subplots(1,1, figsize = (14,6))\n", + "ax.errorbar(times, counts.T, yerr=yerr, fmt=\".k\", capsize=0, label=\"data\")\n", + "ax.plot(times, mean(times), color = \"orange\" ,label = \"Mean\"); ax.legend()\n", + "ax.plot(times, counts, label = \"Sample GP\", alpha = 0.5)\n", + "ax.set_xlabel(\"Time\"); ax.set_ylabel(\"Counts\")\n", + "\n", + "lc = Lightcurve(time = times, counts = counts, dt = times[1]- times[0], skip_checks = True)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parameter Posterior Analysis\n", + "\n", + "We will now make our two differing model and then compare the evidences (log evidences $log(p(D|M)) $ ) of fitting the data to the model to check which one fits better.\n", + "\n", + "The main function that we will use will be:\n", + "\n", + "* `gpmodeling.get_gp_params`: This function gives us a list of the parameters of the model based on the kernel and mean type we select.\n", + "\n", + "* `gpmodeling.get_prior_dict`: This function will be can be used to get a suitable generater prior function for a jaxns model. We have to give it our parameter list, and a dictionary with suitable tfpd distributions for the priors. \n", + "\n", + "* `gpmodeling.get_log_likelihood`: This function will give us a log_likelihood function which calculates the log likelihood probabilty of the data for the given parameter $p(D|\\theta, M)$. Here we will have to provide the parameters list, the kernel and mean type of the GP model, as well as the Times and counts of the lightcurve.\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "### Model 1\n", + "\n", + "The first model which we will make will be a Red-Noise model ,we will use the get_prior and get_likelihood functions to make a suitable prior and log_likelihood function for our Inference. \n", + "\n", + "The model will have a Red Noise kernel \n", + "\n", + "$$\n", + "k_{rn}(\\tau) = a \\; exp(-c\\tau) $$\n", + "\n", + "where $\\tau = |x_i - x_j|$ and the mean function as a gaussian distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "parameters list ['log_arn', 'log_crn', 'log_A', 't0', 'log_sig']\n" + ] + } + ], + "source": [ + "import tensorflow_probability.substrates.jax as tfp\n", + "from stingray.modeling.gpmodeling import get_prior, get_log_likelihood, get_gp_params\n", + "tfpd = tfp.distributions\n", + "tfpb = tfp.bijectors\n", + "\n", + "params_list = get_gp_params(kernel_type= \"RN\", mean_type = \"gaussian\")\n", + "print(\"parameters list\", params_list)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We make a parameter list as jaxns requires the parameters in the prior function and log likelihood to be of the same order. Thus if one is using the standard kernel and means then parameter list comes handy, otherwise one can make our own prior and likelihood function." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prior and log likelihood\n", + "\n", + "We use Tensorflow_probility to make the parameter priors and put them into the prior_dictionary. The prior types and bounds can be set according to the user discretion. \n", + "\n", + "**Note** : The priors can be Tfp priors or bijected priors, but we cannot use tfp.joint_distributions in our priors. To make multi-parameter priors or conditioned parameter priors, one can use the priors in `jaxns.special_priors`. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "total_time = times[-1] - times[0]\n", + "f = 1/(times[1]- times[0])\n", + "span = jnp.max(counts) - jnp.min(counts)\n", + "\n", + "# The prior dictionary, with suitable tfpd prior distributions\n", + "prior_dict = {\n", + " \"log_A\": tfpd.Uniform(low = jnp.log(0.1 * span), high= jnp.log(2 * span)),\n", + " \"t0\": tfpd.Uniform(low = times[0] - 0.1*total_time, high = times[-1] + 0.1*total_time),\n", + " \"log_sig\": tfpd.Uniform(low = jnp.log(0.5 * 1 / f), high = jnp.log(2 * total_time)),\n", + " \"log_arn\": tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)),\n", + " \"log_crn\": tfpd.Uniform(low = jnp.log(1 / total_time), high = jnp.log(f)),\n", + "}\n", + "\n", + "params_list2 = [\"log_arn\", \"log_crn\", \"log_A\", \"t0\", \"log_sig\"]\n", + "\n", + "prior_model = get_prior(params_list2, prior_dict)\n", + "\n", + "log_likelihood_model = get_log_likelihood(params_list2, kernel_type= \"RN\", mean_type = \"gaussian\", times = times, counts = counts)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sampling Model 1\n", + "\n", + "We can initialise the GPResult class using a stingray lightcurve, and then perform a Nested Sampling for the given prior_model and likelihood_model." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO[2023-10-19 22:11:44,231]: Sanity check...\n", + "INFO[2023-10-19 22:11:44,432]: Sanity check passed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Complete\n" + ] + } + ], + "source": [ + "from stingray.modeling.gpmodeling import GPResult\n", + "\n", + "gpresult = GPResult(lc = lc)\n", + "gpresult.sample(prior_model = prior_model, likelihood_model = log_likelihood_model)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check the Evidence for the data given the model $Z = p(D|M_1)$, as well see the sampling outcomes for the used parameters." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log Evidence: -252.0393784723225\n" + ] + } + ], + "source": [ + "print(\"log Evidence: \", gpresult.get_evidence())" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Using the plotting functionality of the GPResult class, we can visualise the posterior distributions of our parameters, look at sampling run summaries and diagnostics." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjQAAAHFCAYAAADlrWMiAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABltElEQVR4nO3de3yL5/8/8FeOTdM612EMq0MpqlQxxpznVJsZ42dlfLcxhjGbszl02GZsjDEzm8/qMzamNsrYsNnGVJ2KmkNNnUY7p2nSpEnu3x/9NGvSNrmTpr2T9PV8PPpw586d5J3Lu+k7133d1yUTBEEAERERkQ+TSx0AERERUXGxoCEiIiKfx4KGiIiIfB4LGiIiIvJ5LGiIiIjI57GgISIiIp/HgoaIiIh8HgsaIiIi8nksaIi8FOe8/BfbgoicYUFD5MSwYcPQqFEjm59mzZqhc+fOmDdvHu7du+fR1zMajVi4cCG+++47jzzfsGHDMGzYMI88l73ff/8djRo1wu+//17o/R9++CEaNWpU5G1n/vrrL4waNQrXrl0rdqy+zGQyYdq0aWjZsiWioqJw6NChAse42rYlaciQIWjUqBG+//57qUOhMkQpdQBEvqBJkyaYM2eO9XZOTg5Onz6NpUuXIjU1FV9++SVkMplHXuvWrVtYv349Fi1a5JHnyx+31AYNGoSOHTuKPv63337DTz/9VIIR+YYDBw5g69atGDt2LNq3b48mTZpIHVKR0tLScOzYMYSFhWHjxo3o2bOn1CFRGcGChkiE4OBgtGjRwmZf69atkZWVheXLl+PEiRMF7vcWDRo0kDoEqxo1aqBGjRpSh+Fz7t69CwAYMGAAateuLW0wTnzzzTeoVasWRo8ejddffx2XL19G3bp1pQ6LygCeciIqhmbNmgEArl+/bt2XmJiIAQMGoGXLlnjsscfw5ptv2pyWys7Oxty5c/H444+jWbNm6NWrFz799FMAwNWrV9GtWzcAwPTp09G1a1fr444cOYLY2FhERkaiTZs2mDp1Km7fvm29/5tvvkGTJk3w9ddf47HHHkObNm1w4cKFAqecDAYDVq5ciV69eiEiIgJPPPEE1qxZA4vFYj1m2LBheP311zFhwgS0aNECI0eO9Eh72Z8WSU9Px8svv4y2bdsiMjISgwcPtvbIfPPNN5g+fToAoFu3bpg2bRoAwGw2Y8OGDejXrx+aN2+Ozp0747333oPBYLB5ra1bt6JPnz6IiIjAk08+iYMHD6JJkyb45ptvHLaX2WzGmjVrEBMTg+bNm6NFixYYMmSIzWmeDz/8EL169cKePXsQExODiIgIPPXUUzh27BiOHz+OQYMGoXnz5oiJicHBgwcdtomz9zNt2jTre+/evbtLpw+d5SIA7N+/HwMGDEDz5s3Rs2dPbN++HT169MCHH34o+nXyv5eEhAR06dIF3bt3h1arxaZNm1x+HiJ3sIeGqBguXboEANZvzR999BGWL1+OoUOHYtKkSbhy5QqWLVuG48eP46uvvoJGo8HChQvxyy+/YOrUqQgJCcHPP/+Md999FxUrVkS/fv2wYsUKjBs3DmPGjMETTzwBAEhKSsLIkSPx6KOP4oMPPsC9e/ewbNkyDB8+HJs3b4ZGowGQ+wdl3bp1WLBgAe7cuYP69evbxCsIAl5++WUcP34c48aNQ+PGjfH777/jgw8+wJUrVxAXF2c9dufOnXjyySexatUqm2KnMBaLBSaTqdD9jh4zevRoVKtWDe+++y6USiX+85//YMyYMdi5cyc6d+6MMWPGYNWqVVixYoW1EHrzzTexbds2vPTSS4iOjsaZM2ewcuVKpKamYu3atZDJZEhISMC0adMwaNAgTJ8+HSdPnsTYsWNhNpttYiisvd599118+eWXmDx5Mho1aoSbN29i5cqVePXVV7F//34EBgYCyB3f8/bbb2PSpEnQarWIi4vDhAkToFKp8PLLL+Ohhx6y3r9//37r/5E9Z+9n7NixqFGjhrUdQkNDHf5f5BGTi4cOHcLYsWPRpUsXvPrqq7h8+TLmzJlToDgU6+eff0ZGRgb69+8PjUaD3r17Y+vWrZg4cSLUarVbz0kkmkBEDsXGxgrPPfeckJOTY/3JzMwUEhMThTZt2giDBw8WLBaLcPfuXaFZs2bC7NmzbR6flJQkhIWFCfHx8YIgCELPnj2FWbNm2RyzYsUKYd++fYIgCMKVK1eEsLAwYcuWLdb7Bw8eLMTExAgmk8m6Ly0tTQgPD7c+75YtW4SwsDAhISGhQPyxsbGCIAjC/v37hbCwMGH79u02x6xcuVIICwsTzp07Z31MZGSkYDAYHLbNoUOHhLCwMKc/eZYvX269fevWLSEsLEz49ttvrfffv39fWLhwoTWOvPd05coVQRAE4fz580JYWJjw8ccf28SRkJAghIWFCfv37xcEQRA6d+4sjB492uaYjz/+2KZdi2qv1157Tfj8889t9n3//fdCWFiYcOzYMZv38dNPPxV4/q+//tq6b9euXUJYWJhw5syZQttP7Puxb4fC5G9bsbk4dOhQ4cknnxQsFov1mO3btwthYWHC8uXLi3ytoowbN06IiYmx3j5y5EiB/2OiksJTTkQiJCUloWnTptaf9u3b47XXXkOzZs2wZMkSyGQyHD9+HEajETExMTaPjY6ORq1atXD48GEAQNu2bfHVV1/hpZdeQnx8PK5cuYJXXnkFnTt3LvS19Xo9Tpw4gU6dOkEQBJhMJphMJtSuXRv169fHr7/+anN8eHh4ke/j8OHDUCqV6NWrl83+J5980np/nnr16on+Vj1v3jxs3ry5wM+zzz5b5GNCQkLQoEEDzJ49G1OnTsV3330Hi8WC6dOno2HDhkXGDwB9+/a12d+3b18oFAr8/vvvuHz5Mq5fv17gPdo/Jo99ey1ZsgTPP/88bt++jSNHjmDLli349ttvAeRegZZfVFSUzfsBgMjISOu+ihUrAgDu37/v9vtxh5hcNBqNOHbsGJ544gmbAe29evWCUul65/3t27exb98+9OzZE/fv38f9+/fRsGFD1KpVi6edqFTwlBORCE2bNsW8efMAADKZDAEBAXjooYcQHBxsPSZvbELeH7b8QkJC8M8//wAAZs6ciRo1auDbb79FXFwc4uLi0LJlS8ydOxeNGzcu8Nj79+/DYrHgk08+wSeffFLg/oCAAJvbWq22yPdx7949VKpUCQqFwmZ/1apVAcAaIwAEBQUV+Tz2QkNDERERUWD//v37i3yMTCbDunXrsGrVKuzZswcJCQlQqVTo3r075s2bhwoVKhQaf/548yiVSlSqVAn//POPdVxRlSpVbI4p7P8FKNheKSkpmDdvHlJSUhAYGIgGDRqgZs2aAArOh5P//z9P3ikpMcS8H3eIycW7d+/CbDYXaCeFQmEtxFzx7bffIicnBx9++GGB8TfXrl3DxYsXC5wCJfIkFjREIgQFBRX6Bzu/vD/AmZmZqFevns19GRkZ1nE2arUaY8aMwZgxY3D9+nXs27cPH330ESZPnowdO3YU+toymQwjRowotJfBlT+gFSpUwJ07d2A2m22Kmlu3bgEAKlWqJPq5PKF69eqYO3cu5syZg7Nnz2LXrl345JNPUKlSpUIvN89r44yMDNSqVcu6PycnB3fu3EGlSpWsV1H9/fffNo+1v12YBw8e4MUXX0SjRo2wY8cO1KtXD3K5HD/99FOJzKki5v0U53kd5WKVKlWgUqmQmZlpc7/FYrFeVeWKLVu2oGXLlpg0aZLNfp1Oh7Fjx+LLL7/ErFmzXH5eIrF4yonIQyIjI6FWq7F9+3ab/UeOHMH169cRFRWF7Oxs9OzZE+vWrQMA1KxZE8899xz69u1rvVLKvvckODgYTZo0QVpaGiIiIqw/DRs2xIcffujSaYk2bdrAZDJh165dNvvzTqm0atXK5fftrmPHjqF9+/Y4efIkZDIZwsPDMWnSJISFhVnbQi63/Yhq06YNABQo/Hbs2AGz2YxWrVqhRo0aqFOnDvbs2WNzzO7du53GlJaWhrt372L48OFo0KCB9fV//vlnAI4HObtDzPtxh5hcVCgUiIqKwo8//mhzzN69ewsd4O1ISkoKzp07hwEDBqBt27Y2P126dMGjjz6Kbdu2ITs72633QyQGe2iIPKRixYoYNWoUVq5cCZVKhS5duuDq1atYtmwZGjRogKeffhoajQZNmzbFihUroFKp0KhRI1y6dAlbt261TkBWrlw5AMDBgwdRv359REZG4rXXXsOoUaMwefJkPPnkk9arc06cOIGxY8eKjvHxxx9H27ZtMWvWLNy8eRONGzfG4cOH8cknn+Dpp58u1TlrmjRpAo1GgylTpmD8+PEICQnBb7/9htTUVAwfPhwAUL58eQDAnj178Pjjj1vbcfny5dDr9WjdujVSU1OxYsUKtG3bFh07doRMJsOECRPw+uuvY86cOejRowfOnj2LlStXAihYJOUXGhqK4OBgrF69GkqlEkqlEt9//z02b94MIHc8kyeJeT/uEJOLADBhwgQMGzYMEyZMwMCBA3H9+nUsW7YMAFyaKHLLli1QqVTWq/LsPfXUU/jtt9+sl5ETlQQWNEQelPeHOT4+Hps2bULFihXRq1cvTJw40TpWY/78+fjggw+wbt06ZGRkoEqVKhg4cCBeffVVALk9MiNHjsSmTZvw008/4ddff0WHDh3w6aefYsWKFdZLg5s2bYrPPvvMpQn9ZDIZPv74Yyxfvhyff/45bt++jYcffhivvfaax+aaESsgIADr1q3DkiVLsGDBAty/fx+PPPII5s+fb/2j17ZtW7Rv3x5LlizBwYMHsWbNGixYsAB169bFli1b8Mknn6BatWoYPnw4xo4day1W+vXrB51Oh08//RRbtmxBw4YNMXPmTMycOdPhGKNy5crho48+wrvvvotXX30VQUFBCA8PR3x8PF566SUcOXLEZm4gTxDzftwhJhejo6Px4YcfYtmyZRg7dixq1aqF2bNnY9KkSaLHUBkMBuzYsQOPPfZYkWNvnnjiCcybNw8bN25kQUMlRibYj3IjIvJx27dvR5MmTWzGj+zfvx+jR4/Gtm3bCh18XRb9+OOPqFGjBpo2bWrdd/78ecTExOCjjz6yTvJI5AvYQ0NEfufbb7/F+++/j4kTJ+Khhx7C5cuXsXz5crRp04bFTD6//PILEhMT8frrryM0NBQ3b97EqlWrUK9ePXTo0AEWi0XUuCF3LvMm8jT20BCR37lz5w6WLFmCn3/+Gbdv30ZISAh69uyJCRMmuHQ5ur/Lzs7GsmXL8P333+PWrVuoWLEiOnbsiMmTJyMkJATTpk3D1q1bnT7PH3/8UQrREjnGgoaIiAp19epV3Llzx+lxzqY0ICoNLGiIiIjI53EeGiIiIvJ5LGiIiIjI55WZoekWiwUmkwlyudylCaOIiIhIOoIgwGKxQKlUOpybqcwUNCaTCSkpKVKHQURERG6IiIiAWq0u8v4yU9DkVXUREREF1sqhXGazGSkpKWwjkdhehcjKAv63MjWuXwf+d4k020o8tpV4bCvX+Gp75cXtbObsMlPQ5J1mUigUPvUfKQW2kWvYXvkoFLlFTd62XbuwrcRjW4nHtnKNr7aXs+EiZaagIXKH0WzEskO5i/W9+uirUCuK7u4kcod9jinge39oiLwBCxoiB3LMOZjywxQAwNjWY1nQkMfZ55gvfnMm8gYsaIgcUMqVeD7yees2OaFUAs8//+82OcUcI/IM/vYQORCgDMDn/T+XOgzfERAAfP651FH4FPscM5vN0gVDLjGbzcjJyZE6DNHycis7O9uregJVKpVH4mFBQ0RE5AJBEPDXX3/h7t27UofiEkEQoFQqcfnyZa+bj61ixYqoUaNGseJiQUNEniMIgE6Xu63VAl72oUnkCXnFTLVq1aDVar2uOCiKIAjQ6/UIDAz0mpgFQYBOp8OtW7cAAA899JDbz8WChsiBLGMWai2tBQC49to1BKmDJI7Iy+l0QHBw7vaDB9Z5aKho9jmmUWgkjogcMZvN1mKmSpUqUofjkrwZdzUajdcUNAAQGBgIALh16xaqVavm9uknFjRETtwz3JM6BPJzzDHfkTdmRqvVShyJf8lrz5ycHBY0RCUhUBWIc+POWbeJPM0+xwSLIHFEJIY39XD4A0+0JwsaIgfkMjkaVmkodRjkx+xzzAxe5UTkDhY0REREHpCeno7MzMxSea2QkBDUqVNH9PFXr15Ft27dsH37djRo0KAEI8ul0+nQvn17NGnSBP/9739L/PUAFjREDuWYc7AmeQ0AYFSrUVApVBJHRP7GPsfkcLwAH3mn9PR0hIeHQ5d3lV8J02q1SE1NdamoKU179+5F1apVcfToUVy5cgW1a9cu8ddkQUPkgNFsxLid4wAAI1qMYEFDHmefY7zKyTdlZmZCp9MhPj4e4eHhJfpaqampiI2NRWZmptcWNNu3b0f37t3x66+/IiEhAePHjy/x12RBQ+SAQq7AwCYDrdvkhEIBDBz47zY5xRzzL+Hh4YiKipI6DIfu3buHJUuW4Mcff4TBYEDXrl0xa9YsVKhQAQBw6tQpzJ8/H2fPnkWTJk3Qrl07HDlyBF988YXo5//ll18waNAgqNVqJCQkYNy4cSU+kJoFDZEDGqUGXw/6WuowfIdGA3xddHulp6fjzp07NvtcHQvgb+xzjEsfUEkbN24csrOzsXr1agDA3LlzMW3aNKxatQr//PMPXnzxRfTu3Rtvv/02fvvtNyxatMilIm337t1QKBRo3749qlatitWrV+PIkSNo3bp1Sb0lACxoiKiU/PXXX3j88ccLjDHw9rEARP7kwYMHSEpKwq5duxAaGgoAWLx4Mfr06YO0tDQkJSVBq9Vi1qxZUCgUqFevHo4ePYqMjAzRr7Fjxw60b98egYGBiIiIQI0aNbB169YSL2g4+oyISsXdu3etYwySk5ORnJyM+Ph46HS6UrsyhKis++2331C+fHlrMQMA9evXR4UKFZCWloY//vgDTZs2tZncrkWLFqKfPyMjA4cPH0b37t0B5M4v06NHD+zatQt6vd5j76Mw7KEhckCXo0PDD3PnCDk//jy0Ks4O6lBWltOlD3xhjEFpss+xAHmAxBGRP1Or1YXuN5vNMJvNUCgUEATbyR3tbzuyc+dOmM1mzJ49G7Nnz7Y+3mKxYM+ePXjyySfdD94J9tAQOSAIAq7/cx3X/7nu0i81kVjMMSpN7dq1w/3795GWlmbdd+HCBTx48AChoaFo2LAhUlNTYbFYrPefPn1a9PMnJiaiXbt2SEhIsP5s27YNderUQUJCgiffSgHsoSFyQKPU4NjoY9ZtIk8rkGOsaXxaamqqV79GQEAAHn/8cUydOtXagzJv3jy0bt0aYWFhqFWrFpYsWYJFixZh6NChSEpKQmJiIlq2bOn0ua9evYpjx45h2bJlCAsLs7lv8ODBWLJkCW7evInq1au7Hb8jLGiIHFDIFWhRo4XUYZAfs88xXuXkm0JCQqDVahEbG1sqr6fVahESEuLWY9955x289dZbGDFiBBQKBbp164bp06cDAIKCgrB69WrMmzcPX375JSIiItCvXz/cunXL6fMmJiaiUqVK6Nq1a4H7BgwYgGXLlmHbtm0YNWqUW3E7w4KGiIiomOrUqYPU1FSvXfrg4YcfxtmzZ6HT6aDVarF06dJCj7ty5QrMZrPN6aF58+ahatWqTl9j1KhRRRYrlStXRkpKiuh43cGChsiBHHMONqRsAAA8F/EcZwomj7PPMS594Lvq1Knj89MPPHjwACNHjsTixYsRERGB06dPY9u2bUUWQN6EBQ2RA0azESO3jQQADGoyiAUNeZx9jnHpA5JSeHg43nzzTSxduhQ3btxAzZo1MX36dHTu3BkLFizA5s2bi3zs6NGj8fLLL5ditLZY0BA5oJAr0KdhH+s2OaFQAH36/LtNTjHHyNsMGjQIgwYNKrB/zJgxDscI5S2dIBUWNEQOaJQa7Bi6Q+owfIdGA+xge7nCPsc4KJi8VeXKlVG5cmWpwygST9YSERGRz2NBQ0RERD6PBQ2RA3nT0jf8sCF0OTrnDyjrsrJylzsICsrdJqeYY0SewTE0RA4IgoALty9Yt0kEHf8ou4I5RuQZLGiIHNAoNfhl5C/WbSJPK5BjrGmI3MKChsgBhVyBx+o8JnUY5Mfsc4xXORG5hwUNEZWIK1euION/p5/MZjMuXbokcURE5M9Y0BA5YLKYsDV1KwDg6fCnoZTzV0asqKgoZOr1BfbfuHFDgmi8l32OySCTOCIi38SrnIgcMJgMeHbzs3h287MwmAxSh+NTdHo94uPjkZycjMOHD2PMmDEAgLt37xY4NjU1FUePHrX+pKenl3K00mGOUWm4evUqGjdujAMHDqBr165o2bIl3nrrLZw7dw4DBgxAixYtMHr0aDx48AAAsHHjRutxw4YNwx9//GF9rps3b2LChAlo3bo1mjVrhqeffhrJycnW12nUqBF2796N7t27IyIiAqNHjy70997T+HWTyAG5TI5OdTtZt8kJuRzo1An/PHgAS3IywsPDERUVBbPZjO+//77A4Xm9NfbTqWu1WqSmpvr8Qn9iMMf8iKOpChSK3Jm0xRwrlwOBgY6PDQpyPT4An332GVatWoULFy5g8uTJ+PnnnzFnzhxoNBqMHTsWmzdvRp06dbBixQrExcUhNDQUCQkJGD58OHbv3o0KFSrg9ddfR/ny5bFx40YIgoD33nsPc+fOxXfffWd9ndWrV2Pp0qUQBAFjxozBZ599hkmTJrkVs1gsaIgcCFQFYv+I/VKH4TsCA4H9+3H+6FFkt2rl9PC8b21xcXHo8781oFJTUxEbG4vMzMwyUdDY5xgHBfuw4OCi7+vTx3ZZkGrVip7ioFMnYP/+f28/8giQmWl7jJuX+L/00kto1KgRGjdujIULF6Jv37547LHcQent2rVDWloadu/ejdGjR6NLly4AgIkTJ+Lnn3/Gt99+i9jYWHTv3h09e/ZEjRo1AADPPfccRo0aZfM6EyZMQPPmzQEA/fr1Q0pKilvxuoIFDRFJLjQ0FFFRUVKHQeT3atWqZd3WaDQFbhuNRly8eBGLFy/G0qVLrfcZDAb8+eefkMlk+H//7/8hMTERR48exaVLl3Dq1ClYLBab16lbt651Ozg4GDk5OSX4rnKxoCEiIvKE/40/KZT96vO3bhV9rNzu1OOff7odkj2l0vbPvtz+tZDbSzhjxgy0a9fOZn9wcDAsFgv+7//+D/fv30efPn3QtWtX5OTkYNy4cTbHqlQqj8UsFgsaIgf0OXq0+zT3l/rgCwcRqAp08ogyLisLeOQRRJhM0Eodi4+wzzG1XC1xROQ2V8a1lNSxHhAaGoq//vrLppdl+vTp6N69O2rXro2kpCQcPHjQuvL2hg0bAEg/0zULGiIHLIIFJ26esG6TCJmZKP3vZr6LOUbeZuTIkZg5cyYeeeQRREVFYdOmTdi5cydGjx4NjUYDuVyOHTt2oGvXrkhJScGHH34IADAajZLGzYKGyAGNUoPdsbut20SeViDHuPQBSaxPnz7IzMzE8uXLkZmZiQYNGmDVqlV45JFHAABz587FypUrsXTpUoSGhmLWrFmYOnUqzpw5g6pVq0oWNwsaIgcUcgV61O8hdRjkx+xzjFc5UUl4+OGHcfbsWejyXVm1d+9em2Pefvtt6/bw4cMxfPjwQp9r8ODBGDx4sM2+mJgY63b+OWsAYPz48W7H7QpOekBEREQ+T9KCJm+2wTZt2qBjx45YtGgRDIbCZ8o8c+YMBg0ahMjISDzzzDM4depUKUdLZZHJYsKOczuw49wOmCwmqcMhP8QcI/IMyQoaQRAwYcIE6PV6bNiwAe+//z727duHDz74oMCxOp0Oo0aNQnR0NL755hu0bNkSo0ePtuk6IyoJBpMBMV/GIObLGE5LTyWCOUbkGZIVNGlpaTh+/DgWLVqEhg0bIjo6GhMmTMD27dsLHJuYmIiAgABMmTIF9evXx8yZMxEUFIRdu3ZJEDmVJXKZHNE1oxFdM5rT0oshlwPR0chq0gS8Xkcc5hiRZ0g2KLhq1apYu3YtQkJCbPY/KGRiohMnTqBVq1aQyXJXoZXJZIiKisLx48cxYMCAUomXyqZAVSCSXkqSOgzfERgIJCXhD5FLH1DBHOOgYN8g9Zwr/sYT7SlZQVO+fHl07NjRettisSA+Ph6PPvpogWMzMjLQoEEDm31VqlTB+fPnXX5dflgULa9t2EbisL2Klr9t8n7yWCwW6+286dLz77N/bFnDvBJPiraSy+UQBAFZWVnQaHxrKoe8osEbi7GsrCwIggC5XF7g/1Ps/6/XXLa9ePFinDlzBps3by5wn16vh1ptO3umWq12axKf0lggy9exjVzD9iro3Llz1n/tp1a/fPkyjh8/bt223+fosWUJ80o8Kdrq+vXrMBqNCAgIsJ498BVFXXwjBUEQYDAYkJmZiZycnGL9X3pFQbN48WKsX78e77//PsLCwgrcHxAQUKB4MRqNblXHERERUNivqUEAcqvglJQUtlE++hw9ntjwBABg93O7bZY+YHsVQqeDPCICzYxGvAQgLCwMLVq0gNlsxs6dOwHkLlrXokULALlXL9rvy+u1yXusv7PPMbVczbwSSarfQUEQcPPmTetq8b4kJydHknWWnKlSpQqqV69eaHGY9//sjOQFTVxcHL788kssXrwYPXv2LPSY6tWrI9Nu6fTMzExUq1bN5ddTKBT8kHCCbfQvmVmGg1cP5m7LZYW2C9srH7kcuHwZAQBkKLxt5HK5dV9eD0z+ffn/LQvtWlSOlZX37wlStFWtWrVQo0aNUllF2lPMZjPOnj2LBg0aeFVuqVQqj8QjaUGzYsUKbNy4EUuXLkWvXr2KPC4yMhKffPIJBEGATCaDIAg4evQoXn755VKMlsqiAGUAtg7eat0m8rQCOeZ9wxuoCL5WdOaNRdFoND4Vt1iSFTQXL17ERx99hFGjRqFVq1bIyMiw3le1alVkZGSgXLly0Gg06NWrF5YsWYIFCxZgyJAh2LhxI/R6PXr37i1V+FRGKOVK9G/cX+owyI/Z5xgHAxO5R7IRdz/++CPMZjNWrVqFDh062PwAQIcOHZCYmAgACA4Oxscff4zk5GQMGDAAJ06cwJo1a6DVaqUKn4iIiLyIZD00o0aNwqhRo4q8335xq+bNm2Pr1q0lHRaRDbPFjAPpBwAAHet0hELuf920JC37HCMi90g+KJjIm2WbstFlfRcAwIPpDxCkDpI4IvI39jmmUfjW3CZE3oIFDZEDMpkMTao2sW6TEzIZ0KQJ9NnZENLSpI7GJzDHiDyDBQ2RA1qVFqfHnpY6DN+h1QKnTyP16FHoufSBKPY5xkHBRO4pu9NwEhERkd9gQUNEREQ+j6eciBzQ5+jx5MYnAQDfDvnWZukDKoROB7RujfDsbLClxLHPMbVc7eQRRFQYFjREDlgEC35I+8G6TU4IAnDmDAKRu/QBOcccI/IMFjREDgQoAxD/dLx1m8jTCuQYlz4gcgsLGiIHlHIlnmv+nNRhkB+zzzFe5UTkHg4KJiIiIp/HHhoiB8wWM47eOAoAiHooiksfkMfZ5xgRuYcFDZED2aZstFnbBgCXPqCSYZ9jXPqAyD0saIgckMlkqFuhrnWbnJDJgLp1YTAaIdy4IXU0PoE5RuQZLGiIHNCqtPhz4p9Sh+E7tFrgzz9xmksfiGafYxwUTOQeDgomIiIin8eChoiIiHweTzkROZBtysaQzUMAABsHboRGyQGbDun1wOOPo5FOB7aUOPY5ppKpJI6IyDexoCFywGwxY9sf26zb5ITFAhw5giAUv/s3NTXV5nZISAjq1KlTzGf1PvY5plKwoCFyBwsaIgfUCjXWxKyxblPJu/G/q6NiY2Nt9mu1WqSmpvpdUcMcI/IMFjREDqgUKrzU6iWpwyhT7t69CwCIi4tDnz59AOT21sTGxiIzM9PvChr7HONVTkTuYUFDRF4pNDQUUVGcOZeIxGFBQ+SARbAgNSN3LEd41XDIZbwwkDzLPseIyD0saIgc0Ofo0WxVMwBc+oBKhn2OcekDIvewoCFyIkQbInUIviUkBDkmE/C/sTDkHHOMqPhY0BA5EKQOQsYbGVKH4TuCgoCMDKQcPQodlz4QxT7HOCiYyD0cEEBEREQ+jwUNERER+TyeciJyINuUjRe+fQEA8OmTn3LpA2f0eqB3bzR88IBLH4hkn2Nc+oDIPeyhIXLAbDHjvyn/xX9T/sulD8SwWICffkK55GR+uIjEHCPyDPbQEDmgVqjxfs/3rdtEnsYcI/IMFjREDqgUKkx8dKLUYZAfs88xXuVE5B72ChMREZHPYw8NkQMWwYL0e+kAgDoV6nDpA/I4+xwjIvewoCFyQJ+jR+iyUABc+oBKhn2OcekDIvewoCFyQqvSSh2Cb9FqYbZYgOxsqSPxGcwxouJjQUPkQJA6CFkzsqQOw+ulp6cjMzMz98aBA0hNTYUuNlbaoHyEfY5xUDCRe1jQEFGxpKenIzw8HDqdrsB9N27ckCAiIiqLOMKRiIolMzMTOp0O8fHxSE5ORnJyMuLi4gAAd7niNhGVEvbQEDlgMBkwLnEcAGBFnxUIUAZIHJH3Cg8PR1STJsAzz6D6tWt4S+qAfIR9jill/Fgmcgd7aIgcMFlMWHtsLdYeWwuTxSR1ON7PbAYSE1HrxAkopI7FRzDHiDyDXwWIHFApVHiry1vWbSJPY44ReQYLGiIH1Ao1Zj4+U+owyI/Z5xivciJyD085ERERkc9jDw2RA4IgIFOXO79KiDYEMplM4ojI39jnGBG5hwUNkQO6HB2qvVcNAJc+oJJhn2Nc+oDIPTzlRERERD6PPTREDgSpgyDMEaQOw3cEBQGCgA0bNnDpA5Hsc4yDgoncwx4aIiIi8nksaIiIiMjn8ZQTkQMGkwFTf5gKAHin+ztc+sCZ7Gxg2DB0SE8HW0oc+xzj0gdE7uFvDpEDJosJy35fBgBY0HUBAvhn2jGzGdi8GXUBLn0gkn2OKRX8WCZyB39ziBxQKVSY0WGGdZvI05hjRJ7BgobIAbVCjQXdFkgdBvkx+xzjVU5E7uGgYCIiIvJ57KEhckAQBOhydAAArUrLpQ/I4+xzjIjcw4KGyAFdjg7Bi4IBcOkDKhn2OcalD4jcw1NORERE5PPYQ0PkgFalxYPpD6zb5IRWCzx4gI0bN0L34otSR+MT7HPMYrFIHBGRb2JBQ+SATCbjaSZXyGRAUBDMGp42EYs5RuQZPOVEREREPo89NEQOGM1GzNs/DwAwp/McqBVqiSPycgYDMHo0Hk1LA1tKHPscU3COZSK3sKAhciDHnIOFvywEAMzoOIMFjTMmE7B+PeqDHy5i2eeYQsGChsgd/MwhckApV+LVtq9at4k8jTlG5Bn87SFyIEAZgA96fSB1GOTH7HOMSx8QuYeDgomIiMjnsaAhIiIin8eChsiBLGMWZPNkkM2TIcuYJXU45IeYY0Se4RUFjdFoRExMDH7//fcijxkzZgwaNWpk87Nv375SjJKIiIi8leSDgg0GAyZPnozz5887PO7ixYtYvHgx2rVrZ91XoUKFkg6PyjitSotbr9+ybpMTWi1w6xY2b94M3dixUkfjE+xzjEsfELnH5YLm0KFDaNu2LWQyWbFf/MKFC5g8eTIEQXB4nNFoxNWrVxEREYGqVasW+3WJxJLJZKgaxJwTTSYDqlaFoXx5qSPxGcwxIs9w+ZTTq6++io4dO+Ktt97C8ePHi/Xihw8fRtu2bbFp0yaHx6WlpUEmk6F27drFej0iIiLyTy730Pz666/49ddfsWvXLowaNQrBwcHo3bs3+vbtiyZNmrj0XEOHDhV1XFpaGoKDgzFlyhQcPnwYNWrUwPjx49GpUydXw+ccDw7ktQ3b6F9GsxHvHXwPAPB6u9dtZgpme+XK3w5mnQ6y119H9LlzUAOwWCy5+/O1Ud6+vG0x+2xew8/a2z7H8pY+8Lf3WRL4O+gaX20vsfG6XNAolUp06tQJnTp1gslkwm+//Ya9e/di6NChqF69Ovr164cBAwagZs2aLgddlLS0NGRnZ6NDhw4YNWoU9uzZgzFjxmDTpk2IiIhw6blSUlI8Fpe/Yhv9S2/S4839bwIAumi6IFAZWOCYst5e586ds/6rNBjQctUqNELuh8vly5cL9OTm33f58mVR+/K/hlzuFdcyeExROVbW88oVbCvX+Gt7uT0o2Gg04sCBA9i9ezf279+PSpUqoWvXrvjzzz/Rt29fTJ48GbGxsR4JcuzYsRg2bJh1EHDjxo1x+vRpfPXVVy4XNBEREVwrpQhmsxkpKSlso3wMJgNe+OsFAEBUiygEKAOs97G9cuX1qISFhaF5o0Y299WtWxctWrSA2WzGzp07bfYBwJkzZ0Tty/8aefv8hX2OKWVK5pVI/B10ja+2V17czrhc0Pzwww/YtWsX9u/fD5VKhZ49e2LlypWIjo62HrNhwwYsXbrUYwWNXC4vcEVTvXr1cOHCBZefS6FQ+NR/pBTYRv/SKrRY+9Rah8eU9fbKe++FtYNcLne4L6+3xdk+R6/h6+xzLK973R/fa0lhW7nGX9vL5YJm6tSp6N69O5YuXYrHHnus0EZp1qwZRo4c6ZEAAWDatGmQyWRYtGiRdd/Zs2cRFhbmsdcgIiIi3+VyQfP6669jwIABCAgIsNmv0+mwefNmDB8+HJGRkYiMjCxWYBkZGShXrhw0Gg26du2K1157DW3btkXLli3x3XffITk5GfPnzy/WaxAREZF/EDW67vbt27h+/TquX7+O+fPn48KFC9bbeT8HDx7Ee++957HAOnTogMTERADAE088gTlz5mDVqlWIiYnB3r17sXbtWjz88MMeez2iwmQZsxC0MAhBC4M4LT2VCOYYkWeI6qE5fPgwJk6caJ1Mb+DAgTb3502M9+STT7odyB9//OHw9qBBgzBo0CC3n5/IXbocndQh0P+kpqba3A4JCUGdOnUkisZzmGNExSeqoOnVqxf27t0Li8WC7t274+uvv0blypWt98tkMgQGBqJSpUolFiiRFAJVgbj06iXrNjkRGAhcuoSEhAToJ03y2NPeuHEDAApcaKDVapGamurTRY19jgkWxzOnE1HhRI+hyZtX5uzZsyUWDJG3kcvkeKTiI1KH4TvkcuCRR5BVtSo8+Wf57t27AIC4uDj06dMHQG5vTWxsLDIzM326oLHPMTN8a9IzIm8hqqAZPnw4VqxYgfLly2P48OEOj/3Pf/7jkcCIiOyFhoYiKipK6jCIyAuJKmjatGkDlUpl3SYqK3LMOViZtBIA8ErrV6BSqCSOyMsZjcDMmWh55gzYUuLY55jc9SX2iAgiC5px48YVup3n9u3bqFSpkkdW4CbyJkazEZO+zx0L8lLUSyxonMnJAd57D00AFjQi2eeYRqGROCIi3+TyV4GbN29i0qRJSE1NhcFgQGxsLB577DF069aN42vI7yjkCgyNGIqhEUOhkPvfzJokPeYYkWe4PLHe3LlzodPpULFiRXzzzTc4d+4cNm7ciG+//RZxcXHYsGFDScRJJAmNUoMNA5jTVHLsc8zXVkIm8hYuFzSHDh3CN998g4ceegg//PADunXrhsjISFSuXBkxMTElESMRERGRQy6fcgoICIDBYMC9e/fw+++/o3PnzgCAq1evFlhAkoiIiKg0uNxD0717d0ycOBEajQYVKlRA586dkZiYiIULF+Lpp58uiRiJJJNlzMIjyx4BAPz56p8IUgdJGxD5Hfsc46BgIve4NYYmPj4e165dw+DBgxEQEACj0YiXX34Zzz33XEnESCSpTF2m1CF4lfT0dGRm/tsm9ssRkOuYY0TF53JBo1QqMWLECJt9/fv391A4RN4lUBWIU2NOWbfLuvT0dISHh0OnK7j20I0bN4AWLYBTp7B9+3bop00r/QB9kH2OcekDIve4XNDcv38f69atQ0pKCkwmk3VhyjycKZj8iVwmR9NqTaUOw2tkZmZCp9MhPj4e4eHhAIDExETMnj07d3kCuRxo2hT3jh/36NIH/sw+x7j0AZF7XC5opkyZgpSUFPTr1w/BwcElERMRebnw8HDrEgQ85URE3sDlgua3335DfHw8mjdvXhLxEHmVHHMOPj/+OQBgRIsRnCnYGaMRWLgQESdPcqZgkexzjEsfELnH5YKmevXqkMv5C0dlg9FsxKjtowAAQyOGsqBxJicHmDcPzcGlD8SyzzFe5UTkHrdOOc2dOxcTJkxA3bp1rYtW5qlZs6bHgiOSmkKuwFONnrJuE3kac4zIM1wuaMaPHw8AGDUq9xtF3oKUgiBAJpPxfDr5FY1Sg4QhCVKHQX7MPse49AGRe1wuaH788ceSiIOIiIjIbS4PhqlVqxZq1aoFnU6HM2fOoFKlSrBYLKhZsyZq1apVEjESEREROeRyQXPv3j2MGDECTz31FF599VX8/fffWLBgAWJiYnDt2rWSiJFIMrocHR754BE88sEj0OUUnEyOqLiYY0Se4XJB89ZbbyEwMBCHDh1CQEAAAGDhwoWoUaMG3nrrLY8HSCQlQRBw+d5lXL53ucAkkkSewBwj8gyXx9AcOHAAX3zxBcqXL2/dV7lyZUyfPh1DhgzxaHBEUtMoNTj84mHrNjmh0QCHD2Pnzp3InjNH6mh8QoEcY01D5BaXCxoAMBgMBfbdvn0bSqVbT0fktRRyBVrXai11GL5DoQBat8btc+dgkToWH2GfY7zKicg9Lp9yiomJwYIFC3D+/HnIZDLodDocOnQIs2fPRp8+fUoiRiIiIiKH3JpYb+nSpRgwYABycnLw1FNPQalUYuDAgZgyZUpJxEgkGZPFhE2nNgEABjcbDKWcvZAOGY3AsmUIP3qUMwWLZJ9jMsgkjojIN7n86axWqzFt2jRMnDgRV65cgdlsRu3atREUFFQS8RFJymAyIHZrLACgf+P+UKpZ0DiUkwNMmYIocOkDsexzjEsfELnHpU9no9GI5ORkXLx4EVlZWQgODkZYWBgCAwNLKj4iScllcnSv1926TeRpzDEizxBd0CQkJGDx4sX4+++/odVqUa5cOWRlZeHBgweoWrUqpk6dipiYmJKMlajUBaoCsWfYHqnDID9mn2McFEzkHlEFzXfffYdZs2bhpZdewuDBg1GjRg3rfdeuXcPmzZsxY8YMlCtXDp06dSqxYImIiIgKI6qg+eyzzzBx4kS8+OKLBe6rVasWXn31VSiVSqxdu5YFDREREZU6USds09LS0K1bN4fH9O7dG+fPn/dIUETeQpejQ9OPmqLpR005LT2VCOYYkWeI6qHJzs5GuXLlHB5Tvnx53Lt3zyNBEXkLQRBwJuOMdZvI05hjRJ4helCwTMa5Eajs0Sg12Pf8Pus2OaHRAPv2Yc+ePcheuFDqaHxCgRxjTUPkFtEFzaeffgqtVlvk/Todu0rJ/yjkCnR+pLPUYfgOhQLo3Bm3rl3j0gci2ecYr3Iico+ogqZ169ZISUlxelx0dHSxAyIiIiJylaiC5osvvijpOIi8ksliwvZz2wEAMWExXPrAmZwcYM0ahCUlubfybRlkn2Nc+oDIPfzMIXLAYDLg6U1PAwAeTH/ApQ+cMRqBcePQGoBa6lh8hH2OcekDIvfw05nIAblMjva121u3iTyNOUbkGSxoiBwIVAXi1//7VeowyI/Z5xgHBRO5h18HiIiIyOe5XNB06dIF7733Hs6cOVMS8RARERG5zOWCZtq0abh27Rqee+459OrVC8uXL8fFixdLIjYiyelz9Gj9SWu0/qQ19Dl6qcMhP8QcI/IMl8fQ9OzZEz179kR2djb27duH3bt3Y+jQoahevTpiYmLQp08fPPzwwyURK1GpswgWHLl+xLpN5GnMMSLPcHtQsEajQc+ePVGxYkVUrlwZmzdvxueff46PPvoIUVFRmD17NkJDQz0ZK1GpC1AGYPv/227dJicCAoDt27Fv3z4YliyROhqfUCDHuPQBkVtcLmgsFgsOHTqEXbt24YcffoDZbEaPHj2wevVqtG3bFjqdDnPmzMGYMWOwa9eukoiZqNQo5Ur0DesrdRi+Q6kE+vbF9bt3wWt1xLHPMV7lROQelwuadu3awWg0onPnzpg/fz4ef/xxqNX/TqEVHByMHj164MSJEx4NlIiIiKgoLhc0s2bNQrdu3QpdqPL27duoXLkyevXqhV69enkkQCIpmS1m7L20FwDQNbQrFHKFxBF5uZwcYMMG1Dt4kJNciWSfY0TkHpc/c6ZMmYJff/21QEFz7do1xMTE4NixYx4Ljkhq2aZsPBH/BIDcaemD1EESR+TljEZg5Ei0A5c+EMs+x7j0AZF7RBU0CQkJ+OabbwAAgiDglVdegUqlsjnm1q1bqFq1qucjJJKQXCZHZPVI6zaRpzHHiDxDVEHTo0cPXL16FQBw+PBhtGjRAkFBtt9UtVotevTo4fkIiSQUqArE8ZePSx0G+TH7HOOgYCL3iCpogoKCMG7cOABArVq10LdvX5uBwERERERSEn3KqU+fPlCr1ZDJZEhMTCzy2P79+3sqNiIiIiJRRBU0y5cvR6dOnaBWq7F8+fIij5PJZCxoyK/oc/TovaE3AGDnczsRqAqUOCLyN/Y5ppaz95vIHaIKmr179xa6TeTvLIIFP13+ybpN5GnMMSLPEFXQJCUliXoymUyG6OjoYgVE5E0ClAH4auBX1m1yIiAA+OorHDhwAIYPP5Q6Gp9QIMe49AGRW0QVNMOGDRP1ZDKZDKmpqcUKiMibKOVKDGo6SOowfIdSCQwahHSjEWYWNKLY5xivciJyj6iC5uzZsyUdBxEREZHbRBU0169fx0MPPQSZTIbr1687PLZmzZoeCYzIG5gtZhy6eggA8OjDj3LpA2dMJmDrVtT5/XewpcSxzzEico+ogqZr16749ddfUaVKFXTt2hUymQyC8O+J3rzbPOVE/ibblI0On3UAwKUPRDEYgGefRUcApTXiyP4zJyQkBHXq1CmlVy8++xzj0gdE7hFV0Pz444+oXLmydZuorJDJZGhQuYF1m7zHjRs3AACxsbE2+7VaLVJTU32mqGGOEXmGqIKmVq1aBbYvXbqEixcvQqVSoV69eqhdu3bJREgkIa1Ki/Pjz0sdBhXi7t27AIC4uDj06dMHQG5vTWxsLDIzM32moLHPMQ4KJnKPy6tt37hxA1OmTEFSUhIqVKgAQRDwzz//oGvXrliwYAEqVqxYAmESERUuNDQUUVFRUodBRBJzeWnXWbNmQaFQ4Mcff8Tvv/+Ow4cPY+fOnbhz5w7efPPNkoiRiIiIyCGXe2iSkpLwzTff2JyGeuSRR/Dmm29iyJAhHg2OSGrZpmw889UzAIAtz26BRskBm+RZ9jmmkqkkjojIN7lc0NSvXx/nzp1DgwYNbPZfuXLFpsgh8gdmixmJ5xOt20SeZp9jKgULGiJ3iF5tO8+jjz6KmTNn4syZM4iIiIBCocAff/yBzz//HCNHjiypOIkkoVao8dlTn1m3yQm1GvjsMxw8eBDGNWukjsYnMMeIPEP0atv5VapUCYmJiUhMTLTuK1euHLZs2YKxY8d6NkIiCakUKoxoMULqMHyHSgWMGIE0lQomFjSi2OcYr3Iico/Lq22XBKPRiAEDBmD27Nlo27ZtocecOXMGc+bMsZ7umjdvHpo1a1aicREREZFvcHkMDQDcvn0bly5dgsWSu9S9IAgwGo04c+YMRo0a5dJzGQwGTJ48GefPFz3Xh06nw6hRo9CvXz+8/fbb+PLLLzF69Gjs2bMHWq3WnbdAJIrZYkbKrRQAQES1CC594IzJBHz/PWoeO8alD0SyzzEico/LBc1XX32F+fPnw2Qy2SyBIJPJ0Lx5c5cKmgsXLmDy5Mk2yygUJjExEQEBAZgyZQpkMhlmzpyJn3/+Gbt27cKAAQNcfQtEomWbstHy45YAuPSBKAYDEBODLii9pQ98nX2OcekDIve4PA/N6tWr8fLLL+PkyZOoUqUK9u3bh+3btyM8PBw9evRw6bkOHz6Mtm3bYtOmTQ6PO3HiBFq1amWdFlwmkyEqKgrHjx93NXwil8hkMtQsVxM1y9XktPRUIphjRJ7hcg/NrVu30L9/f6jVajRt2hTHjx9H7969MWPGDMycORMvvvii6OcaOnSoqOMyMjIKXCZepUoVh6episIBd0XLaxu20b8C5AFIfzXdejt/25TF9sr/nvO28049WywWmM1mm1NNefvyt1HevsIeW9x9hcXn7YrKMV+JX0psK9f4anuJjdflgqZy5cq4ffs2Hn74YdSrVw+pqano3bs3qlevjps3b7ocqBh6vR5qte3ljGq1Gkaj0eXnSklJ8VRYfott5Jqy1F7nzp2z/iuX53bwXr582frvyZMn0TLf8ZcvXy7Qk5p/X/7HemJfYfH5qrKUV8XFtnKNv7aXywVN7969MXXqVCxYsAAdO3bElClT0LRpU+zbtw9169YtiRgREBBQoHgxGo3QaFw/15w3dw4VZDabkZKSwjYSqSy2V16vSFhYGFq0aAEg9wpEAKhbty6aN29uc3zdunXRokULmM1m7Ny502af/WM9sa+w+HxNWcwrd7GtXOOr7ZUXtzMuFzSvv/46ypUrhzt37qBbt2545plnMGfOHFSsWBGLFi1yK1hnqlevjszMTJt9mZmZqFatmsvPpVAofOo/Ugpso39lm7IxbOswAMAXT39R6NIHZam98t5n/vec1xMil8sLtIOzfYU9tjj7CovP29nnWN5Mwb70HqTGtnKNv7aXy32yKpUK48aNQ7du3QAAkyZNwqFDh7Br1y60bNnSyaPdExkZiWPHjlmvhhIEAUePHkVkZGSJvB5RHrPFjM1nNmPzmc1c+oBKBHOMyDPcmocmKSkJGzduxMWLF6FSqVC/fn08//zzCA8P91hgGRkZKFeuHDQaDXr16oUlS5ZgwYIFGDJkCDZu3Ai9Xo/evXt77PWICqNWqLGi9wrrNjmhVgMrViApKQnG9euljsYnMMeIPMPlHpr4+Hj83//9H9RqNQYOHIh+/frBZDLh2WefxY4dOzwWWIcOHaxLKwQHB+Pjjz9GcnIyBgwYgBMnTmDNmjWcVI9KnEqhwittXsErbV7hooFiqFTAK6/gXI8eMEkdi49gjhF5hss9NJ988gni4uLQv39/m/3R0dFYunQp+vbt61Ygf/zxh8PbzZs3x9atW916biIiIvJvLvfQPHjwABERBafnjo6Oxu3btz0SFJG3sAgWnP/7PM7/fR4WwSJ1ON7PbAb270e1M2dc/3Apo5hjRJ7h8mdObGwsFi9ejPv371v3GQwGrFixAs8++6xHgyOSmj5Hj7AVYQhbEQZ9jl7qcLxfdjbQpQt6LFwITuAvDnOMyDNEnXLq2rWrdUpuQRBw/fp1PP7446hduzbkcjnS09NhMBg8OiiYyFtUCKggdQjk55hjRMUnqqAZP358ScdB5JWC1EG4O+2u1GGQH7PPMV+blp7IW4gqaJ5++ukC+/R6PS5fvgyLxYI6deogODjY48ERERERieHyVU45OTlYvHgx/vvf/8JsNkMQBCiVSvTr1w/z5s0rsOYSERERUUlzeVDwO++8g3379mHVqlVISkrC4cOHsXLlShw5cgTvv/9+ScRIJBmDyYARCSMwImEEDCaD1OGQH2KOEXmGywXN9u3b8dZbb6Fjx44IDg5G+fLl0alTJ8TFxeG7774riRiJJGOymLD+xHqsP7EeJguniiPPY44ReYbLp5wEQUCVKlUK7K9cuTKysrI8EhSRt1ApVHi3+7vW7bImPT3dZmHY1NRUxw9QqYB338XRo0eRs3FjCUfnH8p6jhF5issFzaOPPor33nsP7733nnUg8P3797F06VK0bdvW4wESSUmtUOONx96QOgxJpKenIzw8HDqdrsB9N27cKPxBajXwxhtI3bCBBY1I9jnGq5yI3ONyQTNjxgwMHz4cHTt2RGhoKADg0qVLqF27NlatWuXxAIlIGpmZmdDpdIiPj7fOMZWYmIjZs2fj7t270gZHRGTH5YKmXLly2L59O37++WekpaUhICAAoaGheOyxxyCXc7Jz8i8WwYIb/+T2RjxU7iHIZWUvx8PDwxEVFQVAxCknsxk4ehSVL17k0gci2ecYEbnH5YImJiYGK1asQLdu3dCtW7eSiInIa+hz9Hj4/YcBAA+mP0CQOkjiiLxcdjbQpg16A1z6QCT7HNMo2HJE7nC5oJHL5cjJySmJWIi8klLu8q8JkUuYY0TF5/JvUefOnTFy5Eh06dIFtWrVKjCR3rhx4zwWHJHUgtRByJnNAp5Kjn2OcVAwkXtcLmj++OMPNG3aFLdu3cKtW7ds7stbwJKISEr2Y31CQkJQp04diaIhotLgckHzxRdflEQcRETFlnc5eWxsrM1+rVaL1NRUFjVEfkx0QbNt2zbs2bMHKpUK3bt3R9++fUsyLiKvYDAZ8Nr3rwEAlvZcigBlgMQRkSN5l5PHxcWhT58+AHJ7a2JjY5GZmemVBY19jillHE9D5A5RV1auX78eM2bMQHZ2NvR6PaZOnYqlS5eWdGxEkjNZTPjoyEf46MhHnJbeh4SGhiIqKgpRUVHWOXS8FXOMyDNEfRXYuHEjFixYgP79+wMAdu/ejenTp2PSpEkcN0N+TaVQYU6nOdZtckKlAubMwcmTJ5GzdavU0fgE5hiRZ4gqaK5cuYJ27dpZb3ft2hV6vR63bt1C9erVSyw4IqmpFWrM7TxX6jB8h1oNzJ2LlA0bWNCIZJ9jvMqJyD2iTjmZTCYolf/WPkqlEgEBATAajSUWGBEREZFYHH1G5IAgCLhnuAcAqBBQgadYnbFYgNRUVLh6FWwpcexzjIjcI7qg2blzp3V1bQCwWCzYs2cPKleubHNc3jgbIn+gy9Gh0juVAPj/0gfp6enIzMy03na6blNh9HqgWTPEAAj0XGh+zT7HuPQBkXtEFTQ1a9bEunXrbPZVqVIF8fHxNvtkMhkLGiIflJ6ejvDwcOh0ugL35c3tQkTkzUQVNHv37i3pOIi8klalhXFW7lgxf15vJzMzEzqdDvHx8dbLnBMTEzF79mzr3C5UMuxzzGKxSBwRkW/y309oIg+QyWRl6lLa8PBwREVFAXDzlBO5rKzlGFFJEXWVExEREZE3Y0FD5IDRbMQbu9/AG7vfgNHMaQrI85hjRJ7BgobIgRxzDt47+B7eO/gecsw5UodDfog5RuQZHEND5IBKocLr7V63bpMTKhXw+us4c+YMchITpY7GJzDHiDyDBQ2RA2qFGoufWCx1GL5DrQYWL8axDRtY0Ihkn2Nc+oDIPTzlRERERD6PPTREDgiCAJPFBCB3jhAufeCExQKkpyMoI4NLH4hkn2NE5B7+9hA5oMvRIXhR7pIf/r70gUfo9UBoKPqDSx+IZZ9jXPqAyD085UREREQ+jz00RA5oVVrcmXrHuk3kafY5xqUPiNzDgobIAZlMhoqailKHQX6MOUbkGTzlRERERD6PPTREDhjNRiw8sBAAMKPjDKgVaokjIn9jn2MKKCSOiMg3saAhciDHnIN5P80DALzR/g0WNORx9jmmULCgIXIHCxoiB5RyJcZGj7VukxNKJTB2LM6dOwfTDz9IHY1PYI4ReQZ/e4gcCFAGYGXflVKH4TsCAoCVK5G0YQOMLGhEsc8xLn1A5B4OCiYiIiKfxx4aIvIcQQAyMxFw/77UkRBRGcOChsiBLGMWKr5TEQBwd+pdLn3gjE4HVKuGgQA4DaE49jnGpQ+I3MOChsiJvIUDiUoKc4yo+FjQEDkQqArE1UlXrdtEnmafY4JFkDgiIt/EgobIAblMjlrla0kdBvkx+xwzg1c5EbmDVzkRERGRz2MPDZEDRrMRyw4tAwC8+uirnCmYPM4+x7j0AZF7WNAQOZBjzsGUH6YAAMa2HsuChjzOPse49AGRe1jQEDmglCvxfOTz1m1yQqkEnn8eF9PSYDpwQOpofAJzjMgz+NtD5ECAMgCf9/9c6jB8R0AA8PnnOLRhA4wsaESxzzEufUDkHhY0RGVMeno6MjMzbfalpqZKFA0RkWewoCEqQ9LT0xEeHg6dTlfo/Tdu3CjeCwgCoNNBkZ1dvOchInIRCxoiB7KMWai1NHeOkGuvXfP5pQ8yMzOh0+kQHx+P8PBw6/7ExETMnj0bd+/eLd4L6HRAcDCGAHiheM9UZtjnGJc+IHIPCxoiJ+4Z7kkdgseFh4cjKirKepunnKTljzlGVNpY0BA5EKgKxLlx56zbRJ5mn2Nc+oDIPSxoiByQy+RoWKWh1GGQH7PPMS59QOQeLn1AREREPo89NEQO5JhzsCZ5DQBgVKtRUClUEkfkGvtLtDlWxvvY55ic3zOJ3MKChsgBo9mIcTvHAQBGtBjhUwWNo0u0i315NnmMfY7xKici97CgIXJAIVdgYJOB1m1fUtgl2h67PLsoCgUwcCAup6fDfPhwybyGn/HlHCPyJixoiBzQKDX4etDXUodRLPkv0S7xU04aDfD11/hlwwYYYmNL9rX8hH2OcekDIvfwZC0RERH5PBY0RERE5PMkLWgMBgNmzJiB6OhodOjQAevWrSvy2DFjxqBRo0Y2P/v27SvFaKks0uXoUGtpLdRaWgu6nMLXP6J8srIAmQzPxcZCK3UsPoI5RuQZko6heffdd3Hq1CmsX78e169fx9SpU1GzZk306tWrwLEXL17E4sWL0a5dO+u+ChUqlGa4VAYJgoDr/1y3bhN5GnOMyDMkK2h0Oh2+/vprfPLJJ2jatCmaNm2K8+fPY8OGDQUKGqPRiKtXryIiIgJVq1aVKGIqizRKDY6NPmbdJvK0AjnGmobILZIVNGfPnoXJZELLli2t+1q1aoXVq1fDYrFALv/3bFhaWhpkMhlq164tRahUhinkCrSo0ULqMMiP2ecYr3Iico9kBU1GRgYqVaoEtVpt3RcSEgKDwYC7d++icuXK1v1paWkIDg7GlClTcPjwYdSoUQPjx49Hp06dXH5dflgULa9t2EbieHt75Y8vb9tisVj/zR93Yfvd3Zd/JpW8ffavVdzXcGVf3r+nT5+2iSMkJAR16tRx3pClzNvzypuwrVzjq+0lNl7JChq9Xm9TzACw3jYajTb709LSkJ2djQ4dOmDUqFHYs2cPxowZg02bNiEiIsKl101JSSle4GUA2+hfJosJO6/tBAD0rtUbSnnBXxlvba9z585Z/83r8bx8+bL13+PHj1uPLWy/O/tOnjyJf/tcC76OJ17D1X2//fYbAGD48OE2cWg0GmzevBk1atSAlIrKMW/NK2/EtnKNv7aXZAVNQEBAgcIl77ZGYztWYezYsRg2bJh1EHDjxo1x+vRpfPXVVy4XNBEREVAoOBtnYcxmM1JSUthG+WQZs/Bo4qMAgNd6voYgdZD1Pm9vr7zeirCwMLRo0QIAcObMGQBA3bp1rfuK2u/OvubNm9vEkHec2WzGzp07PfIa7u6bP3++dXze2bNnMXz4cFSrVs2mHaRgn2Mahcar88qbePvvoLfx1fbKi9sZyQqa6tWr486dOzCZTFAqc8PIyMiARqNB+fLlbY6Vy+UFrmiqV68eLly44PLrKhQKn/qPlALb6F9qlRp9GvaxbhfWLt7aXnkx5Y8vr6dGLpfbxFzYfrf2qdVAnz64du0azCdOFHgdj7yGm/vq1auH1q1bF9k2UimQYzLvic1XsK1c46/tJVlBEx4eDqVSiePHjyM6OhoAkJycjIiICJsBwQAwbdo0yGQyLFq0yLrv7NmzCAsLK9WYqezRKDXYMXSH1GH4Do0G2LED+7n0gWj2OeZr4xuIvIVkBU1gYCD69++PuXPnYuHChbh16xbWrVtnLVoyMjJQrlw5aDQadO3aFa+99hratm2Lli1b4rvvvkNycjLmz58vVfhEkkpPT0dmZqbNPm8d5EpEVBoknVhv+vTpmDt3Lp5//nkEBwdj/PjxeOKJJwAAHTp0wKJFizBgwAA88cQTmDNnDlatWoXr16+jYcOGWLt2LR5++GEpwyeSRHp6OsLDw6HT2c4qq9VqkZqayqKGiMokSQuawMBAvPPOO3jnnXcK3PfHH3/Y3B40aBAGDRpUWqERAcidlj5ydSQA4MTLJ6BVST+hf2ZmJnQ6HeLj4xEeHg4gdxXt2NhYZGZmSlvQZGUB1aphsNmMUdJF4VPscyxAHiBxRES+SdKChsjbCYKAC7cvWLe9SXh4OKKioqQOoyCdjh8sLvDmHCPyJfzcIXJAo9Tgl5G/WLeJPK1AjrGmIXILCxoiBxRyBR6r85jUYZAfs88xXuVE5B6580OIiIiIvBt7aIgcMFlM2Jq6FQDwdPjThS59QFQc9jkmg0ziiIh8Ez+diRwwmAx4dvOzAIAH0x9AqeavDHmWfY5pFByrReQOfjoTOSCXydGpbifrNjkhlwOdOuHmzZuwnD0rdTQ+gTlG5BksaIgcCFQFYv+I/VKH4TsCA4H9+/HDhg3I5tIHotjnGAcFE7mHXweIiIjI57GgISIiIp/HU05EDuhz9Gj3aTsAwMEXDiJQFShxRF4uKwt45BE8YzBw6QOR7HNMLVdLHBGRb2JBQ+SARbDgxM0T1m1vl5qaWuh2qcrMBK/TEc/XcozIW7GgIXJAo9Rgd+xu67YU0tPTkZmZab1dWKFy48YNAEBsIQNx8+4j71Qgx7j0AZFbWNAQOaCQK9Cjfg/JXj89PR3h4eHQ6XQF7stfqNy9excAEBcXhz59+gAAEhMTMXv2bOt95J3sc4xXORG5hwUNkRfLzMyETqdDfHw8wsPDATguVEJDQ60rcEt2ysmH2LdRSEgI6tSpI1E0RFQcLGiIHDBZTPj+wvcAgJ4Nekq29EF4eDgLFQ8q6hSdVqtFampqqRY19jnGpQ+I3MOChsgBg8mAmC9jAHDpA39S2Cm61NRUxMbGIjMzs1QLGvsc49IHRO7hpzORA3KZHNE1o63b5IRcDkRH4++//4bl0iWpo3Eq/yk6qTDHiDyDBQ2RA4GqQCS9lCR1GL4jMBBISsIuLn0gmn2OcVAwkXv4dYCIiIh8HgsaIiIi8nk85UTkgD5Hj+5fdAcA/DDsBy594IxOBzRpgqeyssCWEsc+x7j0AZF7WNAQOWARLPjtym/WbXJCEIDLlxEM8OJjkZhjRJ7BgobIgQBlALYO3mrdLmliljkg/1Igx7j0AZFbWNAQOaCUK9G/cf9SeS2xyxyQf7HPMV7lROQeDgom8hL5lzlITk5GcnIy4uLiAIDrMREROcEeGiIHzBYzDqQfAAB0rNMRCrmixF+TyxyULfY5RkTuYUFD5EC2KRtd1ncBkDstfZA6SOKIyN/Y5xiXPiByDwsaIgdkMhmaVG1i3XaX/WBfwE9XdpbJgCZNcPfePQjXrkkdjU/wVI4RlXUsaIgc0Kq0OD32dLGeo6jBvlKs7FzitFrg9Gns2LABei59IIp9jnFQMJF7WNAQlbD8g33Dw8MBSLeyM3lOmel1I/IRLGiozCutP0z5B/uS7ygsP27cuIFBgwZBr9fb7PfLXjciH8GChso0Z6eDqj5UFU9ufBIA8O2Qb7n0gTM6HdC6Nfreu+cXSx84mhsIAD744AN07Jh7ZZK7vW76HL1NjnHpAyL3sKChMs3Z6aAqNargh7QfAHBaelEEAThzBhXhH0sfFJYfAJCYmIjZs2cjJCSk2L1uFsHCHCPyABY0RCj6dFCAMgDxT8dbt6lsss8PT84PVCDHuPQBkVtY0BA5oJQr8Vzz54q8/6+//sLRo0ehUPw74R4HhlJ+zsZo2ecYr3Iicg8LGiI3paenY+DAgcjOzrbZz4Ghvi1/70txe2LK1CX7RBJjQUNUhNTUVJgFM87eOwsA6FCvA0IfCbXen5mZiezsbPznP/9B06ZNrY/h5di+KW8B0NhC5s9xd3FQMZfsmy1mHL1xFAAQ9RCvgiNyFwsacktxLnWWcv4O+9cu7Bu4zR82FYCZufsD+gdgy5db8NBDDwEAzp7NLXQaN25cYPyNJ7/lU+nIWwA0Li4Offr0AfDv4N/iLg7q6JL9bFM22qxtA4BLHxAVBwsasiFmTEhxutFLogu+sALJlbgB22/g+f+wdXmiCwbtH4Ts7Gzcyb6DmJiYAo/966+/CjyPJ7/l+xSZDKhbFw+ysiAU8n/iC0JDQ0t1cVCZTIa6Fepat4nIPSxoyErsmBBXZr4trEekOLPm2j9fUROciY3b0Tfw0NBQPNbmMVxvcx0bNmxAbE6szbf3HTt24M0337R5bEl+y/cJWi3w55/YxqUPRNOqtPhz4p/W2xwUTOQeFjQe4C9ToLs6JsTZzLeOekQqVqzo8vwdjp4v/wRnrsTt6jfw/N/eT58ueo0nsd/yeWqKiMgzWNAUkz9exVDYmBB3uNojUpzn88QEZ6WpzJ+aIiLyMBY0xVSaCw8W1hNkMBgQEGA74Zu7g3PzBrl6WnF6RErj+RzJNmVjyOYhuHrjqkd/W/z21JReDzz+OHr9/Tc4tFWcvBwDgI0DN0IlU0kcEZFvYkHjISW98KCzNWXyK87gXMB2kGtZZ7aYse2Pbbk3SmC8ZmkPQC1xFgtw5AiqAJBLHYuPyJ9jZosZKgULGiJ38DPHR+TvCUpOTkZycjLi4uIA5H7Lz9sXHx8PnU5X6FU/zp5v/vz5AODbPQQeplaosSZmDV6o+gLAsZpUAvJybE3MGqgVXJiSyF3sofExhZ1uyf8tvzjP52iQqxTEzBnjTHEH3aoUKrzU6iVoz2rxqeVTlx9PZY+rOZeXY3l4lRORe1jQkFcSO2dMUTjolkpbcXMur4A3m804d+4cLBYLqlev7pMXFhBJgQWNFyps8K+vjK8oTo+I/WOLc4WUpwbdWgQLUjNScdVwtUTG0JD/cDfnLIIFe0/uRb9+/ZB9NdtmtW2NRoPNmzdbZ6cGinchAJE/Y0HjZZwN/hXbu2BfTJT0B15xvp06emz++WrcKeqKO+hWn6NHs1XNcm/wt4VEcDXn9Dl69EjoAbwArK23Fs0bN8e5c+dw69YtvPbaa4XOTm3Pl6eJIPIUfkSXIjET8BV2GTggvnehqOKguB94znpeitMj4u2XMIdoQ2DINuAf/CN1KL4hJATZBgPwD9tLrIrqirh75y4aN8qdA0oul8NisQAo/Pci/z6xs3QD7Mkh/8aCpgTl/8Nf1BT9RRUa9peBi+1dKKw4yPvAO3DggM1cOWK42vNSnB4Rb7yEOUgdhIw3MqxLH5ATQUFARga2bNgAHZc+cCh/jq+oswKxM2IROCSwwHGF/V44uxCgqJ7ewk5h+cKiskRisKApAY6KgPxT9JfUBHyA7QdecU4HeXvvCZGvcfb7GBkZ6dbzOhuDduDAAUycOLHAKazizFtVnAKJyNNY0JQAR0WAFFP0e6Io8cbeEyJf5OkvCa6OQRNzuspeYafCi1MgEZUEFjQlyNsWKGRR4rpsUzZe+PYF/PnXn/xtEUOvB3r3RvebN7n0gRN5v4/ZpmyM3zceGAAYLUaXn8fVAslT81YVp0DyhPT0dNy8edN6ibtCoWDvUBnHj2gJca4U72e2mPHflP/m3uBl285ZLMBPP6E6OA25WGaLGb89+A1oDlhgcft5pPrCUpwCqTBixur446LAVHwsaCTE8SneT61Q4/2e7+cuK2GOlzoc8kNqhRqxIbGIj4+H8hXv+Ej2xCzdzp4TcL9QyTsF9p///AdyuRxhYWE4d+5csXqHPL34L5U+7/jtKeN4Ksh7qRQqTHx0IjZc3IB4Cwsa8jyVQoVeFXsh/lA8lOOk/0gu7izdQMHPMbFXeRY2VsfRaazGjRtDLpejRYsWUCgUot+jPU8v/kvSkP63h4iIJOWpWbodnUYHCr/Ks7DpJOynrSgsRk8qrJByNOdP/piBwntteJl76WNBQ+SARbAg/V46MnIyOIaGSoRFsOTmV8Xc7dLk6Vm6CzuNDhR+lafYMYSOjvvrr79Qs2ZNUbGJ4WzxX7ETl3KMjzRY0BA5oM/RI3RZaO4N/rZQCdDn6DHp8iRgImAUXL/KqThKahyf/UDh4swu7uw4+4JGzLIv7o4RcjRxaf5TYo5OnYnp3SksRkfHilEWrgrjRzSRE1qVFmaTGQYYpA7FN2i1MJnNgIHtJVaALAAGCdtLynF8Yl/b2XFF9Z7YT/5X1Hie/M/hSsyO5O/xcWVZGk/38BT3+Xzl9BkLGiIHgtRByJqRxaUPxAoKArKysIlLH4gWpA7Cp/U/RWxsLDTxnL3HXYX1nhQ1+R9gO56nNK4uFbssTd7+4vbw5OfKVWH2xYury/ZIiQUNERH5jcJ6cpzN2i7VvD3OBlHnH8fkiYWHnV0V5uhqr9Jatqc4WNAQEZFfK41Tau5cheVsELWzsURiV1oXG4+jq72kWLbHVSxoiBwwmAwYlzgOF25dANyf5qLsyM4GnnkGna9dQ4Dzowm5Obb21lqgH5Aj5EgdDrnIEzO+ixlEXdSx9sc7GiNU2FVhhRVihV3tVRgxA7BLEwsaIgdMFhPWHlube4Nz+TtnNgOJiagF1n9imSwm7L+/H2gFmAWz1OGQi6Sc8d1RMVXUGKG8gqY4hZgnTn+VBH5EEzmgUqjwVpe3MKjyIBRjmR2iIqkUqtz8+hFQyvgd01fl9ZxERUUhNDS0VF4zfzGVnJyM5ORkxMXFAYD1FFFR8Th6rLNCrLDHxsfHQ6fTFbgaqjRJWtAYDAbMmDED0dHR6NChA9atW1fksWfOnMGgQYMQGRmJZ555BqdOnSrFSKmsUivUmPn4TDxV+SmAX56pBKgV6tz8OsCChtxTnGLKU4/Nf+WVVCQtaN59912cOnUK69evx5w5c7BixQrs2rWrwHE6nQ6jRo1CdHQ0vvnmG7Rs2RKjR48Wte4GERER+T/JChqdToevv/4aM2fORNOmTdGjRw+8+OKL2LBhQ4FjExMTERAQgClTpqB+/fqYOXMmgoKCCi1+iDxJEARkZGXgvvm+1KGQnxIEITe/tLnbROQeyQqas2fPwmQyoWXLltZ9rVq1wokTJ2Cx2A5WOHHiBFq1agWZLHcxHZlMhqioKBw/frw0Q6YySJejQ7X3qmHspbGASupoyB/pcnS5+TUFMAicXZnIXZKdsM3IyEClSpWgVqut+0JCQmAwGHD37l1UrlzZ5tgGDRrYPL5KlSo4f/686NfL++ZjNBqLtcy8PbPZjKCgIKSmpsJszh1kkZ6ejqCgIKSnpyMpKanY+0riOf15nyefMzk5GUHKoNwn1cIr3p+3t1eLoKC85rIeZ7FYkJGR4TXv2VvaKykpCXqT3ppjV69cxZEjR5CWluZV79mb2st+n1KphMlk8qr3XBbb69y5cwgKCoLZbIbR6Nk1yfL+tjrrwZQJEvVxJiQkYNmyZdi3b59135UrV9C9e3f89NNPqFGjhnX/888/j1atWmHChAnWfcuWLcOxY8fw+eefi3o9o9GIlJQUj8VPREREpSciIsKmE8SeZD00AQEBBaq4vNsajUbUsfbHOaJUKhEREQG5XG49dUVERETeTRAEWCwWKJWOSxbJCprq1avjzp07MJlM1iAzMjKg0WhQvnz5AsfaX9uemZmJatWqiX49uVzusLIjIiIi3yXZoODw8HAolUqbgb3JycnWXpT8IiMjcezYMev5M0EQcPToUURGRpZmyEREROSlJCtoAgMD0b9/f8ydOxcnT57EDz/8gHXr1mH48OEAcntrsrOzAQC9evXC/fv3sWDBAly4cAELFiyAXq9H7969pQqfiIiIvIhkg4IBQK/XY+7cudi9ezeCg4PxwgsvYMSIEQCARo0aYdGiRRgwYAAA4OTJk5gzZw4uXryIRo0aYd68eWjSpIlUoRMREZEXkbSgISIiIvIELk5JREREPo8FDREREfk8FjRERETk81jQlDEGgwEzZsxAdHQ0OnTogHXr1hV57JkzZzBo0CBERkbimWeewalTp0oxUu/gSnuNGTMGjRo1svnJPxN2WWE0GhETE4Pff/+9yGOYW7nEtFVZz6ubN29iwoQJaNOmDTp27IhFixbBYCh8zSvmlWvt5W+5JdnEeiSNd999F6dOncL69etx/fp1TJ06FTVr1kSvXr1sjtPpdBg1ahT69euHt99+G19++SVGjx6NPXv2QKvVShR96RPbXgBw8eJFLF68GO3atbPuq1ChQmmGKzmDwYDJkyc7XGeNuZVLTFsBZTuvBEHAhAkTUL58eWzYsAH37t3DjBkzIJfLMXXqVJtjmVeutRfgh7klUJmRlZUlRERECIcOHbLuW7lypRAbG1vg2K+//lro2rWrYLFYBEEQBIvFIvTo0UPYsmVLqcUrNVfay2AwCOHh4UJaWlpphuhVzp8/Lzz55JNCv379hLCwMJt2y4+5Jb6tynpeXbhwQQgLCxMyMjKs+7777juhQ4cOBY5lXrnWXv6YWzzlVIacPXsWJpMJLVu2tO5r1aoVTpw4AYvFYnPsiRMn0KpVK+u6VzKZDFFRUTYzO/s7V9orLS0NMpkMtWvXLu0wvcbhw4fRtm1bbNq0yeFxzC3xbVXW86pq1apYu3YtQkJCbPY/ePCgwLHMK9fayx9zi6ecypCMjAxUqlTJZk2rkJAQGAwG3L17F5UrV7Y5tkGDBjaPr1KlitPucX/iSnulpaUhODgYU6ZMweHDh1GjRg2MHz8enTp1kiJ0SQwdOlTUccwt8W1V1vOqfPny6Nixo/W2xWJBfHw8Hn300QLHMq9cay9/zC320JQher2+wAKdebftVzMv6lj74/yZK+2VlpaG7OxsdOjQAWvXrkWnTp0wZswYpKSklFq8voK5JR7zytbixYtx5swZTJo0qcB9zKuCHLWXP+YWe2jKkICAgAK/3Hm3NRqNqGPtj/NnrrTX2LFjMWzYMOuAusaNG+P06dP46quvEBERUToB+wjmlnjMq38tXrwY69evx/vvv4+wsLAC9zOvbDlrL3/MLfbQlCHVq1fHnTt3YDKZrPsyMjKg0WhQvnz5AsdmZmba7MvMzES1atVKJVZv4Ep7yeXyAlcH1KtXDzdv3iyVWH0Jc0s85lWuuLg4fPbZZ1i8eDF69uxZ6DHMq3+JaS9/zC0WNGVIeHg4lEqlzSC55ORkREREQC63TYXIyEgcO3YMwv+W+hIEAUePHkVkZGRphiwpV9pr2rRpmD59us2+s2fPol69eqURqk9hbonHvAJWrFiBjRs3YunSpejbt2+RxzGvcoltL3/MLRY0ZUhgYCD69++PuXPn4uTJk/jhhx+wbt06DB8+HEBu70N2djYAoFevXrh//z4WLFiACxcuYMGCBdDr9ejdu7eUb6FUudJeXbt2xXfffYeEhARcvnwZK1asQHJyMmJjY6V8C16DuSUe8+pfFy9exEcffYSXXnoJrVq1QkZGhvUHYF7Zc6W9/DK3pLxmnEqfTqcTpkyZIrRo0ULo0KGD8Nlnn1nvCwsLs5mz4cSJE0L//v2FiIgIYeDAgcLp06cliFharrTXV199JTzxxBNCs2bNhKefflo4fPiwBBF7B/u5VZhbRXPWVmU5rz7++GMhLCys0B9BYF7Zc7W9/C23ZILwv/45IiIiIh/FU05ERETk81jQEBERkc9jQUNEREQ+jwUNERER+TwWNEREROTzWNAQERGRz2NBQ0RERD6PBQ0RSe7q1ato1KgRrl69Wiqvp9Pp0KJFCwwdOrRUXo+ISh4LGiIqc/bu3YuqVavi6NGjuHLlitThEJEHsKAhojJn+/bt6N69O8LCwpCQkCB1OETkASxoiMir3Lt3D7Nnz0b79u3RqlUrvPHGG7h37571/lOnTuHZZ59F8+bNMWTIECxbtgzDhg1z6fl/+eUXREdHo0uXLkhISABXgCHyfSxoiMirjBs3DqmpqVi9ejU+++wzXLx4EdOmTQMA/PPPP3jxxRfRtGlTJCQkICYmBmvWrHHp+Xfv3g2FQoH27dujW7duuHr1Ko4cOVISb4WISpFS6gCIiPI8ePAAhw8fxq5duxAaGgoAWLx4Mfr06YO0tDQkJSVBq9Vi1qxZUCgUqFevHo4ePYqMjAzRr7Fjxw60b98egYGBiIiIQI0aNbB161a0bt26pN4WEZUC9tAQkdf4+eefUb58eWsxAwD169dHhQoVkJaWhj/++ANNmzaFQqGw3t+iRQvRz5+RkYHDhw+je/fuAACZTIYePXpg165d0Ov1HnsfRFT6WNAQkdcICAgodL/ZbIbZbIZCoSgw3sWV8S87d+6E2WzG7Nmz0aRJEzRp0gQbNmxAVlYW9uzZU6zYiUhaLGiIyGt06NAB9+/fR1pamnXfhQsX8ODBA4SGhqJhw4ZITU2FxWKx3n/69GnRz5+YmIh27dohISHB+rNt2zbUqVOHVzsR+TgWNETkNQICAvD4449j6tSpOHnyJE6ePImpU6eidevWCAsLQ9++ffHgwQMsWrQIly5dwldffYXExERRz3316lUcO3YMQ4YMQVhYmM3P4MGDcfDgQdy8ebOE3yERlRQWNETkVd555x3Url0bI0aMwAsvvICGDRti5cqVAICgoCCsXr0aSUlJ6NevH7Zu3Yp+/fpBrVY7fd7ExERUqlQJXbt2LXDfgAEDoFQqsW3bNo+/HyIqHTKBEzAQkY+4cuUKbt68iejoaOu+efPmQa/X4+2335YwMiKSGntoiMhnPHjwACNHjsSuXbtw7do17N69G9u2bUOvXr2kDo2IJMYeGiLyKV9//TU++eQT3LhxAzVr1sSLL76IQYMGYcGCBdi8eXORjxs9ejRefvnlUoyUiEoTCxoi8gu3b9/GP//8U+T9FSpUQMWKFUsvICIqVSxoiIiIyOdxDA0RERH5PBY0RERE5PNY0BAREZHPY0FDREREPo8FDREREfk8FjRERETk81jQEBERkc9jQUNEREQ+7/8Dsv8dObL0RD4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = gpresult.posterior_plot(\"log_A\")\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--------\n", + "Termination Conditions:\n", + "Small remaining evidence\n", + "--------\n", + "# likelihood evals: 309792\n", + "# samples: 7500\n", + "# slices: 75000.0\n", + "# slices / acceptance: 15.0\n", + "# likelihood evals / sample: 41.3\n", + "# likelihood evals / slice: 3.9\n", + "--------\n", + "logZ=-252.04 +- 0.12\n", + "H=250.0\n", + "ESS=1590\n", + "--------\n", + "log_A: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_A: 0.99 +- 0.15 | 0.82 / 0.99 / 1.16 | 1.13 | 1.13\n", + "--------\n", + "log_arn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_arn: 0.39 +- 0.32 | 0.06 / 0.33 / 0.75 | 0.14 | 0.14\n", + "--------\n", + "log_crn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_crn: 3.69 +- 0.34 | 3.29 / 3.75 / 4.05 | 3.95 | 3.95\n", + "--------\n", + "log_sig: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_sig: -0.15 +- 0.54 | -0.81 / -0.11 / 0.51 | -0.84 | -0.84\n", + "--------\n", + "t0: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "t0: 0.63 +- 0.27 | 0.22 / 0.65 / 0.97 | 0.63 | 0.63\n", + "--------\n" + ] + } + ], + "source": [ + "gpresult.print_summary()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "### Model 2\n", + "\n", + "For the second model, we will make a QPO_plus_RN kernel \n", + "\n", + "$$\n", + "k_{qpo+rn}(\\tau) = a_{qpo} \\; exp(-c_{qpo} \\tau) \\; cos(2\\pi f\\tau) + a_{rn} \\; exp(-c_{rn} \\tau)\n", + "$$\n", + "\n", + "We will also use a gaussian mean function with two modes as the mean function.\n", + "\n", + "For this model, we will be making the prior and log_likelihood function on our own instead of using the `get_prior` and `get_likelihood` functions. This will give us more flexibility.\n", + "\n", + "The prior function must be a jaxns compatible prior function. It is quite similar to making the prior_dictionary, just that here, we will wrap each parameters (tfp) prior into the `jaxns.prior` function and use yield to make it a generator function. Then we will return all the parameters in a specific order." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['log_arn', 'log_crn', 'log_aqpo', 'log_cqpo', 'log_freq', 'log_A', 't0', 'log_sig']\n" + ] + } + ], + "source": [ + "# Prior Function\n", + "from jaxns import Prior\n", + "from jaxns.special_priors import ForcedIdentifiability\n", + "from jaxns.types import float_type\n", + "\n", + "params_list2 = get_gp_params(kernel_type= \"QPO_plus_RN\", mean_type = \"gaussian\")\n", + "print(params_list2)\n", + "\n", + "total_time = times[-1] - times[0]\n", + "f = 1/(times[1]- times[0])\n", + "span = jnp.max(counts) - jnp.min(counts)\n", + "\n", + "# Here, we have made mutiple mean function with 2 gaussians.\n", + "def prior_model2():\n", + " log_arn = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)), name='log_arn')\n", + " log_crn = yield Prior(tfpd.Uniform(low = jnp.log(1 / total_time), high = jnp.log(f)), name='log_crn')\n", + " log_aqpo = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span), high = jnp.log(2 * span)), name='log_aqpo')\n", + " log_cqpo = yield Prior(tfpd.Uniform(low = jnp.log(1/10/total_time), high = jnp.log(f)), name='log_cqpo')\n", + " log_freq = yield Prior(tfpd.Uniform(low = jnp.log(2) , high = jnp.log(f/4) ), name='log_freq')\n", + "\n", + " n = 2\n", + " log_A = yield Prior(tfpd.Uniform(low = jnp.log(0.1 * span)*jnp.ones(n), high = jnp.log(2 * span)*jnp.ones(n)), \n", + " name='log_A')\n", + " \n", + " # This is special conditional beta function for the peak times of gaussians which prevents degeneracies\n", + " t0 = []\n", + " scale_bij = tfp.bijectors.Scale(scale = times[-1] - times[0])\n", + " shift_bij = tfp.bijectors.Shift(shift= times[0])\n", + " for i in range(n):\n", + " underlying_beta = tfpd.Beta(\n", + " concentration1=jnp.asarray(1., float_type),\n", + " concentration0=jnp.asarray(n - i, float_type)\n", + " )\n", + " t = yield Prior(shift_bij(scale_bij(underlying_beta)), name=f\"t{i}\")\n", + " # Updating the shift and scale here\n", + " scale_bij = tfp.bijectors.Scale(scale= times[-1] - t)\n", + " shift_bij = tfp.bijectors.Shift(shift=t)\n", + " t0.append(t)\n", + " t0 = jnp.stack(t0)\n", + " \n", + " log_sig = yield Prior(tfpd.Uniform(low = jnp.log(0.5 * 1 / f) *jnp.ones(n), high = jnp.log(2 * total_time) *jnp.ones(n)), name='log_sig')\n", + "\n", + " return log_arn, log_crn, log_aqpo, log_cqpo, log_freq, log_A, t0, log_sig\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the log_likelihood function, we have to take the paremeters (same order), and return $log(p(D|M)) $ the log probability of fitting the data to the model. This can be done by making the suitable Gaussian process and returning the ` gp.log_probability(lightcurve_counts)`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "def log_likelihood_model2( log_arn, log_crn, log_aqpo, log_cqpo, log_freq, log_A, t0, log_sig ):\n", + " \n", + " kernel_params = { \"arn\": jnp.exp(log_arn), \"crn\": jnp.exp(log_crn), \"aqpo\": jnp.exp(log_aqpo), \n", + " \"cqpo\": jnp.exp(log_cqpo), \"freq\": jnp.exp(log_freq)}\n", + " mean_params = {\"A\": jnp.exp(log_A), \"t0\": t0, \"sig\": jnp.exp(log_sig)}\n", + "\n", + " kernel = get_kernel(kernel_type=\"QPO_plus_RN\", kernel_params=kernel_params)\n", + " mean = get_mean(mean_type=\"gaussian\", mean_params=mean_params)\n", + " gp = GaussianProcess(kernel, times, mean_value=mean(times))\n", + "\n", + " return gp.log_probability(counts)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sampling Model 2\n", + "\n", + "Similar to the previous case, we will make a GPresult object by initialising with the lightcurve. Then we will sample the posterior using the prior and log_likelihood model." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO[2023-10-19 22:13:04,424]: Sanity check...\n", + "INFO[2023-10-19 22:13:04,601]: Sanity check passed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Simulation Complete\n" + ] + } + ], + "source": [ + "gpresult2 = GPResult(lc = lc)\n", + "gpresult2.sample(prior_model = prior_model2, likelihood_model = log_likelihood_model2, max_samples = 2e4)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This time we get a lower log evidence than the previous model." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log Evidence: -241.34533744186058\n" + ] + } + ], + "source": [ + "print(\"log Evidence: \", gpresult2.get_evidence())" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "## Evidence Comparison\n", + "\n", + "On comapring the evidences of the two model we get the Bayes Factor.\n", + "\n", + "For $M_1$ being QPO_plus_RN model and $M_2$ being the plain RN model.\n", + "\n", + "$$\n", + "ln(BF) = ln(Z_1) - ln(Z_2) = -245.70 - (-251.77) = 6.06\n", + "$$\n", + "\n", + "As BF is greater than 5.0, this gives us a strong indication that the time series has a Quasi Oscillatory behaviour.\n", + "\n", + "Also, as we can see in the weighted posterior plot for the frequency, We had used a frequency of 20 Hz for our sample and this has been captured very well by the Nested Sampling Inference." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mean of freq: 19.35595259854821\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHFCAYAAAAaD0bAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNoUlEQVR4nO3dd1gUxxsH8O8VjmZFsKEialBUpFjQ2FtiTZTEFLvG3mJX7IpGEyyxl+gvajAxsUQTSxJNNDGJLaiIgiKiAoIIUVSkHHc7vz8ut3Jw6B3s1X0/z+Pj3t7s7js3V152Z2ckjDEGQgghhBARkVo6AEIIIYQQc6MEiBBCCCGiQwkQIYQQQkSHEiBCCCGEiA4lQIQQQggRHUqACCGEECI6lAARQgghRHQoASKEEEKI6FACRIhAxDCmqBjqaAh6HQixfZQAEavw8ccfIzg4uMj66Oho1K9fH0FBQcjPz9d57tq1a6hfvz4OHTpk0DGSk5NRv359HDx40OC4DN3m119/xaxZswze78usX78e9evXf2mZTp06oX79+jr//Pz80LVrV6xatQp5eXmCxKL19OlTzJw5E//8848g++vUqRNmz54tyL4KO3jwIOrXr4/k5GS9z8+ePRudOnUq9vGr3Lp1Cx9++GGp47R1WVlZGDNmDPz9/dG8eXPcvXu3SBljX1uhnTt3Dm+++SYaN26MESNGWCwOYp3klg6AEABo1aoVfvrpJyQkJKBOnTr8+jNnzqBChQrIzMzE5cuX0aJFC/457Y9x69atDTpG5cqV8e2336JWrVrCBg9g586dgu/zVdq3b49x48bxj/Py8nD+/Hls2rQJ9+/fx+rVqwU7VmxsLA4fPox33nlHkP1t2LABZcqUEWRfpTVu3DgMHjzY4PI//fQTLl++bMKIbMOhQ4dw6tQpLFiwAK+99hpq1Khh6ZCK+Oyzz8BxHLZt24ZKlSpZOhxiZSgBIlahVatWAIBLly7pJEB//vknunXrhj/++ANnzpzRSYAuXrwIHx8feHh4GHQMhUKBgIAAQeO2JDc3tyL1CQ4OxoMHD3Dw4EHMnj0blStXtkxwr9CwYUNLh8AzRUIsBpmZmQCA/v37QyKRWDaYYmRmZqJ58+Z4/fXXLR0KsUJ0CYxYBS8vL3h6euLSpUv8umfPniEqKgqvv/46WrVqhT///FNnm8jISJ2zPykpKZg6dSpatGgBf39/DBkyBDExMfzz+i5nXb58GQMGDEBAQAA6dOiAXbt2YejQoUUuz6Snp2PSpEkIDAxEixYtMH/+fDx//hwAMGjQIFy4cAEXLlxA/fr1cf78eQCaL98FCxbg9ddfh5+fH9577z2cPXtWZ795eXlYvnw5WrdujcDAQISGhpb68lXjxo3BGENqaioAQK1WY8+ePejduzeaNGmCDh06YOXKlTrHefToEaZNm4bWrVvDz88Pb7/9Nn9p8fz58/wZksGDB2PQoEH8didPnkRISAj8/PzQunVrLF26FNnZ2fzz69evR9euXbFhwwa0aNECbdq0wZMnT4pcAnv27BmWL1+OLl26wM/PD7169cL+/ft16tWpUyd88sknGDJkCJo0aYK5c+eW6nXSKnyZ5tq1axgyZAiaNm2KwMBADB06FFeuXOHrs2HDBgBA/fr1sX79egCadty4cSO6desGPz8/vPHGG9i2bRs4jtM51o4dO9C5c2c0adIEH3zwAX777Ted90xxr1dubi5WrVqFN954A40bN0ZQUBCGDRuG2NhYnXp89NFH+Pbbb9GlSxf+GHfu3MGpU6fQu3dv+Pv7o1+/fjrb6fOq+gwaNIive4MGDQy+nGnIexEAvv/+e/To0QN+fn546623cPbsWTRs2NDgy9faz/r9+/dx6NAh/jUu7vUFgH379qFnz55o3LgxOnTogPXr10OtVuvs96effuJj79u3Ly5fvmxUXMS60BkgYjVatmypkwCdPXsWjDG0atUKarUaBw8eREZGBtzd3REfH4/Hjx/zCdCjR4/wwQcfwNnZGfPnz4ezszN27dqFAQMGYP/+/ahbt26R492+fRtDhw5F48aNsXr1ajx+/BirV6/G06dP0bNnT52ya9euxaBBg7Bp0yZcunQJ69atQ5kyZTBr1iwsXLgQM2bMAAAsXLgQ9erVQ15eHoYMGYKMjAxMmTIFlStXxoEDBzBixAhs376dP+M1Y8YMnDlzBlOmTIGXlxe+/fZb/Pjjj6V6He/cuQMAqFmzJgBgwYIFOHz4MEaOHIlmzZohJiYGGzduRGxsLLZv3w6JRIIZM2bg33//xeLFi1GmTBkcPnwYs2bNQtWqVdG4cWMsWLAAS5YswYIFC/i+Wj/++COmT5+O3r17Y/Lkybh//z7WrFmD+Ph4fPnll/xZgZSUFPz+++9Ys2YNMjMzUb58eZ14c3Nz0b9/f/z777+YNGkSPD09cfLkScydOxcZGRkYM2YMX3bPnj0YNmwYRo4cCVdX15e+DhzHQaVSFVn/sg7MWVlZGDFiBFq2bIn169dDqVRi8+bN+Oijj3D69Gn069cPDx48wP79+/Htt9+iatWqYIxhzJgxuHLlCiZMmIAGDRrg/Pnz+Pzzz5GUlISwsDAAmst+GzduxEcffYSWLVvizJkzmDx5cpEY9L1ekyZNwj///IOpU6eiVq1auHfvHtauXYtp06bh6NGj/Gt9+fJlPHz4ELNnz0ZeXh4WLVqEUaNGQSKRYNKkSXB2dsbChQsxffp0HD16VO9rYEh9Fi5ciC+//JJ/Hdzc3F7aFlqGvBcPHTqE2bNno1+/fggNDcXVq1cxbty4IsnIy2gvd0+YMAENGzbEuHHjUK9ePVy4cEHv67t161asWbMGAwcORGhoKGJjY7F+/Xqkpqbik08+AaDp5/fxxx+jV69emDFjBq5du4axY8cWSXKJDWGEWIkffviB+fj4sH///Zcxxti8efPY+++/zxhj7PHjx6xBgwbs+++/Z4wx9vXXX7PGjRuznJwcxhhjq1evZn5+fiw5OZnfX15eHuvcuTObOHEiY4yxpKQk5uPjww4cOMAYY2zGjBmsdevWLDs7m9/m0qVLzMfHh82aNUtnm8mTJ+vE+uGHH7I+ffrwjwcOHMgGDhzIP/7222+Zj48Pu3LlCr+O4zg2YMAAFhISwhhjLC4ujvn4+LCvv/6aL6NWq1mPHj2Yj4/PS1+rjh07spkzZ7L8/Hz+34MHD9h3333HGjduzMd769Yt5uPjw7Zu3aqz/aFDh5iPjw87ffo0Y4yxxo0bs82bN+vEsWLFChYZGckYY+zcuXPMx8eHnTt3jq9Lu3bt2EcffaSz37///pv5+PiwU6dOMcYYW7duHfPx8WEXL14sEr/2Nd6zZw/z8fFhly5d0ikzZ84c5ufnxx4/fsxv06VLl5e+LowxduDAAebj4/PSfx07duTLz5o1i398+fJl5uPjw9ebMcbu3bvHPvvsM5aamqpTJ63Tp08zHx8fduTIEZ04Nm7cyHx8fFhcXBx7/vw5a9KkCQsLC9MpM3/+fJ3XVd/rlZeXx4YPH86OHj2qs+3//vc/5uPjwx4+fMjXw8fHh8XHx/NlFixYwHx8fNjff//Nr9uxYwfz8fFhT5480fv6GVIffa+DPgVfW0Pfix06dGCjR4/WKbN161adz66hCr7PCsZc8PV9+vQpa9KkCVuwYIHOtt99951Offv27ct/drU2bdpUoriIdaBLYMRqaM+KaDuY/vnnn2jTpg0AoEKFCmjUqBH+/vtvAJoO0EFBQXBycgKgOVvk6+uLKlWqQKVSQaVSQSqVol27dvw2hZ07dw7t2rWDs7Mzvy4wMBCenp5FyjZr1kzncY0aNfD06dNi63L27Fl4eHigUaNGfDxqtRodO3bEtWvX8OTJE74Td8HLL1KpFG+++ebLX6j/HDp0CI0aNeL/tWvXDosWLULnzp2xcOFCAMCFCxcAoMgZrZ49e0Imk/GXXoKDg7F+/XpMmjQJ+/btQ0ZGBmbNmoWgoCC9x05ISMCDBw/QqVMnvn4qlQrNmzdHmTJl8Ndff+mU9/X1LbYeFy5cgKenJwIDA3XWv/XWW8jLy0NUVJRB+yls8+bN2L9/f5F/HTt2LHab1157DW5ubhgzZgwWLFiAEydOwN3dHTNmzEDVqlWLjV8ul6Nbt25F4tc+f+XKFeTm5hYp06tXL737LFhPhUKBHTt2oEePHkhLS8O5c+ewd+9enDp1CgCgVCr5suXLl9c52+nu7g4A8Pf359dVqFABAIp9/xpSn5Iw5L147949pKSkFDl24W1Kq+Dre/nyZeTm5hZ5L2s/l3/99RdycnJw/fp1dO7cWWc/2teE2Ca6BEashru7O3x8fHDp0iXUrl0bKSkpaNu2Lf9869at+X4pkZGR6N+/P/9cZmYm7t27h0aNGundd05OTpF1jx490ntniPZHo6CCSRKgSVTYSy6lZGZmIj09vdh40tPT+b4HFStW1HnO0E7dHTt2xPjx4wEAEokEzs7O8PT05JNCAPwxCu9TLpejYsWKePbsGQBgzZo12LJlC44fP46ff/4ZUqkUr7/+OpYsWaI3IdR2gF28eDEWL15c5PmHDx/qPH7Z5aonT57orbO2HQr+ULu4uBS7n8J8fHz03pmkTQD0cXV1xZ49e7B582YcP34c3377LZycnPD2229j3rx5UCgUeuOvWLEiZDKZznptnZ49e4ZHjx4BQJFLRcXdmVT49Tpz5gw++eQTJCQkwNXVFQ0aNOBfi4Lvw+LurDPmdTOkPiVhyHtR+zoVfl30fSZLo+Drq30vjxo1Sm/Zhw8f8u/Bwu1XpUoVQeMi5kUJELEqLVu2RFRUFKpVq4YKFSrAz8+Pf65NmzbYsmULzp07h9TUVJ0O0GXLlkWLFi0wc+ZMvfvV98NVtWpVZGRkFFn/77//6tyJVhJly5ZF7dq1sXLlSr3P16hRg098MjIyUL16df457RfyqxR+ffTR9rdJT0/XSWTy8/Px+PFjPoayZctixowZmDFjBhISEvDrr79i06ZNWLx4MbZt21Zkv+XKlQMAzJw5U+fOvMLHNUT58uVx7969IuvT09MBFE0QTa1OnToIDw+HWq3G1atXcfjwYXzzzTeoVauW3rFkypcvj8ePH0OtVuskDdoksGLFivzZo8LvLe0P/sskJiZi/Pjx6NKlC7Zu3YqaNWtCIpFgz549OHPmTGmrW4Qh9SnpfoGXvxcLvk4FFX4sJO17eeXKlahdu3aR593d3VGuXDlIpdIi3xeGflaJdaJLYMSqvP7667h+/TrOnz+PVq1aQSp98RYNCAiAq6srvv76a1SsWFHnVuoWLVrgzp078Pb2hp+fH//v8OHD2L9/f5G/ZgGgefPmOHPmjM4dKDExMcUOoPcyBePUxpOamopKlSrpxPPXX39h+/btkMlkaNmyJQDNnSUFaS9tCEGbnBTu8Hr06FGo1Wo0bdoU9+/fR/v27fk46tSpg5EjR+L1119HSkoKABR5/erUqYNKlSohOTlZp35VqlTBqlWrdO6+e5XmzZvj/v37RcbW+eGHH+Dg4IAmTZoYXe+S+umnn9CyZUukp6dDJpMhMDAQixYtQrly5fjXQl9bq1SqIu34ww8/AACaNm2KBg0aoGzZsjhx4oROmV9++eWVMV27dg15eXkYNWoUatWqxXd41iY/LzsTWRKG1Kek+wVe/l6sWrUqatWqVaLXqaT8/f3h4OCAtLQ0nfeyXC7H6tWrkZycDGdnZwQGBuKXX37Reb2F/KwS86MzQMSqNG/eHEqlEqdOncKiRYt0nnNwcECLFi3w22+/4Y033tAZe2To0KE4fPgwhg4diuHDh6NixYo4duwYvvvuO4SGhuo91pgxY3Ds2DGMGDECw4cPx9OnT7F27VpIpVKjxzUpV64cLl++zN+uGxISgoiICAwbNgxjxoxBtWrV8Pfff+OLL77AwIED4eDgAC8vL7z//vtYs2YNVCoVfH19cfjwYdy8edPo16049erVQ9++fbFu3Trk5OSgefPmiI2NxYYNGxAcHIy2bdtCKpWiatWqWLp0KbKyslCrVi1cu3YNv//+O0aPHg1Ac4YIAE6fPo3y5cujQYMGmDJlChYsWACZTIaOHTvi6dOn2LRpE9LS0oq99KdPSEgIvv76a4wfPx6TJk1CjRo18Ntvv+HAgQOYMGEC/xe6OQQFBYHjOIwfPx6jRo2Cq6srjh8/jmfPnuGNN94A8OKMwZEjR+Dv74927dohODgY8+bNQ1paGho0aIALFy7giy++QN++fVGvXj0AwIgRI7Bu3To4OzujRYsWuHDhAr755hsARZOqgho1agS5XI7w8HAMHz4cSqUSBw8exOnTpwFAZ9gBIRhaH2MZ8l7U3q02ffp0LFy4EF27dsWNGzewceNGAC9/nUqqYsWKGDFiBNauXYusrCwEBwcjLS0Na9euhUQiQYMGDQAAU6dOxdChQzF+/Hi8//77SExMxNq1awWPh5gPJUDEqpQpUwZ+fn64fPky3wG6oLZt2+LUqVNFBjarUqUK9u7di1WrVmHRokXIy8tD7dq1sWzZMrz77rt6j+Xl5YUdO3bgs88+w6RJk1CpUiWMHj0amzdvfuUt1oUNGDAA165dw8iRI7F8+XL07t0be/bswapVqxAeHo5nz57B09MT06ZNw/Dhw/ntFi5cCHd3d0RERODJkydo27YtxowZg88//9yo47/MsmXL4OXlhQMHDuCLL75A5cqVMXjwYIwbN47/QdmwYQNWr16NtWvX4vHjx6hWrRomTJjA94t47bXX0KtXL/6yy5EjR9CvXz+4urpi+/bt+Pbbb+Hi4oKgoCCsXLmSvwXfEM7Ozvjqq6+watUq/keoTp06L207U6lcuTK2b9+OtWvXYu7cucjJycFrr72G9evX82fs3njjDRw+fBizZ8/Gu+++i0WLFmHr1q1Yt24ddu7ciUePHqFGjRqYOnUqhg0bxu979OjRYIzh22+/xY4dO+Dv74/p06dj+fLlL+2j4+XlhVWrVmHDhg0YO3Ysypcvj4CAAHz11VcYNGgQ/vnnn1dOnWIMiURiUH1KwpD3Yu/evZGdnY0dO3bgwIEDeO211zB37lzMnTvXqL5Mxpg8eTI8PDzw9ddfY/v27ShfvjxatWqFqVOn8sl/s2bNsGPHDoSHh2PChAmoVasWZs2ahXnz5pkkJmJ6Eib0+VNCbMTZs2fh4OCgc4fX06dP8frrr2PmzJlGTY9AyMuoVCocOXIEwcHBqFatGr9+z549WLp0Kc6fP2/WM13W7MiRI2jYsKFOX6nTp09j9OjROHz4MH9GxhokJyejc+fOWL58OUJCQiwdDjESnQEionX9+nWsW7cOU6dORaNGjZCZmYkvv/wSZcuWLfb2ZEJKQi6X44svvsCuXbswduxYVKxYEXFxcfj888/Rp08fSn4K+OGHH7BmzRpMnjwZ1apVw71797Bu3Tq0aNECDRo0gFqtfmW/J4lEorffHyEF0RkgIlocx2HLli04fPgwUlNT4eLighYtWmDatGnw8vKydHjEziQlJWH16tU4f/48nj59iurVq+Ott97C6NGj4eDgYOnwrMbjx4+xatUq/PHHH3j06BHc3d3x5ptvYtKkSXB1deWnnnkZT09P/PbbbyaPlc4A2TZKgAghhNiMhIQEfh6+4igUCkH7RRH7RAkQIYQQQkSHxgEihBBCiOhQAkQIIYQQ0aG7wKDpDKudPNPYAfAIIYQQYhmMMXAcB7lcbvRAmZQAQTNGR3R0tKXDIIQQQkgJ+Pn56Z3z8WUoAcKL4dX9/PzscuwItVqN6Ohou62fPlRnqrNFPH8OaCe2TUkBjBxR3BBWV2czoDpTnV+1TUmmSaEECOAve8lkMrt+o9l7/fShOouD1dRZJtMkQdplE8ZkNXU2I6qzOJSkziXpvkIJECFEUEq1EmvPaSaJ/Ljlx1DIjDstTWwPtTmxRZQAEUIEla/Ox8yTMwEA45qPox9DEaA2J7aIEiBCiKDkUjmG+A/hl0VFLgeGDHmxLBKibnNis+idSggRlKPcETv77LR0GJbh6Ajs3GnpKMzOnttcrVYjPz/fIscFgNzcXNH0ASquzgqFokSdnF+FEiBCCCGkEMYYHjx4gMzMTIsdXy6X4969e6IZn664OkulUnh7ext9m/urUAJECCFCYQzIztYsu7gAIvnhskfa5Kdy5cpwcXExexLCGENOTg6cnZ1FlQAVrjPHcUhJSUFqaipq1aol6GtBCRAhRFDPlc/hudoTAHB/6n24KoQfC8dqZWcDZcpolrOyTDIOkDWytzZXq9V88lOpUiWLxKAd4djJyUlUCZC+Ont4eCAlJQUqlQoODg6CHY8SIEKI4J7kPbF0CMTM7KnNtX1+XFxcLBwJAcBf+lKr1ZQAEUKsl7ODM+ImxPHLxP7Za5uL5cyLtTNVO1ACRAgRlFQixWuVXrN0GMSMqM2JLbJoApSWloZly5bh3LlzcHR0RI8ePTB16lQ4OjoiKSkJ8+fPx5UrV1C9enXMmTMHbdq0KXZfR44cweeff4709HS0adMGYWFhcHNzM2NtCCGE2LvExERkZGSY/DiMMbi6uqJ+/foGb5OcnIzOnTvj119/RY0aNUwW26NHjzBp0iRERUWhR48e+PTTT012LFOyWALEGMOkSZNQrlw57NmzB0+ePMGcOXMglUoxc+ZMjB8/Hj4+Pjhw4ABOnjyJCRMm4NixY6iunWiwgKtXr2Lu3LlYvHgxGjRogGXLliE0NBRbt261QM0IEbd8dT62RW4DAIxqOgoOMuGu2RPrJJY2T0xMhK+vL7K1d/qZmIuLC2JiYuDl5WWW4xnqhx9+wN27d3Ho0CFUrFjR0uGUmMUSoISEBFy5cgV//fUX3N3dAQCTJk3Cp59+inbt2iEpKQl79+6Fi4sL6tati7Nnz+LAgQOYOHFikX1FRESge/fu6NOnDwDgs88+Q8eOHZGUlISaNWuas1qEiJ5SrcSE4xMAAEMDhtrtjyF5QSxtnpGRgezsbERERMDX19ekx4qJicGgQYOQkZFhdQlQVlYWateujbp161o6lFKxWALk4eGB7du388mPVlZWFqKiotCwYUOdHvhNmzbFlStX9O4rKioKI0eO5B9Xq1YN1atXR1RUFCVAhJiZTCrDuw3f5ZdFRSYD3n33xbJIiK3NfX19ERQUZNJjMMZKtf2TJ0+wcuVK/Prrr8jLy0OnTp0wb948lC9fHgBw7do1LFmyBDdu3EDDhg3RqlUr/PPPP/jqq69eut/169djw4YNAID69etj9+7d2LBhA3x8fHD69Gmo1WocOXIEz549w+LFi3H27FlUqlQJISEhGDt2LD/C84kTJ7By5UqkpaWhR48eUCqVqFWrFj766KNS1dsYFkuAypUrh7Zt2/KPOY5DREQEWrZsifT0dFSuXFmnfKVKlfDgwQO9+3r48KFR5YujHYbb3mjrZa/104fqbDkOEgfsDdnLPzZlPNZSZ56DA7D3Rd0T79wp0l/E3d0dtWrVKvEhrK7OMH2bm7vOarUajDH+n5Z2ufB6UyjJsQpuM378eOTm5mLLli1gjGHx4sWYPXs2Nm3ahGfPnmHEiBHo3r07li9fjr///hsrVqxAYGDgK481bNgwPH/+HJcvX8b69etRvnx5MMZw8OBBbN++HQqFAi4uLhgyZAgaNGiAgwcPIj09HQsXLoREIsG4ceNw8+ZNfPzxx5g+fTratWuHHTt24KeffsKoUaN06lGwXowxqNXqIu+B0rwnrOYusPDwcMTExGD//v3YuXNnkSGvFQoFlEql3m1zc3ONKl+c6Oho44K2MfZeP32ozuJgjXV+8OAB3n33XeTm5uqsd3Jywv79+1G1atVS7d8a62xq5qyzXC5HTk4OOI7j12nbMjc31+T9gPLy8vj/DT2WNr6MjAxcvHgR33//PX/5bMmSJXjnnXcQExODyMhIODs7Y8qUKZDJZAgJCcHFixf5S3wvI5FI4ODgAJlMBldXV6hUKnAchzZt2qBBgwYAgNOnT+P+/fvYuXMnpFIpqlatio8//hiLFi3C0KFD8d133yEoKAjvv/8+AGDWrFn4448/+PGXcnJyirwW+fn5uHHjhoGvnmGsIgEKDw/Hrl27sGbNGvj4+MDR0bHI/CtKpRJOTk56t3d0dCyS7CiVSjg7GzcehZ+fn11OOqdWqxEdHW239dOH6kx1trRLly4hNzcXu3fv5n8Ybty4gcGDB6Ny5coICAgo0X6tuc6mYu465+bm4t69e3B2dtb53dEuOzk5mXyQREdHR/5/Q4+lje/ixYsoV66cTj+lRo0aoXz58khJScGdO3fQqFEjlC1bln++adOmOHHihEHHcnBwgFQq5ctKpVJ4eXnxj+/fv48nT56gXbt2/DYcxyE3Nxd5eXlISkpCo0aNdI7l5+fHD3JYePoPqVQKBwcH1KtXr0geoH1vlITFE6CwsDB88803CA8Px5tvvgkAqFKlCuLj43XKZWRkFLnMpVWlSpUip5kzMjLg4eFhVCwymcyuv1DsvX76UJ3NLzs/G6+t14wJc2viLbg4mH40XUvXmff8OT8VhsOffwLQ/PBo+4toYxQiXqupM8zX5uaqs0wmg0Qi4f9paZcLrzeFkhxLW06bPBXeTq1Wg+M4yOVyvc8beqzCr41EIoGjoyP/WK1Wo06dOti0aVORbcuVK8efnCh4rIJXcfS97hKJRPD2F35+eSNs2LABe/fuxerVq9GzZ09+vb+/P65fv65z6jgyMhL+/v569+Pv74/IyEj+cWpqKlJTU4stTwgxHcYYUp6lIOVZisn7SRDrQG1uXdq0aYOnT58iISGBXxcfH4+srCx4e3vjtddeQ2xsrM7lvevXrwt2fG9vb6SkpMDNzQ1eXl7w8vJCcnIy1q1bB4lEgrp16+qctWGM4ebNm4Id31AWOwN0+/ZtbNq0CaNGjULTpk2Rnp7OP9eiRQtUq1YNoaGhGDduHE6dOoWrV69i+fLlADSXt548eQI3NzfIZDJ8+OGHGDRoEAICAuDn54dly5ahQ4cOdAcYIRbgJHfC5dGX+WVi/8TW5rGxsVZ9DEdHR7Rr1w6zZs3C/PnzAQCLFy9G8+bN4ePjA09PT6xatQrLly9H//79cfHiRRw7dgyBgYGCxN6mTRt4enpixowZmDJlCp49e4b58+fj9ddf53+zd+7ciU2bNqFbt27Yt28f7t69K8ixjWGxBOjXX3+FWq3G5s2bsXnzZp3nbt68iU2bNmHu3LkICQmBl5cXNm7cyA+CePnyZQwePJgf7TIwMBBLlizBunXr8OTJE7Ru3RphYWGWqBYhoieTyhBQNcDSYRAzEkubu7u7w8XFBQMHDjTL8VxcXIoMFWOoTz/9FEuXLsXQoUMhk8nQuXNnhIaGAgBcXV2xZcsWLF68GN988w38/PzQu3dvPHz4UJC4ZTIZNm/ejLCwMLz33ntwcXFBt27dMGvWLABA5cqVsXnzZixduhRbtmxBz549BUu+jGGxBGjUqFH8LW/6eHl5ISIiQu9zwcHBRU6XhYSEICQkRNAYCSGEEK1atWohNjbWrFNhGDNkQo0aNXR+G1evXq23XFJSEtRqNQ4dOsSvW7x4scH9ZgsPSKxv7KCaNWti27Ztxe6jZcuWOHLkCP940KBBBh1bSBbvBE0IsS/56nzsid4DABjgN8BuRwUmL4ipzWvVqlWqcZwMxRgz2a32WVlZGDZsGMLDw+Hn54fr16/j8OHDxSZM9ooSIEKIoJRqJYYdHgYA6Newn13/GBINanPb4uvriwULFmD16tVITU1F9erVERoaig4dOmDZsmXYv39/sduOHj0aY8aMMWO0pkMJECFEUDKpDD1e68Evi4pMBvTQ1J1JLXqTrVmJus1tVL9+/dCvX78i68eOHfvSPk7aqTSE9tVXX5n0rJc+lAARQgTlJHfC0f5HLR2GZTg5AUc1dWeXLlk4GPMRdZvbGTc3N7i5uVk6DLMQz58ohBBCCCH/oQSIEEIIIaJDCRAhRFDaaRFeW/8asvPNdz3fKjx/Dri6Aq6ukBaa0NGeibrNic2iPkCEEEExxhD/KJ5fFh0zduK0FqJvc2KTKAEihAjKSe6EP4f9yS8T+0dtTmwRJUCEEEHJpDK0rtXa0mEQM6I2J7aI+gARQgghRHToDBAhRFAqToXvY78HAPT17Qu5lL5m7B21ObFFdAaIECKoPFUe3tv/Ht7b/x7yVHmWDoeYAbW5dUhOTkb9+vVx+vRpdOrUCYGBgVi6dCni4uIQEhKCgIAAjB49GllZWQCAvXv38uUGDRqkM5FqWloaJk2ahObNm6Nx48bo27cvIiMjdY7zyy+/oEuXLvDz88Po0aORmZlpiWqXGKXphBBBSSVStPdqzy+LilQKtNfUnUkkFg7GfETV5s+fF/+cTKYZDdyQslIp4OxcfFnGgBK+h7Zt24ZNmzYhPj4e06ZNwx9//IGFCxfCyckJ48aNw/79+1GrVi1s2LABYWFh8Pb2xqFDhzB48GD88ssvKF++PKZPn45y5cph7969YIxh5cqVWLRoEX788Uf+OFu2bMHq1avBGMPYsWPx5ZdfYsqUKSWK2RIoASKECMrZwRmnh562dBiW4ewMnD4NQFxTYYiqzcuUKf65Hj34qVAAAJUrFz8sQvv2/HsFAFC7NpCRwT+UAMB/Z2qMNW7cODRo0AANGjTAJ598gp49e6J1a00n9VatWiEhIQG//PILRo8ejY4dOwIAJk+ejD/++AM//PADBg4ciC5duuDNN99E1apVAQADBgzAqFGjdI4zadIkNGnSBADQu3dvREdHlyheS6EEiBBCCLEjNWvW5JednJzg6emp81ipVOL27dsIDw/H6tWr+efy8vJw9+5dSCQSfPjhhzh27BguXbqEO3fu4Nq1a+A4Tuc4Xl5e/HKZMmWQn59vwloJjxIgQgghxFAvOysjk+k+fviw+LLSQpcK797VeViaASVlheKQFj4WALVajTlz5qBVq1Y668uUKQOO4zB8+HA8ffoUPXr0QKdOnZCfn48JEybolHVwcChxjNaAEiBCiKBy8nPQaofmS/XsR2fh7OD8ii3syPPnmksZAKSHDlk0FHMSVZu7upqnLGMmHVXc29sbDx480DmLExoaii5duqBmzZq4ePEizp49y88Mv2fPnv/Csp+RvikBIoQIimMcotKi+GXRKdCPQyxE3+Y2aNiwYZg7dy5q166NoKAgfPvttzh+/DhGjx4NJycnSKVSHD16FJ06dUJ0dDTWr18PAFAqlRaOXDiUABFCBOUkd8IvA3/hl4n9oza3PT169EBGRgbWrVuHjIwM1KtXD5s3b0bt/85gLlq0CBs3bsTq1avh7e2NefPmYdasWYiJiYGHh4dlgxcIJUCEEEHJpDJ0rdvV0mEQM6I2tw41atTQGcsHAH777TedxytWrOCXBw8ejMGDB+vd1/vvv4/3339fZ12vXr345cLHmThxYolitiQ7H7CBEEIIIaQoOgNECBGUilPh5/ifAQBv1nuTpkUQAWpzYovoXUoIEVSeKg+9vtGcKs8KzYJcYZ9fM4mJicgo0OHZ3d0dtSpVsmBEliOWNif2hd6lhBBBSSVSNKvejF+2R4mJifD19UV2gduUXVxccOPyZdRspqm72KbCsPc2J/aHEiBCiKCcHZxxceRFS4dhUhkZGcjOzkZERAR8fX0RGxuLgQMHIj0rCzUvauoutqkw7LHN7WnMG1tmqnagBIgQQkrI19cXQUFBlg6DCEw7wnF2djacne14UEcboR17qPAI16VFCRAhhBBSgEwmQ4UKFfDwv6ksXFxcIDHzJU3GGPLy8iCVSs1+bEvRV2eO45Ceng4XFxfI5cKmLJQAEUIElZOfgy5fdQEAnBx00r6nRShEkpPDT4Uh+W/qADGwxzbXzoL+8GXzeZkQYwz5+flwcHAQVQKkr85SqRS1atUS/HWgBIgQIiiOcfg76W9+WUwkAHDv3otlkbDHNpdIJKhWrRoqV65skVnO1Wo1bty4gXr16gl+6cdaFVdnhUKhd0LX0qIEiBAiKEe5I75//3t+mdg/e25zmUxmkQRErVYDAJycnESVAAHmqzMlQIQQQcmlcvRp0MfSYRAzojYntsgqEiClUomQkBDMnz8fwcHBmD17Nr7//vsi5YKDg7F79+4i6588eYIWLVrorKtQoQLOnz9vspgJIYQQYrssngDl5eVh2rRpuHXrFr9u7ty5mDZtGv/4/v37GDRoULGTtsXHx6NChQo4cuQIv84U1wsJIa+m5tQ4k3gGANC2VlvIpOI4fS9m1ObEFlk0AYqPj8e0adOKDHJUtmxZlC1bln88e/ZsdOvWDV26dNG7n4SEBHh7e8PDw8Ok8RJCXi1XlYuOuzoC0EyL4KpwtXBExNSozYktsmgCdOHCBQQHB2PKlCkICAjQW+bs2bO4ePEifv7552L3Ex8fj9r/3XpKCLEsiUSChh4N+WUxYQDQsOGLZZEQc5sT22XRBKh///6vLLNt2zb07dsX1apVK7bM7du3oVKp8O677yItLQ3NmjVDaGgoKleubFQ82h7o9kZbL3utnz5UZ8txlDri6uir/GNTxmOpOhc8rvYfAKgUCqivauqu+m8qjILPF96utMe2FqZuc2uss6lRnY3bpiQs3gfoZZKSknDu3DnMnTv3peUSEhLg5uaG0NBQMMawZs0ajBkzBvv27TPqVrro6OjShmzV7L1++lCdxcHcdY6Li+P/l0qlRR7rK1PcupKidhYHqrPpWHUC9PPPP8PX1xf16tV7abmjR49CIpHAyckJALBu3Tq0adMGUVFRRs3T4+fnZ5fjLajVakRHR9tt/fShOlOdTYnjNIP9+fj4ICAgoMhjfWWKW2csameqs70qSZ2125SEVSdAZ86cQefOnV9ZrvBkdZUqVUKFChWQlpZm1PEsNeCVudh7/fShOptfTn4O3tr7FgDghw9+MMu0COaus/ZY2uNqH8uVSsiaNNEsb9tWJLbC25U2Bmt5b5urza2pzuZCdTYdq71XnDGG6OjoV57BycrKQvPmzXHu3Dl+XVpaGh4/fow6deqYOkxCSCEc43Ay4SROJpy0m2kRDCUBgJgYICZGdFNhiLXNie2y2jNA9+/fx/Pnz/Ve/srNzcWzZ8/g4eGBMmXKoGnTpli+fDnCwsIgk8mwbNkytG3bFvXr17dA5ISIm6PcERF9I/hlYv+ozYktstoE6N9//wUAlC9fvshzx44dQ2hoKG7evAkA+PTTT7FixQqMGjUKSqUSnTt3xrx588waLyFEQy6VY0CTAZYOg5gRtTmxRVaTAGmTGS1/f/8i67RCQkIQEhLCPy5fvjyWL19u0vgIIYQQYj+sJgEihNgHNafGpVTNGDhB1YJoWgQRoDYntogSIEKIoHJVuWixXTM5MU2LIA7U5sQWUQJECBGURCKBV3kvfllMGAB4eb1YLkZsbCy/7O7ujlq1apk0LlMTc5sT20UJECFEUC4OLrg7+a6lw7AI5uwM3L2rWf5vKoyCUlNTAQADBw7k17m4uCA2NtamkyAxtzmxXVY7DhAhhNibzMxMAEBYWBgiIyMRERGB7OxsZGRkWDYwQkSIzgARQoiZeXt7GzVNDyFEeHQGiBAiqFxVLvrs7YM+e/sgV5Vr6XDMSpKbCzRvDjRvrlkWCTG3ObFddAaIECIoNafG4ZuH+WUxkTAG/PPPi2WREHObE9tFCRAhRFAKmQLbem3jl4n9ozYntogSIEKIoBxkDhjZdKSlwyBmRG1ObBH1ASKEEEKI6NAZIEKIoDjGITZdM9Cfr4cvpBL6O8veUZsTW0QJECFEUDn5OWi8uTEAmhZBLKjNiS2iBIgQIjh3F3dLh2A57uKsu6jbnNgkSoAIIYJyVbgifUa6pcOwCM7ZGUjX1J3TMxWGuSUmJuqMMm2qecfE3ObEdlECRAghdigxMRG+vr7Izs7m19nDvGOECIV6qhFCiB3KyMhAdnY2IiIiaN4xQvSgBIgQIqhcVS4GHByAAQcHiG5aBEluLtChA9Chg9VMheHr64ugoCD4+vqa7BhibnNiu+gSGCFEUGpOja+jvwYAfnRgsZAwBvz++4tlkRBzmxPbRQkQIURQCpkCa95cwy8T+0dtTmwRJUCEEEE5yBwwueVkS4dBzIjanNgi6gNECCGEENGhM0CEEEFxjEPik0QAQK3ytax+WoTCY+UAphsvx17ZWpsTAlACRAgRWE5+DrzXegOw/mkR9I2VA9B4OcaypTYnRIsSIEKI4FwcXCwdgkEKjpWjvU08NjYWAwcOREZGRskSIBfbqLvQbKXNCdGiBIgQIihXhSuez3lu6TCMoh0rp7Q4Z2fguabu1jAVhrnYYpsTQgkQIYS8QuF+QrGxsRY7vlqtRlxcHNzc3ODt7W3WOAixJ5QAEULISxTXTwgAUlNTLXZ86qdESOlQV31CiKDyVHkY+cNIjPxhJPJUeZYOp9QKz6kVGRmJsLAwAEBmZqZOWUleHtCzJ9Czp2bZBMe/cOECwsLCrGpeL3trcyIOdAaIECIoFafC9svbAQCfd/scjnC0cETCKNhPqLhLYBKOA44d0yzPmWOS42svgVkTe21zYt8oASKECMpB5oClHZfyy8R4Bfv8mLu/UUlQmxNbRAkQIURQCpkCc9vNtXQYNqu4Pj/m6G9UUtTmxBZZRR8gpVKJXr164fz58/y6pUuXon79+jr/IiIiit3Hzp070bZtWwQGBmLOnDnIyckxR+iEECKown1+iutvRAgpHYufAcrLy8O0adNw69YtnfW3b9/GtGnT0LdvX35dmTJl9O7j559/xoYNGxAeHo5KlSohNDQU4eHhWLBggUljJ4QUxRhDRrbm8o27izskEomFI7JN2j4/tnAJjNqc2CKLngGKj4/He++9h8TExCLP3b59Gw0bNoSHhwf/z9nZWe9+du/ejSFDhqBjx45o0qQJFi9ejAMHDtBZIEIsIDs/G5VXVkbllZWRnV/01nFif6jNiS2yaAJ04cIFBAcH49tvv9VZn5WVhbS0NNSuXfuV+1Cr1YiOjkazZs34dQEBAcjPz8eNGzeEDpkQQgghdsCil8D69++vd/3t27chkUiwZcsW/PHHH6hQoQKGDRumczlM6+nTp8jLy0PlypX5dXK5HBUqVMCDBw+MiketVhtXARuhrZe91k8fqrPlOMmcoJqn4h+bMp7S1rng9oX3pV2nrwzHcfz/BdfnKxRQqzR1z/9vKgxDtnvZ8YvbpvB2r6qbvmMJxdRtbi3vbXOiOhu3TUlYvA+QPgkJCZBIJKhTpw4GDhyIixcvYv78+ShTpgy6du2qUzY3NxcAoFAodNYrFAoolUqjjhsdHV26wK2cvddPH6qzOJS0ztrxdOLi4iCVSvWu01fm3r17/P9XrlwxaD8l3a7wNoXj1273qrrpO5atofe2OJirzlaZAPXp0wcdO3ZEhQoVAAANGjTA3bt38c033xRJgBwdNQNuFU52lEplsX2GiuPn5weZTFbywK2U9jKhvdZPH6oz1dkQ2rMrPj4+CAgI0LtOX5mYmBgAgJeXV7FlhNqu8DZqtZq/vF9wu1fVTd+xbAW9t6nOr9qmJKwyAZJIJHzyo1WnTh2cO3euSNkKFSrA0dERGRkZqFu3LgBApVIhMzMTHh4eRh1XJpPZ9RvN3uunD9XZ/PJUeZh1chYA4NMun8JRbvpRgUtaZ+02BbcvvE5fGe0ZFKlUqrNerlJB9sEHmuWpUw3e7mXHL7yNofU2pB5CMVebW/q9bQlUZ9OxyvOga9euxdChQ3XW3bhxA3Xq1ClSViqVws/PD5GRkfy6K1euQC6Xo0GDBqYOlRBSiIpTYe35tVh7fi1UnOrVG9gRCccB+/cD+/drlkVCzG1ObJdVngHq2LEjtm3bhh07dqBr1674888/cejQIezevRuApt/Ps2fP+DM8/fv3x4IFC+Dj44PKlStj0aJFeO+994y+BEYIKT0HmQPmtJnDLxP7R21ObJFVJkBNmjTB2rVrsW7dOqxduxaenp5YtWoVAgMDAQDHjh1DaGgobt68CQDo2bMn7t+/jwULFkCpVOKNN97AjBkzLFkFQkRLIVNgWedllg6DmBG1ObFFVpMAaZMZrS5duqBLly56y4aEhCAkJERn3ahRozBq1CiTxUcIIYQQ+2E1CRAhxD4wxvjRgF0cXGhaBBGgNie2iBIgQoigsvOzUWa5Zt6+rNAsuCpcLRwRKajw3GLu7u6oVatWqfZJbU5sESVAhBAiAqmpqQCAgQMH6qx3cXFBbGxsqZMgQmwNJUCEEEG5OLggKzSLXxYTzskJyNLUnbOyuQgzMzMBAGFhYejRowcAzdmggQMHIiMjo1QJkJjbnNguSoAIIYKSSCTivQQikQCuri+WrZC3tzeCgoIE3aeo25zYLKscCJEQQgghxJQoASKECEqpVmLur3Mx99e5UKqNm5DY1kmUSmDoUGDoUM2ySIi5zYntogSIECKofHU+PvnzE3zy5yfIV+dbOhyzkqjVwK5dwK5dmmWREHObE9tFfYAIIYKSS+X4OPhjfpnYP2pzYovonUoIEZSj3BGfd/u8VPtITExERkYG/1iIsWqI4Yx9/YVoc0LMjRIgQohVSUxMhK+vL7Kzs/l1NFaN+dDrT8SC+gARQqxKRkYGsrOzERERgcjISERERCA7O1vnjAQxHXr9iVjQGSBCiKCeK58LMi2Cr6+v4OPVEMMZ8/oL1eaEmBOdASKEEEKI6NAZIEKIoFwcXPBw+kN+WUw4JyfgoabuXGKihaMxHzG3ObFdRp8BOnfuHBhjpoiFEGIHJBIJPFw94OHqAYmVTgdhMhIJ4OGh+Seiuou6zYnNMvoM0McffwwHBwd069YNvXr1QkBAgAnCIoQQQggxHaMToL/++gt//fUXfvrpJ4waNQplypRB9+7d0bNnTzRs2NAUMRJCbIhSrUT4X+EAgBmtZ0AhU5jt2JYeP0iiVALjx2uWBw0y+fFiY2P5ZUuOlWTJNiekpIxOgORyOdq3b4/27dtDpVLh77//xm+//Yb+/fujSpUq6N27N0JCQlC9enVTxEsIsXL56nzMOzUPADC55WSz/Rhaw/g1ErUa2LRJs9y/v8mOo03yBg4cyK+z5Fg9lmpzQkqjxHeBKZVK/P777zh69CiOHz+OihUrolOnTrh79y569uyJiIgIIeMkhNgIuVSOEYEjMCJwhFmnRRDT+DXPnj0DAISFhVlFXS3V5oSUhtHv1JMnT+Knn37C6dOn4eDggDfffBMbN25Es2bN+DJ79uzB6tWrdf46IYSIg6PcEV+89YXFji+m8YO8vb2toq6WbnNCSsLoBGjWrFno0qULVq9ejdatW0MmkxUp07hxYwwbNkyQAAkhhFgfS/e3IqS0jE6Apk+fjpCQEDg6Ouqsz87Oxv79+zF48GD4+/vD399fsCAJIYRYD2vob0VIaRmUAD169Ai5ubkAgCVLlqBJkyaoWLGiTpnY2FisXLkSgwcPFj5KQojNeK58jsorKwMAHk5/SNMi2KGC/a18fX1x+fpljLgxAvV310fGzAxqc2ITDEqALly4gMmTJ/MDXL377rs6z2sHRnzrrbcEDo8QYouy87NfXYjYPG1/qxxVDpAA5KpzLR0SIQYzKAHq1q0bfvvtN3Achy5dumDfvn1wc3Pjn5dIJHB2di5yVogQIj7ODs648/EdfllMOEdH4I6m7pwd3n1WHEeZI/A58OOPP4quzYntMrgPkHZcnxs3bpgsGEKI7ZNKpKhdobalw7AMqRSoXVuz/OiRRUMxJ6lECmQC1V2qa5YJsQEGJUCDBw/Ghg0bUK5cuVf28dm9e7cggRFCCCGEmIpBCVCLFi3g4ODALxNCSHHy1fnYeHEjAGB88/FwkDlYOCLzkeTnAzNmaJYL9ZW0Z/lcPtAS+Drha/j5+4mqzYntMigBmjBhgt5lrUePHqFixYo0CzAhBEq1ElN+ngIAGBk00mQ/homJiUhLS0NcXBw4jkNcXJxJjmMMiUoFrFypWe7Tx7LBmJGKUwHdgFXXV2HxW4spASI2wehxgNLS0rBixQqMGjUKderUwUcffYTIyEhUq1YNmzZtQoMGDUwRJyHERsikMvT3688vm4K+cWi0UlNTTXJMUjypRApcBbp172ayNidEaEYnQIsWLUJ2djYqVKiAgwcPIi4uDnv37sUPP/yAsLAw7NmzxxRxEkJshJPcCXtCTPs9oB2HZvfu3ZBKpfDx8cHPP/+M+fPnIzMz06THJkU5yhyBg8CyucvgJHeydDiEGMToBOjcuXM4ePAgqlWrhpMnT6Jz587w9/eHm5sbevXqVaIglEolQkJCMH/+fAQHBwMArly5ghUrVuDmzZuoXLkyRowYgX79+hW7j2bNmvETBGpdunQJrq40IBch9qpBgwaQSqUICAiwiktghBDbYXQC5OjoiLy8PDx58gTnz5/HqlWrAADJyckoX7680QHk5eVh2rRpuHXrFr8uPT0dI0eOxIcffogVK1bg+vXrCA0NhYeHBzp06FBkH2lpaXj27BlOnjwJJ6cXf324uLgYHQ8hhACa0e0L/m8LCsZqS3ETYglGJ0BdunTB5MmT4eTkhPLly6NDhw44duwYPvnkE/Tt29eofcXHx2PatGn8SNJaJ0+ehLu7O6ZOnQoAqF27Ns6fP48ff/xRbwJ0+/ZteHh4oGbNmsZWhxAisOfK56i9tjYA4O7Hd21uWgRtH6KBAwfqXW+Niou54HOmlKPKAWYAnX/ujOTGyTbX5kScjB6xatGiRfjggw/QvHlz7Nq1C46OjlAqlRgzZgyfsBjqwoULCA4Oxrfffquzvm3btli+fHmR8llZWXr3Ex8fD29vb6OOTQgxnYzsDGRk2+ZIyNo+RGFhYYiMjERYWJjOemtUOGaLxO0KZCrNdCxCBGD0GSC5XI6hQ4fqrOtTwts9+/fvr3d9jRo1UKNGDf7xv//+i6NHj2LixIl6y9++fRs5OTkYNGgQ7ty5A19fX8yZM8fopEitVhtV3lZo62Wv9dOH6mw5CqkCUaOj+GVj4ylYD+2/go8LluE4DlKpFGq1GhzH8euK2+5Vx9JuDwBeXl7w9/fH9evXdfZbsEzhY+XL5VBHaeqen5NT7L5fFmPhdcVtU3Bd4ZgBFIm78H6Kq78xr792nRxyYCPwzd5vStTmr2It721zojobt01JGJ0APX36FP/73/8QHR0NlUpV5PKV0CNB5+bmYuLEiXB3d8f777+vt0xCQgKePHmCqVOnokyZMvjiiy8wdOhQHD16FGXKlDH4WNHR0UKFbZXsvX76UJ0t6+r9q0Zvo+3MHBcXB6lUWuRxwTLx8fFo0KABoqOjce/ePQDAvXv3cOXKFb3bvepY2u0L7qfwY31l+P3Ex0P631AgcfHxr9z3y+qmXafv+FrGxKivjCHHN6RM/K14IB1Qp6pxNepFmz948EDnDFSFChVQtWpVvW1hCGt6b5sL1dl0jE6AZs6ciejoaPTu3duo5KIknj9/jnHjxuHu3bv4+uuv4eysf5K9HTt2ID8/n7/ja+XKlWjfvj1OnTqF3r17G3w8Pz8/yGT2N4aFWq1GdHS03dZPH6qz7dZZe6bCx8cHAQEBRR4XLFOvXj0Ams9uTEwMAM1ZkOK2e9WxABTZT+HH+sq8LMaX7duQ7Qpvo1arcfz4caNj1FfGkOOXtExiYiLatWunM1aTi4sLrl27hlq1aultj+LYy3vbGFRnw+qs3aYkjE6A/v77b0RERKBJkyYlOqChsrKyMGLECCQmJmLXrl2orZ1gUA+FQgGFQsE/dnR0RI0aNZCWlmbUMWUymV2/0ey9fvpQnc0vX52PnVd2AgCGBgw1elRgbezaehR+XLCM9oyETCbjl6VSabHbvepYBfep3U/hx/rKaNfLOQ6y//reyLt3f+W+X1Y37Tp9x9cyJkZ9ZQw5viFlOAkHBAGHkw8jICgADjIHPH78GNnZ2YiIiICvry9iY2MxcOBAPH78uMR9Ni393rYEqrPpGJ0AValSpdjTyULhOA4TJkxAcnIyvvrqK9StW7fYsowxdO3aFePGjUNISAgAIDs7G/fu3UOdOnVMGichpCilWolRR0YBAPr79RfVtAg3r11D4OLFmmUR3ZWq4lTAW8Cyq8sQ2jNUp819fX0RFBTEPy58e767u7vRZ4QIEUKJLoEtWrQIkyZNgpeXFz9Jqlb16tVLHdT+/ftx/vx5bN68GeXKlUN6ejoAwMHBARUqVIBSqcSTJ0/g5uYGmUyGDh06YP369fD09ISbmxvWrl2LqlWron379qWOhRBiHJlUhrfrv80vi4H2VvOPRozAB/+t+2jECJ3n7JlUIgVuAO3bty+2zYu7Vd/FxQWxsbGUBBGzMzoB0t6JNWqU5i887QSojDFIJBJBBt/6+eefwXEcRo8erbO+RYsW+Oqrr3D58mUMHjwYv/76K2rUqIEZM2ZALpdj2rRpyMrKQsuWLbFt2zbRnTYkxBo4yZ1w6INDlg7DrLQdfRfMnw/8dwlswfz5mB0WZtW3zwvFUeYI7AVWz1hd7FQYBW/V79GjBwDwl8UyMjIoASJmZ3QC9Ouvv5oiDty8eZNf3rFjx0vLBgcH65R3dHTE7NmzMXv2bJPERgghhvDy8tK7TF7w9vbWuSRGiKUY3ZnH09MTnp6eyM7ORkxMDCpWrAiO41C9enV4enqaIkZCCCGEEEEZnQA9efIEQ4cOxdtvv42PP/4Y//77L5YtW4ZevXrh/v37poiREGJDsvOzUfvz2qj9eW1k52e/egNi83JUOcBkoNfJXtTmxGYYnQAtXboUzs7OOHfuHBwdHQEAn3zyCapWrYqlS5cKHiAhxLYwxnDvyT3ce3KvyECpxI5VAFJzUqnNic0wug/QmTNn8NVXX6FcuXL8Ojc3N4SGhuKDDz54yZaEEDFwkjvhwogL/LKYcAoFcEFTd+7GDQtHYz4KmQLYBuz+arfo2pzYLqMTIADIy8srsu7Ro0eQy0u0O0KIHZFJZWju2dzSYVgEk0qB5pq6s/+mizBEwbtnhbiT1lilPb5MIgNSgEYVGolm6ANi+4zOWHr16oVly5ZhyZIlkEgkyM7Oxrlz57Bw4UL+1kZCCCGvVtzYOAWfs+fjE2JJRvcBmjlzJvz9/RESEoLs7Gy8/fbbGDFiBFq1aoWZM2eaIkZCiA1RcSrsuboHe67u0YwQLCJSlQoIDwfCwzXLr1BwbJzIyEhERkYi7L9xhMwxfpBQx1dxKsAPOJZ8THRtTmyX0WeAFAoFZs+ejcmTJyMpKQlqtRo1a9bkJyIlhIhbnioPA7/XnFHo06AP5ArxXBqXqFTAf38ISrZvN3i7gmPjWOISWGmPn8/lA+8A8y/Px5RuU0TV5sR2GfUuVSqViIyMxO3bt/H8+XOUKVMGPj4+xc7STggRH6lEii51uvDLxP5JJBLgtmaQWmpzYisMToAOHTqE8PBw/Pvvv3BxcUHZsmXx/PlzZGVlwcPDA7NmzUKvXr1MGSshxAY4OzjjxKATlg6DmJGTzAn4Ctg0eROcHegPYmIbDEqAfvzxR8ybNw8jR47E+++/j6pVq/LP3b9/H/v378ecOXNQtmxZmoCUEEIIIVbPoAToyy+/xOTJkzHiv9mNC/L09MTHH38MuVyO7du3UwJECCGEEKtn0MXahIQEdO7c+aVlunfvjlu3bgkSFCHEdmXnZ6PRpkZotKkRTYsgEjmqHGAc0O9UP2pzYjMMOgOUm5uLsmXLvrRMuXLl8OTJE0GCIoTYLsYYYtJj+GUiEpWBhKwEanNiMwzuBC2RSEwZByHETjjJnXBqyCl+WUw4hQI4pak7l5Rk4WjMRyFTADuBrVu3iq7Nie0yOAHasWMHXFxcin0+O5tOexJCNFNhdKjdwdJhWASTSoEOHTTLe/ZYNhgzkklkwF2gmXszmgqD2AyDEqDmzZsjOjr6leWaNWtW6oAIIURIhQf2y8vLg6Ojo97nCCHiYVAC9NVXX5k6DkKInVBxKhyJOwIA6OXTC3KpZUYFftk8V8WVLS2JSgVs3KhZLlNGkH3aAhWnAhoAp1JPoQnXxGJtTogxaMhOQoig8lR56PttX/T9ti/yVHkWi+Nl81xp1wk975ZUpQImTAAmTDBoLjB7kc/lAx8A0/+ZbtE2J8QYlKYTQgQllUjxes3X+WVL0zfPlXYdXQIThkQiARIBf39/q2hzQgxBCRAhRFDODs74a/hflg6DmJGTzAn4HzAjYgZiozVJJSWXxNpRAkQIIaRUXtbfSqj+VYQIzehzlR07dsTKlSsRExNjingIIYTYmJf1txKqfxUhQjM6AZo9ezbu37+PAQMGoFu3bli3bh1u375titgIITYoJz8Hzb9ojuZfNEdOfo6lwyFmoOSUwEjgf/L/wdfPF0FBQfD29rZ0WIS8lNGXwN588028+eabyM3NxalTp/DLL7+gf//+qFKlCnr16oUePXqgRo0apoiVEGIDOMbhn5R/+GVi/zhwgCdwJ+8OtTmxGSXuA+Tk5IQ333wTFSpUgJubG/bv34+dO3di06ZNCAoKwvz58+kvAEJEyFHuiCMfHuGXxYRzcACOaOrO/fuvhaMxHweJA7AHmDZ9mujanNguoxMgjuNw7tw5/PTTTzh58iTUajW6du2KLVu2IDg4GNnZ2Vi4cCHGjh2Ln376yRQxE0KsmFwqR0+fnpYOwyKYTAb01NRddFNh3AICXQNpEERiM4x+p7Zq1QpKpRIdOnTAkiVL0K5dOygUCv75MmXKoGvXroiKihI0UEIIIYQQoRidAM2bNw+dO3fWOzHqo0eP4Obmhm7duqFbt26CBEgIsS1qTo3f7vwGAOjk3UmwyTELjitjrWPMSFQqYOdOzbJEYtlgBPay159jHFAHiM6OhppT04SoxCYYnQDNnDkTf/31V5EE6P79++jVqxcuX74sWHCEENuTq8rFGxFvAACyQrPgqnAt1f5eNsbMgwcPUL169VLtX0hSlQoYMUKzvH27haMRhiFj/CiZEhgMfJryKear5pe6zQkxB4MSoEOHDuHgwYMAAMYYxo8fDwcHB50yDx8+hIeHh/AREkJsilQihX8Vf365tAqOMdOjRw8AwLFjxzB//nxkZmZaVQJkj171+gOAFFLgAVCrVi2aCoPYDIMSoK5duyI5ORkAcOHCBQQEBMDVVTfDd3FxQdeuXYWPkBBiU5wdnHFlzBXB96tvTi9iPi97/RVSBbAF+CTiEzg7OFsiPEKMZlAC5OrqigkTJgAAPD090bNnT52Oz6WlVCoREhKC+fPnIzg4GACQlJSE+fPn48qVK6hevTrmzJmDNm3aFLuPI0eO4PPPP0d6ejratGmDsLAwuLm5CRYjIYQQQuyHwZfAevToAYVCAYlEgmPHjhVbtk+fPkYFkJeXh2nTpuHWrVv8Ou1lNh8fHxw4cAAnT57EhAkTcOzYMb2nu69evYq5c+di8eLFaNCgAZYtW4bQ0FBs3brVqFgIIYQQIg4GJUDr1q1D+/btoVAosG7dumLLSSQSoxKg+Ph4TJs2DYwxnfXnzp1DUlIS9u7dCxcXF9StWxdnz57FgQMHMHHixCL7iYiIQPfu3fljf/bZZ+jYsSOSkpJQs2ZNg+MhhJReTn4Ouu/pDgA4PuA4XRIRASWnBIYCS5OXIiQ/hNqc2ASDEqDffvtN73JpXbhwAcHBwZgyZQoCAgL49VFRUWjYsKHOnWZNmzbFlStX9O4nKioKI0eO5B9Xq1YN1atXR1RUFCVAhJgZxzj8fu93fpnYPw4cUBu4kXuD2pzYDIMSoIsXLxq0M4lEgmbNmhl88P79++tdn56ejsqVK+usq1SpEh48eKC3/MOHD40qXxy1Wm1UeVuhrZe91k8fqrPlyCVy7A3Zyy8bG0/BeqjVanCc5geV4zj+uYLrtGULl3vVdqYoo5LJoN6rqbsqJ8ckxy/4egpdj5JuJ2My4DtgwoQJfJsbsp/CbV0ca3lvmxPV2bhtSsKgBGjQoEEG7UwikQhyd0ZOTk6RTtYKhQJKpVJv+dzcXKPKFyc6Otq4QG2MvddPH6qzZdRDPQDAtavXjN42Li6O/18qleLevXsAgHv37vFngbXrkpKS0LhxY0RHRxcp97LtTFXmbnIyrnTXXP67e/y4yY6vJXQ9SrpdcmIyEANU+bcK3+aG7KdwW7+KNby3zY3qbDoGJUA3btwwdRw6HB0d+fEltJRKJZycnIotXzjZUSqVcHY27jq0n58fZDL7G8FUrVYjOjrabuunD9XZduusPVPg4+ODgIAAxMTEAAC8vLz4S+XaddpL3H5+fkXKvWw7S5QRat9qtRrH/0uurDVGQ8sUbuvi2Mt72xhUZ8PqrN2mJAxKgFJSUlCtWjVIJBKkpKS8tKwQg5JVqVIF8fHxOusyMjKKXOYqWD4jI6NIeWMHZpTJZHb9RrP3+ulDdTY/NafGueRzAICWNVoaPS2CNnZtPbRnBqRSKf9cwXXasoXLvWo7U5SRMQbZf4PGyv67ucMUx9cSuh4l3k4CoCYQnxcPSACZ1LD2KNzWr2Lp97YlUJ1Nx6AEqFOnTvjrr79QqVIldOrUCRKJROfOLe1joS6B+fv7Y9u2bcjNzeXP+kRGRqJp06bFlo+MjERISAgAzfDsqamp8Pf3L3UshBDj5Kpy0eZLzZhdQkyFYUuk+fnAkCGaZTuZCsMQSqYEPgKW3F+CmaqZompzYrsMSoB+/fVXflDBX3/91aQBAUCLFi1QrVo1hIaGYty4cTh16hSuXr2K5cuXA9Bc3nry5Anc3Nwgk8nw4YcfYtCgQQgICICfnx+WLVuGDh060B1ghFiARCJBPbd6/DKxfxJIgH+BKlWrUJsTm2HQpC2enp78m9rT0xOenp5QKpWIjY1FfHw8OI7j1wtBJpNh06ZNSE9PR0hICH744Qds3LiRv7x2+fJltGnThp+ILzAwEEuWLMHGjRvx4Ycfonz58nyyRAgxLxcHF9yaeAu3Jt6Ci4PLqzcgNs9R6gisB1Z5raI2JzbD6NngU1NTMXPmTFy8eBHly5cHYwzPnj1Dp06dsGzZMlSoUKFEgdy8eVPnsZeXFyIiIvSWDQ4OLlI+JCSEvwRGCCGEEPIyRk/bO2/ePMhkMvz66684f/48Lly4gOPHj+Px48dYsGCBKWIkhBBCCBGU0QnQxYsXMW/ePJ3LXbVr18aCBQvwxx9/CBocIcT25Kpy0fPrnuj5dU/kqnItHQ4xAyWnBPoD4Snh1ObEZhh9Caxu3bqIi4tDvXr1dNYnJSUJ1geIEGK71Jwax24d45eJ/ePAAT5AVHYUtTmxGQbPBq/VsmVLzJ07FzExMfxgRTdv3sTOnTsxbNgwU8VJCLERCpkCX779Jb8sJpxcDnypqTsnoruh5BI5cAgYNWqU6Nqc2C6DZ4MvqGLFijh27BiOHTvGrytbtiwOHDiAcePGCRshIcSmOMgcMDRgqKXDsAgmlwMDBmiW9+yxcDTmI5fIgStAu3Lt4CBzsHQ4hBjE6NngCSGEEEJsndF9gADg0aNHuHPnDj+PC2MMSqUSMTExGDVqlKABEkJsi5pTI/qhZm4ev8p+Rk+FYcskajVw9OiLZZHgGAdUBe7l3YOaU4uqzYntMjoB+u6777BkyRKoVCqdKTEkEgmaNGlCCRAhVi4xMVFn7jx3d3fUqlVLsP3nqnIRuDUQgGFTYRSOR4jpdCxFmp8P9OqlWRbbVBhjgLlJc/Gx6uNSTYVR+P0AaLpdECI0oxOgLVu2YMyYMRg1ahQ6deqEffv24fnz55g5cya6du1qihgJIQJJTEyEr68vsrOz+XUuLi6IjY0VLAmSSCSoXrY6v2xsPFrakd6J9ZNAAjzVJCqlmQqjuPeDi4sLvvvuu9KGSYgOo8cBevjwIfr06QOFQoFGjRrhypUrqFevHubMmYN9+/aZIkZCiEAyMjKQnZ2NiIgIREZGIiIiAtnZ2UX+4i4NFwcX3J96H/en3n/ltAiF44mMjERYWBgAIDMzU7CYiGk5Sh2B1cB67/WlmgpD3/tB+x6l9wMRmtFngNzc3PDo0SPUqFEDderUQWxsLLp3744qVaogLS3NFDESQgTm6+uLoKAgS4fBKxiPLV8CI8KwtvcnsU9GJ0Ddu3fHrFmzsGzZMrRt2xYzZ85Eo0aNcOrUKXh5eZkiRkKIHSnYx4OSHUKIpRidAE2fPh1ly5bF48eP0blzZ7zzzjtYuHAhKlSoQDOwE0KQq8rFoO8HAQC+6vsVnORO/HPF9fGg/j62TckpgX7AutR1eEf1jk6bE2KtjE6AHBwcMGHCBP7xlClTMGXKFEGDIoTYLjWnxv6Y/QCAnW/v1HmuYB8PX19fHDt2DPPnz6f+HTaOAwc0Ai48v0BTYRCbUaJxgC5evIi9e/fi9u3bcHBwQN26dTFkyBD4+voKHR8hxMYoZAps6L6BX9ZH28fD3i6BcXI5sGHDi2WRkEvkwFFgyJAhNBUGsRlG3wUWERGB4cOHQ6FQ4N1330Xv3r2hUqnw3nvv4eh/A4ARQsQpMTER0VHRaCVvhVbyVki9L65LW0wuB8aPB8aP1yyLhFwiBy4CXSt0pakwiM0w+hP6xRdfICwsDH369NFZ36xZM6xevRo9e/YUKjZCiA0xxxhDhBAiFKPPAGVlZcHPz6/I+mbNmuHRo0eCBEUIsT3a/j27v9qN73//Hiv/txLZOcKOMWTtJBwHnD4NnD6tWRYJjnGAG/BA+UCzTIgNMDoBGjhwIMLDw/H06VN+XV5eHjZs2ID33ntP0OAIIbanjk8d9D3VF9MTp5ewl6HtkiqVQMeOQMeOmmWRUDIlMAmYnjgdOfk5lg6HEIMY9PXUqVMnfnhzxhhSUlLQrl071KxZE1KpFImJicjLy6NO0IQQAEB5x/JQq9XIQpZOR2d76/RMCsjVXPIkxFYYlABNnDjR1HEQQuyEs9wZmbMzcfToUfTK74WBAwcWKUPj/tgXJ6kTsALYFrGtVBOhEmJOBiVAffv2LbIuJycH9+7dA8dxqFWrFsqUKSN4cIQQ26Ud2ycsLAw9evQAABr3hxBiNYy+Qp+fn4/w8HB8/fXXUKvVYIxBLpejd+/eWLx4MRQKGgOCEPKCt7c3zfNFCLE6RidAn376KX7//Xds3rwZgYGB4DgOly9fxtKlS7FmzRrMmjXLFHESQqxMwTm9gBfJjVKtxNBDQ5GQlgDILBUdMad8lg/0AbambcW7qnfhKHe0dEiEvJLRCdCRI0ewdu1aBAcH8+vat28PR0dHTJ8+nRIgQkSguDm9AOB+6n3sitqleWD0fabEFqmZGggAzjw7AxWngiMoASLWz+ivJ8YYKlWqVGS9m5sbnj9/LkhQhBDrVnBOr8jISERGRiIsLAwAkPU0C591+QwfVPoAENmQMEwuBz77DPjsM/GNBP0L8EGlD2gkaGIzjE6AWrZsiZUrVyIrK4tf9/TpU6xevVrnrBAhxP5p5/QKCgqCt7c3AM2P4YzWM9CrYi9AZPNicnI5MGMGMGOG+OYC+xvoVbEXzQVGbIbRn9A5c+Zg8ODBaNu2Lf+Fd+fOHdSsWRObN28WPEBCCCH2Tdt/jDrJE3MyOgEqW7Ysjhw5gj/++AMJCQlwdHSEt7c3WrduDamULvgTInYc43D/6X08Uj0CJJaOxrwkHAdcvPhiWSQ4xgFlgUeqR+AYB6nEsN8C7XhQhceKonGiiDkYnQD16tULGzZsQOfOndG5c2dTxEQIsWFKpkSNNTU0D8RzFQjAf1NhtGihWd6+3cLRmI+SKYFpwKS7kzA8f7jBgyEWHiuKxoki5mT0KRupVIr8/HxTxEIIsRNyqRwyugdeXNQocZtrx4rSdqsgxByM/vusQ4cOGDZsGDp27AhPT88iAx9OmDBBsOAIIbbHSeqE/Pn52LNnDwbmF50Gg9gfJ6kTEAbsithFU2EQm2F0AnTz5k00atQIDx8+xMOHD3We006YKoSDBw8iNDS0yHqJRIIbN24UWf/WW2/h5s2bOut+/PFH+Pj4CBYTIYQQQuyD0QnQV199ZYo4iujRowfatm3LP1apVBgyZAg6dOhQpKxarcbdu3cRERGB2rVr8+srVqxohkgJIYQQYmsMToAOHz6MEydOwMHBAV26dEHPnj1NGRecnJzg5OTEP966dSsYY5g+fXqRssnJycjPz0eTJk3g6EgjkBJiSfksH+OPjkdcehxNhSES+Swf6AHsTN9JU2EQm2FQJ+hdu3Zhzpw5yM3NRU5ODmbNmoXVq1ebOjZeZmYmvvjiC0ybNk3vZKvx8fGoVq0aJT+EWAE1U2PTP5tw8slJmgpDJNRMDbQATj45CRWnsnQ4hBjEoDNAe/fuxbJly9CnTx8AwC+//ILQ0FBMmTJF0H4/xfnmm29QuXJldOvWTe/zt2/fhoODA0aPHo1r167B29sbM2fORJMmTYw6jlptn8PWautlr/XTh+r86jLafwUfl+RY2mXuv3FvpEyK+W3nIzo6Goe4Q+A4rkgZ7brCj0tSRhuHKfZtbBm1VApu/nx+2RTHL9hOQtejpNtJmRQ4DfTp0wdSSAVtj4L1pc+zfStJnUvz+hiUACUlJaFVq1b8406dOiEnJwcPHz5ElSpVSnxwQzDGsG/fPowYMaLYMnfu3MGTJ0/Qr18/TJo0Cd999x2GDBmCY8eOoVq1agYfKzo6WoiQrZa9108fqrOuuLg4/n+pVFrksaH0bXfv3j0AwP3E+3i70dtQPFPgkPoQ7t27hytXruiU0a4r/NjYMklJSWjcuDGio6MF33dJyty5fx+X335bs3z8uMmOryV0PUq63f3E+8BpoGnnpoiJjhG0rtr3GkCfZ7EwV50NSoBUKhXkBea1kcvlcHR0hFKpNFlgWtHR0UhLS3tpn6OwsDDk5uaiTJkyAIBFixbh0qVLOHz4MMaMGWPwsfz8/CCT2V+nBbVajejoaLutnz5UZ/111v6F7ePjg4CAgCKPDaVvu5gYzQ+fl5cXAgICijw2RZmaNWsC0Hx2LXF8Y8oItW+1Wo3j/yVX1hqjkGW07zXAfr+j9aHvMMPqrN2mJKx+nNYzZ86gWbNmKF++fLFl5HI5n/wAmlvl69Spg7S0NKOOJZPJ7PqNZu/104fqXPS5gmUKPzbmGIW3054JkkgkeJb/DDksh19fuIx2XeHHJSmjjcMU+za6DADZf8N0aM+nmeL4KLRvoepR0u0kEgngBOSwHEilUkgkEsHqqv3/zp07iIqK4h+7u7ujVq1asHf0HWY6BidAx48f10kyOI7DiRMn4ObmplNO209IKFevXkVQUNBLywwaNAjBwcH8IIwcx+HmzZsYMGCAoLEQQl4tj+Wh4qf/DUHhYNlYzE2mVAKNG2uWRTQVRh7LA2YDo++MxoD8AYIOhqidF2z+/PmY/1//KgBwcXFBbGysKJIgYhoGJUDVq1fH//73P511lSpVQkREhM46iUQieAJ069YtvPXWWzrr1Go1Hj16hPLly0OhUKBTp07YuHEjfH194e3tjd27d+PZs2fo27evoLEQQggxL+28YGPHjsWwYcMgk8kQGxuLgQMHIiMjgxIgUmIGJUC//fabqeMoVkZGBsqVK6ezLjU1FZ07d8bu3bsRHByMoUOHIi8vD0uXLkVGRgb8/f3x5Zdf6pyxIoQYLjExERkZGTrr8vLy+KEmYmNji93WUeII5Twlvv7mawzNH2rKMImVcJQ4AkuAnbt2wsXBxSTHqF69OoKCgkR3OYiYjtX3Abp69WqRdTVq1NCZ9kIikWDMmDFGdXgmhOiXmJgIX19fZGdnv7Ks9vJEQRKJBA4yB8glVv/1QgQikUgADpBL5GYZGoUQIdAwZYQQHRkZGcjOzkZERAQiIyMRGRmJsLAwAJo7Lgs+1l6eIIQQW0N/ohFC9PL19eVvQNBe8vL29kZQUNBLL4GpmAozfpmBmIwYmgpDJFRMBXQFvs74Gv3U/aCQFR2xnxBrQwkQIURQKqbCyrMrNQ/oHLMoqJgKaA0cyzyGfHU+JUDEJlACRAgRlFwix/RW0xETG4Nj3DFLh2NWTC4H/puwmcnF8/Uql8iBv4AePXvAQSaysQ+IzaK/zwghgpJL5Ah/Ixz93fsD4pnGCADAyeVAeDgQHq5ZFgm5RA6cAPq796ezP8RmUAJECCGEENERz58ohBCzYIwhX52v6RciNhwH3L37YlkkGGOAVNMXiDFGt8ITm0BngAghgspjeVAsVWDo7aHinArD2xvw9tYsi0QeywMWAENvD0V2/qvHjyLEGlACRAghhBDRoQSIECIoR4kjHs96jK3eW4F8S0dDzMFR4gisALZ6bzXZVBiECI0SIEKIoCQSCSo4VYCrTLgZwYl1k0gkQC7gKnOl/j/EZlACRAghhBDRoQSIECIoFVNh0elFOPDvAZoKQyRUTAV0AA78ewBKtXg6fxPbRrfBE0IEpWIqLP59seYB/YklCtoE6PvH39NUGMRmUAJECBGUTCLDuGbjEHcrDie5k5YOx6yYTAaMG/diWSRkEhlwAejStQvkUvpZIbaB/j4jhAjKQeKAjT03YqjHUPFNheHgAGzcCGzcqFkWCQeJA3AMGOoxFI5yR0uHQ4hBKAEihBBCiOjQuUpCCBEKY0B6+otlQojVojNAhBBB5XK5cAhzwJD4IeKbCiMvD6hcGahcWbMsErlcLjAfGBI/BM+Vzy0dDiEGoTNAhBDBqTgRToQqdjJALbZOX8Sm0RkgQoigFBIFkqckY13tdQDlQaKgkCiAVcC62uvg7OBs6XAIMQglQIQQQUklUniW84Sb3A2gbjCiIJVIgWeAm9xNs0yIDaBLYIQQQmxeYmIiMjIydNa5u7ujVq1aFoqIWDtKgAghglIxFcL/Cselx5doKgyRUDEV8Dpw5PER9FP3M/tI0ImJifD19UV2drbOehcXF8TGxlISRPSic5WEEEGpmAozT87E3n/30jeMSKiYCngD2PvvXuSr881+/IyMDGRnZyMiIgKRkZGIjIxEREQEsrOzi5wVIkSLzgARQgQlk8gwxH8IEhIScIY7Y+lwzIrJZMCQIS+WRUImkQFXgLZt21p0KgxfX18EBQVZ7PjEttDfZ4QQQTlIHLCzz06MrjJanFNh7NwJ7NwpvqkwDgGjq4w261QYsbGxuHTpEmJjY812TGI/6AwQIYQQm5KamgoAGDhwoN71hBiCzgARQohQGAOeP9f8o6kwTCYzMxMAEBYWhsjISISFhemsJ8QQlAARQgSVy+WiwooKGJUwSpxTYZQpA5QpI76pMGYDoxJGmXUqDG9vbwQFBcHb29tsxyT2gy6BEUJ0+lAI0Z/iSd6TUu+D2BgnIJvLfnU5QqwEJUCEiFhxfSkKPmcshUSBuAlx+OGHHzBdNb1U8RHboJAogHXAypUraSoMYjOs+hLYiRMnUL9+fZ1/kyZN0lv277//Rq9eveDv74/BgwcjKSnJzNESYnsK96UQoj+FVCLFa5VeQ1VFVZoKQySkEinwCKiqqEpTYRCbYdVngOLj49GxY0f+CxkAHB2L3mKZkpKC8ePHY+LEiWjbti02btyIcePG4YcffoBEIjFnyITYJG1fCkCYS2CEEGLtrDpVv337Nnx8fODh4cH/K1euXJFy+/btQ+PGjTF8+HC89tprWL58Oe7fv48LFy5YIGpCxE3FVNh4YSNOZJ6w8m8YIhQVUwHNgROZJywyEjQhJWHVX0+3b99G7dq1X1kuKioKzZo14x87OzujUaNGuHLliumCI4TopWIqTDg+AbsydtFcYCKhYiqgJ7ArYxeUaqWlwyHEIFZ7CYwxhjt37uDPP//E1q1boVar0a1bN0yaNAkKhe5Ee+np6ahcubLOukqVKuHBgwdGHVOtts9ha7X1stf66UN1fnUZtVoNjuMAABzH8c8Zsu5lZcAB7/i+g8TERFxkF0u8H0PLaOtjin0bW0YNgL3zDr9siuMXbF+h61Hi7TgA14HmLZoDzDTtoW1nQ7cr/F63NfQdZtw2JWG1CVBKSgpycnKgUCjw+eefIzk5GUuXLkVubi7mzZunU1ZbriCFQgGl0ri/RKKjo0sdtzWz9/rpQ3XWFRcXx/8vlUpx7949AMC9e/f4M6aGrHtZmdSkVIR2D8XxuOO4qLpY4v0YUiYpKQmNGzdGdHS04PsuSZk7qam4FBqqWT5+3GTH1xK6HiXdLjUpFdgHvNXkLdy4dsMkrzXw4r1tyHaF3+u2ir7DTMdqEyBPT0+cP38e5cuXh0Qiga+vLziOw4wZMxAaGgpZgYkGHR0diyQ7SqVSb3+hl/Hz89PZr71Qq9WIjo622/rpQ3XWX2ftX8o+Pj4ICAhATEwMAMDLywsBAQEAYNA6aylTs2ZNAJrPrrXGKPS+1Wo1jv+XXFlrjKYoA7z4jjZku8LvdVtD32GG1Vm7TUlYbQIEABUqVNB5XLduXeTl5eHJkydwc3Pj11epUgUZGRk6ZTMyMuDr62vU8WQymV2/0ey9fvpQnYs+V7CM9i9jqVTKP2fIOmsqo62PNcco9L61rDlGocsAxb9v9W1X+L1uq2w9/pIwV52t9rzgmTNnEBwcjJycHH5dbGwsKlSooJP8AIC/vz8iIyP5xzk5OYiJiYG/v7/Z4iWEaORxefBc7YmJdyaKbyqM3FxAIgEkEs2ySORxecBUYOKdicjOp9GgiW2w2gQoMDAQjo6OmDdvHhISEvD777/js88+w4gRI6BWq5Gens5f9nrnnXdw6dIlbNu2Dbdu3UJoaChq1KiB4OBgC9eCEPFhYEh5loLH6seWDoWYCQMDygGP1Y/BaBJYYiOsNgEqU6YMduzYgUePHuGdd97B3Llz8f7772PEiBFITU1FmzZtcPnyZQBAjRo1sH79ehw4cADvvvsuMjMzsXHjRhoEkRALUEgUuDz6MpbVXAaoLB0NMQeFRAFsAZbVXAYnuZOlwyHEIFbdB+i1117Dl19+WWR9jRo1cPPmTZ117du3R/v27c0VGiGkGFKJFAFVA3Dd8TpNhSESUokUeAB4OXpBJhVXfxViu6z2DBAhhBBCiKlY9RkgQohxHjx4gEuXLvF3ULi7u6NWrVpmjUHFVNh5ZSfOPj1Lf2KJhIqpgADgj6d/4D31e3CQiaz3O7FJlAARYicSExPx7rvvIrfA3UcuLi6IjY01axKkYiqMODxC84CuhoiCiqmAPsC2h9uwWr2aEiBiE+jvM0LsREZGBnJzc7F7925ERkYiIiIC2dnZRcbIMjUppOjxWg/4u/iLrg8Qk0qBHj2AHj00yyIhhRSIA/xd/KkPELEZ4vmEEiISDRo0QFBQkNEDgQpFIVXgaP+jmFF9hujuAuMUCuDoUeDoUc2ySCikCuBrYEb1GXQXGLEZlAARQgghRHQoASKEEEKI6FACRAgRVB6Xh9fWv4Zp96aJcyoMV1fA1VV8U2FMBKbdm0ZTYRCbQXeBEUIExcAQ/yje0mFYTrb4EgAGBlQC0vLTaCoMYjMoASLEzsXGxupdNhWFRIE/h/2JX375BUtUS0x+PGJ5CokC2AEsWLCAOkETm0EJECF2KjU1FQAwcODAYp8zBalEita1WuOu813R3QYvVlKJFEgCfJx96DZ4YjOoDxAhdiozMxMAEBYWhsjISERGRiIsLEznOUIIEStKgAixc97e3ggKCkJQUBC8vb1Nfjw1U2Pf9X04n3WevmFEQs3UQEPgfNZ5qDiRDf5EbBZ9PRFCBJXP8vHe/vew/sF6mgpDJPJZPvAesP7BeuSp8iwdDiEGoT5AhBBBSSFFe6/2SEtLww12w9LhmJdUCrRv/2JZJKSQAnc1o5BLJeKpN7Ft9E4lhAhKIVXg9NDTmFdjnuimwlArFMDp08Dp05plkVBIFcBOYF6NeXB2cLZ0OIQYhBIgQgghhIgOXQIjxEYkJibqzOzu7u6OWrVqWTAiQgixXZQAEWIDEhMT4evri+wCowy7uLggNjbW6pIgJadEwJYAPH78WHTfMLLcXMDDQ7O8YoWFozEfJacExgBzEucgJD+ELoMRm0CXwAixARkZGcjOzkZERAQiIyMRERGB7OxsnTNC1oIDh6i0KCQqEwGJpaOxgIwMzT8R4cABVYFEZSI4xlk6HEIMQgkQITbE19cXQUFB8PX1tXQoxVJIFPhl4C+YVX2W6DpBi5VCogB2A7Oqz6KpMIjNoASIECIoqUSKrnW7ws/Fj6bCEAmpRAokAH4ufjQVBrEZlAARQgghRHQoASKECErN1DgadxSXn1+mbxiRUDM18Bpw+fllmgqD2AyR3aNBCDG1fJaPXt/00jygqyGikM/ygQHAqtRVWKxaDLmCflqI9aN3KSFmVng8H8C+xvSRQopm1Zvh33//xR12x9LhmJdUCjRr9mJZJKSQAvcB7zreNBUGsRmUABFiRvrG8wGsd0yfklBIFbg48iL27NmDgaqBlg7HrNQKBXDxomZ5zx4LR2M+CqkC+AIIiwijMYCIzaBUnRAzKjyej7WP6UMIIfaKzgARYgHa8XwIIYRYBiVAhNiw2NhYfvnGjRsWjOQFJadE6/+1Rnp6uui+YWR5eUDt2prlBQssG4wZKTklMBxYnLzY5qbCoDn2xEtkX0+E2IfU1FQAwMCBRfvYPHjwwNzh6ODA4e+kvzUPxDYVBmPAvXsvlkWCAwfUAm7l3rKpqTBsaY49IjzqA0SIDcrMzAQAhIWF8X2JlixZovOcpThIHPD9+99jctXJgNqioRAzcZA4AHuByVUnw1HuaOlwDGZLc+wR4Vn1GaC0tDQsW7YM586dg6OjI3r06IGpU6fC0bHoB2zs2LH47bffdNZt2bIFHTt2NFe4hJidt7c335fo+vXrFo5GQyaRoU+DPnge+RywnZMBpBRkEhlwA2hWphnkUqv+WdGL+uSJk9W+UxljmDRpEsqVK4c9e/bgyZMnmDNnDqRSKWbNmlWk/O3btxEeHo5WrVrx68qXL2/OkAkRTOF+CQX7+hBCSsbQz1Xh9dQvyD5ZbQKUkJCAK1eu4K+//oK7uzsAYNKkSfj000+LJEBKpRLJycnw8/ODh4eHJcIlRDDFjRUEvOj7Y804xuH03dOIyY4RXx8gkeIYB9QGYrJjoObUVjkhqiGfq+L61lG/IPtktX2APDw8sH37dj750crKyipSNiEhARKJBDVr1jRXeISYjL6xgsLCwgBYvn+PIZRMiY67OuKTlE+s+E8sIiQlUwJDgU9SPkGuKtfS4ehlyOdKX9866hdkv6z266lcuXJo27Yt/5jjOERERKBly5ZFyiYkJKBMmTKYOXMmLly4gKpVq2LixIlo3769UcdUq+2zx6a2XvZaP32stc4F4yoco3ad9rGPjw/8/f0BvOjfw3Ec1Go1OI7TeaxdNkUZY7djHEND94Z48uQJ7uO+yWPUvnamqr9RZRgDa9iQXzbF8Qu+py3d1tp1jGPAQ8DT07PY7Up7LG07G7pdaT5XXl5efBl9n1lzsNbvMFMqSZ1L8/pYbQJUWHh4OGJiYrB///4izyUkJCA3Nxdt2rTBqFGjcOLECYwdOxbffvst/Pz8DD5GdHS0kCFbHXuvnz7WVue4uDj+f+l/c0Vp1/3888+Ii4vDnTt3ipS599+t1ffu3cOVK1eKPAaApKQk/v/iyhiyn9Ju9yDpAXZ3343jx49jfv78Uh//ZWWSkpLQuHFjREdHC77vkpRJePAAl3bv1iwfP26y42sJXY+Sbvcg6QGwCRgTNgZx1+NM8loDLz7PhmxX+LOm77NXkv2Ym7V9h5mDuepsEwlQeHg4du3ahTVr1sDHx6fI8+PGjcOgQYP4Ts8NGjTA9evX8d133xmVAPn5+UEms75r16WlVqsRHR1tt/XTx1rrrP0L08fHBwEBAQCAlJQUAMD8+fN1ypYrV44vExMTA0Dzl2lAQECRxwBw7do1AEDNmjWLLWPIfoTazhxltJe9/fz8rDZGofetVqtx/L/kylpjNEUZ4MV3tCHbFf6s6fvslWQ/5mKt32GmVJI6a7cpCatPgMLCwvDNN98gPDwcb775pt4yUqm0yB1fderUQXx8vFHHkslkdv1Gs/f66WNtddbGUjCup0+fAtC813v06IFjx45h/vz5ePr0KV9G+5enVCqFTCYr8tiUZSx9/FeV0b6e1hyj0PvWsuYYhS4DvPjcGLJd4c+avs9eSfZjbtb2HWYO5qqzVSdAGzZswN69e7F69Wp069at2HKzZ8+GRCLB8uXL+XU3btzQe7aIEGulHdPH1m95V3JKdP2qKx6kPrDybxjhyfLygEaNNMvTplk4GvNRckpgELDi/gqbmwrDUAU/lyW9Lb7wbfil2RcpPav9erp9+zY2bdqEUaNGoWnTppp5hf7j4eGB9PR0lC1bFk5OTujUqROmTp2K4OBgBAYG4scff9QZGZcQYj4cOJxMOKl5ILbb4BkDtJdsxDYVRl3gWs41m5oKwxD6bo0vyW3xxd2GT7fYW47V3gb/66+/Qq1WY/PmzWjTpo3OPwBo06YNjh07BgB44403sHDhQmzevBm9evXCb7/9hu3bt6NGjRqWrAIhouQgcUBE3wiMrTKWpsIQCQeJA3AAGFtlrE1NhWGIwrfGl/S2eH234dMt9pZltWeARo0ahVGjRhX7/M2bN3Ue9+vXD/369TN1WISQV5BJZBjQZAAQDWzmNls6HGIGMokMiAZal21tk1NhGKLgtDOlQdNuWA/7fKcSYiVoSgtCLEv7maPPHimMEiBCTMTWp7QoKY5xuHj/Im7n3hZfHyCR4hgHVAdu5962mqkwipvWwp4/e8Q4VtsHiBBbZ+tTWpSUkinRYnsLLExeSH9iiYSSKYFRwMLkhVYzFUbhvjti+OwR49DXEyEmVvCavxhOw0sggVd5Lzx//hwZEFnnTokE8PJ6sSwSEkiATM0t3RIrq7e9DC9BhEcJELF7hfvhCDXuhr4xPfLy8uDoqLkLRqxfuI5SR9ydfBd79uzBwPyBr97AjqgdHYG7dzXLe/ZYNhgzcpQ6Ap8Dn0d8DhcHF0uHQ4hBKAEidi0xMRGNGzfW6YcjxLgbL+vfUxj1OSCEEOtDfYCIXSvcD0eocTde1r+H+hwQQoj1ozNARBRMNfaGvv49Yu9zoOSU6LO3D5JTk0X3DSNTKoHmzTXL48ZZOBrzUXJK4ANgTeoavKN6B05yJ0uHRMgriezriRBiahw4HL55WPPAuvrDmh7HAf/882JZJDhwQAMg8nkk1BwN/01sA10CI4QISi6RY1uvbfjI4yOaCkMk5BI58APwkcdHUMgUlg6HEINQAkQIEZRcIsfIpiPRsXxHQDwnQURNLpEDl4CO5TvCQeZg6XAIMQglQIQQQggRHUqACCGC4hiH6w+vIzkvWXx9gESKYxzgASTnJWuWCbEB1AmaECIoJVOi8ebGmgf0DSMKSqYExgOzk2ZjQv4EuCpcLR0SIa9EX0+EEMG5u7gjLzcPz/DM0qGYn7u7pSOwjOdA2bJlLR0FIQajS2CEEEE5SZ2QPiMdm+tsBvItHY15qZ2cgPR0ID1dsywSTlInIBzYXGcznf0hNoPOABGbpW8uLqHm+SKEEGLfKAEiNqm4ubi083x5enpaKDJCCCG2gC6BEZukby4uoeb5IqWj5JQYcHAANj3YJLo/sWRKJdChA9Chg2ZZJJScEggBNj3YhFxVrqXDIcQgIvt6IvbGVHN8kZLjwOHr6K81D8R2GzzHAb//rlkeNMiysZgRBw5oAvyd9TdNhUFsBiVARFBC9cspzX5iY2OhVqsRFxcHrpj5mApPVJqXlwdHR8diHxtzfLGTS+RY8+YazVk5dYSlwyFmIJfIgZ+AgQMHimYqjMLfIfT9YHsoASKCeVW/HEO/HEq6n9TUVACaL+HinntZmVcxth5iJZfIMbnlZOy5vQcRHCVAYiCXyIFzQLcJ3ex+KozivkPo+8H2UB8gIhih+uWUdD+ZmZkAgLCwMFy4cAERERFYsmSJznMFy2j3HRYWprOu8GPqX0QI0dL3HULfD7aJzgARwQnVL6ek+/H29kZQUBCkUmmxl8C0ZYAXp7K16wo/JsbhGIe7mXeRnp8uvj5AIsUxDqgApOeng2McpBL7/9uavh9sHyVABEDRPjd0PZuUlJIp4b3WW/OAvmFEQcmUwGRgyr0pGJk/UrSDIZa0X1DB7bT9Dwv2Y6xSpQp9H5sAfT0RvX1u6Ho2KQ0XBxeoVWrkIc/SoZifi4ulI7AMJYrcOCAWJe0XZGifRPo+Ng37P09JXqlwnxu6nk1Kw0nqhOdznmNH3R3inArj+XPg+XPxTYXxCbCj7g5Rnv0pab+gwtsV7H+o7ce4e/du+j42EToDRHg0pg4hhJRcSfsFFdf/8GX9GEnpUQJkJWheK8NovyAKX2snhBBrJNR3VsHt6bdBGJQAWQGhxs+xZ8VdK9euJ9Yjn+Vj5A8jEf8wHpBZOhrzkiqVQM+emuV337VwNOaTz/KB3sD2h9vxrupdOMrF2ReoIKG+sx48eFBkP/TbIAzqA2QFaF6rVyvuWrl2PbEeaqbG9svbcfrpadF9w0g4Djh2DDh2TLMsEmqmBpoCp5+ehopTWTocqyDUd1bh/dBvg3DoDJAVoT44r1b4WjmxPnKJHEs7LkVUVBT2cfssHQ4xA7lEDvwK9OvXz+5HgjaWUN9ZNO6Q8Kw6AcrLy8PixYvxyy+/wMnJCcOHD8fw4cP1lo2JicHChQsRFxeHevXqYfHixWjcuLGZI9bPnP179B2rYsWKJdrXq+bLAsR3LZr6IL2aXCLH3HZzsSdpD/apKQESA7lEDpwB3h79tmjmArM0a5/P0Bb6tVp1AvTZZ5/h2rVr2LVrF1JSUjBr1ixUr14d3bp10ymXnZ2NUaNGoXfv3lixYgW++eYbjB49GidOnICLhcfkMGf/npcd67vvvjN4P8bMlyWWa9HUB4kQYg1sYT5DW+nXarVX6LOzs7Fv3z7MnTsXjRo1QteuXTFixAjs2bOnSNljx47B0dERM2fORN26dTF37ly4urrip59+skDkuszZv+dlxzLmurMh82WJ7Vo09UEyHGMM6c/T8VT91NKhEDNhjAEuwFP1U80yMRlbmM/QVvq1Wu0ZoBs3bkClUiEwMJBf17RpU2zZsgUcx0EqfZG7RUVFoWnTppBINBMPSSQSBAUF4cqVKwgJCTF77PqYs3+PUMd62XxZYkV9kF4tj+Wh8srKmgfUHUQU8lgeMBMYd2ccBucPFuVgiOZmC/MZWnu/VqtNgNLT01GxYkUoFC+uJ7u7uyMvLw+ZmZlwc3PTKVuvXj2d7StVqoRbt24ZdCztXyxKpRIymbD37arVari6uiI2NhZqtRoAEBcXp7Ou8GN9ZQDoHRSr4LqX7ScpKQn//PMPpFJpkf0U3i4xMRGurq5ITEzExYsXAUDvOnPWo/DxXxXjP//8g4SEBKO3M3cZSx/fFDEmJyXDVf7fD6ALTB6jXC6HSqWyitcxKTkZaldN3ZOSk01yfI7jkJ6ebhVtrV1XsM0jIyPhLHcW/LVOT0/nv8Osoa1N/bkW+jtM3/dq4e9efY9LUuZlvwVqtRpKpRL6aMsa81us3aYkZx4lzErPVx46dAhr167FqVOn+HVJSUno0qULfv/9d1StWpVfP2TIEDRt2hSTJk3i161duxaXL1/Gzp07X3kspVKJ6OhoQeMnhBBCiHn4+fnpnDAxhNWeAXJ0dCySJWofOxWaY6e4soXLFUcul8PPzw9SqZS/jEYIIYQQ68YYA8dxkMuNT2esNgGqUqUKHj9+DJVKxVcsPT0dTk5OKFeuXJGyhTtWZWRkoHLlygYdSyqVGp05EkIIIcR2We1dYL6+vpDL5bhy5Qq/LjIykj9TU5C/vz8uX77MXwNkjOHSpUvw9/c3Z8iEEEIIsRFWmwA5OzujT58+WLRoEa5evYqTJ0/if//7HwYPHgxAczYoNzcXANCtWzc8ffoUy5YtQ3x8PJYtW4acnBx0797dklUghBBCiJWy2k7QAJCTk4NFixbhl19+QZkyZfDRRx9h6NChAID69etj+fLl/G3uV69excKFC3H79m3Ur18fixcvRsOGDS0YPSGEEEKslVUnQIQQQgghpmC1l8AIIYQQQkyFEiBCCCGEiA4lQIQQQggRHUqAbERaWhomTZqEFi1aoG3btli+fDny8vL0lj1x4gS6d++OwMBAfPjhh7h+/ToAIDk5GfXr19f7Tztc+s6dO4s89+mnn5qtngUZU+c///wTb731FgIDAzF06FAkJCToPH/kyBF06dIF/v7+GD9+PB49esQ/xxjDypUr0bJlS7Ro0QKfffZZkWHezUWoOjPGsG3bNnTq1AlBQUEYMmQI4uPj+edjYmKKtLOl5s0Tsp2bNWtWpF7Pnz8HAOTl5WHOnDlo1qwZ2rRpg//9738mr1txhKpzcZ/nQ4cOAdB8FxR+ruCI+eZ07949fPTRRwgMDESHDh2wffv2YsvGxMSgX79+8Pf3xzvvvINr167pPG8rn2eh6mxLn2ch29nkn2dGrB7Hcey9995jI0aMYHFxcezixYusa9eubMWKFUXKxsXFMT8/P/b999+ze/fuscWLF7PWrVuz7OxsplKp2MOHD3X+TZ06lb3zzjtMqVQyxhibO3cuW7RokU6ZZ8+embvKRte5YcOG7PPPP2e3b99mn376KWvTpg3LyspijDEWFRXFmjRpwr7//nsWGxvLBg4cyEaNGsVvv2PHDta+fXt28eJFdvbsWdamTRu2fft2s9VVS8g6f/311yw4OJj99ttvLCEhgc2ZM4d16NCBZWdnM8YYO3z4MHv77bd12vnRo0dmrS9jwtb5wYMHzMfHhyUmJurUi+M4xhhjS5YsYb1792bXrl1jv/zyCwsMDGTHjx83a30ZE7bOhT/Pn332GevYsSN7+vQpY4yxTZs2sdGjR+uUefLkiVnryxhjarWavfHGG2zatGnszp077PTp0ywoKIj98MMPRco+f/6ctW7dmq1YsYLFx8ezsLAw9vrrr7Pnz58zxmzn8yxknW3l8yxknc3xeaYEyAbEx8czHx8flp6ezq/78ccfWZs2bYqU/fLLL1nfvn35x8+ePWM+Pj7s6tWrRcpGRkayRo0asfj4eH7dBx98wPbu3StwDYxnTJ0XL17MBgwYwD/mOI51796dffPNN4wxxmbMmMFmzZrFP5+SksLq16/PEhMTGWOMtW/fnh04cIB//tChQ6xjx46C1+lVhKxzv3792NatW/nnlUolCwgIYH/++SdjjLHVq1ezqVOnmqoqBhOyzn/99Rdr3bq13uM8f/6c+fn5sXPnzvHrNm7cyAYOHChUVQwmZJ0LSkxMZH5+fuyvv/7i102bNo2tWrVK4BoYLy0tjX388cc6f0yNHz+eLVy4sEjZffv2sU6dOvE/dBzHsa5du/KfUVv5PAtZZ1v5PAtZZ3N8nukSmA3w8PDA9u3b4e7urrM+KyurSNkKFSogPj4ekZGR4DgOBw8eRJkyZVCrVq0iZVetWoX33nsPdevW5dclJCSgdu3agtfBWMbUOSkpCU2aNOEfSyQS+Pj48KOIR0VFoVmzZvzz1apVQ/Xq1REVFYW0tDSkpqaiefPm/PNNmzbF/fv38fDhQ4Fr9XJC1nnmzJl46623dJ5njOHZs2cAgNu3b9tdO8fHx8Pb21vvcW7cuAGVSoXAwEB+XdOmTREVFWX2yyNC1rmgdevWoVWrVnj99df5ddbSzpUrV8bnn3+OMmXKgDGGyMhIXLx4ES1atChSNioqCk2bNuXnZZRIJAgKCrK5z7OQdbaVz7OQdTbH59lq5wIjL5QrVw5t27blH3Mch4iICLRs2bJI2R49euC3335D//79IZPJIJVKsXXrVpQvX16nXGRkJK5cuYLVq1fz6zIyMpCZmYnvv/8eoaGhcHR0xLvvvovhw4ebfZJYY+rs7u6OtLQ0nXUPHjzg6/zw4cMi88JVqlQJDx48QHp6OgDoPK/9YXrw4IHB88kJQcg6F/yBAIB9+/ZBpVKhadOmADRfmBzHoXfv3nj27BnatWuHmTNnokyZMkJX66WErPPt27eRk5ODQYMG4c6dO/D19cWcOXPg7e2N9PR0VKxYUWfOP3d3d+Tl5SEzMxNubm4mqmFRQtZZKyUlBUeOHMHevXv5dYwx3LlzB3/++Se2bt0KtVqNbt26YdKkSRad+7BTp05ISUlBx44d8eabbxZ5Pj09HfXq1dNZV6lSJdy6dQuA7XyeCyptnW3l81xQaetsjs8znQGyQeHh4YiJicGUKVOKPPf48WOkp6djwYIF+O677/D2228jNDQU//77r0657777Dl27dkWVKlX4ddrOlZUqVcLmzZsxevRobN68Gbt27TJthQzwsjp3794dP//8M06dOgWVSoXvv/8e0dHRyM/PBwDk5uYW+cJXKBRQKpX8dCoFn9cuK5VKU1XHIKWpc0FRUVH49NNP8dFHH8HDwwP5+flISkpCfn4+PvnkEyxbtgyXLl3CjBkzzFGtlypNnRMSEvDkyROMHTsWmzZtgpOTE4YOHYqsrCzk5OTofQ8A9tHO+/fvR+PGjXXmP0xJSeHr/fnnn2PWrFn48ccf8dlnn5m8Ti+zbt06bNmyBbGxsVi+fHmR54trK2072eLnubR1LshWPs+lrbM5Ps90BsjGhIeHY9euXVizZg18fHyKPL9y5Ur4+PhgwIABAICwsDB0794dBw4cwKhRowAAKpUKv/76a5EvwhYtWuDcuXOoWLEiAM0dJo8ePcI333zDT0FiCa+qc7t27TB+/HhMnDgRarUawcHBePvtt/lLCo6OjkU+FEqlEs7OzjofGkdHR34Z0MxHZymlrbPW5cuXMXLkSLRr1w4ff/wxAMDBwQHnzp2Do6MjHBwcAAArVqzAO++8g7S0NJ2k2JxKW+cdO3YgPz8frq6uADSfhfbt2+PUqVPFvgcAwMnJycQ1K55Q7fzzzz/jgw8+0Fnn6emJ8+fPo3z58pBIJPD19QXHcZgxYwZCQ0Mhk8lMWrfi+Pn5AdDcxTN9+nTMnDlT58esuLbStpMtfp5LW2ctW/o8l7bO5vg80xkgGxIWFoYvv/wS4eHhek8pAsD169fRoEED/rFUKkWDBg2QkpLCr7ty5QpUKhVat25dZHtt8qNVt27dIqfgzcmQOgPA2LFjcenSJfz555/YuXMnnj9/Dk9PTwBAlSpVkJGRoVM+IyMDHh4e/JeD9tR5wWUPDw+hq2MQIeoMAOfPn8fw4cPRsmVLrFq1ClLpi497mTJl+C9LAHw/MEu1tRB1VigU/JcloPmCrVGjBv8j8PjxY6hUKv759PR0ODk5oVy5cqar2EsI1c6pqamIj49H586di2xboUIFncvXdevWRV5eHp48eSJsZV4hIyMDJ0+e1FlXr1495OfnF0nmivu8ai9f2crnWcg6A7bxeRayzub4PFMCZCM2bNiAvXv3YvXq1ejZs2ex5SpXrozbt2/rrLtz5w5q1KjBP46KikKjRo34v5C09u3bhzfffBOswPRwsbGxqFOnjkC1MI6hdT5y5AiWLVsGhUKBSpUqITc3F+fPn0dwcDAAwN/fH5GRkXz51NRUpKamwt/fH1WqVEH16tV1no+MjET16tUt0l9AqDrHxcVh7NixaNu2LT7//HOdL8f4+HgEBgYiKSmJXxcbGwu5XA4vLy/TVa4YQtSZMYYuXbrg4MGDfPns7Gzcu3cPderUga+vL+RyuU7n4cjISPj5+en8kJiLUO0MaD7P2o7ABZ05cwbBwcHIycnh18XGxqJChQpm7fMEaMYgmzBhgs4P8rVr1+Dm5lYkFn9/f1y+fJn/HmKM4dKlS/zlPVv5PAtZZ1v5PAtVZ7N9no26Z4xYRHx8PPP19WVr1qwpMu4HY5qxQHJychhjjB09epQfB+ju3bssPDycNW3alGVkZPD7mzVrFps/f36R4yQnJ7PAwEC2fPlydvfuXXbkyBEWFBTEjh49ap6KFmBMnaOjo1njxo3Zzz//zO7cucPGjRvH+vTpw9RqNWOMsUuXLrFGjRqx7777jh83ZPTo0fyxtm7dytq0acPOnTvHzp07x9q0acP+97//2XSd33//fdajRw+WkpKis5+cnBymVqvZ22+/zYYMGcJu3rzJLl68yHr06KH3VlVbqnNYWBjr0KEDO3fuHIuLi2Pjx49nvXr1YiqVijHG2Pz581nPnj1ZVFQUO3HiBAsKCmI///yzTdeZMcbWrVvHhg8fXuQ4z549Y23btmVTp05lt2/fZqdPn2Zt2rRh27ZtM09FC1CpVCwkJIQNHz6c3bp1i50+fZq9/vrrbOfOnYwx3To/e/aMtWzZkoWFhbFbt26xsLAw1rp1a358GFv5PAtZZ1v5PAtZZ3N8nikBsgFbt25lPj4+ev8xxpiPj4/OuBffffcd69atGwsICGAffvghu3btms7+PvroI7Zy5Uq9x7p48SJ77733WJMmTVjHjh3Z119/bbqKvYSxdd6/fz/r2LEjCwwMZOPGjWNpaWk6+ztw4ABr3749CwgIYOPHj9cZJEylUrFPPvmENWvWjAUHB7Pw8HB+bApzEqrODx8+LHY/2u1TUlLY+PHjWbNmzViLFi1YWFgYy8vLs9k6M8ZYbm4uW758OWvdujXz9/dno0ePZikpKfzz2dnZbObMmSwgIIC1adOGffnll2arZ0FCv7cXLFjApkyZovdYcXFxbOjQoSwgIIC1bt2arV+/3iLvbcY0A9uNHz+eBQUFsdatW7PNmzfzsRSuc1RUFOvTpw/z8/Nj7777Lrt+/brOvmzh88yYMHW2pc8zY8K1szk+zxLGClzvIIQQQggRAeoDRAghhBDRoQSIEEIIIaJDCRAhhBBCRIcSIEIIIYSIDiVAhBBCCBEdSoAIIYQQIjqUABFCCCFEdCgBIoRYXHJyMurXr4/k5GSTHufRo0cYOHAg/Pz8MGvWLJMeixBi3Wg2eEKIaPzwww+4e/cuDh06VGTiX0KIuFACRAgRjaysLNSuXZufLZsQIl6UABFCrMqTJ0+wcuVK/Prrr8jLy0OnTp0wb948lC9fHoBmduklS5bgxo0baNiwIVq1aoV//vkHX3311Uv3u379emzYsAEAUL9+fezevRsbNmyAj48PTp8+DbVajSNHjuDZs2dYvHgxzp49i0qVKiEkJARjx46FTCYDAJw4cQIrV65EWloaevToAaVSCS8vL0ycONG0LwwhRFDUB4gQYlUmTJiA2NhYbNmyBV9++SVu376N2bNnAwCePXuGESNGoFGjRjh06BB69eqFbdu2GbTf4cOHY/jw4QgMDMSff/6JwMBAAMDBgwcRHh6ODRs2wNXVFRMmTEClSpXw/fffY/ny5fjxxx+xZcsWAMDNmzfx8ccf44MPPsCBAwfAGMNPP/1kmheCEGJSdAaIEGI1srKycOHCBfz000/w9vYGAISHh6NHjx5ISEjAxYsX4eLignnz5kEmk6FOnTq4dOkS0tPTX7lvV1dXuLi4wMHBAR4eHvz6Dh06ICgoCABw9uxZpKSkYN++fZBKpahTpw5mzZqF0NBQjB8/HgcPHkTz5s0xbNgwAMDixYtx5swZE7wShBBTowSIEGI1/vjjD5QrV45PfgCgbt26KF++PBISEnDz5k00atSIvxwFAAEBAThx4kSJj+np6ckv3759G5mZmWjatCm/juM45Obm4vHjx0hISICvry//nEKhQOPGjUt8bEKI5VACRAixGo6OjnrXq9VqqNVqyGQyMMZ0niv8uDTHVKlUqFOnDjZt2lSkXNmyZeHs7FzkeAqFolTHJ4RYBvUBIoRYjTZt2uDp06dISEjg18XHxyMrKwve3t547bXXEBsbC47j+OevX78u2PG9vb2RkpICNzc3eHl5wcvLC8nJyVi3bh0kEgnq1q2L6OhovjxjDDdv3hTs+IQQ86EEiBBiNRwdHdGuXTvMmjULV69exdWrVzFr1iw0b94cPj4+6NmzJ7KysrB8+XLcuXMH3333HY4dOybY8du0aQNPT0/MmDEDN2/exD///IP58+fD2dkZMpkMH374IWJjY7Fp0yYkJCTgs88+w927dwU7PiHEfCgBIoRYlU8//RQ1a9bE0KFD8dFHH+G1117Dxo0bAWg6Mm/ZsgUXL15E79698f3336N3796CXYaSyWTYvHkzOI7De++9h4kTJ6J9+/aYN28eAKBy5crYvHkzjh07hj59+iAzM5O/m4wQYlskrLQX0AkhxEySkpKQlpaGZs2a8esWL16MnJwcrFixwiIxDRo0CC1atKBxgAixMXQGiBBiM7KysjBs2DD89NNPuH//Pn755RccPnwY3bp1s3RohBAbQ3eBEUJshq+vLxYsWIDVq1cjNTUV1atXR2hoKDp06IBly5Zh//79xW47evRojBkzxozREkKsGV0CI4TYhUePHuHZs2fFPl++fHlUqFDBfAERQqwaJUCEEEIIER3qA0QIIYQQ0aEEiBBCCCGiQwkQIYQQQkSHEiBCCCGEiA4lQIQQQggRHUqACCGEECI6lAARQgghRHQoASKEEEKI6PwfqHrJYVschOcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot = gpresult2.weighted_posterior_plot(\"log_freq\")\n", + "print(\"Mean of freq:\", jnp.exp(2.963)) " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For more information on the posterior, we can see a comparison plot between two parameters. (Here the peak times of the gaussian means, which we had conditioned as $t_1>t_0$)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAHFCAYAAABFMgvMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABVVElEQVR4nO3deVxU5f4H8M8MODMgsgiCuYSlqYiACGkm5pqpuZKWWi7XfQHv75qpSCnmJUOtDMlcKbt5Mw1sNbc0y65LoYCoGIoaXkSHBA0Zhu38/uAyOQFnBucwZ4TPu9e5rzvnOeeZ75xB/fKsCkEQBBARERFZSCl3AERERFQ/MKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgIiIiSTCpIKL7Zs218+rTOn316bMQ3YtJBVnFmTNn8Morr6BPnz7w9/fHgAED8NprryErK0vu0CSzbt06dOjQQe4wAAAnTpxAhw4djI6OHTuia9euGDt2LA4dOmS4NjExER06dMC1a9fMrv/OnTtYuHAhfvnlF4tjzcnJwYsvvgg/Pz/06NEDOp2uyjUZGRkYN25clfNff/01nn32Wfj7+2Pw4MHYvXu3xfFY4tq1a+jQoQMSExNrvKamz1Lp3Llz8PX1rdX3QWQr7OUOgOq/7du344033kD37t3x8ssvw9PTE1evXsXWrVuxf/9+bNu2DR07dpQ7TIuNGTMGvXr1kjsMI0uXLoWvry+Ait+Ob9++jfj4eMyZMwcbN25E796976ve8+fP44svvsBzzz1ncYzbtm1DcnIyVq9eDS8vLzg4OFS5Zu/evTh9+rTRuX379mHBggWYOHEievXqhYMHD2Lx4sVQqVR49tlnLY6rrlT3WSr9+uuvmDFjBkpLS60cFZE0mFRQnUpKSkJ0dDRefPFFREZGGs53794dAwYMwMiRI7FkyRLR3+weFM2bN0fz5s3lDsNIu3bt0KVLF6NzwcHB6NOnDz766KP7TiqklJ+fD09PTwwZMqRW97399tsYNGgQlixZAgDo1asXbt++jXfffdemk4rqFBcX4+OPP0ZsbCzUarXc4RDdN3Z/UJ3aunUrmjRpgvnz51cpa9q0KRYvXoz+/fujsLAQAFBWVobt27dj2LBh8Pf3R58+fbBmzRro9XrDfYsXL8bUqVPx6aefYsCAAfD398fYsWNx+fJlHD58GMOGDUNAQADGjBmD8+fPG903YcIEfPbZZ+jbty8CAwMxadIkpKenG8X1888/Y+rUqXj88cfRuXNn9OvXD+vWrUN5eTmAP5u4P/jgAwwaNAgBAQFISEio0v3x22+/YdasWejevTsCAgLwwgsv4MiRI0bvdebMGUydOhXdu3dH165dMWvWLGRkZBjKK7sxjh07hilTpiAgIAA9e/bE6tWrUVZWdl/fiZOTEx555BFkZ2fXeM1PP/2E8ePHIygoyNDCdP36dUNMEydOBABMnDgREyZMqLGeP/74AytXrsSAAQPg5+eHoUOH4rPPPjOU9+vXD4mJicjOzkaHDh2wbt26KnWsW7cOcXFxAGC45tq1a7hy5Qqefvppo2ufeeYZXL16FVeuXKkxpmvXrmHhwoUICQmBr68vevTogYULFyIvL88ortjYWMTExODJJ5+Ev78/pk6dWqXe/fv3Y/jw4fD398eoUaOq/CyZ81kA4IcffkBcXBxmzpyJBQsWiNZBZMvYUkF1RhAEHD16FP369au2SRtAld9Oly5dii+++ALTp09HcHAwzp07h/feew/nz5/Hli1boFAoAACnT5/GzZs3sXjxYuj1ekRFRWHGjBlQKBSYN28eHBwcsGzZMixYsADffPONof7z588jMzMT8+fPh4uLC2JjY/HSSy9hz5498PT0RHp6OiZPnoxBgwbhnXfegSAI+OqrrxAXF4dHH33U6DfgdevWITIyEk5OTggICMCuXbsMZeXl5Zg5cyY8PT2xatUq2Nvb46OPPsLs2bPx7bffwtvbG8ePH8e0adPQvXt3vPHGG9Dr9di4cSPGjh2LnTt3om3btob6FixYgPHjx2P69On4/vvvsWXLFrRu3Rpjx46t9fdSXFyMa9euwd/fv9ryzz//HIsWLcLQoUMxc+ZM5OXlITY2Fi+88AJ2794NX19fLF26FK+//jqWLl2K7t27V1tPUVERxo8fj99//x3z5s1Dy5YtcfDgQURGRiI3NxezZs1CXFwc1q5di3PnziEuLq7alp4xY8YgJycHn332GT799FM0b94cFy5cAAC0adPG6Fpvb28AwOXLl6uUAYBOp8PEiRPh5uaGZcuWoUmTJjh9+jTi4uKg0Wjw+uuvG6796KOPEBQUhJUrV+L27duIjo7GokWL8OmnnwIADh06hHnz5mHYsGF45ZVXcP78ebzyyiuiz766zwIAfn5+OHToEFxdXetFqx01XEwqqM7k5eVBr9ejVatWZl1/8eJFfPbZZ3j55ZcxY8YMAEDPnj3h6emJhQsX4ocffjA019+9exdr1641/MN78uRJ7NixAx9++CF69OgBALh69SpiYmJw584dODs7A6j4zXnDhg0IDg4GAMOg0Y8++ggLFixAeno6nnzySaxevRpKpdIQw6FDh3DixAmjpGLw4ME1jin4/fffkZmZiTlz5hhi9vf3R1xcHIqLiwEAb731Fry9vbFp0ybY2dkBAEJCQvD0008jNjYW7777rqG+MWPGYO7cuQCAHj164ODBg/j+++9NJhXl5eWG/vnS0lL897//xfr163Hr1i28+OKL1V6/Zs0ahISE4K233jKc79q1K4YMGYKtW7di4cKFaNeuHYCK7pXK//9XiYmJ+PXXX7Fjxw4EBgYCqOiiKC0txfr16zF27Fh06tQJTZs2hUqlqtJNU+nebqXKa5KSkgBUtLrcq3HjxgCAgoKCauu6cuUKmjdvjpiYGLRu3RoA8MQTTyAlJQUnT540utbZ2Rnr1683fDe//fYb1q1bh7y8PLi5ueG9996Dv78/Vq9ebfhsAIyemzmfBQC8vLxqvIfoQcLuD6ozlX8Zm9tMX/mX+l/7w5999lnY2dnhxIkThnMuLi5Gv8l7eHgAAAICAgznXF1dAVTMVKjUqlUrQ0IBAJ6enggMDMTPP/8MABg5ciQ2b96MkpISpKenY9++fYiNjUVZWRlKSkqM4vLx8anxs3h4eKBdu3Z47bXXsGjRInz11VcoLy9HREQEHnvsMRQWFuLMmTMYPHiw4TkBFf+Q9e3bt8o/cJX/KFdq3ry5octIzOTJk+Hr6wtfX18EBARgyJAhOHbsGF599VU89dRTVa6/fPkytFothg4danT+4YcfRmBgYJW4xJw8eRItW7asEvvw4cOh1+uRkpJidl1/VdkVVZPKhPCvfHx88O9//xstW7bElStXcOTIEWzduhWZmZmGZK+Sn5+f0XdTmQzodDoUFRXh7Nmz6Nu3r9E9gwcPvp+PQ1RvsKWC6oyLiwsaN24s2ndfWFiIkpISuLi44Pbt2wCAZs2aGV1jb28PNzc3/PHHH4Zzf/0NtZKjo6NoTNX9Ruju7o6zZ88CqGiyX7FiBb744guUlpaiVatWCAwMhL29fZW1BcTeS6FQID4+Hu+//z4OHDiAzz//HI0aNcKAAQOwfPlyFBUVQRAEQzJ0Lw8PD6PPCgAajcbotVKpNGutg+XLlxtmf9jZ2cHFxQUtWrQwdCP9VX5+viGG6uI6d+6cyfesdPv27Srf5b1135vs1VaTJk0AVLRY3auyhaKmnw8A+OCDD7Bhwwbk5+fDw8MDnTt3hoODQ5Vn/tcuu8pEpby8HLdv34YgCHBzczO6xtPT8/4+EFE9wZYKqlMhISE4ceKE0UDLe+3cuRNPPPEEzp49CxcXFwCAVqs1uqakpMTQ5GypewfjVcrNzYW7uzsAIDo6Gvv27cPatWtx6tQpHDx4EKtXr4a9fe3zby8vL0RFReHo0aP4/PPPMXXqVOzfvx9r165FkyZNoFAokJubW+U+rVZraGWx1COPPAI/Pz/4+fmhU6dOaNmyZY0JBfBn605NcdXmO3BxcanyXVbWA8Ci7/ORRx4BUNHFda/K1/e2Yt3rq6++wptvvonp06fj2LFj+Omnn7Bx48Zqx1+IcXV1hVKprPKcKpMyooaKSQXVqSlTpiA/Px9r166tUqbVahEfH4927drB19cX3bp1AwCjgZWVr8vKyhAUFGRxPFeuXMGlS5cMr2/cuIHTp08bxmEkJSUZprtWtkSkpaXh1q1bJpvc73X69Gk8+eSTSE1NhUKhgI+PD/7xj3+gffv2yM7OhqOjIzp37oxvv/3WqHvojz/+wPfffy/JZ70fjzzyCJo1a4avv/7a6HxWVhaSk5PRtWtXADDqFqjJ448/jv/+979V1mT48ssv0ahRoxoHilbnr90Z3t7eaNWqFfbt22d0fv/+/WjTpk2N43iSkpLg7OyMadOmoWnTpgAqWjuSkpJq9f2q1WoEBgZi//79Ri1G9y4qZu5nIapP2P1BdapLly74+9//jrVr1+LSpUsYOXIk3NzckJGRga1bt0Kv1xsSjnbt2mHUqFGIjY2FTqfD448/jvPnzyMuLg7du3eXZGEpQRAwa9Ys/OMf/4CdnR3i4uLg4uJimBbp7++Pb7/9Fp988gnatm2L9PR0vP/++1AoFNWu9FiTTp06QaPRYOHChQgPD4eHhwf+85//4Pz584bpmC+//DKmTp2KGTNmYPz48SgpKcGmTZtQXFxsGJRpbUqlEvPnz0dERARefvllDB8+HHl5eYbn9Le//Q3An90P33//PVxcXKpdvCw0NBT//ve/MXfuXMybNw+tWrXCoUOHkJCQgLCwMMPgWXNUXvv1118jICAArVu3xty5cxEREQFXV1f069cP3333Hb799lu88847Ndbj7++PTz75BG+++Sb69u2LmzdvYuvWrcjNzTW0lJlr/vz5mDRpEsLCwvDCCy/g8uXL2LBhw319FqL6gkkF1bnZs2ejU6dOhpU1b9++jYceegh9+vTBrFmz8NBDDxmujY6Ohre3NxISErB582Z4enpi4sSJmDNnjiS/4bVo0QJTpkzBG2+8AZ1OhyeffBLvv/++odl/8eLFKCkpwdq1a1FcXIxWrVph9uzZuHjxIg4dOmT2oFO1Wo34+Hi89dZbiI6Oxp07d9CmTRu8/vrrCA0NBVAxi+ODDz5AbGws5s+fD5VKheDgYMTExOCxxx6z+LPer9DQUDRu3BgbN27E3Llz4eTkhF69emH+/PmGMRKPPfYYhg4diu3bt+PHH3+s0rIBVIxJ+Ne//oW33noL7777LgoKCvDoo48iOjoao0ePrlVMAwcOxBdffIHFixdj9OjRiIqKQmhoKIqLixEfH4+EhAS0bt0aMTExootojRo1CteuXUNCQgL+/e9/w8vLC71798b48ePx2muv4dKlSzV2nfxVcHAwNm/ejLfffhthYWFo1aoV3njjDcyaNavWn4WovlAI3NmGGojFixfj5MmTZjVRExFR7bFzj4iIiCTBpIKIiIgkwe4PIiIikgRbKoiIiEgSTCqIiIhIEkwqiIiISBINZp2Kyt0alUql6DLFRETUsAmCgPLyctjb29fpCqjl5eVm7eFjDoVCYROrtTaYpKK0tBRnzpyROwwiInpA+Pn5QaVS1Und5eXlOHDkGDycNaYvNoO9vT38/PxkTywaTFJR+aAf69QGdnbyZ3NERGSZ4vIS0XKVstF91VtWVo6Mc1fq9B9oQRDg4azBqBXf4W5RqUV1NdbYY/dr/SVr9bBEg0kqKrs87OyUTCqIiOoBO4X43+V2FiYF1ugqv6svQ2Gxecv/18iGuvQbTFJBRERkc5QKwNIWEaXtJBWy/squ1+uxZMkSBAcHIyQkBPHx8TVee+DAAQwePBiBgYEYN24czp49a8VIiYiI6oBCIc1hI2RNKlatWoW0tDRs27YNy5YtQ1xcHPbu3VvluoyMDLz88suYOXMmvvjiC/j4+GDmzJm12oqaiIiI6pZsSUVhYSF27dqFyMhI+Pr64umnn8a0adOwffv2Ktf+9NNPaNeuHUaOHImHH34Y8+fPh1arxcWLF2WInIiISCJsqZBGeno6SktLERgYaDgXFBSElJQUlJeXG13r6uqKixcvIikpCeXl5UhMTISTkxMefvhha4dNREQkHYVSmsNGyDZQU6vVws3NzWgOsIeHB/R6PfLz89G0aVPD+SFDhuDQoUMYP3487OzsoFQqsXHjRri4uMgROhER2YD7nTJKdUe29Ean01VZVKTydXFxsdH5vLw8aLVaLF26FDt37sSIESMQERGB33//3WrxEhERSU6pkOawEbIlFWq1ukryUPlaozFeYWzNmjVo3749XnzxRXTu3BkrVqyAg4MDEhISrBYvERGR5DimQhpeXl7Iy8tDaemfK4lptVpoNBo4OzsbXXv27Fl07NjR8FqpVKJjx47Izs62WrxEREQkTrakwsfHB/b29khOTjacS0pKqnbtck9PT1y6dMno3OXLl9GqVStrhEpERFQ36tlATdkicXBwwMiRIxEVFYXU1FQcPHgQ8fHxmDhxIoCKVouioiIAwPPPP4+dO3fi888/x9WrV7FmzRpkZ2dj1KhRcoVPRERkuXrW/SHrMt0RERGIiorCpEmT4OTkhPDwcAwcOBAAEBISgpUrVyI0NBRDhgzB3bt3sXHjRuTk5MDHxwfbtm2Du7u7nOETERHRPWRNKhwcHBATE4OYmJgqZRcuXDB6PWbMGIwZM8ZaoREREdU9hQSzN9hSQURERBVjIizcstyGxlQwqSAiIpKLFGMibKilwnbSGyIiInqgsaWCiIhILuz+ICIiIklIscw2l+kmIiKi+oYtFURERHKpZwM1mVQQERHJRaGwfEyEDSUV7P4gIiIiSbClgoiISC7s/iAiIiJJcPYHERERUVVsqSAiIpKLQglY2tDAxa+IiIiovo2psJ30hoiIqKGpTCosPWrh+vXrmDlzJrp27Yp+/frhww8/NJSdO3cOY8aMQUBAAJ577jmkpaXVqm4mFURERA3I//3f/8HR0RGJiYlYsmQJ1q5diwMHDqCwsBAzZsxAcHAwEhMTERgYiJkzZ6KwsNDsuplUEBERyUWplOYw0+3bt5GcnIzZs2ejTZs2GDBgAHr16oVjx45hz549UKvVWLhwIdq2bYvIyEg0btwYe/fuNf/j3M8zICIiIglYuftDo9HAwcEBiYmJKCkpQWZmJk6dOgUfHx+kpKQgKCgIiv/Vp1Ao0LVrVyQnJ5tdP5MKIiKieqCgoMDoKC4urnKNWq3G0qVL8emnnyIgIACDBw/GU089hTFjxkCr1cLT09Poend3d+Tk5JgdA2d/EBERyUXC2R+9e/eGTqcznA4LC0N4eHiVyy9duoS+ffvib3/7GzIyMrBixQr06NEDOp0OKpXK6FqVSlVtclITJhVERESykWCdiv91Ohw5cgR2dnaGs39NEADg2LFj+Oyzz3DkyBFoNBr4+fnhxo0beP/999G6desqCURxcTE0Go3ZkTCpILJQQcld0XKnRo1Fy4vLS0TLVcpGdXq/per6/U3Vb0pdf34xcn831LA4OTkZJRXVSUtLg7e3t1Gi0KlTJ2zYsAHBwcHIzc01uj43N7dKl4gYjqkgIiKSS+XeH5YeZvL09MTVq1eNWiQyMzPRqlUrBAQE4PTp0xAEAQAgCAJOnTqFgIAA8z+O+Z+ciIiIJGXl2R/9+vVDo0aN8Oqrr+Ly5cs4dOgQNmzYgAkTJmDQoEG4c+cOoqOjcfHiRURHR0On02Hw4MFm18+kgoiIqIFo0qQJPvzwQ2i1WowePRorV67E7Nmz8cILL8DJyQkbN25EUlISQkNDkZKSgk2bNsHR0dHs+jmmgoiISC4ybCjWrl07fPDBB9WW+fv7Y/fu3fcdCpMKIiIiuSggwZRSSSKRBJMKIiIiuSgVlg9EqMVAzbrGpIIIpqeF/pJ7vsayPg8Fi96bp88Xf+9S8fd2U7mKlluquMz8hW3keH9Tz6e5g/h0N1PTOm/obtZYZurZ/7fwv6LlLR1bipbfNfFzpy8XfzZN1W6i5bf0eaLlV//IFi33btLCovcXe7YA4GXiuzMVvyn3+3zKywSL3rchY1JBREQkF4USUFiYxFjafSIhJhVERERyUSgkGKhpO0kFp5QSERGRJNhSQUREJBOFQiHBfmJsqQAA6PV6LFmyBMHBwQgJCUF8fHy1102YMAEdOnSockRERFg5YiIiIulYeUHNOidrS8WqVauQlpaGbdu2ITs7G4sWLUKLFi0waNAgo+vWrVuHkpI/R3CnpKTg//7v/zB+/Hhrh0xEREQ1kC2pKCwsxK5du7B582b4+vrC19cXGRkZ2L59e5WkwtXV1fD/y8rK8M4772DatGnw8/OzctRERETSUSgVtV0Qs9o6bIVsSUV6ejpKS0sRGBhoOBcUFIQNGzagvLwcSmX1TzkxMRG3b9/G9OnTrRUqPQCy7oqvF/BOivh6AO3cCkTLO7ne/3tn39WKlrdo3Ey0/Gxehmj5m/9xES1/MSBHtDykeVvRcrVSJVpuSl5xvkX3l5hYq+HbrOMW1f+oc9May07c/E303sw/xLe193M7I1rewdVLtPyzy3+Ilh/LFP+5frqD+DoPBSXi/wSsnPedaHnS5idEy+d8Jb5GyOK+KaLlDnbi8SX9Xi5a3tj+imh5R5cafrbLASc4id4rlVpuMlpjHbZCtjEVWq0Wbm5uUKn+/FI9PDyg1+uRn59f7T2CIGDLli2YOHEiGjcW/8NMRERE1iVbS4VOpzNKKAAYXt+7z/u9Tpw4gZycHDz//PN1Hh8REVFdq2+zP2RLKtRqdZXkofK1RqOp9p59+/bhqaeeMhpjQURE9KCSYvaGDeUU8nV/eHl5IS8vD6WlpYZzWq0WGo0Gzs7O1d7z448/on///tYKkYiIqE5VtFRYftgK2ZIKHx8f2NvbIzk52XAuKSkJfn5+1Q7SvHXrFrKyshAUFGTFKImIiMhcsiUVDg4OGDlyJKKiopCamoqDBw8iPj4eEydOBFDRalFUVGS4PiMjA2q1Gq1atZIrZCIiIkkpIEFLhcWbh0hH1sWvIiIiEBUVhUmTJsHJyQnh4eEYOHAgACAkJAQrV65EaGgoAOD333+Hs7OzTTXzkHRMbQ/+6+0rouXx56rvMqu0KyFLtFy4Kz6lNOld/xrLGikbid6bdVcnWu6qFp8WaGrK6Vv9xadcOtpbNmW0cSPxmVamtqcuNLF1+fXCO6LlDzu5i5aLTQkFgA4u7UXLL9z+tcayxvbif990ayb+7B9yFI/NTSW+NfcIb/EpmRMfE/9u0vN/Fy1/2KmJaHnOPPGW4d8KxOv/e69S0fK2zq1Fyy/duS5a3r+F+J97T4341uo1bS1fXiYgD+LTeaVS38ZUyJpUODg4ICYmBjExMVXKLly4YPR6yJAhGDJkiLVCIyIiolrihmJEREQy4ZRSIiIikoRCCQmW6ZYmFinYUChERET0IGNLBRERkUzY/UFERETSkGD2hw3NKGX3BxEREUmDLRVkFaa2Bze1loGptR4aqxxFy/26NBctXz5EvH6x+e4l5eJrCQxqVfMaF+ZQ2YmvI3FDd1O0vLmD+Fz9YhPxm+JkL75Wgqn3d1GJx99ULb6Wgyk5Jp6P2DoWLR3Ffy5Nffc1rYNgLlNrbJj67gKaiv/smFpj5fXHRYvh1Miy+O6WiD/fPg8Fi5abWt/G1BorbkrXas+XlZVbbZ0KpUIhwdbnttNUwaSCiIhIJhxTQURERJKobytqckwFERERSYItFURERDKpb90fbKkgIiKSSWX3h6WHuRITE9GhQ4cqR8eOHQEA586dw5gxYxAQEIDnnnsOaWlptfo8TCqIiIgaiCFDhuDo0aOG4/vvv4e3tzcmTpyIwsJCzJgxA8HBwUhMTERgYCBmzpyJwsJCs+tn9wfZBH2Z+NS71N9dRMsv3xSfGvfs40Wi5W2dHxItv1lU87TEVo1bid5rKZWJaX+tG7cULbd0yqgppqa8mmJqyqipz2+KJVNqnUxMSbRUgYkplaamw5p6dqamVJpi6bM3db9K7Spabupn183E/Q8ChVIhwd4f5jdVaDQaaDQaw+uNGzdCEAQsWLAAX375JdRqNRYuXAiFQoHIyEj88MMP2Lt3L0JDQ82qny0VREREMrF298e98vPzsXnzZrz88stQqVRISUlBUFCQYYyGQqFA165dkZycbHadTCqIiIjqgYKCAqOjuFi8BfiTTz6Bp6cnBg0aBADQarXw9DRu2XN3d0dOTo7ZMbD7g4iISCZSzv7o3bs3dLo/VwcOCwtDeHh4tfcIgoBdu3Zh2rRphnM6nQ4qlXF3pkqlMpmc3ItJBRERkUykXPzqyJEjsLOzM5z/a4JwrzNnzuDGjRt49tlnDefUanWVBKK4uNhoDIYpTCqIiIjqAScnJ6OkQsyPP/6I4OBguLj8OQjey8sLubm5Rtfl5uZW6RIRwzEVREREMqno/rD8qK3U1FR07drV6FxAQABOnz4NQRAAVHSRnDp1CgEBAWbXy5aKBsLU1CxLp46ZYmonyxITuzk6qcR3DGzsKJ4fH0oTb76b3sHU1Luay009O0ufvaX313X9pqZFWhpfXZPz/U1NWa3rKa22Tu6fDWuo6P6wrP/jfm7PyMjA8OHDjc4NGjQIb731FqKjozF27Fjs2LEDOp0OgwcPNrtetlQQERHJRAlAqbDwuI/3zc3NhbOzs9E5JycnbNy4EUlJSQgNDUVKSgo2bdoER0dHs+tlSwUREVEDk5qaWu15f39/7N69+77rZVJBREQkE4VSAYVgaR3SxCIFJhVEREQykXJKqS2wofyGiIiIHmRsqSAiIpKJNCtqShOLFJhUEBERyaS+dX8wqWgg5J7vbWoLZrGtxQGgWzMTW6Ob2O+mW/tS0fLjN9NFy3s196uxrK7XAJH7uzPF1FoKdb0ORkNfy4HuX00/m2Xl5VaOpP5gUkFERCQXCbo/wJYKIiIiqm9jKjj7g4iIiCTBlgoiIiKZcKAmERERSaK+ragpayh6vR5LlixBcHAwQkJCEB8fX+O1Fy5cwLhx4+Dv749hw4bh+PHjVoyUiIhIepUtFZYetkLWlopVq1YhLS0N27ZtQ3Z2NhYtWoQWLVpg0KBBRtf98ccfmDJlCvr164c333wTX3zxBcLCwrBv3z64u7vLFD3Vxi19nkX3Xy0Qn+KVm6sXLf9m1QHR8pNTxLf2DRxV87TG5g/4lMa6nrJqaf2cMkp1paafzTKBU0rvl2wtFYWFhdi1axciIyPh6+uLp59+GtOmTcP27durXLt79244OjoiKioK3t7emDdvHry9vZGWliZD5ERERNJQKhSSHLZCtpaK9PR0lJaWIjAw0HAuKCgIGzZsQHl5OZTKP/OdkydPon///rCzszOcS0hIsGq8REREUuOUUolotVq4ublBpVIZznl4eECv1yM/P9/o2qysLDRt2hSvvfYaevbsieeffx5JSUlWjpiIiIjEyJZU6HQ6o4QCgOF1cbHxksyFhYXYtGkTmjVrhs2bN+Pxxx/H1KlTcf36davFS0REJDUO1JSIWq2ukjxUvtZoNEbn7ezs4OPjg3nz5gEAOnXqhJ9++glffPEFZs2aZZ2AiYiIJMYppRLx8vJCXl4eSkv/3OhJq9VCo9HA2dnZ6NpmzZrh0UcfNTrXpk0btlQQERHZENmSCh8fH9jb2yM5OdlwLikpCX5+fkaDNAGgS5cuuHDhgtG5zMxMtGzZ0hqhEhER1YmKgZqWH7ZCtu4PBwcHjBw5ElFRUXjjjTdw8+ZNxMfHY+XKlQAqWi2aNGkCjUaDsWPH4uOPP8a6deswfPhwfP7558jKysKIESPkCl9ydb19dl3L0+dbdH9LR/EE8YauSLT84oVc0fLHRjwlWj6tx++i5U3Vj9RYZmprbpWdSrzcxr9bovv1oP+9Zg0KSLBMtySRSEPWnpiIiAj4+vpi0qRJWL58OcLDwzFw4EAAQEhICPbs2QMAaNmyJbZs2YLDhw9j6NChOHz4MDZt2gQvLy85wyciIqJ7yLqipoODA2JiYhATE1Ol7K/dHUFBQUhMTLRWaERERHWuvq1TwQ3FiIiIZKJQKizuvrCl2R9MKoiIiGRS37Y+t6H8hoiIiB5kbKkgIiKSCcdU0H2p71OrGpvYntpN6Spa/v31X0TLj2WKb3Hf8mE70fKObR1Ey0Oai09pvSsybdTUZ3/Qv1tbV9//bD3I+OxNq9hl1NI6pIlFCuz+ICIiIkmwpYKIiEguUmwIxpYKIiIiUigVkhy1UVxcjOXLl+Pxxx/Hk08+ibfffhuCULGr2blz5zBmzBgEBATgueeeQ1paWq3qZlJBRETUgPzzn//Ef/7zH2zduhVvvfUWdu7ciU8//RSFhYWYMWMGgoODkZiYiMDAQMycOROFhYVm183uDyIiIplYe/ZHfn4+EhIS8MEHH8Df3x8AMGXKFKSkpMDe3h5qtRoLFy6EQqFAZGQkfvjhB+zduxehoaFm1c+WCiIiIplULn5l6WGupKQkODk5oVu3boZzM2bMwMqVK5GSkoKgoCDDrqcKhQJdu3Y12k3clAbXUlFcXgK7GtY0lXP6k6lpcabUdeyWTtszdf/DTuJTRv/eXXwX0fBt5aLlTz4lvpPo0ZwbouX9W/iIltuy+j7l8kGPn0gqBQUFsLP7c3q9SqWCSmW8S3JWVhZatmyJzz//HBs2bEBJSQlCQ0Mxe/ZsaLVatGvXzuh6d3d3ZGRkmB1Dg0sqiIiIbIWU3R+9e/eGTqcznA8LC0N4eLjRtYWFhbh69Sp27NiBlStXQqvVYunSpXBwcIBOp6uShKhUKhQXF5sdC5MKIiIimUi5odiRI0eqtFT8lb29PQoKCvDWW2+hZcuKRf+ys7PxySefwNvbu0oCUVxcDI1GY3YsTCqIiIhkIuWGYk5OTkZJRXWaNWsGtVptSCgA4JFHHsH169fRrVs35ObmGl2fm5sLT09Ps2PhQE0iIqIGIiAgAHq9HpcvXzacy8zMRMuWLREQEIDTp08b1qwQBAGnTp1CQECA2fUzqSAiIpJJxZgKyw9zPfroo+jTpw8iIiKQnp6OH3/8EZs2bcK4ceMwaNAg3LlzB9HR0bh48SKio6Oh0+kwePBgs+tnUkFERCSTiu4PS5OK2r3nmjVr8PDDD2PcuHFYtGgRXnzxRUyYMAFOTk7YuHEjkpKSEBoaipSUFGzatAmOjo5m180xFURERA1IkyZNsGrVqmrL/P39sXv37vuuu8ElFSplI9gprd9AY+lcelNrDdT1WgQWx18mPiXJTeUmWv4bxNepWDdJ/DsdFflf0fK/TRNfh6KrR16NZW5qV9F7TTH53Zp4dk7cep3ogaWE5VuX21KXQ4NLKoiIiGyFQqmAQrAsq6jo/hAkicdStpTgEBER0QOMLRVEREQyUSgUsHT5K1tqqWBSQUREJBOFApavqGlpBRJi9wcRERFJgi0VREREMpGu+8M2MKl4QNj6tEBLt243JbdIvP5VX4tveOPfs51o+dOtb5mIwKvGkjx9vuidpqacmvpu5f7u6/vW6URykm72h21gUkFERCQTjqkgIiIiqgZbKoiIiGTCMRVEREQkDQmSCov7TyTE7g8iIiKSBFsqiIiIZKJUWP7bvaUbkklJ1pYKvV6PJUuWIDg4GCEhIYiPj6/x2tmzZ6NDhw5Gx+HDh60YLRERkbQUCkGSw1bI2lKxatUqpKWlYdu2bcjOzsaiRYvQokULDBo0qMq1ly5dwurVq9GjRw/DORcXF2uGKzpf39bn6su9Nbqp8oKSu6LlHhrx+x0cVaLlpjzq3FS0XGxr9kY2/t2bwnUoiEgqsiUVhYWF2LVrFzZv3gxfX1/4+voiIyMD27dvr5JUFBcX49q1a/Dz80OzZs1kipiIiEhaXKdCIunp6SgtLUVgYKDhXFBQEFJSUlBeXm50bWZmJhQKBVq3bm3tMImIiOqMUiFIctgK2ZIKrVYLNzc3qFR/Nlt7eHhAr9cjPz/f6NrMzEw4OTlh4cKFCAkJwejRo3HkyBErR0xERCQthUSHrZAtqdDpdEYJBQDD6+LiYqPzmZmZKCoqQkhICLZs2YLevXtj9uzZOHPmjNXiJSIiInGyjalQq9VVkofK1xqN8eZQc+bMwYQJEwwDMzt27IizZ89i586d8PPzs07AREREElMqBAmmlLL7A15eXsjLy0NpaanhnFarhUajgbOzs9G1SqWyykyPRx99FDdu3LBKrERERHVBoZDmsBWytVT4+PjA3t4eycnJCA4OBgAkJSXBz88PSqVxrrN48WIoFAqsXLnScC49PR3t27e3asxyTq2zdNpfXcduakqoU6PGouV5xfmi5R1dHxYtb+ou/v63fi8ULTfF1PblDzJOGSUiqcjWUuHg4ICRI0ciKioKqampOHjwIOLj4zFx4kQAFa0WRUVFAIB+/frhq6++wueff46rV68iLi4OSUlJeOmll+QKn4iIyGJsqZBQREQEoqKiMGnSJDg5OSE8PBwDBw4EAISEhGDlypUIDQ3FwIEDsWzZMrz//vvIzs7GY489hi1btqBVq1Zyhk9ERGQRJQSLl9lWwnbGVMiaVDg4OCAmJgYxMTFVyi5cuGD0esyYMRgzZoy1QiMiIqJa4oZiREREMpFinQkb6v1gUkFERCQXSaaU2lD3h6y7lBIREVH9wZaKB0RdT/vL0+dbdL+pKZem6i8pLxYtz76rFS0f6St+f4rWVbTcRSVennX3vzWWeTl4it5b198ddxklenBJsqFYLa8/cOAAwsLCjM4988wziI2Nxblz57Bs2TL8+uuvaNeuHZYvX47OnTubXTeTCiIiIrkoBAnGRNSu++PixYvo27cvVqxYYTinVqtRWFiIGTNmYNiwYXjzzTfxySefYObMmThw4AAcHR3NqpvdH0RERDJRSnTUxqVLl9C+fXs0a9bMcDg7O2PPnj1Qq9VYuHAh2rZti8jISDRu3Bh79+6t1echIiKiBuLSpUto06ZNlfMpKSkICgqC4n+raSkUCnTt2hXJyclm182kgoiISCYVK2IKFh7mv58gCLh8+TKOHj2KZ555BgMGDMCaNWtQXFwMrVYLT0/jMWLu7u7Iyckxu36OqSAiIpKJUmH5b/eV9xcUFMDOzs5wXqVSQaVSGV2bnZ0NnU4HlUqFtWvX4tq1a/jnP/+JoqIiw/l7qVSqKjuKi2FSQUREVA/07t0bOp3O8DosLAzh4eFG17Rs2RInTpyAi4sLFAoFfHx8UF5ejldeeQXdunWrkkAUFxdDo9GYHQOTCiIiIpkoJJj98b8REDhy5EiVlorquLq6Gr1u27Yt9Ho9mjVrhtzcXKOy3NzcKl0iYphUEACgsYmtyS1VUCq+NXmJibUWXNXi05k++Vm8vFMb0WI0VbuJXyBC7nUg5H5/qjtcg6T+k7L7w8nJySipqM6PP/6IBQsW4Pvvv4eDgwMA4Pz583B1dUVQUBA2b94MQRCgUCggCAJOnTqFWbNm1ToWIiIiqucCAwOhVqvx6quvIjMzE0eOHMGqVaswbdo0DBo0CHfu3EF0dDQuXryI6Oho6HQ6DB482Oz6mVQQERHJRAFBksNcTk5O2Lp1K27duoXnnnsOkZGReOGFFzBt2jQ4OTlh48aNSEpKQmhoKFJSUrBp0yazF74C2P1BREQkGzmW6X7sscfwwQcfVFvm7++P3bt333csbKkgIiIiSbClgoiISCbSbH1uO5hUEBERyUSO7o+6xKSCAJiemmZqapup8taNW1p0/yeXTouWd2vvJFpuyrW710TL3VQ1TzlVmdj2XW6clmi7bP27sfX46oP61lJhS7EQERHRA4wtFURERDJRgN0fREREJIH6NqaC3R9EREQkCbZUEBERyUQhwUBNW2qpYFJBREQkE3Z/EBEREVWDLRUEoO7noxeUiG99rrJTiZZ7aspFyzu6FIuW68pKTdTvLVpuamt2OXEtgQeXrX83th5ffaBE/VqngkkFERGRTNj9QURERFQNtlQQERHJRKEQ6lVLhdlJxZkzZ/Dvf/8bycnJyMnJQUlJCTQaDZo1a4YuXbrgxRdfROfOnesyViIionpFqbC8y8CWuhzMSiq+/PJLvPrqqxg+fDhmzJgBd3d3qFQqFBcXIzc3F0lJSXjppZfwxhtvYMiQIXUdMxERUb3QIFsqYmNjsXTpUowePbra8tDQUHTp0gXvvPMOkwoiIqIGyqyk4tatWwgMDBS9xt/fH1qttlZvrtfrsXz5cuzfvx8ajQZTpkzBlClTRO+5du0ahg0bhg0bNqB79+61ej9bJve0QIu3Pi8Tn9Lp1KhxrWO6V6DHo6LlpqZ8FpaKT2k1xU1ke3NLvztL7+e0P6IHlxL1q/vDrFh69uyJ6OhoXL9+vdryGzduIDo6Gj169KjVm69atQppaWnYtm0bli1bhri4OOzdu1f0nqioKBQWFtbqfYiIiGyRAkJFF4glBwS5P4aBWS0VK1aswOLFi9G3b1+0aNECnp6eaNSoEUpKSqDVapGdnY2QkBBER0eb/caFhYXYtWsXNm/eDF9fX/j6+iIjIwPbt2/HoEGDqr3nyy+/xN27lv3GSURERHXDrKTC1dUVGzZswG+//YYhQ4YgNDQUSqUSarUaXl5eCAgIgLOzM1577TXExsaa9cbp6ekoLS016lYJCgrChg0bUF5eDqXSuBElLy8Pq1evRnx8PIYOHVqLj0hERGSb6lv3h1lJxenTp3H16lUAQFlZGVxcXNCkSRMAQGlpKZKSkpCZmYmjR4+a/cZarRZubm5Qqf5cntnDwwN6vR75+flo2rSp0fVvvvkmRo0ahccee8zs9yAiIrJlFV0YFtYBwFZ6QMxKKhwcHLBu3ToIggBBELB161ajlgSFQgFHR0csWLDA7DfW6XRGCQUAw+viYuNBf//5z3+QlJSEr7/+2uz6iYiIyLrMSio6duyI7777DgAwYcIExMXFwcXFxaI3VqvVVZKHytcajcZwrqioCEuXLsWyZcuMzhMRET3oFKhfe3/Uepnuf/3rX5K8sZeXF/Ly8lBaWgp7+4owtFotNBoNnJ2dDdelpqYiKysL8+bNM7p/+vTpGDlyJF5//XVJ4pGbrU8LtDQ+U9Mmb+huipa7qVxFy/9b+N/ahmTEkl1ILX02tv7dU/1lavdgS6eCk2lKhQClhVmBEniwuj/qgo+PD+zt7ZGcnIzg4GAAQFJSEvz8/Iy6Vvz9/bF//36jewcOHIh//vOf6Nmzp1VjJiIioprJllQ4ODhg5MiRiIqKwhtvvIGbN28iPj4eK1euBFDRatGkSRNoNBp4e3tXud/Lywvu7u7WDpuIiEhSttR9YSlZZ6JERETA19cXkyZNwvLlyxEeHo6BAwcCAEJCQrBnzx45wyMiIqpTFd0flh+2Qtatzx0cHBATE4OYmJgqZRcuXKjxPrEyIiKiB4VCAWmmlNoIW1ozg4iIiKxoxowZWLx4seH1uXPnMGbMGAQEBOC5555DWlparepjUkFERCQThUTH/fjmm29w5MgRw+vCwkLMmDEDwcHBSExMRGBgIGbOnFmr/baYVBAREclErjEV+fn5WLVqFfz8/Azn9uzZA7VajYULF6Jt27aIjIxE48aNTW70eS9Zx1RQ/WHpWgsl5eJbp98sEl/HwlJiW5tbSu5t7YlqwnUoGq6YmBiMGDECN2/++XdrSkoKgoKCoPjfIA+FQoGuXbsiOTkZoaGhZtXLlgoiIiKZSNn9UVBQYHT8ddXqSseOHcMvv/yCOXPmGJ3XarXw9PQ0Oufu7o6cnByzPw9bKoiIiGSiVAgQpFhRE0Dv3r2h0+kM58PCwhAeHm50rV6vx7Jly7B06dIqW1/UtCdXTclJdZhUEBER1QNHjhyBnZ2d4fVfEwQAiIuLQ+fOndGrV68qZTXtyVWbfbeYVBAREclEyg3FnJycjJKK6nzzzTfIzc1FYGAggD838ty3bx+GDh2K3Nxco+tzc3OrdImIYVJBREQkE4VCsOriV//6179QWlpqeL1mzRoAwIIFC/Dzzz9j8+bNEAQBCoUCgiDg1KlTmDVrltn1M6kgIiJqIFq2bGn0unHjihlA3t7ecHd3x1tvvYXo6GiMHTsWO3bsgE6nw+DBg82un0kF2QRPjfnNa9WxZOtyoG6nfXLKKNH9aQjTsZWwfNdyqaZxOjk5YePGjVi2bBl27tyJDh06YNOmTXB0dDS7DiYVREREMrF298dfvfnmm0av/f39sXv37vuuj0kFERGRTGyppUIKthQLERERPcDYUkFERCQTubs/pMakgoiISCYKWN5lYEtJBbs/iIiISBJsqbhHQ5i+ZKtUdlWXk73X3ZK7ouV5xXmi5aamrN7Si9/f3MGyKa9ku8T+3PPPvLwawvNn9wcRERFJQsplum0Buz+IiIhIEmypICIikolSAUBh2UoVShtqq2BSQUREJBOFAvVqTAW7P4iIiEgSbKkgIiKSiRICLF2o25ZaB5hUEBERyaS+dX8wqbhHQ5gTbatMPftb5cWi5abWoSgoFV/noi7XocjT54uWN27UWLScP5d1S87ny7VxiFNKiYiIiKrBlgoiIiKZKBWCBFNKbQeTCiIiIpmw+4OIiIioGmypICIikgm7P4iIiEgS9a37g0kFScLU1DhTTG1t3lTtVqf3F5i430lk2qepz97IxLTA+j5tkNMma9aQPzvVT0wqiIiIZKJQCFBY2P1hSy0VsnbF6PV6LFmyBMHBwQgJCUF8fHyN13755Zd45pln4O/vj7FjxyI1NdWKkRIREUlPgYp/iC05mFT8z6pVq5CWloZt27Zh2bJliIuLw969e6tc98svvyAyMhJz5szBN998g8DAQEyfPh1374o3WRMREZH1yJZUFBYWYteuXYiMjISvry+efvppTJs2Ddu3b69yrVarxZw5czBixAi0bt0ac+fORX5+Pi5duiRD5ERERNJQKBSSHLZCtjEV6enpKC0tRWBgoOFcUFAQNmzYgPLyciiVf+Y7gwcPNvz/oqIifPjhh3B3d0fbtm2tGjMREZGUpEgHbCelkDGp0Gq1cHNzg0qlMpzz8PCAXq9Hfn4+mjZtWuWeY8eOYcqUKRAEAWvWrEHjxuIbMREREdkyBRQWZwUKwXbSCtmSCp1OZ5RQADC8Li6ufkfKxx57DImJiTh8+DAWL16MVq1aoUuXLnUdKhEREZlBtqRCrVZXSR4qX2s0mmrv8fDwgIeHB3x8fJCSkoIdO3YwqZCIpetMWDzf3sT235YytY5FXRJb46Ih4FoMRDWrb90fsg3U9PLyQl5eHkpLSw3ntFotNBoNnJ2dja5NTU3F2bNnjc61bdsWeXl5VomViIioLigk+s9WyJZU+Pj4wN7eHsnJyYZzSUlJ8PPzMxqkCQCfffYZ3n77baNzZ8+exaOPPmqNUImIiOqNq1evYurUqQgMDESfPn2wZcsWQ1lWVhYmT56MLl26YMiQITh69Git6pYtqXBwcMDIkSMRFRWF1NRUHDx4EPHx8Zg4cSKAilaLoqIiAMALL7yA48ePY9u2bbhy5QpiY2ORmpqKyZMnyxU+ERGRxRQKaQ5zlZeXY8aMGXBzc8Pu3buxfPlyvP/++/jqq68gCALmzp0LDw8PJCQkYMSIEQgLC0N2drbZ9cu6+FVERAR8fX0xadIkLF++HOHh4Rg4cCAAICQkBHv27AEA+Pr6Ii4uDp999hmGDx+OI0eOYOvWrfDy8pIzfCIiIosooZDkMFdubi58fHwQFRWFNm3aoHfv3ujRoweSkpJw/PhxZGVl4fXXX0fbtm0xc+ZMdOnSBQkJCWbXL+veHw4ODoiJiUFMTEyVsgsXLhi97tu3L/r27Wut0IiIiOodT09PrF27FgAgCAJOnTqFn3/+GcuWLUNKSgo6deoER0dHw/VBQUFGwxRMsaVt2ImIiBoUKbs/CgoKjI6almeo1K9fP4wfPx6BgYF45plnoNVq4enpaXSNu7s7cnJyzP483KX0AVHX20ebut/SKaeWKi4T/8PR2MS0TVP3m3x/kc8v95RJbi1O9OBS3PO/ltUB9O7dGzqdznA+LCwM4eHhNd4XGxuL3NxcREVFYeXKlTWuH2UqObkXkwoiIqJ64MiRI7CzszO8/muC8Fd+fn4AKnYMX7BgAZ577jmjpASoWD+qprWjqsPuDyIiIplI2f3h5ORkdFSXVOTm5uLgwYNG59q1a4eSkhI0a9YMubm5Va7/a5eIGCYVREREMrH24lfXrl1DWFgYbty4YTiXlpaGpk2bIigoCGfPnjUs5wBUrB8VEBBgdv1MKoiIiGRi7XUq/Pz84OvriyVLluDixYs4cuQIVq9ejVmzZqFbt2546KGHEBERgYyMDGzatAmpqakYPXq02fUzqSAiImog7OzssH79ejg4OOCFF15AZGQkJkyYgIkTJxrKtFotQkND8eWXX+K9995DixYtzK6fAzWJiIhkIsW+HbWtwcvLC3FxcdWWeXt74+OPP77vWJhUPCDqelpggYldPOt6p01TUz5VduKjmOv7lFoxnDJK9OBSAhAsrMN2thNj9wcRERFJhC0VREREclEoajXQsvo6JIlEEkwqiIiIZGJD+YAk2P1BREREkmBLBRERkUwUCoXlzRU21NzBpIKIiEgmNpQPSILdH0RERCQJtlQQANPrUFi6vbal6zxYuhbDDd1N0fLWjVuKlouto1HX60Rwa3OyVfzZtBy7P4iIiEgSNpQPSIJJBRERkUykWKbblnBMBREREUmCLRVEREQyUSrAMRVERERkOXZ/EBEREVWDLRVW8qBPvbJ0yqilny9Pny9a7qZ2NXF/nmi5qSmlYluv1/V0WVv/2aCGiz+bllOw+4OIiIikwO4PIiIiomqwpYKIiEgm7P4gIiIiSbD7g4iIiKgabKkgIiKSCbs/iIiISBL1rfuDSYWVPOjzuet663OxrcUBoLGJrdmz7v5XtNwUSz7fg74GCRHJp76NQahvn4eIiIhkImtSodfrsWTJEgQHByMkJATx8fE1Xvv9999jxIgRCAwMxLBhw/Ddd99ZMVIiIiLpKRQKSQ5bIWtSsWrVKqSlpWHbtm1YtmwZ4uLisHfv3irXpaenIywsDM899xw+//xzjB07Fn//+9+Rnp4uQ9RERERSUUh02AbZxlQUFhZi165d2Lx5M3x9feHr64uMjAxs374dgwYNMrr266+/xhNPPIGJEycCALy9vXHo0CF8++236NixoxzhExER0V/IllSkp6ejtLQUgYGBhnNBQUHYsGEDysvLoVT+2YgyatQolJRUHQz3xx9/WCVWIiKiumJpO4MgSRTSkC2p0Gq1cHNzg0r15+6PHh4e0Ov1yM/PR9OmTQ3n27Zta3RvRkYGjh07hrFjx1otXiIiIqlVjImwtBLbSSxkSyp0Op1RQgHA8Lq4uObphbdu3UJ4eDi6du2K/v3712mMDUldTxm1dHvvgpK7ouWNTNzfunEr0XJTU1rFcMooET1Ibty4gejoaBw/fhxqtRpDhgzB/PnzoVarkZWVhddeew3Jyclo0aIFlixZgpCQELPrlm2gplqtrpI8VL7WaDTV3pObm4tJkyZBEATExsYadZEQERE9eKw7UFMQBMybNw86nQ7bt2/HO++8g8OHD2Pt2rUQBAFz586Fh4cHEhISMGLECISFhSE7O9vs+mVrqfDy8kJeXh5KS0thb18RhlarhUajgbOzc5Xrb9y4YRio+dFHHxl1jxARET2IpJq7YW73R2ZmJpKTk/HTTz/Bw8MDADBv3jzExMTgqaeeQlZWFnbs2AFHR0e0bdsWx44dQ0JCAsLDw82qX7Zf9X18fGBvb4/k5GTDuaSkJPj5+VVpgSgsLMS0adOgVCrx8ccfw8vLy8rREhERPfiaNWuGLVu2GBKKSgUFBUhJSUGnTp3g6OhoOB8UFGT077QpsrVUODg4YOTIkYiKisIbb7yBmzdvIj4+HitXrgRQ0WrRpEkTaDQabNy4Eb/99hv+9a9/GcqAim6SJk2ayPURiIiILKKQcPePgoIC2NnZGV6rVKoqYxednZ3Rq1cvw+vy8nJ8/PHHeOKJJ6DVauHp6Wl0vbu7O3JycsyOQdZBCREREfD19cWkSZOwfPlyhIeHY+DAgQCAkJAQ7NmzBwCwb98+FBUVYcyYMQgJCTEc0dHRcoZPRERkGYVCmgNA7969ERQUZDg2btxo8u1Xr16Nc+fO4R//+EeNEyjEJk/8lawbijk4OCAmJgYxMTFVyi5cuGD4/9WtsklERPSgk3I9zCNHjlRpqRCzevVqbNu2De+88w7at28PtVqN/Px8o2uKi4trnDxRHe5SSgAsnxZ518SUT5Xa1aL6nUzsUlpiYkqrKabuN/X+RERyc3JyMkoqxKxYsQKffPIJVq9ejWeeeQZAxQSKixcvGl2Xm5tbpUtEDOdkEhERycb6e3/ExcVhx44dePvtt/Hss88azgcEBODs2bMoKioynEtKSkJAQIDZdTOpICIikolCov/MdenSJaxfvx7Tp09HUFAQtFqt4ejWrRseeughREREICMjA5s2bUJqaipGjx5tdv3s/iAiImogvvvuO5SVleH999/H+++/b1R24cIFrF+/HpGRkQgNDYW3tzfee+89tGjRwuz6mVQQERHJ5J7JGxZUYv6lM2bMwIwZM2os9/b2xscff3zfoTCpICIiklX92aeUYyqIiIhIEmypICIikkltB1rWzDZaK5hUkCTcLFyHwtTW5gWl4uVqpfgiL6biM7V1OxFRXZBy8StbwO4PIiIikgRbKoiIiOQixfQPBcDuDyIiogZOujEVtoFJBRERkUzqW1LBMRVEREQkCSYVREREJAl2f1iJqSmLlm49buvvb4rKTnxKqJOF9ZuasmoJuZ8dET24FAoFFJIM1LQNbKkgIiIiSbClgoiISDb1a/krJhVEREQyqV8pBbs/iIiISCJsqSAiIpJJfVungkkFERGRbCRYptuGsPuDiIiIJMGWCiuRey0Dud/f1DoZxWXFouVOjRqLlufoboqWN3fwtOx+kfc3tQaGqTU45P5uHnS2vgYLkZj6NlCTSQUREZFMOKaCiIiIJFK/2io4poKIiIgkwZYKIiIimSikmPxhQw0dTCqIiIhkw+4PIiIioirYUkFmMTVtz1Kmpoyaev+rf2SLljdVu4m/v734+4veayJ2qlucMkoPMs7+ICIiIolYnlQIEkUiBXZ/EBERkSRkTSr0ej2WLFmC4OBghISEID4+3uQ9v/zyC/r372+F6IiIiOqYQqLDRsja/bFq1SqkpaVh27ZtyM7OxqJFi9CiRQsMGjSo2usvXLiAv//971Cr1VaOlIiISHpSjKmwoZxCvpaKwsJC7Nq1C5GRkfD19cXTTz+NadOmYfv27dVev2PHDowdOxbu7u5WjpSIiKj+KS4uxtChQ3HixAnDuaysLEyePBldunTBkCFDcPTo0VrVKVtSkZ6ejtLSUgQGBhrOBQUFISUlBeXl5VWu/+GHHxATE4PJkydbMUoiIqK6o5Dov9rS6/WYP38+MjIyDOcEQcDcuXPh4eGBhIQEjBgxAmFhYcjOFp9ddy/Zuj+0Wi3c3NygUv25g6OHhwf0ej3y8/PRtGlTo+vXr18PAEhMTLRqnFTB1LS9ut4p8pY+T7Q8665OtLy9i/hOom5q19qGZMBdMonovkkxJqKW91+8eBEvv/wyBMF43sjx48eRlZWFHTt2wNHREW3btsWxY8eQkJCA8PBws+qWraVCp9MZJRQADK+Li8W3wSYiIqoP5GipOHnyJLp3745PP/3U6HxKSgo6deoER0dHw7mgoCAkJyebXbdsLRVqtbpK8lD5WqPRyBESERHRA6ugoAB2dnaG1yqVqsov7wAwfvz4au/XarXw9PQ0Oufu7o6cnByzY5AtqfDy8kJeXh5KS0thb18RhlarhUajgbOzs1xhERERWY2Usz969+4Nne7PruCwsDCzuy2AmnsQatN7IFtS4ePjA3t7eyQnJyM4OBgAkJSUBD8/PyiVXJOLiIjqPymHVBw5cqRKS0VtqNVq5OfnG50rLi6uVe+BbP96Ozg4YOTIkYiKikJqaioOHjyI+Ph4TJw4EUBFq0VRUZFc4RERET1QnJycjI7aJhVeXl7Izc01Opebm1ulS0SMrE0CERER8PX1xaRJk7B8+XKEh4dj4MCBAICQkBDs2bNHzvCIiIjqlgKAQmHhIU0oAQEBOHv2rNEv9ElJSQgICDC7DllX1HRwcEBMTAxiYmKqlF24cKHae0JDQxEaGlrXoREREdU5acZUSJNVdOvWDQ899BAiIiIwZ84cHD58GKmpqVi5cqXZdXCXUpKEpWsxWLq1ev8WPqLljUzEl6O7KVpuaut0IqIHnZ2dHdavX4/IyEiEhobC29sb7733Hlq0aGF2HUwqiIiIZCLD2ldG/tor4O3tjY8//vi+62NSQUREJJfKcRGW1mEjOHeTiIiIJMGWCiIiIpnY0kBNKTCpICIikoncYyqkxqSCiIhIJmypoAeSrW/Pber9newbW1S/UyPx+1V2tVt5zuheC7eFt7R+IiJbwaSCiIhILvWs/4NJBRERkUzqW/cHp5QSERGRJNhSQUREJBO2VBARERFVg0kFERERSYLdH0RERDJRKBRQWLh3h6X3S4lJRQMh91oHlq6TUWLi/sYm1qHI0+eLluvLi0XLmzt41lhm62uAEJHt4pgKIiIiomqwpYKIiEgm9WztKyYVREREslEoKg5L67ARTCqIiIhkwjEVRERERNVgSwUREZFMOKaC6iVLp0UWlNwVLTe19bip+xuZeH9T8anUrha9vyXvTURUM8u7P2wprWD3BxEREUmCLRVERERy4ewPIiIikkJ9G1PB7g8iIiKSBFsqiIiIZFLf1qlgUkFERCQXjqmg+sjSaZGmpoyanLJqpxIvNxFfju6maHlTtZtF709E9U9Nfy+VlZdbOZL6g0kFERGRTOrbQE0mFURERDKpb2MqOPuDiIhIJgqJ/qsNvV6PJUuWIDg4GCEhIYiPj5fs87ClgoiIqAFZtWoV0tLSsG3bNmRnZ2PRokVo0aIFBg0aZHHdTCqIiIjkYuVBFYWFhdi1axc2b94MX19f+Pr6IiMjA9u3b5ckqWD3BxERkUys3f2Rnp6O0tJSBAYGGs4FBQUhJSUF5RLMemkwLRWCIAAAyso4VUgOlk7RKhPE7y8vE8Tvt/B7N/X+RPTgqenvpfL//X1R+e9GXSqX4N+kyjoKCgpgZ2dnOK9SqaBSGU+X12q1cHNzMzrv4eEBvV6P/Px8NG3a1KJYGkxSUZmBZZy7Im8gJIs8/CF3CET0gJHiN/eaKBQK2Nvb41eJ/k0qLi5Gz549UVLy59obYWFhCA8PN7pOp9NVSTQqXxcXF1scR4NJKuzt7eHn5welUgmFDa0+RkREtkUQBJSXl8Pevu7+iVQqlfDz85OsNaSkpATHjx83OvfX5AEA1Gp1leSh8rVGo7E4jgaTVCiVymofMBERkRyUSumGNd7b7SHGy8sLeXl5KC0tNSRNWq0WGo0Gzs7OFsfBgZpEREQNhI+PD+zt7ZGcnGw4l5SUZGjJtxSTCiIiogbCwcEBI0eORFRUFFJTU3Hw4EHEx8dj4sSJktSvEKwxvJWIiIhsgk6nQ1RUFPbv3w8nJydMnToVkydPlqRuJhVEREQkCXZ/EBERkSSYVBAREZEkmFQQERGRJJhU1LHabDF74cIFjBs3Dv7+/hg2bFiVhUw+/PBD9OrVC4GBgViyZAl0Op1Nx3z79m106NDB6Ojevbts8U6YMKFKPB06dEBERIThGlt7xqZitrVnDAAHDhzA4MGDERgYiHHjxuHs2bNG5dZ4xlLFa63nW9uYjx49iuHDhyMwMBCTJ09GZmamUfnXX3+NAQMGICAgAHPnzsWtW7dsOt7g4OAqz/nu3buSx0xWIFCdev3114Vhw4YJaWlpwv79+4XAwEDh22+/rXLdnTt3hCeffFJ49dVXhStXrgjvvvuuEBQUJOTm5gqCIAh79+4VgoKChEOHDgkpKSnCkCFDhOXLl9t0zL/88ovQrVs34ebNm4ajskyOePPy8oxiOXDggODr6yukpqYKgmCbz9hUzLb2jH/99VfBz89P2L17t3D16lVh+fLlQs+ePYXCwkJBEKz3jKWK11rPt7Yxd+rUSVi7dq1w6dIlISYmRggJCREKCgoEQRCElJQUwd/fX9i9e7dw/vx54aWXXhJmzJhhs/Hm5OQI7du3F3777Tej51xeXi55zFT3mFTUobt37wp+fn7C8ePHDefee+894aWXXqpy7bZt24QBAwYIpaWlhnOhoaHC999/LwiCIIwfP16IjY01lP3888+Cv7+/4S8/W4x5586dwgsvvCBpfJbEe6/S0lJhyJAhwjvvvGM4Z4vP2FTMtvaMP/jgA2HUqFGG13/88YfQvn17QxJkjWcsZbzWeL61jXn58uXCiy++aHhdXl4uDB48WPjkk08EQRCEV155RVi0aJGhPDs7W+jQoYPw22+/2WS8P/30k9CzZ0/JYiN5sfujDtVmi9mTJ0+if//+RkutJiQkoHfv3igrK8OZM2cQHBxsKOvSpQtKSkqQnp5ukzEDwMWLF9GmTRtJ47Mk3nslJibi9u3bmD59OgDY7DMWixmwvWfs6uqKixcvIikpCeXl5UhMTISTkxMefvhhqz1jqeIFrPN8axtzVlYW/P39Da8VCgXat29vWCExJSXF6Bk/9NBDaNGiBVJSUmwy3osXL+KRRx6RLDaSF5OKOmRqi9l7ZWVloWnTpnjttdfQs2dPPP/880hKSgIA3LlzB3q9Hp6enobr7e3t4erqipycHJuMGQAuXbqEnJwcjB49Gr169cI//vEP3Lx5U7Z4KwmCgC1btmDixIlo3LgxANt9xmIxA7b3jIcMGYI+ffpg/Pjx6Ny5M1atWoXY2Fi4uLhY7RlLFS9gnedb25g9PDxw48YNo3M5OTnIy8sDANy8edPoGQOAu7u7bM/YVLyXLl2CTqfDhAkTEBISgunTp+Py5cuSxUrWxaSiDtVmi9nCwkJs2rQJzZo1w+bNm/H4449j6tSpuH79OoqKiozuvbcuKbaqrYuYASAzMxMFBQWIiIjAO++8g5s3b2LWrFkoKyuTJd5KJ06cQE5ODp5//nnDOVt9xpWqixmwvWecl5cHrVaLpUuXYufOnRgxYgQiIiLw+++/W+0ZSxUvYJ3nW9uYBw8ejH379uHw4cMoLS3F7t27cebMGcOW10VFRTb1jE3Fm5mZidu3b2P27NlYv349NBoNJk+ejIKCAsniJetpMLuUyqE2W8za2dnBx8cH8+bNAwB06tQJP/30E7744gvDPyTV1eXg4GCTMc+aNQvffPMNFAqF4b7Y2FiEhIQgJSUFXbt2tXq8lfbt24ennnoKrq6uRvXce++9dcn5jCtVFzMAm3vGa9asQfv27fHiiy8CAFasWIHBgwcjISEBo0ePNrr33rqkfMZSxTtjxgyrPN/axvzUU09h7ty5CA8PR1lZGbp3744RI0YY/hGuqS65nrGpeLdu3YqSkhJDC9yaNWvQu3dvHD58GMOGDZMsZrIOtlTUoXu3mK1U0xazzZo1w6OPPmp0rk2bNrh+/TpcXV2hVquRm5trKCstLUV+fj6aNWtmkzEDFRvX3PsXjLu7O1xdXas0hVor3ko//vgj+vfvb3TOVp+xWMyA7T3js2fPomPHjobXSqUSHTt2RHZ2ttWesVTxAtZ5vrWNGQBmz56NU6dO4ejRo/jwww9x9+5dtGzZ0lDXvc8YAHJzc2V7xqbiValURl16arUarVq1kvwZk3UwqahDtdlitkuXLrhw4YLRuczMTLRs2RJKpRJ+fn5G4xWSk5Nhb29v9BeiLcVcUFCAxx9/3Gjdihs3biAvL69KImKteAHg1q1byMrKQlBQkNF5W33GYjHb4jP29PTEpUuXjM5dvnwZrVq1stozlipeaz3f2sb89ddfIzo6GiqVCu7u7igqKsKJEycM62cEBAQYPePr16/j+vXrCAgIsLl4BUHAgAEDkJiYaLi+sLAQV69elfwZk5XIPPuk3nvttdeEZ599VkhJSREOHDggdO3aVdi3b58gCIJw8+ZNQafTCYIgCNeuXRO6dOkixMbGCleuXBHWrl0rdOnSRcjJyREEQRC+/vproWvXrsKBAweElJQU4dlnnxVWrFhh0zHPnDlTGD58uJCSkiKkpaUJ48aNE6ZNmyZbvIIgCMePHxf8/PyqnQNvi8/YVMy29oy/+eYbw7oPV65cEVavXm20dom1nrFU8Vrr+dYm5jNnzgidO3cW9u3bJ1y+fFmYM2eOMHLkSKGsrEwQBEE4deqU4OvrK+zcudOwTsXMmTNtNt4VK1YIffr0EY4fPy78+uuvwty5c4WhQ4caTVWnBweTijpWWFgoLFy4UOjSpYsQEhIifPDBB4ay9u3bCwkJCYbXv/zyizBq1Cihc+fOwogRI4STJ08a1bVx40ahR48eQlBQkBARESEUFRXZdMz5+fnC4sWLhe7duwuBgYHCggULhPz8fFnj/eabb0TnxNviMxaL2Raf8c6dO4VBgwYJXbp0EcaNGyekpaUZ1WWNZyxVvNZ6vrWN+bPPPhP69u0rBAYGCnPmzBFu3LhhVFdCQoLQu3dvoUuXLsLcuXOFW7du2Wy8RUVFwsqVK4WePXsKAQEBwsyZM4Xs7GzJ4yXr4NbnREREJAmOqSAiIiJJMKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgIiIiSTCpICIiIkkwqSAiIiJJMKkgakDOnz+PU6dOGZ3Lz8/Hk08+iWvXrskUFRHVF0wqiBqQuXPn4sqVK4bXt2/fxqxZswxbfRMRWYJJBVED9csvvyA0NBSFhYVyh0JE9QSX6SZqICZMmICTJ08CAEaNGoXmzZtDpVLh2WefxcCBA/Hdd9+hVatWMkdJRA8ye7kDICLrWLduHUaMGIEpU6YgNDQUTZo0AQCOpSAiybD7g6iBcHV1hZ2dHZo0aWJIKIiIpMSkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgqgBcXR0RGZmJvLz8+UOhYjqISYVRA3IuHHjsH37drz66qtyh0JE9RDXqSAiIiJJsKWCiIiIJMGkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgoiIiCTBpIKIiIgkwaSCiIiIJMGkgoiIiCTBpIKIiIgk8f+Xj50Gj8uR6QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Corner Plot between the two peak times\n", + "plot = gpresult2.comparison_plot(\"t0\", \"t1\")" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "--------\n", + "Termination Conditions:\n", + "Small remaining evidence\n", + "--------\n", + "# likelihood evals: 1317371\n", + "# samples: 14500\n", + "# slices: 396000.0\n", + "# slices / acceptance: 33.0\n", + "# likelihood evals / sample: 90.9\n", + "# likelihood evals / slice: 3.3\n", + "--------\n", + "logZ=-241.35 +- 0.19\n", + "H=240.0\n", + "ESS=2411\n", + "--------\n", + "log_A[#]: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_A[0]: 0.81 +- 0.25 | 0.57 / 0.81 / 1.12 | 0.87 | 0.87\n", + "log_A[1]: 0.89 +- 0.25 | 0.62 / 0.89 / 1.19 | 0.99 | 0.99\n", + "--------\n", + "log_aqpo: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_aqpo: 0.23 +- 0.47 | -0.26 / 0.11 / 0.86 | 0.19 | 0.19\n", + "--------\n", + "log_arn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_arn: -0.23 +- 0.11 | -0.33 / -0.27 / -0.1 | -0.33 | -0.33\n", + "--------\n", + "log_cqpo: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_cqpo: -0.69 +- 0.76 | -1.75 / -0.71 / 0.32 | -0.48 | -0.48\n", + "--------\n", + "log_crn: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_crn: 4.21 +- 0.17 | 4.0 / 4.23 / 4.41 | 4.34 | 4.34\n", + "--------\n", + "log_freq: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_freq: 2.967 +- 0.024 | 2.935 / 2.968 / 2.998 | 2.954 | 2.954\n", + "--------\n", + "log_sig[#]: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "log_sig[0]: -1.1 +- 1.5 | -3.2 / -0.4 / 0.5 | -0.4 | -0.4\n", + "log_sig[1]: -1.8 +- 1.6 | -3.3 / -2.7 / 0.4 | -3.3 | -3.3\n", + "--------\n", + "t0: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "t0: 0.56 +- 0.16 | 0.33 / 0.6 / 0.7 | 0.58 | 0.58\n", + "--------\n", + "t1: mean +- std.dev. | 10%ile / 50%ile / 90%ile | MAP est. | max(L) est.\n", + "t1: 0.751 +- 0.097 | 0.678 / 0.702 / 0.928 | 0.691 | 0.691\n", + "--------\n" + ] + } + ], + "source": [ + "gpresult2.print_summary()" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Credits:\n", + "\n", + "1. [Gaussian Process regression for astronomical time-series](https://arxiv.org/pdf/2209.08940), Suzanne Aigrain, Daniel Foreman-Mackey\n", + "\n", + "2. [Bayesian Model Comparison](https://ned.ipac.caltech.edu/level5/Sept13/Trotta/Trotta4.html), Roberto Trotta\n", + "\n", + "3. [Searching for quasi-periodic oscillations in astrophysical transients using Gaussian processes](https://arxiv.org/abs/2205.12716), Moritz Hubner et al." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Modeling/ModelingExamples.html b/notebooks/Modeling/ModelingExamples.html new file mode 100644 index 000000000..481966384 --- /dev/null +++ b/notebooks/Modeling/ModelingExamples.html @@ -0,0 +1,1962 @@ + + + + + + + + The Stingray Modeling API Explained — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

The Stingray Modeling API Explained

+

Some more in-depth explanations of how the Stingray modeling API works.

+

Who should be using this API? Basically, anyone who wants to model power spectral products with parametric functions. The purpose of this API is two-fold: (1) provide convenient methods and classes in order to model a large range of typical data representations implemented in Stingray (2) provide a more general framework for users to build their own models

+

A note on terminology: in this tutorial, we largely use model to denote both the parametric model describing the underlying process that generated the data, and the statistical model used to account for uncertainties in the measurement process.

+

The modeling subpackage defines a wider range of classes for typical statistical models than most standard modelling packages in X-ray astronomy, including likelihoods for Gaussian-distributed uncertainties (what astronomers call the \(\chi^2\) likelihood), Poisson-distributed data (e.g. light curves) and \(\chi^2\)-distributed data (confusingly, not what astronomers call the \(\chi^2\) likelihood, but the likelihood of data with \(\chi^2\)-distributed uncertainties +appropriate for power spectra). It also defines a superclass LogLikelihood that make extending the framework to other types of data uncertainties straightforward. It supports Bayesian modelling via the Posterior class and its subclasses (for different types of data, equivalent to the likelihood classes) and provides support for defining priors.

+

The class ParameterEstimation and its data type-specific subclasses implement a range of operations usually done with power spectra and other products, including optimization (fitting), sampling (via Markov-Chain Monte Carlo), calibrating models comparison metrics (particularly likelihood ratio tests) and outlier statistics (for finding periodic signal candidates).

+

Overall, it is designed to be as modular as possible and extensible to new data types and problems in many places, though we do explicitly not aim to provide a fully general modelling framework (for example, at the moment, we have given no thought to modeling multi-variate data, though this may change in the future).

+
+

Some background

+

Modeling power spectra and light curves with parametric models is a fairly standard task. Stingray aims to make solving these problems as easy as possible.

+

We aim to integrate our existing code with astropy.modeling for for maximum compatibility. Please note, however, that we are only using the models, not the fitting interface, which is too constrained for our purposes.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+# ignore warnings to make notebook easier to see online
+# COMMENT OUT THESE LINES FOR ACTUAL ANALYSIS
+import warnings
+warnings.filterwarnings("ignore")
+
+
+
+
+
[2]:
+
+
+
%matplotlib inline
+import matplotlib.pyplot as plt
+
+try:
+    import seaborn as sns
+    sns.set_palette("colorblind")
+except ImportError:
+    print("Install seaborn. It help you make prettier figures!")
+
+import numpy as np
+
+from astropy.modeling import models
+
+
+
+
+
+
+
+
+Install seaborn. It help you make prettier figures!
+
+
+

The models and API of astropy.modeling.models is explained in the astropy documentation in more detail.

+

Here’s how you instantiate a simple 1-D Gaussian:

+
+
[3]:
+
+
+
g = models.Gaussian1D()
+
+
+
+
+
[4]:
+
+
+
# Generate fake data
+np.random.seed(0)
+x = np.linspace(-5., 5., 200)
+y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)
+y += np.random.normal(0., 0.2, x.shape)
+yerr = 0.2
+
+plt.figure(figsize=(8,5))
+plt.errorbar(x, y, yerr=yerr, fmt='ko')
+
+
+
+
+
[4]:
+
+
+
+
+<ErrorbarContainer object of 3 artists>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_5_1.png +
+
+
+
+

Likelihoods and Posteriors

+

In general, model fitting will happen either in a frequentist (Maximum Likelihood) or Bayesian framework. Stingray’s strategy is to let the user define a posterior in both cases, but ignore the prior in the former case.

+

Let’s first make some fake data:

+
+
[5]:
+
+
+
# define power law component
+pl = models.PowerLaw1D()
+
+# fix x_0 of power law component
+pl.x_0.fixed = True
+
+# define constant
+c = models.Const1D()
+
+# make compound model
+plc = pl + c
+
+
+
+

We’re going to pick some fairly standard parameters for our data:

+
+
[6]:
+
+
+
# parameters for fake data.
+alpha = 2.0
+amplitude = 5.0
+white_noise = 2.0
+
+
+
+

And now a frequency array:

+
+
[7]:
+
+
+
freq = np.linspace(0.01, 10.0, int(10.0/0.01))
+
+
+
+

Now we can set the parameters in the model:

+
+
[8]:
+
+
+
from astropy.modeling.fitting import fitter_to_model_params
+
+fitter_to_model_params(plc, [amplitude, alpha, white_noise])
+
+
+
+
+
[9]:
+
+
+
psd_shape = plc(freq)
+
+
+
+

As a last step, we need to add noise by picking from a chi-square distribution with 2 degrees of freedom:

+
+
[10]:
+
+
+
powers = psd_shape*np.random.chisquare(2, size=psd_shape.shape[0])/2.0
+
+
+
+

Let’s plot the result:

+
+
[11]:
+
+
+
plt.figure(figsize=(12,7))
+plt.loglog(freq, powers, ds="steps-mid", label="periodogram realization")
+plt.loglog(freq, psd_shape, label="power spectrum")
+
+
+plt.legend()
+
+
+
+
+
[11]:
+
+
+
+
+<matplotlib.legend.Legend at 0x12b34d630>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_18_1.png +
+
+
+
+

Maximum Likelihood Fitting

+

Let’s assume we’ve observed this periodogram from our source. We would now like to estimate the parameters. This requires the definition of likelihood, which describes the probability of observing the data plotted above given some underlying model with a specific set of parameters. To say it differently, the likelihood encodes what we know about the underlying model (here a power law and a constant) and the statistical properties of the data (power spectra generally follow a chi-square +distribution) and then allows us to compare data and model for various parameters under the assumption of the statistical uncertainties.

+

In order to find the best parameter set, one generally maximizes the likelihood function using an optimization algorithm. Because optimization algorithms generally minimize functions, they effectively minimize the log-likelihood, which comes out to be the same as maximizing the likelihood itself.

+

Below is an implementation of the \(\chi^2\) likelihood as appropriate for power spectral analysis, with comments for easier understanding. The same is also implemented in posterior.py in Stingray:

+
+
[12]:
+
+
+
logmin = -1e16
+class PSDLogLikelihood(object):
+
+    def __init__(self, freq, power, model, m=1):
+        """
+        A Chi-square likelihood as appropriate for power spectral analysis.
+
+        Parameters
+        ----------
+        freq : iterable
+            x-coordinate of the data
+
+        power : iterable
+            y-coordinte of the data
+
+        model: an Astropy Model instance
+            The model to use in the likelihood.
+
+        m : int
+            1/2 of the degrees of freedom, i.e. the number of powers
+            that were averaged to obtain the power spectrum input into
+            this routine.
+
+        """
+
+        self.x = ps.freq # the x-coordinate of the data (frequency array)
+        self.y = ps.power # the y-coordinate of the data (powers)
+        self.model = model # an astropy.models instance
+        self.m = m
+
+        self.params = [k for k,l in self.model.fixed.items() if not l]
+        self.npar = len(self.params) # number of free parameters
+
+    def evaluate(self, pars, neg=False):
+        """
+        Evaluate the log-likelihood.
+
+        Parameters
+        ----------
+        pars : iterable
+            The list of parameters for which to evaluate the model.
+
+        neg : bool, default False
+            If True, compute the *negative* log-likelihood, otherwise
+            compute the *positive* log-likelihood.
+
+        Returns
+        -------
+        loglike : float
+            The log-likelihood of the model
+
+        """
+        # raise an error if the length of the parameter array input into
+        # this method doesn't match the number of free parameters in the model
+        if np.size(pars) != self.npar:
+            raise Exception("Input parameters must" +
+                            " match model parameters!")
+
+        # set parameters in self.model to the parameter set to be used for
+        # evaluation
+        fitter_to_model_params(self.model, pars)
+
+        # compute the values of the model at the positions self.x
+        mean_model = self.model(self.x)
+
+        # if the power spectrum isn't averaged, compute simple exponential
+        # likelihood (chi-square likelihood for 2 degrees of freedom)
+        if self.m == 1:
+            loglike = -np.sum(np.log(mean_model)) - \
+                      np.sum(self.y/mean_model)
+        # otherwise use chi-square distribution to compute likelihood
+        else:
+            loglike = -2.0*self.m*(np.sum(np.log(mean_model)) +
+                               np.sum(self.y/mean_model) +
+                               np.sum((2.0 / (2. * self.m) - 1.0) *
+                                      np.log(self.y)))
+
+        if not np.isfinite(loglike):
+            loglike = logmin
+
+        if neg:
+            return -loglike
+        else:
+            return loglike
+
+    def __call__(self, parameters, neg=False):
+        return self.evaluate(parameters, neg)
+
+
+
+

Let’s make an object and see what it calculates if we put in different parameter sets. First, we have to make our sample PSD into an actual Powerspectrum object:

+
+
[13]:
+
+
+
from stingray import Powerspectrum
+
+ps = Powerspectrum()
+ps.freq = freq
+ps.power = powers
+ps.df = ps.freq[1] - ps.freq[0]
+ps.m = 1
+
+
+
+
+
[14]:
+
+
+
loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)
+
+
+
+
+
[15]:
+
+
+
test_pars = [1, 5, 100]
+loglike(test_pars)
+
+
+
+
+
[15]:
+
+
+
+
+-4835.88214847462
+
+
+
+
[16]:
+
+
+
test_pars = [4.0, 10, 2.5]
+loglike(test_pars)
+
+
+
+
+
[16]:
+
+
+
+
+-2869.5582486265116
+
+
+
+
[17]:
+
+
+
test_pars = [2.0, 5.0, 2.0]
+loglike(test_pars)
+
+
+
+
+
[17]:
+
+
+
+
+-2375.704120812954
+
+
+

Something close to the parameters we put in should yield the largest log-likelihood. Feel free to play around with the test parameters to verify that this is true.

+

You can similarly import the PSDLogLikelihood class from stingray.modeling and do the same:

+
+
[18]:
+
+
+
from stingray.modeling import PSDLogLikelihood
+
+loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)
+loglike(test_pars)
+
+
+
+
+
[18]:
+
+
+
+
+-2375.704120812954
+
+
+

To estimate the parameters, we can use an optimization routine, such as those implemented in scipy.optimize.minimize. We have wrapped some code around that, to make your lives easier. We will not reproduce the full code here, just demonstrate its functionality.

+

Now we can instantiate the PSDParEst (for PSD Parameter Estimation) object. This can do more than simply optimize a single model, but we’ll get to that later.

+

The PSDParEst object allows one to specify the fit method to use (however, this must be one of the optimizers in scipy.optimize). The parameter max_post allows for doing maximum-a-posteriori fits on the Bayesian posterior rather than maximum likelihood fits (see below for more details). We’ll set it to False for now, since we haven’t defined any priors:

+
+
[19]:
+
+
+
from stingray.modeling import PSDParEst
+
+parest = PSDParEst(ps, fitmethod="L-BFGS-B", max_post=False)
+
+
+
+

In order to fit a model, make an instance of the appropriate LogLikelihood or Posterior subclass, andsimply call the fit method with that instance and starting parameters you would like to fit.

+
+
[20]:
+
+
+
loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)
+
+
+
+
+
[21]:
+
+
+
loglike.model.parameters
+
+
+
+
+
[21]:
+
+
+
+
+array([2., 1., 5., 2.])
+
+
+
+
[22]:
+
+
+
loglike.npar
+
+
+
+
+
[22]:
+
+
+
+
+3
+
+
+
+
[23]:
+
+
+
starting_pars = [3.0, 1.0, 2.4]
+res = parest.fit(loglike, starting_pars)
+
+
+
+

The result is an OptimizationResults object, which computes various summaries and useful quantities.

+

For example, here’s the value of the likelihood function at the maximum the optimizer found:

+
+
[24]:
+
+
+
res.result
+
+
+
+
+
[24]:
+
+
+
+
+2183.7896770356615
+
+
+

Note: Optimizers routinely get stuck in local minima (corresponding to local maxima of the likelihood function). It is usually useful to run an optimizer several times with different starting parameters in order to get close to the global maximum.

+

Most useful are the estimates of the parameters at the maximum likelihood and their uncertainties:

+
+
[25]:
+
+
+
print(res.p_opt)
+print(res.err)
+
+
+
+
+
+
+
+
+[4.72915772 2.09193133 2.10372299]
+[3.8037075  0.73336812 0.55239425]
+
+
+

Note: uncertainties are estimated here via the covariance matrix between parameters, i.e. the inverse of the Hessian at the maximum. This only represents the true uncertainties for specific assumptions about the likelihood function (Gaussianity), so use with care!

+

It also computes Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison purposes:

+
+
[26]:
+
+
+
print("AIC: " + str(res.aic))
+print("BIC: " + str(res.bic))
+
+
+
+
+
+
+
+
+AIC: 2189.7896770356615
+BIC: 2204.5129428726077
+
+
+

Finally, it also produces the values of the mean function for the parameters at the maximum. Let’s plot that and compare with the power spectrum we put in:

+
+
[27]:
+
+
+
plt.figure(figsize=(12,8))
+plt.loglog(ps.freq, psd_shape, label="true power spectrum",lw=3)
+plt.loglog(ps.freq, ps.power, label="simulated data")
+plt.loglog(ps.freq, res.mfit, label="best fit", lw=3)
+plt.legend()
+
+
+
+
+
[27]:
+
+
+
+
+<matplotlib.legend.Legend at 0x28d068eb0>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_43_1.png +
+
+

That looks pretty good!

+

You can print a summary of the fitting results by calling print_summary:

+
+
[28]:
+
+
+
res.print_summary(loglike)
+
+
+
+
+
+
+
+
+The best-fit model parameters plus errors are:
+  0) Parameter amplitude_0         :
+4.72916              +/- 3.80371
+[      None       None]
+  1) Parameter x_0_0               :
+1.00000              (Fixed)
+  2) Parameter alpha_0             :
+2.09193              +/- 0.73337
+[      None       None]
+  3) Parameter amplitude_1         :
+2.10372              +/- 0.55239
+[      None       None]
+
+
+Fitting statistics:
+ -- number of data points: 1000
+ -- Deviance [-2 log L] D = 4367.579354.3
+ -- The Akaike Information Criterion of the model is: 2189.7896770356615.
+ -- The Bayesian Information Criterion of the model is: 2204.5129428726077.
+ -- The figure-of-merit function for this model  is: 1079.683266.5f and the fit for 997 dof is 1.082932.3f
+ -- Summed Residuals S = 69266.959968.5f
+ -- Expected S ~ 6000.000000.5 +/- 109.544512.5
+
+
+
+

Likelihood Ratios

+

The parameter estimation code has more functionality than act as a simple wrapper around scipy.optimize. For example, it allows for easy computation of likelihood ratios. Likelihood ratios are a standard way to perform comparisons between two models (though they are not always statistically meaningful, and should be used with caution!).

+

To demonstrate that, let’s make a broken power law model

+
+
[29]:
+
+
+
# broken power law model
+bpl = models.BrokenPowerLaw1D()
+
+# add constant
+bplc = bpl + c
+
+
+
+
+
[30]:
+
+
+
bplc.param_names
+
+
+
+
+
[30]:
+
+
+
+
+('amplitude_0', 'x_break_0', 'alpha_1_0', 'alpha_2_0', 'amplitude_1')
+
+
+
+
[31]:
+
+
+
# define starting parameters
+bplc_start_pars = [2.0, 1.0, 3.0, 1.0, 2.5]
+
+
+
+
+
[32]:
+
+
+
loglike_bplc = PSDLogLikelihood(ps.freq, ps.power, bplc, m=ps.m)
+
+
+
+
+
[33]:
+
+
+
pval, plc_opt, bplc_opt = parest.compute_lrt(loglike, starting_pars, loglike_bplc, bplc_start_pars)
+
+
+
+
+
[34]:
+
+
+
print("Likelihood Ratio: " + str(pval))
+
+
+
+
+
+
+
+
+Likelihood Ratio: 0.36080561093513097
+
+
+
+
+
+

Bayesian Parameter Estimation

+

For Bayesian parameter estimation, we require a prior along with the likelihood defined above. Together, they form the posterior, the probability of the parameters given the data, which is what we generally want to compute in science.

+

Since there are no universally accepted priors for a model (they depend on the problem at hand and your physical knowledge about the system), they cannot be easily hard-coded in stingray. Consequently, setting priors is slightly more complex.

+

Analogously to the LogLikelihood above, we can also define a Posterior object. Each posterior object has three methods: logprior, loglikelihood and logposterior.

+

We have pre-defined some Posterior objects in posterior.py for common problems, including power spectral analysis. We start by making a PSDPosterior object:

+
+
[35]:
+
+
+
from stingray.modeling import PSDPosterior
+
+
+
+
+
[36]:
+
+
+
lpost = PSDPosterior(ps.freq, ps.power, plc, m=ps.m)
+
+
+
+

The priors are set as a dictionary of functions:

+
+
[37]:
+
+
+
import scipy.stats
+
+# flat prior for the power law index
+p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+
+# flat prior for the power law amplitude
+p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))
+
+# normal prior for the white noise parameter
+p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)
+
+priors = {}
+priors["alpha_0"] = p_alpha
+priors["amplitude_0"] = p_amplitude
+priors["amplitude_1"] = p_whitenoise
+
+
+
+

There’s a function set_logprior in stingray.modeling that sets the prior correctly:

+
+
[38]:
+
+
+
from stingray.modeling import set_logprior
+
+
+
+
+
[39]:
+
+
+
lpost.logprior = set_logprior(lpost, priors)
+
+
+
+

You can also set the priors when you instantiate the posterior object:

+
+
[40]:
+
+
+
lpost = PSDPosterior(ps.freq, ps.power, plc, priors=priors, m=ps.m)
+
+
+
+

Much like before with the log-likelihood, we can now also compute the log-posterior for various test parameter sets:

+
+
[41]:
+
+
+
test_pars = [1.0, 2.0, 4.0]
+print("log-prior: " + str(lpost.logprior(test_pars)))
+print("log-likelihood: " + str(lpost.loglikelihood(test_pars)))
+print("log-posterior: " + str(lpost(test_pars)))
+
+
+
+
+
+
+
+
+log-prior: -198.61635344021062
+log-likelihood: -2412.2493594640564
+log-posterior: -2610.865712904267
+
+
+

When the prior is zero (so the log-prior is -infinity), it automatically gets set to a very small value in order to avoid problems when doing the optimization:

+
+
[42]:
+
+
+
test_pars = [6, 6, 3.0]
+print("log-prior: " + str(lpost.logprior(test_pars)))
+print("log-likelihood: " + str(lpost.loglikelihood(test_pars)))
+print("log-posterior: " + str(lpost(test_pars)))
+
+
+
+
+
+
+
+
+log-prior: -1e+16
+log-likelihood: -2534.0567826161864
+log-posterior: -1e+16
+
+
+
+
[43]:
+
+
+
test_pars = [5.0, 2.0, 2.0]
+print("log-prior: " + str(lpost.logprior(test_pars)))
+print("log-likelihood: " + str(lpost.loglikelihood(test_pars)))
+print("log-posterior: " + str(lpost(test_pars)))
+
+
+
+
+
+
+
+
+log-prior: 1.383646559789373
+log-likelihood: -2184.6739536386162
+log-posterior: -2183.290307078827
+
+
+

We can do the same parameter estimation as above, except now it’s called maximum-a-posteriori instead of maximum likelihood and includes the prior (notice we set max_post=True):

+
+
[44]:
+
+
+
parest = PSDParEst(ps, fitmethod='BFGS', max_post=True)
+res = parest.fit(lpost, starting_pars)
+
+
+
+
+
[45]:
+
+
+
print("best-fit parameters:")
+for p,e in zip(res.p_opt, res.err):
+    print("%.4f +/- %.4f"%(p,e))
+
+
+
+
+
+
+
+
+best-fit parameters:
+4.8949 +/- 0.4941
+2.0690 +/- 0.0811
+2.0547 +/- 0.0680
+
+
+

The same outputs exist as for the Maximum Likelihood case:

+
+
[46]:
+
+
+
res.print_summary(lpost)
+
+
+
+
+
+
+
+
+The best-fit model parameters plus errors are:
+  0) Parameter amplitude_0         :
+4.89492              +/- 0.49409
+[      None       None]
+  1) Parameter x_0_0               :
+1.00000              (Fixed)
+  2) Parameter alpha_0             :
+2.06898              +/- 0.08112
+[      None       None]
+  3) Parameter amplitude_1         :
+2.05471              +/- 0.06803
+[      None       None]
+
+
+Fitting statistics:
+ -- number of data points: 1000
+ -- Deviance [-2 log L] D = 4367.845868.3
+ -- The Akaike Information Criterion of the model is: 2188.6889410986737.
+ -- The Bayesian Information Criterion of the model is: 2203.41220693562.
+ -- The figure-of-merit function for this model  is: 1104.686609.5f and the fit for 997 dof is 1.108011.3f
+ -- Summed Residuals S = 75870.967955.5f
+ -- Expected S ~ 6000.000000.5 +/- 109.544512.5
+
+
+

Unlike in the maximum likelihood case, we can also sample from the posterior probability distribution. The method sample uses the emcee package to do MCMC.

+

Important: Do not sample from the likelihood function. This is formally incorrect and can lead to incorrect inferences about the problem, because there is no guarantee that a posterior with improper (flat, infinite) priors will be bounded!

+

Important: emcee has had a major upgrade to version 3, which came with a number of API changes. To ensure compatibility with stingray, please update emcee to the latest version, if you haven’t already.

+

Much like the optimizer, the sampling method requires a model and a set of starting parameters t0. Optionally, it can be useful to also input a covariance matrix, for example from the output of the optimizer.

+

Finally, the user should specify the number of walkers as well as the number of steps to use for both burn-in and sampling:

+
+
[47]:
+
+
+
sample = parest.sample(lpost, res.p_opt, cov=res.cov, nwalkers=400,
+             niter=100, burnin=300, namestr="psd_modeling_test")
+
+
+
+
+
+
+
+
+Chains too short to compute autocorrelation lengths.
+-- The acceptance fraction is: 0.642375.5
+R_hat for the parameters is: [0.32313683 0.00732082 0.00479484]
+-- Posterior Summary of Parameters:
+
+parameter        mean            sd              5%              95%
+
+---------------------------------------------
+
+theta[0]         4.942652228740678      0.5691486161504021      4.035143030111889       5.915733521435971
+
+theta[1]         2.0754546626425574     0.0856675712513585      1.9374392067380983      2.21960029522001
+
+theta[2]         2.052820542793331      0.06933048478134216     1.9394014208215005      2.167009901378628
+
+
+
+

The sampling method returns an object with various attributes that are useful for further analysis, for example the acceptance fraction:

+
+
[48]:
+
+
+
sample.acceptance
+
+
+
+
+
[48]:
+
+
+
+
+0.6423749999999999
+
+
+

Or the mean and confidence intervals of the parameters:

+
+
[49]:
+
+
+
sample.mean
+
+
+
+
+
[49]:
+
+
+
+
+array([4.94265223, 2.07545466, 2.05282054])
+
+
+
+
[50]:
+
+
+
sample.ci
+
+
+
+
+
[50]:
+
+
+
+
+array([[4.03514303, 1.93743921, 1.93940142],
+       [5.91573352, 2.2196003 , 2.1670099 ]])
+
+
+

The method print_results prints the results:

+
+
[51]:
+
+
+
sample.print_results()
+
+
+
+
+
+
+
+
+-- The acceptance fraction is: 0.642375.5
+R_hat for the parameters is: [0.32313683 0.00732082 0.00479484]
+-- Posterior Summary of Parameters:
+
+parameter        mean            sd              5%              95%
+
+---------------------------------------------
+
+theta[0]         4.942652228740678      0.5691486161504021      4.035143030111889       5.915733521435971
+
+theta[1]         2.0754546626425574     0.0856675712513585      1.9374392067380983      2.21960029522001
+
+theta[2]         2.052820542793331      0.06933048478134216     1.9394014208215005      2.167009901378628
+
+
+
+

Similarly, the method plot_results produces a bunch of plots:

+
+
[52]:
+
+
+
fig = sample.plot_results(nsamples=1000, fig=None, save_plot=True,
+                    filename="modeling_tutorial_mcmc_corner.pdf")
+
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_83_0.png +
+
+
+
+

Calibrating Likelihood Ratio Tests

+

In order to use likelihood ratio tests for model comparison, one must compute the p-value of obtaining a likelihood ratio at least as high as that observed given that the null hypothesis (the simpler model) is true. The distribution of likelihood ratios under that assumption will only follow an analytical distribution if * the models are nested, i.e. the simpler model is a special case of the more complex model and * the parameter values that transform the complex model into the simple one +do not lie on the boundary of parameter space.

+

Imagine e.g. a simple model without a QPO, and a complex model with a QPO, where in order to make the simpler model out of the more complex one you would set the QPO amplitude to zero. However, the amplitude cannot go below zero, thus the critical parameter value transforming the complex into the simple model lie on the boundary of parameter space.

+

If these two conditions are not given, the observed likelihood ratio must be calibrated via simulations of the simpler model. In general, one should not simulate from the best-fit model alone: this ignores the uncertainty in the model parameters, and thus may artificially inflate the significance of the result.

+

In the purely frequentist (maximum likelihood case), one does not know the shape of the probability distribution for the parameters. A rough approximation can be obtained by assuming the likelihood surface to be a multi-variate Gaussian, with covariances given by the inverse Fisher information. One may sample from that distribution and then simulate fake data sets using the sampled parameters. Each simulated data set will be fit with both models to compute a likelihood ratio, which is then used +to build a distribution of likelihood ratios from the simpler model to compare the observed likelihood ratio to.

+

In the Bayesian case, one may sample from the posterior for the parameters directly and then use these samples as above to create fake data sets in order to derive a posterior probability distribution for the likelihood ratios and thus a posterior predictive p-value.

+

For the statistical background of much of this, see Protassov et al, 2002.

+

Below, we set up code that will do exactly that, for both the frequentist and Bayesian case.

+
+
[53]:
+
+
+
import copy
+
+def _generate_model(lpost, pars):
+    """
+    Helper function that generates a fake PSD similar to the
+    one in the data, but with different parameters.
+
+    Parameters
+    ----------
+    lpost : instance of a Posterior or LogLikelihood subclass
+        The object containing the relevant information about the
+        data and the model
+
+    pars : iterable
+        A list of parameters to be passed to lpost.model in oder
+        to generate a model data set.
+
+    Returns:
+    --------
+    model_data : numpy.ndarray
+        An array of model values for each bin in lpost.x
+
+    """
+    # get the model
+    m = lpost.model
+
+    # reset the parameters
+    fitter_to_model_params(m, pars)
+
+    # make a model spectrum
+    model_data = lpost.model(lpost.x)
+
+    return model_data
+
+def _generate_psd(ps, lpost, pars):
+    """
+    Generate a fake power spectrum from a model.
+
+    Parameters:
+    ----------
+    lpost : instance of a Posterior or LogLikelihood subclass
+        The object containing the relevant information about the
+        data and the model
+
+    pars : iterable
+        A list of parameters to be passed to lpost.model in oder
+        to generate a model data set.
+
+    Returns:
+    --------
+    sim_ps : stingray.Powerspectrum object
+        The simulated Powerspectrum object
+
+    """
+
+    model_spectrum = _generate_model(lpost, pars)
+
+      # use chi-square distribution to get fake data
+    model_powers = model_spectrum*np.random.chisquare(2*ps.m,
+                                                      size=model_spectrum.shape[0])/(2.*ps.m)
+
+    sim_ps = copy.copy(ps)
+
+    sim_ps.powers = model_powers
+
+
+    return sim_ps
+
+def _compute_pvalue(obs_val, sim):
+    """
+    Compute the p-value given an observed value of a test statistic
+    and some simulations of that same test statistic.
+
+    Parameters
+    ----------
+    obs_value : float
+        The observed value of the test statistic in question
+
+    sim: iterable
+        A list or array of simulated values for the test statistic
+
+    Returns
+    -------
+    pval : float [0, 1]
+        The p-value for the test statistic given the simulations.
+
+    """
+
+    # cast the simulations as a numpy array
+    sim = np.array(sim)
+
+    # find all simulations that are larger than
+    # the observed value
+    ntail = sim[sim > obs_val].shape[0]
+
+    # divide by the total number of simulations
+    pval = ntail/sim.shape[0]
+
+    return pval
+
+def calibrate_lrt(ps, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False,
+                  nsim=1000, niter=200, nwalker=500, burnin=200, namestr="test"):
+
+
+    # set up the ParameterEstimation object
+    parest = PSDParEst(ps, fitmethod="L-BFGS-B", max_post=False)
+
+    # compute the observed likelihood ratio
+    lrt_obs, res1, res2 = parest.compute_lrt(lpost1, t1,
+                                             lpost2, t2,
+                                             neg=neg,
+                                             max_post=max_post)
+
+    # simulate parameter sets from the simpler model
+    if not max_post:
+        # using Maximum Likelihood, so I'm going to simulate parameters
+        # from a multivariate Gaussian
+
+        # set up the distribution
+        mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov)
+
+        # sample parameters
+        s_all = mvn.rvs(size=nsim)
+
+    else:
+        if sample is None:
+            # sample the posterior using MCMC
+            sample = parest.sample(lpost, res1.p_opt, cov=res1.cov,
+                                   nwalkers=nwalker, niter=niter,
+                                   burnin=burnin, namestr=namestr)
+
+
+        # pick nsim samples out of the posterior sample
+        s_all = sample[np.random.choice(sample.shape[0], nsim, replace=False)]
+
+    lrt_sim = np.zeros(nsim)
+
+    # now I can loop over all simulated parameter sets to generate a PSD
+    for i,s in enumerate(s_all):
+
+        # generate fake PSD
+        sim_ps = _generate_psd(ps, lpost1, s)
+
+        # make LogLikelihood objects for both:
+        if not max_post:
+            sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,
+                                         model=lpost1.model, m=sim_ps.m)
+            sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,
+                                         model=lpost2.model, m=sim_ps.m)
+        else:
+            # make a Posterior object
+            sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power,
+                                      lpost1.model, m=sim_ps.m)
+            sim_lpost1.logprior = lpost1.logprior
+
+            sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power,
+                                      lpost2.model, m=sim_ps.m)
+            sim_lpost2.logprior = lpost2.logprior
+
+
+        parest_sim = PSDParEst(sim_ps, max_post=max_post)
+
+        lrt_sim[i], _, _ = parest_sim.compute_lrt(sim_lpost1, t1,
+                                         sim_lpost2, t2,
+                                         neg=neg,
+                                         max_post=max_post)
+
+    # now I can compute the p-value:
+    pval = _compute_pvalue(lrt_obs, lrt_sim)
+    return pval
+
+
+
+
+
[54]:
+
+
+
pval = calibrate_lrt(ps, loglike, starting_pars,
+                     loglike_bplc, bplc_start_pars,
+                     max_post=False, nsim=100)
+
+
+
+
+
[55]:
+
+
+
print("The p-value for rejecting the simpler model is: " + str(pval))
+
+
+
+
+
+
+
+
+The p-value for rejecting the simpler model is: 0.9
+
+
+

As expected, the p-value for rejecting the powerlaw model is fairly large: since we simulated from that model, we would be surprised if it generated a small p-value, causing us to reject this model (note, however, that if the null hypothesis is true, the p-value will be uniformely distributed between 0 and 1. By definition, then, you will get a p-value smaller or equal to 0.01 in approximately one out of a hundred cases)

+

We can do the same with the Bayesian model, in which case the result is called a posterior predictive p-value, which, in turn, is often used in posterior model checking (not yet implemented!).

+

We have not yet defined a PSDPosterior object for the bent power law model, so let’s do that. First, let’s define some priors:

+
+
[56]:
+
+
+
import scipy.stats
+
+# flat prior for the power law indices
+p_alpha1 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+p_alpha2 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))
+
+# flat prior for the break frequency
+p_x_break = lambda xbreak: ((0.01 <= xbreak) & (10.0 >= xbreak))
+
+# flat prior for the power law amplitude
+p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))
+
+# normal prior for the white noise parameter
+p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)
+
+priors = {}
+priors["alpha_1_0"] = p_alpha
+priors["alpha_2_0"] = p_alpha
+
+priors["amplitude_0"] = p_amplitude
+priors["amplitude_1"] = p_whitenoise
+priors["x_break_0"] = p_x_break
+
+
+
+

Now we can set up the PSDPosterior object:

+
+
[57]:
+
+
+
lpost_bplc = PSDPosterior(ps.freq, ps.power, bplc, priors=priors, m=ps.m)
+
+
+
+
+
[58]:
+
+
+
lpost_bplc(bplc_start_pars)
+
+
+
+
+
[58]:
+
+
+
+
+-2230.14039643262
+
+
+

And do the posterior predictive p-value. Since we’ve already sampled from the simple model, we can pass that sample to the calibrate_lrt function, in order to cut down on computation time (if the keyword sample is not given, it will automatically run MCMC:

+
+
[59]:
+
+
+
pval = calibrate_lrt(ps, lpost, starting_pars,
+                     lpost_bplc, bplc_start_pars,
+                     sample=sample.samples,
+                     max_post=True, nsim=100)
+
+
+
+
+
[60]:
+
+
+
print("The posterior predictive p-value is: p = " + str(pval))
+
+
+
+
+
+
+
+
+The posterior predictive p-value is: p = 0.99
+
+
+

Again, we find that the p-value does not suggest rejecting the powerlaw model.

+

Of course, a slightly modified version is implemented in stingray as a subclass of the PSDParEst class:

+
+
[61]:
+
+
+
from stingray.modeling import PSDParEst
+
+
+
+
+
[62]:
+
+
+
parest = PSDParEst(ps, fitmethod="BFGS")
+
+
+
+
+
[63]:
+
+
+
pval = parest.calibrate_lrt(lpost, starting_pars, lpost_bplc, bplc_start_pars,
+                   sample=sample.samples, nsim=100, max_post=True, seed=200)
+
+
+
+
+
[64]:
+
+
+
print(pval)
+
+
+
+
+
+
+
+
+0.22
+
+
+
+
+

Bayesian-ish QPO Searches

+

When searching for quasi-periodic oscillations (QPOs) in light curves that are not constant (for example because they are bursts or have other types of variability), one must take care that the variable background is accurately modelled (most standard tools assume that the light curve is constant).

+

In Vaughan et al, 2010, a method was introduced to search for QPOs in the presence of red noise (stochastic variability), and in Huppenkothen et al, 2013 it was extended to magnetar bursts, and in Inglis et al, 2015 and Inglis et al, 2016 a similar approach was used to find +QPOs in solar flares.

+

Based on a model for the broadband spectral noise, the algorithm finds the highest outlier in a test statistic based on the data-model residuals (under the assumption that if the broadband model is correct, the test statistic \(T_R = \max_j(2 D_j/m_j)\) for \(j\) power spectral bins with powers \(D_j\) and model powers \(m_j\) will be distributed following a \(\chi^2\) distribution with two degrees of freedom). The observed test statistic \(T_R\) is then compared to a +theoretical distribution based on simulated power spectra without an outlier in order to compute a posterior predictive p-value as above for the likelihood ratio.

+

Since the concept is very similar to that above, we do not show the full code here. Instead, the p-value can be calculated using the method calibrate_highest_outlier, which belongs to the PSDParEst class:

+
+
[65]:
+
+
+
# compute highest outlier in the data, and the frequency and index
+# where that power occurs
+max_power, max_freq, max_ind = parest._compute_highest_outlier(lpost, res)
+
+
+
+
+
[66]:
+
+
+
max_power
+
+
+
+
+
[66]:
+
+
+
+
+array([16.79715764])
+
+
+
+
[67]:
+
+
+
pval = parest.calibrate_highest_outlier(lpost, starting_pars, sample=sample,
+                                  max_post=True,
+                                  nsim=100, niter=200, nwalkers=500,
+                                  burnin=200, namestr="test")
+
+
+
+
+
[68]:
+
+
+
pval
+
+
+
+
+
[68]:
+
+
+
+
+0.24
+
+
+
+
+

Convenience Functions

+

For convenience, we have implemented some simple functions to reduce overhead with having to instantiate objects of the various classes.

+

Note that these convenience function use similar approaches and guesses in all cases; this might work for some simple quicklook analysis, but when preparing publication-ready results, one should approach the analysis with more care and make sure the options chosen are appropriate for the problem at hand.

+
+

Fitting a power spectrum with some model

+

The code above allows for a lot of freedom in building an appropriate model for your application. However, in everyday life, one might occasionally want to do a quick fit for various applications, without having to go too much into details. Below is a convenience function written for exactly that purpose.

+

Please note that while this aims to use reasonable defaults, this is unlikely to produce publication-ready results!

+

So let’s fit a power law and a constant to some data, which we’ll create below:

+
+
[69]:
+
+
+
from stingray import Powerspectrum
+
+m = 1
+nfreq = 100000
+freq = np.linspace(1, 1000, nfreq)
+
+np.random.seed(100)  # set the seed for the random number generator
+noise = np.random.exponential(size=nfreq)
+
+model = models.PowerLaw1D() + models.Const1D()
+model.x_0_0.fixed = True
+
+alpha_0 = 2.0
+amplitude_0 = 100.0
+amplitude_1 = 2.0
+
+model.alpha_0 = alpha_0
+model.amplitude_0 = amplitude_0
+model.amplitude_1 = amplitude_1
+
+p = model(freq)
+power = noise * p
+
+ps = Powerspectrum()
+ps.freq = freq
+ps.power = power
+ps.m = m
+ps.df = freq[1] - freq[0]
+ps.norm = "leahy"
+
+
+
+

What does this data set look like?

+
+
[70]:
+
+
+
plt.figure()
+plt.loglog(ps.freq, ps.power, ds="steps-mid", lw=2, color="black")
+
+
+
+
+
[70]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x28f05d030>]
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_109_1.png +
+
+

In order to fit this, we’ll write a convenience function that can take the power spectrum, a model, some starting parameters and just run with it:

+
+
[71]:
+
+
+
from stingray.modeling import PSDLogLikelihood, PSDPosterior, PSDParEst
+
+def fit_powerspectrum(ps, model, starting_pars, max_post=False, priors=None,
+                      fitmethod="L-BFGS-B"):
+
+    if priors:
+        lpost = PSDPosterior(ps, model, priors=priors)
+    else:
+        lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m)
+
+    parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)
+    res = parest.fit(lpost, starting_pars, neg=True)
+
+    return parest, res
+
+
+
+

Let’s see if it works. We’ve already defined our model above, but to be explicit, let’s define it again:

+
+
[72]:
+
+
+
model_to_test = models.PowerLaw1D() + models.Const1D()
+model_to_test.x_0_0.fixed = True
+
+
+
+

Now we just need some starting parameters:

+
+
[73]:
+
+
+
t0 = [80, 1.5, 2.5]
+
+
+
+
+
[74]:
+
+
+
parest, res = fit_powerspectrum(ps, model_to_test, t0)
+
+
+
+
+
[75]:
+
+
+
res.p_opt
+
+
+
+
+
[75]:
+
+
+
+
+array([108.97152923,   2.07017797,   2.00200459])
+
+
+

Looks like it worked! Let’s plot the result, too:

+
+
[76]:
+
+
+
plt.figure()
+plt.figure()
+plt.loglog(ps.freq, ps.power, ds="steps-mid", lw=2, color="black")
+plt.plot(ps.freq, res.mfit, lw=3, color="red")
+
+
+
+
+
[76]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x2a5c43d90>]
+
+
+
+
+
+
+
+<Figure size 640x480 with 0 Axes>
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_119_2.png +
+
+

You can find the function in the scripts sub-module:

+
+
[77]:
+
+
+
from stingray.modeling.scripts import fit_powerspectrum
+
+
+
+
+
[78]:
+
+
+
parest, res = fit_powerspectrum(ps, model_to_test, t0)
+res.p_opt
+
+
+
+
+
[78]:
+
+
+
+
+array([109.03139888,   2.07028842,   2.00200906])
+
+
+
+
+

Fitting Lorentzians

+

Fitting Lorentzians to power spectra is a routine task for most astronomers working with power spectra, hence there is a function that can produce either Maximum Likelihood or Maximum-A-Posteriori fits of the data.

+
+
[79]:
+
+
+
l = models.Lorentz1D
+
+
+
+
+
[80]:
+
+
+
l.param_names
+
+
+
+
+
[80]:
+
+
+
+
+('amplitude', 'x_0', 'fwhm')
+
+
+
+
[81]:
+
+
+
def fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None,
+                    fitmethod="L-BFGS-B"):
+
+    model = models.Lorentz1D()
+
+    if nlor > 1:
+        for i in range(nlor-1):
+            model += models.Lorentz1D()
+
+    if fit_whitenoise:
+        model += models.Const1D()
+
+    parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)
+    lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m)
+    res = parest.fit(lpost, starting_pars, neg=True)
+
+    return parest, res
+
+
+
+

Let’s make a dataset so we can test it!

+
+
[82]:
+
+
+
np.random.seed(400)
+nlor = 3
+
+x_0_0 = 0.5
+x_0_1 = 2.0
+x_0_2 = 7.5
+
+amplitude_0 = 150.0
+amplitude_1 = 50.0
+amplitude_2 = 15.0
+
+fwhm_0 = 0.1
+fwhm_1 = 1.0
+fwhm_2 = 0.5
+
+whitenoise = 2.0
+
+model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \
+        models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \
+        models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \
+        models.Const1D(whitenoise)
+
+p = model(ps.freq)
+noise = np.random.exponential(size=len(ps.freq))
+
+power = p*noise
+
+plt.figure()
+plt.loglog(ps.freq, power, lw=1, ds="steps-mid", c="black")
+plt.loglog(ps.freq, p, lw=3, color="red")
+
+
+
+
+
[82]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x12b58a920>]
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_128_1.png +
+
+

Let’s make this into a Powerspectrum object:

+
+
[83]:
+
+
+
import copy
+
+
+
+
+
[84]:
+
+
+
ps_new = copy.copy(ps)
+
+
+
+
+
[85]:
+
+
+
ps_new.power = power
+
+
+
+

So now we can fit this model with our new function, but first, we need to define the starting parameters for our fit. The starting parameters will be [amplitude, x_0, fwhm] for each component plus the white noise component at the end:

+
+
[86]:
+
+
+
t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]
+parest, res = fit_lorentzians(ps_new, nlor, t0)
+
+
+
+

Let’s look at the output:

+
+
[87]:
+
+
+
res.p_opt
+
+
+
+
+
[87]:
+
+
+
+
+array([ 1.48980332e+02,  1.02031369e+00, -2.04742273e-04,  4.70694020e+01,
+        1.90076129e+00,  1.08562751e+00,  1.35701826e+01,  7.50135744e+00,
+        5.44356694e-01,  1.99448241e+00])
+
+
+

Cool, that seems to work! For convenience PSDParEst also has a plotting function:

+
+
[88]:
+
+
+
parest.plotfits(res, save_plot=False, namestr="lorentzian_test")
+
+
+
+
+
+
+
+../../_images/notebooks_Modeling_ModelingExamples_138_0.png +
+
+

The function exists in the library as well for ease of use:

+
+
[89]:
+
+
+
from stingray.modeling import fit_lorentzians
+
+
+
+
+
[90]:
+
+
+
parest, res = fit_lorentzians(ps_new, nlor, t0)
+
+
+
+
+
[91]:
+
+
+
res.p_opt
+
+
+
+
+
[91]:
+
+
+
+
+array([ 1.47775222e+02, -1.95500403e-01, -1.76819873e-03,  4.02910804e+01,
+        1.89163457e+00,  1.20856451e+00,  1.05610820e+01,  7.49861477e+00,
+        6.35659323e-01,  1.99437212e+00])
+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Modeling/ModelingExamples.ipynb b/notebooks/Modeling/ModelingExamples.ipynb new file mode 100644 index 000000000..8335a71fa --- /dev/null +++ b/notebooks/Modeling/ModelingExamples.ipynb @@ -0,0 +1,2385 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# The Stingray Modeling API Explained\n", + "\n", + "Some more in-depth explanations of how the Stingray modeling API works.\n", + "\n", + "Who should be using this API?\n", + "Basically, anyone who wants to model power spectral products with parametric functions. The purpose of this API is two-fold:\n", + "(1) provide convenient methods and classes in order to model a large range of typical data representations implemented in Stingray\n", + "(2) provide a more general framework for users to build their own models\n", + "\n", + "A note on terminology: in this tutorial, we largely use _model_ to denote both the parametric model describing the underlying process that generated the data, and the statistical model used to account for uncertainties in the measurement process. \n", + "\n", + "The `modeling` subpackage defines a wider range of classes for typical statistical models than most standard modelling packages in X-ray astronomy, including likelihoods for Gaussian-distributed uncertainties (what astronomers call the $\\chi^2$ likelihood), Poisson-distributed data (e.g. light curves) and $\\chi^2$-distributed data (confusingly, *not* what astronomers call the $\\chi^2$ likelihood, but the likelihood of data with $\\chi^2$-distributed uncertainties appropriate for power spectra). It also defines a superclass `LogLikelihood` that make extending the framework to other types of data uncertainties straightforward. It supports Bayesian modelling via the `Posterior` class and its subclasses (for different types of data, equivalent to the likelihood classes) and provides support for defining priors. \n", + "\n", + "The class `ParameterEstimation` and its data type-specific subclasses implement a range of operations usually done with power spectra and other products, including optimization (fitting), sampling (via Markov-Chain Monte Carlo), calibrating models comparison metrics (particularly likelihood ratio tests) and outlier statistics (for finding periodic signal candidates).\n", + "\n", + "Overall, it is designed to be as modular as possible and extensible to new data types and problems in many places, though we do explicitly *not* aim to provide a fully general modelling framework (for example, at the moment, we have given no thought to modeling multi-variate data, though this may change in the future).\n", + "\n", + "\n", + "## Some background\n", + "\n", + "Modeling power spectra and light curves with parametric models is a fairly standard task. Stingray aims to make solving these problems as easy as possible. \n", + "\n", + "We aim to integrate our existing code with `astropy.modeling` for for maximum compatibility. Please note, however, that we are only using the models, not the fitting interface, which is too constrained for our purposes. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "# ignore warnings to make notebook easier to see online\n", + "# COMMENT OUT THESE LINES FOR ACTUAL ANALYSIS\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Install seaborn. It help you make prettier figures!\n" + ] + } + ], + "source": [ + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "try:\n", + " import seaborn as sns\n", + " sns.set_palette(\"colorblind\")\n", + "except ImportError:\n", + " print(\"Install seaborn. It help you make prettier figures!\")\n", + "\n", + "import numpy as np\n", + "\n", + "from astropy.modeling import models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The models and API of `astropy.modeling.models` is explained in the [astropy documentation](http://docs.astropy.org/en/stable/modeling/) in more detail.\n", + "\n", + "Here's how you instantiate a simple 1-D Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "g = models.Gaussian1D()" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApIAAAGsCAYAAABuEEcmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABL80lEQVR4nO3de3AcV5X48TOWCxssS8EOfmkEzrqyLAmPgMmDqORKfnhlcGDFykqoIgbMsqGgHGIRFgtvWGezm1Qs87IJIcAGNhS2KsHSBBVBkALWiVQqDMHZVAW8YWHXAT1sxy/kSEUcLPfvj9CzPaN+3Hunu6d7+vupUtXMqKfnzqvn9H2ck7MsyxIAAABA05xqNwAAAADpRCAJAAAAIwSSAAAAMEIgCQAAACMEkgAAADBCIAkAAAAjBJIAAAAwMjfuBzx//rxMTEzIwoULJZfLxf3wAAAACGBZljz//POyYsUKmTPHu98x9kByYmJCmpub435YAAAAaBodHZV8Pu/5/9gDyYULF4rISw1raGiI++EBAAAQ4MyZM9Lc3FyM27zEHkjaw9kNDQ0EkgAAAAkWNA2RxTYAAAAwQiAJAAAAIwSSAAAAMEIgCQAAACMEkgAAADBCIAkAAAAjBJIAAAAwQiAJAAAAIwSSAAAAMEIgCQAAACMEkgAAADBCIAkAAAAjBJIAAAAwQiAJAAAAIwSSAAAAMEIgCQCI1fT0tORyOcnlcjI9PV3t5gCoAIEkAAAAjBBIAgAAwAiBJAAAAIwQSAIAAMAIgSQAAACMEEgCAADACIEkAAAAjBBIAgAAwAiBJAAAAIwQSAIAKka1GiCbCCQBALGamZkpXh4aGiq5DiBdCCQBALEpFApyySWXFK+vX79eVq5cKYVCoYqtAmCKQBIAEItCoSCdnZ0yPj5ecvv4+Lh0dnYSTAIpRCAJAIjczMyMbNmyRSzLmvU/+7auri6GuYGUIZAEAERueHhYxsbGPP9vWZaMjo7K8PBwjK0CUCkCSQBA5I4cORLqdgCSgUASABC55cuXh7odgGQgkAQARK61tVXy+bzkcjnX/+dyOWlubpbW1taYWwagEgSSAIDI1dXVye7du0VEZgWT9vVdu3ZJXV1d7G0DYI5AEgAQi46ODunr65MVK1aU3J7P56Wvr086Ojqq1DIApggkAQAVU61W09HRIYcOHSpeLxQKMjo6Khs2bKC0IpBCBJIAgIroVqtxDl+3tLRE3j4A0SGQBAAYo1oNkG0EkgAAI1SrAUAgCQAwQrUaAASSAAAjVKsBQCAJADBCtRoABJIAACNhV6uZnp6WXC4nuVyOVEBAShBIAgCMvPDCCzI2NiaWZVGtBsgoAkkAQMWWLVtWcp1qNUA2EEgCACp28ODB4uXBwUE5fPiwdHR0MFwN1DgCSQBAxZzD12vWrGE4G8gIAkkAgKuoehMXLFgglmWJZVkyf/784u0jIyOhPQaAeBBIAgCqorxGN/MpgfQhkAQAxM6rRrdtYGCgeJl5lkByEUgCAAKFEcw593HLLbe41ui2dXd3U6MbSAECSQBA7Lx6Im1jY2PU6AZSgEASAJBI1OgGko9AEgCQSNToBpKPQBIAELumpibPGt0iIhdeeKFcffXVMbYIgAmtQPK+++6TN77xjdLQ0CANDQ3ytre9TX7wgx9E1TYAQII5F8M4c0CqLMzZuXOniIhnMHnixAlZtWqVFAqFEFsMIGxagWQ+n5cdO3bIwYMH5Re/+IX8v//3/6S9vV1+9atfRdU+AEACVZoDsr29Xfr6+mTFihWe24yPj0tnZ2dJKiAAyaIVSL773e+W9evXy8UXXyx/+Zd/KXfddZfU19fLgQMHomofACBhBgYGXHNA2r2QP/7xj4u3efVairwUfD799NOej2OnB+ru7g6j2QAiMNf0jjMzM7Jv3z6Znp6Wt73tbZ7bnT17Vs6ePVu8fubMGdOHBABEbHp6Wurr60VEZGJioni7MwjcunWraw5Iy7Ikl8uVBH6rV68uXnbrtQzqiLAsS8bGxtSfAIBYaS+2efrpp6W+vl7mzZsnH/3oR+Xhhx8uGd4od/fdd0tjY2Pxr7m5uaIGAwDi4RUE+uWALA/8vFL42MPVR48erbSZAKpIO5B87WtfK0899ZT87Gc/k4997GPywQ9+UA4dOuS5/bZt22RycrL4Nzo6WlGDAQDxiDKPo125ZtmyZVr3GxoaouINkCA5y69GlYK1a9fKqlWr5Gtf+5rS9mfOnJHGxkaZnJyUhoaGSh4aABAy+xgdh/3798tb3vKWwMerq6srCR7z+bzs3r1be4EPAHWq8VrFeSTPnz9fMgcSAJBe5QtidOVyOVm0aJHStuPj41JXV1dyXzflPZD2am5SAwHVpxVIbtu2TYaGhuTZZ5+Vp59+WrZt2yaPPfaY3HjjjVG1DwAQo0rmLNqB4Mc+9jGl7T/xiU+UpPYpH+Z2BplO9kBaV1cXw9xAlWkFks8995x84AMfkNe+9rXy9re/XZ544gl59NFH5a//+q+jah8AIEa6cxad8vm89PX1ydatW5W2P3HihGzcuLF4/eDBg8XLO3bs8A0SLcuS0dFRGR4eNm4vgMpppf/5xje+EVU7AAAJ0NLSYnS/wcFBaWtrk7q6Os9qNuXsdEE2Zw/kkiVLlPYR5YIgAMGotQ0AGeRVxtBrODnImjVrXO8bNF/Sa73nBRdcoPS4y5cvV9oOQDQIJAEArlSDuXLOIen3v//9Rvu46qqrfP+fy+WkublZWltbjfYPIBwEkgAAV/fff7/2fcprcO/evVvpfvv375cFCxYUr/ut5rav79q1y7gHFUA4CCQBAEXO3sSgNMPlAV6hUHCtwR20j6CexfIFQPl8Xvbs2SMbNmyYNTQPIF4EkgAAEZndm3j99dcXL3vleLTNzMzIli1bAoNPJ9WeRedq7sHBQTl8+LC0t7crPw6A6BBIAgACexPd5ks6M3mMjIyU1NhWYacLCqpQ4wwyvRb1AKgOrfQ/AIDao9KbOH/+/Fm3XXfddcXLuonMnemCAKQXPZIAkHEqvYlB+Rp1E5lH1bPoldYIQDQIJAEg4yopi2hraWmRfD7vO5dyxYoVFT+OHSjW19dXvC8AlSOQBICMq6Qsoq2urq6Y6scrmLzzzjt997FgwQKxLEssyypJBQQguQgkAaAG6QzxmvYmlgd+HR0d0tfX59nz6JxTCaA2EEgCQEZ4BZcvvPCCjI2Nzap97RTUm2jr6OiQQ4cOFa8XCgWjtjrzWY6MjBjtA0D0CCQBIIO8AjWvYW6d3kTnIpq2tjbt4eryfJZB6YEAVA+BJABk0OrVq4uXnYFaefLvc+fOxTpnMSif5fe///1Y2gFADYEkAGSQVzqfH/7wh8XLcSf/Vsln+ZnPfGbWbUNDQyU9rADiQyAJABmhEmy5BWpewg7ghoeHA/NZTkxMzLpt/fr1snLlSuP5mADMEUgCQEaoLFpxC9S8hB3ABSU99zM+Pi6dnZ0yMDAQSlsAqCGQBICMqCTx+KOPPuq6otsO4FSCyaA8kcuXLzdunz0c3t3dXbyNKjdA9AgkASAjTBOP+81dtG/r6uqqeJi7tbU1MJ+lH8uySobGSRsERI9AEgAyoqWlJXAbt2TiQXMXLcuS0dFRGR4erqh9ftVxTIJL0gYB0SOQBICMcK7A1kk8rjp3sZI5jjav6jj5fF7uuOMO4/0ydxKIBoEkANQg5zCz2+pqncTjqnMXK5nj6FReHWdwcFAOHz4sr3vd62TOHLOfre7ublIEAREgkASAGlNeGcZeXf3www8Xb/vSl75Usr2foLmLuVxOmpubpbW1VUSCF9WocPaerlmzRgYGBuS9732vnD9/3mh/Y2NjFQ+9A5iNQBIAaohXZZixsTF5//vfX7x+/fXXFy9fddVVxctuC1RU5i7u2rUrsuTlKonKVYQx9A6gFIEkANQI04Dr0ksvLV72WqDiN3exr68v0oUtIyMjgYnKVYQ19A7g/xBIAkCNUKkM4+b06dMl1+3ci48++mjJ7V5zF6NeHV1J/ktbPp8vDr0DCA+BJADUiLCGbv1yQ5bPXYyjFrdO/kuveZw9PT2x1g0HsoJAEgBqRJhDt2HlhgxDS0tL4GIfm1fQ2d7eHknbgKwjkASAGlFpZRg3SVig4rfYp9zBgweLl/ft21e87JYCCUDlCCQBoEboBFyqkrJAxWuxj4jIN77xjeJl5/D1LbfcUrxsp0BSqQkOQB2BJADUEL+AS0d5bsgkKF/sY3NLoi4yuzd1fHxcOjs7CSaBEBFIAkCNcVtdvW/fPmlqanLdvhq5IU0Ftcdv+NpvEREAMwSSAFCDyldXd3Z2lgSXzl658gUqceSGDJMzKLz//vt9t03SIiKgFsytdgMAAPFwBpdtbW3FHrozZ85IY2OjiLzUe9nW1lb1nki7zKKK1atXFy9v375d6T5JWEQE1AJ6JAEg46qRGzJMJkFhUhYRAWlHjyQAIDNyuRxVboAQ0SMJAMiEJC8iAtKKQBIAatz09LTkcjmpr6+veF/23EXLsmTBggUhtC4+9iKidevWFeuJT09PV7tZQKoRSAJAytiBIYGQukKhIKOjo7JhwwZeMyBEBJIAgFRqamryreDjTMre0tISR5OAzCGQBACk0s6dO0XEPaF6LpeTz372s9VoFpAprNoGAKRGeX7J+fPnyy233CLj4+PF2/L5vOzatUvWrVtXjSYCmUKPJADUoDQvitHhVg7y8OHDqanKA6QdgSQAINXSnlAdSDMCSQBIMd0V3FNTU7N6KbPSewkgfASSAAAAMEIgCQAAACMEkgAAADBCIAkANW5mZqZ4eWhoqOR6FvF6AOEhkASAlHEGPiMjI77bFgoFueSSS4rX169fLytXrpRCoRBZ+5LCuYho/vz5xdvf8IY3FC9n6fUAokAgCQApUh4Y+uVLLBQK0tnZWZKsW0RkfHxcOjs7MxM8lb9mJ0+eLPl/1l4PIEwEkgCQEl6BoW1gYKB4eWZmRrZs2VJSBcZm39bV1VXzw7pBr5lItl4PIGwEkgCQAn6Boa27u7sYCA0PD8vY2JjntpZlyejoqAwPD4fe1qRQec1sWXg9gCgQSAJACgQFhiIiY2NjxUDoyJEjSvtV3S6NVF6zcrX8egBRmFvtBgAAgukGhsuXL1faXnW7JLMX1ZQzCQpr4fUA4kSPJACkgG5g2NraKvl8XnK5nOt2uVxOmpubpbW1NbQ2Jo1OUJiF1wOIAoEkACSYXUv72muvDQyMLrzwQrn66qtFRKSurk52794tIjIrmLSv79q1S+rq6iJodTIEBdO2rLweQBQIJAEgJe666y7f/584cUJWrVpVTGPT0dEhfX19smLFipLt8vm89PX1+aYOqgV+wbRTVl4PIAo5S2U5W4jOnDkjjY2NMjk5KQ0NDXE+NACkzvT0tNTX14uIyLFjx2Tp0qW+29sBkzMwso+7IiKDg4PS1taWqZ63QqEgt9xyi2sKoCy+HoAK1XiNHkkAqCFuORGdQdKaNWsyFzR1dHTIoUOHitedicez+HoAYSKQBIAaQ07E2ZzBYktLS8X7s+eu5nI5mZ6ernh/QFoRSAJAjSInIoCoEUgCQI0iJyKAqJGQHABqTC6Xk3w+T05EAJGjRxIAUswtrY1lWbJjxw4WkRhi/iOgjkASAFLCXoXttGzZMtdt29vbo24OABBIAkBarF69etZt//qv/1q87ExrAwBxIJAEgARz9kK6rcK+6aabipfDSGsDADoIJAEgoQqFgrzuda+rdjMAwBOrtgEggQqFgnR2dkpQFVuVKrcLFixQ2g4AdNEjCQAJMzMzI1u2bCH4i4gdWE9NTUl9fT2rs4EKEEgCQMIMDw/L2NhYtZtRU+zg0bIsWbBgQcX7c85dHRoacl1RD2SBViB59913y+WXXy4LFy6UJUuWyHve8x759a9/HVXbACCTdEobuuWRRLQKhYJccsklxevr16+XlStXsmoemaQVSD7++OOyefNmOXDggPzoRz+SP/3pT9LW1saQAACEiNKGyWXPXR0fHy+5fXx8XDo7OwkmkTk5q4JJOMePH5clS5bI448/LmvWrHHd5uzZs3L27Nni9TNnzkhzc7NMTk5KQ0OD6UMDQM2amZmRlStXyvj4uO88yXw+Lz09PXLjjTeKiMixY8dk6dKlIiIyNTUVyhBuLZuenpb6+noRKX29vG633xevaQd2acrDhw9TVQipd+bMGWlsbAyM1yqaIzk5OSkiIosWLfLc5u6775bGxsbiX3NzcyUPCQA1r66uTnbv3i0i3kPXt912mzz77LNUsImA1/zHoLmrlmXJ6OioDA8PR95GICmMA8nz589LV1eXtLS0yOtf/3rP7bZt2yaTk5PFv9HRUdOHBIDM6OjokL6+PlmxYoXr/7dt2zar14sFIJXzm/+oOndVZ44rkHbGgeTmzZvll7/8pTz44IO+282bN08aGhpK/gAAwTo6OuTQoUPF627z7+zVyP39/XL55ZcXb2cBiL6g+Y+/+c1vlPbDHFdkidEcyZtvvlkGBgZkaGhILrroIq37qo65AwBK5+t5zYH0Sl5uD4v39fVJR0dHjK1OB+drOzk5KZdeeqnv0HVTU5PkcjnPuavMkUQtiWSOpGVZcvPNN8vDDz8s//Ef/6EdRAIAwuWXvNy+rauri2HuACMjI4G5O8fHx2VsbEwsy5o1d9W+vmvXLoJIZIpWILl582bZs2eP9Pb2ysKFC+Xo0aNy9OhR+eMf/xhV+wAAPlgAEo6jR49qbb9s2bKS6/l8np5fZJJWIHnffffJ5OSkXHPNNbJ8+fLi30MPPRRV+wAAPlgAEo7ywDDIwYMHi5cHBwfl8OHDBJHIpLk6G1P3FQCSRXVhBwtAZnMO98/MzEg+n/fN3blixQqZmJgQESkZvl6zZg3D2cgsam0DQJVMT09LLpeTXC5nXCGstbVV8vm8Z77JXC4nzc3N0traWklTa055mp93v/vd8sc//tF1/qPtzjvvjKt5QGoQSAJAivklL2cBiDuvND+nTp0SEZFXvvKVrve77rrrIm8bkDYEkgCQcl7Jy1kAMlvQKvdcLicvf/nLi7eRhxPwpzVHEgBQPXbycTcdHR2ydu1aaWxsFJGXFoC0tbXRE1lGZZW7s6eypaUljmYBqUWPJADUCBaABGP1OhAuAkkAQGaweh0IF4EkACSYPZxtWVaxJCLMBa1yF5GSuabOFEEjIyORtg1IIwJJAEBm+K1ytznT/Kxevbp4mUVLwGwEkgCATPFa5W5zpvnxmlP5+c9/PpK2AWlDIAkAyJyOjg45dOhQ8bozzY9zONvLzp07i5fr6+srSioPpBmBJAAgk5yr2p1pfg4cOKC8D7+5lkAWEEgCQJU4e76GhoaUesIQvWPHjlW7CUBqEEgCQBWU13pev369rFy5kkoqCbB06VLlbb0SxANZQSAJADHzqvU8Pj4unZ2dBJNVdtVVV1W7CUBqEEgCQIyCaj2LiHR1dRkNc5NzMhwNDQ3S39/P/EdAAYEkAMRIpdbz6OioDA8Px9gqlM9XbW9v900RZCPYRNYRSAJAjFRrPVMTOl7OxOP2fFURkf/6r//yvA9BJEAgCQCxUq31TE3oeJUH7vZ81UceeaR4W/l7ks/nZc+ePbG0D0gqAkkAiFFQredcLifNzc3S2toac8uyx28eqj1ftbu7u3jbwYMHi5cHBwfl8OHD0t7eHl0DgRQgkASAGPnVerav79q1qyRZNqIxMjLi+3/LskrmszrfkzVr1vAeAUIgCQCx86r1nM/npa+vTzo6OqrUsmz5wx/+UO0mAKlHIAkAVVBe69keKiWIjE8Y81CpToSsI5AEgCphqLS6VOar5vN5z/tTnQggkAQAZJTKfNWenh7X+w4MDFCdCBACSQBAhgXNV/Valb1161bf6kRbtmyRXC4nuVxOpqenw284kBAEkgCATDOZr1reE+lUvtobqGUEkgCQMNPT0/RmxYz5qoCZudVuAAAASbVgwYLicDVBPTAbPZIAAGhqamoyXu0N1BICSQBIAIazk8/unbQsS770pS+JiP5qb6DWEEgCAKDJdLU3UGsIJAEAMEB1IoBAEgBi4TZ07RwqXbBgQZVbCBOs9kbWEUgCAADACIEkAAAAjBBIAgAQspmZmeLloaGhkutALSGQBABkXpjzVQuFglxyySXF6+vXr5eVK1dKoVCotJlA4hBIAkDC0JuVXoVCQTo7O2fV4h4fH5fOzk6CSdQcAkkASJjVq1cXL9OblR4zMzOyZcuWYklFJ/u2rq4uTgxQUwgkASBhjhw5UnKd3qx0GBkZkbGxMc//W5Ylo6OjMjw8HGOrgGgRSAJAhcIob+jXS0VvVjocPXpUabvyEwUgzQgkASABgnqp6M1KvmXLliltt3z58ohbAsRnbrUbAABZVygU5O///u+VtqU3K1ns1d4iL/Uq5/N5GR8fd50nmcvlJJ/PS2tra9zNBCJDjyQAVJG9yvf06dNK29OblVx1dXWye/duEXkpaHSyr+/atYsyiqgpBJIAEAO3lD5+q3zL5XI5aW5upjcr4To6OqSvr09WrFhRcns+n5e+vj7p6OioUsuAaBBIAkDEvBJU33XXXb6rfMvRm5UOHR0dcujQoeL1wcFBOXz4sGcQGcZiLaBamCMJABGyh67Lex3Hx8fl9ttvV9rH4sWL5etf/zq9WSniDPjXrFnDCQBqFoEkAEREJUG1ioceekje/va3h9k0AAgFQ9sAEJHh4WGtoWs3+XxerrnmmnAaBAAhI5AEgIjopOopX+Vr6+npYVg0JZjriCwikASAiKim6rnjjjtmrfK1tbe3h9kkAAgVgSQAVMgttY+ISGtrq+Tzec/eRjulz2233Vayypea2gDSgkASACrgldqnUChoJah2Dl+3tLTE0HIAqByBJAAYslP7jI+Pl9w+Pj4unZ2dUigUSFANoKYRSAKAAZXUPl1dXTIzM6OdoBoA0oJAEgAMBKX2sSxLRkdHZXh4WERIUA2gNhFIAoAB1dQ+OimAkE1ei7WANCCQBAADqql9VLdDbVmwYIFYliWWZcmCBQs8t/NbrAWkAYEkABhQTe3T2toac8uQFiqLtYCkI5AEAAM6qX3K1dfX+1Y/Ue3NQnrpLNYCkoxAEgACeJW+I7UPnHTmOuou1gKSikASACpAah+I6M91ZLEWagWBJABUKIzUPgxnp5fJXEcWa6FWEEgCAGDIdK4ji7VQKwgkAQAwZDrXsZLFWkCSEEgCQAzsoeupqalqNwUhqmSuI4u1UAsIJAEAMKQ717E8AwCLtZB2BJIAABiqZK6jHVQ2NjYWb6MOO9KGQBIAAEPMdUTWEUgCAFAB5joiy+ZWuwEAAKRdR0eHrF27tjhMPTg4KG1tbfREouZp90gODQ3Ju9/9blmxYoXkcjn57ne/G0GzACDZvMomBtEpo4d0CSMxPZA22oHk9PS0vOlNb5J77703ivYAQOKEFfzpltFDbTA96QDSQHto+53vfKe8853vVN7+7Nmzcvbs2eL1M2fO6D4kAFRNoVCQW265pXh9/fr1ks/npaenp3ibnSMyaD+dnZ2ztrPL6DGXDkAaRb7Y5u6775bGxsbiX3Nzc9QPCQCh8KuhvHHjRuX9mJbRA4CkizyQ3LZtm0xOThb/RkdHo35IAKiYSvCnyrSMHgAkXeSrtufNmyfz5s2L+mEAIFQqwZ+qSsroAUCSkf4HAFyEEdRNT09LfX298vaq5faQXs7pCyMjI8XLU1NTsmDBgmo0CagICckBwEXYQV1TU5NRGT3UltWrVxcvOxdXkQoKaaUdSE5NTclTTz0lTz31lIiIHD58WJ566in5/e9/H3bbAKBqVGoo69i5c6fr/Sijly1ePd2kgkJaaQeSv/jFL+TNb36zvPnNbxYRkVtvvVXe/OY3y/bt20NvHABUi0oNZR3t7e2U0cso1Z5GOxUUwSTSRDuQvOaaa8SyrFl/DzzwQATNA4Dq8auhvGfPHqP9HTp0qHh9cHBQDh8+TBBZ45xzIf2QCgppxBxJAPBRHvyJiIyOjsq1115bvK4zv40yerXLTkxvWVbJwpmjR48q74NUUEgbAkkACOAW7DkXTTC/DX6WLFmifR/VrAGUX0S1EUgCgIHyH3rmt8FNoVCQj3zkI9r3IxUU0oJAEgBCwPw2lLNLbE5MTCjfh1RQSBsCSQAIiT2/be7cuQw1ZpxfiU0vpIJCGhFIAgAQsqASm25IBYU0IpAEgIg4h7ipXJItuiU2404FxSIdhIVAEgD+rNIf11wuJ/l8vnjdbWX3wMBAKG1FsukuliEVFNKKQBIADHhVu+np6Sne5raye+PGjdE3DlUXVGJTRGYlugfSiEASAAwsW7as5Lo9v+1d73qX5310Fl4g3fxKbNruvPPOWbcx5Iy0IZAEAAMHDx4sXnbObwsqh2cHk/v37y+pfoLa41Vi03bdddfF3CIgfASSADJHt9fHLn03OTlZvO3AgQPFy875barl8HQXYyCdyktsmiasp6cSSUUgCQAKCoWCXHLJJcXrXqtry4e8vVC5JDuci2haWlpC3TeZAVBtBJIA4MLZA9Tb2yudnZ0yPj7uuq1zJXZQoEDlEoSl/OSGmu+oBgJJADUtjCHBrVu3+i6U6e7uLvYEOXufvFZ2U7kElbLLL5af3FDzHXEjkASAAF49kbaxsTEZHh4WkdKhxkWLFpVsR+UShMGv/CI13xE3AkkACMGRI0dmDTWePHmyeDnuyiWoXSMjI77lF+2a7/bJDRAlAkkAiRXHStWwHuM3v/mN7zzK06dPM5yNYgYAy7IC0z95fTbJDIAkIZAEgD9zDgU680E2NTX5VihpamqSf/u3f1OeRwmI6AWVTmFkBmC1N8JCIAkAf+asje0cgt65c6eIeFco2bRpk+9Qo0jpPEqgEi0tLb7lF4MyA7DaG2EikASAP/MbCvSrULJq1aqK9w+o8iu/GJQZgNXeCFumA8msVQrI2vMFVKgM6XV3d0t7e7tnhRKSkCMsXtMrynmVX/TLDMBqb0Qh04EkgGxy/lDef//9gdvbw9LOHp62trbi/La2tjbfoUaRl37gSUIOP37Vk9zmNJaXXwzKDDA8PMxqb4SOQBJATVDtcS//sd6+fbvS/v2Gpf2GGm09PT2s2s4olUU1XkPOtksvvbR42Tmn0fmZctZ8d6M6tYIpGMmQllFEAkkAmTEwMOD7Y+1nyZIlvv/3Gmq0tbe3az8mssFvyNl2+vTpkuv2nEZnec4gqlMrmIIBHQSSABIl7LNw55Bg0I+1n02bNgX+aJcPNbJwASqChpzd2D2cn/rUp5Tv09rayhQMhI5AEqmXlu5/xK98GPvEiRPG+xofH5eNGzcGbuccWmxpaTF+PGRHJUPJExMTytsyBQNRIJD8M4IRINnq6+u1vp9Bc850mfZkAkHiHEpmCgbCRiAJILFM05CozDkzobs/08olyBaVIecwMQUDYarpQJJeRiDdnJVmbCqLC0ZGRrTnnAHVojLk7MWrZ1HlMW1MwUAlajqQBJBubnPHNm7cGNiDcvTo0aiaBEQiaMjZy5133hlRiwA1BJIAEkVlODuo+oZqpRldcQ09Ips6Ojrk6aef1rrPddddF1FrADUEkhniVhkBSBq/snAiatU3WlpaQp9zRhCJOBw4cKDaTTDCVLLsynQgqVrTtBaUp0FxVkZww0EB1aI6LF1ppRlddg1jFs8gSkmclsHvQSlej1KZDST9apqGwfSDFsUH1CsNil0ZIWi+GV8axEl1WLo8ZUp5j3t7e7vnnLOtW7dqtSmohjEQFt1pGWQGqF1pGUXMZCAZlF9Op+RU0vmlQbFvC5pvBsQpaAVpLpeT5ubmkuobXj3uIlKS5sTW1dUV2A5nABpUwxgIi8oKatOV2kgP3VHEaspcIKmSX667u7tmAqug0lsq882AODkDNq9h6V27dhW3C+pxf+SRR4weg9WwqIZqfDbT0vOVFV7HtLGxMaVRxLhlLpBUqWk6NjZWM4GVaumtSkp0VRsHwdrifP8WLVo06/979uwpDjGr9Lh3d3f7Pp7XUKLpaliGGhEWr8/mO97xjuLlMI55znytSe75ygKVzq6kjSJmLpDMQmDlpFp6K84SXc45l88991xF8y/T1P2fdHHMhQ16jPL38+TJk7O2cZZwU+lxDzpxPHjwYMnjA0nh9dkMO/Ar/71TnT8fhPn1+tI4ipi5QFI1YFqyZEnELYlHUOktt/lmaVHpIiIki2ptbGcPjOkJnzNLg3Mosa2tjd5EJIZX9RmdwM8rmJs/f77k83nXx2X+fPWksbMrc4Gkak3TTZs21UQg4pcGxb7unG+WFiwiqi06tbGdPTCmPemsvkba+B3LTI55aez5yoIkjiIGqelA0m3unGp+uVrq1fIqvWXnxUvjjyoHwdqiMnfZyf5+Hj9+PLDHffHixb77+v73v6/VVqAaghKV6x7zqtnzxZC3tzSOItZsIOk1d663t1c2bNgglmXJ0qVLPe9vn+Ft2bKlJj7wHR0dJWlQ0p4XL43d//Cm+z7Z389PfvKT8sUvflFE3Hvc7WFqP5/5zGe0HhuIktdirWPHjind/9prr1X6rUpjz1cWqHR2JW0UsSYDSb+5cxs3bixe//KXv+y7H5WJ+mni/OClPS8eB8HaYvI+2T0wF154oWeP+x133CGnTp3y3c/ExIT2YwNx8+v4UOXsCXzLW94Sas8X2TPC4zWKKFKatSIpai6QVJk7Zzt+/HhczYpVGMMGSS8fmcbuf5TS+VHzc+TIkVk97oVCQUZHR+X2228Ps8lA1bz97W8PPObp0On5CgoSvUYAa6m4h1McQXP5Mc3mzFqRFDUXSKrMnbOFcYYXtiSc1fmVj0zKmabpIiLm5iTzNaikNrbdm+m1whWoBSrHPF0qPV9BKdZURwB1JPEYZYsi5ZxXSrwXXnghjCZHz4rZ5OSkJSLW5ORkJPvv7e21RETpb2Jiwvf/uVzOyufzxetTU1Paz1NErEKhoLSP/v5+q6mpqaQN+Xze6u/v13oNpqamXB/P6/byNuRyOd/XxaRNXu07duyY0evrbG/5a9bc3OzZPpXXoNZV8vkI87Hd3nu399Pv+9nc3GydO3fOd9/Lly+P5DsORM3tO+l1zNu7d2/g99rreOv8vXL+3+v3IJfLWblczvrOd75T8v1x287kWJPU43TQ62H6u+j1HjkvV+P1UI3Xai6Q3L9/v3Ig6XyTyj8c9gfD68vpx+/HUDeAU/2Aqhwsgr6c586d8z0oRP2lMf2COA+Cg4ODxcAi6LGTdICKU5IDScsqfT+3bt2q/Bn02vfevXuL24f1HQfi4PWddDvmqQQjKr8N9t/k5GRgkPiqV71K+fc27YFk0O9j+YmtjrQHkjU3tK0yd85NeSkqOzWO7nyEoKTKbnNGkpITUTUFS5xtUlFLi4hQ+n5+8pOfdN3G+vOq1nXr1gXur7293Tf9VRLnHAF+4jjmjYyMBE4TS/s6A50h9KSknEvK9DKnmgskTeeROEtRmabGUUmq3N3dPetDkJQPqE4KlkralPSFPEg2k7lItZb+Coja0aNHQ91fkuc9qggj5VwYr0ESywDXXCAp4p+Ae8+ePa73CeMMT6VHb2xsbFbwlZSciCYpWHTblIaFPGlnerByW+gV9sFf9yTCzqk3NTVVvM10IY3Xd9wrbx9QbWF8Nk1P3MtH6by86lWvUlrsk/ZOg2qknPMqlpC0gik1GUiKzO6BsNOB3HjjjaE+jvOH9vDhw0r3OXLkSMn9LrjgAqX7RZ0TUbV8pJNOm4KG/ZN4pqUjzWfccaTv8DuJABCN1atXFy/rfOdaWlqUUqx95StfKV73k/bvezVSzt12222utydtelnNBpIi8acDUT2DKw++VL+wUedEdE4LCJLL5SSfz8u1116rFDip1lJO0plWmgNDHVGk71B9DFut5psDqs1r1CjoO6eaYq2zs9MzhZCX733ve8XLaRmJMk05Vwm/Eb+4prypqOlAMkjYXe1BAaHIS8Pr5QHhCy+8IGNjY2JZlucHdMeOHTJ37tzIgxp7WkBTU5PnNnabenp6lPeb1oU8lUp6MKqTwD+Kx7C5zR0GoK58akqQoO/c0NBQ4EI1u5fRK3m2l4985CPFy2kaifKbNud8PeKUhDLAmQ4kOzo6JJ/PS39/v+f8E50E4SpJlXt6enzPWMJaPe5Gdb5N+UFh8eLFFbcproU80KOyMtOUHUTPnTvXaO4wADXl00auv/76wPsEfefsAE9ElBaq6fTEnT9/vuR6kkaigvgt3KtGx0ESygBnJpAMmrTq1s1vksHer1KASHB5o7BWj9tMhw2cB4Wnn3664japzgN1SsKZVtKEfaD63e9+F0KrwlHp++08UZo/f37x9rQMnQEmBgYGfKeN+LHv4zXMbf8+PvLII8Xbokg3lLaRqLhSzjU1NVV9ypuKzASSQZNWu7u7S273mzfmdeZk/8hv2LBBnnjiiZJ9lW9TX1/v2p4wPqDOydVhDBs427B69WqjIXaTOapJONOqdUkqE7pkyZJQ9pO1ur/Itq1btxqPHHziE5+Qffv2ydatW13/7/X7GAXnSFQSSgVXi/O5btq0SUTim5NpKjOBZNCkVefQWxgJwp1v7lVXXVW8HEcKhPLnqhL8Rt0Vr/Nhj/JMK64DVH19faLmRTrf5zNnzhRvD3r+pjV8y/mdWds2bdpU8dBWHAuHgCQx6Ym0nThxQm644QbffZT/PkZtYGBAeyQwqt+xuH4fncfhN7zhDcXLd911lyxatEhe+cpXlmxfzTmZbjITSOpQmTemM4fPNP2CDr+AIGnDBn49jVGeaZlMVQiS9MU0bpyfR+dcKp0E/rp27twZuE/7hOfRRx81yp0Xx8IhIAnsaRy9vb0V7SeJ34tdu3ZpjQSmXfnv0smTJ0v+f+rUKTl16lTxehKLKRBIulDN6J+UROIiEhjUJmkBi3MeqNdCHp0vicoiIpOpCrXK6/NYPo/VL4G/Lnv1p99JhOoJj1evskqFKKCW1Nr0H6/Og6g6Q6IcoVLpZAhKiyYis7K5JLEMcGYCyaBesObmZjl37pxYliUXXXSR0j7f9773eX5A4uz5KxQK8v73v19p2yQsYAl7IU+QpNQyryaV5+ZcoGK/F7rZAvwOnh0dHfL1r3/d9/5eJzz2yUJ/f79cfvnlxdvXr19fnLOrWhCgt7eXCjaoCSZFJHTZOYODBM1B/od/+AffxxAJHlkLszMkihEqHaq5lUWSfxKcmUDyrrvucr3dbSg1jC/ngQMHjO9r0zmjOX36tNI+/QLqagzTxrH6LSm1zKtJZW6u8yQjqvfiueeeU9rO7YQn6Oz9f/7nf5T2XWu9OMgunSISKrymtwTlDJ6ZmfFcsGP7whe+4Pm/fD4vXV1dSm0MozOkWiNUzkB59+7dsc49jVJNB5LOIc8bbrjBdRu3oVSVfJBBjh07pryt6QIcnTOaJKUKiJvqgUe1So+XpPRoug3XqE7XUNlXJUyrP6l81h944IFEVIgC4mSnnLvwwguN7m9/L/bt2+eZaDtoZGJ4eDhw0U957kjbbbfdpjX6UemJYLVGqMp7QLdv3x7q/quppgNJJ7cPhd9QalA+SLf9OgNCnbQqpkO5qtVibGEvYIlqfknYPaOmBx7d5+dcxGLzyl8aFa/hGtXeOpV9VXK2HpQGyivYU/msj4+Py0033VTcT/l+RZKTLgMIU0dHh1alMVt5qUOVxONuKukl/Na3viUi4dWyDvr9qMYIVSW5PkXCXfgYhUwEkuU/iLbTp0/7/qiUZ7B3+wH1WpHtTPmj4/Of/7zr7W5BjeqXd/HixZGkCgjKV6kbEEaVMkflAFU+B8gkiHJ7P/7u7/6ueNkZjHq9NjqvWfm2fsM1XlM7nJwnTV4HvkqHfpzfN51gT/WzfvHFFyeuhBkQB5MT5vLvhelUo0p6Ce0KO7q1rE07HKqxSLaSXJ9JDyJFRMSK2eTkpCUi1uTkZCyP19/fb+VyOUtEZv3lcjmrv7/f9/5TU1PF7Y8dO+a6H7e/b37zmyWPo3o/55/z8ZYvX17yv3w+b91xxx1K+/nxj3+s/fxULru9ns7XVHffbrdNTU0Zve/Ox56amip+DsrfC/u2vXv3Fm/bu3ev63tW/vws6/8+z6p/+Xze6u/vn9U+r3arvl+Tk5NWPp/3fW+CPo/Oz2xTU5Pvvpqbm61z5875tmliYqJ4eXBw0Dp37lzJtuWf6ebmZs/v4/79+5Ve3/379896X+zHBmqZyrHI+Z1z+17oHrPtY9S5c+esfD5v/FvX29tbbEN/f/+s44/bsUGlrW7HUJ1jSdDx2O89KBQKRq9F+V9zc3PJ75Ppb6IJ1XitpgNJ+8Ot+oPoxjSQXLFihecPpspfeXDj9n8RsRYvXuz75c3n80bPzyu4cQYHQa9p3IFk0HPxO0A57+sXRJW/poODg9rva/l7qxNIeh2odNrh9XnU+XyL/F/Q5vW6u538OJ+3W6DpReWHyvm+6P4AAGnn/MyrnCzqnKiqHKO8TtZ1/uz9qZwImgaSQccSr9+woOOI2+9LpX9uJ+BJDCRremi7mqt1JyYm5Mc//rFYliXPPPOM0T78VsFZZbmlvLq/e3p6Kp4T5ly09OSTT/pu6/Waes0ljVP5VAWvOUBB81jsoRgR9ZyjNquCkmPlw+3Oduu0w5nHc9++fcXLuu9L0NCPW4UlZ3UZnWE0lQVwYXzWgVrgtajtuuuui+wxVdcVlHPbPspsHrpD6CpU8kHq7MuWxJyRbmo6kKx2wvAbbrhBCoWC0QfBsqzAD6VlWXLy5En553/+Z88vr24eQD+V5KuMo7qPirAOUPbzU12F7GQZlBwLK/WNSGlqqltuuaV4Wfd9cZsXpVJhyVTQD1WYn3UgzZwni3EWW/BbV+B1AnjnnXcq799rXmRQR0X5/byOJeVzRlUWXKpklKirq/Od6+hsR9CCxCSq6UBSdQJwVHnlTp06JZ2dnYGJWit18cUXBy4K8qLaU1hpvkqvYD3uVc1hsZ9fGF/6oEnjYaS+cXIGjF7vy6JFi3z3lc/nXVdPBuVPDSOYNP2sA1nhPEGOOzDxeuwoe0lNOiqCRqhUF1yqZJSYmZmZNYroFBRMq1Rvq6aaDiTDSidQqaBErZVavny555fXL0jxGyp1Ms1XqZIO6DOf+UzgNnFramoyCqKiUmnqGxP2Prz29S//8i/FijLOz5VO/lRT1fyRBGDGtJdUZXW21wlxUCeO1wiV1wjQ2NiYbNiwoaTGueqI5pYtWzxHU6KcchAHo0Dy3nvvlZUrV8r8+fPlyiuvlJ///OdhtysUKvOqos4rpzJE7SaXy0lTU1PgNqaBcNBQqfMLaJqvUmXO3cTEhOzfv1+mpqaU9x+1nTt3ikjwXDyvtFIqVOYR2emQVEv/eaW+MRE0ZcLrwKeaP3X//v2hnFlHWSsXQGWcPWkNDQ3F28M4AVT5rnd3d2sfE1Q6Tpz7VR3R7O3tlR07dhSv19JoinYg+dBDD8mtt94qt99+uzz55JPypje9SdatW6dc+ixufvOq9uzZozUvLK4fKTuAsQMa521OlmXJjh07tANh3S+Kab5K1QUgSaj/7dTe3h44F6/SydU684J0qsGUD9dUwmTKhLMOtpuwRwGCcpkCWZf0YVFTKmWInQsjVal0nDj3q1pS+cSJE/KBD3ygeN2Za7paC1DDoh1IfuELX5CbbrpJPvShD8kll1wiX/3qV+UVr3iFfPOb33Td/uzZs3LmzJmSv7h5/bjqTs437X3SZU/4fde73lW8bdGiRa7bmiwwUP2iPPbYYyKifsZ18uRJWbduXfG6aTm8anCeJNTX18uGDRvkiSeeKN7mDE50hvq96AxltLS0BB6onMPtYfWw+02Z8HLFFVcEbhPmKIDbyvA45iUDMOcV3NrD2PX19YH7UJ1Go9tRobtIV7XeefnvRVIWoIZBK5B88cUX5eDBg7J27dr/28GcObJ27Vr56U9/6nqfu+++WxobG4t/zc3NlbXYkM4Pl9ecjD/84Q/aj6syRO1kT/gVKQ1cT548WbxcaY+L6hfFXnWuesZVzrQcXtzDlV5D1D/84Q+Ll53PZWRkRHvVdSXiTn1TSa9h0GdLdxTAjcrKcJP0SkCahdHzmKbeS9VpNLodFSaLdFXrnTuDyVpagKoVSJ44cUJmZmZmvYFLly71HMbctm2bTE5OFv9GR0fNWxuSqakp5S/K/PnzZ5XPU6U6RO28bc2aNYF1OU0CWifVL4pz1XlQIKPLL19X+XCl26KOsPgNUX/4wx92vY9u7kibc6jca7W8V5AUV+obkzxqOoF+GO0MGgYySa8EQJ9pmcIwqJQhvvDCC+Xqq6/W2q9Kx4nbgkvTeuflkrgANUjkq7bnzZsnDQ0NJX9pUknvkz1E7fzxdBvu/cY3vlG8rDJsWukHTbeHsaurK3DeYLmghSh++bpMV+DpMh2iNskdKVI6L9JrWMN5u81+3uVTNJzJxIN6br3e61e+8pUl101qUqvMVQqi84NkGsgDWRdGj2MSikuoOnHihKxatUrrt6Ourk56enp8fxe8RoDCmKY1MTFR8T5ip1Mu5+zZs1ZdXZ318MMPl9z+gQ98wPqbv/kbpX3EXWvbplNiyLmts6SUzp+zrFNQiUFnSSfdknv2c9Gt3exXg9ztz62GsVstUWdda6993XbbbSUlr/r7+0tKSnr96ZR79Cq/59xG57X2qiGt86dbgtD+86pf7laCsLzco9e2Oq+TW/udl++9917tz2sl30/V983+zAJZE0ZJPbcyhX5lAE1/i4J+U7yOO6qlh8vLNqq0ye34p3IcU6l3rvLnrD1eTZGUSHzZy14mq1evlp/85CfF286fPy8/+clP5G1ve5vOrlJDp/fJ2VvnzEnllQLBTVy9LfZQaXmPlBfnxGKb2xxIlV6+b33rW8XL9tCyyllY0Ao855nyG97whuJl52pe53uhM0XAuW9nD1xQr275Ih1TXV1ds+6vs9DEmcNtcHBQzp07N+vzaFrp55/+6Z+071MJ07m3ANS4JeNeunSpbNiwQSllnOnjOEdCgqagqc719/st0qGyNsF5/KxkGlgSFqBq0Y1QH3zwQWvevHnWAw88YB06dMj6yEc+Yl1wwQXW0aNHQ41ww2baIzk5Oelb4N355+y9VOl5sf+q0SNpe+SRR7R6d5z7c+th0+ktOnfunJXP50M5U/M7U3b+7d27t3if/fv3Kz+u19lv0Fmx8zVyO9vW+du/f3/gGW8ul3N9TZ3tMD0jd/Zemj6XMHoknduWfy/t3ge7BxfIokp6JHVHq+w/e8RI9bco6HHsY7XzfqOjoxUdQys5/qkcQ4N6TO+///7A43dzc7PvyFucVOM17UDSsizrnnvusV796ldbL3vZy6wrrrjCOnDgQOgNC5vpD5XzAx/05fL6oHnt2+1+KoGrcxhY97mUUwlMnB/soEBSdSpAb2+vViBn/7kNV+oc+JzD43Yg63VflX06DwxBwzI6Q8Ber5nuiUbQZ1PnQKo6lOT3F0Yg6Xzfy08empubCSIBQyYn90HHZ5tbB43Ksdp5v0WLFlV8DHJO4VFpq84xNGgKlPP/aTgJjmRo23bzzTfL7373Ozl79qz87Gc/kyuvvNJkN6nht2I27PKHKqledJJZqzyerfzxTFbw6uSO1M3vtWLFCrn22mtLFmToLphxDo8HvdYq+9y+fXvxctCQa6VDwMuXL6/qQpOkJY4PqpULQI9uFbNyqscIlUWs9rHaOaXn1KlTxm2zmRYu0E1LF/SbWf5babLQMSlqutZ2mLySmn/yk5+M5LH8VkjrJLP2+vC7JX4N44Otkzxbdx6IWwBtcuBzHuwqPUnQWWFnehB0zvkzXTFeq7xq5QLQV+nJot8x3WR++sDAgLzuda+rqE1u7PnkOsFkGFW0nK/BM888U7w97SfBBJIa4vyRKg9cvRZt+J0ZuU2Y9vvwly/IMPlg6yTP1k1D5BZAmxz4yg92XicJF110kfa+y4WRTN2yLPn85z8vdXV1ygtNzp07l6j65QCSr5JFHm65FSt9nF27dkWSDscebXJbxOgl7CpatXQSnJlAMqqM/ZXsN2hVmtcKaZUzI69E234f/jA+2ENDQ0q1qu3HCwo6g3oFdQ98Xgc7t+d6/PhxrX3bnwVnABdGjkURkVtvvVUKhYLWVIRq53tze//jqFQEwIxpFTMRvepaKo8zZ45ZeKKaicSyLBkdHS1OddJNrm4Ho1TRylAgmWS6wajXmZEdTPrNGwzzw79gwQLp7+8vKQFpB7Yi4tmj6hQ0jB80dUD3wOc82AUdOLZv3x54YAxK0K5aDzaI2wlA+TC3/Rlat26db1qNuLhNRTAdEgIQPb+Te/v6okWLXO+rU7VKpRPh/Pnzyvtz+tWvfqW1fSXD+RZVtESEQNJV3LWeVfiVaizvpg+aNxjWh9+rlKMd9DzyyCPF2/yGZP2G8b3YQeDcuXOLZalUgkmvg51XfdOg9z5o4dNrXvOawDapsIPET33qU8XbnFMRnK9ZUIlN3aGYpqYmox6KefPmud7PZH4SgHh4ndzn83np7++Xw4cPF2+r5Dsc1ImgY/HixcXLuiNpYeZsTFOt8lCFt1BcTbXS/6hySyniVzFEJ2ej6jZu2+rkZ+zt7TVKi6Cbvsgvb2N5PsOgfaukUHCm1ynfn18eSef9vN6voNQ2dXV1yq+ZaR7SSt4v5+WgfJrOFEgq6X/27t1r1P6gz4dXWimdvHdhVPAAMJtbZRvLUqsgpuPUqVMVHwudaedUK4j5HYNMq5cFpVDTjReqLdL0P7XKZF5hXFTTvhw5ciTSrPj2Gdf+/fs9e7xEZFavp+mZmldN6nJ+vZpBC1REgoc3nD2TOmfhKkM4unp7e31fR7/3RaQ0BZLK+2LPeb3wwgu12hn0+XDOT0riKACQZSpz5sNYyRzGPPKgTCa6qe2czytov14jhVlCIPlnYcwrVPlRNg2odPIzBs0bDOPDH1dOQa/HcRuKDirfGJarrrqqeFllEUvQEI5u4B/GiYJO4GwvoPrv//7vwP3qDlMdOXJEO7sAgGQImq+vwjQ3rk4OZ93Udiq/b/bvqz21SkXNniRH1ifqIalD2yZVViTiLmmdIdLybnqvajz2bXv37p31HHS62nVfL51hfJVhBbfqPirD415DNDp/XsPgQc/ROVTkHG53tm/x4sW+j+01LK06nGP/+VWg8Jre4fzMeH0OVSsb2X933HGH675UqzykYXgISCOv75ZuNbQgUVbrCvoNcAp6XuV/dhUtnepg9rHU735JEmmJxEokNZA0nVcYVyDpV6rR60fXr4Sc24dY54MdVF5QxLyUo24d56BAsjzwc/si+82R9KpfXUnQ4zW/MSgQc9YK99pfU1OT8glHOa9yk+WfO6/XS6cd+Xw+8HUN+kFKw8EYSCOv75bOfH0VOgGc3zx5t3a73c/rOKET0DqDUa+5pEHHUrfOnKQhkNSU9B5J+3F06wurTJg2CSTttvjVIHcGRTqB5H333Wf0Hqj20Ll9kb0COHvbb3/7275t0A16vALJoJ5FlRqv9uIY3VquQXV2nftTWQQV1I477rhD6f1Vrd+b1IMxkEZe3y3VUYfe3l7tx/E6VgQdK1V6AoOOEzqjKX6/x/l83vrOd74TeCx1/j+pxy4W22hSmVdoVwyx/jzH0arCEn/d+sJeE6bDWNwQZilHp6VLlxrdz8nv+Vguc1692mrPpXGml/Dap3PxSJh05wp6JYQPmhekkjbK5jUf1TkH+H3ve59vOy6++GKl5+M3Xymz6TaAKtGZr1/pvvP5vOzZs0drH0GLYr3+r1t+1m9x7g033BBLCr7EiDKadZPUHknLCp5XGDR0GRfTFEJBZ1Gmz89r7p9KOiG3duqmXnDrkTQdHvfqwQ3jLNy0R1LlzNttG6/n4kVneodKz4Db58PZDtVRANUhMgDhiWuOZFA6IZXjpt2+c+fOBaY/85pypfK87Mv2mgWd3xjd34skoEfSgF8iVr+enDQJSnFkslI27NXSfmUA3bidYZpWlPHqwY3yLDwquiUvo2q7VztURwFU6/cCiJ5OmdZK9m1Spnd4eDgw/ZlX7W6V52UbGRkJpUcxSb8XlSCQLKM7dJwmKimOdIrYR8Ueruzv71f6onV3d89qs+7weNDwflCAXO2gJ4ypCiqBXZhUyrGZ/iABiJ5uWp2oVZKWznnMLC8DWT7EbpqyyFbt34uwEUi6qPSsKKmCzqKskOf56cxfc9u2o6NDvv71rwc+ztjYmDz22GMltzlzPXpxvq927kKv+TNhn4V7vTb27VNTU8r76O/vl8svv1z5uXhRCezCloVRAKBWOcu0xt3p4nYMNe3hK89le/LkyeJl+3k5y+vqzKfMwkkygWSG6FTHSYrnnntOabsbbrihJHBqaGiQ/v5+yeVynkFQea/d+Pi4bNy4MfCx4j4L9+tt9JuqoPJcyvkFdl6T3itd8FLLowBAWgWd7FqWJQ0NDcXbk9DpEjSqIjK7aILXMdR2+vTpWc+rpaVFaVrOvn37snGSHMH8TF9JXmxjS3pKkTjqdZu2R2eBjQqd3F6quTS96mbb+whqv+4iFrfXKajmql+OS3thlE66Ht33wu05mr7PKp/XpH/nAMwW9vc26FioctzRSUunsmjGLgJhmtfZ9PciCVhskxH19fWSy+Vkeno6cFvVs6gkzdvQXbxTPsezvLdrx44dSqmB/MQ99cGrDNldd92lnK5Hl9tzJNUOgKTTSUunsmhmbGzMdbqX6rScWp0q50QgmSFpXNyg0xbLY46ncx9LliwJrW26dAIxlWDXfi8BIAtUj6Fu02XsHNDO+1U63YtpOS8hkMyYqBc3hLF62MsFF1ygtJ3fHE/dpLNxcDs4joyM+N7Hsiw5depUHM0DgKoxHQlR6QkMI61bFnocgxBI1jiv1dBRnUWtXr26eNlePWySm9LN/fffr7Sd35deZXg/CVTPlBctWlSV58IwN4C0C/o9EHmpk6W1tZVjng8CyYyK6izKaz5fGMHk1Vdf7ft/lTme1UhxY+Kiiy5S2m7Lli0ikuznAgBJ5Pd7YOvp6clkL6MOAskU0sk1GIf58+dLPp93/Z89ny+MROdh5XI0SXETN9WqL7fddpvvVAXOoAHAW9DiHGf+SLgjkETFhoeHY010LlJ5Lkev4f33ve99iQi+dBZGJX3CN0NCAFTEcaxwm8dffgwNazpWVhBIuuCHT49qAvMwE52HUVEh6ZOkdRZGJf25AEC1lVewcc7jdx4zddPOZd3cajcA6adalsqkfJUd1ItISa7MrAROHR0dsnbtWmlsbBSRl4Lmtra2mn2+ANLDeXxOOruCTXl77Xn8SZnWlEb0SKJiqvP5kpToPE2yEDQzCgAgKjMzM7JlyxbXoNe+rbu7u3gbxyM9BJKoWBoTnVciCweZLDxHANkQVMHGsqzACjemsnAsJZBMsSiTf+uKOtF5JbLwRQYAuFPNywszBJIp5TdpuFqSvnoYAJA9UVY0o6OCQDKV7EnD4+PjJbeHmfzbVBbm8wEAks0Z4LW1tQXO4/fKhYxgBJIpozJpOIzk30nEmR8AQJfKPP6enp7Y21UrCCRTJqzk3wRlAICsCJrHTwUbcwSSKVON5N8AAKQd8/ijQULylIky+XfWpCmZbpBaei4AEBWvefwcQ83RI5kyJP8GAABJQSCZMllL/u0lS3M8s/RcAQDpQiCZQklO/g0AALKDOZIp1dHRIWvXrpXGxkYReWnScFtbW833RAIAgOSgRzLFSP4NAACqiR5JhIqVbwAAZAc9kgAAADBCIAkAAAAjBJIAAAAwwhxJAACQCczjDx89kgAAADBCIAkAAAAjBJIAAAAwQiAJAAAAIwSSAAAAMMKq7RRj9RkAAKgmeiQBAABghEASAAAARggkAQAAYIRAEgAAAEYIJAEAAGCEQBIAAABGCCQBAABghEASAAAARggkAQAAYIRAEgAAAEYIJAEAAGCEQBIAAABGCCQBAABghEASAAAARggkAQAAYGRu3A9oWZaIiJw5cybuhwYAAIACO06z4zYvsQeSzz//vIiINDc3x/3QAAAA0PD8889LY2Oj5/9zVlCoGbLz58/LxMSELFy4UHK5XJwPXZPOnDkjzc3NMjo6Kg0NDdVuDgzwHqYf72G68f6lH+9h+CzLkueff15WrFghc+Z4z4SMvUdyzpw5ks/n437YmtfQ0MCXJ+V4D9OP9zDdeP/Sj/cwXH49kTYW2wAAAMAIgSQAAACMEEim3Lx58+T222+XefPmVbspMMR7mH68h+nG+5d+vIfVE/tiGwAAANQGeiQBAABghEASAAAARggkAQAAYIRAEgAAAEYIJAEAAGCEQLIGnT17Vi677DLJ5XLy1FNPVbs5UPTss8/Khz/8Ybnooovk5S9/uaxatUpuv/12efHFF6vdNPi49957ZeXKlTJ//ny58sor5ec//3m1mwRFd999t1x++eWycOFCWbJkibznPe+RX//619VuFgzt2LFDcrmcdHV1VbspmUIgWYO2bt0qK1asqHYzoOmZZ56R8+fPy9e+9jX51a9+JV/84hflq1/9qvzjP/5jtZsGDw899JDceuutcvvtt8uTTz4pb3rTm2TdunXy3HPPVbtpUPD444/L5s2b5cCBA/KjH/1I/vSnP0lbW5tMT09Xu2nQ9MQTT8jXvvY1eeMb31jtpmQOeSRrzA9+8AO59dZbpb+/Xy699FL5z//8T7nsssuq3SwY+uxnPyv33Xef/O///m+1mwIXV155pVx++eXy5S9/WUREzp8/L83NzfLxj39cPv3pT1e5ddB1/PhxWbJkiTz++OOyZs2aajcHiqampuQtb3mLfOUrX5E777xTLrvsMtm1a1e1m5UZ9EjWkGPHjslNN90k3/72t+UVr3hFtZuDEExOTsqiRYuq3Qy4ePHFF+XgwYOydu3a4m1z5syRtWvXyk9/+tMqtgymJicnRUT4zqXM5s2b5brrriv5LiI+c6vdAITDsizZtGmTfPSjH5W3vvWt8uyzz1a7SajQb3/7W7nnnnvkc5/7XLWbAhcnTpyQmZkZWbp0acntS5culWeeeaZKrYKp8+fPS1dXl7S0tMjrX//6ajcHih588EF58skn5Yknnqh2UzKLHsmE+/SnPy25XM7375lnnpF77rlHnn/+edm2bVu1m4wyqu+h0/j4uLzjHe+Q66+/Xm666aYqtRzIjs2bN8svf/lLefDBB6vdFCgaHR2VLVu2yN69e2X+/PnVbk5mMUcy4Y4fPy4nT5703eYv/uIv5IYbbpDvfe97ksvlirfPzMxIXV2d3HjjjfKtb30r6qbCg+p7+LKXvUxERCYmJuSaa66Rq666Sh544AGZM4fzvSR68cUX5RWveIX09fXJe97znuLtH/zgB+UPf/iDDAwMVK9x0HLzzTfLwMCADA0NyUUXXVTt5kDRd7/7Xfnbv/1bqaurK942MzMjuVxO5syZI2fPni35H6JBIFkjfv/738uZM2eK1ycmJmTdunXS19cnV155peTz+Sq2DqrGx8fl2muvldWrV8uePXs4CCbclVdeKVdccYXcc889IvLS8OirX/1qufnmm1lskwKWZcnHP/5xefjhh+Wxxx6Tiy++uNpNgobnn39efve735Xc9qEPfUj+6q/+Srq7u5miEBPmSNaIV7/61SXX6+vrRURk1apVBJEpMT4+Ltdcc4285jWvkc997nNy/Pjx4v+WLVtWxZbBy6233iof/OAH5a1vfatcccUVsmvXLpmenpYPfehD1W4aFGzevFl6e3tlYGBAFi5cKEePHhURkcbGRnn5y19e5dYhyMKFC2cFiwsWLJDFixcTRMaIQBJIiB/96Efy29/+Vn7729/OCv4ZOEim9773vXL8+HHZvn27HD16VC677DL54Q9/OGsBDpLpvvvuExGRa665puT2f//3f5dNmzbF3yAghRjaBgAAgBFm8QMAAMAIgSQAAACMEEgCAADACIEkAAAAjBBIAgAAwAiBJAAAAIwQSAIAAMAIgSQAAACMEEgCAADACIEkAAAAjBBIAgAAwMj/B0hfjXv6PDGzAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Generate fake data\n", + "np.random.seed(0)\n", + "x = np.linspace(-5., 5., 200)\n", + "y = 3 * np.exp(-0.5 * (x - 1.3)**2 / 0.8**2)\n", + "y += np.random.normal(0., 0.2, x.shape)\n", + "yerr = 0.2\n", + "\n", + "plt.figure(figsize=(8,5))\n", + "plt.errorbar(x, y, yerr=yerr, fmt='ko')\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Likelihoods and Posteriors\n", + "\n", + "In general, model fitting will happen either in a frequentist (Maximum Likelihood) or Bayesian framework. Stingray's strategy is to let the user define a posterior in both cases, but ignore the prior in the former case. \n", + "\n", + "Let's first make some fake data:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "# define power law component\n", + "pl = models.PowerLaw1D()\n", + "\n", + "# fix x_0 of power law component\n", + "pl.x_0.fixed = True\n", + "\n", + "# define constant\n", + "c = models.Const1D()\n", + "\n", + "# make compound model\n", + "plc = pl + c" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're going to pick some fairly standard parameters for our data:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# parameters for fake data.\n", + "alpha = 2.0\n", + "amplitude = 5.0\n", + "white_noise = 2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And now a frequency array:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "freq = np.linspace(0.01, 10.0, int(10.0/0.01))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set the parameters in the model:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.modeling.fitting import fitter_to_model_params\n", + "\n", + "fitter_to_model_params(plc, [amplitude, alpha, white_noise])\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "psd_shape = plc(freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a last step, we need to add noise by picking from a chi-square distribution with 2 degrees of freedom:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [], + "source": [ + "powers = psd_shape*np.random.chisquare(2, size=psd_shape.shape[0])/2.0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's plot the result:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAJLCAYAAABni/zkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACa1ElEQVR4nOzdd3xT9f7H8ddJ0l3aUiiFlrL33lOGiCIqbhEHCCrqVa8iP/W613V7RXBPcCsoigjI3rPQslugQKGMQilddDfj90egUlltSZuO9/PxOI8mJyfnvBMo5JPvMhwOhwMRERERERERKVMmdwcQERERERERqQ5UgIuIiIiIiIiUAxXgIiIiIiIiIuVABbiIiIiIiIhIOVABLiIiIiIiIlIOVICLiIiIiIiIlAMV4CIiIiIiIiLlQAW4iIiIiIiISDmwuDuAq9ntdg4fPkyNGjUwDMPdcURERERERKSKczgcnDhxgrCwMEymc7dzV7kC/PDhw0RERLg7hoiIiIiIiFQzBw4coH79+ud8vMoV4DVq1ACcLzwgIMDNaURERERERKSqy8jIICIiorAePZcqV4Cf6nYeEBCgAlxERERERETKzYWGQWsSNhEREREREZFyoAJcREREREREpByoABcREREREREpB1VuDLiIiIiISHXmcDiwWq3YbDZ3RxGpMsxmMxaL5aKXulYBLiIiIiJSReTn55OYmEh2dra7o4hUOb6+vtSrVw9PT89Sn0MFuIiIiIhIFWC324mPj8dsNhMWFoanp+dFt9aJiLNXSX5+PseOHSM+Pp7mzZtjMpVuNLcKcBERERGRKiA/Px+73U5ERAS+vr7ujiNSpfj4+ODh4cH+/fvJz8/H29u7VOfRJGwiIiIiIlVIaVvmROT8XPG7pd9OERERERERkXKgAlxERERERKqk0aNHc/3111/UOZYuXYphGKSlpbkkU1W3b98+DMNg06ZNQPm9f40aNWLixIlleg1X0BhwERERERGpkiZNmoTD4XB3jGqtT58+JCYmEhgY6JLzff3114wbN+6Mgn79+vX4+fm55BplSQW4iIiIiIhUKTabDcMwXFb0lYeCggI8PDzcdv38/PyLWl7rXDw9Palbt67Lz/tPISEhZX4NV1AXdBERERERcZuBAwfy8MMP8/DDDxMYGEjt2rV5/vnni7Rc5+Xl8fjjjxMeHo6fnx89e/Zk6dKlhY9//fXXBAUFMXPmTNq0aYOXlxcJCQlndEHPy8vjkUceoU6dOnh7e3PJJZewfv36InnmzJlDixYt8PHx4dJLL2Xfvn1nZJ4+fTpt27bFy8uLRo0a8e677xZ5PDExkauvvhofHx8aN27Mjz/+eEYXacMw+OSTT7j22mvx8/Pjtddew2azcc8999C4cWN8fHxo2bIlkyZNKnLuU6/p9ddfJzQ0lKCgIF555RWsVitPPPEEwcHB1K9fnylTphTrfR83bhy1a9dmyJAhAGzbto2hQ4fi7+9PaGgoI0eOJDk5ufB5c+fO5ZJLLiEoKIhatWpxzTXXsGfPnnNe559d0AcOHIhhGGdsp97nCRMm0L59e/z8/IiIiODBBx8kMzOz8FxjxowhPT298HkvvfQScGYX9ISEBK677jr8/f0JCAhg+PDhHD16tPDxl156iU6dOvHdd9/RqFEjAgMDGTFiBCdOnDjv+3axVICLiIiIiFRBDoeD7HyrW7aSdvv+5ptvsFgsREZGMmnSJCZMmMCXX35Z+PjDDz/MmjVr+Pnnn9myZQu33HILV155JXFxcYXHZGdn89Zbb/Hll1+yfft26tSpc8Z1nnzySaZPn84333xDdHQ0zZo1Y8iQIaSkpABw4MABbrzxRoYNG8amTZu49957eeqpp4qcIyoqiuHDhzNixAi2bt3KSy+9xPPPP8/XX39deMyoUaM4fPgwS5cuZfr06Xz++eckJSWdkeell17ihhtuYOvWrdx9993Y7Xbq16/PL7/8QkxMDC+88ALPPPMM06ZNK/K8xYsXc/jwYZYvX86ECRN48cUXueaaa6hZsybr1q3jgQce4P777+fgwYMXfN89PT1ZtWoVn376KWlpaQwaNIjOnTuzYcMG5s6dy9GjRxk+fHjhc7Kyshg/fjwbNmxg0aJFmEwmbrjhBux2+3mvdcpvv/1GYmJi4XbjjTfSsmVLQkNDAedM4++//z7bt2/nm2++YfHixTz55JOAszv7xIkTCQgIKHz+448/fsY17HY71113HSkpKSxbtowFCxawd+9ebr311iLH7dmzhxkzZjBr1ixmzZrFsmXLePPNN4v1OkpLXdBFRERERKqgnAIbbV6Y55Zrx7wyBF/P4pcaERERvPfeexiGQcuWLdm6dSvvvfceY8eOJSEhgSlTppCQkEBYWBgAjz/+OHPnzmXKlCm8/vrrgLML98cff0zHjh3Peo2srCw++eQTvv76a4YOHQrAF198wYIFC/jqq6944okn+OSTT2jatGlhi/apLG+99VbheSZMmMBll13G888/D0CLFi2IiYnhnXfeYfTo0ezYsYOFCxeyfv16unXrBsCXX35J8+bNz8h0++23M2bMmCL7Xn755cLbjRs3Zs2aNUybNq1IERwcHMz777+PyWSiZcuWvP3222RnZ/PMM88A8PTTT/Pmm2+ycuVKRowYcc73vXnz5rz99tuF91999VU6d+5c+J4CTJ48mYiICHbt2kWLFi246aabipxj8uTJhISEEBMTQ7t27c55rdOzn/Lee++xePFi1q1bh4+PDwDjxo0rfLxRo0a8+uqrPPDAA3z88cd4enoSGBiIYRjn7da+aNEitm7dSnx8PBEREQB8++23tG3blvXr19O9e3fAWah//fXX1KhRA4CRI0eyaNEiXnvttQu+jtJSC7iIiIiIiLhVr169MAyj8H7v3r2Ji4vDZrOxdetWbDYbLVq0wN/fv3BbtmxZka7Pnp6edOjQ4ZzX2LNnDwUFBfTt27dwn4eHBz169CA2NhaA2NhYevbsWeR5vXv3LnI/Nja2yDkA+vbtW5h3586dWCwWunTpUvh4s2bNqFmz5hmZThXop/voo4/o2rUrISEh+Pv78/nnn5OQkFDkmLZt2xZZkzo0NJT27dsX3jebzdSqVeusre6n69q1a5H7mzdvZsmSJUXe51atWgEUvtdxcXHcdtttNGnShICAABo1agRwRsYL+euvv3jqqaeYOnUqLVq0KNy/cOFCLrvsMsLDw6lRowYjR47k+PHjZGdnF/vcsbGxREREFBbfAG3atCEoKKjwzxqcBf6p4hugXr16F3zPLpZawEVEREREqiAfDzMxrwxx27VdJTMzE7PZTFRUFGZz0fP6+/v/fU0fnyJFfGXwz1m7f/75Zx5//HHeffddevfuTY0aNXjnnXdYt25dkeP+OVmbYRhn3XehbuH/vH5mZibDhg0r0uJ/Sr169QAYNmwYDRs25IsvviAsLAy73U67du3Iz88//4s9TUxMDCNGjODNN9/kiiuuKNy/b98+rrnmGv71r3/x2muvERwczMqVK7nnnnvIz8/H19e32NcojtK8ZxdLBbiIiIiISBVkGEaJuoG70z8LzLVr19K8eXPMZjOdO3fGZrORlJREv379Sn2Npk2bFo53btiwIeDstr5+/frCbs+tW7dm5syZZ2Q5XevWrVm1alWRfatWraJFixaYzWZatmyJ1Wpl48aNhS3Mu3fvJjU19YIZV61aRZ8+fXjwwQcL951vgjNX69KlC9OnT6dRo0ZYLGf+3Tl+/Dg7d+7kiy++KPyzWLlyZYmukZyczLBhw7jpppt47LHHijwWFRWF3W7n3XffLWzh/+f4d09PT2w223mv0bp1aw4cOMCBAwcKW8FjYmJIS0ujTZs2JcrrauqCLiIiIiIibpWQkMD48ePZuXMnP/30Ex988AGPPvoo4BxjfccddzBq1Ch+++034uPjiYyM5I033mD27NnFvoafnx//+te/eOKJJ5g7dy4xMTGMHTuW7Oxs7rnnHgAeeOAB4uLieOKJJ9i5cyc//vhjkcnVAP7v//6PRYsW8d///pddu3bxzTff8OGHHxZOBtaqVSsGDx7MfffdR2RkJBs3buS+++4rVgt98+bN2bBhA/PmzWPXrl08//zzZ8zSXpYeeughUlJSuO2221i/fj179uxh3rx5jBkzBpvNRs2aNalVqxaff/45u3fvZvHixYwfP75E17jpppvw9fXlpZde4siRI4WbzWajWbNmFBQU8MEHH7B3716+++47Pv300yLPb9SoEZmZmSxatIjk5OSzdk0fPHgw7du354477iA6OprIyEhGjRrFgAEDztrtvzypABcREREREbcaNWoUOTk59OjRg4ceeohHH32U++67r/DxKVOmMGrUKP7v//6Pli1bcv3117N+/XoaNGhQouu8+eab3HTTTYwcOZIuXbqwe/du5s2bVzg+u0GDBkyfPp0ZM2bQsWNHPv300yITkoGzlXjatGn8/PPPtGvXjhdeeIFXXnmF0aNHFx7z7bffEhoaSv/+/bnhhhsYO3YsNWrUwNvb+7z57r//fm688UZuvfVWevbsyfHjx4u0hpe1sLAwVq1ahc1m44orrqB9+/aMGzeOoKAgTCYTJpOJn3/+maioKNq1a8djjz3GO++8U6JrLF++nG3bttGwYUPq1atXuB04cICOHTsyYcIE3nrrLdq1a8cPP/zAG2+8UeT5ffr04YEHHuDWW28lJCSkyCRypxiGwR9//EHNmjXp378/gwcPpkmTJkydOvWi3h9XMBwlXSOggsvIyCAwMJD09HQCAgLcHeecbvx4FcmZxR8nUVGZDBjbvwl39Gzo7igiIiIi1Vpubi7x8fE0btz4goVeRTJw4EA6depUZA3nqubgwYNEREQUTjAmldP5fseKW4dWjkEhVdChtByOZuS5O4ZLfL82QQW4iIiIiMhJixcvJjMzk/bt25OYmMiTTz5Jo0aN6N+/v7ujiZupAHeTL0d1p6CMZ9gra5sPpPHynzFUsU4UIiIiIiIXpaCggGeeeYa9e/dSo0YN+vTpww8//HDGrNtS/agAd5P29QPdHeGiZeVZ3R1BRERERCq5pUuXujuCyw0ZMoQhQ9yzBJxUbJqETURERERERKQcqAAXERERERERKQcqwEVERERERETKgQpwERERERERkXKgAlxERERERESkHKgAFxERERERESkHKsBFREREREREyoEKcBERERERkUpo6dKlGIZBWlqau6NIMakAFxEREREROY/8/Hx3R7golT1/VaICXERERERE3GbgwIE8/PDDPPzwwwQGBlK7dm2ef/55HA5H4TGpqamMGjWKmjVr4uvry9ChQ4mLiwPA4XAQEhLCr7/+Wnh8p06dqFevXuH9lStX4uXlRXZ2NgBpaWnce++9hISEEBAQwKBBg9i8eXPh8S+99BKdOnXiyy+/pHHjxnh7e581+/79+xk2bBg1a9bEz8+Ptm3bMmfOHODv1unZs2fToUMHvL296dWrF9u2bStyjpUrV9KvXz98fHyIiIjgkUceISsrq/DxvLw8/vOf/xAREYGXlxfNmjXjq6++Yt++fVx66aUA1KxZE8MwGD16dJH3dNy4cdSuXZshQ4awb98+DMNg06ZNhedOS0vDMAyWLl1aJPO8efPo3LkzPj4+DBo0iKSkJP766y9at25NQEAAt99+e+F7KSWjAlxEREREpCpyOCA/yz3bacVzcXzzzTdYLBYiIyOZNGkSEyZM4Msvvyx8fPTo0WzYsIGZM2eyZs0aHA4HV111FQUFBRiGQf/+/QuLyNTUVGJjY8nJyWHHjh0ALFu2jO7du+Pr6wvALbfcUlhURkVF0aVLFy677DJSUlIKr7l7926mT5/Ob7/9VqRoPd1DDz1EXl4ey5cvZ+vWrbz11lv4+/sXOeaJJ57g3XffZf369YSEhDBs2DAKCgoA2LNnD1deeSU33XQTW7ZsYerUqaxcuZKHH3648PmjRo3ip59+4v333yc2NpbPPvsMf39/IiIimD59OgA7d+4kMTGRSZMmFXlPPT09WbVqFZ9++mmJ/jxeeuklPvzwQ1avXs2BAwcYPnw4EydO5Mcff2T27NnMnz+fDz74oETnFCeLuwOIiIiIiEgZKMiG18Pcc+1nDoOnX7EPj4iI4L333sMwDFq2bMnWrVt57733GDt2LHFxccycOZNVq1bRp08fAH744QciIiKYMWMGt9xyCwMHDuSzzz4DYPny5XTu3Jm6deuydOlSWrVqxdKlSxkwYADgbHGOjIwkKSkJLy8vAP73v/8xY8YMfv31V+677z7A2W3722+/JSQk5Jy5ExISuOmmm2jfvj0ATZo0OeOYF198kcsvvxxwFsX169fn999/Z/jw4bzxxhvccccdjBs3DoDmzZvz/vvvM2DAAD755BMSEhKYNm0aCxYsYPDgwWdcIzg4GIA6deoQFBRU5LrNmzfn7bffLry/b9++C/9BnPTqq6/St29fAO655x6efvpp9uzZU3jtm2++mSVLlvCf//yn2OcUJ7WAi4iIiIiIW/Xq1QvDMArv9+7dm7i4OGw2G7GxsVgsFnr27Fn4eK1atWjZsiWxsbEADBgwgJiYGI4dO8ayZcsYOHAgAwcOZOnSpRQUFLB69WoGDhwIwObNm8nMzKRWrVr4+/sXbvHx8ezZs6fwGg0bNjxv8Q3wyCOPFBarL774Ilu2bDnjmN69exfeDg4OLpJ78+bNfP3110VyDBkyBLvdTnx8PJs2bcJsNhd+eVASXbt2LfFzTunQoUPh7dDQUHx9fYsU/qGhoSQlJZX6/NWZWsBFRERERKoiD19nS7S7rl2O2rdvT3BwMMuWLWPZsmW89tpr1K1bl7feeov169dTUFBQ2HqemZlJvXr1Crusn+70VmQ/vwu34N97770MGTKksFv2G2+8wbvvvsu///3vYuXOzMzk/vvv55FHHjnjsQYNGrB79+5ineds/pnfZHK2vZ4+tv5UV/h/8vDwKLxtGEaR+6f22e32UmerzlSAi4iIiIhURYZRom7g7rRu3boi99euXUvz5s0xm820bt0aq9XKunXrCovo48ePs3PnTtq0aQM4C8J+/frxxx9/sH37di655BJ8fX3Jy8vjs88+o1u3boUFaZcuXThy5AgWi4VGjRpddPaIiAgeeOABHnjgAZ5++mm++OKLIgX42rVradCgAeAcn75r1y5at25dmCUmJoZmzZqd9dzt27fHbrezbNmywi7op/P09ATAZrNdMOep1vzExEQ6d+4McM6x7VJ21AVdRERERETcKiEhgfHjx7Nz505++uknPvjgAx599FHAOZb5uuuuY+zYsaxcuZLNmzdz5513Eh4eznXXXVd4joEDB/LTTz/RqVMn/P39MZlM9O/fnx9++KFIF+7BgwfTu3dvrr/+eubPn8++fftYvXo1zz77LBs2bChR7nHjxjFv3jzi4+OJjo5myZIlhcX1Ka+88gqLFi1i27ZtjB49mtq1a3P99dcD8J///IfVq1fz8MMPs2nTJuLi4vjjjz8KJ2Fr1KgRd911F3fffTczZswgPj6epUuXMm3aNMDZTd4wDGbNmsWxY8fIzMw8Z1YfHx969erFm2++SWxsLMuWLeO5554r0euVi6cCXERERERE3GrUqFHk5OTQo0cPHnroIR599NHCydAApkyZQteuXbnmmmvo3bs3DoeDOXPmFOkaPWDAAGw2W+FYb3AW5f/cZxgGc+bMoX///owZM4YWLVowYsQI9u/fT2hoaIly22w2HnroIVq3bs2VV15JixYt+Pjjj4sc8+abb/Loo4/StWtXjhw5wp9//lnYct2hQweWLVvGrl276NevH507d+aFF14gLOzvyfM++eQTbr75Zh588EFatWrF2LFjC5cpCw8P5+WXX+app54iNDS0yOzpZzN58mSsVitdu3Zl3LhxvPrqqyV6vXLxDIejhGsEVHAZGRkEBgaSnp5OQECAu+NUaSvijjHyq0ha1a3B3HH93R1HREREpFrLzc0lPj7+vOtWV0QDBw6kU6dOTJw40d1RXGrp0qVceumlpKamnjFDuVRO5/sdK24dqhZwERERERERkXKgAlxERERERESkHGgWdBERERERcZuzLQdWFQwcOJAqNtpXXEAt4CIiIiIiIiLlQAW4iIiIiIiISDlQAS4iIiIiUoWo27NI2XDF75YKcBERERGRKuDUmtjZ2dluTiJSNZ363Tp9/fmS0iRsIiIiIiJVgNlsJigoiKSkJAB8fX0xDMPNqUQqP4fDQXZ2NklJSQQFBWE2m0t9LhXg7pKdAt5BYFInBBERERFxjbp16wIUFuEi4jpBQUGFv2OlpQLcXabfC2n7ocd90PE28A5wdyIRERERqeQMw6BevXrUqVOHgoICd8cRqTI8PDwuquX7FBXg7pCTCoc2QG46/PUkLPovdLrdWYzXbubudCIiIiJSyZnNZpcUCyLiWur/7A4+NeGxGLjqf1C7JeSfgMjP4MOu8N2NsGse2O3uTikiIiIiIiIupALcXbz8ocdYeGgdjJwBLa8CDNizCH4c7izG13zsbCUXERERERGRSk8FuLsZBjS9FG77CR7ZCL0fBu9ASNkL856Gd1vDrPGQtMPdSUVEREREROQiqACvSIIbw5DXYHwsXDMRQlpDQRZs+Ao+7gnfXgc75oDd5u6kIiIiIiIiUkKahK0i8vSDbmOg62jYtwLWfQY758Depc4tqCF0vxe6jHSOJxcREREREZEKTy3gFZlhQOP+MOIHeHQz9B3nLLjT9sOC52FCG/jzUTga4+6kIiIiIiIicgEqwCuLoAZw+cvO7unXfgCh7aEgG6K+hk96w9fXQMxMsFndnVRERERERETOQl3QKxsPH+gyCjqPhIQ1sO5TiJ3l7Kq+bwUERkD3e6DLXeAb7O60IiIiIiIicpJawCsrw4CGfWD4tzBuC/T7P/CtBekHYOFLMKE1/PEQJG5xd1IRERERERFBBXjVEFgfLnsBHouB6z+Beh3Bmgsbv4fP+sHkobD9d7AVuDupiIiIiIhItaUu6FWJhzd0uh063gYHIiHyM4j5AxJWO7caYc7u6V1Hg19td6cVERERERGpVlSAV0WGAQ16OreMRNgwGaKmwInDsPi/sOxtaHcT9LwPwjq7O62IiIiIiEi1oC7oVV1APRj0LDy2HW74HMK7gi0PNv8Inw+ELy+Hrb+qe7qIiIiIiEgZUwFeXVi8oOOtMHYx3LsI2g8HkwccjITp98B77WDpW5CZ5O6kIiIiIiIiVZIK8Oqofje46Qtnq/jAZ8C/LmQegaWvw4Q28Nt9cDDK3SlFRERERESqFBXg1VmNUBj4Hxi3FW76Cur3AHsBbJkKXw6CLwbB5qlgzXN3UhERERERkUpPBbiAxRPa3wz3LoD7lkLH28HsCYei4Pf7nN3Tl7zunNBNRERERERESkUFuBQV1hlu+MS5pvig55xLl2UlwbK3YGI7+PVuSFgHDoe7k4qIiIiIiFQqWoZMzs4/BPo/AX3HwY5ZsO5z51ri26Y7t3qdqNPodryo4+6kIiIiIiIilYIKcDk/swe0vcG5JW6ByM+cy5YlbqJl4iZWe9Vgfs6VkN4UAsPdnVZERERERKTCMhyOqtWXOCMjg8DAQNLT0wkICHB3nKopOwWivyF39Wd4Z58cF26YofUw6Hk/NOgNhuHejCIiIiIiIuWkuHWoxoBLyfkGwyWPsf66JdyfP47NlvbgsEHMDJgyFD7tB9HfQkGOu5OKiIiIiIhUGCrApfRMFubZe/Af/9fhX6uh62iw+MDRrTDz3zChNSx4AdIS3J1URERERETE7VSAi2uEtoVhk2B8DFz+XwhqADmpsGoSTOoIP98B8cs1e7qIiIiIiFRbKsDFtXyDoe8j8MgmGPETNB4ADrtzJvVvhsEnfWDDFMjPcndSERERERGRcqUCXMqGyQytroK7ZsKD66DbPeDhB0kxMGucs3v6vGchdZ+7k4qIiIiIiJQLFeBS9uq0gmsmOLunD3kdajaG3HRY8yFM6gQ/joA9S9Q9XUREREREqjQV4FJ+fIKg90Pw72i4fRo0vQxwwK6/4Lvr4aOeEPkF5GW6OaiIiIiIiIjrqQCX8mcyQYshMPI3eHgD9LgPPP0heSfMedzZPX3u03B8j7uTioiIiIiIuIwKcHGv2s3hqndgfCwMfRtqNYO8DFj7MXzQFX64BeIWgt3u7qQiIiIiIiIXRQW4VAzeAdDzfnhoPdwxHZpfATggbj78cBN81B3WfQa5Ge5OKiIiIiIiUioqwKViMZmg+WC44xfnWPFeD4JXABzfDX896eyePucJSI5zd1IREREREZESUQEuFVetpnDlG87u6Vf9D2q3hPxMiPwcPuwG390Iu+ape7qIiIiIiFQKKsCl4vPyhx5j4aF1MHIGtLwKMGDPIvhxOHzQBdZ8BDlpbg4qIiIiIiJybirApfIwDGh6Kdz2EzyyEXo/DN6BkBoP856BCW1g1nhI2uHupCIiIiIiImeosAV4dnY2DRs25PHHH3d3FKmIghvDkNec3dOvmQghraEgCzZ8BR/3hG+uhR2zwW5zd1IREREREREALO4OcC6vvfYavXr1cncMqeg8/aDbGOg6GvatcM6UvnMOxC9zbkENoPtY6DISfGq6O62IiIiIiFRjFbIFPC4ujh07djB06FB3R5HKwjCgcX8Y8QM8uhn6jnMW3GkJsOB5eLc1zHwEjm53d1IREREREammXF6AL1++nGHDhhEWFoZhGMyYMeOMYz766CMaNWqEt7c3PXv2JDIyssjjjz/+OG+88Yaro0l1EdQALn/Z2T392g8gtD1YcyD6G/ikD3x9DcTMBJvV3UlFRERERKQacXkBnpWVRceOHfnoo4/O+vjUqVMZP348L774ItHR0XTs2JEhQ4aQlJQEwB9//EGLFi1o0aKFq6NJdePhA11GwQMrYMxf0OY6MMzOrurTRsL7nWDle5Cd4u6kIiIiIiJSDbh8DPjQoUPP23V8woQJjB07ljFjxgDw6aefMnv2bCZPnsxTTz3F2rVr+fnnn/nll1/IzMykoKCAgIAAXnjhhbOeLy8vj7y8vML7GRkZrn1BUvkZBjTs49zSD8KGyRD1NaQfgIUvwdI3of3N0ON+qNfB3WlFRERERKSKKtcx4Pn5+URFRTF48OC/A5hMDB48mDVr1gDwxhtvcODAAfbt28f//vc/xo4de87i+9TxgYGBhVtERESZvw6pxALrw2UvwGMxcP0nUK8jWHNh4/fwWT+YfCVs/x1sBe5OKiIiIiIiVUy5FuDJycnYbDZCQ0OL7A8NDeXIkSOlOufTTz9Nenp64XbgwAFXRJWqzsMbOt0O9y2Du+dDu5vAZIGENfDLaJjYAZa/A1nJ7k4qIiIiIiJVRIVdhgxg9OjRFzzGy8sLLy+vsg8jVZNhQIOezi0j8WT39Clw4jAsfhWWvQ3tboae90FYZ3enFRERERGRSqxcW8Br166N2Wzm6NGjRfYfPXqUunXrlmcUkTMF1INBz8Jj2+GGzyG8K9jyYfOP8PlA+PJy2PorWPPdnVRERERERCqhci3APT096dq1K4sWLSrcZ7fbWbRoEb179y7PKCLnZvGCjrfC2MVw7yJoPxxMHnAwEqbfAxPbw9K34MTRC59LRERERETkJJd3Qc/MzGT37t2F9+Pj49m0aRPBwcE0aNCA8ePHc9ddd9GtWzd69OjBxIkTycrKKpwVXaRCqd/NuV3xqnPm9A2TIfMILH3dOUa87Q3Q837nMSIiIiIiIufh8gJ8w4YNXHrppYX3x48fD8Bdd93F119/za233sqxY8d44YUXOHLkCJ06dWLu3LlnTMwmUqHUCIWB/4FLHoPYmbDuM2eL+NZpzi28q3MZs7bXO1vQRURERERE/sFwOBwOd4dwpYyMDAIDA0lPTycgIMDdcaq0FXHHGPlVJK3q1mDuuP7ujlP+Dm+EdZ/Dtl+dY8UB/EKg6xjodrdzTLmIiIiIiFR5xa1Dy3UMuEiVEtYZbvjEuab4oOegRhhkHYPlb8PEdvDr3ZCwDqrWd1wiIiIiIlJKKsBFLpZ/CPR/AsZtgVu+hgZ9wG6FbdNh8hXw+QDY+AMU5Lo7qYiIiIiIuJEKcBFXMXs4J2W7+y+4fwV0vhMs3pC4Gf54EN5rA4tegfRD7k4qIiIiIiJuoAJcpCzU6wDXfQTjY2HwSxBQH7KPw4p3ncuYTRsF+1ere7qIiIiISDWiAlykLPkGO2dOf3QzDP8OGvUDhw1i/oApQ+HTfhD9LRTkuDupiIiIiIiUMRXgIuXBbIE218LoWfCv1dB1NFh84OhWmPlvmNAaFrwAaQnuTioiIiIiImVEBbhIeQttC8MmwfgYuPy/ENQAclJh1SSY1BF+vgPil6t7uoiIiIhIFaMCXMRdfIOh7yPwyCYY8RM0HgAOO+yYBd8Mg0/6wIYpkJ/l7qQiIiIiIuICKsBF3M1khlZXwV0z4cF10O0e8PCDpBiYNc7ZPX3es5C6z91JRURERETkIqgAF6lI6rSCayY4u6cPeR1qNobcdFjzIUzqBD+OgD1L1D1dRERERKQSUgEuUhH5BEHvh+Df0XD7NGh6GeCAXX/Bd9fDRz0h8gvIy3RzUBERERERKS4V4CIVmckELYbAyN/g4Q3Q4z7w9IfknTDncWf39LlPw/E97k4qIiIiIiIXoAJcpLKo3RyuegfGx8LQt6FWM8jLgLUfwwdd4YdbIG4h2O3uTioiIiIiImdhOBxVazBpRkYGgYGBpKenExAQ4O44VdqKuGOM/CoSs8mgpq+nu+OUu9AAL6aM6U6dGt7uCWC3w57FEPkZxM3/e3+tZs6W8o63gbd+B0REREREylpx61BLOWaSKqZRLT88zAYFNgfJmXnujlPukjPzWB+fytUd6rkngMkEzQc7t+N7YP2XsPF7OL4b/noSFr0CnW53FuO1m7sno4iIiIiIFFILuFyUlKx8kk7kujtGuXvy1y1sOZjOh7d35poOYe6O87e8TNj8k3OCtuSdf+9vehn0vB+aXe4s3EVERERExGXUAi7lItjPk2C/6tf93NfT7O4IZ+flDz3GQvd7Ye9SiPwcdv4FexY5t5qNnY93usM507qIiIiIiJQbFeAiVZFhQNNLnVtK/Mnu6d9BajzMewYWvwYdRzi7p9dp5e60JZZntfH4L1tISMl26XnDg7x595ZO+FTUL1hEREREpFJTAS5S1QU3hiGvwaXPwJZpsO4zOBYLG75ybo0HOLunt7gSTJWj8NxyMJ0/Nx92+Xk3H4DbeqTQr3mIy88tIiIiIqICXKS68PSDbmOg62jYt8JZiO+cA/HLnFtQA+g+FrqMBJ+a7k57Xja7c+qKeoHe/Pe6di455yuzYkhIyS48t4iIiIiIq6kAF6luDAMa93duaQnO7unR3zpvL3gelrwOHYY7W8VD27o77Xn5eVkY3CbUJeeauGiXS84jIiIiInIumg5ZpDoLagCXvwKPxcC1H0BoO7DmQPQ38Ekf+PoaiJkJNqu7k4qIiIiIVHpqARcR8PSFLqOg80jYvxoiP4PYWc6u6vtWQGAEdL8HutwFvsHuTisiIiIiUimpBVxE/mYY0KgvDP8Wxm2Bfv8HvrUg/QAsfAkmtIY/HoLELe5OKiIiIiJS6agAF5GzC6wPl73g7J5+3cdQryNYc2Hj9/BZP5h8JWz/HWwF7k4qIiIiIlIpqAu6iJyfhzd0vgM63Q4HImHdpxA7ExLWOLcaYdD9bug6BvxquzutiIiIiEiFpQJcRIrHMKBBT+eWkQgbJkPUFDhxGBa/CsvehnY3Q8/7IKyzu9OKiIiIiFQ46oIuIiUXUA8GPQuPbYcbPoewLmDLh80/wucD4cvLYeuvYM13d1IRERERkQpDLeAiUnoWL+h4q3M7uAHWfeYcF34w0rn514Vud0PX0VDDNet1i4iIiIhUVmoBFxHXqN8NbvrC2So+8GnwD4XMI7D0dXivLUwf6yzSRURERESqKRXgIuJaNUJh4FMwbhvc9BXU7wH2Atg6Db68DL4YBJungjXP3UlFRERERMqVCnARKRsWT2h/M9y7AMYugY63gdkTDkXB7/c5W8UXv+ac0E1EREREpBpQAS4iZS+8C9zwqXNN8UHPOZcuyzoGy9+Gie3g17shYR04HO5OKiIiIiJSZlSAi0j58Q+B/k/AuC1w8xRo0BvsVtg2HSZfAZ8PgI0/QEGuu5OKiIiIiLicCnARKX9mD2h3I9w9F+5fDp3vBLMXJG6GPx6E99rAolcg/ZC7k4qIiIiIuIwKcBFxr3od4bqPYHwsXPYiBNSH7OOw4l2Y2B6mjYJ9q9Q9XUREREQqPRXgIlIx+NWCfuPh0c0w/Dto1A8cNoj5A76+Cj7tB9HfQkGOu5OKiIiIiJSKCnARqVjMFmhzLYyeBQ+sgi53gcUHjm6Fmf+GCa1pEPUm4Rxzd1IRERERkRKxuDuAiMg51W0H174Pg1+Cjd/D+i8gLYGw7Z+z3MtgTXZPiDecreWG4e60IiIiIiLnpRZwEan4fIOh7yPwyCYY8SPpdftgNhxcYl0L3wyDT/rAhsmQn+XupCIiIiIi56QWcJGL8OZfO/h02R53xzgnfy8Lr1zXjhahNdwdxTVMZmh1NbGevXj+i195xH8xw1gOSTEw6zFY+BJ0Hgnd74Xgxu5OKyIiIiJShApwkVIIC/IB4GBqDgdTK/akYLO2JDL+8ipSgJ8mzlGfST4PMuxfn8GmHyDyc0jdB2s+hDUfQYsroed90ORSdU8XERERkQpBBbhIKbx+Q3tu7Fwfq93u7ijn9P3aBBbGHsVur+LLd/kEQe+HoOe/YPcCWPcp7FkMu/5ybrVbQo+x0PE28PJ3d1oRERERqcZUgIuUgreHmUua13Z3jPNaurOazRJuMkGLIc4tOc7ZIr7pR0jeCXMeh0WvQKc7nMV4rabuTisiIiIi1ZAmYRORqqd2c7jqHRgfC1e+BcFNIS8D1n0CH3SBH26BuIVQgXswiIiIiEjVowJcRKou7wDo9QA8vAHumA7Nr3Duj5sPP9wEH3aDtZ9CboZ7c4qIiIhItaAu6CJS9ZlM0Hywczu+ByK/cE7clrIH5v4HFv+X+00Dec8YeFGXsdsd/BCZwOG00k/M1z48kKva17uoHCIiIiJSMakAF5HqpVZTGPomDHoWNv/sHCuevIthzGKY1yxSlswA/u1sLTeVrJNQVEIqz8/YdlHxDAOin7ucmn6eF3UeEREREal4VICLSPXkVcM5IVv3e2HvEtb9/Abd89cTfGQl/LSSBEL5mSH8waWcwK9Yp7SenHG+tr8n13UKL3GkKavisTsgu8BGzRI/272mRx3ko6W7sV1g1n2zyWDc4BZc2zGsnJKJiIiIVBwqwEWkejMMaDqI6S1r8XhUFCPNC7nVvIQGxlGe5Fseckzld9slfG0bwm5H/WKd8rJWoTx/TZsSR/lu7X7yrZVzYrif1yew91hWsY6duj5BBbiIiIhUSyrARUSAt27qQMKlzbDZh5NSkE3+zukEbp2CX8pO7rQs4k7LIrLrX0JG+7vJbjQYTOaznsdsMmgQ7FvO6d3PcbLh+8krW9Kzca2zHrMi7hgTF8YVHisiIiJS3agAFxEBDMOgYa1TXc39IexfMPAB2LcC1n0GO+fge3AlvgdXQlADZ9f1ziPBN9ituSuaJrX96drw7B3oD6Zml3MaERERkYpFy5CJiJyLYUDj/jDiB3h0M/R9FHxqQloCLHgBJrSBmY/A0e3uTioiIiIilYAKcBGR4ghqAJe/Ao/FwLUfQGg7sOZA9DfwSR+YcjXEzASb1d1JRURERKSCUhd0EZGS8PSFLqOc3c/3r4bIzyB2Fuxf6dwC6kP3e6DLXeB39rHQIiIiIlI9qQVcRKQ0DAMa9YXh38K4LdDv/8C3FmQchEUvw3tt4I+HIHGLu5OKiIiISAWhAlxE5GIF1ofLXnB2T7/uY6jXEay5sPF7+KwfTL4Stv0GtgJ3JxURERERN1IXdBERV/Hwhs53QKfb4UAkrPsUYmdCwhrnViMMut8NXUaDf4i704qIiIhIOVMBLiLiaoYBDXo6t4xE2DAZoqbAicOw+FVY9ja0uwl63AfhXdydVkRERETKibqgi4iUpYB6MOhZeGw73PA5hHUBWz5s/gm+uBS+vBy2/grWfHcnFREREZEyphZwEZHyYPGCjrc6t4MbYN1nsP13OBjp3PxDedjox3cMcndSERERESkjagEXESlv9bvBTV84W8UHPg3+oZB5lEfMv7LK69/UnPuQs0gXERERkSpFLeAiIu5SIxQGPgWXjIfYmUT/+iZdjDg8d0yHHdOd3dV73g9tb3C2oAsAadn5nMi1nvPxmn6e+HvpvzcRERGpePQJRUTE3Sye0P5mRkz1o6VtN1M7bcZ31x9wOBp+vx/mPwddx0C3u51jyquxNXuOc+dX67DZHec8xtvDxPxxA2hQy7cck4mIiIhcmLqgi4hUIFsdTUgd8oFzTfFBzzmXLss6Bsvfhont4JcxkLAOHOcuQKuymMQMbHYHJsNZaP9zMwzILbATl3TC3VFFREREzqAWcBGRisg/BPo/AX3HQeyfEPm5cy3x7b85t3odocf9zuXMPLzdnbbcDesYxqQRnc/Yf91Hq9h8IK38A4mIiIgUg1rARUQqMrMHtLsR7p4L9y+HzneC2QsSN8MfD8J7bWDhy5B+0N1JRUREROQC1AIuIlJZ1OsI130Eg1+B6G9g/VeQcRBWToBVk6D1Nc5W8YZ9wDDcnfacDqXl8MXyved8PMDHwrUdw/HxNJdjKhEREZGypwJcRKSy8asF/cZDn0dg5xxn9/R9KyDmD+cW2h563gftbwEPH3enLeRlcRbU+49n89qc2PMem2+1M7J3o3JIJSIiIlJ+VICLiFRWZgu0uda5HdnmLMS3TIOjW2Hmv2HBC9BlFHS/F4IauDstA1qEcP+AJhzLyDvnMdEJqew7nk1adkE5JhMREREpHyrARUSqgrrt4Nr3YfBLsPF7WP8FpCU4u6av/gBaXuVcU7xRP7d1T/fxNPP00NbnPebp37aw73h2OSUSERERKV8qwEVEqhLfYOj7CPR+CHbNhXWfQfwy2DHLudVpAz3GQodbwdPP3WnL1a6jJ3h3/k5yCuxnfTws0JuXrm2Lt4fGnouIiEjZUAEuIlKJ2e0OFu9IIunE2bp1t4dWHxIYvpsW+3+i8eE/sSTFwKzHsC14CXOXkc7u6cGNyz23O/wUmcC87UfPe8yV7eoysGWdckokIiIi1Y0KcBGRSmzl7mTu/XZDMY68ngAu5xbzMkaZ59MwLwnWfAhrPoIWVzonbWtyaYWePf1iWW0OAK5oE8qQtnWLPDZpURwJKdmFx4iIiIiUBRXgIiKVWEpWPgDBfp50bVjzgsfvKmjIwLgrGWzZzBcto2DPYtj1l3Or3QJ63AcdR4BXjbKO7jat6wVwU9f6RfZ9t3Y/CSkaey4iIiJlSwW4iEgV0KZeAF+M6nbB446k59LrjUUsdXSBkc9Bcpxz9vRNP0LyLpjzOCx8GTrd7hwrXrt5OaSvOCavimfu9iNF9llMBnf0bEj7+oFuSiUiIiJVhQpwEZHqrHZzuOodGPQ8bP7JWYwf3w2Rnzm3poOcreLNrwBT1Z2cLNDHA4DVe46f9fGjGblMGdOjPCOJiIhIFaQCXEREwDvAuUxZ97GwdwlEfuGcRX3PYucW1NA5YVvnO50zrVcxr17fjrnbjmBzFB0DHpuYwR+bDpN7jpnTRUREREpCBbiIiPzNZIJmlzm3lHjY8BVEfwdp+2HB87Dkdehwi7NVvG57d6d1mYhgX8b2b3LG/j83H+aPTYfdkEhERESqIpO7A4iISAUV3BiueBXGx8Kw9yG0PVhzIPpb+PQSmDwUtv0GtgJ3JxURERGpFNQCLlLFzdh0iM0H08r9uuFBPrx8XVu8LFV33HC14ekLXe+CLqMgYa1zbHjMTEhY7dxq1ONm+2D209vdSUVEREQqNBXgIlVUSA0vAA6m5nAwNcctGa7tGEafZrXdcm0pA4YBDXs7t4zDsGEKRE2BE4mM4Dtu9PqR5MirIPBRqN+tSq8pLiIiIlIaKsBFqqh7LmlM8zr+ZOfbyv3a78zbyaG0HArsjgsfLJVTQBgMehb6Pw4xM9n55/9oWbCDsIQ/4as/Iayzc5x42xvBw9vdaUVEREQqBBXgIlWUt4eZK9rWdcu1P1++l0Np7ml1l3Jm8YIOt/DsqnDyEqL4tEUU4QfnwOGNMONfMP856HIXdLsbgiLcnVZERETErTQJm4iIuMRWRxO2dn8TxsfAZS9CQH3IPg4rJ8CkDvDzHRC/HBzqGSEiIiLVkwpwERFxLb/a0G88PLoZbv0eGvcHhx12zIJvhsHHvWH9V5CX6e6kIiIiIuVKBbiIiJQNswVaD4O7/oQH10K3e8DDD47FwuzxMKE1/PUUHN/j7qQiIiIi5UIFuIiIlL06reGaCc7u6Ve+CcFNIS8D1n0CH3SB72+CXfMxHHZ3J61ScvJtZOdbC7cCm95fERERd9IkbCIiUn58gqDXv6DH/bBnMUR+DnHzYfdC2L2Q//MMx8c8EK8C90wgWJU8/stmfo06WGSfv5eFn+/rRbvwQDelEhERqd5UgIuIyDlt2JfCyt3JFzzucElnvTeZoPlg55ay1zkmfON31Mo9xPMeP1AQOR0KRjiXMgttW8r01duKuGNn7MvMs7LxQJoKcBERETdRAS4iIuf0wPdRJGfmF/t4X09zyS8S3ASGvAaXPsNv37xH6wM/05oDEPW1c2t4CfQYC62uKfm5hen/6k3regE8+vMmFsQcdXccERGRak0FuIiInFNGrhWAGzqH4+d1/uK6boA3vZvWKv3FPP1YX+taxu/pxLs9srjJOhtiZ8H+lc4tIJyOIddTi3ZAWOmvU4YOpGRz33dRHM/MO+OxiGBfvrm7B/5e5ftfr5fFjK+nBYvJKNfrioiIyJlUgIuIVDBbDqQVu0v33mPls5TXE0NaEhbkUy7XAoPDgV3gslsh/RBETXG2hGccolvGR6z2srD58CA4+BTU71ouifJtdo6k5xZNaUCdGl4Yxt+F7eo9ycQmZpz1HEkn8thyMI0+TWuXaVYRERGpuFSAi4hUEKfKuH/9EF3y51bVxs3AcBj0HPR/ArbPIGnR+9TJ2EaPjPnw5XwI7+ocJ972BrB4lVmMqP2p9Hpj0Rn7r+8UxsQRnQvvOxzOnz0aB/PisDaF+x/8IZr9x7PBUWYRRUREpBJQAS4iUkGM7deEOVsTS/w8i9lgRPcGZZCoArF4Qcdb+fNED2bOnsmzIavokbUEDkXB7/fDvGeh62hq2Trgyv/aOjcIIjzIh6MZRVu/7Q4HdgdEJ6Sd9XkB3hbahv090Zm3pRRj40VERKTKUQEuIlJBPD6kJY8PaenuGBXeZkczfgjrT49rPoLob2DDZMg4BCv+xxeYmOvRjaCkR5yTtl1k14D6NX1Z9dSgM/ZHJ6Ry48erL+rcIiIiUv2Y3B1ARESkVPxDoP/j8OgWGP4tNOqHGTtXmyPpuuRO+KQvbJgC+VnuTioiIiICqAAXEZHKzmyBNtfB6Fk8UvMjfrBehs3sA0nbYdY4mNAa5j1LzbyD7k56BpvdQYHNXmSz2uzujiUiIiJlRF3QRUSkythvacxM6z3Uv+UtBmTPh8gvIDUe1nzIOD6io0cn0lNHg70ZmNz7HfTq3cnc++0GsvNtRfZbTAYvX9eWO3o2dFMyERERKStqARcRkSrH6hkAvR+Cf0fD7b9As8sx4eAy80ZujHkUPuwGaz+B3HS3ZVwbn3JG8Q1gtTtYvuuYGxKJiIhIWVMBLiIiVZfJBC2ugDt/5b3WP/OVdSi5Zn9I2QNzn4J3W8Os8ZAU67aIt3aLYPOLV7D5xSt47urWbsshIiIiZU8FuIiIVAspXhH81zqSL7vPhmveg5DWUJAFG76Cj3vB19dA7J9gs5ZrLk+LiUAfDwJ9PPDx1HJlIiIiVZnGgIuISLVSYPaFbndD1zGwbyVEfg47ZsO+Fc4toD50vxu63AV+td0dV0RERKoQtYCLiEj1ZBjQuB/c+h2M2wL9/g98a0HGQVj0inP29N/uh4MbwOFwd1oRERGpAlSAi4iIBNaHy16Ax2Lg+k8hrAvY8mHLz/DlZfD5QNj4PRTkuDupiIiIVGIqwEVERE7x8IZOt8F9S2DsYuh4O5i9IHET/PGQs1V8/nN4ZiS4O6mIiIhUQirARUREzia8K9zwCYyPhcEvQWADyEmF1R/Q9tcBfOXxDj1tUWC3uzupiIiIVBIVrgA/cOAAAwcOpE2bNnTo0IFffvnF3ZFERKQ686sFlzwGj26C236GppdhnFxT/J28/2Kd1JkTi98j6WgiGbkF7k5baeUW2Ao3u11j7kVEpGqqcLOgWywWJk6cSKdOnThy5Ahdu3blqquuws/Pz93RRESkOjOZoeVQaDmU7VujWTP1bW4xLyMwfR81lr+Ex7LXCLT1pa1xOVDH3Wkrlaemb+Hn9QcK7zcI9mXuuH74ela4jykiIiIXpcK1gNerV49OnToBULduXWrXrk1KSop7Q4mIiJymUYsO/Bz8Ly4p+IhnrGOJsTfE2yjgVstSZns9y5up42HzVLDmuTtqpbB817Ei9xNSstmXnO2mNCIiImXH5QX48uXLGTZsGGFhYRiGwYwZM8445qOPPqJRo0Z4e3vTs2dPIiMjz3quqKgobDYbERERro4pIiJSan5eFhaOH8DW12/k9Vf/R5uXN8Pd86DdzWDyoHbaFvj9PpjQBha+TIg9yd2RK4Vp9/emtr+Xu2OIiIiUGZcX4FlZWXTs2JGPPvrorI9PnTqV8ePH8+KLLxIdHU3Hjh0ZMmQISUlFP5ykpKQwatQoPv/8c1dHFBERcS3DgAa94OavYHwMXPocBIRDdjKsnMA3J8bymccEAhNXaU3x8/DxMGMynLdzrTZy8jUeXEREqhaXD64aOnQoQ4cOPefjEyZMYOzYsYwZMwaATz/9lNmzZzN58mSeeuopAPLy8rj++ut56qmn6NOnz3mvl5eXR17e3138MjIyXPAqRERESsm/Dgx4wjlx2845sP4LzPHLGWLeAItGwabm0P1ePK093J20Qrvx49UAtKkXwJ//vgTzqcpcRESkEivX2U3y8/OJiori6aefLtxnMpkYPHgwa9asAcDhcDB69GgGDRrEyJEjL3jON954g5dffrnMMouISPmL3JfCZ8v2nLF//b5KNCeI2QJtroU213Lv/37gkrQZ3OmzGsvxOJj7H+4z+VDT0ofUnLuAdu5OW2H0ax7C9OiDhfdjEjM4nplHnQBvN6YSERFxjXItwJOTk7HZbISGhhbZHxoayo4dOwBYtWoVU6dOpUOHDoXjx7/77jvat29/1nM+/fTTjB8/vvB+RkaGxoyLiFRSXhYzACviklkRl3zO47xPHldZHDBH8JJ1NK1ufIdemQsh8ks8j8Vyh2UR7FwEk/tAj3sx2Tu6O6rbvTu8I/+9vi0A7V6ch3qgi4hIVVLh1ve45JJLsNvtxT7ey8sLLy9N2CIiUhWM6dsIq91OTv65/x/w8jBxd9/G5ZjKdewe/tD9Xuh2D9Om/4zf5slcaY7CnLAaElZzvVdtkiz9OWwd7u6obnVq+THDMDRmXkREqpRyLcBr166N2Wzm6NGjRfYfPXqUunXrlmcUERGpgBrW8uPV68/e46lKMQwOBnbl/YIAHmzvy5MhayDqa3wyj/Ko5Tds+2fAtGHQfSw0usQ5yZuIiIhUeuW6Drinpyddu3Zl0aJFhfvsdjuLFi2id+/e5RlFRESkQjjhGQKXPgPjtrGy09uss7fCjB1i/oBvriFzYnfi50zElqNJRkVERCo7l7eAZ2Zmsnv37sL78fHxbNq0ieDgYBo0aMD48eO566676NatGz169GDixIlkZWUVzoouIiJSLVk8ORg2lKfW1qeVkcAo83yuN6/CPz0O/8gXyY96G3PXO5xd2ENaujutiIiIlILLC/ANGzZw6aWXFt4/NUHaXXfdxddff82tt97KsWPHeOGFFzhy5AidOnVi7ty5Z0zMJiIiUt1c2qoOA1qEkJIVyE+0Z6b9frqnz+V661yakgiRnzu3xv2d3dNbXuWcbb2cJWfm8cWKvWTmWgv3dWtUkxs61y/3LCIiIpWJy//XHjhwII4LTJjy8MMP8/DDD7v60iIiIpVaaIA339xddH3wCfMbM3jxZbzU9hh3WRbCrr8gfrlzCwiHrmOgyyioUX5fZE/bcIDPlu0tsu/n9Qe4ok1d/Lwq3PyuIiIiFUa5jgEXERGRknNgYk9AD7jtR3h0M1wyHnxrQcYhWPIqvNcGfhkD+1aWy6zhufk2ADrWD+SRy5oDYLM7KLAVfxWTknj4p42M/GodP0cmlMn5RUREyou+phYREalMghrA4Bdh4FOwfQas/wIOroftvzm3kFbQ7R78HKGU9X/znSKCePSy5ry/KK7Ez126M4lFsUkApOUUnPWYEH8vjmTkEhmfAsDWQ+mM6NGg9IFFRETcTAW4iIhIZWTxgo63OrfELbDhK9gyDY7tgL+eYBbezLD0xjs5CML7ujvtGR7/ZQvJmXlF9tXwLvqxZNr9vYlKSCH5RD6vzYnFatOa4CIiUrmpABcREans6nWAYZPg8ldg81TY8BW+x3Zwu2UJ/L4E1nenZ/5lLKaVu5MWyi1wdmMf3acRgT4eNK3jT6PafkWOaVDLlwa1fNl/PIvX5sS6I6aIiIhLqQAXERGpKrwDoed90GMs97/2PtfkzeFqjyhMB9czmvVc5+XP4R03QfNHoVZTd6cFnAX4PwtvERGRqkqTsImIiFQ1hsEmU1v+XfAIO29bC4Oe57ilDjWNTNru+wY+6ALf3QA7ZoPNeuHziYiIiEuoBVxERKQKs/mGQP/HeX5/f/Ji5/JK2DrCk1fBnsXOLSAcuo4+uZRZXXfHFRERqdJUgIuIiFQDDsPMIntXBna7i5Et7BA1BTZ+f3Ips9dwLHuLY+GXs6/xraSE9ATDIDzIl/b1A90dXUREpMpQAS4iIlLdBDd2Tth26bMQ8wes/xLjwDrqHPiLOgf+Yrc9jO9tg/nN1o/fxg+lWZ0a7k4sIiJSJWgMuIiISHVl8YIOw+Ge+bzV6Cu+t15GNt40Mx3mJY9vWev1MP7zxsPhje5OKiIiUiWoBVxERKqcmMMZeHuYi+xLTM9xU5rK4bB3Uz6x3oPtspe4y28d8XM/oLF9P757psGeaRDeFbrdA+1udHdUERGRSksFuIiIVBkmw/nz3QW7znOMUU5pKqcCiz/0GMu/VrXAP2kDH7fYSJ0Dc+FQlHOb9wz9a17FTKMr0NDdcUVERCoVFeAiIlJljO7TiLyCvdgdjrM+XsPbwlXtNdN3sRgGGxyt2HXJXdSp54CN3zknbktLoFvijyz1+pE9u7tB7CNYAKs+UoiIiFyQ/rcUEZEq47pO4VzXKdzdMaoe/xDoNx76Pgq7F7L3r0k0SllN0xMb4JdRrPIKYqptIEZ6K/BtWmYx8q12pqyKx2I2MaRtKHVqeJfZtURERMqCJmETERGR4jGZocUQZrR+j/7577Ei9E4cfiGEGmk8YplBwGdd4YdbYOdfYLO67LKeFufHlXybnZf/jOH5Gdt4dVasy84vIiJSXlSAi4iISIkddNRhYdi/sI/bzkP5j7DK1hYDB8TNh59GwKQOsPRNSD900deqF+jDU0NbcU2HenSKCAIgNTv/os8rIiJS3tQFXUREpBr5cHEcP6zdD0ByZh4Ngn1pGuJPdEJq6U5o9mS2vRez7b3Ycn8TAmJ+gI0/QMYhWPoGLHsLWlwJXcdAs8ucreil8MAAZ9f2GRsPMW7qptJlFRERcTMV4CIiItVA/Zo+ABzNyONoRl7h/uTMfKIT0grvB/p4lPoa9uCmcMWrMOh5iP0TNkyB/Sth5xznFtgAuoyCLiNLfQ0REZHKTAW4iIhINfCfK1txeZu65FvtAKTl5LPryAl8PP/+KFDT14NhHcMu/mIWL2h/s3M7thOivoZNP0J6Aix5FZa+wUS68q3pUnD0v/jriYiIVBIqwEWkzHy2bA8zNl78+M9/Ss7Mu/BBIhXQIz9vxMvi7IKdkVNQrte2mE30aBxcdGeHcrhwSEu48g247AWI+cPZKn5gLYONSAZ7RlLw3c/QfTR0vhP865RDIBEREfdRAS4iLhfk6+zCunrP8TK9Tk3f0neVFSlPTUL82Hn0BMmZZ04c1iTEzw2J3MDDBzqOcG5HY/jh45cZxnICMvbDopdhyevQ6mroNgYa9QeT5okVEZGqRwW4iLjcWzd1YH7MURwOR5ldwzAMBrdWa5lUDu/f1pkdiSew/+N3wtfTTLM6/iU+n8Ph4NiJPGynnc9kGNSp4YVhGBedt8yFtuEN7ua/ebey8uo0au/8EQ6uh5gZzi24CXQdDZ3uAL/abg5bPClZ+SzblYTV5qBuoDeXNKtdOf4sRESkXKkAFxGXiwj25Z5LGrs7hkiF4WE20b5+oMvO98If2/nu5EzmpxvRPYI3byqPfuWukYsXma1vpXa/u+HIVmf39C3TIGUvLHgBFr8Kra91FuONLoEyKmgT03PYk5QFQFiQN01CSv6lyLO/b+WvbUcK7//yQG+6Nwo+zzNERKQ6UgEuIiJSyWw6kAaAxWRgMgzsDgdWu6Nwf6VUtz1cMwEufwW2TYeoKXB4I2z71bnVagZdRuFlGujSy2blWbns3WVk59sK9y36vwE0LWER/s+5KY6d0FwVIiJyJhXgIiLVUIHNwdhvNxTjOHs5pJHS+uKublzasg4r45K586t17o4DQGR8Cq/NiSWvwFnQmgyD+wc04bpO4cU7gZc/dL3LuR3e5CzEt/4Kx3fDghcYYlj42KML23KuA3u3Eq8rPndbItOjD+FwgLeHiZu61C8svj0tJvKtdg6n5ZS4ABcRESkOFeAiItWIn5e5sMhYEHO0WM/xNJvw99Z/F1I8v0UfZPM/WuK/Wb2v+AX46cI6Qdgk59ri23+HqG8wHdrAVeZIrkqOhEmfOmdP73wnBNYv1infmruT+OSswvunim9vDxONa/sTm5hR8pwiIiLFpE9UIiLVSA1vD365vzcxJSgyWtcLIMBbM85L8ZyaaG54t/rUr+nLhAW7sF/sfIxeNaDLKOgyisXLlrB/wSfc4rka//QDsPQNWPomNBvsbDVvcSWYz/339dQ66G3qBRCTmKFeHmfx/dr9bDuUTliQDw8ObIrFrBnpRURcRQW4iEg10zEiiI4RQe6OIVVcw1p+tAit4fLzZgS04GXrXaxo9G8m9zgC0d/AvhWwe4Fz8wuBTrdDl7ugVtNznqd+TZ8SfRFVXSSdyOW5GdsK7/doHEyvJrXcmEhEpGpRAS4iIiKVToHhCR1ucW7H90D0t7DpR8hKglWTnFvDS5yt4q2HOdchlwvKKyjaIyCnwHaOI0VEpDRUgIuIiEjlVqspXP4yDHoOds11FuO7F8L+lc7NOwg63Orsxi4iIuJGKsBFRETknO79dj0Wk3MM8NXt6/HWzRV4nXGzh7O1u/UwSD8IG3+Ajd9B+gGI/AwiP+NzoznfmQeQZb/O3WmrlKw8KzkFNmr5eWKU0XrtIiJVgWbVEBERkTO0Cw8EILfATmaelcw8K79vPOTmVCUQWB8G/gce3Qx3TofW14LJQltHHG96fMk7+2/hbctntMjbClzsLHHV2/p9KXR+ZQHdXl3Ik79ucXccEZEKTS3gIiIicoZ3bu7Ao5c1x+5wkHQij1s+XePuSKVjMjtnSG82GDKP8dHEV7gyfwFNTYkMtyyDpGXc6RnKDAYSbR8KeLo7caWz5WA6+Sdnk4/an+rmNCIiFZsKcBERETmDYRhEBPsC4GmpIh3m/EP40XID72QO4cEmx2iYMIPrPNbS2HSUx5iKLf0XVni0p/b+u6HxbWDxKnzqd2v3s/1QOgCdGwRxa/cG573UpIVxLIpN4tXr2+HjaS7TlyUiIpWHCnARERGpZgx2e7fnY2sdFjR8jKB9c7jVspzuRiwDzZth5aOw4UXoMBw638lRv5Y8f9rSXFM3HODKtvUI9D1zvXGLycBqd7Dz6Al2Hj3BsI71GNiyTnm+OBERqcBUgIuIiEi1lWfy4VfbAGaZLqVPzQw6p8zhvhpr8Mo5CpGfQ+Tn1KzdhjHmrszmEpJsNXA4IM9mA84swF+/oT3+3hbemruD/cezsdo0vrwqmbvtCNsOpXNDl3Cahvi7O47IRbHbHXy2fC8Ngn25ukM9d8epNlSAi4iIiACJ5jAWW4fT6fq36Gfe5pxFfccsPJNjeNEjhmccP7LQ1JVptgFgH3DWcwT4WLiyXT0+X76X/cezXZZt/vYjzI85itkwGN69Pl0bBrvs3BVNbGIGD3wfRU6+jVeua8uV7SpGYXAit4AHvo8CYMeRE3x5Vzd2HMkAoFXdAHdGq1bW7j3O1oPp3N6zAX5eKmUuxvp9Kbw1dwcAQ9tdhcmkFQzKg/7WioiIiJzu9InbslM4vu5HDi35kg6meIaaIxlqjsT2+bfQ6TbofCfUbl7mkZ75fRvJmXkA7E3O5JcH+pT5Nd1lRdyxwi8v5mw9UmEK8DyrvfB2Zl4By3cdY9TkSACmjOnOpRpqUC5GfL4WAMOAe/s1cXOayi0tp6DwtvrqlB8V4CIiIiLn4htMZocxXDuvMZ09DzLMvoTrzCuplXUUVk10bhE9GZTdix20L7MYeQW2wtu5BfaTP20cSsvBy2Kifk3fMrt2RRGfnEVOvo3W9WpUiLXGD6bmnPV2SRxJz+WNv2IJ9PHghWvaYDGXfMLD3AIbHmYT5mrWenk4LdfdEURKRQW4iIiISDHsoiGv2kbyhvU2Ngy3ErhjGsTNhwPr+BfrGOPlQeray8FzDCaHd5lmsdsdDJ20gvjkLAD8PM28fmN7rusUXqbXvZC9yVlc9+FKGtf243+3dCxVQXk2i3cc5e6vNwDw+BUteHhQ2fc6KA+zthzmj02HAbiuU1iJhxas3p3MmK/XExrgzfzH+uPtUfln3K+uXyhI9VFF1hURERERKR8FWMhrfjXcPhXGx8LglzlojsDbKKDewTnw4y18dXwUz1m+o0ZqDDiK37kzt8BGdr4VxwWek2u1FRbfAFn5Nh79eRP7TtvnLpsPpjNj02FiE0+47JzxydlnvX0udruDaesP8NGS3RxOK13rdHkoOG2SvoJSTNgXnZBKntVOQkp2qVvhK5Lth9Pp/MoCrn5/BXa7OkVL1aQWcBEREZHSqlEXLhnHY1u7k5MQzYdtd9Lo8F/UzE7mXstfsOAv2NwGOo6A9sMh4MzxzNsPp/PqrFjW7D1euK9rw5r8+kDvYnW1HtuvMT+sSyA738aJXKtLX97FsJ3lS4TI+BSi9qfSql6NMh0zvfFAGk9O3wLAnmOZTBje6aLPuTsp86LPccqUVfGs2XMc1ZhFbTqQRk6BjR1HTnAiz0qgz5krDYhUdirARURERC6WYbDN0YQdnW6m0W3v8eqkD+iUOpehHhsxJ8XAghdg4UvQZCB0GAGtrwFPPwB+jz5UpPgGiNqfSk6BDV/PC39UG395S2ZtSSQ733bBY0+ZsGAXi3ccJcDbg9duaE/j2n4lebXFkm+1M2/7Eaw2BwNahuBlMXHX5EhyTo5nj3z2MurUKJuu+idyC0677ZovJV6aud0l5ymw2Xn5zxiXnEtEKh8V4CIiIiIXITPPivX0pkyzBxu8evJlQUu+vqkFA22rYPPPkLAG9ix2brP9ofW10HEENrtz3O/V7etxR68G3P7FujLNa7c7+GBxXGHP+L+2JfLgwGYuv87Xq+OZs/UIACN7NeSZq1oXFt8AmblW6tRw+WXLjNVFzdUlGJEgIlWQCnARERGp9J79fSuztyYCYDGZeHpoK27qWr/Mr/vqrBi+XBl/zsetngHQZjR0HQ0pe2HLNGcxnhoPm3+EzT8yziOUEEtPvHxvp1NEhwteMz45i9fnxF5U7tOLwLIaa3vsRN5Zb7ubze5gUexRsvNtXNE2tFi9DESk5H6KTGDWlsNMGN6J0ICynZiyMtEkbCIiIlLpTdtwgLTsAtKyC0jOzOPPLYfL5bqndx2v7e9Ju/DAcx8c3AQGPgWPbIS750PXMeAdSGDBUR60zOSezSPw/upSxppnUZfj5zxNZp6V79cmAODjYcZirl6zRTscDjbsS2HDvpRSfXmwcncy930Xxbipm5h8ni9PROTiPP3bVlbtPs5X+j0rQgW4iIiIVBlj+jZyy3W/HNWNyGcGF289bsOABj1h2ET4v11Ma/IqC2xdsRlmTEe38KzHj6z2egSv76+FDVMgO+Wsp7m0ZQiTR3fHw0VLfVUWv208xM2fruHmT9fw8/oDJXruziMn+GL53sL7x7PyXR1PRP4huQL1gKkIqte/2CIiIlKl1fb3cst1LWYDU2nWLfbwJrbmIMYW/B8fd/2L/CvfZZ29FSbDgTlhFcwaB/9rwQe8ybWm1fiQW/jU/i1C6N20luteRCVUkiXG8q12rpy0nJW7k8swkUjVkp5TwMM/RjOthF92yblp0IuIiIhUOkkZefyx6RCBPh70ax7i7jgukesRiLXLaG6dUY8wkll6VQqeMdPhyFYGGtEM9Iwm2+HFfHtX/rD1xbA3d3fkSiXPatMEaCIlNHV9ArO2JDJrSyLDu0e4O06VoAJcRESkijiYmsO932wAIDW74AJHV07mk63MO4+e4NGfNwEwaUQn9wUqI4epjbXXHXj2fwySdvDZR29xpWMlDU1JXG9ezfXm1eQu/wLSb4T2t2A47O6OXGYOpeW4dA3uqmTroXR3R5CzsNkdvPLndgJ9PBh/RUt3x7koxzM1TMPVVICLiIhUcrX8PQHn5FwLY48WeSzYz9MdkcpM/xYhXN8pjGOZeew8kklyZl6FmmG7TNRpxYeM4I38m+hk7OE68yquMa8lpCANNkyGDZP5jdr8aemBT5IfhA9wjjOvAlbvSabvm4vdHaNcZOVZsdrsWIo5pt9qszNv+9GzPrYg5igxhzO4o1cDtw3LAEjKyGXPsSx6NA4u/PKsOohNzOCbNfsBGNm7ESE13PdnUNlEJ6QStS+VUX0a4mUxuztOmVABLiIiUsm1rhfA9/f05GBqdpH9TUL8CQvycVOqshHo48HEEZ0BeGzqJn7feMjNicqTwSZHMzZZm/Gq9U4+7pPJEPtKiP2TunnJjLXMgZlzYFkDaHMttL0RwrtU6mI8uRq1vt3zzQYa1vJlwWMD8LRcuAg/17rkuQU2xn7r7AmTa7XxnytbuTRnSVzzwUqSTuTx8rVtuatPo3K55qG0HGr5eeLtUTbF26kvN+4f0OSc1zj9z8Zqr7q9U8rCqK8iycyzEuBj4dbuDdwdp0yoABcREakCLmle290RzunYiTy+W7MPgG6NgmldL8C9gaoAG2YO1+oNfW+Hqyfw1Fvv0jtvJdd4bcKcngBrPnRugQ2g7fXOLaxyF+PVwf7j2SSdyC3ebPrncHrxl57j3qEoSSd7p5Smq/wdX65l4q2daVbHv9jPWbbrGHdNjqRlaA3mPda/xNcsjlNfboQFeXNLN42JdrXMPCsAsYkn3Jyk7KgAFxERkTJxqhXvUFoOz/+xHYCavh5sfOEKd8ZyiWMn8li3N4W0ijDW3sObZeZe/FzQiab3dKNd9jqImQE750J6Aqx+37kFNYC2N0DrGwAHUDWL8ZSsfDbsS3V3jCIcDgd/bTtCdr6NIW1DL+pcuQW2atGde9uhDKasiue1G9qf9fG07Hyy8qz4ef1dzqzdexxwzhFxuq9WxpOWnc+4wS1c9t4dy6ziQ19cKCYxw90RKhQV4CIiIuISO46cKDL5W8/GwdzdtzFHMnLIt9pZGJtUZSaHu+/bKA6dtgSWxVQxVnZ1WLxxtB5GYtjlGAOzqXt0BUbMDNg1D9ISYNUkTKsmscyzDnPsPZll6wWOijObenRCKq/P2VHq5+db7Qx8ZwkZudZiHT9l1T7G9GlMg1qlb3EujuiEVB78IRqAfOvZC8rinuf2L9aSW2DnoUubuipeqTkcDqIT0qgb6E34eYa7OBzw9ap4sgts3N+/abGL4BPn+XP8beMhlu46xuqnBp23u3lSRi7/nRUDwMCWIXRtGFysa0vpLN5xlEWxSTw55O+hD2f787Gf7KlRquUbKzkV4CIiIuISIz5fW3jbMJwful4Y1gaA45l5dH11obuiudypid/ahwfSIrQG3RrVdHOivz3z+zZ+ikwAYGSvZvz3lq8hPxvi5sP233HsmkdDaxL/Mv3Jvyx/kr7+Y7DdCK2GgV/bC55/d1Imx07k0SYsgEAfj4vOW2CzYwAWs4lVcSVbo/vDJbsZ2r4ubcMCAedEZsUtvk9ZtSeZBrXKdqzp6T0lUrNLP65984E0cgucY4o/WrLnonNdrHnbj/DA99F4mk1sffmKc06aFZ+cyfTogwB0axhMj8YlK4IT03O4/7uoM7qjp2Tlc+xEHhHB5/4CJc/69xjsvIKqPx7barPz3dr9tKobQO+mtcr9+nd/7eyif/rEc/+ssQtsdq5+fwUGBrMfuaTYEw9WFSrARUREpNTMJoPbezZg0Wmzrwf6eHBpyzpuTFV+Xr2+HR0jgtwdo4gtB9POvO3pWzgW3JGbyUOvvMXV5rUMMm0iMPcQrP4AVn9AmG8dXrO0Z669O2vtbXj4h2h+f6gvLUJrABC1P4WbPlkDQJPafix+fGCxMs3dfoRWy88sGL9ds4+X/4zB22Li23t6lOr1Lt+VXFiAS/k6lJYLQL7NTlae7ZwFeM5phW92fsm+IAFYsSuZLQfT2XKw8i+7FhmfwgeL43jo0mb0auL6Anl+zFFe/tPZ4r/vzatdfv7i2n88+5yPHTuRx66jzqUFkzPzqRvoXbj/FLvj7JMMVgUqwEVEROSivH5DezjHOE05t2Mn8nhs6ia2HS7nosLTjzn2Xsyx98KXXN7tfIyhlg2wax7m7CTusCziDhaR4fBlkb0z0XN30+K2MeDpx4GUv7vdH0g99wfss5m4MO6MfSvikrHZHWTl21hfgnHbt/VowIGUbFbuLlmLubjGur3HeXHmdg6fNgyjuHIL7OQW2Eo0S3lFLcYOp+Xw8I/R9Glam8eHFG+978d/2UxCSjbxyVms/M8gl2f652oY/7QxIZWavp40qu3nkuulZecTm3iCno2DL7o7eb7t7y9qOjcIushkFZcKcBERERE3WLU7uUgBeTEzX5dWNt7sCbkMBj0A1nyObV3Agulfcrk5ihAjnRvMqyB+Fbz9X2h6GRG+fQmkNukUf2bqslLvZKuZlL8vVuxlx5HSzVL9wPdRBPp4sOTxgQT7ebokT2R8Cp8s3V3uE6P9vvEQ0QlpRCeksfPoCcb0bUSfpkVXpDiemU+9wL/HxyekOAvkg6kl//LiYu1OyuSGj1fjZTER88qVLjnnA99HsXZvCv+7pSM3d63vknMCmE6u2JCeU+CSoS4VSfXqcC8iIiJSQZxq1etQP5A/HurLiO5uXtLI4kluw0t5xnovlzo+5dcOX/KF9SpSPOuBNRd2zqbrxmeI8nqAHzxe4y7TX5ASX+rL/bAugYWnDV2Q8nM0I5crJy7nho9XlapLeHa+7aKun55TQHxy5kWd43RP/baFJTuPse1Q6WbbXrbrGP3fXlK4XGJx5Rb8/T4siDnKv3/ceMYxr82OLVWmc0nKyMV2jjXgLyQhJQtwjosv7Tme/m0rY7/dgPVka/XavSkA/HdWTJH3wxW+XbOPji/P5/u1+116XndTAS4iIiLiRkG+nnSMCMJw8xrdiek5jJu6CQA7JhIDO/Ga9U7eaTkNHlgJA54iPaAFFsNOX/N2njN/C+934sY1N/KU5Se6GzswU/wP4F+tjKeC9ix2q7TsAiYtjGPahgNldo3I+BR2HDnBxoQ0th8+f9G66+gJflyXQHoFXsFg77Gsi3r+G3NiSUjJLlwusbSOZ505wd6ak0ujucKSnUn0eH0RD/4Q5bJzlsS09Qf4KTKBBTFHWbk7mcETlhU+lp5TQLsX57nsWgU2By+c/PN4bsY2l523IlAXdBERESmWArudsd9uYE+S61qupOKYuekwUfud47Br+/89gzGGAXXbQ932LAkaxXvT5jLYFMXl5o30Mu+kZtZeHrDs5QHLn6Q6/Fli78RiW2dO2Ae46ZVUblPXH+C7ky1+vRrXKvESaQmnTX6168gJfli3n6Ht6pW6u/etn60hNbuAbYfTnfM9VEFnK5zLw1cr41m39zhv3dSBmsX485ka6fxSZt529/QceXL6lsLbf2w6zO5//F9gPa1V/VAp5gc43W8nZ82vitQCLiIiIufl72XB02zC4XB2s9yb7GxtqnV6kVbBFNjspGblk2+t+ssOucqpD88mA747z4zk+x11+cp2NSNtz8OTe1nS7k1m2PqQ5vCjppHJjeaVfOj5AV8l3cqPHq9yj3kODY0jRc6x5ulBVXqSpYuRdVqX8KxSdA8/veV8w/5Unv19G6/Ojil1ntSTLd8xF2gpP5/YxNI/tzIqbrf+/86KYX7M0cIl2i7EQfl0GUnJyufJXzczf/uRcx5zoX9bI+NTCm9HJ6RxJD2XqP2pPPLTRuKTL9xjIeYff2ccVai7jFrARURE5LxqeHvwywO9i3wg8vU0c3mbUDemOr9Vu4/T+b8LCPL1YP5j/alTQxN2nUtcUiYLY46y8+SkWrd0jaBhrWLOkOwTxN66V/LfDQ0wY6OrsYtB5o0MNkXTzHSYPuYY+phjeJ7v2WOvx1J7J5bbOxBg7o+Hqfq0A611YTfkCznb2N64o+q1Up6iSjCjP8CJEq5dX9Ymr4xn2oaDTNvgulbo1+bEEr0/lUNpOaX6QmbzwXQ6VbAlH0tLBbiIiIhcUMeIoAq33vXZdI4IopafZ2GX0rTsAuKOZqoAP48/Nh3mj02HL/o8NsxEOloTaW3Nm9zOsPo5hCQu5TJTND1MO2hqSqSpKZF7+AvHxEk8Y2rLTHMbltk7sMcR5oJXUnF9saL0k9VVVRMXxjGkbV3u7NUQm93BxoRUMitYIXo6m93BpgMXLqyTMnLx8ij9l0s5+TZ8PM9coi09p8DlXc9zzjKZXmJ6DntdOEHeKX9u/vvfmLjTuq5HJ6QyuHUo6/elEBpw7n+nT18jvLJTAS4iIiJVRpMQfzY8NxiHA4ZOWsHOo6VbKknOZLc72HKw+GuWH7GE8adtKJNtQ6lBNpeYttLftIUB5s2EWVPoRBSdPJyTSR101GbZgo4cC+2LPw3IpPyXZLsYHy/ZTc/GwbQIrXHWx709TOQWnJo1unSt4Z8s3cNbc3eUOmNxLdmZxHO/b+PKdnV5/po2ZXadFXHJrIhL5vI2oUxbf4B3F+wqs2u5wmfL9/D23J0XPO6JX7fQt1mtIvvyrDa8LBde9/y12TFMXrWPj+/owpC2dYs89uWKvSULXAzvzCv6eiLjUxj+2RqXX+d8xk3dxAMDmvL+ojgGtAgp3J9WgSf9u1gqwEVERKRKMQwDw3DOHVaZ9XlzMRkn18A9kXfxLYNLdiTx+8ZDWMyle2M+XrqbyatK15J7Al/+svfkL3tPsDqIebgRv0z9msZpa+lpiqW+kcwdlkVwfBEPeZmJdjRnma0Dq+3t2OpojI0LFy/ulJiey8M/RjP/sQtPPLciLvmCx/zTgZTsMiu+f1yXQPdGwYX3p6zax6G0HL5aGV/qAjzPauO2z9cW69jcAhsLdySV6jrl6deo4nXHXrbr2BkF+FWTVrBw/AAMw8DP00zWOZZxO9VT4sPFu4sU4A6Hg8Vl8B79c6K0mZsPufwaF5JvtfP+ojjA+d5VByrARURERCqgUy1AqS5qCXp1dgx7Srlc06wth/nffFe1UBo4Qlox2+8mIo9dig+59DTFMsC0hf6mLTQ1JdLT2EFP0w5gGhkOH9bZW7Pa3pZV9nbsctR3UQ7X2pecfeGDTnND53B+31i8gifP6tr1lU/3z669+S641u6kTKIT0i76PMVhrwSTc+05loXV7sDDbBAa4F04keW5JKbn8PRvWxjYsg5D2tblvQW7zlgubs+xTKL3p3Jtp7DC1vUN+1J4fU7pvqhp+swcPM3VZ14Gd1IBLiIiIlIN5F3EjPBv/vX3h/rxl7dgQjG6C68v5kRUOXizxtSVpdbOANQ3khho2kxf0zZ6m2IIMrK43BzN5eZoAI45AjmU0J1dvl1YY4QDrUr+giqA8CAfd0cAKn9PkYWxFb/1vKSSM/P5KfIAP0UeYN+bV/P+4t1nHDN6SiQHUnLIzLMypm9jAB7/ZfNFXTffplUjyoMKcBEREZFyknA8m22H0zGA5MzKM6lQwckP5v8e1IwbOocXqwAvrYOOOnxvu5zvbZdjwk4bYx99Tdvpa9pGd9NOQox0QtIW0iltIcO94MCSUHbv7kvjbldi1O1ZZrmkYrKWU9FoP8vs8q4yPfogj13eokTPOZDi7D6+YV9qYQG+73jRXhgfLIpj9tZEGtXyY+KITi7JKhdPBbiIiIhICRW3pcjmcOBwODAMA6vNzrUfrazUkwsNaVu3WGPIPS0ml6zBbsfENkcTttma8JltGJ4U0NnYzX0RB2h6YgP1s2OIMI7Cwd/g4G8EAcs9Q4h0tGadvRWR9lbgqHPROaTyyS2w4e3hurkDrCUowDNySjZnw8HUnHM+lnQit0TnOt2pie12HDnB0p3H8LT8/btbmb4ArGpUgIuIiIgUU0SwL/tPtjJZTAb1As+/vNn930URHuTDnEf64WExyrz4HvbhyjI9f3F1bVCTNWWw9nU+HqxztKZJ3SHMDbmbOVFx9DDtoI9pO7fUTiAwPYYGpmM04Bg3m5cDkJZQC34ZgEd4L1oYDuIc4TjQWNeqrv1L82ga4o/HaeOak4qxlFVyZh61/b0u6tofLjmzy/iFHM04e6Hd47VFF5XllDyrDU/L36VfnzcXu+S8UnIqwEVERESKaeZDlxCT6JwMqUEtX+qcY93ank2C2XQgDXDONLzjSAbt6weWV8xCNoeDHUcyMBkGlWCuqhLLwocl9s4ssXem7qWduSTCi0f/9xk9TDvoYdpBR2MPQbbjsP03vLf/xnwvSHX4s8Hekmh7c6LtzTFbm5ZZvlMTZZ1agqykXv5zOwAjujdwZawyMWHBTp67uo1LW50vRoHNwY4jRZchHDd1E9d3Dj/j2NN7ayyOTWJ49wgAYg5nMHvrYe7s1bBsw8JFLf+VZ7VRYKuCv+BVlApwERERkWIK9PWgd9NaFzzu6aGteXBgM677cOUZ4zLLWucGQdzdtzH//mkj2w5lcOXEFRd1vp8iE1yUzHXahAWw5eQXHEV41WC5vSPL7R2dd8nn3sYpPNHqONb4VeTFr6Gmkcnl5iguNzvXILcveB22toP6PaB+d4joDjUbu2R2sms/WHnOJafO5bfov2dGX7s3BaBIK25F9f3aBPo3D+GKf6xfXdlk5Bbww7r99GwczAPfR5GQkl3iGe5LY38p/52YvTWR2VsTXZxGypIKcBEREZEyEOjjgdlU/lNMe1lM+Hq6vhXS19NMeJAPuWW4JNaF9G1Wi//d0pF6gT48cbYC/B/y8GSXT0cY0I2cngV0fmkObY19dDPtpIspji6m3dQjBRI3O7f1Xzif6BfiLMZPbWGdLngtBw4OpGQT4O2B2Wzg72UpcfF9LpVhqS2A/0zfQsu6Ndwdo1jyrXY8LWd+sfHpsr0kZ+YRHuRTuE72uvjjF92y3/zZv/junh4XdQ6pGlSAi4iIiLhRMeY0qxBWPzWIIF9PEtPPPWFUWavt70W9wNIv32XFwmZHMzbbmvHVydr4P7392bZuIV1McQwJTKB+zi7IOgY75zg3AAy+MtUnyqMhW+2NOZTUip9XFV2XucDmoN/bSwDnJHR/PNS31DnL0vHMPP7908YyOXdqdgFvz9vJgwPLrlu/K/wcmcBzM7bx2OUteOjSZkUeOzU52ani25VGfhVJk9p+Lj+vOwT7ebo7QqWlAlxERESknF3bMYxDaTlYTEbhEkIAvp4WbuwSzoq4ZCwmg8T00s+A7EohNbwI8i3+B+524QFlMglbWdiTH8Rsey9m23sRFVaXj4e3hSNb4EAkHIyEgxsg4xAN7QdoaD7AjeaVYAVbusFuz3C2Opqwxd6YbfbGxDgakosX+VY7sYkZF764G5zq1n66yPgUVu1O5taTY58vxoGU8h1yURqvz4nFanfwzrydZxTgUjxBvh7ujlBpqQAXERGRcvXGX7HkubEbc0Xw1k0d8DlHN/EJwzsV3n7il838EnWwnFK5zv9d0ZLRfRuTnWdlyup9RO9PPWNCrArLwxsieji3k97+dTkx0cvpYMTT3rSX9qZ46hqptDQO0pKDhTOuWx0m4hzhxDoa0nx3Ly4xebDD3oBkyn8CvnNxcGZ39lMTgMUnZ5V3HLfIzCvZMmGulJbjnmUIx03dxCd3dHHZ+f7cfNhl56puVICLiIhImfPyMGM2GdjsDj5btrdwf1mMVZbyk5adz8/nmKQtPMjZVfz1G9qz51gml727rDyjuVS6uSZL7Z1ZSmc4+d1RHVJpb9pLB1M87Yx4Opj2EGJk0No4QGsOQMxKvj/ZaeCYI5BYewNiHQ2ItTck1tEAk73RRec69TvlKivijhER7Ouy85WHbBeNs78QV73PJ3LdU4A7HPDA99EuO195Ty5ZlagAFxERkTLn72Xhg9s6E70/tXBf2/CAcy7jJZXDxIVxxCVlujtGuWlex7/w9SZRk0X2riyydz35qIO6pNDOtI9WRgIjGqSTf2gLjYyjhBjphJi30p+theeyRVq40jOcnY767LaHs9sRTpwjnP2OUGwU74upbS8NoefrC8nIdU2Lbmp2AanZ6YX3R361ziXnLUvfr91f5tdIzswv82tI9aECXERERMrFVe3rcVX7euV+3Ud+2oifl4VHLmte7teu6lKyVJj8zeAItThir8VCutKke0fGx2/Gh1xaGgdpbdpPayOBVqYEWhkJBJBDG9N+2rCf0+vtfIeZeEc94hzOony3PRz/grZ44kM+Rcfd+niaMZXhTPsr4pLL7Nyns1zEa6hf04fjbvh7aHdhzwOpXlSAi4iISJXUJMSPHUdOcDwrn+NZ+UzbcKBYz9t7LIt6gT40q+NfxgmrjqHt6vLXtiMuO99V7esSUdOXrHwrgT4efLRkDwAB3pVv4qccvNnkaMYm2+mTfTl4trcvketW0Nw4RFPTIZobh2hmHMbXyCscW17oKLzmZZDgqMM+R132OeoS76gLu70IdxzlRDmOMd98II3Ve849wV5qdj6pWSXrZt2qbg2iTusdU56y862kl2Jc9qwtiVzeJrQMEsnZvDY7psq83yrARUREpEp6f0RnHhx4ghVxybw1dwdnmXuqiFNtcC/O3A7A2zd1YLgLZoUWqFPDCz9PM1n5NsKDfC64pnKgjwdPX9UagNwCG/UCfcjOt3J95/DyiFsODNK9w1lg78YCuhWOKzewE8ZxmpsO0cxwbs1Nh2hlPowfWTQ2jtKYo8Bm5xO+/4bZQL6XGX5sBCHNGJoWiMPsd7JQDyXRUculyZfvOnbexw+k5HBnCbqur917nCNunO1/cCnnJqjt7+XiJHI+VWnMuQpwERERqZIsZhPtwgOLvSzSbT0b8PnyPaRmFZCZZ2VPcuUZ29ysjn/hkmXN69SgUW2/Uk/QVS/I9ePya3h7sOqpQRxIyaFxiDNbcXl7mLmzV0OXZypr46dtLvFzHJg4RAiH7CEspVPh/r5Ng9m1Zw/NTIdpZByhkXGEu1ra8M7YR96xPXgZBZC2B9L20Afoc1pHAavDxPHU2jClBdRsSPO8mtxksnLQEcJBR21MjpoE+ngUuxXYcHGP9/9M33rhg85j19GS/Z4+/stmTv+1OFxBlvqT6kMFuIiIiAgwsldDRvZqyGuzY/hiRby745TI5NHdiTuaidlk0LyOPyaTwZqnBpF0Io+o/amFrfrnEuTrwXu3dsLLbKJH4+AyyRjk61mitcTlNIbBMWpyzF6TNbTlmg718L7duaRUr5fn4ptzhGnDQ/HPTGDa/KU0Mo7Q2DhChJGEl2El1J4E+5Ng/0paAu+e9sdgO2jiCLVI8HAW5IepzRFHTRIdwRxx1OKIoyZp/D0cw2I2ldvLnrn5MP93RYvzHpNTULJZ0H+thMv6CdQLrDoTdqoAFxEREankPMwm2oQFFNlXJ8CbOgHeJBSjB4C/l4VLW9Ypq3jlYvvhDKITSj6O2O6o3JNpOQxnq3lO/X68tSiOmdb6hY8Z2AkhnQF1snlncE1I20fC3h3s37OD+sYxwo1kPA0b4Rwj3HzuruW5Dg9SUkJgShMG5dbAYbFwxBHMEUcwiY5gkhxBHCeQgjIoLf43fxd9m7q2G72IO6kAFxEREZFK79Nle0r1vN+iD7k4ifscTC36ZYsDE0nUZKdnI+hwCQBbgg7z8I6NgLNAH9bYRHriHoLyE4kwjlHPSCHUSKGekUJdI4Vaxgm8jQLCbIdh/2FaAC3OUUGkOfxIdgRyzBFEMgGFt48RePK282dJivWElOwKWYDHJGaw/XD6hQ8U+QcV4CIiIiIiVVj9mj5n3e/ARKqlNlsMD9LtTc96jBf51DFSqUvqGcX5qS2EdDwMG0FGFkFGFs04fMFMaQ4/Uhw1SKUGqQ5/Uk/eTnP4k3LavjrWMLzzfLBgxVqBShctwSelVXH+FouIiIiIlJN+zWsTm3iC5Mw8d0cpc0kZpX+NeXhywBHKAULPuZKAgZ1AsqhtpBNipBNC+snbadQuvO38WZt0LIa9sFiHCyxflwosguu9IcPhQ6qjBmn4k+HwJQNfMhx+nMD3H/d9yHD4FbmfiQ9/r3Ug4j4qwEVERESkxApsDmZuvnBLZ0Ux9yzrlPt6Fl0Obc7WI/R6fRE9GgczaUQnjAtM+V2nhhdJJyp+Ab9hfyrvLdjFY5eff0Kz0nJgIo0apDlqsNtR/7zHGtgJIpPaRgY1OUFN4wQ1jUxqkum8zQmCjEyCjRMEcfKnkYWBgwAjhwAjh4YklTijzWFwAl9OOHw5gS9ZeJHl8DntpzfZp93OwpsshzfZeJN56ifeZDu8ycSHPDxQQS+loQJcREREKrXthzNKtdxWZRDg43Hhg8pZbX8vGtXyveh1ea/pWI+dR08Q5OtBo1p+LLvA+tIX6+15O4t13JGMXGZuPsx/r2tHoG/Fe/9La3r0wTIrwEvCgYlUAkh1BJzacUEje4bz57odhUV5TeMENcihpjkHX3sWAUYWAWQTYGRRg5zT7mcTQBaehg2z4SCIU63uF8/mMMjFkxy8yMWTXIfnyft/3z61/9QxOXhSYHiSdcZjHuThSZ7Dg3wsFGAhHw/yHc6feafu44Gd8puFXsqGCnARERGplE6tJf37xkNn7KsqHhzYlHqB3uQW2Diakcd3a/e7OxIeZhMLxw+g/UvzS7wE1OlG9W7EqN6NAHhp5vYyL8AdJZzt3FGcytBNLibZ2r3HXZajvBzPthW2sAOFb4CXyUSezX6BZzvwooAAsk4W5NnUMLLxJQ8/cvEzcvAj7+TPXOf+k7f9jNyT+3LxN5w//Qxnjwez4XA+j5M9IEryT4/5woeci9VhOlmgnyrO/y7UC4v3k4X8qeK9AAs2zBQ4zFgpuhVgxuZw/rRidh6HGSsWrJiwOpy3CzBjw3ntwuc7znKuk8fZMWFzmLDx92b/x20rZuwYJXzzKj8V4CIiIlIpjezVkOOZeeRZnR/AOzcIIqSGl5tTnd3mg2nU9Cv5Gti1/L24t18TAJbsTKoQBTg414Ku5e/JwdQcd0e5oMNpOSzbdaxK9ZIY1qFeiZ/jcMDiHUf5fm1CGSSqyAzy8OQYnhxz1HTuuoi/Cibs+Jws3r2NfLzJx4c8vCk4eT/Pua/wsXy8jXy8Th7nayrAy+E8xvvkYz7k4UUBnljxNE7+pAAvrHgZBUWubzHsWE6e97SXWKnZHMY/ivIzi/aVBT2By9wd1SVUgIuIiEil1DEiiCljerg7xnmZTo4hfn3ODl6fs8PNaaqn7YczuGtypEvO5e1xEU2XLtS9UXCJn3MoLYe7v95QBmmqFzsmsvAhC58zC/ky+Y7HgQc2PE4W5aeK9MKC/YzC/cx9HlixYHNuhu3v2yc3j5Pt1h4nHzOf3FfkOOPM4y0nc5kN+8njrViwY8J+sox2/rQY5++lYDYcmLEBNqDgrMf4c3FDXioSFeAiIiIiZWRsvyZ8u3YfMYczcFcDbLeGNWlVtwZHM3JJzT77h9uqrG6AN0cycl1yrn7Na7P1UPmv/bxqd+XrNi6uYlBwsht5Nt7OXWf7t6RCd/BwYMJRpCh3brYz9pkMe5Ei/tTjHn5BDHX3y3ARFeAiIiIiZWR49wiGd4+g0yvzSXNT8VsnwJu54/oDMGVVPC//GeOWHO7QLjyAZiH+zNjkmtnavSxmbuvRgJ8iz9+N+9KWIRxOy2Xn0RMuuW5xbDmYVm7XKo0Wof7sOprp7hjiFgZ2jOJNIHeuLxKq0F8dTaMnIiIiIuJCPp5mmoX6l8u1Tn2x81v0oQsc6V51A31K/dw5Wy+wVrhIJaICXEREROQssvKsPPrzRh75eZO7o4ic0wMDmgJgMZduJq7kzHwy86yujHRWrevVKPNriFQG6oIuIiIichZr9hxnz7G/1wwODfR2YxopCwE+lf+jcNMQPwDijmZyKK3ks9LHJma4OtIZlj0xkOVxyWV+HZHKQC3gIiIiImeRnuNsFWwS4sdHt3fhx3t7uTmRuNr7Izq7O4LLlKb4Li+eFpUcIqdU/q/9RERERFzIbHIWC8mZeQDUqeHF1aVYd1mKL8DHwy3XrateDSJSzvR1lIiIiMhpbuoSzqBWdejROJg+TWtxX/8m7o5U5d3dtxE+FWSN7bLw9s0d6NIgyN0xRKQCUAu4iIiIyGmah9Zg8uju7o5RrQT5enL3JY34aMked0cpE/2bh7B2z3GiE9IK93VtVNN9gUTEbdQCLiIiIiIXpU4Nr8LbNX09sJhKNyN3ddG1YU3a1AtwdwwRcQMV4CIiIiJyURrU8uOPh/rywW2dmfFQXyxm933EnDC8o9uuXVxl/f3Ei8PalO0FRKTU1AVdREREqgWr3Y7D4XB3jCqrY0QQHSOC3B1DRKRCq5At4LNmzaJly5Y0b96cL7/80t1xREREpAqITkjjcHquu2NIJfHHpsNEJ6SSkpXv7igiUoVUuBZwq9XK+PHjWbJkCYGBgXTt2pUbbriBWrVquTuaiIiIVELt6wdS29+T5ExnIRUR7EOzOv7Mjznq5mRSkb04czsAnmYTg9vUKfHzG9fyA8Dfy0KQ75nLrJk1Tl6kWqpwBXhkZCRt27YlPDwcgKFDhzJ//nxuu+02NycTERGRyqh+TV8inxmM1e7sfm4xGXyyrGrOti2ul2+zcyit5D0nxl/egivb1SU8yAfvsyyxVtvfi0cGNeP9xbtdEVNEKgmXd0Ffvnw5w4YNIywsDMMwmDFjxhnHfPTRRzRq1Ahvb2969uxJZGRk4WOHDx8uLL4BwsPDOXTokKtjioiISDViMhl4Wkx4WkyY1PIoJ/l4mOnROLhMzm0yGbQLD6Smn+c5jxl/RUua1fEvk+tfyD/XJQ8L9HZLDpHqxuUFeFZWFh07duSjjz466+NTp05l/PjxvPjii0RHR9OxY0eGDBlCUlKSq6OIiIhUGTGHM/hyxV6+XLGX5Mw8d8cRqRIMw2Dqfb147urW7o5Srro1rMmo3o3cHUOk2E5f6rCyc3kX9KFDhzJ06NBzPj5hwgTGjh3LmDFjAPj000+ZPXs2kydP5qmnniIsLKxIi/ehQ4fo0aPHOc+Xl5dHXt7fH0QyMjJc8CpEREQqBq+TXVc37E9lw/7Uoo9ZKuRcqiKVimEYLv9dCgv0cen5XO29WzsR9Y9/Tyqb23s2YHrUQXfHqDA8zSbybXZ3xygzwefpSVLZlOsY8Pz8fKKionj66acL95lMJgYPHsyaNWsA6NGjB9u2bePQoUMEBgby119/8fzzz5/znG+88QYvv/xymWcXERFxh5u71icxPYcTudYi+8OCfOjeqGy6zooUh3FaT35XdOr38/r7Y6mfZ4WbpuiCrmpfl5q+nlzZri49G1/85MHv3NyB6IQ0fopMcEG6v3laTEQE+1bqAnz9s4Op7e/JLxsOuDuKlJP/b+/eo+ys63sBf/fec8vcMzPJ3DKTkISEXGfChIFAgCQEQrjEoAIFhMDqRS2p1tAieBR6jlrWag9KqznLo9ZSuzw9FFs550iLrSkeWsSDgLRqa5UWaxYhAUwll8otM+cPZEjMbWay9/vuy/OsNWvtvefd7/vZmZk3+7Pf3/t7q3Pl84Fzonu3F154IQ4cOBCdnZ2HPN7Z2Rnf+973Xg9UVRV33nlnrF69OkZGRuLmm28+5gzot956a2zZsmXs/p49e6Kvr68wLwAAEtbZXBcf2bgk7RhwmHecPjP++Bv/Fq311bFq/rQTXt/Vw/0xOhrx2oHRuGo4/fdyLVOqo74mF8+O89J1t65fEH1t9RPezoGRI1+b/vLlfbF9939MeH3lbkF3c0z72XDkVw8c+d+u0C4d6In/8/c7Utk2pa8oP17csGFDbNiwYVzL1tbWRm1t+ZwTAABQCt557px457lz8ra+1vqauHH13Lytr5hlDxo+8NuXLYmrPvONvG/jk1cvi//3r7tj7vTGsUuqlZu3LuuNP//WxCZrvvnC+fE7D/xzgRKlp5yHn5ebRI/ld3R0RC6Xi127Dr3u5q5du6KrqyvJKAAAlLDMJMa9XzXcn/8gk/Ab6+aP3a6vOfwSZflwydKe+PDGxXHdipnxxXetmNBzq1wpoOQs7G5OOwLjlGgBr6mpiaGhodi2bdvYYyMjI7Ft27ZYsWJiOwYAACrXhoHemDu9MQZmtERT7fgGdbYXyUROfVPHN1T9vAWdR3y8YZyvN+L1SeaWT3C+iHmdTRNaPl/es2ZuPPbBtbGop/TL5AcuOiXR7dWYlLNk5H0I+r59++Kpp54au//000/Hk08+GW1tbdHf3x9btmyJTZs2xfLly2N4eDjuuuuu2L9//9is6AAAcDwrT+6Ir245NyIiLrzrofjezr0pJ8q/gb7WsdtTqnPx8SsH4qSOxqirnvhR8zPntMfX/+XHcenSnjwmzL+OxvI4tdQkmRxN3gv4Y489FqtXrx67/8YEaZs2bYq77747rrzyynj++efjtttui507d8bg4GA88MADh03MBgBQLk6e3hjf/OHrs073tU1xCTkmrK46Gxcu7p708z93/Wnx3R17YumMljym4mjKadZu8ivvBXzVqlUxOnrsGQk3b94cmzdvzvemAQCK0hd+6Yx46rl9ERExq6M+ss6xJWF11bkYmjk17RhQ8Xw0AwBQYDVV2VjY0xwLe5qjvgSvcQ3lojpbXPXnPWsqY+Z/3lRcv4EAAAAFcm4erlmfTxcsmvyVoP76fefkMQlJUcABACqcSxiN37KfTYzWWl8dJ3U0pBuGVAweNDlemnpap6QdgUkwBgoAoAT8/LWZq/IwydP971kZ9TVVMbNtfJfFIuKK0/pi3aKuqK3Oxq//zyfTjlMRpjXVxvN7X047xpi3LuuNiIgPf/kfD3n8wxsXx4fu+04akSghjoADAJSA02a1xeVDM+Ksue1x8dLuWLfwxK8g09MyJU7qaDAp3AS11FdP6lJgxSyXy8TwrLaoyWXjvAXT045ziIffvybtCIfI5TKx5pTD/41+9OP9Y7cdneZoHAEHACgBddW5+N3LB9KOQcJqctl45cBIzJ7WWNDtZCIT97zzjHj5tZH43s698Ym/eaqg2ytHB18Iqq2hJr0gFDUFHAAAjuHvt/8ktW3/ya+cHv/3n5+Pt/xs2HMhZTKZsjuyD8VGAQcAgCOYWl8Tz774UqoZhma2xdDMtlQzAPnjHHAAADiCT71jKO0IQJlRwAEA4AhyOZPTMXntzgPnCBRwAACgsA6eoaxCtNZXJ7atudMLO0kf+aOAAwDAOAyf5FzsyXptZPwFvKHGNFUTVVOl1pUKPykAACpCZ3Pt2O2eloldp/mM2W2xYk57viNxBL+6ek7aESpOLut0i6T4eAkAgIowvbkutt10buz4yU/jtFkTO5pdlXXcKimr5k+PCxd1xQPf3Zl2lKJWlac5CtobaiKTiXhh3yt5WR/HZk8CAEDFmDOtMc4+eVpZX++6qsiPZl60pCv62iY2AoFDfeyKgaitys/vcHujyeKSpIADAEAZOKmjIdYt6owLFnWlHeWY7njr0vjbm9ekHaPg8lWQj2RdHn/GFy3pztu6OD4FHACgQpx9ckfM7miIqfXVceGirkRnaabwPrpxcfz3a5dHZ3Nd2lGIiF9bM7ckzq1+5znOuU+Sc8ABACrE3OlN8Te/sSrtGJAXL/701cMea5lSfcTH07B+SXd8e/60WHjbV9KOckxTasr3dIxi5Ag4AACkZF5nU8zvbIq2hvI9D7eprjAjLS5cfPgw7BvOmhW9rfk9vzyXzcS586ZN6rn1LqnGz1HAAQAgJVNqcvGV950TT3zo/Jjd0ZB2nLxpqq2KP7zhtPjyr62Mxtr8ldB/enbP2O3W+sM/tOhpnRKfvHpZ3rYXEbH16mVx1XB/XteZljNmt8UHL16QdoyK5iMZAAAgrzKZiNXzp+dlXTVVjhke7NT+1qg3bLxk+W0GAAAokLPmtudtXR+8eEH82bvPjEzm9cnd3ric2/KZU8f1/Gym+CeFK3cKOAAAJW36QbN+tzfWppikdE0d5znoX/61lfGZ65YXOE15ufuG4bys5x1n9Mc7zpg5Vr4jIv7HL50Rf7BpeVy8dHyXEmsu0Pn4jJ8h6AAAlLSPXzEQD//Lj+Ok9oaornKEb6Kqc5l4/7r541p2cW9LUc+aPTo6mnaEw1Tn8nPM88rl/VFXfei/fV9bffS11cdrB0byso2kndrfGk/86Cdpx0iUI+AAAJS09sba2DDQE0tmtORtndOaKudI+p++c0WcObcj7Rh5se/lA8f8fkMeJ4TjxPzeLwzGJ68+Ne0YifMbCADAYWqr3zxOU1ddWcdsBma0xEcvW5J2DPLo4iXdsXbh9LxdoqyhiEcBlIq3DPamHSEVCjgAAIe5bNmM2PGTl2LPS6/GJeM8v7Rc3HTB/Fjc2xLP/OSnaUdhgprrjlxv7rxi4LDh2yfi4HkHKLxstnxOLVHAAQA4zLSm2vitDYvSjkGJOPvk14ew/+0PXkhl+7esPyVe/OmrcdGS7vj+rr2pZJiMI01+N6U6Fz999dhD6SvNO8+ZnXaEvKms8UQAAAd5fu/LaUeghK05ZXrUVGVj6YyW6G6p7COis9ob4o9/8fSx+115/veYfpxz8jcO9sb7LzxlQud4t0xJZ0bw9oNK9/Sm2rj3XSsO+f7v/cJgQbe/sKe5oOvPp5VzO+Jvb14dFy0pn1E4CjgAUHFyPxvO+L2drx8pq8p6S8TEXXFaX3z/I+vjf29eGVV5mum6GE1kDoA7Lx+IoZlT47ZL8jt64sMbF8fJ0xvj41cOHHfZ5pSK9Xi969w5h9w/bVbbUZed2V6f9+2vmN0eb11WGudfZ7OZ6GvL/79BmgxBBwAqzsVLuuOxH/577Hnp1YiIuGhxV8qJoHjV5LLx0qvju8zV24ZmxNuGZuQ9w7pFXbFu0fj+TudMa4xPXLUs/vSx7akNif95a06ZHn/zveciIqJuAhO4fea65XHBxx/Ka5ZMJhMr5rTHn3/rmbyul/FRwAGAitPXVh+f3bQ87RhwwtoOGs58pPOJK9WlAz2x56VXi6aAX7ti5lgBp7Ip4AAAUKLOnTctPnn1sphSnYsF3aVzbi+FV1+Ti/94pTgmcztzTnt8/V9+PK5lZ3c0xL++sL/AidKjgAMAQImqymXjkqU9acegCBVTAU9rwrtiVL6zRQAAQAnpaDz2TN/lZva0hrQjQOIUcAAAKAIfumRhXLF8Rvy3a05NO0oiPnudeRg4tuf2vJR2hLwzBB0AAIrAkhkt8TtvP/5ltsrF7GmNcf7Czvjrf9yVdpQTds3p/WlHKEsvvza+2fdLiSPgAAAAB5nodbKvWN5XoCSVLZNJO0H+KeAAAEDFqZ/A9bhP1MnTG6M6l4ne1ilRX53cdik+CjgAABRYU92bZ35OSbD4cbj3nndyDMxoiauHkxs2PmNqfTz6gbXx1S3nRi5bhod1GTfngAMAUDa6m6dEXXU2Xnp1JOZOa0w7zpjNa06OntYpMa+zySWZDvLv+18Zu/3ayOjY7TULpscD390ZA32ted/m+86fF+87f158+R92HHWZ0YNuHxiJyOXhsOXUhpoTXwklTwEHAKBstNRXxzduPS+effGlmNfZFDf96ZNpR4qIiGlNtfHOc+ekHaPoPPZv/z52+y2Db553fcXyvhiaOTV6W6cc9bmndDVFQ00uOppqo70xv+V2aObU+NK3nomaqmzM72qKp57bl9f1p2Vo5tSIiOhvq085SeVSwAEAKCut9TXRWu9oY6mZ39V0yP05xxnB0NdWH4998PyoymWiOh+HqA/S3lATP/jo+vjpqweiua665At4T0tdvHv13Lh8aEZERAyf1BafuGrZuIr4xsGe+Mp3d8VPXz1Q6JgVQQEHAKCiTW+uSztC4g4+YtzeUJtikhNzrPPpe1rePHpeNYnzrqtz2bwX+/FoK8BQ9ZM7m+LaM2aO3c9kMnHpQM+4nvvxKwfj5ddG4pQPPZD3XJVIAQcAoKKdv6Az+tvq40e7/yPtKIk5a05H/MGm5dFQWxX97eU5HPmcedPi09cORe/UKVGVQpGerGyRTdKWyWSibgIzt//+VcviPX/yrbxse0lvS17WU0wUcAAAKlo2m4kVs9srqoBns5k4b0Fn2jEKKpfNxAWLutKOkYhsJhMNNbnY/0r6w8Rr8vhhx80XnpK3dRWL0vkoCAAAgMNks5n4yvvOieFZbRERMb+z6TjPKA3HmoSvVCngAAAAJW7G1Pr4zHXL4wMXnRJbrzk17TgchSHoAAAAZaClvjp+5RyXuytmjoADAABAAhRwAACACZpZoNnjF3Q1x6Ke5lg1f1q01lcXZBvFbF6ZnL9+NAo4AADABP32ZUsKst4pNbm4/z1nx903DEcmiuuSZEmY3ly616UfDwUcAABIxTWn90dExEVLSu9yYf1t5Xn9dArLJGwAAEAqfmvDorhsWW8s7m1JO0pZy1begfSipYADAAAF9cb1nGty2ZhSnRt7vDqXjeU/u3Y1hbPpzFlpR+BnFHAAAKCgzl/YGfe+a0V0NddFTVVlnwU7Z1pjREQ01lZFLpPMoelV86cXbN1rF3TGzPb6+IO/e7pg2ygnlf3bDwAAFFwmk4nTZrVFn/OmY8mMlvhfN54VX3nfOZEt4NjwqfU1BVv3wdobauJDlyzMy7p+c938vKynmCngAADAmFO6yvsyUMVgoK91bFh+oXzg4gXRXFcVv3VpfspxoX30ssVx4+q5accoOAUcAAAYU1ediz+8/rS0Y3CCVs+fHn9/+wVx/VknpR2FgyjgAACUrcxB59iaCJpKk0noHHPGTwEHAKBsXbK0O/rb6mOgr9Vs25CQi5d0px2haJkFHQCAsnXegs44b0Fn2jEoQtU5xyILZes1p8bNP94f5/7u19KOUnQUcAAAoOKsnNsRGwd7YlZHQ9z/D8/GD57bl3akspJx0scR+dgHAICK19H05iWbOhprU0xSfNYv7o5MJuL0k8prCH9DbVXc9QvL4tfXzout15wa158566jLzu9qimwmorulLuqrc8mFpOw4Ag4AQMW7cfXcmN/VHB0NNbGwpzntOEXlLct64taLTonmuuq0oxTMvM6meN/58+Lur//wiN8/qaMhHv1Pa6O+JhdVhq5zAhRwAAAqXn1NVWwY6Ek7RtFqra85/kJlzsgI8sHHNwAAAJAABRwAAAASoIADAABAAhRwAAAACmZeZ1PaEYqGAg4AAMAx/eENp036uZcvnxE3Xzg/Vs7tyGOi0qSAAwDAETTVvXnBoPZGs4BT2VbPnz7p59ZW5eJXV82NU2dOzWOi0uQyZAAAcATNddVx341nxQ927Y3zFnSmHQcoAwo4AAAcxWBfawz2taYdo+j1tU1JO8IJy2YOun3wnQp2/kIfPOWbAg4AAEzKL648KRZ0N8clS7vTjnLCmuqq47oVM+PpF/bHijntacdJVXUuE7ddsjDWLe5KO0rZUcABAIBJWdTTHG89dUbaMfLmv7xlcdoRisLU+pq4dsWsRLfZUFMZ1bQyXiUAAABF5zfXzY9v/egnsW5RZRxtV8ABAAAouK7musMeu3H13BSSpEcBBwAAoOAuW9Yb/7xzT5w+u3LPsVfAAQAAOCGDfa3xr8/vi9NmHf1a31NqcvGfK/w8ewUcAACAE/Jn7z4zXj0wEnXVubSjFDUFHAAAgBOSy2Yil1W+jyebdgAAAACoBAo4AAAAJEABBwAAgAQo4AAAABzX9WfOSjtCyVPAAQAAOK7bL10YD/7GqrRjlDQFHAAAoIItndE6ruUymUy01dcUNkyZU8ABAAAq2AcvXhAbBnrSjlERFHAAAIAKNntaY/z+VcvSjlERFHAAAABIgAIOAAAACVDAAQCAQzRPqR673TrFpFuVoqm2KiIiFvY0p5ykfFWlHQAAACgup/a3xu9ftSxymUws6G5KOw4J+dS1Q/H5R34Yv7nulLSjlC0FHAAAOEQmkzErdgU6a25HnDW3I+0YZc0QdAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAgAQo4AAAAJAABRwAAAASoIADAABAAhRwAAAASIACDgAAAAlQwAEAACABRVfAt2/fHqtWrYqFCxfG0qVL49577007EgAAAJywqrQD/Lyqqqq46667YnBwMHbu3BlDQ0Nx0UUXRUNDQ9rRAAAAYNKKroB3d3dHd3d3RER0dXVFR0dH7N69WwEHAACgpE14CPpDDz0Ul156afT09EQmk4n77rvvsGW2bt0as2bNirq6ujj99NPj0UcfnVS4xx9/PA4cOBB9fX2Tej4AAECpqs5l3rxdlTnGksnJ5YojR6macAHfv39/DAwMxNatW4/4/XvuuSe2bNkSt99+ezzxxBMxMDAQ69ati+eee25smcHBwVi8ePFhXzt27BhbZvfu3XHdddfFpz/96Um8LAAAgNLWWl8TH7jolHj3qjkxv7Mp7TgREdFYWxUfvHhB2jFK1oSHoK9fvz7Wr19/1O9/7GMfi1/+5V+OG264ISIiPvWpT8X9998fn/vc5+KWW26JiIgnn3zymNt4+eWXY+PGjXHLLbfEmWeeedxlX3755bH7e/bsGecrAQAAKG6/cs6ctCMc5pfOnh0fuf+f0o5RkvI6C/orr7wSjz/+eKxdu/bNDWSzsXbt2njkkUfGtY7R0dG4/vrrY82aNXHttdced/k77rgjWlpaxr4MVwcAAKAY5bWAv/DCC3HgwIHo7Ow85PHOzs7YuXPnuNbx8MMPxz333BP33XdfDA4OxuDgYHz7298+6vK33nprvPjii2Nf27dvP6HXAAAAQDqGZk6NiIje1ikpJymMopsFfeXKlTEyMjLu5Wtra6O2traAiQAAAEjCxUtevyLW4t6WlJMURl4LeEdHR+Ryudi1a9chj+/atSu6urryuSkAAADKTFUuG28Z7E07RsHkdQh6TU1NDA0NxbZt28YeGxkZiW3btsWKFSvyuSkAAIDUNNdVj91ua6hJMQmlZMJHwPft2xdPPfXU2P2nn346nnzyyWhra4v+/v7YsmVLbNq0KZYvXx7Dw8Nx1113xf79+8dmRQcAACh1LfXV8aVfPTNeeW0k+trq045DiZhwAX/sscdi9erVY/e3bNkSERGbNm2Ku+++O6688sp4/vnn47bbboudO3fG4OBgPPDAA4dNzAYAAFDKlvVPTTsCJWbCBXzVqlUxOjp6zGU2b94cmzdvnnQoAAAAKDd5PQccAAAAODIFHAAAGLeOxtrIZl6/PWOqc59hIoruOuAAAEDxaplSHX/3/jWx7+XXYl5nU9pxoKQo4AAAwIT0tE5JOwKUJEPQAQAAIAEKOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAAwAAQAIUcAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAIK/qat6smrXVaucbqtIOAAAAQHmZ3lQX//XygajOZaK5rjrtOEVDAQcAACDv3j40I+0IRcdYAAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAgAQo4AAAAJAABRwAAOAELe5tiYiIjsbalJNQzFwHHAAA4ARdsrQ76mtyMa+zKe0oFDEFHAAA4ARV5bJxwaKutGNQ5AxBBwAAgAQo4AAAAJAABRwAAAASoIADAABAAhRwAAAASIACDgAAAAlQwAEAACABCjgAAAAkQAEHAACABCjgAAAAkAAFHAAAABKggAMAAEACFHAAAABIgAIOAAAACVDAAQAAIAEKOAAAACRAAQcAAIAEKOAAAABMSjabSTtCSVHAAQAAmJC3LuuN2qpsXHN6f9pRSkpV2gEAAAAoLXdeMRAfuWxx1NeolBPhCDgAAAATkslklO9JUMABAAAgAQo4AABAijavnhsREe9eNSflJBSaMQMAAAApuumCebFxWW/M7mhIOwoFpoADAACkKJPJxNzpjWnHIAGGoAMAAEACFHAAAABIgAIOAAAACVDAAQAAIAEKOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAAwAAQAIUcAAAAEiAAg4AAAAJUMABAAAgAQo4AAAAJEABBwAAgAQo4AAAAJAABRwAAAASoIADAABAAhRwAAAASIACDgAAAAlQwAEAACABCjgAAAAkoCrtAPk2OjoaERF79uxJOQkAAACV4I3++UYfPZqyK+B79+6NiIi+vr6UkwAAAFBJ9u7dGy0tLUf9fmb0eBW9xIyMjMSOHTuiqakpMpnMhJ9/2mmnxTe/+c2CP2/Pnj3R19cX27dvj+bm5glvjyOb7M+v2BTT60gyS6G2lc/15mNd9jOlrZj+Pier2F6D/Ux+13Uiz7efKQ7F9jc6GcX0GpLOYj+T3+eWyn5mdHQ09u7dGz09PZHNHv1M77I7Ap7NZmPGjBmTfn4ul5vUD3ayz2tubi7qX6RSM9mfQ7EppteRZJZCbSuf683HuuxnSlsx/X1OVrG9BvuZ/K7rRJ5vP1Mciu1vdDKK6TUkncV+pjDPLYX9zLGOfL/BJGw/58Ybb0z0eeRXufwciul1JJmlUNvK53rzsS77mdJWDj+HYnsN9jP5XdeJPL/YfjcqVTn8HIrpNSSdxX6msNsudWU3BL1U7NmzJ1paWuLFF18s+k9ygNJkPwMUmv0MUGjltp9xBDwltbW1cfvtt0dtbW3aUYAyZT8DFJr9DFBo5bafcQQcAAAAEuAIOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAl4Dt27fHqlWrYuHChbF06dK49957044ElJnLLrsspk6dGm9/+9vTjgKUiS9/+csxf/78OPnkk+Ozn/1s2nGAMlSK71/Mgl4Cnn322di1a1cMDg7Gzp07Y2hoKL7//e9HQ0ND2tGAMvG1r30t9u7dG3/0R38UX/ziF9OOA5S41157LRYuXBgPPvhgtLS0xNDQUHz961+P9vb2tKMBZaQU3784Al4Curu7Y3BwMCIiurq6oqOjI3bv3p1uKKCsrFq1KpqamtKOAZSJRx99NBYtWhS9vb3R2NgY69evj7/6q79KOxZQZkrx/YsCngcPPfRQXHrppdHT0xOZTCbuu+++w5bZunVrzJo1K+rq6uL000+PRx99dFLbevzxx+PAgQPR19d3gqmBUpHkPgYg4sT3Ozt27Ije3t6x+729vfHMM88kER0oEZX6/kYBz4P9+/fHwMBAbN269Yjfv+eee2LLli1x++23xxNPPBEDAwOxbt26eO6558aWGRwcjMWLFx/2tWPHjrFldu/eHdddd118+tOfLvhrAopHUvsYgDfkY78DcCwVu58ZJa8iYvRLX/rSIY8NDw+P3njjjWP3Dxw4MNrT0zN6xx13jHu9L7300ujZZ589+vnPfz5fUYESVKh9zOjo6OiDDz44+ra3vS0fMYEyMpn9zsMPPzy6cePGse+/973vHf3CF76QSF6g9JzI+5tSe//iCHiBvfLKK/H444/H2rVrxx7LZrOxdu3aeOSRR8a1jtHR0bj++utjzZo1ce211xYqKlCC8rGPAZiI8ex3hoeH4zvf+U4888wzsW/fvvjLv/zLWLduXVqRgRJTzu9vFPACe+GFF+LAgQPR2dl5yOOdnZ2xc+fOca3j4YcfjnvuuSfuu+++GBwcjMHBwfj2t79diLhAicnHPiYiYu3atXH55ZfHX/zFX8SMGTNK/j83oHDGs9+pqqqKO++8M1avXh2Dg4Nx0003mQEdGLfxvr8pxfcvVWkH4PhWrlwZIyMjaccAythXv/rVtCMAZWbDhg2xYcOGtGMAZawU3784Al5gHR0dkcvlYteuXYc8vmvXrujq6kopFVAu7GOApNnvAIVWzvsZBbzAampqYmhoKLZt2zb22MjISGzbti1WrFiRYjKgHNjHAEmz3wEKrZz3M4ag58G+ffviqaeeGrv/9NNPx5NPPhltbW3R398fW7ZsiU2bNsXy5ctjeHg47rrrrti/f3/ccMMNKaYGSoV9DJA0+x2g0Cp2P5P2NOzl4MEHHxyNiMO+Nm3aNLbMJz7xidH+/v7Rmpqa0eHh4dFvfOMb6QUGSop9DJA0+x2g0Cp1P5MZHR0dTbbyAwAAQOVxDjgAAAAkQAEHAACABCjgAAAAkAAFHAAAABKggAMAAEACFHAAAABIgAIOAAAACVDAAQAAIAEKOAAAACRAAQcAAIAEKOAAAACQAAUcAAAAEqCAAwAAQAL+Py+tIMSo6pzRAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,7))\n", + "plt.loglog(freq, powers, ds=\"steps-mid\", label=\"periodogram realization\")\n", + "plt.loglog(freq, psd_shape, label=\"power spectrum\")\n", + "\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Maximum Likelihood Fitting\n", + "\n", + "Let's assume we've observed this periodogram from our source. We would now like to estimate the parameters. \n", + "This requires the definition of *likelihood*, which describes the probability of observing the data plotted above given some underlying model with a specific set of parameters. To say it differently, the likelihood encodes what we know about the underlying model (here a power law and a constant) and the statistical properties of the data (power spectra generally follow a chi-square distribution) and then allows us to compare data and model for various parameters under the assumption of the statistical uncertainties.\n", + "\n", + "In order to find the best parameter set, one generally maximizes the likelihood function using an optimization algorithm. Because optimization algorithms generally *minimize* functions, they effectively minimize the log-likelihood, which comes out to be the same as maximizing the likelihood itself.\n", + "\n", + "Below is an implementation of the $\\chi^2$ likelihood as appropriate for power spectral analysis, with comments for easier understanding. The same is also implemented in `posterior.py` in Stingray:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "logmin = -1e16\n", + "class PSDLogLikelihood(object):\n", + "\n", + " def __init__(self, freq, power, model, m=1):\n", + " \"\"\"\n", + " A Chi-square likelihood as appropriate for power spectral analysis.\n", + "\n", + " Parameters\n", + " ----------\n", + " freq : iterable\n", + " x-coordinate of the data\n", + "\n", + " power : iterable\n", + " y-coordinte of the data\n", + "\n", + " model: an Astropy Model instance\n", + " The model to use in the likelihood.\n", + "\n", + " m : int\n", + " 1/2 of the degrees of freedom, i.e. the number of powers\n", + " that were averaged to obtain the power spectrum input into\n", + " this routine.\n", + "\n", + " \"\"\"\n", + "\n", + " self.x = ps.freq # the x-coordinate of the data (frequency array)\n", + " self.y = ps.power # the y-coordinate of the data (powers)\n", + " self.model = model # an astropy.models instance\n", + " self.m = m\n", + "\n", + " self.params = [k for k,l in self.model.fixed.items() if not l]\n", + " self.npar = len(self.params) # number of free parameters\n", + "\n", + " def evaluate(self, pars, neg=False):\n", + " \"\"\"\n", + " Evaluate the log-likelihood.\n", + "\n", + " Parameters\n", + " ----------\n", + " pars : iterable\n", + " The list of parameters for which to evaluate the model.\n", + "\n", + " neg : bool, default False\n", + " If True, compute the *negative* log-likelihood, otherwise\n", + " compute the *positive* log-likelihood.\n", + "\n", + " Returns\n", + " -------\n", + " loglike : float\n", + " The log-likelihood of the model\n", + "\n", + " \"\"\"\n", + " # raise an error if the length of the parameter array input into\n", + " # this method doesn't match the number of free parameters in the model\n", + " if np.size(pars) != self.npar:\n", + " raise Exception(\"Input parameters must\" +\n", + " \" match model parameters!\")\n", + "\n", + " # set parameters in self.model to the parameter set to be used for\n", + " # evaluation\n", + " fitter_to_model_params(self.model, pars)\n", + "\n", + " # compute the values of the model at the positions self.x\n", + " mean_model = self.model(self.x)\n", + "\n", + " # if the power spectrum isn't averaged, compute simple exponential\n", + " # likelihood (chi-square likelihood for 2 degrees of freedom)\n", + " if self.m == 1:\n", + " loglike = -np.sum(np.log(mean_model)) - \\\n", + " np.sum(self.y/mean_model)\n", + " # otherwise use chi-square distribution to compute likelihood\n", + " else:\n", + " loglike = -2.0*self.m*(np.sum(np.log(mean_model)) +\n", + " np.sum(self.y/mean_model) +\n", + " np.sum((2.0 / (2. * self.m) - 1.0) *\n", + " np.log(self.y)))\n", + "\n", + " if not np.isfinite(loglike):\n", + " loglike = logmin\n", + "\n", + " if neg:\n", + " return -loglike\n", + " else:\n", + " return loglike\n", + "\n", + " def __call__(self, parameters, neg=False):\n", + " return self.evaluate(parameters, neg)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make an object and see what it calculates if we put in different parameter sets. First, we have to make our sample PSD into an actual `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = powers\n", + "ps.df = ps.freq[1] - ps.freq[0]\n", + "ps.m = 1" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-4835.88214847462" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [1, 5, 100]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2869.5582486265116" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [4.0, 10, 2.5]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "test_pars = [2.0, 5.0, 2.0]\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Something close to the parameters we put in should yield the largest log-likelihood. Feel free to play around with the test parameters to verify that this is true.\n", + "\n", + "You can similarly import the `PSDLogLikelihood` class from `stingray.modeling` and do the same:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2375.704120812954" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from stingray.modeling import PSDLogLikelihood\n", + "\n", + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)\n", + "loglike(test_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To estimate the parameters, we can use an optimization routine, such as those implemented in `scipy.optimize.minimize`.\n", + "We have wrapped some code around that, to make your lives easier. We will not reproduce the full code here, just demonstrate its functionality.\n", + "\n", + "Now we can instantiate the `PSDParEst` (for PSD Parameter Estimation) object. This can do more than simply optimize a single model, but we'll get to that later.\n", + "\n", + "The `PSDParEst` object allows one to specify the fit method to use (however, this must be one of the optimizers in `scipy.optimize`). The parameter `max_post` allows for doing maximum-a-posteriori fits on the Bayesian posterior rather than maximum likelihood fits (see below for more details). We'll set it to `False` for now, since we haven't defined any priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst\n", + "\n", + "parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit a model, make an instance of the appropriate `LogLikelihood` or `Posterior` subclass, andsimply call the `fit` method with that instance and starting parameters you would like to fit." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "loglike = PSDLogLikelihood(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([2., 1., 5., 2.])" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.model.parameters" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "3" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "loglike.npar" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [], + "source": [ + "starting_pars = [3.0, 1.0, 2.4]\n", + "res = parest.fit(loglike, starting_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The result is an `OptimizationResults` object, which computes various summaries and useful quantities.\n", + "\n", + "For example, here's the value of the likelihood function at the maximum the optimizer found:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2183.7896770356615" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.result" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: Optimizers routinely get stuck in *local* minima (corresponding to local maxima of the likelihood function). It is usually useful to run an optimizer several times with different starting parameters in order to get close to the global maximum.\n", + "\n", + "Most useful are the estimates of the parameters at the maximum likelihood and their uncertainties:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[4.72915772 2.09193133 2.10372299]\n", + "[3.8037075 0.73336812 0.55239425]\n" + ] + } + ], + "source": [ + "print(res.p_opt)\n", + "print(res.err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note**: uncertainties are estimated here via the covariance matrix between parameters, i.e. the inverse of the Hessian at the maximum. This only represents the true uncertainties for specific assumptions about the likelihood function (Gaussianity), so use with care!\n", + "\n", + "It also computes Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) for model comparison purposes:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "AIC: 2189.7896770356615\n", + "BIC: 2204.5129428726077\n" + ] + } + ], + "source": [ + "print(\"AIC: \" + str(res.aic))\n", + "print(\"BIC: \" + str(res.bic))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, it also produces the values of the mean function for the parameters at the maximum. Let's plot that and compare with the power spectrum we put in:" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+AAAAKYCAYAAADzIZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUVf7H8fdMeg8JCTXU0DtIR4FYKIKCCFiQooAioNhxd23ruuv+7AooNhB0FRUBRVQQCE1FAek1ECB0SEhIbzO/P24mxcyEJCSZJHxez5NnbmbOvXNuAuhnzjnfY7JarVZEREREREREpFyZnd0BERERERERkauBAriIiIiIiIhIBVAAFxEREREREakACuAiIiIiIiIiFUABXERERERERKQCKICLiIiIiIiIVAAFcBEREREREZEKoAAuIiIiIiIiUgFcnd2BsmaxWDh16hR+fn6YTCZnd0dERERERESqOavVSmJiInXr1sVsdjzOXe0C+KlTpwgLC3N2N0REREREROQqExMTQ/369R2+Xu0CuJ+fH2DcuL+/v5N7IyIiIiIiItXdpUuXCAsLy82jjlS7AG6bdu7v768ALiIiIiIiIhXmcsugVYRNREREREREpAIogIuIiIiIiIhUAAVwERERERERkQpQ7daAi4iIiIhI2bJarWRlZZGdne3srog4hYuLC66urle81bUCuIiIiIiIOJSRkcHp06dJSUlxdldEnMrb25s6derg7u5e6msogIuIiIiIiF0Wi4Xo6GhcXFyoW7cu7u7uVzwCKFLVWK1WMjIyOH/+PNHR0TRr1gyzuXSruRXARURERETEroyMDCwWC2FhYXh7ezu7OyJO4+XlhZubG8eOHSMjIwNPT89SXUdF2EREREREpEilHe0TqU7K4u+B/iaJiIiIiIiIVAAFcBEREREREZEKoAAuIiIiIiIiUgEUwEVEREREpFrp168fM2bMcHY3pJTmz59PYGCgs7tRLlQFXUREREREisVisXIxJcNp71/D2x2zuWy2QbNarWRnZ+PqevVGooyMjCva09rZqmL/NQIuIiIiIiLFcjElgy7/+tlpX8UJ/+PHj2fdunW89dZbmEwmTCYTR48eJTIyEpPJxA8//ECXLl3w8PBg48aNjB8/nmHDhhW4xowZM+jXr1/u9xaLhf/85z80btwYLy8vOnTowNdff11kPxo1asSLL77InXfeiY+PD/Xq1WP27NkF2hw/fpxbb70VX19f/P39GTVqFGfPngUgISEBFxcXtmzZktuHoKAgevTokXv+p59+SlhYWO73MTExjBo1isDAQIKCgrj11ls5evRogZ/NsGHDeOmll6hbty4tWrSw2/cdO3bQv39//Pz88Pf3p0uXLrn9sI1OL126lGbNmuHp6cmAAQOIiYkpcI1ly5bRuXNnPD09adKkCS+88AJZWVm5r8fHx3P//fdTq1YtPD09adu2LcuXLycyMpIJEyaQkJCQ+/t7/vnnC/xMx44di7+/P5MnT879vcbHx+dee/v27bm/9/x9Xr58OS1atMDb25vbb7+dlJQUPvnkExo1akSNGjV46KGHyM7OLvL3eqUUwEVEREREpNp466236NmzJ5MmTeL06dOcPn26QEidOXMmL7/8Mvv27aN9+/bFuuZ//vMfFixYwHvvvceePXt45JFHGDNmDOvWrSvyvFdeeYUOHTrw559/MnPmTB5++GFWrVoFGIH61ltvJS4ujnXr1rFq1SqOHDnC6NGjAQgICKBjx45ERkYCsGvXLkwmE3/++SdJSUkArFu3jr59+wKQmZnJgAED8PPzY8OGDWzatAlfX18GDhxIRkbeBxerV6/mwIEDrFq1iuXLl9vt99133039+vX5448/2Lp1KzNnzsTNzS339ZSUFF566SUWLFjApk2biI+P54477sh9fcOGDYwdO5aHH36YvXv3MnfuXObPn89LL72Ue++DBg1i06ZNfPrpp+zdu5eXX34ZFxcXevXqxZtvvom/v3/u7+/xxx/Pvfarr76a+zN95plnivX7s/X57bff5osvvuDHH38kMjKS4cOHs2LFClasWMHChQuZO3fuZT9YuVJX73wLERERERGpdgICAnB3d8fb25vatWsXev2f//wnN954Y7Gvl56ezr///W9+/vlnevbsCUCTJk3YuHEjc+fOzQ3A9vTu3ZuZM2cC0Lx5czZt2sQbb7zBjTfeyOrVq9m1axfR0dG5HxAsWLCANm3a8Mcff9C1a1f69etHZGQkjz/+OJGRkdx4443s37+fjRs3MnDgQCIjI3nyyScBWLRoERaLhQ8//BCTyZimP2/ePAIDA4mMjOSmm24CwMfHhw8//LDIqdvHjx/niSeeoGXLlgA0a9aswOuZmZnMmjWL7t27A/DJJ5/QqlUrfv/9d7p168YLL7zAzJkzGTduXO7P68UXX+TJJ5/kueee4+eff+b3339n3759NG/ePLeNTUBAACaTye7vLyIigsceeyz3+7+OvDuSmZnJu+++S9OmTQG4/fbbWbhwIWfPnsXX15fWrVvTv39/1q5dm/shSHnQCLiIiIiIiFw1rrnmmhK1j4qKIiUlhRtvvBFfX9/crwULFnD48OEiz7UF9vzf79u3D4B9+/YRFhZWYHS+devWBAYG5rbp27cvGzduJDs7m3Xr1tGvX7/cUH7q1CmioqJyp8rv2LGDqKgo/Pz8cvsYFBREWlpagX62a9fusuumH330USZOnMgNN9zAyy+/XOg+XV1d6dq1a+73LVu2LNDvHTt28M9//rPAz8s2IyElJYXt27dTv3793PBdEiX9/dl4e3vnhm+AWrVq0ahRI3x9fQs8d+7cuVJdv7g0Ai4iIiIiIsVSw9udrf+4wanvf6V8fHwKfG82m7FarQWey8zMzD22Tff+/vvvqVevXoF2Hh4eV9yfolx33XUkJiaybds21q9fz7///W9q167Nyy+/TIcOHahbt27u6HRSUhJdunThs88+K3SdkJCQ3OO/3r89zz//PHfddRfff/89P/zwA8899xxffPEFw4cPL1a/k5KSeOGFF7jtttsKvebp6YmXl1exrmOPvd8fUOB3mP/3Z5N/Cj2AyWSy+5zFYil134pDAVxERERERIrFbDYR7Fu+obMsuLu7F7uYVkhICLt37y7w3Pbt23PDWevWrfHw8OD48eNFTje357fffiv0fatWrQBo1aoVMTExxMTE5I6C7927l/j4eFq3bg1AYGAg7du3Z9asWbi5udGyZUtCQ0MZPXo0y5cvL9Cfzp07s2jRIkJDQ/H39y9RP+1p3rw5zZs355FHHuHOO+9k3rx5uQE8KyuLLVu20K1bNwAOHDhAfHx87r117tyZAwcOEB4ebvfa7du358SJExw8eNDuKHhJf38Ap0+fpkaNGoDx+6usNAVdRERERESqlUaNGrF582aOHj3KhQsXihzVjIiIYMuWLSxYsIBDhw7x3HPPFQjkfn5+PP744zzyyCN88sknHD58mG3btvHOO+/wySefFNmPTZs28X//938cPHiQ2bNn89VXX/Hwww8DcMMNN9CuXTvuvvtutm3bxu+//87YsWPp27dvgWnW/fr147PPPssN20FBQbRq1YpFixYVCOB33303NWvW5NZbb2XDhg1ER0cTGRnJQw89xIkTJ4r9s0tNTWXatGlERkZy7NgxNm3axB9//JEbrsEYTZ4+fTqbN29m69atjB8/nh49euQG8meffZYFCxbwwgsvsGfPHvbt28cXX3zBP/7xD8CYWn/dddcxYsQIVq1aRXR0ND/88AM//vgjYPz+kpKSWL16NRcuXCAlJcVhf8PDwwkLC+P555/n0KFDfP/997z22mvFvt+KpgAuIiIiIiLVyuOPP46LiwutW7cmJCSE48ePO2w7YMAAnnnmGZ588km6du1KYmIiY8eOLdDmxRdf5JlnnuE///kPrVq1YuDAgXz//fc0bty4yH489thjbNmyhU6dOvGvf/2L119/nQEDBgDGdOdly5ZRo0YNrrvuOm644QaaNGnCokWLClyjb9++ZGdnF9gWrV+/foWe8/b2Zv369TRo0IDbbruNVq1acd9995GWllaiEXEXFxdiY2MZO3YszZs3Z9SoUQwaNIgXXnihwHs99dRT3HXXXfTu3RtfX98C/R4wYADLly9n5cqVdO3alR49evDGG2/QsGHD3DaLFy+ma9eu3HnnnbRu3Zonn3wyd9S7V69ePPDAA4wePZqQkBD+7//+z2F/3dzc+Pzzz9m/fz/t27fnv//9L//617+Kfb8VzWT964KHKu7SpUsEBASQkJBQJlMvRERERESuVmlpaURHR9O4cWM8PT2d3Z0qpVGjRsyYMYMZM2Y4uytlav78+cyYMaPAvttXi6L+PhQ3h2oEXERERERERKQCKIA7y5ldsOktZ/dCREREREREKoiqoDvDpVPw0U2QmQIBYdC2cHl+ERERERGpuo4ePersLpSL8ePHM378eGd3o8rSCLgz+NeFbpOM42XT4Nx+5/ZHREREREREyp0CuLNEPAuNroXMZFg0BtIuObtHIiIiIiIiUo4UwJ3FxRVunwd+dSH2ECx7EKpXQXoRERERERHJRwHcmXxDYNQCMLvBvu/gl7ed3SMREREREREpJwrgzhbWFQa9bBz//DwcWefU7oiIiIiIiEj5UACvDK65DzrcCVYLfH0vJJx0do9ERERERKql8ePHM2zYsHJ/n+eff56OHTuW+/s4YjKZWLp0aYnO6devHzNmzCiX/ohBAbwyMJng5tehVjtIuQBfjoWsdGf3SkRERESk2nnrrbeYP3++s7thV2lCszNFRkZiMpmIj493dleqDAXwysLdG0YvAM8AOLkFfnza2T0SEREREal2AgICCAwMdHY35CqlAF6ZBDWB2z40jrd8BNv/59z+iIiIiIhUQV9//TXt2rXDy8uL4OBgbrjhBpKTk4HCU9D79evH9OnTmTFjBjVq1KBWrVp88MEHJCcnM2HCBPz8/AgPD+eHH37IPWf+/PmFQvzSpUsxmUwO+/THH39w4403UrNmTQICAujbty/btm3Lfb1Ro0YADB8+HJPJlPs9wLJly+jcuTOenp40adKEF154gaysrNzXDx06xHXXXYenpyetW7dm1apVl/0ZJScnM3bsWHx9falTpw6vvfZaoTYLFy7kmmuuwc/Pj9q1a3PXXXdx7tw5AI4ePUr//v0BqFGjBiaTifHjxwPw448/0qdPHwIDAwkODmbIkCEcPnz4sn26GiiAVzbNb4K+M43j5Y/A6Z3O7Y+IiIiISH5WK2QkV/xXMbfsPX36NHfeeSf33nsv+/btIzIykttuuw1rEed/8skn1KxZk99//53p06czZcoURo4cSa9evdi2bRs33XQT99xzDykpKaX+sSUmJjJu3Dg2btzIb7/9RrNmzRg8eDCJiYmAEdAB5s2bx+nTp3O/37BhA2PHjuXhhx9m7969zJ07l/nz5/PSSy8BYLFYuO2223B3d2fz5s289957PPXUU5ftzxNPPMG6detYtmwZK1euJDIyssAHAgCZmZm8+OKL7Nixg6VLl3L06NHckB0WFsbixYsBOHDgAKdPn+att94CjHD/6KOPsmXLFlavXo3ZbGb48OFYLJZS//yqC1dnd0Ds6PsUnNwKUatg0Ri4fx141XB2r0REREREIDMF/l234t/3b6fA3eeyzU6fPk1WVha33XYbDRs2BKBdu3ZFntOhQwf+8Y9/APD000/z8ssvU7NmTSZNmgTAs88+y7vvvsvOnTvp0aNHqbofERFR4Pv333+fwMBA1q1bx5AhQwgJCQEgMDCQ2rVr57Z74YUXmDlzJuPGjQOgSZMmvPjiizz55JM899xz/Pzzz+zfv5+ffvqJunWN38u///1vBg0a5LAvSUlJfPTRR3z66adcf/31gPEhRP369Qu0u/fee3OPmzRpwttvv03Xrl1JSkrC19eXoKAgAEJDQwvMCBgxYkSB63z88ceEhISwd+9e2rZtW6yfV3WlEfDKyGyG296HwAYQfwy+mQz6tEhERERE5LI6dOjA9ddfT7t27Rg5ciQffPABFy9eLPKc9u3b5x67uLgQHBxcILTXqlULIHf6dWmcPXuWSZMm0axZMwICAvD39ycpKYnjx48Xed6OHTv45z//ia+vb+7XpEmTOH36NCkpKezbt4+wsLDc8A3Qs2fPIq95+PBhMjIy6N69e+5zQUFBtGjRokC7rVu3MnToUBo0aICfnx99+/YFuGyfDx06xJ133kmTJk3w9/fPnU5/ufOuBhoBr6y8g2D0p/DRTXBoJax/BfpdfiqJiIiIiEi5cvM2RqOd8b7F4OLiwqpVq/jll19YuXIl77zzDn//+9/ZvHkzjRs3tn9pN7cC35tMpgLP2dZ226ZQm83mQlPaMzMzi+zXuHHjiI2N5a233qJhw4Z4eHjQs2dPMjIyijwvKSmJF154gdtuu63Qa56enkWeeyWSk5MZMGAAAwYM4LPPPiMkJITjx48zYMCAy/Z56NChNGzYkA8++IC6detisVho27btZc+7GiiAV2Z1Ohjbky17ECL/A/U6Q7Mbnd0rEREREbmamUzFmgruTCaTid69e9O7d2+effZZGjZsyJIlS3j00UfL5PohISEkJiaSnJyMj4/xs9i+fXuR52zatIk5c+YwePBgAGJiYrhw4UKBNm5ubmRnZxd4rnPnzhw4cIDw8HC7123VqhUxMTGcPn2aOnXqAPDbb78V2ZemTZvi5ubG5s2badCgAQAXL17k4MGDuaPc+/fvJzY2lpdffpmwsDAAtmzZUuA67u7uAAX6HBsby4EDB/jggw+49tprAdi4cWOR/bmaaAp6ZdfpbugyAbDC4okQF+3sHomIiIiIVFqbN2/m3//+N1u2bOH48eN88803nD9/nlatWpXZe3Tv3h1vb2/+9re/cfjwYf73v/9ddm/xZs2asXDhQvbt28fmzZu5++678fLyKtCmUaNGrF69mjNnzuROm3/22WdZsGABL7zwAnv27GHfvn188cUXuWvWb7jhBpo3b864cePYsWMHGzZs4O9//3uRffH19eW+++7jiSeeYM2aNezevZvx48djNufFwwYNGuDu7s4777zDkSNH+Pbbb3nxxRcLXKdhw4aYTCaWL1/O+fPnSUpKokaNGgQHB/P+++8TFRXFmjVryuyDj+pAAbwqGPRfqNcF0uLhy3sgM9XZPRIRERERqZT8/f1Zv349gwcPpnnz5vzjH//gtddeK7IoWUkFBQXx6aefsmLFCtq1a8fnn3/O888/X+Q5H330ERcvXqRz587cc889PPTQQ4SGhhZo89prr7Fq1SrCwsLo1KkTAAMGDGD58uWsXLmSrl270qNHD954443cAnNms5klS5aQmppKt27dmDhxYm6F9KK88sorXHvttQwdOpQbbriBPn360KVLl9zXQ0JCmD9/Pl999RWtW7fm5Zdf5tVXXy1wjXr16uUWiatVqxbTpk3DbDbzxRdfsHXrVtq2bcsjjzzCK6+8Upwf61XBZC2qHn8VdOnSJQICAkhISMDf39/Z3Sk7CSdg7nWQEgsd7oJhc4zpPyIiIiIi5SQtLY3o6GgaN25cruuNRaqCov4+FDeHagS8qgioD7d/DCYz7PgfbJ3n7B6JiIiIiIhICSiAVyVN+sH1zxrHK56EE1uKbC4iIiIiIiKVhwJ4VdN7BrQcApZM+HIsJF+47CkiIiIiIiLifArgVY3JZKz/Dg6HSyfh6wmQneXsXomIiIiIiMhlKIA7QaYlkze2vsHppNOlu4BnAIz+FNy8IXo9rP1X2XZQREREREREypwCuBMsi1rGx7s/5uYlN/PSby9xNvlsyS8S2gpunWUcb3wD9n1Xtp0UERERERGRMqUAXsEysjN4f+f7gDES/sWBLxj8zWD++/t/uZBawvXcbUdAj6nG8ZIpcOFQGfdWREREREREyooCeAX75tA3nE4uOPU8w5LBp/s+ZdDiQby+5XUupl0s/gVvfAEa9IKMRFg0BtKTyrjHIiIiIiIiUhYUwCtYRIMI7mp5F25mt0KvpWWnMW/PPAYuHsjb294mIT3h8hd0cYOR88G3NpzfD99OB6u17DsuIiIiIiIiV0QBvIKFeofydPenWXHbCkY1H4Wr2bVQm5SsFD7Y9QEDFw9kzvY5JGYkFn1Rv1pGCDe7wp5v4Ld3y6fzIiIiIiJVQL9+/ZgxY4azuwHA0qVLCQ8Px8XFhRkzZjB//nwCAwOd3S1xEgVwJ6ntU5tnej7D8uHLua3ZbbiYXAq1ScpM4t0d7zJw8UA+2PkByZnJji/YsCfc9JJxvPIfcOyXcuq5iIiIiMjVLTIyEpPJRHx8/GXb3n///dx+++3ExMTw4osvMnr0aA4ePJj7+vPPP0/Hjh3Lr7NSqSiAO1k933q80OsFvh32Lbc0vQWzqfCv5FLGJd7+820GLR7EvN3zSM1KtX+x7vdD29vBmg1fjYfEM+XbeRERERERcSgpKYlz584xYMAA6tati5+fH15eXoSGhjq7a+IkCuCVRAP/BrzU5yWW3LqEQY0GYcJUqM3F9Iu8vvV1Bi0exMK9C0nLSivYwGSCW96G0NaQdBa+HAfZmRV0ByIiIiJS3VmsFuLS4pz2ZbFait3XrKwspk2bRkBAADVr1uSZZ57Bmq9WUnp6Oo8//jj16tXDx8eH7t27ExkZmfv6sWPHGDp0KDVq1MDHx4c2bdqwYsUKjh49Sv/+/QGoUaMGJpOJ8ePHF3r/yMhI/Pz8AIiIiMBkMhEZGVlgCvr8+fN54YUX2LFjByaTCZPJxPz580v8e5Gqo/ACZHGqJgFN+L++/8ek9pN4d8e7rDq2qlCb2LRY/u+P/2P+7vlMbD+REc1G4O7ibrzo7gOjP4X3+0HMb7DyGRj0csXehIiIiIhUS/Hp8fRd1Ndp779u9DqCPIOK1faTTz7hvvvu4/fff2fLli1MnjyZBg0aMGnSJACmTZvG3r17+eKLL6hbty5Llixh4MCB7Nq1i2bNmjF16lQyMjJYv349Pj4+7N27F19fX8LCwli8eDEjRozgwIED+Pv74+XlVej9e/XqxYEDB2jRogWLFy+mV69eBAUFcfTo0dw2o0ePZvfu3fz444/8/PPPAAQEBFz5D0oqLQXwSqpZjWa83u919sftZ/b22UTGRBZqcy71HP/e/G8+3v0xk9tPZlj4MKO6enBTGP4efHEXbH4X6l8D7W6v8HsQEREREXGWsLAw3njjDUwmEy1atGDXrl288cYbTJo0iePHjzNv3jyOHz9O3bp1AXj88cf58ccfmTdvHv/+9785fvw4I0aMoF27dgA0adIk99pBQcaHAKGhoQ4Lqrm7u+dONQ8KCqJ27dqF2nh5eeHr64urq6vd16X60RR0J0jLzOY/P+zjZLyDtdz5tAxqyTsR7/D5zZ/Tp14fu23OJJ/hn7/+k6FLhrLk0BKyLFnQ8ma49jGjwbfT4eyesrwFEREREZFKrUePHphMecs6e/bsyaFDh8jOzmbXrl1kZ2fTvHlzfH19c7/WrVvH4cOHAXjooYf417/+Re/evXnuuefYuXOns25FqhEFcCf4aksMc9cdod8ra5m5eCfHY1Mue07bmm1594Z3WThoIT3q9LDb5mTSSZ795VluXXor3x3+juy+M6FJP8hMgUVjIK0Y+4qLiIiIiFRzSUlJuLi4sHXrVrZv3577tW/fPt566y0AJk6cyJEjR7jnnnvYtWsX11xzDe+8846Tey5VnaagV7CMLAvvRhqfqmVmW/nijxi+2nqCWzvWZWr/cJqG+BZ5fsfQjnxw0wf8ceYPZm+fzdazWwu1OZ54nL9t/Bsf7vqQKd3u4abYw5jjjsCSKcb6cLM+dxERERGRkgv0CGTd6HVOff/i2rx5c4Hvf/vtN5o1a4aLiwudOnUiOzubc+fOce211zq8RlhYGA888AAPPPAATz/9NB988AHTp0/H3d2ov5SdnV2q+8jP3d29TK4jVYMCeAX7ZtsJTiUUrF6ebbHyzbaTLPnzJDe3q8P0iGa0qO1X5HW61u7KvAHz2HxmM7P+nMWO8zsKtTmScIQnNr/A+w3CmBodT8SB7zFteiNvarqIiIiISAmYTeZiF0FztuPHj/Poo49y//33s23bNt555x1ee+01AJo3b87dd9/N2LFjee211+jUqRPnz59n9erVtG/fnptvvpkZM2YwaNAgmjdvzsWLF1m7di2tWrUCoGHDhphMJpYvX87gwYNz13KXRqNGjYiOjmb79u3Ur18fPz8/PDw8yuznIJWLhkIrWN8WIYzv1QgP18I/eqsVlu88zYA313P/wi3sPln0lHGTyUSPOj1YOGgh797wLm2C29htdyjpBDNCajC6bm3W/foq1qjVZXIvIiIiIiKV1dixY0lNTaVbt25MnTqVhx9+mMmTJ+e+Pm/ePMaOHctjjz1GixYtGDZsGH/88QcNGjQAjNHtqVOn0qpVKwYOHEjz5s2ZM2cOAPXq1eOFF15g5syZ1KpVi2nTppW6nyNGjGDgwIH079+fkJAQPv/88yu7canUTNb8m+FVA5cuXSIgIICEhAT8/f2d3R2HziWm8eGGaD797RgpGY6nnES0DGVaRDidG9S47DWtVivrTqxj9vbZ7I/b77Bdu4xspvb9N72a3VqgMIWIiIiISH5paWlER0fTuHFjPD09nd0dEacq6u9DcXOoAriTxSVn8NHGI3zyyzGS0rMctusTXpPpEeF0bxJ82WtarBZWH1/NnO1ziIqPctiuU0gHpnaaTvc63UvVdxERERGp3hTARfIogNtR1QK4TUJKJvN/OcrHm6JJSM102K5b4yAeimhG7/Dgy45eW6wWfjr6E3O2z+HopaMO23Wt3ZVpHafRuVbn0nZfRERERKohBXCRPArgdlTVAG6TmJbJwt+O8eGGaOKSMxy269QgkIcimtGvRchlg3iWJYsfon/g3R3vEpMY47Bdzzo9mdppKh1COpS6/yIiIiJSfSiAi+RRALejqgdwm5SMLP63+Thz1x/hfGK6w3bt6gUwLSKcG1vVwmwuOohnWjJZfng57+14j1PJpxy2u7betUztNNVhUTcRERERuToogIvkUQC3o7oEcJu0zGy+3BLDe5GHC21fll/L2n5M7R/O4HZ1cLlcEM/OZMmhb3h/88ucxfG68/5h/ZnacSotglqUuv8iIiIiUnUpgIvkUQC3o7oFcJuMLAuLt51gTmQUMXGpDts1DfFhav9wbulQF1eXoneZS086y+KFN/KheybnXR1vCX9Tw5t4sOODNA1sWur+i4iIiEjVYwscjRo1wsvLy9ndEXGq1NRUjh49qgCeX3UN4DaZ2RaWbT/FnLVRHLmQ7LBdw2BvHuzXlOGd6uNuZ8/xXGd2kfbRjXzp5cpHIbWJs9if7m7CxKDGg5jSYQqNAhpd4V2IiIiISFWQnZ3NwYMHCQ0NJTj48rvxiFRnsbGxnDt3jubNm+Pi4lLgNQXwahrAbbItVr7fdZpZaw5x8GySw3b1Ar14oG8TRl4Thqebi/1GOxbBksmkmEx8fu39zDu3iYT0BLtNzSYzQ5oM4YEODxDmF1YWtyIiIiIildjp06eJj48nNDQUb2/vyxYAFqlurFYrKSkpnDt3jsDAQOrUqVOojQJ4NQ/gNhaLlZV7z/DOmij2nLrksF0tfw8mX9eUu7o1wMvdThBf8QT8/j54BJA04Xs+O/sLn+z9hMSMRLvXczW5cmv4rUxuP5m6vnXL6nZEREREpJKxWq2cOXOG+Ph4Z3dFxKkCAwOpXbu23Q+hFMCvkgBuY7VaWXvgHG+vjmJ7TLzDdjV93Zl4bRPG9GiIr0e+dd9ZGTD/ZjjxO9RqC/et4hJZLNy7kIV7F5KcaX+6u6vZlRHNRjCp3SRq+dQq47sSERERkcoiOzubzMxMZ3dDxCnc3NwKTTvPTwH8KgvgNlarlY1RF3hndRS/H41z2C7Q2417ezdmXK9GBHi5GU9eOgVzr4Pk89B+NAyfCyYT8WnxfLL3Ez7b9xmpWfYLwLmb3RnZYiQT202kplfN8rg1ERERERGRSkkB/CoN4Pn9diSWd9YcYlNUrMM2fh6ujO/diHt7N6aGjztEb4AFt4I1Gwa/Ct0m5baNTY1l3u55fHHgC9Kz7Rdr83Tx5I6WdzCh7QSCPIPK/J5EREREREQqGwVwBfBcW49d5J01h4g8cN5hGx93F8b0bMjEPk0I2fU+rPwHmF1h/Apo0L1A2/Mp5/lo90d8deArMiwZdq/n5erF3a3uZnyb8QR4BJTp/YiIiIiIiFQmCuAK4IXsPBHPrDVRrNx71mEbTzczd3YN46nEl/E89B341YH714NvaKG2Z5LP8OGuD1l8aDFZliy71/Nx8+Ge1vdwT+t78HfX70NERERERKofBXAFcIf2nb7ErLVRrNh1Gke//Rou6fzk+zyh6cegYR8YuwxcXO22PZV0ivd3vs/SqKVkW7PttvFz92Nc63GMaT0GHzefsroVERERERERp1MAVwC/rKhzicxee5hl209isfOnoKnpJMvcn8HXlEZCpwcIuPW/RV4v5lIM7+18j+VHlmOxWuy2CfQIZHyb8dzZ8k683bzL4jZEREREREScSgFcAbzYjl5I5t3IwyzedoKsvyTxgebfec/9TQDm13uBPrdOJDzUt8jrRSdE896O9/gh+ges2P/jFeQZxH1t72NUi1F4unqWyX2IiIiIiIg4gwK4AniJnbiYwnvrDvPlHyfIyM4bwZ7p+j8ecF1OktWTYZkv0qLtNUyPCKdl7aJ/vlEXo5izYw6rjq1y2CbEK4SJ7SZye/PbcXdxL7N7ERERERERqSgK4ArgpXYmIY256w/zv83HSc+y4EI2n7r9h54ue4my1OXWjBdJxoubWtdiekQz2tUvusr5gbgDzN4+m7Uxax22qeVdi8ntJzM8fDhuLm5lfUsiIiIiIiLlRgFcAfyKnU9M58ONR1j46zG8M+L4zuPv1DHFsSK7Gw9mPgyYAOjfIoRpEc3o0rBGkdfbE7uH2X/OZsPJDQ7b1POtx/3t72do06G4mu0XfRMREREREalMFMAVwMvMxeQMPt4UzZ+bVvIxz+FuyualzLv4IHtIgXa9w4OZHtGMHk2Ci7zejvM7mP3nbH49/avDNg38GvBAhwcY3HgwLmaXMrkPERERERGR8qAArgBe5hJSM9n29Sv0P/xfsq0mxmT+jV8tbQq169YoiOnXh9MnvCYmk8nh9bae3crs7bP548wfDts0DmjMgx0e5KZGN2E2mcvkPkRERERERMqSArgCePmwWslcPBm33V8Shz+D017iDPZHvDuGBTI9IpyIlqFFBvHNpzcz689ZbD+/3WGb8MBwpnacSkSDCAVxERERERGpVBTAFcDLT0YKfHQTnN3FuYD2DEv+G6eS7O/7DdCmrj/TI8K5qXVtzGb7QdxqtfLLqV+YvX02uy7scnitlkEtmdpxKn3r9y0y1IuIiIiIiFQUBXAF8PIVdwTe7wdpCWR1mcjnNafzbuRhTiWkOTylRS0/pkaEc3O7OrgUEcTXn1jP7O2z2Re3z+G12ga3ZWqnqfSu21tBXEREREREnEoBXAG8/B38Cf43yjgePpeMNqP4ZtsJ5kQe5nhcisPTmtT04cH+4QzrWBdXF/vTya1WK2uOr2HW9llExUc5vFbHkI5M7TSV7rW7K4iLiIiIiIhTKIArgFeMtf+Gdf8FVy+YuApqtyMr28Ky7aeYHRnFkfPJDk8NC/LiwX7hjOhcH3dX+0HcYrWw8thK5myfQ3RCtMNrdanVhWkdp3FN7Wuu+JZERERERERKQgFcAbxiWLKNUfCon6FGI5gcCV7GfuDZFisrdp1m1pooDpxNdHiJugGePNCvKaOuCcPTzf6WY9mWbFZEr+C9He9xPPG4w2v1qNODqR2n0jG04xXclIiIiIiISPEpgCuAV5yUOHi/L8Qfh2YD4M4vwJw3om2xWFm59yzvrDnEnlOXHF4mxM+D+69rwl3dG+Dt7mq3TZYli+8Of8fcnXM5mXTS4bX61OvDtI7TaFOz8DZpIiIiIiIiZUkBXAG8Yp3ablRGz06H/n+Hvk8WamK1Wll74Bxvr45ie0y8w0sF+7hz37WNGduzEb4e9oN4ZnYmSw8v5f2d73Mm+YzDa/UL68fUjlNpGdSypHckIiIiIiJSLArgCuAV789PYdlUwAR3fw3NbrDbzGq1sikqlrfXHOL36DiHlwvwcuPe3o0Z37sRAV5udttkZGew+NBiPtj5AedTzzu81o0Nb+TBDg8SXiO8RLckIiIiIiJyOQrgCuDO8d0M2DoPPAPh/nXGuvAibD4SyztrotgYdcFhGz8PV8b2ash9fZoQ5ONut01aVhpfHfyKD3d9SFya/VBvwsTARgOZ0nEKjQMaF/OGREREREREiqYArgDuHFnp8PFAOLUN6nSAe38CN6/Lnrbt+EVmrYlizf5zDtt4u7swpkdDJl7bmFA/T7ttUjJT+OLAF8zbPY/49Hi7bcwmM0OaDOH+9vfTwL9BsW5LRERERETEEQVwBXDniY8xirKlxELHMXDrLCjmHt27TybwzppD/LTnrMM2Hq5m7uzWgAf6NqV2gP0gnpyZzGf7PmP+nvkkZtivwO5icuHW8FuZ3H4y9XzrFat/IiIiIiIif6UArgDuXEciYeFwsFpgyJtwzYQSnb7/zCVmrYni+12ncfQn1N3FzMhr6jOlX1Pq1/C22yYxI5GFexeycO9CkjKT7LZxNbtyW/htTGo/ido+tUvUTxEREREREQVwBXDn2/A6rH4BXNxhwo9Qv0uJL3H4fBKz10axbPspsi32/6i6mk3c1rkeD/YLp1FNH7ttEtIT+GTPJ3y671NSs1LttnEzuzGy+UgmtptIiHdIifsqIiIiIiJXJwVwBXDns1ph0RjYvxz86xtF2XxqlupSx2KTeTfyMIu3nSAz2/4fWbMJbulQl2kR4YSH+tltE5cWx/zd8/l8/+ekZafZbePh4sHoFqO5t+29BHsFl6q/IiIiIiJy9VAAVwCvHNIS4P3+EHcYGveFe5aA2aXUlzsZn8p7kYdZtCWGjCyL3TYmEwxuW4dpEeG0qmP/z8CF1At8tOsjvjzwJRmWDLttvFy9uKvlXYxvM55Az8BS91lERERERKo3BXAF8Mrj7F748HrITIE+j8INz135JS+l8f76I3y2+RhpmfaDOMCNrWsxPSKc9vUD7V8n+Swf7vqQrw99TZYly24bHzcfxrQaw9g2Y/F3158pEREREREpqMoH8JSUFFq1asXIkSN59dVXi32eAngltetrWHyfcTz6M2g1pEwueyEpnQ83RLPw16MkZ2Q7bNe3eQgPXR9Ol4ZBdl8/nXSauTvnsixqGVlW+0Hcz82PsW3GMqbVGHzdfcuk/yIiIiIiUvVV+QD+97//naioKMLCwhTAq4sfn4bf5oCHP0xaCzXDy+zSF5MzmLcpmnm/HCUxzX6ABujVNJjpEc3o0SQIk52t0WISY5i7Yy7fHfkOi9X+yHqARwDj24znrpZ34e1mv/q6iIiIiIhcPap0AD906BAzZ85k6NCh7N69WwG8usjOhE+GwvFfIaQVTFoN7varlpdWQmomC345ykeboolPyXTYrmujGkyLaMZ1zWraDeJHE47y3s73WHFkBVbs/xUJ8gzi3rb3MqrFKLxcvcrsHkREREREpGopbg41l/Ubr1+/nqFDh1K3bl1MJhNLly4t1Gb27Nk0atQIT09Punfvzu+//17g9ccff5z//Oc/Zd01cTYXNxg5H3xrwfl98O10HG7yXUoBXm5Mv74ZG5+K4OlBLanp62633R9HLzLu498ZNucXft57lr9+DtUooBEvX/syS25dwoBGA+xeIy4tjle3vMrgbwbz2b7PSM9OL9N7ERERERGR6qXMA3hycjIdOnRg9uzZdl9ftGgRjz76KM899xzbtm2jQ4cODBgwgHPnzgGwbNkymjdvTvPmzcu6a1IZ+NWGkZ+A2RV2L4bN75XL2/h6uHJ/36ZseDKCZ4e0ppa/h912O2LimbhgCze/vZEfdp3G8pe9xpsGNuXVvq/y9dCvub7B9XavcSH1Ai///jI3f3MzXx74ksxsxyPvIiIiIiJy9SrXKegmk4klS5YwbNiw3Oe6d+9O165dmTVrFgAWi4WwsDCmT5/OzJkzefrpp/n0009xcXEhKSmJzMxMHnvsMZ599lm775Genk56et7I46VLlwgLC9MU9Mrut3fhx5lGEB/3HTTsVa5vl5aZzVdbT/Be5GFOxqc6bNcs1JdpEeEMaV8XF3Phqel7Y/cyZ/sc1p1Y5/AadX3qcn+H+xnadChuZrcy6b+IiIiIiFRelWIN+F8DeEZGBt7e3nz99dcFQvm4ceOIj49n2bJlBc6fP3/+ZdeAP//887zwwguFnlcAr+SsVqMq+u7FxpT0+9cbo+PlLCPLwtI/TzI7MopjsSkO2zWu6cOD/ZoyrFM93FwKTxTZeX4nc7bPYdOpTQ6vEeYXxgMdHmBw48G4ml3LpP8iIiIiIlL5OG0NeFEuXLhAdnY2tWrVKvB8rVq1OHPmTKmu+fTTT5OQkJD7FRMTUxZdlfJmMsEt70Boa0g6C1+NN4q0lTN3VzOjuoax+tG+vDG6A01D7BeBi76QzBNf76T/q5H8b/Nx0rMKbnHWPqQ97934Hp8M/ITutbvbvUZMYgx/3/h3hi8bzoojK8i2ON4mTUREREREqr8KDeAlNX78+MtWQPfw8MDf37/Al1QR7j4waqGxLdnxX2GV/WUG5cHVxczwTvVZ+UhfZt3ViZa1/ey2O3Exlb8t2UW/VyKZvymatMyCIbpzrc58OOBDPh7wMZ1DO9u9xtFLR3lqw1Pc/t3trDy60uH2ZiIiIiIiUr1VaACvWbMmLi4unD17tsDzZ8+epXbt8p9+LJVQzXAYnlOI7bc5sOvrCn17F7OJIe3rsuKha3n/ni60qxdgt93phDSe/24v1/7fWj5Yf4SUjIJ7jXet3ZX5A+cz94a5tK/Z3u41ouKjeGzdY4z6bhRrjq8pVHldRERERESqtwoN4O7u7nTp0oXVq1fnPmexWFi9ejU9e/asyK5IZdLyZujzqHH87XQ4t6/Cu2A2m7ipTW2+ndabeRO60rlBoN125xPTeWnFPvr8dy2z10aRmJY3bd5kMtGrXi8+Hfwps6+fTaugVnavceDiAR5e+zB3fH8H60+sVxAXEREREblKlHkRtqSkJKKiogDo1KkTr7/+Ov379ycoKIgGDRqwaNEixo0bx9y5c+nWrRtvvvkmX375Jfv37y+0Nrw0irv4XSoZSzZ8ehsciYTgcJi0Bjztj0ZXBKvVyi+HY3l79SE2R8c5bOfv6cqE3o25t3djArwLVjy3Wq2siVnDnO1zOHjxoMNrtA9pz7SO0+hRpwcmU+HK6yIiIiIiUrk5rQp6ZGQk/fv3L/T8uHHjmD9/PgCzZs3ilVde4cyZM3Ts2JG3336b7t3tF7IqKQXwKiz5AsztC5dOQMshxvpws/PLFPweHcc7aw6x4dAFh218PVwZ27MhE69tQpCPe4HXLFYLq46tYs72ORxJOOLwGl1qdWFqx6l0rd21zPouIiIiIiLlr1JsQ+YMCuBV3ImtMG8gZGfA9c/BtY86u0e5/jx+kVlroli9/5zDNl5uLozp0YBJ1zUh1M+zwGvZlmx+PPoj7+54l2OXjjm8Rvc63ZnWcRodQzuWVddFRERERKQcKYArgFddW+bB8hlgMsOYb6Bp4RkVzrT7ZAKz1kTx4x7HW+d5uJq5s1sD7u/bhDoBXgVey7Jk8f2R73lvx3ucSDrh8Bq96/VmaoeptAtpV2Z9FxERERGRsqcArgBedVmt8O00+PNT8A6GyesgMMzZvSrkwJlEZq2NYvnOUzj6W+TmYuL2LmE82K8pYUHeBV7LtGTybdS3zN05l9PJpx2+T7/6/Xiw44O0CrZf1E1ERERERJxLAVwBvGrLTIWPB8DpHVC3M9z7I7h6OLtXdh0+n8SctYdZuv0k2Rb7f51czCaGd6rH1P7hNK7pU+C1jOwMvjn0DR/s/IBzqY6nt9/Q4AamdJxC8xrNy7T/IiIiIiJyZRTAFcCrvovH4P2+kHoRukyAoW86u0dFOh6bwrvrovh66wkys+3/tTKbYGiHukzrH06zWn4FXkvPTuerA1/x4a4PiU2LtXu+CRMDGg1gSscpNAloUub3ICIiIiIiJacArgBePRz6GT67HbDCrbOh0xhn9+iyTsanMnfdYb74I4aMLIvdNiYTDGxTm2kR4bSpW3C7tdSsVBbtX8THuz/mYvpFu+ebTWYGNx7MlA5TaODfoMzvQUREREREik8BXAG8+lj3f7D2JXDxgPtWQt2Ozu5RsZy7lMb764/w2ebjpGZmO2x3Q6tQpkc0o0NYYIHnkzOT+Xz/58zbPY9LGZfsnuticmFo06Hc3/5+6vvVL8vui4iIiIhIMSmAK4BXHxYLfH4HHPoJAhsYRdm8g5zdq2KLTUrnw43RLPjlKMkZjoP4dc1DeCginGsaFby3xIxEPt33KQv2LCApM8nuua4mV4Y3G87k9pOp7VO7TPsvIiIiIiJFUwBXAK9eUi/C+/3g4lFoej3c/RWYXZzdqxKJT8ng401HmbcpmsS0LIftejQJ4qGIZvRsGozJZMp9PiE9gQV7F/Dp3k9JyUqxe66b2Y3bm9/OxHYTCfUOLfN7EBERERGRwhTAFcCrnzO74MMbISsV+j4F/f/m7B6VyqW0TBb+eowPNxzhYkqmw3ZdGtZgekQ4fZuHFAjiF9MuMn/PfD7f/zmpWal2z/Vw8WBUi1Hc2/ZeanrVLPN7EBERERGRPArgCuDV045FsGSycXznImgx0Ln9uQLJ6Vl8tvkY76+P5kJSusN27esHMD2iGTe0Ci0QxC+kXuDj3R/z5YEvSc+2f76Xqxd3tLyDCW0mUMOzRpnfg4iIiIiIKIArgFdn3z8Of3wAngEwORKCqvZ2XGmZ2Xz++3HmrjvCmUtpDtu1rO3H9IhmDGpbG7M5L4ifSznHh7s+5OuDX5NpsT+i7u3qzd2t7mZcm3EEeATYbSMiIiIiIqWjAK4AXn1lZcD8wXDiD6jVzqiM7u7t7F5dsfSsbL7eeoI5aw9zMt7+1HKA8FBfpvUPZ0j7Ori6mHOfP510mg92fcCSQ0vIstpfY+7r5svY1mMZ03oMfu5+dtuIiIiIiEjJKIArgFdvCSfh/b6QfB7a3wHD3zM2164GMrMtLPnzJHPWRnE01n6xNYBGwd482D+c4Z3q4ZYviJ9IPMH7O9/n28Pfkm21X3Xd392fCW0ncFfLu/B2q/ofXoiIiIiIOJMCuAJ49Re9ARbcCtZsuPk16DrR2T0qU1nZFpbvPM2stVFEnbO//RhAvUAvpvRryshr6uPhmlcZ/tilY8zdMZfvo7/HYrXYPbeGRw3ubXsvo1uOxsvVq8zvQURERETkaqAArgB+ddj0Nqx6BsxuMGEFhHVzdo/KnMVi5cc9Z3hnTRT7Tl9y2K62vyf3923Cnd0a4OmWF8SPxB/h3R3v8tPRn7Bi/697sGcwE9tNZGSLkXi4eJT5PYiIiIiIVGcK4ArgVwerFb4aB3uXgV8duH89+FbP/a+tVis/7zvHO2sOsfNEgsN2NX09mHxdY+7u3hAfD9fc5w9ePMi729/l5+M/Ozw31CuUSe0ncVuz23B3cS/T/ouIiIiIVFcK4ArgV4/0RPggAi4chPpdYcRHUKOhs3tVbqxWK+sOnuedNVFsPXbRYbsa3m5MvLYJ9/RsiL+nW+7z+2L3MWf7HCJPRDo8t45PHSa3n8yt4bfiZnZz2E5ERERERBTAFcCvNucPwAfXQ0YiuHpB/6ehx4PgUn3Do9Vq5dfDsby95hC/HYlz2M7f05XxvRtzb+9GBHrnjWrvOr+L2Ttms+nkJofn1vOtxwMdHmBIkyG4ml0dthMRERERuZopgCuAX33OH4TlM+BYTqCs1RaGvAlhXZ3Zqwrxx9E43lkTxfqD5x228fVw5Z6eDZnYpzHBvnnrvP889yezt89m8+nNDs9t6N+QBzo8wKBGg3AxuzhsJyIiIiJyNVIAVwC/OlmtsP0zWPkPSL0ImOCae+H6Z8Er0Nm9K3fbY+KZteYQP+8757CNl5sLd3dvwOTrmhDq75n7/B9n/mDWn7PYdm6bw3ObBjRlSscp3NjwRswms8N2IiIiIiJXEwVwBfCrW/IFWPkM7Pif8b1vLRj4MrQZXm32Cy/KnlMJzFoTxQ+7zzhs4+5q5o6uYTzQtyl1A40tyKxWK7+d/o1Z22ex8/xOh+c2r9GcBzs+SERYBKaq8PPMTAU3bbMmIiIiIuVDAVwBXACi18PyRyA2yvg+/Ea4+VWo0cip3aooB88mMnttFN/tOIXFwd90NxcTt3epz5S+4TQI9gaMIL7x5EZmb5/Nntg9Dq/fKqgV0zpN49p611beIP7HR7DicRj+PrQf6ezeiIiIiEg1pACuAC42mWmw8Q3Y+DpkZxhF2vo9BT2nVesibfkdOZ/EnMjDLPnzJNkOkriL2cSwjvV4sH9Tmob4AkYQj4yJZPb22Ry4eMDh9dvXbM/UjlPpWbdn5Qvin42EQyuNWRAP/QnuPs7ukYiIiIhUMwrgCuDyVxcOGaPhRzcY34e2gaFvQlg3p3arIsXEpTAn8jBfb40hM9v+X32zCW5uX5dp/cNpUdsPAIvVwurjq5mzfQ5R8VEOr985tDNTO06lW51K9DN9sz3EHzOOI56B6x53bn9EREREpNpRAFcAF3usVtjxOfz0d0iNwyjSNgGuf+6qKNJmczohlbnrjvD578dJz7I4bDewTW2mRYTTtl4AANmWbH46+hPv7niXo5eOOjyvW+1uTOs0jU6hncq66yWTmQov1QFy/pnz8IeHd4B3kFO7JSIiIiLViwK4ArgUJTkWVj1jVEwH8AmFQS9Dm9uuiiJtNucS0/hg/RE+/e04qZnZDttd3zKUaRHhdGpQA4AsSxYrolfw7vZ3OZF0wuF5ver2YmrHqbQPaV/mfS+WM7vgvT7gGQgBYXB2l7H0YMBLzumPiIiIiFRLCuAK4FIc0RtyirQdMr5vej3c/BoENXZuvypYbFI6H22MZsGvx0hKz3LY7tpmNZke0YxujY0R5ExLJt8d/o65O+ZyKvmUw/Ouq38dUztOpXVw6zLve5F2fQ2L74Ow7nDdE/DZ7eDiAdO3QmBYxfZFRERERKotBXAFcCmurHTY+CZseDWnSJsn9H0Kek2/aoq02SSkZDLvl2g+3hjNpTTHQbx74yAeur4ZvZoGYzKZyMzOZEnUEubunMu5FMd7kEeERfBgxwdpEdSiPLpf2Nr/wLqXodMYuGUWzB8CxzZCxzEwbHbF9EFEREREqj0FcAVwKakLUfD9I8bWZQAhrYwibQ16OLVbzpCYlsmCX4/x0cZo4pIzHLbr3CCQ6RHN6NciBJPJRHp2Ol8f/JoPd33IhdQLDs+7qeFNPNjxQZoGNi2P7uf5ajzsWQI3vgi9H4KYP+CjG8Bkhim/QmjL8n1/EREREbkqKIArgEtpWK2wcxH89DdIiTWe6zIebngevGo4s2dOkZKRxWe/HWfu+iNcSEp32K5dvQCmRYRzY6tamM0mUrNS+fLAl3y8+2Pi0uLsnmPCxOAmg5nSYQoN/RuWzw282xvO7oY7F0GLgcZzX9wN+5dDi5vhzv+Vz/uKiIiIyFVFAVwBXK5ESpxRpO3PT43vfUJg4MvQdsRVVaTNJi0zmy9+P857645w5lKaw3Yta/sxLSKcQW3r4GI2kZKZwv/2/4/5e+aTkJ5g9xwXkwtDmgzh/g73E+ZXhuuyLdlGBfTsdGP/76AmxvPnD8CcHmC1wL0roUH3sntPEREREbkqKYArgEtZOLoJls+ACweN75tG5BRpa+LUbjlLelY2i7eeZE5kFCcupjps1zTEh2kR4QxtXxdXFzNJGUl8uu9TFuxZQGJmot1zXE2u3Bp+K/e3v586vnWuvLNxR+DtTkbRtb+fBrNL3mvLpsGfC6FBL5iw4qr8UEVEREREyo4CuAK4lJWsdNj0Nqx/xRhNdfU0Kmr3eghc3Z3dO6fIzLaw9M+TzIk8TPSFZIftGgZ7M7VfOMM61cPd1cyljEss2LOAT/d9SnKm/fNcza6MaDaCSe0mUcunVuk7efAn+N8oCG0DD/5S8LWEk/BOZ8hKg7u+hOYDSv8+IiIiInLVUwBXAJeyFnvY2LIsep3xfUhLGPImNOzp1G45U7bFyvKdp5i1JopD55IctqsX6MUD/Zoy6pr6eLi6EJ8Wz/w98/nf/v+RmmV/JN3d7M6oFqO4r9191PSqWfLObXrbWEbQZjiMnF/49ZXPwC9vGwH9gQ0FR8hFREREREpAAVwBXMqD1Qq7voIfn4aUnCrfnccZRdq8g5zaNWeyWKz8tOcMb6+JYt/pSw7b1fL34P7rmnJntwZ4ubsQmxrLx7s/ZtGBRaRn2y/y5uniyZ0t72R82/EEeZbgZ2ybZt73Kej/t8Kvp8TB2x0hLQGGz4UOdxT/2iIiIiIi+SiAK4BLeUqJg5+fg20LjO99QmDAf6Dd7Vf1emKr1crqfed4Z80hdpywX3QNoKavO5OubcKYHg3x8XDlfMp5Ptz1IV8d/IpMS6bdc7xcvRjTagzj2owjwCPg8p356CaI2QwjPjJ+L/ZseB1WvwABDWD6FnD1KM5tioiIiIgUoACuAC4V4dgv8N0MuHDA+L5JP7j5dQgu5/2tKzmr1cr6Qxd4Z/Uhthy76LBdoLcb9/VuzLjejfD3dONM8hk+2PkB30R9Q5Yly+45vm6+3NP6Hu5pfQ9+7n6OOgD/bQRp8XD/BqjT3n67jBRjLXjiaaPKfY8pJbtREREREREUwBXApeJkZRhride/YhT1cvGAvk9Ar4ev2iJtNlarld+OxPHOmkP8cjjWYTs/T1cm9GrEvX0aE+jtzsmkk7y/832WRS0j25pt/xx3P8a3Gc/dre7Gx82n4ItJ5+HVcMBkVEB383LcyS3zjEr33sHw0Hbw1L8bIiIiIlIyCuAK4FLRYg/D94/BkbXG9zVbwNA3oWEvp3arsth6LI63V0ex7uB5h2183F24p2cjJl7bmJq+HsRciuG9ne+x/MhyLFaL3XMCPQKZ0HYCd7S4A283b+PJoxth/s0Q2BBm7Cy6Y9lZMKc7xEY5Xi8uIiIiIlIEBXAFcHEGqxV2L4YfZ0JyTtDsPBZueOGqLtKW346YeGatjWLV3rMO23i6mbmrW0Pu79uEWv6eRCdE8+6Od/kx+kes2P8nK8gziIntJjKy+Ug8t//PqFgffiOM+fryndqzFL4aB24+8PB28A0t3c2JiIiIyFVJAVwBXJwp9SL8/DxsnW98710TBvwb2o+6qou05bf31CVmr41ixe7TOPpXyN3VzOhrwnigX1PqBXpx6OIh3t3xLquOrXJ43VCvUCa6hDBi1w+495wGA166fGesVvggAk5tg26TYfArpbwrEREREbkaKYArgEtlcPw3o0jb+X3G9437wpA3rvoibfkdOpvI7LVRfLvjFBYH/xq5uZgY0bk+U/o1pWGwD/vj9jN7+2wiYyIdXrd2VhaTGwxiWMR/cXNxu3xHjqyDBbeA2Q2m/QFBjUt1PyIiIiJy9VEAVwCXyiIrA359B9b9X16RtuuegN4PadurfKIvJPNuZBTfbDtJloMk7mI2cWuHujzYP5zwUF/2XNjDrO2z2Hhyo8Pr1vOtx/3t72do06G4ml2L7sTC4XB4DbQbCSM+vJLbEREREZGriAK4ArhUNnHRRpG2w6uN72s2hyFvQqPeTu1WZRMTl8J76w7z1ZYTZGTbL7xmMsHN7eowLSKclrX92X5uO7O3z+a30785vG4DvwY80OEBBjcejIvZxX6j0ztg7nXGcVHbl4mIiIiI5KMArgAulVFukbanIfmc8VynMXDjiyrS9henE1KZu+4In/9+nPQs+0Ec4KbWtXjo+ma0rRfAljNbmP37f9lycb/D9k0CmjCl4xRuangTZpO5cIOv7zV+R+E3wJjFZXErIiIiIlLNKYArgEtllhoPq1+ALR8b33sHw00vQYc7VKTtL84lpvHhhmg+/e0YKRn29wQH6N8ihOnXN6PTxZVs/mE6s2qHscOU4bB9sxrNmNphKhENIjDl/5nHHobZ3cCSBeOWQ+Nry/J2RERERKQaUgBXAJeq4PhmWD4Dzu01vm98Hdz8BtQMd2q3KqO45Aw+2niET345RlJ6lsN2b4YsZ1ji/7B2Gsuma0Yz+8/Z7I7d7bB9q6BWTO04levqX5cXxL9/DP74EOp1gYmr9aGIiIiIiBSpuDnUzvxLEakwDbrD/evhhufB1Qui18O7PWHHImf3rNIJ8nHniQEt2fRUBI/c0JwAL/uVzd3jowBYEOUJKS35bPBnvBPxDi2DWtptvy9uH9PWTOPuFXez6eQmrFYrXPckuHnDya2w77tyuycRERERubpoBFyksrh41Bh5jfoZXNzhvpVQt5Oze1VpJaZlsvC3Y3y4IZq45Lyp5ivdn6C5+STjM54k0tKRTg0CmR4RTt/mNVkbs5bZ22cTlRPS7ekU2ompHafSfd8qWP8KBDeDB38Dl8tUUBcRERGRq5amoCuAS1VktcIXd8OB7yGwAUxep+Jsl5GSkcX/Nh9n7vojxCWmsM9jPO6mbPqkv8UJa0huu7b1/JnWvxk3tArh5+OrmLNjDtEJ0Q6v2zW0E1P3baLLpQsw9G3oMq4ibkdEREREqiAFcAVwqapS4+H9fnAxGpoNgDu/ALNWi1xOWmY2P6zbwPCNt5Jqdad1+sdY7ayyaVHLj2kR4QxoE8pPx37g3R3vEpMY4/C6PVNTmZruRocHt4GbV3negoiIiIhUUVoDLlJVeQXCqAXg6gmHfoKNrzu7R1WCp5sLw+unAJAW0IT6QT522x04m8j0z/9k4FsbyYjvxDdDl/LPXv+knm89u+1/9fJiTKArDy69jT2xe8qt/yIiIiJS/SmAi1RGddrD4FeN47UvwZF1zu1PVXHhAAA1GrRlzWP9eHVkB5rUtB/Ej5xP5rGvdnDTG5tIv9iFxUOW8UyPZ6jlXctu+w0pJ7hj+R08tOYhDsQdKLdbEBEREZHqSwFcpLLqfA90HANWCyy+Dy6dcnaPKr8Lh4zHms1xczFze5f6rHq0L2/f2YnmtXztnnI8LoWZ3+wygnhcN74Z+h1Pd3uaEK8Qu+3Xxqzl9u9u59HIR4m66LiYm4iIiIjIX2kNuEhllpkKH94IZ3dBWA8Yvxxc7G+/JcAH18PJLTByPrQZXuAli8XKyr1neGdNFHtOXXJ4iVA/DyZf14QRXWrxXfRiPtr9EXFpcXbbmjAxqPEgHujwAI0DGhd8MSsdEk9Dwknjw5NLJ4zHlDjoNtnYgk5EREREqgUVYVMAl+oi9rBRlC39EvScBgNecnaPKierFV5uYPycpvwKtVo7aGZl7YFzvL06iu0x8Q4vF+zjzsRrm3B711C+O/Il87a+TbzJYretGRNDPOrwgNWPsEvnjaCdfM5xX+t3hYk/l+TuRERERKQSUwBXAJfqZN9yWHS3cTxqAbS+1bn9qYwSz8BrLcBkhr+fAVePIptbrVY2Rl3gndVR/H7U/gg3QKC3G/f2bszoesdY+uMEPvH3J9HF/uodF6uVYUnJTI5PoG5WNrh4QEA98M/58qkJv84y+vhktFFwrzrb9DZcOgkD/g1mF2f3RkRERKTcKIArgEt1s/IZ+OVtcPeDyZFQM9zZPapcjqyDBbdAUBN46M8SnfrbkVjeWXOITVGxDtv4ebjydfB71Ilfy0J/fxYG+JHsYHs4V5MLIxoPYWKnqdT2rVPwxVld4cJBGLUQWt9Son5WKemJ8J8wwGpspddikLN7JCIiIlJutA2ZSHVz/XPQoBdkJMKXYyEjxdk9qlwuHDQeazYv8ak9mgTz2cQeLJ7Si34t7BdfS0zPYsip8YzJeoXMxl/w2dA1TGw3ES/XwnuDZ1mzWXRkGTcvGcLLv7/M+ZTzeS826W88Hl5T4n5WKae2Azmf7/7xkTN7IiIiIlJpKICLVBUurjByHviEwrk98P1jxrpnMVxBALfp0rAG8yd049tpvbmpdeHtyDJxZWdGXd789SI3v7WN+JM3sODGZYxvMx5PF89C7TMsGXy27zMGfzOYV/941Sjm1jTCePHI2lL3s0o4tS3vOOpnuHjUaV0RERERqSwUwEWqEr/acPvHxhriHf+DbZ84u0eVx/mcvblDWlzxpdrXD+T9sdfww8PXcnP7OphMhdukZVqYt+kot7y1nbiYm/jo+m8Y02oM7mb3wm2z0/hk7ycMXDyQtxJ2Ee/qbgTSuCNX3NdK62ROADeZAStsne/M3oiIiIhUCgrgIlVN42vh+meN4xVP5kz1lfx7gJeVVnX8mX1XZ1Y9ch3DO9XDbCeIZ2Rb+GzzcW57Zxexxwcyt9/XjG4xGleza6G2qVmpfLhvAQPr12F2YACXDv5QZn2tdGwj4F0nGY/bFhpbs4mIiIhcxRTARaqiXg9D80GQnQ5f3gOpF53dI+dKuwSJp4zjms3K/PLhoX68Mbojax7rx+hrwnC1k8SzLFa+3HKCUXP2EntsCLOv+5IRzUbgaiocxJNNVt6rEcDAAx8wd8dckjKSyrzPTpV8AeKPG8f9ZoJfHUi5APu+c26/RERERJxMAVykKjKbYfi7ENjQCDpLHgCL/T2qrwqxOaPfPqHgVaPc3qZRTR/+e3t7Ip/ox5geDXC3sx2ZxQpL/jzJ3e8d5PzRW3izz/+4pektmE2F2yaSzaztsxj4zUA+2vURKZnVpLDeqZwq9MHNwDsIOo8zvt/ysfP6JCIiIlIJKICLVFVeNWD0QmOv6YM/wqY3nd0j5zmfU4CtDNZ/F0f9Gt78a1g71j/Znwm9G+HhWvifUqsVvt95mnHvH+H8keG80uNTBjcejInCo+cJ6Qm8ue1NBn0ziE/2fEJaVlpF3Eb5sa3/rtfZeOwyDkwucGwTnNvnvH6JiIiIOJkCuEhVVqcDDH7FOF7zIkSvd25/nCW3AnrZTz8vSu0AT54b2oaNT0Vwf98meLu72G23cu9ZJn98nLOHR/CvrvO5qeFNdtvFpcXx6pZXGfTNID7b9xnp2VV0zfTJrcZj3ZwA7l83bx/wLfOc0ycRERGRSkABXKSq6zwWOt4NVgt8fS9cOu3sHlW83ABeMSPgfxXi58HTg1qx6akIpkeE4+dReN03QOSB8zy04DRnokbyRvBIIpLtTzm/kHqBl39/mZu/uZkvD3xJZnZmeXa/bFmteQXYbCPgANfcazzu+Bwykiu+XyIiIiKVgAK4SFVnMsHgV6FWW0g+D19PgKoU2MpC7hZkZVcBvTRq+Ljz2E0t2DgzgkdvbE6gt5vddpuiYnluYwPeOneBL06d47o6Pe22O5tylhd/e5GhS4ey5NASMi1V4PeacML4c2h2hdrt8p5v0h9qNIb0S7Dra+f1T0RERMSJFMBFqgN3bxi1ADz84fivsPoFZ/eo4mRnwsVo47gMtyC7EgFebjx0fTM2PhXBzEEtCfYpvDf4SUI4bKlDm/Q06u9uxozWb9OrTi+71zuZdJJnf3mWW5feyneHvyPbkl3et1B6ttHv0Fbg5pX3vNmcNwquYmwiIiJylVIAF6kugpvCrbON41/euXq2fIo7ApYscPMB/3rO7k0Bvh6uPNC3KRufiuCZIa0J9fMo8Pp6S3sAwuJ+5cXFKZzYP4YpzV/jmlpd7V4vJjGGv238G8OWDeOH6B+wWCth5XtbAba6nQu/1vFuo2jg6e1568RFREREriIK4CLVSetboOc043jpgxB72Ln9qQj5C7CZClcYrwy83F24r09j1j/ZnxdvbUPdAE8ANlraAnCteRcAe05d4v+WZXJy3zjubfpfOoZ0snu9o5eO8uT6Jxnx7QhWHVtVuYK4vfXfNj7B0GaYcfyHRsFFRETk6qMALlLd3PA8NOhprLX9cixkVJO9pR3JXf/tnAJsJeHp5sI9PRsR+UR//juiHScCriHT6kJD8zkamM7mtjt4Nom3lls5sXcCYxr+i7bBbe1eLyo+ikcjH2X08tGsPb4Wq9VaUbdin8UCp7Ybx/ZGwAGuuc943L0YUi9WSLdEREREKgsFcJHqxsUNbp8HPiFwdjeseNyoTF1d5Y6AV47138Xh7mpmdNcGfP/4QOJrGqPctlHw/KIvpPDuj67E7J3IyPrP0aJGS7vX2x+3n4fWPsSd39/JhhMbnBfE4w4bH/y4ehprwO0J6wahbSArFXZ8UbH9ExEREXEyBXCR6si/Dtz+MZjMsP0z+HOhs3tUfqpgALdxdTET0mEgANMaHKdFLT+77U7EpfHxKi9O7LmfW+v8jfBA+/ud74ndw4OrH+SeH+7h11O/VnwQt63/rt3e+CDIHpMJuuYrxnalfTy8Bt7uBNHrr+w6IiIiIhVAAVykump8HUT8wzj+/nE4vcO5/SkPVitcOGQcV4Ep6HY1iQCgTtzv/DC9J++N6UKbuv52m55JSOfTNf7E7H6AQaFP0Mi/sd12O87vYPKqyUz4aQJbzmwpt64XUtT67/zajwZ3X+PDk6Mbr+w9d31tFOK7WooOioiISJWmAC5SnfV+BJoPhOx0Yz14aryze1S2Lp2CjCQwuRh7TFdFdTuCZyCkX8J8+k8Gtq3N8ul9+Hj8NXQMC7R7yoXETL5cF8yJ3VO5PngGYb4N7LbbenYrE36awKSVk9h+bnt53UGeoiqg5+fhB+1HGcdbPrqy94zL2YIu6WzR7UREREQqAQVwkerMbIbh70FgA7h4FJZOMQplVRcXcgqwBTUB18J7bVcJZhdo0s84PrwGAJPJRETLWix5sBef3tedbo2D7J56MTmLpRtrc2L3NK4NnEodH/vbsP12+jfu+eEepvw8hd0XdpfHXRj7sZ/ZaRzX63L59rY9wfd9B4lXEJ5te8AnnSv9NUREREQqiAK4SHXnVQNGLQAXdziwAn55y9k9Kjvnc9Z/V9Xp5zZNjWnotgBuYzKZ6NOsJl/e35NFk3vQJ7ym3dMvpVpY8WsYp3c9RA//+wn1qmW33caTG7nz+zuZvmY6++P2l+ktcG4fZKWBR4Dxgcjl1G4H9bsZe7iXtkZBZioknjaONQIuIiIiVYACuMjVoG4nGPR/xvHqf0L0Buf2p6zk3wO8Kmva33g8scXhMoHuTYL5dGJ3vnmwFxEtQ+22SUy3smpzY07vnsE1vvcR7Blit11kTCQjvxvJo5GPcujioTK4AfLWf9ftaMy8KI6uOVuSbZ0PluySv+fFo3nHGgEXERGRKkABXORq0WU8dLgTrBb4+l5IPOPsHl253ABexUfAAxtAcDhYs+Fo0R+OdG5Qg4/Hd2X59D4MaGN/pDslw8TaP5pxevcM2nuNJdDD/hT2VcdWMeLbETy57kmOJBy5sns4WcwCbPm1HgaeAZAQk7d/eEnY1n+DUQsgPank1xARERGpQArgIlcLkwluft3Ygzn5nBHCs7Oc3asrU4W3ICskdxr62mI1b1svgLn3XMOPM65lSPs6mEyF26RnurBpW2vO7H6EVh534u8WUKiNFSs/HP2B4cuG87cNf+P4peOl6/+pYhZgy8/N09iyDOB8KabEX4wu+H2yRsFFRESkclMAF7mauHsb68Hd/eDYJlj9grN7VHqp8Xnrfqv6FHRwuA78clrW9mfWXZ35+dG+3Na5Hi7mwkk8M8uN37d34Myexwh3HYmvW+H9xi1WC98d+Y5blt7CM5ueISYxpvidyEyFs3uN45KMgEPe+n1bQb2SyD8FHa6smJuIiIhIBVAAF7na1AyHW2cZx7+8DfuWO7c/pWXb/9uvDnja3ze7SmnUB8yuxqhuXMmngzcN8eX1UR1Z81hf7ugahptL4SCene3On7u6cGbPYzQ0D8PL1adwG2s2S6OWcsuSW3j+l+c5lXTq8m9+Zpcxfd4nFPztV2J3yLZ8wFZQryTi/jICXtJCbGd2Fw7xIiIiIuVIAVzkatRmGPSYahwvnQKxh53anVKxjZhWh+nnYOyNXb+bcVzMaej2NAz24eUR7Yl8oj/39GiIu2vhf+at2Z7s3tODc3seoy5D8HTxKtQmy5rF4kOLuXnJzbz464ucSS6iZkD+9d/25sIX5YpGwHMCuFcN47EkhdiSL8D7/WBWV/jlneq1PZ+IiIhUWgrgIlerG1+AsB6Qfgm+HGdMI65KzucEtqq+BVl+tmnoR0ofwG3q+bvzossH/NnrVyZd2xgvN5fCjSzeHNjXhwv7HifUMgB3s2ehJlmWLL48+CWDvxnMS7+9xNlkO6PMpVn/bWP7/V08CplpxT/Pkg0XjxnHYd2Nx5KMgMcdAUsmZGfAyn/AwmFwqRij/SIiIiJXQAFc5Grl4gYj54FPCJzdBSsed3aPSsY2Bb26jIBDvgC+/soL5P25ELbOx+f3t/j79fXYNDOCaf3D8fNwLdTUmu3D4QP9idv/GEFZN+Jmdi/UJtOSyRcHvmDwN4P57+//5XzK+bwXS1MB3ca3lrF3uNUCcSWYiXHppBGgzW7GNntQsgBu2z/cuya4eUP0OpjTE/YsLf41REREREpIAVzkauZfF0Z8CCYz/PkpbFvo7B4VX3Wbgg7GHtqegZCekDeqXBrpibDmpbzv46IJ8nHn8QEt2DgzgsdubE6gt1uh06zZfhw7dD0XDzyOf0YErqbCbTIsGXy671MGfTOIV/54hQvx0RCb82FIaUbATSYIyfkdni/BNHTb+u8aDY06AFCyKei2bfga9Yb7N0CdjpAWD1+Ng6UPGj9DERERkTKmAC5ytWvSD/r/zThe8Tic3unU7hRLVnpe8azqFMDNLtCkr3FcwmroBWx8s+CWXPmKugV4uTH9+mZseiqCvw1uSU1fj0KnW7P8OXn4JuIPPo5Pel9c7ATx9Ox0FuxdwODvbuf1GoHE1WgAPsGl66+tENuFEhRis63/rtHYGEWH0o2A+9UxChPetwr6PAqYYPtn8F6fqlkbQURERCo1BXARgT6PQbMBkJUGX95jbPFVmcUeNqYse/iDX21n96ZslXA/8EISTsCvOVXu/esbj3aqqvt4uDL5uqZsfKo/L9zShjoBhdd/W7MCOHNkEAkHH8MrtQ8upsLT11MtGcwL9GdgoJm3tr1FfFp8yfucOwJegr3AbSPgQY3BrzQBPGcE3Pbnx9UdbngOxn8PAWHGBzxr/13864mIiIgUgwK4iIDZDMPfg8AGRvBY+iBYrc7ulWP5p5+XtOp2Zdekv/F44g9ISyj5+atfND5IadALOo81nvvrdl35eLq5MK5XI9Y90Z+Xb2tHgyDvQm2sWYGcOzqEhIOP4Z7SCzOFC7qlYuHDXR8y8JuBvPPnOySkl6DvpdmKLHcEvFG+EfBzxa9mnn8EPL9GveH2j43jQyshK6P4fRIRERG5DAVwETF4B8HIT8DFHQ58b+wRXllVxwJsNjUaQnC4sa929IaSnXtyG+z8wjge8BIENzWOi7GvuLurmTu6NWDNY315Y3QHmoYU3iPcmlWD2GO3cCnqMVyTu2Oy85+Q5Mxk3t/5PgMXD2TO9jlcyrh0+X7bRsBjo4zq5sURl28Kuk9ITgezITWueOf/dQQ8v3rXGKE+/RIcXV+864mIiIgUgwK4iOSp1xkGvmwc//wCHN3k3P44krsFWTUM4JA3Cl6SdeBWq7GdFkD70cbvMqix8X0xAriNq4uZ4Z3qs/KRvsy5uzOt6vgXfqvMIC4eH45r1CRuSUzCbGe2RFJmEu/ueJeBiwfy3o73SMpIcvymgQ3B1ROy863tL4rVmtcuqLFR0d87Z/15caeh5wbwOoVfM5uhxWDjeP/3xbueiIiISDEogItIQdfcawQ4azZ8PSEvqFQmtmJd1XEEHEq3H/j+7+HYJiPIXv+s8VxQE+Mx6QxkJJeoCy5mE4Pb1WHFQ334aNw1dAgLLNSmQ3Y8L12I4+0YC6akzkDh5QCJGYnM3j6bgd8M5MNdH5KcaacfZhcIbmYcF6cQW+pFY3QajCnoULJCbJmpRsVzcFxDoOUQ43H/iuJPaxcRERG5DAVwESnIZIIhb0BIKyPMfDvd2T0qyGLJNwW9hXP7Ul4a9QGzqzFyXcT67VxZGbAqJ3T3nAoBOcXXvGoYX1C869hhMpm4vlUtlj7Yi0/v6073xkG5r3UwG1XCL2Q04VLMKJIPPwJJHbEXxBPSE3hr21sMXDyQj3d/TEpmSsEGJdmKzHYvfnXAzcs49g01HouzFZntQyU3b6OQnz2NrwV3P+PDiyvZEk5EREQkHwVwESnM3QdGLTD2Bz+0Ei5EObtHeRJiICsVzG55o5/Vjac/1O9mHBdnFHzLxxB32FgL3eeRgq/ZRsFLMA3dHpPJRJ9mNVl0f0++vL8n1zUPoYPJCOA7LMZ7WDJCSYy5g+TDM7Aktrd7nfj0eN7Y+gaDvhnEJ3s+ITUr1XihJFuR5d+CzKYkI+D51387KuLn6gHNbzKO9313+WuKiIiIFIMCuIjYF9IcmuUEkG3zndqVAmyj38FNwaXwtljVRu52ZJdZB556EdblrNvv/3fw8Cv4ui2AXyzdCLg93RoHsWBCV671iQFgp6VpgdctGbVIPnEXyUceJjuprd1rxKXF8eqWVxm0eBAL9y4kLTgnTJdkBDzIXgAvzgi4gwrof9XyZuNR68BFRESkjCiAi4hjnccZj9v/B1npzu2LTf4tyKqzpjmF2KLXQ3aW43brXzVCeEgr6HRP4dfLaAS8kPjjuKbFgdmVlx+8kyHt6xQaTLak1yElZgzJR6aTndja7mVi02L5vz/+j8F7ZvGZvy/p5w9cfgu8okbAi1OzwNbGdo4j4TcaMy1iD5VsizQRERERBxTARcSxZjcZo4QpsZVnFLC6F2CzqdsJPAOMvcBP/Wm/TdwR2DzXOL7pX/ZnBJRXALeti67VhpZhocy6qzOrHunLiM71cTEXTOKW9HqknBhLcvQ0spJa2r3c+fSLvBwcxOBafiza8T4Z2UXsv13kCHhxpqAXcwTc0x+a9DWO92sauoiIiFw5BXARcczFNW9Udet8p3Yll20kMqSaFmCzMbtAk37GsaNp6D8/D5ZMY7p6sxvst8kN4GU3BR0w9hwHqNs596nwUF9eG9WByMf7cVf3Bri5/CWIp9UnNWY8ydEPkpVk/wOUc66u/GvHLIYsGcJXB78iMzuzcCO7I+ClKMLmqAJ6frnV0CvJB1AiIiJSpSmAi0jROt8DmCB6HcQednZv8o2AN3NuPypCUevAj/0Ke5cZhfJu+pfja9gCeMIJyEwru77ZRuXrdS70UliQN/8e3o71T/ZnQu9GeLgW/E+NJa0BqTH3knx0CllJ9n+Pp5NP889f/8nQpUNZcmgJmZacIJ6ZmjeCXd4j4JCzH7gJTm6FS6cu315ERESkCArgIlK0wAYQnjO6um2Bc/uSEgcpF4zj6j4FHaBJzjrwE39A2qW85y0WWPl347jTPVCrjeNreAfnbLVlhfhjZdMviwVObTeO6xYO4DZ1Arx4bmgbNj4VwQN9m+Lj7lLwMqkNSY25j5Sj95OV3MTuNU4mneTZX57lliW3sCxqGVm2D4E8/PO2WIO8EfC0+MvXKyjJCLhfLajf1Tg+sOLy7UVERESKoAAuIpfXxVaM7TNjz2lnsVXIDggztkqr7mo0hKCmYM2Goxvynt/zjTEi6+5rVD4vismUN1JcVuvAYw9BRqKxj3aI/TXd+YX4eTBzUEs2zYzgoeub4e9ZcK16dmpjUo9Ppsvx7nRJtT9KfyLpBP/Y9A+GrZvOdz7eZNdoWHALMa8aRsE0uPw09NwAXowRcIBWOdPQ9y0vXvvKJiMFzu13di9EREQEBXARKY7mA40pvsnn4eAPzuvH1TT93Oav09AzU4213wC9ZxgjtJdTo4wDuG39d50OJdoKLtDbnUdvbM7GmRE8MaAFQT7uBV6PS2nPvDPnePVUEtkpDe1e41jaBf4WWpPh3mmsOLKCbEu28YLJVLytyNITjQ8PoHg/O8hbB350A6TGF++cyuTbaTCnu/GhjYiIiDiVAriIXJ6LG3QaYxw7sxhbbgCv5gXY8vtrAP/tXUiIAb+60HNq8a5R1pXQTxUuwFYS/p5uTO0fzsan+vOPm1sR6ucBwGFrXUzAgPQ4XI+NIeX4vWSnhtm9RrQ1nac2PMWIb0fw09GfsFgteYG6qHXgiTmvufsV3jPdkeCmxki/JQsOrSrmXVYisVHGo0bBRUREnE4BXESKp/NY4/HwGrh41Dl9uBpHwBv1AZOLEZ5PbIUNrxvP3/AcuHsX7xplHcBP7zAe63a6ost4u7sy8domrH+yPy8Oa0tgYBCnrEEANDOdIju5OSlHHyTl+ASyU+vbvcbhhMM8vu5xbv/udn729sQCkFTEXuC5BdiKsf47v9xq6FVwGnpGsvGYGufcfoiIiIgCuIgUU41GeaOxzirGZlsDXt23IMvP0x/CuhnHi8YY06frdIR2o4p/jbIM4FYrnNtnHBdV/K0EPN1cuKdHQyKf6Ic553cbbrZVHDeRndyClKNTSYkZS5N0q91rHLp4iEeyYhhdtzZrzm3FarXfrkQF2PJrebPxGPVz8avJXzwG3z+e957OkpFiPKYogIuIiDibAriIFF+X8cbjn5+Cvf2Zy1NmKsQfN46vpinokPfBR2JOKB3wEphL8M+3LYDHH7/yInqXTkH6JWNUPrjplV3rL9xczNRu2hGASS0zaF7LN9+rJqxJLfny5CnePHsec1qI3Wvs93Dn4fPrueP7O1gXs65wEC/JFmT51e0E/vUgI8nYkq84Vj0Lf3wAf3xYsvcqaxoBFxERqTQUwEWk+JoPAp8QY43twR8r9r1jowAreAaCT82KfW9nswVwgBY3G9PSS8KvNrh6gdVirB+/Eudz1hEHNwVXjyu7lj0hxvZy4aZT/Pjwdbw3pgtt6/kDUIdYPEzZXJucQWL0w6SeuJvsNPuF1PbG7mXammnc9f1dbDy5MS+I29aHl3QE3GTKGwUvzjT0rIy8dfsJJ0v2XmXJajU+NACNgIuIiFQCCuAiUnyu7tDxbuN46ycV+975p5/n337qalC3EwQ0MEL0jf8s+fkmU9lNQ7cF8GJsP1YqttkNFw5gNpsY2LY2303rw7wJXbmhjjGVOsYaigVXshLbkRL9MKkn7iI7PdTu5XbH7mbKz1MY88MYfjn1C9ZLObMISjoCDnkBfN/yy88AOf6rMVMAil6TXt6yM4xt7ABSLzqvHyIiIgIogItISdmKsUX9nDclvCJcOGQ8Xk0F2GzMLjDxZ5i6GWqGl+4aZbUXuG39d2irK7uOI7b1/fExuWuXTSYT/VuE8nxvo+hcolf+gmxmshLbk3JkBrVP9qVRhv1gvPP8Tu5fdT/jk3fyu6dH8bcgy69hH2MGSGocHIksuu3Bn/KOE4uoyl7ebNPPQSPgIiIilYACuIiUTHBTaNwXsMK2hRX3vhdyRsCvtvXfNn61oIb9vbGLpcxHwMvp9+BTE7yCACvEHirwkuliNAAdO3Ri8ZSe9G+Rfx24mdTELiw5eZoXzsVjyQi2e/ltpgzuq1OLCVH/448zf5Ssby6u0Ga4cbzr66Lb5l+iUdS2aOXNNv0ctAZcRESkElAAF5GSyy3GthCysyrmPc/nbEF2NVVAL0u5ATy69NewWvMtBSinEXDI+x3bfuc2OQGcGo3o0jCIeRO6sXx6Hwa2MdZzn7cG4grclnwJ8+EppJ66HUtGkN232JJwkHt/upeJP01k29ltxe9b29uNx/3LjcKA9lyIgrjDQM5SiZQLFV+00MZWAR00BV1ERKQSUAAXkZJreTN4BxsVpQ+tLP/3s2TnFGHj6pyCXhbKYgTcVgHd7ArBpZwKXxw1jUJsuaPtNrYPD2o0zn2qbb0A3runCysfuY6BHRtxyWpMUw81JZCVcA3Jhx8j7dQILBmBdt9q85nNjPtxHJNXTmb7ue2X71tYN2M9fkZSwWnm+dlGvxtfZ/ysAJLOXf7a5SH/FPSstIKBXERERCqcAriIlJyrB3S8yzjeVgHF2OKPQXY6uHhA4BVMw76a2QL4xaPGBxqlcT5n/XdQU6MgX3kJySvElstqNfoOeevZ82ley4+37uiEZw2juFptc04BNFzITOhK8uHH8Tvdn9pZ9mds/Hr6V+754R6m/DyF3Rd2O+6byQRtbzOOdzuYhm4L4C0Gg09OcbjLFWJb/wp8fW/ZzyjJPwUdNA1dRETEyRTARaR0Oo83Hg+thIQT5ftetgJsweFGQTIpOf96xgcYlszS/77OlfP6bxt7U9BT4vKqitdo5PBU9wAjgL89tC739GiIu6vtP3OuNLpUj+9jTjHpvAVLpr/d8zee3Mid39/JtNXT2BO7x/6btMuZhn5wJaQlFHwtNd6ogA7Q/Ka8Ym9FFWKzWmH9a7B7McT85rhdaWT+ZcRbhdhEREScSgFcREqnZjg0utbYW/rPT8v3vXLXHTcv3/epzszmvOBa2mnotinh5VUB3cZWaC/ucN7aadvot18dcPNyfK6vMeIcbI3nxWFt2fBkfyb2aYyXmwu1uIg70CkhkOTDT5B2ZiiWLD+7l1l3Yh13LL+D6Wumszd2b8EXa7U1tmHLTje2JMvv8BqwZBn3ENQEfHP2Gy9qBDz1ImTlrCeP+d1xu9LIPwUdNAIuIiLiZArgIlJ6tmJs2xaUflpzcVzIGQmtqQB+Ra50HXh57wFuE1Af3HyMIGtb932x8Ppvu3xzRpxzKo/X8vfkH0Nas/Gp/gwLN/6Td44aYHUj82JvkqOeJO3MECxZvnYvFxkTyejlowsGcZMprxjbX6eh29aFNx9gPBZnBNy2NznAiS1F319J/XUKukbARUREnEoBXERKr+UQ8KoBl04a+4KXFwXwsnElATx/BfTyHgE3mfKK7dnWgduCuJ313wX42tZcFyx6FuzrQd86xodEDRs2JdDbzXjB6kbmxT5GED87GEuWj93LFgritnXgR9ZB0nnj2JKdV5Sw+cCc/thGwIsbwH83ftZl5a9F1zQCLiIi4lQK4CJSem6e0CGnGNvW+eXzHgW2vtIWZFfEFl5LsxXZpZN5FdCDmpZtv+zJXQee87sv7gi4XxGBN/E0ANe0a83GpyL42+CWhPh5GK9Z3cmMu47kqCdJPzcQS5a33cvbgvhDO95iX732YM2GvUuNF09sMQKuZwCEdTeey/1AoKgAfjLvOPl83nT7svDXKegp2opMRETEmRTAReTKdBlnPB78qeBIXllJvgBp8YCpfLe+uhrkBvBSjIDbpp+XdwV0G9tsB9vshxKPgNsL4DnrsP1q4+vhyuTrmrLhyf68OKwt9QJz1pVbPciI7Udy1FNFBvG1MWsZ5R7PQ6E12bfrc+NJW/Xz8BvBxTX3vQq8tz05HwzkKstp6IWqoCuAi4iIOJMCuIhcmZAW0KCXMRL452dlf33bFOTABkUX35LLy92KLBoslpKda6uAHlrO679tckfAc963lGvAC7AFXb86uU95urlwT4+GRD7Rj1dHdqBJSM4U9OIGcR9vRrme56GfJrEvaoXxpG36ORRzCnrOCLhtz/ATZViIzTYC7pIz0q8p6CIiIk6lAC4iV648i7Fp/XfZCWhghLystMKjrpdj2wM8pJzXf9vYKqFfOGSESFt/LzsCnhPAky8U3FPbai0wAv5Xbi5mbu9Sn1WP9GXO3Z1pUzdnmzJbED98mSB+5jdGeaXwUK0Q9gWH5b3gl+8DAUcfethmjjTpZzyWZSV02zZkAfWNRxVhExERcSoFcBG5cq1vMda9JhyHw2vL9tq2vaC1/vvKubgaMwmg5NPQK2oPcJugxmB2MwLksV+M5zz8jaJ/RfEOBpMZsELKhbznUy9CdoZxbAvpdriYTQxuV4fl0/swb0JXrmmY836WYgZxby9G/TyJh9Y8xL7YfeCTMyXekuV49PlSzocLrW81Hs/uLlw8rbRsU9ADcz4U0Ai4iIiIUymAi8iVc/OCDncax1vnle21bVPQNQJeNkpTCb0iK6DbuLhBcE6xN9va6hqNjArpRTG7gE+IcZx/2rdt9NsrCFw9Lvv2JpOJ/i1C+eqBniya3INrm9U0XvhLECfL/rKItTFrGbV8FA+tf5x9/nb6k59tBDysuzFl3ZIFp7dfto/FYpuCrhFwERGRSqHSBfCYmBj69etH69atad++PV999ZWzuyQixdHZVoztx6ILTpXUhUPGowJ42ShNAL90EjISK64Cuo3td27bW/ty089t7G1FZmf9d3GYTCa6Nwlm4X3dWTa1NwPa5Iye5wTxxMMzufmCN4HZ9pderI1Zy6hgL6NY22k7xdXSkyA9wTj2rwthXY3jspqGbhtJD6gCI+AWC+z7Th8SiIhItVbpArirqytvvvkme/fuZeXKlcyYMYPk5OTLnygizlWrtTGCZ8mC7WVUjC09CRJijGNNQS8bpQngtunnweEVUwHdxvY7t/0ZuFwBNht7hdiKWP9dXB3CApl7zzWsfOQ6hneqh4vZBBYPUmJv4MeYU4yLzcTqaETcx5tRO17l4TUPG1PTc/uV88GAhz94+EH9nAB+4o9S97MA2xT03AAeX/Z1GsrK3iWwaAwsuLXg+n0REZFqpNIF8Dp16tCxY0cAateuTc2aNYmL06fhIlWCrRjb1k9KXmXbntgo49E7GLyDrvx6ki+Al2Av8NwCbBX8IUjNv7xfsUfA7VQeL+UIuD3Na/nxxuiOrH2sH3d2a8BPpl68mjGGDeenkHR4JunnBmB1sEZ8TcwaRi0flRfEbRXQ/esaj/W7GY8n/jCm/l+pv05BxwppCVd+3fJgG/U/sxN+fce5fRERESknZR7A169fz9ChQ6lbty4mk4mlS5cWajN79mwaNWqEp6cn3bt35/ff7U+127p1K9nZ2YSFhdl9XUQqmdbDwCMA4o9BdOSVXy+3ArpGv8tM/q3IihvwbFuBVVQFdJuQvyw7KPYIeM4U9MSyHQH/qwbB3vzntnase/J6zD0f5KBri5yp6f1JOvxU8YL4jnfY7+6WF8DrdjSm+iedhfjjV95JWxV0r0Bw9zOOK+sU7zO7844jX4YLUc7ri4iISDkp8wCenJxMhw4dmD17tt3XFy1axKOPPspzzz3Htm3b6NChAwMGDODcuXMF2sXFxTF27Fjef//9su6iiJQXd29oP8o43jr/yq9nK/z11yAmpRfYwKgSnpEEyeeLd05F7wFuE9wMyFd0rdgj4PamoNtGwMsugNvUDvDkmSGt2TQzgukR4fh5uhYI4m3PNybAwRrxNZcOMrJeHR42X2R/3H6joGHt9saLZTEN3TYC7u4L3jkV3VMvXvl1y5rValR/B6POQFYafPdQ2cykERERqUTKPIAPGjSIf/3rXwwfPtzu66+//jqTJk1iwoQJtG7dmvfeew9vb28+/vjj3Dbp6ekMGzaMmTNn0qtXryLfLz09nUuXLhX4EhEn6pJTjG3/9wWLYJWG9gAve64eedORi7MOPH8F9IoeAXf3zts+y+wG/vWKd57dImy2EfArn4LuSJCPO4/d1IJNMyN4cmALgn3cweJBUFwHfoo5xW2xro5HxLNiGfndSB5e8zD7a+fM+LjSAG615q0Bd/cxKsBD5SzEdukkpMUbo/93LQI3bzi2Cf5c6OyeiYiIlKkKXQOekZHB1q1bueGGG/I6YDZzww038OuvvwJgtVoZP348ERER3HPPPZe95n/+8x8CAgJyvzRdXcTJareDetfkFGP735VdS1PQy0dJCrElnMhXAb1J+fbLnpCcUfcaDY0txoqjyCJs5RfAbfw93XiwXzgbn4rguaGtyfYJxcdqZXx8crGmpo+8uImHQ2uy/8QvV9aRrHSw5owgu3nn1VGojFPQbdPPazaHms2g75PG92VV0FFERKSSqNAAfuHCBbKzs6lVq1aB52vVqsWZM8b/HG3atIlFixaxdOlSOnbsSMeOHdm1a5fDaz799NMkJCTkfsXExJTrPYhIMdiKsW27gmJs2VkQe9g4rtmsTLolOUoSwG2j3xVdAd3GNvuhuOu/IV8AzxkBt1ggqezXgF+Ol7sLE3o35u1JgwCobU7INzX9SdLPDcDXQUHyNT7ejHSPZ8bq6cbU9NLIyLeDiLsPeNmmoFfCAH4257/ztdoYj21HGI8ntlTeonEiIiKlUOmqoPfp0weLxcL27dtzv9q1a+ewvYeHB/7+/gW+RMTJ2t5mFHyKOwJHN5TuGhePgiUTXL3ytlCSslGiAG6rgF7B679tWt5sbNHVakjxz7FNQc9INEJoSqwxIwNT3msVyD3ACP1epDH79ua0rO0HFk8yYvvz+fF4HoqLx5ztYffc1SciGfndSGasnVHyIG6bfu7qZcwe8KoCI+C12hqPgQ2MteDWbIgu5b8hIiIilVCFBvCaNWvi4uLC2bNnCzx/9uxZateuuFEJESln7j7QfqRxXNpibLnTz8PBXOk+K6zabKPJxQnguQXYKnj9t03DXvDUsbxZFcXh4WeETjBGwW0F2HxCwMWtzLt4+f74GkXQgJsbmVjx0LV8OPYarqnvQyMuMSnhEkRNL3Jq+urjq0sexG0V0N1zruldideAn91jPNZum/dc0wjj8cjaiu+PiIhIOanQ/6t1d3enS5curF69Ovc5i8XC6tWr6dmzZ0V2RUTKmy0w7fsOki+U/PwLOVOftf677NlGwGOPXH4rMmftAZ5fST+AMZnAL9809HLYgqzEcqfFn8FsNnFD61p8dVdDADJwI8ESXGBqunu2q93LlCiI51ZA9zEeK+sIeEYKxOUsN6mVb8Zb0/7G42EFcBERqT7KPIAnJSXlTh0HiI6OZvv27Rw/buxn+uijj/LBBx/wySefsG/fPqZMmUJycjITJkwo666IiDPV6QB1OxnTyHd8XvLzz+eMgDsz+FVXNRoZj+kJRW9J5cwK6FcqX+Atzy3Iis323rYPAwBTTr/ca9Tnmwd7c0Or0Nyp6Q0Pj+KhuHj8su1/QFKsIJ5bAd0Yfa+0I+Dn9hnF4nxC8j44AWjUB0wuRji/eMx5/RMRESlDZR7At2zZQqdOnejUqRNgBO5OnTrx7LPPAjB69GheffVVnn32WTp27Mj27dv58ccfCxVmE5FqwDYKvnX+5Uda/yp3CroKsJU5d2/wq2scFzUNPeGEEeLMbhDctGL6Vlbyb0VWqUbA822NdumU8ehfj84NavDhuK788PC1DGlfh32WFoyPT2ZlzAnczvXBmu1l97K2IP7wmofZF7uv4Iu2EXC3nCnouduQVbJ9wHMLsLUt+LxnANTvahxrGrqIiFQTZR7A+/Xrh9VqLfQ1f/783DbTpk3j2LFjpKens3nzZrp3717W3RCRyqDtCGP0LTbK2NO3uKxWbUFW3opTiO18zshqcLhz1k5fifxbkSVV3BZkDtnCf1LeCHheAM/rV6s6/sy6qzPfP3oTaW4B+FqthMa1JynqKdLP3eQwiK+JWcOo5aOYvno6uy/kFDTLsK0Bz5mC7p1TBT2lDAN4WgLE/F7yD9jyyy3A1qbwa5qGLiIi1YwqG4lI+fHwy9tOqCTF2JLOQvolMJmr3shrVRFUjEJs5yrB+u/Syh/AK9MIeGK+IqS5AbxuoeZNQnzx8zWmjo9oH4yH2ZuM2IjLBvHIE5Hc+f2dTPl5Cjvicz7Esk1B9yqHKejLH4GPboTjv5b+GrkF2OzseNIkJ4BHrwOLgz3bREREqhAFcBEpX7Zp6HuXFb/4k23dcY1G4Gp/eya5QsUaAc/5PTirAvqVKDAF3bYGvJKNgCfmTUG3K2fq+KQetdn4VART+jXF1823WEF848mNjIn+gsm1Q9jmkhNcbfuAZ6ZAZtqV3pEhLrrgY0lZrXkB/K9T0AHqdTG2oUu9CKd3lO49REREKhEFcBEpX3U7Qe32kJ1R/GJsmn5e/ooVwJ28B/iVqHQj4DkfCNgbAXf0wYCrp/GYmUaInwdPDWzJppkRPDGgBcFe/vmCuOPty3718mJc6l7u++k+/og/aBQ1g7IbBbcVektPLN358ceNYoBmN6jZvPDrLq7Q+Drj+Ehk6d5DRESkElEAF5HyZTLlK8b2SfHWiqoAW/m7XADPXwG9Ko+AXzpthHBw7gi4b1FrwIseAc/dzxsI8HJjav9wNs2M4J+3tqGef42c7cueIv3sICxZPnYv9fuZ37l35X2Mr1ub3zw9sCbHXukdGdKvMICfzVn/HdISXN3tt2nQw3g8vb107yEiIlKJKICLSPlrN9IIExcOwPHfLt8+d+srjYCXG9sa8JRYo5DWXyXE5FVAt4X1qiR/4LVajHoCPiHO649t9D31ImSlG+uZbSPzdtaAA+CWMwKeVXi6uKebC2N7NiLyiX68MboDzUOCyYjrS3LUU6SdvRlLlq/dS251d2FSnVqM/e0fbDq5CeuVFE+DvErrGaUM4LYPIWx/Hu2xTU0/s6t07yEiIlKJKICLSPnz9C9ZMbYLh4xHe1NSpWx4+IFPziixvfW7tg9BqmIFdCgctn1rgdnFOX0BY/21S84Ib9I548uabUwJt43W/5WdEfBCTVzMDO9Unx8fvo4Pxl5Dp7BQMuOuJTnqKQaeDyI0K8vuedsvHeGBnx/g7hV3s/7E+tIFcas1L3iXdgTcdm9u9qfQA3nF2eKiS/8+IiIilYQCuIhUDNs09D1Lii7GlnYprziVAnj5Kmoauq0CemgVXP8NxnRmW9VvcO76bzCWYuRfl567/ru24w8G8q0Bvxyz2cSNrWvxzZRefDG5B9c1q0v/BHdWnDhF+7MtsGQG2D1v14VdTF09ldHLR7Pm+JqSBfHMVGN2AVxBAM+5Nzf7xeQA8KmZs3zACmf3lu59REREKgkFcBGpGPW6GFNJs9Nh55eO28XmjH771gKvwArp2lWrqABu2wM8pAqu/7axBV5w7vpvm9ytyM7ApZPGsaPp55A3Bb2IEfC/MplM9GgSzIJ7u3FtQy88rFA7oSnJh58g7fRwAjJd7Z63L24fD699mJHfjWTVsVVYbMG6KLbp55C3FrykslKNx6ICOORNQz+raegiIlK1KYCLSMXIX4xtWxHF2M7bCrBp9Lvc5QZwO1PQq/Ie4Db5p3Y7ewQ8fx+SzuRtjVZkAM+Zlm1nDXix3s6cAcCTQ7twZ9fGmBJ7cvfRlvzzfCz+GfYLnh24eIBHIx9lxLcj+DH6R7KL2ns7/7rvKx0Bt432O2Kbhn5md+neR0REpJJQABeRitNuJLh6wbm9cOIP+20u5Kw9VgAvf7bCV38dAa/qFdBtKu0I+Nm8EXC/IgJ47hT01NK9X84WYbVqBvGf29qz/sn+tGzYgOFJyTx0rA6pp0ZiSa9p99So+CieWP8Ew78dzvIjy8my2FlLnn/UO/1S6fpY3BHw2irEJiIi1YMCuIhUHK9AaHubceyoGJsKsFUcRwE8IQYyk6tuBXSb/CPg+cO4s+SuAT+TbwuyYoyAlzqA50wRdzcqotcO8KR/J2NNf9dQ8MvsQfKRR0k9eQfZ6fYrxEcnRPP0hqcZtmwYy6KWFQziBaagl/MIeK2cEfBze40K8iIiIlWUAriIVKzO44zH3d9Aanzh13O3IFMAL3e2cJ10pmCYOpez/rtms6pZAd0m/7TzyjAC7mcL4OeKGcAdb0NWLBl2Kox7G4XpmvhksGlmBM8NbUuoqQcpRx4h9cSdZKfZr8h+7NIx/rHpHwxdMpQlh5aQacnMHWE33quUa8Bzq6BfZgQ8uKkxeyYzxfHe9SIiIlWAAriIVKywbkZhr6xU2PVVwdeyM+FiznpkjYCXP68axhcUXAd+vhqs/4a/TEGvBGvAbXuTJ5Z0BLz4RdgKyB0B98l7zlYZPiUOb3dXJvRuTOQT/Xnl9o409OxFh2M38vrZ8zRPz7B7yRNJJ3j2l2cZ8s0QFp1YTbop54XSjoBnFXME3OwCtVobx5qGLiIiVZgCuIhUrPzF2LbOL1iMLe4IWLKMKbP+9ZzRu6uPvUro56pBBXT4SxG2SjQCXtwAXoJtyAqxWvNGpXOmoAO5I+Ck5m0F6O5qZuQ1Yax6pC+vN93JjSmpfHXqDPee9iM71f7fw1PJp/jX8e8ZVL8uC/z9SMlONz5AK6nMYq4Bh7xK6ArgIiJShSmAi0jFaz/KCBdnd8PJbXnP26af12xmBHUpf/YCuG0Lsqq6B7iNbQTc7Arewc7tC+SNgCedMbbjg6I/GLiSEfDMVCDnwy33fFPQbSPgqRfBUnCrMXPaReqcWmUcA3dkJZBydBopMePJTg2z+zbnXV15JbgGA8Pq8sH2OSRmlHAk3DYCXpwAbquEflaV0EVEpOpSABeRiucdBK2HGcdb5+U9f0FbkFW4vwZwiyXfOvwqPgJeswW0GwXXPQHmSvCfO58QIN8HS941wdXDcfsrWQOeP7TnXwNuW3JgtRSuXL5zEWRngH99AOpYzrBsSg9uatSP1GMPknL8XrJTGth9u4suLry9+0MGfD2Ad/58h4tpF4vZz2JOQYd8W5FpBFxERKquSvB/JCJyVepiK8a2GNJygoACeMX7awAvUAG9sfP6VRbMZhjxAfSb6eyeGFxcc0J4jqKmn4NRdAxKNwJum37u5m2sn7Zx88wL5PmmoWO1wrYFxnGfGcZ7W7Lo4JvAu2O6sOqRftzWMoKMmAdJOTaJrOSmdt82MTOR93e+z4DFA3hty2tcSL1QdD+Luw0ZQK02OW9yGpJjL99eRESkElIAFxHnaNDTCNqZKXnF2BTAK15uAM8pwna+mlRAr6zyF4a7XJ0DWygtzRpwWwG2/KPfNrmF2PKNUp/camzx5eoF7UYaVccBYg8DEB7qyysjO7D+yQgmdL4B85kHuCumAdel2N8iLTUrlfl75jPg6wG89NtLnE46bb+fJRkB9/CDGjkfCp3VKLiIiFRNCuAi4hwFirHNM0bgbHuAV/Xq21WJLYBfOmGsG7YF8JAqvv67svLLH8AvUxjONgW9NPuA27Ygy18B3cY7Zxp6/hHwbZ8Yj22GgVdgvgAeVeDUuoFe/GNIa36ZeT3DgwOYffY8X548zY3JKblLzgt0w5LBFwe+YNA3g3h207Mcu3SsYIOSjIBDXr8SThavvYiISCWjAC4iztPhTnBxN9Z07v/emDZrds0LhVL+vIPBw984vngsrwJ6aBVf/11Z+ebbDu1yU9Bto9dZpQngdiqg2+TbigwwthDbtdg47jzWeAyyH8BtArzdaFnDWM/eKiOT189d4Jqj/clM6ITVWriAYrY1myVRS7hlyS08tf4poi7mXNf24UJxRsAhbw17ajHXmIuIiFQyCuAi4jzeQdD6VuN41bPGY43GmvpckUymvLXecUeqzx7glZVfCaagu17JCLhtD3A7U9BtW5Etmwr/1xRmdTPW/QeHG0tDwDgGiDtcxHskFfj2sc5NaeFyP8mHHyfjYjesVpdCp1iwsCJ6BcO/Hc6MtTPYY8oyXijuCLhnoPGYFl+89iIiIpWMAriIOFfnnGJstv/RV/CreLnrwA9XnwrolVVpRsAzU40lGiWRWcQU9KYRYDKDJRNSLkBizp7kXSflbf9nC+CxRQVwW8g3Rtnb1nRh6YO9+GLCzfQOfIDkqCfIiOuF1eJq9/TVx1dzR73aPFArhD/jDxXvvjQCLiIiVZz9/yqKiFSURn2M6a62AF6zmXP7czWyBfDo9UZwc3HXMoDykn8E3O9yAdw2LdtqbA9W1JZlf1XUFPTOY6HNcCPEpicauxCYTFC/W14bWwBPiDE+ALA3Qp2e8x5+tY2p6umJmEwmujcJpnuTYA6cacn769uybFcE5sANuNf4FZNLRqHLbPL2YtOaB7mm1jVMbj+ZHnV6YDIVnsYOGOvTQQFcRESqLI2Ai4hz5S/GBsbezVKxbGH7yDrjMbiZsWWWlL0CI+CXK8KWb/p4SbciK6oKOhgVxQMbGFt7NewJDXoU3CvdOwg8A4xjW4X8Qu9hC+A595GeWODlFrX9eG1UB9Y/dgvjWj6I9fjfST9/PdZs++u9t5zdwuRVk7nz+7tYfXw1FqulcKPcEfB4+30SERGp5BTARcT5Ot5l7DsNEKrq2xXOFsCz041HLQMoP0GNweRijH57+BXd1sXNaAsl34qsqCroxWEy5ZuGbr8QW6EAnpFot1ndQC/+fnNrfnlqKA93mYbH6edIPzcQU5b9dd97YnczY+0Mbl0ynG8Pf0umJTPvRU1BFxGRKk4BXEScz6cmDH8P+v8D6nR0dm+uPra9lW1UAb38+IbCuG9hzOLitc/dC7ykI+C2KeilDOBw+QCefwo6FBoB/6sALzem9g9n05OD/r+9+46Xoyr/B/6ZrbfmpveEQAgllFwJBOkhhF6kKSCdn4gFRYOo2OBrQ0QQRJSmUgRBFFCqQAiEaiAhQDD0QMJNT0huL7s7vz9mz86Z2ek7W+/n/Xrx2r17p5wtuewzz3Oeg/876Bto3XgBvrfpU4xMWWS6AXzU8SF++PwPcfg/jsJdy+9CT6qHTdiIiKjqMQAnosqw28nAQZfoTaCodJrHAjEpG8k1wItryv7AmOnethUBeMomA967FXjlT0DXJuPjuQZpBQTgYikyq07oqX6tiRugN5NzCcCFungUp82ajL98sRVntHfgr2196F1zAjL9wy2339CzFr9a9Csc8vfDcFPb09gaUSo3A/7Wg8DfTqvc8RERUdkxACciGuwUxdh0jRnwyiEujNgtRfbqX4BH5gHPX2N83KkLulcjxFrgFgG4vARZLgPemb+dg2hau6gwflgL7jrlW9g7fiV62k5BuneM5fYdA1vw+/fuweGTJuDqemBD5zpf53P14bPAsvsLO8aL1wPvPAq8/Ug4YyIioprDAJyIiPS1wKOJ/JJ0Kp+4SwDeuV67Xb/c+HixS9BFtjtWp5eFe8yA56S056TE6jFr2+H48zmfxSPnXYQjhl6Fvk/OQbp7G8vduiIR3NbSjEP/eQR+/PzlWNm+0t957fzjXOAf5wGdG4Ifo3ujdmtXtk9ERIMeA3AiItIz4OyAXlnEUmR2AbgItDd/aHrcuEZ3ICID3rVBK3W3O35yiHbfHIA/8SPg7lOBTNr6+KKxnLTE2Y5jm3HNKZ/Bsxd+DWdM/jWw+qtIdVo3BUwjhQc/+CeOeeAYfOOpeXh789ven9vK/wL3X6BfwACyz1EtrHy8e7N2ywCciIhsMAAnIiJgfKt2O2mvsg6DTMQyYim7ADwbCG9ZCaQH8h+3W4bMi2Qz0JQtBzeXocsZdtHNva9d/30mA7z8R+Ddx/Kz84KY1x7PX5ZsXEs9fnD0dLw078v4zoyr0LjhEgxs3R2qmt8jQoWKZ9qexOcf+jzOeuR8vLr2Vaiq6vzc/vtH4I17gLcfzh5EBTIp47j8SvXpr4FV2T4REREYgBMREQBMPx44+2HgsJ+XeyQki4kMuE1QKOZ6q2ktCBcKXYZMyJWhmwJKke1ONgPJbJa9v1MLZAGgZ7Me0HautRl79qJCzHo5MgBoSsbw//bfFs9/+wxcddBVmNx1OeZuVRG3CbBf2/gyzv3PuTj+gdPwzKpn7ANx8fqkskvvyWuOBw3ARfYb0F4vu8x/NUingBUL9Qs5REQUGgbgREQERKLAtge4r01NpSUy2HbLkMnN0OQy9FyGuoASdEBqxGYqqTaUoGc/M5mUHrx2SEF3h00A7pABN4tFIzh2xng88rUT8H/xcfjPqjZM3Lw91HTCcvsPO97CN57+Bg6591g8+N6/kRIXAwSx5r14XP69Xbm/m26pE326D9j6SbDjVII3/w7cfiyw8Kpyj4SIqOYwACciIqpUIji1y8rKGUo5S50LkAsoQQfslyKTS9DjjQCypeEiMy53KLcLwMVFBYcMuJmiKBgybDRGpTO4o/VQHDH090htPByZlHWmf0Pfx/jxiz/EgXcfjj+/8VdtLXFAL9e3CsBFVtwv0YBNqOZ54FtWGW+JiCg0DMCJiIgqVW4ZMrsMuPS4nAEPYxkywL4TulhyLNkERCJ6pt1XAO49A26Q7bo+KtqN35y4D56/4Bc4b9KtiG4+AZmBoZa7dKTX47evXYn9756DX754LTbnAvFs4C3Pn7ebb++m27QWezUH4OI1CFoNQEREthiAExERVarcMmQeMuAiS53JhNMFHTDOAZfnU+cy4Nny81wjNqsAfI31sVPuc8At1Q/Vbnu3aENsSuLiw3bFyxdehkt3ux3NHWcg3Tfactd+tRN/e+9PODS+ET8bMQwf92Xnbcvzte1eazfyHHCgugNw8RrYXfghIqLAGIATERFVqtwyZD7mgKd6AGSD5UK6oAPZ9eEVrbt3l7Q+tnmdcXMA3uEnAx4wADctF1YXj+KMvbfD81/7Ln53wF8xaeBrSPdMsjxEvwL8fUgzjln9ML7wwFfw6rql+i8DN2HLZsDFBYVqDsCDZMDTKaBro/t2RESDHANwIiKiSpVbhsylCzqgL0Uml6UXGoDHkkDzOO1+e5v+uMiwiw7oIgAXgbmcAZfvy0SQ5zsAH6bd9myx/HUkomDuzuPw6Je+inuPuRufiV+KtM1a4lCA5e0v4NznvoWzx43GgoZ6ZIKWXYvgc8JM7baaA/AgGfA/zQWumgpsrOLnTURUAgzAiYiIKlVuGTKLoDAtdR2HojUS27JSD4Ljjdr87EI1j9Vu26VS8j5Tl/WkyxzwjLTMlyCCvFiwOeB2Abhst4lDcccXv4gnT78TRwy9CujYE6oatdx2SV0dvjlmFOYuvw2/W/RX9KV9NmMTGfDJe2u3W1ZV7xzqIBnw1a9pt8v+Gf54iIhqCANwIiKiSpVbhswiEBqQ5n8P30673bwivA7ogsiAy3O5+7OBdsKUAe9rz24rlZ1nBrR1wc0KzYBn54B7MWFoPa763BF46fxbcMG2t+LULX1osrooAGBDpAu3LL8Se985B5c8eTU2y4H+hnfsM7wiAB+5I1DXAkDV3o9qJC6OBCnHV/jVkojICf9KEhERVaq4QwZclJorUWD0ztr9zR+G1wFdEBlwOajOK0Efot3mMuDrjcewmgcunpPfDHiuBP1T5+0sNCVj+MZBe+IH3T14cmUbjukYh8zAEMtt00o7Hl99Gw665xCc+cCleGfde8Ctc4E/Hap3T5eJALxxhH5B5NMqDcBTBTRhU5Rwx0JEVGMYgBMREVWq3BxwqwBc6nSey4B/IDVIK7ADumCVAe8zNWHLLUPWqY1LZMiHbpPd1yEAD6kJmx9Kuh9NqoorJu+Ee478Nw5QTsS0/n7rjSP9WNr+ME5+7CR8d0gc/0t36M9PJgLwhhF6mXxfZ/521SAXgAcooWcGnKi6ZNLGVS6o6PhXkoiIqFLl5oBblALLnchzAfiHemBeaAM2wTIDbp4DLnVBF/O/4w3AyGnZfS2WIksFnAMuMuAD3UDK5zxtIZ0NtjNp7DZhBP5w6In4Z9ta3Lh2PbbrsXndFBWPNTXilAnjcNC9Z+MP/30QKZEJV1VjAC4uTPRXaQAuAu+Bbv9fzMMKwDs3GNe2rxSLbgGu3Y3N5qg29Hdrn+d7Ti/3SAYVBuBERESVKrcOuEUpcK7UvAEYMVW7v+kDvTQ9rBL0IVZzwLOBZdJiHXCxBFnTaOvgPTd+sQyZzwA82QIgW+bsoRFbnnQKULPzvzOp3K0CYL+eXtw/qhVf2f56NAzsCVW1/pq0WVmBP779Y+x5+6H49mO/x8YtbXpQ3zBSvzAhr9NeqEwGuON44N/fCO+YduS5337ngYdVgv6b7YHffSZ/OkO5Pfodrdnhs7/Sfn73CeCdx8s7psFm6d3A3adWb4VJJflgvrbCxTuPlHskgwoDcCIiokolAnCrIChXgi5lwLd8DPRu1R8Pg5cSdDEXvF/KgDeN1ffttAjAc03YfGbqI5FskzP4asSWI3c3zwXg6dxD0XQvvr7fbLz8//6Mqz57N8Yrh0LNJKwPFd2Ip9bfhDkPHI+rhw1FW7JBuyAiGuAFmUNtZ+sq4MMFWvBRbHLFhd8y9DAy4HLWfcPbhR+vGOL12sWuuz8P/O0UBoOl9OBXgXcfA166odwjqX4sPS8LBuBERESVKiYy4FZzwKUy8ObxWil3JqUHLGHPAe/epJd855WgS03YOn1mwP2WoAOFzQNPS3O9MwPZW6mpWvZih6IoOHKnXfCfs67B3498GPvF5mBEKg0rarQPtw0dgqPGjcCBt52L/7RnL4KEWYKeK5tPGb80p1PWy7wVQu454OUignQBA4r1Mm/+zi9dAJA/HwM9Bc39L5j8OjeNMb42QZecU1Xg0Uu00vagBmsQFeQCHFEFYABORERUqeJOAXj2y3+8QcsKD9tW+3ntm9ptWMuQ1Q8DotkMcOc64/rjViXoIgBvHmudPReCLkMmxgQEK0FPyQF4NnC0CMBl08eOw437n4onVrXhFxs2oWVgmOWhM4qCT5VX8Z2BV3D6uDH406pl2NQV0lrg8nx3UUK/ZRXw6+20OZz/vckYCBfCbwY8PaDf71yrlcmveSP4+eVsciSm3//tLsCVU8oXhHdt0O83jtLfByB45v+j54FFN2ul7UH0dQDX7wE8cnGw/Ymo5BiAExERVSrHZcikEnRAL0Nf95bx8UIpijGTLWd1cyXoIgDvNM4BbypWBjz4UmSWJehyAGnV8A4AUr1IADiuswvP7vFlfHP6NRiqtkJVrec8v1GXxLWxD3DQ3w7DF+75JZasWu1/rG7jfvsRoG8r0P4J8Nh3gWX3F3YOQb4I4SkDLr1+L1wHLLkDuOmA4OeXu8zLFxVEo7u2Jd6OM9ALbG0LPg6zDvk9VEwBeMC5733tBQ0Jr9+jNat75dbCjlMpUn3A7ccCz/7aw8Zc8o6qEwNwIiKiSiUvQ2YuMzWXgY/IBuADXcbHw9A8XrttX62fNxIHYknjufrMc8CzAXjnOmP5rqrqgV2QDLhY5itQAC4FixZzwC2XfAMMpevRgW6cv9eheO6cO3Hzwfdi/8y2qLcpA1fiW7C8728466ljcdCfv4k7X3kVqbTFtl2bgBevBx74KjD/p/nvtyFznx33R8+ZjhFCw7JM2hhQ+82AezqHS8m83LwuY3VsjyXXf9wX+O10YN3/PA/NUbsUgKsFLt3U3wWsWlR4+XiYjf4qwbL7gRULgQW/KPdIiIqGATgREVGlEtlhNWOcuwwYu6ADegZcCGsZMsCUAc9+4U9KAb6hBD2b7W4ao2XBoWgBo8heAtnnkg08CsmAB5kDKpdyp63mgNssbSZnhaUM7b7b7Iw/TvwMnlzVhjPVbRHNWJenK5F+bI4uwJVvnYc9bz0N33v071jXLgW3T/4YeOJHwOt3A89dDWx813iAtGncmQzw8Qvaz6N2yh+jF+uX5wdw5oDbSwbc/Nl08uEzwK8maZlbO3IJuniP5EDVa9C6+QPtdvm/vY/PiRyAZ9LGDLhf93wR+NOhwGt/LWxMQeeeVyq7C2BUJIO0f0CZMQAnIiKqVHIQbf6ibVeCLoRVgg4Y53L3mTLvgN6Erb9DLzdvHgNE49pcWbGvID+XQHPAh2q3BZegW8wBtwto5Ay0ueN19ya0ZFR8d9sD8MpZ83HxyOOxe691IK8oKtJ1/8OjG36GOfcehePv/BXmv/Mx1E0fGDcU3eytzp9JA+vf0p5/ogmYtHd2Gx/roq95A/jDZ7WO0obzmIL4QjPgz10DPPY9PWi+5wytiuKBC+z3kac5iAy4fA6/WeNCAmWZ/J6opgDc7zk+fEa7ffexwsYUZqd9IioJBuBERESVKhrXmzuZA6N+01Jgw6cafx9qCbrFHHBDAC7dF42qmsZk983eitJ0QH8uSkRv8OaHUxO2Xpc5tZYl6M5N2PIeN3c3796s3TYMRzwaxzk7HYy71qzDbV31mFK3L2CznngksREfZO7CRS+ciB92r8IHcanhmDkzbZ4DviJbfj75s3oFgp8M+JaVxlshLwPuJQC3yYCrKrDgl8B/b9QvzEQ8fPXsk+aAi/fLcI4yBeDyVIVMWgvCc+coUybRb9UDUakN1i79DhiAExERVSpFkZYiM2W6cl3QswH4kAlANKn/Pqwu6IAxAy6CTznojtUZu1UrET3zbdUJXQR1sfpgzavs5oA/exXwq8naHFI7cpY4twyZPAfcQwBuzoCLudeNI7Xb7Hsyc6AfD51yEx4+4RHsN/IkRFTrbL8S7cdDQ6I4fuJ4nD1mPOY31OP9trVQ5S+u5nGL+d9TDtDL+O0ayFmxuvgAhJsBz6T011h8fuXPqJ1+ixL0TMgZ8A+fdS6Dt2IYQ9r4uQkryPer1krQqbY88yvgN9PyL/QNcgzAiYiIKlluKTJzBtxUgh6JAMO31X8fZgn6EKsSdOn4iqJnYQEt+I5k14O2WgtcBHnxAPO/Afsu6G2vAlCBj1+039eqm7ihBN0miJUzsHKXblUFNryj3RdVCOK1yb5H27RMxI1HX46XTn8G5+34HTQpE22Ht6Qhhm+NGYXT3v0tDrzpJ7j1xWXo6kuZ1i9P6eecsIcegPvJhorsrbkhWpAMuGWjNNN4xAUELxUPVk3Y0tJ7pKaB9jXW3fWtWAXHdxynlcH7WS7NUD2RMR23TFm+QR2AM7Na8Z65QquKevrn5R5JRWEATkREVMns1gI3l6ADxnngoZagiwDcpgQdABJSAN402mJfmwx4EHZN2MTFgS2r7Pc1BFEiCJUeS/dZd+m2y4Bv+VhbSiqaAEbuoD1mCsCFhngDvv3Zs/HimY/idwfdjO0b7cvTe+M92FL/IK5950zsffMF+OOr0tJbmbT+POINejd6P3PArea/Wx2jkCZs8rHE6xfzkAE3NGETS8WZ5uBfsxNw9Y7GufF25EA5kwE+/Uj/ecPb7vvn9jVdBDD8zACcqlCpPrdytQgxACciIqpoIgA3dwfOdUG3CcCL0QW9rx3ozJZbmwNwOQMu1v8G9LngHdIccBE0BM6AD9VuzRlwkZne6hCAp1wy4IAxS57bT86ASwHi2mXa7agdgVg2uyvek4Fuy2BeURQcPGUfPHDyTXji5Mdx/LCDMCxt/QVViaSgDFmEP8T/gzPGjcG/mxrxyBsfQhUXDSKxYBlw2wA8yBxwuwx4X/59LwG4XGEgAm/5IsmWj/X7oueAEzkAf+ibwHUz9J/9NPIzNILLFFaCXteS/1iQYKjmmrBxbe+Kk8kAi2/T/9YFoTIAl8XcNyEiIqKyyc3vdemCDpgy4CGWoCebtYC7vxPY9F72MacAfIx+3yoDngopA96zRQtaxDxy8Zo4BeByJjVtMQcc0F5rc3d2uwz4uuyX0jG76Y/lXntVe64O78W4pnH42ZQD0ffanXh4UivuUHrxYcQ6qHq9LonX65JQVlyKxfEMzozHoG7uw3aBMuA2Fx/MJfieMuAeStDTPkrQ+6y6oEvjlOeTdq0HWiY4H0++CPLancbfWTXysz2OqXrCEFT4DJ4TTfmd7uXPsldswkbF9tb9wEMXafcv3+q8rR1mwA2YASciIqpkIpPtOwAPsQQd0LPgm963Pr4cgDfLAbjFHPCBAueAiyZsatrYMVsEbls/sS4jB/LnUsu3glVQk7bLgL+p3Y6VAnD5wkK/hwC2Yy2SKnBSyzQ8OO4Q/HX1WsyOjIOCqOXmarQP97UkcdzE8Th54eX4xosvYABAysu5cgcRGXDTF+NAGXAvJegWGXC7jG+/RQm6IQMuB+Ab3cfnlJ0OnAEvQhO2IMcY1CXoFZ4t79mSv5pBNVqztPBjlKtJYYViAE5ERFTJ4i4Z8LhdAB5iCTqgZ7I32gXg0s9WGfDOdXrAkpsPHDAAj9frmVR5HrgI3NL99qXJhhJ0uzJsiwDckAGXgv5cAL6r/lgkor8v5iXLrIgl2prGQEk2YUZfP64fvhue/sJTOGunC9AQGW6760DjJ3hmyEuYO3kCfrRlFb5+75NY/PFmYwd1K54z4AWUoMvPXbx+cgbcLrtubsL2/lPAy3/UH5MDcDElwpHDa+EnADcvQ2YIwH1mwK0uWjAArx39XcCV2wBXTCr3SAoXxjxxBuAGDMCJiIgqmciAmzOTVhnwoZOB6ccDu58Sbgk6oAfSA9nzei1BbxwFQNEyht2bsscQc8ADXiSQu66LrHcmYwzc7MrQvWTArTqhy4F7f6f2pbR3qz4fecyuxu1tGrFZEtUBzeP016S/GyPrR+KSvS/E86c/hWuG7oV9u+2Drc3RKB4ZlsKzPRfjjIe/jAN+/3vc9Ox72NRpU5YuKgRc54B7yKrbdUGXy7tzXdDj+mPm5dxyj5vWAf/rScCS2/XHzCXoruNzKH81N/JzPI5pDrhaQAbcKgBfs9TfBQHAul8BALz2V+DOE/LL3Ett9VLg+WvtL9LkqZHO5hvf1W4rfu5zBTZhW3wbcPtxQG970YZTbgzAiYiIKpnVHPB0Sv/ibV4O7Au3AyfeHP44mscaf87LgA/R78sBeDSmd0UX88ALXYZMPl9f9kvaQDcMXyY9BeAW84uB/CAUyG/eluoD1r2l/TxkItBgylKLCgQvAazIgDePlQJ3PTiNR+I4NDEKN63bgEdWrcYpo+fYN21TVMSa3sHWITfjd++dg/1v/i7O++vjeOad9UhnpNdHtcn+B8qA25Sgy8GkeP3kQEwOtGVW64DL5KCm02cTtrwxbnHf32os5gy430DG6nn96VDgulZ/x7F7bv/6OvDB08CLv/d3vLDdfBDw1GXAoltKd851bxX3wsMbf9deX6eLCnZTYKqR374EVvxciHjoImDFs8aqlxrDAJyIiKiSWS1DNiBlVcPOdNsRGXC788oBuTwHHMifB17oMmSAlAHPBnHmUm+7pchSXuaAW3VBN6/D3ql3BR67a/724vXwUoIuLkw0jTF2ULcY0+RUCj/a4Xg8tbINV67fiO0bd7Y9bCTejtiIp/FK+hJ8df6X8dnfXYVf/+dNfLypS3ru5jngvWJn63FYsQtE5OyyOK7deuoyOTNudTFE5iUDHtYccPMyZGrIJeiAv4y8+bxWQV+ldElf87rHDaVg7/Zjge7N/s6z8mXgj/sC18/0t58f95+vVRi8/jf7bcx/U6pZGCXoQZqwDdTA/HkbDMCJiIgqWW4ZMikAFGXNkZi3rtJhMGfA5ZJz889N5gDc1Am90GXIgPwMuLnU21MG3C4LbBH0mQOmvg5gXXb+t7n8HPBZgi5lwHMl6Kb95POn+pAAcFRXNx446kY8uM+vcPrWDjRl7L8oxxo/QO+wO3FH23k47I5v4zeLlgIAVLv57yKjX8gccKsSdPN63lbkixZuZah2c8DlqoZiNGHLBFgHvGMtsOkDLVAOK0BzawTnZdm3UgjyfFcsBBb80t8+//u3dmvuAfHhM8BbD/ofgxOnBoCFXJypRUFK8Uv1/7YyYABORERUyXIl6FImS57/HUZ5oBd5GXCbOeCJ5vzsuNi3fbV2W+gyZABQlw3ARYBmLmfe+on1fvKc2dwyZD6bsAHuGXBpLrej/i49E9w0RsqcmwJwQ0dxaSzROKYOnYrvb/4UT6/vwk/3/Sm2a7bPiivRXiSGv4Tbhy3CF8aPxV31cXz17ufx7LsbtBJ1EXDXZwNwtww04C2bK153uQLBSwm6W0bYKgh65VbgF9JFIKcAPPAc8LQx4+xlDvjVOwLX76FPOQgikwHuOR146v+0iwdu89CDNjoMWyalzd3f+J6//ZxKyV++Abj/AuNjdp/FOz4H3He2fWVM2App0Ffttn4C/O9fpn8fAV6DSNx9myrFdcCJiIgqWW4ZMosMeLxE5ecAMMSlBF0E4Obyc0Bfp3lrm3Zb6DJk8vmKUoLu0oQN0LK3ogHbiGn521vM5bYkyvLjDdn11u0y4DYBeCSey3LWp/pwwrQTcMK0E/DOI9/AfV0r8a++9ejNWI9heTKB5ckE1L5vYMHju6Kpf1/c0NiGvYHSZMDtXhv5ooXbHG2rEvRHLjb+7PTl3y5gs9xWzoCbmrC5zQGXM/KbP/R+TrOPnwfefli7//w1xt+VIwPe2w7ccjAw7XDgCIdsdSYFXJtdqu97HwP1Q/2fa+nfgJE7GB974x7gxJv0n93ez671wNASdCYvZI34MPR3a9VTbhdoi3Fx4Le7aLef+4Pzdi9cBygRYN9vWP8+Yr0MYy1gBpyIiKiSWS1DZtUBvdiazCXopgz46OkAFGD8Hvn7Dpmo3bZnA/AwMuB5Abi4KJENYL2UoKtp7QuoeX6iWxd0AOjeqHd1HzI+f3u7udxm0hJkUBSHOeDSuOXfRWJ6llME5t2bseMrd+BH/3sGz5/0MK484ErsOtx+TqwSSSHeshR9o/6A78QX4w9DW/Dv9dr5MlYZ/OUPA3efqmef7bqgu80BF+/da3dp5caCfEHErZmWeA+cuJW/em2YZZ4DnvFY5g7oUyWAwkprUw4BpniecrAfLXIA/tpfgU3va9loJ/JFI7mLvRsRQH78IvDgV4Bb5zhvXylzr50y4JkMsH558Rq1ta8GfjlO64IfhqBVViuetf9d92bgyZ8AT/zIOM1Evsil1G6YWrvPjIiIqBZYLUNWjgA8XgfUD9N/Npegj94JuPgd4HiLzrUiQG03Z8ALCcDFHPAO4+2oHbXb3i3WJc7mZZvMc3kB9y7ogL7MUKze+LoIXueA55Ygy17giNvsZ8iAS/cjUT3Lqaa14Eua/5pMD+Co7Y7C3469DY+d+Bi+tOuX0RIfZTucLfEU/jisBT8cuw5njhuDO9VenHP7s3jo9dXo6c8GFfeeDrz7GPDc1dmx2XVB36LfX3IncPNsvWoA0N6f9cuBf31Na7gFZIMSKWBxC8DVjHsg4xYc211AyNtO+pz4XQdcfh6FLE3lFAyJ5yk3r4oVcR7t1jb7ZdDM5Itanpckk2x4x/538vvgp6KhYNn3vGNt/oURw2fO9Nl4+qfAHz4LPPnj4gzrzfu02w8XhHO8oFlyr5Un8r8r+eJiy8Rg560CDMCJiIgqmdUyZKJ0t5QBOGCcB24OwAGt/DxqMbtNfJHa2qZ9KRMBbkEBuMiAiyZs2dekaSxQNzR7Pot54OYvypmB/ADMqgu6CDTqWrRbERC0TLAOiryWoMsZcMN+XcYvsIYMePb1i8S1c8uvY6rXOC9aCuQnNk/ERTO/gWdPfRJ/HL4vDu3qRszhS/LSuiR+M6oJr2YuwiULv4M9r7kW37rnVX0D8dqbl3ET5Ax4z2Zg9WvG3/d3Grtc93flXwzxMkfbLaB1C8C9BoRp0xxwP+uAyxlwqykOXnkJwPtNFRLF8M7jwG+nA09d7m17+aLWhuVaMzorec/PQ/ZVDuasAnDDZzzknhnr/qfN7b/pQOPjTg36nv+tdvtSmZaIe/H3WhVLWNa8rjXLc+t3YUd+feT74uJzDWIATkREVMlyc8DlZciyX3RKHoBns7RKxF/wLAL3gS4tEyiyYYU0iMoLwLOBZrIJaMnO8bSaB27+gp5JeeuCLoLyhpHarQjArcrPASmT7bEEXby2Yg64mjZeCLCaAy6CK7nMONWrlccLFhcAopEo9k+OwjXrN2L+yjZc0voNTGzc1naISiSN+JA3ERl3G57q+jquGD4MyxIJPNeWweKPP4XqJQNupa/TOEe5Y61FAG6TAU+26Pfdyo5dA3CPWVOnDLjbPF+5zNbqAo9nXjLg0mcuyPJPXrz4O3/byxnwf31da0bnVE7vR7of+Pgl4Hd7AO/+J//3xWyCtuwf2u2G5cD1ewLvPaX9LL/uhTTdC1vbEuCJH2pVLGG56UDg2SuBhVeZfmETWAOw/xxL2ymKtt+mD2qukR0DcCIiokpWKXPAAaA5G2wmmvzNC0w06F2129v0AKGQDLjIROdK0EVVQJPeZGmrxVxTywDcZi1sq8caRmi3ogR9iE2ZpNcS9M5suXhjtixcbqwnB1JWGfBotktwJKLPKzZnwO2W+sqWbQ/PZHDWtJPx6En/wt1H3Y1T1WYMTdsHbUqsG3e3NOO0CWPx/dhinPb3n+MPi96y3tgte730LmNDMqsA3C5bXCcH4OXIgGf8laD3hRSAO2bAs2OQP3N21QGZDHDrocC9ZwQbh9+51la9ELx02M9xKmceAG47Gtj8gfXnxUuH+rbFwNU7AW/c52NIqvF93/QecNdJ2d9Jr/s/v+T9mF70dQQPSMO4GPDQRcBdX8gfw9K77athHNk9FwWY/1PtYo3f5egqHANwIiKiSiYalaUsStBL2QUdkLK0FuXnbkQn9PbV+pfkMDLgIrMolvJKNOoZcMsSdFPwk5Yy4Eq2665lAJ4NgBuzGXARUNhlwL2WoIsu3k2jtdtoTM9oy/s6ZcABqRFbn7Exmd0FAFM2V1EU7DZqN/ww1YinV7bhd5OOxaFd3Yg7fNFvT/YgOfoJ3Dj+LZw2fgxuH9KMtVGpc7FbA7q+duABaRmpjjXeA7u6cmTATQG4nxJ0Q6MpD+d77ylg4/sWv3AIwMUFAUMG3GZcm94DPlkELH/IPRM90AusXmoMuPxm1r2W3Zs/b14u9KX7XaYheAhW7z1T+/zdH1KwLH8m2161386vtsXAFROBB78W3jH9+PhFYPFtwHv/AT55BbjtGP13nWuBX0jNOp0uEti9r4Z9VL3T/8JfBx1xRWIATkREVMlEltiwDFmZS9DNHdC9GCKWIvukSMuQdemPiznnfkvQxfOy7IJuyoALbgG4axf0bADeODp/X7l83WodcEMAntR/Z5gDbrPWthywGJog9SAO4OARu+Oa9RuxYOUn+PFnf4xdhu/u+DSWJZP4zYhhOHTyBJw9bjTubW7C5oiHr5ly4Nqx1ntgJ9aBNx/D7RxWvAbg6QJK0P3MAf/kVS2T+nuLzvWe5oCbMuBWUwHki1/y2KzceTxw80FaxYJ8XD8s/x2ENB/b7f3zkgEvaFqABfnCh/kzLf+7bVuirVvvNaO9MNv48PW7g40r7zw+M+l/OVK/v/h24KPnjL+XL1IFvegihDlPvcIwACciIqpkuQC8AkrQh07Wbq26frsRAXh7W0jLkJm7oFuVoFtkwB0D8OwxzaWxmYz+xdIcgNt16vVcgi4y4FJncqt95XGLCwSiBB2QKiV6DV3QvWXApfsiYM82smvJqPjC9ifinmPvwiMnPIKvjtgLEwacM85L6urw85HDMWfyBFwwZhQeaGpEe8QUbH3+9vwd/WTAxQUY8/ituAU3XkvQDRlwn03Y/MwBX/Vf+985PZfcHHDp8/v494ErtwHen2/cVl7iya3T/MqXtNvF0nvmNwPudg5b2c+NY0dtl/fPU3AbpKTb6b1wuDgTkf7d3nKwtm798n8HOH8Rqap2caDX4eKMW4D9thRAf/y89nd0oAf46Hlvnx95acIawwCciIioksUdStATJe4SO3UOcOAlwNz/879vbimy1SFnwE1d0BONQEv2QoHVWuDm4CeT0jOborQ+r0xd+lmUoAuuJegOGXBV1YNlqwy4vJyUPCaRTbTKgA+Ym7DZBeA2GXBxQaN+qDRObdvJQybja8mJeOyT1bh99TqckpyIIXFpO5O0ouDFhnr8ZNQIzJ48Ed8cPRIPNTagQ1Fw//sWQbOfADzRpE8ZKHQOeOBlyORO1y779kkBqFsA7hTYOGWexfO0ej5P/9z+OF6DYzloD6W5m8WLZpvh97ikleWu0vvvqfTZD5v9nF4fq3Xg179d2PnC9vYj2sWBmw4Aej613sbvOt1L/wrcd642X/8ZmzndTu+DW1PHKlKktQmIiIgoFFbLkOW6oAcoBS9ENA7M+VGwfXNLkX0iLUNWwAUEka0e6NYCaBE4Jpv1DHjHGm1+q7wWsjlbJmfAc4GvKQMuB0x5JegTrMcX9zAHvOdTPVhqkgJw8brYZcDFeCzngPcCXdIccNsmbFKAsPE94NlfA/t/S99eLOUGZF+fbIDfvhoKgD36+rBH3bb4/nG/w6K/n4rHNi7G/IYGdEStv5QPKAoWNDZgQWMDYqqK2Cd/gdrUiIO7ezA8W66rdqyB4jkAb9Sef9piHXez0ErQTRlwuczY1xxwtwDc4fdOgV0uALfYxhx4yuP1GoBHpPn9haxlbjUGO4qXDLjb++chaPUyFj+cPpNy5YrgtallqbqBv3W/dvvpR9p/VvwG4A9dpL/OS+6w2cjh+a18CdjxSPvfVxFmwImIiCqZvAyZuctxqUvQC5ErQZcy4GE0YQO0sunca9KkdRSP1Wtf9tpNZejm4MdqDrg5A5kLiBS9mzugncOuHN9LCbrIfte1GJfjstrXag64oQQ9qW/nsgwZAGMAdc9p2pzSW+bor4/8vOSArn21YRyxSAz7KvX42cbNeGblJ7hu3QYc2dmFervmXwBSioLeppW4fNQIHDx5As4bOxp3NzdhadsK3PD0O7b7GSSa9AsQbsGgW7bWcwm6KQPuVGZsJl/UcWt65pQBdwzAs7+zCibNwZIcyFkF4JadtqUg0W8XdCt3ngg8fql2v78beOkGY1d8r1xL0L0E1x4C275O4AV5+TWboHntm84XBawCcHGs/i5tSTWrfz/ta4B3H3Mfpx/maTqqCrz1APDpx+77+g3A7d6HxX/RpuLM/6nxvH5W2qgyzIATERFVMlGmraa1L5qxhB6YFZJBLrVcCXqbHmAUsgxZLKEF8KleLbsol6ArijZffeM72he64dvp+5mDH0MG3KYEPde1PWlsQNcywf5Lopge4NSEzaoBm3gOgPY+p1PaF125rNiyBF1kwHsCdEHP3peDdbnLuBxotrdJ4+g17J8AMKe7B3O6e9CtKFjYUI/HGhvwXEM9Bmxep4yi4JX6OrxSr40/vvE3aGhpxtyuHkxKOQR5iUY9I1vwMmRBMuAZ42v4nx8Cp/wVaB5jva+8rdvcWbsM+H9v1uZ023HKgJuDxYxDCfrHLwF/OQKY9WXgKGltZ/k9DKMEffUS7b8jrgCe/RXwwnXBjuNagu4lA+7hPE/8UOsA7rbTLXOAQ39qfKy3XW8cGLHKgGdv7zwRWPUycMSvgM9+1bhNMTqBP/kT48/L/gn88/9529dLk0UvFvxCa+a2YqHxM2CeQlRDa4EzA05ERFTJ5CBblG7L2d5qITLgA916oFBIBhwwNmITpdMiQB62jXa7xZTJcVoHXLye5hJ0sU8saXzN7eZ/y8fq77JfCkqsydtkE4C/8yjwy/HAopuNv7cqQRcXajrXm5qqSUG1qmrr6b5+r3MAFW80zlMV225835gxE4GkRQDUoKo4oqsb163fiGdWfoKfbdiEg7p7HJc1A4CB+nW4ZvgwHDVpPI6fMBa/HdaC15IJ5I3WEIB7LEG3e85BliEzd0H/ZBHwj/Mc9pXG6HY+uwD9sUtc5oBnX1urbfIy4A4l6POzwaP5cycfw0sJ+t2num8jrHzZ+7ZmYXRB97LNh896H495TFdN1e9bXovKPrgq+zpYlWjbTScJ00fPe99Wibpv45VouBZGZUUVYAaciIiokkUT0L6cqVpgWNdSnSXo8TqgYaSxPLqQDDiglaF3rdcC8Nxrki1NFx3bzaWU5hL0tJcSdKlkXi59t5v/DUjvjapdOLF6r3IN2EYZHxcXXd59XLt9/0nj78UFAkMJejYAN5eUygH4ypeBZ6/U7u98rP3Yk03Z7Fb2c5fJVl/88zzrTK5LADQko+L4zi4c39mFTkXBc8PH4Ynpc/HCyqfR45BF+yCRwAeJBP48tAXD0mkc0N2DA7t7sF9PL15Z0YMD1Ij2RdZrBtzuy72XEvRMxhikmbugA3rwZLm/tK3b+ayWwfNCjM9TCbq0jTnjbheMGpqwuS39pvorl7bKCmsndd/X9f0LqQu6n3nv5n8TbhcJzBUi6X7g+d9qjS/HzQBevhF48+/GbXrbtf4NE/bQ99/0QX5W26vLW4AhNqs6eBkzecYMOBERUSVTlPylyKoxAAdMGWPFuhuwH3IndLF8lnhNhtpkwEUJuiJlT/NK0M0BeHafqDkD7hCAy0us2XVCzy1BZipbNlc2iO1y43FYBzwvAJdK0Duk+dtOQat4XUWGWU1r2b81r2vN2Y6+xjiOtPesVZOq4shUDL+dfQ0WrmzDtes24NiOLjSnnQO6T6NR/Lu5Cd8ZMwoHbDMRl3c8gVvjUayKRfHbJ/6Hx5etQUevTSAmAkq7QM1LBtzcWTyTzg9CnbKohpL/7LHs5tB6XT857xxp463MqQmbOfi0ex5yEza3TKXfEvVIAdlUXyXoBXRBz3u/HfZzvChgNQbTY5veB566HLjpQO3nx7+Xv8tNBwK3zgGWP6Q/dvtxDuf1wNwzw0mYGfBBhhlwIiKiShev10q3RQA+UKUBeMtEYO0b2v14feEZFDGnsnOdHjSYS9DzMuDZL+uJRi1wz6T0gEjsa85A2s0BdypBj0S0Uu6BrmwWelT+Nl0Wa4AD+cvLyet6A/rnwGoOuDxHGzCWrcrz370E4EoUQPYCxZrXtMemHQYM3zZ7vGzm1GsJd26sCSAaRx0iOKS7B4d092AAwKL6Ojy529FYsPZlbI7af7lPKQo2N27EDY11uAETkOi5Dp1PPAX8a0d8ZvRM3GPeQQRJBWXATfuqFt3XvQbguSkNddY9AtyWKbOTy4B7KUGX1zD3GID7KUH3urSbYNmYDHpcWkgXdE9zwD2UoPspj3Yak9XfPTEdxY9PV2i3y/4JTM8G3uYAumuj1jixe6OWTQ+T3yZslMMAnIiIqNKJbGreHPAqC8DlgLXQ+d+APge8Y63+WNycAV+p/y6T0QODeEM2AB+Q5oBnA8+UeRkyKQCPN2hfPNWMvrSanUQ2AJeDLFUF7v+yVnbeabEGuNhPZg7Anbqgb80G4LF67XkYOqlLFxacgolcBjymlexn0lr2GwDG7a5/HsWFAL8BuKh8iNXlLibFAezX04v9Jh6BHy/6J95MJvBsQz2eaajH+wnnSon+5BYkki8AeAHLMnfggjGjsG9PL/bt6cX2AwPY3NmDSFc/hqGAADxv+bqMv5JkOSAVx4omrANwt2XK7ORK7f3OefYYgMNHEzavneUF2xJ0D3x1QbcJxj3NE/dTgu7z+f/3RuDIK/3tIziNXZ57/tUXgx3fTiFVC4McA3AiIqJKlytB79W+2MlZ3Goil2yH0cFdBIpiaax4o96ZV2TAu9ZrJeCJBmOgKLLMGSmTmZsDbp4nLjVhUxQt8O/d4lyCLs7RBWMQ/OlH+lxOMffb3IQtbnpfzcGyZQY8+xkRZeaiC7w8B1x+Xk4ZSnFhI1eCngHWZCsXxs0wLnlmNT434sJBLKlXcwj9XYgCaB3IoPXTrbjo061oi0XxbH09nm2ox6L6OqQcKieUSAovNtTjxQbt9RidSmGH7s146rrfYK+m7XC31U6eStCtMuB+AnCLOeDy0nOygueA+2zCVpQMuN/PhF1IkkuB2+9r9/4t+yewzX7Gx2yz4V5K0H28347TCHxW/vz3Zuffe13DfP1y49/dF6/3Nw4zZsADYwBORERU6USH6wFTRtMcqFU6OWMcDzEDLgJwuTy8fhiQbAH6tmpZ8NE7Gb+oiy+ihjng2dfT3AVdbsIGAIf8GNjwLjBmF+fxibncfR3SsaQguMtjBjxPNliIWGTAhWFT8gNwObNquMigwBCAiHGLL9jdm/S59GN309YjBpybsLVMyl9GyHA+WFdBiIxwrD43r39CKo0vdnTiix2d6FIUvFhfh2d2PxYL17yMLS4xwPpYDOuHpFE35G94UwVOrRuDWT192Ku3F3v09qFRVbH203aMUVUoTlMizBlN1W8G3KIEPWoTgMsVGKrqfaqGU7d3c7CUCZAB99OEzXcGvICQxC4At+pKv3qJ1rTMTA7MP/1Yv4Bn2Mb8ujoE7a/cav87Ox+/ZP34Y5f4P5YXT/yosP0ZgAfGAJyIiKjSiWBRLimOxLW5tNXEUIJeYAd0QM+Ad2QDQnPzsqGTgXVvasGjpwA8ezyx5rrI1OaasGVf772+5G189cO0255P9cfM5e2AxTJkHqsDohZzwIVROwDv/Uf7vHz6sZbNloNuw0UGUyAhl6ADwOrs/O+h22jPSTwfpwB8xPb2AbgIEK0uwoiGdfE6vbGepFFVcWh3Dw7d9QKkP3gdy9pX4MX6OrxQX4836uqhwiEwVIC3kkm8lUziLxiCqKpi175+9L3xON5fEsFe4z6Dfbcbh89OHYEdRjcjEpFLrq2asHkIwLd+Aix/2LjUl/i82f37ld+bBb8A3rwP+NJ893OJANEyA+7QhM1rBlzuWG+V4X54HnD01dq5/M4BL2YJuuyRi63//crP+cMFwMxztPtti7UO5HMv81ba74XdBZW/HBHseGpG+zcZtHIiKHZBD4wBOBERUaWLWWTAq638HDCVoIeRATcH4KbXZNg2WgAuGrHl1s+O68F0WpoDLmfQU71SAG7KgHvVMFy77d6sP2b1Jdm8DJnX9d2tuqALo3bWblO9wB/31aYxtJ6u/96p0Ze5C3rbEu123O7Zc9Xpxwasu6BbZRCFXABqlQHPfr7tlqirHw5M3BMYvweikThm9PVjRl8/vrqlHVu/8w7+u/ENvPjQBXixoQ5rYs5fc9OKgtfrkkDdSgA34sV0FM+9MQnpl6aiPjMNe41txb7bjcfe2w3HzokB49JBXkvQbz3U2H0ecM+Ay/PCF16l3b74O/dz5ZrN+S1B99jN3a0E/dU/Aa1f1N6fsDLgIsgrpAmbJ9Lx0wPA0r8BU/YHbsk2Lmtvs6l48LLEWZG98yhw5ZTSn5dd0ANjAE5ERFTpRLZ2oKd6O6AD4TdhE13QRSm3vEY3kL8UWVrKZIvgUqxxDRjnRw706scTwarfioOGEdptjxSAmzPgyZb8ixFe58cbStBNxxi9s36/v1P7r0tag92p0ZehCzr0zuri9RTnyqS04NscAEViWgm6nVwAbhGAiuyvXCERq9OD/eN+p69hbgoqWxDFYdscisM2bYa6CVgRj+HF+nq8MHQU/huPYiDj3NxMUdKINXyEWMNHyGA+Xs5E8OKycUi/MgWTBobi7mgUo9NaEKZm0lC8lKCbg29AasJmk/W1Cl49NQlzmANunnds2MacAbcJKg0l6DbP/b83AmN+H+Ic8Nyg7H8VRgAuP+eXbtA6jMufwU3v5z9nL93VZbccApx4M3zPAa9UbMIWGANwIiKiSmc1B7waA/BYUsv2dm2wz3D6IeaAC+bMcW4pso+021wztYSecZNL0KMJPdiTA2URrPq9aFAvMuCb9MfMmWfzEmSA/t4qUa08XWT4zeSgxRzEj5iqBehyKbAcDHrKgGePnzaV4MuvQ6o3P2CMxJw7xIvgz+r1FJ9v+fk0j9XfQ/migzlrOtAFZLSyfwXAdgMpbDfQgTPqJqPv7AVY+vYDWPTkd/FKfRJvJpOOzdwAQFEyiNa3IVrfhnUADsEETBhI4TN9fdi2pw9D//cmTgaMmfHffQbYvAKYcSpwwo3WB3a6AAHYBNsegjanLujmDPh/b5L2MwfgdhcWFPdt3rxPu/iy2+cdh2o8n+owB9zD8/abbQeAtcuARy8B5vwImLIfDAG+WN7LPBffz5x/K22vAtfvoU3PqAWcAx4YA3AiIqJKJy9DVs0BOKCVoXdtCGkZMlPG2/yamDPgIuiMJvXsYyalZ7YiMSkAlxuWScuQ+SEy4HIALjK8o6dr86l3Pi5/v5HTgObxwMSZWvm8XQButQ44oGXV61q016N3i/64WKIMcO7SnAvAs1+wc6X7sfxzpfry5/tGYlr5rh3HEnSpCZvQPE4PwOWssTkD199lnXlV00hGk9h76A7Ye8tWYAvQrShYWpfEorokXhoxBe+kNiPtYU5rWzyGtngMaAKANlw7fCJ27e/Drn392LWvH7tt/QijoAKv/w2ZI38DyxDFfEHDzHJNaB9rWbt1Qd+yClj+7/xj93dpnxkvJehOPnwG2OV4b9sC2QDcZQ542CXofztV61Fw21HA5Vvdtwf8dUGvRJyzXTEYgBMREVW63DJkUgBebR3QhSETgDVLQ1qGzJQBT9plwLNrgcvrL+cy4AN60BaJGufbCymXObt2rAJwEfgOGQ+c8U/r/ZLNwLeXaeO57Rj749t1QR+aLf9ONBkD8HYpAHdq2GQuQTcH4JGI9hqm+7WLQpYl6BO1dYeTzcBrdwFvPwysW6b9PuOUAZeasAlNY/T7chBozpraBeDiMSmAalDV3Frh39rpAHS+fAOW1CWxaNoBeDEawftb3nFu6JbVEY3gpfp6vFSvXzAYnUpht75+vPTHH+C6uiR26etHs2qaYwz4u6DjpdxZPD/LOeBS8CVPiRDHXnAF8OyvgLMfdmjC5rHkWFGs+wLYUu3L8b0EjUEy4GLaii8VMN+7EH0d4Vz4FPyW4FMOA3AiIqJKZxWAV2sGvCXbiC3MJmxCwvTz0Mnabd9WoGeLVEpumgOeC8Bj+rjkDHExMuBuX4TF+OqH2m8TtZkDLuZfmy9IGNYE95IBFyXoIgCXArBYnRZ4D/TmB71iP7FM28GXav9d3qL9bFWCLcrlRY8D+WJH81j9vhwc5gXgndbdt3MBuE2glu5Hk6riwJ5eHDh8L2D299A90I1lG5fhtfWv4eXVr2LZhtfQqzrPIRfWx2KYH4sBjQtwPrSLB1P6B7BLfz926uvHiM6t2D8SwUC3itEux/LFawY87yKFqgXfAPDIvMIz4ErEXxd0NVOcZcic+D6fVbAZMAD1um532B66CNjlhPCO99xvwjuWJ7UT8DMAJyIiqnQiAE/1Vn8Avt3BwKt/ASbtXfix3ErQE41Aw0ige6NWhi6XoFvNAY/EpHJ/KUDNzR33G4BbdEH321G9rkX6wbRetyEgtsqAO31GHL7MmrugiwoAc9f1PlguFeYa3FiVoCebtcysyIDLxzAE4NK4zQFhf5d19jeXGbbJysoBXLbsviHegFnjZmHWuFm4YMYFSK94Du/ffQKW1iWxpC6JpckkVse9f43+KBHHR4k4HmlqhPbaT8SQ1AdoHTMKO2YD8536BzAxlbIuW7fLNh55FfD497LrkjusAy4zzxGXj73xXfv9PM/5Vfw1YfM0BzzkEvSwGohVWxb4rQfKPQICA3AiIqLKlyuL7pa6oIdQwl0OOx0F/GB1OGuY17mUoANaGXr3Rm0utXgdo3G9fDs9oGcMIzE9kB2wyoD7XYZMZMDlZciyGXCvFQB1Q/X7iUZjFttQgi7NmRYZ8KBZRVHanytB780/njhfb3v+/l4D8LhFAC7mgMsBkmGZNvkChDkD3u1cgm5XqiyXS9uMPQoVOw4MYMdUGqd0aO/B2mgUbyYTWJZMYFkyibeSCXRFvDemao9lsDBWj4UN+nvXkMlgh/4BTOvvx9SBAUztH8DUgQGo7d3W2fK9vwwsuUNbbi+XAXdpwmbOkDtlZK/fUzqGxznEiuKzLNwpAPfAqaGgHb/nC1SyTmSNATgREVGlyy1DJmfAPa4VXYnCCL6B/JJzq9dk6DZA22ItAz5sSvb8UgZcznRHY1K1gTwHvE/fzw8RgKd6tOAw0SAdy2MXeDkDHm8wBeA264CLDLhc+u5HXgbcNAdcPp88xzw3LpfsotUccBH0D1hkwMfvkb+v1Xn6O20CcIe50YAxg2q3trHYN5rIfWbGptMY292DQ7u1z0oGwEfxGJYlk3gzmcCiEdOwqn8NBnw0v+qORLC0LomldcbPWrJzAaaPG50NyFPYrn8A2w8MYPOaduygRLSsuVMG3LEE3cGm96yP4USJ+M+A2y1D5mUd8D6LKgw3bk3fvKi27DdVDAbgREREla5WliELWzSmNaMbcLgoIZbDal+jddMGjOuAywG46IIOmDLgUum6H4lGvVlZ96ZsAO43Ay4F4IkGoEv6ne0c8Ozc986AWTvxOppfI/MccECbWw9or11uOTeX4MZqDrgI+uUS9K88D3SsA8ZM17cbMVW/77sJm/0ccNtjCiK4lQJwswjE0mcpHNfZBex/Dvr/9TW8m0jgrWQCbyfieCeRwLuJBPoi/jpS90UzeC1ah9fqjJ8b9bFDsL3Si51HjcDaZ+9Gw/9W4rgtn2BfRTE2fpMvAgRdz1oE4FZVD+bt/GTA1Yx9R3gvej12MZcVknGn8njmCmCno8s9ilDw00dERFTpRAZcXoYsjC7itSDZrAfgViXojSO12+6Nxi7oIkiUy1flADyMDLiiaFnwjjVaAD50kh7Ye86AD9Xvmy8wyEGEnJ0UGfC+AIGJEtWrAEQ2WASu8vnEBQQR/MQbsplIh3LimecCi/8CzL5U+9k8BxwwZsDH7qb9BwBfeQHoXKst0ZYbq8UccKvu265zwKVg0S57nwvAfWRO+zqQALBrfz927deD/FSyBSszXVg+/Ri8s/IZvJOI4+1kApuj/uclK9FefBAFPkAjgFeBLa9iIQBMmYTh6TQmD6QweWAAdZtWoPs/d2LnUdti3/R6TIW8wraq90pwPFn29X73ceftPn5B+88rNeNwEcDDhYo+lwsCVuT3+aFv+d8/h1nwktm8otwjCA0DcCIiokoXs8qAV3EJepiSzVpgBli/JmL+cNcGqQu6VIIuLzcWieldx+V52+mAAThgDMABPbD3eixzCbpMDnTFhQZAf84zzwEW3+ZntFrDM5EtNQfSVhl3EYDH6rTgOZOyD8CPvhrY+wJg1E75xxPz+cXn21ySPHZXALsaHzOfZ8AlA26XlTVUQXgoQfdq1cuWD8cyA1qmvHk7HP3pg7nHN0YjeDuRwDuJOD6Mx/F+Io4V8Th6fMwrl22ORrE5Gs2Ws28G1v4aD2f/qTRtMxHjB1IYn0oh+smrmN7YhKnowoSU9tiQjEVgKQLwuMeLR15dM93DxSKHQNctI2+29k39cwZoF4UCCdoFnUH7YMcAnIiIqNLl5oCzBD2P3IjNKgBvyAamXRul9bzj0hxwKQOuRLV1ygGgfbX+eNAMOJDfCV1kwL0GMeYSdJkcwDaOBL40X3sNRAB9+C+BaYdpn5n7z3c/1xFXAuM/o/9sDkYNc8BFAL5F/1mUodsFsZEoMHpn6QEpu5l779T8c9nJmwPufR1wA5F1B+zngIvGZX4y4HYdp23WAR+ZzmD/nl7s36NfEMgAWB2L4r2djsKKVc/gg3gcHyTieDfRgAHFpdu5g85IBO8mE3g3mQCwFvPjAJr0ZnfN6QzGp1IYm05jTCqF0ek06j79GEPfWYCdtn6MCYqCprACSafgW75AZru/zwD8xv39bW+nXMuJDVr+pm1UMgbgRERElU6eAy6ChWrtgh42eSkypxL0ro36XN9oMn9+sxLRlqAaMl772RCAB+yCDuSvBV7IMmRx00UXc5A6cU/jz4lGbc7kiue8nWv3L+gXDID8Em+rJmxiDrhcVeB1fq08L9m8pJynANzjHHARPNvNAZezoXbnFcF7GM27MtJUCBcRABNTaUxMjsTBW/VmY5k5P8baPb6IZRvexaqnfoC1vavxypCdsVrtQh82I+Oj8ZuVjmgE70QTeEd+MP0O8PI3tftTJqEhk8HoVBpjskH6mHQaI1NpjEinMSKT0W7TaTRn1OCh0+t3A585w3kbL0F6MTAAL60CP9OVhAE4ERFRpYtJnblFF2yWoGvkwM2yBF2eAy4y2Qk9kDIvsZXLgLfpxwjahA3QA/CezcbzBcqAuwTgXo7hxJzdzcuAWzRhk0vQxe89B6lWGXBxLg/PzZytXr8cuPsL+dtlUlrZr90ccDkDbjsHPEAJuhs/FRWmYC8SjWN803iMbxoPxIYBm94CDj4fWHIH+j98HZ/EY1gZi+PjeAwr4zEsrxuB5bEmpJRPASWczHV3JIKPEhF8BOf3O5FRMTyTxsh0GiPSemA+IvvzsHQaQzMZtKQzGJrJoM6cWX/qcmDnY+1P4LbuebEwAKeAGIATERFVOhGssQQ9X9IhQAX0EvR0P9CVzUJHE/lzwEXQaJkBL6AEvV6UoGfPPeAzAy7mpAPOJehej+HEHDibg2DLJmxbtNtYUg+Ig2TAzUvTuS1lZrXN2jfst1Uz9gG4nAG3kwlQgu7GTzBvDjLliw+5pboyQLofCejd2CGSw9u1Amc9iIH0AD5aeA02//dqrI7F0BaL4bWGKehSP8XGWArro1GoIWca+yMK1kZiWBvz9rmoy2TQkslgaDYgb1I+xZA1CzFyWEvusaHpNFoyGTRnMmiCiqaMgnq1gEx7EB+9AHyyqJRnHOSYASciIqJSyQXgvUA0m61jF3SNWwY80aAvVSay2lF5HXDTGtciA961XpszHktImfMwStBFEzaPx4o36HOr80rQPQaDQTPg5gyz5Rxw0QW9XipB99rNW/pCba4uCDIH3Ekmld8hPZrU3lu54Z7dvGZ5GbKw+DmWvFQaYN0BX3XoQJ/N4MejcUyrawJ6+wBkP9fb7wl89Byw5l0MAFgbi6EtFsXqWAzrYlGsi8awPhbFumgU62NRbAnQrd2P3kgEvZEI1uWeSh/Q9Q4w1PlzHFNVNGUyaMpk0JxRteBc+rkpG7CLxxtVFQ2ZDBpUFQ0ZFfVqBg0ZFXWqCk9t7xh8l1btxN8MwImIiCpeXC5Bz375ZQm6RgTgsfr8ztlC4whgS5ee1Y4l9G3Na1w3DNcDs47VwLApUgY8QPBlDsBzTdg8BuCKogXQYh1xmdcANNGsBWlOJbNKxLnkHLAOwAuZAy7Ly4AHmAPuJJPKz4A3jNDe47TUiM/uNQrSBd2Nnws68hgB43sj7qsZhzns0vNKmY4FvTw/DmBSKoVJqRRyAbpJr6JgQzSaDc6j2eBcC9Y3RqPYFI1gUzSK7oDd24NKKQq2RMO5QFCf0YLxBjWD+oyaDdIzudt6KWhPqqr+XzaAlx8TP9dlso9BRRIMwvyrnQic7z0REVGlE1/UMym94y9L0DWiC7rT69E4CtiyUg/A5RJ08xxwRdHK0D9doW1vCMCDZMBNXdBzGXAfSznlAnDTc/RaDh2JAMkherm45TYWx/I0B3yL/rN4Db2OS27yFiQDbtex3Eomnd+ErWG4FoDLujYAD88D9jjT2BE+SBd0N34u6JiXUJPfi1wGPG0/vo+fB9Yu05ZzMx9LVX3No65TVSlIt9ejKLlgfJMUmMs/b45EsTkaQUckEnrpeyF6IhH0RIBNKEa2PwMMnYyYHKRnVCTU7H9QEVdVxFVkb1XEod1PqPrvEqqKuOW2KhLSz4ns/jFVRVQFolARy95GVSBm8bO8XUxVEYXWELCs71AFfT4KxQCciIio0snl5iJDxy7oGpEBt+qALoh54B1rtFtDCbopAAe0MnQRgANSE7YQMuDiWF4z4EB2HvmHWhAt89ORu67FOQC3em5OJehi/KI0OpbUAn3zdk52PwWY/3/A9ofmn9/THHCfGXBzCXr9sPzt5v+fdvvqn4DLpeWxipEB99PUz1yCrlgF4A4ZcAB48CvAV57Pz6ZDLUpDsXpV1Tq4p9yD+zSA9kgEW6IRbI1o/22JRrElEsHWaAQLsT0mxz/WHs8+1h6JBF4jvRKkFAUpRUEXgKLE+UWgBfFaQB5TVcSA3M/m4D2qApHsrQLtsYiKbDCv3Y8g+3O27D+SPV4kezwF2eBfBaKxJHZ4+16cstMpZXr24WEATkREVOliSWhfYaT5qeb5wIOVCMATzfbbNGbXNxZZzJicATfNAQeAFlMn9LCWIVNVvembnwz4Qd8Dlv8bmDrH+LifALR+KLDlY/vfW5XvO5Wgm6dAyBlwr6XxzWOASz/R9v3fg/bnsuNrDng6P/CMN2gBtTm4tVKMDHjoc8BdAnDxWTeXoDt1iC+RKIBhmQyGZawvBHx5+7Goe39x3uMDALoiEXREFHREIuiMRAy3HREFnVY/KxF0RxR0RyLoVpSCl20bLMRFg3KZ+cECBuBERERUAoqizQMXyyVFE8HmI9eisbtrQce4GfbbNI4w/mzVBV0OQOVO6OmUFLgHWYYsW4Ke7te6bad8zgEHgB0O0/6Tm4WZx+zGrRGbZQm6Qxd0czm8IQD3MS7R36AUTdjEay/vXzdUa7jnur9YBzyKvIthQfkZf14JuhyAS3PAnS4QiIDfHMyrmfIt5eVRnWK9hnsc0LqiZwAtj+6fCqBfAbpFUK5E0BNR0K3oAXp3JIIeRUF3REGPtF1vREGvoqBP0W/7FAV9EeNjaQb4ofhwQ7f7RlWAATgREVE1iNXpATg7oOtGTgO+854WSNkRGXDBaQ44YFwLXM6aBgnA4w3ae5fq1dYiH/DZBV2Wl5H2U4I+1Pn3nkrQpZ/DCsBz+xe5CdvSu/Izv0pEqwzwEoCLEm0lqr0OYWSM/YzfHDTLF19EcJdJOx8zEgNeuA5YdIvpF6p+kalS5TWOC48CIKkCSTWDYQUE8k4GAPRnA/KPlBEYFvk0F6z3KkrudwPZ+wOKggEFGIC4r/3cryjZx5DbLqUoueMP5I4B7T70fVOKgjSMt+XMZgehKNU75UDGAJyIiKgaxOv1NX3ZAd1IZJltfz/S+LO8ZrVlAC5lwOUv/n7m7AqKopWht7cBHWuRy5wGCsBd1ul20jjS+feWJeimL7uOJehJvRTaz4WB3PmL3ITt6Z8BnznDtL/ifmFCkDPgYlk4wHjfr0ICcPk19lqC3rEGePIn+Y+rqPgMeDED8FIQTdQaVRUjsKEYMX5gGWjDGcgG5mlFQUrcKkAa+m06ezsg/ZySHk9JgX4m+1gmez8D/fFM9vG0eFzRxmG+rx1Du9+FBJYN3a1Mr1K4GIATERFVg7g0Z5gd0P2xyoCLoCUXSEnBnFUArkT9lXzL6oZmA/A1+mNxH3PABXNw5Wc+8me/pj3vrZ8Abz+c/3urDLhjCXoIc8AN+5sD8JCbsAF69YGgRL2vkS4yxEpUe61yF27ipQnA175p/DlqFYA7rAMO5Jfg5/jrgl4WtmOnQonmZ3E1e3FQDWF6RRFsRguumnhYuYcRitrI4xMREdU6uWkXO6D7YzkH3KHBmChB71irzdsGgmWsBdFtu2Nt9gElWDftvIDYR6A7chpw5JVAy0SbY1sE805d0M0XgeIFlqCbLyZ4KkH38DW2aYx+Py8Az5age2HOgAt2F0F2PxXYZn/nYwa5UGF1XjkD7nRRxu4zrJaoBH37Q4Pva5sBr64SagpueGMSV5xYGxlwBuBERETVwJABZwm6L+YMeCzpnN1tGJkNSFVgy0f6PkGJIE9kwOP1wda0jZhW4g1S6m0X2IbaBT1IAB6kCZvPbcTFFEGJeC9BN2fAvYzB7T0O8jrl9pXe+4jUhM3pmJ3rbH5Rogx4IfONNyy3fryQixhUXapsvroTBuBERETVQO6azRJ0f8xzwKNx5wA8EtHL0Dev0G7DCMDb1xR+LDnDGWRJLLt9fJegm5uwJfVgKFATtiLNAZcDtAFTB2VfGfBsE7ZIxPhaOb0Hbg2jCgnALTPgLk3Y7JRqGbIR08I/pp8+AEQVggE4ERFRNZA7n7MLuj/xOuM64dGke0MzUYa+/KHsMQp4zUWWVWTA/awBbma4UBAg2LLbx7IE3akJm1UX9GwwFGSuvPkCQFhzwOVtrErQA80Bl7PPNgG4ohQ3ALdrwhakS/Qb9xS/BP3Lz3q/2OEHM+CDSO1kwNmEjYiIqBrEmAEvSOMIoL9Dux9L5mf88gLwbAZ8xbPa7R5nBj93bg64KEEvYD55wQG4XQbcah1wH3PA5bL+UmXA/Qbp5gy4WAfcC3kOuCED7lSC7hIMB23qB1hnwD9+CXj3seDHLKYh41GUAKpGlqWiwYWfWiIiomogZ2A5B9w/eR64Wwk6oAfgALDTMcC+FwU/d24OeLYJW0EZcCnoDFSCbjcH3CoAdyrTjxqfR6y+DE3YfAbg/eYSdMV7VtYuA+7UTK/UJeiVGnwDAJTiJDBZgj54cA44ERERlZRhDjhL0H2T54FHk+4B38jsfNWROwDH/9Fbx207IgPe36ndFpQBl8ufi12Cbs6Am36Ws+Dy2upBxhU3ZdSLMgfcqgR9qPsxAFMG3EMJuvncI3ew+H3IJeiVTFFQlAi8kH+XVGVqJwBnCToREVE1iHEd8ILIS5FFE+5Leu1+irbN9nOBuiGFndsc5JV1DnhIJeiA9jns3qjdl+eAB1oHPKHN0xfTBMKaA664NGHzPQfc1ITNaZxyYHzhK8C9ZwLL/209Nr/kSoZqCMCLFTwxAz541FAGnAE4ERFRNeAyZIWRS9BjLuuAA1pGt/WL4ZzbXOZcSBd0L2tQO7Htgh4kAJc+h4Y54AHGBQANw6QAPKwS9Ci04E8FMgOmX/ooQc91QTeXoNs8V1XND4zNAUQhlRDyRYBqCMAVpTgBFJuwDSK1E4BXwb9YIiIiMnxZZxd0/8wl6OYAL0gw65UoQRfiIc0BD5QBtwlYrOYy55WgW2TAhXi9fpHDvO66Vw1SlUJY64DDoRu5ooSwDrjTMmSmgME8DnPZvR/VVoIOoDhN2BiADxo1lAGvln+xREREg5uhCRtL0H3La8IWoOlXUHkl6IVkPj3OP7Zjt4/V88/LgJt+Tpoy4LO/D3zhTmDXE/2PCwDqhzuPx218wme/pt9XIs5Z0mSztwDWtgu6n2XIpAAiVhdeF3Sr5zf7B8GPXQxKhBlwoiwG4ERERNXAsAwZS9B9k+eAxywy4MX8Il/XAkPwFdoyZAHG7KsEXZ5nHM0PoAxN2OqAhuHA9OOCl9gbMuAeLi7YZT8jpvnRTgG2onibB27bBd0pA24uQZd+LvQimvk5up273IrVhK3SnicVETPgREREVEqGDDhL0H0zZMCT7vObwxSJGhu5hbEMWSQWLKNo9zzdStCt9pMvChWS1Rca5Ax4AU3YDPOjHUrQBS9l6HIGPOKxCsF8gUB+vwopPweslyGTVVx38CIFT8yADx61E39XZgD+8MMPY8cdd8S0adNw6623lns4RERE5WdYhowl6L41j9NuRbfuIOtOF0KeB15QE7a48db3/qasttXjucciLr+XxlDIcxLCKkE3Nyizy5Srava8Q61//+RlwJv/ADZ9YN8F3SkDLl9Q0HbW7xb6b9h8kcFMcXnvLBUxwilWEzbOAacqVHFd0FOpFObNm4cFCxagpaUFM2fOxAknnIARI0a470xERFSrDBlwlqD71jQaOOo3WrZTUSxK0Iv8lUjOshbUhC07zqBN4+T9YnXAQFf2cYsMuNuSZ3IAHHoGvJAA3EcJOmCfAX/hWu023gBMP14/Z9TldRFmXwqsXw60nq6PRSi4BF167lZBqOHiShzIpAo7X8FYgk6Fqp0UeMV9ahctWoRddtkFEyZMQFNTE4488kg88cQT5R4WERFRecXYBb1gs84Hdv+8dr/UAbghAx7CHPCgpbeGrLVLJlcO4qwahhk6soeQifQbgNsFX+aLCXLmVS7/F4+7zQEf6DbOAfeyFJyqas/nnIeB1tPyxyGmkXzrTWDIROfzu3GbA+71s13MLtNchowoJ/QAfOHChTj22GMxfvx4KIqCBx98MG+bG264AVOmTEFdXR323ntvLFq0KPe71atXY8KECbmfJ0yYgLa2trCHSUREVF0M64CzBL1gpZwDDhjLnMNYhixwCbpN1trqeG5LnoX9mhmasPkMrAwXC8wl6NLXXavXfreT3Y8vzwE3BLc+3gdDBjxbxTJ0MjD9c96P4Xbc3Ljk987m6/4+F5oPVNg4HBUrA84AfNAQU0ZqQOgBeFdXF2bMmIEbbrjB8vf33nsv5s2bh8suuwxLlizBjBkzcPjhh2P9+vVhD4WIiKh2MAAPVymXIQPCy4CLjGvQ8Ro6eLtkwF1L0EN+zfzOAZe/kBsuJphK0OVgVK4eEfvvfCxw0PdcziVlwOWA124pMctsr80c8EIzw65d0C2Ov91sYNSOpn2KnAEvhoprNkfFwwDc1pFHHomf//znOOGEEyx/f8011+D888/Hueeei+nTp+PGG29EQ0MD/vznPwMAxo8fb8h4t7W1Yfz48bbn6+vrQ3t7u+E/IiKimiMCh2gi+Pxf0lX9HPCA47VrnGZZgi5nei0yjeXOgMsBuNyk0KkLut1r7zaX2C4DbjV3HgAm7mVxDrsAvMCv424BuFXm8KQ/obRzaotQgr7DEcyAy0bu6L5NNQujz0SFKOllo/7+fixevBhz587VBxCJYO7cuXjppZcAALNmzcKyZcvQ1taGzs5OPPbYYzj88MNtj3nFFVegpaUl99+kSZOK/jyIiIhKbtgUYOohwJ7nlXsktaHkc8CH6vcL6oIu5oCH0AXdEIBbNWFzK0EPOfiR54CnBzzsIGfApcDaqQTd7ku8UyCnRAA1Y308+XWZtDew+6nAsb8DZp5jcRybZcjsAvD9vw2c6GE1IKv3wRCAp42/axwFNI60OG+xM+AhHv/cx4HP38Y54LJab0hXQxeeS9oFfePGjUin0xgzZozh8TFjxuDtt9/WBhSL4eqrr8bBBx+MTCaD7373u44d0C+99FLMmzcv93N7ezuDcCIiqj2RKHDm/eUeRe3ImwNe5C/yhhL0kNYBD0LOnEelANzqeG7LlO14NPDCdcbMdSHi9cCM04CeT7W50W7kzK6htN6hC7rdxQ+n7KyaAVJ92n1zBlx+jU67x2LpMcNJ9LteMuBzLwdWLHQ4ntjfZRmyjCkAz11MMO1XzBL0sDPg2+yTPWyZAvCJs4BPFrlvV0pFff8qQe08v4pbhgwAjjvuOBx33HGetk0mk0gmQ1h7koiIiAYPsRSZWJ6ppCXohXRBzwaaQbNBEdMyZEKQOeCT9wYuWAi0hJj4OOFGHxtLAbhhrPJzUYxBmm0A7pI9HOjObhcNnmm0W4bM6b30EmDaNWHb7fPAm/cBB8wDFvxC/50IwPMCmirKgAtBLpzt/23g+d+W/rxFVzsBaq0raQA+cuRIRKNRrFu3zvD4unXrMHbs2FIOhYiIiAY7OQAvdnljaBnwmPE26P6AaRkytxJ0m4Bj3Ixg4wiDahOA55WgK9bbydyC6v7O7P4OAbjbMQzLobl0oM/9LmAArkSAE28Bjvw1kBwCvPcE8Mkr2u8yZcqAF+WwAS6GNIwsz3mLreYz4LWjpJ+eRCKBmTNnYv78+bnHMpkM5s+fj3322aeUQyEiIqLBzi3DGybDMmRhrAMeRhf0AkvQy61uiH7fEIA7lKDbBbSuAXhXdrto8GPYjcPp4o+n9dCt5oBHtYCsYbj2enzpKf13uTnhJc6AewkQtz0QGNcKjP+Mt+MGyUSHcbHNSwDeenrh5/GDAXjVCD0A7+zsxNKlS7F06VIAwIoVK7B06VKsXLkSADBv3jzccsstuP3227F8+XJ89atfRVdXF84999ywh0JERERkzxCAl3IOeCEBeHacgUvQg2bAKzAAn7wP8NmvAUdfYwpoHbqg25V0u2W1RQCelwFX87e1JWfibcZrJndtbx5vvHU6r9NYxJzwkgZsHkvQt9kfuOBZLQj3dNgAoUwYn2Uvfy8KXd/dNwbg1SL0v6avvvoqDj744NzPokHa2Wefjdtuuw2nnHIKNmzYgJ/85CdYu3YtWltb8fjjj+c1ZiMiIiIqqlJmwOU54OVcB9w8V1p0+LacA17hAbiiAEdcod1ferf+uDkA91JKbxfIJZuB3q1SBjziHqw7jTd332MGPNms3586B9j7Am1FBLfzWj3PXU8Glv0D2O8isaP9+MLmNQMutjF3brfdvlwZcA/ndbqwUgzMgFeN0P+azp49G6rVeoOSCy+8EBdeeGHYpyYiIiLyrpQBeKIRaBytBXOFdA0PswQ9EtP+S/dXZwm6zBBkS8/RHDD7zYAnh2QDcJs54KqPDHiQEnQ5AIcKjNvd+bi5xyyCseP/COz9FWDCHjbbFLsJm6cNtRsxT91NoBL0EAJjL5n3QpYbDKTGA/AausBQ4X9NiYiIiIrEHIwWk6IA5zysBXLy3GW/xDjDKEGPRPUA3LIEvYQl+oUyzAE3d0GXA1+f2etEk3abW7qrgCZshhJ0m6ZxeeeXAvCBHu/ntbrQEEsAk/aStillEzafipkBD+PfupcAPFriALwSG8ORJQbgRERENDh5KU0O06gdCz9Gbh3wEAJwJeIc0Fd6CbrMdk616jEDbhN8xk0d6wuZA243Dqf3Um4oZxeAW11U8BSMlTjg9lSCnr0VqxM4bgT7CypOwihB9/L3IuYx0z5mV2DdssLGAzAAryJ8p4iIiGhwsl07uoKJcQa9YJBXgu7Q1M2QOa7w10ceq/m52HZB9xA8mwPwQjLgik3g6DUgTPnJgHv4ip+XAS92WOAl4Bcl6A4ZcLu59J6HEcLFtjAz4EdfHXwcsy7Q71dSBQM5YgBOREREg1Mp54CHpeASdDkAj0pzyq0y4FVUgi4Hd04BuN854OaGeZGIcQqBYQ64jwBIscvYOxjotTmWxyZs+Tu6/Byy0Jqw2XST9yqMz7KnDLjHADzRGHwcogkhgJqfA15DGIATERHR4BQp4RzwsDgFzJ72N5WVf+YMYJv9gFE7uW9bLeSAVlUdMuASPxnw1jOAqYcAh//S9DuXAMgwDrs56w4Gut2P6/RY3jaVGLBVSQZ8r/OtH5f/HXluwlbI+yC/FgzrqgXfKSIiIhqcSj0HPAziS33QDsuKogd/ShSYezlw7qPW81WrqQu6zHxxQn5vDUGKh+AlLwMeBeJ1wJn3A/t8HYYydjeKTebWcwm6XQbc4rPrKcg0l6D73d8vPxlwUxf0HY60Pk6gDHgI4c/Y3YAvzc9/fKdj9PteKxsKuRBiuBhRiRdUwlQ7z48BOBEREQ1O1ViCvutJwO6nAnueF/wYuXnkLl8Dq/H1AYyNywBTCbrNc7YL5OKmALyQwNSuFL4YJeh+yr31B/TP1f7f9jYmPzwFiCIDbmrC9sV7rI9TtjngCtAwPP/xzIB+3/M0kZAC8BoKUGsdA3AiIiIanEq5DFlYhk4CTrwJGN8a/Bhe1xKP2JRMVzpzQFtIE7aYRRd0meojA27XvdvrdIKWCTaHtRq7h3GZ91MU4JjfAj9aD4yc5m1Mvvi4KOBUgo4Cs76hlWq7ndvj2MLKXNd8Brx2MAAnIiKiwSnIPNxaEJVK0J0oVViiD+RfLCikCVuxMuB+PnvnPaGVNp9wo/txBU/XBWwCtljS/neF8BMgOjVhsyvl9yqUz7ISXiBfacepVDV0faGKLmcSERERhaga54CHIVeC7pYBr6ISdENZsjmzW0ATtrwMuHm7gHPA/ZSgT94bmHyXt+P6GZdVCXrubrmCOS9N2DxcUHE8RUj/1l2b7nmNGGsosiwmP8UmFa7GL5UQERER2aimADNMuRJ0l0Ckmrqgq3bl5KpDwOahlNn8GhUUvBXYhM2O1fvoqTTe3ISt2A29CmjCZneccmXAFQWhBc4sQR90GIATERHR4FSNy5CFIVeC7vI1sFq7oJsDkULmgJsD7kLmgBe6DJmX4+YUmgEvVwl6lSxDZh5HYQcK6TA1HtbV0PWFGn+niIiIiGxUU4Y3TJ5L0KuoRN8pGPLSBd22O7q5nN38OpSgBN31uFZzwAvNgBcjRPDThC3ltJF+N8jnMpTA2csc8BI3YaulCLXGMQAnIiKiwYkl6C7b1cAFClX1diHBa2BeyIUIQwY8QBd0L8fNKTADXrYmbKIE3esccKsl2Hx8rgtSYaXjLEGvGgzAiYiIaHAyLENW4RneMEU9ZsCrtQTdrJAu6ObtzT8HXYZMCXEOuNVz8jIur1UDpeRlGTJ52Fb/bt3+LYe1DriXJmyeqhtYgu5N7VxgqPV3ioiIiMiaIQM+iJYhi3hchqyqKgQ8BpNycDZhT+ttZHlN2AoIAgyBozwHvAgl6J5K4yuwBF1sc8QV3o5j9Rl2G3spM+Be/q6UbF1yF7E6923KqnbaoDMAJyIiosGpFkqsgwhSgh6t9NfH4cu5OQP+9VeAY38HtJ5uvY3dvoDFaxa0CVuYGfCAc8ArsQmb2GbK/sC0w9yPY/UZ9tNcMDCP64B7eW8rpQS9cVQ44yBXlf7XlIiIiKg4qirDG6JcCbqPUt1qfn3Mc69H7aD9Z7eN4fEiLUMW5msbdB3wisyAS+L1Nr9wGafbexTWc3MNeBUglvRyoGDnbz3DdJgCntfo6UBve/D9S4Il6ERERETVLTJI54B7LkGPIPelt+IDcK9d0O3mgFvtr+R3QQ9tGTJ5TAUGFlaB19jdPexXxjng5zwC/HCt1Ynd93Vbhsy1BD2E52a3Drj58+BlekHQ9/+4680HCnYcKjkG4ERERDQ4DdYMeKJJu7XNMEpEwFnNr4/tOuA22+QesygzLiQDbiidDvH1lJ/TF/8OfPUlYNg2Xgbk8HORS9BjddafPz+d0gHrYNq1OVoJ1wEfMt7LgYKdP2+JvALCuqN+E3xf8o0BOBEREQ1Og3UO+IHfAfa5ENjhcPdtRbBSzRUC8tj9dEFXIvnbFzIH3K15WFDy2IeMB8ZM97hfGUvQvQSvdtUFbhlwP70NArPpgq6YnuMJNwHb7O9yqFKVxDuYsl84YyimGlpmjQE4ERERDU6GZcgGUQA+cU/g8F8AyWb3bQdNBtymlDmvC3oBX529jKPQ4/oJ7POeSwmbsNnOufdSgu7yOg6d7LJ/Ebugmy8aDN8WOPcRl8PUTmBJ3jAAJyIiosHJUIJexRneYsp1TK+RANxrt3PxmFsXdF9zwB0ytzPPAUZMA5q9lCybjxs0sHfKgBc5KLS9kOGzBN0qmD7wEmDqIfa7B/m33jIZmHGadF4P64B7Li0vxzrgDPrLiQE4ERERDU5ycMkslDXxpb5aA3BVDR6AQwm3C7qa0e+bg8BjrwMufAWIB1iLWfFQYm+5n9MyZCGFCKfdC3zlBYtze8iA2/2bdFuGLNEIfO4G+zEFeW7H/wHY6Wjzgfwfx0qplyFrPR047OfhnJMCqdK/pkREREQFqoXy6mKrhdeokCZs5u0LmQMuZ8st168OGIjZdVd339HbMQux4xHSMb3MgfcyN1y6kGF34cRJkOdmdbEitHnyYV38KzTj7qefARWCGXAiIiIanMQyZNUcXBZbrkqgwkv0vS6p5bsJW4hd0A2BYwEBaN4uAZu75TVhK3Ac7ieU7hYQgqT79fuWFzIicAwmw/osu3ZbL1JVzcgdgG8uzX880Vic81HoGIATERHR4FQtwWU5KVWSAbcdn6kE3U8G3CrLmTcH3OsAYSpBD/H1DGsOuNcAeeY5wK4n+TiPOGZITdhSUgBu2TyvGMuQWc2X9xFgn/2Qw6F9Bupn/FNr7iYccSUwYSZwwMXej2G37n1Fq/TxeccAnIiIiAanWmgwVmzVUoJ++C+BprHAYb/I/52nDLjNklJhdkF3mgNeiMBd0E3Pedqh1sc0O/Y64IDveDmB/c9emrDZNbiTM+CBStALrDLwfBzp99seaL+Z/Llwc94T+V3eP/sV4PyngfphHg+i2ry2LEEvlQr/a0pERERUJFERgMedtxvMqiUAHzEVuPht66DIsN67zznghgZnEYvjB5wDHuY64F6enyXpucw8Fzj0p9KvQsg2OgXxXhqs2ckM6PftStCdutOHMnfbZwbciZ8A3HGqhcfx+OncXwpT5wAfPF3uUZQUM+BEREQ0ODED7i5Xgl4FZfq2QV3ALug7H+eeXfYVzMhN2Ir0FTzoOuCzvmycQ+wWpHoJ9vKqB3xmwL0IUoIe6IJbkAy4R74+Q07nrMIS7W8sAb54X7lHUXIMwImIiGhw4hxwd7GkdhtNlncchQgyB3zP/wcceWUB2WULfjKdvo4bMLCX47UwS+1tjxHSHHC37Xs+hWVlwuFXAGf9W698KeQ8iocu6J4z0mn/47E8n9f3TEXFlJuPmBrs/ahyg+8ZExEREQHMgHtxwMXA+/OBiXuVeyTBBemCPvNsLSPsuq+fEvQiBeAyX6XtTgGxj/nNtpuYO8gXIQNutX1/l/Wm+3zN57FdREOauhLW56JYXdcrRQ09P2bAiYiIaHBiAO5ut5OBE/4IxBLlHkkwasAu6OLnwB3GrcZSrADcZX1xO04BcZBgZ+ohxkqJUmfA9/uW1uxsp2OKMM/ZoaGc531sRH382/K63J6TSpsD7tWkz5Z7BKFhAE5ERESDEwPwwSFIBlz8HInabwMAU/b3Po5SlKCHlQEPUl49ZDzwgzZvxwilEZrJgd/RlvuK18FzZYLXqRVWJehhaR4L7P9t42PnPBrgQF7HpALx+gDHL5N4g9Yg8JAfl3skoWEATkRERIMT54APDgVlwF3mgM/4InDyn4GL3nAfR61nwAGtLHvbg7T7M8/xfj79F/bH3uVE7VZe0svTMcMQcvnz/vOMP8+93HS6AM/FTwa89XTrxyvR8KnAfhcZmwRWOQbgRERENDg1jtRuG0aUdxxURKYSdK+lz1Yl6FbZ5UgE2PUkYNg2HobiIQAPEviGkQF3a8IWM2dMHcZ56t3A6f8E5pgzln5L0E0B4XHXA8ffCHzhDvdjNo9zHqPl+Xzwsp/TNiO2977vkVfJvyhsTEK8Hjju9963p1AxACciIqLBadLewEl/Ao65ptwjoWLy0sncLgANtQu6hwxjoCxk0C7oDhcmAmVgswFgsgmYNte5b0CQDHiyCWg9Dagfln9O877ROPCD1cBRv3Ees9fXO4yS80N/Fux42x7gbTtfXdCpnDjpiYiIiAYnRdGajFFtK2QOuLy9r+yyhWKVoLdMCrafY/m2TUWA1b6eyZl6uzXbC+iCbh5jogGI1fk8nofzBDVyWsDzeT2312XPqiAAr2sBerdmf6iC8frEDDgRERER1abAXdAV4y3gL7tsOZYilaA3jgS+/Cxw4WKfO8rBq0sJehgZYPn5e8qA+yzztjymS/BWzKWtCjm23fNyOqTV808OsdiwTAHtpL29bztsW/1+NVww8IkZcCIiIiKqXaF1QS9BCXpQ41sD7CRnpP2WoFtFgi4Bp+pwvtzjIWbAwxRKnB50vrnH52X12lXSCg9+llszXCSovQCcGXAiIiIiqk2K4rEJW8Au6H4UrQt6QKpDSXheMOcleHQLlDwE4H4ZMsVFzGaH3QXdz/m8Pi+r7aweq8GMcrVhAE5EREREtSmvBN1jAC4CIC/Zc89j8RCAn3izNv/16BI0BpTH49YFPYx1sK0y4Gc+4P84xoFId0sdJBdRLT0XylNBdQlERERERCELqwS9FBnwCTOB735U+HxzT5xK0INkwN1K0C3mgE+do62l/vrdFuf1kKl1C1TDyvaGERD7OoZdaX0YgXmVZcBrMGPPDDgRERER1S4vQXQldUEvSfANlznZ5ox3KCe0Pl9BAabb9gUEb4f8xMd5AJzy1+DnMjP0ogs5Gy7e97zj1l6gW6kYgBMRERFR7fKUAbdZdivMLugVF+DIAbFLCXpeQB5SCbr50H6PW3Bw6rC/3wsu8YbChmI8uc39MFTa59BCDWa9ZSxBJyIiIqIaFXQZsmJ0Qa/kJmwuXdDDzsKWLAPuItkEpHpsDu1zfrnbNlP21+b3j57u71iG18rn862kQDbwZ6iCnkNImAEnIiIiotpVyBzwMLugewm8SkkOzvKasLnNAffYcdvufIpNhjfsDLhdAHrMtcDkfYEDLnY4tt8LAwocg8VEI3DJB8C5j3k4lt04Bokab0I3CN9RIiIiIqppTWO0252ODtYFXQQAYXZB3+tLwJwfA+c/XdhxQhNyBtwt22powuahydi0w7TbRJP7uf3a81zgvMe0jLStInRYj8ZLW2ZfrcuQVcMYC8ASdCIiIiKqLV99EVi9VOuyveR2/fFydkGPxoEDv1PYMcLkuA54EeaA22WHO9fr98fsot9vPQNoGAlM2MP+kCOnBRiHR0PG6/cdA/UsRYH3kngfr1/YXdCTzdptqHPWvQg49hoMxhmAExEREVFtaRwJTJur3S9kDrihC3qNFY46zkkPEHAHLQfva9fvj5iq349EgJ2Ocj7m8O2Asx/SAvVAHMZcPxS4YCGw9RNg6GRgzesejuc1WPQTVIZYjj1xFnDIZdr9nY8DdjoGmLhXeMcnTxiAExEREVHtKmgOeAENsCqeQxDoerEhxAx4uj/AsSTbHuj/nF6oKjBuhvafJyF+PpyqE4KaOgc48wH952gMOPUub/tesBD46AXgP5eGM5ZBrsYu5RERERERSbxkwCOmnFSuBL2GvypPmAmMmKYFZmauTdgCsMuApwcKP7adXU7Uysenf6545wjEx/rllVB5MW4GsM/XvG8/ZGL+Y34uJBi2ZQk6EREREVF18r0OuLx9jWXAo3Hg64usAyO3JmyWwZRbCbpNyXsxA/D6ocAlHzpMPQjxPS1ahUQVfu6Ougq457Tg+8sXaybvU/h4KkwFXFIhIiIiIioBp4y2nAW36oJeiyIRmwC8GEFfkUrQ3URj4TaNK4VynLqimp1JYzn8F+UbRpHU+F8VIiIiIhrc5HJeh07m0aS0nUUX9EElwDrgbmxL0IscgJdMmBctAgbD3/sY2GY/m19WUyZdGqvo2l5DGIATERER0eDgFFDHEvp9yy7o1RTAFCjIOuCuyjAH3FWFvqdBm7DVD9Uaq+33LW0pvnIJMkXBoJKy8eHjHHAiIiIiql1qARnwWi9Bt1OMdcCrLQPuNwaslAs09cOAQ/+vvGOoqHL2yjNI/6oQERER0aDjOQOuuG9fyzw1XfPJtglbhQbgvlVACbqTSrlAQAzAiYiIiKiWeVzSSc6A57aXg5ZBFMC4ZcBDXQe8jCXo5QpK3c7bNLo046hUVv8WawgDcCIiIiKqXarHADxW21/6fXErvQ/SOd2uLDlTzjngTjxkofc4S7/vJ5h3K9EeNgU46U/AGfd7P2al8/P6bFN7S4/JGIATERERUQ3z2NAqmrD/3aBjsy56MVRzCfrsS4t37N1OBrY/xPhYQRl7t30rad52bVebMAAnIiIiInLLgA+mObR5XdDzNvB/TLus71G/0W4PuNj/MQtW4HtqeJ18HCvoZ8lvczM2Q6tI7IJORERERLXLaxDCDLiuGBlvuyZss84HdjoGaB4b/jkLUczg1c+xw7rw43qcYl9g4jJkAgNwIiIiIqphHr/Mcw64Li9YC6Er+shp9r8bMs7/8SqC9DqUokLC7znk7acf77JxbQe9lYQBOBERERHVrtAy4IOpBL0Iy5BNnQMcex0wZtfCjxWWck0rCNrlvJCs/IzTgu/rZtrhQOc6YM1S+20G0xQOFwzAiYiIiIhideUeQQXzsgyZS4ClKMDMc0IaTyn4DXZ9BJhT52hz3j1djAgpcI0UsfXXsCnA6X8HLm8p/FjxxsKPUeHYhI2IiIiIahhL0AvG7KU1xVSC7jVDrSjAIT8Bdj0x+Pm8mJxdzqtagtodjwa+uaTcoyg6BuBEREREVLvYhC2Yw38p/VCEknTyz28J+nHXAwdeAnzlueKMJ2w7HFZ5zfiKgCXoRERERERchsxo24P0+4PtuQMB5lsrxXmdCjlmw3Bgzo/CG0tBBuFnyAYz4ERERERUu7yWljMDbmQI/LzMAR+MTK9DsdfdrvkLIdnnV+PrlzMAJyIiIqLatdsXtLmwsy913o4BuEmtB3sIN6AtRXBcKWuTux9M+3dHlhiAExEREVHtitcB5z0OzP6+83aumfJBEJDaUUwhQ81nYoHKWRe7Gl5ri9fqpFuAb76m/zwoPjPeMAAnIiIiImIG3Mjc4dvP9tVix6OAYdsGz9Y6lukXQdW8xtlxmi/cuKqUix7FxQCciIiIiKh+aLlHUGGkYG/8Z+x/V83i9cA3lmjZ2lPuAoZuY79t4yj34xU7QK7xudGDBbugExERERHtfirw5j+M3b9lVZN9DIn8fPf9JjByB2DaoeUbT7FEsvnInY/R/ru8RfvZHOxO2hs4+IfAiO3tj1WMALkqPnfmMVq9Dl6eRzU818IxACciIiIiitcB5zxc7lFUplgSOGCe/nNVBIUhUxTgoO+aH7S8W9QxVBW/4x0cGX6WoBMRERERkYnPOeBUfBVbgm4eFz8vThiAExERERGRUakbjFWcSgl2S/Xah7wMmRkv4uQwACciIiIiIhOHDLhlMMUAq+gYxNYEBuBERERERGTEYM9dqasEilqCzve7VBiAExERERG5GswBivm5D4LXolLmW5fsQkiYz1esAy6NPRoP8fjVjQE4ERERERHZ8xIEMmNefOV+jWdd4HFDi2D+gIuB4VMxKC7euGAATkRERERERk7l1VaBYKVkjGtZuV/jo34dfN/GUcA3l2iBuJtyP88iYwBORERERGRn9g+ARBNw2M/KPZISG+zLkPkMAov2GtXKa18rz6NwsXIPgIiIiIioYs3+HnDgd4BItNwjKaNBOAe8EhXzQkghWecaz1iHjRlwIiIiIiIngzH4VnxmwLc/pHhjKYdYvfs2g6EyYLvZBew8CF6fAJgBJyIiIiIiE49zwI/5rdZca9sDSzKqopvzI2Dtm8DUg8s9ktIyX0xIDtHe22mHFuf4gxgDcCIiIiIiMvKaAW8cDWx3UPHHUyoHXlLuERiVKnA1l5EnGoHdTva2b+hjrO2SdpagExERERGRiUMGnKXFWU6vUZUr5bxuUT2x07GlO2cZMQNORERERET2nDKcLC0unUptduZpXNnPidXn5ax/A6k+IF5n3LZGMQNORERERERGftcBpyIp02sdxntsdYzpn9NuWyYbt8sF30Ctl6AzA05ERERERCaDfR1wD0r9upTyfIVk26NJ+9+N3Q341ptA46jgx69yDMCJiIiIiMhEDsAc5oBXall0qZUiOK701/qg7wFr3rDuIC+/PkMn5/9+EGEATkRERERE9szBJTPipVOu1zrIeQ/+QfjjqEGcA05ERERERMEM6mC8lkrQTdn1Ss+2VzEG4EREREREZC8v8BvMQbcdlqDnC7hMW9U9T38YgBMRERERkQMG3OVTRSXo5AkDcCIiIiIiMpKzkJwDbo1d0MXGRRtGLWIATkREREREDhhwV4RqLs3mRZscBuBERERERGSPc8DLp9K6oJ/9ELDDkaUdS41hAE5ERERERA4YcFur4RJ0O9seCJxyp+nBsMdVxZl+DxiAExERERGRd5UQCFaaUrwmxSxBH7Vz+MdUAnZBr3EMwImIiIiIyMRrsMfAqrhK9PqedAvQekbAncO+MFDbnykG4EREREREZI9zwCtDMbPsQ8YDx9/gdSDFGwcAlqATEREREdHgVc3dt4up1CXW1fw+cNpCDgNwIiIiIiIycQiYGEyVDl/rmsMAnIiIiIiITKo421qrKiUYr5RxVCkG4EREREREZNQ8Hkg0Aw0jgXiD6ZcMwDQlfh1KUYI+cgftdudjQz4wPzNCrNwDICIiIiKiChONAd/9AFAiQMSUs2MGtIRK/Fqf8yjw/lPALseX9ryyap7r7gEDcCIiIiIiyhdLlnsEJCvFhY+mUUDraeEcq8YD6aBYgk5ERERERN4xA66RX4dB9ZqYnquXQHtQvT7OGIATEREREREVhAFmHgbdlhiAExERERERVaJqDmJZgm6JATgREREREZFvVRwcF8J8USD0iwS1HbgzACciIiIiIiIqAQbgREREREQUTDWXSFeDanh9WWruCwNwIiIiIiIiv6ohOK4UfK1yGIATEREREREVYjAFmIPpuRYBkJG6vQAADrJJREFUA3AiIiIiIiIKGUvTrTAAJyIiIiIi8s2UCeZcaAfMmgsMwImIiIiIiKgy1PiFDAbgREREREREBVE4N5o8YQBORERERETklzngrvHMbUF4cSKHATgREREREQXEwIp44cGPigvAV61ahdmzZ2P69OnYfffdcd9995V7SEREREREZInBF9lgRYClWLkHYBaLxXDttdeitbUVa9euxcyZM3HUUUehsbGx3EMjIiIiIiIiAy9VEH4qJWo7cK+4AHzcuHEYN24cAGDs2LEYOXIkNm/ezACciIiIiIgqiBRUlmKOczRZ/HOEifO+LfkuQV+4cCGOPfZYjB8/Hoqi4MEHH8zb5oYbbsCUKVNQV1eHvffeG4sWLQo0uMWLFyOdTmPSpEmB9iciIiIiIqpqB30PmHkuMGrHco9Ed+Al7tsELkGv7cDddwDe1dWFGTNm4IYbbrD8/b333ot58+bhsssuw5IlSzBjxgwcfvjhWL9+fW6b1tZW7Lrrrnn/rV69OrfN5s2bcdZZZ+Hmm28O8LSIiIiIiKj4ajtYqggH/wA49trKyijP+ZH0g4dA29fYWYJucOSRR+LII4+0/f0111yD888/H+eeey4A4MYbb8QjjzyCP//5z/j+978PAFi6dKnjOfr6+nD88cfj+9//Pvbdd1/Xbfv6+nI/t7e3e3wmREREREREAVVSQExVI9Qu6P39/Vi8eDHmzp2rnyASwdy5c/HSSy95OoaqqjjnnHMwZ84cnHnmma7bX3HFFWhpacn9x3J1IiIiIiIqLQbj5E2oAfjGjRuRTqcxZswYw+NjxozB2rVrPR3jhRdewL333osHH3wQra2taG1txZtvvmm7/aWXXoqtW7fm/lu1alVBz4GIiIiIiIjC5OMCxawLtNvpnyvOUMqs4rqg77///shkMp63TyaTSCarrCMgERERERER5Ru1A/CD1UC8odwjKYpQA/CRI0ciGo1i3bp1hsfXrVuHsWPHhnkqIiIiIiKiysD54BYKaKaWqN0lqEMtQU8kEpg5cybmz5+feyyTyWD+/PnYZ599wjwVERERERFRGUlBd/3w8g2jGvACRY7vDHhnZyfef//93M8rVqzA0qVLMXz4cEyePBnz5s3D2WefjT333BOzZs3Ctddei66urlxXdCIiIiIioqoXiQDnPgYM9ACNI8o9msoWeE3w2uM7AH/11Vdx8MEH536eN28eAODss8/GbbfdhlNOOQUbNmzAT37yE6xduxatra14/PHH8xqzERERERFRlRvsmc1tnJdMHhQYXPviOwCfPXs2VJcX+cILL8SFF14YeFBERERERERUIwb7hRpJqHPAiYiIiIiIaBBhcO0LA3AiIiIiIiKiEmAATkRERERE/ux0DDBsW2Dbg8o9EqKqEuo64ERERERENAic8let+VaE+bxBj03YfGEATkRERERE/igK5/4SBcBLVkRERERERBQuZsYtMQAnIiIiIiKiImK1hMAAnIiIiIiIiIqI2XCBATgRERERERFRCTAAJyIiIiIiKhizvPZYgi4wACciIiIiIiIqAQbgREREREREBRusWV67zD8rAqwwACciIiIiIioYA05yxwCciIiIiIiIArLL/A/WigBnDMCJiIiIiIgoZKwIsMIAnIiIiIiIiIpHYTZcYABOREREREREATHT7QcDcCIiIiIiIgpX0xj9fjRRvnFUmFi5B0BEREREREQ1Jl4PfOc9QIkCkWi5R1MxGIATERERERFRQA7zu5tGl24YVYIl6ERERERERBQQ54D7wQCciIiIiIiIqAQYgBMRERERERGVAANwIiIiIiIiohJgAE5ERERERETBqJwD7gcDcCIiIiIiIqISYABOREREREREwSgOy5BRHgbgREREREREhZp2mHYbbyjvOKiixco9ACIiIiIioqo39WDg/z0FDN+u3COhCsYAnIiIiIiIKAyT9ir3CEqPTdh8YQk6ERERERERUQkwACciIiIiIiIqAQbgREREREREFAy7oPvCAJyIiIiIiIiC4RxwXxiAExEREREREZUAA3AiIiIiIiKiEmAATkRERERERFQCDMCJiIiIiIgoIM4B94MBOBEREREREVEJMAAnIiIiIiKigLgMmR8MwImIiIiIiIhKgAE4ERERERERUQkwACciIiIiIqKA2ITNDwbgRERERERERCXAAJyIiIiIiIioBBiAExERERERUUDsgu4HA3AiIiIiIiIKiHPA/WAATkRERERERFQCDMCJiIiIiIiISoABOBEREREREVEJMAAnIiIiIiKigNiEzQ8G4EREREREROTPwT8EhkwAZn+/3COpKrFyD4CIiIiIiIiqzEHfBQ68BFCYAfeDGXAiIiIiIiLyj8G3bwzAiYiIiIiIiEqAATgREREREVE5tUzSbpvGlHccVHQMwImIiIiIiMrprH8BrWcA5zxa7pFQkbEJGxERERERUTmNmAocf0O5R0ElwAw4ERERERERUQkwACciIiIiIiIqAQbgRERERERERCXAAJyIiIiIiIioBBiAExEREREREZUAA3AiIiIiIiKiEmAATkRERERERFQCDMCJiIiIiIiISoABOBEREREREVEJMAAnIiIiIiIiKgEG4EREREREREQlwACciIiIiIiIqAQYgBMRERERERGVAANwIiIiIiIiohJgAE5ERERERERUAgzAiYiIiIiIiEqAATgRERERERFRCTAAJyIiIiIiIioBBuBEREREREREJcAAnIiIiIiIiKgEGIATERERERERlQADcCIiIiIiIqISYABOREREREREVAIMwImIiIiIiIhKgAE4ERERERERUQnEyj2AsKmqCgBob28v80iIiIiIiIhoMBDxp4hH7dRcAN7R0QEAmDRpUplHQkRERERERINJR0cHWlpabH+vqG4hepXJZDJYvXo1mpuboSiK7/332msvvPLKK0Xfr729HZMmTcKqVaswZMgQ3+cja0Hfv0pTSc+jlGMp1rnCPG4Yx+LfmepWSf8+g6q058C/M+Eeq5D9+XemMlTav9EgKuk5lHos/DsT7r7V8ndGVVV0dHRg/PjxiETsZ3rXXAY8Eolg4sSJgfePRqOB3tig+w0ZMqSiP0jVJuj7UGkq6XmUcizFOleYxw3jWPw7U90q6d9nUJX2HPh3JtxjFbI//85Uhkr7NxpEJT2HUo+Ff2eKs281/J1xynwLbMJm8vWvf72k+1G4auV9qKTnUcqxFOtcYR43jGPx70x1q4X3odKeA//OhHusQvavtM/GYFUL70MlPYdSj4V/Z4p77mpXcyXo1aK9vR0tLS3YunVrxV/JIaLqxL8zRFRs/DtDRMVWa39nmAEvk2QyicsuuwzJZLLcQyGiGsW/M0RUbPw7Q0TFVmt/Z5gBJyIiIiIiIioBZsCJiIiIiIiISoABOBEREREREVEJMAAnIiIiIiIiKgEG4EREREREREQlwAC8CqxatQqzZ8/G9OnTsfvuu+O+++4r95CIqMaccMIJGDZsGE4++eRyD4WIasTDDz+MHXfcEdOmTcOtt95a7uEQUQ2qxu8v7IJeBdasWYN169ahtbUVa9euxcyZM/Huu++isbGx3EMjohrxzDPPoKOjA7fffjv+8Y9/lHs4RFTlUqkUpk+fjgULFqClpQUzZ87Eiy++iBEjRpR7aERUQ6rx+wsz4FVg3LhxaG1tBQCMHTsWI0eOxObNm8s7KCKqKbNnz0Zzc3O5h0FENWLRokXYZZddMGHCBDQ1NeHII4/EE088Ue5hEVGNqcbvLwzAQ7Bw4UIce+yxGD9+PBRFwYMPPpi3zQ033IApU6agrq4Oe++9NxYtWhToXIsXL0Y6ncakSZMKHDURVYtS/o0hIgIK/7uzevVqTJgwIffzhAkT0NbWVoqhE1GVGKzfbxiAh6CrqwszZszADTfcYPn7e++9F/PmzcNll12GJUuWYMaMGTj88MOxfv363Datra3Ydddd8/5bvXp1bpvNmzfjrLPOws0331z050RElaNUf2OIiIQw/u4QETkZtH9nVAoVAPWBBx4wPDZr1iz161//eu7ndDqtjh8/Xr3iiis8H7e3t1c94IAD1DvuuCOsoRJRFSrW3xhVVdUFCxaoJ510UhjDJKIaEuTvzgsvvKAef/zxud9fdNFF6l133VWS8RJR9Snk+021fX9hBrzI+vv7sXjxYsydOzf3WCQSwdy5c/HSSy95OoaqqjjnnHMwZ84cnHnmmcUaKhFVoTD+xhAR+eHl786sWbOwbNkytLW1obOzE4899hgOP/zwcg2ZiKpMLX+/YQBeZBs3bkQ6ncaYMWMMj48ZMwZr1671dIwXXngB9957Lx588EG0traitbUVb775ZjGGS0RVJoy/MQAwd+5cfP7zn8ejjz6KiRMnVv3/3IioeLz83YnFYrj66qtx8MEHo7W1FRdffDE7oBORZ16/31Tj95dYuQdA7vbff39kMplyD4OIathTTz1V7iEQUY057rjjcNxxx5V7GERUw6rx+wsz4EU2cuRIRKNRrFu3zvD4unXrMHbs2DKNiohqBf/GEFGp8e8OERVbLf+dYQBeZIlEAjNnzsT8+fNzj2UyGcyfPx/77LNPGUdGRLWAf2OIqNT4d4eIiq2W/86wBD0EnZ2deP/993M/r1ixAkuXLsXw4cMxefJkzJs3D2effTb23HNPzJo1C9deey26urpw7rnnlnHURFQt+DeGiEqNf3eIqNgG7d+ZcrdhrwULFixQAeT9d/bZZ+e2uf7669XJkyeriURCnTVrlvryyy+Xb8BEVFX4N4aISo1/d4io2Abr3xlFVVW1tCE/ERERERER0eDDOeBEREREREREJcAAnIiIiIiIiKgEGIATERERERERlQADcCIiIiIiIqISYABOREREREREVAIMwImIiIiIiIhKgAE4ERERERERUQkwACciIiIiIiIqAQbgRERERERERCXAAJyIiIiIiIioBBiAExEREREREZUAA3AiIiIiIiKiEmAATkRERERERFQC/x8k7zMhNuCEqwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(12,8))\n", + "plt.loglog(ps.freq, psd_shape, label=\"true power spectrum\",lw=3)\n", + "plt.loglog(ps.freq, ps.power, label=\"simulated data\")\n", + "plt.loglog(ps.freq, res.mfit, label=\"best fit\", lw=3)\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "That looks pretty good!\n", + "\n", + "You can print a summary of the fitting results by calling `print_summary`:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.72916 +/- 3.80371 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.09193 +/- 0.73337 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.10372 +/- 0.55239 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.579354.3\n", + " -- The Akaike Information Criterion of the model is: 2189.7896770356615.\n", + " -- The Bayesian Information Criterion of the model is: 2204.5129428726077.\n", + " -- The figure-of-merit function for this model is: 1079.683266.5f and the fit for 997 dof is 1.082932.3f\n", + " -- Summed Residuals S = 69266.959968.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(loglike)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Likelihood Ratios\n", + "\n", + "The parameter estimation code has more functionality than act as a simple wrapper around `scipy.optimize`. For example, it allows for easy computation of likelihood ratios. Likelihood ratios are a standard way to perform comparisons between two models (though they are not always statistically meaningful, and should be used with caution!).\n", + "\n", + "To demonstrate that, let's make a broken power law model" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [], + "source": [ + "# broken power law model\n", + "bpl = models.BrokenPowerLaw1D()\n", + "\n", + "# add constant\n", + "bplc = bpl + c" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude_0', 'x_break_0', 'alpha_1_0', 'alpha_2_0', 'amplitude_1')" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "bplc.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "# define starting parameters\n", + "bplc_start_pars = [2.0, 1.0, 3.0, 1.0, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [], + "source": [ + "loglike_bplc = PSDLogLikelihood(ps.freq, ps.power, bplc, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "pval, plc_opt, bplc_opt = parest.compute_lrt(loglike, starting_pars, loglike_bplc, bplc_start_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Likelihood Ratio: 0.36080561093513097\n" + ] + } + ], + "source": [ + "print(\"Likelihood Ratio: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "## Bayesian Parameter Estimation\n", + "\n", + "For Bayesian parameter estimation, we require a prior along with the likelihood defined above. Together, they form the *posterior*, the probability of the parameters given the data, which is what we generally want to compute in science.\n", + "\n", + "Since there are no universally accepted priors for a model (they depend on the problem at hand and your physical knowledge about the system), they cannot be easily hard-coded in stingray. Consequently, setting priors is slightly more complex. \n", + "\n", + "Analogously to the `LogLikelihood` above, we can also define a `Posterior` object. Each posterior object has three methods: `logprior`, `loglikelihood` and `logposterior`. \n", + "\n", + "We have pre-defined some `Posterior` objects in `posterior.py` for common problems, including power spectral analysis. We start by making a `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDPosterior" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The priors are set as a dictionary of functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law index\n", + "p_alpha = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_0\"] = p_alpha\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There's a function `set_logprior` in `stingray.modeling` that sets the prior correctly:" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import set_logprior" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "lpost.logprior = set_logprior(lpost, priors)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also set the priors when you instantiate the posterior object:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "lpost = PSDPosterior(ps.freq, ps.power, plc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Much like before with the log-likelihood, we can now also compute the log-posterior for various test parameter sets:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -198.61635344021062\n", + "log-likelihood: -2412.2493594640564\n", + "log-posterior: -2610.865712904267\n" + ] + } + ], + "source": [ + "test_pars = [1.0, 2.0, 4.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the prior is zero (so the log-prior is -infinity), it automatically gets set to a very small value in order to avoid problems when doing the optimization:" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: -1e+16\n", + "log-likelihood: -2534.0567826161864\n", + "log-posterior: -1e+16\n" + ] + } + ], + "source": [ + "test_pars = [6, 6, 3.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "log-prior: 1.383646559789373\n", + "log-likelihood: -2184.6739536386162\n", + "log-posterior: -2183.290307078827\n" + ] + } + ], + "source": [ + "test_pars = [5.0, 2.0, 2.0]\n", + "print(\"log-prior: \" + str(lpost.logprior(test_pars)))\n", + "print(\"log-likelihood: \" + str(lpost.loglikelihood(test_pars)))\n", + "print(\"log-posterior: \" + str(lpost(test_pars)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can do the same parameter estimation as above, except now it's called maximum-a-posteriori instead of maximum likelihood and includes the prior (notice we set `max_post=True`):" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod='BFGS', max_post=True)\n", + "res = parest.fit(lpost, starting_pars)" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "best-fit parameters:\n", + "4.8949 +/- 0.4941\n", + "2.0690 +/- 0.0811\n", + "2.0547 +/- 0.0680\n" + ] + } + ], + "source": [ + "print(\"best-fit parameters:\")\n", + "for p,e in zip(res.p_opt, res.err):\n", + " print(\"%.4f +/- %.4f\"%(p,e))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The same outputs exist as for the Maximum Likelihood case:" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "The best-fit model parameters plus errors are:\n", + " 0) Parameter amplitude_0 : \n", + "4.89492 +/- 0.49409 \n", + "[ None None]\n", + " 1) Parameter x_0_0 : \n", + "1.00000 (Fixed) \n", + " 2) Parameter alpha_0 : \n", + "2.06898 +/- 0.08112 \n", + "[ None None]\n", + " 3) Parameter amplitude_1 : \n", + "2.05471 +/- 0.06803 \n", + "[ None None]\n", + "\n", + "\n", + "Fitting statistics: \n", + " -- number of data points: 1000\n", + " -- Deviance [-2 log L] D = 4367.845868.3\n", + " -- The Akaike Information Criterion of the model is: 2188.6889410986737.\n", + " -- The Bayesian Information Criterion of the model is: 2203.41220693562.\n", + " -- The figure-of-merit function for this model is: 1104.686609.5f and the fit for 997 dof is 1.108011.3f\n", + " -- Summed Residuals S = 75870.967955.5f\n", + " -- Expected S ~ 6000.000000.5 +/- 109.544512.5\n" + ] + } + ], + "source": [ + "res.print_summary(lpost)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Unlike in the maximum likelihood case, we can also *sample* from the posterior probability distribution. The method `sample` uses the [emcee](http://emcee.readthedocs.io/) package to do MCMC. \n", + "\n", + "**Important**: Do *not* sample from the likelihood function. This is formally incorrect and can lead to incorrect inferences about the problem, because there is no guarantee that a posterior with improper (flat, infinite) priors will be bounded!\n", + "\n", + "**Important**: emcee has had a major upgrade to version 3, which came with a number of API changes. To ensure compatibility with stingray, please update emcee to the latest version, if you haven't already.\n", + "\n", + "Much like the optimizer, the sampling method requires a model and a set of starting parameters `t0`. Optionally, it can be useful to also input a covariance matrix, for example from the output of the optimizer.\n", + "\n", + "Finally, the user should specify the number of walkers as well as the number of steps to use for both burn-in and sampling:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Chains too short to compute autocorrelation lengths.\n", + "-- The acceptance fraction is: 0.642375.5\n", + "R_hat for the parameters is: [0.32313683 0.00732082 0.00479484]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.942652228740678\t0.5691486161504021\t4.035143030111889\t5.915733521435971\n", + "\n", + "theta[1] \t 2.0754546626425574\t0.0856675712513585\t1.9374392067380983\t2.21960029522001\n", + "\n", + "theta[2] \t 2.052820542793331\t0.06933048478134216\t1.9394014208215005\t2.167009901378628\n", + "\n" + ] + } + ], + "source": [ + "sample = parest.sample(lpost, res.p_opt, cov=res.cov, nwalkers=400,\n", + " niter=100, burnin=300, namestr=\"psd_modeling_test\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The sampling method returns an object with various attributes that are useful for further analysis, for example the acceptance fraction:" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.6423749999999999" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.acceptance" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Or the mean and confidence intervals of the parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([4.94265223, 2.07545466, 2.05282054])" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.mean" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[4.03514303, 1.93743921, 1.93940142],\n", + " [5.91573352, 2.2196003 , 2.1670099 ]])" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sample.ci" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method `print_results` prints the results:" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "-- The acceptance fraction is: 0.642375.5\n", + "R_hat for the parameters is: [0.32313683 0.00732082 0.00479484]\n", + "-- Posterior Summary of Parameters: \n", + "\n", + "parameter \t mean \t\t sd \t\t 5% \t\t 95% \n", + "\n", + "---------------------------------------------\n", + "\n", + "theta[0] \t 4.942652228740678\t0.5691486161504021\t4.035143030111889\t5.915733521435971\n", + "\n", + "theta[1] \t 2.0754546626425574\t0.0856675712513585\t1.9374392067380983\t2.21960029522001\n", + "\n", + "theta[2] \t 2.052820542793331\t0.06933048478134216\t1.9394014208215005\t2.167009901378628\n", + "\n" + ] + } + ], + "source": [ + "sample.print_results()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Similarly, the method `plot_results` produces a bunch of plots:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqkAAALDCAYAAAA2SZn7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9fX48Vdyb3Jn9r0hIYNAwkjYAVmyVFQQdxG1omLbr1apA2tr1VaqdVVtbatV66hWoa1WCwriQkUDyCaM5IaEQHZI7s3OHRk39/cHv/tpAplAkptwno9HHl5uPvee980w577HOX4ej8eDEEIIIYQQPsS/vwcghBBCCCHEySRJFUIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklQhhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhcyRJFUIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklThE6xWK4sXL8ZgMDB69Gi++uqrTq+fP38+Wq0Wo9GI0Whk0aJFyufS09M5//zzCQ4OZsSIEbzxxhu9PXwhhBBCnGWSpIo+tXz5ct5+++1T7l+xYgVRUVFYrVaee+45li5dSmVlZafP9cYbb1BfX099fT2ffvqpcv/NN9/MpZdeSnV1NR988AErV67EYrGc7ZcihBBCiF4kSarod/X19axbt47HHnsMvV7PlVdeyfjx4/noo49O6/ny8vK48cYb8ff3JzU1leTkZLKyss7yqIUQQgjRmyRJHeSefPJJ/Pz8GDduXLeu37NnDwsXLiQ4OJigoCAuueQS0tPTT7kuIyOD6667jhEjRqDX6zGZTMydO5f169f3eIw5OTkYjUZiY2OV+8aPH09GRkanj1u5ciVms5mLL76YAwcOKPfffffdrF69mubmZnbu3ElBQQEzZszo8biEEEII0X8kSR3EioqKeOqppzAYDN26fu/evcyePZujR4+yatUqHn30UXJycpg3bx6HDx9uc21+fj51dXXceuut/PnPf+Y3v/kNAFdeeSWvvfZaj8ZZX19PcHBwm/uCg4Opr6/v8DHPPvssx44do6CggIsvvphFixZRV1cHwKJFi3jnnXfQarXMmjWL3//+90RHR/doTEIIIYToX34ej8fT34MQveOGG27AarXidrux2WwcOnSo0+sXL17M999/T05ODhEREQCUlpYyatQoLrnkEj788MNOH+92u5kyZQoul6vN8vrll1/Oli1bAHA4HKjVagIDAwH41a9+xaWXXspFF13UZg/q3XffjUaj4fnnn+/Wax0zZgwvvvgiU6ZMISEhgb///e9cc801ZGRksHDhQjZs2EBqamq3nksIIYQQ/U9mUgep7777jg8++IA//elP3X5MWloaCxYsUBJUgOjoaObNm8eGDRs6ndkEUKlUxMXFUV1d3eb+DRs2UF1dTXV1NT/84Q95+eWXlX//6le/YuTIkdTX11NcXKw85tChQ4wdO7bbY/f398fj8ZCbm4vBYGDJkiWoVComTJjArFmz+Pbbb7v9XEIIIYTof5KkDkJut5u7776bn/zkJ4wfP77bj2toaECn051yv16vp7Gxsd2ZWLvdjs1mIzc3lxdeeIFPP/2Uiy66qEfjNRqNXHXVVaxatQqn08mGDRs4cOAAV111VbvXV1dX8+WXX9LQ0EBjYyMvvPAClZWVTJ8+nVGjRuFwOPjoo4/weDxkZmaSlpbWo6+DEEIIIfqfur8HIM6+V199lfz8fDZt2tSjx40ePZrt27fjdrtRqVQANDY2smPHDoA2M51eP//5z/nb3/4GnJjNvPbaa3nppZd6POaXX36ZW2+9lYiICGJjY3nvvfcIDw9XPr9o0SLmzJnDww8/TFNTEw899BCHDx8mICCASZMmsXHjRkJCQgB4//33efDBB1m2bBnh4eHcf//9LFiwoMdjEkIIIUT/kT2pg0xFRQWjRo3i4Ycf5uc//zlwovB9d/akvvrqq9x5553ceuut/PKXv6SlpYUnnniC//73vzQ1NfHuu++ybNmyNo/JysqiqKiIkpIS3n//fQIDA3nllVcYMmRIr71GIYQQQgx+kqQOMnfeeSebNm0iIyNDOZzU3SQV4JFHHuG5556jqakJgKlTp3LppZfy5JNPsnbtWq6++upOH3/JJZdQXV3Njh078PPzO+PXI4QQQohzk+xJHURycnJ47bXXuOeeeygpKSEvL4+8vDxcLhdNTU3k5eV12cXpySefpKysjLS0NA4cOMCuXbtoaWkBYNSoUV2OYcmSJezatYvs7Oyz8pqEEEIIcW6SJHUQKS4upqWlhXvuuYfhw4crHzt27CA7O5vhw4fz+OOPd/k8YWFhzJ49WzlstGnTJmJjYxkzZkyXj3U6nQDU1NT0aOxWq5XFixdjMBgYPXo0X331VafXz58/H61Wi9FoxGg0smjRIgDl394Pf39//vCHP/RoLEIIIYTof3JwahAZN24ca9euPeX+X//619TV1fHnP/+ZxMRE4ES90oKCAkwmEyaTqcPnfO+999i1axfPP/88/v7/e09TXl5OZGRkm2ubmpp455130Ol0pKSk9GjsK1asICoqCqvVyqZNm1i6dCk5OTltDk+d7I033jhlj2zrMlklJSXEx8dz7bXX9mgsQgghhOh/kqQOIiaTqd09o95aqa0/t3PnTi644AJWrVrFb3/7W+BEbdXHH3+cSy65hIiICLZv385bb73FwoULuffee9s85x133EFtbS1z584lJiaG48ePs2bNGrKysvjDH/6A0Wjs9rjr6+tZt24dR48eRa/Xc+WVVzJ+/Hg++ugjbrvttp5+GRT//Oc/mTlzJsOHDz/t5xBCCCFE/5DlfqGIiYlBpVLx3HPPsWLFCrZs2cITTzzBRx99hFrd9v3M9ddfj7+/P6+88gp33nknf/zjH4mNjeWjjz7i/vvv71HcnJwcjEYjsbGxyn3jx48nIyOj08etXLkSs9nMxRdfzIEDB075/Lvvvsstt9zSo7EIIYQQwjfI6X7R79LS0rj55pvJy8tT7nvkkUeoqKjg1VdfbfcxO3fuJCUlBZVKxYsvvsif//xnsrKyCAoKAuDAgQNMnz6d0tJSQkND++BVCCGEEOJskplU0etmz56Nn59fux+//vWvMRqN1NbWtnlMbW1tp1sGpk2bhtFoRKfT8ctf/pKgoCC2b9+ufP7dd9/liiuukARVCCGEGKBkT6rodVu2bOn08/X19dTX11NcXExMTAwAhw4d6tFSvb+/P95FgZaWFv75z392OAsrhBBCCN8nM6mi3xmNRq666ipWrVqF0+lkw4YNHDhwgKuuuqrd66urq/nyyy9paGigsbGRF154gcrKSqZPnw7AV199RVNTk1KWSgghhBADjySpwie8/PLLlJSUEBERwf333897773XpvzUokWLeOqpp4ATpa4eeughTCYTUVFRrF+/no0bNxISEgKcWOq/4YYbTjnsJYQQQoiBQw5OCSGEEEIInyMzqUIIIYQQwudIkiqEEEIIIXzOoNm019LSQklJCUFBQfj5+fX3cITwKR6Ph7q6OoYOHdqmva0QQgjhqwZNklpSUkJcXFx/D0MIn1ZYWNims5cQQgjhqwZNkurtNFRYWEhwcHA/j6ZvuN1utm3bBsCsWbNQqVSDIlZ/xBvsamtriYuLU35PhBBCCF83aE7319bWEhISQk1NzTmTpArRXfL7IYQQYqCRzWlCCCGEEMLnDJrl/nNRU1MTr732GgC33347AQEBgyJWf8QTQgghhG+R5f4BzG63YzQaAaivr8dgMAyKWP0Rb7A7F38/hBBCDGyy3C+EEEIIIXyOJKlCCCGEEMLnSJIqhBBCCCF8jiSpQgghhBDC50iSKoQQQgghfI4kqUIIIYQQwudIndQBTKPRsGHDBuX2YInVH/GEEEII4VukTqoQ5wD5/RBCCDHQyHK/EEIIIYTwObLcP4A1NTWxZs0aAG666aZeb4vaV7H6I54QQgghfIss9w9g0hZVdNe5+PshhBBiYJOZVNFjhYWFOByOLq8zmUzEx8f3wYiEEEIIMdhIkip6LDU1FafT2eV1er0ei8UiiaoQQgghekySVNFjTqeT1atXk5yc3OE1FouFZcuWYbPZJEkVQgghRI9JkipOS3JyMqmpqf09DCGEEEIMUlKCSgghhBBC+ByZSRWKgoICbDZbu5/rzh5UIYQQQoizRZLUAUyj0fD+++8rt89EQUEBycnJ3Tq1r9PpMJlMZxSvK2fztQkhhBBi4JEkdQBTq9Vcd911Z+W5bDYbDoejywNR0Delpc7maxNCCCHEwCNJqmhDDkQJIYQQwhdIkjqANTc3s3btWgCuueYa1Ore+3b2Zaz+iCeEEEII3yJ/+QewhoYGli5dCpxoHdqbiVxfxuqPeEIIIYTwLVKCSgghhBBC+BxJUoUQQgghhM+RJFUIIYQQQvgcSVKFEEIIIYTPkSRVCCGEEEL4HElShRBCCCGEz5G6PgNYYGAgb731lnJ7sMTqj3hCCCGE8C2SpA5gAQEBLF++vMvrCgoKsNlsnV5jsVjOSqyzpa/jCSGEEMK3SJI6yBUUFJCcnIzD4ejyWr1ej8lk6oNRCSGEEEJ0TpLUAay5uZnPP/8cgEsvvbTdrkw2mw2Hw8Hq1atJTk7u9PlMJhPx8fGnHets6ut4QgghhPAt8pd/AGtoaODyyy8Hum4dmpycTGpqap/EOhv6Op4QQgghfIuc7hdCCCGEED5HklQhhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhcyRJFUIIIYQQPkeSVCGEEEII4XOkrs8AFhgYyEsvvaTcHiyx+iOeEEIIIXyLJKkDWEBAACtWrBh0sfojnhBCCCF8iyz3CyGEEEIInyMzqQOY2+0mLS0NgDlz5qBSqXwulsVi6fKa9tqx9uVrE0IIIYTvkSR1AHO5XFxwwQXAidahBoPBZ2KZTCb0ej3Lli3r8rn1ej0Wi6VNotqXr00IIYQQvkeSVNEr4uPjsVgs2Gy2Tq+zWCwsW7YMm812ymyqEEIIIc5dkqSKXhMfHy+JpxBCCCFOixycEkIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklQhhBBCCOFz5ODUABYQEMCzzz6r3B4ssfojnhBCCCF8iySpA1hgYCC/+MUvBl2s/ognhBBCCN8iy/1CCCGEEMLnyEzqAOZ2u9m7dy8Aqampvd4Wta9i9Uc8IYQQQvgWSVIHsJycHKZNmwbAli1b0Ol0p1xjsVjOSiyXy6XE6os2pX0dTwghhBC+RZLUAaqgoIDU1FTl37Nnz+7wWr1ej8lk6othCSGEEEKcFZKkDlA2mw2n06n8u6OZVACTySTtSYUQQggxoEiSOkhMmjRJlsSFEEIIMWjI6X4hhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhc2RP6gB3++23Ex0d3SdtUVetWqXc7m19HU8IIYQQvkWS1AHujjvuaFOKqrcEBgby29/+ttfj9Fc8IYQQQvgWWe4XQgghhBA+R2ZSB7jc3Fw0Gg3Jycn4+/fee46Wlhale1Vvx+qPeEIIIYTwLZKkDnBLly4Fer91qNPpZNy4cX0Sqz/iCSGEEMK3yPSUEEIIIYTwOZKkCiGEEEIInyNJqhBCCCGE8DmSpAohhBBCCJ8jSaoQQgghhPA5kqQKIYQQQgifIyWoBribb76ZIUOG9Elb1AceeEC53dv6Op4QQgghfIskqQPcfffd12dtUZ977rlej9Nf8YQQQgjhW2S5XwghhBBC+BxJUge4kpIS8vLyaGlp6dU4LS0t5OXl9Ums/ognhBBCCN8iy/0D3BVXXAH0TVvU4cOH90ms/ognhBBCCN8iM6lCCCGEEMLnSJIqhBBCCCF8jiSpQgghhBDC58ieVOETLBZLm387nU7ldnp6OjqdDpPJRHx8fF8PTQghhBD9QJJU0a9MJhN6vZ5ly5Z1eM3s2bMB0Ov1WCwWSVSFEEKIc4AkqaJfxcfHY7FYsNlsbe53Op1Kcrplyxby8vJYtmwZNptNklQhhBDiHCBJ6gB33XXXYTabUat791upVqu56667lNtnU3x8/CmJZ0NDgxJv6tSp6HS6sxpTCCGEEL5NktQB7le/+lWftEXVaDT89a9/7fU4/RVPCCGEEL5FTvcLIYQQQgifI0nqAFdVVYXVasXj8fRqHI/Hg9Vq7ZNY/RFPCCGEEL5FlvsHuAULFgC93zrU4XAQGRnZJ7HaiyeEEEKIc4vMpAohhBBCCJ8jSaoQQgghhPA5kqQKIYQQQgifI0mqEEIIIYTwOZKkCiGEEEIInyNJqhBCCCGE8DlSgmqAu/zyy4mIiOiTtqi33nqrcru39XU8IYQQQvgW+es/wD322GN91hb17bff7vU4/RVPCCGEEL5FlvuFEEIIIYTPkSR1gHM6ndjt9j5pi2q32/skVn/EE0IIIYRvkeX+AW727NlA37RFNRqNfRKrvXhCCCGEOLfITKoQQgghhPA5kqQKIYQQQgifI0mqEEIIIYTwObIn1QcVFBRgs9k6vcZisfTRaIQQQggh+p4kqT6moKCA5ORkHA5Hl9fqdDqcTmcfjEoIIYQQom9JkupjbDYbDoeD1atXk5yc3Om1er2+y2uEEEIIIQYiSVJ9VHJycpedpFwuF0uWLAFApVL16nhUKlWfxeqPeEIIIYTwLZKkDmBarZb//Oc/gy5Wf8QTQgghhG+R0/1CCCGEEMLnSJIqhBBCCCF8jiSpA5jdbsfPzw8/Pz/sdvugidUf8YQQQgjhWyRJFUIIIYQQPkeSVCGEEEII4XMkSRVCCCGEED5HklQhhBBCCOFzJEkVQgghhBA+R5JUIYQQQgjhc6Tj1ACmUqm47LLLlNuDJVZn8SwWS5ePNZlMxMfH99rYhBBCCNH7JEkdwLRaLZ988smgi9VePJPJhF6vZ9myZV0+Vq/XY7FYJFEVQgghBjBJUsWAEB8fj8ViwWazdXqdxWJh2bJl2Gw2SVKFEEKIAUySVDFgxMfHS+IphBBCnCPk4NQAZrfbMRgMGAyGPmmL2lex+iOeEEIIIXyLzKQOcA6HY1DG6o94QgghhPAdMpMqhBBCCCF8jiSpQgghhBDC50iSKoQQQgghfI4kqUIIIYQQwudIkiqEEEIIIXyOnO4fwPz9/Zk3b55ye7DE6o94QgghhPAtkqQOYDqdjs2bNw+6WP0RTwghhBC+RaaohBBCCCGEz5EkVQghhBBC+BxJUgcwu92O2WzGbDb3SVvUvorVH/GEEEII4VtkT+oAZ7PZBmWs/ognhBBCCN8hM6lCCCGEEMLnSJIqhBBCCCF8jiSpQgghhBDC50iSKoQQQgghfI4kqUIIIYQQwufI6f4BzN/fn6lTpyq3B0us/ognhBBCCN8iSWofKigo6LKsksVi6fbz6XQ6du3adabD8rlY/RFPCCGEEL5FktQ+UlBQQHJyMg6Ho8tr9Xo9JpOpD0YlhBBCCOGbJEntIzabDYfDwerVq0lOTu70WpPJRHx8fB+NTAghhBDC90iS2seSk5NJTU09K8/lcDhISUkBIDMzE71ef1aet79j9Uc8IYQQQvgWSVIHMI/HQ35+vnJ7sMTqj3hCCCGE8C1ybFoIIYQQQvgcSVKFEEIIIYTPkSRVCCGEEEL4HNmTKgal7tSblSoKQgghhO+SJFUMKiaTCb1ez7Jly7q8Vq/XY7FYJFEVQgghfJAkqQOYn5+fUqbJz89v0MQ6k3jx8fFYLJZudfZatmwZNptNklQhhBDCB0mSOoDp9XoyMjIGXawzjRcfHy+JpxBCCDHAycEpIYQQQgjhcyRJFUIIIYQQPkeS1AHM4XAwduxYxo4di8PhGDSx+iOeEEIIIXyL7EkdwDweD5mZmcrtwRKrP+IJIYQQwrfITKoQQgghhPA5kqQKIYQQQgifI0mqEEIIIYTwOZKkCiGEEEIInyNJqhBCCCGE8Dlyun8A8/PzY9iwYcrtwRKrP+IJIYQQwrdIkjqA6fV68vLyBl2s/ognhBBCCN8iy/1CCCGEEMLnSJIqhBBCCCF8jiSpA5jT6eS8887jvPPOw+l0DppY/RFPCCGEEL5F9qQOYC0tLezevVu5PVhi9Uc8IYQQQvgWmUkVQgghhBA+R5JUIYQQQgjhc2S5X5zTLBZLl9eYTCbi4+P7YDRCCCGE8JIk9SwoKCjAZrN1ek13kiHRd0wmE3q9nmXLlnV5rV6vx2KxSKIqhBBC9CFJUs9QQUEBycnJOByOLq/V6/WYTKY+GJXoSnx8PBaLpVtvLpYtW4bNZpMkVQghhOhDkqSeIZvNhsPhYPXq1SQnJ3d6bW8sG/dl0tvXCXZvx4uPj5fEUwghhPBRkqSeJcnJyaSmpvZpTIPBgNVqHXSx+iOeEEIIIXyLnO4XQgghhBA+R5JUIYQQQgjhcyRJHcCcTifz589n/vz5fdIWta9i9Uc8IYQQQvgW2ZM6gLW0tPDtt98qtwdLrP6IJ4QQQgjfIjOpQgghhBDC50iSKoQQQgghfI4kqUIIMUhYrVYWL16MwWBg9OjRfPXVV6d9fUZGBnPnziU4OJiUlBQ2b97cy6MXQoi2ZE+qEN3Qnba2vdGsQYj2LF++nPnz57N8+fI2969YsYKoqCisViubNm1i6dKl5OTkEB4e3u7zdHR9UFAQV111Fffccw/ffPMN33zzDUuWLOHw4cNERET0wSsUQghJUoXolMlkQq/Xs2zZsi6v1ev1WCwWSVRFv6ivr2fdunUcPXoUvV7PlVdeyfjx4/noo4+47bbbenT9eeedR1VVFffccw8ACxYsYPLkyaxdu5af/OQnff3ShBDnKFnuH+D0ej16vX7QxeqPeO2Jj4/HYrGwZ8+eTj9Wr16Nw+HAZrP163jF2bFr1y5+9rOfMXbsWAwGA/Hx8SxdupTs7OxuPb6hoYEHH3yQoUOHotPpmD59Ol9++eUp1y1fvhw/P78OP4qLi7s95pycHIxGI7Gxscp948ePJyMj47Su93g8ba73eDwdPpcQQvQGmUkdwAwGA3a7fdDF6o94nYmPj5fZ0XPM73//e7Zu3cp1113HhAkTOH78OC+99BKpqals376dcePGdfr45cuX88EHH3DfffcxcuRI3n77bS677DK++eYbZs+erVx3xx13sGDBgjaP9Xg8/PSnPyUhIYGYmJhuj7m+vp7g4OA29wUHB1NRUdHj60ePHk1oaCh//OMfufvuu/nqq6/49ttvGTFiRLfHI4QQZ0qSVCGEOMn999/PP//5TwIDA5X7rr/+esaPH88zzzzD6tWrO3zszp07+fe//81zzz3HAw88AMAtt9zCuHHj+OUvf8m2bduUa2fOnMnMmTPbPH7Lli04HA5uuummNvdffvnlbNmyBQCHw8H777/PfffdB8CvfvUrLr30Umpra9s8pra2FqPR2O44jUZjh9cHBASwbt067r77bp588kmmTp3K9ddf32bWVQghepskqZ0oKCjocvm2OwdqhBADy6xZs065b+TIkYwdO7bL3/kPPvgAlUrF7bffrtyn1Wr58Y9/zMMPP0xhYSFxcXEdPv6f//wnfn5+/PCHP2xz/4YNG5Tb7R2cqq+vp76+nuLiYmUG9tChQ9xyyy3txhk5cmSn10+YMEFpqAEnvibd2ZsthBBniySpHSgoKCA5ORmHw9HltXq9HpPJ1AejasvlcvGDH/wAgA8//BCtVjsoYvVHPCG64vF4KCsrY+zYsZ1et2/fPkaNGnXKUvq0adMASE9P7zBJbWpq4v3332fWrFkkJCT0aHxGo5GrrrqKVatW8eKLL/LVV19x4MABrrrqqtO6/sCBA4waNYqWlhb++te/0tLSwsKFC3s0JiGEOBOSpHbAZrPhcDhYvXo1ycnJnV7bX6WH3G43GzduVG4Pllj9EU+IrqxZs4bi4mIef/zxTq8rLS0lOjr6lPu995WUlHT42M8//5yKiopTlvq76+WXX+bWW28lIiKC2NhY3nvvvTblpxYtWsScOXN4+OGHu7z+rbfe4q233qKlpYWLL76YdevWndaYhBDidEmS2oXk5GRSU1P7exhigJB6qoNTVlYWK1asYObMmdx6662dXut0OtFoNKfc710NcDqdHT72n//8JwEBASxdurTTGG+//Xa795vNZuXNXXs+/fTTbl//wgsv8MILL3Q6DiGE6E2SpApxFkg91cHr+PHjLF68mJCQEGW/aWd0Oh0NDQ2n3O9yuZTPt6e+vp6PPvqISy+9VArmCyEE52iSKgeixNnmrafanZ+rZcuWYbPZJEkdAGpqali0aBHV1dWkpaUxdOjQLh8THR3dbn3T0tJSgA6fY926de2e6hdCiHPVOZekDoQDUWJg6kk9VdkW4PtcLhdXXHEF2dnZbNq0iZSUlG49btKkSXzzzTfU1ta2OTy1Y8cO5fPtWbNmDUajkSuvvPK0x2y1Wlm+fDmbN28mNjaWl19+mYsuuui0rk9PT2fFihUcPHgQk8nEww8/LN2mhBB9atAlqenp6R3WBYQTyYGvH4gSg1dPtwX897//xWw2n3Hc+vr6M36Oc4nb7eb666/n+++/56OPPjqllqmXw+GgoKAAk8mkvKFdsmQJzz//PK+99ppSJ7WhoYG33nqL6dOnt3uy32q1smnTJm688cYz6rK2YsUKoqKilOdbunQpOTk5bQ5Pdff6m2++meuuu460tDTS09OZN28e559/fpf/3xRCiLNl0CSp3hZ+8+bN6/JanU7HpEmTOq1V6HVysWtf0rojU21tba+egu/LWP0Rr6+Ehoayc+fODrsAedlsNpYtW3bWS/6c3OpStO/nP/85H3/8MVdccQWVlZWnFO/3vsnYuXMnF1xwAatWreK3v/0tANOnT+e6667joYceory8nKSkJP7xj3+Ql5fHm2++2W689957j+bm5jNa6q+vr2fdunUcPXoUvV7PlVdeyfjx4/noo4+47bbbenx9Xl4eN954I/7+/qSmppKcnExWVpYkqUKIPjNoktS6urpuX+t0OrtsazjQdGev3ECM1R/xBrO6ujpCQkL6exg+Lz09HYD169ezfv36Uz7f1Uz4O++8w29+8xveffddqqqqmDBhAhs2bGDu3LntXr9mzRoiIyNPaZHaEzk5ORiNxjZdocaPH09GRsZpXX/33XezevVqfvOb37B3714KCgqYMWPGaY9PCCF6atAkqUOHDqWwsJCgoCD8/Pz6ezjdUltbS1xcHIWFhacU/vZ1A3nsMLDHfzpj93g81NXVScLfTZs3b+7WdfPnz293dlqr1fLcc8/x3HPPdet5vv/++54Mr1319fWn/DwEBwd3OGvf1fWLFi3illtu4cknnwTgzTffbLf+qxBC9JZBk6T6+/sP2L7SwcHBAy5R8hrIY4eBPf6ejl1mUAe22bNns3Xr1nY/98gjj/CDH/zglO1JtbW1He7RNxqNHV5fWVnJ4sWL+fvf/84111xDRkYGCxcuZPz48VI3WgjRZ/z7ewBCCCG6tmXLFjweT7sfTzzxBCNHjqS+vr5N+atDhw512Ma1s+tzc3MxGAwsWbIElUrFhAkTmDVrFt9++22vv04hhPCSJFUIIQYBo9HIVVddxapVq3A6nWzYsIEDBw5w1VVX9fj6UaNG4XA4+Oijj/B4PGRmZpKWlsb48eP7+FUJIc5lkqT2I41Gw6pVq9ptoejrBvLYYWCPfyCPXfSul19+mZKSEiIiIrj//vt577332pSfWrRoEU899VSX14eEhPD++++zatUqgoODWbRoEffff/8ZHewSQoie8vNITRohhBBCCOFjZCZVCCGEEEL4HElShRBCCCGEzxk0JahaWlooKSkZUHVShegrreuk+vt3/N5Ufo+E6Fh3f4+EEGfHoElSS0pKutXmVIhzWWFhYaf1hOX3SIiudfV7JIQ4OwZNkhoUFATQYRceu92Ow+FAr9ej1+u7/by9NZtktVppbm5GrVZjNpt7JYYQXt4uVd7fk4509Xs0mLjdbrZt2wbArFmzUKlUAzpOX8c6F3X390gIcXYMmtP9tbW1hISEUFNT0+Uf15685N5KUu12O3a7HYPBgMFg6JUYQnh19/ejJ79HQpxr5PdDiL41aGZSBxpJToUQQgghOiZJqhDinNTU1MRrr70GwO23305AQMCAjtPXsYQQoreds8v9u3fvJjMzk5SUFKZOndrhtX1xwlmW/kVvk+X+U9ntdoxGIwD19fW99rvXV3H6Ota56Fz6/RDCF5yzNTQyMzMpKSnhyy+/xGq19utY7HY7zc3N2O32fh2HEEIIIYSvOGeT1JSUFDweD3Fxcf2epBoMBtRqtcx6CCGEEEL8f+fsntSpU6cybNgwrFZrt0pAHTt2jMLCQuLi4hg+fPhZHYss8wshhBBCtHXOJqkAZrO5ywTVu2W3sLAQp9NJYWEhCQkJp1wn3XmEEEIIIc6ec3a5/2R5eXmkpaWRl5fX7ufj4uLQ6XTSjUcIIYQQog/0y0zqkSNHWL9+PaWlpVxwwQWkpqYyZMiQHj1HQ0MDDQ0Nyr9ra2vPaEzZ2dlUVVXhdDrbnSlNSEho934hhBBCCHH29XmSeujQIebOncvYsWNpamriL3/5C9deey0333wzixYt6vbzPP300zz22GNnbVzh4eHY7XbCw8Pb3J+Xl6fsRZUkVYjBQ6PRsGHDBuX2QI/T17GEEKK39WmdVKfTydKlSxk+fDgvvPACKpWKzz77jBdeeIHGxkbuuecerrnmmm49V3szqXFxcafdFtXhcCi1SgHl9p49e3A6neh0OubMmdPhc/blnlSpqyp6SuqkCnHm5PdDiL7Vp3tSAwMDKS4uZsiQIahUKgAWLlzIY489RnBwMK+99ho7duzo1nNpNBqCg4PbfJwJvV6P2WxGr9e3qVvaV3tR7XY75eXl3aqVKnVVhRBCCDHY9VmS6na7aWhoIDo6GpvNptwHMGPGDB544AEKCgpYt24d0P5sZ19pXbc0ISGBOXPmYDAYyMzM7LWaqj1JPKWuqhBnrqmpibfffpu3336bpqamAR+nr2MJIURv6/Xl/oaGhjZ7o1599VXuvfde1q9fzyWXXEJLSwv+/idy5VdeeYUHH3yQ3NzcbtUuba2nbVF7KjMzU3ktKSkpp3z+TJf7ZQlf9CZZ7j+VtEUVPXUu/X4I4Qt69eBUZmYmv/zlL1m5ciUXXXQRAD/96U/Zs2cPS5Ys4dNPP+X8889Xrk9KSiIhIUHZCuBLzGZztwv/n44zTU57s9mAEKL7CgoKlNUiOLEX3ys9PR2dTgeAyWQiPj6+z8cnhBADRa8lqR6Ph2effZYtW7Yos4zeRPWpp57C6XRy8cUX8+qrrzJ37lzi4uL4/PPP8ff3V2ZWfYnZbMZut5OVlYXdbu/Xk/7tzbq2bjYgSaoQ/aOgoIDk5GQcDke7n589e7ZyW6/XY7FYJFEVQogO9FqS6ufnh8FgYMyYMQQEBPDMM8/gdru55JJLMJvNvPnmm8TGxrJy5UqMRiORkZEcO3aML7/8ktDQ0N4a1hnpqOvU2d4x4fF4Otw+4HA4yMvLU7ZQ6PV64ESzAe9Mal/s55UOW0Kcymaz4XA4WL16NcnJycCJmVRvcrplyxZ0Oh0Wi4Vly5Zhs9kkSRVCiA706nL/7NmziY+P54ILLuDRRx/lD3/4AyaTiU2bNnHjjTfyzDPPcPXVV1NUVERjYyOzZs3qkxnK7iZYJyd7rRPB/mK329FoNEr5LavVqhzwkjquQviG5ORkUlNTAdochpw0aZLsExVCiG7q1SQ1KCiIjz/+mAcffJBf/OIX/PWvf+XKK6+kpKSEZcuWASdO9g8UrRPB1nVVvXvM+oL3D5zBYGhTEcA7o9qR1uPt6tqTSUMDIYQQQvS1Xt38OWrUKKXM1EUXXURdXR1VVVVMnz6do0eP9mboXmW1WtmzZw/Hjx8/41qlVqu1W6Wt8vLySEtLo7y8XKnn2p1SVA6HA6vVSnl5+WnXVm29zUEIIYQQoi/06kxqUlISGo2GwsJCHnnkETIzM3n++ef54osvuP/++3n++eeZO3dubw7htJSXlysn+ds7zW+1WlGpVFRXV5OYmHhGsaxWKw0NDWRlZSkxvbOkrWc9vYlidnY2hYWFlJaWMm7cOKUcVnszpZmZmezevZv4+HgSEhKUhLans6q+sM1BiLNNo9Hw/vvvK7cHepy+jiWEEL2tV0/3Nzc34/F4mDlzJv7+/nzyySdMmjSJYcOG8c477/js0rE3cfQmjScndd7EtaKigg0bNhAdHc2UKVN6vIwO/yttVV9fr8QETlnG9yaKOp2OQ4cO4XK5OHLkiJKktrf0f+TIEVpaWigoKGDatGnK/VartdvbBIBT9ru2/nrI/joxUKnVaq677rpBE6evYwkhRG87K8v97Z0m9/PzIzAwkDvuuIPY2FjWrl3LpEmTALjssst48803ffZUq9lspr6+noqKCqxW6yndoMxmMykpKVRVVVFZWUlubm6bZXTv0nxeXt4pz+1dfveWqPE+15gxY5SZj/z8fKqqqtokgN7OVykpKSQmJhIeHk5SUpLy+faW/pOSkggPD2fq1KltklGr1cquXbtOu3uWtGUVQgghRG877ZlUu91OS0sLHo+n084bS5cuZfHixUpZKW95JV+egYuMjGwzm5qQkKDMHLaWlJSEy+UiOjq6zecKCwspKSnh2LFjGAyGNlsGOjrs5N1akJmZqTQzaG+WU6/XM2fOHKDtmwO9Xn/K9QkJCcr2gdYqKirQarVUVFR0+2uSmZnJkSNHlIYL7X09hBhImpubWbt2LQDXXHMNanXvLCz1VZy+jiWEEL3ttP4PlpmZycqVK7FarZSVlfHss89y0003tanv6Xa7UalUBAQEEBoaqrQ/HSj1NVt3mGovAQRISUkhJSXllLqmERER7N+/n6ioqFO6VLXeb9pV3DPVUUJ8OntMjxw5gt1uV7YYSIIqBrqGhgaWLl0KnGgh2lsJXV/F6etYQgjR23r8f7DMzEzmzp3LLbfcwtSpU9mzZw+33XYbY8eOVZbzAWU28OOPP2bmzJm91k60t0RGRp72mM1mM/PmzaO6uhqz2XxKCafO9oGazWZMJpOS9HZ2yMnpdHZ6AKqjhDghIQGDwYDVau12QpyUlKTMpAohhBBC9LYeJamVlZWsXLmSm266iT/+8Y8A/PCHP2Tv3r38/e9/5y9/+UubWcUNGzawYsUKbr31Vh5//HGfbHfame50brLZbEqiZzKZgBPJYVRUFImJieh0OjZv3kxRURHl5eXdPizmjd16NvTkeqydfQ5Ap9Oh0+lwOp1K0X9vMpuVlUVZWRlDhgzpVpLqnTUW4lxVUFCAzWbr9BqLxdJHoxFCiMGvR0lqU1MT1dXVLFmyBEBZwh8+fDiVlZVA225Ol19+OTt37mT58uUDLkGF7nWmar13tfXM5ZnOHHtjt37Ok8fT2edaj+/w4cOEhIQQFRV1WhUIhDjXFRQUkJycrBx47Ixer1fesAohhDh9PUpShwwZwurVqxk5ciRwYt+pv78/MTEx5Ofnt7m2urqa0NBQHn/88bM3Wh/Ueg9pR3tAzzvvPKKjo4mNjQVos8zeXomr1jraDwsos6feU/bl5eUUFRURGxurzNh2VNN1zJgxREREDLhtGEL0B5vNhsPhYPXq1SQnJ3d6rclk8tnKJUIIMZD0eE+qN0FtaWkhICAAOLE0XV5erlzz9NNPo9FouOeee3xq4/6xY8eUvaHDhw8/K8/Zeg+pw+Fg7969lJaWMnbsWGV53Ftn1LuEb7VaaWxs7DK57ciWLVs4cOAAEydOZNSoUcpji4qKcDqdFBUVKUmqNwn1HgBrPe7uJqjSFlWIE5KTk0lNTe3vYQghxDnhtDNIf3//NvtPvcv5jz76KE888QT79u3zqQQV2rb37G6S2pMETa/XU1VVhdvtZs+ePTgcDvR6vXJYynvQyXsbThyM6urEf2uZmZmsXr0anU6Hn58fkydPVh4bGxurzKTCqTO2p6v11837NWjdlSsyMvK0n1sIIYQQoj1nlEV6k1S1Wk1cXBzPP/88zz77LLt372bixIlna4xnzemUXmovQetMYmIiubm5ANTW1mK325VZTO+MqbdTk3cG9ORZzs7k5uYSFRXF8ePHMZvN7N27l9jY2A7bt3r3y9rt9tOeDW3v69b6uSVJFQNRYGAgb731lnJ7oMfp61hCCNHbzihJ9c6eBgQE8PrrrxMcHMyWLVt8djls+PDh3Z5BzcjI4MiRI2i1WnQ6XZeJbetZy5SUFKxWK5s3b1b2hHq17gplt9ux2+1YrVYqKyupqqoiMTFR2fPWeq9qZmYmFosFrVbLlClTSExMpKqqCofDoSzvn7zc33q/bFZWVo+S7dZObosKZ7eeqxD9ISAggOXLlw+aOH0dSwghettZOXJ/6aWXArBt2zamTp16Np6y33mL17tcLubMmUNCQsIpLU1baz2zCCeSOK1WS3h4OMeOHaO5uVm533sYyntoqrGxkW3btpGdnc3evXuBEwlqXl6eMhtrsVior6/H5XJxxRVXkJKSQkxMDDqdTlnej42NbfNvb8JsMpmIi4vrVrLdEavVSmZmpvL6IiMjGTt2rMyiCiGEEKJXnJVNo1OnTqWurm5QdSFqr3h9Zwec2ptZ9C79R0dHo1arlVlTL+/e1MrKSiIiIqivr0er1WKz2bDb7Wg0GhoaGjAYDCQnJ2OxWEhOTiYzM5Pc3FwSExOZPXu28nwJCQlERkayd+9edu3axdixY5UWpjabjaqqKiIiIjp93R1VGmidhMvsqRgMmpub+fzzz4ETb7R7sy1qX8Tp61hCCNHbztr/wQZTggq0OZ3v1dkBJ+/hJO+Mo8PhwOVyMX78+DbloI4dO8bXX39NUFAQSUlJTJo0iejoaGJiYpTn8s66BgcHK8ni1KlTlVnq9evXY7fbOXr0qLK1oHXymJubi8vlIjc3F71eT11dHfv27cNoNCptTTvSUSIuy/tisGloaODyyy8Her8takdxulP8vyclrfrqNQkhRF84J/8P1lUnqY5mEzuqWdr6+bzlpQ4fPsyQIUMoLi5m2LBhADQ2NrJv3z7sdjt+fn5UV1ezd+9eamtrOf/885k0aRIOh4OcnBwqKipITEzEZDKdMt6kpCSOHj1KdHQ0VquVgoICVCoVNpuNYcOGkZSURHZ2Nv7+/hQXF1NVVUVzczNut5uRI0d2+vpbJ+InVwdonaB2pxsXdK8hghDnGpPJhF6vZ9myZV1eq9frsVgsUntVCHHOOSeT1K50Vbf05LJUfn5+SjLmnXEcNmwYVVVVhIWFYbPZMBgMOBwORowYgcvlIjIykqFDh5KdnU1tbS379+8nPDxc2YuqVqspLi7GYDBgs9kwmUxKkpicnExycjJWq5Xm5mZljN4/fJMnT8bj8aBSqaioqKCmpoYhQ4Yoj9uzZ4+ydWDKlCntvi6z2UxeXp4s8QvRC+Lj47FYLN1qs7ps2TJsNpskqUKIc44kqe3oqm5pYWEhLperzUn5k0/35+XlERgYSGVlJaGhoQCUlZWxf/9+YmJimDRpEiqViqKiIux2O/n5+bz//vuEh4czbNgwXC4XMTEx2Gw2GhoasNlspySK3nEOGzYMvV6vJLgVFRUEBgZSXl6Oy+UiODgYrVaLw+Fgy5Yt7N69G51OR3p6OvHx8cqMsbc6gPd19XSJ/2zVZRXiXBAfHy+JpxBCdOKsnO4fbLwn771tR08WFxeHVqtVTso7nU4OHz5MTU1Nm4NRTqcTt9vN3r172b59O9nZ2ZjNZsrLyykpKeHQoUPExsYyZ84cAgMDcbvdVFdXo1KpaGhowOl0YjKZsNls5ObmkpeX1+m47XY79fX1uN1ugoKCiI6Oxt/fn9LSUsLDwyktLaW6upqgoCAMBgPx8fHKjDH8rzqA93V5E+6TE86OqhycXOFACCGEEOJ0yUxqJ/Lz89stgH9y3VC73U5ISAg1NTXo9XqsVisGg4Fhw4ZRUVFBdXU11dXVBAYGolKpmDlzJjU1NWg0GtxuNyqVivDwcBoaGpg9ezZlZWW43W5yc3NJTk5Gp9Nx/PhxPv30UxYtWqSUw9q8eTNZWVkMGTKESy65BIPBgNFoxGg0EhkZid1uJysri4iICEpLS4mMjKS8vJxZs2ZhMpmA//UkBxg2bFibUlsn78lt/XqPHz9OdXU1Y8aMadN6tbOZ195oSyuEEEKIwUlmUjvRelm/MwaDgaCgIKU+qfd0fkJCAsnJycTGxmKz2fD398dkMjFu3DjGjBkDgEqlorCwELPZzJQpU4iLi6OhoYHS0lJliT4mJoa6ujqCg4MpLi4GTiTQ+/fv59ixY+Tn53P48GElprcNq9ls5vzzzycqKorExESGDx/OhRdeiMlkUsboHYN3b1xeXh6bNm3i6NGjygzryTVSDQaDMuPbeta0o5nX1l9P73YCIYQQQojOyExqJyIiIsjNzW1THqo9Op1OaXPa0NDQpqsUQHh4OMOHD+fQoUPY7Xa0Wi0JCQlMnjyZffv2UVlZSW1tLVOmTCE7O5v6+nrCwsKIiorCbreTkJDAokWLKC4uJiYmhq1bt7Jx40bUajVRUVGEhYVRUVFBfn6+0q3Ky2AwEBERQURERJvk0WKxUFlZSXh4OHq9XplZ9SaQ2dnZSqesk2uk6vV6xowZ0+MDVafTllaI3hIYGMhLL72k3B7ocfo6lhBC9LZzPknt7LCP2WwmLCysw1qDrYvqe4vmh4SEtFkiLy8vZ9euXRw4cACNRkNgYCB2u53S0lKsVquyXzQ2NpZhw4ZRVFSERqPB398fo9GoJLuttxj85z//oaqqipCQEH72s59RUFBAbW1tu52wbDYbjY2NSoUB74Ewp9MJnNg36z3h7/F4lARSq9UqM6XtLeOf/PXqqGxXaz1pSytEbwsICGDFihWDJk5fxxJCiN4mSWo7nZS8iat3P2liYmKbhMxbqunw4cMYjUalqH7r5CwvL085LZ+Tk0NzczMBAQFERkYSEhJCUVERFRUVBAQEEBsby7hx4wAYNWoUjY2NlJSUcOTIESVJzc/Pp7i4GJ1Oh9FoJCwsTHnM/v37yc/PZ86cOW2SRTiRPHpfQ+vSWjqdjry8vFNmXr3JcGc1Uttzctmu1uMYbI0ehBBCCNH7zvkktb1ZQm/impeXR1RUFBUVFW0e492rCtDU1ER0dPQpz+tNUKurqxk3bhyZmZkMHTqUoUOHYjAYqK+vp6mpiaFDhzJ//nwA9u7dS1VVFXV1dbhcLoqKipQyVLt376a8vJzAwEAMBgOXXXYZo0aN4vDhw+zfv5+AgADKysooLy+nvr5eqQ7gdruJiorCYDCQnp5OWlqasgxoNpuprKzE4XC02+a1J0v5J5ftstvt1NbWYrVaSUhIkERV+By3201aWhoAc+bMUba3DNQ4fR1LCCF6mySpHSzz5+fnM3ToUGUJvHWHpbi4OIqKipg0aRIxMTGo1epTOjDFxsYqbUm1Wi1XX301KpUKjUaDy+Vi9OjR2Gw2ZsyYgVarpaKigrKyMurr65VC/EajEZ1OpzQFcDgceDwepfNVUFAQzc3NGI1GbDYbgYGBuFwuysrKOHLkCBEREQQGBhIdHY1eryc/P5/m5mby8vJISEigvLyclJQUZWbV+xqysrLIzc0lOjpaqaPauhyXx+PB37/tmTvvmKxWK3l5eej1ehoaGtBoNB02RTh51rer7QIgHazE2eNyubjggguAEy1Ee+uNVF/F6etYQgjR2875JPVk3n2dJpNJSUC9XZ+8CZR3STwzM5Pdu3eTlJSE2Wxuk3R5Zw8tFgtutxun08mIESOUmQ1vnK+++or09HQmTpzIkCFDKCoqws/Pj7CwMEJCQrBYLAwZMoTm5mbq6upwOBwcPXqUjIwMLr/8coYMGUJ8fDxDhw5Fp9Oh1WqVslJOp5OxY8dy8OBBCgsLCQ8Pp7i4mMTERMLCwkhMTCQ+Ph69Xq8kf/n5+axduxY/Pz/Ky8sZOnSocso/Pz8fh8NBfHx8u9sfdDodR48exd/fn4SEBCUB7ugPZestAkCnXb6EEEIIcW6RJPUk3sQJUBJU7wGpxsZGoqKiiImJwWw2U1xcjFarpbKyss1jvYmWwWBQrnM6ndTU1BAeHs7WrVuV5/S2PK2rq2Ps2LEAVFZWUl1dTVxcHAUFBXz11VcEBQUREBBAXV0dtbW1qNVqvv76a66++mrOO+88ysrKGDJkiHJKv7KykujoaPLz8ykpKcFoNCqlqMLCwkhNTaWxsRFAKT+l1+s5cuQIdrsdq9XKqFGjlK+B9z63231K9ytvaam8vDx0Op3y+r0fHWlvi4DM/AghhBACJEltY/fu3aSnpzNs2DDOP/98dDod+fn5pKWl0dDQoCxfu1wuwsLCCAsLU9qXemdRAaqrq8nOziYmJobk5GQcDge1tbVUV1fj8XhIT0+nurqanJwctFotRUVFSgH9qqoqXC6XUjJq06ZNaLVa1Go1sbGxxMXFUVlZyaFDhwgKCqKqqooZM2YAJ2ZnvW1UIyIiCA0Npbm5maCgIFQqFY2NjTQ3N2O1WqmurgZO7GGD/y3Xh4WFYTKZlML+rWeIvc/Reunf4XCg0+lwOp3KISzvbHNXJ/5PTmJlBlUIIYQQXpKktmKxWGhqaiI/P59JkyYBJw5ARUREUFFRwdixY9Fqtco2AO+Jfo/HQ1ZWlnIAq7i4mOrqapxOp1JY35vAajQaEhMTSU9PJzk5GafTSWJiImq1WunIFBgYSFNTk7LsX15eTnJyMhdddBF6vZ7PP/+c+Ph4ZYl++/btAISFhVFUVERWVhY1NTVER0czefJkCgsLlW0G3hnX0NBQqqurOXDgAKWlpcyYMQOTyURERAQjR45Eq9Wi1+uxWCwAhIaGUlVVpSTRDodDmU2NiYlh2LBhp+zttVqtnS7hd6dsVXukc5UQQggx+EmS+v9ZrVa0Wi379u2jqakJk8nE+eefr3SRmjt3bptWqK0fV1BQwNdff43VamX48OFERkbicDiIjo7GarViMpkwmUzY7XacTidz587FbDZTUFBASEgIISEhuN1uDh06hE6no66ujrCwMDIyMpTHRkREKPtT7XY71dXVGAwGysvLaWxspLGxEaPRSHp6Ojk5OTQ1NbF+/Xo0Gg1hYWFUVVUREBDAjBkzqK6uVpb6i4uLaW5uJj8/n1mzZuF0Oqmrq8NisVBTU6OUroITNV9bWlo4evQoMTExysn9jpbpT17OP9nJ2yNa8+5zPbklLbTtXCVJqhBCCDE4SZLKiRm9rKwsYmJiMBgMqNVqsrKyuOSSSzCbzUqS1F7hf6vVSl1dHYcPH8bpdNLY2MikSZOwWCxs27aN4uJipk2bRkJCAh6PB41GQ3V1NWq1GrVaTWNjIyEhIQQGBlJfX09lZSWBgYGUlpYyYsQIjh07hp+fH/v27WPEiBFs27YNq9WKy+ViyJAhyn5Tg8FAQ0ODUk3AarXi5+fHzp07mTlzJjU1NQQFBXHs2DEqKyvJy8sjJCSE8PBwqqurlTatJpOJY8eO0dzcTFFRkfLaNRoNo0ePVioNaDQapfuUN8E8eWa0p3tSWyssLKSkpIRjx44pe3u9pHOVEEIIMfj1e5La0tJySjmjvma325Xl72nTplFQUMCECRPa7L2E9gv/6/V63G43MTEx1NTUYDabqaiowGKx0NzczPHjx5VDVHq9nsLCQqqqqjAYDAQEBBAUFERNTQ0Ax48fp6qqiujoaFwuF3a7HY1Gg1arJTg4GLvdzpEjR6iqqiI0NJSamhrUajVDhgzh8OHDyvPExcVht9txOBw0NDQAJ7YCeEtSZWdn43A4KC8vJyEhgTFjxuB0Ovnss88ICAjAYDBw/PhxYmNjlX2qDQ0NTJ48Wdne0F4pqM5mRtvTWRIbFxfHsWPHCA8PP6WOrXSuEmdDQEAAzz77rHJ7oMfp61hCCNHb+i1Jzc/PR61WExMT019DUBgMBuXke+uk6eTap+0V/jcYDKSkpBAaGkppaSnBwcHKloG6ujrGjRuHv78/NpsNnU7Hrl270Gq1JCUlMXfuXEpKSqipqSEtLY3c3Fz8/f2V2qdGoxG3283mzZs5cOAAiYmJ+Pv743K5KCkpISoqiujoaAoLCzl27Bhut1sp+N/Q0MDo0aOJiIggKiqKjIwMSktLiY2NZcKECXz33XcEBQVRVlZGQkICmzZtUmZyL7zwQjQaDVFRUWRmZpKSksKwYcO6TDw7mxntrP1se7wlvE7+egtxtgQGBvKLX/xi0MTp61hCCNHb+iVJTU9PZ8GCBbz00kvccMMNp/Uc3tP2XrW1tac9nq6Wpb066lcPkJycTHx8PNnZ2bS0tGAymZgwYQKjR48GQKfTkZWVRW1tLdu2beOzzz5jwoQJzJ07lyNHjuB0OnE6nURGRjJ16lQ0Gg2ff/45a9eupbi4GDjRkQr+Vxpr9+7dqFQqDh8+jNvtxmg00tLSolQfGD58OOHh4aSnp3Pw4EEAjh49yvLly5k7dy6HDh0CTvxhq6mpITs7m6CgIBoaGkhKSqKgoAB/f38qKytJTk7GYrGQm5tLYmIiycnJpySe3q+jt1JB6wNRVquV0tJSjhw5wsyZM7uVePa065UQQgghBo8+T1L379/PrFmzuOuuu05JUDtaRm7P008/zWOPPXZaYzh5hrQjrbci2Gw2paap3W4nNzcXOLH0bLPZOHz4MMHBwcqJem/S7HK5aG5uprS0FKPRSFhYGEajkfr6eoqLi8nPz1f2vYaFhSlje//991mzZg0tLS1ER0fzxBNPcOzYMdauXUtGRgY1NTVs27aNnTt3Ko0Hxo8fT3BwMDabjfj4eFJTU8nOzsbf3x+NRoPD4SAsLIzCwkKSk5Npbm7Gz8+PoKAgRowYQXBwMLW1tUyePJmoqCglCS8pKWH79u1kZmaiUqnw8/NTOmZt3ryZ7OxsLrnkEhYuXEh6ejp79uwhKiqKpKQkZQbWbDaTm5uL0Wg8ZXa0ve97eyf/u/t9A+lMJbrmdruVN36pqam92ha1L+L0dSwhhOhtfZqkHj58mOnTp/PQQw+xatUq3G4327dvp7y8nKSkJFJSUrr9P9WHHnqI+++/X/l3bW1ttw/SdDeB8ff3V6711h8tKCigtLSU6upqtm7dqox90qRJlJWVER0dzdSpUyksLKS8vJx9+/aRkJCA0+kkPj6e4cOH4/F4OHDgAEOGDKGpqYmysjKSkpL49ttv2b9/P6+++iplZWUALF26lD/+8Y+EhYUprzs7O5u1a9fywQcfkJmZyfHjxzl+/Dj79+9n6NChqFQq3G43LS0teDweXC4XDQ0N+Pv7K4leYGAg1113Hddffz2BgYGkpKSQlZVFdHQ0TqeTY8eOKRUEmpqacDgcuN1uqqqqsNvtfPbZZ9TU1LBjxw5lVnfRokUcPnyYxsZGsrOzGTt2rLI/1Ww2M2PGjE6X71snpj3d3ypET7lcLqZNmwb0flvUvojT17GEEKK39VmS2tDQwOOPP47BYGDx4sUAXHPNNRw9epSysjKqqqq4//77ufPOO7t1KEaj0aDRaHo0hvLy8h7ti/TytjB1u93o9XoiIyNpaGggNzcXp9NJYGAgqampDB8+vM3Wgfz8fHQ6HbW1tZjNZvbv309zczNxcXFcffXVaLVa8vLyaGxsJD8/nz179rB161YaGxsJDw/nz3/+M9dee+0p4xk1ahQPPvgg999/PwUFBXz44Yd8+OGHHDp0iIKCgm6/rldffZU9e/bwu9/9TqnVWltbS2BgIJmZmRQWFhIQEMD48eMpLy8nNjaWw4cPo1Kp+O6774iIiFCS3pEjR+JwOIiMjKSkpITk5GSCgoIwGAxtkk/vvt7MzMxTvg+tE9OuylcJIYQQYnDrsyRVo9Fw++2309TUxAMPPEBxcTGjR4/mrbfeIikpiQ0bNnDPPfdgNBp59NFHe7T0313tnc5vz8lLzd7T/yaTSalNGhkZycSJEzl06BDjxo1j8eLFFBYWUlRUpDxPVFQU2dnZymypn58fLpeL2tpaQkNDsdvtyp7Rzz//nNLSUgAuvfRS/vrXvxIdHd3laxo1ahQPPfSQMsOalpaGSqVSkniNRoO/vz8Gg4HAwEClWsDmzZt56KGH2LVrF1dddRULFy7kRz/6EQaDgcbGRurq6qipqSE0NJSioiJ0Op1SB7a4uJjo6Gj27t3L8OHDGTNmjDITXFRURHNzMy6XCzhR7xROVBewWCzK3luj0UhlZSUGg0GpotA6MfV+3fPy8pRk1ul0tlv8PzMzkyNHjgAn3ohoNBrmzJkjFQCEEEKIAaxPl/vnzZuHn58fTz/9NElJSfzlL39hxIgRANx8882UlJTwzDPP8LOf/Yzw8PCzHr+90/ntKS8vp66ujqCgIADlgFFiYiIGgwGDwUBdXR3z5s1j0qRJxMTEsGnTJvbv309cXBwul4uhQ4diMpkoKChQElSPx4Pdbic4OJj6+no8Hg8bN25kw4YN1NfXYzQaef7557nhhhtOq3zMqFGjGDVq1Cn3u1wuAgMD29w3evRo5syZw/Llyzl06BAfffQRJSUl3H333UyePJmwsDByc3Nxu93Y7XYlwR01ahSTJk0iIyMDnU5HUVERDQ0NZGRkEBkZydGjRzEajRQXF5OTk4Ofn5/SerWkpAStVovL5UKn0yn750aPHo3ZbMZut2O1WoETh9m8byry8/MBlJJcJ28BOHLkCA6Hg0OHDqFSqVCpVCQkJEiSKoQQQgxgvZqklpWVUVRURGVlJTNnzsRoNDJ37lz0ej3Hjx8nPj4e+N8BpZCQEOLj45Xk8GyLjIwkMjKyRwdwiouLaWhoUPZkemfybDYbQ4YMwe12U1ZWRnp6Oi0tLWRkZDBhwgR27NihnKgPDw/HZDIpJZ6KiooYPnw4L774IllZWQDMnj2bN954gxEjRuB0Onvl9Z8sJSWF7777jkceeYRXXnmFXbt28fvf/57XXnsNu91OUFAQOp0Og8FAVVWVUq3AbrcTFRUFnNjbGhkZicvlIiQkhLlz5yr1WvPz8wkICCAlJYX6+nrKy8sJCQlh6tSpREZGsnfvXlQqlfLGwWq1Ul1dTUVFRZutAQDNzc3A/yobtJaUlMSRI0eYNm2aMpPa3v5ku92ufP9kG4EQQgjh23otST148KByKOfAgQMsWrSIp59+mgkTJjB16tQ2J+e9/7VYLCQlJdHc3Ixare6zE9onL+9HRka2SWScTidRUVHk5eWxc+dOJk6cSHJyMuXl5RQUFOB0OtFoNDidThISEqitrWXnzp3k5eXR3NzMNddcg9lsVvZbRkdH8/nnn5OVlaXMLN977739chJXq9Xyhz/8gXnz5rF8+XIyMjJYsWIF119/PcePH8fpdBISEkJcXJxS8qu4uBi73Y7L5VJqs06fPh2TyaTsyf3666+pra3FaDSSkJDAV199RWRkJGFhYUoXq9GjR7eZ2XY4HEpnrfLycgwGg3Kt3W4nJCSk3UNUKSkppKSktLmvq2YDkqQKIYQQvq1XktScnBwuvfRSfvzjH/OjH/2IxsZGFixYwFtvvcULL7wA0KbLVGFhIa+99hr/+Mc/2Lp16ymdnnpb6+X9hIQEJdHyeDwkJCQoidKaNWtoamoiKyuLKVOmkJCQQEVFBUeOHGHChAkEBgZSUlJCQUGB8hqCg4MpKSmhoaGBgIAApQrAZ599BsDvfve7NlUK+suVV17Jf//7X5YuXUp6ejqFhYVMmDABrVaLXq9Ho9Eoy+fe5NRms+HxeHA4HDidTurq6pQyXWFhYfj5+TFixAjsdruyzB8bG3vKQSrvzLbT6SQuLo6mpiYAJaH01mD1xmpvX2p3yGEsIYQQYuA460mq0+nkD3/4A5dddhm/+c1vlD2Cv/71r3nxxRdpaGggMDBQmenav38/9913H/n5+WzevJmxY8ee7SH1SOsC9SaTqc3nxowZQ1ZWFmPGjMFqtZKdnc3x48cBqKysVJb0CwoKiI6O5qqrrsLlcqFWqykpKSE4OBiz2cxjjz1GY2MjV111lU91h5k7dy5ffPEFixcvpqKigp07dzJ58mSOHz9OcHAwH3/8Md999x2hoaFoNBoCAwPZuXMnQ4YMIS8vD61Wi9vtprKykhEjRhAXF4fZbFZO8gcGBpKQkIDVaqW2tpbt27fT0NCgzIR6l+jj4uKIjIxsN6E8k9JUsswvWgsICGDVqlXK7YEep69jCSFEbzvrSarb7aaxsZG5c+e2OawTFRVFZWUljY2Nbe6fOHEiv/zlLxk9erRyiKqvtV7ez8vL4+jRo+zevZu5c+cqs6gAU6ZMYcqUKcqydEFBAX5+fjidToKCgsjJyeHYsWM0NjZSVFREREQEISEhlJaWkpaWhlqtZu/evZSVlTF69GjefPNNnys6P23aNL755hsWLlzI8ePHOXDgAHBiid/Pzw+9Xk9oaCjDhw9HrVYzdOhQamtr0Wq1qNVqbDYb9fX1wIkld6vVqiSTer2eLVu2sG3bNurr61Gr1QwZMoTc3FxSUlLazFp7r/ee3E9KSiI5ObnL2dDWM62SkIrOBAYG8tvf/nbQxOnrWEII0dvOepJqNBp58sknlfJJbrcblUpFVFQUERERGI1GJTGzWCwkJyezaNGisz2MTnV2cMpsNrNnzx40Gg3FxcUMGzaMw4cPc/ToUUaMGEF8fDwFBQUEBgYSEhJCSEgIQUFB5ObmUlNTQ0lJCbW1tURGRpKTk4PZbCYuLg6Px0NpaSllZWUYjUbefvtt/Pz8qKurO2UMFRUV3dryYLPZMBqNXV5nt9uJiIjo8rrm5mZMJhOJiYl89tlnXHnllRQUFLBlyxblmqCgIOLi4sjNzVUOoY0ePZqwsDC0Wi1VVVVEREQoB68qKysxm83Ex8dTUVFBeno6GRkZhISEMGLECKUzVUffE28t2tzcXMaMGYNOp1O+Nq0fY7PZyM/Px+l0MnToUABJUoUQQogBrFf2pHoT1JaWFuUwUEtLC7W1tTgcDgwGA4888gi7d+/m/fffJyQkpDeG0aGTZy9bLyF7yxwdOHCAtLQ0du3aBaB0W4qIiCAgIACj0ahsTaivrycgIIDNmzcrZZvKy8txOp1UVFQAJ8ovZWZmAvDKK6+QnJzc4fjUavUpJaM60npvb2e6u/Tnfb6RI0fy9ddf8+abb5Kens6BAwcoLi6mrq6OzMxM5bV4n3vt2rU8/fTTpKSkYLVayc3NpaysjPDwcPR6PQ6HQ5nltNvtlJeXM27cOBYsWIDD4cBisbTbZCExMZHc3FwSExPx8/PrcObZarVSU1NDY2MjDQ0NkqCKLrW0tGCxWABITk7u9u9Sf8TxPr4zJpOJ2NjYPnlNQgjRF3q1BFXr/0F6C8Sr1WpWrVrFs88+y/fff9/nCWp7Wi8hf//999TU1FBQUEBTUxPl5eUkJycrS/fe5Md7cMdqtVJXV0dVVRXTp09nz549VFVVoVar8Xg8BAYGUltbqxS1X7lyJVdccUU/vtrui46O5te//rXy74qKCg4ePMi+ffvIysriwIEDWCwWmpqaOHDgAEuXLuV3v/sdISEhHDx4kNDQUPLz8znvvPPYu3cvarWa2NhYjh49SkhICNnZ2Xz77beUlJQobV9PTlJbn9zvbAZcr9fjdruVx+/Zs4e4uDiplSo65HQ6GTduHABbtmzpdPWiO0lid+L0tFWpt2LGsmXLurxWr9ezZ8+e044lhBC+5qwkqd3pDqXRaEhKSlIOUG3fvp0pU6acjfBnrHUrU61Wi0qlIiUlhWPHjhEUFMT48eMZO3ZsmxJLXgaDgYqKCoKDgxkzZgwXXHCBUlxeq9Vy4MAB9u/fj8PhYN68eW2SvrMpNzeXTz75hAMHDjBx4kQuvvhiRo8efVb3vEZERDB//nxmzpyp/EFvbGwkKyuLhx56iK+//poHH3yQH/7whxiNRtRqtbLM73A4qKioYOjQocyaNYsDBw4QGBjIN998Q3R0tLKPuae8B90Axo8fj1qtJisrC6fTSWFhoSSpoltmz57d5TV6vf6Uw5S9LT4+HovFgs1m6/Q6i8XCsmXLlJUbIYQYDE47SbXb7bS0tODxeAgODu7y+paWFnbv3k1ubi7btm0jNTX1dEP3qsmTJxMbG6vMyNlsNiXB8iZm3jJL3tJIMTExyh+HKVOmEBoailarZfv27WRnZ2O32xk2bBivv/76Wa2F6nA4+Pe//83HH3/cZqbnm2++4U9/+hOxsbEsWLCAiy66iCFDhvTKIa3AwEAmTJjAf//7X370ox/x3//+l3feeYdFixYxffp0UlJSCA0NZf/+/dTU1JCbm8ucOXOYNm0aO3fupK6ujubmZqZPn65sBYiMjAToVqkpb1cq7yyq3W7H6XTicrna7b7VkfLycqWqgze+OHe88cYbTJ48udNrTCaT0oCkL8XHx/dLXCGE6G+nlaRmZmaycuVKrFYrZWVlPPvss9x0001tZlRbF+sHGDp0KFOnTuXtt98+pfC6L2m9L9Lj8WA2m9myZQsul0s5sX/8+HFln+T333+PzWYjOjqa6OhoNBoNM2fORKvVcuTIEWw2G1qtlvfff79bh5e6w+128+9//5unnnpKmWFRq9XMnj2b6dOns3v3brZs2UJRURFvv/02b7/9NklJSVx33XUsWbKEmJiYszKO1jQaDe+88w4mk4nXXnuNjRs3Ul5ezjPPPINOpyM4OJhjx45hMpnIz88nLCyM8ePH43K5iImJwePxkJ+fr3S4AqitrcVqtSq1a9vTutVt69ut67p2hzfZtVqtbZJkqRRwbhgzZozPvnEWQohzVY+T1MzMTObOncstt9zC1KlT2bNnD7fddhtjx45l0qRJynXeBPXjjz9m2rRpJCQkkJaWhkajOWuD721Op1M5GV9RUUFsbCwGg4Hc3Fzlv/v370elUlFcXMzs2bMJCwsjKSkJh8OhnNy/+uqrSU1Npba29ozH9O233/Lb3/5WObgUHx/PHXfcwcKFCwkNDQXg9ttvx+FwsGXLFj799FO++OILjhw5wtNPP80zzzzD+eefz9KlS7niiivOauMElUrFn/70JxISEnj00UfZvXs3N910E0899RSpqalERERw9OhRPB4Per0es9nMxIkT0el0SgOExsZGJTFsaGhAo9F0WhPVm5w6HA7y8vJwOBzK/T3ROsH1kg5VQgghRP/p0dHPyspKVq5cyU033cQf//hHfvjDH/KHP/yB888/n7///e9A28MtGzZsYMWKFbz44ou43e5un1j3Fd4kxWQyMXv2bBISEjAYDISGhlJSUgKcmIEJDg5m8uTJREREKLOUR48eZefOnQCcf/75ZzyWnJwcli1bxtKlS8nMzCQkJIT777+fzz77jBtuuEFJUL30ej2XXHIJL7zwAps2beKFF15g5syZeDwetmzZwj333MPUqVN57rnnlD2dZ4Ofnx8rV67k22+/ZdSoUZSVlfHjH/+YX/ziFxQVFVFdXU1FRQXbt2/Hbrdjs9k4fPgwRUVFGI1GYmNjlTcyCQkJlJaWsnnz5jbVBLwcDgdWq1WpGlBXV4dGo2HYsGE9XrKPjIxk7NixbR7nTZS9M6pCCCGE6Ds9SlKbmpqorq5myZIlwIklfYDhw4dTWVkJtC3vdPnll3Pbbbfx4x//GJVK5XOF67tiMBhQq9VtZtHsdjtutxudTkdAQADz58/nhhtuYMiQIQDodDoqKiqor6/nyJEjwJknqe+//z7z5s3jyy+/RK1W85Of/ITt27dz8803d2tm2mg0cuONN7J27Vp27tzJgw8+qOyj/cMf/sDUqVP5+c9/TnZ29hmNs7XU1FS2bt3KHXfcAcCmTZv405/+RHl5OQ0NDTgcDj755BMyMjKoqKigsbGRyspKioqKyM3NBU4k2lVVVbjdbqVeal5enjJj6n0TUV5ejt1uR6VSERQUdNZmPb3L/N7ZXCGEEEL0nR4lqUOGDGH16tXMmTMHOLE3EiAmJuaUenzV1dUAPP744/3WSepM6XQ65XCUl8FgIDIyksDAQGw2m1J+ym63U1paytGjRwkMDOTrr7/G5XIREhJyRq1e8/PzefDBB3G73SxYsIBvv/2WJ598kvDw8NN6vvj4eFauXMmOHTv429/+xuTJk2loaGDNmjVcdNFFXHPNNXz99dedlnvqLoPBwMsvv8y6deswmUxUVFTw0Ucf0dDQoGyFsFqtqFQqKioqqKqqora2FpvNppzaHzp0KAaDgaFDh7J37162b99OXl6esgSvVp/YsaLRaDCbzZ3uXz3d1yCzqYNTQEAAN998M4Dyc9RbcR544AEeeOCBXm9Vqlar+yyWEEL0th7/n3nkyJHAiVlU7/8EPR4P5eXlyjVPP/00Go2Ge+65p1f/53+6upuAnXz4C04krmPGjMHPz4/q6mrq6uowm814PB48Ho8y8+qdRZ0xYwZutxu3201dXV23tjwUFxej0WhoaWlhxYoVOBwOJk2axBNPPIG/vz/5+fnAif3B3ZlJbW5upqam5pT7x4wZwwsvvMChQ4d4//33SUtL44svvuCLL75g1KhR3HzzzVx22WWn/LFzOBzKzHFXcSMjI7ngggvYtm0bd911F5s2bWLNmjVcfvnljBw5ksbGRsrLyxkyZAgBAQG4XC6Cg4MpKyujsrISg8GA0Whk586daDQadDodTU1NGAwGpftU6zq33u9Dd4qYd1Q6rXVZK6+wsDDZmzrIBAYGct999/Huu+/2akIXGBjIc88912vP31pAQECfxRJCiN522hmkv79/mz/y3qTg0Ucf5YknnmDfvn0+maBC2y0Ju3fvJjMzk5SUFKZOndrmOn9//w63KERERODxeAgJCcFutyu1Uquqqjh69CilpaXAifqL3rJTRqOxW38MtVotWq2Wf//73+zZswetVsuTTz55SoLkdDq7NWvYVXI8ZcoUpkyZwsGDB9m8eTNr164lOzub3/zmN/z5z3/msssu4+KLL2bixIn4+/u36STWGbfbrXz9oqKi+OCDD3jooYd45ZVX2LBhA/X19Vx00UX4+/sTGBjIlClT0Ov1ZGdns2fPHkJCQjCZTOzbt4+ysjLCwsK45JJLiI+Pb/O6T65d652Jba+DVXu8San3+qysLMrKypQi7N7yVpKgCiGEEH3njLJIb5KqVquJi4vj+eef59lnn2X37t1MnDjxbI2xV2VmZlJfX09mZuYpSSpAXl4eOTk5hIeHk5ycrCRDdrudjIwMXC6XkrAfPnyY2NhYKisrOXbsGACzZs06rXEVFRXxxz/+EYD77ruvT+okRkdH8/DDD7NixQo++OAD1qxZQ3l5Oe+88w7vvPMOQ4YMYcGCBZx//vlER0f3uOarv78/zzzzDNHR0Tz66KNs3ryZ8vJyfvazn6HRaJSi/9XV1QQFBVFTU0NsbCwulwu3282IESM6bQCRl5dHUVERLpeLiIiIU07rt+bd02owGNqUnzKbzTidTmprazEajco2AqmdOvi0tLQoByC9++t7K05BQQFwYrtNb7YqbWlpUbrb9XYsIYTobWeUpHr/BxgQEMDrr79OcHAwW7ZsGVD1BlNSUpSZ1PYUFRVRU1NDZWUler0enU6H0+kkNzeXoqIiAEaMGIHL5SI6OpqysjLy8/Oprq4mMDCw3cS3Ky0tLaxatQqn00lqaio33njjGb3GngoJCeHHP/4xt9xyi7IFYPPmzZSVlbFmzRrWrFmD2Wxm0aJFXHbZZUybNq3bs+Z+fn7cd999REZGsmLFCjIzM3nllVe49957lfJR3uR3zJgxAIwbN47jx48TEhKC1Wpts7zfega1qKgIp9OplK7qbBa1dXkpvV7PoUOHgBOzsrGxsQQGBhIZGenTNX3FmXE6nUqL4oaGhl6N463Z29utShsaGvoslhBC9Lazsh5/6aWX8pvf/IZt27YNuD/qU6dO7TSRjI2Nxel0UlZWxoEDB2hqaiIiIoLCwkKlooFer6e4uBin00lERIRSLmnKlClotdoej+nDDz9k586daLVafve73/XbbEhAQAAXXnghF154IY2NjWzbto0vv/ySr7/+GqvVqsywRkREsHDhQu655x6io6O79dw//OEPMZlM3HLLLRw8eJCHH36YCy64QNnze+GFF1JbW0tTU5OyN9jPz0/ZK9o6wfQKDw9Xmix4fw5bz5h6r7VareTn56PX60lISFBea1NTE4WFhUyZMkWW94UQQoh+dlaS1KlTp1JXVzco/6gnJCSQkJDAl19+SU1NDfX19TQ2NqJWqzGZTGg0Go4ePUplZSXNzc1UVlbidDoBSEpKOq2Yb731FgD33nuvz7RDDAwMZP78+cyfP5+Kigry8/PZuHEjn332GRUVFaxZs4bPP/+cv/71r8ycObNbz3nJJZewYcMGrrvuOsrLy/n8889ZuHAhpaWlOJ1OLBYLDocDtVrNiBEjOHr0KFarleTkZCIiImhoaGiTfJrNZsLCwtrM6rYuU+UtKeWtKAAoj42Li6OyspK4uLhT9rh2x8ndqaTNqhBCCHFmztoU3WBMUFsbOXIkUVFRzJo1i4kTJ5KQkEBUVBQRERHExcURFBSkLBl6259u3Lixx8uI3uTGz8+Pa6+99qy/jrPBWx/22WefZc+ePaxevZqUlBRsNhs//OEPef3117tdQWHq1Kls3LiRoKAgqqurycrKIiQkhMzMTLZv387nn3/Opk2bqK+vJzAwELVaTUlJSbv1S9ura9u6TFVzczN79uxhz549FBUVKdsBvDOykydPVmZWe6r19gFo22ZVCCGEED13zu2qt9vtSpei7rBarVgsFgwGA6mpqZhMJmWmNDExkcsuu4wlS5bwgx/8gFmzZhEYGMioUaMwGo1UVFSwfv36Ho3Puzfy5BPsviogIIC5c+eydu1arr32WtxuN7/73e/42c9+1u26omPGjFFmj9PT09m7dy82m61NJ6nq6mpSU1MxGAyEhYVRUFBAVVVVm4TU22rVbreTmZmJ1WpV7ouMjEStVnP8+HGlwoLJZALOTkJ5coJsNpu73BcrhBBCiI6dk0lq6xmvrthsNhoaGrDZbMpjvR2RWpeA0mq1xMbGEh8fj8PhIDExEUBpF9td3iR11KhRPXpcf9PpdLzwwgv87ne/Q61Ws379epYsWUJOTk63Hn/11Vfz4IMPAvD111/T0NDA7NmziY6OxmQyERgYyMiRIwkLC2PXrl3KCWa9Xt+mPSq0n3Tq9XoMBgNRUVGoVCrl+wOnl1CWl5eTkZGh1Af2NnnwJqnttVkVQgghRPedc0lqe0vCnfHuO3U4HKSnp1NSUkJiYiI6nY7Y2FgcDgdHjx6lqamJhoYGYmJiCA4OJiYmBoCvvvpKKUfVHRkZGcDAS1LhxMn9W2+9lffee4/IyEhycnK44IIL+OSTT7r1+Mcff5wFCxbgcDh46623SExMJDk5mZEjRxIUFEROTg5paWnU1tZSVlYGnCghtnXrVrZu3YrFYiEvL4+jR49is9naJJ0Oh4O8vDyGDh3K/PnzSUhIUOqpwom9xz1JUmU5XwghhOhdvlltvxedXLaoKyaTCZPJxNatW/Hz88PpdJKcnIzJZFJKIYWEhFBXV8eoUaMoLi4mKioKo9FIZmYmeXl5/OMf/1BKSjU2NnYa78CBAwAEBQWRnZ3d6bV5eXkUFxefcn9zczMNDQ3KR11dHV999RUul0u5z+12ExkZydChQwkNDcXPzw9/f3+lU1ZnAgMDqa2t7fDzBoOBP/3pTzz55JNkZGRw4403cscdd3D33Xe3W1vV4/EQFxcHwBtvvMHcuXMpKCjgF7/4Bddeey1qtZqmpiaKi4uJi4ujpqaGCy64AIDGxkZKS0sxGo3U1NTQ2NioNE3Izs7mX//6F4mJiYwdOxatVqsctvLOildVVSndpHQ6Xbuvp70OVmazWTkYdTotZDtqEiH6jlqt5rrrruM///lPj2v+9jTOXXfdpdzuTSqVqs9iCSFEb/PznI0m7T6gtraWkJAQampqCA4OPivP2fpLk5eXR2FhoVInNTQ0lKioKCXh8bLb7RQWFvLpp5+SnZ3Nf//7X2JiYjh27BgOh6PT5KSxsZGhQ4fS1NTEP//5T6Kiojod3zfffNOmPenu3bv517/+1ePDWjqdjujoaIxGI1OmTFEOgnWkqampW00KqqurWbduHW+//TYAc+bM4Y9//CNhYWFtrnO73cTGxir/Tk9PZ8GCBTidTiZOnMiFF17IqFGjCAsLIzY2lpiYGOLj47HZbNhsNkpKSigvLycyMpLy8nJycnKIjIyksrKSxsZGtFotN9xwg/L83iX4kw9debcOnFyyqqP2qWeir5PU7v5+9MbvkS/bu3cvU6ZMYc+ePQOqvvPJBsvr8HXn2u+HEP1N3mp3k7cU1e7du6mtrcXlcpGYmIher6e8vJzMzEyCgoIwGAzExcWxZMkSMjIy2LhxI8XFxXz++efMmTOn0xjZ2dk0NTWh1+vbJJ/d0dTUxLp169okqN5e9y0tLUr3JO8HQFlZGeXl5TidTo4ePQr8byY3NDSU2NhYhg0bxrRp007rEJdarebXv/41EyZM4OGHHyYtLY1rrrmGN998s82e0JNNmjSJv/3tb9xyyy3s37+f1NRUPB4PjY2N1NfXK3tPvQefjh07RlhYGLm5uRQXF1NRUYHb7SY8PByDwUBiYiKRkZFYLBaKi4uJiYlhypQp6HS6U5LFk4v8CyGEEKJ/SJLagdZ1Lr11L728h2T0ej27d+9m3bp12O12mpqaGD16tLK0rNfrmThxIjt27ODNN9/sMkn17kcdPnx4j2fatm/fTnV1NaGhoTz44IMYDAZlifr777/vsN6qt4ZoaWkpubm51NfXU15eTnV1NdXV1Rw6dIi0tDR+8IMfnHajhiuvvJJRo0Zx1113UVBQwE9+8hM++OADpVRXe37wgx+QmZnJM888w5o1a0hKSkKv11NVVYXJZMLhcOBwOCgsLMTf35/MzExcLpdywC08PJzZs2crbVQdDgf79+/HZrPR1NTUYXvV1t2sxODm8XioqqpSbvdmHJvNBpx4Y9Wbs+gej0fZJ93bsYQQordJktqBkw/G1NXVASf+xz9s2DAlibFYLBQWFpKVlUV0dDTBwcEEBARgs9nQ6/VceOGF7Nixgw0bNlBWVtbpEv7BgweBE21We6K5uZkvvvgCgAULFnS6VH8ytVrN0KFDGTp0KNHR0YwbNw6Xy0VxcTGFhYXs3LkTq9XKW2+9RWpqKldfffVp7XUbM2YMH3zwAUuWLKGgoIA777yTd999V5nVbc8jjzxCZmYmH3/8Mc8++yz33nsvVVVVtLS0EBERQV1dHXl5eTQ0NBAZGYnH48HlcpGQkEBQUJBSacFbaN9oNGK329FoNEp7Vb1eT15eHjk5OYSFhZGSkqLsN927dy8Ao0ePllJSg5DD4WDBggUAuFyuXo3j3WLS261KXS5Xn8USQojeNuhP99vtdsrLy7tdcsrLbDZjs9nIzc3FarUSFBREUFAQkZGRSsJitVpJSEhArVYTGxurlDFSqVSEhYXh8XhYvHgx48ePp7m5mc8++6zTmPn5+cD/lrG7Kzc3l6qqKoxGY7f2inZFq9WSmJjI/PnzWblyJfPmzcPPz4+9e/fy4osvKifreyo8PJzXX3+doKAg9u7dy6OPPtrpDJa/vz+vv/4648aNo6amhldeeQWLxcKhQ4dwOBzU1tZiMBiIiIggOjqaoUOHMmPGDOLi4pT+5fn5+VgsFioqKoiJiSE8PBw48abD+zNRVFREXl4eX375JV999ZXSNjU7O5v8/Pxun+C3Wq1KfVbglNJYQgghhOi+QT+T2nqPYU9mFSIjI9FqtQBUVFScstTtfd4xY8awZMkSduzYgdlsZtq0adTV1VFTU0NDQwM5OTnExcVx8ODBLktRTZ48mY8//lipldqT1wgQFRVFYGBgjx7blYCAAC6//HLGjRvHmjVrsFqtvPLKK4SFhTF//vweP19iYiIvvvgiP/rRj/jwww9JTk7m5ptv7vB6o9HIhx9+yJIlSzh48CDffPONstfWZDKxa9cu5WtdW1uL2Wxm8uTJyveuuLiYxsZGDAYD4eHhNDY2KhUBvEu9VVVV7NixA51OR3x8vNIEIDw8HJVK1eUsamZmJkeOHMHlchEREYHD4VCaCsj+ViGEEOL0DPqZ1J7WRW0tLi4OrVarlEfy8i4he8sZJSQkcM0115CcnIxeryc0NJQZM2ZQV1dHbm4uTU1NABQUFHQab9GiRcCJ0+3erlbd4S1rdbYT1NYSEhK49957SUxMpLGxkd/+9rf87W9/o7m5ucfPNXv2bH71q18B8PTTT7Nt27ZOr4+NjeXrr7/mxhtvxO1288knn7BixQry8/OVBPXQoUPU1tZitVrR6XQYDAYKCgpwOBy0tLQQHx+PyWQiODiY+Ph4tFotKpUKq9VKdXU1I0eOJDQ0lGHDhmE2m0lISOD888/noosuUma2vVsPMjMz24zvyJEjyqypSqVSEtIz+dkTQgghznXnRJLauhNQTyQkJDBnzpxT+rl79zV69zR6OyJFR0fj7+9PeHg4paWlFBcXU1RUpOx36ypJHTNmDAkJCTQ1NbF79+5uj9N7or+z/Z1ng9Fo5P/+7/+UA2D/+te/+OUvf0l1dXWPn+u2227jmmuuwe12c9999ynVBTqi1+t57bXXeOmllwgICODTTz/lmmuuISMjA39/f0aNGkVsbCxjx44FTpz437JlizLLvH//fgoKCtDr9VRWVgInSl/BiRnooKAgLr30UmbPno3ZbFbaqbaeAfUmoyfXkvUe6po+fTqRkZFKwtrecwghhBCiewZ9kno2eZMPoM0MWUREBGPGjMFkMhEaGorBYMDlcqHX6/H392fo0KHA//acdsTPz0+ZTf3++++7Pa6+mEn1UqlULFq0iFWrVqHVatm7dy933HEHWVlZPXoePz8/nnjiCSZOnEhNTQ1Lly5VDqd19pg777yTb775hqFDh1JcXMxf/vIXsrKymDp1KtOnTycpKQmn08nevXvRaDS0tLRQU1NDRkYG+/btY+/evRw7doz9+/crTQ0ApkyZ0qZWa+v9pDabjczMTMLCwqioqKCwsLDNbGpKSgpXXnklU6dOVb5G0olKCCGEODODfk/qmTj5UI93j6FarVaWgD0eD263G39/f6XQv06nIyYmhsjISIxGo5KwWK1WKioqOp1Zu+iii3jllVfYtm0b5eXlnXbCKSsro6KiQuk6ZbfbT1mKBrDZbG1KaHUkMDCQzZs3d3ldTEwMQ4YM4dZbb+U///kPZWVlrFixggsvvJBp06Yppa/0en2Xieftt9/Or3/9aywWC7fccgsvv/zyKd2dvJqamoiKimL8+PF8++23/OhHPyItLY1nn30Wu91OZGQkNTU1JCYmKt2lUlJSKCsro6mpCbVaTUJCAocPHyYkJITGxkbq6urQarXU1NS0eePh3Srg/T57Z4vNZjMtLS0cOXKE5OTkU8bYuhNVa+01CRBCCCFExyRJ7cTJNQZb19Bs/TmVSoWfnx8Gg0FJcgwGA4sXL1Zm4TQaDQ0NDVRUVHR6EOfCCy8kKCiI2tpaPB4P48eP7/Da/fv3YzQalQL84eHh7dZD3bFjh3KqvTOHDx/usssVnChzYzKZiIiIYPny5axfv56cnBy+/PJLMjIyWLx4sZKsJSUldfpckZGR/PznP+fxxx/niy++4KWXXuL+++9v91q326183YcMGcK6deu49957Wb16NS+++CLjxo1j7NixNDc3M2/ePAICAsjNzWXv3r2MHj2a2bNnK9+7nJwcIiIiGDlyJHa7nYqKCsLCwrDZbISGhlJVVYVKpcLhcKDX6zly5Ajx8fFER0dTVVWlzNienHhGRkYqJYBaO90DfKL3qNVqLr/8cjZs2NDrbVFvvfVW5XZvUqlUfRZLCCF6myz390BP9hg6HA5ycnKwWCzU1dVhNBqBrvelBgQEcP755wPw9ddfd2tc3oNZfbHcfzKtVsuSJUtYtGgRGo2GkpIS3nzzTdLS0pSl9K6MGjWKp59+GoA//elPbNy4sVuPCwgI4K9//SsPPvggAIcOHeK7776joqKC9evXs3nzZv79739jtVopLCzEbDYrM6PeQ3Fms1l50/DFF1/wySefkJGRQVJSElFRUUrSn5SUhEqlYsqUKVx55ZWkpKS0STzb07r8mRyi8j0ajYbHHnsM6N3fHY1Gw9tvv83bb7/d6/vGAwMD+yyWEEL0Nnmr3U15eXkUFhYSERGhdKHyJqvp6ekcOHCAuLg4ZsyYgV6vp6CggC+//JKGhgaOHz+uzAB2tS8VYN68eXz22Wds3ryZn//8511e35d7Utvj5+fH5MmTSUxM5LPPPuPIkSOkpaWRmZlJVFRUl7OpANdddx2ZmZm8+eab3H///QwfPrzd5fT2Yj/yyCPExMSwcuVKSktL+fzzz4mLi2Po0KFotVqqqqoYM2YM+/fvR6vVKgfZvLPGBQUFZGZm8s033+Byuaivr1eKvHsT0MDAQEwmk/JvvV7fZXeq1kns6R7eE0IIIc5VkqR2086dOykqKiI4OJjFixe3qX2ZnZ1NZWUltbW1FBYWUlhYSEBAAA0NDTQ1NeFwODAajdhstm4lqbNnz0alUpGTk0NBQUGHLU29eitJbWpqwmazERER0a3nDg4OVpLNL774goqKCh5++GEuv/xybrrppi6XVB955BEOHz7Mli1b+MlPfsL69eu7tU0BYPny5URFRbF8+XLKy8txOp2MGjWKYcOGER8fT0tLC1988QWJiYnodDpUKhUHDhxg69atNDY2otVqcbvdBAQEKDPTcGJGPDQ0VJmBbV331PvREWmx6ts8Ho9S6q2326J6Gzro9fpeb4va+o2UtEUVQgxk/bLcn52dzaOPPsry5ct55513lHagvs7j8aDRaE5Zth01ahTh4eHExsaSk5NDWVkZ+fn5xMXFMXPmTK666ipln6LFYukyTnBwsHJS/Msvv+zyem9SFRAQcDovq10ej4fMzExlT2dZWVm3/pD7+fkxduxY7rjjDsaMGYPH42H9+vW8//77XT5WrVbz8ssvEx8fT2FhIXfddVebhLErCxcu5JNPPsFkMlFXV8fBgwdZunQpQ4YMIS8vj+bmZkpLS5Uat7t27eLbb7/lu+++o6WlhRtvvJEZM2ZwwQUXKM+p1+uV77d3yT4/P5/333+ftLS0TrtJnUn5M9H7HA4Hs2fPBnq/LarRaMRoNPZ69zGXy9VnsYQQorf1eZKamZnJ9OnT2bVrF2VlZfzyl7/kvvvu4+233+7R83g7DLX+6E3Tpk1j2rRpzJkzR5kh8/4RmDRpErfeeiuXXnopI0eORKVSERISQlNTE1qtlgULFvCTn/wEgG+//Zb6+vou4y1cuBCATz75pPdeVCcKCgqUk/nNzc3k5OSQmZnZ7T/mer2eyy67jLvuuguAtWvXtlt54GShoaG8+eabGAwGtm3bxu9+97sejXvKlCl8/vnnhIaGcujQIX7/+98DJ8qEtbS0MHPmTEaOHIlGoyEyMlL5HuXn51NbW8u0adOYOHEicKIag3cPsXfW1Gw2U1JSQmVlJbm5uT1utytEb2pdCi49PZ29e/ee8tHVvnghhPAVfbrc39TUxDPPPMOSJUt47bXX8PPzY9euXbz22ms899xzuFwufvrTn3bruZ5++mnl0ENfSEhIUIr6W61WpbsRnChPFBMTQ3x8PNOnT2fy5Ml899136PV6ioqKiI+PZ/LkyURHR1NaWspXX33FVVdd1Wm8hQsX8uSTTyqzmYmJiR1e613SO1tLlt5tCwAjR46ksbGRgoICqqqq2LdvH0lJSUybNq1bS4kXXHABmZmZbN68mRdffJHnn3++y5nF0aNH8+c//5mf/OQnvP3226SkpHDDDTd0e/xJSUm8++67XHnllbz33ntoNBrGjh1LTEwMxcXFREZGMmPGDGpqajAajcrhtuDgYAoLC5kyZQpwonRXQ0MDNputTUWGpKQkXC4X0dHRymtpXWJKZk59Q0FBATabrcPP96Srm68zmUzo9XrlzTCgzBKfTK/XY7FYutxGJIQQ/a1PZ1LVajV5eXloNBolwTnvvPN44IEHmD9/Pm+88QYff/xxt57roYceoqamRvnwJlV9wWAw0NDQgEaj4ciRI1RXV5ORkaGUK7Lb7aSkpCj7Fb/++mu+/fZb5Y/Ghg0buowRFhamXL9+/fpOrz2bSWpzczPZ2dnAiZqfQ4YMIS4ujsmTJxMUFITb7ebw4cOsXr1a6dzUlR/96EcMGTIEm83Ga6+91q1xXnLJJcqhsUceeaRHHbgALrvsMlatWgXAe++9R1VVFVVVVTgcDsrLy9m3bx/ffvstFouFkJAQIiIiiI6OJjU1FYfDoWzL0Gg0yn5Ur5SUFJYuXcqcOXOU73FXJ/1F3yooKCA5OZkpU6Z0+NE6iYuIiOjH0Z65+Ph4LBYLW7ZsUe7bsmULe/bsafOxevVqpUGFEEL4uj5LUr2JyYQJE7BarVRVVSmfGz16ND/96U+JiIjgv//9b5vrO6LRaAgODm7z0Vf0ej0JCQmoVCpcLhc7duxQ+rpnZGQQHBzMhAkTmDRpEvHx8RQXF1NeXq6UhPnss8+6tdfyiiuuAE4ktZ19Pc5mknr06FFcLhcajabN7K1er2fChAmMGDECf39/CgsLeeONN9i+fTstLS2dPqdOp+Pee+9FpVKxbds2tm7d2q2x3H333SxatIimpibuuOMOSktLe/RaHnnkERYvXkxDQwOvvfYaTqeTI0eOUFFRwfbt29mzZw+ZmZnYbDYmTZrED37wA5KTk5UZVIDk5ORTklQvq9VKZmYmVqtVSkz5GJvNhsPhYPXq1ackat6P1gldXFxcP4727IiPj2fSpEnKvydNmkRqamqbj+5UzBBCCF/RJ8v9Ho9HSaTmzZvHrbfequzT9N4/fvx4/u///o8bb7yRVatWMXz48F4dT3e0tLR0uKSt0+kwGAwEBARgMpmorq7GZrMREBCA1WqlqalJmWH1dnsaP348BoOB6upqvv32W+bNm9fuc1dXV6PRaJgyZYqyZSAtLY0JEya0ua6kpISWlhZlj2tpaWm77UmdTiclJSVdvl7vawAICgrqcHZ68uTJHDlyhJqaGr7++mt27Nih9K9vbcSIEezdu1f596xZs0hLS+PNN99ErVYrFQM6e5Nx++23k5WVxbFjx/jxj3/M+vXr0Wq1nb6O5uZmpWvVq6++yvz588nNzVWK/4eGhmKz2YiLi8Pf35+YmBhiY2PJz8+npKQErVaLTqcjIiICj8ej/Lzk5+dTVFREbGwsw4YNw2q10tDQgNVqxWQyKR3HysvLu+wsJaeu+0ZycjKpqantfk5mvYUQwrf1apJaX1+PVqtFrVbT0tKCv78/1113HQcPHuTuu+9Gr9ezZMkSZYZx5MiRjB49ujeH1CN+fn6dJhMGg4G4uDhaWlqUmpyhoaGEh4ezfv16LBYLNpuNhIQEGhsbCQsLY+LEiWzbto0vvviCRYsWtfu88fHxykn9RYsW8eGHH7J161Yuu+yyNtdFRUWh0+nYsWMHcGJfWnt7V3NzcxkyZEinr9XpdJKRkaH8u7PlwKqqKgwGA0FBQdTX12O329m/fz/BwcFtEsiAgIA2ifWll15KRkYGlZWV7Nu3j0svvRQ4sVe5o8LjGo2GJ598kp/+9Kfk5OTwyCOP8NJLL3X6fWlsbFSS1PDwcP71r38xf/58LBYL33zzDXFxcRQVFREdHU10dDT5+fk89thjjBgxgrFjx6LVapkzZ06br4PBYKCoqAin00lRUREJCQltWqD6+fkp5X9al6kSQgghxOnpteV+i8XCkiVL+M9//kNTUxP+/v40NzcD8Pjjj3PPPfdwyy238Nxzz7Fr1y5qa2tZs2YNjY2NBAUFnXZc7+xI624/3eFdru/OCXQvvV5PSkoKc+fOZeHChSxevJjzzz+f+Ph4CgoKqKiooKqqCqfTyXnnnUd8fDzz588H4OOPP+7WjO4111wDnNiX2tEWgTNd7vd4POzatatHj/Hz80On0xEeHq7MiNbW1na6jSEgIIDLL78cgO+++67be1qjo6P57W9/i7+/Px9++CGvvPJKj8Y6duxY/vrXvwIn9qfu2LEDh8NBQ0MDISEhpKenc/ToUbZv387hw4eVPXvNzc3Kf+12O7Gxseh0OmJjY4ETe3ZTUlLaHKqSZf+BQ6VSsWTJEpYsWdKrbVH7Kk5fxxJCiN7WKzOpeXl5XHvtteTm5lJXV4dGo+GKK64gICBAmVF99tlnGTp0KK+//jovvPACcXFxlJWVsXHjxg73AHaHtyxUV73SrVarMgtmNps5cuQIdrudI0eOkJKS0uXr8y6FV1VVodFoMBqNSuF5k8nEokWL+Ne//sXIkSMZN24cwcHB7Nu3D61Wi8FgoLi4mH379nW4FOk1e/ZsTCYTNpuN7777josuuuiUa8506TgnJ0fZktBT3nJbNTU1NDY2Ul1dTXh4eId/IFNSUkhMTCQ3N5eNGzeybNmybsWZPHkyd911Fy+99BJPPPEEY8aM4cILL+z2OJcuXcrOnTt55ZVXOHDgAPPmzSMpKYnIyEji4uI4fvw44eHhDB06FH9/f+Vn0Ptfg8GA2WxWKjy0dvLPksygDgxarZb//Oc/gyZOX8cSQojedtZnUpubm/nggw8YNWoUO3bswGAw8NRTTykzgf7+/kpP9/vuu49169bx4Ycf8uyzz7J7924mT558RvG9CUJXM1qt9xPCibJCBoOhWy08CwsLcTqd7N+/HzhRm7C2tpbMzEylZNHixYt55JFHSE1NZejQoRw7doyWlhasVqtyeKE7lQzUarWyzJ+WltbuNWcyk1pdXc2hQ4d6/LiT4wcHB6NWq/F4PFRXV3d4mMrPz48rrrgCPz8/Dh48SG5ubrfjXHnlldx00020tLTw05/+tEePBXjqqaeU0lO7du3C4/FQU1PDjBkzuP7667nmmmswGAzKlgXvz1JXnaVO/lnycjgcWK1WKaouhBBCnIaznqSqVCouvPBCli1bxuTJk/nkk08IDw9XEtXGxkZUKpWSqI4cOZL58+dzySWXEBMTc8bxvUlpV91+zGYzGo1GWapNSUnhyiuv7HIWFU6cBNbpdEycOJGwsDDGjh2LwWAgJCRE2V5gtVqJj4/n6quvxmQyERYWRkREBBdeeKGyF3XNmjXKKfLOePd1pqWltZv8efevHj16tMeJal5eHi0tLWfcrcrf35+QkBDlTUhnNSijo6OZMWMGcKLIf3e7Svn5+fH0008zbdo0amtreeKJJ3o0xsDAQFavXo3ZbKa0tJSNGzfy/fff43a7SU5OZvLkyQwfPpywsDAOHDjA4cOHqaur6zLJPPlnCU58XTdt2sTRo0flgI4QQghxGs56kurn58fEiRO57rrrgBMJ1EcffaQkqp988gnNzc2oVKpu10TtDe3tJ+yKd2YsMjKSOXPmKB8zZ84kOTmZpKQkRowYAZyYUXY4HBgMBiIiIpgwYQJTp05l/vz5rFy5Uikc/9Zbb3UZ99JLL8VoNHL48GE+//zzUz4/bdo0/P39sVgs7Ny5s/tfBGD48OEEBgb2qP1oR1QqlfKmwOVydZowX3LJJQQFBWG1WrvV+tUrMDCQ5557DjjRMvbk2cuuREdHc/HFFwNQU1NDcHAwKpUKPz8/nE4n4eHhOBwO3G43brdbeRNhtVrJy8tTSk615v1Zar1NxbsdpKysTPan+ii73a4cjuzNNxJ9FaevYwkhRG/rlYNTrfcjut1udDod69atUxLVtWvXcuedd3LnnXf2uPZlf+qoYLu3XabZbEatVmMymVCr1Uphf6fTqZw2X79+PatXr2bkyJEAPPPMM13O1IWFhfGjH/0IgD/96U+nJH+xsbHKSflPP/2UY8eOdfs1hYSEMH/+fHQ6Xbcf0xnvKX232620VW2Pt7IDwPfff096enq3Y4wePZrJkyfT3Nys1NXtCW/hdoPBwKhRo5gyZQoGg4HQ0FDgf7VRVSoVJSUl7Nq1i+PHj1NUVMSXX37Jb37zmy4bLMTFxREWFsaECRNkj6oQQghxGnq9mL9KpaK5uRm9Xs/HH39MREQEy5Yt491332X9+vVER0f39hDOmvb2uXpPgnsPaHmTVbPZjMFgwOFwUFBQQGZmJtnZ2eTl5VFcXMzUqVPR6XQcP36cN998s8vY//d//4fBYCAjI4MvvvjilM97Z3Pdbjf/+Mc/2LNnT7dfV3BwsFJ14Ez5+/sriWpXh7HGjBnDeeedh8fj4fe//32P9m5ef/31APz73//u8RYHb5KqUqmYMmWK8jOoUqkwmUzK7KnT6aS2tpa6ujpqamoIDw9n3759uFwutmzZ0ul+04SEBObMmXPKQSvvbHx5eXmPqk8IIYQQ55qzkqR2lSSo1WrcbjdarZbhw4djNBrZsWNHlyfbfY13xrT1zJh3drWgoACLxdJmKTgvL4+dO3dy8OBBmpqaCAgIUOprXnDBBUydOhU4UXC+q65NYWFh3HbbbQC88MILp3zN/fz8WLJkCePGjcPtdrNu3To2btyo7P3tytlckvYePLJarV3Gv/zyywkNDeX48eM9Ki119dVXo9FosFgsHDx4sEfj8yap9fX1hIeH09DQQGBgoNLW1ul0sm3bNj788EPKy8sxm81otVocDgczZ85Eq9USHh5OZmYme/fuPeV7npaWRl5eXruxvT8vVqtV2qgKIYQQnTjtElR2u52WlhY8Hk+3WpKqVCpeeukl/va3v7Fnzx7Gjh17uqF9isFgwG6343A4UKlU2Gw2TCYTDoeDzMxMqqurCQsLIyoqijFjxhAWFsbx48dpaWlh+PDh7N+/n9zcXL744gtlr6TD4UCtPvVbc9NNN/H3v/+dQ4cOsWHDBux2+yl7SRcuXEhISAhbt27l+++/p7S0lPDw8LPeq9vb5ao93gS6qampW7Pl8+bN46OPPmLDhg1ER0d32LrRYDC02fc5b948vvjiC15//XUefvhh5X63291p0m00GoETP8NpaWnU1NQQEhJCZGQk+/bto76+HovFglarpba2lvDwcHJycrDZbEqHqqCgII4dO6a0UTWZTHg8HgoLC3G5XBQWFjJs2DBsNptSnspkMik/L9690AaDQfl6ORwOZUbe+0ZIOlMJIYQ4V51WkpqZmcnKlSuxWq2UlZXx7LPPctNNN7Vpf+qth9ra9ddfz6JFi9rtitSXuvuHvzvXtU4ovO0xbTYbhw8fxt/fn5aWFqWndnh4OBUVFWg0Gnbt2kVZWZlSCP/NN99UCt1HRUWd8rUDiIyM5P/+7//485//zN/+9jdeffXVdpOxW2+9lS+//JJHHnmEvLw86uvrufPOO4mMjOz0tajVasxmM01NTaSlpVFWVoa/vz/nn3++UsAe4MMPP2w3iW79dVOr1TQ3NyttRDuj1+tZsGABmzZt4j//+Q+PP/54u6/Lz89PSTDhRNL+xRdfsHHjRh555BHlMd590B0ZOnQocOLg1NGjR6mrq6O2tpbk5GQqKioICwtjyJAh1NfXExUVRXV1NTU1NQAUFBTgcDg4duwYixcvJjg4GJPJpPysxMXFUVhYSFxcHDabje3bt7d5La3rqWZmZvLNN98QHR3NlClTetStqry8XHmurr6vQgghxEDU4+X+zMxM5s6dy9ixY3nggQe44YYbuO2220hPT2+T1HmTrI8//lhZDjWbzf2eoPaW1tUCrFYrKpUKo9HInDlzGDduHOnp6fzjH//gm2++UfY8qlQqpS7rJ598Qn5+fpdxfvazn6HX60lPT2fr1q0dXnfxxRfzzjvvEBUVhc32/9h77/i4qjP//z0zkqaqjnrv1ZaL3BvFxBRjIAkd05IN300gbEIIgSQLCT+yZAOBFJZkYSGFkpAQQnGoJjbu2JZtuaj3rplR1zRppPn9odc9GcmqtiS383699LI8ujPn3Jm5937uc57n89h4+umnKS0tndK++Pv7c9FFFxEXF8fQ0BC7du2isrJySs9VUERsU1PTlJwDvvSlLxEVFUVXVxevv/76lMZYsWIFycnJ2O12tmzZMuW5KU0Xent7Wb58ucgrVaKnAQEBXHbZZXzjG98gLy+P4OBgQkNDGRgYICEhAYC0tDR0Oh2HDx/mF7/4Bf/4xz+AkbmoVqt1RORU8VPdt28f7777Lv/85z/p6OigqqpKRFCn2q1qPG9WiUQikUjOF6YlUjs6Ovj2t7/NbbfdxjPPPMOtt97Kz3/+c1avXs3LL78MjMxP3bJlC/feey+//OUvJ825PJ+IiIggODiYrKwsIiMj8fPzo6Kigrq6Oqqrq4WjgdlsxmQyERERwdDQEC+88MKkrx0eHs5Xv/pVYDj6OlE+cHZ2Nn/6059ISEjA6XTym9/8hs8++2xKhUYajYY1a9aQmpoq2qYeO3ZsykVKKpWKgIAAhoaGaGxsnHR7rVbLV7/6VVQqFfv27ePgwYOTPketVnPzzTcDwwVUU0XJSe3p6SEjI4PLL7+coaEhkcKwcuVKYmNjSUxMJD4+nujoaNxuNyaTiaCgIG699VYWLlxITEwMhw4dor29nYMHD55k3h8REUF0dDQrVqwQ0VOtVktXV5fIRQ0LCyMtLU1E5KfasWosb1bJ9NBoNFx11VVcddVVs94WdS7GmeuxJBKJZLaZ1nL/wMAAXV1dwjpIWdJPSUkRfdh9o6lXX301+/fv56677hpz+fp8RREkAAcPHmTnzp00NDQQGBhIXFwcbreboKAg5s2bR0JCAt3d3VitVl5++WUeffTRSV//m9/8Ji+99BLFxcXs3LmTdevWjbtteHg4X/nKV/jggw/Yv38/b775Ji0tLdxwww2TXsTUajXLli1Dr9dz4sQJjh8/jtPpnJJQVbpQ2Ww26uvrSUlJmfQ5aWlpXHnllbz//vu88sorZGRkEBwcPOFzvvjFL/Lzn/+c48ePc+zYMebPnz/pOEok1ev1snfvXiEcPR4PFouFhoYGbDYb1dXVuN1u9Ho9brcbh8NBcHAwycnJoulDXl4eR48eZd68eTgcDnp6ekR0s729nYSEBPFd8P1eVFZWsmDBgjGbR/jmpo4XVY2MjJTL/KeJTqcTEfDzYZy5HksikUhmm2kpx6ioKF599VXWrl0LICq34+LiThKhXV1dADz++OPC4P5CpKSkRCx55+bmsm7dOqKionC73eTk5AjBo9frsVqt3HbbbfT390/4mhEREcI39Qc/+AEnTpyYcHs/Pz82b97Mddddh0qlYvfu3fz2t7+dkuWTSqUSjQgAqqqqGBgYmLRqf2hoaET3ralyzTXXYDAY6Ovrm1I0NSwsjA0bNgDw6aefTmmMgIAAQkNDASgrK6OxsZGgoCAhIPv6+qitraW7u5v6+no0Gg2RkZHk5+eL9AmlUcPVV1/NQw89xLp16zAYDLjdbrRaLSdOnKClpYWKioqTxs/JyZmwu9l4frwSiUQikVxITDu8qZjQ+7bS9Hq9Izwxn3zySV5++WU8Hs8MTfPcJScnh7i4OFJTUzGbzZSUlKDValm4cCHLli3j5ptv5tprr2XTpk0EBATw9ttvc8cdd0zYVhTgwQcfJC8vj66uLr7yla9M2mlKpVKxfv167rnnHgICAigtLeWJJ54QPewnIyMjg3Xr1gl7KbfbTX9//0nP9Xq99Pf343K5cDqdaDQaFi1aNOnrKxw6dAiHw4G/v79oBzsZvpHRqXLdddcBw80V+vr6SEhIYOXKlSxZsgSv10tycjLBwcFkZGRgMpmYN28eSUlJOJ1Ouru7sdls1NXVUVRUJNI3HA6HcHWAkWJ4OkwnN1UikUgkkvOVU16DV6vVI0SBEkl99NFH+cEPfsD69esnrAA/3xidj6iwZMkSvv3tb7N582bsdju9vb3U19ePeJ5Wq+Wmm27ixhtvRK/X88knn3DzzTdPGEkLDg7m17/+tSj8+frXv84///nPSec5b948vvWtbxEdHU1vby9//OMfee655yY13ofhiPnGjRvFZ+3xeHA6nXg8HrxeLx6PB5fLJW5OTCYTV1xxxZSL5ZxOJ2+88QYAGzdunHK+pVKIpjQRmArf/va3UalUVFRU0NHRwRe+8AU2btxIRkYG4eHhJCUlcfHFFxMTE4PVaqW9vZ2KigrKy8spKSnBYDDQ2NiI2+2mpaUFh8OBx+OhpaUFnU5HSEgIq1evJjc3d9zvxnhMJzdVcur4plTMdlvUuRhnrseSSCSS2ea0EkUVkern50dCQgJPP/00P/vZzzh48CALFiyYkQmeK0y0RGu1WikrKxOtUoODg9FqtbS3t2O1WmlqaqKoqIh169bx/e9/H6PRyI4dO/jyl79MT0/PuGMajUaef/551q9fT39/Pw888ADvvPPOpHNNSEjge9/7Hps2bcLf35/y8nKefPJJqqqqJl3GDwgIwM/PD61WK/KPlcipEllVqVRotVri4+OnJbTeffdduru7iYyM5Iorrpjy8xSRqkR5p0J6ejrXXnstANu3bxfFVEruqZKuUlpaSltbm4iYWq1WEeVWrLWU3FA/Pz9R9Z+RkSGEply+P3tRot/nyzhzPZZEIpHMJqclUpWImr+/Py+++CJPPPEEu3btOuc6Sc0EEy3RKpZUBoOBefPmkZ6ejkajwWw209bWRl1dHZWVlTQ2NrJy5UpeeeUVgoOD+fzzz/niF79IZ2fnuOMGBATw9NNPc9111zE4OMgPf/hDXnzxxSl1AduwYQPf//73ycnJwePxUFNTwwcffEBra+uk+6vRaNDpdCJarozn7++PTqebdmVxY2MjW7duBeDWW28VqSRT4VQiqQAPPPAAMJxne+DAASoqKuju7iYoKEgI3qioKOFl29DQwODgoIjwGgwGYmJiMJlMYv4Oh4O1a9diNBopLi4WNlRjtdOdTnT1dJFWVRKJRCI515iR9fjLL7+c//zP/2TPnj3jFoOcz3i9XvR6vTCQHy0QFVGTlpYmInYKShtOk8nE4OAgfX19xMTE8N///d98//vf59ChQ1xzzTX87W9/G9FtCYbFmRLNfOSRRzAajbz22mv86le/orS0lB/+8Ieined47goBAQHcdtttHD9+nLfeeove3l62bdtGbGwsOTk54wo/JeKq0WhQqVQMDQ2N+F15H6YijsLCwnj55ZcZGhoiOzub4ODgESkRCkajcczOWUq0ub+/H5vNxuDg4JRyQdPT07nkkkvYtm0bf/3rX7n77rtxu920trZSU1ODRqMhLy+PtLQ0PvroI7RaLQaDgbS0NAwGA+3t7WKflaX/0tJSCgoKRviYhoeHn/TdGMu4f6yOUzPFTHcck0gkEolktpkRkbpkyRJ6e3vP+0IPu90+pjXQ6M5UtbW1outQcnKyEKk2mw2VSjUi19Lf35/58+fT1dWFVqtl//79JCUlsWTJEt566y1uuOEGjh8/znXXXcdHH30kuiUBzJ8/f4T4fP7551m6dCkPPvggH3/8MRaLhddff52bbrppwg5MADfccAMXX3wxW7Zs4R//+AfNzc10d3dzxx13cPnll48YJzExcUr2R01NTcybN2/S7T777DPq6uoICAjggQceGPe1PR4P0dHRJz2uvP+RkZFER0fjcrlE9HMiBgcHeeihh9i2bRt79+5l3rx5hIeHU1VVhdFoRKvVUlBQQHV1NceOHUOtVpOfn09MTAxFRUVUVlYSGBhIcnIyHo8Ht9vNvHnzxGesdIQaq3OZkjNoNBrF332F60wfS6NvcCQSiUQiOduZMfPS812gwuR5p8rybkNDA06nk4aGhhF/d7vdJ0W0DAYD4eHhbNiwgcDAQKxWK7t27aKwsBCVSsVPfvIToqKiKCkpYd26dZSXl084x7vvvpt33nmHsLAwjhw5wiWXXMLRo0entH96vZ577rmHp59+mrS0NOx2O7/5zW/43ve+R3V19ZReY7o4nU4++eQTAG688cZT8v50uVzA9HJSFS699FIWL16M0+nkxIkT1NTUEBAQgL+/P8nJyQBUV1cTFRVFeHg4q1evpquri48++ogTJ05QXFxMdXW1SOUARHW/IlR37tzJwYMHKS4upra2VkSXIyMjRxw3s1nVL03/JRKJRHKuceE47M8A44kIh8NBaWkpXV1dWK1WEhIS0Ov1mM1mkXeodAgC2Lp1K6+99hpbt26lo6ODuLg4YLhD1ODgIOHh4VRXV7Njxw68Xi9f+9rXMJvN1NbWctFFF1FYWDjhPNesWcO2bdvIy8ujra2Nf/u3f+Ptt9+e8n5mZGTw9NNP87WvfQ29Xk9ZWRkPPPAAL7300oznUH7wwQfY7XZiY2NFIdN0OdWcVBiOwj744IMA7Nmzh4iICHJyctiwYYOIbJtMJvz9/cnJySEyMpKOjg5cLhft7e309/fT1dVFSUkJbW1ttLW1UV5eTl1dHR6PR/ilHjlyBLfbTUNDw7g3Okaj8SThKpFIJBLJhcqF4xE1A4zXAchutxMSEkJXV5foKqT0blcEiRLJ2rFjB+Xl5TQ2NhIQEIDBYGBgYIDly5dTUFDARRddRH19vRCDFRUV2O12rr32Wt577z2sVivr16/nb3/7G8uWLRt3rsnJyXz00Uf8+7//O1u2bOF73/seZWVlPPjgg1MqatJoNGzatIlVq1bx0ksvsWvXLt555x127drFkiVLZqTbUVNTE7t27QLgnnvumVaxlC9KJPVURCoMd61KT0+nsrKSQ4cOsWTJEtRqNR6Ph9DQUHJycli/fj2AEJfz58+nu7ub/Px8SktLiYqKAoZzfJWcUj8/P0JCQmhubiYqKgqtVktoaKj0QD1LUKvVXHTRReL3c32cuR5LIpFIZhspUmcAo9FIdHS0KKiB4eX9uro6DAaDWDa22Wyo1Wp0Oh0qlQqTyURNTQ0pKSnU1NRQUFDAokWLmDdvHvv37xe2VTExMVRXV3PzzTfz7rvvUldXx6ZNm3j55ZfZtGnTuPMKDAzklVde4aGHHuLFF1/k5ZdfpqGhgaeeemrSHFUFs9nMQw89xGWXXcZvf/tbWltb+eijj+js7OQLX/jCKfcHt9lsvPTSS3i9XnJzc1m4cOEpvQ4gBP2pLPfDsCD/f//v//Hd736XkpISFixYwN69e9FoNGg0GmJjY/H396ezsxOTyURmZiZhYWHo9XqMRiMmk4n29nbi4uLIyckZkVMaGhpKUFAQUVFR4nsAJ+cxS+YevV7P9u3bz5tx5nosiUQimW3krfYMMJb5umI7pfwdhotXEhMTueKKK7jlllvIzs4mKSmJmpoaTCYTERERREVFERcXR3BwMNHR0QQGBmIymVi7di1DQ0OsWrWK7Oxs+vv7ufPOO4X5/Xio1WruvfdennnmGfz9/fnkk0+48847aW9vn9Y+Ll68mF//+td88YtfBGD//v387ne/E36i08Fms/H888/T2dk5bU/U0fT39wvLLN+isumidI3y9/eno6ODkJAQ2tvbqa+v59NPP8XlcmEymWhqasJoNIqWthERESxatIiVK1eSk5Mz4rtgt9sJDQ0lMDBwRiLPEolEIpFcSEiROksoOai+BSvh4eEUFBSQk5NDZmYmmZmZDAwMkJeXR2BgIEajkYiICMxms2iG4HQ60ev1REREoNPp0Gq1XHvttVx55ZUMDg5yzz338OKLL046n40bN/L73/+e4OBgioqKuOmmm6isrJzWPmm1Wu6++26uvPJKdDodzc3NvPDCC5MWc/kyWqB+4xvfwGQyTWsevjQ3NzM0NIRWqz0tIfjZZ58BEBQUhMfjIScnB4CBgQEaGxtpbW2lr6+P4ODgk/JJFWHqG51W7KQ0Gg3JycnTtpSy2+1YLBbZAEAikUgkFyxyuX+WUHJTx6K2tpYTJ05QUlKCXq+nr6+P7Oxs7HY7DodDeGkGBwejVqtRq9WkpaXR19dHRUUF/v7+rFixgsHBQT7++GMefPBBent7hTn9eCxZsoQ///nPfO1rX6OhoYEbbriB/+//+/+4+uqrp7VvSUlJ3HPPPbz55ps0Nzfz5z//mRUrVhAfH8/g4CBDQ0MMDg7S3t4ufEsHBwfxeDwcOHCArq4uIVCDg4MnbFYwGXV1dcCwLdapLqF3d3dz+PBhYNi8f3BwkMTERObPn4/VaiUgIIDOzk6Cg4Pp7u4WLg3h4eEjrKR8Rardbker1YouY8XFxVRVVZGWljYlL+HZtKOSDGO320UKRm1t7ay9z3M1zlyPJZFIJLONFKlngKamJrq6unC5XCQmJrJw4UJhAK8Iubq6OtRqNcHBwQQGBqLX67n00kuJjIxk9+7d2O12vvzlLxMaGsobb7zBj3/8Y3p6enjssccmFGupqan89a9/5dvf/jb79u3jO9/5DocOHeLhhx+e1j6EhIRw991388knn7B//3727ds35ef6CtTTRbH5SkxMPOXX2LlzJ0NDQ0RERLBy5UoCAwPxer0sWbIEGL7w63Q6uru7MZlM7Nq1C71eT2pqKgsWLBBi0lek+opXGO5qZbfbqaqqmpJIVZ5vt9s5ceIEERERMmVgFpirJgdz2UxBNm6QSCTnC1KkziFKhDQuLo7W1lby8/OJi4sTUVRlabezsxO3201AQAA6nY6Ojg527txJXl4eQUFBBAcHYzAYSE1NZd26dZhMJl566SWeffZZenp6+NnPfjaisre/v3+EcDUYDDz//PP85je/4cUXX+S1116jqKiIm2++eUqFUHa7nY6ODgCWLVtGWFgYx44dE12n1Go1Go0Gj8eDyWQS/1daqS5cuJC+vj76+vqA4SX1pqamScdVq9UnXYBLS0uB4ci18jelKn8yPB4PRqORbdu2AcPWXVdeeSWRkZFYLBZhH6bYTjkcDjweD3q9noGBAQYGBjAYDDgcDgwGA0NDQ2KOipG/Xq/H6/WSlpZGdXU1qampk7as9e085du5SopUiUQikVxISJE6A0x1mVkRjsnJyURGRo5ogWm1WsXycF5eHvv37ycsLIzu7m7q6+tFXqpSXW61WomNjSUzM5Nf/OIXhIWF8fTTT/PSSy/R2dnJH/7wB5EHmZ2dPeYcn3nmGTZs2MA999zD8ePHefrpp/nlL38pLGzGw2QyTSkKevz4cRISEibdzmKxiBzQiVAEoy+KMM3OzhZ/83g8BAYGTvp6g4OD+Pn5sXPnTgBWrVpFSkoKDoeDlpYWGhoacLvd5OTk4HA4CAsLE61S29raGBoaYvv27aSmppKYmEhHR8dJwlJJ+cjNzZ1yy2DfpX7fzlUSiUQikVxISJF6hjAYDCIKp3QgUvwzCwoKyM3NxWKx0NjYyODgIDqdDo1GQ3x8PMeOHSMsLIyuri4cDgcOh4NFixZx6aWXsnPnTt566y3q6+t5++23iYmJmXAeV1xxBTt37uT222/n8OHD3HXXXXzzm9/kP/7jP07ZXmouqa+vB059ub+jo4OioiIAwsLCKCwsJDAwEH9/fwIDA+nr6+PYsWMi+rl06VLMZjPBwcEcPHgQPz8/Dh8+jMFgICAgYEaEpW+qgGLwL5HMJCUlJZNuo7iRSCQSyZlCitQzjBI18/PzE6JGEURGo5H4+HiCg4NpbW0Vnansdjv79+8nJydHFB0NDAwQFRXFZZddxueff87BgwdZsWIF77zzDhkZGRPOISkpiY8//phvfvOb/PnPf+ZXv/oVhw8f5pe//CVhYWGzuPenh9frFSI1KSnplF5j586deL1egoKC+OMf/0hKSgqXXHIJeXl56PV6SkpK6O7uRqVSiU5iChERETQ2NhIWFsa2bdvo7+9n8eLFImJ6qkUryg2MRDLThIeHYzAY2Lx586TbGgwGSkpKpFCVSCRnDClSzzCjC2wUFPEKCL9UrVaL2+2mpaUFj8fDnj17uPjii9FqtajVahITE0lMTGTt2rU899xzNDY2sm7dOl566SU2btw44Tx0Oh0/+tGPWLZsGd///vfZuXMnGzdu5LnnnqOgoGDW9v90aG9vx263o1KpiI+PP6XXUIzP9Xo9zc3N2Gw2YmJiWLJkCV1dXcKpoK+vj8HBQZGL29/fT0xMDFFRUdTX19PZ2cng4CAlJSWEh4czODiI1WoVldZKzrHSIlcu30vOBImJiZSUlExaXFVSUsLmzZux2WxSpEokkjOGFKlnmNFRs9raWhGdi4iIEEVSipgNDg5m3rx51NXVkZycTH9/P8uWLaOmpoY1a9ag0+mYP38+mzdv5u6772br1q3ceuutPPfcc9x+++2TzudLX/oSeXl5fP3rX6e6upobbriBG264gfvvv19Ecs8GhoaG+O1vfwsMF6KdarcpJR81LS2Nnp4e/P39qa6upqWlhaGhIcLCwggLCxNdp+rq6qipqUGr1WK324mNjSU5ORmtVktTU5Mo4HK5XPj7+2OxWDAajXg8HhobG0XOqpISoPwuRevco1arhYPDbLdFnYtxpjqWcjMrkUgkZztSpJ5lNDQ04HK56OjoGFFo4ytmV69eTWhoKL29vaSkpJCUlCQigbGxsYSHhwOwZcsWrrjiCrZv3843vvENuru7ue+++yadQ1ZWFu+88w6PPfYYb731Fm+88QZ///vf2bx5M9/4xjdmZ8enQVdXF//xH/8hoqBf+9rXTul1HA4Hx48fB+Cuu+7iyJEjNDQ0EB4eTk1NDQEBAaSmptLY2CgirGq1mo6ODnp7e0lKSmJgYECkAahUKqxWK6GhoaLxgs1mw2az0dnZSVdXFyEhIaIFrFJgVVpaKsXqGUCv13PgwIHzZpy5HksikUhmG9lx6gxSW1vLzp07qa2tBYZFi9PpxOVyTbh8bTAYWLJkCfPmzcPpdGKz2ejo6KC+vl4sR9fV1bF161ZycnJYtGgRAI888giPP/74pBZIAIGBgTzzzDP87W9/Y8WKFfT39/Pyyy+zbt06XnvtNWEfNdccO3aMjRs3sn37drRaLT//+c+56667Tum1ioqKGBwcxGQy4efnx9KlS7nuuusICQkB/tVy1el04uc3fD8XERGBv78/wcHB2Gw2uru72blzJ3v37qW2tpaBgQEsFgvh4eFER0cDoNFoaG1tFa8LUFxcTGVlpSiaU9wAJBKJRCKRDCMjqWeQhoYGnE4nDQ0NJCcni2iaVqsVuYwTUVlZicViobS0lBMnTqDVagFYtGgRzc3NWCwWWlpaWLJkCTqdjr179/LUU0/R2dnJz3/+8yktPRYUFPCnP/2J3bt389RTT1FUVMRf//pXPvzwQ2655Rauu+66EcVEs8mHH37I888/j9vtJjExkf/93/+dsq3TWBw8eBAAs9lMeXk5Xq8Xm81GYGAgLpeLoKAgUlJSsFgsGAwGIfZra2vR6XR4vV60Wi0NDQ3CJzUwMHDEZxceHo7D4SAnJweXy4VOp8Pj8VBZWYlOp0Ov15OdnS1tpqZBfX39lHIqJRKJRHJuI0XqGSQhIYGGhgbhJTod6yKHw0FXV5eIwBmNRrq7u4mMjKS0tBSdTkdkZCRJSUkMDg6SkZGB2+3m8OHD/N///R/d3d08//zzU8rlVKlUrFmzhtWrV/Pxxx/zxBNP0NDQwAsvvMCbb77J5s2bufrqq/H39z/t92Qs3G43zz77LP/4xz8AuOyyy3jmmWdOu2NVYWEhAPHx8eh0OoqLi1GpVHR2drJgwQIAWltbSU5OZvXq1RiNRg4dOkR4eLhwVWhqakKn0+F0OklJSSEmJkZ4tCrNAnxFq2LUn56eTnt7OwkJCXKZfxrU19cL39rJMBgMIvVlLBwOh7jJKS4unjVHhbkaZ67HkkgkktlGitQzSHJy8ggBo4iVqXQkqq2tJSIigpCQECIiIujs7MTj8dDU1ITH4xHdj1JSUlCr1Rw4cICFCxcSERHBp59+yl//+lf27t3LQw89xG233Ya/vz8ej0c4CozH+vXrCQ4OprCwkFdeeYXW1lZ+9atf8ac//Yn8/HxRlJGQkCBSFybD5XKNmz7Q2trKT37yEyorK1Gr1dx///187WtfQ61WjytUBgYG6O/vn3RcJXdv8eLFGAwG5s2bR21tLenp6fj5+aHX60Wk2ul0sn79ehISEjAYDHR2dmKz2TCbzTidTvr6+jhy5AgBAQEkJSWNcG3w/Tz1ej06nU6K0lPEZrPhcDh49dVXJ20AMZnPp9frpa6uTvw+W8zVOHM9lkQikcw2Z1yker3eKXdsOteZ6n5Otp3dbker1aJSqYQ/aF1dHUePHsXtdlNVVUV7ezu9vb0cOXKE1NRUOjs7UalULF26lMDAQLZs2UJjYyP3338/v/zlL3n00Uf58pe/PKVoqNlsZuPGjTz88MP88Y9/5L//+79pbW3l008/HbGdv78/qampZGZmkpmZSVZWFhkZGcTGxmI2m0W6QXt7OyaT6aRxPv30U7797W/T1dVFWFgYv/jFL7jmmmsmnd/AwMCkKQhtbW00NDSgUqnIyspCr9fj5+fHvHnzKCws5NNPPyUtLY3Ozk5MJhO1tbVUVlayYsUKVq1aRWlpKTU1NQQHB5Oens62bdsIDg4W1fyn4nXq2w5VRsAmJicnh8WLF5/paUgkEolkFjkjIrWwsJAXXniB//3f/z1lgep2u3G73eL/PT09MzW9sx7FU9VXzCQlJeFwOEThlFqt5vjx45hMJpxOJ7m5uWRnZ6PVajEajQQFBdHQ0MDu3bupqqrizjvv5L//+7957LHHuPbaa6f0uQQEBPBv//Zv3HrrrXz66aeUlpZSVlZGWVkZ5eXlOBwO8f/R+Pn5ERkZSXR0NGFhYcTFxREZGUlUVBTR0dEcPHiQX/7yl3i9XhYtWsSLL744o40FlHzU0NBQuru7iY2NJSgoCKfTSX19PWq1mtraWpYuXUpHRwdVVVUAHDp0iFWrVgGQl5dHQEAA2dnZ6PV6ampqSE5OnlBgTiREfduhSpEqkUgkkgudORepRUVFrFu3jq9+9asjHp9uRPXJJ5/kxz/+8UxP75xAaZfpu5xnMBiE6b5SJa7X66mvrychIYGgoCCCgoKAYQEbHBzMxo0buf3223nttdf4/PPPKS4u5qabbmLRokU89thjXHHFFVP6TAwGA5s2bWLTpk3isaGhIUpLS6mrq6O8vFz8VFVVYbVa8Xg8NDc309zcPOFr33XXXfzoRz9Cq9XidDqn/V6Nh7LUbzKZKCoqYmBggIKCAnp6eoiPj6e+vl7408bGxmK32zl69CghISH86U9/orCwEKfTSVBQEMuWLePyyy8nKytr0mK0iYToeI0dJBKJRCK5EJlTkVpUVMTq1av5xje+wVNPPTXib4oYmqpYfeSRR3jggQfE/3t6ekQB0oVOREQEq1evxm63i8eU5Webzcb777+PXq+np6cHt9tNamoqcXFxFBUVUVZWxuHDh7nuuutYuXIl//Vf/yUih9NBrVYTHx9PRkYGl1122Yi/KTZNra2ttLW1UVlZSXd3N21tbeLH4/Fw7733cv3115/2+zEWikj1er10dXWJeQDExsaiVqvRarXU19dzySWXMDAwgEajobe3l+3bt2O322lsbCQvL4+jR4+ydu1a9Hr9pEv2RqOR2tpakU/rm5sq26FKJBKJRPIv5kyktrS0sGrVKm688Uaeeuop3G43P/rRj6iqqqKzs5Mbb7yRTZs2ER0dPSWhqtVqheXShcp4gsj3ccWGSom66nQ64uPjRbqE1Wqlo6ODgIAAVq5cSWxsLCUlJTQ2NrJ3714uueQSfvjDH/KDH/xgxrrl+Pv7ExcXJzpYjZeTOltUV1eze/duYNhhQaPR4HA4cLvdBAYGUldXh16vp7GxkdDQUA4fPozD4UCv1wtRX11dTVZWFkFBQWRmZor3f7xIqdJJTPG/7e7uZu/evaxcufKkIqra2lrh+pCSkjJH74pEIpFIJGcXcyZSm5ubWbp0KQcPHqSyspL/+I//oLu7m/z8fJxOJ88//zz79+/npz/9KWazea6mdU5gt9tF9C0pKYnIyEjx+FiCyGKx0NfXh8lkorGxkf7+fiorK0lLS6OiooKkpCSio6Mxm8289957aDQazGYzy5cvZ+HChcybN4/+/n62bdvGoUOHeOKJJygtLeXFF1885yN9Xq+Xb3zjG7hcLmJjYzEYDOh0OgIDA4Wxf2pqqsjdtVqtHDlyBI/HIzpQZWRksGHDBvR6PSEhIfj5+WEwGMSNQGdnpxCeu3bt4ujRowBkZGTQ2NhIVlYWlZWVI1qk+uLrnytF6uyhUqmEXdNsFm/O1ThzPZZEIpHMNnMmUgsKCvj5z3/O97//fTIzM7niiit4++23hY/hM888w3PPPUdZWdkpLS+fz9jtdiwWC4ODg1itViFSp5LDGB8fT2lpKYGBgbjdbuLj42lubqa8vJy1a9diNpspKCjA6/Vy0UUX4XQ6SUxMpLKykvDwcOLi4vjwww958803qamp4c033xzROelc4w9/+APbt29Hp9OxcOFCVCqVyNVVvotOpxONRkNeXh7l5eWoVCoGBgYwm82EhYXh7+8vUktsNtsIL0673c7g4KAoGNu2bRv+/v4MDAyQn59PfHw84eHhrFy5clxP3NH+uZLZwWAwcOLEifNmnLkeSyKRSGabWRWpg4ODaDQa8f+CggIee+wx8vPzufzyywkPDxfbPPDAAzz++OPs3LlTitRRGI1GIiMjcTgcE+YwKkvKZrOZqKgoIV5bWlqA4WKm9PR0LBYLJpOJmpoasrKyAMjKyiI0NBSn04nb7aahoYGqqiri4+P58pe/zCeffEJhYSGrV6/mtddeY8mSJXP4DswMLS0tPPzwwwAsXLiQuLg42tvbMZvNBAUFYbfb6enpwWq14u/vT0BAANHR0XR2dmIwGFiwYAEhISHo9XoaGhro7OwkKioKm80m7L+CgoIIDg6mpaWFkJAQsSqQkJBAWFiY+EwmMvAf7Z8rkUgkEsmFyKyJ1JKSEp577jmqqqpYvHgxy5Yt47rrrmPVqlXExsYSGxsLDPc1VyKE2dnZ5OXlzdaUzlmMRuOU3pfGxkacTift7e0kJSVht9upr6+no6ODpqYmESHV6XQ0NTWRnJws/ERbW1vR6/U4nU70ej1dXV2iwCk4OJj169fz0Ucf0dzczFVXXcULL7zAddddN8t7PrM88MADdHV1ERERwde//nXq6uqIjIzE4/HgcDjwer2EhISIxgbV1dU0NzcLsRoTEyMcBux2O/39/XR3d6PX62lqaqKnpwedTseqVavIy8ujo6ODq666iuTkZIqLi3G73cJofTIvVKvVKiKtSuRcIpFIJJILiZmphBlFcXExq1evxuv1kpWVRX19PbfccgvPPvssMBwpCggIENtrNBp++9vf0tXVJdpRXsh4vd5xfywWCydOnMBisZz0N71eT2VlJa2trZSUlNDW1kZLSwuBgYFERUXR3d2Ny+UiICCA+fPnExYWRl1dHS0tLZSUlFBXV4dGo8FgMJCbm0t6ejq5ubnExMQQExPDt771LebNm4fT6eT222/npz/9KR6Ph8HBwTF/BgYGxv2b74/S6WqyH5fLNaUfp9N50nPfeust/v73v6PRaPjqV7+KXq8nMzMTnU6H1+slNDSUmJgY5s+fz5VXXkl2djZ+fn709/djNBrRaDR8/vnnlJaWcvjwYex2OyEhIfT29rJr1y6RFxwTEwMMm82vXr2apKQkvF4vERERaLVaDAaDyCOe6HO2Wq2isG00SvqHr3uDZPo4HA7y8vLIy8ubUpvVs32cuR5LIpFIZpsZj6S6XC4ef/xx7rzzTiFK6+rqKCws5Dvf+Q69vb08+uijYvsPP/yQf/zjH7zyyits375d5uFNgq94Gb1crNfrxWPt7e3ExMQQHR2Ny+Wit7dX5FMqpvhmsxmv10tNTQ1Go5GhoSEaGhqIiYkhKyuLyMhI1Go1fn5+om3pI488wtNPP83hw4dFu9IXXnhhzA5PAQEB+PlN/hUzGo1T2i4wMHBK2ylFTgpdXV185zvfAWDJkiU4HA4sFgsqlYq+vj7MZrNwGujq6iI5ORmXy8Vnn33GwMAAKSkpZGRkYLFYOHLkCPPnz8dgMJCens7f/vY33G43AQEBbNq0SXwuo4tWIiIihNuC2+0mODh4wsKWiIiIcXNWfQvmpKfqqeP1eikuLha/n+vjzPVYEolEMtvMeCRVpVJRUVEhxKbH4yEpKYn169fz5S9/mccff5w//OEPYvvjx49TX1/Prl27WLhw4UxP55yktraWnTt3UltbO+JxJTIyODh4knixWq20t7cTEBBAVFQUmZmZREdHk5ubi9lsJjY2lqGhIRYuXEhBQQEFBQVERESQlJTExRdfjMFgoLS0lP7+fpF/GRoaCgwXXyUnJxMWFkZERAQ/+tGP+MIXvoCfnx9vvPEGX/jCF2htbZ2T9+ZU+K//+i9aWlowm81kZmaiUqmw2+2Ehoai0+loaGgQEUy1Wo3T6aStrQ0Y9nsNCQkhJSUFnU7H6tWrMZlM9Pf3s3//fjo6Oqivr6evr4+GhgYhRsdCaWerLPVbrVaKi4vHjJZGRESQm5s75lK/IuqlQJVIJBLJ+cyMR1I9Hg/x8fHU1dWJSFBNTQ1/+ctf+PWvfy069txwww0YDAYefPBB7rnnHlFhLRlpQeRbQKMIq7GKbqxWKyaTCbPZLCxoFHyrz20220m/WywWioqK0Ov1tLW1sXbtWjEeDEfHw8LC6OvrQ6/XM3/+fH7xi1/wt7/9jWeffZb9+/ezYsUKFi9ejFqtHvGj0WhO+r9erxc/BoMBrVaLyWQa8VhISAiLFy+eUuR0Iux2O7/73e8AmDdvHmq1Wiz1h4SEcOLECeLj4+no6CArK4u+vj6GhoYwGo2EhISIVImYmJgR0eLBwUF27NghRK1er6e0tJSYmBixHK9U6EdGRor30ldcThQVnwil45hEIpFIJOczMy5SjUYjGzZs4Fe/+hWlpaVkZ2fzf//3f9x5553cdNNN+Pn58fWvf12Yo/taAEmGGc+CaCLLqYmWh8PDw4mIiKCkpAS32y3EqdvtZnBwkP7+fuLj4xkYGGDZsmXiefHx8XR2dhIWFoZer8dkMhEQEEBzczORkZHcdtttrF+/nrvuuouKiopJW5xOl7i4OO6++27uu+8+kaIwXV566SW6u7sJDg7GaDTS2NjIkiVLxPuUnZ1NX18f6enpopivubmZvLw8EhMTiY6Oxm63s23bNrKzs1m8eDF2ux2bzUZmZib79+8nNTWV0tJSgoODMZlMrFy5UnijKvT29hIYGEhycrJYhp3oMztV7Ha7+I5IISuRSCSSc5kZFalKp6h7772XoKAgduzYQXNzMz/96U/55je/CQwXScXFxQmBKjmZ8SyIJmqbOZGlkUJ4ePgIX0/l98TEROHfCcPRcD8/PwoKCoDhiN8HH3zArl27yM/P57LLLsPPz4/AwEASEhLYt28fv/nNb9ixYwc2m43IyEhCQ0Pp7+9naGgIj8eD2+0WxvdqtVoUXBUWFopuTzD8HfJ4PPT399PU1MQTTzzBr3/9a7773e/yla98Zco3NDt37uQnP/kJ//znPwFYu3YtKpWKmJgYysrKxDzT0tKIjo4mKioKp9NJSEgIOp0OnU5HZGQker1eVOQrVl5GoxGHw0FYWJgQ9fv378ff35/6+npWrlxJVFSU6Fw1XgHLZJ/ZqVT4y3xViUQikZwvzKhIValUDA0NoVaruf3227n99ttP8kr95JNPRiw/S+aGkpISqqqqSEtLIyIiQggnXyGj/F5XV0dVVRUwvEQeGRnJsWPHUKlU1NXViU5NMPx5FhUVERoaysUXX0xAQIAYw+PxUFFRweHDh+no6GDBggXExsbS398PDBdW9ff3o1KpcLvdJCQk4HK5SEtL48477+Svf/0rv/3tb6mqquKHP/wh//M//8MjjzzCHXfcMWYagNfrZceOHfzXf/2XaHvq5+fHxRdfLFwjIiIiaGpqoqqqiuLiYvr6+li8eDFOp1PMKyYmhsDAQCHqU1JSqKurIyYmBqvVisFgoKGhgbq6OoxGI1lZWVgsFoqLi8nKysJoNJKamkpUVBRarRa3231KkU3fdICpitSpNHiQSKZKSUnJpNsoN7oSiUQy05yySB0tPhVG93dXtjl06BAvvvgif/rTn9ixY4e8iM4xVVVV2O12qqqqyMnJGRFxA8TvSmTPZrMxNDREU1MTTqcTg8GAw+Hgoosuor29nePHjxMTE0NRURF1dXW0trayevVqIiMjyczMpLa2Fq1WS1dXF21tbTgcDjH2kSNH6Orqwu12k5SUhMPhICQkhPj4eIKDg0lISGBoaIi0tDTuueceGhsb+ctf/kJLSwv3338/v/71r3n00Ue57rrrUKlUeL1etm3bxpNPPsnevXsB8Pf3Z/78+Xzzm9/k6NGj7N69G5VKxerVqwkNDeXQoUNERkZSVlZGbm4uOp2OmJgYYcFlMBiw2Wx88skn2Gw2CgoKSEhIEJ6qer0eo9GIWq2msbERPz8/1qxZQ2Jioni+IhiDg4On1E62uLiYyspKYf11KukAcpl/6qhUKpKSksTv5/o4MzlWeHg4BoOBzZs3T7qtwWCgpKREClWJRDLjnJJILS8v57333uPWW28VvpATYbfbaWtro6Kigs8++4z8/PxTGVZyGqSlpVFYWAgMR+iMRiMlJSUiUpKTk0NOTo6IsPpGu7ds2UJERARhYWF0d3fz2WefERISgsvlYsGCBVRUVKDVaikuLiYjIwMYvnB1dnayYMECamtr6enpwev1sn//frq6uujr68Nut7N48WIWLFiASqUiPDycgYEB/P39+dvf/kZ1dTUGg0F4l7755pv86U9/oqKigttvv52CggLuuOMOXnvtNfbv3w+AVqvlkksu4eqrr2bhwoVYrVbRHcrr9VJaWsq8efNIT08HID09HbPZTHt7O11dXaSmpoqL7ZEjRygsLMRkMlFeXk58fDwA/f39OJ1OEhISqK6uZt++fZhMJuF+oDBResZYVFZWYrfbqaysFNFapfBKQeaczhwGg+EkB41zeZyZHCsxMZGSkpIRhZZjUVJSwubNm7HZbFKkSiSSGWfaIrWyspKVK1fS2dlJe3s7DzzwwEnL90puqoLRaOTSSy9l7dq1mEym05+1ZNokJSXR3t6ORqPBZrMRERGB0+mktrZWRDIXL16MzWYjJCSE5cuXExERwe7duwkLC6OjowOAjo4OrFYr0dHRlJaW4nA4yM3NxWaz4fV6aW5uJjMzk8jISIKDg3E4HCxcuBC3201xcTEGgwG73Y7L5UKr1eJ0OoVNVnt7O9XV1RQVFdHU1CSM+d1uNzU1NWzYsIGMjAw+/vhj9u/fT2FhoRDeOp2OjIwM7rzzTkJCQsR3sru7m5SUFGw22wgz/aSkJGJjY8W4VqtVFIVlZ2cD0NbWxsDAAP39/SQkJIj0hMbGRuFSYLFYGBoawuFwiJSC4uLiKeUIjyY9PV1EUn0dHlJSUsQ2MudUMlckJiZK4SmRSM4o0xKpdrudJ598kmuuuYalS5dy33334fF4eOihh0YIVUWgPvXUUzidTh599FG0Wi1arXZmZy/B4XAIwTJW1K62tpbGxkb0ej0hISF0dXWJzyo+Ph6TySQ+G6/XOyKn0ev1CpN7pc/9rl27RKFRcXGxeN4111zD0aNHCQ8Pp66ujqioKDweDyaTidTUVHQ6nbB6CgoKIioqSkRgt27dip+fHwEBATidTvz8/IiJiUGn0+Hn50dtbS0BAQE4HA4SEhJ4/PHHMRqNPPzww+zatYvk5GSys7NZsGABvb29JCQk0NHRQUJCAnq9nvz8fFavXo3b7cZut4sWqL7Fe3FxcRw9elS4GcTHx6NSqSgoKMBkMtHb28uWLVtIS0sT3bvCw8NZsGABHo9HCMl33nmHY8eOMX/+fL761a+O+7kpFf67du2iqKiIBQsWsGbNGnJycoDhvODpOjyc69TX108pcieRSCSSC4NpiVS1Wk1BQQFms5mbbrqJ8PBwbr75ZoCThGpHRweFhYXU1taeloXQhchUc8m8Xu+IyNpYIlWJyDkcDhYtWkRqaqoQOCkpKdx2220i71GtVp+0RO3rNJCcnIzZbKauro7+/n4WLVpEcXEx+fn5rFy5kvT0dLZv387hw4dJSkoiKSkJk8nEvHnzRFTR4XBw6NAhamtrSU9Pp7GxkaamJjo7O4mLiyMgIICYmBgWL15MaWkpFouF9vZ2uru7cbvdpKSkEBYWhsFg4Nlnn2Xnzp00NjZis9moqakhJiaGoaEhli9fDkBGRgZarVaIvy1bttDW1oZWqyU5OZna2lpiYmIICwujoqKCwcFBDh06RHR0NImJiTQ3N1NWVsaxY8dwu90cP36cZcuWodVqCQ0NZfHixWRnZwvhWFdXh8PhoK6ubtzP0XeloaioiJ6eHoqKioQ/re/7Pvo1ztdl/vr6+hHpJhNhMBhmpPjS6XSybt06AHbs2DFm17SZYK7GmeuxJBKJZLaZlkjV6/Xceeed4iJ544034vV6ueWWW/B6vTz88MOYzWYGBwdRq9U8//zzuN1uKVBnkckia76eq2NViEdGRorHp9JGMTIyUgiliooKmpqaRMckq9VKaWkpXq8Xp9NJZmbmSUveFouFkJAQ1qxZI0Tixx9/TF9fHyaTiYsvvpjw8HARGa6qqiIjI4O9e/cyNDQEQE1NDdu3b8dmswkBHRMTQ11dHS0tLSxduhS9Xs+uXbtobm5m0aJF4jXnzZtHSEgIZrNZ+McODg7idruJiIigsrKS6OhoYYnlcrlwOBw4HA66urpITEykvLyc3NxcUQimCHuv18u6desoLCwU9l3joUTAMzMzKS8vF6kCFyo2mw2Hw8Grr74qbijGY6aqyYeGhjh48KD4fbaYq3HmeiyJRCKZbaadk6qIIUWI3nTTTXi9Xm699VZUKhXf+ta3eOqpp6itreXPf/6zFKizzGTFOaMjcjU1NUK0+uY6wkhfzvHyKQ0Gg1gm37FjB93d3ezYsYO77rqLQ4cOodfrGRwcZP369WNGu44fP87x48eZN2+emFteXh6pqano9foxBUpoaKjoBqXT6aiqqqK1tZXOzk76+vrIy8sjJCSElpYWURwVHh5OR0cHGo2GtrY2enp6KCsrQ6/XC5soRdxbrVa0Wq3IxR0cHBTRWaUtakFBAT09PRiNRvz9/bHb7WMWAH7hC1/gC1/4woSfGfwrt3TRokVs2LBh0u0vFHJycli8ePGZnoZEIpFIzgJO2YJKo9Hg9XoZGhri5ptvRqVScfvtt/Puu+9SVVXF/v37ZQ7qWch4BTkw/Tad69at45///CeLFi3CYrGI/MnFixeP6KzkS1tbG2q1mra2NvFYXFwcTU1NIv9VoaqqShj95+XlsX//fo4ePUpYWBjp6el0d3cTHx9PaGgol1xyCWlpaezevRudToderyc1NZWuri5ycnLo7+/H4XDQ399PWVkZMOwEYDQaxb5mZGTgcDiEuNVoNCQkJFBQUCCKpaqrqwkODsZisdDU1IRerxfRXKfTOW5+sO8NgBLVVbadLK9YIpFIJJILkdMy81eic16vl5tuuokXXniBI0eOcOjQIebPnz8jE5TMLOO1XIXpt+n8xje+wQ033IDH4+H48eO0tbWRk5NDbm6u2EYRYHa7nfb2dvr7++nq6sJsNrNr1y7i4+NJSkoSS/+7d+8mLi6O5ORkYmJiKC0tJS4ujsTERPbv34/b7aaxsZFbbrlFeLeGh4eLH5fLRWdnJy0tLSxfvlwIP4fDQXt7O2VlZSJfNDY2lssuu0zsu7LfxcXFovFBbm6uKCiz2WxkZ2fT0tLC4OAgnZ2dVFZWivSH0fnBvuLT9wZA8aBUBKnVap0wr9gXaUElkUgkkguF0+44pVKpGBwc5Lvf/S7btm3jyJEjUqCexaSkpJwUQVU4FdskRZx1dXXh5+dHc3PziHxMRbg1NjaKNqk5OTm0tLTQ1dUFIMzHCwsLaWxspLa2FqPRiMvlwmQy0drayuDgICaTibq6OiIjI4VgTExMxGaziSX+w4cPU1xcTHx8PAUFBUL4GQwGzGYzarWampoa8X+NRjOm2FPSBRTjft/3xuFwUFJSQmdnJ6GhoSMsoXzzgy0WC729vQQGBk54AzCdin1pQSWRSCSSC4UZa4ual5fHoUOHpFH/GaC2tlZER5Wl57lCEYB5eXki+uiLIsDi4+Npb28nMzOT7u5usrKygGEbLGWZ3OVyAeB2u/F4PLS2tuL1erFarcIWatGiRbS1tREeHo7D4aC0tJSOjg5MJhM2m4329nb8/f3p7u7Gz89PCDmr1SqcBKKioggICGDhwoUAouuWEsVUCrb8/f05dOgQWVlZJ5n0K0LcN1qq1+vHjYT6itzRaRDTMf03Go1YLBZhpyWFqkQikUjOV2ZEpGo0Gr7yla/Mess/ydj45pnOtUhVyM3NHbHMr+ArwNrb24mPjxfiUFmKV5a7s7OzcblchIWF4efnR3JyMi0tLWRkZBAQEIDZbMZsNpOSkoLBYKC0tJT+/n4A+vr6AFi2bBmVlZUsXLhQCGQYrh5Xckznz59PfHw8iYmJY1p4GY1GcnNzOXToEIODgzQ0NBAREUFhYSGlpaVkZ2cLkeq7f6PFp68TwkyhvJ6Mps4MM2FldTaNM9djSSQSyWwyY5FUKVDPHBPlmc4kE1X/T1b8Y7PZ6O7uFjmcbW1t1NXVsWzZMi699FLsdruwc/IlNjaWrq4uQkJC8PPzo7y8nBMnTpCXl0dmZiY2m03829/fT0ZGBitWrMBsNo8QoOHh4bS3txMbGyvyYPV6/ZgFTABBQUGkpqbS19dHZ2cnu3bt4uDBg+j1ekpLS8e0mHr//ffZt28fy5YtY9OmTZNGSE+1YOp8NvSfS5Rc4fNlnLkeSyKRSGabGROpkjOHr+H+bDK6+McXRRDu3r0bi8VCdnY2CxcuRK1WU1dXR3V1NQAejweVSsXevXvR6XTs2LGDSy+9VLyebzRSEWPK3wwGAyUlJdjtdvbs2YNKpSIuLg6z2YzD4aCzs1OkCthsNpKSkrBYLFRXV+N0OgkLCyMtLQ0/Pz/0ej1DQ0Po9XpheG6z2fB4PPj5+Y2owD927Bgul4ugoCC0Wi3Z2dljOhccPHiQ+vp6Ghoa0Ol0uFwu4cmqVPWP9Z5NpWDKF1k0JZFIJJILASlSz2FmOno92ev5Fv/4busbgayrq6O5uZmSkhLMZjPJyclUVFTgcDgICQkhKSmJo0ePkpGRQVtbG+np6dTW1gqRbbFYgOGl8tGRSK/XS1JSEocPHwagubkZu91OUlISBoOBlJQUUYylVNArkaWBgQG8Xi8JCQnU19fz7rvvotPpWL16tRjbN0KpUqnE+KmpqTQ0NHDppZeSnJyM1WqlpKTkpIjyokWLqKqqIiUlhYMHD5KcnExdXR2rV68+qWhKpVKdNJ5EIpFIJJJ/IUWqZMoo3alGRxHtdjtarRY/Pz8WLlwoWo02NjaSnJxMaGgodrud0NBQXC4XGRkZ6PV6Fi9eTG1tLVqtVojc3t5e4F9NI0Yvhy9cuJB58+Zx/PhxHA4HYWFhI0SysoyviD6j0UhCQgIdHR1kZGQQERHBvn37KC0txW63MzQ0NEIQKzmytbW1QoSOjlSP5ye7adMm8vPzRY6wy+UiPj6evr4++vr6pmXvJZl9nE4nV155JQAffPDBrLZFnYtx5nosiUQimW2kSJWcNr4RwSVLlhAeHk5DQwPx8fHA8DK9RqMBQKfT4XQ6iY+Px2AwkJycPMK+ye12iwio73I4/KsKXxHDymNKgZMyhrIcrojO0fmjaWlpfPLJJ9hsNtra2rDb7VgsFpHX63A4OHz4MA0NDVx22WXk5uaOEMsT2UmNlXpRXFw8pqiVdlJnlqGhIT777DPx+7k+zlyP5UtJScmk28xUO1uJRHLhIEWq5LRRxODOnTs5evQo+fn5rF27VkRcOzo60Ol0tLS0sGTJEpKSkoRY813St9vtxMXF4efnN+IxX8Hq5+c3QuiVlZVRX19Pd3c3CxcupLGxkbS0tDHzPK1WK/v27aO7u5u4uDhiYmJE8dT27dtpaGigtbWViy++mIaGBmD44puUlDQid3S6frLjiVpZACU511HSajZv3jzptkpOuRSqEolkqkiRKpkxjh49Sk9PD0ePHmXt2rXi8fj4eBobG4UAHU+UjRZto3NSxxJ0XV1dNDU1YTKZhE2V7xijuz5VV1czMDBAYGAgiYmJpKamniRmIyIiuOyyyygpKSEnJ2dKYnIi54PxRK0sgJKc6yQmJlJSUoLNZptwu5KSEjZv3ozNZpMiVSKRTBkpUiUzRn5+voik+jKR+8Ann3zCoUOHWLRoERs2bBi3yr2wsJDjx4+L/8+fP581a9YQEhJCeHg4YWFhmM1mnE4nHR0dJCQkYDAYRiypR0REEBsbi9VqZfny5SxevFjkri5dupTo6Ghh47VkyRKWLFkixhs9r9H2UePlqUok5zuJiYlSeErOK6xWK3fddRfbt28nPj6e559/nvXr15/S9iaTacS2DoeDp556iu985zuzug/nC1KkSmaMtWvXjoigToVDhw7R3d1NYWEhGzZsGHe7oqIi7HY7RUVFLFiwgGPHjrFmzRqysrJGdHqyWCwMDQ2NKO5SIqsGg4GLL75YpA34MlpIT9bFa7R91ER5qhKJRCI5+7jrrru4+OKLueuuu0Y8fu+99xIdHY3VamXr1q3ceOONVFRUEBYWNubrTLS90mgGhh1pEhMT+dKXvjSbu3VeoT7TE5CcHzgcDqxWKw6HY1rPW7x4McHBwWOa4/uyYMECgoKCWLt2rYh+7tq1C4CCggJycnKE+0BwcDB6vR6PxwMghKNicj5RyoFCQ0MDLpdL5KaO3lelyEt5nYiICHJycqRIlUgkknOYvr4+3n77bX784x9jMBi45pprmD9/Pu+8885pb//666+zcuVKUlJSZns3zhukSJXMCKMr8cfDarVSXFwsBOMXvvAFvve9700YRYXhKO2///u/8/Wvf51NmzYRFRWFxWIZkQtnMBjIyclh0aJFJCcnjxCjyvxgWFBOZp6fkJCATqcbs4uXYrk13U5RkrOPybqCnWvjzPVYEslEHDhwgPvuu4+8vDyMRiOJiYnceOONlJeXT+n5breb733ve8TGxqLX61m+fDmffPLJSdtt374dlUo15s++ffumNeeKigpMJpNwp4Hh9LITJ06c9vavvPIKd9xxx7Tmc6Ejl/slM8JUK9XHyt30er2oVKoRS+xKodPooiOv10t4eDiRkZHAcHXxaN9Wr9d70oV6upX0yvK/EiH2FaSyKn961NfXT6mwZq5RPsfzZZy5HksimYz//u//Zvfu3dxwww3k5+fT2trKc889x+LFi9m3bx/z5s2b8Pl33XUXb775Jt/61rfIyMjg97//PVdddRXbtm1jzZo1J21///33s3Tp0hGPpaenT2vOfX19BAUFjXgsKCiI9vb209r+6NGjlJeXc8MNN0xrPhc6UqRKps1Y3ZHGqlQfa7vxulYBwgS/oaEBs9l8kphVtp/MAkq5g55ofna7XQjNicTmWF6m4z1Hdo06mfr6enJycqaUBmIwGE5qHSuRSM5dHnjgAV5//XUCAgLEYzfddBPz58/npz/9Ka+++uq4z92/fz9//vOfeeqpp3jwwQcBuOOOO5g3bx4PPfQQe/bsOek5a9eu5frrr59wTldffbVIFXM4HPzlL3/hW9/6FgAPP/wwl19+OT09PSOe09PTc1IBlILJZJrS9q+88gqbNm0iJCRkwvlJRiJFqmROUfJGxyIhIWHMSOp08I3GTpT3M1UjfRk1PT1sNhsOh4NXX32VnJycCbeVZu/nP9L0/8Ji1apVJz2WkZFBXl7epN+FN998E41Gwz333CMe0+l0fPWrX+X73/++OM+Ppre3F71ef1JxrMKWLVvE72MVTikdApuamoiLiwPg+PHj4y7TZ2RkTLr90NAQr7/+Or/97W8n3GfJyUiRKjlrGF1hfypFSL7R2IlEqtFoxGKx4Ha7JxShU/EynWpU9kImJyeHxYsXn+lpjMDlcvHlL38ZgL/97W/odLpzepy5Hms6SNN/iYLX66WtrY28vLwJtzt8+DCZmZknLaUvW7YMgCNHjpwkUu+++276+vrQaDSsXbuWp556aoSV4FQwmUxce+21PPbYY/z617/m008/5ejRo1x77bWnvP2nn37KwMCAaFksmTpSpErOK3yjsROhCMqZaEsq25uemwwODvL++++L38/1ceZ6rOkgTf8lCq+99hpNTU08/vjjE27X0tJCTEzMSY8rjzU3N4vHAgIC+PKXv8xVV11FeHg4xcXFPP3006xdu5Y9e/awaNGiac3x+eef584778RsNhMfH88bb7wxwn7qyiuvZO3atXz/+9+f0vavvPIKN99887jRXcn4yHdMcl6hRGOnkh86E0v5ShQVIDg4+JRf51zkbC2IkpydSNN/SWlpKffeey8rV67kzjvvnHBbp9OJVqs96XFldcDpdIrHVq1aNSK14JprruH6668nPz+fRx55hA8//HDMMX7/+9+P+XhERIS42RuLDz74YFrb//GPfxz3b5KJkSJVcsHia0/l+//poNhRTcV79UxgsViwWq0zvuwrC6Iks4nMXT3/aG1tZePGjQQHB4t804nQ6/W43e6THne5XOLvE5Gens61117LW2+9xeDg4KTjSc5OpEiVnFcUFxdTWVlJenr6pDlPcPpL9Wd7YZVi+eXb9WQmkAVRktlA5q6en3R3d3PllVfS1dXFzp07iY2NnfQ5MTExNDU1nfR4S0sLwJReIyEhgf7+fux2+0m5rZJzAylSJecVlZWV2O12KisrpyRSfX0lLRbLtIufzvZiKcXya7ZSEc7GgijJuct0c1d37twpb5LOclwuF5s2baK8vJytW7eSm5s7pectXLiQbdu20dPTM0Jgfv755+Lvk1FdXY1OpxvXPmo8rFYrd911F9u3byc+Pp7nn3+e9evXn9L2o8d2OBw89dRTfOc735nWnC5UzohI7evrw+FwEBwcjL+/P2q1mqGhIdTqqTfAcrvdI5YCRvuUSS5M0tPTRSR1Kigi02KxnJfFT4rl13SPjyNHjkx4Ype5ppLZYiq5q9ONuL711lsz0rJ4plckzncGBwe56aab2Lt3L++88w4rV64cczuHw0F9fT3h4eEiNej666/n6aef5oUXXhA+qW63m9/97ncsX758RHHsWHaFRUVFvPvuu1x55ZXT0hYA9957L9HR0VitVrZu3cqNN95IRUXFiGKoqW7v+51pbm4mMTGRL33pS9Oaz4XMnIvUY8eO8W//9m/09vYCsHHjRv793/+dtLS0aeWNPPnkk/z4xz8+6XEpVs89RneMOh3i4+OJj49HpVJN67swODiI0+nEYDCcFd8hu92Ow+HAYDDMiGhW9mmy91r5+0UXXTTpa+r1erRa7Vnxfp0Kvp2Zenp6Zq0afq7GmeuxziQhISHs379/3C5ACjabjc2bN3PFFVfM6Pgzec46n/nOd77Du+++y6ZNm+jo6DjJvF+5ydi/fz+XXHIJjz32GD/60Y8AWL58OTfccAOPPPIIFouF9PR0/vCHP1BbW8tLL7004nVuuukm9Ho9q1atIjIykuLiYl544QUMBgM//elPpzXnvr4+3n77baqrqzEYDFxzzTXMnz+fd955h7vvvvu0tn/99ddZuXLlhPaIklF455Da2lpveHi497777vO+//773oceesi7bt06b15envfYsWNer9frHRwcnNJruVwub3d3t/gpLi72AvJH/sifCX4aGhomPK4aGhrO+Bzlj/w5238mO44kw1x00UUTvo8K27Zt8wLexx57bMTznU6n98EHH/RGR0d7tVqtd+nSpd4PP/zwpHF++ctfepctW+YNCwvz+vn5eWNiYrybN2/2VlRUTHvOhw4d8oaGho547L777vN+5zvfOe3t8/PzvS+88MK053QhM6eR1P3795Odnc3TTz+NVqvlyiuvZMeOHTz11FNcffXVfPDBB+Tk5Ihe7hOh1WpH2FOYTCYaGhoIDAw8Z9pT9vT0CF/Pcy2p+1yeO5zb8z+VuXu9Xnp7eyctNoiNjaW4uJjc3NwL5r05GzhX5w0X1tynehxJhtm+ffuUtrv44ovHjE7rdDqeeuopnnrqqQmff//993P//fefyhRPoq+v76TvQlBQ0LhR+6luf/ToUcrLy7nhhhtmZJ4XCnMqUru6uigqKqKvr08IzHXr1qHX6/nxj3/M/fffz2uvvTZu28yJUKvVxMfHz/SU54SgoKBz7uSucC7PHc7t+U937lMpnlKr1aK134X03pwtnKvzhgtn7heaH/L5xpo1a9i9e/eYf/vBD37Al7/85ZNSmHp6esbN0TeZTFPa/pVXXmHTpk2EhISc+uQvQKaXTXyKKHdIBQUFpKen89Zbb40oelq6dCl33nknzc3NlJWVzcWUJBKJRCKRXGDs2rULr9c75s8TTzxBRkYGfX19I+yvjh8/Pq5bzFS2Hxoa4vXXX+f222+fvR07T5lVkdrd3U1HRwf19fUALF68mIyMDH7xi1+wd+/eEUn9N9xwAw6HY9zOEBKJRCKRSCSziclk4tprr+Wxxx7D6XSyZcsWjh49yrXXXnvK23/66acMDAxw5ZVXztVunDfMmkg9ceIE11xzDRdffDGXXXaZqMZ74403MJlM/L//9//46KOPGBgYAIbvNDIzM8/ZJftTQavV8thjj43Z+u1s51yeO5zb85/tucv3Zu45V+cNcu6S84/nn3+e5uZmzGYzDzzwAG+88cYI+6krr7yS//qv/5ry9q+88go333wzfn7Smn66qLxjZSufJiUlJaxZs4avfe1rzJ8/n8LCQnbt2sX7778vPNAuvvhibDYbK1euZMWKFRw5coRXX32Vzz//nMzMzJmekkQikUgkEonkHGLGZf3AwABPP/001113nfAni4yMpKKigqGhIU6cOEFeXh7bt2/niSeeYN++fTz77LPExsaybds2KVAlEolEIpFIJLNT3V9eXs6SJUvE//fu3cu+ffu46KKL6Ojo4Oabb+aXv/wlP/zhDxkaGqK3t5eAgAD0ev1sTEcikUgkEolEco4x4yLV39+fdevW8dprr2E2m7FYLLz00kv84Q9/ICEhgdbWVq6//nrmz5/Pv/3bv6FWq2fE0mNoaIjm5uZzyidVIpkrfP0dJ2oRKI8jiWR85HEkkZw+Uz2OYJYiqTfffDMwHFGtrKzkJz/5Cddff734+9q1azl8+PCMjtnc3Dyil69EIjmZhoaGCYsT5XEkkUyOPI4kktNnsuMIZkmkzp8/n/nz5+N2u1m9ejUBAQHib16vF39/f2JiYmZ0zMDAQIBzsuvJqTKdmrdz7W7earVis9kIDw8nIiLiTE/nnEfprKMcJ+Mhj6OJOZXjSH6Xzx/kcTSzDA4OsmfPHgBWrVqFRqM5Z8eZq305H5jqcQSz3HFKq9WybNky9u7dy8qVK0lOTuaZZ57h+PHj/M///M+MjqVcPM7lrifT5XwWqUFBQaSlpZ3paZx3TPY9kMfRxJzKcSS/y+cf8jiaOTZu3HjejDNX+3K+MJXz6SmL1MHBwSndKaxatYrf/va3XHzxxWRlZWG1WtmyZQvp6emnOrREIpFIJBKJ5DznlERqeXk57733Hrfeeuu4y/ZDQ0Oo1Wo2b95MVlYWFRUV+Pv7s2LFCpmrI5FIJBLJBc7AwAAvvPACAPfccw/+/v7n7DhztS8XGtM286+srGT58uV0dnby8MMP88ADDwiDfgWv1zvny8s9PT0EBwfT3d19wSyvnM/L/ZKZZarHhzyOJkYeRxc28jiaWex2OyaTCYC+vj6MRuM5O85c7cv5wHSOj2lFUu12O08++STXXHMNS5cu5b777sPj8fDQQw+NEKrKifypp57C6XTy6KOPnsJunN9YLBasVisRERFERkae6elIJBKJQJ6fJBLJ2cC0RKparaagoACz2cxNN91EeHi4sJsaLVQ7OjooLCyktraW++67b0QfW8lwxa/b7cZqtcqLgEQiOauQ5yeJRHI2MC2RqtfrufPOO0UY+8Ybb8Tr9XLLLbfg9Xp5+OGHMZvNDA4Oolaref7553G73VKgjkFERISIVMw0zzzzDJ999hkXXXQRDzzwwIy/vkRyoXChHkuzeX6SSCSSqTLtwilFoCpC9KabbsLr9XLrrbeiUqn41re+xVNPPUVtbS1//vOfz2mBOpu5apGRkbMWofjss8/o7u7ms88+44EHHhh3PxwOB3a7HaPRiMFgAGY2507m+knOdUYfSzPJmTo+7Ha7OO7Hy5ubzfOTRCKRTJVTtqDSaDR4vV6Ghoa4+eabUalU3H777bz77rtUVVWxf/9+tFrtTM71vGImcr7Gu3CtW7eO7du3s27dugkvbna7HY/Hg91uFyJ1qsicNcn5wkTHyFSPpZk+HqxWq3i9mY5m+h73srhDIpGczUzcNHUSVCoVKpUKr9fLTTfdxNq1a7FarRw6dIhFixbN1BzPS3xzvmaaBx98kC1btvDggw9OuJ3RaMTPz++ULlSzOX+J5GxhqsfSTB8Ps3l8nc5xL5FIJHPJaXecUqlUDA4O8t3vfpdt27Zx5MgR5s+fPxNzO685G3K+DAbDtCOoCqcy/+LiYiorK0lPTyc3N/eUxpVIzkZm6nhWjpHQ0FDMZvOsnB8mWuaXSOYSrVbLli1bxO/n8jhztS8XGjPWFjUvL49Dhw6Rn58/Uy95xqmtraWhoYGEhASSk5Nn9LXP9ZyvU5l/ZWUldrudyspKDAbDrL23EslcM93joaamZszvv3KMAKxdu3amp3nG8d3vlJSUMz0dyRnGz89vTlqJzsU4c7UvFxqntdyvoNFo+MpXvsLChQtn4uXOGhoaGnA6nTQ0NJzpqZwXpKenYzQaSU9Pl++t5IJmvO+/7zFyPiKPe4lEMh1mLJJ6PlZnJyQkiLt+yemTm5srlvl9o9QSyYXGeOcW32PkfESeUyW+DAwM8NprrwFw2223zWpb1NkeZ6725UJj2m1Rz1Zmow3dXFrETMUW5lTx3Y/JUhikBdX5iWznePYx+vgYyxJOYTaPD7kEP3XkcTSzyLaoFyaz1hb1QmaiC8hMMFe2ML7LbTIXVCI5ezgdS7jTwfecMNMidTZvviWSU+HIkSPo9fpx/x4eHk5iYuIczkgyEVKkThHlAlJbWwsw4/6FRqNxUoE6Eyd8udwmkZydTOUccCpM5uE62TnhdM470pNVcjbgmwO9Zs2aCbc1GAyUlJRIoXqWcEGK1FPJcFAuIA6HA41Gc5LdzFRe0+v1jrtsZzAYsNvt1NbWjiuAR0daxnu90VZPvtslJyePG0GVy/OSC5HJvvezZZ02+vgd7xxwuhlZvp6rymv6jpuSkjJmBFUZd7II70TnNV/hPRuZZfI8JJkK7e3t4vddu3aNG0ktKSlh8+bN2Gw2KVLPEi5IkXoq+HqKzpa/6VgXE1+mGmmprKzE4XBQWVl5Rosw5AVEcj7ga50228fTZOeAU+F0PVxPJ8J7Ol7MEslssHDhQhnVP4eQInWanM4yv81mm7DV4WQXE+WEv3PnToqKiliwYMGYXoqhoaE0NDQQFxd3SvOUSCT/Ij09nYMHDwKzd4OqcDY0+RjN2SI0JzvvSS5M6uvrsdlsE25TWlo6R7ORzDRSpM4AUzX9nyhK4nA4gOHl+ImSugGKioro6enh448/prOz86RlSL1eT3Z2tngdp9M5q0VfEsn5jHJstbS0sHfvXlauXDlrInKmc91hdqKzCsq5T+mONd1zzHRSKZTzXlFRkRSpEmBYoObk5Ijrp+T8Q4rUCZiq+CwvL6ezsxOn0znhdhNFSXzzviYTqQsWLKCoqAi1Wj3msr7BYKCvr09cLCbKKbNarWJO4eHhwMlOBrPtbCCRnO1ERERQWVmJ0WicUbHne/z5vqbvMTfZ+WAsfJ8/m9FZ5dzX0tLC2rVrp+1MsHv3bhoaGmhra5tUpCrnvQULFpzutCVnCVqtlr/85S/i9+lis9lwOBy8+uqr5OTkjLudx+OhsLCQ8PDwWW2Lejr7IhmbMy5Sh4aGUKtnpPHVjFNeXk5XV9ek4jMsLAy73U5YWNiErxceHj7uhWI6eV9r165l7dq1I6IQviQnJ4uoxmSvXVdXR3d3Nw6HQ4jU0aL2TFnjSCRnCxEREaxcuXLGxZ7VaqWrq4v29vYRN4HTuWkdC9/nTxSdPV3HEOXcFx4ejp+f37RfQ6vVotFopnRRV857kvMHPz8/brjhhtN+nZycHBYvXjzhNsuWLTvtcSZipvZFMpIzJlLr6urw8/M7a/Imx4poTFV85ubmkpSUNO0T9OhIrXKBmmoVbE5OzpjRh9E5ZHq9flxxaTAYsFqtOJ1OnE4nBoNhhKi1Wq3U1dVhMBgm9VWVpuCS85nTXYqvra3l6NGj6HQ6Fi1aJG5aGxsbCQgIwGKxiGNsvBvLqa7uTPWm93QtonzPfb6FpRPl3vuybt06UlJSpCWeRCIZkzMiUo8cOcJll13Gc889x80333xKr+F2u3G73eL/PT09pzwfh8NBaWkpGo1G5LYYjcYpi89TLSwY3ce6vLycsLAwcnNzZz1iqVxIDAYDSUlJaLVaESn13Z/a2lo0Gg3ApHOaTVNwyewwk8eRZGKUZW21Wk18fLwQqZmZmfT29o7Y1vcY9L1pbWhooKamhqKiIlasWIHBYBhTDE71nDRVMTteyo/BYECv1wsnD4fDweHDh+nv78fhcEwqUieyxJOc/3g8Hv7+978D8MUvfhE/v9mRJHMxzlzty4XGnL+LRUVFrFq1im984xsnCdSJ/PZG8+STT/LjH/94RuZkt9sJCQmhq6uL6upq9uzZQ3Z2Nhs2bJhVsehrol1eXk5dXR0tLS0iajlbYysXEqvVir+/P8uWLRt3uc9gMNDe3k5oaOikrysbBZx7zORxdL4wUQ726eRnJyQk0NLSAoy84YuMjJzycntCQgL79+8nICCAzz77jKSkJKKiok7LXgqGz4G+/x/NVFN+7HY71dXVlJSUsHr1apYsWXJK85JcGLjdbm688UZguJXobAm7uRhnrvblQmNO38WysjKWL1/OI488wmOPPcbg4CD79u3DYrGI6k4lajcZjzzyCA888ID4f09PzymLI6PRSHR0NGlpafzmN7+hqamJgYEBNmzYMOHzTregyDeKYLPZ6OjoQK1Wj4hqKoy3zDfWHCa7yNbW1jI4OCiW8RsaGli7dq2I2PiOZTQaSU9PFwec71Le6O4145mCS85eZvI4Ol+YSJDZ7XZ6enqoq6sjPDycyMjIKR/7ycnJGI1GPB4Pfn5+I1w3xhOZo5fOk5OTueiii2hoaBjXdmeqKQFKPqrdbhfnnNEi1XfFRRHSEy3nK5HZsLAwuru7p/S+zDQy7UgiOX+YM5Hqdrt5/PHHMRqNbNy4ERgOiVdXV9PW1kZnZycPPPAAX//616d0YtFqtTNWQee7NJaQkIDdbichIWHSyO50C4oUEehwOHA4HGJcm82GSqViwYIFonhJac1WXV1NamoqHR0d9Pf3U1VVJcSnXq8fs8Bi9GO+y4XKBSkyMpLMzEwGBgZQqVR4vV6xXWNjIy6Xi8bGRhYvXozFYsHtdosLVH9//7g2WrW1tTgcDpKSkqYV3ZHG/2eGmTyOzhcmWgJXjoGhoSF6e3vHvBGcrAOTcoyoVCq0Wi0mk4mkpKQxt7fZbAwMDGCz2QgPDxfnCsVizul0Eh4eLo5dp9PJsWPHgOFjaiyR6ttJqqenh8OHD9Pd3c3ChQtP6qJns9no7+9HpVKJOZaUlNDT0yPG9n1NvV7PxRdfTElJCTk5OSfl18/FcS7TjiSS84c5E6larZZ77rmHgYEBHnzwQZqamsjKyuJ3v/sd6enpbNmyhfvvvx+TycSjjz46raX/6TLR615yySXMmzePiIiIScdXLmZ2u/2kaINvVLO2than00liYiIRERE4HA48Hg9WqxUY7mhjMpmA4eIMZd+rq6v5/PPPefvtt7nkkktISkpCr9fj8XiEyPW9oKpUKmpra6moqCAsLIycnByxD8q/yoU3JiaGxMREcfHz3S4+Pp6KigohepXoj1IpPJGNlsViYWho6KwzJJdIxmP0cT7e0rvX6xWpOBaLRWw7HZTzgkajoaqqCn9/f+Lj48eNeIaHh9Pe3o7ZbEalUlFfXy/yhpOSkkYc+16vF7vdTlBQEA0NDaSlpU04F6PRSH19PfX19fj5+VFTU0NiYuKI85cijH3PEYrjh8FgEOMq557Gxkbi4+PZvHkzAH/961/Zt28fK1as4IYbbpjSOf1026fKtCOJ5PxhTpf7L7roIlQqFU8++STp6en86le/IjU1FYDbb7+d5uZmfvrTn3LfffdNWlE/W0RGRoplbN/I53hFA0p1fH9/P01NTURHRxMYGEhycrIQqA0NDfj7+2Oz2YiIiBDeo11dXdTX14tlseDgYEpKSkR0AoaXrgIDA2lububWW2/FbrcLgeo7B4XGxkYAUak/Gt/tlaKL0SgXzN7eXkpKSoDhCImSJ+t7wfLFaDQSGRk5pYIJieRcZbTTxXTTfpQbveDg4AnTm5QizsTExBHHbGNjoxCJg4ODdHd3k5mZKc4bGo3mpKjoePthNptJS0vDZrMRHR190sqQ75K+w+EQ4jwxMVEc68q+NzY24nQ6aWxsFO/Pvn37sNlsfPTRRyxdulTk384mMu1IIjl/mFWR2tbWRmNjIx0dHaxcuRKTycS6deswGAy0traSmJgI/MsrNTg4mMTERAIDA2dlPhaLZdx8yomw2+20trbS1dVFdna2iIb65pPV19cDw+JQo9GIqILvvun1ehFxjYiIEMUKPT092O12jhw5QldXF/Pnzyc/P5+4uDguvfRS2tvbWbRoETAyyjNWxME3CuorZq1Wq4iIjJ6/IpqVC5Dy3rhcLmpra4mPj5/QxkrBYDDMem9zieRsY7ppP4rwi4iIwGazodfrqa2tBRA5rlarlSNHjqDVaklMTBSiLykpSeSuOxwOXC4X3d3dfP755yxfvhy73U5AQIBIzxnN6OM+MjKSVatWiRUZ5fwEnLQiVFdXR29vryim/PDDDyktLSUrK4v4+HgsFgtarZY1a9aI8VasWME///lP0tLSRHqE7JsukUimyqyJ1GPHjnHTTTcREBDA0aNHufLKK3nyySfJz89nyZIlI0z8lX9LSkpIT08XhQUzvdzv2x5wOiLVaDTS1dWFRqMRItf3wqREMEJCQnC73RgMBnp7e7HZbLhcLuLj48nJycFut4vHlaV/gObmZvz8/CgpKSE0NJTW1lYuvfRSbDYbV1999ZgRkdGiExDCOCwsjNjYWHHRtNlsvPbaa1itVhYtWsT1119PXV0dFouFyMhIMbe+vj68Xu+IiGhSUhL9/f1jzmG6RVsSyfnIdBpxjO7wpkRV29raxGspx6yS1qPczNfW1tLU1IROpxMrGjabje3bt6NSqdDr9QwNDVFWVkZWVtaIG9T6+npxozme3Zzdbic0NJTOzk60Wi0Wi0WISiWX3eFwYDKZaG1tpbS0lObmZjQaDS6Xi5iYGDQaDUajUdwg33DDDWzcuPGU0yMkEsmFzayI1IqKCi6//HK++tWv8pWvfIX+/n4uu+wyfve73/Hss88CjOgy1dDQwAsvvMAf/vAHdu/efUodVqbC6bQHNJvNI5axfSMPZWVlIj1BWWbv7u4W4lPJ1YyIiKCoqIiOjg4cDgcFBQUYjUZWrFhBdXU1l156Kb29vSxYsEBchJQLyKeffsquXbtITEzk6quvpry8nOrqalQqFZdffrkwBVdM+c1ms4im2Gw2LBYL3d3dIg/W4XAwODg4whdWmXN3dzdhYWEi4jue4BwdQVLSG5RCHClcJecjo7/PE3mSjt7W90ZZubm12WyUlpYSHR0t0p/Cw8OF0FNuqJuamkYc30rqj0qloqqqCo/Hg1qtpqenB7VazRe+8AVgWKR2d3fT19dHUlLSuJ2h7Ha7uMltbm6mvr6euLg4UlJSMBqNlJeX09raisvlwuVyERISgr+/P4sXLyYhIYHOzk5CQ0Pp6enBarWSnJwszpFK5Hi6gYeDBw9SXFxMbm6utLM6DwkICOB3v/ud+P1cHmeu9uVCY8ZFqtPp5Oc//zlXXXUV//mf/4lGo0Gj0fDDH/6QX//617jdbgICAsTJqqioiG9961vU1dWxfft28vLyZnpKAt980+mgRBh887OUk29lZSV6vZ6Ojg7CwsJGNARISEjAYrEQGhoqKvqVi0VrayuAEI3Lli0Tr61U1SqRFIBdu3ZRX19Pa2srwcHBVFdX09nZSWRkJPX19eK5FRUV5Ofn097eLooYlLyz9vZ20tPTxcWvpaWFmJgYCgsLKSkpYWBggPDwcI4ePSrSCyazsFEKFJTossVioaGhgYKCghHv1XSWQ0+3VaNEMptM5/s8etvRN8oOh4M9e/ZQVFQkoqHKsaPcCCvExcXR1NQEwP79++nu7iYmJkYIYJPJJOzzFJTzR0BAAGFhYRMeTw6HQziIKM+pqKhAo9FgNps5ePAgtbW1DAwMsGTJElauXMnixYtPiiQrN6rKOXI8N5CJUFo+nzhxguDgYIqLi6VIPQ/x9/fnrrvuOi/Gmat9udCYcZE6ODhIf38/69atG3E3ER0dLWyUfB9fsGABDz30EFlZWSKKcLYx1nKeEhHR6XTo9Xri4+OFPY1SHAWQlpY2Ij3AarVSUVEhoo02mw232y2Kqmpra2lpaWFoaAiXy0VoaChOpxO3201nZyeLFy/GarUSEhKCy+UiOTlZ5LrW1tYSERGB0+mktbUVp9NJR0cHiYmJXHXVVXR1dRESEiIufPHx8cBwmoXdbsftdhMeHk5qaiqDg4OTXlSUpT/faGxvby8hISG0t7eP2Lazs/Ok1xvPc/V0WzVKJONxqnnpvowlyibyJfX97vve6CrV+F6vl5aWFkJDQykpKaGgoAAYPg7a2tpEYVRycjKRkZGUlJRw+PBh2trayMnJYfny5cC/bsIHBgbEsT36BttqtY4rsA0GA83NzYSGhhIQEIDRaESr1TIwMMDx48cZGhqip6cHPz8/Ojs78ff3F13ylPOK4uXq+/6cyupVZWWlyK81mUwy110iuUCZcZFqMpn4yU9+QkxMDDAsWjUaDdHR0ZjNZkwmk4iiKl56V1555UxPY0YxGAxYLBZKS0vFhUg54Ss9uFUqlYiKwsnt/nyjIl1dXbz55puEhISwbNkyUXRltVo5ceIEGo2G8vJy1Go1arWa7u5uAgICWL9+PTExMcINYOPGjUIc19bWYjAYqKurQ6fTERERQU9PDxkZGWJsZXlRuXiUlZXR19cHDC8lpqSkCNEdFhYm7GkSExPFUmB8fLzwS4yIiKC0tJS+vj6sVitGo5GYmBg6OztPsn/x7VilLIHW1dWJPF9fwTCdHD+JZDpMlpc+FSP40ecDX1/OsUSq8t1XvvfKPJSoaFJSEpdeeilut5ucnBzxPLvdztatW7FYLGzfvp0vfelLhIeHExoaKvL2+/v76e/vJyMjg+joaNrb2zl8+LAQqVarlaqqKnGzPJkHrBLZLSgoYNWqVYSGhlJcXExXVxeRkZGsXr1apAsMDg7S09ODXq9Hr9eL9KKpOIhMRnp6OpWVlVx55ZVSoJ7HeDwePvroIwAuv/zyWW2LOtvjzNW+XGjMyruoCNShoSFhsaLchTscDoxGIz/4wQ84ePAgf/nLXwgODp6NaUyZqSwvj74QjY6IABMubSnm+0uXLmXr1q0YjUYOHDggGht4PB5sNhuBgYG0tLSg1Wrp6ekRIrG/v19cABMTE9HpdCxcuFAI/oiICDo6OjCbzej1ehF9KCsr49ChQ+Tk5OBwOMSNQUFBgbC/crvdrF27lqKiIoaGhtBqtQQHB9PQ0EBQUBBWq5WOjg6cTicVFRXifVLeq56eHvbt20daWhpxcXEnGfmPvjAqkVJfmxtf5DK/ZLaYLC99MiN4JfpfWVmJTqcTgnY8X06j0SiaYSjFR52dnVgsFqqrqwkICCA/P5+vf/3rwmGjtraWyMhInE4narWatrY2IiMjqaqqEjeIF110EXV1dWRlZREXF4fVasXlcnH48GFg2FnF4XCIpfuOjg7gX+ch39xQRTyXlZWxbds29Hq9WF4PCAjAarVSWlpKdnY2d9xxB3a7HZvNJs53YWFhOBwO+vr6aGxsJCsr67Qt6HJzc6U4vQBwu91cffXVwOy3RZ3tceZqXy40ZvVd9C2O6u/vp7e3Fz8/Px577DF+9rOfsXfv3jMiUEdbN42XY+Zb9OB7IfJ9XHm+EjFQWhUqfqdKAYTD4aCjo4OBgQHWr19PdXU1ubm5DA0NCfHodrvRarXk5+fT1tbGjh07RLGFknuWkpJCWVkZHR0d7Nmzh7CwMOLi4tBqtRiNRtra2ggKCiI+Pp49e/bwwQcfkJKSIiKhWq2WgIAAFi1aRH9/PxaLhfDwcEwmE2lpaWK/PB4PkZGR6PV6EYFpamoSzQSUiFBoaCgNDQ3ExMTgdDrFtqPdB3zfV9+obHJy8ohuV5N9blM1A59qgYbsdHX+MtZ3aqybS9/vi+9x7vV6OXjw4IgbO0WYKdFDZWVBEY/Kd9nr9Yrj3ul0MjQ0xLFjx2hpaSE7O5vk5GT6+vro6ekRKQiAOK6UlY958+YBUF9fj9Vqpa+vT/ibDg0NER8fLyziqqur0Wq1dHV1iWM5NDSUpqYm0tPTKSkpoba2lpSUFDIzM8V7opz/ampqiI+Pp62tjZiYGE6cOEFsbCxdXV14vV66urqwWCx0dnbidruJjIxEp9NhsVhwuVw0NDQQGxs7oihs9Ofhe01QGF1c5vu5+baOHaugdiaP36megyQSydwxIyJ1KqJAq9WSnp4uCqj27dsncq/OBL5Vo7m5uWMugfmKV9/leyWvq7CwkNraWpKSksjJyREXQEVwKnmmysXlyJEjDAwM4PF42LhxI0FBQahUKuF3qHgmKu0OlQtcT08PWq2WAwcOkJycjMlkEpX4Xq9XRDKam5vx9/enoqKCnTt3cuLECbxeL62trSLdwmKxkJ6ejkqlorOzU+SaXX/99axZs4ajR49isVjweDxkZGSMuNgkJiaKC68SIeru7iYrKwtAdMAyGAzs2bOH5uZmYmJiRJUxDOfv7dq1i9DQ0HEbNoznBuB7wZIuAZLZYHSaTklJCX19fezYsQOXyyWOz4nM8n2bgAwODuJ0OtFqtdTX1+Pv709jYyOXX3458fHx7N+/n/7+fhoaGtDr9ZSVlREcHIzJZMJgMAhzfJVKhdvtFgWR7733Hi6XC6fTKQSn0r4UYOvWrTgcDmJjY4mNjSUwMJADBw7gcDior6/HbDbT0NCAy+UChm824+LicDgcLFq0iJ6eHpqbm+nt7cVkMhEaGiocBaqqqnA6nZhMJqKiotBoNHR3d5Oens7AwMCkVfxKUVR6ero49yrn2dFuANMtupwppKuARHJ2cMoi1W63MzQ0hNfrJSgoaNLth4aGOHjwIFVVVezZs4fFixef6tCTzmsq8ykuLqavr08sa411Ahzd9lQ5cSqPt7a2Mjg4SGNj44hiBxjOxfUVeO+//76IfK5YsYL+/n46OzspLS3F6XQSGBjI0NAQ/v7+BAYG4nA4CA8Pp6amhqysLOx2O4GBgWzdupXk5GSRPtHT04PZbBbjWCwWCgsL6ejoEH6s69atIyUlhZqaGtauXUt2djZ79+7lvffeE+kESg7sJ598gr+/P4BYbquvr6ewsBBAdJ2CYdGoFFcoc/3nP//JvHnzaGtro6mp6aTISWNjIwEBAZSXlzM0NITBYDipb/l4F6bTuWBJGyzJqZCTk0NJSQn+/v5C0JnNZsrKyrDb7URGRmKxWEShYGJiojgeFVu2+Ph42tvbsdvtHDx4kMTERNLS0oiNjUWn0wkhW1tbS1dXFy6Xi6CgICoqKjh+/DhqtZre3l6SkpJwOp3s27dPVPEr4zqdTgICAggODqampga1Wk1RUZHIh42KihLnAIA33nhD3ASnpqaSl5fH8uXLSU1Npbm5mZ07d3L06FFqamqIiIjgqquuoqCggO7ublpbW+nt7SU+Ph6tVktoaKjIeYV/pU8pjQlGU1lZicPhoLKyktzc3BHpQLW1tSJneLIc2tlk9PVBIpGcGU5JpBYXF/Ptb39bmFD/7Gc/47bbbhsRUfU16weIjY1lyZIl/P73v5/VXCOl0nyyPNPc3Fxxpzweivm1b7GF79J1dHQ0ra2tzJs3T4yh5GZZLBbMZrMQtuXl5cKWZcmSJcIMu6WlhYULF6LX6+nu7hZLeWFhYfT09IgoRn5+PkePHgWgvLxc5LeFhYXR2dmJTqejoqKCkpISWltbaWhowGw2k5qaKi4EISEhIk/mxIkTqNVq4cOYmJjIkSNHcLlc9Pb2jrjANDY20tTUREdHB/v37yczM5OsrCwyMzPFkr4SWYXhIqyoqCgGBweJiooa8Z4qBR3K9+TYsWMnXczGuzCdzgXrTEVkJGcf07lhWbJkCUuWLBnRl963/afiaKHkb9fX1+P1ek/yT21vb0elUjE0NERtbS2ffvopN910E3q9HpfLRXNzMx0dHeh0OpEP7na7CQwMxGw2k56eTmpqKq+//jplZWW43W4WLlwo8maVCG9QUBA5OTn09fVhNpvZt28fra2tXHHFFaxcuZLs7Gw++eQTGhoaKC0tJTU1lYGBAdGhzul0AsPn6927dwuHEIfDQVZWFkVFRaSmptLU1DRCALtcLo4cOUJraysRERHCds/3plYhPT2dPXv2MDAwQG1t7YhtRucMT+RBO5tM5fogkUhmn2mL1OLiYtatW8cdd9zBkiVLKCws5O677yYvL4+FCxeK7RSB+u6777Js2TKSk5PZuXOnsF6aLXy7p0xkY5SUlDTlytOxii3sdjuxsbGiUEnJQVUqf2FYrCUnJ2M0Grnkkks4cOAAiYmJuFwuqqqq6Ojo4ODBgxw/fpyQkBDS09Nxu93ExcXR2NhIb2+vSMDW6/UsX76ckpISjh07Rl9fn+ju4nK5aGxspK6ujs7OTpqamggMDMRoNGIymejq6qKjo4Py8nLcbjfLli0jLy+Pvr4+1q5dy4oVK3A6nYSEhOD1egkMDESn04l9VfLUlChxTU2NmKdvNfK8efNoamoiLi4Oo9FIXFyciCb7tl1dvHgxFouFY8eOERUVdZJwHO/CNJXWrONxKgJX8X0F5qTnuGRuGOuGxbfyXjHJV27gDAYDycnJOBwOjh07Jo4NJUcyMDBQFE3p9XrRJEOJpJaXl1NXV4fBYEClUmE0GhkYGKCwsJDExES6u7tpb2+nv7+fefPmkZmZSUNDA42NjSxYsIAFCxZQVFTE9u3bKS4uRq1Wk5yczLXXXovZbMZms9HR0UFfXx+hoaFERUWxYMEC6uvr+f3vf09vby9/+ctfOH78ODAsQIeGhkhLSyMsLIyVK1eSmJhIfX09/f39uFwuhoaGmD9/Pg6Hg8jISGJiYvj44485ceIEISEhrFq1Cr1ej81mo6ysDD8/P4qLi4WlXnh4+IjOVjAc7S0uLqajo4OgoCBCQkJOckTwzRk+kyg3JxKJ5MwyLZHa0dHBt7/9bW677TaeeeYZAG699VYOHTrEyy+/zK9+9asR0dQtW7Zw7733cscdd/D444/PSRcGRUhMJkpGR0cnwnfZSbn4KMVBWq2WpqYmNBoNHR0dLFy4kLy8PCHWlAKiDRs2sGHDBg4cOIDFYhFeg8pPbGwsmZmZpKSkUFlZyXvvvSeKzRISEmhubiY/Px8YNtnu7Oxk0aJFaLVaqqurOX78OIcOHaK+vp6oqChMJhP5+fnCkFu5CCsFEhdddBEZGRkYDAbq6+tpbGxEo9GIi63SphGGu9+sXbuWnJwcjhw5QkVFBQEBAVRWVo5om+h0OgkLCxNpANnZ2eK7YLcPt4RVPpvIyEjmz58/4jObCuNFwXy9KkenD8CpRWRGz1mK1PODsc4NyrHR2dnJ4OAg7e3tmM1m8T1zOBzs27cPh8NBVFQUF198MR6PBxiZx+pwOCgrK6Ozs5PU1FSqq6v55JNPCAgIwOPxsHjxYrxeL+Hh4Wg0Gg4fPkx+fj5Wq5WMjAzCwsLEao3T6eTAgQNUV1czODjIwMAAsbGxqNVqLrroIpELXlZWRm9vLy0tLbhcLnJycqivr8fpdJKWlsaePXtQqVQcOnSIhIQEwsLCuOWWWygvLyczM5Ps7GzxPjQ1NRESEkJqaiomk4nVq1djNps5evSoyJ/VaDR0dXWJQqrQ0FAhbLVaLVFRUWPm+SvNP5TcWb1eP6YjgkQikShMS6QODAzQ1dXF9ddfD/xrST8lJUVYnPgmzF999dXs37+fu+66S1hRzRWTiYqJrGh8hZCSjwrDxQW+OaqKWNVoNFRWVjI4OCisWpR2pE1NTeJ3l8tFTU0NxcXFBAYGkpmZSWtrK263m5CQEAoKCkhMTGTr1q2ic1V+fr4orOju7hYVujabjb///e9UVFSI7lUK9fX16HQ6tFotDQ0NhISEYDabWbx4MT09PYSEhFBUVERwcDBGo5Gamhrsdjs6nQ5/f3+OHTuGx+MR+apKu1PFWzIsLAybzUZoaCi9vb3YbDYcDgcajUYsiSppAL6fR2BgoPhdSVdQosRTXYK12+1UV1fT1tZGfn6+EAe+1kFJSUns3LmT/fv3k5GRwWWXXXZKEdjRc5ace1itVvbu3UtXVxdLliwhNzd3zBsW33QVjUaDyWTC7XaLv9vtdlE4pDht+Hqe+n5vd+zYQW1trVgqHhwcFF3hWltbKSgoEMe+4nN8xRVXiDx0GD4HHT9+nM8//xy3201wcDArVqzgkksuITAwUAhnhc7OTrRaLVqtVhyT/f399PX1sWzZMux2uzgH63Q6EhIS0Ov11NTUsG3bNlwuF4cOHWJgYICQkBBgeLXJ7XZz4MABEaltb28nLi6OiooKuru7CQ8PJzg4mOTkZEJDQ0UTEIvFMsLBQ3mPExIS6OjoEM0JzhSyq93ZQUBAAM8995z4/VweZ6725UJjWiI1KiqKV199lYyMDGD45KtWq4mLi6Ourm7Etkp3o8cff3zmZjuDjF5WGi1MleVAJeLq24GptLRUnPCTk5PFhaW+vl5YShUVFXHgwAE6OztZsGAB2dnZwltQp9Ph5+fH0NAQV1xxBY2NjaSmptLe3o7BYCAoKAidTkdcXByhoaFiqa+5uVkIytFkZmayatUqYmJieOONN6iurubtt98Ghn1rs7KyCA0NJTY2lra2NvR6PV1dXcBwIUNVVRUGg4H+/n78/f2x2+2cOHECGM5JPXToEIGBgWi1WrKzs0XhW3l5ubARUy7gSiGVgm8+n++FaSzvVGV5cHQFsIJiswWMWCoc7VVZVFREe3s7LpeLlStXnrJIHc/QXXJuoJjZezweUajji+9xrxQBKnnbSqQUPvn7RAABAABJREFUhr8LytK7kgJgMBiora2lt7eXwMBA0WmpurqaiooKPB4PV111FS0tLQwMDAgx63a7SU5OJiUlRdi6KXndCvv376e6uprGxkaCgoLo6uqir6+PkJAQ3n//fTo6Oli2bBlBQUH09fWh1+uFTVNPTw8tLS20traSlpZGa2sroaGhLFmyRKQD7dq1C7fbjcVioaamBrPZTElJCUFBQdTV1REfH09nZ6d4X/z9/UX6g06nE7ZUBoNBeDArgrusrIw//elPREdHA/9qrazX68USusPhOEnczyXK+cZisYh9lLnqc4+/vz/33nvveTHOXO3Lhca0c1IVgapUosOw5YoShQB48skn0Wq13H///eeMoe3oHNax2vop0deQkBC6urpG9N8GRlS3dnd3C4umw4cP09LSIpYFlahzWloagYGBpKenY7Vaqa6uprOzk5ycHDo6OtBqtRQXF/Pss8+O6GYVEBDAkiVLWLFiBatXr2blypUjROFjjz3Gtm3bePHFF3n33XdpaWmhpaWFPXv2kJqays0338ySJUvQ6XTYbDa6urro7+8HhiPhJpMJvV5PVVUVxcXF4gJVX19PamoqbW1tIi+vqamJPXv2CB9JRfjW19eL9q8lJSXizlK5YPlGs7xe70nvudIWcbSwMBgMhIaGcvTo0RFdrJTc37q6OhwOB5mZmbjdbtFxS3JhEhERQVpaGl1dXaSnp5/097GOe6UbVGhoqPjuKS4UE1krFRYWcuTIEVQqlWhRGhwcTF9fHx0dHXi9XqKjo4mOjqavr4+WlhZxA6ykFsDw+aa4uBir1YpKpaK+vp6mpibee++9ETeoL7zwAgEBASJndNOmTSxYsICtW7eKlslKoaLRaBQrLqWlpeJYHhoaAqC3t5esrCwGBwcZHBwEhi2tFG/n1NRU4uPjCQgIEJ3wNBoNK1asABDPiYiI4MMPPyQgIIDW1lbRrGSi9135v69QnG03DuWzdrvdsqBSIjmLOWUFqVarR+SfKoVSjz76KE888QSHDx8+ZwQqjMxTUwSUEikY3T0pOjqatLS0ESfUvr4+uru7CQsLQ6vVkpycjMvloqioSEQmPR6P6LPd3d0tDLsNBgMlJSUiEmg2m2lqaqK6upoXX3yR9vZ2EhISuPfee1m5ciUFBQVotVo8Hs+YaRRqtZr169ezfv16Wltb+cMf/sDLL79MTU0NpaWl/OhHP2Lx4sUsWLCAgIAA4uLiSElJoa+vT5iD+/n5cejQIVQqFR6Ph4SEBOLj40Xawfbt2ykoKBAR9KqqKubNmyeW/UtLS4mOjqakpAS9Xk9vby9hYWHCHisjI0MUoyhLb4rYNxgMoi3iWMIC/nWz5IvVaqW7u5u+vj4WLVrEhg0bTu9LITnnMRqNrFy5clyxM9ZxX1paisvloqWlRYjUsUST8n1VihTff/99BgYGSElJITExUVS9K/ZVZrOZoKAgYmJiqKqqor29na6uLlGg9OGHH/L6669z7NgxqqqqRMtiX9RqNTk5OSQkJHDgwAHhm9rY2MiBAwfQarWEhIQI39P58+cTGxsr2i3b7XZKS0tpb2+nubkZo9EohO51112H0+mktbWVgYEB6uvr6ejoICAgQHS5i4qKYufOnXi93hHtoZ1OpzD4V4opc3Jyxl3S933fxypkKywsFO1c165dO2XRqjRGiIiIGLPtre/4vhaD8kb2zDA4OMjOnTsBWLt27YjrWX19vWiOMx4lJSWnPc5MMRdjXIiclopURKqfnx8JCQk8/fTT/OxnP+PgwYMsWLBgpuY444zVNUSxcPH9+1S30+l09PX1ERAQgMvlQq1Wk5mZSX5+PqtXrxaFDUrlf3BwME1NTQQEBKBSqYiLi0Oj0aBSqdBoNAwMDHD06FH++Mc/0tPTQ25uLm+++SaxsbHA8DKkx+Ohp6dnRBX+WOh0Ou6++27uv/9+tm3bxu9+9zv+8Y9/cOjQIQ4dOgQMpwNccsklrFmzRthfmUwmBgYG6OzsJD09naioKNra2vDz86OtrY2QkBCRM3vw4EHUajUtLS2kpaXR0dFBeHg45eXldHR0kJ2dzaJFiwgPD+fzzz+nvb2d9vZ2cWGor6/nn//8J8HBweTl5WE0GkcUjygdbJT3e7zuXxEREaKwTWnlOF4hlYLsOHXuMdWuP16vd4QAGqtjkV6vR6fT4XK5Riw/nzhxgtTUVPE8u93OwMCAOM5huPVhVVUVdXV1pKSk0N/fz5EjR1i3bh2xsbEEBwfjcrnIzs4mISFBdIvq7e3FbDbT29srTPN///vf895774mIJICfnx85OTnMnz+fgoICFixYwPz584VIGxoa4sSJE3z22Wfs2LGDXbt20dvbS1tbG21tbTzxxBM8++yzDA0NCWupifjLX/7CvffeS25uLh6Ph6ioKPz8/AgNDSU8PJyAgACqqqoICgqit7cXo9EoukwpDQvq6upEjq3vMQtw+PBhiouLyc7OpqCgYMTnoRzDSrcuJVdfif5O1ULOtyB2IpGq4JuTKrtJzT0ul4tLLrkEGD6efK8JShrJZBgMhjE7nE1lnJlkLsa4EDktkapET/39/XnxxRcJCgpi165ds2bUP1NMR5hMZVu9Xk90dDTV1dVYrVaOHz9OXl4e+fn5omXh9u3bqaqqwuv1EhoaSl1dHXa7ncHBQTIyMoiNjaW5uZljx46xc+dO/vznP9Pf38/q1av505/+JIoZRs9tKndrytLcZZddxmWXXUZrayt/+9vf2LJlC3v27KGlpYXXX3+d119/ncDAQBYtWsT1119Peno6fn5+HDx4EEC0bU1PT8disdDV1SX8VzUaDRUVFcyfP5/w8HA+/fRTCgsL0ev15OTkYDAYqKioEDm1CxcuFM0GrFYrXq9XGJMrFySl6Ky8vHxEi9Wxun/Z7fYRecY7d+4UhVRnskBDcmbxjdgp3d3GisiNFkGZmZniAqlSqbDb7dTU1BAcHIzBYBB2aDU1NXR1ddHe3k5paSmdnZ3s3r0br9eLyWRi7dq1wme1srISi8VCUFAQer2eyspKduzYwf/8z/+IsTZs2MDGjRtZuHAhubm56HQ63G73mAJbrVaLPNn7779fREm3b9/OZ599xp49e07KX9dqtQQGBhIUFCR+AgMDqayspKysjCeeeEK0el20aBErV64kKioKt9tNb28vHo9HnAeU1q8Gg4HExEQ++ugjdu3aRU5ODmvWrDmpKFW5WS8pKWHJkiVYrVbhzTx//vwR2+fl5YlI6ujPcSImKoidjKmc6+VN7dygFOO++uqrI2wOxyI8PJzExMQ5mplkrpmR9fjLL7+c//zP/2TPnj3nvPmx70VsrAvDWNtZLBZKSkro7u5m7969ogApLi4OGF4K7+zsxGq10tPTQ3BwMN3d3QQEBNDS0kJ5eTlRUVGEh4ezdetWdu3ahdfr5brrruOFF16YNFo6XaKjo7n33nu59957aW9v5+OPP2bLli1s3bqV3t5eduzYwY4dO9Dr9cTFxZGfn4/H4yErKwutVis8Qzs7O+nr60Or1dLX10dERMSI9o5er5e+vj6Cg4Pp7e2lsLAQPz8/wsLCCAoKEsurOTk5Io/Xt/UpDDcd0Ol0GI1G6uvrAUYIjPEuXqMLqSTnLjU1NeKznG4hm2/us+JSUVFRQVNTE8uXLxed4kZ/j9rb2zGZTJSVlQk7J41GQ3NzMy6Xi9jYWAwGA7m5uRw4cEDYNA0MDIg+92azGY1Gg16vx9/fH6vVKlqIfvzxx7z55ptCRC5dupTHH3+cNWvWnPL75Ofnx9KlS1m6dCnf/e53cbvdVFZWotfrhTDVarW43e6Tqo/7+/v55S9/yZNPPkljYyMWiwW73c5XvvIVWlpaKCsro62tjfT0dLGS093dLXJSHQ4HH3zwAU1NTTQ3N1NQUDBiOd/hcJCUlITH4xGiw2q10tDQwNDQEKGhoSNuJpV21WN9jhOh5AJLzg9ycnLOSNBrKmkEUhzPDTMiUpcsWSKWf851JkroLy4uFnf3ERERojq0qKiI5uZm4WfY1tZGUFAQL730EjU1NYSFhRESEoJer6e1tRWj0UhUVJRYPty1axdZWVns3r1b5LR87Wtf42c/+9ms57WYzWZuueUWbrnlFnp6eti/fz/vvfce//jHP2htbaWyslIUWRiNRtRqNWFhYSQmJqLX6zGbzbS3t6NWq4X9U2dnJwsXLqSpqYmEhASGhoaor68nNjYWq9VKfHw80dHRNDU10dTURFhYGAUFBdTX14sWkcnJyUK8u1wu0QSip6cHq9UqutSMFiHK5zW6B7vk3MXXXux03BYU27OysjJUKhWff/65uMgo6SIwLIiUFqb19fWiMUVcXBwdHR0iGpiQkEBsbCzXXnstr7/+uuhzn5iYiEajoaWlhRdeeAGv10tvby9NTU20tbVRVFQkiiczMzN57LHH2LRp04xH6bRaLXl5eVPaNiAggO9+97tcf/31fOtb3+KTTz7hyJEjfOlLX+Kee+6ht7cXu93Ovn37ROc6xdWjo6ODAwcOiPSvqKgoAgICRHS4rKyMwcFB4uLiWLVqFTDcFKawsJChoSHxOrW1tURGRk4YHDgVTucmR3JhodSIbN68edJtlVoSKVRnlxmrbDrXBapieRQbG0tSUtKYCf1VVVXY7XaqqqqIiIigs7MTQHgqJiYm0tzcTG5uLjabjcrKStra2nC5XKIAyO12U1dXh16vJzQ0FI/Hg9Vq5dVXXxUC9T//8z958MEH53xpSafTccUVV3DFFVfw61//moMHD/Lkk0/ywQcfUFpaSltbGytXrqS8vBw/Pz/S0tJYsGABx48f59ixY6KjzLx581i5ciVms5nGxkZ6enpEWoBKpSI6Ohq3201fXx8VFRUMDAwwb9484uLiRnhFxsXF0dTURHp6OsnJySLPNCQk5KTcNOWil5CQQF5enqzUPY8YHRWfbuW3bzepoKAgVq1axdGjR4mLi6OsrIyYmBiAEa/ldDrFiojy3c3Pz6euro4DBw4QHR0t5mMwGKirq6Onp0fYrwUFBbF9+3bq6+vx9/cXwlY5Z8TGxvLwww9z++23n1UFpikpKbz99tu89dZbPPjgg9TW1vL973+f5cuXixtDpfUpDLtw7Nmzh4MHDxIREcH1119PYmLiCC9X5cbTl6qqKvz9/QkJCWHFihW0traKQMdMiFTfgqiZusmRnP8kJiZSUlIypYKtzZs3i5Q1yexx9pwdzzCK5VFzc/OIdni+S4BpaWkikqrkk7rdbkJDQ1m27P9n77zD2yrP9/+RJVvLU7a8d7zt7Nk4g0JCgECYpaVllvJllLbMpoWSUkqB0kKZBcJuyigkkAAJJCRkLzLtJN5D3kOyLQ9ty/r94d95azseckhC0vi+rlxJ7KOzdM77Pu/z3M99z6C9vR2VSkVDQwO+vr7o9XrkcjmRkZHo9XqcTifHjh0TmVbJveWbb76hvLwcuVzOa6+9xtVXX/29c598fHyYMWMGn3zyCStWrODBBx+kra2NdevWoVQqSUpKYvLkycLuMSIigvb2dtEsYjabWb16NUePHiU5OZmf/vSntLW1id+np6djs9nYu3evKOWHhIQIgwTolZUKDw/nyy+/5P333ycjI4OJEyfS1tZ2XJBSXl6O2+2mpqaGGTNmDHpNgwU3Y6LeZz6SkpL6BRfeNtFI1JHi4mLhIJWens6UKVOYMmUKBoOBrq4uKisrhZUv9HaIW61WAgMDmTNnDmq1WkxEe/bsoaSkhLi4OHJzc2lpaWH//v00NTVRW1tLT08P77//vuCwDuzQDwoK4re//a3QUzwTO4BlMhlXX301P/zhD/nLX/7Cq6++yt69ewkLCyMzMxOXy0VUVJRoFC0vL8dsNqNSqZg1a5a4V1ImNTw8XDRLSmopUVFRFBYWCmOE0Zhm9F10SJ8Z+Lm+z8gY9WcMo0F8fPxY4HkGYSxI/f8YTPJooFd8X56UwWAAep1e1Go1e/fuFeL3crlcaCyazWZ6enpoaWkRHbKRkZG0tbUhl8vZvn07tbW1qNVq/vOf/3DxxRcPKj3zfUEmk3HjjTdy/vnn89RTT7FmzRqR0SwqKmLVqlVkZWVxww03sHDhQuH9XV9fT0FBAZWVldTW1pKVlcWkSZMwm82CzxcXF8d5551HSUkJLS0t7Nq1i4SEBFFyAUTZ1Ww243K5hLSHUqnsJ8QtNVj0lQYbiMGCm4E6mWM48+FtE4303TY2NlJTU8OePXtwu92iUgIIzV+3201hYSENDQ34+fmhVCqRy+Wkp6eLrGFzczONjY10d3dTW1vLsmXL+OKLL/o5UwFUVFT0+79KpWLcuHEsWbKE3/zmN+h0OgCvOpe/TwQFBfHCCy+QkpLC/fffT1VVFddeey0FBQU0Nzczbtw4HA4HSUlJQt/ZaDRSX1/Pt99+i1wuZ+rUqcyaNQur1drPhjohIYGYmBgUCoUwCRjMpKQvCgoKBEc9KytLJAj6cl/7Ljilf4eHh49lUMcwhrMU51SQ2pebNJCvOJCoPxKk5iGz2UxBQQGff/45arUah8NBXFwc5eXl1NTU4HK5hK2h5NutUCiIjIzkiy++EF7Zq1evJjc39yRf8clDbGwsL730Es899xw7duzgs88+45NPPqGxsZHDhw9z+PBh0tLSWLZsGZMmTcLf35/k5GTKysqEi82CBQsIDg7G6XRy6NAhGhsbUSqV+Pn50d7eLnRmoX+2JDU1lZKSEtEBPJgQt6TZODBwGegoNDC48TbgGcOZg8GaaAbLkkvfbVZWFhUVFYSFhQnedHd3t5BKs1gs+Pv7s3fvXgwGA6GhoWRnZyOXyykuLhb7bG1tZdasWRQWFrJ//352794N9FYdYmNjSUpKIjExkYSEBJKTk0UGOCIi4nuvjHwXLF68mPvvv5/i4mL27NkjlEji4uIwGAwkJSWh1+uJj49Hr9ezbds2qqur6e7uJikpSVB4+lolD3zvRpIKMxqNrFy5UljJSn0B0r4G7kMan8dwZsPX15enn35a/PtsPs7pupZzDedUkNqXmzRcU83ACW+wCbDvRLlr1y5iYmIwGo1MnjwZq9VKS0sLFosFp9OJQqHAaDSKzElYWBjvvPMOjY2NhIaGsmHDBiZMmHDKr/9kQKFQMG/ePBYsWMBzzz3H7t27WbVqFStWrKCkpITrr7+e2bNn84tf/IKbb76ZpKQkjhw5gsvlorS0FJVKRVtbG1VVVULCTFIB0Gq1oiQnTTgKhYKf/OQnImCVtCylCUrKzPSdoCTXIGmbvhJVg3m2j01mZz8MBgPNzc2Eh4eLxaZUCZGeA4mqI2XtYmNjRRVDq9XidDpxuVwolUomTZrE1q1bsVqtqNVqpk6dSltbGwqFAqvVKgLU3/72t/zxj3/s1y0/lMnG2Yrk5GQSExMxGAyi0TEpKUm8y62trSgUCiZOnEhmZib19fWUlZVht9vF+NmXa15QUHCcLXXfoLWqqorS0lJRjZJ0j2UyGW63m6CgIMGP7Rv8jy04zz5IDXv/C8c5XddyruGcClK94SYZDAby8/OJiIgQPCmr1Sr0BbVarQiApMEwIyODnp4eIa1SVVWF3W5HJpMJDmZPTw8ymYyoqCj+9re/0dTUREhICF999dVZE6AOhI+PD7m5ueTm5vLII4/w5JNP8tJLL7Fr1y52797NJZdcwtVXX01oaCgqlYqWlhbkcrnoFI6KikKj0dDQ0IDH40GpVIomK0BYnEoZmr6aqJImpNTIJmVWtFotBoNBlBYlP/Wxiet/G1KDjrQQNBqNFBcXA5Ceni4qJUajEYPBIPR2rVYrLpcLk8lESkoKbreblJQU9Hq9eHcrKyuJj4+nvLycVatWsX79egCWLl3Kn//857M6S+oNZDIZ559/Pm+99RZms5k5c+bQ09NDR0cHjY2N+Pj4oFAoBFd81qxZ2O128fmjR48KYw7JkQ7oF6T2pd+UlZVhNpuxWCwkJCSIhYbUYBUZGTlmYzqGMZwjOKeCVKn81tPTM6S7SE1NDQD5+fkoFApaW1sxGAxkZGQwa9Ys6urq8PHxERNTd3c30dHRJCcnC/tDu91OTk4Ovr6+REZGolAoaGlpITExkQcffJCmpiYCAgL4+OOPGTduHJ2dnf3OQeLJjYSamhqvu5sjIyNH3M5oNA5qGjAQkk7kQDz44IP85Cc/4cknn+TTTz9l7dq1bNy4kfPPP59LLrkEq9VKY2MjgYGBTJgwgfDwcGpra/H19aWnp4fu7m78/f3x8/OjrKxMNGtotVpCQkKEDJVGo6G6uho/Pz+Ki4uJiYkRHccej0cEtJKU0HBd4N66zJyOQORcb+Ia7rsYqF/c9/soLCykpKSEoKAgseAzmUxCd1culwsBfpPJRHd3NyaTSWTiZDIZarVacKE1Gg1dXV2kpqbS09ODv78/u3fvZv369SJAveeee3jwwQePe3fB+/e3tbXVq/dNcqgaCWazmcDAwBG3s1gshISEjLid2+0W2c/zzjuPt956i9LSUqqrq5kyZQqtra0kJCTQ0dGBXC7H6XRitVoJDQ0lNDSUwsJCAgICCA8Pp6amhra2NjQaDf7+/uJdHXhe3d3d4p5IKh5Go5GWlhbBQQ0LCxMudIN9frAA9n99IXG2wu12C+fDKVOmnLIKxOk4zum6lnMN51SQKmG4AUvKstrtduRyOTt27MDf35+KigrRpW+z2cRAqlAo0Ov1ouQVHR2N1WrFZrNht9uxWq3o9XpiY2NZtmwZ+fn5aLVaVq1axfTp0wc9B19fXxGQDQepgUiC0Whk69atzJw5s1+22Gq1esWR6WvJONJ2Q93D+Ph4XnnlFW6//Xb+9Kc/sXv3br788ku2b9/OpZdeyoQJE3A4HCQkJFBSUkJFRQXt7e2i5G+z2WhtbRVakiaTiZycHBFISNltaYJKTk4WZd7u7m5RVhyYeT0bsi7nchPXcHxxGJ6zWFFRIZ5vqTSs0WgIDQ2ltbWVwMBA4YwkcSPVajV5eXmi+1uj0VBWVsaxY8fIzs6msbGRuro6QeN57bXXRIB677338sgjjwz5DvT09Hh1zVKQJpXDrVYrPT09JCcn95vg5HK5V++vlNEcCd7uTy6Xi/O44IILAGhoaKCyspJx48YRFRWF3W4XwWlzc7MI/Ht6eoiIiBDvoEajQalU4nQ6mTJlSr/3sS//XKFQiBK/1Wpl06ZNdHZ2Ul1dTWJiIi6Xi+TkZPR6/XH335tyf3Nzs6iEjYn+f/+w2+1CjeVUWomejuOcrms513BOBqnDQRKBl/hX06ZNo7i4GJ1Oh06nQy6Xk5KSIoJDvV4vpJOam5vZtWsXnZ2d9PT04HQ6RYPPK6+8Qn5+Pmq1mo8//piZM2ee1PP+6quvePzxx2lvbwdg5syZXHnllSxYsOA77dflcp0QCXzSpEl89NFH7Nu3j4ceeoiioiI+/PBDNmzYwHnnnYdcLufYsWN0dnYKnmB0dDQOh4Pq6moaGxuFfqo0odlsNhwOhwg2wsLCsNlsuFwu7HY7DoejXyZpqElrtDqbpwvnMqduJL74cPcmOTmZiooKkpOT2bJliwg058+fL/QOpe9Zem5MJhP79++ntLSUiRMnEhYWxueffy540tCr3FFWVkZJSYnXAepAOBwOVq5cybp16+js7OwXkFqtVrq7u4/7TFBQEPPmzeO8885j/vz5x7lDfR/Q6/VMnDiRvLw8DAYDZrMZtVrN7NmzOXLkCGVlZQDCFU6iSfT09AhFhaEyvX35530zrJLMn91uFxJh48aN69fgOvBdHul9NhqNggo0FqSOYQxnPsaC1CEgdelCb3e5ZGMqWZ1WVFQQExMjsqi1tbU0NTXR1tYmOKilpaV0d3ezefNmSktLUSqVfPDBBye1i7+9vZ0nnniCdevWAb2qA0ajkb1797J3714CAgJYsGABt95664juM1arlbKyMvLz8zl69Cj5+fk0Nzczb948brrpJmbOnDmqsplMJuOSSy7hwgsv5O233+bxxx+nqamJTz75hC1btpCdnS2aL9RqNc3NzQQEBFBbW4vL5aKsrAy5XE5ycrLIiknWkunp6Wg0Gux2OwaDQXwvEidRCmqMRiPw3yClryFAZGTkGReknosBKows2N83ABlYJs7MzCQ+Ph6r1cq6deuw2WyCpyyVhQd+zxqNho6ODhQKhbA+bW1txeFwEBERQWJiIsXFxRw5coSdO3cCvSV+bwNUq9XKhx9+yOuvv05TU9OI20tSTJLd6Oeff87nn38urm/hwoWcf/75TJ06ddhsaWdnJw0NDdTX11NfX09nZyczZ85k4sSJ37nkvWDBAvLy8igtLaW2thatVktBQYGgUzQ1NbFr1y4UCoVQ+PDz86OlpYXU1FR0Oh1KpfK4ysZQCxCtVktaWpqwVO3LYZUwWInfaDSKbOnAz0gVlsH2NYYxjOHMw1iQOgQKCgqoqKhApVIJd6jo6GgUCgUmkwmtVsvRo0c5cOAANTU1goeWkZFBSEgIZWVlKBQKVq9eTX19Pb6+vvzrX//ihz/84Uk7xwMHDvD444/T3NyMj48Pv/jFL7jjjjswGo2sXr2a1atX09DQwKeffsqnn35KdnY2V1xxBdOmTSM1NZXy8nKOHDlCXl6emHwG4wVu27aNbdu2kZGRwe233z7qIFuhUHDbbbdx3XXX8dJLL/GPf/yD1tZWtm/fjlarxeVy0dPTw6RJk+jp6UGpVJKfn09HRwcajYa2tjasVitVVVXk5eWJkr8U0CQkJODn50dFRYVorBg/fjxVVVXI5fJ+k5IU5JrNZqGtOobvH5J8kwRvBfslmEwmOjs7SUpKwmg0kpOTg91uF25HVquV4uJiqqqqUCqVqFQqgoODaWlpwc/PD4/HIyof9fX1xMfHc+jQIfbu3Qv0Nkl54wLX3t7O66+/zr///W9aWloAiIqK4pZbbhEavtIfu91OQkICarVaZEu7u7s5dOgQW7duZcuWLRw5coTCwkIKCwt54YUXCAwMZN68eUydOlWcqxSU1tXVDamxHBMTI6SkThQ/+tGPeOaZZygoKKCgoEDweX19famqqiI+Ph6Px0NkZCRut1u8n8HBwRiNRmpra4mLiztO6k+6H1arVah3SD8bSRawb4AruQZC79gwWDAaHh4+lkEdwxjOIowFqUNAklCB3gyCxLlyOBxYrVYaGhqoqalBoVBgMBjo6OggMDBQaKNqNBo8Hg/19fUoFAo+/PDDkxagejweXnvtNR5//HF6enpISEjgL3/5CxMnTgR6LRfvuusubr/9dvbu3cuHH37Ijh07OHbsmDAcGApRUVFMmDCB8ePHM2HCBAIDA/nPf/7D6tWrKSoq4t577+XSSy/l+eefH3XWz9/fn9/97nfcfvvtPPfcc7z00ktYLBa2bNnCgQMHKCoqIjs7mwkTJuByuURzVEhICDabjZ6eHjo7O6msrKSyspKFCxcSFhZGSEgIlZWVrFu3juDgYFwuF5mZmcfZpvbNrAyUozpTKQDnKkaiavR1JpNQWFhIdXU1kyZNYtKkSUKVIywsDKvVSn19PbW1tYJrKTX/hYaG0tbWhl6vR6lU0tnZyfLly0UThNTF39HRMeT51tfX88orr/Duu++KZqr4+HjuuOMOrrzyykE55i0tLcK3XoJCoWD69OlMnz6dBx54AKPRyPr169m/fz9btmyhra2NL774gi+++GLIcwkKCiIqKkosqnfs2EFdXR3Lly+no6ODRx99dOgbPwwmT55MUFAQ7e3t7Nu3j3HjxhEaGkpzczNmsxnoXTAGBgai0+mIiooSRgeHDh1CqVQKe9S+waiEgQsTb97Jvhl2yTXQ5XIJhYYxjGEMZzfGgtQhkJKSQkVFBePGjRP8VJVKRXR0NG1tbcLJROp0b29vx8fHh7y8PHx9fTGbzWJAnjp1KkuWLBm0E3i0sNls/Pa3v2XVqlUAXH755Tz00EODDuJyuZzZs2eTmZmJVqtlzZo17Nixg4MHD2I2mwkJCWH8+PHk5OQwadIk9Ho9aWlpx+3nD3/4A3fffTfvvvsub7zxBl988QUlJSUsX76cjIyMUV9DSEgIf/rTn7j77rt5/vnneeeddzCZTOzcuZNdu3aRnJxMWFgYERERuN1uNm/eTEBAAH5+fmg0Gnx9ffHx8aGurk40YezYsYOAgAAsFgvjx49HoVAILcWCggLBQ8vKyvK6bDiG04e+ygYDy/t9y7fQG4zW1tYyefJkwS+VxPadTiclJSWkpKQI7rLFYqGgoIDS0lJ8fX1JTEzE4XDQ0dEhqCQWiwWZTMbevXvZsWOHcI1atmwZf/jDH4bMoBYVFfHiiy/y8ccf43K5gN6x48477+Syyy7zqpFpOOj1ei677DJ+/vOf43a7ycvLY/PmzZSVleHv709kZCTR0dHCxS09Pf244N1ms/HJJ5+wdOlS1qxZwwMPPOCVWsBAbNu2jfb2dqGw0NLSIlRNbDYbISEhREREYDabaW1tJS4ujsrKSoqLizGbzSQmJpKVlYXFYqGxsRGz2UxGRoYowUsWy1JGfbTvZF/XwOEysOe6isYYxnA2YSxIZfAsWlZWFpmZmchkMlatWkVtbS1hYWGEhobS3t5Oa2srWVlZpKWlsW/fPmQyGT4+PjgcDsxmM52dnSITOzBbcqKoq6vj1ltvJT8/H7lczq9+9St+/vOfe8U10+l03HLLLdxyyy14PB7a2toICQnp91lJfmswBAcH85vf/IbZs2fz4IMPUlJSwsUXX8xf/vIXrrvuuhPiu+n1eh5//HEefvhhvvrqK9588002btxIeXk55eXlpKSkMGnSJA4ePIjH42Hx4sWkp6fj7+9PSUlJv31lZ2eLe79mzRqxMIDebEtLS8ugsjsDO4th8CzPGE4thgtI+ja7JCYmsnLlSkpKSsjLy+Pmm2/G6XRis9nQ6/UcO3YMi8XC5s2bUavVlJaWYjQaRRAll8vJyspCpVIREhIi5NBqa2vp6Ohgz549VFRUIJfLefnll7n11lsHPV+Px8MTTzzB3//+d/Gz2bNn8+tf/5rs7OxTEvzI5XKmTJnClClTBv19S0vLoMdVq9X89Kc/5Y033qC0tJQvvviCX/7yl6M+vrQwzs7OFoGkQqFgzpw5tLe3ExMTg8PhEM1nJpOJ1atXYzAYGDduHDNnziQxMRGj0UhlZSU+Pj5C6/jbb7/Fx8eHxMRE1Gp1v/cyKCjIq6yqt66B57KKxhjGcLZhLEjF+xW7SqVCq9Xi7+8vgjKLxYJcLkcmkxEQECDkkurq6vjmm2+AkxOk7t27l9tuuw2TyURISAivvfYaMTExJxQcymQyYT86WkyfPp1///vfPPXUU2zevJn77ruPnTt38te//hV/f/8T2qefnx/XXHMN11xzDRUVFbz++uv8/e9/F9mipKQkgoODOXToEEajkZKSEnp6eujp6REUh9TUVKKjo3n66aex2+3YbDYRpGq1WlJSUgbNahkMBoqLi5HL5fzgBz8AGMuofg8Yrnu/b7OLRqPBbDbT3d0tuJiHDx8mNDQUhUJBUFAQoaGh7N27F51OR35+PjExMZjNZpRKJW1tbaxcuRK9Xk9oaCgtLS3s3LkTX19f/vznP9PQ0EBAQAAffvghF1544aDn6na7efDBB3n77beBXtvQ3/zmN0JSrq6u7tTdqBOETCbjpz/9KX/605/46KOPTihIlcwRrrjiCmJjY6mvrycgIIC0tDSCg4Ox2WxUVlaiUqkwm82sXLmSI0eOCCqURK8wGo243W7a29tJSEigpqYGHx+ffu+c1Nkv0QVOZqXjXFbRONPg6+vLH//4R/Hvs/k4p+tazjWMBamMPGhNnTqVyMhIIYMidRI3NDRQUVGBWq1m/Pjx1NbWkpycjMvlYs6cOWJQ/65B6nvvvcdDDz2Ey+UiKyuLt956i/j4eCorK7/Tfk8UISEhvPfee7z88ss89dRTrFq1isOHD/Pkk08yd+7c79RFnJyczJNPPklQUBCPPPIIR48eJTExkczMTFpaWqioqKCpqQm1Wi30VKurq4mPjyc8PByNRoPT6SQnJ0fsc+D32zcrY7VaaW1tRalUjjlUfY8YLkPWl0ssZeXkcjkLFy4U2f/CwkKhd6pWq8UkkZKSglqtJikpCa1Wy7fffktBQQEKhYLs7GxaW1vJz89n586dmEwmYmNjWbNmzZAucE6nkzvuuINPP/0UmUzGs88+y80333zyb8gpwDXXXMOTTz5JQUEBeXl5YoHnLcrLy4HeqsykSZOAXn3b7du3k5GRgcFgoLS0VCwGGxoa6OjoEO59fd+/wMBAwsLCiIyMRC6XY7PZhPyfhPr6+kEd5b4rxsr8Zw78/PxOmCN9ph3ndF3LuYaxIJX+5Pu+kDrdExIShByV9H+LxcL+/fsxmUzExcURHBxMYmIiHo8HnU4nPL4BAgMDcbvdGI3GfjqMQ6GyshKNRoPL5eL5559n9erVQK/ry8MPP0x3dzcVFRUUFhZ6lVVoaWnBYDCMuJ3EUx0JHo8Hl8vFJZdcQmxsLH/84x8pLy/n2muvZfLkydx+++2MHz9emBmMhO7u7uMcse666y7y8vJYuXIlW7duJS4uTkxsQUFB+Pn5kZubS1dXF3K5nLq6OpFZTUxMZMqUKVgsln4i7larlcLCQurq6oiMjCQiIoKEhARBy5AydcM9CycLYw44J4aamhrOO+88/Pz8mDlzJtu2baO7uxuXy4XT6SQrK4uEhAQCAgJoa2tDpVKh0+lwuVx0dHSQmZmJ2+3G7XaLRrz169fjcDgYP34877//PpGRkaIRqC/27t3Ln//8Z/bu3YtCoeChhx5i8uTJ5OXl9duurKzsOMOBwdDR0eFVRcNqtRIRETHidl1dXSM6y82bN4+NGzfy1ltv8cQTTwy7rdvtFrqmdrtdLAjsdjt5eXkUFxfjdDoJCAjAbrfj6+uL0WjE5XIhk8mIiIjg/PPPJzAwkLi4OFpbWwkLCyMhIUHo15pMJmQyGSkpKTgcDjwejzBDiI6OZteuXUKFQbKdlt5Fj8fj1Xg6hjGM4ezFORmkehsgDDUASqUnrVaL3W4nPDycCRMm0NLSIiZGq9UqSlXBwcEoFAqUSqVXg6pCocBut/Pggw9y6NAhZDIZd91113H8U4/H41VGoKyszKtsbkdHx6B2p4NtJ9k+zpgxgw8++IA33niDlStXcujQIe644w5yc3O5/vrr+wX3Q2GoyebFF1+ksrKSAwcOsGLFCq644gqCgoKEd7hcLqepqYmmpiYh6C/5sB87dozAwEBiY2PR6/WiwaampkaUGqVGq/T09LFO4DMYBoNBaKjGxcVRV1dHdHQ0MpmM6dOnExERwcaNG4WElMViwc/PT1BCysrKqK+vR61WExgYSFpaGgcOHGDnzp0cPnwYgIsuuojXXnttSMpKe3s7v/3tbykoKECpVPLnP/95SEOO9vZ2rxeP3jQwefteSmPScPjRj37Exo0b+eyzz0ak6PT09IisaHV1NR6PB6VSSVdXF0ajEbvdLmgYMTExxMTEiKZMvV5Pamoq8+bNQ6PRUFtbi0qlQiaTicz4zp07KSsro6enh7S0NKKiosSiUrqOqVOn0tLSQlxc3NjC7n8QPT09FBYWAr16wKdq0XE6jnO6ruVcwzl3Fy0WC83NzYKUfyLQarWiYSAmJob6+nrKysoIDQ1FpVJRX19PU1MTra2twOjL/SUlJVx//fUcOnQIf39/nnvuOW699dYzdpAODg7mgQceYPXq1Vx11VXI5XJ27tzJnXfeyS9/+cvjmpy8hVqt5r333iM6Ohqz2czWrVsJDg4WE1lTUxOhoaEEBASg1+tF4NrR0UFeXh4dHR3U1taiVCoxmUy43W5cLpcIVKxWK06nUwj+j+HMRE1NjcjkJSYmMmnSJCFRZDKZOHToEEFBQZjNZiorK6mqqiIwMBCVSkVlZSXNzc34+/tjNpuF61F1dbUIUG+99Vb+9a9/DRmwNTc3s2TJEgoKCvD39+eZZ5456Y5xpwtTp04lLi6Orq4uPv30U68/J+mPRkREEBQUhEKhwGazERMTQ2ZmJmq1mri4OG644QYuuugiLrnkEq666ioyMjLQaDQkJycDvXzUvmNvR0cHPj4+wtQjLy9PdPnr9XqysrKYO3eu0EEde1f/t2Cz2cjJySEnJ0eo4Zytxzld13Ku4ZwMUiUC/olCGkATExOx2+2YzWbWrVtHdXU1R48e5dixYxQXFwth7eDgYK/3vWbNGn7961/T2NhIQkIC7777LnPnzj3hcz2diIyM5OGHH2bVqlVccsklyGQy1q9fz+LFi7nvvvu8ohwMts/3338ftVpNZWUlhw4dIiwsDB8fH+RyOZ2dnSQkJBAbG0tubi7Tpk0jMjKSiRMnEhcXx+TJkwkICCAsLAy5XE5mZiZpaWkiu+rn53fKsqiSOLk3lIdzBcMtEo1G46CBSFxcHCqVqp8bVXd3N1arVXTlGwwGfH190Wg0dHZ2Cs/5vtn0qKgoLBYLzz33HPn5+YJT+sQTT4jtB6K6uprFixdz9OhRQkJCeOGFFxg/fvxJviunDzKZjMsvvxyAf/3rX15/TuKjJiYmotPp8PX1JTAwkK6uLjo6OoSrV2JiIpdffjmzZs3CarUKm1QpI3vw4EHeeOMNNm7cKKgYYWFhxMfH09jYyPbt23nllVfYv39/v+P3VXgYwxjGcO7gnCv3n2hn54EDBzh8+DDx8fHk5uai0WgwGAw4HA7RcFFeXk5lZaWwW5R0Ewfzqx4Ij8fDX//6V/75z38CMGfOHP7yl78Id6WzCXFxcfz5z3/m6quv5qOPPmL9+vV89tlnrF27lquvvpoHH3zQK+6rhEmTJvHKK69w8803s2HDBlJTU0lLS8PtdhMeHs6MGTNwOByiccbj8QwadEjZN4mbKk2sxcXFWCyWQT3jvwvGtFePx3DyP30DEamjX/q3tFAzGAxs2LCB1tZW5s6dS2xsLEePHiU+Pp7Ozk4CAgKYMGECbW1tyOVyfH190el0BAQEkJeXxwcffEBraysajYYVK1Zw2WWX0dbWNui5lpSUcNVVV9HQ0EB8fDyPPvro/4RL2eLFi3nttdfYv38/R48e7ddkOBRKS0uB3ka0zs5OZDIZTqeTzMxMoqOjMZlM2Gw2QV+wWq1CF/qDDz5gz549ZGZmolQqkclkFBcXM2nSJLKzszGZTJSUlGA2m2lsbBRZ02nTponj6/V6Dh06hN1u76elOhz6NkgOfNbGtFLHMIazA+dkkHoig1JhYSEtLS3YbDZ0Oh02m43Gxkbi4+NFVk4qKzY3N5OTk4PT6QS8y6SWl5eLAPW6667jvvvuGzK7c6JoaGjg0KFDHD58mIqKCrRaLUFBQQQHBxMcHIxMJqOqqoqQkBCCg4PF3ycqp5GQkMDLL7/M0aNHee6559iyZQsfffQRe/fu5c033xxVUHjFFVewdOlS/vrXv/L6669z9913k5OTQ3h4OI2NjQQFBfH1119z+PBhoqOjueiii0SzVF5eHmVlZYwfP57c3FwKCwtxOBxs376dw4cPo1AoCAsL45JLLjmpgaq0IIIx7VUJ3kpNwX+D1qKiIvHzmpoaampq6O7upqqqitmzZ5OTk8OePXtIS0tj1qxZhIWF8c033+Dr64uvry8dHR18+eWXbNy4kdbWViIjI1m9evWQeqPQW4b+6U9/SkNDAxkZGXz88ccnLC1VXV1NXl4eKpWKoKAgAgMDCQoKwm634/F4TjuNR6fTcckll7BmzRpWr17tVZAqXXt+fj4qlYof/OAHTJo0CaVSKehOEkc/OjoarVaLTqdDo9Gwb98+WltbOXToEIsWLcLtdpOenk5MTAw2m62ftvSsWbNwOBxC77RvoCk1o0m0j6EgLW6gV4lksOdtTCt1DGM4O3DOBamjhcFgoLa2lqCgIBwOB/Hx8YJrCr28ydTUVOLj49myZQsej4e4uDgiIyNFB6s3TQ+xsbGoVCrsdjsXXHDBSQlQ3W43hYWFrF+/nvLycpqamvr9XuLoVVVViZ9t2bKl3zYKhYIFCxbw4x//+ISzujk5ObzxxhscOHCA+++/n6qqKq655hpeffXVftmSkfDb3/6WoqIi1qxZw9tvv83HH39McnIyPT09OBwOSktLqayspKamhoCAAHJzc/Hz8+Pbb7/F4XDgdDrJzc0VTVTS95Ofn09KSgorVqzg6quv9koQ3BtISgFGo5Fjx45RXV3NtGnTTtr+z0YMt0jsKzUl/d9oNNLV1SUyrHFxcaSkpNDR0dHP7SwjI4P29nZqamqwWq2oVCo6Ojo4duwYR44c4dtvv6Wnp4fJkyfz8ccfEx8fP+Q5ejwe7rnnHiorK4mLi+Ozzz4jNDR0VEFqT08PeXl5rFu3blgrYl9fX4KDg0XgGh4ezpIlSwgLC/P6WCeCOXPmsGbNGvLz873aPioqCugNAJubm2loaMBkMqHT6ZDL5bS2ttLd3U1QUBDl5eWEhYWh0+mIj4/nvPPOY9OmTSQmJjJu3DgxXlqtVsrKysjLy8PpdAqx/4yMDGw2m+CvKpVKLBYLcXFxooFuKBQUFPDNN98QGRkpHOccDsdxwaiUrW1tbSUtLY2kpKTvdkPHMIYxnBL8zwep37WsU1tbK9xqLrvsMuC/gWtqairh4eF0dXVRXV2Nw+FApVLhdrtpaGgQmdSYmJgRj6NSqZg9ezbffPMN33777bBZnuFgsVg4dOgQ+/bt48CBA4IXC72ONRkZGUyePJmsrCycTift7e0iWK2rqxNuVNLPuru7+eqrr9i+fTvXXnstixYtOqHzgt6mjZUrV3L77beTl5fHDTfcwNNPPz2kaPpA+Pj48NZbbzFr1ixKS0t55JFHWLduHQ6HA39/f1JTUyksLESlUpGfn09paSmpqalERUVhMBgICAgQZf7MzEzsdjvd3d2Eh4dTXl5OYGAg5eXlgwaR27dvF9qSU6dOHdL9ZjBnHK1WS3V1NW63m7KysnM6SB0Jfe+fFLT2LftXVVXh5+fHlClTiIuLw2q1otPpxALM6XRSW1tLVFQU33zzjbAQBbjhhht46aWXRpSHevfdd1mzZg0KhYI33nhjVBaiNpuNXbt2sWvXLhoaGoBeHuikSZPw8fGho6OD9vZ22tvbcTgcuFyufpk/gG+//ZZHHnnEq3HjRCFlT4cLoPtCsku22WzEx8dTXV2N3W4X15aRkYHL5aKuro6mpiYUCgX19fWEhYXxk5/8hJ///OeYTCY6OzuFo1RnZyc7duwQ2WRfX18OHjzIwYMHiY+PJyUlBehdKEvPw1AZVEkBoqioCLlcTmNjI/PnzwcYNGOq1WpFc0tNTc1YkDqGMZyhOCeC1O9S1omNjaW2tpbY2Fjxs76i05J7Sn19vdA8NBqNHDx4EOjNBklyTSPhvPPOE0HqHXfcMepz3b59O88//zzd3d3iZwEBASQnJzN37lxycnKGnaBramr6Zad6eno4evQo7777LlVVVbz99tusX7+ea6+9dtRC4BLCwsL497//zQMPPMD69eu59957+dWvfsVjjz3mVdkzKCiIjz/+mNmzZ7N7924effRRnnnmGUwmE7NmzRLyX19//TUOh4OKigouueQSpk+fTmNjo+AQ5+XlkZ+fT2pqKuPHj6e0tBSz2Twk51BSC8jLyyMjI2NIrulgPFSNRsO0adOEr/gYhsZg969vhnXFihW0tLSQl5dHamoqdXV1ovlNqVTS0tJCTk4OTU1NvPHGG9TU1KBQKHjmmWe44447RnzGysvLeeSRRwBYtmyZ15l+o9HIp59+ymeffSa4mGq1mvPPP58LL7xw0Oa8oqIiwsPDMZvNInBdt24dtbW1LFu2jIcfflh0xZ9sZGdnA72C+a2trSPqtUpBqlarJTMzE4PBQH19PampqcLRTXKO6ujoYOPGjVx44YVER0cLRQ6JAy59ryaTiXHjxnHkyBFxn6urq/Hx8cHX15eMjAyCgoIGpcgYjUahApCYmEhNTQ02mw2lUklERAQpKSno9fp+i56B8CYzO4YxjOH7xf98kHoijVLNzc0ic5OYmEh4eDgWiwWDwUBLSwtqtVqUkrRaLcXFxTQ3N6NUKklMTCQoKIj//Oc/AKMaAM877zwAjhw5QldX16hsRjs6Onjttdfo7u4mJiaGGTNmMH36dNLT04Vr02jh4+PDhAkTePrpp9m0aRMffvgh9fX1PPfcc3z77bfcd999J5SBUKvVvPjiizz99NO88cYbvPjii7S0tPDcc8/h5+c34udzcnJYvnw5119/Pc8//zwJCQmkp6dTVFREaGgoNpsNl8tFT08Pvr6+fPXVV0ycOJGcnBwxWa5du5auri4KCgoYN24cdrud7OzsIbOcEydOFJnU4Z6poX7nra/4uY6+92+wrHRgYCD19fV0dHRQUFDA0aNHCQgIIDo6mosvvpiIiAj279/PL37xC9rb24mMjOTDDz9k9uzZIx67u7ubu+66C6vVyty5c7nzzjtH/ExhYSEff/wxW7Zswe12AxAaGsrixYuZP3/+sItCPz8/wsPDCQ8PFz+bMWMGTzzxBBUVFfzpT3/i97///UmxVR6IgIAAEhMTMRgMHD16lHnz5g27fWpqKtDLTW1ra0OtVnPxxRfjdrtJSEgQNKjOzk4OHjyITCZjy5YtqNVqWlpayMrKEi5ekoScRLmYPHkycrkcq9WKXq/HbDaTnJw8rOqG0Wikvb2drq4u9Hq9CDjnzZvXb6yTguLBFidJSUljGdTvGb6+vjzwwAPi32fzcU7XtZxrOCeC1IEBQ1/3oP3791NQUEBWVpZYzUsNGyaTibCwMJHdqa+vx+l0isFUrVajVqspKSnh6NGjqFQqgoOD6e7uFjzU6Oho0eUvuSMNBb1eT0JCAlVVVXz11VfCS34olJaWCg3SjRs3igH7xz/+MT4+PrS2trJ7925aW1tF6XE4WK1Wjhw5MuTvL7jgAgoKCigtLWXXrl3s2bOHH/zgByxcuHDQbIePjw/Nzc1D7u/888/H7Xbzzjvv8P7771NaWso//vGPYdUQpAloyZIl3HXXXfzzn//kd7/7Heeddx5Tp04V5V+FQiHKqT4+PjQ1NTFjxgxR4ps6dSrFxcWkpqZiMBiw2+0YDAbhaiPdD2lCnTt3LnPnzuXzzz/nySefZMaMGYL+IW3bt0w9GPqWrb2VvTpTtXFhdC5cI11Hc3Oz6BC32WzExsbS0tJCfX090dHRqNVq8vLy8PX1Zdq0abjdbo4dOyakxSIjI2lra+Pjjz/m3XffxePxMGPGDFasWEFUVJRwFRsMFRUVyOVy3n77bfbv349Wq+XBBx88znZ47969/aoUW7duZdu2beL/CQkJzJgxQ7jFbdq0adhrVqlUwsWpL+bPn4/NZqOhoYHHHnuMyy67TLgwDQen0+nVIs/Hx4fw8HDS09MxGAzs379/UBtYj8cj3uu4uDjkcjlOpxObzYZer0culws3vf3799PR0YFcLicsLAyHw4FOp6OiokIEk+PGjaOtrQ0/Pz/kcjmhoaGEhYVRW1sraAfJyckkJSXh7++Px+PBZDKJd6YvT1ev12Oz2VCr1Wi12n5OVgUFBcdtfya/R+cy/Pz8+Nvf/vY/cZzTdS3nGv7ng9SRUFBQIDJqUpAq8eCsViu7du0SWn7R0dG0tLT0W51bLBYqKytpaGjAz8+PhoYGgoODRVNOfHy8CEwjIiJGbIhatGgRy5cvp7CwkGuuuWbYbW02G4GBgRiNRmHNuHDhwuPoBSaTyauy4ebNm0cs++l0OubMmYPRaKSwsJCdO3dy6NAhFixYwIwZM4QeIiCcYobDRRddRGhoKP/85z/Zt28fN954I8uXL+9Hr5Dgdrv7TTZPPPEEdXV1rFmzhl27duF2u5k1axatra0cO3aMkJAQHA4HCoWC9PR00cSSnZ3NjTfeyPz582lpaeHbb7/F6XSSk5PTb/9btmzh6NGjjB8/nksuuQTo5QuazWa+/fZbEaQajUaKiooIDg4mMjJyyA7+gRJLY/gvJDvN4uJiwsPDOXDgAHV1dSiVStRqNY2NjeJn06dPJyYmhvT0dHp6eoRm6l//+lexyLr99tt5/PHHvaqgyOVyysvLef311wFYunTpoM+tyWQSzYOFhYUiQM3OzmbmzJnCkvTLL7/0qvHJYrH0o9dIkMlkLFy4kG+++Yba2lrWrFkjAuDh0NbW5pV9quRMNX78eNavX09paemg90kyx4De6kdSUhJlZWW0trbidDppaGggJCQEtVqNn58ffn5+yGQywsLCCAkJYerUqRw8eJC8vDz8/f3R6XSMGzeOyMhIrFYrQUFBOJ1OCgsL2bdvHxqNhtmzZ+Pv749Wq0Umk4mMaWtrqzhHaTE4ZcoU8b5KnFS73U5YWNjYOzaGMfyP4HsR8y8pKWHZsmXcfPPN/Otf/xo2ezcUHA4HHR0d/f6cCLKysvD39+9XipWcTux2OzabjYKCAjZs2MDmzZtpbGykoqKC6upqDAYDK1asENm72bNni05dKXM5WLA1HBYsWADArl27vMpUeTweNm7ciMfjIT09/aRrfQ4GrVbLTTfdxK233kpERARWq5XPPvuMJ598kvXr1w/qez4cJk6cyPvvv09ERAQVFRVce+21x/mhDwa5XM6bb77J/Pnz6erq4vDhw/T09KBWq8nMzMTPzw+dTseUKVOEy5DFYqGoqEgI7JtMJmJiYpgyZQqZmZlYLBbRVVxWVobNZhONN9Bbjg0ODu4XMBiNRuRyOWazedigSOJNjjR5GgwGtm/ffkLmB6PFyXqPviv0ej1+fn6kp6cDvfQVf39/HA4HISEhREZGikxhZ2cnOp2OiIgIurq62Lp1K88++yxHjhxBqVTy+uuv88ILL3iVVYTee/DII4/Q3d3N+eefz6WXXjrs9s3NzXzxxRdA7/Nw+eWXiwD1ZEGhUHDBBReQlJRET08Pzz//PFu3bj2px5B4qaNtnqqsrMRisdDU1NTvGdVqtURERJCbm8vUqVOF1al0b1wuFw6Hg+LiYr755ht27dqF1WoVltFqtZqoqCgR4BuNRjQaDW63m6CgINEE293djcFgoLCwUDScSQGq3W4XtIsxE40zHz09PRgMBgwGg1fVgjP5OKfrWs41nPZMakFBAbm5ucyaNQvolRXKzs7mhhtu4Oabb/Z6P08++SR/+tOfvvP5TJs2bcjmiJiYGOrq6mhvbxcPXlVVFePGjROB2P79+9Hr9eTm5rJ48WJqampEiUrax2ggySY1NTVRXl4+YqONJLskl8s5//zzR3Ws74rU1FR+/etfs2/fPr755hs6OjrYvHkzW7duJSsri/HjxzN58mSvSm0ZGRl89NFH3HnnnRQUFHDjjTfyz3/+k9zc3GE/p1Qq+eCDD1i8eDGHDh3ilVde4c477xTdwZJNanp6OrNnz2bbtm0kJiZSXFwsMp7SBNlX8qa6uprAwEDa2trEZA5w2WWX9SvzAyLo1Ov1w+qgelvml5pATkfX8cl6j74rwsPDRXBiMplEhSA+Ph6TyYRWq+Xaa68VJfTW1laUSiWlpaVUVVVht9uJj4/nP//5z6iVMV577TXKysrQ6XQ8/PDDwz6vNpuNlStX4nK5SExMPKXvnFwuZ/78+SiVSoqKinjttdew2WxcdNFFJ2X/0nNdXFyMy+UakUc3adIk1q1bx549e/Dz8xMLQp1OJyowLpcLu91OVFQU9fX1hIaGkp6ejsvlQqvVolQqOXbsGA0NDaKRMSgoiAULFtDe3s4333zDhg0bUCqVZGZmEh8fT3p6ej+VFsmSVS6Xi4ypxEmVGrnGTDTODthsNjHGdXV1nTLN2tNxnNN1LecaTmsm1eVy8dRTT3HNNdewbt06vvzySz7//HOSk5P529/+xquvvur1vn7/+9+LjlhJH/FkIyEhgdzcXLKysggNDUWv1zN9+nR8fHyIi4vD6XQKL+u4uDhBBXC5XMLFZrSdo2q1WkyyO3fuHHZbt9stJu0ZM2aMysXpZEEulzNr1iyWLl3Kz372M6FbevToUT744AMeeOABNm7c2I/LNxQiIiJYsWIF8+fPx+FwCK3KkRAQEMCqVatISUnBbDbz9ttvExsbS1paGqmpqaSkpJCens7555/Pz3/+c2bMmEFbWxvV1dUcPHgQq9UqpHOgN4tltVpFEDIYX68vpMz7ySovxsXFCS/0U43T8R6NFlLH9vz58wkJCcFqtYoO9JycHKKjo2loaGDHjh3s3bsXk8nE1KlT2bVr16gD1O3bt/Pee+8B8MgjjwxLd+np6WHNmjWYzWaCgoK44oor8PE5tUOoj48Pc+fOFXSTf/3rX3z66acnZd/x8fH4+/vjdDr7VQuGwq233opCoaC5uRmz2SyC05iYGDE5NzY2Ul9fj9lsprW1VUhLyeVyamtr2bBhg5DmUygUtLa2EhAQwMSJE0UfwJEjR6ivrycvL09kRaUAF3rfN2nxUl5ejsFgIDExkblz55KYmCgC2bEgYQxjOPtxWoNUhUKBwWAQ1ngA06dP54EHHuC8887jjTfe4LPPPvNqX0qlksDAwH5/ThYGeq6HhYVx+eWXc/XVV7N48WKuuOIK0WDT3t5OSkoKMTExIhBTqVQ4HA6AExoopczuSELblZWVtLW1odVqvepePpWQy+WMHz+e//u//+Oee+5h5syZ+Pr6Ultby+uvv859993H9u3bRyyDaLVaXnzxRSZNmkRnZyf333+/aDwbDnq9njVr1hAdHU1jYyPLli0TDR4TJkwQGZWwsDDCw8OJjo6mqKgIg8HA5s2bhWaslO2Mj48nMDBwyOzowGfkZKLvhDtaWCwWmpubhdPVSDiV79GJoG+zmkajITQ0lICAAORyOSaTCYfDQWdnJ263m+XLl9PR0cGcOXP46quvRr1I2L59Oz/60Y/weDxcfvnlQl1jMHg8HrZt20ZFRQUKhYJrrrnmtGXpZDIZP/vZzwRH/eOPPx5xAesNfHx8BL3CmyA1Li6Oq6++GkBQWzo7O2lubkYul6PX62lra6Ozs5P29nb8/PxwOp00NzfT2dlJaWkpHo8HlUrFDTfcwOzZs4mKihLfm5RNHz9+PNHR0UycOBG5XC6aX/sGnhaLRcjGDVxYaTQaLBYLBw4cOC2UmTGMYQynDqctSJX4lRMmTMBoNPbzy05PT+eOO+4gNDSUTz75pN/2pxpGo5GCgoJ+YtoS70kKQDQaDQqFop84u0ajoaysDB8fH+rr67FarVRVVdHa2oparWb8+PFAbxPFaCFlGkaSoJJ4rxkZGSLLcCYgMjKSK6+8kl/+8pfceOONBAcH09TUxEsvvcRvf/tbamtrh/28n58fzz//PEFBQRQUFPDKK694ddz4+HhWr15NUFAQdXV1PP300/04btD7XYaFhREWFib4tDabjeLiYqBXp/HAgQNArwJAZmbmoMFIXz3PMwlnwnn1DeClf3t7Plartd+7Z7Va8fPzE893aGgoM2fO5IsvvqCzs5PMzEw+//zzUQfXq1evZsmSJXR0dDBp0iQefPDBYbd/6623BHd+yZIlXjUonUzIZDKuuuoqrrjiCgDeeOONE7Zp7QupyVLKWI6EhQsXAr10i7a2NlQqlejYt9vtaDQafHx8qK6uxmg04uvrS25uLqmpqeTm5hIXFycW+KmpqVx00UXi/9nZ2dx0000sXbqU22+/nalTpwqpP41G02/BWFtbS0BAAB0dHTQ2NvLyyy+zfft2cZ4SR/VMqAyMoT+kCtbBgwc5fPiw+Pnhw4fFzwsLC7+/ExzDGYXTEqRKjiIymYz58+fz+eefs3Llyn6B6Pjx47ntttt47733qKysPG2SIX07riVYLBaOHDkiGm0kWSFpFW8wGPjqq6+w2+2YzWaRQaisrGTdunVUVFSIsuOqVatGfU6SMsBImaHGxkZg9M1ZpwtKpZLFixfz/PPPc91116HVaqmpqeHpp58eMWiJiIhg2bJlQC9n0NvmuszMTP7973/j6+tLfn6+CD5MJhNFRUXi3mo0GhISEsjIyKCzs5Ouri52797N559/ztq1a3n33XdFsDoYRiopDpdpHWxhdLJwJpQ6+wbKgwXNQ2V7TSYTJSUlVFRUiP8XFhaK72Pnzp20tLSwfft2tmzZgo+PD6+//vqoM5pvvvkm119/PQ6Hg8suu4wXXnhh2Pv12Wef8dJLLwFw4YUXDtqRf7pwzTXXkJ2djcPh4NVXX/3ODRrS5721YZYW33V1dchkMkwmE4mJidhsNqFLLGnDejwe/Pz8uPzyy7nuuuu48sormTp1KoWFhezatYtDhw71ex/7JgIGBqUD35nY2FgSExNZvHgxzc3NdHR09Ks8xcXFoVKpxoT6zzBUV1eTmZnJ1KlTmTp1KnPmzBG/mzNnjvj59ddfLxIKYzi3cUqD1K6uLrq7u5HJZGIw/NGPfsQDDzzAr371K95//31RFofelbVUfjpdGKzj2mq1IpfLsVgsxwUZUhmppqYGjUbDBRdcIHyty8rKqK+vZ+vWrSQkJKBQKDhy5IjQMvUW0sDdV+R7IOx2+wk3Z3kDt9tNY2MjJSUl1NfXD6szORJUKhVXXHEF//jHP9Dr9SKrOtIEu3jxYiEYvnTpUq/PYf78+SxfvhyATz75hEcffZS33nqLVatWsW7dOg4dOoTVamX8+PFERUWh0+mwWCx0dXWhUCgoLy9HJpNRVFQ05DEGTqISpOC0ubl5yIzmYAujkwWtVkt4ePj3GqT2DZSNRiP79u0btFIxWJDa0dFBa2srVqtVOBiVlZUhl8s5dOgQZWVl/OUvfwHgvvvuY/r06V6fl8fj4cknn+RXv/oVPT093HLLLbz33nvDOsLt2LGDxx57DIApU6Z47UB1quDj48Odd96JWq2mvLz8hCo1fSG9g94mBTIyMvDx8RFWxMnJyeTk5BAWFkZjYyPV1dXIZDKsVqvIiB0+fJj8/HzBN5XJZBQXF6NUKjl69CiFhYVCe3qo59ZoNOJ0OsVzlJiYSG5uLomJiUyYMIHAwMB+3PHvQpkZw6mDyWTCarXy73//mwMHDrBjxw7xux07dnDgwAHxp7CwUBg+jOHcxSnr7i8sLOTee+/lpptu4pprrsHX15fu7m4UCgWPPfYYdrudG2+8kcrKShYtWkR6ejrvvfceTqdTaBGeDgzWcS3Z6Q3lze7v74+/vz9BQUHYbDbsdjuBgYEolUqRHY6OjiY9PZ1jx46xatUqfv/733t9TtJAPFyQWlhYSE9PD1qt9qQ60jgcDhobG2lqahIlwJaWFmFBqNPpkMvlIjs+GgQFBXHfffexbNkyDh48yKeffio4bkNh2bJl7N+/n4qKCp5//nlefvllr4514403UlVVxaOPPspf/vIXFixYQEBAAFVVVdTW1qLX61m0aBExMTHCRxx6qRYSNzEjIwOj0ShMHaTnxGg0cvjwYdHFLAWser1eBGDAkBlNSYf3f1XHsa/1ZW1tLXa7ndraWtFNPpQrV1hYGPX19fj7+9PS0oLBYKCtrY3MzExaWlqIiIjgvffeo6uri4yMDGFf6g26u7u5//77+2mhLlu2bNhn+NixY/z2t7/F7XazePHiM8adSKfTcf311/P666/z0UcfMWXKFLFQHi2kINXbBjC1Wk1qairFxcU0NTURERFBZWUlkydPpqenh5CQEGw2Gx6PB7vdTkdHByUlJSQlJVFbWytoGRdddBHBwcHYbDbRMCW9D9XV1WJhr9PpiI+PH/adkYw2xnD2IDMzkylTpvRbqE6aNGms2W0Mx+GUBKkGg4GrrrqK8vJyOjs7USqVXHbZZfj6+tLT04OPjw9PP/000dHRvP766/zjH/8gLi6OpqYm1q1bd8pT/CPxXSXOohSI9d1eo9GQnp5Oeno6LS0tGI1Genp66OrqIiUlhYiICHx9fTGZTCQkJIggdenSpVgsFq/KalKXucPhoLy8fNBtNm/eDPR2th89enTY/ZnNZnbv3j3sNl1dXdTW1vYbNORyORqNBqfTicPhEBzD2tpa9u3bh06nIyQkBH9//0En+5SUlEF1N+fMmcPmzZv56KOP6OrqYtq0acPaR/7iF7/gySefZMWKFVx88cXMnDlz2Gvp6ekhMjKS+++/n7KyMv7973+zc+dOrrzySnQ6HVarVTgW6XQ6/Pz8CA0NJTo6GqvVKrLgoaGhlJSU4HK5MBqN/fQb6+rq6OnpoaOjg+zsbIxGI6GhoUCvqLoUtEoi43FxcSKrMxrHqbMd0v3WaDQ0NzeLhZ9Go8FoNHLw4EEA8T7ZbDa0Wi0+Pj7IZDIcDgdxcXH4+Phw4MABSkpK8PHx4YUXXsDtdg9LGykuLhZyRQ899BA7duxAJpNx//33c80111BQUAD0mjYMREtLCy+//DI2m03wKbdv3+5Vo5zNZqOqqmrE7fz9/b3SKI2Lizvu/VUqlcTGxlJbW8szzzzDVVddRUBAgFdWyr6+vqIMLvHfpYCyL3p6egZNGGRnZ1NcXExnZydqtZqysjLKy8sJDAwkJCQEl8tFQ0MDTqcTX19fdDodtbW1aLVasrOzcbvdxMXFodFoRMYcEJJRkjpAc3OzoBJMmTJFvH/SeCzNJd5gzHHqzIRCoeCuu+4S/z6bj3O6ruVcw0m/k93d3axcuZK0tDTef/99li5dyhNPPAEgAlW3241cLueee+5h8eLF1NXV4XQ6yc7OPiWl64EYzYAlZd4kDpTUaWo0GqmtrUUul6NUKvHx8RGSLM3NzVRVVaFUKpHL5eTn52MwGIiIiBjx2G63W2iwpqWlDRmwS12r0dHRBAcHD7vPXbt2Dcrb83g82Gw2Ojs7xWQFvROgv78/KpVKnK/b7RbmBna7HYfDQUNDw7B2qxaLZVCd07S0NBobGyksLGTTpk2Eh4cPawE7b948Dh48yPr16/ntb3/L119/PexkLFFMZDIZL730EvX19XzzzTd89tlnXH311YSGhlJaWorJZMLlcgnNXl9fX4KCgjCbzYSFhYmMkNvtJioqStwLvV5PTEwMdrud6Oho/Pz80Ov1woFMCp70en2/Bo6+pcf/hUnTm2vIysoiISEBi8VCR0cHRqNRNMMYjUaxILPZbBQVFeHj40NbWxthYWEUFRUREhJCS0sLhYWFfPPNNwDcfffd4jsbDt3d3bS1tXHfffdRVFSEUqnkscce44c//GG/hafRaOz3DlksFt544w26urqIioriuuuuw+PxUFRU5FWmR1KJkCA9QwMnrtbWVmGfPBwk3udAXHTRRbzzzjvU19dTVFTEtGnTvBo/e3p6RPVFCvICAgKOq8gMds7Q2/z6ySefUF9fT2FhIR6PB6VSyYIFC3A4HFRVVXHs2DFSU1OJjIzE399fWKp2dnbS2NhIZ2cnCQkJ4ro6OjqoqqoiMTERPz8/cQ+ld3IwzVNpITOGsxdKpdLr6tiZeJyBDV633nor0N8gIywsbIy28B1w0oNUSVQ+ISGByZMns3btWhYvXiwC1UsvvRQ/Pz8RqKamppKamnqyT+Okoba2FpvNRm1trWjkkDq+tVotOp0OjUYjsgEqlYrIyEhCQ0OxWq3ExMRQXV3NqlWrxCprODQ3N4sMwVC6px6PR2SBTiQjJ2V+u7q6+nX1+vr6EhISMqhTT18pmJG6871Bbm4uLS0tNDc3s3btWi6//PJhuYG33XYbhw4doqamhj/96U9eeyT7+vry/vvvc/XVV7Nz505WrVrFkiVL8Pf3p7u7WwQrwcHB1NfXA4iyrtVqJTg4uB+/Umqik7qc+2KwDL0kMv6/1sBRWVkprmu4MriUOdVqtUJ+Tgo49Ho9dXV1ogFR4gNPmTKF2tpaFAoFXV1dolnKbreTkZHhNXWmqqqKBx98kIaGBoKCgnjmmWdG1Lw1m8288847tLS0EBISwk033eS1cobH46G7uxuHw0Fzc7NwQHI4HHg8HgICAoiKihr2OR8NgoODmTdvHt988w1bt249oXF0tJxU+K8JQEdHBxqNBofDgc1mo6mpSUhOhYWF0dHRgU6nEyX97Oxs0TR35MgRsdCXEBUVhcViQa1WC0WQ5ORkIiMjx8rAYzijEBYWhkaj4frrrx9xW41GM8av/Q446Y1TMpmMiRMn8qMf/QjoDRLWrFmDTqfjiSeeYO3atXR3dyOXy73WRP0+ERsbi1qtJjY2lsOHD9PY2Mjhw4f7NVzp9XoRxEFvZ/rVV1/NTTfdJBxpVq5c6dXxpI59ifs51DaSULZUYvYWTqeTpqYm2tvbcbvd+Pj4EBgYSHR0tPDgPh2Qy+UsXLgQlUqF0WjkpZdeGpaGodVqueeeewD44IMPhImBNwgICOCTTz5hzpw5dHR0sGbNGurq6jAajchkMpRKJVVVVZSXl1NWVobZbMZkMpGfn09DQ4PQXezb7DOYzFJVVRUmkwm5XC74xP+rDRx9XbG8hUaj6fee6PV61Go1ra2tQO8CLyUlBZvNhslkorm5mbKyMvbu3UtTU5Po5vcmyNu5cyd33nknDQ0NxMXF8eabb44YoDY2NvLqq69iNBoJCgri5ptvHpYf39PTQ1tbG/X19VRWVlJUVERxcTGtra00NjZiNpux2+3iue7s7KSkpIS6ujqvzC28weTJk4mJicHlcvHVV1+NWrpvtJxUgJycHKCXEmGxWAgODub888+no6MDX19fkXiQFE7CwsJISkoiLi5OUCGcTidOp5OKigqcTieNjY3s3r1b3L99+/ZhsVior6/v16A4lGXwqdQtHsOpg8fjwWg0YjQaT6ns5Mk+Tnx8PIWFhf0avfbv38/GjRvZuHEj+/fv58CBA/z73//GarWKZugxjB6nhDjRN7hyu92o1WpWr17NFVdcwRNPPEF3d7cov06fPv2ESf+nA4mJiSLASEhIwGazCY1EqWxpsVhEw0BycrIoVbrdbubPn8+KFSs4dOgQlZWVJCcnD3s8KZs3HC9X4qAGBwd7LR0DvWXMtrY2PB4PcrmcoKAgNBrNKSuZ9VVuGAz+/v4sWLCAtWvXsmnTJjIyMob1TR8/fjy/+MUveOONN3jwwQfZtGmT1y5b/v7+fPLJJ1xzzTVs27aNzZs3s3jxYgwGA76+viLjJ+k9HjlyRAxmarWaoqIikUWXJMoiIiJEFrG7u1vw7oD/eTtGbzLEfa0sJbvZvjJD0Kv1a7PZ0Gg0olGtrq6O2NhYmpqaCA4OFrzVe++9l1mzZtHV1TXsua1Zs4Zbb70Vp9NJTk4OzzzzzIjPSXV1Ne+++y52u53w8HBuvvnmYRsSPR4PVVVVg3Ji5XK5oMtIfzweDw0NDXR2dtLS0oLZbB6RpuMNZDIZixYt4t1336WyspKvv/6aCy+80OvPn0iQmpiYiL+/P11dXXg8HvR6PWFhYTgcDnx8fAgNDUWpVApuuJ+fH2FhYYK2ERYWhkwmIz4+HpvNhtvtpr29HX9/fwwGA3FxcaSnp2Oz2UhJSenH6+67OEpISBDn1HcR+b/+7v0vwWq1igX9qbQSPRXHiY+P75cdtVgsgoY2Zot68nDK2b1yuZzu7m40Gg2fffYZV1xxBddffz2+vr5s27btjApQ9+/fz969e9Hr9SJb0LfJJTc3l0mTJh3Hr5PKwlLzj9Vqpa2tDYPBgNPpJD09nYKCAr7++mtuv/32Yc9B4qMOF3xKIt6jyXp6PB4RoCqVSkJDQ0cV4J4IpKzwcIiJiSE3N5cdO3bw1ltvsWjRomE9xJcuXcqWLVsoKytj+fLlLF261Ovz0Wq1rFq1imuuuYatW7eydu1aMjIyWL9+PRMnTmTBggX4+vpiNpvx8fGhpqaG8PBwMbm63W7q6+ux2WxAb4Ob9JxYLBZiY2OFlI40sYaGhgo6iN1uJyYmRkjtnM2DWFJS0ojd7n0Dh4Ed/VarFYvFQlJSEiqVinHjxiGTyTCbzfj7+2O32xk/fjzbt2/HZrORlpbGH//4xxHPy+Px8Otf/xqn08m8efN4/PHHvcq8fvnll9jtdhISErjhhhuGbeSTrs1isQhajhSMKpVK0Tg3EElJSXR2dtLQ0IDdbqelpYXOzs7vrGai0+mYOHEiBw8e5LPPPvM6SJXGBBjdWOLj40NiYiJHjx7F6XSSlpZGWloaiYmJ4rok/mlNTQ0hISGEhYWxZ88eurq66Onp4ZJLLiExMRGj0Uh3dzdqtZq2tjZR0dFqtSQkJKDX68Uz0DdQHbg4GkoxYgxjGMPZjZMSpI4kR6RQKHC73ahUKpKSkti3bx/btm0T3KYzBYWFhTQ1NdHa2iqEoPvKnkhdyX35dc3NzeLzhw4doqKigszMTIKDg6msrKSrq0sEXd5YD0qNRseOHaOhoWHQIH727Nm8/fbbNDU10dLS4lXJXyaToVKpsNlsyGSyUx6gAv2asYbDlClTyM/PF3I1wz0XarWaBx54gDvuuIOPPvqI+++/f1SdlBqNho8//pisrCxMJhOdnZ1ERUUJyS1/f398fHz6ednLZDL8/f2prKxELpcTEhJCSEgIsbGx/cTHpQwR9LqnmM1mkRkqKSkhJCQEu91OSEjIOTOhSgFbX1kq+G8Am5CQILRHCwsL0Wg01NbW4nK50Ov1Qhv3mmuuGTFwhN4mIynwWrZsmdf8T+kzixcv9uo4Enx9fUe10JY68Kurq2lvb6epqek7B6lut1uogHjTUCbh0KFD1NfXo9FomDRpktefczqdlJaWAnDxxRczYcIEdu/eTUFBgWj2tFgs7Nu3j/j4ePbv3w8gPpOamiqqU1JwKVED+r4Xkk5138C0b2VroOqK9Jm+/x/DGMZwduOEOakWi4XOzk46Ojq8KhfL5XJeeuklXnvtNTZu3HjGBajQq90WERGBTqejpqaGrVu3Ul5efpzoujThNjQ0YDKZUCqVaLVaYY9aWVmJ2Wymq6uLpqYmdDodwJByUn2RmJjI5MmTgaEtVdPS0kTjzsGDB73m2EjlS6mZ41TDW96dxGMGyMvLG3H7Cy+8EJ1OR1NTE1u3bh31eWm1Wn75y18Cvbw66Z63trZSXFwsSqAej4ft27fT2tpKWFgYOTk5RERE0NbWhs1mY8eOHXz99deDivKHhITg6+srMuxRUVEEBwczbty4790R6nRiqDL7QGcsq9VKY2Mju3btor6+npqaGoxGo1jYpaSkeHU8iSMbGRk5qoYnKbjxRsIJ/lvp8NZOtC/6cslNJtMJ7aMv8vLyaG9vR6vVjqg73Beffvop0KsSMJrn8fDhwzgcDoKCgvjBD36AWq2mpKSE9vZ2SktLUalU1NfX4/F4hN2wxFeNiorqp0DQ1xRjKKcyb3jdRqORAwcO0NjYOCgFo7Kykm3btlFZWen1dY5hDGP4/nFCQWpBQQFXXXUV8+fPJzMzk/feew/ov7IdzE3oxz/+MaWlpSIIO1Mgke6zsrL45S9/yYQJE/Dz88NisfRzORn4GWlgl3h2kydPJjIykszMTCorK7FarQQEBIhMkTeZVOidNKA3SB1qArv11lvx8fGhsbFR8FhHgsS9hF5awakkqkPvBO7tBDyaINXPz4+rrroKgA8//PCEzu3//u//CAgIwGQykZmZKbiOUkl/ypQpyOVy0tLSsNlspKenk5qaKrJsBQUFFBcXU1tbO+jzkZWVRW5uLrNmzSI5OZkLLriAhQsXkpWVNayzzv8ShrNoHejYJfGlFQoFMplMmCdIz/a4ceO8OqYUpI5GTcFut4vxytvvpW+QeiLvkXRvenp6aGlpGfXnJTidTvbs2QP0VmG8zQK73W5Wr14NwJVXXjmqY0rHS0lJQalU0tjYSEJCAjKZTGSVo6OjCQgIYObMmcTGxhIYGEhGRgahoaHU1dVhMBgGtQeWMtqjtfc1Go3I5XL27NnD6tWrRfZWwok0+o1hDGP4/jHqILWgoIB58+aRnZ3NAw88wE9+8hNuueUWDh8+3C+jKhHxP/vsMzEI6fV6ryeb04mBndtxcXFERESQlpZGRETEoPwyqbtfanCqrq4GeoXqo6KiRJkyPT2dm266CUDwEkdCbm4uAQEBNDc3D+kfHxUVJZqwDh486LWHd1BQEDKZDKfTidls/s7e3yNB4m+OBClILSgo8CrL+5Of/ASAr7/++oQ6J4ODg/nFL34BwDvvvIPFYqGuro59+/bR2dlJamoqP/rRj4iMjKStrY3169cDvd/vuHHjRMbd399/0NJiXxeqwexTzwVIFq3DXXtBQQGff/45VVVVhISEEBMTw/Tp01mwYAE/+MEPhI6qt/JKJxKkSh3hKpXKa+qItJ3H4zmhd0iikMB/zTtOBPv37xeceOkd8gZ79uyhsbGRoKAgfvjDH47qmFKQGh4eTnV1Nb6+vkLRZOLEiej1enp6ehg3bhx6vZ7s7GwmT57c7/ykxd3AJICUeR/Kdngo6PV6goODcTgcuFwuIdEnIS4uDrVa/T8nBTeGMfyvY1Sc1NbWVu69915+9rOf8eyzzwLw05/+lIMHD/LWW2/xwgsv9OOnfvHFF/zyl7/kpptu4rHHHhtVB+mpxMDMR1/SvcfjISEhgYSEhH7XMvAzkiuVyWSiu7ub6upqlEolZWVlREdHI5fLRZerRqNBrVYLwfL09PRhz6+rq4s5c+bw5Zdf8umnnw4Z2MfGxmIwGDCbzeTn5xMbGzvodj09Pf1KYBI3taurC4vFIpo+AGEPerJQUFAgrBCHQkJCAu3t7QQFBdHe3s6XX35JWlracdupVCqxKNBqtWRlZVFQUMBrr73GjTfeKLbr6enxiot400038c9//pPCwkLy8vLEd9bW1kZnZycxMTGiaaqkpISoqCghQC5ZoCqVSsxms+hatlgs1NTUoFarxUQ7nFKD1EA0mAUvfH+i/x6PZ8QMoTfWuAaDgbq6OmJiYvp1Y0uorKwUskQpKSm0t7cDEBoaKoTiAwMDCQ4OFvSRzs7OIYPJiooKoFcGrqqqyivutaTV6efnJ+w4B4PT6RSLzL73xmQy9Tufnp6eYU0uJGg0GsxmM52dnVRXVw/ZvBQVFTXo/ux2O99++y3Qq11qtVq9Cnh9fX2F/N9FF10kLEwHwuVyDUp/kILUkJAQiouLCQoKorGxEbvdTk5ODjExMcTFxeF2u8U1SeNMbGyseB4k7WG9Xo/H4zluHPYG0nbSeGy1WikoKCArK6vfPrxp9PPmmKe6+jSGMYyhP0YVpLpcLsxmM9dccw3wX1u6pKQkoXXYd9K69NJL+fbbb7n55pvPmAAVjp/4BzZ1DLXdYJAG1vj4eFpbW9FoNLS0tAiXIo/Hw6ZNm/D398dms1FXV8fUqVOH3WdmZia33347X375Jfv27SM6OnpQbt+ll15KWFgYK1eupLa2lttvv33Qia65ublfoOjxeGhtbaW8vByLxSKclSQ92JGu+9ixYyNO/i6XC4/Hg5+fn1cyUVFRUYwfP54dO3bQ2NjIvHnzjtvG6XT2u47rr7+ehx56iP/85z/8/Oc/F9+h0+n0io8YGxvLTTfdxPLly4XIf0lJCU6nkyNHjqDX60VzGiD0U6UAVfp5W1ub0HyUAmSDwUBOTs6QfuMSBpPOsVqtoiEvPDz8e6cGjBRID4eamhocDge1tbWDcgqDgoKorq4WpX3J9lSpVHLo0CGgt6zcNwiU9FYHg6QokZSURGhoqFeLFamxMTg4eNiM7e7du/s1ObW0tOByuQgNDe33HQ1V/RiImJgYQkJCRIl7KPepiIgILrjgguN+/v7774vms1tuuYXu7m6vuP5Op5N169YBve/QUO9nd3f3ceNJbW0tdXV1+Pj40NHRwe7du6mvr6e6uprY2Fj8/Py44IILaGlpoaSkBLfbTW1tLUlJSaSlpaHVasXf0iJOgjQOe7P4AYTuZV8FlmnTpgl61RjOfCgUClFpPNW2qKf6OKfrWs41jCpyjIiI4N///jdz584F/ts0EBMTc1wQKkkpPfbYYyNqg57NkLq6MzIymD17NiqVik8++YTNmzcLO1WDwSAGUW95qZmZmWRnZ+NyuYY1PfjhD3+ITqejra1N2EaOBKlxY/r06aSnpwtt0La2NsrKykbUoRwNRtOglZWVBeCVnzn0dmLHxcXR2trKf/7znxM6v3vvvRcfHx/y8/NpbGwkPDwcmUzG9u3befvtt4VTSGhoKDqdTlALTCYTHR0dFBUV4efnR1tbGxqNRmSlMzMzhdnDcBiMeyc1JXZ2dmIwGDh27Fg/FYnTAYmnbTQaMRgMdHR0DNqQMthn+gqqx8XFiUBxx44dHDhwgMLCQlHiVavVpKenC+/4rq4ubDYbTqcTl8sFeN80Bf8t9w9VVRjqvMH7pikJ0kT0XRqfJM3lpqamUWXpTCYTW7ZsAXqVD0aTBNi7dy+tra3o9XoxlnsLKYvq7+9PcnKyMAVxOBwiGys58QUHB5OXl0dVVRUlJSUUFRWxZcuWIZubrFYrBoOBqqoqr0T5jUYjDodjyJ6BMXH/Mx9KpZJ33nmHd955x+tGxzP1OKfrWs41jDq9KWUaenp6RAbC4/H0m0SffPJJ3nrrrZPmqnI2QHKVMJvNNDQ00NPTg81mIycnh3HjxolSpzcd/hKkTt2VK1cOOYH5+vpyxRVXALBu3bpRletlMhnR0dHMmjWLpKQkZDIZNpuNiooKUYY9UUiZEG84uBKkILWiosKryUWhUAjd2bfeeuuEJqRx48YJd7Rt27bR2toq3Em6u7tpbW0lICCApKQkIUouobi4GB8fH+RyObm5uURGRpKamkpGRgZZWVmiSWo4DMa902q1BAQEEBAQgNVqHXIiPpWwWq10d3djNBpRKpU4HI5BM7p9m18sFguNjY0cOHBAnG9iYqKQVbPZbBQWFtLQ0MDevXsxGo0iK6pSqYiKiiIqKorw8HD8/PzE9zkaHrtUuh8N91B6zkebsZayud9lnNPpdPj6+uJyuUQ1yht8+umndHd3k5WVNWqlFIlffeWVV4464yMFqRkZGUycOJELLriA9PR0MjIymDt3rnDYCwsLw2azER8fj5+fn8iYS+5SkrxUX/RdnA0MYgdzmurr+jcQA/sMxjCGMZydOOEavI+PT7/ASVrJL1u2jIcffpgLLrjgrEp5D2W3J6GgoIDPPvuMgoKC41bpJpOJPXv2UFRURHBwMD/4wQ/E5KzRaJg2bRozZswAvM+kQm85X+LJHTlyZMjtZsyYQVxcHHa7XZTxRgO5XE5iYiIRERFCGqezs5PS0lJqampERutEMJogVa/XExERQU9Pj5CuGQmXXnqpyKZ+9NFHJ3SODz74IND73bjdbgICApgwYQLp6eksWbKE6dOnExMTc1zpOD09nYCAAMGvS0hIwGQysXPnzkGfk5EgbQ//dTpLSEjwKiN7sqHRaFAoFOj1egIDA4W72kD0zWZptVrMZjNyufy4oFqyF87MzMRqtaLRaDCZTIL/nZSUhK+vL35+fkLKSHKa8jZI7UvBOJHGqdEGqdL49l3eDx8fH/HdettAVVNTI4JFiXrlLex2O5s3bwYQi7PRYPfu3UBvkOrxeMjJyeHmm2/mlVde4YEHHhB6p3q9ntzcXLKyspgyZQqJiYnEx8cTHh5OTEwMSqXyOIthQCzOAPHuGI1Gtm3bRkNDQ7/ufL1ef9xCsO++vFUHkOSptm/fPuwcMIaTD0n+zWKxnHJb1FN9nNN1LecavhNRVPoiFAoFcXFx/P3vf+fpp59m//79o+o0PRMwkkRJWVkZFotF/N13lW4ymXA6nRw9epTS0lIuv/xyli5dSkREBCaTiaamJsGlPHjwIEVFRV6dU1BQEIsWLQLgqaeeGnIy9PHxEVlXiWZwIpDL5cTExJCeni40Vdva2iguLqa5udnrLua+TTej7XyWbOYktYSR4Ovry2233QbAJ598MqpjSZgwYQIXX3wxPT09HD16FJfLxQ9+8APmzZsnrGOljF9JSQmFhYVArxbnzJkz0Wq14nmQ+KkNDQ1el8klDJb9CQ8PJzs7W1j6Sds1Nzef0iyRt+oEfbNZkrVpcHCwcN164403eOGFF2hpaWHOnDlMnTqV4OBgiouLaWlpEeYYEu86MjJSmH9ImpbelvulIE+r1Q5raToQEiVlNCL+8F8ua21tLQaDYVQLMgmSaYT075Hg8Xj46KOP8Hg8zJgxY1jt0MHw6aefCne0mTNnjuqzn3zyCfv27QP++53I5XJsNhsOh+O4ZyQhIYGoqCjBe8/IyCAmJoa6ujrq6ur6ifZL2WitVovJZKKoqEi8O0ajEZ1Oh91uH3Hx0Xdf3qoDSGN/Xl7emEzVaYbVasXf3x9/f/9TSs04Hcc5XddyruE7pTql7Kmvry+vv/46gYGB7NixQ6ymzyb0dTUZjJCfkpJCWVkZKSkpx1nwSaWt6upqrFYr69atw+Vy4XA40Ol0xMTEIJPJSEtLo6SkhJtvvpnNmzd7NSn+6le/YvPmzRw4cIBXX32VX/3qV4Nul5WVxeTJkzl06BArVqxg6dKlJ9ysplQqSUhIwGKx0NDQIITWW1tb+wlxDwaPxyO0I2Uy2YgdtX3hdrtFADiaEq/UKCEJiJ8I5s+fz5dffimasz7++GN8fX2Ji4ujpaUFnU4nMqkOhwOlUklmZibw30Ynh8MhXKWCg4OHLZMPBm+tHQfajX6f6PuODPx/UVGRcBkqLCwUDYNmsxmdTid469J1h4SEkJycjMViIS8vT5S/pfs8EqQF0WgrOBJ/bLRBZkREBHa7nc7OTlpaWsRz4i1aWlqExbFcLveKu5+Xl8exY8dQKBRCK9hbmEwmXn75ZQDuv//+UY0PGzZs4IYbbgAQwvp+fn74+vrS2tpKRUUFNptN6J9Onz6dKVOm0NbWJhpuTSYTu3btIjAwUKhfQP/nXlrYORyO496dmTNnjlhRkNQ14uLivK4+SGO/lFgZk6kawxjOHJyUlnsp27dr166ztrOyr6vJYIT8rKwslixZQlZWlhhcpQE5LCyMyZMnM2/ePMGva29vp6Ojg87OTuRyOS0tLdx88834+/tz7NgxHnroIa/OKyEhgT//+c8ALF++fNgM409+8hNUKhWVlZWiqeK7QKvVMm7cOGJjY1EoFDidTiorK4cVMO/p6RHBQmRkpFed/RIKCgro6uoiICDA68AEEFlGSVbrRNA3mJYWGPX19VRUVGCxWHC73cTHx5OWltZPH1fqfAeE3Ni0adOIi4tDLpePqhveW23I0Qqdn0wMpMUMR2kIDQ0lIiKCsLCwft/nuHHjxLNVWFjIunXrKC4uRq1Wk5qaSkBAgBDxj42N9foZkoKu0WbvpcXiaDPTSqWStLQ00tPTRaVkNLxSKSiOjIxk2rRpoolqKHR3d4sGwYULF/bLrnuDZ599lq6uLrKysvj5z3/u9ed27drFj370I1wuF3PnzuXKK6+ktLQUpVKJSqWiurqa2tpaioqKKCkpoampSVSLUlJSiIyMJCoqirKyMtra2jCZTP0a2/o+9xK9RJJ6k342VFl/4HMnZbNGk8lKSkpi3rx5zJ07V8wBg+1f6jsYwxjGcPpwUoLUadOm0dnZKRpfznYMR8iXMFggGx8fz/Tp04WcUm5uLjNnzsTf35/o6GgCAwNFafqNN95gzZo1Xp3PxRdfTG5uLk6nkz//+c9DBoghISEiu/Lpp5+OasIcCjKZDJ1OR3p6er+mIZfLRXd3d79z6eswJZfLR90tLfHspk+f7pW+pQS1Wi2ChBMVRpeC1Pb2dkJDQwkODiYsLIygoCCampooKChg7969AKIJrrCwkG+++UaUpaWyscPhENJRfbl3JwuSSP73EaQOpMUM16Ci1+u57rrruPnmm/vJrmVmZnL++eejVqvZtWsX+/btY8WKFUK6SalU0tHRAUBOTo7X5zaUpvFIkBYFJ7rA8ff3Fw1zo6EZ+Pn5MXnyZFJSUgR1YDhs2rRJUIcuvfTSUZ3jvn37WLduHTKZjIceesjr9+vw4cNcfvnloglq4cKFlJSUcOzYMVauXMmGDRvo7u6muLhYGHFoNBrxjiQkJDBp0iRCQ0Pp7u4mOjqaCRMmDElT0Ov1TJ06VSQDBnOlgqGfO2/Gbm8w2P77UgnGMIYxnB6ctM6m77vseDIxsIQ51DYDNTCtVit+fn7Cqapvtk2lUmG321Gr1cycOZO9e/dy9913M3nyZMHDHAoymYxHHnmEyy67jG3btrFx40YWLlw46Lbz5s1j7969lJeX88EHH3DXXXeN8uoHh1wuJzo6Gp1OJwTPpazpQCkeqeN9NOju7hZWhrNmzRr1+en1ejo6Omhubh7xfg4GqdTa0dGBx+MhKSlJaHxWVFRgt9upqKigvb0dh8NBWFiYUFJwOBzk5OSIjGvfRhypjDkYheRsRF9aDAxPURj4O6PRiMlkEu9FV1cXYWFh7NmzB41GQ15engjypEzqaBa+Uib1dAepErRaLSkpKV7rpIaFhXk9bnZ0dAgpuquuumpU/FmXy8WTTz4J9DZaeasGUFZWxuLFi2lvbycyMpJ58+ZRVlaGn58fXV1dwt1J4iBLlrZXXXWVMLiQ7m1nZ6cIHmNjY0VjYUJCAnq9nv3791NYWEhmZma/BU3fZEDf92ao5+5kvV+D7V+r1Z50s5MxjGEMw+Psab//HjCUqLTBYBATdVVVFV999RUxMTGMHz9edKb2LdlqNBpiY2NpbGzE7XZz3nnnUV5ejslk4pZbbmHdunX9Mik2m+047cXw8HBuvPFG3nzzTR5//HEmT54sAqaBWLx4MS+//DJ5eXls3boVu93uVQagp6fHq4l6YFm1775lMhkymYyenh48Ho9XmU2FQsGWLVvo6uoSxPPBmhd8fHwEh28gpOCmuLiYuLg4r7iB3d3dYrJXq9XCQczj8YjPS92akvXs0aNHRaYvIyMDt9tNdHQ0KpVKSFdJ2dOwsDCxf4PBICwgQ0NDzyhzi9FAUh0AhAGEdI0Dg0Ppd1VVVdTX12Oz2QgLCyM/P1/8Xq/XM2PGDFpbWwkJCeHYsWP09PQIUf7MzMzjGgaHcpySpKTcbjddXV3U1dV5tVhyOp1AL1d2OIk4p9MphPdPBmQymeDlDoeQkBDef/99bDYb0dHRpKSkiPvTFwqFYtD397333qOiooLg4GBuueUWurq6RhwPampquPzyy0XT0q233orFYiEqKgqdTkdCQoJQBfnBD35AXV0dx44dY9y4cTgcDnp6eqitrUWlUiGXy6murkan06HT6dBqtVRXV+N2uwVdqqioiPLycvLy8tBoNIIe0jcZ0Pf5kp6tU+XINpjBi6SJPYYxjOH0YSxIPQH0LXkaDAaam5tpb29n/PjxJCQkHOcYJH3Gz89PaAYuWbKEVatW8e233/K3v/2Nv/zlL2L/KSkpgwYxf/rTn9iwYQM1NTWsXLmSSy+9dMiMSkdHB++88w4bNmzgiiuuIDIycsTrqqioGNGyFXrtbkNDQ3G73UJTtaenh5CQEKZNmyYCA7fb7XUTnSQ3dN555zF58uRBt5EyOoMhLi6OgwcP4nA4jnMAGgput7tfsJOUlITJZKKuro60tDSys7Ox2+0UFBSQlJSESqUS/uAREREi46PRaLDZbEJaqa8Qft8OeUlWq6Wl5YzPpkqLjZOBuro60QHu5+eH2WwWChBqtVpYVtbX11NfX09gYKBY3EycOPG4gNTf33/QIFX6zj0eD/7+/oPKhg0GqTTtdDqHzTLW19d79R4lJCT0UyQwm83U1dWRlJTUL/BpbW1lwoQJI+6vsbGRtWvXArB06dIhlVPcbvdxdsK1tbW8++67QK+xyrRp03C73cNmYpuamrjqqquoq6sjMDCQSy65hPDwcJYsWUJZWRl2u53Zs2cDvQsDjUbD7Nmzxc+sViuFhYU0NTURFhZGRUUFNTU1REZGMnnyZLRarbAw1ev1yGQyMjIyOHjwIHq9nvLycpFBl9zdioqKiIuLO44mcDKDVG/29X3ZFI9hDOcqzpkgVcqIeWvtWFBQILr5B5Yc+5Y81Wo1LpeLwMBA0dRkMpnIz89HpVKJCcXtdmOxWMjJySEpKYnU1FSCg4N59tlnefrpp5k/fz4XXnjhsOek0Wh48sknuf7663nppZeEludguOmmm9i0aZPQVJQE/08m5HI5qampwuM+Kipq1GV+6L03kv7iaB1wJEiLge/izJSUlMS+ffuorq7G4XCQnJyMzWYTVAcpW9ve3o5KpaKmpkZ0KVutVpRKJfX19bjdbjo6OoiLi6O4uFgEqzqdTmRTz/Qg9WRACtSlQFGtVtPa2ordbqe9vZ3g4GB0Oh0VFRUi+9zXBEIul5ORkeH18U603C8Ft3a7HZfL5RU/dDQIDg4mODj4hD7r8Xj46quv6OnpYf78+aOW9nvkkUewWq3MmjWLH//4xyNubzabufTSSyktLSUwMJAbb7yR6Oho0UwEoFKpqK+vF8oGdrv9OHtTtVrNuHHjhBuVtEAH+jnwSVzTadOmodFoKC8v76fsUVBQwJo1a4R+s9TYKr1D4eHhWCwWDAaDoA8MbCjrO/Z/V1ramDnAyYVcLhdavycyd5xJxzld13Ku4ZwKUgd6pA+HsrIyrFYrZWVlxwWpfUueiYmJTJ06lY0bN5Kfn09rays6nY6enp5+kjahoaH4+/uj0WiEl/XUqVOpq6vjP//5DzfddBMHDx4kKipq2PO6+OKLufDCC9mwYQMvvvgiL7744qCre6VSydKlS7n77rs5evQoU6dOPWXSKoOVxkYDg8FAV1cXISEho3bPkXAyglSpxFhZWYnT6WTXrl0cO3aM8ePHk5mZSVhYGN3d3ezevRubzUZ+fj6TJ0+mra2NyMhIHA4HNpuNzs5OIUwP9AtMz5UAFf7LJ9RoNEydOpWdO3cKy9PMzEwCAwNpbW2ltbUVi8VCbW0tpaWlIkhMTU0dlb3giXb3K5VK5HK5WEieaEB5KlBUVERlZSW+vr7ccccdo/rspk2bWLt2LXK5nKeeemrELKDFYuGKK64gPz+fiIgIfvjDH7Jo0SKSk5OpqKgQ7+i+ffuora0lICDguMyywWCgtrYWtVpNUFAQer0etVot+KYDG04dDke/hVxWVla/RUZZWRkajYaWlhYxfvXdhxSkNjc3C/rAYEHqyZJsG9O/PLlQqVR8/PHH/xPHOV3Xcq7h7CTGnQAGk+0ZqnMUekvuGo3GayFxh8MhsgbQO5jpdDpsNhv79+/vJ+AfHBwsym2//vWviY+Px2g0csMNN4zoAy6TyXjqqadQKpUcPHiQTZs2DbntlClTRBfw2rVrv5MzzqmEdG/mzp17wivQkxGkTpo0Cegtr0omBjKZTJQtNRoNZrNZ+JTHxcXh5+dHTEwMAQEBxMfHExMTQ2hoKOPGjSMrK4v09HT8/PxEyT8rKwuj0Sjcy/6XIXVaQ68SgkqlQq1WEx4eLhqjGhsbxTtjNptRKBSCFjGazn448SBVJpMJJYrv2jx1MuF0OtmwYQMA11577YgL2L7o7OzkgQceAOC2224bsQHN6XRy7bXXsnv3boKDg5kxYwY5OTlYrVa2bdtGfX09zc3NonIjcU5jYmKIiYkRck21tbXYbDZsNpuQjQoNDSUxMZHQ0FCsVitHjx4VpX7p+aisrGTNmjV8/fXX/Wx1U1JSSEpK4vLLLxeJgYEd/JLahRQUD8RoJduam5s5duzYoGPJd1mMj2EMYxg9zqkgdaBsz2AyUhKysrK47LLLvO4uzsnJISMjg5ycHCHXolarOXbsGAcPHqSyshK73Y5Go6G4uJjt27ezevVqCgsLufjii9FqtWzZsoUXXnhhxGMlJiZyzz33AL3ah8MFZnfffTdqtRqTycQ777xzUmSpTia6urpEUHKipX74r9alN649Q2H8+PFA7yS1detWysvL6ezs7KddKomTNzU1ERISQkZGBlarlbVr1/LFF18Avc/OcE5A5eXlwr1sMIzWTvVMwvbt23n55Zf5/PPPxXtVWVlJY2MjGo2G3NxcgoODhRB+VlYWUVFRTJ8+nblz56JSqcRCbSTd0IHoG6SONlCVJMy87cw/1aipqeHVV1+ltbUVf39/fvazn3n9WYfDwc9//nPq6upISEhg6dKlI37m2WefZePGjWg0Gi6++GKWLFlCQEAA27dvZ+fOnVRUVIhtc3JysNvtgv6i0WhEplKtVtPU1NSP8yoFrnV1ddjtdiIjI7Hb7VgsFlpbW1GpVGJckpympGenrz61hIG6qVqtluzsbKZPnz6oduxoJduGmxf+l1RsxjCGswHnTJA6GE6Wph70Bo5z5swhPDwctVqNw+FArVYL2SlfX190Oh0ajYaOjg5aW1upr6+npqaGqKgoUWpetmxZvwlhKNxzzz2kpqZiNpv5wx/+MGS3bmBgIBdddBEajYampibefPNN4ep0JmDbtm24XC4yMjJOuNQPCA3T0Wbf+kLKNPv4+OByubDb7cTGxmK321m/fj3PPvssa9asEXzj4uJirFYrlZWV1NfXU1VVRWtra7+g1mg0inI/9AagISEhyOXyIbP0w2mPnqmQAut9+/ZhMpnYvHmz6JaXOLtSZ7RKpaKpqQmVSkVmZibJycls3ryZpqYm0tPTRSPT2rVrR8Uv7avLO9p7d/755wO9QbZk/fl9oLu7m40bN/Lmm2/S0tJCYGAg1157rdcZPLfbzd13383WrVvRaDQsX758xMCqpqaGv/71r0Bv42JERARmsxmNRoPL5aK1tZXq6mqqq6vZs2cPOp2O8ePHEx4eTnt7OxqNBofDIe55Tk5OvyBVEu5XqVTodDrUajWxsbEieLXb7cydO5eEhAQyMjIIDAz8XikxJ3NeGMPwkHjoMpnslI53p+M4p+tazjWcM5zUwXAqNCstFgvR0dFoNBrBbZNKXdA7mcfFxWGz2ejp6cFmsxEaGspvfvMbli5dSn19Pffccw+fffbZsDJFSqWSZcuWceedd3L06FFefvllfvOb3wy6bXR0NL/4xS/49NNPqampYdWqVUyfPl2IbI/WRvJkobGxkSNHjgDwf//3f9+pc1Zy2DrvvPNOeB+SHJAkjaRQKIQklcFgoKqqioCAADIyMggJCSE2NhaTydRP+F+akD///HP27dtHWlqayKpKgeq4ceNIT08f8tnTarXCZvX7sj61WCwiu+jt9t3d3aSmpnLs2DESExOFnFN9fT05OTniejUaDdnZ2aLUW1FRQVNTEx6PB41Gg1arxd/fH4PBwO7du0XX+EhQqVQoFAq6u7tHrWc5fvx4Fi5cyNdff83KlSvR6/XDZsNPBZqbm1m5cmU/ZYOLL77Ya01Uj8fD73//e9asWYOvry/vvPPOkEoZffGHP/wBq9VKbGws8+fPx+VyIZPJhFOUTCbD19cXi8VCQUEBWq2WwMBAQkNDiYmJEefX1dUlZMB0Oh1GoxGtVktiYiJarZbu7m4UCkW/rGhtbS2xsbHHSZt9n1304eHho3bzGsMYxnBqcE4HqScDUqOANNBKItBS1kgSlu8r9D5hwgRSUlLYvHkzNptNcPHuueceHn30UXbt2sW7777LLbfcMuyxo6Oj+cMf/sDvfvc7/vOf/zBx4sQhg7TAwECuv/56tmzZwu7du9m3bx/79u1DJpOJIMvX11doWfbli50KeDwevvnmG6C3pDcaG9SBqKmpoby8HLlczpw5c054P1KQ6u/vz8yZM2lvb6e1tZWWlhah69jT00NkZCTp6ekUFxdz+PBhJk2axKJFi0SABb0OP2azmZKSEqZMmdKveaqtrU00UQ0m8C/t52Q1e5wIRks1kJ77Cy64gAsuuIADBw4gl8s5dOgQ4eHh/fRAJT1atVqNwWBAqVTS2tpKZ2cngYGBBAcHEx4eTldXF++//77XQapMJiMgIIC2trYTEl1fuHAhDQ0NHD16lHfffZdf//rXo7L1/S44evQoq1evxuVyodVqufTSS0ft4Pfuu++yYsUKZDIZ//znP71asB04cIAPP/wQgAULFuDj44NSqSQgIICYmBiSk5M5dOiQ0JKVvuepU6ei0WgoKSnho48+QqvVkpSUhFqtFnz5gIAAUlNTycrKGlQcv29gOoYxjGEMg2EsSP2OyM/Px2QyYTabhdd039Kc0Wiku7ublpYWOjo6CAoKElqGgYGBdHZ2UlJSQl5eHgEBAVx44YWsXr2aP/7xjyxcuLCfx/VgmDdvHj/96U95//33+ctf/kJKSsqQn5HL5VxwwQXEx8eza9cujEYjdrudtrY2IVLet5knMDCQyMhIfvjDHxIdHf1db1U/lJSUUFNTg0KhYP78+d9pX1IWdcqUKQQGBg5qcOANpEBKo9EQHh4u+HPV1dWEhobS1dUlSpmNjY00NjaKkrbT6RSl7UWLFpGWlsauXbtE6drtdotANCQkBIvFQk1NDXK5nJaWluOC1eGcnE4HRtsgMvC5z8jIwGg0MmHCBGHMYDQaxTbx8fFYrVaampqIjIwU1rYVFRVMnTqV8ePHU1FRwcqVK3n22WeFUsJIkIJUyVZ1NPDx8eG6667jpZdeoqGhgZdffpnbbrtt1NzY0cDtdvP1118LCbbk5GSuvvrqUVsKf/LJJ6xYsQKAp556issvv3zEz3g8Hn73u9+J486YMYOpU6fS2dmJzWajvb2drq4uYeksnW94eLhYfH/99dfYbDYhvxcdHY3ZbBY0ASmzKmG0UoBjGMMYzm2MBakjYCROnEqlwmKx0NTUJNxTJJhMJqqrq8VgrFAosFqtWK1WDh06RE1NDb6+vqhUKsxmM/7+/lx00UUcPnwYg8HAvffey/vvvz9k6Usqsf7sZz8jLy+PY8eO8bvf/Y5//OMf/UTM7XZ7v67lqKgorr76ajweD1arVcgAVVVV4XQ6aW1txWq10tHRQUdHBxUVFSxatEj42zscDq8asNRqteji7gu3283GjRuBXtknqZw+Elwu16Al8q+//hqA6dOni0WBN4FFd3d3vyDQZDIBvXJhkZGRIlAICAhg3bp1+Pv7I5fL8fHxITo6WpTE09PTMRqNdHV1iaaPKVOmkJOTI2R79Ho9YWFh2Gw2LBYLDoeD4OBgERhLjRrS8yM56nxfzlTeBMfDvRthYWHiWkpKSnA4HLS0tABQVVWFyWQiMTFROLRNnjyZ0tJSkpOTCQsLY9asWWzatIm2tjbWrl3LZZddJvYtSXwNBuk7kySJvNE8NZvN/VQ1LrvsMlauXElraysvvvgiV111FdHR0SKoHgkOh8Or7axWK2+99Ra1tbUAzJw5U1QC+r6vQzlJSdi6dSsvvvgiAPfffz8/+9nPROZzMEgVgS+++IJt27ahVCr561//yrhx44iMjKSkpAQfHx/a2tqQy+U0NTWJbHdjYyP+/v7s2bOHtLQ0MjMzRQOgSqXCZrP1026Oj4/H4/HQ3NxMV1cXdrudmJgY0WQ1hjGMYQzD4ZwMUr8r30myRYXeAFClUgmR6b5BVFVVFe3t7VitVtRqtfC8Dw0NpaKigtLSUvz9/cnOzkan05GRkUFSUhKPPPIId955J5s2beKLL77g+uuvH/Q8Jk+eLPikK1asYOHChVRUVHDnnXfy4IMP8qMf/Qi5XE5wcLBX/MLDhw8L7mxnZyfV1dWsWLGCgwcP8uWXX3LXXXexZMkSlEqlV5ytxsZG0THfF1999RVdXV0EBQVx5513YrVavZL6slgsIoMjob29XfBar7rqKuLj43E6naLzeDh0d3f3C2Kk7JtOpxOBkF6vp6CgAB8fH5xOJ1FRUahUKvbu3UtOTg4zZswAejnCkq1rX6Hy2NhYFAoFRqOxn2uOJCw+btw4LBaLeHbOFkeb5uZmTCaToIYMB4/HQ01NDcnJyaKBD3qdt3Jzczl48CBmsxk/Pz98fX2FQ1NcXByFhYWsXbuWq6++WuwvMDBwSKky6Xvv7u4mJSXFq0DI6XQet6g5//zz+eMf/0hxcTGrVq3i97//Pbm5uV7JQFVUVIxoQlBeXs7rr79Oe3s7Wq2Wp556igULFgy6bVdX15DVkc2bN/OPf/wDj8fDzTffzJ///OcRnyFJ+eAPf/gDAEuWLMFisVBZWYlSqcTf3x+Hw0FXV5eoEslkMgoKCggLC6O4uJiUlBQKCgr42c9+xqRJk6iqqqKmpobY2Nghuf4S57itrQ2r1SoaDXU6HVlZWf0yq2fLezCGMYzh1OKc7u4/UUi2qHl5eahUKiIiIoiKijpuYNZoNGIyVSqV+Pr6EhQUJISpQ0NDSUlJYcmSJVx99dUYjUa2b9+OUqkU7lMPPPDAoD7dAxEVFcVbb71FdHQ09fX13HvvvZx//vl89dVXo3bggd7sYXZ2No8//jgXXXQRPT09vPTSSyxfvvyE9ieho6ODzz//HOgNKr2xrRwO27Ztw+12k5KSIkrrJwpJvsrf3x+LxYLNZkOtVhMTE0NQUBChoaEkJCTw7bffsnfvXrZv345Go8HPz4+4uDiuu+46lixZ0k8TNTExEb1eT0tLi7DShd5nQ1IBGCipczZAkumRss9DwWAwcPjwYZERNplMOBwOHA6HCLyKioqQyWQiy+ZyuXC5XCJw3LBhg9eSUlJm9kTK/X0RFBTEU089xfTp03E4HDz22GPk5+d/p31Cb6C2ZcsW/vGPf9De3s64ceP4+OOPhwxQh8OBAwe49dZb6e7u5oorruBPf/qT18Hdm2++SXFxMb6+vixatAiXy4XFYsFkMqHT6YiNjRUZ02PHjrFhwwbRZDlx4kR6enr68UkTExOZO3fukBzT8PBwIiMjxe/lcjkFBQWYzWZqamrGuqHHMIYxDIpzMpP6XSHZokoWhX07uPuibzczIGw2Y2NjSU9PJyoqSjTJ7N27l6qqKjweDyEhIVx//fXs37+fxsZG7rnnHtHcMBxmzJjBzp07eeedd3jhhRcoKSnhlltuYcKECTz44INMmzZt1NeqUCi49957iYqK4u2332blypWkpqZy0003nZB95Jo1a4SObG5u7qg/PxCSmcEFF1zwnfcl8XI1Gg3R0dHC8jQ3N5eOjg5RxvX19cXX1xen0ykajPpmqq1W63G8O7VaTWVl5aibYc5U6PV6kUkdCpJwu8fjoampicTERMrKyggKCkKlUmG1WnnhhReETeaCBQtEib6zs5MpU6awe/dumpqaOHz4MFOmTBnxvKQg9UQapwZCpVKxbNkynnvuOTZt2sS6devw8fFhwYIFJ5TpczqdvPfee3z77bcATJ06lddee+2EeMfFxcXccMMN2Gw25s+fz/PPP+81NaSzs5PHHnsM6B0zJLtanU6HVqsV3+nBgweRy+XU1dUxfvx4dDqdWDx3dnYK9QlvuKV9OctS02BWVla/447h3INcLueSSy4R/z6bj3O6ruVcw1iQOgpIZf64uLh+wvPDZRZDQkJQKBQiYK2trRVZtfj4ePHzcePGiSybVCK/7rrrePHFF/n000/55JNPuOqqq0Y8R5VKxR133MF1113HP//5T5YvX05+fj433HAD5513Hvfcc08/zpg3kMlkXHfddURGRvL3v/+d0tJSli9fzvXXX+9VWR16S/XHjh0TTU7XXXfdd+ZbOhwOtm7dCpycILVv9s3lclFcXExTUxPh4eH4+flRX19PR0cHKSkppKSk4HQ62bRpExEREf06qQez4NVoNIwfP15YNxqNRpFRPxs7nMPDw4fM/BoMBo4ePUpNTY3gPNtsNkFvaGtrE1aZlZWVOBwOdDod6enpHD16FJlMRlxcHGazmbS0NI4cOcKGDRu8ClKlxcLJCFKhd5F2//33ExISwsqVK/niiy9ob2/n0ksvHVUVoLm5mddff53a2lp8fHy46qqruOCCC04oOCstLeW6666jra2NKVOm8Oabb+Ln5zekVvJAPPPMMzQ3NxMaGsrVV18tmqP8/f1pamoSC4px48ZRWVlJSEiIoLmUlJQQExODw+FAqVRitVrRaDRibAwNDUWv14sFWt8xs69j1NlUNRjDqYNKpWLt2rX/E8c5XddyrmEsSB0FpDJ/TU2NV4HFwA5tSbx6//79QlNz4cKFQG+jyXnnnYfVasXhcNDc3Ex0dDQzZsxg165d/PKXvyQrK2tErpuEoKAgfv/733PLLbfw2GOP8dlnn7Flyxa2bNnCokWLuOuuu4TKgLf44Q9/SFhYGA8//DDV1dX8/e9/Z+HCheTm5h63cpRUC/Lz8ykuLqaurk4E81OnTh11oDwQlZWVPPzww3R1dREaGsqECRO+0/6OHTsmmrl8fHyoqKhg586dFBQUEB0dzcSJE+nq6qKmpgaVSsXdd9/NBx98IIIsk8kksuKDdeZL2SPo5UtKGUabzXZWBqkD8fXXX3Po0CEmT56MWq2mpqaGo0ePEh8fT0dHB3K5XNAjioqKCAkJwcfHB5lMhkqlEk15Eve3ublZSFJBL/dS6kQfDjqdDug1d1i8ePFJuTaZTMatt95Ka2sr33zzDdu3b2f//v3MmTOHefPmoVAo6OzsFH8qKyspKSmhs7NTNB/W1dXhcrkICAjgF7/4BWlpaaPOxjY1NfHMM8/w/vvv43a7SU1NZcWKFV4Hut3d3Tz66KM888wzQK/ovtFoJDIyEpvNRllZGQ0NDcjlciwWC5dffjmZmZlUV1cTGBiIj4+P6OKPiYnBZrOJzLU0NpaVlQn1Co1GM+oxcwxjGMMY+mIsSB0FpDJ/XFycV9sPlOWRXFYCAgJwu939pJIkrl5hYaHIVMhkMiZNmkR5eTlNTU3MmDGDP/zhD9x7771el9ojIyP53e9+x2233caLL77IV199xfr169mwYQNLlizhN7/5zag8wcePH891113Hpk2bqK6uZu3atRw4cICLLrpIuC9VVlYOylWMiIggKyuLK6+80uvjDYTD4WD58uW88soruFwuVCoVjz766HcqrxQWFrJo0SJaWlqIjIxk0qRJqFQqGhsb6ezspKmpia6uLuRyueCrAiQkJGCz2YiMjAQQ2dO+jlMSpOyRRAUIDg6mvr7+pEt7nW4YjUZMJhPbt2+np6eHQ4cOce2112IwGMjMzCQ4OJiEhAQOHTpESkoKRUVFtLe3YzabiY2NJSwsjMbGRlwulwgw9+zZQ2trK11dXSI7KFnnjoQf//jHvPjii2zevJktW7aI8tvJwIwZM0hKSuLzzz+nubmZr7/+WihLeIP09HRuvvlmYfLhLTo7O3niiSd4/fXXsdvtQK+m6dNPPy3u2Uhobm7mpptuEpWMSZMmERISQkdHB/Hx8cJVKiIigv379xMSEsLu3btJSEgQignh4eEYDAah0pCcnCzehdDQUFpaWkSjoBQ4j3bMHMMYxjCGvhgLUkeB7yo+nZCQQGJioghWY2NjRdAidSFnZmbidDpJSUlBp9PR0tLCVVddxerVq2loaOCRRx7h448/5tVXXx3VwJ+UlMSzzz7LHXfcwT//+U/Wr1/PmjVr+Oqrr7j55pu57bbbvN6XTqfjzjvvZP/+/Xz55Zc0Njbyzjvv9NtGJpMRFhbGhAkTSE9PJzU11WtqwFA4evQo9913n7CNnTt3Lo8++uhxHf+jQVFREYsWLRKd+A899BAul4uOjg50Oh1NTU2EhIQQFxdHbGwsBw4cEHSMtLQ0dDodYWFhaDQaqqurxaQ9VDlTWrikpaURFRUlMlFnK6TFVUJCAi0tLfj5+fHll1+SkpLCokWL0Gq1eDweJk6ciM1mo62tjbKyMvR6PUFBQRw5cgRfX19qa2uFZJnD4cDpdPa7N3V1dUI9YTikpqbym9/8hr/97W88//zzzJs3b9Sao8NhwoQJ5OTkcOTIETZt2kRVVRXQW+oLCAggICBASJQFBgYSGBhIQEAAOp2OuLi4UWVPHQ4H77//Pq+99ppo6ps2bRoPP/wws2bN8no/e/fu5ac//Sn19fVotVouv/xywsPDMZlMBAYGcuzYMaA3iA4KCiIhIYGdO3eKc42OjiY5OZnMzExUKpWgxSgUChwOB93d3aL5byDGBPvHMBwsFotQimlubj5l3OTTcZzTdS3nGsaC1O8BfQduSddTsg+E3gaLsrIy0dXf1NREamoqwcHBNDU1kZ+fz5w5c7j11lv53e9+NypR7LS0NJ577jmOHDnCX//6Vw4cOMBrr73GypUrueKKK7jmmmu8ykr6+PgwY8YMsrOz+eqrrzh69ChhYWEkJSWRlJREYmIi7e3tg0pQjRYdHR0sX76c9evXA73UiD/84Q9ccskl30mqprS0lCuuuIKmpiaSk5P529/+RkdHB62trTidThQKBRkZGQQHBxMbG0tFRQWJiYlERUVhMpkoKSmhvr6exsZGsrKyCAkJQS6Xi7L+YG5SEsLDwwU14GyG5B4lqRq88sorlJWVceTIESFHZDQahavZlClTBH/YYrFgt9vJz89HqVRSVlYmjCXUajXp6ekolUr27duHxWKhtLTUK5vPe++9l5UrV1JZWcmrr77KAw88cFKv2cfHh4kTJzJhwgQsFgt+fn79zAa8kaAaDm63mzVr1ghTAegNvh966CEWLVrk9TPv8Xh4/fXXeeCBB3C5XISHh3PNNdcwY8YMDh8+LKTRampqSEpKIjs7m5SUFJEpdbvdqFQqZsyY0c+EQZLSkxZkDodD7GtMpH8Mo8Vo3e3O5OMMdYzCwsIRPxv2/9p77/i2yvP9/5JsWcuWhyRvy3vHTrwSZ2+HkDACIQkjQNkzH1aAsikt8CUptGUWQmkhkAGENLQBAoHs4XjEiW15W95D8pBtLdvS8/vDv/NU8pQTLznn/Xr5RZBlneeMR+c693Pf1y2TXVbAZbrCitRxxrr15WCV0IPlL7a2ttKcxbq6OjQ3N6OnpwfBwcGYO3cuSkpKcOLECXzyySf48ccf8dZbb426Z31CQgK++OILHD58GNu3b0dVVRU+/fRT/PLLL7j33nuRlpZm181QLBbjxhtvtPGxZGCiP5cKIQS//PKLTSRp06ZN2Lp166j6yg9GeXk5rrvuOjQ1NcHLywsPPPAANBoNVCoVDAYDXF1dIRaL4eXlhYiICJhMJpjNZjQ1NSE8PBzHjx9Hd3c38vPz4erqipKSEixZsgSEECrMGIP+wURq/1QQR8VahOv1egQFBSEnJweBgYEoLy9HbGwsRCIR/fJmuk5pNBrU1tYiLCwMHh4e6OzsREtLCy2ccnd3x7333gutVouDBw8iOzvbbpEqFAqxbds2rF+/Hnv27MGaNWsuq+3uUHA4nDGN0hJCqO8pY5Dv6+uLe++9F/fddx/1RLYHxobuwIEDAPpSjW644QZ4enrCzc0N3t7e1HHC29ub5gZnZ2dDJBLB3d0djY2NaGhogFwuR2xsLMRiMXV1MJlMqKurQ1hYGB1X/2JBFpYrHWaVbSivc2tEIhGUSiUrVPvBitRxxlqsMEb5AGAwGNDc3AwA9IbBFBa1t7fDy8sL9fX1MBqN4PF4cHFxwZIlSxAeHo6HH34YP//8M7Zv346amhrcfPPNuOmmm/Dyyy8PmqPW3d09ZKvQhQsXIj09Hd988w3ef/99VFVV4YUXXkBiYiLuvPNOWtBijcFgsMuHcjTv6/8EWl9fjw8//JB6UyoUCtx9993U4YDJzRuM7u5u9PT0DPn7iooKKlBlMhl+97vfoa2tDRUVFRAIBODz+fDy8kJAQAD4fD58fHyg0Wggl8sRFhYGoVAIo9GIEydOoLW1FcHBwUhPT0dQUJDNwwYjUAdzfxjsAaCwsBBlZWWIiIhwCKsqZr+YLlpMT3dPT09otVqEhYWBEAKBQECFaW9vL0pKSnDw4EFotVr4+/tjwYIF6O7upoKXsfuqq6uDt7c3/P39kZ2djeLiYlgsFhiNxhGj/fPnz8eiRYtw7NgxvPbaa3jvvfeG/Juuri67hJXBYLDLNaC7u3vY65OBy+XCaDRCo9HgP//5D/7973/TzmsSiQR33303NmzYQPNyR6re7+3tRW9vL/71r3/h+eefh1arhbOzM8LDwxEcHIyamhoQQsDhcBAXF4e6ujrExcVBKpUiJCQEKpUKubm54HK5tIjTYDCgtrYWKSkp0Ol0KCoqQlVVFdzd3REeHg5nZ2eIRCJwOJwR2/gOZs3GwjKdUSgUUCqVI/pJK5VK3HbbbdBoNKxI7QcrUofB3mW14d7HRNXkcrmN5ZJOp6OtDpkvbb1ej+bmZhgMBiqSysvLUVtbi/DwcMTHx9OK5cDAQCxfvhxvvPEGvvvuO3z99dfUJHzTpk02YxKLxSPaPb3wwgu45ZZb8Pe//x07duzAhQsX8OSTT2LDhg3YunUrAgICbPbJnvxSJs9zJHQ6HS0gys/Px+eff47du3fDZDJBIBDgiSeewIMPPgiLxQJPT88RP69/u1NrKioqcMMNN6ChoQF+fn7YsmULOjs7odVq0dDQgKamJsTHx9P99fLyQmtrK4KCguDu7g6ZTIaSkhJ0d3fTZf3Ozk7o9XqcPXsWiYmJ1IIH6Dv2jIhjzvNQlmVlZWXQ6XQ0Z5O5buzp7jWR9O+/rtPp8OuvvyIvLw9xcXFYsGABkpKSqBBhqviZVYO6ujrU1dWhtrYWnZ2dmDFjBjw9PVFZWYno6Gia5rJnzx4sWrSIHsuysjI4OTnRSvOReOutt7By5UoUFxcjMzMTd95556Dvk8vldl1XCoXCrvfp9foRr/uenh4cPHgQzz//PH766SfallUsFuP+++/HY489RgushruerSkpKcGdd95JbdkkEgm1PWtoaKAtj8PDw3HzzTfT7THn6fvvv0dubi4CAgLA4/Hg5+cHi8WC+Ph4iMVimhpgNpvB5/Ntck2tHzJHauPMRltZriQUCgUrPC8DVqSOM97e3lRkWIsTsVgMk8mE1tZWesNlhKuLiwu4XC4MBgMyMjIQHR1Nn8SYQg29Xg+FQoGlS5fCzc0N33//PdRqNW677TZ89tln+Otf/zrqJU6JRIIXX3wRd955J15//XXs378fe/bswXfffYfNmzfj//7v/8bF39BgMGDXrl34/PPPkZOTQ19fvHgx3nrrLXoztCc6NRwqlQqrVq1CbW0tJBIJ1q1bB6VSCXd3d4hEImoRpNVqIZVKIRQKqb+nTqejuag9PT3g8/lISUlBQ0MDJBIJLly4gN7eXtTX1yM2NhYGgwEeHh4DKv+HuzlHRETQSKp1BH4qilTr/RGLxfjxxx9RW1uLhoYGLF++fNh99fDwQFxcHDgcDoKDg1FaWorW1lb4+PjAzc0Nt99+O3bu3Akul4vy8nL6QMTkQtqLt7c3nn32WTz//PN48803cfXVV0/6sSwtLcVXX32FPXv20IccoM854Pbbb8e6detGXUzX09ODv/zlL3jttddgMpkgEomQmJiImTNngsvlUmssi8VCV22AvvOYl5dHu6p1d3fTznjMTdXDw8PGlUImk9GGJNZYXxNDCerBUptYWFhYhoMVqRMMk6NaV1eH3NxcyOVyGI1G8Pl8anHE4XDQ0tICJycneHl5ISoqCrm5uSgvLwePx4NGo0FWVhbMZjO6u7shEAjwzDPPoLGxER988AEOHz6MWbNm4f/+7//w4osvjrq4KCgoCB9++CHuvfde/OlPf8KpU6fw6aef4quvvsLdd9+Nq6+++rIr9YG+G/bu3bvx3Xff0agyj8fD6tWrcfvtt2PBggVj1sO7qqoKGRkZqK6uhpeXFzZv3gwOh4PGxkZUV1cjIiICMTExKC8vR2hoKIRCIUwmExobG2GxWBAYGIiCggI0Nzejuroa0dHRuO6666BQKHDgwAGUl5dDp9OBz+fj/Pnz8PX1RUNDA0wmE2Qy2aBFUv2X95kfwDaXearRX2yIRCJIJBLweDwIhUIbCyJrGCEjlUqxfPlyiEQiZGdnw9XVFX5+fjAYDEhOToaXlxeSk5ORn58PvV5PH+KKi4tH3ZJ38+bN2Lt3L/Ly8vDKK6/ggw8+uPwDMEra2tpw8OBBfPnllzh37hx9XSaT4dZbb8Vtt912yb7BOTk5eOCBB5CXlwegz8Xj6quvpqLS398fvr6+SElJgVarRVVVFU1LKSkpgVarRWVlJcrLy6FWq2neu1wuh1KppA9KQF9r5+jo6EGvSXsE6HTJw2YZnOrqaruWtVlYRgMrUicYtVqN7u5u5ObmAugzpY+Pj4fJZEJISAhdDmZy+JjE666uLggEAnR1daGqqgq5ubnw8PCAn58fwsPD4evrSzshffbZZ8jKyqLG32+88caghU0jkZycjG+++QYnTpzAm2++iZycHLz33nv47LPPcOedd+L2228f9U3HbDbjp59+ws6dO5GVlUVfVygU2Lx5MzZt2jTm0a7q6mpkZGSgqqoK/v7+ePvttyGTydDQ0ICKigqIRCJ4enpi4cKFCAsLA9DnKCAQCNDa2gpnZ2f88MMP8PHxAY/Hg1wuh8VigUwmo0u7TP4esy8uLi7Q6/W04Ku/DY9er6cPGgAG5KAy+ZljJdLHEkZwWwvGm266CRcvXkRCQsKQwlosFqO5uRl6vR58Ph9VVVVwc3NDU1MTpFIpZs+eDaDPMol5OGhqaoJerweHw6GetaMpmnNycsKbb76JNWvW4N///jc2bNgw6iLDS6G9vR1ffvklfvjhB5w7dw4Wi4WOZ8WKFbj11lsxf/78S34I6enpoS1bLRYLvLy8cM011+DWW2+FUqlEcXEx/P39UVdXB09PT1y4cAGLFi1CaGgoPDw8IBKJqCE/n89HaWkpfH194e7uTk3+mTx5Jn2FEaEqlYpa6DHX9XRwqmC5dKqrqxEbG2tXBb1IJKJFxFwuF4sXL6b/Hi8mYjsTtS9XGqxInWCYXMOkpCTafjA0NHRAMUFJSQl++eUXuLq6Ij09He7u7uDz+fQGolAo0Nvbi5CQECQlJUGr1dJIx969e7Fr1y789a9/RUNDA+68806Ul5dj69atoxY9HA4HCxcuxIIFC/Dzzz/j//2//4fCwkK8//772LNnDx566CGsW7du0Mpji8WCuro6avBfWVmJkydPorKyEkDfDXvZsmW4/vrrccMNN4zLxC4oKMA111yDuro6yGQyPProowgMDERaWhpycnKwbNkytLW1ITQ0lEb5+Hw+7aaTlJSE8vJyiEQiNDc3Izg4GDKZDLNmzaL2S8y5Y3xPU1JS0NzcTAu4BhPyOp0OCoWCRnFHg3VO6FQRBgsWLMCCBQsAwEbEAH0epwEBARCLxaitrYWLiwva29sRFxeHwsJCxMTEIDQ0FCaTCRcuXEBpaSkVoxqNBt3d3RCLxejq6sK2bdvw2muvjWpsiYmJ+N3vfodPP/0Ud911F5YvXw4/Pz+a7ysQCBAWFga5XA6pVDqqKvr+tLa2YseOHdi7d69NkVVsbCzWr1+PDRs20BQQ5qFmtBBCsGXLFvzjH/8AAMTExODaa6/Fddddh4iICJpPzePxIBaL0d7eDgBoaWlBT08PPDw8aIHWvHnzAPS1b2as1MRi8QBbPAD0OmY659XW1rIeqCwA+vyS9Xo9du7cOWKambXVklAopA0mxpOJ2M5E7cuVxqSLVKbadLpTWVlJb9zMsi5zM2e6FFkv8ebn56OsrAy9vb3o7u5GUlISBAIBZDIZFi1ahMDAQGi1WhqJS0pKsulgdO2112L16tV455138MUXX+C1115DQ0MDtm/ffkndmTgcDjIyMrBixQrs2LEDO3bsQE1NDf7whz/giy++wP333w+LxQKVSkV/qqqqBnUVcHd3x2233YaNGzfC19cXOp1uXATq8ePHsX79erS3t8Pb2xsPPvgguFwuamtrUVtbC6AvwhkZGQm9Xo+Ojg7w+XxIJBKoVCqcPn0aUVFRCAkJgU6ng1QqRWhoKJKSkqiQ0ev1tJDEaDTSaDjTp56JkPdHLBYjPj7exoPSXnQ6HRobG9He3o6YmJgJy7O0VxwfPnwY5eXlCAoKQlBQELhcLgghkEqlcHJyQnd3N6KjoxEdHY1ly5ahuLgYjY2N8Pb2RlNTE8RiMfz9/elxy8zMxKxZs3DixAn89a9/hY+PD7Zs2TKqsT/zzDPIy8tDVlYWDh48OOT7OBwOpFIpfHx8EB0djfj4ePozHBqNBv/4xz+wa9cuGk2KjY3FnXfeiYyMDLsKCO3h/Pnz+NOf/oQDBw6Ay+UiOTkZMpkM+fn5NEra1taGhIQEuLi4QCAQoLi4mHaoYxqAFBcXo7m5GXFxcUhJScH8+fPpNlQqFcrKymAymeDi4oLIyEhaOCWXy22akbCwWBMbG4vk5OTJHgbLNGJSRGp2djY+/vhj/P3vf79kgWoymWwEkD1WR5NJTU0NjEajTfTBOiIB9N3chUIhYmNjMWPGDJw5c4YuE3Z3d1MHAIVCgfr6epw+fRp8Ph9SqRTBwcEQi8XQaDRoaGiguXy33XYbXF1d8dFHH2HHjh1obm7Gp59+CoFAcEn7weVysXz5clxzzTXYu3cvPvroI1RWVg7ZV53H4yEoKAihoaEICwtDeHg4MjIyxtRfcjC+++473HHHHTCZTJDL5UhISIBGo8HMmTORl5cHHo+HgIAAJCQkQCgUoqKighaY8Pl8FBYWAgByc3MxZ84c+Pr6wsvLCyKRiApUJnpgNBrh6uoKf39/unxrXd0/mAi9nPw8JjrGNA64HJE6mnlkT3EM0Od20NPTg5aWFqSkpECj0VBBw7TOlMvl9CFNKBQiJiYGdXV1kEgkCA8Ph0qlQkFBAfz9/REUFAR/f38IBAL88ssveO655+Dn54ebbrrJ7v0Ui8XYs2cPfv31V9TX10OtVqO5uRlqtRoNDQ1obW2FRqOBxWKBRqOBRqNBQUEB9u3bRz+DaesbFxeH2NhYxMTEwMXFBZ9++in27NlDC/tiYmLw7LPPYvXq1WP28JWZmYk33niDCmwOh4O1a9fSCL+LiwsaGhpw/vx5GpmPjIyERqNBaGgoKisr0dPTg56eHkilUhQUFIDD4aCtrW3AtgwGA5ycnFBVVQW5XI7a2lp4eXnR/NS4uDg2gsrCwjIhTLhIzcvLw6JFi3D33XfbvD7aiOobb7yBV199dayHN24EBQUNiD5YRyRqa2tBCEFraysEAgGioqKwcuVKdHZ2Qi6XY+bMmQBAc1VzcnLQ2dmJuro6GgU5d+4cVCoVCCGIiIhAW1sbAgICcNddd0EsFuNvf/sbDhw4gOuvvx67d+8edQ9xa3g8Hm699VZce+21+PTTT3H48GHIZDLaTSskJAQSiQSpqamXtXx6KezYsQPPPPMMCCGIjo5GWFgYXF1daZGZUChEeXk5OBwODAYDoqOj0draijNnzlBzf6lUCp1Oh7CwMOj1eoSEhNjYiDCen0BfnnFmZiZcXFywcuVKyOXyIUXoWHhFisVixMTEjElh1Wjm0UjFMWq1GsXFxeDz+ZDL5UhKSkJoaChmzJgBkUgEtVpNvTWBvoc0o9EIo9EIgUCAzs5OuLi4ICgoCKdOnYLRaER+fj4UCgX0ej1uuOEGtLW1ITs7G/fddx/kcvmo8ksFAgGuvvrqAa+3trbC09MTZrMZra2tUKvVqK2thVKpREFBAQoKClBVVYWmpiY0NTXht99+G/TzZ86ciYceeghpaWlj1qv+1KlTePPNN+kyIpfLRXR0NJYvX47g4GCaOtHZ2QknJyf6wKRQKOh3RX19PTo7O+l3DxPp7e7uBgDaKYo5t+Xl5Th16hT8/PxotzXrSCoLy1ih0+noA49KpRrXtqjjvZ2J2pcrjQlVD3l5eZg/fz4eeughbNu2zeZ3jEC1V6z+/ve/xxNPPEH/v6OjY8xuDOMB0yrUGuv2qIxnZEREBL0pR0ZGorm5GWFhYTaiJz8/Hzqdjoonpjino6MDer0eTk5O4PF4kEqlqKiogFQqxdKlS2E2m/Hpp5/i5MmTWLVqFfbu3Yvg4ODL2i83Nzc89thjeOyxxwb8Tq1WT6hAJYTgtddew/bt2wH05Uk+8sgjqKioQENDAxQKBXx9fdHU1ITe3l50dnbi8OHDCAwMRHV1NQwGAwwGA8xmM2JjYxEYGIimpiZkZ2cjKysLS5cupXZger2enhODwQCtVguBQACVSoWFCxcOOcax8oq0tja7HEYzj0Za5tdoNGhuboZAIEBcXNyAa6u/yO2/bFxVVYXm5mbweDzExcWhsrISAoEAvb294PF4aG1txbp162CxWJCbm4tbbrkFP/3005i03gX6cqSZgrW4uDhkZGTQ33V0dODYsWNUvCqVSpSWlqKnpwcpKSl4+OGHMW/ePHA4nMtuv0gIwZEjR/DWW2/h5MmTAABnZ2fExcXRan2z2YyOjg4YDAYsW7YMEomERlQZgcrANA3QarWIj49HfX093N3dYTQaIZPJUF1dDZFIBD6fD6Bv1Ydpwezh4QFPT0+a8lJcXGxzMx4L1Go1ioqKAPRFoVkhfGUxkiOAI21novblSmLCFERDQwPmzZuHDRs2YNu2bTCZTHjllVdQXl6OtrY2bNiwAddccw18fX3tEqp8Pp9+qU429triWCyWAftVVVWF2tpaNDY2YsaMGRAKhXQpPiQkBHFxcdDr9ejt7aU3P4PBAF9fX5rj19vbC41GA19fX6hUKoSFhSEsLAwNDQ0ghNDuS6mpqejq6sJXX32FwsJCzJs3D3/+85+xYcMGAH2RFXvyVU0mk12epf2XkofCYDDY9XlMMdNg9PT04LHHHsOuXbsAACtXrsTNN98MDoeDqKgoainV0dFBO+wYDAY4OzsjNzeXLjsvXrwYMpmMFpK0tLSgpqYGAoEApaWlkEqlKC0tBdC3nHrmzBn89ttvcHJyQlBQEHx9faHX66kX5cmTJ2nV+/z58yfNK9Lak9Oay5lH/a97mUwGb29v2nYT+J8/rFAopMfEutNacHAwNBoNSkpKIBaLIZFIYDabsXDhQsyZMwe1tbWorq5GT08PBAIBzGYz/vjHP+KZZ55Bfn4+1q1bh59//nlQs2x7fXX1ev2I6S88Hg+xsbE2DyDd3d3QarWQyWTgcDg0P3y4Dm/W9PT00HQeoO94Hjp0CNu3b6dWVS4uLkhMTERaWhr4fD5tkczn8+lD4MWLF6FQKMDhcCCRSGyuP5lMhqKiIgQHB9McYaDvoTgmJgZ8Ph91dXWoqKiAp6cn5s2bh8TERFy8eBFGoxFdXV1QKpVITU0dt4IptVqNpqYmAIBUKmVFKgsLC2XCRGp9fT3S0tKQlZWFsrIy/N///R+0Wi0SExNhMBjwwQcfIDMzE2+++aZN+1BHYqSlXA6HM0Ck1tTUwGAwwGKxQCAQIDAwEFwul0atmM8EQL1JQ0JCYLFYwOfzUV9fj56eHpw9exZarRZcLhdlZWVITk5GREQEKioqUF5eDj6fD5PJBCcnJ2zatAm//PILqqqqcO+99+Lw4cN4//336bZHQiwWw8XFZcT3GY1GerMc6bjZ8z6z2Txkpfwdd9yBH3/8EU5OTli1ahX1PPXz80NDQwPNyePxeJg5cyY0Gg2kUikkEgnq6uoA9PVJX7duHXQ6HTQaDdzc3KDRaCAUCsHhcBAREQFCCBUjhBAcPnwYzc3N8PX1xQ033IDOzk40NzcjJCQEer0eJ0+epFXrCxYsoNHXiS4WHOsn/P5dpxiYtryMgGU8U5n9HazTmlqttulK5efnB5lMhtLSUvB4PPB4PFgsFnC5XMTFxSEoKAgvvvgiHnroITQ2NmLDhg04cuTIgJbAAQEBdj10ubq62pWj7eXlZdfDhdFotGt+MC1jgb7vx3vuuQc//fQTgL7UhPj4eFptDwCNjY00ZaWlpYU2QPD09ERFRQWam5uRkJAAiURCDfiBvqJKvV5Pu94pFAoQQlBTUwOpVAqLxQJCCCwWC0QiEebPn4/58+cjKysLhYWFiI2NBYfDQWBgIGpqahAYGDiq67eyshI1NTU0N70/crkcPj4+9N9XQiEtCwuLfUyYSE1JScGf//xnPPfcc4iKisJVV12F/fv3U7+0t99+G++99x6Ki4upLYqjcSlLuUFBQSgpKUFYWBji4uIgEonozYFZMuXz+bRHNtAXEY2Li0NOTg54PB6qqqrg5+eH5uZmaqPU0tICoC9SFhQUhKamJnh7e0MikcDFxQU33HAD9u3bh3/+85/YvXs3Tp06hY8//pj6vDkKarUa1113HbKysiAUCrFx40a4u7ujp6cHnZ2d9N/Mzdjf3x9paWkICwuDSqWCm5sb2tra0NDQQD1SGcrLywEAc+fORUREhI0PYEtLC1paWuDu7o6mpibweDwcOXIEHh4emDVrFoC+6yE6OhrFxcWIjIykuX+TYWjOzLOxwvpab25upg9bcrmcChKg74GKEGLzsMUUzTHii4mcRURE0HFqNBpUV1ejvb0d+fn5MBqN8Pb2Rnx8PJqammCxWLBq1Sp8++23UCqVuP766/HTTz/Z9bAz1di7dy8efvhhmo8uEAiwfv16rF69GkajEXl5eaiqqoJUKkVAQABOnjyJmpoaBAQEIDU1FTNnzsSJEyfg4uKCxsZG6hQCgOZNA//rVieTyej5qqmpQVRUlM05Y0hNTUVaWhr9/9DQUCoyR2ODZr2twUTqWKWusLCwTD/GVaSazWabSEZKSgpefvllJCYmYtWqVZDJZPQ9TzzxBP7whz/g+PHjDilSVSoVSkpK4OXlNcCYfTiYZTPrCFxhYSG6urpQWFiI4OBgtLW1DVgCY274EomEFo/4+vqivLwcWq0WBoMBXV1dcHNzQ3NzMzgcDrRaLWbNmgWFQoGWlhYsW7YMoaGh+PDDD1FdXY3Vq1fjySefxIsvvmhXJGiyqaiowNq1a1FWVgapVIqbb74ZEokEXl5eMBgMNDqUnp4OPp8PjUYDPp+PgwcPgs/nw8PDgx7HsLAwBAQEUPFVXl5Ol1alUilkMhkVmd7e3qirqwOXy0V6ejqioqJoNyq9Xk8L2cRiMebPn4+MjAzodDp0dHRArVYjJCTkkpf7L9UjdayXUJm0BQC4cOECfZ3P59PqcuttMsfV2dmZRpmZv2fyQNVqNXJzc2k7WiayynT+Ki8vR2BgINzc3ODm5oZ58+bBYrHgxx9/xOnTp7Fu3Trs27fPYboatbW1YevWrTRFJTAwEMnJyQgICEB6ejqA/6XgBAcHIzY2FnK5HKdOnQKfz0dXVxe8vLwQFhYGgUCAtrY2tLa2QiqV0iInpnr/woULaGxsRFtbG1asWEEfjhlRL5VKR3U92ev0APQ9iA8mgllYWFhGYtxEqlKpxHvvvYfy8nIkJydj9uzZuP766zFv3jz4+/tTP08nJyeYzWao1WrExMSM6Ec4VampqQHQlzd5uTdJxuScEbuenp4D3lNVVUWXr5m2m8x2TSYTzGYzXF1dER0dDW9vb+zfvx95eXmoq6vDgw8+SFuxurm54dVXX8U333yDH3/8Edu3b8fhw4fxz3/+E1FRUZe1H+PJuXPncOONN6KxsRF+fn7YunUrOjs7oVarkZqais7OTuTm5qKzsxOurq7UT7SgoABtbW3g8Xjw8fFBVFQUzSs0GAzw9vaGTqdDeHg4gL5l18jISAD/y68E+lIvGhsb6UNGVFQUbbJw5swZJCQkUM9UoC8Ps7CwED4+PvQzLkVsjkYcjCeMSC0qKgKPx0NPTw8SExOHzFXsn4urUqmgVqtpJTpjn1ZaWor29nZERkZCLpfTBgo1NTWQyWSoqqrCokWLAPQV2Xh4eMBkMuHQoUM4fPgw1q5di/3794+qK9VkcOTIEdxzzz2or68Hl8vF3XffjRtuuAHd3d3Q6/U091oikcDV1RVmsxlBQUEICwtDTEwMeDwewsPDERMTA4PBYGM3BfzvAcHT0xMmkwk9PT1wdnamebrMg1Jvby8uXrwIJycnmhJgD6PJrbaOwLKwsLCMhnERqYWFhViwYAE2bdqE6OhoVFdX45133sHrr7+Oxx9/fMCNzMnJCR999BHa29up1ZKjcTnRAib3lPnCT0lJQWpqKgDbPFdrRCIRFTvWKQZMFySgTzAzAraxsRG9vb0oKirCrl27aNcbsVgMi8WC++67D2KxGL/99htyc3Mxb948/OUvf8Gtt946pXLENBoNXnrpJXz66acghCAwMBBbt25FfHw8fvnlF2g0Ghw4cABubm5ob29HXV0dWltb0d7eDhcXF7S1taGuro4anbu4uNDiNAYmssd0TiGEQKPRoL29nR5flUoFgUAAPp9Pu4Glp6fT/FamuAroW87U6/WQyWS0e9JgYtOeKOlkFV4NhlqthpOTE1xdXREUFAS9Xj+kTRGTi/vNN9/g9OnT8PHxQWpqKlpbW+Hv7w+dTgeZTAaVSoXS0lKUlZUhJSUFdXV14HA4iI2NRXt7O+2oZLFYaDGcn58foqKiUF5ejuPHj2PhwoXYt28f/Pz8JuGoDA8hBG+//TZefvll2lr3xRdfxIoVK6h/q1gsRlpaGvR6Perq6sDj8VBaWop9+/Zh+fLlWLduHVpbWyESiSCRSOg1yeRZMw+3zHeHu7s7Fi5cOOD7ibmWvLy80NXVNaqH66nU7YzFceFyufReN95tUcd7OxO1L1caYy5SjUYj/vCHP+COO+7AO++8A6Av6pednY0nn3wSnZ2deOmll+j7f/zxR/z3v//FF198gSNHjjjskpC1ndSlMFi0FBja9D0kJISKAcYSCfifwFIqlTCZTNBoNFAoFFiyZAlOnDgBvV5PbYJ8fHyg1WrR09MDFxcXXHfddRAIBPj111/R0NBAi6r+9re/DVlVP1H09vZix44deP311+kSJtNqMjg4GH5+fli7di1ef/11cDgctLe3w8PDA1qtFmKxGBcvXqSV7AqFAt3d3fD09ISXlxdiY2OhVqsH5BP3f0BgfGVbW1sB9PWrlkgk8PT0hL+/P5ydneHl5UWdApi2mGKxmJ4rxkMV6Iuumkwmug17oqRTSRxY75NaraZm70zRDrMf1nmip0+fpukoy5cvB/A/FwjmvDY1NUGlUqGhoQFJSUno7u5GQEAAZs2aBblcDhcXF1gsFlpwyFglhYeHQ6lUorCwEHPnzsW//vUvLFu2bOIPzBB0dnbi/vvvx/79+wEA8fHxeOKJJ5Cenk4jok5OTjTVhmkfWV1djcOHD8NisSAnJwcRERHo7e1FaGgoYmJiUFVVhczMTBsHBcD2u8P6+4kpamMaAbS2tsLLy4s16GeZcIRCIXWycPTtTNS+XGmMuUjlcDgoLS3F7NmzAfSJi+DgYCxfvhwzZszAH/7wBwQHB+OOO+4A0Of5WV1djRMnTmDGjBljPRyH4FKiYyKRiObuFRcXo6enB8XFxXTZXyaT4ejRozSNYsmSJZg1axbOnz+PkpISWCwW2mmHMV8Xi8VITk7GggULcPz4cezZswe7d+/GuXPn8MUXXyApKWkcj8LQnDhxAlu3bkV+fj4AwM/PD7NmzUJ8fDyCgoLg6upKbaySk5PR1tYGDw8PcLlc8Hg8GAwGCIVC9Pb2QiAQIDk5GSaTCT4+PrRQRywWU9HIHMP+opH5b0BAANra2hAREQE3Nzebz5DL5TTnkrFaYj7POsLIiE3rz59KUVJ7YB6IGKyjqNbHzlo4zZ07F6dPn8bcuXOhUCioty+TQx0UFAShUAhCCFxcXBAQEIClS5fCaDSiuroaAoEAXC6X+tO6u7vDx8eH2i+FhITg6NGj1FP1rbfewn333TfpqwElJSXYtGkTTY+IiYlBVFQUsrKy0NPTg5iYGAQFBVHz/TNnziAgIABJSUkIDAzENddcg3PnzsHLy4u6S1g7A0gkEtqVrrCwcMC5GYqxTFNiYWFhGWvGXKT29vYiMDAQVVVV9KZVWVmJvXv34t1334WHhwd27dqFm266CSKRCE899RTuu+++KZ9DNh6oVCq6BHepUQydTgez2YyioiLExcXRSKBcLofJZKK96pkHgIiICPD5fPj7++PcuXPU+qesrAyenp7w8fFBa2srIiMjsWHDBhw8eBDl5eVYvHgxXn/9dTz88MOXvL+dnZ04ffo0JBIJNSUfrkCrvr4eL7zwAr7++msAfZHMtLQ0+Pn5Qa/Xo76+nrbLbG9vx8WLF9HZ2YlFixYhNDQUeXl54PP5kMlkaGhoQG9vL5YuXUodDAghtNnAqVOn8Ntvv0EqlSIxMREzZ86kopGxpLKukA8PD4dQKIS3tze9uVv7hopEohHPaX9ROpWipKOlvygaSnCvX78e69evBwCaHsD4tHK5XHh7e0MoFKKoqIge7+zsbMhkMri6utIe9MyDR2BgIG655RZotVrk5ubCYrEgMTER33//PXJycvDkk0+ioKAA27dvH9NiwLq6Ovzyyy/IysqC0WhET08PzGYzent7YTQaYbFYYDab0dPTg97eXly4cIG6TWRkZIDH44HP59OuT0w+LtDXOIAQYtOydOnSpVi6dCmqqqpw6tQpKi6ZFZSOjg709PTgwIEDNIfaHpHKFjWxsLBMZcZcpIrFYmRkZOBvf/sbioqKEBMTgx07duCOO+7Axo0b4ezsjAcffJB6YzIRkCsRa2uWSxWpYrEYPT098PHxQU9Pj40o8PHxQV1dHaKiomjeWnt7O83FTElJobY0ERERMJvNkEgkIITg7Nmz4HK5uOOOO5CZmYkzZ85g69at+O233/CXv/xlVPl+RqMRO3bswLZt26g1FoNcLoevry8CAgJoQZ2fnx8aGxvx9ttvQ6fTgcPhYM6cOTRHsbKyEmazGYGBgXBxcYGLiwvUajVOnjwJsViMhoYGzJgxA0uWLIGTkxOUSiVqamqgUqlw4sQJdHR00GX6uro61NTUID8/HyaTCUqlEn5+ftBoNHRpvqWlBSaTiXbm6ezshEgksilWU6vVVMiOpvjEUUXpSFgvNQ/V7EKn08FgMADoW44WCATgcDhQKBRISkpCRUUFvv/+e2i1WvrwoFKpaDEg0FchX1VVBQ8PDyxatAjFxcUAgMcffxw//PADdu3ahX/84x8oLi7Gzp07L9nlwGg04tixYzhx4gR+/vlnFBQUjPozPD09sXjxYkgkEojFYoSGhsLDwwOzZ8+m3bqAvmKpjo4OdHR0oLq62qaVMiP+vb290d7eDr1eD3d3d4jFYtqJDujLa7eHy01TYmG5HPR6Pc2hLiwsHLdo/kRsZ6L25UpjTEUq0ynq4YcfhkQiwbFjx1BfX48333wTjz76KIC+IqmAgAAqUK80rG/YQUFB+Pbbb9Hc3AyDwYCVK1cO+r7hPksoFCIgIAA8Ho9GoQghMBgMEAgEWLhwIby8vEAIoSkCXl5eNHJisVhQUVGBzs5OerOqqamBRCJBS0sL4uPjsXnzZvzjH//AP/7xDxw8eBC5ubn45JNPsGDBgmHHZzKZsHv3brz55pu0oMjd3R1cLhcdHR3U1UGtVuPixYuDfoZMJsOKFSuwcuVKNDU10YcbsVgMDw8PSCQSFBUVobu7m5r0x8fHIzAwkLY5VavVyM/Ph7OzMyoqKsDlctHT04PU1FTk5uZCLBZTf0rGl1Ymk9HjaDQaaVpEa2srWlpaEBUVBbFYTM9TS0sLuru7ceDAAWg0GiQnJ2PFihVDHpvpcO2PptNa/0ICjUaDzMxMKmZPnTqFyspKREVFYcGCBWhvb4dGowGXy4W7uzskEgk6OzvB5/Oh1+tRU1ND81gFAgHq6uoQHByMyspKVFRUwN/fH/fccw+io6Oxfft2nDx5EkuWLMGuXbsGpBWZzeYB+0IIQUlJCQ4fPozDhw/j5MmTVFADfedPKpUiMDAQXl5eSElJASEEx48fh0gkgslkQkBAAJydncHj8VBXV0evFz8/P/D5fCxcuJDOw8OHD6O8vBzh4eFISkpCYWEhANDVAuZ6qa2tBdAnmpl2yWKxGFKpFGFhYaivr0d6errNtTnYeZsO1x+L40MIoYESe79Ppup2JmpfrjTGVKRyOBx6Q9q8eTM2b948wCv1559/HnNjcUfC+uYQEhKC7u5ucLlcZGdn2/QKH83nBQcH0yr+/p19CgsLkZiYSJf1srKyEBERQQsyjhw5QoWjm5sbqqqqaNef2NhY+Pn5QSqV4sEHH0RqaipeffVVVFdX49prr8Xzzz+P5557bkBXH4vFgm+++QavvPIKysrKAPQZuD/00ENYvHgx9TBtbm6movrs2bPUa5TpxBMWFgZPT09qNaTRaBAUFAQPDw90d3dDoVCgvr4e7e3tcHV1RXh4OJKTk5GQkAAulwuDwYCysjJUV1fD3d0darUanp6eyMrKQmtrK8rKyqin6bp166gTBSOCNRoNiouLYbFY4O3tTQvR3N3dIRQKbQqsCCHo7e2lUd5Tp05h1qxZNpX7k2XkP16MJHSOHz+OvLw8zJo1a8ADDdPJi6nq//7779HT00Or2QsKCtDd3Y2wsDC0tbWhuroaZWVl4HK5tHOXs7Mz7ZLU1tYGjUaD06dPw2w2o729HYsXL0ZcXByeeuopvP/++6iqqsKyZcsQEBBAx8/sA5P2wvy/VqtFfX29zZj5fD78/PwQGhqKjRs30laeM2bMoHP3wIEDUCqV8Pf3B5/PR2lpKQwGA/h8PnQ6HeRyOVxdXREQEEA7WBUWFuL8+fMwGAxQKBRU5BYXF2P+/Plwdnam42ppaaEP+BqNBrW1tYiIiMCcOXNsxLf1d8Fg540VqSwsLI7AJYvU/uKToX/EhHlPTk4OPvnkE+zatQvHjh2btsuc9sJEEMPDw1FeXm738lz/v2dyAfuLHyYNQCKRoKGhAc3NzVCpVBAKhWhvbwcAdHV1ISAgAEajEbGxsWhqaqJPgKtXr0ZDQwM8PDxQWlqKpqYmBAYG4siRI3jllVfw+eef47XXXsPRo0fxz3/+E4GBgSCE4Mcff8RLL72EvLw8AH039oSEBFxzzTVYtmwZoqKioNfr0dLSgri4ONqiMT09He+99x5MJhNcXFywdu1aeHh4oKWlhebnJSUlobOzEwKBAO7u7nB3d0d5eTldIl62bBnMZjMMBgNaWlrQ1dUFs9kMd3d3enw7Ojro8WA6RX3wwQdURCoUClrww1gsmUwmuLq6wsfHByKRCHV1dWhpaaHHv6qqCs3NzfD29saiRYuQnZ2N8PBwG1/V0XYimw7k5eWho6MDR44cAdBnVs9E65kHVaaoKi4uDhUVFXByckJ7ezsyMzPR1taG2bNnw8XFhfaMDw0NRWdnJ5KSktDY2AixWAytVguRSASLxYL58+ejrKwMERERkEqlKCwshJubG5566il8/PHHKCsro53ERoLP5yM0NBTz5s2DUCiEWq1GV1cXgoODMWPGDKxatYo+7OXl5UEgENB8ZiZNpLS0FFwuF0lJSbjxxhvR2dkJpVIJo9FIi5VEIhEEAoGNf25PTw/i4uJgMBho9y3meEokEgQEBECpVNLv25CQkCt2dYqFhWX6ckkitaSkBN9//z1uueUWu3ITdTodmpqaUFpaiqNHjyIxMfFSNuuQWItJ6wgyY9kzY8YMbNiw4ZI+19ryx5rCwkKUl5fbiDmgz7JJqVTCx8cHxcXF6OzsRGRkJKKjoyGXy6FSqZCfnw83NzeIRCIsW7YMVVVVyM3NRWFhIaqqqmAymfC3v/0NS5cuxaOPPopjx44hLS0NL7zwAr755hucPHkSAODm5gZfX1/ar7u2thbt7e0QiUTIzMxEZ2cnPSZCoRAxMTFYs2YNzp49i4CAAMTExMDJyQmenp6or69Hd3c36urq0NbWBolEAq1Wi5kzZ2LRokXo6uqCu7s78vPz4eHhAZFIhIKCAlRXVyMkJARLly6Fk5MTjh8/jp6eHoSFhaG4uBgcDgeFhYVQKpWora1FYGAgYmNjBxT8RERE2NgtAaBR1erqavz444+0sCcjIwMZGRkD7KscqWp/rJg5cyby8vLg5ORERSYjUq2PS29vL+bMmYOrr74a1dXVKCwspBFSjUaDyMhIuLu7g8PhwNnZmVqArV69Gt999x20Wi24XC5CQkLg6+uLu+++G6dOncIPP/wAi8UCX19f8Hg8PPfcc6iqqkJNTQ3a29tRWVkJV1dXBAcHQyAQQK/X03QCg8GAxYsXY9myZXBxcYFQKMTPP/+M4uJiREVF0cp6jUaDgoICGI1GcDgcxMTEoLS0FIcOHYKTkxP4fD6EQiGNpJpMJpSVlaGjo8Mmh3nFihXo6uqCq6srFcdGoxECgYD6G9fV1aGnpweBgYFQKBTo6emhhVNKpXJU+dAsLCwsjsCoRWpZWRnmzp2LtrY2tLS04IknnhiwfN8/50ksFmPZsmVYuHAh7dt9pWAtJq2PE+Mteak3leH+vry8HDqdDkajkfbebmlpwfnz52kldXd3N9zc3KhABYDg4GCIxWIUFxfDbDbTpViJREIr6BsaGtDS0oJbb70VJ06cwK5du9DS0oLHH38cQJ8tzpw5c+Di4gIejwedTgcfHx8qLKurq6HX69Hd3Q2j0Ygvv/wSxcXFSE9Px+233460tDSUlpZi//79UKvVSExMRHR0NJqbm+Hn54czZ86grq4Oc+bMwcyZM9HV1YWQkBCoVCoUFRWBw+EgPT2dLicDoGIhMDCQFqwAfdF9d3d3nD17Fi4uLujp6aGtJwFQl4T++UVMEZpMJsOhQ4fg4uICrVYLhUJB39Pf3/ZKiqAyD2YxMTFYuHAhVCoVfQhgYMTpzp07kZOTg/T0dPzud7+judQzZsxAQ0MD4uPjkZqaioCAAJw6dYpGZYuLi5GUlAQfHx+0tbXBz8+PdlOqra1FVVUVuru7YTKZEBoaCqVSSY3tmdUDhUIBPp8PsVgMLy8vcLlceHh4oLCwEC4uLvDy8sJPP/2EyspKJCcnY+HChejs7ERmZibq6+tx0003IScnB0VFReByuVi2bBlkMhl+/vlnVFRUgMfjYdmyZUhNTYW7uzsKCgrQ2tqKtrY26HQ6tLe3Izs7GwqFgh4bRrzHxcVBJBLRh52YmBhkZmaivLwcHh4eWLx4MYKDg6HT6VBdXU0fmob7PiksLKRR5uE6+11q610WFhaWsWZUIlWn0+GNN97Atddei7S0NDzyyCPo7e3F008/bSPAGIG6bds2GAwGvPTSS9RI/UqBuVEDoD6k1gzmY9h/CX84mCik9cMAc0Pz8/OjS/UqlQp1dXXo6OhAc3MznJyc4OHhAT8/P1p00R8/Pz/aGUmpVKKsrIxGdQDQiKharUZKSgoqKirQ0tICX19fpKSkQCKRoL29HWazGQkJCVi9ejVKS0vR3d2N/Px89PT0IDw8HIGBgdizZw+APpP322+/HTU1NVCr1SgoKACPx8PRo0fp0qmbmxtMJhMkEgkaGxvx66+/4tSpUxCJRJg9ezYtbqqrq4NAIEBnZyd8fX2pQGQEOwDccccdtO2rs7MzBAIBeDweDh8+TFuaMuekf9W+XC6HTqdDcXExjVLHxMRc0bnW1pHj/lH+4ODgARXkTATy8OHDIITgxIkT2Lx5M06cOIG2tjZ4enri8ccfp7613t7e+Prrr8Hj8VBVVQV3d3fo9XoEBgZCq9WiqqoKer0eoaGh1N6so6MDkZGR6O3thYuLCzQaDcLCwuhDj1gshtlshqenJ/h8Pnp6eqDRaODr6wtCCOLi4nDmzBk0NTXhq6++gkAgQGFhIXp7e6FWq1FSUoL9+/fD09MTcXFxCAkJQWlpKWprayEQCODp6YnAwEAEBARALBYjLy8PRqORdnvr6elBU1MTZDIZPD094ezsPGDeM8WOcrkcu3btgpubG8rLy228fJmCLj6fb+ORai1K4+LiUFZWBp1Oh7KyshFF6mha7xYUFNglfllYWFhGy6hEKpfLRUpKCqRSKTZu3AiZTIZNmzYBwACh2traiuzsbKhUKjzyyCPw8vIa25FPcZgbNZ/Pp7YUI1X8DbeEbw/MzSU4OBipqanQ6/X49ttvAfR5lDo5OUEqlWLGjBlUNDBeldYwFjnM0nxZWRkMBgNmz54NT09PSCQSnDlzBiKRCF1dXbj55pvh5uaGhoYGAH0iLiYmBh0dHZg9ezaEQiFSU1OhVCphMBhoG0u9Xg+FQoHKykp4e3ujqKgIRqMRjY2NtPI/NjYWRUVF8PHxgYuLC+bOnYsLFy4gMTERFy5coN2d/P39weVyodVqUVtbi+DgYISHh1Oxam26X11dDRcXFyQnJ6OrqwteXl6QSqU4ceIE+Hw+raCura2FwWCAt7c3zp49C6DPHzU2Nha1tbUwGo3w8PDA2rVrAQC//PILzp07h5SUlAFL/oNFUqdTxMpa2DBRfuZB5uzZsygsLERSUhJWrlwJvV6P8vJyGAwGamA/e/Zs6lnLmNU7OzvT1zQaDTw8PNDT04OUlBQqUl1cXGA0GqFWq2nBHQD4+/sjPDycdnAyGo3w8fGBVCpFdXU12traYDabER4eDg6Hg6amJvD5fEilUnR3dyMqKgpGoxEzZsxAUVERzGYz8vLyEBcXh+rqasyZMwcnT56ESqVCVVUVFi9eDL1ejx9//BEGgwGxsbG4+uqrIRaLYTAYEBISguTkZFRUVMDX1xdtbW0oLy+Hv78/goODAWDEayA8PBz19fUQCoVobm5GSEgIiouL0dzcDBcXF7S3t9PVA7lcbiNK4+LiEBERQcXkcIy2qYS94peFpT8cDofeH8czn3oitjNR+3KlMSqRKhQKcccdd9Avrw0bNoAQgptvvhmEEDz77LOQSqUwm83gcrn44IMPYDKZrjiBClzacr69fzNUxLX/zUUkEiElJQWVlZU0qsPn822ihMXFxfDw8KARVutoDiMCGNuqgIAAhIeHo6OjAzk5OYiMjERiYiICAwPB4XAgl8vh5+cHNzc3dHd3QygUQiqVwsnJCSKRCOHh4TAYDPDy8oJIJEJJSQmWLl1Kl8k///xzBAcHQ6vVYsaMGWhra0NMTAycnZ1prt7atWtx3XXXoba2Fnq9HtXV1XBzc4PBYIBEIoHZbKY3bMZLkyE3N5dGPxUKBTw8PBAREUGPW1RUFC0QYwSq0WiEi4sL8vLy6JL1448/Tt9jvYSdk5ODjo4O6tRgLdyGEqmjiVhNZayvPSZNgmk1e+7cOZjNZuTm5mLlypXU59NoNOK+++6DVCql4io8PBxdXV008sm0Pq2pqUFERASEQiFcXV3p0n5DQwM6OjoAAN7e3uDz+aipqcHFixcRFRWFhIQE+oClUqlQUVEBrVaLpqYmWuXf1dVFV3p8fHzg7+9PW5TGxsYiPj4ezc3NEIlESE9Px/Lly6HT6fCf//yHRmL1ej09/x0dHYiIiICXlxcVpWq1GgqFgrbg1el01O/V3u+I9evXQyKRwMXFxSa/F+hzI/D396e53gAGiNK4uDh6Ex3pXI7merRX/LKw9IepH5gO25mofbnSGHVOKvPlxQjRjRs3ghCCW265BRwOB4899hi2bdsGlUqF3bt3X5ECFRh8OX+s/mY0Ede4uDjExsbSIh+9Xg+VSkVzT7u7u9He3o7o6GgAttEcnU6HOXPmIDo6GlKplIrYsrIyKBQKlJeXU+9QLy8vJCYmQiwWw8XFBZGRkbSSOiwsDDKZjArTs2fPoqKiAh4eHgAAHo+H06dPo7e3l6YguLi4ICoqCv7+/nQ8Pj4+VPAajUbI5XJkZGRAIBCgoKAAVVVVcHZ2hpubG7UKYlpFMl6cTPFKWloa9Hq9jUgMDQ2l+apeXl6oq6ujkS4ej0fzaJn3S6VSm+OVnJxMI6nMsRxOgDpaG9Th6J+DC/xv/9LS0mgkVa1W0weLq6++GiKRCCqVCl1dXWhra4OPjw98fHwgEAhohJ2xcAL6uo4pFAro9Xpa4CSRSBAbG0u7gJ09exYikQjV1dU0KqtQKFBRUYH8/HyUlZUhKCiIilNnZ2e0tLTAx8cHM2fOpN3MmpqaoFKpEBQUBIlEgiVLlsDT0xNA39xITU2FQCCAm5sbLBYLOjo6EBgYCD8/PwQGBqK1tRUikQiNjY3g8/lwdXW1EfF6vX7UD7Hz58+3eThi5ibDjBkz6GcOJkqHKui7nGswPj6ejaCysLCMC5dsQeXk5ARCCCwWCzZt2gQOh4PNmzfjwIEDKC8vR2Zm5hWVgzqRDBVxHS5yx7y3qakJXV1dMBgM8PDwoAKVKRDqX/DGiAZG3Lm7u9Mb86JFi6ixOgDaycpgMCAzMxPV1dU0X04mk6G3txf5+fkoKSlBY2Mjrr/+eixZsgQ6nQ4hISE0T5Ax6WfsyywWC22HySzZCwQC2hTi4sWLyM3NhUgkQmJiIsLCwmAwGJCbm4vQ0FAaqY2OjkZxcTGio6Np8RNzHJnjpVKpaA6xXC6nx3P58uWQyWQwmUz48ssvAfRVr1sf2+XLl9sY+A8m3KyZDsv8w8Hs/5o1a2hKhFKppOe1/7ERCoWor69HRUUFXFxcsGDBAojFYnC5XDg5OWHBggVQKpVobGyEXC5HS0sLjEYjTatpbGyEQqFAUFAQjhw5AkIIbfkpkUjg6uqKlpYWmM1maDQamM1muLq6wsXFBUFBQTSFQKPRQCwW03xYtVqN6OhoOm6FQgGZTEaLBHk8Hmpra+lnabVaWiDK/E1rayv9t1gsRmxs7LCm+tbFZkw6ADCwQ5T1g609Jv3W3xEApk0kn4WFZXrCHfktQ8OYQhNCsHHjRixcuBBqtRo5OTlISkoaqzFecYyUuyqXyxEXFzegUEcsFsPZ2XnYyJ2rqytcXV0hk8ng4+OD5ORkm5uc9Y9QKKTb6OrqQm1tLXQ6He3MBAC+vr7w8/ODTCaD0WhEREQEjEYj9YHk8XjU+N7Z2RkJCQno7u6mLVtLS0thMpkglUpxzTXXgMfjoaKiAhcvXkRPTw/NJ/Xw8IBQKIRGo4FOp0NgYCAdf3d3N/h8Ptrb20EIgVQqBYfDoY4EzP7MmjUL1157LYKCgqh1DxMZI4TYNEBgbtzM8UxOTsbvfvc7SCQSaDQaVFVVoaWlhXamYs5Z/2N4uT/TAev9kclkNh29CCHw9vam0VOVSgUOhwMnJyf6/eLh4QEvLy/w+XxwuVwoFApqcM8UZnl7e8PJyQkdHR0ICAiAj48P3NzcwOfz4ebmRptehIWFITY2Fl5eXlAoFNTJ4uLFi6ipqaGOFnw+H9HR0fDw8IC/vz8aGxtRXV2NlpYW2h531qxZiIyMpDZWTGcomUwGvV6PqKgoxMbGIiwsDFKpFG1tbTh16hRUKhVUKhXOnDkDlUo16Hln0k1qa2vH9DqwvqZH+r5gYRlv9Ho9jcQz38mOup2J2pcrjcvuOMXhcGA2m2lf9/PnzyMhIWEsxuYw2JskfTnJ1IcOHUJ2djYtymE+r3/kc7AbDvMea/ulwejfiMH6c9va2uDk5EQjjzU1NTS/lIlc+vv7g8fjwcPDA2VlZYiMjKT5hsykjYyMxKpVq1BYWIjAwEDk5uaiubkZHR0dyM/Ph1arpTmyvb298PLyQnh4OORyOYqKilBSUkIFApNzOnfuXOTm5sLLywuurq7w8vKC2WxGeXk5fH19weVy6TKnTqejXpjWy+3MMWIM4vV6PY0EMhEqtVpNI7rR0dGIi4ujAn80zgzTRXwOdz1bF4VZR0wHOz7McWaKo1QqFQIDA2E2m8Hj8WAymRAcHEzPhVKpREBAACwWCwoKCiAQCODr6wuZTAaFQkGLt5ydnREfHw8/Pz/aBYzP51PrqZKSEpp/yufz6SqAwWBAQUEBfH19MXv2bBw+fBhKpZL6BC9duhQHDx5ERUUFwsLCsGDBAtqlLDAwEPX19XB3d6dzsbq6Gq2trdBqtXB3d6eFeQaDATU1NQOcD4C+dJOysjIEBATQbliXcz4Y+n9HsAKVZTIhhNAWwOPdFnW8tzMW21AqlSO+h/meu1IYs7ao8fHxyMnJuaKM+ieS7OxsaLXaS26ferlIpVK0tLQA6LuxRUVFobm5GVwul3o6MsjlchtLHaaApr29HR4eHuDz+UhNTYXZbMaFCxeg0+lw4cIFuLq6gsvlIjw8HH5+fvD29rbJdTMYDOjq6kJTUxPa29sxY8YMBAcHY82aNfDw8EB2djbc3Nxw4cIFuLu7IzU1lVaHM8ucAGj0yLq1KUNoaCja29sHFZpqtRqRkZEICwujnrLWv7scZ4bpxkhFY4Mhk8kQGxuL5OTkAeKJWZ6OjY2lqSPl5eX0s6VSKWJjY6FSqVBaWoqAgADaBMDJyQm1tbXo6emBxWIB0Od2wZjyBwcHo729He7u7pDJZDh79iwaGxvR1NQEqVSK6OhoGuHt7u6Gk5MTioqKYDAYUFRUhCVLlsDd3R0qlQoNDQ0QiUTw8/ODSqWiDhhOTk7UrkwoFEIoFKK1tdWm8M4aZg4x19R0Tw1hYbmSYWo2brvtthHfKxKJoFQqrxihOiYi1cnJCXfddRdruzCOpKSk0EjqRKPT6eiyuKenJ63O7g8TrQT6hKBOp6Om+mKxmKYOeHl5oaurC62trXTZVigUoqenB0lJSdiwYQPUajVcXV3h7OwMkUiEkydPIisrCz09PdDpdFAoFNRqqqqqCo2NjRCJRLTlJZPLx9zYmaipu7s7FTb9n3bFYjF8fX0RHh4+qLCyzgUezPd2tAJ1NNFXR+NSisIG65ikVqtx/vx5GtmeNWsW/WxrgcdcW0yUEujzrlUqlbSwLzY2Fu3t7TCZTCCEoL6+HvPmzYOTkxNd/mfo7e2Fn58fjhw5Aq1WC6lUColEgvDwcIjFYqSnpyMnJ8cmXaa8vBxms5l2VwsKCkJwcDA6OjpQVlaGtLQ0REdHo7e3F87OzrSg0drbtP/xM5lMbN4oy6RSXV0NjUYz7HvsiQCyDI1CoYBSqbTrON92223QaDSsSB0trEAdX5h2m+PBUEuzDMwNk7mJMu8Ti8U20TImesZEUDUaDUwmEwDY2F4BfXZBnZ2dkEgk6O3txYIFC8DlcjF//nwoFArainXu3LlYs2YNLl68CEIImpubMXPmTHR2dlKRUltbi+bmZpw7dw5yuRxtbW1YunQpHa91EUp/EdTfy3S4qN9wYpJ5vaioCEVFRYiJibHLSmy6Rl+tI3/2LH0xdmgAbLqgaTQa9Pb2ora2FqGhobSxQk5ODi5evIiEhAQsWLAAQN+5FAqFaG9vp64iTOGewWDAnDlz0Nvbi+zsbLS2tsLb2xseHh5obGykhXQAaIW+SCTCv//9b1qFv2nTJnqtrFy5EitXrrTZh/DwcCpUJRIJysrK0N3djebmZvj7+6OtrW2AeB/qGmCuRbVajQsXLiAiIoI+GDY3N9P3D/awyMIyVlRXVyM2NtauHEuRSHRFNzS5XBQKxRUjPEfDmIlUFsdlpKXZ/uKNER39b7iDRc9qa2sRHh5O/7+6uhparRZAn11OTU0NBAIBtf9h7HRKS0uh0+lw+vRpzJ49GxEREVCpVJgzZw46OjrQ3d2NlpYWBAcHIzAwECUlJZgxYwacnZ2xcuVKmzy/0tJSNDQ0oKGhAd7e3jb7cinL0sBAcQv0CY6mpiYAfcvP9nQNc3SBOlYNCZioMlP4xhwTpgjJzc2NLpNrNBpkZWXBZDLh4sWLVKQqlUrU1tZCJBLB39+fRlutLZva29vh5+eHkJAQtLe3AwAtymJusIwQBvo8QNVqNWbNmkXTQ7KysqBUKhEbG4vU1FS6D4zlE/NQxDygMd2smONlXahofQ0MZg/FdK9iUm2YY8UIW1aksownGo0Ger0eO3fuRGxs7LDvvdJyJVkmBlaksti1NHv8+HHa6YkRBYP1p+8v9Prn3DE5esx2g4KC4OvrC4vFAoPBgM7OTohEIqSmpiIrKws+Pj60UGb58uXgcDj46KOPoNVqkZmZieTkZIhEItriFAAqKyuh0+nocr/RaERxcTEiIyMHiNHBIlsjLcGr1WoUFRWhq6sLPT09SExMREhICORyOXx8fADALuHJFIP9+uuvmDlzJhYuXDji30wk9rS7HG1Dgv7HV6VSoaamBsXFxSgpKYFMJoO3tzeNrDLRUkZstrS0gM/nIyIighr8Mzmbra2t6OnpgclkonnHcrncJorPuEQw9mrA/64BRpwyN+Ps7GzweDzMnj0bKSkpIIRAr9cjMzMTPT09UCqVNiKVgWkDy4jVBQsWoLa2FtXV1Thz5gyWL19Or0Hr64zJ3ba2h/Ly8qKduRimw8MNi2PB5IqzsEw0rEidAlRWVlI/x+Gq78cLJgo21LJsYWEhdu7cSbsCMSIVGDyiyGC9hKpUKiGTyWyWg5i8P5PJBL1eDycnJ2i1WoSGhmLNmjVYs2YNcnJyoNVq0draCo1GQ43Q29raIJfLoVQqcfToUfj4+CAmJgYVFRXQ6/VU2DKWWTExMRAIBLRyf6glfnuW4NVqNZycnFBeXg6FQkErtC8ltzQvLw8dHR3Iy8uzEamMeJusawKwr93lcA84g6WR9D++NTU1MBqNKCwshK+vL+rq6nD06FEcOXIE3d3dEIvFuHjxIgDQynuFQoFly5YBAKqqqmjHqcjISJu0Dqblr3Wfe6aNrsFgoDmwhBBaua/RaOg5ZERva2urzT6FhYWhoqJi2MiSdYpJSEgIjaz29PQgJyeHevUOdyx1Oh0tSrROp/L29rY7gjqdWu+yTD8Yazjm3468nYnalysNVqROARg7p5qamkkTJMDQgrOsrAy+vr5obGy0cW9gulcxTRsGE6mMkGQEgEwmg4eHB412xcbG0iVc5vfWN9OgoCAqjpubm9He3k6XVWUyGTIzM+Hs7IyamhrExMTAz88PjY2NCA0NpdG0yMhIGI1GCAQC6HQ6nDlzBvn5+ZgxYwauueYamzHbE6Vifpeenj4gyjVaZs6ciby8PNoYgGEqXBP2tLscTvz0T6VQq9VoaWmBSqWi7wkKCkJNTQ3mzp1Ll7Tr6upoK143NzebSGpgYCB9+Dl//jwsFgtkMhn8/PxsoqbW22eaRLS0tMDV1RX5+fkQiUQ2LUmZz7QWjtai13p/U1JSsGjRomHTQ6x9TkNCQhAdHU2bFTBWbv1F6mArE9ZC+1JE5nRqvcsy/WA6zk2H7UzUvlxpsCJ1CsDcqC9H7IwFQ+VnMiIlIiICcXFxNOLKeI5ad+YZbKncWgAMVWWv0WhQUVEBwHapnPl3TU0NmpubaStVJooVFhYGoK9dJvO70NBQm0rxkJAQ6PV6GsErKytDV1cXysrKBghzuVxOx8hUlPdnLKvxFy5cOOgyf1BQEC5cuACgT5xPRu7h5ba7HCyVwtXVFR0dHZBKpSgvL8c111xDhSUT0Txx4gRMJhNt+cmcy5CQEKjVapw6dQqVlZW0RW5rayt+/fVXhIeHD3qtMRXyzLn08PBAd3e3zVj7n1O1Wg2DwWBTxAWM3EWMoX8uLPP5CoViVEv1lysyp1PrXRYWlisPVqROAax7xk8mQ93QBusBTgixKZgSCoVQqVRUCDIdhQAMWOZnIqPM7y0WCyorK6HX61FZWYmYmBibbZ07dw4lJSXw9PSEt7e3zWfHxMQgJiaG9nJva2ujNlXW22QipCKRiIrutLQ0GxHAjKv/a9btU0eqXu2/zDNcOsRw9BfWjlQgY73E7O3tDYvFYlMklJiYiPb2doSHh9ukmBQVFaGiogIpKSmIiYlBUVGRTQQe6CvkYFqbCoVCREVFobCwEGazGRUVFWhtbaWiPj09neafVlVVQa/X05amzGcOdX4YZwrr5f/R0L99KUP/NqYjcbkik13mZ2FhcWRYkToFmax8lsu5oTEtKhkx178b1nBwuVyEhISgvLwcISEhA/6utbWVVmLr9XqcPXsWQJ87ACMEmLFrNBo0NzcPyONjIqQqlQpxcXFIT0+HWCxGc3MzAMDd3Z2+X6fT0cg2s0/t7e1oaWlBSkrKsGKz/9gHi4TZe1ymWoGMvfmN/ffZYDDQfw+3L9Y5sIxpv1qthk6nw3/+8x8IBAJ4enqCy+XC398fAQEBIITAx8cHbW1tCA0NRWtrKxXFTKcmplMVl8tFVVUVgoODaQcrlUpFW+9aPygy25bJZPR8jXVnuUvpEMXCMp0wGAxYtGgRAODYsWM0UOCI25mofbnSYEUqyyXTPz3gcpbBB4vWMiQnJ6OjowN6vR4VFRVob2+HWCyGh4fHgGhVcHDwgLxW6/Fapycw/880DGDQ6/VwdXWl3oByuRwtLS3w8PAYtVXV5UTCRlMgMxHYu/Q8WAGQPTZfjM8oY1nGXE/Hjx9HU1MTuFwuBAIBUlJS4OzsDLVaje7ubnh5eWHBggVQqVQoLy+HRCJBdHS0zWczgh+AXWOZaseehWU6YrFYkJWVRf/tyNuZqH250mBF6iTi6Kbc9giwofJUravXmYrIoZZe4+Li0Nraivz8fFy4cAHh4eHw8fGxKWhRKpVU4DDm00zBCfC/tpoSicSm2ptxCbCmfwRTJpMhJSXlksTmZEfCmGtMIBBc1t9b5+qOtD/Wx5z5AUDbgg5FbGzsoA8qQUFBaG9vh0AgQFBQEC2IA4AzZ85Q393W1lYIBAIIhcJBfUeBvpxS67/39vam52g0lfDDvfdS5/V4uXxMtnsICwsLy6XCnewBXMlY2/E4Ikz0dLiI1FD7aF29zqDT6VBYWIh9+/ahsLDQ5v1CoRCVlZWwWCyorq6Gh4eHjQAoLy+HTqejbVGto3fMvwEMGC/T7tUauVyOuLi4AQUzubm5+Otf/4pDhw7Zc3imBMzxH6nd3kh/zwh+RtSNBHPM1Wo1+Hw+SkpK8M0339BIQ/9tFBYWDjpGvV4PsViM5cuX2zRpOHz4MH766SfU1NTA2dkZ5eXlCAwMhFAopA8v1teAWq2GUqnEwYMHaW4ygAHFctY+pfbs32DvvdR5PdicGAvG63NZWFhYxhtWpE4icrkcfD5/yuQcjgdD7SNjLWXtaCAWi1FTUwOLxYLy8nKoVCqcOHECKpUKQqEQ6enp1EqqoqICVVVVUCqVUKvVtKc6s1QsFotpxMz639YM9fpQZGdno6OjA9nZ2Zd5VCYO5vhfarvCS71GmWMrl8vh7OyMqqoq1NXV4eeffx4g3oYTdYOJQbVajYqKCtrdiznvISEhWLBggU2eMpMWUF5ejsLCQnC5XPogM9SY7bkehnvvpR6zwebEWDBen8vCwsIy3rDL/ZNA/+rn6UhhYSH12BxsCde6+pmpchaJREhOTsaRI0fQ1dUFrVYLd3d3tLW1ISEhATExMZDL5WhsbISvry9tAKDRaBAbGztgmb9/JLQ/QqEQOp0OKpXKrnzalJQUZGdnIyUl5TKOzMTC5FYyhveX+vejof9SOCEESUlJ+PnnnxEUFDSgGGy4AjGxWIzs7Gw0NjYiPj6eRrjDwsKg1WqRnJw8ZC6zUChEc3Mzjhw5AgBwcXGxeZAZbFvW18Nw+z1cSgBzzHQ6HfVotUf4jpfLx1RxD2FhYWEZLaxInQSuBINt60rtoUTEYMTFxdGleyZ65uPjA7FYjODgYJuKaLVaPcCA3d4iHevPsO6ANJxlVEZGBjIyMuzelyuVwa7v1NRUBAcHDypGmQeEwSyZRCIR2tvbYTabUV5eTps49G/CMBS1tbVwdXVFaWkp0tPTERoaSv1WBzvH1tfD5T5AXgnznIWFhWU8YUXqJHAlGGzb061oKJgq78TERISEhNBjVVRUZFMcJZfLodPpUFxcDJ1Oh5CQkFEf2/5RvNGK3InGEdpcDnUOGDHav13pUBQWFtKl+eEioAz9W5ECoPmpTHtR5poZ6hyPpe3XlTDPWVgul0tNRZqK25mofbmSYEXqJDCVBcZYMZyl1Gj/lhESFRUVtDiK6ThVWlqKxsZGNDY2wtvb2+6OQAz9l/nFYjF++eUXlJWVIS0tbdBuUJdq0D8Uo60qn+rROXt8VDs6OqBWqxESEjLkMSwvL0drayu4XC5uvPHGYY+1Xq/HxYsXAYB26po5cybmz58/wKaMOX8ABrQcHUvrqSthnrOwXA5Mp8LpsJ2J2pcrDbZwisVhCAsLGxBR8/LyAiEEbm5udlVl94cQYvMjFApRWFiImpoanDx5ctAl6NFUgdvDaD5vtMVeUxGxWAyTyQQ+n2+zz/3PRXh4OJycnODm5obs7Gyo1Wr6u/7odDr4+PgAAFpaWtDR0UHFan+YiCqAMT2PLCwsLCxjCxtJZRk1Y90Ry97PGyw6GxsbC6lUCqBP/IzF2Pz9/dHW1gZ/f/9Buw1ZL+OOxfZGsyzsiNG5/sdILBbbpHEwv+dybZ+Z4+LiEBISguzsbDg5OQ3bzUwsFiM0NBQzZsyAh4cH8vLyMGPGjGHPD7scz8LC4ogolcoR3yOTyaBQKCZgNOMLK1JZHBrGIWEso2GrV69GamrqkHmJYy0UHVF4Xi7D7XP/dIqYmJgR80StP2/RokW0PeGljoGFZbpTXV09on+yPWLocjAYDFi9ejUA4IcffhjXtqjjvZ2J2IZMJoNIJMJtt9024ntFIhGUSqXDC1VWpLI4PGOdp2mdp2otmFhBMzEw59Pavmk6ewmzsEw01dXV1LJvJEQi0bgVBFksFhw9epT+e7yYiO1MxDYUCgWUSqVdDxe33XYbNBoNK1JZWCYbnU5H2z6Ox2dP9UKl6QZzPoVCIc1bnYpOCywsjopGo4Fer8fOnTtpEepQTJdl4+mCQqG4os4HK1JZHB69Xg9XV1e7ogKjpaioCHl5eZg5c+a0bbww1cjMzERxcTFCQkIQHBzMPhywsIwTsbGxSE5OnuxhsLAMCVvdz+LwjGd72crKSnC5XFRWVo75Z7MMjlqtRnd3Nzo6OiCXy9koKgsLC8sVChtJZZnyVFZW0uX8wdo7jqW3ZX/i4uJQWFh4yZ6vLKNnzpw5UCqVgy5DqlSqYa8FFhYWFpbpAytSWaY8NTU1MBgMqKmpGRNhYi16+xu9W6NWqyESibB69Wp2qX8CUKvVUKvVCA4ORmpq6qDvGetrYaox0gMZCwsLy5UEu9zPMuUJCgqCUCgcs8Ioa6EzHNZ93FnGH3uO91hfC1MNe69NFpbpwmi7BE7l7UzUvlxJsJFUlnFjsM5AQzGc6XpoaOiYRpWCgoLscgMYyz7uVzL2Xgf2HO+QkBCEhITY1URhrK6/icTea5OFZTrANNSYDtuZqH250mBFKssVh72idzxzXVkGIpfLr/jjPdYPZCwsLCyOzKSI1K6uLuj1eri7u4PH44HL5cJisQxoizgcJpMJJpOJ/n9HR8d4DJWFZVrDziMWFhaW6cl0aJ864SL14sWLuOeee9DZ2QkAWLNmDR544AGEh4fDbDbDycnJrs9544038Oqrr47nUFnGEesq7eGKl1jGl8mYR+y5Z2EZP6ZCu1N7MRqNuPHGGwEA3377LQQCgcNuZ6L2xR6mU/tUDhlN4tZlUlVVhdTUVGzatAlXX301jhw5gjNnzqClpQW7d+/GjBkz7I6oDhYBCgoKglarhUQiGc/dYLGT4S6t48eP49y5c6itrcW6devs6rXeH7YS2n46Ojrg7u4+YH5MxDzqfx0cP34cBoMBQqEQCxcutPndWFpMMds9fvw4bcjQf3sMUyUnlWVqM9Q8utT3jTWjbXc62eJEp9PB1dUVQN8K63g17piI7UzUvtiLvQ8rt912G7Kzsye0qcNo5seERlIzMzMRExOD7du3g8/nY/Xq1Th27Bi2bduGtWvX4ocffkBsbCwIISPeNPh8Pvh8/gSNnGWsCQoKwnfffQdnZ2dcuHDhkkTqdLcjmggmYx4NVxw0Huc0Ly8PHR0dyMvLG1KksrBMB9h2pywM06V96oSK1Pb2duTl5aGrq4veGBctWgShUIhXX30VW7ZswZdffnnFF09cCYSEhGDdunW4cOECEhMTL+kz2Epox4Sp0B+M8TinM2fOpJFUFpYrAbbdKct0YUJEKhMZTUlJQUREBPbt24fbb7+dCtW0tDTccccdeOWVV1BcXMyK1CuEhQsXXlZki62Enn6Mxzm93OuMhWUq4Ei5piyOxVQusBpXkarVamE2m9HZ2Yng4GAkJycjMjISf/nLXxAZGYmFCxfSQqmbbroJTz/9NH788Uf2hsLCwsLCwvL/M9pcU5lMNgGjYnF0HKHAatxEakFBAR566CG0tbXBYDDg2Wefxd133409e/Zgzpw5uP/++/HOO+9g5cqV4PF4sFgsiIqKQmBg4HgNiYWFhYWFZcI4f/48Laa5HJRKJZtryjLmKBQKKJVKuwusjh8/PuL1Zw9dXV12v3dcRKpSqcSiRYtw7733IiEhAdnZ2fj73/+O6667DjKZDGfPnsWSJUvw9NNPY+7cuUhPT8f58+eRmZmJd99995K2yVTysj6PU4fhqvt/+OEHZGdnIyUlBatXr2arq8cZZl6MZOYxHvPov//9Lz3XV1999bDvHcvrwBE7TrFMbUY7jxYvXjxm2xYKhZg1a5Zd+dqOch+07tDU0dEBs9nssNuZqH0Zazw8PODh4THse/h8PoRCoV0R19Fg13c0GWO6u7vJXXfdRe666y762qFDh8jatWtJU1MTyc/Pp6+/9tprZM2aNSQ+Pp6sXLmS5ObmXvJ2a2pqCAD2h/1hf4b5qampYecR+8P+XOYPO4/YH/bn8n9GmkeEEDIukdSSkhKkpqbS/z99+jTOnDmDxYsXo7W1FZs2bcJf//pXvPDCC7BYLOjs7ISLiwuEQuElb9Pf3x81NTVwc3NzmKgI40lZU1PjcN6ujjx2wLHHfyljJ4Sgs7MT/v7+w77P398fhYWFiIuLu2KOzVTAUccNXFljH808Gu5+5MjHbCTYfXNMJnLf7J1HwDgs9/N4PCxatAhffvklpFIpmpub8emnn+Jf//oXgoKC0NjYiPXr1yMhIQH33HMPuFwu3N3dL3u7XC7XYfNZJRKJw17wjjx2wLHHP9qx2zPPuFwuAgICLunzpxKOOnZHHTdw5Yzd3nlkz/3IkY/ZSLD75phM1L7Zq/vGJZK6adMmAH0R1bKyMvzpT3/C+vXr6e8XLlyI3Nzc8dg0CwsLCwsLCwvLNGBcRGpCQgISEhJgMpkwf/58uLi40N8RQsDj8eDn5zcem2ZhYWFhYWFhYZkGcMfzw/l8PmbPno3Tp08jNzcXbW1teOmll5Cfn0+jrVcyfD4fL7/8skO2d3XksQOOPf7xHjt7bCYeRx03wI7dkbY7EbD75phM1X3jEDIKnxYrzGYzNeIfjp07d+Kjjz7CxYsXER0dDbVajX379iEpKelSNsvCwsLCwsLCwnIFcEkitaSkBN9//z1uueWWIZftLRYLuNy+QO25c+dQWloKHo+H9PR0ttc6CwsLCwsLCwvLsIxapJaVlWHOnDloa2vDs88+iyeeeGJACzZCiMPYQLGwsLCwsLCwsEw9RlU4pdPp8MYbb+Daa69FWloaHnnkEfT29uLpp5+2EaqMQN22bRsMBgNeeumlsR01CwsLCwsLCwvLtGZUIpXL5SIlJQVSqRQbN26ETCajBVD9hWprayuys7OhUqnwyCOPwMvLa2xHzsLCwsLCwsLCMm0Z9XK/TqeDWCym/79nzx7cfPPNePLJJ/Hss89CKpXCbDajs7MTFosFJpOJtZtiYWFhYWFhYWEZFaP2SWUEqtlsBpfLxcaNG0EIwS233AIOh4PHHnsM27Ztg0qlwu7du9kI6iA0NDSgra0NcXFxkz2UUcO4Ojhi3rFer4ezs7ONb68jUVtbC7VazTpjsDgM1gW0LCwsjslkzuNL3ipjP2WxWLBp0ybs2rULf/nLX7Bs2TK89957eOmll6ac39ZUoK6uDgkJCXjhhReQlZU12cMZFefPn8f1118PvV7vcAI1Pz8fGzZswJkzZ2AymSZ7OKOmoKAA8+bNw86dOwH0zTuW0XGJbnssl0BVVRXq6upYgcpiAzsHHYupMI8va8scDgccDgeEEGzcuBELFy6EWq1GTk4OG+0ZgtLSUmi1Wmi1Wrz77rvIycmhv5vKEzgvLw/z5s1DfHw8RCIRfX0qj5mhoKAACxcuRGBgIEJDQx3u4SkvLw+zZ8+Gs7MzvvrqKzQ3N0/4l0ZXVxeam5thMpmoQHYEoZydnY37778fABzqwaqkpAQvvfQS7rzzTnz++ee4ePHiZA/Jbs6fP4+UlBQcP358socyasrKyvDOO+/g6aefxg8//ICmpqYJ2a6jzi97cNQ5aA+OPE9HYsrMYzIG9Pb2kscff5xwOBySl5c3Fh85bWlpaSHXXnst+fvf/06Sk5PJrbfeSvLz8wkhhJjN5kke3eDk5eURsVhMtm7davO6yWSapBHZT1dXF8nIyCAPPvggfU2pVJLc3FxSVVU1iSOzj/PnzxOhUEiee+45olarSXx8PPnjH/9ILBYLsVgsEzKGCxcukNmzZ5PY2FgSGxtLnnrqKVJWVkYI6Zv7U5Xz588TkUhEHn30UZvXJ+q4XSoFBQXEw8ODXHXVVeSqq64iPj4+ZNmyZeSzzz6b7KGNCHO9PvnkkwN+N9WP+8WLF4mnpydZsGABmTNnDuHz+eTmm28mBw8eHNftOur8sgdHnYP24MjzdCSm0jweM5G6Y8cOkpubOxYfN23p7e0lzc3NJCoqitTW1pJ9+/aRtLQ0cu+995J58+aRG2+8cbKHOICGhgbi6+tLVq1aRQjp24fHHnuMrFmzhsTExJB33nmHKJXKSR7l0BiNRrJgwQKSk5NDent7yapVq0haWhpxc3Mj6enpZMeOHZM9xCHJy8sjfD6fPPfcc4SQvoeY9evXk7S0NPqe8f7CUKlURCaTkUceeYQcPHiQPP3002TRokUkPj6eXLx4kY5rqnH+/HkiFovJU089NeR7puKNsru7m2zevJncc889dHyZmZnknnvuIXFxceTDDz+c5BEOTVFREeHz+eSVV14hhPR9V5w4cYLs27ePXLhwYUoLLr1eT9auXUseffRROs4ffviBZGRkkCVLlpB9+/aNy3YddX7Zg6POQXtw5Hk6ElNtHo+JSCXEcS+2iYQ5Rrfeeiv58ccfCSGE/Pe//yUymYy4ublNySewhoYGsm7dOpKamkr2799PrrrqKrJ8+XLy5JNPkocffpiEhoaSu+++e8pGJRsbG4lcLieHDh0ijz/+OFm1ahXJy8sjP/zwA9m6dSvx9fUlX3/99WQPc1AyMzPJiy++SAj5342qqKiIuLu7kw8++GBCxrB3716yYMECYjQa6WtHjx4la9euJcHBwaSwsJAQMrXmf319PRGJROTOO+8khPQ9qDz77LPkpptuIitWrCAff/wxaWhoIIRMrXET0jeehQsXkocfftjm9aKiIvLQQw+RlJQU8u9//3uSRjc0RqOR3HLLLcTLy4ucO3eOEELINddcQ+Lj44lMJiNOTk5k69atpKKiYpJHOji9vb0kKSmJ/PGPf7R5/fTp0+Taa68lV111FTlz5syYb9cR55c9OPIctAdHnacjMRXn8Zgltk23XJPxgDlGTk5OOHLkCABg3759MJvNCAoKwvHjx5GZmTmJIxyIr68v3n//fcTFxeHmm2+G2WzGnj17sH37drz33nv44x//iG+//RYFBQWTPdRB8fb2xvLly3HgwAGUlpbi8ccfR2JiIq666ips2bIFK1aswOHDh2E2m6dcfm1aWhr+8Ic/AOjzKISHYKsAAA+PSURBVCaEwNfXF0uXLsWRI0cmZMzt7e3Iy8tDV1cXfW3RokV46aWXMGPGDGzZsgXNzc1Tav7X19cjLS0NWVlZKCsrww033IDjx49DJpNBIBDggw8+wIsvvoiWlpYpNW7mXCYmJkKtVqOtrY3+Ljo6Gg888ACkUin27dtn8/6pAJ/Px3333Yfly5fjqaeeQmRkJCwWCz777DOUlJTgs88+wyeffIIvvvgCwNQau9lsplaJGo2GvgYA6enpeOqpp1BdXY39+/cDGNuxO+L8sgdHnYP24MjzdCSm5DyeMDnMQp8Y//nPf5KXX36ZPPjgg8TPz49UVFSQffv2kfDwcPLAAw8Qg8EwySMdSF1dHfn9739PDh8+TAixffqNiIgYkK86lTh37hwRi8WEw+GQAwcO2PzuySefJIsWLXKop/lvv/2WcDgccuLEiXHbBnM8srOzSVJSEvn4449toj2E9EWB4uLiyLFjx8ZtHJdKVlYWycjIIBwOh6xevZqo1Wr6uz//+c8kNDSUnDx5chJHaIv19bd3714iFArJxx9/POC6/Prrr4mzs/OUjUgePXqU5uiVl5fb/O7NN98kHh4epKWlZZJGZ0v/6/nDDz8kLi4u5KeffiKE2C6zf/DBB8TNzY00NzePybYdfX7Zg6PNQXuYLvN0JKbSPGZF6iRw9OhRwuFwiK+vL8nKyqKvf/fdd1P6otZqtTbFUhaLhWg0GjJ37lzy5ZdfTuLIRubYsWOEw+GQtWvX0kI1QgjZsmULueeee0h3d/ckjm50mEwmkpGRQW699Vai1+vH9LPb29tJS0sLUalU9LUNGzaQuLg48ttvvw3IRwoJCaE5s5PJYHlSJ0+eJE899RT5+eefB7zH3d2dvPnmmxM2vqHo7OwkPT09hBBbUfTiiy8SPp9Pdu7caSNezp8/T+Lj46fE90RjYyPJysoihw4dIp2dnfT1c+fOke+//37Afn344YckMTFxSsy1goICsmbNGvLLL7/YvH7PPfcQNze3AQ+Ahw4dIgkJCZd9Y3bU+WUPjjoH7cGR5+lITPV5zIrUSaC7u5t8+umn1AnBkaJ4/XnppZdIZGSkzZfuVOXo0aPE39+fzJ49m9x9991k8+bNxN3dnRYoOBJvvPEGkUgkNK9rLMjPzyeLFi0iCQkJJCIiwqaobPbs2SQqKor897//pV9OZrOZZGRkTFh+7FAUFhaShx56iKxatYr8/ve/J9999x39XWVlpc2DVW9vL2loaCBz5swh33///SSM9n8UFhaSVatWka+++ooeU+aGQAghW7duJVwul7z22mskMzOTaLVasnXrVhIZGWkTlZoMLly4QGJjY8nMmTMJh8MhV199tY2zy2DFPlu2bCE33HAD0ev1k/qdZ7FYyB133EHc3d3J2rVrbYRqc3MzufXWW4lQKCT/+te/SGVlJent7SVPPvkkmTlzJmlra7vk7Trq/LIHR52D9uDI83QkHGEesyJ1knDUik2GXbt2kfvuu494enqSnJycyR6O3RQVFZEXXniBrFixgjz44IMOJ1CZL4XW1laSkpJCKisrx+RzCwsLiZeXF3nmmWfIzp07yeOPP07S0tJsvmQXL15M4uPjyT333EN27NhBHnnkEeLh4UGKi4vHZAyXQkFBAfH09CQPPvgg2bJlC7n11luJQCAgb7/99pB/8/LLL5Po6GhSXV09gSO1pbKyksTExBAej0fmzZtHvv32WxtxwvDOO++QuLg44uXlRWbOnEl8fX0nfb6VlJQQPz8/8sILL5CKigpSVFREAgMDyWOPPTbo+6urq8kLL7xA3N3dbVYxJpOHHnqIzJkzh6xbt46sWLGCLvET0pcG8MwzzxAvLy+iUChIamoqkUqll3XcHXV+2YOjzkF7cOR5OhKOMo9ZkcpySeTl5ZE1a9ZMmZvOaDGbzQ79oGCxWEhXV9eYfFZ3dze56667yF133UVfO3ToEFm7di1pamqyOcevvfYaWbNmDYmPjycrV66cVNs5g8FANm7caPOlqlKpSExMDOFwOOTVV1+1ef8PP/xAHnnkEeLu7j6p4+7p6SHbtm0j1157LcnJySErV64kKSkpNjdA62XRkpIS8ttvv5GffvqJ1NbWTtawCSF9Vk33338/ufvuu4nJZKLj/Oijj0h8fDwxGo020ZXz58+TJUuWkNDQ0CllUfjVV1+RN998k5w9e5asWrWKZGRkkOzsbPL//t//o8Lp9OnT5OuvvyZffvnlZT0MOur8sgdHnYP24MjzdCQcaR6zIpXlknEEM3+Wkenu7iYLFiywudG8+uqrRCaTkZiYGOLt7U22bNlCf2c2m0l7e/uY58OOFqPRSJKTk8mf//xnQsj/luAefvhhsn79euLk5ET++c9/0vczN5zJjp5bLBaSnZ1N9u7dSwjpO/7WN0BmXk1FX9HOzk7yu9/9boBd3v79+4mfnx/p6OgYsAR48ODBAcUXk833339P5s2bRwgh5JdffiHr1q0jAQEBhMPhkLq6ujHdlqPOL3tw1DloD448T0fCkeYxK1JZWFjIc889R4KDg8lrr71GHn30USISicjXX39Nzpw5Q/bv30+cnZ3JJ598MtnDtKGrq4tce+21ZMuWLbTquqKigsjlcrJ7925yzz33kFWrVhGdTkf/RqvVTtZwbeh/Y9Pr9fQGuG/fPnqzn4pei/X19fTfzH6cOXOGzJgxw+bGxnh8TkWKi4vJnDlz6P+vWLGCiEQikp6eTo4fPz7m23PE+WUPjjwH7cGR5+lIOMo8dh5/kysWFpapzqZNmwD09aIuKyvDn/70J6xfv57+fuHChcjNzZ2s4Q2KWCxGRkYG/va3v6GoqAgxMTHYsWMH7rjjDmzcuBHOzs548MEHodfrIRQKweFwIJFIJnvYAPq8khnMZjOEQiH279+P66+/Hq+//jp6e3vx66+/4sCBA0hLS4Ofn98kjtYWZiwWi4Xuh8ViQUdHB/R6PcRiMZ5//nlkZWVh7969cHd3n8zhDkpERAT4fD5qamrw/PPPo7CwENu3b8ehQ4fwxBNPYPv27Vi0aNGYbc8R55c9OPIctAdHnqcj4SjzmBWpLCwsSEhIQEJCAkwmE+bPnw8XFxf6O0IIeDzelPoCJoSAw+Hg4YcfhkQiwbFjx1BfX48333wTjz76KIC+G0xAQAC9OU5VnJyc0NvbC5FIhAMHDuD666/HbbfdBh6Ph2PHjk2p424Nl/u/XjDd3d3o7OyEs7MzXn75Zbz11ls4ffr0lBSohBD09vaCEIK5c+eCy+Xiv//9L2bNmoXg4GB8/vnnCAkJGdNtOtr8sofpNAftwVHn6UhM9XnMilQWFhYKn8/H7Nmzcfr0acydOxchISF4++23kZ+fj/fff3+yh0fhcDiwWCzgcrnYvHkzNm/eDLPZbBP5+PnnnyGTySZxlP+DuaEPhbOzM8xmMwQCAUJDQ3Hu3DkcO3YM8fHxEzjKwRlp7EDfdRMREYEXXngB7777Ls6cOYOUlJQJGuHQDDZ2DocDFxcX3H///Xj33Xfx/vvvY9asWQCAq6++GosXL4ZYLB6X8TjK/LIHR5uD9uDI83QkHHYeT1KaAQsLywRjb4L/F198QebPn08kEglJS0sjISEhk2qnMtrChOzsbPLAAw8Qd3d3G8+/iaarq4t0dHSMKgfv3XffJRwOZ9Lta0Y79pMnTxIOh0O8vLxIdnb2OI9ueOwde3d3t43v6eV6Pjrq/LIHR52D9uDI83QkHHkeM7AilYXlCqC4uJhs377dJlm+P9aWXJmZmeTLL78ke/funVQvQ3vGbU1XVxc5ePAgWb58OTl//vw4j25oCgoKSEZGBklKSiL+/v5k586dhBBbITSYBVpzczMpKyubsHEOxqWMvbKykqSlpZGCgoIJHWt/7Bl7f8E1FlZ0jjq/7MFR56A9OPI8HQlHnsfWsCKVhWWaU1paSry8vAiHwyG///3vB+2CMhW7nl3quI1Go017v4mmoKCASKVS8vjjj5Mvv/ySPPHEE4TH4w3pL/jvf/97zHrCXy6XMnam61n/3vMTzWQdd0edX/bgqHPQHhx5no6EI8/j/rAilYVlGtPV1UXuuusucuedd5L333+fcDgcsnXr1iHb9b311lsDDLgnA0cdd0tLC8nIyLDxvSSEkCVLlpBHH32UEGJ7U//+++9JYGAgef755ye9ucSljv25554jvb29kyrEJuu4O+p1ag/Ted8ceZ6OhCPP48FgC6dYWKYxXC4XKSkpkEql2LhxI2QyGbXDefrpp22KGlpbW5GdnQ2VSoVHHnkEXl5ekzVshx13T08P2tvbqb0QU1gSGhqK1tZWALApXli7di0yMzNx55132lTZTgaXM3brYpnJYLKOu6Nep/YwnffNkefpSDjyPB6UyVbJLCws40v/9qm7d+8mHA6HPPXUU0Sj0RBC+vL02traSEtLi925Z+ONo467pKSE/ptpn/jCCy+QzZs327zPumhnqsCOffQ46nVqD9N53xz5Wh+J6bRvbCSVhWWaw9jpmM1mcLlcbNy4EYQQ3HLLLeBwOHjsscewbds2qFQq7N69e8pEQRx13JGRkQD6Ihg8Hg9An/1Lc3Mzfc8bb7wBPp+PLVu2wNl56nwNs2MfPY56ndrDdN43R77WR2I67dvUHRkLC8uY4uTkBEIILBYLNm3aBA6Hg82bN+PAgQMoLy9HZmYm+Hz+ZA9zAI46bi6Xa+NNyCwTvvTSS/jjH/+I3NzcKXtzYMc+ehz1OrWH6bxvjnytj8R02LepnVzBwsIypnA4HHA4HBBCsHHjRixcuBBqtRo5OTlISkqa7OENiaOOmxACoM8EPCgoCNu3b8dbb72FrKwszJw5c5JHNzzs2EePo16n9jCd982Rr/WRcPR9m9oSmoWFZczhcDgwm83YunUrfvvtN5w/fx4JCQmTPawRccRxM5ELHo+HTz75BBKJBCdOnEBycvIkj2xk2LFfGo54ndrLdN03R77WR8LR942NpLKwXKHEx8cjJycHiYmJkz2UUeGI4161ahUA4NSpU0hNTZ3k0YwOduyXhiNep/YyXffNka/1kXDUfeMQJhbMwsJyRUHs6OU8FXHUcet0unHrCT/esGMfPY56ndrDdN43R77WR8IR940VqSwsLCwsLCwsLFMOdrmfhYWFhYWFhYVlysGKVBYWFhYWFhYWlikHK1JZWFhYWFhYWFimHKxIZWFhYWFhYWFhmXKwIpWFhYWFhYWFhWXKwYpUFhYWFhYWFhaWKQcrUllYWFhYWFhYWKYcrEhlYWFhYWFhYWGZcrAilYWFhYWFhYWFZcrx/wFsKdrd1ecqagAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = sample.plot_results(nsamples=1000, fig=None, save_plot=True,\n", + " filename=\"modeling_tutorial_mcmc_corner.pdf\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Calibrating Likelihood Ratio Tests\n", + "\n", + "In order to use likelihood ratio tests for model comparison, one must compute the p-value of obtaining a likelihood ratio at least as high as that observed given that the null hypothesis (the simpler model) is true. The distribution of likelihood ratios under that assumption will only follow an analytical distribution if\n", + "* the models are nested, i.e. the simpler model is a special case of the more complex model *and*\n", + "* the parameter values that transform the complex model into the simple one do not lie on the boundary of parameter space. \n", + "\n", + "Imagine e.g. a simple model without a QPO, and a complex model with a QPO, where in order to make the simpler model out of the more complex one you would set the QPO amplitude to zero. However, the amplitude cannot go below zero, thus the critical parameter value transforming the complex into the simple model lie on the boundary of parameter space.\n", + "\n", + "If these two conditions are not given, the observed likelihood ratio must be calibrated via simulations of the simpler model. In general, one should *not* simulate from the best-fit model alone: this ignores the uncertainty in the model parameters, and thus may artificially inflate the significance of the result.\n", + "\n", + "In the purely frequentist (maximum likelihood case), one does not know the shape of the probability distribution for the parameters. A rough approximation can be obtained by assuming the likelihood surface to be a multi-variate Gaussian, with covariances given by the inverse Fisher information. One may sample from that distribution and then simulate fake data sets using the sampled parameters. Each simulated data set will be fit with both models to compute a likelihood ratio, which is then used to build a distribution of likelihood ratios from the simpler model to compare the observed likelihood ratio to.\n", + "\n", + "In the Bayesian case, one may sample from the posterior for the parameters directly and then use these samples as above to create fake data sets in order to derive a posterior probability distribution for the likelihood ratios and thus a posterior predictive p-value.\n", + "\n", + "For the statistical background of much of this, see [Protassov et al, 2002](http://adsabs.harvard.edu/abs/2002ApJ...571..545P).\n", + "\n", + "Below, we set up code that will do exactly that, for both the frequentist and Bayesian case.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [], + "source": [ + "import copy\n", + "\n", + "def _generate_model(lpost, pars):\n", + " \"\"\"\n", + " Helper function that generates a fake PSD similar to the\n", + " one in the data, but with different parameters.\n", + "\n", + " Parameters\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + "\n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder\n", + " to generate a model data set.\n", + "\n", + " Returns:\n", + " --------\n", + " model_data : numpy.ndarray\n", + " An array of model values for each bin in lpost.x\n", + "\n", + " \"\"\"\n", + " # get the model\n", + " m = lpost.model\n", + "\n", + " # reset the parameters\n", + " fitter_to_model_params(m, pars)\n", + "\n", + " # make a model spectrum\n", + " model_data = lpost.model(lpost.x)\n", + "\n", + " return model_data\n", + "\n", + "def _generate_psd(ps, lpost, pars):\n", + " \"\"\"\n", + " Generate a fake power spectrum from a model.\n", + "\n", + " Parameters:\n", + " ----------\n", + " lpost : instance of a Posterior or LogLikelihood subclass\n", + " The object containing the relevant information about the\n", + " data and the model\n", + "\n", + " pars : iterable\n", + " A list of parameters to be passed to lpost.model in oder\n", + " to generate a model data set.\n", + "\n", + " Returns:\n", + " --------\n", + " sim_ps : stingray.Powerspectrum object\n", + " The simulated Powerspectrum object\n", + "\n", + " \"\"\"\n", + "\n", + " model_spectrum = _generate_model(lpost, pars)\n", + "\n", + " # use chi-square distribution to get fake data\n", + " model_powers = model_spectrum*np.random.chisquare(2*ps.m,\n", + " size=model_spectrum.shape[0])/(2.*ps.m)\n", + "\n", + " sim_ps = copy.copy(ps)\n", + "\n", + " sim_ps.powers = model_powers\n", + "\n", + "\n", + " return sim_ps\n", + "\n", + "def _compute_pvalue(obs_val, sim):\n", + " \"\"\"\n", + " Compute the p-value given an observed value of a test statistic\n", + " and some simulations of that same test statistic.\n", + "\n", + " Parameters\n", + " ----------\n", + " obs_value : float\n", + " The observed value of the test statistic in question\n", + "\n", + " sim: iterable\n", + " A list or array of simulated values for the test statistic\n", + "\n", + " Returns\n", + " -------\n", + " pval : float [0, 1]\n", + " The p-value for the test statistic given the simulations.\n", + "\n", + " \"\"\"\n", + "\n", + " # cast the simulations as a numpy array\n", + " sim = np.array(sim)\n", + "\n", + " # find all simulations that are larger than\n", + " # the observed value\n", + " ntail = sim[sim > obs_val].shape[0]\n", + "\n", + " # divide by the total number of simulations\n", + " pval = ntail/sim.shape[0]\n", + "\n", + " return pval\n", + "\n", + "def calibrate_lrt(ps, lpost1, t1, lpost2, t2, sample=None, neg=True, max_post=False,\n", + " nsim=1000, niter=200, nwalker=500, burnin=200, namestr=\"test\"):\n", + "\n", + "\n", + " # set up the ParameterEstimation object\n", + " parest = PSDParEst(ps, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "\n", + " # compute the observed likelihood ratio\n", + " lrt_obs, res1, res2 = parest.compute_lrt(lpost1, t1,\n", + " lpost2, t2,\n", + " neg=neg,\n", + " max_post=max_post)\n", + "\n", + " # simulate parameter sets from the simpler model\n", + " if not max_post:\n", + " # using Maximum Likelihood, so I'm going to simulate parameters\n", + " # from a multivariate Gaussian\n", + "\n", + " # set up the distribution\n", + " mvn = scipy.stats.multivariate_normal(mean=res1.p_opt, cov=res1.cov)\n", + "\n", + " # sample parameters\n", + " s_all = mvn.rvs(size=nsim)\n", + "\n", + " else:\n", + " if sample is None:\n", + " # sample the posterior using MCMC\n", + " sample = parest.sample(lpost, res1.p_opt, cov=res1.cov,\n", + " nwalkers=nwalker, niter=niter,\n", + " burnin=burnin, namestr=namestr)\n", + "\n", + "\n", + " # pick nsim samples out of the posterior sample\n", + " s_all = sample[np.random.choice(sample.shape[0], nsim, replace=False)]\n", + "\n", + " lrt_sim = np.zeros(nsim)\n", + "\n", + " # now I can loop over all simulated parameter sets to generate a PSD\n", + " for i,s in enumerate(s_all):\n", + "\n", + " # generate fake PSD\n", + " sim_ps = _generate_psd(ps, lpost1, s)\n", + "\n", + " # make LogLikelihood objects for both:\n", + " if not max_post:\n", + " sim_lpost1 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,\n", + " model=lpost1.model, m=sim_ps.m)\n", + " sim_lpost2 = PSDLogLikelihood(sim_ps.freq, sim_ps.power,\n", + " model=lpost2.model, m=sim_ps.m)\n", + " else:\n", + " # make a Posterior object\n", + " sim_lpost1 = PSDPosterior(sim_ps.freq, sim_ps.power,\n", + " lpost1.model, m=sim_ps.m)\n", + " sim_lpost1.logprior = lpost1.logprior\n", + "\n", + " sim_lpost2 = PSDPosterior(sim_ps.freq, sim_ps.power,\n", + " lpost2.model, m=sim_ps.m)\n", + " sim_lpost2.logprior = lpost2.logprior\n", + "\n", + "\n", + " parest_sim = PSDParEst(sim_ps, max_post=max_post)\n", + "\n", + " lrt_sim[i], _, _ = parest_sim.compute_lrt(sim_lpost1, t1,\n", + " sim_lpost2, t2,\n", + " neg=neg,\n", + " max_post=max_post)\n", + "\n", + " # now I can compute the p-value:\n", + " pval = _compute_pvalue(lrt_obs, lrt_sim)\n", + " return pval" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, loglike, starting_pars,\n", + " loglike_bplc, bplc_start_pars,\n", + " max_post=False, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The p-value for rejecting the simpler model is: 0.9\n" + ] + } + ], + "source": [ + "print(\"The p-value for rejecting the simpler model is: \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the p-value for rejecting the powerlaw model is fairly large: since we simulated from that model, we would be surprised if it generated a small p-value, causing us to reject this model (note, however, that if the null hypothesis is true, the p-value will be uniformely distributed between 0 and 1. By definition, then, you will get a p-value smaller or equal to 0.01 in approximately one out of a hundred cases)\n", + "\n", + "We can do the same with the Bayesian model, in which case the result is called a *posterior predictive p-value*, which, in turn, is often used in posterior model checking (not yet implemented!).\n", + "\n", + "We have not yet defined a `PSDPosterior` object for the bent power law model, so let's do that. First, let's define some priors:" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [], + "source": [ + "import scipy.stats\n", + "\n", + "# flat prior for the power law indices\n", + "p_alpha1 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "p_alpha2 = lambda alpha: ((-1. <= alpha) & (alpha <= 5.))\n", + "\n", + "# flat prior for the break frequency\n", + "p_x_break = lambda xbreak: ((0.01 <= xbreak) & (10.0 >= xbreak))\n", + "\n", + "# flat prior for the power law amplitude\n", + "p_amplitude = lambda amplitude: ((0.01 <= amplitude) & (amplitude <= 10.0))\n", + "\n", + "# normal prior for the white noise parameter\n", + "p_whitenoise = lambda white_noise: scipy.stats.norm(2.0, 0.1).pdf(white_noise)\n", + "\n", + "priors = {}\n", + "priors[\"alpha_1_0\"] = p_alpha\n", + "priors[\"alpha_2_0\"] = p_alpha\n", + "\n", + "priors[\"amplitude_0\"] = p_amplitude\n", + "priors[\"amplitude_1\"] = p_whitenoise\n", + "priors[\"x_break_0\"] = p_x_break\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we can set up the `PSDPosterior` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "lpost_bplc = PSDPosterior(ps.freq, ps.power, bplc, priors=priors, m=ps.m)" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "-2230.14039643262" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "lpost_bplc(bplc_start_pars)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And do the posterior predictive p-value. Since we've already sampled from the simple model, we can pass that sample to the `calibrate_lrt` function, in order to cut down on computation time (if the keyword `sample` is not given, it will automatically run MCMC:" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = calibrate_lrt(ps, lpost, starting_pars,\n", + " lpost_bplc, bplc_start_pars,\n", + " sample=sample.samples,\n", + " max_post=True, nsim=100)" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The posterior predictive p-value is: p = 0.99\n" + ] + } + ], + "source": [ + "print(\"The posterior predictive p-value is: p = \" + str(pval))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Again, we find that the p-value does not suggest rejecting the powerlaw model.\n", + "\n", + "Of course, a slightly modified version is implemented in `stingray` as a subclass of the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDParEst" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "parest = PSDParEst(ps, fitmethod=\"BFGS\")" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_lrt(lpost, starting_pars, lpost_bplc, bplc_start_pars,\n", + " sample=sample.samples, nsim=100, max_post=True, seed=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.22\n" + ] + } + ], + "source": [ + "print(pval)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Bayesian-ish QPO Searches\n", + "\n", + "When searching for quasi-periodic oscillations (QPOs) in light curves that are not constant (for example because they are bursts or have other types of variability), one must take care that the variable background is accurately modelled (most standard tools assume that the light curve is constant). \n", + "\n", + "In [Vaughan et al, 2010](http://adsabs.harvard.edu/abs/2010MNRAS.402..307V), a method was introduced to search for QPOs in the presence of red noise (stochastic variability), and in [Huppenkothen et al, 2013](http://adsabs.harvard.edu/abs/2013ApJ...768...87H) it was extended to magnetar bursts, and in [Inglis et al, 2015](http://adsabs.harvard.edu/abs/2015ApJ...798..108I) and [Inglis et al, 2016](http://adsabs.harvard.edu/abs/2016ApJ...833..284I) a similar approach was used to find QPOs in solar flares.\n", + "\n", + "Based on a model for the broadband spectral noise, the algorithm finds the highest outlier in a test statistic based on the data-model residuals (under the assumption that if the broadband model is correct, the test statistic $T_R = \\max_j(2 D_j/m_j)$ for $j$ power spectral bins with powers $D_j$ and model powers $m_j$ will be distributed following a $\\chi^2$ distribution with two degrees of freedom). The observed test statistic $T_R$ is then compared to a theoretical distribution based on simulated power spectra without an outlier in order to compute a posterior predictive p-value as above for the likelihood ratio.\n", + "\n", + "Since the concept is very similar to that above, we do not show the full code here. Instead, the p-value can be calculated using the method `calibrate_highest_outlier`, which belongs to the `PSDParEst` class:" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [], + "source": [ + "# compute highest outlier in the data, and the frequency and index\n", + "# where that power occurs\n", + "max_power, max_freq, max_ind = parest._compute_highest_outlier(lpost, res)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([16.79715764])" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_power" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "pval = parest.calibrate_highest_outlier(lpost, starting_pars, sample=sample,\n", + " max_post=True,\n", + " nsim=100, niter=200, nwalkers=500,\n", + " burnin=200, namestr=\"test\")" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.24" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pval" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Convenience Functions\n", + "\n", + "For convenience, we have implemented some simple functions to reduce overhead with having to instantiate objects of the various classes.\n", + "\n", + "Note that these convenience function use similar approaches and guesses in all cases; this might work for some simple quicklook analysis, but when preparing publication-ready results, one should approach the analysis with more care and make sure the options chosen are appropriate for the problem at hand.\n", + "\n", + "### Fitting a power spectrum with some model\n", + "\n", + "The code above allows for a lot of freedom in building an appropriate model for your application. However, in everyday life, one might occasionally want to do a quick fit for various applications, without having to go too much into details. Below is a convenience function written for exactly that purpose.\n", + "\n", + "Please note that while this aims to use reasonable defaults, this is unlikely to produce publication-ready results!\n", + "\n", + "So let's fit a power law and a constant to some data, which we'll create below:" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Powerspectrum\n", + "\n", + "m = 1\n", + "nfreq = 100000\n", + "freq = np.linspace(1, 1000, nfreq)\n", + "\n", + "np.random.seed(100) # set the seed for the random number generator\n", + "noise = np.random.exponential(size=nfreq)\n", + "\n", + "model = models.PowerLaw1D() + models.Const1D()\n", + "model.x_0_0.fixed = True\n", + "\n", + "alpha_0 = 2.0\n", + "amplitude_0 = 100.0\n", + "amplitude_1 = 2.0\n", + "\n", + "model.alpha_0 = alpha_0\n", + "model.amplitude_0 = amplitude_0\n", + "model.amplitude_1 = amplitude_1\n", + "\n", + "p = model(freq)\n", + "power = noise * p\n", + "\n", + "ps = Powerspectrum()\n", + "ps.freq = freq\n", + "ps.power = power\n", + "ps.m = m\n", + "ps.df = freq[1] - freq[0]\n", + "ps.norm = \"leahy\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "What does this data set look like?" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABRvklEQVR4nO3de1hU1f4/8PcAAt4AEUURDE3ySCYoClp6QsWQk5qKZjdFNEwbLKMs7aSeLMN7Vk6RqEfza2lamXnBC2l4TcUwzVsaKmmiaIKggjL794c/5jDADHPZe/bMnvfrefbzzOzLWp8ZNjOfWXutvVSCIAggIiIichAucgdAREREZA4mL0RERORQmLwQERGRQ2HyQkRERA6FyQsRERE5FCYvRERE5FCYvBAREZFDcZM7ALFptVpcunQJDRs2hEqlkjscIiIiMoEgCLh58yYCAgLg4mK8bUVxyculS5cQFBQkdxhERERkgby8PAQGBhrdR3HJS8OGDQHcf/FeXl4yR0NERESmKCoqQlBQkO573BjFJC8ajQYajQbl5eUAAC8vLyYvREREDsaULh8qpc1tVFRUBG9vbxQWFjJ5ISIichDmfH9ztBERERE5FCYvRERE5FAUk7xoNBqEhoaiS5cucodCREREEmKfFyIiIpId+7wQERGRYjF5ISIiIofC5IWIiIgcimKSF3bYJSIicg7ssEtERESyY4ddIiIiUiwmL0RERORQFDMxoz0oKCjAihUr4Ovri2effRbu7u5yh0RERKQ4TF5E9Oqrr+LLL78EAJSVlSEpKUnmiIiIiJRHMZeN7GG0UUXiAgAnT56ULQ4iIiIlU0zyolarcfz4cRw8eFDuUIiIiEhCikleiIiIyDkweSEiIiKHwuRFJlqtFj/99BPOnj0rdyhEREQOhcmLTCZMmIDo6Gi0adOG/XSIiIjMwORFJp988onu8a5du2SMhIiIyLEweZHI1atXERsbi3bt2uH777+XOxwiIiLFUMxN6jQaDTQaDcrLy21a79GjR/Hmm2/C1dVVb/3XX3+N0tJSAEBSUhKeeuopm8ZFRESkVIppebHVfV7++9//olOnTkhISMDt27cxbdo0ZGRkYOPGjXr7VSQuwP1WGCIiIhKHYpIXW9BqtRg1ahR++eUXfPHFF9iwYQPOnDkjah3FxcUYOHAgHnnkEWzevFnUsomIiJRAMZeNbEGr1eo9v3Hjhuh1rF+/XtdHZsyYMcjLyxO9DiIiIkfGlhcrjBkzBkePHhW1zOLiYt3jP//806Rj7t27h3feeQcvvPAC51QiIiLFY8uLAmzcuBEzZswAAFy7do2Xm4iISNHY8qIAlVtoMjIyZIyEiIhIekxeiIiIyKEweaFqDh06hEmTJiEnJ0fuUIiIiKph8iKDqh1x165dC0EQzCrj5MmTmD17Nn777TcxQ0N5eTni4uIwa9Ys9OvXz+y4iIiIpGZ3yUteXh6io6MRGhqKDh06YM2aNXKHJIrr16/rHh85ckRv2759+0ya36isrAy//PIL7t69i969e+Ott95Cz549UVZWJlqcpaWlKCgoAABcvHhRtHKJiIjEYnfJi5ubGxYsWIDjx49j69atmDBhAkpKSuQOy2qbNm0yuv3UqVNGt5eXl+ORRx5Bp06d8Pjjj+PSpUsA7t+9t+IxERGRM7C7odLNmzdH8+bNAQDNmjWDn58frl+/jvr168scmXUqTxdgiYyMDJw+fRrA/ZaayjZs2FDr8eXl5SgpKYGXl5dVcRAREclN9JaXrKws9O/fHwEBAVCpVFi3bl21fTQaDYKDg+Hp6YmoqCgcOHCgxrKys7NRXl6OoKAgscO0uXPnzuH111/HrFmzcPv2bbOPN3bvlso3tqtJUVER2rZtCz8/PyxdutTovuzjQkRE9k70lpeSkhKEhYVh1KhRGDx4cLXtq1evRkpKCtLS0hAVFYUFCxYgNjYWp06dQtOmTXX7Xb9+HSNGjEB6errR+kpLS/VaNYqKisR7MSJ6//33dY8HDhxo8nFXrlxB06ZNUadOHYvr3r59O86ePQsAGD16NEaNGlXjfo0aNZJkygMiIiIxid7yEhcXh/fffx+DBg2qcfv8+fORlJSExMREhIaGIi0tDfXq1dNrESgtLcXAgQMxadIkPProo0brS01Nhbe3t25xhFaaCxcuGNx269YtvecnTpywur579+7pPa86RxMA/PDDD0xciIjIIdi0w25ZWRmys7MRExPzvwBcXBATE6PrxyEIAkaOHIlevXph+PDhtZY5efJkFBYW6hZHn8hwypQpopfp4qL/Z7527Vq1fbKzs0Wvl4iISAo2TV4KCgpQXl4Of39/vfX+/v64fPkyAGDPnj1YvXo11q1bh/DwcISHhxud/NDDwwNeXl5YsWIFunbtit69e0v6GqQmRcuRSqWqdR93d3fR6yUiIpKC3Y026t69e42XNWqjVquhVqtRVFQEb29v0eN65ZVXsHLlStHLJSIiIvPYtOXFz88Prq6uyM/P11ufn5+PZs2aWVW2RqNBaGgounTpYlU5hvz22296N5pzZBWdd4mIiByRTZMXd3d3REREIDMzU7dOq9UiMzMT3bp1s6pstVqN48eP4+DBg9aGWSOp7zY7c+ZMrFu3TpQOurXp1q0bVq1aJXk9REREUhA9eSkuLkZOTo5uUr/c3Fzk5OToRtikpKQgPT0dy5cvx4kTJzBu3DiUlJQgMTFR7FBENWfOHEnL/+OPPwyO0JLC1KlTbVYXERGRmETv83Lo0CH07NlT9zwlJQUAkJCQgGXLlmHYsGG4evUqpk6disuXLyM8PBwZGRnVOvGaS6PRQKPRoLy83KpynMVff/0ldwhEREQWET15iY6OrvUurcnJyUhOTha1Xqk77BIREZF9sLuJGck23Nz+l7f+/vvv+Pe//y1jNERERKZTTPIi9WgjMR0+fFjuEBAdHa17bG5/o9WrV6NJkyYYOnQo50IiIiKbU0zyIvVoI6WpPEv3nj17zDp21KhRKCgowNq1a/Hbb7+JHRoREZFRikle6H+qdlouKSkRtfzK8y/duXOn1v2PHj2KAwcOsJWGiIhEweRFgSZMmKD3PCEhQbSyX3vtNYPbrl27hvHjx2Py5Mm6pGbfvn3o0KEDoqKi8P3334sWBxEROS/FJC+O1OdFagsXLpSs7AULFhjcNn/+fCxcuBAzZ87UTaXwySef6LZPnz5dsriIiMh5KCZ5ceY+L3/++adsdR86dAhDhw7FokWLsHTpUt36bdu2AQBu376tW/f3338bLOfOnTsWzWlFRETOx+4mZiTHMm7cOADA2rVrLS5j586dGDhwIPz9/XHw4EF4eXmJFR4RESmQYlpelGru3LkAzJ9MMS8vD5cvX8aIESOkCEtUEyZMQGFhIU6fPo0VK1bIHQ4REdk5trzYuQ0bNuDQoUP44YcfzDqupKQEixcvFi0Z+PPPP+Hj42Py/hUjnnJzc2vd98iRI7rHBQUFZsdGRETORTEtL0rusGvpKJ2ioiJR6l+5ciVatmyJwMBAk49Zu3YttFqtXmJCREQkBsUkL0rusDtv3jyLjvPw8BCl/gkTJkAQBBQWFpp13Oeffy5K/URERJUpJnlRsmbNmslav6WXcl5++WWRIyEiImLyQjI7ffq03CHU6sqVK3KHQERElTB5MVFQUJDcIZhlxowZkt6sTgynT59G27Zt5Q7DqOTkZPj7++uGhBMRkfyYvJgoPDwc6enpstRtyoidqv7v//7P6HZBEHDhwgVZ5xtatmyZTeoRBAHz5s3DW2+9hRs3bph1rEajAQCkpaVJEBkREVlCMUOlNRoNNBpNtUkJxfTiiy/CxcUFo0ePlqwOW/nyyy/x5ZdfIj4+XrYY7t69a5N6tm7dijfeeAPA/dm033nnHQCAiwtzdyIiR6SYT28ljzaS0jfffCN3CBZbvnw5/vnPf9Y6lHz27Nm6x9OmTUObNm3w4IMP4sKFC1KHSEREElBM8kKOobi4GAkJCRg6dCjy8/OrbX/vvfeMHn/nzh1kZWWhrKwMI0eOxK5du/DCCy8YPebHH3/Ue56bm4tz585hxowZ5r8AIiKSnWIuG5FjSE9PxxdffGFwe3l5Of744w+0bt26xu19+vTB7t27MWjQIN264uJii2LJycmx6DgiIpIXW17IqJs3b4pa3q5du2rd5+TJkzWuFwQBu3fvBgB89913osZFRESOg8kLGeXr62vzOqdNm2bzOokc3blz57B27VrcuXNH7lDIDv31119m3yW9KkEQ8P3332PDhg2yjlQFmLxQLcQevWVKeYcOHRK1TiKlKysrQ/v27TF06FDdaDpybidOnIBGo8H169dx8OBBBAUFISgoCNeuXbO4zIyMDAwcOBD9+/ev1pfQ1pi8SCgqKkruEOzKuXPnsH79ernDEM3cuXPRrVs37NixQ+5QyMmdPHkSJSUlACyfC43s0+3bt9GjRw+EhYXh0qVLJh2j1WoRGhqK5ORkDB8+HEOGDEF5eTlu3rxZ66AIYyonxtOnT7e4HDEweSGyQHFxMSZOnIj9+/dj7Nix+Prrr/H666/XOIIKAPLy8rBixQrRZvomx7V9+3Y8/fTTuv5bZHvFxcVYunQpTpw4YXEZRUVForRM13a/q1mzZmH37t349ddf8dJLL5lU5q1bt3SPN23ahOvXr+ueVyS5jk4xyYtGo0FoaCi6dOkidygkgTt37iAuLs7g9m3btqG4uBhTp05F3bp1kZKSIulN8G7fvq17fPr0aQwbNgzz589HYmJitX0FQUBERARGjBgBb29vzJ49G1qtVrLYyPYqnw+16dOnD9asWYMePXpIGJE8tFotTp06JXt/iNpMmDABo0ePRmhoKEpLS80+Xq1Ww9vbG0FBQSgrK9PbdvLkSSxbtkw3CrKsrAy//fZbje9JZmYm/Pz88OSTT+pt37lzJxYsWICbN2/qJVh79+61+rNj8eLFNrtBqKQEhSksLBQACIWFhZKUv2TJEgGASUtUVJTJ+3LRXyx53zt27Kj3fPny5brzoaYlMjKy1r+3oZjy8/NNjr28vLzaPsOHD7f8JCS78u677wqurq7ClClTat333LlzRs8VSx05ckSScs31wgsvCACE5ORk2WIwReX3auXKlQb3u3fvnt7zsrIy4d///rfe8enp6brtd+7c0a1PSkoSBEEQHnvsMQGA8MEHHxiNY8eOHcLp06eFw4cP69a99NJLwtNPP62330MPPSQUFxdXK2v//v3Cjz/+KGi1WuHmzZt6x9SvX79aGVVfW02uX78u5OXlCYIg6MUFQPjnP/9Z6/HmMuf7m8mLmZi82GbZsGGD3vv+9ttvm11G27Ztq/3TVl7kTF5q2o8ckzl/05YtW4p6Dhw+fFiYPXu2sH37dsnPrWPHjgnXrl3TW/f7778Ln3/+uXD9+nVBEMx7L+RUOU5PT89q27VarTBgwAChcePGws6dO3XrFyxYUO3/eM6cObrtx44d09t2/fp1ved5eXnCxYsXa4zD0FI1eQEgTJs2TS/eysnrli1bqiUvNS2V465JQUGB0LBhQ8HFxUXYt29fteOZvIhMSclLaGioKImAIy5+fn669/z8+fOCr6+v6HWYm7ykpqYK27ZtE3bs2CHMnj3bYLlVmZO8FBYWCnPmzKmWvJFl7t69K3kdtf1NKyxatMikc8BUd+/e1ZXTtGnTWsu9deuW8Omnnwpbt26ttm327NlCdHS08Msvv9R47LfffisAEBo1aqT71a/VagVPT08BgDBgwABBEEx/LxYuXChMmTJFKCkp0Vt/+PBhYfTo0XoJQ2UFBQXCokWLhPPnzxstvza1/R12796tt3316tXC7du3a/w/Npa8FBQU1HjMG2+8UWMcNS01JS8vvfSSXrz9+/fXbXvggQdMSl4qXrdWqxUEQRD27NkjLFq0SLh165YgCIIwYcIEo8cyeREZkxflLBWkeh8qJy937twR1qxZI5w6dUrv721N3BXMSV7+85//CAAEFxcX4Y8//qhxn4oPGznt3btXGDVqlLB//365Q6mRVqsV+vfvL3h7ewvbtm2TtK7a/qaCIBj8MqnJ4cOHhaSkJCErK8tovVevXjX5HBQEQXjnnXd028+cOaNbf/HiRd36Bg0a1PoaU1NTBUEQhNLSUr31VVsjDdm6datun1dffdVgPZVdvnxZGDFihG5bs2bNjL43tan6flW0HFVYv359tX0mTpxY43sdExOjO67q90NmZqbBv9GhQ4dM+jypKXlJSEjQi7dy8mLO8tJLLwkBAQHC4sWLdesmTZokCIIgDB8+3OixTF5EppTkJT4+3umTl2PHjgn9+vWTtI6ioiJBEARhypQpAnD/w7vyuWNJmVUZSl7Wrl0rxMfHC9nZ2TXWt2jRompl7d27VwgICBD69u0rlJeXS3CGm8bQ683KyhIeffRRYeHChZLWX9v1+gMHDhj9m4iptnpycnKEn3/+2aRzRRAEXd+tFi1aGK3X3OSl8vZ58+YJubm5wuuvvy7MmzfPrGMBCBcvXqyWvFS9RGtIRb+YmvYztL6mL2dj1q1bJ4wePVo4ffq0Sa9ny5Ytuh8FOTk5Zrf0LliwQOjbt2+19d7e3lZ/RtWUvAD3W6crfuBYmrwYWv74449a92HyIjJ7Sl569+5t8ckzYcIEp09e+vTpI3kdb775piAI+h9mW7Zs0f29LSmzKkPJS03HVF5XU/LSuXNn3faMjAwJznDTGHq9ldeXlpaKVt+ePXuE5cuXC3fu3BGeeuopwdfXV9ixY4fB/Sv/ugcgaLVa4eLFi8KMGTMMXhqxlLG/fdW+KLWdK7WVV9mVK1csPgfnzZsntGvXzuCxN27cEMaNGydMnz5d0Gq11fZ59tlnqyUvxmK4cuWK8O233wolJSVC27ZtTTp/DK2v7b05deqUbp+goCBBo9EIDz74oK5jrqH3rX379kJubq7knznmLiqVyuC2Nm3aCIIgfvJiytKqVSuj56clmLyY+OItYWry4uHhIXz33XcWnxhr1651+uTFVsvx48f1nm/ZskW4c+eOIAjiJC81ffjXdEzV/SqPYqhQefuyZcskOcdNYej1Vl5f04gIQbj/Rbpo0SIhPT1d92v322+/FSZNmiRcvXq12v7nz5/XlTlgwACj73WFqsnLP/7xD73nYl56MxZP3bp1zTpXaiuvMlOTlw0bNlTbXrW1pfJSWloq1KlTR/e8U6dO1faJjo7Wu9xUWwwVn2WJiYkGk5c///xTb33l1rWayv/2229rfF+aN29uMKa8vDxJPkPkXFJSUmSrW2xMXkx88ZYwJXlJTU0Vbty4IQiCZV9+s2fPFsrLy5m82Gjp1q2b3vMnn3xScHd3F8aMGSPKP7SpycvMmTP11i1evLhaWZW32zp5+emnn4SoqCjho48+Mvh6K683lLysXLlSt8/q1auFCxcu6J4PGjRIt9+tW7cErVYrzJ8/3+D71rdvX716zp49K8yYMUPQaDRG329Thomaqup7cfXqVSEtLU04d+6c4ObmZta5UlN5hpiavNS03VjyYk2LcdUYavq8rJq8vP3223p9LiqW6Oho4erVq3p9dWp7/+7duydK7FxM/xuLyeGTl4EDBwo+Pj5CfHy82cfKkbxUzfQ//fRT3f6ffvqp2SfE8ePHBUGQrqMqF/2l6q9ya5eqTE1eqq6rLXlJSkoSCgoKJDnPa2LK66283lDyUvnSV/fu3YV169bpHffNN98I8fHxgru7uxAZGSnMmTPH6Hv31ltvCVqtVrh9+7bg7+9v0t/IWPKSm5srDB48WNiyZYuwf/9+Yc+ePUZbaqq+F48//rgAQGjSpInVycvatWt199moytTh+jVtf+WVVyT/v7p06ZLkdaxatUpYsWKFkJ6eLty6dctoostF/EVsDp+87NixQ1i/fr1DJC8vv/yyUFZWpreucvIiCOa3vlR8WMl9YjrLInaSWJUpyUvVcwioPXkB7g9dLS0tFa5fvy5MmjTJ6A23LKHVanWdAg3FXlxcLHz22WfCnj17qq2vSW3JS9WltpaAxx57TOjQoYPg4+Nj8t+oavJy7do1YdeuXQb7J+3Zs8fg+1P1b1/5ubXJS8WSnZ0tfP7558Krr76qS1gvX75stFytVisMGTJElv8pANUu3XFR3iI2h09eBOF+AuMIycuVK1cEQdD/wLE2ebH0OC72sZw6dUrvl7opyUt8fHy1daYkLwCE3bt3C88//7zueePGjYWYmBjh1q1bwgcffCCMHz/e4v+HYcOGCQCEyZMnm/0+mJK8PPbYY7UmL+Hh4aL/jSqP1Kp82cpQK09ERIRu/7t37wrLli0Tbt++LWzatElvv1GjRuk9d3V1NRpHxX1ojh8/Lly4cEH4+++/a439mWeeEfLy8oS//vrL4D6CIAjbtm2T9f/AFq07XORdxCZr8vLTTz8J/fr1011K+e6776rts3DhQuGBBx4QPDw8hMjISOHnn3+uto+jJC8VIyoqr7Mmealbt65Fx3Gxr+Wll14SioqKhGPHjhm8uVVty9ixY6udfzXtt2vXrhrXV+5oacrt2vPz84W///7b4nO36lL1BmQVunTpotvHlOQlLCxM9L/PxYsXhTfeeMPkzo6Vk5fK6639gn7mmWeEjRs3WnTsuHHjDG77888/hQ8//FD0940Ll8qL2GRNXjZt2iT8+9//1t2RsWrysmrVKsHd3V1YunSp8NtvvwlJSUmCj4+PkJ+fr7efqcnLnTt3hMLCQt1S0ZvcWZOXoUOHyn5Cc7m/VCTwISEhFpdR+Vbihs6JqncDrWlxc3PTK2fjxo1CQkKCcPToUUEQBOGXX34R6tSpI9SvX1/4888/rToHKxZ7Tl7M7ZRqKHnhwsWZF7GZk7yIPqt0XFwc3n//fQwaNKjG7fPnz0dSUhISExMRGhqKtLQ01KtXD0uXLrWovtTUVHh7e+uWoKAga8J3eAMHDpQ7BPr//vrrLwDA77//bnEZLVq0wOXLlzF37lyoVKoa9zG03pgnn3wSy5cvxyOPPAK1Wo3XXnsNd+/eRUlJCWbPnm1xvJUJgoAdO3YgKCgISUlJBveRQ2Zmpln75+bmShQJEVlC9OTFmLKyMmRnZyMmJuZ/Abi4ICYmBvv27bOozMmTJ6OwsFC35OXliRWuxVxdXWWr29fXV7a6SRrNmzfHxIkTrSrDWILz6aefYufOnbrn//3vf62qq8KtW7fQq1cv/Pnnn1i8eDFOnz5d437Xrl0zWo5cCU5l169flzsEIqrEpslLQUEBysvL4e/vr7fe398fly9f1j2PiYnB0KFDsWnTJgQGBhpNbDw8PODl5YUVK1aga9eu6N27t2TxG/PKK68AAJo0aYK4uDhZYjCmX79+codAEtm2bZvJ+5qSCNy8edOacHQ+++wzveeXLl3C2LFjcfDgQd06lUqF8ePHi1Kf1BYuXIhPP/1U7jCICJDgolUlgH6fl4o7Mu7du1dvv4kTJ5o0w68p5OqwKwj3X1/FnVkrgxnXECv3eTFn6GfFsnnz5hrXy3H7aC72s9SpU0d47bXXBF9fX2HNmjW17m/JuVvbEhcXV21dRERErcd16NBB9vePCxcu1RcxpwARBJn7vBjj5+cHV1dX5Ofn663Pz89Hs2bNbBmKJAICAuDh4SFaeYsXLxatLHJud+/exYcffojr169j6NChssSwefPmauuys7NrPe7XX3+VIhwistLVq1dlq9umyYu7uzsiIiL0OstptVpkZmaiW7duVpWt0WgQGhqKLl26WBum3YiPj69x/RNPPGHjSIiIiPQJMvZHcxO7wOLiYpw5c0b3PDc3Fzk5OfD19UXLli2RkpKChIQEdO7cGZGRkViwYAFKSkqQmJhoVb1qtRpqtRpFRUXw9va29mUQERGREZaMdBSL6MnLoUOH0LNnT93zlJQUAEBCQgKWLVuGYcOG4erVq5g6dSouX76M8PBwZGRkVOvES0TyqjwCiYioKkUlL9HR0bU2JSUnJyM5OVnUejUaDTQaDcrLy0Ut1x717t0bW7dulTsMUrB27drh5MmTcodBRFQjm/Z5kZJarcbx48f1hmEqVY8ePbB371688847codCCsXEhYjsmWKSF2fi5+eHbt26mXw33a5du0obEBERkQ0pJnlR4mijqho3boxZs2YhJCTE5GMmTJgg2h1TiYiI7IHofV7k4gyjjbZu3YpOnTqZdcyHH34oUTRERETyUEzLC5ln8ODBcodARERkESYvTqp+/fpyh0BERGQRxSQvztDnhYiIiBSUvDjTUGlLFBYWyh0CEREpiJw3qVNM8kLGBQYGyh0CEREpCJMXklx4eLjec1dXV3kCISIispJikhf2eSEiInIOikle2OdFOiEhIWjRooXcYRAREQFQUPJC0njppZdw6tQpXLhwQe5QiIiIACjoDrt0X8OGDXWPvby8rCrr/PnzaNmyJQB5O2YRERFVxpYXO+Dp6WnRcR4eHtXWdezYEWPGjMHDDz+MZcuWWRzT5MmTdYkLERGRPWHLi8zee+895OXlYdGiRWYf+/DDD6Nz5844dOiQbp1KpcLnn38uZohERER2RTEtL8442kilUmHXrl1o0KABACAgIKDG1hgiIiIlUUzy4qyjjTw9PbFjxw5MnToVGRkZcHFRzJ+UiIioRrxspACdO3dG586d5Q6DiIicCO+wS0RERGQiJi9ERETkUJi8EBERkUNh8kI16tGjh9whEBGRHWOfFycWEBAgdwjVLFmyBLGxsZKV7+3tLVnZRESkfExeZJKYmIh33nkHzzzzjNyh6PHy8sKoUaNqHXI9c+ZMLFiwwKI6srOzUbduXYuOJSIiUsxQaY1GA41Gg/LycrlDMUl6ejpcXV3NOsbauYrENGbMGGzbts2iY4ODg/HTTz8hMjJS5KiIiMgZKKblRak3qVu0aBFCQ0MxceJEtGnTRtZY4uPjAQCRkZHw8fGxuBxXV1enuhMyERGJSzEtL0qVlJSEpKQkucMAAHz99dc4fPgwwsLCOMs0ERHJhskLmczFxYV38iUiItkp5rIRERER2Q6HShMRERGZiMkLERERORQmLySbf/3rX3KHQEREDojJC8lm7ty5codAREQOyC6Tlw0bNqBt27YICQnB4sWL5Q6HJNKuXTve74WIiMxmd0Ol7927h5SUFOzYsQPe3t6IiIjAoEGD0LhxY7lDIyIiov+Po40qOXDgAB5++GG0aNECDRo0QFxcHLZu3Sp3WFSDynf8HTp0qIyREBGRMxE9ecnKykL//v0REBAAlUqFdevWVdtHo9EgODgYnp6eiIqKwoEDB3TbLl26hBYtWuiet2jRAhcvXhQ7TBJBp06dsHDhQowdOxazZ8+WOxwiInISol82KikpQVhYGEaNGoXBgwdX27569WqkpKQgLS0NUVFRWLBgAWJjY3Hq1Ck0bdrU7PpKS0tRWlqqe15UVGRV/HIICwvTPX7++edljMR8arVa7hCIiMjJiJ68xMXFIS4uzuD2+fPnIykpCYmJiQCAtLQ0bNy4EUuXLsWkSZMQEBCg19Jy8eJFo7MPp6am4t133xXvBchg5MiRKCkpQWFhIcaPHy93OERERHbNpn1eysrKkJ2djZiYmP8F4OKCmJgY7Nu3D8D9GYuPHTuGixcvori4GJs3b0ZsbKzBMidPnozCwkLdkpeXJ/nrsFbjxo3h4vK/t75evXqYOHEi3n//ffj7+8sYmbhmzpzJuZCIiEh0Nh1tVFBQgPLy8mpf0P7+/jh58uT9gNzcMG/ePPTs2RNarRZvvvmm0ZFGHh4e8PDwgEajgUajQXl5uaSvQQzr1693ilmZ33rrLTzyyCN48skn5Q6FiIhExtFGVQwYMACnT5/GmTNnMGbMGJOOUavVOH78OA4ePChxdNZ577338Oijj8odhiTef/99uUMgIiInYNPkxc/PD66ursjPz9dbn5+fj2bNmtkyFDLAmg7PztCaRERE8rNp8uLu7o6IiAhkZmbq1mm1WmRmZqJbt25Wla3RaBAaGso7tlpJqa1CRESkHKInL8XFxcjJyUFOTg4AIDc3Fzk5Obhw4QIAICUlBenp6Vi+fDlOnDiBcePGoaSkRDf6yFKOctnI3gUGBsodgkN59tln5Q6BiMjpiN5h99ChQ+jZs6fueUpKCgAgISEBy5Ytw7Bhw3D16lVMnToVly9fRnh4ODIyMhQ1yoacw5QpUzB27Fh89dVXcodCRORURE9eoqOjIQiC0X2Sk5ORnJwsar2ONNrImbVs2VLuEETRoUMHTJ8+Xe4wiIickl2ONrIELxs5hgULFsgdAhEROTjFJC/kGDp16qT33MvLS6ZIiIjIGrVdZZGSYpIXjjYyrl69errHAQEBMkaib9KkSbLWb0/vBRERmUYxyQsvGxk3ZMgQBAYGwtPTEx999JHB/Xx8fGwXFICYmBj88MMPJu/fu3dvUeu/ffu21WUYm76CiIjEp5jkhYzz9/dHbm4urly5giFDhlTb7ubmhrp168oyS3TVS0mGDBgwABMnThS1bjFujujmZtNZNoiI7AKnByCbcHNzQ8OGDaut9/HxwcWLF3Hp0iV06NBBhshMY6zFyFINGjSwugw5r/sSETkjxSQv7PNinaZNm9r8kpG5goODRS/z+eefF71MIiKSlmKSF/Z5kV/lVp1WrVqJWvbs2bNFLa9C+/btJSmXiIiko5jkxVZCQkJ0j4OCgtjfoZLnnnsOzZs3h4eHh6iXeL7++mvR+7pUCAoKkqRcIiKSDr95zdS9e3esWrUKv/76K5599lm4uDD/q9C4cWOcP38eJSUlZl2Cql+/vtHtYvRLMcTV1dWi4ziDNhGRfBTzzWurPi8qlQrDhg3DjBkzeMmhBnXq1DG774y3tzcWLlxoUX3/+Mc/LDrOWpU76bLDLhGRbSkmeWGfF8dmbIh227ZtbRgJERHZO8UkL/Zs+PDhusdhYWEyRuKYKl+iEXviTU9PT4uOqxwTLyEREdkW+7zYgEajQXR0NAICAvDEE0/IHY5Dq9xhWgwtWrSw6DheNiIikg+TFxto2LAhRo0aJXcYimBpB1siIlIOXjYiSbVu3VruEHRWrlyJsWPHilJW5UtFtQ23/vjjj0Wpk4jInnB6AFIsuUYDVdWsWTM899xzog27rnypaPLkyUb39fPzE6VOIiK6TzHJC6cHIEvVrVvXquODg4Px8MMPixQNERHVRjHJC4dK26/BgwcDuN8CIcYszmKzpOmz6jFeXl5ihUNERLVgh12S3JIlS9CvXz/06NEDHh4ecocjiubNm+s953BpIiLbUUzLC9kvHx8fJCYmok2bNnKHUqPOnTubvK+LiwtUKhWmT58uYURERGQMkxdyenPmzDF53z/++ANnz55l3yoiIhkxeSGnFxkZiaioKJP2feCBB9CqVStR67en4eRERKbiUGkimZnS4Vaq2a2zsrIkKZeISKmYvBDB+C3+vby80KdPH+zevdvgPpV/gVS9pPT3338bPE6tVls8RQERkbNSTPLC+7w4B39/f10LyHPPPYf4+HjJ63z11VexdetWiyfVNDaZZMuWLS0Ni4jIaSlmqLRarYZarUZRURG8vb3lDockUr9+fezcuRO7du3CCy+8AJVKhTNnzqCoqAibN2+WOzyzVZ5xnIiITKOY5IWcR0REBCIiInTPV61ahYKCAjRp0sTiMo1dNrK2U5qx4z09Pa0qm4jIGSnmshGRMS+++KLFx5qbvBhLhIiIlIKjjYhEVvXeLRMmTLC4LFP+Qavu88EHH+geDxo0yOK6iYioOl42Irvh5eWFoqIiUcqqOpNz48aNLS7Lkl8Xr7/+OgIDAxESEsLRREREImPLC9mNlStXyla32Jd63N3dMXz4cHTt2tWk/a2d2ZqIyJkweSG70a9fPyxfvlzuMKrhpItERPaFyQtRLaTssMvEiIjIfHaZvAwaNAiNGjXCkCFD5A6FnIS1l41qS0LGjx8PAHjyySetqoeIiOw0eXn11VfxxRdfyB0GEQBxWkc+/vhjFBQUYMmSJTVul2J4taG6iIjEwKHSVURHR6Nhw4Zyh0EEQLx/0MaNG8Pf31+UsmoTFBSEUaNG2aQuIiJbMzt5ycrKQv/+/REQEACVSoV169ZV20ej0SA4OBienp6IiorCgQMHxIiVyG4FBgbqHgcFBckYCRGR8pmdvJSUlCAsLAwajabG7atXr0ZKSgqmTZuGw4cPIywsDLGxsbhy5Ypun/DwcLRv377acunSJctfCZGZXF1ddY+tnR5gypQpcHd3R506dfDuu++KEp+5evToIUu9RES2ZvZN6uLi4hAXF2dw+/z585GUlITExEQAQFpaGjZu3IilS5di0qRJAICcnBzLoq1BaWkpSktLdc/FuskZ2Yc6depYNWdRVYMHD8bcuXMBADNnzjTpGFOSl3bt2iEvLw+CIJh1aUjMa8amzpP0+uuvY968eaLVS0Rka6L2eSkrK0N2djZiYmL+V4GLC2JiYrBv3z4xq9JJTU2Ft7e3bmGTvbJkZGSgQYMGopXXrVs3rFixAnPmzMG4ceNMOsbUBKNp06YW92kxp8NuvXr1alxvapypqanIyMgwuT4iInsj6vQABQUFKC8vr/YB7u/vj5MnT5pcTkxMDI4cOYKSkhIEBgZizZo16NatW437Tp48GSkpKbrnRUVFTGAUpFevXqKX+cILL1RbJ+Ws0mJJTExEUVERFi9ejLZt2+pdijVHnTp1EBsbK3J0RES2Y5dzG23fvt3kfT08PODh4QGNRgONRoPy8nIJIyNnVLlvjJyWLl2qe9yxY0ds2bJFb7u9JFlE5BwUM1Taz88Prq6uyM/P11ufn5+PZs2aiVlVNWq1GsePH8fBgwclrYek1bRpU93jzp07yxJDmzZt9J47SlLgKHESkTLI2VggavLi7u6OiIgIZGZm6tZptVpkZmYavOwjFo1Gg9DQUHTp0kXSekhaffr0QXx8PNq2bYuPP/7Y4nIaNWqkexwSEmLWsfXr17e4Xrn06dPHIeMmIsdVXFwsW91mJy/FxcXIycnRjRjKzc1FTk4OLly4AABISUlBeno6li9fjhMnTmDcuHEoKSnRjT6SCltelMHV1RVr167FyZMnrUp4//WvfyEqKgo+Pj749NNPa91f7j4vjRs3tur4zZs3ixQJEZH9M7vPy6FDh9CzZ0/d84rOsgkJCVi2bBmGDRuGq1evYurUqbh8+TLCw8ORkZFhszuLEgH3O6Xu27cPd+/ehbu7u1nH2vLyS0Vd3377Lbp374579+6ZdRwA/OMf/6jWL0eK6QaIiOyF2clLdHR0rR+MycnJSE5OtjgoS7DDLlWlUqnMTlzkEhUVhby8PIwcObJaR1xTsc8LETkLu5zbyBK8bERSsVVS0KxZM87pRUQOQzGjjYgcVeXWRDn/IS2p29JLRFOnTrXoOCIiuSkmeeFoI5KKPV6OESMmQ3Mw9e/fHytWrLC6fCIiqSgmeeFlI1ICe+hou379egwZMkTuMIiIDFJM8kJkDbmSBnts1QFMn+SRiEgOTF6IqqiaUNhrglFBqsQrIiJCknKJiKylmOSFfV7Imdh7QkVEJCXFJC/s80JSceREYcOGDRYfaw/9b4jIfsn5GaGY5IXIGkr9on7yySflDoGISHRMXoiqcJb7vACQfLZ3IiIpMHkhqoUtkxlTE5HaYjK1HF9fX4vrMKZHjx4WH0tEVBvFJC/ssEvWaNSoUY2PAVSb9FBMYiZGYidZ1rToDBo0SMRIiIj0KSZ5YYddssYnn3yCevXqoW7duvj888+xevVqAICPjw9GjBghc3TyUGo/ICJyfGbPKk2kRMHBwbh48SIEQUCjRo3QunVrhISEIDAwEPXr15c7PNGEh4frPWeCQkSOSDEtL0TW8vHx0btk1LFjRzRp0kTGiExTWwISGRmpe1yvXj3RypXqWCKi2jB5cVKV+0fwVvCOR6pOxHFxcQa3Sdn3h4jIHExenNTQoUN1j9966y0ZIyGp+fv76x43bdrU6L4VfX2A6gnSnj17sGbNGkRFRYkboJlWrVola/1EJD/FJC8cbWSevn37IiMjA19//TXUarXc4TgtWwzDXrhwIby9veHj44NPPvnE4H6xsbFo2LChwdiioqIwZMgQuLlZ11XuwQcfrLauY8eOJh8/YMAAq+onIsenmA67arUaarUaRUVF8Pb2ljscu6dSqRAbGyt3GCSC2vqXtGzZEhcvXoRKpbKLPi9Hjx7FxYsX0a9fP5w6dQoAFNUpmoikp5jkhciZmNtiYyg5MJZkSNXptm7dumjTpo3eOkeeP4qIbE8xl42IyDq2TiAsTY7stePw6NGj5Q6ByGkweSGiGkk93Lly+eYkTu7u7lKEYzUPDw98/vnncodB5BSYvBA5uJqSDEe7z4oSLhsJggAXF9M+Urt16yZxNETKxuSFyAHV9GVvTwmAKcnTxIkTdY/HjBlT4z5TpkzBDz/8IFpc9qJXr15yh0Dk0Nhhl0hGVRMORxt106VLF4vnE0tMTMTdu3fh6emJ/v3717jP9OnTrQlPEsHBwTh37pxVZdhToknkiBTT8sL7vJASvPnmm3KHoCP1pSc3Nze8/PLLGDVqlMlf5l5eXpLGVBsXFxekpaXJGgMRKSh54azSpAShoaE4cuQI9u7da9aN2yzlKH1jdu/ejfHjx2P//v1WlRMdHW3V8efPnzd4f6Q6deqY/H6y5YXIOrxsRGRnOnToAMD0LzixEhAx6xM7KXrsscfw2GOPiVqmJQIDAw1uGz9+PHbs2GHDaIicl2JaXoiciS1+uZuSgMjVghAREWHxsV999ZXow63XrVtX7cZ7RCQdJi9EdqpJkyay1m/LxMTclhprRiA988wzuH79usXH16R79+6ilkdExjF5IZKRsQShZcuWNozEMnL1mWnevLlVx9vbqK7Vq1fDy8sLoaGhcodC5BCYvBA5AGNftrZOINjZVHxPP/00rl+/joULF8odCpFDYPJC5IDESiCkmphR7lFMQ4cOtWl95v49atrfXudsIrJHTF6ICICyWlSefPLJGtdLdblISe8dkSOwu+QlLy8P0dHRCA0NRYcOHbBmzRq5QyKShSO3fNgjd3d3fPLJJ3KHoZOVlYXRo0cjOztb7lBMMnbsWLlDINKxu+TFzc0NCxYswPHjx7F161ZMmDABJSUlcodFJKuqv+y7du2qe1zRyiD2r38lJUBjx45FXl4eWrVqJWk95rxnPXr0wOLFi9GpUycJIzJP69atDW777LPP8MQTT9gwGiLD7C55ad68OcLDwwEAzZo1g5+fn+jDGokcnVqtxuOPP44uXbrg7bfflqSOBx54oMb1pnxBmzq7spSSkpJ0j59//nk0bdpUtLKddVTQV199JXcIRAAsSF6ysrLQv39/BAQEQKVSYd26ddX20Wg0CA4OhqenJ6KionDgwAGLgsvOzkZ5eTmCgoIsOp7I3lnaWtKgQQPs3LkTBw4cQEBAgMhR3ffQQw/Vuo+h+JOSktCgQQMAQJ8+fUSNy1Rz5sxBSkoKFi5cKPp9WDIyMkQtzxKGJrO0RkxMjNHtvr6+otdJZAmzk5eSkhKEhYVBo9HUuH316tVISUnBtGnTcPjwYYSFhSE2NhZXrlzR7RMeHo727dtXWy5duqTb5/r16xgxYgQWLVpkwcsiIlNIdWnI29sbp06dwsGDBzFkyBBJ6jBGpVLB29sb8+bNg1qtFr38qj+oxBhtZG4569evN6tOU8yaNUv0MomkYPbcRnFxcYiLizO4ff78+UhKSkJiYiIAIC0tDRs3bsTSpUsxadIkAEBOTo7ROkpLSzFw4EBMmjQJjz76aK37lpaW6p4XFRWZ+EqI7Jvc92+xtv6AgAAEBATgl19+saocsh0fHx+5QyAyiagXpsvKypCdna3X9Oji4oKYmBjs27fPpDIEQcDIkSPRq1cvDB8+vNb9U1NT4e3trVt4iYmUiENxiYj+R9TkpaCgAOXl5fD399db7+/vj8uXL5tUxp49e7B69WqsW7cO4eHhCA8Px9GjRw3uP3nyZBQWFuqWvLw8q14DEZEzMzbiiMhemH3ZSGrdu3eHVqs1eX8PDw94eHhAo9FAo9GgvLxcwuiInEdFh1sA8PPzk7Sumi5R1dZh+PXXX8e8efPg5eXFy8VETkbUlhc/Pz+4uroiPz9fb31+fj6aNWsmZlXVqNVqHD9+HAcPHpS0HiIx2fPloDfeeAO+vr5wc3Mz2DlUqn45kyZNwpYtW4zuM2XKFHz00UfYunWrJDGYg7f2J7ItUZMXd3d3REREIDMzU7dOq9UiMzMT3bp1E7OqajQaDUJDQ9GlSxdJ6yGylbCwMN3j3r1727x+b29vnD9/Hnl5eXr/v+YmXJWHKT/33HMmHZOamorg4OBa43vllVcQFRVlVjxiSUtLg4uLCwYPHoyGDRsCMD2Zs+ektbZBEkT2wOzLRsXFxThz5ozueW5uLnJycuDr64uWLVsiJSUFCQkJ6Ny5MyIjI7FgwQKUlJToRh9JRa1WQ61Wo6ioCN7e3pLWRWQL48aNw86dO1FQUIDPPvtMkjpq+7Jt0KCB3uUjS7Rr1w4rVqzAr7/+qhtxKDVbJAcvvfQSnn76aZuN0Gnfvj2OHTsmeT0ffvgh/u///k9vXb169UStw93dHWVlZaKWSc7F7JaXQ4cOoWPHjujYsSMAICUlBR07dsTUqVMBAMOGDcPcuXMxdepUhIeHIycnBxkZGdU68RKRcW5ubvjmm2/w008/mXTZtfKt20eNGmV2faZ+4VdNeEy52+wLL7yA2bNnK+4mZ40aNRI1UTJUlpubG9LS0qqt37dvn67Vp0WLFmjUqFGtddSWbEndv6l9+/b45z//KWkdUho8eLDcIRAsaHmJjo6u9ddacnIykpOTLQ7KEuywS85u+PDh2LNnD4qKipCSkmKTOlUqFTZv3mxwKgFH1KtXL/z4449yh6GnYsqUqrp27YqioiIUFxfDw8MDISEh+Pvvv20bnJP55ptv7Pqyn7OQfwISkbDDLjm7OnXqYMmSJVizZo1NWzhatmxps7psIT4+Xu4QdLp06YKWLVviyy+/NLpfgwYNUKdOHRtFZR0lTfhJ8lFM8kJEpDQ///wzcnNzERISItqXvj0kD40bNzZ5382bN0sYCTkqxSQvHG1Ejkgpzc9KumxkC6b+3VUqlVkzdDvK+TR//nyT93Xk/jEkHcUkL7xsRGQ+sX6FL168WJRylEYpAxVM6ZRtDlNnQq9bt67oI51IGRSTvBCRdaz51W5v/V7kaoGoOtrH1i3BUrzugIAArFy5UvRyTSHHjOTkGOxuegAiIjlZ0xpVtbOvuclE5XmF2rdvb3EcYjp//jzc3PhVQfZFMS0v7PNC5LjsoROpGFxdXU2a2NDQ6w0KCsKiRYvw3HPP4fvvvxc7PKOGDx9e43pHSFwWLlwodwhkY4pJXtjnhcg26tevr3tc0R9BKcmHPUhKSsLKlSurJUFSv8eVp6No3rw5AKBJkyai1yPF61Cr1Ta7txHZB8UkL0SOyFFGh1Sm0Wjg5uYGV1fXGu/6Sv9j6O9r73/3PXv2YNasWdi/f7+scZjzPs2bN4+zizsR+28PJCK7EhISgvPnz0MQBLRo0ULucKgSsZKiVq1a4c033xSlLFuqmCqBlI8tL0RObNasWbrH5nxZBQQE6CUuvGzkOF5++WW5QyCymmKSF3bYJTLfoEGDsHbtWmzatAndu3eXOxzR2PtlGTn169dP7hCIrKaY5IUddonM5+Ligvj4eMTFxckdiqwiIiLQunVrZGZmyh2K5FQqFR577DG5wyCyimKSFyIiS82dOxdnz55Fr1695A7FILEuzdnLHWs9PT3lDoEcGJMXInJ6tr7MJNdlrT59+qBDhw6y1F2VWBMudu7cWZRyyHxSDKU3FZMXIhmxb4b9UXLn4y1btsh+zlWMCIqOjq5xe+WWIUOxVtyHBqg+JQPZjpytZ0xeiIhEZM/Jj9iJi4+PD7y8vEze383NDUuXLtU979u3r0X1+vr66h7b8/tN0lFM8sLRRs6t8l1fw8PD5QuEqBIlXo6qPFN2fn4+Hn/8cZOPvXDhgt4M1V988QXee+89jBgxAnXq1MHo0aNRp06dWsuRu/WI5KeY5IWjjZxb3bp18dVXX2HYsGFIT0+XOxwyk9i/nvnlJp1du3Zh4sSJ+Pnnn+Hu7o6BAweafGzlyz3A/T4T77zzDpYvX47CwkIsXrxY5GhJqXiHXVKMZ555Bs8884zcYRBJIjAwUPfYz89PtjhCQkIwe/Zs3fORI0fi3LlzuH37NjZs2ICTJ09aVG7dunXFCpGcgGJaXoiIHIUlLUOtW7fGjBkz0KtXL+zYsUOCqCzj4uKC6dOnY86cOdi0aRMGDhyImTNnWlxe5XvQVL7ERFQZkxciG1Or1QCA7t27w81NGY2fcneaDAoKkrV+W3n77beRmZmJ9u3byx1KjVq1aoXvvvsOb731lsVlpKenIyIiAk888QQmTJggXnCkKExeiGzs448/xoEDB7B9+3a5Q1GMlStXyh0CiSQgIACHDh3Cli1b4O7uDgBYsmSJKGW3a9fO6PbvvvtOlHqcgZyXLgEmL0Q25+Ligi5dusDDw0PuUBSjR48ecodAEmrWrJko5TRt2tTodnM6H5O8mLwQkSIMHTpU9zgqKkrGSPQ9/fTTNqvLmlFW8fHxIkZiO+ZcspT78qYcunfvjq1bt8odhugUk7zwPi9Ezu2zzz7DW2+9hVWrVuHBBx+UOxydJUuWYM2aNTapy1jyMmXKFIPbsrKyEBwcLEFE0jD2Oiv6lNF9u3btQp8+fUQvt1WrVqKXaQ7FJC+8zwuRc2vcuDFmzpyJYcOGWVWO2L/OGzRogCFDhuits/V9aHbv3o3//Oc/NdbfuXNnRV12++ijj7B//365w7DInDlz5A7BZD179pS1fsUkL0RE5qg8Yqd169aildumTRvd45YtW4pWrjUee+wxuLg4x8e9q6urXV02NEdKSgomTpwodxgOwTnOZiKiKr7//ns899xzWLRokahDrdPT0xEQEIDWrVtj+vTpopXrzCpP+TFgwAD5ApGYi4tLra1gvXr1sqhssbtUREZGilqeuZi8EJFTat26NVauXImkpCRRy33ggQdw/vx5/P777/Dx8RG1bGcVEBCA77//HpMnT5ZlCoGK2ZMXLlwIAMjIyMDw4cNtHgdgeZ+eTZs2iRbDa6+9hsGDB4tWniWUcYcsIiI7opSbD9qTAQMGWNXq0rBhQ4uPPX78OE6fPo2YmBgAQGxsLGJjY7FixQqLy7RUxb1vzOXn5wdBEPDbb79ZdZPDe/fuwdXV1eLjxcKWFyKSnbe3Nzp06AAAmDRpkqyxcFJHZVq5cmWNyc8TTzwBAHjqqacMHtuqVSvExsba5Eu7tvOvT58+upm9P/30U8njqcoeEheAyQsR2QGVSoWsrCz8+OOPeP/99+UOR3JSJUjOkng9++yzusem3liuQYMGeOWVV/Cvf/1Lb/28efPw66+/4ptvvqmxngMHDlgVq9g8PDxw9OhR7N69G2PHjpU7HNmwbZOIrCbG8GJvb2/Zh1+SY0hJScHVq1fh5uZm1hd4nTp18PHHH+v1/1CpVAYvo3z55ZdGyxs1ahSWLl1qcv1iadKkCZo0aWLRsUpJcJm8EBGRQ/Hw8MD8+fPlDsPiBIKsZ3eXjW7cuIHOnTsjPDwc7du3R3p6utwhERERkR2xu5aXhg0bIisrC/Xq1UNJSQnat2+PwYMHo3HjxnKHRkROwBnnv3Em/Psqg921vLi6uqJevXoAgNLSUgiCwJONiMjB1Tajs9Qcpa+Ho8QpN7OTl6ysLPTv3x8BAQFQqVRYt25dtX00Gg2Cg4Ph6emJqKgos3tr37hxA2FhYQgMDMTEiRPh5+dnbphERHbLGb6gmjVrpnvcu3dvZGZmyhiN4fe84sey1JYsWQIPDw+994UsZ3byUlJSgrCwMGg0mhq3r169GikpKZg2bRoOHz6MsLAwxMbG4sqVK7p9KvqzVF0uXboEAPDx8cGRI0eQm5uLL7/8Evn5+QbjKS0tRVFRkd5CRCQWX19fhIeHY+fOnXKHUit7SoqysrLw2muvYc+ePdi+fbtVN0aTkq1mR46KisKlS5eQm5trk/qUzuw+L3FxcYiLizO4ff78+UhKSkJiYiIAIC0tDRs3bsTSpUt1N5/KyckxqS5/f3+EhYVh165d1WZlrZCamop3333XvBdBRGSi06dPs8+dBUJCQuxiRJA98fX1lTuEalq0aIGLFy/KHYbZRO3zUlZWhuzsbN0tlIH7E03FxMRg3759JpWRn5+PmzdvAgAKCwuRlZWFtm3bGtx/8uTJKCws1C15eXnWvQgiokqYuJCS1a1bV+4QLCLqaKOCggKUl5frbl1cwd/fHydPnjSpjPPnz2PMmDG6jrrjx4/HI488YnB/Dw8PeHh4QKPRQKPRoLy83KrXQETmY6d6chTOfq7a06VFa9jdUOnIyEiTLytVplaroVarUVRUBG9vb/EDIyKygoeHB0pLSwFYN0kgOS8xZ4au4KjJjKiXjfz8/ODq6lqtg21+fj57WBMpmLP/mjXFtm3b4O7ujpYtW+LFF1+UOxwy4JtvvkHXrl2xZs0aWeo3lkwY62/qbERNXtzd3REREaE3JE6r1SIzMxPdunUTs6pqNBoNQkND0aVLF0nrISKyRI8ePXDp0iX8/vvv8PT0lDscMmDw4MHYt2+fwUEilUVHR+sejxo1yui+TPDFZXbyUlxcjJycHN2lndzcXOTk5ODChQsA7k+YlZ6ejuXLl+PEiRMYN24cSkpKdKOPpKJWq3H8+HEcPHhQ0nqIiCzVuHFjuLu7S1b+hx9+KFnZjqbqD2YpLo/Exsbigw8+wNixYzF37lzRyyfDzO7zcujQIb2ZX1NSUgAACQkJWLZsGYYNG4arV69i6tSpuHz5MsLDw5GRkVGtE6/Y2GGXiMTgyL+Q+/bti82bN+Ps2bNITk42uF9qaip69OgBAJg9e7atwrOpzZs3w8fHR9I6VCoVJk+ebNK+jnxe2SOzk5fo6Oha/wjJyclG/3GkwA67ROTsVCoV+vbtixMnThjdr3v37sjMzIRWq9W79KEkcnwPhIaG4vjx4zav1xnZ3dxGRERknbZt26JNmzYAgPfee6/GfXr16oWYmBiHHW1iKXtvATH3viuLFy+WKBL7xuSFiEhhXFxc8PPPP2PHjh14++235Q6HzPD4448jLCwMLi4uJo1KGz16tFnlS30pzVYUk7xwtBER0f/4+voiOjoaLi6K+ZhXtODgYAD3E8/s7Gz89ddfiI+PF72e5s2b4+2338bDDz+MrKws0cu3FcWc1RxtREREjqh///7IyMjQPXd1dUXTpk0REhKiW2fsTvPmmjFjBo4dO6brtO2IFJO8EBERGSL3XY2N9bVZv359jXP4Pfjgg/jkk0/w9NNPY926dQaPHzhwoAgROhYmL0REpEibN29Gw4YNMWDAAHTs2FHy+qToDJycnIzVq1ejdevWBvdZuXKl6PXaO7ub28hSvM8LkXzsfQQHOae+ffvi2rVrqFOnjm6dvZ2rYtxYsF69eiJE4lgU0/LCPi9ERFRV5cRFapYkRmq1WoJIlE8xyQsRkRjs7Zc5EVXH5IWIiIj0tGjRAitWrJA7DIMUk7zwPi9ERGSvHK1Fz8fHBy+88ILcYRikmOSFfV6IiIik88orr8gdgo5ikhciIiKSTsVdgO0BkxciInIacl2+MVSv3JeTPDw8alwvd1y1YfJCRETkpJYvXw7g/pxKDz74oMzRmI7JCxERkZPq1KkTTp06hbNnzzpU8sI77BIREYnA3i+1GPLQQw/JHYLZFNPywtFGRPJx1A9tIqqZvf9PKyZ5ISIiIufA5IWIqBJ7/8VJ1uHf1zCVSiV3CCZj8kJEREQOhckLERGRxNzcFDM+xi4weSEiIpLYww8/LHcIisLkhYiISEIvvviiwf4k9toHpyKuV199VbcuNjZWrnCqYTsWERGRhBzlklFNCdb7778Pf39/PPTQQwgNDZUhqpoppuVFo9EgNDQUXbp0kTsUIiKyU66urpKVPWHCBMnKlkuDBg0wefJkxMfHyx2KHsdIB02gVquhVqtRVFQEb29vucMhIiI7FBISgvDwcOTk5OCjjz4StewXX3wRpaWl8PDwwIQJE1BaWipq+bZkr5ezKigmeSEiIqqNSqXC/v378ccff6Bdu3ailu3m5qbrI/Laa6+JWrYt8D4vRORU7P1XGlFlHh4eoicuVT399NO6x48++qikdTkjtrwQkdWUlLwo6bWQfD788EOUlZWhSZMmeP755+UOR3GYvBAREYnM19cXX331ldxhKBYvGxEREZFDYfJCREQkE16mtAyTFyIiItJj70mV3SYvt27dwgMPPIA33nhD7lCIiIgUr/JQaSYvFpoxYwa6du0qdxhERERkZ+wyefn9999x8uRJxMXFyR0KERGRU1D0TeqysrLQv39/BAQEQKVSYd26ddX20Wg0CA4OhqenJ6KionDgwAGz6njjjTeQmppqbmhERETkBMy+z0tJSQnCwsIwatQoDB48uNr21atXIyUlBWlpaYiKisKCBQsQGxuLU6dOoWnTpgCA8PBw3Lt3r9qxW7duxcGDB/HQQw/hoYcewt69e2uNp7S0VG/+iKKiInNfEhERETkQs5OXuLg4o5dz5s+fj6SkJCQmJgIA0tLSsHHjRixduhSTJk0CAOTk5Bg8fv/+/Vi1ahXWrFmD4uJi3L17F15eXpg6dWqN+6empuLdd98192UQERGRgxK1z0tZWRmys7MRExPzvwpcXBATE4N9+/aZVEZqairy8vJw7tw5zJ07F0lJSQYTFwCYPHkyCgsLdUteXp7Vr4OIzGPvIxPMoaTXQqRUoiYvBQUFKC8vh7+/v956f39/XL58WcyqdDw8PODl5YUVK1aga9eu6N27tyT1EBERiU2sZHndunUIDg7Ge++9J0p59s4uRxtVGDlyJObOnWvSvmq1GsePH8fBgwcljoqIiMhyFV0d/vnPf6Ju3bqilPnUU08hNzcX77zzjijl2TtRkxc/Pz+4uroiPz9fb31+fj6aNWsmZlVEREQOacqUKTh69Ci2b98udyh6BgwYoHv8zDPPyBhJ7USdVdrd3R0RERHIzMzEwIEDAQBarRaZmZlITk4Ws6pqNBoNNBoNysvLJa2HiIjIGiqVCu3bt5c7jGpGjx6Ns2fP4vbt25g8ebLc4RhldvJSXFyMM2fO6J7n5uYiJycHvr6+aNmyJVJSUpCQkIDOnTsjMjISCxYsQElJiW70kVTUajXUajWKiorg7e0taV1ERERK4+rqilmzZskdhknMTl4OHTqEnj176p6npKQAABISErBs2TIMGzYMV69exdSpU3H58mWEh4cjIyOjWideIiIiIkuYnbxER0fX2js6OTlZ8stEVfGyERERkXOw69FG5uBoIyIiIqBHjx4AgGeffVbmSKQjaoddIiIiktcPP/yArKwsRd/3TDEtLxqNBqGhoejSpYvcoRCRA+MddsnReXt7o3///qhXr57coUhGMckLLxsRyYdf+ERkS4pJXoiIiMg5MHkhIiIih6KY5IV9XoiIiJyDYpIX9nkhIiJyDopJXoiIiMg5MHkhIiIih6KY5IV9XoiIiJyDYpIX9nkhIiJyDopJXoiIiMg5MHkhIqokPj5e93jGjBkyRkJEhnBiRiKymqurq9whiCY4OBhZWVk4c+YMnnvuObnDIaIasOWFiKzWoUMHPPLIIwCAtLQ0maOxXo8ePZCYmAgPDw+5QyGiGiim5UWj0UCj0aC8vFzuUIicjkqlwsGDB3HhwgWEhITIHQ4RKZxKUNh0sEVFRfD29kZhYSG8vLzkDoeIiIhMYM73Ny8bERERkUNh8kJEREQOhckLERERORQmL0RERORQmLwQERGRQ2HyQkRERA6FyQsRERE5FMUkLxqNBqGhoejSpYvcoRAREZGEeJM6IiIikh1vUkdERESKxeSFiIiIHAqTFyIiInIoTF6IiIjIobjJHYDYKvofFxUVyRwJERERmarie9uUcUSKS15u3rwJAAgKCpI5EiIiIjLXzZs34e3tbXQfxQ2V1mq1uHTpEho2bAiVSlXjPl26dMHBgwcNlmFoe1FREYKCgpCXl+dQw7Bre732WI81ZZl7rKn7m7KfsX14XtlHXZaWxfPKdpzpM8tezytj26U6twRBwM2bNxEQEAAXF+O9WhTX8uLi4oLAwECj+7i6uhp9w2vb7uXl5VAfBrW9Hnusx5qyzD3W1P1N2c/YPjyv7KMuS8vieWU7zvSZZa/nlSnbpTi3amtxqeCUHXbVarVV2x2NrV6PmPVYU5a5x5q6vyn7GduH55V91GVpWTyvbMeZPrPs9bwypy45KO6ykZR4916SAs8rkgLPK5KKPZxbTtnyYikPDw9MmzYNHh4ecodCCsLziqTA84qkYg/nFlteiIiIyKGw5YWIiIgcCpMXIiIicihMXoiIiMihMHkhIiIih8LkhYiIiBwKkxeRbNiwAW3btkVISAgWL14sdzikIIMGDUKjRo0wZMgQuUMhhcjLy0N0dDRCQ0PRoUMHrFmzRu6QSAFu3LiBzp07Izw8HO3bt0d6erpkdXGotAju3buH0NBQ7NixA97e3oiIiMDevXvRuHFjuUMjBdi5cydu3ryJ5cuXY+3atXKHQwrw119/IT8/H+Hh4bh8+TIiIiJw+vRp1K9fX+7QyIGVl5ejtLQU9erVQ0lJCdq3b49Dhw5J8l3IlhcRHDhwAA8//DBatGiBBg0aIC4uDlu3bpU7LFKI6OhoNGzYUO4wSEGaN2+O8PBwAECzZs3g5+eH69evyxsUOTxXV1fUq1cPAFBaWgpBECBV+wiTFwBZWVno378/AgICoFKpsG7dumr7aDQaBAcHw9PTE1FRUThw4IBu26VLl9CiRQvd8xYtWuDixYu2CJ3snLXnFlFNxDyvsrOzUV5ejqCgIImjJnsnxnl148YNhIWFITAwEBMnToSfn58ksTJ5AVBSUoKwsDBoNJoat69evRopKSmYNm0aDh8+jLCwMMTGxuLKlSs2jpQcDc8tkoJY59X169cxYsQILFq0yBZhk50T47zy8fHBkSNHkJubiy+//BL5+fnSBCuQHgDCd999p7cuMjJSUKvVuufl5eVCQECAkJqaKgiCIOzZs0cYOHCgbvurr74qrFy50ibxkuOw5NyqsGPHDiE+Pt4WYZKDsfS8unPnjtCjRw/hiy++sFWo5ECs+byqMG7cOGHNmjWSxMeWl1qUlZUhOzsbMTExunUuLi6IiYnBvn37AACRkZE4duwYLl68iOLiYmzevBmxsbFyhUwOwpRzi8hcppxXgiBg5MiR6NWrF4YPHy5XqORATDmv8vPzcfPmTQBAYWEhsrKy0LZtW0nicZOkVAUpKChAeXk5/P399db7+/vj5MmTAAA3NzfMmzcPPXv2hFarxZtvvsmRRlQrU84tAIiJicGRI0dQUlKCwMBArFmzBt26dbN1uOQgTDmv9uzZg9WrV6NDhw66fg0rVqzAI488YutwyUGYcl6dP38eY8aM0XXUHT9+vGTnFJMXkQwYMAADBgyQOwxSoO3bt8sdAilM9+7dodVq5Q6DFCYyMhI5OTk2qYuXjWrh5+cHV1fXap2O8vPz0axZM5miIiXguUVS4HlFUrC384rJSy3c3d0RERGBzMxM3TqtVovMzEw23ZNVeG6RFHhekRTs7bziZSMAxcXFOHPmjO55bm4ucnJy4Ovri5YtWyIlJQUJCQno3LkzIiMjsWDBApSUlCAxMVHGqMkR8NwiKfC8Iik41HklyRgmB7Njxw4BQLUlISFBt88nn3witGzZUnB3dxciIyOF/fv3yxcwOQyeWyQFnlckBUc6rzi3ERERETkU9nkhIiIih8LkhYiIiBwKkxciIiJyKExeiIiIyKEweSEiIiKHwuSFiIiIHAqTFyIiInIoTF6IiIjIoTB5ISIiIofC5IWIiIgcCpMXIiIicihMXoiIiMih/D+qWy4SQUeHzgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to fit this, we'll write a convenience function that can take the power spectrum, a model, some starting parameters and just run with it:" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import PSDLogLikelihood, PSDPosterior, PSDParEst\n", + "\n", + "def fit_powerspectrum(ps, model, starting_pars, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + "\n", + " if priors:\n", + " lpost = PSDPosterior(ps, model, priors=priors)\n", + " else:\n", + " lpost = PSDLogLikelihood(ps.freq, ps.power, model, m=ps.m)\n", + "\n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + "\n", + " return parest, res\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's see if it works. We've already defined our model above, but to be explicit, let's define it again:" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [], + "source": [ + "model_to_test = models.PowerLaw1D() + models.Const1D()\n", + "model_to_test.x_0_0.fixed = True" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we just need some starting parameters:" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [80, 1.5, 2.5]" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([108.97152923, 2.07017797, 2.00200459])" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Looks like it worked! Let's plot the result, too:" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABaiklEQVR4nO3de1gUZf8/8DcHAU+AiKIoRqaZZIKhoKVPaBjylOYxO5mpYdpiGmVpT+o3y0fzlJVb5unR/FmZVlYe0CINj6kYpXkqQyVNFE0QVFD2/v2xsu3C7rKHmZ3d2ffruuZyd+ae+/6wjPBh5j74CCEEiIiIiDyEr9IBEBEREdmDyQsRERF5FCYvRERE5FGYvBAREZFHYfJCREREHoXJCxEREXkUJi9ERETkUfyVDkBqOp0OZ86cQf369eHj46N0OERERGQDIQQuX76MyMhI+Ppav7eiuuTlzJkziIqKUjoMIiIickB+fj6aN29utYzqkpf69esD0H/xwcHBCkdDREREtiguLkZUVJTh97g1qkletFottFotKioqAADBwcFMXoiIiDyMLV0+fNS2tlFxcTFCQkJQVFTE5IWIiMhD2PP7m6ONiIiIyKMweSEiIiKPoprkRavVIiYmBp06dVI6FCIiIpIR+7wQERGR4tjnhYiIiFSLyQsRERF5FCYvRERE5FFUk7ywwy4REZF3YIddIiIiUhw77BIREZFqMXkhIiIij6KahRndQWFhIVasWIGwsDA89thjCAgIUDokIiIi1WHyIqGxY8fi448/BgCUl5cjLS1N4YiIiIjURzWPjdxhtFFl4gIAR44cUSwOIiIiNVNN8qLRaHDo0CHs3btX6VCIiIhIRqpJXoiIiMg7MHkhIiIij8LkRSE6nQ4//PADjh8/rnQoREREHoXJi0LGjRuHpKQktGrViv10iIiI7MDkRSHvvfee4fW2bdsUjISIiMizMHmRyfnz55GSkoK2bdviq6++UjocIiIi1VDNJHVarRZarRYVFRUubffAgQN4+eWX4efnZ7L/s88+Q1lZGQAgLS0NDz/8sEvjIiIiUivV3Hlx1Twv//vf/3D33Xdj6NChuHr1KqZMmYLMzEysX7/epFxl4gLo78IQERGRNFSTvLiCTqfD8OHD8dNPP+Gjjz7CunXr8Pvvv0vaRklJCfr27Yu77roLGzdulLRuIiIiNVDNYyNX0Ol0Ju8vXbokeRtff/21oY/MyJEjkZ+fL3kbREREnox3XpwwcuRIHDhwQNI6S0pKDK///PNPm865ceMGXnvtNTz55JNcU4mIiFSPd15UYP369Zg2bRoA4MKFC3zcREREqsY7LypgfIcmMzNTwUiIiIjkx+SFiIiIPAqTF6pm3759mDBhAnJzc5UOhYiIqBomL7YSApBovpaqHXHXrFkDIYRddRw5cgQzZ87Er7/+KklMlSoqKpCamoq33noLDz30kN1xERERyc3tkpf8/HwkJSUhJiYG7du3x+rVq5UOSe/jj+HXti2ecfD0ixcvGl7//PPPJsd27dpl0/pG5eXl+Omnn3D9+nXcf//9eOWVV9C9e3eUl5c7GFV1ZWVlKCwsBACcPn1asnqJiIik4nbJi7+/P+bNm4dDhw5h8+bNGDduHEpLS5UN6vx5YOxY+BQVYRGALAC32VnFhg0brB4/evSo1eMVFRW46667cPfdd+O+++7DmTNnboZ23vCaiIjIG7hd8tK0aVPExcUBAJo0aYLw8HCTuxaKGDsWuHDB8LYHgAMAXgTgZ+mcKoyXC3BEZmYmjh07BkB/p8bYunXrajy/oqICxcXFTsVARETkDiRPXrKzs9G7d29ERkbCx8cHa9eurVZGq9UiOjoaQUFBSExMxJ49e8zWlZOTg4qKCkRFRUkdpu1u3ABq1aq2uzaA2QB2A2hvQzUnTpzAiy++iLfeegtXr161Owxrc7cYT2xnTnFxMdq0aYPw8HAsXbrUaln2cSEiIncnefJSWlqK2NhYaLVas8dXrVqFjIwMTJkyBfv370dsbCxSUlJw7tw5k3IXL17EU089hYULF1ptr6ysDMXFxSabpPz9geXLgY0bIVq0qHa4I4B9AKYCCLBSzZtvvom5c+diwoQJWLlypc3NV34utcwkULb67rvvcPz4cVy/fh0jRoywWK5BgwaoV6+ew+0QERG5guTJS2pqKt58803069fP7PG5c+ciLS0Nw4YNQ0xMDBYsWIA6deqY3BEoKytD3759MWHCBNxzzz1W25s+fTpCQkIMm2x3aXr1QkVuLt4FoKtyqBaASQByAViPVu/UqVMWj125csXk/eHDh+0K05wbN26YvK+6RhMAfPPNN7Ks1URERCQ1l/Z5KS8vR05ODpKTk/8JwNcXycnJhn4cQgg8/fTT6NGjB4YMGVJjnRMnTkRRUZFhk3Uhw/r1MRZAVwDmUoq2ALYBeBeAo/cvJk2a5OCZlvn6mn6bLxj136mUk5MjebtERERycGnyUlhYiIqKCkRERJjsj4iIwNmzZwEAO3bswKpVq7B27VrExcUhLi7O6uKHgYGBCA4OxooVK9C5c2fcf//9sn4NALALQAcAbwC4XuWYL4AxAA4CSHGgbjnuHPn4+NRYJiDA2kMvIiIi9+F2o426du0KnU6H3Nxcw3bXXXfVeJ5Go8GhQ4ewd+9eWeJ6/vnnTZKuMgCTAcQDMNfiLQAyASwHECZLRERERN7JpclLeHg4/Pz8UFBQYLK/oKAATZo0capurVaLmJgYdOrUyal6LPn111/NDtk+AKAL9MOmr1Q7CjwF/SOmR2SJyjHHjx9XOgQiIiKHuTR5CQgIQHx8PLKysgz7dDodsrKy0KVLF6fqlvvOi7XZZisAzIV+yPQWM8cbA1gFYC2ASAt1zJgxA2vXrpWkg25NunTpgk8//VT2doiIiOQgefJSUlJieNwDAHl5ecjNzTWMsMnIyMCiRYuwfPlyHD58GKNHj0ZpaSmGDRsmdSiSmjVrVo1ljkM/gV0agCIzxx8GcAhAv8JCVO2F8scff1gcoSWHyZMnu6wtIiIiKflLXeG+ffvQvXt3w/uMjAwAwNChQ7Fs2TIMHjwY58+fx+TJk3H27FnExcUhMzOzWidee2m1Wmi1WlRUVDhVjxQWA9gAQAugb5VjIQBeO3UKXaFPcn53bWgGf/31l0ItExEROUfy5CUpKanGWVrT09ORnp4uabsajQYajQbFxcUICQmRtG5HnAHQD8BAAPMBVE3NkgD8AmAK9I+clE+5iIiIPIPbjTZSmzUAYgAsM3OsNoCZAH6EbUsMSMnf/5+89bfffsN//vMfF0dARETkGNUkL3KPNnLGRQDDoJ/35YSZ4/HQLzHwJoBAF8WUlJRkeG1vf6NVq1ahUaNGGDRoENdCIiIil1NN8iL3aCMpbAbQDsA7ML/EwH8A/AzgXy6IpW7duobXO3bssOvc4cOHo7CwEGvWrMGvv/4qdWhERERWqSZ58RSlAMYBuBf6kUdVtQHwA4BFABo42EbVTsulpaUO1mSe8fpL165dq7H8gQMHsGfPHt6lISIiSTB5Uchu6JcYmIrqSwwAwDPQT27XKCsLsPOX/rhx40zeDx061KEYzXnhhRcsHrtw4QLGjBmDiRMnGpKaXbt2oX379khMTMRXX30lWRxEROS9VJO8uHOfF0vKoR9tFA99p92qIgDEvPEG8O9/o0GRuZljzJs/f740AZoxb948i8fmzp2L+fPnY8aMGVi5ciUA4L333jMcnzp1qmxxERGR91BN8uIJfV4sOQDgHugXdLxsrkBmJl5ZsQIZAPzMHP7zzz9ljM66ffv2YdCgQVi4cCGWLl1q2P/tt98CAK5evWrY9/fff1us59q1a9DpqvYEIiIiqk41yYun00E/H0wMAHMPVwJv3MAcAHsA3O3KwGowevRorFmzBs8++6xhZXB7bd26FU2aNEHbtm1RXFwscYRERKQ2TF7czJ/Qz8rbH/qJ7qq6G/oEZjaAumaOV8rPz8fZs2fx1FNPSR6j1MaNG4eioiIcO3YMK1asUDocIiJyc0xe3NSXANoCeN/MMT/oV7E+CCDVwvmlpaWYPXu2ZMnAn3/+iZKSEpvLV454ysvLq7Hszz//bHhdWFhof3BERORVVJO8eGKH3ZoUA9AAWDR0KMzNphIN/RpKH0O/cnW18yV6BLNy5Uq0aNECzZs3t/mcNWvWQKfTmSQmREREUlBN8uLJHXZrMvazz9AB+knszM2q8hiAIwBGACarVQcGSjNf77hx4yCEQJEdI54A4MMPP5SkfSIiImOqSV7UrEmTJrgO4L/Qr4G0xUyZBtCvZr0F+onupOToo5znnntO4kiIiIiYvHic3wD0gH6tpItmjt8H/WrV4fPmodaNG64MzSHHjh1TOoQanTt3TukQiIjICJMXG0VFRSkdgollAO4AsNLMsQAA4R9+iPQFCyx26HUHx44dQ5s2Ut8nklZ6ejoiIiIwevRopUMhIqKbmLzYKC4uDosWLVKkbUsjds4DeBL61arNlWgJfYfeNQCaVTkmhMCpU6cUXW9o2bJlLmlHCIE5c+bglVdewaVLl+w6V6vVAgAWLFggQ2REROQI1SQvrhht9Mwzz2DJkiWy1e+oytWq34L5dZIGQN+hNwOA/819H3/8MW655RYMGjTINUGacf26uWilt3nzZrz00kuYOXMm3n33Xeh0Os7mS0TkwVSTvKh5tJEtrgCYAP1ij9lmjtcDMAdADoAuRvs///xz+YOTyfLly/Gvf/2rxgUfZ86caXg9ZcoUtGrVCrfddhtOnTold4hERCQD1SQvpPcr9J12n4b+sVJV7QHsBLAIQJjrwjIoKSnB0KFDMWjQIBQUFFQ7/sYbb1g9/9q1a8jOzkZ5eTmefvppbNu2DU8++aTVc77//nuT93l5eThx4gSmTZtm/xdARESK86+5CHmi5QC+ATADQJqZ489AvwzB+JtlXdXzZdGiRfjoo48sHq+oqMAff/yBli1bmj3es2dPbN++Hf369TPss2fmX2O5ubkOnUdERMrinRcVuwhgJPQrVpub5zYcwP8A/ADgTgt1XL5sdp1rh23btq3GMkeOHDG7XwiB7du3AwC+/PJLSeMiIiLPweTFC+wCEA/gBQDmUpFuAH6Cvk9McJVjYWGuf7g0ZcoUl7dJ5OlOnDiBNWvW4No1c/Nwk7f766+/7J4lvSohBL766iusW7dO0ZGqAJMXr1EBYB70iz2uMXO8FvSjkY4CGIJ/lhmoXGBRsjhsqG/fvn2StkmkduXl5WjXrh0GDRqE1157TelwyA0cPnwYWq0WFy9exN69exEVFYWoqChcuHDB4TozMzPRt29f9O7du1pfQldj8iKjxMREpUOo5jSAQdCvRv2HmeNNAHwEYDv0I5ekdOLECXz99dcS16qc2bNno0uXLtiyxdyCDUSuc+TIEZSWlgIA5syZo3A0JKWrV6+iW7duiI2NxZkzZ2w6R6fTISYmBunp6RgyZAgGDhyIiooKXL58ucZBEdYYJ8ZTp051uB4pMHnxUpnQ93N5A0CZmeP3ANgH4AMoMyrJ3ZWUlGD8+PHYvXs3Ro0ahc8++wwvvvii2RFUAJCfn48VK1ZIttI3ea7vvvsOjzzyiKH/FrleSUkJli5disOHDztcR3FxsSR3pmua7+qtt97C9u3b8csvv+DZZ5+1qc4rV64YXm/YsAEXL/6zmExlkuvpVJO8uGKSOrW5BmAy9EnMOjPHfQGMAnDs5r9KXizXrl1DaqrlxQ6+/fZblJSUYPLkyahduzYyMjJknQTv6tWrhtfHjh3D4MGDMXfuXAwbNqxaWSEE4uPj8dRTTyEkJAQzZ87kJHkqY3w91KRnz55YvXo1unXrJmNEytDpdDh69Kji/SFqMm7cOIwYMQIxMTEoKzP355t1Go0GISEhiIqKQnl5ucmxI0eOYNmyZYZRkOXl5fj111/NfiZZWVkIDw/Hgw8+aHJ869atmDdvHi5fvmySYO3cudPpnx2LFy922QShshIqU1RUJACIoqIiWepfsmSJgH5kcY1bYmKizWXdYfs3IH4DhLCw7QfEPS6KxZHPvUOHDibvly9fbrgezG0JCQk1fr8txVRQUGBz7BUVFdXKDBkyxPGLkNzK66+/Lvz8/MSkSZNqLHvixAmr14qjfv75Z1nqtdeTTz4pAIj09HTFYrCF8We1cuVKi+Vu3Lhh8r68vFz85z//MTl/0aJFhuPXrl0z7E9LSxNCCHHvvfcKAOK///2v1Ti2bNkijh07Jvbv32/Y9+yzz4pHHnnEpNztt98uSkpKqtW1e/du8f333wudTicuX75sck7dunWr1VH1azPn4sWLIj8/XwghTOICIP71r3/VeL697Pn9zeTFTmpOXgCIQEBMBEQJLCcxywHRROY41q1bZ/K5v/rqq3bX0aZNm2r/aY03JZMXc+XIM9nzPW3RooWk18D+/fvFzJkzxXfffSf7tXXw4EFx4cIFk32//fab+PDDD8XFixeFEPZ9FkoyjjMoKKjacZ1OJ/r06SMaNmwotm7datg/b968av+PZ82aZTh+8OBBk2MXL140eZ+fny9Onz5tNg5LW9XkBYCYMmWKSbzGyeumTZuqJS/mNuO4zSksLBT169cXvr6+YteuXdXOZ/IiMTUlLzExMZIkAo5szQHxKSwnMJcB8SoggmRqPzw83PCZnzx5UoSFhUnehr3Jy/Tp08W3334rtmzZImbOnGmx3qrsSV6KiorErFmzqiVv5Jjr16/L3kZN39NKCxcutOkasNX169cN9TRu3LjGeq9cuSLef/99sXnz5mrHZs6cKZKSksRPP/1k9twvvvhCABANGjQw/NWv0+lEUFCQACD69OkjhLD9s5g/f76YNGmSKC0tNdm/f/9+MWLECJOEwVhhYaFYuHChOHnypNX6a1LT92H79u0mx1etWiWuXr1q9v+xteSlsLDQ7DkvvfSS2TjMbeaSl2effdYk3t69exuO3XLLLTYlL5Vft06nE0IIsWPHDrFw4UJx5coVIYQQ48aNs3oukxeJMXmRdksCxAFYTmJOAOJRmdquJNfnYJy8XLt2TaxevVocPXrU5PvtTNyV7Ele/u///k8AEL6+vuKPP/4wW6byh42Sdu7cKYYPHy52796tdChm6XQ60bt3bxESEiK+/fZbWduq6XsqhLD4y8Sc/fv3i7S0NJGdnW213fPnz9t8DQohxGuvvWY4/vvvvxv2nz592rC/Xr16NX6N06dPF0IIUVZWZrK/6t1ISzZv3mwoM3bsWIvtGDt79qx46qmnDMeaNGli9bOpSdXPq/LOUaWvv/66Wpnx48eb/ayTk5MN51X9/ZCVlWXxe7Rv3z6bfp6YS16GDh1qEq9x8mLP9uyzz4rIyEixePFiw74JEyYIIYQYMmSI1XOZvEhMLcnLgAED3CJ5ASD8ATEWEJdgOYnZCYhEids9ePCgeOihh2T92oqLi4UQQkyaNEkA+h/exteOI3VWZSl5WbNmjRgwYIDIyckx297ChQur1bVz504RGRkpevXqJSoqKmS4wm1j6evNzs4W99xzj5g/f76s7df0vH7Pnj1WvydSqqmd3Nxc8eOPP9p0rQghDH23mjVrZrVde5MX4+Nz5swReXl54sUXXxRz5syx61wA4vTp09WSl6qPaC2p7Bdjrpyl/eZ+OVuzdu1aMWLECHHs2DGbvp5NmzYZ/ijIzc21+07vvHnzRK9evartDwkJcfpnlLnkBdDfna78A8fR5MXS9scff9RYhsmLxNwpebn//vsdvnjGjRvnNslL5dYYEIsBUQHLScxKQERJ1F7Pnj1l/5pefvllIYTpD7NNmzYZvt+O1FmVpeTF3DnG+8wlLx07djQcz8zMlOEKt42lr9d4f1lZmWTt7dixQyxfvlxcu3ZNPPzwwyIsLExs2bLFYnnjv+4BCJ1OJ06fPi2mTZtm8dGIo6x976v2RanpWqmpPmPnzp1z+BqcM2eOaNu2rcVzL126JEaPHi2mTp0qdDpdtTKPPfZYteTFWgznzp0TX3zxhSgtLRVt2rSx6fqxtL+mz+bo0aOGMlFRUUKr1YrbbrvN0DHX0ufWrl07kZeXJ/vPHHs3Hx8fi8datWolhJA+ebFlu/XWW61en45g8mLjF+8IW5OXwMBA8eWXXzp8YaxZs8btkpfKLQ4Q38NyAnMFEFMBUdcNYrVlO3TokMn7TZs2iWvXrgkhpElezP3wN3dO1XLGoxgqGR9ftmyZLNe4LSx9vcb7zY2IEEL/i3ThwoVi0aJFhr92v/jiCzFhwgRx/vz5auVPnjxpqLNPnz5WP+tKVZOXO+64w+S9lI/erMVTu3Ztu66VmuozZmvysm7dumrHq95tMd7KyspErVq1DO/vvvvuamWSkpJMHjfVFEPlz7Jhw4ZZTF7+/PNPk/3Gd9fM1f/FF1+Y/VyaNm1qMab8/HxZfoYouWVkZCjWttSYvNj4xTvCluRl+vTp4tKlS0IIx375zZw5U1RUVLht8lK5PQzrQ6vPAGI4IPzcIFZrW5cuXUzeP/jggyIgIECMHDlSkv/QtiYvM2bMMNm3ePHianUZH3d18vLDDz+IxMRE8c4771j8eo33W0peVq5caSizatUqcerUKcP7fv36GcpduXJF6HQ6MXfuXIufW69evUzaOX78uJg2bZrQarVWP29bhonaqupncf78ebFgwQJx4sQJ4e/vb9e1Yq4+S2xNXswdt5a8OHPHuGoM5n5eVk1eXn31VZM+F5VbUlKSOH/+vElfnZo+vxs3bkgSOzfbv8dS8vjkpW/fviI0NFQMGDDA7nOVSF6qZvrvv/++ofz7779v9wVx6NAhIYR8HVWl3GoB4gVA/A3LScyvgOjjBrFa2qr+VS71f2hbk5eq+2pKXtLS0kRhYaEs17k5tny9xvstJS/Gj766du0q1q5da3Le559/LgYMGCACAgJEQkKCmDVrltXP7pVXXhE6nU5cvXpVRERE2PQ9spa85OXlif79+4tNmzaJ3bt3ix07dli9U1P1s7jvvvsEANGoUSOnk5c1a9YY5tmoytbh+uaOP//887L/vzpz5ozsbXz66adixYoVYtGiReLKlStWE11u0m9S8/jkZcuWLeLrr7/2iOTlueeeE+Xl5Sb7jJMXIey/+1L5w0rpC9OerSEg5gPiOiwnMdvhuknu7NmkThKrsiV5qXoNATUnL4B+6GpZWZm4ePGimDBhgtUJtxyh0+kMnQItxV5SUiI++OADsWPHjmr7zakpeam61XQn4N577xXt27cXoaGhNn+PqiYvFy5cENu2bbPYP2nHjh0WP5+q33vj984mL5VbTk6O+PDDD8XYsWMNCevZs2et1qvT6cTAgQMV+T8FoNqjO27q26Tm8cmLEPoExhOSl3PnzgkhTH/gOJu8OHqeO2xtAbEBlhMYAYi1N8spHatc29GjR03+UrcleRkwYEC1fbYkLwDE9u3bxRNPPGF437BhQ5GcnCyuXLki/vvf/4oxY8Y4/P9h8ODBAoCYOHGi3Z+DLcnLvffeW2PyEhcXJ/n3yHiklvFjK0t3eeLj4w3lr1+/LpYtWyauXr0qNmzYYFJu+PDhJu/9/PysxlE5D82hQ4fEqVOnxN9//11j7I8++qjIz88Xf/31l8UyQgjx7bffKvr/wBV3d7gpu0lN0eTlhx9+EA899JDhUcqXX35Zrcz8+fPFLbfcIgIDA0VCQoL48ccfq5XxlOSlckSF8T5nkpfatWs7dJ67bT0BkQPLCcwN6EcuNXODWOXYnn32WVFcXCwOHjxocXKrmrZRo0ZVu/7Mldu2bZvZ/cYdLW2Zrr2goED8/fffDl+7VbeqE5BV6tSpk6GMLclLbGys5N+f06dPi5deesnmzo7GyYvxfmd/QT/66KNi/fr1Dp07evRoi8f+/PNP8fbbb0v+uXHjZrxJTdHkZcOGDeI///mPYUbGqsnLp59+KgICAsTSpUvFr7/+KtLS0kRoaKgoKCgwKWdr8nLt2jVRVFRk2Cp7k3tr8jJo0CDFL+jKzQcQjwHiOKyPTJoFiHA3iFfqrTKBb926tcN1GE8lbumaqDobqLnN39/fpJ7169eLoUOHigMHDgghhPjpp59ErVq1RN26dcWff/7p1DVYublz8mJvp1RLyQs3bt68Sc1tHhsB1ZOXhIQEodFoDO8rKipEZGSkYdbGSrYmL1OmTDH7oXpr8mI8ksNdtlqASAfEOVhOYi4DYhogwtwgXnfb/vrrL6udVqv2NTG3VU1ejI8999xzIikpyfD++eefd+oarNxKSkrE999/L5o3by6eeeYZQ53Gycs999yjSPJi7xYWFibJZ8KNm5o2qdmTvPjChcrLy5GTk4Pk5GTDPl9fXyQnJ2PXrl0O1Tlx4kQUFRUZtvz8fKnCdZifn59ibYeFhSnWtiXXAcwHcBuA1wGUmClTD8CrAPJulglxWXTur2nTphg/frxTdfj4+Fg89v7772Pr1q2G9//73/+caqvSlStX0KNHD/z5559YvHgxjh07ZrbchQsXrNajzxeUdfHiRaVDICIjLk1eCgsLUVFRgYiICJP9EREROHv2rOF9cnIyBg0ahA0bNqB58+ZWE5vAwEAEBwdjxYoV6Ny5M+6//37Z4rfm+eefBwA0atQIqampisRgzUMPPaR0CLgM4P8AtAKghT6pqSoYwGQAJwC8BqC+i2LzZN9++63NZW1JBC5fvuxMOAYffPCByfszZ85g1KhR2Lt3r2Gfj48PxowZI0l7cps/fz7ef/99pcMgIkCG+z5GANPHRpUzMu7cudOk3Pjx421a4dcWSnXYFUL/9VXOzGoMdtyGM35sZM/Qz8pt48aNZvcrMX10TVtLQPwP+s67wsJWCP3q1SFuEK8nb7Vq1RIvvPCCCAsLE6tXr66xvCPXbk1bampqtX3x8fE1nte+fXvFPz9u3LhV36RcAkQIN35sFB4eDj8/PxQUFJjsLygoQJMmTVwZiiwiIyMRGBgoWX2LFy+WrC539AeAYQDaAlgJQGemTEMA0wCcBPAmgEYui05drl+/jrfffhsXL17EoEGDFIlh48aN1fbl5OTUeN4vv/wiRzhE5KTz588r1rZLk5eAgADEx8cjKyvLsE+n0yErKwtdunRxqm6tVouYmBh06tTJ2TDdxoABA8zuf+CBB1wcibx+A/AkgHYAVlkoEwLgP9A/TpoHoLkrAiMiIouEgv3RJE9eSkpKkJubi9zcXABAXl4ecnNzcerUKQBARkYGFi1ahOXLl+Pw4cMYPXo0SktLMWzYMKfa1Wg0OHTokMnzdPIshwE8CqA9gC8slKkDYCyA4wAWA2jtmtCIiKgKawMB5OYvdYX79u1D9+7dDe8zMjIAAEOHDsWyZcswePBgnD9/HpMnT8bZs2cRFxeHzMzMap14yXsdADAAQByAiQAGonqWHQBgBPSPnb4EMBfATteF6BWMRyAREVWlZPIi+Z2XpKQkCP38MSbbsmXLDGXS09Nx8uRJlJWV4ccff0RiYqLT7arxsZElSo2ocrVcAIOh7xOzFOZHJ/lCn+jsAPDjzfKSZ+ReqG3btiZ/hBARuROX9nmRkzc9NurWrRt27tyJ1157TelQXOIY9HdZbgPwHoCrFsolAPgU+o7AL4FzxTjjyJEjSodARGSRapIXbxIeHo4uXbqgb9++NpXv3LmzvAG5SD6A5wFEA5gOoNhCuSgAswD8Cf3keHe6IjgiInIZ1SQv3vDYqGHDhnjrrbfQurXt3VTHjRsn2Yyp7uIc9LPxNgfwAvQjkMypB0AD4CCAbACPQd9XhoiIPJtqkhdveGy0efNmvPzyy3ad8/bbb+OOO+6QKSJlXYZ+2HQr6Dv1Wuuw2w3Ax9DfjZkB4Fa5gyMiItmoJnkh+/Tv31/pECRTAeBzAPcC6Az9XDE3LJRtBOAV6PvFbIb+bkxtF8RIRETSYfLiperWrat0CLL4Efq5YlpCPyPvWStle0J/N+YsgIUA7pE9OiIikoJqkhdv6PNCtssHMAlACwCPAPjeStlgAGnQD7c+Bv1MvnysRETkvlSTvHhDnxdnFBUVKR2CIq4DWA3gfgB3QN9H5m8r5VtDf8fmD+jv4rwI/eglIiIypapJ6sg9NW/O1YCOQj86qRmAxwFsgvnFICslAJgN4BT0nYHHAoiUOUYiIk/B5IVkFxcXZ/Lez89PmUDcwFUAnwDoBf1jpYkAapqSrQv0d21OQ39H5jXo12AiIiLXU03ywj4v5IjT0A+dbgv9SKUPANS0yHsCgDcA/AzgJPSz/j4AziFDROQqqkle2OdFPq1bt0azZs2UDkN2PwJ4DkBT6EciLQZwsYZzWgBIh/4R1EUAG6B/NNVOvjCJiLyeapIXksezzz6Lo0eP4tSpU0qH4jIVAL6DfgRSBIBUAP8DcKmG8+reLDsX+pWxzwD4CMBTYKdfIiIpcQFelalfv77hdXBwsFN1nTx5Ei1atACgbMcsJd0AkHlzGwn9TL19bm4tazi3KYAhNzdA3/F3u9H2K6x3GCYiIvN458UNBAUFOXReYGBgtX0dOnTAyJEjceedd2LZsmUOxzRx4kRD4kJ6NwBsgf6x0G3QL/g4EcAu2JaEtIB+lNP7AH4BcAH6x0z/B+AhAE0kj5iISJ1450Vhb7zxBvLz87Fw4UK7z73zzjvRsWNH7Nu3z7DPx8cHH374oZQhkgWHbm4zADQE0ANAMvT9ZWyZ5C4U+sdMqUb7TgPIAbDv5vbLzX1ERPQP1SQvWq0WWq0WFRUVSofiMj4+Pti2bRsaNWqEkpISREZGmr0bQ/K7AP1keKtvvr8N/yQySdAnN7ZodnPrY7TvEvQrY1fdLjgZMxGRp1JN8qLRaKDRaFBcXIyQkBClw3GZoKAgbNmyBd988w0GDhwIX18+CXQHx29uHwLwAdAGQFej7TY76go1Os/YeQC/Afj95vab0b/eOZ8yEXkL1SQv3qxjx47o2LGj0mGQBQL6SfCOQD/8GtB35u0K/ZwxHQHEA6hv9mzLGt3czC0oWQggD/pOwvlV/j0FoOBmXEREjlJyIAeTFyIF/AXTx0w+0K+r1NFoi4P9CU2l8JubpSkby6HvS3MW+kSmwOi18b4CACUOxkBEJBcmL0RuQEC/ovUxAB8b7W8B/YR3xltbAI6NT/tHAPSdim3pWFwG/WKWF422v828LgJw2cx21clYiYiqYvJC5MYqH/NsMNrnB/0cM60BtKryb/TN41IKhH4Yt6NDuSugT2JKYJrUlEKf2FwFcM2G15Xvr0F/5+j6zc3aa86jQ6ROTF7IrG7duikdAllQAX2n3N/MHKsFfQLTCvpZfVvc3KKM/q3lkij/4Qd9p+NQF7cL6JMXSwnODeg/S+NNZ2ZfTces7RcWNkvHHDnH3mNVVd0nVxkl25ayjNLcKaaA7Gxg0CBF2mbyorDIyEjk5+crHYaJJUuWICUlRbb6Q0JCUFTE8TByuA7LiQ2gn5UyAvpEJvLm6wjo76pUfV1X7mBdwBf6O0ecQIBIeuVvv83kxdsMGzYMzZo1w6OPPooff/xR6XAMgoODMXz48BrLzZgxA0FBQRg3bpzdbeTk5OCuu+7C1avsDeFqOug7C/9lQ9m6ABoDCLu5NTB6be59MPQdjOuDP1iISF6q+RnjaZPULVq0CH5+9vVOcHatIimNHDkS3377rUPnRkdH44cffkBCQoLEUZGUSqEfbp3nwLlB0Ccx9fBPQlO/yr46AGobbUFW3ld9XQv6Tsec1YjIO6kmeVHrJHULFy7EvHnz8OCDD6JVq1aKxjJgwAB8/vnnSEhIQGhoqMP1+Pn5oVMnS4N4SQ0qO9ael7kdX+gTmcpkxvhfS68r//WHvj+O8eZrZp+1/TWd41PDVlMZqeswZm6GjprKuKIOd42Lqmtzyy2Kta2a5EWt0tLSkJaWpnQYAIDPPvsM+/fvR2xsrNeuMk3uRQf9UO4ypQMh8kIF77yD2gq1zeSFbObr68uZfImISHF8ZExERER2U/IOPJMXIiIi8ihMXoiIiMijMHkhxfz73/9WOgQiIvJATF5IMbNnz1Y6BCIi8kBumbysW7cObdq0QevWrbF48WKlwyGZtG3blvO9EBGR3dxuqPSNGzeQkZGBLVu2ICQkBPHx8ejXrx8aNmyodGhERER0E0cbGdmzZw/uvPNONGvWDPXq1UNqaio2b96sdFhkhvGMv4MUWpyLiIi8j+TJS3Z2Nnr37o3IyEj4+Phg7dq11cpotVpER0cjKCgIiYmJ2LNnj+HYmTNn0KxZM8P7Zs2a4fTp01KHSRK4++67MX/+fIwaNQozZ85UOhwiIvISkj82Ki0tRWxsLIYPH47+/ftXO75q1SpkZGRgwYIFSExMxLx585CSkoKjR4+icePGdrdXVlaGsrJ/JgcvLi52Kn4lxMbGGl4/8cQTCkZiP41Go3QIRETkZSRPXlJTU5Gammrx+Ny5c5GWloZhw4YBABYsWID169dj6dKlmDBhAiIjI03utJw+fdrq6sPTp0/H66+/Lt0XoICnn34apaWlKCoqwpgxY5QOh4iIyK25tM9LeXk5cnJykJyc/E8Avr5ITk7Grl27AAAJCQk4ePAgTp8+jZKSEmzcuBEpKSkW65w4cSKKiooMW35+vuxfh7MaNmwIX99/Pvo6depg/PjxePPNNxEREaFgZNKaMWMG10IiIiLJuXS0UWFhISoqKqr9go6IiMCRI0f0Afn7Y86cOejevTt0Oh1efvllqyONAgMDERgYCK1WC61Wi4qKClm/Bil8/fXXXrEq8yuvvIK77roLDz74oNKhEBGRxDjaqIo+ffrg2LFj+P333zFy5EibztFoNDh06BD27t0rc3TOeeONN3DPPfcoHYYs3nzzTaVDICIiL+DS5CU8PBx+fn4oKCgw2V9QUIAmTZq4MhSywJkOz95wN4mIiJTn0uQlICAA8fHxyMrKMuzT6XTIyspCly5dnKpbq9UiJiaGM7Y6Sa13hYiISD0kT15KSkqQm5uL3NxcAEBeXh5yc3Nx6tQpAEBGRgYWLVqE5cuX4/Dhwxg9ejRKS0sNo48c5SmPjdxd8+bNlQ7Bozz22GNKh0BE5HUk77C7b98+dO/e3fA+IyMDADB06FAsW7YMgwcPxvnz5zF58mScPXsWcXFxyMzMVNUoG/IOkyZNwqhRo/DJJ58oHQoRkVeRPHlJSkqCEMJqmfT0dKSnp0varieNNvJmLVq0UDoESbRv3x5Tp05VOgwiIq/klqONHMHHRp5h3rx5SodAREQeTjXJC3mGu+++2+R9cHCwQpEQEZEzanrKIifVJC8cbWRdnTp1DK8jIyMVjMTUhAkTFG3fnT4LIiKyjWqSFz42sm7gwIFo3rw5goKC8M4771gsFxoa6rqgACQnJ+Obb76xufz9998vaftXr151ug5ry1cQEZH0VJO8kHURERHIy8vDuXPnMHDgwGrH/f39Ubt2bUVWia76KMmSPn36YPz48ZK2LcXkiP7+Ll1lg4jILXB5AHIJf39/1K9fv9r+0NBQnD59GmfOnEH79u0ViMw21u4YOapevXpO16Hkc18iIm+kmuSFfV6c07hxY5c/MrJXdHS05HU+8cQTktdJRETyUk3ywj4vyjO+q3PrrbdKWvfMmTMlra9Su3btZKmXiIjko5rkxVVat25teB0VFcX+DkYef/xxNG3aFIGBgZI+4vnss88k7+tSKSoqSpZ6iYhIPvzNa6euXbvi008/xS+//ILHHnsMvr7M/yo1bNgQJ0+eRGlpqV2PoOrWrWv1uBT9Uizx8/Nz6DyuoE1EpBzV/OZ1VZ8XHx8fDB48GNOmTeMjBzNq1apld9+ZkJAQzJ8/36H27rjjDofOc5ZxJ1122CUici3VJC/s8+LZrA3RbtOmjQsjISIid6ea5MWdDRkyxPA6NjZWwUg8k/EjGqkX3gwKCnLoPOOY+AiJiMi12OfFBbRaLZKSkhAZGYkHHnhA6XA8mnGHaSk0a9bMofP42IiISDlMXlygfv36GD58uNJhqIKjHWyJiEg9+NiIZNWyZUulQzBYuXIlRo0aJUldxo+Kahpu/e6770rSJhGRO+HyAKRaSo0GqqpJkyZ4/PHHJRt2bfyoaOLEiVbLhoeHS9ImERHpqSZ54fIA5KjatWs7dX50dDTuvPNOiaIhIqKaqCZ54VBp99W/f38A+jsQUqziLDVHbn1WPSc4OFiqcIiIqAbssEuyW7JkCR566CF069YNgYGBSocjiaZNm5q853BpIiLXUc2dF3JfoaGhGDZsGFq1aqV0KGZ17NjR5rK+vr7w8fHB1KlTZYyIiIisYfJCXm/WrFk2l/3jjz9w/Phx9q0iIlIQkxfyegkJCUhMTLSp7C233IJbb71V0vbdaTg5EZGtOFSaSGG2dLiVa3Xr7OxsWeolIlIrJi9EsD7Ff3BwMHr27Int27dbLGP8F0jVR0p///23xfM0Go3DSxQQEXkr1SQvnOfFO0RERBjugDz++OMYMGCA7G2OHTsWmzdvdnhRTWuLSbZo0cLRsIiIvJZqhkprNBpoNBoUFxcjJCRE6XBIJnXr1sXWrVuxbds2PPnkk/Dx8cHvv/+O4uJibNy4Uenw7Ga84jgREdlGNckLeY/4+HjEx8cb3n/66acoLCxEo0aNHK7T2mMjZzulWTs/KCjIqbqJiLyRah4bEVnzzDPPOHyuvcmLtUSIiEgtONqISGJV524ZN26cw3XZ8h+0apn//ve/htf9+vVzuG0iIqqOj43IbQQHB6O4uFiSuqqu5NywYUOH63Lkr4sXX3wRzZs3R+vWrTmaiIhIYrzzQm5j5cqVirUt9aOegIAADBkyBJ07d7apvLMrWxMReRMmL+Q2HnroISxfvlzpMKrhootERO6FyQtRDeTssMvEiIjIfm6ZvPTr1w8NGjTAwIEDlQ6FvISzj41qSkLGjBkDAHjwwQedaoeIiNw0eRk7diw++ugjpcMgAiDN3ZF3330XhYWFWLJkidnjcgyvttQWEZEUOFS6iqSkJNSvX1/pMIgASPcftGHDhoiIiJCkrppERUVh+PDhLmmLiMjV7E5esrOz0bt3b0RGRsLHxwdr166tVkar1SI6OhpBQUFITEzEnj17pIiVyG01b97c8DoqKkrBSIiI1M/u5KW0tBSxsbHQarVmj69atQoZGRmYMmUK9u/fj9jYWKSkpODcuXOGMnFxcWjXrl217cyZM45/JUR28vPzM7x2dnmASZMmISAgALVq1cLrr78uSXz26tatmyLtEhG5mt2T1KWmpiI1NdXi8blz5yItLQ3Dhg0DACxYsADr16/H0qVLMWHCBABAbm6uY9GaUVZWhrKyMsN7qSY5I/dQq1Ytp9Ysqqp///6YPXs2AGDGjBk2nWNL8tK2bVvk5+dDCGHXoyEpnxnbuk7Siy++iDlz5kjWLhGRq0na56W8vBw5OTlITk7+pwFfXyQnJ2PXrl1SNmUwffp0hISEGDbesleXzMxM1KtXT7L6unTpghUrVmDWrFkYPXq0TefYmmA0btzY4T4t9nTYrVOnjtn9tsY5ffp0ZGZm2tweEZG7kXR5gMLCQlRUVFT7AR4REYEjR47YXE9ycjJ+/vlnlJaWonnz5li9ejW6dOlituzEiRORkZFheF9cXMwERkV69OgheZ1PPvlktX1yriotlWHDhqG4uBiLFy9GmzZtTB7F2qNWrVpISUmRODoiItdxy7WNvvvuO5vLBgYGIjAwEFqtFlqtFhUVFTJGRt7IuG+MkpYuXWp43aFDB2zatMnkuLskWUTkHVQzVDo8PBx+fn4oKCgw2V9QUIAmTZpI2VQ1Go0Ghw4dwt69e2Vth+TVuHFjw+uOHTsqEkOrVq1M3ntKUuApcRKROih5s0DS5CUgIADx8fHIysoy7NPpdMjKyrL42EcqWq0WMTEx6NSpk6ztkLx69uyJAQMGoE2bNnj33XcdrqdBgwaG161bt7br3Lp16zrcrlJ69uzpkXETkecqKSlRrG27k5eSkhLk5uYaRgzl5eUhNzcXp06dAgBkZGRg0aJFWL58OQ4fPozRo0ejtLTUMPpILrzzog5+fn5Ys2YNjhw54lTC++9//xuJiYkIDQ3F+++/X2N5pfu8NGzY0KnzN27cKFEkRETuz+4+L/v27UP37t0N7ys7yw4dOhTLli3D4MGDcf78eUyePBlnz55FXFwcMjMzXTazKBGg75S6a9cuXL9+HQEBAXad68rHL5VtffHFF+jatStu3Lhh13kAcMcdd1TrlyPHcgNERO7C7uQlKSmpxh+M6enpSE9PdzgoR7DDLlXl4+Njd+KilMTEROTn5+Ppp5+u1hHXVuzzQkTewi3XNnIEHxuRXFyVFDRp0oRrehGRx1DNaCMiT2V8N1HJ/5COtO3oI6LJkyc7dB4RkdJUk7xwtBHJxR0fx0gRk6U1mHr37o0VK1Y4XT8RkVxUk7zwsRGpgTt0tP36668xcOBApcMgIrJINckLkTOUShrc8a4OYPsij0RESmDyQlRF1YTCXROMSnIlXvHx8bLUS0TkLNUkL+zzQt7E3RMqIiI5qSZ5YZ8XkosnJwrr1q1z+Fx36H9DRO5LyZ8RqkleiJyh1l/UDz74oNIhEBFJjskLURXeMs8LANlXeycikgOTF6IauDKZsTURqSkmW+sJCwtzuA1runXr5vC5REQ1UU3ywg675IwGDRqYfQ2g2qKHUpIyMZI6yXLmjk6/fv0kjISIyJRqkhd22CVnvPfee6hTpw5q166NDz/8EKtWrQIAhIaG4qmnnlI4OmWotR8QEXk+u1eVJlKj6OhonD59GkIINGjQAC1btkTr1q3RvHlz1K1bV+nwJBMXF2fyngkKEXki1dx5IXJWaGioySOjDh06oFGjRgpGZJuaEpCEhATD6zp16khWr1znEhHVhMmLlzLuH8Gp4D2PXJ2IU1NTLR6Ts+8PEZE9mLx4qUGDBhlev/LKKwpGQnKLiIgwvG7cuLHVspV9fYDqCdKOHTuwevVqJCYmShugnT799FNF2yci5akmeeFoI/v06tULmZmZ+Oyzz6DRaJQOx2u5Yhj2/PnzERISgtDQULz33nsWy6WkpKB+/foWY0tMTMTAgQPh7+9cV7nbbrut2r4OHTrYfH6fPn2cap+IPJ9qOuxqNBpoNBoUFxcjJCRE6XDcno+PD1JSUpQOgyRQU/+SFi1a4PTp0/Dx8XGLPi8HDhzA6dOn8dBDD+Ho0aMAoKpO0UQkP9UkL0TexN47NpaSA2tJhlydbmvXro1WrVqZ7PPk9aOIyPVU89iIiJzj6gTC0eTIXTsOjxgxQukQiLwGkxciMkvu4c7G9duTOAUEBMgRjtMCAwPx4YcfKh0GkVdg8kLk4cwlGZ42z4oaHhsJIeDra9uP1C5dusgcDZG6MXkh8kDmftm7UwJgS/I0fvx4w+uRI0eaLTNp0iR88803ksXlLnr06KF0CEQejR12iRRUNeHwtFE3nTp1cng9sWHDhuH69esICgpC7969zZaZOnWqM+HJIjo6GidOnHCqDndKNIk8kWruvHCeF1KDl19+WekQDOR+9OTv74/nnnsOw4cPt/mXeXBwsKwx1cTX1xcLFixQNAYiUlHywlWlSQ1iYmLw888/Y+fOnXZN3OYoT+kbs337dowZMwa7d+92qp6kpCSnzj958qTF+ZFq1apl8+fJOy9EzuFjIyI30759ewC2/4KTKgGRsj2pk6J7770X9957r6R1OqJ58+YWj40ZMwZbtmxxYTRE3ks1d16IvIkr/nK3JQFR6g5CfHy8w+d+8sknkg+3Xrt2bbWJ94hIPkxeiNxUo0aNFG3flYmJvXdqnBmB9Oijj+LixYsOn29O165dJa2PiKxj8kKkIGsJQosWLVwYiWOU6jPTtGlTp853t1Fdq1atQnBwMGJiYpQOhcgjMHkh8gDWftm6OoFgZ1PpPfLII7h48SLmz5+vdChEHoHJC5EHkiqBkGthRqVHMQ0aNMil7dn7/TBX3l3XbCJyR0xeiAiAuu6oPPjgg2b3y/W4SE2fHZEncLvkJT8/H0lJSYiJiUH79u2xevVqpUMiUoQn3/lwRwEBAXjvvfeUDsMgOzsbI0aMQE5OjtKh2GTUqFFKh0Bk4HbJi7+/P+bNm4dDhw5h8+bNGDduHEpLS5UOi0hRVf+y79y5s+F15V0Gqf/6V1MCNGrUKOTn5+PWW2+VtR17PrNu3bph8eLFuPvuu2WMyD4tW7a0eOyDDz7AAw884MJoiCxzu+SladOmiIuLAwA0adIE4eHhkg9rJPJ0Go0G9913Hzp16oRXX31VljZuueUWs/tt+QVt6+rKckpLSzO8fuKJJ9C4cWPJ6vbWUUGffPKJ0iEQAXAgecnOzkbv3r0RGRkJHx8frF27tloZrVaL6OhoBAUFITExEXv27HEouJycHFRUVCAqKsqh84ncnaN3S+rVq4etW7diz549iIyMlDgqvdtvv73GMpbiT0tLQ7169QAAPXv2lDQuW82aNQsZGRmYP3++5POwZGZmSlqfIywtZumM5ORkq8fDwsIkb5PIEXYnL6WlpYiNjYVWqzV7fNWqVcjIyMCUKVOwf/9+xMbGIiUlBefOnTOUiYuLQ7t27aptZ86cMZS5ePEinnrqKSxcuNCBL4uIbCHXo6GQkBAcPXoUe/fuxcCBA2VpwxofHx+EhIRgzpw50Gg0ktdf9Q8qKUYb2VvP119/bVebtnjrrbckr5NIDnavbZSamorU1FSLx+fOnYu0tDQMGzYMALBgwQKsX78eS5cuxYQJEwAAubm5VtsoKytD3759MWHCBNxzzz01li0rKzO8Ly4utvErIXJvSs/f4mz7kZGRiIyMxE8//eRUPeQ6oaGhSodAZBNJH0yXl5cjJyfH5Najr68vkpOTsWvXLpvqEELg6aefRo8ePTBkyJAay0+fPh0hISGGjY+YSI04FJeI6B+SJi+FhYWoqKhARESEyf6IiAicPXvWpjp27NiBVatWYe3atYiLi0NcXBwOHDhgsfzEiRNRVFRk2PLz8536GoiIvJm1EUdE7sLux0Zy69q1K3Q6nc3lAwMDERgYCK1WC61Wi4qKChmjI/IelR1uASA8PFzWtsw9oqqpw/CLL76IOXPmIDg4mI+LibyMpHdewsPD4efnh4KCApP9BQUFaNKkiZRNVaPRaHDo0CHs3btX1naIpOTOj4NeeuklhIWFwd/f32LnULn65UyYMAGbNm2yWmbSpEl45513sHnzZllisAen9idyLUmTl4CAAMTHxyMrK8uwT6fTISsrC126dJGyqWq0Wi1iYmLQqVMnWdshcpXY2FjD6/vvv9/l7YeEhODkyZPIz883+f9rb8JlPEz58ccft+mc6dOnIzo6usb4nn/+eSQmJtoVj1QWLFgAX19f9O/fH/Xr1wdgezLnzklrTYMkiNyB3Y+NSkpK8Pvvvxve5+XlITc3F2FhYWjRogUyMjIwdOhQdOzYEQkJCZg3bx5KS0sNo4/kotFooNFoUFxcjJCQEFnbInKF0aNHY+vWrSgsLMQHH3wgSxs1/bKtV6+eyeMjR7Rt2xYrVqzAL7/8YhhxKDdXJAfPPvssHnnkEZeN0GnXrh0OHjwoeztvv/02/t//+38m++rUqSNpGwEBASgvL5e0TvIudt952bdvHzp06IAOHToAADIyMtChQwdMnjwZADB48GDMnj0bkydPRlxcHHJzc5GZmVmtEy8RWefv74/PP/8cP/zwg02PXY2nbh8+fLjd7dn6C79qwmPLbLNPPvkkZs6cqbpJzho0aCBpomSpLn9/fyxYsKDa/l27dhnu+jRr1gwNGjSosY2aki25+ze1a9cO//rXv2RtQ079+/dXOgSCA3dekpKSavxrLT09Henp6Q4H5Qh22CVvN2TIEOzYsQPFxcXIyMhwSZs+Pj7YuHGjxaUEPFGPHj3w/fffKx2GicolU6rq3LkziouLUVJSgsDAQLRu3Rp///23a4PzMp9//rlbP/bzFsovQCIRdtglb1erVi0sWbIEq1evdukdjhYtWrisLVcYMGCA0iEYdOrUCS1atMDHH39stVy9evVQq1YtF0XlHDUt+EnKUU3yQkSkNj/++CPy8vLQunVryX7pu0Py0LBhQ5vLbty4UcZIyFOpJnnhaCPyRGq5/aymx0auYOv33cfHx64Vuj3lepo7d67NZT25fwzJRzXJCx8bEdlPqr/CFy9eLEk9aqOWgQq2dMq2h60rodeuXVvykU6kDqpJXojIOc781e5u/V6UugNRdbSPq+8Ey/F1R0ZGYuXKlZLXawslViQnz+B2ywMQESnJmbtRVTv72ptMGK8r1K5dO4fjkNLJkyfh789fFeReVHPnhX1eiDyXO3QilYKfn59NCxta+nqjoqKwcOFCPP744/jqq6+kDs+qIUOGmN3vCYnL/PnzlQ6BXEw1yQv7vBC5Rt26dQ2vK/sjqCX5cAdpaWlYuXJltSRI7s/YeDmKpk2bAgAaNWokeTtyfB0ajcZlcxuRe1BN8kLkiTxldIgxrVYLf39/+Pn5mZ31lf5h6fvr7t/3HTt24K233sLu3bsVjcOez2nOnDlcXdyLuP/9QCJyK61bt8bJkychhECzZs2UDoeMSJUU3XrrrXj55ZclqcuVKpdKIPXjnRciL/bWW28ZXtvzyyoyMtIkceFjI8/x3HPPKR0CkdNUk7ywwy6R/fr164c1a9Zgw4YN6Nq1q9LhSMbdH8so6aGHHlI6BCKnqSZ5YYddIvv5+vpiwIABSE1NVToURcXHx6Nly5bIyspSOhTZ+fj44N5771U6DCKnqCZ5ISJy1OzZs3H8+HH06NFD6VAskurRnLvMWBsUFKR0COTBmLwQkddz9WMmpR5r9ezZE+3bt1ek7aqkWnCxY8eOktRD9pNjKL2tmLwQKYh9M9yPmjsfb9q0SfFrrnJEUFJSktnjxneGLMVaOQ8NUH1JBnIdJe+eMXkhIpKQOyc/UicuoaGhCA4Otrm8v78/li5danjfq1cvh9oNCwszvHbnz5vko5rkhaONvJvxrK9xcXHKBUJkRI2Po4xXyi4oKMB9991n87mnTp0yWaH6o48+whtvvIGnnnoKtWrVwogRI1CrVq0a61H67hEpTzXJC0cbebfatWvjk08+weDBg7Fo0SKlwyE7Sf3XM3+5yWfbtm0YP348fvzxRwQEBKBv3742n2v8uAfQ95l47bXXsHz5chQVFWHx4sUSR0tqxRl2STUeffRRPProo0qHQSSL5s2bG16Hh4crFkfr1q0xc+ZMw/unn34aJ06cwNWrV7Fu3TocOXLEoXpr164tVYjkBVRz54WIyFM4cmeoZcuWmDZtGnr06IEtW7bIEJVjfH19MXXqVMyaNQsbNmxA3759MWPGDIfrM56DxvgRE5ExJi9ELqbRaAAAXbt2hb+/Om5+Kt1pMioqStH2XeXVV19FVlYW2rVrp3QoZt1666348ssv8corrzhcx6JFixAfH48HHngA48aNky44UhUmL0Qu9u6772LPnj347rvvlA5FNVauXKl0CCSRyMhI7Nu3D5s2bUJAQAAAYMmSJZLU3bZtW6vHv/zyS0na8QZKProEmLwQuZyvry86deqEwMBApUNRjW7duikdAsmoSZMmktTTuHFjq8ft6XxMymLyQkSqMGjQIMPrxMREBSMx9cgjj7isLWdGWQ0YMEDCSFzHnkeWSj/eVELXrl2xefNmpcOQnGqSF87zQuTdPvjgA7zyyiv49NNPcdtttykdjsGSJUuwevVql7RlLXmZNGmSxWPZ2dmIjo6WISJ5WPs6K/uUkd62bdvQs2dPyeu99dZbJa/THqpJXjjPC5F3a9iwIWbMmIHBgwc7VY/Uf53Xq1cPAwcONNnn6nlotm/fjv/7v/8z237Hjh1V9djtnXfewe7du5UOwyGzZs1SOgSbde/eXdH2VZO8EBHZw3jETsuWLSWrt1WrVobXLVq0kKxeZ9x7773w9fWOH/d+fn5u9djQHhkZGRg/frzSYXgE77iaiYiq+Oqrr/D4449j4cKFkg61XrRoESIjI9GyZUtMnTpVsnq9mfGSH3369FEuEJn5+vrWeBesR48eDtUtdZeKhIQESeuzF5MXIvJKLVu2xMqVK5GWliZpvbfccgtOnjyJ3377DaGhoZLW7a0iIyPx1VdfYeLEiYosIVC5evL8+fMBAJmZmRgyZIjL4wAc79OzYcMGyWJ44YUX0L9/f8nqc4Q6ZsgiInIjapl80J306dPHqbsu9evXd/jcQ4cO4dixY0hOTgYApKSkICUlBStWrHC4TkdVzn1jr/DwcAgh8Ouvvzo1yeGNGzfg5+fn8PlS4Z0XIlJcSEgI2rdvDwCYMGGCorFwUUd1Wrlypdnk54EHHgAAPPzwwxbPvfXWW5GSkuKSX9o1XX89e/Y0rOz9/vvvyx5PVe6QuABMXojIDfj4+CA7Oxvff/893nzzTaXDkZ1cCZK3JF6PPfaY4bWtE8vVq1cPzz//PP7973+b7J8zZw5++eUXfP7552bb2bNnj1OxSi0wMBAHDhzA9u3bMWrUKKXDUQzvbRKR06QYXhwSEqL48EvyDBkZGTh//jz8/f3t+gVeq1YtvPvuuyb9P3x8fCw+Rvn444+t1jd8+HAsXbrU5val0qhRIzRq1Mihc9WS4DJ5ISIijxIYGIi5c+cqHYbDCQQ5z+0eG126dAkdO3ZEXFwc2rVrh0WLFikdEhEREbkRt7vzUr9+fWRnZ6NOnTooLS1Fu3bt0L9/fzRs2FDp0IjIC3jj+jfehN9fdXC7Oy9+fn6oU6cOAKCsrAxCCF5sREQerqYVneXmKX09PCVOpdmdvGRnZ6N3796IjIyEj48P1q5dW62MVqtFdHQ0goKCkJiYaHdv7UuXLiE2NhbNmzfH+PHjER4ebm+YRERuyxt+QTVp0sTw+v7770dWVpaC0Vj+zCv/WJbbkiVLEBgYaPK5kOPsTl5KS0sRGxsLrVZr9viqVauQkZGBKVOmYP/+/YiNjUVKSgrOnTtnKFPZn6XqdubMGQBAaGgofv75Z+Tl5eHjjz9GQUGBxXjKyspQXFxsshERSSUsLAxxcXHYunWr0qHUyJ2SouzsbLzwwgvYsWMHvvvuO6cmRpOTq1ZHTkxMxJkzZ5CXl+eS9tTO7j4vqampSE1NtXh87ty5SEtLw7BhwwAACxYswPr167F06VLD5FO5ubk2tRUREYHY2Fhs27at2qqslaZPn47XX3/dvi+CiMhGx44dY587B7Ru3dotRgS5k7CwMKVDqKZZs2Y4ffq00mHYTdI+L+Xl5cjJyTFMoQzoF5pKTk7Grl27bKqjoKAAly9fBgAUFRUhOzsbbdq0sVh+4sSJKCoqMmz5+fnOfRFEREaYuJCa1a5dW+kQHCLpaKPCwkJUVFQYpi6uFBERgSNHjthUx8mTJzFy5EhDR90xY8bgrrvuslg+MDAQgYGB0Gq10Gq1qKiocOprICL7sVM9eQpvv1bd6dGiM9xuqHRCQoLNj5WMaTQaaDQaFBcXIyQkRPrAiIicEBgYiLKyMgDOLRJI3kvKlaEreWoyI+ljo/DwcPj5+VXrYFtQUMAe1kQq5u1/zdri22+/RUBAAFq0aIFnnnlG6XDIgs8//xydO3fG6tWrFWnfWjJhrb+pt5E0eQkICEB8fLzJkDidToesrCx06dJFyqaq0Wq1iImJQadOnWRth4jIEd26dcOZM2fw22+/ISgoSOlwyIL+/ftj165dFgeJGEtKSjK8Hj58uNWyTPClZXfyUlJSgtzcXMOjnby8POTm5uLUqVMA9AtmLVq0CMuXL8fhw4cxevRolJaWGkYfyUWj0eDQoUPYu3evrO0QETmqYcOGCAgIkK3+t99+W7a6PU3VP5jleDySkpKC//73vxg1ahRmz54tef1kmd19Xvbt22ey8mtGRgYAYOjQoVi2bBkGDx6M8+fPY/LkyTh79izi4uKQmZlZrROv1Nhhl4ik4Ml/Iffq1QsbN27E8ePHkZ6ebrHc9OnT0a1bNwDAzJkzXRWeS23cuBGhoaGytuHj44OJEyfaVNaTryt3ZHfykpSUVOM3IT093ep/HDmwwy4ReTsfHx/06tULhw8ftlqua9euyMrKgk6nM3n0oSZK/B6IiYnBoUOHXN6uN3K7tY2IiMg5bdq0QatWrQAAb7zxhtkyPXr0QHJysseONnGUu98BsXfelcWLF8sUiXtj8kJEpDK+vr748ccfsWXLFrz66qtKh0N2uO+++xAbGwtfX1+bRqWNGDHCrvrlfpTmKqpJXjjaiIjoH2FhYUhKSoKvr2p+zKtadHQ0AH3imZOTg7/++gsDBgyQvJ2mTZvi1VdfxZ133ons7GzJ63cV1VzVHG1ERESeqHfv3sjMzDS89/PzQ+PGjdG6dWvDPmszzdtr2rRpOHjwoKHTtidSTfJCRERkidKzGlvra/P111+bXcPvtttuw3vvvYdHHnkEa9eutXh+3759JYjQszB5ISIiVdq4cSPq16+PPn36oEOHDrK3J0dn4PT0dKxatQotW7a0WGblypWSt+vu3G5tI0dxnhci5bj7CA7yTr169cKFCxdQq1Ytwz53u1almFiwTp06EkTiWVRz54V9XoiIqCrjxEVujiRGGo1GhkjUTzXJCxGRFNztL3Miqo7JCxEREZlo1qwZVqxYoXQYFqkmeeE8L0RE5K487Y5eaGgonnzySaXDsEg1yQv7vBAREcnn+eefVzoEA9UkL0RERCSfylmA3QGTFyIi8hpKPb6x1K7Sj5MCAwPN7lc6rpoweSEiIvJSy5cvB6BfU+m2225TOBrbMXkhIiLyUnfffTeOHj2K48ePe1Tywhl2iYiIJODuj1osuf3225UOwW6qufPC0UZEyvHUH9pEZJ67/59WTfJCRERE3oHJCxGREXf/i5Ocw++vZT4+PkqHYDMmL0RERORRmLwQERHJzN9fNeNj3AKTFyIiIpndeeedSoegKkxeiIiIZPTMM89Y7E/irn1wKuMaO3asYV9KSopS4VTD+1hEREQy8pRHRuYSrDfffBMRERG4/fbbERMTo0BU5qnmzotWq0VMTAw6deqkdChEROSm/Pz8ZKt73LhxstWtlHr16mHixIkYMGCA0qGY8Ix00AYajQYajQbFxcUICQlROhwiInJDrVu3RlxcHHJzc/HOO+9IWvczzzyDsrIyBAYGYty4cSgrK5O0fldy18dZlVSTvBAREdXEx8cHu3fvxh9//IG2bdtKWre/v7+hj8gLL7wgad2uwHleiMiruPtfaUTGAgMDJU9cqnrkkUcMr++55x5Z2/JGvPNCRE5TU/Kipq+FlPP222+jvLwcjRo1whNPPKF0OKrD5IWIiEhiYWFh+OSTT5QOQ7X42IiIiIg8CpMXIiIihfAxpWOYvBAREZEJd0+q3DZ5uXLlCm655Ra89NJLSodCRESkesZDpZm8OGjatGno3Lmz0mEQERGRm3HL5OW3337DkSNHkJqaqnQoREREXkHVk9RlZ2ejd+/eiIyMhI+PD9auXVutjFarRXR0NIKCgpCYmIg9e/bY1cZLL72E6dOn2xsaEREReQG753kpLS1FbGwshg8fjv79+1c7vmrVKmRkZGDBggVITEzEvHnzkJKSgqNHj6Jx48YAgLi4ONy4caPauZs3b8bevXtx++234/bbb8fOnTtrjKesrMxk/Yji4mJ7vyQiIiLyIHYnL6mpqVYf58ydOxdpaWkYNmwYAGDBggVYv349li5digkTJgAAcnNzLZ6/e/dufPrpp1i9ejVKSkpw/fp1BAcHY/LkyWbLT58+Ha+//rq9XwYRERF5KEn7vJSXlyMnJwfJycn/NODri+TkZOzatcumOqZPn478/HycOHECs2fPRlpamsXEBQAmTpyIoqIiw5afn+/010FE9nH3kQn2UNPXQqRWkiYvhYWFqKioQEREhMn+iIgInD17VsqmDAIDAxEcHIwVK1agc+fOuP/++2Vph4iISGpSJctr165FdHQ03njjDUnqc3duOdqo0tNPP43Zs2fbVFaj0eDQoUPYu3evzFERERE5rrKrw7/+9S/Url1bkjoffvhh5OXl4bXXXpOkPncnafISHh4OPz8/FBQUmOwvKChAkyZNpGyKiIjII02aNAkHDhzAd999p3QoJvr06WN4/eijjyoYSc0kXVU6ICAA8fHxyMrKQt++fQEAOp0OWVlZSE9Pl7KparRaLbRaLSoqKmRth4iIyBk+Pj5o166d0mFUM2LECBw/fhxXr17FxIkTlQ7HKruTl5KSEvz++++G93l5ecjNzUVYWBhatGiBjIwMDB06FB07dkRCQgLmzZuH0tJSw+gjuWg0Gmg0GhQXFyMkJETWtoiIiNTGz88Pb731ltJh2MTu5GXfvn3o3r274X1GRgYAYOjQoVi2bBkGDx6M8+fPY/LkyTh79izi4uKQmZlZrRMvERERkSPsTl6SkpJq7B2dnp4u+2OiqvjYiIiIyDu49Wgje3C0EREREdCtWzcAwGOPPaZwJPKRtMMuERERKeubb75Bdna2quc9U82dF61Wi5iYGHTq1EnpUIjIg3GGXfJ0ISEh6N27N+rUqaN0KLJRTfLCx0ZEyuEvfCJyJdUkL0REROQdmLwQERGRR1FN8sI+L0RERN5BNckL+7wQERF5B9UkL0REROQdmLwQERGRR1FN8sI+L0RERN5BNckL+7wQERF5B9UkL0REROQdmLwQERkZMGCA4fW0adMUjISILOHCjETkND8/P6VDkEx0dDSys7Px+++/4/HHH1c6HCIyg3deiMhp7du3x1133QUAWLBggcLROK9bt24YNmwYAgMDlQ6FiMxQzZ0XrVYLrVaLiooKpUMh8jo+Pj7Yu3cvTp06hdatWysdDhGpnI9Q2XKwxcXFCAkJQVFREYKDg5UOh4iIiGxgz+9vPjYiIiIij8LkhYiIiDwKkxciIiLyKExeiIiIyKMweSEiIiKPwuSFiIiIPAqTFyIiIvIoqkletFotYmJi0KlTJ6VDISIiIhlxkjoiIiJSHCepIyIiItVi8kJEREQehckLEREReRQmL0RERORR/JUOQGqV/Y+Li4sVjoSIiIhsVfl725ZxRKpLXi5fvgwAiIqKUjgSIiIistfly5cREhJitYzqhkrrdDqcOXMG9evXh4+Pj9kynTp1wt69ey3WYel4cXExoqKikJ+f71HDsGv6et2xHWfqsvdcW8vbUs5aGV5X7tGWo3XxunIdb/qZ5a7XlbXjcl1bQghcvnwZkZGR8PW13qtFdXdefH190bx5c6tl/Pz8rH7gNR0PDg72qB8GNX097tiOM3XZe66t5W0pZ60Mryv3aMvRunhduY43/cxy1+vKluNyXFs13XGp5JUddjUajVPHPY2rvh4p23GmLnvPtbW8LeWsleF15R5tOVoXryvX8aafWe56XdnTlhJU99hITpy9l+TA64rkwOuK5OIO15ZX3nlxVGBgIKZMmYLAwEClQyEV4XVFcuB1RXJxh2uLd16IiIjIo/DOCxEREXkUJi9ERETkUZi8EBERkUdh8kJEREQehckLEREReRQmLxJZt24d2rRpg9atW2Px4sVKh0Mq0q9fPzRo0AADBw5UOhRSifz8fCQlJSEmJgbt27fH6tWrlQ6JVODSpUvo2LEj4uLi0K5dOyxatEi2tjhUWgI3btxATEwMtmzZgpCQEMTHx2Pnzp1o2LCh0qGRCmzduhWXL1/G8uXLsWbNGqXDIRX466+/UFBQgLi4OJw9exbx8fE4duwY6tatq3Ro5MEqKipQVlaGOnXqoLS0FO3atcO+fftk+V3IOy8S2LNnD+688040a9YM9erVQ2pqKjZv3qx0WKQSSUlJqF+/vtJhkIo0bdoUcXFxAIAmTZogPDwcFy9eVDYo8nh+fn6oU6cOAKCsrAxCCMh1f4TJC4Ds7Gz07t0bkZGR8PHxwdq1a6uV0Wq1iI6ORlBQEBITE7Fnzx7DsTNnzqBZs2aG982aNcPp06ddETq5OWevLSJzpLyucnJyUFFRgaioKJmjJncnxXV16dIlxMbGonnz5hg/fjzCw8NliZXJC4DS0lLExsZCq9WaPb5q1SpkZGRgypQp2L9/P2JjY5GSkoJz5865OFLyNLy2SA5SXVcXL17EU089hYULF7oibHJzUlxXoaGh+Pnnn5GXl4ePP/4YBQUF8gQryAQA8eWXX5rsS0hIEBqNxvC+oqJCREZGiunTpwshhNixY4fo27ev4fjYsWPFypUrXRIveQ5Hrq1KW7ZsEQMGDHBFmORhHL2url27Jrp16yY++ugjV4VKHsSZn1eVRo8eLVavXi1LfLzzUoPy8nLk5OQgOTnZsM/X1xfJycnYtWsXACAhIQEHDx7E6dOnUVJSgo0bNyIlJUWpkMlD2HJtEdnLlutKCIGnn34aPXr0wJAhQ5QKlTyILddVQUEBLl++DAAoKipCdnY22rRpI0s8/rLUqiKFhYWoqKhARESEyf6IiAgcOXIEAODv7485c+age/fu0Ol0ePnllznSiGpky7UFAMnJyfj5559RWlqK5s2bY/Xq1ejSpYurwyUPYct1tWPHDqxatQrt27c39GtYsWIF7rrrLleHSx7Cluvq5MmTGDlypKGj7pgxY2S7ppi8SKRPnz7o06eP0mGQCn333XdKh0Aq07VrV+h0OqXDIJVJSEhAbm6uS9riY6MahIeHw8/Pr1qno4KCAjRp0kShqEgNeG2RHHhdkRzc7bpi8lKDgIAAxMfHIysry7BPp9MhKyuLt+7JKby2SA68rkgO7nZd8bERgJKSEvz++++G93l5ecjNzUVYWBhatGiBjIwMDB06FB07dkRCQgLmzZuH0tJSDBs2TMGoyRPw2iI58LoiOXjUdSXLGCYPs2XLFgGg2jZ06FBDmffee0+0aNFCBAQEiISEBLF7927lAiaPwWuL5MDriuTgSdcV1zYiIiIij8I+L0RERORRmLwQERGRR2HyQkRERB6FyQsRERF5FCYvRERE5FGYvBAREZFHYfJCREREHoXJCxEREXkUJi9ERETkUZi8EBERkUdh8kJEREQehckLEREReZT/D5pgWacZTFuAAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.figure()\n", + "plt.loglog(ps.freq, ps.power, ds=\"steps-mid\", lw=2, color=\"black\")\n", + "plt.plot(ps.freq, res.mfit, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can find the function in the `scripts` sub-module:" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling.scripts import fit_powerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([109.03139888, 2.07028842, 2.00200906])" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "parest, res = fit_powerspectrum(ps, model_to_test, t0)\n", + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Fitting Lorentzians\n", + "\n", + "Fitting Lorentzians to power spectra is a routine task for most astronomers working with power spectra, hence there is a function that can produce either Maximum Likelihood or Maximum-A-Posteriori fits of the data." + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": {}, + "outputs": [], + "source": [ + "l = models.Lorentz1D" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "('amplitude', 'x_0', 'fwhm')" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "l.param_names" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": {}, + "outputs": [], + "source": [ + "def fit_lorentzians(ps, nlor, starting_pars, fit_whitenoise=True, max_post=False, priors=None,\n", + " fitmethod=\"L-BFGS-B\"):\n", + "\n", + " model = models.Lorentz1D()\n", + "\n", + " if nlor > 1:\n", + " for i in range(nlor-1):\n", + " model += models.Lorentz1D()\n", + "\n", + " if fit_whitenoise:\n", + " model += models.Const1D()\n", + "\n", + " parest = PSDParEst(ps, fitmethod=fitmethod, max_post=max_post)\n", + " lpost = PSDPosterior(ps.freq, ps.power, model, priors=priors, m=ps.m)\n", + " res = parest.fit(lpost, starting_pars, neg=True)\n", + "\n", + " return parest, res" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make a dataset so we can test it!" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGhCAYAAACphlRxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABigklEQVR4nO3deVhU9f4H8PeAgiu4oCAokrkkLqAIaFqBUoQ3UsytslDLbgZeC9O0a2qp17IiK+dmWi6ZJWlXWyw1sX6aWQqGZW6ZqKiBoClCCgrz+2OccfaZM3NmzjnD+/U888ic7fsZGOd85ruqNBqNBkREREQK4SN1AERERERCMHkhIiIiRWHyQkRERIrC5IWIiIgUhckLERERKQqTFyIiIlIUJi9ERESkKPWkDkBstbW1OHv2LJo2bQqVSiV1OEREROQAjUaDy5cvIzQ0FD4+tutWvC55OXv2LNq1ayd1GEREROSEoqIitG3b1uYxXpe8NG3aFID2xQcEBEgcDRERETmivLwc7dq109/HbfG65EXXVBQQEMDkhYiISGEc6fLBDrtERESkKF6TvKjVakRGRiI2NlbqUIiIiMiNVN62qnR5eTkCAwNx6dIlNhsREREphJD7t9fUvBAREVHdwOSFiIiIFIXJCxERESkKkxciIiJSFCYvREREpChMXoiIiEhRvCZ54TwvREREdQPneSEiIiLJcZ4XIiIi8lpMXoiIiEhRmLwoTGFhIeLj47Flyxa7x9bW1mLDhg0oKyvzQGRERESeweRFYQ4fPow9e/Zgw4YNdo/95ZdfMGzYMMycOdMDkREREXkGkxcvdu3aNQBAcXGxxJEQERGJh8kLERERKQqTFyIiIlIU2SUvRUVFSEhIQGRkJHr27Il169ZJHZJbrF+/HoMGDcLp06elDkXv559/xqRJk1BdXS11KERERFbJLnmpV68eFi1ahIMHD2Lr1q14+umnUVlZKXVYonvvvfewfft2HDx4UOpQ8MMPP+DMmTOYPXs2Fi9ejOPHj0sdEhERkVX1pA7AVJs2bdCmTRsAQEhICIKCgnDhwgU0btxY4sjk58KFC2jRooVL17h27Rr69++P2NhYzkhMRESKIHrNy44dO5CamorQ0FCoVCps3LjR7Bi1Wo2IiAg0aNAA8fHx2LNnj8Vr5efno6amBu3atRM7TMX76quv0LJlS6xfv96l69TW1gIA9u7dix07dogRGhERkVuJnrxUVlYiKioKarXa4v6cnBxkZWVh9uzZ2LdvH6KiopCcnIxz584ZHXfhwgU8+uijWLp0qdghegXdxHMlJSUAtHO6lJaWunRN3dBqIiIiORM9eUlJScG8efOQlpZmcX92djYmTJiAcePGITIyEkuWLEGjRo2wfPly/TFVVVUYOnQopk+fjttvv91meVVVVSgvLzd61DVXrlxBVFQUUlJSpA6FiIjI7TzaYbe6uhr5+flISkq6GYCPD5KSkrB7924AgEajwdixYzFw4EA88sgjdq+5YMECBAYG6h/e1sR09OhRfP311zaPuX79OgBtMxsREZG382jyUlZWhpqaGgQHBxttDw4O1s8Cu2vXLuTk5GDjxo2Ijo5GdHQ0fv31V6vXnDFjBi5duqR/FBUVufU1eNrgwYMxePBgXLhwQepQiIiIZEF2o40GDBig70TqCH9/f/j7+0OtVkOtVqOmpsaN0XneH3/8AeBm7YrOlStXpAiHiIhIch6teQkKCoKvr6++k6lOSUkJQkJCXLp2RkYGDh48iL1797p0HSIiIpI3jyYvfn5+iImJQW5urn5bbW0tcnNz0a9fP5eurVarERkZidjYWFfD9EpXr17Fp59+ioqKCqlDISIiconoyUtFRQUKCgpQUFAAACgsLERBQQFOnToFAMjKysKyZcuwatUqHDp0CBMnTkRlZSXGjRvnUrlKrnk5ePAgvvrqK7eW8d5772H48OH44IMPAGiHrO/cudOtZRIREbmD6H1e8vLykJiYqH+elZUFAEhPT8fKlSsxatQolJaWYtasWSguLkZ0dDQ2b95s1om3LklOTsbp06eRk5ODhQsXYvny5ejZs6do1//ss8/w2WefAQCOHTuG6upqjB49GiqVin1niIhIcURPXhISEqDRaGwek5mZiczMTFHLVXKHXd3ijLm5ucjPz8f+/ftFSV4+//xzs21vvPGGfkSWvb8TERGRHMluYUZnyb3ZqLCwEBcvXhT9uitXrsRvv/1mcV9VVZXF7Vu2bBE9DiIiIk/xmuRFzsrKytChQwe7swXbcvbsWSQnJ+Obb74x2p6Xl+dyZ2dr/ve//+H99993y7WJiIic5TXJi9xGGy1duhTTp0+HRqPB33//DQA4dOgQrl27hmPHjglusjl48CC2bt2KFStWuCNcix544AE8/vjjHitPCTZv3ozFixdLHQYRUZ3mNcmL3JqN/vnPf+KVV14xmxl3xowZ6NSpE7Zv3+6+wo8fB159FWM++wx7APwAYB2AfwEQo1u0RqPBW2+9pZ9Ary5JSUnBpEmTAGiXY0hJSUF1dbXEURER1S2ym2HX2+mWQTCdMdfU3r17BS8y2QsAUlOBL78EAJh2+R0OYCGAFZcv43kAfwm6+k1nzpzB5MmTsX37dmzcuNHJqyjfyy+/jM2bN+Ovv/6q06PliIg8jcmLTMXFxTl8bGMA8wFMAvSJizX+AJ4EkAZgtJOx6Zq8dIlYXXXt2jWpQyAiqpO8ptlIbn1ePKUHgJ8BTIawP2YwgK0AVMuWme2bPHmyKLERERG5g9ckL3Lr8+IJDwH4EUAnC/uuBQTgp5498U8AEwF8AOCqyTH1AfhNmoQnTbZv3bpV9Fi9GefLISLyLDYbKYyuqeJ5aJuKTF0BMA/An/fei6D27bH0l18AAEtunPMugH+YnPPOjfNWuSdkr5SdnY3CwkKpwyAiqpO8pualrrhSWYm3YTlx2QNtM9J/AFz19TXbfwZA6o39ppYBuEO8ML3elClT8MuNxJCIiDyLyYuIXnzxRbRq1QqHDh1yy/X9AawFYGlhhXegTT7sDV7WAPg3gFkm2+sD+BRAuJXz9u3bx5l5iYhIFrym2UgOaxtt2bIFZWVlojQndOjQAcePH9c/r//339gMIMHkuFpoO+uaTpv2ww8/4OTJk1avPxdAIIApBttaAdgAwNJ8vQMGDMCVK1fYv8MC/k6IiDzLa2pelNphd/Xq1Ra3+/v7639uAyBp7lyzxKUK2uHOluZ7tZW46EwDcO3uu4229QbwsoVjba0+fejQITz33HN2564hIiISg9ckL0qxZs0ao+cffvihzeM7QztDbvNTp4y2lwNIgXbmXGfVAqhYtgymjVzPAPh5vqVeNZbNnj0bCxcuxIkTJ1yIhoiIyDFMXmQsDsAuABEm2/8EcCeAb8UoJCAAI2E+jLrtzJkIcfASly9fdqpojUaDn3/+WfGTvbHZiIjIs5i8yMiuXbv0P99RUYHtAIJMjvkdwO0A9otY7gEAWSbbWkE7AsmWn376CUlJSTaP+b//+z9MnDjR4g3+t99+Q+/evbFkyRIh4UqmVatWUodARERg8uIW//iH6Uwqjvntt98AAB127oS6qAiNTfbvBdAfwAlXgrPiHQD/M9l2H4Cxds7Lzc21uT8zMxNLlixBRUWF2b7KykoAUMwCj2VlZRa3//jjjx6OhIiobvOa5EWK5QGuXbuGN998Ezt27LB53Lp1jvdMmQmg/7JlZsPANgNIBFAqNEgBJkDbJGVoEQCY9LcRQujikkr0wAMPSB0CEVGd4jXJi6dGG61YsQKLFi0CABQUFODpp5/Ggw8+aPOcn3/+GQDQvHlzq8c0BPAxtEOYTa0GcD+ASmcCtsNwccULAJ4w2R8IAI895oaSiYiInOM1yYunjB8/Hs888wwuXryI2tpaAMClS5ccOrdFixYWt4cC2AHLqzy/CiAdgLu6tEZGRho9/xLAStODtm0zW/+IiIhIKkxenCTWCJO7AOQB6GOyvQbayeemQTsr7sSJE9GhQwdRyrTnaQBFJtteA+CZ0omIiGxj8iIRFbTT9OdCOwmdocs+PpjYrh3e8nxYAIBLAEwbihrjRo2MhRmMLXXGJSIichcmL272wgsv4LvvvjPa1gbA19Cu/my6fOIxAOmdO+P7Jk08Ep8130C7ErWhOwDgjTfMjv3+++89EJG8TZkyBePHj5c6DCKiOoHJi5OOHDni0M3qnXfewZkzZ7RPNBqMAfAbgGQLx24GEA+gsEED8QJ1wVQAx003/vvfqH/kiATRyFt2djZWrFghdRhEbrFo0SK8YeGLC5FUmLw46euvv8bBgwcdPj4EwJLiYqwGYDrmqAbA8wAGQzviR0yBgYFOn1sB7TwvtYYbq6vRaOJE1HctLFRXV3NmWiKFeOaZZ5CVZTqVpTTefPNNu8uqkPfzmuRFinleHFEP2rWCjgBI+vtvs/1noZ2/ZQG0HXPlZieAbJNtAceO4QUXrjlu3Dj4+/tj2rRpALQfRkREhr7//nuLi70+/fTTeOSRRySIiN5//33ccccdUocBwIuSFzmuKp0M7TT+2QACLOxfA6AHtAmCzv3332/1eroZaT1tJrRNXYZmQLv2klCXLl3CypUrAQA7d+60fbALvvzySyxbZm+BA+cEAHgDwBYAD7mlBCLl0Gg0WLx4sc2V5y25ePGi2UK1OkVFRbjjjjswe/Zs/OMf/8CROt5UXVlZifPnzws6Z8uWLfjpp59EjePxxx+XTR9Hr0le5OQuaBOSzQAiLew/B2AYgDEwbyYKCbG+HKK16endrQrAIzCea6YegA+gnVxPCGeXThAqNTUVTzxhOuWeON6Ddjj5PdAmoCluKYVIGfLy8jBp0iTMF7ASPQDMnTsXY8aMsfi5pvui9v333+Orr77CyJEjHWpmrq6udnjeLbm6du2a2Zfw+Ph4BAWZrnRnWUFBAfr06YN7770Xffv2tXlsbW2t2e9VpVLh7bffFha0BJi8iKW2Fv0vXEAugO8ADLBy2EoA3QBscKKI1NRUAEDDhkJTBtf9DOAlk21dALxssu2vv/7C//73P6sfNIaLT+pYm7xPjjoAGGGy7WkJ4gCAjRs3KmZdKNLeWB9++GGjWa29ga5pR+iUCbr3bo2F6RdM/fLLL1i7dq3d49LS0tCsWTNcv34dV69etXu8o8eZ2rNnDyorK1FZWYnx48fj8uXLgq+hs3//fkyePBkA0LlzZ/j5+SEuLg4XLtz8aqtb984R8+fPR35+vtn2v/76C/v3Gy/p6+vri+nTp5sda1gjdv78eaxbt052fRSZvLioOYCJ164BXbrg1SNHMNDKcfkARoSFYRwAZ+tPOnfu7OSZjhs7dqzVfQsAmFZC/gvajsaA9sM5Pj4eDzzwgMUkxdqbv6amBhs3bkRVVZV+2/z589GzZ09BsVtSWFiIhx56yKUPF0P3Wtg2ADeHvDvzQeistLQ09O7d22PleZPq6mrcfffdOHbsmH6bRqNx6wf0nj178NFHH+G1115z6Trbt28XdDNzNx8f7W3EHb87w2sa/q2s+eqrrwAAiYmJRl/yrl27WW988eJF/XpzycnJTn0ZjI+Px/jx47Fu3TqsWLHCavOXIx588EG89ZZ2Vq/ff/9dv133eWi47cCBA/pmd6HuvvtuREdHY8yYMQgLC9Nv/+CDD2ye9+ijj2LkyJHYtGmTflt4eLhon6nOYvIigK7dtQmAyIMH8T8AxQBera4GrPzHKmnYEOOg7R/ys0yGQNuSmZlpdV8NtEsVmLZsr4J2iYNNmzbp/6NZ6tR18eJFi9e9dOkS0tLSsH79ev22mTNn4tdffxUUuyXLli3Dxx9/jH379gk6b/PmzfDz8zPrMNjdwrGNcLN5UPcNylPqwsKX7nD06FFs27YNL7/8sv55/fr10atXL0HXycvL069dZo9YN/dBgwahe3dL70TnXL16FXPmzLHYOdYRKpUKgPDXJ3R5FSEM+2VcuHABfn5++PjjjwEAAwcOxMiRI3H16lVs377d4Wua1pgZ9sOZOHGi2fHLly93OtEAgNOnT6O8vNxolFevXr0wbtw4ANo18xyptdLR1bqsWbMGZ8+e1X9RtVUTeOjQIX0TlmGyUlRUhF9++cXhst2ByYsjNBpg/34sv+02bIe2n8qo9euRBsDPyilnAGy85x5MHDgQK2Ey3FjBjgB41mRbELR9PypNbqQajQanDFaktvdt0Vpy4woh/7kNZWdn49q1a/jbZISYtbqvLjf+Xbp0qVnHuoKCAhw/bjZjDslIly5dUFNTY1at/uWXX+pvspbExsaiX79+DpWhu7nrbvau6tPHdFER4Z544gk0bNgQL774IjZscKYx++brsfV7skTXtDFnzhxcvXoVKpUK69evd7jPRV5eHp555hm7x3Xt2hUAsHXrVly9elWfbJomWxqNBjk5ORY/M3bv3o02bdrg//7v/8zOsaS6uhqPPfYYxo0bh3nz5mH79u1444039E1rrVq1wuuvvw7A+vshLi4OgYGB+Ouvv/TbdAnm4cOH0bt3b9SrV8/u6z906JDF7atWrdL/rItBl+DpREZGorS01GacUmHy4ogHHwSio/EKtMOabc1xUgDt3Ci3Avipd29c9/G+X/F/AfzPZFsCgP4m32IMExdHZGZmYvfu3UbbiouLHaouFurdd991aq6ILg5sN/ywAbTflm699Vb98+vXr2Pnzp0Of1PdsmWLUbW3p+zZs8fpb+Oe8ueff2LSpEkuxWnt3F27diE1NRXvvvuuzfMNmztteeWVV2yWJ5Slfg1CnDx50mhEnrOJvrPNRrrja2pq9F9c3n//fQDQN+vYEhsbi0WLFiEgIAAqlcrqF4Rz587py9M1KwEw+z+1bds2jB49GsuXLze7hq6WxbC2Zf/+/Uav2bCm2LC/ygsvvIBBgwYhKysLL72k7TlYVlaGGTNmAIB+vjBr/8ctNcEXFhbqfzZMKsrKysz+jr169cKWLVsc+vvqJiL86aefsGXLFqN9TF6UKD7e5u6rADBiBJ6KjEQvaJtRHPs4U67HAJww2Tbohx+QYPC8U6dOgq87ZcoUo+eJiYn66yxevNgsuTH0008/YcCAAQ51HHzyyScFzxXRGEBbK/sMkxd7H+Jr167FnXfeiR9//FG/7ZdffrF4Ezx+/DjuvfdezJ07V1CsriouLkZ8fDzmzZvn9DUqKystfvCK4dSpU1i3bh2ys7OxePFil6qwLXVYBG42Zzgzyu/dd981S96//vprAMJrKHReeukll/vLGIqIiDDbptFoMGvWLKObryHD6RoWLFgAlUplseblyy+/xCeffIIffvgBJSUlALSzjYeHh+uP0Z33ySefWI3RkekUdM0Zhl8QdAxfh+n/S9MJPO+55x4AwpqxHnvs5ipwjvTR++STTyz+3gFtnxRHnT592uj5M888g//+979o1aqVWQ1aVVUV7r33XrufSyqVymiU0733GvfwGz16tNFzqb/YMHlxRIr5YNjrPj74BsB4AB0aNQI++QQFLsxm6wpH3vQPP/ywqGVeBPAgAMO3rw+AHNy8wRt+k/j8888duq5pM83hw4f1P0+aNAlpaWlWz1Wr1di1a5coozl0iYRGo8GBAwfw7rvvWm0yAoyTl0uXLmHHjh1Wjz1x4gSAmx+stbW1iIqKsthfRvf7OHv2rKD4Lbl+/TpGjBjhUBOW7iblymimJ554AgMGWBt3Z9/GjRuRnZ2Nvn37GnVaBLT9PkaOHOnU3EeNGzfGP//5TwDav+8PP/xg8biCggIAzn3jfPLJJzFkyBCjbYbNRidOnMA333wj6JqzZ8/G1KlTre4/ceIEcnJy8OCDD+L69esoLS2FSqVyeD4ljUaD3377DXPnztUndFevXsULL9ycklKtVgMASktL9Qm1rubFsIY0NTUVo0aNQv/+/XH77bdDo9HgqaeeQlFRkcVaFd0Nd/PmzVbjc+bv0LJlS/3Pn3zyidVrGCYDU6dOhUqlQpcuXVBUVAQAgvqulJSUWO24f/LkSZw8eRKA9vPR8PWaNknZYjoNxKJFi5CRkeHw+WKYOXOmR8szJcvkJS0tDc2bN8fw4cOlDkWrSxegfXuUNm0KNYBUAK9Mm4Z7AKwAUC5xdZruA8XTfoR2ZWxDraEdBm7aNfm9994TpUzdtzhLdDcHMSZRMkw+hg4diieffNJqkxEAdDT4+aGHHsJdd91ldoxpnx9dvLp/3T2CpLCwEOvXr8fs2bPdWo6Oq819aWlpmDJlCn766ScsWrTIaJ+1mgFH/P3330YJi7Ub2r///W+r+8vLy/Hoo4/aLMfapG0qlQq9evXSf9M31bRpU4f6Mpjq0qULRo8ejbVr1+Lo0aM4evQoAG0S6AjDb+b79u3DQw89hBUrVhjVvmk0Gpw7dw6tW7fWvz5djcu2bdssXvf48eP6WicAGDlyJE6dOmX0ezVNIC397q5du+bSCva6fjWWtGvXzmzb0aNH8f3332P79u36xGLz5s1GTU+m1Go1QkJCEB0d7VBMKRa+GCuFLrmXiiyTl8mTJ9sdvuVRKhWQl4fnR45EJoAvAVT73eyqW1lZKaizaaNGjWyO6lGSV6H9fRjqA2CpybZTp07Z/NZoj5Bh4rre+I7Kysqy2cauq32wlby0wM01q0xrCXRsDUN3hbXyAG0nRVcm63OmH4Oj5xQXF+PAgQPOhKW/YbprRm3D5FWj0ejfAyUlJZgzZw5WrlyJ1atX27yGtd+DSqUy+7zIy8vTd6ysqKhwuP/Jr7/+qr9WdXW13eNra2sdmgk3Pz8fH3/8scUaBNPEMSYmRv/zlClTLM4Eazo5paX+JoYsJSkvvfQSmjZtajd2WyZNmiT4nEGDBul/3rBhg82JNnWf60qfKE8JZJm8JCQkuPwmFV1QkDaJseKLL74w23bLLbdYPPbDDz80upE/+OCDrscnEQ20MwWbTt79CIwnbzt+/LhRHw9bLH1w2bpBC2X4gazRaPDGG29g5MiRFo81vAHZSl4A49oXSww72QlleiM0vPlZG00AAIMHD8ayZcvsJhRXrlzBd999p3/ubOe8wMBAxMTE4K+//sKePXtsHtutWzf06NHDqXJ0zWl5eXkOHf/nn39a7Vth6bUa1py98MIL6NixI/766y9MnjwZL774or45wRmW3gexsbGIjIzEn3/+KehaPXv2NLq56ly5csVih/nnnnsOjRo1sngtR5LOiooKm0PDs7OzHZ4J1pCnJu4z7StCznOlFkwMoicvO3bsQGpqKkJDQ6FSqSxWWarVakRERKBBgwaIj4+3+yGnBKbfqmtqahz+xvvRRx+5ISLPuQRgKADTGUdeg7aJTSiha6ToODIip6KiwmhSKl3fB2sMv83aS14c7Z4sJDHQHfvzzz8bzelieCO2NcmW7hu8bsSFNQsXLkRiYqLRyAyd69ev47nnntMPmbTl8uXL+Pnnn7FixQq7x7rS9GP6Oxw3bpzNm29aWhpGjRplsWOvo3+Pv//+W1/j48iNXqPR6PtO6YbFAtD3ebDE3t/JEktzGN1zzz146CHzlbc+/fRTwdc3tHTpUtHWtjlz5owo13EnS79DkgfRk5fKykpERUVZ7YeRk5ODrKwszJ49G/v27UNUVBSSk5Od+k8LaDtWlpeXGz08LSQkxGwEgY/AIdJLlizB888/71RbtzPEbrY6DG1tiyFfAGsBiL3O9+TJky0uupiTk2O2zfT9YNrB097ijYY3WNOGK9OxQfZqXkyr04U0yfz88882OyvbY68sXfON7mZrmAjm5+dj4cKFHlvvpLa21qGhsoZ++eUXm0mv7u8YFRVltF2j0TiVTFpz7do1PP/88wC0tYUNGjTAsWPH8OyzprMjWSZWvyfD961hJ3hdArp161azc9asWWOzozngXHJF5A6iJy8pKSmYN2+e1Q/a7OxsTJgwAePGjUNkZCSWLFmCRo0aWRxb74gFCxYgMDBQ/7DU8crdhgwZAn9/f4v7DKdhtuWf//yn4IXNXOGOsj4HMMtkWyNo+8R0ELGct956y6hWq7CwEHFxlte4XrJkiUtl6W5WbaGdWdnQJpPn9pIXwHKHY2uJxbVr1/D000/rnxvOI2F4E33yyScdKNmysrIyi8PPDZtNdLU3rlYTHzhwwKFate3bt5s14zmaYBw4cMBsoi17xJi/ora2Fi+88AI+/PBDLFiwwGifafON4Rcb02nlDZO2P/74A9euXcP8+fNdGkmyZMkS/cgj3d/QcKp3na+//tqsHEvDurmeFsmBR/u8VFdXIz8/H0lJSTcD8PFBUlKSzfk7bJkxYwYuXbqkf7jSFu0OznQQU7K50C4+aag1gK8BtHJTmTt37rTbcdOwP4czbjN5fhmA6XdU0+Rlz549ZtPN33fffXbL+u233zB8+HBs3rzZqCOjYZJjeMN1Zfbexx57DLfffrvZdkvNR65Mb79nzx706NFD39/CVv8nSyPTLK18a0mPHj3cVtVfVVVldSr8bdu2Yd68efpaF0OGM5kCxpPLjRkzxugzy7Dm45dffkFycjJmzpyJ//73vy7Fftttpu9gxzjSCdgZcpvwjJTHo8mLbva/4OBgo+3BwcFGHbaSkpIwYsQIfPXVV2jbtq3NxMbf3x8BAQFYvXo1+vbta7HzGnnWBACmldKdAWyDdlSOFObMmePwsYZV97pvzab9XQ4DOGqyzbTPy9KlS82GE547d87qB7du+/z58/Hpp5+adWI0bAJz5cP/008/RevWrXH69GmLzQfW4rIkJycHt9xyCz7//HP9OkGWzjEdmWNrSn1LzX/79u1DZmam4P5xR48exZNPPmk18VqxYoXVeV5MzZkzR/+6srOzjfY999xzACx3PLU3ctLw9Ro295SWluLbb791KLbFixfb3O9K/yJTpjOvEknBMx0sBLI2X4AtGRkZyMjIQHl5udnMieRZ1wEMh7ZmItpge09ok5pB0HbytUSj0TjcP8BdDBe9083FYfq99TAA01lMggA0g3YCP2tOnTqlnz/EGmsdj8X6FnzlyhVcuXIFX35pOshdO9HZqFGj9M8NkxBL8zrMmDEDJ06cMJuQzZThzdWZOX9+/PFH/Pjjj9i0aZNDo7ZOnz6Ntm3bYuLEidi+fbvN5ltHZwo9f/48AgICLO5zZc4La1MI2OtMbkhoDa+jtWhijvIjEpNHa16CgoLg6+tr1u5fUlKCkJAQT4ZCbnYZwGAApq3jMQC2ALB8C9DOjyDlHD/WPtQtJS8noF1p25DhBOX2ko1nnnkG//nPf/TPi4uLzfpAmMrNzcXvv/9usTbkhx9+gEqlMltc0BrDOVl0fRvUarVRTafh78O06a20tNShDpymv9MJEybY3O8IS6/f8Dq6BNSZFY8TEhIElatEjk5b4MioMWdYmsqfSAiPJi9+fn6IiYlBbm6uflttbS1yc3MdXpnVGrVajcjISMTGij22RTxy6ejmrvVmTP0JYCAA04Gh8QC+heU+MLaGkXqCtWHHlpKXazBf38mw34u9Scz++OMPo1qY33//HWPGjLG5+nBSUhJSU1PN9qlUKvTv3x8AMGzYMJvlWvK///3PapnWtG7d2qnp+U29+uqrmD9/Pg4dOuTwaEFLcRp+Kbp06RJmzZqlP07I8grWpmm/du2a4M7AcuWuyf2IPEX0ZqOKigqjacELCwtRUFCAFi1aIDw8HFlZWUhPT0efPn0QFxeHRYsWobKyUvCsqKakajZKSkpC+/btUVVVZbTiqCfMmTMHV65csToZnjXx8fGCh3I76xS0zUT/B8Cw4r43gJ0A7gYgpy7WlhZHbAnzBRl1Ky4dg3Fti/ClKM2r5nVzcZjWUOgcOXLEZpJx/PhxrF271u7CmJZqIyxtM+zH8ffff1ud5MyQYXz2OuPr+ou4ulaK6bf5uXPnClrszh6haxERkfuInrzk5eUhMTFR/zwrKwsAkJ6ejpUrV2LUqFEoLS3FrFmzUFxcjOjoaGzevNmsE69QarUaarXa6WXdndGkSRN88803+m9qYnaKc8SAAQOc7qBs7ebXqpX4Y4L+gDaB+RZAG4PtXQB8D+BeANbniLUuOjoaP/30k+sB3mCtCaS3yfO/cXNG4WMAkg32OTJc2pS1Rdxc4ciszZaG35omL5cvXzaqyWncuLFDTTCG7y9djZCYHK0hcmWEFBHJl+hfvxMSEvRt6YYPw1U5MzMzcfLkSVRVVeGnn35CfHy8y+VmZGTg4MGDklSH3nXXXYiMjBTteufOnbM55bvYvvjiC/j6+gIAmjVr5pYyjgC4A4BpV8twALthnAA4av/+/fjrr78cPn79+vU291tLoE2Tl/242dfFtDujM8mLM1OjC+174ejKwqacrU10dWi6PY42VznT+Z+I5E+WaxvVdULa53WsTZLniPvuu89oPZLGjRs7fS1b/gAwAIDpHKKB0E745u4ZcUaMGOHUeTEmzw0nYzcdcdTNiesPHjxY8DlCZ5K2NC2+JabvPWdrLhxdyVioEydOsDaFiJi8yFnbtqY9Layz1znUnnfffRdjx45Fkyam88iK6yyAOwGYjnXwBfAWgBXQzsorJ6aNHobJi+m4nmYQdzZha/71r38JOt7RG77pujVyTBQsLThIRHWL1yQvShhtJMSQIUPMZme1ZcSIES71GxoyZAhWrFghSkfe8PBwm/svAEiEdt0jU2MB7AHgaCPcgw8+iPT0dCHhCdIJQKjJNsPb+2kApj1lTJuZ5ECOSYizIiIipA6BiCTmNcmLlH1eXKHra6I0jz32mNV9jnwzvgrgQQCzLezrBmAvAEem6HJ334pEk+dnYT6zbr7Jc9NmJjkQM3lxpo8OEZGYvCZ5UZrQ0FA88cQTbpsESkxidkY29RK0s/Ga9uBoBGAJgG8AtBexPEcn59JJMXluabL2fSbP5Vj3t2DBAqc67VpKes6ePYvDhw9bOJqIyDO8JnnxdLORq1O116tXD++++y4eeeQRkSIypqQ5KT6FtqnFNAkAgCQABwD8C+KM6x86dKjDxzaBdhi3IUsrAZmutnM7AD9BUXmGrdoyayxNrBgTE4OuXbuKERIRkVO8JnnxdLOR4SJ0cmE4rbm7hjy7yx/Q3vQtLS/XBMCbAAqgTWY85X4ADQyeVwP43MJxOwDUGjxvCMC1+aKJiMgWr0levFFoqGlXUdtcHXEktSpoh0snQzszr6lu0DYjfQYgygPxZJo8z4XlRRcvwrzWiGubExG5D5MXGXv11Vcxffp0h4+vX7++G6NxXM+ePV06fyuA7gDetbL/fmhrYT6F+5KYu2Bee7LcxvHbTZ6niRsOEREZYPIiY02bNsXtt98udRiCffnlly5f4zKAJ6Gd1M5SXxgAGAZtEvMNtAmNWG/megDeMNl2CsAGG+d8YfK8Oxwf7k1ERMJ4TfLibfO8KFm7du1Eu9YuaEfvPA7z+VR0kqBtSjoGYBacWxzR0OsATGfYeQU3lwSwZBe0c74YGuNiHEREZJnXJC9yneelZcuWol9TN32/p1aGllotgPehXTfo39BOcmfJLQBehHYelr0AngfQB46/yRtB21RlOnftb7DehKWjAbDOZNsT0HbeJSIicYm+qjQZCw4OxrVr1/DAAw/g888tjVURbsaMGfDx8UHfvn1FuZ5SXAbwHwBvQ9ux92kA1tbA7nPjMR/AeWiXI/gZwC8AzgAogbYmpSGAW6FdsiAdQGuT61QBeBS2a110lgF4xuB5S2gn2lvkwLlEROQ4Ji8C3HfffTh58iSOHDkiaH2VevXqCV4F2JaIiAgMGzZMtOs5o3379hg4cCB8fX2N5pRJSnL/YGZdEvM6gNHQJjK2ZrVtCeAfNx5C1AJ4DNb73Jg6BOArAIbLLM4GsAZAqcCyiYjIurrR7iCSIUOGYOvWrYLWHHKVbr2i2267zWNlOqJZs2bIzc1F//7GyxbOmjXLYzFUAVgFbQ1LPLQLO5aIdO1KAA9Bm3gIMc/keTNoYxQvdSUiIiYvMhcXF4fKykrBqwjXNXsATAYQBuBuaCe1c3YC+6+g7bCb48S5uwF8aLItBcB/wQSGiEgsXtNspFaroVarUVPjSO8E8bmz3EaNGrnt2mKLivLE9HHW1QDYduMBAOHQztzb68bjFgBtADQ2OOcctJ18twNYD+BXF2OYAu0kdW0Mtj0JIBjAOACXXLw+EVFd5zXJS0ZGBjIyMlBeXo7AwECPlx8WFoYjR47YPc7Pzw99+vTxQETSaNhQXuNrTt14rDXZrovyOoBrIpd5Dtq+ONsAGE4bmAagP7TDuVdBu7I2EREJx2YjkbzwwgsOHbd+/XpR50FxxaBBgwQtQTB37lyzPi5KdeXGQ+zERWcHgFEWrt8a2tWyi6CdCG8A+J+QiEgofm6KxN/fX+oQ7AoKCjJ6vmXLFhQWFpodl5ycbPH8YcOGYeLEiQ6V5ecnx3WVPWsDtCOcyizsC4J2qPdOaOet+RrATAD3AegA/sckIrLFa5qNpBYXF4fly5dj/PjxUodi1aZNm3Do0CH4+voCAHx9ffU/G/rwww8RFBSEv//+2+myAgICUFZm6bZdt3wDbV+bxQCGWDkmEMC9Nx46VwD8Dm2TV5HB409ok6EyaOevYdMTEdVFTF5ccPXqzVuHr6+v1RoLKRkmJ3FxcYiLi7N7TsOGDREeHo7Dh50dr0OGTgMYCmAggGnQrpptT0MAPW88bKmENpG5AO38NxU3/rX0cyW0yY7po8rK9mpoZw4mIpIbJi9OaN1aOw/r9evXJY7Eus6dO2PUqFHo1auXoJWpyX2233h0gbY/zDC4vip24xuP9i5ex5oaaDs16zo2O/NzrYCHRuDxpufC5F85bBN6jtjccV1eUxnXdfuXj6+/BlJS3F2KRUxenLBw4UIsW7ZM6jBsCggIwNq1a7Fr1y6Xr9WkSRPB59x3331YuXKly2V7oyMAXrrxaAPtCKT+0M4SHAntjMBy4XvjIf8eXUTkcQsWSJa8sF+gE5yZ6r9FixYAgAYNGogdjlvl5eXpZ/kV4t1333Woiaqu+xPauWWegXZ9pSBoRyQlQDsnzCxo10zaAu0Ckefg2DpLRETezGtqXqSepM6eV199FQ899BASEhKkDkWQNm3a2D/IAj8/P4SFhZltnzBhguxrraRWCuD/bjwsUUHbyTfoxqMlgOYAmt54NDH42fDREEADg4f/jX8bQlu7QkSkFF6TvEg9SZ09LVu29MiihXIn5gKVdZUGwMUbj2MiXdMXlhMbX2gn2qtn8LD13NI+FbRVvO586JIvlYV/Hd0mh+PFINa15BiTmNdiTK6LlXDNPa9JXojIeTXQjkaqlDoQIlIMzdKlkpXNPi/kUdeuuWtOWyIiqiuYvJBH/fqrdtlDzsBLRETOYvJCHuXjo33LdenSxanz69evj3nz5okZEhERKQyTF5n566+/AADV1dUSR+K62tpau8fo5pDZv38/6tWz3wUrKChIccPNiYhIXExeZOb8+fMAgPvvv1/iSG4KDw8HoK31CAkJMdpmy969e+0eo0tEQkNDMWLECBeiJCKiuoKjjWSqa9euUoegN3fuXCQnJ6Njx47o1KkTzp49q09ibLG06KMtDRs2tHtMhw4dBF2TiIi8jyxrXr788kt06dIFnTp1wnvvvSd1OHVe8+bNkZqaqp+jpU2bNpLN1+JI0xIREXk32d0Jrl+/jqysLHz77bcIDAxETEwM0tLS0LKlnFZ88X5Ca02IiIg8RXY1L3v27EG3bt0QFhaGJk2aICUlBVu3bpU6rDrnpZdewsCBA2WRNG7duhWrVq2SOgwzQUFBUodARFQniZ687NixA6mpqQgNDYVKpcLGjRvNjlGr1YiIiECDBg0QHx+PPXv26PedPXvWaE2csLAwnDlzRuwwyY5hw4YhNzcX/v7Sryd89913Y/DgwQCAjh07ShzNTd26dcPOnTulDoOIqM4RPXmprKxEVFQU1Gq1xf05OTnIysrC7NmzsW/fPkRFRSE5ORnnzp1zqryqqiqUl5cbPcj7BAUFYd26dXj55ZelDkXPx8cHAwYMkDoMIqI6R/TkJSUlBfPmzUNaWprF/dnZ2ZgwYQLGjRuHyMhILFmyBI0aNcLy5csBaIfMGta0nDlzBqGhoVbLW7BgAQIDA/WPdu3aifuCSDaGDx8uq6Ya3YR7OkVFRRJFQkRUt3i0z0t1dTXy8/ONVlf28fFBUlISdu/eDQCIi4vDgQMHcObMGVRUVODrr79GcnKy1WvOmDEDly5d0j94AyFPMR1x1bZtW4kiISKqWzw62qisrAw1NTUIDg422h4cHIzDhw9rA6pXD6+//joSExNRW1uLadOm2ew06u/vD39/f6jVaqjVatTU1Lj1NZBrTGsrlExOtUBERHWJ7IZKA9rZZYXOMJuRkYGMjAyUl5cjMDDQTZGRMxo3bozKykqjba7ME9O9e3dXQxLF4sWLpQ6BiKhO8ujX4KCgIPj6+qKkpMRoe0lJiUMzttZ1DzzwAIYMGYKYmBipQ3HZ008/jV69ejlVe5GcnKxfA0pKchhGTkRUF3k0efHz80NMTAxyc3P122pra5Gbm4t+/fq5dG21Wo3IyEjExsa6GqZsxcXFYePGjWjfvr3UobgsJSUF+/btQ6NGjZw6v2nTpiJHRERESiF68lJRUYGCggIUFBQAAAoLC1FQUIBTp04BALKysrBs2TKsWrUKhw4dwsSJE1FZWYlx48a5VG5GRgYOHjzo0GKAJB3dgo7e1PeFiIg8S/Q+L3l5eUhMTNQ/z8rKAgCkp6dj5cqVGDVqFEpLSzFr1iwUFxcjOjoamzdvNuvES94pOzsbKSkpaN26tdShEBGRQomevCQkJECj0dg8JjMzE5mZmaKW6y2jjZo1awZAvAUIdUnC7bffLsr1XBUWFoaxY8e67fr16tXD9evX3XZ9IiKSntfU3XtLs9HChQuxcuVKxMXFiXK9Tp06obq6Gk899ZQo13NGly5dPFaWpQ7Azz33nMfKJyIi9/Oa5MVbtG/fHunp6ahfv75o1xTzWkLohkOvWLFCkvLF1qtXL6lDICIieFHyUhdGGynN9OnT0aFDB3Tt2lX0a7syT4yzxGrKIyIi13hN8iKHZqOWLVti0KBBePrppyWLQU4mTpyIP/74w+GaHyEJiY+PD1577TVnQzPzxBNPiHYtIiJyL36VFJG/vz+2bdsmdRiy9Oqrr+Lq1as2j5k4cSJOnjzp8O8wLCzMoeOsdSAPCwvTLwLq5+fn0LWIiEh6TF7II5599lmL2w2HTMfExOCbb75xqUkoPj4en332mdE2w1XKDbVs2dLqPkukaKoiIiJzXtNsxD4vyrRo0SL85z//EW2q/ezsbLNttbW1Fo+dM2eO/md7w/sdPYaIiNzPa5IXOfR5IeG6dOmCGTNmiFKr0bhxY0HLBrijIzEREbkfm41ItpYsWYLdu3c7de4tt9yC06dP49q1a1aPMaxJcaRWhc1GRETy4DU1L+Q9+vbti2effRb//Oc/sXLlSqeuccstt2DmzJniBkZERLLgNTUv3rI8AMHp2hahhNa8EBGRPHhNzQv7vNQ9586dE/2aH374oejXJCIicXlN8kJ1T3l5uUvnN2nSRP+zrualW7duLl2TiIjcj8kL1Vnh4eGiXCciIkLwOY0bNxalbCKiuojJC3mNAQMGOH2urubF1ogizsJLRCQPTF7IK8yfPx+rVq1yaxnWZgl2BjsIExE5j8kLeYW77roLwcHBTp/vSM3LP/7xD4wbN87pMkzLu/XWW0W5lqm0tDS3XJeISC68Jnnh8gDkbvXq1cPy5cvNtjtTi6LRaLBv3z6r+2+77TbB1wSAnj174uOPP3bqXCIipfCa5IVDpeu2yMhIl853pOZFbAEBAUbPfXxu/nccPXq0U9d8//334e/v71JcRERy5zXJC9VdX3zxBZo3by51GIJYqq1JT0+3uZ+IiLSYvBAZ8FTNi1jJSY8ePYyec/0lIqoLmLwQQR41HYYxOJqEmK795GxfGSIiJWHyQmTAmZoLZzvsiq1Vq1ac/I6I6gQmL1Rn9OvXz+o+T9e8uDKhnjVsMiKiuoLJC7nEcH0gb+BIApCamupyOe3atXP5GoD1pMvX11eU6xMRyZHXJC+c50Ua48ePh1qtVvy3fiE1L6tXr8bhw4ddKi8wMNDmfmd+n4bnfPfdd4LPJyJSCq9JXjjPizSaN2+Op556Cg0aNJA6FLscaapxJGkIDAxEly5d9M+FJD4ffPABZs6cienTp9s8ztVmrJYtW7p0PhGRnHlN8kJkT0REBLZs2WJxn6f6vPj4+GDu3LkIDQ0VPQal134RETmqntQBKFHDhg3RoEEDtG7dWupQSKB77rnH5n4mAERE8seaFyf4+fmhoqIChYWFUociG4mJiQCUe/MfMWIEAKBNmzYSR+I8pf7uiYiEYs2Lkziaw9iaNWtw6tQp1KunzLdUSkqKR5qOHC3DmURk3bp1gs8hIlIiZd5pSHaaNWuGZs2aSR2G/qbftm1bj5Uph9l5AaB///5Sh0BE5BFsNiKv0rJlS7zzzjtYsGCB1KFISpfEPfzwwxJHQkQkPta8kFdRqVR48sknpQ7DZY7W5sil1oeIyJNkWfOSlpaG5s2bY/jw4VKHQjKWlpaGvn37onfv3lKH4jBbyYbcExF/f3+pQyAiAiDT5GXy5Mn44IMPpA6DZK5bt27YvXu3xTlTPMkdSYfcRg4lJCTg6tWrUodBRARApslLQkICmjZtKnUYRIonVhLkbWtYEZGyCU5eduzYgdTUVISGhkKlUmHjxo1mx6jVakRERKBBgwaIj4/Hnj17xIiVSBTJycl44YUXJCnb001DYpUnt5ogIqrbBHfYraysRFRUFMaPH49hw4aZ7c/JyUFWVhaWLFmC+Ph4LFq0CMnJyThy5Ih+Rtro6Ghcv37d7NytW7dK3gRA3m/z5s1Sh+B2YicbTF6ISE4EJy8pKSlISUmxuj87OxsTJkzAuHHjAABLlizBpk2bsHz5cv1idAUFBc5Fa0FVVRWqqqr0z8vLy0W7NhFpMXkhIjkRtc9LdXU18vPzkZSUdLMAHx8kJSVh9+7dYhalt2DBAgQGBuof7dq1c0s5RNa8/PLLCA8Pd+hYT4020q3yzfW3iMgbiZq8lJWVoaamBsHBwUbbg4ODUVxc7PB1kpKSMGLECHz11Vdo27atzcRnxowZuHTpkv5RVFTkdPxEzhgzZgxOnjzp1Lnx8fEOHfftt99a3G4t4Wnfvj02btyIl156yeo1hSQ2Y8eOdfhYIiJ3k+Voo23btqG0tBR///03Tp8+jX79+lk91t/fHwEBAVi9ejX69u2LQYMGeTBSImEiIyONno8ePdqh8xISEgSXNWTIEJtzs5w+fRq33nqrQ9caOnSo4PItGTx4sCjXIaK6TdQZdoOCguDr64uSkhKj7SUlJQgJCRGzKDMZGRnIyMhAeXk5AgMD3VoWkTMqKirQuHFjq/vr16/vwWi05fn5+Xm0TFuvn4jIUaLWvPj5+SEmJga5ubn6bbW1tcjNzbVZeyIGtVqNyMhIxMbGurUcImfZu3FnZGTofxarg6yl60yePBlqtVqU6xMRSUFwzUtFRQWOHTumf15YWIiCggK0aNEC4eHhyMrKQnp6Ovr06YO4uDgsWrQIlZWV+tFH7sKaF1K6Dh06eKScKVOm1ImO7f3798euXbukDoOI3EBw8pKXl4fExET986ysLABAeno6Vq5ciVGjRqG0tBSzZs1CcXExoqOjsXnzZrNOvERU93hyyHVWVhaTFyIvJTh5SUhIsDukMzMzE5mZmU4H5Qy1Wg21Wo2amhqPlkvkDlIu0rhgwQLMmDFDsvKJiOyR5WgjZ2RkZODgwYPYu3ev1KGQzOiaY7p06eLQ8a+99poo5f7nP/8R5Tpis7dOkW4ySSIiufKa5IXImv79+6OsrMzhYfRTpkwRpVxXai/c1bzy559/onnz5m65tituu+02qUMgIgXxmuSFo43IlpYtW0odglsIbV4ynbLA081T1pIyZ/4+27ZtczUcIlIor0le2GxESmSYPOim9K+LJk6cKPgcTkhJVHd5TfJC5A6emlRt1apVik5eXB3m7Y7V5CMiIkS/pic8+OCDUodAJHtMXohsOH/+vEfKadiwoVuu66mhyY0aNfJIOUL07t1b6hCc4ulZj4mUyGuSF/Z5IVNxcXEAlPsNnOomJi9E9nlN8sI+L2Tq3nvvxdWrV9G1a1epQ5HtrM9z5851S5ONNdZqgjw5eZ3cybEWi0huvCZ5IbLE1qrKANCmTRu3x9CxY0dcvHhR1Gvu3r0b33//vcvXGT58OM6cOSNCROLo1auX1CFIjokckX1MXqhO++OPP1BRUSF1GHr9+/d3aJK4vn37on///m6LIzw83G3XttQJWtdUkpaWpt/2xx9/uC0GObOXcLvTm2++KVnZREIweaE6rWHDhh4bUeSInTt3YsGCBQ4f7655Wn766ScMGTLELde2pF+/flCr1Zg6dap+m6cWqpSLPn36YMWKFYiOjpYsBrk2bxKZ8prkhR12SYlMkw9dk4HUTQchISF44YUXzLY/+uijLl3XVp+Xp556StHDxV3l7++PsWPHSvq3HzFihGRlEwnhNckLO+ySXDlyMzI9RsqFGXViYmKkDqFO0b0HpPy9+/h4zS2BvBzfqUReTOoaHG/hyHpQYq0Z1bFjR1GuQ+TNmLwQkUcpMaFyZO2ll156yQORuJcS/zZUNzF5IbIgMjJStGs1bdpU8DlyvYnINS57Xn75ZafPve+++xw6rn79+k6XARj/blu3bu3StYi8XT2pAyBxzZw5kx98IhDrJr1y5co6sYDgunXrHJoMUKVSKTYBssdbXxeRHHlN8qJWq6FWq1FTUyN1KJKaO3eu1CGQgfT0dKlDEJW1jsS33XabhyORH3Z2JfIcr/nfxtFGRMogVsdWT3F05JfQEWKmi3Gy5obIcV6TvBApkbUbnqMjTsQaUl1cXCzKdRzx3nvveawsHVd/T3IYuk5ENzF5IbIgJCTEpfO3bdsm6HjTb90jRozwaC1icHCw2775Dx8+3Oh5ixYt3FKO0smh5sXVTsdEnsLkhciCt99+Gy+++KLT68y42knX19cXffr0cekanmLa/GGJri+WHG7Q7uINr439dkgp+E4lsqBr166YNWuW1GG4TMob6jPPPKP/efTo0fqfXW2COXv2LEpKSly6BhEpG5MXInLYhAkTHD528ODBbomhTZs2Lk8HcPz4cfz+++8OHeuu/i662rnQ0FCzfQ8++KBbynREYmKiZGUTOYrJCxEBAIYNG2b3mAEDBphtc6R2R7fgYmhoqCyaV2655RbJp+HXdVxu1aqV2b7s7GxPh6PnydXEiZzlNckLV5Umcs3HH3+MixcvuuXabdu2xVdffYW5c+fC19dX8Pm5ubkuld+tWzeb+++8806Xru8MXe2RrmbHMKkTu+9J27ZtRb0ekdS8JnnhPC9Erqlfvz4CAwNFu55pDUtKSgr8/f2dqnkZOHCgxe2HDh3CV199Zff8Tp062dxvugSAaW2IJ4ZKu7NGSkhzH5ESeE3yQlQX1avn3kmyv/jiC+Tn5xtty8rKQpcuXdxarqNuu+02pKSk6J/PmDEDp06dwunTp126brNmzVw635ERWDqcQ4ZIOK9ZHoBIiVy9ccXExDh87OHDhwVf39KihK+//joGDx6MpKQkm+c2adIEADzalNuiRQu0a9fO5jGmzVZt2rQxO8bw7yJ2cjFlyhRUV1fLou+PJUymSAmYvBDJgLM3MkfP69u3r8drSwIDA1FUVGQ2msbTN+3g4GCPlmfPa6+9JnUIRIrHZiMihXj66aedPvepp54SLxA4noC0bdvWbudT02HPubm52LVrl9lxDz/8sEMjokw5MqOvo7UNtsqXa00KkTdi8kKkEG+88Ybgc1QqFTQaDR555BE3RCSO7du3Gz0fOHAgbr/9drPjPvzwQ3z66acul+dKkuHojMuGc9zYmylZd01XklMiT+vdu7ek5TN5ISK3cDRJsDeM2VWPP/643WNsxerMqtIfffSRvu/NtGnTbJ7n6+sLjUaD+++/36FynCV0yYr58+e7KRIi1zF5ISKPatmypcfK0mg0yMrKEjy3jGnCIrQTq5+fH4KCgpw6113Wrl2L6dOnG23TTR4oxL333itWSEROY/JCRB4VFhaGwsJCj5bZsWNHvPXWWwCAxo0be7RsuQgKCkLXrl2Ntlma3deexx57zOh5XFycS3FZ07x5c7dcl7yD7JKXoqIiJCQkIDIyEj179sS6deukDomIRBYREeGW61qr5VCpVJg0aRI+/PBD7Nmzxy1lextbv0tDltZmEsOGDRvccl3yDrIbKl2vXj0sWrQI0dHRKC4uRkxMDAYPHlxnvy2Rd5NLk0Jd8fDDD7t0fl2oDRD6njRNZo4ePYrOnTu7HIcnmxdJeWRX89KmTRtER0cDAEJCQhAUFIQLFy5IGxSRm3GYrWUjR46UdIVlwPhmvnDhQgkjcZ4zSbKz70l7SzEQiUFw8rJjxw6kpqbqV4fduHGj2TFqtRoRERFo0KAB4uPjna6mzc/PR01Njd0ZM4nIO61duxZr1qxx+HixarKsraVkqQa4sLAQL7/8st1rjhgxQrS114SOTHLm9yJlreC///1vycomx0j9hUtw8lJZWYmoqCio1WqL+3NycpCVlYXZs2dj3759iIqKQnJyMs6dO6c/Jjo6Gt27dzd7nD17Vn/MhQsX8Oijj2Lp0qU246mqqkJ5ebnRg4ikJ8aHm0qlkuRD0trnmyURERF47rnn7N7s+/XrZ3fOF0d99tlnTp3njt+lO5KcO++8k02qMif1PC+C+7ykpKQYLYRmKjs7GxMmTMC4ceMAAEuWLMGmTZuwfPly/TC9goICm2VUVVVh6NChmD59usXJqgwtWLAAL774orAXQUQukfpbl5gsvZb69evj/Pnz+n4XISEhTo+Qio2NRatWreyuBUXKNnXqVLz66qtSh+Exzz77rKTli9rnpbq6Gvn5+Ub/SX18fJCUlITdu3c7dA2NRoOxY8di4MCBDs0KOmPGDFy6dEn/KCoqcjp+InLdHXfcIVnZYn5bN1yxe+PGjfjiiy+cus4tt9yCc+fOoUePHoLO++STT5wqzxKlJZtKixcQPgmg0tlb9sPt5Yt5sbKyMtTU1JgthBYcHIzi4mKHrrFr1y7k5ORg48aNiI6ORnR0NH799Verx/v7+yMgIACrV69G375969wbiEhu3DUMWioajQatW7e2uMK2IdMbrhKaPTzZkVduZZCyyW6o9IABA1BbWyv4vIyMDGRkZKC8vByBgYFuiIyILPGGG01YWJjZNqlfl6fKHz16NNauXevw8bbiMuzbSOROota8BAUFwdfXFyUlJUbbS0pKEBISImZRRF5BCd/O64KRI0c63QlWToYOHaqfSdiQ7n1mKfH4+OOPjZ6npqYCcKz576WXXjJ67syMvd7CmaUWyHmiJi9+fn6IiYlBbm6uflttbS1yc3PRr18/MYsyo1arERkZidjYWLeWQ3WT0P4KQkn9LV9Mtm6UclWvXj23L4zoCWlpaWjSpIlL1+jYsSM0Gg3atGnj0PHuSsCFrkcltTvvvFPqEOoUwclLRUUFCgoK9COGCgsLUVBQgFOnTgEAsrKysGzZMqxatQqHDh3CxIkTUVlZqR995C4ZGRk4ePCgaPMoEOkcP34cO3fulDoMr/Ppp596RW2HDmvRhNMtXgnAbKBH165d8dprr0kRFgCgffv2go5XUrLuDQQnL3l5eejVqxd69eoFQJus9OrVC7NmzQIAjBo1Cq+99hpmzZqF6OhoFBQUYPPmzWadeMXGmhdyl1tuuYX9qNxg2LBhotd2uKMDqlyTkmXLlkkdgsvGjBmj//nNN9/U/3zXXXdBpVJhypQpUoQFAAgPD5esbLJPcIfdhIQEu/+ZMzMzkZmZ6XRQzmCHXSISk9y/SUvRvyQgIEDwOR06dMDx48ct7jMcbuvv7w9A+2VBDk1Gck1aSUt2o42IlOytt95Cw4YNpQ6DFETMm6TQhOvRRx91exlCubt/JHkH2S3MSKRkkyZNwuOPPy51GG4n91oJOdCN2nGWs79jXTL07rvvmm0zvKZGo8H8+fNdiNB1ulnXiYTymuSFfV6I5EFpo43c1TwwZ84cXL582S3XNvTiiy96rGNr06ZNzbY58/sLCgrC888/X6eHVpNrvCZ54WgjUiK2q8tX48aNMXLkSGRnZzt0vOnf0sfHx+Vhy47w9/f3WFPljh07jJ478v7t37+/2bbS0lLJa33cqXPnzlKH4PW8JnkhUjKl1FLIXZcuXUS7lkqlQk5ODrp37y7aNd3NHe+jgQMHAgDWrFmDDh06mDU92XLy5ElJR0VJ9eXAmb5EJIzXJC9sNiKqu3SjVtLS0gSfK/fEUcx+Ic2aNXP4WN2Nv23bttBoNHjooYcElxceHq4fRVSX1IUaVan/33hN8sJmI6qrGjZsiIkTJ0odBrmJ4URuhpy5QQ4ePNjVcMgDPv30U6lDkD0OlSZSuLNnz1rsSEnK5urkeZaad8T4tiz1N25rfv31V7cv4+EpHTp0kDoE2fOamheiuqpZs2aymNSLxJWamopp06Zh4sSJdpNTdzZT2EtWdLOtS01JfZPsEdK8V1ex5oWIRCXFUGmxylqxYoVsJhmsX78+XnnlFQDA4cOHcfToUSQmJlo81vB3bpjIdOzYEceOHRO1I7OpF154AUePHuXChCKKiIhw6rx9+/ahd+/e4gYjU16TvKjVaqjVatTU1EgdChEp1NixY50+1521H6GhoQgNDRV8XmJiIo4dO4aoqCg3RKXl6+uLjz76yG3XN/T66697bL0jVzoa14UOu1LzmmYjdtgl8hy59nuoi+rS36Jly5aoX7++oHM2b97sVFkNGjTA2bNnnTqXyYv7eU3yQqRE3vAhp/Sbp9LjB7zjfSS2d955BwCQnJyM8ePH48MPP9TvCwoKwvbt242Ob9SokdFzlUqFNm3auD9QcgqTFyIZ8IYbKEnP9H303HPPISEhAZ06dRKtDE/MGiwGw9f8/vvv4+GHHwag7QxbWlpqdvw999wDAMjKyjLaHhkZ6cYoyVlMXoiIFMxW4nvrrbfi22+/Neq/sWbNGpcmvktMTMQjjzwCQNwanxYtWgAA7r77bpevFRwcjJiYGIv7dL8La7H7+fkZPf/tt99cjkcIfpFxDJMXIhKVFKONOC+GluHv3Nrv/6GHHsKCBQvsXsvazV2lUjk12649zZs3x5UrV+x2mv73v/9tti0vLw8AcObMGRQXF6O4uNjicONly5aZrc9kSoyEzNI1mjZtyuY9EXlN8sLlAYjqrh07duC7777zaJljxozR96uQmuFNUck3yAYNGtg95oknnjDbpqtlCQ0NRXBwsNVzH3/8cauLJsqlxiMsLMzjZSpxeLXXDJXOyMhARkYGysvLERgYKHU4RORBISEhCAkJ8WiZq1evNnrerl07j5ZviTtuwHK5qet4qhOtK0mgK+fu3r3b6XOd9fXXX9tM+uTIa2peiIikxHWDSAxt27b1eJl+fn76PkdKweSFiOqs5557Dp999pnUYVAdIPfmvKKiIpSXl0sdhsO8ptmISInk/oHmiMWLF0sdgtNefvllqUMQhTe8jzzN3mR3rjSXya2pzRGm89zIHWteiGRAaR92uninTZuG9PR0o31paWkAtBOBkWc5MtqItAYMGGBxuxi/N2udgr2J1O8v1rwQkahGjBjBmgABwsPD3XJdqW8ucmf6+xHz96W0370S/78yeSEikkhubq7o0zso8UbkbZT2N2jevLnUIQjGZiMiIokMHDgQTZs2lToMwfr06QMfHx+MHDnS4v7du3fj/fff93BU4rCXeAhdGFJsmzZtsrrPHTU+d955p+jXFIPX1Lyo1Wqo1WrU1NRIHQoRkdu5e2I6W9cMCgqy+Vnbt29f9O3bV/SYyHPz3Oj4+vp6tDxHeU3NS0ZGBg4ePIi9e/dKHQoRkSRUKpXoiYzS+m84y5HXOW7cOGzYsMED0ZA9XlPzQkRE5E7Lly+XOgTR/f7771KH4BSvqXkhUiKldewj+akrNSOeZuv3KtXEhq1atRL9mh07drS5X67LBjB5IZIBpd6A6mry5efnJ3UIRurq30FMd955J5o3b44HHnjA7rHW1tHSrW5u6+/h7P/1yspKnDp1yu5xR44ccer61ugWvZQbJi9ERAKUl5fj/PnzUodhkRImqVu4cKHUIeidPn1av0p169atceHCBdxyyy1OX69Zs2Z2j6moqHDq2o0aNXJo1e26MEEewD4vROQEud4YPUHuQ5vlXAsTHR2NqVOnSh2GXlhYGLp27Wpxn7t+j0qbhl+uWPNCRER0gyNJS11K3uX6Wpm8EJEofHx80KRJE6nDkFxkZKTHy5RzbYshpcTpDnJ47f379xd8jhzitkR2ycvFixfRp08fREdHo3v37li2bJnUIRGRA8rLy1FSUiJ1GJI6cOAAdu7cKVn5Yn5L1vWvsNY51VvoOl/rZs6Va02DjivJRI8ePUSMRFqy6/PStGlT7NixA40aNUJlZSW6d++OYcOGoWXLllKHRkQ2NG7cWOoQJNetWzepQxBNREQEvvzyS9x9991Sh+JWjz/+OCoqKjB06FDRrunO/wtyrQnxNNklL76+vvoOTVVVVdBoNPxjERFJ4B//+IfUIVgk5kzCfn5+mDZtmsUynHX//fe7EhI5QHCz0Y4dO5CamorQ0FCoVCps3LjR7Bi1Wo2IiAg0aNAA8fHx2LNnj6AyLl68iKioKLRt2xZTp05FUFCQ0DCJFMHeB3BWVhZWr17toWiIlOH8+fMoKyuTOgwzuv/Pcm96EoPUr1Fw8lJZWYmoqCio1WqL+3NycpCVlYXZs2dj3759iIqKQnJyMs6dO6c/RtefxfRx9uxZANqx8vv370dhYSE++ugjm+3oVVVVKC8vN3oQKY21D4LXX38dY8aM8XA0pDSWFmkUcnMJDw8XPSZ3at68uSy7Elj6MjJhwgQJIvF+gpuNUlJSkJKSYnV/dnY2JkyYgHHjxgEAlixZgk2bNmH58uWYPn06AKCgoMChsoKDgxEVFYWdO3di+PDhFo9ZsGABXnzxRWEvgojICzn7bfjnn3/GxYsXxQ3GgtatW7u9DLlZunSpbAaeBAYGSh2CaEQdbVRdXY38/HwkJSXdLMDHB0lJSdi9e7dD1ygpKcHly5cBAJcuXcKOHTvQpUsXq8fPmDEDly5d0j+KiopcexFEZJduSHS7du0kjoTE0KJFC/3U9u708ccfu70Msm727Nn6n0eMGIFXX31VwmhcI2qH3bKyMtTU1Jgt5BQcHIzDhw87dI2TJ0/iiSee0HfUnTRpks3hXf7+/vD394darYZarUZNTY1Lr4GI7IuOjsann36KwYMHSx0KKUTv3r1l2dRjSmkDRLp27Yo77rgDS5cutXmcSqVCw4YN9c8/+eQTd4fmVrIbbRQXF+dws5KhjIwMZGRkoLy83KuqxojkSKVSYdiwYVKHQTco7YbrbVatWiVZ2T169JC886wURE1egoKC4Ovra9bBtqSkxOsnOiIikppcb2IzZ87EI488InUYbhETE4NHH31U6jAclpeXhx9//FHqMFwmap8XPz8/xMTEIDc3V7+ttrYWubm56Nevn5hFmVGr1YiMjERsbKxbyyEikoNWrVoB0C4uKHdz585V3GrHck0EXRUTE4OMjAypw3CZ4OSloqICBQUF+qadwsJCFBQU4NSpUwC081IsW7YMq1atwqFDhzBx4kRUVlbqRx+5S0ZGBg4ePIi9e/e6tRwiMbG6n5x1xx13YNeuXRg9erTR9ro014g7mf7fZDOpvAhuNsrLy0NiYqL+eVZWFgAgPT0dK1euxKhRo1BaWopZs2ahuLgY0dHR2Lx5s1knXiK6iTcacsbtt98OAPqRQmFhYV69vlS9etJ006yuroavr6/+uSP/X+vXr4/MzEz9c35REZfgd0JCQoLdP0JmZqbRH80TONqIiOqqYcOG4cCBA+jWrRv27dsndTiiCwoKwpQpUzBq1CizfWKvZG4pMdEt2mjveMN7Y3V1tahxSUWuX6xkt6q0s9hsRER1mTctCmnKz88P06dPl6zmRanef/999O3bF4D31fx4TfJCRETeSa7f/uVu/PjxaNCggdRhuIXXJC8cbURERK7ythoKb+U1yQubjYiIyFu8+eabDh1nqVbq/PnzRosheyM2IBIREZmQuqnKlfJbtGghYiSWSf378ZqaFyIlCg8PB3BzwjEiV3GeF+mwyclzvCZ5YZ8XUqJHHnkEP/74I9+3RCR7U6dOtThcXQpek7ywzwspkUqlQnx8vNRhEJHMyLHm7O6774aPjzzSBnlEQURERKKTYxIkBiYvRESkWE2bNpU6BMnpli7w1kTFEq8ZbcTlAYiIvFPLli0tbl+zZo3kza7WlgfwpHnz5qFVq1bo2bOnJOVLwWuSl4yMDGRkZKC8vByBgYFSh0NERCJYt24d+vXrZ3HfQw89JHp5zZo1Q5MmTfD0009bPaZz585QqVSyGV3UvHlzzJkzR+owPIrNRkREXqR79+4AgNtuu03iSMQxfPhwhIWFeay8+vXr4/Lly0hMTLR6TEBAAGprawVdt3///lb39e7dW9C13Ck1NdXqPjm9p5i8EBF5kTvvvBPnz59HXFyc1KHQDX/88Qc2bNhgdX9+fr4Ho7Ht888/x7x58wAAPj4+GDt2LDp16gQAaNeunZShGfGaZiMiIm/3yiuvOHQD8cQMq+S4Dh06SB2CUzZu3Gi1v5HUmLwQESnEtGnTpA6BFOadd97BbbfdBj8/P6evIcdRTF6TvHC0EdUF8+fPx+nTp6UOg4jcTKyEoUuXLqJeTy68JnnhaCOqC55//nmpQyAiBRKSvMhlFJUt7LBLRESkEJ5MLORcW8PkhYiIiBwil1oZJi9EREQisDaZniMGDRqE+vXrixiNe0ldK8PkhYiIyEmGN/G3334bJ06ccOo627ZtQ3V1tUhReT8mL0RERCLw8/ND+/btpQ6jTmDyQkREJDOtW7eWOgRZY/JCREQkM47ObNutWzc3RyJPXpO8qNVqREZGIjY2VupQiIiIXHLHHXdgwoQJCAgIsHrMr7/+6pG5nxYuXCirRRkBL0peMjIycPDgQezdu1fqUIiIiFxSv359LF261GYNTPfu3eHr6+v2WIYMGYJDhw65vRwhvCZ5ISIiorqByQsREREpCpMXIiIiUhQmL0RERDI1d+5cBAUFebTMMWPGoGPHjujfv79HyxWCyQsREZGT3D1N/sMPP4zS0lK3lmEqIiICv//+O5o3b+7RcoVg8kJERESKwuSFiIiIFEW2ycvff/+N9u3b49lnn5U6FCIiIpIR2SYv8+fPR9++faUOg4iISHYmTZokSbkajUaSck3JMnn5/fffcfjwYaSkpEgdChERuZmcO4aSZe7uqGyP4ORlx44dSE1NRWhoKFQqFTZu3Gh2jFqtRkREBBo0aID4+Hjs2bNHUBnPPvssFixYIDQ0IiJSmNLSUpw4cULqMEhhBCcvlZWViIqKglqttrg/JycHWVlZmD17Nvbt24eoqCgkJyfj3Llz+mOio6PRvXt3s8fZs2fx2WefoXPnzujcubPzr4qIiBQhKCjI5uKDRJbUE3pCSkqKzeac7OxsTJgwAePGjQMALFmyBJs2bcLy5csxffp0AEBBQYHV83/88UesXbsW69atQ0VFBa5du4aAgADMmjXL4vFVVVWoqqrSPy8vLxf6koiIiEhBRO3zUl1djfz8fCQlJd0swMcHSUlJ2L17t0PXWLBgAYqKinDixAm89tprmDBhgtXERXd8YGCg/tGuXTuXXwcRERHJl6jJS1lZGWpqahAcHGy0PTg4GMXFxWIWpTdjxgxcunRJ/ygqKnJLOURERKb8/f2lDqFOEtxs5Eljx461e4y/vz/8/f2hVquhVqtRU1Pj/sCIiKjOe/PNN/HAAw9IHUadJGrNS1BQEHx9fVFSUmK0vaSkBCEhIWIWZSYjIwMHDx7E3r173VoOERERAPzrX/9CWFiY1GHUSaImL35+foiJiUFubq5+W21tLXJzc9GvXz8xizKjVqsRGRmJ2NhYt5ZDRERE0hLcbFRRUYFjx47pnxcWFqKgoAAtWrRAeHg4srKykJ6ejj59+iAuLg6LFi1CZWWlfvSRu2RkZCAjIwPl5eUIDAx0a1lEREQkHcHJS15eHhITE/XPs7KyAADp6elYuXIlRo0ahdLSUsyaNQvFxcWIjo7G5s2bzTrxEhERETlDcPKSkJBgd22DzMxMZGZmOh2UM9hhl4iIqG6Q5dpGzmCHXSIiorrBa5IXIiIib6ebiPXee++VOBJpyXqeFyHYbERERN4uODjYbteNusBral7YbERERORegwYNAgDJR/V6TfJCREREljVu3FiU6zz++OOoqKiQPHnxmmYjIiIiMrd69WrEx8eLci2VSiVaIuQKr0le2OeFiIjI3JgxY6QOQXQqjZf1/NHNsHvp0iUEBARIHQ4REZERlUpl9NzLbsNOE3L/Zp8XIiIiUhQmL0RERKQoXtPnhYiISElOnToFf39/qcNQJK9JXthhl4iIlEQ3Wy4Jxw67REREHqTrsOtlt1+XscMuEREReS0mL0RERKQoTF6IiIhIUZi8EBERkaJ4TfKiVqsRGRmJ2NhYqUMhIiIiN+JoIyIiIg/iaCPLONqIiIiIvBaTFyIiIlIUJi9ERESkKExeiIiISFGYvBAREZGiMHkhIiIiRfGa5IXzvBAREdUNnOeFiIjIgzjPi2Wc54WIiIi8Vj2pAyAiIqpLcnNz0bhxY6nDUDQmL0RERB40cOBAqUNQPDYbERERkaIweSEiIiJFYfJCREREisLkhYiIiBSFyQsREREpiixHG0VERCAgIAA+Pj5o3rw5vv32W6lDIiIiIpmQZfICAD/88AOaNGkidRhEREQkM2w2IiIiIkURnLzs2LEDqampCA0NhUqlwsaNG82OUavViIiIQIMGDRAfH489e/YIKkOlUuGuu+5CbGws1qxZIzREIiIi8mKCm40qKysRFRWF8ePHY9iwYWb7c3JykJWVhSVLliA+Ph6LFi1CcnIyjhw5gtatWwMAoqOjcf36dbNzt27ditDQUHz//fcICwvDn3/+iaSkJPTo0QM9e/a0GE9VVRWqqqr0z8vLy4W+JCIiIlIQl1aVVqlU2LBhA4YOHarfFh8fj9jYWCxevBgAUFtbi3bt2mHSpEmYPn264DKmTp2Kbt26YezYsRb3z5kzBy+++KLZdq4qTUREpBySrSpdXV2N/Px8JCUl3SzAxwdJSUnYvXu3Q9eorKzE5cuXAQAVFRXYvn07unXrZvX4GTNm4NKlS/pHUVGRay+CiIiIZE3U0UZlZWWoqalBcHCw0fbg4GAcPnzYoWuUlJQgLS0NAFBTU4MJEyYgNjbW6vH+/v7w9/eHWq2GWq1GTU2N8y+AiIiIZE92Q6U7dOiA/fv3Cz4vIyMDGRkZ+monIiIi8k6iJi9BQUHw9fVFSUmJ0faSkhKEhISIWZRVui487LhLRESkHLr7tiNdcUVNXvz8/BATE4Pc3Fx9J97a2lrk5uYiMzNTzKLM6JqNqqurAQDt2rVza3lEREQkvsuXL9ttQRGcvFRUVODYsWP654WFhSgoKECLFi0QHh6OrKwspKeno0+fPoiLi8OiRYtQWVmJcePGCX8FAuiajWpra3H27Fk0bdoUKpXK4rGxsbHYu3ev1WtZ219eXo527dqhqKhIUSOZ7L1eOZbjyrWEnuvo8Y4cZ+sYvq/kUZaz1+L7ynPq0meWXN9Xtva7672l0Whw+fJlhIaG2j1WcPKSl5eHxMRE/fOsrCwAQHp6OlauXIlRo0ahtLQUs2bNQnFxMaKjo7F582azTrzu4uPjg7Zt29o8xtfX1+Yv3N7+gIAARX0Y2Hs9cizHlWsJPdfR4x05ztYxfF/Joyxnr8X3lefUpc8sub6vHNnvjveWo31WBScvCQkJdtujMjMz3d5M5IqMjAyX9iuNp16PmOW4ci2h5zp6vCPH2TqG7yt5lOXstfi+8py69Jkl1/eVkLKk4NIkdXWNkAl0iBzF9xW5A99X5C5yeG9xYUYB/P39MXv2bPj7+0sdCnkRvq/IHfi+IneRw3uLNS9ERESkKKx5ISIiIkVh8kJERESKwuSFiIiIFIXJCxERESkKkxciIiJSFCYvIvnyyy/RpUsXdOrUCe+9957U4ZAXSUtLQ/PmzTF8+HCpQyEvUVRUhISEBERGRqJnz55Yt26d1CGRF7h48SL69OmD6OhodO/eHcuWLXNbWRwqLYLr168jMjIS3377LQIDAxETE4MffvgBLVu2lDo08gLfffcdLl++jFWrVmH9+vVSh0Ne4M8//0RJSQmio6NRXFyMmJgYHD16FI0bN5Y6NFKwmpoaVFVVoVGjRqisrET37t2Rl5fnlnsha15EsGfPHnTr1g1hYWFo0qQJUlJSsHXrVqnDIi+RkJCApk2bSh0GeZE2bdogOjoaABASEoKgoCBcuHBB2qBI8Xx9fdGoUSMAQFVVFTQajd3lhJzF5AXAjh07kJqaitDQUKhUKmzcuNHsGLVajYiICDRo0ADx8fHYs2ePft/Zs2cRFhamfx4WFoYzZ854InSSOVffW0SWiPm+ys/PR01NDdq1a+fmqEnuxHhfXbx4EVFRUWjbti2mTp2KoKAgt8TK5AVAZWUloqKioFarLe7PyclBVlYWZs+ejX379iEqKgrJyck4d+6chyMlpeF7i9xBrPfVhQsX8Oijj2Lp0qWeCJtkToz3VbNmzbB//34UFhbio48+QklJiXuC1ZARAJoNGzYYbYuLi9NkZGTon9fU1GhCQ0M1CxYs0Gg0Gs2uXbs0Q4cO1e+fPHmyZs2aNR6Jl5TDmfeWzrfffqt54IEHPBEmKYyz76urV69q7rjjDs0HH3zgqVBJQVz5vNKZOHGiZt26dW6JjzUvdlRXVyM/Px9JSUn6bT4+PkhKSsLu3bsBAHFxcThw4ADOnDmDiooKfP3110hOTpYqZFIIR95bREI58r7SaDQYO3YsBg4ciEceeUSqUElBHHlflZSU4PLlywCAS5cuYceOHejSpYtb4qnnlqt6kbKyMtTU1CA4ONhoe3BwMA4fPgwAqFevHl5//XUkJiaitrYW06ZN40gjssuR9xYAJCUlYf/+/aisrETbtm2xbt069OvXz9PhkkI48r7atWsXcnJy0LNnT32/htWrV6NHjx6eDpcUwpH31cmTJ/HEE0/oO+pOmjTJbe8pJi8iuf/++3H//fdLHQZ5oW3btkkdAnmZAQMGoLa2VuowyMvExcWhoKDAI2Wx2ciOoKAg+Pr6mnU6KikpQUhIiERRkTfge4vcge8rcge5va+YvNjh5+eHmJgY5Obm6rfV1tYiNzeXVffkEr63yB34viJ3kNv7is1GACoqKnDs2DH988LCQhQUFKBFixYIDw9HVlYW0tPT0adPH8TFxWHRokWorKzEuHHjJIyalIDvLXIHvq/IHRT1vnLLGCaF+fbbbzUAzB7p6en6Y95++21NeHi4xs/PTxMXF6f58ccfpQuYFIPvLXIHvq/IHZT0vuLaRkRERKQo7PNCREREisLkhYiIiBSFyQsREREpCpMXIiIiUhQmL0RERKQoTF6IiIhIUZi8EBERkaIweSEiIiJFYfJCREREisLkhYiIiBSFyQsREREpCpMXIiIiUpT/B12IrYrk81tWAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(400)\n", + "nlor = 3\n", + "\n", + "x_0_0 = 0.5\n", + "x_0_1 = 2.0\n", + "x_0_2 = 7.5\n", + "\n", + "amplitude_0 = 150.0\n", + "amplitude_1 = 50.0\n", + "amplitude_2 = 15.0\n", + "\n", + "fwhm_0 = 0.1\n", + "fwhm_1 = 1.0\n", + "fwhm_2 = 0.5\n", + "\n", + "whitenoise = 2.0\n", + "\n", + "model = models.Lorentz1D(amplitude_0, x_0_0, fwhm_0) + \\\n", + " models.Lorentz1D(amplitude_1, x_0_1, fwhm_1) + \\\n", + " models.Lorentz1D(amplitude_2, x_0_2, fwhm_2) + \\\n", + " models.Const1D(whitenoise)\n", + "\n", + "p = model(ps.freq)\n", + "noise = np.random.exponential(size=len(ps.freq))\n", + "\n", + "power = p*noise\n", + "\n", + "plt.figure()\n", + "plt.loglog(ps.freq, power, lw=1, ds=\"steps-mid\", c=\"black\")\n", + "plt.loglog(ps.freq, p, lw=3, color=\"red\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's make this into a `Powerspectrum` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": {}, + "outputs": [], + "source": [ + "import copy" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new = copy.copy(ps)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": {}, + "outputs": [], + "source": [ + "ps_new.power = power" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "So now we can fit this model with our new function, but first, we need to define the starting parameters for our fit. The starting parameters will be `[amplitude, x_0, fwhm]` for each component plus the white noise component at the end:" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [], + "source": [ + "t0 = [150, 0.4, 0.2, 50, 2.3, 0.6, 20, 8.0, 0.4, 2.1]\n", + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's look at the output:" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.48980332e+02, 1.02031369e+00, -2.04742273e-04, 4.70694020e+01,\n", + " 1.90076129e+00, 1.08562751e+00, 1.35701826e+01, 7.50135744e+00,\n", + " 5.44356694e-01, 1.99448241e+00])" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Cool, that seems to work! For convenience `PSDParEst` also has a plotting function:" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABDgAAAKuCAYAAABE/6zrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1gUVxcG8HcBQQFBFAURRWPvJXZNBGKPGo0t+ew11lhijd0YSyyxEXs0xhp7jF3sJRZsWLAgKhasIFXqfH/gTnZhextY3t/z+Lg79ezu7LBz5t5zZYIgCCAiIiIiIiIiysZspA6AiIiIiIiIiMhYTHAQERERERERUbbHBAcRERERERERZXtMcBARERERERFRtscEBxERERERERFle0xwEBEREREREVG2xwQHEREREREREWV7THAQERERERERUbbHBAcRERERERERZXtMcBARqdCzZ0/IZDL07NnT4vtet24dZDIZihcvbvF9U9Z34sQJyGQyyGQyg7fx999/w9/fH25ubrCxsYFMJsPw4cMBAFOnToVMJoOvr69pAjah1NRULFiwANWrV4eTk5P4PuzevVvq0PTy6NEjMfZHjx5JHQ595OvrC5lMhqlTp0odilXh3zQisiQ7qQMgopxp6tSpmDZtWqbpDg4OcHd3R40aNdC1a1d07NjRqAs5IlK2Y8cOdOjQAQBga2sLd3d32NjYwMXFReu6u3fvxrVr11CtWjW0bdvWzJFmNnz4cCxduhQAYG9vDw8PDwBA7ty5LR5LVhQVFYWFCxcCSH+v8uXLJ2k8liL1cWkNTpw4gRMnTqB48eKSJPazi4ULFyIqKgpt27ZFtWrVpA5HxO8A0X/YgoOIJOfh4SH+k8lkePbsGfbu3YvOnTvjyy+/RGJiosVjKly4MMqWLYvChQtbfN9E5jR37lwAQPv27REdHY1Xr14hIiIC06dPBwC4u7ujbNmyKFasWKZ1d+/ejWnTpknSYiImJgYrVqwAAPzyyy/48OEDIiIiEBERgebNm1s8nqwoKioK06ZNw7Rp0xAVFSV1OBYj5XFpLU6cOIFp06Zh3bp1Jt+2q6srypYti5IlS5p825a2cOFCTJs2DdeuXZM6FCX8DhD9hwkOIpKc/CIlIiICcXFxuHnzJpo0aQIAOHDgACZOnGjxmGbNmoWQkBDMmjXL4vsmMqfg4GAA6d2wHB0dM80fMmQIQkJCsH79ekuHplFISAiSk5MBAAMHDmTLLqJsol27dggJCUFgYKDUoRBRDsAEBxFlKTY2NqhYsSL+/vtvlCpVCgCwYsUKpKSkSBwZkXWIj48HADg7O0sciX7kcQPZL3YiIiKyDCY4iChLyp07Nzp27AggvWl6SEiI0vyYmBjMnj0b9erVQ/78+eHg4ICiRYvim2++wfnz51VuM2Nhv9DQUPTv3x8lSpSAg4ODUgE0XYqMnjhxAh07dkSRIkXE2iFffPEF1q5di9TUVI2v799//0Xbtm3h7u6OPHnyoGzZspgwYQJiY2N1en+uXr2K7t27w8fHB7lz54abmxvq16+PhQsXau3SExwcjM6dO8PT0xO5c+fGJ598gqFDh+LVq1caC1hmLD65Y8cONG3aFIUKFYKNjY1SYb6bN29i6tSp8Pf3R8mSJZEnTx64uLigevXqmDhxIt68eaM2vuLFi0Mmk2HdunWIj4/H1KlTUb58eTg6OsLLywvdunVDWFiYuPybN28wduxYlClTBnny5IGnpyf69u2Lly9f6vReZpScnIy///4b/fv3R82aNVG4cGHY29ujUKFCaNasGTZv3gxBEFSum/H9e/DgAXr37o2iRYvCwcEB3t7e6NevH549e6YxhpCQEHTp0iXTZ2Toa1I89uX8/PzEaYrTVRUZlb+uP/74AwDwxx9/KK0rk8lw4sQJcfmUlBSsXLkSvr6+cHd3R65cuVCgQAGULVsWnTt3xpo1a3SOXV6gUDEexf2qKoa6c+dOtGrVCh4eHmKtjlatWmHXrl1q96P4nRcEAatXr0bDhg1RoEAB8XjUx7Nnz/Ddd98pffa9evXCgwcPNK6XlpaGwMBAfP/996hbty68vb1hb2+PAgUKoFGjRli+fLnYkkWRr68vSpQoIT4vUaKE2vfJ0H3oKjIyEpMnT0aNGjXg4uICe3t7eHp6okqVKhgwYIDGO/lnz55F165dxXObq6srateujTlz5mQ6P+p7XJqCJY6tR48eYfjw4ahYsSKcnZ3h6OiIcuXKYdiwYXjy5InKfWQs5BkUFIROnTqhcOHCcHBwwCeffIKRI0ciMjIy075kMplYE+vkyZOZ3kN5fPJzgy7/FIvnaioymhXOt7qQv/bHjx8DAHr16pXpNauyb98+tG/fXvyd4Obmhs8//xzLli1DUlKS2v1t3boVLVq0gIeHB3LlyoV8+fKhdOnSaNOmDQICAvDhwwel98CS3wGiLE8gIpLAlClTBACCptNQQECAuMzZs2fF6VevXhW8vb3Feba2tkLevHnF5zKZTJg5c2am7YWFhYnLbNy4UXB2dhYACI6OjoKTk5Pg4+MjLtujRw8BgNCjRw+VsY0YMUJpf/ny5RNsbW3Faf7+/kJ0dLTKddesWSPY2NiIy7q6ugr29vYCAKFcuXLCggULBABK8ShasGCBIJPJlNbPlSuX+LxKlSrC8+fPVa67c+dOpWWdnZ2F3LlzCwCEwoULC2vXrlX7ucg/s0aNGgkjR44UX7ubm5tga2srTJkyRVzWx8dH3E7u3LmF/PnzK8VcpEgRISQkRGWM8nUXLlwoVK5cWdxGnjx5xPULFy4shIWFCaGhoUKJEiXEz1H+PgIQSpcuLbx//17lPjQ5fvy4uA0AgouLi9LxBUDo2LGjkJqaqnHdY8eOicdY3rx5BTs7O3Gel5eX8PTpU5X7P3DggODg4KD2M/r999+1fncyevLkieDh4SF4eHiI67q5uYnTPDw8xGUVP2e5s2fPCh4eHmIcuXPnVlrXw8ND/I6mpKQITZo0UXq/XF1dlV6TPrFv2bJF8PDwENzc3MR1Fffbrl07cdnExEShc+fO4nI2NjaCm5ub0vft22+/FZKSkjLtR/6d7969u9C+fftM669du1bnmIOCgpTizZMnj3gsuLi4CFu3bhXnhYWFKa2reJ6Sf/6urq5K0z777DMhPj5eab127doJ7u7u4jLu7u5q3ydD96GL8PBwoVixYpk+A8Xzo+KxJZeamip8//33meJSXK9s2bLCo0ePxHX0OS510ahRIwGA0rlMzlLH1oYNG5S+Kw4ODkrnvrx58wqHDh3KtA/5udvHx0fYuHGjeJ53dXVVirFixYpCTEyMuJ783ODk5CQAEHLlypXpPdyyZYsgCIIwd+7cTPMU/ymeJxWPa8XYMpL6fKsr+WuXv5cuLi6ZXr+i+Ph4oUOHDplem+Lfwbp16wrv3r3LtK9evXpl+h44OjoqTZO/v6b+DhBZAyY4iEgSuiQ4Ro8eLS5z584dQRAE4fnz50KhQoUEAMLXX38tXL58WfxB+fLlS2HSpEniD5tdu3YpbU/xR72zs7NQp04d4dKlS+L8u3fvio81JTiWLFkibqd///7CixcvBEEQhNjYWOHXX38V99+5c+dM6wYFBYnzfX19xdeVlJQkbN68WciXL5+QL18+tT8G9+7dK+77q6++Eh4+fCgIQvqP7/Xr14s/DOvXry+kpKQorRsaGir+SKpRo4Zw+fJlQRAEIS0tTThy5Ijg4+OjdFGWkfwzk/+IHDt2rPDq1StBEAThw4cPShce3bt3F9atWyc8fvxYnJaYmCgcPXpUqF27thiDKvIER758+YTixYsLhw8fFlJTU4WUlBTh8OHDQsGCBQUAQqdOnYTatWsL1apVE86fPy++j1u3bhVf54QJE1TuQ5MLFy4I3333nXDkyBGlBMnbt2+FRYsWCS4uLgIAYdGiRZnWVfzB7ebmJrRp00b8jBMTE4WtW7eKn1G3bt0yrR8eHi5uv0qVKsKFCxcEQUi/+Dtw4IDg7e0tHh/6JAkUydc9fvy4yvmqEhxy2hJ/giAIf/75p/hDe/Xq1eLFVFpamvDy5Uth586dQocOHfSOW/G9VeeHH34QgPTE26RJk4TIyEhBEATh3bt3wo8//iiuP3bsWLWvzdnZWbCzsxPmzZsnfv4xMTFqk4YZRUdHixf4xYoVEw4fPiykpaUJgiAI586dEypWrKj0GWZMcISHhwtdunQR/v77b+Ht27fi9JiYGGHt2rWCl5eXAEAYMWJEpn0rnuMybtdU+9CmT58+AgChePHiwtGjR8XzUEpKivDo0SNh2bJlKt//iRMnCgCEQoUKCQEBAWJcSUlJwvHjx4Xq1auL542MF7u6HJe60JTgsMSxdfjwYcHGxkaws7MTxowZI4SFhQlpaWlCWlqaEBISInTs2FG8UFY8twrCf0kER0dHwcHBQejbt6/w5MkTQRAEIS4uTli6dKmY9Jg0aVKmGDV973URGRkplC9fXvyMPnz4kCk2VX/TpDzfGkL+90lbwrNr164CAOGTTz4RNm7cKL62hIQEYc+ePcInn3wiABDatm2rtN7p06fFBNicOXOUvp9v3rwRDh06JPTo0UN49uyZ0nqm+g4QWQMmOIhIEtoSHO/fvxd/ZOfPn1/8Qdu7d28BgPC///1P7bblLSCqVq2qNF3xx7+Pj4/SXayM1P1YiI+PF/Lnzy/erVNl8eLF4n7kSQS5Fi1aCACEMmXKqLw7evDgQaUYM5L/gPzss88yJTAEQRD+/vtvcf1t27YpzZNfeBQqVEjpR5NcSEiI0p3DjBQ/s5EjR6p87bqIiYkRWxKcPn0603z5D8g8efII9+/fzzR/zZo1YhweHh7CmzdvMi0zadIkAYBQsmRJg+NUZ9u2bWq3rfiD28/PT+VdR/nxkSdPHiE5OVlp3sCBAwUAQoECBYSXL19mWjc4OFipBY4hzJ3gkL+G/v37GxSfOtoSHE+fPhWTh+PHj1e5jLzlUa5cuTIlLOSvDYCwePFig+OcM2eOAECwt7cXbt++nWn+ixcvlBKJmhIRqly6dEkAIDg5OQkJCQlK83RNcBizD23k56hNmzbpvE5YWJhga2sr5MmTR7h27ZrKZaKjo8WWexmT1+ZOcFji2EpNTRVKly4tABBWrFihNsY2bdoIAIRhw4YpTVdsfafufZDHWKpUqUzzjElwJCcnC1988YUApLfOy9haQlOCQxtznm8NoUuC49SpU+LfWnmSKaPw8HCx1czVq1fF6fLzR9OmTfWKiwkOov+wBgcRZSlRUVEIDAyEv78/nj9/DgAYNmwYbGxs8OHDB2zatAkAMHbsWLXb6N69OwDg+vXramsWDBkyxKBChUeOHMG7d+8AQKnmhKJBgwaJw8vK4wXSX9uhQ4cAAKNHj0aePHkyrdusWTPUq1dP5XZv3LiBO3fuAAAmTpwIW1vbTMu0bt0atWvXBgBs3rxZnC4IAnbs2AEgfQSK/PnzZ1q3bNmy6NSpk8p9K7KxsdH4/mvj7OyMRo0aAQDOnDmjdrn27duLhWYVNWvWTHzcv39/FChQQO0yoaGhiIuLMzhWVb788ktx2xEREWqX+/HHH2Fjk/nP7FdffQUASEhIwP3798XpgiBg69atAIABAwagUKFCmdatVKkSOnToYFT85pYvXz4A0PjemMOOHTuQkpKC3LlzY9y4cSqXmThxIhwcHJCcnIzt27erXMbNzQ3fffedwXFs2bIFANCxY0eUL18+03xPT08MGDDA4O3XrFkThQoVQlxcnNmGqjRmH/LP/8WLFzqvs27dOqSmpqJ58+aoWrWqymXy5s2Ltm3bAoB4HrUUSxxbp06dwv379+Hu7o6+ffuqjUX+903Te6Bu5DH5uefBgwdKRXuNNXDgQAQGBsLJyQl79+5FkSJFTLZtc51vzUleY6hLly4oWrSoymW8vb3h5+cHQPmzlH9/Xr9+rbWWFxGpxgQHEUlOsRiWm5sbGjdujKCgIABA165dMWHCBADpRdPkhbWaNm0KT09Plf8qVqwoblteECyjBg0aGBTr5cuXAQBFixZFmTJlVC5ja2sLf39/peUB4MqVK0hLSwMAcb4q6ubJt2VnZycmCFSRD7GruO+HDx8iKioKADSuq6pgY0alSpVSefGd0T///IPOnTvjk08+gZOTk9Ln/NdffwEAnj59qnZ9eaImIw8PD/FxrVq1tC4jf936iImJwdy5c9GoUSMUKlQI9vb2YuyKQ6tqir9OnToqp3t5eYmP5ckyAAgLCxOfG3J8ZBUtW7aETCbD33//jRYtWmDz5s1istKc5Md7rVq14OLionIZNzc31KxZU2n5jGrVqgV7e3uDYkhKShKH4TXmM0xKSsLy5cvRtGlTeHl5wcHBQen78+rVKwCajz9dYjXHPlq1agUAGDduHPr374+DBw8iOjpa4zpnz54FABw+fFjted3T0xNr164FoP68bi6WOLbk78H79+/h5eWl9j3o168fAPXvQf78+VUmhgHlc0/GYqOGmjNnDlavXg0bGxts3LgR1atX13sbUpxvzUn+Wa5Zs0bj8Xz06FEAyp/lF198gdy5c+Pq1av47LPPsGbNGqWi2kSknZ3UARARKV6MykcjqV69Orp06SLe4QCgdJGk62gS6u5S6XKBror8R7+2O1Te3t5Ky2d8rGl9+brq9u3u7g4HBwe99v369WvxseIPvox0ufOm7b1LS0tD165dlVqQ2NnZwc3NTfxx//79e3z48EFj64q8efOqnG5nZ6fXMvqOBnHv3j188cUXSj+mHR0dkS9fPvEOofz4MzZ+xdiMPT6yioYNG2LOnDmYOHEiDh48iIMHDwJIj7tx48bo3r270vfaVIz5bioy9NwApF9AyYe0NvQzfPXqFRo3biwmSoD0UaXc3d3FVluvX79GWlqawa2TzLmP0aNH4/r16/jrr7+watUqrFq1CjKZDBUrVkTz5s3Rt29flC1bVmkd+bk9Li5Op/2ZsvWBLixxbMnfg+TkZJ3+viUkJKicru68Axh3XlRl+/btGD9+PID0RIe8tYQ+pDrfmpP8s4yOjtaa3AOUj+eSJUti9erVGDBgAM6fPy+OClewYEH4+fnhf//7H9q0aaN21BYiYgsOIsoCIiIixH+PHz9GUFAQVq9enekiSLG5ZkJCAoT0OkIa/6lrkaCqe0dOYewPI23v3Zo1a7B582bY2tpi8uTJuH//PhITE/Hu3Tvxc5Z3sxDUDP8npV69euHp06coXrw4tm3bhrdv3yIuLg6vXr1CRESE0pCDWTH+rGD06NEICwvDr7/+irZt26JQoUJ4+vQp1q1bB39/f3Ts2NFiFxv6kvrcMGLECAQHB6NAgQL4/fff8eLFCyQkJOD169fi90eepDT0+DPnPnLlyoWtW7fi2rVrmDx5Mvz9/eHo6IibN29i3rx5qFixIubPn6+0jvzcPnbsWJ3O69l12EtNx5b8PahTp45O74HU556LFy+ie/fuEAQBffv2xahRowzajjWeb+Wf5bJly3T6HDMOE9ylSxc8fvwYy5cvR+fOnVG0aFG8fv0af/31F9q2bYtGjRrplDghyqmY4CCibMPT01N8bOkmynLyO3Damm3L5yvesVN8rPijLSN18+Trv3nzBomJiXrtu2DBguJjTd0FNMWlK3kNgr59+2LatGkoVapUpr7Rlq7PoKvw8HCcO3cOQHoNkw4dOmSqV2Ku2I09PrIaLy8vDB8+HLt27cLLly9x48YNsbbA9u3bsWzZMpPuz5jvpqnkz59fvIg15DNMTk7Gzp07AQBLly5Fr169lM57QPrF05s3bwyO0RL7AICqVati2rRpCAwMRFRUFI4ePYrPP/8cqampYisPOfn+pTqva2OJYyurvweKHj9+jDZt2iAhIQH+/v747bffDNqOlOdbczLFZ5k/f35899132LJlC548eYIHDx5g3LhxkMlkOH36tNoaYETEBAcRZSOK/Zf37t0rSQzyPtZPnz7FvXv3VC6TmpqK48ePA1CuEVGjRg3xQl8+X5Vjx45p3HdKSgpOnjypdn15v17FfX/yySdi8TJNdz9NcWc0PDwcANT2xY6NjcWFCxeM3o85yGMH1Mcvf39NrUSJEuKPe0OOD0uQH7+G3EmtXLkyVq1aJda/OXLkiEljU6x/8P79e5XLREVFKdVTMDV7e3tUqVIFgGGf4evXr8U6Q+qOvzNnzojLZKSYSFT3GRm7D0PY2dnhiy++wL59++Dg4ABBEJS+R/Jj4ujRowbt15jjUheWOLbk70FERITaGh7mpOt7GB0djVatWuHly5coU6YMtm/fjly5chm0TynPt4bS5X2Sf5b//POPyfZbsmRJzJo1C//73/8AZD5/mvs7QJSdMMFBRNmGk5OT+Md9zpw5ePLkicblzVFQrEmTJuKoHeruoKxYsUJsJfHtt9+K0/Ply4emTZsCAObNm6fyh/zRo0fFO1oZValSBRUqVAAAzJgxQ2WF9f3794vJA8V9y2QyfP311wCA5cuXqywwd//+fbH4pzFcXV0BQOkOraKffvoJMTExRu/HHOSxA6rjj4mJwYwZM8yyb5lMJo5is3z5cpV30G/fvq12hAZLkBdY1FS4VVPrIgDi6EGqRjwwRvv27WFnZ4cPHz5gzpw5KpeZOXMmEhMTkStXLrRv396k+5fr3LkzAGDbtm24e/dupvmvXr3C8uXLVa7r4uIidiFTdfylpKSIRZfVrS+n7jMydh/aaPr8HRwcxBYuip9/7969YWdnhzdv3mDKlCkat5+UlITY2Filabocl8awxLHl5+cnFgcdMWIEkpKSNC5v6r9vuryHKSkp6NixI27evIkCBQpg3759cHNzM3ifUp5vDaXL+9S/f38AwM2bN7W2VIuLi1P6rA09f5r7O0CUnTDBQUTZysyZM+Hl5YU3b96gXr16+PPPP5Uull+/fo0dO3agXbt2Shf4ppInTx4xsbF582YMGDBALIAWHx+PxYsXY/jw4QDSL3Q+/fRTpfV/+ukn2NraIiQkBF9++aV4AZSSkoK//voLnTp1EltaqCL/cX369Gl06NBBrK6enJyMjRs3iq+5fv364pCKcuPHj0eePHnw8uVLNG3aFFevXgWQfsfn2LFjaNasmVLFekM1b94cALBq1SqsXLlS/PEWERGBESNG4JdfflE5tGtWUL58eRQrVgxA+kWXfDQfADh//jx8fX1NNvqAKuPHj0fevHnx5s0bNGnSRLyTKwgCDh8+jBYtWpjkMzJUpUqVAKQffyEhISqXadu2LXr37o0DBw4o/dh+9+4dZsyYgcDAQAD/Df9oKkWKFMGwYcMAALNnz8aUKVPE/UdFRWHSpEmYO3cuAGDkyJHiUM6mNnDgQHh7eyMxMRHNmzdHYGCgeFf1woULaNy4sTiaUkbOzs7i3d+RI0fi2LFj4rI3b95Ey5YtcfnyZTg5OalcP1++fGIhzLVr14oFT025D218fHwwfvx4/Pvvv0oXaw8ePECXLl0QHx8PGxsbpeGeS5YsiUmTJgEAfvnlF3Tv3h03b94U56ekpODatWuYPn06SpUqlWnoWl2OS2NY4tiys7PD8uXLYWdnhzNnzuDzzz9HYGCgUq2ahw8fYvny5ahVq5bB3ULUkb+Ht27dUptkHzZsGA4fPgx7e3vs3LlT7WgtupL6fGsI+fu0fft2tbE1atQIvXr1AgAMHjwYI0aMwMOHD8X5iYmJ+PfffzFmzBj4+PgoFaUdMmQIOnXqhB07dihNj42NxfLly7F+/XoAmc+f5v4OEGUrAhGRBKZMmSIAEAw5Dd2+fVsoU6aMuL6NjY2QP39+wcnJSZwGQGjcuLHSemFhYeK8sLAwjfvo0aOHAEDo0aOHyvkjRowQtyWTyQQ3NzfBzs5OnObn5ydER0erXHfFihWCTCYTl3V1dRUcHBwEAEK5cuWEBQsWCAAEHx8flesvWLBAaf18+fIJ9vb24vPKlSsLz549U7nutm3blOLMmzev4OjoKAAQihQpIqxdu1YAIDg4OGRaV/6ZNWrUSON7FxkZKZQrV07p88mXL58Y83fffafx/fXx8REACGvXrlW7D/m2jx8/rnK+Pp91Rnv37lV6jxwdHcX3yMnJSTh69Kja/R8/flyn41pT/P/88494PMg/ozx58ggAhMKFCwu///67wd8dbfsWBM2f87t374SCBQuK23B3dxd8fHwEHx8f4fz584IgCEKjRo2UvocuLi6Ci4uL0rQOHToIqampesWty3ubmJgodOrUSenYc3NzE2xsbMRp3377rZCUlJRpXW3feX1cunRJyJcvn9Ix5OzsLH6eW7duVXt8Xr58Welc5uDgIOTNm1cAINjZ2Qnr16/X+B356aeflNYtWrSo4OPjI3Tu3Nlk+9BE8XOWv/+5c+dWOl/++uuvmdZLS0sTJk2apHRuy5Mnj1CgQAHB1tZWabtnzpxRWleX41IX8mN3ypQpmeZZ6tjatWuX+FkAEHLlyiUUKFBA6ZwAQJgxY4bSevJzt7q/G4Kg+byYnJwslC1bVpzv5uYmvofbtm0TBOG/c3OuXLkEDw8Pjf+ePHmiU2xSn2/1dfLkSfEYtbW1FQoXLiy+T4oSExOFvn37Kn1mzs7OmY4ZAMLTp0/F9eTHiuI6iucSAELDhg2F2NhYpf2Z6jtAZA3YgoOIsp3y5cvjxo0bWLFiBZo2bQp3d3dER0dDEASUKlUKHTt2xMqVK03S3UKdBQsW4NixY2jfvj08PDwQGxuLvHnzws/PD7///juOHDmidti6/v374+zZs2jdujXy58+PxMRE8a7nxYsXtTb5HTFiBC5fvoyuXbuiaNGiiI+PR548eVC3bl38+uuvuHTpktqhYDt06IDLly+jY8eOKFiwIBITE+Hh4YFhw4bh6tWrYpNhTa1ItMmXLx/OnTuH4cOHo3jx4rC1tYWdnR18fX2xefNmtc3zs4pWrVrh1KlT+PLLL5EvXz6kpKTA3d0dvXr1QlBQEL744guz7v/LL7/ElStX8M0336BQoUJISkqCh4cHhgwZgqtXr6JEiRJm3b8mbm5uOHXqFL755hsUKVIE79+/x+PHj/H48WOxy9WSJUswZ84ctGzZEqVLl4YgCEhISICXlxfatGmDHTt2YNu2bSbvogKk18DYunUrtm/fjhYtWqBAgQKIiYlBgQIF0KJFC+zcuRObNm0yuGaArmrWrCkWVS1SpAhSUlLg6uqKHj164MqVK6hdu7badT/99FNcvHgRnTp1gru7O9LS0pA3b1506tQJ586dQ7du3TTu+8cff8SiRYtQs2ZN5MqVC0+fPsXjx4+VijUauw9NDh8+jPHjx+Ozzz5D0aJFxeFMS5UqhV69euHSpUtiKzdFMpkM06dPx40bNzBo0CCUL18etra2eP/+Pdzc3FC/fn2MHj0a586dE1ugyOlyXBrLUsdW27Zt8eDBA0yZMgW1a9eGs7MzoqKi4ODggKpVq6Jv377YtWsXRo8ebZLXJWdnZ4fAwED07dsXJUqUQFxcnPgeZuwSJB/KVtM/VV0oVZH6fKuvzz//HPv27UPjxo2RL18+vHz5UnyfFNnb22PVqlU4d+4cevbsiZIlSyI1NRWxsbEoVKgQfH19MXnyZNy4cUNp+OFJkyZh8eLFaNeuHcqVKwc7OztxnSZNmuD333/HiRMnMrWwssR3gCi7kAkCq9EQEVG6CRMmYObMmfD39xe7EhARERERZQdswUFERADS65esXr0awH91NIiIiIiIsgu24CAiykEWL16M+Ph4dOjQAcWLF4ednR0SExMRGBiIH374ASEhIShYsCDu3LmTZQuBEhERERGpwgQHEVEOMnz4cCxatAgAYGtrC1dXV0RHR4ujLbi6umL37t3w9fWVMEoiIiIiIv3ZSR0AERFZTo8ePWBra4tTp07h2bNnePv2LfLkyYMSJUqgWbNmGDZsmFLBMyIiImtSq1YthIeH67XOpUuXULRoUTNFRESmxBYcRERERESUIxQvXjzTqCfahIWFoXjx4uYJiIhMigkOIiIiIiIiIsr22EUlh0hLS8Pz58+RN29eyGQyqcMhIiIiIiIiKycIAmJiYuDl5QUbG/MP4soERw7x/Plz9h0kIiIiIiIiiwsPD4e3t7fZ98MERw6RN29eAOkHlouLi8TREBERERERkbWLjo5G0aJFxetRc2OCI4eQd0txcXFhgoOIiIiIiIgsxlJlEszfCYaIiIiIiIiIyMyY4CAiIiIiIiKibI8JDiIiIiIiIiLK9liDg4iIiIiIiLKE1NRUJCcnSx0G6cHe3t4iQ8DqggkOIiIiIiIikpQgCIiIiEBUVJTUoZCebGxsUKJECdjb20sdChMcREREREREJC15cqNQoUJwdHS02KgbZJy0tDQ8f/4cL168QLFixST/3JjgICIiIiIiIsmkpqaKyY0CBQpIHQ7pqWDBgnj+/DlSUlKQK1cuSWPJGh1liIiIiIiIKEeS19xwdHSUOBIyhLxrSmpqqsSRMMFBREREREREWYDU3RvIMFnpc2OCg4iIiIiIiIiyPSY4somoqCjUrFkT1apVQ6VKlbBq1SqpQyIiIiIiIiIVfH19MXz4cKnDyHGY4Mgm8ubNi1OnTuHatWu4cOECZs6cibdv30odFhERERERERnhxIkTkMlkHCLXBJjgyCZsbW3FojuJiYkQBAGCIEgcFREREREREVHWwASHhZw6dQqtW7eGl5cXZDIZdu/enWmZgIAAFC9eHLlz50adOnVw8eJFpflRUVGoWrUqvL29MXr0aLi7u1soeiIiIiIiIlIlLi4O3bt3h7OzMwoXLoz58+crzf/zzz9Rs2ZN5M2bF56envjf//6HV69eAQAePXoEPz8/AICbmxtkMhl69uwJADh48CAaNmyIfPnyoUCBAmjVqhVCQ0Mt+tqyGyY4LCQuLg5Vq1ZFQECAyvlbt27FyJEjMWXKFFy5cgVVq1ZFs2bNxAMfAPLly4fr168jLCwMmzZtwsuXLy0VPhERERERkcUIgoC4uDhJ/unbUn706NE4efIk9uzZg8OHD+PEiRO4cuWKOD85ORk//fQTrl+/jt27d+PRo0diEqNo0aLYsWMHAODu3bt48eIFFi1aBCD9GnLkyJG4fPkyAgMDYWNjg3bt2iEtLc00b7IVkgns52BxMpkMu3btQtu2bcVpderUQa1atbB06VIAQFpaGooWLYqhQ4di3LhxmbYxaNAg+Pv7o0OHDir3kZiYiMTERPF5dHQ0ihYtivfv38PFxcW0L4iIiIiIiMhAHz58QFhYGEqUKIHcuXMDSL+4d3Z2liSe2NhYODk56bxsgQIFsGHDBnTs2BEA8O7dO3h7e6N///5YuHBhpnUuX76MWrVqISYmBs7Ozjhx4gT8/PwQGRmJfPnyqd3XmzdvULBgQQQHB6NSpUqGvDSzUPX5yUVHR8PV1dVi16FswZEFJCUlISgoCI0bNxan2djYoHHjxjh//jwA4OXLl4iJiQEAvH//HqdOnULZsmXVbnPWrFlwdXUV/xUtWtS8L4KIiIiIiCiHCQ0NRVJSEurUqSNOy58/v9K1WlBQEFq3bo1ixYohb968aNSoEQDgyZMnGrd9//59fPvtt/jkk0/g4uKC4sWL67ReTmYndQCUnolLTU2Fh4eH0nQPDw+EhIQAAB4/foz+/fuLxUWHDh2KypUrq93m+PHjMXLkSPG5vAUHERERERFRVufo6IjY2FjJ9m0qcXFxaNasGZo1a4aNGzeiYMGCePLkCZo1a4akpCSN67Zu3Ro+Pj5YtWoVvLy8kJaWhkqVKmldLydjgiObqF27Nq5du6bz8g4ODnBwcDBfQERERERERGYik8l07iYipZIlSyJXrly4cOECihUrBgCIjIzEvXv30KhRI4SEhODt27eYPXu2eMP58uXLStuwt7cHAKSmporT3r59i7t372LVqlX47LPPAABnzpyxxEvK1thFJQtwd3eHra1tpqKhL1++hKenp0RRERERERERkSbOzs7o06cPRo8ejWPHjuHmzZvo2bMnbGzSL7WLFSsGe3t7LFmyBA8fPsTff/+Nn376SWkbPj4+kMlk+Oeff/D69WvExsbCzc0NBQoUwMqVK/HgwQMcO3ZMqYU+qcYERxZgb2+PTz/9FIGBgeK0tLQ0BAYGol69ekZtOyAgABUqVECtWrWMDZOIiIiIiIgymDt3Lj777DO0bt0ajRs3RsOGDfHpp58CAAoWLIh169Zh27ZtqFChAmbPno158+YprV+kSBFMmzYN48aNg4eHB4YMGQIbGxts2bIFQUFBqFSpEkaMGIG5c+dK8fKyFY6iYiGxsbF48OABAKB69epYsGAB/Pz8kD9/fhQrVgxbt25Fjx49sGLFCtSuXRsLFy7EX3/9hZCQkEy1OQxh6eq1REREREREutA0CgdlfVlpFBXW4LCQy5cvw8/PT3wub17Uo0cPrFu3Dp07d8br168xefJkREREoFq1ajh48KBJkhtERERERERE1o4JDgvx9fWFtsYyQ4YMwZAhQywUEREREREREZH1YA0OIiIiIiIiIsr2mOCwciwySkRERERERDkBExxWbvDgwbh9+zYuXbokdShEREREREREZsMEBxERERERERFle0xwEBEREREREVG2xwQHEREREREREWV7THBYORYZJSIiIiIiopyACQ4rxyKjRERERERE2Z+vry+GDx+u8/Lr1q1Dvnz5NC4TEhKCunXrInfu3KhWrRoePXoEmUyGa9euGRWrVOykDoCIiIiIiIiILG/KlClwcnLC3bt34ezsjHz58uHFixdwd3cHAJw4cQJ+fn6IjIzUmizJCpjgICIiIiIiIsqBQkND8eWXX8LHx0ec5unpKWFExmEXFSIiIiIiIiID+Pr6YujQoRg+fDjc3Nzg4eGBVatWIS4uDr169ULevHlRqlQpHDhwQGm9kydPonbt2nBwcEDhwoUxbtw4pKSkiPPj4uLQvXt3ODs7o3Dhwpg/f36mfScmJmLUqFEoUqQInJycUKdOHZw4cULn2GUyGYKCgjB9+nTIZDJMnTpVqYvKo0eP4OfnBwBwc3ODTCZDz549DXqfLIUJDiIiIiIiIiID/fHHH3B3d8fFixcxdOhQDBw4EB07dkT9+vVx5coVNG3aFN26dUN8fDwA4NmzZ2jZsiVq1aqF69evY9myZVizZg1mzJghbnP06NE4efIk9uzZg8OHD+PEiRO4cuWK0n6HDBmC8+fPY8uWLbhx4wY6duyI5s2b4/79+zrF/eLFC1SsWBE//PADXrx4gVGjRinNL1q0KHbs2AEAuHv3Ll68eIFFixYZ81aZnVV3UbGxsYGNjQ1CQkJQqlQpqcORREBAAAICApCamip1KERERERERDqrWROIiLD8fj09gcuXdV++atWqmDhxIgBg/PjxmD17Ntzd3dGvXz8AwOTJk7Fs2TLcuHEDdevWxW+//YaiRYti6dKlkMlkKFeuHJ4/f46xY8di8uTJiI+Px5o1a7BhwwZ88cUXANKTKN7e3uI+nzx5grVr1+LJkyfw8vICAIwaNQoHDx7E2rVrMXPmTB1epyfs7Ozg7Owsdkt58+aNON/W1hb58+cHABQqVIg1OKSWJ08e5MqVK8cmN4D0UVQGDx6M6OhouLq6Sh0OERERERGRTiIigGfPpI5CuypVqoiPbW1tUaBAAVSuXFmc5uHhAQB49eoVAODOnTuoV68eZDKZuEyDBg0QGxuLp0+fIjIyEklJSahTp444P3/+/Chbtqz4PDg4GKmpqShTpoxSLImJiShQoIBpX2A2YtUJDm9vbzx9+lTqMIiIiIiIiEhPUtW61He/uXLlUnouk8mUpskTGWlpaUbHJhcbGwtbW1sEBQXB1tZWaZ6zs7PJ9pPdWHWC48svv8SiRYtw8uRJNGrUSOpwiIiIiIiISEf6dBPJTsqXL48dO3ZAEAQx+XH27FnkzZsX3t7eyJ8/P3LlyoULFy6gWLFiAIDIyEjcu3dPvK6tXr06UlNT8erVK3z22Wdmi9Xe3h4Ask3JA6suMjp+/HgULFgQAwcOxIsXL6QOh4iIiIiIiHK4QYMGITw8HEOHDkVISAj27NmDKVOmYOTIkbCxsYGzszP69OmD0aNH49ixY7h58yZ69uwJG5v/Lt/LlCmDLl26oHv37ti5cyfCwsJw8eJFzJo1C/v27TNZrD4+PpDJZPjnn3/w+vVrxMbGmmzb5mDVLTju3LmDn3/+GSNGjECFChXQrVs3NGjQAIUKFcrUjEfR559/bsEoiYiIiIiIKKcoUqQI9u/fj9GjR6Nq1arInz8/+vTpIxYqBYC5c+ciNjYWrVu3Rt68efHDDz/g/fv3SttZu3YtZsyYgR9++AHPnj2Du7s76tati1atWpk01mnTpmHcuHHo1asXunfvjnXr1pls+6YmEwRBkDoIc7GxsVEq3KILmUymNP6wtZAXGX3//j1cXFykDoeIiIiIiAgA8OHDB4SFhaFEiRLInTu31OGQnjR9fpa+DrXqLioAIAiCXv9MWfglKwgICECFChVQq1YtqUMhIiIiIiIiMhurTnCkpaUZ9M+aDB48GLdv38alS5ekDoWIiIiIiIjIbKw6wUFEREREREREOQMTHERERERERESU7Vn1KCqK0tLSEBQUhMePHyM+Ph7du3eXOiQiIiIiIiIiMpEc0YJjyZIlKFy4MOrWrYvOnTujV69eSvMjIyNRqVIllCtXDi9fvpQoSiIiIiIiopzL2uoh5hRZaWBWq2/BMXjwYCxfvhyCIMDFxQWxsbGZPgA3NzfUqFEDGzduxLZt2zBkyBCJoiUiIiIiIspZ7O3tYWNjg+fPn6NgwYKwt7eHTCaTOizSgSAIeP36NWQyGXLlyiV1OJAJWSndYmIHDx5Ey5YtkTdvXqxfvx5fffUVChcujFevXiE1NVXlsm3atMHu3bulCdiMLD3+MBERERERka6SkpLw4sULxMfHSx0K6Ukmk8Hb2xvOzs6Z5ln6OtSqW3AsX74cMpkM06dPx1dffaVx2Xr16gEAgoODLREaERERERERfWRvb49ixYohJSUl081oytpy5coFW1tbqcMAYOUJjgsXLgAAevfurXVZV1dXuLi4ICIiwtxhWVRAQAACAgJ4kiAiIiIioixN3s0hK3R1oOzJqruoODg4wMnJCe/evROnqeuiAgD58+dHQkICEhISLBmmRbCLChEREREREVmSpa9DrXoUFRcXF0RHRyM5OVnrsu/evcP79+/h7u5ugciIiIiIiIiIyJSsOsFRuXJlCIIgdlXRZPPmzRAEATVr1rRAZERERERERERkSlad4OjQoQMEQcDUqVM1jql8/fp1TJw4ETKZDN9++60FIyQiIiIiIiIiU7DqBEe/fv1QoUIFHD9+HE2aNME///wj1t64f/8+jhw5gu+//x7169fH+/fvUbduXXTs2FHiqImIiIiIiIhIX1ZdZBQAHj9+jObNm+Pu3buQyWQqlxEEAZUrV8ahQ4fg6elp4Qgtg0VGiYiIiIiIyJJYZNTEfHx8EBQUhGnTpqFYsWIQBEHpn5eXF6ZOnYpz585ZbXKDiIiIiIiIyNpZfQuOjJ4/f47nz58jNTUVnp6e8PHxkToki2ALDiIiIiIiIrIkS1+H2pl9D1mMl5cXvLy8pA6DiIiIiIiIiEzIqruohIWFSR0CEREREREREVmAVSc4SpUqhU8++QS9e/fGn3/+iadPn0odEhERERERERGZgVXX4LCx+S9/Ix9B5ZNPPoGfnx/8/Pzg7+8PDw8PqcKziICAAAQEBCA1NRX37t1jDQ4iIiIiIiKyCEvX4LDqBEdERASOHTuG48eP49ixY2KXFcXhYsuWLSsmPHx9feHu7i5VuGbFIqNERERERERkSUxwmNGTJ0/EhMfx48fFLiuKCY9KlSrh+vXrUoVoNkxwEBERERERkSUxwWFB9+/fx/Hjx7F27VpcuHABQHqyIzU1VeLITI8JDiIiIiIiIrIkDhNrAa9evcKxY8fEf4qjrSi25iAiIiIiIiKi7CFHJDiioqJw4sQJMaFx584dAIC88Urp0qXh7+8v1uIgIiIiIiIiouzFqhMcY8aMwbFjx3D9+nWkpaWJCQ0fHx8xoeHv7w8vLy+JIyUiIiIiIiIiY1h1gmPevHmQyWRwcXFBq1atxBYaJUqUkDo0IiIiIiIiIjIhq05wAOndUKKjo3HhwgU4OTkhb968yJs3r9UOB0tERERERESUE1n1KCpbtmwRh4UNDQ0F8F8R0YoVK8Lf3x/+/v7w9fW1+pFFOIoKERERERERWRKHiTWT8PBwHD9+XEx4hIeHA0hPeNjY2KB69epiwqNp06YSR2t6THAQERERERGRJTHBYSGhoaFisuPEiROIiIiATCaDTCZDSkqK1OGZHBMcREREREREZEmWvg61+hoc6jg5OcHJyQmOjo5wcHCATCZDDs31EBEREREREWV7OSbBERkZKXZROXbsGO7evSvOkyc2ihYtCj8/P6lCJCIiIiIiIiIDWXWCY//+/WJC48aNG2IiQ/6/p6cnfH194e/vDz8/P5QsWVLKcImIiIiIiIjIQFad4GjVqpVS15MCBQrA19cXfn5+8Pf3R7ly5SSOkIiIiIiIiIhMwaoTHC4uLmjUqJGY0KhSpYrUIVlcQEAAAgICkJqaKnUoRERERERERGZj1aOopKWlwcbGRuowsgSOokJERERERESWZOnrUKu++mdyg4iIiIiIiChnsOouKhndunULly9fxqtXrwAAhQoVQq1atVChQgWJIyMiIiIiIiIiY+SIBMehQ4cwZswY3Lx5U+X8ypUr45dffkHTpk0tHBkRERERERERmYLV9+FYunQpvvzyS9y8eROCIMDGxgaFChVCoUKFYGtrC0EQcOPGDbRo0QIBAQFSh0tEREREREREBrDqBMf169cxfPhwpKWloXbt2ti/fz9iY2Px4sULvHjxAjExMdi/fz/q1asHQRAwfPhw3LhxQ+qwiYiIiIiIiEhPVp3gWLBgAdLS0tC6dWucOXMGzZs3h4ODgzjfwcEBzZs3x6lTp9C6dWukpqbi119/lTBisrSEhAS8f/9e6jCIiIiIiIjISFad4Dh58iRkMhkWLVoEW1tbtcvZ2tpi4cKFAIDjx49bKDqS2qNHj+Dh4YH8+fNjw4YNJt/+zZs3ERoaavLtEhERERERUWZWneB4+fIlXF1dUbx4ca3LlihRAvny5cPLly/NHxhlCcHBwYiJiUFaWhrOnz9v0m3v3LkTlStXRqlSpRAcHGzSbRMREREREVFmVp3gyJMnD+Lj45GSkqJ12ZSUFMTHxyNPnjwWiIys3cOHD8XHYWFhEkZCRERERESUM1h1gqN8+fJITk7G9u3btS67bds2JCUloXz58haIjIiIiIiIiIhMyaoTHB07doQgCBg0aBACAwPVLnf06FEMGjQIMpkMnTp1smCERERERERERGQKdlIHYE4DBw7EmjVrcOvWLTRt2hT16tVD48aNUaRIEQDA06dPERgYiPPnz0MQBFSqVAkDBw6UOGoiIiIiIiIi0pdVJzgcHBxw6NAhfP3117h48SLOnTuXqZikIAgAgDp16mDHjh2wt7eXIlQiIiIiIiIiMoJVd1EBAC8vL5w7dw6bN29Gu3bt4O3tDXt7e9jb28Pb2xvt2rXD1q1bcfbsWXh5eUkdLhEREREREREZwKpbcMjZ2Nigc+fO6Ny5s9ShEBEREREREZEZWGWCIykpCXv27MGlS5cQHR2N/Pnzo27dumjVqhVsbKy+0Uq2dOPGDWzbtg0+Pj7o06cPZDKZ1CFlebdv34YgCKhYsaLUoRAREREREUnO6hIcV65cwddff43w8PBM88qUKYM9e/agTJkyEkRGmgwcOBDnzp0DAFSrVg01a9aUOKKs7erVq6hRowYA4MKFC6hdu7bEEREREREREUnLqpozvH37Fi1btkR4eDgEQcj07+7du/jyyy+RkJAgdaiUQXR0tMrHpNqjR49UPiYiIiIiIsqprCrB8dtvv+HVq1fIlSsXJk6ciLt37yIuLg63bt3CoEGDYGNjg4cPH+LPP/+UOlQind25cweNGzdGv379xFF/iIiIiIiISJlVJTgOHDgAmUyGKVOmYPr06ShdujTy5MmD8uXLY+nSpRg0aBAEQcCBAwekDtUg4eHh8PX1RYUKFVClShVs27ZN6pDIArZu3YrAwECsXr0aDx48kDocIiIiIiKiLMmqEhx3794FAAwaNEjlfPn0e/fuWSwmU7Kzs8PChQtx+/ZtHD58GMOHD0dcXJzUYVmN1NRU/Pnnn1i+fDliYmKkDkeUmpqq8jERERERERH9x6qKjL5//x5ubm5wdXVVOb9kyZIAsm+Nh8KFC6Nw4cIAAE9PT7i7u+Pdu3dwcnKSODLrcPToUXTv3h0AEBcXhx9++EHiiNS7deuW1CEQERERERFlKVbVgiMtLQ329vZq5+fKlQuAdHfBT506hdatW8PLywsymQy7d+/OtExAQACKFy+O3Llzo06dOrh48aLKbQUFBSE1NRVFixY1c9Q5R2RkpMrHWdGcOXOkDoGIiIiIiChLsaoER1YXFxeHqlWrIiAgQOX8rVu3YuTIkZgyZQquXLmCqlWrolmzZnj16pXScu/evUP37t2xcuVKS4RNWZCbm5vUIRAREREREWUpVtVFBQASEhKwfv16o5aRd1MwtRYtWqBFixZq5y9YsAD9+vVDr169AADLly/Hvn378Pvvv2PcuHEAgMTERLRt2xbjxo1D/fr11W4rMTERiYmJ4vPs2i0nqzhz5gy+/vprODs74/Tp0yhSpIjUIREREREREZECq0twREdHiwkCVWQymcZlZDKZ2RIcmiQlJSEoKAjjx48Xp9nY2KBx48Y4f/48AEAQBPTs2RP+/v7o1q2bxu3NmjUL06ZNM2vMOcnRo0fx+vVrvH79GhcuXMDXX38tdUhERERERESkwOq6qAiCYPQ/Kbx58wapqanw8PBQmu7h4YGIiAgAwNmzZ7F161bs3r0b1apVQ7Vq1RAcHKxye+PHj8f79+/Ff+Hh4WZ/DURERERERERSsaoWHGFhYVKHYFYNGzZEWlqaTss6ODjAwcHBzBFlXcnJydi3bx9SU1PRqlWrHP1eEBERERER5QRWleDw8fGROgSDubu7w9bWFi9fvlSa/vLlS3h6ekoUVfb1119/oWvXrgDSR6YZNGiQxBERERERERGROVldF5Xsyt7eHp9++ikCAwPFaWlpaQgMDES9evUkjCx7Uhx5JuMoNERERERERGR9rKoFR1YXGxuLBw8eiM/DwsJw7do15M+fH8WKFcPIkSPRo0cP1KxZE7Vr18bChQsRFxensWiqNgEBAQgICEBqaqopXgIRERERERFRlsQEhwVdvnwZfn5+4vORI0cCAHr06IF169ahc+fOeP36NSZPnoyIiAhUq1YNBw8ezFR4VB+DBw/G4MGDER0dDVdXV6Nfg7WKi4uTOgS9cNhfIiIiIiIiZUxwWJCvr6/WUVqGDBmCIUOGWCgikvvjjz+MSiRZ0vHjx/H+/XupwyAiIiIiIspSWIOD6KNr165JHYJOgoKCpA6BiIiIiIgoy2GCw8oFBASgQoUKqFWrltShEBEREREREZkNExxWbvDgwbh9+zYuXbokdSgE4N69e2jcuDE6deqExMREqcMhIiIiIiKyGkxwEFnQ9u3bERgYiG3btuHy5cuZ5r98+RLx8fESREZERERERJS9McFBWdqoUaPg5eWFTp06aS3QmlWlpqbi+vXrOHz4MCZMmKA0XdGWLVvg6emJYsWKISYmxtJhEhERERERZWtMcFCWtmLFCrx48QLbtm3DmzdvkJCQgBYtWqBixYrYtGmT1OHppE+fPqhWrRqaNWumcbmrV68CAN6+fYvw8HBLhEZERERERGQ1rGaY2CdPnphsW8WKFTPZtsg4iq02BEHApUuXcPDgQQDAypUr8b///U+q0DR6+/at+DgyMlLlMvv378eGDRvQs2dP1K9f31KhERERERERWSWrSXCUKFHCJNuRyWRISUkxybaygoCAAAQEBGTqDpFdKSY80tLSJIxEvdjYWMyePVvrcnPmzAEAnDx5Enfv3jV3WERERERERFbNarqoCIJgkn9Z9aLZUBxFxfJevXql1/KPHz82UyREREREREQ5h9W04AgLC1M5/eLFi/juu+8gk8kwYMAA+Pv7w9vbGwDw7NkzHDt2DMuXL4cgCFixYgVq1aplybApizp27BgSEhLw4cMHuLm5SR0OERERERERaWE1CQ4fH59M00JDQ9G/f38ULVoUR44cgYeHh9L8smXLwt/fH99//z0aN26Mfv364cqVK5YKOUdIS0tDhw4dcPXqVbRq1QpLliyRNJ6kpCSkpaUhd+7cGpc7f/48HB0dIZPJsG7dOssER0RERERERAazmi4qqvz888+Ijo7GqlWrMiU3FBUqVAirVq3C+/fvMWPGDAtGaP3CwsKwa9cuPHr0CEuXLpW0FkhwcDDc3d3h6uqKf/75R6d1BEHAhQsXzByZ6V29ehWtW7fG/PnzpQ6FiIiIiIjIIqw6wXHkyBE4OzujTp06WpetU6cOnJ2dceTIEQtElnMoFgWV2uXLlxETE4OkpCScPXtW6nDMasGCBfjnn38watQoqykwS0REREREpIlVJzhev36t18VdWloaXr9+bcaILC8gIAAVKlQwa22ROXPmwNvbGzVr1sTz5891Xi8hIYEX32YSFxcndQiUTXXo0AHlypVTO7wxEREREVFWZdUJjkKFCiEhIQHHjh3TuuyxY8cQHx+PggULWiAyy7HEKCqrV6/Gs2fPEBQUhJMnT+q0Tt++feHo6IjixYsjKirKbLFZo6lTp0odAlmp1NRU7NixA3fv3s103hQEAcePH8ejR4+kCY6IiIiISAurTnC0aNECgiCgT58+uHfvntrl7t+/j759+0Imk6FFixYWjNA6KHZD0bVLyqFDhwAAT58+xe3bt80SlzVKTk42a+uMlStX4vPPP0dgYKDZ9kHZQ8Yhs48fPw5/f3/UrVtXooiIiIiIiDSzmlFUVJkyZQq2b9+OJ0+eoGrVqujYsSP8/f1RpEgRAOnDxB4/fhzbtm0ThwOdPHmyxFETqaeYQKpUqRJu3rxp0u1/9913AIAxY8YgKCjIpNum7E0+wtTLly8ljoSIiIiISDWrTnB4eXnhyJEjaNeuHcLDw7Fx40Zs3Lgx03KCIMDb2xu7du0Skx+UvQQGBmL16tWoXLkyfvzxR6nD0UtiYiKmTJmi93p2dub7+lpbLRoiIiIiIrJ+Vt1FBQBq1KiBW7duYfbs2ahWrRpsbW0hCAIEQYCNjQ2qVauG2bNn49atW/j000+lDpcMNGHCBGzZsgUTJkxAWFiY1OHobfr06YiJiZE6DCIiIiIiomzLqltwyDk7O2PMmDEYM2YMkpOT8e7dOwBA/vz5kStXLomjI1NITExU+dj07PDggRvWrQMePgQiIoCkJCAtDShQAPDwANzdHQEUBvBCry1zRBkiIiIiIiLD5YgEh6JcuXLBw8ND6jAsJiAgAAEBAbx4NkJsrCvCwmoDOAKgPsaOddSyhieA5wBuA9gNYOPHx7o7f/48KlSooNOyc+bMQcGCBeHn56fXPoiIiIiIiKyJ1XdRUSQIAt68eYMnT55IHYrFWGKYWOskA9AMwF6sXz8DBw60BNAYgLbkhqIKAH4EcAvAMQAtdV5z+fLlOi975coV+Pv7Zxr1goiIiIiIKCfJES04rly5ghkzZuDo0aOIi4uDTCZDSkqKOD8yMhLjxo2DTCbDr7/+ijx58kgYLUnLDkB3AOMAlFYx/zE++0yG9u2LoWRJICHhPnbu3IgKFSrA378TwsOB48ejsHLlLQD18F8O0e/jv3MARgE4rzEKQ7pOpaWlwcYmR+UsiYiIiIiIRFZ/NfTnn3+iXr162L17N2JjY8UCo4rc3NwQGhqKVatWYc+ePRJFStKywYsXfkjvSrIGiskNZ+d3+PzzkwCqACiOMmWmo1ChzfjiiwRs3z4RW7ZMw+TJnVGhQiS++QYYO/YdgIZIr8PxPYAQhf3UR3qSIwBAXr2jrFevnoGvj4iIiIiIyLpZdYLj9u3b6NevH5KTk/H999/j8uXLcHd3V7lsjx49IAgCDhw4YOEoSXr1AFxCcHDGVhuBANqia9cp8PM7DiAYALBmzRr873//w8qVK5GQkCAunbm46SsASwCUB9AO6V1V5AYhPZniq1ek8fHxei1PZIxXr15h06ZNiI2NlToUIiIiIiKtrDrBsWDBAiQlJWHw4MFYuHAhatSoAVtbW5XLfvHFFwCAoKAgS4ZIElq+fBeAtUhvUVFDYU4g0ltaNAawBzY2qmtbvH79Wo+97UZ6C5BhAOQXi94AjiK9ToeMNTQoy+nVqxe6dOmCqVOnSh0KEREREZFWVp3gOH78OGQyGcaOHat1WS8vL+TJkwfh4eEWiIykdv58aezfPw9AT4Wp1wD4Iz2xoblGhmHSACwGUAnpiQ0AsAXwM4C9WL16qxn2SWS4/fv3AwDWrl0rcSRERERERNpZdYLj+fPncHJygre3t07LOzo6KnU5IGXJyck4duwYTp48qVSkNatZvXq1hrleAP7ByZO9AeQHANjYvEd6l5GaAI5nWuO3337D06dPTRjhY6SP0DIJ6UkPAPgSwGkARUy4HyIiIiIiopzDqhMcDg4OSEpKylRUVJXExERERUUhX7585g8sm/rxxx/xxRdfwNfXF7Nnz5Y6HLXmz5+fqR6GIACnT5dGeh2ML8XpMtkm+PkNALAMQKrabZ49e9bEUaYBmAGgCYB3H6dVBXAB6S08zEMQBBw6dAjHj2dO5BAREREREWVnVp3g+OSTT5CcnIx79+5pXfbQoUNITU1FxYoVLRCZ5QQEBKBChQqoVauW0dt68uSJysdZUWrqf8mKuDgntGoFrF3bEEA+AECePJEA2sDOriccHKIliTHdMaQXOQ39+LwIgBOIjS2rdc3379/rvbfTp0+jefPm8Pf3x61bt7SvQATg3bt32hciIiIiIpKYVSc4WrZsCUEQsHDhQo3LxcTEYNy4cZDJZGjTpo1lgrOQwYMH4/bt27h06ZLUoUikKZYtG4iPpQQ+WodWrcYB2KvzVkJCQrQuk5iYiIYNG6JkyZJ6xngPQF2kt94AgAK4fXsxzmspAxIWFqbnfoCXL1+qfEykTUxMjNQhEBERERFpZNUJjuHDh8PV1RUrV67EpEmTEBUVpTQ/ISEBO3fuRO3atRESEgJPT0/0799fmmDJpI4ePQ1gHoBDiItzBgC4uMQjvXtKLzg4mH641du3bxvRleUN0rurnAYApKbmRdOmwJkzpoqOyDhxcXFSh0BEREREpJFVJzjc3d2xbds25M6dGzNnzoSHhwfevHkDIH3UFFdXV3Ts2BF3796Fs7Mztm/fDicnJ4mjpkmTJmHt2rU61U5RrQxOnJgJ4AdxSosWwPTpewDsV7uW9GIANId8hJXYWODLL4EXLwpLGpVceHg4qlatisaNGyM5OVnqcIiIiIiIiJRYdYIDABo3box///0Xvr6+SE5ORmpqKgRBQEREBFJSUiAIAnx9fXH+/HnUq1dP6nBzDE13g8+dO4fevXsbVCOiYsUFAK4AqPFxSiKaNTuAffsAF5cPBsVqWfEAWsPV9V8AQHQ0sHlzDwDlJI0KAE6cOIEbN24gMDAQd+/elTocIiIiIiIiJXZSB2AJlStXRmBgIB4/foyzZ8/i+fPnSE1NhaenJxo0aIBSpUpJHWKO0qVLF0RGRmpdLjpa9+KfKSl5AWzFrVudFKbeAfAN6tZtB5mshd5xZlS6dGncv3/f6O1o9wFly46Hvf1xnDkDxMc7ATgCoCHSh5hVb/fu3Zg/fz7OqOnbcvHiRZNEaHjrGiIiIiIiIvPIEQkOOR8fH/j4+EgdRo53+PBhk27vzBng7t2tABS7cqwAMAJAAoB2Jt2fJdjaJuKffwB/f+DKFQDwRnrXlQYAXqldb/DgwXj+/Lna+Rs2bDBxpERERERERFmD1XdRoexrwIABSEtLUztfEGwxdSrQqBGQnJye3MiT5wOA9gAGID25kd61wpARR6Tm6gocPAgUKPD645RSAP4GkEftOhEREVq26Wqy+CwlODgYq1atQmxsrNSh5ChspUNERERE2Y1VJzhsbW1ha2uLNm3a6DQCQOHChWFnl6MatWRpwcHBSEhIEJ8/efJEYW4x3LixCNOmAf/lQE7ihx/WA9iptJ2TJ0/ik08+0Xrxr6/4+Hjs3av7ULOGKFgQ6NJlHYCnH6fUAbAJ5v7qhoeH44cffkCtWrVw+fJlo7d39epV7N69GykpKXqv27BhQ/Tv3x9z5841Og5SbdOmTWjVqhUeP/6vC1Tnzp0ljIiIiIiISH9WneAQBAGCIGDfvn1o2LAhnj17ptM6lDU1aNAAqampADoBuI7o6CoAAFtbwNMzAIA/3NzU3+U3Vf0JuV27dpl0e+q4uEQDaAlAXpOkLYBfzb7fBQsW4PLly1izZo1R2/nw4QNq1KiBdu3aYceOHXqvL6/FEhwcbFQcpF6XLl2wb98+zJw5U+pQiIiIiIgMZtUJDgBwcnKCh4cHrl+/jtq1ayMoKEjqkKzCqlWr0L9/f+zfb7lhV5OScmH27LIAtgLIBwAoXhw4fRrw9FwNQH13FiC9AKcp6VMEFYCRLRCCkd71Rj486/cAhhuxPdXs7e0zTUtKSjJqm/Hx8eJjU7eiIdMKDw/XaTldWsQREREREVma1Sc48ubNiwsXLqBixYp48eIFGjVqhJ07d2pf0UoEBASgQoUKqFWrlsm3vWrVKvTr18/k21XtUwBXcORIEXFKwYJHcO0akHNG9z0KQPH9ng+gtfjs4sWLGmuW6MLDw8Oo9SlncHV1zVHnUSIiIiLKHqw+wQEARYsWxdmzZ9G0aVPEx8ejU6dOmD17ttRhWcTgwYNx+/ZtXLp0SZwmCOn/VElMTERwcLDOd9oV785nlJaWhlGjRukVb2YyAKMAnANQ5uO0GADdUbbsT8iGNTON9AeAqR8f2wDYCKASAKBVq1bShEQ5wvz588XHqampmDRpkoTREBERERFlliMSHADg4uKCffv24bvvvkNaWhomTJiAXr16GVT0MDuLjASqVgUqVQLevMk8v0GDBqhSpQoKFy6slBQxxLVr17Bnzx4jtlAYwCEAcwGkd51wc3sAoDqAPyGTGRVeNjYNwOaPj/MifWQVd0RGRkoXEuU4mpKbRERERERSyDEJDiB9VJVly5Zh3rx5kMlkWL9+PRo3bpyjLgynTPmA4GDg9m1g+PDETPNv3bolPg4JCTFqX8bVbugM4CaAJh+fpwGYhcjICgBCjYrLOvQBIB/dpASA7QBySRcOERERERGRxHJUgkNu5MiR2LFjBxwdHXH69GnUqVMH9+7dkzosi9i//7+RZA4csEzBRxcXFz2Wzg9gy8d/+T9OewagMYAf8V+RTev24sULDBgwANOnT1czsk8CgK8APP/4vBGApRaLj4iIiIiIKKvJkQkOAPjqq69w8uRJeHp6IjQ0FPXq1cP79++lDsvsUlKSFB5ntWRBS6S32uisMG0LgCoAjhu15TVr1uDXX80/tKqpPHr0CCtWrMCUKVNw584dNUs9R/qQsR8+Pu8PYEimpX788Uejh3olIiIiIiLK6nJsggMAatSogQsXLqBy5cqIjIzEhw8ftK9EJhcXZ4tnz6YC2If0uhsA8A7ANwC+/fg4s9OnT+tcDDV37twYPnw4RowYYXS8lqb5uLyE9O4qcgvxX7eedL/88gv69u2Lly9fmj44IiIiIiKiLMKqExzdu3dHp06dNC7j7e2Ns2fPokWLFhaKKusQhKxQpdMPPXpURWRke4Vp+5E+MshWrWtzJAcA2ARg5sfHtgD+AlA601Lz5s3D3bt3LRgXERERERGR5dhJHYA5rVu3TqflnJycsG/fPvMGk2WoGR/W4vIBmAegD168kE+LATASwGqNa7q6usLOzg5v377NUQViNZsIoCLS63LkQ/rIKnUARItLzJs3T4rAiIiIiIiILMKqW3CQKtImOAQBSExsDeAOFLtWODpeBlAV2pIbAODg4ICffvrJXCFmUwKArgCCPz4vh/ShZPkVJyIiIiKinIFXPzmO4kdu6S4qXmjf3gYxMb8D8Pw4LRqjRoWiRIneAMIsHI+1iUV6C463H5+3xH9dVwz3+++/o0iRIkpDCBPJXb16FdOmTWNrKiIiIiKSnNV0UZk+fToAwN3dHYMGDVKapq/JkyebLK6sJiUlt/g4LS2Xybd/8+ZN1KtXDwkJCWjdujUAQBBsAAwEMAt//62YVNkDYDDatfsLBw9mla4z6iUlJWlfSHJhADoAOIL0r/dYpLfq2GjUVp8/f46TJ08aHR1Zn7Zt2+LJkyeIjY3F3LlzpQ6HiIiIiHIwq0lwTJ06FTKZDGXLlhUTHPJp+rLuBEcehceO4uOYmBh8+PABgmBcomHXrl0ICQkBALx69QpAXcTFLUd695N0MtkrCMJgANuN2pel6fveLFiwAOPHj0diYqKZIlLnBIBhAAI+Pl8N4B7SR1whMq0nT54AAM6cOSNxJEREZE6nTp1CmTJl4OnpqX1hIiKJWE2C4/PPP4dMJkOxYsUyTaP/KLbgkCc4Dh48iNatWyMlJcXo7aelpX18VBCRkQsAfANxEoAePdKwd28DvHv3wOh9ZXWVK1fGnDlzMHz4cJ3X8fHxwePHj02w998AVAHwHYDcAHYBqAXghaaViIiIiDI5evQomjRJH4be2JthRETmZDUJjhMnTug0LadTbLWRmpoHqanAxYsXTZLcAABBsAUwGMAMfPiQT2HOdQCDsWbNSXh6RplkX9bI398fa9euNdHWhgIoD+BzAEWQnuRoBEB1i5L4+HiEh4er3dqHDx9MFBcRERFlJ0eOHJE6hCwvMDAQxYoVQ+nSpaUOhShHY5HRHEYQ7JWex8SYcut+uH9/E4ClSB+qFACikDv3aACfAjir85ZMd5GfkyUjvR6HvEVIHQAr1S6tbajka9eumSgu7V6/fs07RERERJQtXLt2DY0bN0aZMmWkDoUox2OCw8oFBASgQoUKqFWrlsr50dHG7yMpqSSAvQCOAagmTs+dewuAsrC3XwkgVa9tlihRAgULFjQ+OCuwf/9+I9Z+jfSRVeI+Pu8OYKQ498mTJ1i5ciWePXuGhIQEI/ZjvKSkJNSvXx8ymQyFChVC//79lebv2rULUVFR0gRHREREpMbVq1elDoEoS9m/fz++/fZbSX67M8Fh5QYPHozbt2/j0iXVBSaNS3AUQnz8fISH7wPQSmH6FQD14eo6HMArY3agkimy4+bobjFlyhSTb9M0rgPoofD8FwDNAABff/01vvvuO3zzzTdSBKbk/v37OH/+vPh89erVmZbhDwgiIiIyp8TERLRv3x4rV6pv9UpEmn355ZfYsmWLJIN3WE0NDkOHhFXFmkdRyciwBIczgOEAxiApKa/C9KcAfkTx4mfx6NFDAB7GB6jC4cOHsW7dOqO2sX17+gguaYoVUI0UFBRksm2Z3g4A0wBMAWALYAvCw0PEmM+cOYN+/fpJGJ/1+fDhA/bs2YM6deqgePHiUodDREQkmdTUVNy7dw/lypWz2AAACQkJyJ07t977W716NXbu3ImdO3eKrUnnzZsHV1dX/lYiySQlJSEoKAi1atWCnV32uYR/9uyZxfeZfd4dLQwdElYVJjhUS0mxB/ADgHEA3MXpMlksBGEmgIUAEiCTlTBpjBnlyZNH+0I6klcENwUbGxuTJkxMbxqAygC+BpAP48dXAOAK4L2kUQHA8uXLsXfvXqnDMKlFixZh3LhxKFeuHO7cuSN1OERERJLp1q0bNm/ejIULF2LYsGFm39+zZ8/g7e2N5s2b48CBA3qtm7FJfVhYGEaPHg0ATHBQJmvXrkVSUhK+++47s+6nV69e2LRpE8aMGYM5c+aYdV9ywcHB8PDwQKFChSyyP1OxmgQHh4Q1jC4JjsREYPVqYP/+RQDyK8xJgb39ehQuvAKPH18Up9rYZN2eT7ly5VJ6Pn/+fPGPlvUTkF6DoxSAKnjxwgXAZgCt4OEhXb2TyMhIDBw4ULL9m8vx48cBACEhIRJHQkREJK3NmzcDAH7++WeLJDg2btwIADh48KDR24o2RcE6skofPnxA7969AQDt27eHu7u7ljX0s3TpUuzevRt79uzBpk2bAAC//PKLRRIcd+7cQZUqVQBkv6GhrSbBwSFhDaPpnJ2cbIOVK4GffwaePAH+S26kIf3CeCocHd/Azq6AuE79+vVRt25dLFiwQOcYfvjhB9y8edOA6PXXu3dv/PLLLxbZV9YUh/Sio5eQ3gqnBYDZ+OSTXZJFlJioethaudy5c3OIWiIiIpLcV199hYYNG5r05lhycjJ+/PFHNG3a1KQti0l/kZGRCAkJQd26dTFhwgTs2rUL//77L1xdXVUun5KSIj6Oj483eTxDhw4FkD5ohKkkJiZiw4YNaNq0KYoWLap2ubNndR/9MqvJurfaySJUJzgcAQzDqFFt8d138uSG3A4AVQB0BfBAaa1z587h7NmzKFeunF4x/Pvvv3otb4yyZcviiy++0Hn5GjVqmDEa4xjeVecRgA6wsZGPbDMar183NyqW+Ph4vH792qhtqOPo6GiW7RLpKzU1FVu3bkV4eLjUoRDlSJMmTbLI3X8idf7++2+MGTPGpNtcv3495s2bhxYtWph0u1KLjY3NNG3jxo3o3r07kpKSJIjoPx8+fECnTp3wxx9/KE0vX7486tevj7///huzZs1CSEgIli1bJlGU/4mLi9O+ENJbWmhLtMyYMQN9+/ZF+fLlTREa3r17h0OHDiE19b8RM2/cuGGSbRuKCY4cTjnB4QpgAoDHABYiMtJJnNOiBdC48TgAHQDcEqdHRUUhNDTUIrGSsgkTJqjNKGt3Eo0a7RSfhYaORWioYc3qPnz4gJIlS8LDwwNnzpwxMB7TEgQBp06dwq1bt7QvTDpg9z8gvVbMN998g5IlS0odClGOk5aWhhkzZmDx4sUICwuTOpwcx1TdwLNbU3ddGfO65L9V5BeIiYmJGDp0qN61QzQJDg7GwIED8eLFC5NtU5OZM2cib968+Ouvv5Smd+3aFX/++SfWrFljkTjU+e2337Bt2zb07NlTafrLly8BALt37xanKV64Z3U9evSAk5MTbt++DQC4e/cu9u3bp7TM4cOHAeieNNGmZs2aaN68OX777TcAQEREBKpWraq0jKn2pSsmOHK46Gjg/XsXALMBPAEwA4oFRNu2BS5cAPbvB/Ln5w8KKZUqVQoeHv+NTDNkyBBERUVh4sSJBm2vSpWzANKz0oLggMWLfQF46bWN5ORknDp1ChERERAEwaCuRvqOiBMTE4Pg4GCNPyYuXLiARo0aoVKlShY/qWpy4MABVKxYEdu2bZM6FD3MBvABQCCAfEpzFJtmJiQkWDIoSRw5cgRA+nFPlBXMmTMHPj4+OaJVkeI5X+q7v0B6wmXlypUW62JLOcdvv/2GpUuXomXLlnqv++HDB6xbtw7Pnz9Xml6lShUsX74cXbp0MVWYGk2YMAEAxFFoMnrz5o1F4lDn7du3GufrkrDau3cvKlasmGn6sWPHMGDAAJUtWAyl62ihf/75JwCIpQLKlSuHVq1a4fz58yaLJSN5wnnHjh0AgOvXryvNf/HiBby89Lu+MJbV1ODQ5ty5czhz5gyePn2KuLg4tQeuTCaTPKtoSRs2AG/ffg/lXFcqgM2YOdMV48e3Vruug4OD1voJZDotWrRAdHR0puZ0xhkGoAKARoiKcgSwB0AjALr1I2zVqpWYCQaAgQMHwt7eXiy4pIvx48frEzDq1auHW7duYe3atZky73KKdyiio6Ph5OSkcjlL++677xAeHo4uXbqgY8eOFtlnREQErl69iiZNmhgwrFhbAGM/PvYHMAvAfwVhFYf+un79OkaMGIFff/3VuICJSGfjxo0DAPz444/iD9uMDh8+jH379uGXX36Bg4ODJcOzan/++ac4aoK1tkogaTxR7hueyaxZs2BnZ6eyDshvv/2GH374AS1btsx05x4Arl27ZqowjXLr1i28efNG56KcgiBkucEk2rRpo3K6vCt8vnz5MHv2bEuGJMp4Trpy5Qrq1q0ryXtozuSKOlbfguP+/fuoVasWPvvsM4wfPx4BAQFYt24d1q1bhz/++EPpn3x6TvL6NZCWJj8MEgEsB1AaQDd4e0dpXDcr16fIrjQV+zGPZAAd4OAgTwjURHoBWd1ODYrJDbmxY8eqWFI1Q34UyptyykcpyU7kd1kt2QKgdevWaNmyJVatWmXA2kMyPO+C9Bo9qi1cuNCAfWQfWe3HFZGcqibUL168QHx8PJo1a4bFixdj0aJFZo/jwoUL2LVLuqLVlnT58mWpQ9DZmjVr0KlTpxx7U8rYGmFZ6dz/+vVr/PjjjxgzZozKFqqjRo0CAOzfv98i8Ria3Nu6dSsKFtRtBL9z586hUKFC4igiUhAEAZGRkXqtk7ErnTmKkOoqPj4eFSpUwIABA5Sm6/ua5D58+IDdu3dn2RGGrDrB8fbtW/j7+yMoKAiFChVCx44dIQgCcufOja5du+KLL76As7MzBEFAgQIF0KNHD3Tv3l3qsC3OySkWwFQAPki/O8uuKIZQbK5vqBo1aqBYsWImiEYfb1Cu3CjY2clPvG0ALDR4a+/fv9d52eDgYIP3Q7qR/whXdSdHM3cAvhmm5QXQTONaZcuWtVgfX0vLSj9yiTQJDw+Hl5cXvL29xWmPHz82+37r1q2Lr7/+Gnfu3DH7vrKSqKgo7NixI0uN+HXv3j1s2bIFgiCgb9++2LZtG1avXi11WJK0dsl44yUyMhKTJk0Sh3FPSkpCt27dsH79epPv25QXtdHR0Zg1a5b4POPvzmvXrln0/Y2OjkbJkiXx/fffm3U/DRo0wJs3b5S61+jyXYuJicHixYsN6sKX8X385ptvkD9/foMHRnB0dISTk5PFkjQZ4x8zZgxCQkKwYsUKpemlS5fGqVOnVCbL/vnnH7XbHzlyJNq1a4d27dqZJmATs+oEx8KFC/Hs2TPUqVMHoaGh2LJlCwDA1dUV69evx+HDh/H8+XOMHj0ab968QZ48ebB27VqJo7aUEfDwOIe1a4ERIxYBmAbgpWTRmLoidXYmH3Pakhwdw+Dq2gvpLToAYCjSu68YJzU1VWPLAan7YJImnwOw/fj4dobp6t27d0+nP+Bv377F9OnTmeQiMoNjx44B0P3uXEpKCgICAsTCdMZ69OiRSbaTXYwaNQodOnQQ+71nBWXLlsW3336LnTv/Kyhu6N3a7C7jb40hQ4ZgxowZqFChAoD0WmAbNmxAjx49TLrfw4cPw8nJCVOmTDHJ9oYOHaq2G2haWhqqV69u0HYfPnyIiRMn6t3S5ffff0dYWBiWLFli0H51kbGeA5A+mlKePHlw6tQpAMD333+PESNGZFpu+PDhGDZsGOrUqWN0HPJiqfXq1TNoyFZ5nTJT1UDx9/fX+H0WBEGn4+7t27do1KiRUjIcSG9pvGfPHrXryUeWkf+tyWqsOsGxb98+yGQyzJw5U+1Qk05OTpgzZw6GDRuGFStWZLPif4ZIBfALgIWoUWMGevYEcuWSvjpwy5YtVRbqIcvJn/8qgH4KUxYgvQaD4U6fPi32ETeHR48eZak7ZtblM4XHswCkqZiumi4FAKdPn44pU6ZYrBaJKbAFB2mSnJxskpZ8Uli+fDmGDBmSpf8O698KzXLktdsU765nFRcuXJA6hCxHfhdefpdbW8FJQyQmJqJZs/QWj/ICkT///DM6duyIQ4cOGXSuUNUtWM6Ybjj16tXDzz//jK5du+q1ni6tRYwt9K6qiO+MGTMApCc23rx5gyVLlmDhwoWZWhAfPHgQAFS2KtU29KtiYvDvv/9WmjdkSMbuu/oJDw/HkCFDjOrmdvz4cfF9UEddYVJVLVqioqKUnmc8PmNiYsTH6j73rFD8Wc6qExyhoaGQyWT47DPlH+SqPgD5RdjKlSstEpt0quG/ooFEGf2B9NY8QPrpYSOA2gZvTZ/uKvrasWMHSpQogfr162tdNjU1FQcPHsTdu3fNFo+pXb58GbVq1UL9+vUtVqBJuR9/Q4XH/wCQ/8ioBsARSUlJRv1wlmf9tX0m//zzDy5dumTwfjRZvHgxfv/9d7NsOyvbsmULW86YWHJyMjw9PVGmTJksUXDy3r17ei1/8eJFM0ViOl999ZXUIWgl9WcvCAKuXr3KxH8W8NNPP2WaNnHiRGzfvh3NmzdXujg113GTlpaWaZqqfb169QpA+k0pU0tJSdH4+tasWSN2FTJ0+3K6Duf67t07la0fFEc9UXysz/lRl1ZwtWvXRkBAAGrVqqVy/suXL3VKgEVFRUEQBCxcuDBT8kvTe25IQs/FxQVTpkzBhw8fUL58eZXLSFFMVB2rTnAkJyfDzc1NaeQAR0dHpSyUnIeHB1xdXXHjxg1LhigBzZWZc7rAwECzdRHx8PDIMqN5aDYVgLwfqiOAvQBKKC0RHx+PSpUqqd1CdHQ0xowZg+XLl5spxv/uCly9elXrsnv27EGLFi1QpUqVTH/wTVF0be/evVi2bJnKHxOGGjlyJC5fvozz58/D19fXZNvVJDAw8OMjOwDy78EdAFEA5EkGWwCV8Pz5c3Tu3Nms8dy8eROtW7dG7dq1TfreAul3MIYNG4Y+ffroPJSbNbTgOHLkCL799ltJusJZs9DQULx79w5hYWGSX+Teu3cPM2fOlDQGXaWkpBj03ZbiuygIApYtW5ali4uuX78eNWrUgL+/v87rvH37Vu9jVtvfzdu3b6Nly5Yqk9Pa9hUaGqrTMXHixAkMHTpUpxYCly5dMri494oVKzINuapKxte1e/dujcvPnj3b6HpV2t7LEiVKaOx2IwgC5s+fb1QMuihevDhGjhypcl7fvn3VXjAb4smTJ5g4caLGz0xVXZS9e/cib968Ru9fsRWcuvNURESE+FielJEnK65fvw5PT0+dbt4JgoCTJ09ixIgRYmshOU0jLqpraREVFYVvvvkGc+fOVTl/+vTp6NGjh8YbU7/++mumFi9SsOoEh5eXV6aD2MPDAykpKXj48KHS9OTkZERHR5v1jjNlfR4eHkrPFZNj2obY9PLywuTJk9XOd3Z2tkiRN9PoC0A+SkkhAPsBFBDn3r59WxzNRJU9e/Zg7ty5YvNAqT148ABA+kld8YfT3Llz4eTkZNToAvHx8WjTpg0GDRpk0rsfoaGh4mPLN/srA8D+4+PrGf4HgKoWiUJxqDx1P+RevnyJn376SfyMdaX4t0HXH77WkOBQ1Z9ZKvv27cOoUaOyZbeOo0ePwsfHB0eOHJE6lExOnjwpdQg6XTCnpKSgYsWKqFmzpuRJIV3s3bsXgwYNQosWLaQORS15zSvFO6mK723G9/nQoUNwd3dH3759tW5bcXSc4sWLa1y2efPmOHDgAGrX1q8F6F9//YVSpUph4sSJANKTBN26dVOZxPDz88PSpUt1SuZFRESgadOmesUiN2DAALN85omJifDy8tL6910QBAQHBxuUoHny5InGwqkHDhwQR10B/vsbZ+rv45MnTyw2hHyTJk3w888/o23btnqtN3ToUKP3re5901SnonDhwqhevTrc3NzQtm1b8fO6dOmS1s9BEASTXle4ublh69atGDNmDCZMmKByGXktEnVGjhyJ3377zWQxGcqqExw+Pj748OEDnj59Kk6TNwfasGGD0rLr1q1DWloaihQpYtEYKWsbOXIk/Pz8MG7cOBQoUED7CloUKFAA5cqVM0Fk5pYM4Guk370HgHJIT3Job4Hi4uIiFlPKaPjw4RYdIlWbMWPGIDU1FcOHDzd4G4p3sjL2YczKBEHQcJdM8e6+vFWb5RMcuhg7diwmT56Mnj17Sh2KSV27dg179+6VOgyzatWqFebPn6/xTpM5CYKAAwcOiHf61qxZo3PBtCZNmuDJkycGXzQZ6sGDByhZsmSmSvjGkmL4wkePHuHevXu4evWq3i3ppEiIyFtumKo49oMHD7Bnz55MryU6Ohq1a9fGnDlzTLIfTeRFCDV11Xvw4AFSUlKUuj0p3oFWxZBRK4D/RjuR1zJp164dNmzYgHnz5iktp/gbQ/FmgCYnTpzAjh07Mk1fv369yYrralKtWjWV02NjYzUmz1etWoUqVaqYZbSKjDd7gfRuo0WLFkVAQACuX7+O5s2bIygoKNNyqampkidTr1+/jkmTJilNkx+nly5dUtmKw5Lnjq1bt2LRokX44osv1C7z+vVrXLt2DUDmWh/a/r6sW7fObJ+BpRJS5mLVCQ557Y0TJ06I07p16wZBEDBjxgwMHjwYq1atwpAhQzBkyBDIZDK9M35k3Zo3b45jx45lycJh5hcFoAUA+R+I2gB24r87+6ppq1ZtrnoK1sYUrcnU9UdNS0tDnTp1ULp0aTV3dyorPJbXalDsvqdbgmPs2LFo06aNWfuDywuBnT171mz7kLNkC47q1aujTZs2OaDbpOEXQ8batm0bWrZsiSJFiuDy5cvo27evxh+iWcGQIUPw8OFDDBgwwGTbfPHihcoLP3NzdnYWHxtzvlu/fj2KFi2apVonqRMSEoIqVapg+/btKF26NNq2bYtDhw4pLbN06VJcunTJrAW6dfXXX3+hdOnSaN26tdZlnz59isOHD2u9gHz37p3a+k3qEl0ZEypeXl7i47CwMJQvX14s9KqJvLWH4rm8R48emW56moM+x6fia1m4cCEA0xfZPXfuXKZWCzKZDAMHDsSzZ88wZMgQ+Pr64tChQ6hbt26m9WfNmqVxlA1VdG2td+7cORw4cECnZRWHPtZ27L18+RI+Pj4aW1vrSlVSUFUJBGNuoB09elTrMjln9E/9WHWCo2PHjihWrJhCv3Lgyy+/xDfffIOUlBQsX74cAwYMwLJly5CcnIxy5cqZ5KCnnOHdu3dSh2ABjwE0BSAvxtQUwB9IS1N/oaftIjA7NkeXgrGVx4H07L4qb9++xaVLl/Dw4UM1/XNVteCIQvrxACgnQFRLS0vDL7/8gr1792q9K66qSjqlM6b4mirW0M3GVBS7l2SX7oPm6K62ceNGo9Y/evQo9u/fr/d6tra24mNjauz06NEDT58+1Xv4xf3798PDw8Oidyq7du2K4OBgpdGjMl7sS1kg9PDhw/j555/FC0V5901dupsWLVoUzZo10+nCVNUFs65evXql1Fry4sWLCAkJ0ambjSXp2lKgcePG4h18OcUL5Tt37oiPM/5+MqY1QoMGDTJNS01NVToe5e9zxv2Gh4erHIXk9u3bGn8ba6pD9+rVK7x//x5z5sxBgwYN0LJlSzx79sxkowCdPXsWnp6eCA8PV5kU0LcFbp8+fTJNs3SLPlJPc1GBbK5ixYoICwvLNH3jxo3w8/PD1q1bER4eDldXVzRv3hw//PADXF1dJYiUcuXKJXUIpNYtAK0AHEF60dFvsGnTHc2r5GBTpkzBmjVrdC5caU6G3/GRJzjeQ7kw8U0APgBcAXgDeApdaGt+XrlyZezatSvLt6BTTA5ERETA09NTwmiITMOY5EJiYiKaNGkCQDnpL0UXEn26Pz558gRffvklgPSuqCNGjNB7f4a8RlV3eM1NnzjlhQorVqxo8Pn4+PHjmabpO6pPRvLX8OzZM3h7exu1LW0OHDigtpttRnfu3EFISIhR3Ud0KZQul7F7VEpKCl68eIHChQvrvA1Nx4MuybUNGzagW7dumabfvHkTlStXho2NTaZWSXKaErTPnj3DvHnzsGnTJnFaREQElixZojUmuU8//VTtvIYNG6qdN3z4cJO0mjW2aKyx9K1FZs2sOsGhjkwmQ79+/dCvXz+pQ8nSzP2HePr06fj3339RokQJvQtRkaWdA9ARwB4Adjh2rDyAyQBUj7GtTXR0NPbs2SNJa46TJ0/if//7H7p3726W7asbd9xUUlJS8MMPP6BYsWL44YcfzLAHVwDFPj7OOJToTQBffnxcCeoSHNHR0Xrv9c8//8zyCQ5FhQsXRmhoKD755BODt7FgwQKEhoZiyZIlsLFR3aDS1BeKbMFhevfv35c6BIMkJycjMDBQr7/1iYmJ2LhxI5o0aYKiRYsqXbAY8r23hLS0NMhkMqVj31wtdrL690vX84kp35/ExESULVs20/SgoCA8f/5cbfcXVa2CFFtkm0vLli11XrZChQoALBOXKoUKFQIAzJkzR+NoKaY0bdo0ldPl70FaWpqY9NRXxuSYqnOKptHbDD1ujSk0b2q6JtdU4bXUf6y6i4o1ateuHdzc3NChQwez72vw4MEaqy8bq3379ti3bx+WLl2qcoQSUwzXRKa0H0AvhefTABhWdXr06NHo3r07evfurXE5VeOUa5OSkoLFixeLzzM28f/111/x6tWrTEXLsot///0XixcvxqhRo8zUSkSx+0nG+g+KXUkqQp3Zs2ebMqAsI+PFi7GjBP3www/47bff8O+//xq1nazs+fPn2L59u8a764YmcdatWwdvb2/J6/oMGzbMYvsy5sZDxvd58uTJaNGiBWbMmJFp2WvXruHbb7/NlLyZMWMG+vTpI/kww/LvorbvTkpKCqpXrw47OzuNhTT1dfDgQZXn39jYWOzYsQPe3t5m7/ry8uVL/Pbbb1l+9D91x2zNmjXRpk0bNGjQQGULD3kLG1O6cuUKihYtqnNhUl2pKsJpqG+//VbvdcaOHWux0dYs2UpAVW0gbaN4ZHequv7oypDfzNaKCY5sZtiwYWZNOmSkrXBfzZo1AaSPnFG6dGmT7nv9+vUYM2YMVq5cadLtUjrDMtYbACg25V0MoL/eW1HVhFUVdXcKNDlx4oRSYWF/f3+lEQKMyY5nBYpNSM3TAkZTgkNxaOBKZth31rZ161al56b6QWnK1nKCIGSpITe7dOmCjh07KvV5vnPnDr755hujt92rVy88e/bMoO4FpqQ4JKcpRUVF4cSJE0pdSBT74ytS/Mx1bUWgWJxPUXJyMnr06IEtW7Zg8ODBSvPkTc+19Vc/d+6cTjHIGXrM1qtXT+P8Gzdu4MaNG0hLS0OfPn0QHJyxVZphWrRooXb0nw4dOuDZs2cYOXKkQdvW9fNr0qQJBg8enCVaI2s6HrT9HT937hwaNWqkcRlTntMUR1Y0pYwxGhrzli1bDFpP29C95maKBGLGC3R9i5gSyeWYLirnzp3DjRs3EBkZqbWfZlYuNOrr66t08WYuffr0wZo1a3D27FkkJibCwcFB5XLnz5/H06dPUbBgQY3FgwzRoEEDNGjQADExMejfX/+LaDKXhWjdugf27q328fkKAIkATD/UY8bCW7pQdbEoRb9nQ125ckXlBdOVK1dQo0YNpWkvXrxAvnz59N6H5gKmindmM14M3AGQhvTceM5LcGRkquboy5cvF/u+G0MQBDRs2BDx8fG4dOmSypZxlm5CL/97tXXrVvE8PnDgQJMObffs2TOTbSsrqVWrFh48eIBVq1ZZtICii4uLmEhVLMSqj5kzZ+Lnn3/WuIwU3TmeP3+OypW1F0lWxVyJQ/mQ3Z06dULp0qVhb695pDI5ebJG20WgJRKeT548UTtv6dKlWtePiIjA27dvs1RyNrvRVEtHn/o0hjJ2xK/Ro0dnqgFirmQUWT+rT3AcOHAAgwYN0njyzchcCY5Tp05h7ty5CAoKwosXL1QW1QsICMDcuXMRERGBqlWrYsmSJZL0qZJXN7916xa++eYb7Nq1S+VydnZ2kmeNybTs7e213plu2/Yq9u49DGDMxym/A0gCsNmksQQHB+eQ0Wr+4+/vr7LJ8aeffprpc+nZs6feFcZTUlJQrlw5DUsoJjgyjm7yAcADAGUAVAAgA5D9f5AKgoC3b9+iQIECeq1nqgu03bt3q52nzw/+9+/fi3fOw8PDUaJECb3imDNnDsqUKWNUwTxdmDK5ARh+AWeui6mWLVuifv36Rv+WkDcF37p1K7p27YrcuXObIjytpBzFI6OdO3ciNDQUo0ePljoUg8THx8PR0VHjMmlpafj333/F5vim/g16+fJlk25P7scff8SMGTMy1Q8y9IaCu7u7KcICkJ7EHzt2rMm2p8379+/h5uZmsf3pq1OnTuLj6Ohota2PNBk5ciQWLFhgyrCUSFXHhKyTVXdROXbsGNq0aYPHjx9DEASULFkS9evXx+eff67xn7nExcWhatWqCAgIUDl/69atGDlyJKZMmYIrV66gatWqaNasGV69emW2mNRRTLyYuq+ivvLkySP+4VNVqMqaGHI33tR0Ge8+/bpuLAB5NxcbAOsBfG3SWKRIbnz48EGvCx9j71pkpKk/dca7MBcvXtR7+3FxcRpGNZHhv5YZYQBUFQ2UJz0cAeh3AZ1VDRkyBIUKFTL4bnVWpC75om76uXPnMG7cOHz9tWm/wznRoUOHMGXKFJNt7+jRo3BxcVE7MoGUTJkkCgkJweDBg5Xu2rZv3x5jxowx2VCRctpGdjKVjM32VX3/fvrpJ6Xktb6JU23rnjp1Snxsys9r1qxZKrtTrFixwmT7MNSkSZMsuj9VrZWyUmsUxSS6IAjo2bOn3tv49ddfs3wRXSI5q05wTJs2DampqWIzz3v37uH06dM4fvy4xn/mIi/mpe7u2IIFC9CvXz/06tULFSpUwPLly+Ho6GhQv7bExERER0cr/dNHxYoVcfToUb33q+jly5dGrS9nZ2eHkJAQnDp1yqALuuygYsWKWLduHT777DOpQ9HTcADLPz62A7AFL19m3yrOZ86cQf78+fUq4jtkyBAzRmRpPgBcPj5W11fdPHU4du7cabJt6Wvz5s1IS0vDrFmz9FrPmn7sRURESLZvS14IJCUl4fjx41mqlYIukpOT8f3330sdhka6fh+Cg4Px1VdfZUoO165dG7/99hvat2+faR1T/Z6QM3SUB30ZMmykIecVXbtzCoKAP/74A8OGDTNqeGA5Q+tF6Evfc4S5C7zqImOBcyKyHKtOcFy5cgUymQybNm0yaig/S0hKSkJQUBAaN24sTrOxsUHjxo0NKmA2a9YsuLq6iv+KFi1qynA1MnUtDgAoUKAAPvvsM7i4uGhfOBvq168fevTooXaoSKl89913OlzsDwIgLyCYC0FBP+LKlex5Z3/Dhg1ISEjQerEdGRmJixcvQhAE3LyZsRuHalnx7mtmmgqMyuk2koohwsPDTbo9fenbT9kSCVdTXvwnJSWpLchpTckaTUaOHAl/f3/06tUr273md+/eZemYHz16pNNyjRo1wt9//40vvvhCabq8a4MpR6TQ1Zs3b9TOs0T9AkWK3/l9+/Ypzdu6dSvmzJmTaR1dW9oePnwYPXv2xOLFi3H48GGjW8bs3bvXqPWtiWLrS2utC0SUXWStqykTy5UrF/LmzYuSJUtKHYpWb968QWpqKjw8PJSme3h4KN1Za9y4MTp27Ij9+/fD29tbbfJj/PjxeP/+vfjPkhcOX331FerUqWOx/ZHUBAB9kT7CCiAIdli16gsA+g91JjVd72h9/vnnqFOnDjZt2qTztrNHoVxNBUblFBMcpi00OnToUKURb8zh+fPnKFWqlElG3tiwYYNBd2gBw+7sZpScnIwjR47o3Of9zz//NHqfhjp27Jhey6elpZmle6a8i2jGO8/mbkUSGxuLdu3a6XXOMDVzJ0fUDW954cIFVK9eXSw4a66hDAVBwLx58zQO36yuHluvXr2UnkdGRmLDhg3o1q0bHBwczN5Vt3PnzuJjxVFHWrVqJT5OTU3FN998g3HjxuHKlStK6+t6/Cr+ZpSi+7M1GzVqlPjY29tbwkiIyKoTHOXLl0dCQkK2a4qqydGjR/H69WvEx8fj6dOnaodIc3BwgIuLi9I/S3FycsKECRMstj+yvIcPH2aYkgagB+QtOdLSbJCe8OgFayRvtaFPUSx9Ch1LRzHBoa4Fx30A8jua+iU4nj17hnXr1iE2Nlbl/D179hhU/EyT+Ph4pTvLf/zxB0JDQ3HgwAGTbD8sLMyg9bQNb6mLxYsXo2nTpmI3KW0XOZoSIVmpZUB0dDRsbW3h4eGBX375JUv1ZTfU3LlzsXv3bnTp0sWo7ejyOZnzs9S07efPn6uc7ufnh2vXrsHPz0/tuvp+xhMmTMi0zv379zF69Gi0aNFC7Xrqktj//vuv0vM2bdqgW7du2LBhg5g4MedxqC3ZIAgCKlX673ybscWJKbqbPH782OhtmEtWPAcY+10mIvOx6gTHgAEDkJycjA0bNkgdilbu7u6wtbXN1M/05cuX8PT0lCgqItVU97tNA9AHxYrt//jcBumjqwywWFzZialHkjANeReVD0hPZKiSDODux8dloc9gXN26dUOvXr00Dh95/766/RqmcePGKFGihNjs3VLFBbXR9WJC0w/7efPmAQDWr1+faZ6qC1FN28pKCQ7F42Ps2LHi6BIAkJCQgOnTpyt1DzL04sdUF3S67P/t27cm2ZcustLFoCAISEhI0Gud1NRUDBo0SKnVT8bXtH37dp3qhGVcTyaTYfXq1RrXOX36NM6cOZNpurZhb80pJSVFY00HU3zmgwYNMnob5rJ69Wp8++23eP36tdShiKRsjUVEmll1gqNbt27o3r07hg8fbrFCSIayt7fHp59+qnRHOC0tDYGBgUbd6QsICECFChVQq1YtU4RJBAAahisUUKnSb/D3V+zesAzASAtEpV5WLE67atUqvdcxbyuQ3Egf/hUAbgNI1bCsvJuKA4BSOu9BXsR582bTDiesibxJ9p49eyy2T3M4cuRIpjoumi5q9L3gMTTB8eHDB8yZMydTk3ljZEz0Kw5TvnLlSkyZMgVt2rQxej/aRs358OEDgoODLZYwSE5O1prgU/ycFFsPbdmyBf7+/mpbRxkjNVX1uWDNmjWZakRkpOsoUxnf42XLlinV6FAc2U1Ol25eX375pdLz0NBQ9OvXT+M65hhNLzY2FvPnz1fR+lG7WbNmZRpdS3FkFAAGde3LWHx+//79mZZR99lnZIminlu2bFHqBkJEpI5VJzgAYN26dRg1ahS6dOmCEiVKoGPHjujdu7faf3369DFbLLGxsbh27ZpY7TosLAzXrl0TL1pGjhyJVatW4Y8//sCdO3cwcOBAxMXFZeobqo/Bgwfj9u3buHTpkileAllYwYIFpQ5BbzIZ0KnTeQCKI1LMBzBbooig8m6cJam6e2tIk2LFvtna9lelShWlC0NBEHD27FkNQ++WB2D78bG2ixLzjKQiNUO6M5r74nfBggX48OEDmjZtiubNm+tcb0MVc8S6cuVKjBs3Dm3btsWzZ8/Qs2dPDBkyBNWrV8eDBw8MiitjNyXF+fKiiKYeVUMxcbB9+3YAQO/evVGlShWtF/GmMnDgQJQpU0blhSaQuVtCxjvux48fx6JFi6ArY1vt9O3bF//73/80LqPrd8pchdAzHifqhjDVVGQUAJYvX65xvjZjx47FqFGjDCpY+uOPP2b6LZAxHnl9E30MHTpU6zK6FCH97bffsG7dOr33T0RkLrq3Lc6mVq1ahYULFwJIb46qrkmqTCaDIAiQyWRYs2aNWWK5fPmyUh/UkSPT72r36NED69atQ+fOnfH69WtMnjwZERERqFatGg4ePJip8CjlHHXq1ME///wjdRh6S//d/COABADTP04dC8ADKSnmawofHh6OqKgog9c3ZEhmXQwbNswk29G1+8ahQ4cQHKxcJHT//v3Yv38/ypYtq2YtXQqMymUcSWV7piWMaTFx9epVBAQEKPU5t4TLly9bdH+6CAoKUrpIjImJQd68eXVePzQ0FCdOnEDXrl117qIi/1uoi3PnzgFI/+517dpV6UJr6tSpOscppykpYqmWFB07doQgCGJLoyVLligVezQX+W+PX375BS1bttS6vKpimhMnThR/W2SUFbqupKSkWGQ/3333ncrCzhlbQig6c+YMGjZsaJZ4DElAaJIxaW6KGhyGGjx4sGT7JiJSxaoTHHv27MF3330HIL3wZb169eDh4QE7O2letq+vr9YfGEOGDBELxhFlBcYV6f0JwGsAAUhvMNYT48a9wv37T00Sm6KrV6+iRo0aBq+fkJCgc3NcfW3cuNEs21VH0+u4e/eumjm6DBErp30kla+//lrLNlQ7ffq0RZo7Z1f6dkvp1KkTrly5ovV7rJjQ+OOPP9CzZ0+9Y7tz547Sc0OGSlTXxWLdunUYO3YsXF1d9d6msUydGOjcuTM2bdoEW1tblfONvVhdsGCBUeubyueff56pbkWxYsUssu+VK1di5cqVeq3z2WefZYkkkCFMHffw4cPRvHlzk27TEhITE2FjY/WN04lIC6tOcPzyyy8AgObNm2Pr1q163fUiyknUDTcsCAL69u1rZCuS5UhPcmwE4IBLlwoBOAqgFQDTDRdobHHKbt26mSiS7KqqwmNtCY6HSG+dkwem7qKiqRXF+PHjYWdnh59++kntMomJiZDJZLC3tzdpXPo4efIkVq1ahdGjR6Nq1araV9BCXWsKXS5q5LUx9u/fr3EUC8V9TJgwwaAEh7kIgiB21VQ12oQ5atP06NHD5NuU++uvv/Dtt9+qrCuhjbHdSg4fPoynT5+id+/eRm1HF6dPn85Uz8IUwyOb09q1a6UOwSCCICA5OdmkxWzbtWtnsm1ZSqFChSzWSoiIsi6rTnPevHlT7HKSU5MbLDKa9Tk5OaFu3bpShyFS7Av97NkzeHl5mWCrOwA0ByAvalYfwHkAJU2wbdNQHKkhu0pMTDTix92nH/9/AUDzkIXpI+bI79aXQnqxUfXGjh2r9Pzx48d636V+9uwZZs+ejRkzZqgdUjExMRGlS5dGuXLlDOrrLnflyhWULVvWoC5LR48eha+vLzZu3Ihq1aoZHIO+Ml7Y6DuKiiJdRpr5+++/zdLSJquM5qJqZBpNtMWdcX5cXJzeMemyH22aNWuGPn36YMKECTqPSKG4z6zy+ZiLORI/Bw4cwO3bt02+XUVpaWkoV65cplZUxoiIiDDZtiwlOjraoIKrRGRdrDrBkStXLri6uqJw4cJShyKZrFZk9PTp01qLeeUko0aNwrt371CnTh2pQxG1b99efGzaLhsnADQCIP/RVBbABQCfGb3lyEjTtQTJrqKiolC0aFFUqlTJgCRHSQBuHx/req6Qd1OxQ/pnqZ6q1jWPHj3ScT/pFF+TumEnX758ifDwcISFhRl1nhk7dizu3bunU9Hp2NhYVK1aVUziGFuMUBt1SQp3d3eD1wX0v3D96quvMHLkSJ2KEGpjiub1SUlJ2LNnD96+fYs7d+4YVYvHElJTU3H9+nUkJSXptZ6pEgwzZ840yXakZK4uhaYUFRWlUz0VY23ZssWgEVo04d9VIsqurDrBUbVqVcTExBhVdT6nMledEk1NpLMKT09P8bH64VBNw87OLlNTeimb1gPmvkN3DUBd/HdxXADp3VW6G7XVypUrZ9u+06Zy//59vH79Gnfv3jVgWGzFFl76JjgAQ7qpqEtS6KJSpUoGX9zcunVL6zL61I74448/cOPGDbFLpDmK/Vnirrmh+9DU5cCQwoqGxrFixQq0bdsWdevWRYUKFeDp6Yn4+HgsWbJEaThVc9AU8/bt2zFq1KhMx8XgwYNRrVo1ODg4ZDp3nT59WunvUFZw/fp1yGQykyS0TCU7FLfMOBQrERGZn1UnOIYNG4bU1FT89ttvUoeSbTRo0AAjRoxQ6pYQHByssfK4tVmzZg2WLVuGixcvwsFBc9N7c9B1KNDs6zGABgDkIwDYA/gDwM8ADLu4MaSYoSlk1f7ahw8f1nONmgqPdR1JRDFRUFHP/Rl31z42NlbrOWnp0qWYPn260rTLly+LQ4Caiq6tZR4+fIg///zTqK4zgO7vW8bl5COFqWNo1ybF7izGJmLUDWGsy2uWD/8pH4UlMTERP/74I77//nudRuMx5niMiopSm3Dr2LEj5s+fj507dypNVyymqqoArKmHwTWGIAgW7W6lK2OSpJZi7V16iIiyIqtOcLRp0waTJ0/GpEmTMHv27Gzxx1BKAwYMwJkzZ8QK7Ip/mCtXrizpMGSW5O3tjQEDBkhWt0SXpubZXzTSi4wuVZj2I9JrdRhWL2fTpk3Gh6VAPvylPvRvOZFVKB7ruiY4jGvBYW4zZ87ElClTlKYdP37c5PvR9QKmXbt26N69O9atW6f3PhT/dr179w4XL17Ew4cPM+1b20W6uvmCIKBNmzZK054/f4758+dbpJl6cnIyfvrpJxQoUMCkQzUHBgYCgE598jUlBXX5jLUlO7NSwoKIiMiaWfUoKv7+/gDSizhOmDABP/30EypUqKCx4KhMJhN/FFmDgIAABAQEGNScu06dOqhVqxYuXbqE8PBwVK9e3QwRkiaKXYVy5cqlcpnmzZtjxowZlgrJhFIBDAVwF8BCALYA2gEo//H/EL229vfff5s0ugYNGsDDwwNdunTB/PnzdVpHygSH4cXlbADIh9d9BEDX2hVPAMQgPSFl/gRHdkiwamqdceNG+sg0hw4dQr9+/fTaruIww02aNFFbHFIxgaFr4kVeQyQjPz8/3Lt3D6dPn8bu3bv1ildf8u49ALBo0SKTbffmzf+ScHfu3EH58uXVLmtskeHQ0FCj1tcVWwRkL/y8iIgsz6oTHBn7/yYkJCAoKEjjOtb2x2jw4MEYPHgwoqOj4erqqte6Tk5OCAwMhIuLi5miI208PDwwYcIEBAcHo3fv3pg7d26mZRo0aIBly5Zh4MCBEkSo2tWrV/VYeimA+wA2I73QZTkAFwH0BLBT/WoW8PLlSyxYsEDnBIdU1q9fb8SwllUAOH98fFHPdW8hvabKJwAcAZiver256ygoUhyl5cOHDzrX4ilYsCCKFStm8ngUu4/oOvKFKqpacGzcuDFTcUKZTIZ79+4BSB9eNiNLj1KgS/cRbQmGOXPmmLR1SEa7du0y27YV5fRaQ0RERNpYdYJj8uTJVpewoJwnK7bO0DZ83N69e/Xc4iGk14HYCaAq0lsF7AAwG8BEpLf2sD47d+6ETCZDu3btDN7GmzdvjEhuAMqj2JzWc92bSE9wAEAF6N69RX+WvLBT7JahLcHx119/iY/fv3+P4OBgpfnLli0zug6UKf6OqavBYcj7unXrVoNi2LdvH3x9fQ1aVxtVdSwUxcfHmywJYUgdFU01ULp06YKuXbsaGxZlQabuOklERNpZdYJj6tSpUodAZrZz5044OzsjLi5O6lByFG1DcObPn9+Awp8PAdQDsApAl4/TxiH9ArorAGkKiZpLeHi4OCTv06dPUaRIEYO2Y/zd9M8VHp/Sc92MdTjMl+DIKDk5GfXq1cvyo2QNGjTI6G2MGTPG6G38888/KFiwoNHbAdQPz6ktEdOqVSt4eHiYJAZ9xcTEmKwVUMbaLrrQ1MVq165dOidfeNMmezG0eC8RERnOqouM9u7dG3369LFo02ayLEEQmNzIYvbt25fpLrbuEpCezPgegPwuqS+A6wBaGx9cFqI4fKC0QwnKExyRUE5Y6MK4kVT0kbGVyv379/Hvv/+adZ8AkJSUZNL6H+a8QFVsIfDo0aNM87PCqD9SFds8ePAgRo8ebdC6hw8fVvqOzpo1y1Rh6c2Y44etCYiIKCew6gTH+vXrsXHjRhQvXlzqUMgCSpQogRo1amhf0EA1a9bUvpCZlS1bFgDg5uYGR0dHiaP5j62trYm3uASAH9ILWQJAAQB/Y8mS0gAsP3RvVqb/kLCKygIo9PHxGQD6XsgrJkQyF6o0JW3dokwlYzLD29sbZcqUwdmzZy2yf2Moxu7r66vTqDHZoUWAJbonaXsfJk2apPc2s1ph3Jw03DsREeVcVp3gKFSoEBwdHbPFDzhzCQgIQIUKFSQb8tRSfvrpJzx8+NCsQ6wGBATg7t27eo+AYEpjx47FpUuXcO/ePbWjqkghICDADFs9C6AaFAuN7trlDeBfpBciJQBGHo9+Co/17Z4CABH4r+tQHVjDn5Rhw4YpPU9OTkZoaCgaNmwoUUS6+/zzz5Wey0cS01dsbKz4mEUt0y1evBiA8nujjeLoN9kZjwEiIspOsv+vUQ1q166N9+/fG1ALwHoMHjwYt2/fxqVLl6QOJduTyWQoU6YM8uTJI1kMNjY2qFmzplkTOYUKFdK+UAbVq1c3aoSCjBdm/4kE0B7AQADyIoLVAFwBMAKWPIWtWrUK33//vV4XOFlfC4XHxwzcxrmP/7vAEsPFmtvSpUvNun1zJtzlI58YS1vBTkvLKhfY27Zt0zjMfEamqL+SFUjbhY6IiEg/Vp3gkN+JM6QgGFFONGnSJJQuXdri+7Wx0XYqWg6gFnx85PVW8gBYAOAkgFJ67evYMf0v5FNSUtC/f38sWbLEYsNBqvPPP/+YaEv2AL74+DgCgD5D+ypS7LrRwKiIKHvLzq0lExMTtS7TqVMnvbZpjmTo27dvTb5NbQoUKGDxfRIRERnKqhMcfn5++PXXX/HHH3+gU6dOuHLlitQhEVncZ599hgULFui0rJ+fn/aFJHMTy5ZdRnpiQ963vSHSC5AOBWCZ4o1S381ctGiRibb0OQCnj48PADD0Lvk5hcf1jYqILE9bUkKfUSCioqKMjEY1S7RAtK6WWURERDmXVQ8T+8knnwAAcuXKhR07dmDHjh3IkycPChQooLYookwmQ2hoqCXDpI8U7+Jrv6NPuqpZsyZGjBiBkSNHGr2tTz/9FEFBQSaIyjC5c6cB+AHAbgBrAZQE4AhgMYBOAAZAeWSPrMvNzU3iCBRHpTlgxHauAohH+ufAFhw5gbqkiPFDFqv2+PFjs2yXiIiIrI9VJzhUDZMXHx+v8UdYdm5im919//33WLRoEYoXL54ti6JmpVFNzCXrfD9OA6gCYDbSW28A6a05riK9hcd0pF90Z12ffPIJTp48qTQtKSlJ4zqRkZEm2rsNgI4fHycCOGTEtlIAXALQCEAJAN4AnhoVnaGyQ3dEdd+hJUuWIDw8HHPmzMlC3zPVpG7FRERERKSOVSc41q5dK3UIpIe+ffuib9++UodhkPr162P48OG4efOm9oXJROIBfI/0UVZWACgDIBeAsQA6AxgMYL9J9vTjjz+Kj8PDw02yTVXnp6+//lrjOqYb5vEzAIU/Pj4AwNgL1mNIT3AAQBOkt66xvHXr1kmyX1P4/vvvAQDffPONWYe7NlRSUhLs7OywfPlyk7QGIyIiIjIHq05w9OjRQ+oQKAf4+uuvsWPHDgBggkMSJ5DemmMcgPEAHAAUB7APwB4AowA8MGoP8+bNEx/PmTPHqG2pExAQgH379pll25l9q/B4qwm2dxjAtI+Pm0KqBEd2sGvXLo2tCKOjo9GiRQu1800pJiZGpxFKbt26hfr166NEiRK4fv26BSIjIiIiMgwLHVi5gIAAVKhQQWWXjwMHDrDeCFmJRKRfYFcBEKgw/Suk1+SYDyCf5cPSUXJyMoYMGaJ1OdN0g3LCfwmOOAB7TbDNSwCiPj5uAlV/Wry9vU2wn+wvOTkZP/30k9r5r169wsGDBy0Si4uLCwYMGKB1uUqVKiE6OprJDSIiIsrymOCwcoMHD8bt27fVVqGvV68e0tLSVM4j1fLmzWvU+roMR0iqaR/p4B6AxgC6Anj+cZo9gJEA7gMYhKzYcE3XrieNGjXSvpBW3wBw+fh4M9KTHMZKxX+JpQIAqmda4tmzZybYj3EiIiKkDgEAMHv2bLXzdGlRQURERESq5YgEhyAI2LlzJzp27IgSJUrAyckJTk5OKFGiBDp16oTdu3fn2B+Vr1+/ZoJDT0OHDkWvXr2MWp8M06ZNGx2X3Ij0mhzTASR8nOYO4P/s3XV0E1kbBvAnNeqlSIt7cShS3N3dvbgU18XdFpeyuC8OCwss7rC4LFJcCsWtONX5/ijJl7TxTDJp+vzOmdNk5s69b9I0zby5EgwgBHE9GKzn7W/AgAF6ldu5c6cIrfVSur1YhPrkDirdrqexlFh+/vxp8Dn6Lpcs5XtiUv1fRERERCQG6/mEbyavX79G+fLl0axZM+zYsQOhoaH48eMHfvz4gdDQUGzfvh1NmjRBhQoVrObbPUsw1zwCUnN2djZ7G76+vhgzZozR54vzLbzxvL29sW7dOkljsIxvAMYCyIW4hIecH4ANAP4D0NDyYamh79K7unuw6FIDgHwCy0sAxFzyV3moSxMR61Vv7ty5Zm9DCknjb5OIiIjIPKyvr7aIIiMjUaNGDdy4cQOCIKB48eKoVq2aYix4WFgYDh8+jPPnz+PMmTOoVasWLly4AEdHR4kjJ2Nlz54dkyZNwu3bt/Hff/9x0k8NPD09dReyGc8QN2RlAYCpACr92p8fwF+Iu9CfAGAPAFv/9nyk0u2pItf9EsBpxC3Xmx9AbgB3RG7j/yw3Iatl/fOPOCv/EBERESVFNt2D448//sD169fh4eGBv//+G+fOncPEiRPRvXt3dO/eHRMnTsTZs2exZ88eeHh44Pr161i8WMwu22RpMpkMI0eOxPr161GuXDmpw0kycufODXt7e6PPd3JyEjEaTc4DqAygCoCzSvsDAPwN4AaA9ohbatYW1UPc8rBA3DCdv8zQxjal2+bvxWGIq1evSh0CEREREZmZTSc4tmzZAplMhuDgYNStW1djudq1ayM4OBiCIGDTpk0WjJDINnh6eqJWrVpo3LixwecuWrQIDg6W7Ex2FEBpAHUAKF/05gOwBsBDAP0Qt9qIrXBC3EoycmNgnt4q25VutzND/cbbs2eP1CEQERERkZnZdILj9u3bcHR0RIsWLXSWbdGiBZycnHD79m0LREZke1KnTo3t27ejadOmBp2XO3duM0Wkyz8AiiIu0XFKaX9GAHMBPP/1M6elAzODCYibewQATkA1ESGmMADHft3OhbjhKkRERERElmHTCY4fP37A1dVVr2+HHRwc4Orqih8/fugsS0S2QkBcoqM84i7GlSfK9EJcT467iFshpAEA44fhSKcCgCG/bkcA6G3m9pYr3e5q5raIiIiIiP7PphMcvr6++PTpE54+faqz7JMnTxAeHg5fX18LRGY5wcHByJs3L4oVKyZ1KERW7gyA+oibIHMF/r+8LABUA7ATwFMA0wHktXRwRsoGYCv+/1Y/CoC5J97dDuDDr9vNAKQ2c3tERERERHFsOsFRvnx5CIKAAQMGQBA0jzcXBAEDBw6ETCaTfAlPsQUFBSEkJAQXL160aLvKE06aMvkkkeXdAtAFQHoAgxA3J4dcOgBDf5W5iLjeENZ6AZ8BwH78P76DAGZboN0IAKt+3XZBXC8YIiIiIiLzs+kEhzxpsXPnTlSuXBlHjhxBVFSU4nhUVBQOHz6MSpUqYefOnZDJZBgwYICEEduO8uXLo1mzZihdujRGjhyp+wQJOTs7q71NSd1HxCUE/ADUQtyqI1FKxwMQt/TsSwDHAfRBXFLBGuRD3JKt8nk3biGuN0WshdqfAyDy1+0gAB4WapeIiIiIkjJLLl1gcYUKFcLMmTMxaNAgnDx5EtWrV4eDgwNSpUoFAHj37h2io6MVvTtmzpyJQoUKSRix7XB3d8eWLVsAAO/fv8fgwYMljkizUaNGwcvLC7ly5UL27NmlDoesjoC4nhD7AaQE0ApAB8QlOIC4eTkq/NrmA7gAYC/iekxcBBBjwVhlALohLjHj+mvfPcQlaD5bMI7nANYB6AwgOYD+ACZasH0iIiIiSopsugcHAAwYMAB///03cuXKBUEQEBUVhZcvX+Lly5eIioqCIAjImzcvdu/ejf79+0sdLkmgcOHCWLlyJYYNGyZ1KJJImTKl1CEkIu8BLARQDHG9JKYAuBOvTHEA4wGcBfAOcXNS9ARQEOZ9y63xq83F+H9y4wriJlB9ZsZ2NZkOIPrX7WGIG95DRERERGQ+Nt2DQ65u3bqoW7cubty4gUuXLuHNmzcAAB8fHwQEBKBAgQISR2hZ3t7eKFWqlNRhkJVo3Lgxli1bprKvRIkSOH/+POrXr6/z/BkzZpgrNCsXAmDkry0PgMYAmgAorFQm+a/9jX/d/4q4Hh7nAPyHuKEj96A69EVfsl/tNgTQGnEJF2VLEDf/RYQRdYvhPoBFAPoCcAMwDUB7iWIhIiIioqQgSSQ45AoUKJDkkhnxvX37Ft7e3vj82ZLd1SmxOX36NF6/fo306dNrnaB27ty56NePk0gCtwFM/rVlQNyqK9V//VTuIeMOoPKvTS4awAMAoYgb2hEG4C2A77+2SMRN1ukKIAWAzAByIG6IjLeaWG4hbt6LE6I8MtOMB9AWcXG3Q9yKLru1nkFEREREZKwkleAgwMnJKcmsauLh4aH2Nunm4OCA9OnTSx1GIhWGuFVEViFuSEphAOUAlAJQEkCmeOUdAOT+tZniNIBZAP6G5SYT1eUDgCGIW3YXAJYBKIC4BA4RERERkbiY4CCbNWDAALi6usLT0xM1atSQOhxKkmIBXP61zf21Lx3+P4dH3l8/cyGul4YhXiNuzo0TiFvhJdT0cM1iJeKG0dQD4AtgC+J6txgzLIeIiIiISDObSnB06tTJ5DpkMhlWrFihuyBZvTRp0mDs2LFSh0EUzwsAu35tylIASP9rS4G4ISluAJwQN1TlB+JWQgn9tb2xULxi6ArgGoA0ACoibm6OrhLGQ0RERES2yKYSHKtXr4ZMJjP4PEEQIJPJFD+Z4CDST7p0llkZw8HBAdHR0boLJmoffm03pA7EDF4jrhfHcQDOALogLmHTV7qQiIiIiMjm2FSCo3z58kYlOL5//651IsXELDg4GMHBwYiJiTG5rpCQEBEiIlvSpEkTqUOgROM8gEAAGxA3N0kfxA3L6QUOVyEiIiIiMdhUguP48eMGlY+JicGyZcswYcIERQ+OtGnTmic4iQQFBSEoKAifP3+Gl5eXwefb2dkpbj948EDM0ODu7i5qfWRZ9vb2Kq8PIt02I27IzWrEJTm6APAD0ByJa8gNEREREVmjJHt1sm3bNuTLlw9BQUF49eoVPD09MXnyZNy/f1/q0KyKm5sbfvvtN1Hr7NSpE9asWYNMmeKvJkFEtm8dgNYAfv66XwFxw3IaShUQEREREdmIJJfgOHbsGEqUKIEWLVrg3r17cHJywsCBA/Ho0SMMHz4cLi6GrmRg+6ZOnQo/Pz/R6psxYwbat28vWn1kuMyZM6u9TWQZmxGX2Hj5674P4laC2YW4Hh1ERERERIZLMgmOa9euoWbNmqhatSouXrwImUyGwMBA3Lt3DzNnzoS3t7fUIRIBAFKkSIGMGTMCAAoXLmyWNvz9/XHr1i3cvn0befLkEbXub9++iVof2aoLAPwRl9iQqw/gFoDliFs6l4iIiIhIfzaf4Hj8+DFat26NgIAAHDp0CIIgoF69evjvv/+wcuVKxYUkkbVwcnLCvXv38Pz5c3Tv3t1s7eTNmxe5c+cWvd4+ffqIXmd8xswnQ9boLYDGiBuyEvZrnyOAzgBCAPyNuKErjlIER0RERESJjM0mON6+fYs+ffogT5482Lx5M2JjY1G6dGmcOnUKu3btQr58+aQOMVHhBaV4lCfm1DRJp7Ozs0FLsFrTMBM3Nzezt7Flyxazt0GWtBFxPTbGAgj/tc8OQD3E9fB4DiAYQE0AySSIj4iIiIgSA5tLcHz79g3jxo1D9uzZsWjRIkRGRiJv3rzYtWsXTp06hTJlykgdYqK0cuVKTJgwweZWmZFC/vz50ahRIxQvXhxNmzYVpc6aNWviypUrWLt2rSj1WTu+Dm3RdwATAGQCMAjAM6VjqRG3nOw+AO8Ql/ToD6AIAHuLRklERERE1sumlomdP38+Jk+ejHfv3kEQBGTMmBETJkxA+/btIZPJpA4vUStQoAAKFCgAOzs7jBo1SupwEjUHBwfs2LFD1DplMhkKFy6Mnz9/6i5MWh05cgRVqlSROowk7AuA2QDmAqgKoCPihqk4/zru/ut+w1/3PwM4D+Dqr+0agHsAYi0SLRERERFZD5tKcPTv3x9A3MVevXr1EBQUBGdnZ5w6dcqgesqXL2+G6IiIrFeePHlw+/ZtqcNQEgvg4K/NHUA1xA1ZqYu4Hh1ynr+OVVPa9x3AXcQlOpS3BwA+mDtwIiIiIpKITSU4ACh6auzZswd79uwx6vzo6Gixw7JqmzZtkjoEIq00zVVC4nFwMP3fQbJkyRARESFCNPF9RdywlL8AyADkB1AOQPlfP+PPV+MKoPCvLb5viBv+En8LA/Dm1/YWQKTYD4KIiIiIzMzmEhyCIEgdQqLg6OgIOzs7xMbG4v79+1KHYzPKli0LFxcXeHp6omDBgrh165bUISV6v/32G5YsWYLISF5wWrvkyZPj9evXZm5FAHDj17bo1740iEtmFPr10x9ANqj/F+cGIPevTZuP+H/CQ570+PBrf3i8n/Lbn8ChMURERETSsakEx+PHj6UOIdFwd3fHkiVL0LVrV6lDsSnVqlVDeHg47O3tYW/PyQ/FMHXqVCxZskTqMMiqvULcBKT7lPY5AMgKIOevzQ9AdgAZf23uOur0/rXlMjCWT4hLdnxV2r7Eu69p+/Fr+6nmpzl6xhARERHZFptKcFjTUpmJQZcuXbBy5UqcPXtW6lBsipOTk9QhqBBj6IEhOJwk8fPz87OBnl3RAO7/2vaqOZ4c/092ZAKQFoCP0ub766ehS2R7GXGOvrQlQOQ/I39tUUq3Tb0f/WuLifdTn30xZnkmiIiIiNSxqQQHEf2fp6cnihUrhnbt2lm03YCAANSqVQv37t3Dw4cPLdq2LiNHjsTkyZOlDsPqderUCcOHD5c6DDML/7Xd0FEuGf6f9EiOuF4dun56IW4ojIeoEQMuv7bExpikSKwFNkPbEX5tULptzGbt50OpDDTcN/cxKds29pgl2rYWjMtw1hob4zIM4zKMPK4YAHcs1mqSTHA8f/4cMTExyJQpk9ShEJnN77//ju7du1u8XWdnZ/zzzz948OAB/Pz8dJa3VI+XvHnzws3NzSJtkS2JwP8nIjWUDHEJCXelzSPefeXNBXHL4ar7qe2Ytf8rd/i1JZM6ECIiIrK4zzBf79aErP1TkVkEBATg7du3SWK1lODgYAQHByMmRrpuwilSpEDdunVx4sQJVKxYEd7e3pLFQtanRIkSKvdz5cqFu3fvit7OyZMnsWzZMtHrpf9r27YtZs2aJXUYVkRA3JK13xE3Uam5OOD/yQ7HX5uT0qbtvq6yTr/qt4/305z77NRsnNOIiIiIdEuSCQ4g6ay2EhQUhKCgIHz+/BleXpbLnCmTyWTYvXu3JG2TdZs+fXqCOUL+/vtv9O/fH/v27dNwlnHkS0iT+fTu3ZsJDklE4/8Tldo6dckPfTd7E8+V/dqgdNuYzZrPh9JxaLhv7mNStm3sMUu0bS0Yl+GsNTbGZRjGZRjluH5YtOUkm+AgIuvl6uoqdQhkBEdHR6lDIJsnnw+DiIiIKCEud0BEREREREREiR4THERERERERESU6CXJBEdSmX+DiIiIiIiIKKlIknNwDBkyBF+/JoXJ2IiIiIiIiIiShiSZ4Bg0aJDUIRARERERERGRiGx6iEqOHDkwffp0vHnzRupQiEiLu3fvSh0CERERERElcjad4Hj06BFGjBiBjBkzonnz5jh8+LDUIRGRGg8fPlTczpYtm8Xbz549OwCgYcOGFm+biIiIiIjEYdMJjpEjRyJdunSIiorCtm3bUKNGDeTIkQO///47e3UQWSkHB8uPnAsKCsLdu3exdetWi7dNRERERETisOkEx8SJExEaGoq///4bderUgZ2dHR49eoThw4cjY8aMaNGiBXt1EFmAnZ1pbzUfP35U3G7QoAE8PT31Oi9Dhgx6lZPJZMiZM6ckyRUiIiIiIhKHTSc4gLgLq7p162L37t0IDQ3F+PHjkSlTJkRFRWHr1q3s1UFkAOVERUxMjN7nlShRwqR2+/btq7i9YsUKZM6cGVu2bMGMGTNMqpeIiIiIiGyHzSc4lKVLlw6jR4/Go0ePsG/fPjRq1AgODg7s1WEDUqZMKXUISUL9+vWlDkHxu27WrBk6dOhg0LmGJGWIiIiIiChxSVIJDjmZTIYaNWpg+/btePz4McqXLw9BEFTm6siVKxeWLl3KC6JEwMXFBYGBgVKHkWjJZDLFbV1DSXLkyGFUG7GxsUadJzblyUyJiIiIiMi2JMkEBwA8ffoUY8eORYkSJXDq1CkAcRd6hQoVgr29Pe7fv4+ePXuiZMmSePv2rcTRkjYdO3aEi4uL1GFYvTJlygAAGjVqpLK/QoUKqFSpEmrUqIFixYqZpW1958wwN0EQFLcLFy4sYSSJz19//SV1CEREREREWiWpBEdMTAx27tyJ2rVrI3v27Jg0aRKeP3+OFClSYNCgQbh37x4uX76MZ8+eYcyYMXBzc8OVK1cwfPhwqUMnMtnBgwfx77//YsmSJSr7U6RIgaNHj2L//v1wdXU1S9vt27c3S73K/vzzT4PK//HHH2aKxPb06dOHS+gSERERkdVLEksGPHnyBMuWLcPq1avx6tUrxbe4pUuXRs+ePdGsWTM4OTkpyvv6+mLcuHGoW7cuihcvjn379kkVOpFoXF1dUapUKanDsBpFihSROgQiIiIiIhKRTSc4tm3bhqVLl+Lo0aMQBAGCIMDDwwNt27ZFz549kT9/fq3nBwQEIE2aNHj16pWFIiYiIiIiIiIiY9h0gqN58+aK24UKFULPnj3RunVruLm56V2Hcs8OIiIiIiIiIrJONp3gcHZ2RosWLdCzZ08UL17cqDqePHkiblBEREREREREJDqbTnC8ePECyZMnlzoMIouxt7dXe5viVKtWDatXr0bBggWlDsUmpUqVSuoQiIiIiCgJs+lVVGwtubFnzx7kypULfn5+WL58udThkBUqXLgwWrdujdq1a6NOnTpSh2N1WrVqhRs3buDMmTNSh5Io6UoMJUuWzEKREBERERElZNM9OGxJdHQ0Bg4ciGPHjsHLywtFixZFo0aNkDJlSqlDIyvi6Oho8HKpSYlMJlNMLhwVFSVxNInPuXPn8OLFC+TIkUPqUIiIiIiIEkgSCY7jx49j48aNuH79Oj58+KD1wkYmk+Hhw4cWjE4/Fy5cQL58+ZA+fXoAQK1atXDw4EG0atVK4siIEj9HR0epQ0gUXFxckC1bNtSsWRP79++XOhwiIiIiIhU2neAQBAGdOnXC2rVrFfd1kclkZonl5MmTmDFjBi5fvoyXL1/ir7/+QsOGDVXKBAcHY8aMGXj16hX8/f2xYMECxeSoL168UCQ3ACB9+vR4/vy5WWIlSgocHR0xcOBAXLp0CY0aNZI6nERDJpNh3759ZnuvJCIiIiIylk0nOBYsWIA1a9YAAIoWLYr69esjXbp0cHCw/MP+9u0b/P390alTJzRu3DjB8c2bN2PgwIFYvHgxSpQogblz56JGjRq4e/cufHx8LB4vUVIwa9Yss9WdPHlyhIeHm61+a8M5X4iIiIhIajad4Fi1ahVkMhm6dOmCJUuWSBpLrVq1UKtWLY3HZ8+eja5du6Jjx44AgMWLF2Pv3r1YuXIlfvvtN6RLl06lx8bz58+1Ln0bERGBiIgIxf3Pnz+L8CiISF87d+5ExYoVpQ7DImbMmIGWLVtKHQYRERERJXE2vYrKvXv3AADTpk2TOBLtIiMjcfnyZVStWlWxz87ODlWrVsXZs2cBAMWLF8fNmzfx/PlzfP36Ffv27UONGjU01jl16lR4eXkptowZM5r9cRDR/1WoUEHqECxm8ODByJAhg9RhEBEREVESZ9MJDmdnZyRPnhze3t5Sh6LVu3fvEBMTA19fX5X9vr6+ePXqFQDAwcEBs2bNQqVKlVCoUCEMGjRI6woqw4cPx6dPnxTbs2fPzPoYiIiIiIiIiKRk00NUChQogDNnzuDr169wd3eXOhyT1a9fH/Xr19erbLJkyZAsWTIzR0SkvzRp0igSdnL6TPxLRERERESkD5vuwdG7d2/ExMRg5cqVUoeiVapUqWBvb4/Xr1+r7H/9+jXSpEkjUVRE4tq3b1+CfQEBARJEQkREREREtsimExxNmzZFUFAQhg0bhnXr1kkdjkZOTk4oWrQojhw5otgXGxuLI0eOoFSpUibVHRwcjLx586JYsWKmhklkkty5cyfYV7RoUQkiIUO5urpKHQIRERERkU42M0SlU6dOGo+5uroiMDAQo0ePRrFixeDh4aGxrEwmw4oVK0SP7+vXr3jw4IHi/uPHj3Ht2jWkSJECmTJlwsCBA9GhQwcEBASgePHimDt3Lr59+6ZYVcVYQUFBCAoKwufPn+Hl5WXqwyBCnTp1sHfvXqnDMBsplpG2dl27dpU6BCIiIiIinWzmk/zq1ashk8kSjOlX3vf06VM8ffpU7fnycuZKcFy6dAmVKlVS3B84cCAAoEOHDli9ejVatGiBt2/fYsyYMXj16hUKFSqE/fv3J5h4lEwnk8nU3ib9eHp6Sh2CWZUsWRKdO3dGqlSpsGTJEoSHh0sdksHs7e0RExMjSl0VK1ZE9uzZRamLiIiIiMicbCbB0b59e6u+WK1YsaLOCRV79+6N3r17WyiipKt9+/a4f/8+8uTJAz8/P6nDITXq16+P7du3o2TJkhZv28nJCcuXLwcALFmyxOLtExERERGRcWwmwbF69WqpQ6BEol27dmjXrp3UYZAW7du3R/ny5ZEuXTqpQyEiIiIiokTCpicZJU4ySolXlixZ4OTkJHUYRERERESUSDDBYeOCgoIQEhKCixcvSh0KERERERERkdkwwUFEkrPm+XP0tWrVKqlDICIiIiJK0mxmDg5tXr16hZUrV+L06dMICwvDt2/fNE74KZPJ8PDhQwtHSJS0TZgwAaNHj8aQIUOkDsVoRYoUsWh727ZtQ9OmTS3aJhERERGRNbP5BMdff/2FDh066ExqyI/ZwjfJRInNqFGj0Lt3byRPnlzqUIxmyfeOIkWKoFq1ahZrL7HImzcvQkJCpA6DiIiIiCRi00NUQkJC0Lp1a3z9+hW1a9fGokWLAABeXl5Yvnw5Jk2apFi+NVWqVFi4cCFWrlwpcdTi4iSjlFgk5uQGAOTJk0fvsr6+vmaMhIiIiIgoabLpBMecOXMQERGBtm3bYvfu3ejRowcAwMXFBZ06dcKIESNw9OhR7N27F9+/f8eaNWvQunVriaMWl61OMmpvb6/2trUpVqwYnJ2d4enpCX9/f6nDITNycHDA+PHjdZYbMGAA+vfvb/6AiIiIiIiSGJtOcBw/fhwymQzDhw/XWq5WrVqYNWsWLl68iLlz51omODJJnTp1ULt2bVSsWBEdOnSQOhyNSpcujffv3+P169fIli2b1OGQFZg9ezZSpkwpdRhERERERDbHphMcz58/h4ODg0rXcZlMhoiIiARl27VrB3t7e2zatMmSIZKR0qdPj7179+LYsWMoWrSo1OFo5erqCmdnZ6nDkBznt7FOMpkMQ4cOlToMswgMDJQ6BCIiIiKyIJtOcDg5OcHT01Nln7u7Oz59+oTo6GiV/a6urvDw8OAKKkRmkixZMowbN07qMGxeqlSpDCr//v17TJ8+3UzRSKt06dJSh0BEREREFmTTCY506dLh8+fPiI2NVezLkiULBEHAf//9p1L248ePCA8PR2RkpKXDJEoyxo4di1mzZkkdhk1bv369QeW9vb3NFAkRERERkWXZdIIjZ86ciI6Oxp07dxT7ypQpA0EQMHPmTJWyo0aNAgDkypXLojGaG1dRIam4uroqbru5uUkYifGkjvvp06caj2ka8lOjRg3ExMSYKyQiIiIiIqtl0wmOKlWqQBAE7N+/X7GvR48esLOzw5YtW5A/f360adMGBQsWxOLFiyGTydCpUycJIxafra6iQtYvXbp0WLp0KSZMmICaNWtKHY5RJk6cKGn7GTNm1HjMw8MDHTt2tGA0RERERETWzUHqAMypefPmuHLlCn7+/KnYV7BgQcydOxcDBgxASEgIQkJCFMdatWqFPn36SBFqouHn56f2NpE6Xbt2lToEk3Ts2BEFCxZEQECAZDG4ubnh27dvao+tXLkSq1atsnBERERERETWyaYTHL6+vmo//Pfu3RtVq1bFtm3b8OzZM3h5eaFmzZqoXLmyBFEmLs2bN0eBAgXw5csXFClSROpwiMzOxcVF0va3bduGWrVqSRoDEREREVFiYNMJDm1y586tmHeDDKO87C6RocqXLw8PDw/kzZs3wSpHhvL29kbOnDnx7Nkz+Pv7ixShdalZsybGjBmDCRMmSB0KEREREZFVS7IJDiKSRkBAAN6/fw8HBweNE2Xqy8HBATdv3kRERATc3d0THC9QoADCwsJMasMclFd2IiIiIiIicSSZBMe7d+9w7NgxhIaG4vv37xgzZozUIRElWY6OjqLWFb++du3aoW3btnj9+jX27dsnWltiefTokdQhEBERERHZHJteRQUAoqOjMWjQIGTMmBEtW7bEsGHDMH78eJUyHz9+hLe3N5ydnfHkyRNpAjUTLhNLtiBr1qwGlc+SJQuqV68Oe3t7M0X0fz4+PgZPpmpoD45UqVIZVJ6IiIiIKCmy+QRHs2bNMHfuXERGRiJfvnxwcEjYacXb2xutW7dGZGQktmzZIkGU5sNlYskWdOvWDYsXL8b58+elDiWBV69eYenSpWZto3379matn4iIiIjIFth0gmPTpk3YtWsXfHx8cOnSJVy/fh0pUqRQW7ZZs2YAgGPHjlkyRCLSg6urK7p3747ixYtLHYokvLy8pA6BiIiIiMjq2XSCY9WqVZDJZJgxYwYKFy6stWzx4sUhk8kQEhJioeiIiEhf9erVkzoEIiIiIrJyNp3guHr1KgCgSZMmOsu6urrCy8sLb968MXdYRGQhypOPWmI+jvgyZsxo8TZt1bZt26QOgYiIiIisnE2vovLp0yd4eXnBxcVFr/KxsbEmL1tJRNajevXqaN26Nfz8/CQZ5nH58mU8e/YMRYsWtXjbtsbJyUlnGXVzLBERERFR0mHTnwa9vb3x9u1b/Pz5E87OzlrLvnz5Ep8/f0bmzJktFB0RmYv8QtfLywt//vmnZHGkTp0aqVOnlqz9pCZjxoy4fv261GEQERERkURseohKkSJFAOg3cejKlSsBAKVKlTJrTERkPl26dEGuXLnQvHlzqUMhCbAHHhEREVHSZtMJjjZt2kAQBIwePRpfv37VWG7//v2YOHEiZDIZOnToYMEIiUhMy5Ytw507d5A7d26pQyEiIiIiIguz6SEqrVu3xtKlS3Hq1CmULFkSPXr0QGRkJADg0KFDePLkCXbv3o1//vkHsbGxqFevHmrUqCFx1OIKDg5GcHAwYmJipA6FiMwsX758UodARERERCQZm05wyGQy7Ny5E40aNcLJkyfRr18/xbGaNWsqbguCgKpVq0o6Vt9cgoKCEBQUhM+fP0syySIRWUaRIkW40ggRERERJWk2PUQFiJto9OjRo1izZg3KlSsHJycnCIIAQRBgb2+PUqVKYfXq1di/fz/c3d2lDpeIyCjt27dH1qxZpQ6DiIiIiEgyNt2DQ87Ozg7t2rVDu3btEBsbiw8fPiAmJgYpU6bksoJEREaoUqUKjhw5YpG2JkyYYJF2iIiIiChxs/keHPHZ2dkhVapU8PX1VUlufPr0CUWKFEHRokUljI6ISL22bdtKHYIKS81X1KJFC4wYMcIibRERERFR4pbkEhyaREdH49q1a7h27ZrUoRCRlWvYsKHF2/zjjz8s3qZYSpYsafS5AQEBsLe3FzGapIVDL4mIiCgpYYKDiMhArq6uFm8zMV+otmzZUuoQkqxUqVJJHQIRERGRxTDBQUREZKN+//13qUMgIiIishgmOIiIDFSuXDnY29sjb968UocimixZskgdgtXKnj271CEYLU2aNFKHQERERGQxTHAQERkoICAAL168wJUrVyCTyaQORxRTpkyROgSrZSu/YyIiIiJbxwQHEZERfHx8kCxZMqnDEE3+/PkVt1OkSCFhJLaDq3IRERERWRYTHEREBABYsmQJ2rdvj1atWkkdilqenp5aj1vbaiu+vr44f/48unbtikWLFkkdDhEREZHNY4LDxgUHByNv3rwoVqyY1KEQkZXr1q0b1qxZAw8PD6lDUWvHjh1o0KCBxuM9evSAo6Ojyr7OnTub3G7hwoWNOq9EiRIoXrw4li5ditSpU5scBxERERFp5yB1AGKytm/vrEFQUBCCgoLw+fNneHl5SR0OEZHRqlSpgipVqmicE6NYsWJ49+6dynvd0qVLMXHiRKRLl87odg2dgHXo0KFIliwZBgwYYHSbYuH8IURERJSU2FSCQxAEqUMgoiTAlubesCX29vYJhrHY2dkhbdq0Fo2jePHiaNKkiUXbJCIiIiIbS3CMHTtW6hCIyIbVrVsX/v7+KhNykvVInjy51CEQERERkYSY4CAi0tOYMWM4n42VcnFxkToEBUsNC0mXLh1evHhhkbaIiIiIEgNOMkpERJQIcX4NIiIiIlVMcBAREekpb968qFWrltZJrZl4ICIiIpIGExxERGRxrVq1kjoEvSknLKZNm4Z//vkHnz590qu8OXFibSIiIiJVTHAQEZHF2dkl7n8/bm5uGo/lypXLgpFox94kRERElJQk7k+YREREVmTfvn3IkyePXmW7detm5miIiIiIkhYmOIiIJPTbb7+hRIkSUodBetLVI6JmzZpq96sbTrJ48WKzxkJERESU1DDBQUQkoalTp2L06NFmbyd37txmb0Ms69evlzoEizA0QbFz507zBEJERERkI5jgICJKAqZMmSJ1CBp16tRJ5X6pUqUUt62tl4KxE3uK8TgCAgJMroOIiIjIljHBQUSUBDg6OkodgkbJkydXuZ8tWzbFbUskOAYPHqz1uLUkWeLHYS1xEREREVkLJjiIiEgjb29vqUMwu5QpU0odAhERERGJgAkOItIqbdq0itsZMmSQMBKypN9//x1Zs2bFqFGjpA7Fqhjba6JChQqStJ3Ye3m0aNFC6hCIiIgoEWGCw8YFBwcjb968KFasmNShUCKVIUMG3LhxA+fPn0fp0qWlDocsZMiQIXj06BGKFCli0Xbt7Gzz31Lq1KkxZ84cqcNIdIKCgqQOgYiIiBIR2/wkSQpBQUEICQnBxYsXpQ6FErH8+fOjePHiif7bYGvF5/X/zpw5AwBwdnYGAOTNm1fKcETl7u5u0vmmvk7q169v0vlERERE1o4JDiIiiZUqVQpp0qSROgyrULJkSQDA6dOnsW7dOlSvXl3iiFQZu4qKNejdu7fUIRARERGZlYPUARARJXXe3t549OgRXF1dpQ7FahQtWhRFixaVOgwA7GEjJT73REREZAj24CAisgIuLi64du0acuTIIXUoRERERESJEhMcRERWwt/fX5TVNsh8pOxREL9t9m4gIiIiUsUERxJXrVo1AICjoyMqVqwobTBERKRRUlwmloiIiMgQTHAkcePHj8f379/x5csXtGjRQupwiMhIjo6OUodAFmbu5EWdOnXMWj8RERGR2JjgILi4uCBZsmRSh0GJhJ+fHwDAwYFzFFuD7t27I3/+/GjcuLHUoSQJiXkVFUOlTZtW6hCIiIiIDMIrFCIyyJAhQ5A1a1YUKVJE6lAIwOLFi6UOwebp21NC1wSxpva4iH9+Ukq2EBEREemDCQ4iMoi7uzsCAwOlDoMSCWdnZ6lDsAhXV1ecOHFCaxlTExKmJkgMbZ/zdxAREVFiwwQHERGZzbRp06QOQVSaLvo/fPhg0FC/smXLmi0WIiIioqSKc3AQEYkkVapUUodgdby8vKQOQatKlSqJUo+h8xht375dlHaJiIiI6P+Y4CAiEknbtm3Rt29f/Pnnn1KHQnpasmSJJO36+PhYpB328jC/QoUKSR0CERER/cIEBxGRSDw9PTFv3jy0bt1a6lBID5kyZVKsCqQvU+bREHuSUWvTrl07qUMgIiKiJI4JDiIiIi2sPbFgLdauXSt6nXzuiYiIyBBMcBAREenJlAtusVdRMffFf8qUKc1aPxEREZHYmOAgItIic+bMSJcuHVKnTm3wcAYiczJHgqNr164AgFWrVjHBoafGjRtLHQIRERH9wgQHEZEWbm5uePz4MZ49e4bkyZNLHQ4lYmInJAztEaKrfNeuXbFkyRIIgoDAwEATIpOOi4uLxdv87bffLN4mERERqecgdQBERNbOyclJ6hCIzD4kZcaMGYl+zgsHB8t+rClQoAAcHR0t2iYRERFpxh4cREREejJ1Hg1TGJN8SOwJC0NJ+fshIiIi6THBkYg0atQI3t7eaNq0qdShEBElGWIlCUy9+HZ3dxclDjK/li1bSh0CERFRksQERyLSr18/syzDR0TWI1myZFKHQFpI3SOiYcOGitvKsTRo0ECCaJKO69evq93PHiNERETWhQmORKRixYrw8PCQOgwiMqPu3bsjTZo06NOnj9ShkMhMTY7IZDIsX75c7TH+b4hjroRDgQIFzFIvERERiYsJDpGcPHkS9erVQ7p06SCTybBz584EZYKDg5ElSxY4OzujRIkSuHDhguUDJSKrVrBgQbx8+RLz58+XOhSyQly6lYiIiEgzJjhE8u3bN/j7+yM4OFjt8c2bN2PgwIEYO3Ysrly5An9/f9SoUQNv3rxRlClUqBDy58+fYHvx4oWlHgYRERERERFRosRlYkVSq1Yt1KpVS+Px2bNno2vXrujYsSMAYPHixdi7dy9WrlyJ3377DQBw7do10eKJiIhARESE4v7Hjx8BAGFhYfD09BStnaTq5cuXitvfv39HWFiYhNFQYhIWFoYvX76o3DdUZGSkwee9e/dOYzzGCA8P16uODx8+qDxeue/fvytum/p8AEBsbGyCcz9+/Ki1vujoaISFheHTp09a6/78+bPi9tu3b9XWqU/cHz58MKi8ujbs7e0V96OjoxW3v337pvYc5ST627dvtdb//Plzld+F8u9Y3/jEphy/PmJiYkSPAdD82CIiItQe+/Hjh1niICIiSqzM9T86PpnAGbJEJ5PJ8Ndffykmg4uMjISrqyu2bdumMkFchw4dEB4ejl27duld9/Hjx7Fw4UJs27ZNa7lx48Zh/PjxxoRPREREREREJJrTp0+jTJkyZm+HPTgs4N27d4iJiYGvr6/Kfl9fX9y5c0fveqpWrYr//vsP3759Q4YMGbB161aUKlVKbdnhw4dj4MCBivtPnz5FgQIF8OzZM/bgICIiIiK9jRkzBvPmzQMAnb3e1Hn48CE2bdqEnj17IkWKFGKHl4AgCFi2bBkKFy6MYsWKGXSu/DNz6dKlsW/fPgBxXxx6e3ujX79+as9Zv349goKCABj3/FDidfPmTURHR6NQoUKi1y0IAr5//w43Nzc8fvwYq1atQq9evZAmTRrR21Ln4cOHSJEiBby9vQ0+18vLCwDw+++/o1WrVsiYMSMyZMggdohqMcGRiBw+fFjvssmSJVNZbjJ58uQAAE9PTyY4iIiIKNG5efMmIiIiULRoUalDSXKUP1Ma8zmyXLly+PbtG+7fv48dO3aIGZpau3btwpAhQwAYvrqSvGf1v//+C09PTzx48ABz5swBADx+/BglS5ZEt27dVM5xcXFR3Db0+YmIiED//v1Ru3Zt1KtXTxGz2MuSm6NObW29efMmwZe7oaGhuHfvHqpVq2aROLTZv38/8uTJg8yZMyv2Xbx4Efv378ewYcOwatUq7N+/Hxs3boSzs7PaOqKiolC2bFkIgoAvX77A3d1d1Bhr1aqF/fv34/Hjx6hVqxZevnyJy5cv49SpU2rLx8bG4sOHD0iVKpXGOsPDwzFx4kS0bt1a63vpvXv3UKRIEchkMsTGxmosFxERgYcPHyJPnjyK15fy/JHnzp1D9+7dAUBlmK05cZJRC0iVKhXs7e3x+vVrlf2vX7+2WAaOiIhM9+7dO7MtRUpkqAMHDqBz5874+vWrxjJfv37FzZs3LRiVeQiCgAIFCiAgIMDg+WHMITo6GhMmTMCZM2ekDkUvUr9vyecJstTzdfv2bdHqUp7jaNWqVYqLNWWmPL+rVq3C4sWLUb9+fQDAq1evkDZtWsUcffHdvn0b9+7dU3vs06dPGD16NEJCQlT2r127FilTpsTp06eNjtMQw4YNQ5o0abBy5UqV/VmyZEH16tWxadMmlbkCdfn586eo8R04cAC1atVClixZVPYXL14cY8aMwfz589GjRw/s3LlT4/Ls58+fR7169RS/e/k8W8ePH0fv3r21vi/ra//+/QCAvHnzKub/0/Y7rFWrFlKnTo1Lly4BAEaOHImAgAB8//4dEREREAQBQ4YMwezZsxEQEKC17RMnTgDQ/dquUaMG8uXLh40bNwKIm+8rffr0iuORkZFo2bKljkcqLiY4LMDJyQlFixbFkSNHFPtiY2Nx5MgRjUNMiIjIupw6dQqpU6dG06ZNpQ6FCABQs2ZNrFy5EpMnT1bZHxsbi86dO2Px4sVo3rw5ChQooPPC5uXLlyZPAPfbb7+hTp06ZplITvkbxPhfGElhyZIlGDt2LMqWLYuwsDDMmjXLKhIvchcvXsScOXMQGxuLfv36IVOmTCoTHRvKUt/8m0P8ZMDHjx8xcuRIRRIkJiYGQ4cOxZ49e0RtNyIiAhs2bFCZLFndxWL8+KZPn47Xr19j+vTpCeIeOnQo8ubNi1y5ciEyMlLl+IkTJ5A8eXJMmjQJ+fLlUznWoUMHfPz4EQ0aNEjQfnR0NK5fv25wkiY6OhqdOnXCmjVrEhybMWMGAGDAgAFqz23VqhX8/Pz0aqdu3bpwcXHBzJkzAcT9/W/atEnx+O/cuYO7d+8mOO/jx48YP348Hjx4kODYyZMntbapnBT+9OkTtm3bhnr16mH79u149eoVAKBkyZI4cOBAgnMrVaqE4OBgTJo0SbGvX79+kMlkioSFoeJPXH3ixAm1v6+DBw8CAP744w+8evUKU6ZMweXLl+Hn5wc3NzdUrlwZ169fV5Tv3r07Bg0ahCtXriSoa/PmzRrjuXr1KmQyGebMmaNIhCxevBgAFMkVuT179iiGelmMQKL48uWLcPXqVeHq1asCAGH27NnC1atXhdDQUEEQBGHTpk1CsmTJhNWrVwshISFCt27dhOTJkwuvXr2ySHxv3rwRAAifPn2ySHtERLamQYMGAgAhsf/r/P79uxATEyN1GDZn/vz5wsqVKy3apvz12Lp1a5X9ffr0URyTb507d9ZYz5kzZwQAQsWKFUWJ59ChQ3qVj42N1bvurVu3Kuq/c+eOsSGa5NWrV0JkZKQgCILQu3dvRTz16tUTAAj9+vWTJC65iIgIYc2aNcLTp08Vsa1evVpxe+LEiQnOkT8eXYYNG6aoR9fvLTo6Wjh//rxK3fJzU6dOrfXcHz9+6BXPjx8/tL4OpkyZomgz/uu6ZcuWKu/la9euVbk/adIkxf2wsDDh2rVrCf6e4luxYoXKsQcPHijuZ8+eXaXdMmXKCLdu3RIiIiIEQRCEAQMGqJzbv39/te00a9ZMJQblz/Tfvn1LEOOpU6eER48eCYLw/+c/RYoUKnU+e/ZMaN68ucbXhzbxnzdlynGcOHFCePbsWYL9AIR58+YJ//33n8Y2Tp8+neB5T58+vQBAGDt2rPD9+3fFsZ8/fwqxsbHC3bt3hdjYWKFFixYCAMHNzU2lztjY2AR1RkRECNu2bUsQn7rN0dFR7WMJDQ0V7t27p7jfpEkTtc/H+fPnhRw5cghr1qxR/C+WvxZiY2OF7du3Cw8fPlTbhvL2119/CYIgCAsXLlS858qPlS5dWuN5uXPnVrs/NjZWuHPnjvDy5UshMjJS5ViKFCmEUaNGCeHh4cLAgQPVnu/h4SE8efJE2Llzp8a237x5Y9BrzFiJ+1OaFTl27JjaX2SHDh0UZRYsWCBkypRJcHJyEooXLy6cO3fOYvF9+vQpwZshEVFSFhkZKURFReldvlGjRho/zCUWb968Eby8vITq1atLHYqwd+9eYdCgQQb9DsQUGxsrnD17Vnj//r0gCIJw8uRJ4datW3qde+rUKSF//vyKD5VhYWGK14Y5k0dfv34Vxo4dK1y7dk0QBPUJjhs3bqj9PKItwZEvXz5RXtvyOvbu3auzbHR0tFCkSBEhS5YseiU6lB+L8oXtjx8/hPPnz5s9aXf//n3B3t5eqFOnjiAIqgkO+Rb/Qiq+2NhY4eLFi8KPHz+EW7duCRs2bEjw2KOjo4WRI0cKBw8eNDjGRYsWCUDcBb08psGDBytux7+APX/+vABAGDdunNr6oqKihB07dgivX78WihUrpqinQoUKah/b169fBUH4fzJE+TOw8vOk6W9+z549AgBh6tSpgiAIwsyZM4X8+fMnuCi6c+eOoq5//vlHOH/+vPDlyxeVMpMnT07w+3n9+rUgCIKQNWtWxb4VK1YI5cuXV3n9Kyc4AAjFixdPUFd8y5cvVzmmXCcAlaSF8kVjdHR0ggRH586dFffDwsKERo0aCceOHRPSpk2rcr7yZ/pXr15pvKhUfv7lCY6oqChh//79KuWcnZ2Fjx8/CkFBQcK///4rhIWFCb/99pviy1pl379/F4oWLarx+dB0Aa0tRrmfP38qfp/KSZT4jwWAyu/53bt3itf72LFj1dZ/9uxZ4fr16wmOKSfw9Nk+fPiQYF9oaGiCfX///bfQpUsXjfX4+Pgobvfq1UvYsWOH4n78x65umz59usbnxtAtICDApPP12Sx1HZp4P6WRQZjgICJ93Lp1Szh69KjUYZjdjx8/hMyZMwv58uUToqOj9TqnSZMmGj/MiW3KlClCjRo1hG/fvola78qVKy32GHSRx7F8+XJJ2pdfTKVIkUJ49OiRAEBwd3fX61w/Pz+V8rdv31Y8HnNeaA8aNEjth1nlBMeaNWvUfrBUl+CIiYkRzp49q/FCQx35N41yo0ePFvr3768Sjz4JjufPn6tcmOiiHKNygqNKlSoCAGHOnDk665CLjY1V9LoYPny4XueMHj1a5TkyJsExf/58tRdAykz5Gy1XrlyC+pVfM/ETHCVLllRpa+bMmULNmjWFnz9/CoIgCDNmzNB4oRKfvIeb8jfY8nIXLlxQ2VehQgUhOjo6QW+N1KlTK8pERUUpbvft21cQhLjfm3IyQHnz9/dXqSt+kgKA0Lx5c0EQVBMc8bfNmzcLv/32m84LNUEQhJCQEGH79u2CICRMcOTNm1evCz53d3chS5Ysav+udW179uwR9u/fL/z48cPgBIdyj0RNW+HChQUAgp+fn+J5ffnypdChQ4cEZaOiooTOnTsL8+fPFw4fPqz3Y5BvP378EO7evauSnPv27VuCxJDy+0b8rXr16hqP/fXXXxqPGZrc0LSpe14M3TT1jtBne/HihSiPw5wbExwkKiY4iCzv8ePHkn07bYyYmBjBwcFBACBcuXJF6nAEQRCEbdu2CWfOnNF4PDQ0VOjXr5/WLq7qKH8D+OHDB73OUe4erO83/dqcO3dO2LVrl9pj8nZWr15tcjvK4nejNreHDx8KK1euVPk7iImJEa5cuaKIY+zYsUbVffz4caFRo0bC48ePjTq/a9euihj27dtn0POi/IFt9+7dZklwfPnyRTh//rzKN/wVKlRQiVN+u02bNooyykMSlLcuXbqo1H/q1CnB09NTyJYtm0q5u3fvCmfOnBGqVauW4HX+77//CgCE8ePHC4IQl+yQn6f87eWKFSt0Pj750Fn5B3NdlGOUJzjkPRYACDlz5kxwTkxMjFC1alUBgNC1a1fFc3n58mWV+vShnOBo166dxi7g9evXFwAIc+fOTVBHzpw5E5SXv/7fvn0rfP36NUEiRZMLFy4IDRo0EO7du6fYpy7BoXzBFD/BUapUKbWvp6VLlwqCIGjt5h6ffL9yQgWAIpEYf/P391f8PHv2rCAIgpAqVSrF8aZNmypud+/eXRAEQTh48KDWiydlEydOVFtGnpw0dVN+zIcPHzY6wRF/U0466bsFBgbqTEbJb8sTHMY8Xm3n9evXz6Tn8+TJkyo9yYC45KMYvytu1rMxwUGisvYER2xsrPD69Wu9x15S0jFu3DihUKFCwqVLl6QOxSCbNm0SACi6MycG0dHRin9CW7ZsMWtbX758ERYvXqz14vS///5TxKPpolH+IbhAgQIGtW9MgiP+B9abN28a1GZ88nouXryo8diCBQsMqnPEiBGKi091tCU4jh8/bnCiSBd5W8oXe/E/iI8ZM8aouuUXQ82aNTPqfOUExz///KPxeVFHOf60adOqJDi6desmzJo1y6iYlMkvACdPnizMnDlT+Pjxo+Dh4aESp/y2cg8OfRMcyheTmrYsWbKonBO/S/rPnz8V99V9c6/J169fVRIcz58/Fz5+/Chs3LhRpdfS/PnzhR49eiTo2n737l2Vxw+oT3DI50WTb6dOnRIEQVBJaOn7Ox81apTBH+bjD5tQl+CoU6eOoru7g4OD3gkOdfGrS3AobxMnThSio6MVz7FyAkO5Tvnfq7YER61atRS9eZTnm6hdu7ZJF0Dqtm7dugmCkHC4QvxN7vXr16LHoK4t+e0+ffoIy5YtUzmWKVMms8eg76bcKwhAguEz+my5cuUSatWqJflj4Za4N0tdh3IVFbIKPXr0gK+vL9KkSaOYnZgIAMaNG4dr165h7ty5UodikFWrVgEA9u7dq9h348YNBAYG4sKFC1KFpZYgCPj06ZNF25w2bRp69OihdemwsLAwxW1Bw+zu8hnMb9y4YXQs0dHRePz4sc5y8ZfdO3z4sNFtKmvbtq3GY4asXPD69WtMmTIFY8eOxffv3xMcFwQBhw4dUntuaGgoKlasiKJFi+rdniGUn6shQ4bodY7yqhnqvHv3DkDcahH6unr1KsqWLYszZ86ItipE/Nfm0qVLMWjQoATljh8/jufPn+td73///Qcgbpm/wYMHY+LEiRZf6vPZs2cq97W1/+TJE7X7P3/+jFWrVilW8Fi+fDnc3d2xdOlSlXINGjRAq1at0Lt3b8W+vn37YvHixYpZ+uU0rdJy+vRplb/l+K8h+XKftWrVUtn/9OlTlfsRERE4efIkLl26hLlz5yI6Olpte7qsWLFCZ5m9e/cqlgOVr2Yhp/y4P336hAkTJqBv374Jfg/qVpBQZ/To0UiePDnc3Nzw/v17/Pvvv3qdp86+ffuQMmVKAFBZDvOff/4xuk6x+Pr6mr0N5ffYBQsWqKxCsWLFigSvKSl16tRJ5b6uFUTUuXv3ruVXwiAylkXSKCQ5a+/BkT9/fkV278iRI1KHkyhcu3ZNuHr1qtRhmJ38ddGoUSOpQzFIjRo1FLHLlShRQgD+P6O6LvrObm+qwMBAwd7eXmXCMXP34FD+m9+7d6/aeTD27t2rKKNpnoz432jrS7kHh3ws/s6dO7Weg3jfROTJk8egNpXFn5haU1vBwcEa67h//77QtGlT4fLly4IgxM2GLz8vPDw8QfkjR45obPPo0aNGPY+CIGidw0Rde/Gfx9GjR6uco/zNfvHixVX+b0VERAjBwcHCrVu3FGUyZ86sd6zK7Sp3h1Z+rcnFxsYm+AZeXT1p0qRR6cFh7PMbGxsrvH37VuPzlCpVKpXXu/Is9xUqVBD27dsnxMbGauzB0bVrV5X29OnBET9e+Zh8AMLt27eFhw8fKu4rz5+g7vddvnx5tY8LgMrfIxA3X4jycIQxY8YkOOfz5886Y543b57K/hUrVqjMpSPfSpUqpThn165dCY4vWrRIyJgxo17Pl/I2YsQIQRDihsqcPHlSyJAhg8F1HD16NMGKBidPnlS5L58HQlcPDuVt2rRpKveVn2N5D44yZcro9fo4cOCAwY/L0K1Tp05CwYIF9XqtmjsWbty4GbdxiAqJigkO23Lp0iXF8yUfu2qr5I/TFhIcym/yuigvVzZgwACj44iMjFQsE6eJvB3lrsXxExyxsbHCiRMn1M6mbgzlv3kAapfXFCPBER0drXKx//LlSyFPnjyKcfLKm/wCTBN1/6zlXeUNFb8eTcflv/vff/9dGDZsmMp8DMpLvQmCoDLBmHxlkNjYWMUQnPhd7JUpJ1wMERISInh5eQnDhg0Tnjx5IjRp0kTo37+/ULFiReHJkydq24v/2EeNGqU4pm6W/cGDBwuRkZHCjRs3hCVLlgiA6jh6YxMcypvya239+vWCIAhCp06dBADChQsXtNbj6+urM8GhfPF448YNtbENGDBAkMlkwvHjxzXG6uXlpbjdsWPHBMf9/f1Vhjgob8YMUQGgMnS0UKFCen+QPX78uHDz5k2VfYcOHdL7fF2bpslUAQg9evRIMM8GAMHV1VXjOfIlF8WKD/h/gmP27Nmi1ht/mzx5siAIhiU4tG0VK1YUfv78qddrxJjEj7m2r1+/qiwbyo0bN+vamOAgUTHBod69e/cssryc2JSXkdq8ebOodZtjHpQvX74IT58+Nepc+eO05gSHfDy5MlMTHPHHahtL3jthx44dGsvI21CegTx+gkP+DXS6dOlU9sfGxgqfP382OK74CY7GjRsnKCNGgqN27dqCk5OTEBISIgiCkOBbS+UtVapUWmNWd87p06fVltW1+kn8erQdV57nQDmhYm9vr3K+8rhz+etRPlP+xYsXtSY4jh8/rtgvv9DT5vnz58LNmzdVLrKVJywEEl6Aa3rsygkO5Z4Z8q1Vq1Y6x/ULwv97kmhbclTT+fEnQlReErNBgwZa6/Hx8dGZ4IifdLh3757w8+dPlVjlx6pWrapxOUVvb2+jP1h26dJF6Nevn1C1alVh1apVep+n/FqWzwtiDZu2BIexW48ePUStb8SIEXot9WjqVr58eWHcuHGi1qn8P4wbN27cxNg4BweRmd24cQM5c+ZEiRIlMHv2bKnD0SgyMhI7d+7EpUuXFPv69etnlrY6deoENzc3zJ8/X7Q6o6KikDNnTmTKlEm0OQusSXR0NHLlyoU0adLg/v37otV77949jcd27dql99jp3bt3A9BvLLg2ly9fBgC8ePFCZX///v3h7e2tmAtDWXh4eIIx/Jrs2LEDa9asMXqsuyb//PMPIiMjsWnTJgDAjx8/NJaVz+nw7ds3LF++XO8x1GfOnFHMAfLgwQPIZDK4ubmha9euJkYfR/k5UY5feQ6JihUrws7u///S5XMU7Nq1CwAwf/58vedvGDx4sM4y6dOnR/78+VXmPnn06JFKGfk8NLoIcV+24PHjx4iMjFR7XNe4/rNnzyJ58uQYO3YssmbNij59+uDly5do3rw5jh8/rlcMygyZ1+PNmzcaj02ZMgVVqlTBz58/VfZ37doVzs7OsLOzS9D24cOH4ePjo7Y+U+YNkclkmDdvHg4fPoyOHTsadG6fPn0gk8kU84JYgw4dOohe5+LFi0Wt78OHD2jfvr2odapz8uRJjBs3TtQ61b2nExElBkxwUJKlPCGaPhMMGkIQBFy4cAE3b940ua6lS5eiUaNGKFasGN6+fStCdJqtWrUKsbGxok7o+eXLF7x8+RIAcOvWLaPrUZ7AS5fIyEiMHTsWy5cvN7o9fX358gXPnz9HbGwsQkJCMGHCBGTNmtXoiURDQkKwZs2aBPvlCY3r16+jYcOGKFOmDD5//qy1Lk0T8Ylp/vz5iImJwdSpU/HhwwfFa14QBBQoUACZM2fW++8rMDAQW7Zswc+fP3Hy5ElERUWpHL97967WJJIgCOjZsyf69Omj9higOnGpJr///ju6du2Kdu3a6Sz74sULlC1bFgULFlScK6f8+tu9ezfat2+P9+/f66wzPuUEx+nTp9G9e3dMmzZNZf+JEycUkzgCCSdX1JTcEAQB48aNQ8WKFVX2HTt2DMWKFdOZSFNOvBp78T158mTY2dkhW7ZsmDdvntoYdenfvz++fv2KCRMmIDQ0FAsXLkS6dOmwdetWVKpUSZG80uTo0aMaj4WHh+tsv0aNGmr3jxw5EkePHsX69etV9itPHvn+/XtERESoHNcUr3ISy5IWLlwoSbuJna7XHRERic9B6gAo8YuNjcWjR4+QIkUKpEiRQupwrMLWrVvRokULAHGz9hcqVMjoul6/fq24/f79e6ROndrU8HTS9C36+/fvkSxZMri7u5utbUEQcPPmTeTOnRuOjo6K/aGhobh37x5y5syps46jR49iwoQJAIDGjRtrfF0+ePAAGzZsQLt27ZA1a1ZR4h87dqxJ51euXFnldy5XpkwZREZGqnxb3L59e+zcuVNjXeoSJeby6tUrlClTBnfu3MGZM2dQsmRJRTLh2rVryJo1KwRBwLt377S+hocOHYo2bdoAAAICAhT7P3/+jNy5cwOI+/tq2rRpgnNfvHih+AbWwcEB9vb2Ksdv3bqlV0+WrVu3AtBvpvkzZ84obrdu3TrBt/mPHj3C8ePH0blzZwBAhgwZMGXKFJ31Kps2bZritvIKE/EpJxjiJ7fWr1+vNmFz8uRJjB8/XmVfbGws2rZtixcvXqBTp064c+eOynHlVR4M4e/vj9atW2sts3r16gT79Elw6Eoopk6dGtOnT9d4XHm1o/hu376Nnz9/wtnZWWOMunr7yJO8mmJzcnLSer6cKT049OnJoo6+PX8ooW3btkkdAhFRksMeHGSyFi1awM/PDz4+Pmq7ry5cuBCdO3dWdBFPCpQ/7JpjqTB9u/2L6cqVK/D19UXGjBnNsqSoIAjo168f7OzsULBgQbXLh8p7SuhqX7kbf0REBO7evYuMGTMmuChu27Ytxo4da3B3bWXKy+Npo2/XbnXJDbn4PRrkww802bNnj15tqrNlyxY8e/YMf/zxh17fYN+9e1dxIRx/SUe5IUOGwMfHB5s3b9ZYj/Iymsq9Az5+/Ki43axZM7XLoCpf1M+dOxezZs1SOa7v8oXKvTxev36d4HlXptzjYOPGjThy5IjK8WbNmimSG4D2oUeaKCc4tFG+yK9Vq5Zi6Um5devWJThH3bLcb968UQxFUrf8pKZkgq6L7+vXryeISR9iXWAPGzbMqDbevHkDNzc3nD59GmfPntX7/ULfpTsBqB2ao44pCQ5jh9DJh6cRERElBkxwkMmuXr0KIO7iIv4QhOfPn6NPnz5YuXIlAgMDE3Sb1uXr16/4999/jerWbat27Nihs0xISAjatGmDJUuWiNburVu3EBMTg/DwcNGTNrGxsbh586bK3B+aHmfNmjWRMmVKvS9WgbjhAWFhYdi+fTsiIyNx5swZhIeH4/z58wA0X5BrEh0drUhEaLtoUtalSxeV+8Zc6Io5x4cu27ZtQ/v27dGrVy+MGDFC5VipUqUUf/eGkCcchg4davC58ZMMP3/+xIwZM/DlyxeD69Lm7Nmz+Pbtm+J+mjRp4OTkhDp16hhVX/yhVaZcoOrStm1bxe1bt25p7bGgjbrkkTnP08USCV1df1uxsbEoV64cSpcurXed8h5HYtI234e5VKhQweJtEhERGYsJDjKr+N+ky78li4mJwf3793XOIVC2bFmUKVMGOXLkSDBGWZu7d++icOHCKFiwIK5du6bXOTExMdiyZQtWrVqlcoFjbeJP5KfO77//jg0bNqBHjx4GJ5UsLTo6GoUKFVLMYRBf/OElhw4dQkxMDIYNG4asWbOiV69eOttQfg4WLFiAsmXLIm/evAnKRUREYN26dTrnCqlZsybSpk2LAwcOYOPGjTrbf/LkiUpvBABGzXMSfyiBKf7++2+13+grk3dp/+OPP1T2nzt3DoMHD9b4rXf8+Qbie/r0KR48eKB/sEh4kfX48WOjEiW6NG7cWO1+QxJq2mhKcFy8eBGnTp0SpQ1zePHiBT5+/IgHDx5ofN7N0bMLiHu9EREREemDc3CQ3gRBwP3792Fvb4/s2bObVFejRo2we/duuLq6ar1gl18EhYeH49OnT0iRIgUGDRqEp0+fom/fvqhUqZLa8/bt26dIbOzatUuvOTCOHj2qmDcjPDwcAwYMMOxBWRHlxJGx3bs3bdqEc+fOYciQIUifPr1YoSXw+vVrlZUY9CWfzPKPP/7AokWLVI4pJ7WWLFkCV1dXxX35haq6MfHLli1Dnz59kDx5cpUhEfHJhyFoG2qhrGfPngn26TPsIz59e868efMGJUuW1Di55+fPn9GgQQMAcb0x9BF/9ZFHjx5p/GY9JCRE5b66JFv8VSV0iT90R9tqKKZ49eqVWSdy3Lp1q9phSMWLFwcAvH37Fv379zdb+8oqVKig1wSwkyZNwujRoy0QEREREZFp2IOD9DZx4kTkypULOXLkUDvTvSHk3du/f/+Ohw8f6n3exYsXMX/+fOzcuROTJ0/WWE75ol7fC3zlYTDxh8TIV0WJf+GW2AiCgOPHj+tcGeHZs2do1aoV5s2bJ+qKKuooTyQphkuXLikmGAXiej3om0yQT55oTPJBm/3794tanzpfv35FhgwZIJPJsH79eo0XrrGxsSoJP129qOTUfTuv79+WuglBzSFz5swWacdU2nqe7NixA3/++adF4jh58qRewz+Y3CAiIqLEggkO0ptyt31Tlvs0hfJEbPpOyqYPXRd5q1evRokSJZAvX75EPeHamTNnUKlSJZQpUwa3b9/W6xzlpSfF9ujRI7WTHJpC3QWbvsObli1bZlBbq1atUrlv6FweN27cEGUp4YsXL6Jp06aKCToHDRqUoMzTp0/RtWvXBMkPc0yCCwAlS5Y0S72mkK+woou5h3WtXbtW47Hu3bubtW0iIiIiW8YEBxHi5gyIPxmgstDQULW3xXTjxg1UrlwZnTt31nqBNWfOHKPbkK+MAKgfouHt7W103cZ48uSJRdrRtjKJnBgTAhryu3nz5g0KFiyIAgUK4N27d0a3+fjxYxQvXhwHDhzQWu7GjRtYvnw5OnTooLK/UaNGitsHDx7UeL6hiZCLFy8aVN5Qhr52Vq1apdf8NURERESUeDHBkYjMmzcPmTNnhrOzM8qWLav3spOGOHToEAYNGoQZM2YYPEY+sTPH8xnft2/fsHTpUmzbti3BsY0bN+LYsWNYuXKlxhn9o6KiVJIUQNwyva1atdKr/YEDB2o97u7unmDfypUrUbBgQaNW/QBg0ioXYWFhovQg0afLf/wlHf/66y9069YNO3fuNLl9dd6+fav2ti7xEw3ZsmUTLSZttm7dqnL/yZMn6NGjh0XaVmfkyJEGlVde+pWIiIiIbBMnGU0kNmzYgGHDhmHp0qUoWrQoZsyYgRo1auDevXvw9PQUrZ3WrVsrvk3OkSOHyre7ypYtW4Znz54pJuWUmiAIePbsGVKnTg0XFxeN5WJiYiAIAhwcLP/SDw0NRfXq1RWJgsmTJ+PevXvo1KkTypcvj5iYGJU41VGe8yBnzpyKujZt2oR169bpfFzqEhj6uHHjhsaJQAVBQJ8+fbB//340aNAA/fv3R8aMGQHETRLr5+enKGtoskNejz5+/vyJKVOmGLV8qTry1TSWLVtm9ESthtI2salc586dLRCJfiwxt4gm5hpaQ0RERESJF3twJBJz5sxBjx490L59e+TLlw/Lly9HdHQ0NmzYIGo7X79+VXtbnf379xu1TOPVq1dF/za1W7duyJw5MzJnzqxxideQkBD4+PjA09NTZ3d+MS1cuBCpU6dGlixZVHpBjBw5EmvWrDHoglX5m37llUHii46ONi5YA/33338YOHAggoOD8fDhQ8yePRtdunRBVFQU1q1bh+DgYJXyo0ePxqtXr3D58mXUq1cPmzZtEi2WQ4cOYeLEidizZ49odSpbt24dhg0bhu/fv4tSn3xCU7lp06YlWBI3vvi9dxITMZe4JSIiIiJShwkOkaxfvx7du3dHQEAAkiVLBplMhtWrV2s95+LFi6hduzaSJ08ONzc3lCxZElu2bElQLjIyElevXkXVqlUV+xwcHFCxYkWcPXtWlPjfvXuHJ0+eGPxNdVRUlNbj6iYC1dXrY8OGDQY/rkuXLgGISwBoWhXg/Pnz+PDhA378+IHjx49rrW/y5MkIDQ3FrVu3DH5OBEHAkCFDFPcPHTqkdY4FfVYxkFN+Dajr5bFhwwbIZDLs3r1b7zrl5L1gDFGtWrUEq6wcO3YMu3btQvv27dWuwHLv3j0MHToUe/bsMXhST0327NmTYOUbMUVHR6N9+/b4/fff8ddff4le//79+zF8+HCd5dTNm5JYjBs3TuoQiIiIiMjGWeUQlU6dOolSj0wmw4oVK0SpS5dRo0YhNDQUqVKlQtq0aXVORHns2DHUqFEDzs7OaNmyJTw8PLB9+3a0aNECz549U1kF4d27d4iJiYGvr69KHT4+PgYtsarJ7t270aBBA9G74X/8+BH58uVTu1+bFStWYMWKFXjw4IGo8RgqS5YsAGDwkriGTkIaERGRYJ4JTb1QlKlbyWbAgAEGta3syJEjBp+jae4IXfNmGJpI0aVevXqi1hffypUrFbfbtm0rev265kYhIiIiIiLdrDLBsXr1ashkMqMvuOXnWjLBsXz5cvj5+SFz5syYNm2a1m9jo6Oj0bVrV9jZ2eHkyZMoVKgQAGDMmDEoXrw4RowYgaZNmyJz5swWif3q1atmmWMg/qSNhipXrpxRQy3OnTtnUrvx3b17F6lTp9a7vDFLTPr5+amsbtG/f3+cOXPGoHYiIiLw5s2bBOWqVq0KmUyGBw8eJEgsxMbG4uHDh8iePbtBwx8iIyNRq1YttccyZMigdz1SOHr0qMHncOlOIiIiIiLrZ5UJjvbt20Mmk0kdhkGUhw7ocvToUTx8+BAdO3ZUJDcAwMvLCyNGjEBgYCDWrFmDMWPGAABSpUoFe3v7BEtdvnnzBmnSpBElfrFER0dj//79+PHjBzw8PADETWypaz4PdeJ3x79+/TocHR11ntexY0dMnz7d4Pak9OHDB5VeG8YknDT1YtA2HKdZs2bYsWMHOnfujPLly+vd1o0bNzROMJk3b1696yEiIiIiIhKLVSY4dM1dkdjJLzirV6+e4FiNGjUAACdOnFDsc3JyQuHChXHkyBHUrVsXQFwi4fjx45g0aZJBbY8c+RQ5c+ZX2XfuXDEAvROUPXgwF8LD/3///v2aAHxUykREuODTJzcAcXNMjB37Fk+eXAQg/ya/N6KjnQHELTm7cKEMP350AfD/hMfWrWnw/n1rANp7EFSvvhu9evVSxPr8eXYsWBB37O3blgDKKsqOH/9BUe78+eJYsAA4dy6PYt+lS6Vw/76nyuN++jQ3gJwJ2r1+vdyv1Ufiyv7zTzY8f645znfvVOvV19KlUJz38mVWxWO7eLGEXvUdOwYACYcEabJ8uQt27EgHoDdWrAAiInLr1Q4AHDqkuezjx/lw9Gg+jccXLpTh/v0aAGroHavcjh3p9Y6RiIiIiIikFglgqcVakwmWWv8wCZEPUVm1ahUCAwMTHG/WrBm2bduGS5cuoWjRogmOe3h4wNvbW2UZxA0bNqBz585YtmwZihQpgpkzZ+Kff/7RuExsREQEIiIiFPc/f/78a8nNTwDEW1aWiIiIiIiISL3PALzw6dMntdetYrPKHhy27tOnTwDihqSo4+npqSgj17p1a7x9+xYjRozA69evERAQgAMHDmh8kUydOpXLMhIREREREVGSkSgTHNevX8eBAwcQGhqKHz9+qEwkGhUVhbdv30ImkyFt2rQSRim+fv36oV+/fnqVHT58uMrKDP/vwdEZQNw8Fv7+hTB06FDs2LED27dvS1BHjx49Ua5cOcX9+fPn4/x53RN45syZC/fu3YWnpxc+f/4EFxcX/PjxAwCwbt169OzZE1+/flGUHzt2HFasWIGwMMNW1vD09MKiRYsgk8kwYsRwhIaGok2btvjzz/UJymbLlh0VKlTAqlVxq2GUKVMWZ86chr29A/Lnz4///rumta2iRQNw+fIllX0NGzZCaGgorl69AgAIDl6E5MmT482b1yatZgIAOXL4KRJUW7duxc6d4i9NWqNGTRw4sF/R3pcvX/D69Su9zm3Xrj3WrVur9lihQoVRtGgRs0zwO3LkSEyePFn0eomIiIiIyByiLNuckIiEh4cLjRs3Fuzs7AQ7OztBJpMJdnZ2KmW+ffsmpEqVSrC3txdu3rwpSZxTp04VAAirVq1Se7xp06YCAOHSpUtqj7u7uwsZM2YUNaZPnz4JAFS2WrVqCYIgCOPHj09wDICwdu1alTqaN2+utpx8mzp1qnDp0iVhyZIlAgDB19dXACB4enoqykRHRwupUqVSOe/MmTNC/vz5tdataRszZowgCIJQqFAhAYAwa9Ysvc5r27atAEBwdHQUateubVTbI0eOFOrVq6e4/+LFC2HOnDlCgwYNjKpPeStVqpTieR81apTJ9anb+vXrp9Ken5+f3udqK1unTh3Fa0DsLWXKlGaplxs3bty4cePGjRs3bubbPn36JOr1rSZ2SCSioqJQq1Yt7Ny5E66urqhTpw6cnZ0TlHN1dUXHjh0RGxuLbdsS9kqwBn5+fgCA+/fvJzj26tUrfP36VVHGmpUqVUrlfoUKFVC0aFGDV8DZv38/QkJCjIrh1q1bRp1nDvfu3cOAAQOwa9cuk+u6efMmihcvjoYNGxq1VK65JUuWTOvx06dPG1Rf3CSuur1//96geomIiIiIKOlINAmOFStW4Ny5c8iWLRvu3r2Lv//+W+McFk2aNAEAnDx50pIh6q1ChQoAgIMHDyY4duDAAZUyUmrfvj2OHj1q9nYmTpyI2NhYlX1r16of/gAAPj4+WLRokbnDMtj3799Fq+vLly+4ePEidu3ahZs3b4pWryV8//4dW7duNeicgIAAM0VDRERERERJRaJJcGzcuBEymQxz5sxBunTptJYtXLgw7OzscOfOHQtFZ5gqVaogW7Zs2LBhA65du6bY/+nTJ0yZMgVOTk5o3769dAEqqVKlCv755x+Lt5spUyakTp1a7TFjZt/18fHRXUiH+L1q7ty5g927d5tcry7xkz9imTdvntr98gQhAHTv3l3lvj6OHTuGnz9/mhQbERERERGRoRJNguPGjRuQyWSoXr26zrJOTk7w8vKyaHf25cuXIzAwEIGBgYpvr5X3LV++XFHWwcEBy5cvR2xsLMqXL49u3bph0KBB8Pf3x7179zBlyhRkyZLFYrGrU79+fcXtMWPGSBhJQuvWrTP4nDlz5iAyMhJdunQRLY5jx44ZVH7GjBmitQ3ELSdsCVK/FomIiIiIiPRhkQTH2rVrsXbtWty+fdvoOr5//w4PDw84OTnpVT4qKgoODpZbJOb06dNYs2YN1qxZgytX4lbVOHPmjGJf/DkJKlWqhNOnT6NMmTLYvHkz/vjjD/j6+mLTpk0YNGiQxeLWZNasWejZsycAIDIyUmO5QoUKAQDc3NyQPXt2o9szpIdFyZIljWrD0dHRYkkBMWnqQTNp0iSzJx+ioqLQokWLBPvjD5sZNWqUSe3o+3dtCZUqVZI6BCIiIiIiMoJFEhyBgYHo2LEjChYsiMDAQDx58sTgOlKlSoXPnz/j69evOss+fvwYX79+1TmURUyrV6+GIAgat9WrVyc4p3jx4ti3bx8+ffqE79+/4/z582ovJqXg5OSk19CECxcu4N69e3jx4oVJw0C2bNmCfPnyGX1+UtShQwc8fvzY5OQCAJw9e1YxrER58tgXL17odX69evWwcuVKo9pevHixRZORuojxfBIRERERkeVZbIiKIAiIiYnB2rVrkTt3bvTu3dug80uUKAEA2Lt3r86yCxYsAACUK1fO8EDJII6OjvDz81M7L8br16+1nuvq6qq4nSJFCtFj0+bdu3cWbU9fHTt2lKztZ8+eATC+h4yxcubMadH2iIiIiIjINlkkwXHs2DEcO3YM69evR+fOnZEuXTr88ccfBtXRqVMnCIKA0aNHa/1WecmSJZg3bx5kMhm6detmauhJlouLi9HnFixYUK9y69atw++//46tW7eiQIECRrdnjP379wOAQUuwRkVFGdRGmjRpDCqvS58+fdChQwdR6yQiIiIiIrIVFklwVKhQARUqVEDr1q2xbNkyPHr0CI8fPzaojjp16qBJkyZ48OABAgICMHjwYPz48QMAsHTpUowcORL+/v7o1asXBEFAly5dFL0+SH9BQUFYtWqVygomN27cQNOmTfWuo0SJElizZo3Ocrlz58aQIUMMqttUZcqUUbnfpk0bvc/VtZqJ/PUot3r1aqtZDccSMmXKZLa64w9hGThwoFH1SNlDhoiIiIiIzEuyVVSMuRhat24d2rRpg1evXmHOnDn48uULAKBnz56YNm0abty4AUEQ0KlTJwQHB4sdss3r0aMHFi5ciMDAQABxCQi57du3G7T0p7e3t8nxtG7dGm5ubihcuLDJdck1adJEZY6J4cOHi1Z3y5YtVe7b29ujSJEiBtXh7+8vWjzmEBAQoHZ/qlSpULlyZVy+fFljGTHJX6OGuHr1KofDmJmvr6/UIRARERFREpZolokFAGdnZ6xbtw4nT55Eu3btkD17dri4uMDJyQmZMmVC69atcfz4cSxfvtyqJi1MrNKnT6/3JJPmMHfuXHz9+hUnTpwQtV7luT/EJAiCyXVkyZIF1apVEyEa4xkzWWy2bNkgk8lQpEgRq11WVltSVT4hcY0aNSwVjk3KmDGj1CEQERERURJmtizAnj17cOjQIdjZ2aF27dqiXrSVLVsWZcuWFa2+pOrt27c6h124u7uL2qa3t7ei542+3N3d0axZMxw+fNjiq8wUKVJEseyvpSRLlsyi7SkbM2YM/Pz8JGtfndatW2Pfvn34+PGj2doYNGgQypcvj3z58uHs2bNma8fWTZ48mUkiIiIiIpKM0T04duzYgWzZsqFHjx4Jjg0cOBANGjTAwoULMX/+fNSsWRNDhgwxKVAS36VLl1CmTBlReh7oy9DkBgDIZDJs2bIFHz58MHhyWksyZMJSa1WxYkWDz8mQIYP4gSj5888/RatL0zLTdnZ2CAgIMGlyXQKXeiYiIiIiSRmd4Pj7778RGhqaYCnWK1euYO7cuRAEARkzZkT27NkhCAJmz56N48ePmxoviezcuXOIiYmROgyrUbRoUbPV7evra7bhMVLauHGj1CHo7fnz54rbc+bMkTAS62PplYyIiIiIiMRm9BCVixcvAgCqVKmisn/lypUAgEaNGmHr1q2ws7NDnz59EBwcjGXLlun1DfHatWuNDSuBpLSKhSGmT5+OYcOGSR2G1VmzZg1at26N69evA4ibPFPOzc3NpLrd3d0RGhqqskJNYjd37twEw8VMnf/m77//Rv369U2qQy5DhgwICwtTeywoKAgDBgwQpR11tm3bZtEVgqyBnZ200zrlzZsXISEhksZARERERNIx+krk7du3cHBwQJo0aVT2Hzx4EDKZDMOGDVN82B0xYgSCg4P1HtseGBgImUxmbGgKMpmMCQ4yyYIFC3DixAkULFgQffr0UTn24cOHBOU7dOigdYncVKlSIXfu3Lhz547a487OzgbHGL8XlTqVKlXCsWPHDK5bl/LlyyfY17NnT2zatEnvOvLnz69yP1euXGjSpAm2b9+u2Kc8V0z27NmRO3duVKlSBaGhoXjw4IHebRUsWBCAOKv86NKkSROzt2Ft4v8/kNqCBQsS/N0SERERke0y+uu28PDwBBNQvn//Hg8ePEDy5MlRvHhxxf60adPCzc0NL1++1KvuTJkyadxcXFwgCAIEQYC9vT18fHzg4+MDe3t7xX5XV1dkypSJM/prIfU3rYmFr68vunbtihIlSugsmy5dOmTOnNmoduzs7DBs2DCj5sCoXr065s2bp/H4gAEDcPToUZV9Hh4eWuuUD1eoWrWqxjL29vYmL+E7efJkpE6dWud7g/IwqlWrVsHR0RGHDx/Gv//+q9jfq1cvne317NkTa9euxalTp+Dg4IAyZcrA3d09QU80Mo4YiWkxSTlhLxERERFZntFXue7u7vj06ROioqIU+06fPg0AKFWqVILyjo6Oenddf/LkCR4/fpxgGzZsGKKiolC2bFkcOHAAX758wcuXL/Hy5Ut8/foVBw4cQLly5RAVFYVhw4bh8ePHxj48m5UtWzaUKVMG1atXlzoUUjJ79mxMmzYtwQVZ3bp19TrfyclJ77a8vb2xfv16rWXOnz+P27dvY+DAgXrXK6dtOdb45O8JV69eVexLnz59gnKdOnVS3NbUY6VMmTI623N2dka7du2QL18+yGQynDp1Cu/evbO5+Sfs7e2lDoGIiIiIyOKMTnDkzp0bgiDgn3/+UezbvHkzZDJZgguQ79+/49OnTyZ1Xz569Ch69+6NevXq4fjx46hWrZrKxaCTkxOqVauG48ePo169eujduzcnNVXj6tWrOH36tFX2bkmePLna29rcvn0bbdq0wbVr18wSkxSUh2MoX6iaOreFIVxcXJA7d26jvpHPkiULHjx4gH379hnVtqlznRhCJpMlSCply5YNQFwS15DEkSE8PT1NruPSpUsiREJEREREZDuMTnA0btwYgiCgS5cumD59Ovr374/NmzfDzs4OzZo1Uyl78eJFCIKArFmzGh3orFmzIAgC5syZo3V4hUwmw6xZsxAbG4uZM2ca3R5Z3vLlyzFlyhRs2LBBMVeCLiEhIdiwYYOZIzM/5de08nCJNGnSYNCgQahevTo6dOiAxo0bI2XKlKhTp44oF8mA+nk0TJU9e3bkyJFD9HotIUuWLHj+/DmePHli0Ko3jx490qtcs2bNTJ7ctEiRIvDz8zOpDiIiIiIiW2N0gqN3794oWLAg3r9/jxEjRmD+/PkQBAF9+vRRfAMqt2PHDshkMpMupC5duoTkyZPr1fMgU6ZMSJ48uWKlFxKHIc+n8hwPuuZ7kMudOzeGDx+OVq1aGdVzwN/fX2Xul8SifPnyKkNRWrdurXJ85syZOHDgAPz9/VG/fn28e/cOe/bsEW2+g1y5colSjy1Jly4dUqZMadA5WbNmRVBQkM5yW7ZsUTsMRx1t75mahqHUqVNHr7oTm9WrV+ssY0srFBERERGR4YxOcDg7O+P06dOYMGECatasiVatWuHPP//E7NmzVcpFRkbixIkTyJQpk0nzPnz58gVfv35FZGSkzrKRkZH49u0bvnz5YnR7FEf5IkrfSWKBuHkS5s6diyFDhmDZsmXmCE3FxIkTce3aNb2HtmijPBTE3JOx/vbbbzhx4oRJvZvIevj4+Iha34kTJzB58mS1x9zc3NQeW7p0qcqkrMbo3bu3wedMmjTJpDZ16dChg84y+iZTiYiIiMg2mTSo393dHaNGjdJaxsnJSZT5EbJmzYo7d+5g7dq16NKli9aya9euRVRUVKLtIm9p06dP13jM1dUVkyZN0vl7js/e3h79+vUDELe6TmIydOhQzJkzBxUqVLDZC6Z06dKpvW0u2bJl03sIhzUxZtlefRiSLBwxYgRkMhlGjBih9tjIkSNV9onx+9S3h4lcWFiYRV5HZLilS5eiW7duUodBREREZBGJZq3QVq1aQRAE9O3bF2vWrNFYbu3atejbty9kMhlatWplwQgTl2TJkikmUNTVK2bkyJEoVKiQBaKyDi1atMC5c+e0Jn4Su6JFi+LMmTM4e/as3vOdmGLw4MFmb8Mcxo4da5Z6De1d1rVrV7PEIZb06dObdYnYiRMnmq1uS0mRIoUk7TLRT0RERElJoklwDB48GIUKFcLPnz/RqVMnZMmSBYGBgRg5ciRGjhyJwMBAZM2aFR07dsTPnz/h7++faC+qLMHV1RU7d+7Uu3xwcDD69u0LR0dH8wVFFiOTyVC6dGmULFnSIu0l1p4wPXr0UCx/rYmjoyNq165t1jhSpUpl1vqtWevWrdX2XrGkWrVqGXXe9u3bceHCBUydOpWTXhMRERFZgF5DVNauXStag+3btzfqPGdnZxw5cgSdO3fGzp078fTpU6xbt06ljCAIAID69etj5cqVZutebitq1aqFUqVK4ezZszrLli5dGqVLl4aPj4/Bw1U0Mcc3mhkyZICzszN+/vwpet158+ZN8hPXKi+bauo8D9o0adIE27dvN8sKL4by9vbWevz9+/dwd3dXe2z8+PE4ffo0Dh06ZI7QkoTChQsr5sLx8vLCp0+fNJZt27Yt9uzZo7JvypQpmD17Nt69e2d0DPnz5zdo2eN169YhX758KFSoEGQyGYoVK4Zt27YZ3b4p5P8XiYiIiJICvRIcgYGBonQ/lslkRic4gLgLjR07duDixYvYtGkTLl26hDdv3gCIm9wvICAALVq0SJQraSQl06ZNQ9myZZEmTRrR606ePDnCwsIQFhaGRYsWYenSpaLVvXz5cvTq1QsLFy5MkFxLKlq0aIF///1XtPpy5sypdn+rVq1QoUIF0SftNAd3d3eN749jxowBALMO31BmieFGUtqxYwcWLlyIv/76S+3xBg0a4N69eyqvq+HDh+O3334z+4TBytzc3FC4cGGzt2OuZC4RERFRYqVXgiNTpkwW+4Cuj2LFiqFYsWJSh0FG6tq1q1nHo6dMmRIpU6bUuIymsRwcHFC8eHGN3+jrOwwjMV+Q+Pr6Gn3ukiVL0L17d5V9FStWBAC4uLjgx48fKsfEmLTSzc3N5DqsxfDhwzF16lSNx4sXL44tW7YYXK+rqytGjx6NDRs2mBKeRVSuXBmVK1fW+P/I2dkZfn5+Cfab+v9L+fzFixejSZMm+O+//1C1atUEZf38/PQe0jJu3DiMGzdO7zgyZ86M0NBQvcsTERERJTV6faX15MkTPH78WJSNyBZVq1YNv//+u15lhwwZInr7Xl5eotcpNm29t2bPng03Nze9n0M5V1dXxe2UKVMqbjs5OaF27dro2LGj4YFaKU3Lxcq1bt0amTNnNrjez58/47fffjPonIULFxpU3pSee/pycXExextA3ISqqVKlQpUqVdQev3v3rt7DIw2dxHb79u0q92NjY3WewyEqRERElJQkmklG4/vy5QtOnDiBrVu3YuvWrThx4oTBKxMQGSP+hJKNGzfGwYMHUb9+fb3ON8fEno0aNcLChQsRFBSU4FhiWEWhR48e+Pr1q8HJHzc3N5w8eRIbNmxQ+TZ92LBh2Lt3r8rqP4l9Th5z9aITu6eTOkWKFDF7G6bQ9RwY8txrKluqVCmDYlInS5YsKveTQvJi7ty5UodAREREiUiiS3DcuHED9evXR4oUKVC5cmW0bNkSLVu2ROXKlZEiRQo0bNgQN27ckDpMUpIiRQo0a9YMPj4+aN68uc5JG8WSKVMmtbfjUx6br884/Ro1alhdbyRnZ2cEBQWhTZs2in0TJkzApUuX0LNnT53nylnqW3AxlStXDq1atVJ7kVq1alWsW7cOx48fV+ntYSp5T5O0adOKVqe18/DwUDyHefLkkTgacU2aNMnsbaRPn97k5W6NSWgonzN//nyT2pdC0aJFpQ6BiIiIEhG95uCwFjt27EDbtm0RERGh9oNeTEwMdu/ejYMHD+LPP/9Eo0aNJIiS4pPJZEbNDWCqIUOGoHTp0vD09FT5Jj++rl27IiwsDLly5UKuXLksF6CZ+fj46HVxUKVKFYwYMQJOTk5mndvGlB4ItWvXRnBwsM4JhPPly4eQkBBUqFABQNw3823btjW6XU0qVaqEmzdvIk2aNFY1pArDAAAAWwlJREFUP5E5/fPPP0iePDkePnyISpUqmVyffKUcdR4+fIjs2bMD0C/paG5i/Y5NmcMGSJjgMDThERAQYFL7RERERNZOlARHWFgY/v33X4SFheHbt29aP3TJVxUw1OPHj9GmTRtEREQgS5YsGDp0KKpVq4YMGTIoYjh06BBmzJihKHvr1i1kzZrVqPYo8bO3t9drmdH69evrPbzEEpR7Ilhi+ECyZMl0zu8gVjtDhw41eJ4NIK7XzNu3b+Hp6am13OXLl/Hhwwez96yQyWTIly+fWduwJn369EHZsmUBxC2ZKgblnkMDBgzAnDlzFPezZcsGJycnREZGInfu3KK0ZwtMTXAYmqjJnz8/bt68adA5RERERFIyKcHx7t079OjRAzt37tT5QUsQBMhkMqMTHDNmzEBERARKlSqFAwcOwN3dXeV49uzZkT17drRr1w7Vq1fHuXPnMGvWLIMnwyOSWurUqTF48GBcu3YNnTp1ErXet2/fmjwfQr169bB7926jzp0+fTry5s2LwMBAAHFJD33pM7QpWbJkZk1upEuXDv7+/ihQoIDZ2kiKlC+8165dCwA4c+YMQkJCULNmTanCUtA3MTB69Gi962zYsKHBcRiT4DBlno506dIxwUFERESJitEJjm/fvqFixYq4ffs2nJyc4O/vjwsXLsDJyQnFixfHq1ev8ODBAwBxczCYekFw+PBhyGQyLF68OEFyQ5mbmxsWL14Mf39/HDx40KQ2iaQyY8YM0es8ePAg9u3bh1atWplUj7a/P2UZMmRA5syZ8fbtW5UhQs2bN8f379/h5+eX6Ob82Llzp+jDeG7cuIGDBw9i0KBBotabWLVr1w5A3HAKSwypaNCggSj1/Pz5U2fCTjlRsmbNGlHaNSdD563p0KFDonhcYtM23IqIiIgsy+jBzcHBwQgJCUGuXLnw6NEjnDt3DkBcMuPkyZO4d+8eHj9+jObNmyM8PBw1a9bEsWPHjA40LCwMHh4eeiVKChQoAE9PT4SFhRndHpGtKVSoEIYPH55gJQZzcXZ2xv379/H27VuVYQ0uLi7o2bOnyqonSVn+/Pmtfu4XQ3raJDYLFiwQpR5DnyNdw63UsUQPDnmvxxo1ahj8xcTq1asNKq+PxDDHjTHD7oiIiMg8jE5w/PXXX5DJZJg6darGLuGZM2fGpk2b0Lx5c4wYMQJHjhwxOlBHR0dERUXpVVYQBERGRsLR0dHo9ojMJWvWrPDy8gIAFC5cWOJozMvR0VHU1UtsVZEiRaz6/apz585Sh2AWmTJlQsaMGXWWs5aL7Pi9p8Seg+Pq1asICgqCIAjYv3+/wfFZg9SpU5ulXk2T3ZYvXx7ZsmUzS5tERERkOKMTHHfu3AGABOOj1SUhJk+eDEEQTPqmLEeOHPj58ycOHDigs+yBAwfw8+dP5MiRw+j2iMzF29sbz58/x+vXr9G8eXOpwyErkDZtWnz+/Nms3dzLlClj1Hnly5fnRJ8iMWU+DCAuwTFu3Di1x0qWLGlS3QCQPHlyk+uwVW/fvjWofIsWLcwUCREREWljdILj58+f8Pb2VumW6+zsjK9fvyYoK//G+sKFC8Y2hwYNGkAQBHTt2hW3b9/WWC4kJATdunWDTCYzahI3Iktwc3ODj4+P6PWmSJFC7W2yfs7OzmjcuLHRvSV0fYs8bNgwo+q1hmVapWYtPTgAYOzYsWr3a+pJaUpSxdSEjBTMFXOKFCnUriCk6bVhTa8ZIiKipMToSUZ9fX3x/v17lX2pU6dGWFgYwsLCFMu3AkBMTAy+ffuG79+/Gx1o//79sWzZMoSFhaFw4cJo1qwZqlSpgvTp0wOIm6PjyJEj2LZtGyIjI5EhQwb079/f6PYocbGWOQJKliwJR0dHeHh4IH/+/Lh165ZF28+VKxd27tyJ8PBw0SZPJOt27tw53LlzB7Vr19Zajhdc0hN7+IS9vT1iYmIAiHNhr7x0r7WwptftokWLEiw9nhiTQLaoadOm2LZtm9RhEBGRFTD6q7lMmTLh+/fvePPmjWKffKWEv/76S6Xs33//jejoaJO+sfb09MT+/fuRJUsWREZGYsOGDejcuTNq1qyJmjVrokuXLti4cSMiIyORNWtW7Nu3Dx4eHka3R4lL27ZtpQ4BAFCrVi18/PgRL1++RJo0aSSJoUGDBujQoQOcnJwkaT8pc3Nzs3ibJUqUQIcOHWBvb29SPYb21Jg+fbpJ7VkTXSvjiHWRXbduXfTq1QsrVqwwqZ4+ffqgcOHCqF+/vs6yyhfg2h5H9+7dJXvP0uXSpUto2rSpXmXNmXDQZ6lqQyxbtkzU+pIyJpqIiEjO6ARHqVKlAACnTp1S7GvRogUEQcDw4cMxY8YMHDp0CDNnzkTHjh0hk8lQq1Ytk4LNly8frl+/jqlTp6JQoUKws7ODIAgQBAF2dnYoVKgQpk+fjv/++w/58uUzqS1KPHr16qWxe7YU3NzcmFxIotq0aYMaNWpg0qRJUodisIEDBxpUXt+L/qCgIGPCsajKlSvjn3/+QevWrc3ajoODA4KDg9GpUye9zxk9enSCffPnz8eVK1dUEmqmXuCNGTMmwT5ruWgsWrQo5s+fr1dZa4lZF3t7e7MMU0yqEsvvnYiIzM/oBEfjxo0hCALWrVun2NeqVStUrFgR379/x2+//YaaNWti2LBh+Pz5M3x9fTVOjmYId3d3DBs2DJcvX8b379/x8uVLvHz5Et+/f8fly5cxZMiQBDPNExFZQpo0abB//36MHDlS6lAM1r59e8VtMYcqBAQEiFaX3OHDhxPsM2WuEHkCPnv27BqPS2X8+PEYNGiQ2iVYlS/qTL3AS5cunUnnm1tiuoCdM2eOXq+ZunXrGpxYJPEMGTJE6hCIiMgMjP5EWKJECcTGxmLnzp2KfTKZDHv37sXw4cORNWtWODg4IGXKlGjbti3OnTsn+gcoR0dH+Pr6wtfX16qXWCSixEv5Yt8ScxTUqVMHgHkSA7oMGjQIhQsXRqtWrSzaroODYdNBValSJcE+YydRtXYymQwzZ85Ehw4dEhzT56JfOWljTfNZ6MvQmA1NhJhjiddWrVrpjFsmk8HOzg6zZs1KsBodGc6YBNi0adPMEAkREUnN6ElGNXFxccHkyZMxefJksasmK+Di4qL2NpGtypYtG6ZPn47IyEi1qyiIrVGjRrh+/TqyZs1q9rbimzlzpsXbBOKG9qxcuVKR3DHG0KFDRYxIlVTL5GbKlEnrcX16cPj5+WH//v3w8fFBdHS0Qe1bU68JfWPJkycP7t+/r/eyrrlz58ajR4/0KqsuacEeo9ahRIkSCeZ/04UrRBER2SbRExyW8OLFC1y/fh0fP35EVFSU1rLK3a7JdG3btsXTp0/x5csXdO3aVepwiCzCnBfP6hQoUMCi7Ukta9asePXqlUkTpZqrF1+dOnXQrFkztGnTxiz1q5M7d25Uq1bN6MmT+/TpgwULFiju16hRAwBw8eJFUeKTgr4Jjnz58mH//v3w9PTUq/yKFSuMmsOpc+fOuHLlCoKDgxMcS0xLdA8cOBCzZ89We6x79+5YsmQJgLh5asqVK4fx48cb3MaGDRvw999/Y9OmTSbFqk3OnDl1lmnbti3Wr19vthiIiMg6JKoEx9WrV9GvXz+cOXNGr/IymYwJDpH5+Phg7ty5UodBRDbG1FVgzGXYsGEWHwLp6+ur16SaYs7BYQsCAgIwevRog1ZQS5MmDXLkyIEHDx4Y1NayZcs0DkPR5/WifK68l40U6tatqzHBEd+4ceOMSnC0atUKrVq1MmuCQx9Tp061ugRHlixZ8OTJE6nDICKyKUYnOE6ePGnUefHXkNfX1atXUb58eXz//h2CICBZsmRIlSqVwWO3iYiIrJm+804YmuDQVK+m/6PGJE3Wrl1rli8W9EkaHDt2LFEOGZk0aZJKjxtrkRjnbNFGOfHVsWNHCSP5v+XLl6Nq1apSh0FEZFOMzg5UrFjR4H9+MpnM4DHAcqNGjcK3b9+QPXt2LF26FBUqVOD4SSIiQs6cOW3qYkzfx+Lq6qp2v5S9OcT+vyx/Lnx9fUWt19wM+R3oO5xGTiaTscdOPPo8H15eXorbmlZMsiVFihTBlStXpA6DiMjiTPokIgiCQVtsbKzRbZ05cwYymQxbtmxBpUqVmNwgIiLMnDkT165ds1iCw5qG0kyePBmFChXCH3/8YdIFrzUkh8RYoUjT46hevTp69OihuK+tN0i1atUMrt8Y1vCcA9rj6NOnjwUjsayk8BlSW08qdStRERHZCqPf4WNjY7Vu4eHhOHDgACpUqICUKVPixIkTJiU4BEGAm5sbChcubHQdZDuqVq2KPHnyIHPmzGjcuLFB56ZMmVJx29vbW+zQiHTS9M27rapXrx5cXV3N8qE6RYoUFlnRqU2bNvD390eFChXM3pa+F79p06bF1atXVS7etUmTJo1BcegzcWN8xiZa5syZo7OMIZPvyj8r9O/fHwcOHMAff/yhOJYmTRqcPXsWN2/eTHDewYMHUbJkSb3bSexSpUql8VjevHktGIlp9J0np2HDhgCgdtnlpCRPnjwQBAFBQUFSh0JEJDqzpbA9PT1RrVo1HD16FKVLl0b9+vXx+PFjo+vLkSMHoqKiEBMTI2KUicfUqVMREBAADw8P+Pr6onnz5kl6Yio/Pz+EhITgyZMnBl80zZkzBwsXLsTBgweNmj2fyFQdO3ZE0aJFMXLkSLPUb23d+bNly4Y3b97g4MGDFm1XOZlpqvXr1+PatWsWSU4Z8+2+PvNxZMiQAbt378bJkyfRvHlznXW2a9fO4DiM1b17d51ldCVPlJ+3ixcv4saNGxon0CxZsiTy5cun9pgYj9ucPTTiPw9btmwxuq7MmTObGo5VqF69ul7lduzYgZ8/fyJdunQApFsCWk6K5cABYOLEiQCA9OnTS9I+EZE5mb2Pnkwmw++//45Pnz4p3lCNERgYiMjISOzatUvE6BKPEydOoE+fPjh//jz279+PDx8+oFatWkbPaZKUpUuXDkFBQVq7IhOZU5YsWXDp0iVMmjTJLPVv3rzZ6iauc3Nzs1i38OXLl6NXr16oV6+eRdoTm6kJDm3q1q2LcuXKYdmyZTrbs7e3R61atQyOxRiaYjA2UWBvb4/8+fOrPd8ahoeYEkP+/PlV7mfLlg2FChUyuJ579+4ZtOKMNUuWLJle5WQymUrZPXv2mCskvWTLlk2SdpMnTy5Ju0RElmCRT5u5cuWCp6cnDh06ZHQdvXr1QtWqVdG9e3ecPXtWxOgSh/3796NDhw7ImzcvChcujGXLluHOnTsICQmROjSyccoXpUlh3LItqFChArZv3y51GFrlyJEDLi4uSJ8+vei9Ijp37ozg4GCLL+8qFktcgOs7saU1TWZpqVis4TF7eHhg8+bNao8VLVo0wT5j3pv9/Pw0Hnvx4oXB9VkjXcNQs2fPnmS/OCMislUWWWM1KioKP378wM+fP42uw97eHrt378bgwYNRtmxZlCtXDsWKFdP57cOYMWOMbnP9+vU4deoULl++jBs3biAyMhKrVq1CYGCgxnMuXryIsWPH4t9//0VUVBQKFCiAgQMH6tUd2BCfPn0CEDf+nMic/P390axZM3z58gWVK1fGX3/9JXVIiU5iXPXA0dERUVFRGrvxmyplypR49uwZkiVLZlUTd1qD+fPnG3yOoUvGKhMzoVKwYEGdZdq0aYM///xTtDblzJ0YsmTPj/DwcMhkMrRo0UJnWX3iGjJkCGbMmKFX29HR0Vb/N+nt7Y2PHz9qLRMUFIR9+/bpLMcJN4mIbItFEhw7d+5EVFQUMmTIYFI9hw8fxp49eyAIAk6dOoVTp07pPMeUBMeoUaMQGhqKVKlSIW3atAgNDdVa/tixY6hRowacnZ3RsmVLeHh4YPv27WjRogWePXuGQYMGGR2LspiYGAwePBi1a9c2+Tkl88qVK5fitrZvy6yZg4ODyhhva5vfITFYsGAB+vXrp/cFhi4+Pj6i1KPN3r17sW3bNowaNcpsbYg5R4YtkXpeAFMULFgQhw4d0joEUOrfu66EgCUSGbrasLOzEzUpag3Dcsylc+fOave7ubmZ/BwGBgaiVq1aeiWayDgFChTAjRs3zFb/uHHjMG7cOLPVT0TWx2wJjsjISDx79gzbt2/HlClTIJPJTBrLe+rUKTRs2FAxyWj27Nnh6+sLBwfz5WiWL18OPz8/ZM6cGdOmTcPw4cM1lo2OjkbXrl1hZ2eHkydPKsbDjhkzBsWLF8eIESPQtGlTlQm9fvvtN0yfPl1rDPH/OQuCgB49euDp06c4c+aM8Q+OLKJmzZp4+PAhkiVLZjOTeQ0ZMgQODg4oW7as1KEkGkFBQejcubPJS2EuXLgQixYtwoQJE0SKTLNq1appvUi1RJKF9NehQwccOHAA/v7+otZrzAWimPO/KF+YT5gwAU2aNBGtblsiZjJEXV3WliApW7Ysdu/eDQAaJ5IVw6pVqyAIgtUkOObPn4++ffuKVp+bm5todVmrpPAYiUiV0dkBQ7ovCoKA9OnTY+zYscY2hwkTJiA6OhoBAQHYtGmTRSZmMuRD2tGjR/Hw4UN07NhRZbIvLy8vjBgxAoGBgVizZo1Kj5JBgwZpHe4SnyAI6NWrFw4fPoyTJ08iderUep9L0pFqEjFzSZcunWg9EZISU5MbQFyixJRl/UaNGiXaxKbNmzfHhQsXEt2Smq6urvj+/bvUYYiuZcuWyJUrF3LlyoUhQ4YYdK4hF6/16tVTXFgq27hxo0Ft5syZE/fu3VPZFxISonVpUl1Lgpv7Ilz5c48gCJJd9Mf/YscScVjbELvp06crXofWFpu5ODg4oE+fPqImOLp27Yq///4bR44cEa1OQyWV3x8RWY7RMwYKgqDX5uzsjLZt2+LcuXOKZbmMcfnyZchkMvz5559WecF4/PhxAOqXKqtRowaAuJVQlKVOnRq5c+fWusnJ1yvfu3cvjh49iowZM5rvwRCRTRo/frxoXYFdXFwQHBxs0aVETSFfxcuc3/ZKSSaToUiRImb/tnLOnDlq97ds2VLvOmQyGa5fv55gf548eXDhwgWsXbvW6Pj0bd8Yfn5+aNiwITp27KhzUk9DlrQ1tEz69OnRsWNHxX11Q37atGmjs34pGfp5sFu3borbgYGBcHd313mOWMlXa+u9IiYXFxccPnxY6jCIiERldA+OY8eOaa/YwQHe3t7ImTOnKMNIYmNj4eHhYbXzGNy/fx+A+nkW0qRJA3d3d0UZYwQFBWHjxo3YvXs3XFxc8OrVKwBxk4w6OTklKB8REYGIiAjF/c+fP6utt0KFCjh79izs7e1RpkwZo+MjIutnZ2eXYIlJqZiS8DbGyJEj0blzZ6RNmxY9evSwaNuJWd++fXHgwAHFfbEu9pIlS4bFixcn+F0UK1YMxYoVQ/v27Q2uU6zYtC1Zay2TLK9cuRINGzbEx48fkSlTpgTH4+8z9bmR+iJfeb6xmTNnqu2F9fvvv2Po0KGK+w0bNtRr7jNXV1dUq1bNpJX+LMEWh1pUqlQJb9++lToMIrIxRvfgqFChgtatTJkyyJs3r2hzZOTJkwc/fvxQuWi3JvJVTby8vNQe9/T0VJQxxh9//IHw8HCUK1cOadOmVWz//vuv2vJTp06Fl5eXYtPU42Pq1KkIDw9HeHg42rZta3R8RET6+OuvvzBmzBjUr1/fou3KZDKkTZvWom1KpWvXrgCAihUr6lVe28Vr7dq1cevWLTHCSkDbFxblypVD1qxZVYZ8KhNjyJcmTZs21bm8aHwlSpQAANStWxeAaQkBff8X169fHx06dFB7bMiQIShSpIjRMcRn6DCCRYsWaT3eqVMnAMZNqKtpktr4Q7P0/R3IZDKVJJ41iP/+mDNnTquLUQz+/v5mT54Z8+VdnTp1zBAJEVmK0QkOS+vevTuioqKwfv16qUORhKYhQJo+wA4fPhyfPn1SbM+ePdNYt5eXl17dPYko8TDnBMymaNiwIcaPHw9HR0epQ7FZhQsXxps3b3R2PZcnCYoWLaq1nPLk2JZ6XZ04cQL3799X20MRALp06WJ03bouqFKnTo0XL15g3bp1ete5cuVKdOvWTeMSv25ubpg+fbriInzu3Lka69KVHJAnUzRp2LAhvL29cfnyZe1Ba2CJORGaN2+OAwcOYPXq1WZvSx9S91DR5e7duzp/7/HpmrPGUsqXL6/xmCWe91KlShl8zoABA0zqdU1E0rLOT8BqBAYG4sSJE+jXrx/c3NwMGu9rCfKeG5p6aXz+/Nngb4RMkSxZMiRLlsxi7RGRdXF1dcWiRYvQq1cvqUMhPfj6+uL169eoXLmyKPXpMwn15cuXsWjRIowYMUJrOTc3NwwdOhTfvn1TOxzCUPKLGm09amQymdbJzNUdE/NiydnZ2aD68ubNiyVLlqg95uHhgY8fP8Le3h6CIGDgwIFIkyaNxro8PDy0tqVrRbrt27frDthAhj63+iyDW716dTx48MCoeNKmTQtvb284OjrqfL5sVa5cuXD37l2Nxy0xV5s+kza3atUK3bt31zgvjLVOMpojRw6pQyAiI+mV4BBzwi9jxtUCcd0ZZTIZnJyc0KZNGwwfPhwBAQFa/7HJZDKsWLHC2FANIu9qe//+/QTfhr169Qpfv35F8eLFLRILEREQlxhmgsN8smTJgidPnohS1+zZs3Hnzh2DVtYyVd68ebFw4UK9yupa0twYefLkwfLlyy02H0vJkiVx7tw5lQk6tcmSJYso7bq4uCgSMjKZTGtyY9u2bTrr0yd5YAprvOCMH5ODgwNevXoFmUxm8uNNrNq1a4dRo0ZJGsO2bdtQr149xMTEaC2XM2dOC0VERKRngiMwMFCUb0ZkMpnRCY7Vq1dDJpMp/smFhoYiNDRUYzvyJdwsleCoUKECpk6dioMHDyboXSIfN1mhQgWLxEJERIYzdOntdu3aKVZnMVXNmjXRunVrUepKTDp37mxyHXZ2dqhfv77G4SxyBw4cwPnz51GpUiW96i1TpgyCg4ORK1cuk2PUl7XPE1OzZk3s37/f5Hrkn+XUJXuKFy+Ob9++wc/PDzt37tRYh67fNwDMnz8f9erVw8iRI42OVQp58uTB33//rbWMPp/Ld+7ciYYNGxrc/rx589CvXz+d5ZIlS4aSJUvizJkzBrehjrwnGxGRKfRKcGTKlEnjG+nbt28V3dMcHBwUkz+9f/8e0dHRAOK6t6ZKlcqkQNu3b2/VYySrVKmCbNmyYcOGDejbt69iYrRPnz5hypQpcHJyMjq5Q0SUWCWmJa0DAwNx+vRpVKxY0WI9Xz5//owfP34gRYoUFmnP0jw8PDBjxgzRV65RvjA+evSoXl8geHp6olq1aga1I8brQJ8eEb1798aDBw9EW9o0sXB3d8e9e/fg6OiIrFmzAoibQ2T48OEYO3as1gSHPurWrYsvX74kqnnGhgwZgtGjR2vsNdWmTRtcvHgRtWvX1pm40TQhqyaOjo6IjIzEsmXL9Covk8nQr18/rQkOQ4ZLBwQEYO/evXqX18USw5fKly+PkydPmr0dItKfXgkOTV1wFy9ejH79+qFs2bIYPXo0ypcvr3gji4yMxIkTJzBp0iScP38ew4YNM+kDjhQTUS1fvhynT58GANy4cUOx7/jx4wCAsmXLKiY6c3BwwPLly1GjRg2UL18eLVu2hIeHB7Zv347Q0FDMnDlTtO6uRET6cHJygoeHB758+SLJEtuLFy8WbU4JS/Dw8MDmzZsRFRWl14WtGF35PTw8bHoOgdKlS6N79+6iJTiWL1+OHTt2oGfPnhg+fDgA6xxSYagFCxao3d+1a1eEhYXBxcUFO3bsQPPmzdWWs7bnwJAvpMz93pSYkhsZM2bE77//rrXM+vXrIQiC1vk3jGXMXCvNmjXDvXv3NA5DadWqFW7evKmxDhcXF8XtwoULa0xwZM2aFY8fPzYoPvnywpkzZ9bY69tQ+fPn1/p4EjsfHx+8efNG6jCITGL0JKNHjx5F79690bBhQ2zZsiXBGEgnJydUq1YNVatWRfPmzdG7d2/kzp1b72XrrMHp06exZs0alX1nzpxRyVQrz+ReqVIlnD59GmPHjlV8SC5QoACmT5+OFi1aWCxuIiIgbiLGkJAQhIeHW7SbPRC30kP37t0t2iYlDqb0xuzcubMow1rMTayEw9KlSwEAz58/h7+/v0mrx+hLW+w5c+YUZYiKNffINUR4eDjc3d1FW13IkKVtreE5lMegLUmlbUlnmUyGNWvWoGHDhhgzZgwePXqksezevXuRN29eo+LUNmGxNgMHDsTs2bNV9nXs2BGDBg0yqj4isgyjZ2aaNWsWBEHAnDlztE7wJJPJMGvWLMTGxmLmzJnGNieJ1atXa1yeVRAEtb1Kihcvjn379uHTp0/4/v07zp8/z+QGEUkmQ4YMyJ8/v9RhEJmNqRd68p4gmnpHWIP06dNjzJgxRk/IKtbF8IgRI+Dr66vxeEBAAGrWrIk8efIAMG5ZYXWxWusk7V5eXkZfPFszfRN0ul5X2bNn11lHnjx5cPfuXbRp00ZrfT4+PlrrEbO3YO7cuVV+KrPF37fUunXrJnUIZGOMTnBcunQJyZMn12t8daZMmZA8eXJcvHjR2OaIiIisirUNCyDjdOrUCffv38eGDRtEq1P5Qs0aXyfKvauqV6+u93m+vr7YvXu3xuMXLlzAP//8g3LlymHJkiWKIb2mqlGjBrZv326WYRliCA4O1nq8QIECForEusj/DsRKmGiTL18+o8+VS5MmDa5evYr06dPrfY41/n2bytKrrxnbM4dIE6MTHF++fMHXr18RGRmps2xkZCS+ffuGL1++GNscERERJVLWPs9Ijhw5ksw3s2XLlsXixYsV9zdu3Ii+ffuqLStPfrRt21bt8QkTJmDEiBGK+/KhEzKZDN26dUOZMmWMjrNnz55wcXFBx44dIZPJ0LhxY7MuN2pKDx6xLgilHnYib9+QoTK2JEuWLIpFAgD1yQtbTGjEZ8k5A5s0aWK1w1n1WamJrJPRCY6sWbMiOjoaa9eu1Vl27dq1iIqKUsyQTURElNglhQ+6Yrl+/brUIUjG2i4C48eTIkUK9O7dW23ZtWvXYufOnRoTHKNHj9Y5dEAdbX878vjSpEmDz58/Y+XKlQbXb4zNmzejbt26FmlLE0NeK/qUFWtuEGNj0Db/BoBEO3zSkJVhLMnV1dXkOiz9f23btm06XydkGfouoZ4YGJ3gaNWqFQRBQN++fRNMxKls7dq16Nu3L2QyGVq1amVsc0RERJTIyC+AlL8RtLYLflsmv+CpVauW3ucoX+D4+vqiQYMGZr9Q1sTS7Zrr4k5dvW5ubmZpS1nx4sVRu3ZtBAUFaS0nn1elfPnyBtWv62/5zz//VLu/d+/emDt3Ljp06GBQe9ZC1/MpFeVeaA0aNJAwEjKVFEm0OXPmWLxNczE6wTF48GAUKlQIP3/+RKdOnZAlSxYEBgZi5MiRGDlyJAIDA5E1a1Z07NgRP3/+hL+/PwYPHixm7ERERJJhDw7rkFSGlhjj2bNnuHjxos4LV0snnZJ6kuv+/ft4+fJlgv2mPC/qutPb2dlh7969WLhwodZz//33X4waNQrr1683uv345s+fj4IFC6o9VrRoUfTr1y/BIgXKj3/o0KEGt2nIfDLqxO+NZEzvJEvbvn272v1t2rSxcCT/5+/vb/A52ub2ITKU0QkOZ2dnHDlyBA0bNoQgCHj69CnWrVuHadOmYdq0aVi3bh1CQ0MhCALq16+Pw4cPswsSERERiaJdu3YoVaoUSpQoIXUoWkmZCEuRIgUCAgIka98YUiY/TPld6ZpoVFmOHDlEn5embdu2SJ48uVHnZsuWDRMnTjT4gt6QyTgNNX36dJX76r7R1tWlvlixYmr3d+zYEW/fvk2wSkrDhg1V7tevXx8DBgwQdQJiU6jr0dS4cWPFbeXXr1h/R2FhYZgyZYrWMgMHDlS5X7RoUb3qnjVrluJ2/OFhRYoU0TNCEou1z5VlCKMTHADg7e2NHTt24Pz58xgwYADKli2LnDlzImfOnChbtiwGDBiAc+fOYefOnUiRIoVYMRMREVESt3btWvz7779wdHSUOpREJan3njCXXr164evXrybVYcocCoIgiDakR9/XiL6TUZqa5GvTpg3c3d0T7FdenUZdzPJllatUqaLY9+eff2LFihVIlSqVSg+SqVOnJhgyY2dnh9mzZycYYi/VKknXrl0TvU51v0Plx5c+fXo0atRIax0dO3ZUua/vc1KhQgWNx06dOoVMmTKp7CtcuLBe9ZJxsmXLJnUIohHlnbBYsWIas6RimTBhAtzd3RNkCTWZP38+wsPDMWbMGLPGRURESROHqBgnKVxgJ6XXhtiPVT4fhBRMfSzK82rMmDEDc+fOxfPnz1G6dGncvHlT5/kbN27Uuy11f0d///03GjVqhLlz5+pdj7FMWdrT0PeAFi1aqN2v/PtS97uTD82aOHEili1bBiDu9aWu/d9++02vWKT6286UKZMoS+GKzZSVRrS9DtQd46ompC+TenBY0rhx4zBz5ky9y8+ZMwfjx483Y0RERERE0jP1oku5+78lElDq4t28eTN69eqlccWWxGjr1q0IDAzEhAkTdJZ1cHBQ6ZFgjFKlSuHly5do2bKlSfXowxqHEMhXA8qZMyf27duHmjVrAtCcNEtMyVZDe/eY8p5gDQlaQRASLAvt7++PZs2aGV3nkCFDTA3LYhLTa9MaJZoEBxERkTWxhg+BZJ2UP5zqOx5dShkzZsTAgQMxcuRIyZbAbN68OYKDg21q0thSpUph1apVevVKMfX9RH6+2BdGKVKkQL9+/RT3161bh6FDh2L+/PmitgMkjL1y5cpImTIlKleurNf59erVw8OHD3Hr1i3UrFlT53Mh9nPl4uIian0AsGXLFuTMmRObN28WvW51Fi9enGCfrtemuf4Xxl+lUyaTYcuWLUbV1bt3b72HVNkCXcOK4nv//r2ZIpGGXkNU1q5dCwDw8vJSLDsk32eo9u3bG3WeoT58+MBJTYmIiCTEb6GAefPmSR2CCk2/E+UJ/yjhxZW1sdTcdm/fvoWdnR3q1q2L0NBQUXrY6Pu+cPjwYURHRxs0z46U8wi0aNECq1ev1qtstmzZ8OjRI53lmjVrZlKvBUM1btwYM2bM0Lu8ut9N/vz5RYlFPoeKGJo0aYJbt24ZdE6ZMmVw7Ngx0WKwpB07dhj0/9fW5srUK8ERGBgImUyGXLlyKRIc8n2GkMlkFklwbN26FV++fEGuXLnM3hYRESVN8Zc4JFKHn0USstbEl/LFmqW+kDNWypQpsXPnzgQrf4hB+fcjf5+rWrWq6O1oa1d+3xonEdb0+jXki9VTp04hY8aMaNq0qaJXQtGiRXH58mWj4zKmJ4U5/hb1nSvDku8DxszfUbJkSYwbNw5Zs2ZNMOFpYpMtWzakTZsWZ86ckToUi9ArwZEpUybIZDKVTJp8n7nMmzcvwbceb9++1ZqZFQQB4eHh+Pz5M2QyGerUqWO2+IiIKGkbOHAgNm7ciDZt2kgdSqJirRe3SYXYCRdbGqo1Z84c3LhxA4MGDdJYxsfHB2/evLFgVJopf8615qE98YcGpE6dWpR6pbigFwRBpQ5jEzDp0qXDjx8/4OjoaPSwC13c3Nzw7ds3s9Qtl1jez0uWLImrV68adE7t2rVRtmxZM0WkXtasWfH48WNMnz5dZWiYXOHChQ1+HACQIUMGdO/enQkOZU+ePNFrn5jCw8MTtBETE6N3u1WqVOEKKkREZDapUqXCo0ePEs0HPErazpw5g/Xr12PKlClSh2K1NA0bOHv2LJ49e4YcOXJgwYIFWLVqlehtG3OxrrwsbPbs2cUMx2TKj8fHxwfXrl3D7t278eXLF8Xkn2Iy5n1YjPfuP/74A9WrV8fw4cPx33//GXRuYlkVxNPTU+txqZOcFSpUQKtWrdCjRw+NZQztcbl9+3aLJzeAuCRroUKFkDlzZrUJDlNI/XuyJHEWzDaDhg0bKjK+giCgU6dO8PLy0rr0lZ2dHTw9PZE/f36re6MnIiLbw+QGJRalS5dG6dKlpQ4jUSpZsiRKliwpdRhaWft7kb+/P/z9/bWWsfbHoE6uXLkQGhoKAOjZs6fZ22vbti3Wr18PAAgICNBYztXVFbt27UK9evXw48cPrfVNnDhRa5vp06fHokWL4OHhgXbt2qkcs+RFs6bXh6OjI0qUKCFqWxUrVhS1Pn3JZDJkzpxZ4/GklKQwhdUmOOK/EXbq1AkuLi7o0KGDhFERERERkSn4IV03+YXswIED9SpvzUNUyDhhYWEJ9q1btw6jRo3CggULMGzYsATHp0+fjitXrqBmzZqwt7fHly9fVHr6KCtZsiRGjx6tM8EB/D95s2jRIpw9e9bAR6KetoSWuveIxJgAk9Lz58+RPn16o8718vLCs2fPdPbesVZmmyHtxo0bmDNnDubNm4c7d+6YXF9sbCxevHghQmREREmbj48PAOB/7d13VFTXvgfw79B7s4ACVsT2NKhgjUoUxBajUdEYH4qi4NVoLInRGHt9V40+E/EKRjB2wa4JaAR7y732JGp8gBoEC0gRL3XeH6yZ6wAD08/M8P2sxVp4zi6/Mwxbzm/22btVq1Za68POzk5rbZPhqK1/kMq7oSBS1LZt23DhwgWsWbOm2nLz5s1DmzZtEB4erqPIqrZ+/XpMmzZNp32+O76okjRbvHgxAGjsw1Nvb2+FylWcHdCjRw8AQFhYGCIjI1G3bl3cuHFD7s1py5Yt8d1338HT01P6bwAYPHgwvvzyS+zdu1ea8Kou8TV48GCZNUScnJwAVP9anjx5EvHx8dVenyQuXWrbti2aNGmCLl26IC4uTuf9a4omtzZWZxcaS0tL2Nvbq1xfaConOM6cOYM+ffpg/vz5lc6tX78eHTp0wJw5czBr1iy0a9cOmzZtUitQRWRnZyMnJ0fr/RARGbJdu3bB398f0dHRGm974cKFsLOz4xpIJFdtSHrMnDkTZmZmmDhxotChaF2vXr2UrlMb3gPKqnhTaWFhgR49etSYLFu5ciXu3bsn+CetM2fO1Mnf+u9Sd5HRjz/+GM+ePVNqTZWKi4y+KywsrMb6CQkJOHbsmMyxU6dO4erVqwgPD0dERASeP38OHx8fhWNKSkrCd999h61btypcpyqKvJ5OTk74+OOPqy3Tvn17bNu2Ta1YlGVubo4///wTly9fRoMGDaoso8z7RZdJ6nnz5km/1+bYWJtmzqmc4Dhw4ADOnj1baWXkBw8eYO7cuSgrK4OFhQWsra1RWlqKmTNnqrTqq8Rff/2FHTt24Oeff6507t69e/D19UXdunXh4uKCnj174sGDByr3RURkzAICApCUlCT91EiTlixZgtevX6t000NkLHx8fJCZmYmoqCihQ9G6Tp064dq1a3j27Fm15fz8/HQUERkqIRJfbm5uGuvX3t6+ykVq39WvX79KMxytra3RuXNnaRzKxtOgQQNMnTpV6SSXpq67qpkCEyZM0EjbyjA1NdXINa1cuVKnCUNlFn5WNUlRXb3k5ORKxyQzfQ2VygmOS5cuAQAGDBggczw6OhqlpaXo3bs3Xr58iezsbIwYMQJlZWXYvHmzyoFu374doaGhlX4Ib9++xcCBA3Hjxg2IxWKIxWJcvHgRAQEByM3NVbk/IiJSDZ8FJwJcXFx0dsP2+eefAyjf1lAIfn5+cHNzq7bMqVOndBQNkXCaNm0qdAjV6tmzp/R7eeOTsuNW3bp1VYpF2X50NZ6+O6OiNujdu7f0+8TERPTs2RMHDhxQqK6q2yRrm8oJjufPn8PU1BQeHh4yx3/++WeIRCIsXLgQtra2MDc3x6pVqwAA586dUznQ06dPAwBGjRolczw2NhZPnjyBi4sLoqKisHPnTnh4eOCvv/7C999/r3J/REREJJ/kD+WOHTsqVY8JMM0bN24cfvvtNxw+fFjoUOSysbEROgS9pk/Txw3xESJdxmyIr4+26NP7VkIfY1KU0O+twMBAnDt3TuE12s6ePavliFSjcoIjKysLDg4OMj+IvLw83Lt3D7a2tjLZoObNm8PKyqrK1YAVlZqaCqDyongHDx6ESCTCypUrMXHiRIwZMwZRUVEQi8U4evSoyv0RERGRfEOGDMG9e/dw8eJFhcp/8803aNasGWbPnq3lyGofkUiE1q1b6+2naboi2TZTncX1NEXeTVajRo10HAnVdk+ePJF+r+zOJapwdnbWSDuAYT8qsXHjxhrLdOvWTeX2K67lUhNtJH70dcaSygkOKysr5OTkyLxYly5dglgsRpcuXWBiItu0tbW16lECePnyJRwcHGTaKSsrw6VLlyASiTBixAjp8cDAQJiYmOD+/ftq9UlERETytWnTBlZWVgqVXbp0KR49eqTydGaimhw6dAgzZ85Ua8awtg0dOlSQfnX9ybAqNz6dO3dWqrxQn9QL/Sm7sirOttc2yW4s6qhqPRJFX3d9+PkMGjQI06dP12ofgwcPVqq8Nn5f9DUBpXKCw8vLC2VlZTJTUySzKd5//32ZskVFRcjJyYGrq6vKgZaWlqKwsFDm2J07d1BQUIC2bdvKZAtNTEzg7OyMN2/eqNwfERERyafIH5H68Icm6QddvBc8PDywfv16NG/eXOt9UdWSkpKwdu1apW++gPLtU48eParVDyjVfR8a8uMPilLnGpVJbig7m8RQfnYNGjTAoUOHFCqrq5jk9TN69Gi12jUxMUFkZKRabWiDygmOQYMGQSwWY+LEidi3bx82bNiAmJgYAKi0fdCNGzdQVlam1rS8Bg0aoLCwECkpKdJjCQkJAIDu3btXKp+fnw8XFxeV+yMiIiIiIsX5+/tj9uzZKt+Mfvjhh/D29tZwVFQVTSYdr127hr59+yIpKUljbQKGmSS/du2ayo8L1nS9mtrdJSAgAAAwZcoUtdvSx3W1VE5wzJo1C56enkhJScGYMWMwe/ZsFBcXIzg4GO3atZMpe+TIkSpndihD8ozSkiVLUFZWhhcvXiAyMhIikQhBQUEyZVNSUlBYWCh3H2QiIiIiImWpO03eEG7YDCFG0jxVZtpLZgb4+fnh9OnT8PHxkZ774YcfNBWaQjFICP3+1dQjQZaWlpWOffDBByq39+7r9PPPPyM9PR29evVSqG51kxT+67/+S+WYtEXlBIeTkxMuXbqECRMmoFWrVujatStWrFiBH3/8UaZcUVERfvjhB4jFYrV+KDNmzAAA/Pjjj3BycoKnpyfS0tLQtGnTStPgJFuRKbuyOxERERHJ1759ezg6OqJ169ZCh2KQhL75MlZ9+/YVOgS99sknnwCoegvUpKQk+Pv748iRIxrtMzQ0VKnykpn56vL19UXr1q3h6OiokfZqMnnyZBQWFuLUqVNqbahR0e+//47//d//lUl0aGr8MDU1VWoiQHUzUrp164a4uDhNhKUxZupUdnd3R3R0dLVlLCwskJGRoU43AMoXHvrhhx8wffp05OXlASjfUWXv3r0wM5O9jB07dgBQL8tFRERERLIsLS3x/PlzvZyWTPKJRCKjWz9CLBbj6dOnuHv3Lvr166ezfg0xSbVr1y5s2LChykUh/f394e/vr/OYKr6OLVu21Ei75ubmuHv3Lq5cuYIePXpopM2aWFhYSB/70JSmTZvis88+w8KFC6XrUOrre2/48OFChyBDrQSHro0bNw7BwcG4e/cunJyc0Lx580q7tRQVFWHy5MmYNGkSBg0aJFCkRERExk2RP7SqmmJLhs/CwkLpOu++X1Spb2iMLZmgr9zd3eHu7q6z/gz15yoSifR2xwtFKXNzb2JiorfJgOpoIubevXtrIBLDprEEx4sXL5CWloaCggKFn+dRxuPHjwGUb0fj5+cnt5yFhQVCQkI03j/Ru9zc3NCgQQM8e/YMnTp1EjocIiK9snnzZmzcuBHr168XOhTSE6ampvjqq6+QlZUFLy8vocOhahjz40eauIFUtI2///3v+OKLL9TuT1tatGghdAikBdu3b690TCwWG2xyThVqJziOHj2KxYsX49atWwDKf+lLSkqk57Ozs6XPfe3bt0/l56GaNGkCExMTPH78GA0bNlQ3bCK1WFlZ4dGjR8jKytLpJwdERIZgypQpGlmdnYzLqlWrhA6BFNC1a1fs27eP2+2qSV/XBTl37hyuXbtWaddLCX24EZbEsHbtWowdOxaA8smpitfx7vv5v//7vxEREaGzR1h0qeLSDbWRyouMAsDq1asxbNgw3Lx5U5oZqvhmcnZ2hrW1NU6dOqXWAiR2dnZwdHRkcoP0hrW1NZMbREREpDBDmTYfHBzMGaoqio2NxZIlS9ChQwehQ6lSz5491drK913qJEMq9l9VPJ9++qnK7Vc0YMAA6fezZ89G9+7dFa7bpEkTjcVB2qdyguPKlSv4+uuvYWZmhm+//RYvX76Uu73Q2LFjIRaLpbubqKJJkyYoKChAaWmpym0QERG1bdsWABAYGChwJEREupGQkAA7Ozvs3LlT6FA0pk6dOkKHUKWQkBAsXLgQAHS6+GltcfbsWUyfPl3peuokdA4dOqRyXV3jDA41EhwbN24EUL7d0IwZM+Di4iK3rGSxkxs3bqjaHYYOHYqioiKcPHlS5TaIiIj27NmDuXPnYsWKFUKHYtAMfcE6otokICAAOTk5Gv1EXCidO3fGsGHD8OWXXwrSvzI3yra2tlqMRDv0dZaRJK5evXpJ70OVoc5sE23N4Bg3bpzMv2t67Ws6P2PGDLnbv44YMQIeHh5GMQbUROUEx8WLFwEA06ZNq7Fs3bp1YWtri/T0dFW7w9y5c+Hl5YWIiAjcvn1b5XaIiKh2a9euHVavXi131iFVb/fu3ZgyZYp0fS0iMgwVdx40VKGhoTh48CDs7OyUrqvuzbs+rE9hLBo1aiTzb31+bSu+byomJpRVt25dXLx4EZMnT1arnXd1794dGzZsqPKcg4MD7OzskJaWZlSzuORReQ7L8+fPYW9vj7p16ypU3tLSEnl5eap2h/j4eISHh2Px4sXw9fVF//790aNHD9SvX7/avdi5owoREZHmfPLJJ0xuENVAXz8FN2TLli1DYmKi2jeXJKz09HQUFhbCwcFBI+0JkRiJiYlBbGysyvXt7OyUWgNEVfv27cP69esRGRkJwHiSnDVROcFha2uLvLw8lJaWVptgAID8/Hy8fv0a9erVU7U7jB8/XvqfhVgsxokTJ3DixIlq64hEIiY4iIiIiEgnZs2ahaNHj2r0k1kqt2DBAixYsEDoMJSiz7MS1OHj44ObN2/K3YmlOvIeoTB2gwcPxvHjx3XaZ3BwMIKDg3Xapz5QOcHRsmVLXL16Fbdv365xleDDhw+jrKwMPj4+qnaHRo0aMRtORERERHpr3bp1WLt2baW/WZs2bYqUlBSMHDlSoMhIU7p27apSvUWLFmk4EuEkJibiyJEjGDVqlNb7ioiIwPbt2zFr1iyNtamv95T6GpehUTnBMWTIEFy5cgWrVq3C/v375ZZ7+vQpvvrqK4hEIgwfPlzV7pCamqpyXSIiIiIiXajqJuXu3btIT0+Hl5eXABGRJg0aNAhxcXFo3769UvUWL16snYA0TJFZJ/Xq1UNYWJhG+5V3cx8ZGYlNmzZxdxAA4eHhWLduHROlNVD5QZxp06bB3d0d8fHxCAkJwd27d6XniouL8fDhQ6xfvx6dOnVCeno6vL29+cwcEREREdU6NjY2TG4YAbFYLP3QtkWLFkKHU2sIndzQdP/KzNR4d8ey+vXr49WrV4iKitJoPMZG5Z+WnZ0djh07hqCgIOzcuRO7du2SnrOyspJ+LxaL0bBhQxw+fBjm5ubqRUtERERERKQCPgJAqhByu99Dhw5JN9oAUOPal6TGDA6gfIGZW7duITQ0FJaWlhCLxTJf5ubmGD9+PH799Ve0bNlSUzETERERERER6YSTk5PG2pL3GFBVCbg2bdrg/Pnz6Nu3r8b6N3Zqz7dxc3PDtm3bsHnzZvzzn/9Eeno6SktL4ebmBj8/P9jY2Cjd5tKlSwGU7xH8t7/9TeaYshYuXKhSPSIiIiIiIiJS3KhRo2BpaYlJkyZh6dKlOHXqlE7719gDRZaWltXu51tcXIx//OMfmDZtWo1tLV68GCKRCC1btpQmOCTHlMUEBxEREREREQF8VEnb9u7dK/3e0dFR5/1rfcWW0tJSbNu2DStWrMBff/2lUIKjV69eEIlEaNSoUaVjREREHh4eePr0KXx9fYUOhYiIqEpt2rTB4cOHhQ7D4Ciyk4s69PWe0sXFRegQjIJKCY6CggI8fPgQpaWlaNq0KZydnSuVEYvFiI2NxbJly5CamipddVgRycnJCh0jIqLa6fr168jMzES7du2EDoWIiIyck5MTXr9+jQEDBihV7+uvv0ZJSQmGDRumpcg0T9ntbzVFX5MOuhATE4PU1FR+aKMhSi0ympOTg3HjxqFOnTro2LEj/Pz8UK9ePXz88cd49uyZtFxycjLat2+PiRMnIiUlBQDw0Ucf4erVqwr1c/ToUSQmJioTWq0xZcoUiEQifPfdd0KHQkQkGDc3N7z33ntCh0FEpJYRI0YAgPSRbNIuVW+iHz9+jAcPHih9829jY4M1a9aga9euKvUrhP79+yMmJgb/+te/1G7r3r17+Mc//qGBqCqrV68eAODDDz9UuQ17e3tNhaOWcePGYdGiRUKHUcnkyZMBACtWrBA4EuUonOAoKSlBYGAgdu7cicLCQulOKWVlZThy5AgCAwNRVFSEdevWISAgAPfu3YOJiQnGjBmD27dv49ChQwpnpYYOHYrQ0FCZY3369MHIkSOVuzojc/z4cVy+fBkNGzYUOhQiIiKiWkfyCb6lpaVG2vvxxx9x+vRpfPvttxppj7TD3t4eLVq0EDoMnRCJRBg3bhw6dOigdltt2rSR3iRr2p07d3Dw4EGFlj+QJzMzE8+fP1eorLYfm9FHW7ZswbNnzzBq1CiZ4xMmTEBSUlKVdXr16qWL0Kql8CMqsbGx+PXXXwGUJxv69+8PsViMhIQEnDlzBr///jvCw8MRGxsLkUiEkJAQLFy4EM2aNVMpsIpvouTkZLi5uanUljHIzMzElClTcPLkSbUylURERESkmuHDhyMhIUFj0/itrKy4/SORClxdXdV+9Mfa2hrW1tYaikj3oqKiMGnSJK21LxKJqrz/3rZtm9w6ZmZaX+KzRgrP4Dhw4ABEIhEmT56M06dPY86cOfjiiy9w+vRphIWFQSwWY8eOHXB2dsaZM2cQExOjcnLDxsYG2dnZKtXVlJ07dyI8PBy+vr6wtLSESCRCTExMtXWuX7+OgQMHwsnJCba2tujatSv279+vkXhCQ0Mxffp0Pm9OREREJBCRSIR+/frV6g/diAxBbZhxERYWJnQIeknhBMedO3cAAAsWLKh07ptvvpF+v3r1avTu3VutoLy9vVFUVIT169ejoKBArbZUtWDBAmzduhVpaWlo0KBBjeWTkpLQo0cPXLhwAcHBwYiIiEBGRgZGjRqFdevWqRXLd999hzdv3mD27NlqtUNERDUzMzNDQEAAWrRowQW/iIiIjExtXtBU2/QhsaRwguPVq1ewsbGBh4dHpXOenp6wsbEBAAwZMkTtoMaOHQuxWIwvvvgC9vb2MDU1BVD+mIapqanCX+pMkYmOjkZqaipevHiBiIiIasuWlJRg0qRJMDExwblz57B161asW7cOt27dgre3N+bPn4+0tDSZOl999RVEIlG1XwDwxx9/YNmyZYiNjYWJiVJrwhIRkQpEIhESExPxxx9/GPTUVSIiksUbW/0luZcEdP+YQ2BgIACgW7duOu1Xk/je/g+F3z1FRUXV7s1rb2+Pt2/fwtXVVe2gPv/8c6SkpGDr1q0oLi6WHtdlRiggIEDhsmfOnMGjR48QGhoKHx8f6XFHR0fMnz8f48ePR2xsLBYuXCg9N3v2bIwfP77Gtq9cuYIXL17Ay8tLeqy0tBQzZsxAdHQ0bt68qXCcRESkmHcTzURERKRdderUwZYtW2Bubq7zDxf27t2LXbt2YfTo0Trtl7RD+FVAqmBiYoJNmzZh1apV+OOPP/DmzRt88MEHcHFxQXx8vNDhVZKcnAwA6NevX6VzQUFBAICzZ8/KHK9Xr550e6PqDB06tNIU6aCgIIwfP77STjNERERERESGKDw8XJB+XVxc8Nlnn1VbpmXLlrh27ZqOIjIeQnxYpJcJDgk7OzuZm3sLCwu11/fQhocPHwJAldtHubm5wc7OTlpGWU5OTnBycpI5Zm5ujgYNGsjM6qiosLAQhYWF0n/n5uaq1D8REREREVFtFhERoXaCY/DgwTh+/Dg+//xzzQSlh9q0aSN0CMolOCRrYFSnuvMikQglJSXKdCm1fft2vX0WOicnB0D5IylVcXBwkJbRlVWrVmHJkiU67ZOIiIiIiMjYhISEIC8vD++//77KbcTHx+O3337De++9p8HI9MO1a9ewZ88eLF68WOhQlEtwCLkq6rhx4wTrW9+kpqbWWGbevHmYNWuW9N+5ubnw9PTUYlRERERERETGx9TUFNOnT1erDQsLC5n1Go2Jn58f/Pz8hA4DgBIJjkWLFmkzDoMmmbkhb5ZGbm4unJ2ddRkSLC0tYWlpqdM+iYiIiIj0FRePJkCz7wNzc3ONtWUIKi6doI+Y4NAAydobDx8+RKdOnWTOZWRkID8/H507dxYiNCIiIiIiItKgNWvWYNu2bfjmm2+EDkUnTp06hdmzZyM6OlroUGpkInQAxkCy8GliYmKlcwkJCTJliIiIiIiIyHB9+eWXuH//PlxdXYUORScCAgJw69YtvXkMpTpMcGhA37590axZM+zevRs3b96UHs/JycHKlSthYWGBkJAQ4QIkIiIiIiIiQXzwwQdCh1Br6PU2sUKKjo7GhQsXAAB37tyRHktOTgYAvP/++wgLCwMAmJmZITo6GkFBQejVqxdGjx4Ne3t7xMfHIy0tDWvXrkWTJk2EuAwiIiIiIiISSMeOHdVeoJQUxwSHHBcuXEBsbKzMsYsXL+LixYvSf0sSHEB5Vu7ChQtYtGgR9u3bh+LiYrRr1w5r1qzBqFGjdBY3ERERERH9R+vWrZGamooOHToIHQrVQiEhITAz0+5tNxfQ/Q8mOOSIiYlBTEyMUnU6d+6Mn376STsBERERERGR0u7cuYOSkhLuMEgAdJ8MEIvFOu1PnwiReGGCg4iIiIiIjJapqSlMTU2FDoOIdICLjBIREREREZFWSHbeaNq0qcCRUG3ABAcRERERERFpxeHDhzF37lycOXNG6FCoFuAjKkRERERERKQVDRs2xOrVq4UOg2oJzuAgIiIiIiIio1GbF/as7ZjgICIiIiIiIqPFhEftwQQHERERERER1Qq63rq0bdu2Ou2vtuMaHEREREREREQadOPGDdy9exeBgYFChyIYJycnnffJBAcRERERERGRBvn4+MDHx0cnfbm6uuqkH2UtX74cv/32Gy5cuKCzPvmIChEREREREZGBOX78OAYOHIhNmzYJHUqV6tWrhxMnTui0T87gICIiIiIiIjIwgwYNwqBBg4QOQ69wBgcRERERERHVCqampkKHQFrEGRxERERERERktExMTBAWFobs7Gx4eXkJHQ5pERMcREREREREZNSioqKEDoF0gI+oEBEREREREZHBY4KDiIiIiIiIiAweExxEREREREREZPCY4CAiIiIiIiIig8cEBxEREREREREZPCY4iIiIiIiIiMjgMcFBRERERERERAaPCQ4iIiIiIiIiMnhMcBARERERERGRwTMTOgDSDbFYDADIzc0VOBIiIiIiIiLtKS4uln7P+x9hSV5/yf2otjHBUUu8evUKAODp6SlwJERERERERLrh6OgodAiE8vtRXfwsmOCoJVxcXAAAjx8/5i+5jvn5+eH69etCh6Fx+nxdQsWmi3413Yem2lO3HVXq5+bmwtPTE0+ePIGDg4PKfZPy9Pn3Xx36fF0c13TfHse12kWff//Voc/XxXFN9+0JMa7l5OSgUaNG0vtRbWOCo5YwMSlfbsXR0ZH/YeqYqampUb7m+nxdQsWmi3413Yem2lO3HXXqOzg46O170Vjp8++/OvT5ujiu6b49jmu1iz7//qtDn6+L45ru2xNyXJPcj2obFxkl0rKpU6cKHYJW6PN1CRWbLvrVdB+aak/ddvT5/USVGevPS5+vi+Oa7tvjuFa7GOvPS5+vi+Oa7turDeOaSKyr1T5IULm5uXB0dEROTo7eZnGJiJTBcY2IjA3HNSIyNroe1ziDo5awtLTEokWLYGlpKXQoREQawXGNiIwNxzUiMja6Htc4g4OIiIiIiIiIDB5ncBARERERERGRwWOCg4iIiIiIiIgMHhMcRERERERERGTwmOCgKm3cuBGNGzeGlZUV3n//fdy6dUvokIiIVHbw4EEEBgbCxcUFIpEIqampQodERKSWVatWwdfXF/b29nB1dUVwcDDHNiIyaN9++y3atm0LOzs7ODk5oU+fPrh69apSbTDBQZXs3r0bc+fOxbJly/DPf/4TXl5eCAoKQm5urtChERGp5M2bN+jVqxeWLl0qdChERBpx9uxZfPbZZ7h69Sp+/vlnZGVlYcCAASgpKRE6NCIilTRu3Bjr16/HrVu3cOnSJel96KtXrxRug7uoUCV+fn7o0aMHNmzYAAAoKSmBm5sbli9fjoiICGGDIyJSw927d9GuXTukpKSgSZMmQodDRKQxKSkpaNasGW7duoX27dsLHQ4Rkdpyc3Ph6OiI5ORk9O7dW6E6nMFhgHbu3Inw8HD4+vrC0tISIpEIMTEx1da5fv06Bg4cCCcnJ9ja2qJr167Yv39/pXJFRUW4ceMGAgICpMfMzMzg7++Py5cva/pSiIgAaHdcIyISgq7HtZycHACAi4uLuqETEVVJl+NaUVERtm7dCmdnZ7Rr107hGM0ULkl6Y8GCBUhLS0PdunXRoEEDpKWlVVs+KSkJQUFBsLKywujRo2Fvb4/4+HiMGjUKT548wezZs6VlX758idLSUri6usq0Ub9+fTx69Egr10NEpM1xjYhICLoc10pLSzFnzhwMHDgQHh4emr4UIiIAuhnXzp8/jwEDBuDt27dwc3PDqVOnlErccgaHAYqOjkZqaipevHhR4yMjJSUlmDRpEkxMTHDu3Dls3boV69atw61bt+Dt7Y358+fX+MYkItI2jmtEZGx0Na6JxWJERETg8ePHNX6SSkSkDl2Ma76+vrh58yYuXbqEAQMGIDg4GC9fvlQ4RiY4DFBAQAAaN26sUNkzZ87g0aNHGDNmDHx8fKTHHR0dMX/+fBQVFSE2NlZ6vG7dujA1NUVmZqZMO8+fP4ebm5tG4iciqkib4xoRkRB0Ma6JxWL87W9/w+nTp/HLL7+gXr16mgqfiKgSXYxr1tbW8PLyQpcuXRAdHQ0TExNs375d4RiZ4DByycnJAIB+/fpVOhcUFASgfBVuCQsLC3To0AG//PKL9FhJSQmSk5PRrVs37QZLRKQAZcc1IiJ9p8q4JhaLMXXqVJw4cQJnzpyBp6en1uMkIlKUpv5eE4vFKCwsVLhfrsFh5B4+fAgAaNGiRaVzbm5usLOzk5aRmDlzJiZOnIhOnTqhY8eOWLt2LczMzDBmzBidxExEVB1VxrWsrCw8fvxYupbQb7/9htevX6NRo0ZckI+IBKfKuDZ16lTs2bMHx44dg7W1NTIyMgCULzJqYWGh/aCJiKqhyrg2d+5cDBkyBB4eHsjKysLmzZvx9OlTDB8+XOF+meAwcpIVtR0dHas87+DgIC0jMWbMGLx48QLz589HZmYmfH19kZCQAAcHB63HS0RUE1XGtaNHjyI0NFT670GDBgEAtm/fjvHjx2snUCIiBakyrkVGRgIAevbsKXM8KSkJ/v7+mg+SiEgJqoxr6enpGD16NJ4/fw4XFxf4+fnh/PnzaN26tcL9MsFBVZoxYwZmzJghdBhERBoxfvx4JjKIyKiIxWKhQyAi0qgff/xR7Ta4BoeRk2TMKmbHJHJzc+Vm1YiI9BHHNSIyNhzXiMjYCDWuMcFh5CTPPFV8vgkAMjIykJ+fX+VzUURE+orjGhEZG45rRGRshBrXmOAwcr179wYAJCYmVjqXkJAgU4aIyBBwXCMiY8NxjYiMjVDjGhMcRq5v375o1qwZdu/ejZs3b0qP5+TkYOXKlbCwsEBISIhwARIRKYnjGhEZG45rRGRshBrXRGKuUGRwoqOjceHCBQDAnTt38K9//Qs9evSAl5cXAOD9999HWFiYtHxSUhKCgoJgZWWF0aNHw97eHvHx8UhLS8PatWsxe/ZsQa6DiEiC4xoRGRuOa0RkbAxiXBOTwRk3bpwYgNyvcePGVapz9epVcf/+/cUODg5ia2trcefOncV79+7VffBERFXguEZExobjGhEZG0MY1ziDg4iIiIiIiIgMHtfgICIiIiIiIiKDxwQHERERERERERk8JjiIiIiIiIiIyOAxwUFEREREREREBo8JDiIiIiIiIiIyeExwEBEREREREZHBY4KDiIiIiIiIiAweExxEREREREREZPCY4CAiIiIiIiIig8cEBxEREZERWrx4MUQikczX0KFDhQ6rksOHD1eKs0mTJkKHRUREBogJDiIiIgNU1c2rvC+q3czNzeHq6gpXV1c4OztXOh8TEyN9r6SmptbYnqTs4sWLNRKflZWVND4HBweNtElERLWTmdABEBERkXpcXV2FDoH0WPfu3ZGcnCx0GHL1798fGRkZAMqTLaGhoQJHREREhooJDiIiIgMnuTkkIiIiqs34iAoRERERERERGTwmOIiIiGqB1NRUmXUWHj16hMmTJ6Np06awtLSstKhjWVkZdu3ahYEDB8LV1RUWFhaoV68e+vXrhz179kAsFsvtq7S0FJs2bULHjh1ha2sLFxcX+Pv7Iy4uDgDg7+9f5RoOFWOUp0mTJhCJRIiJiZFb5sSJExg+fDjc3d1haWkJZ2dn9OrVC5GRkSgqKqqyzrtxicViREVFoUuXLnBwcIC9vT26deuGnTt3yu1T4vfff8fUqVPRpk0b2Nvbw87ODi1btsTo0aMRHx+PsrIyAMCWLVsgEong4uKCf//733LbKysrk16zpta90AZl1oVRZK0PIiIiZfERFSIiolrm0qVLCA8PR35+PmxsbGBubi5zPisrC8OGDcO5c+ekxxwdHfHy5UucOnUKp06dwt69e3HgwAFYWFjI1C0sLMRHH32EhIQEAICJiQksLCxw7tw5nD17FnPnztXqtb19+xYhISHSZAoAODg4ICcnB+fPn8f58+exY8cOnDx5ssoFN4HyBM2wYcNw5MgRmJmZwcbGBnl5ebhy5QquXLmChw8fYsmSJVXWXbNmDebPny9NYlhZWcHGxgZ//vknHjx4gH379iE7OxtOTk749NNP8cUXXyA7OxtxcXEYO3ZslW0mJiYiLS0NpqammDhxopqvkPbY2dlVux5MQUEB8vLydBgRERHVNpzBQUREVMuEh4ejbdu2uH79Ot68eYP8/HwkJiYCKL+5//jjj3Hu3Dn4+Pjg2LFjePPmDV6/fo38/HzExsaifv36OHr0aJXJinnz5iEhIQEikQjLly9HdnY2srOzkZGRgSlTpmDNmjW4efOm1q5t8uTJiIuLQ7NmzbBr1y7k5OQgJycHBQUFOHLkCJo1a4YrV65gwoQJctv4/vvvkZycjJiYGOTm5iInJwdPnjzBhx9+CABYvnw5Hj58WKleZGQkvvrqK5SVlWHIkCG4ceMG3r59i1evXiEvLw+JiYkYNWoUTEzK//yyt7eXJjWioqLkxiM5N2DAAHh6eqr82mjbnDlzkJGRUeXXH3/8AQ8PDwBAx44d0aBBA4GjJSIiY8QZHERERAbOzc1N7rlffvkFbdu2lTlWp04dnD59GnZ2dtJj3t7eAIDdu3fj7NmzaNWqFZKTk+Ho6CgtY2tri5CQELRt2xZ+fn7YvHkz5s2bh/r16wMA0tPTsWnTJgDAggUL8PXXX0vr1q9fH5s3b8br16+xZ88e9S+6CufPn8fOnTtRv359JCcnyyQDrKysMGTIEHTs2BGtWrXC4cOHcfPmTfj4+FRqJzs7G2fOnMEHH3wgPebh4YEDBw6gWbNmSE9Px/79+2WuLzs7W5rwGT16NHbv3i2zRa+NjQ0CAwMRGBgo01dERAS2bNmCc+fO4f79+2jZsqXM+czMTBw7dgxAefJG2/z8/GBqaqrRNktKSjBixAj8/vvvcHd3x9GjR2FpaanRPoiIiADO4CAiIjJ4mZmZcr+Ki4srlZ82bZpMcuNd27ZtAwBMmTJFJrnxrk6dOqFt27YoKipCUlKS9HhcXBxKSkpgbW2NOXPmVFlXm2tISGL/9NNP5c508PDwkCYuJI/RVNSjRw+Z5IaEpaUlgoKCAAC3b9+WORcXF4e8vDyYm5tj/fr1MsmN6rz33nvo1q0bAGDr1q2Vzm/fvh3FxcXw8PDAwIEDFWpTHS9fvqz2/ZSZmal0m1OmTMEvv/wCW1tbHDt2DO7u7lqInIiIiDM4iIiIDF51C35WpUePHlUeLy0txZUrVwCUJyJWrlwpt42srCwAQFpamvTYr7/+CgDw9fWFg4NDlfW8vb3h7u6Ov/76S6mYFXHx4kUA5YmO3bt3yy2Xk5MDQDb2d3Xp0kVu3YYNGwL4z/VLXLp0CUB58kfZxy8iIiJw+fJl7NixA6tWrZKuayIWixEdHQ0AmDhxosZnVlQlJSWl0oKzFSmavAHK1ySJjo6GiYkJdu3ahQ4dOqgZIRERkXxMcBAREdUykkdKKsrKykJhYSGA8kcuFFFQUCD9/vnz5wBQ4yf0Hh4eWklwpKenAwByc3ORm5tbY/l3Y3+Xvb293DpmZuV/OlWcGZORkQEAaNy4sUKxvis4OBgzZ87Ey5cvcfDgQYwePRoAcObMGTx69AimpqYICwtTul2hxcXFYd68eQDKEx0fffSRwBEREZGx4yMqREREtYy8mQClpaXS73/66SeIxeIav/Rp21JJ/JGRkQrFXt02s8pSZlZDRVZWVhg/fjwA2cdU3l1cVLJAp6G4du0aQkJCIBaLERYWJveRJSIiIk1igoOIiIgAlC8+KpmhIO/xjepIZobUNDtD3nlJ3wDw73//W259ySMmFUkWW1UldnWp23d4eDhEIhGSk5Px559/4uXLlzh06JD0nCFJS0vDkCFD8PbtW/Tp0webN28WOiQiIqolmOAgIiIiAIC5uTk6d+4MANKdO5Th6+sLoHwtjvz8/CrLPHz4EE+fPq3ynLOzs/T7J0+eVFnmwYMHeP36dZXnJGuLHD9+XNGQNaZ79+4Ayq/92bNnStf39vZGnz59IBaLERUVhR07dqCoqAienp4YMGCApsPVmtzcXAwePBiZmZnw9vZGXFwczM3NhQ6LiIhqCSY4iIiISEqyFenJkydx8uTJastWXGhz+PDhMDU1xdu3b7F27doq6yxdulRue7a2tmjevDkAID4+vsoyK1asqDH2u3fvIjIystrY37x5g6KiomrLKGPkyJFwcHBASUkJZs6cqfTCr0D5YqMAEBMTI31UZcKECTpZXFQTSkpKMHLkSNy9exd16tTBiRMnZJJWRERE2sYEBxEREUmNHTsWAQEBEIvFGDZsGJYvXy5dvBMoTwwkJSVh6tSpaNasmUxdd3d3TJ06FQCwbNkyrFq1Cnl5eQCAFy9eYNq0adi5c6fc7WcB4JNPPgEA/PDDD9i8eTPevn0LoHxGR1hYGPbt2wcbG5sq6/bu3RuhoaEAgKlTp2LmzJn4v//7P+n5wsJCXLlyBV9++SUaN24sXRRVExwdHfE///M/AIB9+/Zh2LBhuHnzpvR8QUEBTpw4gY8++kjuAqhDhw6Fm5sbnj9/jvv37xvc4qIzZsxAYmIiLCwscPDgQXh5eQkdEhER1TJMcBAREZGUqakp4uPjMXjwYBQVFeGbb76Bu7s7HB0d4ezsDHt7e+m6Cm/evKlUf82aNQgICEBZWRnmz58PZ2dnuLi4wNXVFd9//z3mzp0LHx8fuf3PnTsXbdq0QXFxMaZOnQo7Ozs4OzujUaNG2LFjB2JiYlCvXj259bds2YKwsDCIxWJs2LABzZs3h729PVxcXGBjY4Nu3brh73//O169eqXWwqBVCQ8Px8qVK2FiYoIjR46gQ4cOsLGxQZ06dWBvb4/Bgwfj6NGjKCsrq7K+mZmZTELD0BYXPXHiBIDy7W2Dg4Ph5uYm90veI0hERETqYIKDiIiIZDg4OODYsWM4efIkRo0ahUaNGqGwsBAFBQVwd3dHv379sGrVKty/f79SXSsrK/z000/YuHEjfHx8YGFhAbFYjJ49e2L//v1YvXp1tX3b2dnhwoULmDVrFpo2bQozMzOYm5tj+PDhuHz5snQLVXksLCwQFRWFS5cuYfz48WjevDlKS0uRn5+P+vXrw9/fHwsXLsTt27dr3M5WFfPmzcOtW7cwadIk6QyGoqIitGjRAp988gkOHjwIBwcHufVHjhwp/d7QFheVKC4uRmZmZrVf7+7YQ0REpCkisSoPiRIRERGpyN/fH2fPnsWiRYv0aptZfbBu3TrMmTMHnp6eSElJUWv9jcWLF2PJkiXo3bs3kpOTNRekFsXExCA0NBSNGzdGamqq0OEQEZGB4QwOIiIiIj1QWloqXRx10qRJBrO4KBERkb5ggoOIiIhIYGVlZVi0aBEePXoEW1tb6Y4qmnD27FmIRCKIRCIMHTpUY+1qyuHDh6XxSRaJJSIiUoWZ0AEQERER1VZxcXGYM2cOsrKypDvOLFmypNqFVBVlZ2cHV1dXmWP6uG2rlZVVpTg1cf1ERFT7MMFBREREJJD8/HykpaXB3NwcrVq1wrRp06Rb7aprzpw5mDNnjkba0qb+/fsjIyND6DCIiMgIcJFRIiIiIiIiIjJ4XIODiIiIiIiIiAweExxEREREREREZPCY4CAiIiIiIiIig8cEBxEREREREREZPCY4iIiIiIiIiMjgMcFBRERERERERAaPCQ4iIiIiIiIiMnhMcBARERERERGRwWOCg4iIiIiIiIgM3v8DwuFaXG+Gg5MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "parest.plotfits(res, save_plot=False, namestr=\"lorentzian_test\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The function exists in the library as well for ease of use:" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.modeling import fit_lorentzians" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [], + "source": [ + "parest, res = fit_lorentzians(ps_new, nlor, t0)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1.47775222e+02, -1.95500403e-01, -1.76819873e-03, 4.02910804e+01,\n", + " 1.89163457e+00, 1.20856451e+00, 1.05610820e+01, 7.49861477e+00,\n", + " 6.35659323e-01, 1.99437212e+00])" + ] + }, + "execution_count": 91, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res.p_opt" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Multitaper/multitaper_example.html b/notebooks/Multitaper/multitaper_example.html new file mode 100644 index 000000000..e4740f2e8 --- /dev/null +++ b/notebooks/Multitaper/multitaper_example.html @@ -0,0 +1,1110 @@ + + + + + + + + Install Stingray in colab — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Open In Colab

+

If clicking the link above turns the screen gray, try right clicking on the link and selecting “Open link in new tab”.

+
+

Install Stingray in colab

+

Comment out the cell below if running locally.

+
+
[1]:
+
+
+
# %%capture --no-display
+# !git clone --recursive https://github.com/StingraySoftware/stingray.git
+# %cd stingray
+# !pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm seaborn
+# !pip install -e "."
+# %cd ..
+
+# import os
+# os.kill(os.getpid(), 9)
+
+
+
+

The kernel will (crash and then) restart after executing the above cell to finish installing Stingray. So the cells below will have to be run again or manually.

+
+
+

Multitaper Spectral Estimator Example

+
+
[2]:
+
+
+
import numpy as np
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set_theme()
+sns.set_palette("husl", 8)
+
+import scipy
+from scipy import signal
+from stingray import Multitaper, Powerspectrum, Lightcurve
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/largememory.py:25: UserWarning: Large Datasets may not be processed efficiently due to computational constraints
+  warnings.warn(
+
+
+
+
+

### Creating a light curve

+

Lets create a Lightcurve sampled from an autoregressive process of order 4 that has been frequently exemplified in literature in similar contexts

+
+
[3]:
+
+
+
np.random.seed(100)
+coeff = np.array([2.7607, -3.8106, 2.6535, -0.9238]) # The 4 coefficients for the AR(4) process
+ar4 = np.r_[1, -coeff] # For use with scipy.signal
+N = 1024
+
+freq_analytical, h = signal.freqz(b=1.0, a=ar4, worN=N, fs=1) # True PSD of AR(4)
+psd_analytical = (h * h.conj()).real
+
+data = signal.lfilter([1.0], ar4, np.random.normal(0, 1, N)) # N AR(4) data samples.
+
+times = np.arange(N)
+
+err = np.random.normal(0, 1, N)
+
+lc_ar4 = Lightcurve(time=times, counts=data, err_dist='gauss', err=err)
+lc_ar4.plot()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_8_1.png +
+
+
+

The Multitaper Periodogram

+

Tapering a time series as a way of obtaining a spectral estimator with acceptable bias properties is an important concept. While tapering does reduce bias due to leakage, there is a price to pay in that the sample size is effectively reduced. The loss of information inherent in tapering can often be avoided either by prewhitening or by using Welch’s overlapped segment averaging.

+

The multitaper periodogram is another approach to recover information lost due to tapering. This apporach was introduced by Thomson (1982) and involves the use of multiple orthogonal tapers.

+

In the multitaper method the data is windowed or tapered, but this method differs from the traditional methods in the tapers used, which are the most band-limited functions amongst those defined on a finite time domain, and also, these tapers are orthogonal, enabling us to average the eigenspectrum (spectrum estimates from individual tapers) from more than one tapers to obtain a superior estimate in terms of noise. The resulting spectrum has low leakage, low variance, and retains information +contained in the beginning and end of the time series. For more details on the multitaper periodogram, please have a look at the references.

+
+

Let’s have a look at the individual tapers.

+
+
[4]:
+
+
+
NW = 4 # normalized half-bandwidth = 4
+Kmax = 8 # Number of tapers
+dpss_tapers, eigvals = \
+signal.windows.dpss(M=lc_ar4.n, NW=NW, Kmax=Kmax,
+                    sym=False, return_ratios=True)
+
+data_multitaper = lc_ar4.counts - np.mean(lc_ar4.counts)  # De-mean
+data_multitaper = np.tile(data_multitaper, (len(eigvals), 1))
+
+ # Data tapered with the dpss windows
+data_multitaper = np.multiply(data_multitaper, dpss_tapers)
+
+
+
+

Plotted below are the first 8 tapers (on the left), and the corresponding tapered time series

+
+
[5]:
+
+
+
fig, axes = plt.subplots(8, 2, figsize=(11, 27), dpi=90, sharey='col')
+
+idx = 0
+palette = sns.color_palette("husl", 8)
+for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):
+    axes_rows[0].plot(lc_ar4.time, taper, color=palette[idx])
+    axes_rows[0].set_ylabel(f"K = {idx}")
+    axes_rows[0].set_xlabel("t")
+
+    axes_rows[1].plot(lc_ar4.time, tapered_data, color=palette[idx])
+    axes_rows[1].set_xlabel("t")
+
+    idx += 1
+axes[0][0].set_title("DPSS tapers", fontsize=18, pad=15)
+axes[0][1].set_title("Tapered time series", fontsize=18, pad=15)
+fig.tight_layout()
+txt="DPSS tapers and product of these tapers and the AR(4) time series.\n\
+    Note that, for K=0 in the top row, the extremes of the time series are severly\n\
+    attenuated, but those portions of the extremes, as K increases, are accentuated."
+fig.text(.5, -0.025, txt, ha='center', fontsize=18)
+fig.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_14_0.png +
+
+
+

Now let’s see their frequency domain representations (here PSD)

+

We can have a good look at the leakage properties of these tapers (and the resulting time series) from their PSD representations.

+
+
[6]:
+
+
+
%%capture --no-display
+fig, axes = plt.subplots(8, 2, figsize=(11, 28), dpi=90, sharey='col')
+
+idx = 0
+palette = sns.color_palette("husl", 8)
+
+freq = scipy.fft.rfftfreq(lc_ar4.n, d=lc_ar4.dt)
+for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):
+
+    w, h = signal.freqz(taper, fs=1, worN=np.linspace(0, 0.01, 200))
+    h = np.multiply(h, np.conj(h))
+    axes_rows[0].plot(w, h, color=palette[idx])
+    axes_rows[0].axvline(x=NW/N, color="black", linewidth=0.6, label="Frequency\nW=4/N")
+    axes_rows[0].set(
+        ylabel=f"K = {idx} \nPower",
+        xlabel="Frequency",
+        yscale="log"
+    )
+    axes_rows[0].legend()
+
+    fft_tapered_data = scipy.fft.rfft(tapered_data)
+    psd_tapered_data = np.multiply(fft_tapered_data, np.conj(fft_tapered_data))
+    axes_rows[1].plot(freq, psd_tapered_data, color=palette[idx], label=f"K={idx} eigenspectrum")
+    axes_rows[1].plot(freq_analytical, psd_analytical, color="black", alpha=0.56, label="True S(f)")
+    axes_rows[1].set(
+        xlabel="Frequency",
+        ylabel="Power",
+        yscale="log"
+    )
+    axes_rows[1].legend()
+
+    idx += 1
+# fig.suptitle("Left: DPSS taper spectral windows \n Right: Eigenspectra for AR(4) time series with given K", y=1)
+axes[0][0].set_title("DPSS taper spectral windows", fontsize=18, pad=15)
+axes[0][1].set_title("Eigenspectra for AR(4) tapered time series", fontsize=18, pad=15)
+
+text="Note the marked increase in bias in the eigenspectra as K increases.\n\
+The left-hand plots show the low frequency portion of the spectral windows (of DPSS tapers)\n\
+K = 0 to 7. The thin vertical line in each plot indicates the location of the frequency\n\
+W = 1/256 = 0.003906 = 4/N. Note that, as K increases, the level of the sidelobes of\n\
+spectral windows (of DPSS tapers) also increases until at K = 7 the main sidelobe level\n\
+is just barely below the lowest lobe in [-W, W]."
+fig.text(0.5, -0.06, text, ha="center", fontsize=18)
+fig.tight_layout()
+fig.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_16_0.png +
+
+
+
+
+
+

Summary of Multitaper Spectral Estimation

+

We assume that $ X_1, X_2, …, X_N $ is a sample of length \(N\) from a zero mean real-valued stationary process $ {X_t} $ with unknown sdf $ S(\cdot) $ defined over the interval \([-f_{(N)}, f_{(N)}]\), where \(f_{(N)} \equiv 1/(2\Delta t)\) is the Nyquist frequency and \(\Delta t\) is the sampling interval between observations. (If \(\{X_t\}\) has an unknown mean, we need to replace \(X_t\) with \(X_t' \equiv X_t - \bar{X_t}\) in all computational +formulae, where \(\bar{X_t} = \sum^N_{t=1}X_t/N\) is the sample mean.)

+
    +
  • Simple multitaper spectral estimator \(\hat{S}^{mt}(\cdot)\)

  • +
+

This estimator is defined as the average of K eigenspectra \(\hat{S}^{mt}_k(\cdot),k = 0, ..., K - 1\), the \(k^{th}\) of which is a direct spectral estimator employing a dpss data taper \(\{h_{t,k}\}\) with parameter \(W\). The estimator \(\hat{S}^{mt}_k(f)\) is approximately equal in distribution to \(S(f)_{\chi^2_{2K}}/2K\)

+
    +
  • Adaptive multitaper spectral estimator \(\hat{S}^{amt}(\cdot)\)

  • +
+

This estimator uses the same eigenspectra as \(\hat{S}^{mt}(\cdot)\), but it now adaptively weights the \(\hat{S}^{mt}(\cdot)\) terms. The weight for the \(k^{th}\) eigenspectrum is proportional to \(b^2_k(f)\lambda_k\), where \(\lambda_k\) is the eigenvalue corresponding to the eigenvector with elements \(\{h_{t,k}\}\), while \(b_k(f)\) is given by

+

\(\large{b_k(f) = \frac {S(f)} {\lambda_k S(f) + (1-\lambda_k)\sigma^2\Delta t}}\)

+

The \(b_k(f)\) term depends on the unknown sdf \(S(f)\), but it is estimated using an iterative scheme. The estimator \(\hat{S}^{mt}_k(f)\) is approximately equal in distribution to \(S(f)_{\chi^2_\nu}/\nu\).

+

This summary, by no means, is an exhaustive explanation of the multitapering concept. Further exploration of the topic is highly encouraged. Use the references as the starting point.

+
+
+
+

Creating a Multitaper object

+

Pass the Lightcurve object to the Multitaper constructor ### Other (optional) parameters that can be set at instantiation are: (Given here for completness, feel free to skip as they are later showcased)

+
+
norm: {leahy | frac | abs | none }, optional, default frac
+
The normaliation of the power spectrum to be used. Options are leahy, frac, abs and none, default is frac.
+
+
+
NW: float, optional, default 4
+
The normalized half-bandwidth of the data tapers, indicating a multiple of the fundamental frequency of the DFT (Fs/N). Common choices are n/2, for n >= 4.
+
+
+
adaptive: boolean, optional, default False
+
Use an adaptive weighting routine to combine the PSD estimates of different tapers.
+
+
+
jackknife: boolean, optional, default True
+
Use the jackknife method to make an estimate of the PSD variance at each point.
+
+
+
low_bias: boolean, optional, default True
+
Rather than use 2NW tapers, only use the tapers that have better than 90% spectral concentration within the bandwidth (still using a maximum of 2NW tapers)
+
+
+
lombscargle: boolean, optional, default False
+
Whether to use the Lomb (1976) Scargle (1982) periodogram when calculating the Multitaper spectral estimate. Highly recommended for unevenly sampled time-series. Adaptive weighting and jack-knife estimated variance are yet not supported.
+
+
+
[7]:
+
+
+
mtp = Multitaper(lc_ar4, adaptive=True, norm="abs")
+print(mtp)
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+
+Using 7 DPSS windows for multitaper spectrum estimator
+<stingray.multitaper.Multitaper object at 0x7fed1f89f130>
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+

The results

+
+
[8]:
+
+
+
fig = plt.figure(figsize=(12, 8), dpi=90)
+plt.plot(mtp.freq, mtp.power, color="slateblue", label="Multitaper estimate")
+plt.plot(freq_analytical, psd_analytical, color="red", label="True S(f)")
+plt.yscale("log")
+plt.legend()
+plt.ylabel("Power")
+plt.xlabel("Frequency")
+plt.title("AR(4) Spectrum")
+plt.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_23_0.png +
+
+
+
+

While it seems decent, lets compare with Powerspectrum

+
+
[9]:
+
+
+
ps = Powerspectrum(lc_ar4, norm="abs")
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
[10]:
+
+
+
fig = plt.figure(figsize=(12, 8), dpi=90)
+plt.plot(mtp.freq, mtp.power, color="slateblue", label="Multitaper estimate")
+plt.plot(ps.freq, ps.power, color="green", label="Periodogram estimate", alpha=0.4)
+plt.plot(freq_analytical, psd_analytical, color="red", label="True S(f)")
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency")
+plt.title("AR(4) Spectrum")
+
+
+
+
+
[10]:
+
+
+
+
+Text(0.5, 1.0, 'AR(4) Spectrum')
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_26_1.png +
+
+
+

As can be seen, there is improvement in both the variance and the bias.

+
+
+
+

Attributes of the Multitaper object

+

norm: {leahy | frac | abs | none } the normalization of the power spectrun

+

freq: The array of mid-bin frequencies that the Fourier transform samples

+

power: The array of normalized squared absolute values of Fourier amplitudes

+

unnorm_power: The array of unnormalized values of Fourier amplitudes

+

multitaper_norm_power:The array of normalized values of Fourier amplitudes, normalized according to the scheme followed in nitime, that is, by the length and the sampling frequency.

+

power_err: The uncertainties of power. An approximation for each bin given by power_err = power/sqrt(m). Where m is the number of power averaged in each bin (by frequency binning, or averaging power spectrum). Note that for a single realization (m=1) the error is equal to the power.

+

df: The frequency resolution

+

m: The number of averaged powers in each bin

+

n: The number of data points in the light curve

+

nphots: The total number of photons in the light curve

+

jk_var_deg_freedom: Array differs depending on whether the jackknife was used. It is either - The jackknife estimated variance of the log-psd, OR - The degrees of freedom in a chi2 model of how the estimated PSD is distributed about the true log-PSD (this is either 2*floor(2*NW), or calculated from adaptive weights)

+
+
+

A look at the values contained in these attributes.

+
+
[11]:
+
+
+
print(mtp)
+print("norm: ", mtp.norm, type(mtp.norm))
+print("power.shape: ", mtp.power.shape, type(mtp.power))
+print("unnorm_power.shape: ", mtp.unnorm_power.shape, type(mtp.unnorm_power))
+print("multitaper_norm_power.shape: ", mtp.multitaper_norm_power.shape, type(mtp.multitaper_norm_power))
+print("power_err.shape: ", mtp.power_err.shape, type(mtp.power_err))
+print("df: ", mtp.df, type(mtp.df))
+print("m: ", mtp.m, type(mtp.m))
+print("n: ", mtp.n, type(mtp.n)) # Notice the length of PSDs is half that of the number of data points in the light curve, as the imaginary (complex) part is discarded.
+print("nphots: ", mtp.nphots, type(mtp.nphots))
+print("jk_var_deg_freedom.shape: ", mtp.jk_var_deg_freedom.shape, type(mtp.jk_var_deg_freedom))
+
+
+
+
+
+
+
+
+<stingray.multitaper.Multitaper object at 0x7fed1f89f130>
+norm:  abs <class 'str'>
+power.shape:  (511,) <class 'numpy.ndarray'>
+unnorm_power.shape:  (511,) <class 'numpy.ndarray'>
+multitaper_norm_power.shape:  (511,) <class 'numpy.ndarray'>
+power_err.shape:  (511,) <class 'numpy.ndarray'>
+df:  0.0009765625 <class 'numpy.float64'>
+m:  1 <class 'int'>
+n:  1024 <class 'int'>
+nphots:  -73.38213649959974 <class 'numpy.float64'>
+jk_var_deg_freedom.shape:  (511,) <class 'numpy.ndarray'>
+
+
+
+
+

A look at the different normalizations

+

The normalized S(f) estimates are stored in the power attribute can be accessed like mtp.power if the object name is mtp

+
+
[12]:
+
+
+
%%capture --no-display
+norms = ["leahy", "frac", "abs", "none"]
+
+for norm in norms:
+    ps = Powerspectrum(lc_ar4, norm=norm)
+    mtp = Multitaper(lc_ar4, norm=norm, adaptive=False) # adaptive=False does not calculate adaptive weights to reduce bias, helps see the normalization similarities better
+
+    fig = plt.figure(figsize=(12, 8), dpi=90)
+    plt.plot(mtp.freq, mtp.power, color="slateblue", label="Multitaper estimate")
+    plt.plot(ps.freq, ps.power, color="green", label="Periodogram estimate", alpha=0.4)
+    plt.plot(freq_analytical, psd_analytical, color="red", label="True S(f)")
+    plt.legend()
+    plt.yscale("log")
+    plt.ylabel("Power")
+    plt.xlabel("Frequency")
+    plt.title("AR(4) Spectrum, " + (norm + " normalized").title())
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_0.png +
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_1.png +
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_2.png +
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_32_3.png +
+
+
+
+

Other attributes with the S(f) estimates

+

If you look closely at the attributes of the multitaper object, there is a multitaper_norm_power attribute. This attributes contains the PSD normalized according to

+

Another attribute containing the PSD is the unnorm_power, and as the name suggests, contains the unnormalized PSD.

+
+
+
+

A summary of the jackknife variance estimate

+

Assume that we have a sample of \(K\) independent observations, \(\{x_i\}, i = 1,...K\), drawn from some distribution characterized by a parameter \(\theta\), which is to be estimated. Here, \(\theta\) is usually a spectrum or coherence at a particular frequency or a simple parameter such as the frequency of a periodic component. Denote an estimate of \(\theta\) made using all \(K\) observations by \(\hat{\theta_{all}}\). Next, subdivide the data into \(K\) groups +of size \(K − 1\) by deleting each entry in turn from the whole set, and let the estimate of \(\theta\) with the \(i\)th observation deleted be

+

\(\large{\theta_{\setminus i} = \hat{\theta}\{x_1,..x_{i-1},x_{i+1},...x_K\}}\)

+

for \(i = 1, 2,..., K\), where the subscript \(\setminus\) is the set-theoretic sense of without. Using \(\bullet\) in the statistical sense of averaged over, define the average of the \(K\) delete-one estimates as

+

\(\large{\theta_{\setminus \bullet} = \frac {1}{K} \sum_{i=1}^{K} \hat{ \theta_{\setminus i}}}\)

+

and the jackknife variance of \(\hat{\theta_{all}}\) as

+

\(\large{\widehat{Var}\{{\hat{\theta_{all}}}\} = \frac {K - 1}{K} \sum_{i=1}^{K} (\hat{ \theta_{\setminus i}}} - \hat{ \theta_{\setminus \bullet}})^2\)

+

This is just a summary of the jackknife variance estimate, kindly explore the references for further in-depth details.

+
+

A look at jk_var_deg_freedom

+

This attribute differs depending on whether the jackknife was used. It is either - The jackknife estimated variance of the log-psd, OR - The degrees of freedom in a \(chi^2\) model of how the estimated PSD is distributed about the true log-PSD (this is either 2\(*\)floor(2\(*\)NW), or calculated from adaptive weights)

+

We’ll do a combination of the valid values for the adaptive and jk_var_deg_freedom and have a look at the results.

+
+
[13]:
+
+
+
%%capture --no-display
+
+# Setup utilities
+import scipy.stats.distributions as dist
+
+fig, axs = plt.subplots(4, 1, dpi=90, figsize=[11, 26], sharey=True)
+fig.tight_layout(pad=4.0)
+
+axs.flatten()
+idx=0
+
+for adaptive in (False, True):
+    for jackknife in (False, True):
+
+        mtp = Multitaper(lc_ar4, adaptive=adaptive, jackknife=jackknife)
+
+        mtp_stingray = np.log(mtp.multitaper_norm_power)
+
+        Kmax = len(mtp.eigvals)
+
+        if jackknife:
+
+            jk_p = (dist.t.ppf(.975, Kmax - 1) * np.sqrt(mtp.jk_var_deg_freedom))
+            jk_limits_stingray = (mtp_stingray - jk_p, mtp_stingray + jk_p)
+
+        else:
+
+            p975 = dist.chi2.ppf(.975, mtp.jk_var_deg_freedom)
+            p025 = dist.chi2.ppf(.025, mtp.jk_var_deg_freedom)
+
+            l1 = np.log(mtp.jk_var_deg_freedom / p975)
+            l2 = np.log(mtp.jk_var_deg_freedom / p025)
+
+            jk_limits_stingray = (mtp_stingray + l1, mtp_stingray + l2)
+
+
+        axs[idx].plot(mtp.freq, mtp_stingray, label="Multitaper S(f) Estimate", color=palette[6])
+        axs[idx].fill_between(mtp.freq, jk_limits_stingray[0], y2=jk_limits_stingray[1], color=palette[4], alpha=0.4)
+
+        axs[idx].plot(freq_analytical, np.log(psd_analytical), color=palette[0])
+
+        axs[idx].set(
+            title=f"Adaptive: {adaptive}, Jackknife: {jackknife}",
+            ylabel="Power, ln",
+            xlabel="Frequency"
+        )
+        axs[idx].legend()
+
+        idx += 1
+
+
+text = "if jackknife == True:\n\
+jk_var_deg_freedom = jackknife estimated variance of the log-psd.\n\
+else:\n\
+jk_var_deg_freedom = degrees of freedom in a chi2\n\
+model of how the estimated PSD is distributed about\n\
+the true log-PSD"
+fig.text(0.5, -0.05, text, ha="center")
+fig.show();
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_37_0.png +
+
+
+
+

Linearly re-binning a power spectrum in frequency

+
+
[14]:
+
+
+
mtp = Multitaper(lc_ar4, adaptive=True, norm="abs")
+mtp_rebin = mtp.rebin(f=7)
+
+print("Original df: ", mtp.df)
+print("Rebinned df: ", mtp_rebin.df)
+
+f = plt.figure(dpi=90, figsize=[11, 6])
+plt.plot(mtp.freq, mtp.power, label="Original", color=palette[4])
+plt.plot(mtp_rebin.freq, mtp_rebin.power, label="Rebinned", color=palette[7])
+plt.plot(freq_analytical, psd_analytical, color=palette[0])
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency")
+f.show()
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+
+Using 7 DPSS windows for multitaper spectrum estimator
+Original df:  0.0009765625
+Rebinned df:  0.0068359375
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_39_2.png +
+
+
+
+

Poisson distributed lightcurve

+

Generate an array of relative timestamps that’s 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve.

+
+
[15]:
+
+
+
dt = 0.03125  # seconds
+exposure = 8.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000  # counts/s
+noisy = np.random.poisson(signal*dt)  # counts
+
+lc_poisson = Lightcurve(times, noisy, dt=dt)
+lc_poisson.plot()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_41_1.png +
+
+
+
+

Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve

+
+
[16]:
+
+
+
ps = Powerspectrum(lc_poisson)
+mtp = Multitaper(lc_poisson, adaptive=True, low_bias=True)
+
+f = plt.figure(dpi=90, figsize=[11, 6])
+plt.plot(mtp.freq, mtp.power, label="Multitaper Estimate", color=palette[4])
+plt.plot(ps.freq, ps.power, label="Powerspectrum Estimate", color=palette[7])
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency, Hz")
+f.show()
+
+
+
+
+
+
+
+
+Using 7 DPSS windows for multitaper spectrum estimator
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_43_1.png +
+
+
+
+
+

Time series with uneven temporal sampling: Multitaper Lomb-Scargle

+

Uneven temporal sampling is quite common in astronomical time series, and a popular method to deal with them is the Lomb-Scargle Periodogram.

+

A 2020 paper (A. Springford, et al.) used the Lomb-Scargle Periodogram in conjunction with the Multitapering concept for time-series with uneven sampling. That method is implemented here in Stingray.

+

Everthing works as before, just - Create a Lightcurve with the unevenly sampled time-series - Create a Multitaper object by passing it this Lightcurve object, with the desired value of NW, just additionally pass the ``lombscargle = True`` keyword during instantiation.

+

NOTE: Jack-knife variance estimation and adaptive weighting methods are not currently supported, so setting their keywords will have no effect if lombscargle = True.

+
+

Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )

+
+
[17]:
+
+
+
# Loading data
+import pandas as pd
+# If downloaded locally, use
+# pd.read_csv("koi2133.csv")
+kepler_data = pd.read_csv("https://raw.githubusercontent.com/StingraySoftware/notebooks/main/Multitaper/koi2133.csv")
+times_kp = np.array(kepler_data["times"])
+flux_kp = np.array(kepler_data["flux"])
+
+
+
+
+
[18]:
+
+
+
lc_kepler = Lightcurve(time=times_kp, counts=flux_kp, err_dist="gauss", err=np.ones_like(times_kp))
+lc_kepler.plot()
+
+
+
+
+
+
+
+
+WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.
+WARNING:root:Checking if light curve is sorted.
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Bin sizes in input time array aren't equal throughout! This could cause problems with Fourier transforms. Please make the input time evenly sampled.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_47_1.png +
+
+
+

Plotting the first 3000 data points of the kepler lightcurve

+

The unevenness of the temporal sampling can be better seen with this

+
+
[19]:
+
+
+
f = plt.figure(dpi=90, figsize=[12, 6])
+plt.plot(lc_kepler.time[:3000], lc_kepler.counts[:3000], color=palette[3]);
+plt.ylabel("Relative Flux")
+plt.xlabel("Days")
+
+
+
+
+
[19]:
+
+
+
+
+Text(0.5, 0, 'Days')
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_49_1.png +
+
+
+
[20]:
+
+
+
%%time
+mtls_kepler = Multitaper(lc_kepler, NW=10, lombscargle=True, norm="leahy") # Using normalized half bandwidth = 10
+
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+
+
+
+
+
+Using 19 DPSS windows for multitaper spectrum estimator
+CPU times: user 19 s, sys: 4.61 s, total: 23.6 s
+Wall time: 9.73 s
+
+
+
+
+
+
+
+/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.
+  warnings.warn("SIMON says: {0}".format(message), **kwargs)
+
+
+

As stated before, the adaptive weighting method and jackknife log-psd estimate are currently not supported, hence these keywords will have no effect, no matter their value.

+
+
[21]:
+
+
+
f = plt.figure(dpi=90, figsize=[11, 6])
+plt.plot(mtls_kepler.freq, mtls_kepler.unnorm_power, label="MTLS estimate \n NW=10, K=19", color=palette[4])
+plt.legend()
+plt.yscale("log")
+plt.ylabel("Power")
+plt.xlabel("Frequency, 1/Day")
+f.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_52_0.png +
+
+
+

But how does this compare to the classical Lomb-Scargle Periodogram?

+
+
[22]:
+
+
+
from astropy.timeseries import LombScargle
+
+ls_freq = scipy.fft.rfftfreq(n=lc_kepler.n, d=lc_kepler.dt)[1:-1] # Avioding zero
+data =  lc_kepler.counts - np.mean(lc_kepler.counts)
+ls_psd = LombScargle(lc_kepler.time, data).power(frequency=ls_freq, normalization="psd")
+
+
+
+
+
[23]:
+
+
+
f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 11])
+ax.flatten()
+ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label="MTLS estimate \n NW=10, K=19", color=palette[4])
+ax[0].legend()
+ax[0].set_yscale("log")
+ax[0].set_ylabel("Power")
+ax[0].set_xlabel("Frequency, 1/Day")
+
+ax[1].plot(ls_freq, ls_psd, label="Lomb-Scargle Periodogram", color=palette[6])
+ax[1].legend()
+ax[1].set_ylabel("Power")
+ax[1].set_yscale("log")
+ax[1].set_xlabel("Frequency, 1/Day")
+f.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_55_0.png +
+
+

A pretty visual reduction in variance can be seen

+
+
+
+

Zooming in

+
+
[24]:
+
+
+
f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 18])
+ax.flatten()
+ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label="MTLS estimate \n NW=10, K=19", color=palette[4])
+ax[0].legend()
+ax[0].set_ylabel("Power")
+ax[0].set_xlabel("Frequency, Hz")
+ax[0].set_yscale("log")
+ax[0].set_xlim([5.8, 13.2])
+
+ax[1].plot(ls_freq, ls_psd, label="Lomb-Scargle Periodogram", color=palette[6])
+ax[1].legend()
+ax[1].set_ylabel("Power")
+ax[1].set_xlabel("Frequency, 1/Day")
+ax[1].set_yscale("log")
+ax[1].set_xlim([5.8, 13.2])
+f.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Multitaper_multitaper_example_57_0.png +
+
+
+
+
+
+

References

+

[1] Springford, Aaron, Gwendolyn M. Eadie, and David J. Thomson. 2020. “Improving the Lomb–Scargle Periodogram with the Thomson Multitaper.” The Astronomical Journal (American Astronomical Society) 159: 205. doi:10.3847/1538-3881/ab7fa1.

+

[2] Huppenkothen, Daniela, Matteo Bachetti, Abigail L. Stevens, Simone Migliari, Paul Balm, Omar Hammad, Usman Mahmood Khan, et al. 2019. “Stingray: A Modern Python Library for Spectral Timing.” The Astrophysical Journal (American Astronomical Society) 881: 39. doi:10.3847/1538-4357/ab258d.

+

[3] Thomson, D. J. 1982. “Spectrum Estimation and Harmonic Analysis.” IEEE Proceedings 70: 1055-1096. https://ui.adsabs.harvard.edu/abs/1982IEEEP..70.1055T.

+

[4] Thomson, D. J. 1990 “Time series analysis of Holocene climate data.” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (The Royal Society) 330: 601–616. doi:10.1098/rsta.1990.0041.

+

[5] Lomb, N. R. 1976. “Least-squares frequency analysis of unequally spaced data.” Astrophysics and Space Science (Springer Science and Business Media LLC) 39: 447–462. doi:10.1007/bf00648343.

+

[6] Scargle, J. D. 1982. “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data.” The Astrophysical Journal (American Astronomical Society) 263: 835. doi:10.1086/160554.

+

[7] Slepian, D. 1978. “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case.” Bell System Technical Journal (Institute of Electrical and Electronics Engineers (IEEE)) 57: 1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x.

+

[8] D. J. Thomson, “Jackknifing Multitaper Spectrum Estimates,” in IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 20-30, July 2007, doi: 10.1109/MSP.2007.4286561.

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Multitaper/multitaper_example.ipynb b/notebooks/Multitaper/multitaper_example.ipynb new file mode 100644 index 000000000..2098efc8f --- /dev/null +++ b/notebooks/Multitaper/multitaper_example.ipynb @@ -0,0 +1,1364 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "be4b7e30", + "metadata": {}, + "source": [ + "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/dhruv9vats/misc/blob/main/multitaper_example.ipynb)" + ] + }, + { + "cell_type": "markdown", + "id": "baae2cbe", + "metadata": {}, + "source": [ + "If clicking the link above turns the screen gray, try right clicking on the link and selecting \"Open link in new tab\"." + ] + }, + { + "cell_type": "markdown", + "id": "0ecdeb50", + "metadata": {}, + "source": [ + "## Install Stingray in colab\n", + "Comment out the cell below if running locally." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "505d88ed", + "metadata": {}, + "outputs": [], + "source": [ + "# %%capture --no-display\n", + "# !git clone --recursive https://github.com/StingraySoftware/stingray.git\n", + "# %cd stingray\n", + "# !pip install astropy scipy matplotlib numpy pytest pytest-astropy h5py tqdm seaborn\n", + "# !pip install -e \".\"\n", + "# %cd ..\n", + "\n", + "# import os\n", + "# os.kill(os.getpid(), 9)" + ] + }, + { + "cell_type": "markdown", + "id": "04439f30", + "metadata": {}, + "source": [ + "__The kernel will (crash and then) restart after executing the above cell to finish installing Stingray. So the cells below will have to be run again or manually.__" + ] + }, + { + "cell_type": "markdown", + "id": "59513a94-a334-4efb-b004-763e4f738f09", + "metadata": {}, + "source": [ + "## Multitaper Spectral Estimator Example" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "76bde484-7cfb-49e8-8fe9-a840a0c0ccf2", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/largememory.py:25: UserWarning: Large Datasets may not be processed efficiently due to computational constraints\n", + " warnings.warn(\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set_theme()\n", + "sns.set_palette(\"husl\", 8)\n", + "\n", + "import scipy\n", + "from scipy import signal\n", + "from stingray import Multitaper, Powerspectrum, Lightcurve" + ] + }, + { + "cell_type": "markdown", + "id": "33cc5179-9412-4d10-825d-66f987b99b7d", + "metadata": {}, + "source": [ + "### Creating a light curve \n", + "---\n", + "Lets create a `Lightcurve` sampled from an autoregressive process of order 4 that has been frequently exemplified in literature in similar contexts" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "648c871f-4f45-4db4-a09b-89439e08ea93", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAD7CAYAAABqvuNzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABgeUlEQVR4nO29eZwdVZn//6mqu/XtJb2kkzRJJBAINLsGZAZFJKyjicAwI0zEnzog34kzOKKMBH2NKMpgHOeF8lVZ/CqMQ4ZhUBIkIJtEQMMmoCxhDUnI0tk6S+/33qo6vz+qTt1TdU+dqrq36nb37fP+53bfW1XnnKpT5znPcp6jEEIIJBKJRDLlUce7AhKJRCKZGEiBIJFIJBIAUiBIJBKJxEYKBIlEIpEAkAJBIpFIJDZSIEgkEokEgBQIEolEIrFJjXcFamXfvmGYZvSlFF1dLejvH0qgRhOTqdTeqdRWYGq1dyq1FUimvaqqoKOjmftbbAJhxYoVePjhh7Ft2zbcf//9WLBgAQBg48aNWL58Ofbv34/29nasWLEC8+bNC/wtLKZJqhII9NypxFRq71RqKzC12juV2grUt72xmYzOOOMMrFy5ErNnz3Z9f+2112Lp0qV4+OGHsXTpUnzjG98I9ZtEIpFI6ktsAuHEE09ET0+P67v+/n6sX78eixcvBgAsXrwY69evx969e4W/SSQSiaT+JOpD6Ovrw8yZM6FpGgBA0zTMmDEDfX19IIT4/tbZ2Rm6jK6ulqrr193dWvW5k5Gp1N6p1FZgarV3KrUVqG97J71Tub9/qCobW3d3K3bvHkygRhOTqdTeqdRWYGq1dyq1FUimvaqq+E6kExUIPT092LlzJwzDgKZpMAwDu3btQk9PDwghvr9JJBKJpP4kug6hq6sLvb29WLNmDQBgzZo16O3tRWdnp/A3iUQikdQfJa79EL7zne/gkUcewZ49e9DR0YH29nY88MAD2LBhA5YvX46BgQG0tbVhxYoVOPTQQwFA+FtYpMkoHFOpvVOprYB/e1u+/1OUPnAMCov+chxqlQzy2daOyGQUm0AYL6RACMdUau9Uaivg397WG24GAAxes6zeVUoM+WxrRyQQZOoKiUQikQCQAkEikUgkNlIgSCQSiQSAFAgSSWMyuV2DknFCCgSJpIFQd+5By3/8PyiDw+NdFckkRAoEiaSByPzxFSjFElLvbBrvqkgmIVIgSCQNBFHsPwxzXOshmZxIgSCRNBS2RDClQJBERwoEiaSRsOWBIgWCpAqkQJBIGgpbIkiTkaQKpECQSBoJ6kOQGoKkCqRAkEgaCUVqCJLqkQJBImkoLIEgfQiSapACQSJpJKSGIKkBKRAkkkbC8SEY41oNyeRECgSJpBGRJiNJFUiBIJE0Egr1IcjkdpLopJIuYOvWrfjHf/xH5//BwUEMDQ3hueeew6JFi5DJZJDNZgEAV111FU499dSkqySRNC6OD0GajCTRSVwgzJkzB/fdd5/z//XXXw+D6aw33XQTFixYkHQ1JJKpgVyHIKmBupqMisUi7r//flx44YX1LFYimTKQKqKMMr97xtl/WTK1SVxDYHn88ccxc+ZMHH300c53V111FQghWLhwIb785S+jra2tnlWSSBqM6D6E7NMvJVUZySSjrgLhV7/6lUs7WLlyJXp6elAsFnH99dfjuuuuw/e///1I1+zqaqm6Pt3drVWfOxmZSu2dSm0Fyu0t5TMwAGTSKkzPb36M2Z/Tu1qgqIrw2InAVH229aBuAmHnzp14/vnn8b3vfc/5rqenBwCQyWSwdOlSLFu2LPJ1+/uHYFYRUdHd3YrduwcjnzdZmUrtnUptBdztzYyVkAVQLOjOyx10L+hws2fXAUDTEqtnHEzlZxsXqqr4TqTr5kNYtWoVTjvtNHR0dAAARkZGMDhoNZQQggcffBC9vb31qo5E0thUs6ey3Id5ylM3DWHVqlX4+te/7vzf39+PK664AoZhwDRNzJ8/H9dee229qiORTEq0LX1QBgahH+0TmUedyqSKKCO5dmHKUzeB8PDDD7v+nzt3LlavXl2v4iWSSGQfXAulUMLYBWePd1Vc5O9cDQAY9BMIlGrGdtOE9u57MN43G0hNbNORJBnkSmWJhEPmz28g/caG8a6GQ+q1t6AMDAUfqFS/habWtxv5ux9A9rd/iHyupDGoa5SRRCKpgpKOpl//FmbntOBjaeqKKvwByugoAEDt3xf5XEljIDUEiWSiY8/2lcHh4GMdH0IN/gDpS5iySIEgkUx06OCuRFgjUMuYLqONpixSIEgkE50oM/ZaoozoJaSGMGWRAkEimeA422GG0RCc5HbVDOrVO6QljYEUCBLJRMcRCAmXQ7UKaTKaskiBIJGIIATKyOj41sGZsYeQCHQsr2ZQN6RAmOpIgSBxoewfCBfvPkVIv/QaWn54B9Q94xiKWSebvkIFgjQZTVmkQJC4aLl5JVp+/F/jXY0JQ2rDewAAde/+cauDYptySKgooxqEB924SjqVpyxSIEgkISB1ygqt7twDjBXcX0bY7KamcFO63kFqCFMWKRAkEhHOAFsfidD883uQ/+9fu7+MEmVE7f/VrFSmGoL0IYw76o7dyN96F8joWPDBcZZb19IkEok/9kCs7dzj/p6acATyQDkwiOxv1zECoYrypVN5wpBZ9yK0vfthvrmpruVKgSABAGhb+6QzkUsdB0e/+x9CQ2i692Fknvsz1N391ZdPNQTJuEPyOetzaKSu5UqBIIG6fSfy/7Uamaeer/laqVfehHKggXa0ovIgStqIavHxFSgkOOxUGbYHjnTa/qYak5GcEEwUSL7J+pQCQVJvVDtpWs2hlaaJpjWPOzn7G4J6mk/8ZuhG8MI0pVB0/19NpBAtvx7CTyKEZDPWH57nmjRSIEiqS57Gwx5QlDrPahLFrJ8ZxXeGbnKej0dQKcWS+9haFqZJJg6KgtYbbkbmd8/Upbi67IewaNEiZDIZZLNZAMBVV12FU089FRs3bsTy5cuxf/9+tLe3Y8WKFZg3b149qiRh4Q041RBiJjvpqGebbIFasd6A51sghP+8HPNSFQKBCr9Gen4NQvbpl1D86F8kXk7dNsi56aabsGCBe9u/a6+9FkuXLsV5552H++67D9/4xjfwi1/8ol5VklBi0hCUBjQ5OKaXeliO6P1TPfePcJzKfhpADfWtKctpSYdSLII056u/xmTCNK3n0UB9HRhHk1F/fz/Wr1+PxYsXAwAWL16M9evXY+/eveNVpakLCQ5rDIURIV5+IsMOtnR2HiKdtLLvQOWisgg4JiPF/VpyB2pC+ELBrCF01Ckn+vNrunsNWm76z+hlTkaKJbSuuBWZP7yQfFl1DgGum0C46qqrsGTJEnzzm9/EwMAA+vr6MHPmTGiatZm3pmmYMWMG+vr66lUlCcURCDV2h0bREFwvofV3mNlzyy3/jfwv7q2+XF8NobLs3K9/i9bv3lLxvVLDwrRIC+A8pLaU31t1z76GXstA/TXpF18d55rET11MRitXrkRPTw+KxSKuv/56XHfddfjsZz8by7W7ulqqPre7u7Wq84y3N0OdNxtKenJtSe3XXr0lCx1AtikNM+BYEaZZRBGAoipV39u4qKV8ohug8/yUpoIAaGvJQgu45hgArX9/1WWbI4P2/VNd1zC25VCCW06k33wXQGU7M2kNpufYoPrQtbDZtAoTgJZSI7eBXqNreADFn/4PUuefgdRHFka6RljGu2+RJg0FACoh6NzXDwyOQFt4VKxl6M3WO8nmlapHu+syovX09AAAMpkMli5dimXLluGaa67Bzp07YRgGNE2DYRjYtWuXc2xY+vuHYFZh++zubsXu3dHj5dX+fWi+7W4Ujz8ShY+dHvn88ULU3tTAKJoAFEZLoFHsVd2b3QNohjWnrub8uKj22TroBuirpxd1aAAGDoxAD7gmPWfw9vtgdrWj+JcfiFSs1j+IPCrvX+qA9XxMw6xQ6XfvHnQNFMWxElKeY4PuBT27MFpEGoBhmPxzxgpovfHnGD3/bOi987nXOPDONjQBGH1nC8Z6F1RcolZqfrYxoIyMogXWxKF0y/8CAPa+b26sZaSHxpADXJpWXO1WVcV3Ip24yWhkZASDg1ZDCCF48MEH0dvbi66uLvT29mLNmjUAgDVr1qC3txednZ1JV6k2bBuxtiuCr4OQCb0KuGxmqLGOTpTMJI9mZs0d9O8Ik470K28i+7tnK75Xt+9C6w03+y/c0+2spn4mozB14Gxyo72zGdmHnqysz9YdrrpQsxjx8SGo+wcAAJmnX/QtXtEbxGzIQe3fZ6UHoW1M8J127l6dTW+Jawj9/f244oorYBgGTNPE/Pnzce211wIAvvnNb2L58uX4yU9+gra2NqxYsSLp6owLTff8BqkNmzF4zbLxrgofjt1Z2T+AzB9fQeGMU0K/3EqjhJ1yBULtL3/6z68DAFLvvofS+4/mlOu3IlngF/DWixNllL/nQQBA4dyPuA5t/q9V/Gv5PT9V5ZfJoutW8V6h1gCkX3wNmT++AtJkhc8num5jnFwwiQuEuXPnYvXq1dzf5s+fj3vuuSfpKow7qQ2bx7sKYjgCoem+x6Bt34nS0Qtg9nSHu46z0nZyDgbKyChafngHxs4+tfydfU+UOGZqQfsd+zmERbugVQgEO4V1Ndqej0BKvbUR2cefxujiRfwyGcoawiTXEnnQ52Y7lWPpE37UEhxQAw341JKmhsGuzmaj1JvvltVbEQZnICjZK1+jzPQmeZSR2r8fgLVLmgN9H4PMNWFeXDpI+h1Lg70qBAIVSpz+46lX2fxXRR19sqqm//w61H0HkNpqRRIJI65sDWGSzgnCUc0grRvRkgdKgTDBIcR6qArzf1QKpVirJELbsh1N9z6M7Nqngw/mCSoqJLQIXSTmzeC197ZD3bojnouFgQ5mdii0i6AZd5j+QIWr38TAV1AIBnmv2YIO1n6rm0X41It4TUUiDaFEBUL1Q0vul79B9pGnIp+nvbMZoOUnSDUL+Fr//Tbkf7Eq0J+Yfv5lZJ5+SQqEiU7miWfR+u+31ZQRUikUoO7cU59N2+0XI0zCOp5TWTGjm38Ux7QhPi71+jvAaPACrvzK+yrt3EkiEghBg0CYQYJqTr4vecgbyF7Sm2vJcSpzDg7QUAN3SqNt5LwDTnH0HtbgQ0i/vQmZF6LF+KvbdyF/z4PhJkC1UuUgre3YbY0jK2711RZyj/0B2d89IwXCRCe9/h0A9mrUKlEKRWtHrDt+FVe1/LHTICulEFoJL4olwobruft/i/zt94TqxMq+ATStfhRNv34suF51RinZUVIpnkCIQUPwEQja5m1oveFmqMP2RMFzKeFiM68gEiW3C5rM+Ak1OraL+oStRYxXlJE6OGQVa2fuTRTevQ05cDuCLsiUW0V0WxxIgRASc5oVaV3TZuv2Q1brsF8AobPckg5tax/MzdsD6+WyXUcIrUu/+ha0HXvcAqFQhDJUfjmVkVGk3troCCjFfoEnFEKTUe0+BBp54/URpJ9/2SqWrvb18SGEcipHER6VNRR/TQR7LlONIAYNoSpomuiUhvzP77HMR0lRhfbloASYDT1lkDr7HaVACIu9KtlJM1xVNsk6Sns6yBdLyP/XahR/eGegM5PtpAp9saPUmREs+f/8FVr+bzlRYdM9D6LpVw9BoXvEqhOv69HkfITjNwmMKAnz4jqDgedatDw/p6OoaD8fAqe+FeYlLwHPWhH5EOjz1MdnLYrjuzBNaDv3ILfm8eQK4/mTwpqS7S6gBDmYQ/hrkmBy5V4YT+i7YghstAEEdoI4oQMC62QzTfHslx0QqIYQJXyRmZ1qdsQOTdPs+DLCRiKNRy4cXtbXsLZczu9q325AVWB2TLMDEnyijOgzce65n4ZQWax3tq5wFqY51Gr2ckxGvIrY2k9pfDQEpWhpCMROsR/oD6kF3rVDl2fflwAB4mx4VGeTkRQIEalpUNeTj4CgcAcGkwAcecBdmEZn+1E6JG9AGysCTdlyfDw9RqAhqH27YXZOC19uXJi0zdEjdHgaRPMdvwQA6PMPRmrDZhT+8v3ca1HznnNvKi4lcDb7LEzjDsfssxTZwb0/OesnKmetuV89BM0VCTYOghwo9z0txOK5GuG9E4phhGo5URTrdgb5EGj967xpkRQIUalJINRRQ+DFlAeFNdY08wEUmvqZmWGrIyMwm7Lljm2b3HxXso6OofmOX6J0+LzQ5cYGTxsQhXyyCAQnXZioUKexn8nImTB4NQT+19a1fHwIPNjBJYqPgXh+Z85Nv7XR+opu+ejUtU6CgRDrnfQ67JPUEHiDdBUmI9EdEprnEkQKhKgYApU8AKWOGkIkkwGVHbxOHUFDKPtX7JkQXbsBRuOgx/hoCNTHoO3YHbrc2BBFdgSajELsl+C3TiNIQyACiVDhQxCsETDN8hV4PgZROQhphnH2Ywg+NA6yDz2BzJ9eR+HUk9zlJ2lqqYPJaLx8CBPPszdhsQc0RkPIPr4O6s494S9Rh0Uzzowp0qAWj4bgOtbPgWrbev1szI7ASI3DXEWoIQQ5lUMMQH7+J69TOYoPwSuIRPUwAzSEIKEmGsQ8JsZY0jqEuEbmT68nV74f1Sz6o9D3ItCpXAdNh4MUCFGhM95iCZln/4z8natDn6rUwWSUe2AtWr93G3h5aXxfkihhjSJCCBSFrtb2iUKhAoGMw14TCi9Chw40o2PI3fuw/4K6MAOCwXfUl30IPmkfRNf2CgDRoM4+C57gCFx8F6IviJzaUamm79XDCVuTQLA/AgWC/XuQmS9mpEDwkH7+ZSh2ml8uTmfgRPEEUQeTUfqVN60/orzwArtrlJmWy+REO75ngHIWyvlFGTnx5G6B4JsyOk54g5n9d+aFV5F+811kXniFf26IgcgZBCqcth4zgq8iF6z1CYMAggaXIH9JKJNRtJmtsn8g2LcV5joRFlLWCs90xn1PdAOZJ54r5wUDQmsItD2Ep60miBQILGMF5B77A/J3/dr3EK+dN9KAWc8oI5424jN7FK+ErVZD8DEZBdwDR0Ng1gKkXnkTLT+5E9rWhLdX5WkIFSuB/fwwIe6TQf0pEQctQR/TNm5B8ae/DHWsq1yBSVHxkwihNASBH8aDumM3Wm5eifSLVjJBbct28b0XQQfYOASCYUAV+bBCmmPTL72G7LoXkHnmT5wyQq4aDzLzxYx0KjNQya+MjPkfZPrYecNQqmOUES9lhacjq/37oG7bWRZuXJNPlJeyUkOoMBkFOeU54a6pDe9Z3x0YBOZE21EvErxQW289fV7kUBMDX6dxuHrx7ln26Zdg8o7lwdRdmDnV5xKsBpi79yH3cV4tM4TQU+00MNrmbTDb25D/3wcwduaHKq8ZBr81HFWQ/d2zyDz3ZwxffjHMro7K+vAW+PHKpRMAqvUC5fUaYRemGR4hzgsbjxGpIbCEmWXUEmVkxKsh5O59GK033AzAmm251hFQ56wg7LT5tv9B0wNrxbO6Wp3K3vtENQS/+8cZUGgyQJLLha9LAKlX3kSKmtcoHNMZHTgJfZGjZipl8BeGYsc1TRoYaqmX6HkFmR+CHOjMtdNvbnRCTt3HhNcQ2D6i9u8DUN6VDbD6sNoXLtqMat+K1yxWxXuq7rTKVAa8eZHsa/EmBbxiaCSdd1CndRPBizKSJqP6oOwfQObJ55wtDPkqof1Zi/Mq5kUmdKN17e2NaL79l64BTuH5NqJuzAJEW4cQJkrJmRkF+TMY4TYWnBk1Kk1rHkeTN70Bz5dC68F7uVnC9Ieq+06E42uIMgrUckI4jBVRvqOKg8sCgfZXkkk7P2eefhHNd/zS0mKDoBoCM/NuunM1Wv79p8HnetFSFdcCwCxcDPme8PwFJGQf4PWVRjAZ7du3D1/96lfx3nvvIZPJ4OCDD8Z1112Hzs5OLFq0CJlMBll7uflVV12FU089NeCK8ZO/636o+wdgzD0IgLgzKxGdZi5icng13bnatQWjtsMKfVX3Mc5wZ00Am4bBbzDzd8hFCt9jO75P2KkSoNqL/RkJmNxMk9kaks4A2ReYCgQFMAR1CHOfzIABNQbnqrCPsc9CZAf3K88WhlxNxZkwla+ReeJZkLYW/nahTDkKIWUTJxNdRjOXan27YM6eyb8GPVYv5zKipKrcS4Nmu63w+YkWvQk0BJd5KKSGwF2YVocIqsQFgqIouOyyy3DyyScDAFasWIHvf//7+Ld/+zcAwE033YQFCxYkXQ0hjpoaxunrbFFYxcMJIRC0Lduh7tmP0vuP8j0mtaUPqS1lB6vjiM2WZ1e8tNeKSfhzTcdUFqdT2S6zwmRUtqPnf7EKyvAIhpd9irmG/0tXy14UvpR0wF5l68xueSp+HBqCYzLyXCPIERuhqwnNSkEmowCBJZ71u5+bMjqG7KtvAYC/QCiVzYdK0dYQ2OiyKCm0aTh4HKHdNLeUR0NQhAKBc8+80WNgfDeBe080qMmovb3dEQYAcMIJJ2D7dkEq5nGEXWmbfvZPyD64FuqufretmfOgMk88C23ztuDrhxjQ8nfeh9xDT/gfwOtIdLFXJsN8F+xDqKhXiC0aHQwDTXfdb0WGON9xfAhepzKjIWjbdrhsxq468lTlJJID8mbNgpfQ34cQ/Gydc/3e6xr8E2FQgmab9CtfH0KIetBzi5ygBm99WG2Rq52EtLcDzKQmhj6S8iQbdKojEgic75wd8liNM2QdOJsRVbVPdkTqGmVkmibuuusuLFq0yPnuqquuAiEECxcuxJe//GW0tbXVs0ouWIGQe9zaeSnz5zcAAPohc60fOLa97LoXgXUvYvCaZeIC4jAZ8WbOTsI4ZhEa74X0K59GQ0RY3azsH0Rq01YnUgTwEXjea/qsxlX2HUD6z6+DNOet/2tJMRwBhXDSObhCHz3RHj73MJTG6HWYl3Soe/a6TSc84poZujQEwaAWVWCx53iTGIooMYsUqdNe5wyeYRz2VNuIoY84JiPaV0u6FdjgRKGFNBk5EUWVE4xAHwtdh9DIYaff/va3kc/ncckllwAAVq5ciZ6eHhSLRVx//fW47rrr8P3vfz/SNbu6WqquT3e3tekNDTJtyajwMxplMimYKKtUvAGLXs8LvX42rTohgkHH+v1OxgrwulizuTRMAC25tFP/bMoqS2WEREd7E1Tmuk69NOtYXvx5S3MGKU5dzNIYigC0tOaclUkp1nUUxdFM2loy0LpbnbJSivXupJnzurtbUbj1v0H2HoB2+gdhANCUcm1SKevY1nyaWxcefvfP2/aujjyUNqsPlXJpGABU5j7Qu0f3Esjm0mjl3Y+B/ShWfOtGtV/opmwabd2tKP7i1zD/9AbUE4+27puzDsBd/1I+gzh0o7aWLDT7uiYpVtSXlq+q7vKLGQ0mys+Oh3Ou/X9Khev58tBzKegAMrk0FLuN+YzqtDWbtsptac66nns3pw+nYJlD6SdLUF/wUmqy6tKSt8ot3vZLmG+8C/X9vTBhRX56y+iY5n63AEDPW+9jRlOc9572J2+bAIAQ4rzbzv1jBEJXRzOU9mhtiUrdBMKKFSuwefNm3HLLLVBte2xPjxVTnslksHTpUixbFjDD5tDfPwSzCmdLd3crdu+2Vr/SWzy8dxBZn+OLRR0pAEQ3oAAghllhr6XX80KvXxgtIh3yWL/fMToGb5cojJWQBjB0YBg0MLM4UkAKgGkS5yXd1z8MM1e+Lr1OcdQ6ltemocExlDh1UXfuRzMAnShOaHRxrGRdBwQgVprfgf0j0HcPOmXpRR0aAL1oOOft3j2I1r2WpjE6NIYMAEM3nHrrunXs0IFRbl28sM/WxVgB2radMOa/z6lP/+5BkILVf7LDBWQAmEzZDnYfKxQMHOBcW9s3jHxAveh1x0aL2L97EM3vvAcVQGFoFGmU7z+B+/lnhgq+/TIK9FkAgNo/hOaKClptNA3TVX6uoCMNwCjq/jZme+AihvV+6IWS6/nyyAyOIQugUNRBRovIABg9MAJq+CwWrP40NFh+7t5nS5+jMVaE6lNH33fJh6xdl6GBEZR2D6L1DSuarzAyZt2HUmUZ+/cNw/CUkz4wihzK7wUAEJNAATA0wOnLplluDy2DGdv69wyChNgRNwhVVXwn0nUJO73xxhvx6quv4sc//jEytp17ZGQEg4PWDSGE4MEHH0Rvb289quMLdcQSnjPL4zuoZvsPkQ9B3b4z1Mbzolz9rmgGnr3dN3pE7FTOPP2SZdpg60EX2zArirnt87PB+9lDOdEilfWsziyQe+Qp5P/3ASjsNqimCW3zNqjbdjDqvGCC4ffgw6Su8Job6f3ymqP81inUSthVwN5nJrKde6GhmWFMN2yABq0PG9hhfxVqTw7eQq5q8TFVUcd36MSR3jQ37HFBId48E2UjmIzefvtt3HLLLZg3bx4uvvhiAMCcOXOwfPlyXHHFFTAMA6ZpYv78+bj22muTro4YUV6iOJbGe22JTBx283/eC2PWdP7vftegOC+TWCAohgFl736Qznb+NXmx6YUSsuteQPqPL2P4is8w33OyljL3hm4EUvEyB8TiOzZk7iYkJrQNm5H/3wcxfOknYc7o4l7DDye1Nt29za5P/r+tVCXF44+0Ky9+8dIvvobSsQuAdDmqK1TqCs+A76yMLwUs1otrIAg7uHh/ihJqXdWxpCwcXO9glGtRgeAzEYoSsUQzG3tDpqlfLmSUUTlYg3McVyBEC3BIgsQFwuGHH44333yT+9vq1auTLj4SIkeYaKAKDfERCPasiK4nsMox+dtdimbObEQC58XIrn0GWt8uDP3jp0HayiojbRs3aZe9Srji3jgrjgPq5h0og1Z6O9fltzP17hYAVg6fqAKBbq8IZqEb2y66Ilg0AGmbtiH96ltQd+5B4a9OA0YLaFr9MMzuEHXxagD0f7rKlrOqW9uxOzYFge5PkXtwrfDeVdQjioZAn1sYpzIbgmlyzosiXOgaCZ5A8HuXfOvFnMdiWxBCp3gRCY4gDYE3cWqEdQiTCpGG4PfSRsHwPHC6cMUvIojXiTkaAp1VuU1Glcdpfbus44ZHQVoZC7JoIR5NG+FJR+3cB56ZiqBsjKzQECpXlLquS9vCDTs1QZpydr0E+ab8oOsMWCEwPMLUTay9AHBMZNSElnpvG1KbtoGESbHgFYZGZX0omSeeRebFV6GMFVFacEjwtcNgEmhb+pB+7W0QOz8UH75ACGcG4pgvPSj9+4Fs2rXIs0JbAoRaefql11xbdwp3GIsqEDzhrnSzp6gaAjeiLuRaBqc97CSP4zCPG5m6gkWwMI2bCkKAMjCEpv9a5RpwfOPAedf2S6LG60i03jyTEbcHEXeHFMzmVLrto3fDGmdGxnRY1wzYZx2CWXme64XRKweBcry66aQ2iPo8rGtWCjGXMA4zE6YCYWTUfWwhKMaIcT940ztw+l123YtQxqxrqgNDgdcOhWmWFyyKZvAVLgzBrNZDGH9Dy213oeX//sLtl+OYfGgfYfu8ufcAUNKRe+hJpO2Fb67yatne0mmD55pUky8J/FuEcFJdcN4R+zO1cSta/v02YLQ8sXGPDxwBZxJrQ64QazyqRQoEBmHsdMTU1ekXXkVq6w6kX1pf/tJnEORpCL5xyqJ1CGxCOJFpxjQDzUsOBbpPsk89XMvymTL9ktsZnPPY+8JzKjMvltNWLXrXVXh1ZgVLmN22aF09ce+Rggw8lw8SbkoxWNiEK5eES85If9MNK9DBo9GEwtOnUm++awVOcMpRGB+C27FaaQotfudW5O+6v7I81kHtQdu2E6033OwOJhDW3XOP6HoCKkw59yH98uto/d5trr1URHs0pDZthaIbSLELWtm6856TrqP55/cgv/K+cO2oAikQWGLUEKiNXhlgQst8NYQoi8j8NQSXmcVndy7AbgtvNsLB6dR04BscQvqFV/kzMtaJRjfI8V6b95Kws0LdPdC6jjVN/r0KC2/GxtMQRDB9RHv3PXdq47BQUwTnmlxCRJ+FwjT9t+lkoesl7nkArT/4eTQfgo3rHg+PoOneh5Fbs7ayPvSTZ2rymvDsemjbODmKBMIq/bK1zWbqnc2u77UNm21BccB9glc40cAJu6/whH/6zY3WoYNMhlSRo9vGtVKfTejIudfqfmssSXK/celDYBBGe0Q1UdgzWJcgYc0gxETmwd9B0Q2Ujj2i8nzfnDkCDcE10xasPi7p7g4n0ow8A39u9aNIbd2B4ges/DRcv4XLZOSJ1BAJEsDZM8I102NsyYpIbQ+ClsO2lxUwYdJP2HVRB4eRv/uB6HUA80wUBSAkcFUv18dUTbmEgIQSCNZHatM217GhMpjysJ34Wv8+9/eMoPFOPKy/PeZDkV9CVL7Pu5R+fQMAILV5G0qd08o/MBMH7Z3N5fBXURkU3ixfpFnpHAHoQ0WalwSQAoGFzrQ5P0V2JjvChbmGR0PI/NmauZR651ee79M5uC8lZ5BUBM5bRdfdJiNR/hdPWmE6OFFnM9tAlw/BZ4Mc51hWKzA5GoLrWGamaFINorLOat9uazbnXZlKTVi0DUwZrsE2TBRHHJscEbdACJxs1BLq7LoOCd6giPNb1YKAns8b5IHQPgRuBFKU8n2eqxOgMOoJULDLyzz/MjLPvxytMI5mK3y/XBUS9z9ldFT4exxMWZMRMQmaVt5n7XlqE2c2Te6sz8dMww33jGAyKptZmDJ1z8vE4jUZ6f7tpgM3rQ+xM4Oqg7az3BUWxww2jmPOp5NztBnrb94+DuW2KBy7MqX5jl+i+ef3wNy0Dc23/jdQKCL9wqto/e4tQLFUfr6MVsBmhQ3cxSrkMYEQ95Sz4ln7LQyrFcZkFDorKhBdO/bCPlPmWnSgVlwCoVJ4lAMRqrz3VMMp6VD2DaDp7jXAaKG8Tas3q2ktApCd3Igc3Z66WecGlFtIzplMmbICAQcGkXpvO7LrXih/V+Oex8rwCNTtu/yvxc7KWVMFL0R041ZkH3qy8uXkzTY4M1+eQ84pW/cIBJGpxPBoGvZiLCd6yuSoyISUr0lMcUge3LN0riBlo01oWwUvmf6b30PdewDatp3IPfIUAEAdHCqfyw5wrIaQRDZVHkEzwSTLDbWWgCDzu2fK9anRZOV6vuy9ZyPKTOYZU7waQrUTNvquFUvIrn0aqXe3IPXOpvLKY2+fqyXen1d/Ub9ig0uC+gXrr4pLa/QwZQUC4XXyGgeE/M/vQfN//sr6xwkFrYxiARA4EGUfX4fMS685u0UpI6PIPPkcPwSRdmjXIit7VsSrqGHyXzyfY12ftNM6EReVJgAFcNqqHhiE9m5lzLurXgH3whVj7gwSgmdlx5wrBWYB2ugYEyHEDFBFZsYaRy79MARlFU0K0wzdxuzTL5X/iVEguHw2TkQZ4a4jcH2n61VP2Jy1LcxESB0ecfqHMzkrlWyhWX0/ULgmI8H75Rdowrs2G22WkLYwdX0IvFDPGk1G6pA9azaMcif0cyqzqjNvi0g71E0dGbUyTb7xLrJ/eAFmx7TKQ+ngH/aF8YadCg511HVPLLrTPp8ZDs0Gm17/DtLr3xFWx9XRRc8gwGTkkLYFwhhz3dGxsvmryJow2AGqXgKBftZZIvBi5Tl4Z6pVrflg8dEQXCmrebvV0ec1VkTrv/8UpSM5vrYwMJMz5x0fLZTLKulQt+1E8y/uxejHT49PQwih2fAEiC+MhqDoOkgsKQ/dTF2BwAtfjGlAUApFrobgSpnNviTc0EV3qJtzHVFMesj6u2y2UaGDRdCsMYJwdZkURIOkWY6jZ+3JuV//1p0HikkJQjTVWr8wWmCck5xBCaijQKi3amBh7ZgX/bmHnmj4ne/SENj7zQRD8BYs0mdtmyfTb2yornxmNzXqQFaKxXIkXkl3QllTb2+qbWLoWt8TwtTlt0CTg2ucSMi8OXVNRhyVKxaHIQCMFqDQ8EmXXZ/pLMzAztcQ6HGe/Cmi2UvYAc2oUiAYRllDCDo2yiwrpElCMco+BNaElX7tLeR+u658IMfJrhRLjK+F78SO7fkHoJR0ZB9fF5+zOCwRTEZmPhd8UFjYvs7+zebQ4kUZUSFR6zoMVkNwBEKprDGWSlDsFfnKWKH6yRIs02RuzeOWEPM4xbmw5qmAcl2CNcYAGJYprCHUqAYLUMYK5U5Y4j9w18MVDYiOfZOaaIIjggIxzeoiKXQj/Ow2yiKmsDZqV7y6/bINc0Lx6EBjmOUY8pJevj+6j9+gTgJB27E70cVFvrBppgNQSjqMGV3QdvXXXKxLA2QnP2y4tGA2XWu4Zdl8a5TNLswEASUd6tCwXddiTSaj9MtvQNu914rGC/EOuBbwBb1bultYJjGdmLoCIcF8IMrYmNuRRfFxKosGRHXfAbTecDPM9jb7vOAEfIF4fAhhUUql0EInyuw3tEAg7igjpX8fVE6SO8Ka2ehLWSqVTRB+Ya71MhmNF2Z4h6lS0p28UbXi8huMsplmywLB0QZ4Idi1zoZZDYGuNSoWodjh1kpJB7EFhVIolcNRq0Cx/YhKoRhuUuQKyggwGQXtdxIDU1YgcKOMYsKtIfDt466XhFcXe3DS7DBWukpRNLMPaw5QqjUZlfRkNKuwuXrYepsGWm77H/5x9qCjjBbKW2CWmMV4Pj6EWm3lEx5iRhtcM5ngY8LAmonYRWCOhhAyHLZKnCR5ul6eqBVL5QG4VIJSsoVfoQAlV72zlmpAyuBwuHsdxans0malySheEhUIxbJ91G8AZQdBjoPbiRyKkrsn7Ay3WKpcnRkCpaQnEpqpiLQe9jiTVPoQOBD6Uo6xg0+Jn2K5Di/ZhMEkkbSg2DQExl/H9jtntk4ISD3uPeuUZcyfSkkHoXUplEBqEITO3tIHBkPdP23rDrTecDMAoHhCwI6R7ESmhtBYEVIgJIBLQ/B5AZWQJiOFTZYVVG5INTLzp/XAn9YHH+ilVH0suAjXwC2C8SEIQyGpQGDMSa4QVF4yPQQ4/8YBY1Z3rL4Gy3kbYSBJRdlDQFBuKcCHAEAxktfOXM5p3Shr7CVGczAMkFoSKNKyRkZBQtw/6rsAgMyfXhdfk/0nIQE67lFGGzduxEUXXYRzzjkHF110ETZt2lSXchM1GY2McuP0XceEdCrXHAMeI6zKHet12U1qRLDZOkVZRu0ZqWs2OuYeDMp/T5z766V40nEguZjMNoCVSC/CQFKLLd0FO/lhfQjsuxFHjqgA2ImHYhiuFf4uoRXH2FAoJrvQsVHDTq+99losXboUDz/8MJYuXYpvfOMb9Sk4YYEQOND45NOZ0JT0RByvytAISJg9b9nUFWE2pPERCC5fzkR2JKsqiBLjK8qs4whFpF3G/HGHWPO1wXqE/FJhSFKa1Y9pmcWSW1uJYdKjAFWZZYOgOxfGmXeNZVwFQn9/P9avX4/FixcDABYvXoz169dj7969yRee4CCsDI8GOihdKRMSFE5xopRKiThe1aERkFw2eEbKxNGHMe9QkxFRFP5aj4mOqpRz8ccBE6UVitgEAtO/49rboQZINgvFKIchK4RAGSuAeHcFrJEk+hyxc4k1pMmor68PM2fOhGZ3PE3TMGPGDPT19SVedqImo+GRwGic0OsQJhBJzHgA+8XJZpw9pn2PY53KYa5rH0vyTeWd3yYTqgrErCFEmYmHsYGHwrUOIZk+FAWSy1oZfnUTRC3vW0Ka4k8FETsZW2jJsFM+XV0tVZ1XTGoQ1jRoI6OBEjxlGs7CkrqvWI1KUxYYLaC5WEBSir3WlAUJEDgqIpo86LXbmkFiWGBVb9ra8yil4hMI2bQKooTPqZdvbYrleauMNq5OAE0t1ZoH2bsPgAI0NwH22gGtJQ8SIYgjNlqboR40A6a965oILZcFwSBamzNIeff9iIFxFQg9PT3YuXMnDMOApmkwDAO7du1CT09P6Gv09w/BjLiyMPXWRjS9Vl1elCDM1uZQOxsZo2Pj78AJiZnJQDEJxrbtRjyBiJXoigJVgTAlhjlWhArbBBRBiJayWaSo/TidmlCOehEHBsaQQ3xqfHGsBKVQQth5/0jBiCd9WqFU3lXVJCApbVx9NyVNQ4oAAIGRyUCDJRBK6XQsAyLJpCOZgY1cFiUtFerd0lUVGoCh/cMo7R4MPJ6Hqiq+E+lxHZO6urrQ29uLNWvWAADWrFmD3t5edHZ2JlpuxWbfMWK2lW80EZlAiiWQmGy0iaMoMNtaoO1OzrdD0qlAB6rjfM9Gi7wh+SZXOZMGRWkMkxEAMNFSJOLzixvCLjxj/qY7qNV8/YjXIdlM6Hvd0D4EAPjmN7+JO++8E+eccw7uvPNOfOtb30q8TNLSnNy1WxmBIOj4SlGPN6QwQYiqwpgzC+q+A8EHV0sqHehApbPKqAumCJuoLZ2UjpMAqhIu+iosUVOWxDhhIVlmEGYWftVrUsT2GeISAvy/ayor6nWymfBrPuiEJqE1M+M+XZo/fz7uueeeupZJWi2BQLKZUOGLUTCnMapYNg342MUVXQdpawZ4ydloPSOYRqKaUSKhKjAOmQu8ZC1mI5oWe5ggSacCncrOsRFmmETTXCtPeZEkE9aMpMQdZUSiBTDEtQ4B7mfmen4prS5JBVkzDiucSC7H/bumsiJeh2QyQMgIJ6ohJBWmO+4awnigHzIX2tmnoPDhE2O/tktDCFgCT9JpoVmJzmTopjjG9A7/i8Wp3ntRVZhM2YloNukUEHY2zMz2hj/3Nxj51Hni67JmIo7JKO5ww9hQlNBCMhSERFrzUuvsnZ2e+AmEWM1SorqwkwJWK/DRFmoqqxqTUUjh65g8G9VkNC5k0kif+2GY3V0VP9X6Erh8CIztmktKE8/C7BfHmDMLg8v/Acb7DvI9lB3UYlfDVRUmY2Zzqf/0uxoHLktDCCcQXC93a7PQhEQyaZffgHvsRPUrKEp4IRnmcroBRTfCp02utR+x9zXjpyEwzyZO4eeFFUJ+QiAuH0LU5HjZdPh7rWmWGVFqCAnAG4xrnLG4Zh8tefGxqZSwIxizukFyWZSOOzJ4tsjWO+5Zl6q4ZuVcp26tL3M6JXSgsoMFyTL24FRKOKCTdMpdd542UKdZqhcz3yQ2f6nxCgRnLUbYAavWd4Ed7FNaeaKS9fEhxGiiqqhLlt9/2cE7rk2BomrQJJ0O//5oKqBpjblSebxxDTL2i1fz7Jo5nzQz0S28Y1MpR2XmmS2MuT0Y+tLnypqB6IVxaQjxPlaiqq6ByWzlOOVrLJOkUiAiDYEdnDJuGzTvmTkDbTrtHphcwsS+9+PgaDbzTRj+58/CbPafNBDEazKiCf7CDlg19yPvJMXe67rCh0DLC2O6q9Kn4tIq/RzMQRp9WNj+FkagG0b4e62q1rsmNYQEYB8C7Zi1zhY1rWz7Z192zgMnac0RINxwSM09EIuElcsWG0GoheqwnkGJtFXGMNc8eKTTwtkw23aX2UfTuMLQseMqCkiGFQicwWg8fAj0nooGOFURC8moRdpJBEObNGqeHKnOpItomiN4/QRCqPLUKuvElsn2JZdAKL+vNfk2Imrrim6ED6jQVKuPSw0hATTO7KRWNVnTMHzZJzH82Qvdpgw68LMPPpUqCwqes9P7gog6DXus3RbeYF88vhejS86wcgeFtVF7BiUqvFxt4bzMRld78LXZa4Y0iXmd9a6Xl7adamfEtEJaKWyEiWYfmx4HkxG9p6L7H7MPAbC0O/3wQ8IdXLMvSin3b01z2uIahFlhzHn3KvpwtRqCnyObXR/BmoxqGAeIpjkWAZHWU7ZKqO6xSDS5Uu1j5X4ICaBWagi1m4xUkNYWkNYWaDv3VJalqU4MMUmlyuXxOmAEgcB2cqdDaWpFdlLSMQ36MQswdMShAICWH/wcCJps2Lb9ocv/DurwCLTN2yrawqtb8UMnwpg3Gy03/adVtig0NsipzN6LrMfEw947+yUz803WilyTBGsIWrTXgOQy7v0VqoG2VSQE4w47hRWgEDZst2btRLEFQgl2eKnd71vy5b7gGgg570BKi2WXPuLjR3KZC1lTkpaCgiqfMSsEMv6h56XjjgRpbkLxL96P9OvvlH/QNH8NQFUBVZU+hCRwSWJHQ6hRRrIdnPVR0LK8QohqDrwQVc9MQajG8mZanMHGeclpOGYEkxHparf8GbRe7Lm8WY2quGdIIoEW5FR2aQgegcDzIVANwTRdYYCuiCNnEqBGinAxp7WFPtYXhXMPK46Jb6Wyy5QWtq0xlE3U8kTLlWzQ7ofEx7zimJo876PSVt2iUsL4vVzvPauZs8+iFg0hk3JSsAiFbzqF4mknA9mMu/+J+oRGfQhSIMQPO2BTM0itzlH2fPZvxpbqHMs6lTmOvooZk0h74dhiuTMub2cLIRC8M0Xnuqx/gzfIeGe4gnsbGHbq8iF47pWrDbYGQgeiphxIE+Ms9Jrs6Hf0+YQZLFMpjHz6fBRO/4vgY30gYTSEONNfU/t9FIFQs4YARgtTUTrqMAC2QKXCJlVpVqXHW79b3xnTO1A86Thkll1cVVVIJoOxMz+E0SVnuDUEnwlgLWtTiF+IrRc/k6vnnXRNLFXVev+kySgBuE7l+DQE9wN3d3Dnb2rz5nUc74AuCq/krUPgzto934V56b3nMP4Q52yeYPGGygp9BGmxg9snUsgPY95smBu3oHDmh1x2Yu5LyGbVY81gPhBVgTGnB8reGlJ5UPux6P7HmcvINtWxs/NAVLWmFfBEUaDQZ5pJo3DqSSiedDxIR1v5fruijDjvjtOXNRTO/BDaOqrM8KmpKJ10nPU3uydDOoWRpZ9w+w+YepV654Nks0ht2hoqaSUAIJMuJ/MTCAS/ySNRFHeSR/a9sKOMpMkoAYjqnq0DqN2RxuvUbFnsgMQ6UnkmI4/aKvRv8FRv3gBcMRgIIntoR/SeQ7/n2O4rjnOZzQRRUgFOZZeZiHOvRj9xBgqnneyo0mZbC4b/YSnMWd2AosDobIc+/32utnDNePVKOEjvlyiySokxyoja72kwQRhqdmgrZUFkR5GRzmmuI/xMRs55jjZaY1V8fFAklYJx8OzKRap2nzC7u1D4q9MiaUsknXYEgVBDUNh3g504CbR4TbW034QEgtQQKHSmXmv+eY96V1EWOyClUk5H53WcCvOFUEMIKdy8IaSq4v+uqXa8s3eWSmfQHDWXnVFWRDFRO7aqVu54FmAycq0f4Kw21o9eAADIPvGsdYxnrcTIZZ8EVBWpV950tw/ul5Foauixh21n6JxTtO1hBts4ncr0fqc0IKSPltCFcdXmyGKqXvHMaPvDOJW9F/PWM8T9JxzzLQD/dyqEwPZFVazcSYWi8y5y6+hXpwqzLlzHEbkOISHYgYCGHkaMOBHCEQiu2Rk7iPNmEpE0hEqnMs8fUjE7FJkkHDu35xwnSoqjIYg6tsjZnSo7lbkzWNfCouAomYpFRjTskWfCYhfehdEQ6LH0BY/igKRlhhIIamwmIyqAiaaGFzK1ls0KE5+B1x12KlhFLnS02v1dVBe/5+pzXWc8qCKrKMlkMPrJj6N07BEg01r9y3GZjATattdXl+BK5amtIbgG7HjWIbjgzQDYh+uyiwdHGTkDPWcDDl4sfhgNIfBFK+kVmopicgZC1rxEJy9eZ7RTL7VylspqCLxwWTYksL0Vpd7DUDzx2Ioqj/zNX6F1e5+/+YkrEHz8Pn54BYIWITQyyoxfQXUzVA6FD5+I9MtvwJhzEFKbt4Y7KWjHogj45ptyrdXhTRQq+/DYWR8GUhpyv3mifJ4O69n5DeARTYHOpCPCwDt2xikwZ3SBdE4DATC2eBHSz7xk/ch5jr5pOzjatus4TQXGpFM5flyDAycMLsbrE97MMF1eh2DO6q44vUIjMMr7AVTsyMQLd/WL/HHVUaCKU6ex9zqOyYgTsifSEJgFbd5SCbtSWVUB+AsEaBrGzj+LW2fj8HlIn3Is4LebFKsVcjSgUOtQ7HqWjl4AbesOGLNnIffwk8HnAczEIOSxMaWuMGbPRPHUk+yywzuVa0JRytN2v2geVxgw5xiO761kTwSoQHD6kyAgwPtcR/72Y+IV2/Q3ej1CryNw6GbSMObN8dRfoBEG+ddUBTA8AkHV+CbXmJjaJiMGZxAV5LWJGpLKXcnr0hA0FM76MEYXL4LBEQjeWU15gxieeYmN91cq60uLjaIhsIvpWByTUeXgKoqndl5+3kCTTokFWQgzURhcTlqODyGUhshEzowtOQNmqziJoat8p6wwJiPE50MIChGmv7HPjD2nSk2lcNoHAQBmu2fthmNu8wk7tX9X7EVd5jRBdBEvOMCL57kahx0Mc84s38OpsKjYd0AUGOEXWAHwHzdvHRQLrz10VbP0ISRMGA0hagQKzzzh8iGkQNpaoB97RKiVyvqh70Op9zAUzj614lC3Pd8TsseW6xPBwLW/+rxopeN7YXS1o/T+Yyqv7zOgAGBMWcxs75gF5e+cZ8BJ4xHXHgysXdwxUWl8Dcf3GoJrBhFl1q2o8e2Y5gpdFE0CfI6LMBkiTF/QjzsSg1f/H27+K8CtIYAT0GHMtKJ/SscdKahzOVjBl6iTObqY0asNCNeNhNDI2TJYrZ7nY+GZmRIOO53aJiMWOiKKBn1BZxg745TKBxjoQ6hcTOaqknfDjnQKY+efBYW3lSVHQ3DbJW0zjJ+GwLO/chbTAQBpa8HI5X8HtW8X/zreetDztEr1f+zjp1s2YTbmnjMwmK0t0Oe/j69JRYG9J5xZaigtsMLsVoVA8HNmsnbjODUEFpEAU1TQXCauPa41DdCNcBFVNDqN/d8Lx5REOAEdZs9MDJ7zkXDvpWjhY1QfAg1K8PiLiKb563YiDYEHb5Ekew43bDxZDSFRgfCtb30LTz/9NDKZDPL5PL7+9a/j2GMt+9/y5cuxbt06dHR0AADOPfdcLFu2LMnqCHFCCIWdyrJV8l6K0gePrzzB5UPgzKD97Kp0mX+EyAj3oh6fwdmoVGtdK2Y9AoHwBItfPXgaiI+/gng1J2qvdUxdfPV59JMf59cjCmzZtnM8eqbY8H4YYfkMTp9iBlMSY5RRrRqCy06vBwxGNLBAeFsqAxO4Cw5VJfiZhNHuIgqE0rFHQO3fh8KHPLsqBiWeq/iO70y23m9mfOBpxTQk3BO6nWS200QFwkc+8hF87WtfQzqdxtq1a3HllVfisccec36//PLLcckllyRZhUCG//5voQwOl5NLMR2n8OETkXnuz2UHLruy1evs4cC1p/tEGbnq9I+XiMPdeB2PfbFo+KbGExI+IW3cQYIxqQTVg/NSVpo7AgSMM2v0cbDFAHtPFDY2n15eNCGgg7a3KhE0BN8JBx1o2SitONcheFe7+sHxsVj1Y7W7IIEQ3k/iekd4O/GFSa2SFkTVUUKajPR5c5DatBVIWSujKwh77yi8+tN9pNkhhGcy8tMQVC0xp3KiAuH00093/j7hhBOwY8cOmKYJNabIiTgwZ04HZk5Hev3b1hfMYFQ89SQUP3wiWr97i/UF6/QMI6FdAyb9dEcZ8SCCTVOs6/I6Gaty2p+cULaKGadQINC8QD6zWq6ay2oInvMC8/fQME6fFyEOWGHDZJ2lN4272Q4VBPag7bVVR9r60c9HRQdar1YXmw+BLUtg11Z80pGEcdzSa1BtQlR3OhiyEwjXSuXK330RrLtxLhdSQxj95MeEIcSBqam9x/O+o2Yn1uwTss9TH8KkNBmxrFy5Eh/96EddwuD222/H3Xffjblz5+IrX/kK5s+fH/m6XV18Z1UYurvLkQvFTAomgJb2ZidEnv5Ok9dqmZSVo4Sm9PW5FoWkCGjWlGwuAxNAyr4GAHTNnAaF2WaTlsO7luu6TRoKnu/aulqdKuWbszAAZPPZcmZre3Ce1tkMjbl+IU3bVPnCpDQVBEDztCZM47Uvqzj1yOTSMAFo6XL7OjqboXa3Ou3KNtn3IJdxjnE9g2yq4ndKu32tsPjdQ9MsOkmNMykVJoC2jmaU7EHSdc9sFNuMo6RSgG4gm9HQylzfHBkKnSg51ZQFAZBKa+jubkUhZeXOV9IpoFiy+pbN9O5W6PaztGyVIQvh0N5Rvn/myGBlfe3rq8ygPH1GGwq2eHD6fogoLHoN2kYetE9M62px+m3btCbnbypL2qY1uforUPlepuzcQams9cmaP9Wj58N8bQOm97Rz+3hYCva7QMvi0dbRXFFXo81qk8IIRzWTAkaA1pYsUszxtD2q3Rc12jcYudoxvQVGaxMMw8D06S2u68ZBTQLhggsuwPbt27m/rVu3Dpr9AB544AHcf//9WLlypfP7lVdeie7ubqiqitWrV+Oyyy7DY4895pwTlv7+IZhm9Delu7sVu5lY9ZxBkAYwdGAENM0V/Z0+Mh0KNAAElekedvPi3kcKzrmFoo40gJJuwPjwiUi/+Br2DBWB0bKkp8dyr8VSKsH7mh0YLoKKlpGRIrIACgWrTADODPHAwBgM5vp53YAGwIRSEXKm6yY0AEOjOkq8OhWKTj2KJQMpADoB6BPcd2AUZm4QzW0tUAeGnPqUSLnjuZ7BWMn+XanomPsOjMEMui823mfLogwWQKcQRZ0gBWBgpIScSaAAKJRMeC3ZRFWgGICZSUMdK6A4UsQB5vrqwCjCJmWmbdN1AwO7B9FU0pFC+f6bKIf+7ekfRqagIwt75k6qNxPs2z/q3D/1wFhFfa0+Tdzl7x1Gi7WRp/NcTaWyn3ih16Bt5NFCrOseGBxz+u3AUAF0fTm1zA0MFaAz12CfrfNelnRoTB2JqkCxb9WBjy2C8qGTMLh3JKDWYpoNw2oT07+9HBgqut4tAEjZbSJ2ewHAVFSoAIb2j7jeq1zvYdAPOxjZJ5+DCssqraJ8LwDrPdDSGeRMgv53toN4w3lDoKqK70S6JoGwatWqwGMeffRR3Hjjjbjjjjswffp05/uZM2c6f59//vm44YYbsGPHDsyePbuWKlWNs/DJu+CLhQlvCyWXWScZ40OgpiivSj38938bLu0uzwHlY+oo/2N/RvEh0O9Em9p4y+I4lYc/fzFgGMg99gfrez+h70R6JWgyYutMV4ezJgJe2TQ0lx7vVddpv4C/1dwxO/nNsHkmGTYXVK0zwSCTEfWLecv3Rt+F2vdYHEnF4vazRQvbLF/E/mAyozqO71QKpKsj+BphEZmMfPYE8eIsiPP8RBdbZp98zjqOdz1NtTY5UhQopVItSiOXRE1Ga9euxQ033IDbb78dc+a4V/Dt3LnTEQpPPfUUVFV1CYl6QwVCxQpglgh2VOt4wToATkc3Z06v+I6Ln6OK4qRU4Ngg/V4w7mIxW6DpPjZVrtOc810mDSBdDt3zNTsIfo/LqcyGOdprG5RC0Uk57LtiFCjfD69AoO1Mp/ztz5oG6Lq/wOctylNQvp+ss9kH4QrWoCgjGm7q17dpLi6BycgVKWVdVFxhAFBVDH/6AihjBc8iMLH/yl0wk0IE1jNWCjXuaFdRhv1By+BEGvIHcM1dRwCFU0+CtrUPpWOP4JdFb5uPD4F0dWDoS58rR+fFSKIC4ZprrkE6ncYXv/hF57s77rgDHR0duPrqq9Hf3w9FUdDS0oKbb74ZqfHY7NyGpo6oWFHJQNgoI4hnhBU4L2S8Nj8K+6I6i1bY+0k31IgSymprOEqYPD3c1dGea3pe3MoCBb/HFW3D3Cf96MOReWk9jLk95d+5QtQON7a34lS8YZc0TDSV8r9XNN+Oz4DK23TIiiiJoCEI93IIiDKiyqDPDJiE0RBsX4uz25nIp5zNWKuQNdV591JvbWQOsD+iaEai7WjjQhhlxNHS6fGMQCDZjLVTWmBZPE3Ovl4CwgBIWCA888wzvr/dcccdSRYdGf2IQzH8mQth9nRjuLuTn+fEO4uLEg8cl+rvYeTvliDzzJ9AWiyrMMlmHHXZNZsrWJoPu52kVR/7k6faOhqC/9TUbMrBOOzgshbh2ejDfUH7M+CF5WsIMZmMmOsYcw/C4DXW2hclhDAifhoTndmmU8CoT7nU7OQdUFVGA2COc/6O0m5Rkr2gNBSitCHM98KV/FSLCSG8zVndUDduAfTy+8MVRoJrDX/+IqCkI/fQk67za9ntLBBWcIvSWXu/Y/2cgWOAT0SgXxkxIlcqM5gHzbA+/Uw3Hg0hlI00l4HZ2Z6YQDDmzcGonVBr7NzToB86F5l1L1g/8nwN3p2hvPZXFmpG8zMZARj+0ucAALnVj1pfqBwzmVOWZ9MTL6m0q06uU+NaoAWgtOAQ6Ece6vpOGbPipcyu9soT6LoOW5ia0902aXN6J8ymHAof/Qs0/fqxitMBlPdZ8K7ebm8D3tsOdWDI+j9KrqmKMtyraCtWPVNEKRYCTEbsgDR6wdkg+SbkV97nOpf6WkTm19FPnInMn16DOYt517hbvvo/d3N6p/2XR5gnMGgSb2grT6MWmIxc5qVakgsmHLIvBUIEnBmI00mDH+zQlZcCALIP/s4+JT6BYDa7c/6X3n+UVQTVEHjrHPyS93E6c+mEowAoKJ7ygeDK+K2OZqFt9zObOCYZjgCKMYXD2IXnVnw3+tfnQNu0ja8ZUnPKtFaMLP1EZfqMbAbDX/oclBE/9QC+jtbiB49D6uU3oB8yF+k3NlS2M0q7vc+QncUGLExztm0MMhkxAl8/0h0mToMtSHsbsHUHlMFh/7rmcyiestBTf7ZfUB9CeKcyBIN1zTiL3wRlCNLNu4VzuPrxdsuLtOalCqRAiILTGeB8jp53pmOuEUJNBjENbINXXebfsTg+hNTi01D44/rKY4m/845kMxj7xBnhKkTbJ/Ih0GP8cuPT+vJMVAm/CPoRh0I/4lCk3ny38kdGuzMO9o+CI6IJAs9HAGuLxqFrliHzhBVZ4m1npAHAOyCxRbkizqxnbjY3QR22hRgvrQh7Hp0MCRdmWceadiI7Y/77wtfde+0oC9MCgxVqxzEXcjQux5fI8z+xOyUaHG1NBG+skCajCYRa+VLrRx0e7lxHiMQ0exGk6aYOZPYFSS06GfuOParyWJEZJ9JmLu6Bw/Wd93o+AoFqNBVO26h1qYVano/g3Ir9MCpWjNufov10AwhrbqImneIpC5F79Pfu+ngHnLSdZoFeWzToOhFRKoa++BnxfgM8uCajMJFKVDtN0JlM+2bJ7psV4bmEL7x4E4Gwz5RnLkt4YpTs1RsEJ/7csaNWhpIF4gwE8dXLD9JkmZIq/AUiuPH34btHeR2Cv8nIiT7xcfoZh8y1PtmoH+da9emqwqiWkL5ALvb9NQ6aieIHjsboEo/mFZRaJExf45mMeH/nshhc/g/ORjMAfNOKEOrX8dFwXLDJ8Jrz0dPFB62l8S3XR5jFiKMhGLY5k3Nv+ZMqjokpqE2cd2n4MxeiePIJ0ocwESBNWTtW3f5fNJP1IyGnMo/CGafAOGgGjHlzgw92TEZVvowUnkCo0BDoLNNHILzvIAx+5TKo/fuRfeJZT13qNHcRtjnki8yDGbQK53zE/1zvJUR5h2jWTG8ZvPr4mO8q/vdeg9nlLpAa+3i1WqqzNoA5f+yMU2B2RF/F60fh7A9bO6LNnI7Upm3lTKQsIpNRNRoC03bzoBko2EEvSSI1hBDQaAZnL2GfpHRC/GaASZBJQz++N6RDTpD2u4rZSBgfgnC2m0mLV00nTQ3yQPiiBw2WfutUBKt+Ry84GwW6LSbvGNeqcf+qsed6+4Ez+XHWN9TQxiCq1VLt82gdSS6D0gePh3H4IdXVgwNpacbY4kXld98VvtxT8Z0D7/mF7MtJO5B5SA0hBKNLzrAiQIpWrh1u9E4QQWF9SRBh2X/ti8EqNY0KDYNez35x9UN9NBhunPxE8CHUoCHY+GpdPhoCNyUI/a0lj+LhJyL71PN+FSofG7buXk3RZy2K2THN/xpxCAQSIcrIrrNywMoLRFqrT3gZCOc9Hr3wXKh7D/DfIcfUVv4q8FlQpECYoOSyKJ1wFNLPv2z9L3Lo+iF4sRMjxIupiFJOR3mxeYvO/ExGhGDwq5f7d3jmvOJJxyHz/MvR7dHVInIMB90OkQ3b2Z1NvFLczzHsSkvt+c23SIUxawQd67NfxugnzkDm6ZdgTu9w9gwZWvYprsOY+Ai1sLj2qnAih4KHKCccvN1Kd6cfcajo8JrgCuhsBmaPz05+TKh62GfhUM+xwkYKhCj4qNWRzp1gAkGsIYRvJy1JZDJy9nnIZsQDPHNe4YxTUPjoX9RvtiSILw/clERUR0OcOoS7ox57zTCbr3gPcdmt/avmOtbrVG5vQ+GvTkP6xddc3wmvUbWGwPFjtYUI6bbPM3pmYPCfPwdECaaolrCmX56mU8vCtISRPoQo+Nl5Q1CePU3MW861V1YjvHh7O9sUP3gcxs49zT+pl43ZygwCipJsbhovvBWoNEw2TE4nDzQ3Fs0v5RsrHzS7FmUCDbqm928eNAIszHapflAXUbUCwW6HfghjSgyhjRO7v5CUlrww8NPkfCD5JhRPOg6jFy8pfxl2QilNRhMcp6MTjJ35IRg9Ebz+9NRxUANLRxwCv9dEtG9ypBeblwvIe76mOauphWQzMJtyFekl6oJAIAgz4fow/Nm/gTIygvzdD1hfBGY79QzuIlu6/VX2ms9j38Y+ZB9/2vN7hOcX5OMKMxeqVUNQFAx//mKYbS3Q+nZB3bs/1GmF006G2dUO47B51ZUbhaimX0Wp3IozSCBQwSoFwgSH6QSlk46Ldi6d4dVZQxj88qVAOlWxoY6DEw5Z5aIgD8IoowjQHEl1h1flDN03IbpAQFMWpCnrrB73zeNEbc3egAWhQLC+UzraYOisAxmVeZPCxr779E9nciBaDhFDSDXNE2UcPFu4KtxFOoXS+4+uuexQBG4DG0zY7TylD2GyUM2uFOOlIdBFdX44Mdw1hp3ynKZ1WHMRO0INIbrJyIGmHxfuqQz/2WOUzWPoytlqFkP5mqzCRPvUqCFMBuJYTxSU7VeU7TRhpECIgiDvTyB1XJgWCVWguVQjvEQmo0kALyTQOGgG0q+/A/2wg0NfZ/gzfw1luLxto+OQ9kvs53evaLQNT1D5jd40bw77c9CjCBrMQ/kQEkwuN1GII1owqoZQx9spBUIUaCx2DVFG9Xy4YXA0A95+vdWYjKpZkTmR4NTZ7GzH4L98Ptz2kfScgzy7/4U0GXm1TyWEyajyexXWzsbhn4VX4JjefTOoQBP0fcdhPg6277pRQ2BJ5TX8frc/pQ9hguO8FFVEvcTRkZLAGYjKM1GlFk1ossNdj4FIwoCLIdYQfAcJUdZPX4FAz4kgnJlcRSOfOq9i4ZnC23TJj3GwfdeNOk7s6hqibpOoQFi+fDnWrVuHjg7LUXTuuedi2TJrh6rR0VFcc801eO2116BpGq6++mqcfvrpSVanZpyXopZ1CBNt1qzSZf8cx0iEutLkX6G225zI1LpAz4fCWR9G9rfrQmxh6nkOohz6ftVicvCHxjEdWjmlKqDrKESCMWJI5mQkcHFiDHC3wK0TiZd4+eWX45JLLqn4/mc/+xmam5vx6KOPYtOmTfjUpz6FRx55BM3NIRaijBcBi4vERMyFXidonLyT0ZU6JCNS3rC+EFvdxgP+YBb+oQ1dfjEUzu0rfeBolD4gioTxK0MkEAI0hCjmO00sROimRaE0hIk26YmV5NtGd+8j+aaAI+Nn3ET5b37zG1x88cUAgHnz5uGYY47Bk08+OV7VCYdRg8mIDhIT7GUpnHEKRj9xJox5dohfFcIAQDmaqVCMp2LjBS+nfhRNqaujYovNqIz+9TkY+eTH7AvSeoUXCITj3A3Kn1MWhD7H6REmQw2sIdTj/XUEQnP9BULiGsLtt9+Ou+++G3PnzsVXvvIVzJ9vbbu3fft2zJ5djjPu6enBjh07Il+/q6v6RFbd3b7R+VxKGRUGgOZpTZgW8Vw9n4EOIJ/PRj43Lnzb29MB870+FAHX3q9R7o8xpxslAM3tLaBGo6j3N06qLZukAa+OM62zGVrCbTG25VACkM2k0Prh48vf93SiBCA9sxPm9l2uc7qmt0CZZtWru7sVhXQKBIBqz/ZT9v8AML27FQpnFe+Y/ZnNZ2ACyOcz3P5Zymh232+u+N343AUAAOXJP4IAaGvPJ3q/xrNfGXvyKMF9b8PWh97roOPpcW2zOlACoChK3dpck0C44IILsH37du5v69atw5VXXonu7m6oqorVq1fjsssuw2OPPQYtxkRl/f1DMHn27wC6u1uxe/dgpHOyg2PIABga1VGKeG5muIAsgJGRIooRz42DoPaqA2PwGusi3Z85c5D6+OnQjzocrQ/9Pvr5MVLNs6UowyPwTjEODIzCSLgtqYExNAEoFHQcYMvq6UHqwnNhtrag+aU3XOf07x0BKZbbmy8Z0ACYhEAFoBsm6Ju2p38IGK5cWEeHmULRQBrAyFiJ2z+zA6NW3y9w+v6sWQCAppKBFICBoQL0hO5XLc82DrT9I8gDKCmqM3iGrU960V9C7d+PwYDjtb/9GNJvvouRwTHkARCTxNpmVVV8J9I1CYRVq1YJf585sxx6d/755+OGG27Ajh07MHv2bBx00EHYtm0bOjutvQb6+vpw8skn11KdxDHmzAJeeq1yk/VIVGmSSZpa1XxFgX7ckfHUZRzh+RDqsjmPYEGYvuAQqDv3RDinhl26fCgdfyTSL7wCfcEh4utgfKJj6oVim0SpzywKpZNPCHWccdjBMA47GOrW6BaTWkm0p+/cudP5+6mnnoKqqo6QOPfcc3H33XcDADZt2oRXXnkFp556apLVqRn9mAUY+qf/D+acWZHPrSUfTj1gB0J9XsiUAY1IjVlfE4O3MM1PUFXjVHZWx/KPM2dOx9A1y0CmhTBdTNAEjnHgCIRsBsasbhSjprCJVFiDhZ1effXV6O/vh6IoaGlpwc0334yUHUp16aWXYvny5TjrrLOgqiquu+46tLQkuLFFTJDWKqOgJrhAYMMtRz/58bIDfaoRV9bXqvHRIHlViLKqOKgNcTZxIgjQpLAjDUm+CSOf+5tkyxoHRStRgXDHHXf4/pbP53HTTTclWfyEgtAEaZNAIEDT6rchzUQjpq1E4yfKOgTO4qnQuYxiGIUa2GRUOqEX6sAQin/5geQLazQNQVJmopuMJsagNwHgzq6Tvzc0yynJ+SQqj7IOgWf+qadAaGTSaRTOOKU+ZY3DM5ECoU4Yh8xB6dgjUPjQieNdFS6EF39fJUOX/115M/IGoB5OUuPQ92HszA+h5OeY51Uh47N5jFPfKLmMAqsYjJQliUC8eaUSpHHe2omOpmFs8aLxroU/1aTj8IF0tcd2rQlBXaKMFOEeG6xnwcznoI6MVQ7y9r9cZ3ONTmVJ/aHWBLOOC9SkQJBYxCgQGo6JYBNnBurhZZWpYNzHWh+RZv0TNBvvlMZ+JmZNYe7RkAJBYiF9CA6jf30OzM52NP8/Kyx6YtwbZqT2MxVRnO04I9SbF6oqGVeMObOQ/uz5GJwRYaveGpECQWIhBwIH/QjPXs4TTEMIfWyUats2qdoylU6A+9RIKAq04xYAdVyZPRGmPpIJRCnEStSpxoRI5xxFKFU12xdkVZVMGaSGIHEYvPLvGyo6KDYmnUAIyFzKQ7QRj2TKIJ++pEwuO3UXpImYCCajavwBkeot2KozJMVTPgCiqTBm1s8JKokXOR2USIKYALl5Iq0TUcI7lYc/+zdQdB2pV95wn1sFxrw5GPrq/6n6fMn4M/49XSKZ6EwIDSHCJj007DREKLHZ0w1jbg+zgVMVdZM0DFIgSCRBTARHa5R1IlWkPHCOnAhtlYwbUiBIJEFMhEEyig+Bl7oiCHunvAm6W4ekTkiBIJH4UDp6wXhXoUwooeTRDCaAHJNMLqRTWSLxYWzx6Rj72GnjXQ2LSFpKFRpCVeVIGg0pECQSP1R1csXlm/amRikZOiypjknU2yUSiRBbIJBqFhcS6T2QJKwhfPazn8W+ffsAAIZh4O2338Z9992HI488EsuXL8e6devQ0dEBwNpjedmyZUlWRyJpbOztHZGir7Uc5CXRqNsWmo899hh+8IMf4MgjyxuAXH755bjkkoBUvhKJJBSK4dEQosgDZx2C9CFMZepmMvrlL3+JCy+8sF7FSSRTD+pDSNvpsSOZgaQ2IamTQNizZw+efvppnHfeea7vb7/9dixZsgRf+MIXsGHDhnpURSJpXLwaQpRBXmoIEtRoMrrggguwfft27m/r1q2DZidKW7VqFU499VR0dnY6v1955ZXo7u6GqqpYvXo1LrvsMjz22GPOOWHp6mqpuv7d3a1VnzsZmUrtbcS2jtmfvLZ1d7dizB7Vm9uboQPIZlIwBeewFLPWsW1tOWgT/N414rMVUc/21iQQVq1aFeq4e++9F1/96ldd382cOdP5+/zzz8cNN9yAHTt2YPbs2ZHq0N8/BNOMru52d7didx03nhhvplJ7G7WtrQBINlPRNtrelpIOBcBQwUAOQKGgg+6tFnQ/coUS0gAGBsagT+B716jP1o8k2quqiu9EOvF1CC+++CIGBwfxkY98xPX9zp07HaHw1FNPQVVVl5CQSCRuhr74GRCRBk3DTjNV+BBkcjsJ6iAQ7r33Xpx//vkVpqCrr74a/f39UBQFLS0tuPnmm5FKyXVyEokfpDkvPsCofmFa4SMfhDI4BP2wedErJmkYEh+Bv/Od73C/Z0NSJRJJ7Zgzp0Pr2+WsQ1AiaAikcxpGP31BUlWTTBLklFwiaRBGLvo41P79UEZt9zMBSC5bXrAmkQQgBYJE0ig05WDOmQXt7U32FwRDX/zMeNZIMsmQAkEiaTToWgICuUe2JBIyuZ1E0mg4kUJy9bEkGlIgSCQNB6MhSCQRkAJBImk0qIYgU1pLIiIFgkTScMjVZZLqkAJBImk0nAR1UkOQREMKBImk0ZAmI0mVSIEgkTQqUh5IIiIFgkTSaMg9DSRVIgWCRNJoOAvTpIogiYYUCBKJRCIBIAWCRNJwmO1tAAB9wSHjXBPJZEPmMpJIGgzS1oLBL18K0I1yJJKQSIEgkTQi2cx410AyCZEmI4lEIpEAiEEg3HfffViyZAmOOuoo3Hnnna7fRkdH8aUvfQlnnXUWzj33XKxduzbUbxKJRCKpPzWbjHp7e3HjjTfitttuq/jtZz/7GZqbm/Hoo49i06ZN+NSnPoVHHnkEzc3Nwt8kEolEUn9q1hAWLFiAww47DKpaeanf/OY3uPjiiwEA8+bNwzHHHIMnn3wy8DeJRCKR1J9EfQjbt2/H7Nmznf97enqwY8eOwN8kEolEUn8CTUYXXHABtm/fzv1t3bp10MZ5i76urpaqz+3ubo2xJhOfqdTeqdRWYGq1dyq1FahvewMFwqpVq6q++EEHHYRt27ahs7MTANDX14eTTz458Lco7Ns3DNOMvkS/q6sF/f1Dkc+brEyl9k6ltgJTq71Tqa1AMu1VVQUdHXxfbaLrEM4991zcfffdOPbYY7Fp0ya88sor+I//+I/A36Lg17Aw1KJdTEamUnunUluBqdXeqdRWoL7tVQipLQPWmjVr8L3vfQ8DAwNIp9NoamrCz3/+cxx22GEYGRnB8uXL8frrr0NVVfzLv/wLzjzzTAAQ/iaRSCSS+lOzQJBIJBJJYyBXKkskEokEgBQIEolEIrGRAkEikUgkAKRAkEgkEomNFAgSiUQiASAFgkQikUhspECQSCQSCYApKBA2btyIiy66COeccw4uuugibNq0abyrVBP79u3D5z//eZxzzjlYsmQJ/umf/gl79+4FIG7rZL8PP/rRj3DEEUfgrbfeAtC4bS0UCrj22mtx9tlnY8mSJfjXf/1XAI3Z3rVr1+L888/HeeedhyVLluCRRx4B0DhtXbFiBRYtWuTqt0D17Uuk7WSK8elPf5qsXr2aEELI6tWryac//elxrlFt7Nu3jzzzzDPO/9/97nfJNddcQwgRt3Uy34dXX32VXHrppeSjH/0oefPNNwkhjdvWb3/72+T6668npmkSQgjZvXs3IaTx2muaJjnxxBOd5/n666+TE044gRiG0TBtff7558n27dvJ6aef7rSTkOqfZRJtn1ICYc+ePWThwoVE13VCCCG6rpOFCxeS/v7+ca5ZfDz00EPkM5/5jLCtk/k+FAoF8slPfpK89957zovVqG0dGhoiCxcuJENDQ67vG7G9pmmSD37wg+SPf/wjIYSQ5557jpx99tkN2VZWIFTbvqTanmhyu4lGX18fZs6c6aTs1jQNM2bMQF9fn5N1dTJjmibuuusuLFq0SNhWQsikvQ8//OEP8YlPfAJz5851vmvUtm7ZsgXt7e340Y9+hGeffRbNzc3453/+Z+RyuYZrr6Io+MEPfoAvfOELyOfzGB4exq233tqwz5ZSbfuSavuU8yE0Mt/+9reRz+dxySWXjHdVEuGll17CK6+8gqVLl453VeqCruvYsmULjjrqKNx777246qqrcMUVV2BkZGS8qxY7uq7j1ltvxU9+8hOsXbsWN998M6688sqGbOtEZkppCD09Pdi5cycMw4CmaTAMA7t27UJPT894V61mVqxYgc2bN+OWW26BqqrCthJCJuV9eP755/Huu+/ijDPOAADs2LEDl156Ka655pqGaytg7RmSSqWwePFiAMDxxx+Pjo4O5HK5hmvv66+/jl27dmHhwoUAgIULF6KpqQnZbLbh2spS7XuaVNunlIbQ1dWF3t5erFmzBoCVuru3t3fSqJd+3HjjjXj11Vfx4x//GJlMBoC4rZP1Plx++eX4/e9/j8cffxyPP/44Zs2ahZ/97Gf42Mc+1nBtBYDOzk6cfPLJ+MMf/gDAiirp7+/HvHnzGq69s2bNwo4dO/Duu+8CADZs2IA9e/bg4IMPbri2slT7nibV9imX/nrDhg1Yvnw5BgYG0NbWhhUrVuDQQw8d72pVzdtvv43Fixdj3rx5yOVyAIA5c+bgxz/+sbCtjXAfFi1ahFtuuQULFixo2LZu2bIFX/va17B//36kUil86UtfwmmnndaQ7f31r3+Nn/70p1AUBQDwxS9+EWeeeWbDtPU73/kOHnnkEezZswcdHR1ob2/HAw88UHX7kmj7lBMIEolEIuEzpUxGEolEIvFHCgSJRCKRAJACQSKRSCQ2UiBIJBKJBIAUCBKJRCKxkQJBIpFIJACkQJBIJBKJjRQIEolEIgEA/P/0VXor3+gHdAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "np.random.seed(100)\n", + "coeff = np.array([2.7607, -3.8106, 2.6535, -0.9238]) # The 4 coefficients for the AR(4) process\n", + "ar4 = np.r_[1, -coeff] # For use with scipy.signal\n", + "N = 1024\n", + "\n", + "freq_analytical, h = signal.freqz(b=1.0, a=ar4, worN=N, fs=1) # True PSD of AR(4)\n", + "psd_analytical = (h * h.conj()).real\n", + "\n", + "data = signal.lfilter([1.0], ar4, np.random.normal(0, 1, N)) # N AR(4) data samples.\n", + "\n", + "times = np.arange(N)\n", + "\n", + "err = np.random.normal(0, 1, N)\n", + "\n", + "lc_ar4 = Lightcurve(time=times, counts=data, err_dist='gauss', err=err)\n", + "lc_ar4.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b6853e57", + "metadata": {}, + "source": [ + "### The Multitaper Periodogram \n", + "\n", + "Tapering a time series as a way of obtaining a spectral estimator with acceptable bias properties is an important concept. While tapering does reduce bias due to leakage, there is a price to pay in that the sample size is effectively reduced. The loss of information inherent in tapering can often be avoided either by prewhitening or by using Welch's overlapped segment averaging.\n", + "\n", + "The multitaper periodogram is another approach to recover information lost due to tapering. This apporach was introduced by Thomson (1982) and involves the use of multiple orthogonal tapers." + ] + }, + { + "cell_type": "markdown", + "id": "7da1916c", + "metadata": {}, + "source": [ + "In the multitaper method the data is windowed or tapered, but this method differs from the traditional methods in the tapers used, which are the most band-limited functions amongst those defined on a finite time domain, and also, these tapers are orthogonal, enabling us to average the _eigenspectrum_ (spectrum estimates from individual tapers) from more than one tapers to obtain a superior estimate in terms of noise. The resulting spectrum has low leakage, low variance, and retains information contained in the beginning and end of the time series. For more details on the multitaper periodogram, please have a look at the references." + ] + }, + { + "cell_type": "markdown", + "id": "e9a8e18e", + "metadata": {}, + "source": [ + "##### Let's have a look at the individual tapers." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "608c3d1a", + "metadata": {}, + "outputs": [], + "source": [ + "NW = 4 # normalized half-bandwidth = 4\n", + "Kmax = 8 # Number of tapers\n", + "dpss_tapers, eigvals = \\\n", + "signal.windows.dpss(M=lc_ar4.n, NW=NW, Kmax=Kmax,\n", + " sym=False, return_ratios=True)\n", + "\n", + "data_multitaper = lc_ar4.counts - np.mean(lc_ar4.counts) # De-mean\n", + "data_multitaper = np.tile(data_multitaper, (len(eigvals), 1))\n", + "\n", + " # Data tapered with the dpss windows\n", + "data_multitaper = np.multiply(data_multitaper, dpss_tapers)" + ] + }, + { + "cell_type": "markdown", + "id": "fa535945", + "metadata": {}, + "source": [ + "Plotted below are the first 8 tapers (on the left), and the corresponding tapered time series" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "b7b5e756", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA8YAAAnBCAYAAACY5Ow3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3xUVdoH8N+90zLpjSa9hd4VBCmCiICAYgEVsCzYdbHi6rIrll1d26uiu1YQAbuC0i0UQYpKFaSG3lOA9Gn3vH9MZnJvpmYyyWSS3/fz2SW5bc49Jpl57vOccyQhhAARERERERFRHSVHugFEREREREREkcTAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMRERERVdLx48fRrl07DBkyJCquW1exP8kXfaQbQFQXTZo0Cb/++qtmm9lsRnx8PJo0aYLOnTvjqquuwiWXXOLzGt988w2efPJJzTZJkhAbG4sWLVpg8ODBuO2225CYmOhx7pkzZzBnzhysW7cOx44dg81mQ0pKCurVq4euXbuid+/euPLKK2EwGDTnORwOLFiwAIsXL8aePXuQn5+P+Ph4pKamok2bNrjkkkswdOhQXHTRRUH3xcyZMwEADz74YNDnEBFR5bVr167C5zRu3BgrV66sgtbUXR999BHy8/N9vmcTUfVgYEwUQY0aNUKjRo0AADabDRcuXMD27duxdetWzJ07F506dcLLL7+M1q1b+7yG0WhE586dAQBCCBw/fhy7du3Crl27sGDBAsybN08TqG7atAn33XcfCgoKIMsyGjRogPT0dBQWFmLv3r3YtWsXPv30U6xZswYNGzZ0n1dQUIA777wTW7ZsAQAkJyejTZs2kGUZx44dw8GDB/H999+joKAA9913X9B98NZbbwFgYExEVN169uzpsa2goAD79u3zub9evXpV3q665uOPP8aJEycwduxYr4GxwWBAy5Yt0aBBgwi0rvZhf5IvDIyJIuj666/3CAgLCgrwww8/YObMmdi1axduvPFGfPrppz6f7NerVw+ffvqpZtvPP/+MRx55BCdOnMDTTz+N999/333thx56CAUFBejfvz/++c9/onnz5u7ziouLsW7dOnz55ZeQJElzzZdeeglbtmxBcnIyXnjhBQwePNh9jBACu3fvxqJFi5CUlFTpfiEioqpX/r0DcD48vfXWW33up+rXoEEDLF++PNLNqDXYn+QLxxgT1TDx8fEYO3YsvvnmG2RkZKCwsBBTp06Fw+EI+hoDBw7E/fffDwBYt24dzp8/DwBYs2YNcnNzERcXh5kzZ2qCYsBZzn3llVfivffe0zxJtdvtWLRoEQDgySefxJAhQzSBsyRJ6NixI5544glMmDAh1FsnIiIiIooIZoyJaqjk5GT85z//wdixY3Ho0CGsWLECI0eODPp81/hkRVFw9OhRJCcn49ixYwCAli1bIjY2Nuhr5eTkoKioCADQqVOnCtyFbzNnznSXUQOeY91++uknNGnSBA6HA6tWrcLKlSuxY8cOnDlzBhaLBQ0bNsSAAQNw1113eS2H+tvf/oYFCxbghRdewMUXX4w33ngDGzduRH5+Ppo1a4Ybb7wREydOhE6n89q+s2fP4sMPP8SaNWtw6tQp6HQ6ZGRkYNy4cRg7dqxHRt11Pw888AAmTpyIt99+GytXrsTZs2cxcOBA/Pe//wUAbN26FbNnz8aWLVtw7tw5xMbGIjU1FZ07d8aYMWMwaNCgynYtEVGVOHbsGJYvX461a9fi6NGjyM7ORmxsLDp06IDx48d7fY86fvw4rrjiCvfY5E8++QSff/45Dh8+jJiYGPTp0wdTp071O2Ro+fLl+PLLL7Fr1y4UFBQgPT0dAwYMwN13340mTZp4HO96P9m7dy9++OEHfPzxx9i7dy8uXLiAhQsXokOHDgCAvLw8fPTRR/jxxx9x7NgxCCHQqlUrjBkzBhMmTPCYZ8NlzZo1eO+99/Dnn39Cr9ejU6dOuOeee7y2xZ/yc4VcccUVmv0ff/wx+vTp49GHvu515cqV+OCDD7Bnzx4YDAb06dMHjz/+OJo2bepu9wcffIDdu3dDURT06dMHTzzxBFq0aOG1fSUlJfjkk0+wdOlSHDp0CDabDU2bNsWIESNwxx13IC4urkL3e+DAAbz33nv47bffkJWVBaPRiNTUVLRv3x5XXXUVRo8e7XFOVbwX++tPwDmfyjfffINvv/0We/fuRUlJCRo2bIghQ4bg7rvvRmpqaljujWoeBsZENVjHjh3RrVs3bN++HWvWrKlQYCyE8NgWHx8PADh8+DDOnz+P5OTkoK4VFxcHSZIghMC2bdvQtm3boNvhS6NGjdCzZ0/3mOXyY9lMJhMAICsrC/fffz9kWUZaWhqaNGkCq9WKEydOYN68eVi2bBk++eQTn2/sR44cwYsvvoiioiJkZGTAbDZj//79+Pe//40tW7bg9ddf93hj/f3333HffffhwoULMJlMaNasGYqLi7Ft2zZs3boV69evx8svv+xxHgDk5ubi+uuvx6lTp9CmTRu0bt0aer3zT+3KlSvxwAMPwOFwID4+Hm3atIGiKDh9+jQWL16MgoICBsZEVGO98847+OqrrxAbG4v69eujXbt2yMnJwcaNG7Fx40Zs27YNTz31lM/zn3vuOcybNw8NGzZE69at3Q99165di9mzZ6N79+6a4+12O6ZNm4YlS5YAcA4datu2LY4cOYIvvvgCy5cvx4cffoiuXbt6fb33338fr7zyClJTU9GsWTOcPn3avS8zMxOTJ0/GqVOnYDAY0LhxY0iShD179mDXrl1YtWoV3n//fRiNRs01586di+effx4AkJaWhkaNGmHXrl2444478Nhjj1WoP9PS0tCzZ0/s3LkTVqsVnTt31rxeQkJC0NeaP38+nn32WdSvXx/NmzfHwYMHsWLFCmzfvh0LFizAokWL8MILLyA9PR1NmzbFwYMHsXLlSvzxxx/47rvvPIK9s2fPYvLkydi3bx90Oh0aNWqE2NhYHDp0CDNnzsSKFSvw8ccfIyUlJaj2/fHHH5g0aRKKi4thNpvRsmVL6HQ6nDp1Cj/88AMOHz7sETxW1XuxP655UjZt2gRJktCwYUM0atQIR44cwUcffYQVK1Zg7ty57ocNod4b1VCCiKrdxIkTRUZGhnjzzTcDHvviiy+KjIwMcdVVV2m2f/311yIjI0MMHjzY63kffvihyMjIEO3btxe5ublCCCEOHTok2rdvLzIyMsQ111wjlixZ4t4XyM033ywyMjJE9+7dxdtvvy0OHDggFEUJ6lx/MjIyREZGhs/9eXl54uuvvxY5OTma7YWFheKtt94SGRkZ4vbbb/c474knnhAZGRmiU6dOYuLEiSI7O9u9b926daJ79+4iIyNDfPLJJ5rzzp49K/r06SMyMjLE66+/LoqKitz79uzZI4YPHy4yMjLEp59+qjnvzTffFBkZGaJDhw7ihhtuEMePH3fvKy4uFkIIMWrUKJGRkSFee+01YbFYNOf/8ccfYuHChT77gYioOmzcuNHn3+XVq1eLrVu3evzt//PPP91/G3///XfNvmPHjomMjAzRsWNH0alTJ/Hdd9+59+Xn54sHH3zQ/V7m+lvp8tprr4mMjAxx9dVXi23btrm322w2MXPmTPd55f+eutrfqVMnMW/ePOFwOIQQQjgcDmGxWERRUZEYNmyYyMjIEP/4xz/EuXPn3OceP35cjB8/XmRkZIhXXnlFc909e/aIjh07ioyMDPHuu++6r2uxWMSzzz4rOnXq5Pd92ZfBgweLjIwMcezYMa/7XX3o7bque+3WrZtYsGCBe/u5c+fE9ddfLzIyMsTdd98tunbtqtmfm5srxo4dKzIyMsTLL7+suaaiKOKWW24RGRkZ4r777hOnTp3SnHfvvfeKjIwM8fDDDwd9j3fffbfIyMgQTzzxhCgoKNDsy8zM9HhPrcr3Yn/9+eijj4qMjAxx8803iwMHDri3FxUViX/84x8iIyNDjBs3rlL3RjUXxxgT1XCumaFzc3ODPmft2rXu0t3LLrvM/US3RYsWePjhhwEAu3fvxsMPP4xLL70UQ4cOxSOPPIIvv/wSeXl5Xq85Y8YMpKamoqioCG+88QZGjhyJ3r1747bbbsPMmTPds5iGW0JCAq677jqPp9mxsbG4//770atXL6xfvx5nz571er4kSXjttdeQlpbm3nbZZZfhgQceAAB88MEHmuz6rFmzcO7cOdxyyy2YOnUqzGaze1+7du3w2muvQZIkzJ492+vr6XQ6zJw5E40bN3Zvi4mJAeDM1APAnXfe6ZGF6Ny5M6655ppA3UFEFDGDBg1C9+7dPTJ0HTp0wD//+U8AwLfffuv1XLvdjptuukmTOYuPj8dLL72ElJQUnDhxAkuXLnXvy83NxezZsxEbG4v//e9/6Natm3ufXq/HAw88gCuvvBInTpzAihUrvL7muHHjMGHCBMiy8+OuLMswGo34+uuvcfjwYQwaNAjPPvuspnqqcePGeOONNxAbG4v58+fDYrG4982ePRt2ux2XX3457rrrLvd1jUYjpk+fjpYtWwbTjVXihhtuwLXXXuv+Pjk5GX/9618BAKtWrcKNN96o2Z+SkoKpU6cCcE7YqbZ69Wr8/vvv6NChA/7v//5Ps0JFSkoKXnnlFTRs2BDLli3DqVOngmqf6/3v9ttv9yjBbtWqFW666SbNtqp8L/Zl3759WLRoERo0aID//e9/mvJ+s9mMGTNmoHPnzti2bZu72i2Ue6Oai4ExUQ3nGgtcWFjodX9WVhZuvvlm3HzzzbjpppswYMAATJkyBfn5+WjYsCFmzJihOf6uu+7C/PnzccUVV7jLlY8dO4YlS5Zg+vTpGDx4ML744guP18nIyMDixYsxefJk95jevLw8bNy4EW+99RZGjx6Nhx9+GAUFBWG8+zK///47/vOf/+Cee+7BxIkT3ffsekPas2eP1/OGDRvmdXmR8ePHw2Aw4Pjx4zh06JB7+/fff+/e702HDh3QuHFjHD58GGfOnPHY369fP82HCDXX0lzLli3zfaNERDXY+fPnMX/+fDz++OO44447cMstt+Dmm2/GK6+8AsD332IAXidnjImJwQ033ADAOVmky88//wyLxYJ+/fppylbVhg4dCsA5k7Y3Y8eO9brd9Xd+3LhxXvc3aNAAXbp0QWFhIXbu3OnevnbtWgDAxIkTPc6RJAm33HKL1+tVB1cfqqnnBPG33zX/iIurf8aOHevxEBdwfi7p168fFEXBb7/9FlT7XO9/K1as8DrUq7yqfC8O9JrDhw/3usKGLMsYPHgwAO3PXEXvjWoujjEmquFcAbFrfHB5VqtV8+TSNRHK5Zdfjttvv93rOOKLL74YF198MaxWK3bu3Ik//vgDa9euxYYNG1BQUIB//OMfiI2NxahRozTnpaWlYdq0aZg2bRoOHz6MP/74A5s2bcLKlSuRk5ODpUuXIi8vDx9++GHY7t9ms+Hxxx8PGEy6Zt4ur1WrVl63x8fHo0GDBu7AuFWrVigqKsLx48cBODPk3sYtAcC5c+cAAKdPn/aY+MvX6wHAHXfcgRkzZmD69OmYNWsW+vfvj549e6JPnz5eJ/MgIqpJNmzYgIceesjn31vA999ig8HgsRKCS5s2bQBA85By7969AICdO3fi5ptv9npefn4+AGjGDqv5mtDLVeH03//+1+f7leuhqyvoysvLQ3Z2tqa9vu4jEpo1a+axTf2+4m2/q5LKNbmmi6t/vvzyS5/LGp08eRKA774v7/bbb8eGDRvw3//+F99++y369++PXr164dJLL/V4H63q92JfXPe9atUq/PHHH16PycnJcb9mKPdGNRsDY6IazlWm5Ctw8jWrYjCMRiN69uyJnj174rbbbsOePXswZcoUZGVlYebMmR6BsVqLFi3QokULjB49GkVFRfj73/+OpUuXYt26ddiyZYvHZFqh+uCDD7Bs2TKkp6fjsccew8UXX4z69eu7s93Tpk3Dt99+C7vd7vV8dQl1eenp6Th+/Lj74YPrQxbgnD06kJKSEo9t/mb7vvnmm5GQkIBZs2Zh165dOHjwID7++GPo9XpcccUVeOqppyr8hJuIqDoUFBS4g+LRo0djwoQJaNWqFeLj46HT6XDs2DEMHTrU59/i5ORkd+lxea6/0+rKKHXQGyj4Upc7q/n6e+y69q5du/xeFyj7O68OHn29r/h7v6lq3u5VHVAG2q/m6p/9+/cHfF1ffV/eoEGD8MEHH+B///sftmzZgs8//xyff/45JElC37598dRTT7kn9qzq92JfXK979OhRHD161O+x6vuuyL1RzcbAmKiG27x5MwBoxldVlfbt2+Pee+/Fs88+i8OHD+PChQtey4nKi42NxXPPPYfly5dDURTs2LEjbIGxa7zav//9b68zNl+4cMHv+f7GZrue/rvGBKnfSLdv3x5wPFIoRo0ahVGjRiE3Nxe//fYbNm3ahCVLlmDFihU4fPgwvvrqK6+la0REkbRmzRqcP38e3bt39zoTsL8ssmu/oiheg2NXFk49PtP19/jOO++s8GzPgcTGxiIvLw9Lly71u0xU+XNccnJy3OWzaq77iHaue33//fcxcODAsF23f//+6N+/P/Lz87F582b3+9/69etxxx13YMmSJUhKSqqW92JvXK87Y8YMn1UKvgR7b1SzcYwxUQ22a9cudznP5ZdfXi2vqR7LZbPZgj4vPj7endW2Wq1ha4+rnKpXr14e+xwOh2b8lzeZmZletxcUFLhL5FxLPSUkJLjLnoJ5Ul4ZqampuOqqq/DPf/4TixYtQkJCAvbu3YsdO3ZU6esSEYXC9be4R48eXjONgf522Ww2n1k4199p9bJ7rgxbVfwtdpU8V+TaiYmJSE9PB+Bcs9YbX+830SaU/qmIhIQEXH755XjiiSewbNkyNG3aFFlZWVi1apV7f3W9F6uF474D3RvVbAyMiWqo8+fP429/+xsAoGXLlhg2bFilr5mbmxtwYghX2VJiYqI70LXb7QEzs0eOHHE/La/IzJyuJ8HeSqHU+13ZXbXFixd73a72/fffez3miy++gM1mQ+PGjTVjkVz9/NFHHwXV/nCoX78+mjRpAgA+Z9cmIook9dry5dlsNsyfPz/gNT755BOPbRaLBV999RUAYMCAAe7tl19+OYxGI9atW+czEA3VVVddBQD4+OOPoShK0Of1798fAHzeazB94I3rfS7YsuSq5uqfzz//HMXFxVX6WnFxcWjXrh0A7ftfJN6LXfe9aNGisGT/fd0b1VwMjIlqmIKCAixcuBDXXXcd9u3bh9jYWLzxxhs+x2ZVxHfffYcxY8bgs88+8ygxLi4uxpw5c/D+++8DcM5G6XrNoqIiDBkyBP/5z3+wZ88ej+D6119/xQMPPAAhBBo0aOD+8BAMV4b6119/9br/4osvBgC8+OKLmhmvV65ciRkzZrg/rPkihMCjjz6qud8NGzbgrbfeAgBMnjxZk/246667kJqaisWLF+OZZ55xT+7hUlBQgKVLl+KFF14I+h5d5z300EPYsGEDHA6Hpn1Lly7Fvn37IEkSOnbsWKHrEhFVB9ff4hUrVrhnZwacD3Effvhhd0bZF71ej08++QRLlixxbyssLMQTTzyB3NxcNG7cGCNHjnTvq1evHv7yl7/AbrdjypQpmhmrXfbu3YuXX37ZPeQoWOPHj0eLFi2wefNmPPTQQx5LDlmtVqxevRpPPvmkZvsdd9wBvV6PVatW4cMPP3QH1VarFf/61780k4dVRKD3weo2dOhQ9OrVC0eOHMGdd97pkQm32+3YuHEjHn300aArxB566CH89NNPHsdv3LgR69evB+BcttClqt6L/enYsSNGjx6NvLw83H777R5VEEIIbN++HU8//bRmJu+K3hvVXBxjTBRBX3/9tfuPpisre+zYMfebbefOnfHSSy8FPQYqEEmSsG/fPjz99NN4+umn0bhxY6SmpqKgoACnTp1yZ2379+/vXu/YdV5BQQFmzZqFWbNmITExEY0bN4Ysyzh16pQ76ExOTsabb76pWW8wkBEjRmD//v2455570K5dO/fs26+99hrq1auHv/71r1i/fj1WrVqFAQMGoGXLlsjNzcWpU6dw6aWXon79+vjuu+98Xn/y5Mn49NNPMWjQILRt2xYFBQU4cuQIAOcT6fLjiOrXr493330X9913Hz755BN8/vnnaNWqFWJjY3HhwgUcPXoUiqJUeMy3oihYtmwZli1bhpiYGDRv3hxGoxGnT592Z2DuueceTSkhEVFN0blzZ4wcORJLly7FlClT0LRpUyQmJmL//v0QQmD69Ol4+umnfZ7foEEDDB48GI888ghefvllpKWl4eDBgygqKoLZbMbLL7/sMZZ06tSpyMnJwZdffonJkycjNTUVTZo0gd1ux4kTJ9yVTH369KnQvZjNZrz33nu46667sGLFCnz//fdo3rw5kpOTkZ+fj6NHj8Jms7lLp13at2+Pxx9/HC+88AJeeuklzJo1C40aNcLRo0eRn5+Pxx57DC+99FKF2gI43wdXr16NGTNm4JNPPnGvJvHUU0+hQ4cOFb5eZUmShJkzZ+Lee+/Fb7/9hpEjR6JJkyZIT09HUVERjhw54s5u//vf/w7qmuvWrcOyZctgMBjQokULmM1mZGVluR9KjB49Gv369XMfX1XvxYE899xzyM/Px+rVq3HjjTeiQYMGaNiwISwWC44ePeqehO3WW28N+d6o5mJgTBRBp06dcv/hjImJQUJCArp164bOnTtj2LBh6N27d1hf75ZbbkH79u2xbt06bN68GadPn3YvT5Ceno6OHTti1KhRuOqqqzRZ1ISEBKxYsQLr1q3DL7/8giNHjuDEiRMoKipCfHw8evbsiYEDB+Kmm25CSkpKhdp01113QVEULFmyBAcOHHA/cXW96Xbs2BGffPIJ3njjDWzevBmZmZlo2rQpHn74YUyePBn/+Mc//F6/efPm+Oqrr/DGG29gw4YNyM/PR5s2bXDjjTdi0qRJXjPxXbt2xeLFizFv3jysXLkShw8fhs1mQ/369dGnTx8MGjSowqXtcXFxePnll7F+/Xrs2LEDp0+fRmFhIZKTkzF48GDcdNNN1TaOnIgoFK4HtQsXLsTp06dRVFSEgQMH4p577gnqb/8//vEPtG7dGp9//jkOHDgAk8mEYcOGYerUqV6XOpJlGc8//zxGjhyJzz77DFu3bsXu3bsRFxeHRo0aYdiwYbjyyivRt2/fCt9L8+bNsXDhQnz++edYvnw5MjMzceLECdSrVw/dunVDv379MHz4cI/zbr/9djRv3hzvv/8+du/ejcOHD6Nz586455570KRJk5AC42uvvRZ5eXn46quvcOTIEff7cl5eXoWvFS5paWmYP38+Fi5ciCVLlmD37t04c+YMUlJS0KFDB/Tu3RvDhg0LWLXl8uKLL2Lt2rXYunUrzp49i/z8fMTHx6Nv374YO3YsxowZ43FOVbwXB2I2m/HOO+9gxYoVWLBgAf744w/8+eefSEpKQsuWLdGzZ09cddVVmiFjodwb1UyS4ErURFQL/e1vf8OCBQvwwgsv4Lrrrot0c4iI6qTjx4/jiiuuqNTSgkRE1YFjjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbJt4iIiIiIiKhOY8aYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BMREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1Wn6SDegNlEUAYdDCcu19HoZdnt4rlVbsY+Cw34KjH0UHPZTYNXVRzqdDFmWqvx1qlq43jf5sxkc9lNg7KPgsJ8CYx8Fpya9bzIwDiOHQ8H580WVvo4sS0hLi0deXjEURYShZbUP+yg47KfA2EfBYT8FVp19lJwcC1nWVelrVIdwvG/yZzM47KfA2EfBYT8Fxj4KTk1732QpNREREREREdVpDIyJiIiIiIioTmNgTERERERERHUaA2MiIiIiIiKq0xgYExERERERUZ3GwJiIiIiIiIjqNAbGREREREREVKcxMCYiIiIiIqI6jYExERERERER1WkMjImIiIiIKHyEiHQLiCqMgTEREREREYWF7sgJJLz4DvT7DkW6KUQVwsCYiIiIiIjCwvTjLwCAmMUrI9wSoophYExERERERCGTCosQs/AHyKezysqoJSmyjSKqIH2kG0BERERERNHLuGYTDLsPQL/vEJSUxEg3hygkzBgTEREREVHIpBKL81+HAyhNGAtmjCnKMDAmIiIiIqLQqYNgVym1zMCYogsDYyIiIiIiqoSyIFhyL9XEwJiiCwNjIiIiCsnTTz+Ndu3aYd68eZFuChFFkreMMUupKcpE1eRb8+fPx4cffoisrCx06NAB06dPR9euXX0ev2zZMrzxxhs4ceIEWrRogccffxwDBw7UHHPgwAG8/PLL+O233wAAGRkZ+O9//4vU1NQqvReiOkMISOfyoDt1BrozOZDO50E+nwepuASS1QrYHIBOhtDpAJMRSmI8RGI8lPRUOBqkQWlYDyLWHOm7IKJyVq1ahW3btqF+/fqRbgpRzVZUAt2ps3C0alp7g0XNbQkv24hqvqgJjJcuXYoXXngBzzzzDLp164Y5c+ZgypQpWL58udcgduvWrXj00UfxyCOPYPDgwVi8eDHuu+8+fPvtt2jdujUA4OjRo5gwYQJuuOEGPPzwwzCbzdi3bx8MBkN13x5R7VJigf7QMegPHIHu4FHIRSVeDxNGA4TJCElRINnskIpLIJ/P8zjO0SAdjhZNYMtoCaVxg9r7wYIoSmRnZ2PGjBl47733cO+990a6OUQ1WtycryGfz0PRjSPhaNM80s2pIuqMsWsT36spukRNYDx79myMHz8e119/PQDgmWeewerVq7FgwQJMnjzZ4/g5c+Zg4MCBmDJlCgBg6tSp+OWXXzB//nz885//BAD83//9HwYOHIjHH3/cfV7z5rX1DxZRFRMCusPHYdi+B/p9ByE5FOdmWYbjogZwXFQfjob1oKQmQSQnOrPA5d80bXZI+YWQL+RDzsqB7nQ2dCdOQXcmG7oz2TBu2gYlKQG2jm1g69oBIjUpAjdKRE8++SQmTZqEdu3aVfpaciUn6HGdX9nr1Hbsp8Cqqo9cD3z1Z7MhMlqE9dqR4K2fJNl7KXVd/Xnj71twalo/RUVgbLVasWvXLs1TaVmW0a9fP2zbts3rOdu2bfMImPv374/Vq1cDABRFwerVqzFlyhTccccd2LNnD5o3b477778fAwYMCLmt4fgPW9N+SGoi9lFwqqWfbDbot++BYdN295u/MBlh69QSjrYt4GjZFDAZNadI8FFhZTIApmSI9GQ4WjeFw3X8uQvQHTgK/e4D0B07BdOGrTBu2ApH2xaw9e4KpXnjkJ9M82cpOOynwOpKH82bNw9FRUX4y1/+Uulr6fUy0tLiw9AqICUlLizXqe3YT4GFu49cNVOxsUbow/TzXhOo+8kaY4BS+rXrb6BOrwvb73e04u9bcGpKP0VFYHzu3Dk4HA6kp6drtqelpeHIkSNez8nOzkZaWprH8VlZWQCAnJwcFBUV4YMPPsBDDz2EadOm4aeffsLdd9+Nr776Ch07dqxwO8P5Bg/UnB+Smox9FJyq6CdhtcHx82bYf/4dKCgCAMitm0J3aVfIXTIgGcM4JCEtHmjTGBjeFyL3Ahybd8H+y1bo9x+Gfv9hSM0vgn7EAOgyQq/44M9ScNhPgdXmPsrMzMR///tffPHFF5Dlys/fabcryMsrrtQ1ZFlCSkoczp0rhKKIwCfUUeynwKqqj1x/EYoKrbDlFITtupHirZ+MVgdc7/qKXYEMwKEoyKkF9xsK/r4Fpzr7KTHRDINB5/eYqAiMfRFCQPKTJfK2z7VNUZzPta644grcdtttAIAOHTrg119/xeeff45nnnmmwu0Jxxs8wF+mYLCPglMl/aQo0O/YC8OaXyEXFEJIEhwd28DWtweUhvWcx+RbAFjC83oedEDPrkC3TtDtzoRhw1bojpyE7Z3PUdK8MaxD+5W1Iwj8WQoO+ymwmvYGXxW2b9+O3NxcDBs2zL3N4XDgX//6F+bNm4fly5dX+Jrh6itFEfzZDAL7KbCq6iMhorTvFQXw8iBM3U+au1It1xSV9xtG/H0LTk3pp6gIjFNSUqDT6ZCdna3Znpub65FFdklPT/c4Picnx318SkoK9Ho9WrVqpTmmdevWOHHiRMhtDed/1JryQ1KTsY+CE65+kk+eQcyyNdCdzQEA2Dq0hmVgb4jU5NIXqsb/FpIMpWNb2Dq0gX53Jkxrf4XuyAnEzPoKtp6dYBnYG4gxBX05/iwFh/0UWG3uo6FDh6Jz586abZMnT8Z1112HsWPHRqhVRBROusPHYfxlM0quuRKGzX/AtH4LCu6+xf+8HupcVGlgLDj5FkWZqAiMjUYjOnXqhPXr12PIkCEAnBnfDRs2uLO95XXv3h2//PILJk2a5N62fv16dO/eXXPN8qXYhw8fRrNmzarmRoiilcUK05pfYdj8ByQAjsYNUXJFP+cM0ZEmSbB3bAN7+1YwbPsTpjWbYNy8E/rdmbAM7Qd7x7acGZMoTBITE5GYmKjZZjAYUK9ePbRo0SIyjSKisIr9dBEAwLjuNxi3/gkAMOw+AOtlvXyfxHWMqRaIisAYAO644w5MmzYNnTp1QteuXTFnzhyUlJS4n1BPmzYNDRo0wKOPPgoAuPXWWzFx4kTMmjULgwYNwtKlS7Fz507861//cl/zL3/5Cx577DFccskluOSSS/DTTz9h06ZNmlmqieo63eHjiFm8EnJ+IUSMESVD+sHWtX3Ne8OTZdh6doa9fWuYVm2EYccemL/7Cba9h2AZPpBrIRMREVWEQyn7OtCcAqrPBJI7MK6CNhFVoagJjEeOHInc3Fy8+eabyMrKQocOHfDBBx+41zA+deqUZiKQnj174tVXX8Xrr7+O1157DS1atMDbb7/tXsMYAIYPH468vDy88847eO6559C6dWu88847IU28RVTrOBzOLPGmbZAA2Dq0geXKyyDiYiPdMr9ErBklVw+GrUs7xCxeCcPeg9AdO4WSkZfD0bZFpJtHVOusXLky0k0goqqgTgLrAk22p6mlLt3EyJiiS9QExgAwceJETJw40eu+uXPnemwbMWIERowY4fea48aNw7hx48LSPqLaQso5B/N3P0J3OhvCZETx8EGwd2wT6WZViKPZRSicPA6mn9bDuH03Yr9aBmvvbrBc3gfQVf+kRUREVMcJAf2OPTDs2IPi8aMAQw3/GK4ObCuQMXbPxMXAmKJMDf+NJKLqpt97EDGLV0Ky2mBv0hAlY4ZCJCVEulmhMRlhGXk57G1bwLx4JYy/bofuxBkUX3slRGLdXluRiIiqn3nJKgCAft8h2Du1jXBrAqlIYKz6mmOMKUpVfhFCIqodFAXGNZtg/mYFJKsNlst6oXjCNdEbFKs42rZA4V9uhKNRfehOnEbsrC+hO3Q80s0iIqK6SkTZzPWBSqk5+RbVAgyMiQgotsD85VKY1m+BMBlRdMMIWAf2DvyEOIqIpAQUTbwW1l6dIReXwPz5Yhg274x0s4iIqC6KhphRHeuGUkpNFGVYSk1Ux0nn8mD+Ygl0uefhSE9B8XXDIdKSI92sqqHXwTJsAByN6iNm2WrEfL8WttzzEOOvinTLiIiottNkiSMbGet37oNkt8PW3d+EsxUopfZxGlE0YWBMVIfJJ8/A/OUyyEXFsLdpjuIxQwGTMdLNqnL2Lu1QnJKImK+Xw/D7H7Dl5wOjrgCMtf/eiYiIzIt+AgD/gbE6wK1IxtiNqWOKLrWnTpKIKkS/7xBi538HuagY1p6dUXz98DoRFLs4mjRC0W3XQ6mXCmXvYcTMXQipoDDSzSIiorogGrKqFRkjrD7W9TXjYooyDIyJ6iDD5p2I+Xo5YLej5Ip+sAzrX6vGEwdLJCei+LbrILdtBt3ZHMTOXQAp90Kkm0VERLVeVETGZV8Kxe+RwltgTBRl6t4nYaK6TAgY129GzPdrAZ0OJWOHwda7W91+EzMZYbjzBtg7tIZ8Ph+xc7+BfCor0q0iIiKqev5mx/a2BFMwxwZ7DlENw8CYqK4QAsbVG2Fa8yuE0YDi8VfD3r51pFtVI0h6PSzXXglrz86Qi0oQ+8m30B05EelmERFRbaIOFCP5PFpRvH9dXkVmmtZkjF3nMDCm6MLAmKguUBSYVvwM08ZtEDEmFN08Go7mjSPdqppFlmEZ1h+Wgb0hWW3OmboPHot0q4iIqLaoKbNSq4PhYINXfwE0AO391OEqNIpqDIyJajnhcMD03U8wbv0TSpwZRROugXJRg0g3q2aSJFgv64WSoZdBsjtg/mopdAeORLpVRERUC0jq4DKSsaNDnTH2V0odWiPd442ZMaYow8CYqDZzOGCbtxj6XfuhJCWgaOJYKPXTIt2qGs92SVeUXDUAkkOB+evl0O89GOkmERFRtFMHoRWIGfV7D8Lw6/awNUNyOFTtCK4hUsDjGART9GNgTFRbKQpM3/4IZfteKMmJKJp4LURqUqRbFTVsPTujZOTlgKIgZsH30P95INJNIiKiaKYpYQ5UmlzG/M0KxPy0HrBYw9OOYDPG6mA4UGCsGT/NjDFFJwbGRLWRoiDmu5+g350JKS0ZJZOugUiMj3Sroo6tWweUjBoCAIj57kcGx0REFDp1EOovIPVBk+mtDNV1pGAD9Iq01z35VvCnENUEDIyJahtFQcyin2DYfQBKciKM990EkZgQ6VZFLXuXdigZcwWA0uCYZdVERBSKUCa9UnM4YPhtB6TzeZVrhyOEdlQkY1waGUuMjCnKMDAmqk0UBTGLVsLw5wEoSQkomXgNpJTESLcq6tk7tnVmjoVAzMIfOCEXERFVnDp4DDjLsyfD9j2I+fEXxM36slLNkBRV5tlfJrgCgbykiYtdpdQVbxtRJDEwJqothEDMklUw/LkfSmI8im4ZA5HETHG42DtnwDLyckiKAvM3K6A7xKWciIgoeJoFjULIGMvnLjjP9TXW2OFAzOKV0GUe9X8he5ABbxCBsVRQBCm/wPsazRW9x3CVihOFiIExUW0gBEzfr4Vh5z5nUDzhGohkZorDzdatA0qGDYDkcMD81XLojp6MdJOIiKgm8zWBVQhjjAMtn6TfewiGP/Yi9osl/q+jDkD9Za6DCIzjZ85B/FtzfewP/h4NG7ci4aX3IB8/HfQ5ROHGwJioFjD+/CuMW3ZBiTWj6ObRDIqrkK1XZ5Rc0Q+S3Q7zF0v4Jk5ERMGpZCm1CLSusN0e1HWkIEukJSXArNQh3IMvMas2AgCMm3eG7ZpEFcXAmCjKGTZtg2n9FgiTEcU3jYJITY50k2o9W+9usFzeB5LNjtgvlkA+nRXpJhERUU3kK2McyuRbcoDAOFDg7OIIcoxxoEm6ii3+94ciyFsgqgpRFRjPnz8fQ4YMQZcuXTBu3Djs2LHD7/HLli3D8OHD0aVLF4wePRo///yzz2PvvPNOtGvXDqtWrQp3s4mqjGHbn4hZuQHCoEfRuKuhNEiPdJPqDGvfnrBc1guSxQrz54sh5ZyLdJOIiKim8ZUlDiWQDBT4BhsYq4Jhv2OdVe2VvBwmFRaVfcOJtqgWiJrAeOnSpXjhhRdw//33Y8GCBWjXrh2mTJmC3Nxcr8dv3boVjz76KG644QYsXLgQQ4cOxX333YfMzEyPY+fNmwfBRcgpyuh3H4Bp2RoIWUbxdcOhNGkY6SbVOdYBl8B6cRfIRSWI/WwxpAv5kW4SERHVJOqPl6oMrBRSGXKYAmN1o/ytY6wJ5BXoDh6DfDan7OWKilX71ZNvMe1L0SlqAuPZs2dj/PjxuP7669GmTRs888wzMJlMWLBggdfj58yZg4EDB2LKlClo3bo1pk6dio4dO2L+/Pma4w4cOID33nsP//73v6vjNojCQpd5BDHf/QRIEkquGQpHq6aRblLdJEmwDL0Mts4ZkPMKEPvZIu0TdCIiqttUAaOkLk0OZfKtQAKVWruoX9pPO9TBu1RsQeznixH34Rdl2+yqkmxvCaaQbpFBNUWOPtINCIbVasWuXbtw7733urfJsox+/fph27ZtXs/Ztm0bJk+erNnWv39/rF69WnPdRx99FE8++STq168flrbKwf5RCuIa4bhWbVWX+0g+ehIx33wPSVFguXowlI5tfD7hqsv9FKzK95EE6+ghkKw26PcdgvnzJSiZeA0QYwpfI2sA/iwFxj4iIhfdgSMwrf0NxddcWbaxsqXUgZYzCjZTG+xYZ3V7rbbQr0MUJaIiMD537hwcDgfS07XjJ9PS0nDkyBGv52RnZyMtLc3j+Kysskly/u///g9t27bFiBEjwtJOvV5GWlp8WK4FACkpcWG7Vm1V1/pIOX4a1i+XAnY79NcMQcygi4M6r671Uygq20di8ljYPvgK2H8U8QtWwHjXjZCMhjC1rubgz1Jg7CMiiv1yKQDAtGFL2UZ12XIIpdSaDK3XA4ILjKVgl41St9HbpTWZZy9BP4NlijJRERj7IoSA5OePgLd9rm0bN27E8uXL8e2334atPXa7gry84sAHBiDLElJS4nDuXCGUqii1qQXqYh9JOedg/nghpBIrrP0vRmHn9kBOgd9z6mI/VVRY++iaYYiZ/x10B4+j8P2vYblxBKDThaehEcafpcCqs48SE80wGGrHzxZRbSbUH0WVIANSXxwBlmMKEIhKeQWQrNZy5/gbYxygjaKyY6a9kJzt1B0+DnuXdhyvTNUqKgLjlJQU6HQ6ZGdna7bn5uZ6ZJFd0tPTPY7PyclxH//bb7/h1KlTuPTSSzXH3HfffejXrx8+/PDDkNoazg9DiiL4ATSAutJH0oV8mD9ZBKmoGNaLu8DS/+IKvanWlX6qjLD0kcGAonFXI3b+Qugzj0J8+xNKxlwByFEznUNA/FkKjH1ERG6y6gGWpvS4CjLGAf7uxL89FwBQPGZo2TX9rWOsHhPt8NJeX5nnSmaMYz/+BnJ+IYolyRkcE1WTqPi0ZjQa0alTJ6xfv969TVEUbNiwAd27d/d6Tvfu3fHLL79otq1fv959/C233ILvvvsOCxcudP8PAKZPn45nnnmmKm6DKCRSYRFiP10EOa8Ati7tYBl6GZ+g1mSxMSi+aRSUpAQYdh+A6fu1LCcjIqqr9GWBsaReJinYh2fq949AY4yDzNpqssb+2hEoIyy8H+veHuJbn5xfCADQZeUEOJIovKIiYwwAd9xxB6ZNm4ZOnTqha9eumDNnDkpKSjB27FgAwLRp09CgQQM8+uijAIBbb70VEydOxKxZszBo0CAsXboUO3fuxL/+9S8AzvHG5ccgA8BFF12EJk2aVN+NEflTYoH5s8WQz12ALaMlSkZezqA4CoiEeBTdNBqx8xbAuPVPiBgTrJdfGvhEIiKqVYR6OI0IYfIt9XGqjLEu8yj0+w7BctUASIVFEDExwV/T32zSvrLAXgNjX6XhlcgYqz/jeMtSE1WhqAmMR44cidzcXLz55pvIyspChw4d8MEHHyA1NRUAcOrUKciqcsWePXvi1Vdfxeuvv47XXnsNLVq0wNtvv43WrVtH6haIKsZqQ+wXS6E7mwN7i8YouWZorSrJre1EahKKbxqN2PkLYdqwFYgxwXppj0g3i4iIqpNO9b7trdw4EHWWWRXQxn6xxLn7ovowLf8ZwmyCdVAf7fV9PEiX7KqxyuUzxr5mmvaWWRY+AmdRyZSxt2sSVYOoCYwBYOLEiZg4caLXfXPnzvXYNmLEiArNOL13796Q20YUVnYHzN+sgO7EaTguqo/i60cA+qj6dSUASv0055jjTxfBtGojhMkEW4+OkW4WERFVF/UD7VCWN1Jnmb2UUstncyApCqTCYkh5qgk5FcX35I82VWBcfqyzz8DYf8ZYUxouPPeHhIExVTOmn4hqGkVBzHc/Qn/oGBz1UlE07mqgFi77U1cojRui+PoREDoZpuVroP9zf6SbRERE1cXX2sXBxoy+lkQqJRVbyr5WB7x+JurSHOd3jLE68A2wHFOgMcghkFhKTdWMgTFRTSIEYpatgWHvQSjJiSi+aTRgjol0q6iSHC2boOSaKwFJQsyildAd8L7+OhER1TIOX2sXB1tKrZ4Ay/McqaRE9Vp+xg6r2Wy+j/NVPu3wDIw1M1qrJ+rytj8UzBhTNWNgTFRTCAHTT+th2LEHSkIcim4eDREfG+lWUZjY27VCycjLISkKzAtWQHf0ZKSbRFRh7777Lq6//nr06NEDffv2xQMPPIDDhw9HullENZbXTGv5r/0JkJWVitWBsZeZob21SZUx9ghe1VlizWRhXpZuCrRcU2UxMKZqxsCYqIYw/rIZxt92QDHHoPim0RDJiZFuEoWZvWt7lAy9DJLdAfOXSyGfyop0k4gq5Ndff8WECRPwxRdfYPbs2bBarfjLX/6CEnXWiojKqLK4UgjBoxSoXNmiyv6qX8vfOsmaUuryY4xVXys+Al/FW2DsJTMuBOSTZxH70deQs3N9t0dN8RKAE1UTBsZENYDhtx0wrf0NwmhA8fhRUNJTIt0kqiK2S7rCMuASSFYbzJ8vDv7DAlEN8OGHH+K6665D27Zt0b59e7z44os4ceIE/vzzz0g3jahm8jfG2O4IHCAHCoxVkazkpdzZGynYUmrh49rujLHqmt4m3wJg/mopdKfOImbJap/t0dCUjjMwpurFaW6JIky/Yw9ifvwFQq9D8Y0joTSqF+kmURWzXtYLUokFxt92wPzpYhRNupYVAhSV8vPzAQBJSUkhX0OWK7c2u+v8yl6ntmM/BVYVfeQrWJUtFiS8/B7sbVvAMm6k7/PVX3sbY6wJTssyxrIkQfi4D/WyT5JU7n7Vp/gIymUopYf6yICLsoyx5MpoCyWoftUEw4qI2p9X/r4Fp6b1EwNjogjS7z2ImKWrIWQZxWOvgqPZRZFuElUHSYLlin6AxQrjjj2I/XSRMziOj4t0y4iCJoTACy+8gN69e6N169YhXUOvl5GWFh+W9qSk8PcnGOynwCrbR0IRcM0VbdK7wkhA/dnfkJ0LAUC//zDi/fwOCFlxX8tbebROLkvQGnWS+7VSks2QkrTXdQ140AvFfU5CnAk61euLIr379dTt1ateJzneOSlorNkIu5f97sm3AHdArTca/P6uu9pmVPWX0aT32zfRgL9vwakp/cTAmChCdIeOIebbHwAhUDJmKBxtmke6SVSdJAmWEYMgWa0w7DkI82eLUTThGs5CTlHj2Wefxb59+/Dpp5+GfA27XUFeXnGl2iHLElJS4nDuXCEUf0vP1HHsp8DC1kcOB1wf863FFveHbcXucI9hdIiy8Yw5OQXwRbpQCNc0nMKhoHxezWFX3NexFlvdr3UutwDCrjpaCHeb7FY7XCsc5+eXwKF+/eIS93GK6toOm9399YVzBUhOSURRoQVG135r2X6hCEhwPjxzZYDtikCBn/t095fF7r4Hq82BfD/n1GT8fQtOdfZTYqIZBoOPtb1LMTAmigDdsVMwf70ckkNByYhBsHdsE+kmUSTIMkpGD4VkWQb9oWOI/WIJim4ew3WrqcZ77rnnsHLlSsybNw8NGjSo1LXC9WFIUQQ/gAaB/RRYpfvIUXaucGhLg93bpbKg1d9rSXZfyz25r1T2papEWnEICM1yS6qlnFTXEQ5F8/ra0m/VcapjlNLXEYr3/e47U5VXC1nyuE+pqBj63ZmwdWmnapu2j6L9Z5W/b8GpKf3EybeIqpl84jTMXyyBZLOjZEhf2Lp3jHSTKJL0OhRfdxXsTRpCd/IszF8t084YSlSDCCHw7LPP4vvvv8ecOXPQtGnTSDeJqOZRr+nra21hKcgxlcJ7YF22X/W1v3WMfS0V5W+5JnWw6222aOFjv7e2yZ6ZupjvfkLM92thWr3Re3uC7SOiMGFgTFSN5FNnEfv5EkhWGywDe8PWp3ukm0Q1gdGA4htHwtEgHfojJ2D+ejlgZ3BMNc8zzzyD7777Dq+++iri4uKQlZWFrKwsLtdEpKbJ1KqCZBEo++tJvVyTx5rDgO+Zo8sH0b6CXI/reb+21/N9Hettm+wZcuiOnXT+e+KM93PCtR4yUZAYGBNVE/lMNmI/WwzJYoXlsl6wXtYr0k2imiTGhOKbRsFRLxX6Q8cYHFON9OmnnyI/Px+TJk1C//793f9bunRppJtGVHP4XN/XRxAb7LUC7RfeZ8D22w6P6/sITL0tO1WBQF/ovIQcrmBZc26ABwFEVYhjjImqgZyVA/OniyCVWGC5tAesAy6JdJOoBhKxZhTfMgbm+d9Cf/AYzN98j+LrrgL0/ieLIKoue/fujXQTiGo+n2N2fYz5DfJaXmlKqVXZaQjNrlBKqTWvrXieo14qynuZtzpj7KUs2ltg7Ov1iaoBM8ZEVUzOOQfzJ4sgF5fAeklXWC/vw3Ez5JMrOHakpUCfeQTmBSuC/wBFREQRpymZ1kx65b3E2m+2tSIZYy/Bq7tNio/X85Mw9pURlgqKYV/1K1Bi8brfVxs8dpdmkbUPD4I/nyjcGBgTVSFnUPwd5KJiWHt2dq5dy6CYAhBxsc7gODUZ+gNHELPwBwbHREQ1jHwmGzFLVmkDREAb3PnMhqq2+5twsQKBseSjXNrztSueMVZf2/T1ctgXrYZx/Rbvr+3apv7GW/Y3UMbYy7rNRFWJgTFRFZGzcmCe9y3kgiJYu3eEZVh/BsUUNBHvDI6VlCQY9h1CzLc/MjgmIqpBzAu+h2HHHsT8+It2h6+xtz6CWMnffBIBS6kDjAP2dh1/Y5GDKLn2PgO1/3Z6PccVGNt9zKbNUmqqZgyMiaqAfDoL5vmuTHEnWIYPZFBMFSYS4lA0YQyU5EQY9h5EzILvOSEXEZE3QsC04mfEfL28+kpwSzPFumOntNt9jDGWfI0xtvt56Bkga+q7RFrVhsIibSm034yx6trq7YFm0Q6039t/E9lVSl12/5KvwJyoGjAwJgoz+eRZxH76nXtMsWXYAAbFFDKREI+iCdfAkZoMw/7DMH+5DLDZIt0sIqIaRc45B+OWXTDsOwRYrNXymiI5EQAg5RWU2+Eji6vma1KucgLOzBwgMDZs+xPxb86B8dcdfo8L2JZA2dsQ9rtnqva1/jIDY6pmDIyJwkg+fhqxny2CVGKFpW8PjimmsBCJ8SieeI1zKafDx2H+fEm1ffAjIooK1rIHhn7X6Q0nVymwv7JlH22Rgi0ZrlBg7BlUGjduc/67+Q/v1/S3XJOv16lsO11c/edj/WXJV78wYKYqElWB8fz58zFkyBB06dIF48aNw44dO/wev2zZMgwfPhxdunTB6NGj8fPPP7v32Ww2vPzyyxg9ejS6d++OAQMG4Mknn0RWVlZV3wbVUrrDx51BscUKS/+LYR3E2acpfERcrDNz3Kg+9MdOIfbTRUBxSaSbRURUMwQRjIab8PUWL3wEqz4v5OeYQOerS7W9ZYK99UUIs2AHylwHfBjhbY4M93rIQY6TBmD4/Q/EvfkR5FNnod+xB+ZPvuUQIwqbqAmMly5dihdeeAH3338/FixYgHbt2mHKlCnIzc31evzWrVvx6KOP4oYbbsDChQsxdOhQ3HfffcjMzAQAlJSU4M8//8S9996Lb775BjNnzsSBAwdw//33V+dtUS2h350J8xdLINnssAzq41ynmEExhZs5BkU3j4a9SUPoTp1F7PxvIRUURbpVREQRpwnMHNWUMfZBs75vEDMr+w06AwWk6m+8LcPkNTD2s6xTFSVjJW//TVyvrf68pLkHz3OMG7ZCLipBzNLVMC9ZBf2Rk9DvORjm1lJdFTWB8ezZszF+/Hhcf/31aNOmDZ555hmYTCYsWLDA6/Fz5szBwIEDMWXKFLRu3RpTp05Fx44dMX/+fABAQkICZs+ejZEjR6JVq1bo3r07/vGPf2D79u04c+ZMdd4aRTnDlp2IWfg9oAiUDB8Ea7+ekW4S1WYmI4rHj4K9RRPosnIRO/cbSDnnI90qIqLI8jXWNhKEOosbRKRptUJ3+Lj3ILgiZcPqCbZcbfC2jFIopdSV5e0BgZe+8bvkFAAopZln9YRdzBhTmOgj3YBgWK1W7Nq1C/fee697myzL6NevH7Zt2+b1nG3btmHy5Mmabf3798fq1at9vk5BQQF0Oh0SEhJCbqssVz5L6LpGOK5VW9WIPhIChrW/w7j2NwidDMu1V8LRvnWNetpUI/qphovKPooxwjL+auC7H6HfnYm4eQtQMu5qKI0bVNlLRmU/VTP2EVH1k89kQ87KhYg1u7dJilJV4Z13ruDSZnNmqytY1m3+7ifI5y6gZPgg2Hp0BOAcnmVa8yvsbZoH3w6HZ8bYa6ZWxSNDXFXjd720wx2gq/9k+psx25dIPwihWiMqAuNz587B4XAgPT1dsz0tLQ1Hjhzxek52djbS0tI8jvc1hthiseCVV17BmDFjEBsbG1I79XoZaWnxIZ3rTUpKXNiuVVtFqo+EosC+4Cc4ftkKmIww/mUszG0r8OZVzfizFFg09pGYfB3s366EY+1mmD/5DoZbx0DXsXWVvmY09lN1Yx8RVZ+4WV8CAEqGDSjb6FBgXLMJUlExLCMuD+vrSefyINlsUOqneeyLn/kxJIsVhXfcULYxiOBOPncBAKDfk+kOjGM/XeTcWYFVCDSP5PyNMfZ2nPv7oF+uYrxlf731TaCMsesu1bt8BP+6oydh2PonSkYMAoyGoJtKdVdUBMa+CCEg+RnH6W2ft202mw0PP/wwAGD69Okht8duV5CXVxzy+S6yLCElJQ7nzhVC4eLmXkW0jyxWmBb+AP2BIxBxZpTcNAqFqWlATkHgc6sZf5YCi/o+GtAbBoMRxpUbYP3wG1hHDoK9e8ewv0zU91M1qM4+Skw0w2DQVelrEEUVdQDpcMC0fgsAwDJ8UFjn/Ih/xzkkL/+RsqpEqfQ1pdLVAiSbqrS3AtlMycuEipI1xOX5XH+DAo23VgXQcu6FKsu+ep2cy2tgHL6Mcez8b52766VymBsFJSoC45SUFOh0OmRnZ2u25+bmemSRXdLT0z2Oz8nJ8TjeZrPhoYcewvHjx/Hxxx8jPr5yGd9wfhhSFMEPoAFUdx9JeQUwf7kUurM5cKQlo/jGqyFSEoObdTKC+LMUWDT3kaVPdzjiYhGzZBVMS1YDORdgvbxqZkWP5n6qLuwjIh8UBVJxCURc4Mo83f7DMOzah5JRVwB6Hw+BVIGTumRYvpBfdozdDhjCny3UncnW/I11ZX0BAFbVcnoV+FsgFXlJroRa2lwuYyxQLqPses2CQpjnfwvJbofu5FlYe3QK7fUC8Ts7tnryLdXY4SDvXfI247V6fyEnqaTg1KThkD4ZjUZ06tQJ69evd29TFAUbNmxA9+7dvZ7TvXt3/PLLL5pt69ev1xzvCoqPHDmCjz76CMnJyVXQeqot5FNZiJ3zNXRnc2Bv0RhFt17nDIqJagB75wwUj7saIsYI08atiPl6Odc6JqIaxfzZYsS/OQfS+byAx8Z+tQyG3ZnQ7zvk8xhNhlWVMZZzz6u2+w+aQqV5DUCzQoBkLcsYBxvcOc/zkh2uZGAc6PX1ezKhP3oSupNnAQCGbX+G9nqBeM0Ye27STFYWxIzeAAL/N3Y4oDt4FDFLVnlfNoqoVFQExgBwxx134LPPPsOCBQuQmZmJGTNmoKSkBGPHjgUATJs2Da+++qr7+FtvvRU///wzZs2ahczMTMycORM7d+7EhAkTAAB2ux1//etfsXPnTrzyyitwOBzIyspCVlYWrFZ+mCQt/e5MxM5fCLmgCNZuHVA87mogxhTpZhFpOFo2QeGt10NJSYJh/2HEzl0ASZ05ISKKIP2REwDgDsKC4i84Kin7vKYpX7aUBZhhnbFYHWTaHZ7fu4Tzc2So1SelbROlWW2f9UPlxt5WJJCvkKBLqQOMMZZc/6iqBQL8N5bsDsR+vgSGHXug3384iMZSXRUVpdQAMHLkSOTm5uLNN99EVlYWOnTogA8++ACpqakAgFOnTkGWy+L8nj174tVXX8Xrr7+O1157DS1atMDbb7+N1q2dE9OcPn0aK1euBABcc801mtf6+OOP0adPn2q6M6rRFAWm1Rth3LQdAkDJ4Eth69OdaxRTjSXSklF42/UwL/we+sPHEfvRVygZexUczS6KdNOIiJx03vMy+t0HYNy4FcXjR6mO9T2WXjNu1eYjGLaFMTBWX9du17y+upw35HHBAGK++1Ezw3bQWdPygg1wq2vNZ38BvrqtoYwxDnQP6v9uzBiTH1ETGAPAxIkTMXHiRK/75s6d67FtxIgRGDFihNfjmzRpgr1794a1fVS7SEXFiFn4PfRHTkLEmFB8zVA4WjWLdLOIAjObUDxuJEw/rodxy06YP/kOlsGXwta7Gx/qEFGNZV74A4AKlPOqA1Ob92BYstvDNtGyOuCVHIo2u6kKvkKfMEuBYdd+7WuGOBlW2VJIkv8As5qWOvJ3H9q1iwPNSu2FelxyQRFi534Da8/OZfvV2Xx9VIU+VM3400HkhXzyLMwLVkDOK4CjfhqKrxvO8cQUXXQ6WK4aAEejeohZ8TNiVm6A7vhplFw9mMMAiCiyAgWOqgpAvxlfdaZQHQzbtJld536bM/ssV2IUobXcddWBm7otIZZSS97u1V7JjHGAh6GB1jkOG6+BsWfgqwmS/WXLFe9ZZuOv2yCfz0fMyg1l1wxn1QDVagyMidSEgOHX7TCt3gRJUWDr1Na5/l0VzGhJVB3sXdujqEE6zAu+h2HfIejO5qB47DAoDetFumlEVJeUy6gafv8D+syjKL7+Kr9ZPMnup/RVnSlUL9ekfi27A9KFfMT/dx6sXdvDcvXg0Npf7jUku0MTDKvLtyVL6KXUHkIdIx1kYFxtpcWugNdmg+mn9XBc1CBgRljyt19duq4okPIKIOflQ84+73msOmPOIJn8iJrJt4iqmlRQBPPnS5xPGSUJJcMGoGT0FQyKKeopDdJRePv1sLVrBfl8HmI//gaGTdtCn+2UiKiCNGXIVitiflgH/cGjHqXDALSlrzabM5gpUs1AXWKBnJWrHePrK2Nss0N39CQAwLhjT+VuwqpdK1mT3bT7CNIrKeTBL+7AOMBx1ZUxLn0dw/Y9MG79EzE/rAs80ZfX/aU3pA7oHQri356L2LkLvS55Jfkaf05UDjPGRAB0B44gZskqyEXFcKSnoOSaK6HUT4t0s4jCJ8aEkrHD4Pj9D5hWbUTMyg3QHziCklFDIJISIt06IqqlpPN5nhNoqQJM+WyO8wv1msSqZZgkux2x87+F7tRZFEy9HSLWjLhZX0K+kI+SkZeXXdNb+XTp+TCoPu4qSsjl1Jr1cu0O7RhnzYRfYcwYhyrYNYCra4wxAAgBqcTi/N5qgzAGSDz4uQfNQ5G8stUXJIvF82CFGWMKDgNjqttKLIj5aT0MpU+RrT06wnJFP2aJqXaSJNgu6QpHi8aI+e4n6I+eRNyHX6Bk2ADYO7XlxFxEFF6Kgvj/zQcAFNw7wb1Zk9F1BS3qQKdEFdzY7NCdci7vJF0ogDDHQC5dhk69HrLPjLHdoc0u2uyAyRj8PQgBOec8lPQUbVbYoQ2M1cG+FOq44HByBZU1qTKo/IRlIWWMVdcqpfl58ZYBVz90YcaY/KhQYLx//34cPHgQeXnOP0SJiYlo1aoV2rZtWyWNI6pKuv2HEbP8Z8gFhVDizLAMHwR7RstIN4uoyin10lB02/Uw/fwrDJu2wbzoJ9j2ZMIybABEYnykm0dEtYVFtc5woarE1eFlgiV10KkKdKSCorJjFUVTKiuVL7l2UWeMHQ5tOxwOr7NUyyfPAskJQFo85EPHINJTIeJiYVq2Bsbtu1F082gvGWNVwKUps64BwZerbTUoLoaiaP/bB5p12t9+Tem63et2zeu6MGNMfgQVGH/11Vd4++23cfr0aYhyT28kSUKjRo1w//334/rrr6+SRhKFk1RQBNPK9e5xTbbOGSgZehlgjolwy4iqkV4Hy5C+sLduhpilq2HYfxj6IydgGdQHtp6dKjdzKxHVDkLAsHknHE0ahjRhnzrA1blKpgGvS/Jogk7VeXJhWWAs2WwQJaogVx1Al1uiyc3hgKQKjL0FRtKFfMTN+RpClqH8dQLMnyyCEhuDwql3wLh9t7P9h45DaZiufQ11llsdGPubMKy61MSMsaJo/9uEkjEufZAi+ZhQS/IymZhmjWlmjMmPgIHx3Llz8eKLL2LcuHG4+uqr0apVKyQlJQEALly4gIMHD2Lp0qV4+umnUVJSggkTJgS4IlGEKAoMm3fCtPY3SBYrlPhYlAwfBEfbFpFuGVHEOJo3RuGUcTCu2wzjpm2I+WEdDLv2oWTYACiN6ke6eUQUQbpjpxDzwzoAQP6T91b4fKlYFbiqxw17C1TUGUB1kKmZtMumDXLVJbTqc2zazK7mHC9Bq6ttkqJA5F4AAMjqyb4AQJa05zoU7fjc8jNW1xQ1KDCWFEU7y3ag8c3l1zeWJK9jojWTnXld8qrcz0NRMWB3sEKKPAQMjD/66CM89NBDuPPOOz32paamIjU1FRdffDEaNWqEWbNmMTCmGkl39CRMP6yD7mwOhCTBeklXWPpfzPVciQDAYIB18KWwd2yDmGVroDt5FrEffQ17l3awXN4HIj4u0i0kogiQLuRrvtdlHoXSMB0iLja480tUwaV6UiRvpa0O74GxJugpFxirJ1qSfIwjlRxKufG/do/qYvXxwkfmVyoshpScqNpXPmPsffKvSNGdPAvdmezAMz9XJ0VoHhoEmtXCPWHXhXzE/28+LJd291peLQXIGGtK64stiJv5MSBJKHjgViCW1YJUJmBgnJ2dja5duwa8UNeuXfHWW2+FpVFE4SJn5cK0eiP0B44AAOxNG8EybABnnCbyQmmQjqJbx8KwYw+MazbB8Mde6PdkwtqvJ+x9ukW6eURUHaw2xP13HuwZLTVVI7r9hxH71TI46qWiaMr4oC6lKXVWlUB7W/9XE9DYtFli99c2mybA1lxTTZPZdWjLZ70FreqgVjUWWlKVccuFRVDUQZ1SbiKp8sF4hBm37op0EzyVzxgHQwgYdu4DAJg2boPQ6wKc4EkTjOflu7POcl4+lBADY6mwCIbNO2G9tAcQaHZtihoBA+N27drhiy++wCWXXALZx5gzIQS++OILtGvXLuwNJAqFlFcA09rfoP9jLyQhoCQlwDKwN2feJQpElmHr3hG29q1hWr8Fht92wLTmVxh+3wn7lX2Bdq0BueIfTIgoOuhOZ0EuLoFx+25YVKWm+kPHnfuzcgNewzVBliaoVWeMy88SDfgppVYFUlabZv4Dr0vzoFyQ7XCUW75J9Tq5F6A7k+0sky4lVCXUUn6h9rXLrZ3rLcB33kvkM8Y1kqJAslWszFzKL4T+T9Va16E8dFBnlDUPa7z//LjZHYidvxD2ZhfBOrivZpdp+c8w7DsEOSsXJdcPr3ibqEYKGBg/8cQTmDJlCkaOHIlhw4ahVatWSEhIgCRJyMvLw6FDh/DDDz/g9OnT+OCDD6qjzUQ+SbkXYNy0FYYdeyEpChRzDCz9esLWszMQwlNGojorxgTLkL6wdu/onL169wHYF/4Ec8JGWPv1gq1re/5OEdVC6lmgNUFEXr63wz0Jgfg3PoKQJFiGlAUT6uyu16WVHN5nGZbKZ49VD7cDBjZwBsmaYEwVtMa/+wkAwHqJqjJSlTGWVYGxZLV5BNyax+yBZkam0lmpK/bQwLzge+hyzru/D6U0XFNmr/6ZLvb/8yOfzXaWpJ886wyMbTYYtu+BrUs7yKW/D4Z9h1Di9yoUTQIGxr169cK3336LDz74AIsWLcKpU6c0+xs1aoQBAwZgypQpaNasWZU1lMgf+WwOjBu2Qr/7ACQhIExGWHp1gbVPN44jJqoEkZqEkmuvhK1/L8Rv3Ar8sQ8xK36Gcd3vsPXqDGuPThyjRVSLyKpxxZogwuqjbLkc17hkSQif2TnJy9JKPsuPy435laBqh8XmeXx5DsV7xlgdLOUVuL8WRd5LqWG1abPa5YJfqfwax+RBCiFj7FrDOmxt0Mxq7j+klUsnYgOcPwvuLPH5PIi4OADZYW0bRV5QyzU1a9YMzz77LACguLhYs46x2WyuutYR+SEcDuh2Z8L0+x/QHz0JAFDMMbD27gprz84MiInCSNRPg/GOa3Fu1yHo1/0O/d5DMP38K4wbtsDWpT1svTpDSU+JdDOJqLLUY3jVQbI6uyaEz2FJsqrUWj6nCix8zCBdNiu190yix6Ra6sxyMNlDH2OM1bNkywWqkmn1GGN1kGwrV0pdvr3MGAemiApnjIXJqJ1VvJKkchNxSQWFMK79HfY2zZ2rlNjtzqxw5wztQ6L8Qhj2HQJQ+jOuU1VMWW3QHTsJR4sm2u0UdYIKjNXMZjODYYoo6XweDLv2wbJ9N2IuOJ/yKsmJsF7cBbbuHQADJ0EgqipKw3oouW64c9jCbztg+GMPjFt2wrhlJ+xNG8HWrQPs7VsDhgq/vRBRBEl5BRAGg3ZcsHoNYVWQKJ/JhvnzJbBe3ge2bh2cG+0O5xhSdcCpyrhBPZu0+jVKrDCu3hjcskJ2OyQvsxL7I9kd2jGm+YWInfM17BmtyrZpMsaqMcbqr202TVZbKrcskCbgCrQMUV3lULRLaQWjKvvSYoHhj70wbvsTxm1/Iv/Je2H8ZTNM67dAn3kEjnqp7kM1D4ZkWRPgGzdtg2nd77B1ykDJmCsq1gY/D5mo+vGTC0WHEgsMezKh37kP+mNl5fz21s1g7dUZjlbN+IeFqBqJ1CRYrhoAy4BLYNy+G4Ztf0J/7BT0x05B/LgOtvatYe/QBo5mF2kmyyGi6iOfOgv9wWOwXtod+i27Ydn2J+SrBkJp3FB73NkcxH34BexNG0GoliSSfASJMcvWQC4qRszS1e7A2Pz5YshZubD16V52jo+ybE3GuMQC04atQd2PZHMA9iDKp9UciqbM2bD3kHvcqIt6LLGmlLq47GtY7eXWwy2X+YzyCbdsGS3dGdEqoyja7H0QJJsdIsYEJTEeurM5YW2OZLFqJ/MSAroTpwEA+syjUFSTz2nW4S4qgnqxKd2JMwAAw659AQNj+cQZmNb+hpKrBzsfLG/ajsLbr4eIj3V+jtUzNIsk9j7VWFJhEfT7D0O/7zB0h4+7x+woSQmwd85A/MCeKJQNUCr49JiIwig2Bta+PWC9tDt0R07AsG039PsOwrhtN4zbdkOJNcPevhXs7VvD0aQhy8yIqlHM8jXQnc4GbDaYNmyFAKDfvhv2coGxa0lD/bFTsKnmDJDVwYB6zd7yk14pintIk373gcDnWysY3LrY7RUvqy03KzUCjf8t9JExVhTNOGt/Y4yjkfXS7tAdO6X5bxZukqKEVGYuYkxV8t4hlVgBSfWQpqBIOwbZot6nmoitxAJIqge+PqodhJftsfO/heRwwLj2Nxi37wYA6A8fh3HDViiJ8SieeG2ot0NhwMCYag5FcT7dPnwC+swjkE+ccT+PEzFGWDtnwN4lA44mjSDrZMhp8UBOgd9LElE1kSQ4WjRxjrEqtkC//xAMfx6A7vBxGLfsgnHLLgiTEfYWTeBo3Qz2Vs0gEuIi3WoK0fz58/Hhhx8iKysLHTp0wPTp09G1a9fAJ1LVcDjLmGEwwLhhKwybtqF40rXOoBiAnH3OfahUVALDbzsgn82BZcQgQJYhnS8reZbPB559WjNzdVExoAomdGcCT0gU6uRUkt3he+1iP6+lmeValRH2Sl0SXag9VqrCoDHiZFmzbFWVCCFjDADCaIDQhb/ySLJYNaXaUl6+dlyxeliAamZsWMrNjq4qxXeXRisKrK/NQYzRiOKRgxGzZBXsrZq6f/bl3LLr6fcdhnzB+drSuTzojp2EkpYCpXGD8N0sBYWBMUWO3eGcCv/4aegPn4Du2EnNU2QlMR62ti1gz2gJR9NGzDQRRQuzCfau7WHv2h5SUTH0ew9Cv/+IM6O89yAMew8CAJSUJNibNoKj9H8iOZFDIqLA0qVL8cILL+CZZ55Bt27dMGfOHEyZMgXLly9Hampq4AtQyOTsXEh5hXC0aAzTirXOD98DeyN29lcQMUYU3XEDTKs3AgCMv2wuO0/1wV3OOY+Y/YcBAPaObeFo2QTyubyy/cGsU6wKbuSzOYGzsOFit2vKs4Pi0GYpywe7/mhKqRF4eZ+oJsvaLGhVUERoJeeyDFRJYGzRlPXLOec11RDyBdXvhSqQlSxWzXuVfL7sOOPa32DY9iesV/SDOHEWOgDmb1ZAd+os9IePu49TP0DSHzzq/tr08yYY/jwAJSkBhfdOcI79jzVz3o5qwl6m6mG1Qc45DzkrB7pTzrE98tkcTWmVMOhhb9kUjhaNYW/RBEqDdH5IJopyItYMW49OsPXoBNjs0B07CX3mUegOHYMu5zyM5y4AO/YAAJQ4M5QG9eBokFb6bzpECoPlmmb27NkYP348rr/+egDAM888g9WrV2PBggWYPHlyhFsXWfLpLEAIKI3qQz6bAznnPOxtmzvHDToczgDNZATsduiOnYLSIB1y7nnod2fC2qc7oNdBzj0PR+OG7rGPUmERdMdPwd66OcyfL4GcVwDrJV1h3Panc7/DAbmwCCgsglE1VldfGvwC2g/h6g/4hu27IWflaILhik4cJZ/NqbbfUamgEHJxCYQkBb+erd0e8sRYcmkptev1Ai3vE9Ukqeozxg6H72W5/NHJVZMcsVg15fK6k2c0uyX1A6McVdVFuZ8h9fem0gdSMd/9VHZdL0tO+RpOYPjTORRBvpAPw+adMP34C5TUJBTdfgMM23dDd/QkbF3bw9GmOQy/boeccx7W/hdDJMZDPpMN2OxQLqoP3fHTMP20HtY+3eBo3tg5AZ0ioDt9FvY2LRCz4mcIowGWyy+FceNWKKnJsLdvDf3+Q1DSU6HUT3Nm073NEeL63ZMk7de1QIUDYyEE3n77bYwfPx7p6enur+vVq1cV7dOoaOnWsmXL8MYbb+DEiRNo0aIFHn/8cQwcOFBzL2+++Sa+/PJL5OXloWfPnnjmmWfQvHnzKr+XWsluh3ShoKwc5PwF6LLOQc7JhXQ+H+V/ZZTYGDgaNYDjovpwNG8Mx0X1mRUmqs0MejhaNXNOlgdnSaPu2Cn3/+SzOdAfPKp5ei6MBiipSVBSkp3/pjr/FUkJzqfoteTNOFpYrVbs2rUL9957r3ubLMvo168ftm3bFtI15Up+GNcfOQHLh7/AbLECrljJ9WFNHTy5t5X+X+m/knpb6XEirnQinKJiiMR4Z5ZRliFiY5wfaO0OdwZLKiiC0OshkhLcH6ztrZtBd+g4JEWBUi8VSr1U6DKPAlYbHBktIOde8MjMGn//A8Kgh2SzQ0lLhpRf6Gyz3eERBBp/2+H+2rBrf9n2jWWBcTDjeA27D8CgGhMcCv2ZLIiY6lnLXFdazirSUyAFkdkGKjGeWUXEx0LKL6zVGWNJJ1f5RIlyRSdOc9HpqmaMcbFFUy7tmkTLvV/1eydXoNIgXGJ+WAfA+XMfN+tL9/Jn+v2HYe/REYYtu5zfHz0JpWE69LszAQCOBumQ8/IhFVtg/vZHv69h2L6nbGjD4pUAnA+CRFoy5OxzUOqlQuh1zuETpWXiUrEFwmSASEmCfCYbwmiESE5wlpsrCoTJWPbfSyr9P82/pUofKFgMepjtjnJjtcuOdTRvDOvIyyvcf6GocGCsKArefvttDB48GKmpqe6vqzowrmjp1tatW/Hoo4/ikUceweDBg7F48WLcd999+Pbbb9G6dWsAwPvvv4+5c+fixRdfRJMmTfDGG29gypQpWLJkCYxGY5XeT1QQArDaIFmszv8Vl0AqLIZUVAypsKj032LIBUXOcRmqMUflKckJcKSlwlEvBUrD+nBcVB8iMZ4faonqMBFrhr1dK9jblS6bYrdDzjoH3ZksyGeyoTuTDTkrF7rT2e6xkprzdTJEQhyUhHiI+DiIxDgosWYIcwxgjoGIjYEwl/4vxsTZscPg3LlzcDgcSE9P12xPS0vDkSNHKnw9vV5GWlp84AP9cBx2wHY2F3KgTKDXD2jeP7BJrjG5suRc11aCM25WlUy6GQ3OktvCImc22GqDPrP04U5iPOSs3LJ1T3U66PeWzvyrzra4XtdmB2RZO56xAkLKxoUqOQEoLHZ+GA82exsm+tQkKEEGxnqbDZVtnS45ASK/sFaPMU5OjYNNL1e6r/yJN8gIZe5uQ4wBMJsQ7p9uuVD7uTXcs16Hk3zuAiBJkHt1hPL7LndQjIQ4yOcuOPfHmSHFmIIa5+/ibby/JITzb6DJUPYAz1VRoAjAoHf+LhQWA3rX10XOyhh1EB0kAcDfu7MuMR7xqXGQqiFmCKmUWj3LmrcZ16pCRUu35syZg4EDB2LKlCkAgKlTp+KXX37B/Pnz8c9//hNCCHz88ce47777MHToUADASy+9hH79+mHlypUYPnx4tdyXN/KZbDhOnIQuvxiyQzh/uFz/AzTfS6L0qbcQnv8DnBMdOBRnCZfD4Zw1UfWv82vnfslqA6zWskC4Ak9ZhSxDSU6EkpQAJSkBovRfJT0VSloyYOTawkQUgF4PpVE9KI1UD1qFgFRY5Myw5Z6HnHsB0rkLzqfheYWQz+cHNVkQAGdWz6AHjAYIowEwOP8VBr1z/XO9zjnBi+ws2/P1tbPcsDSQkiSI0jdrWZbgSDBDV2iBLJz7XMe4HgKKGJNzzoRaFqQLIUL60GK3K8jLq1wmRm7VHMn/eQTnzxXAvUiBqy2hfpByBUAmozMjHGd2LvtjsTqzIXqds9RZOD8kwqFAOnfBmTXJyoXhtz9gb90Mjo5toNudCehk97KCun2HAKMBjtbNYFi/BbBYYe/RCcZVG+Fo2hD2i7tAPn4aIiUJQic734/zChDz+RI4WjeHnHMOclauM4tTOnbW0bQRYLW5PxDb2zR3zzQtZDmo8mElLtYjUPDHkZgAe+9uMH2/roKdW3kWkwnBfqpQiks8KtYqyhYTo/nALHRy9T6EqAbnLxQjRvgPUCqrMLcAphDOszoEYFeqbPynkpLkzsYCgJKa7B5yIGJMnrOwV0CFyv5d55RWjgCArXsHKBc1gOHX7bD17gZ79w4wFVuh23sQ1kG9Ye/VGYaN2wGHA7Y+3QAhYFqyGgBgHT4Q+t//gIiPhaNVM+fM2gYDDD//CnvnDMj5hTBs3AbLlZdBKi6B7shJWIdc6kyCFVvgaFN6jqxz/g1U/z212iBdyIdITXL+/csvgEhJcr63lY9ZAI9KHQDOh4CyhOSkWJy/UORcZab8A0MBZ3VObtms4KFKTDTDYPBfeRAVY4xDKd3atm2bR8Dcv39/rF69GgBw/PhxZGVl4bLLLnPvT0hIQLdu3bBt27aQA+PKloShxIKYD7+ETQhUT2GSJyFJgMnoXL/NZIQwGZ0fImNjIGJjIeLMpf+LLfs3PtbnB72q+CPr6udK93ctx34KjH0UnMj1kwQkxkMkxsPRojE8nm3bHZAKCiHlFThLHYuKIRWVOCtcSv+H0nI5yWaHZLVVadbHBgT8211y4wg4MlpWWRuqUkpKCnQ6HbKztRmJ3NxcjyxysMKx5J6kk6FIMhTNhzCEnsk0qT6+x5fOnq6XtWuMukoFBZzvf2kpAAClYX3YR5etZap0aKO5tPp7S79e7q+Lxw4rO6ZJo7ITYmKApEQUPDIZkGXojpxAzLc/wjKkL/SHjsGwcx9sXdpBzj4H3ZlsCKMBtoyW7sDY0awR9IdPOK+VEAeUrtlbdNNowG6HkpoM45adcDRIh3nJqqC7SIkxwdqrC/Q79rgrOsoHGFVFiY8N/uDSWayFyVjxpZ5crxdX7vUMBsBRu8qqFVH2kK/KhNj/ogpKqdUBq6NBuubn1tG4QVlgbI5xJo9KA1UlNsY99rx8G93Lipb+HshdMmA/clI7azWcD2n9zc5tb9nUGaieOANr945QGtWHtXS9cAigeMzQstmvAVgu66U5v/j6shjGMahP2Y6UJOf1x13t3mRRrTuOXl2c/yYnlW2Lj3e/rubvqV7v/psHvQykJDu/Lns6WfqPpPnWgyRBMuidf78lL+OVXdU61ZSIjYrAOJTSrezsbKSlpXkcn5WVBQDuf71d07WvosJREgbEw37tEIic82VZBo//wfmD5CprCHAc9DpIpeUNcP+rg1T6L3SlpQ8xRmcZmNFQLeUK4ZCSwuVegsF+Cox9FJwa2U8NkgIfoyIUxTkTqcUKYbU5l96wWiFcs9c6HM5sYOm/QlVhA7uiehouAEWUVU75quBx7VMEEGNEUre2kGIj9eizcoxGIzp16oT169djyJAhAJxDrDZs2IDbbrstwq2r5UofPjuaN0bhX519be/YBpaBvUvHQTuzvfaMls4qiFL2Vs3cgbHcrgWU350lmI4mDZwBHgDLlf2hO3ayQs0RZufPsGVQH8R+vgSWyy+FLvOIR2Bc2Yyb19eOD/7vkCv4EWZTyIGxKBeIC6Mh7PcUcRKqvJIl1P6HLId9uSbXuHEAUFISNQGvo3EDGP7Y6zzOZCwNjJ3BrUhOAlyTsqketij1UqE77YwfSoYPhKTXIblzKxRu2w/DL5thu7gLzN+scF9ff8T5O+mon+Yu4XZ97WjeGLYeHZ0VKrFm7zcQJZ/To01UBMa+BCrd8rav/Lby34daDgaEpyQMAOTO7ZGSEodz5wrD8iQ9aDYANiuAEP9wVSNZliLTR1GG/RQY+yg4tbOfJEA2AmYjYK58wB90HxXbgeLKrcEeTElYVbnjjjswbdo0dOrUCV27dsWcOXNQUlKCsWPHRqQ9dZosQyQlAHAGi5Yr+jm3C4GSqwbCcVF9zZrDus5tofy+y5kBNWiLkdUTaPkqvxZGg3uYlSswdrRqhoIHb4OIM8N8/JTnOaXjris627U/5QPVoM6JiQFQNuxCSU6AkpoC3ZHjfsuihU7nnKNAvc1QC4eHVcM6xgHXkPZFJwNymDPG8WXVEyLWDCU9FfLRk86fi4SyJJcwGZ0PNkuzvkpKonuSPSUxHrrSMbiOhvXcWWZH44aQTQZnJrRVUxS3aKJZMsye0dIdGNs7tIHubA7sLZuiZPQQ6HdnwtazU+lkfz6CYqoyUREYh1K6lZ6e7nF8Tk6O+3jXZGFZWVmaybtyc3PRuXPnkNsazg+MiiJq0QfQqsE+Cg77KTD2UXDYT4HV9j4aOXIkcnNz8eabb7pXifjggw+4hnFNIknOD9cAYLXB3rIpRHoKTF3aomT81bBd1MDjFFegCwAizuzOpqlLTkVcLCSrMyMsVFUP7kDVy9wkQq93znjsJTC2XNoDuuOnnGWnFZj1V4mLrfDYzfLBbeHdtwCyjPj/m+W3LFq45iRQ87GmrHrcd9SRUOXrGIceGOvCvo6xkhgHXelzHBEXC+vA3sDa32C9pAuEuexnRZiMmjJgJTmxbF9iAlAaGIvEeBROHuf8PfL286HXofCum0rLwmXgh3VwNEyHtVdnKEkJsGe0AAwG2C7uEtb7pIqJitk/1KVbLq7Sre7du3s9p3v37vjll18029avX+8+vkmTJqhXr57mmgUFBdi+fbvPaxIREREwceJErFq1Cjt37sSXX37pd+lEijCjAcU3jYJ1WH9IkgRHm+ZAjOcUSOpgQCnNQju3lwXA6rG9IsHL0DFXAK2+vkEPofcRSCbEoXjS2LKZ6YGgZkUW5pigxpyqy281wY5e5y4b9gh6yzMZNBOICtckfN74uM+oUA3rGLvWDBY+Hiz4ImTZ+d8sjJS0sgd5SnIiHE0bofiWMXC0ban5+RVmk7aaQvVzryTGa49LTnQOSfT5mikQyYkQCfEouOcWFI+7GjAZYe/U1qOCgyIjKgJjwFm69dlnn2HBggXIzMzEjBkzNKVb06ZNw6uvvuo+/tZbb8XPP/+MWbNmITMzEzNnzsTOnTsxYcIEAM4S6ltvvRX//e9/8dNPP2Hv3r2YNm0aGjZs6B43RURERFQnqII9kZpc9rUqM6yklo3nFwmeww8swwfCUS8VReNHlR1ncs747v5ePY7VtV0dKPkILNTnOQPjID7CqoINTbCjDnQDBLPCaNSWTrtmr/d2bAUDvhpFqvrJt1wZ4wqXCFfBGstKWnLZ1ynl5qlQV0/EmrU/v6qfT5GkCowruJa3SElyrpdONUqFf4MlScJFF10Eo9Go+bqqBSrdOnXqFGTVL03Pnj3x6quv4vXXX8drr72GFi1a4O2333avYQwAd955J4qLi/HPf/4TeXl56NWrF95//32uYUxERER1l3pZTnWQkJToLmFWkhM8TlPSU1E0Zbz2UjExgE41pt6gd89OLEqDcXXgKYwGr5M0iRijO+OIGKNzyaRAt2HQuyfJUt8H1J/zvASzmrHUxnIZY/eSbV5Ee8a4igNjuXScrog1AxeCW2YPgHsN8HByNG4AYTQ4qyPM5caQq4NfcwysndpCv/sArJddrBnfrg6oNT9fFLUq/BssyzJWrlzp/l79dVWbOHEiJk6c6HXf3LlzPbaNGDECI0aM8Hk9SZIwdepUTJ06NWxtJCIiIopGJYMvRcyqjbBe3KVsVl7VDNDCbELh/ZOca5Z6K6X2QnI4NGWwmsDXHRiXfRwVsWb3pEgaJpN7NmD4K2dW0WR6jdrg283VBvVY6lizOzBG+THGRoMme6lepkfodRDwvTJNpAQzHltIVT/5FuB8wGFv0Ri6U2eDP6cKSqlFShIK/nq7Mxtd/oGAunoixgSlXhoKHvoLYNBrll5yNKzn/lqpzzkWaoMofrRFREREROFi69Mdtku6agI/Tfl0TAxEQpzXMmqfSiyaUlRNhrZ0u7q0VsSpvjbo3evHivKltAFKqYUsa0tgDT4CY9eoZkkqGyMdHwuczys9VltKLQx6bVmvXudcyg0oDdhl53JvNYCjQTqKbhqNmKWrYNh/2P/BriU+q5itWwcoqlL9oFRBKTUAn5OoAc41xo2btkFxTVRX+jOj/tkXSQkoHnk5EGNiWXQtwcCYiIiIiJyBUblMrK+xuYFY+vaAacNW2Du1hWHn/rJrqIPM0uBWU66tLmM1GNyBsWu5J9c4WBFo+R5Zey/arK+qlNqVSFXFhEK1v3wpNYwG7aReer0qA14awNWQwBiyDMTGBBfwynKVz0oNwLkUUkVnmK6CUupArIN6w9q/l+fryjKKrx5c2l8S7N06VGu7qGoxMCYiIiIiryS7veybCkwuZR3UB/Z2raE0TId+T6Z7uzrwdZcxqyb40mQGjXqgdBlmERsDnLtQVhLspbRWXdYMWXZO/OWiCbhV5wovkbE6cDNoS6lFuVJqj4nFdDLguWpVZLgC4mBKpCVUWQ24MBndDw/UpflBk2WfE55VKR/BuL1r+2puCFWXqJmVmoiIiIiqh+XySyH0etg6t0PhX25EyRX94Gh2UfAXkCQojeqVZqFVY4jVgbF7VmrPMb+ANrts69gWAOBo3NC5odw4X+e5ctlyT7LsmflV7Strj3O7O6AubXvZsZJ2fLKh3BhjdYCukz1LviNIuALiYDLBUtVljDUVAQmxFc4YC53vMeXCy3Zfs4PX3tXlKVyYMSYiIiIiDWvfHrD27QEAEInxUBqkh3wtTfComrnZFdQo6Smwt2kOe7OLIJ+7UHasKsCx9eoMEWeGo2lpcK4OiAyl43zl0lJmRXEGqOXKst1Uwav1kq7QHzkJW4c2MOw+4NF2e/PG2kDZY4yx6qO0rHP+r6ZwtTPSGWNzjHvMthIfB7nEc9Zxv3Q638G0eoy36/X0ZWPTNYwGwFpT0vlUEwV8ZLN+/fqgLmSz2fDII49UukFEREREVIvotFlVj+2yjOIbR8LWp7smsBQm1TI6kgR7hzbu5XI043xLA0BnZlF2v4522R0TlMT40uuWbXe0bYnCO25AyYhBZa8ly85twwfC0aa59l4cDm1ZryYwlis+fraUUhXL/bgC+iDHGFdVtltdKi/iK54xdpZS+8gYe1siS53hV92Tpf/FAADrxV0q9vpUZwT8ybz33nuxZs0av8cUFRXhrrvuwvfffx+2hhERERFRLaAeh6vz/rWbOuCNMXrudx+nOtedGVUH3eUC44R4WC7vA1uH1rD27am5lNKwnja7HB8LpWE92Hp0cgeV9ubOTLVIStSUHKvHK4tKzJ6spKeEdJ5f3vrFnyqalVqzxq9eH1R7hKot5UupNaXS3tah1nvOfA4AjuaNUXD/JFgGXxpky6muCfiTOXToUDzwwAP48ccfve7Pzc3FpEmTsHXrVrz11lthbyARERERRS+hLuXVlFV7m0BL9dHUXwClPs4VRGmyyDrteGajAfZOGSi5dhhEov81mL3ttwzuC8vA3rAM6l0u663NGAvN2Ofgg2SRmICiidegaOI1QZ8TkGsG7wABr5Ak57FVFRgb9LB1aQdLv9IHEsH0i1xuMrRyM4G7v/by8EQklC2dpAmiZdn539ZblpkIQQTGr7zyCkaPHo2HHnoIS5cu1ew7fvw4br75Zhw/fhyzZ8/G5ZdfXlXtJCIiIqIoJCll0x5pAhVvGWN1+bTie7okTbDnnlhaLptlWie7xyO7J+wKwDJqMKSmDWHr0dFjn9KoPqyX9fLIeGpmuC5fSl2RJYZkCY6mF0FJK8scV7q0WQ5yVuqKlFyHQpJQMmoIrIP6AAjyvjQVATptdUH5ydBKFd0yBtZuHWDrqlpCSfPzVnMmRqOaKeAjE0mS8O9//xsmkwmPP/44rFYrrr32WuzZswd33nkndDod5s+fjzZt2lRHe4mIiIgoimgCIc06xl4yxuoMoPC9HrB72SbngaovXYGxDspF9VE4eZxmLWZ/7N06wDTkEhTkFPgPyn1ljHWyJggVOh2kINducq/PrM5mGg1AiSWo871e09XvgWabdjW5CgNjjWAC43Jl8ZqMsXqGcdV2R/PGcDRvDN3+w2XHqrPL1bBOM0W3oGsJnn76aZhMJjz11FPYu3cvvvzyS9SvXx+zZs1Cw4bBPYkjIiIiorpFpCSWfa3O4Ok9AxVNsOyv5NVHXOz+ujSwUuqnBd/QYPnIGAvXrNguFclQugJq9XhsowFSJQLjoNcxdgWMwcxeXZl2uKiDXEkq95CjdLteDwnOe/dYrsnH8l5etxm8B9FE3lSoyP5vf/sbTCYT3nvvPXTr1g3vvvsukpKSqqptRERERBTlbB3awLR6E6xd25crbfUS1KgDQ38zNXsJpiCVbRdVFeQB5YJf32OMK1RK7Q5ifWRGQ+HOGAcKjMu1IdzKXVfI5caZe1taSV++lNp7v3idwE3vY6KuGrTGNNVMAQPjSy+9FFL5H2ghkJmZieHDh3scv2HDhvC1joiIiIiimkhORP4jkwGDHvpd+8t2eAlUhFG9xJLvwFgzsVZpmlhAlX2sqiAP8D3GuFzJb4UCMW/HGv3Myu2DJgMbbMbYtdxVdZVSlx+H7SUw1qx9XX5WaqP/jLHP5bSYMaYAAgbGEyZM8AiMiYiIiIiCZgouyHO0agpb+9awZ7SAo1F9mH7+FdbuHTyO045FLvvS/Ym1Cj+7Cl8TbMmydh1mL7Nu++TtIYF6CSkfJcder+NwlH5dOm45UIBe5Rnjct9rZu7WuXcLWYaklI4r15crUVcHuKryaKVBGrD7ABTVWsmaINqknqiLs1GTfwF/Qh588MHqaAcRERER1XKSLcBkVLKMkrHD3N/mPzJZMwuxizab7MqQql8o9DYGpJlMTDW5U/l1jCs0K7W3wNig3e8KeP1eRwJchwVZSi2qeIyxRyZa82BBnWGXANd8azptyb1QBb7CWLbPntESSlIiHE1U8x2pg+oE1dJbXKaJAmBNARERERFVC/XyOkExGb0GdrbOGQAAa+9uquWaVMdVVym1OtjS68tlkyuwjrHqWMuAS2Dt0anc+OUg70fdtmCXYar2McZ+Mu6uY8qXUvua2VySYe/YRrP2tFD1m5KU4LMdROXx0QkRERERVQt7xzawns6CrWPllvkUaSnIf2wKoNdD/8deL0dU0+Rb6uWA9DqPMuGgqYI2a/+LAQAxS1aV7dfJCGblJyHLZXfuXsc4UCl1kJN0hcrPck3C15js8oGxmjpzHuCBQaUnMKM6hRljIiIiIqoeOh0sV/aH0jgMS30aDICvsbfVNMZYk9nU67XBXUUm3/I2iZQm+xvktdSvGWzAG2xmOVQepdTlZqUupZ5JXLP+cOm4bcvgS+FoWA+Oxg3KzvdWgp4YByUpwVlVwHHFVAH8aSEiIiKi6Kcppa7C11GXg6snFdPrwjsrtSbIDbaUWvL8OlA75OoOjNVLL6n6r/wyTuWOt17aA9ZLe0C3/7DqHC/3ptOh8N4JgCRBv/dgJRpOdU1UZIxPnjyJu+66C926dUPfvn3x0ksvwRFgAoLz58/j0UcfRc+ePXHJJZfg73//O4qKitz7N23ahHvvvRf9+/dH9+7dce2112LJkiVVfStEREREVNWCmMA55EurJ9xSzxyt12vXT67AZFZe111WB9nBXspLxtrXms4eY5Crau3n8oGx6nslNalsuyZj7CNIBrSBta+gn+OJKQQ1PmPscDhw9913Iz09HZ999hnOnj2LJ554AiaTCVOnTvV53mOPPYasrCzMnj0bNpsNTz31FGbMmIGXXnoJALB161a0a9cOd955J9LT07F69Wo89thjiI+Px6BBg6rr9oiIiIioEoQkQQIg2ewQJiMkixXyuQtV94I+AmOUH2OsCs4CLrcUKGMcbKDvLcscZCl1ta1jrCISVZNjaSbl8tHHgLYUOybAMmAMkKkCanzGeN26dcjMzMTLL7+MDh06YNCgQZg6dSrmzZsHm48p/zMzM7F27Vr861//Qrdu3XDxxRdj+vTpWLRoEbKzswEA99xzDx566CH07NkTzZo1w6233ooBAwbgxx9/rM7bIyIiIqJKcDRr5PxCUWDt2al020VV9nrajLGp7Gu9XlsOXJFZsr3MYC0qMKu1+xx1YO6lRNq1X0gS4ArUq3yMsecma5/usFzWy3O5JheDupS6XMa4AuO4A67hTKRS4zPG27ZtQ/v27ZGenu7e1r9/f8yYMQMHDx5Eu3btPM7ZunUrkpOT0blzZ/e2fv36QZIk7NixA0OGDPH6Wvn5+cjIyKhUe+UwlKG4rhGOa9VW7KPgsJ8CYx8Fh/0UGPuIKDJKRlwOyDpYL+kC5aIGUBrVh71Fk6p7QXVgnBBXtr38GGP1nwL1Gr3eeAvgNIFqkCljddmxe33icktIKYp20jKp3PHh5iXgtgzpCwAwbNrm3qYJ6isyo7cfjpZNYG/dHLb2rcJyPardanxgnJ2djbS0NM02V5CcnZ3tNTD2do5er0dSUpI7Y1ze8uXLsWvXLjz//PMht1Wvl5GWFh/4wCClpMQFPqiOYx8Fh/0UGPsoOOynwNhHRNXMHIOSa690f2tvV7VBkNCrJt/SazObwteEWeqsLTyTqF4zm+rgMNhSam9jc9UP67ws++Se8VpSbwtQ+l0R/jLR6n3BZnet1uBfW6dD8biRwR9PdVrEAuOZM2firbfe8nvMmjVrAACSj18oX9t97RNCeN2+adMmPPnkk3j++efRunVrv23yx25XkJdXHPL5LrIsISUlDufOFUJRqnD2iCjGPgoO+ykw9lFw2E+BVWcfJSaaYTCEJ6NCRBXkawkgm933TNLly3+VcunjQGOMg6SetMpdil2ulFoq3zbXl+XbXonAWB1Y+x277KOPJLvvSXZFbGzI7SLyJ2KB8aRJkzBmzBi/x9SrVw/p6enYtWuXZrsr61s+K+ySnp7ukRm22+3Iy8vzOOfXX3/FPffcgyeffDJge4IRzg9DiiL4ATQA9lFw2E+BsY+Cw34KjH1EVLuJcrMkC1mGpCgQCbHlxgr7GGPsraw6QBAcdPZW5zk2V5ONdo2B1pR5e1nvOFDpdyDexjD7Ok79mqVcs1UrsWaPU5RG9VB8zZVwNKxXiQYSeYpYYJycnIzk5OSAx3Xv3h3vvvsucnJy3EHt+vXrkZiYiFatvJfK9OjRA+fPn8euXbvQqZNzEoaNGzdCCIGuXbu6j9u0aRPuuecePPbYYxg3blzlb4qIiIiIajejQfNt4X0TIGefg1IvDdh3uGyHJlMrlcWi3gJFbxNtlc8qB0MqN564/Ou5tqnjbG+Tb1V2Ii51YO3vWrI2m+2iJCehcPI4KAnehyjaO7apXPuIvKjxU7X1798frVu3xrRp07Bnzx6sXbsWr7/+OiZMmABD6QLrO3bswPDhw3HmzBkAQOvWrTFgwABMnz4dO3bswObNm/Hcc89h1KhR7vHJmzZtwt13341JkyZh2LBhyMrKQlZWFs6fPx+pWyUiIiKimk6WUXjnTSi4fxIAQCTEw9GyqedxmkAzwEzK3oJHh+9yYsAzc+28juprV/Y40Dheb4GxeiIsv63wIdgg21e/SIBSPw0wmzzPIaoiNX7yLZ1Oh3feeQczZszA+PHjYTabMXbsWDz44IPuY4qLi3Ho0CHN8k2vvPIKnnvuOdx2222QZRlXXXUVpk+f7t6/YMECFBcX491338W7777r3t67d2/MnTu3em6OiIiIiKKOkp7idbtUYlF9o9ohBwgUvQXBDnXG2Et4qtcD5cbiatZOdgXG5QJOD6VtE77aGMp442ADY9lH0M5lligCanxgDACNGzfG+++/73N/nz59sHfvXs225ORkvPrqqz7PefHFF/Hiiy+GrY1EREREVMdZnUkaEWOqWGmyl8mmJHUptZe4VOh1nnGut7Jpdbmye7/qgpK3SbpUpd+yHDB77UETZPs+TDP+WT0+mqveUQRERWBMRERERFTTWQdcAslmg2Vgbxh/2Vy2I8D65pK3wNPPzMwAtEszuS/kmYHVrAnsbdUW2UsptabEWQIqGBcLSfY/ptpFNbZaUxpe2THORCFgYExEREQB7dmzB++99x42b96M8+fPo3Hjxrj55psxadKkSDeNqMYQ8bEoGTPU+Y2PQFNIkmdC1OFloi3FMxpVr4EsdF4+xnsphxYpSR7btOf4mJXa3zmBBF1K7T1jLJgypghgAT8REREFtHPnTqSmpuLll1/G4sWLcffdd+OVV17Bp59+GummEdVMkrcSZi1b5wwAgL1lE499jsYNnfuaX+R96SNvGWOoX9P5r5KS6HlYRWalVgXJNtds0IHGAAcZWKuz2ZqMcYAMO1FVYMaYiIiIArrhhhs03zdt2hTbtm3DDz/8gJtvvjlCrSKqwXxNvqVSMmoISoYNAExGj332Lu1QlBAPx0X1Ef/Wx2XXcZRGtcHObq3ToXjsMECSYFz3u+d+2XMssnZccllZdMnoK2Ab0hdxS1ZBHDru9Z7Kt8PXQwGPe2ApNUUYA2MiIiIKSX5+PpKSkgIf6IdcycyQ6/zKXqe2Yz8FFu4+klRBn6S6pqQK+mSd7GdJIgmidVNneacrY6zTlZVde2mn+nVkSXKPH1ZcmV7XuOdyQbssS5DUaylL3tsu63WQvGWgPRqiOqf0+l4PM5QFw5K+LCyRZTmqs8b8fQtOTesnBsZERERUYVu3bsXy5cv9rhoRiF4vIy0tPiztSUmJC8t1ajv2U2Dh6iOb2eies0pn0Lurl9WBZrA//yWlgaZk0LtnvtYbDR6TVRtjDHCNVk5INENX7voWg04zThkAjCYD4tPi4UiMhWvhU13pcQA0AbOrvZYAqxvr9GXnxyd4tsNFuRAHa+nXMYlmd38lpcRCDtPfhkji71twako/MTAmIiKqw2bOnIm33nrL7zFr1qxBw4YN3d/v378f9913Hx588EH07ds35Ne22xXk5RWHfD7gzDSkpMTh3LlCKEoF11qtQ9hPgYW7j4wWGwylX9sdAq7cqFDKppbKySkI6lqxwnmOIknuCYLsioLyo4wtVof7NfPzSuAod/2Y0nYIURYcW20O5OcUQFdkRYzr2pDc11ZE2aREOTkFkGUJ8S0aw3HoBJTkRMjn8zza61Cdk19o8WiHi1xghbn062K7gKug/HxeCURMcH1TE/H3LTjV2U+JiWYYDN7G5ZdhYExERFSHTZo0CWPGjPF7TL169dxfHzhwALfddhvGjRuHu+++u9KvH64PQ4oi+AE0COynwMLVR5qZldVjdlEWlAb9Oq7D1JNVSZ5jjAUAy8DeMOzYA1uzi5xRrZqXilVR2g5Z8rGmsKok3NVe/fD+KIqPhz0lGXEff+N5UdXrCOHnPlUl14r63vydE0X4+xacmtJPDIyJiIjqsOTkZCQnJwd17P79+3Hbbbfh2muvxcMPP1y1DSOKdr7WBQ6Jlwm3vI3LlCRYL+sF62W9Arep/Db1msKa8cZexjIb9LB3bQ+Rfa7sHEmCVDoWWpRfB9kX9esYDGVfc/ItigAGxkRERBTQ/v37ceutt+Kyyy7DHXfcgaysLACATqdDampqhFtHVAOps6aVnVyoNC7WLmnkbVbqCjTKval0vWN1MKoLcobo8ks8uSYJC3a5Jtl7MC4CLQdFVAUYGBMREVFAy5cvR25uLhYtWoRFixa5tzdu3BgrV66MYMuIaibha13gkGJk16zUAYLHgNWoXg5wtUfno5TaX3vLr3eseNnuL7BWv47m9RkYU/VjYExEREQBPfjgg3jwwQcj3Qyi6OEzOAwhMnbFs7I6Y+xtwHCAyNg91bR6Y+k3vrK3/trr6x6DzBhrS8PVQbL/SZKIqgIfxxARERERhZsmUPQ/ZjfwtVxfqAJfb+OWA11beImMXV+q26gPJWPsfR1k4e98H1liwYwxRQB/6oiIiIiIws5H0GgIoWDTdb565l5vGeNAY5m97i4dYyz7KKX2e70gysX9TDwmVFnikF6fKIwYGBMRERERhZt68i11NtRk8HJwAO7AWPHcpnnNED7aCy/jlzUZ2+BKqYWvWbj9jjH2MXs1M8YUAfypIyIiIiIKN8l7oCeMxgpfSngJjL3OdB3K7NeKo/RcH+N9/ZZSe39tTduCXa5J9vE1UTXh5FtEREREROGmGX+rCjQNoWSMS6+lKqV2tGwKbN8De7OLoD96svS4igeUkkPxPDfY6/gspQ5+VurC266DMJkgFxUFdw5RFeHjGCIiIiKicPOZMQ69lFpSZYwdFzVAwT23oPimUWXXDhjQutqkGqtsd3ieqxkj7Gcd4mCC4QBtUi5qAJGWzLWLKeKYMSYiIiIiCjf1+NswBcaaMcZCQKQklTsuyMm31Ks6ua6pC3JcsOZ6Qcy8Hey1ZE64RZHFRzNERERERGEmfIyftbdt4fy3TfPgL+YjMPZQgRJkV4ZWsnsZYxzsNYNYx9jrWGhvOOEWRVhU/ASePHkSd911F7p164a+ffvipZdegsPh8HvO+fPn8eijj6Jnz5645JJL8Pe//x1F6rELKlu2bEHHjh1x3XXXVUXziYiIiKiu8bH8kNIwHQX3T0Lx9cODvpS3ybe8LmlUkXJkVyDqbfKtYDO+Pkupva9p7FcoE4cRhVGND4wdDgfuvvtu2Gw2fPbZZ3jxxRfxzTff4K233vJ73mOPPYYDBw5g9uzZ+N///offfvsNM2bM8DiuoKAAf/vb33DppZdW0R0QERERUZ2jLp+WtQGkSIyvWBBber6kCBTdMAKWQX2c1/BxXHDtKw2sSyffCmWMsaZcXHOPobSJgTFFVo0PjNetW4fMzEy8/PLL6NChAwYNGoSpU6di3rx5sNlsXs/JzMzE2rVr8a9//QvdunXDxRdfjOnTp2PRokXIzs7WHPvss89i+PDh6NGjR3XcDhERERHVBb4ysKEEgKqMsaNtC1j79Qz8mgGI0sBYclVh+mpjCBljEcp4ZXgpDSeqRjV+8q1t27ahffv2SE9Pd2/r378/ZsyYgYMHD6Jdu3Ye52zduhXJycno3Lmze1u/fv0gSRJ27NiBIUOGAACWLl2Kffv24fnnn8e7774blvbKYSgDcV0jHNeqrdhHwWE/BcY+Cg77KTD2ERGpaTOwPrKxwfJWSu3tNQMGoaX7hYA9owWMW/+EvWUz5zZ1hlvykf31cTlNGz2+DvKGGRdThNX4wDg7OxtpaWmaba4gOTs722tg7O0cvV6PpKQkd8b41KlT+Pe//41Zs2bBGMJC697o9TLS0ryUtYQoJSUubNeqrdhHwWE/BcY+Cg77KTD2EREB0I4BloPMwPriCjQd/gNjmIL/TGu54jI4WjWDvVVT5wajASUjBkFJjIfOtS4yEOIYYx/jjf0QZlNQxxFVlYgFxjNnzgw4TnjNmjUAAMnHL6Sv7b72CSHc26dNm4bJkycjIyMj2CYHZLcryMsrrvR1ZFlCSkoczp0rhKLw8Zk37KPgsJ8CYx8Fh/0UWHX2UWKiGQYDlzYhqtF8zEotQkgZK4nx0J2A93HFAIrGXw3Djr2wdfZMGKkJ9Usb9LBntNTst3XvCADQHTulOieEwFj1UCBwFrv0uPg4FN04EiI5IajjicItYoHxpEmTMGbMGL/H1KtXD+np6di1a5dmuyvrWz4r7JKenu4xlthutyMvL899zq+//orNmzfj5ZdfBgAoigIhBDp27Ii5c+eiV69eId1XOD8MKYrgB9AA2EfBYT8Fxj4KDvspMPYREQHwPcY4hGWJLFdeBhj0sF7a3et+R6tmcLRqVuHrBiWUMcZ6H9nyABwVWcKKKMwiFhgnJycjOTk54HHdu3fHu+++i5ycHHdQu379eiQmJqJVq1Zez+nRowfOnz+PXbt2oVOnTgCAjRs3QgiBrl27AgAWLVqkOeeTTz7B77//jtdeew1NmzatxJ0RERERUV2nHmNcflbqCl8rLhYlVw8OR7OCVNZGKcC4Zjcfy1OFVDpOFAE1flbq/v37o3Xr1pg2bRr27NmDtWvX4vXXX8eECRNgMBgAADt27MDw4cNx5swZAEDr1q0xYMAATJ8+HTt27MDmzZvx3HPPYdSoUe7xyRkZGZr/paWlwWg0IiMjA2azOWL3S0RERES1gGaMsY+JqWoqdRyfewEAoMTF+j1FHfwLvSr3Fg33S4QoCIx1Oh3eeecdyLKM8ePH4/HHH8e1116LBx980H1McXExDh06pFm+6ZVXXkGrVq1w22234a677kKvXr3wzDPPROIWiIiIiKiu8bVkUTTMXK9qr1LfWbFpb9866HMQYik1USTV+FmpAaBx48Z4//33fe7v06cP9u7dq9mWnJyMV199NejXePDBBzXBNhERERFRWPhc0zhCRIB5EFRtLLl6MPR7D8LWs1PQ52gC45pwv0RBiIrAmIiIiIgoqqjjQV+zN0cBkRAHW+9ugQ9UT76lmZW6xheoEgGIglJqIiIiIqKoUxPLp0vbFLA1oQTy6nvUjDGuIfdOFAADYyIiIiKiMFOvVyyibQIqX9luv+eoZuFmKTVFoSj7LSUiIiIiigKhBJdVTElPBQA4Lqrv/8BQlpRSZ4Z1nHyLog/HGBMRERERhVsNHFdsGXwpRFI8bF3aBTgyhPb6nHyLeTiKDgyMiYiIiIjCTCQlOP81GmrOWr4mI6x9ewY8TISS5dX5KKVmxpiiBANjIiIiIqIwE3GxKLj7ZohYM/SHj0e6ORUTQiAvDIayb9STb9WQbDlRIAyMiYiIiIiqgEhNdn4RbcGhLoQMt7EsMFYv1xR19051Vg2p6yAiIiIiqqWiLTgMJWNsVGeMdb4PJKqhGBgTEREREVUlISLdggoJaXkpdSl1tD0IIAIDYyIiIiIiUguhlFoYOK6YohsDYyIiIiIiKhNSxlgVGHMmaopCnHyLiIiIiIjKhDLGuNxM1AV33QwgukrIqW5jYExEREREVJXqxBjjsrBCSFLZjNxEUYKl1EREREREVCakdYw5xpiiGwNjIiIiqpCjR4+iR48e6NOnT6SbQkRVIZQxwgyMKcoxMCYiIqKg2e12PP744+jVq1ekm0JEVSWEwLb8GGOiaMPAmIiIiIL29ttvo0mTJhg5cmSkm0JEVSWUwDg+tuwbzkpNUYiTbxEREVFQtmzZgoULF2LhwoX46aefwnJNuZIfoF3nV/Y6tR37KbCq7CNJlU2Nhv8Gkmod4/LtLd9PRQ9MglRQBEkVGMuyDBEF91lV+PsWnJrWT1ERGJ88eRIzZszApk2bEBsbi7Fjx+LRRx+FTqfzec758+fx3HPPYdWqVdDpdBg2bBj+/ve/Iza27JdWURR8+OGH+PLLL3Hy5EnUr18ft99+O2699dbquC0iIqKoUVBQgGnTpuH5559HUlJSWK6p18tIS4sPy7VSUuLCcp3ajv0UWFX0kejdEbYDB6Hr2i5sP/NVSbkQC2vp177a6+6n0v1CEbC49qXFQ0rgzxp/34JTU/qpxgfGDocDd999N9LT0/HZZ5/h7NmzeOKJJ2AymTB16lSf5z322GPIysrC7NmzYbPZ8NRTT2HGjBl46aWX3Mf8+9//xi+//IInn3wSbdq0wblz51BcXFwdt0VERFQjzJw5E2+99ZbfY9asWYM33ngDl19+OS677LKwvbbdriAvr3Lvu7IsISUlDufOFUJRomtJnOrEfgqsyvto5BDnvzkF4b92mMn5JTCXfp1Trr3++skV3uSeLwKsdffnjL9vwanOfkpMNMNg8J1UBaIgMF63bh0yMzMxe/ZspKeno0OHDpg6dSpee+013HfffTAYDB7nZGZmYu3atfj666/RuXNnAMD06dNx9913Y9q0aUhPT0dmZiY+/fRTLFq0CK1atQIANG3atFrvjYiIKNImTZqEMWPG+D2mXr162LRpE06fPo1PPvkEACCEgKIo6NixI/7zn/9g9OjRIb1+uD4MKYrgB9AgsJ8CYx8BUN2+r77w10+KkIC63ofgz1Kwako/1fjAeNu2bWjfvj3S09Pd2/r3748ZM2bg4MGDaNeuncc5W7duRXJysjsoBoB+/fpBkiTs2LEDQ4YMwcqVK9GkSROsXLkSU6ZMgSRJGDBgAB577DHEx4de4hKOGvmaVm9fE7GPgsN+Cox9FBz2U2DR2kfJyclITk4OeNyHH34Im83m/v6nn37CrFmzMH/+fDRq1KgKW0hE1a6ys0pH159BIgBREBhnZ2cjLS1Ns80VJGdnZ3sNjL2do9frkZSUhOzsbADAsWPHcOLECfz44494+eWXYbVa8fzzz+Nvf/tbwJIyX8I5VgqoOfX2NRn7KDjsp8DYR8FhPwVWW/uoZcuWmu937twJWZaRkZERoRYRUZWp7AM+mQvfUPSJWGAc7JgmAJB8PLXytd3XPiGEe7sQAjabDf/5z3/QvHlzAMCMGTMwceJEZGdnazLUwQrHWCmA4xKCwT4KDvspMPZRcNhPgdW0sVJERKFS6qfB3rIp7C2bhHYBZowpCkUsMA52TFN6ejp27dql2e7K+pbPCrukp6e7j3Gx2+3Iy8tzn5Oeng69Xu8OigGgdevWAJyzYIcSGAPhGyvluhY/gPrHPgoO+ykw9lFw2E+B1ZU+uu6663DddddFuhlEVBVkGcU3jQr9fIkZY4o+EQuMgx3T1L17d7z77rvIyclxB7Xr169HYmKie9Ks8nr06IHz589j165d6NSpEwBg48aNEEKga9eu7mPsdjuOHTvmnnTr0KFDAICLLrqosrdHRERERFQ3MWNMUajGP87p378/WrdujWnTpmHPnj1Yu3YtXn/9dUyYMME9I/WOHTswfPhwnDlzBoAz8ztgwABMnz4dO3bswObNm/Hcc89h1KhR7kzwZZddhvbt2+Pvf/879uzZgx07duC5557DsGHDQs4WExERERHVeRxjTFGoxv/U6nQ6vPPOO5BlGePHj8fjjz+Oa6+9Fg8++KD7mOLiYhw6dEgzW+Yrr7yCVq1a4bbbbsNdd92FXr164ZlnntFc97333kNCQgJuvvlm3HfffejatSteeOGFar0/IiIiIqLawNGwHkSMMdLNIAqJJISo/QOhqonN5sD580WVvo4sS0hLi0dOTkGdGKcWCvZRcNhPgbGPgsN+Cqw6+yg5ObZWTL4VjvdN/mwGh/0UGPsoOH77SQjn/+p4xpg/S8Gpae+bNX65JiIiIiIiigKSVPk1kIkipG4/ziEiIiIiIqI6j4ExERERERER1WkMjImIiIiIiKhOY2BMREREREREdRoDYyIiIiIiIqrTGBgTERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jRJCCEi3YjaQlEEHA4lLNcyGHSw2RxhuVZtxT4KDvspMPZRcNhPgVVXH+l0MmRZqvLXqWrhet/kz2Zw2E+BsY+Cw34KjH0UnJr0vsnAmIiIiIiIiOo0llITERERERFRncbAmIiIiIiIiOo0BsZERERERERUpzEwJiIiIiIiojqNgTERERERERHVaQyMiYiIiIiIqE5jYExERERERER1GgNjIiIiIiIiqtMYGBMREREREVGdxsCYiIiIiIiI6jQGxkRERERERFSnMTAmIiIiIiKiOo2BcQ0zf/58DBkyBF26dMG4ceOwY8eOSDep2rz77ru4/vrr0aNHD/Tt2xcPPPAADh8+rDnGYrHgmWeeQZ8+fdCjRw88+OCDyMnJ0Rxz8uRJ3HXXXejWrRv69u2Ll156CQ6HoxrvpPo8/fTTaNeuHebNm+fexj5yOn36NB599FH07t0b3bt3x3XXXYfMzEz3fvYTUFBQgBkzZmDAgAHo1q0bRo0ahYULF7r318U++u2333DPPfegf//+aNeuHVatWqXZH64+2bRpE8aOHYvOnTvjyiuv1PQ7VQzfN/m+WRF83/SN75uB8X3TU6163xRUYyxZskR06tRJfPXVV2L//v1i+vTp4pJLLhE5OTmRblq1+Mtf/iK+/vprsW/fPrF7925x5513isGDB4vi4mL3Mf/85z/FoEGDxPr168Uff/whxo0bJ2655Rb3frvdLkaNGiVuv/128eeff4rVq1eLPn36iNdffz0St1SlVq5cKcaMGSP69+8v5s6d697OPhLi/PnzYvDgweJvf/ub2L59uzh69KhYvXq1OHXqlPsY9pMQTz31lBg2bJj49ddfxdGjR8W8efNE+/btxaZNm4QQdbOPVq9eLV577TWxYsUKkZGRIVauXKnZH44+OXr0qOjWrZt44YUX/p+9+46Torz/AP6Z2XJtr9/RmxzSy4EFRYqFIBIbaDBG1KjETjRRiQUV7F1jiyZGfkRQYxJBjUosiCAgNg6kw9Hr9X5b5/n9sXe7M7uz7W7vdvfu8369EpfZmdlnn9u72e98n+f7iN27d4u33npLDBkyRKxZs6bd3mdHwesmr5uR4HUzMF43w8Prpr+OdN1kYBxHLr30UvHQQw95/u1yucT48ePFG2+8EcNWxU55ebkYOHCg+PHHH4UQQtTU1Ihhw4aJ5cuXe/bZvXu3GDhwoNi0aZMQwv3LOWTIEFFaWurZ5+233xYnn3yysNvt7fsG2lBpaamYOHGi2L59uzjrrLM8F3j2kdvTTz8tLr/88oDPs5/cfvnLX4rXXntNs23KlCnijTfeYB8J4XeBj1afPPXUU+L888/XvNbtt98urr/++rZ8Ox0Sr5tavG4GxutmcLxuhofXzeAS/brJodRxwm63Y8uWLTjjjDM822RZxrhx41BUVBS7hsVQbW0tACAzMxMAsHnzZjgcDk0fFRQUoEePHp4+KioqwuDBg5GXl+fZZ/z48aipqcGePXvar/Ft7J577sGVV16JQYMGabazj9xWrFiB4cOHY86cOTj99NMxY8YMfPDBB57n2U9uo0ePxpdffonjx49DCIHVq1ejpKQE48aNYx/piFafFBUVac7RvE9n/VvfUrxu+uN1MzBeN4PjdTM8vG5GJtGumwyM40RlZSVcLpfmQwEAubm5KC0tjVGrYkcIgccffxynnnoqCgoKAABlZWVITk6GxWLR7Jubm4uysjLPPrm5uZrnm/u0eZ9Et3jxYjQ0NODaa6/1e4595Hbw4EG8/fbbKCgowJtvvolLLrkE9913H7788ksA7Kdm8+bNQ58+fTBx4kQMHz4ct956Kx5//HEMGTKEfaQjWn0SaJ+qqio4HI62an6Hw+umFq+bgfG6GRqvm+HhdTMyiXbdNEbtTNQmhBCQJCnWzWh3Dz30EHbu3Il33nlHs12vL4QQIfcJtj2RFBcX49VXX8V7770HWda/r9XZ+whwv98RI0bg9ttvBwAMGTIEmzdvxjvvvINzzjkHAPsJcH9Z3LZtG/7617+ia9euWLduHe69915069YNAPtIT7T6xHcf33NQy/G6yeumGq+b4eF1Mzy8bkYuka6bzBjHiezsbBgMBr+7RRUVFX53wzu6hx9+GCtWrMCiRYvQtWtXz/a8vDw0Njairq5Os7+6j/Ly8vz6sPnfvneaEtHGjRtRUVGBKVOmYOjQoRg6dCgOHz6MRx99FFOnTmUfNcnLy0P//v012woKCnD06FHP8529n6xWK55//nncfffdmDRpEgYPHoxrrrkGkyZNwqJFi9hHOqLVJ3r7lJeXIysrCyaTqa2a3+HwuunF62ZgvG6Gh9fN0HjdjFyiXTcZGMcJs9mMYcOGYe3atZ5tiqJg3bp1KCwsjF3D2pEQAg899BA+++wzLFq0CL1799Y8P3z4cJhMJk0f7d27F0eOHPH0UWFhIbZv364pA7927VpkZGT4/cFPRJMnT8aHH36IZcuWef7XpUsXXH/99XjttdfYR01Gjx6N/fv3a7bt27cP3bt3B8DPEgA4nU44HA4YDAbNdlmWoSgK+0hHtPqksLAQa9as0Zx77dq1neZvfbTwusnrZjh43QwPr5uh8boZuYS7bka1lBe1SvOyE++//77YvXu3uP/++zvVshMPPvigOOmkk8T69etFSUmJ53++y06ceeaZYt26deLnn38Wl112mW7J92uvvVZs27ZNrFq1Spx22mni+eefj8E7ah/q6ppCsI+EEKKoqEgMGTJEvP7662Lfvn3i/fffF8OHDxdffvmlZx/2kxCzZs0SF154oWfZiXfffVcMHTpUfPDBB0KIztlHdXV1YuvWrWLr1q1i4MCB4h//+IfYunWrKCkpEUJEp08OHDggRo4cKZ588kmxe/dusXjxYjF06FAu19QCvG7yutkSvG7643UzPLxu+utI100GxnHmrbfeEmeeeaYYNmyYuPTSS8XGjRtj3aR2M3DgQN3//ec///HsY7Vaxfz588Upp5wiRo0aJW699VZNeXchhDh06JCYPXu2GDlypBg7dqx44oknhNPpbO+30258L/DsI7fPP/9c/PKXvxTDhw8X06ZNE0uXLtU8z34SoqSkRPzpT38S48ePFyNHjhTnnXeeWLx4sef5zthH3377re7foRdffFEIEb0+WbdunbjooovEsGHDxDnnnCPef//9dnuPHQ2vm7xuRorXTX28bobG66a/jnTdlIRgxQ8iIiIiIiLqvDjHmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBNRzHzyySd4//33Y90MIiKihMDrJlHbYWBMRDGzfPlyLF26NNbNICIiSgi8bhK1HQbGRERERERE1KlJQggR60YQUedz9913+931vvXWWzFnzpwYtYiIiCh+8bpJ1LaMsW4AEXVON998M44cOYLa2lo8+OCDAIBu3brFuFVERETxiddNorbFwJiIYqJPnz7IysqCEAKFhYWxbg4REVFc43WTqG1xjjERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIooZk8kEm80W62YQERElBF43idoOA2MiipkTTjgBO3fuxBdffIGff/4Zx48fj3WTiIiI4havm0Rth+sYE1HMVFRU4P7778f333+P6upqrsdIREQUBK+bRG2HgTERERERERF1ahxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsCYiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqxlg3oCNRFAGXS4nKuYxGGU5ndM7VUbGPwsN+Co19FB72U2jt1UcGgwxZltr8ddpatK6b/GyGh/0UGvsoPOyn0NhH4Ymn6yYD4yhyuRRUVTW0+jyyLCE314KamkYoiohCyzoe9lF42E+hsY/Cw34KrT37KCsrFbJsaNPXaA/RuG7ysxke9lNo7KPwsJ9CYx+FJ96umxxKTURERERERJ0aA2MiIiIiIiLq1BgYExERERERUafGwJiIiIiIiIg6NQbGRERERERE1KkxMCYiIiIiIqJOjYExERERERERdWoMjImIiIiIqNVsJZvQeHhtrJtB1CLGWDeAiIiIiIgSX+kXvwcA9Lz8K0iSFOPWEEWGGWMiIiIiIooeocS6BUQRY2BMRERERETRw8CYEhADYyIiIiIiiiIGxpR4GBgTEREREVHUCGaMKQExMCYiIiIiougRItYtIIoYA2MiIiIiIooe4Yp1C4gixsCYiIiIiIiip4UZY0fVHrgaK6LcGKLwcB1jIiIiIiKKmpbMMXbZqnH8k2sBAL1+szLKLSIKjRljIiIiapEHH3wQgwYNwuLFi2PdFCKKMU0w3ILAWGGmmGIsoQLjJUuW4Oyzz8aIESMwc+ZMbNq0Kej+n376KaZOnYoRI0bgggsuwKpVq/z22b17N2644QaMGTMGY8aMwa9//WtUVPAXk4iIKJivvvoKRUVF6NKlS6ybQkTxwCcwrtu5DHU7l4Z/vCRFv01EEUiYwPiTTz7B448/jltuuQVLly7FoEGDMHv27IBB7IYNG3DHHXfg0ksvxbJlyzB58mTcfPPNKC4u9uxz4MABXHHFFRgwYADefvttLF26FNdddx1MJlN7vS0iIqKEU1ZWhvnz5+Opp57iNZOI3BRvwS0BBVU/vICqH/4cwQkYGFNsJcwc44ULF+Kyyy7DJZdcAgBYsGABVq5c6QlmfS1atAgTJ07E7NmzAQC33XYb1qxZgyVLluCBBx4AADz//POYOHEi7rrrLs9xffv2bYd3Q0RElLjuueceXHnllRg0aFCrzyXLrfsy3Hx8a8/T0bGfQmMfhSdQPymSN2Osfirc/lTvl+g/A36WwhNv/ZQQgbHdbseWLVtw0003ebbJsoxx48ahqKhI95iioiK/gHn8+PFYuXIlAEBRFKxcuRKzZ8/GNddcg+3bt6Nv37645ZZbMGHChBa3NRo/2Hj7kMQj9lF42E+hsY/Cw34KrbP00eLFi9HQ0IBrr7221ecyGmXk5lqi0CogOzstKufp6NhPobGPwuPbT06rgkNNj7Myk3Gk6XG4v+NWOQ1HIzwm3vGzFJ546aeECIwrKyvhcrmQl5en2Z6bm4v9+/frHlNWVobc3Fy//UtLSwEA5eXlaGhowBtvvIHbb78dc+fOxZdffokbbrgB//73vzF06NCI2xnNCzwQPx+SeMY+Cg/7KTT2UXjYT6F15D4qLi7Gq6++ivfeew+y3PrZWE6ngpqaxladQ5YlZGenobKyHorSsiViOgP2U2jso/AE6ieXtcbzuLKy1vO4vLwurPM6qr37hXtMvOJnKTzt2U8ZGSkwmQxB90mIwDgQIQSkIBP19Z5r3qYo7uEe55xzDq6++moAwJAhQ/Ddd9/hn//8JxYsWBBxe6JxgQf4yxQO9lF42E+hsY/Cw34KLd4u8G1h48aNqKiowJQpUzzbXC4XHn30USxevBjLly+P+JzR6itFEfxshoH9FBr7KDy+/aS4nN7HTqdmv7DO5/LOUe4o/c/PUnjipZ8SIjDOzs6GwWBAWVmZZntFRYVfFrlZXl6e3/7l5eWe/bOzs2E0GtG/f3/NPgUFBTh8+HCL2xrNH2q8fEjiGfsoPOyn0NhH4WE/hdaR+2jy5MkYPny4Ztt1112HGTNmYPr06TFqFRHFAyFUxbdcdtX24IksveOJYiEhqlKbzWYMGzYMa9eu9WxTFAXr1q1DYWGh7jGFhYVYs2aNZtvatWs9+zef03co9r59+9C9e/eotp+IiKgjyMjIwMCBAzX/M5lMyM/PR79+/WLdPCKKAVvpZtTv/UxblVrxBsZhr2ncgrWPiaIpIQJjALjmmmvw7rvvYunSpSguLsb8+fNhtVo9d6jnzp2LZ5991rP/VVddhVWrVuHNN99EcXExXnrpJWzevBlXXHGFZ59rr70WH3/8Mf79739j//79ePPNN7F+/Xpcdtll7f7+iIiIiIgSTennt6Jy3WNwNZZ7N7oc3sfhBrwKA2OKrYQYSg0A06ZNQ0VFBV588UWUlpZiyJAheOONN5CTkwMAOHr0qKYQyJgxY/Dss8/ihRdewHPPPYd+/frhlVdeQUFBgWefqVOnoqamBq+99hoefvhhFBQU4LXXXmtR4S0iIqLOaMWKFbFuAhHFAcVW5XkslMgDY8GMMcVYwgTGADBr1izMmjVL97m33nrLb9t5552H8847L+g5Z86ciZkzZ0alfUREREREnZFwWr2PVRljAQVhLWLHOcYUYwkzlJqIiIiIiOKTJjBuwRxjTfEu0TELGFJ8S6iMMVFn4bJWwlGxC47qvXBZKyHsdYBsgGRMgTGtG4yZfWHOHQLZmBzrphIRERFBcdk8j9VVqVtUfEu4AIlhCrUvfuKI4oSjag8a9q9A46E1cFbvDX2AZEBSl5FI6Xs2UvucBdlsaftGEhEREelQZ4yhmmMslDCHSPsGxgxTqJ3xE0cUQ0IoaDy4CnU73oe9dJNnuzG9N8y5g2HKLoAhJR+y2QIhFAh7HZz1x+Co3AVb6c+wHd8A2/ENqP7pL0gbcD7Sh14OQ3J2DN8RERERdUbC2eh93IKq1EKz3JMLkiFqTSMKCwNjohgQQsB65FvUbHwDjqpiAIDR0hNpA85Hcq8JMGX0CuMcCuylP6N+z//QsO9z1G1/D/XFHyNjxG9hGTgdksxfbyIiImofwqkaSh1BVer64k9hSMnRyRgTtS9+cyZqZ876Y6j6/s+wHlkHADDnDkXGiKuR1P0USFL49fAkSUZSl1FI6jIKmaOuQ+2WJajbtQzVP72Chr2fI+eM+5GU1aet3gYRERGRhwgwx1ggcGAsXDZUrn8SAJA74WHv9nCHXxNFEQNjonYihEDdzvdRU/Q3CJcVBksPZI25Fck9T4ckhbWQQUCGlFxknfx7pA24AJXfPwd76c8o+fR3yD71D8jNvTRK74CIiIhIX6A5xsEyxprh08wYU4wxMCZqBy5rFSq/fQLWI98CshHpw65ExrBZkIxJUX0dU9YJyD/nBdRuWYKazf+HinWPw2g/gqTBvwXCW0WQiIiIKGLCpb+OcfCh1KplmYR2jjFRe2NgTNTGbKU/o/yb+VAay2HM6I2cMx6AOfvENns9STYgY8RVMHcZgfLV96Pkx0VILd2P7NPvg2QwtdnrEhERUeclFKf3sXootRIkMFYHwMwYU4yFP6GRiCJWv+dTlH75ByiN5Ujtfx66TP1rmwbFasldR6PbuX+BObMnGg6sRPnqB7TrChIRERFFiyqw1RbfChzkCqE/lJoZY4oFBsZEbUAoLlT99Coqv30SEAqyTvkDck77E2RjSru2w5TZBwN/9XcYM/rAemQdg2MiIiJqE5pgNtyq1Jpj1NljBsbU/hgYE0WZcDlQsfYR1G1/D5I5HXlnPQPLiRfFrD2mtHx0/cULMGb0hfXIt6j49gltgQsiIiKiVlNlfANkgn2p99MEw/yeQjHAwJgoihRnI8pW3YfGA1/BkNYNXab8BcndxsS6WTCk5CL/nOdgSOuGxv0rUF3011g3iYiIiDoSdTCrGQodJMgNGEAL/32J2hgDY6IoUey1KFtxF2xHv4Mxsx+6/OJlmDJ6xbpZHoaUXOSd+SRkcwbqtr2Lul0fxLpJRERE1EFo5giHmf0VAYpvCcHAmNofA2OiKFDstShdcQfsZZthzh2KLpNfhCE1L9bN8mPK7IvcSY8CshFVP74EW+mWWDeJiIiIOgIRYL5wsKrUmiWanOonotcuojAxMCZqJcVeh9Kv5sJRsRPmLqOQd/YzkJMyYt2sgJLyRyDrpN8DihPl3zwIV2N5rJtEREREcUYozsgyt4o646v/2P81AhXsik5gLIRA9aaFsB0visr5qGNjYEzUCoqjAWUr74ajfBvM+SOQN+lxyKbUWDcrpLQBFyC1/zQojWUo/2aBz11aIiIi6swUZyMOvzsZ5avuC/sYoc7yBiqq5XeQKoB2OdRPhP26wdhLN6F28yKUfnl7VM5HHRsDY6IWUpxWlK282zN8Ou/MJxMiKAYASZKQfcptMOUMdF80trwd6yYRERFRnHDWHAAAWA+vDf+gQEOpg1WY1hTfUt2kj1JVasVeF5XzUOfAwJioBYTiRMU382Ev3QRTzmDknfVUwgTFzSRDEnLG3Q/JkIyazf8HW9nWWDeJiIiI4kGwecEBj1EFueqlm4JkfwMOpSaKgYQKjJcsWYKzzz4bI0aMwMyZM7Fp06ag+3/66aeYOnUqRowYgQsuuACrVq0KuO/vfvc7DBo0CF999VW0m00djBACleufhvXItzBm9EX+WU9BNlti3awWMWX0RuZJtwJCQeXaR6E4GmLdJCIiIoqxYPOCtfupg171UOoAw6r9TqAKpl3ejHG4r08UTQkTGH/yySd4/PHHccstt2Dp0qUYNGgQZs+ejYqKCt39N2zYgDvuuAOXXnopli1bhsmTJ+Pmm29GcXGx376LFy9mWXgKW3XRX9Gw938wpOYj76yn47rQVjjSCn6J5J5nwFl3GNUbXot1c4iIiCjWggWzmv0CFNnSrGkcpPiWpip1+HOMNZnm4HuGuR9RAgXGCxcuxGWXXYZLLrkEAwYMwIIFC5CUlISlS5fq7r9o0SJMnDgRs2fPRkFBAW677TYMHToUS5Ys0ey3e/du/PWvf8Vjjz3WHm+DElzttvdQt+0dyOYM5J31NIxpXWLdpFaTJAnZY++CnJSJ+t0fwlYSfCQGERERdXBhZ2xVgad6KLVm7nCQcykBinQFSVgpthocfvccVH7/fJhtJAqPMdYNCIfdbseWLVtw0003ebbJsoxx48ahqKhI95iioiJcd911mm3jx4/HypUrNee94447cM8996BLl+gEOLIsRe0c0ThXRxWLPqrf+zmqN7wKyZCE/LMeR1L2Ce322i0Vbj/JqdnIPnkOytc8gsrvnkH3X74ByZDUHk2MOf6+hYf9FBr7iIg6irCHMgfKEmuGUkc3Y2wr2QgAqN/1AbJP+UOI9jFjTOFLiMC4srISLpcLeXl5mu25ubnYv3+/7jFlZWXIzc3127+0tNTz7+effx4nnngizjvvvKi002iUkZsbvbmm2dlpUTtXR9VefVR3eAMOfvskIBlwwi+fROYJp7XL60ZLOP2Uk3Mx7IdWoHb/WjiK30P3028KeUxHwt+38LCfQmMfEVHCC3ModcD1ijWPg5xLU3xLXZU6cEArGcxhtY0oUgkRGAcihIAkBb4zr/dc87Zvv/0Wy5cvxwcffBC19jidCmpqGlt9HlmWkJ2dhsrKeigK73Tpac8+ctQewvHld0C4HMg+9Q44M0ajvDwxyv9H2k/po3+PukM/4dj3CyF1mQBTVr+2b2SM8fctPOyn0NqzjzIyUmAyGdr0NYio89KuKRxsxxYEw9oXUh2uPibI39CIAmNeryh8CREYZ2dnw2AwoKysTLO9oqLCL4vcLC8vz2//8vJyz/7ff/89jh49itNO02b+br75ZowbNw5///vfW9TWaH4ZUhTBL6AhtHUfKbYalK64G4qtGpbBM5E24IKE/JmE209yajdkjLwG1Rv+goofXkTeWc8EvfnUkfD3LTzsp9DYR0SU6ETYSyfpV59WF7UNNiw70FDqYMdIsinMtkVSpIsoQYpvmc1mDBs2DGvXehcZVxQF69atQ2Fhoe4xhYWFWLNmjWbb2rVrPfv/5je/wYcffohly5Z5/gcA8+bNw4IFC9ribVCCES4Hylc/AGftQST3PAOZhTfEukntwjJwBowZfWA79iOsh76JdXOIiIiovYUbGIczlDpY1jbIUOra7f+GvWxbeO0IeH5n6H2ImiREYAwA11xzDd59910sXboUxcXFmD9/PqxWK6ZPnw4AmDt3Lp599lnP/ldddRVWrVqFN998E8XFxXjppZewefNmXHHFFQDc840HDhyo+R8A9OjRA7169Wr/N0hxRQiByu+fha2kCKbsE5FzxjxIcucYtigZTMg6aQ4AoOqnVyCcthi3iIiIOgLr0R9Q+f0LzOIlgPCHUgcoshVmhelAGWN7xXZU//QySj7TqXcSRmEw2/EiOOuOQAgGxhS+hBhKDQDTpk1DRUUFXnzxRZSWlmLIkCF44403kJOTAwA4evQoZNkb548ZMwbPPvssXnjhBTz33HPo168fXnnlFRQUFMTqLVACqd36Nhr2LIchJQ95kx6DbEyJdZPaVXL3U5Dc8wxYD69B7fZ/ImP4VbFuEhERJbiyr+4E4L7GpPQ6I8atoWDUQariaIC9bAuSup3sN70qrCxxuMs1qZd7stcGbpvPUlCSpM3zuayVKP3ydgBA1ql3Bn5tIh8JExgDwKxZszBr1izd59566y2/beedd15EFad37NjR4rZRx9FwYCVqNv4NkjEZuZMehyE1P9ZNiomsMTfj2NHvULtlCdL6n9dp+4GIiKJLOK3RP6cQaNjzKYTTCsugGVE/f2ejDoxrt76N2i2LYRk8E1ljbvbd0fsw4NrFQYZSBzpGCjJKT/2aTiskU6r2aUeD9x8cSk0RSJih1ETtwV62DRXrHgMgIWfcAzDnnBjrJsWMMb0n0gdfCuGyoebn/4t1c4iIqKOQov/101lzAJXrn0LVjy9CcbZ+hZBOTzWU2na8CABQt/09nR3VmWH9LHHQ4lsBMsuSHCR3p84su+z+z6uOFQyMKQIMjImaOOtLULbqPsBlR+aYm5HSa1ysmxRz6UN/A8mcjvo9n8JRrb9mOBERUUTaYLUDoQ6GGQy1mjr7KydlBtkx0HJN6sfBMsaBlngK/BkJmY3WnNP7WRDB2kEEBsZEAADF2YjyVfdBsVYgreB8WAZdGusmxQXZnI6MYbMAoaB6499i3RwiIuoApGDDZFtIBFwPl1omvDnCIqyh1EHmGGuWdVI9DnZzI+C85uZN3nYoDt4wofAxMKZOTwgFleseh6NyF5K6FCLr5Ns6zdq94bAMvBiG1K6wHvoGttLNsW4OEcXQ66+/jksuuQSjR4/G6aefjltvvRX79u2LdbMo0bTFNTZEsEQRCnuOcDQzxqogO2hgrK54rfOzVj2v2KpVzeANEwqOgTF1ejWbFqLx4CoYLD2QM2EBJEP4C8d3BpIhCRkjrwUAVBe9xqFIRJ3Yd999hyuuuALvvfceFi5cCLvdjmuvvRZWa/SLKVEHFkbgWl/8CY7/7yYo6kJKwaizxAyAWi9AJlhnR91jtMFwkOWaNMfrr2nsOwJAm6XWG0qtHxgzY0yhMDCmTq1h3xeo3fIWJFMa8iY9DkOweTSdWGq/yTBl9Ye9dDNsR7+LdXOIKEb+/ve/Y8aMGTjxxBMxePBgPPHEEzh8+DC2bt0a66ZRAglnjdzK9U/BUb4NjQe/Du+cYRZ7igXhssFRtTfWzYiIJuAMNjQ94BJN6mHV4WWMA61pLFw27blCDNPWnseueszAmIJLqOWaiKLJVrYVFd8+CUgycs94EKbMvrFuUtySZAMyRlyD8tX3o+bn/0NS91M53JyIUFvrXms0M7PlNxVluXV/S5qPb+15Orp46icJrrDbIcly0H0VRwMUWw0kyRsgyZJo0ftsqz46/sWfYCspQpcpLyG5y8ionrutSJosr6pvZUnTT4G+CqhvTkgI/POQAlWlVgW3kmKDLKehasPrqN+3ApkjrvK2R+fcMvSDellS2u3zH0+/b/Es3vqJgTF1Ss76EpSvug9QHMg66fdI7nFqrJsU95J7nQFTVgHs5dtgPfodUnqMjXWTiCiGhBB4/PHHceqpp6KgoKBF5zAaZeTmWqLSnuzstKicp6OLVT8JIXCg6XFaikH35+5srET9sS3I6HeGZ9/0DAtygnxGfn7jEjjry9D33Ic92zIzkpCc3fLPVbT76EBJEQDAULsVuUMSY8ULW4oRNU2PjQYJzTlb9c8tOzsNVpGMozrHy5I3nE5LMwX8PXemmlDV9NggA805XbPZGyhlZSXDbLHgwJa33RtqdqieS0FSlvbc9Q4zjjU9NhkFmid6ZGelwmSJzt+bcPHvUnjipZ8YGFOn465AfS8UayXSBlyItIHTY92khCBJMjJG/NaTNU5m1pioU3vooYewc+dOvPPOOy0+h9OpoKamdWvOyrKE7Ow0VFbWQ1FYAyGQWPeTer3Z2to6oLzOb58jH14LZ80B5E161LOtvt4BobNvM2d9GQCg6vgBz7aqylqYlMDHBNLWfdTQYEd5kPcSTxobvMOXHQ7vsOby8jpNP1kr9d+PosrU1tdZIQd43w313voELqd3qLO1wft3obK8BkZbquffdqf3u0dFSQkq//cQ0gdOR2qfiQAAW1W9d1+b931UVNTCaEvRbUe0xfr3LVG0Zz9lZKTAZApeEZ+BMXUqQiioWPsYHJW7kdR1DLJO/j2Duwgk9xoPU/YAOJg1JurUHn74YaxYsQKLFy9G165dW3WuaH0ZUhTBL6BhiFU/KQ5vgKI4HbptcNa4g1t7xS7PNgFDeO2VvF9pFZerVe+xrfpIiMT5jCqKau6uevmjpvYLxYWGY0WAZNY9Xl0wSyhKwPetfh3t3GBvkKy4nD7He4Ob2l0fwXbsJ9iO/YRev1np2V+vHUqQdrQV/l0KT7z0E4tvUadSs+lNWA+thtHSE7nj50OSeW8oEpIkIWP41QDc1bxZoZqocxFC4KGHHsJnn32GRYsWoXfv3rFuEiUITWVj4YSz/hisxzfo7yyrVocI8+a1OpCKt+JbCUlTPMu/+FbJT4tR8tnvUfn984FOoHrk/11BcTRAcfpUsw+wXJPvz1NbmMsOX5r91QW3+LmgEBgYU6dRv/cz1G5ZDMmUhtwzH4eclBHrJiUkT9a4YjusR9bHujlE1I4WLFiADz/8EM8++yzS0tJQWlqK0tJSLtdEofkEPcc+vAJlX/4BjpqDfruqb1oHqySsCZ7UARKXa2o9oV8Uq1n1Hne1cEfFDr/n3McEX2v4yL9+iSPvTfWpSh0ooHVpf9aaStM6P2tFP/PMwJhCYWBMnYKtZCMq1z/trkA9fgFMGX1i3aSEpc4a1259O8atIaL29M4776C2thZXXnklxo8f7/nfJ598EuumURsQiguV659G46G1LT+HUPyW2BEuhydwclTs9D9IPZoryFJBir1O/Q91w1G79V1UF73e4nZ3VlU/vYq6XR9AswyS3uiwEJl8EXBNY89G9/+rsr8BM8aKC0K1nrVmuS+9myABhmRzlBuFwnGk1OE5ag6gbNU8dwXqU/6A5O4nx7pJCS+51xkwZvSBvXQTbKU/Iyl/RKybRETtYMeOANkh6pCsR79HffHHqC/+2DN/MxJCCBz/+BoYUrsg57S53idUwYqrocTvuLAzxk79YEkIF6qLXgMAZIy6nrVEwqQ46lG3/T0AgGXgjBB7h+hTTRAaOFOr+fn7DLf3PlaguFSjUpTggbHvsP1w2kEEMGNMHZzLWomylXdD2GthGXI5LCdeFOsmdQiSJCN96OUAgNqtLa9IS0RE8UsdeLaI4oSzZj9sx77XZBDVWUJXY4X/62qGvwYbSq3ODKoCY3u9aicOqw5XoHm9enO2Q95s0ASn2kytOnPrqjvm3a7oZ4whXNrh0aph87rzyTWfi+BDuonUGBhThyWcNpR/fS9cdUeQ0udMZBb+LtZN6lBS+06GITUf1sNr4ajaE+vmEBFRtLVy6KlmmKwmyxd8/qpm2GyQjLF2eLY3WHI2HNfdHmu682HjiXqIsrpgls/NBcVpDV0UTfUz9gteVedTHOqbGPpzjIXi8hke7dDdT/f1GBhTBBgYU4ckhIKKdY/CXr4N5rzhyDntHkgSP+7RJBlMsAy+DACzxkREHZFeNeKIjlcFpS5rteoJVUCrM7xVkxEMGhirs4iqLHRDqXefYMe3N8UBxVYDe9m2WLdEl/CZp+2hCi6ri17HoXfPhbV8b6izBXiMgHOAA80xhnBpM9iajHGIOcaCc4wpfIwUqEOq3vAaGg+uci/LNPERSMakWDepQ0ob8EvI5gw07P8SzrqjsW4OERFFU2szxqoARrF6h0wLncJO6qBFuLxrHgcLbLWZQVWwpAms1VnQ9iOE8BsmLlx2HP/0OpR8dhPslbtj0q5gtEWt9NcXbr4R7tQZAh/4xD5DqRX9OcCB1jEWfkOp9dtpO16Eyu+eDfL5YcaYgmNgTB1O7fZ/o277e5CTMpB75pMwJGfFukkdlmxMgWXQDHcF0KaCHURElLiE4kLZyntQu/1frR56qskY2/QzxqqddY9ryVBq9ZDgWAXGVT+8gKNLZ8BWslHTluZstrN6X0zaFYym38O8ORHeiYNljAMMdfbJJGsywwEqWZd+eTvqd3+Ehj3/Uz2tCrCdVpSvfqBVVdapY2NgTB1K/d7PUP3Ty4DBjNyJj8KU0SvWTerw0gZOh2RMRn3xx3BZq2LdHCIiagVH1W5Yj6xD9U+vaIehKi5Ub/w77HrLKwWiHprrCjBMt3mYrSbIVQdlLihOK5z1x+EnQEEvzWNXbIZS1+/6AADQeHCVqi2qgC6G07uc9SUQQkC4bGg8vM7T3+qh1IrTWwW6tUPqfTO1mmA4jOWaEGSOsd6NE81NGNVr1e34DxoPrkL5qnsjaTx1IgkVGC9ZsgRnn302RowYgZkzZ2LTpk1B9//0008xdepUjBgxAhdccAFWrfL+cXI4HHj66adxwQUXoLCwEBMmTMA999yD0tLSIGekeNZ4+FtUfvukZ61iLiHUPgxJmUjr/0vAZUf97g9j3RwiImoFzbJHTm+A2rDvc9RueQsly6+P4FzqzG+AwLjpsWYYrSowFsKJ459ci2MfXAZXY7n2/AGzzAGKfsWAZErz/kMdYMYoMK7f+xmOfTATNZv+jqqf/oLyr+9B9ca/NzVP1YeqwLi1lb395vYGmmOsKfilHUotAgyl1txE0T3W+ziimzrUKSVMYPzJJ5/g8ccfxy233IKlS5di0KBBmD17Nioq9Oc4bNiwAXfccQcuvfRSLFu2DJMnT8bNN9+M4uJiAIDVasXWrVtx00034f3338dLL72E3bt345ZbbmnPt0VRYiv9GRXfPAgIF7JPuxspPU+PdZM6FcugGQAk1O1cFlcVQImIKELqoaeqoKMldSS0Q3PV6wzrzF9V9ANjKA646o4AAFz17jVvnfUlaDy8zifLrB8MBx2K3Q5kU6r3H6r2xqogaMOeTwEAtVsWo3H/CgCA9ch695OagFOVMW5tNW2fofPaYdH65/YryhVodIDTPzDWjBLQrJnN5BcFlzCB8cKFC3HZZZfhkksuwYABA7BgwQIkJSVh6dKluvsvWrQIEydOxOzZs1FQUIDbbrsNQ4cOxZIlSwAA6enpWLhwIaZNm4b+/fujsLAQ999/PzZu3Ijjx3WG61DcclTtQdnKeyBcNmSOuQVpJ0yJdZM6HWN6TyT3OgOKtQIN+7+KdXOIiKiFtMOQbbqPwz9XgCyuXsVjdeDjVB+nCpwMZgDAsQ8uQ/nX98ChLmClabc6MI71zVrvV+1QawO3C1VArjgb3ZuMyQB8fl7qjHGrl5nyyRgrgTLG+vtAaIdSa3/WOj/fgKMEolOVunb7v1G3c1lUzkXxxRjrBoTDbrdjy5YtuOmmmzzbZFnGuHHjUFRUpHtMUVERrrvuOs228ePHY+XKlQFfp66uDgaDAenp6S1uqyyHWNctgnNE41wdVXPfuOoOoeyruyAcdcgYPguZQ2fGuGXxpT0/SxlDZ8J66BvU7fgXLAXnQgq1xmGc4O9beNhPobGPqCMQTcES4Dus2qq3e/BzufQrRWuzf+6AJ+BQalV7vAGPO8BRbDX6rxVindtoEkIEvd5pbiiog2FXjIZ4Swbv46Z+8gTG6p+3Q/U5EG1YfCvAuYVPgS4RKJjWOT5gsB2l5Zqqf3oZAGAZeHFUzkfxIyEC48rKSrhcLuTl5Wm25+bmYv/+/brHlJWVITc312//QHOIbTYbnnnmGVx44YVITU3V3ScUo1FGbq6lRcfqyc5OC71TJ2arPoSSL/4IV2M5cofPQO+zb0+YYKy9tcdnSeSMQ23REDSWbENS43ak9z6lzV8zmvj7Fh72U2jsI0pkiiogUgcwir0u4nMFrBQtdOaSBqgw7VIv86Q4fIIeSfWcfmDcllWp6/d+hsp1jyF/yqtIyhuqu482MFYHd7HJZEvqwLiJbGgOjAPdXGjL4luBglifatURFN8KPHy+9YGxdhkpgeoNf4EhOQfpQ3/d6nNT7CVEYBxIqLt0es/pbXM4HPjDH/4AAJg3b16L2+N0KqipaQy9YwiyLCE7Ow2VlfVQFC5GrsfVcAwln98GR91xpPWfitRRc1BRUR/rZsWd9v4spZ54CRpLHsHh9f9AfuqQNn+9aODvW3jYT6G1Zx9lZKTAZPL/gkvUWpoMrToYcUQeGCPQkGad4ksB17b1maes2GtV/7bq7qedJ+2A4rSi4psFSCuYhpTeEyJ/HwFUrnsMAFD90yvoMuUV72uq12RWV3d2hRgC3B5k/78bkjEJgE/AqSm41cr1rINkjAMtCeY7Dz1gMK0XtLc2wx2E5udpr0Vd01KVliEzYzZvnKInIQLj7OxsGAwGlJWVabZXVFT4ZZGb5eXl+e1fXl7ut7/D4cDtt9+OQ4cO4R//+AcsltZlfKP5ZUhRBL+A6nDWH0fpF7fBVX8MqSf8Almn3gUhJP8/vOTRXp+l5F6TIKe8hsbD62CrOgBTRu82f81o4e9beNhPobGPKJFphlIr+gFq2OdSH6/J3Kp+PzxzjAMMlfU5R6B5z9qgUzuUuvHgKliPrIP1yDr0+s3KiN9HIAZLD7jqjsBZe1D7RBjDwkWMhlLrZYw9mfcA/d5qwYpvBaIJhF3acwRa1slz/tbP327Y+zmqil5Dl1+8DKOlu7cpzgbvY7t3KL+z9nBCfechfQlxa8NsNmPYsGFYu9a7ILeiKFi3bh0KCwt1jyksLMSaNWs029auXavZvzko3r9/P/7v//4PWVlZbdB6iiZn/TGUfvkHuOqPIWvgucg9/R5IOnc/KTYkgwmWgdMBCNTt+E+sm0NERBHSVvyNfF6x5lxCm7lVvYj/PoGWXvKpNq2uQqwtEKWfnRaKA1JT0a5oa6447RfkqufDajLGqrbHqiiYzncmobdkVlQD48DFtwIfow6EfYpvafbT2R6FbHzFukehNJajoalyt+flVFMNXKo57opVf5UcSiwJERgDwDXXXIN3330XS5cuRXFxMebPnw+r1Yrp06cDAObOnYtnn33Ws/9VV12FVatW4c0330RxcTFeeuklbN68GVdccQUAwOl04ve//z02b96MZ555Bi6XC6WlpSgtLYXdHusKhqTHUXMApZ//Hq66I0jtcyb6nfsQg+I4ZBlwASRDMhr2LNcURiEiovinKXKkGVYdfhaufs9y1O9Z7rMEkypY1alKHWiorPCpNq0+j6IOkgNWpdYGeK3NJjrrjsJeWdx8Mvd/fYbQam8IqNvYugx8NOgO9/UsmRViiHKLtSBjrBpVIIQr4DERBfAt+NkbUrT1itS/E9rib7FdL5uiIyGGUgPAtGnTUFFRgRdffBGlpaUYMmQI3njjDeTk5AAAjh49Cln2/rKPGTMGzz77LF544QU899xz6NevH1555RUUFBQAAI4dO4YVK9x3gS666CLNa/3jH//A2LFj2+mdUTjslbtQtuIuKLYqpJ5wLnJPnwtJTpiPb6ciJ2Ugtf+5qN/1AeqLP0b60Mtj3SQiIgqXuuCWZlh1eF/8hRCo/PYJAEDmmFu9TwRYrskT8ARYpzb4UGpVxliTYdQOCRY+hb2aqzC3xLEP3de0Hr/6RHVebf0adbCmqDPGoZYZag96Q6n1MsZhBa9h8p1ZEmnQLZTAx0Sznbov7Wj6rwuSbND8TqiHUrdlkTdqPwkVWcyaNQuzZs3Sfe6tt97y23beeefhvPPO092/V69e2LFjR1TbR23DVroFZSvnQjjqkTZwOrJOmsNMcZyzDJyB+l0foG7XMlgGz+TPi4goQQTKGIcbyGmzzAHmGGsyxk3FtwIM49UMOQ4yx1jTBpf6eKc2eFIcAFoeGDezV+xAc8Tnl4VVAmSMAxQIa1c6gbGnv8OpFt0CAoq7qrlshGxMjjjoFkrgjHFb0BZPs8FZdwTHPpqFzMIbYFTNI1YXggu8djIlkoQZSk2dU+PhdShbcQeEox7pw2Yh66Tfs+pfAjBl9kVSt5Pgqj8O65FvY90cIiIKV4DhvuFmxBRblfcYp37VaO1yO/4ZY818YZd2nrLmPE79wFibnXYFrAzdGs6ag942+w2l1p9jjIBVn9uT/3Biz88jipWofV4AR/59Po4uvUTndcI5Psgc47bgc2OmbtcHgFBQveEvPp+/6H+uKLYYYVDcqtu5DOWr7oNwWZFZeCMyR83mOsUJxF2EC6jbuTTGLSEiorAFLIIVYI6wD5e10vNYvfZxwHm/wj9bGaiaddCh1Oq3oGgzxi0ZEq57Xk1/2FSBsc93E83cav05xrHKGKtvNHg0va+oFtxSv6ajoem/TctqRnModSs4647AUXNA5+VUnxGXPfBSYAGGyVPiYmBMcUcIBVU/vYqqH14AJANyzniAC6cnoOQep8OQ2hW2Yz/AUb0/1s0hIqIwaDKZLm2A4BEkgFKs1d7HzYGQ+x+6523OGGteVxNAajPN4WSMtXOUXZpKwq0Z8qp+P8Jl994gaMoYl319H0o+vzVgkS3tzYUYZYx13r9+xjiKL6m+QeK0RT6UOkjxrZZyNpTg2Ie/QekXt/m/nu8NEM1oh0CBcWQ3Fezl2+GsPxbRMdT2GBhTXFEcDShf/SDqtr8H2ZyB/LOfRWrfs2PdLGoBSTYgbaC7sF39rg9i3Boios5HcdR7bkxaSzbi0Mqn4Kwv0d3XVrrFvW/AbK02OLAe+0Eb+OrspwmIFP3gwpMxDpCF1mQ4XeHNMda8B+HSZJYDDXl11h2FYvd/P5q2aAJjmyqLKcHVWA7r4TWwl27W7IcAhcTaIgMaDm0AJ2m2iTZqk+LwzsV12Sojf++KK+r95ajY6T61tdL/c+RTJC3QaAfNiIUIiqkpthqU/O9GHPuASZ94w8CY4oajej9K/ncjrIdWw2jpifwpryKpy8hYN4taIa3/NEA2oX7PcihNQ6mIiKh9lK9+EMc/vhr28u0oWzUfpRv/idrt//Lbz9VQitLPb8Hxj6/2KYKlvwRSw77PUbbiTpR/M9//RdVBhCPQUOoQGWMV7b5O7TrGgYpv+QSjvufwa3JjOY59eDmOfTLbfYi9TlOAyXMqn8DY8/qKA47qfd79bNWq/QK8b2cjjn18Dao3LdR9D21F0zfNQ8A987zbPmOsWKtakDFWop4xVt8E8b0h4ls9PGCVdM0Q/fAzxs76o5E0ldoRA2OKC40HV6PkfzfBWXMAyT1OQ5epr8GU0SvWzaJWMiRnIbXfORDOBjTs/SzWzSEi6lRsx34AADTsXwHFWgEAuuvLW49v8P4jjGHAjYe+cZ//6Pd+51IHEeqAQzNPU+hkTgMFPppCWk5txtipP8dYu/ST06dKtX9mz9VQCsA959RecxSH3vslKtY85H6usRy12/7pDpDUQbnTplrKxxl4fdsA1bjt5dvgrN6L2s2L9N9DFAkhUPLFbShbNU93GHxbZ4yFKjB2WVuQMRaugCMKWtwm1U0ORXUDx/1yvhljn6HVzce1cI6xq6HM89hWsgnH/nsV7JW7wz6e2k7UAuP//e9/GDJkSLROR52EcNlR9dOrKF99P4SzARkjfovcSY9BNqfHumkUJeoiXHp34ImIqG256o97HusVzlKsVd7nFf3iW5r1jVXziD2v0VAKZ+1hbWCsDjg0Abd6qLPOUkEBCMXlU906jCydcGrmKesGhqo+qd67CgDQeOArAMCxj3+L6g1/QcO+L/xvFDRnuxWHZh6zS5MxDjTEtv1yU46q3bCXbIT10Dc+w9ibrsme4exxmjFug+WaNG2y+wTGivbnrJkeoBr9FqjieCBVP76Emi1LPDdiAKB64xtw1hxA6We3RNR+ahvMGFPMOKr3oeR/N6Fu+3uQTBbkTnoMGSN+y+WYOhhzziCYc4fCWbMfNnVWgoiI2oe6arLODUrNF3y/NX/9+WbYAODosl/h2EdX+GRV1UNNtesRex8HH0qtfWFtxjicYMQdTOsPCfe20/v+FZ+CXqJprVqXtcJvfrMnqHc5oDi9AZN6KHWgQmWaYdlRzob6ctYc8r6Wps9E0zaX5r/Rpp6L67JWRB6Ai+jPMVbsqpsXvoGx7w0Ql3YIvPexdu66o3o/XI0Vuq8nXA7U7fgPajb+TdMfhuSspudtEIoTjpqDTCLEkDHUDvfcc09YJzpy5EirG0OdgxAC9bs+QNWGVwGXHeYuo5Bz+n0wpnWJddOojVgGTkfFuq2o27kUyd3GxLo5REQdluK0wlV/DKbMfqqt6sDYP1DTLGcURhEhSTIEfM6pWv5GOx9YP9Or2Kpw7L9Xw5CSE/J13cdFGDQoLp/lm7ztcNQcgKNiJyRTqmeby6YuGKbKkttq/IfUes4rNIGuYlcPV9dvr2Yor63GEyC1Be3w80adHdo2Y6zmaiiFISkzsoPaYB1j9c0LxVHnLih3eB3MecO01dgVp/bnrskYq4bP22tw/OOrAQC9frPS//Uc+hlq9e9I1Y8voX7XB8id+BhSeo1r2RujVgkZGC9btgz5+fnIz88Pul9Njf+cFSJfjpoDqPzuWdhLNgKSARmF1yN98GWQ5MAXWUp8KX0mQd7wKqyH18BZfxzGtK6xbhIRUYdUsfZhWA+tQf7kF70b1QW1dJY40nzBD6NQou88XXWGy15VrHpZ1Wv5zPtVc9bsh7Mm9LJ+QjgBvXV4QxwjAgylPv7fqwAAliHe6sDOhnLPY1eDt4K3Yq3wWSpKG2Cq5xUr9lqE5u0z4WwAkBXGMeFpPLga1qPfIevk2yHJBm1gbPfP9nszxm2/tnL97o+AgmkRHSOEEvVstm9wWrNpIWq3LkFq/6lI7XuO9znFoZ0e4NQfSq1ev9vZUAKzRfs9R/16ztrD3u2qGyTNK3g0HvyagXGMhAyM+/bti5EjR+Kpp54Kut/y5cvxhz/8IWoNo45FuByo3fYOaja/BSgOmLIKkH3aXJhzBsW6adQOJIMZaQXno3bLW6jf9SEyC38X6yYREXVI1kNr3P89+p1nm7pIkOKywVa6Ga7640jt5w4ANMNDdYZJ+9IOkXZpCxKp5k8GLqjVwgBMcUUeIClO7VBYnaHUSqM3GHY0eIfCuhq9RZJc1iqfpai0lYw1BbciXIUh0HrMkajf+xnqd3+IvEmPo3z1/QCA5J5nIKXnaZrz6y2x5fl5tMfaysIFe/mOyI5Rol98SztKwgprc6G6vZ8hpddE73PCFTBjrKiXAVPPWW6sAHwCY/Xz6vWL9aYlSMaUiN4LRU/IwLiwsBAbNoSeFyhJEsfEkx8hBKxH1qF6w2vu4VUGMzJG/Q7pQy6DJIf8+FEHknbiBajdugT1xf9FxoirIBmSYt0kIqIOwXr0e0AIJPc41bNNu96qtpJz6ee3AgCSuhbCkJLrMyQ0+Fq+AKA41BnmOs0arr6FjPREUsFXe5wzrHnFmmOEy2e5JvdjdYDoslV5Hmszxt7AWDgafIZSaytiq7PEit5w5WBtdFrhaiiDITUvouPUKtc9BgCo3fZP73mbgi7NOs46bWvrqtTN5JQ8KI1lPkPNwyCiX3xLO1fYBjTXtxGKdoSByydjHKD4lmaotOrc1pJNqNm8BKn9JnuPCzG6gKMoYydkZDJr1iwMHTo05IlOOeUU/OMf/4hKo6hjsFfuQvVPf4Ht+E8AgKRuJyH7lD/AmM5lmDojY2oXpPQaj8aDq9Bw4GuknTAl1k0iIkpY9Xs+hWKrQdqAC1D21V0AgJ6//sLzvKYSdYAv866GUhhScjVf5PUyWH7Ugaa91icID7CEklpLgxyfdYzDPkbdXkcDqn54CUmqehfqjLGzscrz2KXarjgbNDcAfANM9ZzhSDPGNVsXw3poDXInPoqUXmdEdKwvZ6230Fbz8N6Q88aFy53cauOh1LLZ0hQYhzPU3EsIBVKUg3bhkzFWVEOh/dYn1vzcA80xVg3NVv38Sz6/HRAu2EqKvPtq5hv794Vir0PjwdWo2/Uhcsc/wJVa2lHIwHj48OEYPnx4yBPl5OTg1FNPDbkfdXyOqj2o2bIEjftXABAwZvRB5ugbkdzjdEjqypjU6aQNnI7Gg6tQv3MpA2MioggpthoozgbI5gxUfvskAMBo6e55Xj130WWt0Bzneaz6Iu5qKAVyB2ur6+oNtQ3apto2r6rcTPisYxzWMYpLM5S6Yd/nsJdvQ93O/3i2qTPDLpsq86vKJAtHo88cY5+MsfrmQ4SBcfPw9+qfXm11YKy58dEU2Adc71lzYPSzsr6aA7xIP2PuodTRDoy1lcjVgbF6vjB85qhr5uCrPvfqEQiNh1ajesNrME2+x9NuzeupR1Xo3LRQbNWe4fDWYz8itc+Z4b8xahWOZaWosVfsQM3mxbAeWg0AkJOzkTHit0gr+CWHTRMAIKlLIYwZfWEv3wZ7xQ7OMSciisDx5dfDVX8MuRMe9mxzVO1RPfYWvlLUgbFq6Kq6oFTzeqq6lYrDFPGw2Nbwmc8cFt+h1HrrOKv7Rx0Yq9d3dgYPjNWZRHWBpkgEyqSWr3kIzur96DL19ZDfp9TzopsD0HD6TCjONp9j3NLMp2iDoF09HUA46rXz5FUjBYTi0C73FeB3RT2HuGHPcgBA8dKbIRlT/I8J8V40N7ICLP9EbYPRCrWKcDnQeHAV6nYthb10MwD3HJL0Ib9G2oDzIRuTY9xCiieSJMFy4kWo+vFF1O1chpzT/hTrJhERJQxXU9Ee9Zrwjur9qsf7vPuqvlAH+jLfPKRTOFoTGNdp10luQ0JxhlU12/cYTWAcMmj11stRzz1WnL5zjH3WOw6wjE9EbRUKytc8DENyNlJ6T4C9fBtS+5/XNALPPUxavQyXYq9F2df3Iq3/ed42q37uzX0V1vBzxRn1tYJ9tXhIsFCiXnxLMwxa9XMGfH53lMDFt3zOqL+5ee5yBFyNparHZX7PCyEgnI2QVcuMtYS9cjcaD65G+tBfQ2bBLwAMjKmFHFV70bDvC9Tv+cQz/MSY3guWwb9CWv/zIBnMMW4hxavU/ueieuPf0LD/S2SNvglyUkasm0REFDOKrQb1+z5HWv/zgn7RVQc3ttKfPY/V6wa76o569w9juGpz4KSEMy840DnsNYBsavHxkb2Y0y+ICUUoTk3GL5ziYJ59VRljKE79is6ep9XFnFrWn8JRh8b9XwJw3/xwVBXDXr7d87yjslgTGDfs/Rz20p9hV30e1CMFvBnj0O1xZ2Xbeo5xSwPjFlQjD+OczVyqNY0B7TQE4bJr9o14xEIL2u1SVXZ3NZRBuOywHd8Ac/4IyKZU1Gx8A7Xb30PepMeR3P1kv+Pr93wKKC6kDTjf7znhcqBu1wdI7n4yqn96FbbjP8HVWIrUPmfBemQ9Mguv79Tf4RkYU9ictYfQeHA1GvZ94R2uJclI7nUGLCdOR1K3MZBacGeMOhfZlIbUE6agftcHqN/zKdKHXBbrJhFRhJYsWYK///3vKC0txZAhQzBv3jyMHDky1s2KuYb9X0GSjUjpPQG1W99B45FvkTfxEb+AQLjsaNj/FVJ6T0Dpij/CUbkbcDmQPvTXfud0WatgL98OY1oXzzZnzUHPY0et97Gz/igioVgr4ag52LqMsa0WkrF9vkgLl10zzDQsPpWsIyn8pJ53CvhnFjVtizCTHUrz9yxbySbPNvUyP4A2gNNjr9iBim+f0mRAA1KcbV6VWjKlteg4obggteEwb80NEPjeXGjdz7W1Q8Bd1kpU/fgS6nd/BMvAGcg8aQ5qty4BANRseQvJ3U9G48FVACSk9J4AZ32Jp/5AUveTUfXDSzCk5CD71Dvcx/y8ELVb34a120me4rjOqn0oK3YX8DNm9EFa//MgXNZOWfSLgTEFJFx22Ep/hvXwt7Ae+RZO1cXXmHkCUvtNRmq/yTCmdQ1yFiJ/lhMvQv2uD1C36wNYBv+KN1SIEsgnn3yCxx9/HAsWLMCoUaOwaNEizJ49G8uXL0dOTk6smxczzrojqFizAACQP/nPqC56HQBQu/3fyBx5DazHfoKrsQyp/X6Bms1voXbLW7AeXuMOigHYSjfB8e1+2I7/hLxJTwCyCZIkofK7Z2A7vgFJ3U7yvJYmA6ga5umsiywwbtj7PzTs/V9L3zIAd8ZYUtpnGKbLWg5AQDKlhV3AyXe5pkgqL7t8AmHfAMrnlcI+byTUQZqroQS240UwpveCUByaYmv6x1aiYc8nYb2OUFwRL4UVKcnYwmUa2yJjrKLYfG6AWL0Z5NBD70OdvHV9qlgr0FC+FQDQsP8LWIZ4b545q/fDXrED5asfAADknfM8XKrPRHXRG7Aedhd2S+p2Mlz1x2CvcK8hbTv2o2c/R413Ooa9fCsaD6yEvWIHuk5bqLkhpyaEAsVa6V7uTQgIR12HCKQTKjCO9A71p59+ij//+c84fPgw+vXrh7vuugsTJ6oX7RZ48cUX8a9//Qs1NTUYM2YMFixYgL59+7bH24k7zXel7aU/w1a6yT18R/ULbcoqQHLP05Ha92yYsvrHsKWU6ExZ/WHuMgr2ko2wHf0eyT3GxrpJRBSmhQsX4rLLLsMll1wCAFiwYAFWrlyJpUuX4rrrrotJmxz1pXDWVUFRdIIToUBxNEA2pUIyJMHZUAJTRm93UCFJMKTkoX73RzDnj4RkMKN2y2JYBk6HvaoYrtrDSDvxQtRt/zeSup+CpLxhaDy8Fqas/kjKHw5b6WZUb3wDSV1GwZCc7XnJ2q3veB7bjn6HxtwhKP/6bk976nd/CABNmZ6m91BZDFeDe4mlmp//D9ZjPzYFf+73pP4iG4i6aFB7Uey1kNupKnVz5tOQkgNnuJWNXfYWz0/1BN8GM+Cy+wXK7a1+1weo3/VB25xcODXLbrUF2dCyujNCtHHG2GcUQrsWlAvBWXvYcyNMsdVoh83bqlBf/Knn3w17lgOqNZCth7/xPK745sGAr6G+ydR4YKVnKkDVjy/C1ViO5K6jkTHyOjTsXQ57+XZYBk5H9aa/w3poDTLH3ALbsZ9gPboe2WPvgmxOh6u+BKkn/ALO+uPuucsGE4S9HoqjHpIxCabME2A99iMkgxkpXUag7vAG2BslyKnd4GqsBKBAkk2AZACEE4bk3JbfVIlQxIGxEAKvvPIKLrvsMuTl5Xke5+fnt0X7PCK9Q71hwwbccccd+OMf/4izzjoL//3vf3HzzTfjgw8+QEFBAQDgb3/7G9566y088cQT6NWrF/785z9j9uzZ+Pjjj2E2d8zx9UIIKLZqOOsOw1V7BI7qvXBUFsNetdvvgiqbM2DuciqSu49Fco/TAt41ImoJy4kXo6JkI+p2LmNgTJQg7HY7tmzZgptuusmzTZZljBs3DkVFRS06pyy3rnBT/e4PceDbZ1txBgm+2T7rkW+95y/+GIB7mR8N2eS5eewo3xbweHv5NlSuf8rz76ofX4bQWSu4OSgGgMaDX0f2FmJIsVa2V+0tT39Hkplq6XxfNWNKHpx1R6D4zEXtSCThaod1jFs2skASCoC2uPni87svmwElxJrP7cx3fnjjga80/27++wS4/+7ISZneY1vw2VcfYz3kDqwd5dtQt+N9T1vqd3/k2af6p1c8j5uHcAPuoDog2ej9rEmGkFW6jem90f3Ct9plydeIA2NFUfDKK6/grLPOQk5OjudxWwfGkd6hXrRoESZOnIjZs2cDAG677TasWbMGS5YswQMPPAAhBP7xj3/g5ptvxuTJkwEATz31FMaNG4cVK1Zg6tSpbfp+oqm5Op1w1ENxNECx10GxVsBlrYCrscL7uL4Ezroj+sOPJBnGzBNgzj4R5vzhSOoyEsaMPhziSm0mpfcEyMk57mH6dUc1a3ESUXyqrKyEy+VCXl6eZntubi72798f4KjAjEYZubmWVrUp2TEK9iNjIVw+X+pV36EMZgtctlq47PUwpeXBVn0IptRcOBrKYas8gLTuI9FwfKs7Y6b7RU1yV14WCrIHT4PiaEDdwR8ghBGZ/c9E5Y5Pva+jKu7U/G/FWgFLr5PgqC+HrXJfq95vvDBn9IC99hhctfuRlNq66riRSkrLhN2/WK8uSURYLEnv9TK6BP7+FAOWnieh7nDoEQSRyMwwoxxtO8c4IysLLVl8yGgEDEag5TPh9RmS0uFSZYvNabmw10Y2HaG9NTYFq2ndR6H+6EZAcUAyJiGt6zDUHf4p+jdvZAOMKdlw1pchrfsoyKYU1B5w3/gzWbrAUede/s2c0QP2miMAgNSuw9BYthupXQa7q3ILF2SzBYYkC+w1R9BYsh2WPqdBcdrQWLodad1GQggXHPWlMKXlQ5IM7mWyFBckgxGWXicjL699hmm3aCi1EEL3cVtpyR3qoqIiv4B5/PjxWLlyJQDg0KFDKC0txRlneBdST09Px6hRo1BUVNTiwLi1d76FEKjZshi1jUdga2zwrJ8mFCfgsnuWHRCKA8JpheKodxcGCHOYkGRMgSmrAMb0HjBaesKU2Qfm7BNhyuoLydA+wxSiobmfW9vfHV1c95NsguXEC1Dz8yI0FH+ErNE3xKYZ8dxHcYT9pCWaKtS6h4fVQbHXA4oNVZUyGqproLjsEJ7/OTyVTSVjMtIHTodsblkRmnglhGjR3XynU0FNTeu+7spJ/TBg+quorKzXH0odhBACUOyQDEnIrD0CZ2MZkvJHwHr0BxhSsmFIyYP16A9I6X0GFFsthMsOU0YvAEDGWBcAAUk2wtrYgMYDXyN95DWo2/G+Z+6nZfCvUL1pIQAgbdi1sJVvh+2Hl9zPDZqOuh1L/dqUO+4+1O5cipRe42FM7w5n7VFYj/0A27GfWtFL0ScMqTCm94Kj5gDqRPv+XXAh/CG5Tlvri2IJk3ZkomRKjXqxrXCZsk9E9pnPom7JmVE9b1VFNVzOts2W1rfwV91hs8Mp2qBtxhTAXu+9EZaUDcRpYJzc/WRYj/7g+be515nuwBiAOWcwTD3PAg67/0ZkDL8SNVveDmtdavU6y7I5wzOMPPeM+2E9/hPSB82AKaMvhMsG2WxxxyM/vQZDSi4sJ16Iyh9ehDG9FzKGXoa64uUw55yIpLwhQV9Tfb2QZQnZ2Wkh/36Xl4dfTT6QjIwUmEyGoPskxBzjltyhLisrQ25urt/+paXuEujN/9U7Z/NzkYrGnW+XrRYHN74Zdnl32ZwGY1o+DOY0GJIskM1pMJgtMKXmwJiaB1NaLoypuTCl5cKU1gXG1Jx2GYrQXrKzO9aXy7YSr/2UfuqvsWXzYtQXf4wTzrwVcjvNIdETr30Ubzp6PwmXA/baY7BVHYS95ggc9WVwNJTDUV8GZ9Njl60GSiuq+Ob0Goys7mdGr9HtKDs7GwaDAWVl2nRdRUWF3/U0XJEGs8HO06JzSWYIRUBO6w5zWncI4S5U0yyl7zkAADkl2ae97hFVQhHIOeNBKGPKYUjNh/XI957AOG3wZXA2VsKQmg9T7jAYswdBuJwwZZ4AY0YvT2CcWjANDcXuIknJfc5GSr9faJrorC9RBcb+Q7/l5Gz3yLGmYZByUmabD/uVZBNSeo1Hzc//51lfub1IxvD/DjV/6ZcMSZEvtdNETtZ+n5SNqXC1R2Asyd7ER9NjY0ZvCAEk9zgN1iPfQjJZdIfmR6p682K42niOupBM2vcU7nFCaZNh3pJscn8umgpsyclBige2oN2tJSdleOY/p/Sb4gmMjZaeSOrunYJmzhuK1P7ToDitEC4b0gfPRP3ez+GqPwbJmIycMx6EcNSjvvgT2I7/hLSB01G/0/23J6nbybAeWg0ASO03GXU73wfQ9Heo6W+fAACjselvnwGZY27xvHb2aXd79kkbcAGA8P6m+yZWW/z3O8oSIjAOJNQdar3nfLf5/ruld72B6Nz5BiT0vPAtpBrrUVvvBCSjuzKlbIJkMEGSjZBkM2Bw/1eSg9/5AABn0/8arQCs8TEMqLXCvcPU2cV/P6Uipfd4NB74Ggc3fARL//afwhD/fRQfOlo/CcUJR81BOCp3w16xG46qPXDWHnYvhxLsLrskQzalwWDpDtmUBtlkgWx235SUjSlITkuD3QH3XDXZBMlgbvrb7f6fbE6HM6Ow1Xe/w7nz3RbMZjOGDRuGtWvX4uyzzwbgnmK1bt06XH311e3ennghSTIMqe4pZZbBl8J67EdYTrwYsjEZ2afc7t1PNmqWqEsfNgtCcSJ9yGUQ9jqk9puse103ZXqLghrSusHlsyyTbE6HkM1wNQXGhtT8tp8PazAj7cSLUPPz/3k2SYbksNbMbS0pghEXzcGwZEptcWBsSNEGxpIpDWj0H8stGZOjMqe5WXL3Uz3z1XPOeAB1O/4Ny6BLPf+2Hl4HoThQ+e0TTQ3wTgOwDLwELls1Gvd/EdZrqQvBtRnZAEk2RfxzEIoLUltUpZZNkIzewNgQJDCWTZZ2L8plzOgDe+lmAEBS/nCkD78KtdveRfqIq2G09EBSt5NgL9uG1P7nQZINSB/8K8+xksG9trhwWpHS83T3ObqfAmfNQUiGJE9gnNzdGxhnjJoNxVGP1L7ndKgkWiQSIjBuyR3qvLw8v/3Ly8s9+zfPiS4tLdUU76qoqMDw4cNb3NZofGE0WHrCkmuBrbwu6PkE3HeqO7N4ucMU7+K5n9JOvBiNB75G7Y5lSO13bszaEc99FE8StZ8Uex1spZthL90IW8km2Ct3aZa5aSan5MGY3hNGS08Y07rBkJoLOTkXhpRcGFJyICdlBbwhKcsScnMtKO/gf7uvueYazJ07F8OGDcPIkSOxaNEiWK1WTJ8+PdZNiwvJ3U5Gj0s+gGQMXWgoc9Rsz+PcCQ8F3C+lz1loPPA1LIN/1ZShhSaDJSdlQRgaPQW8DCn5nmWgAhW3Mab3hqux1BvINVVeDpckm2BIdg83dzWWAZAgmS0QjW0fGMstWA9XNqZCQWXoHX1IxmS/QFwy6c+plkyWFgfGyb0mwJCcBXPeME+ga8zoAzQFxql9zkRqnzM9+8umVKT2O0ezzrExvYdnjeukHqcipcdYHDq0KqKfa1uSJIO7aF2kNyiEq02ytZLBBElVKVvvBkjzvHLJbAEiCIwlg9k9haYVkrud7AmMDWndkTnyWmQMvwqS7A7f8iY9BuG0QU7K8Ds2Y+RsVHzzIHLGL/BsMyRlwpCfCeGyuVeXkU1I6z8VwmVHUv4IyKZU5Jx+T6vanOgSIjBuyR3qwsJCrFmzBldeeaVn29q1a1FYWAgA6NWrF/Lz87F27VoMGjQIAFBXV4eNGzdi1qxZbfuGiMgjqUshjJn94CjfBnv5dphzB8e6SdQBCKHAUbkL1sPr0Hh4HRwVO6EefiqZLDDnDYMpawBM2QNgyi6AMb0XZGPLlhPpTKZNm4aKigq8+OKLnuUT33jjjU69hrEvOUDg1FKG5CzkT34BAFC98W8AoMm8GZKzoDhMnv2Nlh7etiRlQLH6B4TZY++EKWcgXPUlqNm8CEl5w4NXkvUhye7XM2b0aQqMBWRDkk7tYP+h360lmyKftuYbzGYW3ghj1gmo+GZB0LVqJWMqZKPq2KaRIN4dVDcojMlQWjjkVjanIfvUOwAA5pyBUJxW9xz3I+uQOer6wMclZ3keG9K6ewLj5r9lkmSEQHwExpBkSAYTRKRL+woFog2Wa5Jks2YZIDlF+zdMNqXB1RQYy6a0iEqTSaa0lgXGqorNqSecC2f9MSR3PcmTwW0OigH39IBA9YFS+0xC8q8+1r2JJBmS0HXam55/qzPNnV1CBMZA6DvUc+fORdeuXXHHHe4/KldddRVmzZqFN998E5MmTcInn3yCzZs349FHHwXgHkJ91VVX4dVXX0WfPn08yzV169bNE3wTUduTJAmWEy9C1Q9/Rt2uD5DDwJhaSAgBe+nPaNj3BRoPr9EsQWdI7YKkLqNg7jISSfnNVfc751CxaJg1axZvIsdIc5CmHo4qGZIhS96RDM3DuoGmgjrNgbEqeywZkyEbUyBn9kXuGQ9EPJS2eaimOkiUdG4suTNnra8MrTlnCzLGvoGxZdAM91QH1VBaPbIpTXOsZDBrgxNjijeraDC7328LssbqzKUpq7/ncbfz3wp6nDG9F8xdRsFZvQ+mrALYjn7X1K6m87XzvNhgJMngng4YIaE42mQotWQwQVJUGeNk/yJrzTQBpmRwV6nXmfdsGTgDdTvfR+bwK1H5g/tGk3dURWhyUhaUpn0NKbnIaZrD2xItGVnR2SVMYBzqDvXRo0chy96lhcaMGYNnn30WL7zwAp577jn069cPr7zyimcNYwD43e9+h8bGRjzwwAOoqanBSSedhL/97W8ddg1joniVesIUVBf9FQ37v0Tm6BthUK3DRxSKs+4I6os/RcO+z71FgCQZ5vwRSOk5Dsk9xzEQpg7DMmQmKr6Zj/Rhs1C3/d8QLivklBxPkSnA5wt9kneZE2Oqe9kVQBuIuXeM8CthU4DTHITLyTm6gbF7iHZ0A+OWVHXXZH0l2T2kF9rAXrWzJ+iRTCmaAMMdGJtU/07yLuMkmyDJZghEHhi3dJSBJMnIP+cFQLGjbteHqna5fxZtkWltMdmguakQLuG0QYQxNSHy9pggG72jGWSzRbM+uebnrvrMSbIRkCR3hWZoKzunj7gamSfNgatql/e8eoFxgCkOhmRvYKz72aQ2FfGnU5Ik9OjRA2azWfO4PQS7Q/3WW/531M477zycd955Ac8nSRJuu+023HbbbVFrIxFFTjalIfWEc1G/axka9izXFKch0iOEAtvRH1C3831Yj6xH81BNc/4IpPb7BVJ6T4RBNcSQqKNI7XMmTOe/BaOlO1L6nIm6be8irWAa6nf/17OP+gu9nJTledy8HikAzRBSAJpgLxzNGePMwushXHakD70cVT/4D8WWZGOUB1K7A5GwqgSr9tFmfZO9Q1N1hqLK5nRPll02pkIyeYMy2ZSmuYmgvhkgGczuGwEt0JIsuOdYSQIMSZrgunmOu2RIglAiHbvcRiQDYIjscwYAwtUIiOivYysZmqpkN//bmALZlOopXKf+mWiG78tGqBdK1yx51PTZkpOzPc8bLd3hqNiueW3ZnOapOK1myuznrQ9A7S7iwFiWZaxYscLzb/VjIqKWspx4Eep3LUPdrg9gGfwrSKqLFVEzoTjRsPcz1G59B87aprl0KXmwDDgfqSecC6Ole4xbSNT2TBm9AQDm7AHIGTcPgLuCccOe5cgcfaMmkDOov6CneB/7ZowjDoyb9pfN6Z6CPXoZLnd2LbpL3bgDY0PIc0qy2VMlWxs0eoNhT2CsaqMhKcsTGEumNG3m0JSq6SvZmOKZeyoFmX8cSjSGvWoCuaaAXTalwhVkOafWLGMVKUluwVBqSXbPt26L4luyGZC855WMKZCMqYCtumk+tLetms9A02e6ea60bEzxzq1vOsaQnO2eTy0EssbcjMYDK5HabzIa9n3uPofJAjQFxuoiX8k9x6Fh3xdI6n5K1N8vhZYwQ6mJqGMzZZ0Ac5dRsJdshPXo90jpMTb0QdRpCJcD9XuXo3bLEs9waXP+SFgGTkdK7wktGp5H1JEkdz8ZPS51D6W1HS/ybDekdfM81gTGvuvGhxMYqzOwepk/vYrtkjFgEGsZPBP2ih1w1hzQLRAWiGxMhiTJITPR7vnN1qZmpKi2q7K8nvftzQDKyVlA02pXsqkpWGp+zpTmM8dYmzHWzLk2JAedv6xpaxQKtsnq92h2ZzgzR9+EijULYBl0Cep2/Mf/dY0p7RYYNxffiugQYyqEo67VFZ71m2NyzxVu4l6CL9V9o0Mo2iHzZm3GWH3zXn0jyjsSwYShv/0QVTVOSKZ09PjVx5AMSZ7AWDane26oGFLz4ayu9zzuccmH/r+f1C74TYKI4oZl4HRUlGxE/c5lDIwJgLugVuP+Faje+Fe46t1L0ST3OA3pw69EUt6wGLeOKD6p55WqM6WmlCzPY98hxJIh9FdCTWEpvcyfTqQqyQZIkgEC/sN5DSm56DL5z6hc/zTqiz8O+fqeczZnjEPRBKmqLLFmLnRToyXJ+1Czb6p77qnq3/CZY+x9bNZkRN3rGocXGEejIr6iKvrVHLil9j0Lyd1PgauhNGBgDFtVq187HO7iW5EFxs0Zb2ftoeg3yGCEJHk/97LZp9Ca6kaPJmMsGf2GYOsxW7rAYHMv3+c7h9yQnO35jTCk5MFZvc/9OklZussvUftgYExEcSOl13jIKbmwHvkWzrqjHBbbydnKtqL6p1dgL9sCwB0QZ4z4LZf0IgohKW84TLlDkNrnLE0QqJ537ztdRROwBBgCLBmSPIGxXuZPdy6rrA0ifF7Uu0+I14Zq2SfJmKKfnfZrrzpI1Q+MVYu4qY4zaR77VqFWB0yaoMhnKLVuMbIAlBauf6yW3G0MDGndkVYwTbNdNlugBFiDVzalRLQMUavIkc8xDtTuaJBkbYYfshmyWRWUqm+A+A6llkMHxkGpPlPq9ZMNPktGUftiYExEcUOSjUgrOB+1mxehbteHyBp9Q6ybRDHgslWjesNf0LBnOQDAlD0AmWNuQXLX0TFuGVFikIxJ6HruXwAADQdWerYHLcKkyYLqLznkmx31o3N+STIEDGKlpqyvOmunXp9Z+9reZZ+kcIdSB8jsyupseXMQrq5arwrkZbPPKgmKA5LsDZ60Q6lNmqBaNiaHDDpzxs1D3a4PkdJrfIg9Q5PN6eh+0Tu6z2lGCBjMQNPQ5KSuoyGn5HmWeWpLLVmuqSVLX4XLPSdc9ZmWJG0mWBW8ajL6Pjd7WjKVR31jSr28mnrYPrU/VrchorhiGXABIBnQsOfj9pv3RHFBCIGGfV/i+H+vRsOe5ZCTs5E9di66nPs6g2KiFlLPp80ddjGSuoxC7plP+u+nzooGqKysDYz9s6HC5Wg+mfqgwMUUPRljVeAcIMjQvnZS6KHUkhzwPekOpRaqMFsIJPeaAABI6Xs2ACC51xkAAHP+cJ+q1Kp2yT5DqXX6CIDmJkRqv8no8osXW7xcU7ikAMPKDWndkH/WU8gcfSMAwDLoV23ZiLiqB+E7GgCAdui7+jmfG0eaERYtKAwmVJ83Q0qe99xcVjCmQgbGa9euDetEDocDf/zjH1vdICLq3AypeUjpPQGKrQYN+1fGujnUTlwNZSj/+l5UrH0Yiq0KaQXno9v5/0BawTTNsEUiiow602WydEHXKS/q1nDQZFfVWb0AwaXenNjmjLT2XIbAQ6mbfrcln6BDlzqwk6TQfxckWRNwawpuqc5lSGnK1mmy3QI54+5D94v/DVNGLwBA1phbkTN+PiyDLtVWpTaoi3qZtO3UZBkjX6YomjQ/O02W1N1HlsEz0f3ifyG13zlt2IjIi29lj53bRo2Bex3jpqHLppyBALyffTk5O+DnUjImaz5/IoLAuHn+sGZagzEFeWc9jS5TX4/8PVBUhQyMb7rpJnz99ddB92loaMD111+Pzz77LGoNI6LOK+3EiwAAdbuWxbYh1C4aD63F8U+vhfXIOhgtPZF3zvPIHnsnZHP0160k6mxMOSfClDsEWSfdAjlYUKLOjqmDgECFpnQCY1NGXwCAOXeI5rySpJ8RlnTmGAfKKPoFzOFkjDXtVQ0lVh2bWfg7QDZ6MqbNryUbk2FI9WbyjJbuSO1zpjujF6AqNWTfqtTqbHJsA2PIgQL25uHssntIbzhFzVpIkg36RduCSD1hiuc7QdTbY0xCWv9pyJ34KHLHLwAAZJ1yG5K6jkH+2c/6jDhQ/R4Yk7U3OiIIjPPOfh6p/X6BjJHXerYptkokdz8F5pxBrXg3FA0hA+PJkyfj1ltvxRdffKH7fEVFBa688kps2LABL7/8ctQbSESdT1KXQhgz+8FRvg328u2xbg61EeG0ofL7F1C+6l4othqkDZyOrtPe5LBpoiiSTWnoeu5fkDFkZtD9tNlgnyxo82O99X9VMk+6BenDr0bOGfer9kvWBFuSb6EtQFvMSjP8WFUQyzdDrJeFVs/7lOSAWWL1fqbMfug5839IH/JrzzZDcvACSIH6RDam+ATG6psK6vfd/sNl1UN01YWk/ALhtmybZIg4YwxI2nm3gUYfhH069dxgMyTZgJReZ3iKfRrTuiH/nOdgyurvc8NGe7NI/TmOZB60ObsAOePugyE5G7kTHoYpewBSTzi3Ne+Ioijkp+uZZ57BBRdcgNtvvx2ffPKJ5rlDhw7h8ssvx6FDh7Bw4UKceeaZbdVOIupEJEmC5cSLAQB1uz6IbWOoTThrD6Hks5tQv2sZ5KRM5E56DNkn38a1G4liRJMdU893lQNkQHUq8RqSMpE58hpNlV3JaNbOIZbUAWLTdp+qz97XVu0rtKW2dIdSq4M8yeBTGMt/+HCgc4WqDOxbpdr7ONmnurc6U64KkhHbeaSG1C6ex3590drAMwhJ9lmuKZzXkmTIqnWCWxsYa+eAB89eB5x3L8maz2bz8PPssXdF1JaU3hPQ9bw3YEjODr0ztYuQM+AlScJjjz2GpKQk3HXXXbDb7bj44ouxfft2/O53v4PBYMCSJUswYMCA9mgvEXUSqSdMQXXR62jY/yUyR98IQ1Jm6IMoITQe/hYVax+GcNQjqdtJyDn9Xs0XaSKKAU0FXvVarqr5tKqAMdybWJJs1gRbkmz0VJP2VKVWB62qIEiSTZ55y555nM3n0hny614v2QlAQJIMmnnQ2qrM+l9/s0+9A43Fy9xFIIORfYbVqtquDaDUmXJ1pjS2gbFRFRj7VQxvw6HUfhnjgEtzqXaRJBhSu6q3tLIJZgiX1fM46L7qn5n6Zy7Jmn5KO/FipPQ5SzNvmBJT2KXhHnzwQSQlJeHee+/Fjh078K9//QtdunTBm2++iW7durVlG4moE5JNqUg94VzU71qGhj2faoa5UWISQkHtliWo2fQmAIH0oVcgY+S1LK5FFAc0wasqY6xZfshk8W4Pd41eSdZm+XSGUqsDWM0wblUQ7ckYNw+/1mSHmwIsSXL/Twj3HGN10GpMgmXgJWjY9znSB12q29T0gRei3+m/QXl5HRQl8GJQmmV8VMO1ZUOydii1rB8YS6YUT3AWC+q5074Z41YPVQ5Gkn3mGIcIcpvaktrvHNgrtiO1z5ko++pPEAiy7FgohggyxprfA++NFcVe57fME4PijiGimul33303kpKS8Ne//hWjRo3C66+/jsxMZnGIqG1YTrwI9buWoW7Xh7AMntmmQ7yobQmnDRXrHkPjwa8hGZORfdrdSO1zZqybRUQ6fLO2nsfqQEIJtUJvE+EKPcc40FxgdQCanAVX/VFAcTbvqGmjcNnc2yRDU5CsnWMsJ2Ui6+Q5yBxzU6uXDNIMx1UHT6YUbVGmAEXHjBl9YLdWtqoNLZF10u/hrDsMWT2H2ue62mbLBUmye963+ucmGUIEuVLToUZkn3xb80Eteu3mzLQUQWCsvhEkJ6VDMqZAOBuh2Kp8stjUUYT8y3Daaaf5/ZIIIVBcXIypU6f67b9u3brotY6IOjVT1glI6lIIW0kRrEe/111ihOKfy1qF8lX3wV62BQZLD+RNfBSmrBNi3SwiCkA9lNq3QnVyr/GwHvoGxow+YZ1LuOx+Q6m9j5uGUmuqJKuf9waZhpRcbQjlu/axywZJlgFFhoA7A64+r8Gc6ff6LaW+caCdT52sfa/qx6rMu2XABago2YjUgmmtbkskLINmAAAa9nkL6voVw2qrodTN51WHFKGC3BAF1iJ67ebAOECVdT3qlRFkkwVJXUbBeuRbGNK6t2jtYop/If86XHHFFVxsmohiJm3gxbCVFKF+51IGxgnIWXsIZV/9Cc66wzDnDkXupMc45Iwo3mkCWfU8SyNyJzwMKI6Q2bZmwmX3D2J9Xkcz5DlAEJ3abzKsh75Bcq8JTftps9ACaMoYS57X8R1KHS3q4d6awFg2w1l7SLWj/lBqU84gdJ/+PuRY/S0MOPcZbTaUuvnnZQiSrdY5SGebzjGy0TuSQO80ssG7xnYkQ6nNqqkDsgHZp92Nuu3/hGXgJaj8/rngbaeEFDIwnjNnTnu0g4hIV0qv8ZBT8mA9sh7OuqOeJRUo/tnLt6Ns5Z+g2KqR3GsCcsfNY9VpogTQHEQA2oyiZDC7kyVhBsWec/kMn1Wd0P0fdcZY/bzqtVN6jUeXqa/DlNGvaT9VgKQuyNU8FVkyaALYaNIMn1a/hiQhucdpaNj3OSyDZ2qDNZ/1m0NVvm5LmroOfutDS+odVZlRCUDgeddhvCgAILX/VDiq9sCUMxBVP70S/BCdxXMkSfZrhSQbIYIExprPn2YERIjA2CebbkjOQmbhDe5/iFb0BcUtTtgjorgmyUZYBpwPQKBu14exbg6FyVayEaVf/gGKrRqWQZcgd/x8BsVEicJl9zzUFBmKZBhyUybSdyi1X3Vf+GQtA2SMIRlgzhnk+TuiCe48BblkCDQFcrIBKX0mwZDWLerrxKrX1ZWMKcg/5wWkD5sFc95wpPQ9G12nvYnM0TcFybzHuOBgoD6G/o0LANpMf0s0D5uXjcg6+fdI6z819IjUcDPG6iXAfDPg8Bm+r74REOIGjyElP+B+sSyeRm2HgTERxb20gvMByYCGPR+7C6xQXLMeWY+yr+ZCOBuRMfJaZI65lZWniRKIZErzPlYPR9YJOgJJH3o5ACCt/9Qgxbea5516AyBNEC2ps6w+QZL6nM0TVyVZVb3aAENKLrpdsAQ5p98TdrvDIaszxrIBSV0LkTlqNiRJgiRJMGX1d7dXDvS+Y/z1O8yh1Nrh6q37G+5X/RpA6DBEL3CW/J7zHdXg/zLqNbrTWCcUmQABAABJREFUgu+rYkjOQtdpb6L7Rf/0e06x1zedI8zq7JQQGBgTUdwzpOYhpfcEKLYaNOz/KtbNoSAaD65C2ar7IFw2ZI65BRnDr2KdCqIEkT/lVaT0PRvpQ3/j2aYZjhxBYJwx4rfoev5bSBtwYcAiVM3bZXOG98AA+/pSB1qeQa2aTKhB899oUg+lDrpfoCG8bblWcBgCtcu9QZ3dD5A9bgm9n0OLMsbeOeSeTToF3bSHeLcZUnKRPvQ3MOePhDEt9HKzpqz+MCRn+21XHHXuc6vmIVPia31pPiKidmA58WI0HliJul0fuDMQFHca9n2JinWPAkIg+9Q7kTbg/Fg3iYgikJQ3FEl5D0Co5k9qM2zhB8aSJMOU0dv9D03mVBWINQVhxrSuyBk3D8aM3qgv/lT1ekGmX2iyru72Sup5sG0YfGqqdgejDtQ1c5FjHBhrqoBrf6aST8a4+ZMgyabWzDAOcDOgBVWpVefzLPUUaIksvW2SjMzC64O/bhhEU2AsMzDuUBIiY3zkyBFcf/31GDVqFE4//XQ89dRTcLmCr59XVVWFO+64A2PGjMEpp5yC++67Dw0NDZ7n169fj5tuugnjx49HYWEhLr74Ynz88cdt/VaIqIXMXUbBmNkPjvJtsJdvj3VzyEfDga/dQTGAnHHzGBQTJTD1KA/1kjWRDKXWnlD1ddOgP9c2td9k9xxiTcY4yFBXWW+uqeQZSt2WWVnJYELe2c+iy9S/hdrR+1A9/DqCGwxtIWhbAmWMWzrH2FMYLcDPK9ihes97hsoHWAJM5+euziJLURrGnjH8t+7/DpsVlfNRfIj7wNjlcuGGG26Aw+HAu+++iyeeeALvv/8+Xn755aDH3Xnnndi9ezcWLlyIv/zlL/j+++8xf/58z/MbNmzAoEGD8OKLL+LDDz/EjBkzcOedd+Lrr79u43dERC0hSRIsA6cDAOp2/CfGrSG1xkNrUbHmIUAI5Jx+L1L7nRPrJhFRlGiyti0MjKUAc1p1g9dwA2Pd9KUqY6wXOEdRcreTYM45Meg+6oBMVmfeQ1RDbmvq4fGxnWPseTbA4yA/Q/W8dL1565p9o1hErIll0Az0uORDpPabHJXzUXyI+8D4m2++QXFxMZ5++mkMGTIEkyZNwm233YbFixfD4XDoHlNcXIzVq1fj0UcfxahRo3DyySdj3rx5+Oijj1BWVgYAuPHGG3H77bdjzJgx6NOnD6666ipMmDABX3zxhe45iSj2Uk+YAsmcjob9K+BsKIl1cwjuQlvl3zwICBeyT5vLLwlEHYzks8xQy04SYK6qbhYxQCVnX55lhKBdOsfzOA6+4kr6gXG0grOWkoIExlKAjLGkKoSW1O0k99OaNYkDBL7NP49ggbXvElF62/0OCRDs6s5l1g/2W0tOygi9EyWUuJ9jXFRUhMGDByMvL8+zbfz48Zg/fz727NmDQYMG+R2zYcMGZGVlYfjw4Z5t48aNgyRJ2LRpE84++2zd16qtrcXAgQNb1V5Zbn2RmeZzRONcHRX7KDwdrZ9kcyrSB16Ems2LUb/zfWSPuan15+xgfdRW9PrJevRHlK26H1AcyBl7BywDpsWqeXGBnyXqiITwTl0LulZsMJrAJEAQ5NmmDlyCzWoV/o8l9ePY/x5qKnqrg9EYt00yqeY7+w3rVgem+sFn9ugbkZ2XjSMbP0H1pjebnjcAwaY5Bp1j7Lt2ssv7OOD59Odv6w6lVvd3jG9KUHyL+09HWVkZcnNzNduag+SysjLdwFjvGKPRiMzMTE/G2Nfy5cuxZcsWPPLIIy1uq9EoIzc3epPws7PTQu/UybGPwtOR+injtFnYsu2fqN/9EU6YeBMMSdH5netIfdSWmvup/thmHFp1H6DY0evMucgfdVmMWxY/+FmiDkWVjRWKPciOgemtOQwECmK8zwt1VjhIu1RHt6R5bUZWB8YhlgZqT+olhoIOpQ6w3JRkNCM55wTNcHV1oS6t5jnf/kGu3g0CdVEtKdjPU3WsMTUfdp3tqp1Vh8V96EMxFLNPx0svvRRynnDzfN9Ad9aC3XHTe04Iobt9/fr1uOeee/DII4+goKAgaJuCcToV1NQ0tvj4ZrIsITs7DZWV9VCU1tQA7LjYR+HpmP2UgtR+k1Ff/CkOfP8eMobMbNXZOmYfRZ+6n2yV+3H8s99DcTQis/B6yL1+ifLyulg3Meba87OUkZECk4lrQ1M7UAWnmuHAkdAMjw3wuHmTOoDUDX6bngpRIzloUNVONAFoPAXGgebnujeoHquHKJt0HgfILuvRHUrdfLzqZxni8+F9Sn9esabitmejOmPMv5sUWMwC4yuvvBIXXnhh0H3y8/ORl5eHLVu2aLY3Z319s8LN8vLy/DLDTqcTNTU1fsd89913uPHGG3HPPfeEbE84ovllSFEEv6iHwD4KT0frJ8ugmagv/hS12/6NtBOn+1/YW6Cj9VFbsdeVomTFnVBs1bAMuhSWIZez33zws0QdiRAudDn3NViP/Yikbie36BzaJYCCB1OaYl9BMsaa8+gF0HE2lDrehvBKhmQIl9V/uyZoVq93rF4r2NS0rza7HPSvnm5RLL11isObY6wJ2iUZ3S5+D67646jdsgT+FYj0s+BEvmL2W5qVlYWsrKyQ+xUWFuL1119HeXm5J6hdu3YtMjIy0L9/f91jRo8ejaqqKmzZsgXDhg0DAHz77bcQQmDkyJGe/davX48bb7wRd955J2bObF3WiYjajynrBCR1PxW2o9+h8cDXrILcTpy2WpSuuAuu+uNI6TsZmWNujvlcOSJqY8IFc+5gmHMHt/wcAQpuSTqVozWZ1WAjA/UygwGrG8dG0HWYY6zHpR8EH6oOaIJPTTXx5nnJIW5yaE4VrCiWet1sWVYF2MFGhmoDaGNqFxhTu6BWd2f1YwbGFFgclOwLbvz48SgoKMDcuXOxfft2rF69Gi+88AKuuOIKmEzuX8xNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75ievX78eN9xwA6688kpMmTIFpaWlKC0tRVVVVazeKhFFIH2Ie05r7bZ/QgQZbkfRoTht2PPhH+Co2oOkbqcg57Q/RW09SCKKP2kFvwQApPQa3/qTBaxKrROkqALjYIFlyCGz8XDTLo6zk5IhSbNsk/4+esOnVUFygOyy7rl05vbqXkNCVS3XeS50pekgQ8eJVOL+02EwGPDaa69h/vz5uOyyy5CSkoLp06djzpw5nn0aGxuxd+9ezfJNzzzzDB5++GFcffXVkGUZ5557LubNm+d5funSpWhsbMTrr7+O119/3bP91FNPxVtvvdU+b46IWiyp6xiYsgfAUbkTtpIiJHcdHesmdVhCcaFizUNoPLIB5tzByJ2wQPuFiYg6nKxT70TmmJtbPq84gFDLP0kBqg377WdQB8bxWYgrmksDxYKkFwwDniA51LB4Dd2McfCh1PrzxPWGzauOMekV5FTfMEnsnwm1rbgPjAGgZ8+e+Nvf/hbw+bFjx2LHjh2abVlZWXj22WcDHvPEE0/giSeeiFobiah9SZIEy+CZqFz3GOq2/ZOBcRuq3vAaGg9+g6SsPsg760lIptRYN4mI2pgkSZCiFhSrghlZOzfU/4VDFFJqPo16yaE4DYwTPQhTD2vX3NBofhxJ1lY3++tffEsKs/iWz8k9jwyp+f7PGnTaTqSD4+CIKGGl9j0bhtR8WI98C3tlcayb0yHV7foAdTv+BTkpEwUXvQhDclasm0RECUc9h1S/mrDe83KwwDgpS2erpPswVozpPQC4s5hyUmaMW9MCmiyxOrhs/rmFqvasXiYpysW3NKfxntto6aZzSvW89cS+WUFti4ExESUsSTbCMuTXAIDaLYtj3JqOx3pkPap++DMgm5A36REkZfWOdZMohrZv344//vGPmDRpEkaNGoVp06Zx6hGFR10HQp0RDlaQCb7DpbXSTrwQyT3PQO6kJ/RH18bBV1xDcja6nr8Y3S96B0ldCpEx6nfIn/JqrJsVNvWUGd1Ma6j54lLwIcytm2Os/zppJ0xFUvdTkDPuft3zMGNMwcT+rwYRUSukFfwScnI2Gg+shKPmYKyb02E4qvag/JsFgFCQc9qfkNxlZOiDqEPbvHkzcnJy8PTTT+O///0vbrjhBjzzzDN45513Yt00SiBSiKHU6mA5udcZAIDUfpP99pONKcib9ChSep4W4IXiIGUMwJTRC7I5HZIkIWPYFUjKGxrrJoUt4Bzj5m0hi2+pA2O9kMP/Z6QNloP8DNU3QzTz0pOQf9bTmtUqNNnqOC6IRrHH2yZElNBkYzIsg3+FmqK/onbr28g57U+xblLCczWWo2zl3RDOBmSMuEb3Syl1Ppdeeqnm371790ZRURE+//xzXH755TFqFSWEQBk7nWDJkOYdCmvK6I0el34UoKCSl2iKkrh8XJSpA0q9gouhim9JkieA1f3ZhCq+FeYcY80SX3o0Bd8YGFNgDIyJKOFZTrwItVveRsPez5Ax4moY0/znGFF4FGcjyr6+F66GEqT2+wXSh18V6yZRHKutrUVmZuvmTspy64KZ5uNbe56OLpb9ZEjK8DxWF0IyGIyQfNqTnDcIueMfhDnnRMiyBDk5A6FIaI6/JPe8WMUBV2N5xO+VnyUtdTArq+d+N/WPOkusnzFWBbZC8e/X5iH2kgEQrqbXVA+llnR+FpLnOc+rGExBf2a+7WyPny8/S+GJt35iYExECU82pcEy6BLUbl6E2q3vIvuU22PdpIQkhIKKtY/BUbED5vyRyB57FzMwFNCGDRuwfPnyoKtGhGI0ysjNDZ4NDFd2dnSXFeqoYtFPjuw81DY9tqSnoarpcW5ehu6cz9zcCyM6/+GmP1MGowxDdl9Yy3dDaSxp8Wers3+WDjT9NznZhPqmxympSZ6fYXP/pFmSUd60zWQ2w958gqZAV5Ikz4hnk0ny+3mUyAIOuEcRCJc7MDaYjGhefNVoMvodc0SWoAAwGCQ4m7alpqXo/qyb30dSSjIamx6nW0zIitLfnHB09s9SuOKlnxgYE1GHkD7oEtRtfw/1xR8jY/iVMKTkxrpJCae66HVYD62G0dITuRMfDj08jTqEl156CS+//HLQfb7++mt06+YdibFr1y7cfPPNmDNnDk4//fQWv7bTqaCmpjH0jkHIsoTs7DRUVtZDUfSW7SEgtv1kc3mLaNU3uDyPKyqtUTm/0pR5dDkV5J7+J5SsuAvZY+eivLwuovPws6RltTk8jxsbvY8rK+uRnZ2GhgbvNqdLdaBqCHUzu83m9/NwOpqOVw2ZdqnO43IKv2Oafy4ul/cFGq2uoD9ru927b01NHVwRfi5agp+l8LRnP2VkpMBkCj6UnoExEXUIclIG0k68CHXb3kXt1neRddItsW5SQqkv/hh12/4JyZyO3DOfgCERlxahFrnyyitx4YXBM3T5+d61QXfv3o2rr74aM2fOxA033NDq14/WlyFFEfwCGoZY9JMpv9D939whmrmo0WqHJMkQAITLBmP2QHSfsQySJLX4/PwsNRGq4cop+UjpPRGmnIGevhFCPaJIp2iWasSRUFx+fSqah0/LJojmnK4qSBbQ+xkKn/8G2k/dHNU5Xf7taEv8LIUnXvqJgTERdRjpg2eifucy1O1ahvQhM2FIzQ99EMFWshGV3z8PSAbkTngIpgwuy9SZZGVlISsrK6x9d+3ahauvvhoXX3wx/vCHP7Rtw6jDMGX0RrcL34EhJQcNB76O+vmNGf1gL90EZ+0hACzC1RYk2X198NnofayexysZ0DRI2vu8UPxP2hQYaypFa4pvhflzDFVQS3V+odcOoiZcromIOgxDSg4sg2YAigM1XNc4LM66IyhffT+gOJF1yh+Q3HV0rJtEcWrXrl246qqrMG7cOFxzzTUoLS1FaWkpKioqYt00SgBGS3dIhqQ2OXfW6Jvc/z3lj21yfoL+0lrq5ZokvWrjqoyxbmCsNO2uWhZKU+k6zDAlxH6agl6KK/CO1OkxY0xEHUr6kF+jbtcHqN/9X6QP+TWMlu6xblLcUhz1KPv6Xii2GlgGXQrLgPNj3SSKY8uXL0dFRQU++ugjfPTRR57tPXv2xIoVK2LYMkoobZCxM+cNQc9ffxmgMjJFhe5yTAHWB5ZUQ6kl2f0z1wlIRfM2TQE29drH4WWMQy7BJBuRWXgD6nb8Bym9x4d1TuqcGBgTUYciJ2UgffBM1Py8EDWbFyHntLtj3aS4JBQXKtY8DGf1PiR1PxWZo2+MdZMozs2ZMwdz5syJdTMo0SnO0Pu0AIPitqW7prAmY6zuf8n7X8kACMUzn1jDM8dYJ6gGoDuwVS/jGzJjbET60MuRPpTrrVNwHEpNRB2OZfClkJMy0LD3Mziq98e6OXGpuuh1WI98C2NGX+Se8YDukilERNGmGyBRnFIVQ9INPvXnGKszxp6gV+fn7skYS+FnjA1pXQEApswTVLuFCGd404TCxMCYiDoc2ZSG9CG/AYSCmp8Xxro5cad+939Rt/09yEkZyJv0GGRz+63pSESdHOd4JgyhCoz1hitLmkJZquJbTcGtJEmQ5CDL/nkyxur5yeostH+YknXy75E24EJkn/Yn1THBA9+QQ62JmjAwJqIOKW3gxZBTctF4YCVsZVtj3Zy4YTte5K1APf4hGNN7xrpJRNSJiDYaSk1tQITIGKszupqMsfdB7qTHYcrqj+yxf4Ivz+gBnaDa50QeSfkjkH3qHyGb0vRfWyV77FwYUvJgGThd93kiXwyMiahDko3JyBx5HQCg+qdXIUTs18eLNWftYZR/8wAgXMg+9Y9I6loY6yYRUSfTXPwojcFK3ErucZr7v13HeDfqDGvWVBnXBM7eqtRJ+cPQddqbMGcX+B1vyuzf9N+++ucJMUQ6fdgsSIZkpDS111dawTR0n/5vGFLzgp6HqBkDYyLqsFJPOBemrALYyzaj8WD0185MJIq9zluBevBMpBX8MtZNIqJOyGjpgZ6X/Q/ZJ98W66ZQADnj5yP/Fy8jpd9kzza9TL+cnOV5LOnNDQ5RVTp3wkNIHzYLWWNuCbBH8OMzR81Gj5mfQk7KCLofUbgYGBNRhyXJBmSOuRkAUL3hdQiXPcYtig2hOFG+5iE4a/YjucdpyCy8IdZNIqJOrK3WM6bokI3JSMofrlmnGIrDbz+DKjDWz+4GD2yNaV2QOWq2NrCVIluuSQpzSSeicDAwJqIOLbnbSUjuOQ6u+qOo2/F+rJsTE9Ub/gLb0e9gzOyHnDPu57ImREQUEd2MsVmdqdWZG9yioFVd0IthCrUvfuKIqMPLHH0jIBlQs/kfcDWUxbo57apux/uo2/EfbwVqdcESIiKiMAiXf8Y44PrDkneOccSkgP8ganMJERgfOXIE119/PUaNGoXTTz8dTz31FFyu4OX+q6qqcMcdd2DMmDE45ZRTcN9996GhoUF3359++glDhw7FjBkz2qL5RBRjpow+sAy+FMLZgKqfXol1c9pN46E1qPrpZUA2IXfiYzBaesS6SURElIgCVBPvMvWvyJ/yCtRBbPOjlgxzlhB+8S2iaIv7T5zL5cINN9wAh8OBd999F0888QTef/99vPzyy0GPu/POO7F7924sXLgQf/nLX/D9999j/vz5fvvV1dXh7rvvxmmn6Ve0I6KOIWP41TCk5qPxwFewHv0h1s1pc/by7ahY8xAgFOSMuw9J+cNj3SQiIkpQQmeOMQCYcwYiKW+YdtizJyBuScaYWWKKHWPoXWLrm2++QXFxMRYuXIi8vDwMGTIEt912G5577jncfPPNMJlMfscUFxdj9erV+M9//oPhw91fBufNm4cbbrgBc+fORV6et2z7Qw89hKlTp8JkMuGrr75qdXtlufW/0M3niMa5Oir2UXjYT15yUhqyT/49ylbdj6ofnkf38xdCMiR1yD5y1h1F2df3QLhsyBpzEyz9zmr1OTtiP0Ub+4iIOhrLoF+hbse/kNJnUog91X/3WjGUWnMMl1mk9hX3gXFRUREGDx6sCWbHjx+P+fPnY8+ePRg0aJDfMRs2bEBWVpYnKAaAcePGQZIkbNq0CWeffTYA4JNPPsHOnTvxyCOP4PXXX291W41GGbm5llafp1l2NucChsI+Cg/7yS0n5zzYDyxHzb41cOz5N7qf5q3O3FH6yGmtwa5P7oFirUTeiEvRa/x1Ua3a2VH6qS2xj4ioo8g66RZkFs4OXUlc7zrTorhYdZBgYEztK+4D47KyMuTm5mq2NQfJZWVluoGx3jFGoxGZmZkoK3MX3jl69Cgee+wxvPnmmzCbzVFpq9OpoKamsdXnkWUJ2dlpqKysh6Lwj4Ie9lF42E/+LIVzUHvwBxz7/k0gbyySc0/sMH0kXDaUfDkXtoq9SO55OlJG3ISKivqonJufpdDas48yMlJgMrG6OBG1vfCW19KLgjmUmhJLzALjl156KeQ84a+//hpA4Mn7wbIges8JITzb586di+uuuw4DBw4Mt8lhieaXIUUR/AIaAvsoPOwnLzm1GzJG/Q7VP72M8jWPodt5rwNIS/g+EooT5d88BFtJEUzZJyJn3P0QMEBE+T0lej+1B/YREXU6UQpoJUl9w49/R6l9xSwwvvLKK3HhhRcG3Sc/Px95eXnYsmWLZntz1tc3K9wsLy/Ps08zp9OJmpoazzHfffcdfvzxRzz99NMAAEVRIITA0KFD8dZbb+Gkk05q0fsiovhnGTQDjYdWw16yEdWb/4G8s2+LdZNaRQgFld89A+uhb2BM74W8M5+EbEqNdbOIiKiziFYFaYkjYSh2YhYYZ2VlISsrK+R+hYWFeP3111FeXu4JateuXYuMjAz0799f95jRo0ejqqoKW7ZswbBhwwAA3377LYQQGDlyJADgo48+0hzz9ttv44cffsBzzz2H3r17t+KdEVG8kyQZOaf9Ccc/uRY1m5egfug5gKlfrJvVIkIIVG94DQ17lsOQkoe8s5+BISUn1s0iIqJOJUpDoFWBsRBKdM5JFKa4X65p/PjxKCgowNy5c7F9+3asXr0aL7zwAq644gpPRepNmzZh6tSpOH78OACgoKAAEyZMwLx587Bp0yb8+OOPePjhh3H++ed75icPHDhQ87/c3FyYzWYMHDgQKSkpMXu/RNQ+jJYeyBx9MyBc2PfpPVDstbFuUovUbl2Cuu3vQTZnIO/sZ2BM6xbrJhERUScTrSKPmmWfOJSa2lncB8YGgwGvvfYaZFnGZZddhrvuugsXX3wx5syZ49mnsbERe/fuhcPhXWPtmWeeQf/+/XH11Vfj+uuvx0knnYQFCxbE4i0QUZxKG3ABUvucCXvNEZSvexIiwSpg1m57FzUb34BkTEbemU/ClNkv1k0iIqLOKFoBrSbAZiEual9xX5UaAHr27Im//e1vAZ8fO3YsduzYodmWlZWFZ599NuzXmDNnjibYJqKOT5Ik5Jx2F5zVu9F4cDXqdvwH6YMvjXWzwlK79V1UF70GyZCM3EmPw5w3JNZNIiIigjcwbl1gK3G+MbWzuM8YExG1JdlswQnTngBkE6o3/AXWYz/GukkhqYPivDOfQHLX0bFuEhERdWbqjHHz6KvWDq+WGaZQ++Injog6vdQuQ5Az9g5AuFC++gE4qvfHukm6hBCo+fn/NEFxUtfCWDeLiIjIo1WTklRTmpgxpvbGwJiICICl4DykD/0NhKMeZV/fA5e1KtZN0hCKC1U//Bk1P/8fJGMq8s56kkExERHFB3UF6abHUmuXcGJgTO2MgTERUZOMUbOR0nsiXHVHULZybtxUqhYuGyrWPoz6XcsgJ2cjf/KfkdRlVKybRURE5KYpXhmdOcYMjKm9MTAmImoiSTKyT78X5i6j4KjYibKVd0NxNMS0Ta6GMpR+cTsaD6yEwdIDXX7xMsw5J8a0TURERFo6aw63Ni6WGRhT+2JgTESkIhuTkTfpcZjzhsFetgVlX90Fl606Jm2xl23D8f/dCHv5NpjzhqHLL16GMb1nTNpCREQUiGa5Q8/j1g6lZphC7YufOCIiH7IpFXlnPgFz7lDYy7ag9PPfw1l/vN1eXwiBuh3vo+SL30NpLENq/2nIP+d5GFJy2q0NREREYVPPMUZ0qlKz+Ba1NwbGREQ6ZHM68s55Fsk9ToOzZj9K/ncjrMc3tPnruhorUP71Paj68UUAAlkn/R7ZY++CZDC3+WsTERG1XmvqUquOZcaY2hk/cUREAcjGFOROfARpAy6EYq1E2Yo7ULNlMYTijPprCaGgbvdHOP7xb2E98i2MGb3RZcqrsAyaAam1a0ESERG1JVXG2DusurXrGDNjTO3LGOsGEBHFM0k2IvvUP8KcPxxV3z2Hmo1voPHAKmSPvQPmnEFReQ1byUZUb3gN9vJtACSkDZyOzMIbIBuTo3J+IiKiNqUzx7i1yzW1erknoggxMCYiCkPaCVNgzhmEyu+ehr10M0qW34iUPmciY/iVMGX1j/h8QnHBduwH1G77J2zHfwIAmHIGIfuUP8CcOzjazSciImozAjpzjFuLc4ypnTEwJiIKkymzL/Inv4j64o9Rs+lNNB74Co0HvkJS19FI7fcLJHc/FYbUvIDHC8UJe/k2WA9/i4b9X8DVVNDLmN4bGcOvQkrfs7k8BRERJR6hEwy3tvgWr4fUzhgYExFFQJJkWAZcgNR+v0D97v+ibvu/YDu+AbamwlwGSw+YMvrAkJoPyZgCKE64bDVw1h6Es3ofhMvmOVdS1zFIG3ABUnpPgCTzzzERESUq9VDq5uxxywJjU85gOCq2w5w3ovXNIooAv4kREbWAbExG+uBLYRk0A7aSjWg88DVsx3+Cs+YAXHVHdI+RTGlIyh+J5B5jkdLzdK5JTEREHYNmuaZWnQj55zwLR+VumPNHRumcROFhYExE1AqSJCO562gkdx0NAFAcDXDWHoLLWgnhbIQkmyCb0mBI7wFDSj4rTBMRUcejGUrdfJ1r2Vxj2ZSGpC6jWt0kokgxMCYiiiLZlApzzsBYN4OoTR04cAAXXXQRzGYz1q9fH+vmEFGMaYpvNd8A1pt3TBTHWAediIiIwuZ0OnHXXXfhpJNOinVTiCheqINgzzJLDIwpsTAwJiIiorC98sor6NWrF6ZNmxbrphBRvFDNMZaahlKLFsw7ZpKZYolDqYmIiCgsP/30E5YtW4Zly5bhyy+/jMo5Zbl18+6bj2/teTo69lNo7KPw6PWTpnxG0z8kRN6XktQx+p+fpfDEWz8lRGB85MgRzJ8/H+vXr0dqaiqmT5+OO+64AwZD4PXNqqqq8PDDD+Orr76CwWDAlClTcN999yE1NdWzj6Io+Pvf/45//etfOHLkCLp06YLf/va3uOqqq9rjbRERESWMuro6zJ07F4888ggyMzOjck6jUUZuriUq58rOTovKeTo69lNo7KPwqPup1mxAfdNjWZahAJBlhP37faDpv0lJxqj9TYgH/CyFJ176Ke4DY5fLhRtuuAF5eXl49913UVJSgj/96U9ISkrCbbfdFvC4O++8E6WlpVi4cCEcDgfuvfdezJ8/H0899ZRnn8ceewxr1qzBPffcgwEDBqCyshKNjY3t8baIiIjiwksvvYSXX3456D5ff/01/vznP+PMM8/EGWecEbXXdjoV1NS07roryxKys9NQWVkPReE4zEDYT6Gxj8Kj1082q93zvCLc2T+XS0F5eV1Y58w6eQ6qfngJ5hMuDvuYeMbPUnjas58yMlJgMgVOqgIJEBh/8803KC4uxsKFC5GXl4chQ4bgtttuw3PPPYebb74ZJpPJ75ji4mKsXr0a//nPfzB8+HAAwLx583DDDTdg7ty5yMvLQ3FxMd555x189NFH6N+/PwCgd+/e7freiIiIYu3KK6/EhRdeGHSf/Px8rF+/HseOHcPbb78NABBCQFEUDB06FE8++SQuuOCCFr1+tL4MKYrgF9AwsJ9CYx+FR91PuvOJhRJ2P1oGXoK0ARdBko0dqu/5WQpPvPRT3AfGRUVFGDx4MPLy8jzbxo8fj/nz52PPnj0YNGiQ3zEbNmxAVlaWJygGgHHjxkGSJGzatAlnn302VqxYgV69emHFihWYPXs2JEnChAkTcOedd8JiafkQjmiMkY+38fbxiH0UHvZTaOyj8LCfQkvUPsrKykJWVlbI/f7+97/D4XB4/v3ll1/izTffxJIlS9C9e/c2bCERxT29qtQRVtKS5LgPS6iDi/tPYFlZGXJzczXbmoPksrIy3cBY7xij0YjMzEyUlZUBAA4ePIjDhw/jiy++wNNPPw273Y5HHnkEd999d8ghZYFEc64UED/j7eMZ+yg87KfQ2EfhYT+F1lH76IQTTtD8e/PmzZBlGQMHct1uIvIGwZJnS+wzgESRiFlgHO6cJgCQJP2774G2B3pOCOHZLoSAw+HAk08+ib59+wIA5s+fj1mzZqGsrEyToQ5XNOZKAZyXEA72UXjYT6Gxj8LDfgot3uZKERG1G/VQ6hZmjIliLWaBcbhzmvLy8rBlyxbN9uasr29WuFleXp5nn2ZOpxM1NTWeY/Ly8mA0Gj1BMQAUFBQAcFfBbklgDERvrlTzufgFNDj2UXjYT6Gxj8LDfgqts/TRjBkzMGPGjFg3g4jigNAEwc3JqcjXMSaKpZgFxuHOaSosLMTrr7+O8vJyT1C7du1aZGRkeIpm+Ro9ejSqqqqwZcsWDBs2DADw7bffQgiBkSNHevZxOp04ePCgp+jW3r17AQA9evRo7dsjIiIiIuoULCdeBOuh1cgYeS3qiz9xb2TGmBKMHOsGhDJ+/HgUFBRg7ty52L59O1avXo0XXngBV1xxhaci9aZNmzB16lQcP34cgDvzO2HCBMybNw+bNm3Cjz/+iIcffhjnn3++JxN8xhlnYPDgwbjvvvuwfft2bNq0CQ8//DCmTJnS4mwxEREREVFnk9z9ZPT41SfIGH6Vaig1M8aUWOI+MDYYDHjttdcgyzIuu+wy3HXXXbj44osxZ84czz6NjY3Yu3evplrmM888g/79++Pqq6/G9ddfj5NOOgkLFizQnPevf/0r0tPTcfnll+Pmm2/GyJEj8fjjj7fr+yMiIiIiSnSyKRUAIDUNpWa+mBJN3FelBoCePXvib3/7W8Dnx44dix07dmi2ZWVl4dlnnw163q5du+KVV16JShuJiIiIiDq95gK4zBhTgon7jDERERERESUIybtgE1EiYWBMRERERERR0pwxZmBMiYWBMRERERERRUdz8S1mjCnBMDAmIiIiIqLoYsaYEgwDYyIiIiIiigqpKWMsmDGmBMPAmIiIiIiIooRVqSkxMTAmIiIiIqKoSCv4JQDAMuiSGLeEKDIJsY4xERERERHFv7SB05Hc41QYLD1j3RSiiDAwJiIiIiKiqJAkCcb0XrFuBlHEOJSaiIiIiIiIOjUGxkRERERERNSpMTAmIiIiIiKiTo2BMREREREREXVqDIyJiIiIiIioU2NgTERERERERJ0aA2MiIiIiIiLq1CQhhIh1IzoKRRFwuZSonMtkMsDhcEXlXB0V+yg87KfQ2EfhYT+F1l59ZDDIkGWpzV+nrUXrusnPZnjYT6Gxj8LDfgqNfRSeeLpuMjAmIiIiIiKiTo1DqYmIiIiIiKhTY2BMREREREREnRoDYyIiIiIiIurUGBgTERERERFRp8bAmIiIiIiIiDo1BsZERERERETUqTEwJiIiIiIiok6NgTERERERERF1agyMiYiIiIiIqFNjYExERERERESdGgNjIiIiIiIi6tQYGBMREREREVGnxsA4zixZsgRnn302RowYgZkzZ2LTpk2xblK7ef3113HJJZdg9OjROP3003Hrrbdi3759mn1sNhsWLFiAsWPHYvTo0ZgzZw7Ky8s1+xw5cgTXX389Ro0ahdNPPx1PPfUUXC5XO76T9vPggw9i0KBBWLx4sWcb+8jt2LFjuOOOO3DqqaeisLAQM2bMQHFxsed59hNQV1eH+fPnY8KECRg1ahTOP/98LFu2zPN8Z+yj77//HjfeeCPGjx+PQYMG4auvvtI8H60+Wb9+PaZPn47hw4fjF7/4habfKTK8bvK6GQleNwPjdTM0Xjf9dajrpqC48fHHH4thw4aJf//732LXrl1i3rx54pRTThHl5eWxblq7uPbaa8V//vMfsXPnTrFt2zbxu9/9Tpx11lmisbHRs88DDzwgJk2aJNauXSt+/vlnMXPmTPGb3/zG87zT6RTnn3+++O1vfyu2bt0qVq5cKcaOHSteeOGFWLylNrVixQpx4YUXivHjx4u33nrLs519JERVVZU466yzxN133y02btwoDhw4IFauXCmOHj3q2Yf9JMS9994rpkyZIr777jtx4MABsXjxYjF48GCxfv16IUTn7KOVK1eK5557Tvzvf/8TAwcOFCtWrNA8H40+OXDggBg1apR4/PHHxe7du8Vbb70lhgwZItasWdNu77Oj4HWT181I8LoZGK+b4eF1019Hum4yMI4jl156qXjooYc8/3a5XGL8+PHijTfeiGGrYqe8vFwMHDhQ/Pjjj0IIIWpqasSwYcPE8uXLPfvs3r1bDBw4UGzatEkI4f7lHDJkiCgtLfXs8/bbb4uTTz5Z2O329n0Dbai0tFRMnDhRbN++XZx11lmeCzz7yO3pp58Wl19+ecDn2U9uv/zlL8Vrr72m2TZlyhTxxhtvsI+E8LvAR6tPnnrqKXH++edrXuv2228X119/fVu+nQ6J100tXjcD43UzOF43w8PrZnCJft3kUOo4YbfbsWXLFpxxxhmebbIsY9y4cSgqKopdw2KotrYWAJCZmQkA2Lx5MxwOh6aPCgoK0KNHD08fFRUVYfDgwcjLy/PsM378eNTU1GDPnj3t1/g2ds899+DKK6/EoEGDNNvZR24rVqzA8OHDMWfOHJx++umYMWMGPvjgA8/z7Ce30aNH48svv8Tx48chhMDq1atRUlKCcePGsY90RKtPioqKNOdo3qez/q1vKV43/fG6GRivm8HxuhkeXjcjk2jXTQbGcaKyshIul0vzoQCA3NxclJaWxqhVsSOEwOOPP45TTz0VBQUFAICysjIkJyfDYrFo9s3NzUVZWZlnn9zcXM3zzX3avE+iW7x4MRoaGnDttdf6Pcc+cjt48CDefvttFBQU4M0338Qll1yC++67D19++SUA9lOzefPmoU+fPpg4cSKGDx+OW2+9FY8//jiGDBnCPtIRrT4JtE9VVRUcDkdbNb/D4XVTi9fNwHjdDI3XzfDwuhmZRLtuGqN2JmoTQghIkhTrZrS7hx56CDt37sQ777yj2a7XF0KIkPsE255IiouL8eqrr+K9996DLOvf1+rsfQS43++IESNw++23AwCGDBmCzZs345133sE555wDgP0EuL8sbtu2DX/961/RtWtXrFu3Dvfeey+6desGgH2kJ1p94ruP7zmo5Xjd5HVTjdfN8PC6GR5eNyOXSNdNZozjRHZ2NgwGg9/dooqKCr+74R3dww8/jBUrVmDRokXo2rWrZ3teXh4aGxtRV1en2V/dR3l5eX592Pxv3ztNiWjjxo2oqKjAlClTMHToUAwdOhSHDx/Go48+iqlTp7KPmuTl5aF///6abQUFBTh69Kjn+c7eT1arFc8//zzuvvtuTJo0CYMHD8Y111yDSZMmYdGiRewjHdHqE719ysvLkZWVBZPJ1FbN73B43fTidTMwXjfDw+tmaLxuRi7RrpsMjOOE2WzGsGHDsHbtWs82RVGwbt06FBYWxq5h7UgIgYceegifffYZFi1ahN69e2ueHz58OEwmk6aP9u7diyNHjnj6qLCwENu3b9eUgV+7di0yMjL8/uAnosmTJ+PDDz/EsmXLPP/r0qULrr/+erz22mvsoyajR4/G/v37Ndv27duH7t27A+BnCQCcTiccDgcMBoNmuyzLUBSFfaQjWn1SWFiINWvWaM69du3aTvO3Plp43eR1Mxy8boaH183QeN2MXMJdN6NayotapXnZiffff1/s/n/27ju8rer8A/hXV5L3HrHjFSdO4jjOcDbZJKyQsqHQllX2LvwKpEBDSRhljzJadqDMAiVQ2hBGQghkk8Rx4kw7cbz3nlr394ct6V75ypJsyZKt7+d5eFCurq6Ojq4lvfc95z0FBeKDDz7oV8tOPPTQQ+KMGTPEHTt2iNXV1Zb/bJedOPXUU8Vt27aJ+/fvFy+77DLFku/XXnuteOjQIXHz5s3iKaecIj7//PNeeEWDQ1pdUxTZR6Ioirm5uWJWVpb42muviUVFReLnn38uTpo0SdywYYNlH/aTKF5xxRXieeedZ1l24uOPPxYnTpwofvnll6Io+mcftba2igcPHhQPHjwojh8/XvznP/8pHjx4UKyurhZF0T19UlxcLE6ZMkV88sknxYKCAvH9998XJ06cyOWa+oHfm/ze7A9+b/bG703n8Huzt+H0vcnA2Me899574qmnnipmZ2eLl1xyibhv3z5vN2nQjB8/XvG/f//735Z9Ojs7xVWrVomzZs0Sp06dKt5+++2y8u6iKIqlpaXi9ddfL06ZMkWcM2eO+MQTT4gGg2GwX86gsf2CZx91++6778Rf/epX4qRJk8Tly5eLa9euld3PfhLF6upq8U9/+pO4YMECccqUKeLZZ58tvv/++5b7/bGPtm/frvg59OKLL4qi6L4+2bZtm3j++eeL2dnZ4mmnnSZ+/vnng/Yahxt+b/J701X83lTG703H+L3Z23D63lSJIit+EBERERERkf/iHGMiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIvGbdunX4/PPPvd0MIiKiIYHfm0Sew8CYiLxm/fr1WLt2rbebQURENCTwe5PIcxgYExERERERkV9TiaIoersRROR/7rvvvl5XvW+//XbccccdXmoRERGR7+L3JpFnabzdACLyT7feeivKy8vR0tKChx56CACQmJjo5VYRERH5Jn5vEnkWA2Mi8oq0tDRERUVBFEXk5OR4uzlEREQ+jd+bRJ7FOcZERERERETk1xgYExERERERkV9jYExERERERER+jYExEXmNVqtFV1eXt5tBREQ0JPB7k8hzGBgTkdeMHj0aR48exffff4/9+/ejqqrK200iIiLyWfzeJPIcrmNMRF5TX1+PBx98ELt27UJTUxPXYyQiIuoDvzeJPIeBMREREREREfk1DqUmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2MiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msabzdgODGZRBiNJrccS6MRYDC451jDFfvIOewnx9hHzmE/OTZYfaRWCxAElcefx9Pc9b3Jc9M57CfH2EfOYT85xj5yji99bzIwdiOj0YTGxvYBH0cQVIiNDUNzcwdMJtENLRt+2EfOYT85xj5yDvvJscHso6ioEAiC2qPPMRjc8b3Jc9M57CfH2EfOYT85xj5yjq99b3IoNREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+bUhFRh/8MEHWLp0KSZPnoxLL70UeXl5fe7/9ddfY9myZZg8eTLOPfdcbN68udc+BQUFuOmmmzB9+nRMnz4dv/nNb1BfX++pl0BERDRsPPTQQ8jMzMT777/v7aYQERENyJAJjNetW4fHH38ct912G9auXYvMzExcf/31doPYvXv34u6778Yll1yCL774AqeffjpuvfVWFBYWWvYpLi7G5ZdfjrFjx+LDDz/E2rVrcd1110Gr1Q7WyyIiIhqSfvjhB+Tm5mLEiBHebgoREdGADZnAeM2aNbjssstw8cUXY+zYsVi9ejUCAwOxdu1axf3fffddLFq0CNdffz0yMjJw5513YuLEifjggw8s+zz//PNYtGgR7r33XkyYMAGjRo3CGWecgfDw8MF6WURERENObW0tVq1ahaeeeooXk4mIaFjQeLsBztDpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK6666TbVuwYAE2bdoEADCZTNi0aROuv/56XHPNNTh8+DBGjRqF2267DQsXLux3WwVB1e/H2h7DHccarthHzmE/OcY+cg77yTF/6qP7778fV155JTIzMwd8rIH2lz/1+0CwnxxjHzmH/eQY+8g5vtZPQyIwbmhogNFoRFxcnGx7bGwsTp48qfiY2tpaxMbG9tq/pqYGAFBXV4f29na8+eabuOuuu7BixQps2LABN910Ez777DNMnDjR5XZqNAJiY8Ncfpw90dGhbjvWcMU+cg77yTH2kXPYT44N9z56//330d7ejmuvvXbAx3Ln9+Zw73d3YT85xj5yDvvJMfaRc3yln4ZEYGyPKIpQqexfYVC6z7zNZDIBAE477TRcffXVAICsrCzs3LkT//rXv7B69WqX22MwmNDc3OHy42wJggrR0aFoaGiDySQO+HjDEfvIOewnx9hHzmE/OTaYfRQREQytVu3R51BSWFiIv//97/jkk08gCAOfjeWO702em85hPznGPnIO+8kx9pFzfO17c0gExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/6OhoaDQajBkzRrZPRkYGysrK+t1Wd76pJpPIPyYH2EfOYT85xj5yDvvJseHcR/v27UN9fT3OPPNMyzaj0YjHHnsM77//PtavX+/yMd3VV8O5392J/eQY+8g57CfH2EfO8ZV+GhKBcUBAALKzs7F161YsXboUQHfGd9u2bZZsr62cnBxs2bIFV155pWXb1q1bkZOTIzum7VDsoqIipKWleeaFEBERDWGnn346Jk2aJNt23XXX4aKLLsKFF17opVYREREN3JAIjAHgmmuuwYoVK5CdnY0pU6bg3XffRWdnp+WLeMWKFUhISMDdd98NALjqqqtwxRVX4O2338bixYuxbt06HDhwAI899pjlmNdeey3uuecezJo1C7NmzcKGDRuwY8cO3HvvvV55jURERL4sIiICERERsm1arRbx8fFIT0/3TqOIiIjcYMgExsuXL0d9fT1efPFF1NTUICsrC2+++SZiYmIAABUVFbL5TtOnT8ezzz6LF154Ac899xzS09PxyiuvICMjw7LPsmXL0NzcjFdffRWPPPIIMjIy8Oqrr/ar8BYRERERERENTSpRFL0/oHuY0OuNaGxsH/BxBEGF2Ngw1NW1+sR4e1/EPnIO+8kx9pFz2E+ODWYfRUWFeKX4lru543uT56Zz2E+OsY+cw35yjH3kHF/73hx4SUkiIiIiIiKiIYyBMREREREREfk1BsZERERERETk1xgYExERERERkV8bMlWpibzBZDKgraMcbe3lMJp0gEqF4IBYhIYkIzAg0tvNI5IRRRFtHeVo76yCTtcMlaBGgCYc4aGpCAqM9XbziIiIiHwWA2MiG126JpRUfo+Kmm2obdgHk0mnuF9E6Ggkxs/BqOTliAgdNcitJOpmMhlQVbcTxRXfobpuN3T6JsX9ggJjkRg3B0kjFiExbjZUqqFf0ZiIiIjIXRgYE/Vo66jAocJ3UVK5wRIMazVhiI2ciNCQZGjUIRBFAzq66tDUUojmthNobjuBo0UfIyFuDiaNvQFREeO8/CrIX5hMBpws/waHj/8T7Z2VAABBpUVM5ESEhaQgQBsJEUbodM1obj2B5rYiFJWtQ1HZOoQEJWLsqEswJuU8qNWBXn4lRERERN7HwJj8nl7fioOFa1BY8gVE0QCNOgTpqcuRmngaYiInQhCU/0zaO6pQXPEdTpR+haraHaiq3YExKedj8vibodGEDPKrIH/S2HwMu/OfQmPLUQBAQuxspCcvx8j4eXYDXZ2+BZW123Gy7GtU1+9G3pGXUXDyM0wadyNSEpdCpVIN5ksgIiIi8ikMjMmvVdbuwJ78p9HRVQONOhjj0q/EuFGXQutEYBsSnIAJY67A+PTLcKLsfzhY8DaOl36JqrpdmDN1NaIjxg/CKyB/Iooijp38BAeOvQZRNCI2ajKmjL8VMVETHT42QBuOtJFnIG3kGWhqOY78gjdRUbMFO/c/jOKK7zA9+14Ecx4yERER+SkGxuSXTCYD9h/9BwqKPwMApCaehimZdyAoMNrlYwmCFhmpFyB5xGLsPfQMyqt/xo87b8fMSfchJXGpu5tOfspo7MLu/KdQUvk9BCEAUzJvR0bqBVCpXF9cIDJ8DOZN+ytq6vdiz8FnUFm7Dd9v/T1mTnoAI+PneqD1RERERL6NyzWR3+noqsPmX+5CQfFnCNBGYm7OY5g95S/9CoqlggKjccrURzFp3M0wmnTYkbcahcVr3dRq8mcGQzu27L0fJZXfIyQoAafOfgVj0y7qV1AsFR8zDafNfQsZaRdBp2/G1r3341DhOxBFk5taTkRERDQ0MDAmv9LUchw/bL8JdY37ERWRiaWnvI6kEQvcdnyVSoXM0b/F3JzHIAgByD38Ao6d/MRtxyf/YzB04Oc996Kmfjciw8diyZxX3TpMX6MOQs6EO3HK1EegUQfhYOEa7Mhb3b08GREREZGfYGBMfqO2YT9+3HUHOrpqkDbyLJw66yWEBid65LmSRszHvGmPQy0EIu/IKygq+9ojz0PDm8lkwPa8h1DXeAAxkROxaOYLCAqM8chzJScswpI5ryI0OAllVZuwZc+foDe0eeS5iIiIiHwNA2PyC5U12/HT7j9Cb2hF5ujLMXPS/R5fpiYhdibm5jwGlUqNPQefRlXtLo8+Hw0voihid/5TqKrdgYjQ0Zg//SkEaMM9+pwRYek4dfbLiAwfi5r6Pdi86y506ZTXRSYiIiIaThgY07BXVbsL2/Y9CJNJhymZt2PSuBsHbWmahLhZmD7xXoiiEdv3/QXNrUWD8rw09B0t+hDFFd8gOGgE5s/wfFBsFhQYi8Uz/4b46Bw0thzFz7vvhk7fMijPTUREROQtDIxpWKuu24OtuQ/AZNIhJ+v/MG7Urwe9DenJZyNrzO9hMLZj+76/wGBoH/Q20NBSVfcLDhx7E2ohCPOnPYGQoBGD+vxabRjmTX8S8dHT0NhyDD/vvgd6feugtoGIiIhoMDEwpmGrtmE/tu69vydTfAcyUi/wWluyMq5GQtwctLSdxJ6Dz0AURa+1hXxbe2c1duY9DMCEGdn3IjI8wyvt0KiDMG/aXxEbNRkNzYfx0+4V0Bs6vNIWIvKe9o4qGI1d3m4GEZHHMTCmYam57SS27r0fRlMnJo27GeNGXeLV9qhUAmZN+jNCghJQUrkBRWX/9Wp7yDeJogm/7H8MOn0TMtIuQurI073aHo0mBPOnP4WYyImoazyA73++HyaTwattIqLB09pejq9/uhQbd9zsluMZTTq0d1S55VhERO7GwJiGnc6uOmzZvQJ6QwvGp/8GmaN/6+0mAQACAyIxe8pDAATkHXkFbR0V3m4S+ZiC4s9Q05CLyLAMTB5/i7ebAwDQakIwb9oTCA9Nw8myzcg99CJHPBD5icbmowCA5tbjbjnejztvx9c/XYqWtlK3HI+IyJ0YGNOwYjC0Y8ue+9DeWYmUxKWYNO4mbzdJJjYqG5mjfweDsQO7DzwBUTR5u0nkI5pbT+DAsTcgqLSYNfnPUAsB3m6SRWBAJBbOeArBQbEoLPkCR4s+9HaTiGhQuPc7qqH5SM//D7n1uERE7jCkAuMPPvgAS5cuxeTJk3HppZciLy+vz/2//vprLFu2DJMnT8a5556LzZs32933hhtuQGZmJn744Qd3N5sGiSgasSPvYTS2HEVcdA5mTrofKpXvneJZGVcjMiwDNQ25KCz5wtvNIR8giibszn8KJpMOE8de57V5xX0JDUnC8lP/BrU6GAeOvY6Sig3ebhIReZinRoeoVGqPHJeIaCB8L2qwY926dXj88cdx2223Ye3atcjMzMT111+P+vp6xf337t2Lu+++G5dccgm++OILnH766bj11ltRWFjYa9/333+fQwOHgfyCt1BZuw3hoaMwN+dRn8q4SamFgJ6gXY38Y2+go6vO200iLztR+l/UNx1EdEQmxqdf6u3m2BUfOxFzc1YDELA7/0k09AyzJKLhSXRzxthMhcFZMpGIyBVDJjBes2YNLrvsMlx88cUYO3YsVq9ejcDAQKxdu1Zx/3fffReLFi3C9ddfj4yMDNx5552YOHEiPvjgA9l+BQUFeP311/HXv/51MF4GeUhJ5UYcOfEBtJowzM3566Ct+dpfURHjMDbtYhiM7dh/5O/ebg55UWdXAw4cew2AgGkT7/b5TMrI+FMwefzNMJq6sG3vA+jsUr44SURkj69/zhGRf9J4uwHO0Ol0yM/Pxy23WIvRCIKAefPmITc3V/Exubm5uO6662TbFixYgE2bNsmOe/fdd+P+++/HiBHuWSdUEAZ+FdR8DHcca7iS9lFD81HsPvAEAAGnTF2FyPBU7zbOSdnjrkVJ5UaUVH6PMannYkTsNLc/B88lx7zdRweO/QN6QyvGpl2M2KgJXmmDM6T9lDn6MjS1FqC4/FvsyHsIi2c9D0HQermF3uftc4nI3TxWB0PFvxEi8j1DIjBuaGiA0WhEXFycbHtsbCxOnjyp+Jja2lrExsb22r+mpsby7+effx7jxo3D2Wef7ZZ2ajQCYmPD3HIsAIiODnXbsYaroGAdtm9aCaOpC6dMuxPZE5Z6u0kuCMOCmXfj+y33I+/o33DJ2R9BrfZMcMFzyTFv9FFFdS5Oln+DkKA4LJzzBwQGuO/zw1PM/XTmwlX48vsy1NTl4eDxV7B4zkovt8x38O+NhjJRNGH7vgcRHzMDWk2IR55DNXQGLBKRHxkSgbE9oihC1cdVR6X7zNu2b9+O9evX48svv3RbewwGE5qbOwZ8HEFQITo6FA0NbTCZOPdZiSCoEBkZiK9/uAet7ZVIG3k6UkZchLq6Vm83zSVRYfMwImY6quv34Jd9H2LsqIvdenyeS455q49EUcRPO58BAGSPuxGtLSq0wnfPX6V+mjP5YXy/7QYcKvgcoUHjMDrlV15upXcN5rkUEREMrZbDUcn9GlsKUF79M8qrf8bM7Ps99Cz8PiLPa20vRXn1FoxNuxgqlRomkw5qdaC3m0U+bEgExtHR0VCr1aitrZVtr6+v75VFNouLi+u1f11dnWX/Xbt2oaKiAqeccopsn1tvvRXz5s3DW2+91a+2uvPHkMkkMpjpwy/7X0d1/V5Eho/F9IkrIIqeq6DpSZMzb8OGbdfjYMG7SB15FrQa92ebeC45Nth9VFq5EfVNBxEVPg6piWcMmfdH2k+BAXGYM2U1Nv9yF/YcfB6R4eMRFT7Wyy30Pv690VAmmgzW2x4qviWKRo8cl0jq+63XwmjqglYTgrrGAzhZvh5nL/oUIUHumT5Jw8+QGMsSEBCA7OxsbN261bLNZDJh27ZtyMnJUXxMTk4OtmzZItu2detWy/6/+93v8J///AdffPGF5T8AWLlyJVavXu2Jl0FuVFm7E3sOvAWNOgSnTF09pK8ARoWPRdrIM9Glb8TRoo+93RwaBEaTDgeOvQEAmDz+Vp9cVsxZcdFTMGncjTCZdNi+7y/Q6303601EjkmDYU/NMTZJgm8iTzGaugAAre3lOFm+HgBQXfeLN5tEPm7I/Bq75ppr8PHHH2Pt2rUoLCzEqlWr0NnZiQsvvBAAsGLFCjz77LOW/a+66ips3rwZb7/9NgoLC/HSSy/hwIEDuPzyywF0zzceP3687D8ASEpKQkpKyuC/QHJaR2ctduY9CkDEzEkrEBYy9N+v7LHXQRACcKzoE3R01jp+AA1px0u+QFtHORLj5mJE7HRvN2fAxo26DEkjFqCtvQy/5D85JEduEFE3aTbXU5ldk8jAmAaP9DweyheiyfOGzNmxfPly3HfffXjxxRdx/vnn49ChQ3jzzTcRExMDAKioqJAV1po+fTqeffZZ/Otf/8L555+Pb775Bq+88goyMjK89RLIDUwmA3bufwRdukZkj/s1UkcOpWJb9oUEJ2Bs2sUwmjpx6Pg73m4OeZDB0I7Dx98HIGDy+Ju93Ry3UKlUmJF9H0KDk1BevRkFxZ96u0lE1E/SC1vuDGClx+VQahpM0vOYS4VRX4bEHGOzK664AldccYXife+9916vbWeffbZLFaePHDnS77bR4Dh0/F3UNuQiKmIc5s74I5oa9d5ukttkjr4cJ0q/QlHZOmSOvhyhwSO93STygMKSL6DTNyFt5FmICEv3dnPcJkAbjlOmrsYPO2/D/qOvIjoiC3HRk73dLCJykTRodeeQZ5Ool9xmxpgGjyxjPHRyguQFPDtoyKiq3YXDx9+DRh2CuVNXQzOE5xUrCdCGY+yoX0MUjT0ZRRpu9Ib2nnnkAiaMucrbzXG7qIjxyJnwB4iiETvyVqFL1+jtJhGRi0wmveJtnb4F32+9FkVlXw/4uKKJGWMaPPKh1MwYk30MjGlI6Oisxa793fOKZ2Tfi7DQoT+vWMnYtIuh1YThZPnXaOuo9HZzyM2Ol6ztyRafgfBheg6nJ5+DtJFnorOrFrv2P+ax4j1E5BlGSWZXlGR2T5R+habWQuzOf6Jfx5VlopkxpkEkHfnAOcbUF54d5PMs84r1jRiTegFSEofHvGIlAdpwjE27GKJoxJETH3i7OeRG5myxSqVGVsbwyxabqVQqTMv6I8JD01FVt5PnMdEQI88YGxS3u+LYyc9QUvG97CKZP84xNhq7sGnn7The8qW3mzIkuHMYv8g5xuQkBsbk8yzzisPHYcr4W73dHI8bO+rX0GhCUVS2Du0dVd5uDrlJYfHn0OmbkTbyjGFRSb0vGk1w9zJqQhDyC95GTf1ebzeJ3OS1117DxRdfjGnTpmHu3Lm4/fbbUVRU5O1mkRuZTDrrbdl8Y9cDY1E0Ie/IS9i5/xFZYOyPyzVV1u5AXeN+7D30nLeb4vMOFb6Dtd+fhubWIrccz+SBSusNzUexededaG0vdcvxyDcwMCafJp1XPGfqqiG9XrGzrFljA7Ntw4TR2IWCk5+ie27xld5uzqCICEvHtIn/B8CEnXkPo7Or3ttNIjfYuXMnLr/8cnzyySdYs2YNdDodrr32WnR2dnq7aeQm8gDYGswaJQFzf44lQlqV2v8CY4DL2DnrYOEaAHA4n71L14jahv0Ojydfgsw959623D+jpiEXvxzo39QC8k0MjMln9ZpXPMyzbFLjRv0aanUwisq/RmdXg7ebQwN0snw9uvSNSEk81a/O41FJy5CevBydunrs3P+oXw6fHG7eeustXHTRRRg3bhwmTJiAJ554AmVlZTh48KC3m0ZuIg2ApUssGY2uX/yQF9ySDMsWjWhtL0Nl7Y5+tnIoUg34CMM90277HWES+74Y893Wa/DjrtvR0Hy0z/1MJun8dvd8D5mM3W3r0jW55XjkG4bUck3kP/xpXrGSAG0ERif/CgXFn+F4yVpMHHutt5tE/SSKRhw9+S8AwPj033i5NYNv6oQ7Ud90CDX1u3Ho+HuYmPF7bzeJ3KilpQUAEBkZ2e9jCMLAAgbz4wd6nOHO2X4SRXsZY2tg7HRfq6xBiMHUJnkSI775+XcAgGUL3kd4WJpzx/MwT55L0mP25/jVdXvw4667MGvy/UhPdn4pUk/wRD8VnPwcew+9gNPnvmHZZjLp+3yOLl33SKTm1kLERmXa3U+E9IKCyS3tVquDAH3334XS8fi55Bxf6ycGxuSTrPOKx/vFvGIlY0f9GoUla1FY8gXGj/4dNOogbzeJ+qG8+me0tZchPmY6oiPsf3EPVxp1EOZMXY2N22/CocJ3EBc1GSNiZ3i7WeQGoiji8ccfx+zZs5GRkdGvY2g0AmJjw9zSnujoULccZ7hz1E9BFdbiRAGB1h+rarU1uHD2PWttb7ceN9gacAcGWQcsmlQViI2d2H3bZEBrezUiwpJgNOrQ1lGLiLAkp57LnTxxLjW3B1tu9+ec/2n3OwCAXfufwIwpv+51f1NLMcqrdmNCxgVQqQYnyHBnP326/gUAQFH5vy3btFqTU30VHNz354ggWM/d0FCNWz5zAgOC0d4JiKKuz+Pxc8k5vtJPDIzJ51jmFWtC/WZesZLQ4ESkJJyKksoNOFn2NTLSLvR2k8hFoijiyImPAPhnttgsInQUpk+8G7v2P4qd+x/BaXPfQnBgrLebRQP08MMP4+jRo/joo4/6fQyDwYTm5o4BtUMQVIiODkVDQxtMJs7jtMfZfmpv75Tctga27R2tltt1da1wRlt7o+V2ba21mGR7e5d1e10lIkO7j7dlzwMor/4ZS+a8gn2H/476pnycteCfiAhLd+r5BsqT51JLi7Vfne0/qS5d9+MFQav4+M++6V7RQq8LQnLCQrvHMZkMqKnfi7joKf3+feXJfurSWYPY9o52p/qqpaW1z/06O9sl+zp3TMe6+06nVz4eP5ecM5j9FBERDK2276rkDIzJp8jmFU+8F2Ehyd5ukleNT/8NSio34NjJTzEm9TwuMzDE1DbkoaH5ECLCxiAhdra3m+NVaSPPQG1DHk6U/gc78x7GwhnPQhD4FTRUPfLII9i4cSPef/99JCQkDOhY7voxZDKJ/AHqBEf9JJ2PaTRas7wGY5dkH+f6WW+0zhHV6a3Bg7RCdWdXveV45dU/AwCqan9BfVM+AKC24SDCQkY59Xzu4olzyWSSVuV2/dimnvdCELQoLt+IppZCZI+73nK/eX5uc2sJRsbbP/6RE//CgWOvIW3kGZg1eaXL7ZC1yRN/c7J57Xqnjm80GfrcTzp32Wjse19nmS8qmEw6B39P/Fxyhq/0E4tvkc8wmQzYmbe6Z17xhUhJXOLtJnldVMR4xMfMQFtHGcqqfvJ2c8hFR4us2eLBGtrmy6Zm3o7I8LGobcjFocJ3vN0c6gdRFPHwww/j22+/xbvvvovU1FRvN4ncTFpwyyT2b+1iy7Fk6yBbb4uSucsGY+8RA4KgldweHhfQ+rsOtOXxPe+FoNJgR94qHD7xnuKSjiYH1cMrarYCAIorvhtQezxFWr1c6bV0dtXheMmXspUObPdrbD4KvcE6p11+Trun+JZa8M/RjMMdA2PyGQcL30ZtYx6iIjIxJdM/5xUrMQ/BPXbyEy+3hFzR0laMytptCA6MR2riad5ujk9QqwNxytTV0KhDcPjE+6is3entJpGLVq9ejf/85z949tlnERoaipqaGtTU1HC5pmFEGrQOOJiTPF4aZEsDFSUqlTUYFlTDJDAe4EUG84UFtRAgOWbvIM/598z3L9aaFJZW2nPwOew99Bzyjrxs3U9y0aWh6TA2bL8BP+76g+RR0qXC3BMYSy/e0PDBwJh8QmXNdhw58QG0mjDMmbJK9sHv7xJiZyE8NA31TfloaD7i7eaQkwpL1gIAMtIuHDYZD3cIC0nBjOwVAETs2v8o2jurvd0kcsFHH32ElpYWXHnllViwYIHlv3Xr1nm7aeQm0mHOA89yKmeMIXkOJdLfAKph8vk50KWWzO+FNCBTqVQoq9qMjq46yzbjMAqMVQptbGjqXhpOukST9KJDVd0vAICmlgLLNtEDgTENT8Pj04aGtPbOauw68BgAYEb2nxAWMvgVKH2ZSqVCRupFyD38AgqLP8fMSfd7u0nkgN7QjpNl6yEIAUhP/pW3m+NzUhKXoLZhHwpL1mJn3sNYNPMFXjwYIo4c4cW54c6tgbF0HWNReSi1UvJY+nmgGsI5HFEUkV/wBmIis236wgSVyrXXZQ2MrX1TUb0F+468hMCAGOt+Dtb+Nb+/Q2J6j5N9JL3o0Kmr672D2P/AuK7xAIIC4xAanGh7UJeOQ0PD0P20oWHBZDJgx75V0OmbMTbtEiQnLPJ2k3xSWtJZ0KhDUFK5EV26Rm83hxwoLv8GBmM7UhOXIjAgytvN8UmTM29FdEQm6hr3I7/gLW83h4gslAPj/mTapNlL28DQcht9H3coZ/iaW4/jyIkPsC33AZvsuesXHMyPF1TWjHFjyzEA1vV8+3tsX6WUMbZSngvf2dU7MJbNW3bhfOrsqsOmnbdh/U+XOf0YGtoYGJNXHTj2Buqb8hEdkYXJ42/2dnN8llYTglHJZ8Nk0uFE6X+93RzqgyiKKCz5HACQkXaxl1vju9RCAOZMWQ2tJgxHiz5ERc02bzeJiGCTMZZmefsRoMrmGMuGEvedwTOZBhZE+gqD0Tr3Xvo6jA4KZClRyhgrDc923F/mvh8KGWPn2ijrW6NS30rONxeGtNsmIrp0TThYsEZW+Gsg6hoPYOf+R2WFwsi7GBiT15RXb8Gxkx93zyue+hALGTiQkdq9jvHx0i8HPFeJPKe6fjda2ooRE5mN6Ijx3m6OTwsNGYkZ2X8CAPxy4K+KFVaJqP9q6vch78g/XApqRTvDTvvzvSMdPi0vviXJGJt6t00aOCoVYBo6pJlK6+vo0jXgu62/R1GZ83PzrX1m/emuVNDL2aC772xs93mQe+gFlFR873Qb3UJy/rltGL1k1LMrGWPRZrj0noNP49Dxd7A7/ym3NGvTzttQUvEdjpd84Zbj0cAxMCavaGkrxS8H/goAmDnpAYQGj/Ryi3xfeGgqEmJno6OzGhU1W7zdHLKjsLi76NbYtIu83JKhITlhEcam/Ro6fTN25K3mRR8iN9r8yx9w7OTHKK36EfuPvo73Pl+GusaDfT5GOrRZGkT0J0CVZ4ytx1JaPkcaLOsNrZLHDd3PBOlrlvZFQfG/0dx6Arvzn3T9mKK9LHw3pQsNsvvNfd+TjbXXv82tx7vrQOx/xOU2uo975vHK57Q7HxgbjfJq+/WN3Wtrt7QXu6Vd5HsYGNOgMxjasT13JfSGVmSOvhxJI+Z7u0lDhnlobkHx515uCSlp66hARc1WBAXEIDlhsbebM2RMHn8ToiOyUN+UjwPHXvd2c4iGnbb2Mhw+/j7aOqpxovSrPve1lzEW+xUY28kYywIVQ8//rduMxi7Fxw01RpPkdZikGeNG1w/WE8jK+kZp2LTD0cfW97e08ges/f40lFX/1Gsvbw3vlZ8bfVcvt3L0ouXndHPbSZRW/uDwqNKh8KIoQm9oBwBo1MFOtss5Adootx6P+o+BMQ0qURSxO/8pNLedwIjYWcgee523mzSkJMbNRmhwMmobctHcWuTt5pCN4yVfAjBhdMp5nBrgAkHQYs7UVdBqwnHs5L9QXv2zt5tENKx06Zuc3lc+fFo5e+wsWcZZGsSJvTN40ueVZupcmRPqa2SvQ/KadTrn3w8z89Bn6TGVs/jOB4l7Dz0PAMhXuCApDeoHk/QCgmJ2V3HesYji8m/xy4HHFY9pW2n9uy1XYUfeKnR01vTZFmlfG42dMJq6/61Vh8guIHV21eNE6X+dGt1QVrUZ/910AZpajlu2qdUBOHz8PZwsW+/w8eRZQyow/uCDD7B06VJMnjwZl156KfLy8vrc/+uvv8ayZcswefJknHvuudi8ebPlPr1ej6effhrnnnsucnJysHDhQtx///2oqen7j4QG5mjRxyit+gEhQYmYPflBqFRqbzdpSFGpBIxOOQcAcKKMRbh8iclkwMny9VCp1Bidcq63mzPkhAYnYtbkBwAAvxx4HK3t5V5uEdHwoXMiQ9nWUQGdvhn2CmOJdoZCKyko/jcKiv8tG5Ytzz5LC3wpBMbSTKuTmWpRNCLvyCuorN3p1P6DQfo6pH3hyoUKq57AWDr/2k6hrfLqLdhz8BnFjKu19JYAgyUDGtprP+UiVp4nKlw0ceYxuw48hpPl69HaXtbnMds7qy23HWXFDcYO677GdsttjSYE0r+T/II3sefg007NPd6+70F06RqQX/Cm7HnyC97EL/nKgT0NniETGK9btw6PP/44brvtNqxduxaZmZm4/vrrUV+vXBlu7969uPvuu3HJJZfgiy++wOmnn45bb70VhYWFAIDOzk4cPHgQt9xyCz7//HO89NJLKCgowG233TaYL8uvVNX9ggPHXodaCMTcnEcRGBDp7SYNSaOSzoZKpUFx+TeyIVXkXZW129Gla0BC7GwEB8V5uzlD0sj4eRif/lvoDa3YtvcBVuokchOjbKmk3kGtwdCO9T/9Bt/8fIXdwMTebSX7Dr+IfYdflAXTsvnGCseyO5TaQRauqeU4Sis3oanlOI6d/ARb9tzrM5WspYGVNPNtDkhdoVIYSq30PqigwrbcB3Ci9CtU1+/u85jmYerdgZ6cweh6G93B3gWUvkgvFiitDy2/6CK9sNB38C/NGEvfM0HQyNpmzv4WV3zjVHu722nNfHvrIgT1NmQC4zVr1uCyyy7DxRdfjLFjx2L16tUIDAzE2rVrFfd/9913sWjRIlx//fXIyMjAnXfeiYkTJ+KDDz4AAISHh2PNmjVYvnw5xowZg5ycHDz44IPYt28fqqpYGdXdWtvLsTPvYQAmTM++F1ER47zdpCErKDAaSSMWQKdvRln1ZscPoEFhri6anrzcyy0Z2rLHXo+E2NlobjuBnXmPDOk1TIl8haMKxE2t3T/sdfomu4Gxs0s3SQMPUbYmsvISTOZjmfqZMf5+2zXYkfcQWtpLLNukAak3SYNY+dBk54pKdXY14Ofd96Kmfh/MGWN58S2lOcZ9B1zWe61t0CoFxv0I3t1BNscYzgXGHZIssNJcePmQfmufGB1cQLG33JYoyv8GlPrPMWsIZlvki7xH43gX79PpdMjPz8ctt9xi2SYIAubNm4fc3FzFx+Tm5uK66+TzVxcsWIBNmzbZfZ7W1lao1WqEh4f3u62CMPB14czHcMexfIFO34Kte/8Enb4J40b9GunJZw74mMOtj1yVkXY+yqo24UTpV332p7/3kzPc0UedXXWorN2OwIAoJCfMG5b9PVjnkiBoMTdnFTZsvxmVtduQX/AGpmTe4viBPoB/bzRUtbRZg0qlYc7d253L5On1LdbH2ym+JQ/u+s4YOzvHWBrI+Uola+nrkBVycjIwPlL0AarqdqKqbic06u7gy96Qc2eZp7BJ31uNOshy+2DhOwgLTvJe8S3R9eJb0gsASnPhRTuBsaORBfJgWL4Ot+zikEKW2jHrOSAbci8aOc3Qi4ZEYNzQ0ACj0Yi4OPnwxNjYWJw8eVLxMbW1tYiNje21v705xF1dXXjmmWdw3nnnISSkP1d+AI1GQGxsWL8eqyQ6uvecj6HGaNJj3Q/3oqWtGGlJC7Bk3goIgvv+4IdDH/VHTMxC5B5KQW3DPgiaGkRHju5zf3/tJ1cMpI9yD34OUTQic8yvEB8f7cZW+Z7BOZfC8KulL2LtN1fhyImPkJQ4AZljhs68bf690VAjHTarVDEasAmS+8jk6SSBsaxQlIOMsd3hrqIe9U2H0NB0GBlpF8qeS3pMX1z7WNp/BkOH9A7Z9raOckSGZ/R6vPT1KQ0Rlh3TcmjnRtmooLKEZub/6w3tOFS4BkD36B1vkI9SsP9apBcX5Gtk9x0YOzNH21FbRNEkC9odjciwc3Rrm2wuoGg1/A7xliERGNsjiqJsjL4tpfuUtun1evzf//0fAGDlypX9bo/BYEJz88CH7wiCCtHRoWhoaIPJ5J413LxBFEXsOfgsyip3IDJsDKZPXImGBvcMbxoufTQQo5J+hf1HX8Oe/f9CTtbtivuwnxwbaB+Jooj8o91TOhJjz0BdXauDRwxNg38uxeCUqaux+Zd78OP2RwFTHOKiJw/C8/bfYPZRREQwtFpmFchJkt8+SkGjLMMqKg9/FmXVgk1obS9FSFAiBEH+U1K6BrF0SLP0eZXmG8uzegbZ7R923AwAiI+ZhoiwdMt9XboGy22j9Ll8JGMsGx5uZ7js5l/uREPzESyd8xqiIyfI7lMLgX0eX2nIuL2h8PuPvgq1OqjPwFHpgkX37b5/b7uTvTY4+xil995kJzA2OphjbLJzToowye5TumjhiHSuv2wuMwNjrxoSgXF0dDTUajVqa2tl2+vr63tlkc3i4uJ67V9XV9drf71ej7vuugulpaX45z//ibCwgWV83fljyGQSh3Qwc+zkJzhe8h8EBsRg3rQnoBaC3f56hnofDUTayGU4cOxNnCxfj+yx10Ottv8F6s/95Kz+9lF940G0tJ1EdEQmwkNHD/t+HsxzKS56OqZO+ANyDz2PLXsewKmzX0F4aOqgPPdA8O+NvOlE6X9x+Ph7WDLn79aN0rWJlQIH6bxgJ+YYV9XuwM79jyBt5BmYNVmeUNDp7QTGJuW5sUrFt+xlAG0DJYM002aQBuG+UXxL3n/SdZyt70dD85Ge/x/tHRirAyT/6h2YKgfGvYdat7aX42jRRwCAyPCxdh9jr0CaSdRDrQro9Th3sT9837mh1PJzq3ewKysCZ+xfxli0ubAjb5vrFw1kUwdMNudx39dDyIOGRPGtgIAAZGdnY+vWrZZtJpMJ27ZtQ05OjuJjcnJysGXLFtm2rVu3yvY3B8UnT57EO++8g6ioKA+03j+VVf2IvCN/hyAEYN60vyIkOMHbTRp2ggJjkDRiIYtweVlReXfRrVEsuuURGakXYGzar6HTN+Hn3fegs6vO200i8ml7Dj6N9s7KnnXVu8kDj74zxrKCWXaC0uKK73v+/53CsSQZObtDqXsX8rK35rGsAJJNYCwbquyDax+Ldl6TUvEtpYvb0rm/jqotW7f1nqvd1FLQ+35JBticvZQVTrPbdveyHZZsOzLBGdL2KWWB+xqm33fblC8MmUw6txaGlBVp85HCcf5qSATGAHDNNdfg448/xtq1a1FYWIhVq1ahs7MTF17YPd9kxYoVePbZZy37X3XVVdi8eTPefvttFBYW4qWXXsKBAwdw+eWXAwAMBgP+8Ic/4MCBA3jmmWdgNBpRU1ODmpoa6HQsmz4Q1XV7sDPvEQDA7MkrEROZ5eUWDV/m9XJPlH7l5Zb4J4OxEyWVGyEIAUhNPM3bzRm2pmTeipTEpWjvrMSWPX/iMk5ELpL/qFcaairN0DpeR9bQx9+gyc68Wvl8ZYWMMZSHrUovhtlmA6Xtszds25tM0kyltC8VlsySBsFWrmcilap7yzP0CmsbWzLG1v61l+13p7Kqzfj8u6Woqd9rfS4H84WVOMoY26tKrfS6TCYDquv2wGjskr9/Jmm/6mUXkPo3lFp67nYq3qbBNySGUgPA8uXLUV9fjxdffBE1NTXIysrCm2++iZiYGABARUUFBMF6Yk6fPh3PPvssXnjhBTz33HNIT0/HK6+8goyM7uIGlZWV2LhxIwDg/PPPlz3XP//5T8yZM2eQXtnw0tB8BNtyH4BJ1GPaxLuRnLDY200a1kbETEdocBJqG/ahpa1kSAwzHU7KqzbDYGhDauJpCND2v5o99U2lEjBz0v3o6mpATcNebM99EPOnPwlB0Hq7aURDgqM1iO0Nc7a3rJC+jzVuZev12pn3K69W3RMYy4JI5UDHXH34aNG/UFLxHaZOuENyn+cDOVfZDr+1blcKTntvc7TOrhJplt6ciZQvtaU0YkDf6/n0+rZe97vbrv2PARCRe/hvkudylDHuuVggOTWNDofOS4ct9x0YHzv5CQ4cew2jU86TzfEWbTLGThYWt0v6tyF9z0TRiJa2UgQGRCBAGzGwJyGXDZnAGACuuOIKXHHFFYr3vffee722nX322Tj77LMV909JScGRI0fc2j5/19JWgi27V8Bg7ED22OsxJuU8bzdp2FOpBIxKPhsHC97CyfKvMWncjd5ukl8xr13MYdSepxYCMDfnUfy46w+ort+NHXkPY86Uh3oV/iGi3mQZ4z4CI0A+rNOevta4NdnN4vY9b9jemsdGhWGy+492z5+uazwoeS7psG3fWP/c3vBwpfdAaQiwdJuzWUmlgEsa1Ck9j7lt0vukRdTKa7bgWNEnmDftMUSE9b0Khis0mmAYdZ2yUUCOi2+JPfcpX3RwRD6suvtxjS0FCAyIRnBgLCpquqdtnij9DzJSrVXQewfskqrY/bhwIHufJHOMu3T12PzLnQjQRuLcJf9x+bg0MENmKDX5ttb2cvy0+4/o0jciI+1iZI5WvoBB7jcqaRkAFU6Wf+PWOS/Ut7b2CtQ07EVIUAJGxEz3dnP8glYbhvkznkZoSDLKqzdj14HHeM4ToTvLdeTER7JtssyYrOCQ0lDqvgMnW8rZTT0Mxk6beb92MsbSDKZlHWPHw11NJh30doJy2yD8ZPl6FBavdfhaPMnePF3lIbyOtjk3rFqWMbZkgiXvr8KFD/NFC3lgbA1Wcw89j7aOMvy8Z4VTbXCWumf4uDQId7gsmGU+dN/96QyTSYequl+wYdt12NUzBVCjDlZuiyzrbrR70cNZSpl9AGhqPQEA0OmbXD4mDRwDYxqwtvYK/PTLXejorEbayLMwNfP2QSvrT0BI0AiMiJ2Jzq5aVNXu8nZz/MbJ8q8BdF+Y6M/8Iuqf4MBYLJr5AkKCR6K0ciN+OfAEg2PyS/VNh1BVuwuiaETekVdw4NirsvtlyyZJMlKiaMTBwnfw8+57LQGuvHiR44yxStV7qbBvt1yFLzecJQvC7M37VSpqJBtKbW99YpPOZjkoa5Asnc9sMLThlwOPI/fwC04XcPIEe+vgOp8xlgRcThei6j1sWvHCh3S5IEsAbX0+aT8HBXRPW+zorHaqDc4yB6HyqujK54l1m6nXY/o7rtlk0qO+MR8AUNPQPc9ZLZnrrVTh29wGe1XU7WluLUJnl3V5MVmBOZM1SO7skq+oQ4OLv+ZoQNraK7D5lzvR3lmFtJFnYuakPzFI8IL0pO4pA0U9wRp5liiacLJ8PQBgVJLydA3ynJCgEVg083kEB41AccW32HPwGQbH5Hd+2HEzft5zD1rbKyzbjLLli9oVt5tEAw4VrkFV3U60d1R1b3NQvMiWUiavraMcANCpq7cey87SOEpVqeXVsO3MMTbpZK9LdlsShEuHWNtbP9iT9D1LVtnLKirP81Ya4iytoOxsISrpY3oCY4WMsbS/zfPCbS9CeJpa6L0ElKO52OZ+cMda1d39Iw+qpdNz7BXIEkWT7EKF0ajcV1t+eRpHiz5BW0clvtt6NTbusE53k62nLPn7bHfzxQdyDSdnUb+1tJXi59139wTFZ2DmpPsUryKT5yWNWACtJgwV1VvQpWtCYECkt5s0rFXX70F7ZxXio6chNGSkt5vjl0KDR2LRzOfx4647UVS2DkZjF2ZOeoBzjskvSH+kN7cet9zukgy/NMiGakqXMupd5EoeODkOiPoaOtreUaG4n72MsbUisnKBMNuleKQBsHS4r/Q16mT90AGNJqSPV+NelbU7sWXPvRif/lu7y/0okb7OorJ16NI1KQa5jihVIJcX3DL1bOvdNnlfK69p7E7KQ/L7Lr5lDujdsVa1yaSHqJI/h20hLOt2+agL6VrUSm3RG9qw/0j39Aa10H3+STPu8nn91ufU61tcfh3kPkztUb80NB/FjztvQ3tnZU9QfD+DYi9SqwOROvJ0mEQ9Siq/93Zzhr2TPUW30ll0y6vCQlKweNbfEBKUiJLKDdiWu9KpwkFEQ1VV7S4cO/kZ2trLLNukGVqdrtFyWxYYm+QZYzNzYOlqplA+9FW0rIMLwJKFtj2uaGeOsaUqNZSDL9u2SQNjexlj6RBrvWFw14VtajkGADha9JHN8PC+Aznp69yd/yQOHHsVBmmm38kMrlGWce2dMVZiCYyNyueBp5a/UsycO1iuyRwsu2OUkMlk6HUuS+ewy5a+sgmYZUOpFbLc0qH9lbXbej230WYkhJmB32Fe5VRg/MMPP+Dqq6/Gueeei7vuugu7dvWex7hv3z5kZXG9Wn9QXbcHm3fd2V1oK/VCzJz0AINiH2AeTn2yjMOpPUmnb0FZ9U/QaEKRlLDI283xe2EhKVg8+yWEh6ahsnYbft6zwjKMkWi4+XnPPcg78hIaWwos26QZJmnG2CirTiwNsHoHxq4W3zLaBFDS4KJDtu6w8xlje4GObSEuacChN1ozxvKAWfra7VfQ9gT7r9lRxrh3v0svdPRvTd/ec4yVmAN4e8N7RQ9V+XbYLulQZkNHz0UY97XFJOrlF15EvezvRhr8yi5SiEab+ce9LyLIRjYoZIFNdi5GGWXV1X1jPW5/4jAw3rJlC2699VZ0dXVh1qxZKC4uxlVXXYUnnnhCdoWQ/ENJxffYsmcFDMZ2TMy4FlMn3Mk5xT4iKiITEWGj0dhyDI3Nx7zdnGGrpHIDTCYdUhOXQiMp0kHeExI0AotnvYSoiEzUNuTih523oU0y75JouOnSWYv46CQXgrpkGWPl5WAM0mCyJzsmurhckzSrZzB2yLLTzizRJGUJjO0EX7bBmtFOxli2Bq9BOWAeDAY7Q3EdMb9O6W/rrn5UJpYtY+RqxthOFtNTNRwcHdccmLa2l+PLjcuQe/hv7g2MbTLGRmOnLACWB7/yOcb2hvubR0bIRzA4P89d+rfqzEWq/urorOEIKwUOI5qXX34ZF1xwAT7++GP85S9/weeff45HHnkE//rXv3D77bejq4ud6g9E0YQDx97Azv2PwCQaMS3rj8jKuJrVp32ISqWyDO1lES7PMWfk05M4jNqXBAZEYdHM55EQNwctbUXYuOMm1DbkebtZRB4hrW6rN0gyxnaGUkt/xEsDaXPlYaOdLKc98qJEHfIf8y4Gojp9Mzb31Apw9Fwm0WAzx9je0k2DO5S6qeU4isr+1/Pc0gsDzgdxluyuJBjS6ZsH1C7rUliOMsZ9F99yx3xexed1UGnbfH9p5UYAwPGStW4NjEXRIBv9YDBIz2XBZo6x7VDqvteolo1skFyoccTeMk6uMhq7UFz+reIQfr2hHd/8fAXWbb4EJpMB1fV7ZCM9/JnDwPjYsWM477zzZNsuueQSvPfee9i3bx+uvvpqNDY2eqp95AP0hnZsy12JIyfeh1YThvnTn8CY1PO93SxSkDbyTKhUapRUfO/RK43+qqmlEA3NhxEeOgrRkZw64mu0mlDMy/krMtIuhk7fhJ9++aPdH9tEQ5l0SRedZJimdBqBvWrM8sxqdwApD4ZdGw1oMHTInqs/GdqahlyUVf/ocD+TyWB3LrGsTbL2eH4o9ffbrsHu/KfQ0HRYFhCJLqxvKyoMwZVe6OgPS3E1R8O4LQXQBvd3g8OMcU+hLZ2HClKZTHqb+b0dkmDUZLP0mG3GWFKVWnKMppZCHCx8R3ZRQ7r0lSPSjLVO34Qfdtzaa41yZ+Qd/Qd2HXgMew+90Ou+zq56GE2d0OmbUVGzBT/98n/49ufLXX6O4chhYBwYGIj29t4fKpMmTcJHH32E+vp6/OY3v0FpaalHGkje1dRSiB923ISKmi0IC0nBkjn/QGLcHG83i+wIDIjCyPi50OmbUFG91dvNGXbMmfj05OUcLeGjBEGDnAl/QE7W/0GECbvzn8QvBx6X/VglGoqkQUSHJDDWy36AS4dJOz7nzYGQo8JQfekefjo4SyKZRL3NesXKQa9RNse4E6Io4kTp/9DaXu7+Nkn6rlPXKK8wbKd9SoxGHXbkrcaREx9Ktg5syqI1C+1oLq85Y+yezLBO34y9h55HR2cNmltPYPMv/6c4vcXReSeKRhiNXWhqLXRLu3o/v81QalOXzegHO5XdRaPNUlzWY2z+5S4cKlyDY0WfWra5VvfCGnBX1u5AfVN+rzXKnVHbkAsAKK3c0Os+6aiO1p5CfoM95cBXOQyMMzMzsXnzZsX7UlNT8dFHHyEkJAT33Xef2xtH3iOKIgqL12LjjpvR0laMhLg5WDLnVYSHpnm7aeTAqJ4hvic5nNqtTCY9Ssq/g0qlRtrIM7zdHHIgI/UCLJr5PIIC43CyfD027rgZza1F3m4W+RGDod2pNUnrGvPx7ZYr0dTS949/aSZJNsfY0HtoNCCfE2mPOwLj7izbIAXGNhljeyOjDDaFx6rrd2PPwafwzc+/dVtbCku+QFnVZllWt0tXJx/qbXR+CG1twz6UVm7EsZP/clsbLRW/3ZgxbmopRHn1lj7rDOUeegHHS77Alj1/wta9D6Cmfg92H3xa4XkdD9vPO/IKqut6F/11B5NoUJjDLhltYCdIFmFyOAy8ua1I8jz9+/vqlAxvdrWuU2BADADlgNfeUm5tHRX4/LulOFj4jostHT4cBsZnnnkmNm/ebHe4dGxsLN5//33MmjWLxbiGic6uOmzLXYncwy9AFE2YPP5WzJ/2BAK04d5uGjkhMW4OAgNiUFm7Ex2dNd5uzrBRUbMNXfpGJMadgqDAWG83h5wQFz0Vp899Cwmxs9HSVoQN22/A0aJ/eayQDFFV7S5L8cOte+/H15t/LVu+SMmmnbeipa0Y+QVv97mfvWWKdHYyxs4wZwgHFhh3DloRH5NJL5/DayeQkxcw6pJ9F7rj71+nb0Huoeexfd+D0EuGand01dl9nxzp6HL/97XTyzUpzDG2Z8P2G7Flz/2orNlrdx/ziIam1kK0d3af/9LKzC1tJejsanDqvDte+qXDffrLZNLLziGDod1mXrF02L5tUa6+A2Nn1gN3pKWt2HJbp2+CyWRAZe0OSxv3HXkZG7bdoPj311dxUGkw3Cm5yFZQ/G+IohGHCtcMuO1DlcPA+De/+Q1++OEHREVF2d0nJCQEb7/9Ng4fPuzOttEgE0URRWVf49stV6Oi5meEhiRjyexXMD79MlaeHkIEQYO0kWcCMOFk+bfebs6wcVIyjJqGjsCAKMyf/iQmjbsJEEXsP/p3bNp5O7PH5HYGQzt+3nMPNmy/Hnp9K2p6hjLWNioXgbMdXhkYEOng+NJiPpIsseQ4BhcDY3NgMpB1ag3G9kEbhmkSDS5PizAaO23mZA98Obe2DuuQbOma0jp9s01xMNfeD3dzdrkm9GRAnQlUzcF2W3sNTCaDYlJMqwmV7N8dxJmX9axvPIhvt1yBnXmrnVqOKDgw3uE+/WUSDbKgUmeQz2WW3ufMCAzbYw+UdDRC9/D057BlzwoUlnRfLCg4+SkaW46isnZHr8cqZbSPnfwM3/x8hWwkS5dkHXRWqXZyHWMa/ppaCvHT7ruxO/8J6A2tGJt2CU4/5U1ER07wdtOoH9KTu9c0Lir7miM53KCjqw6VtTsQGBCNxLhTvN0ccpFKJSBz9O9w2tw3EB2Rhfqmg9iw7XocOPa6S3MAifoirera0HzUcru1rXcNlqq6XfjPD79CkZPrzouiSbYer70CVK5njN00lNo0WBljnctBuMHYJQsE3FHISRoMS5dHNBjaZYH7YBezsmW+kOBMAGo7rNiRorLN+Pe3S1FS+X2v+6TJFI06uOf43edYdf1uAEBNw16nhhi7I8C0e2yb4lu2VcANA6gQ7Y73XlpxXm9os1Q+P1H6lew8lg7bNlOqDp935CW0tpfgROlXlm3SCvfSCz7+uoayxtsNIO/q7KrHwcK3caL0fwBMCA9Nx4zsexEbNcnbTaMBiAhLR3REFhqaD6GqNg9aIcPbTRrSisu/gSgakTbyTAgCPzaHqoiw0Th19ss4dvJTHCp8B0dOfICTZV8je9wNGJW0jCNjaEA6u6yZl+bW49btkoyMWf6xNwAAu/OfsGzT61t7hpjWIz5mqnXfgrdwtOhjZKRe5LANrgbG7iq+pcLgFCM0mVwL3oDuTJ88wz6wJZAAoEPyXkuHQOsNbS4vV+VJjc1H8OXGZdBqHE+FE01GmFwY/ltQ1H1RZ9f+xxCgjURbexky0i4EIB/FoFJpZNtcXZu5S9cEtToYYSHJaGopcOmxjoiiUR4Y6+Tnhr3iW4NFGvy2tlsvsBkM7WjvqLT8u6vnfDSPhIoIS5d9FlTV7pL9DXTpG623JUOppdM+9IY2h6NYhiP+wvNTnV0NKCj+FIXFn8Ng7IBWE46JGb/HmNQL+MN/mEhPPhsNzYdw5Ph/MGns/3m7OUOWKIqSYdRne7k1NFCCoEHm6N8ideRpyD/2OoorvsPu/CdxtOhfyBpzJVISl1iG/BG5olNnzRi3SX+09gyHbGg+grb2cqQkLoFaCOz1eJ2+CdtyH0BLWzHmTXsSI+O7R6ccPv5PAEBJ5XcO2+BqYNzeWYXSyo0DyxgbOjBYAxBNJr3LgafR2CULMAa6NnD3MazBnTQbbTAM3rByV+gNjrPkrmaMpbbsuRcAkBA3G2EhybLg13zxxTxMWefyElQmBGjCIKjc/9vUdo6xzmATGEtGQgxW5XUpaTDbKBmF0tFVIzuPO3UNaO+sxvfbrgMg4ox578g+C37ec4/suO0dFbLHmkmDZL2h1anAuKOrDlp1CDSaYOdelI9jBORn2joqcOzkpygq/S+Mpi4IKi3Gpv0aWRlXIUAb4e3mkRulJC7FviMvo/Dkd5gw+hYIqt4/xMix+qZ8tLQVIzoiCxFho73dHHKTkKARmDV5JcakXoj9R/+Busb92Ln/ERwsfAfj07sD576Kl9DwJYrGfl0ckWaMpUMSu3QN6NI1YeP2GwEAocEjFYfz6gytlmI7TS3HIIoG2SgGZ4YAu7JeKgBU1/2C6rpfXHqMLYOxc9BGW5hEg8uBrdHYJctg2s4j7Q/p3E9pYS+9odUrAZQ7iKKxn8N/rdO1GpoOISwkGTqdNTA2B5cGQxtMJgM6+7E2s0YTCkHQ9qNtfTOZDLIiWbYZY6nBmi4gJS0E1ioZvi+KRllhri5dAyprt1vmfxdXfOf0RTKjUbl2QXtnFVraShAfPQUaTYhlu8lkwM97ViAiLB0TRl+Jb3++HFERmVg862+obzqE0OCkIZ1pZmDsB0wmAypqt+FEyX9QVbcLgAi1EIixab/G+PTLEBzkucIG5D0B2nAkj1iIksoNKKvajNRELjHUH+Y5gCy6NTzFRmVj8ayXUNuQi0PH/4ma+j3Yc/Ap7D/6d4xKWobRqechInSUt5vpcz744AO89dZbqKmpQVZWFlauXIkpU6Z4u1n9Iooi2jsqERQUi8raHdix7yHMzXkMTS0F6OiqxaSxN+BI0YdISzqr17nQ1FKILXvvw+jkX8mybfLAuEkWfNY25ikOr5YuzdLcWoT8gjdl9zsTtHhjTqvB2AFhkEZZmEx6tLu42kL3UGprMNzRWY1fDjyBtKQzUVa1GVW1O7Fkzt9xsOBtxMdMRWzsBYrHKav6EQeOvY7J42+RZYylgXH3xZGhWdeje03fga1j3NJeClEU7Q6X1htaZVlJZ6kFrUfOMZNokzHu46KLt1czaLNZg1s6tLqzqwEtrSct/25pPenyRTJbu/IeQaeuHhlpFyNnwh8s25taC1FTvxs19bsRGpwEg7EDtQ25KKvajO37HkRM5EQsmfOPAT23NzEwHqZE0Yiahn0oq9yEsuqfLFXnggLjMDr5HGSkXYjAgCjvNpI8Lj3lbJRUbkBR2dcMjPvBYOhAaeVGCEIAUhOXers55CEqlQrxMdMQHzMNdY0HUFj8OUqrfkRB8WcoKP4MUeHjkZK4BCmJSxAaPNLbzfW6devW4fHHH8fq1asxdepUvPvuu7j++uuxfv16xMTEeLt5DomiCJVKhS5dEwSVGtX1u7F9318QH50DvaENomjE1r33WfZvbj2B2oZ9OHLiA5wx710cO/kJxqRegOiI8Sgs+QIdndU4WLgGqYmnWR4jnavXpWtAfdNBy7+bWgplgZV0P7OK2m3uftkeYzR2wDBIU7C6dA0wGjsgqLROrw1rsMkYF5WtQ2t7qWWKDAAcOPYaisrW4Xjpl5gwbjFMJhUAayAmikbsyFsNUTTiyIkPoBYCLPfJgm5J9euhZiBDqc06Oqtg6PkbUqLTN8uy7c4SBC1UHjjHbOesu2OYvae0dpTJ/i2/+FYvG9Lf2FIw4EDefPGuqnYnSis3oamlAONH/xZ1Dfst+0j/hsxTPuqbDqKppRDNrUUYOWJ+r5FXza1FKKvahDGpF6BL34Saul8QHvFriKIIo0kn+9vyBpfPMlEU8corr+Cyyy5DXFyc5XZ8vOezjq5eof7666/xt7/9DWVlZUhPT8e9996LRYsWyV7Liy++iE8//RTNzc2YPn06Vq9ejVGjhmZ2oK2jEjX1u1Fd1/2feXK9SqVGQtwcjEk5D4lxp3AOsR9JiJ2B0JAEVNftQVtHJUKDE73dpCGlrPpHGIztSB15BrTaMG83hwZBbNQkxEZNwpSuehSVrcPJ8m/Q2HIUjS1HceDYa4gIG40RsTOREDMTcdFTh828KlesWbMGl112GS6++GIAwOrVq7Fp0yasXbsW11133aC3R29ow5Hjm9DQWAeDoRNaTSi6dI1oaj2OlITFaOuoRFHZ/5CSsASdugaUVm7E6JTzcKLsKwgqDUKCEgAANQ25inN/axv2WW7/tPtudHbVorz6Jyw95XWUV2223CddMkVeKbpFFhg3NB1x+JpcXXbJmwyGDo8Mc1XS1jM3MiQ4Ea3tJU49xmjslA2flmbazIrK1llub9v7AgqKvkFM5ESEBiciJiobIUGJlkCjofkIQoOTFZ9L9GAFZU8T3RAYF5Wt63Moeb8DY5UGgsr951j3fHBrht+XA2NzZjtAGwGdvhmtkgyy3tAqX0LMJogeiNb2EuzIWwVARGXtDoRIfkdKi6E1tlirs3+/7VoAwIiYGUiImwO9oRUqCEiMPwW79j+G1vYS1DTsQ2dXPVraitDYmgedzoiKmq0Yn/4bxERmo7n1OFQqAcFBIxAXNQUhwQlue019UYkuruViNBoxadIkfPbZZ5gwYYLldnZ2tqfaCKD7CvWKFStkV6i/+eYbu1eo9+7di8svvxx//OMfsWTJEvz3v//FG2+8gS+//BIZGd0Vel9//XW8/vrreOKJJ5CSkoK//e1vKCgowP/+9z8EBLh+xUKvN6KxceBLfwiCCrGxYaira4XJ1PvtEUURnbp6NLUUorH5CBqaj6Kx+SjaO63FPlQqNeJjpiElYQmSRiwYdtlhR31E3QRBhYKSd7A3/21MzLgGWRm/93aTfE5f59LmXXeipiEXC2c8hxGxM7zUQt/gr39zoiiiqbUQpZU/oKxqM1rbrfO6VCo1IsPGIDpyAqIjJiA6chxGpWahpVn0eB9FRYVAqx38ImE6nQ45OTl4+eWXsXSpdRTFn/70J7S3t+Oll15y6Xh6vRHNzQMrVnTkxIfIO/LqgI5B/RcfnYPg4BEoLv920J4zLnoKahuU14e2FRaS6nQQ7c/OWvAetux5wKN9NWfKg9iR94jLjxsROwMadQjKq39ya3tsRx5oNWEDHoLsaTGRE1HfdBCCENBr6oRKpUZgQLRs3e7hICgwDucu+XzAx4mICHb4vdmv1KE0lh6sNVJdvUL97rvvYtGiRbj++usBAHfeeSe2bNmCDz74AH/5y18giiL++c9/4tZbb8Xpp58OAHjqqacwb948bNy4EcuWLRuU16XEYGhHXUMFqmrL0NFVjy5dAzq76tDWXoHWjjK0tpcpVGVUISJsDEbEzsCImJmIi54CrWSyPPmvzDHnYW/+2ygqX48JY67ikjROam0vR01DLkKCEhEfM83bzSEvUalUiAofi6jwsZg07ga0dVRaChbVNOxDY8sxNLYcwwn0rAu5DQgKjEV4SCpCQ5IQFBiHoMBYBAfGIygwBsFBIxAcGOvdFzUADQ0NMBqNiIuLk22PjY3FyZMn7TzKPo1GQGzswEZj5IRcjJCQIAAiNOogdOlaYDLpERmRhvyjn0KrDUFWxoXYtud5iBCRkXY69h/5CKEhCWhtq3B4fFvZ436Nto4aFJVuAgCkjpyHkoqtDh8XHTkGHZ316OxqdPk5fVF4WDJaWsvQqa9BWNjgDqEPC41FrZNTVTt7llMK0IZBp3cu6AkPTUL2+F/DaNJjd97rMIkGhATFITVpHo4c/09/m+3TwiO0AAY2x9gRvbHc8U4KAgODoNW4vxii7XB8Xw+KASA2Oh31TQctQXFQYJTlMyU0OL7n3+4PjGdOuRm/5Dl/ATI+NhtdumZEhY9CUsJMdHU1Ye/Bd6DVhGBy5m+wJ/8tAN2fp/nHPoVaCMDiUx7E0eP/g0YTjJSRcwBRRGt7JWKixg34e8JZQ2JMrU6nQ35+Pm655RbLNkEQMG/ePOTm5io+Jjc3t1fAvGDBAmzatAkAUFpaipqaGsyfP99yf3h4OKZOnYrc3Nx+B8aCMLC1/AyGdvzvx1/3WX1SowlFVMR4RISOQnRkJqIjMhEVMc6vAmFzPw+0v4c7QVAhKiLNcnW9vmk/4mNyvN0sn2LvXCquWA+ge562Ws3le/g31y08dCTCQ89FRtq5EEURHZ3VqG86jPqmQ2hpK0JbRymaW8vQ2VWHmoZchSOosGjWc0gYZiMQzPN2XWUwmAacMRaEIORMvAoNDW29MvWLZi623D5rwSyoVAJUKgHpSZdBqwnFidJ1KCpbjwljfoete/8MAIiJzEJ90yHZcWKjslHXmA8ASIpfhoiwdIQEjYagUiMhdqYlMNZqw6GXfH8HaCMt84lDgpIhihqHgbFaHeSVNVNdJSAQQYExaG2rREjg4M69V8H53zvmob2hwcnQ6a3D2FMTlyIoMA4VNdvQ2l4ClUqNuOhJqKnfh8njb0ZywqkAAI0qESdK/4esjKvQ2GwdLhoYEGOp3wIAaiHQK5WL3aWoeC86BnDRJj15OUorN8mmEdgyB0OuMhoAlQfzcCqV2uvFtZyl1ciHFIcGp1o+UwID4qEWPLOaQlrCxTga9g2aW08gc/TvcOTEhz3PGW2pjxAbNQmCoEVj8zHMmPgAwkNTZceIj16EAG1ET1bbhNDgRIxOORtpyQsgGqMRHpqOuTmLez03ANTVDfyihccyxoOtP1eoa2trERsb22v/mpruK4fm/ysd03yfq9xx5dtkCsbo1FPR0dmA4KBoBAfFIjgoBiFBsQgPS0JkeBqCAqP69QNkOIqODvV2E4aESZkXYNP2PJTXfocJ4xZ4uzk+SXoumUxGlFR8AwDIyb4YEWGcX2zGvzlb4UhNyQDwK8sWo0mPltYytLRVoq29Gu0dNWjrqEF7Ry0AEanJ4xEeOjTPqejoaKjVatTWyjMS9fX1vb5PneWuYecmk6Mh7GqIYncQr9V0LycyOuU8jE45D6IoIiF2NnT6Fsyesgo/774HoSFJGJ18DvYcfAZZGddCow6GTt+CiLCxAICsMb8HIF87OCw4CY0Ga+GbsJBk1Dc19dxOgyiqLOuRBgXEKFanHhEzAxU1WxAeOgqjU85Fa3sZ6hvz0dhytNe+3qRSqREekobOrlzUSgryDAatxvXlJUNDktHQ3B0YBwfGY/aUhwB0Vw1vbS/ByPh5OGXqX6AJaIBoTLScS0kjFiNpRPePdYPBOnQ1LCRZFhgHBcWhzbKkjgDA1I9X5j2/HHhyQI9PTz4H49J/g++2XNXrPrU6WDbS0dXh7SqVxqPry2s1YbKCeL40pFqjDpatjW07vz08NA11jd1/f8FB8W7tpxGxs9DQdAjpyedApQrAopkvoLZhH5JGLLAExpHhGZaq+yFBCZg1+UEYjB3QakJ6fR6Hh46x3DZ/fooiMCp5oc9M0xoSgbE9jq5QK91nu8323/296g2458o3AORMWIHo6FDFq9/tbUB729ApyuEpgqCy20dkZe6nmIj5UKuDUHjyO0wcc5tfjS5wROlcqqzdidb2SoyInQF9VwTqunzjC9Kb+DfnmLmPmpt0MJniEBIQh5AAAFHy/XSdQF3nwM4pZ658e0JAQACys7OxdetWyxxjk8mEbdu24eqrrx709riLSqXCghlPW/595vx3AQhQqVRITlhk/4EAtBrrxSKtNgIadYilUnFoSLKl8FZYSIps+ll0ZBYqarb0Ot64UZdidMq5iIoYbxl2v3nXXY5eAQZ7mSCVSoPE+Lmoacgd9ExpgNa5wFiaCQwOtF64CZLcnpJ5G+KipyAx7hSo1YGIiRprNzsVETZKcns0GpqPWIa0BgdaA+MAbbhi5fHhLEAbKSvwGRaSYil0FhMxATUNewEAsVGTMTJ+Pg4cc35YrqDSQqXyXMhi+35pNaGWwFil0ni1qFpgQDRMXd1rTKtU6l4rI4SHplluh4WkwGCwxiH9CfClIx9iIiZgwfQn0X2hBwgMiEJyQvdFopHx81FRswUpCafCYOhAfVM+RsbPg0qlGtK/MYdEYNyfK9RxcXG99q+rq7Psb66iXVNTIyveVV9fj0mTJvW7re78wej46jexj5yjFoKRPGIxiiu+QUnFD1yTV4H0XDpR2l2hdFTS2Ty/bPBvzrHh3kfXXHMNVqxYgezsbEyZMgXvvvsuOjs7ceGFF3q7aW7jatYldeQZKKn4DqmJS9DaVmIJjMMk2Z3IsDHQqK0/GONjciyBsfTHd3BQHMJCUmTH1zj4oalRB8No6rIEgUqFedxNENQYGT8f+49a1ywdrCAiQBvp1H7STKA0mA6SzPMPDIjE6JRznDpeYID192JYSAoCNGGWrH9w0AhJ+yL8LjAODIiEIGgwMn4eWtvLerKKHwDoHmJb33wYALBo5gsorvjOpWMLgsajlc+1mnD5v7XhQGf3kmtqdSAMhoGc0wMbPaBWByFQG4mOrhoEaCO622Y+shCA0BDrZ0xYSLJsXe3gwHhLYJw5+vLuav0tBZaRE0pCghPR0nbSctveZ+HMSfejtmEfRsbPR2L8PNQ35iNpxMJ+v05fMSSq8EivUJuZr1Dn5OQoPiYnJwdbtsivxG7dutWyf0pKCuLj42XHbG1txb59++wek2goS08+GwBwsuxrB3v6N52+BeXVP0OrCUPyiL4zRUT+aPny5bjvvvvw4osv4vzzz8ehQ4fw5ptvDok1jD1lRvYKzJ/2JEYlLZct7RYdOcFyOyJsNBLjZiNpxCJMzLgGYSHW+XfSTFugNqrX8R1lYARBC0Gy/qdW7XrGRnBx/VCVSoOwkGTZD+cAzeBMEQjQhsOZn7DSbL40MJZud4VKpUL22BsQHz0NyQmLZO91cKB12dIAbbjSw4c1c5/Om/Y4zpi3BlrJuaDVhuPM+f/EsgUfQhA0vda2dUQQtBDcnDGWZqBt3y/puaK0hJsrBrpEqkYdZLngpVYHIUAyjSAoIBqxkdZkXkzkJAQEWC8aSZdWykz/HWZkr4DGwd+oNAMdGpxkd78AbTiSRiyASqVCcGAskhMWDYtpnkMiYww4vkK9YsUKJCQk4O677wYAXHXVVbjiiivw9ttvY/HixVi3bh0OHDiAxx57DED3h9tVV12Fv//970hLS7Ms15SYmChbgoJouIiLnoqQ4JGobcxDa3tpr4wEdSup+B4mkw6jkpZBrR7YFyLRcHXFFVfgiiuu8HYzfIZaCEBi/CkA5EFXfMw0zJnyENTqYMvnydyc7uVqmloKLftFho+1DDvVKARtAZJg2Xa+pvn5AVi2azQh6NI3uvQaXM0wq1Tq7nVGA+PR3lkJlUrd/Ro9W9gYQPfrEwSNgzarZJn2AG04IsMy0NRaiLDQ/n//TRhzBSaM6T73pcGfdFlMZzPaQ1V68tkoqdiAmZPvx+4DTyE95RzZihcqlRoatXWNd406CCGSjLpa7dr674JKA0Fw79QRaSZYeoEDkAfKahcvGNka6EogaiEQpp5RGBp1sKxtgQHRCAqMxsSx10FQqREemoLm1uOW+2OjslFZu637sT2fKxqF3zUadYilaJpWE4qE2NmoqtuJqIixA2r7UORyYKxSqZCUlISAgADZbU9bvnw56uvr8eKLL6KmpgZZWVmyK9QVFRUQBOvJN336dDz77LN44YUX8NxzzyE9PR2vvPKKZQ1jALjhhhvQ0dGBv/zlL2hubsaMGTPwxhtvDMrrIRps3ZVYl+Fg4RqcLFuP7HHXe7tJPqmovDujzuHmRNQf0sBYow5CSqLyxXbpXMGo8HEoq9oEQLk+SqAkC6TVhPYKjG2zvY6GXruD0JMpDg7qDoxF0ag43NV2rVh30GpCIajUfQ5QFVQam6xlBKZO+ANqG/YhM/23bmmH9PUGSoLh4KB4pd0HVXREJto7qy0Vg90pbeQZWHbqY6ira0XyiMWKw23Vkqyw2iZD7GrGWCVo3D7HWC0EwIDumj0BGvsZY5Wgls1Vd32awsCyqGp1EKZl3Y2d+x9GevKvZBloc3Y4a4y14Jn0cyUhdhbyC97sbkXP54rSMrvBQXFoaSvueb5gzJ32GExGXa8LBv7A5bNMEARs3LjR8m/pbU/r6wr1e++912vb2WefjbPPPtvu8VQqFe68807ceeedbmsjkS9LSzqrOzAuX4+JY6/xaJXHoaippRCNzUcQEToa0RETHD+AiMiGs3MhpcFr6sjTUVW7A+NH/05xX1mQoZDBUgsBst/fGicyciPj50NvaEVtwz6n2mvL/P0hDSKUhmMLggYmo/sDY0eBkkrQICjQOrw/QBuB6IjxHluyMECSMbYtkOQNY1LPx6ik5Vj7/elun/ctHU1l73eENPi1PR9dHkqt0rp9jrF0iLRGEwzpXGDZOa1SQ1BpYDQPZ3YxMFYNMDDuvrh2KhLjZjt1wUtWjCs0DWfOfw+Cytp3Shls6QiHAG041ELAgDPlQ9WQGUpNRAMXGjwS8THTUVO/B9X1e5AQO8vbTfIpRT3zr0clnz0s5soQkRe4UHftnFP/A0BEYEAUFs9+yf4hRWtu1Bx8SrNYanUgYLJ+ZkkDEXtrtGakXYiE2FmoazyAA0dfQ0LcbEt2yRnWzJX1BauVMsaCFjAOfMUOKY0m1GGgJKg0CJIWy+pjvmR/SYMr6ZqtvhAYdw91V0GlEqCQJLRQC0EwmlxbN9uZwFZaJMp2aLlaFjSH9Ln2MdBTfMvNF/Klwb1aCIRWE2IpVCUtxqVSqaESNEBPpWa1OtClSs/9GUotHWVhbqc0KE4beSaKK77FmJTzez1WrQ5E0oiFMJp00GpCoNWkye6Pj5mGipotssy3NHgPDIh2ub3DyZAovkVE7pOexCJcSkwmPYorvoVKpUbayDO83RwiGqJSR54GoLsSryOBAZGyuan2jEk5F8kJp2LxrBeVM8bqQNl26RBIe5kfczGj2KhJWDz7JYSFJCvuZ4/58dKhmUoZ4+6MovKFxuiILKefT5qZ1KpDHAZKgqCR/cj3xLDQ5ITuYcQzJz2AsJBkxEfnICJsjCxT7S3m/nKUsezOljrDGjJonSiyJr0oERQoD7akF26cKYQmCO5frkl6UUMQAnplTc1UPRljpcdJ2cuc9ycwlr4nSqM/crLuwtJT3kDSiPmKj5+b8ygWTH9K8b6M1AsxYcxVWDzrRZj/LkXJxS1/LBwnxcCYyM8kJSyCRh2CsuqfoNO3eLs5PqO8egt0+iYkxs31iR81RDQ0JScsxvzpT2HO1IfddkyNJgSnTF2NuOipltEs0h/iasEmMJYEG/Z+yNtmXF0NPMzPb57fOH3iPYpZXHORLiWjks7C3JzHkOTECgC2c1ZVCtV+pX0iqDRIGrEA0RETMHn8rQ6P3x+jU87B+Uu/xqikswAAC2c+h9Pnvu1yhW9PMPeF6GAIg+17M2ncjYr7See5BwQ4XkdaviSWPDCWZYydGB7cXXzLzUOppRljdYC84JbNUHHB5m9N8Xiy7d19Gh6WLBvt4Szpsm5K/aPVhCI6YrzLxwW6Lxhlj70OMZFZlvdeFE2YPflBJI1Y4PercTAwJvIz3fNVlsBk0qG0cvBqBPi6E6X/A8CiW0Q0cIlxcxAsCQzcyWQuAiTNYqkDIEh+zEszevaq69tmuFzNbJmHUsdETcRFZ2xEevI5dgJjASo7PzdVghpJIxbIsub2AnTp8F2VSqW4fI88C6hFRFg6lp7yGsanX+bUa+oP2yDKtm3uznQ6y9znSsPopRLj5iAmciLm5vwV5y75yuYihfV9k2ZUNU4sByZfHkueYZa+l85mjN0+lFpy8UIQAmTnrvT9E8xDqc3/Vitf9JCeBxMzrsbolHNxwRlvw9CPaQTyit6uVfB2hfncCNBGIHXk6Zib85jfr8bBwJjID5mDv5Pl673cEt/Q2laJytqdCAqMRWLcHG83h4jILtHU/WPW2YyxIEjnUkqCAZuAzdVijNL9LfNZFX5W9pUxVkHd00bpUFXlzKBtFlYevGh79pEEN27OMLpC+tyuFDFSykaqBdcKVZmpepY3UqpCLBUSlIglc/6BpBHzEaCNsBk2bG17oLRSsxM1OFQqFSaOvQ4TM67ttb/0vQwKjLNzBOs5050xdvNQapuCdiaTtUCcNBDuPZRa+jckfZ+t711E2BjMnHQvQkPiHV6YUOJoKLW7jEm9AAAw3k1V2ocDh4Hx1q1bnTqQXq/HH//4xwE3iIg8LyYyG2EhaahvOojm1iJvN8frjhz/CoCIUUnL3P7lS0TkTubPKJOk0rBlDeEe8mHH1h/y0h/ctp91rmaMlQJp5W0CYC8w7gmYZEGuvYDWJsBTSda1Nb92eYDtveHM/Q2MBUGL8em/QfbYG6yPt5OhdHgsy3vRPZTX/hxYm5EDsn61Prczw6dtZY25ClkZVys8pwoj4xcgMW4u4qKnKj5W+l52F99y74UOrWSIsiBoLcuqjU45z6aKs1qW9ZdnmiXvs1o+Z7kvju6XZYydngPuuimZt+HshZ8gPkb5PfBHDj8Fb7nlFvz444997tPe3o4bb7wR3377rdsaRkSeo1KpkJ68DABwsty/i3CJogmHC78EwGHUROT7zD/AjUZrJWGVSrCbDZZu12ikw5EHljFWGtqqlB0T+soY92xXOREYm49t3lcavJgDDacC7EHQ38y1IGgxefwtmDDGujRpf4diW7P3ff/Ut31vZPO0JedOcNAIZI6+ArMmr+xXe2zNm/YY5k9/QjZCQP7c0qHNWlnA7g4ayfBujToE40ZdikUzX8SkcTdAEOSjIaT/FuwFxrKRGdL3vPvij3Qour15ykrPofZgxlgtBCAkOMFjxx+KHAbGp59+Om6//XZ8//33ivfX19fjyiuvxN69e/Hyyy+7vYFE5BlpI88EIKC4/FuYTO5d43Aoqa7bg5a2csRH5yAsJMXbzSEi6pP1R7U0g6qy/4NdtjSO9XbvodTOZIytQ2KVil8pBcYqqO3PMe7ZLssOyrJ1SkGh2Osx1oJk0sDYixljyWtwJeOntMxTf+fWmgNJ84URe0N6bS+IyAtNSS+2BGDSuBvcvmqDSiUftmx9PtuMsXtHc0mLbWk0wVCpVIiPmdprOLlgO5RarTw1wV7GeMmclzEyfgEmj79Zsm+A4r5KxzUY+l7KitzL4afgM888g3PPPRd33XUX1q1bJ7uvtLQUv/3tb1FaWoo1a9bg1FNP9VQ7icjNgoPikRA7E526elTV7fR2c7zGXHRrdOo5Xm4JEZFjoT3LKgUHxlu2GU1dsoBGPqRYWpRLsr6xYD8gskeexXMuY6xSCQ4zxrJgTDb30/p85syWaCk+Jnn+nmHW0ufxbsZYGkg5DoyjwrsrDCuNWupvgG+ev61UTEl2EaVXETbl7Ki9ud8DJR8yrTwEXRC0bn8/pfPwbQuA2QbrKjvLNdkbSi3tq7joyZg37THZ36u8X5WXX5s//SkkxM5GSuISp18TDZzDyy8qlQp//etfERgYiHvvvRc6nQ4XXHABDh8+jBtuuAFqtRoffPABxo4dOxjtJSI3Sk8+G1V1O3GybD1Gxs/zdnMGXZeuCWVVmxGgDUNKwmJvN4eIyKFJ426AKBoxNu0S1DcdxJ6DzyAl4VTU1O+17CPIhk9L5ytKM8a2yzU5ERirNDBB17N/75+QJsXA2HYotQqWbLfCUGpZVlsIAHqq+qYmno66xgNIiJ3d81DrY5TKSzlav9eTpAGTM8WTZmSvgN7QirjoHMu2iRnX4GDhGsRFT0FbR5nLbTC/n0qBl/x9tB8Y25tP606ybKxKC/P4Nek5rFJpXB7q74i88rO8yrZ8NIJgc6EjUHE/23WRbdkLhtVCAPQ2+6rVgUiMm8NioF7g9LiEhx56CIGBgXjggQdw5MgRfPrppxgxYgTefvttJCYmerKNROQhI+PnQ6sJR3nNFnTpGmVLZviDkorvYBL1GJt+AdTqQJhMfVfvJCLytgBtBGZkrwAARIaPQerI06FRB6G8eotlH8FOhksWGPcqvuVMxlgDGHs/h5k1YyzAWvRJnjEWVBqYxO5QwDqUWjmQlLZxVNJZCA8dhaiIcb2fXzQ/lyQYdqJysqeo7b0eldb62lUaiD0F1DSaUMvrMsvK+H3PxY9DTtcCEYQAmEzmgLenbxWKdwmC1vI+9jmUWj0IgbG9jLHNc0vfW5VK3a9qz1LyAlc2gbHN6Au7w8vtDKUODe4dF0lfj9rBHGJHc5DJc1wqQXjffffhhhtuwDvvvIOxY8fio48+YlBMNISp1YFIHXk6RNGA4grlOgLDlSiKKCrrnh6SlXG+l1tDRNQ/5gyrubJsd3V9ba/7u29LgzTX1zGWrc+rUAxJaZiz7TrGKpv7bNuoVitntVUqNUbETpfMDVUKfCXBkxczxtLXqJENX7eXGVfOU2m1YS5lSpWGus+a9GcEB8bLimYJsoJXfRTfkhU480xgLBu2bC8Dq5JXpVbLssn9yySrJe+L1iZjLJurrtLK2yXNGEvnkkuOYRto27ZZK5nfrLxusPfOXX/nMGN8yimn9Fp/TBRFFBYWYtmyZb3237Ztm/taR0Qel568HMdL1uJE6VcYm3axU+sTDgeNzUfQ1FqIqPBxiIvJQn19m7ebRETUb2kjz0JE6GhER2ahuv4Xy3bpSCBZVWrbjDHsDHeWbrVTJMvMXMhRJWgAY3dmtDvbJ8/AGU09x+sJyuwWCLOTTbQl2hlM7QtsL0aY85zSIbS2c1ylHAV+0syz7MJFT9/GRmVj+eLP0NnVIGmHcsEr23/LLlIMQsZYbWfOriBobOaPW4fYCyotjP3IHgdL1k+Wvk7bNtkW/pIXubNuDwyIxJwpDyFEoYBa977W1yMr/KXuvU61dCk2GlwOA+PLL7/cb34oE/mj6IjxiI6YgIbmw6hrzLO7puBwc6Ksp+hWynJ+xhHRkCcIGsRETey+rVIeqqnV9FWVWl4R2DzkV/Ycsqxd70DJ/IM/ODAOre0lPe3SyoY1ywOx7u3S4EBlJxi2zWwqD6WVPo9vfK7Lh4ZLMrCSwK+veciCg2WK1IIWBqOh57b9TKo82JPuZ5sxtvabNNvtseJbKuWLLfaKXHXfJw9OzRdaXBEdMQHjRl0KEWKvc8V2+TD76xjL+9u8FrIS2ZrQsqWbeg91FxkYe43DwPiOO+4YjHYQkReNST0fu/MP43jJl34RGOsNbSiu+A5qIRBpSWd6uzlERG4lX3dVMnxXOqy3V0AkGe4syfjKj9t3Bnf6xHuRd/QVZI+9Ht9tvbp7P5XWZo6xfI1YwHb4tHJVZFvyLHFPVWpJYOyLy9xIg0CNIF1T2v4wdkcZY1n2tI8LCfK1leXLEdmjsTOs3Z1ss7PW2zbrckuCV8HB3Gf7c5CtIyFUKhWmZN7muE0qTR+Vs/uu0i4lDYClGWOVQvsHOn+a+s+lOcZENDylJC6FVhOG0qofZcOthqvi8m9hNHYgdeRpsi8oIqLhwNhTgAmwnQfZe9immUrlOFiSB1e9f9CHhozE3JxHERGWbtmmFgIsSwd1P4/0tkLG2KZQl33WwFgUzVWuu6tXA0B0ZFYfjx08hp6gFbCfDe+Lo4DLdpi60vbu4ygPWe4rKBf6yNq6i721p22Lb9krKGcvMFZ+LufmIws2GWN7Q8/lFyKcD4zlw+sVqrubmDH2FgbGRASNOghpSWdBFA1OV78cqkRRxPGSLwEAY1JYdIuIhh/pD2t59tj+j3dZxlghqwvYZnOdC5RUgrqPY5urUkszw86tRaxVS+flmoNkFWZOuh+zJq9E5ujLnWqfp0kDY+lFCmezgo7nGNvMvbXzOHvrEytlLM2kAbTyPO6Bs1eRXB78auyuJay8HJWdwNjJeee2GWLb5ZuU2u5UZl9hX6X2KxXvosHBwJiIAABjUs4DAJwo/Qqi2I8JO0NEXWMemttOIDoiE9GRE7zdHCIitxsRMw0jYmdi+sR7ZQFFV1ez3ccI9gJglXKW09mhtd3rGEuGwUqDDPNyTQrBMmCvYm83rcJoHxVUEAQN0kae4fXRQOnJ5wAAkkcssmyTXphwtn0uBcYq+4Ga9D3QasIkj7GflZe+3zpdk+PG9oP0vZcGhNL3XmUznFl6n23hLKCPCypOzjuXj57Q2AzrVg5qHQfGGkRHZCFpxEL5xSHJObFkzqtIGrEIEzOucaqd5H5Or2NMRMNbRFg64qKnorZhH6rqfkFi3GxvN8kjLNniVGaLiWh4EgQtFs54FgBQUrnRsl2tsKatWa85xpbt0qDV9aHAEE12j2F5TjsZZaVsmllgQGTvjT5ScAsApk+8G1kZV/dax9gsPGw00pKWISo8o8/jqPocTi6vJi4PJu3nvgK0EdY22VkqynL0nrWRFfvbDaTnmlYaGMuywlpIC6upHRQu63sIvmO2IyOURjl033ZurrbZkjn/gEqlwrGTnyneHxOZhbk5j/SnyeQmzBgTkYV5aPGJ0i+93BLP6OyqR2nVj9BqwpCSeJq3m0NE5HHSICF73K8xJvV8LJ3zWq/9bKtSK27vxxxZk2iQBW/yAKJ7e0RoOsJD0zF21K9tAg/7P1PTRp4BoPt7y1PDfAdCpRIQEjSijznAAtKTz0ZUxPg+jyPP3ivNp5UExnYym7ZkgXEfQaQoGnHGvHeRM+EuJCcs7rOd/SWrRC0bSi1Z91cTJsuwOxxKPcD50PL3SaNYMK77uZ0fSt29j6rX44zGzgG1ldxrSATG5eXluPHGGzF16lTMnTsXTz31FIzGvudmNDY24u6778b06dMxa9Ys/PnPf0Z7u7VC4Y4dO3DLLbdgwYIFyMnJwQUXXID//e9/nn4pRD4tKWEhArVRKK/eivbOam83x+2KytZBFA0YlXR2n0VoiIiGC+mP/ICAcMzIvltxGokzmbDeWTzHTCZDH3OMVZY2njn/XUzNvN0mGLafAY4IG43zlq5DTtb/OZWt8xZ7xcT6Cvplj7dTYVzpOGo7RcxsSYPMvoJIk2hAWEgSMtIudLpwlaukr0mrVh5KrVYH2sxFlmTGlfqkzyy4Y7YFtlR2LxRJ52o73z/Sdatb20sBAJo+1rKmwePzgbHRaMRNN90EvV6Pjz/+GE888QQ+//xzvPzyy30+7p577kFBQQHWrFmDf/zjH9i1axdWrVpluX/v3r3IzMzEiy++iP/85z+46KKLcM899+DHH3/08Csi8l1qIQCjkpcDMOFE6Vfebo5biaLR8prGpJ7n5dYQEQ0O+fBn+wGD/Ae/8hxI+RBcZwNjvU3Bor6DQ2kFa4h9Z4K1mlCoVCrMmvwg1OpgnyyoaHeIOpwLpOwFYlbW48sCxj4CWen87L72G4xlg+wVdOtrqS5HQ5ilS2HJHudk8S1Z+wQNggKjJcdQLr7lysUZjWSOd2zUZADAqKRlLreN3M/nA+Off/4ZhYWFePrpp5GVlYXFixfjzjvvxPvvvw+9vvcaewBQWFiIn376CY899himTp2KmTNnYuXKlfjqq69QW1sLALj55ptx1113Yfr06UhLS8NVV12FhQsX4vvvvx/Ml0fkc7qLcAk4UfoVjMYubzfHbSpqtqO9sxLxMdMRHprm7eYQEQ0Kwcl5kPbm9kq3S4sjuTSU2s7waJXCz1BpUC7CuUKQiXGzcd6S//rkRU/5MHLlJZP6ItgZim05vqywmZOBsdq591E0DUJgbGfpqL6CcqPJ+ttE+jpnT3kIcdE5SE9ernh/v9qn0mJM6gVIG3kWFs96yf5yTU5e6ADkGeMpmbdh1uSVmDz+5gG1k9zD54tv5ebmYsKECYiLi7NsW7BgAVatWoXjx48jMzOz12P27t2LqKgoTJo0ybJt3rx5UKlUyMvLw9KlSxWfq6WlBePH9z3XwxFBGHjhB/Mx3HGs4Yp95Jz+9FN4WBKSExagrGozSqs2YnTKcscPGgIKij8FAIwbdbGsP3guOYf95Bj7iHyRSbQu3dQ9PFV5jVTB3hBRO4WHHBc4EgCYujPGsuCw7zV07QUejvRdRMp77GV8nW2vysEcY2nxKXvrQZtNzLgWLW3FCAiIkhzTfjuk546n2BumrBTQjoyfh4qarYgKH4fSnqJy0v1SE5ciNXEpTpavlx3HGmT3J2OshkYdhFmTHwAAlFf/bLlPNsfYhaHU0vdJqwm1zJcn7/PNTxGJ2tpaxMbGyraZg+Ta2lrFwFjpMRqNBpGRkZaMsa3169cjPz8fjz76aL/bqtEIiI0Nc7yjk6KjOd/AEfaRc1ztp5lTrkLZd5txovTfmDHl17Ir0kNRbf0R1NTvRURYCiZNOFNxLU+eS85hPznGPiJfEh2RiaDAOGSknd/nZ7m99XDtLeNkcjDMVi1oYTR1wWQyyIb4yoJdheBNGjRo1EN/PVdpn0urgju9DrSDCwXBQXFoaDYfXzoHvPdSV1kZVwMAqmp3SY7ZOxQI0EZAp29GcNAIp9o4EPaW6oqLmoyMtIuREGtdIWNuzl9hMulQUrlB8nilLLq8kJwJOvMdLrevs6te3l7ZcG/Xim+ZKS0xRb7Ba4HxSy+95HCesHm+r70P8r4/4HvfJ4qi4vYdO3bg/vvvx6OPPoqMjL7L5vfFYDChubnD8Y4OCIIK0dGhaGhog8nke5UWfQH7yDn97SetMA7REZmoazyCw8c2Y0TsDA+20vN25b0LABiTchEaGuR/ozyXnMN+cmww+ygiIhhare8WHCLfERgQiV8t/rfDkQzy6sbKP/hlw6odBK0Tx16L/Uf/gYy0C3tl8JSe0/rc1oBOO8wKEqkF+dq8zrC3prRZcGC85XZQQIx13z4y0rZrBNs6dfbfcbJ8PcaPusypNg6EWh2IiWOvQ0jgCOgNrdZ2CWrkTPiDbF+VSgW1OtBupW/rfjb391zDUQtaGI3O/U7XasKhN7T0CmKl0wyk97kyxzg4MLbnWAyQfY3XAuMrr7wS553X91yQ+Ph4xMXFIT8/X7bdnPW1zQqbxcXF9coMGwwGNDc393rMzp07cfPNN+P+++932B5nuPPHkMkk8geoA+wj5/Snn8aO+jV27X8UR4s+RVz0dA+1zPM6u+pQUrEBGk0o0pLOttsPPJecw35yjH1EQ5O9jLF8qOvpc9egufUEwkNT+jza+PTfIG3kWQgKjEZxxbeSY0vnZfYO1mXVhzVDP2MspbaXOe+DbO63JBBTq4NhNHYgJXEJVCo1YqOyHWbxzWRrKyu0Izw0FZPG3eDUsdwha8xVAIDjJdalIpXmn5vZWz5J6bHSwD8kKAE6fbNTbTpj3hoUV3zXU3dF8tyy6tjWfnQlY6zRhODshZ8Muws/w4HXAuOoqChERUU53C8nJwevvfYa6urqLEHt1q1bERERgTFjxig+Ztq0aWhsbER+fj6ys7MBANu3b4coipgyZYplvx07duDmm2/GPffcg0svvXTgL4poGElJOBX7j/4DFTXb0NJW6vBHkK8qLPkCJlGPjOQLoR1mP7KIiNxFNuTXTsZYUKkRGT4GkeHKv79smav5yiv5Ks8pVdoWHBjX6/6hTN2vOcbSqtPWwPiMee+gqaUAcdFTERc9FQBQWrnJuXZIA2MfWurKUcVy633ScyS+9/2C8vD/0JAkNLYcc6otwUHxyBz9u17bpe+hdNSEq0W+QoITXNqfBofPV6VesGABMjIysGLFChw+fBg//fQTXnjhBVx++eXQars/uPPy8rBs2TJUVVUBADIyMrBw4UKsXLkSeXl52L17Nx555BGcc845lvnJO3bswE033YQrr7wSZ555JmpqalBTU4PGxkZvvVQinyIIWmSkXghARGHxZ95uTr8YjV09V6AFZKRd5O3mEBENCfaLb/UviLJ7DIXpbdIM9aiks5CevBwLZzzXr+f1NdJso1plfzkiKVlgrLEGtKHBiUgascDuvn2RHseVAmee5qgwm/U+6zmUlnQWJoy5Cqed8qb1flnG2Lrv2LSLER0xATOz7+9/G2WBcf8yxuS7fD4wVqvVePXVVyEIAi677DLce++9uOCCC3DHHXdY9uno6MCJEydkyzc988wzGDNmDK6++mrceOONmDFjBlavXm25f+3atejo6MBrr72GBQsWWP6THpfI341OOQ9qIRBFZV+jS9fo7ea47GT5euj0TUhOWIjQ4JHebg4R0ZAgLzDkjsDYGgDLghaFJW5k2T5BixnZfxrydS6U9KeKtqOiTc6uOywbSu3kXOfB4Gg0gdJ9gqBB9tjrEBUxzrrNzhxkrSYcS095DaOS+79msCww1vhm5p36z3f+GvqQnJyMN954w+79c+bMwZEjR2TboqKi8Oyzz9p9zBNPPIEnnnjCbW0kGo4CAyKRnvIrFBZ/joLifyN77HXebpLTTCYDjpz4EACQmd57OBQRESlT21kPt/+BsZ11jBUzxsM3wJBnMl3PTUkDWiXOB8bSuc6+EwqopBl1haraZg7nGNu5vz99bkvNjPGw5vMZYyLyrvHpv4VKpUFh8efQ61sdP8BHlFZuRHtnJUbEzkJ05ARvN4doyDt8+DD++Mc/YvHixZg6dSqWL1+O9957z9vNIg+wtwxNvwNjKAcnyusY+06g5naSCwH9Kc/naNizs8W33PGeeoI0ey0tVGZLOqpAqUiX7XJNkjsG2EL3FN8i38XAmIj6FBI0AqOSzoLe0IrCki+83RyniKIJh098AACYMPpKL7eGaHg4cOAAYmJi8PTTT+O///0vbrrpJjzzzDP46KOPvN00cjPZmsaSwKK/2Vx5AKw8rNosNqq7aOqI2Fn9eq4hQ3Q9NBZFk4P7nQuMfZU0ey0dsmxLvmxY7wBadvFFOjzbDWGP2s5Q6qDAGKXdaYgZxpfliMhdxqf/DkVlX6Pg5KcYO+oSWWVMX1RRsxUtbUWIjZqMuOgpjh9ARA5dcsklsn+npqYiNzcX3333HX772996qVXkCdIAS57h7WdWTDrH2EHGOCgwFuctXedw2PBQJF+eyv2B8YiY7rnYKYlLHR5r4YznYDTpXG6DJ0mLb6n7CIylF2jUCueJbSV163b3Zoylw71DgkYM+NjkfQyMicih8NAUpCSeitLKjSgq/S/GjrrE8YO8RBRFHD7+TwBA5ugr3PJFSETKWlpaEBkZOaBjCMLA/kbNjx/ocYY71/rJGoCp1ZJAQK3uVz/LAhlZVlBQPF5gQJjLz+EOnj6XZEXIVP15Huv7ovTYsNBEXHj6eqjVwQ6/+xLjZ7r43Fae6ieNWrqGtf1h49JzSK3ufXFFrVYuviUI/Tt/pWSBsdp6bI0mwGY/fi45w9f6iYExETllwugrUFq5EUeKPsLolHP7nP/jTeXVP6Gh+QiiIjKRGDfH280hGrb27t2L9evX91kc0xGNRkBsrHuCoOjoULccZ7hzpp8CA63BRnCQda3W8PDQfr1fQUGSzFqINcMXGxuB4CDvBMF98dS5FBJqHW0VGhbocl8GBVmDL/uPHbz+dHc/mRBhud1X3+hNwX3uZ0S45XZAgLXPoqPDEBHmvv6Jj4/C0rkPIzgoxm57+bnkHF/pJwbGROSUyPAMJCcsRlnVjygo/hyZo31v6KQoGnGw4G0AQPbY65ktJnLCSy+9hJdffrnPfX788UckJiZa/n3s2DHceuutuOOOOzB37tx+P7fBYEJzc0e/Hw90Zxqio0PR0NAGk6k/JY38gyv91N7Rabmt11s/R9va9Kirc70Io05nHZrd1WXNejY0tKM9wLn1fAeDp8+ljnbrsqJdnRqX+zIt8QJUVudjQsYV/Xof3MVT/dTSYu2fvl5ffX1Dn/u1NHdZbhsN1vO3qbED+q6B99uCGU9CBTXq6loRG3mqYjv4ueScweyniIhgaLV9TwdhYExETsseez3Kq3/GkRMfYHTKOQjQhjt+0CAqqdiA5rYTiIuagoThXriFyE2uvPJKnHfeeX3uEx8fb7ldUFCAq6++GpdeeiluuummAT+/u34MmUwif4A6wZl+MpkMltvyIkjqfvWxvM6UINku+OR75qlzSasJx6KZL6KiZisSYue4/ByBAXE4be6bljZ6m7v7SZRUL+/ruHpDR5/7iaJ0yLo11DGJ7um3hNhTHLZR2j5feK98na/0EwNjInJaeGgaRiUtQ1HZ/3Cs6F/IHne9t5tkYTIZcLBwDQAgexyzxUTOioqKQlRUlFP7Hjt2DFdffTUuuOAC/N///Z9nG0ZeZP381KitQ6ndscawtMq1vBjV8HXq7L+juPwbpKf8CmohAPExU116/KxJf0ZrR7nPXYx2N2erRpuLao5OOVf5OLLiXJI1ubkYDznAwJiIXJKV8XsUV3yHYyc/RUbahQgKjPV2kwAAJ0q/QltHORJiZyMu2rUfHUTk2LFjx3DVVVdh/vz5uOaaa1BTUwOgu9BNTAyXKhkO5k9/CocK30HWmKtwovQ/AAC12pox7v9ardZMkHwNXf8IVGKjsi3LUPVHWtKZbmyN73J2uakAbQQuPH2DrLCWlPQcC9BGSLb7x4UY6j8GxkTkkpCgEchIvRDHTv4L+QVvYUb2Cm83CTp9Mw4Wvg1AwKRxN3q7OUTD0vr161FfX4+vvvoKX331lWV7cnIyNm7c6MWWkbskxs3pVbRQvtyNGzLG0mDGTwJjco40iHXEXlAM2AbG4YrbiZQwMCYil00YcyVOlq9HUdk6jE45FzGRWV5tz8HCNdDpmzE65VxERYzzaluIhqs77rgDd9xxh7ebQYNMOkezv4GFKPp3xpicExQYg0UzX0DwANcElp5X0rWRGRiTI/xEIiKXBWjDMWncDQBE7Dv8IkTR5PAxntLcegLHS76EVhOG7LG+M+eZiGg4cE8gaycw5s9QshEfMw1hIckDOoZ07rpsHWMV84HUN34iEVG/pCcvR1REJuqbDuJk+XqvtEEUTdh76HmIohFZGVcjMCDKK+0gIhqupIGFs3NAe7MGxoIbMtBEfZFerJddiBF4vlHfGBgTUb+oVGrkTPgDABXyjvwdHV11g96GE6VfobZhHyLDMpCRetGgPz8R0XAnzRJLl3Fy7RjK85RZDIk8ISQ4EePTf4M5U1bJzjdmjMkRBsZE1G+xUZOQkXYh9IYW5B56TjaPzNPaO6ux/+irAATMmPSnPgtxEBFRf1mD1/5mjLWaMMttgVk78jCVSoXJ429BSuISm+JxDHuobzxDiGhAJo29ESHBI1Fe/TNKKwenMq0oithz8BkYjO0Yn34poiMyB+V5iYj8j/WCp0nsX8ZYy8rA5CUqXjQnFzAwJqIB0WiCLUs27T30HNraKzz+nAXFn6GqdgfCQlKRlXGNx5+PiMhfSUcCqYXAfh0jQJIxZsEtGkwcPk2u4KcTEQ3YiJjpGJ/+G+gNrdie9xCMxi6PPVdD81HsP/oqBJUWc6Y8BI06yGPPRUREJiya+QLGpv0aI+NP6dcRggJjLbe9uYoB+R+OUCBXMDAmIrfIHnsDYqMmo7H5CPYdedkjz9HZVY/tuSshigZMzryFaxYTEXmYKIqIj5mGqRNu73eQkTRiIVITT8MpUx+Bqd+VrYlcx/oj5IohERiXl5fjxhtvxNSpUzF37lw89dRTMBr7/mBtbGzE3XffjenTp2PWrFn485//jPb2dsV99+zZg4kTJ+Kii1jVlqi/BEGDOVMeQqA2CidK/4NjJz9x6/GNxi5sy/0z2jurkDryDFahJiIaBO7I8AqCBrOn/AXJCYsGsOQTkesEZozJBT4fGBuNRtx0003Q6/X4+OOP8cQTT+Dzzz/Hyy/3nZG65557UFBQgDVr1uAf//gHdu3ahVWrVvXar7W1Fffddx9OOaV/w4OIyCo4KB5zpz0GQQhA3pFXUFKxwS3HNZn02JG3CvVNBxETOREzJt7LZT6IiAaFe1cbYGBMg0nFOcbkAp8PjH/++WcUFhbi6aefRlZWFhYvXow777wT77//PvR6veJjCgsL8dNPP+Gxxx7D1KlTMXPmTKxcuRJfffUVamtrZfs+/PDDWLZsGaZNmzYYL4do2IuNmoQ5Ux4CIGDXgcdQXP7tgI5nDoorarYiLCQNc3Meg1rdvwIwRETkGnfPCWZgTIOJSzSRK3z+Mkpubi4mTJiAuLg4y7YFCxZg1apVOH78ODIzey/TsnfvXkRFRWHSpEmWbfPmzYNKpUJeXh6WLl0KAFi3bh2OHj2KRx99FK+99ppb2isIA89imY/hjmMNV+wj53irn1ISF2LOlJXYuf8x7DrwGLr09Rif/huXs7xdukZs3fsgahv2ISwkBafOfgHBQbGOH+gCnkvOYT85xj6i4cm9GWPOMSYiX+XzgXFtbS1iY+U/hM1Bcm1trWJgrPQYjUaDyMhIS8a4oqICf/3rX/H2228jICDALW3VaATExoY53tFJ0dGhbjvWcMU+co43+ik29gJER0fju5/+hLwj/0Bz22GcesqDCAqMcurx5VW78cOOh9DSVo74mCwsW/wCQkPiPdZenkvOYT85xj6i4US6BrE7RIaPAQCEBCW69bhEynihkpzntcD4pZdecjhP+McffwQAu1mmvrJPSveJomjZvmLFClx33XUYP368s012yGAwobm5Y8DHEQQVoqND0dDQBpPJvVdqhwv2kXO83U/hwTOw5JS/Y1vuQygq/QEffrkbEzOuRnrKr6DVhCg+pqWtBIcK/4mT5d8AAFITT8PMyX9CZ0cQOjta3d5Gb/fRUMF+cmww+ygiIhhaLYvKkOcsmfMqSiq+x+jkX7n1uCNiZmL+9KcRHeG+319ERO7gtcD4yiuvxHnnndfnPvHx8YiLi0N+fr5suznra5sVNouLi+s1l9hgMKC5udnymJ07d2L37t14+umnAQAmkwmiKGLixIl47733MGPGjH69Lnf+GDKZRP4AdYB95Bxv9lNk2DicNud17D/2Gk6UfoXcwy/hQMHbSIidhZjIiQgOjIXJZEBreylqGvairvEAACBAG4mpE+5AauLpUKlUHm8/zyXnsJ8cYx/RcBATmYWYyCy3H1elUiExbrbbj0tENFBeC4yjoqIQFRXlcL+cnBy89tprqKurswS1W7duRUREBMaMGaP4mGnTpqGxsRH5+fnIzs4GAGzfvh2iKGLKlCkAgK+++kr2mA8//BC//PILnnvuOaSmpg7glRGRLa02DNMn3o2M1Atw7OQnKKnciLKqTSir2tRr35CgRIxOORcZaRfZzSoTEREREbmTz88xXrBgATIyMrBixQrce++9qKmpwQsvvIDLL78cWq0WAJCXl4cVK1bg3XffRUJCAjIyMrBw4UKsXLkSq1evhl6vxyOPPIJzzjnHMj/Zdgh1bGwsAgIC3Dq0mojkIsMzMHPS/cjJ+j/UNuxDc2sRunT1EFRaBAeNQHTkBESFj+NSTEREREQ0qHw+MFar1Xj11VexatUqXHbZZQgODsaFF16IO+64w7JPR0cHTpw4IVu+6ZlnnsEjjzyCq6++GoIg4KyzzsLKlSu98RKIyIZGHYTEuDlIjJvj7aYQEREREfl+YAwAycnJeOONN+zeP2fOHBw5ckS2LSoqCs8++6zTz3HHHXfIgm0iIiIiIhq61OpAbzeBhpAhERgTERERERG5YkTMdKQnL0di3FxvN4WGAAbGREREREQ07KhUAmZk/8nbzaAhQvB2A4iIiIiIiIi8iYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERuaS4uBjTpk3DnDlzvN0UIiIit2BgTERERE4zGAy49957MWPGDG83hYiIyG0YGBMREZHTXnnlFaSkpGD58uXebgoREZHbaLzdACIiIhoa9uzZgy+++AJffPEFNmzY4JZjCoLKLY8f6HGGO/aTY+wj57CfHGMfOcfX+omBMRERETnU2tqKFStW4NFHH0VkZKRbjqnRCIiNDXPLsaKjQ91ynOGO/eQY+8g57CfH2EfO8ZV+GhKBcXl5OVatWoUdO3YgJCQEF154Ie6++26o1Wq7j2lsbMQjjzyCH374AWq1GmeeeSb+/Oc/IyQkxLKPyWTCW2+9hU8//RTl5eUYMWIEfv/73+Oqq64ajJdFRETkdS+99BJefvnlPvf58ccf8be//Q2nnnoq5s+f77bnNhhMaG7uGNAxBEGF6OhQNDS0wWQS3dSy4Yf95Bj7yDnsJ8fYR84ZzH6KiAiGVms/dgSGQGBsNBpx0003IS4uDh9//DGqq6vxpz/9CYGBgbjzzjvtPu6ee+5BTU0N1qxZA71ejwceeACrVq3CU089Zdnnr3/9K7Zs2YL7778fY8eORUNDAzo6BvYFTURENJRceeWVOO+88/rcJz4+Hjt27EBlZSU+/PBDAIAoijCZTJg4cSKefPJJnHvuuf16fnf9GDKZRP4AdQL7yTH2kXPYT46xj5zjK/3k84Hxzz//jMLCQqxZswZxcXHIysrCnXfeieeeew633nortFptr8cUFhbip59+wr///W9MmjQJALBy5UrcdNNNWLFiBeLi4lBYWIiPPvoIX331FcaMGQMASE1NHdTXRkRE5G1RUVGIiopyuN9bb70FvV5v+feGDRvw9ttv44MPPsDIkSM92EIiIiLP8/nAODc3FxMmTEBcXJxl24IFC7Bq1SocP34cmZmZvR6zd+9eREVFWYJiAJg3bx5UKhXy8vKwdOlSbNy4ESkpKdi4cSOuv/56qFQqLFy4EPfccw/Cwvo/38kdk8d9bSK6L2IfOYf95Bj7yDnsJ8eGex+NHj1a9u8DBw5AEASMHz/eSy0iIiJyH58PjGtraxEbGyvbZg6Sa2trFQNjpcdoNBpERkaitrYWAFBSUoKysjJ8//33ePrpp6HT6fDoo4/ivvvuczjXyh53FhEBfGciui9jHzmH/eQY+8g57CfH2EdERERDj9cCY2eLfQCASqV89d3ednv3iaJo2S6KIvR6PZ588kmMGjUKALBq1SpcccUVqK2tlWWoneWOIiIAJ+w7g33kHPaTY+wj57CfHPO1IiKedtFFF+Giiy7yahuIiIjcxWuBsbPFPuLi4pCfny/bbs762maFzeLi4iz7mBkMBjQ3N1seExcXB41GYwmKASAjIwNAdxXs/gTGgPuKiJiPxR+gfWMfOYf95Bj7yDnsJ8fYR0REREOP1wJjZ4t95OTk4LXXXkNdXZ0lqN26dSsiIiIsRbNsTZs2DY2NjcjPz0d2djYAYPv27RBFEVOmTLHsYzAYUFJSYim6deLECQBAUlLSQF8eERERERERDRGCtxvgyIIFC5CRkYEVK1bg8OHD+Omnn/DCCy/g8ssvt1SkzsvLw7Jly1BVVQWgO/O7cOFCrFy5Enl5edi9ezceeeQRnHPOOZZM8Pz58zFhwgT8+c9/xuHDh5GXl4dHHnkEZ555Zr+zxURERERERDT0+HxgrFar8eqrr0IQBFx22WW49957ccEFF+COO+6w7NPR0YETJ07IlpF45plnMGbMGFx99dW48cYbMWPGDKxevVp23Ndffx3h4eH47W9/i1tvvRVTpkzB448/Pqivj4iIiIiIiLzL56tSA0BycjLeeOMNu/fPmTMHR44ckW2LiorCs88+2+dxExIS8Morr7iljURERERERDQ0+XzGmIiIiIiIiMiTGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NQbGRERERERE5NcYGBMREREREZFfY2BMREREREREfo2BMREREREREfk1BsZERERERETk1xgYExERERERkV9jYExERERERER+jYExERERERER+TUGxkREREREROTXGBgTERERERGRX2NgTERERERERH6NgTERERERERH5NZUoiqK3GzFcmEwijEaTW46l1aqh1xvdcqzhin3kHPaTY+wj57CfHBusPlKrBQiCyuPP42nu+t7kuekc9pNj7CPnsJ8cYx85x5e+NxkYExERERERkV/jUGoiIiIiIiLyawyMiYiIiIiIyK8xMCYiIiIiIiK/xsCYiIiIiIiI/BoDYyIiIiIiIvJrDIyJiIiIiIjIrzEwJiIiIiIiIr/GwJiIiIiIiIj8GgNjIiIiIiIi8msMjImIiIiIiMivMTAmIiIiIiIiv8bAmIiIiIiIiPwaA2Mf88EHH2Dp0qWYPHkyLr30UuTl5Xm7SYPmtddew8UXX4xp06Zh7ty5uP3221FUVCTbp6urC6tXr8acOXMwbdo03HHHHairq5PtU15ejhtvvBFTp07F3Llz8dRTT8FoNA7iKxk8Dz30EDIzM/H+++9btrGPulVWVuLuu+/G7NmzkZOTg4suugiFhYWW+9lPQGtrK1atWoWFCxdi6tSpOOecc/DFF19Y7vfHPtq1axduvvlmLFiwAJmZmfjhhx9k97urT3bs2IELL7wQkyZNwhlnnCHrd3INvzf5vekKfm/ax+9Nx/i92duw+t4UyWf873//E7Ozs8XPPvtMPHbsmLhy5Upx1qxZYl1dnbebNiiuvfZa8d///rd49OhR8dChQ+INN9wgLlmyROzo6LDs85e//EVcvHixuHXrVnH//v3ipZdeKv7ud7+z3G8wGMRzzjlH/P3vfy8ePHhQ3LRpkzhnzhzxhRde8MZL8qiNGzeK5513nrhgwQLxvffes2xnH4liY2OjuGTJEvG+++4T9+3bJxYXF4ubNm0SKyoqLPuwn0TxgQceEM8880xx586dYnFxsfj++++LEyZMEHfs2CGKon/20aZNm8TnnntO/Oabb8Tx48eLGzdulN3vjj4pLi4Wp06dKj7++ONiQUGB+N5774lZWVnili1bBu11Dhf83uT3piv4vWkfvzedw+/N3obT9yYDYx9yySWXiA8//LDl30ajUVywYIH45ptverFV3lNXVyeOHz9e3L17tyiKotjc3CxmZ2eL69evt+xTUFAgjh8/XszLyxNFsfuPMysrS6ypqbHs8+GHH4ozZ84UdTrd4L4AD6qpqREXLVokHj58WFyyZInlC5591O3pp58Wf/vb39q9n/3U7Ve/+pX46quvyradeeaZ4ptvvsk+EsVeX/Du6pOnnnpKPOecc2TPddddd4k33nijJ1/OsMTvTTl+b9rH782+8XvTOfze7NtQ/97kUGofodPpkJ+fj/nz51u2CYKAefPmITc313sN86KWlhYAQGRkJADgwIED0Ov1sj7KyMhAUlKSpY9yc3MxYcIExMXFWfZZsGABmpubcfz48cFrvIfdf//9uPLKK5GZmSnbzj7qtnHjRkyaNAl33HEH5s6di4suughffvml5X72U7dp06Zhw4YNqKqqgiiK+Omnn1BdXY158+axjxS4q09yc3NlxzDv46+f9f3F783e+L1pH783+8bvTefwe9M1Q+17k4Gxj2hoaIDRaJSdFAAQGxuLmpoaL7XKe0RRxOOPP47Zs2cjIyMDAFBbW4ugoCCEhYXJ9o2NjUVtba1ln9jYWNn95j417zPUvf/++2hvb8e1117b6z72UbeSkhJ8+OGHyMjIwNtvv42LL74Yf/7zn7FhwwYA7CezlStXIi0tDYsWLcKkSZNw++234/HHH0dWVhb7SIG7+sTePo2NjdDr9Z5q/rDD7005fm/ax+9Nx/i96Rx+b7pmqH1vatx2JPIIURShUqm83YxB9/DDD+Po0aP46KOPZNuV+kIURYf79LV9KCksLMTf//53fPLJJxAE5eta/t5HQPfrnTx5Mu666y4AQFZWFg4cOICPPvoIp512GgD2E9D9Y/HQoUN4/fXXkZCQgG3btuGBBx5AYmIiAPaREnf1ie0+tseg/uP3Jr83pfi96Rx+bzqH35uuG0rfm8wY+4jo6Gio1epeV4vq6+t7XQ0f7h555BFs3LgR7777LhISEizb4+Li0NHRgdbWVtn+0j6Ki4vr1Yfmf9teaRqK9u3bh/r6epx55pmYOHEiJk6ciLKyMjz22GNYtmwZ+6hHXFwcxowZI9uWkZGBiooKy/3+3k+dnZ14/vnncd9992Hx4sWYMGECrrnmGixevBjvvvsu+0iBu/pEaZ+6ujpERUVBq9V6qvnDDr83rfi9aR+/N53D703H+L3puqH2vcnA2EcEBAQg+//Zu+/4pqr+D+Cf3MzulZYWKBTKngVkb0QEFMWJA5wIivpDRXmcj+B+3PsRBzwouAVciMjeQ2wZZZcySkvbdO+Me39/tEnPTZNmNOnN+L5fL1+WNLk5Oblp7vec7/me3r2xa9cuy208z2P37t1IS0uTrmGtSBAEvPDCC1i/fj2WL1+O5ORk0e/79OkDpVIp6qPs7Gzk5uZa+igtLQ3Hjx8XlYHftWsXIiMjm/zB90cTJ07EL7/8gjVr1lj+S0hIwJw5c/DJJ59QHzUYMGAAzp07J7rt7NmzSEpKAkDnEgAYjUYYDAbI5XLR7RzHged56iMbPNUnaWlp2Llzp+jYu3btCpq/9Z5C35v0vekM+t50Dn1vOkbfm67zu+9Nj5byIi1i3nZi1apVwunTp4XnnnsuqLadeP7554VBgwYJe/fuFQoKCiz/WW87MW7cOGH37t3C4cOHhRkzZtgs+X7PPfcIx44dE7Zt2yYMGzZMeOeddyR4Ra2Dra4pCNRHgiAIGRkZQs+ePYUlS5YIZ8+eFVatWiX06dNH2Lhxo+U+1E+CMHPmTOGaa66xbDvx7bffCr169RJ+/vlnQRCCs48qKyuFo0ePCkePHhW6desmfPnll8LRo0eFgoICQRA80yfnz58X+vXrJ/znP/8RTp8+LaxYsULo1asXbdfkBvrepO9Nd9D3ZlP0vekc+t5sKpC+Nykw9jFfffWVMG7cOKF3797CjTfeKBw8eFDqJrWabt262fzvp59+styntrZWWLRokTB48GChf//+wkMPPSQq7y4IgpCTkyPMnj1b6NevnzB06FDhtddeE4xGY2u/nFZj/QVPfVTvr7/+Eq666iqhT58+wtSpU4XVq1eLfk/9JAgFBQXCv/71L2HUqFFCv379hClTpggrVqyw/D4Y+2jPnj02/w69//77giB4rk92794tXHvttULv3r2Fyy+/XFi1alWrvcZAQ9+b9L3pKvretI2+Nx2j782mAul7UyYIVPGDEEIIIYQQQkjwojXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBBCCCGEEEKCGgXGhBDJrF27FqtWrZK6GYQQQohfoO9NQryHAmNCiGTWrVuH1atXS90MQgghxC/Q9yYh3kOBMSGEEEIIIYSQoCYTBEGQuhGEkODz5JNPNhn1fuihh/Dwww9L1CJCCCHEd9H3JiHepZC6AYSQ4DRv3jzk5uaioqICzz//PAAgMTFR4lYRQgghvom+NwnxLgqMCSGS6NChA6KjoyEIAtLS0qRuDiGEEOLT6HuTEO+iNcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEEIIIYQQQoIaBcaEEMkolUrU1dVJ3QxCCCHEL9D3JiHeQ4ExIUQynTp1wsmTJ7FhwwYcPnwY+fn5UjeJEEII8Vn0vUmI99A+xoQQyRQXF+O5557D/v37UVZWRvsxEkIIIc2g701CvIcCY0IIIYQQQgghQY1SqQkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDUKjAkhhBBCCCGEBDWF1A0IJDwvwGTiPXIshYKD0eiZYwUq6iPnUD85Rn3kHOonx1qrj+RyDhwn8/rzeJunvjfp3HQO9ZNj1EfOoX5yjPrIOb70vUmBsQeZTDxKS6tbfByOkyEuLhzl5TXgecEDLQs81EfOoX5yjPrIOdRPjrVmH0VHh4Lj5F59jtbgie9NOjedQ/3kGPWRc6ifHKM+co6vfW9SKjUhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKBGgTEhhBBCCCGEkKDmV4HxypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3btib3OX36NObOnYuBAwdi4MCBuOWWW1BcXOytl0AIIYQEjOeffx7du3fHihUrpG4KIYQQ0iJ+ExivXbsWr776Kh588EGsXr0a3bt3x+zZs+0Gsenp6ViwYAFuvPFGrFmzBhMnTsS8efOQlZVluc/58+dx++23o0uXLvj666+xevVq3HvvvVAqla31sgghhBC/tHnzZmRkZCAhIUHqphBCCCEt5jeB8bJlyzBjxgzccMMN6NKlCxYvXgy1Wo3Vq1fbvP/y5csxZswYzJ49G6mpqZg/fz569eqFlStXWu7zzjvvYMyYMXjiiSfQo0cPdOzYEVdccQUiIiJa62URQgghfken02HRokV4/fXXaTCZEEJIQFBI3QBn6PV6ZGZm4oEHHrDcxnEcRowYgYyMDJuPycjIwL333iu6bdSoUdiyZQsAgOd5bNmyBbNnz8bdd9+N48ePo2PHjnjwwQcxevRot9vKcTK3H2t9DE8cK1BRHzmH+skx6iPnUD85Fkx99NRTT2HWrFno3r17i4/V0v4Kpn5vCeonx6iPnEP95Bj1kXN8rZ/8IjAuKSmByWSCVqsV3R4XF4dz587ZfIxOp0NcXFyT+xcWFgIAioqKUF1djc8//xyPPPIIFi5ciI0bN2Lu3Ln48ccf0atXL5fbqVBwiIsLd/lx9sTEhHnsWIGK+sg51E+OUR85h/rJsUDvoxUrVqC6uhr33HNPi4/lye/NQO93T6F+coz6yDnUT45RHznHV/rJLwJjewRBgExmf4TB1u/Mt/E8DwC4/PLLceeddwIAevbsiX379uG7777D4sWLXW6P0cijvLzG5cdZ4zgZYmLCUFJSBZ4XWny8QER95BzqJ8eoj5xD/eRYa/ZRZGQIlEq5V5/DlqysLHz88cf4/vvvwXEtX43lie9NOjedQ/3kGPWRc6ifHKM+co6vfW/6RWAcExMDuVwOnU4nur24uLjJLLKZVqttcv+ioiLL/WNiYqBQKNC5c2fRfVJTU3Hx4kW32+rJN5XnBfowOUB95BzqJ8eoj5xD/eRYIPfRwYMHUVxcjEmTJlluM5lMePnll7FixQqsW7fO5WN6qq8Cud89ifrJMeoj51A/OUZ95Bxf6Se/CIxVKhV69+6NXbt2YcKECQDqZ3x3795tme21lpaWhp07d2LWrFmW23bt2oW0tDTRMa1Tsc+ePYsOHTp454UQQgghfmzixIno06eP6LZ7770X119/Pa677jqJWkUIIYS0nF8ExgBw9913Y+HChejduzf69euH5cuXo7a21vJFvHDhQrRp0wYLFiwAANxxxx2YOXMmli5dirFjx2Lt2rU4cuQIXn75Zcsx77nnHjz++OMYPHgwBg8ejI0bN2Lv3r144oknJHmNhBBCiC+LjIxEZGSk6DalUon4+HikpKRI0yhCCCHEA/wmMJ46dSqKi4vx/vvvo7CwED179sTnn3+O2NhYAEBeXp5ovdPAgQPx1ltv4d1338Xbb7+NlJQUfPTRR0hNTbXcZ/LkySgvL8cnn3yCF198Eampqfjkk0/cKrxFCCGEEEIIIcQ/yQRBkD6hO0AYDCaUlla3+DgcJ0NcXDiKiip9It/eF1EfOYf6yTHqI+dQPznWmn0UHR0qSfEtT/PE9yadm86hfnKM+sg51E+OUR85x9e+N1teUpIQQgghhBBCCPFjFBgTQgghhBBCCAlqFBgTQgghhBBCCAlqFBgTQgghhBBCPOJCTQEeO/IhTlZekLophLjEb6pSE2JLjakOmWVnkVNTgEpTLWQA4lSR6BTaFp3D2kIuo7EfQgghhBBvy6stQht1DN46/R2OV57DouPL8PVl/5a6WYQ4jQJj4ndMAo9dRUfx18l9+Ft3AgbBZPN+kYpQjNcOxDWJI9EuJL6VW0kIIYQQEhy26jLw6qkVuKrNcNSa6gAAet4gcasIcQ0FxsRvCIKA3SWZ+Pzcb8it1QEAIhShGBHVDZ1CkxClDAcvmFCoL8PxinM4UpGNny/twK+XdmFKm6G4u8NUhCtCJH4VhBBCCCGBZVvRQQDA7/m70SEkAQAoa4/4HQqMiV8o1pfj7azv8HfpCQBAWlQX3NVjMrrLO0ImyGw+ptRQiXX5e/Fj7hb8nr8be0uO4okut6J/VJfWbDohhBBCSECTofFajBfq96OVyWxfnxHiqygwJj7v79ITePP0Nyg1VKKdJh4PdJqOIbE9GjcEF2xvCB6tDMct7S/HVW2G479n12CT7h88fexTPNjpekxtM6yVXwUhhBBCSGDimCBYQENgDAqMiX+hwJj4tFW52/DZuV8hQMBVbYZjTsdroJYrXTpGhDIUC7vehrSornj/zI94/8yPKNKXYVbylV5qNSGEEEJI8OCYjW7MExaUSk38DQXGxCeZBB6fnf0Vay5th5pTYkGXWzAmrn+LjjkpYTCSNLF4/vgyrMz5C3KZHLe1n+ihFhNCCCGEBCc2bZoHX38bzRgTP0NDOcTn8AKP97J+wJpL2xGlCMNrve5vcVBs1jcyFS/1nI0QTo0vL6zDb5d2eeS4hBBCCCHBirOxxpijNcbEz1BgTHyKIAj44MwqrC/cD60qCm/3eQg9Izp69Dl6RaTghZ73QCmT4+PsNUgvO+XR4xNCCCGEBBOZjTXGHIUZxM/QGUt8hiAI+OTsz/ijYA9ilBF4rdf9Xtt/uG9kKv6v843gwePlE1/iUm2xV56HEEIIISTQsTPGJqE+lZpmjIm/ocCY+Iyf8rbi50s7GtKn56K9l4JisysSBuOGpLGoNNXgtVMrYeRNXn0+QgghxJ/UmQx45PD7+OXSTqmbQnycrRljWmNM/A0FxsQn7Cg6hM/P/QY1p8QLPe9Fx9DEVnneuztMRffwZByvPIcVOetb5TkJIYQQf7C/9BiOV57Hx9mrpW4K8XHsjLFgWWNMYQbxL3TGEsmdqDiP1099DRlk+FfX29E9vEOrPbeCk+PJrjMRKlfj+4ubcKLifKs9NyGEEOLL+IaUWEIcYYNgSyo1zRgTP0OBMZFUqaESL55cDr1gxOyOV2NEbJ9Wb0OSJg73dZwGHgLeOfMDpVQTQggJanuKM3G+Oh98Q0osIY6wadOW4ls0Y0z8DJ2xRDImgcd/Tq2ETl+Gy7WDcH3SGMnacmXCEPSN7Iyz1Xn4MW+LZO0ghBBCpJRfV4xFJ5ZhzsE3LCmxhDjCFtoyb9cko+JbxM9QYEwks+LCeqSXnUJKaBIe7nyDpH9AORmH+Z1vglKmwMoLfyG3VidZWwghhBCplOorLT9TWEycxW7NxINSqYl/8qvAeOXKlZgwYQL69u2Lm2++GYcOHWr2/n/88QcmT56Mvn37Ytq0adi2bZvd+953333o3r07Nm/e7OlmExv2lhzFNxc3IFSuwXPd7oBGrpK6SWgfEo9b2l8Og2DEF+d+l7o5hBBCSKszoXFdMaVSE2fR7DAJBH4TGK9duxavvvoqHnzwQaxevRrdu3fH7NmzUVxse//Z9PR0LFiwADfeeCPWrFmDiRMnYt68ecjKympy3xUrVlC6UCvS1ZXhzdPfAgAe73KL1/YqdseNSeMQr4rGzuLDOFTW9FwhhBBCApn4eoiujYKdkTfhUm2Rw/vR7DAJBH4TGC9btgwzZszADTfcgC5dumDx4sVQq9VYvdr2FgLLly/HmDFjMHv2bKSmpmL+/Pno1asXVq5cKbrf6dOn8emnn+KVV15pjZcR9HiBx1tZ36LCWI3piaMlKbbVHLVciXs6XgUA+PTcL1SRkxBCSFDh2RljmjQIeotPLMNd6a/iaMXZZu/HrjE2p1VTxgHxNwqpG+AMvV6PzMxMPPDAA5bbOI7DiBEjkJGRYfMxGRkZuPfee0W3jRo1Clu2bBEdd8GCBXjqqaeQkJDgkbZyXMtHzMzH8MSxfM3qizsa1hUnYnanq9x+jd7sownxA/DLpR04VnEOW4rSMTHhMo8/R2sJ5HPJU6iPnEP95Bj1EQkEbDAsUGAT9PaXHgcAHCw7jV4RKXbvJ2Pm2sxp1ZSNSfyNXwTGJSUlMJlM0Gq1otvj4uJw7tw5m4/R6XSIi4trcv/CwkLLv9955x107doVU6ZM8Ug7FQoOcXHhHjkWAMTEhHnsWL7gVFkOlp5fCyWnwGuD70NSVEyLj+mtPnq83824d+cbWHnxL1zffTSUnNwrz9NaAu1c8pQyfRX2647jok6HWpMesepI9I7piB5RHWibCTvoXHKM+oj4MxOTKUWBDTFTcs2HDOyMsfknGlgh/sYvAmN7BEFodrG/rd+Zb9uzZw/WrVuHn3/+2WPtMRp5lJfXtPg4HCdDTEwYSkqqwPOB8UdFzxvw5MHPYOCNmJtyDWKN0SgqqnT8QDu83UfJSMRl0T3wd+lxfHdsM6YkDvP4c7SGQDyXPOF0ZQ6+ztmAXUVHbKZ6aVVRuKHtWFydOAJquVKCFvoeOpcca80+iowMgVLp3wN2xDeZBJPlZ0qFJWYqWfMhA7uPsflnGlgh/sYvAuOYmBjI5XLodOItdIqLi5vMIptptdom9y8qKrLcf//+/cjLy8OwYeKAZ968eRgxYgS++OILt9rqyYshnhcC5gL0i7O/42z1JQyI6oprE0d57HV5s49mtZ+Ev0uPY+WFvzBeOwgqB6OlviyQzqWWqDMZ8L8Lf2BN3nYIEBClCMOw2N7ol9AJxloBhbWlOFh2GocrzmDJ2V/w66VdeCx1BvpEdpK66T6DziXHqI+IPzMwgbGR+ZkEj79LjuPLC3/i393vstzmaMaYZZ49poEV4m/84kpfpVKhd+/e2LVrFyZMmAAA4Hkeu3fvxp133mnzMWlpadi5cydmzZpluW3Xrl1IS0sDANx222248sorRY+ZNm0ann32WYwdO9Y7LyRIHS7Pwuq87QiXh2BB6i1+k6LaPaIDhsb0wt6So/izYC+mJY6UukmkBYr05Vh0fClOVeUgTK7BnR2mYHLCEGgUKsTFhaOoqBI8L2Bm8iScrb6EZed/x96SY1iY+V880Olaev8JIUHBwBstP5soMA5Kzx7/HACwMme95TaFrPkMFTZtWsYkUxPiT/wiMAaAu+++GwsXLkTv3r3Rr18/LF++HLW1tbjuuusAAAsXLkSbNm2wYMECAMAdd9yBmTNnYunSpRg7dizWrl2LI0eO4OWXXwZQv97Yeg0yALRt2xbt27dvvRcW4GpNeryT9QMAYF6n66BVR0ncItfMSr4Se0uO4ofcLZiSMAwKP19rHKzy64rxxJGPUaAvRe+ITniq68xmz8WU0EQs6n4P/ircjw/O/ISPslejRF+BOzpMbsVWE0JI6xPNGPMUGAczE5MK7WjGmC3aZim+5Z1mEeI1fhMYT506FcXFxXj//fdRWFiInj174vPPP0dsbCwAIC8vDxzXOBM5cOBAvPXWW3j33Xfx9ttvIyUlBR999BFSU1OleglB6csL65Bbq8PQmF4Yrx0gdXNc1iWsHQZFdceBshPYVnQQE+IHSt0k4qIifTmezFyCAn0pxsalYUGXW5xKi5fJZJiUMARtNfF4/vgX+PriBqg4JW5pf3krtJoQQqTBzhgbaMY4qIm3YGq+2r7AbPNlnjGm7b6Iv/GbwBgAZs6ciZkzZ9r83VdffdXktilTprhUcfrEiRNut400dbTiLFbnbUeYXIP/63xDs4XSfNnN7cbjQNkJ/JC7GeO1A/z2dQSjWpMe/z72OfLqijAyti8Wdr0VcgfpYNb6RHbCSz3vw9NHP8X/LvyBJE0cxmrTvNNgQgiRmEGgVGpSj73aYauV2yKaMTYX36I5Y+Jn/GOxJ/E7et6Ad7K+hwABc1OuQZzKv1KoWf0iU9E9PBnZ1Xn4u2E/P+L7BEHAe2d+RFZ1LvpFpuJfXW93OSg26xnREc90vwMcZHg76zucqszxcGsJIcTz9LwRl2qLXXoMmz5toFTqoMZOBJjsBLmnKnNwrOKcKAjmaB9j4qcoMCZeseLCX7hQU4BBUd1xRfxgqZvTIjKZDDe1rS/69n3uZolbQ5z1a/4ubNb9g3hVNJ7uNqvFVcUvi+6OezpehTregJdPfolqU62HWkoIId7x5NFPcFf6KzhXfcnpxxiZGWMe4lnCw+VZqDBWe6x9xLex6dO8nRnjhw+/i0ePfGBzdphmjIm/ocCYeNzJygv4MXcLQuVqPJJ6U0CkHo+I7Y32mngcLj+DE5XnpW4OceBCTQE+P/srFDI5nu12B6KV4R457g1JYzEqti8u1RVjydlfPHJMQvzJkiVLcMMNN2DAgAEYPnw4HnroIZw9e1bqZhE7jlacBQAcLM9y+jFsSiybPptRdgpPZP4XC4586LH2Ef9hK5W6zmSw/EzriUkgoMCYeJSeN+Lt09+BB4/ZHachXh0tdZM8gpNxuC5pNADgl7ydEreGNMck8Hjr9HfQC0bMbD8J3SM6eOzYMpkMD3e+ETHKCPxZsA+7i4947NiE+IN9+/bh9ttvx/fff49ly5ZBr9fjnnvuQW0tZVD4shpTndP3ZfeeNTKFuDLLswEA52sKPNcw4jesswcAQKcvs/xsa3ZY5qBgV7ASBAEfnvkJv+fvlropxAoFxsSjvs3ZgLM1l5AW2QVTEoZK3RyPmhA/CGFyDbYVZaDUUCF1c4gda/K24XjlOXQLS8ZN7cZ5/PhRyjA8mnozAOCj7NWUUk2CyhdffIHrr78eXbt2RY8ePfDaa6/h4sWLOHr0qNRNI82oMdVhQ8EBPHPgC4dBssDMDBqZ4lu1vN5r7SO+iQ11baVS6/SlzO8pldpZOn0ZfsvfjQ/O/CR1U4gVv6pKTXxbVtVFfJe7CRpOFTAp1KwQuRqTEoZgdd42rM3fi9vaT5S6ScRKkb4cKy78BbmMw2NdZrhdbMuRITE9MS5uALYUpWPlhb9wX8o0rzwPIb6uoqJ+kDAqyv0CixzXsu8K8+NbepxAVsPX4fVTXwMAYrlI3NXB/o4dgoyZMYbtwDhQ+5rOJTH2Mo6H0KR/6oTGVGrba4wDvy8rjTVQyhRQy5Wi25s7lwwwNrlfsPK1zxwFxsQjjLwJb2d9D5PAY27HqUjUxEndJK+YljgCa/K24/dLu3Bz2/FQcN4JvIh7lp77HTV8HW5IGouU0ESvPtd9KdOwr/QoVudtx8T4y9ApLMmrz0eIrxEEAa+++iqGDBmC1NRUt46hUHCIi/NMDYCYmDCPHCcQ8YrGALdaVttsn6sLGy/wOSVTfEnROGPoqffMV3nrXPpbdwIp4YnQavxjpw61uvFcCAlVNnnfQ8NUlp8V6sYkVDlX/7OMC+xzRRAETPp1AcIUGmyb+p7N+9g6l4rLG1PQ+TAjVp/bjls7T0SEMsRrbfV1vvL3mwJj4hE/5G5GVtVF9InohKsTR0jdHK9pq9FicHQP7Cs9hl3FhzGG9rP1GUcrzmKj7gBilBG4rf0VXn++OFUk7kiejE/O/ozPzv2KV3rN8fpzEuJLXnjhBZw8eRLffPON28cwGnmUl9e0qB0cJ0NMTBhKSqrA85S6aUt5dWMl6Tq9AUVFlXbvW13dmGpdVdv4c1lN4zGae7w/8+a5dKYqF/dnvI0QTo2fh7/i0WN7S11d44xweWUN7tn6BnqEJ+O+ztMQExOGiorGz25VTeOyIvOWX0aTKWDPFQAwNKzBrzLWokBXDrmscXCguXNJV1Fu+fm5/cuwv+Q4ThTl4Onus1qn4T6kNf9+R0aGQKlsfkKLAmPSYmerL+HrnL+gkinwaOrN4GSBvXT9mqRR2Fd6DD9f2kmBsY8QBAFLzv4MALinw1SEKTSt8rxXtxmBXy7txD9lJ/FP6UkMjO7WKs9LiNRefPFFbNq0CStWrECbNm1adCxPXQzxvECBsR1srwgO+snE/M7AFN+qZdYmB3o/e+pcMgkmPJm5BINiuqOtRgugPq3dX/rPxDdmCRTUleBg2WkcLDuNe1OuBgAYmd+ze16b1xsLQmB+JpeeWwuFjMPN7SZYbiuoLUEbdWyT+9o6l6qNjZ+l3JoiAEB66amA7Ctn+crf78COYIjXmQQe72R9B4Ngwp0dJqNdSLzUTfK6gVFd0U4Tj8yKbJypypW6OQTAnpJMnKi8gNSwdrg8flCrPa+Ck1vW6i09/7vdfR4JCRSCIOCFF17A+vXrsXz5ciQnJ0vdJOJhAlN92MgEO+zWPMQ5pypzcLjiDP53/g+pm+IWA7OntS1spWoTU6it8ffSBzre8H3uJnx9cYPo9evqypp5hBi7Xt+8e0uZscpj7SPuo8CYtMiavG04UXkB3cOTMT1pjNTNaRWcjMPUNsMAAOsK9kncGmISeCw/vw4AcFfy5FbPWBgd2w/dw5NxuuoithYdbNXnJqS1LV68GL/88gveeusthIWFobCwEIWFhbRdk49jt81xVBiTrS7MBkYGG4EPaR67969vlBZyjZ7JGLBVdZoXVTDnm9weiFWpBaYf7O357QgbGEcpfGNtLalHgTFx28WaQiw/vw5KmRyPps4Qra0IdJfHD4JCJsemwgM0ii6xbboMnK25hF4RKbgsukerP79MJsM9Ha4CAKy4sN6lL0dC/M0333yDiooKzJo1C6NGjbL8t3btWqmbRjyEneWjv2ctY2vvX3/CptIbbc0IiwLDxt+bA2LBRjDt79h+0PON138mF97rOhNT4Z0ZqDpQegIPH3oXBXUlLWwlcRetMSZu4QUe72R9D71gxB3Jk71eAdjXRCvDMSK2D7YVHcTO4sOYED9Q6iYFJZPAY0XOegDA3R2mSLZFWP+oLugXmYpD5VnYUXQIY2ntOQlQJ06ckLoJxAm8wLudPSO4OQtGmrI1y+or/i45Dr1gxIjYPnbvw2YMGG2kVbODKGzAaFlj7MKMsYE34kJNATqFJvn0dp960br7xgDX3Rlj9hR55thnAIDl59fhia63tqCVxF3BM8VHPOq3/N04UpGN1NC2uLnteKmbI4nJCUMBAH8U7JG4JcFrZ9EhXKzVIS2qK/pGurddjKeY97X+JmcDrTUmhEjm+4ubcNWef+FSbbHN3zuaxRPPGFP6dEuwM66+Nnv67PHP8cKJ/zV7H3aNOVtcy0ycSs0Exg2zp64MDLyd9R3mHXob23x8SZKB2bu5mmcK0rnwve8oiA7Utdn+gAJj4rJLtcVYeu53cODwaJcZQbuXb1pUFySqY3G4/Axyagqlbk7QEQQB3+VuBgDMYCpDSqV/ZBf0DO+IszWXsKfkqNTNIYQEqaXn10KAgL8K91tuY9cY25vFMwduvI21osQ9tUyqrd5HBxmaC9j1ojXmTYN8e2n3JmaNsa6uDEvP/Y4yQ/PFpTbr0gHA578/2RnjGlNjbQVXZowd3TeYlib6Gup54hJBEPDemR9Qy+txc7vx6BLWTuomSYaTcbgyYQgA4M+CvRK3Jvj8U3YSWVUX0TWsPdIiu0jdHMhkMtzKzBr72uwAISS42AuGTTb+NpkEEx46/C7ey/rB6r6NF/CCn6+XlUIdkzLLzh5LzVYQa4tojTE7e9wQ5POC7arUbPGtV059he9zN+Pj7NVOtY3z8TJl4sDYvVRqUb+h6YAJR+GZZKjniUvWFexDetkpdAhJwG3tr5C6OZK7In4wOMjwV+HfPvWlFwy+v7gJQP1ssa+sRxoc3QOdQ9viVFUOjlSckbo5hBACwPG2OuerC5BVdRF/FOwVF1Rit26i2WOXscWZHG191JpEAbtVu8RVl22nSpuvd9hzxSgKkgXL709V5gAA8mqLnGqbj3yd28W+pzXs3t5OZAT8lLsVGwr/Fs+0800/V5yvd0IAo8CYOC2vtgifnv0FHGR4LHUGVBzVbtOqozA4pidKDZXYW3JM6uYEjeMV53CwPAvtNFoMb6ZwSGuTyWS4Lmk0AGB17naJW0MIIfV4O8GO2cXaxuVA7Iwx7+TMorOOlJ/B0nNrgyZFu44NjJmfpc4oYmc6jVZrh+2lRxtspFWLBlz4pmuMBQiWgNrZZXcyH58xZidBqpnA2NHnQxAEfHbuV7x5+lvHM8YUGEuGAmPiFJPA463T36KGr8PN7SagR0RHqZvkMyY3pFNvKPxb4pYEj1V52wAAN7Yd53NrccZqByBGGYHdJZnIrdVJ3RxCSJBiL63FF+JNg7ISQ4Xt+9pJlXXX45kf4/vcTfin9GSLj+UP2OrDbDAq9exxXTNtEexkDLDFt8zBtHjGuOn5IQiCZaBFKXM2MPat73Rrerb4FrvG2EHBLIOoOBnTb7ZmjH28DwKZX/X8ypUrMWHCBPTt2xc333wzDh061Oz9//jjD0yePBl9+/bFtGnTsG3bNsvvDAYD3njjDUybNg1paWkYPXo0nnrqKRQWUhElW1bnbauvQh3WDrdTCrXIZdE9EKUIw/7SYyg1VErdnICnqyvDjqLDiFSEYoJ2kNTNaULFKXB14ggIEPBz3g6pm0MICWDmIOaP/L34/dIu8e+Ynx0FuOzv7c0YWs8stkQNU803kLH9xwZRUi+9YvvfOjBmZ4HF64ptzBg7yChgsw8UMueyDH19spQdIGDTqh2lUrPbXdlbm23m7lZrrkovO4XXTq4UbTsV7PwmMF67di1effVVPPjgg1i9ejW6d++O2bNno7jY9nYE6enpWLBgAW688UasWbMGEydOxLx585CVlQUAqK2txdGjR/HAAw9g1apV+OCDD3D69Gk8+OCDrfmy/EJ2VR6Wn/8DSpkCT3S5FUpKoRZRcgqM1Q6ASeCxVZchdXMC3u/5u8GDx+SEYVDLlVI3x6ar2gyHUqbA+oL9qDLWSN0cQkgAev74F5h36G1LUcwPsleJfm9r+xzA9hY69rYV8sSMcZG+HBWGatFtzgZJ/o4XBcZsMCpthepmU6ntvOfsOWJZY+xg7To7yOLstaPvF99i0+Mb+8RRKjUbUNeJqpU3HSSRt9LowFNHl2BLUTrWXKKlX2Z+ExgvW7YMM2bMwA033IAuXbpg8eLFUKvVWL3adpW75cuXY8yYMZg9ezZSU1Mxf/589OrVCytXrgQAREREYNmyZZg6dSo6d+6MtLQ0PPfcczh48CDy8/Nb86X5NANvxBunv4FBMOGuDpOREpoodZN80sT4+plLSqf2Lj1vxB8Fe8BBhqsTh0vdHLuileG4PH4Qavg6rCvYJ3VzCCEBaG/JMWRX56GSGXxjg9o60WyW7WDX1m329jEWVah2co2sIAi4/cALuOnvf4tuD5Y1lGyfsQWvpF5jLS6+5dwaY1tBsr3iW2bseaJwMpUaPh4Yi4qQCc4HxuyMcZWx+ewBV/Z/9oScmoJWfT5f5hdDdnq9HpmZmXjggQcst3EchxEjRiAjI8PmYzIyMnDvvfeKbhs1ahS2bNli93kqKyshl8sRERHhdls5ruUfaPMxPHGsllp54S+cqc5Fv8hU3NBurM98mflSHwFA94hkdAhpg1NVObhQm4+OPjKA4Gv91FI7dAdRaqjEqLi+SAyJ9cgxvdVH17UdjXUFe/FH/h7c2G6sz1TOdlegnUveQH1EWgs7y1egL2m8XWBnpWwHYrZm9tjH2Zsxtp6BlsNxoMMG5yypU4lbCxvgsOmqrR34WBMV1bJ6L+xXJWdSiAUjDhZniW5zNGNs6ytQEAQUGyoQp4pkb3XqNUhF3He2B45sYe/rKK3eE+v5XaGrK2vV5/NlfhEYl5SUwGQyQavVim6Pi4vDuXPnbD5Gp9MhLi6uyf3trSGuq6vDm2++iWuuuQahoaFutVOh4BAXF+7WY22JiQnz2LHcsV93At/lbEKYQoOXh9yD+NBIxw9qZVL3EevalBH44Nhq7Kg4hIHJ0u+ry/KlfmqJ3zN3AwBmdb/Co581wPN9FBfXFf3PpeJgSRaykYvBcd09enypBMq55E3UR8Rbcmt1KNaXI1HdeH1TUFdq+Zkt9sTut2qv8I+Z3bRr2F5DahIEyJ0Y/6mzs7WNvYDZnwiC4HDAkw1wREGkjUrErcnegAfQXPG1xp8/zFqFU1U5CJeHWG5zlB5uK3D8LncT/nf+Dzze5VbmOEbsKDqM7y9uwgs970W00rPf9c6qMFZjX8kxjNcOACfjkFNTiDbqGLuVutnPii3sfdnA2FYqtZ43YVfxEfyUuxXPd78LkUrvfKfIZRxMAo9a3oD8umJkVeVihA/t9CEFvwiM7XH0R8nW72zdZjAY8OijjwIAnn32WbfbYzTyKC9v+XpCjpMhJiYMJSVV4HlpRs5K9BV4OuNzCBDwcOcboK7RoKjGdwpL+UIfWRsW1gcfYg1+P78HtyRM9Ilqyb7YT+46VnEOmaVnkRKaiBS0RVGRZ85Hb/bRJO0QHCzJwjcnNqKzrJ1Hj93aAulc8pbW7KPIyBAolc6mJpJAcU/6awCAV3rOsdxWylSUZmclxUFZ8ymfRjsp0/Z+ri805PgSspYp8sTuY6v388CYF3jcf/AtdAhJwLPd77R/P2YQQjQ44UMzxsZmim/Zm1k+VVW/N3GlqYa5r6PAuOnvv8nZAABYk9dYHFfPG/HSyeUNt2/HXR2mNHtcZ6wv2Idu4clICU1y+jGPHv4AObWF4AUeSRotHs/8CMNjeosCR1fWGLNZHlVsYGzjs2AUjHjhxP8AAJt0/2B6wzaQnmY+DWUA7k3/D4yCCW/3eQi9IlK88nz+wC8C45iYGMjlcuh04q1PiouLm8wim2m12ib3LyoqanJ/g8GARx55BDk5Ofjyyy8RHt6ykSlPXgzxvCDJBSgv8Hjj1DcoNpRjUvwQjIsb4LMXwlL1kS1xyiikRXVBetkppJecwsDoblI3ycKX+sldv+XVV1ydljgSguD5fSC90UejYvrhv/I12FF8GEW15YhRub9Mw1cEwrnkbdRHxNsu1TUWHmVnX+2laLJpnLaq59orsmRvZtHk5N/fOlNj2wr1pTbb7I9qTHU4X5OP8zVNa9KYBB5Hys+gT2Rnq6re4qrEJfoKRCnDWq0CMYu3sw0TYL0e3flUYceBYdPfqzkl6niDKDhkMx3YLAN3nay8gLezvgcArBv+ptOPy2nY27vIUI4LNfU/7y7JxLDY3pb7uLLGmL0v+7pspVKzn7VwhXtZrK6QyWSW57xYUxjUgbH0U1pOUKlU6N27N3btatyKgOd57N69G2lpaTYfk5aWhp07d4pu27Vrl+j+5qD43Llz+N///ofo6GgvtN7/rMrbhr9LT6BDSALmdbpW6ub4lcvjLwMAbCw8IHFLAkuVsQbbig5Cw6kwXjtA6uY4TS1X4oqEwTAJPP4spCJchBDPYAMJdpaYveAWp1KzF/ACNhT+jU/P/tL4e95Oyq+9GWMHaaOWtjGp3dUOCg75k2qrgO3v0hP4OHs1eIHH+oJ9+NfRT/D26e9EgxBsv56qysGtBxbj3awfW63NLHvpwID9Qm229ilmOf590/dcxdXvLKEXDcaw2yG1/Dxh9+h2R4wywu4AgStrjO2tx7bVb+znw9n9n91ja1mFtIXhpOYXgTEA3H333fj222+xevVqZGVlYdGiRaitrcV1110HAFi4cCHeeusty/3vuOMObNu2DUuXLkVWVhY++OADHDlyBLfffjsAwGg04v/+7/9w5MgRvPnmmzCZTCgsLERhYSH0+uDdz+t4xTksO78WKpkCT3WdBY1cLXWT/MrI2D7QcCrsKD7kkZFOUm+LLh11vAFjtWkIlWukbo5LprYZBgD4I3+P5JVICSGBgQ04RcGnyfb+tEarC/g3T3+LVXnbUNiwPtnejDG7D629FNvmsAXA2Flif58xZmfmeYHHs8c+wy+XduJoxVkcrzwPANioOyCaWWdTqc27Faxv5QHTHUWHsSZvu+i7qMmMsZ332VHg64itIFfdEBjbq6BuEKQ/Twy80e62VAarvYkPlJ7A2epLdo/T+LPtz5uZqNCZFz8r5p6WMZXAW7vwl6/xi1RqAJg6dSqKi4vx/vvvo7CwED179sTnn3+O2Nj6yrR5eXnguMY4f+DAgXjrrbfw7rvv4u2330ZKSgo++ugjpKamAgAuXbqETZs2AQCuvVY8K/rll19i6NChrfTKfEeJvgIvnfwSJoHHvM7XoVOY82sxSL0QuRojY/tio+4AdhdnYkL8QKmbFBDMFxGTE/zvc5kckoB+kak4VJ6FA6UnMDimp9RNIoT4OXb2lQ0+nZkx5m1UGhZXHHZ8IV5prMEn2T/jmqSRzaZdsrPZor1b/T4wbuxndk9gQIYEVbTlX6IZdyYYyq2xXQjW28xrd+emXGO5rckaYyYwZQdGWhoY23q80jJj3Hg+mJpJ85aCnjfazZxgg9pyYxWeOfYZANsp2wY7AbXNGWOrCuCeVG2qxb+PfYGpbYZb3l+2+lJL32d/5zeBMQDMnDkTM2fOtPm7r776qsltU6ZMwZQpthftt2/fHidOnPBo+/yZkTfhlZNfQacvw8T4QZiaMEzqJvmt8doB2Kg7gC26dAqMPeB01UWcqspBx5A26BHeQermuGVKm2E4VJ6F9YX7KTAmJEgcKT+DoxVncVPb8R7fro0t3lPLrOOt4dnAuPF2e+uGzfcR7c3qRDDyTc4GbClKx5aidJtBwOqGYkpaVZTltub2zvU37Iyxjlk7recNooJborW8zGsuN1Z7t4EOlOgb04utC4E5mybvKlsBl5qrD0PYQRN72QvuqjW5ngVqshooYgdCxDPabKXpxvvUmvQI5cQZl0bRjDE7UNU0ndneZ9cT/sjfgyMV2ThSkW25jZ0xdqe/AonfpFIT7/rs3K84XHEGXcLa4eFON/r9nqtSSovqiihFGA6UnUCZoUrq5vi9dfl7AdQHl/56Xo6I6YMwuQZ7ijNRYZD2gogQ4j1r8rZjV/ERAMDjmR9j6fm1ONGQWmsPL/DIqSl0qaBgFTNj7Mw6XvEa48aLfvNjjXZms+zJqyuy+ztBELDk7C9YcvYXu+nTzqZi+yo2MC5m1rBWm+rsrjtlZ2YFiffqLdKXW362DoS9VTHbVmAsb1g/a29dO+eB73z28+HsZ8w61dlgZw00ez924IctjldQV4LVedtE2RyOZmUNdoJoTyh0sGcxe24HIwqMCTYU/o2fL+1AlCIMz3W/E2q5Uuom+TUFJ8fouP4wCTx2FB2Uujl+rdakx2bdP1DK5Jig9d/Zd7VciXHaATAIJmwuSpe6OYQQL6g21eKTsz/jhRP/E12Alxqa31rum5wNmJ3xH6zN393s/dhjVjHb5Nhbx8sGuOKq1I2Bh3l2yMTbTg+1p8pof2vKCmY2lD2W9VZSv13ahReO/88vC3Gxs4PlzAB4LV8nWhfL9rXRB9KCzYr0jcGR9SCFt2ph2Hr9tgJVcSp3y7mzf7b4s2O0GjiyPYiktxPMPpX5KZac/QXf5W623OYoMG7psoPcWh0u2knXt1WMzNWBsUBGgXGQO1KejfeyfgAHGZ7qNhNt1LFSNykgmCsnb9FlSNsQP7ej+DCqTLUYEdvXaxvct5YrGiqW/1WwX+KWEEK8gQ388pkZI0drBL/KWQ8A2KRrftCMDWAqmcCU3RKpzs62N+JiPkywamvG2JnAuJlZJXY2kp19sp4x/jB7FXaVHMHfpf63rI3tI/F64zqrCsu2i1d5ertBV7HBUZPA2Euz2bYCLlsz5x5PpbazBr857PPqeaNott9emrPezqDUhZoCAMDZ6jybj3P4/G4Eqvekv4Z7M/5j83fs3uKNtzX2kS8N4EiBAuMgllNTiMUnlsEgmHB/p+lIi+oqdZMCRs+IjkhQx+BwxRlL1U/iunX5ewAAk9v4X9Eta93DO6BDSAJOVeWIviAJIYGBDfxKmFniCieX1MQ62OdctA+qnarU9i7O2QDEei0kYF18y/GFeHPptkWGxsC4wmh7Zpt9vpyGwMGTcmt1Xq2uy/Yt+7pqTXrReyCq/izxumrx2nJxNWWW12aMbbx+W+cR78FK2IB4wKrUUIkFRz7CBgdbaopmggWDVcq07cDY3u22OBp8sLevs9me4kw8c/Qz0QCZmb3iYI2apqezA11GwQRBEDyyVZY/osA4SJUaKvHcsc9RYazGDUljcU3iSKmbFFA4GYdxcWkA6rcaIq7LqSnEkYpsJKnj0D8yVermtJhMJsMV8YMBAH8V/C1xawghnlZnJ0AtNToXGEcpwpv9vVG07pGdJbZX+dn2hS07a+bujLFCZv/ysZY5vmhm284a4+Zmn93xZ8E+3JP+Gtbk7fDocVnse8EGXtVWM8biLbPYgYrWZy+Ia60ZY5up1DZnjO3vsewO9nV/c3EDMiuy8ebpb5p9DNtWvVUqtbiInL0Z4xZubSVK5W6aSr3oxDIcKDuBb3I2NPkd+5mrMFZj5YX1WJO33XKbzEZgXGcSD1q9eHI5rtn7ZFCuN25RYFxXV4cLFy6gro72a/Un1aZaLDq+FHl1RRgZ2xf3drxK6iYFpHHmdOqiDGkb4qc2NozoTowfBK6ZizB/MiF+EDhw2KT7J+jTlQgJNGywwa4rZlOdWdbVXx0VGtLbWc/IHkec5mn7edlgxNaMsTOzdLaKZ9WZDKgy1ooCkUo7M8aenhVk/Td7DZTj3n8AAQAASURBVADgl0veC4z1otl7cSVw8Wxy43sgSqW2eg8ueGHW3Jq9tF/ze1lhrMavl3Z6bc23rffZVmBsb/9td7Hn6umqi049prk1xuzn2Trl2owdBFE0FBhzhd5O0Tpr52vym9xWzgzElRoq8VXOenxy9mfLbbb+yojPU95SQNDensyBzKmrzWXLluHaa6/F1KlTsXLlSgDA559/jqFDh2LSpEkYMmQI3nnnHa82lHhGncmARceX4XjlefSKSMETXW4NmKDD13QKTUKHkDbIqrqI89VN/3gR+3iBx0ZdfWB8efwgiVvjOXGqSFwW3R0lhgr8XXpc6uYQQjyIvWAuYwJjg419gfeVHMP0fU/jz4Y92gHHlZrtBTa1dotvOQ4qzGsn2QDEmUDVVrr1fRn/wQ37nxX9rtLUWIirzs6a5zoPbw9j7o8kjdblx2ZV5WL5qT8dphPbmzE2CEa7Bcd4O3sCP3PsM9yX8TrOVOW63F5rgiBgVe42m8di96e23h7paMVZvHziS3yUvRpLzv7S4nbYYisrwdZaa3tr411hEng8ffRTLD+/TrQ+2NlzzSCaMTZYzbbb3naM/Uyer8nHh1mroKstg5pzvaCtoQV9wO6GklPbtACXrXwAe9tlBSOH+xh//fXXeP3113HVVVchOjoa7733HoqKivD5559j7ty56N27Nw4cOIAvvvgCXbt2xdVXX90a7SZuMPBGvHRyOQ6VZyE1rB1e6HEvNHKV1M0KWDKZDOO1A7D8wjps0aXjjg6TpW6S38isyEZBXQn6RnRGoiZO6uZ41BUJl2Ff6TH8Vfg3hsX2lro5hBAPYS+Yqx1Uwl3ZUHDr/TM/Wm5zVH3W3kyko/WIzR+z/iLY1YthvdWFtFwmR0HDfr4FdSWW37EzxrUm22uMna0U3JxLtUV44cRyzEqeZLnNnbWyD2S8BQBQdVFiYsPSF7MqYw3y6orRJaydeL23aMbeaDXb5zgQy2zYT/ZMdS46h7V1uc2sQ+VZ+PRcfWBrvb+0vRTvA6Un8MX53y3/Pl55rkVtsMe8dvVQeRaePfYZxmrTYHK0h6+bQVqxvhz/lJ3EP2UnMSK2j+V26zTxGlMdBAgIlWtEt4tmrQWT3fPVXnr6ypy/UMcbkF5xyq3JJ7ad5iA9uyoP7UK0UDkItCuZqvBsJoIgCJDJZDY/6+zMPTvow27/FiwcBsbffPMN5syZg0cffRQAMHr0aNx///148MEH8eCDDwIAxo0bh7q6OqxYsYICYx+l54147eQK7C89jg4hbfBKzzkIV4RI3ayAN84cGBdlYFbylX67D29rMxfGCKTZYrOhMb0RLg/BvpKjqDTW0OeQkADBXhiza/NsBavm/VvtFUSyxd6McUu2djE1XAS7OivFtrXaVIcIRajl3+zFuL1UamdTRZ31yskVOFOdiw/OrLLcZg6Ma016qDiFSwHK8coLmBg/2BJMAMDH2WuwUXcAj6XeLAoeRDOIvFHUN668thBO7fR97bH1fIIg4FJdsd22FOqb39fWk4yCCUfKz8AgmLCh8AA6hCQ0uY91GrM72CyKS7WNFeLFKex1uDv9VYTKNVg64ElxG6wqixvtzAzbG6wy/3yhqgDh8pZ9xxsEI/7I34P3zvyI29tfgZntGwd/zPUCygxVkAGIVIaJXjtb/NUgGKGSKR0ONpQxqdiVJvvbsrH0vAGlhkokqGOcur8vc/hX4sKFCxg+fLjl34MH1/+hGDpUXCV25MiROHfOO6NMpGVqTXVYdHwpdpUcQTuNFq/2moMoP9/6xl8kaeLQI7wDcmt1OFl1Qerm+IU6kwHbiw5CJVNgdFw/qZvjcSqu/nUZBBN2FB2SujmEEA+ptRMY27q4V9pYd+goiGIvzsUzSrbTPJ1hvkh2NTBmA4waU52oDRdrdZaf7VXMrmJmotj75Nbo8MPFzS7P9hbo62epQ+QqcA2XtjwEFNSV4K70V/DCieUAgIyyU3j/zI+iWW09b8SX59chi1l/Wqwvx//O/4E7019BacPWRublPXtLjokCInb7G71gEKWS17rwftS4+N7ZYmvm77f8Xbg7/VV8d3GTzce4es60hFEwWVVNbnreiVOp3QyMmVl8ds9vNnX7cPkZlBoqkVura7KNExs8GgWT1UCI7c+pvUEpW+uoXWHkTfjywp8AgDV520Wf1RpTHQRBwMwDL+LWA4shCILotesasjiAxj5xNNhQymzl1dx+5eer8/HZ2V+h54146/R3uOOfl3Gy0v+vcx0GxiqVCrW1jX/A1Or6Ea3Q0FDR/ZRKpeh+xDdUGWvw9LHP8E/ZSaSEJuGN3vMQp4qSullBxVKEi6pTO2V3yRFUm+owPLYPwgJ0NnW8diAAYLPuH4lbQgjxFL0oMK6zebuZrdlLPW/A36UnLIUHzX64uBm3/L0I+0uO2XxeNkh2NZXa6GZgzKo21YkCCzaVk71IZwOKKjv7G9+T8Rq+OP+7y4OGbKVdeUPfGnkTdhQdRqmhEntKMmESTHjj1DdYm78HP+Vutdx/Zc56fH1xA1468aXlNgECvr24EQV1JU2qWytkclFAx6ZSG3iTeKDCTuE1W2o8UAFYXCG7/ng/XNwMwP73jXUROG8yCibxnrk2zjtRITg3i2+xwT47CCPeUq0xACzWl8PAG7EmbztyagqbrPEVD4TYfk/tfYZaGhgbBCO4hvM7QhEq6r9qUx3KjFUwCEaYBB4Xa3Wi39sagHI02MCez5XNnJOPHvkAP+VtxfcXN2FrQ5FZc9Euf+YwME5OTsaJE42br8vlcuzYsQM9evQQ3S87Oxtt2rTxfAuJ2y7VFmNB5sc4WnEWPcI74I1eDyBWFSl1s4LOmLj+4CDDVt1Bh8VVSGM16kBMozbrE9kJ8apoHCqnfa4JCRTsxXiNKDCuvxBdk7cdTx5dgjqTQXTx2fh4A145+RXeOP0NDpadttz+xfnfUWqodLj3av1zuZaWbA48WvLdVGOqEw0E2JsNZgMwtn9sFUSqNrm224k5MOYFwVLdu47Xo4TZUzm3tsiyxzJbNdzc13l1RTaPXW2qtRr0qBUHSlZVwUXFt1yZMXbxNTs6hjkIdDQT7UobW8rIm0TnvqMBGXcHbMQzxrbPR7ZIVbGhHF+c+x2fnP0Zn5/7TfT+mgST3WUMzmhuz29nGAWTZV2xgTeKBluqTbXIZTI0zlVfsruk49dLO/H26e9sztKzau38HbNm7lf2+Vsz+8BbHAbGN9xwQ5OqcVqtFnK5OA1o9erVGDJkiGdbR9yWWZ6N+Yffw9nqPAyM6oZXes1BhDLU8QOJx8WqItE/qguKDeU4XJ4ldXN8WrG+HAdKTyBaGY5B0d2kbo7XcDIO47RpECBQJgEhPiSj7BRu3Pccjlacdfmx1hesZnrBgEpjDT45+zMyyk4hq/qizWBEzxssj7O1DYsze7q6ul7XHHi0ZIueGqsZY/a12ytaZGvvZYPVumVXsFtdmVOpa3h9k1lBW+0ykzOz+Gxba0x1qGBmwSuNNaJZNzaV2mBVfMuV2UJXX7MttiqUO5oR9vR2WY6ey7q/muNu8a1aJ94DdnCkRF9hSaXfU5JpNWNsf42xM1o8Y8wboeTqS0LpBWOTATgdM7hebqy2OwD1Q+4WrC/cjzPVzVc/r3VQONAam6Via8DP3zgsvnXbbbc5daAff/zR8Z2I1wmCgHUF+/Bx9ioYBBOuSRyFuSnTLIU+iDTGawcgvewUtugykBbVVerm+KzNunTwEDBeOzDgz9nx2oH4IXcLNuvScVO78VI3hxAC4I1T36DSVIPXT32NKW2GodxQhftSptm9v0ngsbfkKAZGdW2S4mim5w3Iq22cjSzWl9ucJWVnbcuZQMzMuYtU9wLjlswYV5vqRFvSWFf+NTMItmfdzBf67EV8mbExaLGnxlSH97J+xKSEwY0zxmgMYvS8ASX6xuOwRYXY5zI/lp0DKtU3BtSVxhpREbEqUw2i+HDLv623a7K1lZUzWjJjvOz8WhyvOIc+kZ0tt/ni7J1BMIqCp2oH6eNGDxTfsqeYXUtrqrMqYsfMGPPiqtSupp63PJW6cV22njeI2ykYRTPi5cYqu3+HnMWLCpTpkVurQ4wyAiFy28XhxBXaWz64IzXawDaAVBlr8dqplXjvzA8wCQIe6nQ95nWaHvABhj8YEdsXSpkcO4oOubwGLJhsakgVnBjAadRmncPaIiUkEWeqc3G2+pLUzSEkaNWZDPj10k6cr863VIkvN1Zh2fm1+ClvK/aXHMON+57D5sKmazT3FGfihRP/w4LMj8XFpayqUrNpusX6cpsX7tbrdH/P340/8vdabquwESw3eS0uB8YN+xi3YNawxlTr8gWxwcZMMnsRX2qoxNr8PVhw5CO7x16VuxVbitLx9LFPmcDBaLlQ1/NGlDPBcDmTOsv2JQ9e9H8AKGSKFlUaa0TvZ0WTGWP72zW5wtY5YeRN+DZno6hYmDVdXRm+u7gJB8uzRN8l5n5V+NA1oJE3iWYk7Q2imBkatnhyliAIDenGjs9Hdq/xalMtdEx1bnZgxiiYROnHrn7GWpxKzTfOEpsEvsl5wqaElxuqbK4zd9fJqgu4J/01vHDif6Lb2feELdbV0ufzBRQYB4hDZVl46NA72FqUgQRVNN7sMw9XJ46QulmkQbgiBIOje6LSVIMDpSccPyAInanKRVZ1LlJCk9A5tGV7OfqL8fFUhIsQqW3SHcBH2avx6JEPLAX/2CDt3awfUGmqwX9Of93ksaeqcgAAWVUXm6Tfmul5o6iWQLGhwuasE7s1SpmhCh+c+QnvnfnBpdfi6sBrRtlpvHpyRYvWmdaY6lDNuz9TZO4Lts8qDNV4/8yPyKzIRqadtPbzzLZQ5vazgbCeN4iOyaZVs4GxrcC7gpkhrjDViKrz1vF6UaptjdWMsaM1nPboeQMqjNXQ80a8l/Ujnj++FL/n78b/LvyBhw+9a/dxxcw6ajaANvdrS2csPckomFDjwrkiQBANWADAjqJDWJj5X1FqvNmKnPWYvu9pZDsx2MyeA9WmWlFqdVFdY5BsEIyiNjizpIHV0lR1g2C0vJdGwdRkb2H2vC4zVooyBRwNPDhiTi9PLzsFAPi75DjmZLwhSscuYbIrak16bCs6iNdPfd2i5RlSosDYz1UZa/Be1o9YePS/yKsrwsjYvvio/2PoFZEiddOIlXHxVJ26ORuZ2eJg2e95nDYNALC58B+XtychhHhGfkMwUWVntsP6wvZc9SXL57XYKuXWTJReyxtEAVulsdpmIMo+ni1o4wpXZ7N0+jJLRVl3VfN1LUqhrDTVYE7G6/j24kbLbewMe6Gd2VJbhb3YlHCjYBK1q9BqLaal/Q7aXmWsEVXnreMNohlv61RS60DOWTk1hbh5//P4z6mV+KNgD/aWHEV2dR6A+jRwQRCQX1fc5LuCDfDYwLiON9TPoLqZ2u0N9e+Ja4MwNSY9ivTlOFSWhTJDFd7O+h6HyrPwcfaaJvddmfMXTAKP3/J3OTwu+3krMVSI3rciZrChNat222LkTaJgt5T5WwKI10pXGmu9VkzNJPB49vjnOF+Tj+8bKp0D4sC8mq/DKye/wibdPzhSkW33WHreiOeOfW6pDl9QUwJTK651b47DNcbENxl5E/4o2IMVF9ajzFiFKEUYHug0HWPj0oImqPA3Q6N7IYRTY09JJmpMdXbXawQjk2DCJt0/4CDD+IbtrYJBG3Us+kR0wpGKbBytOCtaH0aIL1u5ciW++OILFBYWomfPnnj22WfRr59/7TueUXYKKk4purC0FSSxa1N/z9+ND878hPs6TsMNbccinwng2KCkRrS3rVGUxltqqLQ5i8fedq66afEtZ7gblLVEjdUaY3ecrykQzQDn1xVbfr7E/MxiZ6rsvW42AGZTZatNtfgpdytilREO0z8rjeIZY5PA21wjbj6uu8zZBzuLDzfexuwL+1H2KvyWvxvzO9+IKW2GIbsqD1/l/Ik26ljLfdhzdVXuVrx5+huf2g3DKIhTqZ3xUfYqbG6YUBivHWDpYzaF90TleXQMcW1nHHZAQcfMEAPiQm2tWbXbllpeLxqIKWNed/2/G/9+VRlrLIW6PI3tE7ZmAts29vb82mLAanfYHUWHkaSJRR1vwP7S49hfehx9ojrh0Z0foHtEB7zd+yHJYxgKjP2MkTdha1EGvsnZgJzaQsggw6T4wbi349WIUoZJ3TzSDLVcieGxvbFJ9w/2FGda0mgJkF52GiWGCgyK6h50+2yPjx+IIxXZ2KT7hwJj4hfWrl2LV199FYsXL0b//v2xfPlyzJ49G+vWrUNsbKzjA7SyCzUF+O7iJsxoNwE5NYVYceFPzE+9CU8eXQIAooKIF5ngzJYPzvwEAPjs3K+4oe1YUdBmL4DT80ZRwFJsdWFriyvpplKrMdVZtpPxFHaAoshGyiwgnqmyh50t1THrhoH699AZNXyd6P0D7GcXeKKyNCuLSVn9LX83gPrgYkqbYfj38S9Ea6GtHa4449JzjdcO9PqyHgNvdLh9lLXNTJYd+7O5r09WXsD8w+8j1cUlWOzShSK9ODBmzzlXszA8zfpcYwfyrP9dZapFCLwz6cJW6j9XYztVnR0Yyq3V4VJtMSKVoQiVa3C84hxeOrkcAPBwp+st99tYcAA8BByrOIcCfQniVdGQQSZZgEyBsZ+oNNZgQ+HfWJW7FQUNfwjTIrvgvpRpSA1rJ23jiNPGaQdgk+4fbClKp8CYYS66NSEI+2RMbH/8N3sNtukO4oGU6V4b7SXEU5YtW4YZM2bghhtuAAAsXrwYW7ZswerVq3HvvfdK2jYjb4KCk+PXSzuxJm8HHux0Hdbm78GO4kM4WnHWkqK84MhHlsdkNKyfA1zbHia3VidKz7UXqOl5g2jG2Poi3N9VeyEwZpXoK/BL3g4kqGNQaapFp9BEdA5t61RgDNRXnRYgoLDO/X63Ln7FpuG2thJDBQRBaDYodsf1SWNwsOy0aM2yp7kzY2yP+T3ZV3IMgHgQwVU6q89kmcFxVXSpNAmMjWxgXOO1gPJweeNAizODBduLDuHH3K3oF5WK13rNFS3Z2FZ00PKz+f0D6tePf5OzEUmaOLzV50GoOCVya3UIl4cgspUm/1y+AhMEAR999BFmzJgBrVZr+Tk+Pt4b7RNxNXXrjz/+wHvvvYeLFy8iJSUFTzzxBMaMGSN6Le+//z5++OEHlJeXY+DAgVi8eDE6duzo9dfiDANvRHrpafxVsB+7io9YRj4HR/fATW3Ho29kZ8lTDohrBkZ1Q6QiFH+XnkC5oarVPui+rMZUh53Fh6HhVBgZ20fq5rS6CGUoBkf3wO6STBwoPYFhsb2lbhIhdun1emRmZuKBBx6w3MZxHEaMGIGMjAy3jslxLfsey60txJKDP+NwUTZOV+ZgeGwfSzrqW1nfotxQ3XC/xnW7nlh3+WfBPqeK2xgFk+jilV2XHAhqTHXQyL0XGB8oO4EDZY1FK5UyOZ7oeqvTRY20qigU6ktbNAufb5UNYG/GuDWcqc7FCyf/5/HjquQKKDjvVrCuEwxu7U3cPTwZIXI1MspOW26rNNXg6WOf4p/Sky1ul3VGgLtbbrUG67aKZoyNtVDKvDO47moGgrlOQEbZqSbv08HyLMvPbKbNsvN/wCiYcKoqB5+c/Rmhcg1+zN2CBHUMvhr0TKvEPC73Hs/z+OijjzB+/HjExsZafvZ2YOxq6lZ6ejoWLFiAxx57DOPHj8dvv/2GefPm4eeff0ZqaioA4LPPPsNXX32F1157De3bt8d7772H2bNn4/fff4dKpfLq62nO7uJMbDuTgd0FmZZUkVC5GhPjBuHqxBE0Q+zHFJwco+P64/f83dhRfBhT2wyTukmS21V8BHW8ARO0A6EJ0nXX47UDsLskE5t16RQYE59WUlICk8kErVYruj0uLg7nzp1z+XgKBYe4uHDHd2zG2tO78dO5bZZ/s2s07aXhesJ3Fzc5fd9ifTk4yMDDt4ohtYRGrkKtSY9SvgIR8pBWe16DYMIrJ1c4ff+E0OgWz64WGuofH6bQoMpYK3ml593FmR4/pjY2AmqFEvBmFr/GvfXOUZowxKkjkWE16d/SoFjNKUWzn7GqCJ8fuKoS6rMVQuVqUeq+XMah2lSLEKV3rqPOtWBbSWffJ3awa23+HgD1r3NWl4nQaiPcfn5XuDWswO5f5cr+Yi3haurW8uXLMWbMGMyePRsAMH/+fOzcuRMrV67Ev//9bwiCgC+//BLz5s3DxIkTAQCvv/46RowYgU2bNmHy5Mmt8rqsVRir8fyxpQDqP7BDY3phTFx/jIztC41cumCdeM44bRp+z9+Nzbp/KDAGsKlhb9AJQbB3sT1DYqgwG/FvgiC4NZpvNPIoL29ZWurU2GHoPbIj9FU8IACLji1DpDIU47UD8fm53wAA1yaNxM95O1v0PGbDY3sjqyrXksoZoQh1uMdwtakOWlUUKozVkq9Z9JR4VTTy64pxvrIAEbJQrz/fR/0fRfuQeHx8ZjX+LNjv9ONUgrJJEOGqvOr62a9oRTiqjP6/V6stFaW14Hjvzsjlldpeh++IklciTLA/+BKvcm/wI1oZbqlKDwCxykifD4x1NfWjAxGKUNE5rVVFIb+uBMV13hsMlEGG9iHxuOCgFoOZUiZHWnRXnK8uQJhCg6sTR+D9rB+bfYxWFYV/dbsNa3J3IFyhwW3JVyBJE4eiopant0dGhkCpbD4rwi8Ws7mTupWRkdEkYB41ahS2bNkCAMjJyUFhYSFGjhxp+X1ERAT69++PjIwMtwPjlqaERanCsLjXPYiKCEVXeXsoZd5LT/Jn5n5uaX9LoW9UZ2hVUThSno1iQzm0au8Vm/L1firWlyO97CRilBEYFNMVnARLA3yhj0I5NUbG9cGGwgPYU5KJyxN8b5DAF/rJ1wVDH8XExEAul0OnE28nVFxc3GQW2Vk837IBdo6TYWBcNxShEjwv4MuB9Sl3Rt6EEn0FIhShmJY4Auvy96GON2BGuwn47uKmJrNFzkpQxaBLaDt8lbMeANA7ohP2lDiewYtUhNVXNA6QwFghk6OtJh5nq/NwpmFbIW9KDa3PlhsR29elwFjDqRAmD7EEEZGKUFG16ubEKSNRZCi3pMzHKCNw0c2ttDxhVGxfJKhjkBySABWnxFZdBvaVHnP8QCdw4CCXeTeVukxf5fhONoTIVYhRNs4YmrMvAGDVkJdwuPwMnj++1I3jaqDhVJbK03GqKJxu2LvXV5lTpyMVYU2C+vy6Eq9WIe8e3gFRyjCnA+MoZThe7DHb8m+TwFsC444hbXCupr76fo+oDsgqz4VBMKJ/ZBf0jUhF3+6plse19DvCFX4RGLuTuqXT6RAXF9fk/oWFhQBg+b+tY5p/5ypPpIQBwNVxQ1t8jGARE+Ofa3SnJA/BV1l/YX/NUcxse4XXn89X++nPrD3gIWBq8hAkaKWtRi11H13TeQQ2FB7AjrJDuLnnWEnb0hyp+8kf2OqjrPJcbL6UjuyKS/i/XtejTUiMBC1rOZVKhd69e2PXrl2YMGECgPolVrt378add94pcevqmWeuFZwc96VMs9z+dp+HECJXQ6uKRjuNFp1C2+Lhw+8CAMLkGqfXjWpVURgZ2xcrc/6CRq7CqLh+TgbGoajj9U4XjfJ1Cpkcg6N74Gx1XpPiVC2hlMkt61A7hSYhuzoPfSMaK/b3Zar3D4zqhn/Kmk/T1MjVCFOEWGYU49UxzgfGqijRnraxqki79zUX+fKmdiHxuLvDVMu/M5vZK5YVpQhrsjbVmlwmh8LLgbF1kStnhco1iFE29v3N7SZgV/ERjNWmIVSuQZI6rplH26fhVAiRqy2Bcbwf7IphHliLUDRmaYRwaoQrGmfUnclicVaUIgwauQr5dSWY0W6CU3/rEtQxKKgrwTir7TflMs7yM5sFG6MKx8zkK7BVdxC3tp/okXa7yy8CY3scpW7Z+p31bdb/djcdDPBMShhQP/odExOGkpKqVh0l8Sf+3kfDwvvgK/yF387uwZTo4V57Hl/vp1/O1m8/MSKin0fSZNzhK33UhUtGlCIMewqP4sylS4hStnyQzZN8pZ98mXUfFdSVYH3+fmzVZVhGxgFgfPQAKKJblg3kTEqYt9x9991YuHAhevfujX79+mH58uWora3FddddJ0l7nMXW55iUMET0u46hiaLtSKyxgUWSRou2IVosHfAkABkK9Y1BYXOz0JHKMKeC7xhlRJPgOVYZ6dVqwe6Qy+SYGH8Zvr64we1j9IpIadLvsapIy0zYg52uw8nKHIyK62v5fahcg0dTb8au4iMYEtPTcWDMqRAu11j+3UYdg6xmZgXj1JEoakhH1aqicLKqfi9hDjJEKewPDIbK1V4pytVOE4+LtfUTNuysKQDRHsa2pEV1xcs9Z+OlE19it4OARi7jvF58qyWBcayq8bV3Ck3CXR2mWP7dPiQeIZwaNXydJShzhkauQqhcY/m8WW8XyYGz7JHtboaJp4TLQ0RbTLFbtGrk9VkRZrHKCI8Fxhq5Cu/2+T9crC1En8jOOF7ZOCHJLlFgZ94f7FT/XTA4ukeT413dZjh+y9+Ny7WDkKTWYktROsYk9sPlkYMxo93lHmlzS/hFYOxO6pZWq21y/6KiIsv9zcXCCgsLRcW7iouL0aeP+5VxPXnByPMCXYA64K991DmkLdpr4nGqKgcXqgrQLsS7xet8sZ/OV+fjVFUOOoQkoHNIW8nbJ3UfceAwOq4/fsvfhW2FB3FV4gjJ2tIcqfvJ1wmCgAPFJ/Fz3g7sKc60pPt1Dm2L0XH9MDy2N1JCk/y6D6dOnYri4mK8//77ll0iPv/8c5/cw9iR13s9gK8vbsBVbYZZArREdWyTPYl7RHTE3pKjAICu4fUBdqKmfpaK3bszTB4iuniWyzhLamOEIhTl8sZZO/aim6VVRVku1N/s/SBKDZX47uJGnwuMFTIOSZo4qGQK6AUj5DIOMsiaVItuLqAYF5eG2R2vxsnKC/jk7M8AzGuX6wObTqFJNvd3vzJhCK5MGOJUESqNXIUwZjZtVGw/dAtPRrewZDx97FMA4vdcq46yBMbsDHGoXAM1M8tl/f6FMIGxJ4KowdE9sL/0OCbGD8LyC+sAAEkaq0xIGzPYSpnCUuAtlFNDLpM7tZ2WQiYXzeh5g3l7M60qyqUgOUSuRiwzY9wkgJVx+N/Ap1GsL8dn5351PjDmVAhlanporY4bKldbgtFQuUbSwDhKGS4KjCOYQZpQuRphisbBH60qWjQY2xIKmRwxqgjENAxMRCkaB+1jlZGoNjUO2pgrUbfVaJEckmDzeHd3mIoJ8YPQM7wjxmjTcFXSMIxP6Y/iYvfS7D3NLwJjd1K30tLSsHPnTsyaNcty265du5CWlgYAaN++PeLj47Fr1y50794dAFBZWYmDBw9i5syZ3n1BJOjJZDKM0w7Aipz12KJLx+3Jk6RuUqvbpGsouqUdRNuONRivHYDf8ndhsy7dZwNjYpsgCDhQehIrj/6FIyX16Y3RynBMThiKy+MH2b1I8FczZ84MiO/KflGp6BeVKrqQTtTENQmM63gD7kqeggJ9CRJU4jR49oI0XKERBbChco1l5iZCEYpQZuYyUhnaZE9SAJiUMBja0iiM1w5An8hOAIBVeVtb8CqdYy9Qt0chk0MmkyFeHYOLtYXgwEHJKWA0iQNjpUwBPYw204wVnAK9IlJQxuzz3C4kHkcaUoTZ/rIljPk9O9NuDtYB84xxY2AcptDglvjLYeAbq4O308Rb3vNYdePMJFsDJEyhgZoJMEPkKtEMcX1byxp+p3YriAqXh2Bep+sQIlejb2RnlBoqkaCOsQTG1n9HxmsH4Hx1PobF9sZjRz4EUP93x5w2bk5XVXGOL/flMu+vMTYHTgnqGJcC41C52jIQxUHWZIAAqJ9BjVKGuVSotn79ORNQqqPFz6vQWIJRDSdtAdxoZbglcwAAothUarlaNGMcowqHQiZ3ekuz5lin10cz2WyxqkjkNLQpXh1teX/ZNG9rYYoQ9IpIsRwrVh3hU9eAfhEYA45TtxYuXIg2bdpgwYIFAIA77rgDM2fOxNKlSzF27FisXbsWR44cwcsvvwygPjC544478PHHH6NDhw6W7ZoSExMtwTch3mQOjDfr0nFb+yt86g+Dt/ECbwmMrdegBLOeER2RoI7BkYpsFNSVIEHtn+tQg82pyhx8evYXyz6PncPa4sakcRgV18+pC1IivWgmRXVYTC9klJ0C0LiGtY06Bre0t53mxwZdGk4tmiUOl4cwgXEIQhWNs1PRinCbgXFySAKmJY4U3aZycW9SdtbQWSpOYUmFdIY5iIpUhOIi6veGDuM0qLa6Fldwcih4zub+tYqGGUr2YptNF3b0vSieJWucaQ9ThEDf8HOIXCW6XwhX/x4omc9mh9AEy17JcZrGYFirirb8HC4PEc28hlilTrMzjyGcGqVwb3nQhPiBjc/ZMNN9VZvhOF+T3yR1Wi6T456OV4luYwNjc5vUTswYy2VyyOHdGWMASFLHYWRsn2aXLlgLkWug4hT49rJFKKgrsTlTbiaD89dSGrkKIXzj+xalCBMFlOzAjNQ7w0RbLa+KZWa3Qzg1YlSNv49ShENlY5DKHZ1C29ptR6I6FodQvydxx5A2ONSwP3FzSw58ncvf2DKZDG3btoVKpRL97G2OUrfy8vLAcY0f6IEDB+Ktt97Cu+++i7fffhspKSn46KOPLHsYA8B9992Hmpoa/Pvf/0Z5eTkGDRqEzz77TNI9jEnwaB8Sj65h7XGqKgdZ1bnoEkT7Ux+tOIuCuhL0jeiMRI3/pV96CyfjMC5uAL7P3YStugzc1G681E0izagy1mD5hT/x26Wd4CGgY0gbzOt9LfqrugJC8Ax0BQIVp0CSOg75dSW4qs1wrC/Yj3YhWjzS+WasubQd11gFqix2ezU1p4RCJrcExpHKUNEsCjuTEq+OxtmapnuD2pqZUjoYYGGr9Jpfj8HkWmDsaiCtaLjmYmeUzIEjO/tcn6IrtxMY17+uECbo6BHewek2sGmd8eponKrKAVAfrJuDZHNVajP2/Vqa9iSyqi+CA4fVedsB1K8xNktkAtFQqxlj6/eJDaJC3dxyL0Zle6/Whzvf4PwxmIEF82tVOpVKzVneU2+6ss0Q0YCD/fY0BqhhDa8jWhneJEC05krfazgVDMz7Vp/VobYUZxMNdkiwjSJbiC6mSWAsfp/baRqX5LVRx0ApU6Alm1I/3uVWXKotwkSrrTTZtc3dIzpgfeH+htsb2+fPEz0uB8Ycx2HTpsZN7dmfva251K2vvvqqyW1TpkzBlClTbNy7nkwmw/z58zF//nyPtZEQV4zTpuFUVQ626NKDKjDeWHgAgHhknNQbr60PjDfr0ikw9mH7S47hnawfUGwoR5hcg7s7TMVVScORoI1EUVEleMF/1xAHqw/7PQIB9UHox/0fs9x+e/vmdw7gmHWZoQoNlDIF6lCfRhvJzJxEKEJFQYu9jBC1G4GxmlOhhm+8CFZxSpcLQbm6zYt5xrhTWFscrjiDDiFtLMdQcnLU8Y2Bsb1qx+YZ4+SQBPSKSEH/yC4YGtML96dci57hHR22gZ05ZPuW7XeNXIVwgZkxZgKctiH1hdTMGQIAoGVmjNsyKbtRinCrVGpxoMTOSmtcDKLMmQl3Jtu/ZnUWm6ViDlYczRjLIAMn4yCHd1Kp2TXXSeo4h+czUJ8mby545yilnnVlwhD8Vfg3BkR1RXrD+2pvzbdGroKJGbCJVIQhVK6xBMbs4Af7szPLDtjMEXepORUMDanc7GBCqFzdJGjvENLG8u/+UV3wfe7mFj13sia+SVAMiD9b7MDRlQlDsEn3DybFD27R80qNcrwIkdCYuDR8fu53bNGl454OU0UXWIFKzxuwregglDI5RsX1k7o5PqdTWBI6hrTBmepcnKu+hI6hiVI3iTD0vAFfnPsdP1/aAQAYrx2IOR2nIUYVIck+3MRz2AJN7opQhNZX9jU1/pv9HRu8xTPrGdmZIVspm0oHqdQqTmEVGHv/8s4c7N7TYQqUMjmmJY7Ev49/AUC8LYt1USf2tSoa2imXyfF2n4cs95meNNqpNshkMsxoNwF/l55A59Aky+0RSvH6S3agytbMHzujzM4Ys7OTCepoUSp1mFWwxr7Xrs4Yz0q+Ev/X+UaPZFBF2UhLd1R8yzxA4a1rkDhVFHIb9n9O1MSiwuC4YnK4ItQSGLsyW9snsjM+7vcY4tXRuGn/vy2PNwfGbMBqfW6o5UrRc7EDOuLbORgFQZSlYY3NHHGXRq6yrHFmB2nC5SGiAbQQuRqJmlg8020WjAKPjqGJDv9mOGJv8CJWFYlBUd3ROSxJtEVUvDq6oVK/fwv8q3BCfFi8Ohp9IjtBpy9zab2NP9tXchxVploMienVbIGGYDZeWz+TvkWXIW1DiEhujQ7zD7+Pny/tQIQiFM91uxP/6nqb3fRHEnxqTXWii2l2diXcOjAWzQAxs402ZoxtzSKzlJxCtLbSmSrEA6O6oXt4sqXar6t/j80zxhq5GvelTEOiJtbSAg7WgXFjn7BpvZ6ognx3h6n4qN+jooGNKKt+Zy/gQ2wMPLCvnU0VZQPFMLk4lTpUIQ6MrWepXREiV7U4KE6L7AIAGM0MOJsHSNiBElvnl/n98VZV6jimorSzM8bigQbnZ4yB+joP7OPZ18zWBAiVq5u8V+yAhzgwbryf3Gqwx9a6Zk8UMmPbza4pDlOE2MxeGB3XH+Mb6raw7/nE+MvQP7JxKSnbdvY47M/2sjzkMg4v97oP93a8Gu019cXgLovu7toL82E0Y0yIxMZpB+Bw+Rls1qXb3JYi0GzSNaRRaymN2p5x2jT878If2KJLxx3JV/r1ep1AkV52Ci+f+BKVphr0j0zFE11uE1WsJcEtNbQtsqpz0VYTj6yqXMvt7MxlhCIUWlUUeoR3wDjtANHFfpgixDI7ZiuoYi/K2f1CzeQyDgpZY4ErNjC2Xn9sdl3SaAyO6YlLtcX4LX8XktSx+CB7ldOvWWEjiDI/C5s9oeDkovuqOIWlQFdLZ7VY7Gtmt7IJl4eg2tiYVm4uvsVK1MTipR6zkRyWgF7xybi741QMiqq/2L8jeTK+vLAOA6O7i/aG1XAqq+24GgMuVwcZVLKW7WsOAM90vwN5tUXoFp5s2R+6e8N6beuZblvnD/t/T2O3V4pQhDoVGEcyfWg9O+8qNuALZz5roXKNZUmDOXWfHeCQM2uuNcx5w8lk9YM/DZ83pUxuqYJuFquKQHVNy/a1ZrcHY/8uhMjVogGcEAfLLx7vcgsAYPLuxwHUF/4raqiez6aZsz87le6u0ODnIa96fZuv1kSBMSESGx3bDx9nr8b2ooN4IGV6fRpegKowVGNfyTGEy0MwOKan1M3xWYmaOPQM74hjledwovI8ekQ4XmtHvOeXSzvxSfbP4MHjhqSxuKfjVQF1IUBa7qWe92FdwV7c0HYs9pQcsdweJVpjXF/V+N2+/wcAOFh2WnS/XNSnmtpaD8qmcWrktgJjcYEr9hhKTmFzfaV5RitRE4vZHa/G9qKDzr9g2J9RsnU/uY0CXfVt8NzniD1uFDMgEa4IQawqEkqZAlPaDLU70HhZTA9wXP1a21vbX27Za/y29hNxbeIohCk0ovdMzaks6bIKmVy8FZeLVXnV8pYHxhGKUESE17/u13rNRZmhypKubz3TXWS1J7b5vXT2PXVVqEKNaxNHIVoZDplMZndARAaZZVuvSKXtWXx3sDO6bPZAmFyDoTG98GqvuZYMDva9sD9jzIm2H1NwCugbit091+1ObCs6iMtiuuOt099Z7u9OWrX1Gud2Gi0u1urQRh0jGvyxlWreXNaIRq5CQxkEaDgVylE/4FOfmVL/s7PngifOXV9CgTEhEotUhmFQVHfsKz2G9LKTAR0wbis+CKNgwhhtf9rGxoHx2gE4VnkOm3XpFBhLRBAELDu/Ft/nboZSJsejnWfgigT/LixCvCNGFYFb208E0FhpGQD6RnYGBxm0VutTAfGaZraIlK11nuxska2gQiHjREEmu70TWwyMZR2Uci6urmsuVZSdn1bKFHZTN52ZlXKWmjlWolq8HjNCGYrVQ152uw6AubCWKFCR11cgr4MBSplCVHBLlI5tp1BTCKe2rAuP8PD2NipOKVrDzp4PtmbMvZ1KzUGGBzpNZ9onTu02D/SwM6/s8oEWr31m3vdwedMU7QFRXS23VTHZBew5zr6/cplctDaZzYJIi+qKkXF98XfpccvvQzi1Za2wK8QFtlR4oce9+PLCn7i3w9Wi98rWvs7KZj6f7N8idlbaW59Nf+LwTNu1a5dTBzIYDHjssccc35EQ0oR5L9/NunSJW+Jdmwrr9y6eoG1a6ZCIjY7rDw4cthUdFFXNJK3DJPB4/8xP+D53M8LlIXit1/0UFBOnsDMtscpIfDd4MT7o+0iT+4UzM4zs+kFb2IDMfHyOmQVTyBSi52Uvau1lITUJjF0MPmzNKJlbJDBBg0ausrmlk602tAQbSHVntnwy7x2t4OQtDrDYwQzzjDFQX4WbTWdlZ4yVdvqfDXq8PVDMrodmzwfzOeTtVGrrfmfPTzYYE836e3CwgP2ssYMW1uvEAVhmgjWc+LwNFQXG4oEodrDK/Bh2MMvt7buYtdkRijC0C4nHU91mNlnG0z4kocljmwts7a0rVosG4AI3e7E5Dj8BDzzwALZu3drsfaqrqzFnzhysX7/eYw0jJJgMj+0NNafE7uJM1Jr0jh/gh3JrdMisyEYbdQx60QyoQzGqCAyI6ooSQwUOlmVJ3ZygYuRNeP3U1/ijYA9ilBF4o/c89I7sJHWziJ9gAw8FJ0eEItRmKmg4s4bSlcEvc5DBpgRbpyuLZn7spK1aByvOzKayKanOBlFqTgU50yfWs9mewm5XE6EIxfzON2FOx2s8UgTJLFwhLpJm7meFTCFKZ2WDOnuvsTVn5HpFpDQ+r43+sAy2eCkYss5GYPtEFIwxfdI5rB3+1fV2fJa2sMXPzw5UtAtp3O83WtF0T+T7U65F17D2eL33A6K18aI1xg3bW9lqt3kv6Oa29nIWm0lia/DkxR73YnbHq5FiY/cKW59P8/vcIaTx/uyAUijzGmnG2I6JEyfioYcewoYNG2z+vri4GLNmzUJ6ejo+/PBDjzeQkGAQIldjeEwf1PB12FV8xPED/NBfhX8DAK6IHxwU21J5wvj4+kyCLQGeSeBLTAKPN05/g61FGUhUx+KtPg+iU1iS4wcS0kBlY/bIFnYW6Yr4yyCDDPenXGvzvtWmxq2YbF7wcuIquexsVXPVZUX/diKVmj2WrZno8Q1701+ZMMRym4pTNCm+Za8NLaGRq7B0wJN4p8/DUMuVmNJmKK5vO8ZjxwfE2zqp5UpL8CBAQOewtpbfsUXX2H4SVw5vvcAjQhGKp7rOxLPd7rQ5UOD9GWPxoAs7M6wRDeIw55eMw3jtACTbmA11Fft+hMrV+N+Ap/BCj3ttFlBsFxKPD/o9gm7hyaK+aq4qNdtu8yCA2qpYljvCHWwhNzimJ25sO87Ob5sOdH2WthBPdLkVg2Maq0irRUXrmPOWZoxte/PNNzFt2jQ88sgjWLt2reh3OTk5uPXWW5GTk4Nly5Zh3Lhx3monIQFvYsJlAIC/CvdL3BLP4wUeGxoC44nxl0ncGv8xPKYPVDIFdhQfht5G8RziWbzA492s77G1KANt1DF4o/c8tNVopW4W8TNsINTcrAs7QNgjoiN+Hfqa3f172SDKfMHKZCtDIZOLLmTZWSC2DeIZX/GFrzMDlmxasK0L55vajsfbfR7C3R2mMseVWa3VbH69dEu01WjR04sZSeIUYJWlz3iBR4QiFNckjsSYuP6idby20mwBIDWsPW5rNxEv97zPa+1ljdWmYVRcX1EbzKeQOcizVWncE6y3M2LPI/G56tk0e3PQeE3iSNHzJWriMMSJei5sX2ms1jzbmzE2Z3KwAafGhcCYfd2OAuPmcDYC4yRNHC6PH2T3dbHPF6wTGA7/IslkMrzyyitQq9V44oknoNfrMX36dBw/fhz33Xcf5HI5Vq5ciS5durRGewkJWAOiuiJOGYmMstMorCsVFc7wdwfLs1CoL0X/yNQW79UYTMIUGgyJ6YUdxYewr+Q4RsX1lbpJAUsQBHycvQZ/Ff4NrSoK/+l1f0B9BknrUbgQ7C3qfrdlK6XmdiS4qs1wnK2+hKlthuG/2WsANNQTEszPKbdf4Eq0vrexQrX1DLEzqdTsBbW9mUc2bRcA9LzRqm3MzBvnvxffnUOTLAGfeV3qvE7XAahfOmTGBk1KTgFDQ/VihYzDHR0mt1ZzLdjzzNxu8/vqybRzlnWQy25PpbGTSu2Jttzb4Src3v4KcVV3B3uCs8T7b4szHXjB9hpjW8/D7p3siLnSOVB/XXhF/GUeL8oqWnbBVJUOa0EgHiic/uv9/PPPQ61W4+mnn8aJEyfwww8/ICEhAUuXLkViYtPcdkKIa+QyDpfHX4bvczdhY+EB3NL+cqmb5DHrC+pnwal4kevGawdgR/EhbNH9Q4GxF317cSN+y9+FGGUEXut1PxJtVPkkxBmupCAOi+3t1P1C5GrLXqTmYEwODqaGasfOzhir5I37lLpTlVohWh/s3OusNentzlC5MojgKyYnDMXZ6kvoGt7eMivHVigGxAE/20/iVGFpUlVtPa85WG6t4lvs86SEJOJw+RkA4v7xRFtkMlmTNGZXtsRkZ9AVVm0z2VkeYMYOTnUMbYMdxc49J1tFXsUpsaDhc+8q6y3dWPb+VngrY8CfuPQX6cknn4Rarcann36K/v37Y8mSJYiKar6SIiHEeVck1AfGfxX+jRntJtjdb9GfVBlrsKv4MEI4NUbFUmDnqsExPRAm12BvyTFUGWtoRNcLNhX+g+UX1iGEU+OlnrPRninOQoirvL3HtXnrH07GNc4Yc3Jxmq+dvVjZC/imxbecCIydTBNn1fJ6q7RSx+uffdkjqTdZfjb3mQBxYGw/8PBs4OcOWzOx5hlP9hxg9xRuKetUavbahh2EFFcs98654cp+wnI757uKU4iOY2uAJ1ShwS2dJiBKCBetTW98jBxGG0X3lJwCaLi5JUsNahoKudoa8BLVI2DOT5mLW7YFIoc9PmzYsCYX54IgICsrC5MnN00B2b17t+daR0iQSQ5JQI/wDjheeR7HKs81SUnzR9uKDqGON2BS/BCX1tmQeipOiZGx/bC+cB92Fh/BJJp196iDZafxdtZ34MDh6W4zkRrWTuomET/nyoW3O8yzk5zVbJa9LXDsBcxNt2tyLZXaUWAcJtegylQLAYLditn+PkNlvj5uMmPMpo6zgxTsVkmSzRg37XPzeykXnVMcDB7aKtDWufV2n4fAQYaTlReatMO6LZ5k5I1O31dhZ4ZfxSlRxxxHYWdJwBN9Z6CoqBJHyrKb/E4u4yyBsVzGWf5uiDIMXJjdtlbbULCPLRpmaa+9Nf8teL5A4TAwvv322wNi1ooQfzEx/jIcrzyPDYV/B0RgbC4mRgGd+8bHD8D6wn3YokunfvSgCzUFePHEchgFE/6v840eX8dFgpN5Rtdrx2+4gOasCmmx1bBFayNl4jWujfdpWVVqR7NZL/acjQ/PrMK8lOuwIqdxO0+1n6dSs8zvgPV7bn8gwPuBnyO2ZgXN76v1GnLPBcZNn9N8fZNVddFymzdTzduoY5BfV4KONrY2skf83onPffb9c7QMoWd4R1yTOBI9I1Lwn1MrLccwp0yz64o9tc7anEptqyK2ws752Sm0bZPbgo3Dv0gPP/xwa7SDENJgrDYNS87+jK26DMzteK1otNnf5NQU4mjFWbTVaNE7AIJ8qfSLTEWMMgIZZadQoq9AjCpC6ib5vSpjLRYfX4ZKUw1ubjseU9sMk7pJJEA4s1a3JRpTqRsDYw4yu0GvvZnkpjPGjtNolS7MGPeKSMHH/R8DYP9C3JX1nr6osK4UgHifXMB+KrWn19C6w9bAjfm9Z9vkyfY1N+jC2Tk3PN0/H/Z9FBdqC9AtPNnpx7Bbqll/vtiBKUcJ5zKZzFKYzRwYKzi5KGXaHCQrPTR4MiYuDd/nbsIV8U0H0+V2qoKPjO2D/+t8IwZEdXX7ef2df+ewEBKAIhShGBbbG1WmWuwpyZS6OS1ini2+Iv4yyjxpAbmMw9i4NPAQsK3ooNTN8Xu8wOPN098gp7YQQ2N64q4OU6RuEgkgcapIrx7fHEiw6bsymVVgDHGatZnKyVRqexfkojXGLsz22quYLVVw6CkpDbOPo+P6iW63O2PM9J9Kotly3kaqv/l8sXfetFRz3//suvdQufe2C4pQhrqchRcq11h+DmN+tt6CzJ212PaWJXhqsOiO5CvxZu8HMTP5ChvPbXsARCaTYWqbYUgK4uKT/v0XiZAAZR7h+7Ngn8QtcZ+RN2F9wX5wkNHexR4wXjsAALBZly5xS/zfNxc3YndJJtpptHiiy21Bu18j8Y7OYW29enzzrKNBaFzjKIP9mSbrokGW+8BqH2PYvlhmZ8ZEValduIBng25VAKVpLux6G+5PuRb3drxKdLu9gQCFnbT21mRrDbztGWNmPXQLwwVbe+qasf0TwRSXtFXpubWxacjhilDLzzJwor4SBNcDY9Fn1IUlCs5ScHL0iexkZ1u1xttsFQALZtKfdYSQJgZFd4NWFYX0slO4VFvkl1vH7CnJRImhAkNjetF+sB7QLTwZSeo4HK88h7zaoqAe0W2JvSVHseLCemg4FZ7rfhfCqco38bCJ8YNwsaYQI2L7eOX45pkm9oJW1iSV2vYWQWxQ2rQqtXjNMhpSOzkZB77hudy9gGfjBk9VOvYFcaooTE8a3eR2e/s2qzhfDYzr33sFO3NpNatoa6a5OWxBqeYGH9lzMkLZGHyqXdhv2FvYwJh97wTwos+LezPG7Cxx488aG8WyPM0fq8G3FhomJ8QHyWVyXJkwBAIE/FGwV+rmuGVt/h4AoLWbHiKTySyzxlto1tgthXWlePP0txAgYEGXGZY0SEI8SS6T456OV6FHREevHN+caskGODKZTDSrp3BmxriZNcb21ppq7AQKjvBM4OCpgk7+gg382ArBnpoZdJWtNcbmQRaVnWDNnZR39nxsruK5eMa4MTDW+EJgzNneSaPGpG9xKjX7utl+t16v7g3sc09KGIyBUd2wIHWG15/XH/hFYJybm4s5c+agf//+GD58OF5//XWYTM3/YS0tLcWCBQswcOBADB48GM888wyqq6stv9+7dy8eeOABjBo1CmlpaZg+fTp+//13b78UQpw2OWEoOMiwvmA/jLx/XUjk1urwT9lJxKuicVl0D6mbEzDGMenU7qRuBTOTYMJrp1aiwliN6YmjMTquv9RNIsQttmZ7BEEQF+Oyt81MM2uM5XZSqdmfo5Xhlp9dC+wa/1752/dZS7EFNJUy29totSZbM8a1DXve2ivU5s4Mo7NVm1V2AmNfrIxsDmBrTHXi4ltufB2r7GypFsn0gbfEqiIxN+UavNZrLiIUoXil1xxcQTteAPCDwNhkMmHu3LkwGAz49ttv8dprr2HVqlX48MMPm33c448/jtOnT2PZsmX473//i/3792PRokWW36enp6N79+54//338csvv+D666/H448/jq1bt3r5FRHinHh1NAbH9ECJocLvinCty6+f5Z6cMMTvi6v4kg6hbZAa1g7na/KRXZ0ndXP8yooLfyGzIhtdwtrhHqv1gIT4E1sVng2CCTLYLp7lfFVq5vGwHdS4UpWaxQYOHUPbAADiVdFOP96f2etzpUTprLZSouv4horIbEovM2Przve4KDB2Y8bYFyqWdwhtgwFRXS0FGs2p1TWmOvEaY7dmjNm09cbXGtZKy3uuSxqDtCCuPm2Pz1+x7tixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nQ4AcP/99+ORRx7BwIED0aFDB9xxxx0YPXo0NmzY0Jovj5BmTW0zHEBjWrI/MPBGrC+sL7o1KWGI1M0JOJRO7br0slP49uJGhMrVeLrrLJ8o6kKIu3qEd7D8/+N+j2FwdA/MaDdelCLLXrSr7BR8arrGmJklZoIScYDj3mVjuKKxou/AqG5Y3OMevN93vlvH8jfsDK0vFCFj22MOSusa9rxlswDUTNo3Z+d8ag4nmjF2LjD2hfRpllzG4dVec3FLu8sBANqGeikqTil6L01uLA+Q2Rm8oroX0vL5q4OMjAz06NEDWq3WctuoUaOwaNEinDlzBt27d2/ymPT0dERHR6NPn8bCFyNGjIBMJsOhQ4cwYcIEm89VUVGBbt26tai9HNfyLWnMx/DEsQJVsPTRkNie0Kqi8E/ZSVyqK0LbEK3jBzGk6Ke9xUdRaqjE8NjeaBMS02rP6y5/O5fGxafh83O/YUtRBu5JmdpqFZX9rZ/MSvQVeOPU1xAgYH7qjWgfFu+15/LXPiL+5aZ2ExCtisCImD6IUUXgxZ6zAQCVxhoA9esi2WCWnYFSy+1f9omqUovSqpnqxKJ0befP806hSZafZTIZhsb0cvqx/q7aVGv5WSaq8C39jLGGU6GON1hmjEXroZkglW3r0gFPYWfJYewuO4KM4tN2n4cNhp0tvuWL6dOsJ7vejo+zV2NOx2vwvwt/WG43V6xOVMc6fSy2f9gBieSQBABA17D2LW0ucYPPB8Y6nQ5xceLqq+YgWafT2QyMbT1GoVAgKirKMmNsbd26dcjMzMRLL73kdlsVCg5xceGO7+ikmBjvL8D3d8HQRzd0Go0lJ37D5vJ/8H/tr3frGK3ZT78f2wUAuLXrBI9+HrzNX86lOIRjYFxX/FN0CjmyAgyI69Kqz+8v/WT2n/0rUWyowLUdRuLGHmNa5Tn9rY+If1FxClzVkE3EmpU8CVXGGjzY+XoU68stt4uK/DQTeNjbx9h6reirvebiWMU5dAxxvnjdFQmDcaD0JEZZ7fcbDKqNjYEx18L0W08wz06qOSWmJ43G8gvrMKlhi0h2Cy62OjJ7DmjVUbiu7WjsKTvS7POIB1TsB8bqZiql+5rkkAS82mtuk9tvaXc5FDI5Zne82q3jsjPGYfIQ/DT4JWjkvj1IEKgkC4w/+OADh+uEzet97W0M3tyG4bZ+JwiCzdv37t2Lp556Ci+99BJSU1ObbVNzjEYe5eU1bj/ejONkiIkJQ0lJFXieCuzYEkx9NDZiID7DWqw+ux03aMe5VMq/tfvpdGUO0otPo51Gi27yDigqqvT6c7aUP55Lo6L745+iU1iTtRMd0DqVlf2xn7bpDmJj3j9oo47B3UlTvX4+tmYfRUaGQKmUfg0e8R0poUl4rff9AIAyQ+O5LkqrbmYZgTNVqeUyDgOiumKAi2sTVZwS/+5xl0uP8XdXtxmB3/J3YXRcf/yaXz9gzM7K8xIFxg90mo7a09/j3o5XoVt4MkbG9rXMUqpk7OwtGxjbKPjm4Hns7YVtTXxO+sd3i7Wu4e3xVLeZLj2GHYhSWi1dCGOWHpDWJVlgPGvWLFxzzTXN3ic+Ph5arRaZmeLCQ+ZZX+tZYTOtVttkZthoNKK8vLzJY/bt24f7778fTz31lMP2OMOTF0M8L/jNBahUgqGPYpWRGB3XD1uLMrCx4ACmuLH9UWv106rc7QCAaxJHAYIMvB9VTvanc2lUTF98JFuFbboMzO14TatWN/WXfio1VOKDrJ8AAI+k3gwNp261dvtLH5HAxdlZF1xrsl2bBRCnTyvs7Ins6zN6vuTBTtfh9vZXIEYVYbmNDYBc3RfYU9pqtHijzzzLvzs0FEMDYLUXtu3BEbP2YfHIKD4NDpzNLaDYwE/WzHmjkasxMf4ytNVo0U4TD60qCoOim2aDBhpxWr3tAnmk9UkWGEdHRyM6Otrh/dLS0rBkyRIUFRVZgtpdu3YhMjISnTt3tvmYAQMGoLS0FJmZmejduzcAYM+ePRAEAf36Nabx7N27F/fffz8ef/xx3HzzzS1/UYR4yfSk0dhalIE1edsxOWFos9kSUinRV2CrLh2hcg2uSLhM6uYEtEhlGIZE98TukkzsLTkalOmJjnycvRplxipMbTPM5dktQvwdG3Sxs5Tmdci2iGawZLaLb9EuA86TyWSioBgQryX1xS332NlbNnCzdcXxWO+bEMKr0T+yK5499lmT37MDKvJmZowB4PEut1h+/mrgsz55jWNN5uA1uYLtd6m28SL1fP4v3KhRo5CamoqFCxfi+PHj2L59O959913cfvvtUCrrR1UOHTqEyZMnIz8/HwCQmpqK0aNH49lnn8WhQ4dw4MABvPjii7j66qst65P37t2LuXPnYtasWZg0aRIKCwtRWFiI0tJSqV4qIXb1jOiIHuEdcK4mH+llp6Rujk1r83fDIJhwZcJghMopDcjbrmyo+P1nwT6JW+J7thcdxLaig0hQRePeDu6t+SLEn+l5o+VnNuA171drCzsbzAZw4sCY0vdbQsnJ0S0sGQDQLTxZ4tY0xb7vjmZ8o1RhuC9lmqjglL0tw1zJNPCHoNgTZHaKb9GuCdLy+cBYLpfjk08+AcdxmDFjBp544glMnz4dDz/8sOU+NTU1yM7OFm3f9Oabb6Jz58648847MWfOHAwaNAiLFy+2/H716tWoqanBkiVLMGrUKMt/7HEJ8SXTk0YDANbkbZe4JU3peSN+y98NGWT1adTE6wbH9ECMMgIHSk+gsK5U6ub4jDJDFT48swpAfQo1rdUiwcggsIFx46XerZ0mICU0EU93m9XkMZwolZpmjL1BKVPgzT4P4suBz6BdiPcq5LuLrT7Nng/NhaqcvWCYnXEOkmDXFWyXsCn27Dpv0vr8YliiXbt2+OyzpmkaZkOHDsWJEydEt0VHR+Ott96y+5jXXnsNr732msfaSIi3jYrtB63qN+wrPYYLNQWWYhm+YGPhAZQYKjA8pjeSNLbX/hPPksvkuCL+MnyfuxkbCv/Gre0nSt0kn2BOoZ6SMBQDo1u2/R4h/qqtpj47LlweIgpw2oTE4NMBT9hcAy9OpbY9Y9xcESXimJyTQ8UpkKD2za0M2b2L2WC2ubRh0RZeoiDZdpAdKFr+SaAZY18UeGcqIQFKwclxTeJIAMD3FzdJ3JpGJsFkac+Mdrb3CCfeMakhnXp9wX7JCrn4kh1Fh7G1KAPxqmjM7jhN6uYQIpnkkAS81/f/sHTAk5CL9h62f9nH/k48Y2z7Z+I6T65L9QYVp8DSAU/i28sW2Z0JtsbZSbUXb//l26/bHUbB1KLHi1KpRWuMacZYShQYE+JHrmozAuHyEGzS/YP8umKpmwMA2F50CHl1RUiL7IIeER2lbk5QaR8Sj94RnZBXV4TD5Wekbo6kyg1V+DC7vgr1/NSbKIXaC44fP47HHnsMY8eORf/+/TF16lR89dVXUjeL2NE9vAMilWF2t2GyxtmZwWKrVVMqdeBrq9EiWhkumjHmmglsOTvnh7trjP1Fc+v1naGws6ZfSYNPkgq8M5WQABam0ODapFEwCTx+uLhF6uZAEAR8Z54tbn+5xK0JTlSEq95/z65BqaESVyYMwWVBsNWHFI4cOYLY2Fi88cYb+O233zB37ly8+eab+Oabb6RuGmmGszN/smb2VXXm8SSwiNYINxMu2AugxQFz4AV7tXx9YOzq9kqv93oAPcM7irKa2M8brceWFv2FI8TPXJs4CiGcGn8W7EORvlzStuwrPYbs6jx0D09GWmQXSdsSrEbH9UMIp8aOokPNbsUSyHYVH8FmXTq0qijMoRRqr7nxxhvx7LPPYsiQIUhOTsa1116L66+/Hn/99ZfUTSPNsLencXPE1YkpMA5Gzr7vcpntdcWBPqBiDow1nMrBPcX6RaXinb4PI1HTWM2b/bwRadE7QYifiVSG4arE4fgxdwtW5W7FfSnSBAKCIGDFhfUAgBntLqdRTomEyNUYq03DuoK92KJLx9WJI6RuUquqMFTjgzMNKdSdb0SYIkTiFgWXiooKREVFtegYHNeyvx3mx7f0OIFKwYln7jjOcT0Cds0ju95YwckDup+9fS7JZP5znorXCDODK5xM1E92K5gztysD8Lwxp1Jr5Gqbr82Vc0klb5x1DrR+csTX/n5TYEyIH7o+aQx+yduB3/J34bqkMdCqW3Zh6o6dxYdxqioHXcPaY1hMr1Z/ftLoyoQhWFewF2vz9+CqNsODapDiv2fXoMRQgUnxgzE4pqfUzQkq6enpWLduXbO7RjiiUHCIiwv3SHtiYsI8cpxAEyM09q9cJnOqnyJCGweYNKrGi/aoiFCPvV++zFvnUmioym/6L6xQbflZrWoMF9j2x8SEQWFgUvDljffTKBvPm5ioML953c6qE+oD43CVptnX5sy5FBnR+HkLtH5ylq/8/abAmBA/FKuKxPSkMfg+dxNW5KzHI6k3terzmwQTll9YBwC4u8PUgCys4U96hHdAamhbZFXn4ljlOfSKSJG6Sa1id3EmNun+QZwyEnNSrpG6OX7rgw8+wIcfftjsfbZu3YrExETLv0+dOoV58+bh4YcfxvDhw91+bqORR3l5y5YAcFx9sFdSUmVzG6JgV1RWYflZJVc61U/GusZZZb5xS2TUVOlRVFTp8Tb6Cm+fS9XV/tN/tTUGy88mY2NfFBVVivqpQt/4+ZUxXcY+prKiDkXwj9ftrFGx/bA2fw+GR/ex+Z66ci6VlFfh+rZj0EYd4zfnh6e05t/vyMgQKJXNr3enwJgQP3Vzu/H4o2AP1hfsw3VJo9ExNNHxgzxkQ+EBXKgpQFpkFwyI6tpqz0tsk8lkuDpxJN478wN+vbQzKALjCkM13j/zIwDg/1JvRDilULtt1qxZuOaa5gcW4uPjLT+fPn0ad955J26++WbMnTu3xc/vqYshnhcoMLZBAfGFoDP9pGDWirJVcmXggqKPvXYuCZ47373P9v7EbPt5XhAFw2zBLfYxnBB45839KddiVGw/9ItMbfa1OXMuVRlrMKfjNZb7ByNf+ftN0zyE+KlwRQhuaXc5eAhYdv6PVnveGlMdvrrwJwDgrg5Tgipt15eN1w5AmFyD7UWHUKKvcPwAP7fk3M8oMVRgYvxlGEqp/C0SHR2Njh07NvufXF4fHJ06dQp33HEHpk+fjkcffVTilhNn9I1MxcIut2HFZc86/Ri2iJKGa0yp5eiy0S2Pd7kVKSGJmNrG/eyK1sZu09VcoU97xd0CvWibilNiYHQ30Rprd1Wb6jzQIuIJgXemEhJEpiWORII6BntKMvF3yfFWec5vcjZCpy/D2Lg02rfYh2jkKkxKGAyjYAr4rZv2lhzFhsIDiFVGYi6lULcac1A8YsQI3H333SgsLERhYSGKi31jT3Vi34T4gUhQxzh9f15oTKXWMIWBAjHAaQ0T4wfhk7THEaX0jXWUzmAHvYfF9AYA3Jk8ucn97O1jzGYd0HIr21LD2gEAUlox4480j85UQvyYilPggZRrAQAfZa9Gncng4BEtk1NTiFV5W6HhVJjd8WqvPhdx3dVt6itS/56/GybBJHFrvKPCWI33sxpSqDvfgAhFqMQtCh7r1q1DcXExfv31V4waNcry34033ih104iHmZjA2N4WPCSwsanQt7S7HG/3eQi3tLu8yf1kdqpX29sLmzR6rddcLO5xD8bE9Ze6KaQBrTEmxM8Nj+2DYTG9sackE99e3Ig7OzQd0fUEXuDx4ZmfYBRMuCP5SsSro73yPMR97ULiMTCqG/4pO4m9JccwIraP1E3yuE/P/oIiQzku1w7CsNjeUjcnqDz88MN4+OGHpW4GaQXiwDiwU2KJbeyWXWq50m7tCtFaYma+TcVRpoEjEYpQWgrkY+hMJSQAPNDpWqg5JX7I3YzsqjyvPMfv+buRUX4aKSGJmJ40xivPQVpuWuJIAMCavO0St8Tz9pUcw1+FfyNGGYH7GzIlCCGex2acsGtNKSU2eLCBcXPszRirOZXN2wnxZXSmEhIA2qhjcUfyZBgFE/5zaiX0vGdTqnNrdfj83G+Qyzgs6HILVE5+YZLWNySmJ9pptDhUnoWTlRekbo7HVBprGqtQd74REUpKoSbEW+zNGLO3k8CmlLn+Pc+eKxp2xhgtL1BFSGugwJiQAHFd0mikRXXF2ZpL+OLc7x47bp3JgFdOfoU63oBb2l2OruHtPXZs4nlyGYfr244FAPyUu1Xi1njOp2d/hU5fhvHagRhOKdSEeJWRnTFm1hgb2U2NSUBzdsaYxYlmjCmVmvgfOlMJCRCcjMPjqbcgQhGKny/twIbCAy0+piAI+Ch7FU5XXUTfiM64td1ED7SUeNtE7WWIUoRhe9FBXKr1/4rB+0uOYX3hPsQoIyzF5ggh3sPuC84GNUaaMQ4aLZ0xVssplZr4HzpTCQkgWnUUnuo6Exw4vJf1PY6Un2nR8VblbcP6wv2IU0bi6W6zPLJfH/E+tVyJaYkjwUPA6rxtUjenRSqM1Xg36wcAwMOdb0CkH213Qoi/+bDfo5icMBQ3tR1nuY0TBcY0YxwslG5837PFtzS0xpj4ITpTCQkwA6O74cFO02EQTPj30aU4WnrWreOsy9+Lz879CjWnxHPd70SMKsKzDSVedXXiCKhkCvxZsA/lhiqpm+O2T7J/RpGhHBO0AwOyyjYhvqRLWDs8knoTwqxmjGUNlYdd2QuZ+LcWzxhTKjXxQ3SmEhKArkocgVvaXY5KUw0e2PUu0ktPOf1YQRDwY+4WvHvmB8hlHJ7rdid6RHT0YmuJN0Qrw3FlwhDU8nqs8tNZ413FR7BRdwBxykg80Gm61M0hJCjJZRyWD3waz3e/y+6WPSTwcEy1aWcpmPXobCo1J6NsM+IfKDAmJEDdmTwZM5MnodJYg6cyP8V3FzfByJuafUylsQavnVqJz8/9BjWnxPPd78ZlMT1aqcXE025uNwFKmRy/XNrhd7PGZYYqSxXqR1JvQoSCqlATIgUZZEhQx2A4ZWwEFc6NEIGKbxF/5xdnam5uLubMmYP+/ftj+PDheP3112EyNX+BX1paigULFmDgwIEYPHgwnnnmGVRXV9u87z///INevXrh+uuv90bzCZGETCbDHR2uxAsD7oZcxmHZ+bV46NA72FT4T5PtnEr0FfgxdwvuSX8VW4sykKCKxuu9HsCQmJ4StZ54Qrw6GlcmDEW1qc7vZo0/zP4JpYZKTE4YisF0HhIiGZ4KbgUld4JZDTNLzK4x5uD67DMhUvD5zUhNJhPmzp0LrVaLb7/9FgUFBfjXv/4FtVqN+fPn233c448/jsLCQixbtgwGgwFPP/00Fi1ahNdff110v8rKSjz55JMYNmwYSktLvfxqCGl9VyUPQ1vE472sH3G4/AxeP/013smSIyU0CWFyDYoN5cipKQQPARxkmBQ/BHNSpomqkhL/NaPdBPxZsBe/XNqB65PG+EXxqq26DGwvOoQEVTTu6zhN6uYQEtR4CFI3gUiAcyMwDpc3XjewM8YyN9KyCZGCz88Y79ixA1lZWXjjjTfQs2dPjB07FvPnz8eKFStgMBhsPiYrKwvbt2/Hyy+/jP79++Oyyy7Ds88+i19//RU6nU503xdeeAGTJ0/GgAEDWuPlECKJDqFt8HqvB/Bqr7kYFdsPak6FU1U5yCg/jfM1BYhVReLaxFH4pP/jeKzLzRQUBxB/mzUurCvFB2d+AgA81mUGwhQaiVtESHATKDAOSu6sMWb/XstpXTHxQz4/Y5yRkYEePXpAq9Vabhs1ahQWLVqEM2fOoHv37k0ek56ejujoaPTp07geZsSIEZDJZDh06BAmTJgAAFi7di1OnjyJl156CUuWLPFIezmu5aNi5mN44liBivrIOeJ+4jAophsGxXQDL/Ao0VeghtcjShkW1Os3g+FcuiV5Av4s2IfVedtwTdJIaNVRLh+jNfrJJPB4/fTXqDTV4Pq2YzAwppvXnssbguFcIsGHFygwDkaRCtezi0LlasvPtK6Y+COfD4x1Oh3i4uJEt5mDZJ1OZzMwtvUYhUKBqKgoy4xxXl4eXnnlFSxduhQqlarJMdyhUHCIiwv3yLEAICbG91MepUZ95Bxb/RSPSAla4rsC+VyKQzhuK70cy0//ie8KNuLfaXe4fSxv9tNnJ37H4fIz6B6VjCcG3AyVXOn4QT4okM8lEnxoxjg4JWni8GjqzegQ0sbpx4TIG2eMOZkMQ2N6AXT+ED8iWWD8wQcf4MMPP2z2Plu3bgVgf21Cc2sWbP1OEATL7QsXLsS9996Lbt08NyNhNPIoL69p8XE4ToaYmDCUlFSB5+kPii3UR86hfnIsWPpoetxorDm7A7+c34UpscPQOaytS4/3dj9llmfj0xO/Qc2psLDzbagorQNQ5/Hn8abWPJciI0OgVFKqIvE+gWaMg9aVCUNcun+IaMZYjsU97vF0kwjxKskC41mzZuGaa65p9j7x8fHQarXIzMwU3W6e9bWeFTbTarVN1hIbjUaUl5dbHrNv3z4cOHAAb7zxBgCA53kIgoBevXrhq6++wqBBg9x6XZ68GOJ5IaAv1D2B+sg51E+OBXofhXAa3J48CR9nr8aS7F/wSs85bhVE8UY/VRiq8erJleDB44GUa9FOE+/X70Wgn0skuFDxLeKsEKpETfycZIFxdHQ0oqOjHd4vLS0NS5YsQVFRkSWo3bVrFyIjI9G5c2ebjxkwYABKS0uRmZmJ3r17AwD27NkDQRDQr18/AMCvv/4qeszXX3+Nv//+G2+//TaSk5Nb8MoIIcQ3TU0Yhl8v7UR62SlsLcrAOK30RQdNAo//nF6JgroSjInr7/IMBSHEuyiVmjiLnTF2p6o1IVLz+bN21KhRSE1NxcKFC3H8+HFs374d7777Lm6//XYolfXrzw4dOoTJkycjPz8fAJCamorRo0fj2WefxaFDh3DgwAG8+OKLuPrqqy3rk7t16yb6Ly4uDiqVCt26dUNICFXkJYQEHgUnx8OdbgAALDn7CyqMtvd2b00rL6zH36Un0CEkAY+k3kTbehDiYyiVmjhLHBjT33Lif3w+MJbL5fjkk0/AcRxmzJiBJ554AtOnT8fDDz9suU9NTQ2ys7NF2ze9+eab6Ny5M+68807MmTMHgwYNwuLFi6V4CYQQ4jP6RaViUvxglBgqsOz8Wknbsrs4E19f3IBQuRrPdb8LoXLamokQX2HO3hge21vilhBfd1u7iUiL6or2IfGW2zjfDzEIaUIm0FCgxxgMJpSWtnwGhuNkiIsLR1FRJa1Ts4P6yDnUT44FYx+VG6pwX8brKDNW4ZWeczAw2nERQk/309nqPDx25CNUm2rxXLc7MTKub4uPKbXWPJeio0MDoviWJ743g/Ez7A5X+0kQBNTwdUE1YEXnknPs9ZOBN2La3icBAF8P+jdiVcG7+wWdS87xte9NGs4hhJAgE6kMw4OdrgMAvHn6W5QZqlr1+Yv0ZXju2BeoNtXitnYTAyIoJiTQyGSyoAqKScspZI1BB60xJv6IzlpCCAlCY7RpmBQ/GMWGcryT9X2rrSOsNtXi38e+QKG+FJdrB2FW8pWt8ryEEEK8i60RIacQg/ghOmsJISRIPdBpOtpptNhTkokfc7d4/flqTXq8cPx/yKrORf/IVCq2RQghAYqKbxF/RIExIYQEqRC5Gk91mwU1p8TS82uxpzjT8YPcVGcyYPGJZcgoP43U0LZ4rvtdUHKS7RhICCHEiyiVmvgjOmsJISSIdQlrhye63AoBAl47tRLHKs55/DmqjLVYdGIp0stOoVNoEl7tNRfhCtoWjxBCApWcAmPih+isJYSQIDcqrh/u7jAVtbwezxz7DCcrL3js2EX6MjyR+THSy04hpSEojlSGeez4hBBCfA9t10T8EZ21hBBCMKPdBNzabiKqTbV48ugSHCg90eJjHq04i/mH38eZ6lykRXbBW73nIVoZ7oHWEkII8WW0xpj4I1rgRQghBABwR/KV4GQyrMz5C88d+wL3drwK1yWNdnmtmIE34sfcLfjqwnrw4DEx/jLM73wjrSkmhJAAd3/KtSjSl9EaY+KX6CqFEEIIgPqtNmYlX4m2Gi3ezfoen537FbuLj+DhzjegU3iSw8cLgoADpSfw6blfcb4mHyqZAvM63YArE4ZQ9WlCCAkC05NGS90EQtxGgTEhhBCRy+MHoVNoEt46/S2OVGTj/oNvYXRcP9zYZQw6c+2gsPrqKNKXYVfxEawr2IesqosAgLSornio0/VoHxIvxUsghBBCCHEJBcaEEEKa6BzWFu/1nY9fLu3E97mbsK3oILYVHYRCJkf7kAREKkJhFEwoqCuBTl9meVzXsPaY0e5yjIztQ7PEhBBCCPEbFBgTQgixScHJcX3bMZjaZhj2lGZid/kRZOhO42x1nuU+HGToEJKAQdE9MCq2L3pFpFBATAghhBC/Q4ExIYSQZmnkKkyIH4ibeoyBTleBcn01KozVUHIKRCnDoOKUUjeREEIIIaRFKDAmhBDiNJlMhghlKCKUoVI3hRBCCCHEY6iWOiGEEEIIIYSQoEaBMSGEEEJccv78eQwYMABDhw6VuimEEEKIR1BgTAghhBCnGY1GPPHEExg0aJDUTSGEEEI8hgJjQgghhDjto48+Qvv27TF16lSpm0IIIYR4DBXfIoQQQohT/vnnH6xZswZr1qzBxo0bPXJMjmvZ9l7mx7f0OIGO+skx6iPnUD85Rn3kHF/rJwqMCSGEEOJQZWUlFi5ciJdeeglRUVEeOaZCwSEuLtwjx4qJCfPIcQId9ZNj1EfOoX5yjPrIOb7ST34RGOfm5mLRokXYu3cvQkNDcd1112HBggWQy+V2H1NaWooXX3wRmzdvhlwux6RJk/DMM88gNLRxixGe5/HFF1/ghx9+QG5uLhISEnDXXXfhjjvuaI2XRQghhEjugw8+wIcfftjsfbZu3Yr33nsP48aNw8iRIz323EYjj/LymhYdg+NkiIkJQ0lJFXhe8FDLAg/1k2PUR86hfnKM+sg5rdlPkZEhUCrtx46AHwTGJpMJc+fOhVarxbfffouCggL861//glqtxvz58+0+7vHHH0dhYSGWLVsGg8GAp59+GosWLcLrr79uuc8rr7yCnTt34qmnnkKXLl1QUlKCmpqWfUETQggh/mTWrFm45pprmr1PfHw89u7di0uXLuHrr78GAAiCAJ7n0atXL/znP//BtGnT3Hp+T10M8bxAF6BOoH5yjPrIOdRPjlEfOcdX+snnA+MdO3YgKysLy5Ytg1arRc+ePTF//ny8/fbbmDdvHpRKZZPHZGVlYfv27fjpp5/Qp08fAMCzzz6LuXPnYuHChdBqtcjKysI333yDX3/9FZ07dwYAJCcnt7i9nsiR97V8e19EfeQc6ifHqI+cQ/3kmL/2UXR0NKKjox3e74svvoDBYLD8e+PGjVi6dClWrlyJpKQkL7aQEEII8T6fD4wzMjLQo0cPaLVay22jRo3CokWLcObMGXTv3r3JY9LT0xEdHW0JigFgxIgRkMlkOHToECZMmIBNmzahffv22LRpE2bPng2ZTIbRo0fj8ccfR3i4e+udPLlWCvCdfHtfRn3kHOonx6iPnEP95Fig9lGnTp1E/z5y5Ag4jkO3bt0kahEhhBDiOT4fGOt0OsTFxYluMwfJOp3OZmBs6zEKhQJRUVHQ6XQAgAsXLuDixYvYsGED3njjDej1erz00kt48sknHa61sscTa6UAWpfgDOoj51A/OUZ95BzqJ8d8ba0UIYQQQpwnWWDsbLEPAJDJbKel2bvd3u8EQbDcLggCDAYD/vOf/6Bjx44AgEWLFmHmzJnQ6XSiGWpXePJiyFfy7X0Z9ZFzqJ8coz5yDvWTY8HSR9dffz2uv/56qZtBCCGEeIRkgbGzxT60Wi0yMzNFt5tnfa1nhc20Wq3lPmZGoxHl5eWWx2i1WigUCktQDACpqakA6qtguxsYE0IIIYQQQgjxL5IFxs4W+0hLS8OSJUtQVFRkCWp37dqFyMhIS9EsawMGDEBpaSkyMzPRu3dvAMCePXsgCAL69etnuY/RaMSFCxcsRbeys7MBAG3btm3pyyOEEEIIIYQQ4ic4qRvgyKhRo5CamoqFCxfi+PHj2L59O959913cfvvtlorUhw4dwuTJk5Gfnw+gfuZ39OjRePbZZ3Ho0CEcOHAAL774Iq6++mrLTPDIkSPRo0cPPPPMMzh+/DgOHTqEF198EZMmTaLZYkIIIYQQQggJIj4fGMvlcnzyySfgOA4zZszAE088genTp+Phhx+23KempgbZ2dmibSTefPNNdO7cGXfeeSfmzJmDQYMGYfHixaLjfvrpp4iIiMCtt96KefPmoV+/fnj11Vdb9fURQgghhBBCCJGWz1el/n/27ju+jfL+A/jnTst77x07sRM7w9kkcRIIIQ2UDSU/9gpQVqFllNUSoIwCYVNICVAgFEqB0FJCGJkQZxPHiTPtxHvJlvfUuN8fsuQ7+U7Lmtb33VdeNRqnR49Ouvve832+DwCkpqbinXfekbx/7ty5OH78uOC2qKgorF692up2ExMT8eabb7qkjYQQQgghhBBC/JPPjxgTQgghhBBCCCHuRIExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCAxnAcx3m7EWOFwcBBrze4ZFsKhQxard4l2xqrqI/sQ/1kG/WRfaifbPNUH8lkLFiWcfvruJurjpu0b9qH+sk26iP7UD/ZRn1kH186blJgTAghhBBCCCEkoFEqNSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBMSGEEEIIIYSQgEaBsY/5+OOPsWTJEkyZMgVXXHEFSktLvd0kj1mzZg0uu+wyTJ8+HfPmzcNdd92FyspKwWMGBgbwxBNPYO7cuZg+fTruvvtutLa2Ch5TX1+PW2+9FdOmTcO8efPw/PPPQ6/Xe/CdeM7jjz+OvLw8rFu3znwb9ZFRY2Mj7rvvPsyZMweFhYW49NJLUVFRYb6f+gno7u7GqlWrsHDhQkybNg3nn38+vvrqK/P9gdhHe/fuxW9/+1sUFRUhLy8PW7ZsEdzvqj7ZvXs3LrnkEkyePBnnnHOOoN+JY+i4ScdNR9BxUxodN22j4+ZIY+q4yRGf8c0333AFBQXc559/zp08eZJ77LHHuNmzZ3Otra3ebppH3HTTTdwXX3zBnThxgjt69Ch3yy23cGeddRbX19dnfsyf//xnbvHixVxxcTF36NAh7oorruCuuuoq8/06nY47//zzuRtuuIE7cuQIt3XrVm7u3LncK6+84o235FabN2/mLrzwQq6oqIj76KOPzLdTH3Fce3s7d9ZZZ3EPPfQQd/DgQa66uprbunUr19DQYH4M9RPHPfLII9yyZcu4PXv2cNXV1dy6deu4iRMncrt37+Y4LjD7aOvWrdxLL73Efffdd1xubi63efNmwf2u6JPq6mpu2rRp3LPPPsuVl5dzH330ETdp0iRux44dHnufYwUdN+m46Qg6bkqj46Z96Lg50lg6blJg7EMuv/xy7sknnzT/t16v54qKiri1a9d6sVXe09rayuXm5nL79+/nOI7jOjs7uYKCAm7jxo3mx5SXl3O5ublcaWkpx3HGL+ekSZM4tVptfsw///lPbtasWdzg4KBn34AbqdVqbtGiRdyxY8e4s846y3yApz4yeuGFF7grr7xS8n7qJ6Nf//rX3Ntvvy24bdmyZdzatWupjzhuxAHeVX3y/PPPc+eff77gte69917u1ltvdefbGZPouClEx01pdNy0jo6b9qHjpnX+ftykVGofMTg4iLKyMixYsMB8G8uymD9/PkpKSrzXMC/q6uoCAERGRgIADh8+DK1WK+ijnJwcpKSkmPuopKQEEydORFxcnPkxRUVF6OzsxKlTpzzXeDd7+OGHce211yIvL09wO/WR0ebNmzF58mTcfffdmDdvHi699FL85z//Md9P/WQ0ffp0bNq0CU1NTeA4Dj/99BOam5sxf/586iMRruqTkpISwTZMjwnU33pn0XFzJDpuSqPjpnV03LQPHTcd42/HTQqMfURbWxv0er1gpwCA2NhYqNVqL7XKeziOw7PPPos5c+YgJycHANDS0oKgoCCEhYUJHhsbG4uWlhbzY2JjYwX3m/rU9Bh/t27dOvT29uKmm24acR/1kVFNTQ3++c9/IicnB++99x4uu+wyPProo9i0aRMA6ieTxx57DBkZGVi0aBEmT56Mu+66C88++ywmTZpEfSTCVX0i9Zj29nZotVp3NX/MoeOmEB03pdFx0zY6btqHjpuO8bfjptxlWyJuwXEcGIbxdjM87sknn8SJEyfwySefCG4X6wuO42w+xtrt/qSiogJ/+9vf8Nlnn4Flxa9rBXofAcb3O2XKFNx7770AgEmTJuHw4cP45JNPcPbZZwOgfgKMJ4tHjx7F3//+dyQmJmLnzp145JFHkJSUBID6SIyr+sTyMZbbIM6j4yYdN/nouGkfOm7ah46bjvOn4yaNGPuI6OhoyGSyEVeLNBrNiKvhY91TTz2FzZs344MPPkBiYqL59ri4OPT19aG7u1vweH4fxcXFjehD039bXmnyRwcPHoRGo8GyZcuQn5+P/Px81NXV4emnn8by5cupj4bExcUhOztbcFtOTg4aGhrM9wd6P/X39+Pll1/GQw89hMWLF2PixIm48cYbsXjxYnzwwQfURyJc1Sdij2ltbUVUVBQUCoW7mj/m0HFzGB03pdFx0z503LSNjpuO87fjJgXGPkKpVKKgoADFxcXm2wwGA3bu3InCwkLvNcyDOI7Dk08+ie+//x4ffPAB0tPTBfdPnjwZCoVC0EenT59GfX29uY8KCwtx7NgxQRn44uJiREREjPjB90dLly7Ff//7X3z11VfmfwkJCbj11lvx9ttvUx8NmT59OqqqqgS3VVZWIjk5GQDtSwCg0+mg1Wohk8kEt7MsC4PBQH0kwlV9UlhYiB07dgi2XVxcHDC/9a5Cx006btqDjpv2oeOmbXTcdJzfHTddWsqLjIpp2Ykvv/ySKy8v5/70pz8F1LITjz/+ODdz5kxu9+7dXHNzs/mf5bITZ555Jrdz507u0KFD3IoVK0RLvt90003c0aNHue3bt3NnnHEG9/LLL3vhHXkGv7omx1EfcRzHlZSUcJMmTeLWrFnDVVZWcl9++SU3efJkbtOmTebHUD9x3DXXXMNdeOGF5mUnPv30Uy4/P5/7z3/+w3FcYPZRd3c3d+TIEe7IkSNcbm4u9+GHH3JHjhzhmpubOY5zTZ9UV1dzU6dO5f76179y5eXl3Lp167j8/HxarskJdNyk46Yz6Lg5Eh037UPHzZHG0nGTAmMf89FHH3FnnnkmV1BQwF1++eXcwYMHvd0kj8nNzRX998UXX5gf09/fz61atYqbPXs2N23aNO6uu+4SlHfnOI6rra3lVq5cyU2dOpWbO3cu99xzz3E6nc7Tb8djLA/w1EdGP/zwA/frX/+amzx5Mnfeeedx69evF9xP/cRxzc3N3B//+EeuqKiImzp1Knfuuedy69atM98fiH20a9cu0d+h1157jeM41/XJzp07uYsuuogrKCjgzj77bO7LL7/02Hsca+i4ScdNR9FxUxwdN22j4+ZIY+m4yXAcVfwghBBCCCGEEBK4aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrNmzYgC+//NLbzSCEEEL8Ah03CXEfCowJIV6zceNGrF+/3tvNIIQQQvwCHTcJcR8KjAkhhBBCCCGEBDSG4zjO240ghASehx56aMRV77vuugt33323l1pECCGE+C46bhLiXnJvN4AQEpjuuOMO1NfXo6urC48//jgAICkpycutIoQQQnwTHTcJcS8KjAkhXpGRkYGoqChwHIfCwkJvN4cQQgjxaXTcJMS9aI4xIYQQQgghhJCARoExIYQQQgghhJCARoExIYQQQgghhJCARoExIcRrFAoFBgYGvN0MQgghxC/QcZMQ96HAmBDiNePGjcOJEyfw448/4tChQ2hqavJ2kwghhBCfRcdNQtyH1jEmhHiNRqPBn/70J+zduxcdHR20HiMhhBBiBR03CXEfCowJIYQQQgghhAQ0SqUmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQKDAmhBBCCCGEEBLQ5N5uwFhiMHDQ6w0u2ZZczkKnc822xirqI/tQP9lGfWQf6ifbPNVHMhkLlmXc/jru5qrjJu2b9qF+so36yD7UT7ZRH9nHl46bFBi7kF5vQHt776i3w7IMYmPD0NnZB4OBc0HLxh7qI/tQP9lGfWQf6ifbPNlHUVEhYFmZW1/DE1xx3KR90z7UT7ZRH9mH+sk26iP7+Npxk1KpCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEEIIIYQENAqMCSGEEOKUxx9/HHl5eVi3bp23m0IIIYSMil8Fxh9//DGWLFmCKVOm4IorrkBpaanVx3/77bdYvnw5pkyZggsuuADbt28f8Zjy8nLcdtttmDFjBmbMmIH/+7//g0ajcddbIIQQQsaELVu2oKSkBAkJCd5uCiGEEDJqfhMYb9iwAc8++yzuvPNOrF+/Hnl5eVi5cqVkEHvgwAHcd999uPzyy/HVV19h6dKluOOOO1BRUWF+THV1Na6++mqMHz8e//znP7F+/XrcfPPNUCgUnnpbhBBCiN9paWnBqlWr8Pzzz9MxkxBCyJgg93YD7PX+++9jxYoVuOyyywAATzzxBLZu3WoOZi198MEHWLRoEVauXAkAuOeee7Bjxw58/PHH+POf/wwAePnll7Fo0SI88MAD5udlZmZ64N0QQggh/uvhhx/Gtddei7y8vFFvi2UZlzx/tNsZ66ifbKM+sg/1k23UR/bxtX7yi8B4cHAQZWVluP322823sSyL+fPno6SkRPQ5JSUlIwLmoqIibN26FQBgMBiwdetWrFy5EjfeeCOOHTuGzMxM3HnnnVi4cKHTbXXFB+trO4kvoj6yD/WTbdRH9qF+si1Q+mjdunXo7e3FTTfdNOptyeUsYmPDXNAqIDo61CXbGeuon2yjPrIP9ZNt1Ef28ZV+8ovAuK2tDXq9HnFxcYLbY2NjUVVVJfqclpYWxMbGjni8Wq0GALS2tqK3txdr167FvffeiwcffBCbNm3Cbbfdhs8//xz5+fkOt9OVB3jAd3YSX0Z9ZB/qJ9uoj+xD/WTbWO6jiooK/O1vf8Nnn30Glh39bCydzoDOzr5RbYNlGURHh6KtrQcGAzfqNo1V1E+2UR/Zh/rJNuoj+3iynyIigqFQyKw+xi8CYykcx4FhpK/Mi91nus1gMAAAzj77bFx//fUAgEmTJmHPnj3417/+hSeeeMLh9rjiAA/Ql8ke1Ef2oX6yjfrIPtRPtvnaAd4dDh48CI1Gg2XLlplv0+v1ePrpp7Fu3Tps3LjR4W26qq8MBo72TTtQP9lGfWQf6ifbqI/s4yv95BeBcXR0NGQyGVpaWgS3azSaEaPIJnFxcSMe39raan58dHQ05HI5srOzBY/JyclBXV2d02115YfqKzuJL6M+sg/1k23UR/ahfrJtLPfR0qVLMXnyZMFtN998My699FJccsklXmoVIYQQMnp+UZVaqVSioKAAxcXF5tsMBgN27tyJwsJC0ecUFhZix44dgtuKi4vNjzdt0zIVu7KyEsnJyS5tPyGEEDIWREREIDc3V/BPoVAgPj4eWVlZ3m4eIYQQ4jS/CIwB4MYbb8Snn36K9evXo6KiAqtWrUJ/f7/5CvWDDz6I1atXmx9/3XXXYfv27XjvvfdQUVGB119/HYcPH8bVV19tfsxNN92Eb775Bp9//jmqqqrw3nvvYffu3VixYoXH3x8hhBBCCCGEEO/wi1RqADjvvPOg0Wjw2muvQa1WY9KkSVi7di1iYmIAAA0NDYJCIDNmzMDq1avxyiuv4KWXXkJWVhbefPNN5OTkmB+zfPlydHZ24u2338ZTTz2FnJwcvP32204V3iKEEEIC0ebNm73dBEIIIWTUGI7jxuZEKC/QavVob+8d9XZYlkFsbBhaW7vH7Dy10aI+sg/1k23UR/ahfrLNk30UFRXileJbruaK4ybtm/ahfrKN+sg+1E+2UR/Zx9eOm36TSk0IIYQQQgghhLgDBcaEEEIIIYQQQgKa38wxJmPLoEGPLq0WABClVEFmZT1qQsjY1qfXoVunhZxhEKVQWV2fnhBCCCHEHSgwJh5T29uNTc012KtpQnVPJwxDt7NgMCE8CnNjk/CrpAxEKlRebSchxP2Od7bhx6Zq7Gtrhnqgz3x7sEyOieHRWBCXjMUJaQiW0WGKEEIIIe5HZxzE7Rr7e/Bh5TFsV9eZb4tVBiFOFWy+/3hXG453teHT6uO4NHU8rsiYACXr/4VlCCFCdb3deLviEA60qwEY5/MkB4UiWqnCgEGP2t5uHGhX40C7Gh9WHsNl6eNxUUo25CzN/CGEEEKI+1BgTNyG4zh811iFtafK0G/QI0qhwgUp43BmQhoSg0IEj6vq7cJ3jVX4vrEan9acwM8t9Xg0fzbSQ8K9+A4IIa7CcRy+bajE2tNlGDQYkBwUgkvSxmNBXLIgS0TPcTjS0Yrvm6qxrbkO758+gs1NNXhg4kxkhUZ48R0QQgghZCyjwJi4xaBBj1dPlGCbug4sGKxIz8Vv0scjSCQtkmEYZIVG4LacKbg4NQd/Ky/F/rZm/KFkOx6aNBszoxO88A4IIa6i5zj8veIQvmmohJxhcF3mRFyaNl50FFjGMJgSFYcpUXFYkZ6LN8sP4lBHK+4r+Ql3T5iGMxPSvPAOCCGEEDLWUW4acbku7SAeKS3GNnUdElTBeLGwCNdmTRQNii0lBoXg8YK5uCojD316PZ4q24PdrY0eaDUhxB0MHIfXT5bgm4ZKRCmUeHbqAlyRkWtXanRaSBienjIf12dNgtagx4vHf8HnNSc90GpCCCGEBBoKjIlLdWkH8dihnTjW1Ya88GisLlyI3PBoh7bBMgyuyszDneOnQscZ8NzRfTjaqXFTiwkh7sJxHNZUHMKPTTWIVQbhhWkLMSkixqFtsAyD36RPwOOTz0AQK8M/Ko/iw8qj4DjOTa0mhBBCSCCiwJi4TK9Oi8cO70RFTwemRsbh6SnzEK0Mcnp75yZn4bacKdByBjxVtgcNfT0ubC0hxN3+V3/aPFL89JT5SA4OdXpbM6MT8NSUeQiVK/BZzUl8UVvuwpYSQgghJNBRYExcQmcw4Nmj+1DR3YEpkbH4c8Ecu1KnbbkgZRwuTMlGp24QfzmyBwN6vQtaSwhxt0PtLXjnVBnkDIs/FcxFWkjYqLc5KSIGT04+A6qhkeNNTdUuaCkhhBBCCAXGxAU4jjMvv5IZEo7H8l0TFJvcnF2Awqg4VPV24b3TZS7bLiHEPTq1g3j+2H4YwOGO8VOR5+B0CmvywqPxyKTZkDEMXj1xEAeHln0ihBBCCBkNCozJqH3TUImNjVWIVqjweMFchMoVLt2+jGHwh7wZiJAr8U1DJXa1Nrh0+4QQ13qrvBRt2gEsTUzHsqQMl29/ZkwC7p4wDQZw+OvR/VAP9Ln8NQghhBASWCgwJqNysqsda0+VQc4weKxgDhJ46xO7UowyCL/Pmw4A+Ft5KXp0Wre8DiFkdH5S1+GnlnrEq4Jxa/Zkt73O0sQMnJ88Dp26QTxzZC8GDTTNghBCCCHOo8CYOK1bp8Vzx/ZBxxlwc/Zkl6ZLipkdk4izEtKgGRzAP04fcetrEUIc16PTYk3FYQDAvbmFCHFx9oilm7MLkB8Rg5Pd7XjvFP0mEEIIIcR5FBgTp3Ach9dOlKCpvxdFcSk4PznLI6+7clwBwuUKbKivxCFNi0dekxBin0+qj6NdO4AlCWmYFhXv9tdTsCwemjQLEXIl/tdwGvs0TW5/TUIIIYSMTRQYE6dsaa5FcWsDkoJCcPeEaWAYxiOvG6lU4cZxBeAAvFq6n9YyJcRHVPd04ev60wiWyXHjuHyPvW6MMgh3T5gGAHjlRAnaBwc89tqEEEIIGTsoMCYOaxnow5qKQ2AA/D53usuLbdlydmI6ssMicUjTgh0tVIiLEF/wzqnD0HMcrsrIG9X65c6YF5eMXyVlol07gNdOltAFM0II8VP1fd3o1g56uxkkQFFgTBzCcRxeP3kQPXodLkrNRkFkrMfbIGMY3JxtHJF6/9QRaA0Gj7eBEDLsYLsaB9rVSAsOwwUp47zShluyC5ASHIo9miZsU9d5pQ2EEEKc160dxK37NuOa3d95uykkQPlVYPzxxx9jyZIlmDJlCq644gqUlpZaffy3336L5cuXY8qUKbjggguwfft2ycfecsstyMvLw5YtW1zd7DHlh6Ya7G9rRlpwGK7NnOS1dkyPTsC8xGQ09PdgY0Ol19pBSKDjOA4fVh4DAFydmQc5653DSpBMjt9NKAQA/L3iMDq0lFJNCCH+RDM0FUZHWT/ES/wmMN6wYQOeffZZ3HnnnVi/fj3y8vKwcuVKaDQa0ccfOHAA9913Hy6//HJ89dVXWLp0Ke644w5UVFSMeOy6deso9c4ObYP9ePfUYbAwVpxVyWRebc9dk43LN/279iQt1UKIl+xra8bxrjaMC43AgrgUr7ZlcmQszk3KRKduEGtPlXm1LYQQQhzjoXI1hEjym8D4/fffx4oVK3DZZZdh/PjxeOKJJ6BSqbB+/XrRx3/wwQdYtGgRVq5ciZycHNxzzz3Iz8/Hxx9/LHhceXk5/v73v+OZZ57xxNvwa2tPlaFHr8MFKdmYGBHj7eZgfGQ0FsQlQzM4gO8bq73dHEICjoHjsG5otPiazIlgfeCs5oZx+YhRBmFLcy32a5q93RxCCCGE+Am5txtgj8HBQZSVleH2228338ayLObPn4+SkhLR55SUlODmm28W3FZUVIStW7cKtnvffffh4YcfRkJCgkvayrKjPzE0bcMV23KVkjY1tqnrEKsMwrXjJnq9babXvyorDztaGvB57Umcm5IJBevdUWxf44v7kq+hPrKPWD/ta21CRU8HcsOjcEZckseq01sTrlTirglT8WTZHrxRfhBrZi9BkMwzhzralwghhBD/5ReBcVtbG/R6PeLi4gS3x8bGoqqqSvQ5LS0tiI2NHfF4tVpt/u+XX34ZEyZMwLnnnuuSdsrlLGJjw1yyLQCIjg512bZGY0Cvx1v7DwEA7ps+G+mJ0V5u0bBZGalYWJuKnxrrsLO7GZeMm+DtJvkkX9mXfBn1kX34/fSfstMAgJUFUxEXF+6tJo3w69gJ2N7WgK31NfhfSxVuy5/m0denfYkQQhynp2mNxMv8IjCWwnGc1REKsftMt+3atQsbN27Ef/7zH5e1R6czoLOzb9TbYVkG0dGhaGvrgcHg/R+Jf1YeR013F2ZGJ2CaKhqtrd3ebpKgjy5LzsFPjXX4x9HDWBCeBJkPjFr5Cl/bl3wR9ZF9LPvpWKcGB1qMhfjylVE+8bvAd336ROxsrMdHx49gQUQSkoPdH6x6cl+KiAiGQkEZMoSQsUPH0SojxLv8IjCOjo6GTCZDS0uL4HaNRjNiFNkkLi5uxONbW1vNj9+7dy8aGhpwxhlnCB5zxx13YP78+Xj33XedaqsrT4YMBs7rJ+qNfT34V/UJKFkWv82ZAo6DTxUqMxg4jA+LwtTIOJR2tGCnugHz45K93Syf4wv7kq+jPrKPqZ8+ry4HAFySlgNwxvnGviReGYzfpE/AuqpjeLv8EB4vmOux16Z9iRBCHKen303iZX5RfEupVKKgoADFxcXm2wwGA3bu3InCwkLR5xQWFmLHjh2C24qLi82Pv+qqq/Df//4XX331lfkfADz22GN44okn3PE2/NJ7p49Ayxnwm7QJHhlxcdbFqdkAgP/Ujaw6TghxrbrebuxsbUC0QoWzEtK83RxJl6blIDkoBHs1TdjT2ujt5hBCCLGCRoyJt/lFYAwAN954Iz799FOsX78eFRUVWLVqFfr7+3HJJZcAAB588EGsXr3a/PjrrrsO27dvx3vvvYeKigq8/vrrOHz4MK6++moAxvnGubm5gn8AkJKSgrQ03z3R86TS9hYUtzYgXhVsHBXyYbNiEpEaHIqyTg1OdrV7uzmEjGnr6yrAAbgwNRtKHy54p2RluDVnCgDg76cO07JuhBDiw/hzjGm+MfEGvwmMzzvvPDz00EN47bXXcNFFF+Ho0aNYu3YtYmKMywY1NDQICmvNmDEDq1evxr/+9S9cdNFF+O677/Dmm28iJ8e3Azxfoec4vHPqMADghqx8j1V1dRbLMLgoxThq/BWNGhPiNj06LbY010LFynBuUqa3m2PT7JhEzI5JRGN/L76spd8GQgjxVXreiLGeRo+JF/h2tGPhmmuuwTXXXCN630cffTTitnPPPdehitPHjx93um1jzQ+N1Tjd04lJEdFYFJ/i7ebYZUliOj6sOoafW+px82ABYpRB3m4SIWPOpqYaDBj0WJaUgTCF0tvNscut2ZNxoK0Zn9ecxLKkDPptIIQQH6TjjRLrDAafzkgiY5PfjBgTz+nRafFR1VEAwC3Zk31ibVJ7BMnkOCcxA3qOw4+N1d5uDrGhT6/DofYWbGmuxc/qelT2dPpUYTcyEsdx+KbeuETTeclZ3m2MA5KDQ3FBSjb6DXqsqzzm7eYQQggRwR8l1hpoxJh4nl+NGBPP+Ff1CXRoB3F2Qjpyw31nzWJ7LE/KxPq6CmxsrMJl6RNo6SYf1NjXg4+rj2NHSz0GLQ588apg/Do5CxekZEMloyvFvmZ/SxNqeruRFx6N8WFR3m6OQ1Zk5GJTUw1+aKrG+SnjkB0W6e0mEUIIwfBqJzpeVWotpVITL6ARYyJQ39eN/9afQhArw3VZk7zdHIelhoRhamQcmgf6cKCt2dvNITwGjsNnNSfx2/2bsaW5FjKGxfzYZFyeNh4XpmRjUkQ0Wgb68I/Ko7j7wFYc7dR4u8nEwhenTgIAzk/J8m5DnBAmV+CqzDxwANaeKqPsBEII8QEGjsPNe3/Ek0f2CApuUYVqzznYroZmsN/bzfAJNGJMBN47fQQ6jsNVGRMQq/LPeXjnJmeitKMF3zZUYVZMorebQwAM6PV44fh+7GpthIqVYUXGeFySmjOiqFttbzfePV2GvZomPFy6A7+bUIglieleajXhax3ow7b6GkQolFgQ5x91BywtT8rE/+pPo7SjBXs1TZgTm+TtJvmdNWvW4Pvvv8epU6cQFBSEmTNn4v7770dWVpa3m0YI8UODBj2aB/rQPNCHhbxjC6VSu9ep7g7EKoPQOtiPRw/thJJl8eWC873dLK+jEWNidrBdjV2tjUhQBeOiVP+t3n1GbDKiFErs1TSiZaDP280JeP16HZ48shu7WhuRGhyK1YULcWVGnmil87SQMPw5fw7uGD8VBg546cQBbBia00q868emGug5DuckZvhtQRQ5y+Lm7AIAQxcB6cTLYXv27MHVV1+Nzz77DO+//z4GBwdx0003ob+fRhsIIY4TjhIP/01JPe7To9Pidwe24erd36GhvwcARkxtC1QUGBMAxh+mtafKAAA3jsv36/mdCpbF0sQMGAB8T0W4vErPcXjx+C842N6CcaEReH5qEbJCI6w+h2EYnJechT8XzIGcYfFWxSFsV9d5qMVEDMdx+GHou7QsOcPLrRmdWdEJKIyKQ21fN75trPJ2c/zOu+++i0svvRQTJkzAxIkT8dxzz6Gurg5HjhzxdtOIiL2aJqw+/gtdBCI+i79v8otvGUCRsbv06LTmv9sHB7zYEt9DqdQEALC5qQanezoxMTwaRX6aJsn3q6RMfF5bjk1NNfi/jFywVITLKz6sPGoeKX56ynxEOLC8z6yYRDw4cSaeO7oXr5w4gNTgMORQwSSvONqpQX1fDybHxCE9JBwGg/+esDAMg5uzC/C7X7bhk6rjOCs+1W+WnfJFXV1dAIDISOe/myw7ut9n0/NHu52x6Imy3QCAmTEJWDp0UYv6SRrtS/ZxZT/pmeHjiSAYZvz7c/DlfYnjNYm/8ow32upr/USBMUG/XmdenmlldoHfLM9kTXJwKAoiYlDWqUFZRyumRMV5u0kBZ6+mCV/UliNMrsCfC+Y6FBSbzI9Lxo3jCvDu6TI8c3QvXi1cREGMF/zYVAMAOD8z28stcY1xoZE4JykD3zdW4181J83p1cQxHMfh2WefxZw5c5CT49z0G7mcRWxsmEvaEx0d6pLtjEU6xXD/UD/ZRn1kH1f000DP8N+qkOHje0RkMGKjXPPb4E2+uC/1dA+PzEeED9cTctVvsTN8pZ8oMCb4srYCmsEBLIxLwcSIGG83x2XOTkxHWacGm5prKDD2sLbBfrx64gAA4N7cQqQGO/9je3FqNo53teHnlnr8/dRh/CFvhquaSezQr9fhp5Y6qFgZzknLxEDnoLeb5BLXZk7E9uY6fF1/CucmZyJlFPtooHryySdx4sQJfPLJJ05vQ6czoLNzdLUgWJZBdHQo2tp6/DqbwZ1aOnvR1tZD/WQD7Uv2cWU/qXu7zH93dg//FrS196JV778Xwu3pI3V/H/ZoGvGrpEzs0zQhQqFCfqT7z8M1vcNXI3q6h1Op65rb8fzR/Tg3OQuzYz1TvNaT37mIiGAoFNanilJgHOBaB/rxRW055AyL68f53/JM1hTFpWBNxWHsaKnHb3OmiBZ7Iu7xZnkp2rWDWJ6UiTNik0e1LYZhcNf4qTjS2YrNzbVYEJeCuVRN2GN2tNSjT6/HWQlpCFMoMYCxERhHK4Pwm/QJ+KjqGN4/fQSP5s/xdpP8ylNPPYXNmzdj3bp1SEwc3QmUq06GDAaOghkJvTqtuW+on2yjPrKPrX56/eRBcODwuwmFko8Z1BtE/9YZDFa33TbYj3C5EnLWt8slWeuje3/ZhjbtAAwGDm9VHAIA/G/hhW5vk47f57w53t81VGNXayN2tTZ6pB18vvKd8+29ibjduqpjGDDocWHqOCQF+UYag6uEyBU4IzYJfXo9drY2eLs5AWP30I9qUlAIVrooRTVMocRd46cBAN4sPygoHEHc64ehNOpzkvy76JaYi1NzEK8Kxs7WRhxqb/F2c/wCx3F48skn8f333+ODDz5Aejotp+YP+vQ6bzeBBKDvGqtsFkHlF98aNOjNf1tba765vxfX7v4efyzdMfpGelGb1jha29jf69HX5c/llur/QEWBcQA71d2BH5uqESFX4or0XG83xy3OHloDd9PQyT1xr369DmuGrnq6epR+TmwSzkpIg2ZwAP+qPuGy7RJpjf09ONzRigRVMKaOwekIKpkMN2QZM2XWni6DgdYHsemJJ57Af//7X6xevRqhoaFQq9VQq9W0XJOPo8CYeJq1wJZPy6tEPaDnBcZWnnO6pxMAcLyrzam2+ZogD68Ewx+Y1XFUsZ6PAuMAxXEc3j1dBg7AVZl5CJMrvN0kt5gWFY9YZRAOtrdATWsau92/a8rRPNCH+bHJmBXj+vkpN47LR7BMhv/Wn0Jdb7fLt0+EtjUbl8k6KyF9zFZ2XxSfirzwaFR0d2BzM11As+WTTz5BV1cXrr32WhQVFZn/bdiwwdtN8wkDer1gXVZfoec4fFZ9Ajdt2UgZN36oorsD+9uavd0Mu3xecxJrKg4JAl5rFx2lRiytPcfTgaS7qVhPB8biI8a0rBsFxgFrX1szDra3IC04DMuTMr3dHLeRMQzOSkgDB2BLc623mzOmaQb78VVdBZQsi1tyJrvlNWKUQbgiPRc6jsPa02VueQ1ixHEctg2tH31mQqqXW+M+DMOYU/4/rDxKI2s2HD9+XPTfpZde6u2meZ2eM+Cy4m9wz4FtAICtzbV44dh+jwfK3TotDrarR4zY/eP0UZS1tWJ9bYVH20NG754D2/D44V3o1+vQ2N8jWO/X1/yj8ii+rj+NPt3wb6m19vJHLPnzXQ0chy9ry3GsUzPiOUoPB5LupuC9H09kLgkCY17/aykwpsA4EOk5A947ZQwqbhyX7/OFC0brrIQ0AMB2Cozd6tPqExgw6HF+yjjEq4Ld9joXp2YjMSgEezVNONLR6rbXCXSVvZ2o7u1CdmgE0kPCvd0ct5oUEYNF8anQDA7gi5pybzeH+ClTIFA5lOb54vFfsE1dhzIP/049XLoDjx7aKRhh5C/D2DZIae/+an9bM1bu3YS/Ht3v7abY1K0fzkywFnBpJUaMj3e14b3TR3D/wZ9HPGesTXvR8t63J+b58ucY80f2OasJ7IFhbEdERNR3DVWo6evG1Mg4zHFDuquvyQyNQFZIOCp7u1A1dMJCXKu+rxvfNVYhVCbHb9ImuPW1FKwMV2XkAQDWVR1362sFMlMa9eKhC0tj3Q1Zk6BgWKyvq6BpF8Qp/JFhT5zo9ui0okGuaf7lia52t7wu8Z59GuPFjmI/KCjKT9nXOjFibC17h/9d8+XRc3vxLw64atRWZzDgcEeraP/oBanUFAzzUWAcYHp1WnxcfRwMgJuzCwRXkceyRaZRY3W9l1syNn1cdRx6jsNlaeMRrnD/uoNnJqQiNTgUpR0tKKVqwi5n4KVRL4ofu2nUfAlBIbg4LQcDBj0+rDzq7eYQP6TjnWy28gJWd41urdj5La7d/b1kkaPRHN2b+nvRq/OvaQX9ep3dBZ/8lczHz9n4/S8IjK2OGA8/h38RyVo2Iz+Ytmc/3d3aiMa+HpuP85ZBfgEyF11I+7DqKB4q3YGPRQYQpFKpfbE+gqdRYBxgPqs5iQ7tIM5OTEdOWKS3m+Mxi+JSAADb1bVj/sDpaXV93fhJXYdIhRIXpmZ75DVlDGseNf646hh9pi52tFMD9UAfJkfEujUt3tf8Jm0CohQqbGmuHTPVTonn8EdmOrXD630bXJyeaBlo6zgOm5pq8IPlsjiM6J82dWgHcPPeH3Hbvk3ON9LDSttbcHnxBvyv/rS3m+JWtgJjrUGPp4/sQXGLdwYB+CPD3bzA2FrlY+GIMX+5JunX0UsEdmJOdXfgqSN7sNKH92d3ZJj8NDQQJFZfR6r4lquCcn9GgXEAqevrxld1p6BiZbgmc6K3m+NRScGhyAuPRkN/L052t3u7OWPKF7XlMAC4KCXbpcsz2VIUn4qMkHCUdWpwiOYau5RptHjxGC66JSZELse1WcbfxndPldEFF+IQnUQVXlcWtHn26F5ctWsj+vXCwkYvnziAV0+WCB7LSITDtvbq+qGRNdMaq/7g9aH3/o8xnu0h9ZmaFLc0YmdrI545us9DLRIa5C23JAiMraTrSo1YWgsQ9YLvmvU2NQ94do1gW2p7u/F2+SHBxTPhPGsDWgb6BN9xZ5gqXWtF+lGwjrFEKnugosA4gKw9VQYdZ8CKjFzEBdAokMmieNOocZ2XWzJ2tAz0YXNTDYJlcpyXMs6jry1jGPwmfTwA4MtaKpjkKjqDAT+r6yFjGCwYyrQIJEsTM5AVGoEjnRr87KVRF+KfhPMeh//u17tuFGZHSwO6dVqUd3eYb+uWWH6JH0I5ks7tj0u2mIKM5OBQAECXdtBnL2xxHOd00NNvsP48A7z72Q3w9h3hHGPp74BB4nujFVRLNj7fVJWbH2hLZWQcam9BY1+PzcDZ0x49VIz/NZzGB7yLOPyAVDPYjxv2/IBb920e1esohlLRxYJd/ldDZ+fFiEDhV4Hxxx9/jCVLlmDKlCm44oorUFpaavXx3377LZYvX44pU6bgggsuwPbt2833abVavPDCC7jgggtQWFiIhQsX4uGHH4ZarXb32/CKvZom7NU0ISkoBBd7KN3V1xTFpYKBMb1krFU09Jb/1J2CjuPw6+Qsr6yFvTAuFfGqYOxra6bCai5S0q5Gp24QM6ITEOGB+eK+RsYwWDnOuHzTP04fpRMFYjepka9+N+xD/NGmFl6xOMFIGsQDDluHP2uFknyWKcWY47CjpR5X7tqIH5qqrT/HS1Yf/wWXF29A64Dj1cFtzadlvXxaz/+95F8QsjZiLAyMxYtQ9Qy97zt/2YqVezcJRoHFikt1DA7g4UPFQ+nTvnW+Z6o/0Nw//B74/VbT2w3AGCCPhmlJK7FjmGDEmJ9KzfvMAnW+sd8Exhs2bMCzzz6LO++8E+vXr0deXh5WrlwJjWbk+mYAcODAAdx33324/PLL8dVXX2Hp0qW44447UFFhXL+vv78fR44cwe23344vv/wSr7/+OsrLy3HnnXd68m15hNZgwNpThwEAt2RPHnPrv9krVhWEKZFxaB3sxxGRdfGIY3p0WmxsrISCYXGRly62yFkWF6YYX3t9Ha3N6QqmeUmBUnRLTGF0PObEJKJpoBdf0ZqvxE56g3h6oq3RwZaBPrx3qgztg/anLnfy0pxbeAGWVHVb/omwrTnPWou1ZP9x+ojPFznkj46/dqIEAPBJ9QmvtMWWrUNZa6Ud9vUpf+SbX6m5ZaBPsCQX4P3iXPw5qvy/xdJ5TSRHjPn78tD3qWkomGzgFdISG+jo442s+9qIsQl/aST+e+3Vi2eAOEo5NGKsE+kfg8TIPP8zM/jjBTIX8JvA+P3338eKFStw2WWXYfz48XjiiSegUqmwfv160cd/8MEHWLRoEVauXImcnBzcc889yM/Px8cffwwACA8Px/vvv4/zzjsP2dnZKCwsxJ/+9CccPHgQTU1Nnnxrbvd1/SnU9fVgxtDJXiAzpVNvozWNR+3Hpmr06fU4KzEN0cogr7XjV0mZCJXJsbW5VjByQhynMxiwW9MIOcNiboD/VtycXQA5w+JfNScFV/YJkSIMhnkBgo1U6meP7sOXdRV4Z+gCtj16eQESfy7woB2jP7ZSpfnbLmlX4/PacjxyqNjutnmKnjPgo8pjOMVLK+cA9Ay1P8OH1l9vHxzA7tZGp9K7+Z8d/7O598A2PH54F452avB9YzXKfWB5rkGJwFgsODORymzgb0tvsc/yK1YbOOBguxpdvCwKYaqwbwZ4/ICd/177XFQN3togmNTvgaDPA3TE2HOVckZhcHAQZWVluP322823sSyL+fPno6SkRPQ5JSUluPnmmwW3FRUVYevWrZKv093dDZlMhvBw539MWXb0V+tM23DFtjQD/fik+jhkDIPbxk+BTOY310KscraPihJS8VbFIexobcAduVMhY8ZGf0hx5b7EZ+A4/K++EgBwUWqOy7fviDClAuelZOHfNeXY2FiF68ZNcuj57uojf3S4vRXdOi1mxyQiTClMow60fkoPDcfl6ePxafUJvHPqMP40ea7N5wRaHxEhnWBeMa84lo0RWlMFdEcu7AkD7+HXEqSyCkZ/ONG/xfTx5oZ28IINT+rWaREsk6NbN4g/HPgJF6fl4AKLOhY/NNbgXzUn8K+aEwgfmsrDf2e+9C184OBPaOjvxZ/y55hvs7d9/MCOP2LcPvTZbFfX4euhatx3jZ82+saOgtSFGWsF6KQqTPOfo+M4wUUF/uscaGvGmlOHkRocijWzzh6xndZRpiS7C3/EmP9+uiRqBjhKYWW5K6nlmgYtskUCkV8Exm1tbdDr9YiLixPcHhsbi6qqKtHntLS0IDY2dsTjpeYQDwwM4MUXX8SFF16IkJAQp9opl7OIjQ1z6rlioqNDR72N1/eVok+vx1XjJ6IwPdkFrfItjvZRLIDZ8UnY1dyAaq4Xs+KS3NMwH+OKfYnv54Y6NPT3YEZcAmZler9A0zXBk/FFTQW+b6rGXTNmQOHEdAFX95E/2ldVBgD4VdY4yd+yQOqn2yOnY1tLHXa2NuLoYAeKku1LLw+kPiLD9BIBjOVolxRba8DrJQJv/smscF6n+EmurZGgPsGokedH2zSD/bhu9/eYHhWPaVFxaBroxZqKQyMC49q+LvPfYtWafem0vmEo66SCN7ptb2AsTC8emX1Q19dt/lvNu7jCcRwYK6nVb548iF69Dg9MnGlnS2zj72eCVOpRFt/ScQZBMS/+xaBjQxeW6njp1fyg2lczfqRGtTs8UA1eqiq1VGX9QOIXgbEUW196sfvEbtNqtfj9738PAHjsscecbo9OZ0Bn5+hTOVmWQXR0KNraemAYxeSIkjY1vq0+jWilCpckZqO1tdv2k/zEaPpoTlQidjU3YENFBcaxrruQ4YtctS9Z+uexIwCAcxMyfWK/UgCYE5uIXa2N+Pr4SSxOSLP7ue7qI3+j5zhsrasBCwaTg6JHfK6B2k+3jpuMJ8p244UDe5AtWwKVTPqiiyf7KCIiGApFYNaL8FX8AkP2ppHy2SpgKEi3lBol5t0ulaJqK7WUH1B7o0L10aEaIAfa1RgfHiX5uB4bKae+eGLPb5O9rbO1nI6GN8ec//kPGPRWl1D8ttE4sOTKwFgvOV/V8eJbg4LvkEGQRj5gI+WX32f8gNpW3OBJBsGI8fD76R3lMk3WfNdYhQ0NlVielGm+jf+7xb+IR6nUPiw6OhoymQwtLcJCBRqNZsQosklcXNyIx7e2to54vFarxb333ova2lp8+OGHCAsbXaDkypMhg4FzenuDBj3eOHkQAHBr9mQEs/IxeTLrTB/NjU4EC6BY3YBbs6d4vViFJ4xmX7JU29uN/W3NiFcFY05Mos/sV+clZ2FXayP+V3caC+McLxzlyj7yR2UdrWjXDqAwKg5hMoVkXwRaP82OScScmETs0TThs+oTuNqONeADrY+IkWDkRXCCaV9wGWxjHXj+GrH9EnM5ewXrG4sX3LJ1wuvuitq28E/Ue62klfIDnuGi1PzA0/e+g3qJ9Fmrz7GxJjb/wgu/6JS1CzJai6yA0U4rUw/0oUM7IGirvRWO9RL7Jv+96g2ccNsWQbMl/vevR68TPFbB+MYFRf4FgUGJonmjIdblrw/FBVt4dXa0EhfxbBXpM9nSXIOMkAjkhEU62VLf4hcTLJVKJQoKClBcPFz8wWAwYOfOnSgsLBR9TmFhIXbs2CG4rbi4WPB4U1BcVVWFf/zjH4iKinJD673j3zUnUd/Xg5nRCSgKwLVIrYlUqjA5Mg5t2gHzlWliv28ajHOZfp2c5VNztAuj4pESHIqyTg0qaekmh+0YWrN3Pv1ejHBrzmSoWBk+rylHfZ/3MySIb9JLjOxJBQWOFmIakBwxFq+ArZdIi7Q1kspvb4+L5jvydQwO4MY9P+DrulOi90uN9lnir+lrurzNf2e+eG1KGAzZd9FBJ6jObH3pnX69fWnwnVp+WvLoA7GVe3/EvQe2o41XWZ3fVrHvwF+P7sMLx/ZbzHcV7x8dZxDsFwMSUwbEtsN/rL0XIzyB3yOC4NRVgbGVwNZy/rb5dokl56TU93Vj9fEDuOfANidb6Xt856zWhhtvvBGffvop1q9fj4qKCqxatQr9/f245JJLAAAPPvggVq9ebX78ddddh+3bt+O9995DRUUFXn/9dRw+fBhXX301AECn0+F3v/sdDh8+jBdffBF6vR5qtRpqtRqDg94pNuEqtb3d+HdNOVSsDLePn+IzaSO+pCjOON+6uKXByy3xL4MGPbY010LOMDgnMcPbzRFgGQbnJWcBAL4ZKkRC7GPgOOxsaQADYF5sYMy7d0RSUCiuSJ8ALWfAGydLnaosS8Y+R04wj3VqsGLnt9jT2mi+zdZuxT+pl0ql7pMoeKS1YwRba9CD4zjB/e4ovrVNXQf1QB/WSFThFs55lO4UsXnFfD45YiyRamz9OdZHjPmBZZ9ExoDJpqZqfFx1DF264c/V2lJK9jK9Vnl3u/k2QYquSFt+aqnHNnWdYE1uvcQ+axkY99sYMZZagsiX1qU3SHyujganUqw9U1DkjP96Dhbfcmfat7f4RSo1AJx33nnQaDR47bXXoFarMWnSJKxduxYxMTEAgIaGBrC8CmwzZszA6tWr8corr+Cll15CVlYW3nzzTeTk5AAAGhsbsXnzZgDARRddJHitDz/8EHPn2q5A6osMHIc3yw9CxxlwTeYkJAVRERgx8+KS8VbFIRS31GNldgFYunhgl+KWBnTrtCiKS0GkUuXt5oywNCEdH1Uew5bmWtyUXWAzNZEYnexqR8tgPwoiYry69JYvuzRtPLar61Da0YLvGquwfOgiDCEm1uZHWlpTcRi9eh2ePbrPfJvN9YU5/lxi8eWg+KOo/JPtQRtznvv0OnPBq6Sg4QKk7hgxDpFb/13mvzdrx2bhfca/+cGw74XFwkBi0MYyXia2LhTwA5h+G4Hxy0NrPGeHDqe9DrqwwBq/EJi1AI9/cbGcV5BMuFyT8H0L5vDrxfdnncGANu2AXyxBJAzYJS4IGAyQWalrYY21wJbfD3qLCxBij5HkO93pMn511njNNdfgmmuuEb3vo48+GnHbueeei3PPPVf08WlpaTh+/LhL2+cLNjZU4lBHK7JCwnFxao63m+OzopVByI+IQVmnBie62jAxIsbbTfIL3zdWAwB+leRbo8UmYQolFsQlY3NzLX5W1+McH22nr9nRSmnUtihYFvfkFuL+kp/w7ukjmBmTiHhVsLebRVysZaAPX9efxqVpOYhUOHbxj3/irrUx8mIK6qSqw4rRG/hBg/gc436pEWMbJ7x7WpvQp9ehuLUBF6Vki27PVWzN8ezVDwfj1tIaR4bFxvN0Zuj/fTGzo5ufwuzEiLGt+wWp1FZScvlLGNkboNujz46q6IBwX+fPI+dfXBLMgzZYpFIbxPfzJ4/sxi9tavxfeq7o/b4UGPMvYvAveo2oEq0HlCzrcPantVR6y9H44b9tT7ngOA5vlJciKyQc2bx5xTqDAa+dLMGCuBTM9ePMM79JpSa2Nfb14L3TR8CCwb150wULoJORFgwFATsondou9X3dKO1oQYIqGNOi4r3dHEnLhqot/tBU7eWW+AeO48xTCiiN2rrc8GhckjYefXod3jx50CdPvMnovHjsF3xRW443T5Y6/FzhSb34iaeJqeijwWK0y/r2xQPvQUGQwF8ix/5Uav4SMcJRO9fPfbRVUXjAiUCNHzOYUqztLR7kSQMWn09xSz1qerusPMN2MCc1b9na89r4gbGVpZQcJVUUy2Cxzwn2X/7j+I+xCNikCnvx08d/aTMuybqvrclmm7xN+B0W/662DQ7gsuJv8Pyx/aLb2K9pxvraCtH7dFYm2QtTqcWrgkvtP53aQXzXWIU1pw4L+na7ug6bm2vx1JE9kq/rDyhyGiMMHIdXTpag36DHFekTMD4syttN8nnzefOM6QTXth+aagAA5yRl+HTqeUFEDJKDQnGkU4PaXiqUZMvpnk409vdiQlgUEoKcW8M9kFyVkYfU4FDsa2vGZl5lTzI2mNbGrex1vICfI3OMxYpF2QqApOYF8k+qpeZTWgZMzf29ONnVLnG/+Em6qwoX8degFZvfKrWWrbXHmXDccJBsLTDwJE4icK3t7cYzR/fh9v1brD7f5vJaDqTwm/CLZA26oPiWiVZiJNfys9JKjAzz6SwuLkkVIesTmec6KHHhyJeW8JL6jeDfXtbZCsA4H1vM42W78O7pMtGLK9Y+f6liX1red0bqwpJg/jbvAoWGd7HFn1FgPEZ8U38ahztakRUagRUZubafQBCnCkZeeDSaBnpRwZvjQkbSGQz4sbEaLIClPlZ0yxLDMDgnMR0AjRrbw5QxsWDoQhGxTiWT4Z4JhWAA/L3iEJr7e73dJOJCCtaY5uvMkimSaaBWUqn5bL2mcMRYPJVaquCWZZBy094f8fuS7egeSmMV3M87IXZH4aJ+G6PQgiJLVkaPhSPfwyPwphFjXxkdFFZaHm5Tp52FzaylRFtu01o1dH6A3sbLEHBlQapBiUwJvUWQpRVczBF/f3qLkUyp9ZzFvjdS+62v7BOAdAaGzsZ7E9Pc3zfiNmsX2gQp75ap2zaeL5i64aPzt0eDAuMxoKqnE/+oPAoZw+APudOhoBRqu5mCgZ8lrsYRo31tTWjTDmBGdIJfzKtckpgOFsCmphqXpf+NVcXmZZooMLZXfmQsLknLQY9ehxeP/2L3OrXE9ymHjp9agx4fVR7FW+X2p1QLRowtCuhYEquobHOOseRIru0gWRgwDf/dPRScDUiMqmktgoqD7Wp08EYbnSGYBy3ynvkn2Pz5xoAwuOP3t+l2PWcAax4xNm67V6fzajViqbmx9qZ6W6vMDdg/Siu1DJcri29JLaNk2RadPSPGgmkGnGTQJrYPCS4c6W0He87gOM78/XGGVDYEv+38KQ7WNPT3jLiN319HOzXYr2k2/7et6QyA9Og6/zPmX9zxxprn7kARlJ/r1+vw12P7MWDQ45rMiYKJ8MQ2/jxjSqeW9uNQGvUyPylmFacKxozoBLRrB7C/rdn2EwJUTW8Xavq6kRUagZTgMG83x69cmzkJOWGRONKpwWc1J73dHDJKpgJAphHjQYMB/6o5iW8aKu2e8ypYakbkJL6hrwfbhtLvxYJg24GxeOA9IFlwS3xUSFCsaehkViqI5gdNu1ob8eihnfhz2S6r7RSjMxjwxsmD2NPaKFo5m+M4vHeqDD+p6yRHjE91d+CCn7/G10PL8YkFXjqLEePDHa34v50bJOdoeoJwCSLxFGBrF3BtXXjj3yuVEt822C95AWW0xbck56QLRnylR4ylUvSF+6xBMjVerO/4o9D8CxCuDIw3N9fi/3ZtxLbmOpuP7dfrcPcvW/GP00dstoX/btp5F6EG9Hoc7dTgjv1bUNnTKXjfYssm8bf/wMGf8biD31vJwJj3GfPTp7t4QbI/n0+PKjAeHBzE22+/jYYGKl7kLWtPlaG6twvTo+JxWdp4bzfH7yQGhWB8WCQa+ntwusfxOWWBoFM7iH2aJoTJFZgdk+jt5tjNVJGa0qmlmYpuLYil0WJHKVgWD+TNhIqV4ZOqEzjaqfF2k4iTfmlrxhU7v8U/Th8xjxjzT9ab+ntR2t4iqCIrxlqxK47jcMu+TXjh+C+o6e0yn/TLeCnVOgOHjsEBtAyMTIs0bkd8lEyYlioeJPOJrXvLD2gE1XJ529jZavy9cGbq0XZ1HTY2VuHJI3tEA/m6vh58WVeBvx7bL1l9++Mq40oiayoOAbDsD/3QbcJ+OdapgQHGoN5bpOaD9+mG+5m/rrBJcUs9bt23CaUdrXa/lljxre8aq3Dt7u+xvm64SBP/Mxjt3HGpZcqsFXxzdKqCluMkLxyJZQNIXczSGgzY3FSDxr6RI6yO+qTauD/+rfwgyrva8dDBHZJB8sH2Fpzu6cTnteUOvUY7b8S4SzeIJ8p2o7q3C3+vOGyeBgGIv9/Rpo3rOQM6tYMjglypecX8fdifR49HFRgPDAzg1VdfRV2d7aslxPV+VtdjY2MVohQq/CFvuk8XRPJlplHjYqpOLepndR10HIeFcSnm0RR/MCcmCRFyJfZqmuxORwo0pn2e0qidkxYShltzJsMADs8f2z/qFFPiHaZA7/PacigY42kR/6Tys5oTeORQMV449suI5+oMBmxoqES3Tis5cqbnOMEJbod2UDQw0HEG/LlsF27Y84OganBTfy+2NNcKRoXEgkLAvpE4fvDcOxScaSVGafnvo2kU8+mrecWBxIqI8YNxqbmklumiYo/jVy/Wc5wgeLB1YcPVenVa7NU0WcwxFh8xVg/0YVtzreCixTNH96G+rwc7HTg34X/ipn74V/UJAMAnQ/8PWKbSji6AEixNJmiL9NI/jgZtes4g2U6xsUmp7f+r+gReOnEAbw1dXBmN9JBwAECPXod/1ZzA4c5WvHe6TPSx/PWdHcH/zg8Y9Ob9ecCgF6TDDxhERoxHWXxuQ0Mlrtq1EV/yLqiYXtuE//3q0loP1P2FzXWM582bJ3kfx3HgOA6333475EMLtu/cudN1rSOSanq78OrJEgDAfXnTEa0M8m6D/Nj82GR8UHkUxa0NuCZroreb43NMlXeXDBW08hcKlsXC+BR801CJn9X1+HXKOG83yac09vWgoqcDacFhyBg6wBPHLUvMQGl7C7ap6/Dc0X34W+I53m4ScZCttL/dmkbB//N911iFtyoO4X/1pzErJsF8u+Vczw5emmGPTmtOg+S/ttZgMAfpJe1qnJVg/M1dffwXHOnUSH5PpapSS43K8U+oe4bm8PJPZPmpzvYu/2ML/wRarCiYVNA/IFIkyDQEIJZKbeA489JAeo4TvNeWgX6khYSB4ziH14R1xqqy3TjSqcF1WZPMtwlG5nl/v3T8AGr7ulHf34MrM/IE27GcZ20vvfmig/F1WAwHrrYKUg3o9SjvbkdBZKzN17Gnjoe1VGp76AwGQcVkZx1oNy7n5IopVnLePmR6P/z1oTmOw6p9xYiEQqSigH34F6ks528PGIT3cRyHj6qOoVenwy05k0c9YrxVbRz0LG5pEGSk8tvEv9gkmLdu54hxc38vKns78evYCaNqqyvZDIzb29sRGxuLyy67DAqFQnBff38/1q5di6VLlyI1NdVtjSRC3TotnjqyB316Ha7MyMX06ATbTyKSUkPCkBkSjqreLtT0dpmvAhLj2sXHutqQHBSCieHR3m6Ow85KSMM3DZXY3FxLgbGF4tbh0WJPnCSOVQzD4O4J01Dd24WD7S34W1kJrk6hlQH8CT+wFDv1DpYpBFVc+UwjwaYpTWLbNKUkmvTqdeaRUqkRth5emu2RoTT9Bon0T6mRaqniTvy22R4xHr7dVb8SYssL8ftHavkh2VALOPPjRr4/PWcw96mOMwhHtHSD+KDyKLY21+IvU+Yh1c11FUyf24muNvNtAxJLI9UOjShuaqrBRSk5I1LsnWHqH9NFB5ZhzRcNhBccRm7/uWP7sFfThEcmzcL8oaw6KdaW1DKxHDF2NDDWc5zPFTnkvyOxY2i3Totvq43z4c9OcG5gQZDdwQtCe/Vai+XYDKjv7zHXu1iamO6yCtwDFpkWgqrU/MDdjotyAFDd04WdrQ24PH08/nJkD071dEIVqsT0YNsXYTzBZmD8xRdf4KmnnsLGjRvx4IMP4uyzzzbf19XVhbVr1+LSSy/F7Nmz3dpQYqTnOLxwbD/q+3pwRmzSiCuLxDnz45JRVd2FnS0NSM+gwNhky9Bo8ZkJaX4ZPOWFRyM5KATHu9pQ39dNBaZ4TMs0zaf5xaMWJJPj0UmzcW/Jdnx88ijS5CFYGEcXi/0F/wSTEwkm5VZ++/hTmKSWPdFxnDAw1mlFTxz5t4mtzWpPFWNHAw7T6LBUii8/6LZVHdnq6wgKTY0sItbNm5/YrRUfebJ8/2KBkmXBJ35g3KvT4d9DgcMXteX43YRCR9+GU4J4U5BsfYYd2gFcsXMDohQq8238VHlHmIJR077IMjBHc4IRY5F9Zq+mCQBQ1qGxGRjbO2J8uKMVQTIZxodFORy06TjDqPY/d+A3RybyG8EPZGudTKUesEi3N+nR6UbUFuDXJijvbndZf1l+UsLAWCd6u7WLJY+X7YJ6oA8Mw+DUUG2fH2qrMH2CbwTGNucY5+fn45NPPsHtt9+OVatW4cYbb0R5uWOTx4lrcByHtacOY39bMzJCwvGH3Bk0r9hFzNWpW2mesQnHcdg6FBiflZDm5dY4h2EYnDnU9q12VI4MFC0DfTje1YZEVQhyqJK9SyQFh+KhSbPAgsFLxw7gsAMFc4h38U/oxM4l+cGVJX76oFTVaD1nQCcv8OvR60QDWP62xAJje1KZHV2WyNSOQT1/xFh8Lu5o5uhKrStrOoHm9zG/JgS/lyz7xNaJv44zCIKTHl5K8mgrMdvCT5HvsrL/WDJlJvDnpEtlK9hiGXxKzQW2FqSGK5Q2X8eeEeNBgx4Ple7AvQe2j2iLPXRWim95i63vGn+ftnfNakv8742aN8e/V68TVIwfMOjROjCcxq0e6LO5/rW9LEf7+cF6v0SQbK1vTAH+L7zlo3xpWU27i29dfPHF2LhxIyZOnIjLL78cTz31FNrb293YNGLp89pyfF1/GpEKJR7Ln40Quc0Bf2KnzJBwpASHoqK7A40i68EFomNdbWjo78XE8Gi/Hmk1BfVbmmv9egkBVzIVc5kXl+SXmQC+akZMAv4wbSa0nAFPHdmD6p4u208iXieYqydyQscPrix/Q/gpzwMS8zb1HGdeDgoYGjEWOcm3DIy7tYNWg3IxjlYYNp3ADnLW+wAQnvg6Ot+Yn3LJv0hgCpD4rykVSPZZnHjbOpnWc5xooTHAvmBuNPjb5xdS8yTTZ8RapKBbsnaBQWpfMJHKfrDEH+3s1A46XnzLYHBZoOcqUhd7THot0videg3e96aNd7FExxkEVc0H9HrB/OYenc6FI8YWgbE9I8ZWPiuWt5waX3FLPd4qL3X4oomrOVSVOjQ0FH/84x/x5ZdfoqqqChdddBGdVHnIj03V+KDyKIJYGVYVnOHXgYovYhjGnFJK1amNNg+tXeyvo8UmKcFhyAuPRkN/D050tXu7OT7BlBmxwEaKHHHcb3Ly8Jv08ejRafF42S40j6KSL3GvDfWnsbmpRhBM9tgIRDu1g3in4rA5bZGfAtwjUWBKz3Ej5uKJBXX9FkHc/+3aiGt3fefAOxrFiLEd1az5tzr6OsIAdWQ/CQuIiY9M80dOjVXAbZ9A8wMLfhEr/ufR3N+LRw8Vo7ilAV/XncIV338tWD/WGfygpd1LqyKY+kcszZfPcl8UjHZbGenc1dSAy3dswH/rT9lsSzMvMK7u7XJqxNjdFzPsMWjQY2NDJfr1OosR0pFt41/UcvQClwn/N8Fy1Jm/X1lWqe7R2/f9sMfIEWP+tAvxegT725rxlyN7RFdqMAXa/IxXA8fhL2V78U1DpV37kzs5tVxTdnY21q5di5dffhkPPfQQMjIyXN0uwrOluQavnSiBjGHwSP5sTAiP8naTxiRatmmY1mDATy31kDMMFsb7/1xJ/qhxoGsfHMCRjlbEKIOQ54cF1fzB9ePycVZCGtQDfXjkUDEFx15m4DjU9Rrn+PXqdNiraYLWYMDfKg7hpRMHBEGercD4lZMl+E/9Kbw4tHQTf8SY/1zhiLEBfQbhyIqtk/zmAeM+42gw4Hxg7NjzHE1F7hcUDuIvzWTcjqAqth3b7tFp7RoR448y90qsG/zayRIcbG/BR5VH8Vb5IVR1d5rnIjurT1Ct17PLRJmYRoxt9VJlTyeu3fUdNtQbC0UNWAnG+D44blya6Mehi+jW8NOAK3s6Hd6vjcs1uT7jq1+vc2i7b5UfwhvlpXj3VJlkGrEpKJRaj9wR/LZZfhYdFoGx5TJKruotjjNmPRwdKiYnlRnD91nNSexqbcTr5Qfteg1+/9W7YI3p0RjVOsaLFy/G9ddfj8TERFe1h1j4sakaLx0/AIDB/XkzMIMqULvN+LBIJKiCcayrzSU/aP5sn6YJ3TotZsUkIsKOOUa+bmFcCmQMg+3qOp+ay+INu1obYAAwLzaJahS4CcswuDe3EEVxKWjs76Xg2Mu+bajEbfs34/vGKrx4fD+eKNttXtsVADT8FEQb82gPDi33UtFjXFapR2JUSFC0ysAJR1nsCJRMRWkcNeBkKrWjI3i2UmwB48ijKUDkBxH8oFFrMKBLO2hRAM22bp3WrnRcqYCcv+aqKXW7aWD4OzqaNZstX8uevnKHI50a/K281GY/HepoQZt2AH+rOIQ/HdqJmt7hQlH9EqP3AByazsf/Xr1dcQinhpYls5eWM7j82F3V04n/2/ktHjz4s93P2TR0EeBQR6vgAg7/u//44V3Y1dqIT6pOjHj+aFimY/Nfc0CvF3yvOlyYpWAAh4dLi/HAwZ9xqrvDof25ysrvGP83kX/xyNPrjVsaVWBM3OvrulN49UQJWIbBQ5NmjomRO1/GMAzmxRnTqXe2jlyvMpBs8fOiW5YilSrMiE5Ap24Qv7hg/UJ/Vkxp1B4hY1g8MHGGOTj+Y+kOqycJxPVMI4SfVB8HALxz6jD2DFXb3dQ8PMrFDwRsMc2PM6UX2pMuqQcnHEG0Y11aWyPXUrSOjhhzzo0YV/Z04r6Sn7DLSsHKn1vq8ZviDdiraZJcAupQRyuu3LUR3zdVO/T6xlRq2yE0PyDvkkh7t/xMTbY21+KFY/udOlEXK57mad83VmNDQ6XNx/H74kC7Gn89ts/83/16PY53tokGsiqZbMRt9jrY3uLQ4/UGzuVVqfdomqDjOBzvarM7dd50LVnJsiNGaC25OoXecsTYct1gfqDZ4WSxLzEd2gFzVe2drQ12ZXSYWF7K4Kd38/uszwWFylyFAmMfpOc4vHRwH94qPwQZw+KRSbNtlssnrrHAPM+43sst8Z5unRZ7NE0IlSswO2bsZINQOjXQrR3EwfYWRMiVKIiM8XZzxjxTcGxKq37w4M/mEUfiXv+pq8AVOzfgZ3U9VKxxZEvBDJ/I87OCHAliTIHWgEEPPWdAt96OwNhgEJxEuzO11tHiW419vdjUVO1wYPzC8f043tWG908fkXzMG+WlAIC/lZeOWAvVZJvaudUCnBkR459wd+sGzYGw6WICPzDu1Wnx4vFfsE1dh6/q7J/zuE/ThJ/UdT4RGNvLco9p5I2W9+i0eOxwMX53YJt5He2f1HW4a98WVHU7fqEvK8S4HGbzgGMj8jrO4PJ1jI/z1peu6rXvvTBDF1H69DrBPu3sHGJHWAaMllkJ/ItA3S4MLvm/KUc7NQ6NGFsrVtimHc7U4S/R5q05+SYUGPsYjuPwTNke/KviOCIUSjwzZR7mxiZ5u1kBY2JEDKIVKpR1tIoWDQgExS0N0HEGLIhLhpJ1/oqwr5kbk4RgmRy7NY2C4i+BZLemCXqOwxmxSZAx9PPvCTKGxR9yp2NFei569Dr8+fAulI+BInAff/wxlixZgilTpuCKK65AaWmpt5sk8M4p4/zHna0N5hFafnVVV4w9qfv7BL8lUieMOo6zmOvqO78/hztb8fKJEoeXBDI9vs7KfMAQmfGCxIBe7/J0YmeKY1kuA/VFbTmKWxrMqdT8sItfLOr0UNr8xoZKPFy6wxwgWlIP9GFV2W789dh+h7IQfFljf6/5sz4yNMf0r8f241RPJ8o72h3eXnxQCADHL+Do3VB8iz+XtaGvFxwnnPJgUtPbhaqeTvTqdOa09A7toMfXVe63+A5ZS6V2dokvW051d4r2kRTLKRrCUe7h+zS8paZcmQbuDDoz8jF9eh32apqRFR6Bl6cvQn6kbyx4HSjYoXRqA4BdmsBMp96mNo6oLh5jqfsqmQzzY5MxaDBgZ4CuV20qLDd/aMoA8QyGYXBt1kTcM6EQ6cFhfj+3e8OGDXj22Wdx5513Yv369cjLy8PKlSuh0Wi82q4+vQ67WxsFRZaqejrNJ5CuHtU51dNpV4Bt4AyC9ENb85j9jdRFZFMKspxlXB5EOJNuaZle+kHlUTxzdK9gmRsTftB0uqcTPTot3igvxaGOVvyr5gS0BgM2N9UIUowPtA1ng1hLMfcn/AsatX3dox6JTFSFOPU8HWeA3uDafUjNG7VuGejDuqpjuLz4G/ynrsJ8e+tAP+7+ZRvu/mUbjnQOr03f68XvcPBQCrugCj5nEATGlkssuUqnblCw3JotXbpBrKk4hFdOHMA7pw6bU7Kt6dAOoq63G388+DNeOLbf4WyW0aKFcH1MiFyBf5xxDrISo9HZ1geDi38IiG3zY5OxoaESxS0N+FVSpreb41GawX6UtrcgRqnC5Mg4bzfH5c5MSMWm5hpsba7D2YmBVU2/V6fDL23NCJXJMS0q3tvNCUjnJGXgnCT/3+/ef/99rFixApdddhkA4IknnsDWrVuxfv163HzzzV5pE8dxePzQLhzuaMUZvCyryl73rSVdYWcBIQMsqxT7zoixK5zsbsfM6AQc6mhF62A/vm2oxJyYRPNIrMYN2VeOpFsGy+To0+ucXoKpoa8Hpbw5sQfbW/BjUzXeLC8FA+NF5JkxCTjBS82tduN+5y3HOjU4MsqVDKKVKqeepzMYoGNdO2LMH1Vt6O/BjpYGcADeP30ESxLScbqnE/vamsyjxN82VLn09Z0VLleiT9834nfEdLFIybIOj8g7os6BbAgdx+HroWrnAPCdHX2o5zi8erLEnKEwPiwKl6TlON5QJzk8YsxxHN544w2o1WrB357gaOrWt99+i+XLl2PKlCm44IILsH37dsH9HMfh1VdfRVFREaZOnYobbrgBVVXe3/FjlEFQjKEUVn8zJSoWEXIlDrarPTJvxJf8pK4HB2BhfKrNtQ/90dSoeEQrVDjYrkabyCjBWLavrQlazoA5sUlQsJQsRJwzODiIsrIyLFiwwHwby7KYP38+SkpKnNomyzKj+nekU4MVP/wPhzuMIzq7PFQ88VSP/ZV1e+xIufZXn9WcxNunDuGRQ8VYffwXHOnU4B+VR936mo6MWoXJFQAcX/rKhAMExcHUA334rrHKfN9WdR1WHz8gmC/d5YfnDg9OmokohXTgeqijFU8e2TOq14h0MjDWg3PLck0m+9uazQGwjuPw6OGdeORQMb6sHR493usjWYThQyuFWAbGHdoBMBje391lNCntlungUkxBMWDMYhztMcL0zx4Onx0ZDAa8+eabaG5uFvztbo6mbh04cAD33XcfLr/8cnz11VdYunQp7rjjDlRUDO/k77zzDj766COsWrUKn332GYKDg7Fy5UoMDnq3IhrxLhnDYm5sEnQchz0BVp3alEZ9ZvzYqEZtScYwWBSfCgOA7erAKrBmTqOOpTRq4ry2tjbo9XrExQkzSmJjY526SC6Xs4iNDRvVv3ZGi6ruTnN1YU85xhshtKVHrx1zFxszwyIQHxSMI50afFNfCWB0lYod0WVlGSFL0UFBTr+OKQjZO1TNPCciEgBQPpQtkBkWYX6sPxXcEjM7PQWJoaFufY2UmAjbDxLByFgwCtdf0DV9vqZBkIVJxilk/BT5tFBjwTBfWegxJjgYwMgpGYMGA4JkcgQr3BMYO7I8lyW5EzVNpsTEIT0sHOXdHRgIwqiPE7GxYVAobP8+ObWX8auMWVYccxd+6tb48ePxxBNPQKVSYf369aKP/+CDD7Bo0SKsXLkSOTk5uOeee5Cfn4+PP/7Y3O4PP/wQd9xxB5YuXYqJEyfi+eefR2NjIzZv3uyR90R8l2kOZvEYmSdkj/q+bpzoakdyUCjGh0V6uzluc+ZQdeqtAVSdul+vwz5NE4JYGa2FTtyC4zgwTgR+Op0Bra3do/q3ICIRaxcvw5o5S3BxarZ52+G8kZNgFwZsueFRYAB0OTDfsl+vR6hMMaaC41iFCi9PX4SrMvMwPiwSj+TPxvqi87Eyu8BtrxkzNOLY0G1/OqcSrNMXTWbwpp0oGBZL49PN/70gLhlvzTwLb89aYr6tMMp/pyD1dQ4gWCIsODc5E5FDQeToXkTv1CfRN6hF34DrB61ilCrB78TCmBTMHDpGLoxPwSvTF+GVwoWCxyi8XLgyyOIzUvIywFSsDKybwrJ4VbDTz3122nykBjt20SUjKAzzY4zTYv686+dRHydaW7uh1doesfaLOcam1K3bb7/dfJut1K2SkpIRc52KioqwdetWAEBtbS3UarUgHSw8PBzTpk1DSUkJli9f7lRb7R2qt2cbrtjWWOXuPpoRE48QmRy/tDVjgNMjWOYXX5URHOmnn4aWqDorMQ0y2dhNtc2NiEJqcChOdrejob8H6WHGq8Fj+ftWolGj36DHwvgUBCuc25fpd8m2QOij6OhoyGQytLQI1yHVaDQjRpHtNdpaGizLYEpsPFpbu5EfEWNeXmdBXAo2DqW85oRFmVOtRytGGYTU4DBzIZlIhdKudUODZLIRRXL8WahMgSi5Cldl5OGqjDwAxs+ykBdMTgiLwsnudpe9ZmJQCDq0jhUAUjAsgmQyc8GkCLnS7ufPiI43p0jnhEViKq/2xpyYRBgMHNKCw5AcFIqG/h4UxaXieFeb26oCu5MMDEIl0nBnRSfi6oyJuGHPD+aUY2fIwSBoaM63I3QGw4gKx64QLldCDhZdOuMIcXZIBP44cRYOtDdjZnQCgobO/TJCwlE2lN6bGx5l/tsbwmTCzyhMroRmaGpYkEwGJeOerI0EVQiqepybO58ZHIEYZZDVKvYAECpXmFPEs0MjkR8Rgy9qytE62A+93uDUxVdH+cXZvrXULak5wS0tLYiNjR3xeFOql+n/XZUOBgynhLlKdLR7U1rGAnf20aKUNGysqcSxwQ4sTfPvIly2+onjOPz0izEwvih3AmLDXbcf+6LzsnLwztFS7O5qxtR04xXJsfx923fK+Jt27rjsUf9GjeV+cpWx3EdKpRIFBQUoLi7GkiXGkTKDwYCdO3fi+uuv93LrgLmxybgkNQfhcgXCeCNcueHDgTELZlRVW4NlcuSERZoD42iFys7AWI4Bgx59/hcziZIKorJCI3B52ngAxjm4rgyMVawM8apgwVq7tshZi8BYMTIwDpbJzMFsckgoGnqNJ/AFEcPnkTOiE5AZGoGrM/PQ3N9nzj4CgEfzZ+N4VxvOSczAf+oqUGNH9V1fo2RlCJOLjwqHyhWIUqqwunAhVKwMv93vXGalgpUN9bVjgbHeDVWpAeNFkkRVCCqG6gUkBoWAYRgsiEsRPG5caKQ5GB7v4cBYxjCC+dURFiP3YXLFcGDMyiB3Uw2RhFGMGIfI5YL56zHKIHOb+VKCQs2/FzmhkUgPCceHc38FFSvzSFAM+ElgLMVW6pbYfZa3Wf63s+lggDElrLOzz/YDbWBZBtHRoWhr66Gq1BI80UezIuKxEZXYePoUpgf757JZ9vZTRXcHKrs6kRMWifBBGVpb/e+g7oi54fF4B8CGqlO4LCkbMTFhY/b7pjXosa2+FkqWRZ4y0unPln6XbPNkH0VEBNs1X8odbrzxRjz44IMoKCjA1KlT8cEHH6C/vx+XXHKJV9rDJ2MY3DyUynuUd/I6KzrRXEgnJTjUrmVDpITI5IhVBQNDI4mpIWF2Vb8OksnQp7f9mfGDNE8KYmV2F8cBrBf5uWFcPgDgy9py822hMrl5XqSCYZ0q4qNgZYhUqBwKjBUMCxWvoGl+ZAxq+7qRFRJu/twmhEWjtMOYBTE5Js4cGMeqgnBLdgFK2lvMq1RcOTQ6zpcVGoGsUOP82ThVsDkwlgoAfJGSZSU/U9PtOUPTrBzdV0wULDs0CutYhXCtG6pSA8Y5xoVRcdjUXIOliemS5/9nJqTifw2nsTAuBTFK5+esOyNUphBcyLG8eMH/zFQyuSC12pUcTaWeH5uM1sF+zB1aJSCKV3gtXhVs/l6EyRXmOd4ZIeHmwDhzaG635YUAd/OLwNiZ1K24uLgRj29tbTU/Pj7emOqjVqsRExMj2ObkyZOdbqsrT4YMBo5OQG1wZx8VRsZDxcqwt7UJfVqdx4qKuIOtftrSVAPAuOxEIOxzSapQ5IZH4URXO451tGF+TNiY/b7tb21Gn16HebFJUDGyUb/HsdpPrjTW++i8886DRqPBa6+9BrVajUmTJmHt2rWCY6kvmBgejWVJGQiRyZHMm9/GH+11RrBMjoyQ4cyLjJBw7IDtehRBrBxK1na14gi5Cn16YeAXpVCifZRryNri6Ch6uB0nrPx5qdHKIPQM9XuwTA6tA+nQJgqGRYiDU5uULAsV7zkTw6Pxm7QJSAgKxkU//w8AMC40whwY50VF44daYzaigpXhotQcXJRq/3IxCUHDa/XGejkwzgmNxO/zpuPT6hP4uUW64CQLBjJGGBjz9znLgPmZafOx5tRhBDMylLQLz7WtUbAsglnHQ48+vXvOwcLlChTFpWDC7CgkWFljeWJEDN6aeRaSgkKxaeh8CXD/0kiAsaCdXM+aU9jDFZap1MJaCjI3zYGO5/WP5Si2mGilCo/kzzb/N/+CQizv72ilyhwYnxGbhMzQcCQFhXhtdR6/mEjIT90yMaVuFRYWij6nsLAQO3bsENxWXFxsfnxaWhri4+MF2+zu7sbBgwclt0kCS5BMjlkxCeg36FHS7pklybzBwHH4SV0PBsCi+FRvN8djTJW3t4zxIlymAnKWqWGEjMY111yDLVu24PDhw/j3v/+NqVOnertJIzAMg99NKMTK7MmCNL6zhlJgM0LCndpusEyOCWHG9VzD5QpkhthXaVclk0Fpx8leGO/E99bsybggZZxxhNrN7DnBFwZOtpfeieA9hj9iFOxkhVvFUFq0Y8+RIYjX7yrWeKFExrD4fe50zItNMo9qAcCFWeNxTdZEvFS40Kk2xqmGT/odbaurKWUsskIjbC7RZxpl5KfHR/I+u0iLz3piRAw+PPs8ZDtYqFPJypzqkx69Fjo3FPsNVyjBMAySgkLB2sgWTQ8Jh8JiVJ3/t7sSfeUMI7goEG5lxDhIJnfbcowJQcO/QaEy25WvVRa/dfziW+m8395oXpAcrlDi0rTxmO/F8xW/CIwBY+rWp59+ivXr16OiogKrVq0SpG49+OCDWL16tfnx1113HbZv34733nsPFRUVeP3113H48GFcffXVAIwHzOuuuw5/+9vfsGnTJhw/fhwPPvggkpKSzPOmCDEtbbPDypVWf3ekUwP1QB8KImMR54GTL1+xMD4FLBhsb66Dzs1XfL1FazBgZ2sj5AyLOTGJ3m4OIV6jYFm8MeNMrJ19NmbFJOKlwoV4dNJs208UESyTI1YVhA/nLsPrM84UnJhaqzodxNoZGPO2d2FqNm7LmeLUcieOsidVkp/WGGXHmrSCEWNecMUf9Y1XBePZKfNx13jbF1eUrMzhYpiWwTT/77MT0/Fo/hykDJ20h8kViFSqcFVmHnLDox16HZPJQ/OS58Qk2vV5m9vlhhEyxVAhJtuBsfFxggsfvM9X6vmWwY/t9rDmglb2CpMr0KfXo7Kn06HnWWuDiWWQaY9Q3kUdfloz/+KBK9OZ5QwL1dD2ZAwzYv/ntyGIlbmtajb/9yHaju++ZQ2C1ODhLBt+kM0fSQ4dxZJQruJwCxiGQUpKCpRKpeBvd7OVutXQ0ACWtyPOmDEDq1evxiuvvIKXXnoJWVlZePPNN5GTM5wOc8stt6Cvrw9//vOf0dnZiZkzZ+Kdd97xyPsh/mF2TCLkDIvdmiZoDQa3XYnzpm1DI6aLA2i0GDBepSyMjsMvbWrsUzdigty59RV9WWlHC3p0WsyOSUSIlfmAhAQC0xxQAMgNjxYsN8mf52aLaT1P0wldM2++q5JlJecHG0eMh48hcoYVrfBbFJcCBcPiYl76rjtOdhfFp8LAcbgmcyK2NNciJTgEL58osfqceFUw6ocqy9ozYhwpNWLMO7lXsTJMiYqza8RawbJQOjimY5xjPPx6YiOWcapgvDZ9MeKDR39xeEpUHD6ddy5ULIu/Httv9/NmxiTgZFc70kLC8Euba7LUTOcstvYf037JD4ztuVDiaJCrZFmHL2y4eomzULkC7VrjHOcIJ9b85Qd84RYXEkzbnRebjG3qOtwyaQreOXpoVO2VsyxUnHGflTHMiKCb34ZQucJtVe/5+0acKhhVInUV+KnlloFxRkg4rsmciHGhERjgzU/nB9n2jES7m8OBMcuygnV+Pbnm7zXXXINrrrlG9L6PPvpoxG3nnnsuzj33XMntMQyDe+65B/fcc4/L2kjGlhC5AtOj47FX04TSjhbz+nZjhc5gwI6WBshEqjAGgjPj0/BLmxrf1VRiwjjfSwUdreIWYxp10dC63ISQYfxCOxEKpdXAmF9EyTIg5M+FU7LCwln8uXgqixHjIJkM3bqRwWBGSDjOTc4S3CazsQSYZTEreypvn5WQhtlDmSTXZk3EXk2T1ccDxn5YGJeC0o4W8yirNfwRY376pGVgDAByO5Y5UzCswxeoLUeMpUY5s8MiXbbUmimI4H/etj6TMLkS7805B+2DA7hm93cuaYcp08BWnylERowvTMnGj001VqdY8VN85QxjM93ZmVR4eyq+OyKMFxg7N2LMC4wtMiIqh/4+LzkLd+dOQ3piNN49egijyUmTM6z585Ex7IgsBP5nFiJX2Jz76yz+RRCp/SlEpsCgwdi3loExwzD4v4xcABD81vBHjH3hAv7YG/4ixMUWDAUVpiBjLDnQrkanbhAzohM8XvnPF5wRmwwVK8PW+hr0j5G1RU30nAE7hy56zI1Jsv0EQgKYrRPkZF5BJcsUYv5JouVJK390J8iiYqzUyJnYciu2UqmVMunXlWI5EmfPyJyCZXH/xJn4cO4yu0b+gmRyXJAyDldm5GIcb8Sen0qtlBnbKvUeWd7sTQUrLL5lTyqvgmUFAZyjo5yjwR+ptVU8yvRYfjqpPaPyVrc5tB/YSukWGzHOCo3Ap/POxe9zp0s+j9//IXaM9skZx0eMk4Ncu/xdmGDE1/HzHv46wvyCXfyRzxC53BzkjXailoJlYRgKdhUWgbGMYQT7c6jFHGN3pVXz15Tm/25E8c4jrVWt5+8DgsDeg99NKRQYE2LD3JgkyBgGu1ob3HYlzltMadRnBlgatUmIXI4zYpPQq9Nhd6vt0RJ/crijFZ26QUyLihOs50oIGal9cHj5GLETd8HcWotgRSkIjIWnVaY5noDIiLFEsCJ2MmtzxM8iqOW/jlwi4LUMRKUCU/6zFQwLGcM4VPn2tpwpuDpzoqBN/PczPGI8fBv/NfkB5fByP0ZSQRa/DxWsTJCi6Y65vFLE3qcU00gqPwMhxo65nJYEn5fdqdTG1+SP8rEMgzC5wuq+x/9sbM0PVTAsGItAzp69aFXBXIeDaUv8iyvJwaGYHhWPuTFJSA1xPOjmj2rmhA1f7OFXbU4Ldq6wnxg5w5oDUQXLCn5jVKzM4jMQfl6uruT9zJT5yAwJx7VZE823BQm+18N/W7vMxv9Nmh2biJSQMKzMLrBZAM0TKDAmxIZwhRJTI+PQoR1EWUert5vjMv16HXa1NkLFygQVOQPNmYnGCrVbx1h1alOGQyCmyBNir0vTjPN4zxyqVA2IB1usYFTEMjDmB6GsZFBnWZVaarkjsUDE1oixbChgFduGVGBj74ixVEDrKH5wJhcZZReMrrIyyb/5n0+IRDDGH0FXMKygrz259CK/72y9rljg7MyauZb7IyC1Tw1/3qagPFyuRH5EDM4dWrPZFkdGjIdHr4fbwtpxgSU5OBS/5k0tYJ2o/2wZTD41ZR7+VDDHqaWN+H3JHzGOUqrw/NQFWDvrbJfWo5GzDLSc3vzaltMx+NMVQmQKKHkX4xwp/maPqVFxeHPmWUjjFdLiL4UmYxjzqK+1Yq5pwWFgwWB2TCJilEFYv/wiXJo+3qVtdZb3x6wJ8QPz45JxoF2N4pYGTI0SXzvb3+zRNKHfoMfi+FSPppb5mpnRCYhUqrBP04RO7eCYSCnXcxyKWxrAAjiD0qgJkXRjVj5+nTwOndpB/KvmBABjOp/G4nEsGPx91hL06nQjUp35J8FyhgXLm1ccZBHU8edXSv3WiAXB/CCGAUbMVJUxDOQMC/3QCbRSkE4pQx9GFgSzNmLMny+qYmXmYjmOViHmU0qkeJpHjBlhsNxvek2ZDBia/q2SyYWBscSxS8Wy6DG9FssimOEHE5473lkGZPzbLYuN8QPnS9Ny0DogXP/Ych65tdc0fV7mEWNBCr9xHjzLMIBpPx3qE5Zh8Py0IrveGyBMRZa6SGGaW23qi2CLQEpnIxGPZRjBkj4yhjGnFtuLvz+5opjXS4ULwYIRfA9VrAz5kbEjHnt2Yjo2NdVgdkyiXfP4LckZ1hzAtw0OWOxTcsHFk3CFxYjxKAP0+bHJqOvrxnKLmgf87yr/N03Osnh71hJU93QJih1aClMo8dn8cz1Sbd9RvtciQnzQGbFJYGBcE9bRH2Rfta25DkDgVaO2JGdZnJ2aAT3H4ecxsizX0U4N2rQDmBwZh0gnUvEICRQMwyAxKEQ48iVygt+n1yElOAzjw6NG3CeY88cyghEtfhAWJBOm9ErNwRMbbVKy1keBZEMB+fA2hCerYiwLevH/WyEx0jmawFhucQHBcvv84ltSr6liZYI1kKVGKRUWQSg/RdgXUqnFPkN+u24aV4AHJs4cEUw7+poK84jx8HbEMiKcXV4om5dKLDU6ORycG+8/JzED06LicGVGrs0g1fRdOicxAwURMbgvb7pT6baCizIuGM3NDY/G+PAou4q6/S63EK9NXyw413LkHcgZFjdkTQIAXJKaM2LEOJYXGGeGCNesFvtMHJm3HqFQ4s2ZZ+GClHGC2/mfG/99yxkGMcogFEbH29x2kEwu+dvkTTZbVFxcbNeGtFot/vCHP4y6QYT4omhlEAoiYqEZ7MeJrjZvN2fUurSD2N/WhHC5AtPHWKVtZ/wqPQvA2EmnNs0dXxRPadSE2EMwT48XbJlO/zp10pVxBSnCFinNlgEeP+jmj7bJGfGg0cRWOrNxxNh2KjW/bdZGjKXmTVsW+XKEUiI4M72u3K5UamHxLalRSpVFf/EvZzMenMfIbwf/QohYICqWai3IRrA7MB55UUQhGOEb2WfOjtyFyBU4KyENC+NSbM5RN72XULkCT0+Zj6szJ9oOjBnT68jx12lFOCshXfQ5ttKrlS66uGNJsG/KxN+/gmWRHRZp8Z2y3gZ+XypYFosT0vD2zCVYkTFB8P6DZDLBnOdYVdCIKvkmr89YjPfnnGPX+uMmUp8PI5KGb3y87wW6jrL5Dm6//XZs27bN6mN6e3tx66234vvvv3dZwwjxNfOHqlOPhVHFHS310HEcFsSljMm1mR01NTYeCapgHOnUCNYk9Uf8Jbjm0/xiQuzCP8FNCOJXmjWOxgxIrE0MCE8eZQwjGNGyDPD4I5z89Uct0xFHtE9mfeTQWBCLEX2MVGVka3OMpUaoRxNU8ANayyJPgGV1b/E2q2TCdPQQQYAt3u9KVoZ5sUlYHJ+KVQVznW6/M/jBMD91XiyA4K+1PHwbv5iRfQF9sMgos6BvRV57NOnF9+XNwB8nzZJcbst0UUKsAJjtwHjk/WLP4QelYvuokrE/KHWEI9kUjszVt1zvHADSQsKgYGWCoNT0mh/NXYZ1c3814rn8NoXLlYhXBds9Sg/YdzEmiLffjoXzSZvvYOnSpbjrrrvw448/it6v0Whw7bXX4sCBA3jjjTdc3kBCfMWCuBQwALar6/2+OvXmoRHFJbyCM4GMZRhz8Z2t6jovt2Z0Dra3BPQSXIQ4g3/Syl+f99H82UgOCsVdE6ZJPpexGKllJUZTVDKZoHIvvyCUoLKr6IjxyBNlwQkswwoKGVmOmA63YeRIrdh/S6Vjjiao4J9k8wNj84gi7/X5FxCsFd8SrIcssYyTkpVBwcrwwMSZmDW0brOnhPGyAoIF1ZhHBidi5xX8/uZsrEttwu9b02sK0/2N/cx/OVvrD9uDv/+Y3h+L4fcltu/YCvbF+kksWOZXfxerwi5W7M0VLANPa5QiFywA8bRqe1O/TRdYopVB5pFgqQthptttBcaWNRNssXaxzR/ZfMcvvvgiLrjgAtx7773YsGGD4L7a2lpceeWVqK2txfvvv48zzzzTXe0kxOtiVUGYEhkHzWC/X1enbujrwZFODZKCQjApIsbbzfEZZ/GqU3N+fOFjm5rSqAlxFH/EaWJ4tPnvvPBovDP7bLt/K0NkCuEcY95oShArF5wc80cTVbZGjHnPMwUG/AE6GStMpZYKZoPsHDG2p0L0aARbLDEDCN93iFy8wJbKYuklfhqpMK3VPamzjuJ/xoIgQyR+6NNrR9zGTwG297AktpxVQaRx/01QBYsGmxqLQl/O4O8/w/soAz03vNSQJVtxlFgQzA+6TVQ20nmFWRyuG9VUsTKcEZuEJQlpyA6LtPpY4fQG66PHUunQlsRq3kj9xphex1bwKlULQIrlBTp/Z7M0H8MweOaZZ6BSqfDAAw9gcHAQF198MY4dO4ZbbrkFMpkMH3/8McaP940y24S405kJqSjtaME2dZ3fVqfe3FwDAFiSkO7RuVa+LjM0AuNCI3C6pxOVvZ0YF2r9IOeLBvR67GxthJJlMTcm2dvNIcRv8E+mx4VGYFlShqCojb2CZfIRcwBNVDIZMpXG9U3PiE2SDDjFTlyVNu4fMbdZYgTaWgAhlxil4o9yu2qpIwNnLPy4TV2HZUkZxtdn+K85fEIfHzS87ItKJhee7EtUx5VKJ/U0qQsR/E9wVnQC9rU1u+xCtTBjwfjZRSpUeG/2UjAMg7+U7QFgLHY2PjQaRzvbEKkcfXYR//MzVZtmedXNxYMmx1OpTTfJeZW9bc3FFsyfd+FyXQzD4LH8OXY9VpDFYFFTYBDCauP2jhiLncLxH8/PGjMHxjbGRPlrokutgc5nrW6BP7K7Zv3jjz8OlUqFRx55BMePH8e///1vJCQk4L333kNSEi0HQgLD/Nhk/K38EHa01OO3OZMFV/X8AcdxlEZtxZkJaTh9+gi2Ntdh3Dj/C4z3tTWhT69DUVyKZFEaQoh1IXIFfjeh0KnnMozl6JQw+E0KCsW6ub9CuEKJQ+0t5vtCJSpUm7fL+1tsRMw4x1gihVIiSLQ86RUE9PyRbt4IpFiatzPC5Arcm1uIW3MmI3KoSi7/9S1HiU10nAEMwyBCrkSnbhBxqiDRx0mNHnuaZcVyE34K8WP5c9CuHRBd93VArzP/bRBJpZbxlgbj32bCT9E3zZ03bYcBg4cmzsbntSdxWdroB7eEI8ZD/897n2Jz46VCZc58/8jAzPR2+QGlUuJCkNhru3ptX3vxv4dhCgXQZ/xbLJi0rKouhb+Osgn/Ygz/4p55CoatEWOJKRVS+NvzxSrTjnLozOmhhx6CSqXC3//+d0ybNg1r1qxBZKT/nTwS4qwwhRKzYhKwq7URv7SpMTfWvy4KHenUoKm/F/kRMUjizaMjRovjU/GP00ewXV2H67MmObUshDdtH5ofTWnUhDjuo7nLRr0NrcEgDIxlIwM001xAlUg6sRTTurSAeDAhZ1jJVGr+yapgxNjiJFZsCSVAGPDw2+GMv05dgH1tzZgeHQ+WYRDJLy7Fe51QQQVnGa7OzMMOdT3GDa2N+tass9DU3ysICoWj83Le8713sj4uNAK/Ts5CfkQMqnu7zbdbFlsTC4oBoJ9X9E0skzpUphhRMZ0fTIqOuPK2F6sKwm05U2y/ETvw9zNzurONY6jURR7TKLNEPS/z40wi+YXNrD0J3ssg4L9uhHy4MrRYMKmUSLs2uSV7Mj6oPCJ6QYM/lz2Wd+HI9P1yZI6xPRcRZA6OMPs6m4HxGWecMSLdkuM4VFRUYPny5SMev3PnTte1jhAfdGZ8Gna1NmJrc63fBcY0WmxdnCoYkyNjcaijFWUdrZjiR+nyvTot9mqaECKTe7zADCFjQbQTqdOWBvR6i1Rq/hxj4UkmPziSWtPYpI8XIJmCCX6gJGMYyVEmYYVn8SrOpm2YWC6nFKcMQstgPxKDRo5QOaIgMhYFkbE2H2e5fu9vUifgyow8822RChUiFSrB8on8UW5fGCEEjMHI7eOnAgA+qz5hvj1GGYTTPZ02nz/IuxAhVvsiRC4fERjbCnxM5/SurqUhrM4+cnRSrLiYWAwrY1joOP2I51t7vWje2ryhImtb81/ZW8VTpVKcxS7c2BoBvyg1GxemjBOdDscvXBerHHnBxdbFCntHq034FzcCYsT46quvpnmIhPDMjklEsEyGPZom9Op0fpOyOmjQ42d1HRQMiyJaxkfS4vg0HOpoxVZ1nV8FxrtaGzFoMGBhQqpXTwQJCWRaTjhiHCQ4yRR+Ly0rJ1tjGvkJlsmGCxuBgX7olF/OstLFfSTm4Y6YYyw5X1eG12ecifq+HmQNjdi6Gz90sTZlSSp9PMTKBQlv4c9tjZcYIbZ0Wfp4HGhX44asfLx6sgSAMWPANCNVbE1ivmCR+02jua4ODwVVqUVSqbWcwfIpovGFICVbLJVa9PUY/GPOOWgZ6MO/a8qttm20WQ/O4n/Hwy0yIizxv7NSwalUbMY/J+WPGJvYunASIsi2cHTEOAAC47vvvtsT7SDEb6hkMsyLTcbm5lrs1jTgrIR0bzfJLntam9AzNP80jJbxkVQUl4y3Kw7hZz+bR24qqrYoIdXLLSEk8Nw0Lh/vnT6C81PG4Z2Kw+bb+ZVqLUdT+EGNeqDP6vbPScxAj06L+XHJeOHYfgBDIz9DUYKMYQQnpfzRYIXEfFt75xgrWRbhCiXyPHjc4PeUtVErqYJj6SHhw8/34hxjPn6QsSQhDRsbqzDbRnZPUlAo1s5eCgB49eQBAMKiU1J98/SUeTjQpsYUkdF5U5eJVTQeDctA1fT/pkBeZxgZGMtEAl/+dqwNzPG/TzLGmI4epwpGRmg4dmsaBY/lXzRypqieK0hNbxD7DKVqBNiDH9hGDC0hxb84ZGvEmB9YWwuMTb95v07JwsbGKgABEhgTQkZanJCGzc212Npc5zeB8SZzNWpKo7YmTKHE7JgE7GxtxO7WJhT5wXxd9UAfDra3IEYZhMKoeG83h5CAc2naeCxPykSIXIH3eCee8apgPD1lnug6sfxA7tLUHPzS1oy7JdZLVrAsfpM+AcBw8SF+GqqcsTJiLJFKbRl08P87aBQn5q4gqJDNWBsxFk9b54/Iuqpg2GjxlwnKj4zF32ctQbxI8SQphqHPPYiVY9BgTJ8We28cgGlR8ZgmcSxgzCPGrg2M+VvjzzGWMSwMnEEildr6OsXW5kjz7+PvBxemjMP25jr8OiUL750+AsDYT2tnnY2jXW2iFws8QS4xEm5rxNjRi/P835VgmRyfzTtPsiK6GKkpCZYuTRuPi1KzhanUYyDDmAJjQpxQGBWHKIUKB9qa0TrQL5qu4ks0A/3Yr2lGpEKJGdEJ3m6OzzsnMQM7WxvxQ1O1XwTGW5pqwMF40cNWmhQhxD1Ma+panrBLBSj8E9jc8Gh8teB8u6aumdKn+SfXxjnG/GBS/G97KzSrLFKpPeWpyWfgf/WVWJ6UaQ5qnBkxljMsnpu6AP16nc9MB1SxwlPulOAw57YjkwFDxarFLlrYCnj5xbdcScdLlR5O9weyQiNwsrtdNH1c7Hhlbyq1sFI7b76xMgjvzjGOsg/vQzIkBYd6tegowzB4b/ZSKFkZvm2oNN8uVgxMrJCZI6/D345lporY586vbs7//bL13becjiFVRM6fUGBMiBNkDIsliWn4srYCm5trzFfyfdUPjdUwgMPZCeljojiCu82MSUCMMgi/tDWjub/XvMyFL+I4Dj8OZQOcnegf2QuEjGW2RrxMLNMp7Q3gDCInsAwYyVRNW2u8ilFJjDi72/ToBEy3uHhrrVgSv3q1YP40yyAvzDsjg1JG24+mgJc/b9iZqT6m/cbVxbe0vFRp/r788KRZ+LK2AisyRp4nie3zlushS2FsVN/m80bWgxjTuQS/vWJt49/WoR1w+HUeyJspuFBhi5xhoRcpeGZvRffXpi/GjpYGLEn0/4xE39hTCPFD5yRmAAB+aKp2+QHGlQwch++G5n8sS8r0cmv8g4xhcU5iOjgYP19fdqyrDfV9PcgLjxbMqyOEeIegOq+doz2OjGqajjf8wIBhLOYVS6xF2qvT2vUa/JEgpZdTka2d4IfLh+c98+dRjsXMGVMqtUqisJq12/jOHJpOdUFKtusaB+nPKSEoBL8dP0W06rtp3rFg9Few3rN9/CUwNpHZGJVVMKx5CaoYJ+ZEL05IlbxQLna6KhyhFr/dmuywSFybNVF0+S1/4xfvoL6+HrfeeiumTZuGefPm4fnnn4deb72qXHt7O+677z7MmDEDs2fPxqOPPore3l7z/bt378btt9+OoqIiFBYW4uKLL8Y333zj7rdCxpD0kHBMDI9GfV8PjnZqvN0cSfvUjWjs78XkiFikhTiXuhWITBc+fmyq8dryDvbY1ESjxYT4ElvryPI9PWUenpx8hkPbN6eSWmxaOAolXnyrW2tfYCxYN9mHA2PhexamUvua0R5HxJY2El0D10a6/LlJmXhjxpm4KTt/VO2xxC+uZW9Aa/ps+cGhzIHvj4mtlF9fmWduwn9fYvNyWYbBq9MX454JhZgXl+zS1xZLtZdLZLn47pmP+/jWniJCr9fjtttug1arxaeffornnnsOX375Jd544w2rz7v//vtRXl6O999/H2+99Rb27t2LVatWme8/cOAA8vLy8Nprr+G///0vLr30Utx///3Ytm2bm98RGUuWmkeNa7zcEmn/OW1cuuBXyRlebol/SQoOxbSoOKgH+lDSpvZ2c0QN6PXYPrQE1yJagosQn2BvKjVgLJLkaN0H02gTP9Bihv5nIucVrOJXqS2INqYXF0TEWH2NPr3O/LfegZRMV7pwaERzpp39w+9qXxwxHm2xK1Pgz1/bWHQNXCvFygBjdkJWaITLR/f4yzGZdk1bmRCm9GuVxGi//YGx+HvJC48GAJ9belFszWc+jjPO1z0nKcMj+7JYRXFjOwIvNPb5wPjnn39GRUUFXnjhBUyaNAmLFy/GPffcg3Xr1kErceWzoqICP/30E55++mlMmzYNs2bNwmOPPYavv/4aLS0tAIDf/va3uPfeezFjxgxkZGTguuuuw8KFC/Hjjz968u0RP7coPgUqVoaf1HWCEwlf0TE4gK31tQiTKzA/lgInRy1LNKaem1LRfc3O1gb06nU4IzaJluAixEcIT3pdf1JrOonlB6wMhKN0/BFj/pzUxSnpeKGwCI8XWB+l7tMNH88cmavoSrfmTMZ/is4XTcHle2TSbFyUmo2skOE1ln1xxHjyUDXkZYnOXaQ2pbTzA9Bzk7MQrwrGHTlThh8n8857548YG0QKxInRiiw7JZMI0qyR+ryfmjwPf526ALN8rOgo/z2KXTAxuHGsVqxPBanUDIMbx+WjICIG48Oi3NYOX+XzxbdKSkowceJExMUNX+0pKirCqlWrcOrUKeTl5Y14zoEDBxAVFYXJkyebb5s/fz4YhkFpaSmWLFki+lpdXV3Izc0dVXtZsVwXJ7fhim2NVb7SR2FKJYriU7CpqQY7Wut9bg7vpuYa6DgDliRmIVjh8193r7C2Ly1ISMbbFQrs1jSiQzdg8wTN00xrB/4qOdPt3wVf+c75MuojAlimSbo+SDHNwdQaeCfPjHDuoDCtmF+llkFBZCwMBvET75nRCdjf1oyCyBj8r+E0AIguNeUp9oxqzo9Lxvy4ZBxqbzHfZm9A5UmRChW+WnC+0wUwTfNk+UWuohQqvD/nHADA3yoOARCvcuwJprmwUQoVr8Kx9eeYU6ktCqeZiAfWI/dHqQtQIXI5Cry0PJM1QTbS3V29xjQf/0KZCb+OAAsGl6WNx2Vp493WBl/m82fKLS0tiI0V7tSmILmlpUU0MBZ7jlwuR2RkpHnE2NLGjRtRVlaGv/zlL063VS5nERvrujmc0dHeKyvvL3yhjy7PzcOmphpsVtfiyoICbzfHzMBx+H6/sXDUiokTERtJ84utkdqXLsjKwT/Lj2FbewNunjRF9DHeUNHRjsMdrUgLDcPZ48d57ETQF75zvo76KLCxgqJYnhkx7tZq0TLYZ/5vhcSomzHQlD7pfnjSLJzu6cTE8Gj8FftHbMuX8QNOXxwxBuwvZiRGKZJKLRZAeXJ5Lb4rM43n4+clZ+GPpT8DsH1hY3jEeHSp1L76eUsRC0753DliHCIWGPMCdV+8qORJXguMX3/9dZvzhE3zfaUOLNYOOGL3cRwnevvu3bvx8MMP4y9/+QtycnKstskanc6Azs4+2w+0gWUZREeHoq2tR/KqbqDzpT7KYEKQFhyGUk0L9lTWIic8yqvtMdmnaUJ1dxemxsYj1qBEa2u3t5vkk2ztS2fHpOETHMMXFSdwflymzyx39c+TxvUZf5WYiTZNj9tfz5e+c77Kk30UEREMhcI7J8DEOnefWJqCAA7AWQlp2NJci2lRcQhXKPH8sf343YRCyfm2xr+l980gmRyThuYf/2XyPGxsrMKyJP+oT2GroJG/448Y3zyuAMe6NEgSWUpQbL1gTwiTK3BLjjFT0/TzZ+tTiFMFo7avG4mqEFT2dAKwLF5n32v74pxya4JsBcZuHDEO4S1xZqJkhSPGgcxrgfG1116LCy+80Opj4uPjERcXh7KyMsHtplFfy1Fhk7i4uBEjwzqdDp2dnSOes2fPHvz2t7/Fww8/bLM99nDlyZDBwNEJqA2+0ke/Ts7CmlOH8XXdafwut9DbzQEA/Kf2FADg/3LyfKaffJlUHyWqQjArJhF7NU34WV2PRfGpXmidUJ9eh01NNVAwLM5OSPfoZ0v7km3UR4HN3Sfp/O3/Pnc6zk5IR35kDBQMi8Iz4hGhUGJ/W7P5MY4UA+MrjI5HYXS8axrtAbFDqbwKhoXKRuDhj0yB8aDBgEvScgAIB3Jenb4Ye1obsdAHjlGm3czWr+Bj+XPwWc0J3DAuH7t3Nw4913oqtdhPq78tE8QftRXrI7cGxiLfDUcq6Y91XtuToqKikJmZafWfTCZDYWEhjh07htbWVvNzi4uLERERgexs8TXYpk+fjvb2dkFAvWvXLnAch6lTp5pv2717N2677Tbcf//9uOKKK9z3ZsmYd3ZiOoJlMmxV16JTO+jt5qC2txv725oRpwrC4hRaxme0LkgZBwD4X/1pL7fEaFtzLfr0OhTFpyCCim4R4lPcPmJsUSinMDoeSlYGhmHMvwd63jxUftDgbymnjohTBeOdWWfjndln+9y6ta4wYagQUq5EVlpOWCSuzMzzidFTU6BlKyU4LSQMf8ibIVir11aQljg0Sp4QNDwyLvezug625oG787LqlKE519mhw8XqGCdG6ccqn//lKCoqQk5ODh588EEcO3YMP/30E1555RVcffXVUCiM6QClpaVYvnw5mpqaAAA5OTlYuHAhHnvsMZSWlmL//v146qmncP7555vnJ5uC4muvvRbLli2DWq2GWq1Ge3u7t94q8WMhcgWWJKRj0GDAD03V3m4Ovq43jhafnzLOZ1J//VlhVDzSgsNwpFOD8u52r7aF4zhsaKgEYJzLRQjxLe5ORcy1ESABwnRJfntkY/ysNzk4FHFeSiV2txvG5ePGcfl4eNIsbzfFJtOorzPL/fBjYUbku3TjuHyclZCG+/JmmIOYlCD/quvAv3DTrRu5wo47R4wnRsTg5cJFeG7qAvNt/MrY/jb67mo+/+5lMhnefvttsCyLFStW4IEHHsDFF1+Mu+++2/yYvr4+nD59WrB804svvojs7Gxcf/31uPXWWzFz5kw88cQT5vvXr1+Pvr4+rFmzBkVFReZ//O0S4ohfJxtHFTfUVwrWl/S0bp0Wm5pqoGJlWE6Bk0uwDINfD40af13n3VHjQx2tONXTiezQCEwcWqOREOI73D1id3n6eNw5fir+lD9H8jEFETG4NnMiXphWZHPNVOIfgmVyXJY23udWRxBj2uecmVEiuJAj8l2aGhWH+/JmIFKhwjuzl+LhSbOQ74OVp63hFxur7e0CAETIlbg+axIA91/0nhAehRC5QvQSntSa0IHCLyZhpKam4p133pG8f+7cuTh+/LjgtqioKKxevVryOc899xyee+45l7WRkIzQcEyNjENpRwv2tDZiXlyyV9rxfWMV+g16/Copk9JsXejshHSsqzqGrepaXJM10WsFTtbXVQAALknLcUvFW0KIb1OwMpxr48SZYRisyDAuP1nq48sYkbHH3lRqMfxd1Nb+mhgUYk6t9icJqmAUxaVgfFgkdByHdVXHsCIjFxelZuPClGyobCzn5Gr8T8lby335isC+LECIi12Uapz3/nltuVMpRKM1aNBjfW0FGAAXp4rPwSfOCZHLcX5yFvQch69qK7zShuqeLuzVNCFOGYSFcd4vsEIIGcmdS604g58mGeijQcQzTBn7zmTPBUIhKIZh8NCkWbg8fQKuSJ+AN2aciQuHstI8GRSL9W6gT78L7HdPiIvNjklEZkg4jne14VBHq+0nuNiPjdVo0w5gXmwy0kPCPf76Y92FKdlQsTJsbKxCh3bA46//ZV25sR2p2QF/8CKed+zYMfzhD3/A4sWLMW3aNJx33nn46KOPvN0sn+PFmTSiunjTzCjLhHgCa06ldmbEmLcOuMta5LtYhkFWaITPfDdlAdHr0ujMihAXYhkGl6dPAAD8u+akR19bZzDg81pj4HRFxgSPvnagiFSqsCwpAwMGvccrVLcM9GFrcy1CZHIsT8r06GsTAgCHDx9GTEwMXnjhBfzvf//DbbfdhhdffBGffPKJt5vmUzgfGzGeFZOA2TGJeDR/trebQgKEqWiWM9+FwA7LPG1kb4/VUXp7+cUcY0L8yaL4FKyrOoYD7WqUd7VjvJXKoa60TV2L5oE+zIxOwPgwz7xmILokNQcbGirx3/rTuCglG2Eemsf9eU05dByHi5OzBBVnCfGUyy+/XPDf6enpKCkpwQ8//IArr7zSS63yPb62hHWQTI7HC+aCHeMVqYnvGM2IMX9JMR/7Ko1Z/AsYFBgTQlxKxrC4LDUHf6s4hI+rj+Pxgrluf02twYBPqk8AAK5Ip9Fid0oICsE5iRnY2FiFL+oqzFUk3Uk90IeNjVUIlslwSVqO21+PEHt1dXUhMjJyVNsYbcBmer7PBH784kG+0ib4YD/5IOoj+9jqJ35g7GhfWq5B7a+fhT/sSwyDoasP/CXdWI+22df6iQJjQtzgnKQMfF5bjr2aJhzuaMVkNy8l8F1jFRr7ezEzOgEFfrZsgT/6v4xcbG6uwX/rTuGClHGIcfPyGZ9Vn4COM+CylAmIVKjc+lqE2OvAgQPYuHGj1VUjbJHLWcTGhrmkPdHRvrGWaVRIEDBUYsJV782VfKWffBn1kX2k+mllwRQ8tmcH7pwy3eHvQHDQcEaUXOG63wdv8Yd9SS4fvhgRHhbklT73lX6iwJgQN1CwMlybNRGrjx/AP04fwQvTitxWWKFPr8On1cfBAB4ZvSRAnCoY56eMw5e1FfhX9QncPn6q216rrq8bPzRVI0Qmx8WpNFpMXO/111/HG2+8YfUx27ZtQ1JSkvm/T548iTvuuAN333035s2b5/Rr63QGdHb2Of18wDjSEB0dira2Hhh8II9ZoR/+rW9t7fZiS4R8rZ98EfWRfWz104zgOHy+4DyEyBUOfwcGBnTmvwcH9T71HXKEP+xLpl8qrVZvvq2/Z8Cjfe7JfoqICIZCYb3qNwXGhLjJ4vg0fFlbgWNdbditacQZse5Z1/iLmnK0awdxZnwqssNGl9JI7PebtAn4rqEKGxurcH7KOLdVAX/3VBl0HIer0icgnNalJm5w7bXX4sILL7T6mPj4ePPf5eXluP7663HFFVfgtttuG/Xru+pkyGDgfOIENFQ2fGrlC+2x5Cv95Muoj+xjrZ+CWPmo+9DA+f/n4A/7krB1jFfa6yv9RFWpCXETlmFwQ1Y+AODdU0cwaNDbeIbj6vq68XltOVSsDNfRaLFHhSuUWJGRCz3H4a3yQ25Zt/pAWzP2aJqQGBRC61ITt4mKikJmZqbVf7KhtTVPnjyJ6667DhdffDF+//vfe7nlvimCLmAR4jT+sZSWJfScS9NyIGMYzIxO8HZTvIr2OELcaEZ0PGZFJ6Chv8flyzdxHIc1FYeg4wxYkZGLhKAQl26f2HZhSjYyQsJR2tGC7ep6l25ba9Dj7xWHAQA3jcuHkrWe/kOIu5mC4vnz5+PGG2+EWq2GWq2GRqPxdtN8yrKkTBRExOD+vBnebgohfk0W4BWS3U03dBEiWCbDTeMKsH7B+QF/YY8CY0LciGEY3D5+KlSsDP+uOYma3i6XbXurug6/tKmRFhyGS2juqVfIWRZ3DM0vfufUYXRoB1y27U+qT6CmrxuFUXGY76Y0fEIcsXHjRmg0Gnz99dcoKioy/7NcxinQBcvk+Ou0IpyZkObtphDi1/hLNxH3CZMbg+FAX6oJoMCYELdLDArBVZl50HEcXjp+AFqDYdTbbO7vxVvlpWAA3DVh2ojlDYjnTI6MxbLEDLRrB/D6yYMuSaku72rH5zXlCJbJ8LsJhW4r3EaII+6++24cP358xL/Nmzd7u2mEkDFITsc+jwiTK2w/KEDQ2TQhHnBxajbyI2JwsrsdH1YeHdW29JwBq4//gl69DpeljXf7UlDEtltyJiM5KAS7WhvxXWP1qLbVq9PixeO/wAAON40roBR5QgghAYnmGHsGFfYcRnscIR4gY1jcnzcDYXIF1tdVYGdLg9PbWnuqDGWdGuSERuLqzIkubCVxVrBMjvvzZoIFgzUVh3C007k5lwaOwysnSlDb1405MYlYnpTp4pYSQgghvoufcyWjVGq3uiBlHADgrHia9mFCexwhHpIQFILf504HALx4/BcccyJ4+rruFL6uP40IuRIP58+iFGofkhcRjVtyJkPLGfD0kT2o63NsHUCO4/Du6TIUtzYgOSgEf8ibQSnUhBBCAhalUrvXrdmT8fn885AR6p7lJv0RnVUT4kFzY5Nw87gCDBj0eLxsN450tNr93K/rTmHNqcNQMCwezZ+NpKBQN7aUOOOClHE4P3kc2rWDeLi0GLW99gXHHMfhg8qj+E/dKUTIlfhzwVya80MIISSgUfEt92IYBkG8ddcJBcaEeNwlaTlYkZ6LHp0Wfzq8Cz82VVst2KQ16PFWeSnWnDoMJcvisYI5KKB5xT7r1pzJWJaUAc1gP+47+BP2tDZafXzP0Jziz2vLESKT44nJZyA9hK7eEkIICWw0x5h4Gl0mIMQLrs2aiAiFAu+eKsMrJ0rwk7oeV2bkIi882pw+qzUYsLu1ER9WHUV9Xw8iFUo8NHEWpkTFebn1xBqWYXDX+GmIkCvxeW05njyyB0VxKfi/jFxkhUaYHzdo0GO7ug4fVR5D62A/4lXBWFUwF5m8xxBCCCGB5sqMXHxSfQJLE9O93RQSYCgwJsRLLkrNwYSwKLx04gD2tzVjf1sz4pRBSA0Jg9ZgQGVPJ3r1OgDAjOh4/G5CIeJUwV5uNbEHyzC4YVw+8sKj8XbFIfzcUo+fW+qRGBSC5KAQDBj0ONXdiQGDHgBwZnwqbsmZjEiFysstJ4QQQrzr6syJWJGeSyPGxOMoMCbEi/IjY/HWzCXY1FSD75uqcLKrHS2D/QAAJctiTkwifp0yDjOjE7zcUuKMeXHJmB4djw0NldjcVIPK3i409fcCAIJlMhTFpeDClHHIp9R4QgghxIyCYuINfhEY19fXY9WqVdi9ezdCQkJwySWX4L777oNMJpN8Tnt7O5566ils2bIFMpkMy5Ytw6OPPoqQkJFrgv7yyy+45pprMHHiRHz55ZfufCuEjKBgWSxPzsTy5Ez06XVoHeiHnGEQHxRMSxWMAUEyOS5NG49L08ajR6dF++AAFCyLWFUQfb6EEEIIgJvG5eO900fMSwgR4g0+Hxjr9XrcdtttiIuLw6efform5mb88Y9/hEqlwj333CP5vPvvvx9qtRrvv/8+tFotHnnkEaxatQrPP/+84HHd3d146KGHcMYZZ6C9vd3N74YQ64JlcqSFhHm7GcRNQuUKhFK1aUIIIUTg0rTxuCAlm5ahJF7l83vfzz//jIqKCrzwwguYNGkSFi9ejHvuuQfr1q2DVqsVfU5FRQV++uknPP3005g2bRpmzZqFxx57DF9//TVaWloEj33yySexfPlyTJ8+3RNvhxBCCCGEEGKBgmLibT4/YlxSUoKJEyciLm64Em9RURFWrVqFU6dOIS8vb8RzDhw4gKioKEyePNl82/z588EwDEpLS7FkyRIAwIYNG3DixAn85S9/wZo1a1zSXpYd/WLkpm24YltjFfWRfaifbKM+sg/1k23UR4QQQoj/8vnAuKWlBbGxwsI0piC5paVFNDAWe45cLkdkZKR5xLihoQHPPPMM3nvvPSiVSpe0VS5nERvrujTY6OhQl21rrKI+sg/1k23UR/ahfrKN+ogQQgjxP14LjF9//XW88cYbVh+zbds2ADCv62pJ6nap+ziOM9/+4IMP4uabb0Zubq69TbZJpzOgs7Nv1NthWQbR0aFoa+uBwcC5oGVjD/WRfaifbKM+sg/1k22e7KOIiGAoFNIFKAkhhBDiGK8Fxtdeey0uvPBCq4+Jj49HXFwcysrKBLebRn0tR4VN4uLiRswl1ul06OzsND9nz5492L9/P1544QUAgMFgAMdxyM/Px0cffYSZM2c69b5ceTJkMHB0AmoD9ZF9qJ9soz6yD/WTbdRHhBBCiP/xWmAcFRWFqKgom48rLCzEmjVr0Nraag5qi4uLERERgezsbNHnTJ8+He3t7SgrK0NBQQEAYNeuXeA4DlOnTgUAfP3114Ln/POf/8S+ffvw0ksvIT09fRTvjBBCCCGEEEKIP/H58m9FRUXIycnBgw8+iGPHjuGnn37CK6+8gquvvhoKhXHZk9LSUixfvhxNTU0AgJycHCxcuBCPPfYYSktLsX//fjz11FM4//zzzfOTc3NzBf9iY2OhVCqRm5uL4OBgr71fQgghhBBCCCGe5fOBsUwmw9tvvw2WZbFixQo88MADuPjii3H33XebH9PX14fTp08Llm968cUXkZ2djeuvvx633norZs6ciSeeeMIbb4EQQgghhBBCiA9jOI6jiVAuotXq0d7eO+rtsCyD2NgwtLZ20zw1CdRH9qF+so36yD7UT7Z5so+iokLGRPEtVxw3ad+0D/WTbdRH9qF+so36yD6+dtz0+RFjQgghhBBCCCHEnSgwJoQQQgghhBAS0CgwJoT7EWkvAAEAAElEQVQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQgghhBAS0CgwJoQQQohDqqurMX36dMydO9fbTSGEEEJcggJjQgghhNhNp9PhgQcewMyZM73dFEIIIcRlKDAmhBBCiN3efPNNpKWl4bzzzvN2UwghhBCXkXu7AYQQQgjxD7/88gu++uorfPXVV9i0aZNLtsmyjEueP9rtjHXUT7ZRH9mH+sk26iP7+Fo/+UVgXF9fj1WrVmH37t0ICQnBJZdcgvvuuw8ymUzyOe3t7XjqqaewZcsWyGQyLFu2DI8++ihCQkLMjzEYDHj33Xfx73//G/X19UhISMANN9yA6667zhNvixBCCPEb3d3dePDBB/GXv/wFkZGRLtmmXM4iNjbMJduKjg51yXbGOuon26iP7EP9ZBv1kX18pZ98PjDW6/W47bbbEBcXh08//RTNzc344x//CJVKhXvuuUfyeffffz/UajXef/99aLVaPPLII1i1ahWef/5582OeeeYZ7NixAw8//DDGjx+PtrY29PX1eeJtEUIIIT7h9ddfxxtvvGH1Mdu2bcOrr76KM888EwsWLHDZa+t0BnR2ju64y7IMoqND0dbWA4OBc1HLxh7qJ9uoj+xD/WQb9ZF9PNlPERHBUCikB1Xx/+zdd3hb1fkH8O+9mpaXZMmOY2c7ew9CSAgEAqWBAmWVlEKgQICyftBCKbS0rFIoqxRoC4VCIQQoLYRRAmWEDJKQhJBBduIMJ/GU5KU97v39oeFzZcmSbMm6kt7P8/DgaFwdHV3pnveM9yALAuOvvvoKtbW1eOWVV2AymTBu3DjcdttteOqpp3DTTTdBpVJ1e05tbS3WrFmDd955BxMnTgQA3Hvvvbjhhhtw1113wWQyoba2Fm+++SY+/PBDjBgxAgAwePDgfn1vhBBCSKYtWrQI559/fo+PKS8vx4YNG9DY2Ig33ngDACCKIgRBwPjx4/HHP/4R5513Xq9eP1WNIUEQqQGaAKqn+KiOEkP1FB/VUWLkUk+yD4y3bt2KsWPHwmQyhW+bO3cu7r//fhw8eBBjxozp9pwtW7ZAr9eHg2IAmDNnDjiOw/bt2zF//nysWLECgwYNwooVK7B48WJwHIdTTjkFd955J4qKej+tKxVz5OU2316OqI4SQ/UUH9VRYqie4svWOtLr9dDr9XEf949//ANerzf87y+++AIvv/wyli5dioEDB6axhIQQQkj6yT4wNpvNMBqNkttCQbLZbI4aGEd7jlKpRGlpKcxmMwDg6NGjOH78OD7//HM8/vjj8Hg8+P3vf4+777477pSyWFK5VgqQz3x7OaM6SgzVU3xUR4mheoovV+to+PDhkn/v2LEDPM9j9OjRGSoRIYQQkjoZC4wTXdMEABwXvfc91u2x7hNFMXy7KIrwer344x//iKFDhwIA7r//flxxxRUwm82SEepEpWKtFEDrEhJBdZQYqqf4qI4SQ/UUn9zWShFCCCEkcRkLjBNd02QymbBz507J7aFR38hR4RCTyRR+TIjP50NHR0f4OSaTCUqlMhwUA0BNTQ2AQBbs3gTGQOrWSoWORQ3QnlEdJYbqKT6qo8RQPcWXL3V00UUX4aKLLsp0MQghhJCUyFhgnOiapqlTp+KFF16AxWIJB7Xr1q1DSUlJOGlWpGnTpqGtrQ07d+7EhAkTAABff/01RFHE5MmTw4/x+Xw4evRoOOnWoUOHAABVVVV9fXuEEEIIIYQQQrIEn+kCxDN37lzU1NTgrrvuwp49e7BmzRo8/fTTuPzyy8MZqbdv344FCxagqakJQGDk95RTTsG9996L7du3Y/PmzXjooYdw7rnnhkeCTz75ZIwdOxa/+c1vsGfPHmzfvh0PPfQQzjrrrF6PFhNCCCGEEEIIyT6yD4wVCgWef/558DyPhQsX4pe//CUuuOAC3HrrreHHOJ1OHDp0SJIt84knnsCIESNw1VVX4frrr8eMGTPwwAMPSI7797//HcXFxbjssstw0003YfLkyXjkkUf69f0RQgghhBBCCMks2WelBoDq6mq8+OKLMe+fNWsW9u7dK7lNr9fjySef7PG4AwYMwF/+8peUlJEQQgghhBBCSHaS/YgxIYQQQgghhBCSThQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJaxQYE0IIIYQQQgjJa5woimKmC5ErBEGE3y+k5FgqlQJerz8lx8pVVEeJoXqKj+ooMVRP8fVXHSkUPHieS/vrpFuqrpt0biaG6ik+qqPEUD3FR3WUGDldNykwJoQQQgghhBCS12gqNSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBMSGEEEIIIYSQvEaBscwsXboU8+fPx6RJk3DppZdi+/btmS5Sv3nhhRdw8cUXY9q0aZg9ezZuueUWHD58WPIYt9uNBx54ALNmzcK0adNw6623wmKxSB5TX1+P66+/HlOmTMHs2bPx2GOPwe/39+M76T/33XcfxowZg9dffz18G9VRQGNjI+644w6ceOKJmDp1Ki666CLU1taG76d6Amw2G+6//36ccsopmDJlCs4991y899574fvzsY42bdqEn/3sZ5g7dy7GjBmDL7/8UnJ/qupkw4YNuPDCCzFx4kR873vfk9Q7SQ5dN+m6mQy6bsZG18346LrZXU5dN0UiGx999JE4YcIE8T//+Y+4f/9+8d577xVnzpwpWiyWTBetX1xzzTXiO++8I+7bt0/cvXu3eN1114mnn3666HQ6w4/53e9+J86bN09ct26d+N1334mXXnqp+JOf/CR8v8/nE88991zxpz/9qbhr1y5x5cqV4qxZs8Snn346E28prVasWCGef/754ty5c8UlS5aEb6c6EsW2tjbx9NNPF++++25x27ZtYl1dnbhy5UqxoaEh/BiqJ1H89a9/LZ511lnixo0bxbq6OvH1118Xx44dK27YsEEUxfyso5UrV4pPPfWU+L///U8cPXq0uGLFCsn9qaiTuro6ccqUKeIjjzwiHjhwQFyyZIk4btw4ce3atf32PnMFXTfpupkMum7GRtfNxNB1s7tcum5SYCwjl1xyifjggw+G/+33+8W5c+eKL730UgZLlTkWi0UcPXq0uHnzZlEURbGjo0OcMGGC+Mknn4Qfc+DAAXH06NHi9u3bRVEMfDnHjRsntrS0hB/zxhtviCeccILo8Xj69w2kUUtLi3jqqaeKe/bsEU8//fTwBZ7qKODxxx8XL7vsspj3Uz0F/OAHPxCff/55yW1nnXWW+NJLL1EdiWK3C3yq6uSxxx4Tzz33XMlr3X777eL111+fzreTk+i6KUXXzdjoutkzum4mhq6bPcv26yZNpZYJj8eDnTt34uSTTw7fxvM85syZg61bt2auYBnU2dkJACgtLQUA7NixA16vV1JHNTU1qKqqCtfR1q1bMXbsWJhMpvBj5s6di46ODhw8eLD/Cp9m99xzDxYtWoQxY8ZIbqc6ClixYgUmTpyIW2+9FbNnz8ZFF12E999/P3w/1VPAtGnT8MUXX6CpqQmiKGLNmjVobm7GnDlzqI6iSFWdbN26VXKM0GPy9be+t+i62R1dN2Oj62bP6LqZGLpuJifbrpsUGMtEa2sr/H6/5KQAAKPRiJaWlgyVKnNEUcQjjzyCE088ETU1NQAAs9kMrVaLoqIiyWONRiPMZnP4MUajUXJ/qE5Dj8l2r7/+OhwOB6655ppu91EdBRw9ehRvvPEGampq8PLLL+Piiy/Gb37zG3zxxRcAqJ5C7r33XgwZMgSnnnoqJk6ciFtuuQWPPPIIxo0bR3UURarqJNZj2tra4PV601X8nEPXTSm6bsZG18346LqZGLpuJifbrpvKlB2JpIUoiuA4LtPF6HcPPvgg9u3bhzfffFNye7S6EEUx7mN6uj2b1NbW4q9//Svefvtt8Hz0fq18ryMg8H4nTZqE22+/HQAwbtw47NixA2+++SbOOOMMAFRPQKCxuHv3bvz973/HgAEDsH79evz6179GZWUlAKqjaFJVJ5GPiTwG6T26btJ1k0XXzcTQdTMxdN1MXjZdN2nEWCYMBgMUCkW33iKr1dqtNzzXPfTQQ1ixYgVeffVVDBgwIHy7yWSC0+mEzWaTPJ6tI5PJ1K0OQ/+O7GnKRtu2bYPVasVZZ52F8ePHY/z48Th+/DgefvhhLFiwgOooyGQyYcSIEZLbampq0NDQEL4/3+vJ5XLhT3/6E+6++27MmzcPY8eOxdVXX4158+bh1VdfpTqKIlV1Eu0xFosFer0eKpUqXcXPOXTd7ELXzdjoupkYum7GR9fN5GXbdZMCY5lQq9WYMGEC1q1bF75NEASsX78eU6dOzVzB+pEoinjwwQfx6aef4tVXX8XgwYMl90+cOBEqlUpSR4cOHUJ9fX24jqZOnYo9e/ZI0sCvW7cOJSUl3X7ws9GZZ56JDz74AO+99174v4qKClx//fV4/vnnqY6Cpk2bhiNHjkhuO3z4MAYOHAiAziUA8Pl88Hq9UCgUktt5nocgCFRHUaSqTqZOnYq1a9dKjr1u3bq8+a1PFbpu0nUzEXTdTAxdN+Oj62bysu66mdJUXqRPQttOvPvuu+KBAwfE3/72t3m17cR9990nzpgxQ9ywYYPY3Nwc/i9y24nTTjtNXL9+vfjdd9+JCxcujJry/ZprrhF3794trl69WjzppJPEP/3pTxl4R/2Dza4pilRHoiiKW7duFceNGye+8MIL4uHDh8V3331XnDhxovjFF1+EH0P1JIpXXHGFeP7554e3nXjrrbfE8ePHi++//74oivlZRzabTdy1a5e4a9cucfTo0eJrr70m7tq1S2xubhZFMTV1UldXJ06ePFn84x//KB44cEB8/fXXxfHjx9N2Tb1A1026bvYGXTe7o+tmYui62V0uXTcpMJaZJUuWiKeddpo4YcIE8ZJLLhG3bduW6SL1m9GjR0f975133gk/xuVyiffff784c+ZMccqUKeItt9wiSe8uiqJ47NgxcfHixeLkyZPFWbNmiY8++qjo8/n6++30m8gLPNVRwGeffSb+4Ac/ECdOnCiec8454rJlyyT3Uz2JYnNzs/irX/1KnDt3rjh58mTx7LPPFl9//fXw/flYR19//XXU36FnnnlGFMXU1cn69evFH/7wh+KECRPEM844Q3z33Xf77T3mGrpu0nUzWXTdjI6um/HRdbO7XLpucqJIGT8IIYQQQgghhOQvWmNMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCMmY5cuX49133810MQghhJCsQNdNQtKHAmNCSMZ88sknWLZsWaaLQQghhGQFum4Skj4UGBNCCCGEEEIIyWucKIpipgtBCMk/d999d7de71tuuQW33nprhkpECCGEyBddNwlJL2WmC0AIyU833XQT6uvr0dnZifvuuw8AUFlZmeFSEUIIIfJE101C0osCY0JIRgwZMgR6vR6iKGLq1KmZLg4hhBAia3TdJCS9aI0xIYQQQgghhJC8RoExIYQQQgghhJC8RoExIYQQQgghhJC8RoExISRjVCoV3G53potBCCGEZAW6bhKSPhQYE0IyZvjw4di3bx8+//xzfPfdd2hqasp0kQghhBDZousmIelD+xgTQjLGarXit7/9LTZt2oT29nbaj5EQQgjpAV03CUkfCowJIYQQQgghhOQ1mkpNCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvUWBMCCGEEEIIISSvKTNdgFwiCCL8fiElx1Iqefh8qTlWrqI6SgzVU3xUR4mheoqvv+pIoeDB81zaXyfdUnXdpHMzMVRP8VEdJYbqKT6qo8TI6bpJgXEK+f0C2tocfT4Oz3MwGovQ0eGEIIgpKFnuoTpKDNVTfFRHiaF6iq8/60iv14HnFWl9jf6QiusmnZuJoXqKj+ooMVRP8VEdJUZu102aSk0IIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYQQQgghJK9RYEwIIYSQXrnvvvswZswYvP7665kuCiGEENInWRUYL126FPPnz8ekSZNw6aWXYvv27T0+/uOPP8aCBQswadIknHfeeVi9enW3xxw4cAA33HADpk+fjunTp+PHP/4xrFZrut4CIYQQkhO+/PJLbN26FRUVFZkuCiGEENJnWRMYL1++HI888ghuvvlmLFu2DGPGjMHixYtjBrFbtmzBHXfcgUsuuQTvvfcezjzzTNx0002ora0NP6aurg6XX345Ro4ciTfeeAPLli3DtddeC5VK1V9vixBCCMk6ZrMZ999/Px577DG6ZhJCCMkJykwXIFGvvPIKFi5ciIsvvhgA8MADD2DlypXhYDbSq6++ilNPPRWLFy8GANx2221Yu3Ytli5dit/97ncAgD/96U849dRT8ctf/jL8vKFDh/bDuyGEEEKy1z333INFixZhzJgxfT4Wz3MpeX5fj5PrqJ7iozpKDNVTfFRHiZFbPWVFYOzxeLBz507ceOON4dt4nsecOXOwdevWqM/ZunVrt4B57ty5WLlyJQBAEASsXLkSixcvxtVXX409e/Zg6NChuPnmm3HKKaf0uqyp+GDldpLIEdVRYqie4qM6SgzVU3z5Ukevv/46HA4Hrrnmmj4fS6nkYTQWpaBUgMFQmJLj5Dqqp/iojhJD9RQf1VFi5FJPWREYt7a2wu/3w2QySW43Go04cuRI1OeYzWYYjcZuj29paQEAWCwWOBwOvPTSS7j99ttx11134YsvvsANN9yA//znPxg/fnzS5UzlBR6Qz0kiZ1RHiaF6io/qKDFUT/Hlch3V1tbir3/9K95++23wfN9XY/l8Ajo6nH06Bs9zMBgK0dpqhyCIfS5TrqJ6io/qKDFUT/FRHSWmP+uppKQAKpWix8dkRWAciyiK4LjYPfPR7gvdJggCAOCMM87AVVddBQAYN24cNm7ciH/961944IEHki5PKi7wAH2ZEkF1lBiqp/iojhJD9RSf3C7w6bBt2zZYrVacddZZ4dv8fj8efvhhvP766/jkk0+SPmaq6koQRDo3E0D1FB/VUWKonuKjOkqMXOopKwJjg8EAhUIBs9ksud1qtXYbRQ4xmUzdHm+xWMKPNxgMUCqVGDFihOQxNTU1OH78eK/LmsoPVS4niZxRHSWG6ik+qqPEUD3Fl8t1dOaZZ2LixImS26699lpcdNFFuPDCCzNUKkIIIaTvsiIrtVqtxoQJE7Bu3brwbYIgYP369Zg6dWrU50ydOhVr166V3LZu3brw40PHjJyKffjwYQwcODCl5SeEEEJyQUlJCUaPHi35T6VSoby8HMOGDct08QghhJBey4rAGACuvvpqvPXWW1i2bBlqa2tx//33w+VyhXuo77rrLjz55JPhx1955ZVYvXo1Xn75ZdTW1uLZZ5/Fjh07cPnll4cfc8011+Cjjz7Cf/7zHxw5cgQvv/wyNmzYgIULF/b7+yOEEEIIIYQQkhlZMZUaAM455xxYrVY888wzaGlpwbhx4/DSSy+hrKwMANDQ0CBJBDJ9+nQ8+eSTePrpp/HUU09h2LBh+Mtf/oKamprwYxYsWICOjg48//zzeOihh1BTU4Pnn3++V4m3CCGEkHy0YsWKTBeBEEII6TNOFMXcXAiVAV6vH21tjj4fh+c5GI1FsFhsslunJogimpw+OP0CdEoe5VolFD0kQEsXOdeRnFA9xUd1lBiqp/j6s470el1Gkm+lWiqum3RuJobqKT6qo8RQPcVHdZQYuV03s2bEmGTW7jYXPjrWjm8tTth9Qvj2IiWPE8t1uGCIHkOL1BksISGEEEIIIYT0DgXGpEctLh9e3GvGBnOgR1/NcxhbqkGxSgGb148DnR6saLBhRYMN368uxtUjjShQZs3SdUIIIYQQQgihwJjEtsXiwBM7mmHzCRigVeLS4QacMqAQGkVX4Ov0Cfi8vhP/PtyK/x3vxHetLtw3tRKVBaoMlpwQQgghhBBCEkdDeySqL+o78eDWRth8As4bXIJnTxqEM6uKJUExABQoeZw3pBTPnDQYJxh1qHd48atv6nHE5slQyQkhhBBCCCEkORQYk24+r+/As7tbwHHAzyeUY/FoU7eAOJJercCvpwzA96uL0ebx44GtDWhx+fqpxIQQQgghhBDSexQYE4n1zXY8t9sMBQf8atIAnFZZnPBzFRyHG8eYcObAYljcfjy4tQEuvxD/iYQQQgghhBCSQRQYk7CDnW78aWczAODOiQMwq7ww6WNwHIebxpowtawAdXYv/rbHDNoRjBBCCCGEECJnFBgTAECH14+HtzXCLYhYVFOG2RXJB8UhCp7DHRMqYNQosLLRhpWNthSWlBBCCCGEEEJSiwJjAlEU8dfdLTC7/Th1QBEuGlra52OWqBW4Y0IFOAD/2GdBm8ff94ISQgghhBBCSBpQYEzwWX0n1rc4UFmgxI1jTeA4LiXHnWAowNmDStDpE/DSPnNKjkkIIYQQQgghqUaBcZ5rcHjx0j4LeA74xYQK6JSpPSUW1ZTBqFFgTZMdWy2OlB6bEEIIIYQQQlKBAuM8Jooi/rbXDLcgYuEwA8aUalP+Gjolj+tGmwAArxywwk+JuAghhBBCCCEyQ4FxHlvVaMM2qxODC1W4eJg+ba9zUrkO40o1OGzz4MsGSsRFCCGEEEIIkRcKjPNUh9ePf+y3AABuGlsOFZ+adcXRcByHq0cZAQBLD1rhpr2NCSGEEEIIITJCgXGeeqO2FR1eAd+vKsZ4feqnUEcaU6rFnIpCWN1+fFrfmfbXI4QQQgghhES3t92Fv+81wyvQMscQCozzUJ3Ng/8d70CRkscVI8v67XUXBqdrv3ukDR4aNSaEEEIIISQj7vqmHh8d68CnxzsyXRTZoMA4D71ywAIBwMLhBpSoFP32usOKNZhVroPV7ccXtNaYEEIIIYSQjGpy+dDu8WNXmyvTRck4CozzzLcWB761OFFVoMLZg0r6/fUvHWYAEBg19tPUDUIIIYQQQjLG7hVw89dHcc/mehzsdGe6OBlFgXEe8YsiXg4m3PrpqLK0JtyKZWSJBlPLCtDs8mGD2d7vr08IIYQQQggJsPv86PQGljjW2TwZLk1mZVVgvHTpUsyfPx+TJk3CpZdeiu3bt/f4+I8//hgLFizApEmTcN5552H16tUxH3vddddhzJgx+PLLL1NdbNlY3WjDUbsXE/RanGjSZawc5w8uBQB8WEdrGgghhBBCCMkUu68r70++ZwDKmsB4+fLleOSRR3DzzTdj2bJlGDNmDBYvXgyr1Rr18Vu2bMEdd9yBSy65BO+99x7OPPNM3HTTTaitre322Ndffx2imNvTen2CiLcOtQIArqgpA8f1/2hxyDRjAap1Kuxqd2F/R35P2SCEEEIIIaS/hWaOOv1dMVCOh0NxZU1g/Morr2DhwoW4+OKLMXLkSDzwwAPQaDRYtmxZ1Me/+uqrOPXUU7F48WLU1NTgtttuw/jx47F06VLJ4w4cOIC///3v+MMf/tAfbyNjVjR0otHpw7Sygn7ZnqknPMfhvOCo8X+Ptme0LIQQQgghhBBAQH5HxspMFyARHo8HO3fuxI033hi+jed5zJkzB1u3bo36nK1bt+Laa6+V3DZ37lysXLlSctw77rgD99xzDyoqKlJSVj4F63ZDx0jFsQDAK4j41+E2AMAVI8tSdty+OKO6GEtqrfiqyYZrRhth0CR3Kqa6jnIV1VN8VEeJoXqKj+qIEEJItmGvWPmeFzcrAuPW1lb4/X6YTCbJ7UajEUeOHIn6HLPZDKPR2O3xLS0t4X//6U9/wqhRo3D22WenpJxKJQ+jsSglxwIAg6EwJcd5Z78ZZpcPc6tLMHuEKf4T+sm5NWX4114z1rd7sGicvlfHSFUd5Tqqp/iojhJD9RQf1REhhBC5i7aMlALjLCaKYo9rZaPdF7rt66+/xieffIL3338/ZeXx+QR0dDj7fBye52AwFKK11Q6hj2eo2y/gle8aAQCXDi6BxSKf/YPnlRXgXwDe22fG2eUFSa17TmUd5TKqp/iojhJD9RRff9ZRSUkBVP24Dz0hhJDcxLa+RZpKLX8GgwEKhQJms1lyu9Vq7TaKHGIymbo93mKxhB+/adMmNDQ04KSTTpI85qabbsKcOXPwj3/8o1dlTWVjSBDEPh/vf8c6YPX4MaeiEEML1bJq0FbrVBhXqsHudje2W52YZChI+hipqKN8QPUUH9VRYqie4qM6yl9NTi90Sh7F1GlBckBthxsGjQJlSS53I9kr3y9dWZF8S61WY8KECVi3bl34NkEQsH79ekydOjXqc6ZOnYq1a9dKblu3bl348T/5yU/wwQcf4L333gv/BwD33nsvHnjggXS8jX7nE0S8VxdIbrVwmD6zhYnhrOoSAMCnxzszXBJCCCGk9zx+AdevO4orVkdf4kVINml1+/CLTcdx9Vd1mS4K6Uf5npU6a7qArr76atx1112YMGECJk+ejFdffRUulwsXXnghAOCuu+7CgAEDcMcddwAArrzySlxxxRV4+eWXMW/ePCxfvhw7duzAww8/DCCw3jhyDTIAVFVVYdCgQf33xtLoqyYbWlw+zDAWYFixJtPFierkikK8uNeM9S12dHr91MtOCCEkK3nyfaiF5BSz25fpIpA0C/9iMXOpKSt1ljjnnHNgtVrxzDPPoKWlBePGjcNLL72EsrIyAEBDQwN4vmsAfPr06XjyySfx9NNP46mnnsKwYcPwl7/8BTU1NZl6C/1KEEW8c6QNAHDxUH1Gy9ITjYLHvMpifHy8A6sbbfhBcBsnQkjiLC4f9na4YPMKKFYpMLZUk3Smd0JI3+R3c5LkGj+d0HmDXWOc7597VrWcrrjiClxxxRVR71uyZEm3284+++ykMk7v3bu312WTm80WB+rsXowp1WR83+J4Th9YhI+Pd2BVEwXGhCRjd5sLSw9a8V2rq9t9M4wF+MmIMowskedsEUJyDdugdPsFqHkOHkGERpEVq9YIkfDTDIicF+0T9uX5555VgTFJ3DvBfYsvHqpPKttzJowu0WBggRJ7291ocHgxUKfKdJEIkTWvIGJJrRUf1LVDBFChVWKGUQe9WgGr24dvLA5stjixxXIclw7X48fDDbL/HSAk2wnM4jybV8Df9pqxyezAklOHooSWCZEs09uRww6PHx5BhElLIUY28lJgTHLNrjYXdre7MbhQhZkmXaaLExfHcTitshhvHmrFqkYbfjzCkOkiESJbLr+AP37XhG8tThQqeSwebcS8yiIomMDXJ4j4rL4Trx6w4K1Dbah3+PB/48uh4ik4JiRd2ECi0ydgk9kBADjQ4cZ0o/yvxYSwkl1rGtpCddGaQPK59+YPpw5ZuQt+xOynlO+BMc3vyUGh0eKLhurBZ8mP0rzKIgDAqkZb1A3HCSGBC9bD2xrxrcWJwYUq/HnWIMwfWCwJigFAyXM4e1AJHjuhGuVaJVY32fDc7hbJiBYhJLXY75dXEMJ/09eOZCOfEP8xIX/a2YyfflUnmYab72tVs1VvPraDnW4srbXmxPR7CoxzzOFON76xOGDSKHDqgKJMFydhA3UqjCnRoN7pxf4Od6aLQ4jsiKKI53a3YHurC8OL1HhkRhXK40xVG1KkxqMzqmDSKLCy0YY3Drb2U2lJrnrhhRdw8cUXY9q0aZg9ezZuueUWHD58ONPFkgW2Tcj+nf1NRZKPkhk5XNloQ5vHjyaXN3ybn3qEsgbHjBn3Jrb9+cbjePtwG75szP6tVykwzjHvBvctvmCIHsosmzYZGjVe2WjLcEnyk8cvYH2zHS/vt+BPO5vx/B4zPq/vQIfHn+miEQAfH+/AykYbTBoFfju1MuGtzUxaJe6bOhCFSh7/PtyGby2ONJeU5LKNGzfi8ssvx9tvv41XXnkFHo8H11xzDVyu7gng8g0bCEgDYwoQSPbpzfZjHmaY2EenvexF+4j68ntldmV/e5HWGOeQJqcXa5psKFby+F51caaLk7S5A4rwj/0WfNVkw7WjjFBkWWCfrQRRxCfHO/DWwVa0eyPmTh0H1LwF368uxk9GlEGnpL60TKizefDKfisUHHD35EoYk9yKaUiRGreMM+GP3zXj6Z3NeGbWIOhpOyfSC//4xz8k/3700Ucxe/Zs7Nq1C9OnT89QqeRBOmIcPUgm+UkUxazLUM4uB0iUiwmMc2Faba6L9gn15WPLhVkC1DLKIe/XtUMQgXMHl0KbRT++IaVqBSYbCrDF6sTONhcmlxVkukg5r8Pjxx+/a8KONhd4ALPLCzGrXIdyrRIdXj+2WZ1Y2WjDh0c7sKHFgd9MqcSwInWmi51XfIKIp3Y2wyOIuLKmDKN6uf3SnIoiLKh24pPjnfjHfgvumDggxSUl+aizMzB1rrS091vt8X3sBA09v6/H6SuRfXlm3b+IzJcNkFE9iSK+bLBhokGLigJ57UKRrjr6224zlh/rwF9nD8bgLLmGepkYJ7I+YtWTw8+srecyf65lkly+b4kQI/72A3D4BJSqk8um70fy71du9USBcY5o8/jxWX0nNDyHcwaXZLo4vXbygEJssTqxrtlOgXGaNTu9uG9rI+odXgwvUuP/xpdjRLE06JpTUYTLhhvw/F4z1rc48KtvjuM3kyvps+lHHx1rxyGbBxP0WlwwtG/7fF810ohNZgdWN9lxWqUDM7Igaz2RL1EU8cgjj+DEE09ETU1Nr46hVPIwGlOTD8NgKEzJcXrLzHV1SBcVa8N/a3SalL3HVMh0Pa053o4/7WyGTsnj80smZbQssaS6jpYfqwUAbLF5MXVoWUqPnS7Klq5lN7HO38h6EjRdHR3FpToYC7OjEyCdMv19i0YQRWlyXkXX3xqtCr/YdByHO9xYfuGEpGaXKTXKXv/WyaWeKDDOER8dbYdHEHHe4JKs3i9xlqkQf+XMWN9ix3VjjN2y7ZLUaPf4cd+WRtQ7vZhl0uGOiRUxp3jpNUr8atIAvH24DW8cbMXD2xvxwLSBGFuqjfp4kjoWtw9vHGyFggNuHGvq8/dBp+RxwxgT/rC9CS/tt2BKWUHW5SIg8vHggw9i3759ePPNN3t9DJ9PQEeHs0/l4HkOBkMhWlvtEDI4fdPa3rXOupV5T5YOJyyWzI+MyqWe9jcFZhk4fAIsFnnlFEl3HTkdHtm951g6bF2JUCPLHKuejlu7gmmz1Q6ly5P+gsqUXL5vkSwuH3665ohka1S3t2ttsMPpxeFgEtydx9owVp94W8/ei/O7P+uppKQAqjgxEgXGOcDhE/DRsQ4oOOCHQ/SZLk6flASnU2+1OrGrzYVJBhqZTDWvIOL324JBcbkOv5o4IO56bo7jsHC4AUqOw2u1Vvx+ayOePLEaA2Q2DS7X/HO/FS6/iIuGlmJwinreZ5UXYmpZ4Dv2WX0nzh6UvTNMSOY89NBDWLFiBV5//XUMGNC3afmpagwJgpjRBqhkqxpmraXbJ8iqYZzpemK7YOVUL6x01ZEoZrbuk8GuEbZ7/Njb7sKUsgLJ3sSR9dTq9oX/9vjldd5nSqa/b5FWNQQ6pt5idqlgM5Cz+RF6Ol8tbh82mx04Y2BXTiNvH96rXOop+xaikm4+Pd4Bu0/AvMqiuNu3ZIOTKwLTKdY22TNcktz02gEr9nW4MaZEgzsmVCSV5OziYXqcN7gEnT4Bf/yuCR5/8sk5SGIOdrqxuskGg1qBS4cZ4j8hCVeNLAMH4M2DrXAks1klyXuiKOLBBx/Ep59+ildffRWDBw/OdJFSaqvVgavWHMHe9uSzbEuSbzGr9pLZ9iZXiaKI9+vacKDDndezVLLpTGDLuqTWivu2Nsbd8s/JtAloH2N5ckX5YNhOPTZ/Vk/f1Hs3N+Ave8z45HhH+LZcaBJSYJzlvIKI948Gtmi6MMtHi0NOKi8EzwHrW+w5keFOTjaZ7fjgaDuKlTx+OWlArzJk/nSkEeP1WtR2erCU9sVNm6W1gbpdONyAghRnAx9RrMFplUVo9/rxQXCLN0IS8cADD+CDDz7Ak08+icLCQrS0tKClpSVntmv64/YmtHn8+Nsec9LPZa9X7LY1vdn2JtdssTrx8n4r7th0nJZIZQl25HCrNbA04O3DbT0+x81mpab2myy5o2Qb98fo1OtJvTOwZ/UhW9d0eV8OfOYUGGe5VY2dsLr9mGXSYUiWZDqMp0StwER9Ado8fuxuy43GlhzYvH48tzvQ2Lt1fHmvZxcoeQ53TqhAoZLHB3Xt2NOLkRXSsz3tLnxjcaBCq8SZVenZeu2yEQbwHPDfo+1w0qgxSdCbb76Jzs5OLFq0CHPnzg3/t3z58kwXLSVC00R7841g4182GKYRY+AI03hW5HFcnE1xA3vaGhLMTuySjBjL6822uHxY15wd67vTyRllg2m/GH3EOJFRf/bxvhz4rcv+ebd5zC+KePdIYLTn4mH6zBYmxU6uKMT2VifWNtsxkdYZp8Trta1o8/hxxsAizCrvW/Y/o1aJa0aV4dndZjy7qwV/OrEa6izcIkyultZaAQA/Hm6AKk3TDgcUqDBvQBG+bLThf8c7cMFQfVpeh+SWvXv3ZroIaRX+tvWiUc82LtmRsxxoK/ZZm6cruQ9Nsc0O7MeUaEcR2wkkh/7WOpsHa5tt+NEwA362rg4+EfjDdAUm5HG7Mt6IMfu5JzICzI4wy60zpDeoJZvFNrY4cNzhxUS9FmNyLEPwSRWF4AF83WKXTOchvbO33YVPjnegWMnjpyONKTnmGQOLMa2sAMccXnxwtCP+E0hCdre5sL3VhSqdCqdVpneLl4uH6cEBeK+undaLE4KuwDiVI8aJTk3MZe1MYEwj6NlBkIwcJvaZ+SKec7jTjcOd7thPSLP/23AMbx1qw/+Od4TL1uTy9fykHOeO0jPlj5F8K5ER4GRHmOWOAuMsJYoi/hNc63FRDo706NUKjNVrYXX7UZvBH9VcIIoiXtxrhgjgqlFlKElyw/ZYOI4LbqkF/PtwqyQbJem9ZXVtAICLh5YmlRitNwYXqnFSeSFaPX6sbKQpZoSElr/2pj+WDR6kWV77Wqrcwo5C5cIIUzIEiFjbZMMftjfKtoNgi8WBg51uiEjsHGYDKTbA8okibtt4HLdtPJ6WciYiVJpmJhjO49xvAKJ3TPkl38mu2xMbMe6SC1VLgXGW2tbqxIFON4YXqTHdmJtTQmaZdACAr5lN5knyVh1rx952N0YUqyVp9VOhWqfGDwaVwuUXKRFXChx3eLCxxQGDWoF5lelZWxzpgqGlAICPjnVAzLNGKiGR+tKwizXClm/BXzRsvq187jTwCiIe29GMDS0ObGyR384bbr+A+7c24ucbj0uzrPdwDgsxAik5TKUOYc85ZZ4nf4v27mMFw4l8hpJzIweqlgLjLPXO4a61xVyOfslD62DlePHIFn5BxPPbGwEAV9aUgU/DubJwuB7FKh6f13fiqN0T/wkkpvfr2iECOHdwadrWFkcaU6JBTbEah20e7KJkdyTP9S35Fo0YJ0Ky33OedRp4hegjc3LhjnHe9nQOxxptZLcCzHSnK3vOUVb07mLlR0hkVkOu/b5RYJyF9ne4sL3VicoCJeb0MYmSnA3UqTCkUIU6uxcNDm+mi5OVVjR0oq7TjcllBZhalp6ZBUUqBS4ZqocI4O1DNGrcW20eP1Y02KBVcFhQ3T+jxUAgEDh3cGDU+L/HaK04yU+hhmFX8q3eHCPW3znWcuwFNhTxxQik8gEbaGQqPnP4BPzncBusUZY/eWOsNe1pxFgy2sg83+aTT8I1L30Hu0Q579jPxxMxHT4eCoxJxrFri9O9BjHTTgyNGptp1DhZflHEvw+1AQCuHFmW1pkFCwaVoFSlwJomO40a99KnxzvgFUR8r6oYRarUrANP1NyKQpSoeHzdYkdLnicmIflnd5sLl3x5CCsaOsPBigAR/zrUipf3WxI+jhBj+nS8hmOn148P69phl9Pc0xTjmNZ4rOAr17j8Ana1uSKSGXXdn6kG+JJaK5bUWvHod03wCyL2tbvC5yv72bCfTE+fUqzz3ubterOZXk+dz7MUEsHWiJtJxJlQ8i3m2bkQkWRVYLx06VLMnz8fkyZNwqWXXort27f3+PiPP/4YCxYswKRJk3Deeedh9erV4fu8Xi8ef/xxnHfeeZg6dSpOOeUU3HPPPWhpaUn32+iTo3YPvg6uQZyf4vWickTrjHtvXbMdDU4vThhQlPas5VoFj4uGlgZHjdvS+lq5yC+K+LS+EwBw9qCSfn99tYLHWVUlEMRAgE5IPvmysROCCPx5V4ukYffGwVa8X9eecEOaDWu9STTE/7SzGS/tt+DVA4kH4dmGzczNBoeZHklMp0e2N+GezfX4qqmrY5+th3QsbUrE4eCe0nvb3XjzUCt++U19uBPdE2ObsZ4D466/2azUnWxgnOFgVLqNVA6fdCnA1lUiHRq5VptZExgvX74cjzzyCG6++WYsW7YMY8aMweLFi2G1WqM+fsuWLbjjjjtwySWX4L333sOZZ56Jm266CbW1tQAAl8uFXbt24cYbb8S7776LZ599FgcOHMDNN9/cn28rae8eaQMA/HBI/61BzKSRJRqUaRTY0+ZCB7PdA+mZKIp4Jziz4MpxFf3yml2jxjYco1HjpGw2O9Di8mFKWQGqdeqMlOH71cXgAHzR0Ek96iSvVGhV4b9DV1X2K+BMcCQ31ihxvLblZosTAHDUlrtLhmIl98nlEeOt1sDnuru9K3dDb7ZASqdPgstn1jQFdiVgp9Gy+932VFTJGuMYU6kzPWLsZNfNyqDeMyle5OCL8V1NRDIPr3d4E/5t7U9ZExi/8sorWLhwIS6++GKMHDkSDzzwADQaDZYtWxb18a+++ipOPfVULF68GDU1Nbjtttswfvx4LF26FABQXFyMV155Beeccw5GjBiBqVOn4re//S22bduGpqam/nxrCWtx+bCq0YZCJY/vV/f/qFIm8ByHE006CAA2mWnUOFGbLU4csnkwqkSDGQPSuxduiFbB44LgqPEHR9v75TVzxSfBUdqzM/i9rihQYXJZASxuP7YFG3SE5AO2oRhacsK272wJNt5iZedNdFS0SJU1TbKk+WOM2OXyiHGITtn1ubIdAR4ZjFy6gmXQKgJlZANYFzt63MMxYnV6sEsDMj1K65CUJYMFyQKxpv7Hfjzzd4Kv0eLy4cb1R3H7xmPwiyJe29WEQzLZmlWZ6QIkwuPxYOfOnbjxxhvDt/E8jzlz5mDr1q1Rn7N161Zce+21ktvmzp2LlStXxnwdm80GhUKB4uLeT1HmUzCKGzpG5LECU7oCGWuLUrQXbTY4qaIInxzvxEazA98LTjONVUck4L3gXrgLRxjAcVy/1dOCQSX416FWfNlgw6KRRpRmwXma6XOp0enFtxYnyjQKnFRRmNFz+ntVxdhmdeKLhk6cEJHYL9P1lA2ojrJTtDVybDPe7hWABHIX+sXowV+io6I5HRjHGEHP5RHjEJ2i63ONlagqU7zhwDhw5rOjxC5mrak/Rlm9ghh7D9wkp+Smky/GdzMfxfvKsfWTWPKt5H/rzMFcJo1OH7ZYHOHdU94/Y0RCz0+nrAiMW1tb4ff7YTKZJLcbjUYcOXIk6nPMZjOMRmO3x8daQ+x2u/HEE0/g/PPPh06n61U5lUoeRmPqRucMhq6GqdXlxaf1HdAoOFw5pQoGbVZ8dClxml4H3XdN2GJ1oLBUBy3T+8rWEQmobXPiu1YXqovUWDAmMI26v+rJCOC8GiP+vc+MVRYXrp44oF9eNxUydS79a1s9RAAXjjKhojyzeQN+UKrDC3st2NDigLJIi1JN998Z+s7FR3WUXaJlkGZD1ESTYsWaJhvt2R6/gI1mB6Ybu9obhcrcDYwljWewDenoj9/f4cYArRIlWdC5Go90fbV8gkVW1BFjX88B0tcNHfjFqkO4cEhp+DbJzAAZdQKwxc/3qdTxfs2knVjx6ypWNv6esEtBZfQ1AJAlgXEsoij2mGk32n3RbvN6vfj5z38OALj33nt7XR6fT0BHR9+nIPI8B4OhEK2tdgjBM+Yf+8xw+0VcMKQUgt0FS54laZ5uLMBXTXas2N+CWcFRtcg6IgFLdwU6fxZUFaO9zdHv9XRWuQ7v7AP+va8FCyoKoFbIu7GXyXPJJ4j4b60VPAecYtDCYrH16+tHc8qAQiw/1oFlu5pwHtPgoe9cfP1ZRyUlBVD1c/byXBVtbTDbVDju8OLDo+24ZJi+x0SGkhHjOGtJ3zrUhneOtGFuRXKdKKIoQkD/78Xa6PRiX7sbp1b2rvM/1ohxtLo5Zvfgzk3HUapS4LVTh/bq9eSEnZLMrnWVw1TqEE1wxNgjKWv06ceiKMLlF/HqzmYAwLK6rqVTsUZm+zMYFUQRbxxsxQmmrk4nNhjMdJDeH17aZ4ZHEHHT2HJsMtuhVfCYZAhMe4kX7Ca7DESI8vsZD/u9d0RMuVdmeMZVVgTGBoMBCoUCZrNZcrvVau02ihxiMpm6Pd5isXR7vNfrxe23345jx47htddeQ1FR30Z8U9kYEgQRgiCize3D8qMdUPNcIDDOgy91pBNNhfiqyY4NLXbMZH/sgnVEAmxeP75s6ISG5zC/sihcN/1ZTxVaJWaVF2J9ix0rG2w4syo7sqdn4lza1GJHm8ePmSYdDGqFLM7l+QOLsfxYB76o78APomTIpu9cfFRH2cXPNvqD/2c/vqW1VnT6AiO8PU31k6wxFnpuLG5vDXSib2ByZyQSOzz6XRO+a3Xh1VOG9msCzhvWHQUAlGuVGKdPfpcDtiHsiVM3R4JZk9u9uZFwk93+xsNMVZbTiHGIJPmWnw2Quv7+5wEr3qtrhzHKzEU2kJJmN05xQYM+PNqOz4534NETqsNruVc32fDvw234dzABKRAI5kOSTSiVjT48GshbcuMYE36/LZA3KfTbFS/YTTZBXOQIs18QYfMJPS6l88U4z7wyCIzlPZQTpFarMWHCBKxbty58myAIWL9+PaZOnRr1OVOnTsXatWslt61bt07y+FBQfOTIEfzzn/+EXq9PQ+n7blldOzyCiLMHlcAQZWpjPphuLAAP4BuzQ/IDR6S+aOiEWxBx2sCift8Ll3Xe4EBA9fEx2vqnJ180BLZoOkNGW6+NLFZjkE6F2k4PjjsouzjJfdEaf+xt7MhZz8eJ/vyeRmjY61kiV7avWxyw+wRY3D581+rE2qb+nWVidSe+z3mj04vndrfA4vbFDJii1b2cRlJ7i/1cIxv+0f7OtNA5KtnWKEYw+V5whNgSZc/7WM9J13t9aZ8FR+xerGvu+h4c6OiexIl99VxPvsV+pzqj9EjEHTGO03EFSM/vyGUjv9vSgCvXHEFLlPMj/BrMcdl17XLI1J4VgTEAXH311XjrrbewbNky1NbW4v7774fL5cKFF14IALjrrrvw5JNPhh9/5ZVXYvXq1Xj55ZdRW1uLZ599Fjt27MDll18OAPD5fPi///s/7NixA0888QT8fj9aWlrQ0tICj0c+jcE2jx/LjwVGi9l1HPmmWKXAWL0WrR4/DnbK5/ORE0EUsTwYiJ4zKLPnyni9FkMKVTjQ6cb+KBcpArR7/PjG7ECxipdM+co0juNwSjCT+ZrGPFuzQfIS24APjVWwjWd1giMYgiQQ6Lo92ghNqPHFNluTaRSKInDvtw14bEdz2hqTZpcPKxs7JY1gTRJLY/6wvQmf1Xfixb2WmNmYo9WNnALG3pI2/KNPsZfT+wx9DrEC40TXjkpGG/uxE4Cdoh4tIBMj6v2o3ZNQp5JfEHHP5nq8dbC1230tLh/+sc8iu61E2an7ligdWfE+Cn+MoDfWMSJHjHe0BbYni9ZBEe24bMeRHKa5Z83w4znnnAOr1YpnnnkGLS0tGDduHF566SWUlZUBABoaGsDzXT/Y06dPx5NPPomnn34aTz31FIYNG4a//OUvqKmpAQA0NjZixYoVAIAf/vCHktd67bXXMGvWrH56Zz1bdqQNHkHED4eU5u1occgJRh12tbmwyezAqF5M5cp1W61ONDp9mKjXYlhRZvbCDeE4DguqS/D3fRZ8crwDo0rKM1oeOVrVaINfBE4dUCS7PclPrSzCm4dasarJhoXD9T3mciAk20Vri7FBgYrneowMHD4BBQouZrblaCM0oa88e1cyI1kdzDRjnyBCoUj9d/TOTcfR6vFDw/duDOVocEp0m0faOPcwI/DR6sYdEVD9fa8ZpwwowuSyBFKD9zObN7C93ZyKQsnvJNvAZ7M7xwo8My1UrFjLAWJlpe6Jlz1Wmt8rux9utK8q+9Vy+wXc8vUxAMDLpdqoU8JDjto92NXmwq42F348wiC576kdzdjV7oLZ7cOvJskn0Si7Ztfi7h60x+tIi5UPgMXWZ6w1xj11KLLnFttR5pXBVyKrIq0rrrgCV1xxRdT7lixZ0u22s88+G2effXbUxw8aNAh79+5NaflSrdXtw8c0Whw206TDa7VWfGNx4CcjyzJdHNn5vD4wLVcue1yfNrAYrx6wYk2jDVePLMvo1G45WhGcRi3HNdhVOhVGlWiwv8ON2k4PRpZoMl0kQtKGbSiG/mIDmJ7WvO1pd+FX39RjUU1ZRPKtnqcjRtsvOV7wwI7cHrZ1zZzyCCI0afh5bQ2OhB21d72WO8Fp5UBX41mt4CWBizQxWffnsY/9vL4Tnwb/k8NWLpH+vs+CVY02XDpMj8trutoliYyIZWpwLHQeceg6/0LnXqxR4t7MPu5rYJ0MV5whbTZ4a2FGUTt9AozRnhDUU9KweqcXAHBQJvvvhrDfH3bpgyCK4Dku7nnH3h0riI6VaJA9dk99dT7J94OmUpMEvX2oFe48X1vMGlyoQoVWif0dbrQmsc4pH3R4/NjQYkehksdJ5fKYlluo5HFqZRHcgoiVjZnPtiwnBzvdOGTzYFiRGsMzPLofyykDAtly1/TzGkZC+hvbsAsFDewoRk9NtU+PB5avLKm1Roy2df0dauzZfQJqg9MLo7UZ400jZMvEThf1CiIsLl/UNZ+pwI7gunsR4Kh5LqE9nr2CGM54HHLMLu+lU7uC00Y/isinIZlKzWZ3TmCaarpFiyFDn0msteC94YsRPKVCZAcNmwcg3neLPb/idfSwa3QFMbBn8zdmB7yCGE725ZDZomWHnx0x7vpNCNVBMqX1CiJe2mfGjlbpjjtCjPOE3RO+p8+crTK5TaWmwFimjnW68fGxDugUHC4Zqs90cWSB47jwWszNTCZPEpiW6xOBeZVFstoeaUFw9PqT4x2UNI3xRXB0f/7AItlOU547oAgcAoFxInsZEpKtIoOzSO4eRqMqC1Rdx0H0oCd0yMVfHcEvNh1Hi8sXNdiOFyix6yhtXun03GvW1uGatXU9Pr+32NE+j19Ek9OLbdbEt6ZU81zMhnToLbn9Ai758hAe3t4kqQerzNZvRjIGh+qdEcGRP0ZngnQqdZoLF0OoftlLjzccGKduqrdkxDiF15ANLXb8ZNVhLDvSFr7NK4j416FW3PNNfdRys3XNTm3v6bsNSL9ndp+AVw9Y8dC2Rrxx0Bred1x2gXGMqdShacrJfBbrm+348GgHfvNtg+T2WB1d7PndU6dDrCz1FBiTmF78rhF+EbhwqD4nNrhPldBWTRspMA4TRRGfBaflfk9m03JHlmgwsliDo3Yv9lESLgCBBtOaJht4DphXKa/Pi2XUKDHRoIXF7Q+PihCSS3a3uVDb4ZaOkkVpl/XUwGP3E2aPI5lKjcCaYEfwAWaXL9wAZKcbxguU2ODL7utq8NY7vOG/RTEw6prKxjrb2PUIIq5fdxS/29KAZqe3h2d1UXCxA65Qp8Tx4HvYZHbEbGjLUaxuTelU0dij5U1Ob7egOt1C5xlb9tCU4VRO9falKeD5+14zfGLX8rGQNw62Yle7C83OKNmyY4wYx8uA3sms5e/0CuGdNjZbnFAGKzBTHRyxsO+JLX/ou5TMR+GI6Dj41uLAjeuPoo5ZysF+R20+IertIdusTjQ4vLG/HzKoSwqMZehAhxuf1bXBoFbgfFpbLDFRr4WG57DV4oA3ibVOuay204MjNg+GF6kxolh+a0FDa2i/iLiI5avtrU60ewVMLSuAXuadXnMrAtmp1zVTdmqSvfxiIAutZGskUcTdm+vxi03H4wZiPTXWXDESSUWOlrEjT25B6Bq1Y18nTouVDdDtTAO0ltmpweUX8eI+Cy5bdVjSeO0LtrHL7sNrSzCg84uxp+iGjiCtL/a5Mmgp94BD97XiQOytiti/LW4/rl93FP+34VhayxjS4fXD5vVHXe/r70XQFE+8teS9FToUW8cWyVraaGWJPpIZbyq1M+KxoaDTpFGEXycNee/6xMNUtiuiU0YUxT7NAHtgayPqHV68wWTplpzfPXQ6WNw+/G5LA362/mjEVOroSw0yhQJjGXrtgAUAcNkIA7QymhYrB2oFjyllBXD6RWxtocY60NVrKsckTkBgraqK57CmyZZU4pZctTq4Zje0JZKcnVSuAwdgfYudplOTrPX2oVbc8vUx/O94J9o9fnxR3ymZlpzMuR25JCTW1kORmV3ZEV6XXwzfL8lkHKcc7Gg2GxjbmFEhp18Ir3dd32LH+mY7HvuuSZIJOhFsnbCjTg5f7IYvEAiwdrY6u40yx5p6GbrdKRk1Yh+bVLH7xTuH2/DMruao580bB614Ya8ZbHXHmj7dEBwlb07T2nCWXxCxaPUR3LbhmKRTJrw9mRj6f+p+52PtaZwO7PeB3Rc3/Pqx1hjH6Qlgzz/2fNco+PB3mE/hcqhvzA7c8vVRNMaZjfGN2YGHtzVKvvshkd+9kGd3t+CatXVxE5Ulgn3PksA4xhRpAJJtrSTJ6XJpKnVoyg5JHZvXjy0WJwYXq/E9mWQXlpvQdOq19R1xHpn73H4Bq5tsUHKBLXbkqEilwCyTDg6/iK9b8nsKvFcQ8XWzHSqew0nlhZkuTlx6jRLj9VpY3X7sa6ep8CQ7fVDXDgD477F2/H5bI57Z3YJ3JOsTEz9WZJvSFSOjauTfduZFXD4hagPQLwR2o4i2D2vkMdlGJzttmv1byXF49LsmrG22J50AUTI9kil7E9NgjzYF+N26Nvz62wb8c78lfJvLL0gTk0V0GgDSjgO/ZLRVfpHxa7VWfNFgw+42VziyFBEIzv51qA3Lj3VIRhrlMB18b3Apk9ntl5zDofAmVOepHKGX7HXbj1mpo52XyawxdvgE/HO/BW1unyTQ80Z06IRyCqRyxPihbY04avfirYOtWNVowy1fH0VblHX2D21rxEazA0tqrd3uY38b2MGIrVYnrG5/SjpiChQxAuMYQTkg7byItRY5K0aMv/rqK9hs0h/Uzz//HBdeeCEmTJiAiRMn4qKLLsLKlSvTVca8UqRS4J7JA/DEqSN63CIin80wdgXG+d4xs8nsgN0nYFZ5IUpkvB3SGcHR7NAWRflqs8UBh1/ECcaCcEZLuZtdEQjg1zZTdmqSnQqYJDmhXAdsltVOX+IJnvyiCLdfCF972Ia1RzJtses5gRHjrhucfjHcAGSvYV5RxL3fNmDx2jrJPsVdx4y+Li/y2CHs1dGS5E4OkqzKbBDuZ1+rewCyPrjs4jNm6YzHL0YEu907ECQjfjGmgsoB+3nV2b2SSma37WGDmViBMduJke4p4+znH3otEcy05ChZqVMp3WtH3f7o34Fo2LvdfgENDi9+s7ke79e1AQD+sd+CZXXteHBbY8z9dn2CGP6+p+NKLgJ4amczjtq9WNNDp1adPdBR5fAJ4fOpp+A0leULYX8Fespqzmb4Zr8f7ojfzWanNzybIhPifp7XXXcdDh48GP73Z599hltuuQUajQZ33HEHfvGLX0CtVuOmm27CV199ldbC5os5A4owWIZrReXCqFViRLEax22ecMKOfBWaljtPpqPFIVPKCmDUKLDN6ow5GpIPQhe4bJhGHTI7OLK9rsme9x1RJDuFOqGk27SwU4UTH5XcaHbg0pWH8WXwu+yKEcR1GzFmgiCXXwg3GqWjpyKOBa9pWyzdsz5Lp4NGD1DZYCsycVAyvDFey8UU2Bkl2lEFO/Sl04dFSYM52npidkTdJpkWK6/fHDbocvoFyYgiW/ftbGAc43eT7WSwJfn5xOMTREkZoq079YtdAU7o7nSN7KYy8I92JPZcTOaVXP5AMswdbS68vD8w+hpKKlfb6YkZZLqYzi2O4yCKYtRpzb3FjosVqmKHaqEEYDetP4rr1tZBFEVJOT0p7Olgv7eJ5BeIfG3298jKZMtmv+NNTi+uW3cUv/62vi9F7ZO4gXFkQ+ivf/0rTjvtNLz11lu49tprce211+Ktt97CySefjOeffz5tBSWENdMUaKxvyuOpuTavH5vNDhQqeUw3ymPv4lgUHIfTK4shAvgyT0eNnT4BG80OaBVd245lA5NWidElGjS7fNjXlvgWLYRk0jG7Bw9ubcAxuyc8pVPJNDbZxlhnEg3af+wLTBF+fo8ZgDQZFbu2MXK7JkdEYBytXcnGJOzU4sM2Dz6r75AEZZ4YI8ZsMMSOOie6dq/N7cMnxzoka5LdEcFgtL9DQoFx5CiSpD6Y+0LFYhvzbIAhmWYZ5T3sbHVGHV1PF/ZccfoESeAkCYyZx8Wqevb2aHWZrHaPH98FZ0I8tK0RV645Et7bmq3faK8VCvLSNZU1HWtH2aK6ell/3oj17wAks7nY+vBEdoowW1x9crwTl68+gtVJLlkAgNoON+765njMtlFPWctDU/hbPX7YfAIanD7J8oNUjhg7JR058b9zkR1CNl/03w72O74/OKPH6vZnbAlC0jMA9u/fj4ULF3a7feHChdi5c2dKCkVIPCeWBwKLb8z5m4Dr6xYHfGJgqqsqC6bdz68KjJJ+0dCZlyOPG80OeAQRJ5UXQpNlSfVC06lXHm3PcEkIScxd39Rjs8WJtw61hhtY7O8k2xhLZjQ11KBTB48Ve8S46zmCKEoCcXa0icUGoGySqxf2mvHcbjP+dai167ExAjKbL8YoYYKNzF9/24C/7TXjA+a7ztZVrJHqkGjXIp8gxgwOQ0EJ2wiONa06spH/VZMNv/62Ac/uaon1dlKuIyLRWay13m3u5IL1VIzsPbStEfd+24DNZge2BveZ3tMe2GqP7cCJ9ln4w0Fen4sRVTqOK8k03csgyiOI3abrs3GodCo1E3D6xfDjvIKIz4I5b57a2Zx0GT5v6MTedjeeZs5jdgTcEfE9EyNmKbCz8OrsHumIcQqDS1uMWR2xRHaGuGL8jkh+99jM+/3Y4cVKunVWVFQEna77aEdBQUFeNnZJZows0cCgUWJnmyul01eyyZrgNOpTs2RabrVOjbGlGjQ6fXm5L+6aLMpGHWlOKDA+RoExyQ6h4ErFc+Hgi82kGi2hTSJCjThlODCOPvLhk0yllgY+XkGMOoJmjzGiEvq9ZDPVemIEkpJs1b7oDdGehJYnHWa2eooM6sNliBLtqKJk6PWL3UflQqKNGEvXGEsTf92zuR4bgjtS/O94IBjZaO6/mWPOiKnkvhifQ3uS7RKvIPZ514bQaNsGZsAgNGoXL0AKva10rXVOx3FTMQrtFcRu3+EOyd6/XY9lO6t8Ylfnll8ECoOjzL0pUbTvUaunK9gNdbh0eP0QIqZKO3wCzExgbPMKMRNb9VWHN/q64FgiP3PJzBOmLtnfF3Z0vDNDKekTCowXL16M2bNnY/bs2bDZbNi9e3e3xxw8eBDl5eUpLyAh0fAch9lVxfCLCPeM5pM2tw/brU4Y1ApMNGgzXZyEzR8YSMK1qhfTjbJZp9ePLRYHipWB7cayTWWBCiOK1TjS4U7Z3qiE9AdR7GpAS5M+9e54oRHRUIMzVqIots0uiNJp1l4h+oixJLFVlEZhrDKzr8uO6nRGNGS/szrx2q6mhLan4pgdliOTFYVEC7aiHTlyH2OWEGXEWNrB0PXYp3e1YFebC8/ubgk+t+u+1Y02/GZzfdxtbnpji8WBu785jhaXr9tUcrYOOiTbWiXXqP/oWDsuXXkYO1v73p6RJDkKjlzHG5H2M0FeOiQbxG6zOvHI9kZYoySNCx0qXpKtRLgFQfL9sTNJrABpB1enV5pQjT1nU11t7PfY7hPwjdmBRauP4MOj7ZLyOnyCZHDI5vVLk4SlsGDseZVIwO0TgAMdbrQFP8NYs02kyxGi/5b1J2W8B9xyyy3dbjMajd1u+/TTTzFr1qzUlIqQBJxcVYLlh1rxjdmBuVk4CtcXa5vtEACcXFEIRQr30Eu3kysK8fe9ZqxttuO6MaasmAKeCuub7fCJgZHXbH3PsysKcbDTgw0tdgwaqs90cQhJiMMvhEckersOkRW57650NDX68SNHeQL7+nZ/XOR61RUNnZIkPLFG/ZwxRonZhqXTL+DXmwMJbbQTynF6Zfd979lZf+yIFUsyYsyU54jNg0E6VdR1gb4eRoydfgGvHrBIMjrHmhYbWi8bClzYnTv+dagVxxxe/H2vGb+bOjDq8xMliiL+d6wD4/UaVOvUuH9rI4BA8G3SdjWb2XWmgHR9d7TEZD35oiHQWfzCPguemTWoL8WXlikYNMUbMfaLgfedvuRbyT3+1QMW1HZ64PA146HpVZL7Qu8vFdOEIwNcm1eQdFBJ7mMD5ojOrd78tDQ5vdAq+KidZJL1uD4Bz+8N5DT416E2yVaPDr8o6SDojFj3nkqSnAUJvESd3YM7Nh2HQa3AP08ZGrHsJHqFSaZSB+tgk9kOBcf1Wy6dXgXG0SxZsqTPhSEkGSdWFkPJBbbA8YtiVgWIfRXKRi3XvYtjKVIpMMOkw4YWB761ODArC/byTYU1TYGpbdncgTOrvBBLa1uxscWOiykwJlnC5hXCo7qpGGEKHUJEYF2mO8ZaOZaAyKzA8VvRNp+APye4dpY9GrsuT5LdmXn9fe3uqIExG2hYY6yRZV8r9J7WNdvwx++accGQ0qh14O9hjfGyI+1ojZjWHutjCgXCofvZUcjQFPC+jDJ9dLQdo/Va6PzAc8FR6WXzh4fvb3J5UcRkCHb5pEEVO6IWuS40UdYYuzY8tbMZdTYPnpxZDUWczlV2lDUUoCc29TV9ybf8YmDKMgeEc2xsNjug4ICpUQKeZmfgPZijnIepDPw8gtgtuZwjIigNYc8td8Q5bU9iyzcg0Llz/bqj0Co4TI0yi4wdBXb5xfBeySqekwSYXkGU5hjw+lOaiZqVTJJCIDBaDCD8/ZZOpY7+/XBGvJcDHW78flsTCpU83pg3LMkS9052ZYAhhFGoUmCCoQAdXiG8tiYfNDu92NPuRkUwW3C2mRcMDlfmyXTqVrcPO1oD094nZNG090jDitQYoFNhb3vX1ChC5IhtOLe6/Smf5hjS6RMSGgXxR4wYJxKgsyOoyWCD4cgtokJiBRaR0zfjCb2n0J7F79W1wyV0f15PiZEig+KesNMvBVGaNCkUKvb2sz7u8ODv+yy4c+Nxye8bOwrc4PBK16MKQsykYclOpQ4RERiZ/sbsQKfXj6N2Dzx+AasabThk86DRJZ0q7hVEvLDXjO3MkjLJyHWwvJ4on0skvxh9JkMqeAQRt3x9DL/e3AAg8Pk9uK0R921tjJonJlQMNkjZ3eZChye12Yo9flFyXtl93adWh7CJ7SITdrHfu0TWU4fWBbv83ZN/AdIRWZdfDCf7c/uFbr8z7ZKp1GkcMfYkd05HPppdThLrN1CS+donoCG4NGKGsf+WoMUdMSZEzmaadNhmdeIbswNjS7M36EhGaPTxlAFF4LJwlHymSQedgsMmswN2nxBOWpGrQtPe5w7IrmnvkTiOw9zqEryz34JvLA6cWVWS6SIRImFx+bD8aHs4izqAtG7l0+5JbD2fICY2WsKyJJnVOCRWQCtZhxzjMYkEw6xQsMW2w11RKiFVmXHZ99Dh8UsD5eD/exsUmF1d9b2fSQ55xN6VU6HV45eUwekXJYG4PcZIYzJsPgFPBjMbzzAWYLPFicuGG8L3H7d7Ua1Th/+9qtGG5cc6sPxYR/i29ogp9EBin4FPTF/yrcM2D1pcPrS4fOEp8SF72t0o0yhQoOAxUKcC0LX2PHTJ3Gp14L4tjRhbqklpR5c3YsQ4cqaEPcaIcSTJsgWfgCKVosfXtTCdL+YYswRC3Mxadm+ULNqRHSHp2uUo2RFjli+i3LGKGJkvIXQ+juzHQaDcbpGSnDczuB/spn7MSplpXdmos3MaslrBY05FEbyCiPXNub/d1uoszkYdaW5VKQBgYx7vH07k63ff1uPtw22SbY0S2Vakt+I1aEMCI8Y9b3OUKrEa7+woU0eMUdpk6yoUhNY7ukYxo40Yp6OhbnH7o9Zjp9eP/R1ufFDX3i3IO2zzdAvKNpsd+Ptes+SzrGNG64/au95bm9svqcfIUWH2372dSi0pmyUwChy6hgBAk1Na/mjZ1dnOAadPhBgxYyEWvyD2aq1sItgs599aHWhm6nt3mws/33gcD2xtCN8W6l8JJZf6+97A/uF72lM7O9ATkZXaEjEbKlaW90jsrAir2x+exWj3+qMmqjIzr3PM0XPCOJcgwh78XvvE7tO22ySBsdgva4yT1e6JXg89sfn84Y6KMk3/jeNSYEyyWlWhGtU6FQ7bPGhOQzZKuTlq9+CQzYPBhSoMLVLHf4JMzQuujV7VGH1D+1zR5PRib7sblQXZOe090rSKQhQoOGyxOlO6DQTJPkuXLsX8+fMxadIkXHrppdi+fXumi4S6YBBT29k/mdObEwyMA1mpkxsx7q1Y2xeyIzGxRn6SXSfp9oswu3ySekhmT+i+MLt9cEWpx06vgGd3t+Af+y14v65re7nDnW7ctuEYbt1wTBI4PLitER8d68DnDV3XorqOrhHjo0xA1+kTJO8vcoTdLplO28s3FsVxJnCKDITjtXu2tzpx6crD2JdAQMluQZROL+2zYGdb19TvVcHAv8Hpg9svSEZI7T4BL+6zSOoglTyCKEmU1mNgnGBg+PD2Rty56Ti+Mdvx44/24M6Nx7sFqxZX4t81l0+QlCNyVFuyt7ZPSOnexdLX6f13uy1itkUibF4hvF6+TN3zCHwqUWBMsl4+jRqzexdn4zTqkAkGLYwaBb5rdXXrwc8lXzFJt7L58wpRK3hMN+ngEURsT8G2IiQ7LV++HI888ghuvvlmLFu2DGPGjMHixYthtVozViZ2XWhLP/2mJPo6IqTJt1KRBCwWRwLH7vQK2G514itmJLLd4086cZVXEPHukbZut/UHi9sXtaHtFkQcCQazu5gp0ZssgfaB3Rd47/d8U48lB7rOV/axsUaMAemIbeR7TVdAwjru8OClfWZ8cqwDKxo6JSOPsXgEMaG13OlMvsVy+UV8zEz9Zr9HR+1eSQDm8otp3ZLTI4iSta89BayJfj8ag+fIWwdbYXH5cNjmwY7g9dLjFwJTypPI09Hq8UvW60YG75FTqeU4Ytzq8Se97t7mE8KdAEYtjRhHlWwP9ccff4wFCxZg0qRJOO+887B69WrJ/aIo4s9//jPmzp2LyZMn46c//SmOHDmSzrdA0uDEPAmMRVHEmsau9cXZTMFxOGVAEUR0Bfu5aE0OTaMOCWUSp+nU+euVV17BwoULcfHFF2PkyJF44IEHoNFosGzZsoyV6SAT2PSXFlfio1iR+99mUqvHj99uacDjO5rx7pE2PL/HjCvXHMGKhuRm8HgEEeua7eA5oKa4f2cw1Tu83ZL7RNrX7sLBTje8gohtTHD16gELdrW78J+IoD6EXXN61C6dfZDMZ54O61sc+PBoB/6214w/72oJT7dOBb+Yvmm4Id+vDmRDj5ZtGgDu2HQcbx6UdrC1efyoKlBhgj71eWQCyaxijxizkv3W7mVG6d881IqrvzqCH608jOvX1WFDS+LLyCI7XCJHjCO3CUvbiHGSybdYbR5/0jkM7N6uwNgg5xFjURTx3HPPoaWlRfJ3uiXbQ71lyxbccccduOSSS/Dee+/hzDPPxE033YTa2trwY1588UUsWbIE999/P95++20UFBRg8eLF8Hj6ZxoWSY2xpVoUKXl81+rsdSbIbFDb6UG904tRJZpwgopsdlplbmenDk17H1KowrAsnvYeaYZRBx6BjiihH0YXiLx4PB7s3LkTJ598cvg2nucxZ84cbN26tVfH5HmuT//t63Djli9r479QirUkMx2SaXz306BqQl49YMXHxwOjd9tbk+tcaHL50OrxY2ihut+vSYlMrW33Cvj5xuP4+cZj+K6VTaiVeHDbGWxTVAffX6LT57ORACDdTahxCQS3oT2dWWVaBQrSkKgzchS4p8C4L/a2u8NBniD2bclBaHpxqDbYfHfpHDHuS/KtZ3e3JB2wd/r8sLh9KFLyKFAp+nyd4ONscxaS9FkmCAL+8pe/oLm5WfJ3uiXbQ/3qq6/i1FNPxeLFi1FTU4PbbrsN48ePx9KlSwEEAvzXXnsNN910E84880yMHTsWjz32GBobG7FixYq0vx+SOgqewwyTDj4Rkl7hXNM1+pidSbciDStSY0ihCodsHtTZcq8zKhdHiwGgRK3AOL0WrR4/anu5pQzJXq2trfD7/TCZTJLbjUZjrzrJlUoeRmNRn/470oeRjL5oSCJIcvqF8JYrclGqVmBGRRFGG3q3FUqoI3pEmQ7Gov7JoVAczPa7vyPxa0ZoOvTIPow4jg7utRvq31Bm+LOcU9V9H+q+KiopgJDmtzV6QAm0iuQD3PIiDfS61HcwR24l1pd1tIk4bVBpn4/RFoyE9RHTi/UaRXBqeHoC4/7+lW1x+eEWRJQXqvt8jQj9p4qTLRzo5XZNIjNKIPbDiEGoh/rGG28M3xavh3rr1q249tprJbfNnTsXK1euBAAcO3YMLS0tkl7v4uJiTJkyBVu3bsWCBQt6VdZEeyQSOUYqjpWrIutoVnkhVjXasMniwMmVuRWIAIGtC75qsoEDcGplceI9X7I+lzicNrAYrx2wYnWzDVeWGDNSinTUkSiK4W21Th2Y+OclZ2w9zSovxM42FzaZnRij77/9BeVO3t+39BJFsVfr6H0+AR0dfevQnKPX4KuKIiCYuGdnmqdVDyxQosHpS2o/b7dfRJGShyCKMbd16m+/mjQAk8oC39+b19WFk5clq0AUoEzfrlgSgwpVaHIA1jhrZi+vMaBMo8TgQjWe3tmMNo8fN48x4ecbjgEAVDyHwYUqFCh47G5zxW30V6qkwVyJko9bhnQZVqTG3ePLcX59apNXtljt8KR5yNjncKNcq8BRu/R1lBxww9hyvLCnJer3QyuKEBLYi7m3ChScZO2/VsElnSwqlnmVRVjVaMNtE8pxxsBirDne3qfkbM2OQKdQsZIHO2e2VKVAm9svmVqdzULZwvVKDhZLamYWlpQUxA2Os2If4556qGOtCTabzTAajd0eH+rRDv0/Vb3eQFfPd6oYDLkxMphOoTo6s7gAT+5owmaLE3pDIRQ51jDd0myD2e3H9IpCjK7WJ/18uZ5LP9Sq8doBK9Y02XHbiUPAZzBBVSrraI/VgXqHF+PKCjBpsCH+E7KIwVCI749W4uX9FmxudeK2FP7m5Qq5ft9SwWAwQKFQwGw2S263Wq3drqeJEvo4wlGo5PHc/BpYLDY8uq2xT8dKRLlWiRaXL9yAV3CJZSHWKDj4RA6+NCbfSsYgnSpc94ML1b0OjIuVin4bQdXyHAYVqmH19NyZYtIoMX9gYFT1uZMGQRADwXDImBINHp5RBQC4bm1dj1OkC5V8t6y4xarogTGP9I+s6dUKiGJg3WUiSbUSdd+3DeGp4+mi5jhUaJXdkpqVqhU4q6oYgiDib3sDvy2VBcpwIqsSFZ+yQDUag0YJJzM9X69WhF+7L0HyFFMh/m98ORZUl2BcqQaiCPT2mxIqR6gspUxnjVbBoUDRP9/BQiWf9HrhZLF1blAr+nyNSEZWBMaxxOuhjnZf5G2R/+5trzeQmp5vIDDaYDAUorXV3q8nQzaJVkcTDAXYbnXi60MWjE1DkoZM+u++QGfNbKMuqZ4zuZ9LagAT9FrsbHPhq1ozJvRySl9fpKOOPtwXuLDPMSX3eckZW086QcSgQhUOtLmw61grBhRk/5r3VOjP71siPd/poFarMWHCBKxbtw7z588HEFhitX79elx11VX9Xp5IJUydsI2rVDbmNAoeJm1Xo71QySc0BVPNc/Dw8RvZHAKZrFOlWMmHAx6TVhnes7eUCfYGF6okf0cGLj0pVSt63dhPllbBQ8sEADzXtWa7RNX1ObCBrILjEHrKaZVFWNlowwnBpJ1AoPw9BcYGtSI8hRsIjG7GWu9apErsXEjUsCJ1eA/g0yuL8GWjLZxw9LdTKvFarRXVOhU+YrI8h0wyaHHE5km4POkOioHAd7JCqwIQaCureQ4eQURRsH4HSc5Ddfg7VqpSgEP6RkINaoVkP+4yTdf3u0DBw+VP7rUX1RigVvD40YRKeG0ujGfapJeNKMOSWmv4XExUhVYp6bxif+s0PI8CZoq6iufSttbYoFb0+rf0BKMO31jiJ+4cWBBYZgcEOrn6U1YExr3poTaZTN0eb7FYwo8vLy8HEBg5Lisrkxxz4sSJvS5rKhtDgiDKMpiRE7aOZhp12G51YkOzPSf2jA3xCYFp1AoOOKlc16tzQs7n0rzKIuxsc2FlQyfGlWauQyNVdSSIItY0Bqa9n1xeKNt6761QPc006nDM3o4NzXacO7jv66ZyiZy/b6lw9dVX46677sKECRMwefJkvPrqq3C5XLjwwgszXTSUqLsah2xDsliVusBYyXEo701grOChSuC8KFHxaI84XrzRwchRa7ZToFitCAc95wwvw+t7mvGjYXrJ89mkSKUqBY4i8cC4RMX32/pDrYKDkWkol6kV4QzHFVoVOryBvAeGGI3pW8aV46yqYoxlrjXRgvoKrTIcLBs0CpRIRuf4mOvFEz0XohlVosFhmwcnGHVYH8xaHLoNAG4dX46LhupRHQwea0o0eGDaQHxrcYQD41Lm3DlvcClmlRfiohUHU7qvcl9oFDwqCwKfTaGSD+/pHUrkOKRQHT6Xx5RqwruNlKoVKQ/02OnTkVmPjZquf6t5DkquK8lV5LTrELbuhxapMauiCCUaJSL7xn84pBQzjIFBgHiBMfs9rtCqJIEx27FVoOQknTU6BY92IfUdCSqeQ6Eq8TXiCg64c2JFsEOLhyiKCQXGo0s04cB4RHH/tuezYrsmtoc6JNRDPXXq1KjPmTp1KtauXSu5bd26deHHDxo0COXl5ZJj2mw2bNu2LeYxibyF9jPeaE48DX422GZ1otMrYFqZTtJDmCvmVBRCyQX2/O2vPTDTaXebC2a3HxP02n7de6+/5dP+4UTqnHPOwd13341nnnkGP/zhD7F792689NJLkk7mTGF/I8uZ719xCn871QpOcuxCZWLHVvMcVAnMSGPLevv4clw+wgBTnN8SXURCoyKmkcxOuZxg0uHN04bjsuHSJR5TDAW4cEgpbhlngjrJKZmlaoXk9dJJq+BRxgQtFcxslVDABUDyGJaK5zDBUCBZbjUluM56alnXjCV25DJyxLhIxUumZbNBskYhvS8ZVToVXjtlKO6cWIEzq4oxw1gQHslX8xwUHIchRWooIs6hYubzZc8TTfBz7G150kHNczirugSXjzDg8ZlV4ZHUMSWB/5eoFfjjCVV4dtYgVDGfbYkq9Vmp2ePpuwXGXfWo4jlomO9XIfM89rNnO2Mij8dS8RyGF2ugS+D9sL9nFQXS3wD2HI+cSaFXp+f7WKLiE/oNC1HzHOZUFGG6UYfxem3CSy7YGR1jSvs3MM6aVlu8Huq77roLAwYMwB133AEAuPLKK3HFFVfg5Zdfxrx587B8+XLs2LEDDz/8MIDAFOorr7wSf/3rXzFkyBAMGjQIf/7zn1FZWRmeHkayy0CdCoMLAz1qTU5vzkzvXB3KblyZm+sWi1UKzDDpsKHFgc0WB04qz+73Gfq8Ts3BJHCssaVaFCt57Ahuk5bIRZ7kjiuuuAJXXHFFpovRDduQZIOEkiRGOeJR8Zxkqq5BowASyIOk4bmEghT2u3R6cJ3sljg7LqgVHJT+rlGtYlXXSGqJJKhTQKfoPruN4zj8dFQgL8vmJDu7SlQKuNOYGImlVXCSDscBWiV2Bf8eXarBV812VGiVSXWEXDbcAJNGiSllBfjZ+qMAIAk+dUoeJcznXapSSAKiQiUPT3A0X81zUPdyGqua58Kf/a3jArMavYKINo8fZ1WVxHyeXt1VHyatErWdgZE2DS+v32QFF8jmreQ5XBrsmLlzYgX+e7QDFzMzGEYFg2R2hkSpWoG2FCeVCkw9DhxTp+Qlyy3YwFgZ8b0tZL5bBQoenuDIrFGjwOHgAPDgwvgZtBMNjEMzFwZEdI5FdoKwU6lL1QqglzkDelJZoEoqn4AmosNOmUBQreQCHe//N64clQVKlNFU6ujOOeccWK1WPPPMM2hpacG4ceMkPdQNDQ3gmR+B6dOn48knn8TTTz+Np556CsOGDcNf/vIX1NTUhB9z3XXXwel04ne/+x06OjowY8YMvPjii1Crc2fP0Xwz06TDUXs7NpodOC8Hpne6/QK+brFDzXOYZcrugLEnp1cWY0OLAysbOrM6MPYJItY226HkgNkV2fs+EqHgOUw36bCq0YZtVmfOv1+SHdgpkOzatFTOtlHznKSxlugaOLUiscB4okGLwzYPrqjpGtWN97zQqJYv2LBnR7WKmaCuUKUA4kyxVCewnU5obSgQaITbfekblWTXXGsVvOQzZkfRRhRr8OysQRhQkFzTVsFzWDBIGngWqXhMKyvAFqsTU8t0ko6VErUCKqa9WaDkw0FcKDDuzbw1bZSRehXP4aqRPe/YUK5V4uzqEuxpd2FooRobWgIdG6ERY9lMo45yDhs0SiwaGX2mCRs4GjUKNLtSe46xgWTovAoFxuw0ZSXHSTtCFOxnz6E9GH+Wa5W4fIQB1TpVQltSsa+vZwJ/yTII5rwbWtQVm+gUnOQ7XqDgJSPgpT2MWPdFlU6VVAeFMuIjSyQxrprnwHEczkjDlmSJSDow5jgOVVVVUKvVkr/7Q0891EuWLOl229lnn42zzz475vE4jsNtt92G2267LWVlJJl1oqkQ7x5px6YcCYy/MTvg8os4uaIwLZvby8UJJh0KlTw2mR2wef3hRBzZZmtw2vtMU25Oe480MxgYbzTbKTAmsjBOr8W5g0rAcdKGNTu1MdYawUSpeE4yjTHWtN1I6uBoWTzTynS4YkSZpBEZb/qiKmJUix0xZYO6IhUPuHtu2LIBTKyMvOwoaZGKl6zTZZN9JapAEcg2vb+j+97oBQoOjmAZdEpe0hFRycwMK1byGFLUt/boJcP0+M/hNlw8TI8CnkeD04tJEUkheQ7dRoxDNAqu1/tVFyQQTMXys7GB/Dkf1rWHbwuVQy4TqSNHD+Op0qlQpOQxuawARSpFn+onmgKl9Dxng1kN00mh4iM+b+b7pJN89nx4JDwR7G+BUdMVGBcpu5J9sbMjqnSqcCdRiVohmRGgVXAolXznFSlL4scmtRtSqIbNm/h2eJHJjCMD5WhUGZ7pkPSr8zyPFStWYNSoUZK/CZGD0aUalKh47AxO78x2a/JkWq6K5zC3ohA+EVjbnL1rxMOf14Dc/rxCppUVQMEFpl76+2FPe0Li4TkO140xYfFok2QETromuG8NLxXPSYIzY6IjxhHBa6xRYBXPdRtZiTcTXMVLA7JSZo0h20lXmECHHXucWMEI21Gr4DhJgMBOO04kKCtW8lg6bxiuGBE9qNCySYWUHAwaJaaWFUDDc5jOrAuOlXArGYtGluGziydiaJEGJq1SEhR/LziCNUGvlXx2kdmAVREdC4lKRee3lok8QoGoJk4ZkiljX8QrR6RCJY9/BtdcA9J6Lk5BXemijBgDwES9VtIR1W0qdcRIbUi0EfFEsTPv2YGBYcyU7MjfGbY+tQoeJi3zPVfySNXHynZojChWx/0tYkUWoaffvJBkcxykWu4OQZG8pOA4zDDq4BOBLQlkvpMzu0/ANxYndArpxT9XnRZcS7eyITu3NwpNe9fwHE4s18V/Qg4oUikwXq9Fu1fAgSgjPYRkEtugY9fjJRIc9kTNcxherMbC4XpcPsIgGTHuqW0cGTTFakhHa/OzoyjRGpeRx2Yb0WzQmlBgrIgf2EXezI5+DWNGbdnGOztaxL5FZTCxVKxplmwAEwpE7ptaiX+eMhR6jRIvnTwEj8yoSsn0UZ7jYtbR4tFG/OWkQTh/cKmkjgqZN6bmecl7TmadbypGRKONesY7bqpHYmPpzUi6KnhuANKOg6IU5AxgO3C0Cg7XjzHhzKpi/GSEQfJdUnJcxOcdfcS4NwHd3OBMq1lMm4E9fnmBdK3ztGA263Gl2m4zO9jOv0GF6pTtLc4BeGJmFRaPNmJCRAKteC8ReTe7dl8tKX/Pv2/9iQJjknO6slNnd2C8oSWQpfmkisKE1nxlu3GlmkAilXYXmpypTxqRbpuC095nlesSWl+UK3Ll+0ZyT4U2+jrgvmZQVvEceI7DT0aU4dLhBklDsafkMmpemtE11ghatGOwAao2+Hps+1HFcZLHGJhgvUoXmG5coEhsKjcbzLGjV+zxewpyRhR3BcbsbyH7HGWUv5UxGs0FUQIRnhmlLtcqJfvEpotWwWNQYWAZoSpG+dQRU6mTGzHue0DABrmhDoWbx5mg5jksqom+lre/RozVfZwiywbDxTHOy2SwWzQVqxQo0yhx67hyTDAUSIJcZcRsjNgjxsm/v9snVOCvswdhurErMGZ/nyYZClCo5LGgOjBwcNv4CvxomB6LRxslQblWwWOQTg01z4EHMF6v7Za9vLc4BBKinTe4FBzHSb6nyWSoBqTfe0lgHyPTdybkT+uN5I1pRh2Uwemdvize/md1Y35Ny+U4DvOCU8ZXJbHpvVyEPq9T8uTzCpkZTApH2zYRuWFHLgsljeq+B8YsSUMx4j62za7kpVOiY625jBa8RhsJZJ+t4qVZadnAYZKhAPdNrcSLc4dGfb1IbIDGrltkG/7RtqN5YmYVHpo2ULJ9lSSYjjEqFGpcKyV1E32qslyy38cKlNQ8J3mf2iTKm4os0uyZEzqPppbp8K/ThuGkGDOZetpaKJV0fQz82enTxRH7SvcGu8SgJKIO2M9XHREYs+dggWTqeu9GxKt1ask5xCbZKlTyWHrqUPxsTGANuV6twBU1ZShSKaT7GAeTb/1t9mA8ekIVyrXKhNbzJiIy9mV/n+KN7nZ7LvNv6TruxI+ZbvL4hSEkhXRKHlPKCtDpE7CzLfEkAXLS5vFjW6sTpSoFJhtyfxp1yGkDA0Hll402iFm0ZtXm9WOzxYEiJY9pxvyYRh1SpVOhWqfCEZsHzVk40k9yl0bB44YxRtwyziQZnUg0i3QskSMakuC3W0NQOs1WujY1/nq7EOlobaDpxkWMsLKN68iRnOlGXcJTjUsl2ztFT0g0K7h7AHt9GlWixeSyAknwzwbokhFjyRrO7rexnxebeTrTjeaQWGuMI4MobRLltfn6vh1RrBkBfERmZfbvGSYdfj15AM6uDmTm/n6asgH3dSYVe75LM0r37pzoqbNMsuQhYhZAtFF5oG8jneysgzGl0tkPHMd1S2IVKFf3OjBpleHnJ5IBOhF8xITonjoC4z5XUq989NspMCYk9UIZctdnaSKntU02CCIwd0Bhyn7cskG1To1RJRrUO7xRs5PK1foWO3wiMKeiUDYNt/4Umk5No8ZEbs4ZVIrvVZVIRvHOCgYAY0o1vTpmZAM42rTgaP+OzEodKwlY9KnUTLKrKE9T8tJ1kL0ZvQqJ3Kqmqwxdf58xsBj3Ta3EryZVRC1LiCRYl4wKdX+8goveaFbzHH4ywoBRJRoM0nVloc6knqbWSgJj5j72Y2M/nsuGG1Ck5DEzBZ2qkwxaLKox4MmZ1T2WWRVxXs4qL8R1o43486xB3bauSpVUTJF9ZEYVFtWUYVRJ13e3t8n02GA4cheJyE6EWGv82YC2L9859j1UaJPvuKsu7P69SGTP4EREHiaZ0d2BOul7ibVcIplR6HSLezatW7cuoQN5vV784he/6HOBCEmFWaZC8AC+brFDyKKRx5DVwezG83I8G3U0pwff88osmk69ujHQAZPr2cNjocCYyB07cje0SI0X5wzGryYOSPj5saZSAhGjnxGtyMhghJ0uyzaGo02BlRxHEfs1QsdmA8vxei0uGlqKB6cNjPZ2eiTJOB1j6reS5zDdqIu6tR47Ws0GH7ECs9D7iQzW2PsXDjfgiZnVssm3Eet80Cn5mCOz7OfKflY/HmHAklMDicT6iuc4XDLMgJEl3Tt9VDFGN/lgWRQ8h2FF6rSNmKUi3hmv1+KSYXrJ96E4yjmYyDTi8foCGNQKVOtU3YIx6bnIS6b5s5+jdMS49zWnVfA4u7oEV40sw+BCFS4eqsddE7t3OkUKze4YWdz9805ZYBx5XOZtxgpiQx0XFw/VS26XLi2J/t3I9BrjuN/CG2+8Ec888wzmzZsX8zEOhwM333wzNm3alNLCEdJbJWoFJhi0+K7Vhb3tbozrh8QcqdLk9GJPuxuVBUqMjnJxy3VzBxThH/stWNNkwzWjjCnLrJguLS4fvmt1wqhR9EsCGDkaV6pFkZLHd61OOH1CTu+5TbKTgufw6Iyq8NTgigIVvEwOChXPSf4dqUTFwxzc/zcyiy/7z+7bLEkbfOyaRHYtrobZLzhaY9PD7CUculvBAaHFC0qOQ4vbxzyGw1UjjTHfT08MMUaME53iyAaKRcroU6mjBYxso1kjWZssv2sA+xvHrk/VKbmITgxI/vbEOB6foiCmJ7HqP7J601UWhy91gxTxthRT8xx8UfbfVnBA6OZCJY+/zxkcda9fSV0pOGgEdsS463F9XWPMCu1FDQBXjoyeKC3Sn2dVw+YTom5Vlqo+pO7rhOOP7i6qKcOwInW35RscF+u7kUUjxmeeeSZuueUWfP7551Hvt1qtWLRoEbZs2YLnnnsu5QUkpLdmB9dArcuy6dSrmb1wo60ryXWlagWmG3Xo8ArYYpX/COSqxk6IAE6rLE5ZFshsowiOHvlEYKvVmeniEBLVOL0Wg5l9QdmGWbxRCjb4icwezDbqeHRPisX+zTbi2TWObNAZbbTL5RfCf4fid/Z1OA6YbAh0zJ3bx6mwAwpUuGtiBf48a5CkYzLRDi+2kc6+R+lepczoczj5FjttO3rdyAWbOdgQkQQp2mgsIH3/mXhH7HmlkgTG0tKksrrZQzl8QszHJUsZEbhGUsUYvY18r2oFHzUJXuS2auzMh1hJ7tht2/qLQaOU/KaxUjViHFk7saY9R/7uxctpIB0xlj43k+L+yj3xxBM477zzcPvtt2P58uWS+44dO4bLLrsMx44dwyuvvILTTjstXeUkJGknBdcZf91iz5pETqIohjMy5+u0XAA4LfjeV8h8T2NRFMNlnD8wfz8voGs69Tc0nZpkicjkVT1h1yB2GzFmjqPgOckIS+TIkzZG4p5YiWhChgQz1Q7SqeAPXs8UEQH5D4fo8cC0Slw7uncjxayTBxRhWJFaMi060f1u2UBRkrFZIQ02QkIxB9uQl+wPK8fAmAmU2DWhganUzFT0GFNHM9GHyp7v7OeSzhFjngNODrbFxupTNwNOMi0/amKqvr2HyORbPxxSiillBbh3ygBJ3bHnelWBPNa/h7C/D4+dUIUHplX26jiRAzSqGJ090qUCyZUv1jKDTIg7lZrjOPzhD3+ARqPBL3/5S3g8HlxwwQXYs2cPrrvuOigUCixduhQjR47sj/ISkjCjRokxpRrsbXejttMTdc2N3ByxeXDU7sXwInXMXsB8cKJJhyIlj40tdrR7/AlnU+1v+zrcOO7wBpLC5PHnBQDTjQXgOeAbiwOCKPbL1MBsI4oijtq9GFyoysvZIHLGNqR5AJFjW2wgFxkgsiNxPAKBRSh4jVxXK5lKHWP9bbSG4ckVheAnVmCCoQC/3lwfeC1OGmipeA5Ty1KbFb83e+sWxxglVsUY5Ys2YixZuynDqdTsFHF2uyNFRPZn9jNK1QheKpRplAACCS4jf6tj9UMoOSDZ2dA8x+GWceU40aQLJ0VNBXWMZFjXjCrDfw634cyqYrxxsLXXx+clnWY8ilSK8Hr9Y/auCfGlagVuHmtCsUohu990dhQ2MtN1Mtx+6a9hrPXAKp6DJzidJZHrP3ueSTr5MlyNCa/0v++++6DRaPDrX/8ae/fuxb///W9UVFTg5ZdfRmVl73ohCEm3OeWF2Nvuxvpme1YExquaaLQYCExvOq2yCP891oGVjZ344RB9posU1YqGTgCBDK35rkilwPhSLXa0ubC/w92nC3Gu+s+RNrxe24rfTqnECab82tZL7jQRIx+eiPXGbGMtckpx5GgH267rnlAqevKteCNcPMfh5OAe6aGEkmyZ0hV0sZ0AiW7/zHMcLhxSCo6LvUY53hpjaaeB/HIWSBKncRwKFBycfhFlGgVEZtVqrBHjTDNppcE8SzJFHwi/G2WMdbs94REYRT8txddI9nvFfhY/HKLH+YNL8UXw2gxI30NvPoHIGQuFEcnWQlnu5aavvwlVBSrUO72YGLFlKPs7IE2i13V7In1Z7E+skpdPYJzUr83dd9+N6667Dv/85z8xcuRIvPnmmxQUE1kL9VCuy4Lp1IIoYk1TYD30KQPyOzAGgO8F91L89HinLD87j1/AmiY7lFxgWy1C06l70ub24T+H26DkgMFRttYgmaVWRB+BCuE4DiOK1VBy3fdNjRztYJ/OjnYGslJHb9AnOk05VBYgcM24eawJo0s0OKMf9p5NZh/an44y4qqRRkkDOVomaqCrUcw2jmNls5aL0GcXKtvzswfjsROqMKhQjQ5v1whbrOmimgwH+wZ117hYZPWyo32xPr/Qb/2wop5nSqXro2PPiQuGlmKyoQB3Twpkmec4LqXJnDq80v2lJYGxTLKkR9PTVp+J7P188zgTbh1nwmUjDJLbY2XhT3Y6NLtjjPQ3VOZTqU866aRu0wNEUURtbS0WLFjQ7fHr169PXekI6aMBBSqMKFbjYKcHdXYvhsb5Ec+kPe1utLh8mKDXorwX+9jlmmHFGowq0WB/hxt7ZJhZfKPZAbtPwMkVhVG3i8hHM8t1eOWAFZvMDlxek1hWzXzxr8NtcPlF/HBIKQbIbC0aiZ/8igPwxMxqCGL3hlvk2rqekm+xDUlJIq4kMrmHyuoWRJxVXZLWESu23Z9MYBwinXbJbgPVvb7ZxrGWT3w0PRMUPIdX5w4Jd6joNcrwdkvnDy7FYZsH144y4vP6rpFLdm1mpU6J9nZpwNUfFlQX47DNI0kUFRk4SmYiMKPE7Ln74xEG3Dd3GN7d2YSX91uC93dNtQ79na71omxXebFKgYemS7clU0R870IzQJIpzi8nVuCfB6zhNdIhbCdaT8FnpvW0CkLDd2XBZ0fUWSqew5lV3X9bYiXfUkX8DsYTaxOAyoLMtn/jvvrll18uu3nzhCTj5IoiHOy0YnWTDYuK5NtY/zI49edUGi0OO6uqGPs73PisvkN2gXFoGvV8mkYdVq1To0qnwiGbBy0uH3XwBDU7vfj0eAcKFBwuGabPdHFIFJHBQLT7FRwXtcHH3sZzXLDNFGj1RU4fHl2iwU1jTZhaVoA2T1dgFC0zbiyh0bKetpdKFZ6ZfJrIKFOkyORjXcftEm/f5n54m70Sa9/hgToVHplRBaDrOgFI13xOL9Nhb3Bbxv5049hyAMDqxq7ElpFTbqUjxl3nsiQDMcehTKuKGUQrOA4+UUzbiHG8UzHWqGYyxZk7oAhzY7THrhttzHiSqHh6GnmN7MyLtnY85lrzWEsiup03PYv8Xk82aLG91YVZ5ZmdgRf3G3nrrbf2RzkISZtTBhRiSa0VaxptuGKEQZYdPW6/gK+abFDxHE3LZYT2NP6qyY7FowVJptJManZ68a3FCYNagWllBfGfkEdmmnR4v64d35gdOLuP28bkin8dboNPBC4eUirJbkzko52Z/hptbV5PV43Iqac9jRhzHIfvB0d4ncz2NVZmD+J4QkFjkss9e4VtHJ9WWYSlB1vxoyQ6dyKT80Q7bry1kJHrvbOJIkaAdmplEQYUKLut3+wvsaZIA5GfTfTHhf5m35+K4+AKBtFKnoNbSF8SxtElGlwzqgwT9NHrT7r9T9ffFVoljti93Z+QpHMHl/b5GOnWU80rIoJYn9h99JiPcYRY09Rjfb9jKY5IWnDv1IHo9PhhynCHujxamYSk0YACFcaWatDk8mFfhzvTxYlqfYsdDr+Ik8p1KKKGc5hOyWNuRRHcgijp4c60z+oDexd/r6pY1lOpMiG09myTObv2D0+XBocXKxo6UaTkcX4WNKbyVTszehttTWKi2XgVHCddY8zHXivLjhKPLg0kh5xhjB8o9eea21C2/UIlj4oCFd49fTiuSGKZBDvym8j+viFuJuovSTTrlwzFmomg4IDTBxZnbFZNT/XP1rZkynuUkcJYycVCAXW6TlWO4/DDIfqYSVUVMd7fNGPg+lQkk072dOqpTyL22uD4z2erTpJdPsk1xvqI3UYKlHzGg2KAAmOSJ0LTk1fJKLhihfbCpezG3X2vOpiEq74jwyUJ8AkiPqvvBA/INhtlJo0r1aJQyWN7qwsuf+SmN/nnrUOtEETgwqGl1OklQzePNQEALhmqD98WLVBL9FxWKzjJrKRYIyqANFA8u7oEv5tSGU4g1JPQiPOFQ9Lf0TKsSI0/TB+Iv540CEDyayo1MToG2MNEO6RbEPDMrEFYPMqIqVk8KydWgJbpBEOSgDaiKLG2mGIfF/os+RgBVuj2TAUZsUY15w8sxk1jTfjjCVWZKFa/6nHEmPlgIpeCRPubxa6Vl+zFnuAa41BnELtzhZzmhFBgTPLCyQOKwHPA2mY7/DKbltXi8mG71QmjRoHJWdwASJcxJRoMLVShttODve2uTBcHm8wOtHr8mG7U0RraKJQ8h+nGAngFEduszkwXJ6PqbB6sarShVMXjB4NotFiOzqouwbunD5fkMIi25tWV4LxlDS/drkkdZZQt/Fim9ahV8Jhh0kkS+8Qyq7wQL88dgqtG9k/OjAmGgpjraeOJ9f7ZaZrspgMjigMj1COKNBhapMZ5Q0plufwpUWyAwK7RzvREo1gBe+C+6H9LOjkUUUaMo4w2ZqoDIFaCKJ4LdCyFZkLksp5qPtZ64Mg92aM+l6lPXYwt53oaMX54+kDcNNaE0wfKM58OBcYkL+jVCkwxBJKdfNcqr8b6lw2BabmnDyyWfTKHTOA4Lrye579HMz9q/MnxQBkWDKLR/VhmmgLr5Dfm+bZNbx1qhQjg4mH6bnvfEvlQ8JykQRjtb3eiI8Y8Lwl6ehoxZqdSq5NMbGXUKLMiYIzcriok1pZWD00biIemDcT0BKaUZwP2ms4GlpmeOyKZ9txtjXGMoCnKuRxvSnymOgBiraHOdIeEXMSaPh259Vw0bH0WMD+WmgSzdQ8oUOH71SUxZxtkWlZcqevr63H99ddjypQpmD17Nh577DH4/T2nuW9ra8Mdd9yB6dOnY+bMmfjNb34Dh6OrkbZhwwbceOONmDt3LqZOnYoLLrgAH330UbrfCsmgUyuD06mb5DOdWhRFJruxPHvP5GBeZRGKlDzWNttgSSJJTao1OLzYanXCpFFgenCtEuluurEAPAdsNjskexXmk2N2D9Y122FQK7CAptzLXuT2LiGhbZQSHTFW8ZykwRcrMASiT03NNez7KmXWFLJvl515U6QKzJzKhqA/Eez7ZIMIPsOft7aH8zJWxnB2qXfXVOrojw397GfqXcZMCpWxEvW/aEnrpgRnJU4yRJ8hw/52xVxjHGMqtTZGPoFEDJTRCL7sA2O/348bbrgBXq8Xb731Fh599FG8++67eO6553p83p133okDBw7glVdewd/+9jds2rQJ999/f/j+LVu2YMyYMXjmmWfwwQcf4KKLLsKdd96JVatWpfkdkUw5qbwQap7Duma7JBtoJu1ud6PB6cO4Ug2qdfL5YZAbjYLHWdXF8IvA/45nbtR4+bHAa59VXUKj+z0oVikwrlSLVo8ftZ3yTHiXbsuOtEMEcP6Q0qS24iGZwTb22D2FQ8tbaooT+30WIEoaVrGyMgOQBH+ZXnOaLuy6Q3bvXPb3c1AOX/uUUTpZgMx3hLB7aKsizj22aOxoYrTkabGybodCskx1cMRe252J0mRGtMD4vimVeGXuEAxhAlFJhmrmxytmVuoYW7CxMyJ62kM5mokyGmiQ/dX6q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXm/0lOu1tbVYs2YNHn74YUyZMgUnnHAC7r33Xnz44Ycwm80AgJ/97Ge4/fbbMX36dAwZMgRXXnklTjnlFHz++ef9+fZIP9IpecypKITLL2JtszxGjUNB3hlVNC03nrOrS8AD+ORYZ7/s3xnJ7hPwWX0HVHzXdisktlB26o0t+Ted2uzyYWVjJwqVPI0WZwk2AGCTpN04thyLRxlxwxhTQsfxCaJkpGVEcVfW3GjB76kDCjE7w/t2phO7Zlqv7hoZVvEc7ptaiYXD9RhbGj2zcC5gOwY0PQSj/Y1d2hE5jZWLMZVaxXcPGWJNWRaDQ8YZS77FvDC7RV6udkBF4wnvKd11m4LnUKZRSn6jlJKOkPidCLEez64xTrRD5KmZ1bhyZBlOl9GODbLPHLN161aMHTsWJlPXRWnu3Lm4//77cfDgQYwZM6bbc7Zs2QK9Xo+JEyeGb5szZw44jsP27dsxf/78qK/V2dmJ0aNH96m8qZgeEzpGpqfayFlv6+is6hKsbLTh83obzspwMpx2jx9fNdlQqOQxb2BxWj7vXDqXKgvVmFVRiPXNdqxptuHMqtQEHInW0Wf1nXD6RZxVXYyyPEy6ley5dGJFIf55wIpvLA4sGmVMZ9FkI1Q379cF9i2+cHAJitSZXk1IEsFOpWb31yxU8jgviezPPlE60mLUKPD0idUxt3u6Y2L8LNTZLFamWhXPYbpRl/NLUrSK6KPEmd7mr6ep1CzpjIfu98daJyqE7+99GfuCHb02xJjCn+tCI8bRZiewv1GKGN/RWJ0I0qnXXbdrk8yTAAA1JRqM0mtltXRC9q07s9kMo1HaqAoFyWazOWpgHO05SqUSpaWl4RHjSJ988gl27tyJ3//+970uq1LJw2hM3TpRgyF3e5FTJdk6mldWiEF7zdjd7kKnUolhTLr4/vbx7uZA43lEGaor0juqlCvn0qKJlVi/ohbvH+3AjyYOTGnvb0915BNELF9bBwD46eQqGDN43mRaoudSWZmIQUVNONjpgb9AjYocni7Janf78L/jnVArOFw1pQplWlWmi0QSwI58FCl735nhE8SIrYg4DC/O3RHReBQ8hwuGlKJMo+gxE3Ku0vRh3WU6sQF7T58Fe1+0BEmxslKHJnXJYYQ22f11c4U7HBh379GQTpePscY4xnF5yd/s+S37ScgJyVhg/Oyzz8ZdJxxa7xurJ6GnHoZo94miGPX2DRs24J577sHvf/971NTU9Fimnvh8Ajo6+p7xmOc5GAyFaG21Q5DZ1kJy0Zc6ml9ZhNcOWPGfXU24enRmRrIEUcS7+1oAAKcbC2CxpGdqd66dS4MVwHi9FrvaXPhodxPmDOh7R1QidbSqoRNNDi9OMOlQ7POl7fOSs96cSzPKCnDM5sGn+1pwtoymSqULz3NYdrwTTp+AcwaVQLS7YbGnZ411SUkBVLQvcsqwjfriaENjCfJGTKXOjaZi31wdnDHS6e1KmprpqcT9hQ1A5ZR5VxVjlDBSvGC+mPkNkowYh6ZSZ+gts+u5Y+1pnOs8wUz6migfMHtLrO25YlWVlqlbScdIjvzYZSwwXrRoEc4///weH1NeXg6TyYSdO3dKbg+N+kaOCoeYTKZuI8M+nw8dHR3dnrNx40b87Gc/wz333BO3PIlIZfAhCGJOBDPp1Js6Om1AEV4/YMUX9Z24fIQhIxerby0ONDp9mKjXolqnSvvnnEvn0o+G6fHA1ka8fagVs0y6lE3BiVVHgiji34fbAADnDy7NmXrsrWTOpROMOrxf146NLY68WJft8gv49z4zeA64YAidK9mEHTUp7cX096oCFeqdXpRrlWhyduU/yZP4LyHqOKOPuainfazloqdRXTaQLFMroeY5jGf2/B5S1DUTiA1AQz99mXrHRSoFnpk1CKVqBb6o7wzfrpLnR5AWFw7V48V9Flw0VN/tPskU+BhrymPFuVoFj6dPrEaxSgEzs0sIjRj3kV6vh16vj/u4qVOn4oUXXoDFYgkHtevWrUNJSQlGjBgR9TnTpk1DW1sbdu7ciQkTJgAAvv76a4iiiMmTJ4cft2HDBvzsZz/DnXfeiUsvvbTvb4pkBaNWielGHb6xOLDRbMeciv7fJunjYHbjswflfrCQatPKClBTrEZtpwdbrM60r1H7usWOIzYPxpRqMNmQv1Ooe2O8XotCJY/trU64/ULOZ2f+9HgH2j1+nFZZhAEFNIU6m7CBml6twA8GlaBMk3gT6f5plfj4WAcuGabHvd+6wrfn9hmfHOkWOhksSD9KZAQuUxaPNsIVZ39uNuuwWsHhrXnDJO9Dp+Rh1Cig5jlJUNW1xjhzb3poMGiPNx08V507uBQnVxTCEOV3TDKVOsk1xgDCy0NaPWxgnBt1K/ufprlz56KmpgZ33XUX9uzZgzVr1uDpp5/G5ZdfDpUq0PDYvn07FixYgKamJgBATU0NTjnlFNx7773Yvn07Nm/ejIceegjnnntueH3yhg0bcMMNN2DRokU466yz0NLSgpaWFrS1tWXqrZJ+tGBQIAv0f4/2/9Y/DQ4vNpkdMKgVmJXD2UjTheM4XDJMDwB462BrOPtlOgiiiH8dagMAXDbcIKsEEdlAyXOYVlYAjyBiq7Xvy0zkzCeIWHakHQBwcfD8JNmDbRAWKnlcP8YU/p1JxIACFX46yogilUI6lZp+M8JiJWrKZex7ltuW7ucNLsWPhhl6fEzklGsFz3W7Dr548hA8e9JgyXco01mpWewU33z7PkYLioHYW3KxnRuJVBW7xjhXpqnL4ZztkUKhwPPPPw+e57Fw4UL88pe/xAUXXIBbb701/Bin04lDhw5Jtm964oknMGLECFx11VW4/vrrMWPGDDzwwAPh+5ctWwan04kXXngBc+fODf/HHpfkrhlGHQYWKLGzzYWD/bzP6vt1gf1NfzC4JGd+SPrbSeWFGF6kxt4ON75O43ZA65vtOBwcLZ4a3M+UJCe0bdM35tzetml1kw1mlw9zqooxLI+TLWUrtsFc2MfFcuyvep61wxOWL2uMs/0Sz06zjRVUKjguZltGDn0B1M7qjmOzUnPSzo+QRDoR2MeXqGUfUiZE9lmpAaC6uhovvvhizPtnzZqFvXv3Sm7T6/V48sknYz7n0UcfxaOPPpqyMpLswnMcfjC4FC/ts+DDo+24bXxFv7xuu8ePLxo6oVVwtL9pH/Ach6tGluH+rY14rdaKE026lG9/4RVEvFZrBQD8ZASNFvfWdJMOPIBNZgcEUczJHntBFPHukTYAwKJx/fNbQtKnr4FxIpld812+jBjXFGswtlSTE9tSxduNhw2CFRwHnyjCL4Nh8nzphEkG+/WLtS9xIrXG/tZNMRRgUY0BU7J8ECE3wntCeuGMgcUoUHBY3WhDm8cf/wkp8PGxDngEEWcOLJZkcyTJm1pWgMmGAtQ7vPiUSa6RKsuPtaPR6cMMYwGmlmV/oyZTSlQKjNVr0erxo7bTk+nipMUmswNH7V6M02sxpbz/cxaQ1FL3cS28ZDsTapTnNSXP4Y8nVGPh8J6nLGeDZLY6CnV8+DMfF9OIcRTsb1SsbdQS2ZaYPSUCy9wMGFWS3blYKDAmeUun5HFmVTF8IvDxsfa0v57bL+CjY+3gOeD8Ibm/dU26cRyHq0eVgQewpNaa0s6NDo8f/zrUBp4DfjoyM1t65ZJZwenUXzfbM1yS1BNFEf8JZi1PZk1qNtqzZw9+8YtfYN68eZgyZQrOOeccLFmyJNPFSplTBhRibkXf8z5I9zHu8+FykhxGEvtbKBlUZUFWTNbsJpkR49B575NBZv5UzybLBWyHnYKPHhgnUmty+HxTjQJjktfOG1wKngM+PNoBh6/n7Ix9tfxYBzq8AuZWFFLG2hQZUazB2YNKYPcJeGW/JWXHfWm/BXafgO9XlUi2oyC9MzsYbKxttqU1WVom7GxzYV+HG0MLVTjBlNszC3bs2IGysjI8/vjj+O9//4sbbrgBTzzxBN58881MFy0l7pw4AL+cNKDPx+FoKnVcOdiejmtQoRrPzhqEP504KNNF6ZV4sx/Y3/bQ2mQ5dIDQd7A7TjJ9uutvdolDIrNdvDn4Rc7ObitCUmRAgQqnVxbhiwYblh9rxyVxMjT2lsMn4N0jbeCBnJhSJSdX1JRhXbMdKxttmFdZ1Oe1XBtb7FjVaINRo8CikWUpKmV+G1CgwshiDQ50unHY5glv9ZAL3gmuLb5omD7np81ecsklkn8PHjwYW7duxWeffYbLLrssQ6WSn1jTFEmXHGxPJyTbOlrZzynewKt0jXHg/3KYSk26Y3+j2ARr7JZLifx0DS/WoKpAhZnludMpTIExyXs/GmbAlw02vFfXjh8MKkVBHxOvRPPRsXZ0eAWcVlmEQYXZdWGUO52Sxw1jTHj0uyY8vbMFf55VHXOLgng6PH78ba8ZAHDT2PI+J+EhXeZUFOJApxvrmu05Exgf7HTjW4sTFVolTsnAfuhy0NnZidLSvi0N4fs41TH0/L4eJ1XYcigVnGw6TORQT1eOLMPHxzows1wnm8+LJYc6khWmGlQ8361+pPXUfTsuvyhmvC7Z719/lkXO55JC0f2zAiL2Gk8g14KG5/DC3CF9Kovc6okCY5L3BupUOLWyCCsbbfjwaDsuTfGIbofXj2VHAmuLf0yjxWkxu6IQ368uxv+Od+KpnS24f1pl0iM1flHEkzubYXX7MX9gUc5Pi+1vcyoK8VqtFWub7TmT5TuUifqCIaV5uY5ty5Yt+OSTT3rcNSIepZKH0ZiaTgWDQR77wmuYxIrlpuIMliS6TNbTz4xF+NkJGXv5hMnlXMo0NdPJXFSs6fZdZetJrTZ3/a1UAPBBAJey73dvFbu68o9koixyPJcMIrM9na5rsKaY+bu/60ou9USBMSEIBKxfNdnwzpE2nFlVjLJejjhG80ZtK+w+AWdXl2CgjtYWp8u1o4zY0+bC9lYnXtpnwfWjjQkHX6Io4pV9Fmy1OjG0UIUbxpjSXNr8M1CnwohiNQ52elBn94YT0WSrBocXa5vsKFUFkvhls2effRbPPfdcj49ZtWoVKisrw//ev38/brrpJtx6662YPXt2r1/b5xPQ0eHs9fOBwEiDwVCI1lY7BBnM0fX5uhriFostgyWRkls9yRHVkZTT5Q3/3druCp/P0erJ5fF1PVEI5Gzx+oWMfwc6O1zhv/uzLHI+l9g68bq7PmMf8xn2V131Zz2VlBRAFWdHGAqMCUGg0X7u4FK8V9eOpQdbceu48pQc91CnG/873oEiJY+f1NBocTppFDzumVyJX31Tj+XHgnWewMikKIp4ZWcT3q9rR7GSx92TK6Ht43YtJLqTKwpxsNODtc02DC3K7vXb79W1QQBw7uBSaLL8fFm0aBHOP//8Hh9TXt71m3jgwAFcddVVuPTSS3HDDTf0+fVT1RgSBFEWDVD2bJBDeSLJpZ7kjOooQGBykrr9Qrc6YeuJzbP1/eoSvLjPgh8MLsl4PQ4KDkgY1IqMlEWW5xJTHAU7BZ5pLvV3meVSTxQYExL0o2F6fNHQiS/qO/H9qmKMLu3bXmyCKOKFvWYIAH4ywoAS2rc47QbqVPjd1Erc+2093j7chjaPH9eNNsbcl9QriHhxnwX/O96BAgWH+6ZVoopG9dNmTkURltS2Yl2zHT8Zkb2Bcavbhy8abNAqOJwzqCTTxekzvV4PvV6f0GP379+Pq666ChdccAF+/vOfp7dgWYqjPLgky2kVHFx+EQZNV7vFEydoYbNS/2BQCaYbdRgog62pBupU+POsQTBpqA0Wwq78UUjWkdNvV3Z3cxOSQkUqBa6sKYMI4M+7WuDx9237pv8e7cDudjeGF6mxoDr7G8/ZYmSJBn+YUQWDWoFP6ztx+8bj+MbsgMBctEVRxLcWB+7YdBz/O96BMq0SD82oyvqN6eWuSqfC8CI1jtq9qLN5Ml2cXvvgaDu8gogF1SUoyqMOr/379+PKK6/EnDlzcPXVV6OlpQUtLS2wWq2ZLpqs5MDyeZLnHj+hGucPLsXFQ/Xh2zxJpJjmOA5VOpVsckkMK1Ln1W91PJKs1EwwTFn0acSYEInvVRVjbbMdW61OvHmoFVeNNPbqOEftHiyptULJAbdPqMjLxDyZNKJYgydmVuMve1rwrcWJh7Y1wqBWYERxYF3rYZsHFndgHeBEgxYPzR0Opcsji2k8uW5ORSEO2TxY12zPuq1LAMDuE/DJsQ4oOeD8IX3LxpxtPvnkE1itVnz44Yf48MMPw7dXV1djxYoVGSyZvNDPPcl2Q4rUuHZ0oP1TqlKg3etHZZzRX7p6Zg+2w0Ih+TsTpZEXCowJYXAch1vGleP/vj6KZUfaMUFfkHR2YodPwCPbm+ARRCyqKcOwLGz85wKTVonfTanEBrMDH9a1Y1e7C5stgSQ/PIDxpVqcO7gEcyuLYCpUw+LK3hHMbHLygEIsPdiK1U02LByul82IQqI+PtYBh1/EWVXFMKYwSV82uPXWW3HrrbdmuhiyR1PxSC7504nV+K7NidkVPWcNNqgDv4fFKvoGyB3beaeU/J1d1+N0yK+rOiEJKNcqccu4cjy2oxlP7mjCYzOrMTjBvYe9gogndjThuMOLmSYdLhqaXyNKcsNxHE4qL8RJ5YVw+AQ0u3yAKKK8QBXeozjbArNsV61TY1SJBvs73DjQ6cGokuzZ09jtF/BBXTt4ABcyUwwJYcll32JCUsGoVeK0yviZ9y+vMUCAiHMHUbtH7thfKEWM0eN8Rd06hERx8oAiXDpMD4dfxG+/bcAxe/zRRK8g4skdzdhscWKQToXbx5dTA0lGdEoew4rUGFasCQfFJDPmVQb2R1zV2JnhkiTn8/pOtHv9mFNRSEnaCCGEUaxS4Kax5Vm5RCbfsG1TNjcpTYenwJiQmC4bYcD3q4vR6vHj7s312Gx2xHys1e3Db7+tx/oWOyoLlHhw+kBK9EBIDKdUFILngNWNdvizZF23TxCxrK4dAHDxMH1mC0MIIYT0Eh9j+rRIoTEFxoTEwnMcfjbGhB8OKUWnV8CD2xrx1M5m7O9whTMcm10+/PtwK275+hh2t7sxqkSDP0yvyru1h4QkQ69RYlpZAdq9fmxrdWa6OAlZ3WRDi8uHGcYCjCjOnunfpP9R05IQImexplKL9ONFa4wJ6QnPcbhmlBHjSrX42x4zVjXasKrRBjXPQckBjuD2BTwHnDe4BFfWlMXcM5cQ0mVeZTE2W5xY2WjDdGNyCe76myCKeOdwGwDgkmGGzBaGyJ5IrUtCiIyxU6m1TCrqvm1SmhsoMCYkAbMrCjG1rACfN3Ti62Y7jtg98AsihhapMcVQgAWDilGto3U1hCRqVrkOWgWHr5vtcI4RUCDjdd8bWhw45vBivF6L8Xra65r0jBqXhBA5M6gVGFWiwegSDfRqWvbHosCYkAQVKHmcN7gU5w2mjIuE9JVWwWN2eSG+bLRhbbMNZ1aVZLpIUYmiiH8fbgUA/IjWFpNE0IAxIUTGlDyHJ2ZWAwC2WbuWMxXJuIO6v2RFDdTX1+P666/HlClTMHv2bDz22GPw+/09PqetrQ133HEHpk+fjpkzZ+I3v/kNHI7oyZO+/fZbjB8/HhdddFE6ik8IISSK71UFtgD533H5ZqfeZnWittODEcVqTCsryHRxSBaguJgQki18TALM0wcW4weDSvDHE6oyWKLMkn1g7Pf7ccMNN8Dr9eKtt97Co48+infffRfPPfdcj8+78847ceDAAbzyyiv429/+hk2bNuH+++/v9jibzYa7774bJ510UpreASGEkGjG67UYpFNhX4cbhzvdmS5ON6Io4q1DgdHii4fqac9rkhAKjAkh2cLH5ERQ8RyuH2PC2NL8XTIk+8D4q6++Qm1tLR5//HGMGzcO8+bNw2233YbXX38dXq836nNqa2uxZs0aPPzww5gyZQpOOOEE3Hvvvfjwww9hNpslj33wwQexYMECTJs2rT/eDiGEkCCO43BWdWDU+NN6+Y0ab7M6sbvdjSGFKsypKMx0cUiWoNxbhJBs4acfLAnZrzHeunUrxo4dC5PJFL5t7ty5uP/++3Hw4EGMGTOm23O2bNkCvV6PiRMnhm+bM2cOOI7D9u3bMX/+fADA8uXLsW/fPvz+97/HCy+8kJLy8nzfRxRCx0jFsXIV1VFiqJ7iozpKTLrqaX5VCV47YMXKRht+OtoIrUyyuouiiDeCo8U/qSmDMoFy0blEAEBBHz8hJEsMLwpsPzhIp8pwSeRB9oGx2WyG0WiU3BYKks1mc9TAONpzlEolSktLwyPGDQ0N+MMf/oCXX34ZanVqsgkrlTyMxqKUHAsADAYaoYiH6igxVE/xUR0lJtX1ZARw+mA9Pqtrw3a7D2cPL0vp8Xvr64YO7G13Y6Rei3PHDZBsbxEPnUv5Tc4Z1gkhhDVQp8LzswejTEPZqYEMBsbPPvts3HXCq1atAoCY67p6Wu8V7T5RFMO333XXXbj22msxevToRIscl88noKPDGf+BcfA8B4OhEK2tdggCTXGIhuooMVRP8VEdJSad9XR6uQ6f1bXh7T3NOLEk89ueiaKIv22pBwBcOrQUrVZ7Qs/rz3OppKQAKhU1ZOSoQCazHgghJBEDabQ4LGOB8aJFi3D++ef3+Jjy8nKYTCbs3LlTcnto1DdyVDjEZDJ1W0vs8/nQ0dERfs7GjRuxefNmPP744wAAQRAgiiLGjx+PJUuWYMaMGb16X6lsDAmCSA31OKiOEkP1FB/VUWLSUU/jSzUYUqjC3nY3drU6M574Y5PZjv0dbowoVuNEoy7p90vnUn4rUNJcakIIyUYZC4z1ej30en3cx02dOhUvvPACLBZLOKhdt24dSkpKMGLEiKjPmTZtGtra2rBz505MmDABAPD1119DFEVMnjwZAPDhhx9KnvPGG2/gm2++wVNPPYXBgwf34Z0RQghJBsdxOH9IKZ7bbcYHde0YOylzgbFfFLHkgBUAcNlwA2WiJkmjEWNCCMlOsv/1njt3LmpqanDXXXdhz549WLNmDZ5++mlcfvnlUKkCQ//bt2/HggUL0NTUBACoqanBKaecgnvvvRfbt2/H5s2b8dBDD+Hcc88Nr08ePXq05D+j0Qi1Wo3Ro0ejoID2qiSEkP40b0ARSlU81jfb0eSMvuNAf1jR0Ikjdi/G67WYadJlrBwke1XTtERCCMlKsg+MFQoFnn/+efA8j4ULF+KXv/wlLrjgAtx6663hxzidThw6dEiyfdMTTzyBESNG4KqrrsL111+PGTNm4IEHHsjEWyCEEBKHWsHjnEGlEAD892hHRsrg8gt442AgE/XVI8totJj0yuyKQlw9sgzPzBqU6aIQQghJAieKtIFVqni9frS1Ofp8HJ7nYDQWwWKx0Tq1GKiOEkP1FB/VUWL6o57aPH4sXlsHBQe8ePIQlPRzcqm3D7Vi6cFWnFxRiLsmDUj6+f15Lun1upxIvpWK6yZ9hxND9RQf1VFiqJ7iozpKjNyum7IfMSaEEJIf9GoFvldVDJdfxPt17f362la3D+8caYOSAxbVyGPLKEIIIYT0HwqMCSGEyMbFQ/VQcsB/j7ajw+Pvt9d9Zb8FLr+IcweX0tYVhBBCSB6iwJgQQohsmLRKnFVdApdfxHv9NGq83erE6iY7yjQKLBxu6JfXJIQQQoi8UGBMCCFEVi4eqoeK5/Dh0Xa0uHxpfS2vIOKFvYF9768dZYROSZdFQgghJB9RC4AQQoismLRK/HBIKTyCiCW11rS+1tuHWnHM4cWUsgKcXFGY1tcihBBCiHxRYEwIIUR2Lh6qh0GtwKpGG/a2u9LyGvs7XPjPkTZoFRxuGmui7ZkIIYSQPEaBMSGEENnRKXlcEcwO/bc9ZnhTvI2D2y/g6Z0tEETg6pFGVBZQwi1CCCEkn1FgTAghRJbmDyzCBL0Wh2wevHO4LaXH/sc+C445vJhuLMD3q4tTemxCCCGEZB8KjAkhhMgSz3G4dVw5NDyHtw+34mDn/7N33+FxVPf++N9ndtW7JVnF3XLvhWZjUxziryFAaIHLpaVwISHhS+4FfCHhJiYkIaGFhHAvJAF+XCDwvbnBJCRAEjDVBgPGRu5FLpItWV2WZLXdnfP7Y7SrmdWOdrbPat+v5/EjeTU7e/bs7Mx8Tvmc/qjs9836TvytvguF6Q58Z3Yph1ATERERA2MiIrKviuw0XD9tDDwS+Pn2RnS7IlvbeHdHH57Y2wpFAGvnjUVxhjNKJSUiIqJkxsCYiIhs7Uvj87GsNAfHe914eGcT3GHONz7c1Y/7Pj8OlyrxjenFmFuUFeWSEhERUbJiYExERLYmhMD/nVOKCTlp+Ky1F7/c1QSPDC04PtzVj3XbjuOkW8UVkwpx4YSCGJWWiIiIkhEDYyIisr1sp4J1iyowNtOJ9xpP4oHtjejzqJae+1lrD+7eUo/2AQ/OH5ePa6uKYlxaIiIiSjYMjImIKCmUZDpx35IKVGal4aPmHqz95NiIaxx3uzz4zd4W3LvtOHo8EldNKcTNM4uZbIuIiIiGYdYRIiJKGuVZafj5qZV4aEcTPm/rxb9/Wo8lxVk4qzwXVXkZcAqB470ufNrSg7ePd+OkW0WuU8G3Z5dg+djcRBefiIiIbIqBMRERJZX8NAfuXVSOtxq68MLBdmxp7cWW1t5h2ykC+D+VefinqUUYw+zTRERENALeKRARUdIRQuC8ynycU56HT1p6sKO9F7UnXVClRGmmEzMKMrCsNAdFDIhjora2Fl/+8peRnp6OzZs3J7o4REREEeMdAxERJS2nIrBsbA6Wjc1JdFFShtvtxp133omlS5di+/btiS4OERFRVDAwJiIiIssef/xxjB8/HmeeeWZUAmNFiSwZmvf5ke5ntGM9Bcc6sob1FBzryBq71RMDYyIiIrLks88+wyuvvIJXXnkFb731VsT7czoVFBdHJylaURFHDVjBegqOdWQN6yk41pE1dqmnpAiM6+vrsW7dOmzevBnZ2dm49NJLcfvtt8PhcJg+p6OjA/fddx/efvttOBwOrF69Gt///veRnZ3t20ZVVTz11FP4wx/+gPr6eowdOxZf/epXcf3118fjbRERESWN7u5urF27Fj/+8Y9RUFAQlX263So6O4cnTguFoggUFeWgvf0kVFVGpVyjEespONaRNayn4FhH1sSznvLzs5CWZh47AkkQGHs8Htx8880oKSnBSy+9hKamJvz7v/87MjIycNttt5k+74477kBzczOeeeYZuFwufO9738O6devwwAMP+Lb56U9/io0bN+Luu+/GtGnT0N7ejt7eyC7QREREyeSxxx7Dr3/96xG3effdd/HLX/4S55xzDs4888yovn60boZUVfIG1ALWU3CsI2tYT8GxjqyxSz3ZPjD+4IMPUFNTg2eeeQYlJSWYPXs2brvtNjzyyCO45ZZbkJaWNuw5NTU1eP/99/HHP/4R8+bNAwDcc889uPnmm7F27VqUlJSgpqYGL774Il599VVMnToVADBhwoS4vjciIqJEu+6663DxxRePuE1paSk2b96M48eP4/e//z0AQEoJVVUxZ84c/PznP8dFF10Uj+ISERHFhO0D423btmHWrFkoKSnxPbZixQqsW7cOBw8exMyZM4c9Z+vWrSgsLPQFxQCwfPlyCCFQXV2NVatWYcOGDRg/fjw2bNiAG2+8EUIIrFy5EnfccQdyc8Of7xSNyeN2m4huR6wja1hPwbGOrGE9BZesdVRYWIjCwsKg2z311FNwuVy+/7/11lt4+umn8cILL6CioiKGJSQiIoo92wfGLS0tKC4uNjzmDZJbWloCBsaBnuN0OlFQUICWlhYAQF1dHY4dO4Y333wTDz74IAYGBvDjH/8Yd911V9AhZWaimUQEsM9EdDtjHVnDegqOdWQN6ym40VpHU6ZMMfx/x44dUBQFM2bMSFCJiIiIoidhgbHVOU0AIETg1nezx83+JqX0PS6lhMvlws9//nNMmjQJALBu3Tpce+21aGlpMfRQWxWNJCIAJ+xbwTqyhvUUHOvIGtZTcHZLIkJERETWJSwwtjqnqaSkBDt37jQ87u319e8V9iopKfFt4+V2u9HZ2el7TklJCZxOpy8oBoCqqioAWhbscAJjIHpJRLz74g3oyFhH1rCegmMdWcN6Ci5V6uiyyy7DZZddluhiEBERRUXCAmOrc5oWLVqEJ598Eq2trb6gdtOmTcjPz/clzfK3ePFidHR0YOfOnZg7dy4A4KOPPoKUEgsWLPBt43a7UVdX50u6dejQIQBAZWVlpG+PiIiIiIiIkoSS6AIEs2LFClRVVWHt2rXYs2cP3n//fTz66KO45pprfBmpq6ursWbNGjQ2NgLQen5XrlyJe+65B9XV1diyZQvuu+8+XHjhhb6e4DPPPBOzZs3C97//fezZswfV1dW47777sHr16rB7i4mIiIiIiCj52D4wdjgceOKJJ6AoCq666irceeeduOSSS3Drrbf6tunt7cWhQ4cM2TIfeughTJ06FTfccANuuukmLF26FPfee69hv7/5zW+Ql5eHq6++GrfccgsWLFiA+++/P67vj4iIiIiIiBLL9lmpAWDcuHH47W9/a/r3008/HXv37jU8VlhYiIcffnjE/ZaVleHxxx+PShmJiIiIiIgoOdm+x5iIiIiIiIgolhgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQhpZSJLsRooaoSHo8alX2lpTngcnmisq/RinVkDespONaRNayn4OJVRw6HAkURMX+dWIvWdZPHpjWsp+BYR9awnoJjHVljp+smA2MiIiIiIiJKaRxKTURERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgbDMvvPACVq1ahfnz5+PKK69EdXV1oosUN08++SQuv/xyLF68GMuWLcN3vvMdHD582LBNf38/7r33Xpx++ulYvHgxbr31VrS2thq2qa+vx0033YSFCxdi2bJleOCBB+DxeOL4TuLnhz/8IWbOnInnn3/e9xjrSHP8+HHcfvvtOO2007Bo0SJcdtllqKmp8f2d9QR0d3dj3bp1WLlyJRYuXIgLL7wQr7zyiu/vqVhHn3zyCb75zW9ixYoVmDlzJt5++23D36NVJ5s3b8all16KefPm4Ytf/KKh3ik0vG7yuhkKXjfN8boZHK+bw42q66Yk2/jrX/8q586dK//3f/9X7t+/X95zzz3y1FNPla2trYkuWlx8/etfl3/84x/lvn375O7du+W//Mu/yHPPPVf29vb6tvnBD34gzz77bLlp0ya5fft2eeWVV8p//ud/9v3d7XbLCy+8UH71q1+Vu3btku+88448/fTT5aOPPpqItxRTGzZskBdffLFcsWKFfO6553yPs46k7OjokOeee66866675Oeffy5ra2vlO++8IxsaGnzbsJ6k/N73vidXr14tP/74Y1lbWyuff/55OWvWLLl582YpZWrW0TvvvCMfeeQR+be//U3OmDFDbtiwwfD3aNRJbW2tXLhwobz//vvlgQMH5HPPPSdnz54tN27cGLf3OVrwusnrZih43TTH66Y1vG4ON5qumwyMbeSKK66QP/rRj3z/93g8csWKFfJ3v/tdAkuVOK2trXLGjBlyy5YtUkopOzs75dy5c+Ubb7zh2+bAgQNyxowZsrq6WkqpfTlnz54tm5ubfdv8/ve/l6eccoocGBiI7xuIoebmZnnWWWfJPXv2yHPPPdd3gWcdaR588EF59dVXm/6d9aT50pe+JJ944gnDY6tXr5a/+93vWEdSDrvAR6tOHnjgAXnhhRcaXuu73/2uvOmmm2L5dkYlXjeNeN00x+vmyHjdtIbXzZEl+3WTQ6ltYmBgADt37sSZZ57pe0xRFCxfvhzbtm1LXMESqKurCwBQUFAAANixYwdcLpehjqqqqlBZWemro23btmHWrFkoKSnxbbNixQp0dnbi4MGD8St8jN1999247rrrMHPmTMPjrCPNhg0bMG/ePNx6661YtmwZLrvsMvzpT3/y/Z31pFm8eDHeeustNDY2QkqJ999/H01NTVi+fDnrKIBo1cm2bdsM+/Buk6rn+nDxujkcr5vmeN0cGa+b1vC6GZpku24yMLaJ9vZ2eDwew0EBAMXFxWhubk5QqRJHSon7778fp512GqqqqgAALS0tyMzMRG5urmHb4uJitLS0+LYpLi42/N1bp95tkt3zzz+Pnp4efP3rXx/2N9aRpq6uDr///e9RVVWFp59+Gpdffjm+//3v46233gLAevK65557MHHiRJx11lmYN28evvOd7+D+++/H7NmzWUcBRKtOzLbp6OiAy+WKVfFHHV43jXjdNMfrZnC8blrD62Zoku266YzanigmpJQQQiS6GHH3ox/9CPv27cOLL75oeDxQXUgpg24z0uPJpKamBv/5n/+J//mf/4GiBG7XSvU6ArT3O3/+fHz3u98FAMyePRs7duzAiy++iC984QsAWE+AdrO4e/du/OY3v0FZWRk+/PBDfO9730N5eTkA1lEg0aoT/23890Hh43WT1009Xjet4XXTGl43Q5dM1032GNtEUVERHA7HsNaitra2Ya3ho919992HDRs24Nlnn0VZWZnv8ZKSEvT29qK7u9uwvb6OSkpKhtWh9//+LU3J6PPPP0dbWxtWr16NOXPmYM6cOTh27Bh+8pOfYM2aNayjQSUlJZg6darhsaqqKjQ0NPj+nur11NfXh1/84he46667cPbZZ2PWrFn42te+hrPPPhvPPvss6yiAaNVJoG1aW1tRWFiItLS0WBV/1OF1cwivm+Z43bSG183geN0MXbJdNxkY20R6ejrmzp2LTZs2+R5TVRUffvghFi1alLiCxZGUEj/60Y/w97//Hc8++ywmTJhg+Pu8efOQlpZmqKNDhw6hvr7eV0eLFi3Cnj17DGngN23ahPz8/GEn/GR03nnn4c9//jNeeeUV37+xY8fipptuwhNPPME6GrR48WIcOXLE8Njhw4dRUVEBgMcSALjdbrhcLjgcDsPjiqJAVVXWUQDRqpNFixZh48aNhn1v2rQpZc710cLrJq+bVvC6aQ2vm8Hxuhm6pLtuRjWVF0XEu+zEyy+/LA8cOCD/4z/+I6WWnfjhD38oly5dKjdv3iybmpp8//yXnTjnnHPkhx9+KLdv3y6vuuqqgCnfv/71r8vdu3fL9957T55xxhnyF7/4RQLeUXzos2tKyTqSUspt27bJ2bNnyyeffFIePnxYvvzyy3LevHnyrbfe8m3DepLy2muvlRdffLFv2YmXXnpJzpkzR/7pT3+SUqZmHXV3d8tdu3bJXbt2yRkzZsj//u//lrt27ZJNTU1SyujUSW1trVywYIH8+c9/Lg8cOCCff/55OWfOHC7XFAZeN3ndDAevm8PxumkNr5vDjabrJgNjm3nuuefkOeecI+fOnSuvuOIK+fnnnye6SHEzY8aMgP/++Mc/+rbp6+uT69atk6eeeqpcuHCh/M53vmNI7y6llEePHpU33nijXLBggTz99NPlz372M+l2u+P9duLG/wLPOtL84x//kF/60pfkvHnz5AUXXCDXr19v+DvrScqmpib57//+73LFihVywYIF8vzzz5fPP/+87++pWEcfffRRwPPQr371Kyll9Orkww8/lF/+8pfl3Llz5Re+8AX58ssvx+09jja8bvK6GSpeNwPjdTM4XjeHG03XTSElM34QERERERFR6uIcYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIgS5rXXXsPLL7+c6GIQERElBV43iWKHgTERJcwbb7yB9evXJ7oYRERESYHXTaLYYWBMREREREREKU1IKWWiC0FEqeeuu+4a1ur9ne98B7feemuCSkRERGRfvG4SxZYz0QUgotR0yy23oL6+Hl1dXfjhD38IACgvL09wqYiIiOyJ102i2GJgTEQJMXHiRBQWFkJKiUWLFiW6OERERLbG6yZRbHGOMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExECZOWlob+/v5EF4OIiCgp8LpJFDsMjIkoYaZMmYJ9+/bhzTffxPbt29HY2JjoIhEREdkWr5tEscN1jIkoYdra2vAf//Ef+OSTT3DixAmux0hERDQCXjeJYoeBMREREREREaU0DqUmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmnORBdgNFFVCY9Hjcq+nE4Fbnd09jVasY6sYT0FxzqyhvUUXLzqyOFQoCgi5q8Ta9G6bvLYtIb1FBzryBrWU3CsI2vsdN1kYBxFHo+Kjo6eiPejKALFxbno7OyFqsoolGz0YR1Zw3oKjnVkDespuHjWUWFhNhTFEdPXiIdoXDd5bFrDegqOdWQN6yk41pE1drtucig1ERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGltKQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee++9YdscOHAAN998M5YsWYIlS5bgn/7pn9DW1hart0BERDRq/PCHP8TMmTPx/PPPJ7ooREREEUmawPi1117D/fffj29/+9tYv349Zs6ciRtvvNE0iN26dStuv/12XHHFFXjllVdw3nnn4ZZbbkFNTY1vm9raWlxzzTWYNm0afv/732P9+vX4xje+gbS0tHi9LSIioqT09ttvY9u2bRg7dmyii0JERBSxpAmMn3nmGVx11VW4/PLLMW3aNNx7773IyMjA+vXrA27/7LPP4qyzzsKNN96Iqqoq3HbbbZgzZw5eeOEF3za/+MUvcNZZZ+HOO+/ErFmzMGnSJHzxi19EXl5evN4WERFR0mlpacG6devwwAMPsDGZiIhGBWeiC2DFwMAAdu7ciW9961u+xxRFwfLly7Ft27aAz9m2bRu+8Y1vGB5bsWIF3nnnHQCAqqp45513cOONN+JrX/sa9uzZg0mTJuHb3/42Vq5cGXZZFUWE/Vz/fURjX6MV68ga1lNwrCNrWE/BpVId3X333bjuuuswc+bMiPcVaX2lUr1HgvUUHOvIGtZTcKwja+xWT0kRGLe3t8Pj8aCkpMTweHFxMY4cORLwOS0tLSguLh62fXNzMwCgtbUVPT09+N3vfofvfve7WLt2Ld566y3cfPPN+N///V/MmTMn5HI6nQqKi3NDfp6ZoqKcqO1rtGIdWcN6Co51ZA3rKbjRXkfPP/88enp68PWvfz3ifUXzujna6z1aWE/BsY6sYT0Fxzqyxi71lBSBsRkpJYQwb2EI9DfvY6qqAgC+8IUv4IYbbgAAzJ49Gx9//DH+3//7f7j33ntDLo/braKzszfk5/lTFIGiohy0t5+EqsqI9xeIlMAIVWd78aij0YD1FBzryJpUqadIzo3xrKP8/CykpTli+hqB1NTU4D//8z/xP//zP1CUyGdjReO6mSrHZqRYT8GxjqxhPQXHOrLGbtfNpAiMi4qK4HA40NLSYni8ra1tWC+yV0lJybDtW1tbfdsXFRXB6XRi6tSphm2qqqpw7NixsMsazQ9VVWXU9ud2Acf2A8cPC3S1A6pHICNborgCmDBToiBwNdpeNOtoNGM9Bcc6sma01ZPqARoOAfUHBTpbAI9bID1ToqgMGDdNorgy9EB5tNWR3ueff462tjasXr3a95jH48FPfvITPP/883jjjTdC3me06mo013s0sZ6CYx1Zw3oKjnVkjV3qKSkC4/T0dMydOxebNm3CqlWrAGg9vh9++KGvt9ffokWLsHHjRlx33XW+xzZt2oRFixYZ9uk/FPvw4cOYOHFibN5IgjTVArs/Fujv0e7unOkS6RkSfb1AfY1AfY1AxVSJ2adLOJlDhYhSxIkWYMdGgZMntHOjwymRmSPR3ws0HhFoPCIwplxi7nKJrOjNkklq5513HubNm2d47Bvf+AYuu+wyXHrppQkqFRERUeSSIjAGgK997WtYu3Yt5s6diwULFuDZZ59FX1+f70K8du1alJWV4fbbbwcAXH/99bj22mvx9NNP4+yzz8Zrr72GHTt24Cc/+Ylvn1//+tdxxx134NRTT8Wpp56Kt956C5s3b8add96ZkPcYbVICNZ8LHKzWbvrKJ0tMniuRN0brAXEPAA2HJQ5+LtBwUKCzFVh6nkSmPYb5ExHFzPHDwI4PBFRVYEyFxNQFEkWlgFAAjxtorpOoqRZoOy7w0V+BxaskCksTXerEy8/PR35+vuGxtLQ0lJaWYvLkyYkpFBERURQkTWB8wQUXoK2tDb/61a/Q3NyM2bNn43e/+x3GjBkDAGhoaDDMd1qyZAkefvhhPProo3jkkUcwefJkPP7446iqqvJts2bNGnR2duKJJ57Afffdh6qqKjzxxBNhJd6yGymBPR8L1O0VcKZJzF8pUTreuI0zHZgwAyifJLH9A6DlmMAnfwdOXc3gmIhGr4ZDwPb3BSCAmaeqmDjLOFza4QTKpwBjJ0rs2wLU7hH49O9acFxckbhyExERUewIKWXiB3SPEi6XBx0dPRHvR1EEiotz0draHfZ4+wPbtJ7i9EyJU1ZL5BaOvL2qAtXvCTTVCuSNkThtjYTDxs0m0aijVMB6Co51ZM1oqae248CWNwWkBBaeJVE2KfhzDu8E9m1R4EyTOHWNRF5R4O3iWUeFhdkJSb4VbdG4bo6WYzPWWE/BsY6sYT0Fxzqyxm7XzchTSpLtNB4BDlZrPcVLzwseFAOAogALzpIoKpPoahPY9VESp6wmIgqgv1drAJSqwOzTrQXFADB5LjB1gYTbJbD1LYGBvtiWk4iIiOKPgfEo09MJ7NgkAGjDp/PGWH+uNzjOyJZoOChw/HCsSklEFF9SAjs3CQz0CYybLjFhRmjPr1ooUT5Zoq9HYMcmrceZiIiIRg8GxqOIlFpQ7HEJTJ2PYXOKrcjIAuadqd3x7d4s0B/5ssxERAlXf1DLo5BTIDHzlNCjWiGAOcsksvMlWo4KHN0Xg0ISERFRwjAwHkXq9gAdTdoc4akLw+/OKK4Axs+QcPUL7P+MQ6qJKLm5+oF9n2rnsrnLwl+WzpkGLFgpIYTEvs8E+iJPKUFEREQ2wcB4lOjtBvZtFRBCYt5yCSXCT3b6Eom0TIn6Gm0ZJyKiZHVgm4CrX2DcNInCsZHtK78YmDQH8LgEdm/mkGoiIqLRgoHxKLH/MwHVLTB5HkKaV2wmLR2Yvki749vzCW/+iCg59XQBR/cBzjSJ6UuicyKrWiiRlSvRXCfQciwquyQiIqIEY2A8CnQ0AccPC2RkSUyZF70Idtw0ILdQoqNJoK0harslIoqbms8FpBSYNFciPTM6+3Q4gZmnaufafVsEVDU6+yUiIqLEYWCc5KQE9gzOnZu2JPy5c4EIRVuiBPDeXEZv30REsdbdATQcBNIyJSbNju6+S8cDRWUSJ08IHDsQ3X0TERFR/DEwTnLNdUBni5Zwq3Jq9PdfNgnIKZToaBZoOx79/RMRxcqh7QKAwNR50W00BLQs1d7s1jXbBNyu6O6fiIiI4ouBcRKTUuvJBYBpiyREDBJICwFUzddu/g5WM0M1ESWH3m7g+GEgLV1i3PTYvEZ+MVA+WWKgT+Do/ti8BhEREcUHA+Mk1lwHdLUL5JdIlIyL3euUTQKy8yTaGwU622L3OkRE0VK7W5tbPGEWot5brKdNN5E4vEPA447d6xAREVFsMTBOUvre4qqFsekt9hIKMGGW1mtcu5u9xkRkb64B4Oh+QFEkJsyMbXKE3EKt8XCgT6BuX0xfioiIiGKIgXGSaj6q6y2ujP3rjasCHGkSDYeA/t7Yvx4RUbjqawCPW6CiCsjIiv3reZMUHtoBeNzMUkhERJSMGBgnqSO7tJ7bqfNi21vs5UzXlm+SKufSEZF9SQkc3aedFCfGuLfYK68IGDtRor9H4NBujqcmIiJKRgyMk1BnK9DeKJCdJ1E6Pn6v673JPLafSzcRkT11NAEnT2ijafLGxO91J8/RTop7trh4fiQiIkpCDIyT0OHB3uKJsyVEHD/B7Hxt3c6+kwJtDfF7XSIiq7y9xROmxzc6LSgFCkokTrRKtPL8SERElHQYGCeZvpNA4+HBJUimxf/1xw3ebB47wCRcRGQvA31A4xHAmSZRNjm+ry0EMHmu9vvhnfF9bSIiIoocA+Mkc2RwCZLxMwGHM/6vXzZRu+lsqgVc/fF/fSIiMw0HAVUVqJga2yWazGhL2wm0HBPo7oj/6xMREVH4GBgnEY8bOHYAEIqMW1IZfw4nUD5Fu/lsOJiQIhARBVR/UBvJMm5aYs6PigLMXKy1WNbu4agaIiKiZMLAOIkcPwy4BwTKJgIZ2Ykrh/em81gNb/yIyB66O4CuNoGcgvgm3fI3bX4aHE6J+oPaesqUfPi5ERGlpqQKjF944QWsWrUK8+fPx5VXXonq6uoRt3/99dexZs0azJ8/HxdddBHee+89023/5V/+BTNnzsTbb78d7WJHjTepzPgZiU15ml8M5BRIdLUJnDyR0KIQEQEAGg5p58eKqfFZws5MeqZAxRRAdXNUTTKq3Q28/ZLCz46IKMZcA8CJlkSXwihpAuPXXnsN999/P7797W9j/fr1mDlzJm688Ua0tbUF3H7r1q24/fbbccUVV+CVV17Beeedh1tuuQU1NTXDtn3++echbb6+RmcrcKJF6w0pKktsWYQAKqZo9eW9GSUiShQpgYZD2u8VUxJbFgCYMFP7eXQfl7ZLNge2ade0Qzt5bSMiiqWPXxf48C8Crcc9iS6KT9IExs888wyuuuoqXH755Zg2bRruvfdeZGRkYP369QG3f/bZZ3HWWWfhxhtvRFVVFW677TbMmTMHL7zwgmG7AwcO4De/+Q1++tOfxuNthE3fW5zI3hCv8snaz+OHwRs/Ikqojiagr1ugcKxEVm6iS6ONqskbI9HdIWzXGk5ERGQHJ09oAU1jnZrgkgxJQF7j0A0MDGDnzp341re+5XtMURQsX74c27ZtC/icbdu24Rvf+IbhsRUrVuCdd94x7Pf222/H3XffjbFjx0alrIoSedTq3Yf3p3tA6w1RHBLjpwkoNmjOyC0E8oslOlu17KsFxfF9ff86osBYT8Gxjqyxcz0dP6z9rKxKbPm8r+1wCEycKbHzQ61Rc0yCR/kQERHZVV+PfXrYkiIwbm9vh8fjQUlJieHx4uJiHDlyJOBzWlpaUFxcPGz75uZm3/9/8YtfYPr06Tj//POjUk6nU0FxcfS6K4qKcgAA+7a54HEPoGqeE+WVGVHbf6SmzXPhs3cH0NGQjqkz0hNSBm8d0chYT8GxjqyxWz2pqkRTbQ+EAOYszkFGVuID96KiHOSeIrF3Sw8ajwjkrslGRmbiy0UWeD8m+9ynERHZVmerlhA4Iyv8ffT32ueEmxSBsRkpJcQI44oD/c372EcffYQ33ngDf/rTn6JWHrdbRWdnb8T7URSBoqIctLefhKpK7NkKAAJjJ7vQ2uqKeP/Rkj/YyX5o1wAmzh2I6xBv/zqiwFhPwbGOrLFrPbU2AP29AsWVEt09J9Hdk7iy+NdRxRSgbq/Ajk9OYvKc6L5Wfn4W0tIc0d0pERGRRX09wEd/1Yaxrr4+/OHQDIxDVFRUBIfDgZYW42Sttra2Yb3IXiUlJcO2b21t9W3/ySefoKGhAWeccYZhm1tuuQXLly/HU089FVZZo3nDqKoSHS0SXW0KcoskcoskVPsMw0d6FlBUJtDeKNDepKKwNP5lUFVpq5t0u2I9Bcc6ssZu9XT8sNYiN3aifc6P3joaN10LjOv2ARNm2iM/BI0s0g5jKcHPmYhSQr+uIVpK4OB2oLgCIccD9rmjSJLkW+np6Zg7dy42bdrke0xVVXz44YdYtGhRwOcsWrQIGzduNDy2adMm3/b//M//jD//+c945ZVXfP8A4J577sG9994bi7cRlvoD2hV2XJU9b6rGTtQO56ZaGxaOiEY1KYGmWgCQGDsh0aUZLn+MloTrZIdAZ2uiS0OWRBAZSwl89BeBHRt5PSSi5ON2AZ+9JdB81Nr2+pxHbQ1AzTYFH7+eFKGlqaQp/de+9jW89NJLWL9+PWpqarBu3Tr09fXh0ksvBQCsXbsWDz/8sG/766+/Hu+99x6efvpp1NTU4LHHHsOOHTtwzTXXANDmG8+YMcPwDwAqKysxfvz4+L/BAFSPlnRLCImKqYkuTWDem9GmWmanJqL4OtGsDaMuKotsflMsjavSToz1NQyWRjv3ANDVLvhZU8qTUpt7apdRPGTNsQNAyzGBrRushYdCt9lAf4wKFWdJMZQaAC644AK0tbXhV7/6FZqbmzF79mz87ne/w5gxYwAADQ0NUHRNF0uWLMHDDz+MRx99FI888ggmT56Mxx9/HFVVVYl6CyFrOgq4+gXGTpBIz0x0aQLLytV6RLraBE6ekMgtTHSJiChVNA6OVCmbaN9WufIpwN4tEg2HgBmnAA5OC7YdtwtoPAyMnZTokhCNDod3Avs/UzBpjsTMU+x7fiZNdweQmaN1yIVCP5LVjqNaw5E0gTEAXHvttbj22msD/u25554b9tj5558fUsbpvXv3hl22WDi2X/tZWWXvk0rZRC0wbqoFA2MiigspgcbBRQnsHNCkZwKl47XpJs110rcGPNnHoR0Ch7YLNNbKoaHUYdCPmuJcY0plDQe1g//YAWDmKQkuDI3o5Alg058VZOVKTJgZWrwRzZGiUtUaKZ1p0dtnOJJmKHWq6T2pouUYkJ4pUWKPkd2mxk7UfjZynjERxUlXG9B3UqCgRCIzO9GlGdm4adrdw7EDPEfaUU+n9rPlmBiaYhzmHGMvt30WkCCKO+93IZQznqtfa+zk8Ov46u7QfvZ2i5Ab8/TnvEgbAj/bAGx4UUF/5Iv7RISBsU0d2uWBlAIVU42T2+0opwDIztd6jXu7E10aIkoFTXVD2ajtrrgSSM+SaG3Qlrcge8kpiM5+pO6G3j0QnX0SJbUQ7l+3vi3w+bsKju6LXXFoOEU/vSfUwDiMRgwpAVeA82PzUe3F24+Hvs9osnnIlZqkBA7u1Jqb7T6MGtBaifRJuIiIYq3lmPaz1OYjagCtcbNyKgAp0FCT6NKQP8Wh7/YY/Blhj3GgG79kI6XWi0cUKm/AFEovYkeTtnFHM0fWxJO+8y3UmjdMH7EYJO/5WODtlxR0tgX+e6IbjxkY21BnK3CiVSK/WCKvKNGlsca3bNNRntCIKLb6eoDOVoGsXBm13r5Y8zZyHqsRSZ3B/8knn8Tll1+OxYsXY9myZfjOd76Dw4cPJ7pYthDOTaKd7dgo8Pb/U9BlcgNLZMY3lDqMW0LeRcZXRD3GunOex2Lirrq92ot456H76+tJ7BHAwNiGjg4m3Ro3LbHlCEVBCZCWKdHRODpayonIvvS9xcmS4Ci3EMgvkejpFDjRkujShO/jjz/GNddcg//5n//BM888g4GBAXz9619HX19foosWFZEcTv7Jt5Kd98bV6pqmRF7ewz9JTs8pLaLM0vrAOMS8Ch534MdDzYwdbQyMbca7drHigG3XLg5ECKB0HCClQGt9oktDRKNZ8+D84tLxyRV9TJotAciEX/gj8dRTT+Gyyy7D9OnTMWvWLPzsZz/DsWPHsGvXrkQXLaoktGHEoSSC0fcSSwl0NANHdke9aPHH6IZC5f0uMMqwvUga8SJJOGjXPAxJtVxTKlBV7Ro0da4T6RmupMrOVzJOor5GoOWYQPnk5LphJaLk4HEDrccBh1OiqCzRpQlNxRQtmE/0chTR1NXVBQAoKAh/TLuiRBZ5eZ8f7n6EyX/e/n/aXf2ar1q7nhl6XiDw8evaA2PKJApKwipaVIVbT4oibJ8ENFoiPZZSRbB68n5jFBF6XYownmNHyXIsCZMTYKjllmpozzXrMQ7ntaOJgbHNONOAc64ESsemo60tudZ7KK4EhJBoPsY1HGPlZCfQWq+l1Xc4gNxCieJxQFp6okuW2k6eAFobtM9FcQB5RRIllYCTn0vUtTUCqltg7ERpnBuVJEZTUCylxP3334/TTjsNVVVVYe3D6VRQXJwblfIUFeWE9bz6rAEA2vVWURQAEo7Bn979WrlRE24PAG1IeV5elu/3zPRMFBfb53bLej2dBADk5maguHgUHbgWhHsspRr/eurvlUjPBAR6AUg4nAqKi62up6cdbxmZaehscmDHhwM476pMZOUkd6uM3Y8l18mh81ZWVgYArSvXynlZ/9z09HR4z6MjP1f7nCEdGBpaMCQzMw3FxRnWCh8D9jlTk4/DCYgkjCrT0oHCsUB7o8CJFonC0kSXaPTo7gD2firQWu9/XAg4nBLjZwBVC0dXT1Qy6GrTPpe244E/l4mzganzJRw800ZNy9HkHEY9Gv3oRz/Cvn378OKLL4a9D7dbRWdnZAtXKopAUVEO2ttPQlVDPy5OngS8PSVSVQEIeDyq77HmxpOWGrlOdAzt58SJXt/vnZ19yGgNuVhRF3o9aeXv6elHa2tqpKeO9FhKFYHqqfkosOVNganz5WAiJgFVVdHaanUdT+146+93YdNrWnfi1g96MPOU6Jc/Hux+LB3ZDZxo8U7bHDxXdfT7fh/pczt2AMjK9a45PXieODng+72luRvCpD1DCG3apcvlQaB5Gn19LrS2xqZjMD8/C2lpI7eo83aNoqp0vER7ozacurDUfieCZHR0H7DnEwHVI5CZK1E5Bcgp1OYptjcKHD8MHNkl0FQLLF4lkVuY6BKPflICdXuAvVsEpCqQlSdRMQXIKZBQ3UBbo0DjEeDQdu1zWXSuRE5+okud/KT0JgKSKBmX6NKktvvuuw8bNmzA888/j7KyyMa0R+umUVVlWPtSdUMAAz17YEBCsXC35A0GAED1yKHfVWmraVHW62lo7So7lT8ewj2WUo2+nur2acfLwe0CaenetNShfL8HG6f8Mh0n++dgx2NpoA/YvVmLXPOLhxoB9clzzcrsGgC2f6A9d8kXhp6rHxrtdpt3CEgZoOPPL6N/IuuLgTFFVel4YN8W7eZ12qJElya5SQkc3A7UbFMghMT0xSomzTWuOTdumsT0xcDuzUBTncDHr2tB2JjyxJV7tJMS2LdF4MguAaFIzDxFxYRZfp/LdO1z2fkh0FovsPk1YOl59phnmMy6O4C+kwIFJRIZWYkuTWqSUuK+++7DP/7xDzz33HOYMGFCoosUOTn8d/2grZHmwhl2M8qyUvsIoKdLW0qyfHKiC0N2pb8GRisrdTInKrQz/TlNnzRQX99mUyL9t/E9rhp/N++X1Xaq37edzpfJPXCfbCc7H8jKlehqEwlfpDvZHd6pBcWONImlqyWmzEfABCgZ2cDCcySmLpBwuwS2vi3QaYNhe6PVga1aUJyWLnHaGolJcwJ/Lpk5wJJVEpPmSLgHBD57S6C7I+7FHVW8y8ZwGHXi3Hvvvfjzn/+Mhx9+GDk5OWhubkZzc3NSL9cUMKANJzD2y0rtNRp6Wz9Yr6D6PQUdTYkuCdmVfuhstCYDjob1wO3INKA1CXot7Uf/3BA/N2mjyJiBMUWVEFqvMTC01iiFrqkW2P+ZgOKUWHqexJggIxWFAKYtkqhaqMLj0oIwNkxE37Ea4NAOAWe6xCmrg/cACwWYsVRi0mwJV7/A1g0CrtSYqhcT3jn2HEadOC+++CK6urpw3XXXYcWKFb5/r732WqKLFrZg92Th9Bjre6FVi8+3K/2NM68rZMbQuzj4ezjxjn4/o6FRyY7MAlrVpHHP8FyzBsAQg2rD8WKj0TYcSk1RVzJOonaPNs94/HT7tAIli95uYMdGAUBg/plqSEnMpi4A+nokju0XqH4POG1NzIqZcrragF0fCgghsfBsibwx1p4nBDDjFInek0BTrcCOTcCicySztofI7QI6moC0TOt1T9G3d+/eRBch+gJcpqI5lNqTRMNBO5qAw7sE5pwx9AakrvzJmAme4sOwXFkEgbEeh1LHhmH4tC7HwrBe3wDfd7Pg2XCeCyWFAczPnYnAHmOKuqIyQHFItDWwtS9UUgI7Ngm4XQKT50qUTQrt+UIAs06TyBsj0dEkcLA6NuVMNaoH2P6Blmhr+lKJ4orQni8EMG+5RHaeRHOdwLH9sSnnaNbeqCXtKK7gUnAUXYFuxAw3fBEGxsl0c//xGwqaagUO79TdLOuu4wyMyYxhKHUEgbEh8OI9ZEwYzlUmQ6lNn2vy+VjpbdbTX8bt9JkzMKaocziBorGA2yXQ2ZLo0iSX2j1A+3GB3EKJaYvCazZzOICFZ0soTomaauBEK68skTqwTaC7Q6CoXGLS7PD24UwH5q+UgJDYt0Wg72R0yzjaeYdRF1dyFApFV8DAOMSbxZGeYzWwthNjcp6hW1i2SZEZQ66NoYTmITMLtih6IpljbLp9iEOpYdOh1AyMKSaKx2lHdsuwdXfJTH+vFoAJITF/hYyoZT47T5tzLFWBj/7Wn/ATTTLragcO7wIcaRLzlkc2BLqgBJg8R2s02vMJvxuhaKnXfobaW08UTLAeY6lqOTPcwZbWNOllTqYeYy99759/tlmiQKLWY5yE35dkY9aIZ6XnVv+4R3dODLXH2LBPBsY02nlvXlvrE1uOZHJgq4DHJTBxFqIyh3LiLCC/WKKlQcVRDt0Ni5TAno8FIAWmLZLIyo18n1ULJTJzJJpqBdqOR76/VNDbDfR0aiMpMrMTXRpKRiMGdEF6jI/uE/jsLQWfvzNyY5ZqEhjre1yThb73z2xpFyK9aE1x0QdGnDYTG2ZDqa0Epfpzqem5wUpwaxIMJ/ocw8CYYiK3EMjIljjRCmbhteBEC3DsgJZYaOrC6DSXKQowd5n2+4GtFno7aJjGI0B7o0BOocSEmdHZp8MJTF+ifcZ7PxUJbx1NBq0N2s/iysSWg5JTfQ3w5vOKb9SBP8NN2eBP/c1fR7N2d97aEOQuPYJlT+xG3/vnHhj6nT3GZEYEGkodBsP3hYFxTJgNpbYSJBt6jN1DH1Covb5m2yf6fMnAmGJCiMFeYyl8N7Vkbv9WLQv19EUSaenR229BCTB5lgP9vcZkKhScqmpLZgHArFNlwLWKw1U+GSgo0db7bjgYvf2OVr75xRVJGGFQwu36SDt+DmwNfA4MtMySoddCWDvujDebgZNXJQtDVu4I1iel1GG2/M5ITnZqq3D09wZ+bjLctTQeQdKN/opouSazKSMh9jwzMI6CF154AatWrcL8+fNx5ZVXorp65JS7r7/+OtasWYP58+fjoosuwnvvvef7m8vlwoMPPoiLLroIixYtwsqVK3H33Xejubk51m8jZZQMJslp5TzjEbU3Am0NAtl5EpXTor//hSvSIRSJw7tgvPjQiOoPAL3dAsWVoWehDsa7hBMA1FSLpLxxjhepaj3GiiJRFGQ9b6JAvI1a/t+zpjrt2Ap0U2bIxGzxEhbJmp52Y7hZNrlxpvjq7wV2bhI4eSLRJQksnON829sC9TUCuzeH3/OYSKoKfP6ugk//rti+rAYWeozNGjesDKWOKDDmUGprXnvtNdx///349re/jfXr12PmzJm48cYb0dbWFnD7rVu34vbbb8cVV1yBV155Beeddx5uueUW1NTUAAD6+vqwa9cufOtb38LLL7+Mxx57DAcOHMC3v/3teL6tUW1MBQBItNbb/+SWSAc+1y4IUxdEt1fSK7dAwaTZgOpmr7FVqgc4uF2rq3CzgwdTNFbrAe3tEjh+KCYvMSp0tgHuAYHCsdowdKJQicFEht4bLu/1aNvbCrb8Qwk4101/cyYsnpfNbgwTfaMXDrMbXgbGibPnY4FjBwS2brDndTzQ8e/9aTaVy7s6Q2/X8Of6/24nh3cBR3Yb33N/T+LKEyqzJZes1L3pEk2hJt8ynCN166Yn+DNPmtuMZ555BldddRUuv/xyAMC9996Ld955B+vXr8c3vvGNYds/++yzOOuss3DjjTcCAG677TZs3LgRL7zwAn7wgx8gLy8PzzzzjOE5//Ef/4GvfOUraGxsRFlZeF0TitWmZQv7iMa+EikzWxvKe6JFoLdLm3ccLaOljtqOa8sz5eRLVFaJqAfG3vqpmi9Qu0fi6D6gaoFAemZ0XyeZBTqWju4D+k4KjJ0gUTQ2dsfYtEVaj9XB7QLjqqzfgCdCor5zbYNTMUrG2f/7PlrOS6ONr8fYAzQcBHZtFjhtTeAbsaHgWbdEkdXAeBT1GJsOkWRgnDC93drPvh4tL0lvF1A+ZejvJ1qAplotUWQiriWBpiRAAnV7gd2bFSw4S0X5ZONzFAXwwLzBxa7H275PtQoeVzVUwN5uIDMnUSUKjem5KsQ5xqbDp60k8bLpUOqkCIwHBgawc+dOfOtb3/I9pigKli9fjm3btgV8zrZt24YFzCtWrMA777xj+jrd3d1wOBzIy8sLq5xOp4Li4iikrR1UVJQk37ARTJg2gBMtLvSeyMCkqrSo7z/Z66j6vT4AHiw4MwOlpdGvH6/ycTmYvqAfe7e60XgoDYtWRHEi8yjhPZY8bol3d/QCkFh6dhbGFEewblYQxcXA4R29aKxT0d2agcmz7H9Kjvd37rPmXgAqqubE9rOIpmQ/L402+qHU2z/Q/nNg29Dfg/XuWm2wNM30atOb+5GYDZ9Ohh5jKUdnNmNvY4XDAWx+TTsoi8pVZGRpj3sfyymQqKyKf/kCBTdSAnu3aB/GoR0C5ZONUY93WUqzeeyqDRuVzALDZPhueJmuY2whMDZrKAt1frLZuseJPl/a/y4MQHt7OzweD0pKSgyPFxcX48iRIwGf09LSguLi4mHbm80h7u/vx0MPPYSLL74Y2dnhrQfidqvo7Ix8EqeiCBQV5aC9/SRUO54VQpBTBAACR/b1o3RS9NJTj4Y66u4A6g8KZGRL5JX2o7U1+um79fVUMU1i3+fAns8GUD51AGkZUX+5pOR/LB3dr80tHjtBQjp70doa29efMBtorBPYsbkPuSX2vaFLxHfO7QKajwHpmYCqxP6ziFQ86yg/PwtpacnRUJAIUgKdrUD+mKGbb2vDB8P/Appmek2SS5Qx22zgxxN90zoSqQJb3hIY6AOWfSkxvaax5A0eFSeAwUzhHvfwhgDv8OR4MxtK7Q2AAjUweac5qPrjLcSex3jTfzdcuoztdv5u+LMyHNqs7s3WQLY0DFt/jmSPcfRJKSFGuIsM9LdAj7lcLvzrv/4rAOCee+6JqEzRvBlSVZm0QZ9XXjHgSNOGDLtcEo4o38clcx0dGpzvO3GWVv5YtjaqqkR6lsS4KoGj+wWO7FExdX7sXi8ZqaqExyN987AnzZVxaQEuKtOmGZxoEWhvVFE4NvavGYl4fuda6gEpFRRXSEgpE37BtCqZz0ujRc3nAgerBWYsHfoSm/aS6G7uAgn2d9/+I5lvZwOGbLNJ2GPc1a4lsgQAt0uOusZfVddj7DXQC2z+q8DUBUMfnraETvwPOrMeY29jkxLg/s8bLHts2nsYiCEw1vVnhPLdkCqw+Q2BwlJt1Yt4M+u5NQtW9Ux7mK2c88x6jG10vkyK9rSioiI4HA60tLQYHm9raxvWi+xVUlIybPvW1tZh27tcLnz3u9/F0aNH8fTTTyM3N3pDoUk76RWXA6pHoKMp0aWxj4E+oKEGcDglxs+I3+tOmqudcer2MBNyIK31QHeHQEGJRGFpfF5TCGDSbO1zObLbpt3FCeJbpqkySSILso2D1dqx01g7tFa4vgfRrHc0EKvnSitrg9qZ4YbXtMfYvueoZAngw+UNHvVJCOv2CbgGBPZ+qgzbLt4C9jbql14KcOgoQXqM7di+6I5Cj3FPN9DZIlCboGt+tNYxjmQotf6zNZvnnAhJERinp6dj7ty52LRpk+8xVVXx4YcfYtGiRQGfs2jRImzcuNHw2KZNmwzbe4PiI0eO4P/7//4/FBYWxqD0VMxlm4ap26utczluOqK6bnEwOflAyXiJ/l6BxsPxe91kcXiXdoxOnivjOqS5fCqQlinRWDuUYIXgWwM92stlUerIyR+60dJ/p82WHAlE9ZifDFRVW8fUNTDCHOME39xLCdTu0abvBNvOy5B8y2TpJrsJZRRAMvK+J30DT6D36THJAB0rUtXKYdZj7BWox9j7zdJPYVADBdg2Eo0eY/dA8G1iyUo+hEh6jBtqBN5/WQwb1m/2uqqNslInRWAMAF/72tfw0ksvYf369aipqcG6devQ19eHSy+9FACwdu1aPPzww77tr7/+erz33nt4+umnUVNTg8ceeww7duzANddcAwBwu934v//3/2LHjh146KGH4PF40NzcjObmZgwMJPiIHWWKK7WfrfWJLYddqCpwdL9xGHU86XsnE30CspOuNm0YXlauxNgJ8X1thwOYMAOAFKjdwwYkQGsg6OkUyC2UyAgv7QMRFAci7jEeydF92jqm1e8K2/YYd7UBez5W8MErAnKEk76VpEJSBQ7tADa/LmwXfCbLXOhwea8MwRoq4t1j/P4rApteFcb69/4M0mMcqEfYbIitXZgFxqGU1RX9lDIhiWiOselQ96EP+NgBgd5ugf1bjR96JL3N8ZI0c4wvuOACtLW14Ve/+hWam5sxe/Zs/O53v8OYMWMAAA0NDVB0M/uXLFmChx9+GI8++igeeeQRTJ48GY8//jiqqrRUfcePH8eGDRsAAF/+8pcNr/Xf//3fOP300+P0zka/7DwgO0+iq12gv1f6MiimqpZjQH+PQHGFRHZ4CdAjMqYcyC2U6GwVONEsbT+nNV5q92g/J85KTNKWCTMkDm0H6muA6YsDt66nEl9vcWViy0HJTZvjqP2uv0ULpcd4JF3t2l5bGwQKx+p6PWyUWVe/hqzHDRyr0a4D/tdi06Q6fjet+z/TTpDdHRL5xhynCTHQB/T3Dr/R7mjWek9HzTlk8AA2fJ4BguB4Nli4XUBft1aw/DHDj39DEBVoB1L/i7YfwxDbAE/q6dKuD+OmWc8YH03684X+swilx3hAFxi7XUDzUaB8UvyWbDRbrklf3x631ghWNgmGe9VQ1jXXr0897HUtnG8SIWkCYwC49tprce211wb823PPPTfssfPPPx/nn39+wO3Hjx+PvXv3RrV8ZK64EujZq61JWjE10aVJrKP7tJP/+BmJuVvyzmnd+aHWO6m/mUtVrn6J+oOA4pConJaYMmRkA6XjgaY6gaY6OWy9x1Tjm19cweOTImBhnlwogbF/BuDM7KEberPhoIm+0dMHTwd3ubH9fYGMLODsrxgrx6yX2Kw3xy4Z9N97WUB1C8xZNlRQ1QN8/LoWZXzxOtU2ZT26HygoAfKKwnjy4HvQD5VWAxy78XyvJ0/oyhLomDdJtjRsO12+sGA9/7s/EmhtEOjtkpixNP7XB8M0A/dQZVv5nm//QPvuaecNzb4tAkf3CXQ0Scw+PT7vxyxAhe4ctusjgZMnBNobJZZ8QQbcPth77u8zf1279hgnzVBqSm7em9uWFJ9n3Nut9RinZ0mUxnm4rl75FMCZrs1pHegLvv1od2i3Gx63QMWU+M759jdusLHE23iSqqSq9QgoikRRWaJLQ8lMVTF0w6274QrW62bG/6ZNP7LDrnOM9b0xPZ1aYfp7h59jrMw71A8BTVSSJ3/e4GRAt1pmj66nyi5DvjuagV0fKvjwVeu33t5lxzyeoREP+uRPZj127gHzOeU9XcAnfxPoCLx6aUj6dXVurGdvY5Hu7wHK6u2hNBvNEahhq30wkWvz0RAKGkX6AN9j4bPQ/73hoMDhncbkp97P4ei+6JXRTGeb1gtsZdrByRPap9LTaXw8lB5j/88vkqRf8cLAmOJiTDkghERrQ+IP+kQ6tl8AEAkbAuTlcAKVU7UMo8cOJK4cdiAlsO9z7S45Ub34XiUVQGaORNtxYbixSzWdbYB7QKCwzJiBlShUUh26+dbffOmT3+h7fazsT89j0mNkpx5jfcAyUsOflTnG+obUSIagR4v+vXl0SdL0PZnuOCejMhPOvNKmOuCjvyrY/r7w9QTrM4ObfQYf/VVg05+VgNeR3ZsF2hsFtm6IvAE2+MgLASG0L2CghpRA341g0xD01wS3y/hZx9KJFu31DNMwQhgCbBZEZ+YMPj+CNdSt+ugvCvZ/pqCp1iTZWQD+07r0x1/I5zZD41vg95vo8yUDY4oLZzpQUAoM9IqgmTFHK1XFYBAqMX564lsHvEHgsf2pnYSrowk40SKRXyxREHj1t7gRCjBu2tDnkqq8ifo4jJoi5fEM3WgZ5xWH9/3yP1ca5saF0GPs8QANB7UA3ePWViqIVaCpL6NrhNyi5r05ukDMZhmq9T2W+iHGblfw4DHe9AGda0DrtT1+eOTneNdlbqoVxm5V735Mgu2eLm3j7vYAzxk8BqLRYKCa9J4GEmgodaAe4VAalT75m8DGPykxua/0uLVrkZTaz82vKdj2jjHJmNmyZmb783L164LLGH2PPB6g+Vjg72mvLlt0sCXY/D+iSJZFs3Kvmej7UQbGFDfem9xUzU7d2qANXyuuBLJssFx2biFQOFaip0ug7XiiS5M4tYOpBibOSmw5vMZNAyAkjh0YnWtxWtE6eDNYMlqS5lDCqLrAOBo9EaoHaGscutnU3+yGkpX64OcC2z9QsOsjgW3vCOzerKDm8+g2hvX3auXQ3xgP9AeeKziszCY366EEQvGgL4/bFfh3O5QTMB4HtXuA9kaB6vdGvg13pg39HujoCNTQYQgsAj3JO3w5CoebWe+pgRi+7bAimc1FDhIkdbVpOz8RhWHh/ra8KbDlTQXNR4euSW0NYliCKi9V1UZUmDU46Lc1NOjEKDCu2Saw9S1lWGZoIPDcdFP+w6FDCIz9P75RHRjX1dXhnXfewbvvvovjx1P4rposG1q2KTV7wo4f0t535VT79IJ5e65TdU7rQB9w/DCQlgFUTEl0aTSZOVpAONAn0HIs0aWJP7dL68VPz5TIDSdBDZGOPjCORnbowzsFPv2bgn1bhG//+tfyCtZj7M263lQ7dE2M5vSJvh7g3T8o+PRvwq/HOHDmbP//mw3rTJbA2GPDwFgfAJ3sMF/GRs+Rps92NvzvgXr7gjXKBFrXO1yqSe9pwG0DDaX2/abrQdUnsbP4nY1FI3JH09AcW2nSaGTMUC3wzv8o2Pgnk++OSWCsr5eOZmDbO8Lw93B552Af2z/8b54I6stKA9rQBn7/tfC6th9K/dRTT+Gpp57y/b+7uxv/+q//itWrV+Ob3/wmbr75ZnzhC1/AD37wA67/SyPKL9YSPrU32edCFS8et3YDpDgSm3TLX9kk7TNpqkNUTsTJpuGQdmMxZbbTVnNZK6u0q0nDwdRrsGg7rt0YFVfYJ+stJRf/pUgCzTEOlzcng/enocfIZNkT7+vu/VRg05+FaY9SVk7k5fPyzrvsaPYLjHVDb/0DFSs9NZ4wA2NXP1D9nkDjEevPsUJ/k27oMdaVzePSyvrZW9F//VAYkqDpGkH2fybw5gsCfT1BdmDxfGg2l9739wDreofLSkOJ9/UCDr0PcswF/M4GWg85hsP6HU6/KQT6HmP9aIzB+ff9PSLgEHdDED0Q+PGPX9fm/x7aEfnFL31wOTb9tAKvUHqM/c8LwRKqhbIvs22kqmXwPrwrtP1HQ9CvxYsvvojCwkLf/3/yk59g06ZNuP/++/Huu+/inXfewX333Yc33ngDjzzySCzLSklOUbQkXKpHoKMp0aWJr+Zj2py20vHGoVGJ5nAClVVacFhfk+jSxF/9Ae2CUTXPRlExgNIJgDNNorlu5DmBo5FvmaZK+4ysoOQi/Yd3DvZABZtLZ4X3JtabkMYsUPTvMR7oA47sEujuEIZkQbE6yvXJHfVJqfQ9xv43tVYaDlSThoBg9m8VOH5YYO8n0W3tstpj3HwUaDkm8Pm7iZtBaDY/+9AOASkFmusCPEc3F95qzQVaZ9ft0ubjfv7uUE6RaHwSw75rATcaHF0xuK2rX2ukOLQj9KzGZqKdYM0/g70+kJUmn6P+mDPM4ZVax4P+czH7PdC+wjVSor2QciyM0OsbamOj1cC4q13rGNj3qRL3lVOCniGampowceJE3///8Y9/YO3atbjkkktQVlaG8vJyXHbZZbj99tvxl7/8JaaFpeRXUpmayzZ5h1FXTLHfzb53OHV9TWol4epsA7raBfKKJIrG2ivdgsOh9earqkDj4USXJr68Q0yLKxJbDkpeoQzvDHnfg0GmNzBWTW5w/QNj/YgcQy9eBL0vI9GXRX9jqW9oC6fHOJSh1F3twMdvaBn2vWXo64nOtb+zFTi8y2+Oq8nwabcbMavnUJglavMKFMgYjimLr6PvrXQNDM6NPa7NaW48InyNJvpANdxrv2GUhMWh1McOaI0U+z9Tgr5uoKHU3iNI/1zv+4wWQ+DqEsYGMF1DU6BGCMBYL/u2aNMamuoCPy/Q98hhow6UkZJvhZpJ21JgrGoZwL3ivUJH0LvB4uJiwxxil8uFysrhGVEqKirQ3d0d3dLRqDNm8GbXe/ObClwDQMtRrQewZFyiSzNcbiGQXyxx8oRAZ2uiSxM/9TXaCX3cNEDYcMyudzh1fQoNp+7tBno6BXILJTKyE10aSjbengbDTWeshljK4fs3W45FqubBqf7UE83hoOaBsbXkW2aMc6pHPjd98jeBjiaBPZ+IqE+L+OivCvZ9qhhGn+kbHPyDlAH9+stxXr6p7bh2c2/IYBwoG3Og7OW6slrNXhwo6DL0qHqXfQJwdD/w9v9Tws5nEUqQ5N3WrAEpkJH+7j9lIpr8G1ZUkwB4WANMgMe9w6Lr9uoC4yBz4KOxnGfU5uoOjnjx3h+GtN9h2besPEkYGtDCWeYsEkGr/oILLsB//dd/ob1dy/n+xS9+ES+88AI8uquB2+3G73//e8ybNy92JaVRITsPyM6T6G4X6A82n2aUaKrTev7GThy+Hpxd+IKwmtQIwtTBpVKEkKiYmujSBFY4FsjMlehoSp01jX3LNDEbNYVhzyfAh68qqN0du6V6hKKdK703x2ZBeKCh1F5ul+7v+iHPUSyr2XxGlz4rtX+PsZXAWDccPVAg3d0BbPqz0NZ8HezFC/eq0nwU2LFR+DJr+4YFG97P0N7NAhbVrSUzDPS3WOvrAT79u4IP1iumidq89O9r3xaB7R+IsBp5As17Nwvsdn2oHYCHdwX/lKQEtr0tcGCbtm1/nwyp912q2qg0w9rfweYYj/B39wijHyJl7DE21r1hfrDJUOpg5fEEaWCKylJaus/m+BEtE3q4PvmbwEd/1ZbFCukzH2F+8kj058t4D6UOOrHu1ltvRXV1NdasWYM1a9agqqoKv/3tb/HFL34RixcvBgB89tlnOHnyJJ555pmYF5iSX3El0LNX6zWurEp0aWLPO4y63IbDqL3KJwN7P5VoOATMOEUbyjuaNR/TbqhKJ0hkZCW6NIEJAVROAQ5u15KEVS1IdIliz7skBucXUziODN7ct+iWBIz2UGrvPGXvja3ZUFL/HmOXPjAeGHq+/pY40oCtqx3YuUmgfLI0JBPU92Tpe6tHykptRaCb/x0btXnU294Zeiwtw9hjC2iNYHljgPRM8/1v3aAFbSXjJOprtCz95/6TxIBuWLr+plkfcPkHlPpep3gGxgOGZXkC9xgGeuzwzsFzoW4td6tz5AMFxsY1dLWf+r1ZSfzW3ws01Qk01WmrBuz5uAfZeZaKZChPKD3GkAJSSgihrSBRUDLU6Wg2dDka/Oeum81lV/0CaK+WYwI1nwNnrPZAKHLYZxfsswyUNC1U+nqujmBuvZTAyRNaeTuaQztP+I+CsBwYm3zH4yFoTWVmZuLZZ5/Fd7/7XezatQuPP/44enp6UF9fj7/+9a/YunUrVq1ahVdeeQVz586NR5kpyXlver03waPZQB/Q1qBdRMaUJ7o05tIzgdLxWgt/oAQgo4036da4KnsHYBXe7NQpMP9bqlpjmaJIFI1NdGkomRmGJ0ch4VZA0tv7NfTQSHOMjcGpCHgjH+mw74aDAp2tAvu2KJZ6ssKZY6wXsNdz8LX8k3Tp66alHtjypoJP/2490Gs5JgBoicv0N8pmqyn4B4dmaxx7SQns+ST6WasNr6sf6h0gOHcPBvb6z0GfxMkqfQ+kLzA29HgOfx0rgaW+cWHPx94lxkL7fqmqf/1b66luqgWq31PwyRvCN6RcH1x63EDjEa0RORr8G1b8e5ADbaf/TOv2at/Fv7/YF9aKF26XVle9EcxQjVYDkP77drJDhNZjHMaoFP/X1I8KiQdLH5eiKLj66qtx9dVXw+VyoaOjA6qqoqCgAJmZIzT3EQUwpkwbwtpar53wbDi9M2oaj2jzbsomyajMGYmlcdMkmmoF6mu0HofRqr8XaDkGpGXYc863Xk4+UFAicaJFoLNVoqAk0SWKnc427YZtTIW01dJZlHxiNq/Yj9tviKXxRtS4Fqt/b6bH15MXvSG+ZkG62bBM7w1uZytQUy1QNDa0837AG2TvLnTX9YF+Y3naBhvFuzuE7gl++9bVa1e7Pqu2Meg2603SB02qR5jWjVd3B1C7W6B2NzB7scTxw1qPdlZu4P1bpe8p10+JCdRj6A2c9Z9XJIERoBvZECALsVkvqL/Du4ADWwXmnBH5fYF/I4kVbQ3Atne0G6i+HgHFMbwcvd3wZRwvKlORGWGOCv+GFcOSZyaBvenc9TCqzeMGPv27Nkd/2UUq8orC20c06BtaerpC7DH2H5USxlDqeC/vGvLtR1paGkpLS2NRFkoRznSgoFRbPL27XSJvTKJLFDsNSTCM2qu4UuvZbq0H+nswapMfNRzSGisqpkrbzvnWK5+iBcbHDwsUlNj/OAqXb35xxeh9jxQ7UnfHFa9kLa5+86zUelL160H1S+bje9yjBSF9JwVmniJDbjTWD5P2uILfsB+sFtj9sdYLBGhJIkPhDRZcA0DNNoGJs2XADkD90HEAhvwiZo3j+veiX95qoNcYpJj1GOt5POa9fB3NQHsjDI2OR/Z6sO0dAcUBnHeNHFbOw7u0JIGzTw/+GemPxWBDQj1uoPp9YZjeE+kSY4F6jIcYGxzM7PtUCzgP7YioKL7yhJr8bOsG/2HIw7fRrwHd06ldT0rGIeypUv6BsdkIDEO5TJKPhXNFc7uArjZvAxISGhjr9XQD6RnWt1dVbSQGpJZjp9Bi45vbr/7jie3ylBAllVpSoZbBeUajUd9JLfjPzJEoTIK2JEUBKqZq8/QaDklMHoUzI6RMnmHUXmWTgL2faD0YM5aO3hEW3iXcSph4i8IQaA5lrPkHfGY3cFL63Vh7Am+reoaCkOIKidLxwcsgVW1o8phy4zxmffBp1hvYdtwv4Ahx6RXve9j/mcDRfQJtQwuYGHqGPB5jQ4C+F9Q9oM1B9urr0aZUFOoCVf17Gegz9kK5LSzT499LqQ9sPn5dq+/Jc4cK3HbcM/g8bX7rjo0Cxw8Dp58vkVc09BmVTpAoDTLqyLB0UpDjsqnO2vsJxdDIhJG3s/KdGbDQCBGMqgYeRj4S/+My0HGqr7e9nwp0tQkUlUucunr4db6/d/CYk8C2d7TnLV4l0dUGfP6uwKQ50hD8qX7Hb8iJscK41dAf81YafwKJRWA80As4Q1lKSmqjMLyyLE5VCJa1O5ZsPriTRitv1tnRPM/4+GHtZ/nk5Alm9NmpR+Oc1q42bfheXlHyjFTIzAaKyoD+HmFYmmQ0cQ8AJ5q1EQu5YbSMEw30hZ6kKPLXBKC7STftMVKHD20OfHM/9Ht3h7Uy7PpIYOsGBXX7jMN2jXNTrdWHECEOpR4MurxrjnZ3DA1Z9u8hN1s+yr8Xdcs/BHZuVAxL2/T7zTcc6A09gPdPQLbnY+EbpQJoicu8OlqNow8aDgpIVaCxVqBb13vd1aZNl3r/ZYGutsCvrZ8f6Z+AzF+0g2IgcPKtQEbqMR7aJvLyhdNjHGjo9Ei8Pa3tx4eX90SLtqbw/i1ax0zLMYGWYwJ9J4H9WwV6uwX2fyZG7DEONTAOZ9kkfRb1/hDW/u5s1e49pYzNsmSugciWgerttvZeVJO1ouOBgTElRP4YwJku0dEY/4M+XpJpGLVXXhGQN0aiu8P8Qp/MvMtRVU5Lns8EgG/O9/HDSdLCEqK241qgUFyZPI1IZC/9cc5cChiHb47EP0mXWe9cvy7gs3oDeWxwBExTrTAO2w2jlynk5FuDN8je4FZRpO9mXPVLjKR///0mGWf12W+bdevqunRBgtsV+ogAj9sYJBw/IlC7R2DLm0O3wPrrXUfL0J2/voGis8XY293Xra3R3NstsH1j4M/LMFfSFf+T24lmgS1viqBzld39g0niXMDm1wR2faSVNdrDWP0biaxQPQLpWRJ5RZFft73Zvo/sNt7jnGgBegfngHvcwnCMetx+ib5C/BwDrU8dCqs9xn09wMdvCFS/p6C+JvQRIJZIEfd1hRkYU0oQClBcoV082xsTXZroO9mptVrmFMiw5oYk0mhd01j1aPOLhZComJLo0oSmbJJW7sYjoa0hmCy8w6i5TFPyeOGFF7Bq1SrMnz8fV155JaqrqxNaHn2PcbxYvWH1Dwas3Fj2dgHV7wns3CSwf6vAe38U6GzTAi1vQK4PZKVq7JEMr6Eg9J7Yk51DPVqqKuAOEDT4B8b6hGMDJkONe02yHbsHQn9v/kOp+wM0aOh76Hq7hyrW2xsOaImH9M/t7R4KfP3njB87oM1zjXcQEUhrvZbEaSRSCnhcQONh4ESLNjTe4wl/GK8Z/957q9IyEFZOkGP7gY/+OhTo6gN9byMMoH22PbrGg+4OXWNMpEsnRRig9vdqx1lT3fDe2oPbh9YNb64b6mltqo3d/Vu8l0+KVzJFLwbGlDCjedmm44NLBpRPDj2BSqJVTNGCsIZD8U96EEst9dqwtpJxI6+daUfpmdocwoG+0dmQ1Nqg/SyuSGw5yJrXXnsN999/P7797W9j/fr1mDlzJm688Ua0tSVumElCAmPLQxyFocfSSrDU2qAl3Dt2QODQdoG+kwI12wQ2/llg45+0oZ/6G9SeTmPm4Xj0TqoeLVtxMFogHHg7/bxoKxmY3a6hnj2r/IOxvhCWQDrRoguYTxp78ntPDvUkar9rj7cdB3ZuUrDlTSXuQUQkXANAly4g7GqLQWCshjfE1+EAlDCyIu38UEFnq8C7fxjsOdd99vrh852twhDA6v9mZZh5LPX3ADs2CWx7W8HeT42jJw5sVdDdIXBkt7Y8lFdHc+zK4wmQ4TwWFKd2To/2WvRBXzfUJ0gp8etf/xrNzc2G3+Mh1Bbq119/HWvWrMH8+fNx0UUX4b333jP8XUqJX/7yl1ixYgUWLFiAr371qzhyJMqL2JEp702wfp7PaCClfhh1ggsThvRMoGS8FkS2HAu+fbLw9oBXJEnSLX/eIfnHDyVZS0sQPV1a71BekQw7gyjF1zPPPIOrrroKl19+OaZNm4Z7770XGRkZWL9+fVj7UxQR8b/+BATGoQxXdofYYxxI81EBV5+AxyXw3h8VvPdHfVbh+J8XVI92/XY4ZdjZ5FsbtIBl5ybhG+Y6kp5OLWu3UKy/npb8y7h8k1Wdrbr/SGEIOHo6dfPLVYG6vQIf/UXg078ruucnz/naPSDQ0zn0/60bBBqiPHJM9YiQ6t9LcWjBcfgEWusFunVLf+l7jPUjAwBtJIT+uYnU0wm0HNXKcHSflkW+vkb4EokC2pJW+mH/8V77NxbS07WfHk90rhGKYq1OQm5/UVUVjz/+OM4991yMGTPG93usl3DytlDfe++9WLhwIZ599lnceOONeOONNzBmzPAsOlu3bsXtt9+Of/u3f8O5556Lv/zlL7jlllvwpz/9CVVVVQCA3/72t3juuefws5/9DOPHj8cvf/lL3HjjjfjrX/+KdO8nQjGTlQtk52vzWft6ZMTrztlFV5t2wcwbI5GTn+jShKdyqkRznUD9QYGxE5MzkNRz9QPNR7V57VYyvdrR2InAro8kmmqB2aeHN6zMjnzLNDEbdVIYGBjAzp078a1vfcv3mKIoWL58ObZt2xby/pxOBcXFkS0Wq3okdh6J/5hVd78DgLW5DapbgTc9bbTm/sUryZiZk4OBYWmlgrwiBa0NoXftNB4J7T30DA6xLqlwoPmYxbp3DdV9qPpOaq+XWyDQfUKOOCR5zyfJHYzs+lDBCUPiMYG6fdF9jYy0DAChd8FmZDqQniEAxGYYm3f0R0bWYC95LObnhk3XqKMKbPzz8C0G+gQG+rSM0emZAj1d9rpvc6aFnrQsPVNBf6+EVBUUF8cvQAhruSb9eoEyTqlr9S3UAHDvvffinXfewfr16/GNb3xj2PbPPvsszjrrLNx4440AgNtuuw0bN27ECy+8gB/84AeQUuK///u/ccstt+C8884DADzwwANYvnw5NmzYgDVr1sTlfaW64orBNecagHFViS5NdHgTJFUkUdItf6XjgbR0ieaj2nC9ZBt67O/4Ee0msnyyjLDVOXHS0rWljJqPCrQ2JG+A74/zi5NLe3s7PB4PSkpKDI8XFxeHNeLK7VbR2RnZeM1D2wWO7I1oF2Hp7PDAam/SQL+qbStkWDfdQkhfQD1tkUT9QWOPZSKlZXqgwnpdBFJUJtHeaP35GTnWX6+3R7W8rZmiMhXduh7GnAJp6HH0yiuSKJ+s9XIdrLbH52OVNygWioxZo0tbaz/C+Sw8Hg/cHoT13OJKrePl2IHhz80vluhqH2pkyhsj0X/Mnp9b+WSJpsF5xN7PKDNHorhi6L3lFEgAEjCZox8JZ7oMO3P69CUSuzcDoX1+KhQn4BqQaG21MM/Cgvz8LKSljXwTmBTrGIfTQr1t27ZhAfOKFSvwzjvvAACOHj2K5uZmnHnmmb6/5+XlYeHChdi2bVvYgbHVrnor+4jGvuyudDxQtxdoaxCYMN368+xaR1IOLdNUMVVASfAs/nDrybumce0egcYjwKTZsShd/DQc1H6OqxpeF3Y9lgKpmKr1fDceESibGN/XjkU9qao2H09xSBSXJ/77EqlkOpaiTUoJEWZCBTXCtK3a3MP41XlWrkRvtwjpJtE9oB3nihK85yQtU/oyMc9YqqKnS8CZBhzeqf198jyJMRXAx697e7mkL6N1eqY0JJKKB2cGkJYhEe5nMHaixNzlEh++CuQWaj123iV3zOTkW38977DScOtGCImiMom6fYPfb4c2GuzkiaHye5MdTVusNVq21MNy+ewmtxCorFJx8HMR9SH64a6FrCgI+/pQOl77TAIFxpk5WgK4vsG4K78YtppCpm+kqJgqMW2xNkImOw9orJUoKtPK631vuUXRWW86kLT08BOROZwSikOElLdGKNrweddA5NeII0iSSQABAABJREFUUCRFYBxOC3VLSwuKi4uHbe+dD+39GWif4c6ZjsaQML2iopyo7cuu8vMktr7dg7YGgTFjskO+sbJbHTUd86DvZB9KxykYP9E+EybDqac5Sz2o3dOHxsMOLFlhn/cSqq4OFR1NvcgtEKiabX6M2e1YCiQ/T2Lnph401QkUFmTD4Yz/jVc066npqAceVx8qpzhQOjbJhyXoJMOxFK6ioiI4HA60tBgn5bW1tQ27nsZLvm42VXae9A23jZWMbKD35FDPr74315yAwzmYjDFIYFw0FmiqBcZOkJg8FwAkTrRoS81UVmnBdUEJUFAqMdALlE4Aandrz83MjX/W2LQMifSM0J6TWyR98z3zx0ikpQMrL9NufrduEAiWXyu7IPRypmca60ZRtHXTT54YOaFQZg6Qo3u97DwgXXdJLB2v5UdwOLVRPQCQrbsVjGUPbFToRjFkZkvMOUOioATILZTY8g9vY580LMEVrlASn+kpjhCnD+neU1au9hl6ZeZI3xD5zOzBTO++wNjY4OJwSt+x4UyTAbOux1J23lADTN4YGKYcelfXKB039FjpeG0aXCykZVhLkBeIM037/EIJjBWH9p0a6BNQVRm3hvOkCIzNBGuhDvQ3/8f8/x9Jq3c0hoQBWm9DUVEO2ttPxrWVJFEKS4H2RoHD+08ivzj49oB962jvNgAQKJ3gidrQj0hEUk/Sqd0MtDWqOFLTjdzC2JQx1vZvBQCB8ikq2tqGX5XteiyZKR2vDdffU30S5ZPi97qxqKeDuwFAIL/UbYvvS6TieSxZGRIWC+np6Zg7dy42bdqEVatWAdByj3z44Ye44YYb4l4eACgcC8xfloYB9wCa67SEbrHkcAIZmUMZe53p1hJqOZzW1ukeP11i6nwtaPMqKAHOvERF1mDAJQRw6moJKbVRV96b+excbb1dqwrHSpRNkti3RYQdvKWlA2kW2rXSMqSv9zYtXetpba7TRsIAQ3WTpguy9UGlvgEiJ89qg8SQjCxjgqIv/LMEBPD+y2LYWqn63uWsXCArb+hv2flARvZQAJWZDYybZvy+6wMxfXBjR/ljtCRjxRUSS7849D4KSoD0LInCUm2JsFCOKzPhBlbeIMmq3EKgezCzdGaOdmx5h+tPmCGxf6v3s5UY0CWqyikwBsDpWUNZ0NMyQp8nG6mScdqxI4R5Hp6MbGDROSpcA9r9gX8isWhJiyD1kjNd6/0NJQuB/jNX3YASp9RPSREYh9NCXVJSMmz71tZW3/beZGHNzc2G5F1tbW2YN29e2GWN5s2QqsqkuFGPVHGFFhg3HzPeCFhhpzpSVS1gEUJi7ERpq/Vmw62nyqnA/q0CR/cDM5bao55DIeVQNuryKSN/JnY6lkZSNkk7zhoOaj1K8RbNemoenF88ptxe35dIJcuxFK6vfe1rWLt2LebOnYsFCxbg2WefRV9fHy699NKElEcIYMHydLS2DsRllQNF0W5GfYFxmvXA2MroWmcaAjYS+ydz9Pag6XNA6AM4K3ILtakyNZ+HP0wyPcNaHor0zKF6cqYB886U8Li0uvTfziszZygwycge6nHMzNHev39A608fWOt7eZ3pEmKwByotfXC/ul7GnIKh3uWsXK28JeMkWo4JjCmXht7LQHWu/3t6ZmIC4zEVEu6B4JmxiyuB+StVQy83oL3nsy7XzmOfvRWdXsiO5sHh/9kyhOXOQu8xzh8zFBh7e/sXni3R2y2RluFtMAdyCo1LUmXlaseZe/DzSs80BsbhBvbhqpgikZ0ng3YajdVNrUrPHGq00fd4RyotxFEhes600JfbUnRLdHk88QtYk2JGl76F2svbQr1o0aKAz1m0aBE2btxoeGzTpk2+7cePH4/S0lLDPru7u/H555+b7pNiw5uNtrXexkONLGg7rg35GFOR/MmqvLSWfImGg8MXlk8GHc3aupOFpdqcnNGgZJx2sWs+Fv/W62ga6NN6IDKzpWGYItnfBRdcgLvuugu/+tWv8OUvfxm7d+/G7373u4ArRMSb+c1z9BoqhALD0mLONGvPczj9lpwRgcvksLg/L/25raBEv8/g79lbnkiy3KdlwDCUWptvPPx3/XXRkabVm39QDGi9eL7fdT2v+sDWaqDk1PUy6V9f3/slBvej783X/11LaKQF8qesVjFhpjbcfai8gV978lzteRNmJqaRrGKKxBlfkkGXtnI4tTnTIkBE4J3ba/UYtyrUc76iAA6H9XrMLZKomCox81TVNwQ3PVPrBc/K1UZKOJwS+WO0hGmAtkqKovg1oOiisZB7TE2+36FwpgMTZmrltipDf5xH8V7UGWGPcajnGEUZOj8FawCLpqToMQaCt1CvXbsWZWVluP322wEA119/Pa699lo8/fTTOPvss/Haa69hx44d+MlPfgJAG0J9/fXX4z//8z8xceJE33JN5eXlvuFhFB/5Y7QMyO1N2sEfynAZO/GuL5vM2aj9ZeZoPfqtDQKtx6Vv/lSy8K7BWJmkaxcH4nACYydoa2U3H5W+eUbJpq0BAASKK6Wl4aVkL9deey2uvfbaRBdjGLOs8w5n9G6uFAVw6m8+LfakKA6/4CtNSyzjL9QgJF9306yf8pKWEbwn29sjE2lgrL8B1/cM63/X19NI71EfaOobCfxPEw5H0OnaWm/+YM9vWvpQT5rhM5ND+/deKYSiDU9tqReYOGvovYwp137PzgemzJPIzDE/f01fLDFxdvzmRvrzvm6wxWOsrNQQzeUBS8ZLlI6XaGsIscfYwr3h7NNVHN0nMK4KSJsT+I0LAZyyWutNT88EyqcAHo/qC9Yz/RpgvPTHjOKQg/Nlzd+Dw8KIhsDlG5oiEE4vrT6wT88Ymj8dqYh7jEP8HuiHUts6MBZCoLKyEunp6YbfY+2CCy5AW1sbfvWrX6G5uRmzZ882tFA3NDRA0dX6kiVL8PDDD+PRRx/FI488gsmTJ+Pxxx/3rWEMAP/yL/+C3t5e/OAHP0BnZyeWLl2K3/72t1zDOM6EAoyp0DLttjdKlIwL/hy78Xi0ZCmKQ2LshESXJroqqiRaG7QF5UuSaEkdj0fLEK4oEmVxnIsbD+VTJBoOCTQeFknbEMNlmigW9Dey2s3rYPKgaAbGDi0TtPemOMNibkL/Rl9neuDAONTGYUUBzvyyNqRHH3BaCYwdTu37F8kydmkZxtfNLRwaOpyRNfS7vsd2pMC4uEJrYPYOXfYqKtPmT2bmaGUOFqwJIQ11qe/xMgY5Q3/3Dp8WQhueOnaieXA1fcnI5y6haPOPQ0k4FE2+HmBvkjj9fG3d75aC3ghP0/r55RWTZci7G2mEgCNNwjM4J3jCTGs99IoydDwKAYzXrYpiPIcM/a4/foQyOPLeO5IuwDJsaenhnXOcGUONOeH01KeH0Whnhb5hKVSjOjBWFAUbNmzw/V//e6yN1EL93HPPDXvs/PPPx/nnn2+6PyEEbrvtNtx2221RKyOFp7hSovGIQGu9QMm45LtRbjkGuF0CYyfKiIab2NHYCdrNU1OtNgctWd5fc532mZRNklG9ONhBcYU2R675mHZjHUlSjESQUvvOCCF9UymIosFwI5sGDAwGJVZ6Fy2/hmK8+UyPIDAe+ps++23oZfL2dumDMP15z2yuoW8odYg3rf69Wvpe06Iy7XoOGJNQGW/Yza/zigOYv1L7e2vD0ONVCyWkqjXWAsF7EIVirHOzHuu5yyS2btCGPu/6SCt3XhRnBeiHKAeb86k4JVS/v4ebEdr/M1UUwDMYyOnnxVvpic0enN8e7pJXmTlDr5dTEHqCPEWRfo03xt5/TwymFaVlSPMeY0Urgrc+Hc6hMsw8Veu1njQb2PWR9lgoGa3T0ocC43BGU+m/Z9l5QGvouwgokvuMkLOKQzs3SW/yrTg2LiXpoFUabYortJ8tDcDMxBYlLN5h1OVJ2ns3EmealvCpvkbg+BFpaFm1s4aDQ2v/jTaKAyibqK1d2FwnUVkV/Dl20tmqzccvKpNJF9STvelvvhxpAAZvMKM5RUf4zUPUJ7sZicMJQ8+bf8+Ot1ckkmGrZjfyzrSh/RuC8PRArxn8/TjShpJ1eet28SoVrn7j8GdDYKxb69hqHg795+ZwAjNPHapAfZm9PaCGUQKK8Wbev8fPK6cAWHGptt/MbImWo05Mmh29Lip9cOPU9SIGyqpdUALMXabNi33vj1ohHU5ADSMxmvc9entU9UOq9YGxldECU+drQ4eLKyTcLomD1QIZmQ60NFhLPpKVC3S1ab/nFGhZrkPhH1il6UZbpKX5vuZRMW2RhNul/Ty8a+jz0a/V7e0x9nI4hgLjcdOASbO1DNi+52ZazwmSnQf0dIZffv33vqBEom6vVo6ySRIdTdrj3nXPw91vOALNYQ+2vfczj2ePcVIk36LRLytXS3BxskOEvc5dorhdQPNR7eJTmoTDwK3wztH1Bpt219+r9UimZSTn0HwryiZrn8nxw8nxmeg1H9XKnIyjQ8jeDENndb9Hc46k4jAmuNEPpR6W6Eh39+xwGnvn9M+LxagW/f71wWqgoZZKiHWlr2dv4Fc6HqisMs4Rzsobev9mvccj8Sa+ClgGfSOIbq60GKxz4RiecMs7DNvs9cdOBFZelBn1ZFNe/kPdveavUFEyTmLBCi1RpL6uRJjHrrfH2Hus+o+m8LKS7E1xaCtTFFdqDeVnfhlIzwxtqSzf6zkjG1YLGBs5oj2KLSNby2CdU2A8xvSNLIowvgd92byPp5kM3R8S+Nj2XhcLS8O7PgqhfW/SM42JLeevlDjrChlycj8vp98yasHLYdwm1M/ckSxDqYlipbhSm4vUfAyYMCPRpbGuuQ5QPQIVk2TSJg4LpqhMu6FobxTo6bJ/hufjhwEptfm3iUp8EmtjyrXAv7VemxeXTJnQW45pP0vHJ7YcNPooDt1SJfqb/yiemxVFG2pbXKFNndFnVtYPV/X+X9UN59b3mui/s7EYCqoPfswCIW82af8gM9jQxZESOuXqbsb1WaX1r2v1vDx+OtDdIVE+efgLGuaCKkOPqR5AerTgRR+QZGRp84Kb67Qe0ETw79H3zmkeO3H46KaMLIn+XoHMHGCgFyHzHmvzV0psfx+YdZr0Lbuk/yycYX43VI/1OhQKcNYVquFzCoU3O7aXPhguGafdm4QbSI74uiaBsXAYx1QYGoqU4WUMVMdmCQGzcoGzr1DDDmABYNlFEpBDxxcwVH+h9tx6GRoGHMbzXCAOp7GXXP/5ma5BrpurrTikr9WNPcaUkkrHaye15rrk6gFrGMXDqL2EgG+4bsPBxJYlGCm1IcbA6MpG7U9RtJZ7KQWaahNdGuv6e7V1NTNzuUwTRZ/DrFcsij3G3rmrS78osfBsY+Ob/02n4hdwGpYvyhr6vahM+2mW7CkUzjRtH7mFxt5qX5l0ZfT1GAfofR3JSHMftTnCKhasVA3Bf0YWsOQ8FRNnSV9252AUBzDnjMDbG4ZSD5ZHUeCLWBSHsb4zc4CKKcCCs2TCGhKFSXAXqM5PO19i6gKJCTOsHxOKrifPWz8FJdpQcX0+B6sZwkcSytrzQmiJyNID9F6bP8f4XhSTHuMx5cDpF6hYcl5sA2P/hh39Z6kEGEGhL2NRWYCGHUMwrXuvg+ukRzJqQRkchhzoOFfCvMUOlLBuJN4lpvLGDI7g0NeXyfMVv228yQEZGFNKKirTLuhtx+P7JYjEQB/QWq9dfL3zpEerysHW7PoaEXT5h0TqbAW62wXyiiTyixNdmtgqT8Lh1L7e4nHhJRYhGonZcFErCYYsv4bfMELDDZ/fXZU+IFecxkSA+uGy46Zpa+QuOCvyk+sZX9LWb9XnHvC/4fTyzTE2GRZqJlgm7oop2jI4/omASiq1nstwe62CEbo1lxQHkFek/Z5XZI9l4Qy9bkHqICtXm+eqP06CCRSgBfp/tsmSWKGomKQdSLlFVobVGv9vZcSAfgi54hhhWLNDC8JiMfxdcZg3LukDzEANb2npwLipDkyaLVExVXtMPzVA/5z0EINOqxSHlqV76oKh1w33u5ceYmNKZg5w1uUqTjt/eBZ5S4Gxbh3jeCbfClo9mzZtsrQjl8uFf/u3f4u4QJS6FEUbTq16hCETpZ011Wo9dmWTQp8/kWyy87U5L73dwpfAwY68vcXjpts4eo+SorHacLu2Rq0nNhl4l1/h/GKKBbMenuEZbaPzGsDwmzk9/+RR+ht6fXDiTNd6vqJxHcnOBybNNgYj/sOOTztf69H1Brih9hh7ex+9vUFm/AOYaArUQCvE0OOKQ5uusfgLKuatsMf5Rt9QUFiqNYgsWDly12uwY8I0eBuhvvXBbLjTDGafmoYlqyTmLbcQGI8wksLs++j/vTJt9IrhvZfh++v3HRFBGpOEAM65NBOzT9cahc78sopT/0/getevAx7JEOpAZp8uMW2RsUc6HGbDys0IRQuOA2W+NyuDf2OIt6HHVj3G3/rWt/Duu++OuE1PTw9uuukm/P3vf49awSg1lU4YHE591AZNuxakwjBqPe/Q5Poae34+Hjdw/JDWo1MxJdGliT2hAGWTAUiBxiOJLk1wqqqNsFAc1odSEoXCNMFQFBNx+d/k6/+v/R44c7LDaZ4EK9bL4Pn31hSWaj26gf5uJVCaOEti3pkqlnwh+Fq+Z12u4uyvhDDu1iJ9oGIohTcwHvxcSscN9Rwnmr6n3ZkuMXe5NHwOgQQ7Xg0BW4B514EUlurKEWYg5nAIjJ1o7dgd1mNsGElhsn+/76whkDTJMB5t+l5S/0Yu45zZ4PvKKTD/zutfJ9YrNUSjvqwcM8NGLIQ1lFr7faQlzqItaPWcd955+M53voM333wz4N/b2tpw3XXXYevWrfj1r38d9QJSaimpBCAkWo6OnNzDDvp6gPZGICNbomhsoksTH2WTtaCz8Yg9h7s3HvGuJx2bLK92lEzDqTuatM9nTHl0kyEReQXKVAz4BX4RBsb+AYf+BlAI4//9e5yKK4Dpi1Usv1iNyjzPcAQKmMzqzRhy6oZjDuadCDakGtB6jaxsFyrD/Elv0YTuVxuN4iqu0EpVMn6oDq1+5sHeh1mjRqDnzV+hYtoi1bcusf/zw2FpWPQIGYrNvo/+31/D9yU9cONTtOlfM92QfT7y48ssa3Ws712iMaXAUh6CEUYJhB4Yh1a+SAT9WB966CFcdNFF+O53v4vXXnvN8LejR4/i6quvxtGjR/HMM8/gnHPOiVU5KUWkZ2otmf29wrfmnV0dPwwAAuWTU2euZFq6lj3T7bJnD2UqDaP2KijRMoZ3NNl/qTNvYr3S8anz+VB8GXuMAwchkc439g8EhiXfMhnC7HBq14op84HcwtB7aSOhb2gOdFNqtlyTWS+PHaYOmS7lNJjV1k7X5UXnSiy7SMWYsqHHrH7mweraMKQ3yBDjiqnA1AVa3UxfrGLK/MjnXps+XxcMWw2ShDAfFm74DsfpWDRrvBJ+yzWFc0UzW3M81ueCaDQYWZnzO9K8crPPzP9z9TaaWF0DOhqCVo8QAj/96U/xla98BXfeeSdeeeUVAMCePXtw9dVXo7+/Hy+88AIWL14c67JSivBlpz6a4IIE4V3TtyJFhlF7eYPOo/tsdNcBoKcTaG8UyMpNrWG6QgDlk7Xfj9uwscJLSqCpTvu9dEJiy0KjV65uyKxxvnH0epj8A2vDUOqReoz9nye0Obq5hfFNDBXoxlg/T9UwN9nkZtYOvbHjpwMTZ0ucdr461Etsr8uSj8M5fDi31bIag4jh9xv6/ThDGGI8ZT4wfXHk9y9mr6NPTjVSkOQwaYgJNCzce5xm6pZIi2UPq1mvvsfj977DqEZ9neiHUsf6GI5GQ4InjMDYcJ602GOsjWyQaG8MtYThs9wu8cMf/hAZGRn43ve+h7179+IPf/gDxo4di6effhrl5Sl0F0oxVzoe2P+ZNs+4aqE9g86TJ4CuNoGcAom8MYkuTXyNKQey8yQ6mgW62qVt5m75lmiaZo/so/FUPlni8E6B44cEJs+x53emux3o7RYoKJGGmxqiaMrMBs74kgqPBzjZMfR45Es36dZHDhIYw2JgDGgZpOMt0OnRLOhVFMB7DywcAFzDt0kUxQHMOnWw/kwScdmZ1U/ef1kg1W9Yqf59psUpKZXh9UdKpDQ4tXykOcb+2Z59634HGMWw8jKJ3m5pqLxYfs7Z+VpWZ+8ayYpDQvUIuPqNAXmkU/+0ZcXic8CG8t11OGXA+b2GHmPd2sN6w0bW6NaYN02+5RcYZ+UCM0+VcPXF78scUof9XXfdhYyMDPzmN7/BwoUL8eSTT6KggAtRUnTlFABZuRKdrQJ9J0NbqiBe9L3Fdr/4RpsQwPiZEvs+FTi6T2D26YkPxFQPcOwAACExriro5qNO3hitsaKzVaCnSyI7L9ElGs7bWzx2QuKPFxrdvMu09XQOPeaMMDuyMx1wD2i/+wfW/kGlaTZok8y18ZAV5Dpq6LXT9/SZDFm1w1DqoGx+bXZaHUrtNz9+WGBssjZyvBovDMeLIiHVweBH6BpVRug91M8VN8v07K2DjCztX7xGFAoBwz1OWrq2AoRrwG/efISXNYcTWHmZaovcG0JIyMFAt2wS4OqXqBhMvDrnDBW7PlIwZZ7E5+8Ofc6q7/0PBb/CYawUsyXjgm0zabZ3v/ER9CM444wzIPyOaCklampqsGbNmmHbf/jhh9ErHaUkIbR5rEd2acshTZyd6BIZSQk0HNJ+D5ZNcrSqnAoc+Eyi/iAwfUl8E8cE0lgLDPQJjJ1gz4aUWPMOpz64XZv7PnV+oks0XFOtdh0ZOzHBBaGUYQgYTOYnWpWmD4xH6DGGMMZjwXqMY83bw1VUJnFk92DJAgSM+uViTIdSxzDJUcR0ybe87NpovfQ8FY21AqXjrW3vP+zYf7qllUzsseTfYOLx9hKPMPRe/9nkF8O3RKfZetr+DTGFpdAawqeFXeywzDpNCwhnLJGoPzj0JsJphND3MovB3lE7EAogB1s0nGnAvDOHCjp+BlA5TYWrX7e9fmSAAsjB3xW/75+VeeF2yGMQ9GtzzTXXDAuMiWKtbJLEkV0CjbUCE2fbq4fpRIs2JLSw1J49c/GQnqllqG44KHD8kMT4GYktT90e7Rw1Yaa9jpV4Kp8icXC7QMMhgSnz7DWSoacL6GrXph7kcJARxYn+xizSdU/1PXGB5grrX9OsxzgRgfGyCyU6WmTQBqmCkqHfrcwxtiupWxXKritbFFcCxZXWC+c/lNpfdh58yUozsnQ9dnG6BvgPf/VmEB42xcDP1AUSQvFeq8Sw5+i/L/5LQqVlAOddI+N+TJZNAs67RoXiABoODj1eMUWivQmYf6b1z1XGaTh4qPTD2QOVS/EfFaMbGWBoGPFrSDNbJUA/ysDKkk6xFvQ0feutt8ajHEQGBSXaMkjtjdqwlVgs9RAu7zDqVFm72MyEmRINBwXq9gmMm564QKyzFehoFsjOlxhTkZgy2EFuoZbIp6tNoKtN+oaT2kGzbxh1YstBqUUfRBgyyoYTGI+Q1Vrx6zE2nWOcgBu9nAL4GqO88wUDJSvKzgPmLFORmQ001QXuCbNzYJxbpC2fqLq14LC/V6CvO9Glig6zXlQvb8LSwlKJ9ATkb7CUrC3A/cG0RVq5D+0weX6Q0RaJOh4DBWwVU7VcH1bOLRNmStTtFSifLH0rNfTbaEWJkXr6fY+bTLcY6XxhNnpG6JZYs8MIFRuf5iiVCQGUTQQAgabaRJdmiKpqQ1WFkL5MwKmqoATILdICsRMtiStH3V7tDD1xpr16SROhcqp2edEP8bID7412KecXUxzp5y7ql7EJZ+rHiNmlR5hj7NDNs0v0/MGl5wFV852Dc/aGGz8dKBnnP2dU97uNh1IvWCkxplxi7nKJJedJZOZIzDxtdJxv9J+Bfu3bxV9QMW66RPkUYOHZEpPmGHvME8EsSBopYDQ73vyDJ7uz2uA261SJMy9RUT55aH1rOyVxDdbTr/1h6Fez7OMjBcb649gsGGZgTORn7CTthNF4xD5nxNZ6wNUvUFxpvOlKRUIAE2dpn9GRXYn5jFz92nxvh1OiMgWTbvkrn6I12jQc0hpx7KC/R+vJyciShuGaRLGmH2mk760tGRd6wGQMds3/Nmy5pgh7qqNpTDlwxuqMoFOAzG5u7RycZGQDp6yWKK7UlkU663KJ0nGJLlV0GLJO63r7S8cBc5cZhxMnOjAOpcfY9zezXsbR0a4xjFCAnHytThadK3H6BSqKK+P3+sEa6BSThgo9Kwn6/J9rNjTe7PNP2IiAxLwsUXBFpUB6pjaceqAv0aXR+LJRTx2lZ+wQVUzVPqPGWm0eabzV7QNUj0DF1OFzkFJRRhZQPA5w9Qm0HEt0aTSNRwBAoHyyvW+safTRB8b6m6+yScCs01QsXjUURQgx8jndECyOcGOpOGDoTSkqAybNkZh9upo0x79prw8vewkX7DoXyzV9rVDMeoxHCozNRiikQITicGqj7+J5bgg2Ysb4uQX+0ltJ0DdSj7HZuul2mGOcAocdJSuhaBlspRS+pV4SydWvZcl2pknOlRzkcAz2GksR915jjweo3S0ASEyy6dq9iVA5uKxCfY097sKPH+acfEoMxaGtD5qdJ4fN05w4C4acBEGHCQttDu7UBXLEucIOh1+PsROYeYrEhJlhvYXEMOkNosQLNk+9ZBxQtVDF6Rckpus4rB5jkyCrsFRi8lyJJV+wyfAnP3ZN7hZMoMYVoegCVQufm+nw9xFGyJgtCWc2fJqBMVEAZd7h1IcTf5OvDU8VKJ+S+LlidjJ+htb6d6wmvj37DTWDSzRN1IYlkaZ0POBMl2g+CsOSConQ260lRsvKtVcyMEodZ39FYvmXZcCbvZHmw/kTQpuD600YZEbxC4wTf+UKndmw8VTowbO7YFNkhACqFiJh01bMhtKOOMd4hOfMWCpRYtMh8d7l25JtKIUzbXh5zRo0TINTCwnXhp1TLcxF1k9R5FDqEdTX1+Omm27CwoULsWzZMjzwwAPweDwjPqejowO33347lixZglNPPRXf//730dPT4/v75s2b8a1vfQsrVqzAokWLcMkll+Cvf/1rrN8KhWhMGZCeJdF6XJurmEjHDmjf5HHTkuskGGvpmcC4aYDqFji6Lz6vKVXg8E7t85gyj5+HnsOhrWksVeFbbztRjh/WfnIYNSWKogwuLxLgbsd0CGeQYdUjcfgNpU7GyNhsOGOi16unxM8hDsY0+dYI34NwepntwDUYGKcl2TSuksH5zN7EX8DIjROB+OdVCPi733P1w/zNtisoGSxTBOfgSNk+MPZ4PLj55pvhcrnw0ksv4Wc/+xlefvll/PrXvx7xeXfccQcOHDiAZ555Bv/1X/+FTz75BOvWrfP9fevWrZg5cyZ+9atf4c9//jMuu+wy3HHHHXj33Xdj/I4oFEIBKqYAkAINhxNXjs5WoKtNILeQPV+BTJojASFxZLeA2xX712usA3q6BIrKmdApEO9wam9jTqJwGDXZhaJoCeCKygPPbQt2Q271Jn1Yj7HNb+4DMRvmmGwBwGjkTRw31qYZ/s3WCx+px9gwzUE/FNfm3x1vj3Gy5TfJGwOsvEzF4lWBA2OHheHMpue4EUbhZGYDS7+oYsWlqum5V1GAs7+i4qzLGRib+uCDD1BTU4MHH3wQs2fPxtlnn43bbrsNzz//PFyuwHfgNTU1eP/99/GTn/wECxcuxCmnnIJ77rkHr776KlpatHVlvvnNb+K73/0ulixZgokTJ+L666/HypUr8eabb8bz7ZEFFYM31Q0JXIJG31ts95N1ImTnaQ0Yrn6B2j2xfS2pAjWfs7d4JAUlQG5hYpfSOnlCa0zKKZDILUxMGYi8hADOukLilC+aJJOJUtIfKUdDYKxbYkrfY5xkAcBoUlCqNT6XTgBWXKpiwdn2vPaZZYIfaVisPvgym4dqR9mD64MnY+N8Vq7ffF6TtdctDWc2mToSaA52cYV2vwiznmWhHUOZCViP28v2MyW3bduGWbNmoaRk6MhbsWIF1q1bh4MHD2LmzOEZLbZu3YrCwkLMmzfP99jy5cshhEB1dTVWrVoV8LW6urowY8aMiMqrKJF/k737iMa+RgP9Tf7JE9pSDPGsI48bOH5IS04wbppI2LyHcMSznqYtAo4fkjiyU2DS7Nj1LtQfBk52CBSNlSgdJyK+eI7W79uEmcDuzcCx/QJFYyPfX6j1VF+j/aysAhyO0VW3ZkbrsTRaWB3OGUlgrKownUuXLEx7jBOc8TiVnbZGQkrtOA223FYiGeaIWpyfbljuRx+V2Py7M3+FRN1eYPIoSP5p9hlYud816zEeKTmZ2RJNdjhf2j4wbmlpQXGxceyqN0huaWkJGBgHeo7T6URBQYGvx9jfG2+8gZ07d+LHP/5x2GV1OhUUF+eG/Xx/RUU5UdtXsps2bwDbPnChvSEdk6cNRVzxqKODO11wDQxg4gwHKsYl5+LF8ain4mJg6rx+1Gx3o+lQGhYsj35krHokNlb3ApBYem4WSkqil7ZwtH3f8k6V2LelBw2HBJatzkZ6ZnSuOFbqSVUlGg71QgiJeadkIzsviVqTomC0HUupIFpDqVWP3/28DW70QmU2x3hMucTBaoG8ouQPBJKN//rYdpWVI+E96EdaukfPP2O8l93fb2Y2MH1xsn8XtM/L0GOsb9CwcItlNkJGHSEVlCGWZmCseeyxx4LOE/bO9xUmNWX2uNnfpJQBH9+8eTPuvvtu/PjHP0ZVVdWIZRqJ262is7M37Od7KYpAUVEO2ttPQlWT/UsXHQWDy2rU7BjA+FkDcDrjV0e7PgUAgbIpbrS2dsf0taIt3sfS+JnAwZ3Ark8HUDJhABlRHg5Tuwfo6hAorpRwZvWitTXyfY7m71vFFODofoEdn57EpNmR7SuUemqqA/pOCpSMk+gd6EFvFD6nZBDPYyk/PwtpaVxLJ1qCDaW2ujSL6kn+odRmw1nHlAOn/h8VuUXxLxPZ28KzVZw8AWTperOt9hgn61Dq0cTs/Bdqj7H/UnVWnsMe40HXXXcdLr744hG3KS0tRUlJCXbu3Gl43Nvr698r7FVSUjKsZ9jtdqOzs3PYcz7++GN885vfxN133x20PFZE82ZIVeWou1EPV0YWUFwp0Fov0FSnonyS9nis6+hEC3CiRUFuoUThWBl0qQS7itexlJENTJylrWm8d4vEvDOj95oDfcD+z7R1i6cvjv5nMRq/b+NnaIFx7V5g/IzozI+3Uk9H92svVDkteb8zkRiNx9JoF+zmbKTeD8N2o2AotWEopV/bS1FZfMtCyaFs8J6so2noMatr0hqTbw31OCfjdyfpaLdUxodCWMYOGD5H+JTVKlqOCRRXjvAks4ZIG3zmCQuMCwsLUVhYGHS7RYsW4cknn0Rra6svqN20aRPy8/MxderUgM9ZvHgxOjo6sHPnTsydOxcA8NFHH0FKiQULFvi227x5M775zW/ijjvuwJVXXhn5m6KYmjBDorVe4Og+4QuMY612j/YtnTCLSbesmrpAouEgUF8jMH6GRGFpdPZ7YJuAa0DbJzODW5NfDOQXS3S2CrQ3Sowpj/1rDvQBzXVAWrrE2PGxfz2iaAjWuxVkhUhkZkv09QhkZPotLZiE1w1jVtqhQIUoGLPlvUac32+2JBgPu5jzxsVmw5lHatAw7ET365hybdrFiE+xcY+x7Sd+rVixAlVVVVi7di327NmD999/H48++iiuueYapKVp36Dq6mqsWbMGjY2NAICqqiqsXLkS99xzD6qrq7Flyxbcd999uPDCC33zkzdv3oybb74Z1113HVavXo3m5mY0Nzejo6MjUW+VgigZry230XIM6OmK/ev192rrsDrTpLZkFFmSlg5MX6KdFHd/JCz3tIykoxk4uk8LtqYtYk9cKCbO0urryK74XHGOHQCkFKiYavGiSmQDhiVDwugxXrpaYsJMiWmLZfIPpdZ1mTj4HaYQGINcGfDxkZ7DodSJYXbOiiT5luXXY2AcGofDgSeeeAKKouCqq67CnXfeiUsuuQS33nqrb5ve3l4cOnTIsHzTQw89hKlTp+KGG27ATTfdhKVLl+Lee+/1/X39+vXo7e3Fk08+iRUrVvj+6fdL9qIowLjpACBwdF/sX+/oPkCqApXT/FoxKajKKqCoTKKrXaCmOrIznccN7NgoAAhMXyoNWS8puPLJQEa2RPNRLat7LKkqUOcdZTGTDRiUPESwHmP3yM/PyQdmn66dn5I9MLY6BJbIn1nvr9XkW4LHXkKYDmcO8fxl9Xxn2ittg/Ol7bNSA8C4cePw29/+1vTvp59+Ovbu3Wt4rLCwEA8//LDpc372s5/hZz/7WdTKSPExfrrEwe3A0f2AZ1XsbrzdLqB2t4AQEpNm8wY/VEIA886U2PQqcGgHUDIOYS8ZtG+LQE+nlshp3LToljMVKA6t13j/ZwKHdwnMXRa747mpDujr0ZKj5RTE7GWIok4xCWaFIiHVEEe+jKLAOJKlqyj16INcw1Bqi8m3DCM3GBjH3uBYakMsHOI5y5CYMJweY5udL3nKo6SSmQOMnQAM9Akc2h2kCT8Cx/YDrgGB8inaQugUuqxcYNapEpAC1e8K9PUEf46/YweAur0CaZkSc5Zxnne4xs/Qkpo01GhTBGKldrf2AU1kY9KotGfPHvzbv/0bzj77bCxcuBAXXHABnnvuuUQXKyrcQwPODDfxzsHug1ACY7NhgsnCUP7EFYOSkGFYtG7FxhF7jE0CYw7jT4xQ77PCCqpNeoztcI+XhKdsSnWT5w7OX/3EZXkJjVCoHuDw4HxM72tReCqrgHHTJPp7Bba9LeAesP7c1gZtjrIQEgvPksiM8tJPqSQtHRg/HVBVEbO5xidagI4mgex8iZKRslFS0tqxYwfGjBmDBx98EH/5y19w880346GHHsKLL76Y6KJFzBAY674iJYMJ5ApDGfFisx6QUBmCed4lUghMk29ZHUrNHuPEi2D4dFhDqW02xzgphlIT6RWWavNX2xuBplqgdEJ093/sANDfI1AyXiKP6zVGRAht3l1PF9DeKPDpP4Cl50mkZYz8vNZ6YOvbAqoqMPt0NS7ZlEe7SXMk6vZqa0FPmqMtgRZNBwfnkk+ew5790eqKK64w/H/ChAnYtm0b/vGPf+Dqq69OUKmiQ99op785n326xJhy6VuOxopkP/7ZY0zhCmeOscOpNaBn50nT3mOKDW9Wav/R0NMWq2iuE9ZWAAnjJGE6qsYGJxwGxpSUps4HtjQCB7drLfrRuhFxu+BLFjVtIXuLo0FxAIvPlfhsg9aj+OFfgQUrAy/jJFXg8C5g/1YBSIEZp6iYMDP+ZR6NMrOBCTO17NSHdgwOc4+Szlag+ahAZrZEZVXUdktJoKurCwUFkU0oVwKlgQ7j+eHsJyNLG9GSlgGgy7u/ob+nZwhMmBHaPo29ITa40xtktZ7yx2j1MnaicVs7vZdYieRYSiVm9eT/3fFyOMWI92nzVwCAQFvj0GMOZ3J/Bsl0LBmGQyvAtIUC0xb6/yUwQ48vrL1f45B5Yfg90Q0iDIwpKWnJnBS0N6loqg2tNX8ktXuAgV6B8slcKzeanOnAki9I7NwENB4R+Ph1LVtyxVQtSZPHDXQ0afOJuzsEFIfEnDNUBllRNmWexNF9QN1eYNLs6M2f9/YWT5kvOfwthWzduhVvvPHGiMkxg3E6FRQXR+dALCrKCfk5q/9Jxe4tLkya4cRb/9sHAMjKcaId2qTicMqWkdEHRPD8WLNST5d/S0IIgcN73AD6AdjzvcRKOMdSKgpcTycBAKVlOQC05CIlJdaOHTngAaB9D0fL8WbnY0koJwEVcDodAFQAQE5uOoqL00d+IgDv55yR4YT3fJeW7kRxcfClQwa6hj7nrOw0ANpclqIx2cjNT2xkzMCYkpIQwOKVadjwx37s/0ygdIKMuJWpvxc4vEOb08q1cqPPmQYsOEvi2AGJ/VsFjh/W/vkrHCsx+3QOY4+F9ExtGPXBaoF9W4CFZ0d+nHc0AU11AhnZzBqerB577DH8+te/HnGbd999F+XlQ3Ma9u/fj1tuuQW33norli1bFvZru90qOjsjywinKAJFRTlobz8JVQ39mJ62BOhqd8HbO6Kqbt/vra3dIe9PWzky/OfHSjj11N0N2PG9xEqkx1KqGLmetOPlxImTCPXY6eoaen6yH2/JcCxpeXoE3G4PvPXePzCA1lYrCWG07QcG3IbfrXxuXbrzysDAUIKHjo4e9LsCPyca8vOzkJY2cus9A2NKWhWTnSiu6ENrg8DRfRITZ0W2v/2fCbhdAhNnSWTnR6eMZCSElgSqfLJEU61Ea4NA30ltWE1uEVA2UaKgNPnn6NnZ5LkS9Qe0nvvWeoniCBJlSQns+WRw6sFi9hYnq+uuuw4XX3zxiNuUlg7NfThw4ABuuOEGXHnllbj55psjfv1o3TSqqgx7X94bRECb86jfZ+iGTmB2vCEOpZ5yiwBAIDsv/LpNRpEcS6kkcD1px7+ExFBjk8W6FEPPHy31b+9jafCzkvpHJFTV+nMNpLXPTX++hRg6TqS0+tqxw8CYktrMU4BNr0oc2CZQNkmGnVCorRGorxFIz5SoYm9xzDnTtIzVlVWs63hzpgEzTpWofldg98cCyy6SYS+LUV8DdLYK5BdLVE6NbjkpfgoLC1FYWGhp2/379+OGG27AJZdcgn/913+NbcHiSJisvxrWvkZRw15OPnDmJWrUk/XR6OVd+1sIYOVloUU5o+m7kxQC1HfIS8xFmHzLblmpmfONklp+sZZQyD0gsOfj8L5R7gFgx0btuTNPkUizMrWCKImVTQSKKyR6OgUObA3ve9N3Etj7iZbTctZpzESdCvbv34/rr78ey5cvx9e+9jU0NzejubkZbW1tiS5axPTHryPCwNgOmVWjKSc/8sYCSh2r/kni3KtUCKHlsQgll0UsluAkc6rbmyBs6LGQ1zHWbW/14zPLSm2H+wj2GFPSm75EorlOGxpaXxNaVlwpgd0fC/R1C4ydKFE+JXblJLILIYC5yyU2vaplqS6uDG3tYakCOzdpUw8mzQmcYZxGnzfeeANtbW149dVX8eqrr/oeHzduHDZs2JDAkkXOEBg7h4b2RbovolTjcBqnI4SC353EyMjW/SeCwNj6k4Z+tVuPMQNjSnrONGDeColP/wHs+kggr0gib4y15x7eCTQc1BIHzTmDvV6UOjJzgDlnSFS/J1D9nsDp52sZwq04sE2gtUEgp4CJ6lLJrbfeiltvvTXRxYgJ/bk/0t5R9noRhSc7HyifIlFYyi9RPOmnSoR8H6zf3upUct1zDKM0bXAPzqHUNCqMKQemL5ZQPQKfvSVwsjP4c+prtIRbikNi0TkS6cEzzBONKuWTtWRc7gHte9NrIQlo3V7g0A4BZ5rEonNl2D0DRHYSzcCYiMIjBLBgZeTJVMmaMRVaJDt24lBEa3WOcWaO9pzcAkPmLkvMpq7YoXOKgTGNGpPnAuOmS/T3Cnz6N4GO5sDbSQkc2g7s2Kj4TsIFJfEtK5FdTF8iUT5Zordb4OPXBU60BN5OSmDHRwPY+aGAUCQWnC2Rw+ztNFroh/Y5gPRMicKxYfZasbOLiJLA4nMlzrhQxZihlfgsB6en/h+JmaeqmKBrxAgnsDXMN7ZBYMy2fho1hNCGhgoAR/cLfPIGMGEWMGGGtvySVIG249oarh3NWk/xwnMkSscluuREiSOENhXB4QSOHRD4+HUtod2EmX7fm+1AR5MLDqcWFIcyJ5nI7vxvzs7+SvjRLYdSE1EycDiBfL+ph1aD06xcYNJs42OKxe5Wl26ZZAbGRDEkBDD7DIm8MRL7PhOo3a39UxyDa6NJ7VuXWyQx/0zrc5GJRjNFAeYs031v9mj/FIeEVAE5+L0pKlUwZ7nH8lxkomRhGD4o7HGDRkQUb5Gc+6w+NztP+5mVJ00zVCcKA2MadYTQerzGTpQ4uk+i+ahAbxeQlgHkj5EonyJRPskeX0AiuxACmDgLKJuk+96c1ILmvCIt2/vcpZlobz+pNTIRjSLGrNSR7Ys9xkSUrEJZXsuf1fvqrFxgxSUq0rOArtahk68dGiQZGNOolZEFVC0EqhbyLoXIKrPvjaIIKIoNrlpEMWAIjB2JKwcRUSKc+WUVHS1AUVn4+wglsM0ezFEy0B/+68UCA2MiIiJKafobOoU9xkSUYnIKEPE0qdEwEpOBMREREaW0aPYY22E4IBFRvIVz7iubBMxY5ERRhSv6BQpDUsT29fX1uOmmm7Bw4UIsW7YMDzzwADwez4jP6ejowO23344lS5bg1FNPxfe//3309PQE3Pazzz7DnDlzcNlll8Wi+ERERGRnUZxj7EyP7PlERMkonB5jRQFO/UJGREO4o8n2gbHH48HNN98Ml8uFl156CT/72c/w8ssv49e//vWIz7vjjjtw4MABPPPMM/iv//ovfPLJJ1i3bt2w7bq7u3HXXXfhjDPOiNE7ICIiIjszDKWOsMc4jYExEaWg0TBaxvaB8QcffICamho8+OCDmD17Ns4++2zcdttteP755+FyBe52r6mpwfvvv4+f/OQnWLhwIU455RTcc889ePXVV9HS0mLY9kc/+hHWrFmDxYsXx+PtEBERkY0xMCYiCt1oCIxtP8d427ZtmDVrFkpKSnyPrVixAuvWrcPBgwcxc+bMYc/ZunUrCgsLMW/ePN9jy5cvhxAC1dXVWLVqFQDgtddew759+/DjH/8YTz75ZFTKG42srd59MAOsOdaRNayn4FhH1rCegmMdjQ6RDqXOypUwjM0mIkoBTL4VBy0tLSguLjY85g2SW1paAgbGgZ7jdDpRUFDg6zFuaGjAT3/6Uzz99NNIT49O867TqaC4OIIFwPwUFeVEbV+jFevIGtZTcKwja1hPwbGOklukvR4VVcCJVonyyUxPTUSpQ1GS/5yXsMD4scceCzpP+N133wUACJOrlNnjZn+TUvoeX7t2Lb7xjW9gxowZVosclNutorOzN+L9KIpAUVEO2ttPQlWT/yCLBdaRNayn4FhH1rCegotnHeXnZyEtjQvu2pGiAHPO4HeEiFILh1JH4LrrrsPFF1884jalpaUoKSnBzp07DY97e339e4W9SkpKhs0ldrvd6Ozs9D3n448/xpYtW/Dggw8CAFRVhZQSc+bMwXPPPYelS5eG9b6ieTOkqpI3oEGwjqxhPQXHOrKG9RQc6yg5nXOlmugiEBElnYwsif5egdyiRJckcgkLjAsLC1FYWBh0u0WLFuHJJ59Ea2urL6jdtGkT8vPzMXXq1IDPWbx4MTo6OrBz507MnTsXAPDRRx9BSokFCxYAAF599VXDc37/+9/j008/xSOPPIIJEyZE8M6IiIgo2aRnJroERETJ54wLJTqaJUrHJ7okkbP9NOkVK1agqqoKa9euxZ49e/D+++/j0UcfxTXXXIO0tDQAQHV1NdasWYPGxkYAQFVVFVauXIl77rkH1dXV2LJlC+677z5ceOGFvvnJM2bMMPwrLi5Geno6ZsyYgaysrIS9XyIiIiIiomSQkQWUTRwdQ6ltHxg7HA488cQTUBQFV111Fe68805ccskluPXWW33b9Pb24tChQ4blmx566CFMnToVN9xwA2666SYsXboU9957byLeAhEREREREdmYkFJyIlSUuFwedHT0RLwfRREoLs5Fa2s356mZYB1Zw3oKjnVkDespuHjWUWFh9qhIvhWN6yaPTWtYT8GxjqxhPQXHOrLGbtdN2/cYExEREREREcUSA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIiIiIqKUxsCYiIiIiIiIUhoDYyIiIiIiIkppDIyJiIiIiIgopTEwJiIiIiIiopTGwJiIiIiIiIhSGgNjIiIiIiIiSmkMjImIiIiIiCilMTAmIiIiIiKilMbAmIiIiIiIiFIaA2MiIiIiIiJKaQyMiYiIiIiIKKUxMCYiIqKQ1NbWYvHixTj99NMTXRQiIqKoYGBMRERElrndbtx5551YunRpootCREQUNQyMiYiIyLLHH38c48ePxwUXXJDoohAREUWNM9EFICIiouTw2Wef4ZVXXsErr7yCt956Kyr7VBQRledHup/RjvUUHOvIGtZTcKwja+xWTwyMiYiIKKju7m6sXbsWP/7xj1FQUBCVfTqdCoqLc6Oyr6KinKjsZ7RjPQXHOrKG9RQc68gau9RTUgTG9fX1WLduHTZv3ozs7GxceumluP322+FwOEyf09HRgfvuuw9vv/02HA4HVq9eje9///vIzs72baOqKp566in84Q9/QH19PcaOHYuvfvWruP766+PxtoiIiBLusccew69//esRt3n33Xfxy1/+Eueccw7OPPPMqL22262is7M3on0oikBRUQ7a209CVWWUSjb6sJ6CYx1Zw3oKjnVkTTzrKT8/C2lp5rEjkASBscfjwc0334ySkhK89NJLaGpqwr//+78jIyMDt912m+nz7rjjDjQ3N+OZZ56By+XC9773Paxbtw4PPPCAb5uf/vSn2LhxI+6++25MmzYN7e3t6O2N7AJNRESUTK677jpcfPHFI25TWlqKzZs34/jx4/j9738PAJBSQlVVzJkzBz//+c9x0UUXhfX60boZUlXJG1ALWE/BsY6sYT0Fxzqyxi71ZPvA+IMPPkBNTQ2eeeYZlJSUYPbs2bjtttvwyCOP4JZbbkFaWtqw59TU1OD999/HH//4R8ybNw8AcM899+Dmm2/G2rVrUVJSgpqaGrz44ot49dVXMXXqVADAhAkT4vreiIiIEq2wsBCFhYVBt3vqqafgcrl8/3/rrbfw9NNP44UXXkBFRUUMS0hERBR7tg+Mt23bhlmzZqGkpMT32IoVK7Bu3TocPHgQM2fOHPacrVu3orCw0BcUA8Dy5cshhEB1dTVWrVqFDRs2YPz48diwYQNuvPFGCCGwcuVK3HHHHcjNDX++UzQmj9ttIrodsY6sYT0FxzqyhvUU3GivoylTphj+v2PHDiiKghkzZiSoRERERNFj+8C4paUFxcXFhse8QXJLS0vAwDjQc5xOJwoKCtDS0gIAqKurw7Fjx/Dmm2/iwQcfxMDAAH784x/jrrvuCjrXykw0k4gA9pmIbmesI2tYT8GxjqxhPQXHOiIiIko+CQuMrSb7AAAhAre+mz1u9jcppe9xKSVcLhd+/vOfY9KkSQCAdevW4dprr0VLS4uhh9qqaCQRAThh3wrWkTWsp+BYR9awnoKzWxKRWLvssstw2WWXJbQMRERE0ZKwwNhqso+SkhLs3LnT8Li319e/V9irpKTEt42X2+1GZ2en7zklJSVwOp2+oBgAqqqqAGhZsMMJjIHoJRHx7os3oCNjHVnDegqOdWQN6yk41hEREVHySVhgbDXZx6JFi/Dkk0+itbXVF9Ru2rQJ+fn5vqRZ/hYvXoyOjg7s3LkTc+fOBQB89NFHkFJiwYIFvm3cbjfq6up8SbcOHToEAKisrIz07REREREREVGSUBJdgGBWrFiBqqoqrF27Fnv27MH777+PRx99FNdcc40vI3V1dTXWrFmDxsZGAFrP78qVK3HPPfeguroaW7ZswX333YcLL7zQ1xN85plnYtasWfj+97+PPXv2oLq6Gvfddx9Wr14ddm8xERERERERJR/bB8YOhwNPPPEEFEXBVVddhTvvvBOXXHIJbr31Vt82vb29OHTokGEZiYceeghTp07FDTfcgJtuuglLly7Fvffea9jvb37zG+Tl5eHqq6/GLbfcggULFuD++++P6/sjIiIiIiKixLJ9VmoAGDduHH7729+a/v3000/H3r17DY8VFhbi4YcfHnG/ZWVlePzxx6NSRiIiIiIiIkpOtu8xJiIiIiIiIoolBsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUoTUkqZ6EKMFqoq4fGoUdlXWpoDLpcnKvsarVhH1rCegmMdWcN6Ci5edeRwKFAUEfPXibVoXTd5bFrDegqOdWQN6yk41pE1drpuMjAmIiIiIiKilMah1ERERERERJTSGBgTERERERFRSmNgTERERERERCmNgTERERERERGlNAbGRERERERElNIYGBMREREREVFKY2BMREREREREKY2BMREREREREaU0BsZERERERESU0hgYExERERERUUpjYExEREREREQpjYExERERERERpTQGxkRERERERJTSGBjbzAsvvIBVq1Zh/vz5uPLKK1FdXZ3oIsXNk08+icsvvxyLFy/GsmXL8J3v/P/s3XmYHFW5P/DvqaWXmcksmQmEsIVMSMi+sERCILKIAQHZLqhsgiyCcuF3wVxQroCIKAiioheURYQIohAUBa5KCASygJAQEgiQAGFJgMyW2Xqp5fz+6GWqerqne2Z6qZ7+fp6Hh0lPdU/16eqqes95z3u+jffff9+1TSQSwfXXX4958+Zhzpw5uPTSS9Ha2uraZtu2bbjwwgsxa9YsHHzwwbj55pthWVYR30nxXHvttZg8eTIefPDB5GNso5hPPvkEV1xxBQ466CDMnj0bJ598MrZs2ZL8PdsJ6O7uxnXXXYdDDz0Us2bNwnHHHYfHH388+ftKbKOXX34Z3/zmN7FgwQJMnjwZzz77rOv3+WqTNWvW4KSTTsL06dPxhS98wdXuNDi8bvK6ORi8bmbG62Z2vG72N6Kum5I84+9//7ucNm2a/POf/yzfeecdec0118gDDzxQtra2lnrXiuK8886Tjz76qHz77bflm2++KS+44AJ5+OGHy1AolNzm+9//vly4cKFcuXKlfP311+Vpp50mv/a1ryV/b5qmPO644+TXv/51+cYbb8jly5fLefPmydtvv70Ub6mgli1bJk844QS5YMEC+cADDyQfZxtJ2dHRIQ8//HB51VVXyddee01+8MEHcvny5XL79u3JbdhOUn73u9+VRx99tHzppZfkBx98IB988EG53377yTVr1kgpK7ONli9fLm+77Tb5f//3f3LSpEly2bJlrt/no00++OADOWvWLHnTTTfJzZs3ywceeEBOmTJFvvjii0V7nyMFr5u8bg4Gr5uZ8bqZG143+xtJ100Gxh5y6qmnyh/84AfJf1uWJRcsWCDvvvvuEu5V6bS2tspJkybJV155RUopZWdnp5w2bZp8+umnk9ts3rxZTpo0Sa5fv15KGftyTpkyRe7YsSO5zR/+8Ad5wAEHyGg0Wtw3UEA7duyQhx12mNy0aZM8/PDDkxd4tlHMLbfcIr/61a9m/D3bKeZLX/qSvPPOO12PHX300fLuu+9mG0nZ7wKfrza5+eab5XHHHef6W5dffrm88MILC/l2RiReN9143cyM182B8bqZG143B1bu102mUntENBrFxo0bccghhyQfUxQF8+fPx7p160q3YyXU1dUFAKirqwMAbNiwAYZhuNqoubkZ48aNS7bRunXrsN9++6GpqSm5zYIFC9DZ2Yl33323eDtfYFdffTXOOussTJ482fU42yhm2bJlmD59Oi699FIcfPDBOPnkk/GXv/wl+Xu2U8ycOXPwzDPP4NNPP4WUEitWrMBnn32G+fPns43SyFebrFu3zvUaiW0q9Vw/VLxu9sfrZma8bg6M183c8Lo5OOV23WRg7BHt7e2wLMt1UABAY2MjduzYUaK9Kh0pJW666SYcdNBBaG5uBgC0tLQgEAigpqbGtW1jYyNaWlqS2zQ2Nrp+n2jTxDbl7sEHH0Rvby/OO++8fr9jG8V8+OGH+MMf/oDm5mbce++9OOWUU/C9730PzzzzDAC2U8I111yDvfbaC4cddhimT5+Ob3/727jpppswZcoUtlEa+WqTTNt0dHTAMIxC7f6Iw+umG6+bmfG6mR2vm7nhdXNwyu26qeXtlaggpJQQQpR6N4ruBz/4Ad5++2089NBDrsfTtYWUMus2Az1eTrZs2YJf//rXeOSRR6Ao6fu1Kr2NgNj7nTFjBi6//HIAwJQpU7BhwwY89NBDOPLIIwGwnYDYzeKbb76J3/zmN9h1112xatUqfPe738XYsWMBsI3SyVebpG6T+ho0dLxu8rrpxOtmbnjdzA2vm4NXTtdNjhh7RENDA1RV7ddb1NbW1q83fKS74YYbsGzZMtx///3Yddddk483NTUhFAqhu7vbtb2zjZqamvq1YeLfqT1N5ei1115DW1sbjj76aEydOhVTp07Fxx9/jBtvvBGLFi1iG8U1NTVhwoQJrseam5uxffv25O8rvZ3C4TB+9rOf4aqrrsLChQux33774dxzz8XChQtx//33s43SyFebpNumtbUV9fX10HW9ULs/4vC62YfXzcx43cwNr5vZ8bo5eOV23WRg7BE+nw/Tpk3DypUrk4/Zto1Vq1Zh9uzZpduxIpJS4gc/+AH+8Y9/4P7778eee+7p+v306dOh67qrjd577z1s27Yt2UazZ8/Gpk2bXGXgV65cidra2n4n/HJ01FFH4a9//Ssef/zx5H+77LILLrzwQtx5551so7g5c+Zg69atrsfef/997LbbbgB4LAGAaZowDAOqqroeVxQFtm2zjdLIV5vMnj0bL774ouu1V65cWTHn+nzhdZPXzVzwupkbXjez43Vz8MruupnXUl40LIllJx577DG5efNm+T//8z8VtezEtddeK/fff3+5Zs0a+dlnnyX/S1124vOf/7xctWqVfP311+Xpp5+etuT7eeedJ9988035/PPPy8997nPyZz/7WQneUXE4q2tKyTaSUsp169bJKVOmyLvuuku+//778rHHHpPTp0+XzzzzTHIbtpOUZ555pjzhhBOSy048/PDDcurUqfIvf/mLlLIy26i7u1u+8cYb8o033pCTJk2Sv//97+Ubb7whP/vsMyllftrkgw8+kDNnzpQ/+clP5ObNm+WDDz4op06dyuWahoDXTV43h4LXzf543cwNr5v9jaTrJgNjj3nggQfk5z//eTlt2jR56qmnytdee63Uu1Q0kyZNSvvfo48+mtwmHA7L6667Th544IFy1qxZ8tvf/rarvLuUUn700Ufy/PPPlzNnzpTz5s2TP/7xj6VpmsV+O0WTeoFnG8X885//lF/60pfk9OnT5bHHHiuXLl3q+j3bScrPPvtM/vd//7dcsGCBnDlzpjzmmGPkgw8+mPx9JbbR6tWr056HfvGLX0gp89cmq1atkl/+8pfltGnT5JFHHikfe+yxor3HkYbXTV43B4vXzfR43cyO183+RtJ1U0jJih9ERERERERUuTjHmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJqKSefLJJ/HYY4+VejeIiIjKAq+bRIXDwJiISubpp5/G0qVLS70bREREZYHXTaLCYWBMREREREREFU1IKWWpd4KIKs9VV13Vr9f729/+Ni699NIS7REREZF38bpJVFhaqXeAiCrTJZdcgm3btqGrqwvXXnstAGDs2LEl3isiIiJv4nWTqLAYGBNRSey1116or6+HlBKzZ88u9e4QERF5Gq+bRIXFOcZERERERERU0RgYExERERERUUVjYExEREREREQVjYExEZWMruuIRCKl3g0iIqKywOsmUeEwMCaiktlnn33w9ttv41//+hdef/11fPrpp6XeJSIiIs/idZOocLiOMRGVTFtbG/7nf/4HL7/8Mnbu3Mn1GImIiAbA6yZR4TAwJiIiIiIioorGVGoiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjImIiIiIiKiiaaXegZHEtiUsy87La2maAtPMz2uNVGyj3LCdsmMb5YbtlF2x2khVFSiKKPjfKbR8XTd5bOaG7ZQd2yg3bKfs2Ea58dJ1k4FxHlmWjY6O3mG/jqIINDbWoLMzBNuWedizkYdtlBu2U3Zso9ywnbIrZhvV11dBUdSC/o1iyMd1k8dmbthO2bGNcsN2yo5tlBuvXTeZSk1EREREREQVjYExERERERERVTQGxkRERERERFTRGBgTERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGJejkA2x0wK4LhoREREREdGwaaXeAcqRJaGtCUNfFYLymQUAkD4Bc5YfxpFVkA0DL1hNRERERERE6TEwLgOiw4L/gU6oH5kAAHuMChkQUD4xob8chvZaBJH/GAVrpr/Ee0pERERERFR+GBh7nGizEPjfDiidNqy9NERPGgV7XPxjC9nQl/dCfy4E/x86EQ3XwDwoWNodJiIiIiIiKjOcY+xlvTYC9+yE0mnDnONH+KL6vqAYAIIKjGNqEDmrFlAA32PdUDdFSre/REREREREZYiBsUdJKeH7UxeUFgvmVB8i/zEK0ETaba1pfkT+YxSEBPx/7ILotIq8t0REREREROWLgbFHWc91Qd0QgT1aQeT0UYCaPihObj8nAOPgAERvLKCGZMVqIiIiIiKiXDAw9qIuG9E/tUIqQORrtUAgt48p+qUa2Luo0N42oK5nSjUREREREVEuGBh7kP73biAkYc0Pwt5TH8QTBSIn1gAAfE/2AAZHjYmIiIiIiLJhYOw1IRvaK2GgVoVxdPWgn243+2BO90HpsKGv6C3ADhIREREREY0sDIy9JiAQ/XIN/P+5KxAc2scTPbYGUgH0FSEgYud5B4mIiIiIiEaWsgqMlyxZgiOOOAIzZszAaaedhvXr1w+4/VNPPYVFixZhxowZOP744/H888/322bz5s246KKLMHfuXMydOxdf+cpX0NbWVqi3kJ0QsBZUQZ0QGPJLyEYV5mw/RK+Evjqcx50jIiLqc+2112Ly5Ml48MEHS70rREREw1I2gfGTTz6Jm266Cd/61rewdOlSTJ48Geeff37GIHbt2rW44oorcOqpp+Lxxx/HUUcdhUsuuQRbtmxJbvPBBx/gjDPOwMSJE/GHP/wBS5cuxTe+8Q3o+iDm9XqUcUQVpAD053s515iIiPLu2Wefxbp167DLLruUeleIiKhM2TsMwPRGrKKVegdydd999+H000/HKaecAgC4/vrrsXz58mQwm+r+++/HYYcdhvPPPx8AcNlll+HFF1/EkiVL8P3vfx8A8LOf/QyHHXYYvvOd7ySft/feexfh3RSeHKPBmu6D9noU2voIzP2HPgJNRETk1NLSguuuuw6/+c1vcPHFFw/rtRRl4OUIc33+cF9npGM7Zcc2yg3bKTu2UW7UT0yEb/0M/gk6Ihc3lHp3yiMwjkaj2Lhxo+viqygK5s+fj3Xr1qV9zrp16/oFzAsWLMDy5csBALZtY/ny5Tj//PNx7rnnYtOmTdh7773xrW99C4ceeuiQ9zUfX4B8fZmsQ6qgvR6FvioE+8DgsPfLS3jCyQ3bKTu2UW7YTtlVUhtdffXVOOusszB58uRhvY6mKWhsrMnLPjU0DL5gZSViO2XHNsoN2yk7ttHAzI2diAJQ3jXydi0YjrIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7b79ixAwDQ2tqK3t5e3H333bj88suxePFiPPPMM7jooovw5z//GVOnTh30fubzAg8M/8skR0uEn+iB8qGB+k4N6j4jb9SYJ5zcsJ2yYxvlhu2U3UhvowcffBC9vb0477zzhv1apmmjszM0rNdQFIGGhmq0t/fAtr2RjudFbKfs2Ea5YTtlxzbKjQYDiQmsra3dBf1btbVB6LqaZX/KmJQSQmTumU/3u8Rjth2r1nzkkUfinHPOAQBMmTIFL730Ev74xz/i+uuvH/T+5OMCD+T3y6Qe5IdvqYGeJ9tgfKV22PvmFTzh5IbtlB3bKDdsp+yK2Ua5XOALYcuWLfj1r3+NRx55BIqSnzIl+Wor25Y8NnPAdsqObZQbtlN2bKOB2f6+WM0L7VQWgXFDQwNUVUVLS4vr8ba2tn6jyAlNTU39tm9tbU1u39DQAE3TMGHCBNc2zc3N+Pjjj4e8r/n8UPPxZbLn+KE/2QP1tTAix1cPeQkor+IJJzdsp+zYRrlhO2U3ktvotddeQ1tbG44++ujkY5Zl4cYbb8SDDz6Ip59+uoR7R0REZcVjM4/KIkry+XyYNm0aVq5cmXzMtm2sWrUKs2fPTvuc2bNn48UXX3Q9tnLlyuT2iddMTcV+//33sdtuu+V1/0vKr8Cc4YcwAW1DpNR7Q0REZeyoo47CX//6Vzz++OPJ/3bZZRdceOGFuPPOO0u9e0REVE6cfchW6TuUy2LEGADOPfdcLF68GNOmTcPMmTNx//33IxwO46STTgIALF68GLvuuiuuuOIKAMDZZ5+NM888E/feey8WLlyIJ598Ehs2bMCNN96YfM3zzjsPV155JQ488EAceOCBeOaZZ7BmzRpXleqRwJzrh/7vMLRXIzBHWBEuIiIqntraWtTWuqfl6LqOMWPGYPz48aXZKSIiKk92ys/FnyHkUjaB8bHHHou2tjb84he/wI4dOzBlyhTcfffdGD16NABg+/btrvlOc+fOxa233orbb78dt912G8aPH49f/epXaG5uTm6zaNEidHZ24s4778QNN9yA5uZm3HnnnUMqvOVl9j467HoF6rsGRLsF2VDio46IiIiIiCqbLP0osZOQ0mN7VMYMw0JHR++wX0dRBBoba9Da2p23eWr60z3wPduL6BerYBxR/hVTC9FGIxHbKTu2UW7YTtkVs43q66tKUnwr3/Jx3eSxmRu2U3Zso9ywnbJjG+VGezsK/z07AQA9NzQBvsJNOs7lulkWc4xp+My5fgCAto7zjImIiIiIyEM8MFbLwLhCyF002GNVKJ9aEDvMUu8OERERERFVMpnh5xJhYFxBzOnxUeMN0RLvCRERERERVTQGxlQqicBYfZ3p1EREREREVAK9NmBLd1VqBsZUTHKsCrtRhfqxCdFulXp3iIiIiIiogohOC9XXtyLwm50cMaYSEgLmDB8AQN3AUWMiIiIiIioeZXtscE59z3AX3GJgTMVmJecZMzAmIiIiIqLikQHHkkwcMaZSsvfQYNcpULaaQLed/QlERERERET5oPcFxsIRDAsu10RFJwSs/XwQElDfZnVqIiIiIiIqkkzp06WPixkYVyJrv9g8Y20TA2MiIiIiIioSZwAc5RxjKjFrog9Si48YWx44ComIiIiIaORzzOQUIQbGVGo+AWuCDhGSUD4wS703RERERERUCVzp0wyMyQMS6dTqW6xOTURERERERWBn+JmBMZWKNTm2bJPKecZERERERFQMzlFijy2Qw8C4QskmFXaTCnW7BdFhlXp3iIiIiIhopHOODNvOVOrSDxkzMK5g1uR4OvVmo8R7QkRE5AG2hNhuum/WiIgof1yBcYbHS4SBcQWzJuoAAHUz06mJiIj0p3tQdXs7tBWhUu8KEdGIJDLNMfZAWjUD4wpmNeuQCqC8E/VE+gIREVEp6avDAABtbbjEe0JENEJlSqX2AAbGlcyvwN5Lg9ItIT7hPGMiIiIiIiogx2CcYCo1eYk1MTHPmOnURERU4USpd4CIaIRzBsPOcTkGxoOzZMkSHHHEEZgxYwZOO+00rF+/fsDtn3rqKSxatAgzZszA8ccfj+effz7jthdccAEmT56MZ599Nt+77Wl9gTELcBERUeVRPjYQ/EkrlC1RBsZERIWWIZVaMDDO3ZNPPombbroJ3/rWt7B06VJMnjwZ559/Ptra2tJuv3btWlxxxRU49dRT8fjjj+Ooo47CJZdcgi1btvTb9sEHH4Ss0Dm29l4apE9AfTcKmJXZBkREVLl8f++B0mYj8Nudyce8cINGRFQO1PURBP63HQjnWD0rY1Xq0p94yyYwvu+++3D66afjlFNOwcSJE3H99dfD7/dj6dKlabe///77cdhhh+H8889Hc3MzLrvsMkydOhVLlixxbbd582b85je/wY9+9KNivA3vUQWsZh0iCigfcNSYiIgqi6yK3QoxGCYiGrzAkk6o75vJ4oVZZapE7YFzsFbqHchFNBrFxo0bcfHFFycfUxQF8+fPx7p169I+Z926dfjGN77hemzBggVYvny563WvuOIKXH311dhll13ysq+KMvw8rMRr5OO1cmHv6wPejELbYsCc6C/K3xyuYrdRuWI7Zcc2yg3bKTu2UXmSdWUzRkBE5F1GjpGtc2TYWZWagXFu2tvbYVkWmpqaXI83NjZi69ataZ/T0tKCxsbGftvv2LEj+e+f/exn2HfffXHMMcfkZT81TUFjY01eXgsAGhqq8/ZaA7EP9CH8127437NQl8f9L4ZitVG5YztlxzbKDdspO7ZReZFVjo4M9mkQEQ1NrusQZ0ylzuO+DFFZBMaZSCkhROarWLrfJR5bvXo1nn76afzlL3/J2/6Ypo3OztCwX0dRBBoaqtHe3gO7GOt7+SUC1QLWexG0bu8CfN6/Myh6G5UptlN2bKPcsJ2yK2Yb1dYGoetqQf9GxUh3yeMhTkQ0OLle9xzBsNeWayqLwLihoQGqqqKlpcX1eFtbW79R5ISmpqZ+27e2tia3f/nll7F9+3Z87nOfc21zySWXYP78+bjnnnuGtK/5vBmybVm0G1Brgg7t9SjwXjSWWl0mitlG5YztlB3bKDdsp+zYRkREVGmElX0bIKWeg8dSqctiYo3P58O0adOwcuXK5GO2bWPVqlWYPXt22ufMnj0bL774ouuxlStXJrf/2te+hr/+9a94/PHHk/8BwDXXXIPrr7++EG/D06wJ8WWb3mUBLiIiqnAeuEEjIiorOQbGLL6VB+eeey4WL16MadOmYebMmbj//vsRDodx0kknAQAWL16MXXfdFVdccQUA4Oyzz8aZZ56Je++9FwsXLsSTTz6JDRs24MYbbwQQm2+cOgcZAMaNG4c99tijeG/MI6x9dACA+m4UBjg/joiIKpD3ZxIREXlTrplSruJbGR4vkbIJjI899li0tbXhF7/4BXbs2IEpU6bg7rvvxujRowEA27dvh6L0DYDPnTsXt956K26//XbcdtttGD9+PH71q1+hubm5VG/B0+SuKmSVgPKhGasqp/PugIiIKkDp78WIiMpfriPGmVKpAaibIoAJWNNLs0pO2QTGAHDmmWfizDPPTPu7Bx54oN9jxxxzzKAqTr/11ltD3reypwhY++jQNkahfGDAbi6fecZERERDxsCYiGj4ch4xdj7H/XPgvk4AQM9PxuRttwajrAJjKixrQiwwVt9lYExEeWBIaK+Eob4Vhei0IYMCdrMPxkEBoLosSlzQCCA+NeH7Zy+ix1VD1qep5J3uXo7BMhHRoIhhLtckunN9gcJhYExJ9gQfgB6o7xpgCS4iGg71rSh8f+6C0plyoXvHgL6sF9Hjq2EeGAAGWHKPKB8Cv9sJpc0GDInIuXX9N3AeojwciYiGZkjFt/qiZKXF8QJSluT+gIExJdljVciggPKBwXnGRDRk2gu98D/RAwAwp/tgzA9C7qJB7LSgvRKGtjoM/6PdUD61ED2umsFxGbnrrrvwj3/8A++++y4CgQD2339/XHnllRg/fnypdy0j0WW7/t8PR4eJiIbPGnzxLecoswilFOVKk+BTaMxloz7xecbCBJQPOWZMRIOnrQzB/0QPpAaEz6hF5Kw62M0+yFEK7D10RL88CuFv1kNWC+gvhKD/X0+pd5kG4aWXXsIZZ5yBRx55BPfddx+i0SjOO+88hMPhUu9aZkq84yXTPZvjJo0xMhHREOWaCZ1puSY7Q7XqIuKIMblY++jQ3ojPM57AecZElDv1rSh8f+2GVIHweXUZaxXYe+sIXViP4J0d8D0bgj1WgzU7UOS9paG45557XP/+8Y9/jIMPPhhvvPEG5s6dW6K9yiI+BCAyFYbhHGMiouJxnl+tDMGwLVGKuS0MjMnFnpBYz5jzjIkod6LTgv/hTggJhP9jVNYCfnKshvDXahG4dyf8S7sRGq+nL4xEntbV1QUAqKtLM3c3R4oyvJufxPMzvk4iN85Ov41w3JcJIQBIQAx/v7wmazsR2yhHbKfsKrGNRI7nTVe6svP86wiMFSn6sn2KiIExudjjNEh/fJ6xKQGtcr7QRDREUsL3526IXgljfhDWnNxGf+1JPpgLgtBXhOB7tAuR8+o437iMSClx00034aCDDkJzc/OQXkPTFDQ21uRlfxoaqvv2LWrDWtsLdXYVQqoCwIIq0v+taCACEyEAgIjfiKlK/vbLa5ztROmxjXLDdsquEtqoF58BAHw+DaNyOG8aQQMGYtOoVCiQ8apdfl1L1u8aXVcNUVv8znIGxuSmCFjjdWhvRaF8bMLeWy/1HhGRx6nrItDeisIeoyJ6zOBuAqJfrIa6KQrtbQPmG1FY0/wF2kvKtx/84Ad4++238dBDDw35NUzTRmdnaFj7oSgCDQ3VaG/vgR1Pl9b/3AltTRjmgiBUSAgAlmGhtbW73/P13mjyZkha8W1tG52/2gbRbSN6fv2w9s8r0rUTubGNcsN2yq6S2igY/380aqI7zTk2ldYTRSK6sE07mTAdCRnJc3FbSzdg5Dcwrq0NQtcHfk0GxtSPPV4D3opCed9gYExEA4tK+J6M9fxGTqkBfIMc8dUFosfXIHDvTvie7EFoso+ZKmXghhtuwLJly/Dggw9i1113HdZr5eum0bZl8rXUf8eKgYn3DUglPlPNTv+3pHNeW6IQlwC0V2KvYZt2SVL6CsXZTpQe2yg3bKfsRmobiQ4L6sYozM/1ZYhJ5HY+l455xdKWfTOJnas1mRKyBO3GwJj6scbH5xm/b8BcWOKdKVOiw4L6egTKdhPCAuwGFdZkX6zTgamiNILoy3uhdNowZ/ph7zO0gn3WZB/MSTq0tw1oL4Vhzg9mfxKVhJQSN9xwA/75z3/igQcewJ577lnqXUpLxG+wZL0C0RuPfDNVOZVZbr5MAKxFSZWkx4a6OQpruh+iV0J5z4A1w8f7F0oK3NURWx/eGbzmenhkmFfMqtTkSfaeOqQKqFuNki2wXbZCNnxP90BbE3YVdAEAPNsLaw8N0RNrYO/JkXgqf6LTgv5cL6QGRI8d3jwq45gaaG+3Q1/eC/OgAEeNPer666/H3/72N/z6179GdXU1duzYAQAYNWoUAgHvVRaXNUrfaK8tIXZaUDdEYB4UBPQsyzglROXgMyGIyljg3p1QPzIROVFCf7YXyk4b4bNrOdWFkpS2WOSqfGJl2TINZ9BrZXi8RKPsDIypP13A3l2D+oEJ0WJBjuFhkgvxmYnA/Z1QWizIoEB0XgD2BB+kD1C2W9BeDkP9yETg1x2IHl/DUTEqe/ryEIQJRD8fhGwY3lwge5wGc4oP2ptRaGvDMA/k98OLEvOJzzrrLNfjN910E04++eRS7NLABJKjGAJA4O6dUD6zIMIS5tx4B0yWkQkRlVy9iSqK+pEJAFA+MqHsjAdALRaGEAKVniXhf7gL5jQflwUsAGHlfnYUHRZkUHF3RsoMo8Txg03ZakCEbFj7FadThhEPpWXto0P9wIT6ngGTgXFW4hMTwbs6IHolzKk+RE4dBVT3FaS39wHMzwWgrQnD90Q3/H/phohIGIdXlXCvRzaxw4S6KQqlNXZ2tceosPbzQzZySaB8EJ0WtDUhSB0wDs3PcWwcXgXtzSj05SGY+wdG1LzOkeKtt94q9S4MjkTyZksKAeWz2PlA+cxC1Y/bAADGgVlulqMMi6lCOdbVkXp5no/VzQa09RFo6yPoYWCcf7n2lvTaqLqpDbJGwDjA8Tm4guG+c62wY6dv/5JOiKhE73UMjKmE7PE68FwIyvsGcBBHbgYi2i0E7t4ZW6pmQRDRL1Wnv6FXBMyDg7DHagjc2wHf0z2QfsGR4zwTrRZ8T3RDezPa/5d/7YE5zYfocTWQoxkgD4f+fHy0+LAgUKNkf0IO7L31WKfcewbUdwxYkzmxk4ZJom9EItNhKjP8HCcMjhhTfmivhmHtoUHuUia3385bGX95BsYw+e0tKGf7DtDUIp55ILqleztHYNxvvnG3DWWnDXts8e7X8nM3QyOOtXeiAJdZ4j3xOFPC/2AnlC4bxoEBRI/LEBQ72PvoCJ9bB6kBvie6oWxJE8DRkKhrwwje3gbtzSjsOgXRI6sQPqcW4bNrET28CnatAm1jFMGftUPdGCn17pavXhva6hCkBhiH5TfrwTg41pOsrRreEj5EAGI3YIkRDecdT7pK1Intnf8HOGJMeaFsNeD/Yxeqbm0v9a7kzjliXCaxPBWZc8RYAuqbEfj+3NV/jrBwb5dkZwisLUDZEc/4K2JHEgNjSq9agT1GjaWhdpWoNFwZ8D3VA/UjE9beGqIn1eRcqMye4EP05FEQNhBY0sk2zgPt+V4EHu4CTCB6ZBVCi0fDOLoa1lQ/rGl+GIuqEVo8GtHDqwBDwv9AJ7TVDL6GQns5DGEglu48Kr+XEWuaH/YoBeqmKERbWc5oI69J3Gw5D9V0wbDzZ2fVVAbGlAeiowzPZ857Gn4NKA3XHGMJBH7XCf3lMNS33IM+ztFgkSlLx075OT4aLYtY/JCBMWWUXLZpq1HiPfEm5T0D+gshyCqByNdqAXVwX1xz/wCMeQGIHgn/0q7sS4ZQRtrqEPx/74HUgcg5tTCOrk5f1VgXMBZVxz8vwL+0G+racPF3uJzZEnp8NNc4pADTADQB86AAhAS0l9hxQcMk0Tci4bzJz3aT5kwPZGBMQyUlfE90Q10fKc8VPhxRgijX/nt+fQtCJg5nV1VpR2On9gNlSrnOMMcYtuwLuos4842BMWVk7xMPjN9jYNyPKeF/tAsAED2+BrJ+aN/a6JdqYI+OpfeqrzG1dyjUt6LwPd4NqQLhc+tyqlxozfQjcmYtpALof+yE9Q6D41wpG6NQ2m1Y++qQuxYmvck8KAApAO3fEfeFkmiwbNmXweeMS5w3Y84ZQ4nDLdMSIkSDoGy3oL8QimWGlbtcBry7be918vP7WxiJCNIR8Lo6GVMjTNMd9CYNNGKc+PcgB56Gg4ExZZQYMVbeZ2CcSn8hBGWHBWtfHeacYVTK84tYBWsAvr/1ABGPXVA8TnRa8D/cCSGByGmjYDfnXqzJmuJH9Ms1EBYQvfNToIdXz1xoL/YCKNBocZysV2FN1KF02VA38/xDQycspB8xcna4uEYyZPx5GW72iAbDw9kG6obI4DKmsqwrq74ZQfUNrdD/r2eYe5Yfot0CwjYEi28VRmI8KGWOcVJKhCmcl/JIhvOrM5PHkn2vzRHj9JYsWYIjjjgCM2bMwGmnnYb169cPuP1TTz2FRYsWYcaMGTj++OPx/PPPJ39nGAZuueUWHH/88Zg9ezYOPfRQXH311dixY0eh30bZkKMV2KMUKNtMT5/ci67Hhv5sL6QCRL6c+7ziTOxmH8zZfihdsdelHNkS/j92xaqBzw8OaX1Cc14A5twAZLsF3586vdfT7TH2x1GoWwzYjWrBK0abc+NFuJjqTsPhKrLV96NrvpuRZvSCI8aUD3b/ThevCDzQGavLMZA068pmor0cO1f7nvXAFJiQjaoft8WWZDO81e4jh3D9D4D7eEktROscWQ6n/0yE8/tiI9mBKRkY9/fkk0/ipptuwre+9S0sXboUkydPxvnnn4+2tra0269duxZXXHEFTj31VDz++OM46qijcMkll2DLli0AgHA4jDfeeAMXX3wxHnvsMfzyl7/E5s2b8a1vfauYb8vbhIA9XoOwAeUDjtok+J7thQjLWLpnntZ4jh5TDakD+opeiNYyLNBRAtqqENTNBuyxKqLHVg/tRYSAcXINxC4a1I1RqK+zQvhAzBWxmyhjXuHXGLam+yF9sVENZlLQkFkZAhNXKnWax1PnurVaWUfMvEx86o0ObvXtKHxL01SsHakcl3PhpUU+pPv4zsgZVHptWoshM3Y2iJDs+7+HR4yVrQb8D3cCYRv6k93QVnqgUyFnado1U7VpwB0YZ7qmp6RSi+SKAkyl7ue+++7D6aefjlNOOQUTJ07E9ddfD7/fj6VLl6bd/v7778dhhx2G888/H83NzbjsssswdepULFmyBAAwatQo3HfffTj22GMxYcIEzJ49G//zP/+D1157DZ9++mkx35qnJQtwMZ0aQCw1R1sZgvQB0aOGGIylIetVGAurIExA/5c30pC8THRa8P1fbNQ+/JVaQB/GSdOvwHf2GACA76/dQIjDQ2mZEubKLkilbzS3oHwC5nQ/hAFoXFqLhip1zlryZ8eNmePylhxJdgQ06sYoqm5ug29pdwF2sPDEpyaqbmuH/47SLxMUuGcn9NX9K9aOVK6K5l4K0JxB+gB98c5siqzFt4pZW6zbRvU1LfD/IcOIt6uqvONxjwX3wV93QFsbgf5CCL7nQvD/pYzOMema0tlRkXJcuTqGMh1LqYW4SlB8qyxWJYtGo9i4cSMuvvji5GOKomD+/PlYt25d2uesW7cO3/jGN1yPLViwAMuXL8/4d7q7u6GqKkaNGjXkfVXy0KuReI18vNZwyX18AHqgbjVheWB/EkrVRvqKEIQFGIdXQanL7zfVWlgFuSoEbW0E1pEWZB7WbfPSsZRP+t97ICISxmFBiN31YV2PFUVAnRqEdUAA6r/D8P+zF8aJQz8HjFTaxgjQbcOe7s/7sZ+JvX8QeDUC7bUI7AMKN6c5X0bq962sWbLvBs550+UMhtMELM55b9qm2J21/lIY0VPK79ygtMfuUJXtJqRX0nk9MHpdFJkCYylLW6U6krJfmTqXnSPGHuozVj+KfYG19RFEzkizgbNGwE5HhGahqEFWzryUTTBYmVKpUztccsk+SE2lLkHxrbIIjNvb22FZFpqamlyPNzY2YuvWrWmf09LSgsbGxn7bZ5pDHIlE8NOf/hQnnHACqqqqhrSfmqagsbFmSM9Np6EhfyOSQyXrJUL+DqhbDYyur4Yo4sGZi2K2key0EHp5B+ATqD1+DMSo/J9djWNtGH9qQ/WKKPwX1uftdb1wLOWL9VYIkXURiAYVtafvChHMT+JLzZm7IrTxQ2irQ6j5UiOUsYWdQ1tuwmu7YAMIHlGPUY3FOZ7kQRKhP3RCfSeK0cEqiKrySHIaSd+3cidsZF+beITOQRSdFmSVAulcus4r7zWXewkpY4Glvzy+9+k4U0ZdxYdMAHrRdyfJNcdzoKDMcAfQgZ+3w95Lg3lKbZoXzdvuZSUDWY4JZwp7pyNaMyRQxDVxcxbw4D5lk+ZU4jqvpga/6aaspHLWfijRHOOyCIwzkVJCDNDjlu536R4zDAP/7//9PwDANddcM+T9MU0bnZ3Dnx+gKAINDdVob++B7YF5OL49NaibDbRv7IDcvYRncodStJH2dDf0qIS5IIi2aAhoLcAfma0i8JQCc003ehb4hr0cjteOpWGTEr6HO6ACiCyqRm9vLzDMemWJNuqwwlA+H4T+VA96HtqB6Nl1ednlEaHDQmBDCKJORdceEnZr8dK99Kk+aC+HsfPFNljFSOEehmJ+32prg9B1Lw59eIxz1MH5kURyDAwGSbRakAEBVJc2mBMdFqpuaoO1hxZb1z3B6yUsTAnRYUE2afA/1AXttQh6rxoN2VCmx7ozUIikdMYMZwrQMIlIXwQiTJlxqV9nMC/aLajbTKjbzPSBcVEjY+fP/UffnVXlncG9sDK/11KSzt03JaCVUaDsbFDH8Z46p17kkr6fOt2lBFWpyyIwbmhogKqqaGlpcT3e1tbWbxQ5oampqd/2ra2t/bY3DAOXX345PvroI/z+979HTc3wRnzzeTNk29ITwYw1Xoe62YB414C1m7cOmaK1UcSOzS1WgOiCIGSh/qYGRBcG4f97D9TlvYj+R37S9rxyLA2X+mYE6lYD1m4qjJm+vBZwsW0J85Ag1JUhqK9HgPeisPf2RkdQqekvhyAkoM2vQUjk9zyXjTktFhgr68MwZg9jabQiGinft7Llmucmk+cJZ8VT90jewJ+VVHKYXwkAhkTVzbGCoD0/GZP7/haAsj12F6p+ZMKwU9rDCzK0uf/BTmhvRhG6uB7aa7HaAuq7Bsz9yzMwdqbpC2f9ilKnJbtGjFM+C5n+d5m+A+racKxIkiOWE9tNBB7uROSkUbDHF+A66jyOQxKoSq2A7NiXXOa2lphI7UAph8A4TSaOK+BNPdc409tzSaW2HMW3uI6xm8/nw7Rp07By5crkY7ZtY9WqVZg9e3ba58yePRsvvvii67GVK1e6tk8ExVu3bsXvfvc71NfXF2Dvyx8LcAHaS2GIkIQ5x1/wnmvzoACkX0BbG4bo9Hr3fhHZMrk+ovHF6sJUKdQFjC/ERldYBC1OSmhrYzeo2oLiz6+09vVB+gXUt6OVMy+Rhie14Fa6GzhjgMAgVa6nfC9UTzcTqYeO86PV//cl4Qi4RFRCtFhQ3nEX4dLejP1b3dL3uPRWf/zgONve2RlT4o4zV2dQasZEpnmi6Y7vkI3Aw13w/6nLFRj7/9gJ5RML/j905mFv+3N1OKS7TcowYuzVwNg1qu2F88hgZKr2n9rWOSyBJ1Kfn/gcixitlkVgDADnnnsuHn74YSxduhRbtmzBddddh3A4jJNOOgkAsHjxYtx6663J7c8++2w8//zzuPfee7Flyxb88pe/xIYNG3DGGbFZ+qZp4j//8z+xYcMG/PSnP4VlWdixYwd27NiBaLQyqiXmyt5Lg1QA5X3Dc+vwFYUtoa+Orc9nHDq0+eeDElBgfC4AYaHMSvcXlro+AnW7BWsvDdZ+hZv/a871wx6tQHvbgPJR5XYGJYhPLCg7LNi7a1B2K8G8a03AmuKDMFAxlWxpmFJv7O3+j7vXMc7yejl2whVt3rIloa4NA73xNxG/kVbfjKDqmhaor4Xdd3eOIEGWsq/V+fWNSgRvb0Pw7p1QPu7/AUhnmnE5jJ5l4jzOou7RsJJy7le/EeP0v0sXsCkfOodmHT/2Dj2gEe0WEM4SwTrbL2TDf+9OqI7VC0SmziAvBMaGjN1PW+6OoqRofG59mWQdOdvaNRKcelzlkrnifNiVSs3iW/0ce+yxaGtrwy9+8Qvs2LEDU6ZMwd13343Ro0cDALZv3w5F6fsGzp07F7feeituv/123HbbbRg/fjx+9atfobm5GQDwySefYNmyZQCAL3/5y66/9fvf/x7z5s0r0jsrA34F9m4a1I9NiHYbcnR5pjQNlbLZgNJiwRqvQRYpldw8JAh9RQj66jCMw6vKuvhIXkgJ37OxycTRL1YXtpqnKmAsrIJ/aTf0Zb2IVPhcY2197GbDmlW6NGZzmh/augi0DRFYM8ojnZpKyHljb8v0VakHI9cbVOf8uk4bsrEw10p9RQi+p3pgNeswZ/rhX9qN8Bm1sSwjCQT+0IXw1x1zQFPXbC7VnZ9zVMyQyQ4J9R0Ddmr9Ej3DiHe5sVICngSJWHtoKE116kzreKf+LtOIceJ9Zci8SAZ6gy10FbJR9eM2yCqB3mvTT5VM/Vv66jC0t6LQ3or2TWFwBp2uVOrSB5v+R7ugrY0g8mXH1E3nuaPLRtXP2mHtoyP8zfri72CuErvsSp/u+7HfSH6G7Vz6dWqy+NaAzjzzTJx55plpf/fAAw/0e+yYY47BMccck3b7PfbYA2+99VZe928ks8frUD82ob5vwKywwFhfHRu1NQ4u3nIxsk6FOdsP/dUItH+HYR5ShJFqD1PfikL5xIK1pwa7ufDzfs0DAtCf6YW2MYroJybk2LI6VeaPlH2B8czSFb6y9vNBaoC6KRq74fFYdXzyGGcwYjuWXhpqxlOOxblca772Fi4wVrYk0o0NqFviy9ZsjEA6C345b7QdAY3sMOF7uB3G54Owpha3k8mVPuwYPRY70/RYZBi1LDeuzATHcaR8aiLwk05EDw/CWJS/1Uxy5gqMU36XYdRPpBYPS9020r8TQA4yMBY9sR1Ljjhn4gys0o0ue3jEODk1yTnC7fi+Ktvi9QHeK5OMNStNh0nqz0gJlDNWpXbPaU8+p4hLIFb4MBTlKjHPWCmXL2qeiHYL6htRyBoBa3pxbyLMeNq2vipcmSnsDvryeOfE4VXF6V3XBIzDYh0hvuXDLHtdxpTtVixbYg+tYDf5OfEJWM0+iLCEsrWyzkGUO+XdKII3t7pT7nO5GctC5Hr6LVKqbGq1VyCeeizTbyN6+964+Wwn1K0GAvcXZu7ngJyjSa5U8/jPzjnI3SlL7JSrDAGa9mLsmuZ7trjTpbRVIfie6HYHIAOkUmcLfEWGVPFkQDPYytvZOqFCNsQnpjvFO91znCPGhjvY8gznvjg7inq8tJMDSDdiPNA6xs5jLmPxrZTtE69RxLEJBsaUE3ufyizApb0US00zDgoWfZ6TPU6DtZcGZYcFZUtltbuT8r4B9T0D9hgV1pTizXE15wUhgwLq+kjFFkFTk6PFpU9fTswr5zxjysT/vx1QWm3oL4X7HrSKN1rkCvYKWf05UWDLeQcn4e5Ade6L8/KRJVARXTa0l0N53X91XTj2vc1UmCdNqrtrnd1yC4wtCfXNiKsieuzxvh+Vz0pzTfE/3g39hRBEl7PjIWUj5+eQoTMjGQRb6Y+z5PJDg0xddo1Kp8kUCN7ajqqftUO02Wm301aHEPxpW+b3F5Xw/a07Nse31JwdWc4R404PBMa9sQ6IXDiDXFfHQ7+q1Bl+dko9RySOHxbfIq+RoxTYjWrsZF4uvVnDZUto/w5Dilil6FJIpG/rqyq3CJf+fGzE1vh8VVHTaeATMA6KF0FbHc6+/UjjSKM2PTCv15ocC4y1TQyMKYsMoxY5j/wOlXPUJ49rI/eTeG1nEoeU7iJi0TRBDADhG/i2L3BXB/x/7ob2Sp7OebZE4KEuBO7dmdJJkabDIkN6bNbiaB6jvRpB4Hed8P9up/v4c45yhksb7CvO9PWU4FVkKpLkGjFO/N7xPGcHhtL/9zlxVu7utaG8G4XY2fciSjzgVdodL+z4rvmXdkPZYUFf4zh+nfORn+2FviKEwN0dg9yxAnBNLXDXJyi1qlvaYh0QuQwKZJjq0G90PnU0ON1zXNkKSH62kss1kRdZ42O5DGqFpDKqmw0onTbsZr3gSzRlYs3wQ1YLqG+4Lw6VQrTFUtntGgGzBGvYmgcHIQWgrwmVdpmTElC2mVBa42nUHqgrIBtV2GNUKJ9YsaqlRJk4U3LzPXI7wAiYu+pw4c4XyQDLmcWUKOaUug3guumWWar9Kjti3y3Rnqebc+dImPM1040eWRkCx2wjxobsq9BdROITM3kuEi1mMsNGiY+0aW8b7uOlkJ0lgyQ6+j6AAQMYZ+CbbjTQ+TmmC4wH+bG4Rk4/NhG8ayeCN7XFXyt99kfadcid3wXHPqrx5cE80dmSqWJ5iZYlFJ+a0F4KxTrZ4nO8XSPzqdunS6V2SnmqGGz2ju3IuCjiLQgDY8qZXWHzjBM95sYBpSs6BF3AODAAYcfSuiuNtjoEIWNpzaVYskM2qLCm+SC6JbTXItmfMIIkbvJMD6RRJzCdmgYt38HIQDd0rlTqPP9dp8SdmzMV005dLsrxO+d+hTOPFDrJagHtpRCCN7cCXUMPOp0BiPjM8WGkm+PqDMJC7pRa/ekeBH/WljZIDvxvB6qvbwXCdqxwUTECC0ui6mftqPpxLGiruqUdgSWdULaZkIG+a5UrmHR2VpS4n1V0ODspUnYmQyq16/ndNsznOyFcI/uO10mM8A0jlTqRDp0MwJwFuUKOnUw3+p6pM6X0g7F9nLvoHDF27nsR68sEf9YO/6PdUN5x5sRnasf0HQ+ZtgEwcMXqNFzFt7w0YtzS0lKM/aAyYFXSPOOQDXVDBNIvYE0rbWBgzouNWmprwoWdt+Y1hoT+chhSAczPla5zwjgkls6uvRCqnCJormrU3gmMzURgzHRqGshA89yGa6AbOmfgU8BztVTSBB2m7LccUpLjZ+kMIgboNBAWYjfJrTa0dcPolM1QHTtdwJhplFsYgO/ZXiifWFA+S9lpW0L9OF7Fd6uJ4M/bUfWj1oKfq10FkuyUgM11HDie48o6KsG1xBnMOI+DgUaMM/At6UT0dy3Qnu7pe9B5zMUP0VwCIJdohuPTlO7jx7H/ItR/hz0xIpyFyOH7Wswsg0QHhLqt74+mTfmXMrfDN5HFkvguDnapLAt951EvjRgfeuihOPnkk3HPPfdg+/btxdgn8ijZpELWCCgfF6lHtoS09REIEzBn+Qe/Dl+eydEqrEk+KF12RY2UaevCEL0S1nQ/ZG3pUnntfXRY4zSo20woWz2UC1dAyscmlDYb1p5ayaYRpGOP1yF9AurmaPkV5KHiyZBGmRepAa8hof+jB6LTchcqMgH9yW4Ef9Ka/+tluvmbJtzfiUypmc4R437ViDPMJx3ONTCa4TVT9z3lMZGyrmtSanqmY66saI2nNYdk+lHEPBLdjv1z7kNYQjgv05lSqUtx+nL+feex0i8wzr5ziSDV1cGRLhgdZAeRyNSR0m27v9fOwDjdtSDTvFcvXTZCGb4bzuPHkEDKey801xznlO+Ruj6Cqh+0Qvkw+72Q6LZRfU0L/H/oij0w2NF6Z1VqLy3XJKWEYRi47bbbcOSRR+JrX/salixZgra2tmLsH3mJELDG6xAWoHxYBt1xw6D9O9ZDbu5fwjRqB/PA2H5oL1dIOrWU0FbGU9kPKd760WkJkRyx1l6qjCJoXkyjBgBoAtZEHcIAlA9G9jmIhk4Usv8w5eZOf64Xvmd6Ebijo9+Ise+5EJQ2Oz9LjNkS+nO9seAv8Wdca+S6i2+5ggpnZqQz9TW108AZmEbycyPuCnRco5RpAhtXhWPH752js/H9Ut+MwPdYl+vG3bmdKHTnvWM5KWfNA9Er3Z0BmbIXHD8qb0fh+2Nn3upYaKtDEJ+mCVwyjVAOkEo9GO7CSfF/DLYv2dkGzk6cqEyZEpCh4yexL2VQhsJVjC1DZoHSZqH6htZY8bpi7Zejno1rSgOAwJJOiF4J3z96Up/WTyK7NJF9NujpJTaSx5H00ogxANx444147rnncNVVV8G2bfzwhz/EYYcdhm984xtYunQpuru7C72f5BGJ9YxHcjq12GFC/cCE3aTC3ruIi6cNwJriixXh2hR1956PUMr7JtRtJqxxmic+A3O2H9IXP8GnSdsaUZxp1B6oRp3K2jeeTv3OyD0H0eDJTEsV5ZnSbsF//87kfNlEsKfstDMuR9Jvndgh0P4dhu/JHgRva+srYuMcRDFl5grCmeYYp+6X89+O81zqzfGgOIOxTCPGaQo5ZSpGJCIyVun6d53Q14RdxUBdAXSBA2Pn31Kc83VDdsYUWdfa0o6fg/fshP5qBOqG4dexUN6Nwr+0G1W3tfff50zpunbfY+pb0fys9Rv/WAZd/M7ZRs5Oj6jMfCyV66Ug0zHqLEAWz1JT3y3im3R1ZqU/GGQu61OnvL9BHwu2IyPBa4ExADQ1NeHss8/Gww8/jGeeeQb/+Z//iba2Nlx99dWYP38+vv3tb+Opp54q5L6SByQLcI3gwDi5RM0cPyBKm0adpAmYc+JFuF4d+aPG+urYyKw5P+CNz8CvwJwdgDAAbd3ILsKlfGRCabdh7eWtNOoEa2K8c25z5UwroBxkCqryzP9wF7Q3ogg80AkArkJLrqrKjirJonv4kUaySqyJ9KNwBgYOKuLkQIGxc8S5J8Po3CCJDKnU7iAt/limEeOU13B2Dmdq50LPMXWNfnendCJkSh/PJg8FhgY89jOsba102PD/bieCN7chcO9O6M9kHw3Muh+JP5XLKKEtEfh1O/wPd7q/Q6704pSMCGfw5qX06AEoWw2INsdobIbRdNfosfPckWbevPjUhPp2+muh8oGB4I9boXw8uC+D69zRKxG4syOZRZmk5/A6qbs12ArlliOV2kvFt9IZN24cLrzwQixduhRPPfUULrjgArz77rv4r//6r3zvH3mMPU6D9MWKXAx6In2Z8NLarU6GM516JBeB6rGhvh6BDAiYs7yRyg70rWWtrRnZRbg8m0YdJ8eosGsVKB+ZJVmihTwqmj6oyjelJT6PNT5i6LqJdN7QOoO3PGT5uEZorP7zO4Ul3YFlxhHjDHNekZLa6RwxzrLEU/odjr9WhjmjrscTf9c1B9bxszOgjkpX0O6a69ud/vULwrn/Ifd7FJlGNrPJRyp1mqJmypYoqv97B9Q3+iIVZzCpvhOF9mYUSnxuqbYhj52OubynXgl1qwltbcQdLKZ27uR7yURbQnslDKUInaziMxPBX3cgeHv/kfyBKK2Ok0pIQnRa0J/sTl77qm5rR+Cencn59U7+hzqhtNvwL+kc3L462l1dH4H6ngH/n7rcGw2ls2wII8aeLL6VzT777INLL70UTz75JJYuXZqPfSIvUwXsvXSIiISyfeQVIhKfmVA+sWCPVSF3LX0Kr5Mcq8HaU4OywxrRRaC0dWEIKz5iX+LCZ072Hhqs3VSo261YUDYSeTyNGkCs1sG+OoQscnoZeZsxwNzZApCJc5Mr0MwQEOWhEJSr8m4uI8ZRmfZn1xJPA6RSu0ZEhzDfOPCLDgTu7HD/bWeAbaRpN+dooXM/U4PrTKPEztG1QqdSO4Pf3pS/Gx3aZ5+2AvBgpTnu/I/Eghr/kxlGggtZqCyXZXmcn2GnY0TVtZY18t7hpbxvwP9IF4K/3VnwgZ5E4dTBzt13tU2vhP/+TvieC8Xm+Do66AeqY5DTcSUzHLPOpzrrAgwlC2bQc4z7Royll4pvjRs3Dj6fL6cX22+//Ya9Q+R91ghOp/bqaHGCGV9TuV9ay0ghJfT4es2JgmOeIQTMg+JLN43QNaWVD00oHTas8RpkvffSqBP65hkznZpiZJ6KReUqEay51nENpb+5zEchK9fIdCTNTakl3SMymapSO6WOGDsv6dmq/g6k24a6zYT6npGxHVx/K74fmVJLXcFeRLqLbDkDB+fjhoS2ohfa872D2/dcOYP13pS2ypQGnkU+AmMR6f+3sx1/+Sq0lva1bWQNOl3ztXc4oqfUTIE8B8aurI40gZ62JhRL7x5KxkSc8fcOqC+Fhj5P35mNELahxjvllQ9N17rOSluaqFOLB5MD9eNHY1X1lY/TL9Hk6jzLsFxWTkw5+KJuFvqOHS+NGC9btowBL7kk1zN+b+SNmmmvezuN1Jzlh9QB7bXIkHrxvU75MDZib+2uwd49h0ksRWbOibf/ugiQ7ua0zGkeT6NOsCfGA+PNI69zjoao2Mt3Jeb8Om94nenHg7yJFDtMBH/UCt9fMxQzdd4gp+sPMqU7lTuaIQh1SrP0VPI5KaN12ith+O/fmVM6q/JJ372BMxU0Yyp1jw3/AzuhZlgvOXXNY1cg2uUeUUtQtxjw/60H/r/35C0FV/nYgP50N0SH5W7flBFj1+czmABiGNcUZZsJdV04fRtnCc4LGRgDgPpmFFU3tGRczcQ11aDHHQgmRWXei2y5UvJ39m97/2Pd0NZGoG7KoQNWSqibIq6KzgjZMB5tg+9PXa7vxKD20dnx5jzWQ7ZrWSXnsZ+U+PUAyY/+R7vge6YXvqV95x2RqdOnO/35LScRCTHYUXnbkf3j9TnGVNnsPXVIJT5iPILmWopPHWnUu3grjTopqMCc4YeI9qW8jiSJkdjEfF7PcbX/CButtCXU9RFIAVjTvR0Yy1EK7LEqlBbLtVQKVS5Z6DmlKYRE7GbdObqSaV3SHG4i1XcNKDtt6C+mXxIu7Six8/ep7z+H9hCmdF/DM6SCi14b/kdiRcdyWr+0K8MIYIZRaGHG5rXqr2a/psXmGKcfJXZt95ljBKwzP52Y/ke64Hs2BP2ZXneQ5gweUlKpB1MYKlMHivjUHHh+ZsRG8OftCDzUBeFo72Qbl3hGUuD3nRDdMvOx7ez0ydC5hJSq1PngCjQ7Uo6RTOtoZ6C9EELgvk74nnAEmI5AcuiBsWNU2Dmq2yXd7RNvN+U9o68DIl31+hTKe7Ft1RymhyltQ5+qEJsjPqinxFOpPThiTNSPX8Aep0HpsiHaRs6omddHixOS6dSvjLB03ogN7bUwpB4bGfeqZPuPsOrgyocmlJ027PE6ZJ1306gTrIlMpyaHaPGvRaLL7lfBNflzOP3PqbTVIWgv9rqD6nQjnFkO89RR5FyW3PE91YPgj9qgbDXge6I747xB52iacw5oxn1xBjrOKrzOpw61I8Nwj/QhQ4qq4tznjkF0nhkSdkssWFA+NGKp2KYEbAnlk3jhtS7bPaoWShkxHmoA53hNdUME2sthKFuiqLqtHb5HuzI+TWl1BGAtjveaeL0izs8ciMywG65OmAGKb+U9lTolDV99K4rAHe1QN0bcnS85BMZqPMDUXncUOHOOSLcP8fwUzvBdiqZWZ5cQrRYCd3UgeEcHRIvV164DfdcG03HTkb2idkaGHHTxLWGhb15yEaNVjw6LkdfZ43WoH5lQ3zdgNnr/JjoXZZNGuo8Ou0GB+p4B0WpBjpT2fy0CEQWM/f1A0Lt9dsn2fze29IIcPULav0yO/wRrXx36CyGoW4zk3G+qYMVOpUYsSHSNcDkDJOcIb6YRY1PCH09hNA7oy5IR3Xa/Of75DgoAJAO94K87AADq6PTnXVcAkSblNEFb0Qulw4YM9kVAGYPtISZ6pFYnztQB4BwBHGifU+lPdCO8ageU8+qg/asH6gcmhCFdNS9Epw1Z29dWrkA9ZY7xYIiQhP/3O2Hto8P/t1ihLGNe7O/qr0QQPQ2xEf7UJQx703cCJIN3j6wgoqSOyiZkGil3HiOGzHtw5C5sZUN7NQz1QxPiiW5EzqhN/i5RrVt0WJCjlL603oiEtjacrLuTfK2dVmwJpeq+7/BQ14Z2Pk9JCa5d0xR6baibo8kMBe31vul2IorY+UgCCKQ04iCOjX6j6oMgjKGMGAOwAKmg/zFfQN69+yRPS8wzTqRhlDvxqQnlUwvWbirkGI/3FykC5v4jrwhXMo36QI8HOYqAOXeEjdq70qhzK7ZYatZ4HVIAyrsja0pHuViyZAmOOOIIzJgxA6eddhrWr19f0v0pdio1EA+4nDf1Kcv29P2c/oZS+bTvTlF7sy+NWH3HQPBnbdCf6YGy1YD6RqTwyw8hcwDpDFCUTGnJtoT/bz3QXwi51nrP+3rChsyYPu3kGtFNBEADnSdCdqwq/6pYuq+2KgT1g3iho22mq22U1DnGzp/DcshBv/ZGFNrGaDIoBgDls74X05f1oOrqFqjx7DbRFlu6x5li6wye1I1R+H+3c/CjewWSdtpLVOY0X1WkrGOcl/1xjrj2yGTav9Juu78LPTa01SFU3dQG/em+z0Z/rhf+pd3wP9LlyhYJ/GYn/H/uznvht9TMB1cnSK90TVtQPjFdx2Hwp+2ovrYV6LZdFazT1ivI8e8PShT9q+BnY8fnJRd57IGBMQ1JoodMHSGVqZNL1JTJaFkyMH4l7Jne4OEQ202oH5qwx6iwx3u8YwLoC4xfHRntr3xgQum0Ye+jQ9aWyQh4QIG9uwal04ZoHXpPNg3ek08+iZtuugnf+ta3sHTpUkyePBnnn38+2traSrdTJQiMlTbLXfDKsQvOm/hEKrX6dhTCMdfQNR/UMeqorQxB+cSC7x+9CP66A4H7O93rmRZKDoMyroAh2jdH2bmOqmtecZ4JQw56XWjRIyE+NRG8uQ36P/svWaS+GUHVDa3wPdH3O7HNEWx+Yrnfd0hmPN6GtIzNAFTH4IPv/3ohZF+HbOD+nfA9F8q4DJP+chjam96ZaiI6bFc6rf/hTlRd2wLlgxzuIwsxx7jbPdLuDG6dSzKKHgltTazNfc+Hktf8xJKl6semu7J2PJ1dzfPAUeqIrbv4lu2e07zN3RuS6NCquqkVwV93xOYhG3JQVdMzjvjnwpCDL4JnIzbKXMTCWwADYxqqGgV2kxq7AOb5QlAKXl+mKZUcrcJq1qHstKFsKf/OCf3l2EXHOChQ1JSZoZJNKqzxGpQ2e0QsW1ZuadQJdqJC/rveufmrBPfddx9OP/10nHLKKZg4cSKuv/56+P1+LF26tHQ7VYI5xsqnOQaAEQl1XRiBe3Yi+Mt2iM9MiHarX2pkgrqt/xDfkJd7GYRcRhZFpwXREUsVrbquBYF7dgKWhLK9SEXwwtLVoZAL0W1Df64XSpsN3796+82T1v/ZC2HBVRzKNUe5zV3kT9jIXPSrCJcD0WEBsm/Oc76Ez62FrCrc9VfIvuBOtFrQ1kYg7NwKP4koClp8K/W7rDqCddFrQ3F+/omR5e2O4Lml8Md/Iq1axscOUjtrnIGyM9PA9RrxXVY3RgbdiTOcEWNhyMGvY5xYrsnrI8ZSStxxxx3YsWOH6+diGGzq1lNPPYVFixZhxowZOP744/H888+7fi+lxM9//nMsWLAAM2fOxNe//nVs3bq1kG9hRBkpo8biExPKZ2WSRu2QKAKll3s6tRGbpyPVvpHYctA3al/m1cHLqBp1Kqs5ERiX9zmonESjUWzcuBGHHHJI8jFFUTB//nysW7duSK+pKGLY/8kSzDHOdWRUmIC+MpT8uerWdlT9uA36P9KP9HmZ+r6J4I/bELhnJ4QVS/v2/as3bTBfCMr2WIqonWE+dNrn9Niuc0Tg/k4EfrcTwVvaUHVDK9SPB953YQPaB+5t8lXpeijU7RYCv92Z/xdu0CB9he2Y1t4z4H+0C1U3Dy67RBgy7ynhztdL/S47R7GVdtvVMeV/ohvBO9pdHVtDnUM8FLIhFik6pzUI2fceZA5fDd+zIfgfzlzQLZ3hzDFWjMG3kbDjwbQ6/OtD4r+c9nWwb862bfzqV7/CZ5995vq50AaburV27VpcccUVOPXUU/H444/jqKOOwiWXXIItW7Ykt/ntb3+LBx54ANdddx0eeeQRBINBnH/++YhGOfqQi+RoTZnPM05Uoy6XNOoEc7of0i+gboi41s8sN+obEYheCWuKD6gpnyQWc0Z8TePXizP/r1CUrQaULhv2BD1WWKSMcJ5x8bW3t8OyLDQ1Nbkeb2xsHFInuaYpaGysGdZ/DQ3Vxf0O+mM3WDmPGANQt5qAJoC64RfkKbVkyniNAvgE9GW90J/N73zKjH873uTauNyv1+qHpiuIUT4yob4ZjS33luOoWTKwjgeOpZ63qxYgU6y+sQqqv7DDc74/dSXriQyGLhX4RBGGDuNTiQYa+VffMXJatqxQtDGxOiCpnTOi0wZ8AsoYPd3T+hnsoNZwzle+hzoH/RxVKBA2oOjDv0Yk/tP17MfQkIbHpOMGRBbpZsSZugUA119/PZYvX46lS5fiG9/4Rr/t77//fhx22GE4//zzAQCXXXYZXnzxRSxZsgTf//73IaXE73//e1xyySU46qijAAA333wz5s+fj2XLlmHRokVFeV/lbKQU4CrXNFL4BMyZ/tg8ovURmPM8XrQqg0QatbPqZ1kIKrCm+aGti0DdEIFVRqPdTmV7/ANAUIG9mwZ1mwnRbo+YCuHlSEoJMYRpEKZpo7Mz/fqmuVJMILi2eKOvdoMSS2Md5Jw5a6IO4+RREB8Y0J/tdRVNKjfR00bBmumHaLHgu29nMvVYKsUJ+KM1g7iBjafMmvODsbTvD0yYC4Owd9fhW7IT4jML9hQf1I3xQRG/SFb0tffSoHxgJqeM2buqJQ2KCqmjOwSfsAsyx9J5XBgLqyCbVMh6Bb57d+a01rPZa0JaIu9ZtVIHoIhkATBrTxXqxr4OL+nv+505yw/ttb4MManEV2gpcsZStFq6jn1ZqySDZLtGAH45IubJWmELCgBLSLS2dmfdPhe1tcGswXFZ5I0mUrcuvvji5GPZUrfWrVvXL2BesGABli9fDgD46KOPsGPHDlc62KhRozBr1iysW7duyIFxrkP1ubxGPl6roJpU2HUKlG0mlIgs6hI7+WqjRBq1PU6D2EXPpfaIp9gHBoCXw9D/HYZ9cFW/33v9WBLtFpTNBmSdArmfvyT7OZw2sg4MQlsXgf5qGPKAMuyYsCW016OQArBnBgZsA68eS7JZB7aZ0N4zYDWV9pLm1TbKp4aGBqiqipaWFtfjbW1t/UaRc2UPs4Cd9mwv7M3Fm9IggwpksC+90nnzPBBrVxVWnQLM8AMdFvwfm7BrlbSVnmWVcBUD8hojPpUEu2mIfGUUAks6EV1YBX112FWIq1Ds+tzuN+wGJTlabI7XYM1yd2CGLm2IzSH9xEoGxurMKlgvxzpazGYffPE0aikAa1ctGRindgJIgZyCvOEwDgjAHq/BHqsBAtCf7YW2IT9ZjraQkFphzl3mHD+gCshRCowvVCVrieijlNzS0sP5X64JAGRAAfS+KvLWXnpfBwkAexcVavzztsdpiOytQ303iugJNZCKgLYxUvDAWKruyvB2nbsh7HoFarwNZa0CGVQGbKre/9cAdasB/2OxYHOwx22xzk3JwmDK8K8Rg1EWgfFAqVuZ5gS3tLSgsbGx3/aJVK/E//OVDgb0pYTlS0NDdd5eq1AiU0OwVnWjbocKbU7x93e4bRRd0QYTgP/gUajJ42dXLHK0RHjXHigfGGiI+qDsln6pHa8eS8YL7TAkoB1ai+oxo0q6L0NpIzlPIvznLqibDTSIAJTRZXFKTbLeCiHSZUOZEkDj3rXZnwDvHUvmbIHoihCCH0v4F3njO+y1Nsonn8+HadOmYeXKlTjiiCMAxKZYrVq1Cuecc06J9644pAbYo9Xk3FQ5SoGIpA8GnTedckzfSIU5PwhZq8Aer6PqR7EpYfYYNTlP0Jrsg7Z28MH+YG9yrYk6jAMD8P+lO+vNrr2LCuUzC2bKkm72BB96r2kEhIhVQU4JjAsximzXK1nfq1QAe08dSnt8utTENNdHTUDWqrA0ARkUsHfR4JvVFxhbE3Xg2fjr1SuQNX2Bo6xW3BWyqwTQk/8beBkUfZ0w9YprScPEfNOMz60SMPfzQWmxkstPZdxWFYWLCoIKosf3Pz/LOgXIITAWLRYwpgAZQQEB6RdAW3zEdawK6YsV+5IiVmgTicC4XoE1OwDzEEf7O9azltXCvaZ1nsgqBeix+4pvpXQKydEqkOi8qVFi7yfxO0enXfiMWshGBXKsBnOsBu21CJT3DFj7+aC9kVvnilRjgbnaW4Rie0bf3yym8rqLS5EtdSvd71IfS/33UNPBgPykhAGx0YaGhmq0t/cUtZdkKNQ9BXyrgN51nTD2Kt6+5qWNpIR/dRcUAF0TBWSeUjWKTZvjg/60ga5/tcE81n3h8fSxZEv4n98JBUD3NKVk7T/cNtLm+KEv60XXv1phHlleAZG+ogsagPAUHT1Z2t+zx1KTjYAAjDd60V3i73Ax2yiXlLBCOffcc7F48WJMmzYNM2fOxP33349wOIyTTjqpJPvjujlNGV0pCF1AjlaARGBcqwDxqrSpwZocrSZHUG1ncUdV9Bu9tBv7AmN7Nw3R0SogAN+/BjF/1y/caytnYTeqsGYHIJ/uyRoYR4+Nnd+s5jQBZvy+KW3xpmD+A0ZZo8TuYAcarPMJGAcFoG6MwDgsCFQPMI5WpaD3e41QfALV4di0ElklYO/e95nJRtWdGVctAEf9IlmlQPTEjwNHMDtUUo/NdbV3UWNz1BEPJJ3bZKnLYe2pI3p6LfwPdiK29s0AVAAFynaRmaa96rn9PSEBkaHS8nDIQKxDJPnvUUrsOxuv+O1sX1nf/3zrPPdYe+nJ5bHsUQqUQS4rlpEOICCA+PfTrnPvh+3oHJH1qmvZNVmrJKto23tqro6U8NfrIEI29BW5xy2yQY3VSiiGxFSVImdglUVgPJTUraampn7bt7a2JrcfM2YMgNjI8ejRo12vOX369CHvaz5vhmxbeusGNA25jw4fALHFKMm+DqeNktWox2mwRqtlux6tMccP7f96oP47jOgXqtKu+ebFY0l5Jwql3YY1QfdE+w+1jYy5scBY/XcY0c8Hy2K5KQCALaGsD0MKwJjmy7n9PXcsBQTssSrU7RZkq5l1BKUYPNdGeXbssceira0Nv/jFL7Bjxw5MmTIFd999t+taWkzOonGyOsfUzOHQhKsqst2ouoszOdKq7SY1uQaxnWXEKzG6p26OwmrWYe8RiyYSgXEuKdvSJ5LrJuckHsjKgCM40NIXl5J1KuxxA982it40aeE+EVtOJo8fi6xRYkFVSjXyREVeYcf+rr2vD703NuV2XtYFIASUPXyIfLMe5i7uQNjaU3O3U0C4RsNltQDiCYdDDYylX0A2KLDrVFhTfFDfisL4QhWCv+gAANi7uNvfnOyD76kemFN8yaDMleoaHz3MGJg6qaJwo3MZAuBEoD9Qeq4zkyLfZEC4OkzsOjWZTi6kOzC2m9IExo5zj723DsQ/A+OoKugvhRE4ugHR+4a5co8mIAOA6JWxpZpSltSSDY59qFdc3117nNZXrbo2pRPFJyB9qvuYzpLdYe2lQWkrztJsyf3w+nJNpeBM3UpIpG7Nnj077XNmz56NF1980fXYypUrk9vvscceGDNmjOs1u7u78dprr2V8TepPjlZjc3i2m0CaC6KXJYoOlVs16lSyXoU1UYfSZUN9p3wqqieWmSq7olsp5BgtdrFosWJFWsqE8p4BpVvCbtbLqhp4OvaE2AgWl20qnjPPPBPPPvssNmzYgD/96U+YOXNmyfbFOYqWbQQtL39Pi48eJv7tuGFOHTG1d3Pc1Q00YonY8iuRr9ei97qmZFDs+ru5LKXjH1zHXPI1nemXjmDQ+TedN9CZmAfH0kyjixzZMz6R8ebWnJF++k82cpSSfj6sCiARXyX2dwidlXazL/l5RU6pgV2rwJwdcI8uBhRXwCcdn68MDPE4VIDQZQ2InFcH8+AgIl+vg71737Fg7+puSLmbht6rRiNyRt9UGNcoZ6INcjl2VKTtWM8HmSEwjh5ZBWN/P0Lfqu/bNuUYjpxcwCkyASWWqpxQJWDNiN0TGgcFksuSAkh7nXS2tTVeh3FIEMahQZgHBRC5fDS0Q4c/RUzqom+UVhfuQFZ3p9PLetW1FrU10bH/GT5bV3unWcfadgT/1r6+4o0YJxTomMykLEaMgeypW4sXL8auu+6KK664AgBw9tln48wzz8S9996LhQsX4sknn8SGDRtw4403AoilUJ999tn49a9/jb322gt77LEHfv7zn2Ps2LHJeVOUG2uCDv2VWAGCslkHVcq+arwzymSfB2AeEID2jgHt3xFY+5XB++m1oW6IQPoFzHI5ZgZg7h+A+kE3tH+HEd07t6USSi1RXbMsq1GnsCbo0F8MxZZt2r+8O1po8OQ4DfpZTeiJRKC+UoR13TUB2xEYu0aSNHc6tzXZh8gYDdakzOeF6BFV8C3rhTk7EAvi9P6/15f3wprph/LiwGmPqUFFVokRY1/KzXE8RVgGRbIITi6vbc7xx0ZWm1T4no7N05W6gND6j+4CgLW3jsipo+D7ew/0LMv4SF/fvqCqfzsBAHQBEf87uQTyuTAPCsI8KD6vdKdjACAoYunO8angruXugkP72zIo0qaOhi5riA0+pClympolI2sVIJF27O8LqLJSULjRuUwjxmM0RE+rhXO5vdTMCHu8jujhVfAVYEmw1FRqKALGYUHYY1RYk32ACkSPrsqcKaEKhC5rgPK+AXtvDdF9CnD915FMo5a6gPQ7Oj6qFFh79O2bvbfm6qCXoxT0XtkwcHDp7BSrUiC6U0aEFSB8Xh2UzVFYKZW5B8tZDC9nXp9jLITAuHHj4PP5XD8XWrbUre3bt0NR+g6WuXPn4tZbb8Xtt9+O2267DePHj8evfvUrNDc3J7e54IILEAqF8P3vfx+dnZ3Yf//98dvf/rYo72cksZt9wCsRqFvKJzAWn1hQdliwdtdcvf3lyprmhwx0Q30jErt4Vnl7BFBbF4EwAWN/f2492R5nzvLD90Q3tNcisQIjXn9PloT2egRSGRkdQ1ZyTfXyyZigPBIC+uGjYLV2Q1lbpMB4Lx3mFF+sIJMjlRGqiP1nyeS25gEDd9YYR1fBmu7LePNtfLEaxheqoHxsQs8SGA96xDixvWOEMzbyGU+/rBLAzvgvcgn2hIAck/I+grEU3bTP1kTsbztHXuPFj/rtqyNIhyJSnhP7ndQFRGLIuADnYedonAwq8b8RD1qcc90HGRhb++pQ3zEQ/WL6OhXZUthd++gc1Y6PYmcasU1upyLWKZPH0TnXfPtsgblzVN8ZqMXnPZsHBaAv74VxRBX0Zb35q/4dELD29UGuCsE4KP49VQSsaX3XRSNL7RB7nDbg55NYTinX6vX9ODp7hCX7MiEQPx6rFEQXVUMqgKxVIev7Ak+7Qe3/fUzdP3/K66VSYx181mRf8t+5klp8LnOvDfVDE9Y+OgK/H9yaxrLIt7ODDowVRcGyZcuS/3b+XGhnnnkmzjzzzLS/e+CBB/o9dswxx+CYY47J+HpCCFx22WW47LLL8raPlchqjt+Uvls+N6XJNOoREBQAAHQBc7Yf+uowtHWR2HqNHqaV69rFmQQVWNPjaxpvjMCa4+33pW42IHolzP18nu9EyUm1kqyYKzotyNry7+yiISpC2p3UAegCka/XAQDEZ44pFCpid1aJy2EuaYdCuNJl01KEK7hxzW11BJK5pFs75xAnA6dMN8fBviB5qEVwpC4gVEcA6SyQpiS2cTzBJ4BomgAi5c+7Uql1xNrc2UYFOBb6Bb+as92UtNvlInp0NeSX03QqDGUfnSOKiWkG2Y4LNeX/+aD3fY65zHFOBNKuYzj+GcrRamyuuALoz/VmrSOWKxkQsMfr6P3+0Jaay0Xkonqoq0Owm1T4lw6+QKTUBYx5Qfie6YVxYMAducWPOePwvuU6nfPQ5egcPlB/+mM4o8GkUquxef4AYM0ClM05Vr92znUucur2CLgjolKT9SrsRgXKJxbQXQbzjGVstAwYGWmkCYlRCe3fRRgxGQblYwPqNhP2WBX2HmUzmyMrM57Cq3u8/QFAfS22j9askXP8J+aCKe+XzzxvKoBi3NWk3qg5gzFNuAIymc9TnJ5+VM0V9DhvcjMkv7nmwlZnmWOchznbwpDuNnO+D8fcyeTfdO6L88/Hg2mZ+HW6UUjn9gXoH3PN3w0K9xxs50jtIDvnpH/4QXGiuJs1pe+DT3QeZD0OEwFoPkeMMx2jmSh9/0/urzOgVoVrVFsOcVedx9RgR/aH9Pd20RA9rsbdcZLl8HC9N03A+EIVQhfUxQJgx+h62kwAX6yInzVRz6ndXd83Z7Gx+PHUL1V/MIdp6vvMtbmdf6PIkSoDY8oLq4yK37jSqBtHzsiSvYcWW9bhYxNiu3eDg0TgbhwQKJ8KzjmwJuqw6xQoWwyI9uJUbRwSU0LbEIXUAHPqyJk2YifSqd/3/jmICqgYp/SUG0PXzama8vt8jnY4ggTX6LFzhNCXQzDiHOVMM2LsDDjt+jzcJkak63Nx7Xvi8QxFrJzvIdmRqg8Q7AnAjq81XJBCbM5OjzGq+7N2prg6C8LlcgjkuGzRQMLn1yF8Vi2s6f7YyCL6Mvqc7Ziu3WQhRowdl5ec5r4nmszGwIF68pgZ4n4592WoRdKG+3ezBazOz0tHLKtkoi/n/Y2cW4fwBfW57ZeWPjAOn1EL49AgIiekFD8bROdJv88v58C4f9ZAsTAwprxIplNv8X469UipRt2PELFgEx4etTQktLURSBUwPZ5uPGiKgDk3ACEB7VWPtj8A9a0oRETC2i/3i2w56BsxZmBc0YqRSt1vxDjl7zv3IY8jxjLDiLGryJTz8XQBKOAOfuLPdY0aOfY5MdfSGj/4NxKNp3eacwP9054T4unZrtHWqvSBfvTLNTCn+hA+J16B2dnOiWQ1AUTOqIWxvz+2dnEBRE6uQXRhMDbn0tG5azc5iiA5U6kzNJ0zvVhmqVieC1mvJuu8RE+pQc9NTcnK2q5jIfGZC0fQnmjLPAbGrk6aXK41iVR9W/ZFJ2mD+Ph2Q5xDnrrkVrG4vmPOwDfNLmTr4Ep8H/NxH2vvoSF6RBVCF9W527taxEa6x6Z8CNrA++6S+rHnOB3DlXXj9eJbROnYycDY4zelI6wadSprbgDy6R5oa8OIHltd9IXRs1E3RCBCEuZ0X9kvEZSOub8fvmd7ob0ShnFElSdHxJPVqGeNrI4J2aDArlWgbDOBiA34R97xRdm50iQdc1ldhYCGKzUwdo1uwD06mtcR4/Tpxq6RykyjUvG1hGP7KBD+yigo203I+ni6pCuQcwR7u2voXTwasmbw78M4ugrWjFhRMc1ZLdyVSh3fb+fcxgyj17JWQeScur7fOdcKj/8oRWz5tuiEwmXDmPMcAbezmnJTbOlE9Ep37YY06y0DsZR1YcQj+sFWE89GCPfonPP1NQEgHnymrhWbz44lX4bjMgvX93SA74/09RVakzogBrj9dM1rz9SpVGiZgl0NQOq+O9suTWAcOaMWygcmrGl5OM6FgBEv+qZ86KhonWl5J1dGDPrv+4B/K8ftnMFwke9jeedAeSFr1eQi7GKnd9NIle0WlJaRl0adIEcpsCb7IHok1E3eG73XV8cqqhqf83ZxsKGSYzRYe2tQWm1vznWNSqhvRCB9iI0YjyRCwN5bh5Aoq/WkKc+U1AAgLp+n+9QhBdV9o+26ocxnYOwMuJ1zXTONROnpf4YGWHMCMI7tS5G0ZvpjaZP/McrdVok1m4fS0aTEi4oJ4R5lcqWex0cvndWene/TeZpKuVEXzpImiWCqRJ2RiZGz8DfqEP7PelfwkLFzpIhDU5ZzGcF034Vk6nL+/qZrrnouAajZtyRR8nkD7Y9IH2imHcV0Hn8ZOpUKzfU9rUvpOBlg23QjxrI2nh2Q7+M9TadVP5nqBeQi181z2Y8CyXqmW7lyZU4vZBgG/uu//mvYO0Tly4pXnlPf9u6osTpS06gdvFqES2w3ob5vwm5SkxkGI5FX2x8A1DcjEAZgTR0Zy2SlsvaJXUE5z7iCpQR1fY/n73gfqPKz9IvM+zBczqI71Y6fnTf3wQw31K45pmn2X42lTZoHBNyvl68bb2ebpC7Hk7qvOXYsuD6HZGA85D0cmtR6o4rov+yRK0h2/FzMFQFqFITPqo2loTs6jxKjs8n9Gub3xNWp4VwKM4cR4+SIri76Ps9c/26GAnRJznZ3rDftWnu6wJzBrl3f1zbpC2g5nlfMa3Uu58zhZMTk2Nyu9+y1EeOLL74Yzz333IDb9Pb24sILL8Q//vGPvO0YlR9rUjyd+m3vjVQCGPFp1AnWfj7IKhEbMfZQlXB9TXy0eF7Acyne+WTO8EPq8bns6ZYcKSFtXSKNemQe//Z4FuCqeM5U6kKNGA90kx9Q3MFcgc51rsJSrnVN08/PdS+Bk+W1CxAsyEwjdvF9cQXjzhvvAUb0nFlf9i5qv8eKIrHs1ZiUv+v8pytt1hEc7aoi/JVR6L28oXD752BN98Oa6u8Lgp2Xp8RxmjIVYdCc78/5WQwigJK+wQfGyJQdkXjMmdVRoyB0UR3C59UVd2k/5/fR0bGVdkQ4lyJ6BdCvkGA6zs8yW8df6q7n+lbSnCOKJevZ76ijjsK3v/1t/Otf/0r7+7a2Npx11llYu3Yt7rjjjrzvIJUPq9kHqQLq5qh77o9HKNtMKK0WrD1GZhp1kiZgzglA2IDqlSJQEQnt1UisEvL+I2tuaz/xNY1FVELbECn13vTptqFuikJWCViTRlgadZw9VoP0CSgfGIDlvXMQFUGG0cbhLkPjGukb6EZVQXFu5JwBsLMqtXPE2LU2sOPnLG3hTIHNG9coev+OA9mkIfrFKoTPdY9oDtQJET28CtYeGsJfGYXI6aMQXRhE9ItVGbcvhOhx1bD20RE+t871uKsjIHU+aYIiYM0JQO5W7FzR+P44T5GJY2W41YCdb8UnYE71wZwyuOuNK2jMMWMhYxune0wVsCf4YsXTiilN0Tkgw/xrPcPxU2jOr36GtpfDycTJ9fPMUAywGLKe/X7605/i+OOPx+WXX44nn3zS9buPPvoIX/3qV/HRRx/hvvvuw+c///lC7SeVA19soXTRK6F87L05fuprI3u0zCmZzvtyCFKWPkDQ1oUhIjK2bnQeqm96nZFsf490TADQXgtD2IA525/feY9eogrYe2sQUUDx8JJlVDiuUS5Xtehhvm51huJQqUIyvwW3Mu1PpuJbVemLaLmCzWwjxoXoOHbti/Pxvh+NI6ph7efPvfBOtYLwpQ2x4HIXDcaxNZBNxb2Ltpt9CH+zHnJ05hFj102+mvvnUDDp/m5iCawMn02uo8euDgENiJxTh8jX6wZ4Rp/QhXWwJugwFlXn9secf7cmw3Gf5rFiB1pJQqD36tHo+X5jxqkFSY5gOG9FA3MwUAGzpEz1AnKQ89rTJRoxB3KY/SKEwI9+9CP4/X585zvfQTQaxYknnohNmzbhggsugKqqWLJkCSZOnFiM/SWPsyb5oG4xoL4dhb2nh+aROtKoR/L84gR7nAZrdw3qxybst8NAUwl3Rkpoq2MBoqua5whmT9Bhj1agvmtAfGpC7lr6BQC0V+IdQyN8xN4ar0N9x4DyvgF7Dw+dg6g4MqZSD3PEuFoBdsampgw0giMKnKlgNyhQ2m3YjtTdTHOMXUFOphHbNGSjivBZtbCb8he5ueaeun5Ol/bq+IcHs89y4mzjfhWh40o1pShN33Tyc3AFkH1Vn6ECiM8BDl1YB98LIQSmVMN4tB3mdB+0DfEpdM5AaZBBk93sQ7h5EKO4zinmo9JPIUhyBfyl6xhOVIF3dZykS6XWM3yPCy2Sw/dtMMvRDTGVOuM0kCLI+W7t2muvhd/vx3e/+1289dZb+NOf/oRddtkF9957L8aOHVvIfaQyYk3yAU/1QH07CuPIwff6FYryoQml3Ya1t9Z3YhrhzEOCUB/pgvmvTuArpfsslK0m1G0mrN1U2HuXPkAsCkXAnBeE76ke6GvCiJ5Qk/05BSQ+MWOdJLuosHcf2Z+B5ZhnbC4o8c5Q8SkZbtqGe9rPUiU2dGEdfH/rQfSoKvj+0j3MP5ZZ6IrRQFRCmI5lguoypFJnGKnMZfQvsR5u3qgZAsIBRi/7bVtOMgU+ecxiGC7XSGTiEMq03rUmkjUz7GYfovv6UdNQja49AbtKQNvQBgCutZmHFYAmOpgGeomU/e/9rwYoO6y0mVqukUovXALVLB0ImkDvd0ZDez0Cq4hZjvY+sQ/QHGDVCvdyTfkvviUFSjpiPKh+iKuuugoXXHABfve732HixIl46KGHGBSTiz1WhV0jYsulhL1T+EmroDTqBHOmH7JawFrbA9FRuiW09Bd6Y/szP+jJdX0LxTggAKkC2qvhkhfhSqwhau4fGPGfgb2XDqkgtlyWB6YRUJFlGBl1jVIOZQQmQ2psgt3sQ/iyBsgmzb2MUL7pAqhWXCNk9i6a+/fJ/XS8UdfocYnPAa7gK81omXOZn+oyPV9lmCft6qAo8ZQWV7CYaHLXMjkDz9EXioDcXU9ZCsyZZjv0fROJomZVubeR3FXL3KGjeKfdAfc5KH1qt4RsUmEcXlXUziF7nIbeq0cjcnZt5o0ypKXnlCad4zayVFW5kUO/yec+9zmIlBspKSW2bNmCRYsW9dt+1apV+ds7Kj+KgL2vD9raCNQtBqxpHghEbQl1fQRSANYIrkbdjx4btdSX9UJdFYL1xeKPGos2C+qGKGR1rCBYRalRYM3wQ1sXgfZaBOaBJXr/loS2Nnb8m3Mr4Pj3CdjjNKgfmRBt9sgutEf9ZboBTp3bOcjg1RVMZ7tRK0Z/jPN9NihpH3cXenL8XIqvhLNNMs03TnAEVEVd0qhAXB0prtG2ou9KZokiaK6OFWcRrAGeq6UPjPOSslwzwOfvfHnX8ZVlWw8ExlnPISUcV8qaVelsXz3lu5w6BtMvlTqHthcpr+u1wPiMM87oFxgTDcScFA+MN0U9ERgrW00onTasCXpxS/N7gHlwEPryXmhrQogeUTX4xdiHSX8xBCGB6MHBov9tLzDmBWKB8ZpQyQJj9e0olC4b5qTKOf7t8TrUj8xYOjUD44riShPOFISoAjAGGb2qAr1XNECEZPYR1yLd1PZeNTo2J1ARiPzHqIHn46o5BjmF4hxx1zN0XqR5zJrmA57phblvGdcLcKVSD30ObkEljh1nMweydGAkZMqmyEMAmvM8d0db2qlLZwEZC76VStbK76VL8svKXUAupcMxZb9lIOV95tLPJTw+x/jSSy8txn7QCGJN9kEKxNbRtWXJ5whp6+NppBVQdKufehXq3GpY/+6Bti4M88AiFr8K29BeDkNqgPG5yii6lcreR4e9iwr1QxPKxwbs3Yt/c6etiR//B1XOZ2CN16G/EILyvgGM8GJjlCJTkanBFIxJRwHkLlpOg8HWPjrU9wxYuxW2U0Y29L1+YiUC9waZnliY/RmIrHfcEWebZ+tcC3d3Hb3faSjv2iCO9nZVqC5VYJxmsEvEiy65AhJ/joGxMy24yvn+hryHCF1cD+2lEIzD+i+/JZtUoMuGvasKpSUWiTlTb80DgvA9G4IxPwB9ZXy+cZZ1josta4q4l4vOOdOnXZ0nAqknF5nasZFrKnVtjqsAFED556iQ91QrsMfrUDptKNtKvGSKLaG+Ho2lkVZSGrWDdnRsqQT9uVBRT7bay/ElmmYHgFEVeqoRAsbn4ks3rSr+0k2i3YK6KQp7lAJr6shcuzgd21GAiypMhlTqbJWQs79u7psaR1Uhekw1oqcNME+vwtjj+u6ms1ULT72Zlk2aN9Jfh0iEHNddbZgdNHmWnCKQqEbsDCCdQc9AmaPO32VaLmyQ7PF67PuTZrQw8h+jED089h1Lcu53k4qeG5oQPb6v6KXMMq+96IID70NB6xQMl5rhGHG0sTk9dr9hHJ7SsZFTYCxcHWFp13kuoAq9W6VCM+M34erGaEn3Q9lsQOmyYU/UB56rMoKpEwOw9tGh7LCgvlGkz8OQ0J8PxX48tHJGKtMx5wYgfQLa2jDQXdyrnbYmDCEB86CAN24GikSOUmA3qlA+s4AeL99hUN5lSpkc9vqxg/j+qALG56tcwWAxGfFpG16YypRgTfYhcnw1Qv9Z704hTvNZ2OM0hM+pRe9/jy7a/hWSa+TUObrqgZHLxGhccsQ409zOHHfVNWJcoM4M2ajCWFQNOcbR2ZIaQPtEynz74X7/88vZziLcf8CiqEs0DZbztOZcHs5xjjUOq0LPjU39z4G5plI7Mkz6jToXmJebnspYYnRKfTNS0v3QX42nkc6t7HRK84hYr53+bG9RKvVqL4ehdNowp/kgx3qgW7yUggrMAwMQJqCvChXv75oS2suhWLZEqQp/lZA1PnbcqVs5alxR1Aw3w5mC5Fx5IIbJVfSUGvRc2+i+KZWxNZCBWAXtohMC5oKq2HSSHD4La6ofcrQHIphhCH27HuYcP4xD+0bN3GtLl/6gMg6KXRvMRDVnZ4CpDCEwds4pLealP1sng/Nc4IH5u86q8qIr1nlr1ysInV8Ha08NxtHeWe40lSsTx/l5O7+uCtJnDORSs0oBZJ2KyPHVCJ9bW/TpmBV+x0qFIps02GNUqNstiDarNBe4iIS6IQLpA0wP9ZyXgj3ZByteqVd5x4A9qYA3RqaEvjy2RJNxlHdP7sVkLAhCWxmCvioE4/PFKYKmboxA6ZYwp/hccxErhT1eB16JQHnfgDW1sr//lSTTMijugk9pnqcCYqAb5nIaRhACSDOHMfr1OtR2aQhNQknmGSd4YqS0COw9dUS+ors7o8Xgg828E33/N75YDWuKD/ZesWFt12fj3L8cLyGuubNF/JxlloxA13fe8sD83aCC3ssbgCoB0WXD95duRE4fBdmkIbyvx6c9ZepwdAawGT6OwSzpZC7oP7+8GMriVL9t2zZceOGFmDVrFg4++GDcfPPNsKyBu3w6OjpwxRVXYO7cuTjwwAPxve99D729vcnfr1mzBhdffDEWLFiA2bNn48QTT8Tf//73Qr+VipJMp36zNOnU2oYIhBHvCS3yHAXPEQLG52Mpzb5nego6aqz9Owxlpw1zqq9kqYReI0ersKb7IHpkLKW64H9QQl8RG502D67MVHZrH84zrkiZim85R8LSjdSVxd3Q0MmggBynQ5s/quRrmQ/YATESOdvbmVZdogJLkS/XwG5UET6vDlAF7H18fd8JZ2eSs5Mp19HtoOhLay5Cf2zowjoYC4LZa2hoHuiQSCF30yDrVNh76Ah/K7YGellwjQxnSFHPdI4ZRGBcKp7/FCzLwkUXXYSmpiY8/PDD+Oyzz/Df//3f8Pv9uOyyyzI+78orr8SOHTtw3333wTAMfPe738V1112Hm2++GQCwdu1aTJ48GRdccAGampqwfPlyXHnllaipqcHChQuL9fZGNGuqH3guBG1jBOYhxb8515hG7WLN8MMe2wv1fTO2lNaUAoyiGRL6svho8ZGl6e3zKuPQKmivR6E/H4pVkC1gepDyvgH1QxP2WBXWpDJe5mQYZJMKWS2gfGTGluapkFGqipcplTp1vc1UaSqqupT54eOp9YBND4zYlYrzmCxRM8ixGkKLM8zfDgiYs/2xJY+cS5rlePjIgILe7zfGPuMidMDYzT5Ec5kaoAmEz6qF9koY1nRmEA2HK5Xa1Xni+DnTR5/DIZHTqHIBeehMmd4LL7yALVu24JZbbsGUKVOwcOFCXHbZZXjwwQdhGOlHArZs2YIVK1bgxhtvxKxZs3DAAQfgmmuuwRNPPIGWlhYAwDe/+U1cfvnlmDt3Lvbaay+cffbZOPTQQ/Gvf/2rmG9vRLP30mCPUqC8awBdxS2AIzosKFsM2LUK7ObKDAz6UQSii2Kpzb6newrSW62v6I2NFk/3wd6D7e5k7633FUFbX9i59/pz8cJnh1WVfHSoZISAtbcOYQHKhxw1rhiZUqmzFRLKclNX6pu14cq6PEwxDXYN6RHElapc4qUs0xICka/WxqZBOa4dIsfPTPpFrBMq2zq9RSY1wJruR+ScurKucO4JqXOJkz/nsLyX8/ycMXgu7efj+RHjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX4/p06cnH5s/fz6EEFi/fj2OOOKItH+rq6sLkyZNGtb+Knk40SVeIx+vVVKKgD3LD+2FEPQNEViH5G8EMVsbaa9FYtV45wagaN46QRdTajvJqX5Y43Wo7xvQ10VgHZDHkfxOC/ryEKQKmF+qKZvjt5jfN/OL1VDv7IDvmV5EZhdm1Fh8akJ7MwpZp8CeE8jb+yrH85Kc4APeiELbasKcWPhRgnJsoxHHVZU69wq7UhUQiSE8Bf0K9Hh6+ZQBSB0QBjw1rcWa4Qf+1oPoERWYVaQA4a+MgvZq2PtL6Dm+S3atAuUTK7kMTyayzlv3W/ZoBUqbDXt37xz/ZS+oIPzVUZD1KsROx4kyU8DslDrHPl1/C1OpB9bS0oLGxkbXY4kguaWlJW1gnO45mqahrq4uOWKc6umnn8bGjRvxwx/+cMj7qmkKGhtrsm+Yo4aG8i9cZC3UEHkhhMBGE4ET8tc2CenaSEqJ8CvtkABGHTkaSqPHLz5F4Gwn62s6Ij/aBt9TvQgeOhqiKj8TgSJ/3QErIqEdXYfqyfV5ec1iKsr3rREILw8Dm8Ko2wxoB+f/OxH506ewAPi+WI/qXUfl/fXL6bxkzdIQ+Vs3/B/bqMvjuTmbcmqjkca15qVzFDhTtd0026a9MSvTUc7Q/xsN5UMD9kSfZ1IEZb2KnpuavDliWmgCsOYEYM0pgylejo8neuIo2K+FXRW2nXq/OxqiR7rXMfaA8MX1UN41YM1i+nQ+WbNjx6+6wdFj6JzGksscYwVAug7HSg2Mf/nLX+KOO+4YcJvnnnsOACAyNHCmxzP9TkqZ9vE1a9bg6quvxg9/+EM0NzcPuE8DMU0bnZ3DX45FUQQaGqrR3t4Du0TFGfKmTsLfoADvhNG6ZSdQn58gbKA2UjZH4f/UgDVeR3sgCrSWdi3lUkrbTg2AfkAA2r/D6PrDZzBOGn7wpGyOwr+iC7JaoOsQHWjtHvZrFkuxv2/K5wPwbwoj/HgbIs3I65IdYpuJwEs9kKMUdM5S8/o5lOV5qUYioAPWO2G07ugq+I14MduotjYIXa+8auPZ2HvpMCf7YgUGRfoR47QVbPsVlEn5/KJlcsynkI0qrEYPHieVGBSXG2faa4MC44jMHX6yToWsK8I+DZKsVWHN9uDxP1JkqlyeQyp1xroOJe5bKVlgfNZZZ+GEE04YcJsxY8agqakJGzdudD2eGPVNHRVOaGpq6jcybJomOjs7+z3npZdewje/+U1cffXVWfcnF/m8GbJtWT43oAMwZ/rhey4EZV0Y5mH5TZ1K10aJtWLNgwIjov3yIbWdIsdUQ90YgboqBGOOP7lUw5BEJfx/7oy97pdrYAdEyaptDkexvm/2Pjq0iTrUzQaUVSGY8/OXzu7/RywQjh5eBVtDQT6HsjovKbFASd1iANvMoqWTllUbjTSqQOS82B269kpfBXjpOMUZ8wMQrRbsfXToL8Q7szNVV43LdY4l0YihZMmyIHLVdMih8ncuS4BVavGt+vp67L333gP+p6oqZs+ejU2bNqG1tTX53JUrV6K2thYTJkxI+9pz5sxBR0eHK6BevXo1pJSYOXNm8rE1a9bgoosuwpVXXonTTjutcG+2wiVSWLTXCltwCADQbUPdGIEMCpgzmTqTUY2C6JeqISTgf7gTiAx9Ap3vqR4orbHlmSy2eU6iX6qBFIDvHz1AT34mLyrvG9A2RmHXKTDnlUGaXpFY42MRkcJlmyqOs2Kqa8S4WkH4PxsQ/ZJjBCzbaEflJh5RhZIcaKVsnB0mzn7nXAJjjxbf8tZkgDQWLFiA5uZmLF68GJs2bcKKFStw++2344wzzoCux2541q9fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45PzkRFJ911lk4+uijsWPHDuzYsQMdHR2leqsjlj1Ogz1GhfqRCfGJWdC/pb8ShrDiSzRxeZYBmQcEYE7zQWm14X+se0hrG6uvhaGvDEFWC0RPrCn5Ca1c2OM0mPMCECEJ3z978vCCEr6/xEaLjUXVrLrpYMcDY/U9BsYVx7kyjnOOceLa4Py9Y0qDVJw/xzct01Rq8phyOjX7ymlnqRRkpmKHGYtvYXDblIDnA2NVVXHnnXdCURScfvrp+M53voMTTzwRl156aXKbUCiE9957z7V8009/+lNMmDAB55xzDi688ELsv//+uP7665O/X7p0KUKhEO666y4sWLAg+Z/zdSlPhIB5YGwES385nGXjYbAltDXxZWoO4ohZVkIgcsoo2HUKtHUR6M/2DurpyocG/H/ughRA+Cu1kHXsXh6M6BeqIYMC2uowlGEGbdrqMNRtJqy9NZhzOGrvZO2tQYr4iPEQOn+ojDlHM5wjxsnAOEP6tOPOyJoWK95oTeDyc1RhOLhA2WRIpZaZUu9Fhm1yGUkuEs9XpQaA3XffHb/97W8z/n7evHl46623XI/V19fj1ltvzficH//4x/jxj3+ct32kgRlzA9Cf7oH2ahjRYwozoqW+GYXSasNq1iHHlsWhXXrVCiJfr0Pgfzvg+79eyICS05xXsd1E4N6dEFEgekw17Ems/D1oNQqix9fA/0gX/I90InT5aMA/+O+FaLHge7IbUgGiX+aofT9+BfY4DerHJkS7DTmaHTgVwxHLukeM02yrph/tiH55FMxpUVjT2OFEQ2c3KFDabdi7lc+9iWRgTNm4RowdP+dy6CgpPydWfuKIMVWEUQqsqT6IXgl1Y2HmGuvPx0Y8jUPzuDZvBbDHaYicWQupAf6/dEN/ugewMo+sqZsiCP5vB0SvhHFoEMZCtvdQmXP9sXT2Nhu+vw4hnd2S8D/SCWEAxuFVsHfnqFY6yXRqzjOuKDLouMVx3uSn65jtVy01/hp+EVtah2mlNAyhbzcgfE4trCll1IlcRrtKJSLc58qkXPqfnefcDB2TpcDAmIommU69Jv/p1MqHBtT3TdhjVFiTeTYfLGuyD+Hz6iB9Ar5nexH4dQfUt6OuqsZihwnfI50I3NcJEZGIHlUVK17DEcqhEwKRk0fBrhHQ/x2GtnJw3w3fE91Qt5qwdtdgHJnfiu8jSbIAF+cZD8umTZvwX//1X1i4cCFmzZqFY489Fg888ECpdysjGUiTPg2kXSJNZiq+xbskyocaBdZUf1ldL2UelxKkEcp53gxk6XxMpaQPhiVTqalSWJN8sEcrULcYUD428jq6pT8XHy1eEOSyAkNkN/sQuqwB/j92Qv3AhHrPTsiggN2gQvTaUDpi1ZNljUDkxFGwZjC1MC9qFETOrkPgNx3wPdENWS1gzc4+R15/rhf6qnDs8zirNq/rIY809j4cMc6HDRs2YPTo0bjllluw22674dVXX8X3v/99aJqGr371q6Xevf6CgxjBUDNsy68VVSrOOqFsnAUMA47odkgjxvGBmBJ3HjEwpuJRBIxDq2LpuitCiHwlP4Gx2G5Cez0Ke5QCc38W3RoO2aQifHE91Ncj0F+KFYVSt8UqiVu7qbBm+mEcHASCHEbJJ3tvHZHTRsH/UBf8D3chGpIwPxdIf4GwJfR/9sK3rBdSB8Jn1UE28A5mIHKUArtRhfKZFVseq5rH71Cceuqprn/vueeeWLduHf75z396MjB2pVJn+4o4RywyjGQQVRQOMlA2zmPEmUqdS3DrPLey+BZVKvOAAHz/7IH6WgTii1Zebuh9/4otd2McXsUqivmgCFizArBmBWKp1CEZO+FxCaCCsmYFEBEC/oc64X+8G+pbUUQXVfcVkpMSyscmfH/vgfquAekXCJ9bl5w/SwOzxmtQWi2oW41YSiPlRVdXF+rq6ob1Gsowb8ATz+/3Oo6PWdGUftu7OM5vwnHDpqgjJzLO2E6UxDbqIxz3U6ntwXbKrhLaSDjPm1rm4yUt5zaq+/xbyjZjYEzF5RMwDg7C90wv9BUhRE+oGdbLiY8NaBuisGsVmFyiKf8UAVSP3JO611gz/Qg31MP/UCe0N6PQ3ozCblIhaxWIDgtKWyyd3R6rIvzVWlZfHwR7vA68EoHyHgPjfFm7di2efvrpAVeNyEbTFDQ2Du86kNDQUN3vMeM/LEAVCO5ag8jUbii76q6/14vPAAD+Kh0WYoUhtYAKG7FMmXztm5ekaydyYxsBMmgjhHaIvX0Zvwdsp+xGchvZkSjCaAMA1NQFEEUngIHPm4lzrubrO88KJZlIDc2noqaE513eVVHRGfOD0Ff0QlsdgnFocMijxlJK6H/rjr3mERwtppHB3lNH6PLR0FaHoL8cjqX/tsTWMbDGaTDnBWAeEOAI/iBZjnnGnGns9stf/hJ33HHHgNs899xzGDt2bPLf77zzDi655BJceumlOPjgg4f8t03TRmdnaMjPB2KjCw0N1Whv74Ftp1R2Pyh+m9PWA5w7KvZza3fy14ma+hHTTN4QGZpMZl63OrYtdwO2EwFgG/VzQxOgC/SmfA/YTtlVQhuJDhOJIamu3kgySWeg82binGvaVl82tWPE2DBt9BTovFtbG4SuDxxzMDCm4qtRYBxaFRs1/kcPoqfXDullrFd6oG42YO+icrSYRhafgHlYFczDqoBeG6JXQtYIIDBy0jqLTTapkNUCyscmEJVcfsfhrLPOwgknnDDgNmPGjEn+vHnzZpxzzjk47bTTcNFFFw377+frptG25ZBfy1kJ1bnm8Ui8oR1OO1UKtlFc4ruQoS3YTtmN5DZSjL73JdH3cy7vV2aq/i9K214MjKkkjMOC0FeHoK2NwDzYgL3XIOdJhm0Yf+wAAESOr2FFXhq5qhRIrsQ0fELAGq9D2xiF8qEBu5nLuiXU19ejvr4+p23feecdnHPOOTjxxBPx//7f/yvsjhWTYxDBtR4nERGlJx0B7HBiWec9fImrUnP4gUojoCC6qBpCAv5HuwBzcN8o/a/dkK0mzJl+2JN4g0tE2VlctmlY3nnnHZx99tmYP38+zj33XOzYsQM7duxAW1tbqXdt+DJVVyUiorTs3TSYc/yI/Meo4QXGmSpUlwBHjKlkzAMD0NZFoG4xoP+zB8YxuU22V9dHoL0cBmpVGCePKvBeEtFIkajgrTAwHpKnn34abW1teOKJJ/DEE08kH999992xbNmyEu5ZHkQdKYEMjImIslMEIl+JTYdU10cG91yRvip1qYdsGRhT6QiByCmjEPx5O3zLQ7B312HNHLharPKRAf8jnZACCJw3BqFqO+PcFyIiJ3ucBqkD6lYzdt4YwctoFMKll16KSy+9tNS7URAiwsCYiGjI5CDvxVOyp2Wax0uBqdRUUrJRReRroyAF4P9jJ9S3ohm3VT42ELh3J4QBmMfWQJ3JiZdENAiqgL23DhGRULabpd4b8pKw3fdzgIExEdGg5GmOsWRgTJXO2s+P6Ak1ECbgv38n9OW97jnHloS2OoTA/3ZA9EgYC4IwFwYzvyARUQYW06kpDRFyjBjHl/6za3mLRESUC7lLLAlZ5tqx6AykXXOMSxsZM5WaPMGcHwR0Ad/jXfA91QPthRDsCTogAOU9A8pOG1IBosdUw1gYhFLiLw4RladkAa53DZiHlHhnqOSMQ4LQXwzBnOmH+mE8i0ABem5o4tABEVGO7HEaQhfVwd5l4NBSCkBIZE69ZvEtohjzwACsvTT4/q8H6htRaK/1TeQ399VhLKqGvccgl3UiInKw99Ih1VhgzHnGFD2uGsb8IGRAwP/3ntiDAlznmohokOwJQ1wlRmHxLaK05K4aImfXAb12cg6gPVYDqtl1T0R54BOw99KhvmdAfGpB7sbLYEVTBGSTCvTY2bclIqLhEYilUcuUx9L9XAKMNsibqhTYzT7YzT4GxUSUV9aEeDr1lszF/qjCuG7MOFpMRFRQDIyJiIhKz2pOBMYswEVxzpsx3hkRERVGusCXgTEREVFp2HvpkBqgvmdwHXSKcVVFLdleEBFVBteIsUj/cwmURWC8bds2XHjhhZg1axYOPvhg3HzzzbAsa8DndHR04IorrsDcuXNx4IEH4nvf+x56e3vTbvvqq69i6tSpOPnkkwux+0RE5CV6fD3jENczpjimTxMRFZxIhG/OAoceytjxfGBsWRYuuugiGIaBhx9+GD/+8Y/x2GOP4Y477hjweVdeeSU2b96M++67D//7v/+Ll19+Gdddd12/7bq7u3HVVVfhc5/7XIHeAREReU1inrHCdGoC3Ddmasn2goioIshMgTFTqQf2wgsvYMuWLbjlllswZcoULFy4EJdddhkefPBBGEb6G5otW7ZgxYoVuPHGGzFr1iwccMABuOaaa/DEE0+gpaXFte0PfvADLFq0CHPmzCnG2yEiIg9IzjN+l4ExwXUzJnWOHhMRFZQ/fWAsuY7xwNatW4f99tsPTU1NyccWLFiA6667Du+++y4mT57c7zlr165FfX09pk+fnnxs/vz5EEJg/fr1OOKIIwAATz75JN5++2388Ic/xF133ZWX/VXysCZm4jXy8VojFdsoN2yn7NhGuRlx7bS3D1KPzTNWJACV5+6K5vzINH5+RESF5B4xzjB6XAKeD4xbWlrQ2NjoeiwRJLe0tKQNjNM9R9M01NXVJUeMt2/fjh/96Ee499574fMNcUHqFJqmoLGxJi+vBQANDdV5e62Rim2UG7ZTdmyj3Iykdgrv2w37jRDqe3So+wTy9rojqY0qhiswLtleEBFVBkdgLFzFD0sbGZfs9P/LX/4y6zzh5557DgAgMjRSpscz/U5KmXx88eLF+MY3voFJkyblustZmaaNzs7QsF9HUQQaGqrR3t4DmxVT02Ib5YbtlB3bKDcjsZ20vRTobwDdr+yEWTv8IlzFbKPa2iB0nZNh88aZyscRYyKigpACEBKwmxzXLw/NMS5ZYHzWWWfhhBNOGHCbMWPGoKmpCRs3bnQ9nhj1TR0VTmhqauo3l9g0TXR2diaf89JLL+GVV17BLbfcAgCwbRtSSkydOhUPPPAA9t9//yG9r3zeDNm2HDE3oIXCNsoN2yk7tlFuRlI7mRN06ADE5ijshVV5e92R1EYVw9mZzjnGREQFEbq8Adr6CMyDAvA/3t1/g0oNjOvr61FfX591u9mzZ+Ouu+5Ca2trMqhduXIlamtrMWHChLTPmTNnDjo6OrBx40ZMmzYNALB69WpIKTFz5kwAwBNPPOF6zh/+8Af8+9//xm233YY999xzGO+MiIjKgb2HBukTsfWMTcm5pRTDVGoiooKQYzUYY1NOslyuKXcLFixAc3MzFi9ejE2bNmHFihW4/fbbccYZZ0DXY1VF169fj0WLFuHTTz8FADQ3N+PQQw/FNddcg/Xr1+OVV17BDTfcgOOOOy45P3nSpEmu/xobG+Hz+TBp0iQEg8GSvV8iIioSVcCaqEMYgPI+q1NTDFOpiYiKyEOnXM8Hxqqq4s4774SiKDj99NPxne98ByeeeCIuvfTS5DahUAjvvfeea/mmn/70p5gwYQLOOeccXHjhhdh///1x/fXXl+ItEBGRR1n7xoovqu9ES7wn5BkMjImIisc586hSU6kHY/fdd8dvf/vbjL+fN28e3nrrLddj9fX1uPXWW3P+G5deeqkr2CYiopHPmhQPjN82YBxT4p0hbyiLOyMiohGoxOU5PD9iTEREVCiySYU9WoG6zQS67FLvDnkB16EmIqpIDIyJiKiiJUaNNaZTExERFZeHFnFgYExERBWtL52agXEli3y5BpETa0q9G0REVCKcSUNERBXNatYhlXhgbEum0lYocz5XpCAiKqkSX345YkxERJUtoMDeW4fokVC2m6XeGyIiIioBBsZERFTxrEk6AEB9i+nURERElYiBMRERVTxzih8AoL7BwJiIiKhoWHyLiIjIO+RYFXaDAvVDE4LLNhERERUf1zEmIiIqMSFgJUaN34yUeGeIiIgqj/SXtvoWA2MiIiIA5tT4sk1MpyYiIio6WVPa0JSBMREREQB7Hx3SL6C+EwWiHpr0REREVAkYGBMREXmAJmDt54MwEQuOiYiIqGjsegbGREREnpBMp97IecZERETFEDmvDtGFQdj76CXdD62kf52IiMhDrMk+SA3QNkYRNSWglbYQCBER0UgmJWBP8cOe7Cv1rnDEmIiIKCmowJrsgwhLqG8znZqIiKhSMDAmIiJyMGfFlm3SXmM6dSYffPAB5syZg3nz5pV6V4iIqIyJoHfCUe/sCRERkQdYU/yQvvg8Y1an7sc0TXznO9/B/vvvX+pdISKiMieqvROOemdPiIiIvMAnYE31QxiA+iZHjVP96le/wh577IFjjz221LtCRETlzkOBMYtvERERpTBn+aGti0B7LQJrVqDUu+MZr776Kh5//HE8/vjjeOaZZ/LymooyvAJniecP93VGOrZTdmyj3LCdsmMb5U5Uq55pp7IIjLdt24brrrsOa9asQVVVFU466SRcccUVUFU143M6Ojpwww034Nlnn4Wqqjj66KPxve99D1VVVcltbNvGPffcgz/96U/Ytm0bdtllF3z961/H2WefXYy3RUREHmVN8kEGBdRNUaDbBmq806NdKt3d3Vi8eDF++MMfoq6uLi+vqWkKGhtr8vJaDQ3VeXmdkY7tlB3bKDdsp+zYRplFZnfDWtcLdWYVGhpKu0xTgucDY8uycNFFF6GpqQkPP/wwPvvsM/z3f/83/H4/LrvssozPu/LKK7Fjxw7cd999MAwD3/3ud3Hdddfh5ptvTm7zox/9CC+++CKuvvpqTJw4Ee3t7QiFQsV4W0RE5GWagDk3AP3FELRXwjAXVmV/Tpn65S9/iTvuuGPAbZ577jn8/Oc/x+c//3kccsghefvbpmmjs3N4111FEWhoqEZ7ew9sm3PCM2E7Zcc2yg3bKTu2UQ6+Wg3lpGpU7aoXpZ1qa4PQ9cyDqkAZBMYvvPACtmzZgvvuuw9NTU2YMmUKLrvsMtx222245JJLoOv9exi2bNmCFStW4NFHH8X06dMBANdccw0uuugiLF68GE1NTdiyZQseeughPPHEE5gwYQIAYM899yzqeyMiIu8yDooFxvrLYZiHBQHhjVSvfDvrrLNwwgknDLjNmDFjsGbNGnzyySf4wx/+AACQUsK2bUydOhU/+clPcPzxxw/p7+frZsi2JW9Ac8B2yo5tlBu2U3ZsoyyqYtdVr7ST5wPjdevWYb/99kNTU1PysQULFuC6667Du+++i8mTJ/d7ztq1a1FfX58MigFg/vz5EEJg/fr1OOKII7Bs2TLsscceWLZsGc4//3wIIXDooYfiyiuvRE3N0NO68pEjz3kJ2bGNcsN2yo5tlJuKbKdxOuy9NCgfmNC2mrAn+AbcvFzbqL6+HvX19Vm3u+eee2AYRvLfzzzzDO69914sWbIEu+22WwH3kIiIqPA8Hxi3tLSgsbHR9VgiSG5paUkbGKd7jqZpqKurQ0tLCwDgww8/xMcff4x//etfuOWWWxCNRvHDH/4QV111VdaUskzyOVcK4LyEXLCNcsN2yo5tlJtKayfzSBvR+1pQ9aoB/4Gjc3rOSG2jffbZx/XvDRs2QFEUTJo0qUR7RERElD8lC4xzndMEACJD+lqmxzP9TkqZfFxKCcMw8JOf/AR77703AOC6667DmWeeiZaWFtcIda7yMVcK4LyEXLCNcsN2yo5tlJuKbaeJAoEqAfPlHvQcuROyIfP8pGK2US5zpYiIiCh3JQuMc53T1NTUhI0bN7oeT4z6po4KJzQ1NSW3STBNE52dncnnNDU1QdO0ZFAMAM3NzQBiVbCHEhgD+ZsrlXitiroBHQK2UW7YTtmxjXJTce2kAcbBQfie6YX6fC+ix2fPCqqUNjr55JNx8sknl3o3iIiI8qJkgXGuc5pmz56Nu+66C62trcmgduXKlaitrU0WzUo1Z84cdHR0YOPGjZg2bRoAYPXq1ZBSYubMmcltTNPEhx9+mCy69d577wEAxo0bN9y3R0REI4QxPwj9uV5oL4UQPbIKqOLSTURERCON56/uCxYsQHNzMxYvXoxNmzZhxYoVuP3223HGGWckK1KvX78eixYtwqeffgogNvJ76KGH4pprrsH69evxyiuv4IYbbsBxxx2XHAk+5JBDsN9+++F73/seNm3ahPXr1+OGG27A0UcfPeTRYiIiGoFqFJgHBiCigP4il/QjIiIaiTwfGKuqijvvvBOKouD000/Hd77zHZx44om49NJLk9uEQiG89957rmqZP/3pTzFhwgScc845uPDCC7H//vvj+uuvd73ub37zG4waNQpf/epXcckll2DmzJm46aabivr+iIjI+4zDqiBVQH++F+iyh/YiUQl1bRgwR36aNRERUbnxfFVqANh9993x29/+NuPv582bh7feesv1WH19PW699dYBX3fXXXfFr371q7zsIxERjVxytApzfhD6ihB8/+pB9KRRg34N39Iu6K9GENYErBn+AuwlERERDZXnR4yJiIi8IHpEFWRQQFsThvKhkf0JDsqWKPRXI7BHKbAm6gXaQyIiIhoqBsZERES5qFIQPbYaQgL+R7pyT4nutWPbA4geVw0EeeklIiLyGl6diYiIcmQeGIC1rw7lMwu+v3YDMktwbEv4H+2C0mHDnOWHNYsp1ERERF7EwJiIiChXQiBy6ijYoxToa8LQVgxQpVpK6E/1QNsQhT1aQeSkGkCI4u0rERER5YyBMRER0SDIehWRc2ohNcD/9x7o/+gBrJSRY0PC92g3fM+HIKsEwl+vYwo1ERGRh5VFVWoiIiIvsffUEf56HQK/74TvmV6ob0RgzQvC3EtA29wDdXUISpsNe5SCyLm1kLvycktERORlvFITERENgb2vD6Fv18P/aBfUrSbUx7sRRTcSNafNqT5Ev1wDWa+WdD+JiIgoOwbGREREQyR31RC+uB7K+ya0zVEETRUhvw1jig9yN15iiYiIygWv2kRERMMhBOx9dJjNPvgaa9DV2g1p57iUExEREXkCK4EQERERERFRRWNgTERERERERBWNgTERERERERFVNAbGREREREREVNEYGBMREREREVFFY2BMREREREREFY2BMREREREREVU0IaXkYot5YtsSlmXn5bV0XYVhWHl5rZGKbZQbtlN2bKPcsJ2yK1YbqaoCRREF/zuFlq/rJo/N3LCdsmMb5YbtlB3bKDdeum4yMCYiIiIiIqKKxlRqIiIiIiIiqmgMjImIiIiIiKiiMTAmIiIiIiKiisbAmIiIiIiIiCoaA2MiIiIiIiKqaAyMiYiIiIiIqKIxMCYiIiIiIqKKxsCYiIiIiIiIKhoDYyIiIiIiIqpoDIyJiIiIiIioojEwJiIiIiIioorGwJiIiIiIiIgqGgNjIiIiIiIiqmgMjD1myZIlOOKIIzBjxgycdtppWL9+fal3qWjuuusunHLKKZgzZw4OPvhgfPvb38b777/v2iYSieD666/HvHnzMGfOHFx66aVobW11bbNt2zZceOGFmDVrFg4++GDcfPPNsCyriO+keK699lpMnjwZDz74YPIxtlHMJ598giuuuAIHHXQQZs+ejZNPPhlbtmxJ/p7tBHR3d+O6667DoYceilmzZuG4447D448/nvx9JbbRyy+/jG9+85tYsGABJk+ejGeffdb1+3y1yZo1a3DSSSdh+vTp+MIXvuBqdxocXjd53RwMXjcz43UzO143+xtR101JnvH3v/9dTps2Tf75z3+W77zzjrzmmmvkgQceKFtbW0u9a0Vx3nnnyUcffVS+/fbb8s0335QXXHCBPPzww2UoFEpu8/3vf18uXLhQrly5Ur7++uvytNP+P3vnHdZU0v79b0CkCIKAAqIICicgCAiKropiw7K6K5a1LPayoq69rq6yumvvYMWGvXewKzZURMGKIEoRpEkRkBbIvH/wnvMQkkASgujP+VxXLuXMmTlT72n33PMbGTZsGOdeXFxM+vTpQ0aNGkVev35NgoKCSJs2bcjGjRtrIknVys2bN8kvv/xCOnToQA4cOMA9p3lESFZWFuncuTOZP38+efbsGYmPjydBQUEkKSmJe4fmEyF//fUXcXd3JyEhISQ+Pp4cPHiQWFtbk0ePHhFCfsw8CgoKIuvXrydXrlwhDMOQmzdvirgrI0/i4+OJg4MDWbFiBYmOjiYHDhwgNjY25P79+18tnf9XoP0m7Tflgfab0qH9pmzQflOc/0v9Jp0Yf0MMHDiQLF26lPu7pKSEdOjQgezatasGY1VzpKenE4ZhyJMnTwghhGRnZxNbW1ty+fJl7p3o6GjCMAx5/vw5IaS0cdrY2JC0tDTuncOHD5NWrVqRoqKir5uAaiQtLY107NiRvHnzhnTu3Jnr4GkelbJmzRoydOhQqe40n0r5+eefyfbt20Weubu7k127dtE8IkSsg1dWnqxevZr06dNH5FvTp08nEyZMqM7k/J+E9pui0H5TOrTfrBjab8oG7Tcr5nvvN6kq9TdCUVERXr16hfbt23PPVFRU0K5dO4SHh9dcxGqQnJwcAICuri4A4OXLlxAIBCJ51KxZMzRs2JDLo/DwcFhbW8PQ0JB7p0OHDsjOzsb79++/XuSrmQULFmD48OHg8/kiz2kelXLz5k3Y2dnhzz//xE8//YT+/fvj3LlznDvNp1JatmyJGzduICUlBYQQ3L17F6mpqWjXrh3NIwkoK0/Cw8NFwmDf+VFlvaLQflMc2m9Kh/abFUP7Tdmg/aZ8fG/9Jp0YfyNkZmaipKREpFIAgIGBAdLS0mooVjUHIQQrVqyAi4sLmjVrBgD49OkTNDQ0oK2tLfKugYEBPn36xL1jYGAg4s7mKfvO987BgweRl5eHMWPGiLnRPCrlw4cPOHz4MJo1a4Y9e/ZgwIABWLhwIW7cuAGA5hPLokWLYGZmho4dO8LOzg5TpkzBihUrYGNjQ/NIAsrKE2nvZGVlQSAQVFf0/89B+01RaL8pHdpvVg7tN2WD9pvy8b31m7WUFhKlWiCEgMfj1XQ0vjpLly5FVFQUjhw5IvJcUl4QQip9p6Ln3xPv3r3D1q1bcfz4caioSF7X+tHzCChNb4sWLTB9+nQAgI2NDV6+fIkjR46ga9euAGg+AaWDxYiICOzcuRNGRkZ48OAB/vrrLxgbGwOgeSQJZeVJ+XfKh0FRHNpv0n6zLLTflA3ab8oG7Tfl53vqN+mO8TdCvXr1oKqqKrZalJGRIbYa/n+dZcuW4ebNm/D394eRkRH33NDQEPn5+cjNzRV5v2weGRoaiuUh+3f5labvkWfPniEjIwPu7u5o3rw5mjdvjsTERPz333/o2bMnzaP/j6GhIZo2bSryrFmzZkhKSuLcf/R8KigowIYNGzB//nx06tQJ1tbWGD16NDp16gR/f3+aRxJQVp5Ieic9PR16enpQU1Orruj/n4P2m/+D9pvSof2mbNB+s3Jovyk/31u/SSfG3wi1a9eGra0tgoODuWdCoRAPHjyAo6NjzUXsK0IIwdKlS3H16lX4+/ujcePGIu52dnZQU1MTyaOYmBh8/PiRyyNHR0e8efNGxAx8cHAw6tatKybwv0e6deuG8+fP4+zZs9yvQYMGmDBhArZv307z6P/TsmVLxMXFiTyLjY2FiYkJAFqXAKC4uBgCgQCqqqoiz1VUVCAUCmkeSUBZeeLo6Ij79++LhB0cHPzDyHplQftN2m/KAu03ZYP2m5VD+035+e76TaWa8qJUCfbaidOnT5Po6Gjy999//1DXTixZsoQ4OzuTR48ekdTUVO5X/toJNzc38uDBA/LixQsyePBgiSbfx4wZQyIiIsidO3dI27ZtyYYNG2ogRV+HstY1CaF5RAgh4eHhxMbGhuzYsYPExsaS06dPEzs7O3Ljxg3uHZpPhHh6epJffvmFu3bi6NGjpHnz5uTcuXOEkB8zj3Jzc8nr16/J69evCcMwZP/+/eT169ckNTWVEKKcPImPjyf29vZk1apVJDo6mhw8eJA0b96cXtekALTfpP2mItB+Uxzab8oG7TfF+b/Ub9KJ8TfGgQMHiJubG7G1tSUDBw4kz549q+kofTUYhpH4O3XqFPdOQUEB8fb2Jq1btyYODg5kypQpIubdCSEkISGBjBs3jtjb25M2bdqQlStXkuLi4q+dnK9G+Q6e5lEp165dIz///DOxs7MjvXv3JmfOnBFxp/lESGpqKpk3bx7p0KEDsbe3J7169SIHDx7k3H/EPHr48KFEObR582ZCiPLy5MGDB+TXX38ltra2pGvXruT06dNfLY3/16D9Ju035YX2m5Kh/Wbl0H5TnP9L/SaPEGrxg0KhUCgUCoVCoVAoPy70jDGFQqFQKBQKhUKhUH5o6MSYQqFQKBQKhUKhUCg/NHRiTKFQKBQKhUKhUCiUHxo6MaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhVJjBAYG4vTp0zUdDQqFQqFQvgtov0mhVB90YkyhUGqMy5cv48yZMzUdDQqFQqFQvgtov0mhVB90YkyhUCgUCoVCoVAolB8aHiGE1HQkKBTKj8f8+fPFVr2nTJmCP//8s4ZiRKFQKBTKtwvtNymU6qVWTUeAQqH8mEyaNAkfP35ETk4OlixZAgAwNjau4VhRKBQKhfJtQvtNCqV6oRNjCoVSI5iZmUFPTw+EEDg6OtZ0dCgUCoVC+aah/SaFUr3QM8YUCoVCoVAoFAqFQvmhoRNjCoVCoVAoFAqFQqH80NCJMYVCoVAoFAqFQqFQfmjoxJhCodQYampqKCwsrOloUCgUCoXyXUD7TQql+qATYwqFUmNYWFggKioK169fx4sXL5CSklLTUaJQKBQK5ZuF9psUSvVB7zGmUCg1RkZGBv7++288fvwYnz9/pvcxUigUCoVSAbTfpFCqDzoxplAoFAqFQqFQKBTKDw1VpaZQKBQKhUKhUCgUyg8NnRhTKBQKhUKhUCgUCuWHhk6MKRQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkyhUKqdR48egc/nY/jw4TUdlWolISEBfD4fXbp0qemo1AgfPnzAtGnT0LZtW1hbW4PP5+P69etVDvdHqT+U/5vMnz8ffD4fp0+fVmq4w4cPB5/Px6NHj5Qa7vfMggULYGNjg+joaKWEd/v2bfD5fGzevFkp4UnCx8cHfD4fPj4+1faNHwman5SqUKumI0ARZ/jw4QgJCRF5pqmpCW1tbTRq1Ah2dnbo0aMHWrduLTWM06dPY8GCBSLPeDwetLS0YG5ujs6dO2PkyJGoW7eumN+UlBT4+/vj3r17+PDhAwQCAerVq4f69evD3t4eLi4u6N69O9TU1ET8lZSU4MyZM7h48SLevHmDnJwcaGtrQ19fH5aWlmjdujW6deuGhg0bypwXrGD7888/ZfZDofzIPHr0CCEhIXBxcUGbNm2+2neLioowcuRIJCYmwsDAAI6OjuDxeNDT06vU7759+5CTkyNVJv2IRERE4Pr167CxsUG3bt1qOjqUr8z3Xv5lxyCTJk3CtGnTKnyfz+eLPatduzYMDQ3h4OCA33//vcIxDwC8efMGZ8+eRc+ePWFpaVlpHKOjo9GvXz8IBAKYmpri5s2bYu906tQJDg4O2Lt3L4YMGYIGDRpUGm5ZEhIScObMGZiamqJ///5y+aVQKF8fumP8DWNiYgInJyc4OTnB0tISmpqaePbsGQ4cOABPT0/0798f7969qzCM2rVrc2E4OjpCS0sLr169gq+vL/r164ePHz+KvP/o0SP07t0bu3fvxtu3b6Grqwtra2toa2sjMjISR44cwYwZM5Ceni7iLzc3F56enli4cCEePHgAQggsLS3RsGFDpKWl4erVq/jvv/9w9uxZufLA19cXvr6+cvmhUH5kQkJC4OvrK7a4Vt3cuXMHiYmJsLe3R1BQEI4ePYojR46gVatWlfrdv38/fH19kZ2d/RVi+n0QEREBX19fpey4U74/vvfyL9vXnzt3DoQQmfwxDMONWZo0aYJPnz7h0qVLGD58OHbv3l2h33Xr1kEoFMLLy6vS7xBC8Pfff0MgEFT6rpeXF/Ly8rBlyxaZ0lCWxMRE+Pr64syZM1LfqVevHiwsLFCvXj25w6eIQ/OTUhXojvE3zIABA8R2SnNzc3Ht2jX4+Pjg1atXGDRoEI4cOSJxtRUA6tevjyNHjog8u3PnDmbOnInExEQsWbIEfn5+XNjTp09Hbm4uOnTogMWLF6NJkyacv/z8fNy7dw8nTpwAj8cTCXP16tV4+vQp9PT0sGLFCnTu3Jl7hxCCiIgIXLhwAbq6ulXOFwqF8u0RExMDAHBxcUHt2rVrODYUCqWm+PjxI0JCQqCiogJNTU0kJibi8ePHcHFxqdTvokWLRDRdsrKysGjRIly7dg3r1q1D165dYW5uLuYvNjYWd+/ehZ2dHRiGqfQ7R48exdOnT9G1a1fcuHGjwnc7duwIQ0NDnDt3DnPmzIG2tnal4cuDp6cnPD09lRrmjwzNT0pVoDvG3xna2trw8PDA6dOnwTAMvnz5gmnTpqGkpETmMDp27IjJkycDAO7du4esrCwApWdpMjIyUKdOHfj4+IhMioFSde7u3btj586dMDIy4p4XFxfjwoULAErP93Tp0kVk4szj8dC8eXPMmzcPv//+u6JJp1Ao3zCFhYUAAA0NjRqOCYVCqUnYHeK2bduid+/eACC3thgLu9iuqamJkpISXLt2TeJ7x48fByEEffv2rTTMtLQ0rFu3DtbW1jLZLVBVVUWvXr2Qn5+P8+fPy50GCoXy/UB3jL9T9PT0sGrVKnh4eCAmJgZXrlzhOiBZYM/qCIVCxMfHQ09PDx8+fAAAWFhYQEtLS+aw0tPTkZeXBwCwtbWVIxXS8fHxEVGhLr8jfuPGDTRq1AglJSW4desWbt68iefPnyMlJQWFhYUwNjaGq6srJkyYIDKJZ5k/fz7OnDmDFStWoFWrVti0aRMePnyInJwcmJmZYdCgQfD09ISqqqrE+KWmpmL37t24ffs2kpKSoKqqCoZh8Ntvv8HDw0NsR51Nz5QpU+Dp6YktW7bg5s2bSE1NRceOHbF161YAQFhYGPbu3YunT58iMzMTWlpa0NfXh52dHX755Rd06tRJpvxTRr64urpi8+bNCAoKQmZmJndGaty4cVLz5ezZszhw4ACio6OhoaEBJycnhc+HJyQkoGvXrtzZr8OHD+PYsWOIjY2FhoYG2rRpg2nTpqFZs2Zifrt06YLExETcuHEDHz9+xK5du/D8+XNkZWXB19eXO7OXkpKCHTt24M6dO0hJSYGmpiZsbGwwePDgCtvT7du3sXPnTrx+/Rq1atWCra0tJk6ciEaNGkl8/9GjRxgxYgRcXFxw4MABie+wdTwyMlLMraSkBOfPn8f58+fx+vVrfPnyBfXr14eVlRV69eoFDw8PkTAA8WMIHh4eWLlypdQ0laW4uBjHjx/HuXPnEB0dDYFAgEaNGqF79+4YO3asyDng8m217HcrSi8gbguha9euIu779+8XOydNCBGpC1paWmjXrh1mzZoFU1NTid8pKCjA4cOHERgYiJiYGAgEAjRu3Bi9evXC6NGjUadOHTE/irTF2NhY7N69G8HBwUhNTYWGhgZsbW0xfPhwsbRVBFt/AeDMmTMiaphl8zQtLQ1XrlxBUFAQYmJikJqaCnV1dVhaWuLXX3/F4MGDoaIivv5dtq4FBgbC398fUVFRUFVVhaOjI/788084ODhIjd+DBw9w8OBBhIeH4/Pnz9DT04OLiwv++OMPidpLsrTH4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD5fZPoUy8uXevXvYsWMHXr9+DaFQCDs7O0ydOlXqOdfs7Gz4+Pjg2rVrSE9PR4MGDdCzZ09MmTJFpjhLyi+g4vIvS2xsLDZv3owHDx4gNzcX5ubm8PT0xODBg6V+5+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxMRyCkce7cOQBA37590ahRI5w4cQJXrlzB4sWLFVo409HRgbm5OSIiIpCQkCDxncDAQACQyfDhv//+i9zcXPzzzz/cgl5ldOnSBQcOHEBAQACGDRsmk5+y9mJCQkJE2kbZM81lxwdl+0tWPnp4eOCff/7Btm3bEBAQgJSUFDRo0AADBgzAhAkToKqqisLCQvj5+eHChQtISkqCgYEBfv31V0yePFnMHgyLsuQVy/nz53HixAlERkbiy5cvqFu3LgwNDdG6dWsMHToUVlZWYn6qQ5ZIy08WecdviqaN8n1CJ8bfMc2bN4eDgwOePXuG27dvyzUxlnTeh1UPio2NRVZWlkxGcwCgTp064PF4IIQgPDxcKQKCPV/99OlTAICTk5OIu7q6OoDSAdDkyZOhoqICAwMDNGrUCEVFRUhMTMTBgwdx6dIlHD58WKLqFQDExcVh5cqVyMvLA8Mw0NTUxNu3b7F8+XI8ffoUGzduFBOSoaGhmDRpEj5//gx1dXWYmZkhPz8f4eHhCAsLQ3BwMNasWSNRuGZkZGDAgAFISkqCpaUlmjVrhlq1SpvhzZs3MWXKFJSUlEBbWxuWlpYQCoVITk7GxYsXkZubK/PEuKr58vHjR3h4eCArKwtWVlaoVasWYmNjsX79eiQmJmLp0qViflauXIm9e/cCAIyNjWFgYICHDx/i/v37mDRpkkzxlsayZctw8OBBGBsbo1mzZtxi0N27d7F37144OjpK9BcYGIgNGzZAW1sbZmZm0NTU5NxevHiBcePGISsrC+rq6rCyskJWVhYePnyIhw8f4t69e1i+fLlYmAcOHMC///4LADAwMICJiQlevXqF0aNHY/bs2VVKpyRyc3MxadIkzvKssbExGjVqhJSUFNy5cwe3b9/mJsZOTk5ISkpCUlISTExMYGJiwoUjrazLU1hYCC8vL9y/f5/zp6Wlhbdv32L79u24ePEi/P39uUUAtq1K+m5lKo0GBgZwcnLCy5cvUVRUBDs7OxE1bB0dHTE/c+bMwYULF2BmZgZzc3O8f/8eAQEBCA0Nxblz58TOlaWmpmLs2LHcxM/ExARaWlqIiYmBj48Prly5gv3794v4U6QtXrlyBbNnz0ZRURG0tLRgYWGBrKwsPHjwAA8ePMDEiRMxY8YMmcrAzs4OampqiI2NhYGBgYj2Ttk8PXHiBDZt2gR1dXU0aNAAfD4fmZmZIrJo8+bNEmURAOzZswerVq2CgYEBmjZtivj4eNy9excPHjzApk2bJBp9WrVqFfbs2QOg9CyflZUVEhMTERAQgGvXrmHz5s3o3LmzxO9V1B5nzZqFy5cvAwAaNmwIAwMDZGVlISoqCq9evYKDg4PME+Oq5suxY8ewZMkS6Ovro0mTJoiLi0NISAhGjx6Nffv2iU0aMzIyMGzYMMTExEBFRQVWVlYoLi7Grl278OjRI5iZmckUbxZZy5/l9evX8PLyAiEEFhYWSE1NRVRUFBYvXozPnz9jwoQJYn4OHDiA5cuXQygUQkdHB5aWlkhNTcWtW7cQFBQEb29vDBkyRK54A8CzZ88QExMDdXV1uLu7o06dOmjYsCE+fvyI69evo0+fPnKHCZQe5QIgcdH+w4cPSEpKgp6eXqV5HRQUhMuXL2Pw4MFwdHSU2aJ3ixYtwOPx8Pz5cxQVFcl0XIRhGK4Oa2tri5Rd/fr1ZfouAAgEAowaNQrh4eGwtLSEsbEx4uPjsXHjRiQlJWHhwoUYOXIknj17hmbNmsHExARxcXHYtm0bUlNTJfZjypRXQOlxOvYMeP369dG4cWPk5uYiPj4eUVFRMDU1FRsbVpcsqQhFxm+KpI3yHUMo3xyenp6EYRiyefPmSt9duXIlYRiG9OjRQ+T5qVOnCMMwpHPnzhL97d69mzAMQ6ytrUlGRgYhhJCYmBhibW1NGIYhv/76KwkICODcKmPo0KGEYRji6OhItmzZQqKjo4lQKJTJb0UwDEMYhpHqnp2dTU6dOkXS09NFnn/58oX4+voShmHIqFGjxPzNmzePMAxDbG1tiaenJ/n06RPndu/ePeLo6EgYhiGHDx8W8ZeamkratGlDGIYhGzduJHl5eZzbmzdvSM+ePQnDMOTIkSMi/jZv3kwYhiE2NjZk4MCBJCEhgXPLz88nhBDSp08fwjAMWb9+PSksLBTx/+LFC3L27Fmp+VAd+TJp0iSR8r969SpXP969eyfiLygoiDAMQ5o3b07OnDnDPc/JySF//vknsbW1JQzDEE9PT5nT8OHDBy5MW1tbcv78ebFw2TrO5iFL586dufzesGEDKSoq4twKCgpIXl4e946XlxfJysri3G/evEkcHBwIwzDk6NGjIuG+efOGNG/enDAMQ3bs2EFKSkoIIYQUFhaSpUuXcuks3+4ePnxYafql1XU2nW5ubuTx48cibsnJyWJygq1rssgPSaxatYowDEN++uknEhYWJvKt3377jTAMQwYPHizmryrfZcviw4cPEt3Z/LO1tSXt27cnT548EYkX23bWrVsn4k8oFJJhw4YRhmHIpEmTSFJSEueWkZFBvLy8CMMwZMaMGSL+5G2LkZGRpEWLFsTW1pYcOHCACAQCzi0kJIS0b9+eMAxD7ty5I3OesDJ83rx5Ut95/PgxCQ4OFvkeIYTExsZyMvncuXNi/ti6ZmtrS3bt2iVSj5ctW0YYhiHOzs4kNTVVxN/x48cJwzCkY8eO5Pbt2yJuR44cITY2NsTZ2VlEnhJSeXt8+fIl983Q0FARvwUFBSQgIIC8fv26gtxSbr7Y29uTY8eOcX1YYWEhmTFjhtS6P23aNMIwDOnduzeJi4vjnr948YK0b9+ekwunTp2SOQ2ylD87VrC1tSWLFy8W6Y/27dvHpSU7O1vE37179wifzyfOzs7k/PnzIn311atXScuWLYmtrS2JjIyUOb4sS5YsIQzDkGnTpnHP1q5dSxiGIWPHjpXqj837hw8firm9e/eO2NjYEIZhRPoXljNnzhCGYciYMWMqjNuXL1+Im5sbadu2LcnMzCSE/E+2SBsrlcXd3Z0wDCMmhytCFtkvTXaydcDW1pb07t2bxMbGcm7BwcHE1taW8Pl84uXlRXr37k1iYmI49/v373P1Ljo6WiRcZcur9PR0YmNjQ5o3b06uXbsm4lZcXEyCgoLEyrW6ZAkh0vNTkfGbImmjfN/QM8bfOcbGxgBKV6xl5e7du5zqbvv27bmdEnNzc26FMCIiAjNmzEDbtm3RrVs3zJw5EydOnJBqNdbb2xv6+vrIy8vDpk2b0Lt3b7i4uGDkyJHw8fFBVFRUVZIpFR0dHfTv3x/6+voiz7W0tDB58mQ4OztzakKS4PF4WL9+PQwMDLhn7du359Tfdu3aJbK7vmfPHmRmZmLYsGGYNm2ayColn8/H+vXrwePxuJ3T8qiqqsLHx0dE5ZNVLYuNjQUAjB8/Xmw12s7ODr/++mtl2cFR1XzR1dXF6tWrRXbRunfvzqmp3blzR+T9Xbt2AQAGDx6Mfv36cc+1tbWxevXqKhkrKS4uxpAhQ0TOjrHh1qtXD4mJiZwaXXlcXV0xffp0EVUydXV1BAQEIDExEXp6eli7dq2IUbjOnTtzVk137NghUv579+5FcXEx3NzcMGHCBE4ds3bt2li0aBEsLCwUTqckXr16hStXrkBNTQ27du0S26kyMjJS6lVmubm5nLG+RYsWiezEGxkZYcOGDahVqxbCwsJq5O5UgUCAhQsXimiQGBkZcVfB3L59W+T9oKAghIaGwsbGBhs2bODkJVC6Q7F27VoYGxvj0qVLSEpK4tzkbYu+vr4oLCzE9OnT4enpyWmBAKXHVv755x8AkCoXFKVVq1b46aefRL4HAE2aNOHU5lm1Vkm4urpi7NixIvV44cKFYBgGOTk5OHr0KPeuQCDApk2bwOPxsHnzZnTs2FEkrCFDhmD48OHIycnBiRMnpH5PUntk87tt27ZwdnYW8aOuro7evXvDxsamktz4H1XNl/79++O3337jdo3YfFFTU0NYWBg+f/7Mvfvhwwdup3vFihUiO5Z2dnZYtGiRTJaPq4KFhQWWLFki0h+NHDkSzZs3R0FBgVhbXbduHQghWLZsGfr27SuyO9a9e3dMnz4dAoGgwmMQkigqKsKlS5cAQERes+0lODgYaWlpMoeXnZ2NO3fuYPLkySgpKYGZmZlEzTj2do3KrlLauHEjPn78iLlz58qsEVcWNvzyt3lUN8XFxVi5cqWI5sBPP/2E7t27gxCCmzdvYuXKlSJaQe3ateM0Pu7evSsSnrLlVXx8PEpKSsAwjJiWiaqqKjp16iRyJKY6ZUlFKDJ+kzdtlO8fOjH+zmHVir58+SLRPS0tDUOHDsXQoUMxZMgQuLq6Yty4ccjJyYGxsTG8vb1F3p8wYQIOHTqErl27ckLmw4cPCAgIwKJFi9C5c2ccP35c7DsMw+DixYsYO3Ysd3Y1OzsbDx8+hK+vL/r27YsZM2YgNzdXian/H6GhoVi1ahUmTpwIT09PLs3sgOvNmzcS/bm7u0tUaRo8eDDU1NSQkJDAWdsFgKtXr3LukrCxsYGpqSliY2ORkpIi5t6uXTuRwXlZWPVTdmChDBTNl59//lniuUv23CF7Hh0A8vLy8OTJEwCQaAlSQ0MDAwcOrFI6JBltKxvuvXv3JPpjVYzLww4UBg0aJFE1b9iwYVBTU0NiYiLev38v5k9SOnk8nsxnz2SFNTTTpUsXiWeplc2TJ0+Ql5eHBg0aoEePHmLuDRs2lDrY+hro6uqiV69eYs/ZehkfHy/ynG2vHh4eElUf2fPJQqEQjx8/5p7L0xaLiooQFBQEFRUVDBo0SOI7nTp1gpqaGkJDQ1FcXFxpmPKQl5eHU6dOYcGCBRg7diyGDRuGoUOHYt68eQCkt3FAcrsqW4/Ltqvw8HCkpaXB2tpa6vljtm5IWzSR1h5Zmfjs2TOlTTqqki+S5Dt7JAUQlX93794FIQSOjo6wt7cX8+fu7i733bfyMnDgQIlnplu0aAFAtF0kJSXh1atX0NPTk9jGgcrLURpBQUHcMSxXV1fuuaWlJWxsbFBSUsIZ6pTGiBEjwOfzwefz0bp1a4wfPx7v379Hx44d4e/vL7EdsxsDFd168fLlSxw8eBCtWrWSWg8rgw1fno0IZWBjY8OVZVmaN28uk3vZ+lod8oqVl7GxsRW2K5bqlCUVocj4Td60Ub5/6Bnj7xx2QixtR66oqIg7pwuUDgRtbGzg5uaGUaNGSVw1bdWqFVq1aoWioiK8fPkSL1684M6d5ebm4u+//4aWlpbYWSEDAwPMnTsXc+fORWxsLF68eIFHjx7h5s2bSE9PR2BgILKzsyu9i1AeBAIB5syZU+kAlrW8XZ6mTZtKfK6trQ0jIyNuYty0aVPk5eVxhj+8vb2lnk/LzMwEACQnJ4sZuJL2PQAYPXo0vL29sWjRIuzZswcdOnSAk5MT2rRpI7bzWxlVzZfyFslZ2HiwxtaA0nPaJSUlUFNTk3qO1dLSsvJIS0FNTU1qfNhwyy5elEXaZJJdGJAWLx0dHTRo0ACJiYmIjY1Fs2bNkJ2djU+fPlXoryrplAR7T7m0M9TKhs1HCwsLqQbWrKyscPnyZS4PvyaNGzeW+JzV+ChbLwFwmionTpzgdvXKw07EkpOTuWfytMW4uDgUFhZCTU0NEydOrDD+hYWFyMrKgqGhYYXvyUpkZCT++OMPkd3u8khr44D09iGpXbF5mZycjKFDh0r0xxoyKpuXsnyvZcuWaNmyJcLCwuDu7o42bdqgdevWaNWqFRwdHcV2fiujqvki7ZyqgYEBYmJiROoZm0fS0qaiosKd+60upMlHSe2CNe4nEAik3hLBaslIK0dpsEbCevToITaB/eWXXxAREYEzZ85gzJgxUsNgGAba2toghCAtLQ0JCQlQVVUFn88XsZlQlqKiIgDSdwxLSkqwePFiqKioiG0GyAMbvqwGu5SFNLnHyiJ55GJ1yCsjIyP07t0bgYGB8PDw4GSls7MznJ2dxQyuVacskYai4zd500b5/qET4+8ctuOXNnEqa/lQXmrXrg0nJyc4OTlh5Po355AAAHFKSURBVMiRePPmDcaNG4e0tDT4+PhUaETD3Nwc5ubm6Nu3L/Ly8rBw4UIEBgbi3r17ePr0qZgxLUXZtWsXLl26BENDQ8yePRutWrVCgwYNuA5s7ty5OHfunNRVz7Iq1OUxNDREQkICt/iQk5PDuYWFhVUat4KCArFnFVn7Hjp0KHR0dLBnzx68evUK79+/x/79+1GrVi107doVf/31l9Td5vJUNV+kGbJgdyXKqhez+aOnpydx1wKoOJ8rQ5ZwpWlMSEsHO1CorPwTExO5sMsOLqT5q0o6JcFqWEgyQlUdsGmsaCBUWZ5XJ9Laj7T6wbbZt2/fVhp22cGuPG2RPV4iEAhEFiGlIUkuKEJJSQmmTZuGpKQkdOjQAePHjwfDMKhbty5q1aoFoVAIGxubCnd8KqvHZcuYTWdmZiY3eJSGtIlDRXLFz88PW7duxblz53Dv3j1ut7pevXoYM2YMxo0bJ7Wcy6KMfKmsnpWVf7LKkupEHnnNluOXL18qra/yTAAzMjI4LZJffvlFzL1Pnz5Yu3YtoqKiEBERIVU1vvw9xk+fPsWUKVPg5+cHHR0d/PHHH2J+2AX+siruZTl06BBevXqF8ePHV8lIEht+eQN/1Y20+shO7ipzl1T+ypZXq1atgqWlJU6ePInQ0FCEhoYCKDXOOmTIEEybNo0bf1SnLJFGVcZv8qSN8v1DJ8bfOawKa0VXaygLa2treHl5YenSpYiNjcXnz58rVF1i0dLSwrJly3D58mUIhUI8f/5caRNj9pzY8uXLJVpsltZRslSkEsXuDrIqxWU7n2fPnlXLSmGfPn3Qp08fZGRk4PHjx3j06BECAgJw5coVxMbG4uTJkzJZw6xqvsgDmz9ZWVkQCoUSB6/p6ekKhy9LuJLUviuCLcuK4lVR+aenp0vcvZAWnqQBSlnK73SysJogZTv16oRNI5t2SSia5zUBmx4/Pz+xc2yVIWtbZPPB0NCQs+T9NXjx4gViYmLQsGFDbN26VWxgVtGOKEtGRobExTZJZczmZe/evbFhw4YqxFwyOjo6mDdvHubOnYu3b98iNDQUt2/fxu3bt7Fu3ToAkGhduTzKyBd5kEeWfAuw8XVwcJB4LEpRAgICuLPU0naiWc6ePSvzmXEnJyesXLkS48ePh4+PD37++Wexa/HYjQFp/drr168BlGqOlL36CgAX56SkJLRv3x5A6VlxSfKCDV9eDa5vieqSV7Vr18bkyZMxefJkxMbG4smTJ7h79y6uX7+O3bt3Izc3l7vNorpliSSqMn6TJ22U7x96xvg75tWrV3jx4gUAwM3N7at8s6zKjjwGRbS1tbnOhFV7Ugasakx5gy1A6c7By5cvK/TPqqqWJzc3lztjwqoH6+jocKrRsuxAVQV9fX306NEDixcvxoULF6Cjo4PIyEg8f/5cJv9VzRd5MDMzg6qqKgQCgVT1Wmn5LAsCgUDs7Gj5cGW9ioiFfV9aOebk5HCqj+y77L2FABAdHV1hfMrDrm5LGzxLSx+r0hoeHi7RXRLSVMRkgTUe9v79e5SUlEh8h80zefO8JmDzryrttbK22KRJE6ipqSE9Pb1KC0Dlqawc2TZuZ2cncbdCFlkhrb5KalfsTlt1yz4ejweGYTBs2DDs2LEDf//9NwDIPIlTRr7IA9tmpOWlUCiUetSjIqrSjiuCLcf3798r9bw7O+HU0dGBoaGhxB+7s3vx4kWp8kUSHTt2RLt27SAQCETuTGdhz9JKk8ssWVlZ+PTpk8iPnewKhULumaQxCiGEK0f2e7JQXeWoKNUlr8pibm6OAQMGYOPGjdiyZQuA0juZ2fr2tWRJWZQ1fqssbZTvHzox/k7JysrC/PnzAZR2zO7u7lUOMyMjQ+qOFgurglK3bl1uoltcXFzpDmRcXBwnhOWx3Muu6klT52HdJa3IX7x4sdKV+qtXr0p85/jx4xAIBDA1NRU5F8zm8759+2SKvzJo0KABt0Iu6zm1quaLPNSpU4fTADh8+LCYe2FhIU6ePFmlb1QWbllDL7LAvn/y5EmJu7VHjhyBQCBAo0aNRMq/Q4cOAEpV8yQh7Tl7ZjEhIUGilkJZ679lYevbzZs3ZV5cYCcDiqjsOjs7Q0tLC2lpabhy5YqYe1JSEm7cuAFA/jyvCLa+KvvsHmtc6NixY9w9qFVBUlvU1NSEq6srCCHw9/ev8jdYKitHNs+kWfmVRUZJalfA/+px2TJ2dnaGgYEB3r59K9XYXXXALu7JK/uqki/y4OrqCh6Ph/DwcIkLjteuXVPofHFV2nFFNGnSBHw+Hzk5OTh16pRSwnz37h1evXoFoLRO3b9/X+Lv5s2b0NLSwqdPn+SuQ+x52AsXLogYkwJKd7/V1NTw7t07ifJ85cqViIyMlPjbv38/gNJjZ+wzSfd3v3//Hjk5OWjYsKHM92kDlY9hvjbVJa+kwY4NBAIBp61RU7JE2eM3SWmjfP/QifF3Rm5uLs6ePYv+/fsjKioKWlpa2LRpk0xnryrj/Pnz+OWXX3D06FGxwXt+fj78/f3h5+cHoNQiIPvNvLw8dOnSBatWrcKbN2/EJtchISGYMmUKCCEwMjLiJheywO5Qh4SESHRnr69ZuXKliMXrmzdvwtvbu9JzH4QQzJo1SyS9Dx484Falx44dK7LiO2HCBOjr6+PixYv4559/xM7H5ObmIjAwECtWrJA5jay/6dOn48GDByIr6YQQBAYGIioqCjweT+aV6qrmi7yMGzcOQOkEr6zV0dzcXMybN69KqsC1atXC4cOHERAQwD378uUL5s2bh4yMDJiamkq8wqMi+vTpA1NTU2RlZWHOnDki15Ddvn0b27ZtA1Ba3mXLf/To0ahVqxZu3bqF3bt3QygUAijVgvjvv/+k7gzp6urC0dERRUVFWL58ObcjQQiRqN7HYmNjg169ekEgEGD8+PHc0QmWlJQUsR0Uts2EhYXJvYqtra3NWST+77//8OzZM5FvzZgxAwKBAC1btlTqFRWVtXNF6datG5ydnREXF4fx48eLLS4UFxfj4cOHmDVrFlcmirTFadOmQUNDA35+fvD19RU7f52ZmYkTJ05w1+TJApsnL168kDipZ41ShYWFiSw85efnw9vbW6bzg7dv38a+fftE6vHy5csRFRUFbW1tEeut6urq3HV+M2fOREBAAOePJT4+Hlu3buWsv8rK+fPn4evrK6Y5kZuby/U5tra2MoWljHyRh8aNG3MD7gULFohM2l6/fo1///1X5EoZecIFpJd/VZgzZw5UVFTw33//4dChQ2I7pCkpKfD39+eubqsMVn41b94cDMNIfa9OnTrcpPPs2bNyxblNmzZo2bIliouLuTrBoq6ujtatW6OkpEQu7Rp5YGWvPOMXANxCWnR09Fe3Zi0NZcurBw8ecIsPZSksLOTCMDEx4c7hV6csqQhFxm/ypg0ALl++jC5dunDXW1K+L+gZ42+YU6dOITg4GMD/dmU/fPjACRA7OzusXr1aade48Hg8REVFYcmSJViyZAlMTU2hr6+P3NxcJCUlcSueHTp04IQa6y83Nxd79uzBnj17ULduXZiamkJFRQVJSUlcZ6Cnp4fNmzfLZTShV69eePv2LSZOnAg+n8+duVy/fj3q16+PqVOnIjg4GLdu3YKrqyssLCyQkZGBpKQktG3bFg0aNMD58+elhj927FgcOXIEnTp1gpWVFXJzcxEXFwegdHWxvMXEBg0aYMeOHZg0aRIOHz6MY8eOoWnTptDS0sLnz58RHx8PoVAo95lvoVCIS5cu4dKlS9DQ0ECTJk1Qu3ZtJCcnczsfEydOlFl9tar5Ii9ubm4YMWIE9u/fj9mzZ2PdunUwMDDgVHKnTJmi8FkiIyMjdO7cGTNnzsSaNWu4cPPy8qCpqYk1a9bIfd5bQ0MDGzduxLhx43D9+nXcu3cPlpaWyMrK4lQxBwwYIHatg7W1NebMmYMVK1Zg9erV2LNnD0xMTBAfH4+cnBzMnj0bq1evlvjN2bNnY/To0bhw4QJu3bqFJk2aICUlBenp6Vi6dCmnMlqef//9F+np6QgJCcGwYcNgYmICQ0NDpKSkIC0tDYQQ7t5toLR96urq4smTJ3Bzc0Pjxo1Rq1YtuLq6ynRGc+rUqXj9+jWCg4Px22+/wcLCApqamnj79i23i7527VpZs1omevXqhaCgIHh7e+Pw4cOcyuVff/0l1/215eHxePDx8YGXlxceP36M3r17o1GjRjA0NEReXh5noRUoPY8PKNYWra2tsWnTJsycORM+Pj7YsWMHLCwsoK6ujvT0dHz8+BGEELkWcGxtbWFubo7Y2Fi4ubnBwsICampqsLa2xsKFC2FoaIjRo0fDz88PCxcuhI+PDwwNDfH+/Xvk5+fj33//xcKFCyv8xsyZM7FixQr4+flx9fjz589QVVXF8uXLxa4ZGjRoELcYM3PmTHh7e8PMzAyEECQnJ3NaQfJa/s3IyICPjw98fHxQv359GBsbo7CwEPHx8SgoKICOjk6laWFRRr7Iy5IlSxAZGYmoqCj06NEDVlZWKC4uRnR0NFq0aIHWrVuLLOzJQmXlXxVcXV2xdOlS/PPPP1i6dCnWrl0Lc3NzqKqqIjU1lTtGNH78+ErDEgqFXF9S/n5vSfTr1w/nz5/HjRs3kJOTI5dhwT/++AMTJ07E6dOnMXnyZJFbHwYNGoTg4GBcvHgR7dq1kzlMWWHLT96rB/X19dG2bVs8fPgQ3bp1g6WlJdTV1WFoaPjVzteWR9ny6suXL9i7dy/27t0LPT09mJqaQigU4sOHD8jNzYWampqYJejqkiUVocj4TZG05eXlITExUWnxpnxd6MT4GyYpKYmzOq2hoQEdHR04ODjAzs4O7u7ucHFxUer3hg0bBmtra9y7dw9PnjxBcnIyZ1bf0NAQzZs3R58+fdCjRw8RIaCjo4MrV67g3r17uH//PuLi4pCYmIi8vDxoa2vDyckJHTt2xJAhQ+S25jhhwgQIhUIEBAQgOjqaW9lmB7PNmzfH4cOHsWnTJjx58gTv3r1D48aNMWPGDIwdO1bqZIOlSZMmOHnyJDZt2oQHDx4gJycHlpaWGDRoEIYPHy5xJ97e3h4XL17EwYMHcfPmTcTGxkIgEKBBgwZo06YNOnXqJLdqe506dbBmzRoEBwfj+fPnSE5OxpcvX6Cnp4fOnTtjyJAhcp0jr2q+KMLChQvRvHlzHDhwANHR0cjPz0fbtm3x559/Vtl41N9//41mzZrh2LFjiI6Ohrq6Otzd3TFt2jSFr0iyt7fH+fPnsXPnTty+fRuRkZHQ1NSEi4sLhg4dKnVQMGrUKDRp0gR+fn6IiIhAbGws7OzsMHHiRDRq1EjqxLh169bYs2cPfHx88PLlS8TExMDW1pYz9CKtTLS1tbF3716cOXMG586dQ2RkJNLT01G/fn106tRJ7F5fbW1t7N69G5s3b8bz588RHh4OoVAIU1NTmfJFXV0dfn5+OHbsGM6dO4e3b9+ipKQEjRs3Rvfu3TF27FiZjO7JQ79+/ZCdnY2TJ08iLi6Okztld/IVxcDAAIcOHcLZs2cREBCAiIgIpKSkoF69erCxsYGLiwvc3d05LQpF26KbmxsCAwPh7++Pu3fv4sOHD5yWTMeOHdG5c2d0795d5nirqKhgx44dWL9+PUJDQ/H8+XOxc5mzZ8+GiYkJDh8+jLi4OBQUFKBly5YYO3Ys2rdvX+kEasyYMTA2Noa/vz+3E96hQwdMmTIFLVu2lOhnypQp6NixIw4dOoTHjx8jKioKGhoaMDY2xk8//QR3d3e5DZ316NEDxcXFePDgAWJiYhAVFQVCCBo2bIgOHTpg7NixcqmvVjVf5MXAwADHjh2Dr68vrl27hnfv3sHIyAjjxo3D5MmTFTLMI0v5V4VBgwbB2dkZ/v7+ePjwId6/fw9VVVUYGRnB3d0dXbt2lWnH68GDB0hJSUGtWrXQt2/fSt//6aefYGRkhJSUFFy+fFnqXbqS6Ny5M6ytrfHmzRv4+flh0aJFnFu3bt2gr6+Pq1evYsmSJUrVikpJSUFISAj4fL5Chk7XrVuHdevW4f79+3j16hWKi4tllsfVhTLllbOzM/7++2/cv38fb9++RUxMDDcmcnd3x5gxYyRaA68OWVIZ8o7fFE0b5fuFRyo7VEqh/B9k/vz5OHPmDFasWIH+/fvXdHQoEkhISEDXrl2rdOUYhUIRh8/nA4CYeiCF8j2zZ88erFq1Ct7e3lLvx1WEtWvXws/PD5s2bULPnj2VFi6FQvn2oGeMKRQKhUKhUCjfNZ6enmjUqBF27typtNsvMjIycOjQITg6OtJJMYXyA0BVqSkUCoVCoVAo3zW1a9fGqlWr8ODBAyQlJaFJkyZVDjMxMRFjxoyR6xgEhUL5fqETYwqFQqFQKBTKd0+rVq24WxmUQYsWLdCiRQulhUehUL5tqCo1hUKhUCgUCoVCoVB+aKjxLQqFQqFQKBQKhUKh/NDQHWMKhUKhUCgUCoVCofzQ0IkxhUKhUCgUCoVCoVB+aOjEmEKhUCgUCoVCoVAoPzR0YkzB6dOnwefzMX/+/JqOitK4dOkSBg4cCEdHR/D5fKVaqaSIw+fzwefzazoaHF26dAGfz0dCQkJNR4XynUHrDuVb4fXr1xg/fjxat27NydiIiIgqh/u99fnfW3y/dWh+UqrK8OHDwefz8ejRo5qOitL54a5revToEUaMGAEAqFevHq5fvw5tbW2J77ID/Rs3bqBRo0ZV/vbp06eRmJgIDw8PpYQnKz4+PgCAP//886t9syIiIiJw/fp12NjYoFu3bkoP/+7du5g+fToAoFmzZtDV1UWdOnWU/h15SEhIQNeuXQFIr09xcXEYOXIkkpKS0LJlS+zatUtq3awqaWlp2LJlC+7cuYO0tDTo6uqiffv28PLygrm5ebV8U1k8evQIISEhcHFxQZs2bWo6OpVy/fp1REREoFu3brCxsanp6PzQfG9152tSU/0TRTKfPn3CyJEjkZ2dDWNjYzRr1gw8Hg9aWlqV+v3W+vyKyM7Ohr+/P3R0dDBq1Kiajg6FQvnB+aF3jDMzM7F///6v9r0zZ87A19cXiYmJX+2bAODr6wtfX9+v+s2KiIiIgK+vL65fv14t4R89ehQAsGDBAgQGBuLIkSPYtWtXtXxLWbx//x6enp5ISkqCi4sLdu/eXW2T4vfv36Nv3744cuQIsrKyYGVlBYFAgLNnz8LDwwNPnz6VO0wLCwtYWFhUQ2zFCQkJga+vL0JCQr7K96rK9evX4evrq5SdHkrV+N7qztekpvonimQCAgKQnZ2N7t2749atWzh69CiOHDmCJk2aVOr3W+vzKyI7Oxu+vr4VjsV0dHRgYWGB+vXrf8WY/d+F5ieFIp0fbseYRVVVFSUlJdi7dy88PT1Rt27dmo4SRUnExMQAAFxdXWs4JrLx9u1bjBo1Cp8+fUK7du2wdetWaGpqVsu3hEIhpk2bhszMTHTp0gVr1qyBtrY2ioqK8O+//+LYsWOYOnUqrl27JlccLl++XC3xpVAolB8Rth9r164dVFR+6D0MdO/eHd27d6/paPyfgeYnhSKdH1baGhsbo3Xr1sjOzsbevXtrOjoUJVJQUAAAUFdXr+GYVM6bN28wYsQIfPr0CR07dsT27durbVIMANeuXUNUVBR0dXWxevVqble6du3aWLx4MczNzZGWlobjx49XWxwoFAqFUjGFhYUAAA0NjRqOCYVCofw4/LATYwCYNm0aAMDf3x+ZmZly+SWE4OLFixgxYgRat26NFi1aoFu3bli2bBlSUlJE3n306BH4fD6nvjdixAjOkAafz8fp06dF3i8oKMCePXswcOBAODs7w97eHj///DN8fX3x5csXmePo4+MjYhCp7DelGZcpKirC1q1b0aNHD7Ro0QIdOnTA4sWLpeZPcHAwli1bhn79+qFNmzaws7ND586dsWDBArx//17s/S5dumDBggUASlX3ysZn+PDhMqdNEqzRHFYVsGvXrlLz+O7du5gwYQLatm0LOzs7uLm5YcGCBdwqfXnKGhp48+YNpk2bhvbt28PGxgb79u1TKL6vXr3CyJEjkZGRgS5dumDLli3VPpm/evUqAKBnz57Q0dERcatVqxb69+8PQP4dYGnGt8oaMnr+/DkmTpwIFxcXODg4YODAgbh27Zrc32FVBH19fUXqjzRDIop898GDB5g8eTLat28POzs7dOjQATNnzkRkZKTMcU1ISACfz8eZM2cAlKr2l40vew6Q5fPnz1i/fj169+4Ne3t7ODs7Y8iQITh69ChKSkrEwmflyvDhw1FcXIzt27ejV69esLe3R/v27bFgwQIxWSQLZcssJCSEayfW1tYixx9SUlKwdOlSdOvWDS1atICLiwtGjhyJwMBAsTBv3rwJPp+PcePGiblt3bqVy5P4+HixPLG2tkarVq0k5oE8fE91R9Ewi4qK8Ouvv4LP52PNmjUSw5ozZw74fD5GjRoFQojM/RNbn7t06QIAOHHiBAYNGgQnJyfw+XxkZ2dz30hNTcWKFSvQs2dPODg4wMnJCUOGDMHp06dBCBGLE9tX+fj44PPnz1i2bBnc3Nxgb2+P3r1748iRI9y7nz9/xsqVK9GlSxe0aNECPXr0qFQGv3z5ErNmzUKnTp1gZ2eHNm3aYOLEiQgNDZX4fn5+PrZt24Z+/fqhZcuWsLOzg6urK4YMGYJNmzbh8+fPFX6vPAUFBdi5cycXXsuWLdGvXz/s3LmTW8hlmT9/vki+l5UblRlL+hp9PlCq/rx582b88ssvaNmyJRwdHdG/f3/s27cPAoFA5nyZP38+Z3sjMTFRLL4s0oxFlZWBQqEQe/fuxc8//wwHBwd06tQJq1atQn5+PoBSban9+/ejb9++cHBwQIcOHbB06VLk5uZKjZ+89bgybt++jfHjx+Onn36Cra0t2rRpg969e2PhwoVSjzDJW3dlGatUZnxLkfJVJG2SKCgowMWLFzFr1iz06tWL+36fPn2wYcMGqW1P1jFaSUkJTpw4AU9PT27s3r17d6xYsQIZGRkyx5MlKSkJ3t7e6N69O1q0aAFHR0d06dIF48aNw8GDByX6kSd/161bBz6fj4ULF0qNQ2ZmJuzs7GBjY4PU1FQRN3nTK4+cL8+AAQPA5/MljgFYLl68CD6fjwEDBkh9p6b5YVWpAaB169Zo164dgoODsXv3bsyePVsmf4QQzJ8/H2fPngUAmJqaonHjxnj37h0OHjyIgIAA7N69G7a2tgBKz3M4OTkhKioKubm5YBhG5PyogYEB9//U1FSMHTsWUVFRUFVVhYmJCbS0tBATEwMfHx9cuXIF+/fvR7169SqNp4mJCZycnDih5OTkJOJefhImEAgwduxYPH78GBYWFjAzM0NMTAyOHTuG8PBwnDx5ErVr1xbxM27cOJSUlEBfXx9GRkYASju406dP4/Lly9i1axecnZ259+3s7KCmpobY2FgYGBiInJdiGKbSNFWEnZ0djIyM8PLlSxQVFcHOzo6Lb9k83rRpE7Zu3QoAqF+/Pvh8PmJjY3H69GkEBgbCx8cHHTt2lPiNx48fY8eOHVBVVUXTpk1Rp04d8Hg8ueP6/PlzjB07FtnZ2ejRowfWrVsHNTU1BVItH+Hh4QAgUiZlYZ+/ePECJSUlUFVVVcp3b9++jRUrVkBTUxONGzdGYmIiXrx4gSlTpmD9+vX4+eefZQrHyckJSUlJSEpKgomJCUxMTDg3SUbDFPnuqlWrsGfPHgClBvqsrKyQmJiIgIAAXLt2DZs3b0bnzp0rjau6ujqcnJwQFxeH9PR0mJubQ19fn3MvG/cPHz5g5MiRSExMRK1atWBlZYX8/HyEhYUhLCwM169fx9atW8XaH1Aqj/7880/cvHkTZmZmsLS0RFRUFE6fPo27d+/i0KFDMp1LLE9gYCA2bNgAbW1tmJmZiWgyvHjxAuPGjUNWVhbU1dVhZWWFrKwsPHz4EA8fPsS9e/ewfPly7v3WrVtDRUUFT548QXFxMWrV+l/XU/a876NHj2BmZsb9/fjxYxBC4OzsXOW6+D3VHUXDrF27NtauXYsBAwZgz5496Nixo4iRscDAQJw/fx66urpYuXIleDyeXP0Ti7e3N44cOQIjIyM0bdoUHz584NxCQ0MxadIkfP78Gerq6jAzM0N+fj7Cw8MRFhaG4OBgrFmzRqLczM7Oxm+//YbExERYWVmBx+Ph3bt38Pb2Rk5ODgYOHIhhw4YhISEBlpaWIIQgNjYWK1aswJcvXzB58mSxMA8cOIDly5dDKBRCR0cHlpaWSE1Nxa1btxAUFARvb28MGTKEe7+4uBijR49GWFgYAMDMzAy6urpIT0/HixcvEBYWxk3KZSEzMxOjR49GREQEeDweLC0twePxEBkZiYiICFy+fBl79+6Frq4ugNK6KE1uVGYY8Wv0+e/evcPYsWORlJQENTU1mJqagsfj4c2bN3j16hVu3boFPz8/ibKqPObm5rCzs8PLly9Ru3Zt2NnZVepHGjNnzsSlS5dgYWEBU1NTxMbGYs+ePYiKisKuXbswffp0XLlyBebm5mjUqBFiYmJw6NAhvH//XuLCSlXqsSQOHTqEpUuXAgD09PTA5/NRUFCApKQkvHv3jusvyiJv3S2LomMVRcpXkbRJg10IUFVVhaGhISwsLJCXl4e4uDhs374dly5dwtGjR0X6UlnTnZubi0mTJuHRo0fg8XgwNjaGiYkJ4uLisG/fPly5cgUHDhxA48aNZYprYmIiBg4ciIyMDKipqcHMzAwaGhpISUnBvXv38OTJE3h6elYpf/v27YudO3fi6tWrWLJkicR2dfnyZQgEArRr1w4NGjTgnlc1vRXJeUkMGjQIL1++xKlTp9C7d2+J77AbBewmzDcJ+cF4+PAhYRiGdO7cmRBCSFhYGGEYhjg6OpJPnz6JvMswDGEYhnz48EHk+cGDBwnDMMTBwYHcvHmTe/7582fyxx9/EIZhSNeuXUlBQYGIP09PT8IwDHn48KHEuAmFQjJs2DDCMAyZNGkSSUpK4twyMjKIl5cXYRiGzJgxQ640s+mQxqlTpwjDMMTW1pb06NGDvH37lnN7+/Yt6dChA2EYhhw9elTM75EjR0TiSQghRUVF5OjRo6R58+bE3d2dCIVCid+bN2+eXOmQlc6dO0ssN0IICQoKIgzDEBsbG3L8+HEubgUFBeTvv/8mDMOQ1q1bk7S0NBF/bNnZ2NiQBQsWkC9fvnBu+fn5lcbpw4cPXDmcP3+eODk5EYZhyMyZM0lxcXGFflNTU8mQIUMU+pWlsLCQWFtbE4ZhyNOnTyV+Kzk5mYtnfHx8pelikVbH2LKwtbUlvr6+pKioiBBCSElJCVm5ciVhGIZ07NiRlJSUyPytzZs3E4ZhyObNm6W+o+h3jx8/zrndvn1bxO3IkSPExsaGODs7i8mKipg3bx5hGIacOnVKortQKCQDBw4kDMOQwYMHk+TkZM4tLCyMtG3bljAMQ9atWyfij5Vltra2pGXLluT+/fucW1paGidLfvvtN5njSsj/8s7GxoZs2LCByztCSttJXl4e946XlxfJysri3G/evEkcHBwkyot+/foRhmFIeHg496yoqIg4ODgQV1dXwjAMmT17toif//77jzAMQ/z8/ORKgzS+t7qjaJj79u0jDMOQTp06kc+fPxNCCElKSiKtW7cmDMOQgIAAsW9V1j+xMszGxobY29uTK1eucG6FhYWkpKSEpKamkjZt2hCGYcjGjRtJXl4e986bN29Iz549CcMw5MiRIyJhs+Via2tLfv/9d5KSksK5nTlzhuujx4wZI+Z++vRpwjAMadGiBZdWlnv37hE+n0+cnZ3J+fPnRfqiq1evkpYtWxJbW1sSGRnJPb9y5QqXd9HR0SLh5eTkkBMnTpCEhASJeSSJqVOnEoZhiLu7u0h40dHRxN3dnesHylOZ3KiI6urz8/LyuDj//fffJDMzk3NLSEgggwcPJgzDkLVr18ocV7ZesWOyiuJbfsxQVgZ26NCBPH/+nHOLiIggLi4uhGEYMnnyZDH3169fc+2hfNtStB5LQyAQcN86dOiQSJ8vFArJo0ePyLVr10T8KFJ3CZFtrCItPxUpX0XSVhEJCQkkICCA5OTkiDzPzMwkS5YsIQzDkIULF4r5kyXds2bNIgzDkKFDh4q0xby8PG78J09/uWzZMsIwDBkzZoxIXhFCyMePH8nevXtFninafvr27UsYhiFXr16VGA+2ry8vKxRJryxynhDJ/UVOTg5xcHAg1tbWIuMYluTkZGJtbU3s7OxExg3fGj+0KjUAODo6ws3NDXl5edi5c2el7xNCsHv3bgDApEmTRFb/69ati3Xr1kFPTw8fPnxAQECAXHEJCgpCaGgobGxssGHDBhgbG3Nu9erVw9q1a2FsbIxLly4hKSlJrrBlobi4GKtXr4alpSX3zNLSklN/vH37tpifIUOGiMQTANTU1DB48GD07t0bsbGxePbsmdLjqihsGQ8aNAiDBg3iVhLV1dXh7e2Npk2b4vPnzyKqe2WxtLTEsmXLRK7MkPcM2Pz585Gbm4t+/fphzZo1le6EFRYW4unTpwr9ypKbmwuhUAgAUo3NsbsWAORWF6yIdu3aYfLkydyuuIqKCmbMmAFDQ0MkJydXSc1UWd8VCATYtGkTeDweNm/eLKY1MGTIEAwfPhw5OTk4ceKE0uL48OFDPH/+HGpqatiwYQOneQGUyidWherAgQMS1f4EAgGmTp2Kdu3acc8MDQ2xfv16qKmpITw8XKG7Bl1dXTF9+nQRTQZ1dXUEBAQgMTERenp6WLt2rUid6dy5M7y8vAAAO3bsEFE3dHFxAQCRuDx//hz5+fno06cPTExMxKxFs3+zfr8mNV13qhLmiBEj0KFDByQlJWHJkiUQCoWYO3cuPn/+jF9++UXqar4slJSUYOrUqXB3d+ee1a5dGyoqKtizZw8yMzMxbNgwTJs2TUTLgM/nY/369eDxeFLteqiqqmLt2rUiux79+vWDg4MD8vLyEBoaKubu4eEBe3t7FBYWitXzdevWgRCCZcuWoW/fviI7Zt27d8f06dMhEAhw4MAB7nlsbCwAoEePHmjWrJlIeNra2hg4cCBMTU1lyqu4uDhcuXIFALB69WqR8Jo1a4aVK1cCKLVAXdluTHUgb59/6tQpxMbGolOnTli6dCn09PQ4N1NTU2zatAlaWlo4dOgQd0b6ayAQCPD333+L7OJbW1tj0KBBAEpta5R3t7Gx4dzv3LkjEl5V63F5MjMz8fnzZ+jq6mLYsGEifT6Px4OLi4vY1ZWK1N2yKDJWUaR8FUlbRZiamqJ3795it3Lo6enB29sbxsbGCAgIQHFxsVzpjoqKwoULF2BkZIRt27aJtEVNTU14e3vDzs4O4eHhMqt+s0fvhg0bJpJXQKn2RvnrxxRtP3379gUAXLhwQSwOSUlJePLkCdTV1UVkclXTW5Gcl4a2tjZ69OgBoVCIc+fOibmfPXsWQqEQ3bp1Exk3fGv88BNjAJg6dSp4PB6OHDlS6Zm8d+/eITExEWpqahg2bJiYe506dTjd+bt378oVD/b8p4eHh0R1CS0tLbRr1w5CoRCPHz+WK2xZsLa2hr29vdhzBwcHAJDacUdERGDDhg2YNGkShg8fjqFDh2Lo0KFcHL+Va2q+fPnCCQD2LuuyqKiocGov0sru119/VZp6cVpamlThXpZGjRohMjJSoV9ZygpaaWpuZZ+XP/tWFX777TeJ37K2tgYAsbOlNfHd8PBwpKWlwdramqvz5WE7eGVeas/Wte7du4uo97L06tUL9evXR15ensQOTE1NDQMHDhR7bmRkxFkevXfvntzx8vDwqDC+gwYNknin6rBhw6CmpobExEQROwOtW7cGIKo6zcqINm3aoHXr1khOTubKJDs7G5GRkahTpw53LOVrUtN1pyph8ng8LF++HHp6eggMDMT48ePx6NEjmJqaYvHixTJ9vyKk1Q22Dxs8eLBEdxsbG07NVVJf6+rqKrbQCgDNmzeXyb1sH5WUlIRXr15BT08PPXr0kBgfSfnHhv/gwQNkZWVJ9Ccr9+7dAyEEDg4OEsuwZcuWaNGiBQghCrXRqiJvn8+Wr6S2AZTKnBYtWuDLly94+fKlkmMrHV1dXZEBPAtbL6S5s3Kl/Nnrqtbj8ujr60NdXR3Z2dm4f/9+pe8rWnfLoshYRZHylTdtskAIwe3bt/Hvv/9iwoQJ+P3337lxZW5uLqdaLQlp6S5rX0XSpExFRYXb6JJVRrP99fXr12Uayynafvr06QMej4egoCCxxfGLFy+CEAI3NzeRxQRlpFeanK8IdixS3q5P2WfftBo1fvAzxiy2trbo1q0brl27hh07dlQ4cGBXk42MjKTeM2tlZSXyrqxERUUBKD3sLs340cePHwEAycnJcoUtC2XP9pWFPWMmyfDX8uXL4e/vX2G4VR1cKIv4+HgIhULUqlVL6p27lZVd+R0ERVi2bBn++ecf3L9/H1OnToWPj89XOV9c9nxZUVGRxHfKPlemNVRpZ1zZupWXl6e0byn6Xbb9JScnY+jQoRL9sYsLymx/bF2TVrdUVVVhYWGBtLQ0xMbGiu0cGhsbS5VFbJjSjMpVhLT4sPEtu8tUFh0dHTRo0ACJiYmIjY3lwmHPGT99+pQ7ZxwSEgJVVVU4OzsjNTUV58+f584ZP378GEKhEE5OTkpbjJKHmq47VQ3TyMgIS5cuxdSpU3Hv3j2oqKhg1apVYkb35KVevXoSz/fl5eVxEwxvb2+p5xlZo07Jycki2hEApJ51Y78nzV1SmbALgwKBAL///rtEf6xGQ9n86969Oxo3bozIyEi4ubmhXbt2aNWqFVq3bg07Ozu5bEpU1raB0j7nxYsXco8XlIG8fT5bJ7du3cppzpWHTYcihv8URdF6w7qXTacy6nF5VFVVMWLECPj5+WHMmDGwtbVFu3bt4OTkBBcXFzH5rWjdLYsiYxVFylfetFVGbm4uvLy8Kr1rXtq4Ulq62bTdunULL168kPhOeno6ANlltKenJ86ePYvTp0/jzp07cHV1hbOzM9q0aSOxbSnafkxMTNCqVSs8fvwYV69eFZlYsrvIv/zyi8RvKZpeaXK+Mlq3bg1zc3PExMQgLCwMLVu2BAA8ffoUsbGxMDIyQvv27eUO92tCJ8b/n6lTp+LGjRs4fvw4xo0bh4YNG0p8jxWghoaGUsOqaCJZETk5OQBK77WtjOpQU5K0+wNAasdw/vx5+Pv7Q1NTE7Nnz0b79u1hbGwMDQ0N8Hg8zsiVLCtpXwO2POrVqydVHaSyslPGVUouLi7w9fWFl5cXbt26hTlz5mDdunXVPvjX1taGiooKhEKhVMuCZdWnlanqIi3f2HIgClj4VPZ32TzJzMys1Eq9MtsfO5ivSKawbpLqpSTjSLL4qwxpecfGt7LvJiYminxXV1cXDMNwRkZsbW0RFhaG5s2bQ1tbmzMSFRISgkGDBnG7yTWhRg3UfN1RRpiOjo7Q1NREfn4+LCwspBrdkwdp/QTbfwHgDFdVhCSNlMr6oMrcJZVJWU0haZTNP01NTRw+fBibN2/G5cuXcePGDdy4cQNA6QB18uTJnApuZcjSthUdLygDeft8toxfvXpVadjK1DiqjKrWm7Ioox5LYubMmTA2NsahQ4fw6tUrLg/V1dXRt29fzJs3jzvipGjdLYsiYxVFy1eetFXGypUrERISAnNzc8yYMQOOjo7Q19fntNl+//13hIaGSh1XSks3m7b4+PhKNdRkldHW1tY4fPgwfH19ERwcjDNnznDGpezt7TF//nwRmVuV9tO3b188fvwYFy9e5CbG0dHRiIyMhK6urtiCeVXTK63NyMKAAQOwbt06nDlzhpsYs/nSr1+/b/5edjox/v8wDINevXohICAAW7duxb///ivxvTp16gAAPn36JDUsdhWGfVdW2Iro5+cn1SrytwR7hmDu3LkS1cqVeUZVGbDlkZmZCaFQKLFxKlp28uLq6oqNGzdi2rRpuHTpEtTV1TkrseVJS0vD1KlTFfpO2bPStWvXRsOGDZGQkID4+HhOYJWFVZ1TU1OTujj0fxW2/fXu3RsbNmz46t+tSKawbpLqZUVXTFTkT1HY+LJtRZ7vtm7dGm/evMGjR48gFAqRl5fHTXzNzMxgbGzMTYhr8nyxvFRH3alqmOT/356Qn58PFRUVvHv3Dn5+fvjjjz+UEr/ylB1IPXv2rMbv32Xj4+DgIPe97A0aNMC///6Lf/75B69fv8aTJ09w/fp1PH78GIsWLYKWlpZMlvRladtfq89RBlpaWsjOzkZgYKBStKe+RaqrHrNHtTw9PZGUlITQ0FAEBwfj8uXLOHnyJFJSUrBr1y6ROChSd6uCouUrT9oqori4mLPNs3XrVolxUHRcyeapt7e3VA0cRbC3t8fOnTs5i+UhISEIDAzE8+fPMW7cOJw7d47bPa5K++nZsyeWLVuGhw8f4tOnTzA0NOR2i3v06CF2PK660isLHh4e2LRpEwIDA/HXX38BAHeFkyLq2V+bb3va/pX5888/oaqqijNnzkhdYWGvS0hJSZF6/x2741vZ1QrlYVUTZdkx/hZg1Y2k7UJIM7qlyPVGysDMzAwqKiooLi6WqlqqaNkpQrdu3TjjW2fPnsWSJUskvqcs41vA/86OPXnyROK32Od2dnY1or4qC9VVf1g1emW3v8riy9a16Ohoie4lJSVcfZVUL5OSkqTuNrFnfJVZn9mwpOVTTk4Od5di+e+W3RWWtCPcunVr7nzdmzdvoKWlVaUrXMrzPdWdqobp7++P4OBgmJqacteX+Pj4yLRboQg6OjqcSum30Iex+ff+/XuFtZZUVVXRokULjBo1CgcPHsTYsWMBQObJSmVtG/i6fU5VqY4xSk2NB6TxNeqxiYkJ+vbtixUrVuD48ePg8Xi4e/cuZ1RVGXVXEZRRvpWlrSIyMjKQl5cHPT09iRPH7OxshY4FAdU/vtbU1MRPP/2EadOmISAgAC1btkReXp6IwayqxEFXVxeurq4oKSnhJpkXL14EUHoGuTw1OZ+oX78+OnbsiJycHFy7dg1Xr15Fbm4unJycpB5j/JagE+MyWFhY4JdffkFxcTG2bNki8Z1mzZrB1NQUAoEAhw8fFnPPy8vDqVOnAJTuCpaFXXmUpnrDGlk4duwYdym9Mqjsu1UNV9JqeGhoqFTjG+xZ16+pagWUrsizd+nt379fzJ0QgkOHDgEQL7vqonfv3vjvv//A4/Fw7NgxrFixQuwdZRnfAsAZILl8+bKIyhhQulrLGkfo2bNnNaRWOVRX/XF2doaBgQHevn2rVEM4lcWXrWvXr1+XOHi4fPky0tLSoKWlJfEuSIFAgJMnT4o9T01N5QxwKLM+s2GdPHlS4tnwI0eOQCAQoFGjRmjatKmIW6tWrcDj8fD06VMEBwdDVVUVrVq14tzZifPWrVtRUlICJycnkTuPq8r3VHeqEmZUVBTWrVsHFRUVrF69Gh07dsSECRMgEAgwZ84cielXRj/ByhdJ98J+bZo0aQI+n4+cnByuT64qbPtjF34qw9XVFTweD8+fP5e4UBweHo4XL16Ax+OhQ4cOSokjUH19PjtG2b9/P3fDQVWprrhWha9Zj62srLhz/2y9qo66KwvKLl9JaasIti7k5uZKHAMfPHhQ4YUCNm0XLlyoUNtJGdSqVYszalc23VXN37LWqZ8+fYqEhAQYGxtzhi3L8jXTKwn2uElZ9fJv3egWC50Yl4O9nkOSWXSgdHWTvcpg27ZtCAoK4txycnIwZ84cZGVloXHjxmKqVqwBCGkWpbt16wZnZ2fExcVh/PjxePfunYh7cXExHj58iFmzZkk1niQJ9ruVGTOQF3ZAu2HDBpHJ8dOnTzF9+nQRY0+S4vPixQupCwAJCQng8/ng8/lKtQA8YcIEAKUGzk6ePMmdSSssLIS3tzfevXsHXV3dr6p64uHhwe0W79u3r1rVeN3d3WFlZYXPnz9j7ty5nNZDUVERli5ditjYWNSvX1+q1cRvAbb+hIWFKXU1XV1dHTNmzABQemYqICBArPOKj4/H1q1buQmnPPENDQ2VeJa6bdu2cHBwgEAgwIwZM0SMbjx//hzLly8HAAwfPlyiIRM1NTX4+PjgwYMH3LP09HTMmjULAoEA9vb2SlVH7tOnD0xNTZGVlYU5c+aInFe/ffs2tm3bBqC0rZXfDapXrx6srKzw5csXPHz4EDY2NiJpYuPJnumU1OEDpdYtWfkgD99T3VE0zKKiIsyZMwdFRUUYN24cJ6enTJmCFi1a4N27d1izZo3Y9yrrn2RhwoQJ0NfXx8WLF/HPP/+InY3Ozc1FYGCgxAXA6mDOnDlQUVHBf//9h0OHDon1mykpKfD39xc5crJ3717s3btXzHhURkYGt6Aqq5V0MzMzbpFx3rx5IlbaY2JiMH/+fADAzz//LNVAlCJUV58/ePBgmJub48mTJ5g+fbrYQl5RURGCgoKwYMECmcPU19dHnTp1kJ6eLjbmqSmUXY+jo6OxaNEihIeHi/QBJSUl2LdvH7Kzs6GhoSGyS6pI3a0qipSvImmTRt26dcEwDIqLi/Hff/9xaSaE4MSJE9iyZYvUcWVlNG/eHH379kV2djZGjRqF58+fi7gTQvDs2TMsWbJE5qvTFi9ejIsXL4ppbL158waXLl0CABGNp6q2ny5duqBOnTp4/vw518/+/PPPEo8FVkd65aFTp06oX78+Hjx4gIcPH0JTUxO9evVS+neqA3rGuByNGzdG//79cezYManvDB06FM+ePcPZs2fxxx9/oFGjRtDT08O7d++Qn58PPT09bNq0SawB9+7dG4cOHYKfnx+uXbuG+vXrg8fjYfz48ejYsSN4PB58fHzg5eWFx48fo3fv3mjUqBEMDQ058/TsIXl2sCwLvXr1wtu3bzFx4kTw+XxuILp+/XrUr19fgVwqZdy4cQgICMCLFy/QpUsXWFhYID8/H3FxcbCyskLfvn2xZ88eMX+2trYwNzdHbGws3NzcYGFhATU1NVhbW3N3tlYXnTp1gpeXF7Zt24aFCxdi06ZNMDIyQmxsLHJycqChoYG1a9dWaCylOhg6dCgKCwuxYsUKbN++HRoaGtx9sMpERUUFmzZtwrBhw3Dz5k107NgR5ubmSExMRFZWFjQ1NbFx48YqGV6objp06ABdXV08efIEbm5uaNy4MWrVqgVXV1du4UNRBg0ahJSUFPj6+mLmzJnw9vaGmZkZCCFITk7mVl69vb1lDrN79+7YsGEDAgICEB4eDhMTE6ioqMDDwwP9+/cHj8fDunXrMHLkSISFhaFr166wsrJCQUEBN5Du0KEDpkyZIjF8R0dH6OjoYNSoUWjSpAm0tbXx9u1bFBUVwcDAAKtXr1aquqKGhgY2btyIcePG4fr167h37x4sLS2RlZXFHa8YMGCA1KtOXFxcEBUVBUKI2IS9SZMmMDY25qxkKvt88fdWdxQJc8OGDXjz5g2aN2+OP//8k3teq1YtrF27Fh4eHjh06BDc3NxENAkq659koUGDBtixYwcmTZqEw4cP49ixY2jatCm0tLTw+fNn7mYAaddPKRtXV1csXboU//zzD5YuXYq1a9fC3NwcqqqqSE1N5Sa/48eP5/x8/PgR+/fvx8qVK9GwYUOR/lcgEMDIyAjTp0+XOQ5LlixBbGwsIiIi8PPPP3MqjtHR0RAKhbC1tVXKFVplqa4+X1NTEzt37sSECRNw5coVXL16FU2aNIGenh5ycnIQHx8PgUAgV//J4/HQs2dPnDp1Ch4eHrCysuL6H2l39FY3yq7HAoEAJ06cwIkTJ6CtrQ0zMzPweDyu3+XxePjrr79EFgkVqbtVRZHyVSRtFTFr1ix4eXnhxIkTuHr1Kho3bozk5GR8+vQJHh4eSExMVHjBZ9myZcjJyUFQUBAGDRoEIyMjGBsbo7CwEPHx8ZwGlKTrPCXx7NkzHDt2DKqqqjAzM0PdunWRmZnJHcV0cXFBv379uPer2n40NDTg7u6OM2fOcHdvl7dGXZ3plQdVVVV4eHhg586dAEp3sOW1UF5T0ImxBLy8vHDmzBmpu7I8Hg8rV66Eq6srjh07hoiICKSkpMDIyAhubm6YMGGCRPP9rVq1wrp16+Dv74/o6GjOLHvZw+gGBgY4dOgQzp49i4CAAC7sevXqwcbGBi4uLnB3d5dr1WzChAkQCoUICAhAdHQ0l66qWtY1MTHBsWPHsH79ejx8+BDv37+HiYkJxo0bBy8vL+zdu1eiPxUVFezYsQPr169HaGgonj9/jpKSEpF32B1odXV1pRv5mD59OpycnHDgwAE8f/4cb968gYGBAbp164YJEyaIqX9+LUaNGoX8/Hxs3LgRGzduhKamptgF8cqgWbNmOH/+PLZu3Yrbt28jKioKenp66Nu3LyZPnvzNnwHR1tbG7t27sXnzZjx//hzh4eEQCoUwNTVVSvhTpkxBx44dcejQITx+/BhRUVHQ0NCAsbExfvrpJ7i7u8tlHM/MzAzbt2/Hjh078Pr1a3z8+FFsUti4cWOcPn0au3fvxrVr1xAdHY1atWrBwcEBHh4eGDRokFSVYnZBzc/PD+fOncPbt2+ho6ODjh07Yvr06RLvfa0q9vb2OH/+PHbu3Inbt28jMjISmpqacHFxwdChQ9G7d2+pflu3bo2DBw8C+J/qdHn3CxcuQFNTEy1atJAYBisf2HtKZeV7qzvyhvno0SPs27cP6urqWLNmjZhBFnNzc8yfPx+LFy/GggULcOHCBdSrVw+AbP2TLNjb2+PixYs4ePAgbt68idjYWAgEAjRo0ABt2rRBp06dJN4pW10MGjQIzs7O8Pf35/opVVVVGBkZwd3dHV27dkWXLl2494cMGQI9PT08fPgQ8fHxiIiI4K74c3Nzw5gxY7g8k4V69erhyJEj2L9/PwIDA7n7VxmGwc8//4wRI0Yo3VBZdfX5QOni1dmzZ3Hs2DFcvnwZ7969Q2JiIurXrw8HBwe0a9dO7qM4CxcuRJ06dXDjxg1ERkZCIBBUOZ5VRZn12NzcHP/++y+Cg4Px+vVrxMfHo7CwEPr6+ujVqxdGjBgh8ZiMvHVXGchbvoqmTRpubm7YvXs3tmzZglevXuH9+/ewsLDA5MmTMXTo0CpN4jQ1NbF9+3ZcuXIFZ86cwYsXL/D69Wvo6urCwsICTk5O6NGjh8xjoAULFuDWrVt4/PgxkpOT8eHDB2hqasLJyQl9+vTBb7/9JnYVZ1XbT9++fTnVZEtLS1hbW3+19MpL//79uYnx92B0i4VHquueFAqlCuzevRurV6/GsGHDpBqlolB+ZB49eoQRI0bAxcWlxnZWaoo//vgDQUFB2Lhx43ejnkWhUCgUyo/C48eP4enpCVNTU9y4ceObM7QnDXrGmPJN8vTpU9SqVQtjxoyp6ahQKJRvCEIIwsPDYW5uzhkYoVAoFAqF8u3AGgUdMGDAdzMpBujEmPKNEhYWhl69einVIAmFQvn+effuHbKysjBu3DiJRkcoFAqFQqHUHBEREQgICEDt2rU5C9XfC/SMMeWbJDg4uKajQKFQvkEsLS0lXkVGoVAoFAql5pgxYwYSExPx+vVrCAQCjB07Fg0aNKjpaMkFnRhTKBQKhUKhUCgUCkVhnj17ho8fP6JBgwb49ddfMXXq1JqOktxQ41sUCoVCoVAoFAqFQvmhoQe0KBQKhUKhUCgUCoXyQ0MnxhQKhUKhUCgUCoVC+aGhE2MKhUKhUCgUCoVCofzQ0IkxpUbw8fEBn8+Hj4+PUsJLSEgAn89Hly5dlBLet8D/xTRRJKPs9kChKIv58+eDz+fj9OnTNR2Vb4IPHz5g2rRpaNu2LaytrcHn83H9+vUqh/vo0SPw+XwMHz5cCbGkUCiU75/hw4eDz+fj0aNHX+2b/2cnxtevX4ePjw8iIiKkvrNv3z74+PggOzv7K8bs2yEhIQE+Pj50wKMgstSxijh9+jR8fHyQkJCg5JhRqovTp09Xulhx48YN2NnZgc/nY9myZaD2DSnfKhEREfDx8VHKxO5HoKioCCNHjsTly5ehoqICR0dHODk5QU9Pr1K/P/p4QxrZ2dnw8fHBvn37ajoqFEqN8y22h0ePHsHHx+erTk5rkv/TE2NfX98KJy379++Hr6/vD9tRJSYmwtfXF2fOnKnpqHyXyFLHKuLMmTPw9fVFYmKikmNGqSmuXr2KadOmQSAQYMyYMfj777/B4/Eq9VevXj1YWFigXr16XyGWFEopERER8PX1rXBiXL9+fVhYWEBHR+crxuzb5M6dO0hMTIS9vT2CgoJw9OhRHDlyBK1atarU748+3pBGdnY2fH19sX///pqOCoVS43yL7SEkJAS+vr4ICQmp6ah8Feg9xhQKhaIEAgMDMWfOHBQXF2PixImYMWOGzH49PT3h6elZjbGjUBRj1qxZmDVrVk1H45sgJiYGAODi4oLatWvXcGwoFAqFomzoxJhCoVCqyLlz57BgwQKUlJTgzz//xJQpU2o6ShQKRckUFhYCADQ0NGo4JhQKhUKpDr75iXFBQQGuX7+OW7du4fXr10hOTgYhBI0aNULXrl0xZswY6Orqcu8nJCSga9eu3N8LFizAggULuL+nTJkCU1NTkWdl3wdKVZ7atGnD/Z2dnY19+/bh+vXr+PDhAwghaNq0KX755Rf8/vvvUFNTE/F/+vRpLFiwAB4eHli6dCl27dqFc+fO4ePHj9DV1UWXLl0wY8YMMbXJsv5Wrlwplhds2kxNTXHz5k0Rt2fPnuHq1at4+PAhkpOT8fnzZ9SrVw9OTk4YO3Ys7O3tRd4fPnw4pxYREhICPp/PuUkK/+XLl9i7dy9CQ0ORnp6OOnXqoGXLlhg3bpxUNbLCwkLs3LkT58+fR3JyMurVqwc3NzdMnz5d4vvK5PDhwzh27BhiY2OhoaGBNm3aYNq0aWjWrJnYu2zaIyMjJYbF5hVbL2SpY3/++afUuD169AgjRozg/i77fwBYsWIF+vfvL+YvICAA+/btQ3R0NFRVVeHs7IwZM2bA2tpa4nc+f/6M3bt34/r160hISICamhqsrKzQr18/DBo0CKqqqmJ+wsLCsHfvXjx9+hSZmZnQ0tKCvr4+7Ozs8Msvv6BTp05ifmJjY7F7924EBwcjNTUVGhoasLW1xfDhw8XaVlUJDg7GjRs38OTJEyQlJeHLly+oX78+2rZti/Hjx6Np06YS/Z0/fx4nTpxAZGQkvnz5grp168LQ0BCtW7fG0KFDYWVlpXCcTp06hUWLFkEoFGLWrFmYMGGC3GH4+PjA19dXrO4oKktYcnJycODAAVy/fh1xcXEoLi6GsbExHBwcMHDgQLi4uHDvdunSBYmJibhx4wY+fvyIXbt24fnz58jKyoKvry+6desGoFQmHz58GIGBgYiJiYFAIEDjxo3Rq1cvjB49GnXq1BGLx9cstwcPHuDgwYMIDw/H58+foaenBxcXF/zxxx8ico4lKysLfn5+uHXrFnfeX19fH40bN0aHDh0wevRopewOlpUj2tra8PX1xdOnT1FQUABLS0sMHz4c/fr1k+r/7t27OHDgAJ4/f47c3FwYGhrip59+woQJE2BhYVHh93R1dbFt2zaEhoYiIyMD8+bNw/79+7ljHGfOnBE5UuPi4oIDBw4AKDW+debMGalyqSrxMjIywubNm/HgwQPk5ubC3Nwcnp6eGDx4sJi/4uJiHD16FBcuXEB0dDQKCwuhq6sLIyMjtGnTBsOHD0fDhg0rLYey4R0/fhznzp1DdHQ0BAIBGjVqhO7du2Ps2LGoW7cu9y7bPll8fX25v8vmlSTYNsxS2XgDAAghIn2YlpYW2rVrh1mzZsHU1FTidxRpl5UhT5hPnz6Fp6cnVFRUcOLECdjY2IiE9enTJ/Tt2xcZGRlYtWoV+vXrx9UtoPRoV/n2yfbJZeWjp6cntmzZgps3byI1NRUdO3bE1q1bOT/ytv+yci8lJQVbt27F8+fPQQiBg4MDZs+ezaUlLCwM27Ztw7Nnz1BYWAh7e3vMmTMHLVq0kJh/JSUlOH36NM6dO4fIyEgUFBTA2NgYXbp0wR9//AF9fX0xP9HR0di5cyceP36MtLQ01K5dG/r6+rC2tkaPHj3Qt29fWYoOgGJytzrzuiLS0tJw5coVBAUFISYmBqmpqVBXV4elpSV+/fVXDB48GCoqkk9/lpSU4Pz58zh//jxev37NpdPKygq9evWCh4eHmJ+IiAj4+/sjJCQEaWlp0NLSgqmpKdzc3DBkyBA0aNBA5P2vMQ+QtT1UJpOlzSVKSkpw69Yt3Lx5E8+fP0dKSgoKCwthbGwMV1dXTJgwAUZGRiJhlY1DWbkHQOJc5fLlyzhx4gRevXrF9Qeurq74448/0KhRI7G4AkBKSgo2btyIO3fuICcnB6ampujXrx/Gjh0r8f3q5pufGL98+RKzZs2CqqoqDA0NYWFhgby8PMTFxWH79u24dOkSjh49ygkYdXV1ODk5IS4uDunp6TA3NxcRPiYmJjAwMICTkxNevnyJoqIi2NnZiQx8yp6levfuHcaOHYukpCSoqanB1NQUPB4Pb968watXr3Dr1i34+flJHDgJBAKMHTsWjx8/hoWFBczMzBATE4Njx44hPDwcJ0+eVJo61uzZsxEfHw89PT3Ur18fDRo0wMePH3H58mVcv34d69evR48ePbj3GYZBVlYWoqKioK2tDYZhOLf69euLhH3gwAEsX74cQqEQOjo6sLS0RGpqKm7duoWgoCB4e3tjyJAhIn4KCgowZswYPHnyBADQrFkz1KpVCydOnMC9e/eq1dLysmXLcPDgQRgbG6NZs2aIiYnBlStXcPfuXezduxeOjo5VCl+WOlYROjo6cHJyQlRUFHJzc8EwDLS1tTl3AwMDMT8bNmzA9u3bYWxsDHNzc8TExCAoKAihoaE4efKk2AD0w4cPGDlyJBITE1GrVi1YWVkhPz8fYWFhCAsLw/Xr17F161aR+nfz5k1MmTIFJSUl0NbWhqWlJYRCIZKTk3Hx4kXk5uaKTYyvXLmC2bNno6ioCFpaWrCwsEBWVhYePHiABw8eyK1SXBnjxo1DSUkJ9PX1OQGemJiI06dP4/Lly9i1axecnZ1F/KxevRq7d+8GUFq3GzdujNzcXMTHxyMqKgqmpqYKT4yPHj0Kb29vEEKwYMECjBo1qkrpk4YisiQ6Ohrjx4/Hx48fwePxYG5uDi0tLSQkJODcuXNISkqSOKAPDAzEhg0boK2tDTMzM2hqanJuqampGDt2LKKioqCqqgoTExNoaWkhJiYGPj4+uHLlCvbv3y82Uf9a5bZq1Srs2bMHQOm5bSsrKyQmJiIgIADXrl3D5s2b0blzZ+793Nxc/Pbbb4iLi4OKigqaNGmCOnXqIDU1FaGhoQgJCcGgQYMkDmAV5enTp9i2bRtUVVXRtGlTfPr0CS9fvsS8efMQGRmJefPmifnZtGkTNyCtX78++Hw+YmNjcfr0aQQGBsLHxwcdO3aU+L3Hjx9jx44d3Pfq1KkDHo8HOzs7qKmpITY2FgYGBmjSpAnnp2x/UBFVidfr16/h5eUFQggsLCyQmpqKqKgoLF68GJ8/fxZbYJo1axYuX74MAGjYsCEMDAy4PuzVq1dwcHCQeWJcWFgILy8v3L9/HwC4tvH27Vts374dFy9ehL+/PzeQMzExgZOTE5KSkpCUlAQTExNOzleWV/KMN1jmzJmDCxcuwMzMDObm5nj//j0CAgIQGhqKc+fOibUvRdtlRcgbppOTEyZMmIBt27Zh9uzZOHXqlMjO+oIFC5CRkYGePXtyC0Dm5uaws7PDy5cvUbt2bdjZ2VUYp4yMDAwYMABJSUmwtLTkxhUs8rb/sty8eROrVq2Cjo4OGjdujLi4ONy7dw/Pnj3DsWPHEB0djVmzZqFOnTowNTVFbGwst8h98uRJsUX33NxcTJo0CY8ePQKPx4OxsTFMTEwQFxeHffv24cqVKzhw4AAaN27M+Xnx4gWGDx+O/Px8aGpqwsLCAqqqqkhKSsK1a9cQGxsr18RYEbn7NfJaEidOnMCmTZugrq6OBg0agM/nIzMzE+Hh4QgLC0NwcDA2b94sZrOjbD4DgLGxMRo1aoSUlBTcuXMHt2/fFpsY+/v7Y+XKlRAKhdDS0oKVlRW+fPmCt2/f4tWrV2jUqJHIhPNrzQPkbQ/ykpaWhsmTJ0NFRQUGBgZo1KgRioqKkJiYiIMHD+LSpUs4fPgwzM3NOT/S5B4bX5bi4mLMnTsXAQEBAMAtTMTFxeH48eO4fPkydu/eLbZJFxcXh2HDhuHTp09QU1MDwzDIzs7G+vXr8ezZs5oxXkq+cRISEkhAQADJyckReZ6ZmUmWLFlCGIYhCxcuFPM3b948wjAMOXXqlNSwO3fuTBiGIR8+fJDonpeXR9zd3QnDMOTvv/8mmZmZIvEaPHgwYRiGrF27VsTfqVOnCMMwxNbWlvTo0YO8ffuWc3v79i3p0KEDYRiGHD16VKK/efPmSYzPhw8fCMMwpHPnzmJuZ86cIbGxsSLPSkpKyNWrV4mjoyNp1aoVyc3NFXF/+PAhYRiGeHp6SvweIYTcu3eP8Pl84uzsTM6fP0+EQiHndvXqVdKyZUtia2tLIiMjRfytXr2aMAxD2rdvT16+fMk9j42NJb169SK2traEYRiyefNmqd+WBzZvmjdvTmxtbcn58+c5t5ycHPLnn39yeZefny/il2EYwjCM1LA9PT0JwzDk4cOHIs9lqWMVIS3c8mmytbUljo6O5Pr165xbdnY253/mzJki/oRCIRk4cCBhGIYMHjyYJCcnc25hYWGkbdu2hGEYsm7dOhF/ffr0IQzDkPXr15PCwkIRtxcvXpCzZ8+KPIuMjCQtWrQgtra25MCBA0QgEHBuISEhpH379oRhGHLnzh35MqYCjhw5QpKSkkSeFRUVkaNHj5LmzZsTd3d3kTqanp5ObGxsSPPmzcm1a9dE/BUXF5OgoCCp+S8Jto127tyZHDhwgPD5fMLn88nBgwerlK7NmzdLbA+KypLc3FzSpUsXwjAMGTFiBImPjxdxf/XqFTl06JDIM1Ye2tjYkA0bNpCioiLOraCggAiFQjJs2DDCMAyZNGmSSDlkZGQQLy8vwjAMmTFjhlj6vka5HT9+nDAMQzp27Ehu374t9n0bGxvi7OxMPn36xD3fs2cPYRiG/PLLL2LxS09PJ/7+/mJyU1HY9mpra0umTZsm0qedPXuWNG/enDAMIxb3oKAgrlyOHz/O5VNBQQH5+++/CcMwpHXr1iQtLU3i92xsbMiCBQvIly9fODdWBlbW5xAiXc5VNV62trZk8eLFJC8vj3Pbt28fYRiG2Nvbk+zsbO75y5cvCcMwxNnZmYSGhoqEV1BQQAICAsjr16+lpqE8q1atIgzDkJ9++omEhYVxz5OTk8lvv/3Gyc7ySGunslDZeIPtj21tbUn79u3JkydPROLFyufycrsq7VIaioYpEAjIgAEDCMMwZOnSpdzzAwcOEIZhiKurq8g4ipCKxzUsbL7b2NiQgQMHkoSEBM6NrcuKtH9C/lcutra2ZMeOHaS4uJgL948//uBkqLOzs5j7+PHjCcMwZPr06WJxnjVrFmEYhgwdOpRER0dzz/Py8rj28dtvv4n4Yb83b948Mbnz7t07cuTIEal5JAl55S4h1ZvXFfH48WMSHBwsMo4gpHTMOHToUMIwDDl37pyYP3Zs5+bmRh4/fizilpycLNZWb926RRiGIdbW1mT79u0iY53CwkJy4cIFkXC+9jxAlvZQ2dhTmlzPzs4mp06dIunp6SLPv3z5Qnx9fQnDMGTUqFFi4cki99avX08YhiE///wzCQ8P554LBALi4+PDpalsfguFQjJo0CDCMAz5/fffRfqKu3fvEkdHR26uIM84rap88xPjyujYsSNxdHQUa0zKmBizwnz8+PES3ZOTk4mjoyNp2bIlKSgo4J6zlZLP55Nnz56J+WM7fy8vL5HnVZkYV8SGDRsIwzDk4sWLIs9lmRh7eHgQhmFIYGCgRHd/f3/CMAxZtGgR9yw3N5c4OjoShmHIpUuXxPw8e/aMm4wqe2LMMAxZtmyZmHt+fj5p06aNxDrxrU+MGYYhfn5+Yu4RERHcYLEswcHBnED++PGjmL8LFy4QhmGIo6OjyODczs6OMAwjtgglDbZDkhQ3Qgi5fv06YRiGjB49Wqbwqsrs2bMJwzAiA92wsDDCMAzp16+fUr7BtlF2EsMwDDl27FiVw61sYiyvLGEnfO7u7mILQdJg5eGECRMkut+8eZMwDEN+/fVXsYUTQko7144dOxJra2uJ9U4ayii3oqIi0r59e8Ln80U65bIsX76cMAxDtm3bxj1jB6j+/v4yx1dR2Pb+008/ifQXLP/8849EecxOUBYvXizmp6SkhPTs2VNi3WG/17dvX24wX56qTIyrGq8+ffqQkpISMb/9+vUjDMOILIhcvHiRMAxDJk+eLDWespKTk8P1TwEBAWLuiYmJXPsuL5u/xsRYWn977do1bhGnLNXRLqsSZkxMDJe/QUFB5O3bt8Te3p7w+Xxy//59sbDkmRjb2dmJTfQIUbz9E/K/cvnjjz/E/ERHR3NlUpF7+T44MjKSWwjIysoS81dSUkL69+9PGIYRWQDp0aMHYRiGRERESM4IJSJJ7hJSvXmtKHFxcYRhGDJmzBiR5+yCma2trcjiQ0WU3QCQha89D6jOiXFlsAsQKSkpIs8rk3vp6emkRYsWxNHRUWwRnmXy5MmEYRiRTauyi4FlN3BYdu3axbW/rzkx/i6uayKE4Pbt2/j3338xYcIE/P777xg6dCiGDh2K3NxcTrVa2Vy9ehUA8Ntvv0l0NzIyQosWLfDlyxe8fPlSzN3a2lpMbQAAHBwcAJSquyqTuLg4bNmyBVOnTsXw4cO5PLp06RIAyH2tUFJSEl69egU9PT0RNeyysOcOy95vFhoairy8PDRo0ADu7u5ifuzt7bk8qA5+//13sWcaGhoYOHAgAODevXvV9u3qQtKZO2tra6irqyMnJweZmZnc87t37wIAunfvLlGtu1evXqhfvz7y8vLw9OlT7jn7LltfKqKoqAhBQUFQUVHBoEGDJL7TqVMnqKmpITQ0FMXFxZWGKSsRERHYsGEDJk2aJFLPHz9+zLmzsGmKjY3FmzdvlBYHUka9JykpSWnhSkNeWXLt2jUApec55TUUJOk8FvA/eejh4SFRZYw9BykUCrmyKEt1llt4eDjS0tJgbW0tVbZIklXsd27fvo38/PxKv6MMBg4cCHV1dbHnrNx68uQJ8vLyAABfvnzh2mh5WwQAoKKiwlkzZ9t9eX799VeJ9gSqgjLiNXDgQIlnBtnzmvHx8dwzY2NjAKW2ND5+/FiluLP526BBA4n9WsOGDbm6Ii3u1Ymuri569eol9pyt12XzBah6u5REVcI0NzfnjgP89ddfmDlzJgoKCjBixAi0a9dOpu9Lo127dlxdKIui7b8skvqxZs2acfKzIvfyfTCbfz179hSxgcOioqLCqRlLkkdXrlxRmgqpPHK3LNWZ19LIy8vDqVOnsGDBAowdOxbDhg3D0KFDufpUvi9g+7kuXbpItB9THvYYTq1atWQ+v/q9zQNkITQ0FKtWrcLEiRPh6enJ1YnY2FgA4vlcGXfu3EFhYSHatWsncjSgLJLqxJ07dwAA7u7uYmebgdJxb/mz21+Db/6McW5uLry8vCq9PysrK0vp346KigIAbN26lTvrVh62IqWkpIi5mZmZSfTDniH98uWLEmJZyp49e7Bu3boKJyDy5hF70F8gEEicbAL/myAkJydzz9grLZo2bSrVWEKzZs3w7NkzueIjC2pqaiJn5cpiaWkpEr/vhXr16km9Q1RfXx9JSUnIy8vjznqxdVJaR6GqqgoLCwukpaUhNjaWOwM4evRoeHt7Y9GiRdizZw86dOgAJycntGnTRuyMZVxcHAoLC6GmpoaJEydWGP/CwkJkZWXB0NBQnmRLZPny5fD396/wnbL13MjICL1790ZgYCA8PDy49Dg7O8PZ2Vlh67LGxsYYMmQI1q1bh61bt0JTU1Mho1uyIq8seffuHQAodJ5eWr1h5eGJEye4s57lYSctZeUBUP3lxsYtOTkZQ4cOlRg+a1G4bNwGDBiAvXv34t69e3B1dYWrqytatWqF1q1by3zOVl6kGRqzsLBArVq1UFxcjPj4eFhbWyM+Ph5CoRC1atWSaMgKAHfOmm335ZFlwCgvyoiXNDnN1ml2cQAAWrZsiZYtWyIsLAzu7u5o06YNWrdujVatWsHR0VHk7GNlsPKfPb8pLe6XL1+WGvfqRNrAUlK+AFVrl9KoaphDhgxBUFAQbt26hU+fPsHKykopV35JazuKtv+ySJOx+vr6+PjxY6XuZftgNj63bt3CixcvJPpLT08Xi8+oUaPw4MEDbN26FefOnUOHDh3g7OyMtm3bSpw4VIa8crcs1ZnXkoiMjMQff/xR4UJz+bjK289FR0cDKE1bWeN6FfE9zQMqQyAQYM6cOZVufig6V3j58qXUOpGTkwNA8lxBWh+lra0NIyMjzijm1+KbnxivXLkSISEhMDc3x4wZM+Do6Ah9fX1uFfP3339X+o4UC1uQr169qvTdgoICsWdaWloS3y1vPKCqPHnyBKtWrYKqqiqmT5/OWa7W0tICj8fDyZMnsXDhQrnzKDs7G4Do7oA0WEEI/K/jlmREikUZkyRJ6OnpSZ2M14QgUgbS6hEALq1lV5fZ/K8oj1m3snkxdOhQ6OjoYM+ePXj16hXev3+P/fv3o1atWujatSv++usvbgWZrRsCgaDSugFIbh/ycv78efj7+0NTUxOzZ89G+/btYWxsDA0NDfB4PM4QUPl6vmrVKlhaWuLkyZMIDQ1FaGgoAKBOnToYMmQIpk2bJnEHrzImTJiAgoICbNmyBevWrYOmpiaGDx9e5XRKQl5ZkpubCwAyd/5lKWtsqyysPHz79m2lYZSVB1+j3Nj6mJmZKbJzU1ncGjRogGPHjmHTpk24desWAgMDERgYCKC0s541a5bSLatLk4sqKiqoV68e0tLSuHbJ/luvXj2F5Zq08qwK1RkvSTJNRUUFfn5+3ITh3r17nOZPvXr1MGbMGIwbN05qXMoii3ysyb5CWluXljZF22VFKCPMtm3b4tatWwCAvn37KiRjyyMtbxRt/2WRVh9ZGVuZe9n6yuZffHy82A5/RfHp1KkTdu3ahW3btuHp06c4duwYjh07Bh6Ph59++gl//fWXzIYiFZW7LNWZ1+UpKSnBtGnTkJSUhA4dOmD8+PFgGAZ169ZFrVq1IBQKYWNjIxZXtp+TtnFQHnnfB76feYAs7Nq1C5cuXYKhoSFmz56NVq1aoUGDBlzbnDt3Ls6dOyf3XKHspLeyxRBF5gp0YlyG4uJizsLZ1q1bJa4qfP78udq+r6WlhezsbAQGBlbLqnt5JAnYskhT9Tt37hyA0h0/Ly8vMXdF84ht0A4ODjh+/Ljc/tgVUUl8+vRJoThVRlZWFoRCocRBBBsfaddWEEIkCqvyK/TfOmz+V5THrFv5vOjTpw/69OmDjIwMPH78GI8ePUJAQACuXLmC2NhYzoIi68/Q0JCz7FrdsPV87ty5GDZsmJi7tHpeu3ZtTJ48GZMnT0ZsbCyePHmCu3fv4vr169i9ezdyc3OxdOlSheI0depUFBQUYPfu3fjvv/+goaEhVbX8a6KtrY2srCxuEKMM2Hrl5+cn1dKwJL5GubFx6927NzZs2CBXuiwsLLBx40YUFRXh+fPnCA0NxZUrV/D69WtMmTIFhw4dgpOTk1xhVkRGRobE50KhkBtosu2L/TczM1NhuVYd1ES8dHR0MG/ePMydOxdv375FaGgobt++jdu3b2PdunUAIJPWhizysSbyVFEUbZfVGeb79++xceNG8Hg8EEKwfft29OjRQ8SKrTKpSvuvDtj4eHt7S91Bk0aHDh3QoUMH5OTk4MmTJ1wfHBwcjNGjRyMgIECienZ5FJW7lVEdef3ixQvExMSgYcOG2Lp1q9giirQdTPY2D3ZiVhnyvg98/XmALFR1rrB8+XKJV29WtU6MHz8es2fPlttfTcwVKuKbPmOckZGBvLw86OnpSayQ2dnZUtVilbEaw6reyrJqqgzYFUlplUTaOWr2LkppZvelqSxXlkfsyuT79+/lWkFiVetiYmIgFAolvvP+/XuZw5MHgUAgdYWWVbsp3zlX1jilhVcTK36ywKaPVRsqT0lJCddupA1U9PX10aNHDyxevBgXLlyAjo4OIiMj8fz5cwClapBqampIT0+vUKgpE3bVUN56XhZzc3MMGDAAGzduxJYtWwCU3vlXFY2TuXPnwtPTE4QQLF68GOfPn1c4LGXByq7w8HClhymvPPwa5cbKqqrI6tq1a6NVq1aYOHEizpw5g169ekEoFOLkyZMKhykJabIvNjYWxcXFUFVV5dTvzMzMoKKiguLiYql9HZtmRSYdisqw6o5XRfB4PDAMg2HDhmHHjh34+++/AUDmxVu2f3r//j1KSkokvlNdca8OqmOcUpUwi4uLMWfOHOTn52PkyJEYMmQI8vLyMHfuXIlyVhn9qDLavzJRRpno6OjAzc0N8+bNw6VLl9C4cWOkpaVxu/CVoQy5K4nqyGs2rnZ2dhI1C9hxR3nk7efKjmllXTT+2vMAWdqDonOFiupESUmJxDPSssRJ0TrBymJ2bF6e3Nxcierp1c03PTFmz5Hl5uZKXAE5ePCg1AEt27gqUuFkw5em7sEa5ti/f7/UCZ4yYQdDb968gUAgEHM/duyYRH9sWiWtrMTHx0sVpGz6peVRkyZNwOfzkZOTg1OnTlWegP+Ps7MztLS0kJKSguvXr4u5v3z5UqkD9vIcPnxY7FlhYSE3wHV1dRVxY890SRK+gYGBUgWoLHWsIirLf0Vh03f9+nWJ53UuX77MXWgvy05YgwYNuPs8U1NTAZQKZldXVxBCKj3DpCzY/JJUz0NDQ6UKdWmwaRcIBFW2UbBo0SIMHDgQQqEQ8+fP5wx21BTdu3cHUHoHuazqbJXBysNjx47JZajqa5Sbs7MzDAwM8PbtW6UZ12vZsiWA/9V5ZXHy5EkUFRWJPT906BCA/8lPoHTHkk3v/v37xfwQQjh/5eWaLCgqw6o7XvLADvJkLSc2f9PS0nDlyhUx96SkJNy4cQOAcuNe2XhDURRtl9UVpo+PD16+fAmGYTBr1izMnz8fFhYWePbsGbZt2yb2vjL6wepo/1WBzb8LFy4oZeG4Tp064PP5AGSv58qWuyzVkddsXNPS0iS679u3T+Jz1rjrzZs3pU6uytK4cWNYW1ujuLhYapjl+drzAFnaAztXkHR+PTc3l9O0lRa2pDpx8eJFqbuzlfUTbm5uqF27Nu7duyd1Q0YSrHy9evWqxHp9/PhxiXOh6uabnhjXrVsXDMOguLgY//33HzeYIITgxIkT2LJli9RzK+xkJzQ0VKq6AfuONMNegwcPhrm5OZ48eYLp06eLTTJYy7wLFixQKH3lsba2hpGREdLS0rBx40Yu3sXFxdiyZQsePHgg0V+rVq0AADt27BDZ3YyOjsbEiROlrvawk53o6Gip6n1z5syBiooK/vvvPxw6dEhsQJeSkgJ/f38cOXKEe6atrY0hQ4YAAP7991+8fv2ac/vw4QPmz59foaW5Ll26gM/nw8fHR+o70qhVqxYOHz4sIhi+fPmCefPmISMjA6ampujdu7eIH1alZOPGjSKrU2FhYfjvv/+kxlWWOlYRrH9ZLYXKStu2beHg4ACBQIAZM2aIpOn58+dYvnw5gFKLxaxqUW5uLqZPn44HDx6I7KIQQhAYGIioqCjweDw0b96cc5s2bRo0NDTg5+cHX19fsfN4mZmZOHHiBLZu3SoWRz6fDz6fj9OnT8ucLraeb9iwQUSAP336FNOnT5coCx48eICVK1dyxiFYCgsLuXiZmJhUeMZFFng8HpYtW4Y+ffqgpKQEM2fORFBQUJXCrAqDBg1C48aNERsbCy8vL06rhCUiIkLiAlJFdOvWDc7OzoiLi8P48ePFBiLFxcV4+PAhZs2aJSInvka5qaurY8aMGQCAmTNnIiAgQGwQEx8fj61bt4osWqxfvx7Hjh0TWxhJSEjAiRMnAAC2trYibj4+PuDz+ejSpYuUnKqYz58/Y8GCBSLt5cKFCzh69CgAYNy4cSLvs+rBJ06cwMmTJzlZU1hYCG9vb7x79w66urpyq2wC/5NBL168kHsCVJ3xKs/58+fh6+srpr2Tm5sLPz8/AOLlJA1tbW1OtfS///4T2TlLSUnBjBkzIBAI0LJlS7Rp06bKcWepbLyhKIq2y+oI8+nTp/Dz84OamhrWrFmD2rVrQ1NTE2vXroWamhq2b98utlOpr6+POnXqID09XabJjSQUbf/VRfPmzdG3b19kZ2dj1KhRYovuhBA8e/YMS5YsEbFKPH36dNy4cUOsnB4+fIjg4GAApbuqsqCI3JWF6shr1oBeWFiYiIZOfn4+vL29pdoxsbGxQa9evSAQCDB+/Hg8efJExD0lJQW+vr4iz2bOnAkA2LZtG/z8/ETyuqioCIGBgZw9C+DrzwNkaQ/shPLGjRsim09ZWVmYN2+eVJVotk6sXLmSO28NlC4seHt7VzqfCgsLk7gZWb9+fYwZMwbFxcUYN26cxAWTyMhIrFmzRqSM2rRpgxYtWkAgEGDWrFkii0jBwcHw9fWVOv6+fPkyunTponA/XBHf9BljAJg1axa8vLxw4sQJXL16FY0bN0ZycjI+ffoEDw8PJCYmSuxounfvjg0bNiAgIADh4eEwMTGBiooKPDw80L9/fwCl19YEBQXB29sbhw8fhp6eHoDSKwZsbGygqamJnTt3YsKECbhy5QquXr2KJk2aQE9PDzk5OYiPj4dAIFCaISkVFRXMnTsXs2bNwq5du3Dy5Ek0atQIHz58QF5eHhYsWCDxLORvv/2Go0ePIi4uDr1794aFhQWEQiHevXuH+vXrw8vLCxs3bhTzp6+vj7Zt2+Lhw4fo1q0bLC0toa6uDkNDQ+7siKurK5YuXYp//vkHS5cuxdq1a2Fubg5VVVWkpqZyk67x48eLhD116lSEhYUhLCwMHh4esLS0RK1atfD27VvOou+BAweUkm9lMTIyQufOnTFz5kysWbMGBgYGeP/+PfLy8qCpqYk1a9aIWbQdM2YMzp07h8jISHTt2hVNmzZFQUEB4uLi0LdvX6SkpChcxyqid+/eOHToEPz8/HDt2jXUr18fPB4P48ePr9JZMR6Ph3Xr1mHkyJEICwtD165dYWVlhYKCAk6Ns0OHDpgyZQrnRygU4tKlS7h06RI0NDTQpEkT1K5dG8nJydwq7sSJE0VUC62trbFp0ybMnDkTPj4+2LFjBywsLKCuro709HR8/PgRhBCxhQhFGTduHAICAvDixQt06dIFFhYWyM/PR1xcHKysrNC3b1/s2bNHxM+XL1+wd+9e7N27F3p6ejA1NYVQKMSHDx+Qm5sLNTU1eHt7K0WdT0VFBatWrUJRURGuXr2KqVOnYseOHfjpp5+qHLa81KlTB9u2bcO4ceNw//59rl5raGggMTERWVlZcHFxkXj2TBo8Hg8+Pj7w8vLC48eP0bt3bzRq1AiGhobclXnsbhi7+AJ8vXIbNGgQNxCaOXMmvL29YWZmBkIIkpOTuU7X29ub8xMdHY0dO3ZgyZIlaNSoEfT19ZGdnY24uDgIhUJYWVnJfK2HrEyePBlbt27FzZs30bRpU6Snp3ODrREjRoid/erUqRO8vLywbds2LFy4EJs2bYKRkRFiY2ORk5MDDQ0NrF27VqF+yNbWFubm5oiNjYWbmxssLCygpqYGa2trLFy4sEK/1Rmv8mRkZMDHxwc+Pj6oX78+jI2NUVhYiPj4eBQUFEBHR6fS+JZl6tSpeP36NYKDg/Hbb7/BwsICmpqaePv2LQQCARo1aoS1a9dWOd5lqWy8oSiKtktlh5mbm4u5c+eipKQEs2bNgrW1NReenZ0dJk+ejI0bN2LOnDk4e/YspxXB4/HQs2dPnDp1Ch4eHrCysuLc5BkjKNL+q5Nly5YhJycHQUFBGDRoEIyMjETqLWu7pOx1Z/fu3cOlS5egpqYGc3NzaGpqIi0tjZMPffv2lfnKK0XkrqwoO68NDQ0xevRo+Pn5YeHChfDx8YGhoSHev3+P/Px8/Pvvv1Lb97///ov09HSEhIRg2LBhMDExgaGhIVJSUpCWlgZCiMhYp1OnTliwYAFWrVqFtWvXYuvWrbCwsEBeXh4SExNRVFSEFStWcJPIrz0PkKU9NGvWDIMHD8axY8cwefJkmJqaQk9PD2/fvoWuri4mTpwocWNp6tSpCA4Oxq1bt+Dq6goLCwtkZGQgKSkJbdu2RYMGDSQeBevQoQN0dXXx5MkTuLm5oXHjxqhVqxZcXV25BdJp06YhPT0dJ06cwNixY6Gvr49GjRqhuLgYiYmJ3GS97GIjj8fD6tWr4enpiZCQELi5ucHKygq5ubmIi4tDly5dkJOTI3HziC2v6uCb3jEGSrfod+/ejVatWqGoqAjv37+HkZERlixZghUrVkj1Z2Zmhu3bt8PFxQWfP3/GkydPEBISIpKR/fr1w8KFC8Hn8xEfH4+QkBCEhISIqM42adIEZ8+exYIFC+Do6IiMjAy8evUK+fn5cHBwwNSpUyWqkilKnz594OvrC3t7e+Tn5yM+Ph729vY4dOiQxMPyQOkK+OHDhzFgwADUrVsXMTExyMvLw+DBg3HmzJkKzfyvW7cO/fv3h7a2Nl69eoWQkBCxFd1Bgwbh/PnzGDJkCBo0aID379/j/fv3qFOnDtzd3bFq1SoxoyeamprYt28fJk2ahMaNGyMuLg6ZmZkYOHAgTp48KdV4RHFxMWeApuzupDz8/fffWLJkCXR1dREdHQ01NTW4u7vj5MmTEs9W1KtXD4cPH0afPn1Qp04dxMTEoHbt2li4cCHWrFkj9Tuy1LGKaNWqFdatWwd7e3ukpqbi8ePHCAkJUYqxgcaNG+P06dOYMGEC/l979/fSZB/Gcfztr0DcKrADTaMSEyxIM1IGsq1OFrQDFYMOMkqqURqW1JFoHkywogM7apYIoeIvFAqiv2EHFkUzt4nBJHVYZCT2C9bBQyNbPc8m88fTPq/j3V++7N5973t9r/u+rtzcXPx+P7OzsxQVFdHa2orL5VrWnzIjI4Nbt25RWVlJTk4Os7OzjI+PEwqFOHz4MC6XK7xL/DOr1crjx4+pra1l586dBAIBfD4faWlpmM1mWltbI/7Qfn5cKpZznJ2dzcDAAEePHiU9PT0c5J89e5b+/v7fVn88ePAgzc3NHDlyBKPRyNTUFH6/ny1btlBVVcXo6ChWqzXqOfyX1NRUbt++jcVi4fPnz1y8eHHZ7vNa2rNnD48ePaKuro6CggJmZmaYmppi69atVFVV0dDQEPOYmZmZ9Pb24nQ6MZlMfPz4kZcvX/L+/XsKCws5f/48w8PDy3ae1/K81dfXMzg4SEVFBUajEa/XSyAQIDMzE7vdzp07d6ioqAh//sKFCzgcDoqLi/n06RMej4dgMEhhYSGNjY0MDg5GVPb+8ftd6f2ppKSE/v5+ysrKmJ6e5t27d+zbt4/29vY/Lv4uX74cLoT05csXXr16RUZGBpWVlYyOjq54Iy05ORmXy4XNZiMlJYXnz5/jdruj7mO5WvP6lc1m49q1a5SXl7Np0ya8Xi+vX78mKyuLkydP8vDhw6gzafBP1uvevXu0tLRQVFTE3Nwck5OT7NixA4fDwcjISPiJqniJZr2xUiu5LuM9ZltbG4FAgNLSUs6cORMxnsPhCGehf127NTU1cerUKbZt28bExET4u4lVrNf/akpPT+fu3bt0dHRgtVr59u0bHo+H+fl5du/eTU1NDT09PcvanbW3t3PixAny8vKYn5/H4/GwtLSEyWTi5s2b/7oe+dVK7ruxiPd3ffXqVVpaWsjPz+ft27dMT09z4MABurq6qK6u/uNxBoOB7u5unE4nhw4dYnFxkYmJCdLS0rBYLNy4cSPimNOnTzM0NITdbmfz5s14vV4WFhYoKCjg0qVLEa9QrHUcEM31cP36dRobG9m1axfBYJBgMIjdbmdkZITt27f/dty9e/fS19eH2WwmKSmJyclJDAYDV65c4f79+39sX2cwGOjq6sJsNvP161eePXuG2+1eVi8jOTkZp9NJd3c3NpuN1NRUxsfHefPmDdnZ2Rw/fpzOzs6IREFeXl54E8BoNOLz+UhJSQknXNajlk9SKF5dxEXi4MWLF1RXV4cX9Ru1wJWs3JMnT2hoaMBisdDZ2bne0xGJid1ux+fzMTQ0xP79+6M+rqamBrfbzYMHD+L6iK6IiIjEx4bPGEti+fEuyblz5xQU/6V+nONoWquIbCQfPnzA7/djMpliCopFRERk41NgLBvK2NgYOTk5HDt2bL2nIqtkbGyMkpKS8Ds8Iv8XT58+JRQKaVNHRETkL7Thi29JYuno6FjvKcgqi3dfWJG1YrFYIipli4iIyN9BGWMRERERERFJaCq+JSIiIiIiIglNGWMRERERERFJaAqMRUREREREJKEpMBYREREREZGEpsBYREREREREEpoCYxEREREREUloCoxFREREREQkoSkwFhERERERkYT2HRSRoKqf7C0rAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(8, 2, figsize=(11, 27), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + " axes_rows[0].plot(lc_ar4.time, taper, color=palette[idx])\n", + " axes_rows[0].set_ylabel(f\"K = {idx}\")\n", + " axes_rows[0].set_xlabel(\"t\")\n", + " \n", + " axes_rows[1].plot(lc_ar4.time, tapered_data, color=palette[idx])\n", + " axes_rows[1].set_xlabel(\"t\")\n", + " \n", + " idx += 1\n", + "axes[0][0].set_title(\"DPSS tapers\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Tapered time series\", fontsize=18, pad=15)\n", + "fig.tight_layout()\n", + "txt=\"DPSS tapers and product of these tapers and the AR(4) time series.\\n\\\n", + " Note that, for K=0 in the top row, the extremes of the time series are severly\\n\\\n", + " attenuated, but those portions of the extremes, as K increases, are accentuated.\"\n", + "fig.text(.5, -0.025, txt, ha='center', fontsize=18)\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "b373cc2c", + "metadata": {}, + "source": [ + "#### Now let's see their frequency domain representations (here PSD)\n", + "\n", + "We can have a good look at the leakage properties of these tapers (and the resulting time series) from their PSD representations." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "eb8f5358", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABCUAAAp2CAYAAABbLXaWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gU1dfA8e9sSU9IhdBD2xASQi/SOwhYAAELior6qoCCvYu9YIefDUERsaKg0hUBQTqE3gkJJBAgjfRky7x/JLvsJptKSAI5n+fhIZl65+5kZvbMvecqqqqqCCGEEEIIIYQQQlQxTXUXQAghhBBCCCGEELWTBCWEEEIIIYQQQghRLSQoIYQQQgghhBBCiGohQQkhhBBCCCGEEEJUCwlKCCGEEEIIIYQQolpIUEIIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIB6GhoYSGhlbLvrdu3UpoaCh33nlnle3zzjvvJDQ0lK1bt1bZPsXV5ZlnniE0NJTffvutuosirhIHDx7k/vvvp0uXLrZr6qFDh6q7WNUuNjaWiIgIHnvssUrb5rhx4+jSpQupqamVtk1RPr/99huhoaE888wzV8V2a6uaXJ+66i6AEOVx5513sm3bNodp7u7ueHl50ahRIyIiIhg6dChdunQpdhu//fYbzz77rMM0RVHw8PAgJCSE/v37M3HiRHx8fIqse+7cOebPn8/GjRs5ffo0RqMRPz8/goKCiIyMpGvXrgwePBi9Xu+wntlsZvHixSxdupTDhw+Tnp6Ol5cX/v7+tGzZki5dujBo0CAaNGhQ5rqYNWsWAFOnTi3zOuLq8NtvvxEfH8+oUaNo1KhRdRdHiGuGs3uIM6NGjeLtt9+ughKJivrmm29IT08v9n5dnRITE5k4cSJpaWkEBwfTokUL23NGTaGqKoMGDSIuLg53d3c2btyIl5dXscvPmjWL2bNnO0xTFAUvLy9CQkIYOHAgd955Z4nbAHj//fcxm808/PDDZSrn448/ztKlSwF46623GD16dJFlJk+ezAMPPMBnn31W5PmuLOSeWz3S0tKYP38+3t7e3H333dVdHFHNJCghrkr169enfv36ABiNRi5evMiePXuIiopiwYIFhIeHM3PmTFq0aFHsNlxcXIiIiADyb85xcXEcOHCAAwcOsHjxYr777juHIMHWrVt5+OGHycjIQKPRUK9ePQIDA8nMzOTIkSMcOHCAH374gfXr1xMcHGxbLyMjg/vvv59du3YB4OvrS8uWLdFoNJw+fZro6GhWr15NRkZGmW/SgO3hQIIS157Fixezbds2unbtWusekNzd3WnWrJnt71uIK8H+HuJMSEiIw+9BQUE0a9YMb2/vK1wyUVbffvut7YtkTQtKLFu2jLS0NAYPHswnn3yCRlPzGibv2LGDuLg4ALKzs1m1ahVjxowpdT0vLy8MBgMAFouF+Ph49u3bx759+1i8eDHff/89gYGBTtfds2cPq1atYujQobRs2bLUfW3cuNEWkChJ3759CQ8PZ+HChUycOLFcL3igdt9zq1NaWhqzZ8+mYcOGxQYlvL29adasGUFBQVVbuGtUTa5PCUqIq9KYMWOKfBnPyMjgr7/+YtasWRw4cICxY8fyww8/FNsMPSgoiB9++MFh2r///stjjz1GfHw8L7/8MnPmzLFte9q0aWRkZNCrVy9eeuklmjZtalsvOzubjRs38ssvv6AoisM23333XXbt2oWvry9vvfUW/fv3ty2jqiqHDh3izz//pE6dOpddL0Jc7SIjI1m5cmV1F0Nc45zdQ0ry+OOP8/jjj1/BEolrycmTJwHo0aNHjQxIACxZsgQAHx8f0tLSWLJkSZmCEm3atGHBggUO09atW8e0adOIjY3l3Xff5d1333W6rnU9Z60dCsvJyWHGjBm2F0AHDhwocfnRo0fz2muv8dNPPzF9+vRSty+uDoMHD2bw4MHVXYxrRk2uz5p5pRSiAry8vBg1ahS//fYbBoOBzMxMHn30Ucxmc5m30adPHyZPngzkR+it/RPXr19PcnIynp6ezJo1yyEgAflvdwcPHsyXX35JvXr1bNNNJhN//vknAM8++ywDBgxwCFooikKbNm14+umnueOOOyp66EIIIYSoIXJzcwFwc3Or5pI4l5OTYwv+zpgxA0VR2L59O2fOnKnQ9vr168fEiRMB+Ouvv5w+d6WmprJ69Wr8/Pzo2bNnqducNWsWp0+f5vnnn8fT07PU5YcPH45Op+O3334r13OfEKJmkKCEuOb4+vryzjvvAPlvK1atWlWu9a35KCwWC6dOnQLg9OnTADRr1qxcfUKTkpLIysoCIDw8vFzlKM6sWbMcWn9YE2hZ/1mbY5rNZv7++2+ee+45Ro4cSZcuXYiMjGTIkCG89tprnDt3zun27RO6nTp1iscff5yePXsSGRnJyJEjmT9/fok3/PPnz/PWW28xbNgw2rVrR8eOHbn11lv57bffUFW12OOZNWsWKSkpvP766wwYMICIiIgyd2c5fvw4Tz31FP379yciIoKOHTsyaNAgpkyZYgsKWdkn+cnKyuLdd99l4MCBtG3bln79+vHmm2+SlpZW7L5ycnKYN28et9xyC506dSIyMpIRI0Ywe/ZsMjMzi10vPT2dTz/9lNGjR9OpUyfatWvH0KFDeeqpp2x93K1JHq2/33XXXQ6frTXJXlxcHKGhoQwYMACAX375hbFjx9KxY0dCQ0Nt5T99+jRz5szhrrvuol+/fkRERNC1a1cmTpzI8uXLy1S3ZTF16lRCQ0OdbnPw4MGEhoZy++23F5n3zTffEBoaymuvvWabVlyiy8LHvGzZMsaOHUuHDh3o3Lkz//d//8fhw4eLLeO5c+d49tlnbefy9ddfzxdffIHJZCrx2EwmE99//z3jx4+3fd7Dhw/nww8/LHKeqKpK9+7dCQ0NJTEx0WFeQkKC7XP86KOPiuzn4YcfJjQ01OF6ZTKZ+O6772z7joiIoGfPnowePZp33nmnwl8gRPmVlujy119/ZfTo0bRr147u3bszefJkDh8+XGri1rS0ND755BNuvPFGOnToQPv27Rk9ejTffPMNRqOxyPL216+8vDw+/fRThg4dStu2bW2t+FJSUpzuKyoqikceeYRevXoRHh5Oly5dGDp0KI8//jjr1693WNb+upyUlMRLL71Enz59aNu2LUOGDGHWrFm2L96VcVxWFy5cYObMmdxwww106NCBDh06MHz4cF5++WUOHjzoUAfx8fEADBw40OE6aU1Ya1/3JpOJuXPncuONN9K+fXs6d+5s2+fRo0eZNWsWt956K7179yYiIoLrrruO//u//+O///4rtqzOFD5Pnn32WVu5CieWO3HiBM8884zt2ty9e/cS91kZ90qrv//+m4yMDBo2bMjw4cPp0qULqqry+++/l2s79tq2bQtAVlaW03Pw77//Jjc3l969exfJu1XY4cOH+eabb+jTpw9Dhw4t0/79/f2JjIzk/PnzZcobA2W/50J+15OZM2cyZswYevbsSUREBL179+bRRx9l7969Trdf1c8bZT3nAWJiYnjxxRdt5enSpQt33303a9asKbY8ZrOZ+fPnM3LkSCIjI+nZsydPPPGE7Rm5PJ555hkGDhwIQHx8fJFnWaviEjPaH6vFYuHrr79mxIgRtGvXjr59+/LOO++QnZ0N5D/Pf/vtt9xwww20a9eOXr168eqrr5KRkVFs+cr7LFua9evXc//993PdddcRHh5Ot27dGD58OM8//7yte3dh+/fv5/HHH6dv375ERETQrVs3HnzwQXbs2OF0efuk3YcPH+bRRx+lZ8+ehIWF8c0335RYn1YVuXZX5Nicke4b4prUpk0b2rVrx549e1i/fj3Dhw8v87rOLjbWxE0xMTGkpqbi6+tbpm15enqiKAqqqrJ7925atWpV5nIUp379+nTs2NH2h96xY0eH+a6urkD+w93kyZPRaDQEBATQqFEj8vLyiI+P57vvvmPFihV8//33RfpOW8XGxvL222+TlZWFwWDA3d2dY8eO8eabb7Jr1y4++uijIl1VduzYwcMPP8zFixdxdXWlSZMmZGdns3v3bqKioti0aRMzZ84ssh5AcnIyY8aM4ezZs7Rs2ZIWLVqg05V+idq3bx933nkn2dnZtnwEWq2Ws2fP8tdffxETE8MNN9xQZL28vDzuvPNO9u/fT4sWLWjWrBnHjh1j/vz5bNiwgYULF+Lv7++wzvnz55k0aRJHjx5Fq9VSv359PDw8OHnyJLNmzWLVqlV8++23+Pn5Oax3/Phx7r//fs6cOYOiKISEhODh4UFcXBy///47Z8+eZcGCBXh7e9OxY0eOHj1KRkYGBoPBIWlYQEBAkeOYMWMGP/zwA/Xq1aN58+YODweff/45ixYtwsPDg7p16xIaGkpSUhJbtmxhy5Yt7N69m+eee67UOi5N165dWb16NVu3bnX4Wzt37pwtsLd3715ycnIc3hxaHwRLSkzrzIcffsjnn39OcHAwISEhnDx5knXr1rFjxw4WLVpEs2bNHJaPjY3l9ttvJzExEb1ej8FgIC0tjQ8++IA9e/YU+4CRm5vLQw89ZPuSYP3cjh07xueff87SpUuZP3++rQ+yoih06dKF1atXs23bNoe6sB/Zo/ADs6qq7Ny5s0hdPP7447a3mQ0aNCAgIIDU1FSOHj3KgQMHaNeuXbn7TovK9+qrr7Jw4UIg//ocEBDApk2b2Lhxo63lnTMnTpxg0qRJnD17Fr1eT8OGDVEUhcOHD3PgwAHWrl3LnDlzcHFxKbKu0Whk0qRJbN++nWbNmtGkSRNOnjzJTz/9xO7du1m0aJHDev/88w9TpkzBbDbj5eVFy5YtsVgsJCQksHTpUjIyMujbt2+R/aSmpjJ27FgSEhJo2bIlXl5enDhxgtmzZ7N582bmzZtXpDVARY9r+/btTJ48mYsXL6LVamnRogUajYa4uDh+/PFHcnNzefvttwkICKBjx47s37+fvLw8IiIiHLZVOO+HqqpMnjyZdevW0ahRI1q0aEFSUpJt/ptvvsnmzZvx9vYmKCiIoKAgzp8/z7p161i3bh3PPvtsmZPwhYSE0LFjR2JjY0lKSiIkJMR2H7G/165bt45HHnmE3NxcvLy8CA0Nddjn1KlTmTJlitN9VPReac/adeOGG25AURRuvPFGtm3bxu+//85DDz1Urm1Z5eTk2H52d3cvMn/79u1Afhe9klgsFl566SW0Wi0vvfRSucoQGRnJrl272LFjB9ddd12py5fnnvvEE09w6tQpfH19CQoKom7dupw5c4aVK1fy999/88EHHxQbQKnK5w0o/ZxftWoVTzzxBHl5eXh4eNCsWTNSU1PZvHkzmzdv5sEHHyzSBUZVVaZPn24LnDdu3BgfHx9WrlzJv//+6/TFQ0lCQkKIiIhg//79DjneKuKxxx5jxYoVNGvWjIYNGxITE8O8efM4evQoX331FdOmTWPVqlWEhITQqFEjTp48ycKFC4mOjrZ9Wbd3Oc+yzixcuJBXX30VyH9xGhoaSk5ODmfPnuXEiRO4uroWeZZfsGABb775JhaLBW9vb1q2bMn58+dZu3Yt69atY8aMGdx6661O97d9+3a++OILtFotzZs3t30XKU1Frt0VObZiqUJcRSZMmKAaDAb1k08+KXXZt99+WzUYDOrQoUMdpv/666+qwWBQ+/fv73S9uXPnqgaDQW3durWanJysqqqqnjx5Um3durVqMBjUm266SV22bJltXmluu+021WAwqO3bt1f/97//qcePH1ctFkuZ1i2JwWBQDQZDsfPT0tLUX3/9VU1KSnKYnpmZqc6ePVs1GAzq3XffXWS9p59+WjUYDGp4eLg6YcIENTEx0TZv48aNavv27VWDwaB+//33DuudP39e7datm2owGNSPPvpIzcrKss07fPiwOmzYMNVgMKg//PCDw3qffPKJajAY1LCwMPWWW25R4+LibPOys7NLrYf/+7//Uw0Gg/r000+rGRkZDvNOnDhRZH/Wzz88PFzt3bu3euDAAdu82NhYdfjw4arBYFCnTZvmsJ7FYlFvv/121WAwqA8//LB69uxZ27zk5GT1oYceUg0Ggzp9+nSH9TIyMtQBAwaoBoNBveuuu9RTp045zD9w4IC6cOFCh2nW83zLli1Oj/n06dO2OouMjFRXrVplm5ebm6uazWZVVVV13bp1alRUVJHz7eDBg7bPY8eOHUW2X9q5VdihQ4dUg8GgDhs2zGH677//rhoMBrV3796qwWBQN23aZJtnsVjUrl27qgaDweEc27Jli2owGNQJEyY4Pebw8HC1ffv26t9//22bl5aWZquzxx57zGE9i8Wijh07VjUYDOodd9yhXrhwwTZvw4YNavv27dXw8HCn9f3OO++oBoNBve6669SoqCjb9ISEBHXcuHGqwWBQx48f77DO/PnzVYPBoL700ksO059//nlbXYSHhzuc29b6Gz58uG3a/v37VYPBoHbq1KnIZ5STk6MuW7ZMPXjwoCrKpzz3EHvW6+Kvv/7qMP2vv/6ynZfLli2zTc/IyFAfe+wx27lV+HzOyspShwwZohoMBvXFF19UU1JSbPPi4uLU8ePHqwaDQX3vvfcc1rO/fg0dOlQ9duyYbd6xY8fUXr16qQaDQf3xxx8d1hs5cqRqMBjUDz74QM3NzXWYt2/fPnXJkiUO06zX5fDwcHXkyJEO1639+/erPXv2VA0Ggzpz5sxKOa6zZ8+qXbp0sV177a8Jqqqq27ZtK1LG/v37qwaDQT19+rTqjPVaEhYWpnbr1k3dvn27bZ7939+KFSvUQ4cOFVl/69atas+ePdU2bdoUu4/iFHe+qKqqnjt3Tu3UqZOtjqxlsVgs6s8//2x71vj3338d1rvce6XV+fPn1bCwMNVgMKjHjx9XVTX/Gtq2bVvVYDCou3fvdrqedf+Fz2WrJ554QjUYDOrAgQOdzh84cKBqMBjUXbt2lVi+b7/9VjUYDOr//vc/2zTr362z+rT3559/qgaDQZ04cWKJyxVW2j1XVVV18eLFakxMjMM0s9msrl69Wm3fvr3auXPnIs8gVf28UZZz/siRI2rbtm3V8PBwdcGCBarRaLQts23bNtvfduHzb+HChbZn2Q0bNtimX7hwQb399ttt17qnn3662DoszHpfL+55XFUv1WHh7VqPNTw8XO3Vq5e6d+9e27xDhw7Zni8mT55cZP7Bgwdt15v169c7bLeiz7LFMRqNtn0tXLhQNZlMtnkWi0XdunWr+tdffzmss3HjRjU0NFTt1KmT+scffzg8w61evVrt0KGDGh4erh45csRhPet5HBYWpj777LNqZmambZ718y+uPity7a7IsZVEum+Ia5Z1BIzk5OQyr7NhwwY+/fRTAHr27GmLQIeEhNiixocOHWL69Ol0796dQYMG8dhjj/HLL78U2wRvxowZ+Pv7k5WVxccff8zw4cNtTehnzZrF0aNHL+cwi+Xt7c3o0aOLRN89PDyYPHkynTp1YtOmTZw/f97p+oqi8MEHHzi8KejZs6ft7c1XX33l8IZ53rx5pKSkcPvtt/Poo486vCkJDQ3lgw8+QFEUvv76a6f702q1zJo1i4YNG9qmlaU/bkxMDAB33313kX6nzZs3LzaSbDQaefHFF2nTpo1tWpMmTXjrrbcAWLFihUOrA+ub+LCwMD788EOHEVb8/Px47733CA4OZsWKFZw9e9Y27+effyYuLo6QkBC++OILGjdu7FCONm3alPsNg5XZbOaRRx5hyJAhtmkuLi62xGp9+/alffv2RSLkYWFhtjdQl9Nc1yo0NBRfX1+io6Mdui1YWwTcf//9gGNrgSNHjpCamkrLli2dtgApjtFoZPLkybZmn5B/rj///PMARZqhb9u2jT179qDX63n//fcdssL36tWLKVOmOG2SmJGRYUuE+8ILL9C+fXvbvHr16vHhhx+i0+mIiopyOK6uXbs6HLt9OQICAhg9ejRGo5GoqCjbPOv61nXh0nndvXt3OnXq5LAtV1dXhg8fTlhYWDG1JEoze/bsIs2FnXUBKM3cuXOB/HPcvmWMp6cnb731lsN1wt6vv/5KTEwMffv25dVXX3VofdewYUM+/vhjPDw8WLhwodNuEiaTiXfffddhBIOWLVty3333AUX/Dqzn0/3331+khUJERAQ33XST03IajUbefvtth+tWeHg4L7zwApD/lsy+GXlFj+urr77i4sWLdO7cmffff7/INaFLly7FlrE0ZrOZGTNmODRft7+3DBs2jNatWxdZr2vXrjz66KOYTKZK7e72ww8/kJ6eTsuWLXnllVdsZVEUhbFjxzJ27FgAvvzyS6frV/ReafXHH39gNptp06aNbYQyb29v+vXrB1xqRVEWZrOZU6dOMXPmTP744w8A/u///q/Icqqq2u6LdevWLXZ7CQkJfPjhh4SEhNjO5fKwjihwJbq23XzzzUXyiWk0GgYPHmwb/nXdunVO162q5w2rks752bNnk5uby7Rp05gwYYJDK5suXbrwyiuvADg8q6mqyldffQXAlClT6NWrl21eYGAgH3zwQTG1duVZ69bafQigdevWtr+jv/76q8j8sLAw2/x///3XYXuX+yxbWEpKChcvXqROnTrcfvvtaLVa2zxFUejatSuDBg1yWOf9999HVVVee+01W2smq8GDBzNt2jSMRmORhLNWLVu25LXXXnPobl7aNaIi1+6KHFtJJCghrlnWP8bi+vlfuHCB2267jdtuu83Wl/S+++4jPT2d4OBgZsyY4bD8Aw88wMKFCxk4cKCti8Tp06dZtmwZL7zwAv379+fnn38ush+DwcDSpUuZNGmSLQlmWloaW7ZsYfbs2dxwww1Mnz69xL5tl2PHjh288847PPjgg0yYMMF2zNaH1OL64Q8ZMsTpkEHjx49Hr9cTFxdnyzAOsHr1att8Z8LCwmzN6pzls+jRo0exD/AlsQ7rt2rVqnL186tXr57DF1uryMhI2rVrh6qqDn17rcc3atQop82pPTw86NGjBxaLxdZMFfJviJDf1+9KJD0bNWpUifNTU1NZuHAhTz75JPfccw+33347t912G++99x5Q/OdfHoqi2B5+7L+Mb9++nYCAAG655Rb0er3DvIp23QDn51jr1q1xdXUlPT3doT+z9YFjyJAhDklo7bflrH/zzp07ycrKom7duk6b5DZo0MB2s92wYYNturMAzblz54iNjaVLly5069YNcAzQWM8X+7qw/i3s2bNHckdcAdZucMX9K8vQn5mZmezevRuAW265pch8FxeXYr9IW68n48aNczq/Xr16tG3blszMTPbv319kfuvWrZ02g2/Xrh1AkT7e1uvkihUrijka5zp06OA0H9KQIUOoW7cuWVlZDn2GK3pcf//9NwD33XdfpY9W4eXlVWq2+XPnzjF37lymT5/OxIkTbffJb7/9Fsh/GVFZrNeLCRMmOG1SfddddwGXrkGFVfReaWXfdcPejTfeCMDy5cvJy8srdv1t27bZgndt2rRh8ODBfPXVVwQEBPDSSy/ZvuzZS0tLs+XvKWmksVdffZXMzExmzJjh9D5bGuu2y/MyqjxiY2P53//+xyOPPMKdd95pO0+sf1fFnSdV9bxhVdw5n5eXx7p169BoNE4/J8h/maHX69mxY4ftM4uOjiY+Ph69Xu/0/luvXr1qG9GhTp06Di9mrKwBoOLmW69r1jxsVpf7LFuYv78/rq6upKWllSlHzdmzZzlw4AC+vr7FdgeyPnsUFzy/6aabHAIEZVGRa3d5j600klNCXLOswQj7/oH28vLyHB6mPDw8CAsLo1+/ftx9991O80Z07tyZzp07k5eXx/79+9m3bx8bNmxg8+bNZGRk8OKLL+Lh4cHIkSMd1gsICOCpp57iqaeeIiYmhn379rF161b++ecfkpKSWL58OWlpaba3bpXBaDTy5JNPlvoQah1hpLDmzZs7ne7l5UW9evVsQYnmzZuTlZVlu7BbM3k7Y/2ymJCQUOQLYnH7K83dd9/N5s2b+fTTT/n999/p1asXnTp1onv37k6/hFo1a9as2IffFi1asGfPHoegi7VFyy+//FLskJXWL48JCQm2aSdOnABweNNeWfz8/Iq0hLG3efNmpk2bVuxnDMV//uXVpUsX/v77b1teifPnzxMTE8OwYcNwd3cnMjLSIa+ENShh3zqgLPz8/Ir9wujv78/Zs2fJysqytXKyfobWN4KF2Z/P9qzrWXOUONOqVStWrlxpC/BBfoCmU6dOrFmzxpZXwv5YO3To4BCgUVXV9lBpXxfWJH9RUVEMGTKEbt260aVLFzp37kz79u3L3YdcOCrvkKDOnDp1ytbf1/6ttT1nb+Dh0vXk008/Lfa6bz2vnD34NmnSxOk61hYGhYPx99xzDzNmzOCFF15g3rx59OrVi44dO9KtW7cSryHFXZc1Gg3NmjXj/PnznDx5kt69e1f4uDIyMmxve6/EdTIkJKTEB/SlS5fywgsv2JLiOVNZ10m4dPz2rVzsNWvWDJ1Oh8lk4tSpU0XOoYreKwEOHjzI0aNH0Wg0jBgxwmFe37598fX1JTU1lXXr1jn9Igf510yDwQDk55GIiYkhKysLHx+fYoPM9q1irC91Cvvrr79Ys2YNI0eOLFM+CGesgX/7/BaVZd68ebz//vslJkcu7jypqucNq+LO+djYWHJzc9Hr9Tz44IPFHgfkf2apqakEBgbayhYcHFzsM3Vx99grrXDrUyvrda20+fbXysp4li1Mq9Vy1113MWfOHO69917Cw8Pp0aMHHTt2pGvXrkXq88iRI0D+M3xxo/JZX8A5++yhYp9FRa7d5T220shTjbhmWR9yinvgatiwIf/880+Ftu3i4mJ7ozZx4kQOHz7Mfffdx4ULF5g1a1aRoIS9kJAQQkJCuOGGG8jKyuL5559n+fLlbNy4kV27dpU9IUwpvvrqK1asWEFgYCBPPPEEnTt3pm7durYHgqeeeorff/+92BtsSU3qAwMDiYuLs13M09PTbfPsm6UXx9kDQ3lGNbHXt29fvvrqKz777DN27drFTz/9xE8//YSiKFx33XU899xzThOMlnZ84Hizsh7jsWPHSi2T/QOYtQWMj49P2Q6oHEqqs4yMDFtA4oYbbuCOO+6gefPmeHl5odVqOX36NIMGDSp19ImysrYAsH7ZLhx06Nq1Kzt37iQqKoru3bvbskeXt6VEScdsfeizbzFjfdNYlvPZnnU9++4ehRX3BbBr166sWbPGFqCxBh26deuGm5ubQ4AmNjaW1NRUmjdv7rAvjUbDnDlzbMG2jRs3snHjRiA/MHPvvfdekbfKouysn3tJwxUWN896PTlw4ECp+ynP9bK4h+jbbrsNb29v5s2bx4EDB4iOjubbb79Fp9MxcOBAnnvuOadv3yt6nSzPcdmvX9XXydOnT/PMM89gNBqZOHEiN910E02aNMHT0xONRsPmzZu5++67K+06CaVfk7RaLb6+viQmJjpt6VnReyVcaiXRtWvXIl+m9Ho9119/PT/88ANLliwpNijRpk0bh2bjmZmZzJw5kx9++IFJkybxxx9/FEm+aP+SJy0trcixZ2dn89prr+Ht7V3sqABlcfHiRQCnyR8vx86dO3nnnXfQarVMmzaNgQMH0rBhQzw8PFAUhUWLFvH8889X+HkKKud5w6q4c8TazdhoNJZpVITCf6NlOY6qVtq1sDzXysp4lnXmscceIzg4mIULF3LgwAHb9dHV1ZUbbriBp59+2nbts35GmZmZpX5GxY2A5CzRbGkqek8qz7GVRoIS4pplzWZvbc56JbVu3ZqHHnqIV199lZiYGFsfq9J4eHjw2muvsXLlSiwWC3v37q20oIQ1V8Cbb77pNKu69eZdnJKaP1qbpVsfuO0v+nv27Knysdl79epFr169SE9PZ+fOnWzdupVly5axadMm7rnnHpYtW1bk8yjP8cGlY5wzZw59+vQpc9m8vLxITU0tcdivK2H9+vWkpqbSvn17p1miK/PNH+R3W6hTp46t24I1KGENVnTr1o3PPvuMrVu34u/vT0pKCs2aNXPaRagyWT83+8zjhRUevtN+PWfzrKzbLPzFs3BeCesxW9+M2gdojh8/DjgPznh7e/P000/z1FNPcezYMXbs2MH69etZv34977//PpDfrUxUD+vn7qyJvVVx3Qc9PDxIS0tj+fLlVfaGceTIkYwcOZLk5GS2b99uu06uWrWKmJiYIiN2QMWuk+U9Lvv109LSKv0LZUlWrFiB0Wjk+uuvdzoSUWn3yYrw8PAgPT2dpKQkp60ezGaz7fpcUsCrvEwmE8uWLQNgy5YtDsMuFvbvv/+SkpJSps/C09OTl156icOHDxMVFcUHH3zgMMwz5L/I8fb2Jj09ndTU1CJfbpOSkjh37hwuLi7cfPPNRfZh/RzeeOMN3n//fVq1auV01ARrvZXU+qcirM9T99xzj9PRSSrzeQoq/rxRGus+AgMDy9Xc3rpeee+jV5sr9Syr0WiYMGECEyZM4OzZs+zYsYNNmzaxcuVKFi1axLlz52w5O6xlaNeundMu4VdKRe9J5Tm2UrdV0cILUZMdOHCAffv2AdiSN11p9k3EShqHvTAvLy/bDbSkfpzlZX3zWzhJHuQ/9Djrp2zP2u2gsIyMDFvTLesQZ97e3ra3LmWJ7F8p1mRdTz/9NCtWrKBx48ZcuHCBtWvXFln25MmTWCwWp9uJjo4GHIdws36hLO/xWdez9j2vKtbPv0OHDk7fCBQ3rnpFaTQa27m2bds2tm3b5vBF3L7bgrPuCleKdXjQspzPztaLjo7GbDY7Xdd6LhQeVrd169b4+PgQHR3NoUOHiImJcQg6WI9769atDq0oiqMoCgaDgdtvv50vvviCF198EaBKH1hEUU2aNEGj0ZCWllZs3g9rU9zCKno9qQz+/v4MHTqUl156iT///BNvb2+OHDni9JpQ3N+NxWKxNem+3Oukl5eXbWjb6rpOOrtPQv4Xk8pmra/i6ujkyZOYTCa0Wm2x3XQqYsOGDSQmJqLVagkMDCz2n4uLC0aj0RbAKAuNRsOTTz4JwG+//UZsbGyRZayJeYs7pyD/GSgxMbHIP+szVUZGBomJiQ55g+xZt22fULIyxMfHAxU/T6rqeaM0TZs2Ra/Xk5SUVGKAoTDr/TAhIaHY/GfW4yiPsg6pWVWq4lm2fv363HDDDbz11lv8/PPPKIrChg0bbK27rS17o6OjK7WFVmkq45wr7dhKI0EJcc1JTU21Nf9r1qxZsU0QyyM5ObnUJIrWpl4+Pj62IIPJZCo1gm4dz9xa3rIqre+kdb6z6PXSpUtLjWqvXr3a6TI///wzRqORhg0bOrzlsdazs7cX1cHT09P2JsjZCCMJCQlOu+/s37+f3bt3oyiKQ4Zpa8Khn376qcS+x4VZkz8tWLCg2KZ2hVVGv1hrN50LFy4UmWc0Glm4cGGFt10c65ftZcuWcfLkSYcv4m5ubrRt25a9e/fakk9WRVDC2td99erVTs8D6/lcWKdOnfDw8ODChQu2cdntnT17ljVr1jjsw8o+QDN79mzAMejQsWNH9Hq9Q1CiPN1YrNsubuQcUTU8PT3p0KEDkJ+5vDCj0WgbkaAw6/Xk22+/LfbLSlWoW7cujRo1ApyfT1FRUU6T9/3111+cP38eDw8Phy9qFT0ua+K2efPmlTlhsfU6WdbrqjPW66Sze93FixdZvHhxhbddHOv1YuHChU6P1Zpc03oNqizWrhuDBg3iv//+K/afdbSk8ozCYS1v165dMZlMfPHFF0XmW5MhOwt+NWrUiCNHjhT7z3qveOuttzhy5Eixo0ZZt20/6kRZlHbPLek8OXXqlNMXH/aq6nmjNO7u7vTu3RtVVZk/f36Z12vevDkNGzbEaDTyyy+/FJl//vx5W6LE8riSOUAqqiqfZVu1amXLkWW9/jZt2pTQ0FDS09Od3leulMq+Jzk7ttJIUEJcMzIyMliyZAmjR4/m6NGjeHh48PHHH1dKn+s//viDG2+8kR9//LFIM7zs7Gzmz5/PnDlzgPxsydZ9ZmVlMWDAAN555x0OHz5c5AFk27ZtTJkyBVVVqVevnsNNqTTWlhmFhx60st6U3377bYfI9j///MOMGTOKTTZlpaoqjz/+uMPxbt682fYla9KkSQ5R7gceeAB/f3+WLl3KK6+8UuRNRkZGBsuXL7cNgVVZpk2bxpo1a4q0MtmyZQubNm0C8oe8K0yv1/P66687jD5x+vRpnn32WSD/Am3f+mXQoEF06tSJ2NhY7r///iJve0wmE1u2bOHxxx93KMvYsWNp3LgxMTExPPTQQ7Y3LlaHDh3i+++/d5hm3a+zrNplZf38V61a5TA6RGpqKtOnTy+SQ6EyWL9YW7+sF37737VrV4xGoy0oUZGRN8qrW7dutG3bFqPRyOOPP+7wdmjTpk3Mnj3b6egbXl5etqFa33jjDYc3YefOnWP69OkYjUY6dOjgtJWD9SHaWhf2ARhrgCYqKork5GRCQkKKDJP3xx9/MHv2bE6dOuUwPSMjw3atcTYqgqhakyZNAuCLL75wSEiXlZXFc889V2wLivHjxxMSEsLOnTuZNm1akTdJ1iz51uvR5bDml9m8ebNDqx9VVVm+fDlHjx5FURSnb5f1ej1PP/20w2gehw4d4vXXXwfyc1XYNzuv6HHdd9991KlTh23btvHEE08Uuc/u2LGjSICntHtgWVivk99//71DX+qzZ8/y0EMPldg1p6Ks+T2OHz/OjBkzHIIqv/76K4sWLQIqt2tWWlqa7YtzaUOrWrtP7Nu3r8RWDc5YhwP9448/ipz71ucba9fayqaqKlFRUWg0Gnr06FGudUu751rPky+++MLhmnz8+HEefPDBUt/4V9XzRlk8+uijuLm5MWfOHGbPnl2ki1lKSgq//PILn376qW2aoii2a92sWbNsz1aQ36Xj8ccfL1cZrPz9/fH09CQpKanc59qVUtnPssePH+eFF15g9+7dDt8BzGYz33zzDWlpabi5uTl0mXjyySfRaDS88cYbLFy4sMhnfO7cOebPn28btrwyVOTaXZFjK4nklBBXpV9//dV2UbS2Rjh9+rQtuhcREcG7775baX11FUXh6NGjvPzyy7z88ss0bNgQf39/W9Zwa5S3V69eTJ8+3WG9jIwM5s2bx7x58/Dx8aFhw4ZoNBrOnj1re/Dy9fXlk08+KVdymuuvv55jx47x4IMPEhoaasty+8EHHxAUFMQjjzzCpk2bWLt2Lb1796ZZs2YkJydz9uxZunfvTt26dYt9iwf5D9s//PADffv2pVWrVmRkZNiaZA4ZMoTbbrvNYfm6devyxRdf8PDDD/P999/z008/0bx5czw8PLh48aItU31l5/jYuHEjK1asQK/XExISgru7OxcuXLBdUG+44QanDyhDhgwhNjaWm2++mRYtWqDT6Th27Bhms5mQkBBeeuklh+UVRWHWrFk89NBDbN++neHDh9OoUSMCAwPJysqyZbWG/DweVp6ennz22Wfcd999/PfffwwcOJDmzZvj5uZGfHw8qampdO3a1fYFGGD48OEsXLiQOXPm8NdffxEUFISiKNx///1l7l8aERHB8OHDWb58Offddx+NGzfGx8eHY8eOoaoqL7zwAi+//HK567skbdq0sfUbhqItIbp168bnn3+OqqqEhISUmrW6MiiKwrvvvsuECRPYtm0b/fr1czifBwwYQHp6utOH0UceeYSDBw+yadMmxo0bR7NmzXB3d+fYsWMYjUYaNWpkG1q1MOuxq6rq0I3Ffr41iZWzFiPJycnMmjWLWbNmERQURHBwMLm5uZw6dYqcnBy8vb15/vnnL7d6ai37e4gzISEhZXroHDhwIHfccQcLFy7k0Ucftd0bTpw4gdlsZsqUKXz44YdFguPu7u58+eWXPPDAA6xatYrVq1fTtGlTfH19SU9P59SpUxiNxkpJHmexWFixYgUrVqzAzc2Npk2b4uLiQkJCgq0l1YMPPlikGxLkP6iuXbuWoUOH0qpVK0wmky0PSocOHYqMYFLR46pXrx6zZ89m8uTJLF26lJUrV9K8eXM0Gg1xcXFkZGQwatQo27CVkH8PXLduHTNmzOD777+3JVN87rnnbF0FSjNo0CDbKDe33HILISEhuLi4cOzYMdzd3XniiSd44403ylrVZVK3bl3ee+89HnnkEX788UeWLl1qG8nE2pVs6tSpRVpgXY7ly5eTm5uLn59fqfeQJk2a2Ork999/57HHHivzfnr16kVERAT79+9nzpw5DveYTp060aJFC6Kiojhz5oyty05l2blzJwkJCfTu3ds2BG5ZlXbPHTduHD/++COxsbEMHz6cZs2aYbFYOHHiBEFBQTz00EN89NFHxW6/qp43yqJ169Z8/PHHPPbYY8yaNYsvvviCZs2a4erqSlJSEmfOnEFVVYYPH+6w3m233cbmzZv566+/uOeee2jatCleXl62l4CTJk3i888/L1dZFEVh2LBh/Prrr4waNYpWrVrZWgfZJ1OtSpX9LGttXfLLL7/g5eVFkyZNUBTF9vynKArPPfecw0gVvXv35tVXX+WVV17h1Vdf5b333rONqGJ/nbC2aqoMFbl2V+TYSiJBCXFVOnv2rO1Lp5ubG97e3rRr146IiAiGDBlS6c3Cb7/9dlq3bs3GjRttNz7r8DmBgYG0adOGkSNHMnToUIeIube3N6tWrWLjxo38999/xMbGEh8fT1ZWFl5eXnTs2JE+ffpw6623lju51wMPPIDFYmHZsmUcP37cFkm13qjatGnD999/z8cff8zOnTs5ceIEjRs3Zvr06UyaNMnWL704TZs2ZdGiRXz88cds3ryZ9PR0WrZsydixY7nzzjudtkCJjIxk6dKlfPfdd/zzzz/ExMRgNBqpW7cu3bp1o2/fvpXSncbe22+/zYYNG4iKiuL8+fOkp6fj5eXFddddV+Qh1p6LiwsLFixg1qxZrFq1ivPnzxMUFMTgwYOZOnWq00SlAQEBLFy4kCVLlrBs2TIOHTrEuXPn8PPzIywsjK5duzJkyJAirVBatWrFn3/+yTfffMPff/9te+tYt25dBgwYwJgxYxyW79y5M++//z7z58/n+PHjtmGYRo0aVa66sQbmlixZQkJCAllZWfTp04cHH3zwiiSTs3ZbWLdundMv4ta8EkajsUpaSVg1b96cX3/9lY8//ph///2XY8eO0ahRIx577DEmTZrEPffc43Q9V1dX5syZw08//cTvv/9ue4hs3LgxgwcPZtKkScUmtA0LC7MFaLp06VLkTZo1QAPOW4wMHToUk8nE5s2bOXnyJEePHkVVVRo0aECvXr2YNGlSpT/U1yb29xBnyvOG/MUXX6RNmzYsXLiQEydOkJmZSbdu3Zg6dartS7+zh7KmTZuyZMkSfvrpJ1auXMmJEyeIj48nKCiIdu3a0aNHD4YNG1b+gyvE09OTmTNnsmnTJvbu3UtCQgKZmZn4+vrSv39/br311mJzL/n6+vLLL7/w8ccfs27dOpKTk2ncuDE33ngjDzzwgNNEcBU9rq5du7J06VLmzZvH+vXriY2NRa/XExwcTLdu3Rg3bpzD8jfffDNpaWksWrSI2NhY2z25PEmFtVotc+fO5ZNPPmHlypWcPn0aX19fhg8fztSpU4sdcu9y9evXj8WLFzNnzhw2bdrE4cOH8fT0pG/fvtx1113lajVZFtauGCNHjnTaMqywm2++maioKP744w+mTZtWrhanDz74IFOmTOHXX3/loYcecmgFNm7cON566y3+/PNPW6uKymJ9yTJ+/Phyr1vaPdfLy4vvv/+eDz74gHXr1nHy5EmCgoIYP348U6dOtbX+K05VPm+URb9+/Vi+fDnz589nw4YNnD592tZit0+fPvTv39/W9dRKo9Hw8ccfs2DBAn755RdOnTqFj48PQ4cOZdq0aRVu2fn888/j6enJmjVrOHLkSLlysl0plfksGxISwuuvv86mTZs4ePAgp06dIjc3F39/f66//nruuusupwnux44dS6dOnZg/fz5btmwhOjoarVZLvXr1GDJkCAMHDmTAgAGVetzlvXZX9NiKo6hl7bwnhKgVnnnmGRYvXsxbb73F6NGjq7s4le63337j2WefZdSoUbz99tvVXRwhxDVs3rx5vPPOO0ycONHp6A411axZs5g9ezZTpkwp0hpCiIrKyspiyJAh6HQ6Vq9eXWS0l4pKTk5m4MCBNG7cmCVLltSYoZLleUOIsqsZf7VCCCGEENcQs9lse0NdXNZ+IWoTDw8Ppk6dytmzZys1id+8efPIysriiSeeqDEBCSFE+Uj3DSGEEEKICpo/fz4dO3akbdu2tmkpKSm8+eabHDlyhODgYPr371+NJRSi5rjllltISUlBp6u8ryD+/v4899xzZc65JISoeSQoIYQQQghRQWvXruXNN9/E09OTJk2aYDabbWPMe3h4MHPmzEprpi7E1U6r1fLggw9W6jbvvffeSt2eEKLqSVBCCCGEEKKC7rzzTnx8fNi/fz8xMTGYzWaCg4Pp0aMHkyZNcjqqhRBCCCEukUSXQgghhBBCCCGEqBaSDUYIIYQQQgghhBDVQoISQgghhBBCCCGEqBYSlBBCCCGEEEIIIUS1kKCEEEIIIYQQQgghqoUEJYQQQgghhBBCCFEtJCghhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCghJCCCGEEEIIIYSoFhKUEEIIIYQQQgghRLWQoIQQQgghhBBCCCGqhQQlhBBCCCGEEEIIUS101V0AcXWwWFTMZstlb0en02AyXf52rkVSN45Onz5F48ZNbL9L/RRP6qZ4UjfFq4y60Wo1aDRKJZVIWMk998qTuimZ1E/xpG6KJ3VTssutn2v5nitBCVEmZrOF1NSsy9qGRqMQEOBFWlo2FotaSSW7NkjdFHXnnXexZMlyQOqnJFI3xZO6KV5l1Y2vrwcajbYSSyZA7rlXmtRNyaR+iid1Uzypm5JVRv1cy/dc6b4hhBBCCCGEEEKIaiFBCSGEEEIIIYQQQlQLCUoIIYQQQgghhBCiWkhQQgghhBBCCCGEENVCEl0KIYSoNKpqwWKxoNaAHFcajUJeXh4mk0mSbhVS1rpRFNBotCjKtZntWwhxdaque43cV4ondVOystRPbb7nSlBCCCHEZTObzaSlJZObe3kjBlS2xEQNFosMT+ZMWetGUTT4+9dFr3etglIJIUTxasK9Ru4rxZO6KVlZ6qe23nMlKCGEEOKyqKpKUtJZNBotfn510Wp1QM2I8ut0CiaTvLFxpmx1o5KRcZHk5PPUrduoVr69EULUDDXlXiP3leJJ3ZSs9PqpvfdcCUoIIYS4LBaLGYvFjL9/PXQ6fXUXx4FOpwHkrY0zZa0bL6865ORkYrGYC74ECCFE1asp9xq5rxRP6qZkZamf2nrPrT1HKqqdy4r15Ow+iIdGA1otasH/6DSorq6obi6obq6obq7g5orF0wPVxwuLtxeqjxeqlwdoJDerEDXNpT69tSeiX7vkf641IU+IEFctoxG3P9agScsga+JoeZ6pALnXiNqhdt5zJSghqozq6Q5enmAyg8WMYjJBbh6KxQKkl76+oqB6e2Lx98US6IclwBdLQP7/qqdHfnYYIYQQQogaxmXHfvRHTwKgSUrFEuRfzSUSQoiaQ4ISosoY+3TFZ9QAkpIyHLPOWiyQk4eSk3vpX3YOSmYWmrQMlPTMgv8zUNIy0KVlQEycw7Ytnu5Ygutirh+EOTgIS/26+S0rhBBCCCGqmeZc4qWfLyRJUELUOHPnfsGmTRuZO3dBdRdF1EISlBDVT6MBDzdUDzdKbalkMqFJvogmKRVNUkr+/4nJaBJT0J2IRXci1raopY435iYNMDVpgLlJA1Rfnyt6GEKIq8sbb8xgxYqlRaYvXfo3vr6+VV8gIcQ1S5OSeunnC8nVVxBR5d54YwbZ2Vm8/vq7tmnLl//JzJlvMn36U9x446hybzMt7SIffjiT//7bgEajoV+/ATz66BO4u7tXuJy33XYnt9wyvsLrX61uueUGbrttAmPG1L5jr0kkKCGuLjodlroBWOoGOE43mdCcT0J79gLahAtozp5HcyEZ/b4j6PcdAcDi44W5aUNMLZpiatYI3GrXUDtCiKJ69OjN008/7zCtTp06Dr+bTCZ0OrldCiEqSFXRJF+0/SpBidrtl19+5NNPP+aFF15h4MAhFdrGK6+8SFJSIh9++D9MJhNvvfUK7733Fi+++GqFy+Xh4QFIK2NnTCYTWq22Vo2GUdUky464Nuh0WBrUw9gpgpwR/cm6bzwZ0+4he8ww8rpEYq4XiJKWgX7fEdyXrMbr429w//4P9Nv2oNg9KAghahcXFz0BAYEO/8aOvZFvv53Hq6++yODBffj44/cB2LMnioceupcBA3oyZsxIPv30Y/Ly8mzbSkpK5KmnpjFgQE/Gj7+ZdevWMGLEQJYv/xOAXbt20KtXZ7Kysmzr/PffBnr16uxQpn//Xcfdd9/OgAE9GD/+ZhYunO8wrnmvXp1ZunQJTz01jYEDe3LnnePYs2e3wzZ2797Fww/fx8CBPbn++gE8+eSj5ObmMn/+XO655/Yi9XDrraP44YfvLrs+hRBFKZnZKHlGLF6eAGgyskpZQ1yrvv56Dp9/Pos335xZ4YBETMxJtm7dxDPPvEh4eATt2rVn2rQn+euvlSQnJxW7XlpaGm+99SojRgxk6NC+PPbYFGJjY2zz5879gkmT7rT9bjKZ+PDDdxk6tC8jRgxk7twveOGFp3jjjRm2ZXJzc5k160NuumkYgwf35v7772H//n22+cuX/8mIEQPZtGkjt946miFD+vLCC0+RkZFhW2bt2r+5885xDBjQgxEjBvLYY1Ns97w33pjBCy88xdy5XzBixECGDevHJ5+8j9lsLrYMDz10r0MZoPh74pQpD5CQcJYPP5xJr16dbfdja7n//Xcdt98+hgEDepCamsqUKQ8we/ZHDtueNOlO5s79wvZ7r16d+eOPxTz22FQGDuzJXXeN5+jRwxw/foxJk+5i0KBeTJ8+mZQUCU7ak1c/17jo6Giee+45MjIycHFx4bnnnqNz586lr3gtcHfDZGiGydAs//fsHHQx8eiOx6A9cQpdbDy62HhYswlz3QBMbVpiDGsp3TyEEHz//bfce+8DTJr0fwDEx8fxxBOP8n//9zDPP/8KSUmJvPfeW5hMJh555HEg/+EpNTWF2bPzH04+/HCmQwCiLPbs2c2bb85g2rQnadu2HadOxfLuu2+g17swbtxttuW+/vorpkyZxtSpjzF37he88srz/Pzz7+h0Ok6dimX69MncfPMtPP74MwBs374FVVUZPvwG5s37kmPHjhAWFlawzyjOnj3D0KHXX3a9CSGKUi6mAWAJDkRzPBMlJ7eaSySqmqqqzJr1AUuX/s7778+iffuODvO//XYeCxZ8XeI2Fiz4heDgYPbv34uPTx1atw6zzevcuSuKonDw4AF69erjdP2XXnoGd3d33n9/Nh4e7vzyy09Mnz6ZhQsXOe32sXDhfNasWc2LL75Kw4aN+eGHBWzfvpU+ffrblvnoo5nExsbw2mtvExAQyJo1q5k+fTLff7+IoKC6AGRlZfHrrz/z2mtvkZOTw4svPsN3333Dgw9OITExkRkznufhhx+hT5/+ZGZmsmvXdodybN26BVdXN2bPnsPp06d4661XCQwM4vbb73Jahr/+WulQhpLuiW++OZO7776dUaNuYfjwGxz2m5WVxY8/fsfzz7+Cp6cnnp6eJX4+9r755iumTp3OtGmP89FH7/Hqqy/h7+/PlCmP4ubmycsvP8uXX37K00+/UOZtXuskKHGNc3V15c0336R58+acOHGChx9+mFWrVlV3saqHuxumsBaYwlqAxYLmzPn8PBRHT6I9n4T2fBKu67ZiblAPY5uWmNq0zB/VQwhxzdqwYT2DB/e2/d6v30AAOnfuxrhxl1oUvP32awwbNoJbbrkVgEaNGjN58jReeOEppk59jNOnY9m2bQvz5n2HwdAagMcff5r77rurXOWZN+9L7rrrXoYNGwFAw4aNmDjxXhYt+skhKDFy5E307z8IgHvvfYDbbx9DfHwcTZuG8N1339C2bTseffRx2/ItWrQEwM3Nja5du7Ns2Z+2oMTy5X9y3XU98fcv1C1OCFEplOz8IITF2wtVq4HcvFLWEGXltvQfdAWjmlQVc2hzTCP6l76gnU2bNmI0Gpk9+8siAQmAm28ew4ABg0vcRmBgIADJyUn4+zsmStXpdHh7+xTbUmLPnt0cOXKYP/5YhV6vB2D69Cf599+1bNq0kYEDi+77119/5q677qVXr74APPnkc2ze/J9tfkJCAsuX/8nixctt9497772PjRv/ZfXqFdxxx0QAjEYjTz75HMHBwQBcf/1Idu7MDzwkJSViNpvp23cAwcH1AWjZspVDOVxdXXn66RdwcXGhWbPmxMWd5qefFnL77Xc5LcPdd9/Hpk0bbWUo7Z6o0Wjw8PAgICDQYb9Go5EnnniW5s1bOK3Tktjfo2+77U6mT5/MAw88TIcOnTCZLIwceTO///5rubd7LZOgxDWuYcOGtp+bN29Oeno6qqpKnyiNBkujYPIaBZPXtxuaC0noDh5Hf/A42jPn0J45h/rPZkytmmJs3wZzs8Yy5KgQ16DOnbsxffqTtt89PDx44IG7Hd5AARw/fowTJ46xcuWlxJgWi4Xc3FySkpKIjY1Br9fTqlWobX5oaJjt4a+sTpw4yr59e/j66zm2aWazBVW1OCzXvHlL28/WB9WUlGSaNg3h+PFj9OnTr9h9jBhxI++99xaPPjqd3Fwja9eu4YUXXilXOYW4ZpnMYDaDq0ulbVLJzgFAdXdDdXVFyZWWErVNy5YGkpOT+Oqrz3nvvU9wc3NzmO/jUwcfnzrFrO2Ms2fS4p/vjx8/SmZmBsOHD3CYnpuby5kzcUWWz8jIIDk5ibCwcNs0vV7vEDCIjj6O2Wxm/PibHdbNy8tzWM7T09MWkAAICAggJSUFyA9AdOjQibvuupXu3XvQtWt3+vcfiKenl235Vq0MuLhc+nuMiGjLp58mkpGRUaYylHZPLI6rq2uFAhIALVpcOn5rsKRZs+Z20/xtdSDySVCihtu+fTtz585l//79XLhwgc8//5z+/R2jswsXLmTu3LlcuHCBsLAwXnjhBSIjI4tsa82aNYSFhUlAwglLUAB5fQPI69MVzdnz6A8cQ3fgGPojJ9EfOYmljjfGdmEYI1ujepe9+ZYQomZzd3ejUaPGTqY7NmXNzs5i9OixjBo1tsiyvr6+qCqlXls1Gmsap0vjDJlMJodlsrKyuf/+h+jdu2+J23JMvJm/X/u8EyXp1asv7733Nhs3/ktmZhYuLi706NGrTOsKca1zXbSCvVE78XnobuqHNK2UbV4KSriCmwtKVjaYTCAJdC9bzsgBpS9UyXQ6DZjKdr21qlevHq+88iZTp/4fTz75KDNnfuwQmChP9w1//wBSUhxbRJhMJtLT0/Hzcz7UbHZ2FkFBdfn448+KzPPxKb7bcuH7mqpeun9lZ2eh0+mYN2+hbTmtVsFsVh26OhROFK0oii3QrtVq+fjjz9i3bw9btmzihx8WMHfuF8ydu8D2Zb64e6uiOC+DVXm6WzhTOHAE+fdx+zqAovdxcDxma7EcpylFXjbUdnI1rOGysrIIDQ1l9OjRTJ06tcj85cuX89Zbb/HKK6/Qrl075s+fz3333cfKlSsdmnbFx8czc+ZMvvzyy6os/tVHUbA0qEdug3rk9r8O3dFo9LsPoos9g+u/23DZsB1TWAvyurXHEhxU3aUVQlSRVq1COXky2mkAAyAkJIS8vDyOHTti675x5MhhjEajbRlfXz8AkpKS8PDIf1g6fvyow3YMhlBOn44tdj9l0bJlK3bt2sHdd9/ndL5Op2Po0OEsXfoHOTk5DB16vYwuIgSgZGWz6u+V/Hs6GuWTFKa8+FKxX/LKtd2C7hvWlhIASk4eqpf83dUmDRo0ZNasL5g69f946qlpvPvuR7YvvuXpvhEREcnFixc5cuQwoaH595tdu3agqipt2oQ7XddgaE1i4gX0ej316gU7Xcael5cX/v4BHDx4gIiI/BedRqOREyeO23JFtGplwGQycfFiqm0ZnU6DqZwBG41GQ7t2HWjXrgP33vsAN9wwmK1bN3P99SMBOHr0CHl5ebbWEgcO7CcgIBBPTy+nZSis9HuiHrO5bGX29fVz6CKTlZXltKWJKD8ZfaOG69u3L9OnT2fIEOcZer/++mvGjx/PmDFjaNmyJa+88gqurq4sXrzYtkxGRgYPP/wwL774Ik2bVjzqr9Eol/2vsrZTJf9cdFgiDOROuJmsB28nr3t7cHNBf/A4nl8vwuP7P9BHn0Kj1MK6qYJ/hetD6qfsdVVdZbiW3XHHXezeHcVHH73HsWNHOXUqlvXr/+F///sYgCZNQujcuSvvvPMGhw4d4NChA3z44bsO3TcaNWpM3br1+Prr/GRda9f+zbJlfzjsZ+LESSxf/ifffPMVJ09Gc/JkNKtXr2D+/LllLuuECXezb98ePv74faKjj3PyZDQ///wDOTk5tmVGjryJLVs2ExW1k+HDbyzTdmvj5y5qF/PhE2w9cwoA9cBRti5bjuZ8Eq7/bEJJyyhl7eLZWkq4uaJau4VIF45ayRqYOHMmnqeemma7Lvv41KFRo8Yl/rMGj0NCmtGtWw/eeec1Dh7cz969u/ngg3cZPHhosbmBOnfuSps24Tz77ONs376FM2fi2bNnN//738cOI3DYGzNmHN9+O4///ttATMxJ3nvvLfLycm0tEpo0CWHgwMG8+uqL/PvvOs6ciWf//n18/fUcoqJ2lqk+DhzYz7ffzuPw4YMkJJxlzZrVZGdn06RJiG2Z3NxcZs58k5iYk2zYsI4FC75m7Nhbiy3DgQP7HcpQ2j2xfv367N69iwsXzpOamlpieTt06MR//21g69bNnDwZzdtvv4bzrjSivCREexXLy8vjwIEDPPTQQ7ZpGo2GHj16sHv3bgDMZjOPPvoo48aNo1evijfP1ek0BAR4lb5gGfj5XYXdHwK8wNAI9aZ+mHccwLx+O9rYeLSx8Sj1AtAN6IamYxsU7eXF+a7KurlC9HptkXNO6qd41Vk3eXl5JCZq0OmU/GatNUxxZVIUBUVxXmaNxnF6WFgYn376BZ9//ikPPXQvGo2WRo0aM2LESNtyM2a8xhtvvMrkyfcTEBDI1KnTeOedN23b0ulceOWV13n33be4++7b6NChI5MmPcBbb71m20bv3r15990PmTfvSxYs+Bq9Xk+zZs0ZM2acQ3m02kvls/6v1WrQ6TQ0b96Mjz76H599Novff/8VNzd3IiPbMWbMLbZlW7VqSWhoaywWM6GhhlJqUEGj0eDn5+HQr1c4l52dzfDhwxkxYgRPPPFEdRdHlEP80aPkmk009fHjVHoKB9et50avurgcOoF+z2Eypt9boe0qObmk5mSjcdGjd7NrKVGZhRdXDfsWE08/PZ133vnQaVeBkrz88mt88MG7PProw2g0Cv36DWTatCeLXV6j0fDee5/w+ef/4/XXZ5CWdpGAgEA6dOhUbPeNO+6YSFJSIq+88gJ6vY7Ro8cRGdne4T7wwguv8vXXc/jkk/dJTLyAn58/ERGRDBo0tEzH4enpye7dUfz88/dkZWXToEEDnnrqecLDI2zLdOvWnaCgujz88H2YzSauv/4Gbr11QpnL0KRJU95/fxZffPE/2z2xbdtIbrppNACTJj3IzJlvMn78zeTl5bFx445iyzty5E0cPXqEl19+Djc3N+699wHi46WlRGVQ1MIdY0SNFRoa6pBT4ty5c/Tp04dffvnFIYfEu+++y65du/jxxx9Zu3YtU6ZMoWXLS0nRFixYUGL/MWeMRjNpadmXVX6NRsHPz5OUlEwslqv8tLNY0B6NQb91N9q4hPxJ/nXI690Fc5uWoCnfF7Nrqm4qyY03Xs8ff6wApH5KUhPqxmQycf58HIGBDWtcN4CKNCWtTCNGDGTy5GlFhhqrbhaLhXHjbuL22+9i9OiieTLsmUwmEhPjqVu3UZHP18fHHb1eeyWLetX58MMPiYmJoXHjxhUOShiNZlJTyzecbGEajUJAgBdJSRly3SykuLr574NPWLNqJTe2DOdAYgLHXOChdtfR0pj/JjT96f8r9/0dYPcb7/HHv/8QNLgvU1t3xn3fUbLGj8TcvOLdtK6kmnruWK9F1X2vqe77SnUxmUyMG3cTY8fexm23TXC6TGXXzRtvzCA7O4vXX3+30rZZncpSPyWd576+HtfsPbdmPT2KSmE/ukb//v05cOBApWy3sm5MFotao25yFaNgMTTDaGiG9vRZXDZuRxcTj9vvf2PeuIO8Xl3yhx4tZ1LRa6NuKk/hupD6KV511o18JleX5OQkli//k4yMdIYNG17m9eTvr3QxMTFER0fTv39/oqOjq7s4opxOnT0DQHD/3mjWbeRYUhwHTx6nZaOCTPp5Riho6VBWJpOJ1Xvz37yeSbzA/nPxdAEZgUPUeGfOxLNr13YiIzuQm5vLTz8t5OLFVNtQl0JUpprXzlaUmZ+fH1qtlsTERIfpycnJtmQ44sozN65P9m03knXHTZga10eblIr773/hMfdntNGnq7t4Qgjh4MYbh/LTT9/z3HMv2RJuivzRrh588EF69epFaGgoa9euLbLMwoULGTBgAG3btmXcuHHs3bvXYf4777zDY489VlVFFpVIVVVOnz+LVqMQ3KI54QHBKEYjh+JP27LtK7l55d7usWNHyc7OyX9HodNy+Fx+4EPJKf+2hKhKGo2GpUv/4P7772LKlPs5e/YMs2Z94TC8pxCVRVpKXMVcXFwIDw9n06ZNDBiQPySSxWJh8+bNTJw4sZpLV/uYmzQg+46b0MbG47JhO7q4BDx+WoqpRRNyB/TAEuhX3UUUQlSxZcvWVHcRirD2l62tTZCLc7mjXf3999+EhITQrFkzoqKiquEIxOVITEwkOzuHZt5+aP398HZzp5HGhfjsFM5lZRDs6Y2SV/48EHv37kYxmxnTpiM/aiwcTYhHDfaBPAlKiJotOLg+n38+r1rL8PzzM6p1/6LqSFCihsvMzOTUqVO23+Pi4jh06BCBgYEEBQVxzz338NRTTxEeHk5kZCTz588nJyeHUaNGVWOpazFFwRzSiOymDdEdPYnrP5vRnTiFNvo0xo7h5PbqAh7lS2YkhBDiyuvbty99+/Ytdr79aFcAr7zyCuvWrWPx4sVMmjSJPXv2sHz5clatWkVmZiYmkwkfHx8eeOCBqjoEcRlOn44Fs5kmfkFYfLwBiPCvS/zFFA4mJhDs6Q25xlK24igvL48jRw7jioZ2TZqx0SOXuPO7SczOxCevfNsSQohrmQQlarj9+/dz11132X5//fXXAZgyZQpTp05l+PDhJCcn88knn3DhwgXCwsL46quv8Pe//HG1xWVQFEyhzTG1aIp+5z5c/9uJy8796A8cJbdvN4wdwsudb0KIq82LLz7Dvn17S1+wkrRtG8lrr71dZfsTtUdZRrt6/PHHefzxxwH47bffiI6OvqyAxOUOuWo/XLBw5Kxu4uJOg8VCUx8/FC93VL2ONgHBrDp5hP1JCQxo2gptXh7KxTRc1m7B1C4Mc4smRTeenYOSm4fq68PRo4cx5uXSMaAuLu7uNGoURPyevcSlXyTcZKqxn01NPXdqWnmEuJJq29DbEpSo4bp168aRI0dKXGbChAlMmOA8C66oZjotxm7tMbUNxWXDdvRRB3FbtQH9/qPkXN8XS5Dz8aSFuBZIgEBcK1JSUjCbzUXyNQUEBBAbG1vp+6v1w3BXEfu6SUpKQCkISvgH+5Hr4Ub9PG8C3D04nZbKxdxsfLfvQY3OH/5Pd+gErq9OQfHycNhmzsvzIT0T19emEh19GDe9lnZBDdC6u9KmjYFda/4m7mIqnbUKPpX0GV8pNe3cqUnDT1f3/msyqZuSlV4/tXMYbglKCFEFVA93cof2wdguDLcV69HGn8Nj3iLyurUjr2dncNVXdxGFqFV+/fUn5sz5jOXL/0FTMMRfUlIiN900jN69+/HWW+/Zll21ajlvv/0aK1euxdW1Yt2v1qz5i5dffpZ+/QY4Hdrs5Zefo1mz5tx993306tUZFxdXfvzxN+rWrWdbZsqUB2jdug1TpkyrUBlE5bMf7cre6NGjL2u7JpNFhuG+ggrXTU5ODidPniJQ54KPtw/JKZm4u7qgURTCA4P5Nz6GqHPx9HN1d9hOasw5LPWDHKZ5pmcCEH8gml3bo3DVaAn1r4tJo8XDw488k0p8+kVy0rNJS8qosmMuj5p67phMJiwWCyaTClRfPhzJx1M8qZuSlW1IUBWLxUJKShY6nWPumWt5GG4JZQlRhSzBQWRNHE3OwB6g1eC6OQrPr35CExNX3UUTolbp0KETGRkZHD16qSXa7t27qFu3Hnv2RNmy7Vunh4WFVzggce5cAv/730dERrZ3Ot9kMrF162Z69uzjMP3rr+dUaH+i8lXHaFfWIVgv519lbeda/GdfN6dOnUK1qDT1rIPqos+f7po/9GeX4Caoeh3bEk45XBcA1Owcx+3ajahx6Muv0WzbQ2TDJmg1GlS9nsDAIPSuLsRnXETNzav2Orgazx0haovadv5LUEKIqqbRYOzajsz7b8XUsima1DTcF/6BcfEaMJqqu3RC1ArNmrXA19ePqKidtmlRUTsZNmwEer2e48ePOUzv2LFzhfZjsVh4/fWXmThxEg0bNnK6zO7du/Dy8qJVK4Nt2pgx41i+/E9OnYqp0H5F5bIf7crKOtpV+/btq69g4rJpY+KI37kLLBZCvH3BJb/louqWH5QI9vSmSd1gLmRlEn0xCdXVhbwO4QAoObkO29KkXMxfV1XZcfQQAN00+d07VBc9Go2G+vXrk2MykZSSXBWHJ4QQVwXpviFENVHreJN9y/XoDp3AbdW/mDfsxP1QNNk3DMQSHFT6BoQQFaYoCu3bdyQqaie33Zafk2f37l08+ujjxMefJipqJ61aGUhMvEBc3Gk6dOgEwIQJ4zh37myx242M7MD7739i+/3777/Fzc2Nm24azf79zpN+btz4Lz179naY1r59R06cOM6XX37G66+/c7mHK8pARruqhcxmPH74k4S9W6BpEE3rBKBa+3DrL3Wr7N4mktOnT7Em9hgh4RGoBXkkNGfPo8/KtiWvtgYloi8mcSYjjfpePjRWCx61C4Id9Rs04gxwJvE8l8KQQghRu0lQQojqpCiY2rQku0l9vFb/C0di8Jj/G3m9O5PXvQNopDGTEFdKhw6dmDPnUywWCxcvphIXd5qIiHacPn2a7du3Mm7cbezatRMXFxciItoC8N57H2MyFd+iybWgyTfAkSOHWbToJ+bOXVBiOf77bwNPPfVskekPPjiZ++67i8OHD9K6dZsKHqUoKxntqvbRXEjGolqITUtBT10aePqgFuR4Ul0uPSJHtg5j7b9rOZaSyImsNJoUtKJw3bI7f1lXV0zhrVAupgOwJja/pVX/xi3RJabkL1MQ5GjYuDE7gTgJSoga6qGH7uXWWyfQt+8AAI4dO8rbb79GdPRxmjZtxieffMaECeOYO3cBQUF1q7m04lohQQkhagDVxwv9/WNJW70Fl3824bp+G9oTp8i5cRBqHe/qLp4Q16SOHTvb8kqcORNPaGgY7u7utG/fga+++hxVVdm9eydt2kTY8kkEB9cv07bz8vJ49dUXmDbtCQICis85cOLEcdLSUunQoWj3EIOhNf37D+Tzz2fz0UefVuwgRZnJaFe1jybhAmcy0sgxmWjiF4DWosHopKWE4leHQU0N/Hg4iiX7d/DwdV0dt5OY3xVDyc7hYGICx1ISCXT3pF3dS9cLa5CjQdMQAE4nXbiCRyZqil69Su76d8899zNp0v9VSVkOHz7EV199xuHDB8nOziYwMIiIiEieeeZF9AXn+4YN68jMzKRPn/629T77bBZ169bjjTdm4u7uho9PHa6/fiRz537BM8+8WCVlF9c+CUoIUUMoGgVTl7aYQhri9scadHEJeHy9iJwbB2Fu3ri6iyfENadZs+b4+fkTFbWTs2fjad++Y8H0FigKHD9+jN27dzFw4BDbOmXtvpGUlEhsbAwvv/ycbZ7Fkp9xu2/fbixa9CdBQXXZuHE93br1QKdzfju+//6HueOOW9i5c3tlHLIQwo4mIZHo1CQAWvj4Q6oZClpBqPpLf5PmuoF0rNeQ7QmnOJqRxoodmxlrtx0lzwhA5sU0Fh/bB8CNLcPRKHatHQu6bwTVr4+rVseZlCQsFott9B9xbfr995W2n5cv/5PFixcxZ8582zR390tDyqqqitlsLvZ+cDlSUpKZPn0yffr048MPP8XDw4P4+DjWrl2DxWIG8s/PRYt+5vrrb3AYVSg+/jRjx95KcHCwbdqIETdw9913MHnyNLy95eWZuHwSlBCihrEE+JF11yhc/9mMy459uP+0lLxencnr1RmcDD0nhKi4Dh062YISDz/8KJCfbyIysj1r1qzm1KlYWz4JKHv3jaCgunz77Y8O8+bM+YycnBymTp2On19+k/+NG/9l7Nhbi91eo0aNGTnyJj7/fFaFR/8QQjinSU7lREFQorm7F6ReRHUtaCnhYjdUt4seRVEYG9qOj+IPsWlfFL7ZWgY1NaAoCkp6JhkZGfz41zJSc3PoWK8RYQH1HPZl7b6haDQ0rOPHifRkLlw4T716wYhrl31LOQ8PDzQajW3arl07eOSRB3nvvU/44ovZREef4PPP5/Hbb7+QnZ3lMHz0Cy88hbu7B88/PwOA3NxcvvzyU/7+exVZWZm0bNmKyZOn27oaFrZv315yc3N46qnn0Wrzh5Rs2LARXbt2ty2TkpLCrl3befzxp23TrC09PvroPT766D1by44mTUKoWzc/sH799SMrp7JErSZBCSFqIq2W3MG9MDcMxm3FOlw37kAbf46cGweieriXvr4Qokw6dOjEp59+TF5eHpGR7WzT27XrwNy5XxaMunDpIa+s3Td0Oh3Nm7d0mObl5Y1Wq7VNT0pK5NixI3Tv3rPEbd1zzwOMH38TqorklhCiEqnJFzl5MRmdRkMI+cEIa1BCteu+oep0GCMMBOw/yu23TuCbtStYfWg/h5PP0y6oARkpZ/jv6HZyEs/RvI4/txgii+7LLsjR2D+Q6NQk4uJOS1DiMv36688cOnSwSvcZERHBzTffUmnb++KL2UyZMp169YKpU8e3TOt89NFMYmNjeO21twkICOSvv1Yyffpkvv9+kdM8D/7+/uTl5bFx47/06dPPoSWE1d69u/Hw8KBx4ya2ab//vpL775/IqFG3MHz4DQ4tO0JDw9izJ0qCEqJSSFBCiBrM1KYlWfUCcPttFbqTp/H4ehHZo4ZiaSCJhYSoDB07diY7O5vWrdvg6ellm96+fSeys7No376jQ/LKyvTffxto27YdPj4+JS4XGBjILbfcysKF80tcTghRdqpFJeHsGbJNRlr4BuBSkKRSddJ9A52WnOH9yOsQTqOG9bi/eRP+OPI8p9JSOZWWCjotxo7hdGsYwhi/huRNGofRbMbtt1VoMrPzt2EXlGjkHwjHDxEfd5pOnbpU1SGLGur++x8u13mQkJBQ0BVkOf7+AQDcffd9bNq0kdWrV3DHHROLrBMREcntt9/FSy89g7e3N23atKVLl24MGzbC1v3i3Lmz+PsHOAQsAgIC0Wg0eHh4FMmPFBgYyIkTxytyyEIUIUEJIWo4S4AfWRPH4LZiPfqDx/BYuIScEf0xtWlV3UUT4qrXtGkIGzfuKDK9deswp9Mvh7XZrdXGjf/Sq1efIss52+9DD03loYemVmp5hKjV0jM4lngOgJZ+gWiycoBLQQn7IIKq04FWi6VRfquGeiEhTO/UhxOpScSlp+Ki0xPSticNTsQBkFvHBzzcCpJl5gcl7FteNArMf7EQZzcEraiYMWPGVfk+dToNJpOl0rbXunVYuZaPjj6O2Wxm/PibHabn5eXRsmXxz4YPP/wIt902gR07tnHgwD4WLpzPwoXz+eqrbwkMDCI3NxcXl7IH4V1cXMnNzSlX2YUojgQlhLgauOjJuXEg5vpBuP6zGfff/yY3MYW83l0kz4QQV6l27dozYMDg6i6GELWSmpLGoaRzqDotrf3tWh866b6BXuu4slaLpUE9WioKLf0K3h4XBCTyt1EwrKjWbj27lhe+3j54ubhw7uwZTCbTFUlsKK4ebm6O3XIVRUFVVYdp9rmMsrOz0Ol0zJu3sEg3DE9PzxL35efnz+DBwxg8eBj33fcQt946iiVLfuW++x6kTh1f0tPTylzu9PQ0fH39yry8ECWRlL9CXC0UBWPXdmSPvR7VRY/rfztxW/IXGItPuieEqLnuuGOijPEuRDXJjDtLTFoy3r6+NPSqY5tuS3RpF0RQnQQNssdeT167sEvL27MGI3SXghKq3c+46Gni7YfFZCI+Pg4h7Pn6+pGcnGT73WKxEB19wvZ7q1YGTCYTFy+m0qhRY4d/1iTKZeHl5UVAQADZ2fmteQyGUBITL5CZmVGm9WNiTtKqVWiZ9ydESSQoIcRVxtyiKVl3jcbi643+8Ancf/wTsqX5nBBCCFFWh7bvRFXBYGjt8LbZllPCfvQNnbbw6qieHuQO74e5Qb0i82y0do/ZdoEN1cuTZnX8UXLyiIk5WfGDENekDh06ceDAfv7+exWnTsXyySfvc/Fiqm1+kyYhDBw4mFdffZF//13HmTPxHDiwn6+/nkNU1E6n2/zvvw289tpLbN78H3Fxpzl5MprPPpvFyZPR9OzZG4BWrULx8anDvn17Sy1jbm4uR44cchi9Q4jLIe3FhLgKWYL8yZo4Bvefl6OLS8BjwWKyx49ErSNjRQshhBClObAn/4uXoX17OHgpt4NqTWxr331DWzQoYVvezUlLCes8rfOWEub6QTTzDUC5cIKYmJP07du/nKUX17LrruvJHXdM5KOP3kNVLYwdextdunRzWOaFF17l66/n8Mkn75OYeAE/P38iIiIZNGio022GhDTDxcWFjz9+n/Pnz+Hm5kbTpiG8/vq7dOyYP+ynVqtl+PCR/PXXSrp371FiGf/7bwN169YjIqLoSDNCVIQEJYS4Sqke7mTdfiPuS/5CdyIWj29/I3vcCCz1AktfWYhKdOklo1rSYuKqlf+5Svoaca0w5uVx4NhR9DodzTq2dwxKuFlzStg9Ipdw8jvtvmFlH8ywaylhCQ6ikVcdXGNziI2NwWw2oy0h8CGuDWPGjGfMmPG23zt27FxsQuX/+7/J/N//TS52W3q9ngceeJgHHni4TPtu2LARTz/9QqnLjRt3BxMnjufChfO27oWLFv1ZZLlffvmBiRPvK9O+hSgL6b4hxNXMRU/2LcPIaxeGJiMLj4W/o4lLqO5SiVpGo9ECCnl5udVdFHEFmM35eWvyP2chrn5H9u0lNzuH1k2b4eJRKDGgNdGlffeNkriUFJSw775h11IiOAiNi57mFh2m84mcORNf1qILcUUFBgby1FMvcO5c8c+SaWkX6dWrD4MHO2+VIURFSEsJIa52Gg251/dF9XTHddMuPH78k+yxwzE3bVjdJRO1hKIoeHr6kJaWDFAwpFhNea2uYDJJCw7nylI3Kunpqbi6ehTJ8i7E1WpfVBQA7Zq3cggcqBoNaAp+15ctKFG4pURun66X5jl037B75HZ1Ie+6jrQ4cZjDFy8QE3OSxo2blPcwhLgiSutO5ONThzvumFhFpRG1hQQlhLgWKAp5fbuBix7XdVtx/3kZ2aOGYm7ZtLpLJmoJr4Ls9fmBiZoTBNBoNFgslTee/LWkrHWj0Wjx85NRQkQNlZuH259rMHaJLFMwPicnhyOHDuKq1WEIaY7ZvtuEfcsGrQZTy6ZYfErO1WQflMgZ1BNjF7s+9g7dNxxbGplCGtHCLxAunuX48WP07t231LILIcS1SoISQlxD8q7riKrX4/bXRtx/XUnOqCGYDM2qu1iiFlAUBW9vX7y86mCxmFFrQFxCo1Hw8/MgJSULi6UGFKgGKWvdKEp+UEJaSYiaymXzLvTHYtAfiyH92YcuzTCZUPKMqB7u+b+rKsrFdPYePYQ5N5e2QfXReXlidghE2AUOFIXsscNL3b99UEL1cHOcab9tjWOPadXDjcbedfDQaImJOUlubi6u1iSbQghRy0hQQohrjLFzW1S9Drfl63BbvJrs0UMxtwqp7mKJWkJRFLTamnFr0WgUXFxc0OnyJChRiNSNuFZoMrKcTnf/bTW6E7FkPDwBtY43rmu3oN8Sxc7cBDCZ6d6gKaq7a36XjQJqRZJNOoyq4Tg8qP2IG4WTZaru7mgUDaG+QeywmImOPkFYWJvy778WkaTKonaoncmlJdGlENcgU7swcob3Q7FYcF+8Cu2J2OoukhBCCFH58vKcTtYV3Pe0BcmfXbbu5nR6KucPHqZ+HT+aePuCm1uxySjLyhLgB4A50A/Vv47jzJKSw7q5oCoKrev4A3Ds2JFy77u2kaTKojaorcmla8brLCFEpTO1CyPHouK2cj3uv64i+5brMTdvXN3FEkIIISqNJiO76ES7/mNKQdBC1WrYevYUmC10axGKciEb1d3VscuGtvzv6iz1Asm8axSWuk6G4y4pyKEoqO6uhJp8ITeLI0cOo6qqdJUqQc1JqiwJlIsndVOy0uqn9iaXlqCEENcwY4c2YLHgtnoD7r+uJPu2kZgb1a/uYgkhhBCVQkm5eOkXkxl0WpSsS4EKbfw5VL2edFR2nYvDxcOdDg2awoXDqG5uDm2kK9R9A7A0DC6mcCWvp7q7452VQ+P6DTl9No4zZ+Jp2LBRhcpQW9SEpMqSQLl4UjclK0v91Nbk0hKUEOIaZ+wUAWYzbms24f7LcrLuuBlL3YDqLpYQQghxeVTVIQChZGah1vFGSUmzTdPvO4J+3xHWnzyMyWKhV/0muBV8KVDdXR07blcwKFF8+UqZ7eEGSRDRoiWnz8axf/8+CUqUorqTKksC5eJJ3ZSsLPVTm5NLS1BCiFrA2LUdSlY2rpujcP9pKVl3jkL19anuYgkhhBAVZzI7NEawBiU0qWkOi+WaTGyKj0GrUejToBlKVg4Aqnvh0TIqOyhR8hcz6/4jQlqwYuM6DhzYx5Ahw2rlF5Lyqq6kypIkuHhSNyWT+imZJLoUopbI69uNvPZhaDKy8PhxKUqm84zlQgghxNVAMRodfy+4r9m3ngDYfCaGbJORDnUb4ado0cbGg06H6uPlsJyqq+TH4tJe47voAfBz96RRo8akpCRz5kx85ZZBCCGuAhKUEKK2UBRyh/bBGNoMTcpF3H9ZAYUe6IQQQoirhtHk8KuSnT8qg5J7aUSOHJORdadPoCjQv0nL/PkmM9peHcDN1XF7Vd19wzocqdlCREQkAAcO7KvcMgghxFVAghJC1CYaDTk3DsLUKBjt2fO4/flP6W9yhBBCiBqoSEuJnKJBifWnT5BpzKNzcGPqelxqGaEEFx0to6KJLotXyv21YLQPzbkLdIhPBYvKnj27JVGgEKLWkaCEELWNTkfOmGFYfH3QH4nGZd3W6i6REEIIUX55hVpKFApKpJny+DcuGp1Gw5CmoY7LFm4lAaCp5FwOpQX9C1pKuK3dQr0TcbTSu5OWdpHo6BOVWw4hhKjhJCghRC2keriTPW44qpsLrlui0O8+WN1FEkIIIcrF2lJCLcjNoOQUtJDIzQ9OLI07Tp7ZTI+GIfi6uTuu7ObibIuVW8AyBiWsOoeGA7Bz5/bKLYcQQtRwEpQQopayBPiRPXoYqkaD66oNaE+fqe4iCSGEEGVXkFPC4p3fLcO+pUR0ahK7khLwdnFlcFNDkVUVVyctJap40AtV6/gYHt6oKa6ubhw8eICsLElGLYSoPSQoIUQtZm7akNyhvVEsFtx+W42SllHdRRJCCCHKRCkISlhH0bAGJSxZOfx2bB+mpg0Z3rMvbjp90ZWroKWEMbI1ALk9OjpfoFBLCb3JTLt27bFYzOzZE1WpZRFCiJpMghLXuEceeYQuXbowffr06i6KqKGM7duQ16ENmqxs3BevApO5uoskhBBClK6g+4bF2xO4FJRYd2gv5zLTaRYWhuHpRzE1bVBkVcXVSVCikltKWBrUI/2J+8jr2835AoUSayo5eXTpkr/sli2bUCURtRCilpCgxDXujjvu4J133qnuYogaLndwL8wN66E9cx7XvzZUd3GEEEKIUtlaShQEJcjJJT4+jr+P7EOv03HjzWNQFAXVxUkAoipySgDonbTSsCrUUkLJzSU4uD4hIc1JTk7iyJHDaI+dxGP+ryhZ2ZVfNiGEqCEkKHGN69atG56entVdDFHTabVkjxqKxdMDl92HJPGlEEKIGs+W6NLDHVWjwZSZxaJFP6GaTIwIa09gYMGwn85aRTgLVFRzTgklO7+lR48evQDYvPk/PBatRHvmPLp9R6q2cEIIUYUkKFGNtm/fzoMPPkivXr0IDQ1l7dq1RZZZuHAhAwYMoG3btowbN469e/dWQ0lFbaB6e5I9emh+4svVG9GcT6ruIgkhxFUlOjqaW2+9lZEjRzJ69Gh27NhR3UW6Jimpaei3RKGNzU/QrLroUd1c+HPPNpKiTxLqG0j3FpeGAFV12qLbcDr8ZxVHJYq0lMgfPSQ0tDV+fv5EHz/G2Yy0/Jk6HVgsuC39B93ew1VbTiGEuMIkKFGNsrKyCA0N5aWXXnI6f/ny5bz11ltMnjyZxYsXExoayn333UdycrJtmZtuusnpP7NZ8gKI8rM0Cia3XzcUsxm3Jashz1jdRRJCiKuGq6srb775JkuXLmXmzJk8//zz1V2kq5LmQlKJ3RXcVqzDbe0WdNGn8ifodWxWctl69hR1LqQyLrQ9uNmNrqEpGpRwqopjEkWCEgU5MTQaDd2794CsbNadPpE/LzsH7Zlz6PcdwX1Z0ZdYQghxNdNVdwFqs759+9K3b99i53/99deMHz+eMWPGAPDKK6+wbt06Fi9ezKRJkwD4/fffq6SsABqnbxXKv/7lbudaVJPqxty9PabYeHQnTuH210bybhhQbWUpXC81oX5qGqmb4kndFE/q5spo2LCh7efmzZuTnp6OqqooitRzWSlZ2XjMWwSqStY9t2CpF1hkGU3yRYffTyclsvjMCbSKwl1NwvBxdcPoX+fSAtqyvoOr4s+pcLkKghIAnTp1YcOvv7H7fDyDQwz4ZGZDdk7Vlk8IIaqIBCVqqLy8PA4cOMBDDz1km6bRaOjRowe7d++u8vLodBoCArwqZVt+fpLjojg1pW7UiTeS+97X6PcexqNtC7Sdwqu8DHq9tsg5V1PqpyaSuime1E3xpG4cbd++nblz57J//34uXLjA559/Tv/+/R2WWbhwIXPnzuXChQuEhYXxwgsvEBkZWWRba9asISwsTAIS5aRJTEGxWABwXfMf2bfdCPZ1aLGgpGfafk3Nyeb7lX9gspi5uUUbmtfxz1+s7qVghqqtmS0l1EItJTTZOegOHcdkaIarqys9I9rzz/7DrIk9xuiOkWgu2g3bbTYXGb1DCCGuVhKUqKFSUlIwm82XkjQVCAgIIDY2tszbeeCBB9i7dy/Z2dn06dOHL7/8ktatW5e7PCaThbS0y8v8rNEo+Pl5kpKSicUiw1zZq4l1o7lhEG4Lfyfvl9Vk1/FF9atT+kqVyGg0k5SU/wBWE+unppC6KZ7UTfEqq258fNzR66+dL0bWbpWjR49m6tSpReZbu1W+8sortGvXjvnz53PfffexcuVK/P39bcvFx8czc+ZMvvzyy6os/jVBk3KpFYQu9gzeb39O9sgBmNrm54hQ0jNRCobKzDYZmbtvK6khwXTo0oWeJ9Ns65rrBlzaaKEWCebG9Z3vvKoDSJqiLTjcl/yFqXkTsseP4DpDGFv0enadi6Pf+fP4eV8K1CuZ2ag+lfOySAghqpsEJa4y5W0GWpkPRJX1UG+xqPIFoRg1qW4sTRqQ17MTrv/txOWPNWTfcZPTB6grWoZCdVGT6qemkbopntRN8aRuHFVGt8qMjAwefvhhXnzxRZo2bVrhstTWLpPWoISxrQH9vqMAuBw4iqVd/gsVTXp+sNpkMTN//3YSMtNpGTmYUaNuQfnw60sbqhdgO3bFLtFl5mP3onF3xRMndaMoVVpfSjEBPV30KTRGI65o6N2oOatOHmHt3l3cEhRkW0abmYXF1/uKlOtqPXeqgtRN8aRuSib1UzIJStRQfn5+aLVaEhMTHaYnJycXaT0hxJWS17MTuuOx6OIS0G/fi7Fb++oukhBCVIuydKs0m808+uijjBs3jl69elV4X7W5y2ReRiYWwLN/F9SOYRjn/4425aKtPswnjWRbzMzfv4MTqUk09K7D1EcexkWnJ9duO34NA1Bc9ACYgv0xFUwPaHTpGcpaN9ZMDW5ebnhXUr2XhbmOJ8Wlk/bTg1mj0qthMzbGnWRX7An6nonH2sbDR7GgvcJlvdrOnaokdVM8qZuSSf04J0GJGsrFxYXw8HA2bdrEgAH5iQYtFgubN29m4sSJ1Vw6UWtoteTcMACPrxfhun4b5hZNsAT6l76eEEJcY8rSrfLff/9ly5YtJCYm8vPPPwOwYMECfHx8yrWv2txl0u1CClogRdFDo4a4B/qhSUwh6fQF8HBHOZXA9/u3c0hnoX4dX+547lkyMoyAEQ9FsXXtSE7LAaUgTNGsKS7d2mEKa0lmUkaRutHcfgMuG3eS1aU9alJGsWWrbNrMXNyKmXfxXCq61EzcdHoGhxhYcnw/f0Zt44EW7QDIOJOIqUEx3VAu09V67lQFqZviSd2UrDLq51rrMmlPghLVKDMzk1OnTtl+j4uL49ChQwQGBhIUFMQ999zDU089RXh4OJGRkcyfP5+cnBxGjRpVjaUWtY0lKIDcPl1xW7sFtz//IeuuUZJcSwghCth3q+zfvz8HDhyolO3WmC6TqgomM+ir6JHRmN92wKLXg0XFHBSQn/zyfDLZ9QL4+Y9fiU6+QGD3ztzx5FO4eXldOj6dFowmVL0Oi1pQdgBFQ86AHvk/29WFtW4sTRthatqoyPwrTVEudYlUNRpbgk8ANScPcvMA6F6/Kf/Fn+ToubMc8atPqH9dyMm94l/8pHtX8aRuiid1UzKpH+ckKFGN9u/fz1133WX7/fXXXwdgypQpTJ06leHDh5OcnMwnn3xiy/L91VdfOSTTEqIqGLu2Q380Bm18Ai6bo8jr1bm6iySEEFWqtnardF27BZetu8n4v9tQ/X2v+P4UY0FHi4I8EKqnOwA5m3bw3e+/EJecRLCnNxPuuQ8PL8fuC6pOh2I0oequksdbuwScqpsrSpZd65g8I0pBUEKr0TC8eRjzD+1i6YmDtPILBGs9CSHENeAquWpfm7p168aRI0dKXGbChAlMmDChikokRDE0GrJHDsBz7s+4/LcTU1gLLAF+1V0qIYSoMrW1W6XL1t0A6A8cI693lyu/Q1NBUKGg9Ynq5sr5rAy++vFbUrKzaO4bwMTwzpjrBxdd15rQsqpadVwujWNQArughJKbB3n5QQmLuxvhAcE09/YjOjWJ/+Jj6GZsnz88ak4uqod7VZdcCCEqVdWm0hdCXLVU/zrk9e6MYrHguvLfS81ihRDiGpGZmcmhQ4c4dOgQcKlb5YULFwC45557+PHHH1m8eDEnTpxgxowZtadbpV3XgitJMZouBReAAwnxzNq1gZTsLNrXbcD9kd3w0LuAq0vRla23pSoeKaqiVPtyurk6zFPsWkqoHu4oisLNLSPQKAqrTh4h9WIqLhu24/XxN2jOXqjKYgshRKW7SkLJQoiaIK9LJLr9R9GdOoNu3xFMka2ru0hCCFFppFtlIXaBCE165pXfX0H+CtXNFYvFwpo1q9nwzwp0JhMDmrRkWLPWJQ+LbsshcZUMuWfffcO9cFAiDyUvP7+G6uEGSVDfy4e+jVuw9tRxlm/bxN2++XkwXLZEkTNqSNWVWwghKpkEJYQQZafVkjOsLx4LFuP6z2bMLZtKs1EhxDVDulU6UtIujUShpFyslG1qzifhunoDOdf3Qw3wdZxptqCoKkl5uXz39RxiYk7i5u7BnRFdCA/M765hcXfD2CHc+cYLghLq1RiUKNRSgtz8lhKqix7scmQMatqK3efj2Rd7goMmHW0Cg9EmnL+0ydh4NAkXZAhvIcRV5epo3yaEqDEsjYIxdmiDJjsH17Vbqrs4QgghrhDNxfRLP6ekVco2Pb5bgu70WVzXb0G5mO7QFVDNM7I94TQfbv6LmJiTBAc34OF77rMFJFRFIfPRu8nr29X5xq+ylhJq4ZwSdpTc/NE3VBcXVLvuLHq9Cze3jEDJzuHXo3vJMuahSU2HnPzhTz2+/wO3fzajSUypmoMQQohKIEEJIUS55fbtjsXDHf3ew2hPnanu4gghhLgCFLsuG0pB0sXLoTt8wpYnQXcsFq9Pv8Nlw3YAUlKSWfj9t/x8eDd5FpU+ffrx4IOTCQiub1tf9XArMeCg2IISl13UqqG5FGwoEpRIS0dR1fxj1jku1yYwmM6+dUnLy2XxsX35m0pMccz1lHv5n5cQQlQV6b4hhCg/d1dyB/bA/c81uP79H1l3j7lqEosJIYQoG6Xg7TsAJnPFt1PQDcR11b+XphXkq9Bu2MbW5ctYnZVMnquO+u6ejOk3lHqDhwGOX9ZVd7dS9nR1tZRw6L5RKHGnJjW/ZYrq4Q5au6CEe/4oHTe3jOBESiK7z58hIrA+hqQUVF8f23JKds4VLrwQQlQeCUoIISrEFN4K8879aM+cQ7f/qCS9FEKIa4z9F1tFVfMTX1YgAO31vwVFpqmqyt4LZ1l58jCJ2ZloNQoD7p/E9XXOoNRrgHVwTIegRGk5jKwNBa6WoIR9XdoFHuBSdxnVw92h+wZu+YEZN52eca3b88XRKH47tpcpp/rg6e9rW0yxG15UCCFqOnm1KYSoGEUhZ1APAFzXb4WCLOFCCCFqFuViOp6zv0W/Y1/51rNvKQFFW0sYTfl5IUpidlzHXL8ux1Iu8MmuDXx3cCeJ2ZmE+gfxeOd+DOzWE71Wi6q3e2dm93PhESqKsI4WcpUEJRyGBNU6PpIrJlP+Mh5uRVtKFGjlF8R1kR3JMhr5afUy1KRLeSSkpYQQ4moiQQkhRIVZGgZjbNMSTUYWLluiqrs4QgghnNDvOYQmPRO3vzY6DPNZmsJBCesXZSv3H//E69PvUEpIgmndhqqqHExM4H97NvHlvm3EpV+kkXcdHmjXnfsiuxNQv/6l7esdG/IaIwxYfL0xti2lRd7V1lLCvvuGi4vTRVRPd8ecEi56h2DGsL4DaODlQ8yZOP75d51tui0oYbGgZGZVbrmFEKKSSfcNIcRlye3XHd3Rk7hs3YOxfRtUH6/qLpIQQgg72vhzl34+fRZz04ZlWs8WUNDrUIymIi0ldHEJALhsjUKbkEj2Ldejenk4LGO6mM72hNOsP32Cc5npmBsFE+znz9B6TYkMqo9SEEBQcvPAWNA6QOfYlSHnhoFlO9CrbPQN++4bplYhGNu0xNSqGe6//2Wbrnq42+oFyB8eVK+zJbLU+vsxIbwzH+3bzLqo7RgCQwj1r4uSlR+UcNm4A9f/dpJ51ygsDYOr5riEEKKcpKWEEOKyqHW8yevaDsVkwnWdDBEqhBA1jTY+wfazklrK0J5GU/4oGSlptmEmVc+CQIN9UMKuFYVL1EG0Z8+j333QNu3cuQSWLfuTdz9+j58P7+ZcZjohdfy5Y9ztTB92M+3qNrAFJCA/AKLkFmxTr6/YgV5to2/Yd9nQ68i5aTCmNi1R7btreLjnByKsv2u1qPa/u+gJCAhkbPNwsFj44VAUKTlZtpwSrv/tBMBle/m67gghRFWSlhJCiMuWd11H9HsOoz9wjLzuHbDUDajuIgkhhID8vA92b9o1WSXnGnBftAJdTBymJg1sLSUsXh5oUtNQzGZbDwnt+aQi66Yac9mz+T/27t1NXNxpAHRZWbQPakCXQQNp3LcX5pBGWDZsB7vWG7ayFeSnKNxSoqyMkaG47D6EydC8QutXOfucEvatO/Q6Wy4Oi4c7SqHgBYVybqjenrQPrE+0l57NCZv5ev92/i+ksUNXHenCIYSoySQoIYS4fC568np0xO2vjbhs2E7OmGHVXSIhhBAUTXhofYOujYnDZdtecvt0wRIclD9TVdEWdMnQxiWguruhKsqlUS+sLSVUFU1yKqqqkpidyZHk8+y9cJbjsVFYgvwBCAgIpHPnrnTRuBO4fge5rQzkNWucv5nQ5rY3+A5ls7bi0Ffs8TR3cG9M4QbMja7ubgqqXncpn4e7q2NLCZ1jIlBVq83vMnMObmgSSuKRYxxLSeTnrRsYO/JStxftmfP5LUmulq4tQohaRYISQohKYWwfhsuWKPRHT5KXcOHSQ64QQohqY80toLq6oOTmoWRmQ3YOHj/8CYDF1wdTeiaum6PIGXCdLdmkUpAg0eLuZku0qJhN5O7YS8IPizjkAicOHSQp+9IbeN9GQYT17ENERFsaNmyEoii4FAQfVA8323KWeoFk3zgQ9z/WOJRVk2ptKVHBx1OdFnOTBhVbtwZR7bqvqC4ujsOFarUOQQr0OiwFeTx0aelMaNOJWbs2cuDsaQJWLOfGgsUUkym/y437pc/BKYsFl+X/YmreANqEVtIRCSFEySQoIYSoHDodeT064bbqX1w3bCd77PDqLpEQQoiClhKWAF+0Z86jZGWjPXvBNluTlIzHzvx8Ax6/LHdYNc9s4mxOJqdPHiPu8G6OzznDxS2OLRwaePkQ6l+X8MBg6t04DON1HcFiQRsbj7lJA1tLDbXQl2FTuAEKghKqTodiMqG5eHktJa5G2SP6F2294GLXEsLVxaE7i9OWEgUtWZScPDz0LtzTtiuf7N/K2q3/UV/nT5fg/BYqGmuQqQTamDj0ew5h2nNIghJCiCpTe676QogrztiuNS6bd6E7HovmzHksDepWd5GEEKJWU2xBCb9LQYmES0EJ49nzJGamk5qTRXJONqm52STo4PzZMyRlZ6HW8UZ1dUFzPglLXjr1PDxp4uNHK98gDP5BeLu42raVW9C9Q7f/KO7L1mIMa4GSnglQZFQOe5Y63miTUlCsLSW0FcspcTUyRRYd5tS+pQR6nWNLCZ3OMRGoXgcujolB63p4MaFtF+YknmTRkT146vS0CQxGyciCQP8Sy6M/cMz2s5KeCZ7Ff25CCFFZJCghhKg8Wi15PTvhtmJ9fmuJ8SOqu0RCCFErxcfHsW7dAdJ2HkI5fIAcSwocOkH2Ycjc5krumQQyjUaMFnN+wkW7pIjmBnXRZmcR4O5BQCsDwb7+tEhIpWkdfzz1LsXu05pQUxedn+RSf+hE/vYC/TA3qFdkeVOLJuhOnMIU0Qrt+m2XBs3Q1vLB4exbiiiKrfsMADotqtulQJCq1eZ38Sgk1DeQseEt+PXEPL47uIsH2nWnXhmSXWrOJTr8bG7epGLHIIQQ5SBBCSFEpTK2Dc1vLRF9Ck1cAparPOGYEEJcjTZv3sThw/vIOxGHJiEBsxtoUi+gmMyo7q5o8nJwC/DHLysPX1d3/Nzy//m6euB9y0iartuBq05HzvB+KCkXcd0cVeo+NReScV25Hk1SisN0Y7swx5EmCmSPGYaSmY2Snokr2y7NqEUtJZwpnFOj8BChqvuloAR6HWqhlhKqooDZTPuQlhhbhvP76WN8vX8b98Zdh3+4ocR9a9IzLv18LhGsQYk8Y36wRBJlCiGuAAlKCCEql1ZLbs/OuC9bi+t/O6W1hBBCVIORI2+kT5/ryF7+H24HjmEa3g+37fvwSMvE3cUVdxdXzOGt0O89XGTdzObNcd24GwCLjxfatEtfVHP7dcd13Ran+9RFn3I63VK/mK58Wi2qj1f+qBD2nAQwajW7lhLmhvUcWjOg0xbpvqG6uaLJzkExmujdqDkpvl5s2LGVr5f8wsROkQQGBjrfT24eSk6e7Vel4HPXxsTh/ssKjB3DyR3Yo/KOSwghCshVXwhR6UzhrbD4eOW3lnAylr0QQogry83NjbCwMAx+gTT3DaBRs+Y0CK5PoLsnnlod+HihuhbTFcNVT/aNgzBGGPJHs7B7c2/x8Sx3Wcz1ivkSXED1dHf8vZZ331DsutIA+a0UCqieHo7dN3S6op9jwe9Kbn6AYWjPvnSr34T0i2nMm/clSUlF78tuS1bj/cHc/G0WtMRQMvK7e7gvWoFiMqHbd+TyDkwIIYpRu6/6QogrQ6slr2s7AFy27K7esgghRG1W8MVUdXVxGAHD4uVRbFBCdXHBFN6KnBsG5rdmsB/9wce7TLs1hrfK34+PV5E3+UUU/mKtqd3dN7A4thyxJo02RuR3vbAPSqDTOnTfULWXRudQcnLzJ3p7MsYQSZcmzUlPzw9MXNy8A21svG09a/4PAHP9/PwfSkYWqKotV0jhEVSEEKKySFBCCHFFGNuFobq5ojt4DOVienUXRwghaiXFmP+WXdXrHd+we3uWEJQoFESwC0pYyjgag6lZYzKmTiRz0rgyLe9QllreUqJwdxbV04P0Jx8gZ0T//N/tgxIaDdgnutRrL+XkKAhKqK4uKIrCmA7d6NChE2nJycx/600yv/o+fznjpZYYAJb6QaCAkpEJBQEJAE2Wk0SZFgsu67ehsRvRRQghyquWX/WFEFeMi568ThEoqorLjn3VXRohhKh1TP/uQBtT8DbcVQ92CRJVL0/HL7f2CucosE88WVqrhwLmxvXzhwEtbh+F2SdzrO05JVRL0Wk67aVcG+6OderQUkKns7VssbWUsHbnsKjcfPMYOrQwkJqbw6e7/+Ns3GmUtEyH7VkaBYOnB0pmFordiB1KTh4UDPtqK9axGFw37cTz60UVOlQhhAAJSgghriBjxwhUjQb9nkMOfWKFEEJcYbl5mJb8Y/tV1esdu294e9q+rAJY7JvmlxAUUO2Gq7QU05w/65ZhqL4+5SqufReR2j76RuHuG4Wpbo717jAkqE5na9liDUrY5lssaDQaxnbtTY+GIWTk5TH38085dfiQbfW8Dm0wt2iC4u2JYragSUp12JdSeFhR+/wXhROWCiFEGUlQQghxxaheHpjatETJzUO/XxJkCSFElTFdanavQv7QkXZfZi3+vg5dJlT/OsVuSrFrwo9dUEL1Kxp4UN1cMLdqVv7y2nfZqOXdN0yG/PrLa9/G6XzVrXBiS7uWEnqdLaij2HXfAGwBBG3KRW5uGcGgpq3IS0vnmx8WcDjpHLk9OpI7rC8oCoqPV/6yhZJVK5nZjvu2OzcUu1FahBCiPGr3VV8IccXldW4LgH7HPnmLIoQQVcQhkOCiB0WxjaoAYKkb4BCUsJSUwNI+54BdKwqLb9FARuG3+GVm3zqilgcljJ3bknnnKHKH9HI6v0i3G/uWLfbdN7Jz8pe3dd/ID0poklNRFIWhzVozoksPTNk5fL1/O1tPn7y0He/83CGaxGSHXRVuKWHrIgJo7YcqFUKIcqjdV/0S5OXl8dlnn3H4cNHxu4UQZWepXxdzw2C0SakOmb6FEKI0ci++DPZBiQKqa/GJLlXv4of6VP19gfwRO+xZnHTRKDZPRSlUySlxiaLk53UorhuLTkfmvWPJeHhCkVmq7lKiS1tgqlBLCetQnwC9m7ZkXLfeKAos3ryeVatWoKoqSsEwrZrElPxVPfKDTdZAh62o2ZeCEtgFKIQQojxq+VW/eC4uLnz++eekpaVVd1GEuOrldQwHQB91sJpLIoS4msi9uOIU+9YNBTkKVBed3QKKQxLKwgEHe6ZWIWTfNIisu29xmK76Fm1dYZ9zoly0klOiPCz1AlHrXKp/S8FnoXp7Fqk/taB7h5JnxO3XlejiEmzzlOxcOjZpwQOR1+Hu7sHGjev5/vsFGAuSZ1qDEtYcIUqh/FD2LSWUQkkwhRCirCQoUYLIyEgOHDhQ3cUQ4qpnat08f3jQoyeLJskSQogSyL24guxbShS8Ibc0qEfO4F5k3pMfXHBoKVFM0koAFAVTm1ZFWlPYr5MzsAeqVoO5UXDFymvfZaO2t5SogJwhvckZ2IOcYX0dk4ZyqYWMJvki+qMnHeYpRiOK2Uxz3wAevGMi/v4BHDx4kP+t+J3UnGwUc36gwWINgJgcW+DYByUKzxNCiLKqYDi75jp27BjR0dG2tyo+Pj40b96cVq1alXtbTz75JE888QR6vZ6+ffsSEBCAoigOy7i7u1dKuYW4pul0GNuG4rJ9L/q9h8m7rmN1l0gIcZWQe3HFKE6CEigKxoI8PwBotRgNzWxJiY0nYjFGhJZ5H6qrCxkP3gE6Daq3F8YO4baRH8rL/ou0WstzSlSEuUVTzC2a5v+iLVSXJdVnntE2PyCoLg888DA//vgdcQf28/GxKCa06UQL30DUgpwjhVtDSEsJIURluGaCEosWLeJ///sfCQkJqIWS6SmKQv369Zk8eTJjxowp8zbHjRsHwOuvv84bb7zhdJlDhw45nS6EcGTs0CY/KLH7EHndO+Q3HRZCiFLIvbiC7EdFKGGxnDHDLv08amiZNp3XrT26IycwN6jnMBoHFe26AaCxC2ZIS4nLouoKfSYl1KeSZ7zU5UanxdPTk3vvvZ91v/zAhgMn+HLPFkY0D6PL4IKkm0ZpKSGEqHzXRFBiwYIFvP3224wbN44RI0bQvHlz6tTJzwh98eJFoqOjWb58OS+//DI5OTnccccdZdrum2++WeRtjBCiYiwBfpgaBaOLS0AbdxZz4wbVXSQhxFVA7sUV45BTopLlDriO3P7dKze4rJPRNyqNXf2puoKRVxQFxe6lnarXoRhN+TkirB9jwWeg1Wq55ZaxNPjvAL8e3cuf0Yc48d8/3G7SoBQOPNi3lMjJxXXZWpTcXHJuHFzhVjNCiNrnmghKfPPNN0ybNo3777+/yDx/f3/8/f3p3Lkz9evXZ968eWUOSowePbqyi1otsrOzGT58OCNGjOCJJ56o7uKIWszUNhRdXAK6fUckKCGEKJNr5V5c5ZyMvlGpKjlQpEpOicpjHwywtoLQasC+e4VWA0byh3stqHv7FhaKpzudgxtT38uH+Uf3sPfEURJPX2Bs8wYE2O1Kyb0UlHDZud/2szE+AXPThpV5VEKIa9g1cdVPTEwkMjKy1OUiIyNJTCz/GMrHjx9nyZIlfP7551y4cAGA2NhYMjIyyr2t6vD555+XqX6EuNKMrVugarXoD5248g/MQohrytVwL/77778ZOnQoQ4cOZfny5dVbmKvtGquV7huVxT64YMvVUahO1YLuMkqe8VIuCPtgRkES04ZedZgyYDihLVpxPiuDT1csZtOmjbau0sXlkdDGn6uMQxFC1BLXREuJ0NBQfv75Z7p06YKmmBuZqqr8/PPPhIaWPYFTZmYmzz33HKtWrUKn02E2m+nduzdBQUF88MEHNGjQgKeffrqyDuOKiImJITo6mv79+xMdHV3dxRG1nZsrJkMz9IeOozt2ElOb8iegFULULlfLvdhkMjFz5kwWLlyIVqtl/PjxDBo0CBcXl9JXvgLsE11m3zSoWspQLjIMaOXROmkpUeT5WEXVavMTXRaMwqJq7VpKaDWoWi2K2YyXSWXC2NvYfTSeP1LiWbFiKcePH2P06LF4mYsLSiQ4nS6EEM5cE6Hop59+mn/++Yfhw4fzwQcfsGTJEtasWcM///zDkiVL+PDDDxkxYgRr167lmWeeKfN23377baKiovjmm2/YtWuXQwLNvn37smHDhssq9/bt23nwwQfp1asXoaGhrF27tsgyCxcuZMCAAbRt25Zx48axd+/ecu3jnXfe4bHHHruscgpRmYxtDQDo9x2t5pIIIa4GV/peXFn27NlDaGgogYGB+Pn5ERkZyc6dO6uvQKb8nBI5Nw26KgLAqgQlKo/9SCYFQQm1UFDC1KoZqos+P/eINU9EoRwQ5pb5o3koeXkoej29GjVnSt/rCQwM4tixI8ye/REHz51xWgTN+aTKOhohRC1wTbSU6NSpE7///jtfffUVf/75J//P3n3HR1HmfwD/zMz29EYgobcQQgJIR7qiiKdgPxV7ORunnvUsd+p5ds9T7jxFEevpTz3LqQgcKhaa9E5IaCEJ6X37zjy/P2ZndjfZTXaT3WzK9/16+TI7OzvzzJMlM/Od7/N9Tp065fN+v379MHPmTNx4440YOHBg0Ntdu3YtHn74YUydOhVis0hwRkYGSkpKOtRui8WCrKwsXHjhhVi6dGmL91etWoWnn34ajz/+OMaOHYt33nkHN954I1avXo3k5GQAwKJFi/xu+7PPPsMPP/yAwYMHY8iQIdi5c2eH2kpIuIhDBkAyGiAcLwasNjVFlBBC/In0uVixdetWrFixAvv27UNlZSVee+01zJ0712edDz74ACtWrEBlZSWys7PxyCOPqMMjKyoqkJ6erq6bnp6OioqKsLStPdRMCa02am0ICRW3DBvv6VWhcf/+lboReh1s586Fa8gAaI4Xg7PaPN+VZkEJx4JZgM0Gx+Rx6pCQjNh43HrdZVi16its3/Yr3t67FxP69sei4WNg1GjBeB4s1gSuoUkOdmg0AGM04xYhpFU9IigBAAMHDsQTTzwBQC7s2NDQAACIj49v9/zldrsdiYmJft8zm80QOhjVnz17NmbPnh3w/ZUrV+Kyyy5TpzF9/PHHsX79enz++ee44YYbAABffvllwM/v3r0bq1atwpo1a2A2m+FyuRAfH4+bb765Q+0mpEN4Hq6sIdDtOghNwXG48kZFu0WEkC4s0udiRTgeFHQpDvlGk3Vkms7ORDM1hA3zGjLEtL41JZhOC1fWUPVnAOCsNrnQaLPAAYs1wXqF/PCLa7LI/3e6oNPpsHjxRcgekYVvdz+K7RUlKKytwsUj8zByyDBIyYnQNDSBr2sEX1IGw5qfYbn+Ykipvv9OhCNF0G3bC+vi+eoQEkJI79RNzlShMRqN7Q5EeMvNzcWXX36JWbNmtXhvzZo1GD9+fIf3EYjD4cD+/ftx6623qst4nsf06dOxa9euoLZxzz334J577gEgZ04cPXq0QwEJnu9YlFv5fEe30xP1tr4RRw8Hdh2E9tARSOOyA67XvF96S/+EgvomMOqbwLpT33TWubijDwr69OmD8nJPcb/y8nLMmDGj3e3p6O9GmbqR12u7xe/ZOygR6fZ2p+9/e3AGrxt8bbPfP8d5XitBCacLTK9r/Zyrk28ZONGlLs8eMRKjJ83BlycPY0fRMazY+ytOEy1YOPdMJAAQ6hpgWLVe/vjmnXCc71vbxPTxN/J7h4/BNTa4BxTCkSJICXFgqUlBrR9uPf270xHUN62j/mldjwxKhMudd96J6667Dtdeey0WLFgAjuPw448/4u2338aaNWvw/vvvR2zftbW1EEURqampPstTUlJw4sSJiO03EI2GR0pKbFi2lZQUE5bt9ES9pW9YYhbsX66D5lgxYgwCuJiWQUStVmjxnest/dMe1DeBUd8E1h36JprnYkUwDwry8vJw6NAhVFVVQRAE7N69G3/961/btb9wnHMdHIMEIC45DnyYzt+R5Io1QCnNGa7rjbZ0h+9/e0iWBDjcPxvijIhLiYVNuSESPN8tR4wBkns9Tqdt9ZzLXEbYAQiSpK7HmnjYtTpcMWkG8uJT8Z/De7CzsgQF67/BQjEGU+wWKAOu9DwHw8ZtELcfAJ81GLA51H3HJhghBPE7Z2Yr7B99LW/vhXvBRXGWlp763QkH6pvWUf/4R0GJVkycOBFvv/02XnzxRfzlL38BYwzLli3D2LFjsXLlyqhMs8kYA9eOcXkdnefd5ZLQ0GDt0DZ4nkNSUgxqa82QJNb2B3qR3tg3uhFDoN11AA1b9sE1tmW2hNMporpanuqvN/ZPsKhvAqO+CSxcfRMfb4RWG9m0+65wLg7mQYFWq8W9996LK664AgBw1113Qa/Xt2t/4TjnGmwOCAAabC6I1V1n2tRANGYHlN6qjnB7e/rfBs7qgsn9s01kaKhuglGUwAOQmKd/9eDVGwGJ51s/5zIGE8dBsjnV9biGJpgAuDQa5KT2xZCEZHwFM7ZUFOP/CnZhy9siLjGkoo8pFg6zDfyJU+AbmiBt3efT3qbKBriC+J1zlTXqcdX/egDiiMHt7qP26unfnY6gvmldOPqnM8650UJBiTZMmDAB//73v2Gz2VBfX9+hGhWhSEpKgiAIqKqq8lleU1PT4qKos4TrD4wkMfpjFUBv6htn1lBodx0An38MUq7/tM3mfdGb+idU1DeBUd8E1l36Jlrn4rY0f1Bw1lln4ayzzgrLtjv6e3FOyoNuQF+IifHd4nfs3cLOam93+f6HivOqIyIJgnyMXrPWKMfMvIqgMmU9Ly36h+PAN5mhXfsL7GeeDs4l50EotSlMWh0Wz5qBXJOAb//yNI6dOI6/Ne7D3AHDMTMzHQa7A37Z7EH9HgSLJ1DHF56Ac9igNj8TKT31uxMO1Deto/7xj0odt2LTpk2wWuU/gAaDAenp6Z12EaTT6ZCTk4ONGzeqyyRJwqZNmzBu3LhOaQMhkSQOzADTaaE5XuyZjowQQpqJ5rlY0RUfFLRFHDoQ2vPm0KwHvZB3oUsoAQolKOH1fWDexSWDKDTKSfKAC93WPeDqGgBlNhyvYrMsxogBY3Jw14RZOGfQSPDgse5EAV5c/Rl2nzjiM6Wvc/Rwebs2e1DHxVk962kPFMozfBBCegTKlGjF9ddfD0EQkJ2djYkTJ2LChAmYMGECkpLCU1zHbDajqKhIfV1cXIyDBw8iNTUVaWlpuO6663D//fcjJycHeXl5eOedd2Cz2XDBBReEZf+ERJVGgGtwf2gPH4NQVApxaPDT9RJCeo9In4uD4f2gYN68eQA8DwquueaaTmtHj0bBk/DxypRQpvKEnwezzBBaUMKbJv8oxCED5BdeQQkpxgRoteAS4jBPEDB2UgJWHT2AvdXl+Hd1DTamnMTC0+egzyXngzNboT1QCNjswU0barWpP3I2O0zvfwHzrVfSd4eQHqBHBiUYY/jnP/+Jyy67DKmpqerPaWlpIW1n48aN2LZtG7Zv345ff/0V7777LiRJwtChQzFhwgRMnDgR559/frvbuW/fPlx99dXq6yeffBIAcMcdd2Dp0qVYuHAhampq8Morr6hzor/55ptdc+oxQtrBNXwQtIePQVN4goIShBC/In0uVtCDgiij+8rw8b5JV4ZouDMUWIBMCTV4EewubHZAlDMnmOBJvGYxctUHKSkBmkYzUo0xuDpnEo7UVeHLwv045rLh5bJ8jPv5O5ydOwEmALo9h6A9dASWKxZB6hf4Wp3zCkoAAF/fCK6mHiwlMaS2E0K6nh4ZlJAkCf/85z8xd+5cJCcnqz+HGpRISkrC/PnzMX/+fADyHOabN2/GypUr8fHHH+OTTz7p0IXQlClTkJ+f3+o6S5YswZIlS9q9D0K6MtE9HlRTeAL2+TPoaQchpIVIn4sV9KAg2ujvfyQwJQPCz/ANGLwKsYaYKcE5nP6Hb5gM8v9jfWcYGJaYirsmzMQmI4dV9mrs2rUD+7dtw9wqG+YMGAYTAP33G2G9clHgfbqHedjnToVm32EIlTXQHC+Gk4IShHR7PTIoAcBnzJr3z6Eym83YuXOn+pRmz5490Ov1mDNnDiZMmBCOphLSa7FYE8R+fSCcqgBfVQspjS7uCSEtdca5mB4URBnFJCKjebDf6yXzmh0mmEwJy5WLoN2xH9qDhYDDqdaYgMBDMhrAW21gsXKmBNO13B7P8ZiUm4eRMybgp59+wMaffsQPRYXYXHoCcwcOx9TkBM+6JWUwfrkOYnoqbBctkJvuzpQQ01Igzp4C06ffgq+sDqobCCFdW48NSoTDhRdeiPz8fKSkpGDixIlYsGABHn74YWRlZbVrWk5CSEuuoQMgnKqAcOwkBSUIIS3Qubh3YEZDtJvQM7kDB5y/QpfeNSWEtjMlxIEZYIIA7cFCn0wJJvAw37ZEXqYENwIEOZjJCIPBgLPOOgdTJ0/F5rsfwq+nirDq6EH8XFmM6eOGYuLESTBu3AG+vhF8fSNs7noTSqFLZjR4jivIIpmEkK6NghKtyM/Ph0ajwbhx4zB+/HicdtppdBFESJiJg/sDG7ZDKCqFc/LYaDeHENLF0Lm4d3CNHAL7tPFwDR8c7ab0LEowoo3ZN1hMkDPauKf/lIMS7kwJXgB0WnVqUAA+P/s0xyv4FJ+YhAvHTMCs/kOx9ng+dlWV4euvv8Avv/yI+TVOTDElQsMLgNMF6LRqpgQzGsC5AyKcLcA0o4SQboWCEq3Ytm2bmi66du1avPjii9BqtTjttNMwceJETJo0iabnJKSDxIx0MI0ATVGp/OSDp5mKCSEedC7uJTgOjjlTo92KnkeZHtRvUMIzfENKjA9qc2qwwelUAwMQ/Jy3A2VKaH2XM4MeaaZYXDl6AuY01eOLEekoOHwIX2zfh/U6PWYPGI6chkZoUpPBOd3Th+s0YEzeDmVKENIzUFCiFUajEdOnT8f06dMBAE6nE5s2bcIbb7yBF198ERzH4eDBg1FuJSHdnEaAmNkXmhMl4MurIPXrE+0WEUK6EDoXExI6y5WLoDl4BK6sIYFX8hq+ISUlBF7PC3PP5sFX18L42Rp5oZ+hH82DD6pmBTW9MyoyYxNw9VXXomzzr9hwrAL7q8rxZeE+rP77C5hxzjmY7XTACIDxvDrtaaSDEsKJEojpqb5FQQkhYUdBiTbU1NRg27Zt6n/5+fmQJAkjRoygQpeEhIk4KBOaEyUQTpRQUIIQ0gKdiwkJjTgwA+LADM+CtjIlkoLLlIDeHZSweKbnZP4yJbQBhm80z6DQ6XxecmYLRqzfgRFjJqO0qQHfnyjAjoYGrF79DTYePoHTE/ogz2xGbGqKPLNIBIMSfGk5TP/+L6TEeJhvvTJi+yGEUFCiVWeffTaKioogCAKys7MxZcoU3H777ZgwYQISExOj3TxCegxxkHzhpDlRCufU8VFuDSGkK6FzMSFhoExE512LxStrgSUEGZQQBDCe98y84V7WYnfBZkrofYMSfEWN+nPfAQOwJDYeM2aMxfdlRTi0rwDrThRg7csvYtyECTjDaUc/ickBl1ZqzHBmC3Q/boFr5FCIwwcFcZDuttQ1uv/fANgdQLO2EkLCp0cGJTiOQ0ZGBnQ6nc/PoTr33HPVsapGY5AFgAghIRP79QHTaiAUn5KreQdRBZwQ0jvQuZiQMFAzJXwXO07Lkd/ThHDe1Wl9MxT8Zkp4bjF8ghgtghK+GRV8lRyUcIwdBSklCYbvN6GvIRaXXPJb2EuasGnfLvysEbB9+1bs3puPbGMCJubPxpBWit8a//1fCFW1ECpqYAkhKAGXy3OIRSUQR7QyFIYQ0iE9MijB8zy+//579bX3z6H4/e9/H64mEUJaI7jrShwvBl9ZA6lvWrRbRAjpIuhcTEgYMDVVwmex/exZoW9Kp/Wp5cD8Zkp4zcRhNIAzW9zrNit02eyhoVBRLS9PiFdn6lBm3UjWG3HesBxMvfMabN+5HVuPleJQZQX2vvUG+gwYgClTpmHs2HHQew1LAWMQqmrl7dhDG+rhfYzKdKSEkMjokUGJcDp58iTefPNN7NixA3V1dUhMTMSECRNwww03YMCAAdFuHiE9hpjRB5rjxRBOVVJQghDig87FhHRQgEyJdm2q+XSf/mbN8s6UMBkAd1CiRUZGs23xlXKmhJQQpw7t4JT6Fe5jMBiNOP30mZh7sg4HNm/BurQ4lFSU4auvPseaNaswfvwETJo0BYO/2+z5LCBPLRoCn6BEiJ8lhISGghKt2LdvH66++mro9XrMmTMHqampqKqqwtq1a/HVV1/h3XffRU5OTrSbSUiPoBS45E9VAONHR7k1hJCugs7FhISB+4aetVJ7IWjNi1i2UVNCyXgAIBen9F4vQFCCJcSqdTA4p1P+QZLk9ruPgTcaMT49E1mXLcIJXsSWLZuwd+8ebNmyEVs2b8CoglJMyxiMMal9IfA8OIu1zfoT3ji7w/OzwxnUZwgh7UNBiVY8++yzGD16NN544w2fcaxWqxU333wznn32Wbz77rtRbCEhPYfYT86OEE5VRLklhJCuhM7FhHSclJ4KobwKUnJih7fVPJDgb/YN1jxTQtE8U6JZlgUnigAAKTZWHfIB0V2PQmIA7zV7iMkzvKN/1lD07z8ACxaci507t+PXX37Gkbq9OFJXjVidDqel98fE9AGIdTiDLljpM90oBSUIiSg/+VZEsXfvXtx4440tCmsZjUZcf/312LNnT5RaRkjPw+JiIcWa5KckTjr5E0JkdC4mpOOsFy2Afdp42OdN7/C2fIIMgP/Mg2Y1JdSfm9WUCJi1oNN4AhjuQAUkySeIwWJN8iaaLOqymJgYzJgxC/dc9zvcmDcFOanpsDid+OnkUfxt2494/dVl+PXXLbBa3VkTXtkQzfkO34jMdQl/qgJ8cVlEtk1Id0KZEq3Q6/Woq6vz+159fb1vIR1CSIeJ/fpAW3AcfHl1tJtCCOki6FxMSMexhDg45kwNy7akpASf15xLbLm/AMM3WmZK+A9KMK0WnHtYiJI9wTUbeiHFtAxKqJu12pCV3AdZyX3Q6LBje9lJbC07ieKiEyiuqcSqVV8hTxuLaXUO9Lv7d0BGestGeAcsIpApodl3GMavvgPTatB09/UthsFo9uaDc4lw0pBW0gv0iEyJjRs3BrWe0+nEH/7wh6C3O2fOHLzwwgvYtm2bz/Jt27bhxRdfxNy5c0NqJyGkdUqBSxrCQQhR0LmYkK6leVDCb3ajd6aEwStw2MbwDc/nNZ5hIW1lSpjNLT7OWazqvmPj4zFj5izcO2kObr3ockycOBmCIGDfTz/hjT2b8cIjD+Gbb77CyZNFYOosJZHPlNDuOuDetgtcfaPvm5IE49ffw7D6R/AllElBer4ekSlx66234pVXXsHs2bMDrmOxWHD77bdj69atQW/3wQcfxG233YYlS5YgJSUFKSkpqKmpQXV1NcaPH48HHnggHM0nhLiJ7mKXwqnKKLeEENJV0LmYkK6FJcX7vPaXKQHvOhPeGQDNghCSyXdYFgAwjUbOiFA+p2yfMTDvmhKxMfImm6wttqHMumGfNh7OKeOg++lXaE6UYmBCMjJmTMM55/wGx6sex86KYuSbzdi8eQM2b96ApKRk5OWNRW7uOAz1Dko4nBCOnICmrBJs0ZyWxxsquwNCSbn6kq+ph+hV74OrrVd/1u3YD1tm347vk5AurEcEJc4880zccccdeOmll3DmmWe2eL+mpgY33XQTjhw5gn/84x9tbs9ms+HHH39ESUkJLr/8cixZsgTHjx9HZWUl0tLSMHbsWMyYMSMSh0JIrya5i13ylClBSK9H52JCuiYp0TdTQkqIbbkSx8GZPVwexuFndg6Fa8xIOCprwAx66H/6FYDX0A+NMnxDKXQpAZxXpkSMHNDwmylhdmdKmIwAx3mmF3UPydAJAib07Y8JffujXifg19PHYO/e3SgqOoEff/wBP/74AwbmF2FscjrGpPZDitMJ08er5G1OHgPoWwZTQiGcqgAnSeprvrYe3qEdwT0LCQBwTS2Pj5CepkcEJV544QU8/PDDuOuuu/Dcc89h4cKF6nvFxcW44YYbUFdXh5UrV2L8+PGtbuvkyZO49tprUVJSoi6LjY3FSy+9hJkzZ0bsGAgh8sWDFBsDvrbeM6c6IaTXoXMxIV0XizXBNSgT4Hm4sobAlT3c73q2xfMBAJo9hwJvjOdhP2M6+NJyNSgBd1CCCc0LXTaffcMIxnHgq2qh3X0QzpyRnkCG1SsoAQAajc+2uDrPcIkEh4ipU6Zh6tTpqKmpxt69e7Bnz26c2roXpxrqsPpYPlKP70eeMQFj0vphSG090LdjQQmuoUluTloyhMoa8DV1vt3iHZRwZ30AAFfbIAdYmhcbJaSb6xFBCY7j8NRTT0Gv1+O+++6Dw+HA4sWLcejQIdx0000QBAEffPABhg/3/0fT2/PPPw+e5/HBBx9gzJgxKC4uxmOPPYbHHnsM3333XSccDSG9m5ScAE2T2ZOuSQjpdehcTEgXxnGwXnF+8Ou3kimh0nmm6WRKPQrvmhKMgWMMzHv4B8dBSkqAUFMHw6r1YFotXKPla33OKt/Iq0U2lWCF+9qCr2/w3b/DCb6qBgO++B/SzjsDs2fOhrncgT2N1dhffAKllZX4HpX4vqgQKS/WYOicWRg1KgeDBg0GH6guRiv4Rjn7QRzQTw5KNKsp4T20Q6mPAYcTMW99DEgSzDdfDpYQF/J+uyybHTD0wKLFzYqzksB6RFBC8ec//xl6vR4PPfQQ8vPz8cknn6BPnz5466230LdvcGOxdu7ciQcffBATJkwAAAwbNgxPPPEEFi5ciIqKCvTp0yeSh0BIryclJwJFpeBcrmg3hRASJXQuJqQHCeKejBk8QQklUwKCZ/iGpuC4e1u+G3NMHQfjqvUA5CEQuh+3wDF5HDi7uzCle7tMyZRwX1twzWbT4BwOGP/7HfiGJhi++QHmGy5F35g4pA0ciLP6Dka11Yz9VWXYW1WGospKbNy4ERs3boDRaMLw4SMwalQ2hg8fCZPJFFyXNMqZElJ6qvza6smGgM0O4UQJJKMB4NyZEoyBr61X263dfRCOWZOD2ldXp911APpvf4RjxkQ4Zk6KdnPCxvD5GvA19bBcc1HLAq+khR4VlADkglh6vR7Lly/H2LFj8frrryMhIaHtD7pVVlZiwIABPssGDhwIxhiqqqroQoiQCJOS3f9enRSUIKS3onMxIT1IEKMxvacNVWtK8Lw8PKOuAcb/rJbfa5aV4MobBfHX3RCqatXhH0JRqVqvgSkZGM0yJZpfY3B2p2e2DY7zPBjRasC0GqQgBrMGDMOsAcPQNKQvfh3WD/v378exY0exd+9u7N27GwCHgQMHYuTIUcjKGoX09L7gAjwlV6YxFdOS5ddeQzQ0BcfBSRJcwweBL6sEb7EBNgf4Gk/xS857utIO0G3YDq6hEfYFs6PzRF8UoVu/BRwA/S/b4BybDRbvp0ZJdyNJ0B46CgDQ7s2naV2D0COCElOnTm3xj54xhiNHjmDBggUt1t+0aVNnNY0QEiIlKEGZEoQQQkhPEERUwnuIh9d0ohAENbsBgE9NCQByQc1xoyGs26Au0hSXQUxJlPfsLnDJms3kwTV/8OFwqFObMp1WXY9pBDCd1mf9OLuEKVOmYdKkqbDb7ThypBCHDx9CwZ49KPnuRxTlH8a6dWsQH5+AESNGYtiwERg6dBhiYmI8h+EevsES4+Xte2VKaPflAwCcOSOga2wCKuUhHHxtnVd7OzBFKWPQ/bzVp7ioc9JYSKlJ7d9mO/FlVeC9jl04VQFXDwhKcPVN6s+agmMUlAhCjwhKXHnllQEjke1x4403QvAz/u3aa69tsZwCHISEF1OmxKJMCUJ6NToXE9JDhFi3mnlPJ6rhAe/LAX/1G/z8neDsTjCO8wwFUQtdujfm8pMp4Z7lg2k1nmsQjcYdJPGadtQrS0Gv12P06ByMHp0DU6kVZcOM2GfksS8tBqe++wm7tu/G9hGDAXDo1y8Dw4YNx7BhwzG6rgE8z8vFOk0G8HWN7toZgHC8BJLJCHFQJthuuUgob7X6Zko4/QQlGANfWg4pI73VrAfN3nzoN2z37cJjJ0MOSghHTkC3ZTds550BFhfT9gf84KtrAQCS0QDeagNfVglkDW3XtgC5qKpu535YzzvDcz0ZBXxNrfqzdxYMCaxHBCWWLl0atm3dcccdYdsWISR0UmI8mHfqJCGk16FzMSG9F+dV6JoJgm9JiuaZEpCzGZrjm8xgBr3n5rzZ8A0l84FpNeCcLs/QDQDCqUp5FjD355RsC3V//rIUbHYI9Y3IjE1A38x0zB6TBbHchcLaKuydMA6FRwpRlp+P8p278Ut6Kozb92FQn77o/9NIjLaaMUiSwFntABg4AFJCnDx8xaRMe2oFX1nt6SM/bdAcOgrjF2vhGJsN+8I5LduorHf4WItlQlEpnJPyAn6mBYtNnSJVu/sgHDMmBv9ZL0pQwpUzArpteyGUVbZrOwr9z1vBNzTB9OFXMN9+VdCfE06Wgj9VKfdBGB5089V16s/e3y0SWI8ISoQTXQgREmWCIFeUFiU5PVGnbfszhJAehc7FhPQcIc8S4f1QonkWBOcvU8L/7BfewQQ1cKEEPNz7YDFGcHWNPkMjOFGE6RP5hptpNUCzoIQydEIoOA79hu2wXnwOuAbP7BlcTT2EolIYtDqM7ZOBoeeeDzRZYH/pDRRIldjftz9OCgdR2FCDQ+vWYH3+MegaLegb68DgAYOQXVuJzIH95P27C3XyNfUQyqrA4K4b6i8oceQEAEC3+yDsZ0xv2W6lfdaWT+75hiY/awamOXZS/Vk4Xgy0MyghVLmDEllDodu2F5zXLCRCwXFwDgdcOSOD2xhjaq0Nrsmiznyh27QDfGUtbOfNCxhwML3/JQBA6pMCcXD/dh2LN+/ZVPz1N2mJghKEkC5HqSvB19arlakJIYQQ0v2IA/rBuuhMiP3SW12PCQI4UfSt99A8KOEnUyLQlKM+GQ6BMiVMJqCuEVyjxX+jBKHlwxGHE2AMpk+/BQDoNm6HOKCfp4lWG5hXVgNfKxfqjDPGINUYgwmj8qBp4FCUaML+MUNQYv0WJw8exLGjR3Hs6FH8fOgIUJKP9KYSDLUxjKqqRP+9B6EH4MoeDu3BQv/DN0RPhglfXQcpw39BYH9P7jlzgOMPQCj3ZDQIxWWAJAF86DNM8DV1AAAxPVX+/XvdwCv92zQgI6jil1yTxROUkOQHW0J5FfTrtwAA7POmgsXGAHYH+MoaSJnuYS5ew3E0h4+HJSjhMwTZZm93//QmFJQghHQ5knscIAUlCCGEkO7PNXpE2ytpBfnG2itTgjXLgmg++4a8TttBCRagpoQUY4QAgDOb/W9Dq5GfuHtth3O5fAIAnMXm82Qc8GQAAIDh6+/B1zWon9UUHAfP8cjMyETKrDnQO7TQJA/EsZmn4cSpEpRUW1BgElBcfBKlFdXYdLwE2L8NqQYT+motGFZcjgG8iARR9Kmvw9d5PZ1vZciAvyf3nNmqZhYEgy+rkvuD48AxJgdqQpj2UvfDZkAjgGs0y9kgeh2Y0SAHRxjz6V/tvsNwTD+t7TZV1fgek8UK4WiRZ4HdCcTKQzx0W/fAMWUc7POm+QwZEU6WBn0MrfEegswBgM0BxBrDsu2eioIShJAuR0pyZ0q4I+iEEEII6dmYRgMODrXgJAA/wzf83DRrAtzO+MmU4KtqYfzwK3DK7BcxJnl5k7XFx5X9M51nnyzGKA8x8Bo+wZkt4NwBASkxzic4AABCuXwDb77pMsT+6wPwdQ3ytgwGdZs8x2NgTROGlJnB50yEbcZEnMoegpPf/4jSb9agqKEWlRYzyk4ew74jR8GK8iFZTiEjIwP9+w/EgAEDMOLUKaQxDhzHgbMFGDLAmLt2hYeUECcHVax2wGTw/7lm+IpqMEGAlJ4CobRCrnER7GdPVUK/eaf6WkyQC2wyox58kxmwO3xrfJSUAYxBOHoS4uBMaLfvg27jDliuu9hnaJBQXOazH85s9dkO53CAARBOngIA6LbskoMSpeWedcJV/0GZvUWvA2d3yIEgCkq0ioIShJAuR82U8Ko0TQghhJCey3bBWTB8uQ6238z1LGwxfMNP/QhNEDUlBPmWh2+ygG/yDFVgMUohSTlIIcWYAK3GEzjQanzulliMEahv9Ak8CBXVamBEzOjbIiihtIUlxHkyCwAw9028lBgPANAeKPR8wGREamoq0sefBtORCgCAxelA/rkzUbnyQxQ11OCIXo/i4pMoLj6JzRskaLfvg0GjQUZsAvrESkizNyAjIxNpaX3AK/3mcMpDG7xIKYng6xvBmy2QggksSBJ4qw1SfCyYXi/3n8PRxoc8tHsO+vZNrDxzBzPK++asNp/fEWe1Q//DZjmIMH0C9BvlmUO0O/bBMXeaup5S58I1MAOaolLwFqtPAEYpDqrU6ZBfMPAlXkEJu+9xaPbmQ3ugELazZ4K5f0/BUDIlpLgYCHZH4CARUVFQghDS5bAEeewg1xTaGEdCCCGEdE9i/34tZkxoMbOGv9k3Qqgp0WIdd6YE586UcOWMgDNnBGJWfur+nMZnn0p2g3DQE0DgbHZwTXJQQ+yXBu2Bgpb7UWYC0evkGgPw3IRLfm52mVG+2YfOcwxGrQ7Dx43F2FH7wDVZ0Hj/zaiprUVxcRGKD+WjqqAEpU0NOFpXjYJd2yFVyDfpgqBBenpfZGRkICMuEUPra9A3Jg4Gjda3D8wWIC25WUOY/J93MEi5udfrwPTueht2PzUuAuDrfYtqsliTT39wVpvanwAAqw3aLbsAeIp5KuupnE7wpRWQYk0QB2VCU1QKzmL1DQa4Ayecd1udLgil5WA8L2c1WG3qMBaurgHGr78H4M6qOHtWm8fGmS3gSys8mRKxMUBVLTirPdSZcXsdCkoQQroc5UKCplEihBBCei+foRxAgNk3AgQcTF7p8oGCEsqUmy7PFKHKzbHyOab1KnSpk2+ddJt3+TbLIgc1lOGnLfbjvq5hBp16beMJSrT8jDq0w2vfLDZGHk6i1YJnDJwkISUlBSkpKRif3h8xR2shMQmVFjNODE7H8cxUnDpVirKyUygtLUZpaTFgtkK7Xw6aJOoNSI+JQ7LGigFlVUg8chTJGX2g8wqEaPbmw/jNDzBffaFcGBKebAKm16lBE87p9LnpFk6UQDheDMfpE1oMr2meNSD5yZRQhtco66thIa/giOCuayGv4wDHmJy9oQZZmg3fcAcjOLtnGV9dB95shdg3FRDlDBA4nIBe5zMjiebgEdjPPD3gd00+AIbYV96Rf9TKx8ziYtRjoqBE6ygoQQjpcpR0QNiDTwckhJBoO3r0KB566CE0NTVBp9PhoYcewsSJ7ZsqjxACwO77cIL5m30jQMDBe0YM8DwYz7cYuqA+6VfotHJWg/K+RgPmNfuGd5BAio8FMxkhlFWCs9jAOC7g9KdqUEKvByAP71CDH0Z9yw8oBT692qfOQOFuD+dwqgU81WEHCfFI53gk9x2A7HPmyZ9jDPX1dSgtLUX5jt2oLW9EqY5DbVk5qmM0wOEDEIpKIZrLIa1fhaSkZPTpk460tD4Y8M2PSDPGInHtemiuvVSuV6HsS69X+4ZzeIIS2u83QbdJrhkh9u8HcdhAn0NrXmjTkynhHgpitcu1Jdx4i2d93qsoJV9V6ynO6Z6NhGm1XkNymg/fcLfbK1NCOCUPjZHSUsDV1qt9yfQ6n2tQ3mqD5kAhXLlZCEQo8hTJVGZ3kZS2+JsthfigoAQhpOtRpu6yU6YEIaT70Ov1eOqppzB06FAcOXIEt912G9asWRPtZhHSbTUf4++vpoT38A0p1qTWIxAzm01BqhEAR7OghFdWAOAOOnhPAaoRfPep9dw6MZPRc1MuSWA6rXqD3aKN7kCHdz0D5lW/gRn04Gx22ObPgFBcBrF/X3f7vIIg7qGt6jKHE1AyPdwZAVJivPyE3ztDgOOQmJiExMQk5DEdjCfr4ZgyDk2nn4aqmmpUbdqGum/XoSQ9AaVJcaitrUFtbQ3y8w9Cm79H3ufRPeCLDyA5OQV9eC0yjx1CoglI5jOR6XR4hqTUN6oBCcD/TB9oVmhTCbZ4Z0o0X0fdntdMKJwoyoEDg94zjaxWA0nJTmhsalboUsmU8Ao2uKc2lVISIbizXTi7HQyxahBDzEyHUFIO7Z5DrQYl+IrqlguVIUQuseV7xAcFJXqwvXv34pFHHlFfFxQU4D//+Q+ys7Oj2CpCgsBxAM+3vBghhJAuLDMzU/156NChaGxsBGMMXJDT7BFCfLUMSrSeKcES4uBKSoCUkghofbMgmCCAQ7Mn1vrmQQmNzwwfrHlNCe+sCb3OJ52fabW+Qz/87EfNBIVX5gMA802/BWezQUpNhnNirtf+dC3XdwdGfIZMKEGBxHigqNR/MADwGTqi1evRr18G+k+cCFN+CZw5I2E7/ww4HA5UVJSjqqIC1gobKi1NqBCAUwDKykpRXteAgyeOQ7JWg+3RQyg+BU3FYSRkj0SmKCG+sBDJBhOSDEaYTp5E7LABMBrdQ2kYazE01zW4v9omwD18wx1k8Jfd4nM8Zosc8FHW12rVbBW+ps73+2N3AKLoM12nMgRESk4EXy4HFZTPKMM9XEMHgi+tAF/bevF1vrGpxTK1EGjzYUikBQpK9GC5ubn48ssvAQAlJSW46qqrKCBBug+eA+cS5eiyjv5UEUI6buvWrVixYgX27duHyspKvPbaa5g7d67POh988AFWrFiByspKZGdn45FHHkFeXl7I+/ruu++QnZ1NAQlCOoBzNE97b73QJTMaYL1kof+N+RnmwZpPJ9oskAFJ8v2cd6aEXuc7Rak7oOEalAnNiRLfmTaUISHeQ0O8al6wWJP/LAuv/Unx8s22GqjwGobgnSnh/bo5JVjBvIaMqEMMzHKGid7uwMj/bcbQUcOgHyxnBjCNgMY/3ACz1YLajVvR+PVanBqYjiqHHfW1Tah0uVBWVobaomJIZdVgiXHg6hohlR8F+/QDaAdmIjElFYkxMeiTvxvxphjEa3SIyRsNQ10N4uLiEacMRXG61OEOLD4WnHsmFH94sxViSpJnfXdNEKbVQKiq9T12h7NFQU6hzJMpoWax2NxBCXemBDMawGJNcvF1UQxYV8K7Dgbg/l4q3x2RMiXaQlf6vcTq1atx9tlnR7sZhASNudMlObudghKEkLCwWCzIysrChRdeiKVLl7Z4f9WqVXj66afx+OOPY+zYsXjnnXdw4403YvXq1UhOlqvSL1q0yO+2P/vsMwjui9WSkhI8//zzWL58eeQOhpDeiPkpF9gsKBFQ8wAE4KndoHxe26woo9MFl7smgnP0CJ9MCeh1Pu1RPmtbPB/67zfBOXYUTO/LDwfVmhLe+wsmYMnzYFoNOKfLM8xBr9Rx8GQBcO4baSkuRs4uaDMo4TV0xHv2DQDafQUQyqp8C0m6ROg37YTpeDGSB/SDvt8g2KdPhhQXCyOXANu08WiYnAv7KytQk1KJ8nFZMK/fiFqbBTW1ZlRJxSh3OVFus+No6QmwuBi4RgwGju0D/rEPAKBrsiLlWCliqo4igXFIqLfAmNkP8XWNiNXqEavVIUYn/1+blAih0ay22TN8QwtwHKTEeAiVNfLxuYNDnN0RcOpSKTHeU2RdrT3hDkrotGDxceAbzeCaLAHrhjQPSkAjeAJmFJRoE13pR1FnPrFZvXo1Hn300XA1nZDIU8Zw2hyAe3ygZs8hCAcKwbRauEYOhitnZBQbSAjpbmbPno3Zs2cHfH/lypW47LLLcNFFFwEAHn/8caxfvx6ff/45brjhBgBQMxADaWpqwm233YZHH30UgwYNandbeX9p6u34fEe30xNR37SuK/WP2CcFgtdYfQ6sZbu8H1wYDYHb7SdTgm+2jNNrfT7PiS5wcTEwP3AzIAjQ7jzgWVmvkzMpFFr3Z2NNcJx/hu92BQE8z4F3eoYOBNu/TKeVb7oT48DzHDj3zTPvcKqFP3l3DS7OZACMerlYJAeA48CfKAHX0AQxNwu8EqwwefWTUQ+mEcA3WSBU14JvlpmgDKHQ/7wVAKA5eUp+w6AH584uEFwi4p0iDEyLzLyxGHnGDBhLGtVtiKlJqLryPDQVHIH93f+gpl8KaiaMRkNDA+rr69HQUI8mZymqrGZUlpUCNrscALDVgKuqa9EnQlIC4ix26BtPwjhqBGKq6xB3+DB0egc0Jgnx1acQW1ENo0YLfWZfxNQ0QNvUCI2fWmVMI4DXacG5s1h4h1P+XSk1KAx6ear6EkBobIKU1HIKVwDgm2dKaDTgtPL3ixfFLvXvqiuioEQUdeYTm5qamnYFMwiJGvcTBHXqKVGE7n8b1Oi/puAYzJl95fGThBDSQQ6HA/v378ett96qLuN5HtOnT8euXbuC2oYoirjzzjtx6aWXYsaMGe1ui0bDIyUltu0Vg5CUFBOW7fRE1Det6wr9w265FOLeArg+XwcA0GkFxPr5t6FUUDCmxCMuwL8du0aQazDotRAm5YJLiEVSSiy8b1MT0uLBp8TCdf5cuP63CfEzx4Pzqv0gJsepVSkMibGA0wnlGbjWpEdMs32r7XLaEZ8SCweToIQxgv03bjcZwMxWJA7uCy7GCFdSHFwAYrUcNO5tKNuN75MIZ4wRzGxFcrwBnE4L21/lQKp+6hg4XS5IABL6JYP32r89Phasph6m5R95dizw4PqkgI+PgZR/XK6tIXkyQ2JT4oH4WDgBGDgGrqoaLgDaUUNg6JsE75wEwe7AoEF9IVoscKb2hTAhD9pLF/gcp3SyDOYXVqJpeCbqSk6hseQUrLnD0bB5J5qcDpgdDjQ57WhyOmBJSkB9XRG4ynLwsRpIpyohlZ4Ar3OCt1VDOloM6WQZAIAXh0PaXwju8DbwO9aD21sAvaCBThCgEzTQmYyI+cgATVEZNAcOwxjjgLGpFNzO3RCOn4S+oD+Eygqg5BgMu7dB5xoBjUYDvr4J2HkQhnnTIJiMqDxZJGdkQC4uygsStPZG1DQ1QNNUh1S9fF3bFf5ddUUUlIiiznhiAwBr1qwJy9ANemoTOdQ3frgzJXiHA+A5SIUnwdnsEAdnQkpPhXbLbhh++hX2xfOj3NDoou9OYNQ3gVHftFRbWwtRFJGamuqzPCUlBSdOnAhqGz/99BM2b96MqqoqfPzxxwCA9957D/HxoQVPXS4JDQ3WkD7THM9zSEqKQW2tGZLkJ+W9F6O+aV3X6h8OGD0SMe6ghMPuQmN1y4KCym2emXFw+XkfAHT9+kB7qhKugZkwz54qL6y3wvsWsc7iBKtuAnKzgTGjYHYC8NqeRqOFUo3BKgEQAaUUpQNci7Zpp46DbvMuNA0bDKm6CZq+adDvL4Rr5BBUB2hnc8L0CeBrG2C2iYCtCRoJ0AOw7SmEfdBAQKeFvr4JGgB1Dgl6rRYCgNqSarC4GPX4akuqoW9oggCgzi7Jx+mmT0qApsZTyJHpdbD84Xr5vc/XyjeMzb4LjU4JzOaCEYC90QIcK4EGgDUpES67BO8KGazJgurqJggVdTAAsPICGpodP2d1wiQIiIcGCTGJ4NM42MdOhL7M0qJP7PNPh3btz2gYNgA186bCuWUHJP1mNJw2Gk3DB8Da2ATHoQJYJQmWWCPEklpYTAZYdEaIGg0cogizU3noZYdr70HwVTUQKkoh7XRBrCyDpuAYuNoGuNYxcGYLhOMlkCyVEDfLM6NoDhTI2Rxf/xfi4Exodh6QhwO5i1oyox5S8QEI+ccgndgL7d5f8dxzT8Nsdrb731V8vBFarf+aFt0dBSW6qHA8sVGEY+gGPbXpHNQ3HkpKZbyOh5AUA+d3GwAA+im5EMaNgv1AITT7C2A6ayp477nIeyn67gRGfRMY9U3bQpk9Y+7cudi/f39Y9huum0FJYl3gxrJror5pXZfsH0lqtU2SQR/wfdtZM2GflCfXUFDWafZvWxI0YN6fb1bDQozzXAtLWq3PzBBMq2mxb/ucqXBMzAWLiwUkBseEXEgJ8fKME0H2rTR6hPsHpu4XADSHjkCKNcE+f4anpoROB2aQ60WwJguY90wiZis4i5y7Ier1Pvu3LZgN/feboD1YCABwjRwCyV1UtEUxUK/jV99zOMG5Z69w9UmB2GxWE47J3yXBvX9J3/L3xAnKtlyA0wnG85C8pk2V4mPl6U4hz9ihMxiQcPwUNDojtMlp0Kekw5adA+f4HPkDZ8gPrTizBbFlDoj9+sAxMRfGmO8gGQ3gLFY4RBHWtETUXbIQ0v7D4Fd9D/OYEWg6LQfcf/8HVlqGpoVnQjRboFv9I+x9U2GdMQEulwhtgwixoREiGCxDRkBbUg9XSiL4qlowMLjiY+AcPgzaKgtcffsgccJEaLVaSJKj6/276gIoKNFFheOJDQCUlpaipqYGubm5ba/cCnpqE1nUNy0pp/mmynpINU0w7isA4zjU9+sHNDmgmTER+m9/hGXNJtgvOKvtDZqt4MurwEkSxKED/M513h3Rdycw6pvAwtU3PempTVJSEgRBQFVVlc/ympqaFudiQkiUtPHnSrkh94vjwJITfZfxzQtdNpt9o/n2vWbIYHqtbwFDfzfvHCcHJBSCAFfW0Fb30SavG35Bqe/g8CrK6J5ZI2blp75NsdrA2exyQc5mtTRYfCxsi+fDNaQ/tAcKYZs33fNegD5hGsEzXarEwFdUA1oNWFICAE6uheE9e4rd4bfQpro9pYio0ynX0HDPpKGQkhPVoIQUHwdnbhZ02/ZCKCr1TAnq53fAePexSpJnRo24GPBWG/QaDYSEBAgpKdD07QtjQjIc6Rmwj86BactBCEyPpmnTwfR6xOafAtPpYJ43H+A4GCvtan0N28TTYaiR4JgyDrotuwAAYmZf2OZNQ4xZB2f2MDgWnk2zMbWCghLdTKjznWdkZGDdunVh2Tc9tYk86hsPpXgTs9mB4jKgwQxpUAYko0F+2jB6BHRrfgZ/vBiSKLVaxVq3eSd0P2xWJxIT05Jhnz8D4qDMTjiSzkHfncCobwKjvvHQ6XTIycnBxo0bMW/ePACAJEnYtGkTrrnmmii3jhACwP/sG95ve025GZTmDyj8FMP04T0dpFYL6DxBibYCGuHCvIISfGUN4PJMoQmdNmAfcBYbYLOrs3j44xqbDdfYbN+FugDHxfFgnHumNIsVnM0OLqOP3KcSAzMafIISnMMJzuqu4OFvlhT37CWcwwk4XWAmg29QIiUROF6srqtOf2q2eGbf8NdWZcYTUQTnnhJUnnFEzuxQZ0ZRvgvu4RdqAEOvAzQCpD6pEE5VgKtvBEuMB2fxPKzVFB6XP5qSqC5jGt7zfXLR7Btt6RmPCnsgemJDej1lSlCbA8Lh4wDg+3RBp4WY0Qe8xSaflAPQ7jwA/Q+bAa0GzpyRcPXvC6GyBsaPvgZfXBbJIyCEdDFmsxkHDx7EwYMHAQDFxcU4ePAgKivlueqvu+46fPTRR/j8889x5MgRPPbYY7DZbLjgggui2WxCiKKtoESgG+hAOM5niEPzKUJb5XD6PpnXds6zXu+gBCdJ8jWQw+nOXOADBiX4ugZwCD1w03yaVM8GOTVTQilK7p3FIcU1Gx7odHllSvhpgyDIgQG7Qx4Wo/UNsEjeWS4cp2at8GYr4A7K+G2rcj0pSYB79g3m3Ta9Xt2/vCNRbS8D1AwY5XiUguu82VPrQnP0pLzdpATP1KJNFnWbHE0J2iYKSnRR3k9sFMoTm3HjxkWvYYR0FiX6bneAr6oFAEiZ6T6rKJkOwokSv5vgT1VCv/pHMIGH9eJzYDv/DFiXLIbtjOngJAnGL9aqc1wTQnq+ffv2YfHixVi8eDEA4Mknn8TixYvx0UdyxfmFCxfiwQcfxCuvvIJFixbh4MGDePPNN9UZrwghURYgKMHcT6RZ8xvhYHhnSwQxtJPPGgwAEDP6gHlNRxrw5j3MmM63XoNQVgnO4VIzNfwNjQAArl6eopM1q/fQ9v4CBHp43pOl6s5U4LyG8zX/XXBOJzhb4OEbAACdFrwSuNBqfIIXklcWAqBkOzTLlPAblFCGmEhqpoSUnODZjtIf7oAU586UgCT5BqkEr6wHl0ut46Fuh+MgpSZBSpK3zdfUgymfoaBEm2j4RhSZzWYUFRWpr5UnNqmpqUhLS8N1112H+++/Hzk5OcjLy8M777xDT2xI76FG3+3gvMYQehMHZQIbtkM4UQLnpJZT3mp37gMHwDZ3GsTB/eWFHAfnpDwIFdXQ7s2HfvVPsF20oMVnW+VwQnugAJr9BfL4zNgYOEcNhSs3q8fUqiCkJ5oyZQry8/NbXWfJkiVYsmRJJ7WIEBIa/0GJpjuuAWe3Bx5q0BqBB0RRvoEMYoi09saLUHuySr4prvfMINFZQQkYfIMK/KkKcC4XWIxRbkegTIn6BvmHUPsomEwJZfiIV+ZIi8CD06UO3whU+4NpNWomAjQaeYiM8l5sDOyzp0ByDz+R3MfLmS1qoMbvEBqel781ElMzOsS+aZ7tKsM3BN/hG5CY7zWdGrQQIRyXH4Z5181wnpYDZjJCSkqQA0WMqcM3OJenICrxj4ISUbRv3z5cffXV6usnn3wSAHDHHXdg6dKlWLhwIWpqavDKK6+gsrIS2dnZ9MSG9Brq2D67A3xjkxyhjjH6XI+ImelgGgGaolI5ou198rA7oD1QCKbRwJmb5btxjoPt7FkQjhdDe/gYHFU1kFKD+3fF1TfC9NFX4L2mzkJFNTRHiyBu2wvbojOD3hYhhBBCQhBo+IZR739IQDCUJ+lBDt3gBEHOApCYbyCis2pKNMuU0BTJxRaVtoj9+/r9HK9kSuhCzJQIVOiS49SsVvjJVGi+H762vvXhG/DNyvDOQpHboYFj+mme10qmRJMFiOPVdfxSpupU6kR4B0yUukrNshq4ZteVSjYORBHG/6wGALiGDYLUJxngODgmjQUAOCaPhfZgIezTT/OpZ0FaR0GJKKInNoS0wn2RwDdZwJmt4FIS5ScY3hckGg3E/n2hOV4CvrwKUr8+6lvag4XgnC45IOHvqYFWA8ekPBi+3wTtr7thXzi3zSZxtQ0w/ftL8A1NcA0ZAMfpEyCmJkGorIHuxy3QFJfB+OFXsCxZ7K4+HQZ2h3zMoRbvIoQQQnqaCBTmZTwv11oQQp9JiCV6MjhDLrLZXl7FOCWjAXyt+yGJ+4aeJcaj6ebfInb5Rz4f4+qUoESIwZPWhm8omRKs2Y29n88Zv/7es/9Afe0dAGk+k0bzgINeByYI4MxWT12IQIEhnncP31CKV3p+V3yT2d32lsM3fGqGKPUhmizqVLCO0ydASvN9ECVl9EHj3dfL9TWUQp8UlGgTBSUIIV2TOzrNV8v1JJAY53c1cUAGNMdLIBSX+QYldsuF7JzNq0h7cY7Nhv6XbdDuOwzHrCk+U321wBgM33wPvqEJztEjYPvNXPUEJQ7MgHXJYujX/ATdzgMwffgVLNdeBGYyhnLEHnYHdBt3QHuwUH2yIcXFwJU1FI7pp6lPBwghhJDegAHyDFptFLpsF+VpeHuCErExaLr1SmiOF8M1ckiYGxYAx8Fy8QJAo4H++02Akn3gnWWQkgTn6BHQHijwfEz5IdSaEgGHb/C+RULhW1OiRaFLZXuB6kk025eSoWG5chH42vqW1z7uYpd8fSNEpQ8CHRvPg/MKSkCvhX3OFOjXb4Fj3Gj5s3yz+g+S5MmiAdTvh1AlF1d3jhzSIiChMvgWz+Ro9o02UVCCENI1uU90ylg9LkBQQi0o1Gj2fNRsgVBaASkxPmAaIwDAoIdz3Gjoft0N7a4DcMyYGHBVzeFj0Jw8BTE1Cbbz5rWsHcFxsJ81E5zNAe3BQujWbw4q+6I54XgxDF+uA2+xginHx8lZGrpte6Hdcwi2s2fBNWZkyNsmhBBCuqXmmZLh3jYQ2swbXlhiPJzuG9vOIo6QAyDMsMPTjmZZAs2HP3iWhylTguNa1uDwyixw5YyAo7gMfG29PMzWLVCwovm+1OEoAzMgDszwuzqLMQL1jXLQopW2Mp4H53Sp03gyvQ6OqePhmJDr+Yzy+5f815RQhm8oM76xpPjAx6Gg4RtBo6AEIaRr4jgwvU6NanOJ/v/4K9WduSZPUIKvrgMAiP36tFm0ypk3Crpfd0NztChwUMIlyk8jANjPOD1wMUuel2tVnCiGbvchOMeNhpSR7n9dfx8vLoPx02/lYSdjRsI+ZwpYnFzQibNY5eyJbXth/Oo72Kw2v8U9Q8YYhMIT0B4+Br60HJwkQYoxQRzcH868Ua3OZ04IIYR0CndQgovA8A2ffXQzPlkHzW/Imw9/UD4TYlAiUE0JefhGs+shre9wB/vCOdBu2eUTlGhteKtP24Ko0SHFmCBAHj7C9LrAv0OBB2d1gWt0qW0D4Ntn3lkNjMnb9Cl06RuUkJIS22wfOE4uoElBiTZRUIIQ0mX5BiUCZErEuoMSjS2DEs2nj/L7+dQkSDEm8KUVcv0GP6l/mgMF4Osa4Bo2EOLQAa1v0KiHfc5UGFeth2HtL7Bcc2FQFzpcTT1MH38DzumCbe5UOKeO93mfmYywn3k6XIMyYfxiLQzrNoAZDZDysgJssW18VQ30q3+C5uQp3+U19dCcPAXdL9vgmDZeDta0I62VEEIICQvlPBqJbAllm908KNEyUyLATX3Yhm/4y5Twc63QrF3e03G22JdXcUymbzso4T2ko9WpToOZGU3NlBA92RLen1MyJdzXm1JqYtvbBABBAEdBiTZRUIIQ0mV5n2C4AGlySh0I3idTQq5DISUntr0TjoM4OBPa/QUQikohjhjcYhVt/lEAgGNicJkJrrxREHfsg3CqAkJxGcQB/dr8jOG7DeDsDjimjG0RkPAmjhgM68XnwPjR1zCs/RnWQRlASujZDHxpOUz/9w04mx1iWrJctHNgBphOC76uEZr9h6Hbvg/6jTugOV4My6XnAq2MAw2J3QHd9n0QjhZBKC2XUyT1WrgGZsKVNRSu0cNpalVCCCEeWo172s4InBsiNSykE/jMYtE8CBEgmBBypkSAOlaM431rLgDg/GRnNA9qSAn+HzIB8A2YBBE8UaZBBYIPSkgB6n2phU5FSQ1KMK/j8y6EKvbrA7F/29d2yuc4ZXYSEhBd9RFCuiyfoESATAnotHJGRZNFXcTX1AEILlMCAFyD+wMANMeLW77pcEI4Xgym10Ec5H9MYwscB+f4HACAds+hNlcXjhZBU3gCUmIc7LMmt7m+OGQAHFPHg7M7oP9yHViI6ax8WSVMH34FzmaHfeo4WK6/BK7s4fKFh1YLKS0ZjjlTYb7+UogZfSCUVsD0ySpAmYe8AzR78xHz2r+h/3GLnKGh1cqBJZcI7eFjMH71HUxv/wd8cVmH9xUIZ7FCc/gYtLsPQrM3H3xZZbe+KCWEkJ7Octm5EDPSYV84J/wbd//9b160sTvwzZRoNoVmwOEboWVKBAwO8FzLBwh+MyWatauVYaG+U4IGE5TwCpi0sr73MAzrlef7X0mdfUP0zPLiZ/gGALgGZwafWaMRaPhGEChTghDSdXlNr8UlxgNW/5FmKTYGQnWtOvxCHb4RTKYEAHFQJgBAOFHS4j3NsZPgXCKcI4aENITBmT0c+nUboDlYCMyfEbhQlCRBv24jAMA+b3rAMaDNOWZNguZoEYSTpyDtLwQygovYw+WC4b/fgXM4YZ8xUR6aEeDEypLiYbn8fJg+/ApCSTkMX66D7aIF7UtxZQy6n7dCv2E7AMA5ZiQck8dC6pMib8/lgnCiFPoN2yGUlMH0wZewnTcPrtEjQt9XAELxKeh+2gqNn9+zZDLCOTEXjkl5gX9XhBBCokLKSJeHQ0aCEpPu7kGJ5ueuQNcsQQyLCIq/4Rt+sjO8h5XYzpjeaoaB98OooIZvxAY5fMMrw0aKCVBoUwlAeGVK+Ct0CSC06wRBkKdMVbZJ/KKgBCGky1JOMEyrAYz6gEEJFmcCqmvBNZnlNLn6Rrm6c5AnDZYQBykpAUJlDbgmi89JTlNwHABCn+pLr4Nr1DBo9+ZDc+gIXHmj/K4mFJVCqK6Fq3/f0PYhCLDPmgzTp9/C9d1mYMnioD6m+3mbvL8hA1oNSHg+oIXl0oWIefczaAuOw7W/oF0zf+h+3AL9pp1geh2sFy1QA0EqjQbisIGwDB0A7c790K/9BcYv18HmdLU6rWtQRBH6NT9Dt/MAADl11DUoEywhTg6GlJRDKC6D/qdfod2xD7bF8yEOCDIrJgR8abk8TOh4sTzcSJTkGWIy+8KZNwpSRtuFWQkhhIQXp9aUiG472sXr4U0whSGBdmRKBMLJN+yM4zx92EamhHPy2Na3GXKmROjDN6AJXKyccRwgSuD81ZTwCmwELP7pr41KcIimBW0VBSUIIV0W08snWxYfC66VmzXmLnbJN1nAJLlishjk0A2Fa3AmdLX1EIpPwTVqmLxQkqApOA7G83ANGxhy+515o6Ddmw/t3vyAQQnNgUJ13VBvSMXhgyD1SQZfdAr8iVJIAabMUvBVNdBt2QWm08J2zuzg92c0wHbuXJje+wL6dRvgGjoQMAVfX0I4WiQHJAx6WC4/D1LftMArcxycp42BFBcD42droV/9E8S05JBmMfHGbHYYPvoawvESSDFG2OdOgytnRIuUU662Afoft0B7sBDGD7+C7Zw5cOW2v4ioz7Ybm6D/3y/Q5h/ztEurAXgeQmUNhMoa6HYdgGtQBmznzA1umrH2cLkgFJVCc7wYnMUKp0kPnD4J0Ovb/iwhhPRY3bnQpefvt5jZ7DwZ4Ml8KDfU6qYS48HXNfguVOot8Bwgyn3ot6ZEkBmgQLNARBA1JaQ4z1CQoIMSrWW9Cu6hFn6DEp7PhVSXQwnU0BCOVlFQghDSZTGDO1OijWkpvWfg4Gx2eVlyUkj7klLk9Tmvky5fWQPOZodrUGbI1aoBQBzQD5LRAKGkTI6QN3+CIIrQ5h+Vgx5ZQ0PePjgOjmmnwfDlOmg37YCrjaCEdutecIzBNmOinCUQArF/PzjGZUO36yD0P22BfcHs4JposcLw9Q8AANvCOa0HJLz3N2II7GdMh+F/v8D4+VqYr78k9EKbjMH5728gHC+B2CcF1ksWBvwusaR4OUNiYAb0a3+G8evvYdXrQs+QaYYvLoPpk2/A2RyQEuLgmDwWrlFD5UAaY3J9i/xj0G7bC82JUsSs+D/Yzp0HV/awDu3XhyhCu2M/dBu2g7faPIsB8FnDIWX2Dd++CCGku+nGwzfElGQwgx7O7GEtz6+BaiW1o1io9eIF0K/9BUJpBTiXO2tV6S+OB+C+ifdXXDOEYQveQzaCufH3Oaf7y9JQeAcXWiukreHlLAl3TQmfQpfewZWQhm+4a1VQpkSrqNAlIaTLUqLeUhtBCRbnDko0mUOaDtRnG+598A1es3i4AxRSamgBDhXHQcpIBydKcjHFZoSjJ+Wgx7CBvimYIRBHDwfiY+VtWayBV7TaoN13GEyrafdwCPucqWA6LbR78lvflxfdj7+CN1vgyBsVcuDFOWEMnNnDwTc0Qf/z1pDbq92wHdK+QkjJCbBcuajN4BYAOE/LgW3xfACA4avvwFdWh7xfhXCiBKaPvgJnc8AxIRfmGy+Dc2KumtkDjgOLMcF5Wg4sN1wC+4yJgEuE4cv/QbPvcLv3641raILpnc9gWLcBnM0O54jBsC2cA+uVi6D7402QgpgZhhBCerRuPCUoTAY03Xkt7GfPavEWSwyQddeO45TSUmC9chGk9NSW2/GegcNPYEA59waVMeFTUyKIh0Fex8LVNwZcLdhZWxjvzpQQ28iUaM/wDcqUaBUFJQghXZZSVZklBZ7TGvCeFtQS2nSgXpTAB9fgOakpWRNSoBN7EJR0SqG0vMV72oPy0A3X6OHt3j54HkLOMHAAhCNFAVfT7jkEzuWCc0xWuwMgMBrgzB0FThSh3d32rCJcoxnavYfA9DrYz5ge+v44DrazZoLpddDuPACutqHtz7jxZZXQ/vgroNPCdvE5IR2za9Qw2GdOAudwwvD52nZdSHB1DTD+ZzU4pwv2OVNgP6uVYqcAIAhwzJwE2/lnApADIq39PoPBV1TD9M5nEMqr4BrQD5brL4Ht4nPgHJsNaXAm+LR2BtsIIaQn6c41JQD5xtlPoME1YjBsC2aj6ebLm63f/gNl/j7rvW9/hS7jY2G+7mKYb7uy7e17D98IMhvBNWyQ/NnWrvuCnWZc4OWaEsxPUMK7FkWIhS4BUFCiDRSUIIR0Wa5RQ2FbOAfO03JaXc97+Eao04Eq1EyJxiZ1GV8nBygCPm0IghqUKGkWlGAMwtGTYAIP1/DB7d4+APA5clBDU3jC/wqMQbd9HwDAOXFMh/blnOCe6nTHvjZTMnVb94ATJTjG57Q/EGIywDFlHDhJgv6nX4P+mH79FnAANOfNAUtLDnm3jtMnwDW4P4TqOmjdfRc0SYLxv9+BsztgnzoOjmmnBf1R1+jhsJ13BjgAhq+/95nqNhSc2QLjx9+AbzLDkTcK1svPk2c6IYQQEkB3jUoEwHFwjh8NlpzQYnlHttnaMi5AvQapb5rv9J0B+EwJGuSwWesF82E7eybsMycFXinooIR7pgxlqIX37BvtzJRQs0do+EarKChBCOm6tFp5qEEbtQSU4Rt8RTX4U5WQTIagUvV9tmEyumfu8A5KhCFTol8fMI5rkSnBma3grTZIqckdnoKSHz4QTKOB5miR30g8X1ULvr4RYma6vL8OkFKS4BrcH3xDU+AgCADY7NDu3A8mCHBOyu3QPh2T8iDFGKE9UADOnQnTGuF4MTTHTkJKToAwNa99O+U42M88HYzjoP9lW9DDVQBAt3kXhJIyiH3T4Jg1OeRdu3JGwDF+NHiLFYavvw88LjgQUYTh87XgG81w5mbBvnBOSNPZEkJIr9Kdh28Eg+PgfRZhwd6g++Pnsz7ZE/5qSoTAJxAR7HlLq4XztDGt7zvI7BBlmAfXKA/l9Tk2n0KXIRTvdH+Oo0yJVlFQghDS7SnRd6GmDhxjcGUPD/3iguPA4mLkQoBOuYiTOnwjxKKQPvQ6SGnJ4BuawHlnYbhrFXQ0SAAAnE4LcUh/cA4nhJOnWrwvFJUCgFywMwyUzBWNe/iJP9oDheAcTjhzR3pqKLSXTgvnBDmwod1X0Obq+h+3AAAcc6YEfGoTDCktGc7TcsDZHdBt2B7ch2x26DbvBON5WM8/s93BAPsZp0NMTYLm2EkIrQV//NBt3gXNyVMQ+6bCdvasnnuhTQgh4dDdh28EwzuYEO5MCZ8hDh2cQ8H7IU04z13Bxvbdx2L6ZJXPawC+9TLaNXwj+IKfvREFJQgh3Z9GgOSVTeHMGdmuzUgJSl2JJoAx8PWN8nbbMfOGN39DOPjKGnmf7Rha4HcfIwYDADQFx1u8pwQlxDZm5wiWa3B/OfvjRGnAp/iaI/KNtGv0iLDs05kjb0d7oKDVzAG+qgZCaQXE1CSIozo+g4VjxkQwgYd2b74arGqNbvs+cHYHnHmjwEIcQuRDq4F97jQAkIt8BpktwZktnqDIorM6/NSKEEJ6vG48+0bQvI+tQ5kSbdWU6GBWniBAzOwLZ1bHZr5qKchzaPPzPA3f6DQUlCCE9AjKEA4pKQFSRp92bsNTV4JrMoMTxQ7Vk1CIGYGDEmK4ghKD5SwI4VSzWT4Yg1BUCsbzEMM19aNeBymjD3izp7CoD5cI4UQJmE4LsX949skS4yFm9gVf1wC+eX0OL5r97uKhOSPCcoHJTEa4Rg4FZ3dAk3+09ZUdTuh+3Q3GcXBMHd/hfYvDBkLs1wdCeRU0h48F9RndL9vkDJUJY1qOIyaEENKSGvTtwUEJ72BCV86UAGC5ajFsFy7o8HZ8BBvYbz5UM8DsG6FkStDwjeBQUIIQ0iMoM3A4O3AzKsXLwzS4hqaw1JNQt5uS5N6uZ2YPIcyZEiwhTq6J4S70qeCr68BbrJD6pXW4doU3ZSiIcLykxXvCyVPgnC55nTDWMlCzJfYHGMLBmJxJAcCZHZ4MDQBwjpOnUNXuPtjqeto9h+QpXnNGgCV1/HsDjoN9lly4S7ex7eEjXG0DtDsPyLOdTJ/Q8f0TQkhv4L5hZT04JuGbKdGR2Tf83Dp6F7r0MyVoyCKRsSIFGZRwOH0XePUV8z62ULJN3J/jauvBQq0R1YtQUIIQ0iO4hg2CFB8LZ96odm9DnYGjoQmce+YNKbED9SSU7bqHlnBWm3sBA19VA6bThlyQMyCeh5QUL9fEsNjUxWo9iTAN3VCIg/vL2z/RMiihDN0Qhw0M6z5d2cPAeF6uZeHnxM6fqgRf1wAxo094ggJu4qBMSIlx0BSVgquuC7ie5tARAIDjtI7NcOKz7yEDIKYlQyirAl/VepFP7d5D4BiDY1IeYGq9OCwhhBCZetvZW4ZvdOQ42xq+0WWLKrcvGMACZUqEsg335/Rrf4G0bX+7ttEbUFCCENIjOCfmwnz7VWAdKEopxbunFvXKlAjH8A1PUMIu/7+uEZzTJWdJhPEiSJkGlffKlgh3PQmFmJkOphGgKSppMTWocLQIAOAaGt6gBDMZIWb0AW+1gaupb/G+1l1405k9PKz7BcfBmSsHu7T5R/yvY7FBKC6DFGtq9/ChQPt2uY9HCXr4xRi0+w8DAJy5WeHbPyGE9BYUlGgX3xkquuitZXszFAIVugyFV58wc/um+e4Nuug3hxBCOh9zD9/gwzx8AwYdGMepmRJ8lTzzhpiW0vFte5GSE+XtewUl+Ar3vtx1LcJGo4HYvy84mwN8WZW6mGtoglBdBzE1qUMBokCkvmkAAKGsosV7StaGK2to2PfrGjJA3oef2U0AOTuEYwyu4YPDfsHnHCUfT2uznQglZeDrGuHq3zcsgTRCCOl1enBMgrnPS4zjwh986Q6ZEu0dNeEdlOB5WM87A5bLfhPaNnxm7ehY4fSejIIShBDiJsV7Zt/gwhmU4Dgwox6cxSYXngxzPQmF36CE2QKm1QAGfVj3BQBihlzEUqjwBCV49/AGJXgQ9n32k7MQWhT0FEXwVTWQjIbwDYnxIvVNBdNo5GKlUstpvTQFciFKl3sWlHBiKUkQ+6RAqKpVC6S22P8+OUvCNaZ9M88QQkhvxZQn2WEo0thlKdkMHagnEXjb3kMcuuitpZ/ztj+WSxb6LmjWX64xIyEOHRDSrr1n7eDCWNurp+mi3xxCCIkCvQ5MrwNf3wihqgaM48J2g8uMBrnystMFvlKuDSClJoVl2wp1+IZS98AlgrPZwWJMYd2PgiV6CoMq+PowBnP8kPrJwQ6+zDcowVfXgRMlSOmpkUnBFQSImX3A2R0tAwMuFzRHT4JpNeosKOGmDuHwly0hSdAePAIm8HCGYRpUQgjpTSxXLIKrf1/Y5s+MdlMih+N9/99e/jIOvAtddmS60Qji3O1mbVwfiMMHQUrymrkqHMfTzlk7epuu+c0hhJAokeJjwblc4GwOuLKHheeEBN9il1yjfBMvJYT3xl1KloMcSqYE5x67GKmghKROoWpWl6kZJhEYugHI2SBMp4VQVunz5IMvl7M1pPTwDonxJvbvB6DlEA6huEyebWTIgIg9aVMyMJQaId74yhpwNjvEAf0AIxW4JISQUEj9+8J61QVhLZDc5UQyU6I71OJQakoE0Vbv4pYsHJkf3sM39BSUCISCEoQQ4kUcmAmm18F21kzYzj8zbNv1DkrwTe5gQWyYgwVGPSSTAXxtPSBJ4MzyfNtSrDG8+3FjXsNdFLx71pKIXdxxHMS+aeCcLt+Cnu6ghNgnNTL7BeSbfshBCG/KrBhSvzAWuGxGSkkE02ogVFS3KNglnJLra4gR3D8hhJBuTLkZj0QAIRKBjrALPijhczxh6C/f4RtUUyIQCkoQQogX+/zT0XTXdXBOGBPek7fXDBxckxnMoAO04X+qLiUnghMlcPWNkc+U8BuUUDIlIvfESalXwXvVlVAKekrpEQxKZKSDcZycKeEVGOCr3UEJ9/CZiOB5SGkp4OwOdbpa9S33UJZI1fEghBDSzUUwm4F10SEbPpRTdlBBCd7/z+1FwzeC0g2+RYQQ0ok4LmxDNrwxo1xokm9wTwcaExP2fQBexS6r68BHOCgBnRbMoAff0KTepHP1DWACDxYXmeMDALGfMgOHOyjBGITyKjBBiGxgQK+DlJ4KvskMrt4TGFAyNiK6bwCie2iKd2FRwFP0kzIlCCGE+KVmSkRw210Zcw/3DKapPrOJhHn4BgUlAqKgBCGEdAJl+IbyRD/sQzeU/SjFLmvq1OEbEQtKwFODA1Y74HCCt9jkqVUjeJEiprszJdxDNrhGMzibXZ7NJMJPbMQ+cmCAr6lXl/HVdWAcBykxIdDHwkJqdtwAAJcIvqIakikys46Q0FmtVsydOxcvvPBCtJtCCCEAABbJIRbdYfiGkikRzDWCd02JMFxTeNel4KimREAUlCCEkE6gBiWq5JkbIhWU8J4WlHPXrohUTQnAU1eCb2zyDN2I0Mwb6j7dfcdZbfK+lXoSERy6oe47Ru5LZWgM7A7wjWawxHjfpyERoGZKeAUl+MpqcJIEqW+f7vG0qhd47bXXkJeXF+1mEEKIR9jOD36m3/A3I0cXo1wbiUFMxc7CXFOChm8EpwdPyEsIIV2HJ1MiwkEJr0wJZpD3yUwRzJSIU+pKeIYzSImRmXlD5a7FwTldAACh0l1Pok/kZt5QKFknSlBCyZiI9NANAJDSksE4zidTwjN0g+pJdAXHjx/H0aNHMXfuXBw9ejTazSGEEJl6cx2B4DXr+lEJ+1kzICXFw3namLZXDndNiebDN8zOjm+zB6JMCUII6QRqUMKizIgRoZoSifHyjWt1vafQZYQCIIBXpkSD2TPzRoQzJcDzYFoN4JBP7JxFzpiI5HEqlEwJ3j00hq9xF7l0P4WJKK0WUkoi+EYzOPf3iFdn3qCgRFu2bt2KW265BTNmzEBWVhZ++OGHFut88MEHmDdvHnJzc3HppZdiz549Ie3j2WefxR/+8IdwNZkQQro+d1CCdeFsPWYywjF7SnD1rrwDEWGoKeEz+0Z3KAoaJZQpQQghnUAJSqivI3UDLQhgifHytKDKhUJM5IZveM/AwbnkzIVIzryhYFotOLtdfuEOTrBOSIv0ZEq4gwLVdQA6J1MCAKQ+qRCqasGXV0Mc0l8dykEzb7TNYrEgKysLF154IZYuXdri/VWrVuHpp5/G448/jrFjx+Kdd97BjTfeiNWrVyM5WU75XbRokd9tf/bZZ/jhhx8wePBgDBkyBDt37ozosRBCSEgimM3AsRCm2+wOvIdvhHv2DRIQBSUIIaQTtAxKRG52CiklEXxtPXizBUyvAzSR+1PvyZRoBOcODkS6pgQAQKeVswVEUd0v64T5v1sO36gD0IlBifQU4EAB+Eo5KMFZrGAcF9HvU08xe/ZszJ49O+D7K1euxGWXXYaLLroIAPD4449j/fr1+Pzzz3HDDTcAAL788suAn9+9ezdWrVqFNWvWwGw2w+VyIT4+HjfffHO72st3sHic8vmObqcnor5pHfVPYN21bziv2Tc60nbvT6rbaRaU6G5904JXIIIT+A4fD6f1DUp0+/6JEApK9BC///3vsWnTJsyYMQMvvfSSunzdunV4/vnnAQB33nknFi5cGK0mEtKrKVOCKqRIzoiRnAjgRMT3AzTLlLA75GWRrikBr6wIhwucQ95vZxSQkpRCl5bmmRJJEd+3vH/fIp+c3QHotT3nCVWUOBwO7N+/H7feequ6jOd5TJ8+Hbt27QpqG/fccw/uueceAHLmxNGjR9sdkNBoeKSkhGc2laQkClgFQn3TOuqfwLpb39gFHgzy8IGO/G1x6DRwT66pbsezbfk81N36pjmHQaseY2y8EUIH/xZLThscXq+7e/9ECgUleogrr7wSixcvxldffaUuc7lceP755/HBBx9AEARcdtllOPPMM6HrhKeJhJBmBAFMp/U81Y9g/QPv+gaRrrPA4mLAAAiVNYDTBWbQAwZ9m5/r8H7dAQjO6ezU4Rsw6MF4Xp7ZhDF3QVF9i0yYSGHuvuVsDkCSwDmckBIiHwTq6WprayGKIlJTfWdwSUlJwYkTJzq9PS6XhIYGa4e2wfMckpJiUFtrhiR1/UJ0nYn6pnXUP4F1174xihJ4AExiqK5uavd29A6XevOobMfgcEGAp6ZEd+ub5vQuST3GRosTYgf6CwA4mwjvK7GO9E98vBFabc8cDkJBiR5iypQp2LJli8+y3bt3IysrS73IysvLw/bt2zFt2rRoNJGQXo8ZDeAcTrlIoz5ywUHvoQSRrCcBQA62xJrAu6cftc2Y2DlP7ZWghMPRqcM3wHFgMUZwTRZwdQ3gXKI8FWlnZSoY5GPk7HbAnZnCOiEI1FsxxjxpzyG48MILO7zvcF3USxLr1jcIkUR90zrqn8C6W98wpcYUOva3xbs0hbqdZsM3ulvfNMc43utnruPHEmOC9aIFYMkJMKD790+kUAnQTtAZFb/9qaioQHp6uvo6PT0dFRUVHd4uIaR9lKfpkR7/75MpEeHhG4CnroQzZyScE3Mjvj/Ae/iGUx02An3nzP/NYozgGINQXAag84ZuAADTezIlOJs7KBHBAFdvkZSUBEEQUFVV5bO8pqamRfYEIYR0O51xD9xThhF61XxgYar/4Bo5BKwTpi3vzihTohNEuuK3QFVdCekWlKCEFOkhFTFGML0OnN0R+UwJAI6p4yEcOwn7GdM776JEq2RKyMM3mMB3WoVrZpJ/f8LJUgCdNB2osm8lK8JuV2cfoaBEx+l0OuTk5GDjxo2YN28eAECSJGzatAnXXHNNlFtHCCFdmOSuwNBDYhK+U4LSPVZnoaBEJ4h0xe9A+vTpg/LycvV1eXk5ZsyYEfJ2FFQJPHKob/xr3i/dvn9M7roDcTFhOxb/fcNBSk6EcKoCiA3fvgKRsodByh7Wual37htx3umSAxM6XYvjjNT3RqnToSk6Jb9OTeq876a7YCpvd4B3D1uBUR/y/nvMv6kQmM1mFBUVqa+Li4tx8OBBpKamIi0tDddddx3uv/9+5OTkIC8vD++88w5sNhsuuOCCKLaaEELCKBJ/8pUsDK5nJOD7ZEdQUKLTUFAiysJR8TuQvLw8HDp0CFVVVRAEAbt378Zf//rXdm2LKoF3DuobD61WaPGd6+7940yKgwhAn5qA2DD9e1I07xtH/z6QTlUgtn9qhytHd0XOhBiIAOK0HJwuF7j4mIB/o8L9vXGmJkAEwNfWAwDih2WA76Q+ZozBznHgHQ7E63g4ARgSYhHXzv13939Todi3bx+uvvpq9fWTTz4JALjjjjuwdOlSLFy4EDU1NXjllVdQWVmJ7OxsvPnmm2rGIiGEdF+RG7/BMTlTgvWUGLdXpgTTUFCis1BQIsrCVfH75ptvxp49e2C1WjFr1iwsX74co0aNwr333osrrrgCAHDXXXdBr29fQTSqBB5Z1DctOZ2iWtm5p/SPlhOgA2DV6NDQwWrOikB9w00eByEhHuaUVCBM++pKtCKDDoC5rAY6AC6NBk3NjjNS3xuNoIHyl5TxPGo5Taf2scmgAyw2NFXWQw/AyriQv0/h6pvuVAl8ypQpyM/Pb3WdJUuWYMmSJZ3UIkII6WwRiBz0sEwJn2GolCnRaSgo0UWFWvF7+fLlfpefddZZOOuss8LSJqoEHnnUN76a90V37x/n8EHgjxfDOWxQ2I+jRd/Ex0GcNFa+WGDdt88Ckdw1JdBoBiAXvgzUp+H+3khGT50OlhgHieOBTvxeMr0evLUBzCIHiiW9rt3H193/TRFCCIky1oNrSlCmRKehoESUUcVvQnoPqW8arEsWR7sZPYIy+wbnnopUmSK0U/btVTxU7MSZN9T9u4td8vWN8msqdEkIISRalLg230MyJbyHbwh0q9xZesi3p/vyrvitUCp+jxs3LnoNI4SQrkyZfaNJyZTovBtz72lWWSfOvKHu0+Au8ukOSsDQvmF5hBBCegl1iEXHNiOlyw9MxX59vBYqmRI9I1XCp9Clhm6VOwuFfzoBVfwmhJDwUjIleHemBItapkRip+1X3b+7NhBHmRKEEEKCwIUpKuGYOh4s1gTXyCGehWEKeHQZlCkRFdTTnYAqfhNCSJhFc/iG0QDG8+AkCVJUhm/4ZkqwdhYwJoQQQkKiEeAcN9p3mVK3qodkSvgcB9WU6DQUlOgEVPGbEELCS60p4XK5X3ditgDHgcUYwTWaIUVh+AaUTAmHEwBlShBCCIminhaU8K6NIdDwjc5CQQlCCCHdTovhGvrOy5QAAPusyeAbzYDJ0Kn7BTyFLlUGCkoQQghpRSQnWerJQYmeUryzG6CgBCGEkO6nWVCiM2tKAIArb1Sn7s9b88wIypQghBASlAjEDbgeF5TwOo6eckzdAIV/CCGEdDtM2zwo0XtuzL0zJZhWAwg05pUQQkh0MKOcMciikDkYCYyyI6KCep0QQkj3o9X4ZqN2cqZENHlnRlCRS0IIIW1ikRu/Yb14AZwjBsP+m3kR20enouyIqKDhG4QQQrofjpMDEUqxx14UlIB3pgQN3SCEEBK08N9wS6nJsF18Dni+h9zMU1AiKihTghBCSLfkHYjoXcM3vI6VilwSQggJFt1vty2CWSUkMApKEEII6Z68syM6efaNaPIeskHDNwghhJAwoqBEVFBQghBCSLfkmynRi4ISNHyDEEIIiQxJinYLeiUKShBCCOmWvGfg6E3DN6DVgLnHvDIavkEIIaRN9PQ/WBxlSkQFBSUIIYR0T96BiF6UKQGOU7MlaPgGIYQQEkYSBSWigYIShBBCuiVlyAbTanpftWxl2AZlShBCCAlWbztXtgcN34gKCkoQQgjplphO4/5/77sxp0wJQgghQaOH/8GjTImooKAEIYSQ7kkJRvSmoRtunqBE7wvIEEIIIRHDKFMiGigoQQghpFtSCl32xhtzpcAlFbokhBBCwkgQot2CXkkT7QYQQggh7aLUlOiFmRJi/37QHC+BlJYS7aYQQgghPYZjUh6E0go4Jo+NdlN6FQpKEEII6ZbUYEQvDEo4J+XBOTGXipYRQghpmzLNJZ0z2mbQw3rZudFuRa9DwzcIIYR0S+rsG72w0CUAurgkhBBCSI9AQQlCCCHdkxKU0Pe+TAlCCCEkWMxokP9voBmbSNdEQQlCCCHdkmtABpwjBsOVMyLaTSGEEEK6LOuiM+EaPgjWRfOj3RRC/KKaEoQQQronkwG2i8+JdisIIYSQLo2lJMF6ycJoN4OQgChTghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhUUlCCEEEIIIYQQQkhUUFCCEEIIIYQQQgghUUFBCUIIIYQQQgghhEQFBSUIIYQQQgghhBASFRSUIIQQQgghhBBCSFRwjDEW7UaQrk+SGERR6vB2tFoBTqcYhhb1PNQ3vg4fPoSRI0epr6l/AqO+CYz6JrBw9I0g8OB5LkwtIgo650Ye9U3rqH8Co74JjPqmdR3tn558zqWgBCGEEEIIIYQQQqKChm8QQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkqQoH3wwQeYN28ecnNzcemll2LPnj2trv/tt99iwYIFyM3NxXnnnYeffvrJ533GGF5++WXMmDEDeXl5uPbaa3HixAmfderq6nDPPffgtNNOw6RJk/Dwww/DYrGE/djCobP7p7i4GA899BDmzZuHvLw8nHnmmfjHP/4Bp9MZkePriGh8dxR1dXWYNWsWsrKyYDabw3ZM4RKtvvn+++9x0UUXIS8vD9OmTcMDDzwQ1uMKh2j0ze7du3HVVVdhwoQJmDx5Mn73u9/hyJEjYT+2cAh3/6xduxY33HADpkyZgqysLBw+fLjFNrrT3+TeINzfgZ4klL4pKCjA0qVLMW/ePGRlZeH999/vxJZGRyj98/HHH+OKK67ApEmTMHnyZFx//fXYu3dvJ7a2c4XSN+vWrcNFF12EiRMnYty4cVi0aBG++OKLzmtsJwv1b45i+fLlyMrKwrPPPhvhFkZPKH3z2WefISsry+e/3NzcTmxtF8QICcI333zDcnJy2KeffsoKCgrYI488wiZNmsSqq6v9rr9jxw6WnZ3N3njjDVZYWMj+/ve/s5ycHFZYWKiu8/rrr7MJEyaw//3vf+zgwYPslltuYWeeeSaz2+3qOjfccAM7//zz2a5du9jWrVvZ/Pnz2X333Rfx4w1VNPrnxx9/ZA8++CD7+eefWVFREVu3bh2bNm0ae/755zvlmIMVre+OYunSpeyGG25gI0eOZE1NTRE7zvaIVt+sXr2aTZo0iX300Ufs6NGj7PDhw2zNmjURP95QRKNvGhsb2aRJk9hDDz3Ejh49yg4dOsR+97vfsTPOOKNTjjkUkeifzz//nC1btox9/PHHbOTIkSw/P7/FdrrL3+TeIBLfgZ4i1L7ZvXs3e+aZZ9jXX3/NTj/9dPbee+91cos7V6j984c//IG9//777MCBA6ywsJA9+OCDbOLEiay8vLyTWx55ofbNr7/+ytasWcMKCwvZiRMn2Lvvvsuys7PZhg0bOrnlkRdq3yj27dvH5s6dy8477zz2zDPPdFJrO1eoffOf//yHTZ48mVVUVKj/VVZWdnKruxYKSpCgXHzxxeyJJ55QX4uiyGbMmMHefPNNv+vfeeed7He/+53PsksuuYQ9/vjjjDHGJElip59+OluxYoX6fkNDAxszZgz79ttvGWOMFRYWspEjR7K9e/eq6/z4449s1KhRXe4fbjT6x5833niDnXXWWR05lLCLZt988skn7Le//S3buHFjlwxKRKNvnE4nmzlzJvv444/DfThhFY2+2bNnDxs5cqTPhfaOHTvYyJEj27zo6mzh7h9vJ0+e9BuU6E5/k3uDSH4HurtQ+8bb3Llze3xQoiP9wxhjLpeLjR8/nv33v/+NVBOjpqN9wxhjixcvZsuWLYtE86KqPX1jsVjYOeecw3766Se2ZMmSHhuUCLVvlKAE8aDhG6RNDocD+/fvx+mnn64u43ke06dPx65du/x+ZteuXT7rA8CMGTPU9YuLi1FZWemzTlxcHMaOHauus3PnTiQmJmLMmDHqOtOnTwfHcUGni3WGaPWPP42NjUhISGj3sYRbNPumqKgIf//73/Hcc8+B57ven7po9c2BAwdQXl4OjuNw/vnnY8aMGbjlllsCDn+Jhmj1zZAhQ5CYmIhPPvkETqcTVqsVn3/+OXJzc5GcnBzWY+yISPRPMLrL3+TeIFrfge6gPX3Tm4Sjf6xWK1wuV5e63giHjvYNYwybNm3CsWPHMGHChAi2tPO1t2+eeeYZTJkyBTNnzuyEVkZHe/umqakJc+bMwezZs3HbbbehsLCwE1rbdXW9K3XS5dTW1kIURaSmpvosT0lJQWVlpd/PVFVVISUlJeD6yv9b26a/bWg0GiQkJKCqqqr9BxRm0eqf5oqKivD+++/jt7/9bbuOIxKi1Tculwv33Xcf7rzzTgwYMCAsxxJu0eqbkydPAgBeffVVLF26FK+++iq0Wi2uvvrqLlMbIFp9Exsbi3feeQefffYZxo4di/Hjx2PXrl149dVXw3Jc4RKJ/glGd/mb3BtE6zvQHbSnb3qTcPTPiy++iH79+mHq1KmRaGLUtLdvGhsbMX78eIwZMwY333wz/vSnP2HatGmRbm6nak/f/PDDD9i8eTPuv//+zmhi1LSnb4YOHYqnn34ar732Gp5//nlIkoTLL78c5eXlndHkLomCEqTdGGPgOC7g+/7ea76s+evm2/S3jbb221V0Rv8oysvLceONN+Lcc8/FhRde2M4Wd55I981rr72GpKQkXHLJJWFobeeKdN9IkgQAuPXWWzF//nzk5eXh2WefRUNDA9avX9/B1kdWpPvGZrPhkUcewdSpU/Hxxx/j3//+N/r164fbb78dLpcrDEcQWeHon7Z057/JvUFnfAe6K/qeti7Y/nnjjTewatUqLFu2DDqdrhNaFn1t9U1MTAy++OILfPrpp7j77rvx1FNPYdu2bZ3YwugJ1Dc1NTV49NFH8dxzz8FoNEahZdHX2vdm3LhxOP/88zFq1ChMnjwZy5YtUzM1eytNtBtAur6kpCQIgtDiSVhNTU2LqKAiNTW1xfrV1dXq+mlpaQDkp5feadE1NTVqarC/bbhcLjQ0NLR42hNN0eofRXl5Oa6++mqMGzcOjz32WEcPJ6yi1TdbtmzBtm3bMHr0aADyiQEAJk2ahN///ve45ZZbwnB0HRPNf1eAPFRBYTKZkJGRgdLS0g4eVXhEq2+++uorlJeX45NPPlEvJP72t79h0qRJ2LhxI2bNmhWeA+ygSPRPMLrL3+TeIFrfge6gPX3Tm3Skf1asWIHXX38dK1euxMiRIyPZzKhob9/wPI9BgwYBALKzs3HkyBEsX74cEydOjGh7O1OofVNQUIDKykpcfvnl6jJRFLF161a8//77PWr2lnD8zdFqtcjOzu5SQ2k7G2VKkDbpdDrk5ORg48aN6jJJkrBp0yaMGzfO72fGjRuHDRs2+CzbuHGjun7//v2Rlpbms82mpibs3r1bXWf8+PGoq6vD/v371XU2b94Mxhjy8vLCc3BhEK3+ATwBiZycHDz99NNdrnZCtPrmqaeewpdffokvvvgCX3zxBZ588kkAwEcffYRLL700fAfYAdHqm9zcXGi1Wp8Tn81mQ1lZGTIyMsJzcB0Urb6x2Wzged7nyYbyWglsdQWR6J9gdJe/yb1BtL4D3UF7+qY3aW//vPnmm3j11Vfx5ptv9tipC8P13WGMweFwRKCF0RNq3+Tm5uKrr75Sr8O++OILjBkzBhdccAE+++yzTmx55IXjeyOKIgoKCtQHKL1Sp5XUJN2aMtXNZ599xgoLC9mjjz7qM9XNfffdx1544QV1/e3bt7Ps7Gy2YsUKVlhYyF555RW/0/NNnDiRrVu3jh06dIjdeuutfqcEXbx4Mdu9ezfbtm0bO+uss9i9997beQcepGj0T1lZGZs/fz67+uqrWVlZmc+0Ql1JtL473jZv3twlZ9+IVt888cQTbPbs2WzDhg2ssLCQ3XPPPWz27NnMbDZ33sG3IRp9U1hYyMaMGcP+8pe/sCNHjrBDhw6xpUuXsmnTprG6urrO7YA2RKJ/amtr2YEDB9j69evZyJEj2erVq9mBAwdYbW2tuk53+ZvcG0TiO9BThNo3drudHThwgB04cICdfvrp7IUXXmAHDhxgJSUl0TqEiAq1f5YvX85ycnLY6tWrfa41uto5NRxC7ZvXX39dnZq9sLCQrVy5ko0ePZp9+umn0TqEiAm1b5rrybNvhNo3y5YtU783+/btY3fffTfLy8tjR44cidYhRB0N3yBBWbhwIWpqavDKK6+gsrIS2dnZePPNN9U06FOnTvk8pT/ttNPw4osv4u9//zv+9re/YfDgwfjnP/+JYcOGqevcdNNNsFqt+NOf/oSGhgZMmDABb7zxhs8YxRdeeAF/+ctfcM0114DneZx99tl45JFHOu/AgxSN/tmwYQNOnDiBEydOtEgrz8/P74SjDk60vjvdQbT65oEHHoAgCPjDH/4Ap9OJ8ePHY+XKlTCZTJ138G2IRt8MGzYMr732GpYtW4ZLLrkEGo0GY8aMwZtvvtnlqsxHon++//57/PGPf1Rf//73vwcAPP3002qtmu7yN7k3iMR3oKcItW8qqurRcwABAABJREFUKiqwePFi9fXy5cuxfPlyXHDBBXjmmWc6u/kRF2r/fPjhh3A6nerfBMUdd9yBpUuXdmrbIy3UvrHZbHjiiSdQVlYGg8GAoUOH4vnnn8fChQujdQgRE2rf9Cah9k1DQwMeffRRVFZWIiEhAWPGjMH//d//YejQodE6hKjjGOtCOamEEEIIIYQQQgjpNXpnOIsQQgghhBBCCCFRR0EJQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBQQlCCCGEEEIIIYREBQUlCCGEEEIIIYQQEhWaaDeAEEJas2zZMvzjH/9osXzatGl4++23O79BhBBCSA9F51xCSDRQUIIQ0uXFxcXhzTffbLGMEEIIIeFF51xCSGejoAQhpMsTBAHjxo1rcz2bzQaDwRD5BhFCCCE9FJ1zCSGdjWpKEEK6peLiYmRlZeG///0v7r//fkycOBG33HILAKCurg5/+tOfMH36dOTm5uK3v/0tdu/e7fP5hoYG3HPPPRg3bhxmzJiBf/3rX3j22Wcxb948dZ1ly5ZhypQpLfadlZWF999/32fZJ598gnPPPRdjxozB3Llz8cYbb/i8/+CDD+LCCy/Ehg0bcN5552HcuHG4/PLLUVBQ4LOeKIp4/fXXcfbZZ2PMmDGYNWsWHnzwQQDABx98gPHjx8NsNvt8ZvPmzcjKysKhQ4dC7EVCCCGkbXTO9aBzLiHhR5kShJBuweVy+bxmjAEAnnvuOcyfPx8vv/wyeJ6Hw+HAddddh4aGBtx///1ITk7Ghx9+iGuvvRZr165FWloaAOCPf/wjfv31Vzz00ENITU3FW2+9haKiImg0of9ZfPPNN/HSSy/hxhtvxOTJk7F//368/PLLMBqNWLJkibreqVOn8Nxzz+HWW2+FXq/Hc889h7vuugtff/01OI4DAPzpT3/Cl19+iRtuuAGTJ09GfX09Vq9eDQA477zz8Oyzz2LNmjW48MIL1e1+/vnnyMnJwahRo0JuOyGEENIcnXPpnEtIZ6KgBCGky6urq0NOTo7PsieffBIAMHbsWPz5z39Wl3/yyScoKCjA119/jcGDBwMApk+fjgULFuCtt97CAw88gIKCAqxbtw4vvfQSFi5cCACYMmUK5s6di9jY2JDa1tTUhH/+85+49dZbcccddwAATj/9dFitVvzrX//C5ZdfDkEQAAD19fX48MMP1XYxxnD77bfj6NGjGDZsGI4cOYJPP/0UDz/8MK6++mp1H0ob4+PjcdZZZ+Gzzz5TL5DMZjPWrl2Le+65J6R2E0IIIf7QOZfOuYR0NgpKEEK6vLi4OKxcudJnmU6nAwDMmTPHZ/mmTZuQk5OD/v37+zzpmTRpEvbt2wcA2Lt3LwD4pI3GxMRg+vTp2LNnT0ht27lzJywWCxYsWOCzv6lTp+LVV19FWVkZMjMzAQCZmZnqxREADBs2DABQXl6OYcOGYcuWLQDg80SmuYsvvhjXXnstTp48iQEDBuDbb7+Fy+XCb37zm5DaTQghhPhD51wPOucS0jkoKEEI6fIEQUBubq7PsuLiYgBASkqKz/La2lrs2rWrxVMeABg4cCAAoKqqCjExMS0KdDXfVjBqa2sBAOeee67f90+dOqVeIDWvXq7VagEAdrsdgPx0ymQytfrkaMqUKRgwYAA+++wz3Hnnnfjss89wxhlnIDExMeS2E0IIIc3ROdeDzrmEdA4KShBCujVlXKgiISEBY8aMwWOPPdZiXeVJT2pqKsxmc4vK4dXV1T7r6/V6OJ1On2X19fUt9gcAr7/+ut8LrCFDhgR9LImJibBYLGhqagp4kcRxHC666CJ8/PHHWLRoEbZv396iwBchhBASCXTOpXMuIZFAQQlCSI8ybdo0bNiwARkZGQGfwihPgL7//nt17KjZbMbGjRt9LkzS09NhNptRXl6O9PR0AMCGDRt8tjV+/HgYDAZUVFS0SGsN1dSpUwEAX3zxhU+xruYuuOACvPLKK3jooYeQnp6O008/vUP7JYQQQtqDzrmEkHCgoAQhpEdZvHgxPvroI1x11VW4/vrrMWDAANTV1WHPnj1IS0vDtddeixEjRmDevHl47LHH0NTUhLS0NKxYsaJFaunMmTNhMBjw0EMP4brrrkNxcTE++ugjn3Xi4+Nxxx134K9//StKSkowadIkSJKE48ePY8uWLfjnP/8ZdNuHDh2Kyy67DM888wyqq6sxadIkNDQ0YM2aNXjppZfU9dLT0zFz5kysX78ev/vd79SiXoQQQkhnonMuISQcKChBCOlR9Ho93n33Xbz88stYtmwZqqurkZycjLy8PJ8iW8888wwee+wxPPXUUzCZTLjiiiuQm5uLNWvWqOskJyfjlVdewXPPPYfbb78dOTk5ePHFF9UnPYqbbroJffr0wTvvvIOVK1dCr9dj8ODBLdYLxp///GdkZGTgk08+wRtvvIHk5GS/T2XOPPNMrF+/vtUCXYQQQkgk0TmXEBIOHFMmHiaEkF5OmY/8+++/j3ZT2nTnnXeisrIS//73v6PdFEIIISRkdM4lhCgoU4IQQrqR/Px87Nu3D//73//wt7/9LdrNIYQQQnosOucS0jkoKEEIId3IrbfeitraWlxxxRVYsGBBtJtDCCGE9Fh0ziWkc9DwDUIIIYQQQgghhEQFH+0GEEIIIYQQQgghpHeioAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQoKShBCCCGEEEIIISQqKChBCCGEEEIIIYSQqKCgBCGEEEIIIYQQQqKCghKEEEIIIYQQQgiJCgpKEEIIIYQQQgghJCooKEEIIYQQQgghhJCooKAEIYQQQgghhBBCooKCEoQQQgghhBBCCIkKCkoQQgghhBBCCCEkKigoQQghhBBCCCGEkKigoAQhhBBCCCGEEEKigoIShBBCCCGEEEIIiQpNtBtAugdJYhBFqcPb0Wh4uFwd305PRH3j6+TJIgwYMFB9Tf0TGPVNYNQ3gYWjbwSBB89zYWoRUdA5N/Kob1pH/RMY9U1g1Det62j/9ORzLgUlSFBEUUJdnaVD2+B5DikpsWhosEKSWJha1jNQ37R01VVX44svVgGg/mkN9U1g1DeBhatvEhNN4HkhjC0jAJ1zI436pnXUP4FR3wRGfdO6cPRPTz7n0vANQgghhBBCCCGERAUFJQghhBBCCCGEEBIVFJQghBBCCCGEEEJIVFBQghBCCCGEEEIIIVFBhS4JIYSEDWMMkiSCdYEaVzzPweFwwOVyUdGtZoLtG44DeF4Ax/XMat+EkO4pWucaOq8ERn3TumD6pzefcykoQQghpMMYY2hqqofZ3ACg61yMVFXxkCSansyfYPuG5wWkpPSDIPTMit+EkO6jK5xr6LwSGPVN64Lpn956zqWgBCGEkA5TLhLj45Oh0+kBdI0ov0bDweXqOkGSriS4vmGoq6tCQ0MNkpLSOqVdhBASSFc419B5JTDqm9a13T+995xLQQlCCCEdwhhTLxJNpthoN8eHRsMDoKc2/gTbN3FxiaitrQBjEjiOSlERQqKjq5xr6LwSGPVN64Lpn956zu09R0oIISQiJEkEwNxPrUhPIwjy8wtKySWERBOda0hv0FvPuRSUIIQQ0iGeQmNdY8gGCTf599oVipcSQnovOteQ3qF3nnNp+AbpVSSnBa6GIrjM5ZDsdZBstRBtdWCiA5CcYJILAMBp9OAEAziNAbw+HoIhBYJR/k8TlwFOoCg9IYQQQgghhHQUBSVIj8VcdtirD8BRsQf2qn1w1Z+AaKkIw5Y5CDHp0MQPgDZhCHTJWdClZEGIzeyVU/gQQgghhJDubcWK17Fx4y9YseK9aDeF9EIUlCA9imirhfXkT7Ce+AH2qn2AO/MBAMDxEGIzoI0fBE1sBnhjMgRDInh9opwZwWkAXgOAAxPtYKINzGWDZKuDaKuBaK2GaKmEq/EkRHM5RHMZ7Ke2ejavi4M+LQ/69PEw9D0NmoTBvapADSHdzV//+hi+/fbrFsu//nodEhMTO79BhBBCepy//vUxWK0WPPnkc+qyVau+wvPPP4W7774f559/QcjbfOedFdi0aQMKCvJhMBjwzTffdbidl19+FS6++LIOb6e7ufji83D55Utw0UW979i7EgpKkG6PSSKsxT/DXPgV7OU7ASYXhuH1CdD3GQtdWi70ffKgTRgctmEXzGWHs/EknLVH4Kg5BGd1Phy1BbCVbICtZAPqAfCGJBgyp8GYOQOGvhPAaWjIByFdzfTpM/HAAw/7LEtISPB57XK5oNHQ6ZIQQkjHffLJR3j11ZfxyCOP44wzzmrXNlwuF+bOPQM5OblYvbplcL09TCYTAFNYttXTuFwuCIJAGdERRFdZPdzRo0fx0EMPoampCTqdDg899BAmTpwY7WaFBXPZYT62Go0H/w9iUykAORBgHDgHpoFzoUsbE7FMBU6jhy5pOHRJwxEz9Gy5PaIDjqoDsJXvhL18OxxVB2A5sgqWI6vACXoYMqfBNPgsGPpNAidoI9IuQkhodDotUlJSfZZdfPF5OP/8C3D8+DH8/POPWLDgXNxzzwPYvXsnXnttGfLz85GUlIQzzpiPG2+8FTqdDgBQXV2FZ599Etu2bUVaWhpuvXUpnn/+Kdx++11YuPA87NixDb///S1Yu/Yn98UfsGHDz3jggbvxyy/b1P3/9NN6vPXWchQVHUdaWh+cf/4FuPzyq8Dz8t+zGTMm4sEHH8FPP63H9u1bkZGRiXvvfQhjx45Tt7Fr1w4sX/4q8vMPQqfTY8yYXDz55HP46KP3sX79d1i58t8+x/zb316ARYsuwuWXL4lENxPSrdjKd0ITkw5NbEZYtidaq1G+6jrEZl2M+DFXh2WbpHtaufINvP/+23jqqecxbdqMdm/nhht+B0DOuAhWQ0MD/vnPv+OXX36Ey+VCTk4u7rzzXgwaNBhAy+EbLpcLy5b9DatXfwONRoMLL7wUx44dgdFowsMPPwYAsNvtWL78VaxbtwYWixnDh4/E7bffhTFjctX2/fOff8fDDz+OV175G2pqqjF58hQ8+OCfEBsrT+v6ww/r8NZby1FSUgyj0YisrGy88MIr4HlezTIZMmQYPvvsY4iiiIULz8Ptt98FQRACtGEEbr/9brUNQOBz4j33LEVZ2Sm89NLzeOml5wEAv/yyTW33Aw88itdeW4bi4pP48ss1ePTRBzBq1GjcccddXr+LqzB9+gz1dzJjxkTcf//DWL/+e+zevQOZmf3xyCOPg+cFPP/8X3HkSCFyc8fiT3/6C5KSkkP8zfdcFJTo4fR6PZ566ikMHToUR44cwW233YY1a9ZEu1kdwiQRlqPfon7PCki2WgCAPv00xGZfBkPfieB4ISrt4gQd9OnjoE8fB+A6SPYG2Eq3wFqyQf5/0XpYi9aD18fDOHAeYoafB13SsKi0lRDSun//+11cf/3N6kVGSUkx7r33Tvzud7fh4YcfR3V1FV544Wm4XC78/vf3AJBTdOvqavGPf7wOAHjppedhsVhC2u/u3bvw1FOP4a677kNu7lgUFZ3Ac8/9FVqtDpdeerm63sqVb+KOO+7C0qV/wIoVr+Pxxx/Gxx9/CY1Gg6KiE7j77tuxePHFuOeeBwEAW7duBmMMCxeeh7feWo6CgnxkZ2e797kTp06V4uyzz+lwvxHS3YmWKlR9dzcAoP8V68OyTWvRj5DsDWjY8xYFJXopxhiWLfsbvv76S7z44jKMG3eaz/vvvvsW3ntvZavbeO+9T9C3b992t+FPf3oQRqMRL774D5hMRnzyyf/h7rtvxwcffAqj0dhi/Q8+eAfffbcWjz76BDIzB+DDD9/D1q1bMGvWXHWdv//9eZw4cRx/+cszSElJxXffrcXdd9+Of//7U6Sl9QEAWCwW/Oc/H+Mvf3kaNpsNjz76IN5//23ccssdqKqqwmOPPYzbbvs9Zs2aC7PZjB07tvq0Y8uWzdDrDfjHP97AyZNFePrpJ5CamoYrrrjabxv+97/VPm1o7Zz41FPP49prr8AFF1yMhQvP89mvxWLBRx+9j4cffhwxMTGIiYkJuq/ffvtNLF16N+666x78/e8v4Ikn/oTk5GTcccedMBhi8Oc//xHLl7+KBx54JOht9nQUlOjhMjMz1Z+HDh2KxsZGMMa6bfqRo7YQtVueg7PmMADAOHAO4rJ/C13KqCi3rCVeHw/TkPkwDZkP5rLDWroJlmP/g610M8wFX8Bc8AV0qTmIGbEIsYPnAIiNdpMJ6XV+/vlHzJ8/U309Z84ZAICJE6fg0kuvUJc/88xfsGDBubj44t8CAPr3H4Dbb78LjzxyP5Yu/QNOnjyBX3/djLfeeh8jR8p/j+655wHceGNoNyBvvbUcV199PRYsOBcAkJnZH9dccz0+/fT/fIISv/nNIsydeyYA4Prrb8YVV1yEkpJiDBo0GO+//zZyc8fizjvvUdcfNmw4AMBgMGDy5Kn45puv1KDEqlVfYdq005GcnBJSWwnpiVyW8rBvU7RWqT9LTgt4LaXIh0vNpqdhLf6lU/dpGjgTSVMeDOkzGzf+AqfTiX/8Y3mLgAQALF58EebNm9/qNlJTU1t9vzW7d+9Cfv4h/Pe/a6DVytm6d999H3766Qds3PgLzjij5b7/85+PcfXV12PGjNkAgPvuewibNm1Q3y8rK8OqVV/h889XqeeP66+/Eb/88hPWrv0WV155DQDA6XTivvseUgMq55zzG2zfLgceqqurIIoiZs+eh759+wEAhg8f4dMOvV6PBx54BDqdDkOGDEVx8Un83/99gCuuuNpvG6699kZs3PiL2oa2zok8z8NkMrXImnQ6nbj33j9i6NDQHyB6n6Mvv/wq3H337bj55tswfvwEuFwSfvObxfjyy/+EvN2ejIISXdzWrVuxYsUK7Nu3D5WVlXjttdcwd+5cn3U++OADrFixApWVlcjOzsYjjzyCvLy8Ftv67rvvkJ2d3S0DEoxJaDzwIRr2vAUwEbqU0Uic+PsuGYzwh9PoYRo4B6aBcyDa6mA5/j+YC/4LR9V+OKr2o37nv+AafwWE/ucAWgpOENJZJk6cgrvvvk99bTKZcPPN12LUqGyf9QoLC3DkSIHP2F1JkmC321FdXY0TJ45Dq9VixIgs9f2srGz14i9YR44cxt69u7Fy5RvqMlGUwNy1chRDhw5Xf1YuVGtrazBo0GAUFhZg1qw5Afdx7rnn44UXnsadd94Nu92JH374Do888nhI7SSkp2KiA6LEwHtdKjHJhfrdb8I4YCb0qTkhb9NRW+j5ufogOF4LXepocDxdhvcWw4ePRE1NNd588zW88MIrMBgMPu/HxycgPj4hwKc7rrDwMMzmJixcOM9nud1uR2lpcYv1m5qaUFNTjexsz/ddq9X6BAyOHi2EKIq47LLFPp91OBw+68XExPhkeKSkpKC2Vs50Hj58BMaPn4Crr/4tpk6djsmTp2Lu3DMQE+O5Fh4xYqQ6TBIAxozJxauvVqGpqSmoNrR1TgxEr9e3KyABAMOGeY5fCZYMGTLUa1my2gdERn8NuziLxYKsrCxceOGFWLp0aYv3V61ahaeffhqPP/44xo4di3feeQc33ngjVq9ejeRkzzilkpISPP/881i+fHlnNj8sJEcjajb+FbbSzeAEPeLH3YbYkRd025ktBEMi4kZdgtisi2Ev3wlzwRewnvwZpzb9E5zmLcQMPw9x2ZdBMNJTS0IizWg0oH//AX6W+6ayWq0WXHjhJbjggktarJuYmAjG0GbAV6kJATB1mcvl8lnHYrHipptuxcyZs1vdlm/hTXm/kiT5X7mZGTNm44UXnsEvv/wEs9kCnU6H6dPbP7aZkJ7kcH4+3v26BH0Tdbiyzx8QN2gmBGMKmg5+hKaDH7VrSIer/pj6c82GJyDZ6xE/9ibE51wZxpb3TsnT/tjp+9RoeLhcwf29VaSnp+Pxx5/C0qW/w3333Ynnn3/ZJzAR6eEbVqsFaWl98PLL/2rxXnx8fMDPNT+vMeY5f1mtFmg0Grz11gfqeoLAQRSZz1CH5oWiOY5TA+2CIODll/+FvXt3Y/Pmjfjww/ewYsXrWLHiPfVmPtC5leP8t0ERynALf5oHjgD5PO7dB0DL8zjge8xKs3yXcS0eNvR2FJTo4mbPno3ZswNfnK5cuRKXXXYZLrroIgDA448/jvXr1+Pzzz/HDTfcAECOdt5222149NFHMWjQoHa3hec7lmGhfD6U7bjMFaj8/j44649DEz8QabP+Am3i4A61o+vgYMqYAFPGBIhNJbAV/gfVB75C06GPYS74ErFZFyI+53II+shFzru65t+Zjn4He6Ku0De94fcyYkQWjh076jeAAQCDBw+Gw+FAQUG+OnwjP/8QnE6nuk5iYhIAoLq6GiaTfLFUWHjYZzsjR2bh5MkTAfcTjOHDR2DHjm249tob/b6v0Whw9tkL8fXX/4XNZsPZZ58T1OwiPM/1it816b0YY1j93Q9wiUBxtQM7fv0JYyt3IHnGYx3YpgTRWqO+luz1AABb8S8UlOhlMjIysWzZ61i69He4//678Nxzf1dvfCM9fGPkyFGoqqqEVqtFenrbgY3Y2FgkJ6fgwIH9GDNGzr52Op04cqRQrRUxYsRIuFwu1NfXqeu0J2DD8zzGjh2PsWPH4/rrb8Z5583Hli2bcM45vwEAHD6cD4fDoWZL7N+/DykpqYiJifXbhubaPidqIYrBtTkxMQk1NdXqa4vF4jfThISOghLdmMPhwP79+3Hrrbeqy3iex/Tp07Fr1y4AgCiKuPPOO3HppZdixoz2PwnTaHikpIRnWEFSUnCRS3vdSRT87w44m8oRP+h0DF74NARdx6KeXVZKFjDoIfSb+jtU7HgPlXs+RuOBD2Eu/C/6jF+CPhOugqBtWYSoJ9NqhRbfuWC/O71RNPvG4XCgqoqHRsNBo+l6GUyB2sRxHDjOf5t53nf51Vdfi5tuuhavvPIizjtvEfR6PY4cKcS+fXuwdOndGDp0KCZNmoLnnvsr7r//IQDA3//+HLRarbqtwYMHok+fdLz99hu44YbfobDwsFo5XdnX9dffhPvvvxt9+/bF3LlyfYv8/EM4daoU113nuaASBE/7lP8LAg+Nhse1116PK6+8FMuWvYjzz78APM/j1183Y9GiC2AwyH9HFi++AEuW/BaMSbj77nvb+L1x4HkeSUkmnxRaQnqa8lPFqK7y1H84UGTB2CGx4ATP9z7UulzM0QQwscVyTfzAjjWWdEtKYOL3v7/FJzAR6vCNsrIyNDbWo7y8DKIooaAgHwAwePBQv8MGJ06cjNGjc/DHP96DW29diszMAaisrMQvv/yI3/xmkToDh7eLLroU7777FjIz+yMzsz8+/PA9OBx29fs/cOBgnHHGfDzxxKO44467MXz4CDQ01GHTpo0YN+40jB8/oc3j2L9/H7Zv/xWTJ09FYmISdu3aAavVioEDPe2x2+14/vmncOWV1+DkyRN4772VuOKKqwK2oba2Fr/+ukltw5Il1+Kaa36Ll1+Wz98cx2Pr1i04//wLYDAY0K9fP+zatQNz554BrVaHxMTEgO0dP34C/vWvZdiyZRP69El3D7WkYH04UFCiG6utrYUoii0ipykpKThx4gQA4KeffsLmzZtRVVWFjz/+GADw3nvvtZqq5Y/LJaGhwdqh9vI8h6SkGNTWmiFJrNV1XZZKlK+5A6K5HDFDz0bC1PtR18gANHWoDV2V0jdNDgMMo29ExuALUL//PTQVfIWyLa+jcs9/kDj+ZpiGzO+2w1ZC5XSKqK6Wf9+hfHd6m67QNy6XC5IkweViALpWOmJrT20YY2CM+X1fknyXDx06Ai+//BreeONfuOmma8HzAvr3748FC36jrvfww4/jmWeewC233ICUlFTcdtvv8cILT3ttS8Cf/vQXvPDCM1iy5DKMG3carr32Rjz77JPqNiZPnoann34Rb7/9Jt5++y3odFoMHjwUF154iU97RNHTPuX/oijB5ZKQkTEAL764DK+//k98/vl/YDAYkZubh9/85gJ13QEDBiMraxREUcTgwcNafbLlcjFIkoTaWgs0GofPe/HxRmi10ZnxqKuyWq1YuHAhzj33XNx7773Rbg4Jkmirw/aVF8BeUYfJI+NwuMSCkhoHGiwu/D975x0dR3X24Wdmtquuqi25994bxrhRY0hoiYHgUAIhoSW0jxBKgISE0BJCQkIoIZCYECCUUE017rj3blm2ei+r7bsz3x+rXe1KK2nVZek+53DYnblz7ztX452Z332L1dPw7KG6a1BMyW3ot4ryWi+r91QzPNPEzFEJAEi6/rXQIGgg3GPi5z+/ncce+0PUUIGWeOml5/j444YcR9deG/C6efPN/zFwYNNStrIs8+STz/Dcc8/yyCMPUVtbQ2pqGtOnz2z2neDKK6+moqKchx++H70+UBJ0ypRpEeL0/ff/ipdffoFnnnmK8vIyrNYUJk2awllnnRvTecTFxbFz5w7eeOM1HA4nWVlZ3H33fUycOCnUZu7ceaSnZ3DTTdfj9/v41re+zeWXN5Svbs2GIUOGhu6J773XcE+88MJLALjuup/wxBO/5bLLLsLj8USU6G7MBRdcyOHDh3jwwXsxmUz88Ic3UFAgPCU6A0lrHBgj6LWMHTs2ItFlSUkJCxcu5M0334xIbPnYY4+xc+dO/v3vf3fa2F6vn+rqtpW2a4wsS6SmxlNRUdfiy5PqtVP66c34anIxDz2TlPn39fkX8ebmxmcvpmbn8zhPfAmAPnU81pk/xZA2vrmu+gwXXbSMd9/9CIj92umP9Ia58fl8lJcXkJaWHVMYQHfSHlfSzuT888/k5ptva1JqrKdRVZXlyy/k+9+/iksuaZonI5yW/r7JyRYhSjTiD3/4A7m5uQwePLjdokR33nP7I9Hmxpm3lpVP38zekw4umpdKQYWbLUfqWDolmcWX3kHtzkBOroxzn2s2ybY952MMqRPQJzWEyrpLd/GH+y6n1GFC9dj4wZIMMpMNWEacR8q8tlVw6C5667XTW+41PX1f6Sl8Ph/Ll1/I9753BVdcsSJqm86em9/85iGcTgePPPJ4p/XZk8QyP/31ntu33/T6OFarFUVRKA9zNQSorKzsUNxZT6JpGlWbHsNXk4tx4BxSTvtFnxckWkIXN4DU039J+tl/Qp8yFm/FAUo/vYnqrc+gejv2wCoQCPonlZUVvPbaq9TV2TjvvGU9bU6fIjc3l5ycnBZzQQl6J5LeQmFlwBMoK8XAqIEBT4ajRU5UR8Nzls9eHPV4b00uVZseo+TDqyMS4RXlH6O42otsCHhIHCoIeJ1q3o55nwoEXU1hYQEffPAuJ0+e4MiRw/zud7+mpqY6VOpSIOhM+u/bXh/AYDAwceJENmzYENqmqiobN25k2rRpPWdYB6g79BbOvDUo8Vmknv6AKJdVjzF9Mhnn/hXr3P9DMsRTd/htSj64qttrcwsEglOf73znXP7zn9e4995fhhJuCgIluH/yk5+wYMECxo4dy1dffdWkzcqVK1m6dCmTJ09m+fLl7N69O2L/Y489xh133NFdJgs6EXtdDZV1PpLjFCxGhYFWAxajTH65m7rqolA7zRcQE+qOvo+zYFNou+qxhT57Kw6GPu/etROAGVMD7ui5Ja76flxddi4CQWcgyzIffPA/fvSjq7jllh9RVFTIn/70t3ZXABEIWkK88fVy7HY7J0+eDH3Pz8/nwIEDpKWlkZ6ezrXXXsvdd9/NxIkTmTJlCq+88goul4uLL764B61uH97afGp2Pg+yntQFD4dWFQQBJEkmbuT5mLJOo3r7szhPfEHFmvuxDDub5Fk/FfMlEPRCPvzwi542oQnBeNn+6oLcHB0twf35558zbNgwhg8fzo4dO3rgDAQdIb/+WSsrxQgEQhhGDjCx54SDw0dyGFOfg7Du0H/RxQ2kevNTAGRf8VWgvF+Y96Kn8hCGtPF4ak6y/ev/ALBo4WIO7/yC0hovTrcfg1+IEoLezYABA3nuub/3qA333fdQj44v6D6EKNHL2bt3L1dddVXo+yOPPALALbfcwq233sqyZcuorKzkmWeeoaysjPHjx/Piiy+SkpLSUya3C03TqN76B1C9JE79EYaU0T1tUq9FMaeQevoDuIafQ9U3T+DI/Qx36U6s836OacCsnjZPIAjxwAP3sGfP7tYbdhKTJ0/h17/+XbeNJ+hbdLQE965du/joo49YtWoVdrsdn89HYmIiN9xwQ7vs6Yky3P2FaHOTX1gABEI3gowaaA6IEsfzGTMtUNHAW3WUsi9uC7VR6/LRJw0Bf1g4huZFliVOHlxPtd1PVoqBtIFDGWA1UG13UlLtJXGgs9f+bXrrtdPb7BEIupL+VoZbiBK9nLlz53Lo0KEW26xYsYIVK6InnDlVcJ74EnfxNnSJQ0kYt7ynzTklMGXNJfP8l6ne+kccuZ9T/uVdxI/9LknTfoykNC0HJRB0N0IgEPQVYinBfeedd3LnnXcC8Pbbb5OTk9NuQaInynD3R8LnpqSsFIDs1AZRYkiGCb0ikZNXhm/yQHRK0xcEnf0gqSMmQHGD15HZGEgUebi+TOO4QRayJixkQLKBg/lOSqo9jNXcnfY37ip627XTm8pP9/T4vRkxNy3T+vz0zzLcQpQQ9Dia6qNm90sAWGffLl6o24BsSCBl/v2YBi2gevPvqTv0Fu6yvaQueBBd/MCeNk8g6LX897//4YUX/spHH32JLAceECoqyrnwwvM444zFPProk6G2q1Z9xO9+92s++eQrjMa2lW0L8sUXn/Hgg79g8eKlUbOIP/jgvQwfPoJrrrmeBQtmYTAYef31t8nIyAy1ueWWGxg3bgK33HJbu2wQtJ9YSnB3Jt1dhru/0XhuVFXleG4BBp3EsNlX4K/NxVW8Db0iMSzTxJFCJ8dLXIzOalrGs7r4GFJWHbXVVaFtjjo7ZWW1bNu5HwmYd/G9VNV4GHfW7Wwoep2SmpP43I5Q2eveRm+9dnpL+WkR+tY8Ym5aJrbqG/2zDLcQJQQ9jjNvDf66QowDZmLMnNbT5pySWIYsxpA6gcr1v8JTvpeSj39Eymn3YB60oKdNEwh6JdOnz6Suro7Dhw8xblygxO7OndvJyMhk164daJqGJEmh7ePHT2y3IFFSUsyzzz7NlCnTou73+Xx8881GVqy4JmL7yy+/wM9/fn+7xhR0D+HXSTiXXHJJh/vurJfBwEt373mx7E0E5ybv2G5shTsZkm7EkDoWR83xUJsJgy0cKXSy94Q9qiih+X2Bfjz2hn59bo4cOUJtTQ1DM4wkJA9AVTWGzfwuxk/2UpKfi+pz9fq/S2+7dnqTLQJBV9Pb/v11NcK/RtCjaJqGbd9KABImfL+HrTm10cVlkH7W08SPvxzNW0fFmvup2fUimiYUa4GgMcOHjyQ52cqOHdtC23bs2MZ5552PXq/n6NEjEdtnzGhfvhZVVXnkkQe5+urryM4eFLXNzp3biY+PZ/ToMaFtl166nI8+ep+TJ3PbNa6gc+mLJbgFDex+82YAslMMyDoz0PAiMGKAiTijTE6xC5vD1+RYTfMDoIaV+NT8XrZt24LmdzNpaByyMREAk8lEamoatU4Nh713ekkIBAJBTyBECUGP4i7agrf6GPqUsRgzZ/S0Oac8kqwjefpPSF30WyR9HLZ9/6JizQOoXnvrBwsE/QhJkpg2bUaEKLFz53amT5/BtGnTQ9vLy8vIz89j+vSZAKxYsZyzzz6j2f/uvPOnEeO89tqrmEwmLryw+ZXzdevWcPrpZ0RsmzZtBjNnzuH55//aWacs6AB9sQS3IICmqRSU1gIwMMWApDNFiPnG5KFMHBqHBmw7FkVIUANCheZrqL5hq7Nx4MB+jIqfUQPNyMak0L6srGwkWUdJpRNNbSpyCAQCQX9EhG8IehT78U8ASBi3PKoLrKB9mLPnk3HuX6n4+j5cBesp/fRm0hb+Bl1Cdk+bJhD0GqZPn8kLL/wFVVWpqakmPz+PSZOmkpeXx5Yt37B8+RVs374Ng8HApEmTAXjyyT/i8zX/ImE0GkOfDx06yFtv/YeXXvpni3asX7+Wu+/+RZPtP/nJzVx//VUcPLifceMmtPMsBbHSn0pwCxrw1eRSWOkGYGCKEUkXGaJhSB3PzJHH2XbUxq7jduaMScBibIjp1tSAp0R4SdBNO46gqulMGZ6ATnGghIkS2dmDQNZRUuNB8zmRRDlvQS/jxht/yOWXr2DRoqUAHDlymN/97tfk5Bxl6NDhPPPMX1mxYjkvvfRP0tMzethaQV9BiBKCHkPzuXEVbERSTJgGnd7T5vQ59IlDyDj3L1Ss/xXuoi2UfnojqYsexZg2sadNEwh6BTNmzArllSgsLGDs2PGYzWamTZvOiy8+h6Zp7Ny5jQkTJoXySQwYEFsCWY/Hw69+dT+33XYXqanNu/cfO3aU2tpqpk9vGh4yZsw4liw5k+ee+zNPP/2X9p2kIGb6SwluQSRVJblU2/2kJegwG2QknQlCnhISuvgs4kwKU4fHs/1YHWv31XDujLC/eb23g1rvKWFz+Ni8aQ36tEnMnGgEzYVkaKiykZ09CEnWUVzlQPU5kYUo0adZsKDl0L9rr/0R1133426x5eDBA7z44l85eHA/TqeTtLR0Jk2awj33PIBeH0gyv3btaux2OwsXLgkd99e//omMjEx+85snMJtNJCYm8a1vXcBLL/2Ne+55oFtsF/R9hCgh6DFcRZvRfE7Mgxch69qXQE7QMrIhgbRFv6Nmx1+oO/Rfyr+4g5QFD2LOnt/TpgkEPc7w4SOwWlPYsWMbRUUFTJs2o377SCQJjh49ws6d2znzzHNCx6xYsZySkqJm+5wyZTpPPfUMFRXlnDiRy4MP3hvap6qBF51Fi+by1lvvk56ewbp1XzN37nx0uui34x/96CauvPK7bNu2pTNOWdAC/aUEtyCS3Lw8AAalBbycAs8j9TklJAnFElgJPm1cIgfzHew54WBstoVhmYHnFk2rD9/wOtE0jS92V+P1a0xPysWkJiEbk5CkhmjpQPiGQnGVB83n7qazFPQU7733SejzRx+9zzvvvMULL7wS2mY2W0KfNU3D7/c3ez/oCFVVldx++80sXLiYP/zhL1gsFgoK8vnqqy9QVT8QECXeeusNvvWtb0d4LxcU5PG9713OgAEDQtvOP//bXHPNldx8820kJAhhTdBxhCgh6DGceV8DYB6yuGcN6eNIskLyzFtRLBnU7PgrFWvuxzr7DuJGXdDTpgkEPc706TNDosRNN/0MCOSbmDJlGl988SknT54I5ZOA2MM30tMzePXV1yP2vfDCX3G5XNx66+1YrYGV1nXr1vC9713ebH+DBg3mggsu5Lnn/tTu6h8CgaB5TpzIB2BwvSgh6cygBRNdSihxAVHCbJA5c0oy72+p5IOtFVy2IIP0JH2Dp4TXwaZDNo4WuUiOUzhtbOBFTdbHR4xnMBhIT46nqKAUW20NKYmDu+EsBT1FuKecxWJBluXQtu3bt/LTn/6EJ598hr/97c/k5Bzjuef+zttvv4nT6YgoH33//XdjNlu4776HAHC73Tz//F/4/PNVOBx2Ro0azc033x4KNWzMnj27cbtd3H33fShKIPwoO3sQc+bMC7Wpqqpi+/Yt3Hnnz0Pbgp4eTz/9JE8//WTIs2PIkGFkZASE9W99SzxPCjqOECUEPYLm9+DM3wCKAVPW3J42p1+QMP4yFHMalZsepWrzk/jdNSROvLKnzRIIepTp02fyl7/8EY/Hw5QpU0Pbp06dzksvPV+f4LDhIS/W8A2dTseIEaMitsXHJ6AoSmh7RUU5R44cYt68lsPXrr32Bi677EI0DZFbQiDoZHJPBkSJQRGiRH34RpinBMDYQRaKqz1sOVLH62tKWTgpiSlpLqio4OMNh9l5oBaDTuI7c1LR6wLeEZIhrsmYAzOSKCqA/IJ8UgZN6uIzFPR2/va3P3PLLbeTmTmApKTkmI55+uknOHEil1//+nekpqbx2WefcPvtN/Paa29FzfOQkpKCx+Nh3bo1LFy4OGoet927d2KxWBg8eEho23vvfcKPfnQ1F1/8XZYt+3aEZ8fYsePZtWuHECUEnYIQJQQ9grt0N5rPgWnQGch6S+sHCDoFy7AzkU1WKtbcR+2uF9D8HhInXyOSjAr6LTNmzMLpdDJu3ATi4hpWNKdNm4nT6WDatBkRySs7k/Xr1zJ58lQSExNbbJeWlsZ3v3s5K1e+0mI7gUDQNmy2WiqqqkmJ1xFnCqweS4oxrCCohM4S+YK3cGISOkVi40Ebn+2s5qsjGzCvfYK6I0VYjDLfnpNKRrIh1F7WNxUlstKT2A4UFhYypWtOrd/w3/++wYED+7t1zEmTJnHRRd/ttP5+9KObmDlzdszti4uL60NBPiIlJRWAa665ng0b1vHppx9z5ZVXR7F5Ct///lX88pf3kJCQwIQJk5k9ey7nnXd+KPyipKSIlJTUiGfC1NQ0ZFnGYrE0yY+UlpbGsWNH23PKAkEThCgh6BE8lYG4XWN6dDczQddhGjCDtCVPUr76bmx7XwHVQ+LUG4QwIeiXDB06jHXrtjbZPm7c+KjbO0LQ7TbIunVrWLBgYZN20ca98cZbufHGWzvVHoGgP6F6HUg6c8S97ujRo6CpDE43Yso6jfixlyDJCklTr6P8y7tImfdzJF2kKClJEqePT2LkADPbj9VRUl1OvFzChJEmZo7LxKK4IttHWXgZmGEFoKCwsAvOVHCqMW7c+Da1z8k5it/v57LLLorY7vF4GDVqdLPH3XTTT7niihVs3bqZffv2sHLlK6xc+QovvvgqaWnpuN1uDIbYRXiDwYjb7Wq9oUAQA0KUEPQI3qqAsqpPaf7HU9B1GNMnkr70Kcq++j9s+/+N5veRNOMmIUwIBN3I1KnTWLr07J42QyDo83hrTlDy4dXEjbwA69y7QtsPHz6IpqkMzzRhSJ+EaWBgtdo0YBbZl3+BJAe8JzKX/R1vzQkq1z8cOnaA1cCyWcEqHMeBJAypw/FUHIgYW9Y19ZTISElEkaGgsAhN08S9twNceunybh9Tp5Px+dTWG8aIyRRZhlaSJDRNi9gWnsvI6XSg0+n4+99XNrl24uKaXm/hWK0pnH32eZx99nlcf/2NXH75xbz77n+5/vqfkJSUjM1WG7PdNlstycnWmNsLBC0ht95EIOh8vFVHADBYR7XSUtBVGFLHkX7m75GNSdQdepPaXS/2tEkCQb/iyiuvFjXeBYJuwHlyNQD2Yx8AAa8JZ9VJjhw5jCzDkHQjkhy5ThcUJAD0ySMwxFBOW5c4pMm2aJ4Sit5ARpIBp9NJZWVlW05F0A9ITrZSWVkR+q6qKjk5x0LfR48eg8/no6ammkGDBkf8F0yiHAvx8fGkpqbidDoBGDNmLOXlZdjtdTEdn5t7nNGjx8Y8nkDQEkKUEHQ7qteBz5aPEjdA1OfuYQzW0aQt/T2SPh7b/pXU7lvZ0yYJBAKBQNCpqF57xPfiD6/j898vw2GrZFhWGgadjCTrW+yjsWgRjWiiRLS8WZKsIyvFAJrKiRPHW+1X0L+YPn0m+/bt5fPPV3Hy5AmeeeYpamqqQ/uHDBnGmWeeza9+9QBr1qymsLCAffv28vLLL7Bjx7aofa5fv5Zf//qXbNy4nvz8PI4fz+Gvf/0Tx4/ncPrpZwAwevRYEhOT2LNnd6s2ut1uDh06EFG9QyDoCCJ8Q9DteIKhG1YRutEbMFhHkrbkccq/vIPaXS8g6y3Ej7m4p80SCAQCgaBT0LyOiO++ukJySlz43bWMHDIUOABhnhHRkJSWRQsAXcKgpsdFSXSJpDA43cj+fI3jx3OYMWNWq30L+g+nnXY6V155NU8//SSapvK9713B7NmRleruv/9XvPzyCzzzzFOUl5dhtaYwadIUzjrr3Kh9Dhs2HIPBwB//+BSlpSWYTCaGDh3GI488Hrr+FEVh2bIL+OyzT5g3b36LNq5fv5aMjEwmTRKpWgWdgxAlBN2Ot7I+dEPkk+g1GNMmkLroUcq/upvqrX9E0scRN/ycnjZLcIrQENKqtdRMcMoS+LuKsHfBqUq4p4Q9ZxWapnGk0AnJKqOHZMBJWvWUIAZPiWBOiojDonpKKGSnGqFelBD0Dy699DIuvfSy0PcZM2Y1m1D5xz++mR//+OZm+9Lr9dxww03ccMNNMY2dnT2In//8/lbbLV9+JVdffRllZaWh8MK33nq/Sbs33/w3V199fUxjCwSxIMI3BN2Opz6fhPCU6F2YMqeTesavQFKo2vQYruLtPW2S4BRBlhVAwuNx97Qpgi7A7w8kWJNbWUkWCHor4Z4SVZsepbTGS1Wdj6zMVJLM9QkLWxEdWhMtrPN+Hl2A0JmbNpZ1mA0yGanJ1NRUU11d1fpJCATdQFpaGnfffT8lJcXNtqmtrWHBgoWcfXZ0rwyBoD0ITwlBt+MJekoIUaLXYc4+DeucO6n65nEq1j5AxjnPok8a1tNmCXo5kiQRF5dIbW0gYVugpFhvWVaX8PmEB0d0YpkbDZutGqPRIioECHotmupDddegmFOj7ld9kTklDuYHRIohvg3UHQoI8K3mjJAaRLmEiSvQfE7qDv0XAEPGVOJGfKuZ45qu/0lSYKyh2Rnkr/6AHW+Xs+SHItm0oHewaNGSFvcnJiZx5ZVXd5M1gv6CECUE3Yrm9+KtyUU2WZGbeXgQ9CxxI5fhqyvEtu9flK/+ORnn/KXZBz2BIEh8fBJAvTDRe0QAWZZR1c4r3daXiHVuZFnBahVVQgS9l9o9/8C271+kLXkiaghFuKeEpmkcyq+vNjCg4TG41USXYaKcedAC9CljQ6KEJBuaP1CL8ntY73U00FiG31HO0X2bafk1UCAQCPo2QpQQdCt+jx1UH4o5Vay69WISp/wQX10RzhNfUP71vaSf9UdknamnzRL0YiRJIiEhmfj4JFTVH/U5vLuRZQmr1UJVlQNV7QUG9SJinRtJCogS4vda0Jux7ftX4P/7/x1VlAjPKZFX7qbW6WdQqoEES9hjcFvCk2R9xL+JlpJgRg3pqPeUSPfsQJYgt8SF6vcix5BMUyAQCPoiQpQQdCuaVr8qJ4nY5N6MJMmkzPs5ZY4yPGW7qd78JNbT7hMvJoJWkSQJRekdtxZZljAYDOh0HiFKNELMjaAvIZvTUJ3l+Gx5UfdrXmfo8+7jAYFi8rDIqhitJroMb9tIPIh2bOLU6/E7yjBlnxbF4MAzkMkgk5ViIL/CQ2FeDoOGjY3Zhv6ISKos6B/0z+TSItGloHvR/EDgpVfQu5EUA6ln/ArFkoEj93Psh9/paZMEAoFAIGiCPnEwAH5HWdT9mt8DgMPt50iRE6NeYkx2Iw+GGKprBGksQkTzlLAMPRPr7Nuj5qqQwrwyhg8IeCEePLA35vH7KyKpsqA/0F+TS/eO5SxBv0FThafEqYRiSib1jF9R+tmtVG9/Fr11FMYMUZNaIBAIBL0HKSxEQtO0Jl59mhZ4yN930oFfhanD49ArkW1aTXTZUtuwnBIZ33oRny0fXfzAFjpoOH5Epom1+2o5euQAZzWTK1MQoPckVRYJlJtHzE3LtDY//Te5tBAlBN1LKHxDeEqcKhhSx2GdfXugIse6B8k87wUUS1pPmyUQCAQCARBIoh1C9YBirP9oC3hJqD5UVWPX8ToApjQK3YCGPA/tIdxTwmAdhcE6quX2YaJGWqKeeJPMybyT1NXZiI9PaLcd/YHekFRZJFBuHjE3LRPL/PTX5NJClBB0K5oI3zgliRu5DE/FAexH36di/UOkn/l0m1aVBAKBQCDoCvzOSlRnRei75nMjKUZ8tgLKPv8Zfmc5AIcLnVTb/QxNN5KWGCV/RAy5cCSdGc3nRDYkRm5vQz4KICJURJIkRmeZOej1sm/fPubOnde2vvoZPZ1UWSRQbh4xNy0Ty/z05+TS4q1C0K00hG8IUeJUI3nmrXgqj+Ap20vt3n+SNOXanjZJIBAIBP0Yb20+JR+siNim+d3U7nmV2j1/b9imaWw+bANgzpjongixeEoMvPi/aD4nks4YuaONsd9SoxDWsdkWDub42Lt3txAlYqSnkiqLJMHNI+amZcT8tIx4MxR0L/WeEiKnxKmHpBhIPf1+JJ0J275/4i7d3dMmCQQCgaAfY9v/rybbKjc9HiFIAJwodVNa42VAsp4h6cYmxwAQg7eDrLegmFOj7YnF3LDmkc9A2akG4sx6cnOPU1dX17a+BAKBoA8gRAlBt6KpInzjVEaXMIjkWbeBplK54TeoHltPmyQQCASCforfWdlkm7t4S8R3TdPYcLAWgNmjE5p1i5Y6kOm+ra7WjcMfJUli3PABgMb+/fvabYdAIBCcqog3Q0G3ogUTXfazMjd9CcvwczEPWYLfUULV5t+jdXdAp0AgEAgEgOZzttrmWLGLwkoP6Ul6xmSbm23X5rwQkQe3sX3TZ6CxwwKJ7fbs2dl+OwQCgeAURYgSgu4lFL4hLr1TFUmSsM65A8WSifPkVzhyP+tpkwQCgUDQD9G8jhb3q6rGun01AJwxIbFlj4aOJG9u4zNNhKdEvRgyON1CUlIyubnHqaioaOZIgUAg6JuIN0NBtxJMdCnCN05tZEMCKfPvBaBm25/xu6p62CKBQCAQ9DfUVjwl9pywU27zMSjNwPBMU4ttO1ZRqo2Z8sPGUizpAPhqjjN17CAAdu7c1gFbBAKB4NRDvBkKupdg+IZIdHnKY8yYStzoi1A9tVRvfaanzREIBAJBP6Ol8A2H28/a/TVIwOJJya3nfeiAKNHWhZbw/BVBUcJVuJHskudA9bF9+zbUYLUygUAg6AcIUULQrWgifKNPkTTtRyiWDJwnv8KZv76nzREIBAJBP0LzNi9KrNlbg8ujMW1EHAOshlb76pCnRBsTXYYvzOgsGaHPiRYdg9P01NbWcOzYUdylu/FUHmq/XQKBQHCKIN4M+zg//elPmT17NrfffntPmxJAE+EbfQlZH0fy7DsAqNryB1SPKGUmEAgEgq5HU/1oflfUfXnlbvaedGAxypw+Piliny5pGAnjL0NntkYe1BEPzg7klFDiMiP2TRwYeE7atGkDZZ//lNJPfozPUdp+2wQCgeAUQLwZ9nGuvPJKHnvssZ42I0SwJKjwlOg7mLPnYRl2NqqznJqdf+tpcwQCgUDQD2hOkPD4VFZtD5QKXTw5GZMh8nlDMadhnXkT+oRIMaCtZT0jaWNJUCk8p0RGxL6RaR4SEhI5fHAvVXVeAOoOvd0B2wQCgaD3I94M+zhz584lLi6up80I0SBKiJwSfYmkGTcjG5OxH30fT8XBnjZHIBAIBH2c5ipvfLW7mmq7n9FZZsYPilYCNCAgdKgEaOMe27rQEiWnRGiX6mHu3NNQ/R62Hwt4H3qrc/C7azpsp0AgEPRWhCjRg2zZsoWf/OQnLFiwgLFjx/LVV181abNy5UqWLl3K5MmTWb58Obt37+4BSzsREb7RJ1FMySRNuwGA6q3PoGlaD1skEAgE3U9OTg6XX345F1xwAZdccglbt27taZP6LNEqbxwpdLLnhIM4o8w505pJblm/SVY6T5RoHILRGuHhG7I+cuFI87mYNWsOMir7Tjpwe1XcRZsp+u+FnWKrQCAQ9EY6Uv9I0EEcDgdjx47lkksu4dZbb22y/6OPPuLRRx/l4YcfZurUqbzyyitcf/31fPLJJ6SkpABw4YXRb1Jvv/02itL7vBFCiS7l3meboGNYRpxH3eF38VTsx5n7OZbhZ/e0SQKBQNCtGI1Gfvvb3zJixAiOHTvGTTfdxKpVq3rarD5JY0+Jqjovn2wLhG2cO8OK2djcc0YUT4l2LpRknv8KrqLNmIcsbtuBYd6ikj7Sm0P1OYmLi2PqhJGsO6axJ9fOrNEJgX1eB7Le0i5bBQKBoDcjRIkeZNGiRSxatKjZ/S+//DKXXXYZl156KQAPP/wwq1ev5p133uG6664D4L333usWWwFkuSPxlvXHBz0lZLnD/fUlgnNxas+JgnX2rZR+eis1u57HMvQMZF0019nYaTwvp/b8dA1ibppHzE3ziLnpGrKzs0OfR4wYgc1mQ9O0DuYrEEQj3FPC41N5b1MFbp/GvLEJjBjQ+r3HOvZcbHnfYBl2Nslz7myXDfqkoeiThrb5uPCSoNE8JQDmTB3N+vdhyxEbU0fEo1ckPJWHkPXxGFJGt8tegUAg6K0IUaKX4vF42LdvHzfeeGNomyzLzJ8/n507d3a7PTqdTGpqfIf7qa4IeEqYzaZO6a+vYbX2nvwf7SJ1Pp7cc6k+vApfzlsMPO3G1o9pBr1eaXKNnPLz04WIuWkeMTfNI+Ymki1btvDSSy+xd+9eysrKeO6551iyZElEm5UrV/LSSy9RVlbG+PHjuf/++5kyZUqTvr744gvGjx8vBIkuIlgOVNM0Vm2votzmY1iGkfnjEls8Tqr3lEiZ8B08xmEoCUM6Vg60PYSNJ+kiPR+CokRqgp4x2WYOFTjZnVvHzJEJlH8RqKSW9b2PhMeEQCDoUwhRopdSVVWF3+8nLS0tYntqaionTpyIuZ8bbriB3bt343Q6WbhwIc8//zzjxo1rsz0+n0ptbfP1wGMh3FPC5fZTUSHKRwaRZQmrNY6qKjuqemrnY7BMvI6aY6sp2fYqctZZ6OIHtqsfr7fhGulL89PZiLlpHjE3zdNZc5OYaEav7zvheJ0RVglQUFDAE088wfPPP9+d5vcrtHpPiTX7ajhU4CTJonD+rJTWvX/qRSJJkjBYR/bIb0N49Q25UfiG5nehaRqqt455YxM5VOBky2EbU4fFo1MCthe+uYy0pU9hGjCzW+0WCASCrkKIEqcYbXUD7cwHos64ccv1ooSGLF4SoqCq2ik/L7I5g/jxl2Pb+wpVO14k9fT7291X47noC/PTVYi5aR4xN80j5iaSzgirrKur46abbuKBBx5g6NC2u/YLYkP12tl2zMaWI3WYDBKXzk9rIY9ELyPcM0M2RO7TVFA9aJ460pP0jM4yc6TQye5cOzNGNngPVqx9kOzvfdBNBgsEAkHXIkSJXorVakVRFMrLyyO2V1ZWNvGeOJUIlgQV1Tf6NgkTLsd+9H84T3yBZ8IVGKwje9okgUAg6BCxhFX6/X5+9rOfsXz5chYsWNCh8Tolj1Mn9NNb2b13H6t316DTKVw8L4WUBD2DLl9FwX8vjkiCaRl2Jn57Ke6yPYENktTzc6M0PH4rikzixCup3beyYb/qRvMGPAXnj0vgaKGTTYdqmTTUgkFX//ykervM/h6fn16MmJvmEXPTMmJ+WkaIEr0Ug8HAxIkT2bBhA0uXLgVAVVU2btzI1Vdf3cPWdYB6T4n2ZroWnBrIOjOJE39A9bZnqN31ImmLH+1pkwQCgaBDxBJWuWbNGjZt2kR5eTlvvPEGAP/85z9JTGw5z0FjOiuPE/TuvCGa6sPnrEIfl96m47Zs2cKHX25CkuDaH91CpncnA+ZcjzUzDet1H+F3VrP/lYsAGDDlOyQNX8COPwZCHYwmc2hOempu/G7Ir/+cmhpPypm34z/9h+S8fwf2ol1IpWvRS4HcEpPO/DHjjzzF/jwHWw7bOH1CEgCa6u3y3Fy9+drpacTcNI+Ym5YR8xMdIUr0IHa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3INWd4ygp0R4OSxB3yRu1AXYDv4HV+FG3GX7MKZP7GmTBAKBoNMJD6tcsmQJ+/bt63CfnZXHqbfmVNH8Xio3P4X92McADLzgFfTJw3CXH6B6+3MkjP8e5uzTIqpUBNm+fStvv/0WPq+bb89JZeTYGVgG/xQV6vMQSYCVjDN/j7NgA96EKVRU1JFx1h+o3v4ccZNvoKrK3qNzo6l+JH0cBuvIsPxaOvwEQjnyv34i1FbKPIOLbhrJofuuYctRG1OGxZFg0YGmdllurt587fQ0Ym6aR8xNy3TG/PS1PE7hCFGiB9m7dy9XXXVV6PsjjzwCwC233MKtt97KsmXLqKys5Jlnngll+X7xxRcjkmmdamiaCN/oL0iKgcRJ11D1zWPU7n2F9CWP97RJAoFA0G66O6yysx7qe2PekOqdL4UECQBH0VYSEofiyFuHu3Qn7tKdAKQuehRz9mlAQPxZv34tn3z4Lv7aHC5aMJzBsgt0lqjnZ8icgSFzBpoWONaQMZ2M8/4GNMxtz82NTNal74GkRI6vmCJambJOQ0kcTnrCUBYsXsbadWtZf6CW82YGngO72vbeeO30FsTcNI+Ym5YR8xMdIUr0IHPnzuXQoUMttlmxYgUrVqzoJou6gWD4RpTVD0HfwzL8bGr3voK7aDOeioMYUtte+UUgEAh6A302rDIGNL+b6m1/xjL8XIzpkzrcn7toc+QGvycwjuqN2Fyz46+Ys09DVVU+/PB9Nm/eiL9yD+eNqWWwXA2ArD81y4tHK0Pa2DMkbvR3Al44ksK3rn2cXQcvY9/JfUwdEc9Aq6HJ8QKBQHCqIparBd1KQ/iGuPT6A5KsI2HilQDU7n21h60RCASClrHb7Rw4cIADBw4ADWGVZWVlAFx77bW8/vrrvPPOOxw7doyHHnrolA+rjAXb/n9jP/o+ZZ/d0mRfxdpfUrX5qZj60XxuSj6+Hm/1scjtfnf9/z0R23WJQ3E6nbz22j/ZvHkjcXFxXH7mSEYObCijKRv6Tny26okMx9Anjwh9NplMLJ43GQ34bEcVqqrhd1Z0s4UCgUDQNQhPCUH3Uu8pIcI3+g9xw8/FtvefuAo24Kk6JipxCASCXkt/DKuMBU/V0ajbNU3FmbcGgOTZd7RastxVuhNvlL5CYkQjUaLMBv987s9UVlaQlpbOD35wDVLOv7AfPhhqI+ksbTmVXo3qro34rlgyIr5PnzyWLasNFFR62JFTh+6j68i69N1utFAgEAi6BiFKCLoVLVR9Q4Rv9BckxUD8uOXUbP8zdQffIOW0X/S0SQKBQBCVfhlWGQP+uqLAB1kfEBBkHZIkhzwcAFR3NYrJ2vRYZwXusr2YBy+MGrIA4HeU48xbg+qr95jQNPaecPB17nr0mXMYP34il1zyPUwmE1XHImOxZcOpGb4RDdVTE/pszJzRROSRdSbOmmbln1+VsP5ALWOyyhmo+pqdV4FAIDhVEMvVgm4lmOhShG/0L+JGLkPSx+M48QV+R1lPmyMQCASCNuCrFyUkxUDBf86h6psngUA4RhBXwQY85QeaHFu66kYq1z1Iwetn4sxfF7V/R+6nVKz9Jc4Tn+Nw+/msbC6rdlTh87o5a9F8LjxtIEajMTCm3xVxbF96ITcPWQJA/PjLSVv8WJP9kmIkPUnPzFHxeHwan+6sxlub36SdQCAQnGqIN0NB96KK8I3+iKy3ED/6O6D6qDv8dk+bIxAIBII2oPkcgf977QA4cj4KfA/zlKj65glKP72xwSOyHr+jtL4TFfvhd5ofQ9M4XOjgH1+UcOREKclxCt8/cxRjXW9RtfERnLmf19viaraPU52kKdeRfubTJE29HknRN9kvKQFhZv64RKzxOo6XuNiy4bOINpqmUvblXdTsfrlbbBYIBILOQLwZCroV4SnRf4kfcwnIOuqO/A/V5+xpcwQCgUDQAXx1hZSu+kmT7aqrqs19Vdt9vLOpgv99U4nDrTJ71iyuWppJllXGV3sSAHfpLqBvixKSoseYOa1Z7w9JFxAl9DqZy66+DQn4eNUqKisbEl76HeW4i7di2/tKd5gsEAgEnYJ4MxR0L6HqGyKnRH9DsaRhGbIYzWvHmftFT5sjEAgEgliJspBQvfWZqAJEW0L0PD6VDQdqefnzYnKKXSTHKXx3fhrfufBSDDoZzeto6NdVCTSIEnrrKBKnXNfWMzmlCXpKAAwdOYE5YxLwOOt455230LRgrg0t+sECgUDQi+k7gXiCUwJNVN/o18SNvghH7ufUHXkXy8jzW83ULhAIBIL2oWkaaid4FWiaGqqcFY6rcFPU9n5HKaSOa7FPv6qxO9fOpoO12N0qihwISZgzJgGdIiHpTEg6C6rXDrIOVB9+Z0CUCJ5T2uLHUcx9u+pJYySdqeGzYmL++ETyfWZyc4+zZs1q5o1Poezzn4XaaH4PkmLoCVMFAoGgTQhRQtCtNIRvCE+J/oghbSL65JF4q47iqdiPMW1iT5skEAgEfZKqrc9QmPs5Ay98HWIsm+l3ViIbk5DkwD1a9dRRs/P5No3ra8FTwufX2J/nYPPhWqrtgeeBcYPMLJiQRHJcwyOppBiQ9Rb8rkoUcyp+Rxlq0FOiPtFl+At6f0GSG/JMSDoTiizx7TPG8sZ2A59//imG3esYnNrwfOV3V6NrVFZUIBAIeiNiuVrQvYhEl/0aSZKIG3MxAPbD7/WwNQKBQNB38dny8btrYw6n8NacoOidS6hc/3BoW82uF7Ef/V+bxo02ntursvmwjRc+LeLTHVVU2/0MyzBy1ZIMLpidGiFIAEiyAUlvAU1FqhdU/I5S6o6+Hwrf6I+iRHhoRvD80xIVvv3tCwGNDzaX4HD7Q21UV03jDgQCgaBXIt4MBd1KKCu3ECX6LZZhZyLpzDjzvg645goEAoGg0wm67VfvfAFPxcFW2wfDMZx5a0LbvNU5bR43XJQoLi7i851VPP9JEWv21WB3qYwaaOL7C9P57unpZCRHCy2QQNYh6eOAyMSWzrw1ge+Kod8vbgRFCc3nZvr0mUyfPhO7S+WjrZWoakC8aE/SUYFAIOgJRPiGoHsJhm/IInyjvyLrzJiHLMGR8xHOk6uJG3l+T5skEAgEfY5gUkRn/jqc+evIOPc5DC3ketD8nibbVI+tzePa62zkbPmGbdu2UFCQj+24HUWGyUMtzB6dQEpC01KXkXYbkCQJWWcO2OCubrDHVYXmdyH3Sy8J0CePBMA8eCGSUi9K1IezXHDBhez/8AFyS92s3V/DoknJuEt3oUscjC5+YI/ZLBAIBLEgRAlBt6KJ8A0BEDfiPBw5H2HP+USIEgKBQNAFNE5wWLP776QvebzZ9prqbbotRlHC6VE5VuTkYL6DAsdGTIMC9/j09Axm6ZOYMNiC2diwGCEbEpENCfjqCpp2Vp83IWi/5neHdvkd5Wg+N7IhMSa7+hqy3kL25Z+DpKB6aoEGTxIdbi6cm8bKr0vYcqSOtEQ9E1mJbf9KBn1/NT57Cbb9/yZp6vXIhviePA2BQCBoghAlBN1LKNGlECX6M4b0ySjxWXjK9uCz5aNLGNTTJgkEAkGfIrx8JIC7eCuqr3kvA83TEE5Xtfkpkmffgeqpi95W0yiu9pJb4uJEqYvCSg/1EQMkpEjMnj2XKVOmMXToMAr+3TQnRcr8+7Dt/3dIlDCkTcRTvq/ebkPwBCKOUSzpodCQ/plPIoAkBx7d5bDwDc3vwVdXiDVex3fmpPLW+nI+3VFFcpyO7FQjmt9D6ac3oTorkGSF5Jm39uQpCAQCQROEKCHoVkROCQHUJ7wcfh61e/6O/finJE35YU+bJBAIBH2KJqUgNRVv1TGM6dGrHvnrq1sA2I++T+Kkq0KhAV6fSnG1l8JKN0WVHgoqPDg9DWVCLUaZUQPNjM02M3LCNAacc3ErtkUKJulnPUPB62dG2h3+nCDJKJYMIUqEIxsACZ8tj4I3zw+FaAxJN7F0SjKf76rmvW8q+P6iDDLtpajOCgA01deDRgsEAkF0hCgh6FY0VZQEFQSwDD+L2j1/x3nyKxInX4skST1tkkAgEPQZwkUJJT4Lf10h3spDLYoSPr+Gzemjwubj0Fefc2RzBeU2L5U2X8gTQjYmoujjGZxoY1imkeEZJtKT9KHfcJmw6g/NhH9IihHCfvMDJUglQAvZLYXlnpJkA4o5Nex4IUpIkoSkMwbCN1QvvtqToX3TRsRTXutl53E7/91Qzg9HvkRwthWTtWcMFggEghYQooSge6kP35CEKNHv0cVnobeOwVt1GF/NcfTJI3raJIFAIOgzaJKe4ioPflXDYBqEvSQH/Y61GJ3DcDqdOJ0O7HYHVcc3UG33UHZ0Pbba6tDx5oLPcRY4AYgzygxMMZCVYmTExAWMWfpTKlddF33c+twUmuqj8K1vR20j6YxNNyp68HsaFi3CPSUUPYo5LfRVnzS0DTPRd5F05ojqJOEsnZJMncvP0SIXK//9OsvPSMegk1F97qjtBQKBoCcRooSgWwkmuhThGwIA85BFeKsO4zjxFUlClBAIBIJO45O1e9i4uhQA04ATuIrLkQ2ridvXIAhoqkrd4bcBUHQGkuMUEsw6UhJ0DJs3GWPePtIS9ViCSSplPRln/RR90jCMGdNwl+5sOnC9R2RLlTuahJYAOksmPlsefkfA5vCE2JKsxzLyW7iKtwEqiVOvb8tU9Fkah8GEI8sS589O5b/ry8iv8PC/byq4+LQ0NJ+jGy0UCASC2BCihKBbCeaUENU3BACWIYup3fUCzpOrSZzyQxHCIRAIBJ3EhLEjqTxsRpIgedIMXMeLkLw1WEdZSB21BLPZjFFyU7duLYkWHXFGGVlu+A1OHJ1CrashTMI8ZAkpp/8y9DudftbT5L+2uMm4wZwFLYsSTV+mdQnZ+Gx5aF57sFFYez0G62gGXPAKmqaJe0U9reXW0CsSF81L4/W1peSWevhoayXfGyZECYFA0PsQooSgexHVNwRh6BKyQyEc3uocDNaRPW2SQCAQ9AlGDh+KdU4gD0P62edj21eNq3Aj8CXZ836BpOjxVB2h9ED01XafozjiuyQrTcQA2ZiE6q6J2BYM31DdbRUlBgObwhuFjd3gWSEEiQbCc2skz7kTxZhExdpfRrQxGWQunZ/Om1t8HCoo439fbeea+SqyLJ7DBAJB70H8Igm6lYbqGyKnhCCAechCAFwFG3rYEoFAIOg7hIdISDojcWMuCn1X670RVFd1s8f77SWRG+Sm61iZy/5O2uLHIzeGwjdqmzcuSviGaeCswC5LRsDm8MWLKGMLInNzmLPmYco+PWq7BLPCigvPINGssO9oEW+//SaqqkZtKxAIBD2BECUE3YsaTHQpLj1BAFPWPABchd/0sCUCgUDQdwj3RpAUI+asuRgzZwCgeuoA8LuqIg+S9aGPjUUJSWoqDCjmVExZc0hd9DsM6ZMDxzlKKPviDlR3dZP2qWf8iuTZdyBHCTswZc0lddGjpJ/953pbIsM3BE2RdeaGzyZrRMWSxiQlxrP8jHQSzTK7du3gnXfeCgkTfmcFtftWovm97balds8rVKx7CE3T2t2HQCDov4g3Q0G3EvKUEG6Dgnr0ySORzWl4KvajultYWRMIBAJBzER4StS7+cuGeAA0b0CUaOwpETfiPDLOewEAnz0yfKMlbwVz9jwyzv5TaBx3yXY8FQebtDMNOoP40d9poZ/T0MVl1BsdnuiyqWeFAHy2/NBnqRVvEsuwc0iO03HZksEkJiaxc+d23njj3/j9fko++iG1u16g7sh77balds/LOE+uDl1bAoFA0BbEm6Gge9FE9Q1BJJIkYcqaA5qKq2hLT5sjEAgEfYJIUSLwWaoXJYKeEqo70lNCNiahmKyBL/UJK0N9tLAK39BBQxu/s7ypTW3IByFJwlOiNcxDlwKQesavm28zeBEDvr0ycJ8Fkowq1113A1ZrCvv27eGf//wHbnv9ddDobx6O6qnDcfyzJt4U9pxPsB18K/Rd83vaezoCgaAfI94MBd1KMCu3JHJKCMIwixAOgUAg6FQic0rUe0ro60UJbzB8ozriGNmQgGxORQoLC2jY2XpeByki/KMsYl/CpKtisjuss7CxhSgRjcTJ15J16f8wDz6j2TaS3owuIRtJkpF0JjSfk5SUVH70o5+QkTGAI4f28Ob6cpweNSRaRcN28E0qN/6GinUPRWyv2vQ7arb/OfRd87k6fF4CgaD/IUQJQbciEl0KomEcMBMkBVfR5oZrRCAQCATtJjKnRECgkJt4SkRWzpCNiUiShC5xSNP+ouSUaEKYcOGzF0XYkjTlhxFN40YFwjiaFSuEp0SrSJKEbExsuU2YoCPpLKi+QEnQhIRErrvuBgamWiis9PCftaXUVFc1Od5TeYjKTY/jrT4GgKtgPZrfDYDqbVpeVBWihEAgaAdClGgGj8fDX//6Vw4ebBoTKegAqgjfEDRF1sdhSJ+E6q4OPfgIBAKBuBe3nwhPifp7btBTQqsXJbT6l0p9ypjAfkPgBVcfRZSIzVOiQUjQPA0lQYNlQsOxDF3CwIvfJnHyta32JQlPifYT9neTdWZQffgdZbjL9mCxWFhxydkMyzBSXuvjpdc/pqAgP+Lw0k9+jCPnI1z560LbQolSo4ToaH4hSggEgrYj3gybwWAw8Nxzz1FbKxLvdSaaJqpvCKJjzJgKgKd0Tw9bIhAIegviXtx+wj0lQtsMkeEboVXzCd/HNGgBxszpAM14SrTu4diseNCMB5xiTmk+z0REokshSsSKZEiI/B7uKaGPA6Do3e9R9tmt+Byl6HFz8WlpTBkWR53DwYsv/o39+/e1OEZQZPI7K5ru87k7egoCgaAfIt4MW2DKlCns29fyD7OgjYhEl4JmMKZPAcBdJkQJgUDQgLgXt49oIQ+Nwzc0nxMAc9ZppC18BFlvAaKLEsSS6JLYE1m22lP4c4II34iZgd95jczzXwl9D6/K0TjUo/jd5VRt+h2KLHH2tGTOnDcBn8/Hylef55X7zyb/rYujjqH5A/nB1KiihPCUEAgEbSeGAMH+y//93/9x1113odfrWbRoEampqU0UfbM5SjIoQbNoasBTQuSUEDTGkDYBJBl32R5R51wgEIQQ9+J2EiXcIhi+4a08jKt4G6rXGVgkUCJLbkYL32it5CTQrEdEuwjPKSFKgsaMbEhADveWCPOUkI3JzR4nSRLzpgxl0MzTef2lR/l03W7yBps5Z5oVva7RQlJLnhIifEMgELSDfiVKrFq1ittuu40DBw7E1H758uUAPPLII/zmN7+J2ibWvgQBgkkMRfiGoDGy3oLeOgpv5WH8YQnSBAJB/0bci9uHbEjEOm4ZqmlQwzZjEgCeiv2Uf3knEHDpbyzy6BKym3YYw327UxMVR4Rv9KvH1U4lfO4UU1KLbTW/l4nTJvGDixfxzxe2ciDPSXmtj+/MScUa39CPCN8QCASdjfiVb4Hf/va3baqpLYgBEb4haAFj+mS8lYdxl+7uaVMEAkEvQdyL24ckSQw799dUVNShqgHvM13iEJS4gRHCbzBkI+JYJYpnQiwebM2IEsaMaTHZHGFDeLiIyCnRbqQYPSUA6g69BZLMQGscP1iSwYdbKjlR5uZfq0s4f1YKIwYEPJKCooTqaZrrJRgSJBAIBG2hT4gSv/jFL2JqV1hY2KZ+L7nkkvaYI2iBYKJLIUoIomFInwKH/otH5JUQCAT1iHtx5yFJEmmLH6Xkw2satumaihIApoFzcRV9E7YllrC6SFHCmDGNuDEXYRowsx3GhodviJDPdhOeU8KU3GrzuoNvAGAxKlw6P421+2vYcqSOdzZWMG9sAqeNSwQ1kFOCYEhuGMFyoQKBQNAW+oQo8e6775Kenk56enqL7dqbvfvo0aPs3buX4uJiLr30UtLT0zlx4gSpqanEx8e3q8/uxOl0smzZMs4//3zuuuuuHrUlmFNCPGAIomFMnwyIZJcCgaApp8K9+PPPP+eJJ54A4Gc/+xnLli3rYYuaok8ahnnIYpwnVwMg6aLn40hd/Ciaz0nhm+fH3Hfj8A3ZZMUyZHH7DBXVNzqF8ISnirHl8I3GyLLEoknJDLQa+GR7FRsP2ThZ5uYHcyoZkBG20BSGGpboUtNUXAUbMKRNQolBEBEIBP2XPiFKDB06lClTpvD444+32O6TTz7h9ttvj7lfu93Ovffey6pVq9DpdPj9fs444wzS09P5/e9/T1ZWFj//+c87an6X89xzzzFlypSeNiNAKHxDiBKCpijmFBRLJr7aPDStaTk7gUDQ/zhV7sU+n48nnniClStXoigKl112GWeddRYGQ+9L0hheLjRa+AYEcj8FS0gGiMFTovHKeQfu9RElSEVOifYTJu60Fr7RHGOyLaQnGfhwSwUFlR6ee+k1Ll2RSlaUcJ3wRJc1O56j7uAbxI36DtY5d0Ttu+7wO/gdZSRMuCIyQadAIOhX9Akf+mnTprFr165W20mS1Kas/r/73e/YsWMH//jHP9i+fXvEsYsWLWLt2rXtsrc7yc3NJScnh0WLFvW0KUB49Y0+cekJugB98nBAE2XFBAIBcOrci3ft2sXYsWNJS0vDarUyZcoUtm3b1tNmRUXSmRo+62OsXBLT41PkS6qvNjdmm5oQ4SkhFjI6g454nFjjdVyxKIPZo+Nxu1288cZrfLT2AB5f5N88PNFlMBTEU3Gw2X6rt/0J2/7XqNn5fLttEwgEpz594s1wxYoVXHnlla22mz17Nq+++mrM/X766afcddddzJs3D0WJvCFmZWVRUFDQZlvD2bJlCz/5yU9YsGABY8eO5auvvmrSZuXKlSxdupTJkyezfPlydu9uWwLAxx57jDvuiK5O9wii+oagFfTJIwCRLEsgEATo6ntxkI7ek0tLS8nMzAx9z8zMpLS0tFNs62wiPCWaCd9ojEbrlTU0NbJN/Njvts2wMCKECEl4SnQGeutI9MkjUCwZ7TpeqQ/n+P7F5xAXF8+uw0W88kUJJ8vCQjbqPSXUsHu4PqmhxKyn6hjFH/wAd2n9YmL9c6HqrmmXTQKBoG/QJ94MJ02axFVXXdVqu5SUFObMmRNzv263m+Tk5Kj77HZ7k4ejtuJwOBg7diy//OUvo+7/6KOPePTRR7n55pt55513GDt2LNdffz2VlZWhNhdeeGHU//x+P59//jnDhg1j+PDhHbKzMxGJLgWt0SBKCE8JgUDQ9ffiIJ1xTz5VCBclmkt02T4C7hR66ygGXPgGluHntr8rURK005EUA5nL/k7yzFuabSObUkKfFXNq1DYjhmRyyy23MWaIlRqHnzfWlfPFriq8PhXN58JTdZTCN74Vaq+FhfVUbfodvto8KtY+GNFntPwUAoGg/yB+5Vtg8uTJvPfeeyxcuLDJvlWrVjF9+vQO9b9o0aIWwypefvllLrvsMi699FIAHn74YVavXs0777zDddddB8B7773X7PG7du3io48+YtWqVdjtdnw+H4mJidxwww3tsleWO1aSTZYlqF9FkRWdKPEWRnBuOzrHfQGDtUGUaDwvYn6aIuamecTcNM+pNDddfS8O0tF7ckZGBiUlJaH2JSUlLFiwoN32dMo9t5l+ZL0p7LMlprGkWGwKK/ttSMhsuW0ryGGeErKi79Rr9VS6/juKLDU9z/C/f9KUa0HWh8IndHGZeFwBoU0xp+B3VjTpU9J8JCQmcPGiMYyIK+LzXVXsyLFzvMTFd4ylDKx8IKK95ndRtfkJLIMWoPkc9Z3IkXap/lPi79Gfrp22IuamZcT8tIwQJVrgZz/7Gddeey3XXHMN5513HpIk8fXXX/OPf/yDVatW8a9//avLxvZ4POzbt48bb7wxtE2WZebPn8/OnTtj6uPOO+/kzjvvBODtt98mJyen3YKETieTmtrx7OYFmgpIpKWJZEbRsFrjWm/Ux1GTJ1AsK2h+Z5NrTsxP84i5aR4xN81zKsxNT96Lg8RyT54yZQoHDx6kvLwcRVHYtWsXv/nNb9o1XmfdcyH639ifmEjQWT4uKanFsU7W/99i0bdqU169KKHXt962NaTyOIKvw/GJcZ02H+GcCtd/ewn+3eLiTE3mrs5lpaz+8+DZlyEpevbUixKWlEF4Kg4AYLAk4YniCGQxB67PKr3MuEEWBqcZ+WxnFUeLXLz+yU7GptaxcFIyZkPA28VVsBEA+9EP0ccFKuXpjGZSUiwhO/U6uuRv3FX05Wuno4i5aRkxP9ERokQLzJo1i3/84x889dRT/PrXv0bTNP70pz8xdepUXn755S6taFFVVYXf7yctLS1ie2pqKidOnOiycZvD51Opre1YjL8sSwH3PEmmoqKukyzrG8iyhNUaR1WVHVWNPRlrX0WfOATNf4DSgjwUk1XMTwuIuWkeMTfN01lzk5hoRq/v2iSEPXkvDhLLPVmv13PXXXfx/e9/H4DbbrsNo7F9VYQ6657b3N/Y2ZCLELff3OI9WbGk43eU4TMMavXeHXTB9/m1Dt/n7XZPw2eHDzrxuaE//TbU1bmQGs2d296Q+6PapoLUMNd+fUPIhp/olWPqbHbkijo8nsCFFGdSuHBuKgfynaw55GbPCQfHil0snpTE+MGWCM9YnydwXWuSgYqy6tB2j9vd6jVTe+AN3CU7SVv0SI/lJutP105bEXPTMp0xP91xz+0phCjRCjNnzuS1117D5XJRU1NDYmIiZnOMmaq7AE3T2hX2cMkll3R47E75gVFVkBTxY9UMqqqJuQF0SSMBcFcewzRgZmi7mJ/mEXPTPGJumudUmZvedi8O0viefM4553DOOed0St+d9XeJ9jfW5LCcEvqEFsfKOPdveCr2Yxg4r3WbwsI3Omq/pjW8dGqSrkuu01Pl+u8ImqY2PUe5IXwjcC007JeN1tBnSTERDW9NHva8DRGJTSVJYsJgCyOyjazZ5WN3rp2PtlWx54SDs6clk5IQqPyheeuFB8WE3+dtsEP1t/q3qN72bGB8WxG6+KwW23Y1/eHaaS9iblpGzE90RLbBFti4cSNOZ0DRNZlMZGZmdttDkNVqRVEUysvLI7ZXVlY2Wak5ldA0v6i8IWiVQFlQ8Fbn9LAlAoGgp+nJe3GQvnZPjqi+YUxqsa1iTsE8aEFsCyIhUaLjK3nh1TdEosu2I+kDoRD6xKFN9+nCRClZifh76RKHIptSSB59dkTp2HDsR96l4utf4ClrWhHOJLs5Z7qVKxamk5aoI6/czStflvD13mrc3gYRQ1aMoPoaDgz/HAXN7wn7Il7oBIK+hviVb4Ef/vCHKIrC+PHjmTVrFjNnzmTmzJlYrdbWD+4gBoOBiRMnsmHDBpYuXQqAqqps3LiRq6++usvH7zJUP4h644JWCFbg8FYf72FLBAJBT9OT9+Igfe2eHP6yKRsTO69fxYTmd0WIHu3vLGwBQ5QEbTMDLngFT+VhjJnTmuxr7AERLjjJhniyL/0vqakJ5Hz5TNsGlfWgBrwfslON/GBJJluP2th00MaWI3XsO+lgwYQkJg2xgKJHCxMiWqu+4bM1lP6NECgEAkGfoE/+ymuaxrPPPstll11GWlpa6HN6enqb+tmwYQNbt25l27ZtbN68mVdffRVVVRkxYgQzZ85k1qxZfOc732m3nXa7nZMnT4a+5+fnc+DAAdLS0khPT+faa6/l7rvvZuLEiUyZMoVXXnkFl8vFxRdf3O4xexpNU5E6YQVF0LfRJQwGwG8v6mFLBAJBT9PV9+Ig/emeLEd4SnSeKJG29ElqdjyHddbPOtxX+LOC8JRoO4o5FXP2aVH3SUr0XBEQEKwkSUaSJBInXI639iSaz4WrcFOrY0qKEU1tCMnQW1KYO0ZiwuA41u2vYd9JB5/uqGJnTh3nLqnA2gZPCZ8tL/RZU4UoIRD0Nfrkr7yqqjz77LMsWbKElJSU0Oe2ihJWq5Wzzz6bs88+GwjUMN+0aRMvv/wyb7zxBm+++WaHHoT27t3LVVddFfr+yCOPAHDLLbdw6623smzZMiorK3nmmWcoKytj/PjxvPjii6SkpDTXZa9H0/xIsr6nzRD0chRz4BqPVopMIBD0L7r6XhykP92TIzwlDJ0nShjTJ5Fxzp87p7PwBQzhYdmpSDozusQh6JOGNdkn6xpCo2RDHKkLHsJ+9INWRQnFkoGmqaGcEfFjLiFh4gqK3rmEBLPCt2amMG1EPKt3V1NQ6eG1T/ay3/0fpni9pCbo8TvL8daeRJ84JGr/wlNCIOjb9ElRAgLeEtE+txW73c6OHTtCqzS7d+/GaDSyePFiZs6c2XoHLTB37lwOHTrUYpsVK1awYsWKDo3Tq9DUTok1FfRtZL0FJBm/M0otMoFA0O/oyntxkP50Tw5fKZd0PZ8wNCph4RtiMaNzkSSJzPNfiZonJFoeCfOwM7HnfoZiTMKZt6bJ/pTTf4kxczpln91KMGuEpDM1EZMGWg1cvjCdg/lO1h+TOXDwINuPlzBxiIX5432oH1xF1vKPI4SRIOFChOYPeGM4TnyJbd9K0pY+hWJKbsMMCASC3kafFSU6g0suuYRDhw6RmprKrFmzOO+887jvvvsYO3ZsuypgCEBTVWSR6FIQA5KsR/PWofncYIiebEsgEPR9xL248wnP+dBb51Akuuxamvu7RwvtkHVmMs76I66iLVFFCVP2fGSdKfK60pmjhutKksT4wRbGjckix7KQT179jL0nHRzIdzBteDzfObuYpPThTY6LyD/h96BpGpXrfwWAu2gLluFnt37SAoGg1yLeDlvg0KFD6HQ6pk2bxvTp05kxY4Z4COoomj8yeZVA0BxK4CHU7xLeEgJBf0bci7uAU+E+HG6jCN/ochKn/gjLsHNCVTui0ow4FBQfwr0sJJ252fYAOsnLabOnc/05AzhtbAKyJLHtWB1PP/MnvvjiU+x2e+QB4YkwVQ/eqqMNY+ktLZyZQCA4FRDScwts3bo15C766aef8tRTT6HX65kxYwazZs1i9uzZTJs2rafNPGXQwuqXCwStEXTX9TsrIbFn65ELBIKeQ9yLOx8lbgBxo76NIXV8T5vSPOHhG6L6RpeTOPHKVts0G0ZT/7eKyFWij+4pEUTzu9FUH0a9zOkTkpg+Mp5Nh2wc8bpZvfpLNmxYz5w58zj99DOIj4+PqM6h+T346sJyTLSSJFMgEPR+xK98C5jNZubPn8/8+fMB8Hq9bNy4kRdeeIGnnnoKSZI4cOBAD1t5ClEvSojqG4JYCD78qC6R7FIg6M+Ie3HnI0kS1jl39rQZLRLxrCBySvQKmg2jCYoSYaVGJaVpTolwNJ8nouKGxaiwdEoy5865ks0Hyti2bQvr1n3Nxg1fM3vOfKYmNHhOaH4P+BuqfLRWuUMgEPR+hCjRCpWVlWzdujX036FDh1BVldGjR3dacq3+gqbWq9zCU0IQC/UPP9GSXWpqIAxIuG8LBP0DcS/uh0SUBBWLGb2CcHFIUkIhucF7saQLyymhNyO18LwX8JTwNtmeFKdn2dmLmGLezo7CRNZ99DyrC7ezVqcwLqGKmaMS4JvHiRt9UUNfQpQQCE55hCjRAueeey4nT55EURTGjx/P3Llzufnmm5k5cybJyck9bd6pR73rnXi4EMRCQ/hGpKeE31lB6ae3gOYnftz3iB/1nYgHIYFA0LcQ9+L+iUh02fsI/zsoJit+Z3mkeNQ4p0T4sfo4NG94nggNzedsMobmc1K7+yWU0q+ZpYPx5wxk69FS9lUNZOdxO7uO2xmVZWZWxX/ITjUGD+qcE2yE6nUA9RXBBAJBl9Inf+UlSSIrKwuDwRDxua2cf/75oVhVs7mXlsw6lRA5JQRtIPjw4w8L39D8HirW/hK/vQiAmu3P4inbS+oZD/eIjQKBoOsR9+J+SkSiyz75uHrKESEORQmpkcPCNxqX9ZT1FvzeyOSVtXteadKH6nPhd1WFvseZFBZNSuaM1Mls3lDCjmN1HCl0cqTQyUCrgdmj45nl8zTppzMofHMZAIO+v7pL+hcIBA30yV95WZb58ssvQ9/DP7eFn/70p51lkgCR6FLQRhQ9oKGGhW9U73geT/k+DKnjSZ59GxVrfokz72tcxdswDRAu3AJBX0Tci/sp4YkuhSjR64j2N4kI34jiKQFlEdu8VUea9KH5nFFzj+lsB5k3NpFZoxI4kOdg21EbRVUe/re5km+q3mXRBelMmzYDi6XzvRp8tnxUrwNDyphO71sgEAQQv/KtkJeXx4svvsj27duprq4mOTmZmTNnct111zF48OCeNu/UQiS6FLSBQPiGJyKnhOPEVyDJpJ7xaxRLGkkzbqRy3UNUb/sTmd96UTy4CgR9FHEv7n9EJroUv+29AV1CNgmTrsaQOo6anX8LbAwuOFGfgLIexZIWcaysi00sqN7yh6jbVU9twAZFYvKwOCYNtZBb6mbrERvFNTY+/vgDPvtsFVOnTmPOnHlkZWU36UPTtJhzUWlhiTSL318BQPZln4Hcds9rgUDQOuJXvgX27t3LVVddhdFoZPHixaSlpVFeXs6nn37K+++/z6uvvsrEiRN72sxTB00kuhTEjiQrIMn4XQFRwueqxe8sR5c4NPSwYx68CGPGNNylO3HkfkbciG+1aYy2PKAIBIKeQdyL+ymiJGivJGnKtQDU7n6pfosW2ifp4wHQW0cj6+MijpMafe8okiQxPNPE8EwTzuwzOVCTxc6dO9i2bQvbtm0he0AG08cNYOai5eh0OlyF31C54TekLvotxvRJzfZbu/ef2HM+Jv3MpuKI6qlF0adFOUogEHQU8SvfAo899hgTJkzghRdeiIhjdTqd3HDDDTz22GO8+uqrPWjhqYUI3xC0DQnZlILqqkRT/bgqcgDQJw9vaCFJJEz6Ae4vd+I8+XVMooTfVU311qdxl2xH9dSht44hcfJVmLJOEwKFQNALEffiforwlOjdRBGKEsZ9F9kQT9zIZVGaN3gYJEy6Gtu+fzUsVnWQzJR4Ri+6mHPO+RY7d25n8+ZNHN7wKgdX1/Hpl+uYteB8svKfJDVOo3rrH8n81gvN9hUUW5z565rsUz02iBOihEDQFYi3wxbYs2cP119/fZPEWmazmR/+8Ifs3r27hyw7RQmFb4jLThAbiikFNBXVXYOr4hgA+qThEW2MGVOR9PG4ireFMmU3h6fyEKWf/AjnydWoXieyIQFv5UEqvr6X6i2/R9O0Fo8XCATdj7gX908iqm8IwbjXEfr7hN03ZUMCCeO+18RLAiLDcYzpk0ie1Xm5Ymr3vEzNzufx5r7PvHnzufXW2/nuHBNjssw4aorZsGEtL3+ax79Wl7DzaBVOZ9OqH43RPLYm21R3bYfsDA9vEQgEkQjpuQWMRiPV1dVR99XU1GA0ijKEbSLkKSFySghiQzGn4K0Cv6sSd70ooUsaFtFGknWYsubhPPE57uKtmAcvjNqX5ndTsfYh/I4yLMPOJnn27Ug6M66CjVRteQr70feRDYkkTftRV5+WQCBoA+Je3E8RCxi9m5D3Soxifng4js6EYsnsVHNs+18DwDJ0KYo5lSHpJoakm5BHn88x1yi+yn+X4iovn27JZ2PFb5gwYSIzZ85ixIhRUUUvNZooEWVbrDjzN1Cx5l7MQ88iZf59zQptzoJNuAo3kTzz1ghhTiDo6/SJX/wNGzbE1M7r9XLHHXfE3O/ixYt58skn2bp1a8T2rVu38tRTT7FkyZI22dnf0dR6Nz25T1x2gm5AMacC4HdWNHhKJA9v0s48aD4Azvz1zfZlO/gmfnsRpuz5WE+7F1lvQZIkzIPmk77kCSR9PLb9K3GcXN1uezW/G2feWmp2vUjtvn/hOPk1mto19dMFgv6CuBf3T0RS7N6NRFu9VxraS4oJxZjUuQbV09ibId5i4owzFnHtWZl8f2E608YMQFEUdu34hr+/+BeefPJ3rFr1MUVFhRHekqqnrmnfnvZ7SrgKAu8qzhOf46s53my7iq/vwX7kXVxF37R7rFhQvQ4q1j2Mq2RHl44jEMRKn/CUuPHGG3nmmWdYtGhRs20cDgc333wzW7Zsibnfe+65h5tuuokVK1aQmppKamoqlZWVVFRUMH36dH7+8593hvn9h/rYQfGgIYgV2ZQCBEQJZ8VRkA3o4rOatDNlzQVZh6twI5rqa1KFw+8oC8SvynqSZ9zUZIVCnzyC1NN/Sfnqu6nZ8TfM2fORlLZl2LYf/5Tqrc+geSMfZBRLOomTr40aYysQCFpH3Iv7KcJTonfTkZAaSUI2JnaeLWH4XVXoCV+80OqHlMhKNTJs3GCSFt7Lmr+cz+7DRVTJ32Lduq9Zt+5r0tMzGFhey7hBFkxRQjVUd/s9JTxh5U+9NSfQJ49osb3msTe7z1W0FUfuZ1jn3NnmZ5Ug9mMf4jz5Fc6TXzHo+6vb1YdA0Jn0CVHirLPO4pZbbuEPf/gDZ511VpP9lZWV/OhHP+LYsWP8+c9/brU/l8vF119/TUFBAVdccQUrVqwgNzeXsrIy0tPTmTp1KgsWLOiKU+nTiESXgrYSrLLhLNiE31WD3joqatlPWR8XqMJRvBVv5REMaeMj9tcdeQ/N5yJ+/BXoEgZFHcuUNQdT1jxchZuoO/wuCeOXx2SjpmnU7noh4DoqyZgHL8SUNRdN9eEq2IircBNV3zyOtzqHpOk3CndMgSBGxL24nyOeFXo57RclJEluVpSIG30h9iPvNTpAjig92hKqswLVG/ZCr6movoYcEqq7Fr3sY3ymj/GZ6WjDhnNCnczu3bsoKiog52At6w/UMujgN4xOtjEmy0yCJfDc0V5PCU314a3OCX331Z6I3i7MU8PfwljlX90FgDFzOnEjzmuXTbHOp0DQXfQJUeLJJ5/kvvvu47bbbuPxxx9n2bKGFcn8/Hyuu+46qqurefnll5k+fXqLfeXl5XHNNddQUFAQ2hYfH88f/vAHzjjjjC47h36BECUEbcQ8aAE1O/6G8+TXQPTQjSCGlLEBUaI2t4ko4SoMuEHGjTy/xfGSpt+Iq2gztXtfJW7U+VGTdTXGfvR/2Pa/hqSPJ3XBQ5gGzgrtix99Ie7S3VSsvZ+6Q2+h+d1Y59zZap+t4S7fjyPnYzyVh1E9tVQmDUROHodl1IXo4jo3Tlcg6AnEvVggvCp7OW31lJAkkmf9DHfpbnRJ0e/lhtQJmLLmNhElZJMV1VkR0zCVG38TuUEDv6PhWNVdg+quaTAr7z3mfft7LFiwkLKyMr58ZhUH850UllSRn2fjqz01DLQaGJ1lZmp6EdZgt6oP24H/Yh58Brr4gS3a5LcXg+oNfa/d8w9MgxZgsI6KNNXXkKzb7yht9Vy1VpJ7t4SkM7X7WIGgK+gTb4eSJPHb3/6W733ve/zf//0f7777LgAHDx7kiiuuwO12s3LlylYFCYAnnngCWZZZuXIlu3bt4sMPP2T8+PE89NBDXXsS/QERviFoI4o5laSp14e+G1pwd9QlBjwgfLX5Edv9zkq8VUdQ4rPQJWS3OJ4+aSiWoWeheetw5q1t1T6frYCaHX8FSSZ96ZMRgkQQY8YUMs75C7IpBfvR93HkftFqv83hd1VTsfZByj69CfvR9/FWHsJfV0RdwXZq971G8f+uoHrrn9D83tY7Ewh6MeJeLEB4lfVy2p5TIn7MxaQueBBJkqInepQkZH18k82yISH02ZQ1r43javgdxaFvqqcWv6uqYbffg/PEVwCkp6dz+vgkfnhWJlcuSmPWqHiS4xSKqjys2VfDX//9Bc888wc++eQTjm38F9Xbn6V01U9atSCYn8KQPim0LThmOH5HedjnsjaeZ9sIFzTCPUkEgp6iT3hKBHnwwQcxGo3ce++9HDp0iDfffJOMjAz+/ve/M2DAgJj62LFjB/fccw8zZ84EYOTIkfzqV79i2bJllJaWkpGR0ZWn0KcR4RuC9hA3+kIcuZ/iqTiIvtGqQji6hCEA+Gx5EdtdxYHkeKaBc2IqK2cZfg6O3E9xnPiiRbdITdOo/OZxNJ+LhElXY0gd14Jtg0iZfx/lX95F1eYnMaSNj5oboyX8zgrKvrwTX00uijmNhMlXYxo4B70lhXh9LQU7/kfdoXeoO/xfPBUHSF3461Ci0M7AXbYv4IlSfQyQkM0pmAbMxpQ1J2pIjUDQEcS9WCDJOtLP+mPEC6mgF9HmnBIxtJckZENTUUJSGirsWE/7BUX/vRAA2ZDYakiFpqn46orDNqj4bYUA6FPG4q08hDNvLQnjLwszQyIz3kvm5GQWTUqirMbLkUInObUSJSUlrFq1iuqT27G4ihk5oIb5044wbNgIFCW6kBZ86dfFZ6NLGIQj5xM0v6tJO3+YN4jz5GrUOXeBJOPMW4NiSceUGbm4qtUv9rWH8BAXv70EuVFlM0H70VQftXv/iWXoEvRiXmOmzz1J3nPPPRiNRp5//nmmTp3K3/72N5KSYs/wW1ZWxuDBgyO2DRkyBE3TKC8vFw9CHaFelJCEKCFoA5KskL74tyi1u9AyZoeXRI8g6CnhrW0kShRuBsA0cHZM4xkzpyGbrLiLt+F3VaOYkqO285Tvx1O6C13SMBIn/aDVfk0DZpIw8Ups+/5Fza6/k3r6/THZA4FVlrLPb8Nny8M4cA6pZzyMrDMDIMkSJuswkqf+EMvI86lc+xCeiv2Uf/2LwAN9fbv24qk8RPX2v+Ap3dVkn/3wO8gmK0nTfoxl+LkxiT4CQSyIe7EAwJgxtadNEDRL237vY7s9SEh6S8QW2ZiMpOjD+ml48ZdN1tbzPKjeQPhEGN7ak0DguUB11+Ip34u7bC/ust1R7JbISDaQYTVxhsmK4Yw7OLb7Cza688jdf5Btx+o4/I+XMBiMjBo1mjFjxjJmzFgSEhpyZmjegCgh6cyYsk+rFyU8TcbyOxs8JdBUane/hGxMpnb3SwBkLf8EOSzsIlqFkFgJFyV89hLx8tyJ2I/8D9veV6g7+AbZyz/uaXNOGfqEKDFv3rwmD8OapnHs2DHOO6/pSufGjRu7yzRBOMJTQtBOFHMqqYO+Q0VFXUQiqIg2xiRkYyI+Wz6a6keSFTRNxV28BWQdxszWw7cgsDpnHrwI+5F3ceZ9TfzoC6O2sx97H4D4sZfG7CmQMPFK7Effx3nyS7yTr0KfOCSm42p2PIfPlocpax6pZ/yq2WzbOksG6Wc9TdlX/4endBdVGx8lZcFD7RYCHblfULnpd6B60SUOJm7UhRhSx4Kk4LcV4DjxZSCR56bf4Tz5NSmnP4Dc6IGyI2iahrt4G86TX+GtPYHqrkE2paBPHoFl6JkY0iYKIUQgEAh6gLaXBI2lUzkil9PAS95FkmQq1j3U0EYOFyWSoZmkkUE0vxu/q7q+vRXVVRXyqJSNySROvpqqTb+jauOj+OoKmu1HF5+Fz5aPuWo92cXP8d2xYBs8gJwSF1VDx5OTc4z9+/eyf//egO0Dsxk7diyjR48lxRcQD2S9Gbne68N+9H2MmTOwDG0oaeytOgqAeehSnCe+xHFyNebs+aH9qqsKKcwDUvO0vxpIeHUPzdt8pQ9B2wmKXpoIi2kTfUKUuPLKKzv1wfT666+P6oJ1zTXXNNkuBI7YCbmZiZwSgi5ClzAYT/k+/I5SdPED8VYdRXXXYMyc3qaXZcuwM7EfeRdH7hdRRQnVY8N54isknQnL0DNj7lfWmYkffxm1O5/Htm8lKaf9otVjXMXbsB/7ANlkxXraL1ot/yUpBlIXPEzppzfhzFuD/dhHxI+6IGYbg9iPfkDV5idBkkmacTPxYy6JrBySNgHL8LNxl+2hatPjuAo3Uv71L0hb/LsOe2dAIFyk6pvHm2Ypr83DU7oL++F30KeMxTrnLgwpozs8XnNomobfURJakdInDEbSGVs5StAZiHuxQNCL6YTwDb11DN6qw2EtJGRDAtbT7kVnyQh5KkpyuKdEw6tLtFCPxmh+D/66IgAMKeNwFW7EV//SqBiTMA6YAdCiIAGBMEyfLZ/afStD2xIsOqYOjyf7iqvw+/0cP57DoUMHOXz4IEVFBRQVFbB69ZdIjjwyvOWMp5DxZjuapiFJEpXrH44QJdwlOwBImno9qrMSd+lO3KU7Q/tVd03EM4DaAVEi3FNC87vb3Y+gKdFCcwSt0ydEiVtvvbXT+rrllls6rS9BI9T6RJey8JQQdA26xIAo4avNQxc/EJ8t8JCht7btpdWQNhHZZMVTvhfN746IZwVwHP8Mze8mbuQFbfYMiB99EXUHXseR+xmJU65FF9d8vhtN9VO95Q8AJM/6GYoxtlA0xZRM6um/pHTVT6jd9SKWIYtjengL4qk4SNXWP4KsI/WMRzBnN59YzJg+mYxz/0LZl3fhKd1FxZoHSFv8WLtLn2qaRt2B16nZ9QJoKoa0ScSN/g7G9EmhDOyu4m3Yj36At/IQpat+TNL0G0kY9712jdccfmcFtv2v4cxbh99R0rBDUjCkjid+zEWYhywW+TS6CHEvFgh6Ox0XJdLP/D2eqiOUf3F7fZPA82Hc8HMiG4aFb0R4Suhar5DlrTmOp/IQkj4evXUkrsKNoZVs2ZiEbEoBxQBRwinC0SUMBjZFTUCp+Rzo9HGMHj2G0aPHoGnfpry8nMOHD3L06BEObzvG0SIXeev38cXOUuSiIoZmmBiabiTJVktCQiKqx4a36iiKJRMlbiC6hGzcpTvx1QsqEEh2LYWJ/h0TJRpCP6KFkvRWHCe/RjFZMWZM6WlTmkXzCZGnPYinqUaIB6EuJBS+ITwlBF1D4KEBfLZ8YA5qfYZtxWRt4aimSJKMIWUsrsJNeKuPN0li6cj9HIC4dnggyHoLcSPPx7b/3zhPriFh/PJm27qKtuCz5WPMmIZ58KI2jWNIHYdlxLdw5HxM7d5XSZ5xU0zHqR4bFWsfBNVL8qyftShIBJENCaQvfZKyz3+Gu3grdYfeikga1hbqDvyHmp1/Q1KMJM/6KZYRyyI84eSEQcQnDCJu5AXYj75PzY6/UrP9WTSvk4RJP+iw15ymadgO/BvbnlfqV48k9NbRKJb0QK35qiN4yvdSWb4X3d5XSJn/yy7z1PDZS3AVbMBdtre+hJ2ELiEbY/pkTINOj4gt7muIe7FA0MtpR0nQxsiG+Mjkjc30Gekp0bCwJRkiRYmkGTdTs/3ZiG2eskA4RcL45Ui6+kUE1RcY35SEJEno4jLxNcpHFY4+ZQyKpfnE0X5nVUTYiSRJpKenB6p5nH4GFVNUDq3Jo8I6jbwqiSPHVfaddLDvpIM1j/2W9PR0sq0yiYV1jJpan5Q76BFRbyuA6q5GDVtg6EhOifDqG5rv1FjZ99aepHLdgwAM+v7qmI/T/F5KV/0YU9Y8kqbd0EXWhY3XgVKt/RkhSgi6DVF9Q9DV6BMDokRwFcTvqgQCcaRt7ss6ClfhJjxVRyNECc3vxVN1BNmYiD5lbLvsNA9aGBAl8te1KErYj7wLQNyYi9r1sp009XqcJ7+m7vDbJIy/LKZqHLb9r+N3lGAesoS40RfFPJZsSCBl/gOUfHIDNbtexDRwNvoWSrhGw3H8M2p2PoekmEg78ymMaRObbSvJCvFjLkKfPILy1fdQu+fvyMZE4sfEbnNjNL+bqm+eCIhOioH48VeQMH55hKilaRru0p3Y9r6Ku2QHpZ/ehHX2HcSN/Fa7x22M31FGze6XcRxfFSqlHMRdvAX7kXeRjUnEj/seCeOWtxrSIxAIBJ1PV+Tzif582NxvXLgQkLYkUJbbby+h7tBbEe10ScNIGHcZzrw1kcfXex8qlgHRRQlZT/rSp9Anj8Ce80mzVjtyPsRdto+UeT+PWnpc0TwMSTcxbcECjGmTyElaRX65mxOlLqpSkik+eYCCg2V4yqsw5O4nfe+jZJBDmqeOQWlGUuJ1SJIUECWMDQk0eyJ8Q1P9OE+uxpR9GrLeguZ3U/71fViGnUnCqGUA+F1VlK/9FQkTv49pQNNS6e3FfvSDCJvDvVg9Vcdwl2zHW3WUhAlXRCTu9Nbk4K0O/NcdokR4wlJ32R6qtzxNyvz7MKaM7PKxT2WEKCHoPkT1DUEXo0sIVOAIeErQbk8JaAj58FYdidjurT4Gqhd9yvR2r8rrU8eimNPwlO3B76qKap+vrghX4TfI5lTMgxa0axzFnErcqAuoO/gG9uOrSJzw/Rbb+13V1B3+L8h6kmfc1Obz0ycPJ2nq9dTs+CtVW/9Ixll/jPlYn6OUqi1PgSSTsuChFgWJcIwZU0hb8gRlX/yM6u3PYkifiKGN4ToQEE0r1j+CK38tiiWTtMWPRhVVJEnClDkdY8Y06g69Rc3Ov1H1zWNIsg7L8LPbPG5jXMXbqVz/K1R3NZI+nrhRF2AaMBMlLhM0FW/VMZz563DmfU3trhdx5q0h9fQHoz4ICwQCQZfRCZ4STds0sznMUyJie1j4ZCjXT5S25sGLkHTGkAgRJPhdFz+AaK/lijklFCbQUqiebf+/AeoXGpp6CQYTHso6M5LOiNkgMzrLzOgsM2lLz+bERx9SUOEmLzGOqsQRVNTWUlZWhKeiOmC/QSYrxcAIxxaGjHZh8aoY9XJECEZb0DQNzdO+8A1n/loqN/waJT6Lgd95DWf+etzFW3EXbw2JElVbnsFdsh132W4GXf55u2yMRjARKIDPVog+eXjoe+nH14U+u0u2M/CiN8OObHjv8NUVUb76HpKm3YB50OkR/Wt+L868rzFlze1QKeLw0q7lX9+L5rFR9c2TDPjWX9vdZ39AvB0Kug2R6FLQ1QRezKTQioe/XpSQTSlt7ivoku+tjBQlPJWHAvsbhXS0BUmSMQ1aAGi48tdHbWM/9iGgETfygg7lLYgbeT4AjmMfNVu5JIht/2toPhfxo7+DYklv13jxY7+LLnEIntJduMv2xHxczfa/oPlcJIy/LKaQkXCM6RNJmnoDqF4q1/+qXfGctn3/CggS8VlknPuXVr08JEkiYdz3SF3wMEgylZseDZWfbS+OE19S/tVdqO5q4kZfxMCL/kPy9J8EvE4Sh6BPGoZl2JmkLniQARe8iiF9Mt7Kw5Ss+gmeqmMdGlsgEAjaRsdzSjRt0cxrSaN7YNLMW9ElDiVuWIMQHPSmiHa/DHoJymFeBigGJCUQAtdcyfDw/A2NbYiG314a+d1VTcnH12M/+n6ov8ZeH96qY8SZFMZkWzhzqpWbb7mDe+/9JZdfcAZzxiSQlWLA41M5Vuxi9aZd/OvND/jzB4X84/NiPv6mgM2bv6G4uAhVVVu1DwKCRM22P0eUUm1L+EYwaai/rhBv7cmo3hqeevGgs3MuaWqDeBJcfIpqY6O8H+GJJ2v3/RNf7Qkq1tzX5Djbgdep3PAIlRt+0yE7I/J11M+PKiqctIoQJQTdhwjfEHQxkmJEicvE7yipLwPWfk8JJW4gkj4Ob3UOmtrgQu+pOAAEsnh3BPPgM4DAyko0nPViRUfDAvRJQzGkTcRny8cTpQZ7ENVjw37kPSTFSEIrHhUtIclK6HhbWJbylnAVbcV5cjWKJYOESVe1a9z4cd/FOHA2vto86o7+r03Hukp2ULv7ZSSdibSFj8QU5hLEPOh0rPPuAU2lctPvUN21rR8UBXfpLio3PgqAdd4vsM6+LcI1uTG6hEGkn/kH4sdeiuaxUf7VXXhrm39IEwgEgs6kS8oxK814RDR6kU8YeykDLngF2ZAY1ibgKRHNq6JBlGjwlFCMSaFzMA9eSPrZzzY5zm9vSHIcS/Jmn70o4rvtwOsRq/uS3gJyo1CUiGdiCV18FmazmVEjBrNwYhLfX5TBLRdkc8XCdJbMyGL88AEkmBXKbT725tbw/vvv8Oyzf+SRRx7ixRef48MP32fHjm0UFxfh9/vxu6obwqcJVPioO/xfZGMySdMDuabaEr6hhgkYvpoTUV+2g9VNdIlDW+zLXbo7prwYdYffpWrL02i+2ESJkK2eOorfX0HtnldD21patAhWOnEVbgICi1Cu+ooo3uocij+8ttXFFk1TI/KAhLar3lbt7e+I8A1B9yHCNwTdgC5+IH57MT57KWoop0Rym/uRJAm9dRSe0l34bPnokwI3V0/FQQAMqe3LJxHEmDEVSR+Pq3gbmt+LFPYwpnps+GpyUeIGtFidI1biRi7DU74P+7GPMGZMjdrGVbAJze/GMuK8Nr2UR8My7Cxqd7/ckJPDOqrF9rV7Aw8MSTNuanc5UUmSSZ5+EyVFP8S2byVxI89HNraemV3TVGq2/RnQsM6+s815MCCQKd5dsgNHzsdUb382plKv4fgdZZSvuT+QXHT27cSNODem4yRZR9KMW9D8XuxH/0fFml+Qed6LomSpQCDoBjrPUyL9zKep3vFcswmZmwvfCK/EERIuoogHSr23pGJu8JpsHMphTJ8YEAjCXuDDPQbDS5FG9B2fhYSEr64gVClDU304jn8aIUhAINF1YzFH8zUkRZRN1tCzQPg5GwwmslMlhmdYMaZNxDZwL3aXn2KbgmfCYvLy8jhxYCOHt+0kN3VCKFJG8juxlH1K9sjJjFlyB1lZWcTbA56k8WMuwpAyJmCD34Pmc8d07wgkXQ7gd5Y3SeoYLlqEi0meqmMo5pTQIpGreBvlX96JPmUsmef9rb6/Smp2vUjChMvRJw4JbHPXUL316UB/Ycmd/Y6GvA3N4SrchM+WHyFghNvrrclFsWQ0W0Wt9JMfA5B9xZdUffMEvprjVKy5n6xL32t+0ObEh1OowklPIUQJQbchwjcE3YFS/xLvryvC76pCNia224XQYB2Np3QX3qoj6JOGonod+GpOoFgyOvziLsk6DCljcJdsx1dXEJGUyV2+H9Awpk/q0BhBzEOWULXlaZz569E0Naow6MxfG2g7aGGHx5NkHfHjl1Oz7U/Yj36AYfZtzbb11pzAU7YbJT4L8+COja1PHo5l2Jk4cj+n7vA7JE9e0eoxjtzP8VYfw5A2EfOws9o9dvKMm3AVbcZxfBWW4edgGjAz5mOrt/8FzWMjfswlxI++sE3jSpJE8uzb8NtLcBV9Q83ul2KutCIQCATtps05JZrfZcycRuZ5zzV/aDMeFOHPk5IcDN9o2lauv1+HJ0YMhm406U9T0SUOwZgxjfixl4Z1Ev05In3pkyhxAyl883z89iI0TcNVsIGqbx5v2n0U0T3cu04OqyYS/kIvm1ICfftcqPUv1XEmhVHxZrLPPg+Ak//6F9V2H77Jiyit1SgqKuTE/rUUV3sp3radw/Z3gUBeBou9mMHFO8garqLLd5Ba+wG2Y5+QufRxTFlzo54nBEIQIkQJR1nIniDu6qYCgLtsH2Wf3YxxwCzSlz4JNCzweOtDYgGqt/8Z54kv8VTsZ8D5/0Dzuan4+t6G/sIED9XXeoWLULWVMIL5PQBKPrwG06DTSVvYcriG5nOFPB1Udw0+Ryk6S0b0tv7ookR46IkgOkKUEHQf9fFukiw8JQRdR9CzwFuTA34PcnxWu/sKJrv0VB3BMuwsvJWHAa1D+STC0SUNDWSLrsmNECU89e6BhvTJnTKOrLdgSB2Hp2wPvpoTEcmhIODO6CrcjKQzYRoY+8t0S1iGLqVm259xFaxHm/WzZl19g9m040Zd0CleVAmTrsFx4kvqDv6HpAktlyXV/G5qd70IQNL0n3TIHVk2JJA842Yq1/8K275/xSxKBEJXvkKxZJA49fp2jS1JMta5d1H84TXUHXwT8+CFnSZoCdpGTk4O9957L3V1dRgMBu69915mzeq87PMCQe8htt9L06AFuPLXYRrY/MtuqzSX6DLsNzu4yh81p0RYCKekj0fz1qF6apq0kyQZjcCKvHXOHZH7wvqVZB1avYu+pBgDZUUTsvBWHUV1VTa7ii9HeUkOFyUiSp+GfVbMqQFRwu9GC09uWe/V4XdWIMsSKQl6UgaZmTFkMQDOgkkc//gYpTVe1OlnUlhYSO7uE5SX+LDnFHGk2IPjeMCjVJEhbfM9DJ9/PZmZA8jIyCQ9PYM4tRhzygjcJTuoWPtAhO1+R1mTJJnu6pMN51YvStTu+UdgX/HWhvOLUlHFVx+C6KsrDFS6qtiPp3xfk3YQW9nNaCE3wbDeIJF5vaJf043HKn53ebMlSZtLGtqWZKL9FSFKCLoPkVNC0A0EPSU85YHcD+3JJxFEbw248vtqTgT6rAwo+/pOEiWCQoS3+jjUP0QAoZhFQ1rnvVga0yfjKduDu3xvE1HCVbwVze/CPGRxxEpSR1BMVgzpE/GU7cVbdRhDlPKpmt8dKHsp64gb0TklNfWJgzBlzcNVsAFX8TbIaN77wZm/Ab+jFFP2fIydIACZBy9CF5+Nu2QHnoqDrYpXmqZSve0ZAJJn3tKsC2ksKJZ0kmfeQtWmx6jZ+RwZZ/+53X0J2o/RaOS3v/0tI0aM4NixY9x0002sWrWqp80SCDqfGEXc1NN/ibf2BPrklsP4WhwqhnwOQU+JaHkpwj0tFGMSPm9dxIp/WMPA/7UoSSPDbFDMyfjs5fWHBO6ZeutovFVH8VQcip6jQdZDlBfxCDukcOEjXJQIhJ2Ee0oAoVwR4S/u3uocHKof2ZCAJOtItAT+y168BEnWUbPLS9mOAnyjv021z8qhjzZQYfNRXuulwubHsW8Pu7Z8FRJeXCdXY03NJNnsJ8ngxBqvJyVeR3K8Dr29DIlGZavDRAm/vQh32R58dQWBKQgXh6LMRdCbQJIN1O56Edv+5vNSRcxDFO8Eze+Nmsehcd6PiGPCvCi0sLwQbUlS2VzuCCFKtI4QJfowe/bs4f777w99P3LkCP/9738ZP358j9gjwjcE3YEuvl6UqE9IKXdAlAgm0QrekHy2QoAIr4aOoE8KiAO+2hOhbZrqw1txEEkf12njABjqV849ZXth1Lcj9gVrt5sHndFp4wGYsxfgKduLM399VFHCmb8B1VOLecjiDolHjbEMXYqrYAP23C9gSvOihCP3MwDiRl7QKeNKskL8+Muo3vJ7bAf+Q+qCB1ts7y7ehq/2JIb0yZg6Ye4tw8/FduA/eMr24i7dHSplJ+g+srMbSrOOGDECm82GpmldkxRQIOhRYrumJcXQrjLNkcSwmBWl+oYhfTLWuf8X0cw87Exse1/FlB1ZDrL+4MD/o4gS4TkldKakBlGiPs+BIXUcjpyPcZz4ot6rEhKnXh/yxpPDEmuG4w+rghERphL2WdLHg6yvFyXCXpDrn6vdYaKEp3Q3tvo8TamLH2sYx1mOLm4Ams+JySCTOmQYo1PHM6ggTCjIPhv3wAvZ98Y1lNd6cSTPorhMobKihGqdpUnIhM74NdYEPUl6B0kWHaPWr8VcsgWtxkOiRYdRL1P22a3hs9hgelgoRvA3MvjiLimGCEFClzg04jkpcHy4KNG0eojqrokuBDTeFrZQqrqqGz6HzXMsXhkNtjSTU0JTW62A1t8RokQfZvLkybz3XiAZS0FBAT/4wQ96TJAARKJLQbcQyinhCJTm6sjLbvBhI3jzDNUa18d3xMQQuvrkmd6a3NA2b+URNL87kAgzhtWhWDHWe11EyxztLtkBktxiLGl7MA06nZqdz+HKX0/SlB9GGXc7AOYwL5FOGTd7PpJixJm/DrWZTNt+VzWuwm+QjYnNloNrD3HDz6V2999x5n2Nz16KLi563ClA3ZFAlZD4MRd3ykurJMkkjL+Cqk2PYtv/mhAlorBlyxZeeukl9u7dS1lZGc899xxLliyJaLNy5UpeeuklysrKGD9+PPfffz9TprR9Lr/44gvGjx8vBAlBH6Ubr+sYnhuD/84iEkRaR4cSJgZJnHQ1+uSRmLLmRBkmEL6hRfOUCBMJdObksGMCr1JBzzjniS9C+/TJI5EUE5rfhRJejjSMcE8J65w7w/oNyymhMyPrzGh+F1r9y3Kg38D9zVO+P9TWHV5lK6xymN9eUi9KBJ5nJJ2pSWJLi9lEirkKw4jAM078uJnUHTyG16dS4zFTWVVFVZ2PareeSpuHqlonZeU2ggU4D3/4Hu6ib/DUBp6/TAaJRLOORItCkkVHUqKPUfv3kZiYCFUVqKqGLEtoPieS3tIgImiR3hf65BEhUULSx6F57RGeEmqYh0PofN1VMXknhOf58LurI+arof82lPNsIXeE5qkDEmLvq58hRIl+wieffMK558aW0b3LEJ4Sgm5AMafWJ6sKXG+yKaWVI5onWAkieBNXw27mnYFiTEI2WfHV5oUqcLjL9wJ0ek4A2ZiILmkYvppc/M6KUKJO1evA7yhFF5+NbOgcsSWIPnEwusQheKuP4asrQhc/MGJ/UCDpjNCJcGS9BVPWPJx5X1Obux6sTR8+nXlfg+bHPGRJ80nU2oGkM2IZcS51B/6Dq2AD8WMuitrO7yjDVbAe2ZjcqR4qlmFnUrv7pfrKJ8cwWEd2Wt99AYfDwdixY7nkkku49dZbm+z/6KOPePTRR3n44YeZOnUqr7zyCtdffz2ffPIJKSmB35ILL4yejPTtt99GUQL3t4KCAp544gmef/75rjsZgaAH6U6xraXFrIxzn4t0mQ/PKREtlENWsAxZ1MxA9c+nqr/prrBnV12Uil5KlMSHsiEeTWvIPRGNoChhnffziOpP4feloICgOmyoHnuob7/TRe2+f+Ep2xPIleF3R1Z/0BpCEIJ5LsKfYxrbpHodgbDH4OH1L/56nUyazk2aJRBiGLTTW52Dy6NSbfdR6/Chm7WEws05lORVYnP4qHb4KK3xUloTtKmOzY5/IkmBMtjeygIsJpms0j+QnD4Y77584vUe4k124k0KcSYZs1HBEtfggSYbk/B77RHeC+FeF6HzrSuOqdSp5rUHQjU0LST4AKFKKuHzEHFcfUJTn70Y1VVF4qSr8FQeCS2IRUON4tEhaECIEj1Id67YfPLJJzzwwAOtN+xCNJFTQtANSLIOxZKBvz5usENhAbIeJDnkIRH8f2eJEhAI4QivwOG3B25oukarO52BMW0Svppc3GV7Qw9loXriSS3XE28vpoFzqas9ibtsT4QoobprA2VP47M6XMkkGuahS3HmfU3Vkc9JnNNUlAiGbliGnd35Y2fPrxclNjYrStiPfQiaStzIZZ0risg64sd+l5odf8GR+5kQJRqxaNEiFi1q5oUEePnll7nsssu49NJA1v2HH36Y1atX884773DdddcBhDwQm6Ouro6bbrqJBx54gKFD2//vSpY79tIXPL6j/fRFxNy0TCzzI+sbVpi7eh4lpUEQaDyWKT3SA1gOzx+ht7TJNiksfKPxcbIurF9TQznRUDtD08oaOmMiBBNiyrqotgRfhGWdKWK/rAvzlDCY66uFaKju6kByzfpwlWB4iDF9Et7aE/jDXqYJfwnWvIH+67cpenPEGIEmdbhKdzV8b+QhYEgZS9zI8zBnn0bl5j/grc7BZJAZYDAwwGrA4H2fSbMH4hhcEThe03B6VGocfmrtAZHCNGsOtTY7xepRKp0KdpefgoITFFfUYjsSPUGoacdnUFmAxaAQn+zHLNkxm1wMTfocneM4iu0waokLo0HGpJcx6SVKv74fy4BpUfsDSJhwBc789YFnIJ+9ybuJ5m5IiKn5HNAo9KLg35Hva357Sei5ojmkepFI/O5ER4gSPUh3rthUVla2S8zoVET4hqCb0MUPCIkSHckpIUkSks4ccg0MqvFylLJe7aVxBQ61Pr60cQ31zsCQPhn7sQ/whIkS3qAokdg1okQwqWZQ/AgSjIE1dmIyz3ACIRkSjqLdNHaaVb12PGX7UCzpGNImdvrYhrSJSPp4XCXbUX3OqNdLMI9H3MjzO31885BF1Oz4C66C9TD9J53ef1/F4/Gwb98+brzxxtA2WZaZP38+O3fujKkPv9/Pz372M5YvX86CBQvabYtOJ5Oa2jmeS1ZrXOuN+iliblqmpflJXHQLJ9wlDJhzPfGddK02hxZvJviK2Nq/C50tgeCrbXxySpv+HRUpOvyALGtNjnP4Ewg69MuKnoGn3YhiTAy10zQL+ZHdkZqZSVAi0BuNobblmRNxlERWlUiyJpEUNqbdm0RwzT0+KRmPyYLPVr84IikoOh2+sOOHLv4p+V89hj1MlDDpG0IJ4swKqanxVEoBrwVrWiomawJ5YX24Cr8JfZYUAwqRngZp488hc9ZVALiPDMRVGJoQUP14yg8QHrwgSRIWo4LFqDDQGhBAJl9+ITpzMsc/zqf6cDmqqpG++Pt49Bns+Ndq6px+7C4/Nqcfh0fF4fZjGjiQ/DKNyjofNtWN3+tB9dooiPuasp3/pjkMukKMehmjXgqIFQYZo15Gr9cxbsRYynNW46uyUb1nE+a4ZE4WOtErEnqdBJVFVNX50MmQ7KvD47Hj82vo5OheQt7yXVEsiCQxPvDaLX53oiNEiR6kO1ZsAFatWtXzoRsITwlB9xHMKwEd9JQg4BURTH7UNZ4Sw4CGChxBV85gks3OJOhyGcyEDQ1iQeO4284iKHZ4ayKTVDWUPe0aUULWW9AlDsZTexK/uxZJ3xDH6a08QqC0a9fE+0uyDlPWXJwnvsBdvB3zoMiEan53Dd7qHJT4LHQJ2c300n50cZnoraPwVh3FW3sy6t/WXX6AY2v/SfyM25DN6Z1uw6lIVVUVfr+ftLS0iO2pqamcOHGimaMiWbNmDZs2baK8vJw33ngDgH/+85+BGOo24POp1NY2jZNuC7IsYbXGUVVlR1VFgrVwxNy0TGzzY8S68HHcgLuirpk2nYPd3hCSUNHKWK66hld1p0dptX04qha4H/h9vibHeWobXrclRY9x9BWoqhbRTlKMESED1faG512fXw61TVnye/T7/0PN7r+H9tscKr6wvjy2sPNwy/gJ86jT/PjD0l6kzr8Pp5yNqk+OsLmuqiL0Oe/L32CrqsDjDIxRU6diV5ufG83vxW2PrFDi1WeHzsGnNDxbGdMn4y7Z2Wxf4ZQXFeA48S9qDgeqEsmyhG3/m3jK9zFqYPQFn4xzrqP00514fSq+xPHU1VRQW55HwqLzOe79EKdbxe1VcXk13F419J/Lq1Ln9GNr9FMqKQaOfbgKV2Ex3toaNtveQtaZqTvWMF+Gvf/DU1kcOL/t/8RTeSSUo0KWQJZBkaWw/4qQJQlJqs+2IitIqEgQ2jZSfZ0bb7uH6mpHu393EhPN6PV9MwxeiBK9lM5YsQnSWaEbHXU3kgj8gsqKIlyXGiFcSaPTeF5inR99fIMoobOkdGheZZ0JVfMjab6Qp4RisCB10t/KUO9J4K89gSxLIU8JnTkpJrvbMjc6S+AhQnVXh9oHk0cZkod2yfVntA4NjRPev6c+d4Ypc0qXXffGlNH4ak/iqz6KMXNGaLu3KpAZ3ZA6tsvGtgw6DeeJL3AVbiRuSOSKuSt47hldd+7mQafjrTqKu2ADxuSmXjB1h9/BfmI9plEXYWohGaeANlXPWLJkCfv27Wu9YQx01suyqmrixbsZxNy0TG+ZHy0sqWZr9mhhVTLQWdpmf/2imaapTY7TUMKa6aLOjaSLFCU0KUxIkJSG9rIRfWqjxPOSIaK/iGMVc0T+h4RJV4W87QAkU0ogaWSjHFp+d23E9+odz6ELVvWSja3MjYbfWRGxRUkaFjpGNgfEWyVuYJRFFAlT9vyAt14j7Ce+pnb3yxHbwkuaRkPSBTwL9DqZ+IQ4Ek2Qri8nc1QmGWMaxtanjifltF9Q8sFVDWehaXg0PS6nKyRU+PVpJJ9xOeU7PdTm1mKZMAWfLoUy1uD1qXh9GpI1kbr6OVJS4nB4JFS/DlXT8Pk1/GrgWnR71QiBKGSzIjepxOE/chSv19tr/l31NoQo0UvpjBUbgMLCQiorK5k8uWOJ5DrDldRn0lEFWOLMneaW2tcQLl0N6PVKk+sk5vkZMIya+gTU6VmDkHXRE0zFQpkpHp8NkhMVilQXkqInLT253f01xmseTymgOYtITY2npD6GM33gQOQ2eGTEMjdqspFCAG9NaG5L7QGH04zhE9AZu+LfZTzFcWn46gqwJhuRFT2qz0NexUEUYwIDRkzsspAu36BJ2HO/QHHmkpq6MLTdZs8BIG3YVBK76LcoKW4pFRsexVP0TZPr2LkvkCk9dcTcLvstNE88m9o9r+At2UTqwh812V9cERBGMkfOQGcWv8cAVqsVRVEoL4+Ma66srGxyLxYIBN1IW+4RYVWrZH3bnqkM1lE46wpD5bojTdCFfY6eByiQ9yGsxGe4mNmomlbjPE6NK2FEJroM5pQIkDTlh7jy14UbB9AkP5PqtjWx0Vdf7Svo8Wk97V5UZyW1e/4RKq0ZqnDhqoo4VjE3/A4qcZlAoOqIGla1ImC7kdTTf4m35jilqyJDCJsIHZZ0/I6yhmN15pBXamhbWMUzTfWF8mmUfHRtRDvTgJnoE4eQNOMWarb/OXCsJJG18EEkQzzlX9wOgC4pjQGTp1Irz6BW2UbSxIGYBsygxJ7c0FfWcFyFgYAdy4gpOHIKaQ5N01C1QNoJTdPQANmSgd9eihoo54IGDP7WNRgMBqD1qiD9ESFKnGK0td55VlYWn3/+eYfH7QxXUoc9cLzD2dQtrr8jXEmb4vX6Q9dJW+fHpQU8AiR9PFU1XqCZutExoBK4+VWUluP3OJAUc6dev5qmA0nBU1dORUUdXmcgiVVVjQ9ofZy2zo1kiMdrr6Siog5N9eGqOolsSqGmToK6rvl3qSQMwWcvpzT3EPrkYXgqDqP5Pegzp1FZGXv977biNwUe+mry96Eb1nButqKAKODSD8HbZb9FCvqkoXircygtyEcJy9Zec2IrAL64cV32W6gpg1DMadiLdjcZ3+cox1NTgCl1JDaXHtXRfhv6kiupwWBg4sSJbNiwgaVLlwKgqiobN27k6quv7mHrBIJ+TBtEiXDBQNJb2jRM8uw70CUNJ350lHxt4aKEEv31KUJYqLfZOvduqr55nMRJP4hoq5jTkU3W0It/40oY4ech681NK7CGzUmwMkgwR5NsTER11+KpPBDVTmR9SGSJG34OALYDr6P5XUj6eHRxGXircyK8PiSdKUKYMWbOIGn6jZgHnU7FuoeazIOkM4bKpIYTXgIVQJ8yNkKUMKZPwVX0TUQb2RAfmH/VB6oPT8V+ohEs72kaOIvwUSTFEHld1Isa+qQGT06tUQltNczLJNy+qONKEkro7xP4oDMn4PNECtyKLJ7vW0KIEr2U3rhi09GXZS1UYkkWL97NIFy6Imk8F7HOj2wJKPiKydrx+axfnfB7HGg+F7IloZP/RlKgxJWrGr/Ph+qxoZhT2zxGrHOjGK34bHn4PM5A6SrNjz5xSJded7qEIbiLt+OuzkVJHIrXWRmwxZLZteNaRwHgrjwcGkf1OvDV5qHEZSLpE7v4vAfjrc7BU3MSoyGQuFT11OGpOoJiTkOyDOjS8Y0DZuI4vgp3+UFMWXND210lgYRc8VnT+t1vjt1u5+TJhqSr+fn5HDhwgLS0NNLT07n22mu5++67mThxIlOmTOGVV17B5XJx8cUX96DVAkH/xpAyFgj8prZG+ItzWz0lFFMySVOujbovFk8JaBAKBl78NgBxI5dhGXFeE49ASZIwpIzFVbgp8L1xyVA5siRo07KXYf0FRYnMaWQt/5jaPf+g7sB/8NXmEY1oebGC3g76pGFoatOV/HBPjYD9MgnjLwsc67E1ahtZ1SMc58mvIr7rk4aHvD4GfHsltoNvRrHXjCTp0PChqT5MA+c2ES6gIQl5k7+PYoj8+9XbF57zqnGoRfg5ucPKpMaKHEUQiyhdK2iCyDjYSwlfsQkSXLGZNm1azxnWEUSiS0E3oVgySJhwBQmNVibaQ/DmHVD3tU5NchlEMVkDiavsRYFSZF2Q5DKIXF/KTHVX46tPPtlV5UCDhK9GBMauT+bZBRVGwlGMSegTBuCrzQtVUPFWHQW00ENuV6JLDDxAhz8Yusv3gaZiyJjaJUk2wwklUW1c+aQ+yWhc1rQuHb83snfvXi666CIuuugiAB555BEuuugiXn/9dQCWLVvGPffcwzPPPMOFF17IgQMHePHFF0MVrwQCQfejTxpK5vmvkHHe31pv3AFPiRaRInNKtGiCMTnCO625EEV9ypiw7iNf5MO/B0IagqKEFDQiav+yzoysa/m8NU/TsI7g+cWPvSSq6NLSOTeu3tVYwGgJXXgOsITsiFKzcaMvJOX0BwP3yvrxNdWLdd7dEXmigpgGzQ98aFRmW1IMkfMp14sS8QNB1geeTdTGokRtsHFomzFjGpbhsRUOkKL8DTS/L0pLQRDhKdGD9LcVG02r95SQ+oarr6D3IkkSSdN+3Cl9BZV3vyuwui91YjnQ0BimFOAY3prA74Fs7EJRwlif7NJVHVYOtGsqbwRpWI04GRo7YEvXihIAloxx1NiK8VYdw5g+CU/lISDyYbCrCM6rN0yUCCb0MmZ0fYnm4Lz7Glc+KQ0kXInPmo6tny3czJ07l0OHDrXYZsWKFaxYsaKbLBIIBLGgj1E874inRKz9SkpznhJBYvM+CxfHWwzfCBMlggsjEUKH3MgLox1iTPqZf8BbnYN5yBLqjkSp7NeCKJEy7+dUb38W54kv621sPY9X4tTriRv1bTzlkaEY4c9Y5sGLMA0IiA+SokfzAqoPxZxKwsQrcZdsb7D/nGfR1VdeC4oOoT4VY6PwG0N9Ox26+PqFi0ZCTfC73joKb+Xh0Bw08WhphmieEo2FD0EkQpToQfbu3ctVVzVkiH3kkUcAuOWWW7j11ltZtmwZlZWVPPPMM5SVlTF+/PhTe8Wm3lOiq5LaCQRdQchTIhj32VWeEoC3NhfomnKgDWMlA+B3VXd5OdAgDZ4SuUD3eUrw/+zdd3gUVdsG8HtmW3pvEHoLIYXem6AoYkNQrC8WbIiIvig29BO7YkGwIILYsAv6qgiK0qRID4SeBAgJpPe6bb4/NrvZze6mbkty/66Li2R2ypnDsjPz7HOeA8A7PAbFqVugKTgFVXi86eZCGdzb6cdW1KQaa0trg8+6CsPM83L/Ts4/fqAxKHLWtEyvLjVMR+obCWVAB4D1fYioDbGoHeDILxEshm845vFJaZEpUXf4htnxbAQlLAIRde6rjVNX1uUXcwNEpV/tDBxmVBGJpmC5rfOzP2TFUGAzeOh/a4MS9QzfqN0mHDJVILw6Dodf3xnwihpi2NYsw8C8TwRTpoS25rXaezHRKxiqsDirdWv3Y7umBFBbRLO21oUAQDI9s8i8QkxVyQRR3oiAlHG/1gExDt+oH4MSbtTuvrHh8A1qhYw3ADrjt/vOyJTwNgQljN9oOzVTwss4LWghtGWZAJz/gCx6hUBQ+EFbct4w1VrNxV/mgqCEV3A3AIC23DDfuLa05pyDrKurO5qt4RvGyuMyL+cHl2W+NampxemmIsnq/JMAJKjC451+fCIilzN/mHfg/abQiEKXaOKQPNFsNou6mQjmw/sEuReUYf2gLcs0Pbybj8AX6mQgm4Ye1G2eTIWAhDsbbJfNAEQDgRhB4WsYOqPX2PzyRhUxANU5h8zaUpOtIIgIGvRg7WHMMgwsMi6Mbap5sBfMZzOpc/51AweCTAlBsM6UMJyW4Z6u7NS6mvPwgaQpN71ucX8kymBdcdQ282Eoxn5hUKJ+fDokl5H0NUEJkW87aj2M37TUZko4PighqxlSoTEGJZyZKaEKAmAYQqEtuwgIMsh8wp12PMBwc6UI6AxJVw1dRR50LsyUkNVMcyppDLN86LWGv0Wlv9OPLSr9IHoFQ1t2wfTtjt5Y5LPO1G3OIIgyQxFTdYmpiFltpkbDBeOIiFobQXTSEOEm1JRo9C4FoaZWxsf11hgSRDmChsxD0JBHEDT0kZptrQtdGvnH3Gh7P438lt9WAKKhcxYEwZSJaWuIgyD3gq/ZrCb22mI+9MR8P3L/aAC1U5Fa/HvUHRZeJ6giiErLOhMWmRKGezpNUWrNpj7mG0Lu19HsOPLaL1gbYJ7xISpr7kNYU6JefDok16mpKWH14UHkwURTpoTzghLG7AVjIUhXZEpoy7Ogr8w3zELhoBus+hgDH7rKXJcO35DV3Azoa775kDTlgCA2qRBXS8gDugB6LbRlhkwNXVWBYTo2FwRFTMdHbRaOsTaKzLuVDgMkIqpHY8f8N3m/5pkLDrxmKgK7QhliezhhQMLd8I83DPMWlX7w6zO1tk6GYH/4hswnDAGJd1vvsJ4hGOZsD99o+JyN9xc2h29IkkWtB3vDQcyzUc0zJUKGL4Bvr2sQMmphzfbmmRJ1ZzYRrWpIWAzfEK0zJUyvmQ27kPlEWGZ9iPLa+njmbbZxz2Ye3DD9m9mY1YRqcfgGuYzE4RvUCtXNlBCdWFNCqpkhwrlBiSAAgDrfMH+53C/aaccyJ/OuCUpU5NUGJcyqkzuLqDTcDBj7Vq+pgCD3cfrMF0YK/85Q5yRBW5oOuV8U9FVFhhsdVx0/sCsqAWhKzkEVOQD6SsP72PieIyJqSwSZEpFXfWb6dto5x2hkxkELBSTMtP+indk3al+2MYNGI2o9GLa18XjYiICGzCsIGti+T5KgtxyOYact5pkSotmXBzKfcAQPm2+2onnmivWXnYIoN6s/UaeIqMXMJpYFKc2DFHK/jta1RGxkSggKP6C6zpAZ8/bV1K0wtods49MhuQ6DEtQK1daUKLD43ZGMNSVMv7tg+Iam0JCqKPfr4LRjWRzXxzB2VleZZxhKIFO6JFtBVnODo9eUQ5L0kDQVtqtiO4l5XQlDYEtyaZZC7QwchmKbzJQgorZOEdjVqUPkGs4aaNzsGy1shO2fjWxlOzQyKGErANGYTAmZKVPCRraKVCcYINoJStgpdGndHvs1JSz3XzOdqEXmhFkBTUXdTIna48t8Iy2zu0WZzaCErQCYef0I05cjOtaUqA+fDsl1OHyDWqHa2TeKan53Qk2JOkUPXTF8w/j/0Xy8pDPJagp66SpyoFeXQqYKdEm2gGhWU8JQvVxy7Nz1DTDWbtCWnDcFBEQX1JMwMs58oimpO3zDdW0gImpL7A09MD24N3KYRIvaYDElqK2HcluBheZnSigCGy4ObZxy3PyhX9VhmOHv8HjLoISdbBOLLw3qC6KYt9FWUKZm/4LCkBlpMfzGotBlnUwJs+EboiqwTuFUeW3Wt51tbDbVlCnBoER9GJQglzGNw2JQgloRYxBCqimQ6JRMiTq1FZyZKSEq/S0u4HJ/1wQlxJpMCU3RGUDSu6SeBFAnU6KmroQj565viLGmg6Yk3aUzb5iO798JEERTvRJjoU2RwzeIiJrF3uwbwSOehCKoB0LHvOCKRtT+aDNTwFamRNMLXao6DENAwp0I6D+rwc1qC13WPvSHjn4WISOfgX+/W+pM8WknsGNeU6K+4p8NDd+omW3D1hdJlsM36mRKmP0uKv0sZ10R5bb71Wwbn+5XQBEaC9/ul1vsBwDA4Rv1Yk0Jcp2a6KIjp2gicra6RZCcMSWoIMohqgKgrxmT6MwHdkGUQVQFmmpkyFw1fKOmpoSmKA2Aa4pcAobzNczxXgF9zQwcLs2U8IsyTMtZchY6F868YSTIlJD7doC2LBN6bSV0VQUQ5D5OqY1CRNQe2BvKoAzuhcgpn7ioEWYP7I0cvtH4Qpe16yn8OzVqGlEAUNRMtW0+LFRU+sOn+yTDfpuaKVFvI+sfvmH8ItTWkBWLdijqyZRQWAYlIMoREHcbNMVnEZBwB/L+fsy4F9Mqvj2vgioi0WKohrF4pqRjocv6MChBrsOaEtQK1c2McMbwDQAQvUJqgxJOLNAFwCIo4bLhGzWZEvrKPFMbXEWQexumxXRDpoQgyqEI6AJNUSo0hSmG47t46ITMPxraskxoi85C0pRbzrtORERN4glfrgkN1JRwWKHLxtahAODVcTj63fkzSjWBkGyU1bCoEWGv0GWj616YZ4rY+PeomemioX6wnn2jzlSeFpkSMsi8QxExaZndZpmOZ7adaUpQZkrUy/3/q6jdkPQ1QQmRbztqPVwVlDAViFL4On2KTuOxRFWgyx7QRbmXqQK18diuIip8Ab3WUGAT1tW2nU1eMxa3Ons/ANcO3wBq53evzksGwKEbREStXgPDN2wXumz68A17wyxsNkkQoArsZHfYheXwDfvBhw5Tv0eHaT/VfyyLDAYbmRI1mQo2gxzm04PWU+hSqJspITR8b2asG2HeB6wp0Th8OiTXYaFLaoWsgxLOSXsXzQIFzibWzMDhqiwJI2O2BFA7C4grGNNBdRW5Fr+7iiKoGwBDsUvA9TNfGKd9VeceMRzfxUERIqK2xTVTOtffhGZkSjSj0GWjMxcaoxHDNwDD9J+yhqYMb2j4hq6eTAnYLnoJWBa+FJV+FoGIxnxhJNq4vhqHb4BBiXpx+Aa5DodvUCtkldrnpKCEKXtB6e+U/ds6lszVQQnvcGiLzwJw8fCNmum4dBWGoSOCC4dvANZVy10984UpU6ImKCFyOlAiolbNYjaJRhe6bGxQwiyToLHZFY3Zr8WUoC3br9BQpoixuL6t9ptncugtZ9OoO3zDMGuXcYH9x+aoa7+CpjgdigDr4ZGm4RucErReDEqQy0gMSlArJMgsgxDOKHQJ1EbXnTkdaO2xggC4N1PCpcM3ar750FW6KVMisJvZb4LLh08YgxKm4qYcvkFE1HwekChhmSlgf0pMy00aW6/BPDvAcZkSFsdv6bSpYv2ZEqaXbLbfbGiFV53Zz8xn31D4QafXme3L3nEkyP062r2nMg6TZU2J+vHpkFyHs29QKyTIFJYXaKdlSgQBAESl8x/WvaJHQR7YDd5dxjn9WOZk3u4JSgh1hm+4OlNC5tfBNJZWVAU6vWZIXXLfKJjfhHH4BhFR0/nF3gy5fzS8w2Lc3ZRGDN9oyewbzSt02eB+zWtK1DPdZ6P2ZXbO9oMFdjI9zI6tDIlB0LD5tS+Z15RQ1l9Twjg00vi33TYojUEJZkrUh0+H5DLG6Xnqi2gSeSLzbAlnFbqsvbhFOWX/5pTBvRB11adQBvd2+rHMuS1TQmE5fMPVmRKCIEIe0BWA64duAIZvp2S+EabfOXyDiKjpggY+gI7XfQVR7sA6C83U4OwbNooyNr7QpfnwDecEJRyqvkwJm+23DIj49brG9LN5TQlBprIIeNQN9IRNfBP+cf9BQOJdNo8dNGQe/ONur72HZFCiXhy+Qa7DQpfUSolyL+g0ZTU/OycooYzoj7BL34EyxAO+gXES80wJmUuDEsbhGzU1JVw8+wZgmL9dU3jKZhEsV5D7RUNXng2AmRJERK2eeaaArawDmY2gRCNmjzDsunmzbzS4X0cWzbTYsf3v2G21v94vByxqdQiWdSTEupkSHRDYf5bdXfn1uR4AoC3PAsCaEg1hUIJchzUlqJUSFN5AJQzvXSddVAVBgFfkQKfs21NYZko4v3aGkTEdU9KUG47t4kwJoLauhKtn3jCS+0ejOvsAANvVwYmIqBVp4F7aZjChkUMmBKdlSjjp/qme4RvmtTUirvwY6txkKMMT7K4u6XUIm/Cmqa0WfdHMoZfGfXD4Rv0YlCCXMRW6FBmUoNZFkHnX/O3V4nGQ7ZkxU0JQ+DrvGxMbxDo1JFxdUwIAVFGDAUGEMizO5ccGaotdAmh4qjUiIvJsDQYlah/xvLtOhL6qsPFFls2zMOSOG3LhtHpKNjKwVVFDUJ21D15RQ0zLlMG9Gxy2KsiUUIXHmS+o/bG5QYma+x3jNKVkG4MS5Dp6Y6FLDt+g1sVY3NJZRS7bC9ErGKJXMGQ+EQ2v7Mjj1smMcEemhDKkDzre8KvTapI0xFizRFQGuDQgREREjic0VBbQ7Bv+oEFzmlTPSFTVTk2uCrOfVdBUgsIPPj2mQBHQ2WH7BGwX0A8d+wI0haehDE9s1D7CJryJ6twjUAT3stx3PcM3Gt2+mpoSFtOLkhUGJch1TIUumSlBrYsxGOGsehLthSCIiLxypUPHqDbquHUyI+pmTriKO4IhRsZMCVdPR0pERE7QhEyJphaYV0UMQPCIJ+DVYZhjMyUEASEjFjhsfyY2hm+ICh+oIvo3ehdeHYbAq8MQ6xfM62s080tVQaYABBmDEg1gUIJcRmJNCWqljMEIZkq0nDtmn6gbDBDcGBxwF3lAF6g6DGvSTRoREXmohoZCWxSrbNrDtCDK4dvjyua0yk2c91zhiEwJwHD/qNcxKFEfBiXIdSTj8A0GJah1MQ3fUDBTojWyCELIlM4b1+rBBFGO8AlvuLsZRETkAA3dS1tkJLb5YdOS83btgJoSht2ooFeXOqJFbRafDsl1TJkSbf3DkdoaYx0AY8FLal3Mh2u4a+gGERGR4zR++EZTMyVaH+cFJSyKm7cwUwJ6DSS91gGtapsYlCCXkWpqSrDQJbU2ppoSzJRolcyHb4jy9jd0g4iI2piGso5bUFOCbGvJ84tYcx+p13AIhz0MSpDrsNAltVLGi4mxgjK1LubDN9wxHSgREZFDNTR8w/z1th6UkJw4fMNcC4dvAICexS7t4tMhuYyp0GVDxXmIPIzAQpetmiDzMt3AsS4IERG1fo1/ELcYgkDN1qKaEjX3kXpNpaOa0+bw6ZBcR89Cl9Q6sdBl6yYIAoSaYRusKUFERERN1dJClwAzJerT/kqQk9sogrpBJhMBUeHUQrlEjib3jzb87dfRzS2h5hIVvtBpyqymByUiImqLZH4dIbWHh2BXDd9owTAY45dbem0VoGhg5XaKQQlymbBxLyA02BsFRdWQXPUBQuQAXlFDEHXdN5D5RLq7KdRMxiwX1pQgIqJWrxH30VHXfOm6B3aqlykooalkUMIO5tGTywiCCEHG/4nUOsl9ozgusxUzDttgpgQ5W2VlJSZMmIA333zT3U0hojar4WCDIIjtYDpQoDWkX5uGb3D2DbsYlCAiojbPOAMHMyXI2ZYvX47ExER3N4OIqJ1oBUEJ8+EbZBODEkRE1OaJxkKXcmZKkPOcPXsWaWlpGD9+vLubQkREDmHIkpV5BTd7D6Jp+AaDEvYwKEFERG2eMUNC4PCNdmvv3r144IEHMGbMGMTExGDz5s1W66xZswYTJ05EQkICZsyYgcOHDzfpGK+//jr++9//OqrJRETUAGeXzegw/SdEXv05RFVAs/chyJgp0RAWuiQiojZP5h1S83eom1tC7lJRUYGYmBhMmzYNc+fOtXp9/fr1ePXVV7Fo0SL0798fn332Ge655x5s2LABISGG9891111nc99r167F5s2b0a1bN3Tv3h0HDx506rkQUTvHApZmnNsXMlUgZKrAFu1DkNdOCcqMANsYlGgjHn74YezatQtjxozBO++8Y1q+adMmLF68GAAwb948TJkyxV1NJCJyG//Ym6AMiYEqcpC7m0JuMn78+HqHVaxevRo33XQTpk+fDgBYtGgRtmzZgnXr1mHWrFkAgJ9//tnu9klJSVi/fj02btyI8vJyaLVaBAQE4L777mtWe0WxZYV1jdu3dD9tEfumfuwf+zylb8zrbru7LUbu6htB8Jw+sMcrIh4ynwj4RPSF1sPb6i4MSrQRt912G6ZOnYpffvnFtEyr1WLx4sVYs2YNZDIZbrrpJlx22WVQKpVubCkRkeuJSn94dx7r7maQh1Kr1Th69Chmz55tWiaKIkaNGoVDhw41ah/z58/H/PnzARgyJ9LS0podkJDLRYSG+jVr27qCg1nc1R72Tf3YP/a5u2+qvZUoqfnZUZ8VjuKqvkmv+VuplHtcH1gJHYQOvX93dys8GoMSbcTw4cPx77//WixLSkpCTEwMwsLCAACJiYnYv38/Ro4c6Y4mEhEReaTCwkLodDrT9dIoNDQU586dc3l7tFo9SkoqW7QPURQQHOyLwsJy6PVM9TbHvqkf+8c+T+mbykq16ef8/DK3tcOcu/pGXa3xmD6ojyP6JyDAGwpF25zmlUEJF9i7dy9WrVqF5ORk5ObmYvny5ZgwYYLFOmvWrMGqVauQm5uL2NhYLFy4sMVTiuXk5CAyMtL0e2RkJHJyclq0TyIiovZCkiQIQtNTbadNm9biYzvqpl6vl/hgaQf7pn7sH/vc3TeSpLdoiydxdd9IUut6n7r7veOpGJRwAWcX15LJ2mbEjIiIyBWCg4Mhk8mQl5dnsbygoMAqe4KIiIgci0EJF3B2cS17IiIikJ2dbfo9OzsbY8aMafJ+jFh0y3nYN7bV7Rf2jzX2jX3sG/vYN5aUSiXi4uKwc+dOTJw4EQCg1+uxa9cu3HHHHW5uHRER1SWqgqCvLoLMJ9zdTSEHYFDCzRxRXMuexMREnDhxAnl5eZDJZEhKSsLLL7/crH2x6JZrsG9qKRQyq/cc+8c+9o197Bv72lPflJeXIz093fR7RkYGjh8/jrCwMISHh+Ouu+7CggULEBcXh8TERHz22WeoqqrC9ddf78ZWExFZ44ygQPikpShP+RUBCQwctwUMSriZo4pr3XfffTh8+DAqKysxbtw4rFixAn379sVjjz2GW2+9FQDwyCOPQKVSNaudLLrlXOwbaxqNzlS4iP1jH/vGPvaNfY7qm9ZUdCs5ORkzZ840/f7SSy8BAB566CHMnTsXU6ZMQUFBAZYuXWqq77Ry5UrTMEoiIvIcioAuCBr0oLubQQ7CoISHampxrRUrVthcfvnll+Pyyy93SJtYdMv52DeW6vYF+8c+9o197Bv72lPfDB8+HCdPnqx3ndtvvx233367i1pERNRc7eNzm9oP0d0NaO9YXIuIiIiIiIjaKwYl3My8uJaRsbjWgAED3NcwIiIiIiLyQMyUoLaFwzdcgMW1iIiIiIjIEUSlv7ubQORQDEq4AItrERERERGRI/jFTIe2NAO+va5xd1OIHIJBCRdgcS0iIiIiInIEUe6NkBFPursZRA7DmhJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbmFIEmS5O5GkOfT6yXodPoW70ehkEGj0TmgRW0P+8bSqVMn0KdPX9Pv7B/72Df2sW/sc0TfyGQiRFFwUIvIiNdc52Pf1I/9Yx/7xj72Tf1a2j9t+ZrLoAQRERERERERuQWHbxARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMSlCjrVmzBhMnTkRCQgJmzJiBw4cP17v+77//jsmTJyMhIQHXXHMNtm3bZvG6JEl49913MWbMGCQmJuLOO+/EuXPnLNYpKirC/PnzMWjQIAwdOhTPPPMMKioqHH5ujuDq/snIyMDTTz+NiRMnIjExEZdddhnee+89aDQap5xfS7jjvWNUVFSEcePGISYmBuXl5Q47J0dxV9/8/fffmD59OhITEzFy5Eg88cQTDj0vR3BH3yQlJeE///kPBg8ejGHDhuH+++9Hamqqw8/NERzdP3/88QdmzZqF4cOHIyYmBqdOnbLaR2v6TG4PHP0eaEua0jenT5/G3LlzMXHiRMTExODLL790YUvdoyn989133+HWW2/F0KFDMWzYMNx99904cuSIC1vrWk3pm02bNmH69OkYMmQIBgwYgOuuuw4//fST6xrrYk39zDFasWIFYmJi8Prrrzu5he7TlL5Zu3YtYmJiLP4kJCS4sLUeSCJqhN9++02Ki4uTfvjhB+n06dPSwoULpaFDh0r5+fk21z9w4IAUGxsrffzxx1JKSoq0ZMkSKS4uTkpJSTGt89FHH0mDBw+W/vzzT+n48ePSAw88IF122WVSdXW1aZ1Zs2ZJ1157rXTo0CFp79690qRJk6THH3/c6efbVO7on61bt0pPPvmktH37dik9PV3atGmTNHLkSGnx4sUuOefGctd7x2ju3LnSrFmzpD59+khlZWVOO8/mcFffbNiwQRo6dKj0zTffSGlpadKpU6ekjRs3Ov18m8IdfVNaWioNHTpUevrpp6W0tDTpxIkT0v333y9deumlLjnnpnBG/6xbt05atmyZ9N1330l9+vSRTp48abWf1vKZ3B444z3QVjS1b5KSkqTXXntN+vXXX6XRo0dLX3zxhYtb7FpN7Z///ve/0pdffikdO3ZMSklJkZ588klpyJAhUnZ2totb7nxN7Zs9e/ZIGzdulFJSUqRz585Jn3/+uRQbGyvt2LHDxS13vqb2jVFycrI0YcIE6ZprrpFee+01F7XWtZraNz/++KM0bNgwKScnx/QnNzfXxa32LAxKUKPccMMN0gsvvGD6XafTSWPGjJFWrlxpc/158+ZJ999/v8WyG2+8UVq0aJEkSZKk1+ul0aNHS6tWrTK9XlJSIsXHx0u///67JEmSlJKSIvXp00c6cuSIaZ2tW7dKffv29bj/uO7oH1s+/vhj6fLLL2/JqTicO/vm+++/l26++WZp586dHhmUcEffaDQaaezYsdJ3333n6NNxKHf0zeHDh6U+ffpY3GgfOHBA6tOnT4M3Xa7m6P4xd/78eZtBidb0mdweOPM90No1tW/MTZgwoc0HJVrSP5IkSVqtVho4cKD0v//9z1lNdJuW9o0kSdLUqVOlZcuWOaN5btWcvqmoqJCuvPJKadu2bdLtt9/eZoMSTe0bY1CCanH4BjVIrVbj6NGjGD16tGmZKIoYNWoUDh06ZHObQ4cOWawPAGPGjDGtn5GRgdzcXIt1/P390b9/f9M6Bw8eRFBQEOLj403rjBo1CoIgNDpdzBXc1T+2lJaWIjAwsNnn4mju7Jv09HQsWbIEb7zxBkTR8z7q3NU3x44dQ3Z2NgRBwLXXXosxY8bggQcesDv8xR3c1Tfdu3dHUFAQvv/+e2g0GlRWVmLdunVISEhASEiIQ8+xJZzRP43RWj6T2wN3vQdag+b0TXviiP6prKyEVqv1qPsNR2hp30iShF27duHMmTMYPHiwE1vqes3tm9deew3Dhw/H2LFjXdBK92hu35SVleGSSy7B+PHj8eCDDyIlJcUFrfVcnnenTh6nsLAQOp0OYWFhFstDQ0ORm5trc5u8vDyEhobaXd/4d337tLUPuVyOwMBA5OXlNf+EHMxd/VNXeno6vvzyS9x8883NOg9ncFffaLVaPP7445g3bx46d+7skHNxNHf1zfnz5wEAH3zwAebOnYsPPvgACoUCM2fO9JjaAO7qGz8/P3z22WdYu3Yt+vfvj4EDB+LQoUP44IMPHHJejuKM/mmM1vKZ3B646z3QGjSnb9oTR/TPW2+9hQ4dOmDEiBHOaKLbNLdvSktLMXDgQMTHx+O+++7Dc889h5EjRzq7uS7VnL7ZvHkzdu/ejQULFriiiW7TnL7p0aMHXn31VSxfvhyLFy+GXq/HLbfcguzsbFc02SMxKEHNJkkSBEGw+7qt1+ouq/t73X3a2kdDx/UUrugfo+zsbNxzzz246qqrMG3atGa22HWc3TfLly9HcHAwbrzxRge01rWc3Td6vR4AMHv2bEyaNAmJiYl4/fXXUVJSgi1btrSw9c7l7L6pqqrCwoULMWLECHz33Xf46quv0KFDB8yZMwdardYBZ+BcjuifhrTmz+T2wBXvgdaK79P6NbZ/Pv74Y6xfvx7Lli2DUql0Qcvcr6G+8fX1xU8//YQffvgBjz76KF555RXs27fPhS10H3t9U1BQgGeffRZvvPEGvL293dAy96vvfTNgwABce+216Nu3L4YNG4Zly5aZMjXbK7m7G0CeLzg4GDKZzOqbsIKCAquooFFYWJjV+vn5+ab1w8PDARi+vTRPiy4oKDClBtvah1arRUlJidW3Pe7krv4xys7OxsyZMzFgwAA8//zzLT0dh3JX3/z777/Yt28f+vXrB8BwYQCAoUOH4uGHH8YDDzzggLNrGXf+vwIMQxWMfHx80LFjR1y4cKGFZ+UY7uqbX375BdnZ2fj+++9NNxJvv/02hg4dip07d2LcuHGOOcEWckb/NEZr+UxuD9z1HmgNmtM37UlL+mfVqlX46KOPsHr1avTp08eZzXSL5vaNKIro2rUrACA2NhapqalYsWIFhgwZ4tT2ulJT++b06dPIzc3FLbfcYlqm0+mwd+9efPnll21q9hZHfOYoFArExsZ61FBaV2OmBDVIqVQiLi4OO3fuNC3T6/XYtWsXBgwYYHObAQMGYMeOHRbLdu7caVq/U6dOCA8Pt9hnWVkZkpKSTOsMHDgQRUVFOHr0qGmd3bt3Q5IkJCYmOubkHMBd/QPUBiTi4uLw6quvelztBHf1zSuvvIKff/4ZP/30E3766Se89NJLAIBvvvkGM2bMcNwJtoC7+iYhIQEKhcLiwldVVYWsrCx07NjRMSfXQu7qm6qqKoiiaPHNhvF3Y2DLEzijfxqjtXwmtwfueg+0Bs3pm/akuf2zcuVKfPDBB1i5cmWbnbrQUe8dSZKgVqud0EL3aWrfJCQk4JdffjHdh/3000+Ij4/H9ddfj7Vr17qw5c7niPeNTqfD6dOnTV+gtEsuK6lJrZpxqpu1a9dKKSkp0rPPPmsx1c3jjz8uvfnmm6b19+/fL8XGxkqrVq2SUlJSpKVLl9qcnm/IkCHSpk2bpBMnTkizZ8+2OSXo1KlTpaSkJGnfvn3S5ZdfLj322GOuO/FGckf/ZGVlSZMmTZJmzpwpZWVlWUwr5Enc9d4xt3v3bo+cfcNdffPCCy9I48ePl3bs2CGlpKRI8+fPl8aPHy+Vl5e77uQb4I6+SUlJkeLj46UXX3xRSk1NlU6cOCHNnTtXGjlypFRUVOTaDmiAM/qnsLBQOnbsmLRlyxapT58+0oYNG6Rjx45JhYWFpnVay2dye+CM90Bb0dS+qa6ulo4dOyYdO3ZMGj16tPTmm29Kx44dkzIzM911Ck7V1P5ZsWKFFBcXJ23YsMHiXsPTrqmO0NS++eijj0xTs6ekpEirV6+W+vXrJ/3www/uOgWnaWrf1NWWZ99oat8sW7bM9L5JTk6WHn30USkxMVFKTU111ym4HYdvUKNMmTIFBQUFWLp0KXJzcxEbG4uVK1ea0qAvXrxo8S39oEGD8NZbb2HJkiV4++230a1bN7z//vvo2bOnaZ17770XlZWVeO6551BSUoLBgwfj448/thij+Oabb+LFF1/EHXfcAVEUccUVV2DhwoWuO/FGckf/7NixA+fOncO5c+es0spPnjzpgrNuHHe9d1oDd/XNE088AZlMhv/+97/QaDQYOHAgVq9eDR8fH9edfAPc0Tc9e/bE8uXLsWzZMtx4442Qy+WIj4/HypUrPa7KvDP65++//8ZTTz1l+v3hhx8GALz66qumWjWt5TO5PXDGe6CtaGrf5OTkYOrUqabfV6xYgRUrVuD666/Ha6+95urmO11T++frr7+GRqMxfSYYPfTQQ5g7d65L2+5sTe2bqqoqvPDCC8jKyoKXlxd69OiBxYsXY8qUKe46Badpat+0J03tm5KSEjz77LPIzc1FYGAg4uPj8e2336JHjx7uOgW3EyTJg3JSiYiIiIiIiKjdaJ/hLCIiIiIiIiJyOwYliIiIiIiIiMgtGJQgIiIiIiIiIrdgUIKIiIiIiIiI3IJBCSIiIiIiIiJyCwYliIiIiIiIiMgtGJQgIiIiIiIiIreQu7sBRET1WbZsGd577z2r5SNHjsSnn37q+gYRERG1UbzmEpE7MChBRB7P398fK1eutFpGREREjsVrLhG5GoMSROTxZDIZBgwY0OB6VVVV8PLycn6DiIiI2ihec4nI1VhTgohapYyMDMTExOB///sfFixYgCFDhuCBBx4AABQVFeG5557DqFGjkJCQgJtvvhlJSUkW25eUlGD+/PkYMGAAxowZgw8//BCvv/46Jk6caFpn2bJlGD58uNWxY2Ji8OWXX1os+/7773HVVVchPj4eEyZMwMcff2zx+pNPPolp06Zhx44duOaaazBgwADccsstOH36tMV6Op0OH330Ea644grEx8dj3LhxePLJJwEAa9aswcCBA1FeXm6xze7duxETE4MTJ040sReJiIgaxmtuLV5ziRyPmRJE1CpotVqL3yVJAgC88cYbmDRpEt59912Iogi1Wo277roLJSUlWLBgAUJCQvD111/jzjvvxB9//IHw8HAAwFNPPYU9e/bg6aefRlhYGD755BOkp6dDLm/6x+LKlSvxzjvv4J577sGwYcNw9OhRvPvuu/D29sbtt99uWu/ixYt44403MHv2bKhUKrzxxht45JFH8Ouvv0IQBADAc889h59//hmzZs3CsGHDUFxcjA0bNgAArrnmGrz++uvYuHEjpk2bZtrvunXrEBcXh759+za57URERHXxmstrLpErMShBRB6vqKgIcXFxFsteeuklAED//v3xf//3f6bl33//PU6fPo1ff/0V3bp1AwCMGjUKkydPxieffIInnngCp0+fxqZNm/DOO+9gypQpAIDhw4djwoQJ8PPza1LbysrK8P7772P27Nl46KGHAACjR49GZWUlPvzwQ9xyyy2QyWQAgOLiYnz99demdkmShDlz5iAtLQ09e/ZEamoqfvjhBzzzzDOYOXOm6RjGNgYEBODyyy/H2rVrTTdI5eXl+OOPPzB//vwmtZuIiMgWXnN5zSVyNQYliMjj+fv7Y/Xq1RbLlEolAOCSSy6xWL5r1y7ExcWhU6dOFt/0DB06FMnJyQCAI0eOAIBF2qivry9GjRqFw4cPN6ltBw8eREVFBSZPnmxxvBEjRuCDDz5AVlYWoqOjAQDR0dGmmyMA6NmzJwAgOzsbPXv2xL///gsAFt/I1HXDDTfgzjvvxPnz59G5c2f8/vvv0Gq1uPrqq5vUbiIiIlt4za3Fay6RazAoQUQeTyaTISEhwWJZRkYGACA0NNRieWFhIQ4dOmT1LQ8AdOnSBQCQl5cHX19fqwJddffVGIWFhQCAq666yubrFy9eNN0g1a1erlAoAADV1dUADN9O+fj41PvN0fDhw9G5c2esXbsW8+bNw9q1a3HppZciKCioyW0nIiKqi9fcWrzmErkGgxJE1KoZx4UaBQYGIj4+Hs8//7zVusZvesLCwlBeXm5VOTw/P99ifZVKBY1GY7GsuLjY6ngA8NFHH9m8werevXujzyUoKAgVFRUoKyuze5MkCAKmT5+O7777Dtdddx32799vVeCLiIjIGXjN5TWXyBkYlCCiNmXkyJHYsWMHOnbsaPdbGOM3QH///bdp7Gh5eTl27txpcWMSGRmJ8vJyZGdnIzIyEgCwY8cOi30NHDgQXl5eyMnJsUprbaoRI0YAAH766SeLYl11XX/99Vi6dCmefvppREZGYvTo0S06LhERUXPwmktEjsCgBBG1KVOnTsU333yD//znP7j77rvRuXNnFBUV4fDhwwgPD8edd96J3r17Y+LEiXj++edRVlaG8PBwrFq1yiq1dOzYsfDy8sLTTz+Nu+66CxkZGfjmm28s1gkICMBDDz2El19+GZmZmRg6dCj0ej3Onj2Lf//9F++//36j296jRw/cdNNNeO2115Cfn4+hQ4eipKQEGzduxDvvvGNaLzIyEmPHjsWWLVtw//33m4p6ERERuRKvuUTkCAxKEFGbolKp8Pnnn+Pdd9/FsmXLkJ+fj5CQECQmJloU2Xrttdfw/PPP45VXXoGPjw9uvfVWJCQkYOPGjaZ1QkJCsHTpUrzxxhuYM2cO4uLi8NZbb5m+6TG69957ERERgc8++wyrV6+GSqVCt27drNZrjP/7v/9Dx44d8f333+Pjjz9GSEiIzW9lLrvsMmzZsqXeAl1ERETOxGsuETmCIBknHiYiaueM85H//fff7m5Kg+bNm4fc3Fx89dVX7m4KERFRk/GaS0RGzJQgImpFTp48ieTkZPz55594++233d0cIiKiNovXXCLXYFCCiKgVmT17NgoLC3Hrrbdi8uTJ7m4OERFRm8VrLpFrcPgGEREREREREbmF6O4GEBEREREREVH7xKAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRWzAoQURERERERERuwaAEEREREREREbkFgxJERERERERE5BYMShARERERERGRW8jd3QBqHfR6CTqdvsX7kctFaLUt309bxL6xdP58Ojp37mL6nf1jH/vGPvaNfY7oG5lMhCgKDmoRGfGa63zsm/qxf+xj39jHvqlfS/unLV9zGZSgRtHp9CgqqmjRPkRRQGioH0pKKqHXSw5qWdvAvrH2n//MxE8/rQfA/qkP+8Y+9o19juqboCAfiKLMgS0jgNdcZ2Pf1I/9Yx/7xj72Tf0c0T9t+ZrL4RtERERERERE5BYMShARERERERGRWzAoQURERERERERuwZoSRETkMJIkQa/XQfKA4aSiKECtVkOr1XJ8ax2N7RtBAERRBkFom4W1iKh1cte1htcV+9g39WtM/7Tnay6DEkRE1GKSJKGsrBjl5SUAPOdmJC9PhF7PSuC2NLZvRFGG0NAOkMnaZnEtImo9POFaw+uKfeyb+jWmf9rrNZdBCSIiajHjTWJAQAiUShUAz4jyy+UCtFrPCZJ4ksb1jYSiojyUlBQgODjcJe0iIrLHE641vK7Yx76pX8P9036vuQxKEBFRi0iSZLpJ9PHxc3dzLMjlIgB+a2NLY/vG3z8IhYU5kCQ9BIGlqIjIPTzlWsPrin3sm/o1pn/a6zW3/ZwpERE5hV6vAyDVfGtFbY1MZvj+gim5ROROvNZQe9Ber7kMShARUYvUFhrzjCEb5GiGf1dPKF5KRO0XrzXUPrTPay6DEkRERERERETkFqwpQeQgOl01ikpPo7g0DZVVOaiszkVFVS602jLoJR30eg0kSQ+5zAsKuS/kcj+olIHw9e4If99o6NALki4CosC0RCIiIiJynVWrPsLOnf9g1aov3N0UaocYlCBqJr1ei7zCw7iQsw35RUdRXJYKSdI1f4dJACAiwK8bQgL7IjgwFhEhQ+Dn09FRTSYiMy+//Dx+//1Xq+W//roJQUFBrm8QERG1OS+//DwqKyvw0ktvmJatX/8LFi9+BY8+ugDXXnt9k/Z38eIFfPrpShw4sA/5+fkICwvD5MlXYebMuyGXN//R7pZb/oMbbrip2du3VjfccA1uueV2TJ/e/s7dkzAoQS6l02sgteJBUpIkIb/oMM5d2IgLOf9ArSk2vaZShiAksC+C/PvA17sDvL3C4e0VDoXcD6KogCjIIQgitLpKaLTl0GjLUVVdgPLKC6iovAi19iJy8k6gpCwNJWVpOJu5HgDg6x2NyLCh6BA2EhGhQyCK/G9L5CijRo3FE088Y7EsMDDQ4netVtuiGz0iIiKj77//Bh988C4WLlyESy+9vMnbnzt3FpIk4fHHn0Z0dCecOZOK119/GdXV1Zg9e26z2+Xj4wPAp9nbt2VarRYymQyCwHomzsK7rDYuLS0NTz/9NMrKyqBUKvH0009jyJAhbmnLnsOv4NyFDRAEGZSKQPh4hcPftxuCAnojPHgAAv17euzUN5KkR2b2Fpw4swbFpSkAAEGQITJ0GKIjL0Fk6BB4e0U06sNKJlNBpQyyWCaKAkJD/ZCfX4byilwUlpxEftFhZOfvQ3FpCtLOZyLt/E9QKgIRHTkOnaImIjx4gMf2F1FroVQqEBoaZrHshhuuwbXXXo+zZ89g+/atmDz5Ksyf/wSSkg5i+fJlOHnyJIKDg3HppZNwzz2zoVQqAQD5+Xl4/fWXsG/fXoSHh2P27LlYvPgVzJnzCKZMuQYHDuzDww8/gD/+2FZz8wfs2LEdTzzxKP75Z5/p+Nu2bcEnn6xAevpZhIdH4Nprr8ctt/wHomj4/z5mzBA8+eRCbNu2Bfv370XHjtF47LGn0b//ANM+Dh06gBUrPsDJk8ehVKoQH5+Al156A9988yW2bPkLq1d/ZXHON998Pa67bjpuueV2Z3QzEREBWL36Y3z55ad45ZXFGDlyTLP2MWLEKIwYMcr0e3R0J6Snn8P//vdTvUGJkpISvP/+Evzzz1ZotVrExSVg3rzH0LVrNwDWwze0Wi2WLXsbGzb8BrlcjmnTZuDMmVR4e/vgmWeeBwBUV1djxYoPsGnTRlRUlKNXrz6YM+cRxMcnADBkhLz//hI888wiLF36NgoK8jFs2HA8+eRz8PMzTOu6efMmfPLJCmRmZsDb2xsxMbF4882lEEXRlGXSvXtPrF37HXQ6HaZMuQZz5jwCmUxmpw29MWfOo6Y2APavifPnz0VW1kW8885ivPPOYgDAP//sM7X7iSeexfLly5CRcR4//7wRzz77BPr27YeHHnrEtO9Zs/6DUaPGYNas+wEYrtELFjyDLVv+RlLSAURHd8LChYsgijIsXvwyUlNTkJDQH8899yKCg0Oa9R5oixiUaONUKhVeeeUV9OjRA6mpqXjwwQexceNGt7QlwK8rAvw6Qa2pRLW6GNXqAhSWnET6RUN7vJQh6BQ1EV07TkZQQG+3tNGW3IKDSDqxDMVlqQCAIP/e6NH5ekRHjoNS4e/w43l7hcHbKwwdI0YjAUBVdT6y8/YiI3sLsvP34kzGLziT8Qt8faLRo9N16BZ9JZSKAIe3g6g9++qrz3H33feZbjIyMzPw2GPzcP/9D+KZZxYhPz8Pb775KrRaLR5+eD4AQ4puUVEh3nvvIwDAO+8sRkVFRZOOm5R0CK+88jweeeRxJCT0R3r6ObzxxstQKJSYMeMW03qrV6/EQw89grlz/4tVqz7CokXP4LvvfoZcLkd6+jk8+ugcTJ16A+bPfxIAsHfvbkiShClTrsEnn6zA6dMnERsbW3PMg7h48QKuuOLKFvcbERFZkyQJy5a9jV9//RlvvbUMAwYMsnj9888/wRdfrK53H1988T2ioqJsvlZWVoaAgPrvBZ977kl4e3vjrbfeg4+PN77//ls8+ugcrFnzA7y9va3WX7PmM/z11x949tkXEB3dGV9//QX27v0X48ZNMK2zZMlinDt3Fi+++BpCQ8Pw119/4NFH5+Crr35AeHgEAKCiogI//vgdXnzxVVRVVeHZZ5/El19+igceeAh5eXl4/vln8OCDD2PcuAkoLy/HgQN7Ldrx77+7oVJ54b33Psb58+l49dUXEBYWjltvnWmzDX/+ucGiDfVdE195ZTHuvPNWXH/9DZgy5RqL41ZUVOCbb77EM88sgq+vL3x9fevtX3OffroSc+c+ikcemY8lS97ECy88h5CQEDz00Dx4efni//7vKaxY8QGeeGJho/fZ1jEo0cZFR0ebfu7RowdKS0shSZJb0o/69rgNo4fej/z8Muh0OlRV56O47AwKi48hJ38/8ouPIiX9B6Sk/4Dw4AHo22MmIkIHu7ydRmpNKZJOvIv0i38CAEIC49Cv192ICBns0v7zUoWia/RkdI2eDLWmBJnZ25F+YQPyig7jyKkPcDRlJbp0mIQ+3W6Bv29nl7WLqC3Yvn0rJk0aa/r9kksuBQAMGTIcM2bcalr+2msvYvLkq3DDDTcDADp16ow5cx7BwoULMHfuf3H+/Dns2bMbn3zyJfr06QsAmD//Cdxzz8wmteeTT1Zg5sy7MXnyVQAM34Ddccfd+OGHby2CEldffR0mTLgMAHD33ffh1lunIzMzA127dsOXX36KhIT+mDdvvmn9nj17AQC8vLwwbNgI/PbbL6agxPr1v2DkyNEICQltUluJqHF0erWp0DU51r7kV3Eh5x+XHjM6cgwGxz3VpG127vwHGo0G7723wiogAQBTp07HxImT6t1HWFiYzeWZmRn48cdvMW/eY3a3TUo6hJMnT+B//9sIhUIBAHj00cexbdtm7Nz5Dy691PrYP/74HWbOvBtjxowHADz++NPYtWuH6fWsrCysX/8L1q1bb7p+3H33Pfjnn23444/fcdttdwAANBoNHn/8aVNA5corr8b+/YbAQ35+HnQ6HcaPn4ioqA4AgF69LL+YVKlUeOKJhVAqlejevQcyMs7j22/X4NZbZ9psw5133oOdO/8xtaGha6IoivDx8bHKmtRoNHjssafQo0dPu/1qj/k1+pZb/oNHH52D++57EAMHDoZWq8fVV0/Fzz//2OT9tmUMSni4vXv3YtWqVUhOTkZubi6WL1+OCRMmWKyzZs0arFq1Crm5uYiNjcXChQuRmJhota+//voLsbGxHjEeShBEU82FqLBhiO15J6qqC3A+62+knl+L3MJDyN1/CFFhI9C/71z4+XRyafvyCg9j75GXUFGVDS9VGBJj5qBT5AS3951SEYDuna5C905Xobg0DWkZPyP9wh84m/kbzmb+jk5Rl6Bv99sR6N/0D1Ci9mjIkOF49NHHTb/7+PjgvvvuRN++sRbrpaScRmrqaWzYUFsYU6/Xo7q6Gvn5+Th37iwUCgV6944xvR4TE2u6+Wus1NRTOHIkCatXf2xaptPpIUl6i/V69Ohl+tl4o1pYWICuXbshJeU0xo27xO4xrrrqWrz55quYN+9RVFdrsHnzX1i4cFGT2knU1lVW5cJLFeaQ6/76rTdAp6vC1Mv+cEDLqDXq1asPCgrysXLlcrz55lJ4eVkGqAICAhEQEGhna/vy8nIxf/5cXHrp5Vbf9JtLSTmF8vIyTJky0WJ5dXU1LlzIsFq/rKwMBQX5iI2NMy1TKBQWAYO0tBTodDrcdNNUi23VarXFer6+vhYZHqGhoSgsLARgCEAMHDgYM2fejBEjRmHYsBGYMOFS+Pr6mdbv3buPaZgkAMTHJ+CDD/JQVlbWqDY0dE20R6VSNSsgAQA9e9aevzFY0r17D7NlIaY+IAMGJTxcRUUFYmJiMG3aNMydaz1ObP369Xj11VexaNEi9O/fH5999hnuuecebNiwASEhteOUMjMzsXjxYqxYscKVzW8SL1UIene9Ab26XI/M7K1IPv0xsvJ2I3fnIST0eQA9Ok91SVDgbOZ6HDj2JiRJh85Rl2JA7KNOGabRUoH+PTAw9lHE974Paed/xumz3yIj629kZP2NTlETEd/rPvj6dHB3M4k8mre3Fzp1ss4wqpvKWllZgWnTbsT1199otW5QUBAkCQ1+PhlrQgC1xX61Wq3FOhUVlbj33tkYO3Z8vfuyLLxpOK5er7e9ch1jxozHm2++hn/+2Yby8goolUqMGtW8sc1EbU1ZWSm+/n4xiirX45rJj6Bvj5bVWZEknakotiTpIAgyRzSTagyJb1rGgiPI5SK02sZ93hpFRkZi0aJXMHfu/Xj88XlYvPhdi8BEc4Zv5OXlYu7c+xEXl4DHHqu/HyorKxAeHoF33/3Q6rX6hn3Uva6ZF6uvrKyAXC7HJ5+sMa0nkwnQ6SSLoQ51C0ULgmAKtMtkMrz77oc4ciQJu3fvxNdff4FVqz7CqlVfmB7m7V1bBcF2G4yaMtzClrqBI8BwHa9bsL/udRywPGdjsyyXCVZfNrR3DEp4uPHjx2P8ePs3p6tXr8ZNN92E6dOnAwAWLVqELVu2YN26dZg1axYAQ7TzwQcfxLPPPouuXbu6pN0tIQgydIqaiA4RY3DyzFc4kfY5Dp1YgvyiZAyOWwCZTOW0Yx9L/RTHU1dDEGQY1O8xdIu+2u3ZEQ1RyH0R0/1W9OwyDWczfsXJs18hI+tvXMjejp5dpqNvj9s9MqhC1Jr07h2DM2fSbAYwAKBbt25Qq9U4ffqkafjGyZMnoNFoTOsEBQUDAPLz8+HjY7hZSkk5ZbGfPn1icP78ObvHaYxevXrjwIF9uPPOe2y+LpfLccUVU/Drr/9DVVUVrrjiSs4uQlRj1afPY9eenwAAwcGrWhyUqKqu/TZUq62EQuGHMxm/4kLOdowc8DJn1GpHOnaMxrJlH2Hu3PuxYMEjeOONJaYH36YO38jNzcHcuQ8gJqYvnn76/8yC3rb16dMXeXm5UCgUiIy0XZfCnJ+fH0JCQnHs2FHExxuyrzUaDVJTU0y1Inr37gOtVovi4iLTOs0J2IiiiP79B6J//4G4++77cM01k/Dvv7tw5ZVXAwBOnToJtVptypY4ejQZoaFh8PX1s9mGuhq+Jiqg0zWuzUFBwSgoyDf9XlFRYTPThJqOpftbMbVajaNHj2L06NGmZaIoYtSoUTh06BAAQKfTYd68eZgxYwbGjGnZN2GiKLT4T1P2o5CrEN/7Lkwc8SF8vCJxPmsTtu17FFpdmUPaUvfPibTPcTx1NeRyX4wb8iZ6drkWMpnolGO1tG9s/VEqvNGn+424cuxXiOs1C4Iox+lz32DjP7ch/cIGCIJj/g3d1R+Oeg+2xT+e0Ddt3W23zcShQwexZMmbOH36FNLTz2Hr1r/x/vvvAgC6dOmGIUOG4fXXX8bx40dx/PhRvPPOGxbDNzp16oyIiEisXm0o1rV58yb89tv/LI5zxx2zsH79L/j005U4cyYNZ86k4Y8/fsdnn61qdFtvv/1OHDmShHfffQtpaSk4cyYN3333NaqqqkzrXH31ddi9excOHtyPKVOubdR+2+O/O7UvZWVl2F0TkACAM6ebVqjWlsqqHNPPGp1hfweOLUZW3m4Ulpxs8f6pdTEGJi5cyMSCBY+YPpcDAgLRqVPnev8Yg8fGDInIyEg89NAjKCoqRH5+HvLz8+wed8iQYejXLw5PPTUfe/fuxoULmUhKOoT3338X586dtbnN9Okz8Pnnn2DHju04e/YM3nzzVajV1aYv67p06YZLL52EF154Ftu2bcGFC5lITj6C1as/xsGD+xvVH0ePJuPzzz/BiRPHkJV1EX/99QcqKyvRpUs30zrV1dVYvPiVmhmxtuCLL1bjxhtvttuGo0eTLdrQ0DWxQ4cOOHToAHJzc1BUVFRvewcOHIwdO7bj33934cyZNLz22oswZitSyzA824oVFhZCp9NZFb4JDQ3FuXPnAADbtm3D7t27kZeXh++++w4A8MUXXzRYobcuuVxEaKhfwys2QnBw09KpQkOHILrDl9i4bT6y8w5j56EFuHriB1ApHfftf/Kp73A0ZRUUch9cfen7iAyzHW11tqb2jW1+iIycg8GJN2Hv4Q9xPOUn7E1+FZm5f2LcsGcQFOD52TIAoFDIrN5zjumftsmdfaNWq5GXJ0IuFyCXe16s216bBEGAINhusyhaLo+NjcUHH3yE5cs/wOzZd0MUZejUqTOuuupq03rPP/8iXn75BcyZcy9CQ8Mwd+4jeP31V0z7ksuVWLToJbzxxqu4885bMHDgIMyadR9effVF0z7Gjh2LN954B598sgJffLEaCoUC3bv3wPTpMyzaI5PVts/4t0wmQi4X0aNHdyxZ8j4+/HAZfv75R3h5eSMxsT+mT7/BtG7v3r0QE9MXer0OMTF9GuhBAaIoIjjYx2JcL9lWWVmJKVOm4KqrrsJjj9kvPEeeJz39HCQAnbp442JmFTIzqiy+oW2Oyupc6PUSMtMrkdM3E107196zyUT+f2qPzDMmnnjiUbz++js2hwrYs2fPbmRknEdGxnlcf/0Ui9fMp5c2J4oi3nxzKZYvfx8vvfQ8SkqKERoahoEDB9t9JrjttjuQn5+HRYsWQqEwTAmamDjA4v/DwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllVzTqXHx9fXHo0EF8991XqKioRMeOHbFgwTOIi4s3rTN8+AiEh0fgwQfvgU6nxZVXXoObb67NYGqoDV26dMVbby3DRx+9b7omJiQk4rrrpgEAZs16AIsXv4KbbpoKtVpttw8BQ0D/1KmT+L//expeXl64++77kJnJTAlHEKS6A2PIY8XExFgUuszOzsa4cePw/fffWxS2fP3113Ho0CF8/fXXDju2RqNDSUlli/YhigKCg31RWFgOvb7pbzuttgLb9j2O/KIjCAtOxPih70AUm1ZEzpbcgkPYuvdRCBAxbujbCA/p3+J9NlVL+6Y++YXJ2Hd0MUrKzkAUFOjX6y707XGLx49rvfbaK/G///0OwLn909p5Qt9otVrk5GQgLCza44YBNCeV1JGuuupSzJnzSL0FyNxBr9djxozrcOutMzFtmnWdDHNarRZ5eZmIiOhk9e8bEOANhcKzP0tc7Z133sHZs2fRuXPnZgclNBodiopa9i29KAoIDfVDfn4ZPzfrsNc3Gzb8ik+/mofBI4KRfaEK2RdkePrxrxEb269J+z+W+ikC/XogOnIcTp/7AZ9+8QJST5WjT/erMO+R+diy1zArz4RhHyIkqGn7dgVPfe8YP4vcfa1x93XFXbRaLWbMuA433ngLbrnF9rAmR/fNyy8/j8rKCrz00hsO26c7NaZ/6nufBwX5tNlrrmfdPVKTBAcHQyaTIS/PMl2roKDA7rRBLeGoC5NeLzVrX6LojdGDXsf2fY8ir/AwDh1/DwNiH2lRWyqr8rDr4HOQJB0GxT2G0KBEt16Am9s39QkOjMOlI1bi9LnvcCx1NZJPr0BW7m4MSXgGvt4Njyt0p7p94Yz+aSvc2Tf8N2ldCgrysX79LygrK8XkyVMa3qAG//817OzZs0hLS8OECROQlpbm7uZQE505axhOERqmhFwmIOeiDsePH21SUKKyOh/HUw0FC6dfvhWFRRk4k2IIMJWVl+LfPX+Zsr11eo293RC53YULmThwYC8SEweiuroa3367BsXFRaapLokcyfPybKnRlEol4uLisHPnTtMyvV6PXbt2YcCAAe5rmBMp5L4YMeAlqBRBSD2/DukX/2z2viRJwqET76BaU4Qena5Dt+jG35y3NqIoR0z3W3HpyJUI8u+DvKLD2LTr7hb1HxG1TtdeewW+/fYrPP30c6aCm2SYgvuBBx7AmDFjEBMTg82bN1uts2bNGkycOBEJCQmYMWMGDh8+bPH666+/jv/+97+uajI5UGnZBaSkHoZCISIgUI4O0V6QyeQ4efK4aWabzOxtOHX2W5vbazRl+GPHTBw9XTudb7W6GKdOpUGvl+AfIEdh8XH8ueUt0+t6Se3ckyJqAVEU8euv/8O9987EQw/di4sXL2DZso8sZgAhchRmSni48vJypKenm37PyMjA8ePHERYWhvDwcNx1111YsGAB4uLikJiYiM8++wxVVVW4/vrr3dhq5/LxisCwxP/D9v3zcej4EkSEDIGXKrjJ+7mQsw0Xcv6Bj3cHJPSZ7YSWep4A366YMPwDHE35BKfOfo29R15CXmES+vd9mGNbiZzgt9/+cncTrBjHy7bXFGR7WjoF96ZNm9CtWzd0794dBw8edMMZUEt887/pyMzOQVQHLwiCAIVSQMeOQaioqMDWncsQGRWA42mfAgC6d7oaCnltQE+SJGTl70Fp+TmUlp8zLS8qOYWUU5kAgAFDgrBrWx5ysw1ZR6IoQKdjUII8V1RUByxf/olb2/DMM8+79fjkOgxKeLjk5GTMnDnT9PtLL70EAHjooYcwd+5cTJkyBQUFBVi6dClyc3MRGxuLlStXIiQkxF1NdomI0EHo2fk6pJ5fhyOnPsTQhKebtL1WW4lDx5cAAAb1ewxyubcTWumZRFGBhD73IzJsKPYcfhFnMn5BcWkqhvdfBB+vCHc3j4jILVo6BXdSUhLWr1+PjRs3ory8HFqtFgEBAbjvvvua1Z6Wzm5iPjMPWbLVN/l5hgBBaHhtgL5r91CcTxGwefsn6D84yLRcr6+CKNYWYk5N/xkHjr1tdZyL2cnIzMiHt7cMEVEqhIarkH2xCsWFGgSHKgFoPfLfx1PfO57WHiJnam+zXDEo4eGGDx+OkyfrnzLq9ttvx+23t2we7dYortc9yMzeivSLG9Et+qomFahMy/gZVeoCdIqaiMjQIU5speeKCBmES0eswO6k51BQfAx/774PI/ovQliw6wt9Utv07LNP4siRww2v6CAJCYl48cXXXHY8aj+MU3DPnl2bVVd3Cu758+dj/vz5AIC1a9ciLS2t2QEJd8541Z6Y901+bjUAICTMPCjhj7xMBdIyqpA4SDJNhRgQIEeAf+2/z/cbrAMSAJCamgJBkNCpq7ehKHGIAtkXq1BYYAhKePs47t/ZGTztveNJMz25+/iejH1Tv4b7p33OeMWgBLVaCoUfEmIexN4jL+F42qcID3mnUdtpdVU4dfYbAAJie9zh3EZ6OG+vcIwb+i6STizDmYz/Ydu+/2Jo/FPo3IFFjKjlGCCgtqIxU3A7klard/uMV22Zrb7Jz1NDgKHIpZFMoUNISAQOn9CiuEiLoGDDjF95+YXQqIMaPE5S0mlodVp07uYDAAgOMWxfWKAG4IuSklLk55c59NwcwVPfO1qtFnq9HlqtBMB9Q8849M0+9k39Gjf7hgS9Xo/CwgrI5ZZDvNryjFcMZVGr1jlqInx9opFbcACFJfVnlBidyfgfqtWF6BQ1AQF+3ZzbwFZAJioxqN98DIydD0nSY8+RF3HyzNfgbMHUlv3447eYPPkSUwE7AMjPz8OYMUPw1FOW0zhu3LgeEyaMRHV1VbOP99dff2LMmCFYuHCBzdf/7/+exqefrgQAjBkzBBMnjkZOTrbFOg89dB/ee29Js9tAjidJtd+em5s2bVqzpwM1Ms520pI/jtpPW/xj3jeFhQWoKNchIEiBXt1qi17rdNXo188w88a5tHLTcq22yrStTqe1OcV2WakWFzNz4eenQEioIRhhGLIBFOZravZT7fZ+aG3vHaL2or29/xmUoFZNEGTo0/UmAKjJfqifJOmRcu4HAEBsj5kNrN2+9Oh8LUYNfBky0QvJp5cj6cS7kCSdu5tF5BQDBw5GWVkZTp2qDWYeOnQAERGRSEo6aBGUO3ToAGJj46BSeTXrWNnZWXj//SVITBxg83WtVot//92F0aPHWSxfvfpjm+uT67l6Cm5yrbPnUgEA0Z06Ykj8UxjR/0UAgF6vRmJiAgQBOJtWAZ3O8LlQXHYGF3J2AADKK7NN18qI0KG1+0wth17SoEevYFPgysdXBqVKRHGRxvCQIXFKUCIigEEJagO6dpwMlSIIGVlbUF55sd5184uSUVGVjbDg/gjw6+6iFrYeHcJHYdzQJaYpV/ceeQV6vdbdzSJyuO7deyIoKBgHD+43LTt4cD8mT74KCoUCKSmnLZYPGtS82jN6vR4vvfR/uOOOWYiO7mRznUOHDsDPzw+9e/cxLZs+fQbWr/8F6elnm3Vccqz2OAV3e5KefgYAEBEZCACIjhwHUVRCp6uGt48SHTt5Q12tR8Y5w5Ca/Udfw65DT6OyKhcVVVkAgC4dLkff7rcBMHzDeTa1AnpJix69A03HEQQBwSFK6PUSSoo00OsZlCAiAhiUoDZAJlOhe+drAeiRkWU9r7y581mG6fk6R7Fmgj0hgbG4ZPgH8PGKwvmsTdib/DIDE9TmCIKAAQMGWQQlDh06gIEDB2HAgIGm5Xl5ucjIOI+BAwcDAG6/fQYmTRpr98/8+Q9bHOerrz6Hl5cXrrtumt22/PPPNowePdZi2YABgzB48DCsWPGho06ZGlBeXo7jx4/j+PHjAGqn4M7NzQUA3HXXXfjmm2+wbt06pKam4vnnn2/zU3C3F+nnDEGJqKja6cVlohI6vRp6vQa9+xqKUR5PLrFIodZoy6HTGYZ1yeU+UMgN650/W4nKSh2iOnrD28dyeI+xrkRBgYZTgpJHmj37bmzd+rfp99OnT2HWrP9gwoSRuPPOW1FSUoxrr70Cubk5bmwltTUsdEltQnTkeJxI+xwXcrYjpvutNtfR67XIyNoMQZAhOtL+tG8E+PlEY9zQd7Ft3yPIyPobkqTDsITnIIr8yKC2Y+DAwfj44w+g1+tRXFyEjIzziI/vj/Pnz2Pv3n8xY8YtOHBgP5RKJeLjEwAAb775LrRa+0E6lUpl+vnkyRP44YdvsWrVF/W2Y8eO7Viw4Cmr5Q88MAf33DMTJ04cQ9++/Zp5ltRYnIK7fdJoNMi8kAmlSkRwsL9puUymQlV1PvYffR3hkSqER6iQm1ON9DMV6NbTMCuFJOlMgQWZqIJC7ge9XsLx5BIAQGxcgFU2hKmuRJ6awzfagTFj6s+yu+uuezFr1v0uacuJE8excuWHOHHiGCorKxEWFo74+EQ8+eSzUCgMwbLt27egvLwc48ZNMG334YfLEBERiZdfXgxvby8EBATiyiuvxqpVH+HJJ591Sdup7eMTBrUJgX494eMVhYLiY6iszoe3KtRqnZz8fVBrihEVNhIqZaCNvZA5X+8ojB+6FNv2PoLM7K34V3oewxOfZ2CC2oxBg4aY6kpcuJCJmJhYeHt7Y8CAgVi5cjkkScKhQ/vRr1+8qZ5EVFSHRu1brVbjhRcW4pFHHkNoqP2aA6mpKSgpKcLAgdY3rn369MWECZdi+fL3sGTJB807SWo0TsHdPp0/nw6tVo3wCBXk8tq6MaJoCB5k5+8BAMQPCMDmP3KRdKAYHaK9oPKSQa/XQKc3TCUqE5VQKHyRcqIMpSVahEeqEBwmWQUljEUvC/LV0OmZKdHW/fzzBtPP69f/gnXrfsDHH39mWubt7WP6WZIk6HQ6yOWOv88qLCzAo4/Owbhxl+Cddz6Aj48PMjMzsHnzX9DrdQAM78sffvgOV155jUUB38zM87jxxpsRFRVlWnbVVdfgzjtvw5w5j8Df37/u4YiajE8X1CYIgoCOEWOQkv4DLubsQI/O11qtk5mzDQDQucOlrm5eq+XjFYHxNRkTF3K248CxNzE47gmb1eaJWpvu3XsgODgEBw/ux8WLmRgwYFDN8p4QBCAl5TQOHTqASy+93LTN7bfPQHa2/do1iYkD8dZbS5Gfn4dz587i//7vadNrxpk+xo8fjh9++AXh4RH455+tGD58lN2b0HvvfRC33XYD9u/f64hTJqI6zp5NgyTpEB6pgkyszXQy/xkAwiJU6NHbF2mny7F7ewHGXhoGvaStDUrIVMjOKkByUglEUcDAoUHQaiusAvnePjJ4eclQXKSBurpl076S5zMPSvv4+EAURdOyAwf24eGHH8Cbby7FRx+9h7S0VCxf/gnWrv0elZUVeOmlN0zbLly4AN7ePnjmmecBANXV1Vix4gNs2rQRFRXl6NWrN+bMedSU1VfXkSOHUV1dhQULnoFMZpgtJjq6E4YNG2Fap7CwEAcO7MX8+U+YlhkzPZYseRNLlrxpyuzo0qUbIiIM17Arr7zaMZ1F7RqDEtRmGIMSF3K22wxKFBQdAwBEhAx2ddNaNW+vcIwd/Da27JmDcxd+h5cqBPG973N3s4gcYuDAwaagxIMPzgNgCHImJg7AX3/9gfT0c6Z6EkDjh2+Eh0fg888tZwT6+OMPUVVVhblzH0VwsCHl/59/tuHGG2+2u79OnTrj6quvw/Lly5o9+wcRWauozMe2vU/h6LFAU1BClClNr2u0ZVbbJA4KRH6uGjnZ1dixJR/D4ktNwzeyLhZj9/YvoNNJSBgYiMAgBfSSBlptBQABgKEWhSAICA5V4GKmDrm5Ba44VXAULycAAQAASURBVPJwH330Hh566FFERkYhMDCoUdssWbIY586dxYsvvobQ0DD8+ecGPProHHz11Q8ID4+wWj8kJARqtRr//LMN48ZdYvPLpcOHD8HHxwedO3cxLfv55w249947cP31N2DKlGssMjtiYmKRlHSQQQlyCAYlqM0IDUqAUhGAnIID0GorIJfXfnBqtOUoKT8LH68oeKk4/repfLwjMWbwYmzZMxcnz6yBShmM3l1vdHeziFps4MDB+OCDd6FWq5GY2N+0vH//gVi1akXNrAu13zw1dviGXC5Hjx69LJb5+flDJpOZlufn5+H06ZMYMWJ0vfu66677cNNN10GSwNoSRA5yIHklLuTsxa59F9C982UIDJJDJtYGJaqq86y2UShEjJkQiu1/5yPrQhU+/GA1wiPlOHs+F9BuRZB/T/SK8UNMPz8IggySpINWVwmF3M8iyBESpsTFzCpkZTEo0VI//vgdjh8/5tJjxsfHY+rUGxy2v3vvfRCDBw9teMUaWVlZNUNB1iMkxDBc+c4778HOnf/gjz9+x2233WGjzYm49daZeO65J+Hv749+/RIwdOhwTJ58lWn4RXb2RYSEhFoELEJDwyCKInx8fKyGIoaFhSE1NaU5p0xkhbNvUJshinKEBiVCkrQoKTtr8VphyUkAEoID+7qlbW1BgF93jB70GmSiCodPvofzFze5u0lELTZo0BBUVlaid+8Y+Pr6mZYPGDAYlZUVNfUkVPXsofl27NiOhIT+CAgIqHe9sLAw3HDDzVCrq53SDqL2SKHwQX6uGnq9hOjoCAiCYBGUsMfHV46JV4SjZx8/ZFzcjuPHjiI3pxoBAf64/vobMGBIIARBgCDITNvU3W9ITbHLbAYlCEDfvrFNWj8tLQU6nQ433TTVYvankyePIzMzw+52Dz74MH766XfMm/cYOnbsiDVrPsN//jMDeXmGGYaqq6uhVDb+eqdUqlBdXdWkthPZw0wJalMC/brjYu4/KC47g5Cg2m8UC4sNU7yFBPJbxpYIDYrH8P7PY+fBZ7Dv6Ovw8+nEQA+1al27dsM//+yzWt63b6zN5S1hHAts9M8/2zBmzDir9Wwdd/bsuZg9e65D20PUnnmpgpB1wfBA1alzODQw1IUwCvTrieKyVJvbKpQiBg0LQsJAPUqK1ZDLInHpmFvQNXoIMjcHQa0pRnjIQGTn/QsAEEWFxfYJ/S7H9r+/Qk52kVPOrT2ZPn2Gy48pl4vQavUO25+Xl7fF74IgQJIki2XmwwYrKysgl8vxySdrrIZh+Pr61nus4OAQTJo0GZMmTcY998zGzTdfj59++hH33PMAAgODUFpa0uh2l5aWICgouOEViRqBmRLUpgT4dQcAlJSdsVheYApK8AG6pTqEj0JizIPQ69XYdWghqqrz3d0kolapf/8BmDhxkrubQdQuabXVuJhpCEqERRoeMEWzjIYxg9/CuCFL692HQiEiNEyJwGAFFArDg+XksV/jijFfY2j8M6b1zIMS0ZGXYGDcffDzl6O4qByVlSx2SZaCgoJRUFB7b6XX65GWVhsg6927D7RaLYqLi9CpU2eLP8Z6RY3h5+eH0NBQ03uwT58Y5OXlorzcup6KLWfPnkHv3jGNPh5RfRiUoDYlwK8bAKCk3DooIQgyBPn3cUOr2p5eXW5A146TUVmdi91Jz3FaM6JmuO22O2wWJCMix8vM3or//X0V8gqTkHLuR2RlnUNJsQYBgQrIlEUALGfc8FIFIzykv529WTNuq5D7ws+nI1TKQKiUhgdECbXfeouCHKKoQEioEpKkx/nz6Q44O2pLBg4cjKNHk7Fp00akp5/D0qVvobi4yPR6ly7dcOmlk/DCC89i27YtuHAhE0ePJmP16o9x8OB+m/vcsWM7XnzxOezatQMZGedx5kwaPvxwGc6cScPo0WMBAL17xyAgIBBHjhxusI3V1dU4efK4xewdRC3B4RvUpvj7doEgyCwyJSqrclFVnYdA/16Qy73r2ZoaSxAEDIz9L0rKziG/KBmHji/BoH6Pc6pQIiLySLuTngMAbN37MAAg5aTh2+AO0V6orDKMqZfJGq4pYY+tbY21JPQ688C9BJmoQFiEEtkXdDh7Ng19+vDbZqo1cuRo3HbbHViy5E1Ikh433ngLhg4dbrHOwoUvYPXqj7F06VvIy8tFcHAI4uMTcdllV9jcZ7du3aFUKvHuu28hJycbXl5e6Nq1G1566Q0MGmSY9lMmk2HKlKvx558bMGLEqHrbuGPHdkRERCI+PtExJ03tHoMS1KaIogJ+Pp1RWn4W1epiqJSBZkM3mlZIiOonk6kwcsBL+Hv3vTib+RtCgxLQLfpKdzeLiIioQRcyDEM3LIISYvOL2oo2imQal5lnE0qQIIpKhEeqAKkaZ86kNfuY1LpMn34Tpk+/yfT7oEFD7NYuuv/+Obj//jl296VQKHDffQ/ivvsebNSxo6M74YknFja43owZt+GOO25Cbm6OKZPvhx9+sVrv+++/xh133NOoYxM1BodvUJsTaKorcRYAUF55EQDg79vVXU1qs7y9wjC8//MARBw68S5Ky+1Xfaa2qzZBRqpvNWq1DP+uTISi1sx8NoyqKh1ysqqgUokIDVeioioLgO3Agrn+MfaLzdoKaBizJ/TmQQlJD5mohH+AHCovAZmZmaiu5sw65BnCwsKwYMFCZGdn2V2npKQYY8aMw6RJtrMyiJqDQQlqc+rWlTDODa6U+7urSW1aWHB/xPb4D3S6Suw98gL0eo27m0QuJooyAAKnrGyjdDpD1XfDvzNR6yQKtcUmM9MrIUlAp64+EMXaaJsg2L8tju99H3p1vQEj+r+IHp2vt3rdfOYO0zIbmRKQJIiiAoIgIDxSxboS5HHGj59Q77CMgIBA3HbbHRyySw7F4RvU5gT49QBQOwOHWlMKAFAoGJRwlr49ZiKn4ADyi47gaMonSOhzv7ubRC4kCAJ8fQNQUlIAADXznHvKzYoArZYZHLY1pm8klJYWQaXy4Q0otWqiqIBObxiycf6sYbaBzt0s60zJZfbrTuklHQAgOnIcqtWFVq/bypQwZl5INdsCgAQ9BEGEIMgQHilDfgZw5kwqevXq3cQzIiJqOxiUoDan7rSgmpqghFLh57Y2tXWiKMfQhIX4a9csnDr7NSJDhyAidLC7m0Uu5OcXCAA1gQnPCQKIogi93nHzybclje0bUZQhOJizhFDrlZbxP2i0hnuBinIt8nKq4e0tQ1h47XCNyNBh6Bgx2u4+JH1tYEEUrW+f6yt0abEfSarZhxLhkRLyM4DTp09j0qTJjT8hIqI2hkEJanP8fDpCEGQoqzDUN1DX3IgoOHzDqXy9ozCo33z8e3gR9iW/ikmjP4dC7uPuZpGLCIIAf/8g+PkFQq/XQfKAuIQoCggO9kFhYQX0eg9okAdpbN8IgiEowSwJ8nQ6vRoHj72F6MhL0CF8JABAr9fgbObvOHj8LdN6Z1IqIAHo2sMy+yehzwMWdSfqklAbwBMEG0GJejIlLOlr1lfCx68awcEhuHgxE2VlpfDz430KEbVPDEpQmyMIMigVgVCrSyBJklmmBC/2ztYpaiIyc7YjI+tvHEtZhf597RcFo7ZJEATIZJ5xaRFFAUqlEnK5mkGJOtg31Naknf8Z5y5swLkLGzD98q0AgNTz63D45PumdfR6CWdSyiEA6N7L12J7H69Im/tVyP2g0ZbBxyvKtEwUFVbr2QpA2MqeqM2UUEDSlqF37xjs2bMLp06dNE3NSLaxqDK1D+2zuLRn3DkSOZhKEYhqdQG0ukpToUvWlHCN/jFzkZ23BynpP6Jzh8s4FSsRETldftERq2XGYZxGWReqUFmpQ1QHL/j5W94CK+wM8Zw44mNczN2Brh1rZxoQbWRK2Momsjl8oyZTQhQVkCQdevfuxaBEI4miDKIoQ1FRHvz9g2oC4O54cmOtIvvYN/VrqH8klJUVQxDEdldcmkEJapOUykCgHFCri6HWlEEQ5C2af5waz0sVgoQ+s3Hg2GIcOPYmJg7/yOb4WyIiIkcpLD4JwHKoZt1hFqmnygEA3Xv7ml4f0f8Fm8EDIz+fjujd9UaLZY29pvXqcgPOXdiA+N4PIPn0csPCmkwJ4zG7dO0MmUyOlJTT0Ol0kMna14NIUwiCgNDQDigpKUBhYY7b2sFaRfaxb+rXmP4RBBEhIRHtbtgknxSoTVIpDEX3qjVF0GhKoVT4t7v/3O7ULXoK0i/+gbzCJJw+9z1iut/i7iYREVEbVlmdBwDw9eloWmZeI6K4SIOsC1Xw9pahYycvAIZpPOsrbmmP+fSiPTpfjwDfrjbXCwrojesv+wuiKIdKGYD9R99A3x7/MeyjZgiIXA706tUbJ08eR2pqCvr0iWlye9oTmUyG4OBwSJIeer3e5fWLWKvIPvZN/RrTP+25jhODEtQmKZWGoERlVQ70koZFLl1MEEQM7Dcff+2cheOpq9Ep8hL4+nRwd7OIiKgNqazKRUHxcURHjoMgiJAkQNJrTa+bD7M4ecxQX6pPPz+IouGGXy5rXgaleaZETPdb4eNlf3Ya47rdoq9C146TTYESY6aETq9BfHwCTp48juTkwwxKNJIgiJDJRJcfl/V47GPf1I/9Uz/X/28mcgFjpoRxBg5OB+p6Ab5dEdPjduj01Thy6kN3N4eIiNqYTbtmYXfSs8jO32t62NfpNabXjcvKy7VIP1MBpVK0KHApE72adVzzYSH1Df2w3q42c8OYKaHXq9G3bz+IogwnThyHTqeztzkRUZvFoAS1ScZMibKKTAAscukuMd1ugbdXBDJztiK34JC7m0NERG2IWlMMACguTYNQU/BQr1ebXjemQJ86VgZJAnrG+EKhqL31lTkgU8LWTByN24cxU0INLy8v9O7dB5WVFUhLS23W/oiIWjMGJahNssqUkDNTwh1kMhUSet8PADh88j1IEosfERGRY6Wd/xlaXQUAoKIqGyVlZwEAer0GZaVapJ0uh1wuoHeM5b2AlzK4WcczD0Q0JVPCnMyUKaGBVleFuLh4AEBy8uFm7Y+IqDVjUILapNpMCUNQgpkS7tMp6lKEBPZDUelpnM/6y93NISKiNqa8MtPsNwl/7rwDlVW50OmrcexwCfR6CTFx/lB5Wc5s4eUV1qzjmdeqqDvDR6P3UROUKCo5jZ//ugI62XbIZHIkJx+BWq1uYGsioraFQQlqk4yZElXV+QAAJQtduo0gCIjv/QAA4FjKaujNipARERE5Q0HxMWRn5SH9TAVUKhG9+xqyJCaN+sy0jrcqtFn7Nh++0dwq+cYMi7OZvwEAzmWtQ1xcPNTqahw9esRqfUmSILl6qgkiIhdhUILaJGOmhBEzJdwrPKQ/IkOHobwyE2cvrHd3c4iIqI0rLj2D7VuPQgIQ1z/AVEvCW1WbHaFUBNrZun7mU4I2l7GmhEZbblo2ePAQAMDOXX+ioioHlVWGaU7VmhKs3zYdx1NXt/i4RESeiEEJapNUdW40OPuG+8X1vgcAcCL1c+j0TE0lIiLn2bN3O7KzChEcorCYccN8BgxlM7+wEMTmDdkwZxy+odVWmJZ1794T/v4+2L77Y3z/2/VYv206CktOoqgkBVXV+Tie9hk0mrIWH5uIyNMwKNHGPfzwwxg6dCgeffRRdzfFpWQyb9O3EACg4PANtwsOiEGH8DGorM5F+oWN7m4OERG1UdVVOuzacQySpMegYcEQxdohFuZDLxTN/MJCFGQNr9TQPmqCEuaZEoIgoF98TwDAmRTD8pRzP1oE8rPy/m3xsYmIPA2DEm3cbbfdhtdff93dzXA5QRAssiWae+NBjtW3x+0AgJNnvmJtCSIicoqDe4tQValGr5hghIRZzo5hninh6x3l6qaZGGtKGGcNMRo4IAGCAKSdLodWq0duwQGLdcyDGEREbQWDEm3c8OHD4evr2/CKbZB5XQkWuvQMIYGxiAgZjPLKC8jI3uzu5hARUSslSTqby9PPVOD8uUr4+MowcEiE1euCIGLiiOUYPWQBQgJjm3VspSIQHcJHo2+Pmc3aHqitKWF+Hn/suAMX8n9B564+UKv1OJdWgcrqXIshHjp9NbLy9iCJ02wTURvCoIQb7d27Fw888ADGjBmDmJgYbN5s/ZC2Zs0aTJw4EQkJCZgxYwYOH+b81Y2ltMiUYFDCU/Tt8R8AwKkzX7OSOBERNYtOV221rKJciwN7igAAI8ZEQSY3ZOR1jrrUYr3QoH5IiLm52ccWBAGjBr6CuF6zmr0PmWhdLLO0/Cwu5Gw3zRRy+kQZJEmyyI7Q69XYceBxpJz7Htn5+5p9fCIiT9LySj3UbBUVFYiJicG0adMwd+5cq9fXr1+PV199FYsWLUL//v3x2Wef4Z577sGGDRsQEhICALjuuuts7nvt2rWQyVo+5rE1U5lnSjAo4THCggcgyL8PikpPIa8wCeEhA9zdJCIih0hLS8PTTz+NsrIyKJVKPP300xgyZIi7m9VmSJKElPTvERoYD1+fjhav6fUSdv9TAI1Gj959/eAXVIzS8mIAgFzu447m1ku0EZQAAK2uEiFhSoSGK5Gfq0b2xWpUdy8yvW4ejKlWFzq7mURELsGghBuNHz8e48ePt/v66tWrcdNNN2H69OkAgEWLFmHLli1Yt24dZs0yROd//vlnl7QVgEWhqJZs39L9NFZtUEKEUuHb7LnEXcHVfeNeAnp3uwF7j7yC1PM/IDJsoN016/ZL++ifpmHf2Me+sY994xwqlQqvvPIKevTogdTUVDz44IPYuJGFfVvq36TnodaUIK73vTh88n0AwOSx31qsk7S/GPm5aoSEKpEw0HIGLnsBAHcyL8ZtS+++fsjPLcCJo6UYOijHtFynrw1KaHWVTmsfEZErMSjhodRqNY4ePYrZs2eblomiiFGjRuHQoUMub49cLiI01DHFIoODXVPjIijQMBe5SumPsLDWkSnhqr5xt6Cga5F8+iNcyNkBhaoEAX4drdZRKGRW77n20j/Nwb6xj31jH/vGsaKjo00/9+jRA6WlpZAkyaOD4q2BsQZRdOklpmU6XZXp53NpFUg5WQalSsTIcSGQySz7WxQ873bX1vANc9GdveEfIEdudjXOnEmB3Nuw3HwmDvM+ICJqzTzvU5oAAIWFhdDpdAgLC7NYHhoainPnzjV6P/fddx8OHz6MyspKjBs3DitWrEDfvn2b3B6tVo+SkpZF5EVRQHCwLwoLy6HXO7+WgE5rSNeUy/2Qn+/Z83q7um88Qffoa3As9VPsP7wGiTGzrV7XaHSmf7f22D+Nxb6xj31jn6P6JiDAGwpF2xkquHfvXqxatQrJycnIzc3F8uXLMWHCBIt11qxZg1WrViE3NxexsbFYuHAhEhMTrfb1119/ITY2lgGJFigsOQm5rDZwlleQZPrZ+HCur+qJfbu3QQAwcmwIfHytb20FDwxKNFRTSRQFxCYEYM+OAuzdcxIjx6sAWA7f0GqZKUFEbYPnfUpTvZr6jcuKFSscdmxH3dTr9ZJLHhCU8oCav/1azQOJq/rGE3SLvgbHUj/H2cyN6NfzHou5443q9kV76p+mYt/Yx76xj31jyRG1ngAgMzMTixcvdug1uL3R6qrw9+77LJblFx0x/azTVaG4SIO9289Ar5cwYEgQIqK8bO7L1vXF3SJCByPAtzsgCCgpS7O5Tueu3jh2WI6M83nIywlDWIQKerNMCQ7fIKK2wvM+pQkAEBwcDJlMhry8PIvlBQUFVtkTZJtxSlDOvOGZvL3CEBU2HFl5u5CVtxsdI8a4u0lE1M45otZTWVkZHnzwQTz77LPo2rVrs9vS2uo4NZVer0VW3r+ICBloKkSp1VYiM2c7OkdNRHlFutU21eoi089FxfnY/nceFEIn9I3zN81YUdek0atxIXu76XdRFDyib/x9O+KKsZ8BADbtvBeFJSet1hFFAbHx/ti7qxDJh0owflKY5fANfaVTzsET+sdTsW/sY9/Uj/1TPwYlPJRSqURcXBx27tyJiRMnAgD0ej127dqFO+64w82tax38fDoDEOHv09ndTSE7ukVPQVbeLpzNXM+gBBF5tMbUetLpdJg3bx5mzJiBMWOa/5nWGus4NdX+Iyux9/AH6NXtSlw2+mUAwNoNDyInPxleXhLkMpXVNsYij+XlWnz3zY+orNBh0Kie6NBda/c4PbomoKh0j+l38371lL5Rqbztvtaluw9OHitDbk41LmZWoWu0zvSaKNM47H1ii6f0jydi39jHvqkf+8c2BiXcqLy8HOnptd8EZGRk4Pjx4wgLC0N4eDjuuusuLFiwAHFxcUhMTMRnn32GqqoqXH/99W5sdevh6x2FK8d9Cy9lSMMrk1t0CB8FlTIYWXm7UVmdD29VqLubRERkU2NqPW3btg27d+9GXl4evvvuOwDAF198gYCAgCYdy9PrOEmSDtv2PYawoATE9b67Wfs4fXYTACAt/S/k930KWl0VcvKTAQC5+eeh19sONJSXa7H1zzz4KC6iUxdvjLtkIFLST9k9TkFBBSoqa7ML8vPLPK7ejKS3X/RSFAUkDgrEP5vzcPhAMRLiamtklZcXOaVmlqf1jydh39jHvqmfI/qnrdVxMseghBslJydj5syZpt9feuklAMBDDz2EuXPnYsqUKSgoKMDSpUtNBbVWrlxpMW6V6ufjFeHuJlA9RFGOLh0ux+lz3yIj62/07nqju5tERNQk5rWeJkyYgKNHjzpkv55cx6m49Axy8vcjJ38/Ynve1ax9aLTlAABFTd2n/MJjptcEyGzWWSgp1uCfv/NRXq5Fv8Eh6BITAoXCp97j6PUSIAmWv5v97AkPT6JonRViLqqjChFRKuRkVeP4sUxE1EzyotaUOrX9ntI/noh9Yx/7pn7sH9sYlHCj4cOH4+RJ6zGE5m6//XbcfvvtLmoRket1jppYE5TYzKAEEXks1nqqpdFWNGl940wTyac/Qml5OkYOeBlajTEoYUhlLi2vzRzVaCuh1hRZ7CMvpxo7tuRDrdajSzcfjLmkGzKyT1lMrRkdeQm6dJiEk2fWoKD4GFoLmUxZ7+sdwkfiwXuuwaKX7sDB/ecxMcIHCoUeak2pi1pIRORcDEoQkVsFBcTAxysKBcVHUVGZDR/vSHc3iYjICms91TJmOTTWtn2PQK9XmwIFOl0VNDpDYKOs4jwu5u60CEpodeVQa0pMv58/V4E9Owqh10voE+uPxEEB0GiLAACiWPtAr5D7oWPEGKSkr23uqbmFzG6mhICrxq+FShkMnb4aXXv44GxaHo4c9MWgYcHQMChBRG2E6O4GEFH7JggCOkVNAABkZG9xb2OIqF0rLy/H8ePHcfz4cQC1tZ5yc3MBAHfddRe++eYbrFu3DqmpqXj++efbZa2nulkM9mi1FUg+vQJ5hYcsMhf0ktZiasudB5+qkylRDrWmDHq9hMMHirF7ewGkmmk/+w8OhCAIqFYXAgBkZkEJUTCOta6bGu3Z1e5lMttTmQKAlyoEgiBAJiqRMCgQSqWItFPlKMhTQ62trSchSRKOpqxCbkGSK5pMRORQDEoQkdt1irwEAJDJoAQRuVFycjKmTp2KqVOnAjDUepo6dSq++eYbAMCUKVPw5JNPYunSpbjuuutw/PjxdlPrSaerRlHJaeQVJmFf8qum5ZKks7vN8bQvcPLMGqvler3GallxaYrpZ422HCUlhdj2Vx5OHiuFQiFi9IRQi2k/q2qCEuaZEoIoMzbKYt/Gmh+eSiGvvy4GAAiCCC8vGRIGBUICsP/fQmi11dDpDDOS5BTsw4m0z7Ft38NObi0RkeNx+AYRuV1QQAx8vDugoPgYKqpyWKCUiNyCtZ7sO5H2BU6c+cJq+do/J2Ly2G/g693B6rWyivM296Uzy5IwqlIXmH5OOXUGm//KRHW1HkHBCowcFwo/f8tbVuPwDvOaEgIMQQmplWVKeDVh5qnuPX1wNrUc+blqnD5RBvWEMnjLVKisynViC4mInIuZEkTkdoIgoEP4KABAdt5eN7eGiKjtqKzKRUbW3y3eT0r6D3ZfO5vxm83l9rIoqqrzbC4XJD/s3VWIP35PRnW1Hj16+2LiFRFWAQkApuEf5pkStcM2Wldley9l44MSgiBg8PBgiKKA5EMluHDhDADDUBkiotaKQQki8ghRocMAANn5e9zcEiKitqGo5Cx+3TId/x5ehJyCAw2uX16ZheTTK6DWlEKSJOw98gpOpBmyIwL8utvdrqT8nM3lejtBiWOpqy1+lyQJGemV+HN9Ic6mlkOp0mHMhDAMHh4Mmbz+LAeZaGPmCqmVBSWakCkBAIFBCsT1D4BeL2Ht2rXQ6XSmwqFERK0Rh28QkUcICxkAUVQiJ38f9Hqtu5tDRNSq6fUafP/LNNPvjZmpYeueh1BZnQtBkKF31xlIv7gRANC3x39QVV1gdzvzIpXm7GVK5OTvM/1cVqrFwb1FyLpQBR+vKHTtHoj+g32g8pLZ3LYu0Ww6TeOwjdrhG0Kdvz1TU4MSANAn1g8XMipx8UImtm7djPBOTZsRhYjIkzBTgog8glzmhbDgRGi0ZSgsOeHu5hARtWqaOun8kqRvcJvKakNdAr1eazElp06vRqWdIRcAUFp+DpKN7ASpngBzVZUOB/cWYeMv2ci6UAU/fzmumToMYyd0aXRAAqibKWE5fEMQWsdtrrdZUEKpCLC7np9PF9PPoihg2KgQiDI9tmz5GxkZF0yvSZKE4tJUmwVFiYg8Uev4tCaidiHSOIQjj0M4iIhaQqevtvi9bpCiLvOggq9PB4ugRHFJCiTJMsAQ4NfDfGv8svlqq2wKW8M31Go9jiaV4PefspBysgyiCMQPCMDlV0eie/eupqk+G8uipkTNOdQNkHj67Bsymcr0s62CoUaXjVxp8bufvxyjx8ZBkvT44/d9UFcbAk9ZebuxadfdWL/tRmg0ZbZ2RUTkURiUICKPERVmrCvBYpdERC1hnCrSSGun5kBZxQVs2H4LTp/71rRMgGARlMgvPmq1nVLuZ/G7RluGzJxtFsvMh29UVuhw+EAxflt7EceOlECvB3r39cOVU6MQGx8AmUyAUhGI6Jopor1V4QgJ7NfgedqsKWHMlKi5zTUWUu7S4YoG9+cu3qpwAMCguAV21zEELyxv3fvERiI+PhElJWXYu6sQkiShojILAFCtLkRx2RmntZmIyFFYU4KIPIa/bzd4KUNQWHISkmTrRpOIiBqj7rSb9mZnOHj8bZRXXsCRUx+alkmSZBGUKCo5bbWdeS0H0zF11SgtPw9/384ADMNACvLVSD1VjvQzFVDIAqHXA917+SI23h++fpa3oTKZCsMTn4NW9wQUch8cOrEUBcXH6j1P80wJ0+ANY6ZETYaEv28XXDvxd8hl3vXuy50mj/0aer0GcrkPwoL7I68wyeZ6giBY1PHUastx3XW3YOfeFbiQUYnTx8sgCEtMr2u0rDVBRJ6PmRJE5DEEQUBwYD9Iks7ut3pERNQwna7K4netrgJ6vRbH0z5HflGyaXlRySmrbSVJZxGUKC0/CwBQKYJMy0RBYbXdkVMf4I8dt+Nsxhbs2fMvfll3FH/9noOzqeUIDY7BqNEjMGVqFIaMCMbgxLutttdoyyAIMijkPgAAmWh9jLps15QwDGMQzApcKuQ+Hj2MQxQVkNecd32zhwiCZb0Nra4SXl5eGHNJR4iigMMHi5GTVZslo9Vy+AYReT4GJYjIo4QGGdJ1Gxr/TERE9hmHb6iUwQAMn6kp6T/iWMoq7DjwhGk9tabYalsJEtRqs6BERQYAQKkMNC0TzQIGowe+Dq1Wj/PnKrBrWz7eeOM1/PLLOuTlliIwSIEBQ4Jw591XYNSYeHj7GB6qo8JGWB03LCjR4nfR5tAM1FnHOnBR+0jvuUGI5hLq3Lobg0/efhUYPDwIkgTs2paPslJDDRA1gxJE1Apw+AYReZTgwFgAhpRUIiJqHmOhS5UyCNXqQmh1lTh3YQMAQ0YCALvTL0uSHmptbVDC+HkcFTYcpeXnEB4yGIChTkTWhSoUZe7A39suQqczhANUqvO47JK70CN+L/yDNBAEAV7evhbHMM9w6NfzbkSGDUNIzee/ka2AQ10yG4Uuo8KGo6jkJDpFTWhwe48k2J/KVLB4TYJWV4lqdRGq1YXo1tMXxUUanDpehh1b8jHxinBeS4moVWBQgog8SnBAXwACMyWIiFrAmCnhpQxGCc5Aq62ARlMKwJCBIEmSKThhTW+RKWEkF6PQK/J1ZGbmYPM/H+B8xkUAQPfodAgC0KWbDzp19UZURy907pQC6aIOxgdrmai0mJbUvCaFXO5tFZAwbtMQ88CFVJMjEdtjJkKD4hEePKDB7T2SZDm1qTnj8A2ZqIJOXwWtrhLFZWmm1xMGBqKkSIusi1X4d0cBYntZ/zsSEXkaBiWIyKMo5D4I8OsOvf4UKqvy4O0V5u4mERG1OqbhG6oQAIZCl8bil3q9GmpNMdR2povU63UoLMpF1oUqlBRpUFigQX6eGtu91sHftxMAoCC/HH7+ckR19MJt0+7FkTMHIZMLiOl+G06eWYOi0tOwGEghiBb1EGSiyuyItkcT28qUCPDtjpLyMzX7lEEUrW9lRVGBqLDhdnqmdRMEQ1/JZIagRG7BAeQWHDC9LooCRowNwV8bcnAxswqb/96LxJgHGl1PQ6/XNipDhYjIkRiUICKPY/jGbCMKio8h2mucu5tDRNTqGIdveCmDABgLXWogSRK0WgkXs0+jorwcFzOrUFGuRUW5DhXlOpSXa7Fz0zrk5J2CRltqsc8enSPQr+8QdO7cBXnlVSivPggAiI2Nx7HzQs06U3HyzBqLQpmAYUYMmVl2hHkWhPFBuy7zh+OOEWMRHjIQQf69sHXvw1b7aFPqG75RE8Cp79wVShFjJoRh88ZcJB9Ow+bNf2HixMsAGP4dSivS4e/T2arfM7I249/Dz2PckLcQGtpKh74QUavEoAQReRzj3PQFxccRHcmgBBFRUx1NPok/fsvGweB/cTE3C3KxAlXVJdBodNDrJfz791IIghwXcvKsto0I1cA/QIOgkGD4+usRFKxASKgSl4+9G6FB8QCAfw78gPLaSR4wJP4paLQVUMj9AADVausCmuZBBpmsNlNCsFOQUibUPnh7q8LQq8t0FBafMNtf3Qdz+7NWtCZdOkxCXmESene9wfrFmkCCrSlZzfn5yzF2Yii2bsrBV9++CG9vGUaOnICU9O9x+OT76NtjJuJ6zbLYZs+RlwAAR06tQL8YBiWIyHUYlCAijxMc2BcAatJ/iYioqXJy8lBcpIFKrEZ5mQ5yeSUAHZQqEUqliMgof/j5BkEV4AsfXxl8fGTw9ZPDx1eGfn1G49yFAoQE9kNRaQr0NcM+FHKzYpV1pq3s2nEygNphI5JUt4imZDGNqExUwte7I8orLyAooI/NczB/8BYEwy2rYDZcw5gt4OfTGWUV5xHg16PxHeTBukVfjbDg/vDz6WT1mmkYRiPiL0EhSowc54/tf2fisy9fQ0BAODKLfgMApJ3/2SooYfw381KFmpYZhnPwcYGInIufMkTkcYw3YuUVmW5uCRFR6zR8VB94h3TEsMQ7kXxaA4220OL1+N5joFT448CxHVbbVlQZPnsNQYOLqFYbghJys6CEBL3VdgDqfYA1f00Q5Jg44iOUlJ1DaFCczfUth3gY6lGIZnUpjJkS44a+i+y83ejS4Qq7x25NBEGAv28X26/VDN+w1f9eyhBUqQsslkVEeWHY6GAk7S3Bd999ja59ixAYan/IDAB41wQlikvP4I8ddyChz2z06XZzc0+HiKhB9j+RiIjcRC7zgigqUFGVbXfKOiIisk+nq4ZCIUKl9IGvT4TV61pdpd1Cl2Xl5wEAvj4dTcMxAEAh8zH9LEm2v6oXBJlFQUvT+pAgMxu+IQgClIoAhAUn2D0H8+EZoiir2c46U8JbFYpu0Ve1i2/0TX0rWQclZHJvm+t27uqDwcP8oNfrsfWvdFzMrETdehW2ZkY5fe57AMCRUx86qvlERDYxKEFEHkkmU0KSdKioynJ3U4iIWh1joUuZTAUfr3Cr17W6SqtClkaV1bkAgCD/XhZDNuTmD702HoqNRME8I8LwYNylw+UQmjirg/kMHcYMAcEiU6L9zRJhzHCQbPS/eRZJbI874e1VG4zq0EWN4E7bUa0uwc6tBbiYaTntdlV1bYaFcQiOxk7QiojI0RiUICKPZLwZLeMQDiKiJjM+WMpElcXDqZFWW9ngQ2doUILFg795QECqp6iBed2H+N73YdqkzfD1joJMaGJQQlb/8A1ZA8Ue26SamhKSpLN+CYa+Ucj90a/XXfD1irJ4vWt3GQYPD4ZeL2H73xdw/PgxAEBJ2RlUVdcWPNXpqgAAajtBKyIiR2v7eW5E1CoxKEFE1HymoIRMBW9VbVBCJqqg01dDp6uE9WNtLV+faHipQkzfoPt6R1u8Ht/7XmzZMxfDE5+12tY8U0Iu96mtX1BPHQNbLDIljMM3zAIe1rNvtH0+XpEor8iEt1d4nfoRtX1rLIapUPihrh69fSFJEo4cUOPrr7/EhEv7o6D6A8hltVkw2pqghDFoJTYxmERE1FTMlCAij2ScLo7FLomIms7e8A2lMhAAcD7rL5zP+svu9j4qwzbxve9FWHB/jBu6xOL10KB4TJv0NzpFTbTa1jy7wrwORVOn7DTPhBBtZUq0w6DEkPin0LXjZAxLfN5i+WUjV5llrxiCEnKZl8199Ozjh1HjDEGm77//AqdPlEGrqzS9bsqU0BgyJWwFN4iIHIlBCSLySMabTWZKEBE1na5mGk+ZqIKXKsy0XKUIbNwOah7+O0VNwPihS+FjYwiIaXrKOiwzJcxm7KinDoUt5pkSYE0JAICPVwSGxD8FP5+OCPDrDgAYNfB1BPr3QN2gj7dXpN39dOsZhNtumwlB1OPQviIcTSoxFS/V1mTZqDUlAGCzcCkRkSMxKGGHWq3Ghx9+iBMnTri7KUTtkilTopJBCaL2itfi5uscdQm6dBwDP59oi2KVSkWA1boqZbDVMrEFD6Lms2Ao5OYzdjQxKCGrDUoYZ99o75kS5sYNeRejB72BqLDhAGpnRBFqMiX6dr8dXTpcjgnDrGfPEAQRMTF9MfnqRCgUIo4dKcHenYXQ6STo9FXQ6dTQaA3DN7TaCqvtiYgciUEJO5RKJZYvX46SkhJ3N4WoXRIEGVSKIJRXXLRZ0KuqugCHTryL1PR1rBBO1EbxWtx83TtdjSkTlkIU5RbZCsbhG0aCIINC7m+1vdDE+g/mzGsQWBxbYX2cevcjWhe6tMyUaN9BCZUyEFFhw60zVmp+l8u9MTThGYQE9bPa1jibSUSkFy65PBzePjKcO1OB7X/loby8HFXVxaZ1tbpKu1PAEhE5AoMS9UhMTMTRo0fd3QyidsvXJxp6SYPKqjyL5TkFB7Bp1yykpq/FoRNL8Nu2G5CVu9tNrSQiZ+K1uOXMMyUUcsv6AKKohMzGMIgWBSXMMiXM6xqEBiUgrtc9GD/0vUbtR2YjKGG+7/aeKWHNsqZEfYyBDK2uEkHBClw6OQLBIUrk5lTj9/+dwI49n1rsV6erRGr6Ouw5/CL0eq1hqaRHZXW+Y0+BiNolBiXq8fjjj+Prr7/Gl19+ifPnz6OiogKVlZUWf4jIefx8DIW4yioyTMvUmlLsPPAUqtUF6BY9Bd2ip0Cnq8SeIy+ivOKiu5pKRE7Ca3HLmQ+hMB8SAQCQJNODvvkMDC0JSghmNSVkFvsU0LfHfxAWnNDI/dS2oXbYhtmy9jglaD0kGIbH2Kr1Ed/7vjpLDP1oLHDp7SPDJZeHIbqzNwoLS/DOO28h60KVaW2NrhKHTizB+axNyM7fAwDYl/wa1m+dhoLi4044GyJqTzglaD1mzJgBAHjppZfw8ssv21zn+HF+EBM5i68pKFFbV+JCznbo9FXo2nEyBsc9AcAwRvrU2W+w+/D/YcKw99tl8TOitorX4pYz/0y0zi6QTMMgFHI/00NqS4obWmRKiKp61mw8Y4BCEAQIggySpGOmRF2mERbWQYk+3W5FUWkKMrL+NqxhzJQwqxchl4sYMTYERw6W4NTxUvzzdx7iBwQiJs7PYr2cggPoED4K6Rc3AjBcl0MCY51zTkTULrSZoMTmzZvx6aefoqCgAD179sRtt92GoUOHWqyTlJSEm2++udE3L6+88ordytJE5HzGau/mwzfO19xQdelwuWlZXK97kV90FPlFR3D+4l/oGj3ZtQ0lIqfhtdix6tZhkCCZghYKhR8qq3MBtDQoYRYEsTMtZVNZ1JIQ5NBJunZfU8KaZaFLc4IgwNe7Q+3vdTIljERRQP/BgQgOUWD/v4U4cqgYBflqjBlUaFqnsNiy8Kwk6VGtLsKWPXPQOeoy9Ot1l8POiIjahzYRlNixYwcefPBB9O/fH0OHDsWhQ4cwc+ZM3HHHHXjiiSeafTMzbdo0B7eUiJrCOA5aU/MNTbW6CLkFB6BSBiMsuL9pPVGUI67Xvdi272GknF+LLh2vaNL/+9LydOQWHEJ5ZSaC/HsjPGQQvFQhjj0ZImoWXoudTJJMU3ia15sQWjDC13xKUPOsiZap/Uw3BiiYKWFJQv3FKM0LkMKspoQtXbr7IDBIgZ3b8pF5vhKrVn6GDj01CAxSmKabNR1X0uPU2W9RVpGB42mfMihBRE3WJoIS7733HqZOnYpXX33VtOyHH37Ayy+/jPPnz+Ptt9+GStX89MGUlBQkJycjKysL06dPR3h4OM6dO4fQ0FD4+fk1vAM3q6ysxJQpU3DVVVfhsccec3dziBpNXjMOWqsrBwBkZG2FJOkQHTne6kY3LDgRgX49UVRyEgXFRxEaFN/g/vV6LZJPr8Dpc99aLBdFJeJ734teXW5o0bhqInKc1n4t9hR6vQb9es3CsZRVAAx1CMyHbxg5aviGo5jPwlRb9JJBCQvGGTLsBOVlZjU4TJkSWvs1WQKDFZh8TXfs2HoeubnZOHYqBwOGBGHAAI3FenpJg+zcnS1sPBG1Z23ibvv06dO49tprLZbdcMMN+OKLL5CUlIQ77rgDRUVFTd5veXk55s2bh6uvvhoLFy7Eu+++i5ycHADA22+/jffff98RzXe65cuXIzEx0d3NIGoyucwQlDBmSmRmbwUAdIqcaLWuIAjo2cXwjWpK+o8N7luv1+CfAwtw+ty3UCoCENP9NgyOW4Duna4BJAmHT76PXYeeMVUZJyL3aE3X4k2bNuGKK67AFVdcgfXr17u7OTbp9RrE9piJkMA40zJjEEGhMA9KOGZKUEfRS7Wfxcb22po1hGwP3wAsh9UIggBJkqwyJeoGo/z9wjH6klAMG9ELer2E/f8WYstfZ1BRUVtjoqq6AGUV5wEAAX49HHUaRNSOtImghEqlsvhwNIqPj8fXX3+NgoIC3HzzzcjIyLCxtX2vvfYaDh48iE8//RQHDhywmKN5/Pjx2L59e4vb7mxnz55FWloaxo8f7+6mEDWZcfiGscBWeaVhdo2QwL421+/c4TIo5P7IzN5qCmTYc/Ls18gt2I8Avx6YOHwF4nvfh27RV2FQv8cwccRH8PPpgou5O5F0snFT1zWGJOlQVV0ASdI7bJ9EbV1ruRZrtVosXrwYa9aswTfffIMlS5ZArVY3vKGL6WtS72O63wYASIyZY3q4t8yUaMEtohNqgJgHiJkpYZtx9g17U4Ja9pcIra4CqDPkw0sVavo50L8XukVPgSAIiEsMxYQrIuDrJ0f62UK8997byM2pBgDkFSaZttHrLbMoiIgao00EJWJiYrBt2zabr3Xu3Blff/01fHx88OSTTzZpv3/88Qcee+wxjBgxAjKZZeS4Y8eOyMzMtLNl4+zduxcPPPAAxowZg5iYGGzevNlqnTVr1mDixIlISEjAjBkzcPjw4SYd4/XXX8d///vfFrWTyF2MwzeMAQaNthyioLCe0s64vswLUWHDIEk65Bcdsbvf0vJ0nEj9HKKoxMgBL8LXp4PF64H+PTFm8GKolMFIO78OZzJ+afY5SJKEzOyt2PzvbPz012T8tvV6/PzXldi6Zy4u5Pxj8YBFRNacfS12lKSkJMTExCAsLAzBwcFITEzE/v373d0sK7qah8aOEaNx7cT16NVluulhVemg4RvmQy0cxXyfxpoVrClRR0PDN+pkSqg1JVbreKvCTD8PjnsMKmUgAKCiKgehYUpMmhKBrt0DUFiYh61/5OLwgWJUVBaYttHrGw7Enb+4Cf/sfxzJp1egrOJCo07NXLW6GPlFyU3ejog8V5sISlx++eXYtm2b3SEaoaGh+PLLLzF06NAmPQBUV1cjKCjI5mvl5eVWN0dNVVFRgZiYGDz33HM2X1+/fj1effVVzJkzB+vWrUNMTAzuueceFBTUfvhfd911Nv/odDps2rQJ3bp1Q/fu3VvUTiJ3UdQM39BqDTUlNJpyi/RiW8KCBwAAcgsO2V3n0Il3oZc06NfzTvj5dLK5jq93FEYOeAmCIMORU8tt3rw1pFpdjG17H8bupOdQUHwMMlGFQP9eEEQZ8ooOY9ehZ7B170Ooqs5v8r6J2gtnX4uNWvpFQU5ODiIjI02/R0ZGmoaZeAKF3B8A4G32TbgxG61Lh0noGDEWYSG1BYQ9LShhM1NCxqBEU5hnSkiSDmpNqdU6XmZBCbnMC0pFAACgsiobAKBQihg5NgJXXX0Z5AoRJ4+VYtNv2SjIMwQj6hbBtGXPkReRnb8HJ8+swa5DzzT5PP7aNQtb9sxBUcmpJm9LRJ6pTRS6vPnmm3HzzTfXu46Pjw8++eSTJu03ISEBP//8M8aNG2f12saNGzFw4MAm7a+u8ePH1zusYvXq1bjpppswffp0AMCiRYuwZcsWrFu3DrNmzQIA/Pzzz3a3T0pKwvr167Fx40aUl5dDq9UiICAA9913X7PaK4otS8c0bt/S/bRF7BvblEpjoctKaHXV0EsaKOS+9fZTZKjh/2VeYZLN9corLiInfx98vTsgpvvN9e4rPCQB3TtdjbTzP+PU2a+QGDO70W2vVhdh+/7/org0BYH+PZEYMxuRoUNN43iz8nYj+dRK5BclY/O/D2LskDcQ4Net0fs3svfeqVYXI6/wMKrVxRAEEcEBvRHg190pBeg8Ff9f2dea+sbZ12Ij4xcF06ZNw9y5c61eN35RsGjRIvTv3x+fffYZ7rnnHmzYsAEhIZ4/W8+E4R/gbOZv6NPN+n4pPGQgwkMGorDkpGlZS4Zv6J2SKWEdlJA5oXZFW2Bv5hTzzBK9pIPGRlDCPGgll3mZglkVldmm5RL06NuvKyZdHYH9u4uQfbEKx/b3QmiHFPSJK8CZjF/RvdPVjWprWUXThlYDME1bW1J2FkEBfZq8PRF5nvZzd9oM8+bNw1133YU777wTkydPhiAI2Lp1Kz799FNs3LgRX375pdOOrVarcfToUcyeXfsQJIoiRo0ahUOHDjVqH/Pnz8f8+fMBAGvXrkVaWlqzAxJyuYjQUMdUNw8O9nXIftoi9k0thUKGsLBAyOXe0OoqoFaXAQC8vQLqfS+GhMTC2ysUhSUnEBAgQqHwsXj9fPYuAECfHlciPDyowXaMHvog0i9sRMq5HzG0/3/g5xvV4DZ6vQ4//zkHxaUpiI4ahsnj34FC7m2xTljYJMT2Ho/Nuxch5ezv+Gf/Y7hhytfw9gpucP+2GN87RSXp2JP0Hs5mbLEq0unrE4mB/e5A317XQ25nCExbxP9X9rWGvnHVtbilXxREREQgO7v2wS07Oxtjxoxpdnsc/UVAoH9X9O/7YAPb1D7MioKs2W2wGGrRwvNQyP2g0ZbBz6ej2TkZghJyuapZ+29NQbmmMNaUEATb52Y++4Yk6aDR2QhKeIWbflYofOClMgQlqjVFFttqdaXw9ZXjppunQqoci81/78KJoweQfk6HwvyXcMv1/eCjCodSGVBvm/19uzT730EURZf/G/4/e/cd3lT5xQH8e292d5tuWgpllNJBy17KEBBxAoqiiLhFQFSciHsibpwM+TlwobgREBVUluxZCi3QvZuO7HV/f6RJk2Y0adOktOfzPD62N3e8923IzT33vOftqu8db6C+cY36xzUKSrgwdOhQ/O9//8Prr7+O559/HhzHYeXKlRg0aBDWrVvXoTNayGQyGAwGREZG2iyXSqUoKCjosOM6o9cb0dDgfNood7Asg/DwQMhkChiNNI7eGvWNPZ3OgJoaOfg8CbTaBkuaKcNIUFMjd7ltZNggFJX/idNn9yA2crjNa7n5m03rhI5tdT8mEvTrNQs5+Z9i76H/ISt1Yatb5BVsREX1MYSHDMCIjBfRUG8A4PhYWSmPQac1oqB0CzZvfxQXDV3hUdq09Xsnv/BXHMp5GwaDCgJBMHrGXYRASRz0BhVq606iSnYY/+5/Fcdzv8fo7OcRGBDv9nE8odbUQK2RwcjpERyYaEkR9zX6d+Wct/omJEQCgcA7wyec8ee12MydBwWZmZk4deoUqqurwePxcOTIEbz44ottOp7fHgSwzccMCBC3uQ18q2+X7T2PWVd8jeKyPRjQ5ypL9oZAYLq5Dg8Pbdf+L4SgnCfYploSPB7PYb+otKGWn7U6GfYcfsZ2e5YPaURz4D0yUgqN1tEQGQPEYlMAJDa6H0ZkXYdxF0/Cg4//jsKCCvy1tQqyqsVI6luHrPRZuHj4UputQ4N7or6xEAAQHBjZ5r9hULDEa/9OPNXV3jveRH3jGvWPYxSUaMWQIUPwxRdfQK1Wo76+HiEhIZBIJK1v2EE4jgPThqrWM2bMaPexvfWl3mjk6AbBCeobW0YjBz4vEGquFiq1qZYKnxfYah9Jw01BicqaQ4iOGGZZLleWQtZwCkEBCQgOTHa7r3snXIOc/M9RVP4nMvrf4zJooFJX49iZ1WAYHgYPfAgMI2z1OFmpD0LWcAYVNftx6uxXSOl9o1vtsnb63Hc4lPMWABapyfOQ0vtGu4KgdY15OHJqJaplh7Ft910YM/hVRISmenwsRwwGDfIKN6Ko7HfUy/OtXmEQGpSM5J7XICl+ql8K09G/K+culL7x97XYnQcFAoEADz30EG680fTv9/7774dI1LaMJH89CKhvVFt+1qgNbgZu7TXPOsK0eR/NghEdPhm1tc0zKhkNpu9BcrkBNazn+++qAUuD0RQoMBg4h/0ulzfPjKHW1Nm9zmPF0Gqabw0aG/TQ6e2HghiMesjqTNdknZbfdCwBLrk0GSeO63D4QB2OHTmLnJNalJV8itTeC22ycBg0/7tQqeXIO3sAx/PWYnjGUoiEYW6fr0Ku8cL7yzNd9b3jDdQ3rnmjf3zxIMBfKCjhwu7du5GVlQWJRAKxWAyxWOyzY4eHh4PH46G6utpmeW1trd2XIkK6MkHTDBxyhSktWthKoUsAiGoqdlkts52tpqRiOwAgIWaCR8E9iUiKqIgsVNUeRLXsKKIinI9hzzn7P+j1CvRLmoWwkH5u7Z/PE2PEoGewbdetyD23Hr0TrrAUF3PHuaLtOJTzDlhWiDHZyxEtHexwvbDgvrhoyOs4dvpD5BVuwK5Dj2PCiA8RKGl9SIorlTUHcfDkCihUpirqpqBPTwBAfeNZ1Mvzcejk68g9ux7DM5+CNCytXcdzhuM4KNXlaJAXwGjUQCQMRVDQIHSRms7dlj+vxa1p+aBgypQpmDJlilf27Y8HARxn/bnItrkN5qFjDMPrkJsTc2CYgaBd+79QgnLuM58L4/C8OM71ZyGPJwKf13yN5TgGDIRgGQGMXHNAw2jUQ6c3Bc14rNhyLB5PhKTkAMT1EOPkUS3O5Fbjv121WHx2EMaOS8fooXejR8w4ywwwAKDXq7Bt950AgJ/+vAqjsl5CfPQYt87WaDTi9LkN0BvUGJA8x61tvKXrvXe8h/rGNeofxygo4cJtt90GHo+H1NRUDB06FEOGDMGQIUMQHt62Md+eEAqFSEtLw65duzBx4kQApg/f3bt345Zbbunw4xPSWfCbZuCQK01BCb4bQwGCAxPBMDwoVGU2yytrTdPzxcdc5HE7EmMvQVXtQRSWbXMalNDrVSgq2waWFWJA8lyP9h8SmIRePS7HueKfcPr8V0jv5179F5W6Gn/uWgaAw7D0pU4DEmYsy0dmygIYjBqcK/4Juw49hgnDPwCf37anzsXlf+G/Yy+A4/SIixqN9H53ISTIdsaf2voc5OR/gvLq3dixbxGyBtyP5MSr2nQ8RwwGDc6V/IqzRd+jUVFo89o/+/mIjBiEfknXIzZyhNeOSXzHn9dis+7yoMC6uGV7Zt8wF7pk27EPV8xTW/J4nSdA1Sk0zTDnLObeWjCexxPbzXDFMAwEgmBotM0zv3GcHvqmqbrNU3cDzYU0hSIW2cOD0COJwcG9dagoV2Dj13tx+NBxLH1gt02AQ2dozoABgN2Hl2LmlB2tnKiJwajBkdyVAODzoAQhxLsoKOHCrl27sH//fhw4cAD//fcfPv30UxiNRiQnJ2PIkCEYOnQorrqq7V+sFQoFCgubv0AXFxcjJycHkZGRiIqKwq233opHHnkEaWlpyMzMxCeffAK1Wo3p06d74/QIuSCYgxCKpqCEgN96pgTD8CAWRkClqYHRqLfMOCFXFANgEBLYy+N29IgZh0M5b6KkYgeyU+8Hy9pXfS+p/Bt6gwqJcZMhFAR7fIzU5LkoKN2MvIJv0afnTJsq6M4cP7MaOr0S/XvNQkLsBLeOwzAMsgYshkJVisqa/Th17jO3gyDWSip2YO/R5wAAgwc+gt4JlztcLyI0FaOzX8a54p9x5NQ7OJTzuumJWvylHh+zpbqGM/jv2AtoVJwHAIQG90VYcD8I+IHQaGWokh1EZc0BVNYcQEzkCAxJe9Stfm0LubIEpZX/olFRAK2uHkJBCIICEhEXPQYhgUkdcszuoKOvxe7oLg8KbIMSbc8wMhe6bE9gw5WU3nMgDc9EgDim9ZW7kYiwgSir2oXwkAFub5MUPxWyhlw0yM+Bz4otDwKstRwKCAC6pqm6+bzmgLbtlKN6REWLMPnyaOTlynHyaCPyTyvw1luvIUBagYReHPh8EdTqart9u0ujrWvztoSQzqVLBiU4jsN7772H66+/HpGRkZafo6KiWt/YSnh4OCZPnozJkycDME0XtmfPHqxbtw7ffPMNNmzY0K4vQsePH8fcuc1PU1944QUAwMKFC7Fo0SJMmzYNtbW1eOedd1BVVYXU1FSsWbPmgph6jBBvMc9aIVeWN/3uXoEgiTgKKk0VNFoZJOIoGIxaKNWVkIijHH7Bao1QEIzYyBEoq9qJqtrDiIkcZrdOQclvAExf8tpCIo5Cn8RrcKbgGxSUbMKA5Jtdri+rP4XzJb9BLArHwD7zPDoWy/IxJO1RbP33Zpw+/zWS4qchODDB7e0VqjLsP7EcAIcRmU8hIXaiy/UZhkFy4lUIEEdj1+GlOHBiOcSiCMRI7fvRXWVVu7Dn8FMwcjpES4chvd9dCLeaHs40flOC46e24kju+6io3ovte+djdPYrCA1ObvNxW6pvPIujue9aMnFaOn7mI0jD0pHRfz6kYeleO64zBoMGjcoigOMg4AchQBLbplpEnUVHX4vN6EEBYD3UqT1BCfMT844qchsTOczhZ3B3NyTtMRSWbUWv+Mscvs4ytl/7oyOGYGj64/hrr2lWFh5PZJP5YMZzEITX6U3Fp23Xt09JZ1kG/VODkdQ7ACeONkCtVuPknnLkHOcwZHg8pDFajz6frGeVkitLmo/MGTosCEYI6XhdMihhNBrx3nvvYcKECYiIiLD87GlQAjB9STl06JDlKc3Ro0chEokwfvx4DBkypF3tHDFiBHJzc12uM2fOHMyZQylppPsyZ0rIPciUAACxyJRSrdJUQyKOahrKYURQgPs33i1FRQxGWdVOyBpO2X0hVqjKUCU7BIk4GtERrodQuNKrx+U4U/ANisr/aDUocTxvDQBgeNYCCARBHo9RDBBHY0DyzTiRtxpHc1dizODlbm1nNOqx79iL0OsV6N/rxlYDEtZio0ZiyMBHsP/Ey9h//GVMGf2pXbqwO6pqD2PPkadh5HTI6H8v+iVd5/AmimV56BFzEaKlw3HgxKsoKvsdO/Ytwvjh7yEkqJfHx7XGcRxOn/8SJ/LWguP0CBDHIin+UoSHpkIsDIdG14DauhMorvgLNXXHsf2/Bejb8zpk9L/Hkr3jLQajFkVlv+Ns0c+oazxtMyWjSBiB2Mjh6Jc0C6HBfbx6XF/pyGuxGT0o8N7wjSFpj+LgydeQNeA+bzSLuEkkDEW/pOucvh4W0h89osehpNI0PMI8/MX8ecTjSSARSZGZMh/xsdYBXvsCxVpdAwDbTAnrzx27tol5GDw8HGMHLcYrb25BRZkC/2yvRGi4DhnZoYiKdv2wQKWuxtniH9GrxzTLMoVVUMJo1IPHo6AEIReqLhmUAExfFh397IkZM2YgNzcXUqkUQ4cOxdSpU/HEE08gJSXlgn7qRMiFxFJTQmEOSribKdEUlFBXAaGpTUM30K6ghPkpvKzhtN1rpZX/AgB6xk1p1xPGkKBeCA3qg3p5Puobzzp9oq9UV6KyZj8k4igMSL4aMlnbKvX36zUL50t+RXn1HtQ15iEsuG+r2xSUbkZN3TGEhaQgre9tHh8zqcdUVNYeQGHZVhw78xEGD1zi0fYKVTl2HV4Ko1GLQQMWo2/P1mcX4rFCDEt/AmJhOM4UfIPdh5/AhBEftmmYDWC6rhw7/T7OFHwDlhUio/8C9O050+5GLjZyOFL7zEVh6e84evp95BVuQKOiACMHPevwiWRbVNUewf7jL0KpNv0bEQsjEBrcFywrgFpTg7rGMygo3YyC0s1IjJuM7AH3QyRq23n7g6+uxfSgwHtBiZCgXhg//F1vNIl4EcOwGJn1HL7bOg6Aqcgy0JxBwW/KIkzpPRtSaZBlZguWsc+UME/Tbf05ZjQ6D0qYxcTE4uJJUagoDcfJoypUVlZg+9YqxMaLkZEdirBwAYxGnd0Qyd2Hl0HWkIO6hjOWZfKm4sqAqY4JhSQIuXBRSXIXcnNzwefzkZWVhezsbAwePJgCEoT4mHn2DbVG1vS7e0/VJSJTZpRKYxqvKleagxI92twW0w07gzoHQQlZg+lmxjzzR3skxl0CACgu/9PpOkVl2wBw6Bk3GSzb9q9iPFaIPk039eeKfmp1faNRj9xzXwAAslMfcFhbwx2ZKQsgFITiXPFPqKk77vZ2HMfhUM4bTTOc3OBWQMKMYRhk9J+PuKixkCuLse/Yi20OWp/IW40zBd9AKAjFhOHvo1/SLKc3cQzDQ1KPqZgw4kMEB/ZCRc1/TcVBW/8C35rcc1/g7/33Q6muQGzkKIwf/h6mjduIsUNWYHT2S5g48iNcOeEXZKYsglgUiaKy37Ftzx2oa8hr97F9ha7FvsN4afgGuTCYMyUYS6aE48KhjjK7dDpTwMLdTAlrHKdHYlIorp45CMNHRyAwkI/yUjV+/7UCe/+tRVl5gd02soYcALApZqxSV9rs0xG9QY1q2RFwnNGtthFC/IOuOC7s378fH3zwAfr27YutW7di9uzZGD58OO6++26sXr0ahw8f9ncTCenyWj5NFgjczJRoGr6hbgpKmNM825MpwecHIDgwEUp1OTTaepvX6pqCEu5OA+pKQoxpOERR+R8Ob5o5jkNB6RYA8EqxyKT4S8GyQhSWbYVOr3S5bknFDihUJYiOGIKI0NQ2H1MkDENG/7sBAKfOfu72dkXl21BRvRdBAYltytJgGBbDMp5AUEAiyqt3o6xqp8f7KK/+D7nn1kPAD8ZFQ99w+28eFBCP8cPfRVBAIsqqduLY6Y88Pra10+e/xvEzH4HHE2Fo+uMYM/gVSMPS7W7WBfwA9Eu6FpNH/w89osdBqSrDjn0PoLYuv13H9xW6FvuO9XuHghJdn2X4RlMmBN9pUKJ5+IY5+Ko115SwKozpTlDiSO674Dg9WEYAoTAQSckBmHp1DLKHhUEs5qHwvBIrV76FDRu+QmVlpd32zgLhzrI0/jv6PHbsuw9F5X+02jZrGm09Kmr2e7QNIaTt6IrjgkQiwejRo3Hffffhs88+w759+/D6669DqVTi9ddfx+zZs/3dREK6PAHPNgjh7vANsWX4hulLjTcyJQAgLNg0hKOusTlbQq9XolFRhABxDETCsHbtHwACA+IQEToQClWpZVYJa3WNZ9CoOI+w4H4IDe5tvwMPCQUhSIiZAL1BhaLybU7X4zgOuefWAwBSvDD9Ws+4SyERRaG8ejcaFUWtrm806nDs9AcAgMEDH25TwVLAdJM+qGms+9Hc92AwaNzeVqtrwIETrwAAhqQ94tZwF2tCQTBGZ78CoSAEZwq+RkXNPo+2Nyss+x3HTr8PHivC2MGvulVcVSgIxohBz6Jvz+ug1dXjlz/mQ62pbXU7f6Nrse9YZ/tQ0cCuz1yQ1Jxtx2Mdf6ZaF7o0Z0boLMM3mjMljG4EJfIKNjQdk2/ZF8sy6JsShMuuiUF6VggEQgb/7NyIt95+BV99tR7l5c3Tezsqugk4z5QoqzINrayqPdhq26zt2Hcf/j2wBOVVezzajhDSNl22poS31NbWYv/+/Zb/cnNzYTQa0a9fP68V1yKEOGeXKeHp8A21efhGCQAGgZL4drUnLKQ/isq3oa7hjGXmiLrGPAAcwqxmfmgvaVgmautPQtaQi5Ag28BDScV2AEDP+CleO15y4lUoLNuCgpLfkJzgeCYDWcMp1MvzER4yAFHh2e0+Jsvy0afndBw/swp5hd8iO/UBl+sXV2yHWlODuKgxiIoY1K5jx0YOR2zkKJRX70Ze4XdI6X2jW9sdO/0h1JoaJMVPRY+Yi9t07ODABAwe+BD2HHkKh3PexqTRH1tuDtyhVFfi0Mk3ALAYmfUCIsMz3d6WYRhkpiwAx+mQX/QjFMpSCEPD23AWvkXXYl+hTInuxJx1YK4p4Xz4RnMggMcTQ6eXw2DUAGBtAhmeDEljGYHN0A8A4PNZpKaHIFCixKEDeSg6V4ETJ4Q4ceIYlMYaDEgPRkSok0wJJ0GJ5nPwLIhtfiBQU38CsVEjPdqWEOI5Ckq4cOmll6KwsBA8Hg+pqakYMWIEFixYgCFDhiAsLMzfzSOkW2h7UKJ59g3zdKAB4ug2P103Mxe7tK4rYS586c2gRHjTkABZw2m7p+C19aaxtdERQ712vIjQNIhFUsgacqHTKxxmpJRX7QYAJMRO8Np4/t4JVyIn/1MUlGxGWt87XBaezC/cCADo2/Narxw7M2UByqv3IK/wO/RLmtXqjBhKdSUKSjdDwA9CZsrCdh07PvpixEiHo6LmP5w5/w0GuJl5wnEcDp18HXqDEv17zUZs5HCPj80wDAanPYiLRz4AeSPj8awtvkbXYt+xKXRJZQO7PHMwwhx0cD58wzpTonkdPl9icy1oGZTg8yQYkvYI5MoSnGiaLcp6nwHiaIfHU6jy0H9gMPqmMEgMvwp//70dZ46rUFKkQl7Pk0hIViGuh9jm2EajAbX1OZCIoiyFrq05ywJpjcGgbdN2hBDPUFDChcsvvxzDhg1DVlYWJBJJ6xsQQrzO+uaYx4rcnkqRz5dAwA+CSlMNhbIUgBGB7Ry6AQBhwc3BAjNzgCI82HtBiTAHwQ/AdFNa13AaLCtEcGBPrx2PYRhEhWehqPwP1MiOOXwyVFZtSmONjfTeUyOhIASJcZfgfMmvKKva5bRGRm3dSdTWn0RIYG9ERbQ/SwMAggMTESMdhoqa/1BevRfx0WNcrn/m/NfgOAP69JzR5lk7zBiGwaABi7Ft1zzknvscfXpOd2toUknFDpRX70FQQCIG9rm1XW0QCYMhh7xd+/AFuhb7ju3sG5Qp0dWZgw3moTrOMiWsM7ms1xHwbB8atAxKsKzQMmV0QelmyzBK02t8BAUmumxfgCQcI0eOxuDB2Xhr1Xc4nSNHaWkdCgrlCA7ho39qMJKSA8DjMZAri7Hr0KNgWSGuuWQr6lpkGbIsH3kF36Ky9gBGZb3g9vAkg1EDvV6J3YeXISF2Avr0dJxJSAhpny55xWEYBvHx8RAKhTY/e+q+++7DqFGj6EsQIX5knd7pbpFLM7EoEgaDynJj354il81tCEJgQA8oVCXQ6RUAmgMH3syUCApIAJ8nQV1jnk3VcIWqDDq9HGHBfd0O0LgrMiILAFAlO2z3mkpTg7qGXARK4hEcmOTV48ZFmYIBFdX/OV3nbLFpZpA+STO8OutC74QrAQDnin92uZ5GW4dzxT+Dx4rQt+dMrxw7ODABiXGToDeoUFi6tdX1OY7D6fOmmU+yBixud9bPhYKuxb5jPfsGSzUlujzL8I2m/zvLJmAd1JQAbOtJAEBavzudbse2GKLGsoJWA+vCphpNemMj+vQPwqVXxmDE2CBERovQ2KDHgb0y/LqxDCePNuDP3Q8BAIxGLY6ceht/7r0beU3ZdYApuHAkdyXKqnahXn7O5XGtGQxq5BV+h8raAzh48jW3tyOEeKZLZkqwLIs//2yeSs/6Z08VFRVhzZo1OHjwIOrq6hAWFoYhQ4bg9ttvR2Ki6wgvIaT9rJ8euzt0w0wijkSj4jwqakw3u+0tcmnZr1AKhbIEWl0DGLBoUBRAIoqCWBThlf0DpqeUocF9UVN3DHJlseXLW0cEQMzMdSKqZUfsXjMX+4qNGuX1qRijI7LBMHxU1OwDxxnsnmBxHNf0N2SR2DQzibfERY2GWBiB8uq9liE+jpwv+Q0GowZ9es70SjFTsz49p6Og9DfkF32P5MRrXPZttewoZA25CA3ui2ip94buXAjoWuwblCnRvViGb7RWU4Jpvl2weVDAt80Y6xk3GQJ+EHYdesxuO0d1c4IDXP/bNQfGzEU1WZZBXAIfcQlRqKnW4vTJRpQUqnDiaANyjjcioacEffoHguM2gmEYVNYesOxLr1dZfjYadS6Pa81g1KC8eq/b67dG1nAaBoMaKnUVEmIn0tTGhDTpkkEJbzl+/Djmzp0LkUiE8ePHIzIyEtXV1di6dSt+/vlnfPrpp0hLS/N3Mwnp0qxrSngclGiqK1FYZpoKzFs3crymp0MGgxqNuiIARoR6OAuDO8JDUlBTdwx1DaebgxJNs36EeXGoiFlQQIJVXQklBFZ9X169CwAQFznK68fl8wMQGZaBKtkhyBpO20012qgogFpTg4jQgRAIPHsPtIZl+UjqcRlyz61HUdnvSOl9k8P1zFOHujPLhSfCQ1IQEToQtfUnUSU7hOiIwU7XPVPwDQCgX9J13eqLLF2LfYeCEt2LOZPBHGg1XzPt13M8fMPRMDbrZbYFMm2zMIxGfauf59qmYITBaFvXQSQMhzRShlEXSyFv1CMvV47z+UoUnjf9FxomQN+UIIQGNQcidE1TmFrvtyWjUY9q2RHLlNuAqaaErGnK79CgPi7b2xqNth5/7mnOJhEKQywFswnp7igo4cLy5csxcOBArF692iZtVKVS4a677sLy5cvx6aef+rGFhHR9tk9lPBu+YZ6BAzAiRjrc4+kbnbfJ9KVMb1BDbzB96REJQ72yb2thlmKXZ5AYN6np56b6FU2veRPDMIgMH4Ti8j9RU3cMsZEjLK9Vy46CZYWIbOesF87ERA5HlewQKqr/swtKVNUeAgCv1ZJoKT5qLHLPrUdl7SGHQQmNth41dScgFkVaaop4U3LiNaitP4lzxT87DUoolGUoq9oJsUiKxNhLvN6Gzoyuxb5jG5Sgr4hdnXkIYN+k6yANy3A6k4/t8I3m4ILAQVDCOiPCeohhy+Eb5voTl4/7ARptLbbtvs1uX9qmQELLaZsDxLHQaGUAgKBgPrKGhiE9KwSF51XIz5WjTqbDgb0ynDzyL3okAcl9AxEWUm7ZXqdrgF6vQknFDsREDrdkOZ7M/9gy7bWZwaiBsSko4iyTxF2NigKb3+XKEgpKENKEwuAuHDt2DHfccYfdOFaJRILbbrsNR48e9VPLCOk+GIa1BCY8fUouEUdZfnb2BLwtzO3R61WWlFAez/vj3c3ZEHVNT2ksRS4Zgd00od7iaAiHVtcAra4BQQE9PJq60hPmAEhFzT6718wpuNERHTP1Y1hIf/B4EtTUHYfRaD+tXHn1HgBGxHXA0BUA6BEzDiwjQGXNfpv6IdbKqncB4JAUP9XmBqE7oGuxL1GmRHfCMs2zbkRFZDn9m/NsakM0/yx0kL1oHXww79+0D9trh3kKT7EoHBInw+b0egU4zmCXKSFoMSsXYJpONLlvICZNi8bEqdFISg6ARqtAXq4cW3+twPcb9iL/tBxarREqTTV+/Xsm9p94GblNdXoAoKTiH7v9Gq0CIlwr0462RqWusvmdodswQizoX4MLIpEIdXV1Dl+rr6+HSNQ9iowR4m/8pgwJjzMlxDEAgIjQgYgM994TfnMAQm9QwWBQm9rYAUGJ4MCeYFkh6uVnAQAqTRW0unqEBCd32I1paLApPdW6SrpcWQLAezU5HAkJSoZYGIGauhPQN/UpYHqaVlV7CCwrhDQsvUOOzbJ8SMPSTUVRG8/YvW6eCjUuanSHHJ/PE0MalgatrgF1jXkO16moNgVrYqQjHL7eldG12Hesg24UlOj6ggLdK/5sHWiwzqBxnCnR/O/RNlPC9pplHQB2FezW6uSWTAXr9vCdfB9gGAbSSCGGj47AFTNikTk4FMEhfFRXyXHwvzr8/G0Z1q5bjpKiGnAcB7Wmxmpr++mRDcbmoISxxewinlKoylo0tl27I6RLoSuOC+PHj8drr72G/fv32yzfv38/Xn/9dUyYMMFPLSOkezE/FfG0pkSMdCgG9rkVQ9OXevUJt3n4hsFq+Iaz+d3bg2X5EAqCodObpm2sazDdMHtrGIoj5uwSlbrasswcoAiUtH/2EmcYhkFIcB8AxqYpXE3qGs5Ap5dDGpbeobNNRDUFrVoW+TQadSiv+Q8sK0SUi3oP7T6+1JQFUllzwO41g0GDqtpD4PMCIA3rfrUT6FrsH/QUt+uaetFXGJX1IsJDUtxa32YWDatCxI5qSrA86+Ebzdu1LC5pnXXgKsiu0zfaDd/gsUKHWRoticQ8pAwMxqVXxmDi1Ggk9w0EywIF5xrw9x/V2PRDOf7bk4uqqiqn+9DbZEq0PSjBcRwqWhTMZCgqQYhFlxgwuGvXLowe3foTLJ1Oh0cffRRvvPGGW/t97LHHcO+992LOnDmQSqWQSqWora1FTU0NsrOz8eijj7a36YQQN5iLXXo6JSjL8pHaZ57322OpKaFqDkrwO2a6Qh4rAscZYDTqodU1AHBejMwbxMIIAAzUmuaghMIHmRIAECSJRyVMT5NCg5MBANV1ptR8VwUgvcGcSVNVexj9e91gWS5ryIVer0Bs5MgOCTyZRUcMxkmsRVXtQaT0nm3zWnXdMRiMasRHj/X6NLAXAroW+wfD0pSgXVWgJA6Bkji317eeRcMmU4LfSk0Jq3XNU2ibWWdKuMrK0eoa7YZvsKyg6SFFhc1yAT/IEsS3Zs6ekEYKMWhoKIoLVDh/VomqCg0O7juLyqLXERsbDy1bhchYPQICrdvdXBSzPUGJ8yW/WK5nhBB7XeLbzfz58/HOO+9g3LhxTtdRKpVYsGAB9u2zH6/cklqtxo4dO1BSUoLZs2djzpw5OH/+PKqqqhAVFYVBgwZh7Nix3jwFQogLAl7bMiU6SvPwDetMiQ4KSjRlBxiMGstQkfYW23KFZfkQCcOh0tSA44xgGNYnwzcAIDAgHgCgUJVYlilUpuJkwYFJHXrs8NABYFkhauqO2UxLai5M1hFTsNocP2QA+LwAVMuOwmjU2Tw5rKg2TWnb3YZu0LXYvxhQUIKY2GRKsK4zJayvhdbb6VrMeGF0sz5Dg/wc9HqlzTIeT+iwxlSfxOk4de4zu+UMw7MEFPh8Fr36BKJXn0DIG/WoqQgDXx+N8vJSnC8ph04vR1S0CIm9JEjoKQHLNFi1uTkoceTUexDwgzEg+WaX7Vepq1FQ+hsKy7Y5eJWykQgx6xJBiUmTJmHhwoV48803MWnSJLvXa2trceeddyI/Px/vvvuuy30VFRVh3rx5KClp/lIcFBSEN998ExdddJHX204IaV1ba0p0FPOXLoOhudBlhwUlmsbnGgway9Oijio2aSYRRUKjrYVGWw+xKNwSlAjs6KCExBSUkFsN3zAXBrMuWtoReKwQ0tCBqJIdRr38nGWITKPCNHQlKKDjhq4ApmBQVEQWyqp2oabuJKKsZjmxBCUiu0+VdroW+x/VlCDNrGuNNAclHGVK2NaRsM44sM1gcDfr4MCJ5fbHYAQOH1I4yliUiKLAwdiidoRJUDAfMdEhuHTsA6ioKMe6L/bhzBkVqio1qKrU4NC+OsTEitGjpwTxCWIEiA1NbTfi9PmvAcBpUEKvV4HHE2PHvvssgfaQoN7QG9RQNtWWMI8q5TgOSnUFAiWxbvQIIV1Tl7jivPbaa7jyyitx//33Y9OmTTavFRcXY/bs2SguLsa6deswfvx4l/tasWIFWJbF+vXrceTIEfz6669ITU3FM88803EnQAhxqbmmRGcJStgP3+iI2TdM+/VtpgQASMSm4SFqjSkgoFCWgGUECOjgwIA5E8M8XASwCkqIOvbYABDaNM2qXFFkWSZXmn4ODkjs8OOba1ZU1zXXtdDrVWhQnEOAh+nWFzq6Fvuf9c0n6d6sSzJZD8kQtjIjlvVsQi1rSjia6chdLCtEgIMbeD7PflaOwIB4Jw8NGPBYEXR6BRiGQWxsHLKHxWDaNbEYPyUKffoHQiBkUV6mxoG9MvzyXRm2bjqHnTv/RVVVmYP9NauqPYwf/5yKc8U/2WT+hYek2MxkYs68yMlfh83/XI+C0s1u9gAhXU+XCEowDIOXXnoJ1113HR5++GH88MMPAIBTp05h9uzZ0Gg0WL9+PbKzW5/j/tChQ7j//vsxZMgQiEQi9OnTB8899xxKS0tRWVnZwWdCCHEkNnIEQoOTEBGa6u+mAAB4/ObhGwYf1JQAzJkSpoJbHVnwEQDETTUrVJpq6HRyaHR1CAyI6/CbFPNNt0JllSmhqQLD8CAWhXfosYHmwIfK6oma3Jwp4WaV+vYICewFADaFPs3V2n0RFOlM6Frsf5QpQRxhrLIfAppmuHJGZzXsYnjmMwgOTLJkOLTnOsbjCTGwzzzER1+EGOlwy3JHwYdAieOgBJ8nhoAfCJ1eAY4zz7rBgWEYREWLMHh4OK6cGYdxk6LQNyUIYgkPleUKbNr0C557/nls21SJnOMNqKgot9re5NjpDwEAh3Jsa9hJxNE2M5mYAzM5Zz8FAJwr/qVp6KRpfy1radTWnUR+4ffudBEhF5wuMXzD7Omnn4ZIJMLSpUuRm5uLDRs2IDo6Gh9//DFiY91LiaqqqkJiou2Xv549e4LjOFRXVyM62vFcyoSQjtMzfhKyM65BTY0cRqP9lF2+5nj2DV9kSjQFJdiODUqYC2mq1NWQNwUIAiUdO3QDMBU0FQkjoFCVg+MMlunaAsTRPnlqKxFJAcBS5JPjDJCrSiAUhEIoCOnw4wdITF/wlerm4m3moER3ypIA6FrcGVBQgjhiPSuLo7oOgClz0DS8sbm4ZVTEIEwZ8ykaFcU4ePJVZPa/t81tYBkBhIIQjMp6Abnn1qOixjTEzdHDgaCAHjbZd2Z8ngR8fiDU2loYjVqUV++1CYgDAMsyiI4VITpWhKyhoZA3iNEjbBxyTu1DTp4Wslot3pW9hdDQMPTvn4L+/QcgObmPJcOupQBxtM3wy5bZIzV1x7Bpxwxk9J8PjbYep89/gcmjP0FIUC8AwF//zQcAREVkISSot/sddgFTaWpQUPIb+vac2WEPf0jn0KWCEoCpSrdIJMKqVaswaNAgfPTRRwgNDfV3swghXQjfUujS1zUlzJkSvhq+Ue2zmTfMAiVx0GhroVRXNU2XxnV4PQkz6wwRAFCqK2E0ahHcwUUuzcxPHZUq66BEU1CoqQgoIb5CwzeII9oWBSsdEfADYDCo7GbcAIDgwASMG/aO3fKJI1ehqvYwjp1+HwAgFIRCq6t3uH/rAprW71OHwzck8ZbsRtt9CC1DQ3V6JfYcedLlOTEMg3ApH5dOugyTp2Yi6IvfUFKkQmRgPEpLy7Bv317s27cXPB4PderziOshRlwPMQKDmm+1TJkSzqdJNTuZtw4Go2m4ZmHZ70jvd6fN67L6XFTWHkSfxOmdJnhoMGjAst7/bnL89EcoLNuCmrpjGDPYvr4I6Tq6RFBi5MiRYBjbuX45jkN+fj6mTp1qt/7u3btd7u+OO+4Aj2d/MZ43b57d8tb2RQjpesxBAb1e5btMCYNVTYkOzpQQW4YxVFtSTTu6yKVZUEA8autPQKEsBa9pvntf1JMAmoMSarUpKCH3UZFLMx5PZJr5RF1pmfmkOVOi+wUl6FrsXywFJYgDKk3rw6cE/ECoNTUOgxLOhIekQCgIdSsoYb42ALZTlFovN2ERFpKC0sp/7PbBwQh+01CSksodbrWRM5pqQBgMaoSGCxAaLkBG/2jESeciLy8fubmncPr0CZSXqlFeqsahfUBwCB8xcWJEx4rAGxJq016jUecwyGPkdFbr2Nfe2H/iZQCAkB+MnvFT3Gq7zf5bzPDUXueKf8XBk69idPaLkEov89p+AUBvMA0BKq/eA47j7O73SNfRJYISN910k9fepAsXLvTKfgghXVfz7BtWwzc6qqaE1fANfdPwDX4H15RoHr5RBcA0XMZ3mRJNxS5VJZbCpr7KlJCIIgA015RobErB9VVQAjBlS8i0Mqg1tZCIIy31Jbrb8A26FvtfZ3kCS/zPepaN5uC486fifJ7ps7vljButsb5RFglDIFc6WY+xmqLUKnhmfcOfnHgNUpPnQiyS2lyf+fxA6PUKcJzBkilxOOdNt9pnnjHEulbGsdMfQNmzAtnZi5GdPQSNijKs3/gnykrUKCtRo6Feh8YGOfJy5ag8vxZa7jgCQ+sREyuG0bgOOWf/5/Q4pp/1Tf+3H7paULYFiXGTPboHqqo9hL/334/s1AeRnHi129u5cuSUKfMlJ/9TZA70blBCIm4eqqfW1lqGWbaXwaDBoZw3kRR/KaIiWq85CABVtUdQUbMXaX3voM/HDtAlghKLFi3y2r7oixAhpDWOZt/ouOEb5voVvit0aR6+odJUQ6EqBwCfjV81D1OQK0shEoY1tcc3QQk+P8A0xrhp+IbcEpTwXZHJAEkMZA2noFSXm4IS3bSmBF2LOwH60k2axEePQb+kGxAfPRpCQSg02noMGuD8u3d46ADIGnIQGtTHo+NYBxiEAudDr62LRdpOQSqw+VncdANrPTuWgBdgCkoYDR4PUTLPlmEetmmWX7gRWQMWAwA4ToOoGBGiYkTIHBwKldIATpsOVWMsZNUCnMqXo7CwETnHGsHnM4iMFlnWD48QgGWZFsc0BSXM3zWsVdbsR2HZFiTF22eFO5OT/wkAUxFOR0EJnV4BpaoCocHJDrdXaWqg1dZB1nAaSfFTwTCMJYjSEUO+rIe4aDTuBSU4jkN94xkEByY5/b5UUrEDBaW/oaD0N8yc4l6mzN/77wMAhAX3RULsRLe2Ie7rEkEJQgjxJR7PevYNNRiG79VUSNtjmTMl1FaFLju2poSAHwyWFaJRUQCOMyA0uC8CxL4pLGiZFlRVYklhlYh8V9RQIopEo6IAOr3SMnwjONCHQQmruhIRoWlQqEohFIQ4LShHSEdhQMM3iAnD8JCZMt/y+4QR77tcP73fXRAJQtGrxzSPjmN9HXVVXNjZ8A3roAZrU2vCOlMiANCYAgxJ8Zeipu64JRDdOiM4zgidzj6Fw2jUg2X5dsEDSQAPQ4dPR1L8peA4Dj/9XoScU/tQUaZGVYXGMtTDdF4MpJHCpkCFEBGRQsvwjZZDWcJDUiBryEW17IhHQQld03AI68AOAMgaciFXFOPU2c/QoDhnU2DT+hy37rzZUsA0ODAR0rB0S+CkY4ISzTOQaLR1bm1TUbMPOw8+jBjpcIwdssLhOtazyHhq79FnUS8/h7S+t7u1fqOiEApVOeKjR7T5mN0BBSUIIcRDfEudBzX0elWHZUkAsFTqNhi0zUEJu3Gz3sUwDCSiKMv86nFRozv0eNbMtRMa5YWWZb7KlABMdSUaFQVQa2ogV5qCEr6qpwFYBSXUFZaq8IHdpMo66Vxo7DZpKwE/AAP73urxdqxVgEEkdJEpwVgXumzO6LG+0bQOVlhfo82BD44zIC5qNCaNGohftrs/jIHjDNDp1XbL9QYlhGwI9Hr7gIV5GlSGYRAeEYB+A4LQb0AQjEYOtdVaVFdqUVWpQU2VFpUVGlRWaIBjAMMAfXrvQnXxbwiN4KBSGiAJMN34B4hjIWvIhdFosDueK+aAgtGoRV1jHkICe8HI6fHnnrts1muQn7ULSuj0cpsZVRrk5yENS4d5mCfr4Y1+XWMeTp/7EtkDH7QM12zJelpUtbbW5f7OFGxAcEAiautPAoBlVhZHrN9rHOd51syps5+6HZTYuvNmAMAV478DQA8YnKGgBCGEeIhheOCxIugNSugNqg69aTYX1TQYNZZq3B09+wZgmh7THJSIjx7b4cczEwnDERTQEw2Kc9DqG0xt8WFQwpwaKlcWQ6Eqh0QcbRmu4wsBEtP01UpVuVU9ie5X5JIQ0v1Y39S6Hr5hlZloVWvBttaEVVDCqqaEeUpT85ADT6+nRs5gU1PCTKdXQCgIcTjMwhyUMB2/Gcuahm9ERoswAMEwGjk01OlQValFdaUGVRUaVFTU4d9/d0ChqkBpZRkkATxII4UYOKAKWmgQK9XaHU+jrbOZXcS2nc1t/2P37QgO7Am5gylTrYM6Zi3PzRy4t5yP1Y29waCBQl2OkMAku/1YHx8wXeMz+t/jcB2b4Rtamc1r5oLQptfqcDT3XQBAZkrrw/rNw2EBQKmqRGCA7RBJjjNAoapAkBdnvnI306O7oqAEIYS0AY8nhlbXAIDr0JvW5ilB1TAYtDbLOpK4qa6ERBSFsGDfTIkJmJ4kJcZdgpz8dVBragCwEAsjfHZ88wwcpZX/AjAiPCTFZ8cGbDMlaDpQ4l+UKUF8y/pptbMn54BttiAHo+Vn2/oSjjMlzMcw14fw9HrKcQa7mhIALBkSzZkSLNDUNqHV8Dv7cpXNWJZBWIQQYRFC9BsQBI7jECwaBmnQDBw5vhmKg7vRUKdDcaEKctl51DVW4eDOHTiydyUSEnqgRvEz+vcZjtLaLyEShuCqib84aKftjCiNikK7dWzPw3qZqul8TDOjnD7/pc3QEeu/36GcN1BQuhnDMpYhIWaCyywKZ1Ojtnzt2OkPEBLUG7GRI6BQlWPzP7OR3u8OpPS+yWY9V+8dM3PmKWAKrrQMSuw/vhyFZVswJns5KmsPobJ2v8v9cRwHo1HrsuYXxxmdvkYoKEEIIW3C50ksYzw7dPhG05cvg1ELg1ENhuF5nCLZFuZpOOOiRvs8jTsx1hSUMLVD6pPzNTNnSpinkJOGZfjs2IB1pkQFlN20yCXpHBgKShA/YllB082sEIVlW2xfY6yCEjaZEtbDN3gOl8dIh0LWkIP4qDFN67l+nwv4QTaziHBGZ5kSpnXMNRvCgvugrvEMANOMH23BMAyCQlgMHTwcYVGFCIuPgU5nhKxGh0DBIBw+VgStiofS0hKcO38MReV/Ywv+BssyCA2rgrHhO8TF9UBcXBxiY+MgFAptMgRc0TqYOcWcKREW3BeVtQcAAMfPrLZqb3OfF5RuBgDsO/YCautOICv1fgCmYEB+0fdIjL3Esi6fH4CSyn8gq89BWt87bf4mhhYBi5N5axEbOQIFJZsAGHH8zCqk9L7JZpiH9VS0pZX/Iiykv11dLPMsMoB9vQ4AlvdcSeXfOF/yq93rLe0+/ATKqnbiygm/QCgIdriOq+ALoaAEIYS0iU3hrA4NSljNvmHQ+GToBmAaslFevddrU4Z5Ijgw0VLEy5dDN4DmTAnzlxRpWJpPjy/gB4HPC4BSXQ550/CNAApKEH+gmATxI5YVYMSgZwDAPijBWo//bz1TAlY3uQP6zDU9bY8a6VY7xg9/D2eLf0JF9T7IlYUwcnqHNSV0LTIlQq2CEu48uW9uKg9hwf0ha8hp2p8CRqMe+UU/mvYlYBEdK0JmymAESndDGpaK6urTkNUaEBARDFmtFnUyHWS1Whw4sA/APvOeERkZiZKaWoSGCRAazkdIqAABgTyHgRmdrtFumTkoYQ6em867OXhhHRhgGL5lOtP8ou8tQYlT5z7HqbOfIr9wo82x9hxeBgCIlg4FAx6iIgYBsC10acJCq2u0CVZU1R6xzIwBwBLQB0zBggBxLC67+GubvVi3VaWpxvEzq9C353UQCAKhUrde+LRlhk1Z1U4AQH1jntMpRvUG+/cNaUZBCUIIaQPr4ACvQwtdmi58ppk+NBA4icB7W2R4JqaM+cQnx3IkIfYSU1BC5NughHk6VMBUnTwsxHdDVwDTk7EASQwa5OcsT6KopsSF4+zZs1i6dCnkcjmEQiGWLl2KoUOH+rtZbdKyOj8hvmSd3TA840motTJLzQBzXQjAvUwJ66wfHitEYlzzU/rWhAT1QtaA+7D9vwWQK83DN5xnSphv3EOD+wEwZQtYByWcxfqEglAYjTr0iLkYyqapuAFT5oVCVQq50naYhXmfdQ2nwfDViIgGIqJNdTg4zlQUMyP5KpSVlaK2RonS0hJUV1ehsMC27Xw+g5BQAUJC+QgNEyAkTIDQMAE0uga7NlpPgT5++PvY/t+9NsMVZA25+HbTjcjovxCBknibNv+9bzFiIkegvjEPgGmIopnGKlPhn/0PAADGD38f0rA0u+wCWUMO/th9B+KjL7Is23nwYZt1FFZBCdOxylFbdxJ7jjyFoelLES0dbDN849jpD0zbKUuh1Teissb1UA3A+ecjw7AordwJlhUgNnK4zWuO6o2QZhSUIISQNrAunGX9s7c115RQwcjpXI5X7Ep69ZiGmrrj6J14pU+Pa86UAExTrvH8cGMWII5Fg/wc1JpqxEaOouEbFxCRSISXXnoJycnJyM/Px7333ostW7a0vmEnMirrJTQqCixDmQjxB+tilolxkwDAEpSwznwwF6wEbGffsA5QsF64blrXonA0fKO5pkRTNoHVcAHrGUKc1ZSIixqN7NQHwLIC7Dz4qNV+VQ6fsAv4pgcU5gLYtm1lEBDIR37F4wAL3HTTDgBAQ0MVPtv4Fxrqdaiv06OhXoeGOh1qa7SorbHNSNgd/isyB/IRGRkFqTQSUmkk1Poi6HRG8HkSiIThAACttjmgoNM1olp2Cv/sfxihwX0ht+qmKtlhVMkOI0Zqe6MOwCYIY1Zbn2MTlLhi/I+WWVKU6nKbDIqWQ1LM9Zis/fWfaUrbAydewWUXf+Ow3xrk59GgONdiqeO/GI8nQlnVHhzNXYnR2S9bvcJi9+GlAICZU3bY1JGgoIRrFJQghJA2sC5u2ZHDN8zTj2qbUil9UeSyMxAKgjEq63mfH1csai6q6euhG2YhQUkor96NhNiJGJa+lKZmvID06NE8fWxycjIaGxvBcdwF9TeMjx4DYIy/m0G6OUezPzS/Zn2T7yxTovnnuMhRiI++GAkx49vRHlNQoqTib+gcFLo01zHQN9WU4PMlmDzmU5vZQVzh8cSWhw7WWR56gxIGc4YCP9BSqNKTISFGox4sy4eRqUdsvBix8c3fXziOg1JpQEOdHtAnQKMKQd7ZPdDpNCguLkJxcZFl3brGfFTVluJQwh9ITmpEQYUMUukZCMQqBAbxERjIg0DIQm9QoabumMO2qDT2QyNkDbkO2mwKNJiHabT8nmVsGhriiKPZRMysh8S2ZDOrSxNnxSl5rAi7DpmCR8fPfGS1vu0UrdbDRAw0fMMlCkp0YceOHcOyZcssv585cwbfffcdUlNT/dgqQroGno+CEjxLUMJcVLN7BCX8hccKLZXFfV3k0mxA8lxES4ciOmKIzZdv0n779u3D2rVrcfz4cVRVVeHDDz/EhAkTbNZZv3491q5di6qqKqSmpmLZsmXIzMz0+Fh//PEHUlNTL6iABCGdhat/N9Y35ImxlyD33Hr0S5pl83lpXXeCZfntDnKbAwVHTr0Lidg+i8gSlGjKmODzAlxOh9mS9bXd+tx1egX0TTfQQkFIm4ISOr0cImEY5Ioiu9cYhkFgIB+BgXzERaVg0ID7sPmf6xEekor+PW+CRiVGdXUNyisK8Pee3xGk40Ol0qOgsBhnixQ4m6eEdTaBUMgiIJBnClIE8RAcEgixRI/AQD4CgnhokJ+1a0PLG3kA0OoaUFN33DIEpGXAwNUNvjmLYnjGk9DqGnH41Fs2r+8+/CQaFQV22zkKSjjLbrCeAcam3XrbWhzWwQ9Hs7aQZhSU6MIyMjLw44+mwjglJSW4+eabKSBBiJf4qtAl25QZYR7f6atCl91ZcGAiZPVKSMPS/XJ8AT8QMdJhfjl2V6dUKpGSkoIZM2Zg0SL7uew3bdqEl19+Gc8++ywGDRqETz75BHfccQc2b96MiAhTFs3VVzsu/rpx40bweE1PU0tKsGLFCqxatarjToaQbmbcsHdQ33gWQQEJlmUiYSguH/ed3bqsi0yLtmCtshdU6hq719WaahgMGtTL8wEAAqtpQK2l97sTf+09YLecx1pf25uDK0aj1vJQQiQIsRRx5PMd79+RX7ZfjYkjV0GuLHa5Hp8fYJk5QtaQg73HF+KiIW+gT5+R2H98O0aLgwAEIWvAPASLh+DrX/6BvEEPuVwPhdwApVwPhcKAOpkOdTJThoOAz0BndaMuELCQBPBM/0mafxZLzMt4EIlZKNWV2P7fAgCmgBDDsBiZ9YKlIKZaK2v1vFlWCEmLWTcaFQUOAxKA4+CIs0CCbdZq89/LukAoxxlshpZQoUvXKCjRTWzevBmXXnqpv5tBSJdhE5TowJoSzcM3moIS3WT4hj8NTX8CWm0dRMIwfzeFeNm4ceMwbtw4p6+vW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wHAEux3Ri6X495778WTTz6JpCT3n5S2xLLty7Awb9/e/XRF1DeudYb+YRnW7vjR0ixES7Pc257H90r7m/vC9S1TQelmMAyLRkUhIsMzERrU02G2R2T4QEyftBnfb5tqs5zPFzvtd3XTkAfra5JIGODReew//jIa5C3rJdgS8AMgFATCdJNtGrZQXPEnYqOGQqFqHhIhEQchNjYOPRKDLTNsmHEcB43aCIXCAKXcCMYYjYqqAijlBigUeqiUBlMti3rn02MyDBAetgUcI4NIxEIkYRFg+BVBQcGoKguH3lgKZcNpcKweIjELPt9xRiGfL4TYg9o4jUr7TBJ3MiWs/8x66+ljoQfHWde+MAUl6HPHMQpK+JEv00g3b96MJ5980ltNJ6Tb8/nsG00pm92l0KU/BQXEAwE040V3o9VqceLECcyfP9+yjGVZjB49GocPH3ZrHwaDAYsXL8asWbMwduzYNreFz2chlbr/JNSV8HD307y7G+ob1/zZPyEh4nb9GwgNCfLKvyHzPsSi1q+9pVX/AAAG9r8KkZEhTtczGO33FRoSYjmWSGg7NIBj6gAAwUERKK82tyus1fZYay0gYdp/CCIjgyEUBECra7q5ZpSQSoMQFhKHatlRAEB4eDik0iAIBBJotbbDFRiGgVhiynyQRgIhQSFIkIc3nwvHQa8z1bFQqwwYMnAJNGoWCoUWv//9ElRNy2WyCpsSkweFewEAeQVlUKpqADRnq/D5DAQCFgIhC6GIhUDAQChkwVMfQFRkMk7nNEIoNL0uELDgCxjw+eb/TL+zLGP5nmXLcXaDWNwcFOLxmutO8PjN64eGCsAXNGfY8Pn6pv6jzx1HKCjhR75MI62trW1TMIMQ4pivCl22DEJQpgQhHUMmk8FgMCAyMtJmuVQqRUGB43Tflv7++2/s2bMH1dXV+OabbwAAn332GUJCnN+gOKLXG9HQ0L7xxyzLIDw8EDKZAkaje8X2ugvqG9c6Q/80NKpRUyNvfUUnFHJ9u7Y3M+9Dp3PeD+n97sDxM2ssN+g6jcjlsTkHxS/VasayjVZrO4xAVlfStF3zjXBdXfPNL8PwMTr7eew8+Hhrp4PUPrcgJ9/xdN+NjXWoqZGDx0oAmNoiV8hQUyMHg+bPMJXS1FaWEQFodLgvy3lpTK8HBfSARlsPnV4OgZBBqJBFaJgAQ4dcAQE/EAaDBkq2uWCk0chBqzVCozb9d9Hga6FQyBF46BQqqlSm5RojNGoDNGoj1CoDVCoDrLM8jKpDEIuKcKag3kHLbDGMKRjM5zOWoAWPz0IsUsNglINlGbAswPIY8FgG58PPoa6xDjweg5JzZ9AgbwDDMGio2ofyqkaAAX75ZTO0ujrk5cpN+zeew9hhaNe/q5AQCQRWgY6uhIISfuSLNFIA2LJli1eGblAqacehvnGsZb90pv4R8Ju/HAgFAR3WNoYRgGF4lrGO1imeQOfsm86C+sY56hv3eTJ7xoQJE3DixAmvHNdbN4NGI0c33k5Q37jmz/5hIGjnsXlubx8gjoFSXeHwNcs+GOc3ghGhtg/9BPxgj9vOMiKrbWw/b5SqKtN+ecGWZRxnXdRTgNjI0egRMw4lFTtcHidQ4jwLUKGuhNHI2WR/VtUewuZ/5iBAHNu8IsdrWq/1hyTmAqB8fhCEglDU1p+0arcQLCOB0ciBYZqzQ8TCCKi1tRCLeRCLTf2enm7qY4PwV5RV2f+tzBkYLBOGRnkNdFojBqVcDRE/Dlv+2Qqd1hTk0GmN0Ou5pv+M0Os4GAxNv+uMUKuM4KziwQyjd1hrokJSDoXKFLgRiwqg1piG2J4LOAa50hQEqSv7DXqDEiUVdQCAMyf24eZZGvrccYKCEp2UN9JIzbwxdINSSX2D+qaZQMCze891pv6plIVZfjanMnYUPk9kmRc9MNBxSmpn6pvOhvrGOeqbZuHh4eDxeKiutp2yrra21i57ghDSMUZkPouKmr2IDPdddu+YISvwz/4HLbUbHHF0Y2rWcjYOoaD1zKipF30FtaYW2/+7F0CLItYtgqCyhlNN+20OSlgX3jQX9TQanddpMOOx9rNGRIVnoUp2GAkxpiHkghZ1shoVhWhUFFp+FwpN58dnWy+8HR89FiUV2xEfNRpKdYVNUELID7IJ+Kb2uRU5+euQ1GMacs997nB/1lmqEaFpqK03BYEZhoFAyCAkKBI8gSlAMDB1IEKD+yA8+jnIGnJRWPa7ZXpVZziOg9EI6HVG6A0cjAYORgNgMHLgjKbXDAYOfJ4Qao0URgMHsSgGcoUBHMchPDgBNfWm7JAhaeOgVtfg6OlDAAck9ewDkUgEubz1v1N3REGJTsobaaQAUFpaitraWmRktG9qO0ol7VjUN/Z0OoMllbEz9o9a3XwhVSrglTRRZ1hWCMAUlNBpWZtjdca+6Syob5zzVt90pVRSoVCItLQ07Nq1CxMnTgQAGI1G7N69G7fccoufW0dI95AQOx4JsePbvR8O7n+uhQQmYWjaY/j34ENO1zFPM+mIWNgyKBHa6jEDJXE2wzFtCifCcWaWRBKDjP73Ijgw0TJFKdBchNPgoo3N69oHJTJSFoBhWIQG9QFgms7UmQG9b7bMfmKdKREoiYdCVWq3/pCBD6NHzDj0iL4IeYW2s6TwW0xrmpp8CyLDMyENTYOsPgeVtfazlFgXFheLIuxeF1n1vXmKz94JV6A3rkB51W6oWglKMAwDHg/g8XhwnQeiAyBpOiYDjc50LuEhQYhoMD04GjosE0pVGbRNwaRIegjgEgUlLjCepJECQHx8PLZt2+aVY1MqacejvrHVsi86U/9YT9/FY8Ud2i7bY4kcHqsz9U1nQ33jXHfrG4VCgcLC5id+xcXFyMnJQWRkJKKionDrrbfikUceQVpaGjIzM/HJJ59ArVZj+vTpfmw1IaTDtfLd2tAiCyEkqBeE/BCk9L4JfL4EfH6gpVCiOZOgNeabZsD2Oh8S1Nvh+nxWjP69rrduNADOo0wJR0EJluEjNDi5+Th850GJ2KhRzW22yloIDkxyGJQQCIKQGDuxaZ1eNq+1PA7DMIiOGAwAGJX1Iv458KBNZkXLYzoKngiF1kEJ23NVaUzDYEKCertV+NNdGl2d5WetvsHys9GohcHQPCVofWM+dE6mGCUUlOi0KI2UkM7NdvYNz6bm8vxYzRdWlgpdEtJmx48fx9y5cy2/v/DCCwCAhQsXYtGiRZg2bRpqa2vxzjvvWGa9WrNmjaW4NCHkQuFZsJWB42klzYwG2yyEAEksxmQvt/wuFkohN8+S5eDG3xHr9fhWWQf9kmaBZYXgOAOOn2ku/mgzxKOp1QBnCW64N3xDYLeMYW2z3VwFJazbbJ3pERzYE+XVu10eOzgw0eZ3gYsi4Xy+BNHSoXZBCeu/E9+uP2wzJRydKwBIwzKgVJU7ne6zPXS65kxWWUMu6hvzml/Ty3Gu6C9IQy72+nG7AgpKdFKURkpI52Y94waf33GzbwC2T1AcXYQJIe4ZMWIEcnNzXa4zZ84czJkzx0ctIoR0Cq0kIRs5vc3vLWfdCg9NgVxZCE/YZErYPOgQoX+v61FRs6/FMVs+lDA27cd0O5fW9w78c+BBDM94EgajBjV1J6HR1qGs6l+rYzrOlLD93fmQPJZnHUixzpTo6XQbs0BJHOKjL0JppWnqVFfBD8BxcMd6GI2j714iYVhzW1tsLxJGQKOtRXz0WAwasAglFTuw79gLrbbbVvPsHo5odc2ZEkdOvWP5OTnhaqg0VYgM7w8X5Um6NddhQdKhFAoFcnJykJOTA6A5jbSqypRedOutt+Krr77C999/j/z8fDzzzDOURkpIJ2ETlOjAKUEB23Gb1lkThBBCCHHAwbSbrri6EQfsa0q0zEqICs/26HgAwDDNt2H2WRBAdMRQpPe72+U6pv2YggrR0iGYPukPJMZNQq8el2NI2sPITn3AZl2HmRKtnLvt9laZElbfTSTi6Fa3ZRgWo7KagwCualeY9m9/vtbDaAR8+6Lf1kVG2RbnOn74Sowc9DxiI0eAxwpdfHezvT0ekfm01T5be57v+H0XEtQbY4e8goiwvq1s331RpoQfURopIRcu23GNHTukwjZdkjIlCCGEEEfM00kGByZ5tF1EaBqiIoagykFxRcC+iKRCaVs/oWfcJBSV/4EY6VDPGtyE52BoJsMw6Jd0nWUIh7OghPXNd8ub5pbZle5kSrjbTuvjSkMH2q07IHmu3TLbtjgeXmEWFmy6gbcuHGodDGpZKNO0rDnQ0TIAExSQYCnSCdgGhawJBcHQ6uotv1tPo8qyApdFT51x1O/EFgUl/IjSSAm5cJkv9DxW7NFThrZomdZJCCGEEHtTxnwGlaYagQFxHm3HsnxcPPQNfLd1nGVZSFBz8ceWmRHmabrNeDwRLh76RhtabOJsaKZtMUzH139XQYWWgQxHN8f232Gcj2WxfkgSFzUGNXXHMbDv7RAIgjBj8u84efY9nMr/AZeOXW8TAHDY7laCElER2RiV9RLCQ/pblgVIYgAAElEUBA6CEtbn29p3M2evtwxKBEhim/fPCKB3tFErnNW3IM0oKEEIIW1gTvvzRY0H2+EbFJQghBBCHBEIgiAQ2Kf1eypaOgxD0x+3/G4dlIiKSEV6v4XtPoY1V0/SgwJ6Qq4sdHgTbtrW+Q0vy/LBskLL031HdRpaZle4muXPuqZEXNQoxNnMxiHC+JFPYWCfhWDQ+k1460MhgPjoMTa/p/S6EQCQFD8VDfLzdusLm6bfdIfzoERIi9/tpxkFgABxLJTqcgCm90tlixog1loLwBAKShBCSJuwrBCBkh4IEEd1+LGcVbsmhBBCiPf1SZwOiUhq+d1cyyAoIBEzL1uPmhq5V6ZTHpaxDFpdg8tAwOTR62A0ap3exLdWD4PPE0PbFJRwdHPsSbYny7R+c81jhW71jSfDRsz4fAnS+t4OAFCpm2coTE64GgzLQ2T4ILf3ZT18g88LgN5gyn6xDkJcOeFnm7+Ndf8xDAuG4YHjDBjYZ14rQQkavtEaCkoQQkgbMAyDSaM/bvXLgDfYDt+gmhKEEEKILw1KWYD/jj2PzJR7vLrfnnGTW13HlO3g/JattaACjycGmmaFcJgp0WL73glX4XzJJgj4QdDpm6e4ZFmhy+CJp5g2BCWsCQTNmSOJcZMRGZ7h0fbW583nNwclBvaZB4WqFKl95tllTbQMSky7+LumPnIdhHEnK6S7ox4ihJA28tX0nNbZETR8gxBCCOkYKb1vwvniXxEVYTubRmLcJPSIGQc+vxM+8W4lUGA9y4Q7mRIRoam4+pIt0Onk2PT3TMtyRwGN9mjvjbr1cBbr70bjh7/nVlap9XkL+AFQa0w/B0jiMGXMp61uwzAsxKJwiEXhUKjKXB6Lhm+0jqYEJYSQTs6mpgQN3yCEEEI6RHq/u3D5+B8g4NtPV9lZbyyZVm7nbKfJtA8EOMq04PPEkIgjMWXMessy7wcl2tef1lOCWrdNGpaOsJB+rW5vG5Sw2pebD38YNG/fWt94u++6IgpKEEJIJ2cdiPBVdgYhhBDSHXlziIIvtNbelkMQhmc86fb21t85vFUXIbpp2tToiCHt2o914KgtQ1ttakrYTCXq6DzN6zYP07DevrW+aUv9jO6GeogQQjo520wJirYTQgghxMyzoERi3CTU1p9CXuGGVvfMs5ptw1vDR0dnvwylqhzBgT3btR/rTIe2ZJHaZkoEWi23f2bPMjwYOaNN6QjbQpkSu21stu+kWTadCWVKEEJIJ0c1JQghhBDiSGuZEiJhqN0yd2fcYG1m//LOQxEeK2x3QMJunzzP28Y6CUo4Yg5AcE4zJfjguQhM0OwbraOgBCGEdHLmQATLCDyauosQQgghXZ3r2znregmWLVj3vkvwrJ7wd8Yb6/CQAWBZYduGttpkOrgXlLAdvmHbh0JBsNPtKVOidTR8gxBCOjlzpgRlSRBCCCHEWmuZEo6GFrRWHLN539bTZroeouAPE0Z8AI4ztOmBjXWmRGvfr5r37zhTAmiuv9FyKlWAghLuoKAEIYR0cuaLZVsKORFCCCGkK2slKOEgmNCWm/hASZzH23Q0hmEd1oBwa1t4MnzDtC5nXVOiRWCHaSpmaT3Ew4xHQYlWUVCCEEI6OUtQgqYDJYQQQogVprWgBM9+etO2zDASKIn3eJvOjLEawiIWRWBI2qNOz9Hx8A3boIR5hg3OqLfbnmUoKNEaCkoQQkgnR8M3CCGEEOJQq1OC2he6bItASaxX9tNZWGc6sAwfifGTnK9rKXRptFrIa7GO6Xcj5yAoQZkSraKgBCGEdHKUKUEIIYQQR1qrDxEVkYVePS5HjHR4u44jEUe3a/vOxnoIS2vDWcx9zHHNQQm7TAm2KVOCM4DHk8BgULm9f0KzbxBCSKdnTr3k8+1TMAkhhBDSjbWSKcEwLIakPYKE2PGWZfZVD1oXKOnRhq06L+sZSBjW9XP65poSBqtlLYdvNO9v4ogPbWYractwme6GMiUIIaSTC5TEIbXPrYgMz/R3UwghhBDSibRWU8Ihzv2wxCWj1kKlroZYFO75cTox2+EbrWRKWIISVpkSLQtdWgU2QoJ6YVDKQhzKecMbTe0WKChBCCGdHMMwGNhnnr+bQQghhJBOpm2zT7gflAgL7ouw4L5tOEbn5tHwDUdBiRbbDOg9B5U1+5E14H4AzcM5iHuotwghhBBCCCHkgkRDA9rCOphjnjmjtXVdDd+IisjGNZN+B69p2AbNuOEZqilBCCGEEEIIIRegttQr4NpUVaJr8SxTovWgBABLQMLZ68Q56i1CCCGEEEIIuSBRpkRbeBKUkIijAABikdRqG9e30RT48QwFJQghhBBCCCHkAhIc2BMAENoF6z34gnWGSWv1HwYPfAg946ZgVNaLVtvTNJ/eRDUlCCGEEEIIIeQCcvHQt1BevRc946Z4vrEHs290B60FGALE0RiW8YTtNvRs36soKEEIIYQQQgghFxCxSIpePaa1aVsaWmCrtSlBHaGaEd5FvUkIIYQQQgghpFtqy1AMCkp4F/UmIYQQQgghhHQblClhjWllSlDH27gOZAj4gW1tTrdEwzcIIYQQQgghhHRLLNuGTIlWZj2JjRyJfknXIy5qVFub1a1QpgQhhBBCCCGEdBNxUaMBAD1ixvu3IZ1Em2bSYFwHJRiGRWbKvYiKyG5jq7oXCkoQQgghhHiJSqXChAkT8Nprr/m7KYQQ4pA0LB3TLv4WIzKf9ndTOoW2FLpEK5kSxDM0fIMQQgghxEs+/PBDZGZm+rsZhBDikkQc5e8mdBptKnTZAe3ozihTghBCCCHEC86fP4+zZ89i3Lhx/m4KIYQQt1GIwd8oKEEIIYSQLm/fvn245557MHbsWKSkpOCvv/6yW2f9+vWYOHEiMjIyMGvWLBw9etSjYyxfvhwPPvigt5pMCCHEB9o0vWcrNSWIZ2j4BiGEEEK6PKVSiZSUFMyYMQOLFi2ye33Tpk14+eWX8eyzz2LQoEH45JNPcMcdd2Dz5s2IiIgAAFx99dUO971x40b89ddf6NWrF3r37o1Dhw516LkQQghpv/R+d6NRUQABP6gNW1NQwpsoKEEIIYSQLm/cuHEuh1WsW7cO119/PWbOnAkAePbZZ7F9+3Z8//33uP322wEAP/74o9Ptjxw5gk2bNmHLli1QKBTQ6/UICQnBXXfd1ab2smz7vvCat2/vfroi6hvXqH+co75x7kLsm9Q+N7V5W4bx7FwvxP7xJQpKdBH33Xcfdu/ejbFjx+LNN9+0LN+2bRtWrFgBAFi8eDGmTZvmryYSQgghnZJWq8WJEycwf/58yzKWZTF69GgcPnzYrX0sWbIES5YsAWDKnDh79mybAxJ8PguptC1P7uyFhwd6ZT9dEfWNa9Q/zlHfONdd+kYiFrbpc7q79I+nKCjRRdx000245ppr8PPPP1uW6fV6rFixAuvXrwePx8P111+PSZMmQSgU+rGlhBBCSOcik8lgMBgQGRlps1wqlaKgoMDn7dHrjWhoULVrHyzLIDw8EDKZAkYj56WWdQ3UN65R/zhHfeNcd+sbtVqPmhq52+t7o39CQiQQCNoyfWnnR0GJLmLEiBHYu3evzbIjR44gJSXF8iUrMzMTBw4cwKhRo/zRREIIIeSCwnEcmDYUM5sxY0a7j+2tL/VGI9ctbhDagvrGNeof56hvnOsufcNxbfuc7i794ymafcMHfFHx25HKykrExMRYfo+JiUFlZWW790sIIYR0JeHh4eDxeKiurrZZXltba5c9QQghhFCdS++iTAkf6OiK3zxe10zjIYQQQnxBKBQiLS0Nu3btwsSJEwEARqMRu3fvxi233OLn1hFCCCFdGwUlfKCjK347Ex0djYqKCsvvFRUVGDt2rMf7MaNK4B2H+saxlv1C/WOP+sY56hvnumPfKBQKFBYWWn4vLi5GTk4OIiMjERUVhVtvvRWPPPII0tLSkJmZiU8++QRqtRrTp0/3Y6sJIYR0RgylSngVBSX8zBsVv53JzMzEqVOnUF1dDR6PhyNHjuDFF19s076oErhvUN80Ewh4du856h/nqG+co75xrjv1zfHjxzF37lzL7y+88AIAYOHChVi0aBGmTZuG2tpavPPOO6iqqkJqairWrFljyVgkhBBCmlFQwpsoKOFn3qr4fdddd+Ho0aNQqVS4+OKLsWrVKgwYMAAPPfQQbrzxRgDA/fffD5FI1KZ2UiXwjkV9Y0+nM1iqGlP/OEd94xz1jXPe6psLqRL4iBEjkJub63KdOXPmYM6cOT5qESGEEEIACkp0Wp5W/F61apXD5VOmTMGUKVO80iaqBN7xqG9stewL6h/nqG+co75xjvqGEEIIaQvKlPAmmn3Dz6jiNyGEEEIIIYRcONowWzRxgYISfmZd8dvMXPE7KyvLfw0jhBBCCCGEEEI6GA3f8AGq+E0IIYQQQgghXQWlSngTBSV8gCp+E0IIIYQQQkhXQUEJb6KghA9QxW9CCCGEEEIIIcQe1ZQghBBCCCGEEELc5MksiaR1FJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIcRtNHzDmygoQQghhBBCCCGEEL+goAQhhBBCCCGEEOImhjIlvIqCEoQQQgghhBBCSCuyBtwPPj8QvROv8ndTuhS+vxtACCGEEEIIIYR0dn16TkefntP93YwuhzIlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AXDcRzn70aQzs9o5GAwGNu9H4GAB53O4IUWdT3UN7ZOnz6F/v0HWH6n/nGO+sY56hvnvNE3PB4LlmW81CJiRtfcjkd94xr1j3PUN85R37jW3v7pytdcCkoQQgghhBBCCCHEL2j4BiGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/oKAEIYQQQgghhBBC/IKCEoQQQgghhBBCCPELCkoQQgghhBBCCCHELygoQQghhBBCCCGEEL+goAQhhBBCCCGEEEL8goIShBBCCCGEEEII8QsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBHHb+vXrMXHiRGRkZGDWrFk4evSoy/V/++03TJ06FRkZGbjyyivx999/27zOcRzefvttjB07FpmZmZg3bx4KCgps1qmrq8OSJUswePBgDBs2DE888QSUSqXXz80bfN0/xcXFWLp0KSZOnIjMzExMmjQJ7777LnQ6XYecX3v4471jVldXh4svvhgpKSlQKBReOydv8Vff/Pnnn5g5cyYyMzMxatQoPProo149L2/wR98cOXIEN998M4YMGYLhw4fj7rvvRn5+vtfPzRu83T9bt27F7bffjhEjRiAlJQWnT5+228eF9JncHXj7PdCVeNI3Z86cwaJFizBx4kSkpKTg888/92FL/cOT/vnmm29w4403YtiwYRg+fDhuu+02HDt2zIet9S1P+mbbtm2YOXMmhg4diqysLFx99dX44YcffNdYH/P0M8ds1apVSElJwfLlyzu4hf7jSd9s3LgRKSkpNv9lZGT4sLWdEEeIG3799VcuLS2N+/bbb7kzZ85wy5Yt44YNG8bV1NQ4XP/gwYNcamoqt3r1ai4vL4976623uLS0NC4vL8+yzkcffcQNGTKE+/3337mcnBzunnvu4SZNmsRpNBrLOrfffjt31VVXcYcPH+b27dvHTZ48mXv44Yc7/Hw95Y/+2bFjB/fYY49x//zzD1dYWMht27aNGzVqFLdixQqfnLO7/PXeMVu0aBF3++23c/379+fkcnmHnWdb+KtvNm/ezA0bNoz76quvuLNnz3KnT5/mtmzZ0uHn6wl/9E1jYyM3bNgwbunSpdzZs2e5U6dOcXfffTd3ySWX+OScPdER/fP9999zK1eu5L755huuf//+XG5urt1+LpTP5O6gI94DXYWnfXPkyBHulVde4X755RduzJgx3GeffebjFvuWp/3z4IMPcp9//jl38uRJLi8vj3vssce4oUOHchUVFT5uecfztG/+++8/bsuWLVxeXh5XUFDAffrpp1xqaiq3c+dOH7e843naN2bHjx/nJkyYwF155ZXcK6+84qPW+panffPdd99xw4cP5yorKy3/VVVV+bjVnQsFJYhbrr32Wu65556z/G4wGLixY8dya9ascbj+4sWLubvvvttm2XXXXcc9++yzHMdxnNFo5MaMGcOtXbvW8npDQwOXnp7O/fbbbxzHcVxeXh7Xv39/7tixY5Z1duzYwQ0YMKDT/cP1R/84snr1am7KlCntORWv82ffbNiwgbvhhhu4Xbt2dcqghD/6RqfTcRdddBH3zTffePt0vMoffXP06FGuf//+Nl+0Dx48yPXv37/VL12+5u3+sVZUVOQwKHEhfSZ3Bx35HrjQedo31iZMmNDlgxLt6R+O4zi9Xs9lZ2dzP/30U0c10W/a2zccx3HXXHMNt3Llyo5onl+1pW+USiV32WWXcX///Tc3Z86cLhuU8LRvzEEJ0oyGb5BWabVanDhxAmPGjLEsY1kWo0ePxuHDhx1uc/jwYZv1AWDs2LGW9YuLi1FVVWWzTnBwMAYNGmRZ59ChQwgLC0N6erplndGjR4NhGLfTxXzBX/3jSGNjI0JDQ9t8Lt7mz74pLCzEW2+9hVdffRUs2/k+6vzVNydPnkRFRQUYhsFVV12FsWPH4p577nE6/MUf/NU3vXv3RlhYGDZs2ACdTgeVSoXvv/8eGRkZiIiI8Oo5tkdH9I87LpTP5O7AX++BC0Fb+qY78Ub/qFQq6PX6TvV9wxva2zccx2H37t04d+4chgwZ0oEt9b229s0rr7yCESNG4KKLLvJBK/2jrX0jl8sxfvx4jBs3Dvfeey/y8vJ80NrOq/N9Uyedjkwmg8FgQGRkpM1yqVSKqqoqh9tUV1dDKpU6Xd/8f1f7dLQPPp+P0NBQVFdXt/2EvMxf/dNSYWEhPv/8c9xwww1tOo+O4K++0ev1ePjhh7F48WIkJiZ65Vy8zV99U1RUBAB4//33sWjRIrz//vsQCASYO3dup6kN4K++CQoKwieffIKNGzdi0KBByM7OxuHDh/H+++975by8pSP6xx0Xymdyd+Cv98CFoC190514o39ef/11xMXFYeTIkR3RRL9pa980NjYiOzsb6enpuOuuu/DUU09h1KhRHd1cn2pL3/z111/Ys2cPHnnkEV800W/a0jfJycl4+eWX8eGHH2LFihUwGo2YPXs2KioqfNHkTomCEqTNOI4DwzBOX3f0WstlLX9vuU9H+2jtuJ2FL/rHrKKiAnfccQcuv/xyzJgxo40t9p2O7psPP/wQ4eHhuO6667zQWt/q6L4xGo0AgPnz52Py5MnIzMzE8uXL0dDQgO3bt7ez9R2ro/tGrVZj2bJlGDlyJL755ht88cUXiIuLw4IFC6DX671wBh3LG/3Tmgv5M7k78MV74EJF71PX3O2f1atXY9OmTVi5ciWEQqEPWuZ/rfVNYGAgfvjhB3z77bd44IEH8NJLL2H//v0+bKH/OOub2tpaPPnkk3j11VchkUj80DL/c/W+ycrKwlVXXYUBAwZg+PDhWLlypSVTs7vi+7sBpPMLDw8Hj8ezexJWW1trFxU0i4yMtFu/pqbGsn5UVBQA09NL67To2tpaS2qwo33o9Xo0NDTYPe3xJ3/1j1lFRQXmzp2LrKwsPPPMM+09Ha/yV9/s3bsX+/fvx8CBAwGYLgwAMGzYMNx333245557vHB27ePPf1eAaaiCWUBAAOLj41FaWtrOs/IOf/XNzz//jIqKCmzYsMHyReKNN97AsGHDsGvXLlx88cXeOcF26oj+cceF8pncHfjrPXAhaEvfdCft6Z+1a9fio48+wrp169C/f/+ObKZftLVvWJZFUlISACA1NRX5+flYtWoVhg4d2qHt9SVP++bMmTOoqqrC7NmzLcsMBgP27duHzz//vEvN3uKNzxyBQIDU1NRONZTW1yhTgrRKKBQiLS0Nu3btsiwzGo3YvXs3srKyHG6TlZWFnTt32izbtWuXZf2EhARERUXZ7FMul+PIkSOWdbKzs1FXV4cTJ05Y1tmzZw84jkNmZqZ3Ts4L/NU/QHNAIi0tDS+//HKnq53gr7556aWX8OOPP+KHH37ADz/8gBdeeAEA8NVXX2HWrFneO8F28FffZGRkQCAQ2Fz41Go1ysvLER8f752Tayd/9Y1arQbLsjZPNsy/mwNbnUFH9I87LpTP5O7AX++BC0Fb+qY7aWv/rFmzBu+//z7WrFnTZacu9NZ7h+M4aLXaDmih/3jaNxkZGfj5558t38N++OEHpKenY/r06di4caMPW97xvPG+MRgMOHPmjOUBSrfks5Ka5IJmnupm48aNXF5eHvfkk0/aTHXz8MMPc6+99ppl/QMHDnCpqanc2rVruby8PO6dd95xOD3f0KFDuW3btnGnTp3i5s+f73BK0GuuuYY7cuQIt3//fm7KlCncQw895LsTd5M/+qe8vJybPHkyN3fuXK68vNxmWqHOxF/vHWt79uzplLNv+KtvnnvuOW7cuHHczp07uby8PG7JkiXcuHHjOIVC4buTb4U/+iYvL49LT0/nnn/+eS4/P587deoUt2jRIm7UqFFcXV2dbzugFR3RPzKZjDt58iS3fft2rn///tzmzZu5kydPcjKZzLLOhfKZ3B10xHugq/C0bzQaDXfy5Enu5MmT3JgxY7jXXnuNO3nyJFdSUuKvU+hQnvbPqlWruLS0NG7z5s023zU62zXVGzztm48++sgyNXteXh63bt06buDAgdy3337rr1PoMJ72TUtdefYNT/tm5cqVlvfN8ePHuQceeIDLzMzk8vPz/XUKfkfDN4hbpk2bhtraWrzzzjuoqqpCamoq1qxZY0mDLisrs3lKP3jwYLz++ut466238MYbb6BXr15477330KdPH8s6d955J1QqFZ566ik0NDRgyJAhWL16tc0Yxddeew3PP/88brnlFrAsi0svvRTLli3z3Ym7yR/9s3PnThQUFKCgoMAurTw3N9cHZ+0ef713LgT+6ptHH30UPB4PDz74IHQ6HbKzs7Fu3ToEBAT47uRb4Y++6dOnDz788EOsXLkS1113Hfh8PtLT07FmzZpOV2W+I/rnzz//xOOPP275/b777gMAvPzyy5ZaNRfKZ3J30BHvga7C076prKzENddcY/l91apVWLVqFaZPn45XXnnF183vcJ72z5dffgmdTmf5TDBbuHAhFi1a5NO2dzRP+0atVuO5555DeXk5xGIxkpOTsWLFCkybNs1fp9BhPO2b7sTTvmloaMCTTz6JqqoqhIaGIj09HV9//TWSk5P9dQp+x3BcJ8pJJYQQQgghhBBCSLfRPcNZhBBCCCGEEEII8TsKShBCCCGEEEIIIcQvKChBCCGEEEIIIYQQv6CgBCGEEEIIIYQQQvyCghKEEEIIIYQQQgjxCwpKEEIIIYQQQgghxC8oKEEIIYQQQgghhBC/4Pu7AYQQ4srKlSvx7rvv2i0fNWoU/ve///m+QYQQQkgXRddcQog/UFCCENLpBQcHY82aNXbLCCGEEOJddM0lhPgaBSUIIZ0ej8dDVlZWq+up1WqIxeKObxAhhBDSRdE1lxDia1RTghByQSouLkZKSgp++uknPPLIIxg6dCjuueceAEBdXR2eeuopjB49GhkZGbjhhhtw5MgRm+0bGhqwZMkSZGVlYezYsfjggw+wfPlyTJw40bLOypUrMWLECLtjp6Sk4PPPP7dZtmHDBlx++eVIT0/HhAkTsHr1apvXH3vsMcyYMQM7d+7ElVdeiaysLMyePRtnzpyxWc9gMOCjjz7CpZdeivT0dFx88cV47LHHAADr169HdnY2FAqFzTZ79uxBSkoKTp065WEvEkIIIa2ja24zuuYS4n2UKUEIuSDo9Xqb3zmOAwC8+uqrmDx5Mt5++22wLAutVotbb70VDQ0NeOSRRxAREYEvv/wS8+bNw9atWxEVFQUAePzxx/Hff/9h6dKliIyMxMcff4zCwkLw+Z5/LK5ZswZvvvkm7rjjDgwfPhwnTpzA22+/DYlEgjlz5ljWKysrw6uvvor58+dDJBLh1Vdfxf33349ffvkFDMMAAJ566in8+OOPuP322zF8+HDU19dj8+bNAIArr7wSy5cvx5YtWzBjxgzLfr///nukpaVhwIABHredEEIIaYmuuXTNJcSXKChBCOn06urqkJaWZrPshRdeAAAMGjQITz/9tGX5hg0bcObMGfzyyy/o1asXAGD06NGYOnUqPv74Yzz66KM4c+YMtm3bhjfffBPTpk0DAIwYMQITJkxAUFCQR22Ty+V47733MH/+fCxcuBAAMGbMGKhUKnzwwQeYPXs2eDweAKC+vh5ffvmlpV0cx2HBggU4e/Ys+vTpg/z8fHz77bd44oknMHfuXMsxzG0MCQnBlClTsHHjRssXJIVCga1bt2LJkiUetZsQQghxhK65dM0lxNcoKEEI6fSCg4Oxbt06m2VCoRAAMH78eJvlu3fvRlpaGhISEmye9AwbNgzHjx8HABw7dgwAbNJGAwMDMXr0aBw9etSjth06dAhKpRJTp061Od7IkSPx/vvvo7y8HD169AAA9OjRw/LlCAD69OkDAKioqECfPn2wd+9eALB5ItPStddei3nz5qGoqAiJiYn47bffoNfrccUVV3jUbkIIIcQRuuY2o2suIb5BQQlCSKfH4/GQkZFhs6y4uBgAIJVKbZbLZDIcPnzY7ikPAPTs2RMAUF1djcDAQLsCXS335Q6ZTAYAuPzyyx2+XlZWZvmC1LJ6uUAgAABoNBoApqdTAQEBLp8cjRgxAomJidi4cSMWL16MjRs34pJLLkFYWJjHbSeEEEJaomtuM7rmEuIbFJQghFzQzONCzUJDQ5Geno5nnnnGbl3zk57IyEgoFAq7yuE1NTU264tEIuh0Optl9fX1dscDgI8++sjhF6zevXu7fS5hYWFQKpWQy+VOvyQxDIOZM2fim2++wdVXX40DBw7YFfgihBBCOgJdc+maS0hHoKAEIaRLGTVqFHbu3In4+HinT2HMT4D+/PNPy9hRhUKBXbt22XwxiYmJgUKhQEVFBWJiYgAAO3futNlXdnY2xGIxKisr7dJaPTVy5EgAwA8//GBTrKul6dOn45133sHSpUsRExODMWPGtOu4hBBCSFvQNZcQ4g0UlCCEdCnXXHMNvvrqK9x888247bbbkJiYiLq6Ohw9ehRRUVGYN28e+vXrh4kTJ+KZZ56BXC5HVFQU1q5da5daetFFF0EsFmPp0qW49dZbUVxcjK+++spmnZCQECxcuBAvvvgiSkpKMGzYMBiNRpw/fx579+7Fe++953bbk5OTcf311+OVV15BTU0Nhg0bhoaGBmzZsgVvvvmmZb2YmBhcdNFF2L59O+6++25LUS9CCCHEl+iaSwjxBgpKEEK6FJFIhE8//RRvv/02Vq5ciZqaGkRERCAzM9OmyNYrr7yCZ555Bi+99BICAgJw4403IiMjA1u2bLGsExERgXfeeQevvvoqFixYgLS0NLz++uuWJz1md955J6Kjo/HJJ59g3bp1EIlE6NWrl9167nj66acRHx+PDRs2YPXq1YiIiHD4VGbSpEnYvn27ywJdhBBCSEeiay4hxBsYzjzxMCGEdHPm+cj//PNPfzelVYsXL0ZVVRW++OILfzeFEEII8RhdcwkhZpQpQQghF5Dc3FwcP34cv//+O9544w1/N4cQQgjpsuiaS4hvUFCCEEIuIPPnz4dMJsONN96IqVOn+rs5hBBCSJdF11xCfIOGbxBCCCGEEEIIIcQvWH83gBBCCCGEEEIIId0TBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF9QUIIQQgghhBBCCCF+QUEJQgghhBBCCCGE+AUFJQghhBBCCCGEEOIXFJQghBBCCCGEEEKIX1BQghBCCCGEEEIIIX5BQQlCCCGEEEIIIYT4BQUlCCGEEEIIIYQQ4hcUlCCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiFxSUIIQQQgghhBBCiF/w/d0AcmEwGjkYDMZ274fPZ6HXt38/XRH1ja2iokIkJva0/E794xz1jXPUN855o294PBYsy3ipRcSMrrkdj/rGNeof56hvnKO+ca29/dOVr7kUlCBuMRiMqKtTtmsfLMtAKg1CQ4MKRiPnpZZ1DdQ39m6+eS5++GETAOofV6hvnKO+cc5bfRMWFgCW5XmxZQSga25Ho75xjfrHOeob56hvXPNG/3Tlay4N3yCEEEIIIYQQQohfUFCCEEIIIYQQQgghfkFBCUIIIYQQQgghhPgFBSUIIYQQQgghhBDiF1TokhBCiNdwHAej0QCuE9S4YlkGWq0Wer2eim614G7fMAzAsjwwTNes9k0IuTD561pD1xXnqG9cc6d/uvM1l4IShBBC2o3jOMjl9VAoGgB0ni8j1dUsjEaanswRd/uGZXmQSuPA43XNit+EkAtHZ7jW0HXFOeob19zpn+56zaWgBCGEkHYzf0kMCYmAUCgC0Dmi/Hw+A72+8wRJOhP3+oZDXV01GhpqER4e5ZN2EUKIM53hWkPXFeeob1xrvX+67zWXghKEEELaheM4y5fEgIAgfzfHBp/PAqCnNo642zfBwWGQySrBcUYwDJWiIoT4R2e51tB1xTnqG9fc6Z/ues3tPmdKCCGkQxiNBgBc01Mr0tXweKbnF5SSSwjxJ7rWkO6gu15zKShBCCGkXZoLjXWOIRvE20x/185QvJQQ0n3RtYZ0D93zmkvDNwjppDiOQ7W2HhUaGRr1SjTqlZDrVWAZBgKWDyHDRwBPjGhROGJFEQjiS7pltV5CCCGEENI+a9d+hF27/sXatZ/5uymkG6KgBCGdhNqgxT7ZKRyqO4N8RQnOKkpRr1e4vX0AT4xeAbEYENQTA4J6IjW4F6JEYR3XYEIucC+++Ax+++0Xu+W//LINYWFhvm8QIYSQLufFF5+BSqXECy+8alm2adPPWLHiJTzwwCO46qrpHu/z8ccfwunTpyCT1SI4OBhDhw7H/Pn3ITKy7cURZ8++Gddee32bt79QXXvtlZg9ew5mzux+596ZUFCCED/iOA6H6s9gW/V+7Ko9DrVBa3lNwPDQJ7AHEsRRCOEHIEQQiCC+BBwHaDkddEY9GvVKVGhkqFDXolxTi5ON53Gy8bxlH70ksRgZkYZR4WnoF5QAthsVzCHEHaNHX4RHH33CZlloaKjN73q9Hnw+XS4JIYS034YNX+H999/GsmXP4pJLprRpH9nZQ3DTTXMRGRmF6uoqvPfeW3jyycfwwQdr29yugIAAAAFt3r4r0+v14PF4lJHcgehbFiF+YOCM2F59CBtK/sJ5VTkAQMwTYqw0A0NCU5AS1BOJkmgIWPf/iRo5I0rU1TjVWIBceSGONOTjvKoc50vK8VXJH4gWhePS6OGYEjWMMigIaSIUCiCVRtosu/baK3HVVdNx/vw5/PPPDkydejmWLHkUR44cwocfrkRubi7Cw8NxySWTcccd8yEUCgEANTXVWL78Bezfvw9RUVGYP38RVqx4CQsW3I9p067EwYP7cd9992Dr1r+bvvwBO3f+g0cffQD//rvfcvy//96Ojz9ehcLC84iKisZVV03H7Nk3g2VNQcWxY4fisceW4e+/t+PAgX2Ij++Bhx5aikGDsiz7OHz4IFateh+5uTkQCkVIT8/ACy+8iq+++hzbt/+Bdeu+sDnnG26YjquvnonZs+d0RDcTQggBsG7danz++f/w0ksrMGrU2DbvZ9as2ZafY2PjcNNNt+CJJx6BwWAAj8dzuE1DQwPee+8t/PvvDuj1eqSlZWDx4oeQlNQLgP3wDb1ej5Ur38Dmzb+Cz+djxoxZOHcuHxJJAJ544hkAgEajwapV72Pbti1QKhXo27c/Fiy4H+npGQBMGSHvvfcWnnjiWbzzzhuora3B8OEj8NhjTyEoyDSDyl9/bcPHH69CSUkxJBIJUlJS8dpr74BlWUuWSe/efbBx4zcwGAyYNu1KLFhwv+U87dvQDwsWPGBpA+D8mrhkySKUl5fhzTdX4M03VwAA/v13v6Xdjz76JD78cCWKi4vw449b8OSTj2LAgIFYuPB+y75vv/1mjB49FrfffjcA0zX6kUeewPbtf+LIkYPo0SMBy5Y9C5blYcWKF5Gfn4eMjEF46qnnER4e0eb3QFdDQYku7uzZs1i6dCnkcjmEQiGWLl2KoUOH+rtZXqM2aJCnKEGpugY12npojXowAIL4AYgShSJJEosekijwOlGGwJH6PHx4/kecU5YBAAYE9cRVcWNwZb+RUNXrYTS2rbINy7BIlEQjURKNydHDAAAlqirskZ3ArtoTONF4Dp8VbcH6oq0YFj4AM+LGITOkD0V9CXHgiy8+xW233WX5klFSUoyHHlqMu+++F0888Sxqaqrx2msvQ6/X4777lgAwpejW1cnw7rsfAQDefHMFlEqlR8c9cuQwXnrpGdx//8PIyBiEwsICvPrqixAIhDZfQtetW4OFC+/HokUPYu3aj/Dss0/gm29+BJ/PR2FhAR54YAGuueZaLFnyGABg37494DgO06ZdiY8/XoUzZ3KRmpradMxDKCsrxaWXXtbufiOEEGKP4zisXPkGfvnlR7z++kpkZQ22ef3TTz/GZ5+tc7mPzz7bgNjYWLvlDQ312Lp1MzIyBjkNSADAU089BolEgtdffxcBARJs2PA1HnhgAdav/xYSicRu/fXrP8Eff2zFk08+hx49EvHll59h3769uPjiCZZ13nprBQoKzuP551+BVBqJP/7YigceWIAvvvgWUVHRAAClUonvvvsGzz//MtRqNZ588jF8/vn/cM89C1FdXY1nnnkC9957Hy6+eAIUCgUOHtxn0469e/dAJBLj3XdXo6ioEC+//BwiI6Nw441zHbbh998327TB1TXxpZdWYN68GzF9+rWYNu1Km+MqlUp89dXneOKJZxEYGIjAwECXfx9r//vfGixa9ADuv38J3nrrNTz33FOIiIjAwoWLIRYH4umnH8eqVe/j0UeXub3Pro6CEl2cSCTCSy+9hOTkZOTn5+Pee+/Fli1b/N2sdqnS1GFHzWH8W3MUp+XFMLYy328IPwDZof0xPjILw8JSwWedf2B3JKVBjdXnf8ZvlXsBAAODe+G2ntOQHpIMlmUQwBdDBblXj9lDEoWZkvGYGT8eJaoqbKn8D79X7cdeWQ72ynIwMLgXbuwxCUPCUig4Qbqlf/7ZgcmTL7L8Pn78JQCAoUNHYNasGy3LX3nleUydejmuvfYGAEBCQiIWLLgfy5Y9gkWLHkRRUQH++28PPv74c/TvPwAAsGTJo7jjjrketefjj1dh7tzbMHXq5QCAHj0ScMstt+Hbb7+2CUpcccXVmDBhEgDgttvuwo03zkRJSTGSknrh88//h4yMQVi8eIll/T59+gIAxGIxhg8fiV9//dkSlNi06WeMGjUGERFSj9pKCCH+9lreV9hde9ynxxwjzcCDfTyrP7Br17/Q6XR4991VdgEJALjmmpmYOHGyy31ERtpm9b3//jvYuPEbqNVqpKdn4tVX33S67ZEjh5Gbewo//bQFAoEAAPDAAw/j77//wq5d/+KSS+yP/d1332Du3Nswduw4AMDDDy/F7t07La+Xl5dj06af8f33myzXj9tuuwP//vs3tm79DTfddAsAQKfT4eGHl1oCKpdddgUOHDAFHmpqqmEwGDBu3ETExsYBAPr27WfTDpFIhEcfXQahUIjevZNRXFyEr79ejxtvnOuwDfPm3YFdu/61tKG1ayLLsggICLDLmtTpdHjooceRnNzHab86Y32Nnj37ZjzwwALcdde9yM4eAr3eiCuuuAY//vidx/vtyigo0cX16NHD8nNycjIaGxvBcdwFeQNaqKzAlyV/YEf1YUsgIkIQgoHBSUiQRCNKGAoRTwgjx6FRr0S5ugbnlGXIlRdiR81h7Kg5jAhBCK7rMR6Xx4yCkBX4tO3Pn/4ERapKhPIDcW/v6bhYOsinf4cekijclnQ55iZOxT81R/BVyR842Xgey06tQf/ARNzd6yqkhfT2WXsI6QyGDh2BBx542PJ7QEAA7rprHgYMSLVZLy/vDPLzz2Dz5ubCmEajERqNBjU1NSgoOA+BQIB+/VIsr6ekpFq+/LkrP/80jh07gnXrVluWGQxGcJxt8DU5ua/lZ/MXVZmsFklJvZCXdwYXXzze6TEuv/wqvPbay1i8+AFoNDr89dcfWLbsWY/aSUhXlq8owQu5n2J63EUYFp6KOLH7AbuDdaeRryjBdT0mtL4y6Tb69u2P2toarFnzIV577R2IxWKb10NCQhESEupka8duvHEurrjialRUlOHjj1fjpZeexSuvvOFw3by801Ao5Jg2baLNco1Gg9LSYrv15XI5amtrkJqaZlkmEAhsAgZnz+bBYDDg+uuvsdlWq9XarBcYGGiT4SGVSiGTyQCYAhDZ2UMwd+4NGDlyNIYPH4kJEy5BYGCQZf1+/fpbhkkCQHp6Bt5/vxpyudytNrR2TXRGJBK1KSABAH36NJ+/OVjSu3ey1bIISx8QEwpKdHL79u3D2rVrcfz4cVRVVeHDDz/EhAm2F7r169dj7dq1qKqqQmpqKpYtW4bMzEy7ff3xxx9ITU294AISSoManxdtxY/l/8LAGRHMD8DU6OEYH5mN5ID4Vs9HbdBgf91pbK38D/vqTuGj8z/h+9K/cV/ytRgaPqDD23+o/gyeO/U/qIwaDA9LxZK+NyBU4H4KmLfxWR4mRA3GuMgs7K49gS9KtuG0oghLTryH8dJs3J50OdWcIN2GRCJGQkKig+W2qawqlRIzZlyH6dOvs1s3LCwMHIdWP4vMNSGA5iFaer3eZh2lUoU775yPiy4a53JftoU3Tcc1Gl1njZmNHTsOr732Cv79928oFEoIhUKMHt32sc2EdCUcx+GtPZ+hmCvD+5ofgPM/YPOo11rd7ryyHAq9CktzVgEARkWkI0EShT+qDuDzoq1YkXYvIkWe3XSS1j3U9wafH5PPZ6HXu/d5axYTE4Nnn30JixbdjYcfXowVK962CUy0ZfhGWFgYwsLC0LNnEpKSemPGjMuRk3PCJpBgplIpERUVjbff/sDutZCQEKfHbHld47jm65dKpQSfz8fHH6+3rMfjMTAYOJuhDi0LRTMMYwm083g8vP32Bzh27Aj27NmFL7/8DGvXfoS1az+z3Mw7u7YyjOM2mHky3MKRloEjwHQdt+4DwP46Dties7lZtssYu4cN3R0FJTo5pVKJlJQUzJgxA4sWLbJ7fdOmTXj55Zfx7LPPYtCgQfjkk09wxx13YPPmzYiIaC6eUlJSghUrVmDVqlW+bH67nVWU4sXTn6FEXYUAngg3JkzGFTGjIOaJ3N6HmCfCWGkGxkozcF5Zhk8Lt2CX7DiWnVqDy6JHYn7vayD0oKCkJ3bXHsdLpz+DjjNgTsIU3JgwqdPMgMEyLMZIMzAqIg1/VR/CxwW/YnvNIeyWHcechCmYET+uU9XiIMSf+vVLwblzZx0GMACgV69e0Gq1OHMm1zJ8Izf3FHQ6nWWdsLBwAEBNTQ0CAkxflvLyTtvsp3//FBQVFTg9jjv69u2Hgwf3Y968Oxy+zufzceml0/DLLz9BrVbj0ksvo9lFCGmyc+c/OLVxFyqYBsTMHASeWIBqTX2rAYV7jtgGLjRG02xaK/K+BABsqtiNuT2ndkyjyQUhPr4HVq78CIsW3Y1HHrkfr776luXGty3DN6yZb5S1Wp3D1/v3H4Dq6ioIBALExNjXpWgpKCgIERFSnDx5AunppgedOp0O+fl5lloR/fr1h16vR319nWWdtgRsWJbFoEHZGDQoG7fddheuvHIy9u7djcsuuwIAcPp0LrRarSVb4sSJ45BKIxEYGOSwDS21fk0UwGBwr81hYeGora2x/K5UKh1mmhDP0R1HJzdu3Dg88MADmDLF8ZRB69atw/XXX4+ZM2eib9++ePbZZyESifD9999b1pHL5bj33nvx5JNPIikpqc1tYVmm3f95sp/dsuO4//g7KFFXYUT4QHw8+DHMSpiAAIG4zcdPDorHMwNvxdMD5iFcEIzfKvfg8ZMfol4v98r5Wf93pCEPL57+DHrOiPuSZ2Ju0qXg83he6Rtv/sfn8TA5Zig+HvIYZidcAiNnxNrCX/HwifdQqqn2S5sc9Ye/+udC+K8z9E1Xd9NNc3H48CG89dZrOHPmNAoLC7Bjx5947723AQA9e/bC0KHDsXz5i8jJOYGcnBN4881XbYZvJCQkIjo6BuvWmYp1/fXXNvz66082x7nlltuxadPP+N//1uDcubM4d+4stm79DZ984v40b3PmzMOxY0fw9tuv4+zZPJw7dxbffPMl1Gq1ZZ0rrrgae/bsxqFDBzBt2lVu7bc7/t1J92IwGPDPP9shZPkwqrRQnDTNjnVKXujxvhjY/vsQ84RO1iTdiTkwUVpagkceud/yuRwSEoqEhESX/5mDx6dOncSGDV/hzJlclJeX4eDB/Xj22WVISEjEwIH2WRIAMHTocAwcmIbHH1+Cffv2oLS0BEeOHMZ7772NgoLzDreZOXMWPv30Y+zc+Q/Onz+H1157GVqtxpKR0LNnL1xyyWQ899yT+Pvv7SgtLcHx48ewbt1qHDp0wK3+OHHiOD799GOcOnUS5eVl+OOPrVCpVOjZs5dlHY1GgxUrXmqaEWs7PvtsHa677ganbThx4rhNG1q7JsbFxeHw4YOoqqpEXV2dy/ZmZw/Bzp3/YO/e3Th37ixeeeV5AHQt9AZ6NHIB02q1OHHiBObPn29ZxrIsRo8ejcOHDwMwXWAXL16MWbNmYezYtqfn8vkspNKg1ld0Q3h46+lUm4r34oXcT2HkONyXOgNz+07x6rCTq6SjMKpnKpb89wFO1J3H46c+wqrRDyFc5J1zzG8oxfO5n0DPGfDEoDmYkXRR6xvBvb7pOEF4KHoWZva7CE8dWoeTdQWYf+R1LEqdgRt6T/D5sB+BgGf3nvNv/3Ru/uwbrVaL6moWfD4DPr/zxbqdtYlhGDCM4zazrO3y1NRUvP/+R/jww/cxf/5tYFkeEhIScfnlV1jWe+aZ5/Hii89hwYI7IZVGYtGi+7F8+UuWffH5Qjz77At49dWXMW/ebGRnD8btt9+Fl19+3rKPiy66CK+++iY+/ngVPvtsHQQCAXr3TsbMmbNs2sPjNbfP/H8ejwWfzyI5uTfeeus9fPDBSvz443cQiyXIzByEmTOvtazbr19fpKQMgNFoQEpK/1Z6kAHLsggPD7AZ10scU6lUmDZtGi6//HI89NBD/m4O8UBxcRGUSiVCIsIAZTmU+dUIzk7AaXkhxkozWt3eGgfbFG8JQ/92iIl1xsSjjz6A5cvfdDhUwBmhUIR//92BdetWQ61WQSqNxIgRo/Dccy87rWPEsixee+0dfPjhe3jhhWfQ0FAPqTQS2dlDnA7fuOmmW1BTU41nn10GgcA0JWhmZpbNdWDZsuewbt1qvPPO66iurkJ4eATS0zMxadKlbp1LYGAgDh8+hG+++QJKpQrx8fF45JEnkJaWbllnxIiRiIqKxr333gGDQY/LLrsSN9zQPH11a23o2TMJr7++Eh999J7lmpiRkYmrr54BALj99nuwYsVLuP76a6DVam2m6G7piiuuxunTuXj66aUQi8W47ba7UFJCmRLewHAtB8aQTislJcWmpkRFRQUuvvhibNiwwaaGxKuvvoqDBw/iq6++wl9//YWFCxeib9/momifffaZy/Fjjuh0BjQ0qNrVfpZlEB4eCJlM4XLayz21J/F0zsdgwOCR/rMxMcq+SrG3aAw6PJf7P+yTnULfwB54NX0+gvj20yJ5QmXQYP7hN1CqrsbshEm4Nan1afbc7RtfMXAGfFX8Jz4v2goDZ8SYiAw81O8GBPLdv2i211VXXYaffvoNQOfrn86kM/SNXq9HZWUxIiN7dLphAG1JJfWmyy+/BAsW3G831Zi/GY1GzJp1NW68cS5mzLCvk2FNr9ejuroE0dEJdn/fkBAJBAL/zGjUWb355ps4f/48EhMT2xyU0OkMqKvzbDrZlliWgVQahJoaOX1utuCsb3bu/AebN/+K+oFi/HNkF3RVckRPH4QrBkzAg31nudzn1N22f+u30+9DSnBPTN39EFQFtUg+xGJK1nhcMv1yhAqCIOL5rti2pzrre8f8WeTva42/ryv+otfrMWvW1bjuutmYPXuOw3W83TcvvvgMVColXnjhVa/t05/c6R9X7/OwsIAue83tXN8eiVdYz64xYcIEnDhxwiv79daFyWjknO7rnKIML+d+Dg4cHut3E8ZJszr0gihg+FjW7xY8dWoNjjTkY8XpL/FUyrx2ZQV8ePYnlKqrMSI8FXMTLvWo/a76xpcYsJjdYxKGhaXixdxPsbP2GAqOlOPJlFuQFND6WERvadkXnaV/OiN/9g39TS4stbU12LTpZ8jljZg6dZrb29G/v9adP38eZ8+exYQJE3D27Fl/N4d4qKjINExDEhMCSS8pdFVyqApqoeqvdrmdwUHBOh2nh4EzgjNykO06Cw2/Jw4cO4APeX8hPSUN7w16sEPOgRBvKS0twcGD+5CZmQ2NRoOvv16P+vo6y1SXhHhT58uzJW4LDw8Hj8dDdXW1zfLa2lqXxXA6K7VBg+dyTbNUzE2cinGRWT45rognwFMptyJeHIndshP4ofyfNu9rr+wkfqvcgzBBEB7oM+uCm+mkpb6BPbAy836MCE9FsboKi4+9g39rjvq7WYSQdrjqqkvx9ddfYOnSpywFN4lptqt77rkHY8eORUpKCv766y+7ddavX4+JEyciIyMDs2bNwtGjtp+Hy5cvx4MP0s3mhYjjOBQUnAfDsOBHBkKSFAGpKBTq87VQGTQut9Ua7YsLao16NOoV0JQ3wKjQokJTi80Ve6EulCFfWdpRp0GI17Asi19++Ql33jkXCxfeibKyUqxc+ZHNDCCEeAsFJS5gQqEQaWlp2LVrl2WZ0WjE7t27kZWV5b+GtdEnRVtQpqnByPA0zO5xiU+PHcgXY2n/myFgeFhT8AvOKco83ofeaMBH501F6+5Pvg5hgmBvN9MvgvgSPJ1yK25OvBQaow4vnv4MP5b96+9mEXJB+PXXPzrd0I1//92Pn3/eiokT6WmXNfNsV0899ZTD182zXS1YsADff/89UlJScMcdd6C2thYAsG3bNvTq1Qu9e/f2ZbOJl9TX10Eub0RMTCy0rAGCMAnGJA2BrlYBmUzmcluNg6CEjtNDppVDddb04EiVYfpOoC6us5tSkJDOKDY2Dh9++DG2bNmBLVt24L33VmPgwPTWN/SiJ554pssM3SCuUVCik1MoFMjJyUFOTg4AoLi4GDk5OaiqqgIA3Hrrrfjqq6/w/fffIz8/H8888wzUajWmT5/uz2Z7LKexAD+U/YNAnhiLkmf6JcOgb2APzOs5DQbOiI8KfvL4S8Omyj0oVVdjSGgKRkY4rn58oWIZFjclTMaTKbeAz/Dwwfkf8L/C3+iLFSGky2jvbFdHjhzBpk2bMHHiRCxfvhxffvnlBTcNd3dmHrrRs2cSVEZTZkRmmqm4ZUW+60J2jjIl9EYDajT1UJ6rAXgsggbEQCANhKFRDYNCi/fP/QADZ/DyWRBCyIWJakp0csePH8fcuXMtv7/wwgsAgIULF2LRokWYNm0aamtr8c4776CqqgqpqalYs2YNIiIi/NVkj3Ech4/O/wgOHO5MuhJSoWdFOL3p6tix+K1iDw7Xn8Fe2Um3gwtKgxrri7aCAYPbky7v4Fb6z+iIdLw08E48c2odvir5A7XaRizuMxM8pmsW3SHt8+STj+HYMd8N98nIyMTzz7/is+OR7sOd2a6WLFmCJUuWAAA2btyIs2fP4q677mrzMds75ar1dMHElqO+KSoqAMAgKSkJasMpAMCwjKHA90B1fonLftRyDoISMKA4/xw4jR7ipAiwIj6EUUHQ1SigrZbjp6B/kR7SC+Ojsr17cl7QWd87na09hHSk7jb1NgUlOrkRI0YgNzfX5Tpz5szBnDmOq+BeCA7Vn8EpeSGSA+JxafRwv7aFz/JwV6+r8NSptVhd8DOGhaeCx7SeULSl8j/U6xW4JHIIkgPjfdBS/8kI6YPX0hbgiZzV2Fr1H3ScDg/1ne1WP5HuhQIEpKuQyWQwGAx29ZqkUikKCgq8fjxfT8PdXVn3TU1NBSQSAbKyBkJz4BfwGBbDB2dCGChBY3kNJBIWAQEBDvdTxa+1WyYK4ON83hkAQEAf0/tGEBkEoAK6agXQS4oCfbnX/s4dobO9dzrT9NP+Pn5nRn3jWuv90z2n4aagBPG7L4u3AQBuSLikUxSGHB6eisyQPjjakI/9dacwInygy/U5jsOmij0AgJnx43zRRL/rHRiHN9IX4pET7+Ov6kMQsUIsTr62U/z9CHHHd999jdWrP8CmTX+CZU1fEGpqqnH11VNx0UXj8fLLr1nW3bJlE1555Xls3vwXRKK2TYv7xx+/4+mnH8f48RMdjo99+uml6N07GfPm3YGxY4dCKBThq682Ijo6xrLOwoV3YcCAgVi48P42tYF4n/VsV9ZmzJjRrv3q9UafTcPdHbXsG51Oh7y8cwgICATHCaHQqSFhRZDJlAjrFYPqk4XYsWMXhg8f6XB/lQ31dsuqamXIPXoKjIAHcWI4AEAoNd3ka6vlAICTNQWoqZF30Fm2XWd97+j1ehiNRuj1HAD/TcnZXacEdQf1jWvuTQnKwWg0QiZTgs/X2rzWlafhplAW8avjDWdxrPEsEiXRGBOR4e/mWFwVOxYA8Ev5rlbWBE40nkORqhIDgnp2+SwJa7HiCLySdg8iBCHYXLkXH57/kWpMkAtGdvYQyOVynD7dnIl2+PBBREfH4MiRQzbv5cOHDyI1Na3NAYmKinK8995byMzMcvi6Xq/H3r27MWbMxTbL161b3abjEe/zx2xX5ilY2/Oft/bTFf+z7puioiIYjUYkJvaE0chBbdBAzBPCaOQQndoTRs6IPf/tcbovtcF++MbfB3dBpVGbhm403USERIZDwBdAV60Ax3Go0Mj83g8X2nuHkO6iu73/KShB/Gpz5V4AwHXx4ztV+v+oiIGQCkKwvy4XZeoal+v+2pQlcVmM4ycoXVm8OBKvDLwbofxA/Fj+L9YV/ubvJhHilt69+yAsLByHDh2wLDt06ACmTr0cAoEAeU1p1+blgwcPbdNxjEYjXnjhadxyy+3o0SPB4TqHDx9EUFAQ+vXrb1k2c+YsbNr0MwoLz7fpuOT/7J13eBv1/cdfd6dpee+R7STO3hBGSAibsKEFWiijjDJLB6UL2kIpLQV+pbS0zFIoUMpKgQJhQwgESMh2tp043tuWrS3d/f6QJUu2ZMuOLcXO9/U8PEg3vzorurv3vT/vz9Ay2rpdCcL5cvcG1rXu5FNpF1du/D0qGmbFCEBWYS66jCQOVB2gpqY64vqRgi4/+PIjtraXYSnJDU7LNqeTkp2O6vTgs7mFkC8QCARdHDp3gYLDDrfqZW1LKXpJx5KsOYkeThiKpHB63lFoaLxZvzbqcp1eB2uat5CkmFiWNTeOIzx0GJeUx+9nfI9kxcyLNR/ydv2XiR6SQNAvkiQxb96CMFFi06YNzJ+/gHnz5genNzU1UlVVyfz5CwG49NILOfnk46L+9+Mffz9sP88//wwmk4lzzolu51+zZjXHHntc2LR58xawcOGRPPbY34fqIwv64XDpdiXozXs71lDlaGCnqYE6lz8fwiz7RYkknYnkaXl0eO3c+9+HcfhcvdZ3+cIt1u5mG+5aK0qqCWN+d3h3mj6Z5Fx/KYenyYaawBIEgUAgOJQQmRKChLGxfTc2n5NjMmeRpAzOFj2cnJ63mOeq3mN182auGndGxLrhze178WhelmXOxdT1VOVwZJKlkF9Pu4Kfb3+Mv+57hSJTNnPSihM9LIGgT+bPX8jjj/8NVVVpb2+jqqqSWbPmUllZybp1X3Lhhd9iw4avMRgMzJrlLy+7//4/4/V6o27TaOz+Hdi1aycvv/wfnnzyX32O47PPPuW2237ea/p1193I1Vdfxs6d25k2re9sG8HBczh0uxJ0s9dazQ3rHuTGCefRXF0PsoQxuzt00qz4A+aSFCOWkjw+27QBdYOHv298kR8t+g4A7R4be21VuHo4JTo2+x0VKbMKw64d0nQWUvP83xd3UyfqVOGUEBx6XH/9d7n44ktZtuwEAPbs2c0f/vBbysv3Mn78RB566O9ceumFPPnkv8jJye1nawJBbAhRQpAwVjdtBmDpIeowyDKkMclSSJmtmlpXM4Wm3nXDm9r9Fu95aVN7zTvcmJ1azE0Tz+fB8pe4e/fT/Hn2LRSYshI9LIEgKgsWLArmStTUVFNSMh2z2cy8efN54olH0DSNTZu+ZsaMWcE8ifz8gpi27Xa7ueuu2/nBD24lKyt65kBZ2V6s1jbmz+9dHjJ16jSWLz+RRx75Kw8++LfBfUhBzBwO3a4E3Ty26380u63c8dXfMTgcGHKSOangSN5vXA8QfNDg8LmRdDIpcwtp/2I/n6x6j7OnLWevrZr/VH9IrauZJZndbk9XQweOfc3IZgOWqeE3bBmGlKBTwt3YiaoJp8RoZ8mSvkv/rrzyGq666ntxGcvOnTt44om/s3PndhwOB9nZOcyaNYef/ewO9Ho9AJ9++jE2m42lS5cH1/v73/9Cbm4ev/vdfZjNJlJT0zj99DN58slH+dnP7ojL2AWjHyFKCBKCW/WwtrUUg6Trt7tFIpmfNoUyWzUb2/dEFCU2W/cCMC91cryHdkhyWt5iKhz1rKxdza93/oM/zboZi+7Qc8EIBAATJ04iIyOTjRu/pra2mnnzFnRNL0aSYO/ePWzatIETTzwluM6ll15IfX1t1G3OmTOfBx54iObmJioq9vPrX/8iOE9V/Tcgy5Yt5uWX3yAnJ5c1az5h8eJj0Okin46vueYGLrnkG3z99bqh+MgCgaALg+z/N+eqtaLXNIwFaaTqult+Bso3jsyYzhZrGcnT87HvbsRa08zlz99GyuzuYOudnf62sJpXpXVNGWgaaYvGIfVo/ZepT8GYYQFFxt3UiVfzDffHFCSY115bFXz91ltvsHLlyzz++NPBaWZz93dO0zR8Pl/U88HB0Nrawg9/eCNLlx7Pn/70N5KSkqiuruKjjz5AVX2AX5R4+eUXOf30s8IcPtXVlXzzmxeTn58fnHbGGWdxxRWXcOONPyAlJWXIxys4/BCihCAhbLPuw95VumE+hMse5qdN4eWaj9nYtocz8o4Om9fsbueAo4ExphyyjWkJGuGhx9Xjz6DSUc/6tl08sPcF7ii5XLQKFRyyzJ+/MChK3HDDLYA/b2LOnHl88MG7HDhQEcyTgNjLN3JycnnmmRfC5j3++N9xOp3cfPMPycjwW7jXrFnNN795cdTtjRkzljPPPIdHHvnLoLt/CASC3iR1CeauWitJGhjzU0kJFSW6yje+UXg8a1tKKe3YR8bSYni3ivavKlCSDCQV+x9WuFQPmk+l+aPdeFvsGIvSSZqa02ufmYZUJEXCkG3BXd+Bq90Wh08qSCShTrmkpCRkWQ5O27BhPd///nXcf/9DPProXykvL+ORR/7Bq6++hMNhD2sfffvtt2E2J/HLX/4GAJfLxWOP/Y33338Hu93G5MlTuPHGHwZLDXuydesWXC4nt932SxTF3w2mqGhMWJvb1tZWNmxYx49//NPgtIDT48EH7+fBB+8POjvGjZtAbq5fWD/99DOH5mAJDmuEKCFICLttlQDMTp2U4JH0zcyUieglhc3Wvfg0NaxDyOb2MgDmpU1J1PAOSRRJ4edTLuWmLQ/yees2Xq/7jHMKliR6WAJBRObPX8jf/vZn3G43c+Z0l5LNnTufJ598rKvrQvdFXqzlGzqdjkmTwh1UyckpKIoSnN7c3MSePbs46qhj+9zWlVdey0UXnYOmIbIlBIIhQkND0zRctVY0KRVDXgrJOnNwfmhOVIEpk9KOfRiykyk6aR4Nb3xEy0e7cVa2Yp6Yhc3dQOfWWjwtNnRpZjKXT4koxmcaUtE0DUN2Mu76DhwNHXH5rKOZV155kR07tsd1n7NmzeLcc78xZNt79NG/ctNNPyQvL5+0tPSY1nnwwfuoqNjPb3/7B7KysnnvvVX88Ic38vzzL0fMecjMzMTtdrNmzWqWLj0+4vdzy5ZNJCUlMXbsuOC0115bxTXXXM55532DFSvOCnN2lJRMZ/PmjUKUEAwJovuGICGU2fwhUMVJRQkeSd+YFAMzUibQ4bVTbqsJm9edJyFKN3pi0Zn5xdTvoJcUnqh4g722yG3UBIJEs2DBIhwOB1OmlGCxdIfczZu3EIfD3pUnMTxurs8++5TZs+eSmpra53LZ2dl84xsX43b3Tv0XCASDw+qx4213ojrcKNlJyHolzCmRFCJKZOi77en6CRlknTIN2azHvreR5vd20vrJXjwtNgwFqeSsmIli0kfcZ6Y+FQ0w5Ph/axwN7cPz4QQjimuuuYGFC49gzJixMZVC1NXV8dZbb3D33fcyZ848iorGcMUVVzNx4iTefTdya/ZZs+bw7W9fxq9+9TPOOutkbrvth7z00gt0dHQLY/X1tWRmZoUJFllZ2ciyTFJSEllZ2SQldf8byc7Opq4uejmjQDAQhFNCkBDKum7wiy2F/SyZeOanTWWztYyN7buZkjwmOH2LtQwJiTmpostEJKYkj+Gq8WfyyP7XuG/P8/xlzg8wyJEv1ASCRDF+/ATWrFnfa/q0adMjTj8YArbbAGvWrGbJkqW9lou03+uvv5nrr795SMcjEBzOdLjtuKrbAHDn6DBAmChhkg3B15YQB0WbpwPz2AyMFy7AXtaEp6kTSadgGpOOsSitz3LFTEMqKhr6LlHC2Wgd2g91GHLBBRfGfZ86nYzXO3QhpdOmTR/Q8uXle/H5fFx00blh091uN5MnR3fv3nDD9/nWty5l/fqvKC3dynPPPc1zzz3NE088Q3Z2Di6XC4MhdhHeYDDicjkHNHaBIBpClBDEHZvXSY2ziQJjVtiJ/lBlWorfxrbPXhec5la91LlayDVmkKq3JGpohzxn5x/Ll63b2di+h6cPrOKaCWclekgCwSHD3LnzOOGEkxM9DIHgsMTqseE40AqAVugXI1J13efz0LwrJcRY3ObpBEDWKyRPywPyALhq3Bl4NB/PVHYHG/YkXZ+MpqnoUk1IRh2upg58Pl+wxl9weGIyhV8LS5KEpoW3iw3NMnI47Oh0Ov7xj+d6iWAWS9/XpBkZmZx88mmcfPJpXH319Vx88Xn897+vcPXV15GWlk5HR+xCWUeHlfT0jJiXFwj6QpRvCOJOsHRjBLgkAPKM/kC6BldrcFqTu80/zyB+jPtClmR+VHwRFsXEq7Wr2d6xP9FDEggOGS655HLR410gSBCtNiuuOiuSUYch12+Zj5YpkRRDIHeKLolvFZ3I76Zf02ve5WNP46pxZ6BIMhr+m05DdjI+r0p9fV3vjQkOa9LTM2hpaQ6+V1WV8vKy4PspU6bi9Xppb29jzJixYf8FQpRjITk5maysLBwOBwBTp5bQ1NSIzdYZ0/r79+9jypSSmPcnEPSFECUEcScgSky2jOlnyUODbEMaElKYKBF4nWNMT9CoRg45xnS+N+FsNDQeKnsZrypaoAkEAoEgsTRU1IBPxVSUjiT7nzYnK92ihDmkfOPEnEUszujbYp+iS0KSJApMWb3mnV+wjG8WLQf8AZsAxrwUQGPfvvKD/SiCUcb8+QspLd3G+++/w4EDFTz00AO0t7cF548bN4ETTzyZu+66g9WrP6ampprS0m089dTjbNz4dcRtfvbZp/z2t79i7drPqKqqZN++cv7+97+wb185xx57HABTppSQmprG1q1b+h2jy+Vi164dYd07BIKDQZRvCOLO3hHmlNDLOrIMqTS72/GqPnSyEhQlco3CKRELJ+ccwfuNX7PFWsYrtZ9wUdEJiR6SQCAQCA5TVE2leV8diqTDNLb7PB6aexRavmFSDNw57Sp+v/tZPmneFHGbAZeF2sN2799u9+V2YL6hwB9wu29/902hQABw9NHHcskll/Pgg/ejaSrf/Oa3OOKIxWHL3H77XTz11OM89NADNDU1kpGRyaxZczjppFMjbnPChIkYDAb+/OcHaGiox2QyMX78BO6++48sWOBv+6koCitWnMl7763iqKOO6XOMn332Kbm5ecyaNWdoPrTgsEeIEoK4U9YZECUO7c4boeQaM2hyt9PkbifflEl9lyiRJ0SJmJAkie9P+gbXb36A56ve44TsBcJlMoroLmntfTEuGA34/6595PcJBCOKTrcDx/5mkvUmMifk48Lv4NPJ3dkO5gglGyl95GAFQjKzDX6xwSQbcKpugB51/11OiZwUUGT27d+Hpml9BmQKRgcXXHARF1xwUfD9ggWLogYqf+97N/K9790YdVt6vZ5rr72Ba6+9IaZ9FxWN4ac/vb3f5S688BIuv/wiGhsbguWFL7/8Rq/lXnrp31x++dUx7VsgiAVRviGIKx7VS4Wjngx9CpmGvtvgHUrkdmVHBBwSwikxcMaYc7igcBku1cOTFW8mejiCIUSWFUASLStHKT6fP2BNlkUYn2B0sHPvTlSnh8zxecEWhzISitR9WRzqbgiQooseIhgQJUyKkVeO+C1Pzf95xOVunfwtcg3pSDoZQ04ydrtN5EoIDhmys7O57bbb+/xOWq3tLFmylJNPjuzKEAgGg3BKCOJKp8eJT1PJGkGCBHSLDw1uvxjR6GoLmy6IjYuKTuDdhnV83LyRszuOZUbKhEQPSTAESJKExZKK1doC0NVS7FB56ifh9QoHR2RiOTYaHR1tGI1J4kmuYNSwZcsmAPKnjsfXlR3R8/stRfgNC20Z2ntet4vCojNj0iLnJ01PGc8zC2/ne5vuo73gAFqtPzAwP79goB9DIBgWli1b3uf81NQ0Lrnk8jiNRnC4IEQJQVzxdZ2kQ59GjATyukoNAmUbgf/nGNITNKKRiVkx8t3xK7h/7ws8tv8N/jTrJnGjM0pITk4D6BImDh0RQJZlVHXo+smPJmI9NrKskJEhuoQIRiZbrWW8WfcFPyj+BibFiNfrZfv2UlBkCiaPo1HrAMCn+f8tFCcVUmavCXbeCiVV3y1KjDHlUOVsDL43hgRjAiiSwuVjT4vaNlyWZIwFaWi1GmVle/ut4RcIBILRjBAlBHHFGxQlRpYNOOiUcLWiaipN7jbSdBZMiqGfNQU9OSF7AStrVrOzs4Kv2nawOGNGoockGAIkSSIlJZ3k5DRU1UeErLe4I8sSGRlJtLbaUdVDYECHELEeG0nyixJCPBSMVH5S+ncAJicX8Y3C49m+fRsOpwPzuAySzRY6nM6w5R+acwtOnxuLztRrW6FOie9P+gayJHNb6d9IUkwR/418a8xJUcclSzLGvBT0ej1lZXvxer3odOKyXCAQHJ6IXz9BXPF1PZUbaU6JUFGi1dOBR/OJ0o1BIksyl407jV/v/AdPH1jFEenTkEfY90EQHUmSUJRD49QiyxIGgwGdzi1EiR6IYyM4HHi34avga4fPn3mzbt2XeDUflpI8TIoBUwSHgyVKoGWoKDEleQxmxch/F9/DYMrVFGQkRWbcxIlU7i2nomIfxcVTBrydwwkRqiw4PDg8w6XFnYAgrgScEroR5pTICxElROeNg+fI9OlMSx5Pub2GNc3998MWCAQCgWAg+DQf/1f2YvC9hERtfS17yvdgTkvGWJSGSTaijxBoGQ2z3N2RI9CdwyDrI4Zi9kdAjJ80pRiA3bt3D3gbhxsiVFlwOHC4hksfGo+zBIcNIzVTwqQYSdNZaHC1dedJCFFi0EiSxGVjT+UXOx7jP9UfclzWXGEPFwgEAsGQ4VHDgyYlSeKKl35Gdd0erjznO+yUyjAphgGVk05IyufSMacwPWX8QY9P7jrnTSgu5hPeY/funZx++hkHvd3RzKETqiwClKMjjk3f9Hd8Dt9waSFKCOKKVx2ZmRLgL+HYY6tiT2clIJwSB8v8tClMsYxhj62Kje17WJA+NdFDEggEAsEIQdM09tlrGWfOQxfyRHGvrZo6Zwtz04rDlve63NRs3weKTMa0MdDsFyV0A3hIIkkSl449ZUjGH3g4k5yWQm5uPg0NdTQ2NpKTkwNAh9feZ7ePw5VDIVRZBChHRxybvonl+Byu4dJClBDElUC69UhzSkC3KLGpfW/wvWDwSJLENwuP5549z/JSzUdClBAIBAJBzLzXuJ7/K/sPp+cu5pbibwJ+oeKmLX8C4LG5PwlbfuembWguL0lTc/Ea/TezJnlgTomhROmqoH684n8cPXMGDQ11bNu2heXLT+Sz5q38dvfTXDXuDL5Z1Hd7xsONRIcqiwDl6Ihj0zexHJ/DOVxaiBKCuOLtEiVGWqYEdIsQ5fYaQDglhoJjs2ZTcCCLje172NNZxZTkMYkekkAgEAhGAF+1bgfg7YYvg6LEbltlcH6rpyP4WvOp7F6/FYCUOYW0e2wAmBRDwoKWA/v9rGUrU/L8T0W3bdvK8uUn8lrdGgCePPCmECWikKhQZRESHB1xbPpGHJ++GXmPqwUjmu7yjZH31TsxZyHz0qawOGMGl4w5mUlJhYke0ohHkRTOLTgOgDfr1yZ4NAKBQCAYKSRHKG3Y2LYn+LrDaw++tu9torOjE9P4TPTpSd2ihGxI2PWIHPIk1JkCOTl5wRKOkfjgRiAQCA6GkXdnKBjRjNSgS4DJliL+MON73Dntu3xn7KmHpbVqODgpZyFGWc/HTRuxeZ39ryAQCASCw56UCG07WzzW4OuAKKH5VKwbK3GrHlLmFgHQ7ukE6Aq6TMz1SOh+nT43s2bNBmDbti1ClBAIBIcdI+/OUDCiGclBl4LhwaIzsyxrPk7VzUdNGxI9HIFAIBCMACwRRImAAwLA2iVKdO6sx9fpQj82DWNuin85b7dTIlECgBxyCe5S3cyaNQeALVs2ISeko4RAIBAkDiFKCOLKSA66FAwfZ+QdBfhLOLR4p1YJBAKBYMQhRbhxDzggAKweG6rbS8fGKpAkzAsKgvMaulp7J9IpEZpl4VTdfOrdwRZdNW/v+ZSa6uqEjEkgEAgShbgzFMQVb1f5hrAmCkKZmjyW4qRC9tlr2WsTF2MCgUAg6JvA9QT4yx8A2rzdTokOrx3rxipUp4ekyTm4UnuLGGbFmLjuGyGihMvn4fGKN2geq1HlaGDzRuEaFAgEhxdClBDEFd8IDroUDB+SJHFCzgIAVjdvSuxgBAKBQHDIEygHBWjr6rRhDSnfqKurpbO0lolpReQcOSniNjL0yQkrlQgt33CqflElaVI2KDL2siZUjy/aqgKBQDDqEHeGgrji1USmhCAyS7PmAfBJ82ZRwiEQCASCPvFpoaJEJ5qmYe1ySmiaRumH60DVmHbsfDLTMnutf/XUM0jTJ3Ny7hEAXFx0YnwG3kVY940uUUI26jBPzELz+HDsa47reAQCgSCRCFFilPP973+fI444gh/+8IeJHgoAXpEpIYhCjjGdGSkTaHC1srPzQKKHIxAIBIJDGE+IKGHzObH5nMEHH/bdDbRU16PPtDBx3nTGmfN6rX9k9jQAJiTl8/riP3DFuNPjM/AuQjMltnfsD75OLvGPtbO0Vgj0AoHgsEHcGY5yLrnkEu69995EDyNIwG4pMiUEkTi+yy0hSjgEAoFA0Bde1Rt8bfM5gyGXXquTti/249Z8pC+ZhFGnZ3xSb1EiRd/dvcMg64Z/wD2I9nDGkJ+CPsuCp9mGu74jGBAuEAgEoxkhSoxyFi9ejMViSfQwggROrrJwSggisCRrDjISnzZvSfRQBAKBQHAI4w25Wbd5ndh9LjRVo2P1fjSPD9PcPIy5KegkHeOT8nutn6JP7LWRHOUSXJIkkmf5O4V0ltbi9LniOSyBQCBICOLOMIGsW7eO6667jiVLllBSUsJHH33Ua5nnnnuOE044gdmzZ3PhhReyZcvIvlkTTglBX2QaUpmaPI4md3swTV0gEAhGCuXl5Vx88cWceeaZnH/++axfvz7RQxq1eLVup4Td50DVVDo2V6M22tDnJJM8txAAnawwIaIoYe41LZ4oUvSAzaRJ2chmPY79LdQ01cdxVAKBQJAY4u9XEwSx2+2UlJRw/vnnc/PNN/ea/9Zbb/H73/+eO++8k7lz5/L0009z9dVXs2rVKjIz/aFN55xzTsRtv/rqqyjKoXfj79NE9w1B3yxMn8rOzgo6vPZED0UgEAgGhNFo5J577mHSpEmUlZVxww038M477yR6WCOGr1p3UGwpJMuQ1u+yPZ0S5Xv3Yt1QSbophdRlxUiK/zrDIOmYmFTYa32LzoQLW6/p8ULu4+GMpMhYpufTsaGSzz5fzZTzJ8RvYAKBQJAAhCiRQJYtW8ayZcuizn/qqae46KKLuOCCCwC48847+fjjj1m5ciVXXXUVAK+99lpcxgogywfXNkuWpWAIlV5WDnp7o4nAsRDHBBZllPBc1Xt0+hy9jos4Pr0RxyY64thERxyb4aGoqCj4etKkSXR0dKBpGlIfT8UFfra0l/GrnU+SqU/l+UW/irjMl63baXK1cUb+MWFOicaWRjb8dwNoGiUnL6I63Rmcp5OViJkRif6b9OWUAEienk/n1ho2fL2eb5xyHsnJKWHz/1HxJnmmTM7IO3o4hykQCARxQYgShyhut5vS0lKuv/764DRZljnmmGPYtGlT3Mej08lkZSUf9HZ8Tf4nG6nJ5iHZ3mgjI+PQyf9IFMdkzMCyw4TN68CSbsCkGILzxPGJjjg20RHHJjri2ISzbt06nnzySbZt20ZjYyOPPPIIy5cvD1vmueee48knn6SxsZHp06dz++23M2fOnF7b+uCDD5g+fXrCb35HCjs7KwBo8VijLvPrnf8A4LisufhU//WE6vbyxbsfkukwkjy7kJIZM2hq2YpL9QCgl/yXuuPMeRxwHDqlENEyJQIoZj2WaXl4ajx8+ulqTj/9jOC8VncHL9b4S36FKCEQCEYDQpQ4RGltbcXn85GdnR02PSsri4qKipi3c+2117JlyxYcDgdLly7lscceY9q0aQMej9erYrU6BrxeKKFOCafdS3Nz50FtbzQhyxIZGRZaW22oqmgBNi91ChvRWL1/KwvTS8Tx6QNxbKIjjk10hurYpKaa0esPvVLBwTIUZZUA1dXV3HfffTz22GPxHP6Ipt0TeylFq6cDj+ZF86k0f7AbrVnHrJmL2T/XglE2MD1lApva9wDdGVYPzLyRP5e/zJqWQyObS45BrEqZXYjU4GPdui857rhlJCf7H+bUuVqGe3gCgUAQV4QoMcIYqA10KC+IhuKiPpApISOLm4QIqKomjguwIH0qTwHrW3YxP3VqcLo4PtERxyY64thERxybcIairLKzs5MbbriBO+64g/Hjxw96LENRMjkU24kXnb7uHKH+xtzm7cSjemn5tAxXdRv6wnGceMEZrC1/Fp0sMzetOChKGBQ9siyRZrRw3aSzWdOyhSxDakz7GU5iuZZTkgxMnT+J5i2VfPZZt1ui3t0tSgzHZxhp3514Io5NdMSx6RtxfPpGiBKHKBkZGSiKQlNTU9j0lpaWXu6JkUSg+4Yium8I+mBe6mQASjv2JXgkAoFA4CeWskqfz8ctt9zChRdeyJIlSwa9r6EqmYSRU6LjLOvuuNTfZ3cZXFSs2YpjbyNKspHxZ80nPSsFysFiNjE9axwc8C+bkWoJbi+LZF5e/huyTen+eQk8Noa62C7BF524mC8qWti8eT0rVpxMZmYmbU0dwfnDWQo7Ur47iUAcm+iIY9M34vhERogShygGg4GZM2fy+eefc8IJJwCgqipr167l8ssvT/DoBk8gLVt03xD0RaEpGwWZclsNPs2HLH6qBAJBgomlrHL16tV88cUXNDU18eKLLwLwr3/9i9TU1AHta6hKJkdS+VKjrT34urm5E03TsHptvFKzmuOy5vBUxVuA3zH63xdWUr2pDNlsIPu0GTj1Km1Wf/mH1+VD79QHt+W0ecLKRVNJwetVIYOEHhub3RXTcg6fysKFR/Hhhx/wn/+8woUXfouy1prg/OEohR1p3514Io5NdMSx6ZuhOD6jrWQyFHGln0BsNhsHDhwIvq+qqmLHjh1kZ2eTk5PDlVdeyW233cbMmTOZM2cOTz/9NE6nk/POOy+Boz44Ak4JnRAlBH0gSRJmxYhb83LA3kBxSu92bgKBQHAoEFpWuXz5ckpLS4dku0N1UT9SSnSsXZkSqbokVFXjnt3/YnXzZgBeqPoAAE3VaPu8nNJKHbJZT87JxejTzXR6HXjU7vLQdF23e0CHEvXzJ/LYqCEtTb8z9lT+VfkO35twNhOSCvj59keD81w+D0uPOY4vv/yCzZs3cfTRS6hzdpdvDOf4R8p3JxGIYxMdcWz6RhyfyAhRIoFs27aNyy67LPj+7rvvBuCmm27i5ptvZsWKFbS0tPDQQw8FU76feOKJsDCtkYYv6JQYnSqfYOgwK0YA9tiqhCghEAgSzmgtq0wEG9p2s6Ozgm8XnRQUdDq8/kyJwG9/QJAIoHp8tHyyB+f+FtTscUw8/QhqjVaSFCM2rwOv6m8RKksymYZuZ4ouQjvQQwGN7puSS8aczPkFSzErRvbb68KWc6kejEYjJ510Civ/+wpvvf0/mhZ0u0p8mircpwKBYMRzaP5SHyYsXryYXbt29bnMpZdeyqWXXhqnEQ0/ge4b4gQq6I/AheleWxVwZGIHIxAIDntGa1nlYGh1d9DssTLZUjSo9X+xwx/CfWzmLCYkFeDTfFi7RAlfiIMggM/hofm9nbgbOtClmRl79ny8FgkcVjL0KVT7mrB6/U4LnaQEzx/Q3RL0UEPt8TkDYy4yZZOhT6HV48+NcHe1Np0/fyG/+u8DvLduHRbzBIyT/A+oPKoXJaR1tkAgEIxExJ2hIK74NBF0KYiNoFOisyrBIxEIBIcLNpuNHTt2sGPHDqC7rLKxsRGAK6+8khdeeIGVK1dSVlbGb37zmxFfVjkYLttwNzdt+RMtbutBbcfVdcPd6u4MOgc8XY6HAO5mGw1vbMXd0IEhL4Wcs2ZhNbmD5RoZ+hQAWtz+m/ieDz00eoschwI+LbJ9Wy/reH7hr7h18reA7mP0WetWHAvSsHudNK8tR3X5j5NH80bcjkAgEIwkDk35WDBqEZkSglgxyDoUxUS5vSbikzOBQCAYag7HssrB4Ol6wNDm6QwrlYiFwMMJAJvXCUCzp7scIfQm27a7gdbPysGnYp6UTebSyUg6mWa3lXS9PzcivUuUaPf6Ax91PR56dHbt41AjtHyjJ5IkYewqOwmINFut5RgLUkmamot9dwPt6w+QcewkXqj6gCvGnY7+EC1TEQgEglgQv2CCuOIT3TcEMSIhMdlSxBZrGZWOBnIZ2IWvQCAQDJTDsaxyoGghT/gH85Q+4GgA6PQ5uqZ1Oy48qg+n00nL6r3YdzeALJG2eALJswqC+RMaGq2eDnSSQqo+CfC7LcCfKQFw2djTeK9hHXPTigc8xnjQs3yjJwbZ30Ek4JSod7UCkHbEeBwVLdh21pM0JYdX+AS7z8ktxd8c3gELBALBMCLuDAVxRQRdCgbCFMsYQJRwCAQCwaFCQEgAsPtia2sZSpO72xXR6fVvqzlElOisaeHhh/+MfXcDstlAzukzSZldGBQkQtFJCqk6C0AwgyHw0OPbY07iqQU/J0kxDXiM8UDtp6wkIEq4g6KEv+OGYtaTfuR40DRaV+9F86q83fDl8A5WIBAIhhnhlBDElUD5hnBKCGJhQlI+AJWOhgSPRCAQCAQQLiDYB1Ea0RwmStiD21Q9PqxfV9JZWktzfjrmiVmkHzsJxaSPui2dpJCi63JKdIkSPcs3DlXUKJkSAYwhTglN06hzdbcBTZqai31fM66qNtrXHyD9qAnDOVSBQCAYdoQoIYgrge4bI+WiQZBYso3pADS52qMus7F9D6/UfIxB0jPGnMuFRctJ1pnjNEKBQCAYHXzdtguX6uGYzFl9LhdaamH3OVE1lTXNW5iTNjmY89AXPZ0Smqaxa/t26t7aiGpzIxl0VMyDzMKpEd0RoehkhdQuUaLN4y/fGCkPPfrKlIDuriEe1Uu71xYs4wB/5kTmcZOpe3UTnaW1mMcfXpkmAoFg9CFECUFcEU4JwUDINqQB4U/WAmiaxr+rP+Bfle90X9y1wqfNm/llyWWDblUnEAgEhyO/3PE4AG8fdV+fYkCLp1uUcPhcfND4NQ+U/YcJ5nwemXdrv/txhJR8VNdU888Pn2TD16tRHW7MxdmkL55Ac5KKRN+CBIQ7JQLngZFyfRGrU+Lz1m1MqR/Ta75iMZBx9ERaPt5Dy+q92E630ahZeaLif1w/4VyKzDnDMm6BQCAYDkbGL7dg1CAyJQQDIasr1b05Qtu5L1u380zlKoyynlsnX8xDs2/h2MzZ1Lqa+cm2v1HjbIr3cAUCgWBEEtoRo7/wys3te4Ov7T4XZbYaAPY76nD4XGxs3xMWhtkTt+rFa3XS/OFuPn3uTcrL92JITyJ7xUzyT5iOkmSIedw6SSHXmBE2baRcX/TXVSqQKQHwdOWqXvP1koK5OBvzxCx8HU5W/vcVfrPjKda37eLP5S8P+XgFAoFgOBGihCCuBMo3RsqTDEFiSVJMJCnGMLtvgFdqPwHgtinf5qScRUxNHsvtUy/jgoJlOFQX9+35d9iFtkAgEBxu7LVWc/FXd7K2pbTP5awee/C13Rc9J6LZbeW9xvVhy4aez2/d9jA/3/4oL9V8FHH9+vp61r39CXUvb8RR3gQmhbPOOo8ZFy3FVJhGcpfroS8CZQ3gFyWKTDlhroqRcn0xPikPgAnm/IjzDf20+ExSTEiSRMaSYpRkI1u3bWH/Fn/nmFZPB/+uej+iy1AgEAgORUbGL7dg1OBTRaaEYGBkGdKw+5xhgWp7OqvYai2n0JTNURkzgtMlSeLKcSuYahnLjs4KXqyOfGEsEAgEhwN3bXqGFo+Ve3b/q0/3QiCPAfruqGH12ACCIsCLNR/xZev24Pwyu9818Z/qD3GrfseFpmns37+PZ599mr/+9U8cKN2DpFdIXTSOogsXkjtrPG7Jv6wlhk4Zern7+kEnKRgVPTld+UMwckSJi4pO4LoJ5/C7GddGnG+Uowd8Ali6spNko47ME6aCLNG0tgx3s41KRwNPV67irl3/ZFfnAZw+95CPXyAQCIaSkfHLLRg1CKeEYKBk6f0lHA3OtuC0lbWrATi34LhgT/oAOlnhtinfRi/peLH6I2xeBwNF0zTWt+3iyYr/cdeuf/KX8ld4r2FdWC20QCAQHOpU2vydizyal59tfyTqcoHOFdC3KBE4h6eGOBqqnI29lrP5nNRY63n9kzdZ8rOz+PlDv2LXrh2kpKQy+bi5FFy8kNR5Y6j1tXLd5vvZ2VEBxPbAIrQ8I1DiMMbUnZ8wUh56GGQ95xYcFyxTjDS/L0IFHGNuCseduBx8Ks0f7EJ1+UWeXZ2V3LL1Ie7a9c8hG7dAIBAMByLoUhBXujMlhCghiI2srrDLBkcbKXIybtXD6ubNWBQTJ+csirjOGHMOJ+YsZFXDl6xq+IoLCpfFvL8aRxMP71vJ1+27wqa/Wb+Wfx54m6vGn8ny7Pn9psILBAJBogkty9hsLYu6XHuIU8IRUr6x11ZNkmKk0JQNdOdNpOottHttvbaj+VScNe04ypq457Xfsr+jhnZnCzuzXFy24jJOOfIE/q/8RbY3fR22ntoVUtlTZI5EqOgQcBMUmrLY0FWpEMs2RgKRxBUJKRjo2dNJMffIRZg/zcKxv5nmD3eTfep0JNl/ntrQvnv4BywQCAQHgRAlBHGlu/vGyHiSIUg8AVGiydlGcdIYapzNeDUfs5MnYVaMUdc7t+A4VjV8yWt1azi3YElM37l6Vwu3lv6NFo+VIlMO3yw8nvFJ+TS521jTvJVPmjfxx73Ps9dWxTXjzxLChEAgOGTxqL0DKzVNi/i71ebtXb5h8zq4acufAFh19P1A9zk8JcQpoXlVnLXtOPY146hoQfGAV/WyVt9CUnE2uSVz0GdbSC8pQFEU3Jq/tWWSYgxzZSiSHBQn+kIfwSkRei4YLdcXkiTxu+nX8ErNJ0FRwaKY6PT53X89RQsfPjKWTcZjdeCqbqP9y/2kHz0x7uMWCASCwSBECUFcEU4JwUDJNoSUbyQR7KpR1PXkLhoTkvJZkDaVDe27+axlG0uz5va5fIfXzh07nqDFY+WUnCO5edL56INBY+M5LmsuZ7Qfzd27n+bV2tV4NZXrJ5wzZMKET1OpcTahIJOmtwTrhQUCgWAwhOZEBHCpHkxK7+4WkTIlKhz1vZbzaj40TUNvVenYVoOzqg1XnRV8XZ0kFJnxUybTWgimcRnI+u4b58A+AlkTZjlclDDLRjyqp9/PpURwShjl7s+kG0XXFwvTS9hnrw2KEim6pKAo0dMR4lF9yHqF7JOn0fDaVjpLa9FlJJE8LS9sObfqRS8pQlQXCASHFEKUEMQVrwi6FAyQYPlGV6ZEtcNfvxxLD/ZzCpawoX03HzVu6FeUeKLifxxwNHBk+nRuKb4g4tO2OWnF3Dvjen62/RFer1vDtORxnJCzYICfKJxyWw3PVr7LxvY9ONTuC/SZKRM5KWcRp+QeIUQ8gUAwYCKJEk7VHVGUCARYAjh8Ljo8dnZ3VgKgurzs2LOd+uo6Ptn5BTVb1mHQVTDVkMaezmbcioxpXAamcZmYx2dw6rhlvF73Wa99tHftI+Dg6HlTbFIMQcGiL0KDLg1BUaK7lGG0/V6aQgQXi84EXaeJnp9zW0c5ALoUE1knltC4ajttn5ejSzZiGpMO+LulnP/V7SzOmMGd074bl/ELBAJBLAhRQhBXRNClYKAEQsAaA6JEl1OisB+nBMD8tKkYZT2brXvxqj50cmQxrMbRxHsN60lWzPx0yrf7tP9OtBRwe8ll3Fb6CH/bt5I5qcVkG9MG+Kn8zojH9r/O63WfoaFhkg3MTpmELElUO5so7dhHacc+3q7/gh9NvpAJSQUD3odAIDh8ieyUiNyFodNlx9PuwNfp4ovmtdy19348rXY8rXZUm5tv8hUn5S6iw2NH86pkjc/lO0ecxzrjAT5kezC7AGBiUmHYtk/PPYq3G75gn70Wj+rF3eWGuLjoRP6679XgckbZQKfXTn9ECro0hggto6V8I4AppDQlWel20PV0Sjy6//Xga2NBKhnHTqJ19V6aP9hFzoqZAOy31wGEdUwRCASCQwEhSgjiSkCUkEXjF0GM9HJKdCW9F5n6d0oYZB1zUotZ17aTnZ0HmJUaub722ap3UVH5RtHxMZVNzE4t5ryC43i1djV/2fcyd067KsZP48er+rhv77/5pHkTqbokLh17KqfnLg6Wi6iayvaOCp6oeIOdnQf4wda/cPf0q5mVOmlA++kPh89Facd+ahyNuDUv2YY0piWPI9+UNaT7EQgE8aeqsYaO0lo0rwqqhqaqvNu4ilTNhMPhwGaz4XA46Ozs4KPKL6h3tgDwgf4AnQFBQ5bQpZvRZ1rImlXMkgklVHW8y3FjT+CE8SdTdWAVUvWOsP1OTMoPe78ovYS3G77gk+ZNWHSmoBtiSdZssgyp3NnVGcKkGGj1WPv9XOFBl/7fzFA3wWh76BHulOg+P/X3OS1Tc/HZ3VjXH6Dp3R00HdOEZug/s0MgEAgSgRAlBHHFp6ookixqGQUxk2lIQUYKOiVqHE3IyOQbM2Naf2F6CevadvJ1266IokSVo5GPmzaSprNwTv6SmMd1xbjTWdtSypetO9jTWcWU5DExr/tQ+St80ryJfGMmf5jxvV4igCzJzEqdyAOzbuL5qvd4ruo9bt/xxJAJE22eDp6v+oD3G9djD0naDzAjZQLfKjqRIzKmH/S+BAJBYvj8409oX7svbNoXlZ+RaUgJmyZJMkqKCWNGGkqyETnFTGZqAbqMJPTpZiTFf/P7GZVUaW4kRUYn+S8fDUp4Bwi9pJDZo8VlaMvLt+q/CLq+9JI+zAFmkvsu30jVJWH12vn2mJOCQkbAKWEKK98YXU4Jc4gLJDlElIilDDZlbhE+hwdbaS3/fPpJjvvW6cMyRoFAIDhYhCghiCtezSfyJAQDQpEU0vUpNDnbsXmdNHusFJqyo5Zi9GRB2lQANrTv4nJO6zX/0+bNqGicnX9sn908emKQ9XyjcBl/2fcqL9Z8yC+nXhbTel+0lPJu41dk6lO5f+aNfZZ+KJLMd8aeilHW848Db3H37md4ZO6PSdenRF2nPza07ea+vf+m1dOBXtKxNGsukyyFmGQDdc4WvmgtZXvHfu7Y+STLs+dz08Tzhy1006epVDsacfhcyJLMOHMexh43OQKBYHAUHVlCGnuQZMlfXiHLHFd8Mqta17OsaCFnj1vKNlcFX9l2MdGWieSo63ebgfDLQJhkz7aUafpkDHL4pWXA7RYgEGZpkHWk6izB6SbZwI0Tz+fP5S9F3PcZecdw6dhTcISEYxojlG+MpqBLCHdKhJZvxCK+SJJE+uIJqA4Pjc2NrHzuP/gWelDMep6o+B/fHbdi1LRQFQgEIxshSgjiik9TR521UjD8ZBvTaPFY2dGxH+i/80YoY825ZBvS2N1ZhdVjI1VvCZu/vm0XAEdlzhzwuE7KOYJ/Vb3LZ81bqXE0UWjue1wdXjsPlb8CwC3F34g5i+LCohOodTbzdsOXPFj2Mr8uuWJQbqPVzZv5/e5n0dA4LXcxV45bQVqP4/G9CWeztrWUv+1byUdNG6l0NPC76df2Wu5gOGCv54XqD1jfthNrSA25jMy0lHGcnX8sSzLnxCw8CQSC3ngsEikzw7NoqnOc1MlO/uP8jCuzzuP3a38/qG3ruoQHQ09RQmcJuigCpOuTw943uduRkNBJCjql+9+4LEmcnreYE3MW8o2vbsethbsmZElCkeQw0SPg1DCOaqdEt1geKhBfPvZU9tlqUGSFMlt11PUlWSJz2WSKdo5j884tNL1dQfaKGbxc8zEL0qayIH3qsI5fIBAIYkHcHQriilf1jboLBsHwE7D/bm7fC8QWchlAkiQWppegobHZujdsXqfXwY6OCjL0KUzqEc4WC0ZFz7n5x6GisbJ2db/Lv1T9ES0eKyflLGJxxowB7evaCWdTaMrmi9ZSPmj6esBj3Wot4749zyMBt07+Fj8o/mZEoUGSJI7JnMWjc29lTmoxe23V3Fb6Nzq9jgHvsyce1cvf9q3kus3382HTBuw+F7NSJrIkcw5Hpk8nXZ/M9o79/GHPc9y45f8ot9Uc9D77wqf52NVxgC9aSvm0eTN7bdXBED6BYKRj9fQOjQxtwXkwBByPkZwSPd2QOknhqIxu0delejDIOiRJQpIkMvX+3/eN7XsAgvMCnFdwHDmGdM7IOzps36H7D20JqoyyS9twp4Qp+DrflMUj827lmJBjm6UPL50JICkyb5bsZ0/DQAs0AAEAAElEQVRKC54WG01vb0d1ebH7XDy+/42wkEyBQCBIBMIpIYgrPs3X6yJGIOiPceZc1lLKG3VrgdjagYYyNXks7zR8xQFHQ9j0Te17UFFZmF4y6JyTFXlH8UzlKj5r2cb1E8+NaoV1+Ty83fAliiRz5biB1/WaFSM/Kr6IW0sf5tnKdzk+a37MToI2Tyd37Xoaj+bjxonncVLOwn7XsejM/Hba1dy165983b6LB8te4pdTvzPo49ThtfPbXU+zxVpGsmLmW2NOZEXe0WFPATVNY2P7Hv5d9T5bO8q5ZetD3FL8zZjGOxBqnc08V/Uea1u2YeuRqWGQdCzNnsc5+UsGlBMiEBxqnJp3JIWpmaysWBOc5uhDlDDKelwxinL6qKKEJaxlp05SkCSJ30y7kicq/sfLNR93rd99+XndxHO4Z/e/uKBwWXBaIAy72FLE9yacw/cmnNM9L+Q3NiBGhDkl5FEmSoRlSiT1mq8LcY48Mf+nnPfVLyNuR9LJmJaPx/ieA1dNO41vleIsdvBK7ScAXDv+LJH3JRAIEoYQJQRxxav60OmEU0IwML5ZdAIfNm8Mhl0OpHwDoMDoD5KsczaHTQ+UbixKLxn02FL1FmakTGBbxz7KbDVRb2Q/bt5Ih9fOsqx5vWqsY2VW6kQWpE1lQ/tuPm7eyEk5i2Ja76kDb9HhtbMi7yjOyj825v0ZFT2/mHopN275E2tatvBm/VrOzD9mwON2+Tz8Yvtj7LFVUWwp4q5p3414DCRJYkH6VOalTWZl7af848CbPLD3BRRJZnn2/AHvtyc+TeXZynd5qeYjvJoPg6RjYVoJReZsZGSqnY1ss+7j/cb1fND4NefkL+GKcaeH3RQMJQ6fiy9aStltq6LB1Ype0pFlSGVOWjHzUqeIfA3BQbEkazbnZB0dJko4e7QENUi6YJlEsmIOihJFphyWZM1mq7Wc7V1lc6FEK984Pns+MjISEhpaWLmmOeSJf+h6S7PmMmleIbnGjOA0uevmWNP67hbRHXQZ6pQYXdcYob8/kX6LQgUek2wI+5v2RNYrZJ08jeZ3d+Kqbef1f/0H7xFudMlGtnWU49NU5qVNAfzH3uXzhG1fIBAIhgvxSyOIG6qmova4SBEIYiFVn8Rv5l3OjV/8GRi4KJFv8nfqqOtqeQf+C671bTuRkYJhmINlccYMtnXs44vW0oiihKZpvF7rvzE4ewCiQCS+PeZkNrTv5t9VH7A8ewFyPxfgOzsqeKfhK9J0Fq4ct2LA+7PozPx8yqX8qPSvPF7xBkdnzgpL0+8PTdP4y75X2GOrYmbKRO6efnW/gaKyJHNB4TLyjBncs/tZ7tvzb1J1SSw8CPHI4XNx757n+aK1lCTFyCWFJ3NuwXG9xmL3OXm/8WueObCK/9Z9yibrXn4//VoyDIMPF+2Jzevk2ap3eKv+i4hPpl+p/YQkxcgFhcdzQcFSTAMIYBUI+iJUYHD5PGE3r6HOq3R9MleOW8Hvdj8TcTuRyjd+O+2qYMcenaTg0bxhpRahN9Q9wzDH9HC/SfhFCZW+RYlAS9BQAW+0XWOElqboI5S/hjpTJEnCIOtx+6J3MZH1ClmnTKPlw93UNdbR+L8ask+fwU9K/w7AC4t+TaYxld9teZaVFWv45/xfBM+hAoFAMFyMrl9uwSGNT1OB0RdCJYgPR+XO4PqJ53JW3jHkxdgONECuIQMZmVpXt1Oiwd1Kk7udYktRr/DLgRLIh/iydXvE+XtsVZTZayi2FDEjZcJB7WtW6kTmpBZT7Wzkq9Yd/S7/RMX/APju+DNIiWD9jYWSlHGcV7AUl+rhhar3B7Tue43reL9xPVn6VG6fetmAOpwsyZrDjyZfhIrKA3v/g9VjG+jQAX/Z2G93Pc0XraUUmXL4y+wf8K0xJ0UcS5Ji4uz8Y3l03k+YlzqZ/fZabtv+d5rd7YPad082t+/lmk1/ZGXtp0hInJi9kJ9OuYQ/zbqZ+2fewI+KL2JJ5hw8qpd/Vb7DNZvuY09n1ZDsWyAIxeoN//fk9HW7KAJOBYMU2a0TuDkOdTxMTR7XPb/rRjlMlJCjixI9Cexf7bpuiIYhQqbEaOvwFSqy9HSmAL2CRfX9HFvoEiZOKiF9cj6+TheN/9uGu9n/fdjeUQEQdNh81db/eQb8v7N373qa9xvXx7S8QCAQhCJECUHc6BYlxNdOMDjOKzyOGyedP+C6V52skGtMp8ndHgwybHT5bzIHEpoZjbHmXAqMWey1VdPk6n3zuqkrwG1p1twhqdk9syvwbU3zlj6XO2CvZ1vHPopM2ZwcY6lHNC4sXE6SYuTthi/DHCd94fC5eOrA2wD8Yup3BuU2OClnISflLKLFY+Wv+17t184dicf3/48N7buZYM7nwdk3x5RJkmVI5a7pV7E4YwaVjgZ+s/MpPGr0p4+x8FnzVm7f8TgtHivLsxfw1Pyf85Mp32J59nymp4xnVuokTsk9gttLLuOxebdxbOZsGt1t/HjbX1ndvPmg9t2TNc1b+NFXf4v4fRUcHvQUJRw+F2NM/n8bgd/FaL9XitzbKdEzSwLCH0KEtu3U95MtFciN0PpxSgT2Eyp4jOYWl7GU/sUqykiKTO7yaVim5/tbhr5ZirOqja3W8vAFY/zN3dVZyZqWrdy/94WYlhcIBIJQRu8v90Hidrv5+9//zs6dOxM9lFGDT/MBo+8phmBkkG/y50rUu1oBaHK3AZA9yHyHUCRJCrol1rX1/s0IXOTNTp100PsCWJQxDb2k48vW7X3eKL/T8BUAp+QeedAX6ql6C+cVLMWr+fh3dWxuiVdrV9Pq6WB59nxmpk4c9L6vn3AOuYZ0VjdvDib0x8rHtZt4tWY1qbokfjPtygG5RQyyntunXsaMlAnssVXx1IG3Bjr0IOtbd/K73c/g1VRumng+P53y7T5FmgJTFrdPvYxrxp+FV/Pxh93PsaFt96D3H8CnqTy2/3Xu2vk0q+u20OrpOOhtDifiXHzwXDPhzIjTQ9vxArg1L3dPv4az84/l2vFnd02NfEMaySkRmj0QECNCS0LCnBL95BQEyzf6uSEOLBe6n9H44ON7E87mkjEnM8acw8+mXMLf5/w4OM/bIz/CEyFP4tkFd5AUwRnW5G4n/ZiJpCwYi+b20vTuDtZ+9XnYMrHKwCJ7QiAQHAyj75d7iDAYDDzyyCNYrdZED2XUIJwSgkRS0FXyUdsVdtnUZcfPMaYPyfZnpk4AYJ+9Nmy6T1Mp7diHUdYzxTI03RySFBML0qfS6XOwub0s4jIe1cv7jeuRkWMOxOyP8wuWYZT1fNK0CWc/rQXbPJ28XP0xOknhsrGnHdR+LTozV084C4Dnq96LeT236uX/Sl8C/G1QA8LUQNDLOn4+5VJSdEm8Wrt6UMJAo6uNP+59HhWNH0++OOawUEmSuKBwGT8svhAVlbt3P8P+Ht+vgaBpGn8tf5VXa1eTokvioaNuOuQ7jIhz8cHzzaLl/GP+z3pN//n2R3tNyzdlcsPE87Do/K0no4kCkRwKoQ8cAmJBaHvOAZVvEFv5RiQnx2h88HFewVK+M/ZUwB8mOtFSEJzn63GM2jydvdbPMqRGdAU2uNuQJIm0BWPJWDYZJIldH3zN22+/GXSl9edWCaDSPY7BONoEAsHhjbg77IM5c+ZQWlqa6GGMGkSmhCCRBG5Ig6JEl219KJwS4C/hAKjq0Xa03FaD3ediesqEmGp9Y+XYzNmAvyQgEl+27qDda+OIjGkDCqbsC4vOxDGZs3Cqbr6Ikp8R4J2Gr3CoLlbkHUXBIMSAnhybOZux5ly2dexjqzWyENOT/9Z8SrW9icUZ0zmyK4BvMOQY07ll0jcAf0ZHfzdKofg0lT/seQ6r1845+UsG1d705Nwj+HbRSdh9Tv6w53m8qm/A2wD4d/UHvN3wBRn6FP4y5xaOyZ01qO3EG3EuPngKTdn8qPiiAa8X7YY0UveNUIEgUtFHaBhlfx1tYi3fkCPsST7M2lrGUlYmSRLJirnXdHtIS2TLlFxyTpuBV6+xZs2nNH+wC9Xji1mU8IT8Ltn7Ea0FAoGgJ6NelHC5XFRWVuJyDfwH8ic/+Qn//ve/efbZZ6msrMRut+NwOML+E8SOt6t8QzglBIkg4JSocwWcEm3A0IkShaZsZCQqe4gS2zq6SjdSBl++EImjMmYgI/N5y7ZeT8oAPmvx502cknPEkO73+K7WnB81bexzuY+75q/IO2pI9qtIMhcXnQjA8zGEbXZ47Txf9R6KJHNNl8viYDg2czbTk8dTbq8ZUL7Dx00bKe3Yx2RLEVeNj2yjj4XvjD2V2amT2G+vZWXt6gGvv6W9jGcqV5GkGPnt9KspNB98lkq8EOfioSFDnxxx+ik5RwJw1bgzes2L9sBbH+y+EVlojeRgMMnd5QMpur7DhQPrR+u+MT15PAATkrodA2flHcPRGTNHdaZEJEJLVwDum3k935twdi9nXlKX+6UvjAWppJ85jYzMDJz7W2h4fSttza0xjSO0bKTtEC8LEwgEhx6jpgDsqaee4r///S8ej4dLLrmESy65hCeeeIK//vWvuFwuDAYDV1xxBT/84Q9j3uaFF14IwN13383vfve7iMvs2BFbKrGg2ykxGq2VgkOfgi7ram1XSGOT228HjyU4LBYMsp48Yya1rmacPlewjWMgT2LWEOVJBEjVW5iZMoGtHeXs76gjnXA3xM6OAwDMSSse0v0uTCshVZfE12276PDYSdH3zmiosNexz17LBHN+2E3DwXJ89jyeqVzFxvY91Dlb+mxT93HTRuw+F+eOW8K4pDxU9eDsxJIkceW4Fdy2/e88U/kOSzLn9LoZ6IlX9fFs5bsAXDfhnH4t6/3t//uTvsH1mx/g2ap3WZo9N+YuNG7Vy0PlLwNw88QLmGwpGvQ4EoE4Fw8NZiXyTemctEncNOn8iN/PqE6JCJkS/RHqjugv26W/8o37Z92Iw+ciWdf99P/GSefHPJbRxGm5i9nUvjcYgDw7tZjZqcW8U+/PFArkd1ii/P17oqSZuOTqK3nu/o9xVbXxzjOvctSVU5g+fUaf64U6Nlo9HTEFCgsEAkGAUSFKPP/88/zxj3/kjDPOID09nT//+c80NzfzxBNP8L3vfY+ZM2fy9ddf8+STTzJlyhTOPDO2p1X33HPPkCTlC/z4hFNCkEACN7B1zm6nhIxE5iA6QkRjrDmXWlczVc4mJluK0DSNUus+dJLCtK4ne0NJsaWIrR3l7O2oZpGpW5Ro83RQ62pmnDl30G1Ao6GTFY7Lmsub9WtZ07KF0yM4IT5u2gR0uyqGCkVSWJY1jxdrPuKzlq1cULgs6rLvNfjb0p07fgnEXm3RJ3PSilmQNpUN7bv5snU7x2bN7nP5dxq/otbVzMK0kiERpcaac/lG4fG8UP0B/6n+kO93lZT0x4vVH1LlbGRhWsmQ/03igTgXDw2Rgg4BzLIxqmDWX/mGLMkUmrLJ0oeLooFMidD1QzMlUvsTJQLlG1GsGookhwkShzNmxcid077ba/p+Rx0A45Pyge7SxVhw61WyT5mOdWMlrj1Onn/+GZYuPZ4TTzwFWe6+htvdWckHjV9z1fgzwkSJlhicEts79pOkGIdUuBYIBCOXUSFK/Pvf/+baa68NuiCOO+44rrvuOm688UZuvPFGAI4//nhcLhfPPvtszKLE+eePDtXd4XCwYsUKzjjjDG699daEjUNkSggSSYouiWTFTK2rGZ/mo8XdQaYhdUi/j2PMOXzVtoNKRwOTLUW0e220e21MSioMq6ceKgIXm2XWahaZujMTAi6J4RBCwF/K8Gb9Wja17+0lSmiaFizdWJY9b+j3nTW7X1Fiv72O3bZKxppzmZU+gZYWW8TlBsMZeUezoX03HzVt6FOUUDWV/1R/CMAV404fsv1fULiMlbWr+aDxa64cuyKiUyWUTq+Dl2s+xiDpuGkQ7XQPBUbLuTjRmKOJElGmQ19Bl903pk/Muy0oQvQkVJQIbR/an1ga7L4Rc+8HQTQmdJ0nZqVOYlvHvpjWaXF3IMkSaQvHMbtkHIYvW1i9+mMqKytJWzqJ6XnFzEiZwPe3/hmAiUkFYU6YSGGboaiayo+2/RWAVUffP5iPJRAIRhmj4pF1ZWUlRx99dPD9EUccgaZpLF68OGy5Y489loqKigFvf+/evfz3v//lkUceobGxEYCKigo6O/v+0T1UeOSRR5gzZ06ihyEyJQQJJ9+UiUv1UG6rRUUdsjyJAD3DLtu7Lswy9EPnxghlYtfF5t6OmrDpOzu7RImU4RElAh0b9tiqes2rcNRT62qmJHnskARc9mSqZSw5hnR2dFTQ7I7ckeG9hnUAnJp7xJDfhB+RMZ1kxcyXrdvp9EbPMtjRUUGDq5XZKZOGtMNFii6Jk3MW4VI9rGr4st/l321Yh1N1c2LOomH5e8STkXAufv/99zn11FM59dRTeeutwbeQHQ6iiQ992fqjZcLoQto/ypIc9d9ZqKQwoPINKbbuG4LoBIItF6RNBeDiohO4a9pVTEoq7HfdRld3jkTqxByuu+4mcnPz2bpnG3f+6S6uf+uusOX/tm9lWCcot+rpc/uB60GBQCAIMCruDg0GA05nd4Kw0eg/8SYlhZ/09Hp92HL9YbPZuOWWWzjzzDO5/fbb+fOf/0xDg/9m4//+7/94+OGHh2D0w8v+/fspLy9n2bLoNud4ITIlBIkmIBqsbdkGDF3IZc/tB8IuA0+L0vR9h7oNloBTYq+1Omz6jo79AExLHjcs+03RJVFoyqbG2dTrxnyvzT+WWSlDm6ERQJIkjs2cjYbG5y29O48EnBoyEicOotNFfxhkHUuy5uDRfKxp3hJ1uU+6wjCXZs8d8jGcU3AcAK/XfRYsi4uET1N5o+6zrnWOHfJxxIuRci72er3cd999PPfcc7zwwgs8+OCDuN3uRA8riFkeuFNiQfpUXjnit72m93cejyRR6EOEjFgzJWLt/CDozZ9m38wtk74ZLNkyKUaOzJjOD4svDGsPGulBUZ2rJfja6XOTnZ3N9dffxMxF81CdHprf3cmbb76B5vNf17k1L283fBFcpz/RIbRTR3/tpQUCweHBqBAlxo4dy65du4LvFUVhzZo1TJs2LWy5ffv2kZeXF/N2//CHP7Bx40b++c9/smHDhrDaxmXLlvHpp58e1LjXrVvHddddx5IlSygpKeGjjz7qtcxzzz3HCSecwOzZs7nwwgvZsiX6RXAk7r33Xn70ox8d1DiHCuGUECSauamTAXi/6Wtg6EIuA4zpIUq0e/1lA+lRUu8PFrNipMCURbW9CUfXhZ1PU9nVWYlJNgRFi+EgkOy+t4dboqxLlJhk6f9p3GBZ0lU2sbald5vIelcrzR4rxZYisoxD+/cNsDzYgWRDxPk+TeXT5s3ISCzJHHqX2lhzLgvTSmh0t7GxbU/U5da17qDW1czc1OIRXbc93OfioWLz5s2UlJSQnZ1NRkYGc+bM4euvv070sIJEy43oS5QAsOjMvLDo1/xz/s+D0/T9hLwScE6E/K1C3RT9iRL6kMwKweAYa87l9LzFvVwsU5LH8I/5PyPHkA5AkmIK/qYt7mqdXGGvDy7vVP3Cmk6n4+iTjyfr5GlIRh3vfPouDa9txd3cuzzO10/b4lDRor9SD4FAcHgwKn7tL7jggl5hSNnZ2ShK+Elz5cqVHHnkkTFv99133+XWW2/lqKOO6rWtwsJCqquro6wZG3a7nZKSEn71q19FnP/WW2/x+9//nhtvvJGVK1dSUlLC1VdfTUtLt4J9zjnnRPzP5/Px/vvvM2HCBCZOHNpWhINFDWZKjIqvnWAEsiDdb2Nt6LKmDrVTIk1nIUWXRLWjEVVTQ5wSwyNKQHe98H67P9Sswl6HU3VTkjx2WP+tBUs4OsNFifIuUaJ4GDs8TE8Zj17SsddW1eu3f2dnRXCZ4WJ26iSy9KlssZZji1DCsc1aTqungzlpk8kYwiDVUJZk+cWOr9t3RV3m3a4ylrPzlwzLGOLFcJ+LAxzsg4KGhoawBx95eXlBR8ehQLQSi6QYujKk61PCur2Elm9E3FfX/6P5HFL7yUL5cfHFFCcV8puSK/sdm2BwBIJCPaqXHxZfyJ9nfZ+Li04CYJ+9Nric09ft9rH5nJjHZ5J//jw+0+3F02Kj4fWtWDdVoYV0OPL2U3bjDWsfKkQJgUAwSoIuv/3tb8e03Msvvzyg7bpcLtLT0yPOs9lsvS6OBsqyZcv6LKt46qmnuOiii7jgggsAuPPOO/n4449ZuXIlV111FQCvvfZa1PU3b97MW2+9xTvvvIPNZsPr9ZKamsq11157UOMeLN1OCVG+IUgMucYMikzZVDubAMg2pg/p9iVJYqw5l+0d+2lwtQUzJYbLKQEwIamAtS2l7LfVUmIZFyyfKBmm0o0AAafEbltlcJqmaZTZajBIOsYOYzs4RVIYZ86lzF5Di8ca5njZ1ZWnMZyfX5ZkZqZOZHXzZvbYqpiXNiVs/qddpRvLsoa+dCPAovQSAL5uiyxK+DQfm6x7Mcp6jsiYHnGZkcJwn4sDBB4UnH/++dx888295gceFNx5553MnTuXp59+mquvvppVq1aRmRlbe9ZDEXNI1kNfhIoa/Zdv9F1+Ecg7iMZESwEPzz00XJ6jlUA3FKfqxiDrKUkZR7vH73qocjQGlws4JcAvSgAoFgPZK2bQWVpL+/oDWNcfwFHRQuZxk9FnJuHVvHhVHzafM2L5Ymj5xpv1aylJHjciQ3gFAsHQMSpEieFi9uzZvPbaayxdurTXvHfeeYf584evtZrb7aa0tJTrr78+OE2WZY455hg2bdoU0zZ+/OMf8+Mf/xiAV199lfLy8oMSJGT54E4YgRRtvawc9LZGG4HjIY5LOD2Py1AcnwXpU6mu84sSucb0IT/mY8w5bO/YT42rCWugfMOQPGx/20nJflt+haMOWZaC+8w2pg3r92lqyljA75QI7Kfe2Uqnz0FJ8lj0yvCeXiZaCimz11DhqCPHlB6cHgj5nJE6YVj/XZWkjA2KEgsypobN297l1jgqc8aw/Q3yzBmMM+dxwFFPk6eNXGNG2PxdHdXYfU4Wpk/FpOvd+WUk/ebE61x8sA8KcnNzqa/vtr3X19ezZMngXSoH+7eJ9De+fuI5/H1f+MMM3SBEHYOi63N8oTeYocvdNuXb1LtaSDEMbavigTKSvv/DRWjwaOA4pBssJClG7CE5D07VjYrKSzUfU+fsdupKkkTKrEJMYzNoXV2Gu95K/WtbSJ0/Bk+el0cqXuN/dZ/z6LxbmWgJLx9TpW4nxXuN6zkxd2HQyXioI7470RHHpm/E8ekbIUr0wS233MKVV17JFVdcwWmnnYYkSXzyySf885//5J133uHZZ58dtn23trbi8/nIzs4Om56VlTWoDiIHi04nk5V1cE97zV7/hXGSyXjQ2xqtZGQMTyDiSESvV3p9T4bi+Cxzz+WNus8BmJJXSJZlaL+LE5vyoAHsegd2yf9UaXx2LlkZw/Odn2eYBDuh0t1AVlYyaoP/CVR+esaw/jvLIpnxyXlUdNajpPiFl621ewGYkTV+2P+Nz8wZz/uN66mnObgvt89Dma2aNIOF2UXjgzdGw/Hv6githMf3/4/97tqwz+pRvRyw15NpSGFKQeGwPv1bUjCL58vr2eWpYHrh2LB5O5v3+5cpnNXn32Ik/OYk8lwcIJYHBXPmzGHnzp00NTWhKAqbN2/md7/73aD2NxTn3AChf+Ors1bwXNV7WD324LSB7GdRdgn7OmrJz0nrM+9Bkf3zJFkK2/5FWYkP3Q5lJHz/h4sUkxna/a9D/0ZjLbnssnY74Dyal3/WvsWLFR9H3I4+zUzOGTPDXBNrW9/mwAwNY14qq60bWTQu3E3Wam0Pe+82uEfcdeHh/N3pD3Fs+kYcn8gIUaIPFi1axD//+U8eeOABfvvb36JpGn/5y1+YO3cuTz31VELabGqaNqiL3IPt8+71qlit0dvfxUJ7h/8iyOtWaW4WNYShyLJERoaF1lYbqirSxgE8Hl/wezKUx2eSXISMhIqGbNfR7Bza72Kyz3+y2ddcR6PNf+El2WWa1eH5zqdKySiSTLm1lubmTho7ui72nPKw/zsrNhdR0VnPlwd2sSijhI11/pZwY5S8Yd93Hv72lqWNFTRn+Pe1s+MAbtXLPMsUWlpsw/rvKteXiYTElubysM9aZqvBq/mYmFRAS0vvALihZIbJnxf0SdUWjkueFzbv8xp/COhU/fiIf4uhOjapqWb0+uEtyTsUzsWxPCjQ6/XceuutwZLSH/zgB8FuYANlKM650f7GN008n3t2dws5A/m3+rup16Ci0dpi73O5wP58vkPzfC/OuXBU6kxW12/hhJwFYX+jHH06u+gWJZw+D+9UretzW5IskTLb75po+6yc5romGstqsUzLY09SCc0F4d+Bps6OsPet1s4Bf0+e3P8mGYYUzi/s7aAaTsR3Jzri2PTNUByfeJxzE4UQJfph4cKFPP/88zidTtrb20lNTcVs7rsWcijIyMhAURSamprCpre0tPS6KIoXB/sD41H9wUYysvixioKqauLYhNDzWAzF8UmSTXx7zMm4VDc6lCE/3oFE83pXC20e/4VXqmIZtr+rLMukG5Kxum34fCodHv+NTJJsGvbvUoHRLww0udpQVY2yTn+excSkgmHf93izP+Cz3FYb3NcOq//msMQyNmz/w/HvyiQbGWfOpcJRT7PTGgy03NvhD/6cmFQ47MdgVvIk9JKODW278fh8wWBTp8/F9o79pOiSmGju+28xUn5zEnUu7o+eDwpOOeUUTjnllCHZ9lD9XXr+jZdmzWPWwkl8++u7BrUfCQlVi20djUP7+zVSvv/DwfKsBeQbsyhOKgo7Bvldv+sBfKov5tas+nQz2Stm0L63CflLPbad9XxYvZIN2kI848xMsBSQY0zH7fOGrWf12Af0d1A1lf9UfwjAufnHxbzeUHI4f3f6QxybvhHHJzJClOiDtWvXMm/ePMxmMyaTCZOp/4TqocJgMDBz5kw+//xzTjjhBABUVWXt2rVcfvnlcRvHUOIT3TcEhwiXjh2am4ZI5Br8tf3+oEsbBkkXDBQbLtIMFppdVlyqG5vPL0oEktWHE0tXWF2n11+mUmavQUJiUhzaT2bqU0jTWah01ONVfehkJZgnMW0YO2+EMjV5LBWOenbbKllsmAFAub0GgOKk4WuJGsCkGCi2FLKz8wDN7vZgrsS2jv14NB9HpU0eFS0VE3kuDnAoPig4GDINqfx51vfJNKQOy/ZFxfShjyRJzEiZ0Gt6gTE8tNWnqXg0b6/l+tquZUoO5nEZtH1VgW1PM39//lHW6SqYunQeR0yeFxQ5JCQ0tGCAZqyEthQVCASjAyFK9MF3v/tdFEVh+vTpLFq0iIULF7Jw4UIyMjL6XzkGbDYbBw4cCL6vqqpix44dZGdnk5OTw5VXXsltt93GzJkzmTNnDk8//TROp5PzzjtvSPYfb7xdacu6/vqbCwQjmGyjvxNEnbMZq9dOtiFt2FPFU7vSza1eO51dLSr7S7cfCiw6/82hzedA0zSaXG1k6lMwKYOzrA8ESZKYkJTPZmsZVc5GJiTlB1u9jhnGzh+hTE0ey3uN69ndWcnijC5RwuYXJSZZhl+UACgwZbGz8wC1zuagKBHoQDI7ZVJcxjDcDPe5OBZG44OCkpTh7NAjZImRSr4p3CnhUt3BoPKBIBt1ZB5XjDo1n86tXtz7rWx7aTXlU3aStmgcisVAuj6ZVk9H8LwVKwHnrUAgGD2MSlFC0zQefvhhLrroIrKzs4Ovc3IGdqH6+eefs379er7++mu++uornnnmGVRVZdKkSSxcuJBFixZx9tlnD3qc27Zt47LLLgu+v/vuuwG46aabuPnmm1mxYgUtLS089NBDNDY2Mn36dJ544okR23rMR5dTgpH/5E4giIZB1pOhT6HB3QYMbzvQAGkGvyjR4bXTGXRKDP/T5IBTwuZ1Yve5UNHi4tAIMDGpkM3WMvbba5mQlE+H11/nnqqLT4jU1GR/uGRABAi0RNVLurgJI4ESmlpnM3PTJgMExZlC08h7gh+J4T4XBzjcHhQMJwFJIlbbv+DQoSCkfCNTn0qLx9prmbPyjuGN+s9j2p6cZyFv0ngyNjhpX38A+54GHPubSZlbxLgjF9DKIEQJ4ZQQCEYdo1KUUFWVhx9+mOXLl5OZmRl8PVBRIiMjg5NPPpmTTz4Z8Pcw/+KLL3jqqad48cUXeemllw7qQmjx4sXs2hW5x3yASy+9lEsvvXTQ+ziU8HU5JRThlBCMcnKN6bR25UlE6tE+1KTq/e31OrqcEjpJwTjMJSPQLXx0+hx0+uxd0+LX6m9Ckj9XYr+9DvB/fr2kDHu5TIBx5jwA6rtEgCZ3O50+B1MsY1Ck+PzOBZ5q1rqag9MaXW0A5BjT4zKG4Wa4z8UBDrcHBcNJwB2mxZg9ITh0yDNlckzmLGZmj+f1im7hoTipkHavDafPTZ5pYN/5XfZKLCV5mCdmYd1UTWdpLdb1B6jY58E+w0LnEb1DgasdjWxs38MZeUeHuQ3LbTX8cNtfBv8BBQLBIcmoFCUg/ER4MCdFm83Gxo0bg09ptmzZgtFo5Pjjj2fhwoVDMdTDBpEpIThcyDFkBNPL4+OU8O8jUL5hUUzDXjIC3U4Ju9eJrStXIp5OifyuC+MmdxuaptHhtZOiS4rLZwcwyQb0khJ0aJTZ/EGf8SrdACjsEiXqnC3BaQGnRKCcYzQQj3Px4fagYDgRxRsjF0WS+c30K8nKSubNA18Gp6fokvjT7Jtx+Nysbdk2oG0Grv9kg470I8eTPC2P9q8qkOp9tH66ly932dl2ydHMnDkr+Pt91aZ7AX/+SUnyOLK68k/+XP4SLtUzFB9VIBAcQoxaUWIoOP/889m1axdZWVksWrSI0047jV/+8peUlJTE7aJ3NBEIJtIJUUIwyskLuRlM08VBlOhySrS4rXg0L8m69GHfJ3RnSnT6HMEb83hkWQQIHNt2jw2n6sar+UiJo1NDkiRSdBbavZ1omsZ+h9+xMTEOQZ8BCkzd5RvgF+Eb3W2k6JIwxyHbIx6Ic/HI47yCZfy5/CUuLDoh0UMRHAShD5GMigGDrA/+1x8L0qZi97nY2VnRa54u1UTWSSUsZzovvvkyHY1t/Oc/z1FYOIZTTjmV4uIpwWXv3vU0Khq/m34NC9NL8HYJHAFUTeWVmk9YlD6NiZYC3qj7jDXNW/jt9GswyIO7zdE0jQpHHWNMuSIHTSCIE0KU6INdu3ah0+mYN28e8+fPZ8GCBeIi6CDodkqIH3jB6CbUNh8Pp0RqV6ZE4MY0Xm6FYKaEz9kdsBlHp0SgNKbN04nV67f/psZRlABI0Zlp8Vix+1y0uv0lO9ldbWHjQYY+BYOkC5ZvtHttuFQPY0zxybSIB+JcPPI4PW8xR2fOIF2fkuihCA4CXcj1WmhZXCyiRLo+GbWHgNCTojFjyTtjFrp6N0kH0ti6bzs1/6xiwoSJONPaMBamoXb9M/+4aSML00uC15IBVjdv5skDb/LkgTf56ZRLeHjfSgA2tu8OBhAPlI+bN3Hvnuc4OWcRP5588aC20ReBjlECgaAbIUr0wfr164N20XfffZcHHngAvV7PggULWLRoEUcccQTz5s1L9DBHDD7hlBAcJoTa5uOTKREuSlji5FawKF3dN7yOkIDN+IkSgUBLq9dGR5coEk+nROj+Orz2oDCSHoe/eQBZksk3ZXHAUU+n1xHMkxhNpRviXDwyEYLEyCfMKREmSvR/+6CXdWHihVk24lBdvZZJ1plx5it8nNuEI9vBWfXj2b9/H0012zHkpZA6fyzGorTgOmqPkMtAphDAvXueC75+oeoDSpLHDerBwGfNWwF4r3H9kIsSm9v38tPtj3DzxPM5I/+YId22QDCSEaJEH5jNZo455hiOOcb/o+HxeFi7di2PP/44DzzwAJIksWPHjgSPcuQQrCkUTgnBKCdclBh+p0R6wCnhiq9TQicrGGV9mFMinqKATlZIVsy0e2zB8pF4ixIBYaTDa6fdYwubFi8KTJkccNRT62wO5knkjCJRQpyLBYLEEOpsNSndAoMxBqeEXtKFiRfJOjMOd7gooZMUTIoRq9eOJEkkTczivLMu4eONa9C9vh53fQdNq7ajz0mmaXkRWrGGr0dOXOC3vyc7Oiv41Y4nuW/mDRiV/scbynCasP5T/SEAf9n3qhAlBIIQhCjRDy0tLaxfvz74365du1BVlSlTpoigywEiMiUEhwu5Ifb99DhkSgTKNwJhh/F0KyQrZlo9ncELw4B7Il6k6S1UO5to6nIIxFuUSA5xSrQHSkji6JQAKDD6W3/WuZppcrcD/g4wowlxLhYI4k+oUyK0fEMfg1PC0MMpEUk8iNQtaZe9kpf168k7fy6OihY6Nlbhaexk8//W8PAehZasKrSxeiTFP7Z2T2fUMey2VXLOVz/nvIKlfG/CwXfoGQpkUXYmEEREiBJ9cOqpp3LgwAEURWH69OksXryYG2+8kYULF5Kenp7o4Y04RKaE4HAhRZeEUdbjUj1xcUoESkQ8mheIb9ikRWem2WMN3gzHsyUo+J0o1c4mqpyNAKTo458pAV3lGx4bElLchZFAF5JaZzOtXRfoo6l8Q5yLBYLEEJopEeqOiMkpIevClkvWmXG63eHbl3WYlXBR4utWfwccSZJImpCFeXwmzspWajdW8d7uz6hxNuIyaSTPKPB38fD0bifak5W1qwckSkjD2D9GRjyYEwgiMSpFCUmSKCwsxGAwhL0eKGeccUawVtVsjt9F/mhFZEoIDhckSWKsOZcKez0ZcairTjOEP5mPp1Mi4Iyod/ldGilx3DdAWlepRJWjS5SId/mGvjvXwuq1kaIzx73tcXcHjhY6utwauXEM2xxuxLlYIEgMYU4Jpf+gS72k4Om61vOXb3Qvd8fUy3m26l3KbTU0e6xAV/lGD6fEurbwUixJkjCPy8Q0NgNrXQdJ21Uc+2qwrqugY1MVhllWvFOT0KXE16U3WGRxDSwQRGRUihKyLPPhhx8G34e+Hgjf//73h2pIAoRTQnB48bMpl9Lu6RxwLetgMCtGdJISLJGyxLN8o2tf9V1ZBvEK2QwQcKJUORqARHTf8O+v0dWOS/UkxKFQYOwSJVzN2L1OYHRlSohzsUCQGJQwp0RI+YYU+fbBKBvwdIUe+4Muu5ebmjyW306/mp+U/i0oSuglJUzsAIKiRk8kScJYkAoFqeS15dFZWottdwM1m8twb/JiHp+JZXoexsK0g+7MM6xOCVG+IRBEZFSKEkNJZWUlTzzxBBs2bKCtrY309HQWLlzIVVddxdixYxM9vBFFtyghVGLB6GeMOYcx5vi0ZZQkf8lAq8ffkjKe5RtJXU6JJlegfCPeooTfqVDjbAIS0X3D/3mru8pH4h1yCZBvysIkGyi1lqOTdOglhYw4lA3FE3EuFgjiTzSnRLTyDb2sgy5NoWemREAoMEjd03Sygkk2Dnhc+nQzGcdOInXBWGw76vDuqMOxvxnH/mZ06WYs0/OxTM5BNh56tzmifEMgiMyh96/1EGLbtm1cdtllGI1Gjj/+eLKzs2lqauLdd9/ljTfe4JlnnmHmzJmJHuaIIfAUVzglBIKhJ0yUSIBTQkXtGkd8RYmACBB4upao7hvVXeUjaQkQJQyyjgsKl/Fc1Xt4NB8FxqxRZREW52KBIDFEy5SI1hJUDnEY6CVdRPEidF2dpAtzYAwUxawndcFYUuYW4djfQuf2Otz1VtrX7sP2dRXGSZlYpudjyIr/73I0DvbBnFf1oUgyr9WtwSjrOT3vqCEamUCQWIQo0Qf33nsvM2bM4PHHHw+rY3U4HFx77bXce++9PPPMMwkc4cgi4JQQmRICwdCTqk8Cv2s2vkGXId02dJJyUBeYg6FnkGi8nQoBEaS6y6mRFufOGwG+WXg8b9d/SYvHOuo6b4hzsUCQGEJvoA1hokRkp0Ro2YRe1hGpEiN0Xb2k9Aq6HAySIpNUnE1ScTbuZhv5FQrufa3s3LkP28569DnJfKV8yezZc2LKpTlUyzc8qpdzv/oFs1ImstlaBiBECcGoQdwd9sHWrVu5+uqre/2Amc1mvvvd77Jly5YEjWxk4gs6JcTXTiAYakIdAvHMlAjdl0UxHXQt70BJ7yFCxNupETjugc4n8W4HGsCkGLls7KkAjDHnJmQMw4U4FwsEiSH0ei3U9aCXdZyeexRTLeGlU6EOLb2kCz6MCkUvd7svdHLvTImDxZBlYczxM1lx3cWkHz0RXXoSnsZO3nhjJffe+ztefPHflJXtQdO0Xuvu6Kig2d2Ot+v3PBSP6mWbtTx4LTsQOr0O2ro6I8VavlHnbEHtcfzaPJ34NDUoSAgEownhlOgDo9FIW1tbxHnt7e0YjQOvgzucEUGXAsHwESpKxLV8I8QpEe92oBDulNAnwKnRs1wkTZe4LIdTc48kw5BCSfK4hI1hOBDnYoEgMYRer/V0R9xS/A3WtpRy566nupcn1Fmhi3gDrw/NlJB0vbpvDAUu1U2KOZnkmQVYZuTjbuxkoXYEW7duYevWzWzdupm0tHQWLFjIvHkLyMzMos7Zwg+3/QWDpGNu2uRe2/zHgTdZWfspV4w7nZuzzx3QeC75+i5cqoc3j7o3JqfEFy2l/GbXU5yeu5hbir8ZnO6NcDw1TYv7wwCBYDgYFY+sP//885iW83g8/OhHP4p5u8cffzz3338/69evD5u+fv16HnjgAZYvXz6gcR7ueIVTQiAYNsKcEkr8WqMlhQgg8XYpQHi5RIrOEveLM6OsD0uiT5RTAvzW6cUZM0gfZSGX4lwsECQGXQ/nQ0963mCHvlckBTWCGyE0UyJS942hwOlzB50dkiRhzE3h9LPO5qc//SUXXHAhEyZMoq2tlQ8//IA//ek+Hn30Yd799D18djduzYtH7e2UeLv+SwDWNA/MmeX0uXGpHgDsPhdSyK3Xhrbd2LyOXut80rzZv8+GL3ttqyeR3CgCwUhkVDglrr/+eh566CGWLVsWdRm73c6NN97IunXrYt7uz372M2644QYuvfRSsrKyyMrKoqWlhebmZubPn89Pf/rToRj+YUN3poRwSggEQ02gFaZR1vsT0ONEqFMi3u1AITxDIhGiSKDzSUtXi7u0BLhFRjviXCwQJIZwp0QEUaJH9kJoFoMsSRFvmMOCLmUlqnt2QdpUNrTvHvCYAZyqG2MPscOhOkk3pFA8cxprUvexefwuMithbmseVVWV1OzdRG3rdoyFaVTPllFzvcgGv9tDkRTcXUJFz/OrW/Vwz+5nOSlnIUuy5vQayz57bfC1zevApXYLC7/Y8RizUyZx36wbeqzVW8wJfK6euFQPOllcVwtGPqNClDjppJO46aab+NOf/sRJJ53Ua35LSwvXXHMNZWVl/PWvf+13e06nk08++YTq6mq+9a1vcemll7J//34aGxvJyclh7ty5LFmyZDg+yqhGOCUEguEj4JSId/eJ0EyJeLcDBX+bOqOsx6V64v7ZA6SGihKjzKWQSMS5WCBILDo5ctBlgJ5dfkLfy0gszZ7LizUfclbeMcHpYc4ynSVitgPA4owZgxYlrhl/dq9ciDaPjXR9Cn/Y8xxft+8Ci0T9NJg4/iiUqgOY9jaw7vM9uKrbKG/YRLtqxzw2g6/NG5g7fU6ww5Shh2NkdfNmvmgt5YvWUlYdfX+vsey1VQVf/2z7o9S5WsLmb+0oB+A/1R+yu7OSX079TtTP5fC5ek1zqx4sxM8dKRAMF6NClLj//vv55S9/yQ9+8AP++Mc/smLFiuC8qqoqrrrqKtra2njqqaeYP39+n9uqrKzkiiuuoLq6OjgtOTmZP/3pTxx33HHD9hkOB1SRKSEQDBspev8NeTxLN3ruLxFOBfALAQ2u1rh33ggQKoYkagyjDXEuFggSj0w/Tok+RAlJkplsKeKVI+4mSenOfVFCnupnG9LQQlwBOknBq/mQkAbVqW1B2lTunPZd9LKOtS2lYfOu23w/j8+7zS9IhPBoxesArDjqKArGL8RV246zrBlpvxPH/mZeevHfvGV4jSZpJ+YJmTB7Qtj6gdKMaOzoqAi+7ilIBFA1lacOvAVAk7udKDpNmMsigFvre//DQYW9jjHmXPGQUTCkjIpvkyRJ3HPPPXzzm9/kJz/5Cf/9738B2LlzJ9/61rdwuVw899xz/QoSAPfddx+yLPPcc8+xefNm3nzzTaZPn85vfvOb4f0QhwHCKSEQDB+BG+N4h02GlmzEs+tHKGldQkAigjYhXJRIVEvQ0YY4FwsEiadfp0SP8o3Q94HXFl14V6ZWtzX4WpKkMFEicH2ok2TkQT7ACpRXGCOM98mKN6Ou927DOiRZwlSUTvrSYgovWUTWSdOYNnsWer0e54EWWlfvZcNT7/K3v/2NL774HKu1nagKAv4Qys3te/sd8357XfB1p9cRdkxCcUTIlHBHyL8YTja07eZ7m+/nwbIX47pfwehnVDglAvz617/GaDTyi1/8gl27dvHSSy+Rm5vLP/7xD/Lz82PaxsaNG/nZz37GwoULASguLuauu+5ixYoVNDQ0kJs7ulqtxRORKSEQDB+ZhlSAuIccJutCum8kIFMCuj9zopwaAZeKYZiS5A9HxLlYIEg8YZkSUu+b/J4PmUKDLqOFDje628PeT0seD8AUyxiqnU2AB0VSDvoBVqQAzd2dlVGX79nZQlJkzBMyOXnuGRQZs3nv1UocFS0o9RJ79uxhy5btvPHGa7SleGi3VGEem9GrE0aNs4lmj7XnrsKwKCZKO/YF33d47VGXjZYpMRD+Wv4q45PyOCv/2AGtF2BLVzvS9xrX8+PJFw9qGwJBJEaVKAH+QCyj0chjjz3G3LlzefTRR0lLS4t5/cbGRsaODe+7PG7cODRNo6mpSVwIHQTeYPmGcEoIBEPNeHMet0z6BjNTJsZ1v0bZgCLJ+DQ1YU6FgDshUZ0vAk6JVH38u3+MVsS5WCBIPGHdNyKEKfYq30AOZvwUGLMibvPbY05id2clP+hqdTk9ZTwPz/khhaZsLt/wu679RhYlflNyJY3uNh7et7LfsUdySrT0IxBEwqV6UCUN05h0TGPSydVn0O5MYnpjFs3ltZRXl9LRXknHhkru3f47pk4tYerUaRRNHMcnrZv73X6yzkxziHukI0I3Dk3TUFGjZkrESqu7g//V+zsWRhIl6l0tPLrvdb4z9lQmWgoibiPHmB62vQxDSsz7Fwj6YlSIEkcddVSvC0FN0ygrK+O0007rtfzatWvjNTRBCGqXCi2cEgLB0CNJEqfnHZWQ/VoUE1avPWFOhUCOQ6KCLgP7FSGXAoFgNBFaQtFTgIAI5RuSzNMLfkmjq418U2bEbZYkj+Pfi34dNq3YUgR0OzMUSY64vyMypqNIclRRIrT7hzHEtXbb5G/zx73PR1ynP6xeG9YQ90KDp5UGpZWKse1cfeyZGKvGs3/dazgqW7Hb7Wzc+DUbN37NmpatWDNUTGPTMRalo89MiihaJ+uSwtwOHV57r/KNO3Y+QbmtltPzFvdaP5Io0ehq465d/+Q7Y0/lyIzpwen9tQ99bP8bfN66jT22Kv618PaIy4S2S91nrxWihGDIGBWixCWXXDKkT6euvvpqFKX3jfMVV1zRa7oQOGIn4JSIdKIRCAQjF4tixuq1JyxT4pjM2ezoqGBe2uSE7D/QjjVNhFwOKeJcLBAklv7CJnsHXUqk65MHXUYYcEf0LN9YkDaVS8eeEtVpK+HPpjCHBGqGOiWOyJiGQdLh1gaev7CxfQ85hvRe09s8ndxf9gIAKXOKSJlTxM/n3cHevXvYvXsnr320FrXWg6u2HbNSh0uvYixMw1iYhqkwDV2qv/QxSTaGBVh2RijfWN/mD+esjxCUGSpo2H1O/lP9IeW2GvbYqvjVzifDOoJEy6roue9Gd1vUZUJFiaYepTgCwcEwKkSJm2++eci2ddNNNw3ZtgTh+AJOCdFPWSAYVVh0JnAlLlNiVupE/jR76M4DAyVYviFEiSFDnIsFgsTTX7ltT1FCOcj8/ICTVpaksG1NthQxI2VC8P281MlssnYHSD4w60aerXyX7004OzgtNN/HKOtJ0plwezpjHsvc1GI2W8v4qnU7J2QviGkds9nM7NlzKJk5nccKvsTTZMNZ3UZWs559B/bhKG/CUd4EgJJqwlSYRuMUA+kTu8+dHV47akh4pjMk3PKr1h299hkqEty75zm+jLBMcNkIokyru4Pf7PoHJ2YvDHOXPLb/dU7NPZLxSfm4VQ/f3/oQ+cZMdnZ2dxOJVZTwaSqKJKNpGnft+ifjk/K5YtzpMa07UlE1lWa3NazcRdA3o0KUGErEhdDwEcyUGB1NXwQCQRe5xgzKbbVkG2LP7xlNTLYUkayYmZ02KdFDGTWIc7FAkHj6a+Heu3xjaFzLElKYINKz7Pd3M67l97ufZU3LFgCmJ4/nnhnXhi1jVLqdEnpJh1k20kZsooRe0nHvzOv51vo7qXY29QrB7I8Kez2SJGHIScaQk8zynCNx1azFXd+Bs7oNV3U7nhYbNquTvWV2apRtNJhsGPNT2TU9DymvO0A61LVgjeCiCHVKBBwV0fCq4Z/jP9UfBluR7uqs5LisOcF5r9au5n91n/P6UX+gtGM/++217LfXhq3fHCJK/LvqfbZYy/j7cT/ErXrQdd1ivtuwjv8r+w/3z7yR8Ul5rG0tZW1r6aBEie0d+9lqLefCwuVIkkS5rYZXa1dz9fgzqXe2MDl5TPB7s7l9Ly/XfMxtk78dDKOOJ38uf5l3Gr7i7unXsCi9JO77H4kIUUIQN4RTQiAYnXx/0jf4VlHbYVtbmm/K4sUj7hSlaQKBYFSh9tHuEiKVbwzNb6CGFratQJvPAIokBztOQeROH3pJFzY/KaS047yCpaxt2UZdVznETRPPp8HVxo6O/WztKGdcUh7g7+zU6unA6rENaPyb2veEvS8wZSLrlWBYJsBfp97Md1f9mrQmGbXejre+CW+bg4371+DRvLTo7RjzU/nEuRqP04EuzRTxc4a2BO0vM6KnUyIgSASQeohMgXIXLcr3INQp8XTlKgAuX/17dlkreW7hHWQZ0vi/sv8A8HzVe/x8yqV9jq8/frTtr4DfKVOSMo5bSx/G7nPxfuP64DIXFi7nu+PP4KfbH/Hvt/r9MAdNgI8aN+BD5aScRTHte23LNgpMWTxY9jIFpix+OuXbfS7/TsNXAHzWvEWIEjEiRAlB3JieMp5UYxJ6SddXW2eBQDDCOJga4tGCECQEAsFoQ+3nJrdneUfPm9qDoS+nRKR996TnDXyS0u0+uLjoRL434Wy2WffxYdPXnJSzCJNioN7Vwj8PrOI7Y08BusOL+2vrGSDQEnR1c3jXjXxT704kRen5JE3KpmBmLun6FNx1O3DVWcm0WmitbsRX14Z9byPvNP2P+rbdSEYdhpxkjLkpGHJTMOQkIxt1waDL/v5W0Nsp0ZPOCJ0/IHLZB3SLEnafMzhtl9XfdnVj+15OylkYnH7AUc+PSv/a7xijEdp5xKG6uvbbuxvJizUf8d3xZwTfhwpKqqYGz9X3dgWfxiJKNLrauHPXP4Pvd3ZW9CtKBAh8T7dZy8kxpZPF4X2t1BdClBDEjZ9M+RaZmRZaWmxRVVeBQCAQCAQCQeLx0feNbs/yjaFs+a704ZSItO9I/LrkiuBNaGgIZiCceFbqRGaldrfRzjNmht1spuv8N5Cv1HwS05i9mg9N09hjqyLbkBa8ac+IINoHhBavpuJS3ShJBpImZZOVVEiWNBmtpQJXfQdF3kmUltbibrLhqmrDVdXWvY00M48U1ZN7rIScnYTmU5GU6GJOT3Eh0L41QI2zKeLnsnudEac3ulrRNI0D9voIny/8u3AwoZh2n5Pzv+ruBtI+AOdKIER0U/sefrb9UaZYxoR1KtM0ja3WcorM2WRFKUHtiFA288c9z+NWvdxeclmf+5clmSZXO7eW/g2Ar4sejXnshxtClBDElaHskiIQCAQCgUAgGB76e/oeqfvGUNAzU0If0SnRfynw0Zmzgq9DO0/Eei2apveHFx9w9L7pjoRb9QZv/DP0KZxXsBTQgplqoQRFCdWLyxfeEtSoGJCNOszjMsjNmULupFY0n4qnxc5J0kz+u+19XA0deNsdVLaX8UjNk/g0H9WdZegzktBnWTBkW9BnWtjXXs3ENH/LVU+PbIxkxRwmStRF6O4B0OmL7KCweu1ct/l+Ts49IurnGwhftJSSa8xgkqUwOO3L1u1hLgmA9n4CS0O/t4HP93jF/wDYY6tiT/nLwfm7bZXctv3vZOhTerWq7YsPmzZEnN7m6aTcVhN8r0hyVLFHEI4QJQQCgUAgEAgEAkEY/WUU9BQhQnMcDhY5JBRdF8kpMUABJFCaMJASk4GWJXo0D46ubhkmxcAFhcsA2NVxoNeykiShk5Qup4T/xtksG+nwOiDks7V2lY5IiowhJ5kL55zP6mx/Bwyf04O7sZMp8ix27t+NvE/B09SJp6kTe1fm5Vn/u5BrZp9PQUEh7clenPY29FkWnjmwKuayFFsEp8S05HHs7DxAhaM+ipNkYH8ffxeQpwCCbUy3Wsv49c5/9Fp2n72uz+9mqIgRKG+JJGxBdzhoq6cj6vbcIcJNT0JLQgBu3fYwVc7G4HsZGVsUUUcQjhAlBAKBQCAQCAQCQRj9OiVChINkxczV488asn2HOyV6364MNL8iYMFP0cXeujpVP7A2z1dtvJc/zLgOICxYc2ryWG6YcC4Af9v/3+B0RZLxal5Q/c6CdH0yta5mFG/3Z28JuVmelzqZ4qRuF4Fi0mMem8FRk5dSNxUKOpPw2dx4mm14mm24u/5f31hPU1MjNc5mmlq2A3C/eRP69CR0mUno081+h0VGErIx/FhrmhbRKTHZUsTOzt5iS4BoORShqJpKu8dGhiEl4j6qHI1h70/JOZJ3G7/i7YYvKDBlRt1uh9feJfj4cHUFgUZzbkQqPQnFp/ko7dgfdb5b9WJSuluphgoSAC0eK60DaEV7OCNECYFAIBAIBIIhoLy8nF/84hd0dnZiMBj4xS9+waJFsaW7CwSHGv07Jbpvnv8y5wfk93GjOFBCyzMidW0LLceIhcBnydDH3iWq5xPyJMUYMVwxgM3nDN6UmuRuUUKSJM4uWEKZrTpseb2kw+FzoeLEKBtI1pnBFV4uEVjnb3N+xBhzLpIkccfUy/nt7qeDy3hULw6fy+++SDaiSzZiHt/9t7hu2g/xtHTy9o7VbNlSj6fVjrfdiau2HVdtO5MsRZTbygGQLQb06X6BQpduZlfuLlpsLcEQzwCn5B7J/+rXAmD19s546MtdAH5B4pnKd3ih+gPun3kjyTpTr2V6Ck9z04p5t9Hf1eL5qvejbrvD68Ao6/H6fMFMiUi5JACfNG/qc5xPVLzJytrVUed7VC8e1cuqhi85LXdxr/kfNW3ko6aNfe5D4EeIEgKBQCAQCARDgNFo5J577mHSpEmUlZVxww038M477yR6WALBoFD7CbpUQm5ShypPonvbfWdKDFSUuHXyxfy5/GVui7FrAsDi9Bk8yuvB99mGNA44Gvpcx9ZVJhLqlAjQ0/GhSHIw58Eo60npCuCMRJ4xE0PXjfWxWbN5ffHvOfvLnwPgUT19iiVeg0Zx8RSmpVrJytoBgOZT8XY48bTYOc58BLXbV/nFCqsTl60NV3UbAI/vfpStHeXUelvQpZrQpZnRpZmo1e3jQsPRvNDxKRh73066+hElvJrKC9UfAPBuw1eckXd0r2V6ZpZMCnGJTE0eyxZrWcRtd3jtGGQ9Np8Tt+rhrfov2NijTWtPzLKRl6o/osicwzEhWST/q/usz/Vcqoe/7HuZL1t3UG6v7XNZQd8IUWIUs3XrVm6/vTutds+ePbzyyitMnz49gaMSCAQCgWB0UlRUFHw9adIkOjo6ej1hFAhGCtOSxwMwxTIm4vzQ8o3Q10NBqMgRqXxjoF3cZqZO5LF5PxnQOoXmbL4z5hT+VfUuAFkxiBKBbAJTBFGiZ3eS0Kf3dp+zT1HCHFIiAGCQ9Vw/4Vz+vv+/uDW/U0IvKb3CLKG7dMWjdpdUSIrsd0SkJ3H01OP4oGAf4BcrPG0OvG0OPO0OJqVOZXdZA9S1BMtCAN6seY1aVzM1Xe1KdakmdMlGlC6nRoW3jHppMqrHh6zvLSp5Q8o7TIoBZ5ejIZSeokSuMSP4Ot+YyRYiixKdXntQwHGpHh4KCbaMhkv18OSBN4HuTAvov0zIrXnY1L4XgAP2un73I4iOECVGMbNnz+a1114DoLq6mu985ztCkBAIBALBYcu6det48skn2bZtG42NjTzyyCMsX748bJnnnnuOJ598ksbGRqZPn87tt9/OnDlzBryvDz74gOnTpwtBQjBiWZI1m3umX0tJ8tiI80NvGoeiHWio+6G/8g11gE6JwWIJyaCIpfSjrSs/IJJTwtxjWugxc6mePkWJnjfoQNiNt1N1h7UhDaW9q7zCGyXnIXRckiJjyLJgyPLnaSydeQq79rtxd+ajOjx4rU687Q6W5h/PVxWb2bqnCq/ViaexE09jd3bCJ9tW0ZCynZqaL5FNepQUv1ihWIwoFgOrlc9w1VlRkgw0pbbiTI8gSoQIAgZJh0VnYlnWPD5p3oRPU5GRwr4HgXmrGr6i3tUK0KtzRzSiuYJkSaavr5pb9QRdIb44fSdHK0KUOExYtWoVp556aqKHIRAIBAJBwrDb7ZSUlHD++edz880395r/1ltv8fvf/54777yTuXPn8vTTT3P11VezatUqMjP9NdrnnHNOxG2/+uqrKIr/5qm6upr77ruPxx57bPg+jEAwzEiSxIL0qVHny2HlG0PrlFBCu28MgVNisISWjhSZsrl07Mk8W/le1OVb3V1OCdnQa16mIZUbJpxLkTkH6P0Uvi9RIuLYukSJDo/fCWFRTLRJnXh7uCXKbTWMNeXiUXu7KKC3WBJKvasVh+rPq1CSDChJBoz5qZx+1AqyWyfx1a42NE3zCxadLnwdLrwdTsYYiilWJqCzrcPb6ULtIVq8sPt5Glv9pSQvsoHt2Z9Qp1ajJBl4te4lXEaNZrkTe3MTitmA0ZKCzWbjnPwlfNK8Ca/mQ5Zk1JDPmmlIBWBD++7gNJuvd+eQgdDf99od4j7xqv2HewqiI0SJBBLPJzarVq3ijjvuGKqhCwQCgUAw4li2bBnLli2LOv+pp57ioosu4oILLgDgzjvv5OOPP2blypVcddVVAEEHYjQ6Ozu54YYbuOOOOxg/fvygxyrLB+ewCKx/sNsZjYhj0zexHh+dFu5mONjjGXqTrlO6t21UdL23HfJ2OP+OOkUX9vqScSfxeds2yjsi5we0ef2ihEVnijiuc4uOC77uKR6k6rtFieOy5pBlSOO/tZ8CkT+jUdEDYPX5nRBJOhOGroDHUF6o/oAXqj/goqITIo7ZEhIy2TPMs9LREHQCjDHnBDti6BUdZp1feAkIFpbkZJy5fsfDjMIj+O7Ec3jhsx3dokWHE5/Njc/uZkrKTErLG/HZ3fhsbra1loFPxdti5/n2V9nZUYFJMeLsGkuHYuQPa+6mzdtJTccWvsysp4EWNKOCbNYjGxRMU22ktPpoUNuRjAqyQYdsUJCNOiS9ErNr7ZH9r3H1hDMxyLqw3JRIhHYZ6fn3jIb43YmMECUSSDyf2LS0tAxKzBAIBAKB4HDA7XZTWlrK9ddfH5wmyzLHHHMMmzZtimkbPp+PW265hQsvvJAlS5YMeiw6nUxWVvKg1w8lI2NgbQ0PJ8Sx6Zv+jo/b1x1mmJ2VQoo+9nabkZAVKfj/rMzu7392RgpZaeH/Hoy13bcwQ/VvJRLp9m6hINViIiPDglHWB6f9YMY3eHB7d2ZBe5dAkJOW2u+4fD1KBsZkZMF+/+vs5FTSQlqSRtpWlsdfTmLH7wZINSYh9e6sGaTO19xr2lVTV1CY3Z3VkGNKp8JWH7aOR/NiVPTce+S1XPLJ74LjyZPSw7aVbkymztECgKTvHnOoyyLAp9SQNb7bhaNpGprbh8/mpsnuJsM+GZ/Dg87pQXV4SNfMTC6awIGWWtRmH/a2dlwOK74Q98felk3M16XwxoGtQfdIEElCCggUOhlZp/iFCp3sf69XkHQKkl7mGd0LPKt7kVvmfhN7eRN21YkkS0iyjKTIIEv+94qMw2nF2+lCkiXcmhOfy+MXPyT/PgOfHwkMOv/3RvzuREaIEgkkHk9sAN55550hKd0QT22GD3FsItPzuIjj0xtxbKIjjk10xLHpTWtrKz6fj+zs7LDpWVlZVFRUxLSN1atX88UXX9DU1MSLL74IwL/+9S9SU1MHNBavV8Vq7ePuIgZkWSIjw0Jrqw1VFbXOoYhj0zexHh9fyJPh9lY7biW2J8VRt+fz70tTwdrWbbu3Wd00ezvDlrU7ujMImpvD5w0lTlu38OK0e2lttWEMCZ1ckXE0D0srgwGTzU4rAD5H/+MKFXUuG3sqBnf3dvVePTq63SKRtuXs9K/fZPfvU6fqsHmjlyvsaq0Me//aUfdgVoxYrd0tPdOVZCroFiXK2mtweF0YZD1Oa7croLm5E6ctvFzhyPTpvO7wd6uwOuw0NXVEHUuA+WlT2Ni+B0mSkIw6ZKMOfWbvMpZJlkKunHcdlfYG1mzoYF7SJLY3ltFp60R1elHdXo6feDKyF75Kr8NnbUB1e1Fd/nma24fq8uKz9j4+OlkXsfTij+seQtVUXL7eeRcBHvn4r9S1lALQGuLsiIQxzYLnNA+dne5B/+6kpprRRwgOHQ0IUeIQZSie2AQYitIN8dQmPohj041er/T6zonjEx1xbKIjjk10xLHpn4F0z1i+fDmlpaVDst+hullWVU3ceEdBHJu+6e/4hMU6qBKqdLDHskuU0DQkrfvfnILSaxxqyM6H828Y2lVEQUZVNSpt/g4cEhKqqnHjxPN5sPwlgGAXCaNs6HdcgW4YUyxj+PaYkzlg7xYDLIqZ03KPYk3zNs4pWBJxW7qu2zhrV7hmzw4dPalztYS9N0r+MRql7vUy9OECaoOzFa/mI1lnxiB1O0RUVQt7LyNx9fgzkfTw2oHPcPk8uHz9ZywUmrL7bdcJ3cdeQUaSJDS97L/JT+7++xx95BKSFBOvZ+/A2RlZSNZUDc3rQ/OoqF4fmlclVTPR5uxA9fj887wqmsfHGF02LU4rHW4bmk9FUzVQta7XKqganSYJgzEVfBoKCnpV7/+HoXUFt2oE3xvSk1AURfzuREGIEocoQ/HEBqCmpoaWlhZmz559UOMRT22GF3FseuPx+IJPBsTxiY44NtERxyY6Q3VsRtNTm4yMDBRFoampKWx6S0tLr3OxQCAIDwGUh7jLTGhnCp3U+zdG0yJ3SxhqQvcdGFPgc59b4C/ROi1vMQ7VxaP7Xw8ua44QdNmTQAaBoascJBDUCJCsM5OsM/Pg7N7l3QEC3TcC3TXMcvTAyr4IbU2aaejuMKKXdLi7MhOMsr7X38EY8hmNsgGTYuDiicv9ooTqwa166I9IXUoiEcgbCYSeRspvCLSODf08vbYjS0gGHRgI+lBSDek43b2/Y7mWMShuK4rHGnV7bUAus4Jj1NCQkSN280hSjMjy0AbCjiaEKDHCGGi/88LCQt5///0h2bd4ajP8iGMTTq8nI+L4REUcm+iIYxMdcWy6MRgMzJw5k88//5wTTvAHwqmqytq1a7n88ssTPDqB4NBmqLtvhDoUIt1kanFqvxguSvhf/37h1azat57LxnaXRicr4XkafXW0CBBoZxno8GFRugMnU5T+8zn0IS1B/fs09bV4TIQKI2bFgMfrFyUMsj7YHaQ4qRAI7zASCN0MlLa4YxYlYhtzQPQKtId1+dy41PCyisDfSh+hW0tf6KKIGO1eW0yfIUDgO1loyqLK2dhrfuh3WtAbIUocoognNgKBQCAQDC02m40DBw4E31dVVbFjxw6ys7PJycnhyiuv5LbbbmPmzJnMmTOHp59+GqfTyXnnnZfAUQsEhz4yQ+eUkAh3SugjOCXUOIkSSgSnxPysKYyjIEzQNfUonUjVxV4aFxAXQh86GvspxYBuh0WA/so3YiEtZNwm2YAVf2CkUTagkxVeX/z74DExKd37D4R/BsQJt+qN6YY+FvEGup0Sge9Cmb0mbL5e0gWPn6EPp8SJ2Qv5oOnrsGm6KIJag6s1prH1pMicHVGUEPSNkGwOUUKf2AQIPLGZN29e4gYmEAgEAsEIZdu2bZx77rmce+65ANx9992ce+65vPDCCwCsWLGCn/3sZzz00EOcc8457NixgyeeeCLY8UogEERmIC7e/tDoWb4RwSmhJc4pEQlTj3KNgKtgoPsIEMvn6ynWmBUjR2XMjHm/kQh1W+jlUNHB/zcwyPrg3yb0eAQ+f6Cko7RjHw+Vv9Lv/oyyISYHQeD7Fem74B9r91hCxZpz8pdwdMgxiSTcRNpmun7wOXpjzXkRp0cq6RB0I5wSCUQ8sREIBAKBIH4sXryYXbt29bnMpZdeyqWXXhqnEQkEgkiEiRJy75v2OanFvN3wJfPSpgzrOEL3He2JOoTnKyQr5ohjjmUfN0w4lw+avo7pc+l7OCWSFBN3lFxOp9fBRet/HfP+AY7JnMUXLduZbCkMTgv9Gxj7ycgIzA91T2xo393vfg2yDr2s4FLDb9iz9Kk0R8hyiHZcfSEZI6ECxfUTz+Xt+i9Y2+oPIJYjCECRRKGBlG305Mj06QC8XPNx2HQ1TkLaSEWIEglk27ZtXHbZZcH3d999NwA33XQTN998MytWrKClpYWHHnqIxsZGpk+fLp7YCAQCgUAgEAhGLRLhGRVKBDHg+Oz55BjTmWwpGtaxKGFhnn04JUKewKfqB9bVKDQD4eyCJZzdFaDZHz3LFFJ0ZhRJJm2A+we4Y+rl+DQVt9Z9Mx762XuWivQk8PcyKH0v1xO9rEMv6XARLgJkGsJFiUD5RqTvAnTnakDvTInQsUcKSI20TXuP1p53Tvsuv975j4j7ztCn0Orpbn9qVoycV7C0tyghnBJ9IkSJBCKe2AgEAoFAIBAIBN0lAP3dAIPfzj8rddJwDynsBrcvp0Ro+cZA8iT82x3c7VjPm29LDOGY0ZAkCZ2kENrVNdwpEflvUmwposxWTaY+JbjO8uz5fNS0MbhMkSmbYzNn82LNR73WN0g6v/uhRzONLEMae2xV3eMbwGfJM2aGjT907L4QYWB59nxOyT2Spw+83e82+yrHyTSkhokSJsUQOQdFOCX6RIgSAoFAIBAIBAKBYMA8Me+nqEPUnvPnUy/lL+WvctPE84dke0OB0o9jI0CoUyJNH1ueRI4hnUZ3G+OTImcQ9EfPriTJusGLEgEUSeGsvGPIMqSxtnVbcLoxigPigZk38FHTJmalTgxO+3nJpSzLmsdvdj0FwDcKj+f0vKMiihIBp0RPskK6gMDAMkvOK1hKu7eTk3OOAMJFrlBh4KdTLgHgKe2tXtu4Z/q1/G3fSqqcjXxnzCkRSzwCZOpTKAt5b+oKBe2JECX6RogSAoFAIBAIBAKBYMCMMecM2bYmJBXwwKwbg+8z9Cl9dlKIB7EGXWYZ0oKvzXJsbS7vn3UDnzVv4+z8Ywc1NkWS0UkKXs1vM4j0ND9Dn4JH9fLHmdfjVN38YfezNLjb+tzujZP8otBXbTuC06I5JUyKkdPzFvferyEl+Dqzh8AQikHWRbzh77mONACvhFHR870J53S/DxMlegtokdrLLkifyhPzfxp8v89WG3V/Y8y5rGvbGXxvUgwR3S+ifKNvhCghEAgEAoFAIBAIDimeXXg7AzPuDz2RWoJGXq57Xp2rJaZt5xkzOb9w6eAHh7+EIyBKWHS9xZDjsuZy/YRzgk6DGSkTaWje2Gu5SCjEHnTZk0x9asTXPdFLurBgSoBcYwazUiaGTZuUVMhgCf0b+iKIErG0l43kfJhqGcuC9KnMSS1mZe3q4HSTbIj6XYlX15iRiGgJKhAIBAKBQCAQCA4pFEnpUwiIB7E6JQDOzDsaIKyUYbgJOElkZMyysdd8ifDSh0iugGgMJOiyJ2khLTV7lmKEYpD1wfINGZmH5/yQJ+f9lKSQ1qSn5h7J5eNOG9D+Q5FDPv/U5LEATEseF5wWS/lRpIyIh+bcwhXjTu9V4qOXdWFBraFEEkUEfoRTQiAQCAQCgUAgEAh6EGtLUPC3n5yTNpnF6TOGe1hBArkSFp0pYu5Cz7KHgZQQyGFBlwO7ZQwtuwkVKHqil3VBsUeRJIq7uqmEZnRcVHQCZqW34BIrocfgzPyjSdNbWJA2NTgtFvdCz/yOUEJFCVM/jpKBiEKHG0KUEAgEAoFAIBAIBIIeDMQpoUgKS7PmDveQwsg2pNPkbqfDa484v6dOMZDygfDuGwMr3wC4feplOFV3n24XvaQL3qjLUW7uIwVhhnJh4QnMT58SdX5qSNaGIikcnz0/bH5M5Rs9xvDrkiuDr+UBHCfhlIiOECUEAoFAIBAIBAKBoAe6GLtvJIpx5lx2dlb0sURPp8RARIluEWag5RsAS7Lm9LuMXtYFxyQTuQVpX50v7pt5PbNTi/vcR5E5hx8WX8gEc37E+bG4F0LHcPPE8zk6c2bwfagTI9ThEYmh6lQzGhGihEAgEAgEAoFAIBD0INagy0QxyVIIjdHn9yzoGKxToq/yhYPBIOuCN+qh2Q+hjoNo+z4z75h+BYkAp+YeGXVeTJkSIWOQe4gkoeM29OPqEG1BoyNECYFAIBAIBAKBQCDowUDKNxLBabmL2WotZ1mUspHemRKDFCX6udkeLHpJFxRK5LBgze79RXNKDJVIFItQEOqY6ZktEurwUEIySMyyEYfq6rEv4ZSIxqEn+QkEAoFAIBAIBAJBggkNj+wv6DIRmBQDd5RcztLseTEtf8XY00nTWbh96uX9LhvulBg6QcYS0lnDX77R5ZQIEVBCj3u0fUfrcDFQYinfkMPKeMLHE9Z9I+TW+oVFvwkTLGBgotDhhnBKCAQCgUAgEAgEAkEfHIpOif7o2ZFjoqWA/xxxZ0zrKmHugIP/7H+Z/QN2dOznrPxj/5+9+w6PotweOP7dmt4bIYQSIKGEEHoHwY4NG9Zr74rlei3X3rvXggVRRK+9oV79KVZQqtI7IQXSIL3Xze7O749kN7tJNnWzm3I+z8OjmZ2deefNZmfmzHnPy6mb77Luw2QdvtFykKHpjX1L7euKjgYKmu7XNhvFrjioRoeP1tOuCGl9pkTPC271BBKUEEIIIYQQQohWOOvJvCs1nyS0/dTYTofa9aDESN9BjPQd1Gy5ZfhE05v9cyPnUWqsbHGq05bW76yODqloGpxS22XT2L/WtIaHWVG69DvpyyQoIYQQQgghhBCtcMaNuas1rSnREd1Z6HJCwEhrBoRl+EbTtl479IzW2+ekjINBXuEUGErbvX7TYIi6AzO0mBUzGnrf58gVJCghhBBCCCGEEK3oibNvtM05QQlnB2SeGn2dNQPCUaZEWzROqnNx14gLWXX0T3aVpZBSmd3m+uommRu2wZG2smlMiiIhCQd641+XEEIIIYQQQrhMbwxKNL2B7ojuDErYDskwt1FToqnbYs4jVB/AqeHTnNKWEH0A1w49g0Cdb6feb3ssbX1GFGT2DUckU0IIIYQQQgghWuGo4GJPdF/sP/gs6zcWRc7p9Da6c/iGLUuhyfYONTk1YjqnRkx3ejvaMTNow3r2K6rtghJNako0KaJpau9O+iEJSgghhBBCCCFEC+4ZeQn5tcV4aHTubkq7zQ0Zz9yQ8V3aRndmStiyZEpoupDV4UpNAw22wao2MyU6WFSzP+k9IT8hhBBCCCGEcKH5oRNYHLXA3c1wOdun/t0ZlJgaNBqASYGjum0f7TEuIAaAqYGjW13P3CxTwnFQomlehGRKOCaZEkIIIYQQQgghrOyHb3RfUOLmYWczNWg004LGdNs+2uO8yOMY5BnOhICRra7XPFOitZoSSpOfJFPCEQlKCCGEEEIIIYSwUtsN3+i+W0ZPjQdzujjUxBm0ag2zQ8a1uZ65aVDCLlOi9eCNZEo4JsM3hBBCCCGEEEJYuaqmRG8Tqg+w+1ndyuwbTWMQZqkp4ZBkSgghhBBCCCGEsNLgmuEbvcWKxHtIqshkjN9Qu+UdKXTZtB6FaCRBCSGEEEIIIYQQVrZDEXrTdKjdJcorjCivsGbL7TIlaFro0j4IIZkSjsknTAghhBBCCCGEle1Tf1Uvma7THewzJVrPKGlaj0I0kqCEEEIIIYQQQgirtoYiiHqt1pSQTIl2k0+bEEIIIYQQQggrCUq0j/3sG1JTorPk0yaEEEIIIYQQwkqCEu2jpjFTQt1mUEIyJRyRT5sQQgghhJNUV1czf/58XnjhBXc3RQghOq2tG2xRT9XK8I2mTBKUcEg+bUIIIYQQTrJs2TISEhLc3QwhhBAupm1S6FJpMlyjaY0J0UiCEkIIIYQQTnDkyBHS0tKYN2+eu5sihBBdIvUPOq5ppsRJ4VPsfpZMCcckKCGEEEKIPm/Lli3ccMMNzJ49m7i4ONasWdNsnY8++ogFCxYwbtw4Fi9ezO7duzu0j2effZZ//vOfzmqyEEK4jTzV77imQYkbhi7iP/G3cGr4NKB55oRopHV3A4QQQgghultVVRVxcXGcc845LFmypNnrP/zwA08//TSPPvoo48eP5/333+eaa65h9erVBAcHA3DWWWe1uO1Vq1axZs0ahg4dyrBhw9ixY0e3HosQQnQ3yZToOE2T4RtatYYxfkP5PX87IJkSrZGghBBCCCH6vHnz5rU6rGLlypVccMEFnHvuuQA8+uijrF27lq+//pqrr74agG+//dbh+3ft2sUPP/zATz/9RGVlJUajEX9/f6677jrnHogQQriAZEp0nKPioJbl0qeOSVCij7j11lvZtGkTs2fP5qWXXrIu//XXX3n++ecBuO2221i4cKG7miiEEEL0SAaDgX379nHjjTdal6nVambOnMnOnTvbtY0777yTO++8E6jPnEhLS+tSQEKtVrW9Ujve39Xt9EXSN62T/nGsf/VN4w10e463f/VNy7RqTYvHr2mYocOkmPt1/7RGghJ9xCWXXMKiRYv47rvvrMuMRiPPP/88H330ERqNhgsuuIATTjgBvV7vxpYKIYQQPUtxcTEmk4nQ0FC75SEhIaSnp7u8PVqtmpAQX6dsKyjIxynb6Yukb1on/eNYf+gbr7LG+4WOfB/1h75xJMDXq8W+8j7mAYBZMffr/mmNBCX6iGnTpvHXX3/ZLdu1axdxcXHWi6yEhAS2bdvGjBkz3NFEIYQQoldRFMVuDvr2Ouecc7q0X6PRTFlZdZe2oVarCAryobi4ErNZUoZtSd+0TvrHsf7UNxWVNdb/LyysaHP9/tQ3jlRX1bXYV4ZaI1Bfp6Mr/ePv74VOp2l7xV5IghIusGXLFlasWMHevXvJz89n2bJlzJ8/326djz76iBUrVpCfn8/o0aN54IEHujzPeV5eHhEREdafIyIiyMvL69I2hRBCiL4mKCgIjUZDQUGB3fKioqJm2ROu4qyLerNZ6bc3CG2Rvmmd9I9j/aFvNDTe/HbkWPtD3ziiUdQtHrtKqQ9umxVzv+6f1khQwgW6u+K3RtM3I2ZCCCGEK+j1esaOHcvGjRtZsGABAGazmU2bNnH55Ze7uXVCCOF6C0InsrloH6dETHN3U3qNplOCWlgKXZql0KVDEpRwge6u+O1IeHg4ubm51p9zc3OZPXt2h7djIUW3uo/0Tcua9ov0T3PSN45J3zjWH/umsrKSjIwM689ZWVkcOHCA0NBQwsLCuPLKK7n77rsZO3YsCQkJvP/++9TU1HD22We7sdVCCOEenho9j42+2t3N6FUczb6hojFTQrRMghJu5oyK344kJCRw8OBBCgoK0Gg07Nq1iyeffLJT25KiW64hfdNIp9M0+8xJ/zgmfeOY9I1j/alv9u7dy2WXXWb9+YknngDglltuYcmSJSxcuJCioiJeffVV61DKd955x5qxKIQQQrSu5UC/WmUJSkimhCMSlHAzZ1X8vu6669i9ezfV1dXMnTuX5cuXM2rUKP71r39x8cUXA3D77bfj4eHRqXZK0a3uJX3TXF2dyVosSPrHMekbx6RvHHNW3/SmolvTpk0jKSmp1XUuvfRSLr30Uhe1SAghRF/iKPdQLZkSbZKgRA/V0Yrfy5cvb3H5SSedxEknneSUNknRre4nfWOvaV9I/zgmfeOY9I1j0jdCCCGEczi6d7PWlJCghEMtD3wRLtMTK34LIYQQQgghhGg/lcPhG1Losi0SlHAz24rfFpaK34mJie5rmBBCCCGEEEKIdlE7ypSQ4RttkuEbLiAVv4UQQgghhBCi/5FCl22ToIQLSMVvIYQQQgghhOi7HA3fUCE1JdoiQQkXkIrfQgghhBBCCNF3qduaElRqSjgkNSWEEEIIIYQQQoiukJoSnSZBCSGEEEIIIYQQogtaDkk0zr5hkpoSDklQQgghhBBCCCGE6IK2pgRVJFPCIQlKCCGEEEIIIYQQnTDYKxyAId4DWnx9qPcAPNQ6YvwGurJZvYoUuhRCCCGEEEIIITrhtYR/Um6sIkTv3+LrY/yG8s30JwkPDaCwsMLFresdJFNCCCGEEEIIIYToBL1a6zAgYaFRaVzUmt5JghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItVIqiKO5uhOj5zGYFk8nc5e3odBrq6kxOaFHfI31j79Chg8TGjrL+LP3jmPSNY9I3jjmjbzQaNWq1ykktEhZyzu1+0jetk/5xTPrGMemb1nW1f/ryOVeCEkIIIYQQQgghhHALGb4hhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCgh2u2jjz5iwYIFjBs3jsWLF7N79+5W1//xxx855ZRTGDduHGeccQZ//vmn3euKovDKK68we/ZsEhISuOKKK0hPT7dbp6SkhDvvvJOJEycyZcoU7r//fqqqqpx+bM7g6v7JysrivvvuY8GCBSQkJHDCCSfw2muvUVdX1y3H1xXu+OxYlJSUMHfuXOLi4qisrHTaMTmLu/rm999/59xzzyUhIYEZM2Zwzz33OPW4nMEdfbNr1y7+8Y9/MGnSJKZOncr1119Pamqq04/NGZzdPz///DNXX30106ZNIy4ujkOHDjXbRm/6Tu4PnP0Z6Es60jfJycksWbKEBQsWEBcXx4cffujClrpHR/rn888/5+KLL2bKlClMnTqVq666ij179riwta7Vkb759ddfOffcc5k8eTKJiYmcddZZfPPNN65rrIt19DvHYvny5cTFxfHss892cwvdpyN9s2rVKuLi4uz+jRs3zoWt7YEUIdrh//7v/5SxY8cqX375pZKcnKw88MADypQpU5TCwsIW19++fbsyevRo5e2331ZSUlKUl19+WRk7dqySkpJiXeett95SJk2apPzyyy/KgQMHlBtuuEE54YQTlNraWus6V199tXLmmWcqO3fuVLZs2aKceOKJyl133dXtx9tR7uifP/74Q7n33nuVdevWKRkZGcqvv/6qzJgxQ3n++eddcszt5a7PjsWSJUuUq6++WomNjVUqKiq67Tg7w119s3r1amXKlCnKp59+qqSlpSmHDh1Sfvrpp24/3o5wR9+Ul5crU6ZMUe677z4lLS1NOXjwoHL99dcrxx9/vEuOuSO6o3++/vprZenSpcrnn3+uxMbGKklJSc2201u+k/uD7vgM9BUd7Ztdu3YpzzzzjPL9998rs2bNUj744AMXt9i1Oto///znP5UPP/xQ2b9/v5KSkqLce++9yuTJk5Xc3FwXt7z7dbRv/v77b+Wnn35SUlJSlPT0dOW///2vMnr0aGXDhg0ubnn362jfWOzdu1eZP3++csYZZyjPPPOMi1rrWh3tm6+++kqZOnWqkpeXZ/2Xn5/v4lb3LBKUEO1y3nnnKY899pj1Z5PJpMyePVt55513Wlz/tttuU66//nq7Zeeff77y6KOPKoqiKGazWZk1a5ayYsUK6+tlZWVKfHy88uOPPyqKoigpKSlKbGyssmfPHus6f/zxhzJq1Kge94frjv5pydtvv62cdNJJXTkUp3Nn33zxxRfKhRdeqGzcuLFHBiXc0Td1dXXKnDlzlM8//9zZh+NU7uib3bt3K7GxsXYX2tu3b1diY2PbvOhyNWf3j63MzMwWgxK96Tu5P+jOz0Bv19G+sTV//vw+H5ToSv8oiqIYjUZlwoQJyv/+97/uaqLbdLVvFEVRFi1apCxdurQ7mudWnembqqoq5dRTT1X+/PNP5dJLL+2zQYmO9o0lKCEayfAN0SaDwcC+ffuYNWuWdZlarWbmzJns3Lmzxffs3LnTbn2A2bNnW9fPysoiPz/fbh0/Pz/Gjx9vXWfHjh0EBgYSHx9vXWfmzJmoVKp2p4u5grv6pyXl5eUEBAR0+liczZ19k5GRwcsvv8xzzz2HWt3zvurc1Tf79+8nNzcXlUrFmWeeyezZs7nhhhscDn9xB3f1zbBhwwgMDOSLL76grq6O6upqvv76a8aNG0dwcLBTj7EruqN/2qO3fCf3B+76DPQGnemb/sQZ/VNdXY3RaOxR1xvO0NW+URSFTZs2cfjwYSZNmtSNLXW9zvbNM888w7Rp05gzZ44LWukene2biooKjjvuOObNm8dNN91ESkqKC1rbc/W8K3XR4xQXF2MymQgNDbVbHhISQn5+fovvKSgoICQkxOH6lv+2ts2WtqHVagkICKCgoKDzB+Rk7uqfpjIyMvjwww+58MILO3Uc3cFdfWM0Grnrrru47bbbiI6OdsqxOJu7+iYzMxOAN954gyVLlvDGG2+g0+m47LLLekxtAHf1ja+vL++//z6rVq1i/PjxTJgwgZ07d/LGG2845bicpTv6pz16y3dyf+Cuz0Bv0Jm+6U+c0T8vvvgikZGRTJ8+vTua6Dad7Zvy8nImTJhAfHw81113HQ899BAzZszo7ua6VGf6Zs2aNWzevJm7777bFU10m870TUxMDE8//TTLli3j+eefx2w2c9FFF5Gbm+uKJvdIEpQQnaYoCiqVyuHrLb3WdFnTn5tus6VttLXfnsIV/WORm5vLNddcw2mnncY555zTyRa7Tnf3zbJlywgKCuL88893Qmtdq7v7xmw2A3DjjTdy4oknkpCQwLPPPktZWRlr167tYuu7V3f3TU1NDQ888ADTp0/n888/5+OPPyYyMpKbb74Zo9HohCPoXs7on7b05u/k/sAVn4HeSj6nrWtv/7z99tv88MMPLF26FL1e74KWuV9bfePj48M333zDl19+yR133MFTTz3F1q1bXdhC93HUN0VFRTz44IM899xzeHl5uaFl7tfa5yYxMZEzzzyTUaNGMXXqVJYuXWrN1OyvtO5ugOj5goKC0Gg0zZ6EFRUVNYsKWoSGhjZbv7Cw0Lp+WFgYUP/00jYtuqioyJoa3NI2jEYjZWVlzZ72uJO7+sciNzeXyy67jMTERB555JGuHo5Tuatv/vrrL7Zu3cqYMWOA+hMDwJQpU7j11lu54YYbnHB0XePOvyuoH6pg4e3tzcCBAzl69GgXj8o53NU33333Hbm5uXzxxRfWC4n//Oc/TJkyhY0bNzJ37lznHGAXdUf/tEdv+U7uD9z1GegNOtM3/UlX+mfFihW89dZbrFy5ktjY2O5splt0tm/UajVDhgwBYPTo0aSmprJ8+XImT57cre11pY72TXJyMvn5+Vx00UXWZSaTiS1btvDhhx/2qdlbnPGdo9PpGD16dI8aSutqkikh2qTX6xk7diwbN260LjObzWzatInExMQW35OYmMiGDRvslm3cuNG6/qBBgwgLC7PbZkVFBbt27bKuM2HCBEpKSti3b591nc2bN6MoCgkJCc45OCdwV/9AY0Bi7NixPP300z2udoK7+uapp57i22+/5ZtvvuGbb77hiSeeAODTTz9l8eLFzjvALnBX34wbNw6dTmd34qupqSEnJ4eBAwc65+C6yF19U1NTg1qttnuyYfnZEtjqCbqjf9qjt3wn9wfu+gz0Bp3pm/6ks/3zzjvv8MYbb/DOO+/02akLnfXZURQFg8HQDS10n472zbhx4/juu++s12HffPMN8fHxnH322axatcqFLe9+zvjcmEwmkpOTrQ9Q+iWXldQUvZplqptVq1YpKSkpyoMPPmg31c1dd92lvPDCC9b1t23bpowePVpZsWKFkpKSorz66qstTs83efJk5ddff1UOHjyo3HjjjS1OCbpo0SJl165dytatW5WTTjpJ+de//uW6A28nd/RPTk6OcuKJJyqXXXaZkpOTYzetUE/irs+Orc2bN/fI2Tfc1TePPfaYMm/ePGXDhg1KSkqKcueddyrz5s1TKisrXXfwbXBH36SkpCjx8fHK448/rqSmpioHDx5UlixZosyYMUMpKSlxbQe0oTv6p7i4WNm/f7+ydu1aJTY2Vlm9erWyf/9+pbi42LpOb/lO7g+64zPQV3S0b2pra5X9+/cr+/fvV2bNmqW88MILyv79+5Xs7Gx3HUK36mj/LF++XBk7dqyyevVqu2uNnnZOdYaO9s1bb71lnZo9JSVFWblypTJmzBjlyy+/dNchdJuO9k1TfXn2jY72zdKlS62fm7179yp33HGHkpCQoKSmprrrENxOhm+Idlm4cCFFRUW8+uqr5OfnM3r0aN555x1rGvSxY8fsntJPnDiRF198kZdffpn//Oc/DB06lNdff53hw4db17n22muprq7moYceoqysjEmTJvH222/bjVF84YUXePzxx7n88stRq9WcfPLJPPDAA6478HZyR/9s2LCB9PR00tPTm6WVJyUlueCo28ddn53ewF19c88996DRaPjnP/9JXV0dEyZMYOXKlXh7e7vu4Nvgjr4ZPnw4y5YtY+nSpZx//vlotVri4+N55513elyV+e7on99//51///vf1p9vvfVWAJ5++mlrrZre8p3cH3THZ6Cv6Gjf5OXlsWjRIuvPy5cvZ/ny5Zx99tk888wzrm5+t+to/3zyySfU1dVZvxMsbrnlFpYsWeLStne3jvZNTU0Njz32GDk5OXh6ehITE8Pzzz/PwoUL3XUI3aajfdOfdLRvysrKePDBB8nPzycgIID4+Hg+++wzYmJi3HUIbqdSlB6UkyqEEEIIIYQQQoh+o3+Gs4QQQgghhBBCCOF2EpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hQQkhhBBCCCGEEEK4hQQlhBBCCCGEEEII4RYSlBBCCCGEEEIIIYRbSFBCCCGEEEIIIYQQbqF1dwOEEKI1S5cu5bXXXmu2fMaMGbz33nuub5AQQgjRR8k5VwjhDhKUEEL0eH5+frzzzjvNlgkhhBDCueScK4RwNQlKCCF6PI1GQ2JiYpvr1dTU4Onp2f0NEkIIIfooOecKIVxNakoIIXqlrKws4uLi+N///sfdd9/N5MmTueGGGwAoKSnhoYceYubMmYwbN44LL7yQXbt22b2/rKyMO++8k8TERGbPns2bb77Js88+y4IFC6zrLF26lGnTpjXbd1xcHB9++KHdsi+++ILTTjuN+Ph45s+fz9tvv233+r333ss555zDhg0bOOOMM0hMTOSiiy4iOTnZbj2TycRbb73FySefTHx8PHPnzuXee+8F4KOPPmLChAlUVlbavWfz5s3ExcVx8ODBDvaiEEII0TY55zaSc64QzieZEkKIXsFoNNr9rCgKAM899xwnnngir7zyCmq1GoPBwJVXXklZWRl33303wcHBfPLJJ1xxxRX8/PPPhIWFAfDvf/+bv//+m/vuu4/Q0FDeffddMjIy0Go7/rX4zjvv8NJLL3HNNdcwdepU9u3bxyuvvIKXlxeXXnqpdb1jx47x3HPPceONN+Lh4cFzzz3H7bffzvfff49KpQLgoYce4ttvv+Xqq69m6tSplJaWsnr1agDOOOMMnn32WX766SfOOecc63a//vprxo4dy6hRozrcdiGEEKIpOefKOVcIV5KghBCixyspKWHs2LF2y5544gkAxo8fz8MPP2xd/sUXX5CcnMz333/P0KFDAZg5cyannHIK7777Lvfccw/Jycn8+uuvvPTSSyxcuBCAadOmMX/+fHx9fTvUtoqKCl5//XVuvPFGbrnlFgBmzZpFdXU1b775JhdddBEajQaA0tJSPvnkE2u7FEXh5ptvJi0tjeHDh5OamsqXX37J/fffz2WXXWbdh6WN/v7+nHTSSaxatcp6gVRZWcnPP//MnXfe2aF2CyGEEC2Rc66cc4VwNQlKCCF6PD8/P1auXGm3TK/XA3DcccfZLd+0aRNjx45l0KBBdk96pkyZwt69ewHYs2cPgF3aqI+PDzNnzmT37t0datuOHTuoqqrilFNOsdvf9OnTeeONN8jJySEqKgqAqKgo68URwPDhwwHIzc1l+PDh/PXXXwB2T2SaOu+887jiiivIzMwkOjqaH3/8EaPRyOmnn96hdgshhBAtkXNuIznnCuEaEpQQQvR4Go2GcePG2S3LysoCICQkxG55cXExO3fubPaUB2Dw4MEAFBQU4OPj06xAV9NttUdxcTEAp512WouvHzt2zHqB1LR6uU6nA6C2thaofzrl7e3d6pOjadOmER0dzapVq7jttttYtWoVxx9/PIGBgR1uuxBCCNGUnHMbyTlXCNeQoIQQolezjAu1CAgIID4+nkceeaTZupYnPaGhoVRWVjarHF5YWGi3voeHB3V1dXbLSktLm+0P4K233mrxAmvYsGHtPpbAwECqqqqoqKhweJGkUqk499xz+fzzzznrrLPYtm1bswJfQgghRHeQc66cc4XoDhKUEEL0KTNmzGDDhg0MHDjQ4VMYyxOg33//3Tp2tLKyko0bN9pdmERERFBZWUlubi4REREAbNiwwW5bEyZMwNPTk7y8vGZprR01ffp0AL755hu7Yl1NnX322bz66qvcd999REREMGvWrC7tVwghhOgMOecKIZxBghJCiD5l0aJFfPrpp/zjH//gqquuIjo6mpKSEnbv3k1YWBhXXHEFI0eOZMGCBTzyyCNUVFQQFhbGihUrmqWWzpkzB09PT+677z6uvPJKsrKy+PTTT+3W8ff355ZbbuHJJ58kOzubKVOmYDabOXLkCH/99Revv/56u9seExPDBRdcwDPPPENhYSFTpkyhrKyMn376iZdeesm6XkREBHPmzGHt2rVcf/311qJeQgghhCvJOVcI4QwSlBBC9CkeHh7897//5ZVXXmHp0qUUFhYSHBxMQkKCXZGtZ555hkceeYSnnnoKb29vLr74YsaNG8dPP/1kXSc4OJhXX32V5557jptvvpmxY8fy4osvWp/0WFx77bWEh4fz/vvvs3LlSjw8PBg6dGiz9drj4YcfZuDAgXzxxRe8/fbbBAcHt/hU5oQTTmDt2rWtFugSQgghupOcc4UQzqBSLBMPCyFEP2eZj/z33393d1PadNttt5Gfn8/HH3/s7qYIIYQQHSbnXCGEhWRKCCFEL5KUlMTevXv55Zdf+M9//uPu5gghhBB9lpxzhXANCUoIIUQvcuONN1JcXMzFF1/MKaec4u7mCCGEEH2WnHOFcA0ZviGEEEIIIYQQQgi3ULu7AUIIIYQQQgghhOifJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxCghJCCCGEEEIIIYRwCwlKCCGEEEIIIYQQwi0kKCGEEEIIIYQQQgi3kKCEEEIIIYQQQggh3EKCEkIIIYQQQgghhHALCUoIIYQQQgghhBDCLSQoIYQQQgghhBBCCLeQoIQQQgghhBBCCCHcQoISQgghhBBCCCGEcAsJSgghhBBCCCGEEMItJCghhBBCCCGEEEIIt5CghBBCCCGEEEIIIdxC6+4GiN7BbFYwmcxd3o5Wq8Zo7Pp2+iLpG3uZmRlERw+2/iz945j0jWPSN445o280GjVqtcpJLRIWcs7tftI3rZP+cUz6xjHpm9Z1tX/68jlXghKiXUwmMyUlVV3ahlqtIiTEl7KyasxmxUkt6xukb5r7xz8u45tvfgCkf1ojfeOY9I1jzuqbwEBv1GqNE1smQM653U36pnXSP45J3zgmfdM6Z/RPXz7nyvANIYQQQgghhBBCuIUEJYQQQgghhBBCCOEWEpQQQgghhBBCCCGEW0hQQgghhBBCCCGEEG4hhS6FEEI4jaIomM0mlB5Q40qtVmEwGDAajVJ0q4n29o1KBWq1BpWqb1b7FkL0Tu4618h5xTHpm9a1p3/68zlXghJCCCG6TFEUKipKqawsA3rOxUhBgRqzWaYna0l7+0at1hASEolG0zcrfgsheo+ecK6R84pj0jeta0//9NdzrgQlhBBCdJnlItHfPxi93gPoGVF+rVaF0dhzgiQ9Sfv6RqGkpICysiKCgsJc0i4hhHCkJ5xr5LzimPRN69run/57zpWghBBCiC5RFMV6kejt7evu5tjRatWAPLVpSXv7xs8vkOLiPBTFjEolpaiEEO7RU841cl5xTPqmde3pn/56zu0/RyqEEKJbmM0mQGl4aiX6Go2m/vmFpOQKIdxJzjWiP+iv51wJSgghhOiSxkJjPWPIhnC2+t9rTyheKoTov+RcI/qH/nnOleEbQvRRiqJQWmeg0FBDeZ0Bk6KgU6vRqlToNRrC9F746/T9ssKvEEIIIYQQomeQoIQQfYTBbGJPaSE7i/M5VF5MWmUZ1SZjq+/x0WiJ9PJhsLcf4wJCSQgMJcLT20UtFkIIIYQQPcGKFW+xceN6Vqz4wN1NEf2QBCWE6MUUReFAWRE/52awoeAo1SaT9TVPtYYYH3/CPLzx0+nQqtQYFTN1ZjO1ZhM5NVUcq64kpaKUlIpSfs/LAiDC05vpwQNYEBFNjI+/ZFKIPuvJJx/hxx+/b7b8++9/JTAw0PUNEkII0ec8+eQjVFdX8cQTz1mX/fDDdzz//FPcccfdnHnm2Z3edllZKZdffhH5+Xn8/POfeHt3/sHSRRf9g/POu6DT7++tzjvvDC666FLOPbf/HXtPIkEJIXqpbcV5fJKexMHyYgA81BpmhkQyKTicMf7BRHn5om4joKAoCkWGWlIqSthdUsDu0gIOV5bx7dE0vj2axhBvP46PiObkAUPw0epccVhCuNTMmXO455777ZYFBATY/Ww0GtFq5XQphBCi67744lPeeOMVHnjgUY4//qQubeu5554kJmYE+fl5XW5XfUBDsmVbYjQa0Wg08qCuG8lVVh+XlpbGfffdR0VFBXq9nvvuu4/Jkye7u1miC3KqK1mWuoetxfUnoMHefiyKimF2aBTeHbxxUqlUhHh4EuIxgGkhAwAoNtTwR342v+dmklZZxruH9/NZxiFOHxjDmVHDCNBJ1WvRd+j1OkJCQu2WnXfeGZx55tkcOXKYdev+4JRTTuPOO+9h164dLFu2lKSkJIKCgjj++BO55pob0ev1ABQWFvDss0+wdesWwsLCuPHGJTz//FPcfPPtLFx4Btu3b+XWW2+we5q1YcM67rnnDtav32rd/59/ruXdd5eTkXGEsLBwzjzzbC666B+o1fW1qWfPnsy99z7An3+uZdu2LQwcGMW//nUf48cnWrexc+d2li9/g6SkA+j1HsTHj+OJJ57j008/ZO3a31i58mO7Y77wwrM566xzueiiS7ujm4UQQgArV77Nhx++x1NPPc+MGbO7tK3vv/+WwsJCrrnmBv76a2Ob65eVlfH66y+zfv0fGI1Gxo4dx223/YshQ4YCzYdvGI1Gli79D6tX/x9arZZzzlnM4cOpeHl5c//9jwBQW1vL8uVv8OuvP1FVVcmIEbHcfPPtxMePA+ozQl5//WXuv/9RXn31PxQVFTJ16jTuvfchfH3rp3Vds+ZX3n13OdnZWXh5eREXN5oXXngVtVptzTIZNmw4q1Z9jslkYuHCM7j55tvRaDQO2jCSm2++w9oGcHxOvPPOJeTkHOOll57npZeeB2D9+q3Wdt9zz4MsW7aUrKxMvv32Jx588B5GjRrDLbfcbt321Vf/g5kzZ3P11dcD9efou+++n7Vrf2fXru1ERQ3igQceRa3W8PzzT5KamsK4ceN56KHHCQoK7vwHoI+RoEQf5+HhwVNPPUVMTAypqancdNNN/PTTT+5uVo9VYzKSVlFKdnUlJXW11JnNeGo0BOk9GOLtzxAfPzRumjNYURR+yc3g7bS9VJtMRHp6c+WwscwIGeDUyG2Q3pNFUcNZFDWcw5WlfHf0ML/nZvJZ5iG+zU7lzKgYFkePxFMjXx+i7/r44/9y1VXXWS8ysrOz+Ne/buP662/i/vsfpbCwgBdeeBqj0citt94J1KfolpQU89prbwHw0kvPU1VV1aH97tq1k6eeeoTbb7+LcePGk5GRznPPPYlOp2fx4ous661c+Q633HI7S5b8kxUr3uLRR+/n88+/RavVkpGRzh133MyiRedx5533ArBly2YURWHhwjN4993lJCcnMXr06IZ97uDYsaOcfPKpXe43IYQQzSmKwtKl/+H777/lxReXkpg40e71//73XT74YGWr2/jggy8YMKD+AVJ2dhZvv/0mb7zxDrm5Oe1qw0MP3YuXlxcvvvga3t5efPHFZ9xxx8189NGXeHl5NVv/o4/e57fffubBBx8jKiqaTz75gC1b/mLu3PnWdV5++XnS04/w+OPPEBISym+//cwdd9zMxx9/SVhYOABVVVV89dXnPP7409TU1PDgg/fy4YfvccMNt1BQUMAjj9zPTTfdyty586msrGT79i127fjrr814eHjy2mtvk5mZwdNPP0ZoaBgXX3xZi2345ZfVdm1o7Zz41FPPc8UVF3P22eexcOEZdvutqqri008/5P77H8XHxwcfH5929TPAe++9w5Ild3D77Xfy8ssv8NhjDxEcHMwtt9yGp6cPDz/8b5Yvf4N77nmg3dvs6+Suoo+Lioqy/n9MTAzl5eUoiuKW9KNtRXnsyTqIuk4h3MObEb4BDPHxR+PmVKgak5F1+UdZk5fF/rJCjK3MweOl0TA1eADHhQ9iUlB4m8MjnMVoNvNm6h5+yklHDVwQHcuFg0eiU2u6db/DfAK4dWQiF0bHsiorlZ9z0/k8M5k1eVlcGxPv9ICIEK62bt0fnHjiHOvPxx13PACTJ09j8eKLrcufeeZxTjnlNM4770IABg2K5uabb+eBB+5myZJ/kpmZzt9/b+bddz8kNnYUAHfeeQ/XXHNZh9rz7rvLueyyqzjllNMAiIoaxOWXX8WXX35mF5Q4/fSzmD//BACuuuo6Lr74XLKzsxgyZCgffvge48aN57bb7rSuP3z4CAA8PT2ZOnU6//d/31mDEj/88B0zZswiODikQ20VQgh3eylpB5sLj7l0nzPCIrl95IQOvWfjxvXU1dXx2mvLmwUkABYtOpcFC05sdRuhofVZfUajkccee5BrrrmBqKhB7QpK7Nq1k6Skg/zvfz+h09UPx73jjrv48881bNy4nuOPb77vr776nMsuu4rZs+cBcNdd97Fp0wbr6zk5Ofzww3d8/fUP1vPHVVddw/r1f/Lzzz9yySWXA1BXV8ddd91nDaiceurpbNtWH3goLCzAZDIxb94CBgyIBGDEiJF27fDw8OCeex5Ar9czbFgMWVmZfPbZR1x88WUttuGKK65h48b11ja0dU5Uq9V4e3s3y5qsq6vjX//6NzExw9vs36Zsz9EXXfQP7rjjZq677iYmTJiE0Wjm9NMX8e23X3V4u32ZBCV6uC1btrBixQr27t1Lfn4+y5YtY/78+XbrfPTRR6xYsYL8/HxGjx7NAw88QEJCQrNt/fbbb4wePdptN5FfZCazu6TAblmgzoOZoZGcMXAY0d5+Lm2PwWzi+6OH+TwzmQpjHQD+Wj3xASFEe/sSrPdEp1ZTbTJSWFtDSkUpSeXF/JGfzR/52Qzx9uPiIXHMDIns1j6tMRl5cv8WdpTkE6Tz4L4xUxjt79p0r3BPb24YMY5zo0fwTtpeNhQc46kDW5gcFM7NI8cT5tE8wi5EbzB58jTuuOMu68/e3t5cd90VjBo12m69lJRkUlOTWb26sTCm2WymtraWwsJC0tOPoNPpGDkyzvp6XNxo68Vfe6WmHmLPnl2sXPm2dZnJZEZRzHbrxcSMsP6/5UK1uLiIIUOGkpKSzNy5xzncx2mnnckLLzzNbbfdQW1tHWvW/MYDDzzaoXYKIYRovxEjYikqKuSdd5bxwguv4unpafe6v38A/v4BDt5t77//fZfAwEDOOGNRu/efknKIysoKFi5cYLe8traWo0ezmq1fUVFBUVEho0ePtS7T6XR2AYO0tBRMJhMXXGDfDoPBYLeej4+PNSABEBISQnFxfT20ESNGMmHCJC677EKmT5/J1KnTmT//eHx8fK3rjxwZax0mCRAfP4433iigoqKiXW1o65zoiIeHR6cCEgDDhzcevyVYMmxYjM2yYGsfiHoSlOjhqqqqiIuL45xzzmHJkiXNXv/hhx94+umnefTRRxk/fjzvv/8+11xzDatXryY4uPHGNTs7m+eff57ly5e7svl27hszhQxzJceKy8msLCepvJh9pUX8cOwIPx47wszQSK4eNpZwF0xJebCsiBeTtnOspgo1KuaFRXFq5FDG+Ae3mv1QYzKypSiX/x1N40BZMU8f2Mq04AHcNCKBEA9Ph+/rLIPZZA1IDPXx5+Gx09waAAjz8OLfo6ewrTiPZSn1dS1u3b6W22MnWGtSCNGbeHl5MmhQdAvL7f/OqqurOOec8zn77PObrRsYGIii0GZw0lITAhqzsYxG+2l7q6qqufbaG5kzZ16r27IvvFm/X7PZ3PLKTcyePY8XXniG9ev/pLKyCr1ez8yZXRvbLERfkZ2dxZdffoYh0B/t9EncGpvotmGbom13xE0AOpa10FVarRqjsX3ftxYRERE8+uhTLFlyPXfddRvPP/+KXWCiI8M3tm/fyu7dO5k3bxpQPzQE4NRT53P11ddz2WVXNXtvdXUVYWHhvPLKm81e8/f3d7jPpuc1xSabuLq6Cq1Wy7vvfmRdT6NRYTIpdkMdmhaKVqlU1kC7RqPhlVfeZM+eXWzevJFPPvmAFSveYsWKD6w3847OrSpVy22w6Mhwi5Y0DRxB/XlcaZJR3fQ8DvbHbGmW/TJVs4cN/Z0EJXq4efPmMW+e44vTlStXcsEFF3DuuecC8Oijj7J27Vq+/vprrr76aqA+2nnTTTfx4IMPMmTIkE63Ra3uWjZAoNaDYUHBFHtVYjbX/0GX1tXyW04mq7JS2FBwjO3FeVwdE8+pkUO6JftAURS+zkrl3bT9mFGYEhzBNcPHtjtLw1utY17EIOaGR7GjOJ/Xk3fzV1EOh3YW8/DYacT6B3WqXZa+te1js6LwQtJ2dpTkM8zHn2fGz8JPp3e0CZeaEhLB+KBQ3kvbzzfZaTy+/28WRcVwZcwYpw4padovXf0M9kU9oW/6w+9l5Mg4Dh9OazGAATB06FAMBgPJyUnW4RtJSQepq6uzrhMYWP/9UFhYiLd3/cVSSsohu+3ExsaRmZnucD/tMWLESLZv38oVV1zT4utarZaTT17I99//j5qaGk4++dR2zS6iVqv6xe9a9G/fffcNBQX5fLPrL0JVNUwLGcDM0IHubpboAwYOjGLp0rdYsuR67r77dp577mXrjW9Hhm/cd9/D1NRUW5cfOLCfp59+jGXL3mXAgJY/q7GxoygoyEen0xER0fZDJF9fX4KDQ9i/fx/x8fXZ13V1daSmplhrRYwcGYvRaKS0tMS6TmcCNmq1mvHjJzB+/ASuuuo6zjjjRP76axOnnno6AIcOJWEwGKzZEvv27SUkJBQfH98W29BU2+dEHSZT+9ocGBhEUVGh9eeqqqoWM01Ex0lQohczGAzs27ePG2+80bpMrVYzc+ZMdu7cCYDJZOK2225j8eLFzJ7d+SdhWq2akBDftldsh6CgxshlCL7EDAjhH+PiWXlwLx8c2s9rybvINlbyr/FT0Kqd93RCURRe27uDD9MO4KHR8M+EyZw1dHingx8nhvoxZ9hg/rN7K98eSeWe3Rt4ZtocZg6IavvNDtj2zXsH97Kx4BjRvn68MfdEgluI2Lrbv8NmMPtYNI9t28Q32WkcqirluelzCfPqeraLTqdp9pmz7R9hz519YzAYKChQo9Wq0Gp73hNFR21SqVSoVC23Wa22X37ZZVdw7bVX8OqrL3LGGWfh4eFBamoKe/fuZsmSO4iJiWHKlGk899yT3H33fQC8/PJz6HQ667aGDh1MeHgE7733NldffT0pKYf44Yfv7Np41VXXcvfddzBgwADmz6+vb5GUdJBjx45y5ZWNF1QaTWP7LP/VaNRotWquuOIqLrlkMUuXvsiZZ56NWq3m7783c9ZZZ+PpWZ8BsmjR2Vx66YUoipk77vhXG783FWq1mqAgb7sUWiH6mqKiQrKzG28wKpNTqDaZrD+nVZRSUlfLxKDwTu/jt9wMhvoEMNy3fan6om+xBCZuvfUGu8BER4ZvDBxof51ZUlICwJAhw6wzOzU1efJUxowZy7//fSc33riEqKho8vPzWb/+D04//SzrDBy2zj13Mf/977tERQ0iKmoQn3zyAQZDrfW6efDgoRx//Ik89tiD3HLLHYwYMZKyshI2bdpIYuJEJkyY1Oax7Nu3l23b/mbq1OkEBgaxc+d2qqurGTy4sT21tbU8//xTXHLJ5WRmpvPBByu5+OJ/OGxDcXExf/+9ydqGSy+9gssvv5BXXqk/f6tUarZs+YszzzwbT09PIiMj2blzO/PnH49OpycwMNBheydMmMSbby7lr782ER4e0TDUUoL1ziBBiV6suLgYk8lkjZxahISEkJ6eDsCff/7J5s2bKSgo4PPPPwfggw8+aDVVqyVGo5mysuq2V2yFWq0iKMiH4uLGTAlbiweMIME7mMf3/s3Xh1M4WlbB/WOcF5h4O3UvX2el4qfV8di4GcT5B1FUVNnl7V43eCxhak/eSdvHvZvX8WTCTMYEdKzmQ9O+2Vmcz1v7d+Gh1nDfqMkolUYKKyu63NbuMEYfyNIJx/Hsga3sLy7kit9/5OH46V2+4KqrM1FYWH/MbX12+rOe0DdGoxGz2YzRqAA9Kx2xtac2iqKgKEqLr5vN9stjYkbyyivLePvtN7n22itQqzUMGjSIU0453bre/fc/yjPPPMYNN1xNSEgoN910Ky+88LTNtjQ89NDjvPDCM1x66QUkJk7kiiuu4dlnn7BuY+rUGTz99Iu89947vPfeu+j1OoYOjeGcc863a4/J1Ng+y39NJjNGo5mBA6N58cWlvPXW63z99Vd4enoxblwCp59+tnXd6OihxMWNwmQyMXTo8FafbBmNCmazmeLiKrRag91r/v5e6HTdW3C3t6murmbhwoWcdtpp/Otf/3J3c0QHZGTUXztNmzaT737IpuZoDlWVjdcJt+74A4AvZi7EqwMzUFVUlLNmze/4Rg3kpcr6oozfzznTiS0XvYltxsQ999zBs8++1OJQAWdSq9W88MKrLFv2Ok888QhlZaWEhIQyYcIkh/cEl1xyOYWFBTz66APodPVTgiYkJNoFpx944DFWrnybV199kYKCfIKCgomPT+CEE05uV7t8fHzYuXMHn3/+MVVV1QwcOJC7776fsWPjretMmzadsLBwbrrpGkwmI6eeegYXXtg4fXVbbRg8eIj1nPjtt43nxLPOOgeAq6++geeff4oLLliEwWCwm6K7qdNPP4tDh5J4+OH78PT05KqrrrMLZIrOUylNB8aIHisuLs6u0GVubi5z587liy++sCts+eyzz7Jz504++eQTp+27rs5ESUnHprZrSq1WERLiS2FhRas3T3k1VTy0dzNZ1RWcEBHNbSMTuzyUY/WxI7yWsht/rZ6nEmYy1KdjQZn2+CY7lXfS9uGr1fFi4hyivNqfWWLbN1V1ddy0bQ15tdX8K24ix4UPcnpbu0Od2cxrybv4LS8TL42Wh8dOIz6g89X8Fy1ayDff/AC0/7PTH/WEvjEajRQUZBMaGtWuYQCu1JlUUmc67bTjufnm25tNNeZuZrOZxYvP4uKLL+Occ5rXybDV2u83MNBbghJNvPTSSxw5coTo6OhOByVcec7tjxz1zf/+9zVbtvzF4sUXc/2Pn1N+8BA3XvgPbjrpDKpNRs7fWH9OWjn1xA7Vd3rvvRWkpiZTUmfg0OyJ6AL8e3RQoqd+dnrKucbd5xV3MRqNLF58FueffxEXXXRpi+s4u2+efPIRqqureOKJ55y2TXdqT//013Nuz8uzFe0WFBSERqOhoMB+RouioqJm2RO9SbinN4/FTydU78mvuZl8npncpe0dKCvizdQ9aFUq7hszpVsCEgCLooZzTtRwKox1vJi0HVMnC9h8lplMXm01M0Mie01AAkCnVnN7bCIXDY6l2mTkob2b2FqU6+5mCSGaKCoq5OOP/0tFRTmnnLLQ3c3pU44cOUJaWlqrtaBEz5WRkQHA4MGD8Rpcf/7NTE6pf62y3LpelbGu+ZsdKCoq5I89O/irMIejVRVUHa7Pxnj50A6+zkp1VtOFcLqjR7P5/vtvyMhIJzn5EM888zilpSXWqS6FcCYJSvRier2esWPHsnHjRusys9nMpk2bSExMdF/DnCDc05tH46fjodbwUXoSyeUlndqOwWzilUM7MSkKNwxP6NKT+/a4fNho4vyCOFRewucZHQ+mZFaV83VWCp5qDdcOj2/7DT2MSqXikiGjuC4mHoPZzJP7t7C9OM/dzRJC2DjzzJP57LOPue++h6wFN0X9FNw33HADs2fPJi4ujjVr1jRb56OPPmLBggWMGzeOxYsXs3v3brvXn332Wf75z3+6qsnCiWpra8nNzcHPz5+AgEA8BwxArdORfSQNg8HA4cpS67pVpubV9gGMZjPJ5SWYbZKQd+3ZzdbiPErCgjhUUUJ19lEAfs3NZMXhfd17UEJ0gVqt5vvv/8e1117GLbdcy7FjR1m69C276T2FcJaelWcrmqmsrLRG7gGysrI4cOAAoaGhhIWFceWVV3L33XczduxYEhISeP/996mpqeHss892Y6udY4iPP1fHjOWNlN28mLSdVybMw0PTsZSlzzKSyaquYFJQOCcPGNxNLW2kUan5Z9wEbt3+B59kHGJOWBSDvNs/jOPT9EMYFYVLh8S6derPrjozKgatSsUbqXt4Yv/fPBY/o9sDQkL0RP/3f7+5uwnNWMbL9tcUZEe6OgX3r7/+ytChQxk2bBg7duxwwxGIrsjOzqTSaCDbQ0WpoRaVRo3XoIGYiypJSUkmx6txGGnToERaRSkDvXz4IP0g32ancV1MPGdGxQCwdutmAAInJWLIL6Q2Lx9zXR1qnc51BydEJwwYEMmyZe+6tQ333/+IW/cvXEeCEj3c3r17ueyyy6w/P/HEEwDccsstLFmyhIULF1JUVMSrr75Kfn4+o0eP5p133iE4uGOFFnuqUwcM4a/CHLYV5/FtdiqLB8e2+73ZVRV8mZWMp1rDzSMSumWK0ZZEefly0eBY3jtygE8ykrhrVNvVhwGOVVXwR142flodpw8c1s2t7H4LBw6jTlF4O20vj+/7i2fHz+62oTOiZ3rwwXvZs2d32ys6ybhxCTz++DMu25/oW7o6BfeuXbv44Ycf+Omnn6isrMRoNOLv7891113XqfZ0dfrVnjBdcE/VUt9kZmaws7gA45BwnjqwBQCvwdEoxQc5eHA/NeNHWdetNhmt791TUsA9uzaQEBjK7pL64bQbCo+xKHo4ubm5JGWmow8KRB8UhEdEGFXpmRgKi/AcENGsDT1FT/3s9LT2CNGd+ts03BKU6OGmTZtGUlJSq+tceumlXHppywVnejuVSsX1w+O5YesaVmWnctrAYfho2/d04ausFEyKwiWDRxLu2fUpKjvi9IHD+CY7jT/zszk/emS7bsY/ST6IGYXTBw7DswNVvXuys6JiKK2r5fPMZB7eu5n/JM4lxKPnTW0quocECERf0Z4puO+8807uvPNOAFatWkVaWlqnAxLdNQ23sGfbN0VFuShq8AgLY19ZEQBegwaiPZBMZmYa2glx1nUVDxU/FGYwzM+fTFP97ByWgARAoJcHISG+/P33OqoUE97D6h806ENCmgUlnPV77g497bPTk6afdvf+ezLpm9a13T/9cxruvnHnI/q0gV6+nDAgmp9zMvgmO5VLhoxq8z0FtdX8npeJt0bLaW7IOvDUaFkcPZLlaXv5OD2J+8ZMaXX98joD/zuSil6t5vTI3p8lYesfQ0Y1/D6yeOrAFp5JmIlO3TcrB4ve46uvPuPtt9/khx9+R90w7XBhYQFnnXUKc+Ycx9NPv2Bd96effuCZZx5n9eo1eHQyqPbbb7/w8MP/5rjjFrRYRfzhh+9j2LAYrrjiGmbPnoxe78Gnn64iPDzCus4tt1zHqFFjuOWW2zvVBtF57ZmC25lcMQ13f9a0bxRF4cCBZHx1HphDghrX0+s5oFMTnJOHPjkVvOrPXc/urM+kCPPw4uIhcc22rzOrKSgoZ8OGzdTU1eE9bAgA+pD6LFZDQaF1XcvU1z1JT/3s9JTpp2Xom2PSN61r3+wb/XMabglliV7hwuhYtCoV32SnUdmOqtdfZ6diVJQOZVY42ymRQwjUebC58BjFhppW191UcIxqk5H54dEE6D1c1ELXUKlULBk5nji/IJLKi3kzZY+7myQEEyZMoqKigkOHGjPRdu7cTnh4BLt27cB2tuydO7czevTYTgckcnNzeP31l0lISGzxdaPRyF9/bWLWrLl2y1eufLtT+xOuoyhKi0MDzznnnE5PB2phNitd/ues7fTFf7sL88msKMdsVsjLy+e3zFSOeelQNald5R0zlF9zM0nf27woZX5tNXpV8xsET7WGI0eOUFBQgEdYKDp/PwD0oQ1BicIip/6eu+NfT22bEP1Ff/v8S1BC9Arhnt4cFz6IapORDQXHWl23xmTkp2Pp6NVqznRjbQa9WsO8sCjMwJ/5R1tdd2PDMc0JG+iClrmeTq3h/jFTCNZ78HNuBr/nZrq7SaKfGzZsOIGBQezYsc26bMeObZxyymnodDpSUpLtlk+cOLlT+zGbzTzxxMNcfvnVREW1PMXvzp3b8fX1ZeTIxpo55567mB9++I6MjCOd2q9wrr46BXd/VW0ycu0fP3PtlvpCtJmZ6eTVVuMR1vx36T1kCGqdjrzUVEy1tXavqVFhbGH679U56Xz2568A+Iwcbl2u8fRE6+NDXWkZ5rr2TysqhBB9nQQlRK+xIDwagLV5Wa2ut704nxqziWnBAwjSu7d+wXHh9TchrbW5ymhke3E+fjo9CYF99+I2WO/JXXGTUANvpOwmu6rnpayK/kOlUpGYONEuKLFz53YmTJhIYuIE6/KCgnyysjKZMKG+YO2lly7mxBPnOPx355232u3n44//i6enJ2eddY7Dtqxf/yezZs2xW5aYOJFJk6ayfPmbzjpk0QV9eQru/shgMtn9nJlZP8uZR3hYs3XVOi0+w4dRaail4qD9VN9qFdSZmwclzLUGPlr3O1qtDt2QaLvXGrMlirt0DEII0ZdITQnRa4wNCCFE78me0gIKa2scFkzcVFifdTAr1P1ZByN8Axjo5UNyRQnZ1RVEeTUvaLWtOBejYmZ2ZBRatbpPp2eNCwzlwsFxfJyRxAtJ23khcTYalcRGhXtMmDCJt99+A7PZTGlpCVlZmcTHjyczM5MtW/5i8eKL2L59G3q9nvj4cQC88MIrGI1Gh9v08GgcfpWUdJAvv/yMFSs+aLUdGzas4+67/91s+Q033Mw111zGwYP7GTVqTCePUrRXf56Cu79pmt1wOP0IAB7hLT8Y8Bs7mqMHD1G77wB+Y+Ks03kqQF0LmRLlB5MwG42MHTeenaqGFRs0FrssxHNAuDMORwinuvHGq7jwwkuZN28BAMnJh3jmmcdJS0thyJBhvPrqm1x66WJWrPiAsDD5DAvnkKCE6DU0KhVzw6L4OjuVdQXZLIoa3mydOrOZvwtz0KnUTAp2/xelSqViXlgUn2Qc4o+87BYLYlmGbswfGN3stb7ogsGxbC/O42B5MV9npXJe9Eh3N0n0UxMnTrbWlTh6NJu4uNF4eXmRmDiBd95ZhqIo7Ny5jTFj4q31JAYMiGzXtg0GA4899gC33/4vQkIcZ0ClpqZQVlbChAnNh4fExo5i/vzjWbbsNV5++Y3OHaRot/4+BXd/YpvdUFFRQXbOMbR+vmi8W56pS+fvh0/MUCrTjlC2ex+BkxIBMCkKBrN91oW51kD5voOoVCre9qxFp+jx0miobsjOsGZK5Bci+r7Zs1sf+nfllddy9dXXu6QtBw8e4J133uTgwf1UV1cTGhpGfHwC9977ILqGQNu6dWuprKxk7tz51ve9+eZSwsMjePLJ5/Hy8sTfP4BTTz2dFSve4t57H3RJ20XfJ0EJ0ascFz6Ir7NT+SOv5aDE7pICKk1GpgUPwKuHTKs5J7Q+KLGjJK9ZUMKkmNlanIeHWsO08EgqS1sviNkXaFQqbotN5Nbtf/BhehLTQgYQ7e3n7maJfmjYsBiCgoLZsWMbx45lk5g4sWH5cFQqSElJZufO7Rx//EnW91x66WJycx3XtUlImMCLL75KYWEB6elHePjh+6yvmRtuhObNm8aXX35HWFg469f/wbRpM9FqW/6+uvbam7jkkvPYtm2LMw5ZtKK/T8Hdn9hmSqQcSaPObMYzovUHGYGTJlCdkUXZnn14DxuCPrh+lo6qJsW3i7dux1Rbi+/I4ej86s9tnmqtTVAiBLCfgUP0Xd9+u9r6/z/88B1ff/0lb7/9vnWZl1djIExRFEwmk8PzQVcUFxdxxx03M3fucbz00ht4e3uTnZ3FmjW/YTabgPqgxJdffs6pp55hV8A3OzuT88+/kAEDBliXnXbaGVxxxSXcfPPt+PnJNZzoup5x1yZEO8X4+BPu4UVKRQlVxjq8m8yssbFh6MbM0AEtvd0tBnn74qPRklZRhkkx2w1XOFpdSbXJSEJAKJ5aLZVubKcrRXv7ccmQON47coA3U/bw5LgZLVawF6K7TZgwyRqUuOmm24D6DKeEhER+++1nMjLSrfUkoP3DN8LCwvnvfz+1e+3tt9+kpqaGJUvuICio/mnp+vV/cv75Fzrc3qBB0Zx++lksW7a007N/CCHs2WZKHEpNoU4x4xEZ0co7QOvrQ/jkCeRs3kL+b2sZcPopaLy8qLT5PqhISaPiUAoaTw8CJ0+wLi8zNk7rp/HwQOfvR11ZebPCmaLvsc2U8/b2Rq1WW5dt376VW2+9gRdeeJW33nqNtLRUli17l1WrvqC6uspu+ugHHrgbLy9v7r//EQBqa2tZvvwNfv31J6qqKhkxYiQ333yHdahhU3v27Ka2toa7774fTcMMM1FRg5g6dbp1neLiYrZv38Kdd95jXWbJ9Hj55Rd4+eUXrJkdgwcPJTy8PrB+6qmnO6ezRL8mg7lFr6JSqYj1C0IBUipKm72+p7S+MvqU4J4TlFCrVAz3DaTWbCKjqtzutcOVZQAM8/V3R9PcalHUcAZ7+7G7tKDNGVWE6C71QYmtZGSkk5Aw3rp8/PgJfPXV5w0FDhsv8gYMiGTQoGiH/yzja7VaLTExI+z++fr64ePjQ0zMCLRaLYWFBSQnJzF9+qxW23jlldeRlpbK/v3NpyQUQnScbVAiNS0Vo9mEZ0TrQQmA6MREfIYNwVhRSc53q6k5lkOF0YDZaKRszz6K1m9CpVIRMmcWGs/GIKLJZophNfV1JaA+W8J2+mHRP7311mvccssdfPTRlwwaNLhd73n55ec5cGAfjz/+DO+99wnTps3kjjtuJj8/r8X1g4ODMRgMrF//p8PP3O7dO/H29iY6urEN3367mvDwCK6//ma+/XY1F130D+trcXGj2bVrRweOVAjHJFNC9Doj/QJZX3CUQ+XFdrNV1JiMHKuuJMzDC3+d3o0tbC7WL5DdpQUkl5cwzCfAuvyIJSjh0/+CElq1muti4nlg7yZWHN7H5OBwPHvIkBvRf0ycOJnq6mpGjRqDj09jIdrExElUV1eRmDjRrnilM23YsI5x48bj79/6339oaCjnnXchH330fqvrCSHax1Kc0lRby7HcY5i8PNH6NS9E3ZS3RkvInJmAisrDR8hd/Su/bdpGdkUZismESq0mZM4MvAY5LrStVqk5O2ESHx4+gqGgEDMKGiRTsLO++upzDhzY79J9xsfHs2jReU7b3rXX3sSkSVPavX5OTk7DUJAfCA6uD3BdccU1bNy4np9//pFLLrm8hTYncPHFl/HQQ/fi5+fHmDHjmDJlGqeccpp1+EVu7jGCg0PsMldDQkJRq9V4e3s3q48UGhpKampKZw5ZiGbkDkD0OiN9AwFIriixW55RVY4CDO2BN/gj/QIBOFRewkkDhliXWzIlhvbDTAmAxKAwZoZEsrHwGN8dPcz5UvRSuNiQIUNZv35rs+WjRo1ucXlXWNJuLdav/5PZs+c2W6+l/d544xJuvHGJU9sjRH9lyZSozckjs6qcY/4htGdCbk+NFpVGQ8i8WXgNHkT5/oPUllehUqvxio4iIHEc+qCgZu97JmEW9+7eANTXVbowcRrf/N//MOQXYlYUNBKT6NdGjRrdofXT0lIwmUxccMEiu+UGg4ERIxxfR910061cdNGlbN36N/v27eGjj97no4/e5513/ktoaBi1tbXo9e0Pwuv1HtTW9v1aaMI1JCghep0RvoGogOTyErvlPTnrwBJISWkSSDlSWYYaGNyPCz1ePmw0mwtz+CorhVMjh+LbpE6IEH3V+PGJLFhworubIUS/YwlKVGdlk19RSmhUfLve56nRoFGpMAE+MUPxiRnKEG8/0psMzbR16oAhjPFvnKFFo1IRGTkQtUpFdX4BRrMZnVrTpePpz849d7HL96nVqjEam08F21menl52P6tUqmZDLGxrGVVXV6HVann33Y+a1ePy8fFpdV9BQcGceOIpnHjiKVxzzY1ceOHZfPPNV1xzzQ0EBARSXl7W7naXl5cRGNg8CCdEZ0hNCdHreGu1RHv7kVdbTamhsUjUkcr6i4Ih3j0vKBHm4UWATs+RyjLqGqYPqzDWkV9bzUAv3349bCHKy5cTIqKpMNbxbXaqu5sjhMtccsnlMse7EC6WUlHCw3s3oygK1ZnZAHhGOR5uMcqv8abLU6NF0+QmsMrkuPAtgLdWh9rmPRqVCr1ej1dwMKaaGkpKm9fHEv1bYGAQRUWNs7OYzWbS0hqvj0aOjMVoNFJaWtKsrpGliHJ7+Pr6EhISQnV1NQCxsXEUFORTWVnRrvcfOXKYkSObT3UvRGdIUEL0SpbMg0M2mQc9OVNCpVIx0jcQo6KQ1tBOS3t74nATV7twcCxalYpvslMprzO0/QYhhBCiE549sA2AuqIiTNXVeISHoXFQN+b48GgW2wwr9FRrmgUl8mur7X4e4RvA8eHR1p8t05OrG+pGWN7v2zAFaUbGkS4cjeiLJkyYxL59e/n115/IyEjn1VdfpLS0xPr64MFDOf74E3nssQf588+1HD2azb59e1m58m127NjW4jY3bFjH448/xKZNG8jKyuTw4TTefHMphw+nMWvWHABGjozD3z+APXt2t9nG2tpakpIO2M3eIURXSFBC9EqNNRqKgfq5nY9UlqFVqYnybj11zV0sbU5pGHZyWIISVuGe3pwQMZhqk4mfctLd3RwhhBB9VE1DZkN15lEAvKKj8NZoWzwXm1HQ2wyt8NXq7ab1bsn88Ghui020/mwJSliCEeqG9/s3ZGccPpzWySMRfdWMGbO45JLLefnlF7jxxqsIDAxiypRpdus88MBjnHDCybz66otcfPG5PPDA3aSlpRIaGtbiNocOHYZer+eVV17ksssu5Oabr2X37p088cRzTJxYP+2nRqNh4cLT+eWX1W22ccOGdYSHRxAfn9D1AxYCqSkheinLDX5aRf2NfXFdLWVGAzE+/m1eMLhLpGd9sKTIUF8UqCdndrjDoqjhrM5J57ujh1kUNdzdzRFCCNEHWabnrMrIBOqDEmEeXpw5MIZXk3farVteZ0Cvbrym8NE2H77RlE6tthuuYc2UUKlAaQxO+A+sD0qkHznSpeMRvce5517AuedeYP154sTJDgsqX3/9zVx//c0Ot6XT6bjuupu47rqb2rXvqKhB3HPPA22ut3jxJVx++QXk5+dZhxd++eV3zdb74otPuPzya9q1byHao2fevQnRhhB9/fzf5cb6VP/ekHVgqRtRbaqvKZHe0OYhPv23yKWtQd6+TAmOoNBQw/qCo+5ujuiAxuvvluc+F71d/e+1jXsxIXoFMwp1pWUYCovQBfijCwxEq1bbTcppuTguN9ah1zRmSvhodW0HJZo8GPFoyLSwvMvyfk8fH3T+fuTn51FR4bhQphCuFBoayt13P0Bubo7DdcrKSpk9ey4nnniyC1sm+jrJlBC9knfDDX6VsQ7oHfUZvK1BifrU0bKGgIolwCJgUVQMW4py+TZb0ll7E7Vag1qtoaSkAD+/QDQaLdBT7mBVGI0SLGlZe/pGoaKiFJVKjVpmCBB9gFlRqDpcP0zQe9hQVCoVOpUatc1Xlp9OT2mdgXKjwRpUAPDW6NrMxtSp7V9XGoJ6lr+0xmEcKjwGRKCUGjh8+DDjxkkavOgZ5s2b3+rr/v4BXHLJ5S5qjegvJCgheiVL1oGl6nVOdSUAg7x83damtng1CUpUG41oVSqZCsxGQkAog739SK4owdhGRXPRc6hUKkJCIikrK6K4OM/dzbGjVqsxm503dVtf0t6+UanUBAeHN5t6TojeIK+miu3FeZw4YEj9dJ5mM5VphwHwiRkC0JAp0fj59tM2BCXqDE1qSuiYEzaQVVmOZ4pqGpQwN5na0RLU0KhUeA6IQCnN4MiRNAlKCCH6NQlKiF5JrVLhpdFagxKVDf/11erc2axWNQtKmIx4a3pue91BpVKxIHwQ7x05QHFdbdtvED2GRqMhKCgMRTFjNptRekByglqtIijIm+LiKszmHtCgHqS9faNS1WfCSEBC9Fa37/iTMqMBL42WeeGDqCkspK60DH1QILqAAKB+yEWwTdbi1TFjeXTfX1w/fFyzmhL/GDKaiYHhrM3P4tfczGb7swzfSAgIZXdpAaP97adoVNtkSngOHICSlMGhQ0koiiJ/Z0KIfkuCEqLX8tZoKTbUoigKlQ3DOHx6cFDCs2FcarXJiElRqDGbCNC1PA1ZfzY/PJr/HjlAiaEWk2LusYVLRctUKjUaTc/4nanVKvR6PVqtQYISTUjfiP7CMlQyt6YKgNKDhwDwjR1hXUerVjM+MJSrho1hfGAYw30D+HrW6ejUauswUQBvrQ6dWk1iUJjDmaIsmRKPj5tOaZ3BGuywDOOwDt9AhcbLi/DISEryCygoKCAsrOWZE0Q9qV8k+of+WcepZ1w5CtEJ3hotZhRqzSaqTD0/KGFbU8IyJZmXRoZuNBXi4cn4wDCMipmdJQXubo4QQoheZktRLplV9sUjPTRaamtrqUg9jEqtxnv4MOtrOpUalUrFOYNGMNy3IXuiIbhgN3zDJrvxzKiYFvdtGZKpaZJ9Yckes5TUtAQnMv29SS4vITk5qVPH2p/U17VRYTBIJqXou0wN9wj9rY6TZEqIXsu7IQBRbTJSaaz/A+7JwyG8tI1BCcuwE+8eHERxp+MjovkYWJObyaSgcHc3RwghRC9RWFvDo/v+AuD7OWdal3uo1ezevROT0YjPiBg0Ho2Zik3rQNjS2rzmrW28bB7tH8x7U0/kir9/sVu/6ewbTVmeflqGcST76skpKyIp6SAzZ85u4+j6N5VKhY+PP2VlRQDo9R64p6iyFFB2TPqmdW31j0J5eQkeHt79bjiXBCVEr2XJPKg0Gqk01qGmZ2ceaFRq9Go11SYj1UZLpoT8CbZkWsgAVKjYWpyHSVFQ95iZHIQQQvRkBrOpxeU1JhPfr1sDgF/cSLvXtO0cJtg0GzOwhSGYjgIcltsQS0FNS1BCHxaKWq/ng63rOeXc84j0D2xXW/or34ZMlvrAhHtufqWAsmPSN61rT/+o1RqC+uEDObkjEr2Wl3UGjjqqTHV4a3U9PqroqdZSY2ocbuItQYkWeWm0+Gh1VBjrOFRezNjAEHc3SQghRC+gtrkOqLGZxendTWs5vHc7+pBg9GGhdu/RtpIpYUvfJJ26pfe1lnVh186G4IRKrcZ78CDyU9J4ee2PPHvmRe16f3+lUqnw8wvE1zcAs9nk8qLKUkDZMemb1rWnf/pzcWm5IxK9liWNstxYR7XJRIRHzy8a6aXVUlZjsA43kUwJx/wankhtKcqVoIQQQohWvZa8i4Laaq4bHm9dVmJTe+DYzp0A+I8b2+yCv60hF8+Pn02dg6ebK6eeiAqswzgcb6vp1KCNbfAeNoSKlDSykg612g7RSKVSoXHDNZQUCXZM+qZ10j+tk0KXotey1I8orK2u/1nb82/wLUGIQkON3c+iOT+dHoCtRblubokQQoiebnVOOluL8zDYBA+yayoBqM0voOZYLl4BAVwz94Rm79WqW38qOdo/mITA0BZfC/PwItTDy2ZbbQ3fqGeb0eEZGYlar6MgPYPK6ioe3LOJj9IPttomIYToSyQoIXoty9CH/IagRE+eecPCUvOiqCEo0RsCKe7iodYQ6elDWmUZBQ2/YyGEEKI1tlN4ZjXMwFG6aw8AE6ZN55Kho5u9p701Jdqj3cM3bIISKo0a78HRmM0m1u7Yyo6SfD7JkKwJIUT/IUEJ0WtZbugLautv8H168MwbFpbMiCLJlGiXycH1hX62FeW5uSVCCCF6gyqbOhLJ5SXU5ORRnZmN1teH+PGJLb6nvYGE9tCpWi643bT2gabJEBLvYUMwKwo79uxyWluEEKK3kKCE6LUsmRIFvXD4hjVTQoISrUoMDAPgQMP0X0IIIQRAaV0trybvJLMhG8LCNihxoKyIkm07AAiYMJ5AL28Awm2GW0DbNSU6QudwKEh9VKLplKAWnpGRaDw9STp0EFN1/XWNSZFZDIQQ/YMEJUSv5dWQGWEdvtGLMiUKayVToj1G+AYC9U+7hBBCCIv3jxzg55wMHtizCbNNGoJtLYbDhw5Rm5ePPigQn5ih1lpFy6Ys4OuTz7Ku197ZN1pzyeA4TowYjE7d+tTk1ilBm0x1rdKoCY4dQUWdgcqUNADK6+qavV8IIfoiCUqIXsuSGdG7akpIocuOCPHwJFjvQXplud3UbkIIIfq34oaZNQoNNXYZBdnV9cUtzXVGiv/aAkDg5Imo1GrrrE6eGi0DfXyt73FGpsRFQ+K4LTax3es3Hb4BEBQbS5XRSEVyKoqiUFZn6HK7hBCiN5CghOi1LEMfas0mAHx60fANyzRl3r0gkOJuI3wDMaOQXFri7qYIIYToIWxv6luarrN01x6MlVV4DxmM16CBAPhp9W1uy1WaDt8AyNSrKPT1pK60DEN+AWVGCUoIIfoHCUr0cbfeeitTpkzhjjvucHdTnK5pDQnvXjR8w9wwtlQyJdo2smEIx8Hiwnatn1dTxcGyIirkCZMQQvRZrQUlDMUllO/dj1qrJXbObOtyy/ANd2hS57LFoASAT+wIAMoPHqKsrrabWyWEED2D3BH1cZdccgmLFi3iu+++c3dTnK5pEMK3F2QdeDYJQlimCBWOjfALBOBAcRELAqMcrpdUXsx7h/ezp7QxeDHWP5gbRyQw1Me/u5sphBCiG5UaavmrKIf54YPQqTV203jW2QzfUExmCtdtRFEUAickEBEcQnF5MeA4U6JpwKA7WPZhCUVocBCUiBlGydbtVB1OJ6e4CEIHuqB1QgjhXpIp0cdNmzYNHx8fdzejWzSduaI3zL7h3SQI0RuyO9xthG8AAAdLHGdKHKks46E9m9hTWkiYhxfTQwYQ4eHNvrIibtvxB/939LCrmiuEEKIbPLb/b15N3sWqrFTAPtPAaJMpUbprD4bCIjzCw/AbM4pAvYf1NT9dy+dcVwQlLKyFLh1kSqh1WnxjR6KYzezY+rcLWyaEEO4jQQk32rJlCzfccAOzZ88mLi6ONWvWNFvno48+YsGCBYwbN47Fixeze/duN7S0Z2o69KE3zb7h6GfRXJDek1APTw6XlbVY7LLIUMMjezdTaTJy3qARrJhyAg+MmcryKQu4NiYejUrFm6l7WJOX6YbWCyGEcIakhmyH5IoSwH7IhiVTojYvn7Lde1FrtYTMnYlKrbbLonSUUenKoIRFa3Us/EbHoVKp2Lt9O0Zjy0Weiww1/GvnOnaXFHRXE4UQwmUkKOFGVVVVxMXF8dBDD7X4+g8//MDTTz/NzTffzNdff01cXBzXXHMNRUVF1nXOOuusFv+ZTCZXHYbbaNVqPGym3uoNmRK2QQiNSoXeCdOQ9QcjG4pdplWUNXvti8xkCgw1zA8fxOVDR1ufPmlUas6KiuHeUZNRo+KlpJ3sLW1fXQohhOiMtLQ0LrzwQk4//XTOOecctm7d6u4m9TmW2T+rbYLUv+VmYqquIX/NnyiKQtC0yej8/ID6BxaRnj4E6PRoHM2yobgwLNEQi3CUKQHg4++P1+BoispL2bVrR4vrrMpK4WB5Mfft2dgdrRRCCJfq+Xdxfdi8efOYN2+ew9dXrlzJBRdcwLnnngvAo48+ytq1a/n666+5+uqrAfj2229d0lYAtbpr1akt7+/qdmx5a7TW2Tf89Hqnbrs72M624aXRotHUXyB1R9/0BZb+iPL2hULIN1QzRh1sfb3GZOT33Ey0KjXXDY+39qet6WGRLIkdzyuHdvJ6yi5emzQfXR8KBslnxzHpG8ekb7qHh4cHTz31FDExMaSmpnLTTTfx008/ubtZfYrSkNdgmzn3RcYhCtauw1RVjc+IGHxGDre+5qPVsWzy/FbjDq4dvlFP7aCmBMAgL1+qxo0lLyOLdev+YMKESagbzlsHyopYn3/Ueu0jhBB9gQQleiiDwcC+ffu48cYbrcvUajUzZ85k586dLm+PVqsmJMS37RXbISjIeTUufD30FDdUp44OD2xWSLKnidQ2XkT56nTN+tSZfdPb6XQaa/9EFflDJtRozHZ99t2RVCpNRk6OHkpMZIjDbV0UPIZNJTn8nZfD6sIMrhgV36k2Gc1m/jiayY8Zh0kqLabGZCTU04vJYQM4Y0gMsYHBbW+km8hnxzHpG8ekb5wrKqqxGG9MTAzl5eUoioLKDVNO9lWWAEKNTUZoydYd1OTkog8OInjGVLv+9tHq6jMkWvkVuOPaodVpSFUQM2QoBQPCOZqXy+7dO0lMnEh5nYG7dq0H7AtlV9QZ8HXjzCJCCNFVPfsOrh8rLi7GZDIRGhpqtzwkJIT09PR2b+e6665j9+7dVFdXM3fuXJYvX86oUaM63B6j0UxZWXWH32dLrVYRFORDcXElZrNznkt4NIxA0qpUVBRXU9nDL/xqaxqnqfRQaygsrAC6p296u7o6k7V/PE31v+eskjLrMoDPkw8CsCA4ym55S64dMpYd+XmsOLiHmf4RhHh4dag9x6oreebAVpLLS4D661u9WkNaWSlpZaV8kZrE8RHRXDM8Hn8XXhzKZ8cx6RvHnNU3/v5e6HR9ZxahLVu2sGLFCvbu3Ut+fj7Lli1j/vz5dut89NFHrFixgvz8fEaPHs0DDzxAQkJCs2399ttvjB49WgISTqY0pDxUm+uD/OUHD1G27wBqvZ7QBXNRNxnK6dPK0M6nE2byW24m88MHdV+Dm1C1Fh2xUCDKy5eAxAR+/PFndn2yko9HjaLKJjui2iYok1FVzpgAx4F5IYTo6SQo0ct09InL8uXLnbZvZ13Um82K07Zlmb3CW6NDURovVnoqT1XjxbuXWtusH5zZN32BpS+CdPXV04tqa6zLMqvKOVReQrSXL2P8gtvst0hPH84YOIxV2an8cPQIlwxpf3AuqayYh/ZuotJkZJRfEOdHj2RSUDhatZr82mo2FRzjs8xD/JqbycGyYh6Nn06Ep3cnj7pz5LPjmPSNY9I39iy1ns455xyWLFnS7HVLradHH32U8ePH8/7773PNNdewevVqgoMbM6Wys7N5/vnnnXoO7q+yqirYXHjM+rPl01ptNFKVnknRpr9RqdWEHT/PWkfCls5RHQlgfFAY4wJCHb7enYytXK8oKER5++I5IBzPAREczcnl3v/7gttOOL3F9WtkKIcQopeToEQPFRQUhEajoaDAvqpyUVFRs+yJ/sxS3NLHQUXtnsY2RbQ3FObsKYIbpnQrMtRYl6VWlAIwKTi83YG6hQOH8nV2Kj/lpHNBdCzadtSWKDLU8OSBv6k0GTln0HAuGzLa7n1hHl6cGRXD8RHRvJi0nb+Lcrlr1zqeGz+bAZ7OS403KWYyqypIryxDo1Ljr9Mzyj8IT7V8joRwFmfUeqqoqOCmm27iwQcfZMiQIZ1uS0+s4+QOS7avtc6uYaFWqyjOzqJg7ToAQufNwnNARIvvV6lVzfrAnX2jUtXv19RGJYtB3vVDFQMSx1GzOpdtf/7JG4OjWlzXqJhRVPVDDD00Xc9c6iufne4gfeOY9E3rpH9aJ1ezPZRer2fs2LFs3LiRBQsWAGA2m9m0aROXX365m1vXc1hms2gtPbMn0anVaFVqjIpZpgPtgGC9JwDFhlrrsqyq+uEa0d7Nn4w5MsDTh8nBEWwpymVzYQ6zwwa2ur5JMfP0gS0UGWo5KWIwVw4d4zAA4qPVcf+YKbyWvJtfcjN4+sBWnh8/G726axeIlcY6vjt6mP9lp1FmNNi95qnWMC10AEsSJ+HdnpRgIUSntafWk8lk4rbbbmPx4sXMnj270/vqiXWcygy1bMnPZV7koHYFdJ2laUBCq9NQUHiUzNW/opjNBE+bjPdQx8GfAUF+DvvSHTVV9DotISG+6I85vgZQa9WMGRAGSeAZOYDL587n/T/XsHfbdvzHNs/y8/DRc/P2NWRUlLPx7IsczzLSQVJzxjHpG8ekb1on/dMyuStyo8rKSjIyMqw/Z2VlceDAAUJDQwkLC+PKK6/k7rvvZuzYsSQkJPD+++9TU1PD2Wef7cZW9yzeDTf2lmEcvYG3RkuZ0SBBiQ7w0mjx1GjsMiWyquuDEoO8OnbhflrkULYU5fL9scNtBiXW5mVxoKyYkb6B3DBiXJsZGRqVmltGJnCsupK9ZYW8lbqXJSPHd6h9tpLKi3ly/98UGWpRoyIhIJQYX39UqDhWU8nO4nz+yMtmwy/HOD96BBcNjmt1mjkhROe1p9bTn3/+yebNmykoKODzzz8H4IMPPsDf379D++qJdZz+tWMd+8uKuGHEOM6Miuny9praV1pItcnI5OCWMx4s8tKO8NInX2M2mRg0YxqaUSOtr431D2ZfWf206ROCwoj29mWk1r9ZzSF31pupqzNSWFhBeWWNw3WMRjN+dY0B7UtOXcRXG9dTunM3viNiUHvY1y0qKq0ko6IcgJz8si4X7pR6PI5J3zgmfdM6Z/RPX6vjZEvuitxo7969XHbZZdafn3jiCQBuueUWlixZwsKFCykqKuLVV1+1FtR655137Mat9neWKTZ9e8nwDQBPjYYyY+8KpLibSqUi1NOLrMoKDGYTerWGzKr6CzBLimt7TQwKJ8zDi72lhZQaagloGBrSlEkx82lGMgDXDY9vd8aDRqXm7tGTuG37H/yUk86C8EGM7UQBso0FR3n+4HbqFDNzw6K4bMgoBnjZR9drTEa+O3aYzzOS+STjEBlV5fwzdqJT0neb7mdLUS6pFaUUG2rx1GiI9PJhYmA4g33an6kiRF9kW+tp/vz57Nu3zynb7Wl1nPY33OwnlRVjjnRO2xRF4d7dGwj18OKP/GwAvpt9hrU/f83NsFu/6kgG+zdvY2JAKEFTJzF6yhT8tHq2FecB2H33TQoKZ1HUcFDA7KB+g7tqqpjNCnVmc7PlU4Mj+Lsol1i/QHw1OmaFRuKv1RMZEcmYxAn8vfVvSnfvJWjKRLv31doUvawzmdGretZnpy+SvnFM+qZ10j8tk6CEG02bNo2kpKRW17n00ku59NJLXdSi3sfHkinRS4ZvQOOQE8mU6JjghqBEsaGWUA8vsqsr8dfqCdC1HFRwRK1SMTEonJ9y0tlVWsDcsJbH6P6Rl82xmkoSA0MZ7d+xQGCw3pMrh43hP4d28O7h/bwwfnaHCtSmVJTwQtJ2TIqZa2PiOXPgsBbf76nRcsHgWE4fMYIl635jQ8ExakxbeGjstNanm2unapORT9KT+OHYEQeF1PYx0jeQK4aNZnxgWJf3J0RPJrWe6jkzFyu3tsqa2WBhVMzoVBrK6wy8fGindXnZvgMU/72NYL0nx51yCgdUlXiqtTwaP53T1/0PwC54rOnhQ9paKnR5e+wE1uZlcUJENAD/Hj3F+trc4xawded2yvcfxDd2BLqAxuwbg02Aw9TDC34LIURLXDcoUIhuYBm+4dOLsg68emEgpScI9ayfwrPIUENeTRVGxdzhLAmL8YH1NxC7SgpafF1RFD7PrM+SuHBwXKf2cVz4IIb5+JNUXswmm8rxbSmtq+XJ/VswmM1cOWwsZ0XFtBnQGOznz0sT5jLY249txXn898iBTrXZVlJZMTdtW8Oq7FQUYF5YFHfETuCJ+BncN3oKlwyJY5CXL8kVJdy/ZxP/SdpOjcnY5f06Umc2cbCsiDV5maw+ls6mgmPk1lR12/6EaMq21pOFpdZTYmKi+xrmYl0dIlZjMrI+/yi1JhNJZSXNXk8uL2FbcR4ZDdlwislM0V9bKP57Gyq1Gu+501ntWx98aC2439OHspmU5pkS/jo9Z0bFWLNAbUUEBeOfEI9iNlO06W+72cYMNkFjy3ZzaipZm5fV42clE0IIkEwJ0ctFNqSzD/TqPUVjJFOicyxBiWJDDRXGOqDjQzcsxgdYghL5Lb6eVV1BVnUFw30CiO/k3O9qlYorh43hob2b+Tg9iRkhke3Kllh5eD/5tdXMC4tiUQfGbQfoPXhgzBTu2LmOr7JSiPMLYmZoZKfavre0kEf3babaZGJWaCTXxYwjxMPTbp2ZRHJhdCwbCo6xPG0Pv+dlkVNTxUNjpuKr0zvYcscV1FbzVVYKa/OyKG/4vdsa6uPPGQOHcUJEtNOKu4n+S2o9tU3VxQyEt9P28VNOOmcMHGb9Lrd19+4NAFw5bAymqiry166nNjcPjYcHYScchyY8jMOVZUD9cEhHnJEt1h0s/WdsYfhGa/x0evzjx1CZmkbNsRyqDh/BJ2YYgN1QEEumxG3b/6DSZMRfp2diULiTWi+EEN1D7opEr5YYGMbbk48nwtPb3U1pNwlKdE6IZ/1NcZGh1vpUqKNFLi0C9B4M9fHnSGUZOTWVzabu3FpUPz55ShsF19oyMSic4T4BpFaWklpRygi/wFbXz6wq5/fcTPy0Om4akdChIR8AA718+VfcRB7d9xdvp+1lYlBYhwuepVSU8PDezdSaTVw2ZBSLB8c6XFelUjE7bCDjAkN4dN9f7C8r4v49m3h2/KwuF1pTFIWfctJ59/B+qkxGNCoVk4LCGerjj6dGQ7Ghlt0lBRypLGNp8i6+zU7jzriJDPcN6NJ+W1NprGNvaSHpVeXUmU14arQM8/FnlF+wZD71EVLrqW1dvdff0VD/4bujh1tdb9P+vRz79gdMNTXoQ4IJmz8XrZ/9d37T86ht7Qh1DwtSPhY/nbdS93Dd8Hig48Ms/LR6VBo1wTOnkfvjLxT/tQ2vqCjUHnq74XXGhkyJyobMtSOVZRKUEEL0eHIVJXo1lUplzZboLazDNyQo0SGNmRK1FDfMwtGR6UCbSgwM5UhlGbtKChgwwP4ztK04F4BJwV2/kFsQEU1qWim/5WW2GZT44MhBzMD50SPx6WTx1inBEcwMiWRj4TG+zkrloiHtH35SYzLywsHt7QpI2ArQefDkuJk8uvcv9pYV8nrKbv4ZO6HDQRULRVF4J20f3x5NQw2cHTWc8waNaLEoaVJ5MSsP72dvaSF371rPHbET2pxVpaOyqir4LPMQf+RlY6b5jYSXRsO8sEGcFz2iWYBL9C5S66ltageZEibFbJetZFsA1JZHG0WDFZOJkm07+ePgIUwmE76xIwiePgVVC1kRTYMStn+dPS1TYmJQOG9NPt7687zwKNYVHG33+/0bMtA8B0TgOyKGipQ0yrduJ2DWdCptMk6aBjtqTC3VAxJCiJ6lZ4WRhegHZocNZIx/MKP8g9zdlF7FdvhGZ6cDtWUpzNi0rkS1ycje0iL8tDpi/br+O5oXFoVGpeKPvOwWq61bHK4sZWPhMUL0npwWOaxL+7xq2Bh0KjVfZqVQWOt42rmmVh7eT1Z1BZOCwjk/emTbb7DhpdFy7+jJhOo9WZOXxeqc9I42G6i/kXkrdS/fHk3DX6vnufGzuTpmrMNZUuL8gnh63EyuGDoag9nEMwe3sq6hin9XKYrCqqwUbtq2hjV5WfhotcwPH8T1MfHcHpvIVcPGMCd0IGYFVuekc/O2tfwvO81hpX9nOFRezNupe7l39wau/vtXrtv6G/fu2sB/jxwgubyk2/Yr+rZak4mUipJ21R9oqVbD55nJnLX+e9IbhlXsLS3kos2r2d6QFWFSFL7KSmFp8i4yqyuavd/CUFhEznc/UrbvAAa1mtC5swiZNb3FgAQ0H76h2GVK9KygRFPTQyJ5b+qJXNzOukV+2sZhcYFTJqLx9MSQeoTqzGyqbOr5mJpU9a/uxlo/QgjhLPKoVggXmxIc0eVhAf1RiE2hy6yqCrQqNeFdGLYzqiHgcKThItpid0kBRsXMhKBIpzxpC9R7MCkonL+LctlWnMv0kJbrPKzNq7+RPisqpstTeg7w8uGMgcNYlZ3K6pwjXDJkVJvvOVxZyv8dO4K/Vs/tsYmdynII1Hvw79FTuGvXet47vJ+ZoZEdnh3lt7xMvj92mECdnifGzWSoj3+b71GpVJwXPZKBXj48c2Ar/0naQYjek/igzs+IYDSbeTFpO+sKjqJXq7lo8ChOHzisxWFXFXUGvs5O48usZJan7SW5ooTbYxOdWuMipbyEN1J3c6iFwMPR6kr2lhXyeWYyCQGhXDlsDCPbyMoR/U+d2URmVQXDfPyb/X0/dWAL24rzeGTsNCY3nJ/K6wzk1VY3GxLV0jeDpbjuz7kZXBsTz57SAiqMdSSVFzMxKJw/87NZeXh/i+0K0XuSX1FGyY5dlO+vz1LxjBxAyJwZaH1azzyy/D1ODxnA5sIcJgVHsLUhENLTMiVaEurh1e51/XWN2XMaT0+CZ03HtG4Thes3UTKy8Tve2KSAZkldbdcbKoQQ3UwyJYQQvUJIw8XbzpICyowGRvgGdOmi01erw1ujJa+myu7p2tai+qEbk504BndBeP30bhsKWp6FQ1EU1jek8c5xMEVpRy0cOBQV8EtORotV3pv6IjMFgIsGxxKk92xjbcfi/IM4NXIIlSYjn6Qf6tB7j1ZX8FbqHtTUT4XXnoCErZmhA7l2+DjqFDNPHdhCeZ2hQ++3UBSF11J2sa7gKBGe3rwwfg7nR490WAfGV6fnH0NH8VLiXMI8vFiTl8WzB7a1q9/b05ZPMpL45851HCovYYi3HzcOH8ebk+bz7ezTWTXrNF6feBzXxsQT6enD7tIC/rVrHV9mJndrxobofV5M2sGtO/7g74bvOFvbGm7kd9tkjv1z5zpu2/EHGZXlduu2VuhS1xCIs2RoVZuM5NVU8XlGy98FKgU8s45xdNV3lO9PQq3TETxjKuEnH99mQAIagxL3jJrEqxPmMcumuG9vCEp0hK7JsBfvwYMYMjYeU00NB9autS43K4rd335BbbWrmiiEEJ0mQQkhRK8Q6OGBRqWyPgW6bOjoLm1PpVIR7ulNjdlkN6tDSkUpAOMCO/+UvanEhm0dKCtq8fXUylJya6qI8wsirANPzlozwNOHCUFhFBhq2NZQuNORo9UVrM/PJkCn58QBg7u874sHx+Gt0fLDsSNkVTlO1balKAqvHtpFtcnE4uhYxnZy1hPLTBwldQbeTWv5yWxbPs08xK+5mYToPXkmYRYx7SyeGeMbwLMJsxjo5cPGwmN8cORgp/ZvoSgKy9P28lF6Enq1mptGJPDaxOM4beAwor390KjU6NUahvj4c1ZUDMsmL+DG4ePQqFS8d+QAS5N3SWBCWFkCn3tLCx2uYzvk4VhNZcP69kPcWrvX11qCEg11f2pMJpbs+KPZkA1FUajOPkr5j79w+Lc1mKqr8Rk+jIHnnonfqNh2Z2pZCurq1BpimgSq+1pQwpalLseUBfXBm9zkFCpSUoH6TAnbIRsFHRjCJ4QQ7iJBCSFEr6BWqQhsGAowJ3QgCU4IGkR41A//yKupsi7Lr61Cq1IR0oVsgaZ8dXqivXzJqamixNA8ldaSQTGrk1N4OnLKgCEAbdZ3+CorFTNwVtTwLs+aAfWzmyyOHomZ+poM7bG7tIC9ZYUM9vbjwnYW2HTk6mFjCdDp+SknnR0FrQdkmkqrKOWT9EN4aTQ8Gj+9w0GicE9vHhs7HR+Nli+zUvi7MKdD77e18vB+vjt6mACdnhcS57AwcmirN2salYrTBg7jP4lzCdZ78ktuBm+k7G5XnQDRf4R6OP5ua+lGPt9gf1Pb2sdJo65/f1HDjXCJodauCKOiKNTk5JL306/k/fw72pIyggYMIOLUEwmdOwuNV8f+3ryaDHXT2gyZclSQs6dRWiie64hvQwFkyxTNEf4BhMydiVFRKN60BUNxCSZFsevzalPzaVeFEKKnkaCEEKLXGOkXiK9Wx1UxY52yvfCGOhW5tfVBiVqTiZI6A6EeXk4vkhbXUNj0YLl9toSiKKzPr3+COSvUubNGTA0eQKDOg61FuZQ5GMpQZzbxZ34WHmoNp0UOddq+T40cil6tZl1BNjXtKLT2aUN69wXRI9Gqu3Zq8tPpuSamftq9V/dsb/dNuUlReD1lN2YULhs6psPDRywGePlwe+wEAF4+tJMKY8dvCv4uzGFVdir+Wj1PtbO2hsVQH3+eHjeTIJ0Hq3PS+eHYkQ7vX/Qttn8DrU1H3dL3XtP0f9uaBX/mZ/Povr+sP1uHbxjq37Ox8Jh1/1XpmeT+30/k/vgLNcdy0fn7sWDROcy84AI8B7SvztKJEfaZXJ5q+2Oxz5Toe5e47045kfemnkhAw0wcwXoPPAdE4DdhHGajkYK166iprbX7zqlTFGpMRv69ewNr8jLd1XQhhGhV3/vGFkL0Wf8eM5l3Jh/vtCEOEQ2FMnMbMiUKGi6knbV9W6P8ggE4WFZstzy/tppjNZXE+Phb2+MsWrWaycHhmHGcsr23tJBqk4kJQWGdnoa0JT5aHbNCB1JtMrGhjWnv9pUWsqe0kCgvH2Y7qabGcWFRDPXxZ39xIfsdDJtp6pecdJLKixnpG8jCLgZoZoRGcmLEYMqMBr7MTO7Qe4sNNbySvBOA22ITGdKJ4EiUty8PjZ2GRqVixeF9ZFaVt/0m0WeVGRuDksZWgnQtzRCU30pQ4rmD29hiU6NCrVKRXF5CSUMQ1FRTQ9m+Axz7+jvyf/+D2vwCdIEBhMyZQeTZZzB5/AQ82pmd9VzCLBIbZk2yaFoU2DYQ0VuGb7RWo6Mpb62WUA8vazDGktHnGT8Gr6hI6kpKWbv6BypsgtBGs5k1eVnsKS3kxaQdzm28EEI4iQQlhBC9hk6twVenb3vFdgq3Dt+ov+jOr+nGoIQ1U8I+KJHecLM4wjfQ6fsEGNdQm8FRUMJS9G5qN8wIY3mq+XNORqvrfX/0MADnR4902o2ESqViUVQMAN9mpbW5vllR+Cqrfkz2jSPGOaUdlwyJw0Ot4X9H05rd2LXm3cP7Ka0zsDByKNNCBnR6/yP9ArlkyCgMZjMvJG3HJMM4+q1Mm9ouxiaBB9u6I9UmIzuL8/kpJ936NL6oyfCNpu+39WH6QW7fvpaaYzkU/LGe7M9WUfz3NupKy/CICCf8hPlELjod3xHDUanVRHv7otc4vhSNb/j+GuUXxJiAECYFheFvMzVm0ywo27/bnj4lqEVHhm9YnB89ksXRI631blQqFSFzZqHx9uLgnt1s+XuzdV2jYrarmySEED2RTAkqhOi3rJkSDcM38hpuHC3BCmca7O2Ht0ZLcnkJJsVsfaKX3jAlabS3n9P3CRAfUF97o2mxOqi/oLcEJSZ3Q1AiPiCEAZ7e7CsrIru6gigv32br1JlNbC3OxUOtYU6oc7IkLI6LGMT76QfYWHCUvJqqVqeQ3V6cx7GaSuL9Q4htmC62q0I9vFgUFcNnmcl8kp7ErbGJbb4nu6qCP/Ky8NfquXLYmC634dxBI/irMIek8mLW5x9lXrhz+1j0Dl83BNyg+ZSRtsOryuoMPLB3E9BYr6HObLabScaSaWEbEFAUhdrcfIqOpFN1JANTdf13qVqnwzd2BL6xI9CHBNvt96yBMYzyC2J7seO6L9fFxJNeVc7EoPoMCV+dno9nnML5G/+PapOJsCZ/0+peGJTojITAUBICQ+0KWmq8PAmbPw/1lt2s/Wk11VPH4RU1sFmNCSGE6IkkU0II0W9FNGRE5DcM38hvCE6EeTo/U0KtUhHnF0St2cThhkAEND7BHOzTPUGJCE9vwjy8OFxZZpfSC5BVXUFuTRUjfAMIdmJhTwu1SsW8huEY24vzW1xnd0nj8JGmqdhdpVdrOGdYLGbgp3Zma5w+cJhT23DuoBF4aTT8kZ9NVTtuDD7PTMYMnD1oeKtj/9tLo1Jx2dBRAHySkSTZEv1QlbGOLUWNBVeLDbV8lnHIekNrW39gnc1Qq2qTCQCD2YTBbBuUqP//nNJiKtOOULhuI9mfrSL3x58pP5CEqboaz8gBhMyeQdQF5xI8Y2qzgATAedEjUKlU6NWO/+4HevkwP3wQAQ1Fji3emXwCr0yY12pWW28ZvtEV+ib1dzzCQ5l5yqkUG2ooWLuOutL6c42jmkJCCNFTSFBCCNFv+Wh1eGm05NZWoyiKNcU+vBuGbwDWJ/Ap5aXWZRkNwzeGdFOmBNRnLCjAvia1FSxZElO6IUvCwjK1p6PpUDc1FMKb3oVhCq05JXooAFuLcx2uc6y6km3FeYToPZ3eDm+tjtmhUdSaTdYpGVtrx5q8LPy0Ok6LdF5wJCEglPiAELKqK1iXn+207YreIbm8BNvciK+zU/kg/SAfptdPWdvW0KL6oIQJY2UVVUfSObRuPcuWvcZTzzxBwR/rqUhJqw9EDIggeMZUBl14HhGnnIDvyOGodY4Da7qGYERrQQlHswEF6D0Y3sZUvf0hKNFSMc+hY+LRjYnDbKijbM06TLW1EpQQQvR4MnxDCNFvqVQqIjy8OFJVToWxzlpbIqwbhm/Ub7c+2FFcVz9G26woZFSV463ROnUK0qbGBYSwJi+LvaWFdjUKLIGCiUHh3bbvUX5BqKkvZqkoit2UlmZF4e+iHNR0X2Ak2tePAZ7epFaUUmyoIaiFfl5XcBQFOGnA4C7P/NGS4yOi+SU3g19zMzmpYZrWlvyel4kZhTMHxuCtdd7pWaVSccngOP69ZyNfZ6VyXPggp21b9HxJDXVshvsEkFrZGBDNrqqgzmzint0b7NZXTGbqysqoKy6hrqSUguISXlm3g+yk3fUreHiRHRqJ2ssL39gReA6MxHPgADQe9tkMbbHM1OHh4G9uWCdnv7Hoi7NvtEeVqY66sbGEFxZiyMom/9e1FJ93rrubJYQQrZKghBCiXwv39OZIVTm5tVWNwze6KVPCv6FwnOWpVV5tFbVmE6P8guxu1p0t3kGxy6PVlUD31bOA+kyBYQ03Q/m11XZ1HZLLSygy1BLvH9IsPdtZVCoVk4LD+b+jR9henM/xEdHN1tldUj+0pLsCI2P8gxng6c3+siKOVlcwsIXaGgAbC+qzRuZ2Q92HcYGhDPb2I7WylOyqCqJ9u+93LnqOmpoakvNzMVZWEe0dxMHSUsy1dZgNtRzNLeK/WfmUHNyBsbwSY2UlpspKjJVVzbZTHAH6oED0YaEMGzaCWxecwY8VBaRmdWxmGVu6hmCErkmmRJiHFy9PmIu3pmuzAan7fqIEAOcMGs4qm5ohx6orQa1m2mmnsfObbynJymTv6p/RzZmOqhuCrkII4QwSlBBC9Gu204Lm19YQoNM7vbaBRUCToERGZf3QjcHdGBQAiPT0wUOt4VhNpXWZWVE4Vl2Jv1aPrxOnAm3JmIBgUitL2VdWZBeU2FtWHySZHNx9mRoAk4MiGoISec2CEnVmEwfKivHRaNtMB+8stUrF8eHRfJSRxB952Vw0JK7ZOtlVFaRXlTPE26/FgqDOMDt0IB9nJLGu4CgX+zZvg+hbfv55NR//8j3b8nMxA3/5BXHUZvafCo2WbA8vSqvKSQgIZXdDMVwvHx8Uf190QYHoAgPRBwVy+dxTST64FYBAvyAUPx92Zh/oUvsshSg9bIISJw0YzJVDx+DnhFmWNP1khPJVw8baBSVyGmokDfDzZ8xpC8n59BPyDh/GS6Mics4sdzVTCCFaJUEJIUS/ZplpI6m8GKNi7rYsCWieKWGpJ9FdRS4tVCoVwXpPjtVUUmsy4aHRUFBbTZ1iJsbLp1v3DfWZAt8dPcz+0kLm2wwdyGoo8jnMp3uCARYJQaFoVSp2FOdjUhS7seZJ5SXUmk0kBg/o1nTvaSED+CgjyRqIacpSW2NmaGS3tWFOWENQIj+bi4dKUKKv8wsOZpfJgDYkGJVGw6DwKNKLPVHpdGg8PFB76AkKCqXSbOCW6SfwyOHdaL19GBcU1uxzWmcTqE0qL+aqLb8CEKL3JNzTiwNl9lMdTwoKZ1srs2rYsi3WOD4g1CkBCeg9s2/MDYvik4xDnDUwxinbswSfwzy8yPf2Jvyk48n5v9VUJKdS4uWNMuu0bs3ME0KIzpCghBCiX4tquClfk5sFdM90oBbWoISxPiiRXuWaTAmAEI/6oESRoYZILx/rhetAFwQlRvvXV95vWuwyq7r++Ad5d09mgIWXRssY/xB2lxaQUlFCnM2Un7sahm4kBIZ0axuG+PjhqdZwqLy4WWAEYGNDUGJGSPcFJaK9/Rjq7ceRqnIyKssICenefhfuFTcugcizTrP+fGbcBJKTdtitU6fR4msyMmZ4LHOUanJrqgjxaF53pcLBzDERnt7WDDCLBeGD+GfcRC7dvJqSdhRYjLHJUDLjvNlhesttd7S3H6tmndZqwc+OsGRKhHt4c0hdgtbXh/CTFpD7w88U7t7LK6s+IXhiImdGDQfqv5dndGMwVAgh2qN/5LYJIYQDk4LDGe4bQHFdLdB99SQAfLV6VDRmSmS6MijRUOCx0FBfZPNYQz2JgZ7dH5QI9fAiwsOb9Kpy67SYiqKQWVWBXq3u1j63GBtQHxg5XFFqt3x3SX3KekJgaLfuX6NSE+sXRLXJREZVmd1rRYYaDpWXEOHp3eXifm2Z0zBF6/r8Y926H+F+NWaj3c8+LdRoqGyYFtRbq+OBMVNZOvE4a60HW0erK1rch5dGy7gA+78dy3CM1yfOJ7AdWQ+hHl7MCR0IODdrqjdNfuusgARgneo1zMPLWkxUHxRE+MkngE7Liv/7huXffcXX2ancuWsdTx7Ywrai5lktX6Ye4pq/f7UGboUQojtJUEII0a9pVGqWjByPuuG5Wrhn990ga1Qq/LR6a1DiWE0VHmpNt868YWENSjRM/2cpchnpgkwJqM/IUGgMipTVGagw1jHQy9cladaWjJCjNnU1akxGksqL8dfqGeLdvcEAgNH+9RkaTVPdUxsCJeMCQro9rXpSw0wrjqZoFX1Hjclk97Oj2jEeao1dIELbwjCmlCbBPAsvjZbTBg7luLDG4qz6hqEeAXoPRjVkSVmc0/B0vqm7R03ivaknMtSJQTmlV4UluuakAYObLQvz8LL7vXqEhhB+8vGodTpKd+7h/35ZTW5DVkVLQafVmYc5Wl3J/Xs2dV/DhRCigQQlhBD93gjfQC4YPBKAWJvU/u7gr9NTazZRYqil0lhHmIeXS8b3WlKyLUGBoy4cvgEQqK+fXaPYUJ+RktlwERzdTUUdm4psyAjJqW6cWSC9shyjojDaP9glgRHLDdrBJgGB9Mr6zAlXBEaG+PihUalIc3CTKfoOyxNzC09NyyN2fZoEK1oKSiSXl7T4Xi+NFo1KzRlRjfUQPG2e+jf9q3KUEaBSqQh1QcZUX3XziATOGWQf8PHV6pr9Lj3CQgk/6XjUWi1JmzdTvHUHiqJQ3sLwHINNUEtR+k+ARwjhHhKUEEII4JIho/h0+inW+gfdxVJXIq2y/qawpfHb3SFEX3/BX1jbEJRw4fANgKAmQQlLkcvuridhYQlK2GZKFBjqs0YiPLuvjogtSy2LppkSrip4CvXTL0Z7+1FcV0tBdXW370+4T22TTAnbG9RgfeMUvE0zKLQtzKVZ0jC8rSmvhkCHzmbberughP229C6YknJ26EA81RoGuOjvuifQqNTNhgF6arRoW+hvj/BQwk8+AbVeR9mefRRt/Iu86spm6xU1nCsA9pQWSmBCCNGtJCghhBANfJ1U9b011qBEw5PqUL1rng5agh9FhhrMikJOTcN0oC44ZoBAXf1NkOXmxlrk0kWZEv46Pd4aLTnVldaL64KGi+5QFwWG/HV6ohqKjJYaGm/yLEGJIS6oLQIwoqGwYFKpDOHoy5pmStgGG2yzEny09hkULWVKAPhrm39XWIIStoVbW5tSWefE2gmO3Dt6Mp/PXOiSffUktrMHaVUqdGo1Wpvfi21GjEd4KBELT0Lj6UnFoRQ2fv8dpiaZEcW1jd9R9+3ZyNZ2zqYihBCdIUEJIYRwIUtQ4nBDyr6rUpaDbQpdFhpqMJjNLqsnARDUsP/ihuEjjZkSrrkRV6lURHr5UGM2WQMjlvoaIS4KDEHjTCSHKkoAMDcU/PTWaF1SWwQgpqGY4KGS4jbWFL1ZTdOghM1Nq20wtGkBzJYKXULLwQavhmW2T+TtMiWaJF24IlMCes90oM5kGxiyDNWx/V3aBpU0KhX6oCAiTjsZrZ8vmYcO8cEH75FZUsTLh3ZwpLIMo2K2237TOjT1xYrLMTVZTwghOkOCEg4YDAbefPNNDh486O6mCCH6EMuFoaW4oaue0luDErU11pk3Il2Y3hzULFOiPigR5cLAiGUIh+X4CwyuzZSwbUN+Q0Akr6aKWrOJwd5+LqktAo1TMB4s6fmZEnIu7rwas/3wDdsb1DC7TIm2a0pAywEF74abX9v3eNgEJdRNhm/4uygzqz+yzYrwauH3Ytv3lt+/zt+PiFNPwuTvS0pKMne99AyrUw9y87a1zbYfoPOw+3lT4TFu3LaG11N2O/MwhBD9lAQlHNDr9SxbtoyysrK2VxZCiHayXBhmN9yUuypTQqdWE6DTU2iosQYEBrpo6ATYF7o0mE3k1VQR5uHlsPhed7BkhhxrqCtR0BAYcGWBvYCG339pQ3Am3TJ0o5unArUV07Cv3pApIefizms2fMPmBjXMs5WghINshpaKVHq2EZSYGhJht/6koHDOHBjDo2Ont9V80UG2wzcsxUZtA1EBLQQlALQ+3oSeciLRw2IoKcgn57sfqS0obLZ97ybf1b/nZQHwc06Gcw5ACNGvSVCiFQkJCezbt8/dzRBC9CGWC0NLyTBXPqUP0XtiVMyszz8KwEi/QJft2zZT4mh1JWZcV0/CwlrssmEGDkvRz2AXDZuAxqeNlmlhrUUuXTSMBcBbq2Oglw9HqyqoaKHqfk8j5+LOaTolqG2wwbbArblJAUPbAINtnoNerWF6yAC7G9rGJ/It15Q4LmwQzyXMsv6sU2u4bng8k4LDO3g0oi0tDd+w/V3aBp/CmgRi1R56Fl5wAf5xsZhqasj94Weq0jPt1mk6nKPKaB/0EkKIrujzQQmDwcCyZcs4duxYh99711138cknn/Dhhx+SmZlJVVUV1dXVdv+EEKIj/JukwLqq0CVASMOF6O7SAjzUGhICQl22bz+dHjUqig21Lp95w8Iy/WlOTSVmRaHQUE2gzsPhGPru0JgpYR+UcFWRS4vhDUM4esPUoHIu7pzWakp4arS8NvE4JgWFc2rkULv1dI6KI6o13D96CiumnGBdZg1K2NWUsAlqqFR2Mxpp+2GtB1fRtDB8w/a7zXaGFNsZhyzvqjCb8J42iaDJE1FMJvJ//4PKXXushYHrzPZBiUpTfUDTkpVxqLyYvwpznHdAQoh+xXV5s25SW1vLK6+8wuTJk4mMjOzQexcvXgzAE088wZNPPtniOgcOHOhyG4UQ/YftuF4PtabZdHzdybaQYkJgaKtV8p1NrVIRqNdTYqgls+FGPNrFmRKWKQKPVldSWleLUVFcmqkCjZkSluEbGZWumw7U1pTgCDYWHLNLte+p5FzcOdXNpgRtvGnVq9UM9fHn0fjmwyhsAww+Wp01m8ZDo0Glsp/k0/IdYjf7RpPPlG2tFFfVTemP7IZvWH8vjcuqbIJUXjZDMcI9vcmtqaKgtpoiQw3+48ag9fej8M8NqPcdIj+vgJC5M6lrkilR2fC58G6YveX15N0cqSrjsxmnunRYnhCib+gT3xozZsxw+JqiKCiKwo033oi24Ytz06ZN7druU089JSdQIYRTBdhUQA/x8HTpd4ztMIUpQa5Pnw7UeVBkqOVAeX2BRVfNvGERrPfEQ60hp6bSOnTDlTNvgE2mhKEWRVHIqq7AR6uzDm9xlRMGDOasuFgqS2swm5W23+BGci7unKaZEiq7oITjYJRtRoWvRkeu9T3NM4osW9Q5mH1DuE5LhS5tZ8awFPjVqtR2v6MIj/qgxKHyEixrew+JRnfGqcxMyuR/B3aT+91q/p+9+w5vqmz/AP49J6tN9y6lZUMplNKyZQooIqggKDgQUXAgICqKijhwC27UVxDEhfo6UF/9IShuBRRkll0KhQLdO02adX5/pEmTNmnTNm06vp/r8rI5OeM5T0JOzp37uZ/ckA5AbA/bdtbhG9bZW8pMBpgkCSUGPYMSRFRvbeJTo6ioCGFhYZg+fToUCsdfHXU6HdatW4dLLrkEHTt2rNd+p02b5slmEhE5ZEo059ANwBIEsRoUGlXLmk0jROkDaEpwuNgalGjeTAlREBDto0ZGeSnSNc07+4mVn1wBmSCg2KBHiVGPCrMJMb5+Xrnp9pHLoWn2o9Yfr8UNUz0oYa+2DBn7TIlgpQrWN4mzYIM10Gk/y4azDKxlCYNRVUmHmoKs2vAcADDa1Qsprxxu0Unt7/BaRvr4AsXAv4U5AIDeASE4WloIRXAQli66BsYN7+Drf/7Ezxs/xjCZGsnJAwDYDd+oPJZ1eEep0QBWDCGi+moTQYkvv/wSTz31FLZs2YKlS5di/PjxtudKS0uxbt06TJs2DYMHD27Q/tPS0pCamoqsrCxMnz4dERERyMjIQFhYGPz9m/dLdUNotVpMmjQJkydPxv333+/t5hC1a74yOeSC4JWhA9bhG53VAYhsxulArYIrswF0ZhPUMnmzZwcAQK+AEGSUl2JbtqWIW1gzzrwBWH6tDlIoUWzQI6/COiVp87ahtWoN1+Jt27Zh1apVAIDFixdj0qRJXmuL/Q3pgh5JDs8paxm6JXdRe8A+kLFu8Hhk68ptnyNCLcM3AGB4eP2Gz1L9yUT7QpeW18BoVwdica8UrDl5EA/0HuhQSyZKZXkNrfVtRkbE4GipZWYeP181Lpk2Db+aymA8dhpffvkZ0tJOYPiEy2Cy1pqozMawHqvUoMc5bRlePrYXt3Ttg8SgsKY6ZSJqQ9pEUKJPnz745JNP8PXXX+OJJ57ARx99hEceeQQ9evSoe+NaaDQaLFu2DFu3boVcLofJZMKoUaMQERGBl19+GTExMXjwwQc9dBZN5+2330ZSUlLdKxJRkxMEAYEKFQr0uma/Ge0TGIrEwDBM7NC5WY9rFaKsCkJ09PX3SnbA0LAo/Jh9BodLLNka4c0484ZVYOUwlgyNZZrL6pXwyVFruRYbjUasWrUKGzduhEwmw8yZM3HJJZdAqVTWvXETuDauJwZGR2NyeCcIkuO/tdoyJeyHYkS7CEpE+/gh2m4GD3f3TU3Hvq6HdfpO+zoQiUFhWD3gYgCwFRsGgN6BIQ77GRQShdhEf3SLDAVMlgyZoKREDE5Mgfyfffhm+2949o8fEDZmBFQR4aiorF1ikCz/LzXq8WbqAVzQabAuPRWvpoyx7bvMoIe/wvHfg9FsdjkNLRG1H23qU2Dq1KnYsmULevfujWuuuQZPPfUUioqKGry/559/Hnv37sV7772HPXv22CoQA8CYMWPwxx9/eKDVTev06dNIT0/HmDFj6l6ZiJqFdQhHcwcl1HIFnu8/AhdHxjbrca2C7YISzT10wyo5OMJhbLw3shSsdSVOVv5a6Y3ASGvSWq7F+/fvR3x8PMLDwxESEoKkpCT8+++/XmtPYnAYbumd6JDWb+WsPoSVfW0C+0yJ2rIrHPfNoIQ3KISqfrcGhozVZsywsn8tO/r644vhkzC5QxcMD+uAGF8/DAmLRnywZdYUa5AqICYGCxYsRnZYEAylpcj+v60oOXgIFZUFL63DN4oMelzQWcb8BNjVUPr+wmlct3MLfss5Z1u2MeMopv71Hc7ZBUmIqH1qU0EJAPDz88ODDz6ITZs2ISMjA1OmTGnwr3E//PAD7r//fgwbNgyyahfjmJgYnDt3zsWW7tm1axfuvPNOjBw5EvHx8fjll19qrLNx40aMGzcO/fr1w4wZM3DgwIF6HeOFF17Afffd16h2EpFnBVZ+UWtvN6P2wzWae+YNKx+ZHMnBEbbHYc08hAaomoHDFpRgpkStmvpabNXYa3JOTg6ioqpqtURFRSEnJ8cjbfMUawFEdwtdOgQl3Pw12931yLM6+vrZphaOqByS0aNy6t9ufoEO69pns6hEGXxkcszvkYRlfQZDrPad2fpeMZjNUKvVCBs7GqEXDQEEAYW79+Lkt5uRk5trGy6UrauqVGOyCyB+nHEMAPBhRtVMOZ+cOQ4A+D3XM/+Giaj1ahPDN5zp1q0b1q1bh99++w2nT59Gp06d6r2PiooKBAcHO31Oo9HU+HJUX+Xl5YiPj8e0adOwaNGiGs9v3rwZzz33HFasWIH+/fvj/fffx7x587BlyxaEhloi2FOmTHG6702bNuGXX35Bly5d0LVrV+zdu7dRbSUiz4lT+yO1OK/Zp4H0tpaQKQEAw8Ki8U+BZU6BMC8EhmyZEhoGJdzR1NdiK09ck1u6j4ZeBoNkrnHjac8+ld5+aFFdwzJmxPVEiUHPmVK8RBAEvJYyBqc0JeheGYwYFdERPjI5+gQ6vj/tA0d1ZcBYMyUMkhkHi/JQajIgoHcvqKIikf/Hdmiys/HGm6+iJDoIAX3iUaCvsG1bZKj6O0zlg0JDBXJ0WmzPu4DBoVXlMNXNODU2EbVMbTYoYTVmzJgGD13o168fvvnmG4wePbrGc1u3bkVKSkqTtm3Dhg2YOXMmpk+fDgBYsWIFfv31V3z11VeYO3cuAOCbb75xuf3+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1F5RbNwXDev2jd1PW8S+ca56v7SV/rm9Rz9c26mnR4pNtqa+sc9K6OQX0ORtdtU3Q8OjIZzYjwCFEmpF838ZDqoMzmgrZ0eI8lU3++vXmt43TX0ttmrsNTkyMhLZ2dm29bOzszFy5EiPtM1TVDIZVKjjJtR+SlC79Pu6hmXM7pLQuMZRo8lFET0Dgm2PRUHA0LDoGuvZv5Z1va7W94PBbMLDB7dXbRcSjOjJE1Fy8BAMOaUo/Gc3tBlncP7ySba5YovtghKWmVqKYYaEZ4/swgi74qd+8jZ/O0JEdeCnQC0WL16MW265BXPmzMHEiRMhCAJ+++03vPfee9i6dSs++uijJju2Xq/HoUOHMH/+fNsyURQxfPhw7Nu3z619LFmyBEuWLAFgyZxIT09vcEBCLhcRFuaZXzZDQpwXxyL2jT2FQlbjPdeW+icagXWvVA+toW/k/pYAgEwQ0LdjlNtj1Buret+EwR+PDboIfnKFxz7X6qNjseNr37NDuNNpFJtDa3jfePNabOXONTkpKQlHjx5FXl4eZDIZ9u/fj2eeeabBx/TWDwEKu/eiQub4i3prCGK5ozUF5ZqCr10QwP41trLvH6W8sj6FVHNKV0EmIii5H27slIgfVr8AXXYO/vnkU8j7JSCgTwJKoIckSJAJYo2hcn/lXajajyC0mteivb93asO+qR37p3YMStRi0KBBeO+99/DSSy/hqaeegiRJWL16Nfr3748NGzY06YwWhYWFMJlMCA8Pd1geFhaGjIyMJjuuK0ajGSUl2kbtQxQFhIT4obBQA7OZ85XbY9/UZDCYkJ9vKX7F/nGtNfWNJEno4OOHcJUPSosa93nijtr6ZqifJXXY+h5rTnJ9VVuCFEqUFWnR3K3w1PsmMNAXCkXTBlS8eS22cuearFAocP/99+OGG24AANxzzz1QqRo27a03fwjIlxlsf9u3wVet9EoQrym1hqBcUzBrqwIRtb2mISF+iFBYZtUoMRtcrtehexyir7gcxQcOQnPwMIy790Jz8hRCLxoCmb8CYT6+8PFxnZWm9PVOgLgx2ut7xx3sm9qxf5xjUKIOAwcOxMcffwydTofi4mIEBgbC19d7438lSWrQeM1p06Y1+tieuuExm6UWf/PkLewbR9X7gv3jWmvpm9dSxkAUPPd54o6W1jf2FenDVb5ebVtL6xtXWtq12Kr6NXnChAmYMGFCo/frzR8CikqrChXaB+2Ky7ReCeI1hdYUzG0KGoPe9rez19S+fzTlOgBARkmxy/19eDgVgkxEcEp/+HXrgoLt/0CXlY2szT9grdkXs66aBo1W73L7wtLyVvPeau/vndqwb2rnif5pjh8CvIVBiVrs2LEDycnJ8PX1hY+PD3x8mq8gWkhICGQyGfLy8hyWFxQU1PilhoiotVBz7LCt0CXgWEiQnPPmtdjKG9dkb/0Q0EUdiInRndE/ONxhO4PJ3OZuNFpLUM7T7OuG1Hb+ZrMEWWWBCJ3Z5HK9bdlnq/YdFITIiZdAczIdRf/swe7d/yAvPR05vbpACguA4GR2Fr3J1Opeh/b63nEH+6Z27B/n+O2wFrfeeitkMhkSEhIwaNAgDBw4EAMHDkRISEiTH1upVKJv377Yvn07xo0bBwAwm83YsWMHbr755iY/PhERNY0gu6lRvTH7R2vjzWuxVXu6JguCgIU9+9se+8kV0BgNiPZAYV5qGZSiDHO6JLg184+iWiHMjr5+OKfVuFjbQhAE+PfoDt/YjuiWVYrS4ydw+KefkeurRMjQQfCJjnJY32A2AwCydeX4KOMobuwcj2gfxxT3YkMF/OVKyDi7C1Gb1CaDEpIk4c0338TMmTMRHh5u+zsiIqLuje1s374du3fvxr///ot//vkHH3zwAcxmM7p164aBAwdi0KBBuOqqqxrcTo1GgzNnztgeZ2Zm4siRIwgPD0dERARuueUWLF26FH379kVSUhLef/996HQ6XH311Q0+JhEReZe/XAERAsyQmCnhhqa+Flvxmuzc6pQxOFicj2FOZnGg1uuauJ5urWefVQEA46M64YPTR9zaVubjg+RLhyG1RxfkfbMJ+pxcZH//I9SdOyF4cAoUAZZpsfWSJSjx+ol92F+Uh/NaDV5KHmXbT5ZOg3m7fsLwsA5Y1mdwncf9JecswpS+SApmZjFRa9EmgxJmsxlvvvkmxo4di9DQUNvf9Q1KhISE4NJLL8Wll14KwDKH+c6dO7FhwwZ89tln+Pzzzxv1RSg1NRWzZ8+2PX766acBAAsXLsSiRYswadIkFBQU4PXXX0dubi4SEhKwbt26VjMfOhER1SQKAgIVShQZKtz6pbK9a+prsRWvyc5F+qgxnlkS7Zai2nCLCJV72V1yQYBRkqAxGvCzUYOoSRNQfuo0inbvRXnGGWjPZiKgT28EJvWFvnJoSKHeMoXoOa2lvoS1Zss/+ZapdrfnX3B+sEpakxHbss9izcmDAIDvRjX+c4GImkebDEoAlg8yZ3/Xl0ajwd69e22/0hw4cAAqlQoXX3wxBg4c2Kg2Dh06FMeOHat1nVmzZmHWrFmNOg4REbUsQQxK1EtTXouteE0mqkkUBMgEAabK79LhyqrPLB9R5rLWRIjSB7kVWpQZLbN2CIIAv25d4RsXh5LUwyhNPYyS1MMoO3YCxy4ugT62F1SVQ0UqTJZ9Lju4HaIgoFeAe0O11pw86FDfwiRJHO5B1Eq02aCEJ0ybNg3Hjh1DWFgYBg0ahIkTJ+KRRx5BfHx8g2bAICIiAoBoHz+cLS9FjC+nBqsLr8VE3qUQRJgkS6DAfshZnDoAJ8qKnG4TolQht0KLQoPOYbmokCM4JQmrrr4BW3/6EZv++BlH/9qOlzMuoCguElLHSBgqy1gcLM6vccza/JXnmElRoNdxiBxRK8GgRC2OHTsGuVyO5ORkpKSkYMCAAfwSREREjbawZxKydD0QykKXdeK1mMi7FKJoy4gIsxu+0dmvlqCEwrJejq7c6fNDYrsi8OprsCPcD2FpZ6DJL8HZP08gXylDUHI/mEeYbeuer6OwppXWZHR4nK0rZ1CCqJVgUKIWu3fvtqWL/vDDD3jppZegUCgwYMAADBo0CIMHD0ZycrK3m0lERK1MiNIHIQxIuIXXYiLvstaVUMvkDrNxxPr6O6wnALAOmA5RWmYZytZpne5TJghQiCIUQYGIn3ApbgnpiGPvv43s40eR/8cOvFpoQFmQHH7du+FkWTEAQOlkOtHa5OjKgaCwem1DRN7BoEQtfH19MXz4cAwfPhwAYDAYsGPHDrzzzjt46aWXIAgCjhxxrwIxERER1R+vxUTeFa7yRYG+AuXVMhH85Ap08wtEuqYEAOAjk9uyFaqCEs4zJQDL1KQAYJDM6NAhBj0mTURB904o2X8QOzJOIr+0EMX7DiIwqS/8e3aHSRBsxS+rc1Y/rrZjE1HLwqBEHQoKCrB7927bf8eOHYPZbEbPnj09VlyLiIiIXOO1mMh7uvsF4XhpUY3lClHEayljcOWf3wKwFL60BSUUlqCEGa6LzVszMAyVQ0O0JiN8oiPhEz0eRTl58D1wENqz51Cw4x8U7z+IwMQ+KBs4HgG+NWeDKa0sqGmv+nAOV1KL87E+/RDu7z0AHatlfzSV33PPQSXKMJRT7RIBYFCiVpdddhnOnDkDmUyGhIQEDB06FAsWLMDAgQMRHBzs7eYRERG1ebwWE3nX+Kg4fJ+VgYEhkQ7LFYLokLXgI5MDBsu0noEKFUQItQclBEtQYl9RHr7MTHMIIqgiwxF5yVjo8wtQvP8gyjPOovCff7Ey51mMGjYCw4YNR2BgkG39UqO+xv7P6zTI0ZUjso4pbR868BcA4P1TR7Csz+Ba1/UESZKw8ui/ADhtKZFVmwxKCIKAmJgYKJVKh7/ra/Lkybaxqr6+LJRDRETU3HgtJvKu3oGheHPAxTWmMJYJjjUefGVV9SYUogh/uQIlToIF1uCG0q4+xYZThxGssHxXjw8IwbHSQss6YaGIGDcG+sJClKYegbZcjz/++A3/98s2GOJicOvEKzGoWy/onUxNujM/Czvzs9y+8W+u6UM1bmZwELUnbTIoIYoifv75Z9tj+7/r4+677/ZUk4iIiKgBeC0m8r7OfoF1ruMjq7qtUIoi/JwEJb4aMRnyymBG9cKVRQY91DI5etsFJWz7CwlB2KjhmNNjAM4dTMXSTR/CnH0W544cwdQBw9ChXz9IZjMEJ8UwXdWhqM5PrqhzHU8oqcwmIaIqbTIo4Ulnz57FunXrsGfPHhQVFSE4OBgDBw7E3LlzERcX5+3mERERtXm8FhO1XBdHdMSvuecwNjIWh0sKAAAKUQZ/Jzf59rN3KJwEEHQmE2J8/VweS+anxkVjx6GjXAPNiZOQZ5xHenoa/j5yEOd1JfCP7wn/nj0g862a3UhnNsFXVvctj9qNdTyh1FCz/oW7TmtK8HjqTtzVI4n1KKhNqd/cOu1MamoqpkyZgh9++AGJiYmYOnUqEhMT8cMPP2Dq1Kk4dOiQt5tIRETUpvFaTNSyLe6VjJeSR+Gy6M7wqQw6WIdv1EZuN/zDOnTDDAn+ctdDrrUmI4oNFRAVCgT06Y0BN1yP666bhQ6dO8NYpkHRv/tw7rNNyPv9L1Tk5EGSJGicFMF0RmU3/KQpORvS4q5PzxxHvl6Hpw7/48EWEXkfMyVq8cILL6BPnz545513HMaxarVa3H777XjhhRfwwQcfeLGFREREbRuvxUQtm0KUIT4gBAAQoFBCV6G1Dd+ojf2QikGhUdiWfRZA7bUddCYjig1VN/W7inIwoc8QXDrzOmzvHIHSo8ehOZEOzclT0Jw8BWVoCH40+mDUgMGIDQ6tsT/7qUSNTqYVrcsLR3ajzGjAU/0ucnubUrv2mySpXrUs3Mn4IGqNmClRi4MHD2LevHk1Cmv5+vri1ltvxYEDB7zUMiIiovaB12KilsnZ8IvAyiwHheB8+IYrF0fE2v4Wa7lHt2ZKWBklCSsO/Y0ifQUUQUEIHToYHWdOR+jwoVCGBENfUIhnP1qPSfffhU8/+wS7jqRCYxcUsJ/xw2BXLPPP3PN4+vA/0NVRlPKPvPPYW5TrENyoi32mhNFsdns7AAhoproXRM2N4bZaqFQqFBUVOX2uuLgYKpWqeRtERETUzvBaTNSyPNR7EP7KO19jilAAiFX746y2FMFKlVuFI+MDQlCkr0BySAQeThiEON8AnNeVuVy/wmzGeW1xjeW7CnNsf4sKOQLie8K/Vw/oc/NRdiIN5emn8e++PXhmy1fwDQjA81OuQ0rKQGh9qoaKGCoDBGfLS/H80d0AgMMlBRjg5DwBAMzzhgABAABJREFUS5aDlVEyQyG4N/zDMVPCDMD9YSMGqSqIYTSbIXcSGGqI7XnnkVZWjFmde0NspllIiOy1iaDE9u3bMXz48DrXMxgMePDBB/Hyyy+7td+LL74YL774ImJjYzFo0CDb8t27d+Oll17C2LFjG9xmIiIiqhuvxUQty8iIGIyMiHH63D29kjHP2Bf+cgX83BhqsLL/SFhvgUeEW/aZXVHucv09hTnYmZ9VY/muguwaywRBgCoyHKrIcIQMGYRRqjD8+n9fQJuVjV9++Qm//PIT1B2iUao0Qd2lk+2GP62syLYPawDhtKYEG04dxvye/VChAXbmZCI5KMK2nsFsdijiCViyLSRIGBXR0WF5iV1Qwj7IAFiGkzx9eBeifdW4rVtijXMqs6uPkVehRXQtRUHr49kjliDM0NBoxAeGeGSfRPXRJoIS8+fPx+uvv44xY8a4XKe8vBwLFizArl273N7vQw89hLvuuguzZs1CWFgYwsLCUFBQgPz8fKSkpODBBx/0RPOJiIjIBV6LiVoPhShDiNJyc+7OgAZn9RREuP6l3llAwt68bn3RRR2I5ak7HPepkKNbYiKizMUwlJTiYp8I7NnzL9JPn0ZB3nkU7tyF3Ql9cXCCgLIgtW07awDhsdQdKNBXYN3JQ/i3MAcGsxkLe/S3rWdwMgzDmm1RPShhH1gwVRv2YZTM+LvAco7OghLlxqrhJIWGCo8EJeyHsBwqyWdQgryiTQQlLrnkEixcuBCvvPIKLrnkkhrPFxQU4LbbbsPJkyfxxhtv1Lk/nU6H3377DefOncP111+PWbNm4fTp08jNzUVERAT69++PkSNHNsWpEBEREXgtJmrt9PWsl2DlrKaEUhShN5vhJ1fUOpuGWiZHuMrX6XPW7RSBAbh45CUYN+5SbD6wG/u+/wrlp8/g4OFUvJtXhFyjHnlBvvDr1hVFHbsDAAr0ljoWAqoCECfsMir01TIeTHaPJUmCIAiQJAlrTqbij7zztueq15SoHqSocQ6mqnOvMJlqWdN9pzUltr8PFudjWmwPj+yXqD7aRFDixRdfxCOPPIJ77rkHK1euxKRJk2zPZWZmYu7cuSgqKsKGDRuQkpJS677Onj2LOXPm4Ny5c7Zl/v7+eOWVVzBq1KgmOwciIiKy4LWYqPWLVTfsV3xnNQ2Uogx6s7nO6T2VogxyFzUR7DMUygwGBClViIiNQ9iIYQgdNgTac+exI/00uhZL0KSfhib9NL769yDkQ0ehXF8An5gO2GGXqWHfFvsimYBjRoO13sQ5rQbfXTjlsJ6xWjCjrhlAyu2OmVuhtQU8GuOUXVCiQK9r1L6IGqpNzL4hCAKeffZZXHvttXjggQfw9ddfAwCOHj2K66+/HhUVFdi4cWOdAQkAWLVqFURRxMaNG7F//3783//9HxISEvDEE0807UkQERERAF6LidqC0RGxuLtnMm7sHF+v7WRCzduT6rNbPNF3qNNtlaLMZaFG+yBCaeXfuspggiAToe4Ui/CLR6J40jiEjxkBdVwsdAY91v78PXJ//g2Zn3yO3J9/g+bkKZgr9Cizm0Wj+vAN+wCINaMhx0mtjOqZESa7/aw5eRBvpTnOLqSxG2rx2ol9WJ223+m51kehXSDCYDZjXXoqNmWm1brNybJinNLULDhK1FBtIlPC6vHHH4dKpcKyZctw7NgxfP7554iMjMS7776L6Ohot/axd+9ePPTQQxg4cCAAoHv37njyyScxadIk5OTkIDLSeQVeIiIi8gxei4laP5kgYEJ0J/yUfaZe2zn7xbT6QBC1iyKaKlFWI6jRNzAUh0oK8E9BVZZDqVGPz84cxwcZR2seXyGHX7eu8OvWFYnqQPx96CD8Ms5Ae/YcyjPOojzjLARRhNClC8qiwuEb27FGwUr7AIjObII/LJkN1VUPZthnSnx73pJVcVePJNuy8mqZIj9kncHdPZMdlunNJnx25gR8ZDJcHdvdaZDHXoVdlofebMLX59IBwOkwjk2ZaYjyUeO5ysKY/xt5JWfrII9oU0EJwFIQS6VSYe3atejfvz/WrFmDoKAgt7fPzc1FXFycw7JOnTpBkiTk5eXxixAREVET47WYqO0YEhoNP5kcV8Z0c2t9Zze51TMl1C6mG1WKokPxzMGhUYhQ+eJQSQH2FeXZlpcY9E4DEtWVQIJf187w69oZkskE3fkslGecgfZMJnJOZ0CXbrmBf//QKYxKSkGvXr3RqVNnp5kSWTo3MiWkmnU4rEM0jpcW2jI8arMj7wI+PXscANA7MBSJQWG1rq83VR3TftiJZUaRqoBGmUGPd08ddtg2W1eODpXFNjVGA/zsMjnOactgNJvR2S+wzjYTtYmgxLBhw2qMp5IkCSdPnsTEiRNrrL9jx44ay4iIiIiIyLMCFEp8etHlbtc+cBqUqPbY1y5TQiGItkwFpUzmEJSQCwKUYs1MgVK7oRe1OVNeavtbkMngG9cRvnEdIZnNqMjOgfLsOWgzzyE3Jxt//PEb/vjjNxTADERFoMxPAd+OMbZMhCytpsb+q9eUcFbo0ihJUAgC/pN2sM72/pOfhVXH9tge11WDA3DMlLCfiaPIUIEIu6KhOnPNwpony4rRwdcPOpMR127fjJ5BIXgteTQA4I7dPwMAvht1VZ1taE1ydOX4tzAHE6I7O509hhqmTQQlbrzxxkYXebE3b948yGSyGsvnzJlTYzkDHERERJ7HazFR21Gf7+nOghIdfP0cZomwH77RwdfPFjyoPnxDLohQiTU/R149vs/t9gBVs39YCaIInw7R8OkQjZAhAzGzYzx8c/Jx+OhhfPPnNkjnTtvWfT81HX4xHfCXzABzWChERVXbSwx6FBsqEKRQAagZpACAs+WlMEhmZGot55gSHIG9RblO2/nk4X8cHuvcmKHDPihhPwyloELnEJRwNtvH8bJCnNeWIaxyvRPFhTBJksOkriZJarab90K9DsEKFQRBwG85mdAYDZgU0xUA8Hd+Fv7Oz8L8HkkOGSD1tXDPryg3GeErk+PiyFhPNb3daxNBiUWLFnlsXwsXLvTYvoiIiKj+eC0mar/sb2C7+wdhVHgMQpQ+eOX4Xtty+0yJWF9/W1Ci+vANURCgdBKUqK9wlS/OO8l0sLUnKBDDusWjZ8oAfNEpFLoLWdBlnoP2/AUcPXMah1Mt2QuCKEIVGQGfmGj4dOiAJ807IYgiXksZg+7+QU4zJe7e+5vt746+frg4MtZlUKI6vZPshupcTS1afSYOrdlYY51NmSdrLLug1SDGp2rmFYPZBJmLGiAbTh3GweI8JAWF4+rY7rbgTENsvnAab6UdwN09+2NCdGdbxsjlHbpAEAQ8VRmwiQ8MwWXRnRt8nPLKbJL8esxUklehxYbTh7Gg/wD4t415JjyuTQQlPIlfhIiIiLyL12Ki9ku0+5092keNa+J64q+887ZlKlEGuSjiod6D8N+zx3Fb90Rsz78AwDL7huPwDbHBQQl/ucJWGyKijqCEtWBlmVEPUSGHulMs1J0sv6InqQKQdWAPdOcvoOJCNnRZlv+A/RAVCqiiI/HymSw8NHoiKgJrn0Y12sfPaeaHVXxACI6VFtoeV9QSlEgvK8b/zqej2FDh9PkaQQljzaCEMyfLihGlUle1wWSCj0wOrcmIAr0OHX39bc99WTnLx/HSImTryvFgwiC3jlFdjq7cNlPJ9rwLmGAXdDBDgszuPXWspLBRQQkrP7tAiyRJeOX4XnT1C8LVsd1rrLsj7wJ+yzmH5KwoXBYaV+N5YlCCiIiIiIhaCPvhG9YAhX2gwZolMTIiBiMjYhy2VQiOmRIyQYCqWqp+sEKFIhc34tXXsw9K1MYalHBWiFLy90NAfE8ExPeEJEkwFBRCd/4CdOezoMvKhvbsORzJLsBbh0/imLYE2b5yqKKi4BMVCWVEuMNwjygfNVROhrVZWQtlXt+pFz45c9whKLHh1GHsLsjGKymjoRRl+Pb8KWzLPmt7Xi4IDrN/FOgrbPt8+djeWgMc9jLLS2EIqSpGbN3uzRP78Ufeebw/ZAKClTUzImoL+tRlbXqq7e8QpQ8M9kNSzGbIZFXvgZOVU5nuKsjG2pMHsSJxGGLsAiXuss/WKTHq8XNOJoBMW1CiWF8BvWRGhMoXBZXvt2BVwzNB2joGJYiIiIiIqEUQqw2/AByzJ9TymrcvM+N6Ia2sCAEKpUP9CpkgQFntJj7KR+1WUCJQoQQqZ/EMU9YRlKgMBjgrLGm/TBAEKMNCoQwLRWC/vpBMJujz8hFeUo7cwhKcPJ4Jc5EBugvZKLauHx4GVWQElBHh8A+LhaJafQaj2YxSox7FBr0tOOJfOTuJdWhGmdFgy0r437l0HCopQKnBsdinn1yBYrtl/z17HOe1ZZge1wO/5Z6rq7tsyk1GhwCG9e88vQ4mSUJehRbBSlWNGVUaM7WofUBDYzRAY5fVYTSbARnQRR2A0+WlttokKw79DQB4J/0QHu871OW+z2nLkFehRf/gCJftdTLqBjf+vRWAZdrUwsqsk3Cf2t9H7RmDEkRERERE1CLYp9pbb/zsi1f6ijVvX27q0tv5vpwM34jyUTsMcXDYT+fe+LByqlAfu2BGsEJZa5t1JhPKjUans3qU1zLsQZDJoIqKRGkUUAogdlAiDIVF0GXloCI7BxXZ2ajIzUNFrmU605/3H8OBoGDkmsqhjAiHKjIcB/Ky8Nix3QCAoMp2WoMS1poSf9oFFd47fcRpW6oHJQDgj7zzGB3RsdZzr05rMjoUBbUGJaxZHBqTobJtjkU9rRkuH54+CrVcjumxPWznYJIkh8yE6krs2q0xGWzHAKoCRtb3kEmSHAIydc1QYp1F5IOhExxqXthnlRicFCi1PWc2o7Ay6yRM5Qu4Nwqm3WFQgoiIiIiIWgSxWqaDZVnV8/J6zJwgE4UaNRgiaxmK0dkvwPa3j13wI7COAozvpKfinfRU3NS5ZnCk3FT3tJxWgijaMinQtzckSYKxpAQVuXnQ5+YjTuaPkrxclGdnovxsJgDg5i3boAwJhjI8DKVhoVCGhkDR3XLDbA0I/JRz1uUxrfxkCqfLT9nNeuIOrdEIvV3xTOvfRrOlTdYsBvvpRwHL6240m/Hfs8cBAFfFdINCFHHP3t9xprwUX42YDEW119IkmfHq8X0OmS/lRqNDIMgaPLAPHJzWlECEADOkGu1wJb9C5zA0yFy5v90F2XiiMusCsARR7ANhFWaTQ6aEscz990N7wqAEERERERG1CPZBCQE1MyXk9UjzlwlCjSBGlI/axdpw+CXcvnZDUB2ZElYZlbOA2NO4WSDSGUEQoAgKgiIoCOjRHbcPHAuT3oBDP26CvjKDQp+XB31hEfSFRcCJkxAh4ON/DuK8QYNdXXsiJvEC9uSegjI0BDIfH6fHUYkyl9NkplfWYHCXq+Eb1qCANUhTPVgjEwSHTJPTmhJ08w+yzaxSZjQgROkYlDhYlI9fcizBmWgfNbJ05ZZMCbvsB2NlRobJLiiRrimBKABmyVIkU5Ikh2E/zqYxLTcZUGqounW2Bjuss3xYPXZwJ1YkDnM4/wJ9BeSCgEClEgVgUMIZBiWIiIiIiKhFqD6lp/3/Lc+7nykhF0SYqw3495croBBEpyn3UT5qXBzREbHqAORVaG3Lg5TuBSWczWThbEhHQ4UofaCVyeETHQmf6KpikkZNOfT5BdDnFwCFRQiS+cGQfgHnjh3DN2cykVOQDQCQ+/lBERoMRXAwFMFBUIYEQx4UCIWPAnIX/ZpeVv+ghMFuaIZ1mIY1OFCVKeFYOFMUBIfhI8dLCx0yIAxmM85oSuErl+OTM8cACbgovIPt+TClD/IqdCg3GhwCHsbK19l+uMWewhzbY43JiL8LsjAoJApyUcSx0kI8cmA7bunaB5Njutq2KTboHTIgTGbndURSS/IdanBojUaUGCoQpvJ1CHyQIwYliIiIiDwgPT0dy5YtQ1lZGZRKJZYtW4ZBgxo2xR1Re2Vf1NJ6m+wwzadYv0wJY7XaBQpRhEomg8FYtXxet77wEWUIVfrg/t4DAQDr7GZ0sM+gmNKlB/4v46TDTa6VfSDDykkNxAbzk8lrBFkAQO6nhtxPDXWnWATKlbi930U4sGMr+pjlCNJokXpoP/QFBTAUl8Co0UB71rFwpTIwEOaOsShSiFCEBEMREgRFYCAEmQw5Ts6pNtpqmRI66/ANa6ZE5U189WETMkFwqA2xuzAHuyqDKYAl2LFwz68O2yQGhdn+VssV8JPLoTEaHbJTDNWCIgDwb2GOw36ePrwLF4VFI11TgmxdOQBgY8YxTOrQxbZOsb7CYSiQs9e/qq1VgYrcCi3McD/bpr1iUIKIiIjIA1QqFZ599ll069YNJ0+exF133YWtW7d6u1lErUpds2/UJ1NCJojoZFcnAgAUgqzyF++qG8eBIZGIUzuuZ19TQm1XZLFXUAh+kslt04Xau6Atd7ttDSEIApR11NRQiCJUogwyHx+ogyMgl8kRHhGAnv7BOFaYB0NxMQyFRTAUFcFQWAxDURH0JSUo0p9Gsc6x/fIAfygCA+AbFAwE+EEeGAh5UADkfn4QqrUjPiAEx0oLLTUl7IIS1r9tmRIm50EJEY5BifPaMofnnQV8LuiqZt2oMJmgllmKddpnrFgzYkxOMmOCFUoUVR5zR36Ww3N9gkKhszuP/cV5GCjaZafUUtzSvohnocFST8JP7rxmB1kwKEFERETkAR07VlWp79atG0pLS2uMVSai2jkbvuGQKVGPf08igI6+/nhrwFjctecXAFU37fYUTgId9jUl7AssKmWiy/oLZo/mRThnP4QgztcfZ6vdvCtE0Ra4sNQzsNwUd/cPwomyIqjCw6AKt2QYBMgVKDUaYNbrkSL64K/04zBU1qcwlpTAWFoGY2kZfHIKUGh3oy+IYmXAIhDREZEYGNcVUyO6Y1lmBjQQHYIS1qwJa2ZBucmIvAotMssd2727MMfhxr16LQ5nQYlPzhy3/a0zG+FXOV2sfXaHNRhSPbMhTOmDPoGh+CPvfI39ApYgiX3gZGd+Fk7aDWUx1ZIpkW93/KLKmTdqmz2EGJRo0w4ePIjly5fbHp84cQJffvklEhISvNgqIiIi79i1axfWr1+P1NRU5Obm4u2338bYsWMd1tm4cSPWr1+P3NxcJCQkYPny5UhKSqr3sX766SckJCQwIEFUTw6ZEmhcTQlUbmefLWEdvmHP2Ywe9hkJ9kERhSirMc2ovQiVL+IDQtA/OBxvph2os4lKUawxPaYzSyuHlTgUAnXy+aIQqs6vwmyyBQWcDR/oGRCMPYW5EJVKhEbGwF/u2A6zwQhjWSkGy/zw++njMBaXwFBSCmNJCQzFlv80OfkwZBfh8937kHXhNDIlMz6I+R1ZFaWQ+fth95lcRPToi+IzZ6D3UaLYPxQ3//2D07bb12KoXggzr0JXa/8IEGwZLbn2QQmp5vANwNLv6lqyFwySGdpqgRH7/ZokySH44qqt1mAOgxK1Y++0Yf369cM333wDADh37hxuuukmBiSIiKjdKi8vR3x8PKZNm4ZFixbVeH7z5s147rnnsGLFCvTv3x/vv/8+5s2bhy1btiA0NBQAMGXKFKf73rRpE2SVNwLnzp3DqlWrsHbt2qY7GaI2yunwDSfThDaUs0wJZ0EGs4sfwpV2mQjOpIRE4O6eyTjt5lSackGEHrUHJW7oFI/REVWZWKsHjIFcEPHCkd011rU/vwqTCQazGSIAlZOb4p7+lqAE4DxbRFTIoQwJwZBufXHDyLF45OB2W8aBuUIPQ0kJ+ogqXBISg+LiIuzcZ0J+QT7KteWoKMgH8vJxKL8UpqMnkHn+FIyShF9Vvsg16iFXqyFT+0Jm/b+fGjK1GvLKZWZfH4jyqjbn6WuvbTG/ez98dvYEAOCCtmpYh3Uq0uqZEgpRBr9aAgVGsxlas+uZU0yS2ZYFUZ19W63rqOW87a4Ne6ed2LJlCy677DJvN4OIiMhrxowZgzFjxrh8fsOGDZg5cyamT58OAFixYgV+/fVXfPXVV5g7dy4A2IL9rpSVleGuu+7Co48+is6dOze4rWI9ivnVtn1j99MWsW9q5+3+kcMuQ0EUIIqO03oqRNHttglCzfNwFpRQyWU11rMfimH/XF2ZEp39AiGKQo1sDFdqGwZgpZbLHdrQPSC4sl01AwkKUQafyhtgvdkEg2SubHPNdcdExeK/Z08gPiAECpnrQMvgsCjEqgMwq0tvvHfqiOXYKiVUEeGIiYjB2D6DIYoCfu4ShrTiIgyK6oSc9KMwlZUh2T8Mo/1C8MtfP0Cv0UBhAoSCfBhKS2EorTmFqj1RLofo6wOZjw8+9lFB5uMD0ccHMh+V5f+Vz60ZfhlilD4IUVoKkmbaDWkxwQxBqFkDQiWTQa2oPVOiwkUmBACcLS+DxkXQIt8uU8Ja38KalcHPHecYlPCi5kwj3bJlCx599FFPNZ2IiKhN0ev1OHToEObPn29bJooihg8fjn379rm1D5PJhMWLF2PGjBkYOXJkg9sil4sIC/Nv8Pb2QkL8PLKftoh9Uztv9Y/97BJqXyXCwvyhUVXdUPpVLnOHWl1z3cAgX6iUjrdA0eGBNYZw+ORW3bDa70Mpk8FX6fpmtnNYEMLC/KH3dauJbgUlwgLVTs9ZIa8Z+FCrFIgID7DMMAIzjJIZKpkMwQGODbolPhEDO8Xg0+ArEK32w9uH9zs99g09eqN/nGXqzZBCdY3nVSqFrW3W4Q4/ZJ+xzQgS1z0eVycNxAuwZI50CQiEvLQEkskEY3k5TBotTOXllv805TBptTCWa2HWamHS6Wx1LWqz8dBJiIKAw4X5OFtaBFGptP33S/p5FMV0ROGBf6Hy8YFRJkKQy1EeHgGdwQTt+QsQ5QoIChkEudzyt1wOsyBBrra8T4KUKhRXy4r4M+889hfnOW2P/VSmpWbLMJRQf0v/83PHOQYlvKg500gLCgoaFMwgIiJqDwoLC2EymRAeHu6wPCwsDBkZGW7t4/fff8fOnTuRl5eHzz77DADw4YcfIjAwsF5tMRrNKCmp3zR81YmigJAQPxQWamB2lYfeTrFvateS+qdCZ0R+fhlKtHY1AvQm5OfXfpNqpS3X11i3qFgLs9HxV/OiAk2NGgeioerc7fehFEWItYy2UFRY1i+rowaC1dioWPyYdabWdYw65+dsNtVsiGQ0Iz+/DCpBhnKDESZJgkohg0Hr+Kv+lRGdkZ9fhkDIUF6sg6mi5q/+Uzt2w6yO8bZjG7U11zFUWF4jURSQp635uVVSrkN2XlVGRJHOcsMuyGRQBARAEVBV70MuiHhz0MW4Y9fPVedjMsOk08FcUQGTVlv5fx3MOh1MugrM6dAdCpMJWq0WgQYDUFwIY5kGgGUIx9EKCcUnTqHk/CmH+h0nVL7Qqf2RUzl8xUoEYAZQqlShICgMZ4tyUaTyQZnZCEEmgyCKlplHRBFZ1scyERBEDAyNtAyHEYTK/4A8QQAg4FB2CaT4RBQVlTf431VgoC8UCvcycFobBiW8qDnSSAFg69atHhm6wVTSpsO+ca56v7B/amLfuMa+cY194776zJ4xduxYHDp0yCPH9dTNoNksef3GsqVi39SuJfSPWNkOQbJfJrjfLqnq39LCHknYX5SHzr4BsP8XPSo8BpJk+bdu75LIOJwuK8HYyFiH48lEwWn9BasguQpmswQZan5uRKh8MTG6M0aEx+C/Z49jUocu6OYXhGiVGh9mHHW5zwilr9NzdvbJZKx83QIVStswBoUg1pi1RJAc+1FmN2ymb2AojpYWYnKHrg7rODtvCVV9vHzgMDy66y+H53VGI/SmqmEQJXZZBFM6dkOkyhfvpFs+N2/q0hsxKsdMAqVcDoOfGvBTAwhxeM5HlOGOEZNtj/8tzMGZ1J2QzGaY9XqY9QZc1rEH+voGYsff2xACEXnlZZAMRnT29UeiXxCOnzoKs9EIyWCEZDRibGgHbDt/CjJBBsjlgADITCaYdboa75HqCkq00JcW1qhfAQDHSrTQ33pri/h31RIxKNFCeSKN1MoTQzeYSto82DdVFApZjfcc+8c19o1r7BvX2DdVQkJCIJPJkJfnmI5bUFBQI3uCiJqHs9k35PWZfcPOxA5dMLFDFwCOM3g8mDDI6foKUYb5PWpmGQsQXE4JCsBW18DZjB6+MjlmduoFAFgSP8C2fHREx1qDEj38g5wuF5yEJQyVtRNClKqqoIQoQiE4/sJevWCo/TlNj+2BQaFRDv1ubX/NNlSZENcFHxw9hBOlRbZlR0sLYbCb+cL6V4TKF/O69oUgCLaghL9cAUEQHDIa1HI5ig162/Z3du+HXQXZSAmJwEVhHRzaElrZ94IoQuZjqTcRFBWFTuEd4JfTGR39AqGvLEAaHx6Di6M64ZdDoQ77uD5xGA6n7gQAxIVGIasgGynBEdhblAvJbIZkNgNmMySTGZLZZHlsMkOSzLgsrhdii/JxsDgXkgRYol0AJDOuHzgSKpUKZWWOs4qQBYMSLZQn0kgB4Pz58ygoKEC/fv0a1R6mkjYt9k1NBkNVqiL7xzX2jWvsG9c81TdtKZVUqVSib9++2L59O8aNGwcAMJvN2LFjB26++WYvt46ofbLeFMs8OPuGZb8N31YAatys27NOS1mf4EkHXz/c2ysZrxzfBwAYGBKJfwtzbM/7uJglwtl5WKe+DFH62JYpBNEh6ODsHGoUE3VyjgFOphWtsU61aTazdOX4pyDL6XrVs9D8ZJZtlaKsKighU9iCEnf1SMKkDl1wRUxXp8cOtTtnK6PZbKvbYV+gVCGKkFDz+ucjk0OAJZawqyAbABBYed62oRsuRERFY3RkJI6l1xxWEx4S6mQLsmJQopWpTxopAMTExGDbtm0eOTZTSZse+8ZR9b5g/7jGvnGNfeNae+sbjUaDM2eqxm5nZmbiyJEjCA8PR0REBG655RYsXboUffv2RVJSEt5//33odDpcffXVXmw1UfslOJ0StGGZEvZqCyq4tb3TgRMW1jZXHy5Rl/FRnWxBiXGRsVjYsz9u+edHTIjuVK922DIlFCrbMoUocwhKOAvs2A/NULiYXSRQ7k5Qomqd6+J64dOzx/F15ska6zl7Ha0zlliCB5aMAvupNHsHhNTYpq72GSSzLVBj/5ooRZnTIIaysq/0dtkd4Sr3qpYqBAHdA8KcPucsy4SqsHdaKKaREhEReVZqaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26b9WrdunW24tJE1Lyst632N7D1vdl3pjGBjUhfNdxpgiAIkAtijako3SETRESofPHl8MlOh4HYH6M6o93wDSvL8A37oISzqUTtghIu+ieglik0rfzt1rkypiu2ZGXgdHnNqT+dBUas05aq7NpifzNf1429IAhY2KM/3krbj3CVL3IqtDCazbY+sT9vpSiim38QlsSn4NXj++yyKSx9pUf9gxJyUURHX+fDItUMStSKvdNCMY2UiIjIs4YOHYpjx47Vus6sWbMwa9asZmoREdXGmtFgnxEgq+Um3e39NmCbDUMuRZ5eiyi1n0Omhb9cgTKj5Vf9l5JHOWyjEAUYq2o81lko0UpeOS7DmjngirNMiarhG45BCfuhC84yRfoFhTus74y/k0yE6vuyz5QIVCjRwVftMEWmlbOgRFBldod9W9X1CEoAwMQOnTEyvAO252fh9RP7KjMlLP1uf17WY4yNjMP3FzJwuKTAtk71YE+kXVBCLghOC1kClmCOWu48cFNbHRJiUMKrmEZKREREROSczElNCU9kSjRk+EaEyhdRvmrL9nbBgGf6DcdHGUcxv3s/RPqoG902wP1MDmenYc0KCK6lpoSzgECs2h8P9R6Efwqy0NkvoMbzgHs31vZ9KwgC1DLnN+n25/hsv+FIKytCFz/L9Mn2wRj7oIT9UI7a+CuUtrYaJckuU8J5bRJ/u0CCQpDZsiasgu2GwihFGYymmlOjAjWLmyYFhSNfr8U5rcbtbIv2ikEJL2IaKRERERGRc4KT2TfqM/TC1dCHxtalsL+n7+4fhMf7DnW6XlOX7HGeKWE5aJBdxoJCrDsoAQAjI2IwMiKmUW0qNzresLvKbpDbVelMCg5HUnBVpoZDpoRDwMD91826rn2hS/vio/Y9YJ/doRRFmKoNubF/H6lEGcpdBSUq9+8rk0FrMmFoWBSujOkGvdnkslgpWbB3vIhppEREREREzjmbfcOdTImHEwbhu/OnMCGqs9PnGzuDR22FLu2Z3RyuUZ27wzzsTyNKpUZ2Rbkty8HXLqtA6Uahy/oaGBKJ46WFmBnXy2F5Jz/LdO6xvpb/uwpK1BYYUtkFJey3r0+x/6pMiaqaEo5BKrtMCbs6GApRtAV2qtpqVyBTJrPW4HR5zFeTx+DnnExcFt0ZoiAwIOEG9hAREREREbU41lvB+mZKjAiPwYhw17/4DwqNxJasDAwLi25Yu9y8OXY25aR727nHPjhyZ49+OF5aiMs7dAFQNb0mYC10WXWj74kZTIaGRmFF4rAayy+N7gRJAgaFRAFwXeCxtsCI0i544FNHXQ1XrFkLf+Sex5nKQpv2x7Q/usPwDVEGs90r0Ccw1GE7lYuZSeyP2VHtj5u69G5Qu9srBiWIiIiIiKjFcXZzbp/231BDQ6PxesoYxKn9G7S9+5kSDdq92xkW9sGRQLkSN3auuhH2s8uUkFerKdGYKVGjfdTI0pUjVu287oRMEHFZdFWGiuPsGZZhDdY2uWI/fEPmZl9XZ32fFBkqUFRUUesx7Ydv2AcgIlW+eCrxIuTptbZltQUlGv/ObL8YlCAiIiIiolbBE7/yC4KAbv5BDd7e3Zv6hmdKuLedfXCkepMUdjfPltk3PDN84+Xk0UgvK3aoAVEb++KUapnCFpSorQ0qFzUl6sNZAEIuOO+vABfHiFX7QyWTOWZK1JK50cQlRNo0BiWIiIiIiKhV8EQ9hMZyN1mj+k2quzet7q5n3xW1ZW9Yako0PvsAsEzzmRwS4fb6vi6m9KztdbRfr7t/EGZ37o1eASH1aqezIqeuCp86m+rU0kbR4f9A7ZkS1HAMShARERERUYvjdPhGCwhK2NdnqI9OLoY8WN3VvR9+ysm01WOoi2OmhOt+EVBtOkw3pvb0FF8XU3rWlvHiuJ6AGZ16uVzX5XHFmre5roZv+LvIlJA7KbSqrKXvGpoZQwxKEBERERFRK+GJ4RuNNbNTTxwvLcS1cT3dWr+zOgDDwzvgipiuta43KaYrJtWxjj37OERtoRqD2XGKy+bMNlE3IFPCzy5IUFvtidoEKWtmP8gEAUlB4ThQnIekoKrhJy6nLbVlSrhX6LKuoBO5xqAEERERERG1PE4KPjb0JtWTgpQqrOw/0u31Q5U+DkUoPcU+U6K2Ohd6s8nhcXMGJRwyJWSOxTddUVebOaQhApwMyZAJIh7vOxQXdBp08QusWlfhPFOiakpau+EbTgIYK/oOQzf/QIQofRrUVmJQgoiIiIiIWomWUFOivpqqyfaBiNpqShgkS6aETBBgkiS3Zw/xBN9qhS6tansd/eXuBS9q4yxIk1ZWBJVM5hCQAIAQpQ/u7pmMaB+1w3JnmRLOhm/4yGQMSDSS90ONREREREREbnBVrLAla6oggP1eawt8WIdvWG+yTW5OOeoJ9tkRPexmPJHVUi3U3eBFfY2O6OjyuQnRnWrMKGJto0M9DiftaY3vyZaGPUhERERERC2Os1vn1pkp0URBCXczJSqDEtbsAXMzBiWiffxwSVQc7uiWiOHhMbbltdUGsa8p0dDhG/YGh0Zh7aBxuDgy1q31H04YhI6+frguzlJg0/495yxzQ9EChhS1dhy+QURERERELU5bmcugqTIlHGffqPn8rM698VHGUVzWoTOAqtkkjJK55spNRBQE3NMrBQBQYtDbltc2i4raA8M37BnNZsT4+ru9/ojwGIywC6DY97OzYIonAiftHYMSRERERETUKrS+PImmqylhv19ngY/rOvXClTFdbZkHMi8M37BnX4+htkwJf7vhG54YGtHYIIxQx/ANZko0HnuQiIiIiIhaBaEVhiWaasYQd2bfsB8KIfNCpoQ9hUNQorZMCfspQRv+et/VIwkAcI2bU7e6Qy4I+M/AsXhjwMVVy5gp0WjMlCAiIiIiolahNZWUWJE4DBtOHcacLglNsn/7QIQ7dSu8UejSnn12RG1BCYWbGRV1mdShC8ZFxsLHyTSeDSUTRcSpAxyWMVOi8RiUICIiIiKiFqjmzXNrypQYGBKJgSGRTbZ/wcXfrlhnkzB5KVPCnrvBBlcZIO7yZEACcJG50Xreki0WgxJERERERNTiOPs9vzVlSjQ1+xt2d27eZZV3z0az90uI1jUsY1X/kdCZjM3UGvfZB1MGhkTieGkh/O2Gm1DDMChBREREREQt2vCwDtiZfwGx9ZhFoa2zzxpxL1OicvhGC5jXpK5MiYTA0GZqSf3YDzt5ou9QmNE6p6ltaRiUICIiIiKiFiNArkCp0YA436qx+8v6DIZJkngDaKeu2Teqs/adyez94RtiK30Z7YMpgiBA5sW2tCUMShARERERUYvxxoCxOFZagAEhEQ7LGZBw5M7sG/aqZt/wfqZECxhB0iAyvgWbBIMSRERERETUYoSpfDBcFePtZrR4DZ19w9wCCl2aW8AQkoZhVKIpcP4SIiIiIiKiVsZx+EbdrJkS3g9JAOYWkK3REAxJNA0GJYiIiIiIiFoZ++Eb7mRKtKThL602KNFyurBNYVCCiIiIiIiolbEPRLhzr+wrk7u9blNrvcM3qCmwpgQREREREVErY//rsjtZELd1S0SxQY/ZXRKarlFuaq2ZEi0jpNP2MChBRERERETUygj2wzfcuFmO9FFjZf+RTdkkt7XWoARDEk2DwzeIiIiIiIhamfrOvtESDAqJBAD0D46oY82WqXX0cuvDTAkiIiIiIqJWpr6zb7QEj/YdggJ9BSJUvt5uCrUgreX9S0RERNTiabVajB07Fi+++KK3m0JEbVx9Z99oCWSCyIAE1cCgBBEREZGHvP3220hKSvJ2M4ioHWgtgYi2JFip8nYT2iQGJYiIiIg84PTp00hPT8eYMWO83RQiagd4I9d8XksZg9u69UVSULi3m9Im8b1MREREbd6uXbtw5513YuTIkYiPj8cvv/xSY52NGzdi3Lhx6NevH2bMmIEDBw7U6xgvvPAC7rvvPk81mYioVsyUaD7d/YMwpWN39nkTYaFLIiIiavPKy8sRHx+PadOmYdGiRTWe37x5M5577jmsWLEC/fv3x/vvv4958+Zhy5YtCA0NBQBMmTLF6b43bdqEX375BV26dEHXrl2xd+/eJj0XIiLAsaYEUWvGoEQbcffdd2PHjh0YOXIkXnnlFdvybdu2YdWqVQCAxYsXY9KkSd5qIhERkdeMGTOm1mEVGzZswMyZMzF9+nQAwIoVK/Drr7/iq6++wty5cwEA33zzjcvt9+/fj82bN2Pr1q3QaDQwGo0IDAzE7bff3qD2imLjbjas2zd2P20R+6Z27B/XWlrfyOza4e02tbS+aWnYP7VjUKKNuPHGGzF16lR8++23tmVGoxGrVq3Cxo0bIZPJMHPmTFxyySVQKpVebCkREVHLotfrcejQIcyfP9+2TBRFDB8+HPv27XNrH0uWLMGSJUsAWDIn0tPTGxyQkMtFhIX5N2jb6kJC/Dyyn7aIfVM79o9rLaVv/Aurii566jOjsVpK37RU7B/nGJRoI4YOHYq///7bYdn+/fsRHx+P8HBLQZakpCT8+++/uOiii7zRRCIiohapsLAQJpPJdr20CgsLQ0ZGRrO3x2g0o6RE26h9iKKAkBA/FBZqYDZLHmpZ28C+qR37x7WW1jfacr3t7/z8Mi+2pOX1TUvjif4JDPSFQiHzcMtaBgYlmsGuXbuwfv16pKamIjc3F2+//TbGjh3rsM7GjRuxfv165ObmIiEhAcuXL2/0lGI5OTmIioqyPY6KikJOTk6j9klERNReSJLUoKJm06ZNa/SxPfWl3myWeIPgAvumduwf11pM39g1oUW0By2ob1oo9o9zDEo0g6YuriWTtc2IGRERUXMICQmBTCZDXl6ew/KCgoIa2RNERC0FZ4KgtoJBiWbQ1MW1XImMjER2drbtcXZ2NkaOHFnv/RAREbVlSqUSffv2xfbt2zFu3DgAgNlsxo4dO3DzzTd7uXVERM5x9g1qKxiU8DJPFNdyJSkpCUePHkVeXh5kMhn279+PZ555psH7YyXwpsO+ca56v7B/amLfuMa+ca099o1Go8GZM2dsjzMzM3HkyBGEh4cjIiICt9xyC5YuXYq+ffsiKSkJ77//PnQ6Ha6++movtpqIyLV29BFObRyDEl7mqeJat99+Ow4cOACtVovRo0dj7dq16N27N+6//37ccMMNAIB77rkHKpWqjj05x0rgzYN9U0WhkNV4z7F/XGPfuMa+ca099U1qaipmz55te/z0008DABYuXIhFixZh0qRJKCgowOuvv26r77Ru3TrbMEoiopZGYKYEtREMSrRQ9S2utXbtWqfLJ0yYgAkTJjS6PawE3rTYNzUZDCZbJWn2j2vsG9fYN655qm9aUyXwoUOH4tixY7WuM2vWLMyaNauZWkRE1DjMlKC2gkEJL2tNxbVYCbzpsW8cVe8L9o9r7BvX2DeusW+IiFozRiWobRC93YD2zr64lpW1uFZycrL3GkZERERERC0WQxLUVjBTohmwuBYRERERERFRTQxKNAMW1yIiIiIiIk+qR/k5ohaNQYlmwOJaRERERETkSRJLAlEbwZoSREREREREROQVDEoQERERERERkVcwKEFEREREREREXsGgBBERERERERF5BYMSRERERERErQxn36C2gkEJIiIiIiKiVoazb1BbwaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShAREREREbUyMoG3ctQ2yL3dACIiIiIiIqqf4eHRGJwbhYsjYr3dFKJGYVCCiIiIiIiolVGIMjzed6i3m0HUaMz5ISIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxCkCRJ8nYjqOUzmyWYTOZG70ehkMFgMHmgRW0P+8bR8eNH0atXb9tj9o9r7BvX2DeueaJvZDIRoih4qEVkxWtu02Pf1I794xr7xjX2Te0a2z9t+ZrLoAQREREREREReQWHbxARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxJERERERERE5BUMShARERERERGRVzAoQURERERERERewaAEEREREREREXkFgxLkto0bN2LcuHHo168fZsyYgQMHDtS6/vfff4+JEyeiX79+uPLKK/H77787PC9JEl577TWMHDkSSUlJmDNnDjIyMhzWKSoqwpIlSzBgwAAMHjwYjzzyCMrLyz1+bp7Q3P2TmZmJZcuWYdy4cUhKSsIll1yCN954AwaDoUnOrzG88d6xKioqwujRoxEfHw+NRuOxc/IUb/XNzz//jOnTpyMpKQkXXXQRHnzwQY+elyd4o2/279+Pm266CQMHDsSQIUNwxx134OTJkx4/N0/wdP/88MMPmDt3LoYOHYr4+HgcP368xj5a02dye+Dp90BbUp++OXHiBBYtWoRx48YhPj4eH330UTO21Dvq0z+fffYZbrjhBgwePBhDhgzBrbfeioMHDzZja5tXffpm27ZtmD59OgYNGoTk5GRMmTIFX3/9dfM1tpnV9zPHau3atYiPj8cLL7zQxC30nvr0zaZNmxAfH+/wX79+/ZqxtS2QROSG//u//5P69u0rffHFF9KJEyek5cuXS4MHD5by8/Odrr9nzx4pISFBeuedd6S0tDTp1Vdflfr27SulpaXZ1lmzZo00cOBA6ccff5SOHDki3XnnndIll1wiVVRU2NaZO3eudNVVV0n79u2Tdu3aJV166aXSAw880OTnW1/e6J/ffvtNeuihh6Q//vhDOnPmjLRt2zbpoosuklatWtUs5+wub713rBYtWiTNnTtX6tWrl1RWVtZk59kQ3uqbLVu2SIMHD5Y+/fRTKT09XTp+/Li0devWJj/f+vBG35SWlkqDBw+Wli1bJqWnp0tHjx6V7rjjDmn8+PHNcs710RT989VXX0mrV6+WPvvsM6lXr17SsWPHauyntXwmtwdN8R5oK+rbN/v375eef/556bvvvpNGjBghffjhh83c4uZV3/657777pI8++kg6fPiwlJaWJj300EPSoEGDpOzs7GZuedOrb9/8888/0tatW6W0tDQpIyND+uCDD6SEhATpr7/+auaWN7369o1VamqqNHbsWOnKK6+Unn/++WZqbfOqb998+eWX0pAhQ6ScnBzbf7m5uc3c6paFQQlyyzXXXCM9+eSTtscmk0kaOXKktG7dOqfrL168WLrjjjscll177bXSihUrJEmSJLPZLI0YMUJav3697fmSkhIpMTFR+v777yVJkqS0tDSpV69e0sGDB23r/Pbbb1Lv3r1b3D9cb/SPM++88440YcKExpyKx3mzbz7//HPpuuuuk7Zv394igxLe6BuDwSCNGjVK+uyzzzx9Oh7ljb45cOCA1KtXL4cv2nv27JF69epV55eu5ubp/rF39uxZp0GJ1vSZ3B405Xugtatv39gbO3Zsmw9KNKZ/JEmSjEajlJKSIv3vf/9rqiZ6TWP7RpIkaerUqdLq1aubonle1ZC+KS8vly6//HLp999/l2bNmtVmgxL17RtrUIKqcPgG1Umv1+PQoUMYMWKEbZkoihg+fDj27dvndJt9+/Y5rA8AI0eOtK2fmZmJ3Nxch3UCAgLQv39/2zp79+5FcHAwEhMTbesMHz4cgiC4nS7WHLzVP86UlpYiKCiowefiad7smzNnzuDVV1/FypUrIYot76POW31z+PBhZGdnQxAEXHXVVRg5ciTuvPNOl8NfvMFbfdO1a1cEBwfj888/h8FggFarxVdffYV+/fohNDTUo+fYGE3RP+5oLZ/J7YG33gOtQUP6pj3xRP9otVoYjcYW9X3DExrbN5IkYceOHTh16hQGDhzYhC1tfg3tm+effx5Dhw7FqFGjmqGV3tHQvikrK8PFF1+MMWPG4K677kJaWloztLblannf1KnFKSwshMlkQnh4uMPysLAw5ObmOt0mLy8PYWFhLte3/r+2fTrbh1wuR1BQEPLy8hp+Qh7mrf6p7syZM/joo49w3XXXNeg8moK3+sZoNOKBBx7A4sWLERcX55Fz8TRv9c3Zs2cBAG+99RYWLVqEt956CwqFArNnz24xtQG81Tf+/v54//33sWnTJvTv3x8pKSnYt28f3nrrLY+cl6c0Rf+4o7V8JrcH3noPtAYN6Zv2xBP989JLL6FDhw4YNmxYUzTRaxraN6WlpUhJSUFiYiJuv/12PPbYY7jooouaurnNqiF988svv2Dnzp1YunRpczTRaxrSN926dcNzzz2Ht99+G6tWrYLZbMb111+P7Ozs5mhyi8SgBDWYJEkQBMHl886eq76s+uPq+3S2j7qO21I0R/9YZWdnY968eZg8eTKmTZvWwBY3n6bum7fffhshISG49tprPdDa5tXUfWM2mwEA8+fPx6WXXoqkpCS88MILKCkpwa+//trI1jetpu4bnU6H5cuXY9iwYfjss8/w8ccfo0OHDliwYAGMRqMHzqBpeaJ/6tKaP5Pbg+Z4D7RWfJ/Wzt3+eeedd7B582asXr0aSqWyGVrmfXX1jZ+fH77++mt88cUXuPfee/Hss89i9+7dzdhC73HVNwUFBXj00UexcuVK+Pr6eqFl3lfb+yY5ORlXXXUVevfujSFDhmD16tW2TM32Su7tBlDLFxISAplMVuOXsIKCghpRQavw8PAa6+fn59vWj4iIAGD59dI+LbqgoMCWGuxsH0ajESUlJTV+7fEmb/WPVXZ2NmbPno3k5GQ88cQTjT0dj/JW3/z999/YvXs3+vTpA8ByYQCAwYMH4+6778add97pgbNrHG/+uwIsQxWs1Go1YmJicP78+UaelWd4q2++/fZbZGdn4/PPP7d9kXj55ZcxePBgbN++HaNHj/bMCTZSU/SPO1rLZ3J74K33QGvQkL5pTxrTP+vXr8eaNWuwYcMG9OrVqymb6RUN7RtRFNG5c2cAQEJCAk6ePIm1a9di0KBBTdre5lTfvjlx4gRyc3Nx/fXX25aZTCbs2rULH330UZuavcUTnzkKhQIJCQktaihtc2OmBNVJqVSib9++2L59u22Z2WzGjh07kJyc7HSb5ORk/PXXXw7Ltm/fbls/NjYWERERDvssKyvD/v37beukpKSgqKgIhw4dsq2zc+dOSJKEpKQkz5ycB3irf4CqgETfvn3x3HPPtbjaCd7qm2effRbffPMNvv76a3z99dd4+umnAQCffvopZsyY4bkTbARv9U2/fv2gUCgcLnw6nQ5ZWVmIiYnxzMk1krf6RqfTQRRFh182rI+tga2WoCn6xx2t5TO5PfDWe6A1aEjftCcN7Z9169bhrbfewrp169rs1IWeeu9IkgS9Xt8ELfSe+vZNv3798O2339q+h3399ddITEzE1VdfjU2bNjVjy5ueJ943JpMJJ06csP2A0i41W0lNatWsU91s2rRJSktLkx599FGHqW4eeOAB6cUXX7St/++//0oJCQnS+vXrpbS0NOn11193Oj3foEGDpG3btklHjx6V5s+f73RK0KlTp0r79++Xdu/eLU2YMEG6//77m+/E3eSN/snKypIuvfRSafbs2VJWVpbDtEItibfeO/Z27tzZImff8FbfPPnkk9KYMWOkv/76S0pLS5OWLFkijRkzRtJoNM138nXwRt+kpaVJiYmJ0lNPPSWdPHlSOnr0qLRo0SLpoosukoqKipq3A+rQFP1TWFgoHT58WPr111+lXr16SVu2bJEOHz4sFRYW2tZpLZ/J7UFTvAfaivr2TUVFhXT48GHp8OHD0ogRI6QXX3xROnz4sHTu3DlvnUKTqm//rF27Vurbt6+0ZcsWh+8aLe2a6gn17Zs1a9bYpmZPS0uTNmzYIPXp00f64osvvHUKTaa+fVNdW559o759s3r1atv7JjU1Vbr33nulpKQk6eTJk946Ba/j8A1yy6RJk1BQUIDXX38dubm5SEhIwLp162xp0BcuXHD4lX7AgAF46aWX8Oqrr+Lll19Gly5d8Oabb6J79+62dW677TZotVo89thjKCkpwcCBA/HOO+84jFF88cUX8dRTT+Hmm2+GKIq47LLLsHz58uY7cTd5o3/++usvZGRkICMjo0Za+bFjx5rhrN3jrfdOa+CtvnnwwQchk8lw3333wWAwICUlBRs2bIBarW6+k6+DN/qme/fuePvtt7F69Wpce+21kMvlSExMxLp161pclfmm6J+ff/4ZDz/8sO3x3XffDQB47rnnbLVqWstncnvQFO+BtqK+fZOTk4OpU6faHq9duxZr167F1Vdfjeeff765m9/k6ts/n3zyCQwGg+0zwWrhwoVYtGhRs7a9qdW3b3Q6HZ588klkZWXBx8cH3bp1w6pVqzBp0iRvnUKTqW/ftCf17ZuSkhI8+uijyM3NRVBQEBITE/Hf//4X3bp189YpeJ0gSS0oJ5WIiIiIiIiI2o32Gc4iIiIiIiIiIq9jUIKIiIiIiIiIvIJBCSIiIiIiIiLyCgYliIiIiIiIiMgrGJQgIiIiIiIiIq9gUIKIiIiIiIiIvIJBCSIiIiIiIiLyCrm3G0BEVJvVq1fjjTfeqLH8oosuwnvvvdf8DSIiImqjeM0lIm9gUIKIWryAgACsW7euxjIiIiLyLF5ziai5MShBRC2eTCZDcnJynevpdDr4+Pg0fYOIiIjaKF5ziai5saYEEbVKmZmZiI+Px//+9z8sXboUgwYNwp133gkAKCoqwmOPPYbhw4ejX79+uO6667B//36H7UtKSrBkyRIkJydj5MiR+M9//oMXXngB48aNs62zevVqDB06tMax4+Pj8dFHHzks+/zzzzF58mQkJiZi7NixeOeddxyef+ihhzBt2jT89ddfuPLKK5GcnIzrr78eJ06ccFjPZDJhzZo1uOyyy5CYmIjRo0fjoYceAgBs3LgRKSkp0Gg0Dtvs3LkT8fHxOHr0aD17kYiIqG685lbhNZfI85gpQUStgtFodHgsSRIAYOXKlbj00kvx2muvQRRF6PV63HLLLSgpKcHSpUsRGhqKTz75BHPmzMEPP/yAiIgIAMDDDz+Mf/75B8uWLUN4eDjeffddnDlzBnJ5/T8W161bh1deeQXz5s3DkCFDcOjQIbz22mvw9fXFrFmzbOtduHABK1euxPz586FSqbBy5Urcc889+O677yAIAgDgsccewzfffIO5c+diyJAhKC4uxpYtWwAAV155JV544QVs3boV06ZNs+33q6++Qt++fdG7d+96t52IiKg6XnN5zSVqTgxKEFGLV1RUhL59+zose/rppwEA/fv3x+OPP25b/vnnn+PEiRP47rvv0KVLFwDA8OHDMXHiRLz77rt48MEHceLECWzbtg2vvPIKJk2aBAAYOnQoxo4dC39//3q1raysDG+++Sbmz5+PhQsXAgBGjBgBrVaL//znP7j++ushk8kAAMXFxfjkk09s7ZIkCQsWLEB6ejq6d++OkydP4osvvsAjjzyC2bNn245hbWNgYCAmTJiATZs22b4gaTQa/PDDD1iyZEm92k1EROQMr7m85hI1NwYliKjFCwgIwIYNGxyWKZVKAMDFF1/ssHzHjh3o27cvYmNjHX7pGTx4MFJTUwEABw8eBACHtFE/Pz8MHz4cBw4cqFfb9u7di/LyckycONHheMOGDcNbb72FrKwsdOzYEQDQsWNH25cjAOjevTsAIDs7G927d8fff/8NAA6/yFR3zTXXYM6cOTh79izi4uLw/fffw2g04oorrqhXu4mIiJzhNbcKr7lEzYNBCSJq8WQyGfr16+ewLDMzEwAQFhbmsLywsBD79u2r8SsPAHTq1AkAkJeXBz8/vxoFuqrvyx2FhYUAgMmTJzt9/sKFC7YvSNWrlysUCgBARUUFAMuvU2q1utZfjoYOHYq4uDhs2rQJixcvxqZNmzB+/HgEBwfXu+1ERETV8ZpbhddcoubBoAQRtWrWcaFWQUFBSExMxBNPPFFjXesvPeHh4dBoNDUqh+fn5zusr1KpYDAYHJYVFxfXOB4ArFmzxukXrK5du7p9LsHBwSgvL0dZWZnLL0mCIGD69On47LPPMGXKFPz77781CnwRERE1BV5zec0lagoMShBRm3LRRRfhr7/+QkxMjMtfYay/AP3888+2saMajQbbt293+GISFRUFjUaD7OxsREVFAQD++usvh32lpKTAx8cHOTk5NdJa62vYsGEAgK+//tqhWFd1V199NV5//XUsW7YMUVFRGDFiRKOOS0RE1BC85hKRJzAoQURtytSpU/Hpp5/ipptuwq233oq4uDgUFRXhwIEDiIiIwJw5c9CzZ0+MGzcOTzzxBMrKyhAREYH169fXSC0dNWoUfHx8sGzZMtxyyy3IzMzEp59+6rBOYGAgFi5ciGeeeQbnzp3D4MGDYTabcfr0afz9999488033W57t27dMHPmTDz//PPIz8/H4MGDUVJSgq1bt+KVV16xrRcVFYVRo0bh119/xR133GEr6kVERNSceM0lIk9gUIKI2hSVSoUPPvgAr732GlavXo38/HyEhoYiKSnJocjW888/jyeeeALPPvss1Go1brjhBvTr1w9bt261rRMaGorXX38dK1euxIIFC9C3b1+89NJLtl96rG677TZERkbi/fffx4YNG6BSqdClS5ca67nj8ccfR0xMDD7//HO88847CA0NdfqrzCWXXIJff/211gJdRERETYnXXCLyBEGyTjxMRNTOWecj//nnn73dlDotXrwYubm5+Pjjj73dFCIionrjNZeIrJgpQUTUihw7dgypqan48ccf8fLLL3u7OURERG0Wr7lEzYNBCSKiVmT+/PkoLCzEDTfcgIkTJ3q7OURERG0Wr7lEzYPDN4iIiIiIiIjIK0RvN4CIiIiIiIiI2icGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLyCQQkiIiIiIiIi8goGJYiIiIiIiIjIKxiUICIiIiIiIiKvYFCCiIiIiIiIiLxC7u0GUOtgNkswmcyN3o9cLsJobPx+2iL2jaOzZ88gLq6T7TH7xzX2jWvsG9c80TcymQhRFDzUIrLiNbfpsW9qx/5xjX3jGvumdo3tn7Z8zWVQgtxiMplRVFTeqH2IooCwMH+UlGhhNksealnbwL6p6aabZuPrrzcDYP/Uhn3jGvvGNU/1TXCwGqIo82DLCOA1t6mxb2rH/nGNfeMa+6Z2nuiftnzN5fANIiIiIiIiIvIKBiWIiIiIiIiIyCsYlCAiIiIiIiIir2BQgoiIiIiIiIi8goUuiYjIYyTJDLPZDKkF1LgSRQF6vR5Go5FFt6pxt28EARBFGQShbVb7JqLWyVvXGl5XXGPf1M6d/mnP11wGJYiIqNFMJhNKSgpQUdG4GQM8LS9PhNnM6cmccbdvBEFEaGgkFApVM7SKiMi1lnCt4XXFNfZN7dzpn/Z6zWVQgoiIGkWSJOTnX4AoyhASEgmZTA6gZUT55XIBRiN/sXHGvb6RUFZWjIKCHERGxrbLX2+IqGVoKdcaXldcY9/Uru7+ab/XXAYliIioUcxmE8xmE0JDoyCXK7zdHAdyuQiAv9o4427f+PsHQafTwGw2Vd4EEBE1v5ZyreF1xTX2Te3c6Z/2es1loUsiImqUqjG97Sei375YXteWUCeEiNovXmuofWif19z2E34hojpJkoQivQl5FUYU6U3QmyRIAHxkIgIUIqJ85AhSts8CPERERERE5HkMShC1c5kaPXblleNAoRYnSipQaqg9rcxPLqJbgBIJQT5IDvVF7yAfyEQGKYiIiIhaq/Xr12D79j+xfv2H3m4KtUMMShC1QwazhN+yyvB9ZgnSSitsy+UC0NVfiWhfOYKVcihlAgQAWpMZxXoTcnRGZGoMOFiow8FCHT47XYQghYjhkf6Y0DEA3QLaV6Vgat2eeeYJfP/9dzWWf/fdNgQHBzd/g4iIqM155pknoNWW4+mnV9qWbd78LVatehb33rsUV111db33ec01VyIr64LDsjvuWIibbprT4HZef/1NuOaamQ3evrW65porcf31szB9evs795aEQQmidsQsSfj5Qhk+Ti9AfoUJABCrVmBklB9SwtToEaCCvI6sB5NZwlmNHgcLdfg335Jh8f25Enx/rgTxgSpM7xKMIeFqDvGgVmH48FF48MFHHJYFBQU5PDYajZDLebkkIqLG+/zzT/HWW69h+fIVGD9+QoP3c8cdCzBp0pW2x2q1X6PapVarAagbtY+2ymg0Qibj8OWmxEKXRO1EpkaPB3efx+ojucivMGFouBrPD4zBG8NicX23UPQO8qkzIAEAMlFAlwAVruwUhCdSOuC9UZ1xW68wxKoVOFZSgWcPZGPJrnNILdQ2w1kRNY5SqUBYWLjDf9deexU++OBdPPnko7j00tF47bWXAAD79+/F/Pm3Yty4EZg+/Qq89dZr0Ov1tn3l5+dh6dJ7MG7cCMycORW//voTJk8ej82bvwUA7NmzGyNHDkJ5ebltm7/++gMjRw5yaNPvv/+KOXNuwLhxwzFz5lRs3Pi+w7zmI0cOwnfffY2lS+/B+PEjcNNNM7B//z6Hfezbtwd33TUP48ePwOWXj8MDDyxGRUUF3n9/PW655YYa/XDddVfjk08+anR/EhGRaxs2vIO3316NZ59d1aiABGAJIthfu3x9fWtdv6SkBM899yQmTx6Pyy4bg/vuW4iMjNO259evX4O5c2+yPTYajXjllZW47LIxmDx5PNavX4Ply5fimWeesK1TUVGB1atfwZQpE3HppaNw2223IDX1oO35zZu/xeTJ47F9+5+47rppmDBhDJYvX4qysjLbOr/8sg033TQD48YNx+TJ43HffQtt17xnnnkCy5cvxfr1azB58nhMnHgxXn/9JZhMJpdtmD//Voc2AK6viQsX3o6srAt45ZVVGDlykO16bG3377//ihtumI5x44ajqKgICxfejjfeeNVh33Pn3oT169fYHo8cOQj/+99XuO++RRg/fgRmz56J48ePIi3tBObOnY1LLhmJe+9dgMLCglpfr/aGP/20cenp6Vi2bBnKysqgVCqxbNkyDBo0qO4NqU35+UIp3j6ahwqzhB4BKtweH4b4IB+P7DtQIcMVcUGYHBuIXXnl+O+pIqSVVuCRPRcwMtIPt/UKQ7CKHzXUunz88Qe49dbbMXfuHQCAc+cycf/9i3HHHXfhkUdWID8/Dy+++ByMRiPuvnsJAMuXp6KiQrzxhuXLySuvrHIIQLhj//59ePbZJ3DPPQ+gX7/+OHMmAytXPgOFQokZM663rbdhwzosXHgPFi26D+vXr8GKFY/gs8++gVwux5kzGbj33gWYOvUaLFnyEABg166dkCQJkyZdiXffXYsTJ44hISGh8ph7ceHCeVx22eWN7jciIqpJkiSsXv0yvvvuG7z00mokJw9weP6DD97Fhx9uqHUfH374OaKjox22effdtYiMjMKECZNw7bXX1ZrV99hjD8HX1xcvvfQG1GpffP75f3HvvQuwceMXTgMaGze+j59++gGPPvokOnaMwyeffIhdu/7G6NFjbeu8+uoqZGScxlNPPY+wsHD89NMPuPfeBfj44y8QEREJACgvL8eXX36Gp556DjqdDo8++hA++ug93HnnQuTl5eGJJx7BXXfdjdGjx0Kj0WDPnl0O7fj7751QqXzwxhvv4OzZM3juuScRHh6BG26Y7bQNP/64xaENtV0Tn312FebMuQFXX32NQ9aJtd2ffvoRHnlkBfz8/ODn534mynvvrcOiRffinnuW4NVXX8STTz6G0NBQLFy4GD4+fnj88Yexdu1bePDB5W7vs63jnUIbp1Kp8Oyzz6Jbt244efIk7rrrLmzdutXbzWrT8iuMOFqkw7lyA4r0JkgA1DIRHdQK9AhQopO/EmIzpX9JkoSP0wvx2ekiiAJwQ7cQXNMlGLImOL4gCBgS4YdB4Wr8ma3Be2n5+DNHg30FWtzVOxwjovw9fkyixvrjj99w6aWjbI8vvng8AGDQoKGYMaMqo+D555/CxImTcc011wEAYmPjsGDBPVi+fCkWLboPZ89m4J9/duLddz9Cr169AQBLljyIefNm16s97767FrNn34qJEycDADp2jMXNN9+KL774r0NQ4oorpmDs2EsAALfeejtuuGE6zp3LROfOXfDRR++hX7/+WLx4iW397t17AAB8fHwwZMgw/N//fWsLSmze/C0uumgEQkPD6tVWIiJve+1wDv7OrV/wt7GGRfrh7oSIem2zffufMBgMeOONtTUCEgAwdep0jBt3aa37CA8Pt/09Y8b16NWrN/z9A3Dw4H6sWfMmCgvzcdddi51uu3//Phw7dhT/+99WKBQKAMC99z6A33//Bdu3/4nx42se+8svP8Ps2bdi5MgxAIAHHliGHTv+sj2flZWFzZu/xVdfbbZdP269dR7+/PN3/PDD97jxxpsBAAaDAQ88sMwWULn88ivw77+WwEN+fh5MJhPGjBmH6OgOAIAePXo6tEOlUuHBB5dDqVSia9duyMw8i//+dyNuuGG20zbMmTMP27f/aWtDXddEURRtWSf2DAYD7r//YXTr1t31i+KC/TX6+utvwr33LsDtt9+FlJSBMBrNuOKKqfjmmy/rvd+2jEGJNq5jx462v7t164bS0lJIktTqx0RJkgSN0ZLa5SMT3Rp20JQqTGb8fKEMP10oxYmSilrXjfCRY3SUP66IC0RoE2YQSJKENcfy8f25EqhlAh5OikZSaO2pfZ4gCgJGR/tjULgaH54swObMEqxMzcFlhVrc1iscCs7UQS3IoEFDce+9D9geq9Vq3H77HPTuneCwXlraCZw8eQJbtlQVxjSbzaioqEB+fj4yMk5DoVCgZ8942/Px8Qm2L3/uOnnyOA4e3I8NG96xLTOZzJAkx1lxunXrYfvb+kW1sLAAnTt3QVraCYwefbHLY0yefBVefPE5LF58LyoqDPjll5+wfPmKerWTiIjc16NHLxQU5GPdurfx4ouvw8fHMVs1MDAIgYFBLrauyT5o3qNHTygUCrz44nO4/fYFTrMl0tKOQ6Mpw6RJ4xyWV1RU4Pz5zBrrl5WVoaAgHwkJfW3LFAqFQ8AgPT0NJpMJM2dOddhWr9c7rOfn5+eQ4REWFobCwkJb21NSBmL27OswbNhwDBkyDGPHjoefX9UPWT179oJSqbQ9Tkzsh7feykNZWZlbbajrmuiKSqVqUEACALp3rzp/a7Cka9dudstCbX1AFgxKtHC7du3C+vXrkZqaitzcXLz99tsYO3aswzobN27E+vXrkZubi4SEBCxfvhxJSUk19vXTTz8hISGh1QYkjhfrsD1HgwOFWpzVGKA3S7bnon3l6BmowkWVv9SrZM1TLkWSJPySVYaPTlYVjuzgK0dSiC+6BqgQrJRBJgBlRjMyNQYcLtLiSHEFvswowrdni3FlXBCu6xoMH1Hm8bZ9nF6I78+VIEQpwxMpHdDFX1n3Rh6klou4Iz4cQ8LVePVwLraeK8XpMj0e7heFEA7noBbC19cHsbFxTpY7BvC02nJMm3Ytrr762hrrBgcHQ5JQ52erKFo/l6o+u4xGo8M65eVa3HbbfIwaNabWfTl+6bQc177uRG1GjhyDF198Hn/++Ts0mnIolUoMHz7SrW2J2jq9Xo+//96BmJgYhxsLapkW94ls9mPK5SKMRvc+b62ioqKwYsWzWLToDjzwwGKsWvWaQ2CiIcM37PXpkwij0Yjs7Cx07Bhb43mtthwREZF47bX/1HguMDDQ5TGrX9ckqer6pdWWQy6X4913N9rWk8kEmEySw1CH6kESQRBsgXaZTIbXXvsPDh7cj507t+OTTz7E+vVrsH79h7abeVfXVkFw3gar+gy3cKZ64AiwXMft+wCoeR0HHM/Z2izHZUKNHxvaO94ZtHDl5eWIj4/HtGnTsGjRohrPb968Gc899xxWrFiB/v374/3338e8efOwZcsWhIaG2tY7d+4cVq1ahbVr1zZn8z1iX345PkovdMhA8JOLiPaVQxQEaIxmZGmNyNIa8Ue2BgFyEdO7BGNSbGCTBidK9Ca8fiQXu/IsaYMXRahxdedg9ApU1Xpzkqsz4ruzxdicWYIvM4qwO78cD/SLRFiY54Y3/Hi+BJ+dLoJaJuCJ5OhmD0jYSwlT49UhHfHsgWwcK67AA7vPY0VKNDqqvdcmovrq2TMep06lOw1gAECXLl2g1+tx4sQx2/CNY8eOwmAw2NYJDg4BAOTn59uqpKelHXfYT69e8Th7NsPlcdzRo0dP7NmzG3PmzHP6vFwux2WXTcJ33/0POp0Ol112OWcXIar0/fffYffufyAIIhYsWIyoqKg6t9mdV44PTxZgef9oRPg4/lvSmczwaaYfSqhli4npiNWr12DRojuwdOk9WLnyVduNb32Hb1SXlnYcMpnM5XTWvXr1Rl5eLhQKBaKinAc27Pn7+yM0NAyHDx9CYqLlh06DwYCTJ9NstSJ69uwFo9GI4uIi2zoNCdiIooj+/VPQv38Kbr31dlx55aX4++8duPzyKwAAx48fg16vt2VLHDqUirCwcPj5+TttQ3V1XxMVMJnca3NwcAgKCvJtj8vLy51mmlD98VtICzdmzBiMGeP6F7MNGzZg5syZmD59OgBgxYoV+PXXX/HVV19h7ty5ACwpWHfddRceffRRdO7cucFtERuZdm/d3t39lBpM+M+RPPyRbanQG+enwOWxQRgYrkYHX7nDjb/GYMLBQh1+zSrFjmwN3ksrwNZzJXigXxR6eqigo73z5QY8+u955OiMiFErcG/fSPQOdu84UWoF5saHY0rnYLx6KAf7C7R44J9zeMlXhc6KxmexnCnTY+2xfIgCsDy5A7o1wfnXV5ivAs8NisFrh3Pxe1YZlv17ASsGdEC3AFWt21V/zzT2PdgWtYS+aQ+vy403zsYdd9yKV199EZMnXwWVSoVTp04iNfUgFixYjE6dumDQoCF44YVncP/9lkJar776osPwjdjYOERGRmHDhndwyy23IS3tOP7v//7ncJybb56Lhx9egsjIKIwZY0mzPXHiGC5cOI+bb57rVltnzZqDm2++Dq+99hKuvHIKBEHErl1/46qrrrZ9Ab7iiimYM+cGSJLZVqizLqIotIvXmtovnU6HvXv3AAAkyYx//tmBK6+cWud2T+3PAgB8kl6Au+1+uT9erMMDu89jRpdg3Ng91NXm1I5YAxN3332nQ2CiPsM3UlMP4PDhVKSkDIJarcahQwfx+usvY+LEyQ7DHuwNGjQEffr0xcMPL8H8+YvQsWMccnNz8eefv+GKK6agc+cuNbaZPn0GPvjgXXTsGIuOHWPxyScfQq+vsH3/7tSpC8aPvxRPPvkoFi68Fz169ERJSRF27NiO5OQBSEkZWOe5HDqUin///QdDhgxDcHAI9u3bA61Wi06dqtpTUVGBVauexY033oyzZzPw4YcbcMMNN7lsQ2FhIf75Z4etDXVdEzt06IB9+/Zg7NjxUCiULgM7AJCSMhD/+c9q/P33Dtv13JqtSI3DoEQrptfrcejQIcyfP9+2TBRFDB8+HPv27QMAmEwmLF68GDNmzMDIkQ1Pz5XLRY/9kh8SUnc61eliHZbuOIvMMj0ifRVYPCAGF8cGucxACAPQKToIkxOicLpEhzf3XcBf50uwdPd5LBnYEVO6e66AW3qxDsv+zUC+zojxnYLx8OBYqBX1H34RBuDNmCC8m5qNdw9l497f0rFqdFcMigpocNsqTGa8/M856M0S7kyKxsU961eIqak9GxGAV/acw5cn8vHYngt4c3wPl0EThUJW4z3nznunvfJm3+j1euTliZDLBcjlLe8XQVdtEgQBguC8zaLouDwhIQFvvbUGb7/9FubPvxWiKENsbBwmT77Ctt4TTzyFZ555EgsW3IawsHAsWnQPXnjhWdu+5HIlVqx4GitXPoc5c65HSsoAzJ17O5577inbPkaNGoWVK1/Bu++uxYcfboBCoUDXrt0wffoMh/bIZFXts/5fJhMhl4vo1q0rXn31TfznP6vxzTdfwsfHF0lJ/TF9+jW2dXv27IH4+N4wm02Ij+9VRw8KEEURISFqh3G95JxWq8WkSZMwefJk3H///d5uDrnp2zPFOHr8GEwmI7p374n09JNITT2ASZOuhExWdY3P1Rnx0ckCzOoeWiMrQqq2zx/OlwIA/nuqEBf7lCMsLNxpSji1L/YZEw8+eC9eeOGVer0vFAoltm37Ae++uxYGgwEdOnTEddfdiJkzb3S5jSiKePHF1/H222/i6aefQElJMcLCwpGSMtDl8I0bb7wZ+fl5WLFiORQKOaZNm4GkpGSH68Dy5U9iw4Z38PrrLyEvLxchIaFITEzCJZdc5ta5+Pn5Yd++vfjss49RXq5FTEwMli59BH37JtrWGTp0GCIiInHXXfNgMhlx+eVX4rrrZrndhk6dOuOll1ZjzZo3bdfEfv2SMGXKNADA3Ll3YtWqZzFz5lTo9Xr8+edul+294oopOH78GB5/fBl8fHxw662349w5Zkp4giBVHxhDLVZ8fLxDTYns7GyMHj0an3/+uUMNiZUrV2LPnj349NNP8csvv2DhwoXo0aOqKNqHH35Y6/gxZwwGE0pKtI1qvygKCAnxQ2GhBmaz67fdqdIKPLz7PDRGMy6K9MM9fSOhrueNjiRJ2JxZgnXH8mCUgDviw3FFJ/cLCLlSpDfi3r/PIU9nxGUdA3FXQrhHZtL45kwx1h3Lg59cxCtDY9FBXb/ieFb/TS/ERycLkBTqi6cGdGi2WT7qQ5IkvHs8H1+fKUaoUobnB3d0er5XXXU5/ve/7wG4/95pj1pC3xiNRuTkZCI8vGOLGwbQkFRST5o8eTwWLLinxlRj3mY2mzFjxhTccMNsTJtWs06GPaPRiLy8c4iMjK3x+gYG+kLRgKBsW/bKK6/g9OnTiIuLa3BQwmAwoaiocTMKiKKAsDB/5OeX8XOzGmd9M+WndBTu+wsjClIx5UrLjceJE8cwZ85ch9oSt/91Btk6I0ZH+WNJYqRtWwAYG+2Pe/pWZUq8cSQXP54vRdGBHRhdcBChoWFYuPCeehfAbW4t9b1j/Szy9rXG29cVbzEajZgxYwquvfZ6XH/9LKfreLpvnnnmCWi15Xj66ZUe26c3udM/tb3Pg4PVbfaa27K+PZJH2M+uMXbsWBw6dMgj+/XUhclsllzuK0trwGN7LkBjNGNqpyDc3CMUoiA06NiXdwxElI8czx7IxppjeVCKAi6JaXgWgsEs4bn92cjTGXFxtD/mx4cBEmD2QFxvSqcgaAUBG4/m4pn9WVg5KKbeY1ALK4z44nQh5AJwV3y4x9rWFOb0CIXWaMbW86VYsfcCVg6Kgb+TD9nqr3tt7532zpt9w9ekdSkoyMfmzd+irKwUEydOcns7/vur2+nTp5Geno6xY8ciPT3d282heqrIPQ8dzIiL6wS5XI4TJ47hyJEjDkGJbJ2lqJ1SVjPo7+xfh9loQHHq30CMGgUF+Th4cD+SUwa2yB8NiOydP38Oe/bsQlJSCioqKvDf/25EcXGRbapLIk9qeXm25LaQkBDIZDLk5eU5LC8oKKi1GE5LVWEy46l9WSjSm3BZxwDMqQxINMaAMDWWJ0VBFIA1x/JwqrT26Tpr8+mpQhwu0qF7gBJ39Q73+CwmdyR1QP9QX2SU6fFxev2nCdqYXgidScIVcUENzrRoLoIg4I7e4Rgcrsa5cgNWpubAyJsdomZx1VWX4b///RjLlj1mK7hJltmu7rzzTowcORLx8fH45ZdfaqyzceNGjBs3Dv369cOMGTNw4MABh+dfeOEF3Hfffc3VZPIgyWxGRd4FGEUFoqM7VE4LLODIkUO2avv5uqoq+75OghLOaM+ehGQ0wMfHMqPP1n8P4uqfT2FvfuMyYYiamiiK+O67/+G222Zj4cLbcOHCeaxevcblDCBEjcGgRCumVCrRt29fbN++3bbMbDZjx44dSE5O9l7DGuj9tAJklhswIMwXd8R77qY/OUyN2d1DoTdLeOFgNsobkFaWqdHj64wiqEQBD/WLapJZPeSigCWJkfCVCfjubDEyNXq3t71QbsC286UIUIi4tkuwx9vWFGSCgPv6RqKLvxL7C7QNCsQQtXT/938/tbihG3/+uRvffvsDxo3jr132rLNdPfbYY06ft852tWDBAnz11VeIj4/HvHnzUFBQAADYtm0bunTpgq5duzZns8kDJEmCoTgfkqECfhHRkMlkUPr6IbhDR6Rl5yP9rGXMeLHBZNtGZ3IvkK45fRQAcNVVUyGKMny26wAksxkfnizw/IkQeVB0dAe8/fa72Lr1N2zd+hvefPMd9OmTWPeGHvTII0+0maEbVDsO32jhNBoNzpw5Y3ucmZmJI0eOIDw8HBEREbjllluwdOlS9O3bF0lJSXj//feh0+lw9dVXe7HV9be/QIv/yyxBgFzEooQIyDychTC1UxAOF+nwT145vswowk31qIItSRLWVNamuLF7CCJ9my4LIUQlx4yuIXg/rQDrjufj8eRot4IzW86VQAJwZVyQ02EQLZVaLmJZUhTu/eccvswoQr8QH6SEqb3dLCJqhxo729X+/fuxefNmbN26FRqNBkajEYGBgbj99tsb1J7mnvGqPaneNwazZegGAKgjYyCKAh7bnYWdhnAU5h7CM1u34707roPWLhChM0lO+9Z+mU6nRfm5dIhKFRIT+2HXrr9hPr0XhpICxMZ0abGvTUt977S09hA1pfY24xWDEi1camoqZs+ebXv89NNPAwAWLlyIRYsWYdKkSSgoKMDrr7+O3NxcJCQkYN26dQgNbT1TT5klCeuOW4ag3NE7HKEqz78tBUHA7fHh2FdwFv87U4yJHQNrVM12ZVdeOQ4U6hDnp8BVcY0vllmXK+OC8OP5Uuwt0OJQkQ6JIb61rl9hMuOn86WQCcCERtTM8JYoXwUW9A7HytQcvHIoF6uHxSJI2XoCK+Tao48+hIMHD9S9oof065eEp556vtmOR+2HO7NdLVmyBEuWWKZX3bRpE9LT0xsckGjuGa/aK2vflOlNVUGJjp0RFuaPI8U6qDv1QOGe33Dg0CGEhflD1FZlShgri0HaU6rkCA31w+t7zyMhVI0Lp04AZhPUnfsiMjIIcd27Ar/thT4/Cz6qnthZrMeIjoEIboLvPZ7Q0t47LWmmJ28fvyVj39Su7v5pnzNetcxPQbIZOnQojh07Vus6s2bNwqxZzqvgtgbbczQ4ozGgT5APRkY23QUwwkeOqZ2C8NnpInx4sgD32VXIrs03Z4oBADd1D4W8GSKWClHAtV2C8drhXGzOLKkzKPFXjgalRjNGRvohpIV+sanLiCh/XFqgxY/nS/HuiXzc6+ZrQy0bAwTUVhQWFsJkMtWo1xQWFoaMjAyPH89oNDfbjFftUfW+Kaww2oISv2p88fepfACAIjAUisBQGApzceJEBrJ0VZmSJVoD8vPLHPZbUWFEamYR/lv5Q4vxwF4AgF+X3sjOLYXJJ9iyXkEOtmYUYmtGISZ0DMCiPi3rmtdS3ztGoxFmsxlGowTAe7NftNfZN9zBvqmde7NvSDCbzSgsLIdc7jiUuy3PeMVQFnmVWZLw6SlLLYHruoV4vHhkddM6ByNYKcNvWWXI0hrqXD+9tAKpRTp08JVjcHjzDSsYEekHf7mInbkaFFUYa113S2YJAGBSbP2meW1pbukZhhClDL9mlWEPC4BRE/vyy/9i4sSLYTZXfTnIz8/DyJGD8PDDjtM4bt26GWPHXoSKCl2Dj/fTTz9i5MhBWL58qdPnH398Gd57bx0AYOTIQRg3bgRycrId1lm48Ha88carDW4DeZ79bFf2pk2b1uDpQK2ss5005j9P7act/mffNwUlpTCUFEAeEAyZjxrfnSmyvQ7qzr0AAHv27EGZvurzQmsyw2yW8GdWqcP7QV95w2EsL0Pm6VMQff3gExWHz9IL8fo5y3tFn59l2yZTY/B6X7Sm9w5Re9He3v8MSpBX7czV4GxllkRSiE+TH89XLuLyjpab923nS+tYuypL4sq4oGadvkslEzE+JgAmCfjxgut2FlUYcaykAlE+cvQJbvr+a0p+chF39rb8Cvn20Ty00NlMqY1ISRmIsrIyHD9elYm2b98eREZGYf/+vbZq+9blCQl9oVI17N9YdnYW3nzzVSQlJTt93mg04u+/d2DEiNEOyzdseKdBxyPPa2uzXZGjjDNnAQCqiBgAwE8XqjIg/LtbCvvt2bMbpfqqHwm0lcGHFw7mOOzLWPnZoUk/DEhm+HdNgCCK+ORUIeSBIRAUSugLciBVBkSj3BxKSkTUljEoQV71c+WFf1qXoCbPkrAaHxMAAcBPF0phqiXqWGow4c/sMvjJRYzr0Py1Gqz1IX44V+pwg2RvX4ElvXdAmLrZ+q8pDYvww+BwNbJ1RuTXkSFC1Bhdu3ZHcHAI9u7917Zs795/MXHiZCgUCqSlnXBYPmDAoAYdx2w24+mnH8fNN89Fx46xTtfZt28P/P390bNnL9uy6dNnYPPmb3HmzOkGHZc8q63NdtWe7c4rR1a5Y6bkmbOWIThdOnWusb4iMAQ+0Z2QU1CIU2lVQUytSapxbZZgCVZIkoSytIMAAP8e/WzPC4IAZWgUJKMBhhLL7BvuzuJBRNSWMShBXlNmMGFvfjkC5CJSQptvaESEjxzJob4oqDBhT4HrYQJ78rUwSsDwSD/4eqFoT6yfEvFBKuTojDijcT7UZG9lUCI5rPa6E63J7O6hEAHk6owos5t+jciTBEFAcvIAh6DEvn17kJIyAMnJKbbleXm5yMw8i5SUgQCAWbNm4NJLR7n8b8mSux2O8/HHH8DHxwdTpkxz2ZY///wdI0aMcliWnDwAAwcOwdq1//HUKVMdNBoNjhw5giNHjgComu0qNzcXAHDLLbfg008/xVdffYWTJ0/iiSeeaJWzXbVnF8oNeGp/Fm77q2pWs4wyPQ6ePAUA6N6li9PtAnoPgM5kxuG//7AFInQmM6rHEyTJEqzQZp6EoaQAqogYKIMdM2lUYVEAAH1+tm0/RC3J/Pm34rfffrY9PnHiOObOvQljx16EOXNuQElJMa666jLk5ubUshei+mHOGHnNztxyGCVgWKRfsxSQtHdpTAD2Fmjx47lSDA53Xlzz38q6BoOasZZEdf1DfHGsuAKphVp09neswCtJEvYVaCEKQL86imG2Jp38lbgkJgAHJQlfZhTh5h5h3m4StVEpKQPxzjtvwWw2o7i4CJmZZ5GY2B9nz57Frl1/Y8aM67Fnz79QKpVITLT82vnii6/BaHSdxaNSqWx/Hzt2FF988V+sX/9hre34668/sHTpwzWW33nnAsybNxtHjx5G7959GniW5K72MNtVe1dRLQAgSRIW7cjAmdQTEBRKREREAdmaGtup43rAP3c/jqVnwnz+FNQdu0FnklBerWCdSQK0RhOKD+4EAAQlDkWQQgaVTMCk2EC8l1YAZVi0pS0F2fDv3hcVzJRo00aOrD3L7pZbbsPcuXc0S1uOHj2Cdev+g6NHD0Or1SI8PAKJiUl46KFHoVBYirj+8cev0Gg0GD16rG27//xnNSIjo/DMM6vg6+uDwMAgXH75FVi/fg0eeujRZmk7tX0MSpDX/JltGboxMqr5p5waEuEHH5mAfQVaGM1SjaCISZKwJ78ccgFI8uINf2KILz47XYSDhVpMrjYdaUaZHkV6ExKCVPBrY9MvXdctBK8KAjZnlmB652AEttJZRahlGzBgkK2uxPnz5xAfnwBfX18kJ6dg3bq3LYG/ff+iT59EWz2J6OgObu1br9fjySeX45577kdYmOuaAydPpqGkpAgpKTW/uPbq1Rtjx47H22+/gVdffathJ0luaw+zXbV39rf/JXojCipM0OdnQzIa4BvTFSqFDFM7BeHrynpSVoIgYMCo8dh58j0U//0TfK6KgyhXYNme8w7rGSUJR1L3oyLvAhQhEfCN7Y4PRluGhKQWWjIbVZVBCX3lbB86MzMl2rJvvtli+3vz5m/x1Vdf4J133rct8/Wt+uFLkiSYTCbI5Z7/zlNYWIB7712A0aMvxiuvvAW1Wo1z5zLxyy8/wWw2AbAEJb744jNcfvmVDkOCz507i2uvvQ7R0dG2ZZMnX4k5c27EggX3ICCg9U1HTy0Pv+mTV5ToTdhfqEWQQkS/4Oa/6VeIAnoH+WBfgRbppRXoFeRYwO54cQVKDWb0D/WF2os3/L2DVJALQGqRDmZJcii2aR26kRLmvUyOphKmkiNYKYPOJOGH86W4pmuIt5tEbVDXrt0QEhKKvXv/xYUL55CcPKByeXcIApCWdgL79u3B+PETbNvMmjUD2dkXXO4zKSkFL730OvLz85CRcRqPP77M9px1po8xY4biiy++RUREJP788zcMHTrc5ZfQ2267CzfeeA3+/XeXJ06ZqF0z2kUlMkoqkF9ugC7bUuTSJzoOSlHALT3D8MuFUhQbHIMFcT16wz+uB/JPHEX+zh8QPmISzlYbWllWXIST274HAIQNucThxs76XUIeEAxR5YOKwhxIZhNrSrRx9kFptVoNURRty/bs2Y27774TL774OtaseQPp6Sfx9tvvYtOmz6HVluPpp1fatl2+fCl8fdV45JEnAAAVFRVYu/YtbNu2FeXlGvTo0RMLFtxry+qr7uDBA6io0GHp0kcgk1mmlOzYMRZDhgyzrVNYWIg9e3ZhyZIHbcusmR6vvvoiXn31RVtmR6dOXRAZabmGXX75FZ7pLGrXGJQgrzhYqIVZAoZG+EHWzEM3rPoEW4ISh4t0NYIS1qEbA71cq0ElE9EryAeHi3Q4U6ZHl4Cq1PBDRZbpCb2ZydGUwlWWi+a3Z4sxpXOwdxtDbVZKykBbUOKuuxYDsPwqmpSUjJ9++gFnzmTY6kkA7g/fiIiIxAcffOrw3Dvv/Ac6nQ6LFt2LkBBLyv+ff/6Oa6+9zuX+YmPjcMUVU/D226sbPPsHEVmY7ApTZpToUFJugC6rMigRZQlKAIBSJgIGM8JUMoyK8sfXZ4phNEsIHHIpFOfPISwnDQX/bEPo4HEQRMu1ylBahAPbv0GArhwBCQPhE+VY2NYalBAEAYN7dEVJ5imUFOWhwjemOU6dWrA1a97AwoX3IioqGkFBwW5t8+qrq5CRcRpPPfU8wsLC8eOPW3DvvQvw8cdfICIissb6oaGh0Ov1+PPP3zF69MVOi6MfOLAParUacXGdbMu++WYLbrvtZlx99TWYNOlKh8yO+PgE7N+/l0EJ8ggGJcgr0kv1AIBeQao61mw6fSun0DxcpMPUagW397SAehJW/UIsQYmDhTqHoMT5yurh1WtNtBUqmYjB4Wr8k1eOP7LKcG0E0wPJ81JSBuKtt16DXq9HUlJ/2/L+/VOwfv3aylkXqn55cnf4hlwuR7duPRyW+fsHQCaT2Zbn5+fhxIljGDZsRK37uuWW2zFz5hRIElhbgqgRjHYzbhVWmJBVpoMu9xwEuQLKsCioZJYbNZnd/Zqs8uZNa5JQKvNBwuUz0Cf1e2w6vh/nzp+GOq4nzIYKaE4fRZBgQteEPtD2u7jGse2zLgf26ILM0vPYXZAFXaR7nynk3JdffoYjRw436zETExMxdeo1HtvfbbfdhYEDB7u9flZWVuVQkM0IDbXU3ZozZx62b/8TP/zwPW688WYnbU7CDTfMxmOPPYSAgAD06dMPgwcPxcSJk23DL7KzLyA0NMwhYBEWFg5RFKFWq2sMRQwPD8fJk2kNOWWiGtrWQHRqNU6WVgAAugd4LyjRM9AyNOJwsWVohJVJkpBRpkeAQkSMr8Jr7bNKrBzecrByPCpgaWO21oBAhejV4SVN7crKOhrbzpd4uSXUVg0YMAharRY9e8bDz8/ftjw5eSC02vLKehJN8zn1119/oF+//ggMDKx1vfDwcFxzzXXQ6yuapB1E7YXR7lqvMZiQduYsJIMeqoiOEEQZlGJlNkPlOhKqAhTZWssPAZ1iYnDnnQsQ1bkbjKVFKDm8C2UnDkAymxDZ/yL0u/waCGLN67JaVrUsNjYOAGAqzKlRfJPan969E+q1fnp6GkwmE2bOnOow+9OxY0dw7lymy+3uuutufP3191i8+H7ExMRg48b3cdNNM5CXZ5lhqKKiAkql+9c7pVKFigpdvdpO5AozJajZSZKE9NIKyAUgzs97v/KrZCJ6BKpwtLgCmRoDOlVmHOTqjDBKQEe1wml6W3OLr8wmydDobcsKKkwwSkB0CwiaNKXEEB+Eq2Q4WKhDlkaPtn225A2dO3fBn3/urrG8d+8Ep8sbwzoW2OrPP3/HyJGja6zn7Ljz5y/C/PmLPNoeovbGfrKMHedLcKKysKlvB0u6pHX4hlAZlpAkSw0qAMiqDEqE+8gREhKKlKtuhOnUWejzsyHIFfCJikNkaCAqXJSIsC+o3TmuE3YCMORdgFGC04Lb5J7p02c0+zHlchFGo+eCST4+jsNwBUGwTT1rZT9sUKsth1wux7vvbqzxPdXPr/bi8SEhobj00om49NKJmDdvPq677mp8/fWXmDfvTgQFBaO01P0fgUpLSxAczJpf5Blt9ydWarEKKkwoNpgR56e0Xey9pY/dEA4r67CIjuqWcQuskonwl4soqDDZLlIXKtvY1oMSoiDg4mhLWuEPGYVebg2RZ/Xvn4xx4y71djOI2g37mhIninQ4n34cAOAb2w0AoKxMi7De51kyJSwPLmgtN4URPpbf8/wVIpTB4fDv3hd+nXtB5uMLoyRBa1dN09U3nIjgQAQEBMJYnA+z0QAdsyXITnBwCAoK8m2PzWYz0tNP2h737NkLRqMRxcVFiI2Nc/jPWq/IHf7+/ggLC4NWa8nE7dUrHnl5udBoytza/vTpU+jZM97t4xHVhkEJanYtYeiGlTUocbykKihxrvKGP0bdcmo1hKlk0JslaCoj89ZfbKJ9236y08UdLCn1358urPHLAVFrduONNzstSEZETcO+poRJq4E+Lwsyv0Aogizj8qsyJSwkSYJ1hOSJEst3F1tQwsnQySytETtyNbbHrpIt5YKAuLhOkAkSKvIuoIIzcJCdlJSBOHQoFdu2bcWZMxl4/fWXUFxcZHu+U6cuGD/+Ujz55KP4/fdfcf78uf9n777j26jv/4G/7k572bK87ezhOE6cnZABGWU1tMwCLaRQyigrpS2F9keh39JSRoEOKDSsUgp0QBugtDRhQyEBsnecOE484ynL2vPu94d00kmWZNnWsJ338/HgQSydTh99LOt073t/3m8cOLAfzz//DHbt2hF3n59++j/84hc/xdatn6KlpRnHjzfgD394HMePN2D58tMBANOmVcFgyMO+fXsHHKPH40Fd3aGo7h2EDMfYP6MhI86x0IF9sj73J/0lqmCmgdkTCN820jIlAMColKHR4YPZE4BOzqE9dMWmbASNMVPGaRWYqlei3urBMZsXk8doYU9CCCGZJW0J6mxtAABoKieHU+BVXHSgQZopIRILYOvkA1/Xq47p7HXLjEKcsHtRoOQwYcJEcMzn8HS0wEWZEkRi6dLluPLKq/Hb3z4CQeBx6aXfwKJFS6K2ufvun+P555/BY489iu7uLhiNBZg1qxZnnnlO3H1OnDgJCoUCv/vdo+js7IBKpcKECRNx332/wvz5wbafHMdh7dqv4J13NuG005YlHeOnn/4PxcUlmDWrNj0vmpzyKChBsk7svDF5BGRK5CuCrbws3v5BifIRdMJvCrXHNHv8GK9TSDIlRs4YM2l5iRb1Ng92dDspKEEIIWRIpMs3XC3BdHh15ZTwbcbQdwJxZakgBLMaRGvKdDApg1+dtTIu6XOtm2LEmWXRXaPOrogUtZ00aTJkDAN7RxNlSpwiLrnkclxyyeXhn+fPX5iwdtF3vnMLvvOdWxLuSy6X44YbbsYNN9yc0nNXVFTiRz+6e8DtLrvsSlx99eXo6uoMZ/L94x9v9tvu1Vf/iquvvi6l5yYkFbR8g2TdMZsHDICJI+DkUidnwTL9gxIMRtbSCPFLUE8oo+NUWr4BAHNNwStTe8zOHI+ExBP5zk5frMem4O91BNT9JWRYxOUbvM8LZ2sDGLkC6tLx4fvzQxcAxMwJAYB0lYa0Dla85Rvh/Sg4XDrRCKMy8TG6pKQUapUK7q42dDiogwEZGQoLC3HnnXejo6M94TZWax9WrDgDZ50VPyuDkKGgoATJKqcvgC63H2VqOdQjoJUlyzDIV3Do8wXACwI8AR5dbj+KVDIoudyPT1QQ+mJj9vohCALaXX4oWSZ8VWesm6xXIE/B4ZDFTQXBRiCW5QAw1LJyjAoEgsvFgr9nQkaH7d1OPHGoKyo7QmwJ6myuBwIBaMZPA8NFAgd58lBQIvRz7PINueTf+iTLN74+aeCOBCzLYva0KUAggPcP1afykgjJipUrVyddlmEw5OHKK68eER3qyNhxalxmJSOGK1SoUZvCWsxsyVdwMHsCsPl4WLwBCBhZSzcAoCB09abHHYDNz8Ph5zFBOzJalmYDyzBYWKLDe819OGhxY34oc2IgPR4/3mqxotnhhdUbwHidArPy1VherAVH7dfShmEYaLUGWK1mAAj1OR8p88vA76cMjvhSmRsBNpsFSqXmlPm8IWPDL/YEr/QuKtRgcVGwTaIY03acOAwA0E6cEfUYWUyhS14QooISYncOANDL+wfptDIWP59Xhikp1sxaMbMK//piN7YfOgKsWZDSYwghZCyioATJKl8odVI+gr7cGiV1JUZiPQkgOlOi/RRpBxprYake7zX3YbfZNWBQQhAE/KPRglePW+CRVFs/1OfB5lYb/nZcjm9PM4ULlpHh0+nyACAUmBg5QQCWZcHzlF0TT6pzw7IcjEbqEkJGJ3eoXsNBixu93gACbhdcbSfAKlVQl02I+xhpS1BpUqe0vkRenEzFF0+fMKiA9+yqaZCzDLqaGlJ+DCGEjEUUlCBZJQYlZCPoKrX4xaLX60erM1iEcyR13gCkhS4D4c4bpSNsjJm2uCRYMGy32TXgtn893ou/H7dAzjK4eEIelhVroZNxaLB5sKnVir29bvxiTzu+NbUAF47PoyvAacAwDPT6fOh0eeD5AEZC91aWZWA0atDb6wTPj4ABjSCpzg3DBIMS9DdCRgtBECANtTEMsKvHiZ/tDmZO2Bv2A3wA2omzwSRYkiR9t0sDEdKaEoY4GZ+DzcArKyuHXK2Fs7MNLpcLarV6UI8nhJCxgoISJKu8odzJEbR6I6oDR+sIzZTIU3BgmWD3jWZHMHBSdoplSpTpFChTy9Bo98LmC8RNnQWAd9qs+PtxCzQcg/sXlGOSpMtLmUaOZcVabO1y4LcHuvCnejPsPh7fnFqQrZcx5jEMA44bGYcWlmWgUCggk3kpKBGD5oaMVb/a34kvuhzhnwUB2NbtDP1bgP3IXgCAftqchPtQh2pKKVk26iKKNCghPQYVKjncM6d00GNlGAZ54ybDeXgv6uuPYPbsxGMiVFSZnCpOzeLSI+ObIzlljMRMCaMi+GfQ5w2g1REMSoy0TAmOCRa17PUGsKc3mCkwIy/3LVWzbbJeiZMuP5odPszM7x+UsPkCePZIDzgG+H+1pVEBCRHDMFhWrEOhUoaf727HPxotmKBT4IxSXTZeAiGEkAza0unod1uXO5hh6Olsgc9qxsTx44GC4JKkr44zQM4yWFkSOQbcUl2Exw914dvTCuCU1F2RBiWk32O+Pc2EiUNsc54/bgpOHt6Lw0coKDEQluXAshwslm7o9fmhAHguvk9SraLEaG6SG2h+BNjtfWAY9pQrLk1BCZJVI7GmhJgp0esJoMXpg4JlUKQaeX8aBUoZejwB1PV5kCdnMWEEtFTNtnE6BdDpQLPDi5n5qn73/7u5D+6AgC9XGFBbkDwNdnqeCj+cVYx7d7fj94e6MEGnSNuc2n0BHLcHi2tq5SzGaxXhuiCEEEKyx8cLOGYLdgayHdkDALhw1em48+tzcKilFyZF/+VJ5Ro5HlhQDgA40BtZMijPwAWV/HETAYbFkSOHIQgCLZVKgmEYmExlsFrN6O3tzNk4qFZRYjQ3yaUyPwzDoqCg+JT7LKBvySSrvKGCU5k4sA+VGJQ4bvfC4ecxSacAOwI/CMQOHAAw26gekWPMtPHaYNBAXMIi5fTz+HezFRwDXDQhL6X9zTVpcOUUI1481osNh7tx/4KyYR0EDve58crxXuzo6V/3osqgxHnj8nBGifaUO9AQQkg2eOK0jLb7A+jxBOC3W+E4UQdWqcK06hoAQLFaPuDypUTLN6RcgaFfGVapNFCVVMBq60Nj4wlMnDhpyPs6FXAcB6OxCILAg+f5rNcvolpFidHcJJfK/JzKdZwoKEGyyseLNSVGzh+bGJQ4ZHEDAMZpR9bSDVGBIvLnOmeALICxSvzdNIeW2UhtbrXC7uexpkyHkkHU27hoQj7+1+HAwT43tnY5sKx48Ms4AryA5+t78GazFUAwgFSdp0KBkoPDz2N/rxt1Vg/qDnTirRYlvjezGGUjbIkQIYSMZt1uP679tKnf7SedwaUb1kPbAYGHvmoeVMrUl1pIW4LKEpwo+IZxAiZjGWgmVIFv/hwHDuynoESKGIYFx2W/QBnV40mM5iY5mp/kKChBsiq8fGMkBSVCGQhi68hK7chcFmFSRTIlBlqaMFZVaBVgET9TYmuosNn541LLkhBxDINrphXg/3a144V6MxYVagf1/vQGeDy4rwM7elzQy1l8a6oJq0p1UVfXBEHAvl43nq/vweE+D+7c3oq7aktRHWcJCiGEkMHb2eOMe3uL04uA2wXb0b1gOBkMM+YnDC7EI5NsGnts+N7MIrzZ3IfTS7RDGrO4T+346RBavsCBA/uwdu1XTsmrpISQUxsFJUhW+Ubg8g2djIWMAcS6M5Uj9Aq2KVSToFglQ+kp1nlDJGcZlKrlaHP54PTz0IQayHsCPI5ZPTDIWUwcQl2IuQUaLDCpsaPHhQ/bbTir3JDyY5850oMdPS5UauS4Z25p3N8NwzCoLVDjkUUVeP5oMKPip7tO4hfzyzAjL32BCV4QcNDixmddDrS7/LD7AshXcKjUKrCsWItJOgV92SWEjEneBFceWxw+WA/vBBPwQzt9LjiVZlDFtrkkyzdWl+mxukw/tAGHyBgGnFqLivETYW5tRFNTIyZMmDisfRJCyGgzghozklOB+KVhMFcpMo1lGOQpIlkIIzVTQly6sKhQk+OR5FZkCUckW+KI1QO/AFTnq4Z80n3JhHwAwDuttpQf8/5JG95usyFfweEX88sGDBZxDIPrphfi6qkF8PICHtzbge5QVfjh2tnjxC1bW/CTnSfxZrMV27qdONTnwdYuJ149YcH3v2jF7dtaw8uUCCFkLEkUlOi22mA9tB15SjkMNYsAANwgDhPS7yuZuKAitkifMmMWAGD//n1pfw5CCBnpKChBssoXGHk1JYBIXQkWwarbI9E0gwoPLyzH1VMLcj2UnBoXLnYZqStxMHSiXTOM5RAz81Uo18hRZ/Wgyd5/eUgsizeAp+q6wTLAHbOKB9Vd46LxeTinQo9ebwAP7utAYBhrCwO8gF9ta8H/7TyJNpcP1XlK3DyjEL9eVIFnlo3DrxaW45qpBZikU+CYzYsf72jD03Xdw3rOVHkCPNwBPivPRQg5tXkTFJu07PsMgs+LmvmLINcFl/cN5jtIKoUuh0MMekyqmgmGYbFv324EAoG0Pw8hhIxktHyDZFU4U2KEBiVK1fIRFzCRmp7GVP/RKl6mhBiUiNcmNFUMw+Cscj1eqDfjnTYbrp1uSrr9640WuAMCvjrOgFnGwdX4YBgG108vxAm7F3V9HmxqteK8QdbCAIIBid8e7MLHHXbkKzjcWFWIpcXRa5uL1XJU5alw/vg8fNxuxx+P9uA/LVa0u3y4Y1YJ1LL0xqYP97nx3xYrDlnc6AhlgXAMMFmvxLwCNb5caaD2qISQtItXbNJn74OtbjcYuQKLl69CS0fwuMENIqOOi6opMexh9iN+H1JotJg+vQp1dYdQV3cYM2fWpP/JCCFkhKJMCZJVkUKXOR5IDDEoUTFCO2+QCDFToiWUKRHgBRzuc0PFMZisS72iejxrSnXgGOCDdlvSauoWbwBvtVihYBlcHFr2MVhylsFNVYVgAfyloRdW7+CvjP2hrhsfd9hRplXg0cUV/QISUizDYFWZHg8vqkClRo4dPS48eqATgTT1U+ty+3HPzjb8aHsbPmy3o8PtR6lahnFaOXQyFketHrxywoLrP23Cs0e647buI4SQVO3oduK4zRP+Od7yDfO29wE+gLyZi1BqjNQKGkwsNmr5RgaWnooXQvy8AN2UWfjgpA3vbP0Mn3bYcf+ednjps5IQcgqgy1Ukq7wjdPmGMdRuc6S2AyURYuCozRUMShy3e+EOCJhToI4qSDYU+UoZ5hVosL3Hibo+d8IMiDeaLPDwwSyJ4Vz1n6RX4pwKA/7basXLDWbcNKMo5cd+1uXAO202FCg4/H7NFCjcqbWYKlHL8eDCcty5vQ3bup146ZgZV09NnhUykC+6HPjtwS44/DwqNXJcMD4Py0t00Ia++QuCgFanD++22bCp1Yo3m63YY3bhztkl4SBTOgV4AXt6XdjS6UCb5yQ6HF6oWAYmlQxzjGosLdaO2GVahJCBeQI8fr6nHQDw+ppJ8PEC9vW6orZxNtfD1VwPmS4fhppF4YsPwODqWkkzOzOR5SmOxR0Q8Ee7AQ5OhY/37Mc7JYvBqbX4pNOBVqcPDh+PG2cUpv35CSFkJBhh16tJun33u9/FokWL8P3vfz/XQwEQvBIAjLygRI1RBRbAAtOpXURyNFBxwW4pLn8wwHXUGrxSVp03vCwJUW1BcAnI/t74BSF5QcD7J+1gGQw5S0LqyilGqDkG7520w+pLLVuizxvAk4e6AADfrSlG2SBP7PVyDvfMKYVOxmJjY1/CVnqp2NHtxEP7OuDw87hofB5+u6QSZ1cYwgEJILhcpVKrwLemmfDk0nGYW6BGk8OHu3a0pVS/YzC2dztx82fNuHd3O95ps+FAjxPdbj9anD7sMbvw52Nm3Ly1Gb8+0IkOl2/gHaaJIAhwB3gIacpMIeRU5pEEYI/ZvHhgXweOSz5LeL8vmCUBoGDJl8DK5ChQRoISgwlgRy/fyEBQIvRRecLuBcNy0E2eCZ7nYasPFrx0+Hj844QF/221gqfPD0LIGEWZEmPclVdeiQsvvBBvvvlmrocCIJJemYkUyOGYb9Jg45pJ1C5xlFBxLFyhrBtb6ETelKY6BTX5weyIAxYXAGO/+49aPbB4A5iVr0pLbQS9nMPqMj3earHivTYbLkoh0PGXBjP6fDzOKddjwRC7sZRr5Fg/swgP7O3AU3XdeHxJJRTc4OLUdX1uPLivA34BWF9diDNTaKVaoJTh/+aW4tkjwdoW9+w6iQcWlA87c8HPC3jycBfeO2kHANQaVTizwoAVk0xgXR64fTxanD5s63ZgU4sNH7Xb8UWXA7fNLE667GU4WhxefNhuxxfdTpx0+uDlBciYYJ2P+QVqnFGqQxXViSFk0KRJYbvMTuzsic6SsOz6H/z2PmjGTYOmYjIAIF8R+bweVKZExrtvBPcpBqX10+fAfWIPbHW7kFezCA5/ZPmGOyBAI6PvKYSQsYcyJca4JUuWQKvNzBfuofAFRmamBAAKSIwiKo6BJyCErj4LodvS83E2Sa+AhmNwuM8Tt67Etu5gVsHiovRl1Xy5IngyvymFK2EWbwDvnbRDxTG4apidWJYUarDApEa7y4/Xm/oG9VhPgMdvDnTCywv49rSClAISIpZhcP10E75cYYDFG8Aj+zuS1vAYiDvA4/697XjvpB0mJYef1JbgF/PLsbpMj1KtAhzDQC1jMc2gxBWTC/DUsnH42oR8uAICHtzXgX+csAz5ueMRM1nWf9aCV09Y0Gj3QskyqNDIoZWxaHP68O8WK+7c3oZf7G6PKtqaKbwgoK7PjQ9O2vBGkwXvtlmxv9tBmRtkVJLWwoltc+xqb4L10A6wCiUKFq8J3y7N3hpMTQk205kSoe8e4mew3FAAVfkkBJx2OBuPolHy+eCi+hKEkDGKMiVyaNu2bXjuueewf/9+dHV1YcOGDVi9enXUNi+//DKee+45dHV1obq6GnfffTdqa2tzNOLh8/HBA+pI675BRhcVx0JAAF4+mBIfvC097ymOYVCdr8KOHhfqrR5Ux3T0EIMSiwrTF+wbr1OgJl+FAxY3dptdmJ9kGdF/mvvg4wV8eVwedHIu4XapELuA7P08ePJ8bqUBhhT3+ZeGXpx0+bGoUIPzh9A5hGEYXF9lQqPdi4N9bvylYWi1LQRBwG8PdGJHjwvjtHL8bG4ZClXJD21qGYtvTi3AjHwlHt3fiRePmaGXszinIvXASiINNg/u29OOHk8AehmLCybkYUWxDmWSTBCzx4/Puhx4o6kP23uc2NvrwvrqIpxRqhv288ey+gL45wkLPmy3wxJbTPVAF365oByzhtG1hpBckMYw213+yO1eD7o/eQsAYFpyNmTayN+0QlobYhAXIZgMZ0rE+z6krJoP1B+B9dB2NMycFb7d5ecBZTAQc6jPjYvG59EFFULImECZEjnkdDpRVVWFn/70p3Hvf+utt/DAAw/glltuwWuvvYaqqipcd911MJvN4W0uuOCCuP+N1B7X3hGcKUFGDzErwhUQwleO0pUpASBc4DK4hCOi0+XDCbsXFRp52gslnhs6If6o3Z5wG3eAx39brGAZ4Kvjhn8CDQBlGjnOKtfDywt4t82W0mOO2zz4V1MfNFywg8hQvxRzDIPv1RRBwzF4rbEPR63x63gk86/mPmztcqJULcP9C8oHDEhILSrU4q7aUsgYYMPh7mHV1gCAfb0u/L8dbejxBLCqVIcNy8bh0onGqIAEEFzCsrYyD78/bRzWTTHCzwt49EAnXj3RO6znj/Vumw03bmnG6019sPoCqDWqcMmEfHx7WgEun2TEuuoiTDWkpxYLCWpoaMDXv/51fOUrX8HFF1+M7du353pII16AF/Cf5j50uf0DbxwizSgTjwGCIKB76yYEnDaUTpuJJy5dA3GlA8tEn/wPpiWoVCa7b0g5Cyohzy+Ep/skGpuawre7AgLsvgB+vKMNL9Sb0WDLfJYVIYRkA2VK5NDKlSuxcuXKhPc///zzuPzyy3HJJZcAAO699158+OGHeO2113DttdcCAN54442sjDVdxBTtwVylICSWmBXhDvDh5RvqNK6zrcmPFLv82sTI7ZEsifQXRJ1vUoMFsLfXBUEQ4p7ob+10wObncUaJFsXq9AVF1lYa8FaLFf9tseKC8XkDfmF/rakPPIArphTANIggQDwlajmunmrCH+q68deGXvx0blnKj22wefCnejPkLIMfzS5JOctDqrZAjdtmFuPRA514/FAXHl9SOaQMlJNOHx7c2wF3QMCVk424dGL+gMEaOcvg0olGTNUr8at9HXjpWC/yFRzOGsRSmHgCgoDnj/bgzeZgAOvLFQZcPikfRkkNFJZlYDLp0NNjT6lrC0mNUqnE/fffj8mTJ+PYsWO4+eabsXnz5lwPa0R7u82Gp4/04J+NFvxxxYSUHhOQvGWdoZoL1gPb4Gw8ApkuH+OXn4OqPBX0cg693kA4S+JXC8vR4/FDPZj1GxLD7fAUT7zvQwzDwDBjPno+ext9+79A8eoLAQA/2t4a9dobHV5MMSjhC9WroawJQshoRUGJEcrr9eLAgQO46aabwrexLItly5Zh9+7dORkTO8yDMcsy4UKXShk77P2NJeJc0JxEi50X8f/iF0rp8g2NjEvb/E3LU0HBMjhq9UTt86gt2OljXqEm7b8rg1KGqQYljlg9aHP747bK3GkOZm6sLNMnnJuhmKBXYk6BGnvMLuwyu7C4KPHSlB63H5902KGTsTin0pCWeTi70oCNTRbs6HHhiNWDGSkuJ3ih3gxeAK6bbsLUOAUjU52bVeV67DQ78cFJO/5Ub8Z3a4oHNX6nn8d9e9th9/O4eEI+vj5lcLU+FhRpcdfcUvxs50k8ebgbpWo55gyxE5AgCHjqcDc2t9qgl7O4a05p3Na29JmTGRUVFeF/T548GTabLWGQkQS1hGom9HhSz/CUZkq4AwJcJxvRu+tjMJwMxasugEIVfM+rZSx6vQGIsz8SC8smio/optTAsncLnM1H4e3tgsJYFBWQAIBGuxfNDi9u/awFX5+Uj29MHl6dIUIIyRUKSoxQvb29CAQCKCyM7kltMpnQ2NiY8n5uuOEG7N27Fy6XC2eccQaefvppzJgxY9DjkclYmEzDX+/s54NtDAuNGpgKqP1mLKNx5BQlzTW5nOv3nhPnx6BRAHBCoVPBH/qyX1aog2mQrTGTKdUq0GTzQG1QQxO6ct7tOwkAmFWeD5Mufc8lOq0iD0esnTjm4TF3fPRr5wUBe3tdkLEMVk4pDI9JNNz3ztdnlmDPJyfwbocDX55RknC7V/ecREAALpxmQkVxepaQAMB1s8vwyy+a8UpTH343pXDA7be127Db7MI4vQLr5pQnrVOTytz86DQV9vy3Du+02fC1mSWYPYiaIX/d3YYWhw9Ly/T4/pLxQ7qausakg0cmwy8+b8bvD3fjpS9X9fsdpzSWw13Y3GqDSSXDH740FZX65Msz6DMnWjprPb333nuorq6mgMQABpunIwgCmh2Rdr6+PjO6Pv4XIAgwLT0HioLicBtPdegfsSfzg/W7xRXwZSihKFHmKMPJkFezGOZt78OydyuKV57fb5smhxf/abYCAP523EJBCULIqEVBiVFmsFdcnn766bQ8r9/Pw2p1DbxhEizLwBu6qu20udAjUBVpEcsyMBq16O11UCp1iM8XQE9PsL5C7Pyw/uAVtQ6zA7bQOmS3zYUed/rW1+bLWTQBOHqyD5WhYEez1QMZA3BuD3o86V/LO10dPAnd0mzBqoLoK3pH+9yweAKYbVTBZXVB/GtM13unWslCL2exrd2G1k5r3Bod3gCP1+q7wTHAlwo14d9POizSy1GmlmFbhx17m8yoSBJgEgQBj+9sBQBcMcmIvl5H3O0GOzffnGLE7w504dndbfjpvNSWkbQ6vHilrgtqjsGN0wpgSTCWVCw2KLC8WItPOx14bFszrq8aODgjddDiwu93t0HBMvhJbQnUXh96enxxt03X+8ZgUEM+zIKrI4lY6+niiy/G+vXr+90v1nq69957MWfOHLzwwgu47rrrsGnTJhQURE4IW1tb8fDDD6ftGDyWDfbd99KxXvyj0QIA8Dvt6HjvH+A9bsxbsgy9k2cCCHb4ASIn/IFhdpmZOEBwbzhia0poZWy4DahuWi0s+z+Hs+kIvJZuKPKjPxNaHL4R12KdEEKGgoISI5TRaATHceju7o663Ww298ueyJZ0nCyLNSU4MHTyHQfPCzQvErFzIc6PWFPC6ePDRc7kTHrfUyZFKDvC5Ue5Wg6nn4fFG0C5Rg5GwICtO4eiyqCEgmWw1+yCL8BH1XbYEapnMa9AE/d1Dve9wwCYbVRjS6cDB8wuzIuzfGCf2QWbj8eSQg0KFFxa55sBsKpUj78e78XH7XZcPsmYcNvDfW7UWz2YrFdgaWH8+ZBKdW5OL9bhpXoztnU7cdzqwYQUsmGeqeuGXwCumGhEvnz4c3L9dBN2m114s6kPq0t1mJziyVCAF/CHQ90QANxYVYgpemVKY6HPnGjpqPVkt9tx880345577sGECanVSIgnHUsm07GfTJOeUw801v29rnBAgvd60Pn+P+G390E7cQYuO/98PFXXAyBYyJJlmXAGVUCI3vdImhtFTAC4QMmFgxKsTI68msXo3f4BLHs+RfHKC6K27Xb7o1qdpuv1jKT5GWlobhKjuUmO5ic5CkqMUAqFAjU1NdiyZQvWrAn22eZ5Hlu3bsXVV1+d49ENnS8gFrrM8UDIqCZexfeECl3KmPR3dDGFigJ2e4KZGO2u4BXnMnXmPjYVHIsZeSrs7XWhwebFNElnhF09wdyIeab+9QHSZW5BMCixO0FQYneopkWylqXDsaJEGw5KXJakUOTHoQ4lZ5Xr05oaL2cZXDg+H88d7cFrjRZ8b4DaEg02D3b0uFCqluH88YNvixqPUSnDFZONeOZID15r7MPts1Krb/HfVitO2L2Yma/CmrL0txYlqdV6CgQCuO2223DZZZdhxYoVQ36udC2ZBEb+Eh2l0hL+90Cv+ekvghlSvNeDjndfhdfcCVXpOBQu/zKMhshnoyK0/E+liHxex9v3SJgbnTU6665Up4xanqKfPgfWg9vhbDwCd1crVEWRuiU8gOP24OO18vS9Z0QjYX5GKpqbxGhukqP5iY+CEjnkcDjQJGn11NLSgkOHDqGwsBBFRUW45pprcOedd6Kmpga1tbV44YUX4Ha7cdFFF+Vw1MPj5UNXtSlKSIZBzJRwBYKFLtVpbAcqMqmCmRLmmKBEaRq7XsRTkx8MStRbPeGghNPP47DVjXwFh4kZqGUhmlsQ/FK/xxx/qZZ4+9wMBUYqtQpM1ivQYPOi0eGL+1oDvIBPOhxgGWB5cfpPvs8q1+OV4734uMOOb08zwaBIvDThnVAL1fMq89L6mXZWuR5/a+jFJ512XOUuQNEAHU6cfh5/aegFywDfmW6iGgYZkkqtp48//hifffYZuru78corrwAAXnzxRRgMg6u/kq4lk5leFsgLQnipxFC53JET8IGWhPW6fOGAhKf7JJRF5ShedREYTgaPM3JyLwT4YGcZSXt06b5H0pJJc0wrZL3ks8So4NALwDhvBbo//S96t3+I0nOvAMMw0MtZ2HyRZbAOH4+OLlvS+jqpGknzM9LQ3CRGc5NcOuZnrC2ZlKKgRA7t378fV111Vfjn++67DwBw6623Yv369Vi7di3MZjMee+yxcEGtZ599Nmrd6mgjLt+goAQZDjFTwhXKlNCr0v8BHc6UcAe/1La7gsGJsgwHJUpCmRhdoVoZQLA6PS8AVXnKYZ8AJH9uOUrVMhy3e2Hx+JEvaSFp8fhx3O5FqVqW0cDM6SU6NNjM+F+HHRN1/T/r9va60OcLYL5JjbwkAYOhUstYLC/RYlOrDdt7nFhTpo+7nSfA46N2O2QMsKo0vcERJcfiy5UGvHLCgn839+Gaaaak23/cbofDz2N1qS6ja99JfNJaT6tXr8aBAwfSst90fanP1BKdgxY3/t+ONtxeU4wzhvE3EJCMbaBxBtxOtL/7Crzd7VAWV6DkS18DKw8GL6UZmAwT3BeHyI2ZWPaWDm5/dH2tAmXkc61YJUOvNwDt5BpYD+2Ap6sNzqYj0E6oQqVGjkN9nqjH9nn8Ua1/h2skzM9IRXOTGM1NcjQ/8aX/8iJJ2ZIlS1BXV9fvP2lxrXXr1uGDDz7A/v378eqrr8at8D2aUFCCpIMYlOjzBgMGYoX1dBKDEmKmxElnKFNCk9lYbrFKDEpErh6KAYriAa6Yp8McMVuiN/rqnfizeH+mrCgOpjV+3hW/YOTHHcGrnWeUZG6JwuJQ540vEowBALZ2OuDw8zitSJs0m2Ko1lYaIGOAza3WcNvbeARBwKbWYPX9L1emrxsK6W8k1nrKpRePmQEAjx7oHNZ+3Cm2xujp6cGxN18MBSQqowISQPT3CvHLbQaS6NLOw8cEJSSfJ+JnC8MwMC5YBQDo3fExhIAfFZr+mWR9PiogTggZnUbBxzUZS8I1JSgoQYZBDEL0hoIS8TpFDJcpdLWqf02JzGZKiKn6nZJMiY7Qv0tUmX1uAJhjDAYdDliiU8d3m4OFNudmOChRrJajWCVDi8PX72RcEARs73ZCxgBLijK3JnO2UQUVx2CX2RXuGBTr3ZPBpRtnVcTPpBguo1KGJUVauAIC9iZYTgMAR60eHLd7MUmnwHQDZUlkkrTWk0is9TR37tzcDSxXBnmh76jVg1/t6wgHk0Ueyd/Yzh4nrvr4BI5aIxkAJ50+/PHz/XjqqSfgsVqgGTcNJWdGBySA6KCEmFCWqN3mSLJE0n744gl5yJcEJVSSgLu6bALUlVPgt1vQt/+LuJli1pi5JYSQ0YKCEiSrvDwPlkFUVwFCBksZCkL0ejIXlMhTcOAYwOyJLN9gEFzikEkmpQwsE718Q/x3UQaLbIrGhVpxistVRPt73WAA1BozG5QAgMl6BQQAx23RBeC6PQFYfTwm6BTQyDJ3+FJwLOYVqOEOCNgXkzECBE+iDlrcyJOzGZ2PRYXBgqLbQ51X4hGzJM6pMFAtiTRwOBw4dOgQDh06BCBS66mrqwsAcM011+Bvf/sbXnvtNRw7dgw/+9nPRn2tp+FK9V139842fNrpwEuhDAuRW5LG/LuDXejz8XhkfweAYCDyyhf+jd9t2ICGnj7oZsxH0crzwcr6fw7Hy8DMQBJd2o3XKfDXlRPx+ppJuHqqCWrJZ5sytjPHojUAx8Gy/zP4bebYXcHmo6AEIWR0oqAEySpfQKCe2mTYxEwJi9cf9XM6sQyDAqUMFm8ALj+PLrcfJiWX8aVHHMvApJTB7AmElzt1urK3fEOsadHpiiwf8fECutx+FKpk0GWhwNKUUF2EY7bo9dINoZ+nZKFuwuJQJsbn3f2XcBy1ehAQgBn5qozW+Fhg0oABsL3HCSFOC1peEPBFVzBzZGWa61qcqvbv348LL7wQF154IYBgracLL7wQf/vb3wAAa9euxY9//GM89thjuOCCC3Do0KFRX+tpMARBCNeAEEKpEqn+BYjLNMRAb/h2SU0FMdjY6fLD5/Phb/94FT2fvQ0IAmpXnQvjojVg2PhfXaWfzeKfy4w8Vej/IzuLSCNjw0FFacB1figzTcygk+vzkV+7DAgEcOCD//b7XPDQOnVCyChFhS5JVvl4gZZukGETMyPCyzcydNXcpOTQ5fajrs8NAUCZJvPLJ4DgF9Autx/dbj/KNHJ0hupLZCMooeRY5MmDr1usrG/2+CEAKEpjAbVkBgpKTM5CUGJhqO1pvE4kh/qC2RPVoROeTDEoOEzPU6Kuz4MTdi8mxbzuJocPNj+PmnxVRjNHTiViradk1q1bh3Xr1mVpRCPLj3a04YTNi7+tmjjY1Rth23uc+LzLEV6CJc2U0IXexy5zB+79zT/R3tEOTq1F0coLUDCzBjhhSbjfeBc8zq00IE/BoTbDy87SSdpNalmxFj+fV4Z8BYfvft4CAMirWQRHw0F0txyHQ3cQuik14e29KdbnIISQkYa+xZCs8vICFbkkw6YKlVkX26GpMpSjKxa73G8JnoRmuh2oKFLs0g9BENDp9kPDMVnJUgCC2RJ+IXJFU1w+UpiFoAgATNEHl5Aci1m+If48WZ+5tqgig4JDsUqGDpc/as07ABwKvR+q8zMblAAiwZHtPf2XcBzoDQZMarIwDkIAoK7PAw8vwCM9+R3Cx+/9ezvQaA/+PUszJfo8Plj2fYaTb72MNw804IiyGOVfuRqq4gp0SLK34om/fIPBihIdDKOohZ40vsgwDOYUqGGQR25kWA6m086CjGFg3v4+/E5b+D4fZUoQQkYpCkqQrOEFAX4KSpA0UMWk76ozVGJdDEq80xb80peNZQNAdLFLmz/Y9rQ4SwERIBIUEYtthmtaZCkoka+UwaTk0OzwRgUEGmwesAwwUZf5oAQAjNPKIQBodUZOhnhBwOE+D+Qsk5X3w8IkdSUOhIIjNUYKSpD+NrVY8f0PGzJyouqXLBuId0R3+Xn4Y55XEXPs/+7nLfj57pPhQr4ecwf2vv4iLLv+BzDB+gn5a74GTh3MqIitcxNrrHy3MCqCn7PS1qCxGaaqknGYt3gpeI8bPVs2h5dx0PINQshoRUEJkjXihZWx8sWB5E7sco3MZUoEvxRavAFoZWzW1u1L24J2ubIbEAAixTzFK5PZDkoAwSUavACcCF1NtXgD6PEEUKmR9yv+limVoaKfTY5IxkaLwweHn8c0vTIrn2WTdApoZSyO27zgJSeCgiDggMUNjomsmydEaluXA5+329Di8A688SB5A0LC5RtWbwBf/+gEfh3TKjTe38uOHhd4rwc9X7yHk/95Ea6uNigKS1HxlW/BUL0gqnjrUDIlRiONjMWfVozHhqXjwrfF6yKy+kvnQG4ogKvtOOxH9wIIFhMnhJDRiIISJGvEqzVj5YsDyR1V7FWjTGVKSE7Cz6nQZ23dvjRTQcxWyEY9iXjPD+QmKBFZwhGsI5HNehKiylANkRZH5GRIrCcxIz8742AYBuUaOTy8EFUgsNXpg8UbwFS9MmPvfzK65YeCqr2e1DoyeAI8XqjvweE+N5x+Hq81WuD0xz/J9fJCuCVo7BF9b2hZ0aed0UVipZkSlRo5hIAf1kM70PL6s7Ad3glWroDptLNQdu6VkOf1LxzaF1qup0zwHWIsfbcwKmVRwdd4tbgMaiUKV6wFGBbm7R/AZ+2lmhKEkFGLvsmQrAkHJaj7BhkmjmWivuBmLCgRWr7BMcB5lXkZeY54xNafXW5/uMhlSRbagYrE58p1pgQAnAjVkchm5w2R2B5VeqX5SF9wHJkucilVEQqOtEmWkRykpRtkAOIygF5v4mUPfd5IwGJDXTc2Nvbh94e68LfjvfhTvRn37WkHEMzM+bwrEmRItiRErBUBAEetkZa64om1wPNY6WtB17//BPO298F7XFi0YCEqLrwO+ulzE3bXECX6vB9LQYlYsjgvTckyUBaWIW/2aRD8PnR9/C+4vImzSY5ZPbhnZ9uAGSeEEJILFJQgWUOZEiSdlJIlG5loCQoAE3QKmJQcvjouL2tFHoFIl4tOlz/cDjSbAYFide4zJcT11LbQlVrxRGdSFopcisZpg8GAZkmmRI8nOBfZKnoKAOWhoIS0tkVdKDgyk4pckgSMA2RKfNphx1X/a8Q/T1jg8PN4/6QdQLCdZm/ofS7WLdnY2If793aEH+vlEy/fOGqNdM354ba2SEFLrw+2I3vQ+q8/YstbGyE4+qCumIzy867CjVd8A5xKk/C1SJfoJVquF9USNOGeRicmzsUc8fXm1y5FXtl4eM2d2Pfx2wn38VRdN/b2unHv7vaMjZMQQoaKWoKSrBGDEtS5jqSDmmMj3Tcy9KbSylg8t3x8RvadjIJjka/g0O3xh4vAFauyWehSrCkR7P7R5fZDK2Oz2nZSLF4qpo9bQ79royJ7VfR1cg5GBYeTLh/8oXbGfb7gCV5eFscRCUpErkB3h04aS7L4viCjS37oPdrrDSAgCNjV48L0PCV0MhYsw+BfzX0AgJeOmaNO6E0qWdTnjSfA48/HzFH7/l+HHUes0S17RWIQU7TxSBsc9ftx+IMP4XMGsy1m1M6FfWktunQlAID5JjVYBkiUgDFVrwx3QUoUlIiXTTCWiZknDMti8przseeff8SJfduxb98czJ49p9/24vtBGtwkhJCRgoISJGsoU4KkkyoqUyJzJ8vxrlBlQ5FKBos3gL3m4PrsbNaUkLMMCpTBoEifNwAPL6BMk92TXzEAIgYlxP9nMzACAJVaOfb1BnDS5cM4rQJ93gAYADp59sYRb/lGbyjtXlqhnxApo6RQ7892ncTeXrG1sSyqiCIA7A/VgQCCx2qPpGBip7v/8o/Xm/rC/xY/Ix872Il9vW50hloZu9ubYDuyB39qrgf4AMAw0EyYju9f+GVcNn8G/t+ONnSFAg0sw2B9dRF+d7Ar7muZYpAGJeL/7eXqszpXpMUv8/PyULTiPPBbXsfrr29EcXEpSkpKorYvliwBdPl5qOkKESFkBKGgBMkaCkqQdJJ+Mc1U941cOr1EiwabBx5eQJ6chT6LJ8EAUKKSwewJ4FBomUA2l24AwSwVoH9QQpvtoIRGgX29bjQ7vKjUyGH18dDLWXBZPAEqU8cJSnj8kLNM1ueDjB75oZoSTXZvuIsNEGyt6ZIWRGSAZsl7y8cL8Ejudw9QPFH8S3i3zQavuRPOxjo4TtTBb7cAAFiFEtopc2GomotJpSW4bH4wIBL7sb2mTI8ytRxtTh8eOxQdnJDWkslW952RTlr8Ui1joS6fiMIFK+Bt3ImXX34B3/nOLdBqteFtpDVLXQEKShBCRhYKSpCsEfuax6siTchgZStTIlcuGJ+Ps8oN2N/rQqFKlvWrgMVqOQ71eXDAEryCmu2ghIJlwDKAMxD8Ju3w8+CY6Ar+2SDWlWhx+OAqEODjBZRmsegoEDzhMCk5dLj98PECGASXsxTn4H1BRg9xqZM0ICFySM5QeQFod/mgZBl4eAF+XogKRCTqwAEAAh+Aq6sd77xTh9Y3PoLfZgnfpyyuhH5aLTQTpoOVBf+OpLWA4r1zq/NVUa1vRZWSTK1UagiNtZoS8UiXq2hCx8DSectRo/PhwIF9+NvfXsaqr30TD+3vwtcnG+GTzGuyQqWEEJILFJQgWUOZEiSdxnqmBBBcqrC4SDvwhhkgnniLbf2yHZRgGAYajo3KlNBwbNZPwsMdOJw+WMV6EvLsL5ko18jR4wmgw+ULv/ezWV+DjD5qGQu1jIUrTlDB4YsufskLwCSDAof7PP2Wb9gl2wqCAF9fDzydLXC1noCrvQmM34uPxxngt/VBUVgK7cQZGDetGhdXj8c5FQZsbrXiT/XBmhSpBJBjL1yoOSaqhku8TIm8UCYZg1MjIAFEL1cRl7X5eODiiy9FT08Pjh9vwN//8CJUC7+EPx7twQJTpJAoBSUIISMNBSVI1lBLUJJOUUEJSkNNuzPL9Hir2QpzqHJ/oTL7hwuNjEVnKDvAwwvhQm3ZJAZjutz+cPtEQw7GUa6RY1+vG61OX7iOhJHqSZABFKhkaB0gU0I0UScJSgQECIIAv70Phw73wLKnDp6uNri72iD4IgUuGU4GbcUkrF27DPu7NOC1wdbJxXolLpqQDyB6yZUyhQBy7N+5Rha9fC1eELo4i91wRiJNKG3CywtQKBRYffE3cOW9D4Fv3gWj2gDZ7MVRv3M/L6AzFODMxecZIYTEoqAEyRrKlCDppB7jyzdyrVgtx52zS/Cz3ScREKKLpGWLePVPbMOZ7SKXAMKtYLslQYlcZErEK3ZpVNAhnCRnShCUsPt5BHgBvNeDgNsJv8MKpxvoq2uBy21Dm6MXLe0dEPw+vJungqUvWGQSHAdlcSVUxRVQlU2AqrgCSrkcS5dOguyD4/CGjvNqWf+r+EDiIpVSJWo5flBTjF8f6AQQDGooueT7yHYm10gjzrE4/40BJUpWX4T2t/+O3p0fgVNrsE2YFd7ewwu4bUszAOCNL03O/oAJISTGqf0pTrIq0hKUghJk+MQvqRxz6rWCy5baAjVurynGzh4XpkkKzWWLuE66O1T9PxdFHeUsg3wFB7PHD0s4UyL746jQBJeRtDp94RMQypQgydTXH0XL+++ho9sGIRAAhACEQAC814MbX3WD87nh80eWZhwwaWA1u8AyoUAvI4OyqBylU8ejI6CFsqgcCmMRGDb6fSfWi5LWgpAGDqRBCenfsHiBIt7n9xklWvz6QPDfOln088W7sNGvO9EYX53ww1nFUT+LgXkxKOHwB6AsLMOCtV+D+ot/439bNoNVaaCpmBy6P3GdEEIIyQUKSpCsoUwJkk5iCq8qB3UGTiXLS3RYXqLLyXOLJzNiUCIXmRJAcOmKxRtAkyN4xTmXmRLNDm94KQ3VlCDJ7Nu3F+aGw3BZ3f3vZDkwShXkOjVYpRoynQFnzJ2Ejg4/WK0BxYVF6GLVYBgGU8r0OH7SlvB5eAEICAISNemQBiIKJcGDa6eb0Lu/E9dOM/V7jPQzXRvTecgfpxDmPJM6+DiM+XgElhRpcHrMZ7KMZaBgGXhDhYHtvuD/r14+H4YpOux4/Dl0ffQvlJx1KVRFFUmLlxJCSC5QUIJkjZ+CEiSNxHZmY7XIJYmsk+7O4fINAChUcai3AcdsoaBEDoIBJWoZVByDJrsXE0LFNylTgiRz/vkXYl/RDHjbbMHsBo4Dw7JgFSowXP/OLV9dMR4fftEKqy8AXsGBCdWTsfkD8XYfxccLUcEAadxA+ncrrU1ToVHgN4srB9y3Lubv3iuJftww3YQKrRxzCzRR2whjODQRJyYDIPjdSsyUsIeCDjo5i7lz52P8acdx+JN30fHuP1F69mVw+gvj7FfAX4/3YrZRjTkmTb/7CSEkk2ghNskasR0VBSVIOojBCKonMXapw5kSwZOiXGZKAECDLVjgz5CDTAmWYTBOq4AzIOCINTgOqilBkuE4DgXFZVAYiyDPK4BclweZRg9WJo+bXWZUcJCzDAICojp2iFfdk/HEpElIgwKaBJkSqdLFZEpIO4PkK7h+AYmxLl5MQhCC7ZLDQYnQ70wM6IyfexryapdC8HnQ8c4raG5tDT9WXHZzwOLG349bcPfOk5l9AYQQEgd9mydZQ903SDqJa5ZTKZxGRiexpkRXrpdvhE6k3KETr1xkSgDABF0wQ+J4qHAhZUqQgdw0pxTTDErcN78s6XZ6OQuWYcIXDVySIIPdN3CmhCcQHbiQxiiil28M/j0r/t0bQsEJ6fIpji5yhCm5YEDJxwtwhLJbdKG5UrAM8ucsR96sJeC9Hrz36p/hMXcAAN5qseLtVmu4kC8hhOQCfZsnWUPLN0g6RWpK0PtprArXlPDkrtAl0P/qbp48N+OYGApKAMG18/k5yNggo0uxRoFfL6nEbKM6YS2U04o0eHhhBYD4x2dbCvUH/t1ijfpZejVfKdnnUFoLK9jg39sDC8rxlUoDvjYxP3xfv7/EU+BwEG/5hgCgNNQW9YTdE1m+EfrMVHIMGIZB/rzTYahZDIfTiY53XoWnpx3PHOnBE4e7w9mshBCSCxSUIFkjZoBSUIKkg5ghoc7RiSrJvHBL0FCmRK6W6sSeSOlzFAwQa0kAwSUkdJWYDMb9C8pwwfg8LCmKLHc4r9KA/1dbirJQIdV4x+dUlm+80dQX9bM0ACJdKqIcwt+wGNSo1CpwfVVh+Oo/AHAJMi/H8ul1onoZNfkqAMBBizv8OxMDuYrQHDIMA+P8M1AxZwl4jwvtb/8drvYmANG1OgghJNvo2zzJmkhL0BwPhIwJ4pfeXHRCINkhBiXEK7UjIVNCL2NzFgyQZkoU0NINMkiVWgW+Pc2E/ze7JHybeHVdJF1eKbbqFOsUxNqwdFy/2xQsg5WlOnx7WkHU7S+fMQF/WTlxSONWJMmGi/1TPHXDdAKqQ0GJQxYPHH4eao4Jf1ZJg0EMw6Bs8Wrkz10BwedFx3v/gLO5Hm1OX05GTgghAAUlSBZRS1CSTpP1CvxwVjGumGzM9VBIhsTWkMhVTYkCBRc+WOaqngQAGBRcuA1oPrUDJUMkzVwoUUdnAckkx2fDAO+xMo08KlAGBOue/KCmGMaY7CKdnBtyUFGR5DtDbKbEsmItAGBOgXpIzzUaxIsRCQAqQ9kuHW4fHH4+KqMkdg6dAQH5tUtRsPhMIBBA54dv4MUPtvTb78YTFvw3ZmkOIYRkAgUlSNb4qfsGSSOGYXB6iQ6mIVRzJ6ODJibVO1eZEhzLhItKDnSilmlisUsqcknSITa4JS2XkigLTcky4SyJu+eU4rxKQ/i+TJT4EZeWxBP7fLdWF+EntSW4dOLYDVYnWmRhCAVPm0KFcKWtVPsFJULZZ4YZ81C44jwAQPenb8GydwuE0He1AC/ghfoe/LXBnPLYetx+PF3XjZ5QHSBCCEkVBSUS8Hq9+MMf/oDDhw/neihjBnXfIIQMRmy9kFxlSgCRJRy5KnIpEoMSBadIO1A6FmfGbTOLcHa5HtMMyqjbpRcNEtVOWVqsDQcKilSycHYCEGxdmy5PnFaJ788swow8VcJtYp9PxbFYXKQ95S5+CEIwa8Sg4OAPRS3KJcGc2FoeTknxUt3kmShecxEYuQKW3Z+i+9O34PP5YPUGwAuAI4VCp6LfHuzEf1qseOJQ1/BeECHklENBiQQUCgU2bNgAq5XS1tKFlm8QQgYjNjMip0GJUDp6rjMlFhdqwDHALGPiE7WxhI7FmbGmTI9bqov6ndRLj8/5itT+3qRLKNKZKVGpVWBVmT59OxwjpMs3poeCSmI9CaPk86lSGwlKxGZKxAYaNBWTUXbON8Bp9HA0HMRzzz+HVnOweKlfiHx/4wUBj+7vxNut8f8emx3BuhRUn4IQMlgUlEiitrYWBw4cyPUwxoxIoUsKShBCBqaJOcPJZVCiKJwpkdugxCyjGv9cPQnzTJqBNx4j6FicPdKgRJ6CwwJT/9oMsUs+pH+WibphkOETPw6l8/2L+WX49aIKzDYGf0/S302lJlLvI/Z7lzNO9oOioBhla9dBYSpFw/EGbPj9Y/BaugEArtD2jXYvPu6w44nD3XHHKAZMmFO45CghZGjGfFBCEITw+rjBuuOOO/DXv/4VL730Epqbm+F0OuFyuaL+I6mjTAlCyGBIl28wANSZWLCeovGhdpzlSda3Zwtzip340bE4e6THZyXH4ns1xeGfvz4pH1+uMOCySdH1GqSBiGwf3k+lJpa/mFeGaQYlbpheGL5NxbGYIlmCI601I82UiP29JJo3mUaH0nO+jilVM3Gyswsn33oJjsY6OAPBoESCRiyS/QY3OMU+ogghaTAmFqV+8sknmDt3LnQ6Xfi2d999F0888QTq6urAMAyqqqrw3e9+F6tWrUp5v5dddhkA4L777sMvf/nLuNscOnRoWGM/lVBQghAyGAqWAccAASEYkEjnevXBWlWmwwSdApP0ioE3JmlFx+LskdZ8UnEM9JLA4GS9EkuKtP0eI4tavkHH90ypMarxyKKKpNu4A5GowTht5LNqMPFcViZH3unnY6axBFv/+S90ffQvbC7w4Zvnf2XAYIMQzpQghJDBGRNBieuvvx5///vfUVtbCwB45513sH79esydOxe33357+Labb74ZTz/9NFasWJHSfu+///5T7opUJtHyDULIYDAMA42Mhc3H53TpBhA82ZoaUxSQZAcdi7MnKlOCZaPmPVHBQ2kNxaxnSgwxE3asWlGsxZZOB75TZYr6XbKDDBO83NCLFdMWoniNDN2f/Aeff/ox3N0nsfwrX0v6OPG3QX+uhJDBGhNBidiD0pNPPolVq1Zhw4YN4duuvfZaXH/99diwYUPKQYmLL744rePMFZfLhbVr1+K8887DD3/4w5yNg1qCEkIGS8ONjKAEyZ2xciweDRRcdKaE+H93QIAhQT0VaabEYE9+SXotK9bixdMn9CvIm2qQYFkoqAEAuzvtwQKYa78J7H8HT/5vN14/cAKBBWdDXTah32NtvkA4KOHjBRzodWGqQdmv8wchhMQzJj8pjh49issvv7zf7ZdffvmQimXV19fj9ddfx4YNG9DVFWxz1NjYCLvdPuyxZsOGDRvCWSS5RC1BCSGDJQYjKChBRsOx+N1338U555yDc845B2+99VauhzNo0sCDeDL5+9PG4Xszi+IWvQQy130jFZQnEY0JtQWNleq1IGmXDrsvmBkj1+fDtuwS6KbORpvZgo53X0Xvzo8RCATC2758zIx1HzeGs2naXX7ctfMkHjuYWmvQFocXfzjchf29LtyxrRVNdm9qAyaEjBljIlMilk6ng0bTvzK5Wq0eVKqfw+HAXXfdhc2bN0MmkyEQCOD0009HUVERfv3rX6O8vBw/+tGP0jn0tDtx4gQaGhqwevVqNDQ05HQsVFOCEDJYYjAitj0oOXWMlmOx3+/Hww8/jJdffhkcx+Hyyy/HmWeeCYVi9NQhkXZvEDMlilQyrE7SmlMmOaRzWTq+XzYxH592OsItMUlyqWaw+BJUsrQKLAqXnQt12UR0f/Y2+vZ/jmeesePSS78Bk8mEV05Y4j7uk04H7kjhee/c3gaHn8emVhsA4IV6M+6ZW5rSmAkhY8OY+ZZ33XXXYenSpVi6dCnsdnvcolcNDQ0oKipKeZ8PPvggdu3ahT/96U/YuXNnVEBj5cqV+N///jesMW/btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/GBY40wXCkoQQgaLMiVIpo/F6bJnzx5UVVWhsLAQRqMRtbW12LFjR66HNSh5CmmmRGrHai6qdkF2XDmlAE8uHQcFLQ1IibQrRzKJ6oaItJNmoPwrV0FZWIaWlhY8+eRj2L79i0HX9jhq9WBjoyX8uNjnNaU4XkLI2DEmMiVuvfXWfreZTKZ+t7399ttYsmRJyvt9++238ZOf/ASnnXZaVJoaAJSXl6O1tXXwg5VwOp2oqqrCxRdfjPXr1/e7/6233sIDDzyAe++9F3PmzMELL7yA6667Dps2bUJBQQEA4IILLoi7740bN+KDDz7AxIkTMWnSJOzatWtYY00HjYyFTs5GpQcSQkgy6tBJh4ZOPk5ZmT4Wi7Zt24bnnnsO+/fvR1dXFzZs2IDVq1dHbfPyyy/jueeeQ1dXF6qrq3H33XeHl0d2dnaipKQkvG1JSQk6OzvTMrZskWZKKNnU/uY46r4x4i0q1OCKyUZM0inwy70dcbe5ZUYh3m6zDbgvuT4fped+AzsOfIaq9n14442N6PQXwLT0bMi0hpTG88Ntwb/ZSToF5pn6ZzbHW4JCCBnbxmxQIp4XX3xxUPv1eDzIz8+Pe5/D4QDHDe9Dc+XKlVi5cmXC+59//nlcfvnluOSSSwAA9957Lz788EO89tpruPbaawEAb7zxRsLH79mzB2+99RY2b94Mh8MBv98Pg8GAG264YUjjZYcZTPjJ3DLItErIAwHwAzW7PsWIczvcOR5rYueF5qe/sT43Wnlo+YacG/RrHOtzMxyjaW4yfSwWpeNCwWiXF2f5xkCilm+M/LfTKYllGFw+yQg/L4AFEJsPcd00E86uMOC1xr6U9sewHBSzl+Pk+KmY1LwFrp31aP3Xn1CwaDV0U2ZFdW0RBCFh95xebyBulkWiZSSEkLFrTAQlMmX27Nl44403cMYZZ/S7b/PmzZg3b17Gntvr9eLAgQO46aabwrexLItly5Zh9+7dKe3j9ttvD7dE3bhxIxoaGoYckJDJWJhMuiE9VtQ/d4XEMhr794A/VcnlXL/3HM1PYmN1bkx6KwCg0KAa8mfQWJ2bdBgNc5OtY/FwLxQUFxejoyNyFbqjoyPlbl/xDDdgNJTAk/QKtTrFQKCciWRUsCwzKgJdoykol04KlkG+koPZEwAL4NoqE/553IIVpTqwLIMVpVq8ctyS8v7ceSVYf+H38I9H/gzrwW3o2bIJzsY6FCw5C3JdHgDAFuBh8/Ko1MoREIBf7Yv8jQgA7IE4QQlBGLG/m1P1vZMKmpvkaH6So6BEErfddhuuueYafOtb38K5554LhmHw0Ucf4U9/+hM2b96Ml156KWPP3dvbi0AggMLCwqjbTSYTGhsbM/a8ifj9PKxW17D2wbIMjEYtensdlCkRg+amP58vgJ6eYFV9mp/ExvrcyPzBdH2Zzx9+P6RqrM/NcKRrbgwGNeQJWkWmSy6PxaJULhTU1tbi8OHD6O7uBsdx2LNnD375y18O6fnScSFANNTAU2mhDia1fFCP0aoVaRt3NoyGoFy6mdRymD0ByFgG18yrxLfmVoQzGW41arFmciEe3dGCoxZ3avsrykPBgpXQjJ+K7k//C1frcbT963nk1y6DYeYCfPOj4HfWp8+cih6PH1tDLUcB4Km6bhj0qn77ZOWyEf8+OhXfO6miuUmO5ic+CkoksXDhQvzpT3/Co48+il/84hcQBAGPP/445syZg+effz4nbTaTpcElk44+7+n6Us/zAp0gJEBzEy12Lmh+Ehurc7OqRAenj8fSYu2QX99YnZt0GA1zMxKOxalcKJDL5fjhD3+IK664AgDwve99D0rl0LpDjIQLAR6rCz1Oz6Ae4/P4Bh08zIVTOWDpkxSVjPe7qmAHd3Jwoj245ENVVIGKr34Lln2foW//F+jd+RHsDQdgOu1sqIorcLzThkMxgQ5PQMB9nzf326fN5R2x76NT+b0zEJqb5NIxP9m4EJArFJQYwIIFC/CXv/wFbrcbfX19MBgMUKvj9+pOJ6PRCI7j0N3dHXW72Wzu96WIEELGKqNShiunjI31+mTocnUsHkjshYKzzz4bZ599dlr2nasLAc+vGA+rj4eSZQY9BgbpG3c2jIagXLqJNRxYJvHvarxWjkMWN/RyFjZf8o4cvZ5I8VmGk8E4dwV0k2ai+7O34eloRvumv0A3rRZHys7Hfzq8KY3RGxj5v5dT8b2TKpqb5Gh+4qNy5kls3boVLlfwSoVKpUJJSUnWvgQpFArU1NRgy5Yt4dt4nsfWrVsxd+7crIyBEEIIybVcHotFp9KFggKlDBN1iiE9lrpvjHz60FVWY5IOF9+aZsLl0wvxywXlA+6vzxvod5s8rwClZ1+OwuVfBqtUw350L/7w2KPo3r8NAt9/+1hDLXQpCAJ6Pf4hPZYQkluUKZHEt7/9bXAch+rqaixcuBALFizAggULYDQa07J/h8OBpqam8M8tLS04dOgQCgsLUVRUhGuuuQZ33nknampqUFtbixdeeAFutxsXXXRRWp6fEEIIGekyfSxOhfRCwZo1awBELhRcffXVWRvHSEfdN0a+784swhOHu3HdtMTlx3VyDrfNr0B398AtQjfUdce9nWEY6KbMgrpiCix7PoHtyB44t38A+5E9MC5aDU3F5IT79MYEJZ470oMejx93zCpOuoT5i24n7t/bgeunm/CVcXkDjp0QMnKMyaCEIAh44okncPnll6OwsDD876KiokHtZ8uWLdi+fTt27NiBL774An/+85/B8zwmT56MBQsWYOHChTj//POHPM79+/fjqquuCv983333AQi2OF2/fj3Wrl0Ls9mMxx57LNwT/dlnnx0zrccIIYSQgWT6WCyiCwXDR0XlR74StRw/n1eW0rap1DBrc/oS3ndmuR7tThX2q86CfvpcmLd/CM/JE+h8759Ql0+CceEqKPL7Zxr5JB05eEHA5lYrPLyA9QEBalniMb3VEuzW9MyRHgpKEDLKjMmgBM/zeOKJJ7B69WoUFBSE/z3YoITRaMRZZ52Fs846C0Cwh/lnn32G559/Hq+88gpeffXVYX0RWrJkCerq6pJus27dOqxbt27Iz0EIIYSMZpk+FovoQsHwMaCoBIlYXKhBs8OH/RY3FMYizFh7OZwtx9Cw9T242o7D9eYJ6CbXIH/Ocsh0hvDjpJkSPZ4APKGfrb4A1LLEK8/HaeXYbQ4u9XL6eWiSbEsIGVnGZFACiBTyif33YDkcDuzatSt8lWbv3r1QKpVYtWoVFixYkI6hEkIIISSJbByL6UIBIcOn5hi4QpkOHMNELemp1CrQM3EaPEXjYT28C337PoP92H7Yjx+Cvmou8mefBk6lgU/yvb3FESmOafXxKElSTsYp6Sxy0OLGwkINAODzLgcs3gDOqTAkeighJMfGbFAiHS6++GLU1dXBZDJh4cKFOPfcc/GTn/wEVVVVQ2rLSQghhJDBoWPx6CGAKsqf6tQyFq5AsJglxwAyyd+oTs6i18uAYTnkzVwI/dTZ4I7tQuuez2E7tAP2+n0wVC9EyYKl4ce0SJaH2HzJi2TaJUGJQ5KgxP17OwAAS4u08AkCTMqhnf4EeAHOAI/E1TgIIUNFeU1J1NXVQSaTYe7cuZg3bx7mz59PX4IIIYSQLKJj8ehBXe6IhoucWnAME1VnRMZEL/BhFUo8d91l+MP/3QND9QIIgQD69m7B/r//Ae+//y6cTidaHZGghDVOpw8ph6R96cE+d7/779zeim9/0gTLAPtJ5HeHunDtJ01wDBAcIYQMHmVKJLF9+/Zwuujbb7+NRx99FHK5HPPnz8fChQuxaNEias9JCCGEZBAdiwkZPaQ1H2QsA5kkKiGLUwlVLWOh1+tQsGgNDNULYdm7Bb4TB/HBB+9iy5ZPcMQ0HYHxc8Cp1LD6eHS4fNDKWOy3uKHhWNQWqNHi8MKklMEmyZRodwWDGZ5A5LaTrmC70CN9biwu0g76tbU4vHD6eTRaPSgZ9KMJIclQUCIJtVqNZcuWYdmyZQAAn8+HrVu34plnnsGjjz4KhmFw6NChHI+SEEIIGbvoWDx6UKIEUUdlSgSzJUQyhkFsgpOKY8JLPGQ6AwqXnQvZvGVYxB/Hjh3bUbftE3i2fwb99LloLFiD5472QMEy4WKYv15UgR9sa0VNvgp2XwAMgHwFhz5vALwgwCrJnhAds3mGFJTwhGpldDi9KNHQKRQh6UR/UQMwm83Yvn17+L+6ujrwPI9p06ZRoUtCCCEkC+hYPDoMo644GaGumGzEXxp6cWaZHu+etA24vbRlZ2yhS45Fv/4sLMOAi82g0Bhw/pqLsGj5Srz39D/hProH1oPb8K/GvXCWVyFv5iLI84Jdb/b1BrttHLC4oeIYaGUsjEoOvd4A7D4efXGWanzS4UCFRoEzSnXh2/b1unDS6cPZcYphegI8frLzZLi+RbvDh1oKShCSVvQXlcQ555yDpqYmcByH6upqLFmyBLfccgsWLFiA/Pz8XA+PEEIIGfPoWDx68JQrMeZcPsmIi8bn4YN2e2pBiYEyJeI8RhZzo18AeEGAXa6BafGXMHHBcjTu2grviQOwH90L+9G9UFdMhqFmEXrHRYII7oCAUjWHfAUHALB4A7DGqf/Q4vTh0QOdMCo5zDYG23ncvfMkAOC0Ii1+tb8D47UK3FBVCADY2ePCUasn/PgOpxdApA2IxePHh+12nFNhSNqylBCS2JgMSjAMg/LycigUiqh/D9Z5550XXquqVifpQUQIIYSQjKBj8ehBmRJjk4Jjo7poJKORRRe6lGZKxNaU+PHskvB2sXy8ALMnGFCYUmSEbeFq6BesAHNgF6yHd8DV2gBXawNeP/gp7JPmQjthOhiWg1bGRgclkhS17HT5AWP0bX2+APb1urGv1x0OSvAxb+x2SZtSAHhwXwcO9XnQ7fHjuumFCZ9vpNrf68Ljh7pwV20pJugGf75ESDqMyaAEy7J4//33wz9L/z0Y3/3ud9M1JEIIIYQMAR2LRw+KSYxdXJIEgEsm5OOfjRYAMZkSbHQgIlhTIvizVsZiaXGwrkO8Apg+Xgi3AC1QBoMMLlaOvFmLYZi5AI4TdbAe3IbWtlb4WlrQu10L3bQ5kC1ejPyCYPCy1xuIW1NCJD6tIAk62CTb/+ZAJ26eUdjvfd0uaVMKAIf6glkUJ+xeDEaP249POu34yri8uIGZqOewuPHI/g7cMbsEM/JUg3qegfwklCWysdGC79cUp3XfhKRqTAYl0qm5uRnPPvssdu7cCYvFgvz8fCxYsADXXnstxo0bl+vhEUIIIWMeHYsJyS15kpNmpSQdQlpTQsYw0cs3JDUlpIGA2OUbAODlI0UqTcrg6Yo/9BCG5aCbPBPaSdVwtzfBeiiYOdG3dwv21G8HZs2CK38aeqcaYfMnDpWJQ3MGIttIa1B82G7HdIOy35KMDkf84MNgmxTftLUZHl5AnoLDqlJ90m3/UNeNbk8AD+3rwPMrJgzymRILSH4Phaqhnxa2OLzo8gRwtkk38MaExEFBiST279+Pq666CkqlEqtWrUJhYSG6u7vx9ttv480338Sf//xn1NTU5HqYhBBCyJhFx+LRg6dUiTGrXzFKCenqBoVkOzZ2+YYkQCF9q8TbtycQyZQQgxKxGIaBumwC1GUT4LNZYD+6F8q2Q+g6dhgdPTux8fD/UD5rAQKGieAUweyCYpUMne5ga1Dx/Spd4hFbg8Lh5xGba9HnDcAd4KHoF6hJPSzh5wV4QgNwJwmciMQgjrikxe4L4NEDnVhVqsfK0qEHAt6X1AmJXaYyGLd81gIAmF2RD1oAQoaCghJJPPTQQ5g5cyaeeeaZqHWsLpcLN9xwAx566CH8+c9/zuEICSGEkLGNjsWjh0ALOMas2JoSDCKBBR4CzizX45jVg7xQPYfgY2IKXbLxgxLSfas5Bq6AAIs3EF5KIS7fSEauz4dx/hlYec7ZmGprxoHX3kZ7VxfMH21Cs5uHdvx06KbOhm7aVHSGHiO2+LRJAhGx3ToEAE5//yUgnS4/KjXyqNuky0G+6HZillENrYyFIAj46/FezMpXo7ZADU+Ax6edjvDjAnGCAUKonWmegoMgCOiVjMviDeCQxY2dPS7s7HFhkk6B8SnUgmiweVBv9UR1GNnY2Bf+d7zXOVjtTi/GD/zrIqQfKhGbxL59+3Ddddf1K6ylVqvx7W9/G3v37s3RyAghhJBTAx2LCcm92CUWDICvhjpfLC/WYX11EX67pDJqmQfHxrQEZSIn7lLSbUrUwRP9Ho8fdklNidiHxQYERGqFHGctWYSyL1+J0vO+ieLqeWBYDo7jh9Dxzis49PcN6N39KXz2PrgCPLrdftyxvS38+NhMCR8vwBHnZL0rlG0Rz2tNfbh/bwc2HO4CAOzrdePvxy24Z1ewdsM9O0/idwe7wtvH7t/PC3jicDeu+l8jjlo96JUEaIBgEKXHE3n+Zslykh6PP2ppjNT3v2jFE4e7cdwW6STSK9mPM4WMjXg8gcjYumLqbRCSKsqUSEKpVMJiscS9r6+vD0qlMrsDIoQQQk4xdCwe+UpUMnS4/RivpcTtsapfMUoGuHaaCVdOLoiquSDdjmOYfoUuRdLzZuntJSoZTti96PH4wyfiejkHOcvAG1rucFqRBt+eZsINW5r7jVPBslDLWBQqOZhhwqzl56Br+jI4G4/AfmwfPL0n0bd3C/r2bsG7dTOwdUoNeG0lWHnwvRtbGNPqCyAQ51y90+2DtC0oEAy4tDi8eKHeDAD4rMsZ3odUnaS9KBAdlAjwAq746ER4acf/OuxYFioIKnIHhKighLjt510O3L+3A9dPN+Er4/L6DzqkLzQePy/AJXlxrsDQMiWkAZp2pxfQxw8YEZLMmMiU2LJlS0rb+Xw+/OAHP0h5v6tWrcIjjzyC7du3R92+fft2PProo1i9evWgxkkIIYSQwaFj8cj34MJy3DazCF8qT16sj4xesUEJBqGaDjFFIKOWazDBuhIiOctgXChwNUkfCWBJd12sDl4v/eNRMxpDGQB6OQelZKOZ+aqoZSJSYtHNSq0CPIB6qwesTI5VixfhD3d+D3O/cSPyapeC0+jR3nQcH/9nI5pe+T06P/oXHE1H0euKDhjs7HHh3TZbv+cRazvEzsmzR3rCP4tBOumSkHhZDNJlE40ObzjIAAAuP4+emKwMb4BHtzuyT3EZyj9PWAAAz0jGkIw99LwGOdtvHIPRKQ1KODKTKbHX7EKHa2RnYXgDPP7bYoUlSRtaktiYyJS46aab8Nhjj2HlypUJt3E6nbjllluwbdu2lPf74x//GDfffDPWrVsHk8kEk8kEs9mMnp4ezJs3Dz/60Y/SMXxCCCGEJEDH4pGvQCnDmjIKSIxlsS0rE5V0lC7zYBkm6meOYXD9dBNK1DKcI6lrwERlSkSustt8PFgG0HAM5BwDhM59FSwbFaTgGISzGcRCmzX5Kuw2u8KdNb47swh5Cg6v6o0wzl2B/NplmC+YYfliGzwnjsDZWAdnYx3+t20zfOXToJ04A6qScQmXabgTnMAfkWRBiC+rW5LV4IqTdiHNlKiPyaJwBfioxwNxMiVCGQ6xAaKEQkMQl8cUq+Sw+jwpByX+09yH15v68Mv5ZShWy9Hpioylw5l6W1Snn8dBixsLTOqo90CsDpcvvPTljS9NjrwMQQDDMOj1+KGVsVAk61ubBa+esOCVExZ83GHHAwvKczqW0WhMBCXOPPNM3HrrrfjNb36DM888s9/9ZrMZ119/PY4dO4bf//73A+7P7Xbjo48+QmtrK77xjW9g3bp1OHHiBLq6ulBUVIQ5c+ZgxYoVmXgphBBCCAEdiwkZSeSxqzcSnERyMcGC2EKXOjmHKyYXJHyeEnX0qUmJSgaGYaK6eig5Jur5i1QytIdOjMVMidVlevyloTdcUFMVul0sxsqwLHSlE2FaXoTSpWdD09OEA/v2wH3yOFxH98J+dC84tRaaCVXQjJ8GVXElGDZy0uuOE1zw8QLK1HLUh2o2iF09pIENs6d/kMPp5yEIAny8EBXUEO/r8YhdSDj0eIKdP2KXbwR4AScl9Rys3gAMCbJJdppd+LjDHg4kFqlkqLd5Ul6+8XQoE+PpIz24e04p9vS6wvd1DqKmxG8PduLzLidumG7CeUmWm/TEyUrp9fhx+7ZWzDaq8VG7HavLdLhtZnHKzw0Efy9bOu34coUhLQEN8Xd30OIe9r5ORWMiKPHII4/gJz/5Cb73ve/hV7/6FdauXRu+r6WlBddeey0sFguef/55zJs3L+m+mpub8a1vfQutra3h23Q6HX7zm9/g9NNPz9hrIIQQQkgQHYsJGVli23YmzpSIaQnKSu8b+HlK1HIUq2RQcwy+NtGI6vxgK8+ooETMWLSSDAFFKHBQpJIhX8GFu1Yo4lTYdAeCgQCDUoHT589Fl2kSOL8HlhNH4Dh+GO72RtgO74Tt8E6wSjU046ZCM34a1GUT4Ob7n8B7AgK8odtZRGpJSIMSvXFS+x1+Hj/ZeRIHLG5M1UfXyHH5BRy3BbMPKjQK9HhccIYKdEqf99EDneiQ3Nbt8cOg4BAQBDTavZgs2e8bTcGOG+LSmnwFBwXLRGVK7DW78FZLH26aUdRvqUy+goPFG8BeswtOP49t3U5oOAbOgIC+OEGXRD4P1dzY2uVIGpSI16r0/ZN29HgC+LDdHv5ZDEps7XRAyTGYb9Ik3Kc7wOO6T5sABFvOriiJtFVtc/rAMZGiq/E4/Tx+ta8D51QYsDSm5gcZmjERlGAYBvfffz+USiXuuOMOeL1eXHjhhTh8+DCuv/56cByHl19+GVOnTh1wXw8//DBYlsXLL7+MWbNmoaWlBT/72c/ws5/9DO+9914WXg0hhBByaqNjMSEjS2xL0ERiz/0TtQRNRMkx2LB0HISY7eWSfyu46P2oJZEPpeQ+g5wNBwHiZXY4/DyE0L7F/QdkSuinzoZ+6mwE3E44m47C2XQUrvYm2Ov3wV6/D4xcgV3V1dgXWIbJU6eF9+fhhXAxzkKVDJ1uP3y8EFV/ojfOVX+nn0dLKMPguD06U+JgX+Sqe4VGjr29Lhzt80DaKCO2xSiA8Dg2HO7G22023DOntN/z+kPb6OUsNDI2vJwDAH53sBPdngB4dOG8yjx0u/3hmjGRrBOEX2OtSY1jNi8s3kDC7h+xlCwDDy/0Ky4ai4+zO3mc99InHXYsL9biwX0dAKKXekh1uHx4/mik7kbsEp2btjYnfTwAvN5kwS6zC7vMrvB28cZ50unDyw1mXDfNhIIkQQ4yRoISov/7v/+DUqnEXXfdhbq6Orz66qsoLi7GH//4R5SW9v9jjGfXrl348Y9/jAULFgAApkyZgp///OdYu3YtOjs7UVw8uNQgQgghhAwOHYsJGVliAwqJ4guxwQtpUCK2LkWix8dmZQDRmQ4KNjrVXlpLQZpFoZdzAKKXE1Tnq3CoL3jib/NFsihix/3k0kr83652dKnmQD99Di4tV+OFT3dgofck/rt9L9qOHMArlhPgwaLdq4e6cjL6pkyHoDOCZQCjgkOn2w+rNxDVfaPPFz9TQhSv04eoTBM8bdsXWh4wzaDEUasHbl5AqTq4hGWCToFGuxfegABBEPB2qEjn512OfvsTx6KTs9BwLCzeAHy8EHXC/3mXM5zRcFqxFloZG16WwiAS2FCwDAzy4D5cAQGq0D4+73Jgsl6JIpUMO7qd2NnjxLXTTWAZBgYFh67QHCXDo/+kcHHeSg/v78SUpeMijxOEqEKroju2taJPEgiR/n4CksiCWLMinpa4BT37j/Pnu9vR5vLBzwu4a25Z3H2RoDEVlACCBbGUSiWefvppzJkzB0899RTy8hKnBMXq6urCuHHjom4bP348BEFAd3c3fREihBBCMoyOxYSMLKksvQD6L/OQPi6VOoyJgh3SNf9igGJ1qQ4ftNuxslSHbd3O0HaRHWjjPOHXJxmhl3N4od4cDkrIJJkSIg3HRgVCVo034coZ56HHG8D+KcfgajsBj6cV+w4dhtvSBHd7E5y7PgKny4emcjL81dUQlEXo9vij6k9440Qd4i3piPXDWcXhgpZtoayKWfkqHLV64A3w8PICWAaozlMGgxK8gGbJibM7Tr0IMWtDL+egDv2inH4eeQoubnDE7gsEl3mE7gwIAvyhrAgZywSXeTh86PMGoFLJsLXTgQf3daBcLccflo3Dz/e0AwCWFmsxSa8ML8uw+QJJAwDx5ixewVAAUR06utx+qDi23/KTvpjMjI2NfeAYBuumFETV1XAFBGhkDAK8gN8f7kJNvgpnlhtCz9N/mYo0U6LT5UOxWo620HioI8fAxkRQ4rTTTuv3RhYEAceOHcO5557bb/utW7dma2iEEEIIIYSMarHBhmkGZdztYoMX0uwIeQqZEom2iC10CQDrZxbhyikFUHPxsyhil3kEH8vivEpDKCjBh/cdmwmikbFRS0EUbLC4popjwcrk0I6fhjpMg3zKGSjraYeztQGBtgY4ezrhP7QTR07sRYsHePFoDaxCAVRlEyDPM8ETpxZFKrQyFrGrIiaG2qp6AgI8AQFKlgm/fi/Po11ygt4c58q+WHRTJ2OhCgV93AEeGp6NGyix+3jcub0p/HNAiGRKyBgGBnnw5N/qC6BEJcMX3cHsjLaYVp5eXsA3Pz4RDnz4hWBxyBqjOu5r98ZZF+HwR8YnFgAFooti3rAluAzj9TWTknb3AIKdM9ZNKYgKINl8AWhkLD7vduD9k3a8f9KOxYVaPH6oK1zM1CgJeEiHef2W5qjlH6lkCZ3qxkRQ4sorrxzwzTYY1113HTiuf8Xab33rW/1upwAHIYQQkn50LCZk5JAub5hvUuO26qK428WefEV140ihpoQqQReEqJoSoX9zDIMilQw+ydmgNJAQr+6A+HgGwRoQ4nbyqAKdwW0UcZ5TFRPoYFgWyqJyKIvKwc5bAa/DBlVXEwotzWg5WIcjdYdhDtWF4NRafFIzA3ZlCVRl4yHT6MMFIgciY5h+z10cap8q1rKQZnd4eQFWybKQZkf/Vp1ixoBRKQvPmycgRBXRlOp0+6Ou+AuIBAxkLANVKDNFXI7RaA8+Z+xvwccL/TIxNrVaEwYlPAO0UZ2sV6LWyOKDdntUVxKRmPEARC/PiEeaKWH1BVCilmOvOVLX44V6M74IZeXEbu9I0r2k1xuA08/DlPTZT21jIiixfv36tO3r1ltvTdu+CCGEEDJ4dCwmZGSRZkBcNtGIfGX8U4jYjAPpeXSyYplPLRuHPm8gqj6EVHSmRPQ28QIWsbdLiS1GpUEJ6bi1HBvaJvI88tBzxttniUqGDrcfvADINHqUVs/FaUXLcXJ2D2bCgva9hyB0NMLaeRInDu5Fd2j5hTy/EOMnTYEjrwyq4gpwqsTdIoLPG/26TcpgcNbl5+HjBSgVTDg7xBsQ0OuNnKD7k5yLFyi4cC0OD8+j1xt/43gn/GLAQJopIdaqOBEKSozXKaIeE6/YZ5szcdcOb5w6Dw7JEgwFy4SDWfHGKGY8AIA5yTIKQRCilrmImTRiVgQAtDqjgzvugAA/L0DGMlGFQgFEBctanT78bOdJPPdlQ8LnP9WNiaBEOtEXIUIIISS36FhMyMgSlfGQJOEh9q6o7htJHleqlqM0SXcCabAhXq0IUeySi2T7i8qUkGwrBkbi7SteZvYTS8fh9i9a0BhaIqHgGKhkDBiWgze/Asa5JkzSrcExsw2T3J2wHj4Cd9sJ+CzdsB/uQ1doeYM8zwRVSSWUxZVQlVRCpo2cwMpYRBVt1MvY8Im2WKhRyTFRmRLmOCf/sRgEW3yKgR5PQIhaGiEV74RfPImXsYBBEdxHnzcAqzcQzoaI/b13uKOXc7BAVABF5PTzePmYGZ2SzI3PupwwKrmoTImrpxbgrRZraIz9xy5mPAD9O21I/bvFignaSABFnNfwa2T616MAALufR74iekzBsUQ/1yFJJxXSHwUlCCGEEEIIIQlxUcsbUl8yHZUpkcLyjUSkj9QkCUpEZTckC0pwDOCPbCc9cRb3Lw1qJAuoyCVLF8THiW1KxcKLhSoZjiuUUBROhckQLOLrd1gxn+/B+/vq4O5sga+vB76+HtiO7AEAcFoDVCWVUBVXom+SDKaikvBzGBRcODtAWhtDGpQQ60LIWSbqqr1UnoIDxzJRyzfi1XAAIssxAKBIJUOX2x/OlJCzDMaFTugP9LoxXhM5uY997pMxWRF5Cg4Wb6Bft4z/23USR6zRLVLFdp9iTZM/rhgPk1IWXtpijhM4+X87TuLZZeOQr5ShN3R/VZ4S10w1Yb/FhZeO9QIAnj3Sg+umRRZY2LzBefWGC3si7tIWuy8AnYyNqkcBRLq7kNRQUIIQQgghhBCSkmSxhdjiktKTzOEEJTqTXOGOej7Jv8+pMGBjYx+unlrQb7vYZR7SAIYmTqbEQLXrtFFBiUjhyO7QlfvC0HIX6YmqTGvAvKkTsVc/CQDgd9rh6WyBu7MV7o5m+CzdcDQchKPhIF5q3AKVUol2jw5KUylKJ02E25EHFsEr9cHxslHLN8QT9FK1LG6hSyBSqFHJRgpdikEEo4KLKni5o8cFINj1pMnhRZcb4cKdMobBbKMaegWHXT1OlGsiWS9eXkBAUqVTWoCTZQCjMvg8zx7pgcPP45IJ+SjTyPsFJKSaQgESXWjew/Pt7h8I8PECXjhmxm0zi8M1IOYVqFGdr0J1vgr1Vg8+C7U9ldbMEDMlxCCNtIaGlMPPR9WWCN8ek1VRoOhfI4lEUFCCEEIIIYQQkpJknQQMcg43VRWiVN3/FGM4HQjEFox6efwsiTPL9ThscSNfGTnxK1XL8dqaSXEzO5IGJUInuEo2cUZGLI2kzoWSY6I6ggDAOG3wJN2e5ERVptFBNnEGtBNnAAACHhc8na1wd7ZivN6F7vY2uE82wn2yESeO7cSv9mxCWy/AmcqgKCyDe+pEMEVTAASDBZ1uP2RMMCCSKChREJovMdPAwwvhzABlgnU6Ko4N1wcRswNkoboc84q0+LjViu2SYpA+XogqVim2NJ2oU+D7M4vw52NmAMB/Qksw9vW6sD5BIVWRhxcgY6QFSENLRxJkJzTZfbB4A+FWomrJ70u65EMalBAzUBJljoh2m124L9TuVMoWChatLNXho3Y7tAneuySIghKEEEIIIYSQlAyU8HBuZfxifvJhNMpbWarDX4/34uIJ+XHvX19dFC6CKJVoqYmCi15uIYvKlGBC26Q+YG3s8g3JzywDzMxXAYhkNYhUSZaicEo1NOOmQjNuKr65fDz0HLDr9e3wdLehyN2DIs4OvrUeblsfHCcO4+ABOWzvKdDqUeKV0jI4dIWonTQOnLY84XPki5kScZZvqBN0QlFxTDjAFKm3EPxZH9pfhyQbwstHF5AUa3n8eHYJyjRyGBXRp6M9ngAe2d+ZcMwiZaggqXT8idTbPLj+0yZcOjE/9Boir22yToGjoawMaW0LccyJghJiJslfGnrDt80tUKPT7Ueb0xcOQOWFCoCm0GTllEZBCUIIIYQQQkhKhprxkEpL0EQunZiPhYUaTNYrEm4z0BILKXmSTAkxoJCsW4hIPOHUJKgpAQATtAro5P1T9/MVXNyUfhnTv1uGnAFUchnWzJiETzqLcd6kfHxjcgGOf9qAA8cb4elqQ6nfAoPLDN+xNrRYg9kH1kY1jrn9OCmooDCVQGEshsJYBIWxEDJdfvjkXMwK8UiWb3ypTI/tPU5M1iuwsbEvPBYVx0J8eeHuG6GftaHXKR2/zcfjmk+aol7P0iINykJLPKTZLaeXaLG109EveBOP9HcW2y41Hi8vhItRSoNG35pmwuY2G4DoTAkvL0AQhH41MSbpFPhSmR4ylsGGuu6o+1SSLJkPTgb3KQaseIGiEslQUIIQQgghJA0aGhpw1113wW63Q6FQ4K677sLChQtzPSxC0mqosYVUTvIT4VgGU0PFDdMhdvmGdGziSeRAw63OU+K2mcUAYoISHBN1kjxFrwy33BR9pdKAa6aZIGMZ/KS2BB+027Gl0xEejz/msrqYyfGDmmIsK3ZgrinYPvSbM0pxrxtQl03AwnI9VpXqcGRrA7zmTnjNnViQ58WWoyfQ0nISrmYbXM31kZ1yHLZOrICxehKaWT2cNjnMpqmQ6/IABJfK3DuvDN1uf0xQIpIpIXazEOdPGxN8yQ8VsYw1WR/5XZZLuq7U5KuxqFCLJw93YVmxFv/rcCQs0iktPirNfJhvUmNnqP5FLLEDhvT3o5GxuGh8Hl5r6usXlIiXJTFJr8BXx+dhh2SJikgpWdpSF8q+iAQl4g6JhFBQghBCCCEkDZRKJe6//35MnjwZx44dw80334zNmzfneliEpNVQL/gOp9BluimTZUqETnATjfava6vwyXEzzirThbMzki3fKNXI+i0FmahXhOdjcZE2ql3kGaU6bG61RW0vbsuxDJaX6MK3z8hTRb0mBcuAU6qhLpsAddkEfG3pOGharLAf74a3txOnyZ3gbD3494Hj8PV1w9Hdib17+9Di8KGzx4nffQCU6tUwK/Kw5cQkCJMrUFhYiGuLNHimLQBWroCSY8NdVb4InZiL8yetm6CTsQkzGKTzIy5tAYJdPRYWarCiRAuOYbCjuxF9fPw6EbKoTInI/r46Lg9XTC7AWy19sPl4bJMED+r6goGC2KUp4uOl9SUSBSXExxap+p9Gq1imX0aQWsaABaKKfZL+KChBCCGEEJIGFRUV4X9PnjwZNpst7jp3QkazoZ5aDaJEQ8ZJgxDBmhKR+8Sr+ImGO8Gggq7SAF5ywirNlFBKum8AQIlKHvV8ZWoZ1pTqo/YpXRKzvFiHC8bn4e/HLfio3Q4gcZZJ1PNyTFQGiHi/gmPAyuRQFVVgbW0J5CyDHePaIQgCLi5XYpHShQ+ONOLIjqPwWbrRYemBYGvHiUM2uE4cBBAsVtnUYgWn1uKj6eNxUqZDn6CBPK8AMn0+EMgLPV8kU8Kg4BK2UpUWBpUWRS0MLeUQ50MtY9AXv0Zn1JxIgx9FKhnGaRW4bWYxTti9UUEJkTpmYPFqUvgStEcVAyrxghLSTInI2FiwDGVKDISCEmPYvn37cPfdd4d/Pnr0KP75z3+iuro6h6MihBBCcmPbtm147rnnsH//fnR1dWHDhg1YvXp11DYvv/wynnvuOXR1daG6uhp33303amtrB/1c7733HqqrqykgQcacwa6N//HsElh9gYRFJ3NBmrkgYxhoJSfT803qQe8vdvmGtPtGiVoWFXSo0Cj6XU2XnsjKWQYVGkVUNkcqAR0fL/TLyNDI2Kj9SDMEGIZBnsGAKZWVsOVX4E3FZACAIAgIOG24oEKGQr8dPT3d6OrqxDvWevhtfehqbUSHw4deSTHLv36qwa4SIxwaAzq7eMj1+TCWFILRGOBjNeC0erAyedS4pOO4qaoQB/vcGKeLrhmiSlBsU5wnkTImKBF5vYk7iAz0PB6eD3cikRLnUC1joZWx4ToVwf1EB7jEfbMMQ5kSA6CgxBg2e/ZsvPHGGwCA1tZWfPOb36SABCGEkFOW0+lEVVUVLr74Yqxfv77f/W+99RYeeOAB3HvvvZgzZw5eeOEFXHfdddi0aRMKCgoAABdccEHcfW/cuBEcFzyxaW1txcMPP4ynn346cy+GkCxjEMySyItTnDGZpcXajIxnOGJrSuQrONw9pwQVGkU4eDKY1SbS5RsGORe1/xJJzQQg0vFCSnpOLF7Ely5PSCW4afXxULDSjI3gshTpCbtWxkZd/RfvU8YEK2RaAyZPKUe1ZGnFxsoGCHwA35yoxKa6JriPt8FvNcNnsyBfG4DL5URvnx3O1mD9iZPH5LD7AuGilaxaC5lGD06jw7aOSngrimEwGGAwGDBPZ8CqKXmIDQ0kK2ApnR9p+1ZpgEGdoLtJ7PIN6RzdWFWIDXXd8PL9i1wGHxvZtlglw3G7N2o/sZkSao4BR5kSA6KgxCli06ZNOOecc3I9DEIIISRnVq5ciZUrVya8//nnn8fll1+OSy65BABw77334sMPP8Rrr72Ga6+9FgDCwf5E7HY7br75Ztxzzz2YMGFC+gZPSI79+YwJsHoD0MfpJDHaSE/exQDCosLo4AmTcAFHf9Ir/7ONqqggQp48+gQ4blBCsr14sj3YwqBWbyAqGCKOSXrCrpGx4P2RugmqcFCi/3PJ40RlGJZDYWERSrwq5KkjrUa/UVuCxUUa1PXZcOQ/u+G396Fa5cPR9i74zb3w2/vgd9jgdTmAHuCItx1dh/rPg1yugMFggF5vgE6nQ1unDxY/B06lAavSglOqwak1YFUayBAplqkLzXHs8pVkbU0T/VwQWkLi44Vw+1Ip6e/6x7Ul+P7nLXCGMiqC9TbiLd+gTImBUFAih7KZRrpp0ybcc8896Ro6IYQQMqZ4vV4cOHAAN910U/g2lmWxbNky7N69O6V9BAIB3HbbbbjsssuwYsWKYY2HHWZRQPHxw93PWERzk1yi+clXypCvHBunDkpJTQGFjI37XpBeZY+dk9jtpV0nxukUYBgG9y8InrRzMSfG+Uqu3+OjalxwwfFIl2Ike69eMjEf/zxhwRmlOqgkY9bJg/uJuk3BwSs5OVaFXnu8jAJVgnnh0b9oqYJjIZNxKCssgKqkEiipxOlTC2BrsUIW6tCh4wCLzY6Ay45Lp+ug8TlhtVrD/9lsfejr60NPTw96enoAAC0ddlg8/riv261R4uEPS6DRaKDRaLCWlcOg1WDTpgNQqdRQq9VQqdRwNneBVajAKlVgFUqwMgXUHBP12qRzVKCSgWOAXk8AP9zW2u95NfLI769cq8ALKyfi0vePAwi+Z2KDORp5sDCo2CaVPnfiGxufLKNUNtNIzWbzkIIZhBBCyKmgt7cXgUAAhYWFUbebTCY0NjamtI+PP/4Yn332Gbq7u/HKK68AAF588UUYDIZBjUUmY2Ey6QbeMAVG48hLnR8paG6SG8vzk3/SEf63KU8d9+/tCoMaR50+XDTV1O/+2LkpKBBw5QwXqk0aFBYGi1iuSvA3XJKv6be/PHOk+0ZRgRYmvRKGNntkjEk+D75n1OJrM0swXq+MWiKQp5LDZNKh0Bk5qR9XrAfriCw3KDZqYTLp4FJ4+u232KSFSRfJRshXcrB4Aqguz8M2S/T2BfkaGI1auCX7nlVmwL9brACA8XolfrFsAq7efAQyjQ4rl89EkSZ6WYvI6/Wir68Pdrsdzf/dB6bbgoDbgYDHDd7lQMDjQsDlgFoeQCDgQV+fC319wSBGD4DjMfvrrOsCEFl+BAAP7SqCTCaDQqGAQqFAjw9oa7SBkcnxSdc4mOvM8DEyMDIZGJZDiV6FTjcPhmXRLBsHfaceMpkMHMeB4zg4TjQADAub0Q57txPONivAsmDAwNnLwd3eBK8q+L4Yy39Xw0FBiRzKRhopAGzevDktSzfoqk3m0NzEN9CVCUJzkwzNTWI0N6kbTPeM1atX48CBA8N+Tr+fh9XqGtY+WJaB0ahFb68jqksAobkZyKkwP35PpEijz+lFT4897nZ3ziwCgPD9yebm6+MMUdsmwrv7P5/bGTmZt/U50eP1weuOjHGgfeoAmM3RGQVuXwA9PXZ4nZEAgtXihMMZ2a/H7kYPBygEAfNNauzsiXzuOPpc6JHM0xOnjUO3xw+lxwe/N/q5XHY3ehUMtNpIEMMo8PCI9SQEAU5bZN9umws9rv6BEBHLqmEwqMGUToa+IH5L0CVFGvy/OaVwuVxwu11wuVyhf7tDP7vhcjnxFk6A93owXsGjwWwD7/NCrdbD6/XAZnPC6+1Dn9cPb2iO6/b1wXnSBo+kyGWBToG+UO2I90/qsCcmY6iryQIAeOugFu0uHzoldSaePZKHpjYrPAILz7olcDr9Q/67MhjUkI+B5VPxUFBihEpHGqkoHUs36KpNdtDcRMjl3IBXJkgEzU1iNDeJ0dxEGI1GcByH7u7uqNvNZnO/7IlsSNfJIM8LY/bEcrhobpIby/Mjl8QZi5XcoF/ncOZGxTH9HsvF/JvnhaiKFoN5rlK1DO0uP046feB5AXJJUJXnhajnkjNM+Ln+b24Zbv2sGc2OYCBCxkQ/r07GQidTgOeFfgUp2dC+9ZIuJoUKDv7Q4zkm+qRTwaT2mmySzhbifsRYAccwEARApQou08jPj7+Px5kGAMAdc0rx8z3tAIDvf2ly+H5BEHDC4kDDlhPgfV7cdloZmrY2otvhghDwQ+B5LCpWY6bHh709dlw60wQlA/j9fvj9fvB8AB/uaAUEHnMnGVFncaG3xwlAAAQBi2uKsLuuGy6VAQqFAna7b8z+XQ0HBSVGqHSkkQJAW1sbzGYzZs+ePazx0FWbzKK56c8XivADND/J0NwkRnOTWLrmZixdtVEoFKipqcGWLVuwZs0aAADP89i6dSuuvvrqHI+OEJJO0noNJlV2ToeumGzEZ10O1OT3bzka1X1jmBlsk3RKtLv84cKKsQEE6f5jCz4Gi5gGgxKxRSMT7QOIBHlkLIMrJhuhkUUXd5SxTNT+Um0Pe1NVIR471IWrpxbg/ZM2XDfdhP/bFQwspFoIdH11EeqtHsw3qXHHrGIYYo5ZDMNAp1aBU2nAqTQoKy1Dfqk/KqOkfHwevjW1AALQr5AlEAl8rJxfBkWnA42hZSu/nF+GWUY1/vtpEzrcfurAkQQFJUaZwaSRAkB5eTnefffdtDw3XbXJPJqbaLFzQfOTGM1NYjQ3iZ1qc+NwONDU1BT+uaWlBYcOHUJhYSGKiopwzTXX4M4770RNTQ1qa2vxwgsvwO1246KLLsrhqAkh6Sa9AB/vJDMTLp9kxOWTjHHvk55gD7brRqzvVJlg9wdw2cTgcwViPuKjWmnGFOE0SjqDxOu+IYqdM+k+vzGlIHxcEYs7yhlmSMGWL5XrcUapDnKWwcUT8hGQHK8SdPvs58xyPc4sD9ZzWFESP+s79rXGBmQcPj6lQIqA6LmoCbVUFeeLpw4cCVFQYoQaaWmkhBBCyGi3f/9+XHXVVeGf77vvPgDArbfeivXr12Pt2rUwm8147LHHwl2vnn322XBxaULI2NCToKNDrsRrCTrU0IRRKcN98yPtOkvUwdM9DSe2Go1sG5spUamNFJ9MdhIe20E0UcBhTZkO75+047QiLVShAEi8lqjJyKMyLOLfPlz5Cg6XT8rHOK0CQJyghD9+XYtYehkbFVQSLySLu4sNEJEICkqMUJRGSgghhKTXkiVLUFdXl3SbdevWYd26dVkaESEkFxaYNHj1hAVnlulzPRQA0Vf9ZWlO3ChRy/HoogoUhZapSAMIsSf24kn5QPplSiQIYNxUVYgzy/SYka8CxzB4+YwJ/bIzBoNJY0ZJrCsmR4LPfMx9Dn/yaMIjiypwzOrBRL0SW7oc/e7nwkEJikokQkGJHKI0UkIIIYQQQrKrOl+FP64YH7VcIZe4OFfX02mqIdIVQ/pcsdkQKQclYuIKiTIlFByLGmOkhoYujTWI0pkpEcvmi2RG5Mk5XD01ebbcNIMS00JzHC9YIs4zBSUSo6BEDlEaKSGEEEIIIdlnUo6c06B4J7JZKnURpUIjH3gjxMuUyMRokkt3poSUzRfMlZigleN3SyoHFSiKV6NEjJ+cQiWcBm3k/DWegiiNlBBCCCGEkFNbbI2GTHtkUXnck2c5y+D++WVQD1BFMna8mcxaSCTVQpdD4QhVQtXLuUFnrgjoH3kIZ0pQVCIhCkoQQgghhBBCSI4Mtw3oYE0zqBLeJ11ukUhsQCNbHUyy/Zz6ISw3iRd34CSZEhmMpYxqNC+EEEIIIYQQkiPxTrDL1MGlFLGdIEYC6Xn3lZONWQ+qZNqKYi0A4PQSbVr2J2ZK+KmmREKUKUEIIYQQQgghORLvlP60Ig1umVGIOQUDZy5km/Tc+rJJxtwNJENum1mECyfkYapeOfDGMZJnSlBQIhEKShBCCCGEEEJIjsQ7VWUYBmdXGLI+llSM9ZNrBccmXeKSTPKaEsMa1phGyzcIIYQQQgghJEdG2yk+nVsnFi9Tgg3fN9p+09lDQQlCCCGEEEIIyZnRdbJKJ9eJxQvYiDVDAjRvCVFQghBCCCGEEEJypEgVLGqpynZv0CGizpZJxMuUCP1aAzRvCVFNCUIIIYQQQgjJkXwFhyeXViJvCC0oc4GCEomVaYIBJoM8cu2fCl0OjIIShBBCCCGEEJJDFRpFroeQsnjFHEnQ6jIdfLyAhYWa8G0sLd8YEAUlCCGEEEIIIYSkRCsbHRkducAxDL5caYi5Lfh/XkD8/q+EghKEEEIIIYQQQlJzToUeTQ4vzizXZ/25qwxK1Fk9qM4fWsvOXBAzJfy8AFA8Jy4KShBCCCGEEEIISYmSY3FrdVFOnvvn88vQ4vBhqkGZk+cfClaaKUHiou4bhBBCCCGEEEJGPBXHjqqABEA1JVJBQQlCCCGEEEIIISQDqPvGwCgoQQghhBBCCCGEZAAbqm4Z4HM8kBGMghKEEEIIIYQQQkgGiDUlaPlGYhSUIIQQQgghhBBCMoCjmhIDoqAEIYQQQgghhBCSAdR9Y2AUlCCEEEIIIYQQQjKAMiUGRkEJQgghhBBCCCEkA8I1JShVIiEKShBCCCGEEEIIIRnA0fKNAVFQghBCCCGEEEIIyQCWlm8MiIIShBBCCCGEEEJIBlCmxMAoKEEIIYQQQgghhGQAZUoMjIIShBBCCCGEEEJIBoiZEhSUSIyCEoQQQgghhBBCSAawCGVK8DkeyAhGQQlCCCGEEEIIISQD2HBNCcqUSISCEoQQQgghaeJyubB69Wo88sgjuR4KIYSQEYBqSgyMghKEEEIIIWmyYcMG1NbW5noYhBBCRgiDPHjKrZVzOR7JyEVBCUIIIYSQNDhx4gQaGhqwcuXKXA+FEELICHFakRb3zS/DVyYX5HooIxYFJQghhBAy5m3btg033ngjVqxYgaqqKnzwwQf9tnn55ZexZs0azJ49G5dddhn27t07qOd46KGH8IMf/CBdQyaEEDIGcCyDOSYNlBydeiciy/UACCGEEEIyzel0oqqqChdffDHWr1/f7/633noLDzzwAO69917MmTMHL7zwAq677jps2rQJBQXBq1sXXHBB3H1v3LgRH3zwASZOnIhJkyZh165dGX0thBBCyFhCQQlCCCGEjHkrV65Muqzi+eefx+WXX45LLrkEAHDvvffiww8/xGuvvYZrr70WAPDGG28kfPyePXvw1ltvYfPmzXA4HPD7/TAYDLjhhhuGNF5WLNc+ROLjh7ufsYjmJjman8RobhKjuUmO5ic5CkqMEd/97nexdetWrFixAr/5zW/Ct7/77rt4+OGHAQC33XYb1q5dm6shEkIIISOS1+vFgQMHcNNNN4VvY1kWy5Ytw+7du1Pax+23347bb78dQDBzoqGhYcgBCZmMhcmkG9JjYxmN2rTsZyyiuUmO5icxmpvEaG6So/mJj4ISY8SVV16JCy+8EG+++Wb4Nr/fj4cffhgvv/wyOI7D5ZdfjjPPPBMKhSKHIyWEEEJGlt7eXgQCARQWFkbdbjKZ0NjYmPXx+P08rFbXsPbBsgyMRi16ex3geWpDJ0VzkxzNT2I0N4nR3CSXjvkxGNSQj9EOHhSUGCOWLFmCzz//POq2PXv2oKqqKvwlq7a2Fjt27MDSpUtzMURCCCFkVBEEAQwz+FTbiy++eNjPna4v9Twv0AlCAjQ3ydH8JEZzkxjNTXI0P/FRCdAsyEbF73g6OztRUlIS/rmkpASdnZ3D3i8hhBAylhiNRnAch+7u7qjbzWZzv+wJQgghhKQXZUpkQaYrfnPc2EzjIYQQQrJBoVCgpqYGW7ZswZo1awAAPM9j69atuPrqq3M8OkIIIWRso6BEFmS64ncixcXF6OjoCP/c0dGBFStWDHo/IqoEnjk0N/HFzgvNT380N4nR3CR2Ks6Nw+FAU1NT+OeWlhYcOnQIhYWFKCoqwjXXXIM777wTNTU1qK2txQsvvAC3242LLrooh6MmhBBCxj4KSuRYOip+J1JbW4vDhw+ju7sbHMdhz549+OUvfzmkfVEl8OyguYmQy7l+7zman8RobhKjuUnsVJqb/fv346qrrgr/fN999wEAbr31Vqxfvx5r166F2WzGY489hq6uLlRXV+PZZ58NZywSQgghJDMoKJFj6ar4fcMNN2Dv3r1wuVw444wz8PTTT2PGjBn44Q9/iCuuuAIA8L3vfQ9KpXJI46RK4JlFc9OfzxdAT48dAM1PMjQ3idHcJJauuRlNlcCXLFmCurq6pNusW7cO69aty9KICCGEEAJQUGLEGmzF76effjru7WeffTbOPvvstIyJKoFnHs1NtNi5oPlJjOYmMZqbxGhuCCGEEJJr1H0jx6jiNyGEEEIIIYSQUxUFJXJMWvFbJFb8njt3bu4GRgghhBBCCCGEZBgt38gCqvhNCCGEEEIIIYT0R0GJLKCK34QQQgghhBBCSH8UlMgCqvhNCCGEEEIIIYT0RzUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEBSUIIYQQQgghhBCSExSUIIQQQgghhBBCSE5QUIIQQgghhBBCCCE5QUEJQgghhBBCCCGE5AQFJQghhBBCCCGEEJITFJQghBBCCCGEEEJITlBQghBCCCGEEEIIITlBQQlCCCGEEEIIIYTkBAUlCCGEEEIIIYQQkhMUlCCEEEIIIYQQQkhOUFCCEEIIIYQQQgghOUFBCUIIIYQQQgghhOQEIwiCkOtBkJGP5wUEAvyw9yOXc/D5AmkY0dhDcxPtyJHDmD59Rvhnmp/EaG4So7lJLB1zw3EsWJZJ04iIiI65mUdzkxzNT2I0N4nR3CQ33PkZy8dcCkoQQgghhBBCCCEkJ2j5BiGEEEIIIYQQQnKCghKEEEIIIYQQQgjJCQpKEEIIIYQQQgghJCcoKEEIIYQQQgghhJCcoKAEIYQQQgghhBBCcoKCEoQQQgghhBBCCMkJCkoQQgghhBBCCCEkJygoQQghhBBCCCGEkJygoAQhhBBCCCGEEEJygoIShBBCCCGEEEIIyQkKShBCCCGEEEIIISQnKChBCCGEEEIIIYSQnKCgBEnZyy+/jDVr1mD27Nm47LLLsHfv3qTb//e//8W5556L2bNn46tf/So+/vjjqPsFQcDvfvc7rFixArW1tfjWt76FxsbGqG0sFgtuv/12zJ8/H4sWLcJPfvITOJ3OtL+2dMj2/LS0tOCuu+7CmjVrUFtbizPPPBO///3v4fP5MvL6hiMX7x2RxWLBGWecgaqqKjgcjrS9pnTJ1dy8//77uOSSS1BbW4ulS5fiRz/6UVpfVzrkYm727NmDb37zm1iwYAEWL16M73znOzh27FjaX1s6pHt+3n77bVx77bVYsmQJqqqqcOTIkX77GE2fyaeCdL8HxpLBzM3Ro0exfv16rFmzBlVVVXjppZeyONLcGMz8vPLKK7jiiiuwaNEiLF68GN/+9rexb9++LI42uwYzN++++y4uueQSLFy4EHPnzsUFF1yA119/PXuDzbLBfuaInn76aVRVVeGhhx7K8AhzZzBzs3HjRlRVVUX9N3v27CyOdgQSCEnBf/7zH6Gmpkb4xz/+IRw9elS4++67hUWLFgk9PT1xt9BTcM0AAQAASURBVN+5c6dQXV0tPPPMM0J9fb3w29/+VqipqRHq6+vD2zz11FPCggULhHfeeUc4dOiQcOONNwpnnnmm4PF4wttce+21wvnnny/s3r1b2LZtm3DWWWcJd9xxR8Zf72DlYn4++ugj4cc//rHwv//9T2hqahLeffddYenSpcLDDz+cldecqly9d0Tr168Xrr32WmH69OmC3W7P2OscilzNzaZNm4RFixYJf/vb34SGhgbhyJEjwubNmzP+egcjF3Njs9mERYsWCXfddZfQ0NAgHD58WPjOd74jfOlLX8rKax6MTMzPa6+9Jjz++OPCK6+8IkyfPl2oq6vrt5/R8pl8KsjEe2CsGOzc7NmzR3jwwQeFf//738Ly5cuFF198Mcsjzq7Bzs8PfvAD4aWXXhIOHjwo1NfXCz/+8Y+FhQsXCh0dHVkeeeYNdm6++OILYfPmzUJ9fb3Q2Ngo/PnPfxaqq6uFTz/9NMsjz7zBzo1o//79wurVq4WvfvWrwoMPPpil0WbXYOfmn//8p7B48WKhs7Mz/F9XV1eWRz2yUFCCpORrX/ua8POf/zz8cyAQEFasWCE8++yzcbe/7bbbhO985ztRt1166aXCvffeKwiCIPA8Lyxfvlx47rnnwvdbrVZh1qxZwn//+19BEAShvr5emD59urBv377wNh999JEwY8aMEfeHm4v5ieeZZ54Rzj777OG8lLTL5dy8+uqrwte//nVhy5YtIzIokYu58fl8wumnny688sor6X45aZWLudm7d68wffr0qC/aO3fuFKZPnz7gl65sS/f8SDU3N8cNSoymz+RTQSbfA6PdYOdGavXq1WM+KDGc+REEQfD7/cK8efOEf/3rX5kaYs4Md24EQRAuvPBC4fHHH8/E8HJqKHPjdDqFL3/5y8LHH38srFu3bswGJQY7N2JQgkTQ8g0yIK/XiwMHDmD58uXh21iWxbJly7B79+64j9m9e3fU9gCwYsWK8PYtLS3o6uqK2kav12POnDnhbXbt2oX8/HzMmjUrvM2yZcvAMEzK6WLZkKv5icdmsyEvL2/IryXdcjk3TU1N+O1vf4tf/epXYNmR91GXq7k5ePAgOjo6wDAMzj//fKxYsQI33nhjwuUvuZCruZk0aRLy8/Px6quvwufzweVy4bXXXsPs2bNRUFCQ1tc4HJmYn1SMls/kU0Gu3gOjwVDm5lSSjvlxuVzw+/0j6vtGOgx3bgRBwNatW3H8+HEsWLAggyPNvqHOzYMPPoglS5bg9NNPz8Ioc2Ooc2O327Fq1SqsXLkSN998M+rr67Mw2pFr5H1TJyNOb28vAoEACgsLo243mUzo6uqK+5ju7m6YTKaE24v/T7bPePuQyWTIy8tDd3f30F9QmuVqfmI1NTXhpZdewte//vUhvY5MyNXc+P1+3HHHHbjtttswbty4tLyWdMvV3DQ3NwMAnnzySaxfvx5PPvkk5HI5rrrqqhFTGyBXc6PT6fDCCy9g48aNmDNnDubNm4fdu3fjySefTMvrSpdMzE8qRstn8qkgV++B0WAoc3MqScf8PProoygrK8Npp52WiSHmzFDnxmazYd68eZg1axZuuOEG/PSnP8XSpUszPdysGsrcfPDBB/jss89w5513ZmOIOTOUuZk8eTIeeOABbNiwAQ8//DB4nsc3vvENdHR0ZGPIIxIFJciQCYIAhmES3h/vvtjbYn+O3We8fQz0vCNFNuZH1NHRgeuuuw7nnXceLr744iGOOHsyPTcbNmyA0WjEpZdemobRZlem54bneQDATTfdhLPOOgu1tbV46KGHYLVa8eGHHw5z9JmV6blxu924++67cdppp+GVV17BX/7yF5SVleGWW26B3+9PwyvIrHTMz0BG82fyqSAb74HRit6nyaU6P8888wzeeustPP7441AoFFkYWe4NNDdarRavv/46/vGPf+D73/8+7r//fmzfvj2LI8ydRHNjNptxzz334Fe/+hXUanUORpZ7yd43c+fOxfnnn48ZM2Zg8eLFePzxx8OZmqcqWa4HQEY+o9EIjuP6XQkzm839ooKiwsLCftv39PSEty8qKgIQvHopTYs2m83h1OB4+/D7/bBarf2u9uRSruZH1NHRgauuugpz587Fz372s+G+nLTK1dx8/vnn2L59O2bOnAkgeGAAgEWLFuG73/0ubrzxxjS8uuHJ5d8VEFyqINJoNCgvL0dbW9swX1V65Gpu3nzzTXR0dODVV18Nf5H49a9/jUWLFmHLli0444wz0vMChykT85OK0fKZfCrI1XtgNBjK3JxKhjM/zz33HJ566ik8//zzmD59eiaHmRNDnRuWZTFhwgQAQHV1NY4dO4ann34aCxcuzOh4s2mwc3P06FF0dXXhG9/4Rvi2QCCAbdu24aWXXhpT3VvS8Zkjl8tRXV09opbSZhtlSpABKRQK1NTUYMuWLeHbeJ7H1q1bMXfu3LiPmTt3Lj799NOo27Zs2RLevrKyEkVFRVH7tNvt2LNnT3ibefPmwWKx4MCBA+FtPvvsMwiCgNra2vS8uDTI1fwAkYBETU0NHnjggRFXOyFXc3P//ffjjTfewOuvv47XX38d9913HwDgb3/7Gy677LL0vcBhyNXczJ49G3K5POrA53a70d7ejvLy8vS8uGHK1dy43W6wLBt1ZUP8WQxsjQSZmJ9UjJbP5FNBrt4Do8FQ5uZUMtT5efbZZ/Hkk0/i2WefHbOtC9P13hEEAV6vNwMjzJ3Bzs3s2bPx5ptvhr+Hvf7665g1axYuuugibNy4MYsjz7x0vG8CgQCOHj0avoBySspaSU0yqomtbjZu3CjU19cL99xzT1SrmzvuuEN45JFHwtvv2LFDqK6uFp577jmhvr5eeOyxx+K251u4cKHw7rvvCocPHxZuuummuC1BL7zwQmHPnj3C9u3bhbPPPlv44Q9/mL0XnqJczE97e7tw1llnCVdddZXQ3t4e1VZoJMnVe0fqs88+G5HdN3I1Nz//+c+FlStXCp9++qlQX18v3H777cLKlSsFh8ORvRc/gFzMTX19vTBr1izhF7/4hXDs2DHh8OHDwvr164WlS5cKFosluxMwgEzMT29vr3Dw4EHhww8/FKZPny5s2rRJOHjwoNDb2xveZrR8Jp8KMvEeGCsGOzcej0c4ePCgcPDgQWH58uXCI488Ihw8eFBobW3N1UvIqMHOz9NPPy3U1NQImzZtivquMdKOqekw2Ll56qmnwq3Z6+vrheeff16YOXOm8I9//CNXLyFjBjs3scZy943Bzs3jjz8eft/s379f+P73vy/U1tYKx44dy9VLyDlavkFSsnbtWpjNZjz22GPo6upCdXU1nn322XAa9MmTJ6Ou0s+fPx+PPvoofvvb3+LXv/41Jk6ciCeeeAJTpkwJb3P99dfD5XLhpz/9KaxWKxYsWIBnnnkmao3iI488gl/84he4+uqrwbIszjnnHNx9993Ze+EpysX8fPrpp2hsbERjY2O/tPK6urosvOrU5Oq9Mxrkam5+9KMfgeM4/OAHP4DP58O8efPw/PP/n737Do+ruhY+/NszI416GxVb7nKRi9wrxtiYjumQC4EQSiAJNYSPBAghCeRCEiCkQAqhhJCEkAsJhJDQe7Ex7r1KLpJs9S6Nyszs74+tadJIlqwyKut9Hj+WppyzZ2ukM2edtdd6lpiYmP578ccQjrmZOHEiTzzxBI8//jj/8z//g81mIycnh6effnrAVZnvi/l5//33+d73vuf7/lvf+hYAP/3pT321agbL3+ThoC/eA0NFd+empKSECy+80Pf9k08+yZNPPslFF13Ez372s/4efp/r7vy88MILtLS0+P4meN1yyy3ceuut/Tr2vtbduWlsbOTHP/4xRUVFREVFkZWVxSOPPMKqVavC9RL6THfnZjjp7tzU1NTwgx/8gNLSUhITE8nJyeH//u//yMrKCtdLCDul9QDKSRVCCCGEEEIIIcSwMTzDWUIIIYQQQgghhAg7CUoIIYQQQgghhBAiLCQoIYQQQgghhBBCiLCQoIQQQgghhBBCCCHCQoISQgghhBBCCCGECAsJSgghhBBCCCGEECIsJCghhBBCCCGEEEKIsLCFewBCCNGZxx9/nN/85jftbj/hhBP405/+1P8DEkIIIYYoOeYKIcJBghJCiAEvPj6ep59+ut1tQgghhOhdcswVQvQ3CUoIIQY8q9XKnDlzjvm4xsZGoqKi+n5AQgghxBAlx1whRH+TmhJCiEGpoKCA7Oxs/v3vf3PnnXeyYMECbrjhBgCqqqr44Q9/yNKlS5k5cyZf/vKX2bJlS9Dza2pquOOOO5gzZw7Lli3j97//PQ899BCnnHKK7zGPP/44ixcvbrfv7Oxs/vrXvwbd9tJLL3HOOeeQk5PDypUreeqpp4Luv/vuu7n44ov57LPPOO+885gzZw6XX345+/btC3qc2+3mD3/4A2eeeSY5OTksX76cu+++G4Dnn3+euXPnUl9fH/Sczz//nOzsbHbv3t3NWRRCCCGOTY65fnLMFaL3SaaEEGJQcLlcQd9rrQF4+OGHOf300/n1r3+NxWKhubmZa6+9lpqaGu68805SUlJ44YUXuOaaa3j77bdJS0sD4Hvf+x5ffPEF99xzD6mpqfzxj3/k8OHD2Gzd/7P49NNP88tf/pLrr7+eRYsWsWPHDn79618THR3NlVde6Xvc0aNHefjhh7nxxhux2+08/PDDfPvb3+Y///kPSikAfvjDH/Lqq69y3XXXsWjRIqqrq3nzzTcBOO+883jooYd46623uPjii33bfeWVV5gxYwZTp07t9tiFEEKItuSYK8dcIfqTBCWEEANeVVUVM2bMCLrtgQceAGD27Nn86Ec/8t3+0ksvsW/fPv7zn/8wfvx4AJYuXcpZZ53FH//4R+666y727dvHu+++yy9/+UtWrVoFwOLFi1m5ciVxcXHdGltdXR2//e1vufHGG7nlllsAOPHEE3E6nfz+97/n8ssvx2q1AlBdXc0LL7zgG5fWmptvvpm8vDwmTpxIbm4u//jHP/j+97/PVVdd5duHd4wJCQmcccYZvPzyy74PSPX19bz99tvccccd3Rq3EEIIEYocc+WYK0R/k6CEEGLAi4+P59lnnw26LTIyEoCTTz456PY1a9YwY8YMRo8eHXSlZ+HChWzfvh2Abdu2AQSljcbGxrJ06VK2bt3arbFt2rSJhoYGzjrrrKD9LVmyhN/97ncUFRUxatQoAEaNGuX7cAQwceJEAIqLi5k4cSJr164FCLoi09aXvvQlrrnmGvLz8xkzZgxvvPEGLpeLc889t1vjFkIIIUKRY66fHHOF6B8SlBBCDHhWq5WZM2cG3VZQUACAw+EIur2yspLNmze3u8oDMHbsWADKysqIjY1tV6Cr7ba6orKyEoBzzjkn5P1Hjx71fUBqW708IiICgKamJsBcnYqJien0ytHixYsZM2YML7/8Mrfddhsvv/wyp556KklJSd0euxBCCNGWHHP95JgrRP+QoIQQYlDzrgv1SkxMJCcnh/vuu6/dY71XelJTU6mvr29XOby8vDzo8Xa7nZaWlqDbqqur2+0P4A9/+EPID1gTJkzo8mtJSkqioaGBurq6Dj8kKaW45JJLePHFF7ngggvYsGFDuwJfQgghRF+QY64cc4XoCxKUEEIMKSeccAKfffYZmZmZHV6F8V4Bev/9931rR+vr61m9enXQB5OMjAzq6+spLi4mIyMDgM8++yxoW3PnziUqKoqSkpJ2aa3dtWTJEgD+9a9/BRXrauuiiy7iscce45577iEjI4MTTzyxR/sVQgghjoccc4UQvUGCEkKIIeXCCy/k73//O1/96lf52te+xpgxY6iqqmLr1q2kpaVxzTXXMHnyZE455RTuu+8+6urqSEtL45lnnmmXWnrSSScRFRXFPffcw7XXXktBQQF///vfgx6TkJDALbfcwoMPPkhhYSELFy7E4/Fw8OBB1q5dy29/+9sujz0rK4vLLruMn/3sZ5SXl7Nw4UJqamp46623+OUvf+l7XEZGBieddBIffvgh3/zmN31FvYQQQoj+JMdcIURvkKCEEGJIsdvt/PnPf+bXv/41jz/+OOXl5aSkpDBr1qygIls/+9nPuO+++/jJT35CTEwMV1xxBTNnzuStt97yPSYlJYXHHnuMhx9+mJtvvpkZM2bw6KOP+q70eH39618nPT2d5557jmeffRa73c748ePbPa4rfvSjH5GZmclLL73EU089RUpKSsirMqeddhoffvhhpwW6hBBCiL4kx1whRG9Q2tt4WAghhjlvP/L3338/3EM5pttuu43S0lL+9re/hXsoQgghRLfJMVcI4SWZEkIIMYjs2bOH7du388477/CLX/wi3MMRQgghhiw55grRPyQoIYQQg8iNN95IZWUlV1xxBWeddVa4hyOEEEIMWXLMFaJ/yPINIYQQQgghhBBChIUl3AMQQgghhBBCCCHE8CRBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIUEIIIYQQQgghhBBhIUEJIYQQQgghhBBChIUEJYQQQgghhBBCCBEWEpQQQgghhBBCCCFEWEhQQgghhBBCCCGEEGEhQQkhhBBCCCGEEEKEhQQlhBBCCCGEEEIIERYSlBBCCCGEEEIIIURYSFBCCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFrZwD0AMDh6Pxu329Hg7NpsFl6vn2xmKZG6C5ecfZsyYsb7vZX46JnPTMZmbjvXG3FitFiwW1UsjEl5yzO17Mjedk/npmMxNx2RuOtfT+RnKx1wJSogucbs9VFU19GgbFovC4YijpsaJx6N7aWRDg8xNe1/96lX861+vAzI/nZG56ZjMTcd6a26SkmKwWKy9ODIBcsztazI3nZP56ZjMTcdkbjrXG/MzlI+5snxDCCGEEEIIIYQQYSFBCSGEEEIIIYQQQoSFBCWEEEIIIYQQQggRFhKUEEIIIYQQQgghRFhIoUshhBBCCCHEoKG1xuNxo/u5nqLFomhubsblckkxxzZkbjrXlflRCiwWK0oNzQ4bnZGghBBCCCGEEGLA01pTV1dNfX0NEJ4T37IyCx6PtL0MReamc12ZH4vFisMxEqt1aHbZ6IgEJYQQQgghhBADnjcgkZCQQmSkHej/K8o2m8LlkkyAUGRuOnfs+dFUVZVRU1NBcnJav41rIJCghBBCCCGEEGJA01r7AhIxMXFhG4fNZgEkGyAUmZvOdWV+4uOTqKwsQWsPSg2f8o/D55UKIYQQQgghBiWPxw3o1gwJIYYmq9XkDAy3ZTCSKSGEOG5ag7MO6mug2Qlul7ndFgGRURCTANFxpnCPEEIIIcTx8he1lA8VYigz7+/+LuIabhKUEEJ0S3MjFB+C0kJFZTG4Wzr/cGC1aZLSwTFSkzHOBCmEEEIIIcTA8cwzf2D16k955pm/hHsoYhiSoIQQokvqqiBvm6L4EGiPCURYbZqkNE1sItijwRphwrquFkWzE+qrobYSyo8oyo8o9m6A5AzN2Kma9DEwjJbKCSGEEGIYevDB+3A6G3jggYd9t73++ms88shPuP32Ozn//IuOa7uffvoxf/rT0+Tl5RITE8OSJUu59977j3ucl1/+Vb70pcuO+/mD1Ze+dB6XX34ll1wy/F77QCJBCSFEp5obYe8GxZFcAIUtQjNysiZjnCYpDSwhOxb5c848Hqgp05QWKI4ehMpiRWWxIiZBM3muJn2sLO8QQgghxPDw0kt/53e/+zX33ns/p556xnFt48MP3+Ohhx7khhtuYe7c+bhcLvLzD/VoXDExMUBMj7YxVLlcLqxWK0o+sPYZCUoIITpUchh2rFG0NCkiozQTcjyMngLWbvzlsFggKR2S0jWT5kJZoebgDhOY2PKRInmEZvoSTWxC370OIYQQQohwe/bZp/jrX//ET37yCCecsOy4tuFyufj1rx/l5pu/xbnnXui7PStrYqfPq6mp4be//RWffvoRLpeLGTNmcttt32HcuPFA++UbLpeLxx//BW+++V9sNhsXX3wpBw7kEh0dw/e/fx8ATU1NPPnk73j33bdoaKhn0qQp3Hzzt8nJmQmYjJDf/vZXfP/79/PYY7+goqKcRYsWc/fdPyQuzqzn/eCDd/njH5+ksLCA6OhosrOn8fOfP4bFYvFlmUyYMJGXX34Rt9vNqlXncfPN38ZqtXYwhsncfPPtvjEAbN68kSef/B179uwiMtJOTs5MHnjgYe6441aKio7yy18+wi9/+QgAn3663jfuu+76AU888TgFBfm8+upb/OAHdzF16nRuueXbvm1fd91XWbp0Gddd900Ali1bwJ13fp8PP3yfLVs2MmrUaO69934sFiuPPPIgubn7mTlzNj/84f+SnJxyXO+BoUiCEkNcXl4e99xzD3V1dURGRnLPPfewYMGCcA9LDHDaA/u3KA5sMxHh0VM0k+dpIiJ7tl2lIG00pI7SVBzV7FmvqCxSrHkNshdoRk+RrAkhhBBCDC1aax5//Bf85z+v8uijjzNnzryg+//85z/yl7882+k2/vKXlxgxYgR79+6mtLQEUFx99eVUVVUydeo0br31/zF69JgOn//DH95NdHQ0jz76G2Jionnppf/j9ttv5vnn/0F0dHS7xz///HO8997b/OAHP2bUqDG88MJfWLduLcuXr/Q95le/eoRDhw7yv//7MxyOVN57721uv/1m/va3f5CWlg5AQ0MD//zni/zv//6UxsZGfvCDu/nrX//EDTfcQllZGffd931uuulbLF++kvr6ejZuXBc0jrVrP8duj+I3v3mK/PzD/PSnPyY1NY0rrrgq5BjeeefNoDEcPnyI22+/mQsv/BJ33HE3AOvWfY7Wmp/85BGuueYKLrroS6xadV7QfhsaGvj73//K979/P7GxscTGxnb68wn0pz89za233s63v30Hv/rVz/nxj39ISkoKt9xyG1FRsfzoR9/jySd/x1133dvlbQ51EpQY4ux2Oz/5yU/IysoiNzeXm266ibfeeivcwxIDmMcDOz5THD1glmrMPEmTNrp396EUODJhyTmagzs0uVsUu9ZaqCzWzFiqu5WJIYQQQggxkK1e/SktLS385jdPtgtIAFx44SWccsrpnW4jNTUVgCNHCgHvie//Iz09nb/+9U9861s3dBhg2LJlM3v27Obf/36LiIgIAG6//bt8/PEHrF79Kaee2n7f//zni1x11ddYtmwFAN/97j2sWfOZ7/6ioiJef/01XnnldVJSHAB87WvX8+mnH/P222/wla9cDUBLSwvf/e49jBgxAoCzzz6XDRtM4KG8vAy3282KFacwYsRIACZNmhw0Drvdzl133UtkZCQTJmRRUJDP//3f81xxxVUhx3DNNdezevWnvjH89a9/YubM2dx22x2+bU6cOAmAqKgoLBYLMTExOBypQfttaWnhO9/53jEzUEI599wLWLnyNMDU6rj99pv5xjdual1q4+Hccy/k1Vf/2e3tDmXy0X+IGzVqlO/rrKwsamtr0VrLmqgBrKXZFIhsrDff2yIgNhGiYvs+i0B7YPuniqKDiqhYzfzT+3ZZhcUKWbMgZaRm68dQdFDhrIe5K4dZHyQhhBBCdNv2zxQlh/t3nxnjYMbS7j1n0qQpVFSU8/TTT/Dznz9GVFRU0P0JCYkkJCR2aVsej/mMdPXV17FihclauPfeH3P++WeyevUnIetU7N+/l/r6OlatOiXo9qamJo4cKWj3+Lq6Oioqypk2bYbvtoiIiKCAQV7eftxuN5dddmHQc5ubm4MeFxsb6wtIADgcDiorKwETgJg7dz5XXfVllixZyqJFS1i58lRiY/2t2iZPnkJkpD9VNydnJr/7XRl1dXVdGsP+/ftYvvzkdq/xWOx2+3EFJAAmTvS/fm+wZMKErIDbUnxzIAwJSgxw69at45lnnmH79u2UlpbyxBNPsHLlyqDHPP/88zzzzDOUlpYybdo07r33XmbNmtVuW++99x7Tpk2TgMQA5GqB3RtbyN0BVSWhW1LYYzQZY2FMtul20Rf2bWoNSMRpFp6h+619Z1KayZrY9D5Ulyq+eNNkbAghhBD9ra6ulqioaGw2+ZgsekdGRgb33/8Tbr31m3z3u7fxyCO/DgpMdGf5hsNhTnLHjh3vuy86OpqMjBEUFxeFfK7T2UBaWjq//vXv292XkNDx1ae25wxa+y8aOZ0N2Gw2/vjH532Ps1oVbrcOWurQ9vdIKYXWntbHW/n1r3/Ptm1b+Pzz1bzwwl945pk/8Mwzf/GdzHd03qJU6DF4dWe5RShtA0cAFoslaA7A1N5oK/A1e4cVfJt/DoQhf20HuIaGBrKzs7n44ou59dZb293/+uuv89Of/pT777+f2bNn89xzz3H99dfz5ptvkpLiL55SWFjII488wpNPPtmfwx/QmhqgoRaam8BqhchoiEsyhRn7i/bAod1wYBu0NDUDCnuMJtEB0XGmZWZzo2nHWVMOh3crDu+BzCyYMl8T2f7v5XE7mgcHdyhskZoFp/VfQMIrMgoWnKHZ8jGUFShqK8xr783XKIQQQnRm69bNvPTS/5GWls4NN9zsu0LbWG8+J/TnZwRxbDknajixf/dpsylCnIceU2bmKB5//A/ceus3ufPOb/Pww7/ynfh2Z/nG1KnTiIiIoKDgMLNnzwGgqamR0tJiMjJGhHzulClTKSsrJSIiosPHBIqLiyMlxcHOnTvIyTEXOltaWsjN3e+rFTF58hRcLhfV1VW+x9hsFlyu7p1sWywWZs+ey+zZc/na177Beeedztq1azj77HMB2Lt3D83Nzb7fxR07tuNwpBIbGxdyDG1NmjSZjRvXc80114e832aLwO3u2piTkpKpqCj3fd/Q0BAy00R0nwQlBrgVK1awYsWKDu9/9tlnueyyy7jkkksAuP/++/nwww955ZVXuO666wCTgnXTTTfxgx/8gHHjxh33WCyWnmVYHN6t2FjgxGJTxCaamgLJaebEu780NkD+big6BPXV7V+P1aZJGQFjsk1Bxr5MKmmoha2fQFWJAgUTptsYOdFFfEro/TY1QGGu5sB2OJKrKD8Ks5dDyrGPLV0ay441gNLMORniksKTTWOJhHkrYeP7GrcLNr2vWHQWWGxmPD19Dw5F3jmRuWlP5qZjMjdCtKe15u233wQ0paXFrF//BUuXLqO2Eta8ZiF1lGbeqT1bXlhTDps+UMxarklO751xi8HDG5j41rduCApMdGf5RmxsHOeffxHPPPMH0tMzSE/P4LnnniE2No6lS08K+ZwFCxYxffoMvve9O7jxxlsZNWoMpaWlfPrpR5x77gW+DhyBLrnkUv785z8yatRoRo0azQsv/IXm5iZfRsLYseM59dTT+fGPf8Att9zOpEmTqampYs2a1cyZM4+5c+cf87Xs2LGdDRu+YNGiJSQlJbN580acTmdQFkhTUxOPPPITvvKVq8nPP8Rf/vIsV1zx1Q7HUFlZyRdfrPGN4corr+Hqq7/Mr3/9KOeddwFKWVi3bi3nn38RUVFRjBw5ks2bN7Jy5alERESSlJTU4Xjnzp3P73//OGvXriE9PYNnn30KkONob5CgxCDW3NzMjh07uPHGG323WSwWli5dyubNmwFwu93cdtttXHrppSxbdnyth8BEPh2Onl0631nRSEmBu/U7Re4WiEtUZM+LYPIsG1Zb3/1Su1o0W1e3sGdTC57WISQkK5LTLUTFmIh3fY2HsiMeSgugtAASUxVLTreTmmnt9fFUlLhZ+3ojTU5IybCw9Gw7iQ4LYO/4SQ7IHANzTtCs/6CZvB0u1r0Fy861M3bK8f8qa63Z/H4jHreHmSdEkD2zhy02esGpl2gifqyoLlPs22Bl6dlmXpKTe5aKN5TJ3HRM5qZjMjdC+BUVHaW6uorISDvNzU1s3ryJpUuXUXHU3F9WqICuByWanCYAMXGWv2D03g2KpgbFujcVZ1wl6dvDUWDGxF133c5DD/0y5FKBztxyy+1YrVbuv//7tLS0kJMzm1/96nchi1yCOT/4+c8f44knfssDD9xHTU01Dkcqc+fO73D5xle+cjXl5WXcf/+9RESYlqCzZs0Jqu9w770/5tlnn+Kxxx6lrKyU5OQUcnJmcdppZ3bpdcTGxrJ58yZefPFvNDQ4yczM5M47v8+MGTm+xyxevIS0tHRuuul63G4XZ599Hl/+8pVdHsPYseN49NHH+cMffsurr/6TqKhoZs6cxQUXXAzAddfdwCOP/ITLLruQ5uZmPv10fYfjPffcC9i7dw8/+tE9REVF8bWvfYPCQsmU6A1Kt10YIwas7OzsoJoSxcXFLF++nJdeeimohsTDDz/Mxo0b+fvf/84HH3zALbfcwqRJk3z3/+Uvf+l0/VgoLS1uamqcPRq/UooISzSlxU4qizUl+VBRZAIRcUmamcsgMfUYGzkONRWw+QNoqFVYIzRjs00mREx8+8d6PFCaDwd2tGYwoJk4CybN7b2siapSWP82uFoUY6dqpi4EW4QiOTmWysp6XwGjY8nfCztWm3HNPQXSO+4C1anC/bDtU0Vckmbpeab45EBw3rlnc8fVb9BYr5i2COad1L35GS4slu6/d4YLmZuO9dbcJCREExExQP5oDBBOp5NVq1Zxzjnn8J3vfOe4ttHS4qaqqqFH47BYFA5HHOXldfL+b6Ojufn88zX897+vcvLJp7B9+zbKykq57bbvUF+ayp51Jq2zO4GEfRsVB7YryioOU2H7J1OmTCEzdhVHclW3t9WfBup7x+VyUVZWSGrqqLDW+zieJQpDgcvl4tJLL+B//udyLr/8ypCP6e25efDB+3A6G3jggYd7bZvh1JX56ex9npQUM2SPuZIpMQQFdtdYuXIlO3bs6JXt9vTAZLFAfJKFZrcmPkUzdhrUVmj2rFdUFCk+/69pB5l5fIVuQ6oogs0fKFwtitTRmulLNFEx5r6OCimmjYHU0XBkvxlb7laFs14z/QTd47WkjfWw8T0zngkzNZPmaFD+sXg8usvzPKo1zrRjtYXNH2pOOLf7BTDdbnPVBmD6kuCxhJuywJyTNWvfgN3rYcJUDx5L1+dnuOnOe2e4kbnpmMxN73viiSdCFpsWA19+/iEAxowxS10//PB9du3awbjUjpfRlhaYiwOpo9rfZ7FptIbVm14keWwJxcVHOWXxNMBU4fd4pEaFGLiOHClk48Z1zJo1l6amJv7v/56nurrK1+pSiN4kfwoHseTkZKxWK2VlZUG3V1RU+IrhDHTxKTD/dM3UReZMePtnFg7t6p1tVxbDhndNACBrlmbuSn9A4liUglGTYdHZGnuM5kiuYsdqRU/yitxu2PyhorlRMXqKZvJc3ePsi1GTYNIcDx63Yusnyrc0pasK90GTU5E+VpM0ANe2Jjhg8lyN9ihWv97Y7dcnhBD96eDBg+Tl5XVaC0qEX20lHNjVvlJhfr7pLTl69BimTp0OwO7dO3F3cOzRGja9b2Hje6E/TlssUF5VQE1dqe/zw/7c7b77G+t68CKE6GMWi4X//OfffP3rV3HLLV/n6NEjPP74H4LaewrRWyQoMYhFRkYyY8YMVq9e7bvN4/GwZs0a5syZE76BdZNSMHYqzFmpsVg1e9ZZKD7Us20660wAQHsU2Qs9TJpzfAGAuCRY3BqYOJqnONyDgEneVkVNuSIpTTN1Ye9dmZyQA0npmtoKk9XRVR636bYBkDVz4F4pHTcdUkZoqso0B3on6UcIIdpZt24dN9xwA8uWLSM7O5sPPvig3WOef/55TjnlFGbOnMmll17K1q1bg+5/6KGH+H//7//115DFcfrsVcXq15uorfTfVldXS2VlBWlp6cTExJCZOYqEhER2bj3M1tX1vscFXpxwNbffdkuzyZ5ocoKrWXGocAsAixaaAoSH8vf5n38cHRyE6C8jRozkiSf+yFtvfcRbb33Eb3/7FNOn5xz7ib3o+9+/b8gs3RCdk6DEAFdfX8+uXbvYtcucDRcUFLBr1y5KS0sBuPbaa/n73//OK6+8Qm5uLvfddx+NjY1cdNFF4Rz2cUkbDbOWm6P99s8UdVXHtx2P2yzZaGkyNRvGTevZuKJiYW5rwGTvBkVlSfe3UV8DB3eYVM6ZJ+lerdugLDBzmcZi0xzaabp0dMXRA9BYr0gdpUlw9N54eptSMGOpueKUt9V0UBFCiN7mbcH9wx/+MOT93hbcN998M6+88grZ2dlcf/31VFRUAPDuu+8yfvx4JkyY0J/DFj3Q3Oj/+vBhkyUxZsxYwNTBGj1iOuVHoLDYf0UiMBDRFFBqyxus2PqRYtP7FrZ+rGhu0hws3AJKMTfnJFJT0yirKMHZWAuAR4ISQggBSE2JAW/79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899hilpaVMmzaNp59+mpSUlHANuUfSx8DEOR5yN1vY+jEsObf7dRwO7YLaSkVyhmbKgt7JAEhwwLRFmh1rLOxeC0vO0V1uZao17F5rsjYmzfEQ3bMmJiFFx8HYbJP5cGA7TF107NdduM9kSUzIGbhZEl6xCTB1fgQ717Wwb6MJwgghRG/qaQvuLVu28Prrr/PWW29RX1+Py+UiISGBb3zjG8c1np62a5W2r8dmsSjfZ4yCgsOAYty4cVgsZjlkc0kO8Dn5RTuZNG4RAPs3KSbMNMWyWwKCGmiFxWouQoBptV1efQBnYw0ZqVno5kTGjBnLzk1lVFQXMipqKh6PGpA1JQbqe2egjUeIvmT+Pg2f97wEJQa4xYsXs2fPnk4fc+WVV3LllaGr4A5GWTOh4qimslhRsFczdmrXn9tYD7lbFcpiilr25sE+cxIU7tdUlSoK9mnGZHfteZXFUH5UEZPQ86yNzoyfocnfAwV7YXwOndbPcNZBVakiKnZg1pIIJWdJBLnbmzmapxg/QxOfHO4RCSGGi6604L7jjju44447AHj55ZfJy8s77oBEb7Th9pK2r6GY5Rjx8VE4HCZ1saKiGLvdRkrMFJKTY6mv0WQ4soiIiOJoyT5crmZstkjy9ypczVaWn2/no3848bYITYiPNS3GW8y2PW7F/gPbABg/ag4N1TamTZvEO69toqKqkFEZU4mNjsLhGLgfxQfae6e5uZmyMgs2m8JmC280J9z7H8hkbjp37PlRWCwWkpNjgtqvDnUD9y+hGLaUgqkLNWv+C/s3K0aM10R2sX3z3g0Kj8t0tuhuJ4oujWuR5vP/mislIyZoIrrwt+LQLhPlnDird5dttBUZZVqdHtxhal9Mmd9xNoG3ZseI8b3X6rSvRUQqJuTA7nXmNUq2hBCiv1RWVuJ2u9sVkXY4HBw61MMiSCG4XJ4et+GWlridMQe+6upGbDGaumo3X3y2H3dzBHvWJuFqrMcxEiwWK6MypnKwYDP5RTuZMHoOADUVLjZ+4sJZ5z+AlpXWExll6kgANDnd7N67BaUsjBmZQ3GBi6xRKbhcmvKqAgAO5zZiTxg4rbi9Bup7x+Vy4fF4cLk0EL5WYcO1JWhXyNx0rmstQTUej4fKygZstuDCNUO5DbcEJcSAFJ8CY6ZA/h6zHCG7C8swnHVQdAgio3SfFW5McEDmRDiSqziad+wsjoZaKM2HyGhNxrg+GVKQsVM1B3coig7B5HkdBxyKDpo7RkwYOB82umL0FMjdoik6AJPm0CdLYYQQoqsCW3AHuvjii3u87d46GZS2r6GYn5mrxczNG38/QtkRNyPTJ6KUoqxQExOvAUXWmHkcLNhM7uF1vqBEkxOaGoO3aLbl33Zh8S5q6xoYlTGdhMQYmhoUaWkj0RoqqgsBOLBd0eTU5Jw4MH8+A+29M5DGIkRfG2i/f31N8mvEgJU1S6MsmsL94O5CMajDuxVoxegpYO3DcNvYqeYPRP7eY7cIzd+jAMWYKX2bJeEVFQuJaZrGOkVNeejH1NdATblZTjLYlkDYImDsNI3Wytc5RAgh+tpQaMEt2vO2mS4sMEUu01LM1QOlzHJQgBGpk4mNTqKodD8jppQSFadxtSjf/V5uV3DhzP2H16PdMHn8AuzR5jYLkSTGpdPgrKaxyfQDPZIrxzIhhJCghBiw7NGQMdakQhYd7PyxrhYo3A/KohmT3bdRxQQHJDg09VWKqk46cXg8/jGNntKnQwqSMc68/uJDoT/olBd6Hzd4lm4EGpMNFqvmSF7XglVCCNFTQ6UFt6A1m8HwHkNKK01QIjXZ23kDnPXmADn/dDhp5QISHHCw5GOiW8ssVJcGb9ft9gclauvLOVK8B7s9lnFjs7HZze2uZkhJHA3gW8IhhBBCghJigBs9xZxgF+zt/Oz56AETvBgxHt8Vib40Zoo/W6IjVaVmTI6R/TMmrwzzmYriQ4TM5KguN2NOTh+cKWGRUaZLi7tFUZIf7tEIIYaK4dSCezgLbMPpzZQoqzgESvmCEi4XNLR20YiOhQsvP4GMMZFs2LCeZncVAE1OhVKazInat93m1jIgO/d/hNYepk44kehYq6/+VN42RXy0CUpUVBX26esU4njdeOPX+Oij933f79u3l+uu+yorV57ANddcQU1NNeeffyalpZ1cmROim6SmhBjQkjMgNlFTXaaoKdckOEI/rqQ1K2D05P450R4xAfas15QcAvdSsIZYmlFeaMbkyOzfk//oOEhI1dSUKWor2s9ZdWv2cUdzORiMzNIUHVQczVOMPI66GFqbeSg+qGiohZbm1nlL0Saw1UnnEiHE0DTcWnAPV2538NeVlRXUO6tITswkMsJU1W6sNzWhrBGa2ARQlhhOOGEpH330AV9s+S8zRpmOZ1GxZlkhtC7faIKaulIOFK4jIiKK7KylRMfiC0ocyVWkJo0BoKzKRNUt1sF5gUB0zbJlCzq9/9prv851132zX8aye/cunn769+zevROn00lqaho5ObO4++4fEBFh3siffPIh9fX1LF++0ve83//+cdLTM3jwwUeIjo4iISGRs88+l2ee+QN33/2Dfhm7GPokKCEGNKUgc6Jm30ZFaUHoE2m3y7TdtEVqEtP6Z1xWGySPgNJ8RXWpJmVE+8eUHTH/p47qnzEFShttghKVJcFz1tIMDTWK6LiudzQZiByZEBGlKT9i0mW781oaamDbp4rqsuAsl6oSOJqn2LvRBCamzNf9muEihAiv4diCezgKXPbnccGBA3kAZKRm+W73dtBIGalRrTnFJ510Mps3b+JA7lbi2Mq4UbOIivV3znC7oblJ8/nmf2KxeZg+/mQiI6KJivVvAyA5MROlLJRX5qN1/9SbEuHz6qtv+r5+/fXXeOWVf/DUU8/5bouO9l8F0Vrjdrux2Xr/9KyysoLbb7+Z5ctP5pe//B0xMTEUFhbwwQfv4fG4AROU+Mc/XuTss88LKuBbWJjP//zPlxkxwv9h95xzzuOaa77CzTd/m/j4+F4frxh+ZPmGGPAcI83/FUWhl0pUFoPHo1rbd/XfuFIytG//bTU5obbCnPzHhOFvtbeAZV1l8Jx5i18O5iwJMD/nkeNBa0XRga4/r+QwrPmPCUjEJWumLvKw5BwPyy7yMP80D+Oma6w2E5xY85oJhAkhhBg6PG0yJQ4eNAeRDMeEdo/1HucB7HY7F1xwMbYIxepNL1JSfgB7NFht5jGuFs2Hn7xGSfkBRo4cwfRJywGIitVERPq3Y7XaSEoYQWNTHQ2N1RKUGOIcjlTfv5iYGCwWi+/7Q4cOcsYZy/n889Vce+0VnHzyEvbt28ODD97HvffeGbSde++9kwcfvM/3fVNTE48//ksuuOAsTj/9JG688Wts376tw3Fs27aVpqZG7rzz+0yePIVRo0azaNES7rrr+9jt5spOZWUlGzeu48QTT/I9b9myBRQWFvCrX/2cZcsW8MwzfwBg7NjxpKen8+mnH/XibInhTDIlxIAXn2KyIKpLzRWOtp01yo6EZ5lEcmvAuKJIMXF28L7LA7IkwlFM0heUqAq+vaZ16UZi6uBPFx0xQXN4t6KkQDF22rFfT3UZbP1Y4dGms0vWLB0UxIqJN++hibNh7wZTx2TTB5BzoiYzq+PtCiGEGDzcbWpKHDiQB0qR7jB/6DMnakZN1jjrTP2iQJMnT+H0M87mhWff4N3VT+GJWcn06TmUlDex+98fsHvXbuyRMVxx5ZXkbzHRhqjY4K4cAKnJY6isPkJZZT6O1MS+fLlD3j//+SK7du3s133m5ORw4YVf6rXt/eEPv+GWW24nI2MEiYlJXXrOr371CIcOHeR///dnOBypvPPOm9x++8387W//IC0tvd3jU1JSaG5u5tNPP2b58pNDtjLeunUzMTExjBkz1nfbq6++yde/fjUXXfQlVq06LyizIzt7Glu2bOLss8/t/osWog0JSogBTylIGQElhxVVpdqXOeHlCwBk9u+44pMDgiXu4LoSZWGqJ+EVFWvWwtZVmfoJ3mOPt8hlwhDoYJfgMK+xqtRUU+8sS6axATZ9oPB4FNkLPYyb1vFjbREwfYkmJUOz7VPF9k8VIIEJIYQYCgKDEpUVlZSVVpIUn4k90pxsRdghOd38C2XlKcvJ3WBn/fbX2LDlHTZsfYfKIkVSuiYhLpW5c77KiBEO8reYx0dGgfYEb8ORNJp9rKWiqgCLNacPXqUYTL7+9ZuYP39hlx9fVFTUuhTkdVJSTOrrNddcz+rVn/L222/wla9c3e45OTmzuOKKq/jhD+8mPj6e6dNnsnDhYs466xzf8ovi4qOkpDiCAhYORyoWi4WYmBgcjuAPj6mpqeTm7j+elyxEOxKUEINCSoam5LCiskjhGOk/0W+sh/pqRWyiJiq2f8eklCnEGaquRG2l+b+jDzX9Mba4JKguVTjr/EtIasoApUkYAnXZLBYzv2WFpghqUif1RPZuUDQ7FaMma8ZO7dr2R0wAZdVs/Uixc40iPln7MlB6g9bmfVJXCS1NYI0w2RqJaaELpwohhOi5wEKXGz7fT+E+RXaWP+psi+z8YoI9GqZMOIGR6VNojlnD0aICYrSd+SdMZmzGAqqKorDazNLAiiLzOaGsTaONJStH8/lmKKvM79dlp0PRJZdc2u/7tNksuFyeYz+wi6ZO7eRKSQh5eftxu91cdtmFQbc3NzczadLkDp93003f4vLLr2T9+i/YsWMbzz//HM8//xxPP/1nUlPTaGpqIjLS3uVxREbaaWpqPPYDhegCCUqIQcG/VCL49orWeg5tsyf6S0qGpjRfUVmMLyihNThrIcKuiej63/ZeF59k+qjXVZqT3SYnNDYo4pK0r1r4YJecoSkrVFQU0WFQoq4Kig6YwpjZC3S3ltNkjIXJ8zR7N1jY8hEsOafnc+fxQP5uOLxb4axrPxhbhCZjPGTN1ETH9WxfQgghggW2BC0s3g3AqIxs323H+hvvPYbExzqYd9oqXE2w9RML46draivMfVYbxCb66zcFfhaIT9FMnZOOzRpJRXUhbvfgX04peiYqKriqtlIK3aanu8vlf+M6nQ3YbDb++Mfn2y3DiI3t/ApdcnIKp59+FqeffhbXX38jX/7yRfzrX//k+utvIDExidrami6Pu7a2hqSkXrxaI4Y1ic+KQSEuyZxUVpeBq8V/e0ON+WMclxyeg3pyhvm/qsR/UGhqMIU3w1HgMpB3TmqrzPdNDeb/cI+rN3nnv7K440hD3lYFKCbkHF9AYdx0SB2taahR7N/UswIhtZWm0Oae9RacdYqEVM2EHE32Ag9ZszTpYzQeNxTuU3z2qiJvW/u0XyGEEMfPmynhdrs4WrofmzWSDMdE3/1dOU5Ex5nja2wCWFov7zXU+rMk29a+8rYE9d4XEWEhJSmTlpZGKipLjveliCEqKSmZiopy3/cej4e8vFzf95MnT8HlclFdXcXo0WOC/iUndz0VNi4uDofDgdPpBGDKlGzKykqpr6/r0vMPHjzA5MnZx36gEF0gQQkxKCgFiQ7TbaGh1n+7s/XvZriuKMckmP8bG/y3eccX7pP/uDYdOFqazfe2yA6eMAglOEzl86oSk4HQVn01FB2EyGjNmCnHtw+lYMYJGmuEJn+PaSl6PCpLYN2bivoqRfIIzQnneViySjN5nmbcdJg0RzNnpWbFpaYIJxr2b7Kw5WMVtAZaCCHE8fNmSpRUHMDlaiIjbSLWgChCV4ISS87RnHiBh+g4fwCi5LCiudEcb9sGJWxtghLWCEhLGQ9AUUk3WkiJYWHu3Pns2LGdd999i8OHD/HYY49SXV3lu3/s2PGceurp/PjHP+Djjz/kyJFCduzYzrPPPsWmTRtCbvOzzz7hf//3h6xZ8xkFBfkcOJDH73//OAcO5Pm6bUyenE1CQiLbtm095hibmprYs2cXixYt6ZXXLIQs3xCDhrdmRFMD0BoIdoY5AGCLMMUWmwKDEq0nrdFhDkrEJ5n/vR04XK1BiYghFJSwWCApHcqPhK4rUXwYQDEm29PuQ2J32KNhwgzN/s0W9m2C2Su6l5lTUw4b3lF43IoJMzWT5nS8jCQi0gQoRk6ATe+bD7ob3oX5p+terTWhtVnnXHRQUVVq6rOgwR5jgj0Z4zQZY5F2dUKIIcWbBe9fuhFcaKgrQYkIu39JRlRM+/uPlSlhscD5V49n5w/haMkBYHEXRy+GgxNOOJGvfOVqfvWrn6O1h//5n8tZuDD4PXLvvT/m2Wef4rHHHqWsrJTk5BRycmZx2mlnhtzm+PETiIyM5Ne/fpSSkmKioqIYN248DzzwMPPmLQDAarWyatW5vPPOmyxZsrTTMX722Sekp2eQkzOrd160GPYkKCEGjagYDShz8tSqoQ6U0thDfCjoL/Zos4zE1WKWBzTUmrPNmPjwrhONsIM9RlNfY6qN+zMlhtb61eQMTfkRRXVp+7oS3i4oaaN6vp9x0yF/j6b4kAmAeNcKH4urpbUVqVsxaY6HrC4ev2MTYdHZmo3vmeVBO1bDzGXdq4nRkaoS2LlW+bJoACKjzLYb66GxXlFyWLEnWjNlnmZkVnha2wohRG9rrDfr9fOPbAfaByWs3VzmF+rzh2qThxwY3PUGlydMGIfFYjIltNYhWzSKoeWSSy7jkksu830/b94CPv10fcjHfvObN/PNb97c4bYiIiL4xjdu4hvfuKlL+x41ajR33XXvMR936aVf4eqrL6O0tMTXWvQf/3it3eNeeukFrr76+i7tW4iukKCEGDTsrZkSjQ2mRaPbBc1ORUy8Dmv1anuMyY5octIalDC3e5d2hFNsAjQ1mA4criG4fAPMawRvMMgfcGlpNoU+I6M18b3QbcRqgwk5mt3rFAX7FNMdXQvu7P5C0VCrSButmTCze/uMjIK5p2jWvg5FB0wHkAk96B6nNRzcAfs3KbQ2NS3GT9M4Mv1X/VwtUFWiyd+rKM2H7Z9ZKD6kyVmm+zTLprnRZJQ0maWtRMWY1rVDKbNHCBEegW27G+ugtOIQ9c4q0h3jiY1OCnpsd2sPhXp8Z/EFbw2KqKgoUlNGUVxSSFlZOWlpQ6BXtxj0UlNTufPOeykuLvIFJdqqqalm2bLlnH566KwMIY6HBCXEoOFNkfQulQh3PQkvb9HkpgZzguxdUhLucYE5qQXTcrKl2XxKGmoned55drapy1R+xNQgSc3snewCgJFZsHeDpugAZC9on6LbVnUZHMlV2KM1M5Ye3zjs0f7ARO5mRfpY7QvEdNf+zYoD2xQWq2baIg+jJrX/8GyLgNRRkDpKU1kMO1ZDaYFiwzsw71Tte0/1Bq2htAAO7TLtfkNxjNSMnaZJHSXZGkKI7juw3QRiJ+TApLkaZx0cOrKF0ZOszJrcPnWtzwP3AfHskRlZFJcU8q8/HWDVRamMmtTH+xaiC1asWNnp/QkJiXzlK1f302jEcCGFLsWg4Q1KeItKejMSwl27wZu62eQ0J1kNtabORG+evB0v79XvliaGbKaE9+ffNijhXbqROqr3lqtE2CF9LLhaFMWHjv140/kDJs7u2fshPhmyZmk8HsXuLxT6OF7S4V1wYJvCFqFZdJZm9ORjn+QnZ5iCbskZmppyxfq3VVD3m55obICN7yk2f2ChskgRFaMZOcEU+cyapRkxXmOP1pQfVWx638LGd1W7n3Ff0Brqa0xQq6wQairA4+77/Qoh+kZthckMy9umWn+/PeQf3UpcooVZc9qnr/V1y+zAosyjRpquH4fzc9mxWj6SCyGGL8mUEIOGvW2mhC8jIbw1EuyttS6aGkwKutuliE/pvavzPREqKDHUMiUiIk2dDGe9OaFUyvxffgRQGsfI3t3fqMmaooOKwv2KzIkdv/dqK0yGgT1Gkzmxw4d12fjpcCTX1M8oOazJGNf159aUw+71JkNi7ildr4cBJog171TNpg+g4qhi5xqYeVLP3t815bDhXUVLkyI20XQgSRvVfh22xwOlBZr9mxTlRxVrXoM5KzUpI45/3x2pr4HDuxRFB6GlKfjFKYsZ3+hs834aCL/bQoiuCQwCtDRBfuFeWjx1ZGfnEB/f/qrG8RRFTs7QnbamDhTY5nnUiAlYLFaOlu7FE6qFlBBCDBMSlhWDhi0CbBGaxtaTT2edt6BkeMdl9y7fcKoB0w7UK9JuTpqbm4ZmS1Cv6DjwuBTNjeb7Jqf5eSSk+AMzvSVlBETFmQ+gga1g2zqw3bw/J+ToXulgYbHC1IXat+2uZkt4PLBjjQKtyF6gSc7o/r6tNpi9XBMVawIy+Xu6vw2v2grTiaSlSTF6imbJOZr0Me0DEmAq1GeMhSXnasbP0LhaFBvfU5QWHP/+2/K4Ye8GxWf/UuTvMZkgiamazImaUZM0jpEaqw1K8hUb37Ww4d3gtsR9paUJSg63pp5vVhzaaTI3eitTRYjhIrClcmM97Dv0BVYbLFmyJOjvji3StPk8nqDjnJXmb0VXBMYe7FF20h0TaG52Ul6V3/0dDzP+n83QKtgtRDDz/h5uF0AkU0IMKvZYqK8ynS4aBkjthsAMjnC3KG3LnymhhmymBJj3QG2FWcJhj8bXocXbRrY3KQWpmVCwFyqLYeSE9o9xu6Ak3wTRenONsCMT4pLMUorqsvYtUEM5vNukLyelaUZPOf59R9hhzsmatW/Avo2KjHHaF5DrqiZna4ZEs2L8DJMh0ZWDrtUKU+ZromI0u9dZ2PKh6UzSnYyPjsaz8T1FbYVZ1jI+x8OYKe0DWR43FB/W5G1VVBxVrH7NBGnSRvds/6HUlEPeNkVJPqADJ8d8bbGaLJkJOZq4pN7fvxBDTeDyq/KyKgqKd5HiiGXmzJlsX+f03RcTb7oeHY+ISMicZJabdWc8FitkpmdTVLqfI8V7gDHHN4BhwmKxAorm5iZsfb3ORogwcbdGUi3DrCe7BCXEoBIVA/VVrQEAb6HLAZIp0dhgWoMCRIe5HahX4PKNoZ4pAeY9kZTmX+LTF0EJgJQMTcFeRWWxYuSE9j/r8qPgcSvSx+jjSgXuiFIwdppm5xrF4V0m0NAZtwsObFUopZl+Qs+XFCU4YOxUOLRTsX8zzDih6+9zrWHXWkVzo1n20tWARKCx08Dj8bB3g4UtH5l6F8ebCdPcCOvfVtRXK5IzNDkn6g4DnBarCT5ljNXkbTO1QjZ/ADNO1GRmHd/+2/JmbBzebSYlMkrjyNQkODQ2m8l2qq0wWSJH8xRFB0yb2klzeicTR4ihKjBTYuPG9aA107IXYLVag353etrFK30MJKVrMrNC/10cN11zaGfwMcNiNS1JN+74L4XFu4HTejaIIU4pRWxsAjU1FQBERtrxBmz7eSS4XAPjc97AI3PTuWPNj6a2tgq7PWbYtQmWoIQYVLzFLp315gQ0wt63bQq7IrDQZVWZ+To+OXzjCdS2poRSvXuSPFCYuiL+QojeZRVRMX1zYExqXQJRWRz6/tICcyBJG937+x85AfZt0BQfMhkhnWXlFB00XVcyxvXeVfWsmZoj+6FwvwlQdPW9fjQPSg4rouM0Uxcdf4Bk3HSoLtMUH1Ls/Bxmr+j+HLvdJmOjvlqROkoz5+SundhbrCYIEBOv2bFasf0zhT3KtFTtieZGk7FRU66IsGsmzdFkTvK3MPTTuFqgYK8md4vi4A5FdZnJYOntZUpCDBXezAS328WmHV8AMCN7IUDQ732oJWTdYbXBorM6/ns0Zb5mTHZw8NNqhYS4NOJiU6ioLmTv1iqmzErq2UCGuLg4k85iAhPhOfm1WCxSA6QDMjed68r8WCxWkpNDt2Mdyobg6YkYyrwBgJoycyU6Lin80VirFSIiNU0N5gq9NUITnxLuURneE5XmJmhpMVkSQzHw6uvAUasATWO9eZHe90tvi4qBmHhNfbWiuTG4s4bWUFaAKbLZw5PVUKw2yJxkshWKD2smzAj9OK3xXXUfO7V3O5BkzdbsWWfhwDaYtfzY23a7Ye9G87PJOVH3qLq9UiZDo7oUig8pKou7Xycjd7NZspGUrpndxYBEoMyJgNJs/9TC1k9MxsbxLiNrafYHJJLSNLOW604zfGwRMH4GjBhvio9WFiu+eNOcDElgQoj23K1BiQMFm6ipqWH0iBkkJ6cCwdkRfZ1xpFT7ILLFaq7+jx05k537P+KNf+5gQvaJ8rvcCaUU8fFJxMUl4vG4j6sbVU9YLIrk5BgqKxvweML/GXQgkbnpXFfmRykTlBhuWRIgQQkxyETFmiviBXvNL2tianjH42WPgbqq1haUI3SP00B7i/dkudlpCkHao4fmQSImYPkGBCzf6KOgBJh2mQ21JlsisBNGbYUpspmU3ndtYdPHmDTg8iOqw6BEValJ949P1iT1csB99GTI3awpPmyu8h/rdR7JhWanIn3s8RXabMsWCZPnabZ9qtizXrF4VdczLyqK4eAOU+9j1kk6RDZC12RmQU255vAuxdZPTFCgu58htAe2fGgCEskZmnmndj2TKSoWFp6p2fIhlB9VbPkI5p02cP72CDFQeFygtWbn/o/ArpiRfbLv96Q3l28cD+/+x2aaoMShI1uprTyxTzoMDTVKKaxhSP20WBSRkZHYbM1y4t2GzE3nZH46Jx9fxKAS5VsqYT79j5o0MH6pA6/IJ2cMjDGBuaquLKZdJgzNIpcAUW2CEn1Z6NLL+3OuLAk+E/V2huiLpRteiWnmpLqiKHi9dKAj+824xkzt/fa0VhuMmADaozh6oPPHejxwMKATSW8ZMQESHKboZ9HBrj3HW9cCFFMXd56R0BVT5mviUzTVpabGQ3cd3g0VRSZwNHdl95dW2SJg9smauGRNRZFi7/rhd2VFDF+5W8wSNbc7uHhkW243FBTtoKaulBHpE0hLGecLBvRnpkQo3n06kkYTG5NMWcVhjh6u6v+BCCFEmElQQgwqgSf/CY6eV9/vLYFdCHrjSnBvUcqk22uPOVkZikUuwSyhsUebdrEej7emRPe7Q3RHcgd1JWrKzVz35ZUuiwVSRpolTB3VtagoAjDtNvvC6MkmwFC4r/P2pCWHTPvelJG6VzOblDLZEuBfpnIspfmme09img7ZNaW7LBZ/m9a9G1W32nXW18C+TQpl0eQs08f9u2mLgLkrNRF2zeHdiqrS49uOEINJkxNyt1jY+rGF95638OFLHf8NcLdotux+F4BZ01YA/mBAb9aUOB7eoIhSirGZMwHYvHmHtP4VQgw7EpQQg0pgOv6oyQMnI8EbLLHaBk6gxCtwbepQzZQA04FDa0VjvVm+ERndt1e+omJNtoK3Na2X9/uYhL7bN0Bqpnn/lxa2v89ZZwIB8cnHXlpxvBIcEJ+iqatS1JR3/LgjeeZkYfz03v99TRlhantUlyrqqjp/rNaQ15qxkTWz97JHkjMgY5ymqUFxeFfXn7f7C4XHrZg4S/e4MG50nMnaANj1uUJqjImhrm1mhKs59C+01pCXv4WqmqOkpYxjZGo24A8GBGVKhHH5BsC4zFkArP9iC++/YKG5sf/HI4QQ4SJBCTGo2CJNxw2rTTNyfLhH4+et1ZCUHp4PNp2JDAhKDOW23t5ilxVFJjjRl/UkwFypt8eAu8V/hVxrcNb2T1cYbxHNshBBCZMlAcl9vC7Z29qu7Ejo+90uMxZbhCZlZO/vXyn/Eq7C/Z1HGSqKoKZMEZesSR3Vu+PwZmzk7+1aQKCmHMqPmE4k43N6ZwyZEyEpTVNbqSjY2zvbFGKgOlZxw5ZmU9+nucnNlt1vAzB3+tm4WszfiVCZEuEI2lut/hfiSBpNQlwa5ZX5VNUU8+GLFnas7jwTTQghhooBdvokROeUgnmnahaeefzpzn0hOQMs1o77k4dTYKbEQJqz3pacbub+6AHzobOvgxLgX7bjLazZ1AAej+q0TWdviY6D2ETTAcRZH3wmXFHkXULSt+9H7xKVyuLQAYHyo2aJSeqovgvWZU40rW6P5NFpQKBwX2tdixm9X2MjJh4cI022RKggUVsHd5gBjJvee4UplYKpi83P++BOhZZsCTGEhaohUZIPrhbT/vrDFxVr/mPh3y99Sl19BaMyppLumEBLs3lsqJoSkVH9f/wOWj6iFBPHLgAg9/A6wARbj5UFJoQQQ4EEJcSgk5jKgFsiEZ8Mp16hGZkV7pG0F7R8wz7wgia9xZsVUNmaJdBX7UADeffR2BqU8C3d6IegBOBL+6+p9P9ctW7NlFC90+miM3HJpgVuVWnogEBZQWtHmj4s+mmPgdRR0NLYcUDA4zYZJRarJq2vamxMMa+xYF/nEQ9nHRQfMr+Loyb17hgSUkwgqrFOhVzWI8RQESoosfkDC++/YOHjfyq0R1HvrOKTT9/DYrEyb8Y5ALiazGNViO4bfbXUrTNtlxhOGDMPpSzkFWzE0/oiW5r6f1xCCNHfJCghRC8ZqC2Fh8vyjZh47zKa1kyJ2L4PwPi6wXiDEjXm/+h+Ckp4gx91lf6IQEMtNDUoElL6Ph3ZYoGkNNNutm1dCa1bO5EoTWpm344jfWxrJ5Si0L+ElcXgalGkjOy734G0MeZKa1mhv/tLKAV7FVorxmTT7W4bXTF2aveKfwoxGLk76bbhXaKxfttrNDW2MG3ichLj04PuC7V8I7IPCyN3pG1QIiYqgcyMbJqa6iksNkVqpOilEGI4kKDEEPetb32LhQsXcvvtt4d7KCJMArMjhnKhS6WCO170y/KNGDO3vqBErfnAG5PQPxkp0a37qa3y76+qxPzfX11gfK1R23QBqa0wrXuTUvv+CqSvE0pJ6PtL8s3/6X2YsWGxmKUkaEXxoY4f520Zmzmxb8aSNhqi4jQVRyXtWwxdnbUABSgo2kn+0e1E25OYOeWUdvf7ul4EfAoOzCrsL6GKMU8auxCA3XmrAXB3EpRwu+DAdijc3xejE0KI/iNBiSHuK1/5Cg899FC4hyHCaLjUlABIDqih0B/LN6J8yzdMMKK/l2/ExJn/a6v8mRLeq/Sx/RQY8QcEgq/Me1tTOjL7fhzRcRAZramtaH9VUWvtC0qkje7bcaSOMq+1ooMaG846qKtSxCbqPnuPKAuMae1MVHSw42yJqhJ47yUnzrq+GYcQfamzoERjUz2fb/4nAAtnXoDNFoktIvjvUOiaEr09ymOzhghKjMqYRlxsCsVluVRWH+00U2L/ZsW+jRZ2rZXMKCHE4CZBiSFu8eLFxMbGhnsYIoyCa0qEbxz9ISUgOyCqH9723sBHk9P87+zvoERr29G6gEyJJqcKGltfS3SAxaKpKiaouGJDjRlHbGLfj0EpSE43XVeqy4Lvqy7XOOsUCQ7d53OSmGbmorI4dHcAb82L3u7+0VZqa/Cl/GjHjzm4C4oOe6iv6duxCNEXOlq+obXmi62v0NhUx6RxC8lImQa0X5oRcvnGAKgpkeDQ2CIUUyecCMCeA591GpTwZsZ53OqY2SNCCDGQSVAijNatW8cNN9zAsmXLyM7O5oMPPmj3mOeff55TTjmFmTNncumll7J169YwjFQMZhHDpKYEmFoO0XEai63vT0AhuNCl1iZTwhah+y34ExkFVpumtsrjOwn2Ft3sr6CExQoJqWatdkPAVXdf1khC/4wjqbX7SlWbJRwlheaTel/XtQBz1TMxDVzNirrK9veXFbYW/hzVt9kjcUmmvkpNGb5uA4G0hoqjJqsiKa1PhzLs5OXl8eUvf5lzzz2Xiy++mPXr14d7SENSRyfgefkbOHxkG5ljU5ifcx4et7cTUfDvnW/5RkCCQTiOj22DEpFRkL1AkzV2ATabnbz8TdTUhC5Ss2e9orrM/wKkIKYQYjDrgzJboqsaGhrIzs7m4osv5tZbb213/+uvv85Pf/pT7r//fmbPns1zzz3H9ddfz5tvvklKSgoAF1xwQchtv/zyy1hD5QWKYSew0OVQrikB/paxLc2h02J7W2QUoDRNDdDcCG6XIj6l91tOdkQpk5VRW2k+kNoi/fUt7P1YtC06Fqow+45tDUJ4i372V9ZIsqlj17qMxH/yUVNh0jfikvtvOUtlMVQUQ3yK/3a3G8qLTLcS71j7ilKQMhKO5ikqijQZY4Pvr6uE5kZF2igLtgh3p61URffY7XZ+8pOfkJWVRW5uLjfddBNvvfVWuIc16GkdHEDwuNo/pryqkLVbXiE6TnHdDV/iwFr/wS8uUZM6yh8YDAwGjJyg+6TobFeEqilhtUFkRBQTxy5gT95nbNnyOTOXnBq01MTjhkM7gw80Lc39F4wWQojeJkGJMFqxYgUrVqzo8P5nn32Wyy67jEsuuQSA+++/nw8//JBXXnmF6667DoBXX321X8YKYLH07EzL+/yebmco6su5CTw5jYxSQR9sBrq289KV+fG2yewPFouZ32YnOFuLXMYm9O97PDZRUVsJzjpFYqoZi1KaqBjVb8ER7wfhlkbz/vJ4TP0Ee7Qm0t4/g0hwmKyR6lIAMw6LRVFTYYIR8Un98953jIS8rVBVopgww397RZHpUpIxzqRn97W0UXA0DyqOKkaOD76vorVt7shxViwWiUj0plGj/GtzsrKyqK2tRWuNGqjtmQaBA9th30YLyy7y+IKcbTMlGpvq+fiLP+PxuDjzzHPImjSBA2vNfbZITeYkgjoEBQYDZp4UvlbZbYMSSoG1NWNjataJ7D2who8//ozUqGWc/CW7//WH+LWVTAkhxGAmQYkBqrm5mR07dnDjjTf6brNYLCxdupTNmzf3+3hsNgsOR1yvbCs5WWpcdKQv5sbj0UADFiukpccOmg/HERHWdu+5gfjeiUtwUt7gobE2AmjBkR6Jw9F/KSkpac0UHWxBue0kJ1tpcjYQE69ITe2/S2YpaS0cpBmrsuNwRFBT6UFrJ4kOCw5H/6VspGY6KT7sIdISTaLDRCBqKkzqyOjxsf0SDEhM0Gx4p4GqEkVKSozv9630UAvQTOa4/nl/xER52PqJk6piCw5H8HthS1kj4GbEWCvJyUM8faqb1q1bxzPPPMP27dspLS3liSeeYOXKlUGPef7553nmmWcoLS1l2rRp3HvvvcyaNavdtt577z2mTZs2aP7mDlT7Nprf5cL9islzTQAhsKaEx+Pmsw0vUO+sYtyo2SyYf2JQADIu0SzNCFyeMVCC8+0y+hTYWj+Zx8c6mDBmLnmHN7A793NmHllBTHb7bdhjNE0NSoISQohBTYISA1RlZSVut5vU1NSg2x0OB4cOddJvro1vfOMbbN26FafTyfLly3nyySeZOnVqt8fjcnmoqXF2+3mBLBZFcnIslZX1rSfKwquv5ybBYT6EVVSEXps6ELW0uCkvN0UKBvJ7xxoJoNi7uRlQ2OObKS8PsZC/j1gizQlPydEmIuM0oIiI8vjmrj+4PQCKirImysubWrtdKCKj3f06DnOFUVF8tAEXoD2K+hrTnaO6g3XZfSEh1WRKHD5QT1xroc/So2ZsWPvv/RGfbJb25B+sC7rCXFIAtgiFY4Slx79TCQnRREQMnaWCvbGsEqCwsJBHHnmEJ598sj+HP6Qd2Gb+1k2ao32ZElprPt/8T46W7iMpYQRL5lyCzRacJebN5ArsPhVq2UQ4dJYpATBzyikcyN/EztyPaG5ZApglKd4aQnHJmoyxmtwtEpQQQgxuEpQYZLqbBtqbH4h662TQ49ED7sRyoOiruVl0tnf7vb7pPtV2Lgbie8cebX4fG+sVEZGalBG6X+c5Og5AUV+jcdaboIQ9uvd+X7siIsqMobHB7Le+2nwfHd+/cxEZ5f1ZmP2aYpOmBWd/zkdMvKKqBBpq/a0/61u7kUTF9d+cJDjM0p7aKu3rRlNZAm6XhbQxGotVDcjfqXDqjWWVdXV13HTTTfzgBz9g3Lhx/TLu4eLANkVCivYVsNy6+x3y8jcQE53IyiXXEmGzY7UF/4L5ghIDMFOio5oSXvGxqUwYPZe8/A1s2LCGiTknA/5OR0r5i1k3S1BCCDGISVBigEpOTsZqtVJWFtzfrqKiol32hBDHMlA+gA1F9hgTCADIGNf/V+BiAgpLhqPIJbRvjdrQWl+jvzpv+MYRbX4WzY3m+7pq839cUv+OI8o7Hw3+27ztYqN7ZxVcl0S3Zs549w3+AqQJKSGfIjrRlWWVbreb2267jUsvvZRly5b1aH9Sxym06jKF1rBz/8ds2/seERFRrFzyNWKjkwCTBRR4zIu0mzkIbPnpXcoV7rmxtfkUrhTYbMFjypmykgMFm/h83Yecd+kiYmNjfZkgSvmDsa6W3qubM1TfO71B5qZjMjedk/npnAQlBqjIyEhmzJjB6tWrOeWUUwDweDysWbOGq6++OsyjE0J4BVY7HzGh/684R8WYK2v11dBY7x1T/47DGwRp9gYl+rnzhpf3pKPJaTpw1LcGJWIT+3cc3kCVN0gTWPizP9sOegMgjfX+jiTOevNhKHrglWcZ8LqyrPLjjz/m888/p6ysjBdffBGAv/zlLyQkdC9CJ3WcAgUvvXLWWNl76CM27vgvNmskJy+6muSEEb77k1OicTisvuclJJlaN4HbSk4xf7TCPTeuFlPzyctut5GWHgn4l8smxKUxefxi9h1cw6cffcoVX70EZ70HcBIRacWRGgE0YSUCh6N3+1GHe34GMpmbjsncdE7mJzQJSoRRfX09hw8f9n1fUFDArl27SE1NJS0tjWuvvZY777yTGTNmMGvWLJ577jkaGxu56KKLwjhqIUSgqNYTcnuMJjmj//evFDhGWCgp8FB+tHVM/dwWzhZhWl16MwPqawF0/wclvMGR1kyJ8AUlzP9NDSYY0FgPWitiEvo3WBTdOv/OgLIe3sBVVD9mbAx1gcsqV65cyY4dO3q8TanjFCj4quKHH73H7vw3sVkjWbnkWjJSs4Lur6t3Yiv3P6+p2dS6CdxWba2TmLjwz42pDeF/fS0tLhqaXOScaDo5NdZDfQ00Np1GXv5Gnv/jh8xfNI+46DRA4Xa5aWh0A4q6uhbKy1t6ZVxD573T+2RuOiZz07nemJ+hVscpkAQlwmj79u1cddVVvu8feOABAG655RZuvfVWVq1aRUVFBY899pivyvfTTz8dVExLCBFeiamQmKoZNUn3WwvOttJGWSkp8FB2xHzf38s3vPtsqFG0NGka6yAqNnhtdH+NAfzLSLxBibj+Dkp4x9EapAlX5og3GyJkUEIu1HRbfy+rlDpOXuYPq9aajTv+y67cT4iJiwgZkABQFlO3JWWkaYmbnBFYx8X7R9rMx8CYG/+BQ2PGlDnRfJ+YBg21sH9zHDmTV7J515u88fqbXHzhleZ5CiwWk5nlbun9WkIDY34GJpmbjsncdE7mJzQJSoTR4sWL2bNnT6ePufLKK7nyyiv7aURCiO6yRcLiVeE9uKSPtrBjrek2AcFLSvqLCUpARTGAIia+/+fEu3yj2WkKwdXXmNsi7P5q9f3Bm6nS6A1KeOtJ9POcREaDxapDBiVk+Ub3DcZlleH+4NvkNHV2InrYedbtdvHZxv+jqHIr9sgYls25mnTHeN/9I7M0R/PM3z9vMHTeqZqWRh3093DeqR6cdWCLHJhrusdNa//z8haynDpxGXsPruGtV3YQUb+fpOgpKAWW1tcb2CZVCCEGGwlKCCHEIJc20gpKgw5vUAKg5LAZQ2IY6vFG2EEpTXMjOOvB41YkZlhQyt2vQYnIKDOOdoU/+zlTQimTEdFQo3C1aKw2E5SIsOt+z2IZLIbSsso96+HoASfLLgxPC0ztgY9esqAsmkVnmV/Ajv4u1FXBkVzFxNnt35sNzmo+Xv9XyioOM3ZiMnPGX0dCXFrQY6zW9l9bLO3/FqaO6sEL6iOnXmHSOJQldFFqbx0amzWC+Tnn8cm6v/LR6lc59+TbUcrqmy+Pq58GLIQQfUA+lgghxCAXYVfEJ0NtBVhs/VtM0cv74b803/yfmNb/V2hNJXpTU8K7dCMhxQL07yVEZTFZCt6MjXAt3wBT7LKhxizhiIwCj0cRGytpox0ZSssq66pNe9yG2v7vQAPgaj1J1h7F2tdNYO6Mq0L3w/38PwqPR2GL1GTN9N+el5fL6x+/QGNjPanJY7nxpq+y4+P2RUNVwMm8ZZB9sj1WgDBwWeDYkTlkZmRzpHgPO/Z/yMmjT/UFYdwSlBBCDGKD7E+3EEKIUJLTTVAiKpqw1LbwtuN0tZidJ6V1/vi+Ehltum9UlZjvTVCi/9mjTaHL5kbtW74RrqAEmKCEpzU2I0s3OjaUllV6l0y4mrv3PFezWQrQ09o0nhCxQO0JDiD4Htu69KzogOJILsxe4Wbj1o947713aGzUTBm/hPk555GSGvr3OXCb1iFYAy5nmYftn1pQSrFw5gW8VvoLtu/9gLnzZ2G1mfQTWb4hhBjMwvNpTQghRK/ydv4Ix9INCD6BiUnQvvoO4RqHqW0BCSnhWTseWFfCZClobD1cV388ouNaW4HWSZHL4cb7fmtp6vxxba19Q/HRSxZcPWzkEOrKfeA2tYbcrfDFG/7f0boqRfHRch558EneffctLMrKCXMvZdHsizjhXEvIgAaYQKwt0rzXO3rMYJaZBfHJ5vXFxzqYlX0aHo+Lj9f8E40HlJZMCSHEoCaZEkIIMQSkZpoPreljw5OaHxgMCVeWBPiLXda0NkhITLHQHDpjvE9556OiyKSvh6PwJwRmSihftc+oWJPVIoY2b6ZESzczJeqrVev/Xa8N42oxy4QSHK3bqIEN77R/j7U0+ws3VhyF3M3+CILH42H/obVs3PE6tqhm5p4wmgvOu4zt72cQn6JJSvO3+21LKVjxPxrtCV8XpL4WGNScPmk5h49so6jkIGvWfIrVukJqSgghBrUhGE8WQojhJ8IOJ5ynGTctPPsPzJRICkM9ibbj0FqhLJrYxPCcodhjzBwcyTX792ay9LfA5RuN9WYskikxPBzP8o3AAIa3Lovvviaz/CKUnWsUn//XQvEh8/22T5Tv/dZ2G3nboKrUn7kDUF5VwJuf/JYvtv4Lt8fFjEmnMTX1JjxOE+H0LsnoMFPCYh4Tjno6/SWwg4nFYmXpvMuw2qy8885b1DYUy/INIcSgJkEJIYQQPRYUlEgP3zgio/wBkdgEsFjCFJRonQ/vVWdHZngzJRrrTEcSkKDEcGE7jkyJwPaxdVX+352GWvjwJUXuVoXHA5XFwW12iw6axx5pbctZVxl6+2WFsH+ThS/esODR4GysZe2Wl3nj499QUVWAI3kMZy2/hWnjT6fFaWPnGvMx1RLQUSOUoZodEajt8q+khAwWzT0Tj8fNpxv+D1eLp1+7DAkhRG+S5RtCCCF6zBrhDwjEJoZvHJEBwZFwjiMqYDmL1abDtqQlwm7231ALntYTFglKDA/HkykRFJQIyJSoqzTLkIoPmZad+zZayJqpmTTXW8dBoz2KxtbnewtXtuVtj9vc0sinqz/knXc/w+VuJjIymrnTzmbSuEWoEBEGb0eNjjIlLJahfzYeEaImzewZy3BF7WBN7iE27XqT091nd9rNw+06drcPIYQIB/nTJIQQoseUgvmnm/Xc4bxqGZixERfGoERgjY2UEf4rvf1NKUgdBcWHFPVV5uSxp10VxODQ00yJZmfA163FMuurFfl7zdd525QvKBEda7IpApdkhFJX28C2vWvZnfsJMcn1eLSNaRNPYsbklUTZO46W+ZZvdPC3ZThkSkREta8FY7Va+NKXLmPjZ4+xa//H7NwxnpmzQ6/hO7AN9m1WLDpThzWbTQghQpGghBBCiF4RnxzuERDU9SOcmRKBQYlwLd3wmr5EU1MBzlqFPWZ4nMCJ4yt02dTgf3MEdu0I+jqg2KT3yntklAlKtDQrXC3t3+/1zip25X5Cfula6mtaQCkWTJ1P+qwziI059h8O79V9pfxZGYGGYseNtkJmOClISkrm5BMv5T9v/JmXX3mJMeNuJSnJzKnWZs6cdbBvk5mkyhIJSgghBh4JSgghhBgyArMAYpPCNgxsEWCxajxuReqo8I0DzBKOuSs1694Mb2cU0b+8XS68yzeaG/23dRSYClzqERjMaGnyP8Ht8n/d1AAxCQQVWXTWmv+11hwt3cu+g19QULQTrT1YLDYmj1/M9EnLmbcsxXeifCyBmUYWC7jbFNwcDoG2UEEJ7+ueOH460yaeRHXDx/z9789z/fU3kL/bxqGdiqXna3Z+7p8gWb4hhBiI5E+TEEKIIcMW6b+SGpsQvnEoBWOyoaVJExMfvnF4xSXB8i/psC0jEf3Pt3yjCWoq4PP/mABAXJJmynyNI7P9yXxgIMLVrEyLTUvHrTi9j3cHtKP88N9l7N23jf2H11HfYCpe2iNjmDRuMVOzTiQ6yvxCeDpq5RGCNeB9GyorYjhkSkR3EpSw2mDu9LPZW3mQwsLD/PvfrxBbeylKKYoPa6pL/c/xSJcOIcQAJEEJIYQQQ4ZSkJkFHo8Oe3vA7AUDq/ieXCEdXmwR5mfe2GC6XnjVVSk2vmfOZuee4iFttP8+7zINa4TG3aJwtZjsCt/yDaVB+yMZ3syKyqoy9u3fzqEjW6msPuK7PyM1i8njlzBmxAysbd6AbZdgdMYa8LscqgPHcAhKBC4J8/IFJaymTehF51/JC//8DZs2bcChRjJ90nI8bnC1+Ofa0/VYkBBC9Bv5iCKEEGJImbHUGwwYBjndQnRAKYhNUNRUAIQOkG1638JJF3vY8I5i0hztCzLExEFtpQlGRNj9hS6TM6CyCFpcTRSX5VL81h7KqvayeU0FuvUKfEJ8OuNHzWb8qNkkxHW8XqijRImYeO3r0uFli/CP33si7l0eFXjbUBayHap3Llo/zUdHJ/CVr1zF00//gY3bXicxPp2sxuygp5g5G1gBUyGEkKCEEEIIIcQQFJtgoabCHVQToq28rYqGWsXWTxRRMRrQRMe3BiWaTW2IqspqDhfmc7TxAJu/yKey+ggej5uUkRqLBRJjMxkzcgbjMmeRlJARcj9Wmw6qR6F958XBXSWi40zRzEChsp5sEdDcGggZDpkSAKMnawr2+ecqcPkGmMyVUeNHc/HFX+KRrX/n0w0vMGn6DcBI33O6sWpGCCH6jQQlhBBCCCGGoNgEc9Ya2OozUHScpqH1Po/HQ0VlFQ2NlVTmlbB/Vwm7y45S31TEnk1OtIbMLE1FlSIyMpaRaZNZtGwSrspsYqKOXcAlwh5ce8Jb28BiDa5zkDJCU1EEOmCZSKighCXgE6xlGGRKAEw/QZM6SrP5QxOF8QYlElJMYGfrxxYa6z3MnDmbmdllbNvzLi//5xlOmn0TCfHJeNxKakoIIQYkCUoIIYQQQgwxTU1NFJXncvhII8U1Luqq3Hg8LppbnDS3OGlqbsBDA/X1ddTVV9HQWIPWHmwRpqNGTTmkNmnik60kxY1kRMY4zrpsDOmOcbjqU9j9hZWRIzRHnV2LCETYobHe/319jfm/bVAiMhpO+4qm6JBm2yfm5NsaKigRsNvhsHzDKzArxPu6R4yHPes1LU2KvK2KcdM1s7JPw9lYzeGSdby35hkuPPtGcMcds6aExxPchUUIIfqDBCWEEEIIIYaY1157lbWfbeHoQbdZHdFZGQGliLbHExeTjCMtkfGTUqkvyWThinRmzHfwwd9txCZq5swxGynJN0+rq+r6eNpmO5QfMWfUbWslWG3mxDuwLuaxitYOl+Ub0CYA46uvAYtXaT59ReFqUThrNUopFs26GPe2Og4c3MUHnz/LslnfxOPufDLXvaWoLlVccqPUnRBC9B8JSgghhBBCDDFLlpyAxRPPTqsbq8WGRVmxWKxERERhj4whMiIae2Qs9sgY4mMT8X4kdIzUjJig2bHagqtWU1thTk4DsxW87UY7CkqMm6Y5tCs4faGjdrRtb/cGI4KCEpGdv9ZhlSnRQYZITDyMn6E5uENRWWJus1gsLJl1BXU1T1NRfYgPv3iOy7OuJvDj/7ZPFUpBzonm51xdajZaXuSmttYEfFJG9PWrEkIMdxKUEEIIIYQYYkaPHsPI86YQ09B4zMemjtK+tqG2SFNsEqCiSFFRZE5SbQGfGCNagwSBdR8AFq/yEJNg7i/YD+6AVpQdtaRtG5Twft+dTInh1Ggn1PINL3uMqS0RuPzCqiI5efE1rN//Bw7s289/3/kzM5ddhc1mo8kJR/PMRrxBCa+WJtjwrgIUZ1wl1TGFEH1rGCW8CSGEEEIMHxHHyDDwiozyf221+YMSgQKzFToKEiSm+ve57ELNwjP9J7MhW1qGuD1UpkRHAQ2v4dRRoqNMCfDPpbtNMUt7ZAyXfek6khJGkF+4j7/97S+4XC4qizveT3OTLN8QQvQfCUoIIYQQQgxBtsjgs1arLfSJZmDAwWqDqJgQjwkIRNijwRbR+UmrPRqSA7qDdjVTwheUCLj9WJkSxyreOJQE1c9oG5RonTOPu33qSEpaHKct/TpJCens27eHF174K2VHO27F0eT0/3zbBjmEEKK3SVBCCCGEEGIIimgTlOjo5D4i0n8C6i002VZgUMFihSnzzXNSRmgS0zRzT+k8MtBRTYm2Y/IGIyxt9tcZyZQwvPPkbmn/vOhYiLLHcc6pXyctLZ29e3fzymvP0uJqAkC3iTHV1/pv6KwbR3UZVJWar+uqYON7ivrqLr4YIYRoJUEJIYQQQoghqO3yjY4KRgZnSujW5+oOHwMwegosv8TD/NM1i8/WpI0Ove2xU812RmaFzqyYMFOTnOG/zxJi+caxDKtMiaCgRPCceoMSLW2CCMqifUt0oiLj+drXvsGIEZnkF+Ty7uqnaGyqbxeUaKg5dlDC44G1r1v44g1zOrH5A0VZoWLX2mFU5EMI0SskKCGEEEIIMQRZbQqLxX9yGZiVYLH6b49os3wD4ITz2gQlQizXiIo9dueLqYs0p17hIcER+n57NCw8MzhTI/D/ruioXsVQ1FmhS29QwtUmU8Ie5b+vqlSRvyOe6677BumO8ZRX5vPOZ3+guio4veHoIf+ajbZBDq1N69A1r/kH0FADDbXm++EUJBJC9I5h9GdcCCGEEGJ46ahAZUctN723R8VCgqN9sOB4WG0dBw7aLhXxLd+wwKKzPZx4QcdnuPNO9TBigmbE+OMf22ATFIhoE5Twzl3J4eA7IqODl8Dk71FERUVx2rKvkZmRTXVtMU89/XuKikJXvmybKeF2QWWxor7av59P/+X/QQYWThVCiK6QoEQHmpub+f3vf8/u3bvDPRQhhBBiWJJjcc9ZI479dUfBio4CF72p7dX+wCBFUhrEJnb83NRRMOskfcyaE0NJp5kSHXyqj4wOfZ/yRHLyoqsZP3ouVZVVPPnk7zlSsrfd4wIzJZobOebyDAlKCCG6S4ISHYiMjOSJJ56gpqYm3EMRQgghhiU5FvecrZvBh7YFLUM9tzd5T5aXnu9h8SrPMZeD+AzTsgVdKXTZVlRM6PtcLWCxWDlx3mUsX34qjc5GPvj8WfYdXBv8uICgxO4vFEfzhunkCyH6jAQlOjFr1ix27NgR7mEIIYQQw5Yci3smKCgRuJSjC0GJoEyJPgpKeE+s45IgMbVv9jGUdDcoER2nGT9Dt3usxwNul2rdjuLkFadzwXn/g1KKtVteZsP2/+BpLQ4RWKOiofbYY/R0o4VowT44LIlQQgx7PVghOPDl5+eTm5uLUors7GxGjBjRred/97vf5Tvf+Q4RERGsWLECh8OBavNXPTo6ujeHLIQQQogAcizuma5kSgSezHYUlIiw93wsC87w0OSExnrYt9FcFwvVflR0LGi+jhGUSErXLDyzfUAC2rcN1R6YmTOfU09w8PH6P7Mr9xOqaoo4cf7luJpjAN1+/x3oTlBi5xqzwTHZ3ciSEUIMOUMiKPHMM88AcN111wFQV1fHD37wA9588010a48jq9XKJZdcwr333ktkZNcWRl566aUAPPDAAzz44IMhH7Nr166eDl8IIYQQHZBjcc8EBhNMBw1z5teVQETg171RJyCl9drQoZ3+2447KBG6w+iQ151MCber4+4obTt0aA1uN2SkZnHeaTfz7id/5WjpPt746DESRn6VyfMyzT668PNydzEoEdiG1O3qu2wcIcTANySCEi+88AI33nij7/sHH3yQ1atX89Of/pQTTjgBrTWrV6/mZz/7GTExMdx9991d2u5PfvKTdldjhBBCCNF/5FjcMykj4Eiu+bqjmgPWwABFB9kUvZEp4RU4DvnRdk+nQYk2AYO2XTM6u097/BkOjpRUzjrpZtZs/geHCrfwj1d/R0Lmhcybt6BLPy+P69iPgeCMipYmCUoIMZwNiaBESUkJY8eO9X3/zjvv8L3vfY8LL7zQd9vFF19MS0sLjz/+eJeDEhdffHFvD1UIIYQQ3SDH4p5JzfR/3dFVbksXCl125Qp5VwVmR/TmdoeDTrtvtAk6tc2G6Ow+b6YEgM0ONlsky+ZfTmryGHbn/5dXXvkH+fmHyYg8DwiOUC0808O6t/wD87Tp4trSDF+8oWioNR1V5p+usViCx9DSBNFxHY9XCDG0DYlDgcPhoKioyPd9S0sLmZmZ7R43cuRI6urqur39/fv3869//YsnnniC0tJSAA4dOnRc2woHp9PJypUr+fnPfx7uoQghhBDHZTAci999913OPPNMzjzzTF5//fVwDweAqFgYN12TNVMHndAGps4HBgYCgxJ9tUSiJ5kSMQnB/w83QfN1jKCE7uTn56wP/r74EFSXmK8jIrz7UkybeBLnnPZ1YmPjWL/+C15543Eqq48GPTc5I3hb7jaZEqX5UF+t0B5FZbGisa7941qaOh5rdxzeDeveVl1eQiKEGBiGRKbEqlWr+P3vf8+yZctITk7m9NNP5/nnn2fRokVYW3MSXS4Xf/vb38jJyenyduvr67nnnnt46623sNlsuN1uTjrpJNLS0vjFL35BZmYmd911V1+9rF7zxBNPMGvWrHAPQwghhOi2wXIsdrlcPPLIIzz//PNYrVYuu+wyTjvttC7XsepL2QvM2enRvGM/NjAo0fbksrcEBkG6W1Ni5kmagztgQs7wLCrRaaZEm7mcc3LHc7R3Q/CTc7f4n2xr85bNcGRx8vm38c9/vsSn7+3jjY9/w7wZq8iesDTk0iqPGyqKoOigYuQEzfbPggfmzZAILLbZ0uwfV9EhWHqubjeOtvs4tAsyxkFMvP/23V+YfZUf0aSP6fj5QoiBZUhkStx66604HA7OOussfvSjHzFx4kRWr17N6aefzh133MEdd9zB6aefzsaNG/ne977X5e3+7Gc/Y9OmTfzpT39i48aNvqKZACtWrOCTTz7pi5fTqw4ePEheXh4rVqwI91CEEEKIbhssx+ItW7aQnZ1NamoqycnJzJo1iw0bNoR7WEGCAgAdnK8Gntj2R1Ciu6JiYOpCjX2YNlzprKZEoOlLPL7Col4pI/0/9GanIipOM2J8+zdC2/ohbjfExcVz1VXXsmj2OYBm/bZ/8+EXz+FsND1Cx07VJKZq3+PXv22hYK8KWtbh5Q1AtF2+AVBRDI11ipqKjl8bmIyIfRstfPFm6Elo6aSehhBi4BkSQYmoqCiee+45vv3tb7Nz505++9vf0tDQwJEjR/jvf//Lpk2bOOWUU/jXv/7FjBkzurzdt99+m+985zssWbLEl3HhlZmZSWFhYY/GvW7dOm644QaWLVtGdnY2H3zwQbvHPP/885xyyinMnDmTSy+9lK1bt3ZrHw899BD/7//9vx6NUwghhAiXvj4We/X0mFxSUkJGhj+PPSMjg5KSkl4ZW68JOH9reyq6eJWHhWcGFwPoq3adqoOCm+LYuhqUsIbIhZ5/miYq1v+Tj7SH3kbbDAVv4UqlFNMnncSZJ91EfFwqhUW7+M8Hv2Dbtq1MXaRZdLYGpY9Z6NIXlHCFuK31/4aazrfhrDMDb3aGnoRmp/9rrSFvK1QOsF9HIYTfkFi+AWCxWLj88su5/PLLaWlpoaqqCo/HQ2JiIlFRx9fHqqmpiaSkpJD31dfXt/tw1F0NDQ1kZ2dz8cUXc+utt7a7//XXX+enP/0p999/P7Nnz+a5557j+uuv58033yQlJQWACy64IOS2X375ZT744APGjx/PhAkT2LRpU4/GKoQQQoRDXx+LvXrjmDzg6Q6+BhJT2z984ixNYz1kzerdpRJS3PL4dVZTIlCooIRS7QuZhgo8te2CEVifwd0CjqTRrFrxLTbtfIO9B9bw4ot/Y8eObZx77gVYrfFBXTWU0mitiIzWREZBXaXC1eTflldLkwK0LzhRX22+BygtgOYmGDUxYLshxh1YQ6Ox3v/8ymLYv9k84YyrPO2fKIQIuyETlAgUERFBWlpaj7czc+ZMXn31VZYvX97uvrfeeou5c+f2aPsrVqzodFnFs88+y2WXXcYll1wCwP3338+HH37IK6+8wnXXXQfAq6++2uHzt2zZwuuvv85bb71FfX09LpeLhIQEvvGNbxzXeC2WnvXt8j6/p9sZimRuQms7LzI/7cncdEzmpmODaW76+ljs1dNjcnp6OsXFxb7HFxcXs2zZsuMeT18cczvsvtHBvqLjYMHp0OnZ73GwBZ4Yh+E9OJje/52xWlWHP1NrROj7AothWm2h3xPaEzwvHpd/rrxLeiJsdhbNupCxI3Mo5SV27NjOoUMHSLddyOiMHNq+Z2adBPXVsGstuFrM2DxtCl0qpfyZErX+fW563/w/aqL2jTeoLolSNDmDW9s21vufrwPiEPJZtu/I3HRO5qdzQzIo0Vtuu+02rr32Wq655hrOOusslFJ89NFH/OlPf+Ktt97ir3/9a5/tu7m5mR07dnDjjTf6brNYLCxdupTNmzd3aRveehpgMify8vKOOyBhs1lwOHqnV1NycmyvbGcokrnxi4iwtnvPyfx0TOamYzI3HRsMcxPOY7FXV47Js2bNYvfu3ZSVlWG1WtmyZQsPPvjgce2vr465dWUuwFymjoiwAuZsrbf21WUtbqAxPPsOMBje/6GZ1hnxCVE4HG0/ypv7khKjcTjaZxFFRjrx/tyjo21ExyjARAdmL4vg4G4Xk3Ps7N/c6HuOx6NwOMxcuV31RMVA6kgrBbluRqRN4pZbfsC///1vVq9ezSebnycjZRqLZl5AbEwyWpsTsMTEaOw2DTRhs0TicERSGtkCtEYhPDaSEu1oTwMAzloLDkdM8GtKiEVZTEAiJqYFMKkWVUfsrH2nmemLIny3NdZbcDXYUQrsEWa/AMoVzfoPmpm3IpLUkcefZTV43zt9T+amczI/oUlQohMLFizgT3/6E48++ij/+7//i9aaxx9/nNmzZ/Pss8/2aUeLyspK3G43qanB+ZQOh4NDhw712X474nJ5qKlxHvuBnbBYFMnJsVRW1uPxDM+q2R2RuWmvpcVNebnpGybz0zGZm47J3HSst+YmISG69eS274TzWOzVlWNyREQE3/nOd7jiiisA+Pa3v43dbm+3ra7oq2Ou6Z5qThJbWty+r71/a/tLTa1/HP29bxgKfxvM3NXVNlJeHvq+2jonEe3uA7fH/xiXx0VTk//7uJRmTjgXlKUx6DmuFk15eR1Hck2AQlk0Hlz+cdS1cMopZzN27CR+feBfFBbt4rXSXGZmn8q0iSdhsViprXW2ZlkoaqqbKS9vpro64LVUuyg+GrDNGg8lxXWty03MbUeP1PPJywrHSE1Smv/2PZubAMXOL/zrQWorPbz7onkdUxdq32Pf+Ku57ZPXnCy/pPNZbjA1PIO6ewz+907fkbnpXG/MT38cc8NFghLHMH/+fP72t7/R2NhIdXU1CQkJREeHr+Sz1jpk+6Vjufjii3u87976A+PxaPlj1QGZm2Bt50Lmp2MyNx2TuenYYJmbgXYs9mp7TD7jjDM444wzemXbfXHM9QSckAauvw/Pe0CFcd/49j0Y3v/ttf4M0a0/0/b3oULdB6rtcp6gGhWBz/HfoT2K2ioPWz8xayacdYqkdP+8eecwK2sSZy69nR17P2DH/g/ZtPMNDhRsYtGsi9CMbS2gqSjYq8ia6cHV7N9HoxOam/zBA7SirtpDfLJ/LFWl5v7yo4qkdI/v9rgkqCrtYB6A+hBFM7Xu/L2nNax9Q9HUoDjhPO84/Abve6fvydx0TuYnNCk11Ik1a9bgdJorFVFRUWRkZPTbh6Dk5GSsVitlZWVBt1dUVLS7UiOEEEIMVeE8FnsNlWNyZEDdbx3Gz8THcW1FhBBqHnNO9DAyS4csXArBtRistjbdPDo5K/jsX/47R03WxCaaN1B0XPAbyWaNYPa0Mzjn5G+T7phAVU0Rb3/6e/7z3xdpaKr2PS5/rwpqCdrcaIpZBmrbgcObudDWsVrX1oTIGIk8xp+QJic0NZjJObBN3rBC9DXJlOjE1772NaxWK9OmTWPBggXMnz+f+fPnk5ycfOwn91BkZCQzZsxg9erVnHLKKQB4PB7WrFnD1Vdf3ef7F0IIIQaCcB6LvYbKMTk5A7IXekhOh93r/FfU+52c4/WKUEGJzImQObHjn2lg4MFiDQ5SWLqQFW6P0UxfYjIqLBYPGeOC709M1VSXKRLj0zn9xG+Sl7+RjTv/y7YdG8k7tJ24lpVMm7Qct8sWHEzQioYa3TpGjfYo6qsJyvaoq/S/4JaALIu2QYm00ZrSAv/9NRXm/3HTNYd2mtsjj7Gyqr7K/7X3+UKIvjMkgxJaa377299y2WWXkZqa6vu6ux05Vq9ezfr169mwYQNffPEFf/7zn/F4PGRlZTF//nwWLFjA+eeff9zjrK+v5/Dhw77vCwoK2LVrF6mpqaSlpXHttddy5513MmPGDGbNmsVzzz1HY2MjF1100XHvUwghhBhM+vpY7DUcjslKwbhp5mvvCagtDJ8EJVOidxzPPLbNlOjovo5Ex7a2FrXC+Bnt7597iuajl0BrhVKKiWPnM2bkDFoS32Pztk8prHuL/e99wVmRZzNu1CzAtAttdqrWNqAQn2yyG+prFB63P8BS50+0oLHe/7U3KDFruYlgJKfDR/8IXn4C4BjpD0oEti0NJXBfDTXgamnfKrUrTDtSxcyTNFExHT/O4zbLRZx1kJACk+ZqEhzSPlcMH0MyKOHxePjtb3/LypUrSUlJ8X3d3aBEcnIyp59+Oqeffjpgeph//vnnPPvss7z44ou89NJLPfogtH37dq666irf9w888AAAt9xyC7feeiurVq2ioqKCxx57jNLSUqZNm8bTTz89ePqhCyGEED3U18dir+F2TJ6+WLN9NWQv6P9MiahYiE3SJKf3+66HveDMCN3aLrO1VWEXMiWOtewhMgpGT4H8PQG3RUSx4pSzWb5yES+/+DqfvLuTN997gTTHaiaPPIvsaRNodpqWoQBJaa1Biergdp71VQE1KBr8t7c0+58X1UFjA4tVkzICMsZpig8FLx0BE9gIDNL4szJMHYv9m70FM7tn/TsK7VHs2wg5J2r2blDEJWtGTTS1LqJjzbzXVUFthdlnRRF88YYiOUOz8EypPSCGhyEZlACTLRHq6+6qr69n06ZNvqs0W7duxW63c/LJJzN//vwejXHx4sXs2bOn08dceeWVXHnllT3ajxBCCDGY9eWx2Gu4HZNjEmDRWeE54bFY4MTz5WQrHAKXb1itEJgw0KXlG10o55K9QON2wZHcwIIV4EhxcNmlX8XuPMD6ba9xMO8QB/P+QH7lFLLSzyYqdiQA8ckaq81kKHSU0RCYKdHc2qgmMKiQvcDDnvX+Fzv3FI3FCjOWtg9KHMmF7asVWTNh0hxNYz0Utza6mzhHk7tZcXgXTJrTftlHSxN8/l/FmGwdMnPEm6VhalTQmqmhiI71sP5tCyOzNDOX6ZB1MSqLFTXlJmMCzPPLjpjgS2wirUtoQuyz9VdLMpLEYDJkgxK94eKLL2bPnj04HA4WLFjAWWedxfe//32ys7OPqwOGEEIIIbpHjsVChHY8YZ2gTAlbcM2Grvw62aOPvVeLFSbP1UFBCe+2rTYYkTqRc06+jYOFm9my+22OFO9l9869jBs1m9lTTycy2kFMgskccNaH3l+z07/tpkb/tr3GTYexUz0c2gVpYyA2Ifgx7oCgRGmBAq3I2wqjp2g+/qeZpNgkzcRZUJqvqSlXOOs0kXaorfJQmAsjxsPRA6Ybyd4NivEzgtudBGZ5NDkJCoSUHG5tc5qnmLlM0xzchdWnvhpfUGLH54qyguAf0tRFHsZO9X/v8cCa18xSmIRUzbxTdFCB26Gu/KiZ2+wFuktBNjFwSFCiE3v27MFmszFnzhzmzp3LvHnz5EOQEEII0Y/kWCxEB44jKtE2U8IT8H3gr9Syc+3s2thI+ZHg37OuZEpA+3oV3v1aI7z7UkwYPZdxmbNojlnLf/71HocKt3D4yDaa4+cxLnUlkErB3uD9O0Zqyo8G36Y9CqV0u+4hytK+7oVSYLVpXC6zZONoHhQf8m+vstj/2JETzAQnpprlJPs3KeauhP/+1YnbZbIn7J3UiWio839dX20CE74xt/nZdRSUcAZkhDTWtb//0E7F2Kn+jVWX4qvNUVOmOJIbOoOjrZJ8qClXTJytB22GhasZNrxj3gSOkZr0sWEekOgWCUp0Yv369b500bfffptHH32UiIgI5s2bx4IFC1i4cCFz5swJ9zCFEEKIIUuOxUL0nrbdNjo6AR2XbSMuFY4e8LDlI/+T4rtYQqVdUEKFvt1isbJo8RJsdQvYfeAzduz7kG071rGNDdib5jKjdiWJ8f7iI/Ep5mp4qP119WTaFmGCAPs3K1/hS6/KYvN9ykjNhNaT+eh4U1eitECxe71/qUV1Wcc7LD8KWz4KuF+bTAuvuqrAfbZvh+q1f5OFjLEeYhNDPyY2Kfj7ssLgMTnrFKDRGmorTRHRUPO0+QPzMx4xXhPXuk3tMUtbYhLpdv2Xgn2Qt0Wx4ExNTHz3nns8tAd2rPG/sIoiRfpYWSI2mEhQohPR0dEsXbqUpUuXAtDS0sKaNWt46qmnePTRR1FKsWvXrjCPUgghhBi65FgsRGjHc8ql2nTfaJtd0FbGOJh7iodN75sHek9Yu7Ifi1XjcZsTRe+JcKhuL/YosNkiyZm8kinjlxAz/lM+X/sZ+7ZuJC9/E+MyZzFzyqkkJWSQ4DABgrbaBjs6Y40A7VRUl7WfQW+mhGOkP/MiOs5//+HdHW83sEOH94p9IBMgMKrL/beve8vC6Ckd/zQ3vKM46RJNSxNERmnmn66xWOCzVy142tSiKC0I/j5/j6K50Z8NMnqKJjldkzYabJHt99XYYH7Gh3fD7i/8r2HhmR6SMzocYhCtYeca89zCfTB5Xt8HB/ZuVBQfUr52suVFXXuex23G2533Tyh1VaZwaYZkZxw3CUocQ0VFBevXr/f927NnDx6Ph8mTJ/dacS0hhBBCdEyOxUKEcBznel3NlOjw+d1Yp68s+CppevcTKggSEVA8MiY2ilNOPZUTly3j2V99zoYtn3CocAuHCrcwZmQO4xYuAya020Z3Tiq9gYPaCvP/vFM91FbCvo0W39KH6ICr+zEBQQl0xxPW5Oy8bWjg8guPK3g73s4jk+Z62L8peJIaGxRulznZjrBr4pP9S0EC61Q466CuShGbqFl6vubjfyianCpoeUrBXkXBXsWkOR6yZpnbvN1LAIoPKlJG6KCABEDRQdMN5Fi01uxa6/8+MPgS+vGmeGd8UsedU9qqrzbLZgLnuuig+X/p+Zq1r5tOLfs3Q9Ys3a4YqKvFBBGS0kyR0voaOPWK9o/rjtX/Nk8+4VxPyGwitwuUnHV3SqanE2eeeSaHDx/GarUybdo0Fi9ezM0338z8+fNJSkoK9/CEEEKIIU+OxUL0nraZEiGSDtpxjDStNDPGdS8KEhTw6GQ/EQFX7L1FGe12OwvmnszYtBPZd2gtO/Z9SP7R7fzl+W04S8YxLWsFo0dMx9J6JtndTAkAt0thj9akjmofnAkMRMSnwIylHvK2qqBsh7aaGvwFNUNxtqkJkTxCU1nUWv+hNUCSNgr2bwp+nMXmL4TpnR9fwc7WTAlXCxTuM9vyvp75p2s2vg+NIcbc2GCWdUBwJ5PC/SaoEROvaagNXA4R+jUd3m2Kjk6aq6mvgQ/+r4Emp8Jq07hdiqri9u1WA+VuVuRt845bM2elPzjgDbjYIkwGR95WExjZ9okFi01zwrma2ARvZxMz7tgEM0euZvN4i1WTNTN4n9s/U5QcVsw91UNda5vZliaNPdrUDik7AuOnmyyKL95UjJjQfhsdqatuv8SppQk+fEkxYjycclHXtjMcDcmghFKKzMxMIiMjg77urnPOOce3VjU6uouVfYQQQgjRa+RYLETvsVj9yx8s1vYFF0M/B2av6H5aRmAApLOMDFtApkRgIc0Iu1nWMW3iSUwZfwIHCjbiSvyYzbmH+XjdX4iPdZCddSKTxi7E2lmKQhtRAcUpvWMMLFhpi9TEJQc/Z9Qks7SjbWAhkDd7wRPchAN7tKbJqdo9N2ep5uAOs8TC3WJO5GMSYMp8j5kHBds+seBx+wtherNKTEBJ+07ct31ial4ApI0xP6u4JDjhXJO5UHQg+AfQElCfIjAoAaYjiDcjZmSWprrMFM9sbgzu5OFq8S/xGDddcyTXPwfzTtUc2mU6YVSVaByZ7efL44aDASvvygoVH/wdFpyhSUyFta8rXM2w/Euaz/+raHYqX+FTj0uxf5N5X3oDOt4uJZF2aGjdZn2VP/gCJivE2/lk03v+N2hLk3nv7VitqK1UVJdqRk/R1FUp9m9SpI/xdLh0KTBbpfigqR0yIce857WGokOmGOvRvNDPF8aQDEpYLBbef/993/eBX3fHt771rd4akhBCCCGOgxyLhQitKwGFtgKDA5F2jq8wRRdZAvbVWVDCGrAkxHtiCcHLOqxWG5PGLeL0r87nlfi9rPn8E4rLclm/7d9s3fMOc+csZNLiRaSkBGygA5PnaYoPgcetfEsGYgIyHJLSCJnKH6oGw/IveTiaC/s2WXyBg7rK4MdEx7VezXeqdrfbY/xBosnzNFZbcMeQw7s01WWKuiodNCdKmfoc3tampQGtQpPS/M+PiIQZS01xziYnaDfUVpqTfa+2wRJ7jMkYUBZNzomarR8rGmrMsonAoERg9sTeDWYZBMD80zTJGVBXpSk5rNizXjFqsmbsVDPefZtMx5CmxvbLWNwuxZaPYeEZ2reUpqpEB7WA9SrJN4GNvC2q9XW3zlFU4PaCn3M0t91mAH8RUe8ymtICFTSnxYdMJsr4HN2uA03g/JXkK0ryFbEJHtLHwpE82PW5/82kj+eXdpgYkkGJ3pSfn8/TTz/Nxo0bqaqqIikpifnz53PdddcxZsyYcA9PCCGEGPLkWCyEX3yyprZSkdDFThiBnAEp+VGxxxfY6CrVxaBEoMC6BYFBCf92FFOmTCXOOo2K6iPs3P8xhwq3sHXXxxT98mOmTMlm8eITmDx5Sodtg6Ni4ORLNQe2mUwAMEGIxas87FmnmDQn9KRERLYvsmmPhsjWLIuWRoX2aD7/b3BEIzoOqkqDtzVjqUmnCMzQCFUkMSoWqsugtsLsNzIwUBNhAg1HAk60sxd42gVUrFaYu9K8piYnfPSS8tWR2Pm5P/tg9BRNwV7l6+BhjzbtQWMTzWPrqwkqdhnYLrZwv/naFgmpmSbWlTLC3FdXpdizTpGc4eHwLsWRXEVlCWS0dsfw7tfL1QQVAa1ZA2tieCllamwUHzJBm7hkTeZE2s2R93U2OU12ycFdZlszT/Kw7ZOATIlG2LVW4fGY+2MT/UERgNwt5rHlRbD0vOD3h7O23fDY8pGFKQs8VBQFj72jLitCghKd2r59O1dddRV2u52TTz6Z1NRUysrKePvtt3nttdf485//zIwZXWj+K4QQQojjIsdiIYItPkf71sB3V2KapmCfInOiObHq06BEF5dvgDnhb2lWba7yBwcBFp1lTuS92Q0piZksm/9l5k0/m5bYteQVrmXv3t3s3bub5OQUFi5czLx5C4iNbV9B0RbRvitEYiosOrvjCYkIkSmhlP8kuLkJ3O72jwns3pE+VjN7hQ7ZjSQwQOHlXWriXaIQYfePz2oDtGL7Z2ZjjkzNuOkdDj/oNXgzJYoOmP+zZmkmzg4ODngzDmITzc+hrtq/FEJ7TLCkLccIC8riRnto1wq06IDytXNtavB3I8kYq8mcqPniDfOGsdigutQ/jpL8EPvJhLJCk5kAJhDirVsRGMxy1pmlL5+8ooiJM/U14pI1IyeAUh62fmz2WVmiyN9jthWfrBk3Q7P90/Zv2rpKRcE+TVWJoskJc07WVJWGfnPvXW9pzYQJHI/uUh2X4UiCEp146KGHmD59Ok899VTQOlan08k3vvENHnroIf785z+HcYRCCCHE0CbHYiGCWSwcV0ACIDMLYuI9JKW33tBPmRKBJ2I5J3rY/lnw5fwTzte4W4JrFgSeXE6a6x9zVMCSh9krPLQ0xzN68mm43SvZtWsna9eu4eDBPN5++w3ee+8dpk+fwfz5C8jKmtRh9kRXBNa+cGRqZiw1k+cdc3Nj++UCAFFx/vGOnaqD5iU5wwQaRk8Ovc+oWPNc70l64DKTtmU0IkNklrRlsZq6Ii3NphaCq8UUiAyVHeJqvarvzZQ4vEuRmaUpPwq5W1W7pRcASQ5/y5W2nVaKDpiClOZ1+etkREYHB26anQpnrX88jfVt9qM0KSM0ZYWKksPeMYZ+IzfWK4oOajwuRV2VuS26NUY1Yjy0NHnYtdYSFPhocgYvgWnL2+4UYPMHJgtGWUyQsO1YmxoU8cmaBIfJJnHWeYiMb7tFAdCD5idD37Zt27j++uvbFdaKjo7ma1/7Glu3bg3TyIQQQojhQY7FQvQeZTEnwt4T437LlAj4OnMijBgfvOOoGP/Jr1dgUCJwSUJg68iMcfhO6K1WKzk5M7nuum9wyy23s3jxUmw2G9u2beFPf3qGRx99iPfff4fKyorjej2BmRIJDn8Wg3ecLU2mxgFAUroO+bzAk28wAY2TL9VMmhv6B9E2eyKw5oa1TVCi7fcdiYg0mRLeApdRITI0wNuhw9uu04yv/IhpD+oNSLTNBEh0BJ9aep8XuD0wtSUCO4rYIuDkSz2+5TvlR1v3ndJ+XuzR+IpOau1dbuG/X7cpNNq2vWng+8f7swvsUOIY2f7n1JHyowq3SzEmG+aeEvpnmJjm/zk21ElNiY5IUKITdrudqqqqkPdVV1djt3chJCmEEEKI4ybHYiH6TthqSnQhYSHwZNkSUAwzqv1qjHYyMjI499zzufPOe7jkkksZPz6L6uoqPvjgPX7xi4f54x+fYsuWTTQ3Nx97Y60CgyRxASfBvkyJgKCE1Qor/sfDii95gjIaQi3RUKrj5S2BrzUyWgfNia1NvvvE2V37Ydrs5mT+izf9WQtei872EB1ntjNygvlfWfBlUtRWKV+3ifgUTc5SzfzT/FGA+OTgU8u5p5hWshNygsfWUKuoKTfLQbzzGhkF2QuCHzd+evvXFJ/Svu1mYFAiIbXzeQgMlATXLdFkL/QwdbHJZll2kYel53uwRXa+vcgoTfYCTXwyrPyyp939SWma6NZ9urr+dht2hsTyjdWrV7N06dJjPq6lpYW77rqLX/ziF13a7sknn8zPf/5zRo8ezYIFC3y3r1+/nkcffZSVK1ce95iFEEIIcWxyLBai71j78Eygs5oSXVlFEbhUoaNMiWOJjIxkzpx5zJkzj4qKcjZt2sDGjRs4cCCXAwdyiYy0M336DGbNmsPEiZOwhGq70Sow4yGw4KPVZtL3Wxr9NSUsVv8Sm4aAQoidbD6kwCBEYpvGIoHBjuyFni4v6fFmSLiavUEJ/0l3UhqcdLGmolgHFVL17iuwtejis7UvWJQxTlNaAI4MCzUB3Sjik03bzuLDECoSZYsMnpMEhwl2eAt7hmolmugIrqcSHaeDfjYjxoPV6iExDQ7tNK1WYxPx1Y8ICvQEBCXSxsC4af7vvTUxomKgrjWYkL3Qw5517QuZ+mqEhMhWSUo37wWtNeOn2ahrkGqXoQyJoMSNN97IY489xooVKzp8TENDAzfffDPr1q3r8nbvvvtubrrpJq688kocDgcOh4OKigrKy8uZO3cud911V28MXwghhBAdkGOxEH1n1CSoLNaMntz7KROdZUp0JSgR6gTPe/voKRp7dPfGnJLi4NRTz2DlytPIy8tlw4Z17N69i82bN7J580ZiY2OZMWMms2bNYezYce3qTwReVY+O82eZeItdNjeCp7WmRGCwp6vLKkIJPPlOGRn8egO3G6pdaUfcLcGvK9TyjZSM4O/bvgZbhA7KXpl1kkYpRYRdQZsWowD2qPa3gTcwEvy67NHgjeNERvk7YYwYryk6qBiZZe5TSqO1CgpemdshvbWTyZT5/m1v/dj8HxjAiE00S23qqmDctNDvJ8dIfPUokjPa3x84D0rByss8oCB3s6KxwR+0GDsV7NGKuobQczHcDYmgxGmnncYtt9zCL3/5S0477bR291dUVPD1r3+d3NxcfvOb3xxze42NjXz00UcUFhZy+eWXc+WVV3Lw4EFKS0tJS0tj9uzZLFu2rC9eihBCCCGQY7EQ/cFqM1ey+0LbQoeBRk/WHMlVZM3q2r6d9cEnr9OXHP+YLRYLkyZNZtKkyTQ1NbFr1w62bt3C/v37+OKLz/nii89JTExi1qzZ5OTMYuTITJRSREbB1EWaEaOjUKoxaOlLZDQ0OZXprkDwiWpCCkw/wUNiavfHGjiH3habXvaAgp+hOoN0ZPoSDzs/92+47Ul9KG0DRG1/tsrSeRZIZDcKs7bN3lm8SuNxa2wRMG2xf7nH7JM1e9ebn0lXTJ7noeiA8hd5xfycFp3V+fPHzdAU7If0MeZnGR2ncdYpRk3SFO5XTG5TD8Q7vq6OSxhDIijx85//nO9///t8+9vf5uGHH2bVqlW++woKCrjuuuuoqqri2WefZe7cuZ1uKz8/n2uuuYbCwkLfbXFxcfzyl7/kpJNO6rPXIIQQQghDjsVCDH6dZUMkpcMpl3s6zIbwShutKS1QJB6jTsDxstvtvuUd9fX17Nixna1bN3Ho0EE++eQjPvnkIxITk5g+PYfp02cwfup40tJslJcHbychBWor/AUaA4MSQIfdNbpi2mIPDTXKV9zRKzpgGUJ3MiVGT4HmRg/7N5soQleCJW1/TqG6jHQmsKtK1ixNVQlUFIV+g7QNStgigNb9B85r+hhIH9P198WEHNrVtuiKqBhY8SXtG9cJ52qqyzQpI2HqYo3V2vnzRdcMiaCEUoqf/OQn2O12vvvd79Lc3MyFF17I7t27+frXv47VauX5559n0qRJx9zWI488gsVi4fnnnycnJ4eCggLuu+8+7rvvPt57771+eDVCCCHE8CbHYiEGv2PVTzhWQAJg1nJNXZUO6jrRV2JjY1m0aDGLFi2mqqqS7du3sXPndvLzD7NmzaesWfMpcXHxLF48nzFjJjJ+fBbW1jPS5BHmqnn5EbOt3jxRHZMNoXq3BnaI6E6mBATPfdsASihtl2943O2XXXR1f3FJmqyZsGc9jMxqv40JOZqjeQMr08DWZqmMt9aFBCR6z5AISnj96Ec/wm63c88997Bnzx5eeukl0tPT+eMf/8iIESOOvQFg06ZN3H333cyfPx+AiRMn8uMf/5hVq1ZRUlJCenr6MbYghBBCiJ6QY7EQg19X6kYci9XWtSv5vS0pKZlly5azbNlyamqq2bVrFzt3bufgwTxWr16N0/kRUVFRTJ48hezsqYweOQWIp8nZminRD2dYPQlKZE6CqlLN6Cld7NjRi6/HajOBkGmLQ+87NhFO/+rACUiI/jGkghJgCmLZ7XaefPJJZs+ezR/+8AcSExOP/cRWpaWljBkzJui2sWPHorWmrKxMPggJIYQQfUyOxUIMfp3VlBhMEhISWbx4CYsXL8HpbKCo6BCrV3/Bvn372LZtC9u2bQEUzuJxZKZPY1TGVLIs6XSp72kPBBbB7M7yDTBX/mct7/qJf9tMiRH/n737jo+iTv8A/pmZLemk0nuHQAClSBEExYIFlRMbZwMLKnr8vFNP0VPPXs7CnQVBDhX1UFFPD8VeaIrSpJMEAqGm120z8/39sSXZZDekbHY2yef9evEimZ3d/e6TbfPM832+PZvS06PRV6VWrFUkJU477bRaHXKFEMjKysK5555ba//169eHa2hERERERG1OKColIo17isdo9OkzGDabHdnZWdi7dzf27NmNw5k5OFGQgy27vsDWg/EYc2Ag+vUbgF69eiM6ugGdHutJkt2rYKguqVmXdgX8/5btuwsMHtvwpMTQCTpOHJKQVL/idWpjWkVS4uqrr66VlGiKOXPm+OaIVXfdddfV2s4EBxERUejxs5ioZWstlRLBWK1WDBo0GIMGDYYQAl99cAy/b92DI8d3o9KWg19//QW//voLAAldu3ZFnz590bt3X3Tv3gOmEM2HmPgHAaGLsCaAOvQQ9eoHUlOn3oF7SBABrSQpMW/evJDd1u233x6y2yIiIqKG42cxUcvXGislgpEkCd26dwZsXTC0/xT0Hl6GCrEXmZn7kJWVidzcQ8jNPYQffvgOJpMZPXv2Qp8+fdGnT1907Nip0SdXG5McaCo2d6Tm0CqSEqHEL0JERETG4mcxUcvX2islaoqOE/D2kYiNi0Xf3iMwbNgICCGQl5eH7OxMZGVlIjs7C5mZe5GZudd9vegYdO/eAz169ETPnr3QuXOXgFVikaKt/V0pPJiUICIiIiKikGpLlRKA/2oY1VffkCQJ7du3R/v27XHaaeOg6zpycw95EhSZOHToEPbs2YU9e3YBAMxmC7p16+5LUnTt2g0WSwM7WTYja+jbYxAxKUFERERERNQU0fFVP9dV6CDLMrp374Hu3Xtg8uQzoaoqcnMPISfnAA4c2I+DB3OQne1OWLj3V9CpUyd07dodXbt2RbduPZCcnBzSfnr1MfZCHWWFQEJKWO+W2ggmJYiIiIiIKKTadKVEA2ZfmEwm9OzZCz179sKkSZOh6zqOHTuKAwf248CB/cjJ2Y/Dh3Nx+HAufv7ZfZ2YmBh06dINXbt2Q7du3dGlS1fExMSE9gHVEJ/k/kfUHJiUICIiIiIiagJztRkWDUlK1CTLMjp37oLOnbtg3LgJEEKgsLAQhw8fwqFDh5CbexBHjhzBvn17sG/fHt/1UlJS0bFjJ991O3bshLi4uDruiShyMClBREREREQUIpoautuSJAkpKSlISUlBRsZwAICqqjh69Ahycw/h0KGDyM09hIKCfBQU5GPHjt99101IaIdOnTqjc+fO6NjR/X+7dolhn/pBdDJMShARERERUUi1xePe/qfqOJIlITGtee/HZDKhW7fu6NatO8aOHQ8AqKysxLFjR3D06FEcOXIYR48eRV7eCZSWlviaaAJAVFS0p/FmB7Rv3wEdOrj/j42NY7KCDMOkBBEREVEIZGdn47777kN5eTksFgvuu+8+jBw50uhhEVGY9EwHeqYLQ+47JiYGvXv3Re/efX3bnE4njh8/hiNHjuDYsSM4cuQITpw4joMHc3DwYE6t63sTFe3bd0RaWhpSU1MRH5/AZAU1OyYliIiIiELAarXi8ccfR+/evZGVlYVbb70Vq1evNnpYRMbgcazhLBaLr6LCS9d1FBUV4cSJ4zhx4jiOHz+GEydOIC/vhK+5ZnVmswUpKalISUlBamqq52f3v9jY2HA/JGqlmJRoxX7//XcsWLDA9/u+ffvw4YcfYtCgQQaOioiIqHXq0qWL7+fevXujrKwMQgieZaQ2ic/6yCTLsq9HxaBBg33bdV1HQUGBJ0lxHPn5eSgoKEBBQT6OHXNXWtQUHR2DlJQUJCYmITk5GT17doEsW9GuXTISExNhMvFQk+qHz5RWbOjQofjkk08AAIcPH8Yf//hHJiSIiKjN2rhxI5YsWYLt27cjLy8Pr776KiZPnuy3z/Lly7FkyRLk5eVh0KBBWLBgATIyMhp8X9988w0GDRrEhAS1XXzqtyiyLCMtLQ1paWkAhvq2CyFQUVHhSVLke/4VID/f/XNu7iHk5h4CIGHjRjNsNhcA9xSWuLh4JCUlITExCUlJSUhISERCQgISEhLQrl07xMTEQpZlQx4vRRYmJdqIL774Auecc47RwyAiIjJMZWUlBgwYgEsvvRTz5s2rdfmqVavwxBNP4OGHH8awYcOwbNkyzJkzB1988QWSk5MBANOnTw942ytXroSiuNcBPHz4MJ555hksWrSo+R4MEVEYSJKEuLg4xMXFoWfPXn6XCSFQWlqCoqIilJQUQ9ftyMk5gsLCQhQXF6G4uBjl5WU4dOhgkNuWER8f70lUtEN8fIIvaREXF4/Y2FjPvzjf+yu1TkxKGCicZ2y++OILPPDAA6EaOhERUYszadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwA8FUgBlNeXo5bb70VDzzwAHr06NHoscpy004ze6/f1NtpjRibuoUqPtWLhFpLrPncqUlCUpK7CkKWJSQlxaKoqAK67q6U0HXdl7QoKipCaWkJSktLq/1firIy9/9Abp33FBVlRVxcHGJj43yJiri4OMTExCA6OgbR0dGIiopCVFQ0oqOjEB0dA7PZHDHVanzu1I1JCQOF84xNYWFho5IZREREbYHT6cSOHTswd+5c3zZZljFu3Dhs2bKlXrehaRruvPNOzJw5ExMmTGj0WEwmGSkpcY2+fnVJSWxEFwxjU7emxicqygFABYCQPZ8jBZ87wdWMTVpaAoBuQffXdR1lZWUoKSnx+1deXo6ysjKUl5f7/lVUlKKiorTeY1EUBdHR0X7/rFYrLBaL7/+6fjabzTCZTFAUBYqiwGQy+X73/t/QpAefO4ExKWGgcJyxAYDVq1dz6gYREVEdioqKoGkaUlNT/banpKQgJycnyLX8/fjjj9iwYQPy8/OxYsUKAMBbb72FhISEBo1FVXWUltoadJ2aAp21JDfGpm6hio/DAXgbSxQUlIdmcAbjcye4psVGQWxsMmJjk9G5c/C9XC4XKirKUVFRgYqKcpSXV6CiogJ2uw02m63a/3bY7TZUVtpQVFSKvLyiJj22OkeuyFAUBbIsQ5ZlX5LC/b/k29a+fRrmz78DJSW2Rj93EhKiYTa3zmksTEpEqFCcsfEK1dQNlpI2H8YmsJpxYXxqY2yCY2yCY2zqryGrZ0yePBk7duwIyf2G6oBH1wUPnoJgbOrW1PgIUfW6aW1x5nMnuOaMjaKYPM0yExt0PVVVPQkLO5xOB5xOp++fy+Ws9rsDTqcLLpcTDocDmqZB0zSoqgpNUz0/a57tqme7+3dd16GqGoQQAf9ZLGbous7nThBMSkSoUJyxAYAjR9zNZoYOHXrynevAUtLwYGyqmM1Krecc4xMcYxMcYxMcY1MlKSkJiqIgPz/fb3thYWGtz2IiOrkImcpPBJPJhLi4eMTFxRs2BlmWuERqHRiZFqah65137twZX3/9dZPvl6WkzYuxqc3l0nzlnoxPcIxNcIxNcKGKTWsqJbVYLEhPT8e6deswZcoUAO65zuvXr8e1115r8OiIiIhaLyYlIlQknrFhKWnzY2z81YwF4xMcYxMcYxNcW4tNRUUFDh6sWpouNzcXu3btQmpqKtLS0nD99dfj7rvvRnp6OjIyMrBs2TLY7XZccsklBo6aqIVipQQR1ROTEhGKZ2yIiIhCa/v27bjmmmt8vz/66KMAgNtvvx3z5s3DtGnTUFhYiJdeesm3FPfixYt9K14RERFR6DEpYSCesSEiIgqfMWPGYM+ePXXuM2vWLMyaNStMIyJqvVgoQUT1xaSEgXjGhoiIiIhaJWYliKiemJQwEM/YEBERERERUVsmGz0AIiIiIiIiImqbmJQgIiIiIqKQ6tjTvbJP5z5tZ4UfImocTt8gIiIiIqKQapcKnDFTh9lq9EiIKNIxKUFERERERCFniTJ6BETUEnD6BhEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQTEoQERERERERkSGYlCAiIiIiIiIiQzApQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIYwGT0Aaj2EENB1DUIEvlyWJTidTqiqCl0PslMbFYmxkSRAlhVIkmT0UIiIiIiIqJViUoKaTAiB8vISVFSUAqj7gDo/X4au6+EZWAsTmbGREBubgLi4dkxOEBHVg81mw7Rp03D++efjz3/+s9HDISIiinhMSlCTeRMSCQnJsFisAIIfvJpMElQ1MioBIk3kxUbA6XSgtLQQABAfn2jscIiIWoBXX30VGRkZRg+DiIioxWBSgppECOFLSMTExJ10f5NJBhBp1QCRIRJjYzKZAQClpYWsliAiOokDBw4gOzsbkydPRnZ2ttHDISIiahHY6JKaRNc1AMJTIUGtkftvKzx/ayKilmnjxo245ZZbMGHCBAwYMADfffddrX2WL1+OKVOmYOjQoZg5cya2bdvWoPt46qmn8H//93+hGjIREVGbwEoJapKqppY8g956uf+2wRqYEhG1BJWVlRgwYAAuvfRSzJs3r9blq1atwhNPPIGHH34Yw4YNw7JlyzBnzhx88cUXSE5OBgBMnz494G2vXLkS3333HXr27IlevXph8+bNzfpYiIiIWhMmJVqJO+64A+vXr8eECRPw/PPP+7Z//fXXeOaZZwAAd955J6ZNm2bUEImIiAwzadIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBL0+lu3bsWqVauwevVqVFRUQFVVJCQk4KabbmrUeGW5acl+7/WbejutEWNTN8YnOMYmOMamboxP3ZiUaCWuvvpqXHzxxfj0009921RVxTPPPIPly5dDURRcfvnlOOuss2CxWAwcKRERUWRxOp3YsWMH5s6d69smyzLGjRuHLVu21Os27rrrLtx1110A3JUT2dnZjU5ImEwyUlJO3qepPpKSYkNyO60RY1M3xic4xiY4xqZujE9gTEq0EmPGjMHPP//st23r1q0YMGAAUlNTAQAZGRn47bffMHbsWCOGGHEee+whfP75Z7W2f/bZ10hMTAz/gIiIyBBFRUXQNM33eemVkpKCnJycsI9HVXWUltqadBuyLCEpKRZFRRXQdc6/q46xqRvjExxjExxjU7dQxCchIRpmsxLikUUGJiXCYOPGjViyZAm2b9+OvLw8vPrqq5g8ebLfPsuXL8eSJUuQl5eHQYMGYcGCBU1eUuzEiRPo0KGD7/cOHTrgxIkTTbrN1mbcuNNxzz33+21r166d3++qqsJk4kuFiKitEUI0atWhSy+9tMn3Haov9boueIAQBGNTN8YnOMYmOMamboxPYFx9Iwy8zbUefPDBgJd7m2vddttt+OijjzBgwADMmTMHhYWFvn2mT58e8J+mcUWEprBYzEhJSfX7d9llF+HNN9/AI488gKlTJ+LFF58DAGzduhlz596AKVPGY8aMC/Dyyy/C6XT6bqugIB933/0nTJkyHpdffjG+//4bnH/+mVi1yj2lZtOmXzFhwkhUVlb6rrN27U+YMGGk35h+/PF7XHfdVZgyZRwuv/xiLF++DLpetVTohAkj8dlnH+Puu/+EM88cjz/+cSa2bt3idxtbtmzCrbfOwZlnjsd5503BX/5yJxwOB5YtW4Lrr7+qVhyuuOISvPvu202OJxFRS5SUlARFUZCfn++3vbCwsFb1BBEREYUWT/+GQXM31wqmffv2OH78uO/348ePY8KECQ2+Ha9AjVlaa7OWd955EzfccBNmz74ZAHD4cC7+/Oc7cfPNt+L++x9GQUE+nn32CaiqijvucM8hfuyxh1BcXIR//vM1AMDzzz/jl4Coj61bt+Dxxx/Cn/70FwwdOgwHD+bg6acfg9lswcyZV/r2W7p0MW6//U+YN+//sGTJa3j44fuxYsUnMJlMOHgwB/Pn34aLL/4D7rrrXgDAxo0bIITAtGkX4o03FmHfvj3o12+A5z434+jRIzjnnPPqHJssS2H/e9dsCtRan29NwdgEx9gEx9j4s1gsSE9Px7p16zBlyhQAgK7rWL9+Pa699lqDR0dERNS6MSlhsFA01womIyMDu3fvRn5+PhRFwdatW/HYY4816raCNd1yOp3Iz5dhMkkwmepXeFPf/ZqbJEn46acfMHXq6b5tkyefBQAYPfo0XHXVLN/2xx57BNOmnY8rrnBXGfTs2QN33DEff/3rXzB//p9x8GAOfvllA5YtewcDBgwEANx9919x/fWzIMvu2CiK+3GbTLIvBooi+bYBwNKli3DddbNxwQUXAgB69OiOvLw5WLHiXVx11dW+8Vx00cWYOvVsAMBNN92CmTMvwbFjh9GzZy8sX/5vZGQMw113/cW3/4AB/QEAcXExGDNmLD7//DMMGjQIAPDFF59h3LgJaN8+LVikIMsykpJiwtok1WxWaj3n2BwoOMYmOMYmuLYUm4qKChw8eND3e25uLnbt2oXU1FSkpaXh+uuvx91334309HRkZGRg2bJlsNvtuOSSSwwcNRERUevHpITBQtVc66abbsK2bdtgs9kwceJELFq0CAMHDsSf//xnXHWV+0D6T3/6E6xWa6PGGazplqqq0HUdqioA6LWvWIPJJENVT75fOAghMHLkGMyfX3XwHhMTg5tuug79+w/0G+e+fXuRlbUPq1ZVNcbUdR0OhwPHj+chOzsbZrMZvXv3812vb98BMJvN0HUBVdWhae7tqqr79tE04dtmMsnIzNyLbdu2YsmSRb770TQdQuh+4+nZs4/v98TEZABAfn4BunbtgX379mHixDOCxnnatAvx7LNPYO7cO6BpGr755mssWPBw0P1VVUDXdRQVVcJkcgbcpzm4XBoKCsoBsHlSXRib4Bib4EIVm5bUdGv79u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJ199p8eLFSE5ONmrIREREbQKTEhGqoc21Fi1aFHD72WefjbPPPjskYwr0xbWlf9GPjo5C167dAmyP9vvdZqvEpZdehksuuazWvomJiRACJ/17ybK3QqQqZqqq+u1TWWnDjTfOxemnB5/uA6BG4033/VbvO1GXCRMm4dlnn8S6dT/BZrPBYrFg3LiTT+sxojFPzftjc6DgGJvgGJvg2lJsxowZgz179tS5z6xZszBr1qw69yEiIqLQYlLCYGyu1TL06zcA+/dnB0xgAEDPnj3hdDqxb98e9O/vnr6xZ89uuFwu3z6JiUkAgIKCAsTEuEumMzP3+t1O//4DcOhQTtD7qY++ffth06Zfcd11cwJebjKZcM450/C//30Kh8OOc845j6uLEBERERGRISJjcn8bVr25lpe3udbw4cONGxj5ufrqa7Bly2a88MKz2LdvLw4ezMEPP3yLf/3rRQBA9+49MXLkaDz11GPYtWsHdu3ageeffxpms9l3G127dkP79h2wdOnrOHToIL777mv873//9bufa6+djVWrPsW//70Y+/dnY//+bHz55edYtmxJvcc6a9Z1+P33rXjxxeeQnZ2J/fuzsWLFu7Db7b59LrhgOn7+eR02b/4N06Zd1MToEBERERERNQ6TEmFQUVGBXbt2YdeuXQCqmmvl5eUBAK6//nq89957+Oijj5CVlYWHHnqIzbUiTL9+A/DSS69i//5szJ17A+bMuQbLli1BWlp73z4LFjyCpKQk3HbbjXjwwb/iiiuuRkxMjO9yk8mEBx/8O/bu3YNrr70Sn376Ca6//ka/+xk7djyeeOI5rF+/FrNn/xFz596AlSvfR6dOnes91u7de+C55xZi587tmDPnGtx224347bdf/KaX9OrVG/37D0S/fgPQp0/fJkSGiIiIiIio8SQhRNuYTGqgn3/+2a+5lpe3uRYAvP3221iyZImvudYDDzyAjIyMcA81KJdLQ3Fx7eUtVVVFfv5hpKZ2qdcUgEhqdBkO559/Jm677U+YNu3Ck+4bztjouo6ZM6fjqquuwaWX1u6TUV1D/8ahcvHF0/Dxx6sAuJvypaTEoaCgvM3Mf68vxiY4xia4UMUmMTGmxTS6bEmCfeY2BJ//wTE2dWN8gmNsgmNs6haK+LTmz1xOJA8DNteiSFJYWIBVqz5FeXkZzj13mtHDISIiIiKiNoxJCaI25qKLzkFSUjLuuWeBr+EmERERERGREZiUIGpG//vfN0YPoZY1a341eghEREREREQA2OiSiIiIiIiIiAzCSglqNg88cC9+/32b3zZJApqjterQoRn4+9+fDP0NExERERERUbNhUoKaTaAkQaSsvvHhh//B66+/glWrvoUsuwuGCgryMX36uTj99DPwxBPP+vZdvXoVnnzy7/jii+9gtUY16v6++eYr/O1vf8UZZ0zBo48+Xevyv/3tPvTp0xfXXHMDJkwYCYvFivfeW4n27Tv49rn99pswcOBg3H77nxo1BiIiIiIiokjD6RvUJo0YcSrKy8uxd2/VqihbtmxC+/YdsHXrZlRfKXfLlk0YNCi90QmJ48eP4V//egEZGcMDXq6qKn7+eT1OP32i3/alS19v1P0RERERERG1FExKUJvUq1cfJCYmYfPm33zbNm/+Deeeez7MZjMyM/f5bT/llJGNuh9d1/Hoo3/DtdfORpcuXQPus2XLJsTFxaFfv/6+bTNmzMSqVZ/i4MEDjbpfIiIiIiKiloDTN6hNkiQJw4efgs2bf8OVV84C4E4O3HnnXTh8+BA2b/4N/fr1R35+HnJzD2HEiFMBALNmzcTx40eD3m5Gxgg899xLvt/feedNREVFYfr0S7F9+7aA11mz5keMH3+637bhw09BVlYmFi16BY8++lRTHy4REREREVFEYlKC2qwRI07F66+/DF3XUVJSjNzcQxgyZBgOHTqEjRt/xsyZV2LTpt9gsVgwZMhQAMCzz74IVVWD3qbVavX9vGfPbnzwwX+wZMlbdY5j7dqfcPfdf621/ZZbbsOcOddg9+6dGDhwcCMfJRERERERUeRiUoLarFNOGenrK3HkyGEMGDAI0dHRGD58BBYvfhVCCGzZ8hsGDx7i6yfRsWOnet220+nEI48swJ/+9GekpKQG3S8rKxOlpcUYMaL29JD+/Qdi8uQz8eqr/8QLL7zcuAdJREREREQUwZiUoDarV6/eSEpKxubNv+Ho0cMYPvwUz/Y+kCQgM3MftmzZhDPPPNt3nfpO3ygoyEdOzgH87W/3+S7TdfeqI5MmjcEHH3yKtLT2WLPmB4wZMw4mU+CX4o033oqrr/4DfvttYygeMhERERERUURhUoLatBEjTvUlJW699U4A7n4TGRnD8c03X+LgwRxfPwmg/tM30tLa48033/O77PXXX4Hdbse8efORlJQMwN1P4rLLrgh6e127dsMFF0zHq68ubPTqH0RERERERJGKSQlq00aMOBUvv/winE4nMjKG+bYPGzYCS5YsgsViQXr6UN/2+k7fMJlM6N27r9+2uLh4KIri215QkI99+/bgtNPG13lb119/Ey6/fDqEAHtLEBERERFRq8IlQalNO+WUkbDZbOjXbwBiY+N824cPPxU2W6Wnn4S1jltovLVrf8LQocOQkJBQ536pqan4wx+ugNPpaJZxEBERERERGYWVEtSm9ejRE2vW/Fpr+8CBgwJub4r773/I7/c1a37EhAkTa+0X6H7nzp2HuXPnhXQ8RERERERERmOlBJFBhg0bjilTpho9DCIiIiIiIsOwUoLIIFdffa3RQyAiIiIiIjIUKyWIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBTSJJ3p+EkcOgZuX+21b9rYmIiIiIiEKDjS6pSWRZgSwrKC7OR3x8IhTFBKCuo1cJqsoERmCRFhsBTVNRVlbs+zsTERERERGFEpMS1CSSJCElpRNKSwtRVHTipPvLsgxd18MwspYnUmNjtcYgKak9JJZKEBERERFRiDEpQU2mKAqSktIghA5d1yGCnOyXZQlJSTEoKqqErkdSRYDxIjE2kuROlEgSZ3kREREREVHzYFKCQkaSZChK8ANYWZZgsVhgMjkj5sA7UjA2RERERETUFvEUKBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAhJiGBtCYmq6LqApjV9ZQizWYHLpYVgRK0PY+Nv797d6N9/oO93xic4xiY4xia4UMRGUWTIMlfmCTV+5jY/xqZujE9wjE1wjE3dmhqf1vyZy6QEERERERERERmC0zeIiIiIiIiIyBBMShARERERERGRIZiUICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgupt+fLlmDJlCoYOHYqZM2di27Ztde7/+eef49xzz8XQoUNx4YUX4scff/S7XAiBF198ERMmTEBGRgauu+465OTk+O1TXFyMu+66C6eccgpGjRqF+++/H5WVlSF/bKEQ7vjk5ubivvvuw5QpU5CRkYGzzjoL//znP+FyuZrl8TWFEc8dr+LiYkycOBEDBgxARUVFyB5TqBgVm2+//RYzZsxARkYGxo4di3vuuSekjysUjIjN1q1b8cc//hGnnnoqRo8ejZtvvhlZWVkhf2yhEOr4fPnll5g9ezbGjBmDAQMGYO/evbVuoyW9J7cFoX4OtCYNic2+ffswb948TJkyBQMGDMDbb78dxpEaoyHxWbFiBa666iqMGjUKo0ePxg033IDff/89jKMNr4bE5uuvv8aMGTMwcuRIDB8+HNOnT8fHH38cvsGGWUPfc7wWLVqEAQMG4KmnnmrmERqnIbFZuXIlBgwY4Pdv6NChYRxtBBJE9fC///1PpKeniw8++EDs27dPLFiwQIwaNUoUFBQE3H/Tpk1i0KBB4vXXXxeZmZnihRdeEOnp6SIzM9O3z2uvvSZOPfVU8dVXX4ldu3aJW265RZx11lnC4XD49pk9e7a46KKLxJYtW8TGjRvF1KlTxV/+8pdmf7wNZUR8fvjhB3HvvfeKn376SRw8eFB8/fXXYuzYseKZZ54Jy2OuL6OeO17z5s0Ts2fPFv379xfl5eXN9jgbw6jYfPHFF2LUqFHivffeE9nZ2WLv3r1i9erVzf54G8KI2JSVlYlRo0aJ++67T2RnZ4vdu3eLm2++WZx55plhecwN0Rzx+eijj8TChQvFihUrRP/+/cWePXtq3U5LeU9uC5rjOdBaNDQ2W7duFU8++aT47LPPxPjx48Vbb70V5hGHV0Pj83//93/i7bffFjt37hSZmZni3nvvFSNHjhTHjx8P88ibX0Nj88svv4jVq1eLzMxMkZOTI958800xaNAgsXbt2jCPvPk1NDZe27dvF5MnTxYXXnihePLJJ8M02vBqaGw+/PBDMXr0aHHixAnfv7y8vDCPOrIwKUH18oc//EE88sgjvt81TRMTJkwQixcvDrj/nXfeKW6++Wa/bZdddpl4+OGHhRBC6Louxo8fL5YsWeK7vLS0VAwZMkR8/vnnQgghMjMzRf/+/cXvv//u2+eHH34QAwcOjLgXrhHxCeT1118XZ599dlMeSsgZGZv3339fXHHFFWLdunURmZQwIjYul0ucfvrpYsWKFaF+OCFlRGy2bdsm+vfv7/dFe9OmTaJ///4n/dIVbqGOT3WHDh0KmJRoSe/JbUFzPgdauobGprrJkye3+qREU+IjhBCqqooRI0aI//73v801RMM0NTZCCHHxxReLhQsXNsfwDNWY2FRWVorzzjtP/Pjjj2LWrFmtNinR0Nh4kxJUhdM36KScTid27NiB8ePH+7bJsoxx48Zhy5YtAa+zZcsWv/0BYMKECb79c3NzkZeX57dPfHw8hg0b5ttn8+bNSExMxJAhQ3z7jBs3DpIk1btcLByMik8gZWVlaNeuXaMfS6gZGZuDBw/ihRdewNNPPw1Zjry3OqNis3PnThw/fhySJOGiiy7ChAkTcMsttwSd/mIEo2LTq1cvJCYm4v3334fL5YLNZsNHH32EoUOHIjk5OaSPsSmaIz710VLek9sCo54DLUFjYtOWhCI+NpsNqqpG1PeNUGhqbIQQWL9+Pfbv349TTz21GUcafo2NzZNPPokxY8bg9NNPD8MojdHY2JSXl+OMM87ApEmTcOuttyIzMzMMo41ckfdNnSJOUVERNE1Damqq3/aUlBTk5eUFvE5+fj5SUlKC7u/9v67bDHQbJpMJ7dq1Q35+fuMfUIgZFZ+aDh48iLfffhtXXHFFox5HczAqNqqq4i9/+QvuvPNOdOvWLSSPJdSMis2hQ4cAAC+//DLmzZuHl19+GWazGddcc03E9AYwKjZxcXFYtmwZVq5ciWHDhmHEiBHYsmULXn755ZA8rlBpjvjUR0t5T24LjHoOtASNiU1bEor4PPfcc+jUqRNOO+205hiiYRobm7KyMowYMQJDhgzBTTfdhAcffBBjx45t7uGGVWNi891332HDhg24++67wzFEwzQmNr1798YTTzyBV199Fc888wx0XceVV16J48ePh2PIEYlJCWo0IQQkSQp6eaDLam6r+XvN2wx0Gye730gRjvh4HT9+HHPmzMH555+PSy+9tJEjDp/mjs2rr76KpKQkXHbZZSEYbXg1d2x0XQcAzJ07F1OnTkVGRgaeeuoplJaW4vvvv2/i6JtXc8fGbrdjwYIFOO2007BixQq888476NSpE2677TaoqhqCR9C8QhGfk2nJ78ltQTieAy0Vn6d1q298Xn/9daxatQoLFy6ExWIJw8iMd7LYxMbG4uOPP8YHH3yA+fPn4/HHH8evv/4axhEaJ1hsCgsL8cADD+Dpp59GdHS0ASMzXl3Pm+HDh+Oiiy7CwIEDMXr0aCxcuNBXqdlWmYweAEW+pKQkKIpS60xYYWFhraygV2pqaq39CwoKfPunpaUBcJ+9rF4WXVhY6CsNDnQbqqqitLS01tkeIxkVH6/jx4/jmmuuwfDhw/HQQw819eGElFGx+fnnn/Hrr79i8ODBANwfDAAwatQo3HHHHbjllltC8OiaxsjXFeCequAVExODzp0748iRI018VKFhVGw+/fRTHD9+HO+//77vi8Q//vEPjBo1CuvWrcPEiRND8wCbqDniUx8t5T25LTDqOdASNCY2bUlT4rNkyRK89tprWLp0Kfr379+cwzREY2MjyzJ69OgBABg0aBCysrKwaNEijBw5slnHG04Njc2+ffuQl5eHK6+80rdN0zRs3LgRb7/9dqtavSUU7zlmsxmDBg2KqKm04cZKCTopi8WC9PR0rFu3zrdN13WsX78ew4cPD3id4cOHY+3atX7b1q1b59u/a9euSEtL87vN8vJybN261bfPiBEjUFxcjB07dvj22bBhA4QQyMjICM2DCwGj4gNUJSTS09PxxBNPRFzvBKNi8/jjj+OTTz7Bxx9/jI8//hiPPvooAOC9997DzJkzQ/cAm8Co2AwdOhRms9nvg89ut+PYsWPo3LlzaB5cExkVG7vdDlmW/c5seH/3JrYiQXPEpz5ayntyW2DUc6AlaExs2pLGxmfx4sV4+eWXsXjx4la7dGGonjtCCDidzmYYoXEaGpuhQ4fi008/9X0P+/jjjzFkyBBccsklWLlyZRhH3vxC8bzRNA379u3znUBpk8LWUpNaNO9SNytXrhSZmZnigQce8Fvq5i9/+Yt49tlnffv/9ttvYtCgQWLJkiUiMzNTvPTSSwGX5xs5cqT4+uuvxe7du8XcuXMDLgl68cUXi61bt4pff/1VnH322eLPf/5z+B54PRkRn2PHjompU6eKa665Rhw7dsxvWaFIYtRzp7oNGzZE5OobRsXmkUceEZMmTRJr164VmZmZ4q677hKTJk0SFRUV4XvwJ2FEbDIzM8WQIUPE3//+d5GVlSV2794t5s2bJ8aOHSuKi4vDG4CTaI74FBUViZ07d4rvv/9e9O/fX3zxxRdi586doqioyLdPS3lPbgua4znQWjQ0Ng6HQ+zcuVPs3LlTjB8/Xjz77LNi586d4vDhw0Y9hGbV0PgsWrRIpKeniy+++MLvu0akfaaGQkNj89prr/mWZs/MzBRLly4VgwcPFh988IFRD6HZNDQ2NbXm1TcaGpuFCxf6njfbt28X8+fPFxkZGSIrK8uoh2A4Tt+gepk2bRoKCwvx0ksvIS8vD4MGDcLixYt9ZdBHjx71O0t/yimn4LnnnsMLL7yAf/zjH+jZsyf+9a9/oU+fPr59brzxRthsNjz44IMoLS3Fqaeeitdff91vjuKzzz6Lv//977j22mshyzLOOeccLFiwIHwPvJ6MiM/atWuRk5ODnJycWmXle/bsCcOjrh+jnjstgVGxueeee6AoCv7v//4PLpcLI0aMwNKlSxETExO+B38SRsSmT58+ePXVV7Fw4UJcdtllMJlMGDJkCBYvXhxxXeabIz7ffvst/vrXv/p+v+OOOwAATzzxhK9XTUt5T24LmuM50Fo0NDYnTpzAxRdf7Pt90aJFWLRoES655BI8+eST4R5+s2tofN599124XC7fe4LX7bffjnnz5oV17M2tobGx2+145JFHcOzYMURFRaF379545plnMG3aNKMeQrNpaGzakobGprS0FA888ADy8vLQrl07DBkyBP/5z3/Qu3dvox6C4SQhIqgmlYiIiIiIiIjajLaZziIiIiIiIiIiwzEpQURERERERESGYFKCiIiIiIiIiAzBpAQRERERERERGYJJCSIiIiIiIiIyBJMSRERERERERGQIJiWIiIiIiIiIyBAmowdARFSXhQsX4p///Get7WPHjsW///3v8A+IiIioleJnLhEZgUkJIop48fHxWLx4ca1tREREFFr8zCWicGNSgoginqIoGD58+En3s9vtiIqKav4BERERtVL8zCWicGNPCSJqkXJzczFgwAD897//xd13342RI0filltuAQAUFxfjwQcfxLhx4zB06FBcccUV2Lp1q9/1S0tLcdddd2H48OGYMGECXnnlFTz11FOYMmWKb5+FCxdizJgxte57wIABePvtt/22vf/++zj//PMxZMgQTJ48Ga+//rrf5ffeey8uvfRSrF27FhdeeCGGDx+OK6+8Evv27fPbT9M0vPbaazjnnHMwZMgQTJw4Effeey8AYPny5RgxYgQqKir8rrNhwwYMGDAAu3fvbmAUiYiITo6fuVX4mUsUeqyUIKIWQVVVv9+FEACAp59+GlOnTsWLL74IWZbhdDpx/fXXo7S0FHfffTeSk5Px7rvv4rrrrsOXX36JtLQ0AMBf//pX/PLLL7jvvvuQmpqKN954AwcPHoTJ1PC3xcWLF+P555/HnDlzMHr0aOzYsQMvvvgioqOjMWvWLN9+R48exdNPP425c+fCarXi6aefxp/+9Cd89tlnkCQJAPDggw/ik08+wezZszF69GiUlJTgiy++AABceOGFeOqpp7B69Wpceumlvtv96KOPkJ6ejoEDBzZ47ERERDXxM5efuUThxKQEEUW84uJipKen+2179NFHAQDDhg3D3/72N9/2999/H/v27cNnn32Gnj17AgDGjRuHc889F2+88Qbuuece7Nu3D19//TWef/55TJs2DQAwZswYTJ48GXFxcQ0aW3l5Of71r39h7ty5uP322wEA48ePh81mwyuvvIIrr7wSiqIAAEpKSvDuu+/6xiWEwG233Ybs7Gz06dMHWVlZ+OCDD3D//ffjmmuu8d2Hd4wJCQk4++yzsXLlSt8XpIqKCnz55Ze46667GjRuIiKiQPiZy89conBjUoKIIl58fDyWLl3qt81isQAAzjjjDL/t69evR3p6Orp27ep3pmfUqFHYvn07AOD3338HAL+y0djYWIwbNw7btm1r0Ng2b96MyspKnHvuuX73d9ppp+Hll1/GsWPH0KVLFwBAly5dfF+OAKBPnz4AgOPHj6NPnz74+eefAcDvjExNf/jDH3Ddddfh0KFD6NatGz7//HOoqooLLrigQeMmIiIKhJ+5VfiZSxQeTEoQUcRTFAVDhw7125abmwsASElJ8dteVFSELVu21DrLAwDdu3cHAOTn5yM2NrZWg66at1UfRUVFAIDzzz8/4OVHjx71fUGq2b3cbDYDABwOBwD32amYmJg6zxyNGTMG3bp1w8qVK3HnnXdi5cqVOPPMM5GYmNjgsRMREdXEz9wq/MwlCg8mJYioRfPOC/Vq164dhgwZgoceeqjWvt4zPampqaioqKjVObygoMBvf6vVCpfL5betpKSk1v0BwGuvvRbwC1avXr3q/VgSExNRWVmJ8vLyoF+SJEnCjBkzsGLFCkyfPh2//fZbrQZfREREzYGfufzMJWoOTEoQUasyduxYrF27Fp07dw56FsZ7Bujbb7/1zR2tqKjAunXr/L6YdOjQARUVFTh+/Dg6dOgAAFi7dq3fbY0YMQJRUVE4ceJErbLWhjrttNMAAB9//LFfs66aLrnkErz00ku477770KFDB4wfP75J90tERNQY/MwlolBgUoKIWpWLL74Y7733Hv74xz/ihhtuQLdu3VBcXIxt27YhLS0N1113Hfr164cpU6bgoYceQnl5OdLS0rBkyZJapaWnn346oqKicN999+H6669Hbm4u3nvvPb99EhIScPvtt+Oxxx7D4cOHMWrUKOi6jgMHDuDnn3/Gv/71r3qPvXfv3rj88svx5JNPoqCgAKNGjUJpaSlWr16N559/3rdfhw4dcPrpp+P777/HzTff7GvqRUREFE78zCWiUGBSgohaFavVijfffBMvvvgiFi5ciIKCAiQnJyMjI8OvydaTTz6Jhx56CI8//jhiYmJw1VVXYejQoVi9erVvn+TkZLz00kt4+umncdtttyE9PR3PPfec70yP14033oj27dtj2bJlWLp0KaxWK3r27Flrv/r429/+hs6dO+P999/H66+/juTk5IBnZc466yx8//33dTboIiIiak78zCWiUJCEd+FhIqI2zrse+bfffmv0UE7qzjvvRF5eHt555x2jh0JERNRg/MwlIi9WShARtSB79uzB9u3b8dVXX+Ef//iH0cMhIiJqtfiZSxQeTEoQEbUgc+fORVFREa666iqce+65Rg+HiIio1eJnLlF4cPoGERERERERERlCNnoARERERERERNQ2MSlBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgkkJIiIiIiIiIjIEkxJEREREREREZAgmJYiIiIiIiIjIEExKEBEREREREZEhmJQgIiIiIiIiIkMwKUFEREREREREhmBSgoiIiIiIiIgMwaQEERERERERERmCSQkiIiIiIiIiMgSTEkRERERERERkCCYliIiIiIiIiMgQJqMHQC2Drgtomt7k2zGZZKhq02+nNWJs/B06dBDdunX3/c74BMfYBMfYBBeK2CiKDFmWQjQi8uJnbvNjbOrG+ATH2ATH2NStqfFpzZ+5TEpQvWiajuLiyibdhixLSEmJQ2mpDbouQjSy1oGxqe2Pf7wGH3+8CgDjUxfGJjjGJrhQxSYxMQayrIRwZATwM7e5MTZ1Y3yCY2yCY2zqFor4tObPXE7fICIiIiIiIiJDMClBRERERERERIZgUoKIiIiIiIiIDMGkBBEREREREREZgo0uiYiIiIioxRBCQNc1iDD3U5RlCU6nE6qqspljDYxN3eoTH0kCZFmBJLXOFTbqwqQEERERERFFPCEEystLUFFRCsCYA9/8fBm6zmUvA2Fs6laf+MiygpSUTlCU1rnKRjBMShARERERUcTzJiQSEpJhsVgBhP+MsskkQVVZCRAIY1O3k8dHoLg4H6WlhUhKSgvbuCIBkxJERERERBTRhBC+hERMTJxh4zCZZACsBgiEsalbfeITH5+IoqITEEKHJLWd9o9t55ESEREREVGLpOsaAOGpkCBqnRTFXTPQ1qbBsFKCiMJLF5BKdUjlOuAQ7tSoVYaeKAMxzJMSERFRbVVNLdteE0BqS9zP73A3cTUakxJE1OzkIyqUHQ4omU7IR1RIzsD7iVgJWncztL5mgHMSiYiIiIhaPSYliKh5aALKVgfMP9mgHFF9m4VVgtZNgUiQIaIkSDoAu4BcpEHK02Da5YRplxPKQRVRrxfDNSEaYjBLNYmIiIiay5Ilr2HdujVYsuQto4dCbRCTEkQUcspeJyyflEPO1wAAekcF6ogoqAMsEB0UQA5SeukSkHNdUHY6Ib4ElEwXlEwX9G4maFeZgNQwPggiIiKiJnrssYdgs1Xi0Uef9m1btepTPPPM45g//25cdNElDbq9TZt+xR133BLwstdfX4ZBg9IbNc4rr/wj/vCHyxt13ZbsD3+4EFdeOQszZrS9xx5JmJQgotBxCFg+LoN5kwMAoPUxw3lWDPReZkCqxxxQswS9l8X9b5EZ9j8mwPxtJZRDKhxPHYV5TBQc58cCVvaeICIiopbn/fffw8svv4gFCx7GmWee3eDrDx06DJ988oXftsWLX8Wvv/6CgQMHN3pcMTExAGIaff3WTFVVKIoCqT7fZalRmJRo5bKzs3HfffehvLwcFosF9913H0aOHGn0sKgVkvJVRL1ZCvm4Bj1BhnN6HLQhTZh2IQHaECu0wRaYtzlh+V8FTD/bIe9zwn5NO4hOfPsiIiKilmPp0tfx9tv/xuOPP4OxYyc06jbMZjNSUqpKR1VVxZo1P2LGjJl1HjSXlpbiX/96AWvW/ABVVZGePhR33vln9OjRE0Dt6RuqqmLhwn/giy/+B5PJhEsvnYn9+7MQHR2D++9/CADgcDiwaNHL+Prr1aisrEDfvv1x221/wpAhQwG4K0L+9a8XcP/9D+Oll/6BwsICjB49Bvfe+yDi4tzLun733dd4441FOHw4F9HR0RgwYBCeffYlyLLsqzLp1asPVq5cAU3TMG3ahbjttj9BUZQgY+iH226b7xsDAGzZsgmLFr2MPXt2wWKxYsiQoXj00adx113zcOzYUTz//DN4/vlnAABr1vzqG/c99zyAV19diNzcQ/jkk9V44IF7MHDgYNx++598tz179h8xbtwEzJ59MwBgwoSRuPvu+/H9999i69ZN6NKlKxYseBiyrOCZZx5DVlYmhg4dhgcf/DuSkpIb9RxojfitvpWzWq14/PHH0bt3b2RlZeHWW2/F6tWrjR4WtTLyERVRi4shVQio/c1wXJkQupU0ZAnaKVGIHpOE8tePQtnhRPTLxXBcFQ9tEHtNEBERUWQTQmDhwn/gs88+wXPPLcTw4af4Xf7mm2/grbeW1nkbb731Pjp27Fhr+5o1P6CkpBjnnXdBndd/8MF7ER0djeee+ydiYqLx/vv/wfz5t2H58g8QHR1da//ly5fhm2++xAMPPIIuXbrh3XffwsaNP2PixMm+fV544Rnk5BzA3//+JFJSUvHNN19i/vzb8M47HyAtrT0AoLKyEh9+uAJ///sTsNvteOCBe/H22//GLbfcjvz8fDz00P249dY7MHHiZFRUVGDTpo1+4/j55w2wWqPwz3++jkOHDuKJJx5BamoarrrqmoBj+OqrL/zGcPBgDubPvw0XX/wH3HXXvQCAjRs3QAiBxx9/BtdddxUuueQPmDbtQr/7raysxHvvvY37738YsbGxiI2NrTO+1f3734sxb958/OlPd+GFF57FI488iOTkZNx++52IiorF3/72Vyxa9DLuuWdBvW+ztWNSopXr0qWL7+fevXujrKwMQgiWH1HIyEfcDSmlSgHX+Gg4L4gN3jOiCaQEBc5r20H5ugKWLythfbMUjqsSoA1lYoKIiKgtsqwohWlHkCW9mok+xAr1svgGXWfdujVwuVz45z8X1UpIAMDFF8/AlClT67yN1NTAjbU+++wTjB59Gjp0qJ2w8Nq6dQv27NmN//53NcxmMwBg/vy/4Mcfv8O6dWtw5pm17/vDD1fgmmtuwIQJkwAAf/nLfVi/fq3v8mPHjmHVqk/x0UerkJycAgC44YY5WLPmR3z55ee4+uprAQAulwt/+ct9voTKeeddgN9+cyceCgryoWkaJk2ago4dOwEA+vbt5zcOq9WKe+5ZAIvFgl69eiM39xD+85/luOqqawKO4brr5mDdujW+Mbz99r8xdOgw3HnnXb7b7NOnLwAgKioKsiwjJibGr/rEO+4///mv6N27T9C4BnPBBdMxefJZANy9OubPvw033XQrRow4Faqq44ILLsYnn3zY4NttzZiUiHAbN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkKGSkUg3WN0ogVQo4J0XDdV5s/XpHNPoOJbjOjIVIUmBZUQbrO6VwXJ3QtGkiRERERM2ob9/+KCwswOLFr+LZZ19CVFSU3+UJCe2QkNCuwbd74sRx/PLLBjzyyBN17peZuRcVFeWYNm2K33aHw4EjR3Jr7V9eXo7CwgK/pplms9kvYZCdnQlN03D55Rf7XdfpdPrtFxsb61fhkZKSgqKiIgDuBMSIEafimmuuwGmnjcPo0adh8uQzERsb59u/X7/+sFgsvt+HDBmKl1/OR3l5eb3GkJm5DxMnnlFnfAKxWq2NSkgAQJ8+VY/fmyzp1at3tW3JvhiQG5MSEa6yshIDBgzApZdeinnz5tW6fNWqVXjiiSfw8MMPY9iwYVi2bBnmzJmDL774AsnJVfOUDh8+jGeeeQaLFi0K5/CpNXMJWN8shVymwzUqqvkTEtWop0RBALCuKIP1vVLYb0mE3tUclvsmIqLWq7CwAKtWfYauXbth0qTJPJET4ZwzExDeOgnAZJIBVW/QdTp06ICHH34c8+bdjL/85U4888yLfomJxk7fWLXqUyQktPNVMwRjs1UiLa09XnzxlVqXJSQkBL1ezee/EMLvNk0mE954Y7lvP0WRoGnCb6qDyeR/uClJEoTQPfsrePHFV/D771uxYcM6vPvuW1iy5DUsWfKW72A+2GtQkgKPwash0y0CqZk4AgBZlv1iALh7b9RU/TF7h+W/rSoG5MakRISbNGkSJk0K/kazdOlSXH755ZgxYwYA4OGHH8b333+Pjz76CLNnzwbgznbeeuuteOCBB9CjR4+wjJvCSBeQD6lQdjogH9MgF2sQEoBoGVo3E/Q+Fmj9zCGfUmH5ogLKIRVaDxOcF8eFLSHhpZ0SBVeZDsuqCliXlcI+LxEiQQnrGIiIqHX5738/RlbWPuzZswtdu3arVUreUFKpBmWfC+oIa7NMbaSWo3PnLli48DXMm3cz7r77T3j66Rd8B76Nmb4hhMD//vcpzj33/FoH/jX17z8Q+fl5MJvNdU7z8IqLi0Nycgp27tyBIUPc1dculwtZWZm+XhH9+vWHqqooKSn27WMyyVAbmLCRZRnDho3AsGEjcMMNN+HCC6fi55/X+3pk7N27B06n01ctsWPHdqSkpCI2Ni7gGGrq27cfNm36FdddNyfg5SaTGZpWvzEnJiahsLDA93tlZWXAShNqOCYlWjCn04kdO3Zg7ty5vm2yLGPcuHHYsmULAEDTNNx5552YOXMmJkxoXJffqttu2oep9/pNvZ3WqFGx0QWUbQ6YvqyAnKcF2EGDku0CfrBBT1GgTomBNioqJMkDKccF01obRLQE5x/bQbY0zxKdNeNSMz7aGTFQj2sw/WaH9cNyOG9oF/bkiNH4ugqOsQmOsSGqraysFFlZ+3y///rrL01OSkQtKnF/RusC6qjazQSpbfEmJu644xa/xERjpm/89ttGHD16GBdcMP2k+44cORqDB6fjr3+9C3PnzkOXLt2Ql5eHNWt+wAUXTPetwFHdjBkz8eabb6BLl67o0qUr3n33LTidDl9FQvfuPXHmmVPxyCMP4Pbb56Nv334oLS3G+vXrMHz4KRgx4tSTjmvHju347bdfMHr0aUhMTMKWLZtgs9nQvXvVeBwOB5555nFcffW1OHQoB2+9tRRXXfXHoGMoKirCL7+s941h1qzrcO21V+DFF5/DhRdOhyTJ2LjxZ1x00SWIiopCp06dsGXLJkyefCbMZgsSExODjnfEiFPxyisL8fPP69G+fQcsXfo6AH6OhgKTEi1YUVERNE2rlTlNSUlBTk4OAODHH3/Ehg0bkJ+fjxUrVgAA3nrrrTpLtQIxmWSkpMSdfMd6SEpqWjlVpBAuAVGoQpRpkMwSpCQTpCaeqa9vbPRCFc4lJ6DvtQMA5L5WKKPioPSPgpTqflmLYg16lh3qhnJgtx2W98sg71RhuSENclLjX/rCJWBfmQshAMsVqYjt3bBmT/VlNiu1nnOB4iNujIX98GEou51ot1PANLF5xhPpWsvrqjkwNsExNqFns9kwbdo0nH/++fjzn/9s9HCoAQ4cOAAAGD78FOzatRO7d++C3W6vKuPWBcyfV0DvZYY2+CS9jHQB2AXkPA1OzYl1X/+ELp0Ho0uXrs37ICjiVa+YuOee+XjqqecDThU4mc8++wRDh2agZ89eJ91XlmU8++xLePXVf+HRRx9CaWkJUlJSMWLEqUGPCa6++loUFOTj4YcXwGx2LwmakTHcr7/DggWPYOnS1/HSS88hPz8PSUnJGDIkA2eddU69HkNsbCy2bNmMFSveQWWlDZ07d8bdd9+P9PQhvn3GjDkNaWntceutc6BpKs4770JcccWseo+he/ceeO65hXjttX/hk08+RFRUNIYOzcD06ZcCAGbPvgXPPPM4Lr/8YjidTqxZ82vQ8V5wwXTs3bsHf/vbfYiKisINN9yEw4dZKREKkqg5MYYi1oABA/waXR4/fhwTJ07E+++/79fY8qmnnsKWLVvw7rvvhuy+XS4NpaW2Jt2GLEtISopFUVEFdL0RTztdQCrWgXJ3iZVIkIEEObzlkJ7qBOU3O+QsJyRXjYtTFWiDLdDGx0Ak1z9B0ZDYyNlOWJa5m0vqnUxwXRQHva+lzutIOS5YVpRCPqFBT5ThvCUJIqVxCRRlbSUsH5dD62uG86bEZqtMuOii8/Df/34O4OTxkQ66YP1nEWCRYP9zMpDYdqZxNPl11YoxNsGFKjYJCdEwm9vO660+nn/+eRw4cADdunVrdFLC5dJQXFzZpHHIsoSUlDgUFJTz+V9DsNisWvUZ1q9fg0svvQxZWZnYunUzLh/7B5xa0A+Oy+Ih56qIfr0EAFDx91SYf6yEemoURFLt14D17RKYfnd3O3gn8yNslndDHhqH+fP/jPj4hp0YCrdIfe6oqor8/MNITe1y0ukKzakxUxRaA1VVMXPmdFx22ZW48spZAfcJdWwee+wh2GyVePTRp0N2m0aqT3zqep4nJsa02s9cVkq0YElJSVAUBfn5+X7bCwsLgy4b1BSh+mDSddGg25KznTD/bIey1wmp0v96erwMbaAF6tgo6F2at9GhsscJy3/LIee7p0oIqwSttwkiTgZcAnKhBvm4BvlHG0xrbFDHRMF5Xhxgrf9B+8liI2c7YXmjBJILcI2LhvP8WMAkuc/I1KWbCbY7kmD9sAymzQ5YXimC/ebEhicmVAHrt+4vys7z49x324x5zZqxCBqfria4JkbD8oMNptUVcDZwqa7WoKGvq7aEsQmOsQmtAwcOIDs7G5MnT0Z2drbRw6EGOnTIXWXarVsPWK1R2Lp1M7KWbMKYvj2gd7JBVEt4Wz4rd3832e2E/fakWrflTUiUucqxtXAnkCTB5XJi27atGD/+9PA8IKImOHLkMDZt2oiMjBFwOBz4z3+Wo6Sk2LfUJVEoMSnRglksFqSnp2PdunWYMsW9xI+u61i/fj2uvfZag0fXdNIJFdaV5VD2u8sRhAJo3U0Q7WRAAFKxDvmICvNGO8wb7VDTLXBOj4NoF+IMoiZgWVUB8xp3pYjWxwzXpBhofczuhED1MRdrMG20w/yTDeb1dihZLthnJUB0aPpLTT6iImqpOyHhPC8WrjNiGnYDZgmOmfEQMmD+zQHr8lLYb02s9RjqYtpoh1yqQx1sgd45st4+XJNjYN5oh+k3O1ynR0N0jKzxEVFkC8US3E899RTuvvtubN68OdzDpyZSVRVHjhxBTEwMUlJSkJCQAEUxYXdxJjRdg1Su+00dN//smT55rHbn/eq2FeyCEAJd47siB/nYt28vkxLUIsiyjM8++y8WLnwegHtZ04ULX6u1AghRKPBbe4SrqKjAwYMHfb/n5uZi165dSE1NRVpaGq6//nrcfffdSE9PR0ZGBpYtWwa73Y5LLrnEwFE3nWmjHZZPyiC5AL29AufkGGjp1tpVB5U6TFsdMH9XCdMOJ5QDRXBcngBtQN3TGepNFbC+WwrTdidEtATHjHhoQ4PPIxWJClxTY+EaGw3rf0ph2utC9CvFsN2cCNGpCS83h4B1eSkkJ+CcGtPwhISXLME5Ix5ygQblgArzVxVwnVfPXiGagPk7d5WE66xG3n9zipbhnBID62cVsHxeAcf1DV/vOxApX4V8RINcpEGYJYg4GVpvMxDXPM09icgYTV2C++uvv0bPnj3Rq1cvJiVaoMOHc6HrGrp16wFJkmCxWDCwshv2aDuRVZaDXq7BkPJrN5UWCXV/Fmwt3AEAuKD3VCwxfYwDB/bD5XLBbOYy1hTZOnbshFdffcPQMdx//0OG3j+FD5MSEW779u245pprfL8/+uijAIDbb78d8+bNw7Rp01BYWIiXXnrJd+Zm8eLFSE5ONmrITWb6sRLW/1VAyIDzHM8BeLC+ETEy1LHRUEdGwbKqHOZ1dliXlsBxdUKdyYN60QWs75TCtMMJPUWB/cZ2AeeNBhQnw3F9O4hVFTD/ZEPU4mLY5yZBpDauisPycRnkfA3qIAtcZzYxIaBIcFyegOgXimD+wQYt3Qq9+8m/HCn7nJBLdKj9zM0+Vaax1LHRMK+1wbTbCecxtfHVEkJA2eKAea0NyqHAZ8G07iZ3xcxgC5d5I2oFmroE99atW7Fq1SqsXr0aFRUVUFUVCQkJuOmmmxo1Hq541XwCxcbdrE5Cjx493Ns1gaF5vbAHO7GzaC96uwb5pm/63VaBDvN6G7TxtT+bixwlOFCWi2RrO/SM7ooenXtgz549OHHiGLp1695sj6+pIvW5E2njIWpOsiy1qec8kxIRbsyYMdizZ0+d+8yaNQuzZgVuONPSmNbZ3AkJM2C/vh30PvWseDBLcE6Ph97VDMv7ZbC+WwqHpV2TKibM37qrL/RUBfab2jV8WogsuXs+uATMG+yIeqsEtnlJDZouAQByphPmTQ7oCTIcl8WHpLGkSFbgPD8W1pXlMH9VAcfsxJNex7TZAQBQT214h+iwMUlwjYuG9X8VMG+wwXlxw3tLSKUaLB+Ww7TbPR9YT1Og9bNAT5YhaYBUoEHJdEI5qEJ5qxRaNxMcVyQ0OuFERJGvPktw33XXXbjrrrsAACtXrkR2dnajExJc8So8qsemsPAYoqPNyMgYhJSUOIhKHYOT+kM6sAo7i/Zi+nY7JC3w56/l43JET0uDVO3zvRInsLXAXSUxLCUdSrGOfomdkKPuQ0VFEVJSBjfvgwuBSHvuOJ1O5OfLMJkkmEzGVisaff+RjLGp28njI0GWZSQlxfitdNLaMSlBEUM+4ILlv+UQJsB+XQMSEtWop0YBmoD1w3JYl5fCNj+p/tUN1ceS7YT560oIC2C/NqHxfSokCc7pcZDzNChZLpi/qYTrnAZ8yOvufhYA4LwgFogN3Ru9OjIK5u8rYdrrguuQC3q3OqofHALKDgeEBe5pNBFMHRkFy+oKmH5zwHleLGCtf8ykYg1RrxZDLtKhpypwXBoHvbe5diJICCh7nDB/VQnlkIroFwvhuCwBWkZkx4aIGqc+S3CHkqrqxq941YrVis0xF3Z//DscnVTExiajoKAcKNUQZ45Fj7guOFCWi9ySo+gW1znobRbtLvGbphlllbDFk5QYnpIOaECHX2Oh7i3HzpF7MXDgsGZ/nI0Vqc8dVVWh6zpUVQAwbvWLtrr6Rn0wNnWr3+obArquo6ioEiaT0++y1rziFZMSFBlsOqzvlUISgOPi+JMucVkXdXQ0pHwNlh9ssL5fBvucdg0rr3cJWFeUucdySTxE+ya+TGQJjj/EI/r5Ipi/r4SWboHetX7TH5RtDiiHVWhdTaE/4FUkuCbHwPphOczfVMJxXfAeDMoOh3vFj1OsgCXCS8liZKjDo2D+1Q7TJgfUsdH1u16ZjqjXSyAX6VAzrO6qlGCPVZKgDbRC62eB+dtKmL+phPWdUji0eGgjIriShIhCSggBKUD12qWXXtrk2zZqxatWTQj3sazZnaz2xsbxXA4qMovRLb8TzHkS9E4Ckt0ds2HJ6ThQlotf87eiW1xnCAsgOQPc9mEX9A5VBwtHtTwcqTyODtFp6BjdHgDQNdad1Mg9mNsi/iaR9tyJpLEQNbdIe/01N9bXUESw/K/CfTA41Ap1ZNMPvl1nx0LvqEDJcsG0wd6g65rW29xjGWyBekpoDjBFsgLntFhIOmD+qp5rzwsBy1fe5TdjQzJtoyb1lCjoiTJMu5yQCmrPlfUybXbHsKUccKtj3eM0bazn314IWN/39O1It8BxRR0JieoUCa6psXBclQBIgPU/ZVC2O5ow8uCkUg3KdgfMX1XAvLoC5m8roOxyABU8I0HU3MK9BDc1j6jXShDzcAGg+X/Rz8l3NxTvYe2CmBeKIBVoiHqlCAAwInUITLKCzfnb4dScQSsn5aP+/Yc2Ht0CABiZluFLXCWY4xBvjkXB74ehHXcANr5/ExEBTEpQBJDyVJh+tUPESHBcGheag2+Tu5mjkADLNxWAs56ZRpsOy3eVEBLgPDe0cynV0Z4EwG4npKN1LyEGAPJ+F+R8DVp3E/TezTSnzCRB9SQalB1BDqY1AWW/C8IquZdBbQH0rmboKQqUwyqkkuDJFi9lqwOmPe7+IY4rEwClYc9BLcPqvh7grrIJ0AytseQcF6xvliD68UJEvVUKy9eVsHxbCcvqSkT9uxRRj+TD8epxSLmukN0nEfmrvgS3l3cJ7uHDhxs3MGoQZb8LkkMADv/vBAfLDwMAesR1AQBYV5ZBLnfvE2OKxpCkgbBrDvyWv803a0DU+JiQynXAJaDsckB1uLDl2O+QJRmnpA6FHifBdkciRJoJXWM7AdlOlDyyGzFPFEI+xPduIiImJchwlq8rIQnANSkGiAndU1Lv7J7yIJULmH6p39xc8082SJUC6qlREB1CPLtJkeCa6O7Obfn+5NUSpl/dZ/nVUc1bnaCluxMepp2B6lHdZ38kl3u1iYYerBtJG+h+XMqewI/Lp1KH9b/lAADHjDjA3LjHqGVY4ZocA8khYH27BHA1seROFTCvKkfUK8Uw7XBCxEpwjY6C45I4OC6Ph+OiOPd0GqsE7ZcKWF8qguXT8von4IjIT0VFBXbt2oVdu3YBqFqCOy8vDwBw/fXX47333sNHH32ErKwsPPTQQ61iCe42o3oZdI3355zyXABA97iu7g3VKtCECRj12DnQOyv4qssmOEa6k/Ouif5TAyUVsKyqQNS/S7H11Z9Q4ahAelJ/xJvjIOmA3sUMES2hS2wnAEBuxRFIDgHTzw2r5iRqbnPn3oAffvjW9/u+fXsxe/YfMXnyWFx33VUoLS3BRRedg7y8EwaOklob9pQgQ0nHVChbHe4DrnH1nPvfAM7JMTBtdcD8gw3qadF1r3yhCZh+sUNIgOusJi67GYQ6KgqWbyqgbHVAOkeDSA7SrMahw7TNAWEG1GHN2zxR72KCniBDPuACynUgzj8xJOe4qzr0Hi2jSsJLHWhxL+m52wl1dPDnlnmDDVKFgGtUVJMrUlxTY6AccEHJdsG8xgbX5EY+j5wCUW+UuCtUoiQ4psW6m7jWev5GQ1WBhN0Czg8KYF5jg5zlhGN2IkR8M+acNQH5uAZU6pBUAT1JgUhRGryyDFEkaYtLcLclUnlVokGqlpRwOBw4Unkc8eZYJFsT3ZdXK3ZTR0Wh88A09Dl3KPbt24O11q0Yf+dp0NsrsPxQ7YSHKqDscUDVVaz56ntAAGd2nuC+zHt/EtyVEgAOVRzBWADy8ZNXTlLLNWHCyDovv/76GzF79s1hGcvu3buwePEr2L17J2w2G1JT0zBkSAbuvfcBmM3u73g//fQ9KioqMHHiZN/1XnllIdq374DHHnsG0dFRSEhoh/POuwBLlryGe+99ICxjp9aPSQkylHmDzd1QclJMszRQFJ1MUNMtMO1wwrTJXufBqZLpglymQ+1nbtSKHfVikeAaHQ3Ld5VQfndAnRT4oNW01dNY8lRrg1aPaBRZgpZugXm9HaZdDqij/GOk5LhLS1taUkLvbYawAMo+J6CKwAfMetVZKtekECTFZAmOGXGIfq4I5m8r4RoZBTQ0OeASiFrmTkhoXUxw/DGh7uejRYJ5cjxKewpY3imFkuVC1MtFsN+YGDzp1UhyrgvmH2xQ9jjdJdDVCLN7ZRbX6KhGrZxDZLS2tgR3WyOVVevfUC0PcPBgDnSho3dCD1/vB6l6pYTnu8nZZ5+LzMx9+PrbrzD4jiFoZ0r0vwNVQCQo+GbrGhSXlyA9qT86x3Z0X+ZNckjwreCR06kAwgJ3gleIZukbRcb75JMvfD+vWvUpPvroA7z++jLftujoqu+BQghomgaTKfSHZ0VFhZg//zZMnHgGnn/+ZcTExODw4Vx899030HUNgPs73gcfrMB5513o18D38OFDuOyyK9CxY0fftvPPvxDXXXc1brvtT4iPb/jy60Q1cfoGGUcT7moA2b2MY3NxjXcfbCrb6m5AaNrkmS5xapimS+wKPq1A2eEMy1i81MFWv/utTs5xQUiA1q2F5TBNErS+FkhOd3+OQJQ9TsjFOrS+Zoi00Dw+kWqCOi4aklPA8mVFg69v+W85lEwXtE4K7HPa1T9BlqDAfkM7qEOtkAt1RC0rqTVvutFsOqzLSxG9sBimbQ5AE9D6muEaGQXXqChfrxHTFgeiF5XAuqwEUmHo+moQETWVX1KiWqXE/v1ZAIA+8T2q9q2o9t7pmdLXsWMnjB9/OpxOB9555204nf6fl3KpjswT2fjuyDpYZDMu7HF21e1571oC4s1xSLQk4HhlHmzJGiSHgFTChpetVUpKqu9fTEwMZFn2/Z6TcwBnnz0RGzasw/XXX4UzzjgN+/btwWOPPYQFC+72u50FC+7GY4895Pvd4XBg4cLnMX36uZg69XTMnXsDtm//Peg4fv99GxwOO+6++37069cfXbp0xejRp+Gee+6H1er+rllUVIRNmzZi/PjTfdebMGEkDh/OxQsvPIsJE0ZiyZLXAADdu/dE+/btsWbNDyGMFrVlLewog1oTOcsFqUJA7W8GYpsvP6b3NEPESFCyXO5O19EB7suuQ9nhgLBI0NLDMF0iXoac4wIq9dp9NHQB5YALwhy+6gS9txnC7G4CVv2MjVSiQS7WoXdUAsctwmkDLTDtdMK0xwlnv9pn731VEqeFduqQ88wYmDbZYdpoh2tKTL0TC8oeJ8y/2CHiJNjnJDa8x4pJguOqeOANHaZ9LlhXlMIxK6FJZ+Ckoyqi3iyBXKhDbyfDNSXGnSyr2XvDKWD63b06iGmnE8r+IthnJTRped86qQLKXieUXU7I+Rqkch0iWoJIVKD1NUMdZAWCdMknorZHKg08fWP//mwAQK+EHrWuA8CvivOss85Gbu5BHDiwH2+8sQjX2c9GSlQShBDYuXMn/pP9CXShY3qvab6pIP6DcN9W17jOKEAWci0n0B+dIB9ToSXy/aqteu21f+L22+ejQ4eOaNcusV7XeeGFZ5CTcwB///uTSElJxVdffYH582/DO+98gLS09rX2T05OhtPpxJo1P2LixDMCLmW8bdsWxMTEoFu37r5tn3zyBW688VpccskfMG3ahX6VHQMGDMLWrZtx3nkXNPxBE9XApAQZxrTVXbmgDW/magBFgjrYCvOvdii7nQGXtTTtcLqnS4y0Nss0Ej+yBG2gBeaNdih7ao9HOq5Bsgtovc3hm6NvkqCnmaAcUYFyAcS779fbT0JrYVM3vLzjlo8EmLNbpkPZ7YQeL0MbHOID5xgZrjHuaTqmjXa4zq7HSi42HZYPywAAjkvia/X2qDdZguOqBMgLi2Da7oS2se5pS3WR8lREv17sTh4OscDxh/jgySmLBPXUKKgZVlhWV8D8kw1RS0rguDw+tK9x3d37xfJlhf/ZTK8cFaatDlhM5dDGREPMaBnL2BJR8wpUKeFwOHD48GG0M8egfVRKwOuJaglYRVFwxRWz8M47b+LgwRw8s+0VdI3tBJtqQ569EABwbrfJGJU2PPAgPG+f3WI7YSuycBDH0B+dIB3XgIFNfoht0ocfrsCuXTvDep9DhgzBxRf/IWS3d+ONt+LUU0fVe/9jx455poKsQnKy+3l73XVzsG7dGnz55ee4+uprA4w5A1dddQ0efPBexMfHY/DgoRg1agzOPfd83/SL48ePIjk5xS9hkZKSClmWERMTg5QU/+WPU1NTkZWV2ZiHTFQLkxJkDFXAtMMBoQBqqA8IA9CGWGD+1Q7TdkfApISc5S7D9E6taPbxDHYnJUw7aycllAPuqQZaz/AmAkSaAhxRIeep0OM9K1ccbJn9JLxEqgIhA1KARmJKjguScDfEbI5VRdTRUTB/70lKnBlz0vswr7dBLtGhDrdCG9LEap0YGY6rEhD9z2JYvqiAOsTa4KoLqVRD1JISdxPQ8dFwXhhbv4oLswTnBXHQO5pg+bAM1hVlsMfLIekzIZXpsC4rgXJIhZDc7x3qMCv0LiaIeBmSXUA+pkLZ7YTpNwdMa22wbc2FPDMe+oBmfG1X6DBtdUA+5IKcpwECgFVyrwDU1wytvwWQOV+cyEjVKyXgmdF38OABCKGjd3zPgGeOAdSqCouNjcX119+In376Ab+t/8q3nGjnmA44p9sZGJTYr45BuP/rFtsZ0IBDzqMARsC6qgKigwJtYPNWalJkGjhwUIP2z87OhKZpuPzyi/22O51O9O0b/Pl366134MorZ+HXX3/Bjh2/Y/nyZVi+fBkWL34TqalpcDgcsFjq/xy0WKxwOLh6DIUGkxJkCHm/C5JNuBMSYZgWoPW1QFgk9/KQLlHrS4Zy0FMR0D08B99aXwuECVD2OgFN+B2wKJ7+B3qv8CYC9DR36ah8QoPe273N2xdAb99Cy0pNEkSqAvmE5l7irdo0IbmZG3iKZAVaPzNMe13uipjBdXzQuwRMa20QEuCcWo+qinrQu7l7Pph/tcPyVSWc0+Pqf2UhYPmwHHKRO0nivKCeCYlq1JFRgCZgXVmOqDdLYZuXBJHa+OeRdExF1NISdw+QbiY4L46D3tX/byeiAC3R/cXeOTUW1q8rYVpng/WNEkjTYt3LDodShQ7L5xUwbbZDClCMo2S5YP7JBj1JhuuMGKijo8KXnNAFYBOQdEDESkyKUJsnFVebvqG6KyX27t0D6EC/dr18l6kjrDBtrupBJQLkM00mEyZPPhPnfz4URc4SWGQzYk0xwRMbvjt2/9c1tjOkMgm5tmO+iywfl8N2L5MSDTVjxsyw36fJJENVQ9cHJCqqxvKykgQh/CsBVbXqQ8Zmq4TJZMIbbyyv9ZyLja37O0RSUjKmTj0XU6eeizlz5uKKKy7Bxx9/iDlzbkG7dokoKyut97jLykqRmJhU7/2J6sKkBBlCyfUkAXqH6cDbLEEbYIbpdyfk/S7o/at9y6jUIedp0JPlxpfMN5RFgt7dDCXb5T7w7+C5XyEg7/c0luwe3penN/Eg51U1KPQuoSbCFZdmoHcwQT6hQT6hQu9V9Xf3riqi9Wi+OKtjomHa64LpZ3udSQnTZjvkcvcUiaYcuNfkPC8Wpu0OmDbY4JoYXf/eFtscMO12Qk9R3FM2GnlAq46JhlSowfK9DdYPy2C/qV2j+ltIZTqilpRALtWhjrC6x3SyqU2xMlyXxCPm1AQ4XjsBy6oKd1Pd00OTmFB2OmD9oAxShYCwSnCNtkIbaIXeQYEwSZAqdCiHVJg226FkumD9qBymLQ44ZsaHfFUUnwod5p/dy+DKh1Rfcz1hAvROJqhDrdBOiWre5WKJIpRUUq35rktACOFebUUXGFitukHrZPJLStT1XiNJUuDeEUEIz01FmaxITUzFicoilLsqEGeOhWiBfZuoeSQmJuHQoRzf77quIzs7C8OGjQAA9OvXH6qqoqSkGEOGZDT6fuLi4pCSkgKbzb20bf/+A5Cfn4eKinLExp78RMaBA/txyil1L3lKVF98ByRDyIfdSQm9S/gOvL1nVWuuCa4c8owlTFUSvvGkBUgCFOmQS3XonUxAVHhfnt7VJ6QTVfFpHUkJT5yPV194XkA+rELESCFNAtSkDbJAREtQMp1+3d79Byhg/sn9hcA1McRn8uNkuMZHQ9IB0wZb/a5j02H9bzkAwDEjrnZDywZyTY2F3lGBku2C6ZdGlHm6BKxvuhMSrlOscFxej4RENaYRsXDe0A7CDFg/qzjpKjz1us2NdljfLHVPbRkdhcq/JsM5PR7aAAtEogLEyRAdTFBHRsF+YyJs8xKhdTZB2e9C1MvFkI4GKKtoClXA/GUFYp4sgGV1JZQcFYiWoHU2QetiAiwSlEMqrKsqEP1UAcxfVQDOEK3MQtRCyMX+PSXy8vJQUFCATqmd0M5StaShNsACdVC1ExdNOCGut1eg9TbDNrude0O1pGy3Dt0ACdh7kefMtOBrktxGjDgVO3Zsx9dfr8bBgzl46aXnUFJS7Lu8e/eeOPPMqXjkkQfw44/f48iRw9ixYzuWLn0dmzf/FvA21679CX//+4NYv34tcnMPYf/+bLzyykLs35/tW22jX78BSEhoh99/33bSMTocDuzZswujR58WksdMxEoJMoR8xFM63ymMSYlAB6cA5IPeM+ZhTkp4DoalPA3eryLyAWOmbnjHI6SalRLus8BNPTA1kt7B/RyrnoySD6uQVEDta27esnZFgtbLDNNOJ+SDroB9FeSjKuQTGrRupmaZSqKOiYL5u0qYN9rhOiv2pH9L8wY7pHIB16nWkPSBgEmC4w/xiPpXMSyrKqAObVh/C/PXFVAOqtC6m+C8NL5RlRZ6HwscsxIQtbQU1pVlsHU3uZMHjWD61Q7rB2UQMmC/Mh7asJM30tS7mmG/PRGWj8th/sWO6FeLYb85EXrnpr//ScUarMtLoRxUIUzuJZBdo6IgOipVsRIC8lENpt/sMG2wwfJ1JfQdTujzo3zl5EStmfW9Uki2qoN+yQXs3Olujjig1wDgRLWdoyU4rmsH0z157t/1xicLRJQE+82JVRuqvd56du6J34q3IasiByOkToEb91KbNHbseFx99bV44YVnIYSOyy67EqNGjfHbZ8GCR7B06et46aXnkJ+fh6SkZAwZkoGzzjon4G327NkLFosFL774HE6cOI6oqCj06NETjz76tK/aQVEUTJt2Ab766gucdtq4Ose4du1PaN++Q5MqNYiqY1KCws+mQy7QoaeEd5nJQAenQFVSQg/zdAlRrVLCt4R5gaeHQwcDejhYJIhE2T3v1ikACZAcwpc8aakCJaOq+kk0/99c6+tOSihZgZMSyh5Pk9Vmavgq2inQ0q0w/e6AaZvDvZxn0MEKmNZ7qjYmh65qQ+9mdidHNthh3mCDa0r9+mZI+RrMP9kgzIDj6oQmJce0gVa4To+G+ScbrP8pg/3Gdg1OSMlHVFg+cickHNckQBvUgPnfigTnpXEQMZJ7OsubJbDNS2rScshSkYaoV4ohl7j7bDiuSgg8NURyN910do6Da3w0rB+UQclywf7IYUh3JAHtWm4lFNFJCeE/HQMAXALbt2+HVKBi2PrOfnXDwrMCl95OhlyiQ2/f8M8JIQGSAFCzKKraW06vLj2BncCBnANAzFhIlbrfktzU+syYcTlmzLjc9/spp4zEmjW/Btz35ptvw8033xb0tsxmM2666VbcdNOt9brvLl264p57Fpx0v5kzr8a1116OvLwTvqVFP/jg01r7vf/+u7j22jn1um+i+uA3EQo77/KMoThL2BAiUYYwew5OvWWSunB38jcBescw93DwJiXyq1UmeJYsEwnGvDT1NAWScI/JN5a4lv0FSaQqEIp/MkoJY3WM5klEKJ4VXmpS9nrG0oyrQ7jGuRMRJ5vCoexwulcAGWDxTecJ2RgmxkBIgHmtLfhUlhos/yuHpAGuKTGNrmyoznluLLRO7qkkyvbAf4+gHALW5aWQVHevjgYlJLwkCa5zY6FmWCEX6bC+W9r4s7DlOqIWl7j/XiOssN+SWK9eFSJZgX12O6inR7vL0itD16yNKCJVm6qkJ7k/W0tKS5CdnY2UzCh0lzr57291f+bZ/pQE2+2JEHVUdHo/x2uJct+Gt6GmT7WP9qSEJCQktMPRo0dQaXa6m+W66veQiJpLamoq7r57AY4fPxZ0n9LSEkyYMBFTpwauyiBqDCYlKOwkA/pJAABkCXoHEySH8HXhlvI1SDYBvaupQfPUQ0EkeZarDJSUMKgRnfCcEZLyVEgVLb+fBABAkSDSFEjlwr0CBwA5172kZM3VG5qD6KBAxEqQD6qAo8YXVLsOOccFESs161QmvZcZepIM+ZDqi0Eg5rWVAAB1fHTQfRpLpCjQhlohlQuYfjt5bwk5xwXTTqd75YoQNaeESYLzfHfzLstXFQ1KCJi/rYCcr0EdaIE6oQnxkdzTWfQOCkz7XDBtakSPCyEQ9V6pezyDLXBc1rA+G1AkuC6KR/RLPSC6tMzlfonqSyp3v861LiY4p7lf/79nbYcQAhnJg3yrF+gdFNivS6iqoIqRoXer+/VhuzUPMMtVAAEAAElEQVQRtpva1drurbZAzaREtZeppMjo2bMXAIH9zkPubXW8PxOFy6RJk+uclpGQ0A5XX33tyVebIWqAFn60QS2RfNhTOh/upASql/K7EyOyb8lLA2YyKRJEigK5TAfsni8iZcYmAqovCyoZPJZQ8v59vX93qVwHoiXfGbFmJUnQ+lgg6YBywP80mJLlgqQDWn9L8/a2kCRofS2QBNxNNwPtUqhBOaBCT3EvZdocXJPcB/PmtSdvumn6udo0khD2NNH7mqH1MkM+oUHZWr+EgFSmw7zWBmECnJfGNf1vZZXgmOFurGf+ogJwNOxAxPSrHco+F/T2ChxXJQBK48YjcZlQagMkTzWQSJIBz1vb7/u3AwCGp6T79tP6WRpeARUjB+69400S1qx8kPx/7tXLvf52Vrl7pQXvMtxERG1Nyz/aoBbHu/KGFubpG0BVXwnJ21+g0n0WQ8Qa8+W8erNLAJDK3P8blpSotixoa1h5w8v3uPI1QBOQXO4GZOGi9fWs/FJjCoey1/272r/5pm74xuC5D2Vf4Ppgb7JCG9x8CRK9qxlaZ/cSrVJeHStQ2HSYtjkgLIA6vBHTJOoiSXCe7a68sHxTWa+O9+bvKiG5AHVsNES70PRY0XuYoY6wQi7TYf62st7Xk0o1WD6rgJDgrpBowU1oicKh+meZMEvIsxfgUN4hpKSkoEts1dQNX3VDKHiSH5JWs1KieqkE0KdPXwDA3uJsAED0opImNdYkImqpWv7RBrUowqVDOqFBbycDBhzsihqVEr4zKA1YDSCUqi8LKoSAVKZDxEhhn0pSNR7v9I3WlZQQnmaCkk0Adk8iKoxLrupdPZUaJ/zPgimZnn4S4UhK9DFDSJ5ESIADcW+ywptAabZxeJbaM+0M3tPBtNXhTgIMiwKsof876b0t0LqZIOdpviRpMFKpBtMGG4QFcJ4R2iVbnefGQpg9lSO2+lVLmL+rhGQXUMdHh30ZY6KWyLuqhYiVAZOEjSe2QCrVMerUUf7l5yFMSgjl5NM3IAFJSclITU3DMZGPIkeJe7uNSYlgqv5cjBG1Zu7nd1ubHdPyjzaoZanUIQkDGzn6VuDwVCZ4KiXCuQpIdcJXKaECds8ZfCOTAHESRLQEOU81vL9FKIlozzu7TUDyJCUQxkoJ3dOkUSqulpTQBaRCDXp8mBJ0sTL0LibIJbpfHxPvWJQsJ4QMaL2aN0HiXWVE2Rl86oRpo7vnhDrq5MttNpa3AqNWV/4alC0OSBqgjo4O+d9JJCpQR0RBcp18HACACh2mjXYIM+CcEtoECVFr5euPFCtDlVRszNsC2S5hpHmI334ihNP5XKe7p6q5zqyx0lD1u/C8nfTvPxCikwm7Yg/4jZdqk2UFgASnsxG9eIhaCE3zTDGXW/bqdw3FJUEprIT3gDCUZZINuf9EGcIquSsldFFVKWHU9I20qukbotQzdcPIJIAkQU9ToBxUIee63xRFE5YsjBjeTuh2HZKnf0c4p28gRnKv/FJc9WVTKtUh6VXd4MNB62eBkqtC2euCWm11DfmYBqlCQOtlbvY+G3oXE/QEGXKOCpTrtQ70pWINSq4KPVVp1mV6tQwrxGcVULY5gPNjg05ZMXn6TqinhHgaiYc6JgrmX+ww/2yDOjaqzlMj5g02SC7ANTaqSUuJErVauoB0QnNXRXpfSxVVn/M7cnaiQrUhPWkAov9bYypbCKdCaSOiUNHPUjuR6Vcp4f6lf//+WLfuJ+wuy8K46GGQKnTWAQQhSRJiYxNQWloIALBYrPAPathGArVmFQx5MDZ1O1l8BMrKimG1xrS5RqJMSlB4eRq6hfKMRINIEvRUBcphFagU7nJ+AMKoSgnPgaGcp0GUREBSAqidlIhv+W+K3r+v//SNMD4uSYJIVCDnae6mplEypCLP3zspfJlwra8Z+M7dcLP6Chuyt59EM0/dAOBuujnYAvMGO0x7nFBP9a+GkHOqTSNpxg9kkaBA72OGkumCvN8VsFmdVOBJkKQozbaEsd7VDK2LCcphFXKOCr1nkL+BS8C8zgYhIXSrkRC1MpZVFTD/ZINjehy0wRbIxzVfRaSIkfHLr78CAE5rf4o7KVqNCHWRWIDKKlF9k+ftrUePXjCbLcgs3g+X1eWbbkKBxcW5VztxJyaMiZUsy9B1VrQEwtjUrT7xkWUFSUntwzSiyMGkBIWVcBhbKQFUTY+QyvSqMygxBlVueKZLSCdUiGLVb3xGcS8L6oDkec80ejyh4EtA2I2ZvgG4KyLkPA1SsQ7RUYZUpPu2h4vwNPys2eHd19uib/P3tgDcfSXMG+xQAiQllBxPI9wezZ8gUYdZoWS6YNrqgDNAUsK0zeHbrzkTJOqYKCgry2HaaIczSFJC2eeEVC6gplsgUtpWSSdRfZnWu1ftMW2yw/K/ckhqVaPj3PxcHMjJRurIjugv96595XB8L6n2PiI8P5pMJvTvPwC7sjZhT3E2+lUkNf84WjBJkhAfn4i4uHbQda0+vYpDSpYlJCXFoKioEjqbkvphbOpWn/hIkjsp0daqJAAmJSjcvJUSBnaMF3GeUv4yvapSwqBGl5Ak6B1NUPa7oO9zz6OPhEoJL2FCeJbNbG7e6Rs23ZeUCGejS8DdPwBwQS7WoHU0QTagUkLEyRAm+O7bSz6iQsiA3i08HwlaN89qJMdrN5mUPcumBq0YCCF1kBVWlNdaqtVL8SYlMppn6oZvHBlWWD4qr2pCGuDLiLLbU80ypHnHQtSied/WdUDyvL14V7f6adNPAIDTT5kAaWvt11hIV98IJkBPCQBITx+KnV9vxrbCnehfMaL5x9EKSJIERQn/YYwsS7BYLDCZnDzwroGxqRvjU7eWfwqUWhRfpYSBB7reg36pXPf1lIBBlRIAoHtWBNF2us/wGJ6UaF8tKREnt4r2v/7TNwzoKQFAeCoivBUS3v/DmZSALEEkKe7yYE+CEKqAVK5DtJMBJUwxiZUhYiX3wUL1JfMcAvJRFXq87ItXs4qXobeTIZ3QAGeNLwgVOpQj7t4WomMz/42iPU1IS3VIBQHKOoWAsscJIYVn+ViiSCcVar5pZ368vWGqfeGXBJBnL8COrJ2IjY3DiPRTAt9oiJISjotig18oBf55wICBMEdZsKt4H7TSwElSIqLWjEkJCi9vpUQkTN8o1yFVCnd/i3AdjAWgd3Rn+sVR9xcRo5MSIlnxzXttDVM3AAAWz1xee1UfkXBP3xA1VuDwViuEc/oGAOjJ3ikcnuRIqWdFnHZhHkd7EyTNfyqJnOtyN//saQpbMkzvaoIk3NUi1clHVd/l4RiL1ttdGaJk1z7Qko5rkIt191hay2uSqAlinipE9Osltaaieb/VSjU2f3dkLQQExo2bAJMl8Nn1UHwvcZ1ihTq+jp4vQZISFosF/fsPgENzYl/23iaPg4iopeG3GwqriOgp4Tnol0vcpfxG9ZPw0muchTU8EaBIvjnrho8lVCQJiJJqTN8Ic0+JRM/zrrhGpURiePsDiGTPODxf5iVvg9V24R2Ht0JIPlF19OCdRhGOfhK+cXT1NJvN9T876U1SNFeDy1rj8CUlap8lVfZ4pm4MYJUEUXW+HkEeotr0Da9jlXn4Lf93xMTEYvTo04KfhGjC9xLXOHdvHG34SZYxDrD6hld6RgYAYFv29kaPg4iopWolRxzUYkRSpYRnnqlh/SQ89A7+Bz26wZUSQNUUjlaTlADcDUVdALxTdgzpKeGplNAFpGLN3d8kzK+FqkoJT1LCkyTxJk3CNo72tZMSsqfJZTj6SfjG0dWTDMj1r5RQvEmJTmHqs9HTDCEBcpYLNTu3mbxJiYFMShBVJ2q+bQWYvrE69zsIITBp3BmIioqCCJJ/bcr3EudFcai8P/nkicMAq294DRg4EFbFgh2Hd8Futzd6LERELVHrOeKglsFXKWHcEHyVEic8ByEGV0ogRvaVzgsJQKzxPRy8zS5bw3KgXt7GlnKRQT0l2skQkrtCQirXIWmAHs5+Et5xeJISsmf6hlziiUe4KyU8y+FKJ6qSAXJeeBMBAKB18VZKBJ6+oYVrLMH6SmgC8gEXRIwEvQt7UxP5+uEAkNQavWC8b2OeXfaXHcSOor1IsrbDmJGnefYJfaUEJAkioR7vodWrI2p8AzfHWTEseTBUVcXO19ZD2cLEBBG1HUxKUFiJCKqU8B2cRhv/MvD2lUCcXHWmx0DaQCuECdB7t6Izs9GeFTg8PR3CnZSAIkEkyO4eDvmeMYR56gZQveFmzekbYa4cCTB9Q6oQ7r+LKYx/m1gZerLs/pvYqzX/PKG5q5bCWLkUqK+EVORJYHUwRcR7A5HRpNLqSbsaF1abvqELHR8d+BwAcE7XSVW9JILl9sKR8wvSUwIAYJYwKm04pEodW776BVHvloVhQEREkcH4ozFqWyKgpwSiJb+STxEJlQneZpcRMHUDAPReZlQ+lgatFXX69yYhvNMVvEmKsI4hSYYkAMU7TSE5/H9v7/QNucB/+oYI8/QNkSBDWCV3xZIu3IkAhzDk9ah38W92KR9X3Q03O4W5esTb3+J4tSktnr+TnhL+BBZRJJLKqiUlalZKeBJ3kiaw9vhGHKvMQ+/47hiRMtT3jVcEq5QIR3PdOpMSQPe4LkizpOBQ+REcq8xr/vEQEUWIyDgComZzxx13YNSoUZg/f77RQwEQGZUSkCW/XgmRUCnhXXKwNfVwiDS+ZUE932dFmHtKAFWVEbLnTHhYlwP1ipbd/TWKNEAISAZN34AkQW+vQHICUknV8rxG9Hjx9pWQD3uSEkc8iYAwNbn08v4Nqp8JljxJCZHC9wYioMbro3qlhBC+6Rsl5aX4MvcHyJKMi3ueB0mSqpIRAV7WWpgSkKKORpeQJXe1ROowAMDPJzaFZUxERJGA33JauauvvhpPPfWU0cOo4q2UsBpbnVC9IsHo1TcAQO9jASxSWBv8tTnVpmsIGYABofY2k1QyPcu/hrk6wTeOZMXd9LNcQC7RIBRjKob8ml1WeFZFiTUgKZHgSVh5xuBbDjSMvS0Ad/UIAEilASolklkpQQTUnL7hfs0qm+yIfqwQUpEOIQQ+3PMpHJoTEzuOQceYNPe+3reWGpUSQgHsdySFYeTwq44Qgd5yPVM4TLKCjXlbYKusDM+4iIgMxqREKzdmzBjExsYaPQwfX6WE2eCkRPWKBINX3wDcZ8yjX+oB9cw61jenJhHVp2tESeEp1a1BG2iFiJMg6e7xeM/Qh5u3r4R8QoVULtz9JAzoVyDaVzW7rKqUMOC9wZMklRwRkpQoqXYm2LNKikhlUoIIqOoHBQDw9KeN+k8Z5DIdkkNgw4nfsKckG2nRKZjadWLVvkqN//1uNEzvO3VN34D7u1GsOQanpmbAqbuwaeOv4RkXEZHBjD8aa8M2btyIW265BRMmTMCAAQPw3Xff1dpn+fLlmDJlCoYOHYqZM2di27ZtBow0hCKhpwTgXorR+3MEVEoAgGSJjCaXrVX1aTphb3Lpofcyo/KBVFQ8lorKBSmG9RDx9idQDngqNsI9dcM7Dm9ypET3VSnAgEoJ4a3c8iRNvXPWRbirE0wSRKzkPhPsWRaUlRJE/ryJOgAw/WKrWuYZQJ69AP87+A1kScaVvafDLFdL/Ho+X0U4G+nWVP0zPtAwPN+NxncYDQDYsG4ddF0PsCMRUevC9cUMVFlZiQEDBuDSSy/FvHnzal2+atUqPPHEE3j44YcxbNgwLFu2DHPmzMEXX3yB5ORkAMD06dMD3vbKlSuhKJH3JdZXKRFR0zeYm2sLqicijOgn4cfIL8UAhKexqmmje8m5cK+84RuHtzKgTI+MSgmnJzFiF+4pPgZ8QurtFCgVqns6S4z7AExESxFR0UUnl52djfvuuw/l5eWwWCy47777MHLkSKOH1arI1ZMSe12QlpcCAJyaE2/t+wBO3YWpXSeia1znGlf0/G/kV6Pqb28BXtLCk0PpGJOGfu16YVfBUezatRPpvQcj+uVi6J1MkAo1aOlWuCazspKIWg8mJQw0adIkTJo0KejlS5cuxeWXX44ZM2YAAB5++GF8//33+OijjzB79mwAwCeffBKWsQKA3MSz+LIs+Sol5CiDqwKqrScuxclNfmxN5b1/o8cRaWrGpSnxkaof1EVJrSbWjYmNPiwK4rPyqmVxkxRD4iF5GzuW6ZBtnoRAXOjGUt/YSJ4kleRw7ys5hfs5ohiQCGgnA0cApUyHEDIkF6B3CP3fh+85zcNqteLxxx9H7969kZWVhVtvvRWrV682elithxB+lRKAu0ePEAIf7P8fjlXmoV+7Xjiz84Ta1w3SUyKsTjJ9A9Wmtp7ecQx2aR/hxx+/x5DY/pBPaL4llJVDKpMSRNSqMCkRoZxOJ3bs2IG5c+f6tsmyjHHjxmHLli1hH4/JJCMlJa7Jt2Nz5AMykNw+DpIBc/q91I6AE+UAgKQu8ZDiI6OqJCkpcvp/GM1sVmo955oSH62DCQ6UAAAs7cyID8HzOZI0NDaus1S4PikCAMR0jobZgHiIOB02FMJUDiiaAhVAXMcYmFJC+zo4WWx0SYUdhTDrEuKSYmFznICUYgrJe15DOTvYoO5yop2wAi4JDgDmzlbENdNY+J4TWl26dPH93Lt3b5SVlUEIYejnXWsilemQ1Nrb1x7fiC0FO5BkbYer+lwCWfJPKAoZVX2Ean7c11hVtFnVtfoG4De1dUC7PugU1xFHjuRiX9ZeDEOH5h8fEZFBmJSIUEVFRdA0DampqX7bU1JSkJOTU+/buemmm7Bt2zbYbDZMnDgRixYtwsCBAxs8HlXVUVpqa/D1qpNlCVaHDmGRUFhY0aTbaipZcsIKd/frQnsl4DS+UiIpKRZFRRXQ9XB+Q4pcLpeGggJ34igU8ZFcKqI8PztkHeWe227pGh2b4Qqi/gdIKlBuUqEbFI+oKAmiWIWrwAkTgDLNAb0gNK+BesfGpiMagFquouJIGaIBaGbhe/6Fk8miwwygLLcCUAALAHucCPnzNVTvOQkJ0TCbIyOpGwobN27EkiVLsH37duTl5eHVV1/F5MmT/fZZvnw5lixZgry8PAwaNAgLFixARkZGrdv65ptvMGjQICYkQsC00Q75kCtg89mdRXvx6cGvYJIV/LHvDMSaA1QQVM9RGFkdVI9Gl76LJQnnHRqNN1I/w3drv0GGuNL/uaQLyAdV6F1MfhUWREQtEZMSLUxDz7gsWrQoZPfd5INlIdzTN+Jkww+8ffPWoyToABAhiQBdF4bHJpLUjEVT4iNZqn4WVqnVxbnBsYmR4Do9Bua1ldC6KBAGxUMkyJBPaJAK3ac/tWgp5GM5aWy8vfCcAsJW1ffGiOeInuB5byrWfGdw9eTme8/ke46/UPR6AoDDhw/jmWeeCelncIvjcDewDUXDWMtn5ZDsVc9Tvb0C+YSGg+WHsTxzJYQQuKz3hbX7SHjVlYgwrFIiwOU1kgvpSf3RyZKGQ0dzsVfPxoDEPr7LTL/ZYf2gHOpQKxyzEppnvEREYcKkRIRKSkqCoijIz8/3215YWFireqLF0ADogDB45Q2gqtFlpKy8Qc0vElbfiDSuc2Lgmhpj6BxrkSADJzTIxzxLXxqw+gZkCcLsWRLU0/fGqGa8wtPvRirRIbncY/GulkLNLxS9nsrLy3HrrbfigQceQI8ePRo9lpD0cQrB7TSWZUkplBwX7H9NaVpiQgi/hAQA6D3NyMs5jqV73oNLV3FB97MwInVI8NtQ6o5DuGIkVXuvlRQJUs37rfH9SJIkTBk3Be9+9A5W536P/u16+05MmXY63f//7oCLPWfChrEJjrGpG+NTNyYlIpTFYkF6ejrWrVuHKVOmAAB0Xcf69etx7bXXGjy6RvIuB2rwyhsAgFgZzonREGn8st9mWNzziiWdSQkfSTK2Ez2qEoS+gw6jEoVWCbBXO/gxaIUW3bMSilSqQS7xVG2k8n0qEtSn15Omabjzzjsxc+ZMTJgQoNliPYWqjxNgXN+QypwTAICEIgWmfg1/LHqhCilJAVwCNuRVXWCVUNq+Aq/tehMVqg2ndxyNiZ1Oq/O2JJPkF89KnKi6DAhb/xhXrAoX3NNXk1NiISX6fw13xtuhwu637bRew7EB3yGnIgdbCnb4ki9mVYZ3sdDmGj97zgTH2ATH2NSN8QmMSQkDVVRU4ODBg77fc3NzsWvXLqSmpiItLQ3XX3897r77bqSnpyMjIwPLli2D3W7HJZdcYuCoG8+73F4kVEoAgOv81tXokE5CkoAoCah0r6xAkUFPqFHBYlDVhrBKkMsFJJuxyxZ7l0lVDqmQbAJ6e8VXPUHGqk+vpx9//BEbNmxAfn4+VqxYAQB46623kJDQsPL6UPVxMqxXkS4Q7fmx/EgltIJq4/rdDtHJBJEa/Cuo8osNlvfL4DovFuroaEQD0Lua4LiuHY4fOoo3Fr8Ou6sSYzucigu6Tz3pcIQEvx4x0dUvA8LWP8Zkc/pmixUWVwKaf/LTpKu+y71cS/IxTZ6EV/Am/he9BuldhsByGFBLXL5WGQUF5UC5jqgXCqGOioJ6TtO+37DPVXCMTXCMTd1CEZ/W1sepOiYlDLR9+3Zcc801vt8fffRRAMDtt9+OefPmYdq0aSgsLMRLL73ka6i1ePFiv3mrLYonKcGGTGQUES1BqhSslIggonpSwsDpVMIqA9AhlXrOPRpV0RXtmUriWSJVHWo1ZhxUb9V7PU2ePBk7duwIye2G6kt9KPuGSHkqJLuA3q3moXON/Yqqlu2UTqi++5cPu2B9sxQAUPFUWtDrW9a6EzKmbyrgynC/BoRFwsGSw3jrk6Ww2SswscMoXNTj7Hr12RJy8HhKInSxPhm9WgMLXYha/axEtW/lepLsW7a5V3x3pCcNwDZbNtYc/gVTMBpSuSeB6nls5p9tkEp0mL+uhHNqaM7EsudMcIxNcIxN3RifwJiUMNCYMWOwZ8+eOveZNWsWZs2aFaYRNTNnBE3foDZJRLkPPI0qzafaqlcBGNJPwsvTCNWblDCqUgKSBJGgQCpwH9QxKRE5WmWvpwaKeda9jHDFY6mAKfhrxPv8BQA5r1qCokQPtHttnrcFyQmYv3JPd9hRuAdvL/kMqurC+BHjcdG+cfVv/B0pb/kna3RZ7X1HRMtAUVW8pnWfgu22A/j2wBqM6jIYcZWeagjPN3k51xX68RIRhUmkvE1TGxBp0zeoDYp2P/dYKRE5vD0lAGOTEu5KiaqDJiOfI8LTV0JPVSA6ts4yzZaoeq8nL2+vp+HDhxs3MCO46j7LJxdWS0TkV/0c8EA8kGpPe9Nvdqw9thFvb1oBVXXh3HPPx3mTz2vYUquR0liu+pgDvN35vQdG+485LSoFYzNOg0M48NnBryF5/wQmCbDpUDLdSQl+vhFRS8SkBIWPt9ElkxJkEK23GXq8DJ0NTiNGpEzf8J6hNHz6Bqpiog61+h/EULOrqKjArl27sGvXLgBVvZ7y8tyNFq+//nq89957+Oijj5CVlYWHHnqoRfd6ajSt7oulyqqkhVyiV1VK1jsp4d7RqTmxIvtTfJKzGrJZwcyZV2H8+NMhmRr49TVS3vJPUikhYqtVSgR4P5xy2pmIj0vA5vzt2Fey372fIsG8xuZr0is4RZaIWiBO36CwYaUEGc11ZixcU2J4oBdBqiclEGNkpYR/UsKw6RsA1HQr5MMq1FFRho2hrWpzvZ4aSXIKmP9bDr2LCeqpAZ6nDv9KCjlfg97ZVO/3XqEA+fZCvLXvAxytPIFESwIun3o1Og4d6N6hgd9eRaScgqs+jgCxEHHVkrTRtQcdFRuF80efh/9kv4OPD3yO+UNvgmy2QD6sVt2sk3PViajlYVKCwsfJSgmKAExIRBaz5G5AahN+ZwnDzuJNSnhOARtYAq1lWGHLYC8JI7TFXk/yYRf0jiYgwEFwMMrvDpg9zSgDJSW8Z+31ZBlyoQ4pTwU6myDq8bISQuCX3E1Y9fsqOHUX+ib0xFV9L4GlUxq8XRNEQ1fpqTF9Q09T/HpdhM3JKiXi6q4cEyYJQ/qkY2tiH+wuzsLXh3/C2R3OgnzcnZQQ0e6ljSEEP+uIqEWJlNwxtQVMShBRAN5qCREJlRIVwu93otbM8mk5ol8tQfSrxQ26nnmTve4dHO6KI72Le5UO2dNXQjrJSfyyslK89da/8dG2T6EKDWd1OR1zBl6FOHOs/5SqANMxRF2n2Wrs75ifDKlD3SuINIuTTt84SeWYWQKiZUzvcS4sshnfH12PQ8W5kAt16MkyRLzsjjF7XhJRC8OkBIWNb/oGv+wTUTXeZpeGrr7hTUp4D5qs/Hik1s+bLJCPae6z69UvO+yCab0t8PWOVVUZmNbZai1t6auU6OrOFPiqErTAWQld17Fhw3q8+OI/sG/fHqREp+C2wdfh7K6TIEue94fqJzQCrfxR1wmPmi9nswQp2YBGE9WHGOgtptpjENEBHo8JEIkKUqKScGGPqdCFjhW/fQyX7oLe3lQVIwencBBRy8LpGxQ+vkaXxg6DiCKLnqpAyXRBJBlfKRHsd6LWRNnrdC8haau2RKdNANFwl/9Hy4h+qRgAoHcyQe8ZvKrA+kk5oAuoE2J82yTP573WzZOUyHEh6sUiiOQar3EhkLv/ID5d/SmOHMkFIGHs2Am4oMNoRB+q8RqsnnQItHKFWYKEIAfjDZ3u0VyqT6k4yZACvQcJkwThadQ8Om0EdhTtwe7iLHx+6FucN+oiSC5PctUhIOJDNmoiombHpASFTVWjS56BJKIqzrNjoQ22Qu9i4EdSzaQEl9WjVixqSUmtbVKZDmWLC9ZPymGf3a5qe6EG1JGUAADzWpsvKSEfcFUtT5mmQJgBuVAHoANHqq6Tn5+PHx77BNs3b4M6Ogrd+vbAhRdejE6dOsOysAiA6ncffgfpgV6eDamUCHojzewk0zeqCzidzSxBJHqWL5YkzOh1AZ7//TWsObYRffPS0T+ut/sypwiWniEiikhMSlD4OFkpQUQBxMrQBhj7xlDrrCQrJagVUjbbIZfqAS+TynR31QMA87eVVdvrMRXAnXQAYNMR/Uqxb7uIlt2VUEerpnsUOUrw3ZG1WPfsbsibK9HOEo9Jp5yH4ZeNheUnOzTNFXgFiWpvESKq9gF7oKUwhRmQXICQI+P1LE6y+gYA2OYlQj6qQXQIML3EDL+qj3aWeFzScxqWZ67Ef35diTsm3owUWH09PYiIWgomJSh82OiSiCJU9aSEUBB4zjpRCxf1XlnQy8y/VmteWa33g3xchbLZDm3YSVaEEQLmH2v0oDABIs0EHNVwtPIEfji6HlsKdkAXOmILo3BGt8kY32EUtJFpkH91wPJ5BYSpqs+M381X/+5glVA5Pwnm9TaYN3jGHSivaZUAlwjYGNOIQon63Kfe1Qy9q9l/ao2H8LwvOc+MgWmLHXKBjmEpg5FdloO1zq14b9NKzI2+vF6JJCKiSMKkBIUNG10SUcSq/r7EqRvUSgghIB1XgWT5pH0VTJsdVb9UWy3TvN4O83o7bEl1N4aUD6sw/1Dpt00XAjtM2fhtz4/YXZwFAIgxRWFsh5E4veMYxJiiAQB2DVB2OwEAkgrAJSBMgN7FBCXHM42jxgkN0dEEUW1MIsAJD2Hx9JkINH0jQpMSPoFO4HiqQVxnx8J1dixiHs6HVClwYfepyLYfx/7CHHwpfsC5Syej4qEUQAdQVwNhuw75mFZnzxAionBgUoLCh5USRBShqh/QMHFKrYX2awWiXimEa3QUnDPq3/lQKq99ll4KMu3Dy/JBGSQN0JNklB4rxsb8LVj73F6U5hXDVGxHoiUBp3cag9Fpw2FValRdaALyIXfyQcRKgBPu7wrVX5dBpmf4BLrc+1qOkOkbwaZsBORJIgkFkLxJohp5IWFyJ11MsglXTbwc//r4FXx7ZC26xnbG4IWDIRVrcMxKgDY4cJVL1L9Loex3wT67HbT+nFtLRMZhUoLCxltOGOhsBhGRoaxMSlDro21xVy6Yf7HDeUlcwH3U/u4je9Nel29boASEZK87KVGeU4xtJbuwKTobh7dkum+7VzT6DO6PsT2HYNj+HlDkINUWKiB5pisIkwSpUoeIliGqV3cESDr4TbMK9N3Cu82A1T8DauBbS8VDKYAiIfaBfPeGmsmVat/iUxJTMOOKy/HeP/6N97I+xm1RiegU0wHW98tQ+bfASQllv/tvLmc6mZQgIkMxKUHhw0oJIopQfomIAE30iFoiqfoKDmrgfUSSAuel8dB+scH6obvRpRSgJYFk898ohMCRymPYU5KNPcWZOFCeC2ESUJOtSLO2w4iUIUiffyaSk1Pc13+8ACgJnNhQ9rvc0zbgrtKQhOcERrVvqQFPaFRLSgSbvgHUaDBppIZ+/Yl2D7zy/uTAf7/qSRsF6H/hcEx2nI9v//kZ/r13Beal34BYLc79/auO714BG4sSEYURkxIUNnpnExSzwqQEEUUeTt+g1qh6P4FgB56eqQHqqVGQ8jWYf/x/9u47vKmqjwP492Z1l07KFMpIKaWl7FX2UnABDkBApoKAoCgqL25EFHEAInuKCwQRGUVkKHuvsjctUDopnVnn/aMkbUjSmTalfD/Pw0Nzx7nnnntzxy9nZFgNShjSdLiVHotr96JxJfUGLty9jFRtTh8SXipPNHisPtTj2qBGWgCEvwLCJ1cVhTy+V8o9OR1kGpsqCKVkXhPCWvOMXE+xBmujVeTVfKOs9ymRi/C0XtUj9/4bAxQRvTsj8ecrOJYQhRUXVmNEvZfg+kE8sobm0URDa30yEVFpYVCCSo22nyc8fNyRnpQGGBiVJ6IyRC6Zhg/kcKBUXkiqnKDEg7+Ga1s7Q3ZLD10L5+wJcgnaHu6Qx+hgOJ+OOxnxuJ0eh9iMOMSk38bVm7HQ3sgJQsjkMtTyeAxqr9pQewaiqltliAAFMqr7wFp9CFHYDmSV90fCyfXZcpmcNPV1VMjsJ4PiaBYU9zvNFGWt+Ya9a2zkqilhrA0iyWR4+vUXkTB9Lq7cu4FfLq1D/zq94LzoLjJeqQBDbcvAhJRpgBSng+KUBsrt6dAMqQD42jmvRER5YFCCSo8kQSornU0RET1IlT18IGtKULmhywlESJkCBmFAhi4T92rokByajozgTKTG30PyxSQkJycjKSkJaf/eRnJ0IoQwD2IoXJxR27MGarhXQw2PaqhZMxAuyeaPkYY8akJa+14JFSBp8lg+d/MEa88PuecrJOjDnSG/nqudg6mmhM1slS57X1pyF3+uWiVS+wp4sfIILJo0Cyfiz8D9mhueqdEdyl0ZyLISlFCc0kBxKudAqJbeBZr72DmzRES2MShBRESE7JcgKU2wpgSVC/v27cHu5VugOZ8GvdBD85kCUlQmhK8MejcnYIn19eQZGvioPBHg4odKLhVRydUflVwqwq9hVagu5owVqvdRAskP1PvPq3mmlZoSwkUGSWOjA00nWb5PqWajbxhrQ+QKQBiqKCCcJBiqWalm4ZDmG3beqFnQxnyWm9oHw1oPxNxNC7An9hA8lO7oUKtjzgJ51FiVMlmblYhKF4MSREREyPklt9DVzInKII1GA40m+9dvJ7kKTpILnJycofR1g6qWD1xcXODq6gpXV1dUqOAFb28fVKjghYp/y+B63DJQoM8y/14IK00i8hpdSzhZVlcQrhJw19byD9SUsCZ3R5fGITRzByUCFEj/yNdqLQuZrwIGAIYKpViNws6XFrNjYKWsfLx9MSyoH+aeWYHI6B1w3++K8NC20LVxBfIJPAgrQQvprh5SkgGy2zrowpwA17JSBYWIHnYMShAREQGmGhJsvkHlQbt2HdAztSV021MAAJr2LlDtzIC2pTM0vTxsrqd0vgcg02L6g6NvWP2WWOv3wchasM9VBlNPmw8qyPcwd0eYxhf03KvJYL3ZBwBlHx9k6nXQtHTOfzt2IuzefCN3UMbKfJWEqm6VMaju81h87mesuboJ8kVyNHCPMNUeMXjIILtnGYQSSZbHxXVqoulveVQWRAU5tG1cICoX/3VCuqWD7J6BQ5MSPaIY4iQiIkKuX3kZlKByQmhzXjaNQYW8ajMAMH/Rz0XKyElL28YFsPJDe941Jaw13zCfpquf80IqnCSr2zBbP3cQxJjv3EGIPJ5yJTc5tE97QPiV4u9zJRiUsFZTwljmdSsEYkD95yCDhFVX/kLUd7uh+jN7+FdDdRv7n/lAoOLBPkbOa6E8mAmXWUlFz38urt8mwXnRXSDDRnMeIirXGJQgIiICstuwgzUlqBzR5uro0ljTIZ+ghLBV2+F+dX9dfRU0T7tbDxjkFZSw1qdErur/WS94QF8n18adJVgdxiO3/GpK2LsPh+Kyd/MNsyFBrSyQ63gEV6mHAXX7QIKE366sx4ldh7LTcLGeKfFgUCLNeoRIslHRpaikdPZnQfQoYlCCiIgI99u3AxBuvDVSOZE7KGF8yVTm82ZsY77p5dP48lvImhLWaiAZv3NA9stx7u+ecJLyHT5cKKzUisj19RVl7atckjUlrOzrgwGmEO8gvFSnNyRI+PXyehy4cxRwsVFIWeZlL4vPI/qgs3GcsgyApgBBhlzHWUplTQmiR1FZu1wTERE5hLadKzQ93GAIzKthPNHDQ+QKSqCYzTdM8hraO4+Ah9UOZHO9EAulBOH+YFAi76yY9YxmrBWR+8m2jFWUsLvcx9Jap6C5Dr90/8U/1KceXqrTGzJIWH1lA3bG7rWatMgyL3xZgu2ghCw2ZxhW+eksqNanAgYBl5nJcJ2aAPmxTEi3dTbXR67aEVIagxJEjyIGJYiIiAAIPzm07V3z7/Gf6GGhK0rzjfyCEtn/6WtkB+909XJ1TJhXQCOfmhJQmteUQEGCEtbyKuVde6A8yX2srHV0KeUuv1wxhVCfehgS1BcqmRIbo/7G5hvbIR7oM8JUU0IjILuhhXTHdlBBSsrZkPOyFCh3ZUAepYEsXg8pQ8D553twmZ1ks+ZL7toRDEoQPZrK+eWaiIiI6BFlpfmGzT4jjPLp99HYJELb2RVZL3ogq2+ukTz0tqvqC2crQ4LmnqYE8GBNiQdflB9krR+F3JvJq1ZHeZD7WOZTUyL3sckc4gl1hVoYUe8lOPu4YtvN3VhzdSMMwgCD3/1CvX++OP2YApfZyVDtyLCZDemuZSBBflFjvowWpto6Fuun5Q5KsE8JokcRgxI2aDQa/PDDDzh79qyjs0JERPRI4r24eMyabxiryOfTkWv+NSXuz1dK0DV2Nu+TII8a+rmbb2g6uULb3BmGijlRBaGUzGtOOEnmv/RbY6UjS7NhN8t5TMLsWFkL0JgFJe7/V00BvVoFfU0FqnSojWEjXoVrrQrYf+coFnj/iXtN7q96v/mG4px5cMEaKcWyaYfsmhYAoG3iBOGenU9b/UWY1ZSI10OKy+NEIqJyiUEJG1QqFebOnYuUlBRHZ4WIiOiRxHtxMeWuKXH/z3xHl8ndJMBaU4+8nhzzqCmROxiia+YMTR8P8+YXSsns137hJEHbwhkAoOniajPZ9Pd8kDbZN2dC7pfz8v6Uq8q7qYq+Wna1F31leU5TGBkAmYTMUd7QvOCJSpUqY/j0cfB5/DGcS7+E+ZsXISnrrkVHl9YIt+zty+4aACGg/DvNNE9+KztQIXzk0Kmzm/jYCkrk7q9CeTATrl8lQUq287AeRFSmlffLdbGEhYUhKirK0dkgIiJ6ZPFeXAxaKy+WTvk8+uVqviE8ChaU0FfOjgQYqthu+2HW0aUxjVwBBIsaGnIJhkAV0j7xg7arm+10veSAR65MPUJ9SpgFkKw039CHOyFzoCcyR3hB2z27DLURLhbLefv6Yvi411C7dl3cvnsHs6MW4+r6s3D6NtE8vZrmx1d//3hLKQbIrmqh2ppukbbwkgP3+wqx1jRDStZDFWm5nuwma0sQPUryaTn4aHv77bfx1ltvQalUon379vD19YX0QFVBFxfLizsRERHZB+/FxWAlKJFfTQmzzhPdZEDCA79uW+mnIXOEF+RXtNDXV1nMM8m1XeNQnmZDet7/1T+rhxvk17QQXjKL9Qok95CgVpp3lCf5Nt+QSdA3cAIAaDu4QNvM2azfjtxcXFwwcOBgbExbjSPn9mDOviV4LrAnGvmFmpYx+MqhecodLrOSsz9XVQAXtJDuGiAlW68FYfCSQUq9H5SwUlNCdst68EHKawhSIip3ykVQIj4+Hn5+fnZP94UXXgAATJkyBZ999pnVZc6cOWP37RIREVE23ouLThQhKJF7BA3hYuUF1to7rZvM9PJrk0yCUAGSJlcauZ9C7/+ta++aV9cU+cu9e+W+pkSuv/MbNUiSAPe8l5HL5Xi6+7Oost8VG278g58vrcONtJvoWb0L5DI5oJRgqJazUeEug3CVICXrId2zHpQQbjLTqCpO61JheExhloaUkr2epqsrZNe0UJzP7otCdsc8KCGl6KHYkwltexfzfkyIqFwoF0GJtm3bIjg4GD179kSPHj1QuXJlu6Q7depUi19jiIiIqPTwXlwMVptv5NenRK6/rbz7WRt6sqCEkwySxpDzAp27poS9RsrInedyftqY1ZSw03u65CxDu8otUdk1AD9dXINdtw8iJu02BtTtAyfVAzWSVBL0dVVQHM+C4liW9QSdJVNHlwDgvPAu0j/0NTWzMQYlhKcMWf09ITakQXkwE/JLGqhW3YNwl6B9wh3O3ydDlmwAJJiaohSGPCoLwl0GQ3UF5FEa6INU+Q6Pa8YgIIvWATXyG76GiIqiXAQlhBDQarX4+uuvMWPGDISHh6Nnz5544okn4OPjU+R0e/fubcdcEhERUWHxXlxEQlgEJYQM+T/55de/YTGCB8JLBpElcvJQjACHTTL7v6iXWUrLJjHFZQx01K0QiNcbDMeKC6tx5d4NfHdqIV5o/BKqon7Osu4y6MKcoDieBXmM9fotwlkyq3EjZQhIdw0QXnLIz2lM/VAITxngIoOmtzvkV7SQxeshS8wEAOhauGQHJADIEq0069AIyC/dDzQYj79eQEozQHjKId3WwXm5eWe52rYu0DzpXuByUf6dDtW2dGiecQee8ch/BSIqlHJzuf7ss8+wc+dOvPvuuzAYDJgyZQratWuHYcOGYe3atUhNTS1y2hcvXsQff/yBuXPnIi4uDgBw7dq1YqVZmjIyMtCxY0d89dVXjs4KERFRkTwM9+KtW7eie/fu6N69OzZu3OjYzBhgGWBQSVaH0czNrENKa4rx5Jj1kicyXvPKqSlRAjVgzIYEtVftizJK5DP6RpHkqknj7VQBr9V/Gc39w5GiScWCf5Zg27atSH/ZHdqWztAHqyC889mwkwTDYwpoWzpnB8UASPeHp3VaejdnXzzvR6hkEjIHeJpGDgEA+amcWhiKY1lQHMwEsnKaiyj/SYPz0hS4vRcPZWT2CCCq3+/B9bNESPE6yK10mik/baNmhw3K7dnBE9W6VOj23CvUukSUv3JRU8LIz88PgwYNwqBBg3Dz5k389ddf2LRpE9577z18+OGHaNeunakGRUGkpaVh0qRJiIyMhEKhgF6vR9u2beHv74+vv/4aVapUwTvvvFPCe1V8c+fORVhYmKOzQUREVGgPy71Yp9Nh+vTpWLlyJeRyOV588UV06dIFKlUenT+WpKL0JwFA+CmQ2c8DhgAFVJFplgsU4+VXeFtWjUh/2zv//hAK4xFqvlGoPiUKSLhIEFLOELIKmQLP1XoSNT2q43flNmzfvhVXal7Cc8+9iAoyyfqwsbndDwxpenkAOkB5KBNIux9QkME0VKnBM+fAicoKZI71htOiZCjOa6H8N8MsSafV9yDdc4W2U3YzDsWJnACDals6tF1doTycPU1+TgvpbnbtCm1zZygPZNe+KGxATMr1ddIsjIO8lzsMLdnBLpG9lJuaEg+qUqUKXnnlFaxduxabNm3CiBEjcPnyZbz55psFTmPatGk4evQoli5diiNHjkCInCtS+/bt8d9//5VE1u3q6tWruHz5Mtq3b+/orBARERXaw3IvPn78OIKCguDn5wdvb2+EhYXh8OHDjsuQtcELCjiShT7cGaKywvpLvZ1rHwg/hdVgRZE9Uh1d5jP6RlE4yaAZXAGqURWR8Zk/MkZUAAA09W+IMc+/hkqVquDq1Sv4/vuZiIo6Zd4vSD6E2/1+JNKzIxGGSrl+G3W1TMdYe0J2vxNNffWc5WVXdVDuSIeUqLcIMMjPakx/Syl60wgfupbOSJ/oA6EEpAQ9lJtSId3WQbX6HuRnrdSc0Amo/rgHpx9TLGYpI9OAdOude9qNEJAfz4SUzJFIqPwr75drAEBgYCDGjh2LjRs3Yu3atQVeb8uWLXjrrbfQsmVLyOXmV/sqVaogJiamWPk6ePAgRo4ciYiICAQFBWH79u0Wy6xcuRKdOnVCaGgoXnjhBZw4caJQ2/jiiy8KFYghIiIqS0r6XmxU3HvynTt3EBAQYPocEBCAO3fu2CVvRaIrWk2JfJX1J8fcQZMyVlNC+GWfv4Z8RsEocHol0NElABjqO0HRzD27uY9LzjZ8/f3w6quvoXXrtsjISMcvv/yI1ZtWI12XkUdqubjeHxo0LfvclO6fo1kveFgNdolctSc0HVyQOaIC0t/0BgAozmmg2pQG5yV3ISXqYaggg75WdtUR52U5QQTVjgwozmshZIChogLCVw59HRUkkT3PZU4ylAcz4bwkBfJzGjj/kATZVS2Uf6dBcSATyr2ZUJx8IGAhz26C4rQ21er3zF7kZzRw/ukenOcl50zMEiW6TSJHKeu3lgKpUqVKgatH1qtXr8DpZmVlwcvLy+q8tLQ0i4ejwkpPT0dQUBA++OADq/M3btyIzz//HKNHj8batWsRFBSE4cOHIzEx0bTMM888Y/WfXq/H1q1bUbNmTQQGBhYrn0RERI5S0vdiI3vck8sS6f6Pq2Z9LNghKCHK+pNj7vyVsT4lhKcc6RN9kDHR1z4JmvUpUTL7ahb4UElQKBR44omeGDRoKDw8PHHs1FF8c3I+ziZfzD+t+7UhFMcyofrjHpAmICRA18j6cLLCPedgaru7AU4yiACF2Qgwsjt6SAIwBMhh8M+ZkftvADBUU5hqlmiedENWTzcY/OSQsnJe8J0X34X8qg4uPyRDtTUdTuuy+6sRLhK0bXKaajiNrQThLEFxIguqzfebOBkElJtTIT+emW85WNALwGAeaJAS9JBfvD88aqIhexmNgMuXCXBekJyzvEFAdlED1Z+pgI1hWQFkN5nR52xDtfoeXL5KhDyqcH1rEJWUctGnxLZt20ok3dDQUKxbtw7t2rWzmBcZGYlGjRoVK/327dvn2axiyZIlePHFF9GnTx8AwMcff4wdO3Zg7dq1GDZsGABg3bp1Ntc/fvw4Nm7ciMjISKSlpUGn08HT0xOvvPJKkfIrK+YNz7h+cdMpj1g21j1YLiwfSywb21g2tj1MZVPS92Kj4t6TK1asiNjYWNPysbGxiIiIsEveisT4a6qTBGRm/13omhKl0HzD7sp49oSvHZuqlMToJQ/KPcJHrr/r1lVjzJjx2LTxL5zasxuLz/2Cpv5hePqx7nBW2AgyuGUHGeTXdJBfy25SIZwk2+eUjU5L9WFOUBzNgnCSTEEFQ6DSLH/6xxQweMmguJD9Yp+7qYjwU0DXTgG4yeD0W/6dVmYO9IShtgq6hk6Qx+rhGuaKrFe84DwzCYpDmdlpGwRU27NrjGS6yKBXq0xNQvT1rJcHAEjJerh8kwRtc2fo1SoIbzlkd3RmtT0AwPXDeOjCnCBLFUCqDopDmdA1d4HT8hQozmQ3V5HSDcjq6wmkGyBlCVOzKClFD5fpiTBUVCBzWAVIOgHlwezgifPyFBg8ZdB2cYWuRTH7yMgyQPtnEhAmB9zK+BeRypxyEZQoKePGjcOQIUMwePBgPP7445AkCTt37sTSpUsRGRmJH3/8scS2rdFoEBUVhVGjRpmmyWQytG7dGseOHStQGhMmTMCECRMAAGvWrMHly5eLHJBQKGTw9S340El58fYu/PjSjwqWTQ6lUm5xzrF8bGPZ2Mayse1hKBtH3ouNCnJPDgsLw9mzZxEfHw+5XI7jx4/js88+K/I2i/1DgPFHUVVOUAJOskKlK1npDFCSl+1glpSrw0db+XyYgnJ5y39fiyJ3+Riccg3n6Wx+/ri7u+H5F15E47+rYO3ljTgUdwIX7l7B0zW6o4F3ECRJMltecresZiNcJJt5NzR1hv68Bro2LmbLaHt5QNfBFVBIcJ6eXVPJEOxkVusB/gpo+7rBsC8DynX3oG/jarEdQ2NnGHamQ4rXm2oWWVVZmb1uoAqi9v1+MWqooK+ngvysBk6rzAMbikOZEDWVcF6SHVjI+MQPcLFexUgepYGUKaD6NwP413YzGEkLU+edAOD0eyoUR7Mgv6zN2e7RLOgbZEG1LhVSigHanu7QdXCF/LQGkgaQR+vg9nGCRdqyFAOUO9JhaOWaRyHkT7krHdrNaVBFO0Pzomex0ioUvYDskhaG2srCd/iaaQCcS6H6lxCQ39JBeItycN0pGQxK5KFp06ZYunQpZsyYgU8//RRCCMyaNQsNGzbEkiVLSnREi6SkJOj1evj5+ZlN9/X1xbVr10psu7bodAakpBSwzaANMpkEb283JCWlwWBge7jcWDaWtFo9EhKyq06yfGxj2djGsrHNXmXj6ekCpbJkf6515L3YqCD3ZKVSibfeegv9+/cHAIwfPx5OTrZ/Ic2LPX4I0KdkIQuAzEUOkZJdrdvZWwXPQqSbpUq16C/T3dMZCjv9SFES9F4yZCF7qMn8yvBhCMrlR/t8do0D1xI4Jt7ebhAuBmQgHgDg5e8Gma9lc2kX7yAEhlbHumuROJYQhRUXVqO+d108U+NxVPWtZVrOoNEgE8lm68rdFXkfp7dtvNxWy/4vMyQDyDLAO9QL0Ahk3E/fLdAt+zzt6Q7Rww9uNkbbEB+6AQLIGH01Oz8t3aHfl2uYYU85fGtY5sHb2w2G/kpkzboNEWc+5KjieBYUuYYxrRAtg6Jlzj7qjqZB92cSZKGuMFzSIa/uMuWNXSEPd4NmcVzOtPt5NAYk5M3cIG/pDs2sWDityNWfxu4MeD7jj6yz96xuQznID5JCgmZxHGRpAu5/pENWyxnKjtn7K7QC2vVJkDd0hby2M/RR6TBcyoLiKS9IkgRDtAa6HSlQ9PSC5CVH5vEkCADyY1nwGeQCyd32vUFoBfRR6ZDXcobhRhZk1VSQKhTstVR3NA26HSlwGlERcJVB80Ms9IfToRzkB2UHjwKlIYSAdk0SdJuSoXzRF8quFQq0XkEJrQAUOYFd3aFUaOYkQj9EBu+2pRiweYgwKJGPJk2a4KeffkJmZibu3r0LT09PuLg4bgggIYTVXy7y07t372Jv214P9QaD4AuCDSwbcw+WBcvHNpaNbSwb2x6Wsilr92KjB+/J3bp1Q7du3Yqdrj1+CJAnaaECoFcKUzcLGZIO9xJS81rNjEqjt2ghkJqRBX0h0ihtslQNjKGgBBv5LFcBy+b3H+XteEzMykdngPGblpyeAZGgsVjeRQBuSlf0r9MLTf0bYu2VjTiddAEXMq+h3dqn0KZNRHbfL1k5aRnphcHmcSqQwdkvoWmJ2X07GNNPkWshCpGuoqcbpBgdsurJ4bQvV/4qyszyZ1Y2LgJ42xvOH8RDyhQwVJTDUFkBxfEss9FvNPPvIP1ECrS9PQBJguqvJMivaWG4pskefvWBvBiqKSCLzg50ZLkJaIMl4CM/KHZnwFBZDkOoM2RqOZyWZwffMisI6B4TcMq1HgCIZD3u/hUH1ZmM7BFHcipVQCiAe1UFhI8MTpUVkN3SQb87FfrdqUgJlQBJgmJbGpSb0qDdehdZb/jAeUZ2LYt7NQBRVQGn2YmQ3dFDt+2B0Ul0AilbEqBrb73mhWL9PYthXg1VFch63dtqUx4pXgdkCsji9NCHOsFlVnaAJv3t62a1YzJ338W96gLSDR0MDVSAHlD+mQp9iAqGICcg1QDl5lQYAhSQn8yC/Ep2gWh/TkBKPcnUEWuRaEV2J6TuMkh3dHD6JhG6zm7QdckOfCpP3st+6VbKinXdKY0fAhyFQYk87N27F+Hh4XBxcYGzszOcnZ1Lbdve3t6Qy+WIj483m56YmGjxSw0REVF55ch7sZEj7snFfVmWae/3I5GrM0SDk1SodAWsjOChKeuBrJy85ZfPhyUo5ygGgzD7hd2gAEQ+5aWuUAtvtBqJrdIBbE/dh8jIjTh69Ah69nwKtarWslwhxWDXY5AxogLkV7TQV5NbdB6ZF0277Bdo6YFaD4YAhdX85T53sl70gNPqe8h6wQOGAAV0YU5QHMuEvrYKym3pkKUYoNiXCW1zZzj9eg+y2JyIhSQAXX0VFKezgz0Zr3nBUEMJxZ4MKP9Jg6aNS3aZu0jQdLn/km8QMISoIAZ6Qrk1DdpmzhAGAW2YE5zuByU0HVyg2pGR3QEmAG2ES06fF4M8oa+jBJxk2Wn5ySC7lbNv4rYOIkAB+YHs5aVMAfn2tJw8R2shtAKyO5ZtXuSt3aHfkwr53gxo2jhDflaT3cloloBqSzpkt3VW15PF6OD8QTyyXvKEoaIc0AsojmRBOEtw2pCzbW3TnOu/MSAhnKXsPF7SQjYtAZIeyHrGHcJNgmJvBhR7M5D2hT+c1t2D4ph5x55Cyj4Giq1pMPjKoa+pzB4O2QrF/gzIz2igr62EPFoHTRfX7D5iZBKcfroL+VkNNL08oFp7D5Iue9hY2cms7D5Q/ssuS1lVJQwGLa87VjAokYehQ4dCLpcjODgYTZs2RZMmTdCkSRN4e3uX+LZVKhVCQkKwZ88edOrUCQBgMBiwd+9evPzyyyW+fSIiorLAkfdio4fynmzsaT/3CA022rUXhpSaV2XzMqCsjw7yEBMFG+gOCncntH/rGQTfaYX169fi6tUrWLJkAerXC0GvzBbwdc757sryGjGiCAx1VDDUKWBGrTB2DmlKr1L+v0rr6zsh/YOcplr6Bk7QN8j+bKiigMucZACwCEgY6Zo6A04SZFe1MFTJfjXTtXaBrnXetcFyb8e4DpQShJsEfX0nKPdnQsoQ0NVVQtfaBcJTDvk5DfRqlVkHpoaKCgA5NWBcZiUhY6w3ZAk5x0a5L2dUEVmMzlQTxOAhMx1DIQOUvX2guZVdC0H5dzpU29JhqCi3CERoI1wgj8qCLMkAXQMVFKc0kLIEnBffNQUKrFEeshzdJP0j3+wOP09rTH2DGEdOMeX5mhayq1qzaZqO2WXitC4VyvtBA4OHDBnv+gAK8xobsmgtnNZkp2nsWNQY4DAGRQBY9C8iv6mD/GZOoEuqpAJSzPNB2RiUyMOePXtw6NAhHD58GAcOHMDy5cthMBhQq1YtNGnSBE2bNsXTTz9d5PTT0tJw/fp10+fo6GicOXMGfn5+8Pf3x5AhQzBx4kSEhIQgLCwMy5YtQ2ZmJnr16mWP3SMiIirzSvpebFTu7sn3n4Nzj7ghXArX/FNfJ/tlQResyunhv6wHJYrQxJUKSFHAsr3/QlmxYkUMHfoKTp06gc2bN+L02ShcOnUE7QJaolOVNnCSO1kM3elwCglpn/pBtSUNit0Z0NdQFis5Qw0lMgd7wnlpitWABADo1Sro698PpBTn/FVKZoGMzFe8AK2A4f4+2Ap0aCNcAEV2cMLppxRIWsBpffYLuMFbBlmS+Xdefkmb3VwBgPYJNyiOZEJfWwlDQ2e4+Sigb+0C+RUtVNvSAcBqQELzlDvQzRXyy1ro66mgSRVw/jYRkh6QMvKvRaAPVEJK1kPb1hWQJGT194TYkArl3szsoWf1MGvaYQwMmaUR4mTWdkZfTQF5tA6KvRkw1FZByADhJYPiRJbZPuhrKAAdII/JvsgaAxIPMlSQQXbXvOwkJa9PtpTLoIQQAt9//z1efPFF+Pn5mf729/cvVDre3t7o2rUrunbtCiB7DPN9+/ZhyZIl+O2337Bq1apiPQidOnUKgwYNMn2eMmUKAGDMmDEYO3YsevTogcTERMycORNxcXEIDg7GwoUL4ePjU+RtEhERPUxK+l5sVO7uyVZqShQ2KKFr4QyDnxyGGkoY/kmDakcGdA2L1nlnqWFNCbvTtnWBdM9Q8JENRM5LmiRJCA1tiKCgYOze/R/2HdiE7Tf34GDicXR+5nE0fK5V2RvFVSVB87gbtBEuEF7FD5roa+UENoQC0DVzhqG6Ek6/3YMu2LzWgj0Za13ky1UGbafsvg8yX/GCyw/JkN8fSlXb3hWqDamQtIBOrYSkEZBf1UEWl/2Srn9MAV0TLwA5o7bow5ygPesE5eEsCBkgPRDHNOXLSQZ9cPb1RHhIyHjHF1AA8gtaOP14F3p1dlA0NyED9A2doOniBuGX69goJWiecYeuiTMMVRSQ4vVw/jEFUpLerC8NXagTNN1dAT0gKikAIZD1lBsM1ZWAAnD+PhlOf6UBSIM1GeO8s/MvRHbNC4UE2W0dpGQDFMezTOWSMbwCRIAcLl8lAVqRHXiKcEHxxjcp38plUMJgMOD7779Hx44d4ePjY/q7sEEJIPuXk6NHj5p+pTlx4gScnJzQoUMHNGnSpFj5bNGiBc6dO5fnMgMGDMCAAQOKtR0iIqKHWUnei43K2z1ZMtYYdipG8w2ZBEPd7F9wtY+7QdvB1S5NQEpUGc/ew0jzZOFG9tDXtKxdoFKp0LFjZ7TeXgtbTv+DIykn8fvNjdj500F07twNISENitSRe4lRSHYJSAAAnGTQNnaC8kgWtO1coe2eHQAwVJLfbzpRdhhqKGDwlEF2f8QefS0lsvp4QH5NC21HVwi5BJc5yZAl6CHkgPCxUkYyCZrnPbJrIiglQABSoh6KE9lDmOoDbdQ+uR9A1QepkP6xHyCToI3RApIEl++SIJwkpL/vazuII0nZwQUAIkCBjDe8AZHddMNlXnanoIaqCgh/hdk6uoicUIGuhTOUeyybiACAUAKGAHnOtgKzr43GbUpJesji9DB4y0zXzfT3fbOXV9oe+payla1vgh2JXFHa3H8XRu/evXHu3Dn4+vqiadOmePzxx/G///0PQUFBZevCSUREVE7xXlxEesuOLgtbU8KMJAHFWb+0PARZLK/0NRXQNXHOszaNl5sn+tZ+Bq3QHH8G7seVK5fw668rUaVKNXTt2h21a9cpl99rTW8PGOqozMrGULV4TUNKhCRlj/5xv+NNUVEOfYAC+kY5HUxmvloBil0ZEP5y27VnJCk7KJGLrrETpDRhPZDxoPsv8MYyyhjrBeEpK1ytEmMaNZXQdHQFIKBtmXdHyYZqSgDZQYmsp90gi9dDflEL2R19dl8cedQW0vR0h6TH/W3dx+YaBVZugxL2cO7cOSgUCoSHh6NRo0Zo3LgxH4KIiIhKEe/FRWSsKZE7KOHMMqOSI5xl0DXPZ6je+6dgdY+qGDp0BC5duoAtWyJx82Y0li1bhJo1a6Fr1+547LEaJZ/h0qSUoGtS+iMHFYXhMSVwWgODr9xqHxeighzanoWrPQMAcJJBFLH1V3awoIhkErSPuxVsO7lG3tCHOEF3v7aMlKyHcMunGpabDFn9PIuczUcdgxJ5OHTokKm66JYtWzBjxgwolUo0btwYTZs2RbNmzRAeHu7obBIREZVbvBcXkbFPidydEzoxKEElqCCn1wMvubVr18XIkXUQFXUK//yzBVevXsaCBT+gVq066NChEwIDrQwjSiVK29YFEAK68IcjiGJPhoo5tThEhZwghN2a8pBNDErkwcXFBa1bt0br1q0BAFqtFnv37sWCBQswY8YMSJKEM2fOODiXRERE5RfvxUUj6e4338j9pMc2zVQC9FUUkN/Umf3KbJPxFHygM8wGDUJRv34Ijh07gp07t+Py5Yu4fPkiatYMRIcOnVCrVvls1lEmKSRTx5ePHIWEjFcrZDfT4PlWqhiUyEdiYiIOHTpk+nfu3DkYDAbUrVvXbp1rERERkW28FxeBcQQ7hYSMVyqwA0gqMVlDPCE/ngVdy3yabuQiWenuTSaToXHjpggPb4yTJ49j587tuHr1CpYuXYRq1aqjQ4fOUKvZdItKlqGWytFZeCQxKJGH7t274/r165DL5QgODkaLFi0wevRoNGnSBF5eXo7OHhERUbnHe3ER3a8pATlgqM2HbCo5wlMOXdsCDnZoqilhexGZTIaGDRshNLQhoqJOYceObYiOvoEff1wKf/+KaN06AuHhjaFQ8DWGqLzgtzkPPXv2NLVVdXEpePSXiIiI7IP34iLKVVOCqMwozOAJMhlCQ8PQoEEozp49g127duL69WtYt24Ntm6NRIsWrdG8eUu4uT2iTQ2IypFyGZSQJAlVqlSBSqUy+7uwXn/99RLIHRERERUU78VFY+pTgv2zUVlSgJoSFqtIEoKD6yM4uD5u3LiO3bv/Q1TUKWzb9jf+/XcHGjVqjFatIuDv718iWSaiklcugxIymQzbtm0zfc79d2HduHEDCxcuxJEjR5CcnAwvLy80adIEw4YNQ/Xq1e2RXSIiIsoD78VFYBwS9BGrKWG430u+KMYIglQKChGUyK169cfQt+9LSExMwJ49u3HkyCEcPLgfBw/uR2BgbbRo0QrBwfUhk7ETFaKHSbkMStjLqVOnMGjQIDg5OaFDhw7w8/NDfHw8tmzZgvXr12P58uUICQlxdDaJiIjKLd6Li8g4JKj80QpKwE2G9Ik+EK6P2H4/JEQRakpY4+PjiyeffBqdOnXBoUMHcODAPly5cglXrlyCh4cnmjZtjmbNmsPDw7PYeSaiksegRB6++OIL1K9fHwsWLDBrx5qRkYFXXnkFX3zxBZYvX+7AHBIREZVvvBcXkammhENz4RDCl21WyizjyBnFDEoYubq6ol27DoiIaIcLF85j//69uHDhPLZv34odO7ahfv0QNGvWnEOKEpVxj+CtquBOnjyJb7/91qJjLRcXFwwdOhRvvPGGg3JGRET0aOC9uIj0xj4l+CJGZZGdohL3yWQyBAXVQ1BQPSQmJuDgwQM4cuQgoqJOIirqJCpU8ELjxk3QqFETeHv72HXbRFR8DErkwcnJCcnJyVbn3b17F05OTqWbISIiokcM78VFY+zokk96VJYYHlNAflMHfa2SG6bWx8cX3bs/gc6du+LUqRM4fPgQrl69jO3b/8H27f8gMLA2mjRpivr1G0CpZOcjRGUBb1V56NChA7766itUq1YNTZs2NU0/dOgQZsyYgY4dOzowd0REROUf78VFZBwSlDUlqAzR9HCHIUABXcOSDyYqFAqEhzdGeHhjJCYm4OjRwzhy5LCp7wknp3UIDQ1DWFg4atYMZPMOIgcqF0GJPXv2oHXr1vkup9Vq8c477+Drr78uULrvvvsuXnvtNQwYMAC+vr7w9fVFYmIiEhIS0KhRI7zzzjvFzToRERHlgffiIro/+IBw5osWlSFOEnStXfJfzs58fHzRuXM3dOzYBZcvX8Lhwwdx5sxpHDp0AIcOHYCHhydCQxsiLKwhqlSpygAFUSkrF0GJUaNGYebMmWjfvr3NZdLT0zF69GgcPHgw3/QyMzOxc+dOxMTEoF+/fhgwYACuXr2KuLg4+Pv7o2HDhoiIiLDnLhAREVEuvBcXj7anO1zaKpDhBcBg3/b7RA8rmUyGOnXqok6dukhPT8fp06dw/PgxXL16BXv2/Ic9e/6Dr68fwsLCERYWDj8/P0dnmeiRUC6CEl26dMGYMWPwzTffoEuXLhbzExMTMWLECFy6dAmzZ8/OM60bN25g8ODBiImJMU1zd3fHN998g7Zt29o970RERGSO9+LiExUVUAS7Awmpjs4KUZnk6uqKpk2bo2nT5khJuYtTp07ixIljiImJxvbtW7F9+1YEBFRG/fohCAlpgIoVAwCwBgVRSZA5OgP28NVXX+Gpp57C+PHjsXHjRrN50dHR6NevH6Kjo7FkyRJ06NAhz7SmT58OmUyGlStX4vjx49iwYQOCg4Px0UcfldwOEBERkQnvxURUmjw9K6B16wiMHDkG48a9hY4du8DfvyJiY29h+/atmD37W3z33QxERm7C9evXIQRrHxHZU7moKSFJEqZOnQonJye8/fbb0Gg0ePbZZ3H27FmMGDECcrkcK1euRJ06dfJN6+jRo3j33XfRpEkTAEDt2rXxySefoEePHrhz5w4qVqxY0rtDRET0SOO9mIgcxc/PD506dUGnTl1w584dnDkThdOno3DzZjT+/XcnDh7cA5XKFfXq1UdwcDBq1qwFuVzu6GwTPdTKRVDC6MMPP4STkxMmTZqEc+fOYdWqVahYsSIWL16MSpUqFSiNuLg4VK9e3WzaY489BiEE4uPj+SBERERUwngvJqKyoGLFiqhYsSLat++IpKREnD17BteuXcDp0+ewf/8e7N+/ByqVE2rXrgO1OghqdRA8PSs4OttED51yFZQAsnvpdnJywvz589GwYUPMmzcPFSrw4kBEREREREXj7e2DNm0i8PTTj+Pq1Vs4fToK58+fw6VLF3HmTBTOnIkCAFSqVAX16tWDWl0PVatWg0xWLlrLE5WochGUaNmypcXQPUIIXLp0CY8//rjF8nv37s0zveHDh1uthjV48GCL6fmlRURERIXHezERlVUeHh5o1qwFmjVrAZ1OhytXLuPcubM4f/4sbt++idu3b2LHjm1wcXFFrVq1UatWHdSuXQe+vr6OzjpRmVQughIvvfSS3cYTHjNmjF3SISIioqLhvZiIHhYKhQJ166pRt64aQjyF+Ph4nD9/FufOncW1a1cRFXUSUVEnAWTXtqhduw5q1aqDWrVqw83NzcG5JyobykVQYuzYsXZLiw9CREREjsV7MRE9jCRJgr+/P/z9/dGmTVtoNBpcv34Nly5dxMWLF3D79k0cOnQAhw4dAJDd1CMwsBZq1gxEjRo1GaSgR1a5CEoQERERERGVJSqVCnXq1EWdOnXRvfsTSE1NxZUrl3H5ck6Q4vbtm9i7dxcAwN8/ADVr1jQFKSpU8HLsDhCVEgYliIiIiIiISpi7uztCQ8MQGhoGAEhMTMDVq1dw7dpVXL16BXFxsYiLi8XBg/sBAF5e3qhRoyYee6wmqlevjoCASuw4k8olBiWIiIiIiIhKmY+PL3x8fNG4cVMAwL17Kbh69aopUBEbexvJyUdx/PhRAIBCoUTVqlVRrdpjqFatOqpXr87aFFQuMChBRERERETkYB4enmY1KdLT03H9+jVER1/HjRs3EBMTjWvXruLatatm61SrVh3VqlVH5cpVULlyFbi7uztoD4iKhkEJIiIiIiKiMsbV1RX16gWjXr1gAIAQAnfu3EFMzA1ER9/AjRs3EBt7G2fOROHMmSjTeh4enqhSpSoqV66MypWz//fy8rbbaIVE9sagBBERERERURknSRICAgIQEBBgavKh0WgQExONW7du4ubNGNy8eRNxcXdw7twZnDt3xrSui4srKlWqjEqVKqNixYoICKgEf/+KcHZ2dtTuEJkwKEFERERkB5cvX8akSZOQmpoKlUqFSZMmoWnTpo7OFhGVYyqVCoGBtRAYWMs0TaPRIDb2Nm7duoVbt2Jw69ZN3L59G1euXMKVK5fM1q9QwQsVKwYgIKASKlasiIoVA+DvXxEqlaq0d4UeYQxKEBEREdmBk5MTpk6dilq1auHSpUt47bXXEBkZ6ehsEdEjRqVSoXr1x1C9+mOmaXq9HvHxcYiNvY3Y2Nu4c+cO7tyJRWJiIu7eTcaFC+dypSDBy8sLvr5+8PPzh6+vL/z8/OHj4wtvb2+OAEJ2x6AEERERkR1UrVrV9HetWrVw7949CCHYjpuIHE4ulyMgoBICAiqZTddoNIiPj8OdO7GIjY29//9tJCcnITk5CZcuXTBbXiaTw8fHB76+fqZ/Pj4+8PHxRoUKbApCRcOgRDl28uRJTJ482fT5woUL+P333xEcHOzAXBERETnGwYMHsWjRIpw6dQpxcXGYO3cuOnbsaLbMypUrsWjRIsTFxSE4OBiTJ09GWFhYobf1zz//IDg4mAEJIirTVCoVqlSpiipVqppN12q1SExMQHx8PBIScv7Fx8eZ/pmT4OKihELhDG9vb1So4AVvb294eXnD29sHXl7e8PLygkLB10+yxLOiHAsNDcW6desAADExMRg4cCADEkRE9MhKT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YN5HI5gOx77vTp0zF//vyS2xkiohKkVCqt1qwAgMzMzFxBingkJyfh7t1kZGWl4datO7h3LwXANavpuri4wsPDE56enqhQoQI8PT3h7p7z2cPDE25ubgzoPmIYlHhEbN68Gd27d3d0NoiIiBymffv2aN++vc35S5YswYsvvog+ffoAAD7++GPs2LEDa9euxbBhwwDAFOy3JTU1Fa+99href/991KhRo8h5lcmK90BuXL+46ZRHLJu8sXxsY9lkc3V1gatrdVSvXt00TSaT4O3thoSEe0hOTkZSUhKSkrKbgGT/nYiUlBTcvZuMO3eym4nYIpfL4ObmDjc3N9P/7u5uZtPc3XP+VqlUZT6IwXMnbwxKOFBpViPdvHkz3n//fXtlnYiIqFzRaDSIiorCqFGjTNNkMhlat26NY8eOFSgNvV6PcePG4YUXXkBERESR86JQyODr617k9XPz9nazSzrlEcsmbywf21g2tvn6esDX1wNAdavzhRDIyMjA3bt38/yXmpqK5OQMJCfH57tNmUwGFxcXs3+urq5WP6tUKjg5OZn9b/xbLpeXeHCD5451DEo4UGlWI01MTCxSMIOIiOhRkJSUBL1eDz8/P7Ppvr6+uHbNejXkB/3777/Yt28f4uPj8dtvvwEAVqxYAU9Pz0LlRaczICUlo1DrPMj4q2VSUhoMBlGstMoblk3eWD62sWxsK2zZqFQe8Pf3gL9/NavzhRBIT09HWloa0tJSzf5PTU1FenrO/xkZmbh7NxXx8cnF3ofsIIUTVCol5HIFFIrsf3K5HDKZHAqF/IHPCigU8vsjkkiQJPN/MpkMkiShYsWK6NChTbHOHU9PFyiV8mLtY1nFoIQDlUY1UgCIjIy0S9MNViUtOSwb6x4sF5aPJZaNbSwb21g2BVeY0TM6duyIqKgou2zXXi88BoPgy5MNLJu8sXxsY9nYZs+ycXFxhYuLK/z8/Au0vE6nQ2ZmBjIyMpGZmYHMzExkZKSbfdZosqDRaKDVapGVlQWtVoOsLA20Wg00mux/2SMnGeyyD0aSJKFVq6Y8d2xgUKKMskc1UiN7NN1gVdLSwbLJoVTKLc45lo9tLBvbWDa2sWxyeHt7Qy6XIz7evKpwYmKiRe0JIiIqexQKBdzdPeDu7lGsdIQQ0Ov10Ol00Ov10Ot19/82QK/XPTAv+28hBAwGA4QQAASEMP/n6+sLJycnpKZq7bOz5QyDEmWUPaqRAsDNmzeRmJiI0NDQYuWHVUlLFsvGklarR0JCKgCWT15YNraxbGyzV9mUp6qkKpUKISEh2LNnDzp16gQAMBgM2Lt3L15++WUH546IiEqLJEmmZhv2wpqJeWNQ4iFTmGqkAFClShVs3brVLttmVdKSx7Ix92BZsHxsY9nYxrKx7VErm7S0NFy/ft30OTo6GmfOnIGfnx/8/f0xZMgQTJw4ESEhIQgLC8OyZcuQmZmJXr16OTDXRERE5RuDEmUUq5ESERHZ16lTpzBo0CDT5ylTpgAAxowZg7Fjx6JHjx5ITEzEzJkzTaNeLVy40NS5NBEREdkfgxJlFKuREhER2VeLFi1w7ty5PJcZMGAABgwYUEo5IiIiIgYlHIjVSImIiIiIiOhRxqCEA7EaKRERERERET3KGJRwIFYjJSIiIiIiokeZzNEZICIiIiIiIqJHE4MSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMwKEFEREREREREDsGgBBERERERERE5BIMSREREREREROQQDEoQERERERERkUMoHJ0BKj+EMMBgMEAI6/NlMgkajQY6nQ4Gg42FHlFlsWwkCZDJZJAkxi6JiAoqIyMDPXr0QM+ePfHWW285OjtERERlHoMSVGx6vR4pKYnIykrPd9n4eBkMBkMp5OrhU1bLxsnJFZ6ePpDL5Y7OChFRmTd37lyEhYU5OhtEREQPDQYlqFiEEEhIuAWZTA5v74qQyxUAJJvLKxQSdLqyUROgrCl7ZSOg1+tw714yEhJuwd+/KiTJ9rElInrUXb16FZcvX0bHjh1x+fJlR2eHiIjoocCgBBWLwaCHwaCHj08AFAplvssrFDIAZa82QFlQFstGoVBCLlcgPv4mDAb9/aATEdHD5+DBg1i0aBFOnTqFuLg4zJ07Fx07djRbZuXKlVi0aBHi4uIQHByMyZMnF6rWwxdffIGJEyfi6NGj9s4+ERFRucU3DCqWnP4j+At6+ZV9bG31FUJE9DBIT09HUFAQevfujbFjx1rM37hxIz7//HN8/PHHaNiwIZYtW4bhw4dj8+bN8PHxAQA888wzVtNes2YNtm/fjpo1ayIwMJBBCSIiokJgUIKIiIjKvfbt26N9+/Y25y9ZsgQvvvgi+vTpAwD4+OOPsWPHDqxduxbDhg0DAKxbt87m+sePH8fGjRsRGRmJtLQ06HQ6eHp64pVXXilSfmWy4gX7jesXN53yiGWTN5aPbSwb21g2eWP55I1BiXLi9ddfx969exEREYFvvvnGNH3r1q2YPn06AGDcuHHo0aOHo7JIRERUJmk0GkRFRWHUqFGmaTKZDK1bt8axY8cKlMaECRMwYcIEANk1Jy5fvlzkgIRCIYOvr3uR1n2Qt7ebXdIpj1g2eWP52MaysY1lkzeWj3UMSpQTL730Ep599lmsX7/eNE2n02H69OlYuXIl5HI5XnzxRXTp0gUqlcqBOS07PvvsI2za9JfF9L/+2govL6/SzxARETlEUlIS9Ho9/Pz8zKb7+vri2rVrpZ4fnc6AlJSMYqUhk0nw9nZDUlJamRlquqxg2eSN5WMby8Y2lk3e7FE+np4uUCrL52h4DEqUEy1atMD+/fvNph0/fhxBQUGmh6ywsDAcPnwYrVq1ckQWy6TWrdvinXf+ZzatQoUKZp91Oh0UCn5ViIgeNUKIIo061Lt372Jv214P9QaD4AuCDSybvLF8bGPZ2MayyRvLxzqZozPwKDh48CBGjhyJiIgIBAUFYfv27RbLrFy5Ep06dUJoaCheeOEFnDhxotjbvXPnDgICAkyfAwICcOfOnWKnW56oVEr4+vqZ/Xv++aexfPlifPLJ++jatR2++24GAOD48aMYNWooOnVqgz59nsScOd9Bo9GY0kpIiMfEiePRqVMbvPjis9ix4x/07NkZGzdm1145cuQQIiKaIj093bTO7t3/ISKiqVme/v13BwYP7o9OnVrjxRefxcqVy2Aw5IzKERHRFH/99QcmThyPzp3bYODAF3D8+DGzNI4dO4LXXhuOzp3b4IknOuHtt8chKysLy5YtwpAh/S3KoW/fXvj55x+LXZ5ERA8jb29vyOVyxMfHm01PTEy0qD1BRERE9sWgRCkw9vj9wQcfWJ1v7PF79OjRWLt2LYKCgjB8+HAkJiaalnnmmWes/tPr9aW1G4+Un35ajnr1grF06U/o2/clxMRE4623xqFz525YvvwXfPDBp9i7dzfmzp1lWuezzz5CfHwcZs+ehw8/nIKVK5ebBSAK4vjxY5g69SP07fsSVqz4DePHv43Vq3/F6tW/mi23ZMlCPPHEk1i69GfUrl0XH3/8P+h0OgDA9evX8MYboxEUFIz585dh9uz5aNKkGYQQ6NHjKVy+fAkXLpzLtc2juHXrJrp3f6IYJUZE9PBSqVQICQnBnj17TNMMBgP27t2L8PBwx2WMiIjoEcA66aWgpHv8tqVixYqIjY01fY6NjUVERESh0zGy1lvsw96D7H//7UTXrm1Nnzt06AwAaNq0BV54IadGwbRpn+Lxx3viuef6AgCqVauO0aPHY/LkiRg79k3cuHENBw7sw+LFP0KtrgcAmDDhHQwfPqhQ+Vm8eD4GDRqKxx/vCQCoWrUaXn55KFav/hUvvNDPtNyTTz6Djh27AACGDn0F/fv3QUxMNGrUqIkff1yK0NCGGDdugmn52rXrAACcnZ3RvHlLbNiwHuPHBwEANm5cj1at2sDHxzfPvMlkUqkf7wd7Kn7Yz7eSwLKxjWVj26NYNmlpabh+/brpc3R0NM6cOQM/Pz/4+/tjyJAhmDhxIkJCQhAWFoZly5YhMzMTvXr1cmCuiYiIyj8GJRzMHj1+2xIWFoazZ88iPj4ecrkcx48fx2effVaktGz1BK7RaBAfL4NCIUGhKFjFm4IuV9IkSUKzZi0wYcJE0zRXVzcMGzYI9euHmOXz0qULuHjxAjZvzukY02AQyMrKxN27iYiOvg6lUong4GBT++OQkBAolUrIZNllI5dnp6dQyExpy+WSaVr2ds7j1KnjWLJkQa7tGGAwGMzyU7duXdPngICKAICUlCQoFLVw6dIFtG/f0WY5P/XUs/jyy88wbtwb0Ot12L79H3z44Sd5HBcJMpkM3t6updpJqlIptzjn2GOxbSwb21g2tj1KZXPq1CkMGpQTKJ4yZQoAYMyYMRg7dix69OiBxMREzJw5E3FxcQgODsbChQvh4+PjqCwTERE9EhiUcDB79fj9yiuv4MSJE8jIyEC7du0wf/581KtXD2+99Rb698/+xX/8+PFwcnIqUj5t9QSu0+lgMBig0wkABssVH6BQyKDT5b9caRBCwNnZGZUrV7OY5+TkZJbP9PR09O79PHr1et5iWXf3CtDpDJAkyfS/MX0gO3ih0xlw/yN0Or0p7aws7f1p2UGH9PQMjBgxCm3bWtasyZ0fSZKbPuv12QlrtXrTdozbtKZ167YAJPz7705kZGRApVKhRYs2NpfX6QQMBgOSktKhUGisLlMStFo9EhJSAbBH57ywbGxj2dhmr7J5mHoCb9GiBc6dO5fnMgMGDMCAAQNKKUdEREQEMChRZhW2x+/58+dbnd6tWzd069bNLnmy9uD6qDzo160bhCtXLqNatepW59esWRMajQYXLpwzNd84d+4stFqtaRkvL28AQEJCAlxds3+dvHjxvFk6anUQbty4ZnM7BVGnTl0cOXIIgwcPtzpfoVCge/ce2LBhPbKyMtG9+xMFGl3EEb0FP7g99lhsG8vGNpaNbSwbIiIicrSyUY/+EcYevx8OL700CMeOHcW3336FCxfO4/r1a9i5cxu+//47AMBjj9VE06bN8cUXn+HMmSicOROFb775Ekql0pRGtWrVUbFiAJYsWYAbN65j+/at2LDhT7PtvPzyMGzcuB5Lly7ElSuXceXKZWzZsgnLli0qcF4HDBiMkyeP47vvZuDy5Yu4cuUyfvvtZ2RmZpqWefLJZ7B//x4cPXoYPXo8XczSISIiIiIiKhoGJRyMPX4/HOrWDcLMmXNx5cpljBo1FMOHD8KyZYvg71/RtMzkyZ/A29sbo0ePwAcfvIe+fV+Cq6urab5CocAHH3yK8+fP4eWX+2H9+nUYMmSE2XZatWqDzz+fgb17d2PYsIEYNWoo1qxZhcqVqxQ4r489VgMzZszC6dOnMHz4IIwePQKHDx8wq3kTGFgLanU91K0bZOoEk4iIiIiIqLSx+UYpYI/fZdP//veR1emrV6+3Or1Bg1B8990cm+n5+fnhq69mmk376qvPzT6HhzfGjz/+ZjbtqaeeNfvcqlUbtGrVxuZ2du06ZPbZ1dXVYlrjxk0xb94Sm2lk9xGRiP79Czc6CBERERERkT0xKFEK2OM3lSWJiQnYuHE9UlPv4fHHezg6O0RERERE9AhjUKIUsMdvKkuefro7vL198M47k00dbhIRERERETkCgxJEJWjDhn8cnQULDzb1ICIiIiIichR2dElEREREREREDsGaElRi3n//XZw8ecJsmiQBQth/W6GhYfj002n2T5iIiIiIiIhKDIMSVGKsBQkUChl0OoMDckNERERERERlDZtv0CPp999/xeOPd4DBkBMgSUiIR0REU7z33ltmy0ZGbkTHjq2QlZVZ5O3988/fiIhoismTJ1qd/+GHk7B48UIAQEREU3Tq1AZ37sSaLTNmzCuYPfvbIueBiIiIiIiorGFQgh5JjRo1QWpqKs6fzxkV5dixI6hYMQDHjx+FyNXG5NixIwgODoGTk3ORthUbexvff/8twsLCrc7X6XTYv38v2rZtZzZ9yZIFRdoeERERERHRw4JBCXokBQbWhpeXN44ePWyadvToYTz+eE8olUpcvHjBbHrjxk2LtB2DwYApUz7Eyy8PQ9Wq1awuc+zYEbi7u6NuXbVpWp8+L2DjxvW4fv1qkbZLRERERET0MGCfEvRIkiQJ4eGNcfToYfTrNwBAdnBg3LgJiIm5gaNHD6NuXTXi4+MQHX0DjRo1AQAMGPACYmNv2Uw3LKwRZsyYafr800/L4ezsjGee6Y1Tp05YXWfXrn/Rpk1bs2nh4Y1x6dJFzJ//A6ZM+aK4u0tERERERFQmMShBj6xGjZpgwYI5MBgMuHs3GdHRN9CgQUPcuHEDBw/uxwsv9MORI4ehUqnQoEEoAOCrr76DTqezmaaTk5Pp73PnzmL16l+xaNGKPPOxe/d/mDjxPYvpI0eOxvDhg3D27GnUq1e/iHtJRERERERUdjEoQY+sxo2bmvqVuHkzBkFBwXBxcUF4eCMsXDgXQggcO3YY9es3MPUnUalS5QKlrdFo8MknkzF+/Fvw9fWzudylSxeRkpKMRo0sm4eo1fXQsWNnzJ07G99+O6doO0lERERERFSGMShBj6zAwFrw9vbB0aOHcetWDMLDG9+fXhuSBFy8eAHHjh1B587dTOsUtPlGQkI8rl27ig8/nGSaZxzpo337Fli9ej38/Sti166daNGiNRQK61/FESNew0svPYfDhw/aY5eJiIiIiIjKFAYl6JHWqFETU1DitdfGAcjubyIsLBz//LMF169fM/UnARS8+Ya/f0UsX/6L2bwFC35AZmYmxo59A97ePgCy+5N4/vm+NtOrVq06nnzyGcydO6vIo38QERERERGVVQxK0COtUaMmmDPnO2g0GoSFNTRNb9iwERYtmg+VSoWQkFDT9II231AoFKhVq47ZNHd3D8jlctP0hIR4XLhwDi1btskzrSFDXsGLLz4DIcC+JYiIiIiIqFzhkKD0SGvcuCkyMjJQt24Q3NzcTdPDw5sgIyP9fn8STnmkUHS7d/+H0NCG8PT0zHM5Pz8/PPdcX2g0WSWSDyIiIiIiIkdhTQl6pNWoURO7dh2ymF6vXrDV6cXxv/99ZPZ5165/ERHRzmI5a9sdNWosRo0aa9f8EBERERERORprShA5SMOG4ejUqaujs0FEREREROQwrClB5CAvvfSyo7NARERERETkUKwpQUREREREREQOwaAEERERERERETkEgxJULJJk/Es4MhtUorKPbc6xJiIiIiIisg8GJahYZDI5AInDVZZj2cdWun+siYiIiIiI7IcdXVKxSJIENzdPpKQkAgBUKicAef2kLkGnY60K68pa2QhoNFlISUmEm5snJFaVICIiIiIiO2NQgorN3b0CANwPTOT9Ui2TyWAwGEohVw+fslk22UEn4zEmIiIiIiKyJwYlqNgkSYKHhxfc3SvAYNBD2IhLyGQSvL1dkZSUDoOhLNUIcLyyWDaSlN08hzUkiIiIiIiopDAoQXYjSRLkctunlEwmQaVSQaHQlJkX77KCZUNERERERI8idnRJRERERERERA7BoAQREREREREROQSDEkRERERERETkEJIQtrolJMphMAjo9cUfGUKplEOr1dshR+UPy8bc+fNnoVbXM31m+djGsrGNZWObPcpGLpdBJmNnuPbGe27JY9nkjeVjG8vGNpZN3opbPuX5nsugBBERERERERE5BJtvEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKEBEREREREZFDMChBRERERERERA7BoAQREREREREROQSDEkRERERERETkEAxKUIGtXLkSnTp1QmhoKF544QWcOHEiz+U3bdqExx9/HKGhoXjqqafw77//ms0XQuC7775DREQEwsLCMHjwYFy7ds1smeTkZEyYMAGNGzdGs2bN8L///Q/p6el23zd7KO3yiY6OxqRJk9CpUyeEhYWhS5cumD17NrRabYnsX3E44twxSk5ORrt27RAUFIS0tDS77ZO9OKpstm3bhj59+iAsLAytWrXCO++8Y9f9sgdHlM3x48cxcOBANGnSBM2bN8err76KS5cu2X3f7MHe5bNlyxYMGzYMLVq0QFBQEM6fP2+RxsN0TX4U2PscKE8KUzYXLlzA2LFj0alTJwQFBeHHH38sxZw6RmHK57fffkP//v3RrFkzNG/eHEOHDsXJkydLMbelqzBls3XrVvTp0wdNmzZFeHg4nnnmGfzxxx+ll9lSVthrjtH8+fMRFBSEL774ooRz6DiFKZs1a9YgKCjI7F9oaGgp5rYMEkQFsGHDBhESEiJWr14tLly4ICZPniyaNWsmEhISrC5/5MgRERwcLBYsWCAuXrwovv32WxESEiIuXrxoWmbevHmiSZMm4u+//xZnzpwRI0eOFF26dBFZWVmmZYYNGyaefvppcezYMXHw4EHRtWtX8fbbb5f4/haWI8pn586d4t133xX//fefuH79uti6dato1aqVmD59eqnsc0E56twxGjt2rBg2bJhQq9UiNTW1xPazKBxVNps3bxbNmjUTv/zyi7h8+bI4f/68iIyMLPH9LQxHlM29e/dEs2bNxKRJk8Tly5fF2bNnxauvvio6d+5cKvtcGCVRPmvXrhWzZs0Sv/32m1Cr1eLcuXMW6Tws1+RHQUmcA+VFYcvm+PHjYtq0aeKvv/4Sbdq0EStWrCjlHJeuwpbPm2++KX788Udx+vRpcfHiRfHuu++Kpk2bitjY2FLOeckrbNkcOHBAREZGiosXL4pr166J5cuXi+DgYLF79+5SznnJK2zZGJ06dUp07NhRPPXUU2LatGmllNvSVdiy+f3330Xz5s3FnTt3TP/i4uJKOddlC4MSVCDPPfec+OSTT0yf9Xq9iIiIEAsXLrS6/Lhx48Srr75qNu35558XH3/8sRBCCIPBINq0aSMWLVpkmp+SkiIaNGggNm3aJIQQ4uLFi0KtVouTJ0+altm5c6eoV69emfviOqJ8rFmwYIHo1q1bcXbF7hxZNqtWrRJ9+/YVe/bsKZNBCUeUjVarFW3bthW//fabvXfHrhxRNidOnBBqtdrsQfvIkSNCrVbn+9BV2uxdPrnduHHDalDiYbomPwpK8hx42BW2bHLr2LFjuQ9KFKd8hBBCp9OJRo0aiT///LOksugwxS0bIYR49tlnxaxZs0oiew5VlLJJT08XTzzxhPj333/FgAEDym1QorBlYwxKUA4236B8aTQaREVFoU2bNqZpMpkMrVu3xrFjx6yuc+zYMbPlASAiIsK0fHR0NOLi4syW8fDwQMOGDU3LHD16FF5eXmjQoIFpmdatW0OSpAJXFysNjiofa+7du4cKFSoUeV/szZFlc/36dXz77bf48ssvIZOVvUudo8rm9OnTiI2NhSRJePrppxEREYGRI0fabP7iCI4qm8DAQHh5eWHVqlXQarXIyMjA2rVrERoaCh8fH7vuY3GURPkUxMNyTX4UOOoceBgUpWweJfYon4yMDOh0ujL1vGEPxS0bIQT27t2LK1euoEmTJiWY09JX1LKZNm0aWrRogbZt25ZCLh2jqGWTmpqKDh06oH379njttddw8eLFUsht2VX2ntSpzElKSoJer4efn5/ZdF9fX8TFxVldJz4+Hr6+vjaXN/6fV5rW0lAoFKhQoQLi4+OLvkN25qjyedD169fx448/om/fvkXaj5LgqLLR6XR4++23MW7cOFSvXt0u+2JvjiqbGzduAADmzJmDsWPHYs6cOVAqlRg0aFCZ6RvAUWXj7u6OZcuWYc2aNWjYsCEaNWqEY8eOYc6cOXbZL3spifIpiIflmvwocNQ58DAoStk8SuxRPjNmzEDlypXRsmXLksiiwxS1bO7du4dGjRqhQYMGeOWVV/DBBx+gVatWJZ3dUlWUstm+fTv27duHiRMnlkYWHaYoZVOrVi18/vnnmDt3LqZPnw6DwYB+/fohNja2NLJcJjEoQUUmhIAkSTbnW5v34LQHPz+YprU08ttuWVEa5WMUGxuL4cOHo2fPnujdu3cRc1x6Srps5s6dC29vbzz//PN2yG3pKumyMRgMAIBRo0aha9euCAsLwxdffIGUlBTs2LGjmLkvWSVdNpmZmZg8eTJatmyJ3377DT/99BMqV66M0aNHQ6fT2WEPSpY9yic/D/M1+VFQGufAw4rnad4KWj4LFizAxo0bMWvWLKhUqlLImePlVzZubm74448/sHr1arzxxhuYOnUqDh06VIo5dBxbZZOYmIj3338fX375JVxcXByQM8fL67wJDw/H008/jXr16qF58+aYNWuWqabmo0rh6AxQ2eft7Q25XG7xS1hiYqJFVNDIz8/PYvmEhATT8v7+/gCyf73MXS06MTHRVDXYWho6nQ4pKSkWv/Y4kqPKxyg2NhaDBg1CeHg4Pvroo+Lujl05qmz279+PQ4cOoX79+gCybwwA0KxZM7z++usYOXKkHfaueBz5vQKymyoYubq6okqVKrh582Yx98o+HFU269evR2xsLFatWmV6kPj666/RrFkz7NmzB+3atbPPDhZTSZRPQTws1+RHgaPOgYdBUcrmUVKc8lm0aBHmzZuHJUuWQK1Wl2Q2HaKoZSOTyVCjRg0AQHBwMC5duoT58+ejadOmJZrf0lTYsrlw4QLi4uLQr18/0zS9Xo+DBw/ixx9/LFejt9jjmqNUKhEcHFymmtKWNtaUoHypVCqEhIRgz549pmkGgwF79+5FeHi41XXCw8Oxe/dus2l79uwxLV+tWjX4+/ubpZmamorjx4+blmnUqBGSk5MRFRVlWmbfvn0QQiAsLMw+O2cHjiofICcgERISgs8//7zM9Z3gqLKZOnUq1q1bhz/++AN//PEHpkyZAgD45Zdf8MILL9hvB4vBUWUTGhoKpVJpduPLzMzE7du3UaVKFfvsXDE5qmwyMzMhk8nMftkwfjYGtsqCkiifgnhYrsmPAkedAw+DopTNo6So5bNw4ULMmTMHCxcuLLdDF9rr3BFCQKPRlEAOHaewZRMaGor169ebnsP++OMPNGjQAL169cKaNWtKMeclzx7njV6vx4ULF0w/oDySSq1LTXqoGYe6WbNmjbh48aJ4//33zYa6efvtt8VXX31lWv7w4cMiODhYLFq0SFy8eFHMnDnT6vB8TZs2FVu3bhVnz54Vo0aNsjok6LPPPiuOHz8uDh06JLp16ybeeuut0tvxAnJE+dy+fVt07dpVDBo0SNy+fdtsWKGyxFHnTm779u0rk6NvOKpsPvnkE9G+fXuxe/ducfHiRTFhwgTRvn17kZaWVno7nw9HlM3FixdFgwYNxKeffiouXbokzp49K8aOHStatWolkpOTS7cA8lES5ZOUlCROnz4tduzYIdRqtdi8ebM4ffq0SEpKMi3zsFyTHwUlcQ6UF4Utm6ysLHH69Glx+vRp0aZNG/HVV1+J06dPi5iYGEftQokqbPnMnz9fhISEiM2bN5s9a5S1e6o9FLZs5s2bZxqa/eLFi2LJkiWifv36YvXq1Y7ahRJT2LJ5UHkefaOwZTNr1izTeXPq1CnxxhtviLCwMHHp0iVH7YLDsfkGFUiPHj2QmJiImTNnIi4uDsHBwVi4cKGpGvStW7fMfqVv3LgxZsyYgW+//RZff/01atasie+//x61a9c2LTNixAhkZGTggw8+QEpKCpo0aYIFCxaYtVH86quv8Omnn+Lll1+GTCZD9+7dMXny5NLb8QJyRPns3r0b165dw7Vr1yyqlZ87d64U9rpgHHXuPAwcVTbvvPMO5HI53nzzTWi1WjRq1AhLliyBq6tr6e18PhxRNrVr18bcuXMxa9YsPP/881AoFGjQoAEWLlxY5nqZL4ny2bZtG9577z3T59dffx0A8Pnnn5v6qnlYrsmPgpI4B8qLwpbNnTt38Oyzz5o+z58/H/Pnz0evXr0wbdq00s5+iSts+fz888/QarWma4LRmDFjMHbs2FLNe0krbNlkZmbik08+we3bt+Hs7IxatWph+vTp6NGjh6N2ocQUtmweJYUtm5SUFLz//vuIi4tDhQoV0KBBA/z666+oVauWo3bB4SQhylCdVCIiIiIiIiJ6ZDya4SwiIiIiIiIicjgGJYiIiIiIiIjIIRiUICIiIiIiIiKHYFCCiIiIiIiIiByCQQkiIiIiIiIicggGJYiIiIiIiIjIIRiUICIiIiIiIiKHUDg6A0REeZk1axZmz55tMb1Vq1ZYunRp6WeIiIionOI9l4gcgUEJIirzPDw8sHDhQotpREREZF+85xJRaWNQgojKPLlcjvDw8HyXy8zMhLOzc8lniIiIqJziPZeIShv7lCCih1J0dDSCgoLw559/YuLEiWjatClGjhwJAEhOTsYHH3yA1q1bIzQ0FH379sXx48fN1k9JScGECRMQHh6OiIgI/PDDD/jiiy/QqVMn0zKzZs1CixYtLLYdFBSEH3/80WzaqlWr0LNnTzRo0AAdO3bEggULzOa/++676N27N3bv3o2nnnoK4eHh6NevHy5cuGC2nF6vx7x589C9e3c0aNAA7dq1w7vvvgsAWLlyJRo1aoS0tDSzdfbt24egoCCcPXu2kKVIRESUP95zc/CeS2R/rClBRA8FnU5n9lkIAQD48ssv0bVrV3z33XeQyWTQaDQYMmQIUlJSMHHiRPj4+ODnn3/G4MGDsWXLFvj7+wMA3nvvPRw4cACTJk2Cn58fFi9ejOvXr0OhKPxlceHChfjmm28wfPhwNG/eHFFRUfjuu+/g4uKCAQMGmJa7desWvvzyS4waNQpOTk748ssvMX78ePz111+QJAkA8MEHH2DdunUYNmwYmjdvjrt372Lz5s0AgKeeegpffPEFIiMj0bt3b1O6a9euRUhICOrVq1fovBMRET2I91zec4lKE4MSRFTmJScnIyQkxGzalClTAAANGzbEhx9+aJq+atUqXLhwAX/99Rdq1qwJAGjdujUef/xxLF68GO+88w4uXLiArVu34ptvvkGPHj0AAC1atEDHjh3h7u5eqLylpqbi+++/x6hRozBmzBgAQJs2bZCRkYEffvgB/fr1g1wuBwDcvXsXP//8sylfQgiMHj0aly9fRu3atXHp0iWsXr0a//vf/zBo0CDTNox59PT0RLdu3bBmzRrTA1JaWhq2bNmCCRMmFCrfRERE1vCey3suUWljUIKIyjwPDw8sWbLEbJpKpQIAdOjQwWz63r17ERISgmrVqpn90tOsWTOcOnUKAHDy5EkAMKs26ubmhtatW+PEiROFytvRo0eRnp6Oxx9/3Gx7LVu2xJw5c3D79m1UrVoVAFC1alXTwxEA1K5dGwAQGxuL2rVrY//+/QBg9ovMg5577jkMHjwYN27cQPXq1bFp0ybodDo8+eSThco3ERGRNbzn5uA9l6h0MChBRGWeXC5HaGio2bTo6GgAgK+vr9n0pKQkHDt2zOJXHgB47LHHAADx8fFwc3Oz6KDrwbQKIikpCQDQs2dPq/Nv3bplekB6sPdypVIJAMjKygKQ/euUq6trnr8ctWjRAtWrV8eaNWswbtw4rFmzBp07d4aXl1eh805ERPQg3nNz8J5LVDoYlCCih5qxXahRhQoV0KBBA3z00UcWyxp/6fHz80NaWppFz+EJCQlmyzs5OUGr1ZpNu3v3rsX2AGDevHlWH7ACAwMLvC9eXl5IT09HamqqzYckSZLQp08f/Pbbb3jmmWdw+PBhiw6+iIiISgLvubznEpUEBiWIqFxp1aoVdu/ejSpVqtj8Fcb4C9C2bdtMbUfT0tKwZ88esweTgIAApKWlITY2FgEBAQCA3bt3m6XVqFEjODs7486dOxbVWgurZcuWAIA//vjDrLOuB/Xq1QszZ87EpEmTEBAQgDZt2hRru0REREXBey4R2QODEkRUrjz77LP45ZdfMHDgQAwdOhTVq1dHcnIyTpw4AX9/fwwePBh169ZFp06d8NFHHyE1NRX+/v5YtGiRRdXStm3bwtnZGZMmTcKQIUMQHR2NX375xWwZT09PjBkzBp999hliYmLQrFkzGAwGXL16Ffv378f3339f4LzXqlULL774IqZNm4aEhAQ0a9YMKSkpiIyMxDfffGNaLiAgAG3btsWOHTvw6quvmjr1IiIiKk285xKRPTAoQUTlipOTE5YvX47vvvsOs2bNQkJCAnx8fBAWFmbWyda0adPw0UcfYerUqXB1dUX//v0RGhqKyMhI0zI+Pj6YOXMmvvzyS4wePRohISGYMWOG6ZceoxEjRqBixYpYtmwZlixZAicnJ9SsWdNiuYL48MMPUaVKFaxatQoLFiyAj4+P1V9lunTpgh07duTZQRcREVFJ4j2XiOxBEsaBh4mIHnHG8ci3bdvm6Kzka9y4cYiLi8NPP/3k6KwQEREVGu+5RGTEmhJERA+Rc+fO4dSpU/j777/x9ddfOzo7RERE5RbvuUSlg0EJIqKHyKhRo5CUlIT+/fvj8ccfd3R2iIiIyi3ec4lKB5tvEBEREREREZFDyBydASIiIiIiIiJ6NDEoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJERERERERE5BAMShARERERERGRQzAoQUREREREREQOwaAEERERERERETkEgxJEdtapUycEBQUhOjra0Vl5KJWV8ps1axaCgoIwa9asAq+zf/9+BAUFYeDAgSWYMyqsNWvWICgoCO+++26pbC8oKAhBQUGFXu/dd99FUFAQ1qxZUwK5Kp6BAwciKCgI+/fvd3RWAJTtsiqoolxjiMob3jeJCGBQgorJ+KAaFBSEefPm2VzO+PBlr5eC6OhozJo1q9QfSPfv349Zs2aVmQdzIqLyxlHXd6I1a9Zg1qxZDg+Kl0XR0dGm5z1b5XPt2jV06NABQUFB6Nu3L1JTU0s5l0T0sGJQguxm8eLFpXYDiomJwezZs7F27dpS2Z7RgQMHMHv2bBw4cKBUt0sPBxcXFwQGBqJy5cqOzgrl4uHhgcDAQPj7+zs6K3ny9/dHYGAgPDw8HJ0VC5UrV0ZgYCBcXFxKfFuOur6XNm9vbwQGBsLb29vRWaH71q5di9mzZyMmJsbRWXnoXL58GQMGDMCtW7fQvHlzLFq0CO7u7vmux/smEQGAwtEZoPJBLpcjOTkZS5cuxZgxYxydHSKHCAsLw+bNmx2dDXpA165d0bVrV0dnI18TJkzAhAkTHJ0Nq7788ktHZ6HcGTBgAAYMGODobBAV24ULFzB48GDEx8ejdevWmDNnToEDmLxvEhHAmhJkJ08++SQAYOnSpbh7966Dc0NEREREJe3s2bMYNGgQ4uPj0a5dO8ydO7dUalQRUfnCmhJkFy1btsTt27exf/9+LF68GG+88Uah1o+NjcW8efPw77//IjY2Fi4uLggODsaLL76IHj16mC07cOBAU/OJAwcOmHUoV7VqVWzbts1s+VOnTmHJkiU4dOgQEhIS4ObmhkaNGmH48OFo2rRpgfOYezuzZ8/G7NmzTZ979eqFadOmWaxz4sQJzJkzB0eOHEFWVhbq1q2LV199Nc9fbffu3Ysff/wRx44dw927d+Hl5YXmzZvj1VdfLXTnecayWr58OXx8fDBr1iwcOHAAWVlZCA4Oxrhx49CiRQsAwMWLF/H999/jwIEDuHfvHoKCgvD666+jbdu2FuneuHEDmzdvxn///Yfr168jPj4erq6uNo8ZkN0etXPnzqZjtGrVKvz222+4dOkS0tLScPDgQXh6eua5P6tWrcIHH3wAFxcX/PDDD6a8A0U7zllZWZg/fz7+/PNP3L59G97e3ujQoQPGjx9fiFLOsX//fgwaNAjNmzfHihUrbO77hg0bsHTpUly8eBFyuRxNmjTBG2+8gXr16llNV6/X488//8Sff/6J06dPIy0tDf7+/qhbty6eeOIJ9OrVy7Tsu+++i7Vr1+Lzzz9H8+bN8f3332P37t2Ij4/HSy+9hP/973+mZTdv3oxVq1YhKioKqamp8PPzQ9u2bfHqq6+iWrVqFvk4f/48IiMjsXv3bsTExCApKQkeHh4ICwvDoEGD0KZNG6v5P3r0KJYsWYIjR44gKSkJrq6u8PHxQYMGDfD000+jffv2FutcvXoVixYtwp49e3Dnzh04OzsjJCQEAwcOROfOnQt8TIDsduLvvfeexfc09/Favnw5fvrpJ/z666+4evUqXF1d0bp1a0yYMAFVq1Yt1PZy27hxI5YtW4bz589DLpcjPDwcY8eORcOGDS2WzX3sevfubZqemZmJrVu3Yvv27Th9+jRu374NIQSqVauGzp07Y+jQoahQoYJFehkZGVi6dCkiIyNx7do1aLVaeHt7o2rVqmjVqhUGDx5sdT1rcl9Lcn/vcue5bdu2mDlzJnbs2IGkpCRUrVoVvXv3xvDhwyGXywu1HaBg13cAiIuLK/R27Xl+FTXNWbNmYfbs2RgzZgzGjh1rMX/r1q1YvHgxzpw5A4VCgQYNGmDkyJGoWrWq2fXkQZmZmfjpp5+wceNGXLlyBVqtFtWrV8cTTzyBIUOGwM3NzWz54nwPLl68iPnz5+PgwYOIi4uDSqWCj48P6tWrh+7du+Opp54yLZv7e/jBBx9g9uzZiIyMxJ07d+Dr64tu3bphzJgxNu8Dhd0vo3v37mHFihXYunUrrl27Bp1Oh0qVKqFhw4Z47rnn0Lx5c1MZGOX+G4DpO1nQ+1hR7pH5Kc3rb0FFRUVh6NChSE5ORqdOnfDdd99BpVIVKg3eNx1339TpdPjll1+wfv16XLx4EVlZWahQoQICAgLQokULDBw4EFWqVLF98IjsiEEJsptx48ahf//+WL58OV5++WX4+PgUaL2TJ09i+PDhSE5OhpOTE+rWrYvk5GTs27cP+/btw65duzB16lTT8mq1GsnJyTh//jzc3d2hVqtN8x5sM75ixQpMnToVBoMBHh4eqFOnDu7cuYPt27djx44d+Oijj9C3b98C5bNx48a4desWbt26hcqVK5u1f6xZs6bF8jt37sTnn38OFxcXVK9eHTExMTh58iTGjBmDr7/+Gj179rRY54svvsDixYsBZLc3rlu3LmJiYrBhwwb8/fffmDlzJjp27Fig/OZ28uRJzJ49G3K5HDVq1EBMTAwOHz6MYcOGYfHixZDL5RgxYgQkSUKNGjWg0+lw4sQJjBw5EosWLULLli3N0ps7dy5Wr14NV1dXVKxYEUFBQUhISDAds2PHjmHSpEk28/PRRx/h559/RkBAAGrVqoUbN27kuw8LFy7E9OnT4eXlhYULFyI0NNQ0ryjHOTMzE0OHDsXhw4cBALVr14ZCocCqVauwa9cudOrUqTBFXGDffPMN5s6di0qVKqFmzZq4cuUKduzYgUOHDmH16tUIDAw0Wz41NRWvvfaaqXPVSpUqoVq1aoiNjcW///6LnTt3mj1cGV25cgWff/45MjIyULduXXh4eEAmy64cp9PpMHHiRGzYsAEATA9q165dw2+//YbNmzdj0aJFCAsLM0tz6tSp2Lt3Lzw8PODv7w9/f3/cuXMHO3bswI4dO/Dee+9h8ODBZuts27YNY8aMgV6vh7u7O+rUqQODwYDbt2/jr7/+QmpqqsXDVWRkJN566y1oNBq4uroiMDAQycnJ2Lt3L/bu3YuRI0cWOvCZn7fffhvr16/HY489hpo1a+Ly5cvYsGEDDh06hHXr1hWp3f/ixYvxxRdfwNfXF7Vq1cL169fx33//Ye/evfjuu+/QpUuXAqVz6tQpTJgwAXK5HH5+fggMDER6ejquXbuGuXPnYtOmTfjll1/Mrrk6nQ5DhgzB0aNHAQCPPfYYKlSogISEBJw8eRJHjx5Fp06dzL5HxXHz5k306tULycnJqFu3LhQKBa5evYqvv/4aMTEx+OSTTwqUTmGu70XdbkmcX/ZOc9GiRaYmM35+fqhcuTKioqIwZMgQvP322zbXu3PnDoYNG2YKglWuXBmurq64cuUKZs2ahcjISCxfvtzm+VyY78HJkycxcOBAZGRkmPoFkMvluHXrFv7++29cvXrVLChhpNFoMHDgQJw6dQq1a9dGYGAgLly4gGXLluG///7DypUrLZ4firpfFy9exIgRI3Dz5k1IkoSaNWvC1dUV0dHRWLduHW7duoUVK1bAw8MDjRs3xvnz55Gamgq1Wm3WH4Kvr6/FfuR1HyvuPdKa0rr+FtSJEycwbNgwpKSkoHv37pgxYwaUSmWR0soP75slc9+cMGGCqelMlSpV4Ovra7r+RkVFoWHDhgxKUOkRRMUwYMAAoVarxe+//y6EEGLo0KFCrVaLadOmmS03c+ZMoVarxTvvvGM2PT09XXTs2FGo1WoxatQokZycbJq3bds20bBhQ6FWq8Uvv/xitt6+ffuEWq0WAwYMsJm3Xbt2iaCgINGkSRPx559/CoPBYJq3ZcsW0ahRIxESEiLOnTtX4P017sfMmTNtLmPcn5CQEDF79myh0WiEEELo9Xoxbdo0oVarRbt27YRerzdb77fffjPN27lzp9m8n3/+WQQHB4smTZqI+Pj4AufXeHxCQkLEp59+KjIzM4UQQuh0OjF58mShVqtFr169RMeOHS3mT5o0SajVavH8889bpLtjxw5x9OhRszIVQojTp0+Lxx9/XKjVanHo0CGzeTdu3BBqtVoEBweLsLAwERkZaZqXlZVlKg9j+d24ccM0/6uvvhJqtVq0bdtWXLx40Szdoh7nL7/8UqjVatGmTRtx6tQp0/SrV6+KJ554QoSEhOR7rB9k67w07ntISIgIDw8XW7duNc1LSUkxHac333zTIs2xY8cKtVotOnToIA4ePGg27/bt2xb5e+edd0zl/Morr4iEhATTvIyMDCGEEF9//bVQq9WiZ8+e4tixY6b5Wq1WzJo1S6jVatGxY0eRlZVllvamTZvEmTNnLPK4f/9+0aZNG1G/fn2z4yaEEE8++aRQq9Xi66+/tkjv5MmT4o8//jCbdu7cOREaGipCQkLEihUrhFarNc07cOCAaNOmjVCr1eLff/+1yIctv//+u9Xrj/F4hYSEiDZt2ojDhw+b5t2+fduU9xkzZhR4W0IIoVarTekuXLjQdG5nZWWJTz/9VKjVatGkSRNx584ds/WMx854PTWKjo4WGzZsEPfu3TObnpSUJD788EOhVqvF//73P7N5kZGRQq1Wi/bt21t8Z+7duydWrVoloqOjC7xPxnN03759VvMcEhIiXnvtNZGYmGiat2XLFlGvXj2hVqvFpUuXCrytglzfi7rdkji/ipqmrfvJqVOnRHBwsFCr1WLJkiWm80ej0Yhp06aZrk0dO3Y0W89gMIj+/fsLtVotXnvtNXHr1i3TvMTERDFq1CihVqvFG2+8YbZeUb8Hr776qul7lZqaajbv0qVL4ueffzabZvwehoSEiLZt24qoqCjTvGvXrokePXoItVotxo8fb5f9Sk1NFZ06dRJqtVoMGjRIXL9+3Wx+VFSUWLlypdk0W+e5UUHvY0W5R+anNK6/eTHuu1qtFn/++ado3Lix6b6l0+kKtS+58b7pmPvmqVOnTPeiB8/FzMxMsWHDBnH69GmLfBOVFAYlqFgeDEocP35cqNVqERYWZvbAbSsosWrVKqFWq0Xz5s1FWlqaRfpz5841Xehz39wL8tDaq1cvoVarxcaNG63OX7ZsmVCr1WLy5MkF3t/CBCVGjBhhMS8rK0u0bt1aqNVqs4u9RqMRbdq0EUFBQWY3u9ymTp0q1Gq1+OGHHwqcX+Pxefrppy2CIHfv3hWhoaE25ycnJ5vm5w4W5WfPnj1CrVaL999/32x67geahQsX2lw/d1BCr9eL999/X6jVatG1a1erL1FFOc6pqakiPDxcqNVqsWnTJot1jOexvYMSarVaLFiwwGK9M2fOmB4OcjM+NISEhFi8WNpifLhq3bq1xYuCEEIkJCSI0NBQER4ebvGQbjR69GjTg2dBGYNq8+bNM5veoEEDoVarLV6obTE+TForJyGE2Lp1q1Cr1WLIkCEFzlt+QQlb58/ff/9t+n4UhjHNkSNHWswzGAymB05bD8YPBiXy065dOxEeHm72IDpv3jyhVqvF1KlTC5WWLfkFJWydb6+99prp5bqgChOUKOx2S+L8Kmqatu4nEyZMEGq1Wrz99ttW0zO+oD8YlNi2bZtQq9XimWeesXiREUKItLQ00a5dO1GvXj1x8+ZN0/Sifg+6d+8u1Gq11Rcua4zfQ7VaLbZs2WIx33jdDQoKMrs2FXW/Fi9eLNRqtejWrZvpxTI/BQ1K5Hcfy4ute2Rx2Ov6m5fc+16/fn2hVqvFxIkTLZ4dCov3TcfcN//66y+hVqvF6NGjC5xfopLEji7JrsLCwtCpUydkZmZi3rx5+S7/33//AQCef/55uLq6Wszv378/lEolYmJicPny5QLn49atW4iKioKXlxe6d+9udRlj1Wlj9T57e+GFFyymqVQqU/vH69evm6YfO3YMcXFxqFevntW25kDx8tunTx9TFUQjT09PU/tHa/MrVKhgakNsrXlFcnIyVq5cibfffhtDhgxB//790a9fP3z11VcAsju/ssVatckH6XQ6vPnmm/j1118RFBSEn376yaJNc1GP86FDh5Ceno6KFSuiW7duFuuEhYXZPA7F9eKLL1pMq1evHpycnHDv3j0kJSWZpv/9998AgE6dOqF27dqF2k737t2ttrH+999/kZWVhdatW6N69epW183rXIuNjcWiRYvwxhtv4OWXX0a/fv3Qr18/LF++HABw5swZs+WNzZw2bdqUb541Gg127NgBmUyG559/3uoy7du3h1KpxKFDh6DT6fJNsyAqVKiAJ554wmK68RzI/V0tjJdeeslimiRJ6N+/PwBg165dBU5LCIGdO3diypQpeOWVV/DSSy+Zyj41NdXUnMOoUqVKALL7qElOTi5S/gujZ8+eVs83YxkWpIlWSW+3JM6vkkhz9+7dAIDnnnvO6vw+ffpYnb5lyxYA2ddXa+36jf1DGAwGHDx40GJ+Yb8Hxu92ZGQkhBC2dsdCQECA1fbtxuuuEMJUBsXZL+P1c+DAgXB2di5w/goqv/tYce6RtpTk9bco4uLi7HYdzgvvm7YV9RpkvEccP34cN2/ezHc7RCWNfUqQ3Y0bNw7bt2/Hr7/+iuHDh5sufNZcvXoVAFCnTh2r8z08PFCxYkXExMTg6tWrBb7BnDt3DgCg1WqtvhgAMD1E3b59u0BpFlaNGjWsTje2TU1PTzdNO3/+vCkv/fr1s7peVlaWaZnCeuyxx6xO9/HxwaVLl2zO9/X1xeXLl83yCmS/6IwfPz7Plx1b87y9vQvU38ibb76JqKgoNGrUCPPnz7fa+VlRj/OVK1cAALVq1bIIxhjVrl0bx48fzzefheHt7Q0PDw+r83x8fHDr1i2kp6eb2kVfunQJABAeHl7obdn6rhjL7NSpUzbPtXv37gGwPNf++usvTJ48GRkZGTa3++BxHzJkCD766CNMnjwZixcvRkREBBo3bowWLVpYnAfXrl1DVlYWlEolRo4cmef+ZWVlITk5GX5+fnkuVxC2HjKtfVcLw9YxMF7vjOdhflJTUzFq1ChTB5C25C77rl27onr16jh37hw6dOiA1q1bo2nTpmjWrBkaNGgASZIKthMFZOt6ZzzGRS1De263JM4ve6eZkpKCxMREALDZgZ+t6cb7yKpVq2wOsWh8+bB2Hyns92Dw4MHYu3cv5syZg3Xr1iEiIgJNmjRBy5YtERAQYDUtAAgMDMz3upv7u1HU/SrO9TM/+d3HinOPtKWkr7+F8emnn+Ljjz/G7t278frrr2PWrFkl1p8E75slc99s1KgRGjVqhKNHj6Jbt25o0aIFmjVrhqZNmyI8PBwKBV8RqXTxjCO7M/a6vXnzZsyZMyfPDs6MDznWOpEy8vPzQ0xMDNLS0gqch5SUFABAWloajhw5kueyxpd9e7M1JJbxYSz3L0vG/CYlJZlF/K0pSn5t5cX4YpLf/Nx5TU1NNT1sPfXUU3jppZdQq1YtuLu7Qy6X48aNG+jSpYvNX0+s1Yixxvirb40aNWw+kBT1OBf0vLO3vPbd2nmRmpoKADb3Py+2jmnuB6f8Aly5y+zGjRt49913odVq8fLLL+OZZ57BY489Bjc3N8hkMuzduxeDBw+2OO79+vWDh4cHFi9ejKioKFy+fBnLly+HQqFA586dMWnSJFPg0ng8tVptvscTyO6s1B5sHRdbL04FZev8Mk4v6DVt2rRpOHDgAGrWrIk33ngD4eHh8PHxMf1q/NJLL1n8Cu/i4oKffvoJM2fOxObNm/HPP//gn3/+AZD9K9zo0aNt/qpWFIW53tlTUa6z9jy/7J1m7hd/W6NJ5DXKBABcuHAh33xYu48U9nvQvn17LFy4ED/88AOOHDmCX3/9Fb/++iskSUKrVq0wadIk1K1b12K9glx3c383irpfxutnfqM6FUVe1/Li3iOtKY3rb2E0b94cs2fPxqhRo7B9+3a8/fbbmDFjRoFH2SkM3jdL5r4pk8mwYMECU1Bx165dptp73t7eGDp0KIYPH17s+yBRQTEoQSXi9ddfx5YtW7BmzRq88sorNpcz3mwSEhJsLhMfHw/A9oNYXuk2bNgQv/32W4HXcxRjfnv06IFvvvnGwbnJ286dO5GcnIzw8HBMnz7d4hdXe1UVnzlzJt555x388ccfUCqV+PTTTy22VdTjXJjzzpGMvb8bH4jswbjvI0aMwFtvvVXg9TZt2gStVosnnnjCaq/xd+/etbnuk08+iSeffBKJiYk4ePAg9u/fjw0bNiAyMhJXr17F6tWroVKpTN9xPz8/s+rbD6vExESrD/zG864g1zSdTmfq7X3OnDlWf8mzVfYVK1bElClT8PHHH+P06dM4fPgwtm7dioMHD2Ly5MlwdXW1OgpQeVUS55e908z9ApaWlmb1hdpWMMu47oIFC9CuXbti56UgIiIiEBERgXv37uHw4cOm7/aePXswZMgQbNiwwWLYWWNNEGus3e+Lul/u7u5ITk42vbSVlpK4R5bG9bew2rZti2+//Rbjxo3Dpk2b4OTkhGnTptm9FlZh8b5ZcB4eHnjnnXcwceJEXLhwAYcOHcLOnTuxc+dOzJgxAwDyfIYnsieGv6hE1K5dG08++SS0Wi2+//57m8sZh9K09QvIvXv3cOfOHbNlAeR70zP+OnP58mW7tncsqZutMb8F+SXI0aKjowEAjRo1sloeJ06csMt2atSogeXLl8Pf3x+rVq3CRx99ZLFMUY+zcfiwK1euwGAwWF2mMH2YlBRjNf9jx47ZLc2inmvG496kSROr8wvS1MXHxwfdu3fHBx98gPXr18PDwwPnzp0znTM1atSAUqlEQkJCngGjh4WxGrGt6daGEn5QYmIi0tPT4eXlZTUgkZKSkm8zELlcjtDQUAwePBg//vgjhg0bBgBlNmBbUtfZkji/7J2mp6enqSaBscr4g2xNN14vHHEf8fDwQIcOHfDOO+9g06ZNqF69OuLi4rB9+3aLZQty3c393SjqfpXE9bMgSuIeWRrX36Lo0qULpk+fDrlcjj/++AMffvhhkdOyF943C0+SJKjVavTv3x/z5s3D+++/D6Ds3iOofGJQgkrMmDFjoFAosG7dOlPfEQ9q27YtAGD16tVW2xz//PPP0Gq1qFatGmrVqmWabuy0ylZV2Bo1aiAoKAj37t3D77//Xsw9yeHk5JTndouqSZMm8PX1xYULFwrV+Z0jGMsgLi7OYp5Wq8XKlSvttq1atWph2bJl8PX1xS+//IJPP/3UbH5Rj3OTJk3g6uqK2NhYbN261WL+qVOnSv1B1hpjJ5zbtm2z+YJbWB06dIBKpcKuXbtw8eLFAq9nPO7WapDcvXsXa9euLVQ+KlasaOpo1Rh4dHFxQdu2bSGEwLJlywqVXln0008/WZ1u/I4Yr395MV7rUlNTrbZJ/vHHHwsdeG3cuDGAnHIva/K7vhdVSZxfJZFmmzZtAMDmNW3NmjVWpxs7+/3111/zbL9e0tzc3BAUFATA+jl2+/ZtbNu2zWK68borSRIiIiJM04u6X127dgUArFixosDNHu1x7pXEPbI0rr9F1aNHD3z22WeQJAm//vorPv/882KlV1y8bxafMYhSVu8RVD4xKEElpkaNGnjmmWeg1+tt9iD85JNPomrVqkhOTsbbb79tVs1y586d+OGHHwBkVx/L/YuD8aJ88eJFm1VB3377bchkMnz22WdYuXIlNBqN2fzY2FgsW7YMP//8c4H3ydgR2NGjR+1aA8PJyQlvvPEGgOwOHjds2GDxS9L169cxZ84cU0/kjtK0aVMA2T2uG0dPAbKrpL7xxhumXwbspXbt2li2bBl8fHzw448/WjzwFOU4u7u7o2/fvgCAKVOm4PTp06Z5xjagJdVpV2EEBwfjiSeegFarxYgRI3D48GGz+bGxsZg9e3ah0vT398fQoUOh0+kwfPhwq0Gwc+fOYfr06WbbMx73n376CVFRUabpt27dwqhRo6wGFY1tq/fu3Qu9Xm+aLoTAxo0bcf78eUiShPr165vmjRs3Ds7OzliwYAFmz55tUVU9KSkJq1atwpw5cwq1346wc+dOLF261PRd1mg0mDp1Ks6fPw93d3erPco/yNPTE2q1GjqdDp999pnp/BZCYNWqVfj+++9ND765LVmyBEuWLEFsbKzZ9MTERFOP7yEhIcXdxRJRkOt7UZXE+WXvNIcMGWL65XnFihWm9vJarRbTp0/H0aNHra7XpUsXNGnSBNeuXcOIESMsXsh0Oh327duHCRMmWFwni2L8+PH4559/LNLat28f9uzZAwBo0KCBxXpKpRJTpkwxG33ixo0beO+99wBkByFyd7pZ1P16/vnnUb16dVy9ehWjRo1CTEyM2XpnzpyxCBwat2ttdJKCKol7ZGldf4uqV69eploSS5cudWgzVN43C3YN+vPPPzF79myLUXVSU1OxYMECAJb3iKVLl6JTp042O/skKg72KUElavTo0fjzzz+h1Wqtznd2dsa3336L4cOHY+vWrdi1axfq1KmD5ORk0427T58+Fg/vPj4+aNmyJfbt24cuXbqgTp06cHJygp+fn+lm2LZtW3zyySf4+OOP8cknn+Crr75CzZo1IZfLcefOHdPD+ogRIwq8PxEREahQoQIOHz6MDh06oHr16lAoFGjbtm2x2909//zzppvlm2++iY8++giPPfYYhBC4ffu2qVqetWYMpalBgwbo0aMHNm7ciOHDh6N69erw9PTEhQsXIITA5MmT7V6Fs27duliyZAlefvllLF26FHK5HBMnTgRQ9OP8+uuv4+jRozh69Ch69eqFOnXqQKFQ4MKFC6hUqRL69u2LFStW2HU/imLKlClISEjAgQMH0L9/f1SuXBl+fn6IjY1FXFwchBAYM2ZModIcN24cEhISsGrVKgwbNgw+Pj6oVq0adDodYmJiTO1cW7RoYVqnS5cupp66n3vuOdSsWRMqlQoXLlyAi4sL3nrrLXz22Wdm2zEYDNi0aRM2bdoEZ2dn1KhRAyqVCrdv3zb9ijhy5Eizqtr16tXDd999hzfffBOzZs3CvHnzEBgYCCcnJyQkJODmzZsQQqBHjx5FLNHS8+abb+Lzzz/HggULULlyZVy/fh13796FXC7H1KlTUbFixQKlM2HCBIwaNQqrVq3Cli1bUL16ddy+fRvx8fHo1asXYmJiLEbmuHnzJpYvX45p06ahSpUq8PPzMw0bqtVqERAQgPHjx5fAXhdfQa7vRVUS55e906xfvz7efPNNTJ8+HVOmTMG8efNM509KSgreeustfPnllxYd0EmShFmzZmHUqFE4ePAgevTogWrVqpkde2ONgalTpxa80GzYtWsXNm3aBKVSiZo1a8LFxQVxcXG4desWAOCpp55C69atLdbr1q0brl27hmeffRa1a9c2XXf1ej1q1qyJDz74wC775ebmhh9++AHDhw/H7t270blzZ9SqVQvOzs6IiYlBcnIymjdvbhqiF8j+1X/lypVYsGAB/v77b/j7+0OSJIwYMaLA/VmUxD2ytK6/xdGvXz9kZWXh888/x9y5c+Hs7IxRo0bZJe3C4n0z/2tQYmIiZs2ahVmzZsHf3x+VKlVCVlYWrl+/jszMTHh4eOB///ufWd7u3btnEdwjshcGJahEVa1aFc8991yetRHCwsLw559/Yv78+di5cyfOnTsHFxcXNG/eHP369bP5IDdjxgzMmDEDu3fvRlRUFHQ6HapWrWq2zPPPP48mTZpg2bJl2LdvHy5fvgy5XI6AgAB069YNnTt3RqdOnQq8P+7u7li0aBFmzpyJEydO4NixYzAYDBbbLaoxY8agXbt2WLlyJQ4ePIjz58/D2dkZlSpVQqtWrdCtW7dS68AsL19++SVq166NP/74A7dv30Z6ejratWuHkSNHmoblsrd69eph6dKlGDx4MBYtWgSlUmmqXVKU4+zi4oKlS5di3rx5WL9+Pa5duwYfHx8899xzGD9+vF2boRSHu7s7lixZgrVr12LdunU4d+4cEhIS4O/vj/bt2+OJJ54odJoymQxTpkxBjx498Msvv+Do0aM4c+YM3NzcULlyZXTr1g1du3ZFq1atTOvI5XLTub9582bcuHEDXl5e6NGjB8aOHWu1R3I3NzdMnz4de/bswYkTJ3D79m2kpaXBy8sLHTt2RN++fdGhQweL9Tp06ICNGzdi2bJl+O+//3Djxg0IIRAQEIB27dqhY8eOpqrZZdnQoUNRqVIlLFu2zPTrVkREBMaMGYNGjRoVOJ0OHTpg0aJF+P777009sQcGBmL06NHo168fBg0aZLFO37594eXlhX379uH69es4c+YMFAoFAgMD0aFDBwwdOrTEvqv2UJDre1GVxPll7zSHDx+OmjVrYuHChTh79iyuXLmCkJAQjBw5En5+fvjyyy9NHfrl5uvri5UrV+KPP/7Ahg0bcObMGcTGxsLb2xvBwcFo3rw5unXrZrV2TWFNmzYN//33H44ePYo7d+7g3r17cHd3R6tWrdCrVy88/fTTVtdTqVRYsWIFZs2ahcjISNy5cwf+/v7o2rUrxo4da9ExZnH2q27duli/fj2WLl2KrVu34saNGwCyq8F36tQJffr0MVu+adOmmDFjBpYtW4aLFy+amp726tWrUGVj73tkaV5/i2Pw4MHIyMjAt99+i2+//RYuLi4YPHiwXbdRELxv5n8N6t69O3Q6Hfbu3YsrV67g/PnzEEKgSpUqiIiIwLBhw1ClSpVClxNRUUmipMbpIiIiIiK7ioyMxOuvv44uXbrk2ZF0WbNmzRq899576NWrF6ZNm+bo7BARURnCPiWIiIiIHhLGji5t9ehPRET0sGFQgoiIiKgM+f3337Fv3z7krsyanp6OL774Ajt27ICbm5vN5hFEREQPG/YpQURERFSGHDlyBJMmTYKLi4upQ+VLly4hKysLCoUCn376Kfz8/BydTSIiIrtgUIKIiIioDHn22Weh0Whw7NgxxMTEQKPRwNfXF02bNsXQoUPL7HCuRERERcGOLomIiIiIiIjIIdinBBERERERERE5BIMSREREREREROQQDEoQERERERERkUOUeFAiOjoaQUFB6NSpU0lvqkA6deqEoKAgREdH2y3NxMRETJo0CREREQgODkZQUBCWLl1ql7RnzZqFoKAgzJo1yy7pOcr+/fsRFBSEgQMHlsr2Bg4ciKCgIOzfv79UtudI5eUcKaw1a9YgKCgI7777rqOzUuauc4WRnp6Ozz//HJ06dUJISAiCgoLw2WefOTpb9Agrift0WXLjxg2MGzcOLVu2RL169RAUFIStW7cWO93Svs9S6QoKCkJQUJBDtu2Ic+tReo7T6XTo3r07OnbsCI1GY7d09+7di4EDB6JRo0am8yclJcVu6dOjbfz48QgJCcGVK1fskl6BRt8oykWwatWq2LZtW6HXexiNGjUKx44dg6enJ0JDQyGXyxEQEIDo6GisXbsWVatWRe/evR2dTSqGNWvWICYmBr169UK1atUcnZ1HgjHIMnbsWAfnpHybPHkyNmzYAFdXV9SrVw8qlQrVq1d3dLaonNq6dSvOnDmDLl26IDg42NHZKXUajQYvv/wyYmJi4Ovri/DwcEiSBC8vr3zXXbp0Ke7du4eXX34Znp6eJZ9ZMsPnACopv/zyC65evYqPPvoIKpXKLmmeO3cOI0aMgFarRfXq1VGvXj0AgFwuz3fdB9/7JEmCm5sbPD09UatWLTRs2BBPP/00atasaTONd999F2vXrjWbJpPJ4OnpiaCgIDz11FPo06cPZDLL38dPnjyJlStX4tChQ7hz5w5kMhl8fHxQuXJlNGnSBG3atEGLFi0s1rt79y5WrFiBHTt24MqVK8jKyoKXlxd8fHwQEhKCFi1aoGvXrnBzc8u3DADwPS4fo0ePRmRkJGbMmIHZs2cXO70CBSUaN25sMS01NRXnz5+3Od/f37+YWXs4nD17FseOHUPlypXx119/wd3d3TRv//79mD17Npo3b86T+SG3du1aHDhwAM2bN+fDSCkxXuAYlCg5d+/exaZNm+Dq6orNmzcjICDA0Vmicm7r1q2mhzxbQYnq1atDpVJBqVSWcu5K3r///ouYmBiEhYVh5cqVhXoBWb58uemlmEGJ0vcoPwe4uLggMDAQlStXdnRWyp309HR8//33qFixIvr06WO3dH///XdotVoMGjQI//vf/4qUhlqtNr3XZGZmIiEhAbt27cKuXbswZ84c9OzZEx9++GGe1yNfX1/UqFEDQHZQ9vr169i/fz/279+PzZs344cffjC7Di5atAhfffUVDAYDVCoVKleujAoVKiAhIQGHDh3CoUOHsGnTJvz9999m27lw4QKGDBmCuLg4AEBAQABq1qyJrKwsXLlyBefOncOaNWtQrVo1NG3atED7HxMTw/e4PNStWxddu3ZFZGQkjh8/joYNGxYrvQIFJX7++WeLafv378egQYNszn9UXL58GQAQHh5uFpAgIirrrl27BoPBgDp16jAgQWXGsmXLHJ2FEmOs5tq8eXO7/SJKVNLCwsKwefNmR2ejXNqwYQMSExMxdOhQu14TjNeaiIiIIqcxefJkixoJsbGx+P333zF//nz89ddfOH/+PH7++Web70Dt2rXDtGnTTJ/1ej2WLFmC6dOnY9euXVi2bBlGjBgBADh27BimT58OIQSGDh2KUaNGmQU8EhIS8Pfff2PPnj1m2zAYDBg/fjzi4uIQEhKCzz77zCzordFocODAAaxZs6ZcBrsdqVevXoiMjMSKFSuKHZRgR5fFlJWVBQBwdnZ2cE6IiAonM/P/7J13WFTH18e/CyxNUAQpBkEQuStNQMQKFuxYIkYU7IpdVGxRYyMxdsGoBDuKiopdEZWiYgNEFFQQKUoTaaJIhwXu+wfvvb9ddhd2FxCT7Od5eBLv3Zl77tyZM2dmzpypACDRXxIkfC8kNoMECRI48ff3BwCMGzeuWfNtqf5dU1MTixcvxrlz56CoqIikpCTs2LFD6PTS0tKYO3cuBg8eDAC4desWfe/q1asgSRJ9+vTB2rVreTww1NTU4OTkhAMHDnBdf/36NVJSUgDUednW98KTlZWFjY0NPD09mzxwlsCNjY0NVFRUEBwcjG/fvjUpr+8+KREYGAhHR0dYWlqiZ8+eWLBgAd69eyfw9zU1Nbh06RKmTZsGa2trmJmZYdiwYdixYwe+fPnS7PJFRERgyZIl6N+/P0xNTWFjY4OVK1ciMTGR63f1g+xdu3aNDiJjZ2eH6dOn054kUVFR9L2mBMMrKSnBrl27YGdnB1NTUwwePBi7d+9GeXk5z29ramoQGhqK3377DWPGjIG1tTW6d++O4cOHY+vWrcjNzeX7jHXr1oHFYuHq1avIz8/Hpk2bYGtrC1NTU4wYMQJHjhxBTU2NQBmvX7+OX375Bebm5ujduzcWLVqEt2/fivW+9YMHnjt3Dj///DOd97Jly/D+/XuR8yVJErdu3cKMGTPoOjV06FC+5UIFd4qKigIAzJgxg+tbXr16lf5tSkoKfv31VwwePBimpqbo0aMHhg4dCldXVwQEBIgkY0xMDJYtWwYbGxuYmJjA2toaI0aMwKpVq/Dw4UOB6USpIxSvX7+mn0XV+eXLl+PNmzc8v925cydYLBaOHj3Kc2/WrFlgsVgYOHAgz73Q0FCwWCwsXLiw0XenAndScJa3oOB3VVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FficoqIiHDhwAOPGjYOlpSUsLCwwYcIEnDp1Cmw2u1E5ReHbt2/w9PSEvb09unfvDisrKzg5OeHChQs87SkxMREsFgujRo3iyefGjRt0OURERHDdI0kSvXr1Qrdu3RrVjfWDltXXURScAQejoqIwf/58OjgfZ2C+iooK+Pj4YOLEibCyskL37t0xevRoeHl5obS0VKAcsbGxmDt3Lnr27AlLS0s4OTnRq3H8groJE1C0sSCJd+/ehYuLC/r06QNTU1MMGjQImzZtEvh7TjmePHmC6dOnw8rKCpaWlpg+fTqeP38uUBagru4vXLiQ7lNsbW0xY8YM+Pn50QHNli1bJrBdUcTExIDFYsHGxqZBHSxI9tu3b2Py5Ml03zt37ly8evVKYNrq6mqcO3cOkydPpr+pvb099u3bJzBQGufzQkJCMH36dPTq1QssFgsJCQlgsVj0HuP169dz1TnOQL0NfcOmyiXON2yOMqofkNjLy4uWq7HggZS9kZWVBQAYMmQIV9nxCwRIkiT8/Pwwbtw4dO/eHX369MHKlSvpPPghbjsWhCh9IqdNVVZWht27d2PIkCEwMzPDoEGDsH379gYD9Ikre3FxMby9vTFhwgRYWVnB3NwcI0aMwK+//kr3+8LaAfX106VLl+Do6IgePXpwBRjMzMzEsWPHMGPGDAwaNAimpqbo1asXZs6cidu3b4tczoJYunQpWCwW3zyHDRsGFouFKVOm8Nw7deoUWCwWtm7dSl8TFOiy/juLauPn5uZi/fr16N+/P7p3745Ro0bhyJEjqK6ubvDdRGl71CCXxWLh8+fPXPdycnLo7/jXX3/xPGfx4sVgsVgICgrievbZs2fpZ5uamqJ///6YMGECdu3ahU+fPjUoOyeZmZl48+YNtLS0GoyxI4oNQQUI5VdfmzMgurGxMZYvXw6gzjYRNK4QRK9evQAAaWlp9DVK5xsbG4uUV2ZmJgCgffv2+Omnn0RKKwhhx3FFRUW4fPkylixZguHDh8Pc3ByWlpaYMGECjh49Sk9E14ezn4uIiMCsWbNgbW0NS0tLTJ06tUFbHwDi4uKwatUqDBw4EKampujduzcWLlyI6Ohoge9D9Rfv3r3D8uXL0b9/fxgZGXEdznDz5k267zYxMUHfvn0xduxY/PHHH0hOTubJl8lkwtbWFpWVlTxbakRFqO0bzcW+fftw+PBhaGlpQU9PD6mpqQgLC0N0dDQuX74MfX19rt+XlJRg8eLFePbsGRgMBrS0tNCxY0ekp6fj1KlTtLtIcwVl27VrF3x8fADUVWxDQ0NkZWUhMDAQISEhOHDgAD2zp6amhh49euDLly9IS0vj2jOlrq4OdXV1FBYWIikpCUpKSiAIgn6OOPE2iouLMXnyZKSmpsLAwADa2tpIT0/HiRMnkJSUhOPHj3P9Pj8/H0uWLIGUlBTU1NTQqVMnVFVVISsrC2fPnsWdO3dw7tw5gUFqPn36BAcHBxQWFsLQ0BAyMjJIS0uDp6cnsrKy8Mcff/Ck2blzJ06ePAkA0NLSgpqaGiIjI/H06VMsXrxY5HfmZOvWrTh79iy0tLRgYGCA1NRUBAUF4fHjxzh58iQsLCyEyockSaxbtw7Xr18HUBeQVUdHB+/fv8fZs2cRGBiIEydOwMTEBACgrKyMHj16ICkpCSUlJVz764C6egDUBeWZPn06ysvL6b2X0tLSyM7ORkhICNLS0jB27FihZLx//z5cXV1RU1MDJSUldO3aFbW1tcjJycGtW7dQUlLCd+Avah0B6oymzZs3o7a2FioqKrThe/fuXYSEhGDr1q1cexx79eqFkydP0gNUCjabjdjYWAB1nXxGRgZ0dXXp+5TRbG1t3ej7d+zYET169MDLly8B8MaskZOT4/o3m82Gi4sLnj9/Dn19fejq6iI1NRX+/v6IjY3F5cuXeVwi379/DxcXF2RnZ4PJZEJbWxsMBgPv3r1DfHw8Hjx4gGPHjjWLK2VmZiYd2E5GRgaGhoYoLy9HTEwMYmJiEBoaCm9vb/pZBEGgffv2+PDhAz5//owOHTrQeVFGBlBXpn379qX//e7dO3z79g2GhoZQVVVtUCaqXlOxgerrqPrcvn0b+/btg5KSEnR1daGgoEDfy8vLg4uLC5KSkiAtLY2OHTtCUVERqampOHjwIIKCgnD69Gm0b9+eK8+QkBAsX74cNTU1dPCsjIwMLF++vEVOVKmursavv/6KwMBAAHV62NDQEOnp6bh48SLu3r2LEydOoHv37nzT+/v7Y8uWLVBVVUXnzp2Rnp6OqKgozJ49G6dOneLZo8pms/Hrr7/SAwI1NTV069YNBQUFeP78OZ49e4aBAweiU6dOcHR0RFBQEK5du8bVrjihBvPjxo0TKlAZJz4+Pti1axfU1NTocn78+DEiIiKwf/9+DB06lOv3lZWVWLRoEZ4+fQoA0NPTg6KiIpKTk3H48GHcunULvr6+AvfVHzt2DHv37oWqqip0dXWRk5ODyspK9OjRA+np6SgoKICenh5XPRVmr3pT5RL1GzanLJRey87ORnZ2Njp27Ei/c0NtD/ifvREXF4eqqiqYmppy6SZlZWWeNGvWrEFAQAB0dXWhp6eHDx8+IDAwENHR0bhx4wZPexS3HQtC3D6xqqoK06dPR1xcHAwMDKCvr4/k5GT4+vri8ePH8PPz49Fv4sqekpKCefPm4dOnT2AwGPQ3/PjxI27cuIHs7GycOXNGaDuAE3d3d5w/fx6ampro0qULPWgCgMOHD+Py5ctQVFSEhoYGWCwWCgoKEBkZicjISMTGxuK3334TqpwbolevXggODsazZ89gb29PX8/NzUVGRgaAukWJiooKrtV0qp8Rpr/mRFQbPz09HVOmTMHnz5/BZDJBEASKiorg6emJV69egSRJvs8Rte0xGAxYW1sjODgYUVFRXGXBOaHH2b8CdfbiixcveMpi1apV9OT5Tz/9BDU1Ndrej4+Ph7m5udADY+qZgvodQDwborq6mm99be6YIBMnTsTevXvBZrPx5MkTkWJiUN+XwWDQ1yg5X79+LZIcVLqvX78iPT2dHo81BYIghBrHPXjwABs2bACTyYSGhgYMDQ1RVFSExMRExMfH4969ezhz5oxAe/Lu3bvw8PCg7avs7Gw6dsbGjRv5TlqfOXMG27dvR21tLZSVldG1a1fk5eXhwYMHCAsLg7u7O5ycnPg+7/nz5zhy5AikpaXRpUsXtGnThv4Gu3fvxokTJ+h31NHRQUlJCTIyMpCUlARtbW0YGhry5Nm9e3cEBAQgOjoaEydOFL6Q60OKSWRkJEkQBEkQRIO/y8zMJAmCIE1MTEgLCwsyNDSUvldUVEROmzaNJAiCXLlyJU/aVatWkQRBkM7OzmRKSgp9vaysjNy0aRNJEAQ5adIkkeQePHgwSRAEmZmZyXX94sWLJEEQ5IABA8iHDx9y3Tt//jxpZGREWllZkZ8/f+a6d+XKFZIgCHLt2rU8z6LKaNq0aSLJyMmBAwfo8ps8eTL56dMn+t7z589JCwsLkiAI8vHjx1zpioqKyCtXrpAFBQVc10tLS0kvLy+SIAhy1qxZPM9bu3Yt/bzFixeTX758oe8FBweT3bp1IwmCIN+/f8+VLiwsjCQIgjQ2NiavXbtGXy8uLiaXLl1KmpiYiFwWVN0xNjYmTUxMyJs3b/LkSxAEOXjwYLK8vJwrLVWvIiMjua6fPXuWJAiCNDc3J+/fv09f//btG7lgwQKSIAhyyJAhZEVFhVD5UVBp165dS5aUlHDde//+PXn+/Hmh33vMmDEkQRCkp6cnWVlZyXXvzZs35PXr17muiVtHEhIS6O/i5eVFstlskiRJsrq6mjx48CCdZ2JiIp3m27dvZLdu3UgLCwv69yRJktHR0SRBEKStrS1JEAR58eJFrmf9/PPPJEEQ5KtXr4Quh8b0C9X2TExMyBEjRpDJycn0veTkZNLGxoYkCIK8cOECV7qysjJy+PDhJEEQ5KZNm8ivX7/S9z5+/EhOnjyZJAiC3Lt3r9CyUnV18ODBXNdra2vJiRMnkgRBkJMnTyZzcnLoezExMWSfPn1IgiBIDw8PrnRLliwhCYIgAwMDua4PGzaM7N27N2liYkI6Oztz3Tt16hRJEATp7u4utNyN6ShKXxoZGZH79u0jq6qq6HsVFRVkbW0tOWXKFJIgCHLx4sVkdnY2ff/Lly/kokWLSIIgyBUrVnDlm5eXR1pZWZEEQZBbt26l63lNTQ155MgRul7W//6CypmfzPV1vKenJ0kQBDl69GgyNjaWvs5ms+n6PnjwYJ42R8nRvXt30t/fn6ytrSVJkiQrKyvJFStW0N+2Pjt37iQJgiCtra3JkJAQOh1JkuTXr1/JEydO0Pq5pqaGHDRoEEkQBBkTE8OTV0VFBV1enPW8MSjZTUxMyOPHj5M1NTW07Fu3biUJgiCtrKzIvLw8rnS7du0iCYIg+/btyyVPTk4OOWnSJIHvzPm8s2fP0s+rqamhy5XqY65cuSJQbkHfsKlyifoNG0JcWSh9feDAAZGeR5KCy4WCas8mJiZk//79yRcvXnDJRfUt9fWNuO24IUTtEzn1ua2tLRkfH0/fS09PJ+3t7UmCIEg3N7dmkb2kpIS0s7MjCYIgZ8yYQWZkZHDdj4+PJ/38/LiuNWYHUPrJyMiI7N69OxkUFETfq6yspNtDWFgYGRMTw6UTSJIk3759S44cOZIkCIKMjo7myV8Ym5uThIQEkiAIcuTIkVzXb9y4wdVfh4eH0/dqa2vJXr16kQRBcNm7gvoKcW382tpa0tHRkSQIgpw6dSqZn59P33v8+DFpYWFB9wP1y1uctufr60sSBEFu3ryZ6/qGDRvosjAxMeGyJanys7e3p6/FxcXRerP+N6qoqCADAwPJt2/fksKyfv16kiAI8vDhw3zvi2tDkGTj9bUhqLomTFoHBwfanuKE0vX8xkck+T8dMW7cOPoaNRYjCIJ0dXUlw8PDeex7fhQVFdG27pAhQ8iLFy+Subm5jaZrDGHGcQkJCeT9+/d5xg05OTmkq6srSRAE6e3tzZOO0ucmJibktm3buOygo0eP0uOfd+/ecaV78uQJyWKxSCsrK/LmzZtceiQ4OJi0tLTksd1J8n/1wcjIiFy/fj1ZWlpK3ysvLycLCgpIIyMj0tjYmAwJCeFKW11dTYaFhQmsDy9fviQJgiCHDh0qsJyE4btt32Cz2ViyZAmGDBlCX1NWVqYjwtZ3U0lKSkJAQAA0NTVx6NAhGBgY0PcUFBTg7u4OU1NTxMbG0iuqTZFt//79YDAYOHDgAAYMGMB138nJCdOnT0dxcTEuXbrUpGeJi5SUFDw9PblmOXv27AlHR0cAvOWnrKyMCRMm8KwoKCoqYsmSJbCyskJ4eDjy8vL4Pq9du3bYvXs318rCsGHDaJelR48ecf2eWoWfPHkyxo8fT19XUlLC7t27mxQEtLq6Gk5OTlyrKlS+7du3R1ZWllAujyRJ0jOAixcvpr1eAKBt27bw8PCAiooKMjMz6dVUYaHcz2bNmsVz1FCXLl0Ezlg2lNe8efN4ZlZNTU3x888/800nah3x8fEBm82Gra0tlixZAhmZOscpaWlpuLq6wsbGBmw2m/YeAurKqVu3bigrK0N8fDx9nZrtp4IVca44UDPGbdq0oT1QmpPq6mrs3r0bXbt2pa917doVc+fOBcD73leuXEFaWhoGDhyIP/74g+soPm1tbezfvx+Kiorw8/MT6HYnLJGRkXj9+jWYTCb27dvHFUzSwsKC1n9nzpxBSUkJfY9ya+RcxcnNzUV6ejp69+6N7t270ytcFFSZU2mbE1tbW7i5uXEFiJKTk6NXwYyMjLBv3z5oaWnR99u3b4+9e/dCS0sLd+7cQXZ2Nn3vwoULKC4uBkEQ2LBhA13PpaSkMH/+fPTv379Z5f/y5QtOnjwJRUVFHDp0iGtPqYyMDFxdXTFs2DBkZWVxuelyMmHCBEyaNIleUZCVlaVXR2JiYrj2Uubl5eHMmTMAgL/++gtDhw7lWg1SUVHBnDlzaP0sJSUFBwcHAODaEkYREhKC4uJimJubc9VzYbG1tYWLiwt99BolO0EQKC4uxoULF+jflpSU0MGrN27cyOWFpqmpiX379kFGRgYxMTF8tw0AwKRJkzB16lT6eVJSUk32OmoOuUT5hi0tS0vCZrOxYcMGLi8zTU1N2tW6vk4Utx03hLh9IpvNxqZNm7jct3V1dek963fu3OHyOhBX9osXL+Ljx4/Q09PDkSNHeDxujY2N+W5tEIaamhosW7YMw4cPp6/JysrS7WHgwIH0UbCcGBkZYfPmzQDq3OGbCovFgoqKCu11R1G/v+aso4mJiSgsLETXrl35eoAIQlQbPyoqCq9evQKTyYSHhweXR6CNjQ1cXV35bqMUt+1R/WJ9b4ioqCioqalhwoQJYLPZiImJoe9R6Tn7VKpe9+nTB1ZWVlx5ycnJwd7eXqSjjqmtHhoaGnzvi2tDfE8om1PYLfU1NTU4fvw4Hjx4AAAYPXo0fc/BwYG2zYODgzFr1ixYWVnh559/xubNmxEaGsq3XigrK+P333+HjIwMMjMzsXHjRtja2mLgwIFYsmQJTp8+TZ/K0dx069YNgwcP5vHi1dTUxJ49e8BkMhtszwYGBvjtt9+47KB58+Zh0KBBqK6upj3QKTw8PECSJLZu3YqxY8dy6ZFhw4bBzc0NbDabtkHq07VrV2zduhWKior0NXl5eWRkZKCmpgYEQfB4T0pLS2PgwIF8j2EF/uc5Imz/IIjvGlNi8uTJPNe6desGOTk5FBcXc+3/Dg4OBgCMHDkS7dq140knJSVFV9ymdvqxsbHIz89Ht27dBAZAoT5QaxgYQJ1Ryc8djJKXs5PmJDo6Grt27cLChQsxbdo0ODs7w9nZmVasgvb6jR49mu85vvyeV1ZWRru4TZs2jSeNvLx809x5AEydOrXBfJ88edJoHu/fv0dWVhaYTCZfY6NNmza069njx49Fko9SykFBQQJdDkXN686dOyKlE7WOUGVG7ZmrD3W9fllQboycbeH58+eQlpaGg4MDOnbsyNXxP3/+HLW1tbCyshLZ7VwYunXrxtf1UdB7U7pl0qRJfPPT1NSEmZkZSktLERcX1yTZqLIbNmwYX7fJUaNGQV1dHWVlZVyTq/wMKM5Jh169enEZUCRJ0vsIRXW5FQZqwFwfqiwdHBz4DjoVFRXRr18/1NbWcu3bpyY1p06dymOYU9ebk0ePHqGyshL9+vUTuN2vMR3Pr/+itsYB3PXs4cOHYLPZMDExQb9+/YSSccKECWAwGLh9+zbPZBg1USHukWT8ypPBYNB6kFN/vnjxAmVlZdDQ0MCIESN40v300090WQnSk4LqS1NoDrlE+YYtLUtL0q5dO74xaSidSLnuU4jbjhtC3D5RU1OTa2BL0b17d5ibm4MkSdptvymyU3ufp0+f3iJBRxtrA4WFhfDz88OaNWswe/ZsTJkyBc7Ozti7dy8AwbaZKDAYDHpLUv0+WU1NDRMnTgSTyeTbz4jTj4hi41N9wPDhw/me/DR58mS+pySI2/b4TdBQE/3W1tb0YKu+XQNwlwU16fXq1SuRYkcIghrI8xvncL6DqDbE94TazikodsujR4/oscfEiRPRp08f7NmzBwDQt29fzJo1i/6tjIwMvL29sWvXLlhYWEBKSgrV1dV49+4d/P39sWTJEtjb2/N913HjxuHKlSsYO3YsPeDOyclBaGgotm3bhiFDhsDb27vJNjo/2Gw2bt++jc2bN8PFxYVuz7NnzwaDwUBaWhrXIhIngiY/qX6bs3/Ozs5GfHw8VFRU+NZ/oHFb5ueff+Zri1P1Ky0tTWT9Qy3usdnsBmP/NMZ3iynRvn17vvseAUBVVRXZ2dkoKyujV+aTkpIA1O3V4RdwD6g7Ggaoq3RNgXpWTk4OnJ2d+f6GMhKb+ixx4dyfzwm10lZfGbDZbKxZs6bRgW1hYSHf64L2Y1HPKysro6+lp6ejpqYGTCZTYIwKcVb3KJhMpkB5qHypo48agpqI0dTUFOi5Qe2V4gy8IwyzZs1CREQEvL29cePGDdjY2MDKygp9+vQR+ajF2bNnw93dHRs3boSPjw9sbGzQo0cP9O7du8FYAaLUkaKiIrr9CPo21PXPnz+jpKSELrNevXrB19eXjitBDY6NjY2hpKQEa2tr3Lx5k44r0RQjRxgEvTe1ylO/bVDt3dvbm/acqQ/1/UUN3CQoH05PL06kpaWhr6+P/Px8pKWl0V5a9Q2oDh060OXYu3dv5Ofn49ChQ3RcCWp1q0uXLlwrTs2FIPmpsrx06ZLA4+Iow41Td1LttbG611xQgYrj4uIE6vji4mIAgnV8Q/UsNTWVSydSAXgtLS2FlrFTp07o168fnj59ipCQEIwZM4aWJyIiAnJyclwrSqIg6Pvx05/U/1MxAPhhaGiIu3fvCtSTgp7XFJpDLlG+YUvL0pIImnijdGL99xS3HTeEuH2ivr4+7VFQHwMDA7x69YqrvoorO9VGhY1HJQrt27dvsK+OiIiAm5ubQPsLEGybiYq1tTVCQ0PpuBJ5eXlIS0vDyJEjoaCgwOV1Jy8vL7bHnag2PvUNBekKJSUlaGpq8gS7FbftMRgMWFlZ4d69e3RcCc53tbS05JqgIUmSnpTgLAtLS0tYWloiJiYGw4cPR+/evWFtbY2ePXvCwsKC9jgVFmpsUX+VnUJcG+J7QukTQXZ1QUEBbW9KSUlBWVkZvXr1wujRo+Ho6MjzHaWkpDB+/HiMHz8e3759w+vXr/Hq1Ss8ePAAcXFxyMjIgIuLC65du8Yz5ujWrRv27t1LT2S8efMG4eHhePToESoqKrB//35IS0tjwYIFzfb+ubm5mDt3Lq2LBPHt2ze+E6CN9c/5+fm0DU7ZMmw2W+DiDTXpIkhXC3qepqYm7O3tcfv2bTg4ONDjDisrK1hZWTU4ectZfysqKnhOTRGW7zYpwekmUh+qA+KcvaIMxIyMDJ5Z/fo01cWamtX5+vVrg9H6m+NZnFy+fBlXrlzhub5w4UKeQIaCyk9Q5338+HHcuXMHHTp0wOrVq9GzZ09oaGjQFefXX3/FjRs3BEY45gxkx+95nN+KGvSpqKgIlEcUN8D6CJOvMJHBqd80NGgTJT9OBg4ciOPHj+PQoUN4+fIl/P394e/vDwaDgb59++K3337jGxyGH87OzlBWVoaPjw/i4+Px4cMHnD59GjIyMhgyZAh+++03LhdVClHqCKdRKqg8OK+XlpbSHU7Pnj3BYDDw8uVLVFdXIy4uDmVlZXTH3atXL9y8eRPPnj2Drq4u3bELcvtqKoLem98KPPA/3cK5/UQQgma2hYUq54bqHHWPs84JMqDU1NTQtWtXdOrUicuA4mc8NSeC9AFVlvwiMteHU3dS5SLIcG/uiRXOCYfGBlWCdHxj7YtTJ1JutIKMdEFMnDgRT58+xbVr1+hJievXr6O2thbDhg0TOT8KQfqXn74Tps42picb6u/FpSXl4vcNW1qWlkRUe0HcdtwQ4vaJDdkK/HSluLJTbVRc47khGqr/JSUl9ITE2LFjMXXqVHTp0gVKSkqQlpZGZmYmhg4d2ujpE8JC9btUX1F/0qFXr1548eIFYmJi0KdPH7E97kS18ak21Nj3rj8p0ZS216tXL9y7d4+eoOG0TeTl5bkmaNLT0/lO9EtJSeHYsWP0ZNuTJ0/olez27dtjzpw5mDt3rsC2Vp/27dsjLS1N4NYxcW2I7wnlsi+oP3dwcMDOnTvFyrtdu3awtbWFra0tXF1dcfv2baxatQplZWU4ceIE1wkxnMjIyMDU1BSmpqZwdnbGx48fsXDhQiQnJ+PIkSOYPXt2swQyB+pOLUxKSoKZmRmWLl0KY2NjqKio0J4+gwYNQnZ2tsBT3YSxgygbnBqvlpaWNuoZI0hXC7LngLoDH7p27YrLly/TwTaBOk9yJycnLF++nO8EGmf95dwSLSrf9fQNUaAUnLu7u8CVreZ+FnWc0PciOzubb6WiZhSbArV/afv27XxPamjqWbKcUNs8CgsLUVtby1cZN+WdhMmX31YTQXLWPxJK3PzqY2NjAxsbGxQXF+PFixd49uwZAgMDER4ejtmzZyMwMFCgi159xowZgzFjxuDLly90pP7AwEAEBQUhLS2N74kSosBpQHz+/Jnvtg/OcuIsDxUVFRAEQUcW5lzB5/xvVFQURo4ciYSEBCgqKrZIPAlxUFRURFFREW7fvt0iK7r1nwU0XOeoe/XrHKcB1bNnT3p1CwCPAdWS8SQagnq/Y8eOibRCo6ioiOLiYnz58gVdunThuS+ovKiJpoYGj/xWuyk5582bh9WrVwstp7hQE3jUgElYhg4dChUVFYSHhyMnJwdaWlr0qRvibt0A6lyE+U1k8tN3wtTZpuhJcfmR5PqRZGkOxG3HjSFOn9jQvnR+ulJc2ZWUlFBYWNgkV2NxePjwIQoLC2FhYYE9e/bwTJ43l4cEBYvFQrt27WivO379NeV1p6qqiq9fv0JfX1+sU+JEgfpuDdmG/NpXU9pe/W2R1DtTK9KcEzQpKSkA+E/OKCsrY+3atfj111+RnJyM6OhoPHz4EA8fPoSHhwcACDxFqT7UgFSQTd4UG+J7UFxcTHsICNr+3pzY29vj7t27CAoKavBI6/p06tQJq1evxoIFC1BaWoqUlBSRjx3lR15eHsLDwyEvL49jx47xPZ2osfGWMHYQ9W2p+mBubo6LFy82RXS+yMrKYsmSJViyZAnS0tLw4sULPH78GKGhoThx4gRKSkr4nr5IvaOysnKTxibfNaaEKFBKQpjZ76ZCzdY397MErdRSLF26FImJiTx/TTE+KajZ5fqBeIC6IDNN3SvPia6uLqSlpcFmswW6qlKukuLAZrMFestQ+QraNsIJ9Zvc3FyBAYGoOiBMfoJQVlbGoEGDsHbtWty5cwc6OjrIz8+ng/qIgqqqKkaMGIHNmzcjICAAysrKSExMFPm4pPq0bduWXk0QVO+pTrlDhw48bnmcgRijoqIgLS1N1zVdXV1oaWnh+fPniI6ORm1tLXr06CGyW2NL8T11C1WPqLKsT01NDe2OWr/OcRpQ/DwhrK2twWaz8fLlS757X78H4pYldTScoHIRpC+oGX5Bhmz9fcsULaXjBUGVC2fQNGGQlZXF2LFjUVtbi+vXr+PFixdIS0tDx44duY5/FRVB5clPf1Lf5sOHD6ipqeGbril6srF+URAtLdc/VZbmoKV1oih9YmpqKmpra/nm8+HDBwDcZSqu7FQ66ijr7wVlm1laWvJtC03t2+sjJSVF981RUVGIioriGohzbltoaY87Tqg2JEg3lZSU8N0+2ZS2161bN7Rt2xYfPnxAQkIC0tLSuPpMTrtGGA9PBoMBgiAwZcoUHDlyBJs2bQIAkQaL1MBYUDk0xYb4Hly+fBnV1dVgMpnNHqBaENQ2PEGeB4Lg3NYmbNrG+qusrCwAdVsi+E1IJCcnN7otkNJr9aHqhLq6Om2DU7bMhw8fms2bShB6enr45Zdf8Ndff+Hvv/8GUBffit9zqfrZ1ImeH3ZSggrgERAQ0CyeAw1hZWUFNTU1JCcnCxUwUVio/TdNdQFvyrP5za7eunWrwVlXUWnTpg0d5fvcuXM89ysrK3H58uUmPaOxfG1tbRvNw8DAANra2mCz2XzzKysro7fT1M9P3G/Zpk0bsFgsABB40omwaGho0AHZmpoXULeKBUBghN7Tp08D4F+2VOcdERGBly9fwsjIiGviwtraGtnZ2fT3EcfIaan2Q+mW06dPCzR+mwuq7EJDQ/lGJb579y7y8/OhqKjIFSkf4DagqNNlOMuRMpb8/Pzw9etX6OnpCYzg3VJQZenv74/y8nKh01Hl4ufnx/e+oOvUvuXKykp6byUnnKdIcDJo0CDIysriyZMnAo275oR6Xnx8PCIiIkRKS52Wc+3aNdpLYvz48UK7A/ODn74D/lfOnG3cysoKioqKyM/P53sSSXZ2Nu7du8eTTlgo109R23VLy/VPkIXSic25jRQQvx2LQ2N9Yk5ODu7fv89zPS4uDrGxsWAwGHTfBYgv+7BhwwDU9X/Clmdz9ElU/ed3EgCbzRao+5oC1W8EBgYiNTWVayAuLy8PMzMzvH79mg4++T0mJah2ERwczLceXLx4ke/AsSltj3OCxsvLCwD3pEOPHj3AZDK5JiVEmein8hbFPqPSCJqMaooN0dK8ffsWBw4cAFC3RUPU+Gn8EGa8R032c07CfPv2rdFBOpVOSkpKYNyd+jTW5jnHWvw8OE+dOtXoMxrrnzn1XefOncFisVBcXMx3+39LQdUtNpvN15uLqr9UYF1x+WEnJYyNjTF27FgUFRVh1qxZPA2WJEm8evUKW7ZsETpitiDk5OSwYsUKAMDKlSsRGBjIM1jJyMiAt7c3HelZGKgBZEpKitBH5TQXVMXYuXMnl1fA/fv34e7uLjCojrhQxy9euHABAQEB9PWSkhKsXbtWZDdmTmRkZHDu3DmuYzpLS0uxdu1afPnyBdra2rC3t280HwaDQct56NAhhIWF0feKi4uxZs0aFBYWQkdHhyegHKXABEUed3Nzw71791BVVcV1PTIyEuHh4QDqjvNsDGq/aUREBNcqAEmSuH37NpKSksBgMJrF7WzOnDlgMpl4/PgxvL296efV1NTg0KFDePLkCZhMJubMmcOTloorERERwRVPgoLq6CnjQJwVfKrM6x/h1VQmT54MPT09vHjxAm5ubjwdfVVVFcLCwrB+/fomP6tPnz4wNzcHm83GihUruFZ+Xr9+je3btwOoiwBf3xuF04C6d+8eVFVVufZgUytcVBl/760bQN12AysrK6Snp2PevHk8qz3V1dWIjIzEqlWruNqGk5MTlJSUkJSUhO3bt9P3amtrceLECYGTwwwGg3bR3rFjB49u8/b25uuRo66ujjlz5qC6uhpz587lm39iYiL27NlDnyTUFDp06ECfXuPm5sYzyCosLMTJkyf59gssFgtmZmZIS0trlq0bQJ3L+KlTp+h+raqqCtu3b0dSUhKUlJS4ouYrKSnR0cC3bdvG5SKbm5uLFStWgM1mw9LSUqw4MVS7jo6OFikKekvLJQqtJUtL6URx23FDiNsnMplM/Pnnn1zR3zMzM2l9PGLECK4BhbiyOzo6QkdHB2lpaVi0aBG94kmRkJDAM1hozA4QBso2CwoK4jodorCwECtWrOCJodAcUP0v1VfUr5PUaU7UpMT38Ljr3bs3zMzMwGazsWrVKq7BaHh4OLy8vPievtHUtkf1k/z6TWqCJiYmBl++fOE70X/z5k14eXnxeO+WlJTg2LFjACDSVlVLS0soKSkhISGBb0yIptgQLUVubi68vb0xZcoUlJWVgSAIrF27tlny3rx5M+bPn4/Q0FCeScbc3Fxs3ryZjnNAnZYH1LXJESNGwMfHh8emY7PZuH79Oh3Xws7OrsFAtJw0No7r2rUrVFRUkJubi7///pvuY9lsNry9vXH16lW+9ZiTlJQU7Nq1i8sO8vHxwYMHDyAjI8N1OgkArFmzBlJSUti2bRv8/Px4dGxubi58fX3po3OFJSIiAjt37uRZ8KmsrIS3tzeAuhM6+MWBoewmzgkUcfgx/KkFsHXrVhQXFyMsLAyOjo7Q1NSElpYWKisrkZGRQbvECDrSUBQcHR2Rm5sLLy8vrFy5Eu7u7tDV1QVJksjJyaEVpru7u9B5qqqqok+fPoiMjMTQoUPRtWtXyMnJoUOHDi0eu2LZsmUIDw/HgwcPYGtrC319fXz58gXZ2dno06cPNDQ0cPPmzWZ73qBBgzBjxgycPn0aq1evhoeHB9TU1GgXO1dXV7HfWVNTE4MHD8bKlSuxZ88eOt+ysjIoKChgz549Qh/p5ezsjFevXuH69etYsGABOnXqBBUVFbx//x7l5eVQUVHB/v37eSZt7O3t4efnh2PHjiEkJATq6upgMBiYN28eBgwYgCdPnuDOnTv0CSQKCgrIz8+nlePYsWOFOhqwtrYWd+7cwZ07dyAvL4/OnTtDVlYWOTk59MrKwoULm8VNr1u3bti8eTO2bNmC/fv34/Tp0+jUqROysrLw5csXSElJwd3dHQRB8KSlBsjUXkJ+Rg5QN5mioKAAMzMzkeUbNWoUkpOTsXDhQrBYLLrD9fT0bNJ+VwUFBRw9ehTz589HUFAQgoOD0blzZ6ioqKC4uBgZGRlgs9nNEmyRwWDAw8MDM2fORExMDIYMGQJDQ0NUVFTQLnvUmez86NWrFx48eACSJHkMRapcqbg0rTEpwWAwcPDgQSxatAjPnz+Hvb09OnXqhA4dOqCsrAzp6en0KiRlPAF1Xj/btm3DypUr4evri+vXr0NXVxefPn1CQUEB1q1bJzAw1tKlSxEWFoaIiAjY2NigS5cutG5buHAhAgICeAYYALB8+XIUFBTg0qVLcHFxgaqqKjp16oTq6mpkZWXReyKbaxDp5uaGrKws3LlzB4sWLUKHDh3QsWNHWlYqeCU/42jixIl48+YNqqurYW1tLfDUCGFZuXIlduzYgWPHjqFjx47IyMjAt2/fIC0tje3bt/MY3suWLcPbt28RHh6OSZMmQV9fHwoKCkhOTgabzUanTp3oowtFZdiwYdi3bx8CAwMRGxuLjh07QkpKCg4ODo1OvrSkXKLSGrKMGjUKYWFhcHd3x7lz5+iAYr/99huMjIzEzlfcdtwQ4vaJw4cPR3p6OsaPHw8DAwPIyMggOTkZNTU10NPTw+bNm5tF9jZt2uDQoUOYO3cunj59iiFDhqBLly6Ql5dHVlYWCgsL0atXL67j+hqzA4TB1NSUjnA/d+5c6OjooG3btkhOTgZJkti4cSO2bNkiVF7CYmxsDGVlZXpxiN8iwuHDh0GSJPT09JplxbsxGAwGdu/ejWnTpiEqKgqDBg2CoaEhSkpKkJ6eDjs7OxQXF/OdAGpK2+O0TTi3sXDeb6hP/fLlCw4ePIiDBw9CXV2da0xSUVEBZWVlbNiwQehykJeXx5gxY3DhwgWEhIRg/PjxPOXUFBuiqfz555+07VVZWYnPnz/TEyMMBgNjxozBli1bmnVChIrPISMjAx0dHSgrK6OgoAA5OTmoqakBg8HA/Pnz6aMvKT5+/Ihdu3Zh165d0NDQgIaGBiorK5GVlUWPF42NjfnGRBBEY+M4JpMJNzc3uLu74+DBgzh37hw6duyIzMxMfPv2Da6urrh27Rpfm4TCzc0NHh4euHLlCnR1dZGdnU17s69ZswbdunXj+r2trS3++OMP/P777/jjjz+wd+9e6OnpQVpaGnl5efT3mTdvntDvCdQt9p48eRInT56EiooKtLW1UVtbi8zMTJSUlIDJZMLd3Z1nS8unT58QGxsLAwODJnvr/NCTEgoKCjh8+DCCgoJw7do1vHnzBm/fvkW7du2gr6+PHj16YMSIEfQes6bi6uqKAQMGwM/PD8+fP0dSUhLk5eWhpaWFvn37Yvjw4SIHgfLw8ICHhweePn2K+Ph4VFdXQ1tbu1nkbQhjY2OcO3cO+/fvx4sXL/D+/Xvo6OhgxYoVcHFxofe+NScbNmyAsbExzpw5g5SUFJSXl6NPnz5YunRpkzwlAGDTpk0wMDCAv78/UlJSICcnh+HDh2P58uUiHR/IYDCwc+dO2Nrawt/fHwkJCcjNzYWmpiYGDRqE+fPn8+2Qe/bsCQ8PD/j6+iIlJYWOnUGdRb5z5048fvwYMTExyMvLQ3FxMZSUlNC3b184ODhg3LhxQsnXpk0b7NmzB+Hh4Xj9+jVycnJQWloKFRUVDB48GE5OThg0aJDQ79sYkyZNAovFwokTJxAdHY2EhAT6/OO5c+eie/fuAtNaW1sjKSkJ0tLSPC5bnTt3hpaWFnJycugVfVGZP38+amtrERgYiJSUFHo2uDlclzt37ozr16/D398fd+/exfv375GVlQV1dXWYm5ujX79+dFDJpqKjo4OrV6/ixIkTCAkJQUpKCmRkZGBubg4HBwc4OjoKjLfBOREhaNWnNSclgLpI535+frh+/ToCAwPpNtW+fXsYGRmhV69eGD58OM9E38iRI6GhoYG///4bMTExeP/+PVgsFjZv3oyRI0cKnJTQ19fHuXPn8Ndff+H58+f48OEDDAwMsGLFCvz8889cnlqcSElJ4c8//4S9vT0uXLiAmJgYJCQkoE2bNujYsSOGDx+OYcOGNSl2AydMJhP79u3DyJEjcenSJcTHx+Pdu3dQVVVF7969MWLECIHbbcaMGYPt27ejsrKS1jFNYc6cOdDS0oKvry/tbUUZsvyOLZWTk8OxY8fg7++PGzdu0INCHR0dDBs2DC4uLkIH7a2Prq4uDh8+jCNHjuDt27f49OkTSJIUqv62pFyi0hqyjB8/HkVFRbh8+TLS09PpSeHmCNYobjsWhLh9oqysLM6cOYODBw8iKCgIeXl5UFdXx7Bhw7B06VK+ZSqu7IaGhggICMCpU6cQGhpKe91qaGjAzs6OayUWaNwOEJbdu3fDwMAA169fR05ODsrKyjBgwAAsXLiQ7770pkJ53YWFhfEdiFN9NJvN/q5xibp06YIrV65g//79ePToEZKTk9GpUyesXLkSLi4umD17Nt90TWl7RkZG9ASNtbU1zwCLmqAB+HuMjBgxAtXV1YiIiEBqaiqSkpJAkiR++ukn2NjYwMXFhW/g8IZwcnKivYzrT0oATbMhmgqlYxgMBhQVFdG2bVvY2NjA3Nwc48aNa/Y4Frt27UJERAQeP36M+Ph45ObmIjMzE7KystDT00OPHj3g6OjIE1TTzs4OFy9exOPHjxEVFYXs7Gy8f/8eNTU1UFFRgbW1NYYPH46ff/5ZZHu0sXGcs7Mz2rVrh+PHjyM5ORlVVVUgCALTpk2Dvb097fEoiJEjR8LExASHDx9GfHw8ampqYGVlhfnz5wu09x0dHWFlZQVfX19ERkbiw4cPkJaWhqamJoYPH44hQ4bAzs5OpPe0srLCpk2b8PTpUyQnJyM1NRVsNhsaGhoYPnw45syZw/fEpFu3boEkSUyaNEmk5/GDQYriPylBwnfk48ePGDJkCLS1tfnuMZUgQcK/F2rfOb/YEf92Pn78iKFDh0JBQQFPnjwRO6r6f7kMJfyzuHr1KtavX9+k4wMlSPinsnDhQjx8+BABAQEiLbRJ+OdiZ2eHrKws3Lt3j94m8k+jqqoKI0aMQFVVFYKDg5t8AswPG1NCggQJEiRI+C9y9epVkCSJUaNG/SOOlJQgQYIECeKzZs0aMBgM+pQDCRL+CVy5cgWfPn2Cq6trs9gqP/T2DQkSJEiQIOG/RHZ2Nh11e+rUqa0sjQQJEiRIaGkMDAywfft2ZGVloaqqCrKysq0tkgQJjSIjIwM3Nzf61LAm59csuUiQIEGCBAkSxGbbtm148+YNEhMTUVZWRu8zlSBBggQJ/374xZOQIOFHprkmIygkkxISJEiQIEFCK/Pu3TvExMRATU0NY8eOxa+//traIkmQIEGCBAkSJHwXJIEuJUiQIEGCBAkSJEiQIEGCBAmtgiTQpQQJEiRIkCBBggQJEiRIkCChVZBMSkiQIEGCBAkSJEiQIEGCBAkSWgXJpIQECUJw9epVsFgsrFu3rrVFEYqDBw+CxWLh4MGDIqV79uwZWCwWpk+f3kKS/fMRt2ybi48fP4LFYsHOzk6kdNOnTweLxcKzZ8+4rrf2+wiDuO/8b0XQt2wNfrRv0xo6TND3WLduHVgsFq5evfrdZPk38qPVMTs7O7BYLHz8+LG1RWl2WCwWWCxWa4vRYrx9+xbz5s2DtbU1/a4JCQlNzvdHtBEjIiIwffp0WFpa0u9aVFTU2mJJkCCQ/2Sgy+nTpyMqKgqurq5YunQpz/2amhqsXbsWAQEBUFRUxOHDh9G7d+9WkLRhnjx5gpMnTyIuLg4VFRXQ1dXFmDFjMHv2bJGPE0pISEBoaCiMjIwwdOjQFpKYF2E7v6VLl8LV1VXs5zx79gwzZswQOZ2DgwN27twp9nNbgqKiIvj6+kJZWRmzZs1qbXH+VXz8+BHXrl2DtrY2JkyY0NriSJDwn0Oi35qPf4o+u3r1KrKysuDg4IBOnTq1tjj/Wv7r5fz582fMnDkTRUVF0NLSgoGBARgMBhQVFRtNS03a8xsz/IgkJiZi3rx5YLPZ0NHRQbdu3QAA0tLSrSyZBAmC+U9OSjREdXU1Vq9ejTt37kBJSQlHjx6FlZVVa4vFg4+PD3bt2gUA0NbWRseOHZGcnAxPT088ePAAp06dgry8vND5JSQkwMvLCw4ODt91UqJHjx4C75WXl9Mz2BYWFk16jrKyMt9nZWdnIzs7G0pKSiAIgue+np5ek57bEhQVFcHLywva2trNbrQrKChAX18fHTt2bNZ8/ylkZWXBy8sLvXr1EmjEt2/fHvr6+mjfvv13lq5l+Ce8D5PJhL6+PjQ1NVtbFAktTFP124+kw9TV1aGvrw9lZeVWeb4w+uxH4Nq1a4iKikKvXr3+k4Pl74Uw5ayvr/+dpfp+BAYGoqioCMOGDcOBAwcgJSW8s7iXlxeAf86kxJUrV8BmszFjxgxs2LChtcWRIEEoJJMSHLDZbKxcuRLBwcFo27YtTpw4ge7du7e2WDy8fv0au3fvBoPBwPbt22ljIyMjA3PnzkVMTAw8PDz+EYro/PnzAu+dOXMGf/75JzQ0NNCvX78mPcfY2Jjvsw4ePAgvLy8YGxvjzJkzTXrGv4Hu3bvj7t27rS3GD820adMwbdq01haj2fgnvI+mpqakXkoQih9Jh61atQqrVq1qbTEkSBCaH6XttASpqakAgH79+ok0IfFPhHpXGxubVpZEggTh+Xe3ShGoqqrC0qVLERwcDBUVFZw6deqHnJAAAG9vb5AkiQkTJnCtfujq6mLbtm0A6gb7BQUFrSVis3D9+nUAwNixY//1HYgECRIkSJAgQYKElqGyshIARPIi/qdSUVEB4L/xrhL+PUhGeqhTVIsXL8aDBw+gqqoKX19fmJiYtLZYfCkpKcGTJ08AAJMmTeK5b21tDT09PbDZbNy/f1+oPO3s7LB+/XoAde59VEAcfsHCqqurce7cOUyePBlWVlbo3r077O3tsW/fvmYNoPP+/XvExcUBAMaPH99s+TYHVVVV8Pb2xogRI2BmZgYbGxts3rwZX79+FZimqKgIBw4cwLhx42BpaQkLCwtMmDABp06dApvNFvrZ69atw5AhQwDUueZyfitB8TlKSkqwa9cu2NnZwdTUFIMHD8bu3btRXl7O81tBQeLqBxoLDAyEo6MjLC0t0bNnTyxYsADv3r0T+j2Ki4vRvXt3dOvWDZ8+fRL4ux07doDFYsHd3Z3nXlpaGjZt2oQhQ4bAzMwM1tbWmDVrFu7du8c3L86gcx8/fsT69esxYMAAGBsbY9u2bZg+fToddyQqKoqrXDkDrDUWGDI/Px979uzB2LFjYWlpCUtLS9jb22PLli14+/Yt12+TkpJw8OBBODk5wdbWFqampujbty8WLFiAp0+fNlaMzYKg9+EM3NWadR5oONAdZ91/8uQJpk+fDisrK1haWmL69Ol4/vy5SM/iJCIiAkuWLEH//v1hamoKGxsbrFy5EomJiXx/n5mZiWPHjmHGjBkYNGgQTE1N0atXL8ycORO3b99u8FmVlZU4ffo0nJ2d0atXL5iZmWHIkCFYtmwZQkNDBaZLS0vDypUr0bdvX5iZmWHs2LHw9/cX+V0560FBQQE2b96MAQMGwMzMDMOHD8fBgwdpo14Uvn37Bk9PT9jb26N79+6wsrKCk5MTLly4gJqaGq7fiqPf6tNSOiw3Nxfr169H//790b17d4waNQpHjhxBdXW1wDSNBbrMyMjA77//jhEjRsDc3Bw9e/bE2LFjsWvXLqSlpXH99tWrV9izZw9++eUXuj7a2tpi+fLleP36NU/ewuoziri4OKxatQoDBw6EqakpevfujYULFyI6Opqv7OXl5Th06BDGjx8PS0tLWh4nJyfs378f3759E1guFNS3ioqKAgDMmDGDS05B5Sbqt6upqcGlS5cwbdo0WFtbw8zMDMOGDcOOHTvw5cuXRuUUBXFtpJqaGly7dg2zZ89G79696b56/vz5uHbtGtdvi4qKcPnyZSxZsgTDhw+Hubk5LC0tMWHCBBw9epSnnYpSzg21tYqKChw9epT+5paWlhg/fjyOHj1KD4I5aW67QVxZ6rfD9evX0+/ZWGBKSi9S1NdJ/IKdtmZ/SQXd5fetqT6es28vLy/Hvn37MHLkSHTv3h0///wzV36i6gWgri87ePAghg0bBjMzMwwYMACbN2/Gly9fBNobjenKxgKJ5uXlYceOHRg5ciTMzc3Ro0cPODk54erVqyBJkuf3nHKIYiNTCGPnJScng8ViwdrausG+08XFBSwWC35+fgJ/81/hP799o7y8HIsXL0Z4eDjU1dXh6+sLAwOD1hZLIAkJCWCz2ZCVlYWpqSnf31hZWSEtLQ2xsbFwdHRsNE9TU1MwmUykpaVBTU0NnTt3pu9xxlmorKzEokWL6MGSnp4eFBUVkZycjMOHD+PWrVvw9fVtlj2hN27cAFC37YJfrIfWgs1mw8XFBc+fP4e+vj50dXWRmpoKf39/xMbG4vLlyzxBRt+/fw8XFxdkZ2eDyWRCW1sbDAYD7969Q3x8PB48eIBjx44JFZxUT08PpqamiIuLa7AOUBQXF2Py5MlITU2FgYEBtLW1kZ6ejhMnTiApKQnHjx8XuQz27duHw4cPQ0tLC3p6ekhNTUVYWBiio6Nx+fJlofakKisrY9CgQQgKCsKtW7cwf/58nt/U1tbSA7mxY8dy3QsKCsLq1atRVVUFRUVF6Ovro7CwEBEREYiIiMDChQuxYsUKvs9OTU3Fjh07UF5eDkNDQygrK0NKSgoEQaCwsBBJSUk8MUbU1dWFKpvnz59jyZIl+PbtG6SlpWFgYAApKSl8/PgRFy5cQGVlJVfg1O3btyMiIgLKyspQV1eHuro68vLyEBYWhrCwMKxfv77Vg/21dp0XFn9/f2zZsgWqqqro3Lkz0tPTERUVhdmzZ+PUqVPo2bOnSPnt2rULPj4+AOribhgaGiIrKwuBgYEICQnBgQMHMHjwYK40hw8fxuXLl6GoqAgNDQ2wWCwUFBQgMjISkZGRiI2NxW+//cbzrNzcXMydOxdJSUkAAB0dHXTq1AnZ2dkICgpCXFwc31g/b9++xaJFi0CSJPT19ZGXl4ekpCRs3rwZ375949uuGqOwsBCOjo7IyclB165doaSkhPfv38PLywsRERHw8fERevUtMzMTM2fORFZWFmRkZGBoaIjy8nLExMQgJiYGoaGh8Pb2puuBqPpNXETVYenp6ZgyZQo+f/4MJpMJgiBQVFQET09PvHr1iq/R2xh37tzB2rVrUVlZCVlZWRgYGKC6uhqZmZnw8fGBoqIi1/711atXIyMjAyoqKlBXV4eGhgY+ffqEu3fvIjQ0FJ6enhgxYgT9e1H02ZkzZ7B9+3bU1tZCWVkZXbt2RV5eHh48eICwsDC4u7vDycmJ/n11dTVmz56NmJgYAHVemu3atUNBQQHevHmDmJgY2NnZwczMrMEyoGI9JSUloaSkBARBQElJib6vpqbGk0bUb1dSUoLFixfj2bNnYDAY0NLSQseOHZGeno5Tp04hKCgIZ86cgY6OToOyCoO4NhKnjACgpaWFTp06ITc3F48ePcLDhw/h4OBA//7BgwfYsGEDmEwmNDQ0YGhoiKKiIiQmJiI+Ph737t3DmTNn6HYlTjnX5+vXr5g9ezYSEhLAYDDQtWtXMBgMJCYmIiEhAXfv3sXJkyfRrl07vumbw24QVxY9PT306NED6enpKCgogJ6eHlRVVel7DdGxY0f06NEDL1++BMAbB01OTo7r363dXxIEgerqar7fun6cnYqKCkydOhXx8fHQ19dH165dwWQy6fui6gUqzzlz5uDFixcAAAMDA8jIyODSpUt48uRJi5ygEx0djcWLF+Pbt2+Qk5ODrq4uysvLERsbi5iYGISHh2PPnj1gMBg8acWxkYW18wwNDWFhYYHY2FiEhoZi9OjRPHnl5uYiPDwcsrKyfO//5yD/g0ybNo0kCILcuXMn/f8DBgwgP3z40KR8Dx06RDo5OYn8d+nSJaGfcfHiRZIgCHL48OENykEQBDllyhSh871y5QpJEAS5du1agb/ZtWsXSRAE2bdvXzImJoa+npOTQ06aNIkkCIKcPHmy0M8URG1tLTlo0CCSIAjy5MmTTc6vIQ4cOEASBEFOmzatwd9R5WNiYkKOGDGCTE5Opu8lJyeTNjY2JEEQ5IULF7jSlZWVkcOHDycJgiA3bdpEfv36lb738eNHcvLkySRBEOTevXuFljkzM5MkCIIcPHhwo+9lYmJCTp48mfz06RN97/nz56SFhQVJEAT5+PFjrnSRkZF8y4N6pomJCWlhYUGGhobS94qKiuh2tHLlSqHfIzg4mCQIghw7dizf++Hh4fR71tbW0tcTExNJMzMz0sTEhDxz5gzJZrPpe1FRUWT//v1JgiDIR48eceW3du1akiAI0sjIiJw/fz5ZUFBA3ysvL2/w/TmhyvbAgQNc17Ozs0lra2uSIAjSzc2N/Pz5M9f9qKgo8vr161zX7ty5QyYkJPA849mzZ2T//v1JY2NjMjMzk+ueMN+fH9Q3ioyMFOp9/il1niAIkiAIsnv37qS/vz9dVyorK8kVK1aIpZcoPTtgwADy4cOHXPfOnz9PGhkZkVZWVjzfOCwsjIyJieGqryRJkm/fviVHjhxJEgRBRkdHc92rqakhHR0dSYIgyHHjxvHUh9TUVPLYsWNc16hvaWJiQm7evJksKyuj7506dYouj6KiIqHfmVNnjBkzhszIyKDvxcXF0e1qz549XOkEfZva2lpy4sSJdPnn5OTQ92JiYsg+ffqQBEGQHh4eQuUnLM2tw2pra+nvM3XqVDI/P5++9/jxY9LCwoI0MTHh27YonXPlyhWu6/Hx8XSarVu3ksXFxfS9mpoa8sGDB+S9e/e40ly7do1MS0vjulZTU0MGBweTFhYWZM+ePcmSkhKhyoKTJ0+ekCwWi7SysiJv3rzJVXeDg4NJS0tL0sTEhExMTKSvBwUFkQRBkAMHDiRTUlK48isuLiYvXbpEfvz4UeAz6yNIN1E0pf9ZtWoVSRAE6ezszCVrWVkZuWnTJpIgCHLSpElCy0qSJDl48GCSIAge3SyujbR06VKSIAhy0KBB5PPnz7nu5eTk8OjmhIQE8v79+2RFRQXPb11dXUmCIEhvb2+e5zRWziT5P31an2XLltG2J2c5pqSk0Pq+fvm3hN0griwkKbg9CoOgcqH4kfpLkmz4W1OyGhkZkUOHDuVq25QtJI5eIEmS3L17N0kQBNm/f38yLi6Ovp6WlkaOGjWK1nv163Rj30bQGCUvL4/s3bs3SRAE+ddff3H1he/evaP73fPnz3OlE9dGFtXOo2yJOXPm8H2vw4cPkwRBkMuXL+d7/7/Gf3r7xunTpxEVFYWOHTvi7NmzTY46nJaWhpcvX4r8l52dLfQzKJdIQbPRANC2bVsAaNbtFCUlJXSgyI0bN3KdhqGpqYl9+/ZBRkYGMTExPGe1i0pkZCQ+ffoEGRkZnhXy1qa6uhq7d+9G165d6Wtdu3bF3LlzAQAPHz7k+v2VK1eQlpaGgQMH4o8//oCKigp9T1tbG/v374eioiL8/PzEco1uDCkpKXh6enLNkPfs2ZP2oKkvb2Ow2WwsWbKEdrEG6lZhqKCqouQ3cOBAtG3bFomJiUhOTua5f+vWLQB1XhKcM9xeXl6orKyEm5sbpk2bBhmZ/zl8WVtb4/fffwcAnDx5ku9z27dvD09PT3qlBGiefZfHjx/Ht2/f0LNnT3h4ePCsPllbW/O4Ro4cOZI+qouTXr16Yfny5aiurm7U7b+l+afU+QkTJmDSpEl0XZGVlaVXE2NiYoRyJwfq6vj+/fvBYDBw4MABDBgwgOu+k5MTpk+fjuLiYly6dInr3sCBA2FhYcGzImNkZITNmzcD+J8XGEVoaChevXoFFRUVnDhxgqc+6Onp0WVdH319fWzZsgUKCgr0tZkzZ8LY2BgVFRVi6WI2m42dO3dyrRybmJhg48aNAAA/Pz+UlpY2mk9kZCRev34NJpOJffv2cZ2cYmFhQeuMM2fOoKSkRGQ5xUVUHRYVFYVXr16ByWTCw8MDHTp0oO/Z2NjA1dVV5O1IBw4cAJvNxtixY7Fx40auVWspKSkMGjSIZ0Vx/PjxXF6M1G+HDRtGH3MYFhYmkhwA4OHhAZIksXXrVh5dO2zYMLi5uYHNZnMFgqa2lowYMYLHs1RJSQkTJ06Etra2yLI0hqjfLikpCQEBAdDU1MShQ4e4ZFVQUIC7uztMTU0RGxtLr4SLi7g2Unx8PIKCgsBkMnH8+HEejy5NTU2eEx+6deuGwYMH86zSa2pqYs+ePWAymTx6pimkp6cjKCgIALB7926ucjQwMKC9/wIDA5GZmcmTvjnthqbK0tL8U/pLoG7LkKenJ5cXFWULiaMXSktLce7cOQB1bYBzG3znzp2xc+dOkXVlY/j4+ODr16+YMmUKli9fztUXslgseHp6gsFgCLQHRbWRRbXz7O3toaioiPDwcOTm5vI8n9qa9SOfjvQ9+U9PSlCUlpaiuLi4yfns3LkTiYmJIv+JcsQQpZQ4XazqQ7l48dvjJy4vXrxAWVkZNDQ0uFxEKX766Sfavfjx48dNehbVmdra2grlVvg96datG98AqObm5gDA0wkGBwcD4B//A6gzIszMzFBaWkrH0GhObG1t8dNPP/FcFySvMEyePJnnWrdu3SAnJ4fi4uIG901yIisri+HDhwP43wQERVVVFV12Y8aM4boeFhYGKSkpgVuTBg4cCCaTiejoaL77vUeMGIE2bdoIJaMoUPv+586dK1Jg1tzcXJw4cQIrVqzAzJkz4ezsDGdnZ5w+fRoA6GNxW4t/Sp3nVy/V1NRoV2lh63psbCzy8/PRrVs3+h3rQ+k6foP+wsJC+Pn5Yc2aNZg9ezamTJkCZ2dn7N27FwB49lCHhIQAqDNKOAe8wjBx4kS+dY1ym8/IyBApPwCwtLTkG1Np+PDh0NDQQFlZmVADOKofGDZsGN/jOUeNGgV1dXWh82tORNFhjx49AlD3/vyOpJ08eXKD/XF9Kioq6LhQom6vSU9Px99//41ly5Zh+vTptK64c+cOANF1RXZ2NuLj46GiosK3Xwf413UtLS0AdTFXCgsLRXpmUxHl21G6aOTIkXwXcqSkpOgtWE1dTBHXRqLav52dnUhbh9lsNm7fvo3NmzfDxcWF1jOzZ88Gg8FAWlpas9mAT548AUmSMDc356sTLS0tYWZmBpIk6bpdn+ayG5pDlpbkn9JfAoChoSHfLVbi6oXo6Gi6DVC2HSfdu3cX2KeKC1V+/OoXULcgoK2tjbS0NL6TAqLayKLaeW3atMHIkSNRW1tLB++nePnyJVJTU6GpqYn+/fs3mtd/gf90TInp06fjxYsXeP36NebMmYMzZ87A0NCwtcVqEGpmvKHZxqqqKgDNG3WXOl5IX18f0tLSfH9jaGiIu3fv8gToEoXy8nJaydRfVf4R0NXV5Xudmjypv4JI7RH39vbGiRMn+KalyoufwmwqguSlvASEWfHkpH379lBWVhaYZ3Z2NsrKytC+fXuh8hs7diwuX76MgIAArhgQDx8+RFFREbp168bVJtPT01FZWQkmk4mFCxc2mHdlZSUKCwt5BnotETOmpKSE9njiXCFrjFu3bmHjxo0NBlT63kZ/ff4pdb4hOVNTU1FWViZUPpT8OTk5cHZ25vsbanI4JyeH63pERATc3Nwa/Gb1771//x6AaPWGov7KOQX1bYR9Z066dOnC97qUlBQdtyI1NRW2trYN5kN9Y0HtTVpaGvr6+sjPz0daWhqPR0pLIaoOo/o+Qe+hpKQETU1NvgHv+JGeng42mw1FRUWR4iX5+PjAw8OjwcCaouoKKmArm83G1KlT+f6G/P94GZx1fdiwYdDR0UFiYiIGDRqEfv36oWfPnrC2toapqSnfvdvNgajfjmrLDx48wJs3b/imo04pq9+WRUVcG0mc9l8/Bo0gvn371ix2YGNtGah7tzdv3vC1/5rTbmiqLC3NP6W/BATrenH1AtUGunTpInDAbmBggFevXoktMydlZWW03nV3dxeod6gJr5ycHJ6JZVFsZHHtPEdHR1y9ehXXrl3DggUL6OuUl8T48eMF6oz/Gv/pSYk2bdrg+PHjmDlzJhISEjB79mycPXu20cA3rQk129+QKzK1bYPaxtEcUMZtQyt5gpSuKISEhKC0tBRt27blcvX7UVBUVOR7XZAypDxw4uPjG827OT1bKATJK+4Rq4Ly48yTFCHoW69evaCpqYmsrCy8fPmSDiIVEBAAgDfAJVW32Wy2UKur/MqU072vueCsf/JqHwAAqVdJREFU88K2u8zMTKxbtw5sNhszZ87Ezz//DF1dXbRp0wZSUlKIiIjArFmzGhyEfA/+KXW+sboubL2k6tjXr18bXb3jdKctKSmhJyTGjh2LqVOnokuXLlBSUoK0tDQyMzMxdOhQnu9JbV0QR18LqsvitEWKhrzTKP0vjI4Xps8QJb/mQlQdRr1HY+Ui7KSEON/7xYsX2LVrF6SlpeHm5oYhQ4ZAW1sbioqKYDAYuHz5MjZs2CCyrqDqemlpaaP6lLOuKygo4Ny5czhw4ADu3r2Le/fu0acedezYEUuWLBEqyLaoiPrtKF2UkZHRqNdQU13jxbWRqPogaNDOj3Xr1iEpKQlmZmZYunQpjI2NoaKiQnvsDBo0CNnZ2c3mKt9U+6857YbvZYuKyz+lvwQEyyquXhBWVzYXnB7uVNDdhuBXfqLYyOLYeUBdcNQuXbrgw4cPiImJgaWlJSoqKmgPN84gtv91/tOTEkDdIN/HxwfTp09HSkoKZs2ahbNnz4p1gsThw4dF3qMPAL/88gsmTpwo1G+pCZNPnz6hurqaaz89BdX5NufkCtVwP3/+LPA31IpDU1zjqa0bo0aNatbI/K2FoqIiioqKcPv27R/6VJfWQkpKCqNHj4aPjw9u3bqFHj16oKSkBGFhYWAwGFxbN4D/1a0OHTp8tyMzhYGzzhcVFQm14nPnzh2w2WyMGjWK74kMwsZA+NH4p9d5StdRx/gJy8OHD1FYWAgLCwu+kb4FrWJT8QSaMwZQU2joiERK/wuj44XpM0TJr7Wg3oPq3/jR0DvWh/reomwZpfrF2bNnY9GiRTz3xdUV1LuZm5vj4sWLIqXV0NDAn3/+id9//x1v377FixcvEBoaiufPn2Pjxo1QVFRs9Wjy1Pu5u7sL9Hpq7meJaiOJWh/y8vIQHh4OeXl5HDt2jG9f09x9x/ey//5psjQHP2J/Ka5eaIqupPpLQZNT/LxJOScUXr161aze4fwQx86jmDhxInbv3o2rV6/C0tISwcHBKC4uhqWlZZPjGf6bkMSUQJ2bzsmTJ9G5c2dkZ2dj1qxZYrlJfY9Al0ZGRmAymaiqqhK4v4w6ikeUvVuNuVtSjebDhw88Z8tTUMEKxZ0MycvLQ0REBIAfc+uGOFDBjvgFchSXlnKNbS0ob4g7d+6guroaISEhqKyshLW1Nb13maJz585gMpkoKChosOMTF3HLVklJid6XGBsbK1QaamXVysqK7/3mcnH83rREnf+eUNuFRJWf+p6WlpZ869Hr16/5pqPKS9h609JQ7uT1qa2tpd1zhdHx1G9SUlL43q+pqeGb34+m36i+T1C5lJSUiGQv6OnpgclkorS0tFH3e4qsrCwAouuKxsqSqusfPnwQ2yNLWloaZmZm9IKOi4sLAIg8ydESfE9dJK6NJGr7p+qCgYEB30FRcnKyWNu2GqKxtkw9l/O3LcWPJEtz8CP2l+LqBaoNpKamora2lu9vPnz4wPc65fUnyK5LT0/nuaasrExvx/ge5SeOnUcxfvx4MJlM3LlzBxUVFfTWjV9++aW5xfxHI5mU+H80NDTg6+sLbW1t+mx1UQc93yPQpZKSEh0QhV+n//z5c6SlpYHJZIq0/YGKVSHIPczKygqKiorIz8+nIx9zkp2dTbtvNrbXWBABAQGoqamBrq6uQOPrnwYVJOj06dMClbSoULPBLbHdozUwNjaGgYEBvnz5gqdPnwrcugHUdVy2trYgSRK+vr7NLktTypYK/OTj4yOUKyrV5vitHHz79o3utP5ptESd/55YWVlBTU0NycnJIgVKo75nfn4+zz02mw0/Pz++6aiAYFevXm3QS+F7ERMTwzdgYkhICPLy8qCoqCiUfqb6gdDQUL4T73fv3kV+fj4UFRXpbVvAj6ffqPcIDg5GXl4ez/2LFy+K5CYvJydHx88QtIecXxqAv67IyMjAgwcP+KZrrCw7d+4MFouF4uJiXLlyRShZGoP6lvzKShAt9c0pXRQQENAik9iciGsjUe3//v37Aie+OKHK6vPnz3z7mVOnTjWaVtRytrW1BYPBwOvXr/lOgMXGxuLNmzdgMBiwsbERKW9RaS1ZWrqO/kj9pbh6gWoDubm5dEBITuLi4gQO5qnYDvxiv5SUlCAwMJBvOqr9NFTvmxNR7TwKNTU1DB48GMXFxTh9+jQiIyOhoKCAUaNGtZSo/0gkkxIcdOzYEb6+vtDQ0EBqaipmzZrV6kHm+LFo0SIwGAw6cApFRkYGfcSSk5OTSCdXUMe/vXnzhq+blJKSEqZMmQIA2LZtG1dnkJubixUrVoDNZsPS0hK9e/cW670oF1VhvCRycnJgZ2cHOzu7H2aFkR+TJ0+Gnp4eXrx4ATc3Nx7jnDpNYv369ULnqaqqijZt2qCgoEAoI+afADUBQSlrJpMpMOrz8uXLaddVLy8vnn2jX79+xaVLl+Dt7S2yHNS2rZSUFJEHiHPnzkW7du0QFRWF1atX86SPjo7GzZs36X9TR7+dO3eOaz9pdnY2Fi1a1OyrXd+Llqjz3xM5OTk66OrKlSsRGBjIYyxmZGTA29ubDsoL/O97BgUFcUXXLywsxIoVKwTGHLCzs4OFhQUKCwvh4uLCs3qelpaG48ePN8u7CQOTycTatWu5oo4nJCTgzz//BAA4OzsL5Rbdp08fmJubg81mY8WKFVzeBK9fv8b27dsB1AWc5jwS80fTb71794aZmRnYbDZWrVrFNbgNDw+Hl5eXSKdvAMDSpUvBZDJx/fp17Ny5k+tI1NraWjx8+JBrooGqW0eOHOGKjZCSkoKFCxcK9IgQRp+tWbMGUlJS2LZtG/z8/OhA2RS5ubnw9fWlj7sE6o5bPnnyJI+HyJcvX+hTg/id4CIIyv54/vy50GmEwdjYGGPHjkVRURFmzZrF461EkiRevXqFLVu2NPn4SHFtJCMjI4waNQpsNhvz5s2jPV0503p5edH/7tq1K1RUVJCbm4u///6b1k1sNhve3t64evWqwPoobjnr6upi5MiRAIC1a9dyrXanpqZi3bp1AIDRo0dzHSXcErSWLFReUVFRzZYn8OP2l+LoBSUlJTg5OQEA/vzzT7x9+5a+R8XQElQ3qYm6e/fucU1oFBYWYu3atQK3JM2fPx+qqqq4desWfv/9d544UCUlJbh9+zZ27NghwtsLRlQ7jxNqm/7+/ftRW1uL4cOHc/V9EiQxJXjQ0dHBqVOnMH36dCQlJcHFxQW+vr4/VMWxsLDAqlWrsHfvXqxbtw4HDx5E27ZtkZycjOrqapibm2PVqlUi5WliYgI9PT2kpaVh0KBB0NfXB5PJRLdu3eiJjmXLluHt27cIDw/HpEmToK+vDwUFBSQnJ4PNZqNTp070sXeikpCQgMTERDAYDKEmJaqrq2k3xuY+u7k5UVBQwNGjRzF//nwEBQUhODgYnTt3hoqKCoqLi5GRkQE2my1S8B8Gg4GRI0fiypUrcHBwgKGhIb23jvPM6H8SY8aMwV9//UWvTA8ePJjvEW5A3ZFb+/fvx8qVK3Hw4EEcOXIE+vr6kJOTQ0FBAT59+gSSJGFvby+yHKqqqujTpw8iIyMxdOhQdO3aFXJycujQoUOj8QU0NTXh5eWFJUuW4NatW7h79y4dhfrjx48oKSmBg4MDxo0bB6Buxt3S0hIxMTGYOHEi9PT0ICsri+TkZCgoKGD16tXYtm2byO/Q2rREnf/eODo60oOBlStXwt3dHbq6uiBJEjk5OfTA1N3dnU5jamoKe3t73L59G3PnzoWOjg6tl0mSxMaNG7FlyxaeZ0lJSeHAgQOYO3cu3r59i7Fjx0JXVxdt27ZFdnY2CgoKoK2tTZ9z39JMnjwZDx48wIgRI2BoaIjq6mraVdrS0lJozz4GgwEPDw/MnDkTMTExGDJkCAwNDVFRUUEPJGxsbODq6sqT7kfSbwwGA7t378a0adMQFRWFQYMGwdDQECUlJUhPT4ednR2Ki4tFGugZGRlh9+7dWLt2LU6ePAk/Pz907doV1dXVyMzMRHl5OVxdXenjKidNmoQLFy4gPT0d9vb20NfXR21tLd6/fw91dXUsWrQIf/31F89zhNFntra2+OOPP/D777/jjz/+wN69e6GnpwdpaWnk5eXREw/z5s2j8/306RNOnz6NnTt34qeffkKHDh1QVlZGnyyiqakJNzc3ocvD3t4efn5+OHbsGEJCQqCurg4Gg4F58+Y1+VSWrVu3ori4GGFhYXB0dISmpia0tLRQWVmJjIwMevJ3xowZTXoOIL6N9Oeff6KgoABRUVGYMmUKOnbsiA4dOiA3Nxf5+fkgSZJuJ0wmE25ubnB3d8fBgwdx7tw5dOzYEZmZmfj27RtcXV1x7do12j7ipCnlvGXLFqSlpSEhIQGjR4+mtx2kpKSgtrYWJiYm2Lx5c5PLUBhaQ5ZRo0YhOTkZCxcuBIvFoscEnp6eUFdXFzvfH7W/FEcvAHVtICYmBjExMXBwcEDXrl0hIyOD5ORkaGlpwcnJia8eNzAwwOTJk+Hv748lS5ZAW1sbKioqSE5ORrt27bBw4UIcPHiQJ52GhgaOHDmCxYsX49y5c/D390eXLl2gqKiIb9++ISMjA7W1tc12FKmodh4nNjY20NTUpMtuwoQJzSLTvwnJpAQfDAwM4OPjg5kzZyIuLg5z586Fj49PgxGEvzfz5s1Dt27dcPLkSbx58wafP3+Gnp4exo4dizlz5ogcJFJKSgpHjhyBp6cnoqOj8fr1a559kXJycjh27Bj8/f1x48YNJCcno6amBjo6Ohg2bBhcXFwEDiQbg/KS6NGjR4vPtH9vOnfujOvXr8Pf3x93797F+/fvkZWVBXV1dZibm6Nfv370zL+wbNiwAW3atMG9e/eQmJjYbFG2WwsdHR16gA6AJ8BlfQYNGoTbt2/D19cXjx8/RmZmJkiShKamJgYMGIDBgwdj2LBhYsni4eEBDw8PPH36FPHx8aiuroa2trZQaXv16oVbt27Bx8cHDx8+RHp6OphMJrS0tNC7d2+us8ilpaVx4sQJOoJ9ZmYmVFRUYG9vj6VLlzb5iLrWpCXq/PfG1dUVAwYMgJ+fH54/f46kpCTIy8tDS0sLffv2xfDhw3kM+d27d8PAwADXr19HTk4OysrKMGDAACxcuLDBoFiampq4dOkSzp07hzt37uD9+/fIzc2FhoYGrK2tMX78+BZ+2/+hoqKCS5cuYf/+/QgLC8OXL1+go6ODcePGYf78+SIFE9PR0cHVq1dx4sQJhISEICUlBTIyMjA3N4eDgwMcHR35Bmv+0fRbly5dcOXKFezfvx+PHj1CcnIyOnXqhJUrV8LFxQWzZ88WOU97e3sYGRnBx8cH4eHhSElJgYKCAnR1dWFra8s1Oa+kpIRz587B09MTYWFhSE1Nhbq6OiZPnoylS5fi0aNHAp8jjD5zdHSElZUVfH19ERkZiQ8fPkBaWhqampoYPnw4hgwZAjs7O/r3Tk5OUFFRQWRkJDIyMpCQkAAZGRno6+tj0KBBmDNnjkhB4Hr27AkPDw/4+voiJSWFPgKxOaLSKygo4PDhwwgKCsK1a9fw5s0bvH37Fu3atYO+vj569OiBESNGNEuwOXFtJCUlJZw8eRLXrl3DjRs3kJiYiIKCAqirq2PgwIE8Lt7Ozs5o164djh8/juTkZFRVVYEgCEybNg329vYCt/41pZzbt2+P8+fP4/Tp07h9+za9x58gCIwePRozZsxo8UCDrSnL/PnzUVtbi8DAQKSkpNCeA82xKPaj9pei6gWgrr2dOnUKR44cQUBAANLT06GqqoqJEyfCzc1N4DZGoG6ySVtbG1evXkVWVhaqqqowZswYrFixosGtlN27d8etW7dw9uxZ3L9/H2lpaWCz2dDQ0EDv3r0xcOBAeptHcyCKnceJtLQ0HBwccPjwYWhra4vtVf5vhkGKc2aYBAkSJEiQIOFfw8GDB+Hl5QVXV1eR4hxJkCBBggQJwvBf72fWr1+Pq1ev/mffvzEkMSUkSJAgQYIECRIkSJAgQYKEFqCkpAR3796FlJRUs3iB/RuRTEpIkCBBggQJEiRIkCBBggQJLYC3tzfKysowcOBAOgixBG4kMSUkSJAgQYIECRIkSJAgQYKEZiIhIQHbt29HXl4e0tLS6EC1EvgjmZSQIEGCBAkSJEiQIEGCBAkSmomioiJERUVBVlYWJiYmcHNzQ7du3VpbrB8WSaBLCRIkSJAgQYIECRIkSJAgQUKrIIkpIUGCBAkSJEiQIEGCBAkSJEhoFSSTEhIkSJAgQYIECRIkSJAgQYKEVkEyKSFBggQJEiRIkCBBggQJEiRIaBUkkxISJEiQIEFCM/Hs2TOwWCxMnz69tUWR0AAHDx4Ei8XCwYMHW1sUCa0Ii8UCi8VqbTEAANOnTweLxcKzZ89aWxSRuXr1KlgsFtatW/fdnnnnzh1MnDgRFhYWYLFY6NmzZ7Pku27dOrBYLFy9erVZ8vueiCt7c/dbzZ1fa9SvH4Hq6mp4e3tj+PDhMDU1BYvFwuLFi1tbrBbjX3X6RmZmJoYOHQoAePToETQ1NXl+ExUVRTeSpUuXwtXVlW9ew4cPR3p6Ov788084Ojq2nNAiUlFRgcePH+P169d4/fo14uLiUFJSAm1tbdy/f1/ofJYsWYLQ0FDcvHkTLBYLOTk5CA4ORnh4ON69e4fPnz9DVlYWenp6GDp0KGbMmAElJSW+ednZ2SErK0vgs8zNzXHx4sUG5YmKisK5c+fw8uVLfPnyBW3btoWuri569+6NpUuXQkbmx6yqVVVVOHnyJAICApCZmQl5eXmYmppizpw56N+/v9j5vn79GseOHcOLFy9QXFyMn376CcOGDcPChQsFfgcAKCkpweHDhxEcHIzs7GwoKyvDysoK8+fPh5mZGd80/v7+ePnyJd6+fYvPnz+jqKgIbdq0QdeuXTFq1ChMnjwZsrKyAt///PnzCAgIwPv37wEAurq6GDt2LGbMmCEwHZW2KWUXGhqKy5cvIy4uDoWFhVBRUYG+vj4GDhyIuXPnNpr+R6CyshJjxoxBRkYGAODevXuNnl+9fft2+Pr64tChQ7Czs8OzZ88wY8YMAED79u0RGhoqsI5QxrcwzxGGjx8/YsiQIQAAJpOJoKAgaGtr8/0tpSdOnz6N3r17N/nZoaGhSEhIwNChQ2FkZNTk/ITl1KlTKC4uxsyZM9G2bdvv9lxBfPz4EdeuXYO2tjYmTJjQ2uI0O1evXsX69esb7OPu3buH5cuXg81mY9q0adi4cSMYDMZ3llTCj0Zr6QgJLc/jx4/poxUNDAzQrl07tGnTptF0/3Z9KeHfxf79+3H06FHIysrC0NAQ8vLy6Nq1a2uL1WL8mCM9MdHR0YGWlhZycnLw4sUL2Nvb8/wmOjqa/v8XL17wzSc/Px/p6ekA0Gwzr81FamqqwIkUYamqqkJ4eDi0tbXpQcrkyZORk5MDoG5gQxAEvn79irdv3yI+Ph5XrlyBr69vgwMZU1NTvoNQQ0NDgWlIksT27dtx+vRpAICGhga6deuGb9++IT4+HjExMZg/f/4POSlRXl6OmTNn4tWrV5CRkYGhoSGKiorw5MkTPH36FOvWrcOsWbNEzvf27dtYs2YNqquroa6uDkNDQ6SkpODYsWMICQnB+fPnoaqqypOuoKAAzs7OSE9Ph5ycHAwNDZGXl4fg4GDcv38fnp6eGDFiBE+6PXv2oLi4GIqKitDQ0EDHjh3pNvTixQtcu3YNJ0+eRLt27bjSlZaWwsXFBTExMWAwGOjSpQtkZWWRnJyMPXv2ICQkBKdOnYKCgkKzll1VVRVWr16NoKAgAIC2tja6deuGL1++4OXLl0hKSvrHTEr8/fff9ISEsISFhUFeXh79+vXjuff161ecPn26VWbS2Ww2vL29sW3btu/yvNDQUNq4/J4DjtOnTyMrKwsODg4/xKREVlYWvLy80KtXr/+kkR0cHIyVK1eCzWZjzpw5WLt2rVDp2rdvD319fbRv376FJZTQWrSWjpDQ8ly4cAEAsH79epHsrH+7vlRXV4e+vj6UlZVbWxQJTYQkSfj7+4PBYMDf3x/GxsatLVKL8+ON9JpIz549cevWLTx//pzvpAQ1EdGpUyfExsaiurqaZ8BLTVx06NAB+vr6LS+0CMjIyMDCwgJmZmYwMzNDdXU1fvvtN5HyiIiIQFlZGZdClpOTw9SpU+Ho6MjVeb9+/RqrVq1CRkYGVqxYgUuXLgnMd//+/SKvvh44cACnT5+Gvr4+tm3bBisrK/peRUUFnj592uBqe2uyZ88evHr1Cp07d8bx48ehq6sLoG5l77fffsOuXbvQs2dPmJqaCp1ndnY21q9fj+rqari5uWHBggWQkpJCQUEBFi1ahFevXmHjxo3w9vbmSfvbb78hPT0d5ubmOHToENTU1FBbW4vDhw9j//79WLt2LSwsLHg8iFxdXWFlZQVTU1Ou1cWHDx9i5cqViI+Ph4eHB/744w+udNu3b0dMTAw0NDRw9OhRut7k5ORg8eLFiI2NxY4dO3jSNbXsNm7ciKCgIFhaWuKPP/4AQRD0vZKSEkRFRQld3q1JUlISfHx8MGTIENy7d0+oNO/fv0d6ejoGDx4MeXl5rnvS0tKoqanByZMnMW3atO8+YJaWlsb169exYMEC+ntKkNCScE7gLly4ECtWrBA67bRp0zBt2rQWlE6CBAktRWpqKgDA1ta2lSX5sVi1ahVWrVrV2mJIaAa+fPmCb9++QU1N7T8xIQH8C2NKUJ4NnB4RFDU1NYiJiUGXLl0wePBglJWV4e3btzy/oyYufjQvCaDO68Df3x8bN27Ezz//LJYL9oMHDwAAgwcPpq/5+/tj8+bNPKsJ3bt3x549ewDUTVAkJCQ0QXpukpOTcfToUbRr1w6+vr5cExIAIC8vjyFDhoDJZDbbM5uL/Px8ekvK9u3buQZhEyZMgIODA2pra3Ho0CGR8j1+/DgqKirQp08fLFq0CFJSdU1UTU0NHh4ekJaWxr1793i+Q1xcHMLCwiAtLQ0PDw+oqakBAKSkpLB48WL07t0b5eXlOHHiBM8zZ82aBTMzMx5354EDB9Ir7qGhoVz3vn79iuvXrwOoW6ngrDdaWlrYuXMnpKSkcPnyZZ6tPU0puydPnuDGjRvQ0dGBj48P14QEACgpKcHOzo4n3Y9GbW0tNm3aBBkZGWzYsEHodJT7OmfbpdDS0oK1tTWKiopw8uTJZpNVWMaMGYPq6mp4eXl992dL+O9x48YNrF69GtXV1Vi6dKlIExISJEj4Z1NRUQGgbkFNgoR/I1Qdr78A9W/mX+cpYW1tDaBuwEvtM6d4+/YtSktL0bNnT1hZWeHMmTN4/vw5unfvzpXH8+fPufL6txEWFgZFRUX06tWLvtaQC6uFhQWUlZVRXFyM1NTUZnODPHv2LKqrqzFlyhS+8T9+ZO7fvw82mw19fX2+k1eTJk3C1atX8ejRI5SWlgq115EkSQQHB9Pp66Ojo4O+ffviyZMnuHv3Ltd3oNL17dsXOjo6fOV59uwZgoKCRPKsoTyFysvLua6/fv0a1dXVkJKSouO4cEIQBLp06YKUlBQEBwdj9uzZ9L2mlN2pU6cAAAsWLICioqLQ7/Gjcf78ecTGxmL16tUCYzDw48GDB2AwGBg0aBDf+8uXL8e0adPg6+uLGTNmfFfXdFdXVwQGBiIgIAALFiyAgYGBSOkfP36MM2fO4PXr1ygpKUGHDh3Qt29fzJ8/n8tjjTOOBVA3KbZ+/XouOZYuXUr/u6amBlevXsWNGzeQmJiIiooKaGlpwc7ODgsWLOC7FYofVGwDCk4ZAPCNlUGSJM6dOwd/f3+kpaVBUVER/fr1w6pVq/h+91evXiE4OBiRkZHIycnBt2/f0L59e/To0QMuLi48fdX06dNpz6CoqCiugH2ixhkSRHh4OO7du4cXL14gOzsbpaWlUFdXR58+fTBv3jx06dKFb7qbN2/i0qVLSExMRGlpKdq2bYsOHTrA2toazs7ODW7ra4wrV65g48aNqK2txapVqzB//nyR8zh48CC8vLx46gv1nR0cHPDHH3/g+PHjuHHjBj59+oR27drBzs4OK1asENi2iouLcebMGYSGhiI9PR3V1dXQ0tKCubk5Jk6cyNXvUnFW7t27h0+fPuH48eN4/fo1CgsL4eXlRevWiooKnDt3Drdv30ZqairYbDZ0dHQwatQozJ49m2//8j2/W0REBM6ePYvY2Fh8+/YNKioq6NWrFxYsWMA3iGRhYSGOHTuGBw8e4OPHjwAAVVVV6OjowMbGBrNnz26Sh6SoOoLiyZMnOHLkCN6+fYva2lqYmppi2bJlDdqCd+/exaVLlxAfH0/rLVtbWyxYsKBZ4vZwEhcXh5MnTyI6OhoFBQVo06YNLC0tMXfuXK6+tLa2FoMGDUJubi78/PwELrCdPn0a27Ztw4ABA3Ds2DGue3l5eThx4gQePnyI7OxsSEtLgyAITJo0CQ4ODs0asyU3NxdHjhzBo0ePkJubCwUFBRgZGWHy5Mk8Hs/1Y5hxfucdO3Y0uCVDHH2Zn5+PAwcOICwsDF+/fqVjUcydOxfS0tJ8n5OWloYTJ04gPDwceXl5kJeXh4mJCaZPn87TbwiDKG1y3bp1uHbtmsCyuH79Os6cOYOUlBTIy8ujR48efNtCfYqKinDq1CmEhoYiMzMTJEmiS5cuGDduHKZOnSry4qEo37w+ZWVl8PLyQlBQEPLy8qCmpobhw4fD1dVVoIeoODo0JiYGJ0+exMuXL/H161coKipCVVUVpqamGDduHAYOHCjSO79+/RrHjx/Hy5cv6fGplZUV5s6dyxXzrb7+ysrK4qqrzRUT7EfkXzcp0bVrV6iqqtL7yzlXTSkPCCsrKy6PChcXF/o3xcXFSEpKAvBjeko0lYSEBGRnZ2PEiBFCd/o1NTWorq4G0PCMnbe3N/Ly8lBTU4OOHTvCxsYGI0aMEKi4OT02EhMTcenSJXz48AGysrIwNjbGL7/8ItKA7XsSGxsLADzeHRRmZmaQlZVFVVUVEhIShKpL2dnZyMvLazDfHj164MmTJ3j16pVI8lDXc3JykJOTAy0trUblAYCXL18CAExMTLiuf/v2DUCdISmoHmlpaSElJQUxMTFckxLill1FRQUiIiIA1NWZly9f4tq1a8jMzISioiIsLCwwceJEoQeZrUVubi48PT1haGgo0l7Yr1+/IjY2FsbGxgIn8aytrdGvXz+Eh4fjxIkTWL16dTNJ3Ti6urpwcHDApUuX4OXlhX379gmddv/+/fSWJHV1dbBYLKSlpeHq1au4ffs2Dh48iAEDBgCoWxnr0aMH0tPTUVBQAD09Pa5v3rFjR/r/S0pKsHjxYjx79gwMBgNaWlro2LEj0tPTcerUKQQFBeHMmTN8J/Lqo6amhh49eiAuLg5VVVU8MXT47eFds2YNAgICoKurCz09PXz48AGBgYGIjo7GjRs3eAa2q1evRkZGBlRUVKCurg4NDQ18+vQJd+/eRWhoKE9cGIIgUFhYiKSkJCgpKXF5Dqmrqzf6TsIwd+5c1NTUQFVVla53WVlZuHr1Ku7evYvjx4/ztOXdu3fTXlnq6urQ0dFBSUkJMjIykJSUBG1tbbEnJS5cuAB3d3eQJCnyfnJRYLPZcHFxwfPnz6Gvrw9dXV2kpqbC398fsbGxuHz5Mo/uS0lJwbx58/Dp0ycwGAzo6elBUVERHz9+xI0bN5CdnY0zZ87wPOv27dvYt28flJSUoKuryxWHJy8vDy4uLkhKSoK0tDQ6duwIRUVFpKam4uDBgwgKCsLp06d56tL3+m67du2Cj48PgLrFDUNDQ2RlZSEwMBAhISE4cOAAl2dXSUkJJk2ahPT0dEhJSaFz585o06YN8vLyEB0djaioKDg6OjZJj4uiIyj8/f2xZcsWqKqqonPnzkhPT0dUVBRmz56NU6dO8fTh1dXV+PXXXxEYGEiXl6GhIdLT03Hx4kXcvXsXJ06c4JlIFJczZ85g+/btqK2thbKyMrp27Yq8vDw8ePAAYWFhcHd3h5OTE4A6D8nRo0fDx8cHAQEBAu2PW7duAQDGjh3LdT06OhqLFy/Gt2/fICcnB11dXZSXlyM2NhYxMTEIDw/Hnj17mmVi4s2bN5g7dy4KCwvpWFiFhYWIjIxEZGQknjx5gu3bt9O/NzU1haamJl89THmICkJUffnp0yc4ODigsLAQhoaGkJGRQVpaGjw9PZGVlcV3a2pQUBBWr16NqqoqKCoqQl9fH4WFhYiIiEBERITI28yaU5fu3LmT9qLU0tKCmpoaIiMj8fTp0wbjUL1//x4uLi7Izs4Gk8mEtrY2GAwG3r17h/j4eDx48ADHjh0Tekwh6jfnpKqqCtOnT0dcXBwMDAygr6+P5ORk+Pr64vHjx/Dz8+PRHeLo0Pv378PV1RU1NTVQUlJC165dUVtbi5ycHNy6dQslJSUiTUpcunQJmzdvRm1tLVRUVMBisZCVlYW7d+8iJCQEW7duxS+//ALgf/qrqqoKcXFxkJWV5drK/K/2DiL/hSxZsoQkCILcuXMn3+sZGRkkSZLkkCFDyF69epG1tbX0b8LCwkiCIEhra2uu640RHx9POjk5ify3dOnSJr1rZGQkSRAEOXjwYKF+7+XlRRIEQV65ckXoZ4SEhJAEQZDGxsZkQUEBz/3BgweTBEHw/RszZgyZnp7OkyYvL4/+zalTp0gTExOetKampmRAQIDQclKI8x2cnJzIvLw8kZ5BEAR5+PBhgb8ZPnw4SRAEeenSJaHyfPr0Kf3egurezZs3SYIgyIEDB3Jdt7W1JQmCEFhetbW1dBmHh4c3KEdVVRWZkZFB/v3336SRkRFpYWFBvnz5kus39+/fJwmCII2MjMjKykq++djb29N1gBNxyy4mJoYkCILs1asXefDgQZLFYvHUmZ49e5IRERENvl998vLyxK4z4uDq6koSBEFGRUXR1yj5MzMzBaa7du0aSRAEeeDAAa7r9XUAVU4WFhbk58+fuX4rzHNEITMzk86TJEkyKyuLNDExIVksFvnu3Tuu31J6IjIykus6pXONjIzIixcv0nW/oqKC3LRpE62P8/PzudKtXbu2UV22atUqkiAI0tnZmUxJSaGvl5WV0XlPmjRJpHem3kNQGVLfw8TEhOzfvz/54sUL+l5OTg45ZswYkiAI0sPDgyfttWvXyLS0NK5rNTU1ZHBwMGlhYUH27NmTLCkp4fu8adOmifQewnL+/HkyOzub61pVVRV54cIF0tjYmBw+fDiXviooKCCNjIxIY2NjMiQkhCtddXU1GRYWxlMHGuLKlSt0/T5z5gzJYrFIFotFnj17tknvdeDAAb7tiXqeiYkJOWLECDI5OZm+l5ycTNrY2JAEQZAXLlzgSldSUkLa2dmRBEGQM2bMoO0Mivj4eNLPz4/rGlWXjIyMyH379pFVVVX0vYqKCrK2tpacMmUKSRAEuXjxYq7v8OXLF3LRokUkQRDkihUreN7ve3y3ixcvkgRBkAMGDCAfPnzI83wjIyPSysqKSw/5+PiQBEGQ48aN45GvoKCA9PX15anj4iKMjqD0V/fu3Ul/f3+6TCorK8kVK1aQBEGQkydP5knn6elJEgRBjh49moyNjaWvs9ls8uDBg3SdFdQ/8mPatGl8deSTJ09IFotFWllZkTdv3uT6bsHBwaSlpSVpYmJCJiYm0tfj4+Pp/pKzXlFkZGSQBEGQ5ubmZGlpKX09Ly+P7N27N0kQBPnXX3+RZWVl9L13796RI0eOJAmCIM+fP8+VH9Vu1q5dK/T7lpWV0W1g0aJFZGFhIX3v/v37pLm5Od+2RpKN62FBCKMvqXpjYmJCLl68mPzy5Qt9Lzg4mOzWrRtJEAT5/v17rnSJiYmkmZkZaWJiQp45c4Zks9n0vaioKLJ///4kQRDko0ePhJJVnDYpqM5T/ayxsTF57do1+npxcTG5dOlS2j6sXy5lZWW0PbZp0yby69ev9L2PHz+SkydPJgmCIPfu3cuVTlA5i/vNOfWyra0tGR8fT99LT0+n7U03NzeudOLqUKqf9vT05GnDb968Ia9fv04KS0JCAl2+Xl5edL2orq6mdUX99kuS/7OvhB3f/Rv418WUAP7n4VD/dI0XL15AU1OTXhXr2bMnCgsLkZycTP+GikXRo0cPkWaBi4uL8fLlS5H/4uLimvq6IvHgwQNISUkJdP+uT0lJCXbt2gUA+OWXX/iuXlhaWmL79u24e/cuXr9+jYiICOzatQsaGhpISkrCnDlzUFxczJUmPz8fAMBgMLB79246VsabN28QEhKCMWPGoKqqCuvWreMb96MhxPkOL1++RGVlpdDPKCoqAoAGgwlS96jfNgblfdC2bVuBdY/Kk/qtsPIwGIxG5dmwYQNYLBZMTU0xdOhQ7N+/H0OGDMGFCxdgaWnJ9VsqKGZNTQ3fII3Jycl0IKr6zxO37Kg6U1JSgoMHD6Jv374ICAjAmzdvEBAQgH79+qGoqAhLly6lT5IRhsrKSrHrjKjcu3cPwcHBmDBhgsjbw/jFguGHhYUFBg0ahLKyMhw9elRkGZvCTz/9hEmTJoEkSRw8eFCoNJSMjo6OcHR0pOu+nJwc3N3d0aVLF3z79g3nz58XSZakpCQEBARAU1MThw4d4tpOoqCgAHd3d5iamiI2Nlasb9kYbDYbGzZsQI8ePehrmpqaWL58OYC6QLL1GT9+PDp37sx1TUpKCsOGDcPMmTNRVFSEsLCwZpe1IZycnHg8q5hMJu1mm5aWxuW5lZGRgZqaGhAEwbO1S1paGgMHDhTrSNjc3Fxs3boVJEnijz/+wNSpU8V7ISGprq7G7t27uY5f69q1K32yT/3vd/HiRXz8+BF6eno4cuQIj/eNsbExpkyZwvdZtra2cHNz43KBlpOTQ1hYGKKjo2FkZIR9+/ZxfYf27dtj79690NLSwp07d5Cdnc2VZ0t/Nzabjf3794PBYODAgQO0JxPn86dPn47i4mKuANlUv/DLL7/wyKeqqooZM2YItd2xuZkwYQImTZpE6x9ZWVls2LABTCYTMTExXH3uly9fcPLkSSgqKuLQoUMwNzen78nIyMDV1RXDhg1DVlYWfUpUU/Dw8ABJkti6dSvGjh3LZR8MGzYMbm5uYLPZXF44xsbGMDAwQGFhIZ4+fcqTZ0BAAIC67Q+cWyF9fHzw9etXTJkyBcuXL+fy2mGxWPD09ASDwWiWuEWBgYHIysqCiooK9u7dy3XC1+DBg7Fo0SIAwJEjR0CSZJOfJyrt2rXD7t27uVbQhw0bRntgP3r0iOv3Xl5eqKyshJubG6ZNm8YVRN/a2hq///47AAhdds2pS48fPw6g7qS98ePH09eVlJSwe/dugceIX7lyBWlpaRg4cCD++OMPri3x2tra2L9/PxQVFeHn5yeUDd3Ub85ms7Fp0yauwI+6urrYsWMHAODOnTvIzMyk74mrQ9PS0gAA8+bN4/EAMTU1xc8//9zou1L4+PiAzWbD1tYWS5YsoeuFtLQ0XF1dYWNjAzabTXuc/Zf5V05KUMZ+fHw8ysrKANS5H3358oXLjY1yXaRiSAD/m5Tg3PcpDL1790ZiYqLIf82x51dY8vPzERcXB3Nzc6FcI0mSxNq1a5GRkYGffvpJoCu4h4cHfvnlF+jr60NOTg6qqqoYP348zp8/j7Zt2yIzM5M+8pOC+i4kSYLJZOLo0aOwsLCArKwsdHV1sXfvXpiYmIDNZuPw4cMivac43yExMVGkPVqU8m1oHx2lyKhgNc2ZZ33l3xzydO7cGT169ICJiQnd8URGRuL27duora3l+q26ujqGDx8O4H+ncFBkZmZizZo1qKmp4fs8cWWl6kx1dTU0NDRw+PBhEAQBWVlZEASBQ4cOQUNDA0VFRfD19RWYd306deokdp0RhdLSUrpTX7NmjUhp2Ww2njx5Ag0NDZ6tNPxYtmwZGAwGzp8/j9zcXJGe1VQWLFgAOTk5hISEID4+vsHflpaW0hMCM2bM4LkvJSVFn5Dw+PFjkeSg4qyMHDmS5zhbKm9qgufZs2ci5S0M7dq1w6hRo3iuUwMYQUfBpqen4++//8ayZcswffp0ODs7w9nZGXfu3AGAZg02LCwJCQnYt28fFi9ezCUT1XdyykS5xqelpeHdu3fNJgOngVp/AN4SdOvWja/rPfX9OA1fAAgJCQFQt29d1MBkDg4OfK9TddjBwYGvazQVo6S2tpbLjqFoye8WGxuL/Px8dOvWjWtQzgk1kOJsX9RzHj58yBOrqDWZPHkyzzU1NTXaLuD83o8ePUJlZSX69esncOsXv3cXh+zsbMTHx0NFRYXvkd4NPWvMmDEA/jcBwQm17aT+1g2qzvErDwAwMjKCtrY20tLSmty3UDrd0dGRb4yoKVOmgMlkIisrCx8+fGjSs8Rh9OjRfCfI+OmAqqoqhIWFQUpKCo6OjnzzGzhwIJhMJqKjo+kt0Q3RXLq0rKyMXqTld+KQvLw8Jk6cyDdtQ3HOgLqJdjMzM5SWlgq1yNrUb66pqck3Lkf37t1hbm4OkiS5JuHE1aFU2VP9blN48uQJAP42Dud1UW2cfyP/upgSQJ0xoaSkhJKSErx69Qp9+/alJxs491BSK1gvXrzA1KlTUVlZiTdv3gD4d8aTCAsLA0mSja60Uvz5558IDQ1F27ZtcejQIZGPGOzUqROcnZ1x5MgRhISEYMmSJfQ9zj1Ro0eP5tnPx2AwMGPGDKxduxZPnjxBbW0tfRLFjwAlP5vNFvibqqoqAMJHzhUlz/p7yuTk5FBeXt4keebPn88VMO7hw4dwd3fH4cOHUVhYSM/yU2zZsgVJSUlITU2Fk5MTtLW1IScnh7S0NDAYDIwdOxYBAQE8nbq4Zcf5zs7OzjxlIC8vDycnJxw4cACPHz/G2rVrBebfGuzbtw85OTnYunWryPulnz9/jpKSEowePVooDy4TExMMHToUISEhOHLkCDZv3iyu2CKjqakJZ2dnnDp1CgcOHMCRI0cE/jYjIwO1tbWQkZERePwytV+WWrkQFio20IMHD2i9Xp+CggIAEMmzRlgEDVaofc/UJBsnPj4+8PDwaNBgLSwsbBb5hGX79u2NTvJxyqSpqQl7e3vcvn0bDg4O6NGjB3r37g0rKytYWVmJHUlcS0sLTk5O8PDwgLe3NxQUFMQKcCksgo61pb5faWkp1/X3798DqPNUEhVBQWGpOnzp0iXcvXuX728+ffoEgLcOt/R3o2TLycmBs7Mz3/ypCWhO2X755RecPHkST548ga2tLWxtbdGzZ09YW1vznKb0PWnoe6empnK1V2pCOi4uTuC7U96hTdUt1LPYbLZA7yBqwq7+s8aOHYv9+/fj/v37KCsroweBb9++RUpKCtq3b4/+/fvTvy8rK6MDj7q7uwvsa75+/Uo/rylByimdzumNxImysjI0NDSQlZWFtLQ0kYMnN5X6XmsUVP/NWSfS09NRWVkJJpOJhQsXNphvZWUlCgsL0aFDhwZ/11y6ND09HTU1NWAymdDT0+P7G0HfgGrn3t7efE9vA/73HYWZpGrqN9fX1xc4FjAwMMCrV69obyxO+UXVobNnz4a7uzs2btwIHx8f2NjY0OUviv1WVFRE2xmC3pm6/vnzZ5SUlAj0Wvkv8K+clJCWloalpSUeP36M58+fC5yUMDAwQPv27enZsVevXoHNZkNRUfFfeSZsQ8cJ1mffvn04e/YsFBUVceTIEXTr1k2sZ1IGWnp6Otd1zpVLQR0Ndb20tBSFhYU/VABDYbZmCLNNgROqTIqKikCSJF+DgMqz/spv27ZtUV5eLlAekiRFlmfgwIH466+/MGnSJFy8eBHz58/nCjyqpqaGy5cvw8fHB0FBQcjMzISsrCztovby5UsEBARAQ0ODR1bOd+EHP1lFqTOUYfWj8PbtW/j5+cHCwkLgKkpDiNJ2KZYtW4Z79+7h4sWLmDt3Ln766SeRnysuCxYswMWLFxEWFobY2FiBAzVqYNe+fXuBhoagQWBjUIOCjIwMgV4JFKJs3RIWQafDCHrPFy9eYNeuXZCWloabmxuGDBkCbW1tKCoqgsFg4PLly9iwYYNQK2zNxc2bN+Hr6wsFBQWsXr0a/fv3h5aWFuTl5cFgMOgApfVl2rVrF7p27YrLly8jOjqa7n/btGkDJycnLF++XKxgXfPnz0dFRQX+/vtveHh4QEFBAdOnT2+Wd62PoO8naKBWUlICQHj9ygmnizwnVB3m3GIqCM46/D2+G6Wjv379Sg9ShZFNQ0MD/v7+2L9/Px48eIDbt2/j9u3bAOr096pVq8Q6oaCpNNZeOT11OCccGpt0aKpuocqZ06tM2Gfp6OjA0tISMTExuHfvHu0VQXlOjBo1istjkXObLaf3oyCE9QIVBDWobyhAZYcOHZCVlSWy/m8OBLVLfnWC+k5sNluo7YDCll1z6FKq7FRUVBrtZ+tD1YnGvB4B4d6pqd+8sXQAt60grg51dnaGsrIyfHx8EB8fjw8fPuD06dOQkZHBkCFD8NtvvwkVMJ5z4krQJBTn9dLSUsmkxL8Ra2trPH78mG7AL168QNu2bXlm4nv06IF79+4hMzOTK54E514wYXj79i22bt0qspzq6uo4cOCAyOlEpbKyEhEREdDW1m50NeLo0aM4fPgwZGVl8ffff3PtiRYVqhwpV34KalWdmlnmB6erVf30DSFo5aIxDhw4IHTEej09Pbx8+VLgYIfNZtOzr4JmpvnlCdR5CeTm5vJVeNTz6uepp6eH3NxcgfLk5OTQngmCVqT5YW5uDhUVFRQWFiIhIYHnNBQlJSUsW7YMy5Yt40lLrdLV324gbtlxHmHXWJ0Rpb7k5+fzlV8YhI1z8O7dO9TW1iI5ORk2NjYCfzdx4kRIS0tj0qRJdOwBoG61X15eHn379hVaNoIgMGrUKAQGBsLb2xt//vmn0GmbiqqqKqZNm4ajR49i//79AvfQUl40X79+FegNRa0yiLrPnBpkuLu7i60Tvic3btwAULdCQ+2r5aR+HJnvASXTr7/+yjcegiCZZGVlsWTJEixZsgRpaWl48eIFHj9+jNDQUJw4cQIlJSV8I9cLw7Jly1BRUYETJ05g27ZtkJeXF2uir7lRUlJCYWGh0DGEhIGqw8eOHeOJ2dAQ3+O7UbLZ29uLdNIOUNcH/fXXX6iqqsLr168RHR2NoKAgvH37Fq6urvDz82uS3dHSUO8+b968Fj/hiHqWubk5Ll68KHL6sWPHIiYmBrdu3cLYsWNBkiQ9CVR/6wbnxMyrV6/E9moSFup5lI7nx+fPnwGIrv+/N5R8HTp04BvDQ1yaQ5dSshUWFjbaz9ZHUVERRUVFuH37drN4qjT1m3/58kWkdOLqUKBu+9OYMWPw5csXPH/+HM+ePUNgYCCCgoKQlpbG9wSm+nC2qc+fP/NdHKLkri/7f5Efxx++maG2X7x69QoZGRnIyspCjx49eBoj9bvnz5/Te67E2brxowe6jIiIQHl5eaMrrWfOnIGHhwdkZGTw119/oV+/fk16bkpKCgDwDLClpaXp/br19+ZSUNdlZWUFngnPj+8R6JLaU1g/mCoFdVyVrKwsjIyMhMqzY8eO9KSIoHypGfj6e3gbk4e6rqmpKfRxoBRUPIn6cSUaory8nA4Ex3ksrzCyCio7TU1NWqE3VmdEecfvGeiytLQUnz9/5vmj+Pr1K+3CR5GcnIyPHz+ib9++IhuJS5cuhbS0NK5du9aot0Bz4+LiAiUlJYSHh/Pd7w7UuUxLSUmhurqay+WSE2qFo/5EXGPbWCiXSGFWSH4EsrKyAAg+Krf+McAUzXEsnyAojyNRZeJET08Pv/zyC/766y/8/fffAICrV682yePj119/xbRp00CSJDZv3oybN2+KnVdzQdU36sjj5sxT1Dr8Pb4bta2qKe1LVlYWPXv2xMKFC3Ht2jWMGjUKtbW1uHz5sth5ctJSbaM53l3UZ3348EGsNjNq1CjIyMjg6dOn+Pr1K54/f46cnBxoa2vzBLBWVlamt2N8j3ejdLqgZxUXF9PHpAu7uNMYLVUnOnfuDCaTiYKCggYH3E1BXF2qq6sLaWlpsNlsgdsgqe1n9WnufrSp3zw1NVWgLUrFoOBM1xzyq6qqYsSIEdi8eTMCAgKgrKyMxMREvH79utG0bdu2pb07BMlAjZM6dOjwn/aSAP7FkxJmZmaQl5dHRUUFTp06BYB/B01de/bsGe2uJmpUfODHD3QpjPv3lStXsG3bNkhJSWH37t1NdqEsLy/HhQsXAIDvCi8VBO727dt8JwSuXr0KoO57iOK58j0CXdrZ2UFGRgapqam0hw0n1IqGra2t0DOfDAaDDh7Jb0UkMzMTERERAMAT8IpKFxkZyXfATkU/FxQoSxCRkZH0yp+wkysAcPjwYZSUlIAgCJ6JraaU3ciRIwEA169f5/tc6nqfPn2ElvV7BLqcMGGCUPncu3cPiYmJ2LBhA31N2FM3+KGvr49x48ahurqaNmK+FyoqKpg1axYAYP/+/Xx/06ZNG3pFtH4wXKDOPdbPzw9AXX3ghHJZFeQyStX1gICAZjUSqYmh5t7yQb0P5yQVRUZGBl0PBMnTVFfqhvLmJ1N0dLTIk+rUt2az2U2OjbFx40ZMnDgRtbW1WLduHR3QrLUYNmwYgLqJ/eaqG1Qd9vf3Fyko5Pf4blZWVlBTU0NycjIdyK2pUINkalDSVBrTEeIyaNAgyMrK4smTJ/SAoqXo3LkzWCwWiouLceXKFZHTq6qqol+/fmCz2bhz5w69daP+KR4UlC1B2c0tCaXTL1++zDfGzvnz58Fms9GpUycuT8mm0FL6UkFBAba2tiBJUqRA2+Iiii7l7GfPnTvHc7+yslLgRCClg06fPi3SwpQgmvrNc3Jy+I6b4uLiEBsbCwaDweWNKq4OFYSGhgY9VhBWT1HycJ6Owwll+9S3cf6L/GsnJWRlZemVeKqx8ZuUMDY2hoKCAu7cuYPS0lLIycnxjbj9TycsLAxt2rQReKpIUFAQNm3aBKAuwOXo0aOFytfHxwfnzp3jcVnNzMzE/PnzkZ6eDgUFBbi4uPCknThxIrS1tZGfn48tW7bQnQQ1ELl37x4YDAbmzZsnyqt+FzQ0NOhoxb/99hvXKvTVq1dx7do1MBgMvm7Yu3btgp2dHVasWMFzz8XFBXJycoiMjMShQ4foTqCgoACrVq1CTU0NBg8ezBPzxMzMDLa2tqiursbq1avpQVhtbS28vb0RGRkJeXl5nu9w584dnD17lmfQVltbi3v37mHlypUA6gbE9QP3JSYmIjQ0lCtgZXl5Of7++28cOXIETCYTW7du5TF8mlJ2c+fOhZKSEt6+fQtPT096haC6uhqenp54+/YtZGVl6cHwv4H79++DwWAIfYxvfZYsWQImk8k3AjtFbGws7OzsYGdn16xBH2fNmgUVFRV6dY4fVLDCS5cu4fLly/Q+3crKSri7u+P9+/do164dzxYMqj5GR0fzPTrM2NgYY8eORVFREWbNmsWzqkGSJF69eoUtW7YI9LzhB/XcqKgoodMIA+Whd+TIEa42kZKSgoULFwpc4aMMpJSUlAZdW1ksFlgsFj3ZK4pM+/bt4xrgvnz5Em5ubnz3MkdERGDnzp08k3aVlZXw9vYGUOcV1tDeYGFgMBjYunUrxowZg5qaGqxcufK7H5fKiaOjI3R0dJCWloZFixbRni8UCQkJfAcEDTF06FBYWVkhPT0d8+bN41nNrK6uRmRkJFatWkUHBwa+z3eTk5Oj+7CVK1ciMDCQZ9CSkZEBb29vrgkjT09P+Pv78wykPn78SE+e19/yd/DgQbBYLB6vu8ZoTEeIi7q6OubMmYPq6mrMnTuX76RMYmIi9uzZI9AjUBTWrFkDKSkpbNu2DX5+flzfGqgLMOjr6ytwOyG1TeP69ev0t6i/dYNi/vz5UFVVxa1bt/D777/zxAspKSnB7du36SMYm8KYMWOgra2NwsJCrFmzhsuOfPjwIQ4dOkTL1FweDsLqS3FYvnw55OXlcezYMXh5efHERPj69SsuXbpEt6fGaE5dSh1lfOHCBS5boKSkBGvXruWKJ8LJ5MmToaenhxcvXsDNzY3n5CPq1JH169cL9U5N/eZMJhN//vkn12kkmZmZ9PNHjBjBZauKo0NLSkrg5uaGiIgIrq3A1NanpKQkMBgMoWMPzpkzB0wmE48fP4a3tzedZ01NDQ4dOoQnT56AyWRizpw5QuX3b+ZfG1MCqFthj4qKQmVlJeTk5GBmZsbzGyaTCTMzM9rA7N69e6N7hFobBwcHes89NSjLzs7mOq94zJgx9CRDfHw8cnNzMWLECIHvRg1427Rpg8uXLwucNV24cCEGDhxI/zs7OxunT5/G1q1boaOjAxUVFRQVFSEtLQ0kSUJRURGenp58I1vLycnBy8sLM2fOxLVr1xASEoIuXbogJyeHnoFcuXKlSPvovydr165FfHw83rx5g1GjRsHQ0BBFRUW0Mbp27Vq+de7r16/Iysriic8A1MXa2L59O3799Vf89ddf8PPzg4aGBlJSUlBZWQldXV1s27aNrzw7duyAs7MzPcA0MDBAXl4e8vPzISMjgx07dvBsa8jNzcWOHTuwdetWaGtrQ01NDTU1NcjMzKQ7C0tLS+zatYvneZmZmViyZAnk5eXpGCGpqakoLy+HoqIi9uzZIzDAobhlp6amBk9PT7i6uuLIkSO4ePEidHR0kJmZia9fv0JGRgZ//vnnd4/S3VJ8+fIFr169grGxsdhRznV0dDBhwgT4+/sL/E1lZSVd9s0ZSFFZWRlz5syBp6enwDgfAwcOxKJFi3Do0CFs2LAB+/fvh6amJtLS0lBcXAx5eXns3buXJ0jUsGHDsG/fPgQGBiI2NhYdO3aElJQUHBwcMGHCBADA1q1bUVxcjLCwMDg6OtLblyorK5GRkUGv1Ag6qosfo0aNQlhYGNzd3XHu3Dn6+NzffvtNJG+i+kyaNAkXLlxAeno67O3toa+vj9raWrx//x7q6upYtGgR/vrrL550qqqq6NOnDyIjIzF06FB07doVcnJy6NChg8h7/eszd+5cBAYG4s2bN7Czs4O+vv7/tXfeYVEd3/9/LwgIgiAoJXSFu1QVEIhGVIyiYokl9hIrxm40+dqVmKKxRkEsxAKIhmBXUKzYACmiiCC9iRQFaSJ17+8Pfvdml92FZUHRfOb1PD7qnZ07c6fPmXPO4P3798jKyoKpqSlGjx4tdLf6u3fvcPz4cRw/fhxqamrQ1dUFj8dDTk4OKioqICcn16Rn/5YgIyODP/74AzU1Nbh+/TqWL1+Ow4cPt8uc0alTJxw8eBDz58/Hw4cP8fXXX6N79+7o2LEjcnNzUVJSAgcHB5E+HsTB4XDg4eGBRYsWISoqCq6urtDT00PXrl1RWVnJevwHGm7bYPhY9TZx4kQUFBTA09MTq1atgru7OwwMDEDTNPLz81lht7u7OxsnNTUVhw8fxpYtW6Cnpwd1dXWUlZUhKysLPB4PpqamIg8xpEGSMUJaVqxYgaKiIgQGBmLevHlQV1eHnp4e6urqkJuby/rt4F+XSYuTkxO2bt2Kn3/+GVu3bsWuXbtgZGQEWVlZFBYWsrceiDvAGTJkCJSUlFizHXNzc7E3AWhqauLw4cNYvHgxTp06hYCAAHTv3h1KSkooLS1lb0wSdw1sS+jYsSP+/PNPzJ8/Hzdv3sSDBw9gYmKCkpIS1gRpwoQJYq8nlYYPOV6amZlh3759WLVqFTw8PHD48GEYGxtDQUEBRUVFePXqFWiahqurq0Tva8uxdNCgQZg1axZ8fX3x448/Yvfu3dDQ0EB6ejrq6+uxdOlSkd+vqKiII0eOwM3NDSEhIbh+/ToMDQ2hpqaG8vJyZGdno7a2ttmbRBhaW+cuLi7IysrC2LFj0aNHD3To0AEpKSmor6+HkZGR0E1j0oyhPB4PV69exdWrV9GxY0cYGhpCXl4e+fn5eP36NYCGvZCkJkVmZmbYvHkztmzZgn379sHX1xd6enrIzc1FcXExZGRk4O7u3q63D30q/OeFEgzW1tZiN+R9+vRhhRKfw1WgpaWlQqcMPB5P4Bm/hFYS9W/mtLs5D8+NT9RHjhzJnjjm5eXh1atXkJOTg6mpKfr374+ZM2c26fXfwsICV65cgZeXF+7du4fExER06tQJgwYNwuzZsz9ZgQTQ4MDm1KlTOHr0KK5cuYL09HR07NgRX331FebOndukQ8OmGDVqFAwMDHD48GE8fvwYKSkp0NbWhouLCxYtWiTW5qxbt244f/48Dh48iBs3biAlJQXKysoYMmQIFi5cKFIDaMiQIaiurkZkZCQyMjLYwV1dXR12dnYYOXIkRo4cKdIxEpfLxZQpUxATE4O8vDzU1dVBW1sbTk5OmDt3bpP13pqyGzhwIC5cuIBDhw4hPDwciYmJUFVVxYgRI7BgwQKhU7bPmbt374LH47X4hLAxixYtwvnz54VO2D4GM2fOxIkTJ5o8lVq5ciVsbW3h5+eHuLg4vHjxAhoaGhgyZAjc3NxEqnEaGBjg0KFDOHz4MBISEtgFH782mKKiIg4dOoSQkBCcP38ez549Q0JCAlRVVWFsbAxbW1sMGzasRc5fx44di7KyMpw5cwZZWVnslWOtdXCorKyMU6dOYc+ePQgNDUVGRga6deuGyZMnY9myZbh3757YuLt378bu3bvx8OFDPH/+HHV1dQJCT2YhBaBFN0vp6OggICAAe/bsQUREBNLT06Gjo4P58+dj0aJFIh2Y2tnZYdOmTXj48CFSUlKQkZGB2tpaaGpqwsXFBXPnzmXt5NuCDh06YPfu3Vi6dCnu3r2LxYsXw9vbu13mclNTU1y+fBknTpzAzZs3WQ0cTU1NDB48GBMmTGjxOzU0NODv748LFy4gKCgIiYmJKCgoQJcuXWBubg4HBwe4uLgIaD98zHpbunQpBgwYAH9/f0RFRSE5ORkdO3aEtrY2+vbtCxcXFwEHc4sWLYKJiQkiIyPx8uVLVrvN3Nwcw4YNw8yZM4VuwmDab0tvRZNkjJAWGRkZ/Prrr3B1dcXff/+N2NhYdv2io6MDFxcXDB06tM3WMBMnToSdnR18fHzYOpWVlYWWlhZcXFzw9ddfi50nlJSUMHjwYFy5cgVAwxqjKXr27IkrV67g5MmTuH37NjIzM9m24OjoiIEDB7JmHq2lZ8+euHTpEo4cOYK7d+8iKSkJioqKcHBwwNSpUyXewLeE5sbL1jBo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2fW1Ks52nos3bBhAywsLODn54fU1FS8f/8eX375JZYtWyZWUwJoMCG6cOECAgICcO3aNaSlpSE3NxfdunVDr1690K9fP9a0VhJaU+fy8vLw8/ODh4cHQkJCUFhYiG7dumHo0KFYtmyZ0M10QMvH0E6dOmHnzp0ICwtDXFwc8vPz8e7dO6ipqcHZ2RlTpkxpsebqpEmTwOVycfToUURHRyMxMRFqamoYNmwY5s+f/5/U0JcGDt2WOm2ET5Lx48cjMTERDx8+/KSu1SQQCE2zfPlyhISE4Ny5c/8pYQvh43Lt2jWsWLECAwcOxJEjR9o7OwRCixg1ahRSUlIQGBhIFu8EAoHwH+U/61OC0EBBQQESEhLQq1cvIpAgED4jampq8ODBA2hqarb4hJBA4IfRfmP8dxAInwtlZWVITU1F3759iUCCQCAQ/sP8p803CA3XKPI7hCEQCJ8H8vLyUl07SiA05vHjx7C1tf0szBMJBH5iY2NB0zQRqBEIBMJ/HGK+QSAQCAQCgUAgEAgEAqFdIOYbBAKBQCAQCAQCgUAgENoFIpQgEAgEAoFAIBAIBAKB0C4QoQSBQCAQCAQCgUAgEAiEdoEIJQgEAoFAIBAIBAKBQCC0C0Qo8T/K4MGDweVy8fLly4+e9suXL8HlcjF48OCPlubatWvB5XJx7ty5j5ZmezJr1izY2NiguLi4zd6ZkJCABQsWwN7eHlwuF1wuF4mJiW32fsL/Njt37gSXy0VERMRHTXfmzJngcrl49OjRR01XEtpznCb8d3n06BG4XC5mzpwpFMaM7YT/LmRcEc+n3P6lnavOnTsHLpeLtWvXtkk+2vp9Hh4e4HK58PDwaJP3tYb22J+0JZ/yekYSyJWg7cTNmzeRmJiIIUOGwNzcvL2zQ/gPcefOHTx69AgLFiyAurp6m7zzzZs3+O6771BWVgZtbW306NEDHA4HSkpKzcYdPHgwcnNzBZ4pKSlBRUUFhoaG6NmzJ0aOHAkLCwux7/Dw8ICnp6fAMw6HAxUVFfTo0QMuLi6YPn06FBQUhOKmp6fDz88PERERyMvLA4/Hg7q6OrS0tNC7d284OjqKnICqqqrw999/4/r160hNTcW7d+/QuXNnaGhogMvlwsHBAUOHDpW4jMvKyuDj4wMVFRXMnj1bojj/S8ybNw+nTp3Cjh07cPbsWXA4nPbOEoHwWcIs7pctW9bOOWmaEydOoLy8HN999x06d+7c4vjM3LJt2zaMHz9eKPz9+/dYtGgRwsPD0bVrV5w4cQKmpqZtkfVW8+jRI8yaNUui3/r5+cHBwUHi90ZGRsLBwQGOjo6tySKBQCB8VIhQop24efMmzp8/D11d3f85oYScnByMjY2hpaXV3ln5z0HTNHbt2gUFBQXMnTu3zd4bFBSEsrIyDB06FPv374eMTMuVrIyMjNgNfHV1NUpKShAZGYnIyEj89ddf6N+/P37//fcm24WysjIoigIA1NfXIycnB7GxsYiNjcWlS5fg6+srsLi9cuUK1q1bh5qaGnTo0AHa2tpQV1dHaWkpnj59iidPnsDPzw8JCQkC6RQUFGD27NlIT08HAFYQUVdXh+zsbKSkpODKlSvo2LEjvvnmG4m+v6ysDJ6entDV1SVCCRGoq6tjypQpOHbsGK5evQpXV9f2zlK7o6+vD3l5ecjJybV3VgifEYwAV5xQQlFREcbGxtDR0fmY2RLC19cXubm5GDdunFRCiaZ49+4dFi5ciKioKGhqasLHxwfdu3dv0zRag4qKCmxtbcWGFxYW4uXLl1BQUGjRGjEyMhKenp5YunQpEUpIgbGxcXtnQSw6OjowNjaGoqJie2eFQPggEKEE4aOjpaWFa9eutXc2/pOEh4cjNTUVw4YNazMtCQDIyMgAAPTr108qgQQALFy4UOg06+3bt7h8+TK8vLzw4MEDfPvttzhz5oxYwYSFhQX8/PwEnl28eBHr169HYmIi9uzZA3d3dwBAbm4u1q9fj5qaGnzzzTf48ccfoampycYrLy/H7du3cfbsWaF01q9fj/T0dOjp6WH79u2wt7dnw+rr61khCFkctC3jx4/HsWPH4OfnR4QSAHx8fNo7C4T/ID179vxPz8EVFRWYP38+YmNjoaOjAx8fHxgaGrZ3tgSwsLDA6dOnxYYvW7YML1++xNdffw0VFZWPmLP/bT7lfrFjx472zgKB8EEhPiUIhP8QAQEBAIAxY8a06Xurq6sBAB07dmzT93bp0gWzZs3C2bNn0a1bNxQWFmLNmjUtesc333yDqVOnAgCCg4PB4/EANGh3VFdXw8jICNu2bRMQSAANJ1XffPMNfH19BZ4XFhbiwYMHAIA//vhDQCABALKysujTpw+2bt0KFxeXFuWV0DSmpqbgcrl4/PgxUlNT2zs7BALhM6OsrAxz5sxBbGws9PT0cPLkyU9OINEcpaWlCA0NBQCMHTu2XfNCIBAIH4vPRlMiLy8Phw8fxsOHD5Gfnw9ZWVmoq6uje/fuGDRoEGbMmMH+lrHVc3BwwPHjx/HXX3/h4sWLyM3NhYqKCgYMGICVK1eKPY2tr6/HuXPncPHiRSQlJaGqqgra2toYPHgwFi5cKPYEurq6GgEBAbh69SrS0tLw/v17aGpqwtLSEmPGjMGQIUNYyTfDunXrsG7dOvb/S5cuZVUuGWc7SUlJuHHjBnx9fZGUlITS0lJcuHAB5ubmeP36NUJCQhAaGoqMjAwUFhZCQUEBJiYm+OabbzB58mSpT7b52b59O44fP47Vq1fDzc1NIGz27NkIDw+HtrY27t69KxB28+ZNLFmyBM7Ozjh06BAAsGWgq6uL27dvC/ye/5sfPHiAw4cPIyEhATweD1ZWVli+fLnQJpGhrKwMHh4euHHjBoqKiqCpqYnhw4dj6dKlTX4bTdMICgrCP//8g8TERFRVVUFLSwsDBw6Em5ubUDsZP348nj9/jn/++Qe9evVin9fU1MDe3h5VVVUYM2YMdu7cKRDvt99+g6+vL9asWSNgWnHp0iUEBgYiKSmJ9VvQtWtX2NvbY+rUqRLbwFZVVeHWrVuQk5ND//79m/ydr68vgoODkZWVBQAwNDSEq6srZs2aJSB4WLt2Lc6fP8/+n7+9jhs3Dtu3b5cob82hq6sLd3d3LFmyBOHh4YiLi0PPnj0ljm9vbw8/Pz+Ulpbi7du30NDQQE5ODoCGNiUrKyvxu/idfzXl56Il8Jdjbm6ukCOtpKQkAA11c/PmTdy5cwcJCQnIz88HTdPQ09PD119/jblz50JVVVXo/TNnzkRkZCR8fX2hrKwMT09PPH78GFVVVTAxMcHMmTObXNxmZmbi6NGjCAsLQ2FhITp27AhLS0vMnDlTYLxq/D3btm2Dg4MDDhw4gIcPH+LNmzeYPn06NmzYAAC4e/cuTp48ifj4eJSVlUFZWRkaGhqwsbHBhAkTRKovOzs7IykpCUFBQVixYoXEZVxWVobr16/jzp07SElJQUFBAWRkZGBsbIzhw4fju+++E+lzRBx1dXX4+++/cfnyZaSmpqK6uhqqqqrQ0tKCo6MjZs6ciS+++EIgTkv6liQwNvO3bt2Cnp4e+5y/vrW0tLB//36Eh4ejoqICRkZGmDFjBiZPniz2vYmJifDx8UFkZCRev34NJSUl6OrqYtCgQZgyZQorwGs8l/r4+ODixYvIzs5Ghw4dEB0dzb6zpW1I2voqKSmBt7c37ty5w/ZVdXV16Ovro3///pgzZw7k5eUF4lRVVeHUqVMIDg5GRkYGamtroa+vjxEjRmDOnDno1KmTUDqxsbE4fvw4Hj9+jLdv30JJSQnq6uqwsrLCmDFjMHDgwGZqrwHGHw7/3M4Pfxnza4HxP/f19cWpU6cQEBCAzMxMKCkpoV+/fli9ejV0dXWF0mJoPM4w7UhcmtLS0nXIuXPnBNY9jduHr6+vVKYHJSUlmDt3Lp4/fw5DQ0P4+Pi0u4mKNAQFBaGmpgZdu3Ztci5vDH99e3p6CrQFcfN1XFwcvLy88PjxY1RXV8PU1BQLFy7E0KFDxaYTHh6OkydP4smTJygtLYWamhocHBywcOHCFjuJ5B/L1NXV4eHhgcjISFRXV8Pc3BwrVqxg20JqaioOHDiAyMhIlJeXg8vlYvny5XBychJ6b05ODq5du4b79+8jOzsbb968gZKSEszNzTF58mSxmnj8a1B++Mfi4uLiFpeZKFo6x/CXVeP+UV9fj5MnTyIwMBDZ2dlQUVFB3759JZpDCwsLcfToUdy9exd5eXmQlZUFRVGYNGkSxo0b12L/TmlpafD29kZERATevHkDZWVl9OrVC7NmzcJXX33VZNyioiLs27cPoaGhePv2LXR0dDB69Gi4ubmJnb/Lyspw4sQJ3Lx5Ezk5OaBpGt27d8eYMWMwffr0NjV/bMn+8P79+5g/fz4MDAxw48YNse8cN24cEhISsHfvXqF22ZZ97XPgsxBK5Obm4ttvv0VxcTHk5ORgYGCAjh07oqCgAA8ePEBMTIyAUIKBpmksW7YMt2/fhoGBAUxMTJCcnIxz587h/v378Pf3F5KgV1RUYPHixXj06BE4HA60tbWho6ODrKwsnDhxAiEhIfDz84O+vr5AvIKCAsyfPx/JyckAGmyB9fT0kJeXh5CQEMTHx2PIkCFQUFCAra0tsrKyUFRUJGBnD0DkBOrt7Y1du3ZBXV0dBgYGyM/PZ8MCAwOxb98+KCgoQFNTE1wuF2/fvsWTJ08QGxuLsLAw7N+/v9VO45hFaWRkpIBQora2Fk+ePAEA5OfnIzs7GwYGBmw44wFWnCBBHAEBAdiyZQvU1dVhaGiIrKwsREZGYs6cOThx4gT69Okj8Pvi4mJMmzYNGRkZkJGRgampKerq6vDXX3/h0aNHAnnih6ZprF27FhcuXADQsDnW19dHWloaTp48iaCgIBw9ehSWlpYCZfH8+XM8evRIQCgRFxeHqqoqAA12nY1hnvGXxY4dO3D06FEAQLdu3aCvr4+KigpkZ2cjOTkZurq6Egslnjx5gtraWlhaWord/Lx9+xZz5sxBYmIiOBwOTExMwOFwkJSUhMTERFy7dg3Hjx9nN75GRkZi26uRkZFE+ZKUwYMHQ1NTE4WFhQgNDW2RUIKmafbfTFtXVlYG0LABq6mpEdqoiIOJBwBPnz5F3759Jc6HOIyMjGBlZYX4+HjIy8vDyspK5O/i4+OxevVqyMrKomvXrjA2NkZlZSWysrJw6NAhXL16FX///bdYwejjx49x8OBByMrKonv37njz5g3i4+OxZs0aJCUlidRCCQkJwY8//oiamhooKSnB2NgYJSUlCA8PR3h4OL7//nv88MMPItPLyMjAtm3b8P79e5iamkJFRYXdfPj7+2Pr1q0AADU1NXC5XFRVVSEvLw9paWnsWNgYpt75N7yScOfOHWzYsAFycnLQ1NSEqakpysrKkJSUhOfPn+PWrVvw8/OTuB2sXr2aVeX94osvoKGhgZKSEiQnJ+P58+fo1auXwIKxpX2rLUhISMCiRYtA0zSMjY1RWFiI5ORkbN68GaWlpUICZKDBJGT79u3g8XhQUlKCqakp3r17h5SUFDx//hx6enpCZlY0TWPJkiUIDQ2Fnp4eevTogaKiIjZcmjYkTX1VVFRg0qRJyMrKgoyMDAwNDdGpUycUFhYiOjoakZGRmDhxokD/KCwsxLx585CcnAxZWVno6OhASUkJGRkZ8PDwQEhICHx9fdGlSxc2zu3bt7F06VLU19dDWVkZJiYm4PF4yM/Px5UrV1BRUSGxUKIt+Omnn3D58mUYGBjAyMgI6enpCAoKQnR0NC5evMjmXUdHB7a2tnj8+DEACPWvlgjlWkJL1yEaGhqwtbVFfHw8ampqYGVlJVDP0pgrFBcXY86cOXjx4gW6d+8OHx8fIe24z4VLly4BAEaNGtUigbqtrS3y8vKQl5cHHR0dgfWkqPn67t272LZtGxQVFaGvr4/c3Fw8e/YMS5cuxZ49ezBy5EihOH/88QeOHTsGoEHT0dTUFLm5uQgKCsKNGzewf/9+ODs7t/CLgWfPnsHT0xOysrIwNDREbm4uYmJiMG/ePBw7dgyysrJYsGABOBwODA0NUVdXh7i4OHz//fc4evQovvzyS4H3HTp0CGfOnIGSkhLbJouKihAREYGIiAg8efIE69evb3E+pSkzcbR0jhEHTdP44YcfEBISAqBh/9G5c2dcu3YN9+7dw7Rp08TGjY6OxuLFi1FaWgoFBQUYGBjg/fv3An13586dEu8hQkNDsXz5clRXV0NZWRlcLpdd04WGhmLZsmViDwpLSkowceJE5Ofnw8TEBMrKykhLS4OnpyfCw8Nx7NgxobVtWloa5s2bh7y8PMjJyUFXVxccDgcvXrzA8+fPcefOHXh7e0s87zdFS/eH/fr1Q9euXZGdnY2nT58K7BcY0tPTkZCQgE6dOgk5XP9Qfe2Thv4M+OWXX2iKoui5c+fSb9++FQh79eoVffz4cYFnERERNEVRtKWlJW1jY0M/fPiQDXv9+jU9bdo0mqIoetKkSUJprV69mqYoip46dSqdmprKPq+srKQ3bdokMl59fT09ceJEmqIoesyYMXRiYqJAeEZGBu3t7S3wbM2aNTRFUfTZs2fFfjdFUex3nDx5kq6vr2fTq66upmmapqOiouiwsDC6trZWIG5mZiY9depUmqIo+uLFi0LvdnZ2pimKonNycsSmz09paSltZmZG9+7dWyCt6OhomqIo2snJiaYoiv7nn38E4n3zzTc0RVH006dP2Wc5OTk0RVG0s7Oz2G/u2bMnHRAQQPN4PJqmabq6upr+4YcfaIqi6MmTJwvFW7FiBU1RFO3q6kpnZWWxz589e0Z/9dVXtKWlpcjyPnnyJE1RFN2rVy/69u3bAt+7cOFCmqIo+uuvv6arqqrYsJs3b9IURdHz5s0TeJeXl5dAWfDno6SkhDYzM6NtbW3puro6mqZpuqioiDY3N6ctLCzoGzduCLyrrq6ODg0NpSMiIoS+VRyenp40RVH0pk2bxP5m+fLlNEVRtIuLi0D7Tk1NpV1cXGiKouhVq1YJxZOkvYqDaWuSxF22bBnb1/nZv38/TVEUPWPGDJHxtm7dSlMURdvb27P9JCwsjG1PM2bMoG/dukWXl5c3m4f6+no2z3379qVPnDhBZ2dnS/ClTdNUu2d4+fIlHRQUJJTPt2/f0lu2bKEpiqI3bNggFG/GjBnsWLFixQqB+BcuXKAtLCxoiqLou3fvCsRLSkqira2taUtLS9rPz0+gb0dGRtJfffUVTVEUfe/ePYF4THswNzen3dzc6KKiIjbs/fv3dG1tLW1vb09TFEX7+/uzbZ6maZrH49GPHj0SavMMBQUFNEVRtLW1NV1TUyO2rBqTmJhI3759W6Cv0jRN5+fn00uXLqUpiqK9vLyE4jFlx9/X4uPjaYqiaDs7Ozo6Olrg91VVVXRQUBCdkJAg8FzavtUU4sZp/vrevHkzXVlZyYadOHGCHUPLysoE4t25c4emKIo2MzOjDx06xM4jNN0wxl6+fJmOiopinzFzqbm5Oe3o6CgQ9v79e5qmpW9D0tTXsWPH2Hk2Ly9PIKyoqIj28fGhKyoq2Gc8Ho+d7xcvXiwQp7i4mF60aBFNURT9ww8/CLxr1KhRNEVR9J49ewTKiKYb5pQLFy7QksKMXfv37xcZzpRx47GNfx3z1Vdf0TExMWxYfn4+m8fdu3cLvZMZ98QhLk1J4oriY61DxMU/fPgwPXLkSJqiKHrUqFH0mzdvpHofw9atW+kpU6a0+E9oaGir0qXphjJj6qDxGCMJzbU3mv633CwtLWlPT092nK2vr6e3b99OUxRFDxgwgJ1LGf755x82rPFccvr0adrc3Jy2s7NrUfnzj2W//PILOx7U1dXRGzdupCmKoseNG0c7OzsLha9fv56mKIqeOHGi0HtDQ0Pp2NhYdg3JkJCQQA8fPpymKEpobKdp8e1f2jIThzRzjKi5iqZp2t/fn6Yoiu7duzd9//599jmz32HWv2vWrBGIV1hYSDs6OtIURdF//vmnwDzy4sULtpxOnz4tEO/s2bMi31dQUEDb2dmx61BmjuDxePQ///xDm5mZiZwLmDZraWlJjxo1SmC9FR8fz84hO3fuFIhXWVnJzq2bNm0S2B++fPmSnjx5Mk1RFL1r1y5aUppap0mzP2T2r7/88ovI9P7880+RZSltXxPXRj4XPgufEoyTvWnTpkFNTU0gTEdHR6wn+9raWixfvhz9+vVjn3Xt2hV79uyBnJwcnjx5InCXa3JyMi5fvgwtLS0cPHgQPXr0YMMUFRXh7u4OKysrPHnyhD2JABpMFJ4+fQo1NTUcPXoUZmZmAvkwMjLC/Pnzpf18TJo0CdOnT2dPIGVkZFipX58+fdC3b1906CCo9GJoaMiq6l28eFHqtBk6d+4MMzMzVFZW4vnz5+xz5vR/wYIFAv8HwJ56derUSUDTQBLGjx+PSZMmsdJZeXl59lQtNjYWpaWl7G8ZNT0A2LZtm4BWhJWVFTZu3Ija2lqhNGiaZrUUFi9eLCBx7Ny5M3bv3g01NTXk5OQgKCiIDbO3t4eMjAxiYmJQV1cnUBaysrKsaQZ/24qKigKPx4OdnR178pGdnY36+npQFIUhQ4YI5E1WVhYDBw5skQrrq1evAEDs6VBWVhYrSd+xY4dA++7RowfbXoKCgljTh4+NtrY2gIZTL0m5ePEi/v77bwDAiBEj2H7St29f1tdEZGQkFi1aBHt7e4wYMQJr167F5cuX8f79e6H3ycjI4LfffoOSkhKKiorw+++/Y8iQIejbty8WLFiAI0eOfLDy0dXVhaurq4C2BtCgaeDu7g5tbW0EBQUJtDt+OnfujD/++EMgPqM+DTRoXfHj6emJ6upqrFy5EjNmzBAYR+zt7fHzzz8DAI4fPy4yvS5dumDPnj0CJ9MdO3bE27dvUVpaClVVVUybNk3gtI/D4cDBwUGozTN07doVMjIyqK6ublE7MDMzg7Ozs9BpsJaWFnbu3Ak5OTmJx8LMzEwAwJdffgk7OzuBMAUFBbi6ugp4xG+vvmVsbIwtW7YIOFz97rvvYGFhgaqqKqG7ynfv3g0AcHNzw8KFCwVOj+Tl5TFq1CghLTSgQWXV3d1dIIw5sZK2DUlTX8xaYMKECexYwaCuro5Zs2YJmGKEhoYiOjoa5ubm2Lt3r0CcLl26YNeuXdDW1sbVq1eRl5fHhjH1v2DBAqETNisrK4lv3GkLamtrsWHDBgGtBy0tLVYtu7HJZHvwsdYh4ti3bx9SUlJgZmYGX19faGhotOp9ycnJePz4cYv/8GsPSQujtcnlcj/4zWz9+vXDkiVLWPV2GRkZ/PDDD+jatSvy8/MFTBhqa2uxb98+cDgc7N+/HwMGDBB415QpUzBz5kyUl5cjMDCwxXnp0aMH1q9fz44HsrKy+Omnn6CgoIDnz59DRUVFKPz//u//oKCggKdPnwqsCQFg4MCB6N27t9AJv7m5OTZv3gxAujbZkjJripbOMeKgaRp//fUXgAbzb35zH2a/I45jx47h7du3mDZtGlasWCEwj3C5XOzZswccDkfs/N+Y06dPo7y8HCYmJvj555/ZOYLD4WDixImYOHEiAODIkSMi49fW1mL79u0CmuiWlpbYuHEjgAbty3fv3rFhZ8+eRWZmJgYOHIitW7cK7A91dXWxb98+KCkpwd/fn/WLJi3S7g8Z/25Xr15FfX290HuZvcXo0aMFyuFD9rVPmc/CfINRQbt58yYGDhwoNPGJQ05ODt9++63Qcy0tLQwdOhTBwcF48OABu/G7fv06AGD48OEiVWxlZGTg7OyM+Ph4PHr0iF0kMLZC48ePR9euXVv+gc0wbty4JsMrKytx9epVREdHo7CwEO/fvxdQZ3/x4kWb5MPe3h4JCQkCZgtRUVGQlZXFuHHjcPToUQGhhKiNuKSIsofW0NCAnp4eMjIykJOTw9bR/fv3QdM0evfuLVLl38XFhTUL4CctLQ25ubmQk5MTqd7WqVMnTJgwAUePHsX9+/dZlebOnTuDy+UiMTGRVbFjzFgsLCwwePBgbNu2jVUlZsqCKUMGpl1nZmbixYsXQsKslsJs4MSphz948AA0TaNXr14i1chsbGxgbW2NZ8+e4cGDB+yG/mPCTIr8Ew8/CQkJbL6YK0GZ76YoCqtWrRL4vbu7OwYMGABfX19ERUWhrq4O6enpSE9Px/nz59GtWzf8/PPPQjbNffv2xaVLl/DXX3/h2rVrKCkpQXFxMe7du4d79+7hzz//xNSpU7FmzZo2UQvkh6Zp3Lt3j7WFfffuHeu8s6KigjXn4J8UGb799luRKtrTp0+Hv78/YmJiUFlZCSUlJdTU1CA0NBQyMjJsO23MwIEDIScnh+joaNTV1QmNvcOGDRNpj6+urg4FBQWUlZXh4cOHzdqR8iMjIwMVFRWUlpaiuLi4RVcH19bW4saNG4iIiEBubq7AWMjhcJCZmYmqqqpmfTswm9enT5/i1atXzarQtlff+vbbb0X6DLK2tkZCQgKys7PZZ4xJWIcOHTBv3rwWpaOsrCzSXrq1bail9cWMmXfv3sXEiRObvf2GmdPHjRsnsp8yvhnOnTuHqKgodgHJqORevXpV7Hd9LFRVVTFixAih50w746/j9uRjrUOaorS0FJWVlQKmONLQFn42pIGmadZ042M4uJw0aZLQM3l5eZiZmeHBgwfIzs5mN8ZPnjzB69evYW5uLnKMA4AhQ4bgxIkTePToEb7//vsW5WXChAlCY1nnzp2hp6eHtLQ0keGqqqrQ1dVFenq6wJqQoaSkBEFBQXjy5AnevHmD6upq0DSNmpoaANK1yZaUWVO0dI4RR3p6OruOFbVu5t/vNIYZH8X5HzI3N4euri4yMzNRUFDQ7Fx8//59AMCMGTNEmnvMmjULAQEBAusQfmxsbEQeYPKv4R8/fsz6EGHyL6pOgIZvt7a2xqNHjxAfHy8k/GkJ0u4Pe/bsyZqgR0RECKyF4uLikJWVha5duwqYH33ovvYp81kIJWbMmIELFy7g3LlzuHfvHpycnGBnZwdHR0exvgKAhk7f+MSRgVnQMycvAFh/EHfu3MGzZ89ExmMk4fx+HdLS0gAAvXv3lvyjWoCozQdDUlISFi5cKHDK05iSkpI2yYeDgwPrHM3NzQ21tbWIjY2FhYUFlJWVYW9vj0uXLrF+JUT5UJAUcfWqoaGBjIwMVFZWss+YOhRXTozztMZCCUZSraWlJbadMP4cmN8y2NvbIzExkRXQPHv2DJWVlXBwcICBgQF0dHQEBDTMvx0cHNhnWlpacHV1RXBwMMaNGwdbW1s4OjrCzs4OdnZ2LXaKx0y04uyGmW9oqj2Zmpri2bNnQt/7sWDqVVx9VFRUsFJoDofDOlBycXHBjBkzRJbZ4MGDMXjwYLx79w7x8fF4+vQp7t+/zzr5W7ZsGXx9fYVOiPX19fHzzz/D3d0dKSkpiI+PR1hYGEJDQ1FeXo6TJ0+itraW9ZvQFlRUVGDRokUifZLwI65Pd+/eXeRzY2NjdOjQAXV1dcjOzoaZmRmysrJQXV0NOTm5Zie16upqlJSUCAldxbUlWVlZzJo1C97e3pg7dy4sLS3Rr18/2NrawsHBQWz9MjBtmPHRIgmN/fqIo7S0tNm+ZWNjAxsbG8TGxsLFxQWOjo6wt7dHnz590Lt3byHhTHv1LXG3CjAnxfzjJHObSffu3dG5c+cWpWNkZCRSsNyaNiRNfU2YMAHHjx/HgwcP4OTkBCcnJ/Tp0wf29vagKEooLvPuwMBAsVf9MRpm/HP6nDlz4O7ujo0bN+LYsWPo378/Oz635VXLktDYfxWDqDpuLz7mOkQUy5Ytw9mzZ5GdnY3Zs2fj5MmTLRJmfirExMTg5cuXkJWVFTg5/VC0ZPxg+lJ+fr5YoSpzGs3flyRF3JpPXV0daWlpTa4J09PThfpBeHg4Vq5c2WS7k6ZNtqTMmqKlc4w4mPWvJPsdfiorK1lHwe7u7mJ9Rrx9+xZAQ50216eYuc3ExERkuKh1CD/i1i/8a/iMjAxWKMG0SS8vL1brWVyeCgoKmsx7c0i7PwQafMMcOHAAly9fFhBKMAJIV1dXgfn1Q/e1T5nPQihhZmaGU6dOwdPTE2FhYTh//jzryb5nz55Yu3atSAlYUyp8zMKI/0S2vLwcQMPJQ3OnD/yqQBUVFQDQ4oWepDSWJjLU19djxYoVyMvLQ//+/bFgwQJQFIXOnTujQ4cO4PF4MDc3F6vq3VL69OkDDoeDx48fo66uDvHx8exGHGjYcF+6dIl1LMloB0jjRVvcNzOScv4TGGYSkKS++WHqvintFuadjU/uHR0d4evrywpoGn8rv4CmS5cuePHiBZSUlISkwH/88QdMTExw5swZREdHs879OnXqhClTpmDFihUSOydjVNcaqzEyMOUkzfd+LJhFrbiFf2u8xXfq1AmOjo5wdHSEm5sbW3fv37+Hl5cX61CoMRwOBxRFgaIojB8/HsXFxVixYgUiIyMRGBiIxYsXC6mSS8v27dsRGRkJIyMj/PDDD+jduzfU1dXZU97p06ezJ86iENcHZGRk0KVLF7x+/Zqt27KyMgANp9X86obiECUgaOqketWqVdDW1oa/vz+eP3/Omn0pKChg9OjRWLNmjdgxk2nDLTnxXLt2LZKTk2FtbY1ly5bBwsICampqrJrtoEGDkJeXJ9KUqzEyMjLw9vaGl5cXLl68iAcPHrDXxHbp0gVz587F/Pnz2fGovfqWuPIXNU4y85Q0TgTFjcetaUPS1JempiYCAgKwb98+3LlzB8HBwewJYI8ePbB69WoBrSdmTk9JSWk2b/xz+tSpU6GiooJjx47h+fPnSE9Ph6+vLzp06ICvv/4a69evb7M+3xzNzYXtzcdeh4hCU1MTJ06cwIwZMwQEE6014/jYMKYb/fr1Q7du3T54ei0ZP5i+/vbtW3ajKg5pVOXF5YXZLDcX3nisYwQSo0ePxvTp09G9e3coKytDVlYWOTk5GDJkiFRtsiVl1hQtnWPEwcwnLV3/MmMj0HDTUHNIckDQ3FpcVlYWampqePPmjch5UNo9G79JuThacsAhCmn3h0CDacaBAwdw48YN/Pzzz1BQUEB9fT0rKG8sgPzQfe1T5rMQSgANwocjR46wXmEjIyMRHByMuLg4zJ8/HxcvXhSSpDZlj/zmzRsAEFA9ZiZ/d3f3FqnXMtJJpiF9LJ49e4aMjAx88cUX8PLyEtq8tvXJhJqaGiiKYr2jM6e5zEac+TsyMhLDhw9HYmKiyI14W8PUW1P2nEx988PUvagwBuadjVXUGwtoGH8SjHCMX0CjoaEBHo8HW1tbIem3vLw8lixZgiVLliAzMxMxMTG4f/8+bt68iaNHj6KiokLik3hmIy9OKMGUkzTf+zHg8XjsTS7iVNbaEgcHB0ydOhXHjh3D06dPJY6nrq6OzZs3Y9SoUeDxeHj27FmbbFDq6upY+0IvLy+Rpxvi6pZB3JjH4/HYyY2pW+bvrl274uHDh1LnWxwyMjKYMWMGZsyYgby8PERHRyMsLAzXrl3DmTNnUFBQwNrC8lNdXc1OtJKeShcWFiIsLAwdO3aEt7e3SGFGc2XXGBUVFaxZswb/93//h5SUFERHR+Pu3bu4e/eugG8G4NPvW8C/8xT/YrS1SNuGWlNfxsbG+PPPP1FTU4O4uDhER0cjJCQECQkJWLp0Kfz9/VnVWaZevL29hexym2PUqFEYNWoUiouLERUVhUePHiEoKAghISHIzMzEmTNnJDLdErVp4keUX5vPiY+9DhGHrq4uTpw4genTpyM9PR1z5syBn5+fVLfd/PLLL0hISGhxvO+//17qW1mqq6vZTcrHMN1oKUxfcnV1xd69e9s5N01z9+5dlJSUoHfv3iJvjvhYbbI5WjLHiIMZg1u6/uUXdj59+rTFmrmiUFJSQnl5OYqKikRqPdTX17NlL2oelGbPVlZWhuDg4Ca1FNsCafeHQMOcxdy+dufOHQwfPhwRERF4/fo1jIyMhMzOP6e+1tZ8GqL2FqCoqMjevRsUFAQbGxtUVlbi8uXLQr/Ny8sTeyqVnp4OQPCaJEblSJJTFX6YeMyGShJae0UnAFb1ysrKSuRpelxcXKvTaAyjFfHo0SOhjbiBgQG0tbURFRWF6OhosRvxtsbY2BjAv2Y0jeHxeAJmOgxM3RcUFLCniI1h2kLj67QYAc27d+/w9OlTPH78GObm5uzCnymnyMhIiTVGjIyMMGHCBPz55584cOAAgIb73CWV5ltYWAD4V01b1PubCgfEf+/H4ObNm3j9+jUAfLTr9hhBpiSn56LitSRuc32+uLgYlZWVUFNTEznBlpWViWzH/DDjWmMyMzNRV1cHWVlZNu+GhoaQk5NDUVFRmzhoawrmrvFt27bhn3/+AYfDwf3790WqezNtUE9PT2Lts9zcXAANp+WiNrgpKSlSq7kzmjLTpk3D4cOHsWnTJgDAP//8w/7mU+9bwL+maOnp6W0mQJe2DbVFfcnLy6NPnz74/vvvcf78eYwYMQI8Hg9nzpxhfyPtnM6Puro6hg0bhs2bN+Py5ctQUVFBUlKSxPMrc7IqrnyysrKkztunQHusQ8RhaGgIHx8fqKurIykpCfPmzRM7tzdFezi6vHXrFsrLy6GsrCzWCbAktMXaUhTM+NGavvSxYNqkjY2NyPL4mG1SEiSZY8TBrH/z8/PFtnVR6wIVFRXWHKOt6pSZ28S9LyMjQ2gdwo8ka/i22LNJQ2vTYrQhrly5IvD3qFGjhH77OfW1tuazE0rw06FDB1bC1NhfANCwWeBfoDAUFhayTksY2ySgwWkbAFy+fLlFk4uLiwuAhg2kpN7ipbGZbgwj2WQ2co05ceKE1O8WB7PZDg8PF9qIAw1mC3l5eWy58/tQ+FA4OTmBw+HgyZMniI+PFwq/ceOGyPbRo0cP6Orqora2FqdOnRIKr6ysxNmzZ9k0GsN827FjxwTMWICGxREjoGE84LfEtwZz0ldbWyuxVJ/xiSCqDJhv4HA4iIuLE6kZ8OTJEzx79gwcDkfAg/PHIDc3l9UI+eqrr0Q6LG0pkvRhRm2Rf6KrrKxs9vSSX1Vd0k0m01/F9XkmvKKiQmT6J0+ebFZAdebMGda3CD/+/v4AADs7O1YKr6ioCCcnJ9A0DR8fH4m+oS0wNTVlTQhE9UtmwSjqFghxMGX35s0bkSfSbTkWMkJY/rx/yn2LQV9fH2ZmZqirq2uz8pC2DX2I+rKxsQEgWC/MnB4QENAmGgmamprQ09MTSqcpmMW3KDvk+vp6kWuU1tLcWPMh0pJmHcLEbUsV5B49euD48eNQVVXFs2fP4Obm1mKBpJ+fH5KSklr8h3GGLQ3MTRDDhg1r1al1W6wtRWFnZwcNDQ2kpKSwZgafKkwZiGqTtbW17Hz4qSJqjhFH9+7d2XWsqJsY+Pc7jWH2Lm01HzDrZH9/f5Hjuq+vLwDBdQg/sbGxSExMFHrOrOGVlJQETPWZ8d3X15d1Bv6hkHZ/yODq6goZGRncvXsXr1+/ZutElFDic+prbc1nIZTYvHkzrly5IqT18OLFC1y9ehVAg5S+MXJycvDw8EB4eDj7rKioCKtXr0ZtbS169uwpsJG0sLDA6NGjUVZWhtmzZwtJU2maxtOnT7FlyxaBa90GDx6M3r17o6SkBPPmzRNy3JWZmSmkpsw4r4qOjpbYBq0xjDOc2NhYgYXN+/fv4e7uLpGNb0thzBbCw8OFNuLAv9oAt27dAiCdk8uWoq+vzw6u69atE6ibhIQE/Prrr6ydMj8cDoe9qvXgwYMIDQ1lw8rLy/HTTz+hpKQE+vr6GDlypFB85tuYb22sCcEIaBISEqCkpCTURsPDw7F9+3ahK6Sqq6vh5eUFoOGEWVK7WH19fRgZGeH169ciT98MDAwwfPhwAMCaNWsEpOcZGRlYu3YtAGDkyJFinau1NW/fvoWfnx8mTJiA169fQ1NTE9u2bWuTdx86dAhTp07FpUuXhFTWS0tLsW/fPtbR0IQJE9iwrKwsDBkyBJ6enkKaCTRN4/bt22xZWVhYsBoqzaGuro5OnTqhqKhI5IlA586dQVEU6urq8Ntvv7HCBZqmERgYiAMHDjTrX6S0tBTr1q0TGCsvX77MXpna+GriFStWsCr0np6eQmPs27dvERgYyLZHSUlNTcXGjRvx5MkTgfGtvr4eJ06cQFlZGTp27ChSIyQmJgYAWrR5NzExgZqaGgoKCnDgwAF2gVJbWwsvLy+cO3dO5BggjkuXLsHT01PIdrSiooK9VpXfLO1T7FuiYG6nOXjwILy9vQUEWDU1NQgODmb92kiKNG1I2vras2cPAgIChAS1L1++ZBfk/PUyZMgQ2NnZISsrCwsWLBDqd3V1dYiIiMDq1avZsmDs0cPDwwWucKNpGsHBwUhOTgaHw5G43zs6OrLXGvJvht6/f4+tW7c2q/0kDUwba85hblvQmnXIh8qnmZkZ/vrrL3Tq1AkxMTFYvHjxJ217XVRUxG4+Wmu6wZRpbGxsm/rxUFBQwA8//ACgYRwJCgoS2ghmZ2fDy8tL7Cb4Y8EItENCQtgbIYAGs40ffviB1aRoT1o6x4iDw+Gwtyl5eHggLCyMDWP2O+Jwc3ODuro6rly5gp9//lnIf0FFRQWCg4MlXpMxvnhSU1Ph7u4u0OfOnj3Ljg/iTFLk5OSwZs0agTV8YmIifv31V/b9/OYbkydPhpGREWJiYrBy5UohzUvmdqh169ZJlP+mkHZ/yKCpqYkvv/wSNTU1WL9+PSoqKmBtbc1quvDzOfW1tuaz8Cnx9OlTBAQEsCo/nTt3xtu3b9nO7ODgIHIg7927N1RUVDB79mwYGhpCWVkZKSkpqKmpgYaGBnbs2CGk2vXLL7+gvLwcoaGhmDhxIrS0tKCtrY3q6mpkZ2ezEvdZs2axcWRkZLB//37Mnz8fCQkJGD16NJvPvLw8FBUVQVdXV2BDMHToUOzdu5e9rkhHRwcyMjIYN26cxNL2rl27Ys6cOfD29saGDRvg4eGBrl27Ij09He/fv8evv/6KDRs2tLS4m0RdXR2mpqas4KXxRpwRUtA0DUVFRVhbW7dp+uLYsmULkpKSkJycjGHDhsHU1BR1dXVITU2FtbU17O3tWXt9fqZOnYqnT5/iwoULWLhwIfT09KCmpoa0tDS8f/8eampq2Ldvn8jNoL29PTgcDmiahqysrNDJrqOjIy5fvgyapmFjYyO0yH737h2OHz+O48ePQ01NDbq6uuDxeMjJyUFFRQXk5OSa9IosigkTJmD37t24cuUKlixZIrKcMjMzkZiYiJEjR7IqaampqeDxeLC0tGTv8G5rDh8+zG4campq8PbtW1aNG2jQkNi2bVubeU1nfH48fvwYHA4H+vr6UFNTQ2lpKV69esWaXYwdOxYzZswQiPfmzRt4eHjAw8MDXbp0wRdffIG6ujrk5eWxqu+6urotsvfjcDgYPnw4zp49i3HjxsHU1JQ9LWCcd65evRqLFi1CYGAgrl+/Dn19feTn5+PNmzcYN24ccnNzm1zAL1myBF5eXrh9+za6d++OoqIidqKeNWuWkFmMmZkZ9u3bh1WrVsHDwwOHDx+GsbExFBQUUFRUhFevXoGmabi6ukr8nQDYU5vAwEAoKyvDwMAAHA4Hubm5KCkpAYfDwfr164W8hVdVVeH27dtQVVVlBY2SICcnh5UrV8Ld3R0eHh44deoUdHR0kJOTg9LSUixduhTnz58XaG9NUVxczNZ/t27dBOaAqqoqqKioCI2t7dm3JGXgwIFYt24d/vjjD+zatQteXl4wNjZGZWUlcnNzUVNTg23btrVIS0WaNiRtfaWmpuLw4cPYsmUL9PT0oK6ujrKyMmRlZYHH48HU1FTgulMOhwMPDw8sWrQIUVFRcHV1hZ6eHrp27cpercssnH///XcADarCV69exdWrV9GxY0cYGhpCXl4e+fn57Mnr999/L7GGVOfOnbF06VLs3r0bW7duxcGDB6GlpYX09HRwOBz8+OOPbSaIZRgxYgRSUlLw/fffg8vlsv1sz549be5AsTXrkBEjRiA0NBTu7u44deoU66x5/fr1El2r2BSMH7L58+cjPDwcy5Ytw4EDB1oknPxYXL58GXV1ddDV1W31QU7//v2hqqqKmJgYDBo0CPr6+ujQoQOcnJya9U/QHBMnTkRBQQE8PT2xatUquLu7w8DAADRNIz8/nz1Bdnd3b1U6rcXKyoq92Wz+/PnQ19dH586dkZKSApqmsXHjRmzZsqVd8yjNHCOOqVOnIjw8HDdu3MCcOXPY/U5ycjKUlJQwb948HDp0SCiepqYmDh8+jMWLF+PUqVMICAhA9+7doaSkhNLSUmRnZ4PH40ns40tTUxO7du3C8uXL8ffff+PKlSvsrRnM7RfLli0TqXkMNAgZ7ty5I7SGBxo04ZYtWybwe0VFRRw5cgRubm4ICQnB9evXYWhoCDU1NZSXlyM7Oxu1tbVNOqBuCdLsD/kZPXo0wsLCcO/ePfb/4vhc+lpb81kIJdatW4c7d+4gKioK+fn5yMnJgaKiImxtbTFq1ChMmjRJ7Em4h4cHvL29cfHiRaSkpEBFRQUDBgzAypUrRTqnU1RUxKFDhxASEoLz58/j2bNnSEhIgKqqKoyNjWFra4thw4YJSbe0tLQQGBiIU6dO4erVq0hLS0NBQQE0NTVhb28vJDQxMDDAoUOHcPjwYSQkJLALt5aaO/z444/Q0dHBqVOnkJWVhaqqKtjY2GDevHn46quv2lwoATRsxpOTk0VuxBmzhfz8fJEb8Q+FhoYGAgIC4OnpiRs3biAtLQ1aWlqYP38+lixZItZZJIfDwfbt2+Hk5ISAgAAkJiay9zEPGjQIbm5uYjfJ6urqMDExQUpKipAZCyBouiJqoWFnZ4dNmzbh4cOHSElJQUZGBmpra6GpqQkXFxfMnTuXtS2TlAkTJmD//v24fPmySKFEly5dcPr0afj6+iI4OJjVqKAoCiNHjsSsWbPaxOGRKDIzM9nrmZSUlKCiogIHBwf07NkTI0eOlPjkUVJWrVqFr776Cg8ePMDTp09RWFiIxMREdOjQAV988QWsra0xbtw4oRN5MzMz1ht2eHg4Xr58iczMTNTU1KBz58748ssvMXjwYEycOFGsZ3xxbNiwAZ06dcKtW7eQlJQk5I9i0KBBOHr0KA4cOMB6/Tc2NsaSJUswdepUsZMdg62tLf7++294eHggNjYW79+/h6WlJWbOnIlx48aJjDNo0CAEBwfDx8cH9+/fR05ODmiahpaWFgYMGABnZ2cMHTq0Rd9pZGSEX3/9FWFhYUhISEB2djaqq6uhrq6OESNGYNasWayJEj+3bt1CZWUlZs6cKfGtMwxTp06Fqqoq/vrrL1b4TFEUZsyYAVdXV/bGJkkYNmwY6urqEB4ejoyMDCQnJ4OmaXzxxRfo378/5s2bJ3SvfHv2rZYwe/Zs9OnTB8ePH0d0dDSSk5OhoqICiqLg7OwsdsHYFNK0IWnqa9GiRTAxMUFkZCRevnyJhIQEyMvLw9zcHMOGDcPMmTOF+qSGhgb8/f1x4cIFBAUFsWN8ly5dYG5uDgcHB7i4uLDtrVOnTti5cyfCwsIQFxeH/Px8vHv3DmpqanB2dsaUKVMwaNCgFpWPm5sbVFVVcfLkSXacd3JywsqVK8WaPbQGNzc38Hg8BAUFITU1ldUC+VDaAtKuQ8aOHYuysjKcOXMGWVlZ7GFHW/k86dOnDw4ePIiFCxfi7t27WL16Nfbu3Svyetv2hNHYGzNmTKt9QigrK+Po0aPYv38/4uLi8OTJE/B4POjq6rZFVrF06VIMGDAA/v7+iIqKQnJyMjp27AhtbW307dsXLi4uLXYq+yHYsWMHevTogQsXLiA/Px+VlZUYMGAAvv/++xbd6vShkGaOEYeMjAz27dsHPz8/BAYGIjs7G507d8awYcOwcuVK1q+ZKHr27IkrV67g5MmTuH37NjIzM9l1qKOjIwYOHNiiA4JBgwbh/Pnz8Pb2RlhYGF68eIFOnTph4MCBmDVrVpMakGpqaggMDMS+ffsQGhqK4uJi6OvrY8yYMXBzcxM5fxoaGuLChQsICAjAtWvXkJaWhtzcXHTr1g29evVCv379WC3G1iLt/pDBxcWF1SCRlZVt9rDnc+lrbQmHltZ24BPm0aNHmDVrVquuDyQQPld++eUXnDx5UiqP84TPk5kzZyIyMhK+vr5SXcH7qTB58mQkJiYiJCQEOjo67Z0dAoFAIBAIBMJH4LPwKUEgECRnyZIlUFZWZm/wIBA+B+7du4cnT55g1qxZRCBBIBAIBAKB8D/EZ2G+QSAQJEddXR07d+7E8+fPUVxcDHV19fbOEoHQLJWVlVi2bBm+++679s4KgUAgEAgEAuEjQoQSBMJ/kMGDB2Pw4MHtnQ0CQWLayu6TQCAQCAQCgfB5Qcw3CAQCgUAgEAgEAoFAILQL/0lHlwQCgUAgEAgEAoFAIBA+fYimBIFAIBAIBAKBQCAQCIR2gQglCAQCgUAgEAgEAoFAILQLRChBIBAIBAKBQCAQCAQCoV0gQgkCgdBiBg8eDC6Xi5cvX36wNGbOnAkul4tHjx59sDQ+JB+jjD4GL1++BJfL/Si3uXh4eIDL5cLDw+ODpwUAjx49ApfLxcyZMz9Keh+Lj1lnkvBf6QvtBZfLBZfLbZN3fWpt42OO88z4wv8nMTHxg6f7OXLu3Dmhsvpc52ICgfB5QIQSBAKBIIKbN2/Cw8ODLFoJnxznzp2Dh4cH2eR/Jpw4cQIeHh4oKytr76wQAOjo6MDW1ha2trZQUlKSKM6+ffvA5XIxd+5csb9Zt24du4F/9eqVyN/ExMSAy+XCysoK79+/lyr/DM7OzuByubh8+bLI8JqaGvTs2RNcLhezZs0S+56NGzeCy+Xixx9/ZJ9paGiwZaSsrNyqfBIIBIIkEKEEgUBoMfr6+jA2NoacnNwHS0NHRwfGxsZQVFT8YGk0xc2bN+Hp6UmEEoRPjvPnz8PT0xO5ubntnRWCBPj6+sLT05MIJUTQHuP8hAkTcPr0aZw+fRqGhoYSxbG3twcAxMbGoq6uTuRvoqOjRf6bn5iYGACAlZVVq7/Zzs6uybTi4uJQXV0NAHj69Clqa2tF/o6Jz3wjAAwcOJAtIwsLi1blk0AgECShQ3tngEAgfH74+Ph88DR27NjxwdMgEAgEQvvxuYzzNjY2kJOTQ2VlJRISEtCzZ0+B8MLCQmRnZ0NfXx85OTmIjo7GmDFjhN7DCAD69OnT6jzZ29vj8uXLzQpAmDzFx8fDxsZG4DfFxcXIyMhoszwRCASCtBBNCQKBQCAQCAQCQQyKioqsxgCz2eeHEQxMnDgRnTt3Fiko4PF4ePz4MQBBrQRpYYQIaWlpePv2rdg8MSYnovLEPNPQ0ECPHj1anScCgUCQFiKUIBAILUac47r379/j4MGDGDt2LGxsbGBlZQUnJydMmTIF+/btQ2lpqcRpiHOA1pxjtKacJV66dAkzZ86Eg4MDLC0t0bdvX4wePRpbt25FSkoKgH8dwZ0/fx6AoJ2wtE4Yw8PDMXv2bNjb28PGxgbTp0/H3bt3Rf62rKwMZ86cwZIlS+Di4oJevXrBxsYG48ePx5EjR1h13Mbw10lkZCTc3Nzw5ZdfwszMDDdv3mR/V1VVhWPHjuHbb7+FnZ0devbsiZEjR8LT0xPv3r2T6HtSUlLA5XJhb28vNj8AMG/ePHC5XPj7+0v0Xn6KioqwefNmDBgwANbW1nBxcYGHh0eT6ZWVlWH//v0YM2YMbGxs0Lt3b4wfPx4nTpwQq7rcFAUFBdi6dSuGDBkCa2trODg44LvvvkNwcLDQb2/fvg0ul4v58+cLhXl5ebHtJzs7WyCstLQUZmZm6NOnD+rr65vMD+OYMzIyEgAwa9YsgbZ57tw5kfGCgoIwceJE2NjYoE+fPli4cCFevHghNp36+noEBgZixowZsLe3h7W1NYYOHYpt27ahuLi4yTy2lLq6Opw6dQqTJ09m26Orqyv27t0rZO5A0zS+/PJLcLlcvHnzRiAsPz+fLYc///xTKJ3FixeDy+UiJCREKCw+Ph6rV6/GwIEDYWVlBUdHR3z//fdiT6AlHecYZ4GMmc3XX3/d5o4Dq6qqcOTIETYvNjY2GDt2LI4cOYKqqqpm4586dQrffPMNevXqBUdHRyxfvhxpaWlNxrl27RrmzZuHL7/8ElZWVhg0aBA2bdoklY8TceP52rVr2Tb9+vVrbNq0CU5OTrCyssKwYcNw+PDhZvtLW8MIAaKiooTC+E0gbGxskJaWJtRXkpKSUF5eDhkZGdja2rY6Pz169ICGhgZomhYSlPB4PMTGxsLIyAjDhw8XyCM/zLcQLQkCgdDeEPMNAoHQJtTV1WHOnDmIjY0FABgYGEBVVRVFRUV49uwZYmNjMXjwYFhbW7dL/nbs2IGjR48CALp16wZ9fX1UVFQgOzsbycnJ0NXVhampKRQUFGBra4usrCwUFRXByMgI6urq7Ht0dHRalO61a9ewe/duKCsrw8DAAHl5eYiOjkZ0dDQ2btwodPPDnTt3sGHDBsjJyUFTUxOmpqYoKytDUlISnj9/jlu3bsHPzw/y8vIi0wsODsbevXvZ9PjtlgsLCzFv3jwkJydDVlYWOjo6UFJSQkZGBjw8PBASEgJfX1906dKlyW8yNTVF79698eTJE9y8eRMjR44U+k1BQQHCwsIgLy8vMrwpSkpKMHHiROTn58PExATKyspIS0uDp6cnwsPDcezYMXTs2FEgTlpaGubNm4e8vDzIyclBV1cXHA4HL168wPPnz3Hnzh14e3uLLbfGPHv2DPPnz0dJSQkUFBRgamqKkpISREREICIiAg8ePMDvv//O/t7e3h4yMjKIiYlBXV0dOnT4d3plhAhAg2DBwMCA/X9UVBRomoadnR1kZWWbzJOKigpsbW2RnJyMiooKUBQl4IROQ0NDKM7evXtx6NAhaGtrw8jICBkZGQgNDUV0dDTOnDkDY2Njgd9XVFRg8eLFePToETgcDrS1taGjo4OsrCycOHECISEh8PPzg76+vkTl2BTV1dVYtGgRHj58CAAwMjKCkpISUlJScOjQIVy5cgU+Pj7Q09MDAHA4HNjb2+P69euIjIyEq6sr+y7+TS1/eQMQ2LQ1PqH28/PD77//Dh6PBxUVFZiYmKCwsBB37txBaGgo3N3dMWXKFPb3LRnnGGeB8fHxqKmpgZWVlUD7U1FRaVX5vX37FnPmzEFiYiI4HA5MTEzA4XCQlJSExMREXLt2DcePH4eqqqrI+L/88gtOnjwJbW1t9OjRAxkZGQgJCcH9+/dx/Phx9O7dW+D3dXV1+L//+z8EBQUBaBhHTU1NkZWVhX/++QfXrl3D0aNHhUwbWsOrV68wbtw4lJSUwNTUFB06dEBmZib27NmD3NxcbN26tc3Sag57e3scPXoUMTExoGkaHA6HDYuOjoaCggKsrKxgZ2eHu3fvIiYmBkOHDhX4DQCYmZm1uu4Z+vTpg5CQEERHR2PIkCHs8xcvXqC8vBxDhw6Furo6jIyM8PjxY/B4PMjI/HseyfQLIpQgEAjtDk0gEAgtxNnZmaYois7JyWGfhYSE0BRF0QMHDqRTU1MFfl9eXk4HBgbSL1++lDiNGTNm0BRF0RERERI9Z9i/fz9NURS9f/9+9llRURFtbm5OW1hY0Ddu3BD4fV1dHR0aGir0vjVr1tAURdFnz56VOM/8MGVkaWlJ//bbb3R1dTVN0zRdX19PHzlyhKYoirawsKBfvHghEC8xMZG+ffs2XVVVJfA8Pz+fXrp0KU1RFO3l5SU2PXNzc3rv3r10TU0NG1ZVVUXzeDx62rRpNEVR9OLFi+m8vDw2vLi4mF60aBFNURT9ww8/CLw3JyeHpiiKdnZ2Fnj+zz//0BRF0XPnzhX5/YcOHaIpiqJXrFjRfGH9f5i6s7S0pEeNGkVnZ2ezYfHx8fRXX31FUxRF79y5UyBeZWUl7eLiQlMURW/atIl++/YtG/by5Ut68uTJNEVR9K5duwTiRURE0BRF0TNmzBB6H1OeixYtoktKStiw27dv07169aIpiqL//vtvgXhjx46lKYqinzx5wj6rqamhe/XqRTs5OdEURdE//vijQJzffvuNpiiK9vb2lricmusDTJ1ZWlrSvXv3pm/evMmGlZWVsfFXrVolFHf16tU0RVH01KlTBfpxZWUlvWnTJpqiKHrSpEkS55WmRY8XNE3Tf/zxB01RFN23b186NjaWfZ6fn09PmjSJpiiKnjx5skAcHx8fmqIoevPmzQLPN2zYQFMURTs5OdGWlpb0+/fv2bDExESaoija1dVVIM6DBw9oLpdL29nZ0ZcuXaJ5PB4bdv36ddrGxoa2tLSkk5KS2OfSjHPivl9SKIqiKYoSer58+XKaoijaxcVFIC+pqalsf2hcx0zbsLCwoC0tLelLly4J5H/ZsmVsf+cvQ5qm6T179tAURdEjR44UaOO1tbW0h4cHG48Z6yRBXFtmxl9LS0t68eLFdHFxMRt2/fp12szMjKYoik5LS5M4LVFzQ0soLS1l001OThZ6Pn36dJqmaToqKoqmKIr+7bffBOIz9fXrr79Klb4omP4wfvx4kc/PnDlD0zRNr1u3jqYoik5MTGR/U15eTpubm9MURdEJCQli02huvCEQCIS2gJhvEAiENiEzMxMAMGzYMCHbVGVlZXz77bfQ1dVth5wB2dnZqK+vB0VRAqdJACArK4uBAwfC0dHxg6Tdo0cPrF+/nj0hlZGRwYIFCzBo0CDU1dXh+PHjAr83MzODs7MzFBQUBJ5raWlh586dkJOTw8WLF8Wm5+TkhJUrVwrcjKKgoMCejpubm2Pv3r3Q1tZmw7t06YJdu3ZBW1sbV69eRV5eXrPf5erqCiUlJYSFhaGgoEAonDF/GT9+fLPvakxtbS22b98ucBpvaWmJjRs3AgD8/f0FTE3Onj2LzMxMDBw4EFu3boWamhobpquri3379kFJSQn+/v5Nmn8wBAUFITc3F2pqati1a5fASbOzszMWLVoEADh8+DBommbDHBwcAAie2sfFxeH9+/cYNWoUdHR0hE7xmf8zcduS2tpaLFmyBF9//TX7TEVFBRs2bAAAIROi5ORkXL58GVpaWjh48KBAP1ZUVIS7uzusrKzw5MkT1jZeWioqKnD69GkADVcS8p/Ka2lpYe/evejQoQNiY2MFypMpJ1HlqKGhgfHjx6O2tpbVZAD+rY/GZbx7927QNI1ffvkFo0ePFjj5Hjp0KFauXIna2lr4+fmxzz+VcS4rK4s1RdmxY4dAXnr06IHt27cDaGjLOTk5QvHr6uowZcoUjB49mn2mrKyMHTt2oEuXLsjNzRUwUyouLsbx48ehpKSEgwcPolevXmxYhw4dsHTpUgwdOhS5ubkiTWSkRVVVlc0Tw9ChQzF48GAAwL1799osrebo3LkzKIoCIGgKwWggMLdh9OzZE/Ly8kLmEuK0dVoD867ExESBMbGxQ03mb/48xcbGor6+Hp07dwaXy22zPBEIBII0EKEEgUBoE5hNbnh4OEpKSto3M41gTC4yMzObtKX/EEybNk3k8+nTpwMAHjx4IBRWW1uL4OBgbN68GfPmzcO0adMwdepUzJkzBxwOB5mZmWLtxceNGyfy+fXr19lwUSYMSkpK6NevH3g8nkib6cZ06tQJw4cPB4/Hw4ULFwTCHj9+jIyMDGhpaeGrr75q9l2NsbGxgaWlpdBzFxcXaGpqorKyUmBTzHzbpEmTRL5PS0sL1tbWePfuHeLj45tN//79+wAanNYpKSkJhU+bNg1ycnLIzc1Feno6+5zZIPBvmJmydHR0hL29PfLz81m/EoxZTqdOnUR+b1swefJkoWdmZmZQUFBAeXm5gIM8phyHDx8uUuVfRkYGzs7OANBqfwgxMTGorKyEpqYmhg0bJhT+xRdfsAJEpj4AgMvlQk1NDenp6axfiYKCAmRlZcHe3p4VLvLnj6kD/s1gXl4enj9/DjU1NZHpA2DT53/XpzLOPXjwADRNo1evXgICAgYbGxtYW1uDpmmRYwzw7xjET8eOHfHtt9+yaTDcu3cP1dXV6Nevn1jTHVHl1VpGjhyJTp06CT1nvlmUwOVDwrQhUdd/Mht/eXl5WFlZ4cWLF6ioqADQIER6/fo1OBxOm5pKcLlcqKiooL6+XkAQFxMTg27durFXnjICE/6xncm3nZ2dgEkHgUAgtAfEpwSBQGgThg4dCn19fSQlJWHQoEHo168f+vTpA3t7e1hZWQmcQn5stLS04OrqiuDgYIwbNw62trZwdHSEnZ0d7OzshPwTtCXiPJqbmJgAAF6/fo2KigrWN0BBQQHmz5+P5OTkJt9bWloqMt/i0mPeFxgYiGvXron8zatXrwA0OA2UhIkTJ+LcuXM4f/48Fi5cyD5ntCTGjh3brJ8EUXTv3l3kcxkZGRgbG6OwsBAZGRlwcnIC8O+3eXl5sX5DGsOccIvS6hD3W6aOGqOiogJNTU3k5uYiMzOTLXPGr8Tjx49ZvxKRkZGQlZWFnZ0dCgsLcenSJdavRFRUFHg8HmxtbaUqp+bo0qWLWNt1dXV15OXlobKykj2FZsrxzp07ePbsmch4RUVFACRvI+JgriE0NjYW++2mpqa4du0aWx9Ag18JOzs73Lp1i/Urwa9twlzdyDyjaZrdiPFrSiQlJQFoEACK2pwzcQHBb/1UxjmmTJq6McHU1BTPnj0TKD8GOTk5dsPaGKbdM3UE/Fte8fHxmDp1qsh45eXlAFrfNvgRl0fGz09lZWWbpSUJdnZ28PPzExJKyMjICFy3aWdnh8ePHyM2NhZOTk5sG+zRo4eAj6LWwjjNvHv3LqKjo9G/f39kZGTgzZs3AsI2Q0NDdOvWTcAhZlteT0ogEAithQglCARCm6CoqIhTp05h//79uHbtGm7duoVbt24BaNBUWLJkCSZOnNhu+fvjjz9gYmKCM2fOsI4mgYYT/ylTpmDFihVCJhNtgbgFaNeuXdl/v3v3jhVKrF27FsnJybC2tsayZctgYWEBNTU11hxj0KBByMvLE3ubBL9jS36YDQNzy0hTSGLiAAC2trbo3r070tPTERsbCxsbG1RVVeHq1asAxGttNIcoh40MTLnxqyoz3/b8+fNm3y3JjQTMRqe5fOTm5grkQ1VVFRRFsc41LS0tERsbCwsLCygrK7On+JGRkZg4caLIzXJbIkrLg4E5GeU3P2HKMTs7W+iWkMZI2kbEwZQxfz9oDFP+jW+FcXBwwK1bt/Do0SO4uroKaKN07NgRPXv2RFxcHKqqqpCVlYWSkhJ0795dIC3mZo937941a4rC/62fyjjXmvIDADU1NbGn46Li8QscmhM6tLZt8CNuPBPVflvLmTNncPbsWaHn33//PQYOHAjgX02J/Px85OTkoFu3boiPj4eZmZmA01k7Ozt4e3sjOjoaTk5OH9ShZJ8+fVihBCBe2GBra4uQkBBkZmbiiy++YAWPbWlOQiAQCNJChBIEAqHN0NTUxK+//oqff/4ZCQkJiImJwc2bNxEVFYWNGzdCSUmpxTcxiEPcYlTcyZm8vDyWLFmCJUuWIDMzEzExMbh//z5u3ryJo0ePoqKi4oN4ci8uLhZ58s9/pSGjnlxYWIiwsDB07NgR3t7eIm/BaMm1qvwwG1Rvb28MGDBAqneI4ttvv8WOHTtw7tw52NjY4Pr16ygvL4eNjY3QzQ6S0tS1k0y58at0KykpoaysDMHBwU2eHEsKU1aMVoCk+QAaFvgvXrzAo0ePwOPxUFlZyQodDAwMoK2tzW6iP6Q/CWlgvtvd3V3saXhbp9X4ak9+mPJvXMaN/Uo8evQI6urq7Am/g4MDYmJiEBsbi9TUVADCGy8m/V69euGff/5pUd4/5jgnjtaUH9Bww03jmxiaisekt2DBAvz444/SZ/wTJi8vT6SAin8c6Nq1K4yMjNg5REdHB7W1tax5BIOtrS04HI6QoOBDCACYd8bFxaGmpkasAIQRSkRHR8PIyAjV1dVQUlL6YKZjBAKB0BKIERmBQGhzZGVlYW1tjdmzZ+PkyZOYN28eALR48S8KZnEsbuPa3Akv0HD14IQJE/Dnn3/iwIEDAIBz586hrq6O/U1bqWHz+xzgJy0tDUDDtXrMCVtubi6ABhVfUQKJlJQUqdWVmQ2bJJoSLWHs2LGQk5PD1atXUVVVxZpuTJgwQep3MmXTGB6Px6qUGxkZsc/b+tuYd4t7X3l5OQoLC4XyAUBAG0KUJoS9vT3rz+DFixdQUlKClZVVm+S7tXyoNiIKRmCVnp6O+vp6kb9h8tG4jM3MzNC5c2ekp6cjMTERmZmZAps9foej/FoU/JiamrLp8/f7lvAhx7nmYMqEEbqIQlz5AQ1mK+LGSqb/8cdjyutjtI32YtmyZUhKShL609hZL9PWoqKixGolqKqqwtTUFHFxccjJyWHL+kMIJaysrKCoqIjq6mrExcUhOjoaysrKQs4r+Z1dMoKL3r17C1xfTCAQCO0FEUoQCIQPjq2tLQCwG7nWwDhZi4uLEwp79eqVgFO8luSttrZWwHEdY8ohibp/U5w6dUrkc39/fwBA//792WeMj4g3b96I1AQ5ceKE1Plg7IsDAgLw/v17qd/TGA0NDTg7O6O8vBy+vr6IiIiAoqIiRowYIfU7Y2NjkZiYKPT8xo0bKCwshJKSksDJJPNtvr6+4PF4UqfLwPiqOHPmjEgh0OnTp1FbWws9PT0hLZg+ffqAw+Hg8ePHCAsLg6ysrMCGhdkce3l5ob6+Hra2ti3eFDDtpLVtszFMOV6+fLlJLZG2wM7ODkpKSnj9+rXI2xry8vJYswimPhhkZGTY+vf09AQgKHSwtbWFnJycgFCi8WbQ0NAQXC4X5eXlIlX2pUHcOMfUV1uaNTg5OYHD4SAuLg5Pnz4VCn/y5AmePXsGDocjMMbwI2psqq6uxpkzZ9g0GAYNGgR5eXk8ePCgSUHI/wL8m3t+Z5GNsbW1RU1NDXvDkr6+PrS0tNo8P3Jycqzjz+DgYOTk5KB3795CvlrMzc2hpKSE6Ohotl8QfxIEAuFTgQglCARCm3D8+HEcP35cyJFgcXExfH19AaBN1EQZ297AwEABb+P5+flYtWqVyE1peHg4tm/fzjprY6iuroaXlxeABntwfh8CjPAjOjq6VXbLqamp+OOPP1BTUwOg4bT/2LFjuHPnDjp06IDZs2ezvzUxMYGamhoKCgpw4MAB9ltqa2vh5eWFc+fOCVz12RKGDBkCOzs7ZGVlYcGCBULaCHV1dYiIiMDq1avZvEoK461/37594PF4cHFxEbCvbilycnJYs2aNgGf9xMRE/PrrrwCAqVOnCqiWT548GUZGRoiJicHKlSuFrjStqalBaGgo1q1bJ1H6o0aNgq6uLkpKSvDTTz+x/geAhms0Dx48CABwc3MT0qjp0qULTE1N8e7dO0RERMDc3FygLJhTfGbDLc3JKdM2JbklpSVYWFhg9OjRKCsrw+zZs4UEfzRN4+nTp9iyZUurbz1QVlZmb6b57bffBDbWBQUF+OGHH1BbWwsbGxuR1/U2Lkd+bZSOHTvC2toasbGxKC4uhpGRETQ1NYXe8dNPP0FGRga//fYb/P39hdp9QUEBfHx82KtLAenGOaa+Gl9j2hoMDAwwfPhwAMCaNWsENLIyMjKwdu1aAA23V4i6LaNDhw44deoUgoKC2Gfv3r3DmjVrUFxcDF1dXbi6urJh3bp1w9y5c1FXV4f58+eLvNEjKSkJO3fuFHCm+F+E6bOMCQfjRLIxjKCCEfI01dc9PDzA5XLZq06lzROTlihhg6ysLHr37o2cnBy2LbZGc+PEiRMYPHjwBzf1IhAI/xsQnS0CgdAmvHr1Cr6+vti+fTu++OILdO3aFZWVlcjKykJtbS20tLSwcuXKVqfj5OQEJycn3L9/H1OnToWhoSEUFBSQmpoKY2NjTJs2DT4+PgJx3r17x24m1NTUoKurCx6Ph5ycHFRUVEBOTg7u7u4CG8yhQ4di7969CAoKwpMnT6CjowMZGRmMGzdOSJ23KVauXIndu3fj7NmzMDAwQF5eHmsH/tNPP8HMzIz9rZycHFauXAl3d3d4eHjg1KlT0NHRQU5ODkpLS7F06VKcP3+eNfNoCRwOBx4eHli0aBGioqLg6uoKPT09gXpiTnJ///33Fr27f//+0NLSYjdqLSkfUUyePBl37tzBsGHDYGpqirq6OvZ01sbGBsuWLRP4vaKiIo4cOQI3NzeEhITg+vXrMDQ0hJqaGsrLy5GdnY3a2tomnQLy07FjR/z555+YP38+bt68iQcPHsDExAQlJSV4+fIlgAbzFFHXbQING+Tk5GTQNC3kL8LQ0BDa2tqss0Bp/Em4urrC398f3t7euHHjBrp16wYOh4MFCxa02l/IL7/8gvLycoSGhmLixInQ0tKCtrY2qqurkZ2dzWqOzJo1q1XpAMDy5cuRkJCAsLAwTJo0CcbGxlBUVERKSgqribJr1y6RcZlyo2lawJ8EfzjjH0BcGTs5OWHr1q34+eefsXXrVuzatQtGRkaQlZVFYWEh254XLFjAxpFmnBsxYgRCQ0Ph7u6OU6dOQU1NDQCwfv16mJubt7jcGLZs2YLMzEwkJiZi5MiRbBmkpqaCx+PB0tISmzdvFhlXS0sLzs7OWLVqFXbu3AkNDQ2kp6ejsrISioqK2Llzp9DtPitWrEBRURECAwMxb948qKurQ09PD3V1dcjNzWX93YgSIv2X0NXVxRdffIFXr16hurpapJYE8K9QghlXP6RWAvPu5tKys7NDWFgYqqurIS8vL/I6WUkpLy+Xai4iEAgEURChBIFAaBOmTJkCNTU1REREIDs7G4mJiejQoQOMjY0xaNAgzJ07V6SfBGnw8PCAp6cngoODkZubi65du2LGjBlYvnw5qyrLj52dHTZt2oSHDx8iJSUFGRkZqK2thaamJlxcXDB37lzWZprBwMAAhw4dwuHDh5GQkIBXr16J3GQ2x/Dhw2FpaYlDhw7h+fPnqK+vh52dHdzc3DBo0CCh30+dOhWqqqr466+/kJKSgpqaGlAUhRkzZsDV1ZX12SANGhoa8Pf3x4ULFxAUFITExEQUFBSgS5cuMDc3h4ODA1xcXFp8C4msrCzGjRuHQ4cOQVdXt9WbEjU1NQQGBmLfvn0IDQ1FcXEx9PX1MWbMGLi5uYm8CtXQ0BAXLlxAQEAArl27hrS0NOTm5qJbt27o1asX+vXrx54sS0LPnj1x6dIlHDlyBHfv3kVSUhIUFRXh4OCAqVOnCpwiN8be3h4nT54EIHqDZm9vj8uXL0NRURHW1tYS54mhT58+2L17N3x8fJCamspe+SjtbSf8KCoq4tChQwgJCcH58+fx7NkzJCQkQFVVFcbGxrC1tcWwYcOkdmLKj4KCAry9vREQEICLFy8iJSUF9fX10NfXx9ChQzFv3jyoqqqKjGtubg4VFRWUl5fD3t5eSGPF0dERhw4dAtD0afDEiRNhZ2cHHx8fREREID09HbKystDS0oKLiwu+/vprgdNraca5sWPHoqysDGfOnEFWVhZ79Sq/Bo40dOnSBadPn4avry+Cg4ORlZUFAKAoCiNHjsSsWbOavO5406ZN6NGjBwICApCamgoFBQW4uLhgxYoVIq/DlZGRwa+//gpXV1f8/fffrJlVp06doKOjAxcXFwwdOhR9+/Zt1Xd9DvTp0weXLl0CINp0A2gQXujo6LCaW021w9evXwNo0FaSht69e0NOTg61tbWQk5NDz549Rf6OP6/W1tYf5MYpAoFAkAYO3Zb3KREIBEIbMX36dERHR8Pf35/YvX4GrFu3DufOncPSpUuFNBkIBAKhvWGE2Z/iGDVq1CikpKQgMDBQrEChvZg5cyYiIyPh6+v7n9eCIRAI7QfRlCAQCJ8kzCmiuJNSwqdDRUUFrl27xpq3EAgEwqfK2bNnERYWBgDYvn07DA0N2zU/ZWVlSE1NRd++fT8ZgcTdu3dZTSNGs4dAIBA+JEQoQSAQPjnS0tKQnp4ORUXFdl8wEprHy8sLlZWVcHZ2hp6eXntnh0AgEMSSl5fHmlRIe8VyWxIbGwuapuHm5tbeWWEpKipifbIQCATCx4CYbxAIhE+GhIQEbNy4Eampqaiursa0adOwZcuW9s4WQQSJiYn4/fffUVhYiMzMTMjJyeHMmTMCjjsJBAKBQCAQCITmIJoSBALhk6G8vByJiYno2rUrXF1dsXr16vbOEkEMZWVliIyMhLy8PCwtLbFy5UoikCAQCAQCgUAgtBiiKUEgEAgEAoFAIBAIBAKhXZBp7wwQCAQCgUAgEAgEAoFA+N+ECCUIBAKBQCAQCAQCgUAgtAtEKEEgEAgEAoFAIBAIBAKhXSBCCQKBQCAQCAQCgUAgEAjtAhFKEAgEAoFAIBAIBAKBQGgXiFCCQCAQCAQCgUAgEAgEQrtAhBIEAoFAIBAIBAKBQCAQ2gUilCAQCAQCgUAgEAgEAoHQLvw/eJh9b9OJAqgAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "fig, axes = plt.subplots(8, 2, figsize=(11, 28), dpi=90, sharey='col')\n", + "\n", + "idx = 0\n", + "palette = sns.color_palette(\"husl\", 8)\n", + "\n", + "freq = scipy.fft.rfftfreq(lc_ar4.n, d=lc_ar4.dt)\n", + "for taper, tapered_data, axes_rows in zip(dpss_tapers, data_multitaper, axes):\n", + "\n", + " w, h = signal.freqz(taper, fs=1, worN=np.linspace(0, 0.01, 200))\n", + " h = np.multiply(h, np.conj(h))\n", + " axes_rows[0].plot(w, h, color=palette[idx])\n", + " axes_rows[0].axvline(x=NW/N, color=\"black\", linewidth=0.6, label=\"Frequency\\nW=4/N\")\n", + " axes_rows[0].set(\n", + " ylabel=f\"K = {idx} \\nPower\",\n", + " xlabel=\"Frequency\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[0].legend()\n", + " \n", + " fft_tapered_data = scipy.fft.rfft(tapered_data)\n", + " psd_tapered_data = np.multiply(fft_tapered_data, np.conj(fft_tapered_data))\n", + " axes_rows[1].plot(freq, psd_tapered_data, color=palette[idx], label=f\"K={idx} eigenspectrum\")\n", + " axes_rows[1].plot(freq_analytical, psd_analytical, color=\"black\", alpha=0.56, label=\"True S(f)\")\n", + " axes_rows[1].set(\n", + " xlabel=\"Frequency\",\n", + " ylabel=\"Power\",\n", + " yscale=\"log\"\n", + " )\n", + " axes_rows[1].legend()\n", + " \n", + " idx += 1\n", + "# fig.suptitle(\"Left: DPSS taper spectral windows \\n Right: Eigenspectra for AR(4) time series with given K\", y=1)\n", + "axes[0][0].set_title(\"DPSS taper spectral windows\", fontsize=18, pad=15)\n", + "axes[0][1].set_title(\"Eigenspectra for AR(4) tapered time series\", fontsize=18, pad=15)\n", + "\n", + "text=\"Note the marked increase in bias in the eigenspectra as K increases.\\n\\\n", + "The left-hand plots show the low frequency portion of the spectral windows (of DPSS tapers)\\n\\\n", + "K = 0 to 7. The thin vertical line in each plot indicates the location of the frequency\\n\\\n", + "W = 1/256 = 0.003906 = 4/N. Note that, as K increases, the level of the sidelobes of\\n\\\n", + "spectral windows (of DPSS tapers) also increases until at K = 7 the main sidelobe level\\n\\\n", + "is just barely below the lowest lobe in [-W, W].\"\n", + "fig.text(0.5, -0.06, text, ha=\"center\", fontsize=18)\n", + "fig.tight_layout()\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "1948275f", + "metadata": {}, + "source": [ + "### Summary of Multitaper Spectral Estimation\n", + "We assume that $ X_1, X_2, ..., X_N $ is a sample of length $N$ from a zero\n", + "mean real-valued stationary process $ \\{X_t\\} $ with unknown sdf $ S(\\cdot) $ defined over the interval $[-f_{(N)}, f_{(N)}]$, where $f_{(N)} \\equiv 1/(2\\Delta t)$ is the Nyquist frequency and $\\Delta t$ is the sampling interval between observations. (If $\\{X_t\\}$ has an unknown mean, we need to replace $X_t$ with $X_t' \\equiv X_t - \\bar{X_t}$\n", + "in all computational formulae, where $\\bar{X_t} = \\sum^N_{t=1}X_t/N$ is the sample mean.) \n", + "\n", + "- __Simple multitaper spectral estimator__ $\\hat{S}^{mt}(\\cdot)$ \n", + "\n", + "This estimator is defined as the average of K\n", + "eigenspectra $\\hat{S}^{mt}_k(\\cdot),k = 0, ..., K - 1$, the $k^{th}$ of which is a direct spectral estimator employing a dpss data taper $\\{h_{t,k}\\}$ with\n", + "parameter $W$. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in\n", + "distribution to $S(f)_{\\chi^2_{2K}}/2K$ \n", + "\n", + "- __Adaptive multitaper spectral estimator__ $\\hat{S}^{amt}(\\cdot)$ \n", + "\n", + "This estimator uses the same eigenspectra as $\\hat{S}^{mt}(\\cdot)$, but it now adaptively weights the $\\hat{S}^{mt}(\\cdot)$ terms. The weight for\n", + "the $k^{th}$ eigenspectrum is proportional to $b^2_k(f)\\lambda_k$, where $\\lambda_k$ is the eigenvalue corresponding to the eigenvector with elements $\\{h_{t,k}\\}$, while $b_k(f)$ is given by \n", + "\n", + "\n", + "
\n", + " $\\large{b_k(f) = \\frac {S(f)} {\\lambda_k S(f) + (1-\\lambda_k)\\sigma^2\\Delta t}}$\n", + "
\n", + " \n", + "The $b_k(f)$ term depends on the unknown sdf $S(f)$, but it is estimated using an iterative scheme. The estimator $\\hat{S}^{mt}_k(f)$ is approximately equal in distribution to $S(f)_{\\chi^2_\\nu}/\\nu$." + ] + }, + { + "cell_type": "markdown", + "id": "83e9db1b", + "metadata": {}, + "source": [ + "This summary, by no means, is an exhaustive explanation of the multitapering concept. Further exploration of the topic is highly encouraged. Use the references as the starting point." + ] + }, + { + "cell_type": "markdown", + "id": "be873c7c-f961-435d-a490-9311a917eb4b", + "metadata": {}, + "source": [ + "## Creating a `Multitaper` object" + ] + }, + { + "cell_type": "markdown", + "id": "be421421", + "metadata": {}, + "source": [ + "Pass the `Lightcurve` object to the `Multitaper` constructor\n", + "### Other (optional) parameters that can be set at instantiation are:\n", + "(Given here for completness, feel free to skip as they are later showcased)\n", + "\n", + "`norm`: {`leahy` | `frac` | `abs` | `none` }, optional, default ``frac`` \n", + " The normaliation of the power spectrum to be used. Options are\n", + " ``leahy``, ``frac``, ``abs`` and ``none``, default is ``frac``. \n", + " \n", + "`NW`: float, optional, default ``4`` \n", + " The normalized half-bandwidth of the data tapers, indicating a\n", + " multiple of the fundamental frequency of the DFT (Fs/N).\n", + " Common choices are n/2, for n >= 4.\n", + " \n", + "`adaptive`: boolean, optional, default ``False`` \n", + " Use an adaptive weighting routine to combine the PSD estimates of\n", + " different tapers. \n", + " \n", + "`jackknife`: boolean, optional, default ``True`` \n", + " Use the jackknife method to make an estimate of the PSD variance\n", + " at each point. \n", + " \n", + "`low_bias`: boolean, optional, default ``True`` \n", + " Rather than use 2NW tapers, only use the tapers that have better than\n", + " 90% spectral concentration within the bandwidth (still using\n", + " a maximum of 2NW tapers) \n", + " \n", + "`lombscargle`: boolean, optional, default ``False`` \n", + " Whether to use the Lomb (1976) Scargle (1982) periodogram when\n", + " calculating the Multitaper spectral estimate. Highly recommended for\n", + " unevenly sampled time-series. Adaptive weighting and jack-knife\n", + " estimated variance are yet not supported. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "bf507678", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "print(mtp)" + ] + }, + { + "cell_type": "markdown", + "id": "7e7342a5", + "metadata": {}, + "source": [ + "### The results" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "041fb778", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3hUZdrH8e+cKZlMekLvPfQiTQFFUSxgBRuKFdeOrmUtu+6+uvZ1Lauuupa194K6gtgLKioIiPTeQkvv08/7xyQDMYWUmTR+n+vyksyc85x7wsmQe+7nuR+LaZomIiIiIiIiIg1gNHUAIiIiIiIi0vIpuRQREREREZEGU3IpIiIiIiIiDabkUkRERERERBpMyaWIiIiIiIg0mJJLERERERERaTAllyIiIiIiItJgSi5FRERERESkwZRciohIq2CaJpMmTSI9PZ2tW7dWev6nn34iPT09/N+oUaM444wz+Pzzz6scb8WKFYwePZqioqIqn7/yyitJT0/nlVdeqfD4pZdeyr///e9axZyRkcGf/vQnjjzySIYMGcLEiRO54oorWLRoUa3Oj7TvvvuOF154oUmuLSIiLZ+SSxERaRWWLl1KRkYGAHPnzq32uH/+85+8+eabPPjggyQnJ3P11VdXmcw98sgjnH322cTHx1d67rvvvuPXX3+tcvxLL72UF154gYKCghrjzc/P56yzzmLDhg1cf/31PPPMM1xzzTUYhsHSpUtrPDdavv/+e1566aUmubaIiLR8tqYOQEREJBLmzp2Ly+Wib9++zJ07lyuvvLLK49LT0+nXrx8AY8aM4cgjj+TDDz9k9OjR4WO2bNnCggULuO222yqd7/P5uPvuu/njH/9Y5fOjRo0iOTmZDz74gPPOO6/aeD/55BOysrL44IMPSEtLCz8+ffp0TNOs9etuCoFAgEAggMPhaOpQRESkGVHlUkREWrxAIMD8+fOZNGkS06dPZ8OGDaxZs+aA58XGxtKtWzd27dpV4fE5c+aQnp5Ojx49Kp3z0ksv4XQ6mT59erXjHnvssbz//vs1XrugoAC73U5SUlKl5ywWS/jPt9xyC9OmTePzzz/n+OOPZ8iQIcyYMYMNGzZUOCcYDPL0008zefJkBg8ezHHHHcecOXMqjf3ZZ59x+umnM3ToUMaOHcsf/vAHMjIyeOyxx/jvf/9LRkZGeOrwLbfcUimGqVOnMnToUJYvX85jjz3G2LFjK13j99OFJ02axP3338/TTz/NhAkTGDlyJPfddx+mafLNN98wdepURowYwZVXXkl+fn6N3zcREWm+VLkUEZEW78cffyQrK4spU6YwcuRI7rzzTubOnUv//v1rPC8YDLJ7924GDRpUabwRI0ZUOj4zM5MnnniCp556CsOo/vPZESNG8Nxzz5Gfn19l8ggwaNAgvF4vN910ExdffDEDBw6sdsydO3dy7733cu211+J0OnnssceYNWsWn376KTExMQDceeedvP/++1x55ZUMGjSI77//nj//+c8kJydz1FFHAfD+++9z8803M3XqVK688kpM0+THH38kJyeHM844gy1btvDTTz/x+OOPA5CamhqOISMjgwceeIArr7ySNm3a0KVLlxq+s5XNnTuXoUOHcs8997By5UoeeeQRgsEgixcv5tprr8XtdnPnnXfy4IMP8ve//71OY4uISPOg5FJERFq8jz76iMTERA4//HAcDgfjxo1j7ty5XH/99RWqgBBKKP1+PwUFBTzzzDOUlpZy/vnnh583TZNVq1Zx8sknV7rOAw88wIQJEypMoa1K//79MU2TFStWMH78+CqPOeyww7jwwgt58cUXmTt3LnFxcYwfP54ZM2Ywbty4Csfm5ubyxBNPcMghhwChxHTy5Mm89957zJgxg61bt/L6669z7733ctpppwEwbtw4MjMzefzxxznqqKMIBoM8+OCDTJ48mYceeig89tFHHx3+c7t27XA4HAwfPrxSvHl5ebzwwgsMGDCgxtdenZiYGP71r39htVo54ogj+OKLL3jllVf45JNP6Nq1KwBr1qzh/fffV3IpItJCaVqsiIi0aF6vl88//5xjjjkmvAZw6tSpZGRksGzZskrHn3LKKQwaNIjDDjuMF154gfvuu49evXqFn8/Pz8fr9ZKSklLhvKVLl/LJJ59w0003HTCm8nMzMzNrPO7WW28NjzlmzBgWLFjAxRdfzOuvv17huLS0tHBiCdC5c2cGDRrE8uXLAVi4cCGGYTB58mT8fn/4v8MOO4w1a9YQCATYvHkze/fuZdq0aQeMvyrt27evd2IJofWtVqs1/HX37t3p3LlzOLEsfywnJwev11vv64iISNNR5VJERFq0b7/9loKCAiZOnBju0Dp27FgcDgdz586tNL314YcfpmvXruzatYtHHnmEW2+9lSFDhtC+fXsAPB4PQKVmNffccw9nnXUWCQkJFTrBut1uCgsLSUhICD9Wfm5tkqTu3bsza9YsZs2aRU5ODrNmzeLhhx/m7LPPDldd92/4Uy4tLS2cvObm5hIIBBg5cmSV18jMzCQ3NxeAtm3bHjCmqrRp06Ze55VLTEys8LXdbq/wPSt/zDRNfD6fmgWJiLRASi5FRKRF++ijjwC49tprKz338ccfc+utt1aomPXp04d+/foxZMgQ+vfvz5QpU3jiiSe44447gH1Vx99vJbJ582aWL1/Oiy++WOHxBx54gIceeohVq1aFHyssLASodr1ldVJTU5k2bRp33XUX2dnZ4YQuOzu70rHZ2dn06dMnfB2bzcbrr79eaRpw+bjFxcXAgaupdRETE4PP56vwmBryiIgcvJRciohIi1VcXMzXX3/NiSeeyJlnnlnhudWrV3Pvvffy008/VVrDWK5bt26cccYZvPvuu1xzzTWkpaXhcDjo1KkTO3bsqHDsU089RSAQqPDY+eefz3nnncexxx5b4fHyc6vqNlsuJyenQsOcclu3bsXhcFSo6mVnZ7NkyZLw1NidO3eyatWq8BTXQw89lEAgQGFhYbVrPHv27En79u15//33mTRpUpXH2O32cOW2Ntq3b09xcTF79uwJV36///77Wp8vIiKti5JLERFpsb744otwQ55hw4ZVeO6QQw7hySef5KOPPqo2uQS45JJLePvtt3n55Zf54x//GD535cqVFY4bNWpUlef36NGDMWPGVHhsxYoVJCQk0Ldv32qvO2fOHP73v/9x6qmnkp6ejt/vZ+HChbz22mvMmDEj3AUWQtXUm266Kdwt9tFHHw1XOQF69erF2WefzfXXX8+sWbMYMmQIHo+H9evXs2XLFu6++24Mw+BPf/oTN954IzfccAMnnngiFouFH3/8kalTpzJkyBB69epFVlYW7733Hn379iUlJaXGrrCHH344TqeTP//5z1x00UXs2LGDN954o9rjRUSkdVNyKSIiLdbcuXPp0aNHpcQSQlW4E044gblz53L77bdXO0bnzp056aSTeP3117n00ktxuVxMnjyZW2+9FbfbjdPprHNcCxYsYPLkyTVuVzJx4kR27NjBW2+9xa5du7BarXTr1o3bbrutUhW2U6dOXH755Tz44INkZGQwePBgHnzwwQoJ6P/93//Ro0cP3n77bR599FHi4+Pp06cPp59+eviYk046iZiYGJ566imuueYaXC4Xw4YNC1dQTzjhBH766SceeOABcnJyOO2007jvvvuqfQ2pqak8+uij/OMf/+Cqq65i0KBBPPjgg0yZMqXO3zMREWn5LKZpmk0dhIiISHPi9XqZOHEif/vb3zjhhBPqdG5hYSHjxo3j+eefr7baWRe33HIL69at47333mvwWCIiItGkrUhERER+x+FwMGvWLF566aU6n/v6668zfPjwiCSWIiIiLYmmxYqIiFRh5syZVW4zciDx8fH85S9/iWJkIiIizZOmxYqIiIiIiEiDaVqsiIiIiIiINJiSSxEREREREWkwJZciIiIiIiLSYGroU0vBoEkgEGzqMCqx2Qz8/uYXl7QOur8kmnR/SbTpHpNo0v0l0dQc7y+r1cAwLDUeo+SylgKBIHl5JU0dRgWGYSEtLZ6CglKCQfVlksjS/SXRpPtLok33mEST7i+JpuZ6fyUnuzAMa43HaFqsiIiIiIiINJiSSxEREREREWmwVj8tdtCgQfTp0weAwYMHc/fddzdxRCIiIiIiIq1Pq08uk5OT+eCDD5o6DBERERFpJUzTxOfz4ff7m9WaOGkdDMOC1+tt1PvLYgHDsGKx1Nyw50BafXIpIiIiIhIJpmlSVJRPcXEBe/ZYCAabVzdPaT2ysowmuL8sxMUlEh+fVO8ks1knl4sWLeK5555jxYoVZGZm8tRTT3HUUUdVOObVV1/lueeeIzMzkwEDBnDbbbcxdOjQ8PP5+fmcdtppOJ1OrrvuOsaMGdPYL0NEREREWoHyxDIxMRWXKxa/X1VLiQ6bzdLI95eJ1+uhoCAHgISE5HqN0qyTy5KSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NRWAL774gvbt27NhwwYuvfRSPvzwQ+Lj4+sVz4H2dWls5fE0t7ikddD9JdGk+0uiTfeYRJppmvsllvHYbAagyqVER1PcXzabHYCCghwSE5PrVb1s1snlxIkTmThxYrXPP//885x11llMnz4dgDvuuIOvv/6aOXPmMGvWLADat28PQJ8+fejXrx+bN29myJAhdY7FZjNIS6tfUhptKSlxTR2CtGK6vySadH9JtOkek0jx+Xzs2WPB5Yot+8Wf8P9FoqEp7i+XK5aiIgtJSU7sdnudz2/WyWVNvF4vK1eu5Iorrgg/ZhgG48aNY9myZUBoSmxsbCwOh4M9e/awbt06unbtWq/r+f1BCgpKIxF6xBiGhZSUOHJzi7WYXCJO95dEk+4viTbdYxJpoeYqwbKpikFsNgO/X5VLiY6mur/8fpNgMEhOTjE2W8VUMTExFrvdWuP5LTa5zM3NJRAI0KZNmwqPp6WlsXXrVgA2btzI3/72NwzDwDAM/vznP5OcnFzvazbXf5yCQbPZxiYtn+4viSbdXxJtusckUnQfycGkvu+dLTa5rI5pmuH5wYcccggfffRRE0ckIiIiIiLS+rXYieIpKSlYrVaysrIqPJ6Tk1OpmikiIiIiIg23ZMliJkwYRUlJSY3HnX76Sbz77puNFFXz9dxz/2HWrPOaOoxG02KTS4fDwaBBg/jhhx/CjwWDQRYuXMjw4cObLjARERERkWbi7rtvZ8KEUTz88D8qPXfHHbcxYcIoHn/8kXqPP2/e/5g69ehKjz/zzEtMnXpK+OsJE0bx/fcL6n2dlqCq1zhjxnk89NBjUb/21Vdf2qC/x0hp1sllcXExq1evZvXq1QDs2LGD1atXk5mZCcBFF13EG2+8wZw5c9i4cSO33347breb0047rSnDFhERERFpNtq1a89nn32C1+sNP1ZcXMSCBV/Trl37qFwzJSUFp9MZlbEbyufzNdq1XC4XSUnJjXa9ptas11yuWLGC888/P/z1XXfdBcDVV1/N7NmzmTJlCjk5OTz66KNkZmYyYMAAnn322fAelyIiIiIiB7uBAwexefMmvvvuWyZNOgaAzz//lH79+mMYFWtNEyaM4v77H2b8+MOB0L7zxx57BI8++hSHHDKqwrFLlizmnnvuCJ8HcNFFf2DWrMs4/fSTmDFjJtOnn8Xpp58EwM03XwdAhw4deeed/7F9+zYef/xhVq1aidvtplev3lx55bUMGza8Qjw33ngr33zzJb/+uox27dpx7bU3cNhhE8LHbNq0gccf/xfLly8lLi6Oww6bwNVXXxfe2/7qqy+lT59+gMmnn85n0KDBPPDAv6r8Xn344Rxef/1l9uzZTadOnZkx4zymTj0ZCCWljz76EN988yVFRYWkpbXlrLNmcPrpZ1f7Gp977j/88MN3PPfcy0CoklxaWkLv3n159903CQSCnHfeRZx++ln861//5LPPPiEpKYkbbriJQw8NvUa/388//nE3S5YsJicnh44dO3LWWedy8smnhcdctmwJy5Yt4Y03XgHg7bc/pGPHTgf83kRas04ux44dy9q1a2s8ZubMmcycObORIhIRERER2WfOq7tZ81txo12v/5A4Tju3Q53PmzLlJObN+zCcXM6b9z9OOulU5s+fW+9YhgwZxjXX3MALLzzLyy+H1lfGxroqHffMMy9x0kmT+etf/86oUWMwjNB2FiUlJYwbdziXXXYVNpudDz54j5tuupY33/ygwg4Pzz77FFdeeQ3XXfcnPvzwff7yl5t4/fX3aN++A4WFhVxzzRWceup0/vjHGygpKeWxxx7i7rtv5957/xkeY+7cDzn99LN46qn/Vvt6Pv30Y55//hmuu+4m+vTpy+rVq7j//rtITEzk8MOP5O233+D777/lzjvvp3379uzcmUFBQX6Nr7EqP//8E23atOOJJ55l0aKfefjhf7B48c+MHz+B5557mXfffZM77vgr7747F5fLRSAQoH37Dtx11/0kJiaxdOkvPPjgfXTo0JExYw7l2mtvZPv2bfTp04+LLroEgOTklFp/byKpWSeXIiIiIiLScMcfP5XnnvsPWVmZFBcXs2nTBiZNOqZByaXdbic+Ph6LBdLSqm+omZKSAkB8fEKF49LT+5Oe3j/89ezZ1/HNN1/y008/cNxxU8KPH3PMcUyZEqoMXn31H/n554W8//67XHbZVbz77psMGDCQSy65PHz8TTf9hXPPPZ3c3BxSUkIzGrt378Fll11V4+t57rn/MHv29RxxxJEAdOrUmXXr1vDBB+9x+OFHsnfvbrp27cbQocOwWCx06NDxgK+xKsnJyVxzzfUYhkG3bj149dUXiYlxMH36WQBceOEfeOedN1m/fh3Dhg0nJiaGWbMuC5/fqVNnli1bwpdffsaYMYcSHx+PzWbD6XRWuHZtvzeRpORSRERERKSe6lNFbAppaW0YNWosH388l8LCAiZOnITLFdekMZWUlPDcc/9h4cLvyMnJJhAI4PF42LNnd4XjBg4cXOHrQYOGsGXLZgA2bFjPokU/MXny4ZXGz8jYEU6g+vcfUGMspaWlZGTs4O67/497770j/Ljf7w8nkccfP5U//vEqzjlnOoceOp4JE45g5MjRdX7dvXr1rjAdOTk5hR49eu33dTJWq5W8vJzwY++++xZz537Inj278Hq9+Hw+RowYWeN1avu9iSQllyIiIiIiB4GpU0/iqacep6SkhP/7v7uqPMZisWCaZvhrv98ftXj+/e9H+OWXRVx55bV07tyFmJgYbrzx2koNd8q2sK8UJ4SSwsMPP7LKqmTbtm3Df3Y6Y2uMpbQ0tLXKn//8f6SnV0xEbbZQytS//0DefvtDfvzxexYt+olbbrmBY445lptvvu3AL7aK8fZ/Lb9/DEI7YQB8/vknPPHEv5g9+3oGDhyEyxXH888/zZ49ew7wmmr3vYkkJZciIiIiIgeB8eOP4IEH7iU21lVt1Ss5OYWcnOzw1xs2rKtxTJvNTiAQPOC1bTYbwWCgwmO//fYrU6eeHJ6GWlBQQGZm5YRp5coVTJ58fPjrVatWMG5cqBrXr186CxZ8Q8eOnbBaq1/neCCpqWm0adOWnTszOProY6s9LiEhgcmTj2fy5OMZO/Yw/v73v/KnP/0ZwzCqfI2R8NtvvzJs2AhOPXV6+LHt27fjcDjCX9vt9krXjtT3pi6a9VYkIiIiIiISGTabjTffnMOLL74Wrvz93ogRI3n33bfYsGE9v/32K88880SNY3bs2JHi4iKWLFlMXl4ebre7yuM6dOjE4sU/k52dRUFBAQBdunTj66+/ZP36daxbt4bbb/9LlY1wvvjiUz7++CO2bdvKE0/8i23btnLKKaFEa9q0M8jNzebvf7+NNWtWkZGxg4ULv+P++++uy7cGgAsvnMVLL/2Xd999k23btrJhw3o++OA95sx5B4A333yVL774lG3btrB16xa+/fZrunbtFp7iWtVrjIQuXbqxatUKFi36kW3btvLvf/8rPC24XIcOnVi5cgW7d+8iLy+PYDAY0e9NbalyKSJSZtcON78tKSIny4sZBNOE7r1jGT8ppalDExERiYi4uJq3oLj66j9y9913cPnlF9GpU2dmz76O6667utrjhwwZximnTOOvf72Z/Pz88FYkVY37+OMP8/7779K2bTveeed/zJ59HffcE7pWSkoqF1wwi/z8vErnzpp1KfPnz+OBB+6hbdt23Hnn/XToEFrr2rZtO5544jmeeuox/vjHK/H5fHTs2JnDD59Yt28McOqpp+N0xvL666/w+OOP4HK56NOnH+ecE9oa0emM5eWXXyAjYztWq5WBA4dw113/qPE1RsIpp0xj3bo1/PWvt2AYVo499gSmTj2Z9ev37aoxY8ZM7r77ds4993Q8Hk94K5JIfW9qy2LuP6laquXzBcjLK2nqMCowDAtpafFkZxcRDOqvUSLrYLu/Vi8v4s3/7qryuatu7U7b9o4qn5P6OdjuL2l8usck0vx+P1lZGbRp0xmbzYbNZuD3H3g6qDTM7/fdPFg01f31+/t8f8nJLuz2mqfXqnIpIgc90zT5en5ofcmRx6fSd2AchmFh5dJCvvsil58X5DH19HZNHKWIiIhI86Y1lyJy0Nu0roQ9O7107BrDxONS6dzNSccuMYyblILNbmHZzwWUlkR+gb6IiIhIa6LkUkQOej98lQfA+EkpFRocuOKsDB2VgM9rsurXoiaKTkRE5OD13XeLD7opsS2ZkksROai53QE2rSshLt7KgKGVmxz06B3aFysny1fpORERERHZR8mliESd2x1otk0Ptm4sxQxCr3QXVmvltuyJyaGl6QV50dtEWkRERKQ1UHIpIlGVnenlX3du4dWndzZ1KFXatLYUgF79Yqt8XsmliIiISO0ouRSRqPF5g7z1/C5Ki4NsXl/aLJvibFoX2mKoZz9Xlc8nJIaSy8J8JZciIiIiNVFyKSJRUVoS4LVndrJnpxcsgAlbNpQ2dVgVFOb7ydztJa2tneQUe5XH2B0GsXEGBfl+tC2wiIiISPWUXIpIxG3dVMrTD21n8/pS2ndycOzJbQDYvL6kiSOrqDyeXulVVy3LJSbZ8PtMSkua57pRERERkeZAyaWIRIzXE2Teu3t5/rEd5Gb5GDA0jouv7cqgEaEurJvXN6/KZfmU2F7VTIktp3WXIiIijeOKKy7mm2++DH+9fv06Zs06j6OOOowLLzyHgoJ8Tj75ODIz9zZhlFIdW1MHICKtg2mavPREBju2unG6DE6Y1pahIxOwWCzExBiktbWTudtLYYE/vI6xqePdtK4UiwV69Km6mU+5xKSy5DLfT4fOMY0RnoiISINNmDCqxucvuugPzJp1WaPEsmbNap599knWrFlFaWkpbdq0ZfDgodxyy1+x20NLUxYs+Jri4mKOOOKo8HlPPvkY7dq15+67HyA21kliYhInnHAizz33H2655a+NErvUXtP/hicirUJpSZAdW90kpdi45LqulRLIXukusjPzmfvOXk4/vyM2W+VtPxpT9l4fBXl+OnWLIdZlrfFYVS5FRKQl+uCD+eE/z5v3P+bMeYdnnnkx/Fhs7L6ZO6ZpEggEsNkinx7k5uZw3XVXccQRR/Lww0/gcrnIyNjBV199QTAYAELJ5TvvvMUJJ5yExbLvd4SMjO2cccbZdOjQIfzY1KknceGF53LVVX8kISEh4vFK/WlarIhERG62D4AOnWOqrEwePjmV1DZ21iwv5uN3m34qS22nxIKSSxERaZnS0tqE/3O5XBiGEf5669YtHHvsEfz44w9cdNE5HHnkoaxfv5a7776d2267qcI4t912E3fffXv4a4/Hw2OPPcwppxzP5MmHc8UVF7NixW/VxvHbb8vxeNzcdNNf6Nu3H507d2HMmEO5+ea/EBPjBCA3N5clSxYxfvzh4fMmTBhFRsYOHnnkn0yYMIrnnvsPAN269aBdu3Z89903EfxuSSSocikiEVGeXKakVd11NTHJxoVXd+HRu7ewclkRJ57ZrsInk41t0/raJ5cJSUouRUSkagmzL8fx8dxGu573hKkUPvZUxMb7z38e5+qrr6N9+w4kJSXX6pxHHnmArVu3cOed95GW1obPPpvPddddxWuvvUPbtu0qHZ+amorX6+W7777liCOOrPLf/+XLl+FyuejatVv4sQ8+mM8f/nABp512OlOmnFSh0pqePoBff13KCSecWPcXLVGj5FJEIuJAySWEKoAdOsWwY6ubnCwfaW0djRVeJbszPAB07eE84LHllUvtdSkiIq3NH/5wJSNHjq718bt37y6bYjuP1NQ0AC688BJ++OE7Pv30Y84994JK5wwePJRzzjmfv/3tFhISEhg4cAijR4/l+OOnhqe17tmzi9TUtAqJZ1paGwzDwOVykZbWpsKYbdq0YePGDfV5yRJFSi5FJCLyapFcAnTqFkoud27zhJPLYNDEMBq3iukuDeKIsWB3HHh1QHharJJLERH5nUhWEZtC//4D6nT8pk0bCAQCnHXWqRUe93q99OnTt9rzrrzyGmbMmMnixT+zcuVvvPrqi7z66os8++xLtGnTFo/Hg8NR+6Z5DkcMHo+7TrFL9Cm5FJGIKK9cJqfV/LbSuZsTyCdjm5shIxP46ds8vpyXzUWzuzRaJ9Zg0MRTGgxPdz0Qp9OKI8aiabEiItLqOJ0VO6ZbLBZM06zwmN+/79+/0tISbDYb//3vq5Wmt8bFxdV4rZSUVCZPPp7Jk4/nkkuu4OyzT+P999/lkksuJykpmcLCglrHXVhYQHJySq2Pl8ahhj4iEhG5OaF/eJJTD1S5DE1D3bk99GnjupXFeNxBFnyWE90A9+P1BjFNiHHW/i3QFW/F4w7i95sHPlhERKSFSk5OIScnO/x1MBhk06aN4a/79u2H3+8nPz+PLl26VvgvJSW11teJj48nLS2N0tLQHtj9+qWTlZVJcXFRrc7fsmUzffum1/p60jiUXIpIgwWDJvk5PuITrTgOMM00ra2dGKfBrh0eAgGTzD1eAFb9WsR3X+Qw7929eL3BBscUCJgs/DqX7ExvpefcpaHxnbG1fwuMiwttV1JSHGhwbCIiIs3ViBEjWblyBZ9//gnbtm3l0UcfJD8/L/x8t249OProyfz973/l22+/ZufODFauXMHzzz/D0qW/VDnm998v4M47/8bChd+zY8d2Nm/exJNPPsbmzZvC3WH79k0nMTGJ335bfsAYPR4Pa9euZsyYQyPymiVyNC1WRBqsIM9PMHjg9ZYAhmGhY9cYtqwvJWOrOzzV1DTh8/+FPilt1zGGUeOSGhTTiqWFfPJ+Fgs+y+W8KzrTscu+Kbf1SS5d8WXJZVGAxFpOpxUREWlpDjtsPOeeewGPPPJPTDPIGWfMYPTosRWOue22v/P888/w6KMPkpWVSUpKKoMHD+WYY46rcswePXricDj4178eZO/ePTidTrp378Fdd/2DQw4ZBYDVamXKlBP57LP5HHrouBpj/P77BbRr157Bg4dG5kVLxOg3JBFpsPB6ywNMiS3XpZuTLetL+WVhPgDdejkpyPNjtVrIzvSxYmlhg5PLNctD02pKigO88lQGf/y/HtjtoWTSE04urbUeL64suSwuUuVSRERanunTz2L69LPCXx9yyCi++25xlcdedtlVXHbZVdWOZbfbufTSK7n00itrde3Onbtw8823HfC4M888lwsuOIvMzL3hLU3eeed/lY57++3XueCCS2p1bWlcmhYrIg2WVTa1tTaVS4Ce/ULNA1YsCSWA3XvHcu1fe3DVrd1JSLKyZUNpg7b98HmDbFhTgiPGQuduMRQXBcjL2TeeuzSUINatchn6LK5EyaWIiEhUtGnThptuuo09e3ZXe0xBQT4TJhzB5MlVV0mlaSm5FJEGWb64gPnvZwHQuVvtur127RmL1WohEAg1x2nb3oHFYsEwLAwangBmaA1mfW1cV4LPa9J3QBxtO4Riys/1hZ+v15pLVS5FRESibuLEo2qc7pqYmMS5515QqVOtNA9KLkWk3kzT5KO3MwkGTY47tQ39BtXcgrycw2HQtZcz/HV5Aggw+JDQZsqLf8gPJ591VT4ltv+QeJJSQhXH/Nz9K5d1nxbrUkMfERERkRopuRSRevN6TLyeIG3aOTjsyJQ6fYrYq68LAIsF2rTbN522c7cYuveOJXO3l2U/136/q3Ied5BVvxZhs1voO9AVTi7336OyPtNi4/Zr6CMiIiIilSm5FJF6K6/ilVf16qJ83WVKmh37ftuXWCwWjj2lDQBfzsvG66l5WxKPJ8irT2eEp9EuX1yA12MyeEQ8zljrfpXLhk2LLe8WW6zKpYjIQWnf56fa71has9D9Xd9Zx+oWKyL1Fk4u4+ueXHbu5mT0hCQ6d3NW+dyAYfGs/rWITetK6D8kvtpxtm4sZf2qEtavKuH6O3qy6PtQB9pR45MBSEoOVUUrTIt11yO5jFPlUkTkYGYYVgzDSl5eFgkJyYADv1+JpkSLpZHvL5NAwE9hYV74Xq8PJZciUm/liZYrrnKSZmzfhhkXh5maVuW5hmFh6untqh27T38Xq38tYvsWd43J5f7J3jMPbacw30/HLjHh5kKJ5ZXLvIatuVRDHxGRg5vFYiEtrSMFBTnk5u7FMAyCwZpn14jUV1PdXzExLlJS2tW7YZKSSxGpt+qmxboeuJe4B+4l0LUbuV8swExOqfPYXXuEKprbN5fWeNz+yV5hvp/EZBsnTGsbflN0OAxi4wwK8vyYponFYqnXmktHjAWrzaLKpYjIQcxqtZKS0haLxSQpKZacnGKCQVUvJbIMw0JKiovc3JJGu78sllBCa7E0bNWkkksRqbeqkktLVhauRx8CwLp9G65/3EPxPQ/Ueew27R3EOA12bvcQCJhYrVV/glZUGKpIHnVCKqltHQwYGofNVvGNMSnFzu4dHkqKA8TF2+q15tJisRAXb6Ug308waGIYaoEuInKwslgM7HY7NptNyaVEnGFYcDgc2GzeFnd/qaGPiNRbVWsunW+/gcXjwT3tDEybDeecd8Dvr26IahmGhS49nPh9JrszPNUeV1wYiqFbr1iGHJJQKbEESEquuB1JeXIZ46zbegJXvBVMKC1R9VJERETk95Rciki97VtzuS9Js3/7FQCll1yGd+JRGNnZ2L/7tl7j75sa6672mKKy5DI+ofqJGL/f69JdGsBmt2Cz1a36GBendZciIiIi1VFyKSL1VmlarN+P/acfMV0u/MNG4D1+KgCOb7+u1/hde4aSy28+zeaT9zMJBCpPDSkumxYbl1B9FTIpZV/HWNM08ZQG6zQltpxLe12KiIiIVEvJpYjUW0lxaHppeXJpW7UCo6gQ36ixYLfjm3A4APYfFtRr/O69Y+k70IW7JMjCr/PYvqVyBbOoMIBhhVhX9W9n5dNi83J8+LwmwWDdOsWWU8dYERERkeopuRSRevv9mkvryhUA+EccAkCgVx8C7Ttg+3UZlqLCOo9vsxmce2lnjjw+FYA9OyuuvQwGTUqKQk16amqZ3b5zaFuSjG3uejXzKafKpYiIiEj1lFyKSL2VFAWw2iw4HKHEzrZ6FQD+9P6hAywW/KPHYgkEsC3/td7XadcxlBzu3VUxuSwtCWCaEF/DlFiAtLZ2nK5Q59niotA02vokl6pcioiIiFRPyaWI1EswaFJSEsAVZw1XDW1rVwPgTx8QPs43PFTFtC1bWu9rte/kAGDvLi8Apmmy5Mf8cKOfmtZbQlnn2e5OAn6TLRtC+2bWq3JZNv23vGIrIiIiIvton0sRqRePO4gZBFfcviTNunYNpmEQ6Nsv/Jh/+AgAbMt+qfe1klPt2B0W9u7yYpomO7a4+fCNvcQ4Q9eOiz/w+smuPZxsWF3C+tUlgNZcioiIiESaKpciUi+/X29pKcjHujODQI+e4HSGj/MPGw6AvQGVS8Ow0LaDA487SH6en8w9oQqmxx1aP1nTNiTluvSIBWDT2lBymZJmr/C8ddMG4m+5AeuqldWOoTWXIiIiItVTciki9fL7PS6ta9cAENhvSiyAmZSMv1dvrFs2Y8nNqff12nUoW3e500v2Xl+F5w40LRagc/cYKOv506a9g9ETksLPWXKySZ5yDLH/fYbk06Zg2bOnyjFUuRQRERGpnpJLEamX3+9xaStLLv39+1c61l++7vLXZfW+3r51lx6yM70VnjtQQx8Ap9NKl25OrFYL089rj8Ox7+3P+fqrGDmhxNfIzcX53ttVjxFrYDG05lJERESkKkouRaRefp9cWteEOsUG+g+sdGz5ukv7siX1vl55x9jdOz1kZ/6+clm75eNnX9KRK2/pRscuzgqPO19/GYCCx54CIOaDd6s832Kx4IqzUlIUwDTNOsUvIiIi0topuRSReikpDq13LF+HGK5c9quhctmAdZedusZgscDWjaXkZPpwxVtp2yFUzUxIrF1znvgEG2ltHRUes2RmYlu3Fn/vPnjOnEGgS1fsS37Bkp9X5Rhx8VaCQcL7ZYqIiIhIiJJLEamXSmsuN28GINCrd6VjfYOHYlos2H6tf3IZ67LSqWsMhfkBAgGTtLZ2pkxvy1FT0sJJZn3YF/8cinHMoWCx4Bs9Bqg+EQ439dHUWBEREZEKlFyKSL1UmBbr9WLs2EagU2eIja18cHw8gX7pWDN2YMnMrPc1e6W7wn9Oa+ugZ18XE49NDe+zWR/2RT8B4B89NvT/ESMBsFUzhTcuTk19RERERKqi5FJE6mX/5NK6fSuWYDC0DUk1/EOHA2BfXv/qZa9++yWX7ew1HFl75cmlryy59I0YFXp8SdX7cmo7EhEREZGqKbkUkXrZt8+lgXVL2ZTYnr2qPb68qU9DOsZ27enE7ghVKX+/drJePB5sy5YQTE4m0LcfAIFBgwCwrl1d5SnajkRERESkakouRaRewmsuXVaMzZuAmpNL37CGN/Wx2Qx6p7uwWKBD54Ynl7bffsXi8eAbNQaM0NuhGZ9AoHOXUMLsdlc6R5VLERERkarVrn+/iMjvlBQHsDss2B0G1lokl/7BQzANo0FNfQBOPrs9udk+Uts0PLm0Lwo18ylfb1mufH2odeMGAoMGV3hOlUsRERGRqqlyKSJ1FgiYlJYG9+sUW5Zc9qg+ucTlIpDeH+uunVj27Kn3tV1xVjp3cx74wFqw//wjsG+9Zbny7VRs69ZUeX1Qt1gRERGR3zsoksvS0lKOOuoo/vnPfzZ1KCKtgrs0AOa+KaLlyWWwZ/UNfQD8w0LrLhvS1CdiTBPbop8wrVZ8ZR1iywX6pQNgXb+u0mmqXIqIiIhU7aBILp966imGDh3a1GGItBolRUGgrIoXCGDdtpVgm7aY8Qk1nucbNhxo2LrLSDG2bcW6dw/+wUMhLq7Cc+Vdb8sbFe1Pay5FREREqtbqk8stW7awadMmJk6c2NShiLQa+29DYmTswOLz1bjeslx55dK2fFk0w6uVfVNix1R6rsbkMs4KFlUuRURERH6vWSeXixYt4vLLL2fChAmkp6fz1VdfVTrm1VdfZdKkSQwZMoQzzzyT5cuXV3j+/vvv5/rrr2+skEVahdxsH888tI1N64uqfL7CHpe1aOZTzj9oCKbV2iwql+X7W/rHHFrpuWCnzph2e5XJpWFYcDgseL3BqMcoIiIi0pI0626xJSUlpKenM23aNGbPnl3p+Xnz5nHvvfdyxx13MGzYMF588UUuueQS5s+fT2pqKp9//jk9evSgZ8+eLF3a8F9mDcPS4DEiqTye5haXtHzrVxWzfYubzz/awxkXdqj0fGlJKLmMS7BiK0vAgr16H/hejHMR6D8A28oVWPfsxuzYMeKx15Z9cahTbGDsoZXjNmwEu3XHunEDRnERJFSc7mu3G3jcQf3sNYDevyTadI9JNOn+kmhqyfdXs04uJ06cWON01ueff56zzjqL6dOnA3DHHXfw9ddfM2fOHGbNmsWvv/7KvHnz+OSTTyguLsbv95OYmMill15a51hsNoO0tPh6v5ZoSkmJO/BBInXg9+YDsPq3QuLiemI1LLz76g7Wry4kJsZKatvQNiDt2rmIX7oDANfQgbhq8zMydgysXEHq5jUwuG/UXkONCgpg1Uro0oWUof2rPqZfX9i4gbT8vdCjYhIc47RSXBQgJSWuRb7xNyd6/5Jo0z0m0aT7S6KpJd5fzTq5rInX62XlypVcccUV4ccMw2DcuHEsW7YMgBtuuIEbbrgBgPfee49NmzbVK7EE8PuDFBSUNjjuSDIMCykpceTmFhMMmk0djrQie/eE7nWvJ8jP3+9l2c8FrF6+b4rs5g3FAJj48a5agwPIb9MRf3bV02j3F9N/CPFAyTffUzruqGiEf0D2r78mMRjEM2osRdXE7OrcjVigcNkKvF16V3jOGurpw57dhThimvXqgmZL718SbbrHJJp0f0k0Ndf7KzExFrvdWuMxLTa5zM3NJRAI0KZNmwqPp6WlsXXr1qhcszn95e4vGDSbbWzSMhXk+8N/fvuFXfj9Jqlt7Uw7twPPPrI9/JzTZWCUrbn0de+JWYv70HdIaNsP26Kfm+y+tf60r5lPdTEEunUHwLJpc6VjbI5QtdLjCWCzq3LZEHr/kmjTPSbRpPtLoqkl3l8tNrmsjmmaWCyVf9mbNm1aE0Qj0jIVliWXFgv4/SYdu8Qw4w+dSEyy0aFzDLszPAC4XBasWzYTTErGTEmt1dj+gYMJxsWH1jz6/WBr/LehfZ1ix1Z7TKBHqEFRVU197GUJpc/bst7wRURERKKpxc7nSklJwWq1kpWVVeHxnJycStVMEambogI/doeFk8/qxJgJSVw0uwuJSaEksHd/V/i4hKK9WEpLCfQ6cKfYMJsN/8jRWEqKsa38LdKhH1gggO2XxZguF/5BQ6o/rIbtSOz20Funz6fkUkRERKRci00uHQ4HgwYN4ocffgg/FgwGWbhwIcOHD2+6wERaOJ8vSGlJkIREG8ee1IETz2xfYV1hn/2Tyz1bAAj07P37YWq+xtjQ9h/lFcTGZF2zGqOoEN+IkWC3V3tcoHuP0PFVJZeO8sqltiMRERERKdesk8vi4mJWr17N6tWrAdixYwerV68mMzMTgIsuuog33niDOXPmsHHjRm6//XbcbjennXZaU4Yt0qIVFYS2GUlIqnq6ateesThjDRKSbNi3hhKvQK+6JpeHAWD7qfGTS/tPC0Mx1DAlFoDYWAIdOmJkbA9N391/DIcqlyIiIiK/16zXXK5YsYLzzz8//PVdd90FwNVXX83s2bOZMmUKOTk5PProo2RmZjJgwACeffZZUlNrt/ZLRCorLAglUgmJVXcDs9ksXHh1F7CA9ZmNQD2Sy0NGYVqtoUTPNEOLOxuJfeH3oRgOG3/AY4PdumPdvQsjYwfBskomEG7io8qliIiIyD7NOrkcO3Ysa9eurfGYmTNnMnPmzEaKSKT1KypPLqupXAJ06BwDgHVT/ZJL4uPxDxmKfdlSrJs2EOjdSPtdmib2hd9jWq34R4854OGB7j2w//wj1q1bKiSX5Q19/KpcioiIiIQ162mxItL4CvND02LjEw/82ZN1c1ly2bMODX3K+I4I7XFp/+brOp9bX9bNG7Hu3YN/2HDM+IQDHl++HYl1W8XtjcLTYtUtVkRERCRMyaWIVFA+LTaxhsolAMFgaBuSlJRab0OyP+8RRwLg+OarOp9bX/YfyqbEHnrgKbGwX1OfrVsqjlM+LdanabEiIiIi5ZRcikgF5Xtc1jQtFsDYtROL2133KbFlfGMOxXQ6sX+/oFLDnGgJr7ccV7vksnwqrLFtS8VxVLkUERERqUTJpYhUEO4WW01Dn3Lh9ZZ13IYkzOnEN/YwjIJ8bL8urd8YdWGa2L/7FtMw8I05tFanqHIpIiIiUntKLkUkLBg0yc32AQeuXNa7mc9+vBMnAeD4+st6j1Fb1jWrse7aiX/ESMzklFqdE+zQEdPhqGLNZXm3WFUuRURERMopuRSRsMXf55OT5aN9JwcxzprfHiKSXB49GQDHJ/PqPUZtOb78PHTNScfU/iTDINC1G0ZWFhQVhR+227XPpYiIiMjvKbkUEQDycnx89r8sDANOPac9lgPsPdmQTrHlAv0HEOjRE/uypRg7M+o9Tm3UK7kktNclVOwYu69yqWmxIiIiIuWUXIoIAJvXl+Lzmowcl0THLs4DHm/dvAloWOUSiwXP8VMBcMyPYvWyqAj7Tz8QTE3FP/yQOp1a1bpLW1nlUvtcioiIiOyj5FJEAPC4Q1W45FT7gQ8u34YkLQ0zKblB1/VOORGAmI8/atA4NXEs+AaL14t34lFgrblR0e8FuvUAwLpfx1hVLkVEREQqU3IpIgB4PaFE6UBrLQGMjB1YPJ76d4rdj2/0WIJpadi/X4AlJ7vB41Ul5n/vA+A94cQ6nxvoHpoWa+w/LVZrLkVEREQqUXIpIsC+ymVtkkvrhvUABHr3afiFrVY8J5+Gxe8n5v33Gj7e77ndOObPw3Q68RxzXJ1PD1YxLTZcuVRyKSIiIhKm5FJEgP2Sy5gDvy3Y1q8FwN83PSLXdp85AwDn269HZLz9Ob7+EqOoEO8xx0F8fJ3PD1TV0MeuabEiIiIiv6fkUkQA8NRhWqx1bSi5DPSLTHLpP2QU/l69sf+yGOvG9REZs1zMB6FqqOfkU+t1vpmcQjApOZRcmqFKpd2habEiIiIiv6fkUkSAfZVLRy0ql9b15cllv8hc3GLBU169fP3VyIwJWPLziJn3P0xXXL2mxJYLdOuOpaQES2YmoMqliIiISFWUXIoIULeGPrb1azEdjnAn1Uhwz5iJabPhfOUFKCmJyJgx77yJpbQU9/Qz6jUltty+dZebAbCVJZfaikRERERkHyWXIgLUvqGPJTsbIzs71MzHZovY9YMdO+E56RSMnByc777V8AFNk9iXngfAff5FDRrq9+suLRYLNrsFn1fJpYiIiEg5JZciAuyfXFpqPC7SzXz2V3rplQDEPvMkBBs25dT+00Jsq1fhGzYC/7ARDRorUE3HWJ9P02JFREREyim5FBEg1NDHarVgs9X8tmBdF9lmPvvzjxyNb/RYbGtWE/PhnAaN5XroHwCUXnJZg+Oqbq9Ln9fENFW9FBEREQEllyJSxuMO1q5T7ProJZcAxbf+FQDXfXeB31+vMWyLf8bx9ZcEuvfAM/3MBsdU016Xfr+SSxERERFQcikiQCBg4veZOA4wJRbAtnYNEJ1psQC+CUfgPeIobJs24nz5hboPYJrE3Xc3ACXX/Ski60IDXbphWiy/2+uybDsSrbsUERERAZRcigj7dYqt1TYk6zANI9TQJ0qK/3YHpmEQd9ftGLt21uncmPffxfHtV/j79MV9xtmRCSgmhmDHThgZO8DnA/ZVLrXuUkRERCREyaWI1LpTLEVFWDN2EOzWHZzOqMXjHzqc0suvxigsIP7Ga2vd3MeSm0P8bbeEQn3gEbDbIxZToFt3LMEgxo7twL69LrUdiYiIiEiIkksRqXVyaduwDgB/lNZb7q/4pj/j79WbmM8+wfXAvQc+we8n8Q8XYWTuxX32ufjGHx7ReILl25GUrbu0OzQtVkRERGR/Si5FBE8tp8WGO8VGab1lBS4XBS++TjAhkbgH78f53NPVHxsIEH/z9aHpsAMGUXjPAxEPJ7wdSdm6S1tZ5dLn1bRYEREREVByKSLsq1w6DlS5XL0KAH96/6jHBBBI70/BMy9gOhwk3Hoj8bfeiKWwoMIxxp7dJF54DrEvv0CwTVvyX3od4uMjH8vvK5flDX00LVZEREQEgIa3URSRFq/W02JXrQDAP2hI1GMq55t0DPlvf0DiBTOIfe5pYt5/F89xUwj06oN180acc97BUlKCv09f8l97J7xtSKQFuvcEwAhPi1VDHxEREZH9KbkUkVp3i7WuXIFps0Vtj8vq+A4bT+43PxJ3z9+Jeet1Yl97OfycGRNDyVXXUvLHGzCTkqMWQ6BXbwCsmzYCWnMpIiIi8ntKLkUOIsGgScBvhhOjcrWpXFoyM7Hu3YN/wECIiYlqnFUJduxE4WNPUXT73dgXfo+xZxfB9h3xjZ+AmZIa9eubbdsSjE/AtmkjmGa4W6zWXIqIiIiEKLkUOYi8/9oeViwpZNCIBI4+MY3klNBWHbVJLsNTYgcOjn6gNTDT0vCeeHLjX9hiIdC7D/Zfl4bWeSa7AMjN9jd+LCIiIiLNkJJLkYPI9i1ugkH47ZdC9uz0cOKZ7fj+i1xKigMAOGqYFmtb2TySy6YU6N0b+69LsW7cQNtOowDYu9vTxFGJiIiINA9KLkUOIkUFfmKcBp27O9m0toT//mtHhedrVbkcdBAnl736AGDduIF2h4wDIHOXtylDEhEREWk2tBWJyEHC4wni85okJFqZfl57EpNtYAGr1RI+psbkcmXjd4ptbgK99yWXzlgrick2crJ8WncpIiIigpJLkYNGcWFobWB8oo24eBuX3diVq27pTvrguPAx1XaL9XqxrltDsE0bzHbtGiPcZimcXG4OdYxt18GBaULWXlUvRURERJRcihwkigpD6yrjEqyh/8fbaNveQb9B+yWX1VQurRvWY/H58A8cAhZLlcccDMLbkWzcAEC7jg4A9u5WcikiIiKi5FLkIFFUEEou4xMqLrXuO/DAyaVt5W/Awb3eEsBMTCLYpi3WLZvB76ddx9CWLHu17lJEREREyaXIwaKofFpsWeWyXFy8lWGjE+ja01lDclneKXZQdINsAQK9+2Dx+TC2b9tXudyljrEiIiIi6hYrcpAoLpsWG59orfTcaed2qPFc22/LgYO7mU85f+8+2H9aiG3TBtoc3gMskLlHlUsRERERVS5FDhJFBaHKZVxCHT9TCgax/boUMzaWQP8BUYisZQlvR7JpIw6HQXyClYJcP8Gg2cSRiYiIiDQtJZciB4nyhj6/nxZ7IMbmTRgF+fgHDwWbJjvsvx0JQFKKnWBw35pWERERkYOVkkuRg8S+5LJuCaJt6RIAfMNHRDymlqhychn6fubn+posJhEREZHmQMmlyEGifJ/LuDpWLsuTS//wQyIeU0sU6NET02KpIrn0N2VYIiIiIk1OyaXIQcA0TYoKA8TGGVitddun0vZrWXI5YmQ0Qmt5nE6C3bpj3bEdiopISrYDkKfKpYiIiBzklFyKHAQ8niB+n1nnKbH4/diW/0owIZFAr97RCa4F8pc1NrKtX6vKpYiIiEgZJZciB4HyZjN1bebD6tVYSkrwDxsOht4uygX69QfAunYNyalKLkVERERAyaVIq2eaJhtWFwN1X2/J4sWA1lv+nj89lFza1q4hKSU0LVYNfURERORgp30FRFqxbZtL+erjbDavKwWg/+D4ug2waBEAvhFKLvcXKEsurevWEOsysDss5OepcikiIiIHNyWXIq1U5m4vLzy2g2AQ0traOemsdvTo46rbIGXJpX+YtiHZn79vOqbFgm3tGiwWC0nJNrL2+vC4g8Q4NSFEREREDk5KLkVaqa0bSwkG4ZDDEpl6ers6d4mlpASWLSPYpg3Brt2iE2RL5XIR7Nod67YtoY6xKXay9vrIz/XRrmNMU0cnIiIi0iT0EbtIK7VnlweA3umuuieWlO1v6ffjH3MoWOp+fmvn71+27nLDOnWMFREREUGVS5EWyeMJ8sOXuezd7SXWZTD19Hb4/SbrVxazd7eXIYcksHeXF4D29ayk2X9eCIBvzKERi7s1CaQPgE/nY12zmsTk7gBadykiIiIHNSWXIi1MTpaP15/dSeZub/ixEWMT+enbPFYsKQJgx1Y3e3d5sNospLSx1+s6tp9+BMB/6GEND7oV8vdLB8C2bi2Jx54IQGG+kksRERE5eGlarEgL8+Gbe8jc7aV3uovBI0LdX/Nz/ezZGUo2HTEGm9eVUFoSpG17R72mxBIMYlv0Mzid+IcOj2D0rUeg/wAArGtXk5AU+pxOyaWIiIgczJRcirQge3d52LK+lJQ0O+de1okuPZxAKLnMz/XhiDHoPyQO0wwd366jo17Xsa5bi5GfB6NHg6N+Y7R2/j79gNBel4llyWWBkksRERE5iCm5FGlBFn2fD8Co8UkYhoWklNCU1z07PXg9JsmpNtIHx4WPr29yaf85NCWW8eMbFnBrFhdHoFsPrNu2kmgPNU9S5VJEREQOZkouRVqIrD1efl1UiM1uYcTYRAASk0MVs22bSgFISrHRu78Lwxo6p77bYii5rJ3yjrHxW9ditVkozA80cUQiIiIiTUfJpUgLsG1zKc88vB2vJ8jIw5JwxYWyx/ItMPJyQhWz5FQ7TqeV9MHx2B0WOnVtYHI5blzDg2/F/IOHAGBftYLEJBslxQH8/mATRyUiIiLSNFp1t1iPx8O5556L1+slGAxywQUXcMYZZzR1WCJ19u0nOXjcQcYfncLRU9PCj8fFW7HaLAT8oUWWSWWVzNPOaY/bHSQ+oe4/4pY9e7Bu2Yy/Xzq21FTILorMi2iF/IOGAmBb+RsJnY8hN9tHYX6AlDR9biciIiIHn1adXDocDl588UXi4uIoKSnhpJNO4rjjjiMxMbGpQxOptWDQZPsWN3aHhUlT0jCMfd1fLRYLSck2crJ8ACSlhtZgOmIMHDH1S3AcPywAwD9uQut+g4gA/6DBANhW/EbCwH1NfVLS6rf9i4iIiEhL1qo/XrdYLMTFhZqbeL1eTNMkGNSUNWlZ9u7y4nEH6dzdWeW2IuVTYwGSUxqeDtq/+xYA34QjGjxWaxfs0ZNgXDzWVStJTAi9naqpj4iIiBysmnVyuWjRIi6//HImTJhAeno6X331VaVjXn31VSZNmsSQIUM488wzWb58eYXn3W43J598MkceeSSzZs0iOTm5kaIXiYzyZj3desZW+Xx5Ux/YV7lsiHByOf7wBo/V6hkGgYGDMIqL6ODZCSi5FBERkYNXs04uS0pKSE9P529/+1uVz8+bN497772Xq666ijlz5pCens4ll1xCTk5O+Bin08mHH37Il19+ybx588jKymqs8EUiYtvm8uTSWeXz5duRGFaIT7A26FrGju3YNm/CP2AgZtu2DRrrYFHe1Kf93jWA9roUERGRg1ezXlI1ceJEJk6cWO3zzz//PGeddRbTp08H4I477uDrr79mzpw5zJo1q8Kxqamp9O/fn0WLFnHCCSfUK57917o1B+XxNLe4JLK2b3ZjsUC3XrFV/l2nlFUrk5Lt2GwN+7wopmy9pe/wibq/aikwJNTUp83ONcAoigoC+p7Vgu4viTbdYxJNur8kmlry/dWsk8uaeL1eVq5cyRVXXBF+zDAMxo0bx7JlywDIycnBZrORmJhIUVERP//8c727xdpsBmlp8ZEIPeJSUuKaOgSJkq/m7yU/10/nbrF07pJU5TFdugeBPbRtH9Pwe3TRQgBiTziW2LL7SvfXAYwfC0DajrXQFgpyAyQkuHA4mvXEkGZD95dEm+4xiSbdXxJNLfH+arHJZW5uLoFAgDZt2lR4PC0tja1btwKQnZ3NTTfdRCAQwDRNZsyYQf+yTc/ryu8PUlBQ2uC4I8kwLKSkxJGbW0wwaDZ1OBJhi7/P48M392KzWzjqhBSyq9kSJDHFpGOXGNKHuKo9plZMk+TPv8CwWMgdMhJLbrHur9ro2INUw8C6cjnWo2HrphJuuXw5J89oz5BDEpo6umZL718SbbrHJJp0f0k0Ndf7KzExFru95iVYLTa5rI5pmlgsoRJy3759mTNnTsTGbk5/ufsLBs1mG5vU37pVxQCccUEH+gyIq/bvOMZpcNmN3YCG3aPGpo1YM3bgGzqcQGIyRtlYur8OwBlLoHcfbOvXcd6Zsfy8ysrq5UW8/cIuigr9jD08uakjbNZ0f0m06R6TaNL9JdHUEu+vFjtvKyUlBavVWqlBT05OTqVqpkhLVJAXagzTqVvVjXwizbHgG0BdYuujvKlPX+9GzryoIzP+0AmLAQs+yznAmSIiIiKtR4tNLh0OB4MGDeKHH34IPxYMBlm4cCHDhw9vusBEIqQg349hQFx8wzrA1pbjy88B8E46plGu15r4Bw8DwLb8VwD6DYyjXQcHRQUBbU0iIiIiB41mPS22uLiYbdu2hb/esWMHq1evpk2bNrRt25aLLrqIm266iUGDBjF06FBefPFF3G43p512WhNGLdJwgYBJUWGApGRb43QK83qxL/gG0+XCN/aw6F+vlfEPHwGAbdmS8GMdu8SwZ6eXXTs8JCSF3moDAZM3nttJh84xHD1VMyxERESkdWnWyeWKFSs4//zzw1/fddddAFx99dXMnj2bKVOmkJOTw6OPPkpmZiYDBgzg2WefJTU1talCFomIwgI/mJCY3Dg/ovZFP2EUFeKZfBw4G2cabmviHzYcAHuF5NLJsp8L2bXDTb9BoW5vu3Z4WL+qhPWrSkhKtjNqfNUdgEVERERaomadXI4dO5a1a9fWeMzMmTOZOXNmI0Uk0jjK11smJjXOj6imxDaMmZiEv3cfbBs3YMnJxkxNo2OXGCCUUG5aV0JCko1d293hc+a9t5de6S5S29ibKmwRERGRiGqxay5FWrNwctlIlctwcnmUksv68g8/BADbsqUAdOgcAxbYuLaEl57I4K3nd7FzuweA1DZ2ggHYuc1d7XgiIiIiLY2SS5FmqLwJTEIjVC6N3buwrfwNf89eBHv1jvr1Wiv/iFByaf81lFw6YgzatHPg84ZaiGfu9rJ2ZWh7mYHD4gHIz1OzHxEREWk9lFyKNEONWbm0f/0lAD5NiW0Q3/CRANiWVmzqA2Czh5oylRQFiE+00qVHaF1rXo6vkaMUERERiR4llyLNUGMmlzGffQJovWVD+QcPwbRaK3SMPXRiMkNHJXD6+R3Cj3Xq6iQpJfT3mp+ryqWIiIi0HkouRZqhgvxGaujj8WD/8nNMlwvvhInRvVZr53IRSB+AdfcujN27AOjczcm0mR3oNyiO+MTQfqWdusaQlBJq4pOfq8qliIiItB5KLkWaoYI8P1ggPjG6yaXju28wiovwTpwEsbFRvdbBwDeiYlOfcoZhYcDQ0DrLbr1iiXUZ2B0WVS5FRESkVVFyKdLMBIMmhfl+4hOs2GyWqF7L8fE8ADwnTI3qdQ4W/mEjALAt+6XSc5NPasOFV3emVz8XFouFpBQ77tIgbnegscMUERERiQollyLNTElxgGAQEqJctSQYxPHJPEzDwDv5+Ohe6yDhHzkKAPvixZWec8QY9OjjCn+drHWXIiIi0soouRRpZryeIADO2Oj+eNqWLcG6Zze+MYdipqVF9VoHC/+AQZiuOGy/LIJAzRXJcFOfHCWXIiIi0joouRRpZsr3RSzfviJaHJ+EpsR6j9eU2Iix2fCNHIVRXIR19aoaD01KVVMfERERaV2UXIo0Mz5fKLm0O6L74xkz7yMAPMdPiep1Dja+0WMAsC/6qcbjyiuXeZoWKyIiIq2EkkuRZsbnDU2LtUexcmldsxrb2jX4Bw4m2Kt31K5zMPKPqm1yqcqliIiItC5KLkWamXDl0h69H8+YD+cA4DnltKhd42DlGzkaOHBymZoWSi53bvdgmmbU4xIRERGJNiWXIs2M31dWuXREr3IZ87/3AfCcfGrUrnGwMlNS8fdLx7p1C5Y9e6o9LjHZRufuTnIyfWzb7G7ECEVERESiQ8mlSDMT7YY+4Smxg4YQ6N03Ktc42PlGjwXAvvjnGo8beVgiAEsW5pO5x8ubz+/iyX9spahQ6zBFRESk5VFyKdLMRLuhT8wH7wGqWkaTvzy5PMDU2EEjEnDEWPh1cSH/vncrq38tYs9OLyuXFjVGmCIiIiIRpeRSpJmJakMf09SU2EYQrlz+/GONx8XEGBxyaBKYkNrWHq5krlmh5FJERERaHltTByAiFUWzoY91xW/Y1q3FN3iopsRGUaBPX4Jpadh+XQolJeByVXvs5JPbMG5SCgmJVkwTVv9WzNYNpZSWBIh1WRsxahEREZGGUeVSpJnx+6K35tL51usAeM44O+Jjy34sFnxjx2Hx+Q647tJqtZCYZMNisWAYFvoNjCMYhPWrixspWBEREZHIUHIp0syEp8VGulus34/zvbcxDQPPtNMjO7ZU4hs/AQD7D9/V6bz+Q+IAWLdSyaWIiIi0LEouRZqZ8m6xkW7o4/jmS4zMvfiOnESwfYeIji2VeQ8rSy4Xfl+n83r0jQULbNf2JCIiItLCKLkUaWZ8vug09IkpmxLrPnNGRMeVqgUGDiKYnIx9yWJw1z5RdDqttG3vID/Xry1JREREpEVRcinSzESjoY+lsICYj+cSjE/Ac/zUiI0rNTAMfIeOw+LxhBLMOujczQlAxlZVL0VERKTlUHIp0syEG/pEcM1lzP8+wOJ24znplBo7l0pk+eo5NbZz9xgAMrZ5Kjy+bmUxhQWqZoqIiEjzpORSpJmJxj6XMW+/AYBHU2IblW/ceADsP9QtuezSPVS53LFf5XLHVjevPbOTZx/eztaNpfz4TS652b7IBSsiIiLSQNrnUqSZiXRDH2PzJhzfLyDQpSu+w8ZHZEypHf/goQQTErEv/gm8XnA4anVeu44x2OwWdm5zEwyaGIaFbZtKAcjP9fP8YzuAUNOfMy7sGLX4RUREROpClUuRZibSDX1iX3kRAPc554GhH/lGZbXiO2wcltLSA+53WfE0Cx27xOAuDfLykxns3e1h57ZQFbNLdyeJyTawVKxsioiIiDQ1/aYp0syEG/pEYs2l14vz9VcwrVbc557f8PGkznwTjwLA/s2XdTrv6BPbkJRiY/P6Uj58fW94/eW5l3Xi+tt7qqOsiIiINDtKLkWaGb/PBEuoetVQMR9/hJGViXfy8QQ7dopAdFJX3omTAHB881WdzuvRO5Zr/9qDlDZ2dmx1k5vtI62tnViXFYBOXUNNf3b+rumPiIiISFNRcinSzPi8Qex2CxZLw5NL50vPA+A+/8IGjyX1E+jbj0CHjtiWLcWSl1uncw3DwuAR8eGvO5c1+tn/zxnbNDVWREREmgcllyLNjM9nRqSZj3XTBhwLviHQpSveo46JQGRSLxYLvolHYQkGsX+3oM6nDzkkIfznTl33Sy67KbkUERGR5kXJpUgT83iCrF9VTCBgEgya+H1mRJr5OF8ua+Qz8wKwWhs8ntSft2zdZV2nxkKoc2y7jqEus132q1y27+TAsIamxZqmGZlARURERBpAW5GINCHTNHnr+V1sXFNC/6FxnHJ2eyACnWLdbpxvlDXyOee8CEQqDeE9ojy5rFtTn3KnntOe7ZvddO4eE37MZjPo0DmGnds8ZO/10aZ97bY5EREREYkWJZciTei3JYVsXFMCwJrlxWDuAcDWwGmxMXPewcjOxnPiKQQ7aB/Epma2a4d/4GBsq1ZgbN1CsHuPOp3fqauzwpTYcr3TXezc5mHdqmIllyIiItLkNC1WpImsXFbIvHcyATjjwg4ArF8dSjQbVLk0TVz/eQKAksuualiQEjHhqbHffh2xMdMHhZr9rFtZHLExRUREROpLyaVIE/j+y1zefmE37tIgRxybyqDhCbjirQT85Xtc1v9H0/7dt9hWrcA3fAT+MWMjFbI0kHfikQDY67HusjqdusUQl2Bl66ZSSksCERtXREREpD6UXIo0gsICPyXFoV/+c7N9fPVxNlabhfOu6MSkKWkAJCbvm6XekMpl7NOhqmXpZVdBBLYzkcjwHToe0+HAseBrCEQmETQMC/0GxmEGYUNZ1VtERESkqSi5FImwHVvcPPvwdvbsDG1u7/ebPPWPbTz7yHb8/iDz52Ti95lMODqF3ulx4fOSIpBcWjdtwPHpfAIdOuI56dQGvQ6JMJcL39hxGLm52JYsjtiw/QaF7qFVvxZGbEwRERGR+lByKRJhX36czY6tbr6anw1A5m4vxUUBcjJ9vPb0TtauKCY51caEo1MqnLd/5dJmr9+PpvPZ/2AxTdwX/wEcavDS3HgnHwuA4/NPIjZm34EuYl0Ga1cUU1Toj9i4IiIiInWl5FKkgYoK/eH1bll7vWxaW9b99bdicrJ87Nqxb5P7TetKsVjgtHM7VFpXmZi0X+XSUffKpSU3h9jXXsF0Oik9/6L6vBSJMu+xxwPg+OzTiI1psxkMG51IMAi/LlL1UkRERJqOkkuResrP9fHfR7fzz79u5ukHtxMMmiz+Ph+ApBQbmPDzgjx27QhNj01JswNw+ORUuveOrTRehTWX9WjoE/vsf7CUFOOeMRMzNa0+L0miLNCrD/5evbGvWI6xMyNi4444NBGAJT/mY5pmxMYVERERqQsllyL19M0nOWzb5MZiCTXp2bimhGWLCjCscM6lnbDaLCz9qYCtG0sBmPGHjpx/ZWeOPD61yvEa0tDHUlRI7DNPYlqtlFx1bf1flESdd/JxADg+j1z1sn3HGDp0iSF7r4+8HE2NFRERkaah5FKkHjyeICuWFmKzWzh6aqhK+L+39uIuCTJwWDztO8YwcFg8HneQvbu8OGMN2rZ30KufC8OoOnFsSHLpfOkFjLw8PNPPJNite/1fmESdd3L51Nj5ER23fcfQGtucLF9ExxURERGpLSWXIvWwcmkhXo/JoOHxDB+biMUCBXmhitHoCckAjDwsMXx8xy4xWA6wLcj+ay7r1NDH7Sb2yccwLRZKrrm+9udJk/AdOo5gfAKOBd+A233gE2optU1o2nWukksRERFpIkouReph6U8FABxyaBLxCbbwGsp2HR106+kEoHvvWNLahn7h79jVecAx7Q6D2Dij7M+1r1w633wN657deKecRKBfep1ehzQBhwPfxKOwlJRg/2FBxIZNbVNeufRGbEwRERGRulByKVJHhfl+tm92k5xqo1uvUNI4YmyoSjl+Ukq4QmmxWBhftt1I3wGuWo1dXr2s9bRYnw/XY48AUHKtqpYthaesa2zMp5GbGptSVrnUtFgRERFpKrYDHyIi+1u/uhgIbV5fnkgOG51Iz76uCusmIVTZHDQ8gRhn7T7HSUy2sWent9bdYp1vvIp12xa8Rx2Nf/ghdXgV0pS8kyYDZU19TBMOMGW6NlKVXIqIiEgTU+VSpI7WrdqXXO7v94lludomlgBt2oemNsYnWA98sMeD66F/AFB8y221voY0PbN9e3yHjMS6bSvWlSsiMqYrzorTZZCT5dN2JCIiItIklFyKHEBRoZ/5czLJyfLh9wfZuKYEu8NCjz6V96psqInHpXLBVZ3p0uPAazSdr7yANWMHnuOn4B8xMuKxSHR5ppwEQMy8/0VszNQ0O36fSWFBIGJjioiIiNSWkksRIBg08XiClR43TZOnH9zOj9/kseCzHLZsKMXnNemd7sJmi/yPj9NppWdf1wE7y1JSguvhfwJQfNNfIh6HRJ93allyOTeCyaU6xoqIiEgTUnIpB72svV6euG8rD9+xmV07Km4NsXxxYXiLkeKiALt3eADC3WGbSuwLz2Hduwf3KdMIDB7SpLFI/QR698XffwC21SuxbtoQkTFT26pjrIiIiDQdNfSRg1pBnp9nH96OuzRUtXz5qZ244qwUF/pxxVvJ3ruvAlRcFCA3J/R1eYWoKVgK8nE99hCmYVDyp1ubLA5pOM+Uk7CtWY1j7keUzv5jg8dLSVNTHxEREWk6qlzKQW3z+hLcpUEGDY9n1PgkSooCZO3x4vWaZO/10aadnVPPaY9hQH6uj7zsUBUzObXpkkvXow9jZGfjOXOG9rVs4TxTTwYgZt6HERmvvKlUkdZcioiISBNQ5VIOanlllciefV0cclgi6YPiSGvnIDnVRnFRgPgEKxaLha/nZ5OX48dqDU03TE5rmuTS2LGd2P/8GzM2luJb/9okMUjkBAYPIdCtB/ZfFmPszCDYqXODxot1hT4vLC1VcikiIiKNT5VLOajl5ZRXIm0YhoW+A+NIbWPHMCwkJNrCjXWSUkLJZH6uH1eclZiYpvnRibvn71g8HkqumE2wY6cmiUEiyGLBM+VEABwff9Tg4ZyxoS1s3CWVm1OJiIiIRJuSSzmolVcuDzTNNTl1X5E/Oa1pCv62X5fifOdNgm3aUnr1tU0Sg0ReeGpsBLrGhiuXJapcioiISONTcikHtfLKZVJKzQljeeUSIKUp1luaJnG33wZA8c1/wYxPaPwYJCr8o8cQaNce+w/fYdm7t0FjxTgNsECpKpciIiLSBFp1crlp0ybOPvtsTjzxRKZNm8bixYubOiRpRoJBk/w8H3EJVuyOmn8UKlYuGz+5jPngPRzfL8Cf3h/3uec3+vUligwDz8mnYgkGifnogwYOZcHpNHBrzaWIiIg0gVadXMbExHDPPffw0Ucf8cADD/CXv2iz+YNddqaXFUsK8biDFBb4CQZq1/m1KSuXlqJC4v72ZwCK7nsQbOrD1dp4Tj0dAOecdxo8ltNl4PWYBAJmg8cSERERqYtW/Vtq5877Oi/26tWLwsJCTNMMN2mRxuMuDWAxLE3WCAfANE3een4Xe3Z6sTssjB6fBFSsSlZn/2mzjb3m0vXgP7Du3oX7tOn4xh/eqNeWxuEfPYZA127Yf1qIkbGDYOcu9R4rNtZKHn7cpQHi4lv1W7yIiIg0M826crlo0SIuv/xyJkyYQHp6Ol999VWlY1599VUmTZrEkCFDOPPMM1m+fHmVY33xxRcMGDBAiWUTCARM/vPP7bz07x1NGsfuDA97dnqJdRn4vCY/fJUHQHJKbSqX+35JT2nEabHWdWuJ/c+/CcbFU3z73Y12XWlkFgueU6YBEPPBnAYN5Qw39dG6SxEREWlczfpj7ZKSEtLT05k2bRqzZ8+u9Py8efO49957ueOOOxg2bBgvvvgil1xyCfPnzyc1NTV8XEZGBg888ABPP/10g+IxjOaVmJbH09zi+r2MbW5ys33kZoPfb+KoZn3jymWFJCTZ6NYzNipxLF9cCMDE49JYvriAnds9QChZPND3MCbGSlKKjaKCACmpBz4+IkyT+D//CYvfT8lfbobOnRv106CWcn+1Ft5pp+N6/BGc77+L5+pr6j2OyxXajsTjDjbrvzvdXxJtusckmnR/STS15PurWSeXEydOZOLEidU+//zzz3PWWWcxffp0AO644w6+/vpr5syZw6xZswAoKiriyiuv5K9//Svdu3evdyw2m0FaWny9z4+mlJS4pg6hRosWFIb/7PfY6NjRFf46Y1sJMU4rFgu8+d9dpLV18PdHBkc8hkDAZMWSIgwDjjimA4mJTt56cTsA3Xok1Orv9uKre+FxB2jfITHi8VXp7bfh26+hf3/i/nwTcQ5H41z3d5r7/dVqHDkO+vXDtmwJaTm7oG/feg2TnBIDFGG3OZrte9b+dH9JtOkek2jS/SXR1BLvr2adXNbE6/WycuVKrrjiivBjhmEwbtw4li1bBkAgEODaa6/lzDPPZMKECQ26nt8fpKCgtEFjRJphWEhJiSM3t5hgsPk27/htaV74zxvW5eFKCE3XK8jz8cjft5CQZGP8pBQg1HBn04bcCg10ImHj2hIKC/z0HejCH/DQq78Dq9VCIGBitfvJzi464BgpbQGstTq2oSx5uSRffTUGkH/PA/gLvYA36tfdX0u5v1qT2FOm43rgXkqef5nSG26q1xgWI/TztXdPMR2yrZEML6J0f0m06R6TaNL9JdHUXO+vxMRY7Paaf7doscllbm4ugUCANm3aVHg8LS2NrVu3AvDtt9/y448/kpWVxVtvvQXAyy+/TGJi/SpPzekvd3/BoNlsY/N6gmzbvC8pz9ztDcf64zd5+P0mudk+vvk0O3zMlo2lDDkksrfm+lWhhDB9UDzBoIkz1mDCMSls31xKcpq92X3/Em67FWPvXtxnn4t3wkRowvia8/3V2rhPmYbrgXtxvPc2xX+8EeqxRjwmNjR5uqQ40CL+3nR/SbTpHpNo0v0l0dQS768Wm1xWZ/9usEcddRQrV65s4ogObls3lhIMQGKyjYI8P1l7QtU3ryfI4oX54eMK8/fty7d9cylDDkmIaBwb1pQA0Lv/vim5R52QFtFrRIr9qy9wvvEqwbbtKLpDTXwOJoF+6fgGD8W+Yjm2FcvxDxlW5zFiY0OfKO7e4eGxu7cw+ZQ29B/c/KfHioiISMvXrLvF1iQlJQWr1UpWVlaFx3NycipVM6XprFtVDMDoCaFtP7L2hpLL5b8U4i4J0n9IHHZH6MOAjl1iANi22R2x62/fUkrmbi97d3lJbWtv1E6v9VJURMKN1wJQeP9DmCmpBzhBWhvPmWcDEPPma/U6v7xb7PJfCsnO9LH61+hP4xYRERGBFpxcOhwOBg0axA8//BB+LBgMsnDhQoYPH950gUlYMGiy5rdisMCIsYnEugyyM31lj4d+4T10YjKDhoeqKqPGJ5GQZGNPhgePu+HbKGzfXMpzj+zgPw9uA6DPflXL5irunjuwbt+G58RT8J54clOHI03APe1MTKsV53tvg89X5/Njy5JLvy80jSY/1x/R+ERERESq06yTy+LiYlavXs3q1asB2LFjB6tXryYzMxOAiy66iDfeeIM5c+awceNGbr/9dtxuN6eddlpThi1ldm7zUJjvp3uvWOITbLRp78DvM8ne62PLhlIcMQZde8Zy7CltOfHMdgwfk0i3nk5MEzauLW7w9Zf/EupSW/5Ldu/05p1c2n/8gdjnniaYnEzhvf9s6nCkiZjt2uGddAxGVhaOrz6v8/nO2IoL7fNy656gioiIiNRHs04uV6xYwamnnsqpp54KwF133cWpp57KG2+8AcCUKVO45ZZbePTRRznllFNYvXo1zz77bIU9LqXprC6rTvYfEmqj3KZ9aCuNxT/k4/eZ9EqPxWq14IqzMmpcElarhaGjQmstv5ibjd9f/wXMwaDJql+LsBgw5vAkevaLpVe/5ptcWgrySbjqUiymSdFd92O2b9/UIUkTcp91DgDON1+v87mxrorJZUGuv8U1AxAREZGWqVk39Bk7dixr166t8ZiZM2cyc+bMRopI6mLN8lByOWBoaNprl+5Olv5YwE8L8gDok155755+g+Lo1S+WTetK+e7zHCYelxpu0FQXWzaUUlwYoFe6iynT29X/RTSS+Fv/hHX7Ntwnn4bnjLObOhxpYt5jTyCYmITjk3lY8nIxk1NqfW75tNhywSAU5vsjvr2PiIiIyO8168qltFyF+X6yM3207eAgOTX0S+3wMYl06+WEsiJK7yrWQFosFo6f1hbDgK/n5/DSkxnk12Na36plocR28Ijm3yUz5v13cb79BoEOHSl64OF6bT8hrYzTieeUaVi8XmLef69Op8Y4DfjdLZSndZciIiLSCJRcSlRs3xLq+Nq1pzP8mNVqYfp5HYiLt9K5u7Pazq3tOsRwwVVdaNvBweZ1pTz1wDa2bCip0/U3rw8dnz64cnW0OTF2ZhD/p+sAKHzsKXWHlbB9U2Pr1jXWMCw4naG39vLOsfk5WncpIiIi0afkUqJi+5ZSALr2iK3weFKKndl/6c6FV3Wu8fzuvWO57MZuHDoxmdKSIB+/l1nraxcXhaqmaW3txMU345nfgQAJsy/HyM+j5PKr8U08qqkjkmbEP3oM/l69sf+yCOua1XU6tzyp7Dsg9OGKKpciIiLSGJRcSkQU5Pl575XdZGeG9rHcvrly5bKcM9aK3XHgW89ms3D8aW1JSrGxZ5cXd2mgVrHsq5rGHuDIpuV6+AEcC77BP2AQxX/+W1OHI82NxYL73AsAcL76Yp1ObdvegdNl0G9QKLlU5VJEREQag5LLVqao0M9LT+xg8ff5jXrdn7/LY/niQua+k4nPF2TXdg+xcQZpbRveRKRrj9A6zR1b3bU6vqbEtrmwf/MVrgfuJRgXT8GzL4Kz+cYqTcd91jmYNhvOt14Hd+3uf4BpMztwxU3daNcx1KG5qsrl7gwPX32czf/e2qPtSkRERCQilFy2IsGgybsv7WbTulK++TQH04zM9gM5WV5efiqDrZtKqz1m09qS8P+//yKXQMCka4/YenV6/b3yCuSOLW62biw9YIOf7ZvLpuQ20+TS2L2LxCtmhbYdefBfBPr2a+qQpJky27XDe8KJGLm5xMz9sNbnxbqsJCXbSS7rEPv7yqXfb/Lykxl880kOv/xQwC8/NO6HUSIiItI6KblsRRZ8nsvm9aHEqjDfz87tngaPGQyavP/aHjauKeGnb/KqPKakOMDOHR4sZXfT1/NzAEKdYSOgS4/QOEt+LOD5x3bw5n93VXus32+Ssc2D02XQpp0jItePKL+fhEsvwsjKovTCWXimndHUEUkzVzqzbGrsK3WbGguhzrFOl0FOto/3X9tN1p7QtPUNq4spLgqQkBTaEzN7ryqXIiIi0nBKLluJkuIA33+Ri9VqYdT4JADW/FZU7/FM02TrxlLmz8lk26bQdLzNG0qq3Ix98/oSMGHoyAS6944lPtHK+KNTwnE0VIfOMdjsFgryQlP7dm73sGtH1VME9+7yEPCbdOnmxDCa35YecXffgePHH/ANG0HRnfc1dTjSAvgmHkWgW3cc3y/AunF9nc/v0t1JMADLfi5k3rt7AVi2qACAIyaHuhPnZCm5FBERkYZTctlKLPw6F68nyCGHJTLuqGQA1vxWXO/xtmwo5fnHdvDzgnwMA5LTbJQWB9m7y1vp2I1lU2L79I/jotlduPHvvZh8UhucTmu9r78/q9VC526h6qUjJpQwLv2poMpjy39JbtO++VUtY959C9e//0UwKTm0zjImpqlDkpbAMHCfez4AzldeqvPpZ8/qxOV/6kZqGzub1pWyenkR61YWE+syGHFoIo4Yg+xMb8Sm0YuIiMjBS8llC7dyWT6P3r0lXLWccHQKqW0ctOvoIHO3lz076zc1tnxK7cDh8Vx6QzeGj04E9u0fub8tZVNxe/aLXnfWQw5NpG0HBzMv74xhheW/FOLzBisdl5sdSi6r20OzqdiWLSHhuqsxDYOCp58n2L1HU4ckLYh7xkxMqxXnm6+Ct/IHPDWx2Sx06BzD4ZNTAHjzv7sIBmDIyARstlDTLZ/XpKiwdt2YRURERKqj5LKFy9rrJXuvF7vDYOJxqSSVNfAYPiaUDH7/ZW69xs3eG/oFdtjoBDp0jqFnXxcAm9ZVTC6DQZO8HB/xiVbiE6K3p+Sw0YlcdUt3uvWMZcCQeNwlQd55aTfffJLNnFd34/WEEs28ZphcGnt2k3jBOVjcbopvvwvfUUc3dUjSwgQ7dMQ7+XiMrCwc8+fWa4yhoxJD3ZstMHRUApOmpAGQWtbROSdTU2NFRESkYZrxDvNSGxOPbcuA4U5+35R15LgkFnyWw29LCjnqhLQ6J1vZZb9oljfF6dzdid1hYevGUgIBE6s1dMHSkgDBICQkNt6tdPxpbdm908PaFcWsXRGa+tujTywjxiY1v8qlx0Pihedi3bUT99nnUnrZVU0dkbRQ7vMuIGb+XGJf/C/ek0+r8/lWq4WLr+2KzxskOXXfz0dqm9CfszO9dO/dvPeGFRERkeZNlctWoDzR219MjMHYI5Ixg/BjNV1ea5K11xtaa1n2S6jNZqFbr1i8HpOd2/c10ynMD02lS0hqvOQyIcnGhVd1oU9/F30GhCqqK5eFmhflZoea/iSnNoPPTYJBEq69Evsvi/CNHE3hA49Q6VMAkVryTpocauyz4Busa9fUa4y4eGuFxBIgrW3oAyQ19REREZGGUnLZig0rWye5fzJYG+7SAMWFAVLa2Cskrj37hqoa5dudQGjLE4CExMg076mthCQbMy/vzIxLOhEbZ7BpbQnFRX7ycn0kJFmxO5r+1o675+8433ubQJeuFLzwqhr4SMNYrZRe9AcAYp/7T8SG1bRYERERiZSm/w1coiYx2YbFgLycuv3SmLW34pTYcuXrLjfvt+6ysKAsuWzEyuX+rFYLA4fGEwzCT9/mYwabx5RY5/PP4nr0IYJJyeS/8R7B9h2aOiRpBdznzMSMjcX51htYCvIjMub+02JFREREGkLJZStmtVpISrZRmB/A76/cWbU65b9kpv0uuezYJQZnrMG2zW58vtB44cplEyWXAINGJADw84I8gErT/hqbY/484m+9EdPhoOCl1wn0S2/SeKT1MFNScZ9+FpaSYpyvvxKRMePirThjDbL2+sJrlkVERETqQ8llK5dcVsXLy/HX+pzsssplWtuKSZphWOjRJ5aA32THltBU2/Cay0Zs6PN7PfrEktbWjrs0lPA2ZeXS9vNPJF52EZZgkMLHnsJ32Pgmi0Vap9KLLwXA+d9nIFj7D42qY7FYGHN4MgG/yXuv7CYQ0H6XIiIiUj9KLlu55JTy5LL2FYmssm1Ifj8tFvZNjd2yIbTuct+02MZdc7k/w7Aw/uiU8NdNlVzafvuVpHNOx1JaStHtd+M57fQmiUNat8CgwXgPG49t8yYcX30ekTEnHpdKp64xbN/sZv6cTExTCaaIiIjUnZLLVq68a2ptK5eBwL6qZJv2lZO0zt2cAOza4QH2TYuNb8LKJYT27SufmpvSpvGTS+v6dSSddRpGQT7F1/+J0itnN3oMcvAoveQyAJzPRqaxj9VqYfr5HXDFW1n0XT4fvbWXkuJARMYWERGRg0cz2K9Boqm8ipdXy7VUq5cXUZDnp3d/F3HxlW+Pdp0cWCywO6MsuSzwYzFC67aaks1mcNq57Vm7opiuPZyNem1j21aSTj8ZIyuLkksuo+Tm2xr1+nLw8Z5wIoFOnYn54jOsmzYQ6NWnwWOmtXVw/pWdefHxHfyysIBfFxeSnGJj8CEJHHl8WgSiFhERkdZOlctWrry5TW2mxZqmycKvcgE47MjkKo9xOAzS2topyPNTXOSnqCBAfIINw2j6/Rt79XNxwrS2jRqLsWM7ydNPwrprJ+6zz6X4rvu1l6VEn81G6UWXABD79JMRG7ZDpxguv6kbYw5Pwmq1kLXXx3df5GqarIiIiNSKkstWLjktVH3MrcW02F07PGRs89C2g4Pe6a5qj+vQObRf48a1JZhm0663bErGtq0knzoF69YtuE+ZRuFDj4GhHylpHO7zL8J0uXC+/gqW7OyIjZuUbGfK9Hbcel9vOnaJwe8zKSrUFFkRERE5sDr9Juz1ennyySdZs2ZNtOKRCEtItGFYa1e5LG/SM3RkApYaqm/lyeX6VSXhaxxsjM2bQonltq24p51O4ZPPgu3g+z5I0zFTUik95zwspaXEvvBsVK6xr9u0tigRERGRA6tTculwOHjqqacoKCiIVjwSYYZhITnFTnFhAJ+35m0LMraGGvl07l7zmsXy5HLD6mKgafe4bArWTRtCieWO7bjPOJvCfz+jxFKaROmlV2IaBrHP/Qfc7oiPn1LeECy79lsZiYiIyMGrznP4hg4dysqVK6MRi0RJeffUd1/ZTVFh9b8kZmxzgwU6dYupcbwOXULPl5aEktWqtixpraxr15B0ypTwGsvCR58E68E5LViaXrBHTzwnnoKRlYXzrdcjPn5d1myLiIiI1Dm5/NOf/sTrr7/OK6+8wvbt2ykpKaG0tLTCf9K8TJqSRlKKjTXLi5k/J7PKY4oK/eTl+Gnb3oHTWXOyFJ9gIzE5VNEYOiqBkeMSIx5zc2T7+SeSTzoW657dlJ53IYWP/FuJpTS50quuASD2yccgWPPshLpScikiIiJ1Uee5fGeeeSYAd911F3fffXeVx6xevbphUUlEde7m5IqbuvGPv2xi8/pSTNOstKYyY1vZlNgDVC3LnXFBB4oKA/QfElfj+szWwvHJxyReeiGW0lJKZl9H8W23qyusNAv+ESPxHjYex8LvcXzyMd4TpkZs7PJ9cmvTEExERESkzsnlPffcc1AkE62NM9ZKh84x7NzuITfbR2qbilNZM7aG9q3s3K12e0R27Rkb8RibK+drLxN/wzVYAgGK7ryX0suuauqQRCoovfIaHAu/x/XEoxFOLlW5FBERkdqrc3I5bdq0aMQhjaBrz1h2bvewfbO7UnK5fUtoOvOBmvkcVEwT18MPEHffXZh2OwX/fhrPtDOaOiqRSryTj8Pftx/2nxZi++lH/GMPjci4jhgDV7yV/Bw/waDZLPazFRERkear3pvybdiwgffff5+nnnqKzMzQOr6tW7dSVFQUseAksrr1CiWO2zZXXBdbkO9ny/pS4hKstO9Uu2mxrZ7bTcKVfyDuvrsIxsWT/+rbSiyl+TIMSmZfB4DrkQciOnRyqo1AwKSoQHtdioiISM3qXLksLi7mz3/+M5988gk2m41AIMDhhx9O27Zteeihh+jUqRM333xzNGKVBiqfyrp9c8UtC5YvKsA0YdioBKxWVSYse/aQdOE52H9ZRKBLV/JfeoPA4CFNHZZIjTzTzyTwwL3EfPEZtl+X4h82IiLjpqTa2bnNQ16OL9zIS0RERKQqda5c3nfffSxdupQXXniBJUuWYJpm+LmJEyeyYMGCiAYokZOYZCM51cbe3V5KS0JVCNM0WfpzaN/S4WMPjq6vNbH+tpyU44/C/ssifKPGkDv/KyWW0jLY7fuqlw//M2LDlq+7zNW6SxERETmAOieXn376KTfeeCOHHnoo1t9tw9CpUycyMjIiFpxEXpfuTjBh145QA59dOzxk7/XRuVsM7Toc3FNiY+a8Q8pJx2LN2IH7jLPJe+8jzHbtmjoskVpzn30ugQ4diZn3P6xrItO1OyWtLLnMUnIpIiIiNatzcunxeEhOTq7yueLi4koJpzQvHbqEEsjdGaHksnwLkj4D4pospibn8RB/640kXnYxlJZSdNvtFD7+H3CquZG0ME4npVfOBsD1SGSql2ntQslldqaSSxEREalZnZPLIUOG8MEHH1T53CeffMKIEZFZ5yPR0bEsuSyvXO7Z6QWgQ+eDs2ppbN9G8inHE/vc0wTT0sh/cw6l11yvPSylxSo97yKCaWnEvP8u1k0bGjxeatvy5NLb4LFERESkdatzcnnttdfy6aefcuGFF/L2229jsVj45ptv+NOf/sT8+fOZPXt2NOKUCOnQOVSNK69c7tkZ+n/7To5qz2mtHF98Ssoxh2Nf8ktofeUX3+E7clJThyXSMHFxlFx+NZZgkNh/PdTg4RISbdgdFrL3+iqssRcRERH5vTonl6NGjeKFF17A6/Vy5513Ypomjz32GNu3b+f5559n6NCh0YhTIiQu3kpiso2sPV68niB7dnqxOyzhph0HhdJS4m+9kaQZp2Pk5lJy6RXkvT+PYKfOTR2ZSES4L/4DwaRknG+9jrFpY4PGMgwLqW3seNxBSoq1HYmIiIhUr1595UeOHMlrr72G2+0mPz+fxMREYmNjIx2bREmHzjEU5PlZt7IYrydIl+7Og2ZzdOtvy0m88hJsa9cQTEmh8KHH8U49qanDEokoMyGR0quuIe6evxP34P0U/vvpBo2X1tbBnp1esvf6iIvXdiQiIiJStTpXLhcuXEhpaSkATqeT9u3bK7FsYcrXXS5bFNqC5KCYEhsIEPvEY6ScMAnb2jV4Jx5F7jc/KrGUVqvkkstDay/feRPrurUNGmvfuks19REREZHq1Tm5vPjiixk9ejRnnHEG999/P59//jm5ubnRiE2ipLx5z8Y1JQC079S6m/lY160l+eTjib/9L2CxUHTnveS/OYdgh45NHZpI9MTHUzL7eiymieuBexs0VFrb0AdQauojIiIiNanz/KYffviBxYsX88svv/Dzzz/z0ksvEQwG6dWrFyNHjmTUqFGcfPLJ0YhVIqR3fxcdOseEm/q02uTS58P173/h+ud9WLxefMNGUPivJwgMHNTUkYk0itILZxH7xKM4P3iPkmtvIDB4SL3GSSurXOaocikiIiI1qHPlMiUlhcmTJ3PLLbfw7rvvsmjRIv7973+TmprKW2+9xc033xyNOCWCHA6Di2Z3YcCweFLb2sPTZFsT269LST7uKOLu+TsYBkV//Tt5H3+hxFIOLi4XJdfdCEDcP+6p9zDle11uXl/Cl/Oy8XiCEQlPREREWpd6dWYoLi5m6dKl4Qrm8uXLiYmJ4cgjj2TkyJGRjlGiIMZpcNZFHTFNE0sr2tPRkptD3D134nzpv1hME++h4yh6+DECvfs2dWgiTcI980Jcj/+LmPlzsS39Bf+Iur9Hu+KsdOoWw85tHr79NIe8HB/TZnao8zgeT5APXttDnwEuRo1LrvP5IiIi0rzVObmcNm0aa9euJS0tjVGjRnH88cfzl7/8hfT09FaVpBwsWs3fWTCI89WXiLv7doycHIIpKRT9+f9wn3chGHUu0Iu0HjExlFx/Ewk3XEPc/XeT/8Z7dR7CYrFwyR+7krnbyyv/yWD54kIGDY8nfXB8ncb5/H9ZrPq1iF07PEouRUREWqE6/9a9du1abDYbw4cPZ8SIERxyyCFKLKVJ2X/8geQTJpFwwzVYcnMpPf9ichYuwX3BxUosRQD32ecS6N4Dx5efY//xh3qNYRgW2neK4aSz2gMw951MfL7aT4/dvL6ERd/lA5Cb7aMg31+vOERERKT5qvNv3osXL+bJJ5+kT58+fPrpp8yYMYMxY8Zw2WWX8cwzz7Bs2bIohClSmXX9OhLPP5vkk4/HvnQJvhGHkPfJVxT98xHM1LSmDk+k+bDbKb75LwDE3XEbmGa9h+o3MI4BQ+MoyPOz+Pv8Wp/3yw+hY5NSQhNmtm4srXcMIiIi0jzVObmMjY1l3LhxXHPNNbz88sssWrSIBx98kJKSEh588EFmzJgRjThFwow9u4m/8Y+kHDGWmPnzCHTtRsETz5D38Zf4hx/S1OGJNEueaWfgGzIM+y+LcXz0QYPGOmpKGlhgwWe5eNy1q15m7Q11mj10YjIAWzeUVHje769/wisiIiLNQ70a+uTk5LB48eLwf2vXriUYDNK3b1819JGoMXbtJPaxh4l9+QUsHg/BpGSKr/sTpRf/AZzOpg5PpHkzDIr/706STz+Z+Dv/j5zjpoDDUa+h2nWIYcghCfz2SyFrVxYxdGRijccHgyZZe704Yw0GDovnk/ez2LppX+UyO9PLMw9v55BDkzj25Db1iklERESaXp2Ty+OOO45t27ZhtVoZMGAAY8eO5aqrrmLkyJEkJydHIUQ52Bm7duJ69CGcr7yIxePBdMVRcvUVlMz+I2ZKalOHJ9Ji+I44Eu+kY3B8+TnOl/6L+5LL6z1Wl+5OfvulkIK8A6+dLMj34/eZtO8UQ1KKnaQUG3t3eSkpDp379fwc3CVBNqwuVnIpIiLSgtU5uZw6dSqjR49m+PDhxMbGRiMmEQCsG9YT+9S/cb7xChavN5RUzr6SkitmY7bRL6Ai9VH0tztJ+eoL4h68H8+ZMzATk+o1TkKSFYDC/MABj83a4wWgTdl+mT37xrLs50KW/pRHajsLvy0pDB/n95vYbGoQJyIi0hLVObm85pprohGHSIhpYv9+AbFPPU7Mp/MBCMbFU3rFbEouvxozTY16RBoiMHAQ7rPPJfb1V3A99gjFf/m/eo0Tnxj656Oo4MCVy+yy9ZZt2oWm4Y4al8yynwv58uO9xMZbwAw1dg4GISfTS7uOMfWKSURERJpWvdZcbt++nWeffZYlS5aQl5dHcnIyI0eOZNasWXTt2jXSMcrBoKSEmA/nEPv0k9hXLAcg0KEjpZdcjvu8CzT9VSSCSm7+C8733yX2P/+m9KJLCHbqXOcxEsqSy8JaJJdZe8sql+1DyWWXHk669nSyfbMbgHYdHXTt4eSXhQXs3aXkUkREpKWqc7fYFStWcMopp/Dpp58yePBgTj31VAYPHsynn37KqaeeysqVK6MRp7RS1hW/EX/LDaQNTSfxmiuwr1iOb+hwCp54hpzFv1F6zXVKLEUiLNipMyWXXYXF7Sbu3jvrNUZ8Ytm02IJaTIstSy7TyqbFAow7KgUAR4yFMy/qSKduoaZce3d76xWPiIiINL06Vy7vv/9+Bg4cyDPPPFNhzWVpaSmXXnop999/Py+99FJEg5TWxZKfR8z/PsD5ygvYl/wCgOlw4D5tOu4LZuE7bDxYtOZKJJpKr76W2FdewPnma5Re/Af8I+rW6dtuN3C6DIoK/JimiaWGn9msPT4sBqS22ZdcDhgazylndSKtvUGbdg5Ki0NJ6t5dnvq9IBEREWlyda5c/vbbb1xyySWVmvnExsZy8cUXs3z58ogFJ61ISQkxH7xH4gXnkDaoDwnXz8a+5Bf8fftRdMc9ZP+6lsL/PI9v3AQlliKNwExMovjPofWW8X++KbTgsY4SEm34vCYeT/Xnut0BCvP9pKTasdn2/ZNjGBaOPbkDPfq4AGjbMTRlVpVLERGRlqvOlcuYmBjy8vKqfC4/P5+YGK2VkTJFRTi++YqYuR/i+HguRnERAMGkZNxnnI3nrHPwjT1MyaRIE3HPmInzheew/7KImHfexHPmjDqdH59oJXN3qGOs02mt8pi1vxUDoXWWNXE6rSSl2MjJ8uHzBrE76vzZp4iIiDSxOieXRx55JP/85z/p0qULo0aNCj++ePFiHnzwQY466qiIBigti7EzA8en83F8Mg/Hd99i8YSmuJmxsbhPm47ntDPwHnU06EMIkaZntVJ01/2knHwccXf+H54pJ0F8fK1PT9ivY2zbsmY9y34u4Iu5WYyflMKYw5NZ9nMBAMNGJx5wvHYdHeTn+tm900PXHtrqSkREpKWpc3J5yy23cOWVVzJz5kzS0tJIS0sjJyeH7OxsRowYwc033xyNOOvtmmuuYeHChUyYMIGHH364qcNpdSwF+dgX/oB9wdc4FnyLbfW+hk7BpGQ8J56C97gT8BxzXJ1+aRWRxuE/9DDc007H+d47xP3rwTptTfL7jrGBgMmX87IpzA8wf04WK5YUsWOrm8RkGz37HjhZ7NozlvWrSti2ya3kUkREpAWqdXLpdrv55ptvyMjIYMaMGcycOZMtW7aQmZlJ27ZtGTZsGBMmTIhmrPVy7rnncuqpp/K///2vqUNpFYzdu7D9shj7L4uwL/wO29IlWPZbq+Xv1Rvv5OPxHj8F35hDwW6vYTQRaQ6K/3YnMfPnEfvkY5Secx7Bnr1qdV64Y2x+qBnPmt+KKMjz07m7k4DfZMfW0FYjw8ckYhgHnv7eo3coodyyoYTxk1Lq81JERESkCdUqudy+fTsXXnghGRkZ4cfi4+N5+OGHOfzww6MWXCSMHTuWn376qanDaHlME2PvHqwrV2BbvQrb0l+w/7IIa8aOCocF2nfAd/hEvEcciW/CEQS7aJ9TkZYm2KkzJbOvI+7+u4m//TYKXnytVuclJO2bFrs7w8N3n+cCcOTxqfTs6+K7z3PYsrGU0eOTajVep25ObHYL2za52b65lB1b3Rw6MbnGTrQiIiLSfNQquXzggQcwDINXX32VwYMHs2PHDm6//XZuv/12vvjii6gFt2jRIp577jlWrFhBZmYmTz31VKU1na+++irPPfccmZmZDBgwgNtuu42hQ4dGLaZWx+3Gum0r1i2bsG7ZjHXzJqxrVmNbvRIjJ6fCoabFgn/AIHyjRuMfORrf6LEE+vRVQx6RVqDkymtwvv4KMR9/hP3Lz/FNOuaA55RPi134dR4Lv84DQusme6e7MAwLRx6fVqcYbDYLXXs42by+lBf+nUHAb9Klh1NTZEVERFqIWiWXS5cu5ZZbbmHkyNA+aL179+bvf/87U6ZMYe/evbRr1y4qwZWUlJCens60adOYPXt2pefnzZvHvffeyx133MGwYcN48cUXueSSS5g/fz6pqakRj6c207oaU3k8hmGBQAB8PvD5sLjdWArysRQUYCkswCjIx5Kbi7FnD8ae3Rh7dmPZsxtj1y6MXTuxmGalsU2HA/+QoQQGDMI/cBD+ocNC++AlJFSMoVFeqTSFCveXtH5xLorvupfE888h4dYbyfv2R4itOalLTN73T4grzsq4o1I45NDECluOVKe6+6tHHxeb15cS8Ifel7ZtctO9l6uur0ZE72ESVbq/JJpa8v1Vq+QyMzOTrl0rTnfs1q0bpmmSlZUVteRy4sSJTJw4sdrnn3/+ec466yymT58OwB133MHXX3/NnDlzmDVrVkRjsdkM0tKaUUManw/GjYPffiPF56vXHnUYBnTrBr17V/xv4EAsfftis9uxAerrenBLSYlr6hCkscw8G956DetHH5H2zONwxx01Hp4Qv+9956qb+9Cjd93vld/fX8NHw1cfZ+N0GrjdQXZt9zav915pcfQeJtGk+0uiqSXeX3XuFttceL1eVq5cyRVXXBF+zDAMxo0bx7JlyyJ+Pb8/SEFBacTHrTe/n0RHDPakJIJWG6bdDray/ztjMRMTCSYmYiYmYiYmYSYlE2zfnmD7DgTbd8Ds0IFgm7bVN9wp8ACeRn1J0rwYhoWUlDhyc4sJBitXt6V1Mv5+H8lffAH33UfelFMJ9ulb4/EXXt0FV5yVhGST7Oyi2l+nmvsrOc1k+nkd6NTNyZP3b2Xj2iIyMwtb5Ke30rT0HibRpPtLoqm53l+JibHY7VXva12u1snlJZdcgtVaebALL7yw0uMLFy6s7bD1lpubSyAQoE2bNhUeT0tLY+vWreGvL730UpYvX05paSlHHHEETz/9NP3796/XNZvTXy6GlYIP55OWFk9udlH9Y2tOr0mapWDQbF73vkRVsEs3im+4mfi7bifuT9eT/84HNa6r7tEnNHW2vvdIVffXkJGh6feduzvZurGUPTs9tO+kORRSP3oPk2jS/SXR1BLvr1oll1dffXW044gY0zQrdBZ8+umnmzAaEZGWp/Tyq3G+/QaOBV8TM+cdPNPOaJI4uvUKJZdbN5VGJLn8/stcSooCHHNSmjrQioiIREGLTS5TUlKwWq1kZWVVeDwnJ6dSNVNEROrA4aDo/odIPnUKcX/7M96jJ2MmJTd6GD36xLLgs1y+mZ9DfIKVTt2cJCXb6pUYlpYE+PyjLMwgpA+Jo1tPdaAVERGJtBbb7NPhcDBo0CB++OGH8GPBYJCFCxcyfPjwpgtMRKQV8I2bgPusc7Du3UPc3TU39omWXv1cjBqfRHFRgLee380jd2zhq49zDnxiFdatKsYs6z9Uvm2KiIiIRFazTi6Li4tZvXo1q1evBmDHjh2sXr2azMxMAC666CLeeOMN5syZw8aNG7n99ttxu92cdtppTRm2iEirUPR/dxFMSSH2heew//jDgU+IMIvFwolntOOsizsyaHg8hhV++jYPr6f23bGXLy5gwWc5rFleVDYmrFleRE6WL1phi4iIHLSadXK5YsUKTj31VE499VQA7rrrLv6/vbsOk6s82wB+nzMuO+u7ycbdDQghQUJSnFLcg9OiKW1pgQ9KkeIUtzZYcU8CheAQNEAgriQhns26jMs55/vjzBnZnd0dXeP+XVcuktmRd3cPydz7PO/znnDCCXj11VcBAMcccwyuu+46PPzwwzj++OOxfv16PPXUUzk545KI6NdGKSmB67a7AQD2P10BeLtmYvaYiXacen5fjJucB79PxprlzqQeFwzK+N/r1fj0vTqsX+WGwShgxuxCKAqwflXyk22JiIgoOd36KJJp06Zh48aN7d5nzpw5mDNnTietiIjo18V/yunwz38Dpk8/hu2+u+H++81dtpapB+Zj9U9O/PB1E6ZMc3S493LrJi+CgeiUvRFjbKgYoA4GcjlDOV0rERHRr1G3rlwSEVEXEwS4/vUQZJsdlscegn7Vii5byoAhZpT2MWLvLj+aGjsOhxtXq9XJaYcUYNAwCw44tAAWq3p0ltct5XStREREv0YMl0RE1C65X3+4/3ErBEmC/U9XAsGu2a8oCAL69FMrj4317YdLWVawca0bggjMPLIIF8ztj4FDLJFw6XEnv2+TiIiIksNwSUREHfKddyEC0w+EYc0qWB97qMvWkV+o7uZoqm8/4O7c6oOrWcLAIRZYbbrI7Vab+s+e18PKJRERUbYxXBIRUcdEEa77H4ZiNsP6r7ug2/RzlyxDC5eNDW1XLv0+Ge+8VgUAmLhfXtzHLDa2xRIREeUKwyURESVFGjYC7r9dDyEQQN5VlwNS5we0gkIDgPYrlx++XYO66iBGjrNhyjRH3McMBgE6vQCPh22xRERE2cZwSURESfNediWCk6fA8OMPsHRBe2x+UceVy5/XuiGKwAlnlUMU4yfKCoIAq02E1yNBUZQ2noGIiIjSwXBJRETJ0+vhfHQeFLMZtrtvh27N6k59+Y4ql8GgDFezBEehPm6vZSyLVQdFVttniYiIKHsYLomIKCXSyFFw//1mCMEgHFf8AfD7O+21jSYRFpuIpsZQwspjc/iIEi2EJqKFTk6MJSIiyi6GSyIiSpn34ksROOgQ6Nevhe2eOzr1tQsKDQgFFbhdrfd8akeUaIN/ErFYOTGWiIgoFxguiYgodaII58NPQM5zwPLog9B/t6TTXjqy7zLBWZdNDWq7bEFR25VLS6RyyXBJRESUTQyXRESUFrn/ALhuvxuCosAx9xLA5eqU143su2xove8ymcql1crjSIiIiHKB4ZKIiNLmP/0s+I/+LXTbt8F+0w2d8pqRsy4zrFx6eRwJERFRVjFcEhFR+gQBzn89BLmkBJYXnoXx/fdy/pL5GVYutT2XbIslIiLKLoZLIiLKiFJaCudDjwMA8v50OcQ9u3P6era8tiuPWuBsty02UrlkuCQiIsomhksiIspY4PCj4Pn9pRAbGpB3xR8AKXfBzWxR/+nyeeNfQ5YVNDeGYHfooNe3/c8bB/oQERHlBsMlERFlhfvGWxEaNwHGb76C9eH7c/Y60XAZX7l0NoUgy+2fcQnEDPThnksiIqKsYrgkIqLsMJvRPO9ZKFYrrPfcAf3S73PzMhY1HLYMl40N4f2WRW23xAKAxRY+55KVSyIioqxiuCQioqyRRoyE6/Z7IEgSHJdeBKGpMeuvYTQKEMXWeyadTWq4dBR0EC7DlUsP91wSERFlFcMlERFlle+sc+A7/iTodu6A/W9/AhQlq88vCALMFl2rymXAr/7ZbG7/nzadToDJLMLjkqFkeW1ERES/ZgyXRESUXYIA178ehDRgIMwL58P8wn+z/hJmi4hQUEEoFA2YWrg0mjr+p62gSI+AX4bbxeolERFRtjBcEhFR1in5BWj+99NQ9HrYb7gG+lUrsvr8iYb6+P1qFTKZcFlabgQA1FYFsrouIiKiXzOGSyIiyonQ1Glw3/RPCH4/HBeem9X9l4nCZSqVy5JwuKzZG0AgIEceS0REROljuCQiopzx/uFy+H97PHQ7tiFv7mVZ23+ZaGJsNFwKHT6+tE84XFYF8OT9OzHvvh2QpMzXtnm9Gy/+ezfcrlDGz0VERNTTMFwSEVHuCAKcDz6K0JChMH3wHiyPP5KVp41WLqN7JiPh0ph8W+y6lS7U7A2gtjqIdStdGa/rpyVN2LzBg+XfN2f8XERERD0NwyUREeWU4shH89MvQDGbYbvtJui/W5Lxc0bCpSe9ttiiUiMEEXA1R8Ppd180ZryuupogAGDdisyDKhERUU/DcElERDknjZ8A1133qedf/uF8CDU1GT2f2ZqoLVZtazUlES71egFFJYbIny02Ebu3+/DzOnfaa5JlJRIu9+z0o6EumPZzERER9UQMl0RE1Cl8Z50D3xlnQ7e3EnkXnQsE0w9fCdtiA8lXLoFoa6wtT4ejTiwFALz69B6s+jG9ltamhhCkUHTfZjbabImIiHoShksiIuo0zrvvR3DiZBi+/Rq4+uq0nyfhUSS+5Af6ANGhPsNHWzFpPwd+e2oZFAVY8HIVdvziTXlNddXqsSZ9+psAAN9+1oDaah51QkREvx4Ml0RE1HksFjT/9yXIJSXAI4/A9PILaT1NwmmxKVYux03OQ1lfI/Y/uAAAsN+B+TjutDIoMvDGc3vhcUvtP0ELWkvsuEl2TD0oH26XhOcf3w2vJ7XnISIi6qkYLomIqFPJ/QfA+fQLgE4H21//BP1PS1N+jsTTYhXoDQJEMbnKZZ9+Jlx+7SD0G2iO3DZlmgMT9s2DsymEVT86U1pTXY1apSwuM+Dok0oxcpwNzY0hbN3kSel5iIiIeiqGSyIi6nShAw8CHnwQQiAAxwVzIFRVpfT4RG2xAb+cdNWyLYIgYMI+eQCAvbv9KT22tlqtXBaXGSGKAkaMtQIAqivZGktERL8ODJdERNQ1rrgCvrPmQLe3EvkXzgECyYcwrS3WGw6XkqQgFFSSmhTbkfJ+6l7MqsrUwmVddQAQgKJidQptWV917yXDJRER/VowXBIRUdcQBLjveQDBffaFYen3sF9/TdIPbdkWGwykNsynPY58PcxWEdWVAUiS0vEDoA4TamoMIb9AD4NRXVtZeGBQdYohlYiIqKdiuCQioq5jNqP52Zcgl5bB8vwzMD/zZFIPMxgE6HRCpC3W709tmE97BEFAnwoTpJCC+prkjktZsrgBUIDBwy2R2yxWHRwFetTVBhEMyu08moiIqHdguCQioi4l961A07MvQTEaYb/hGhg+/7TDxwiCALNFjITLgF+tMGYjXAJAeYXa0rp3T8dVR2dzCN981gCdTsChRxXHfaysjxGKDNRWpX+mJxERUU/BcElERF0utP80OB94FIIkwXHxedBt3NDhY8wWEVJIQTAoI5DFyiUAlFeE910mMdTno7drEQwo2P+QfBSG91tqyvqGW2P3sjWWiIh6P4ZLIiLqFvynngH3X/4G0dmM/LNPg1Bb2+797Q49AKBqTyAaLo2Z77kE1GNKgPihPrKswOUMxd1vzXInVv/khKNAj0MOL2r1PJGhPns41IeIiHo/hksiIuo2PNfcAN/xJ0G3YxvyzzsT8PnavO/YSXYAwMqlzZFwaTJn55+10j5GiDpg22Yvqir9WPFDMx67czv+deNWbNusnlsZDMp4741qAMAJZ5XDYtW1eh6tcrlpvTsydIiIiKi3YrgkIqLuQxThfPgJBPfdD4al3yPvT1cASuKJreP3yYOoA1Yvc8Lj1iqX2flnzWAQccjhRQgGFPznXzuw8OUq1IWH+6xb6QIA1OwNwOuRMWyUFUNHWhM+T59+JgwcakZ1ZQALX66C0sbnQkRE1BswXBIRUfdisaDpuVch9R8A8/w3YL3v7oR3s9l1GDnOBp9HxpplTgDZ23MJAIccUYQxk+yQJTUknnp+HwDA1k1eAGo7LgD07W9q8zlEUcDpF/ZFQbEea1e4sGt725VYIiKino7hkoiIuh2lrAxNL74O2Z4H2z13wPTmawnvN3FfBwBgy0a1VTWb4VIUBZxybh9c+Mf++P1fBmDc5DwUlRpQszcAlzOEqvAkWW2ybFtsdj0m7aeus4p7L4mIqBdjuCQiom5JGjsOziefhaLTIe+qy2H44vNW9+k/2Bz3Z6MpOwN9NDqdgIFDLdDp1OcdEj7Hctsmb2TYjzZZtj2lfdT71OxluCQiot6L4ZKIiLqtwG+OgOtfD0EIBuG4YA50q1fFfTzPoYPVHh2kk83KZSJDRqh7K7du8qBqdwA6nYDiso7DZVkkXPJIEiIi6r0YLomIqFvznX0u3NdcD9HlRP6ZJ0PcsT3yMUEQIseGALkPl4NHqJXLtStc8LgllPYxRqqa7SkqNUIQgepOqFxyaBAREXUVhksiIur2PFdfC+8550NXXYX8M06CUF8X+VhsuDTlOFza8/SYuF8efF51Om0yLbEAoNcLKC4xwNUsweuRcrY+WVbwwhO78e97d0CSGDKJiKhzMVwSEVH3Jwhw3X0//EccBf3mTcg/5wzAq05t7dMvGvCyvecykcN+WwKDUX2djob5xCrtq943l/suf/y2Cb/87MXe3X78vNads9chIiJKhOGSiIh6Br0ezf95NnIGpuPSiwBJQt9+0aE+uW6LBQBHgT4SMIeNTny+ZSKl5eF9l1W5CZcuZwifvhut6P60pCknr0NERNQWhksiIuo5bDY0vfA6QkOHwfT+u7D/9SoUl+qhN6iVxM4IlwAw7ZAC/N9dw1DeN4XKZXioT3VlbsLl+pUu+H0y9jnAAbtDh80bPGhsCObktYiIiBJhuCQioh5FKSlB02sLIJX3geWl55H3z39g+GgLHAV6WKy6jp8gS0QxtRZcLVzW5qhyqQ0LGj7GhinTHIACrFvhyslrERERJcJwSUREPY48aDCa3ngbcmEhrI8/jPOaXsbcGwZBr8/9nst0FZUYAAD1tbmpJmoV0bK+RvQbqLYKN9azcklERJ2H4ZKIiHokafQYNL06H7LNDsdd/0Te80919ZLaZTSKyMvXo7E+iFAou5NcFUVBVaUfeoOAohID7Hl6AICrOXeTaYmIiFpiuCQioh4rNGVfNL/wKhSTCXn/91eY3nytq5fUrqISAxQl+xVFZ7MEn0dGabkRoijA7lDbg13OUFZfh4iIqD0Ml0RE1KMFDzoEzU8+B0WnQ97cS2H88P2uXlKbiktz0xpbXekHoLbEAoAtLxwuWbkkIqJOxHBJREQ9XuCoY+B8+AkIkgTHxefC8OXirl5SQpF9lzXZDpfafkt1eq3BIMJsEVm5JCKiTsVwSUREvYL/1DPgvOs+CH4/8s85HYZvvurqJbVSFKlcZndibCRchifSAoA9T4eAX4HfL2f1tYiIiNrCcElERL2G78Lfw3XrHRC8XuSffRr03y3p6iXFKSpVw18222JrqwP45WcPgGhbLADYHepQHzerl0RE1EkYLomIqFfxXnolXDfeCsHjRv6ZJ0O/9PuuXlJEUXF222J3bvXiP//agebGEIaPscJRoI98zM59l0RE1Ml6fbj85JNPcOSRR+LII4/EokWLuno5RETUCbxz/wT39f+A6HYh//SToF/2Y1cvCQBgNImwO3RorA9CkjI7jsTnlfDm83sRDCg45IginHlxBQQhes6nVrnkvksiIuosvTpchkIh3HvvvXjppZfw6quv4sEHH0QgkN19LkRE1D15/vRXuP/2fxBdTuSfdiL0K5d39ZIAqEN9ZBmoq8ns36OP3qlFU0MI4ybbMevoIuh0QtzHteNInKxcEhFRJ+nV4XLlypUYNWoUSkpKUFhYiIkTJ+Knn37q6mUREVEn8fz1Orj//FeIzU3IP/V46Fav6uolYcgIKwDgiw/qM3qerZu8AIBjTy2Lq1hq7HnhymVzCIqSWZWUiIgoGd06XC5duhSXXnopDjroIIwaNQqff/55q/u89NJLmD17NiZMmIDTTjsNq1ZF3zhUV1ejvLw88ufy8nJUV1d3ytqJiKgbEAR4rrsRnrl/htjYiIJTjoN+1YouXdKM2YVwFOixdoULWza6034en0eCwSjAatMl/LhWuVy51Il//nUz1q5wpv1aREREydB3fJeu4/F4MGrUKJx00kmYO3duq48vWrQId955J2655RZMmjQJzz33HC6++GJ88MEHKCoqyvp6RLH1T4a7krae7rYu6h14fVEude71JcD7j1sgyBIsjz2M/JN/B+fr8xHad2onvHZrFosOR51Qitf/W4mfvm3GiDH2hPdTFCVhRRIAZFmBzysjL1/f5tfQka8OD2puVPdcfvpuHcZOymvVPttb8e8wyiVeX5RLPfn66tbhcubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CGVlZaiqqorcv6qqCgcddFBaa9HrRRQXJ34D0NUKC21dvQTqxXh9US516vX1yINAQR7E229H/inHA4sWAWn+m5Cp8ZMNeB2V8PvQ6t8WRVHw4rzt2LTehb/fPRZGU+smI487BEVRW1/b+rfJqDfF/bm+Nohtm4LY/8Ds//C1O+PfYZRLvL4ol3ri9dWtw2V7AoEA1q5di8suuyxymyiKmDFjBlasWAEAmDhxIjZs2IDa2lrodDqsXLkSt99+e1qvFwrJaG72ZmPpWSOKAgoLbWhocEOWuZ+GsovXF+VSl11ff74OFlmE9c5/QjnySDS/+DpCh7T9Q8xc8QdkAICzOYC6Olfcx378phHffanux/x5Qz369je3enxDnXqUicEotHq8JvbrOmaiHetXufDBwj0YNtqY8P69Df8Oo1zi9UW51F2vL4fDAoMh8VYMTY8Nlw0NDZAkCSUlJXG3FxcXY/v27QAAg8GAv/71rzjrrLMAAH/6059gMplaPVeyutM3N5YsK912bdTz8fqiXOqK68v9579BNhhhv/VGOM46BU3/fRnB2Yd16hr0BkAQAa9Hivv8mxqCWDS/JvLn5sYQyitaf33cLrXV1WIV2/36GU0iAn4ZvzujDLu2+1BVGUAoJPfIVqt08e8wyiVeX5RLPfH66rHhsi0t96gcccQROOKII7pwRURE1N14r7wKitmEvOuvQf65Z6D56RcQOPLoTnt9QRBgserg9chxt69Z7kIoGH0j4WxOfEalz6s+zmxp/yfIl/5tICRJgcWqg92hg7MpBI9bikySJSIiyqZuPS22PYWFhdDpdKitrY27vb6+vlU1k4iIqCXfxZfC+a+HgGAQjgvOhvF/Czv19S0WEaGggmAgGjDXrVRbXPed7gDQ9hmVXo96u8Xa/j/jRSUGlJarbbA2uxpE3S6ee0lERLnRY8Ol0WjEuHHj8O2330Zuk2UZS5YsweTJk7tuYURE1GP4zr0AzoceB2QZjt+fD/ML/+2017ZY1bDnDVchmxqD2L3dh4IiPUaMVYc4uNqoXGoVT+05khEJl06GSyIiyo1u3RfjdruxY8eOyJ937dqF9evXo6SkBKWlpbjgggtwzTXXYNy4cZg4cSKee+45+Hw+nHjiiV24aiIi6kn8Z5wNxWaD47KLkXf1HyE0NMD7xz/n/HXN4aqjzyPBka/HhlXqmZdjJtlhd6j/PLfZFhuuXJo7qFzGsoVbYVm5JCKiXOnW4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp57KyRmXRETUewWOOwFNjnzkn3cW7LfdBLGhHu5/3Aq0cc5kNkQql+Eq5OYN4XA5wY48h/oxV1NbbbHhymUHey5jsXJJRES51q3D5bRp07Bx48Z27zNnzhzMmTOnk1ZERES9VXDmLDS+9Q7yzzoF1scegtDYANe9DwL63PxTqe2X1PZPNtSqx4uUV5ig06uhtq3Kpdeb3J7LWNE9l4mfk4iIKFM9ds8lERFRtoX2nYrGtz+A1KcvLC89D8fvzwd8vpy8VmzlUlEUNDWGYLaIMJlF6PUCrDYdXM0SFKX1GHpfuHJpTmXPZR4H+hARUW4xXBIREcWQRo9B47sfITR0GEzvvYP8s0+F4HJm/XXMlmjl0uuREQwoyC+MVkntDh0kSWl1XIn2GCDNyiXbYomIKEcYLomIiFqQBw5C4zsfIjh+IoxffYH83x0NcW9lVl9Dq1z6vDKaGtRWVUdBNFzmhYf6JJoY603ynMtYrFwSEVGuMVwSEREloJSVoWnhewgcPBOGNatQcMxh0G3ckLXnj91z2dSo7rfMLzREPm4PD/VJdNZlZFqsJZ09lwyXRESUGwyXREREbVAc+Wh65S34Tjkdul07UfDbI2D49uusPHd0z6WE5nDlMj/ZyqVHhsksQqdLfpqtXi/CbBHZFktERDnDcElERNQeoxHOx+bB/ae/QmxqRP5pJ8C04M2Mn9YcqVxG22Jj91zm5UfPuty41oWnH9qJTevckGUFfp+cUtVSY7PrEPDLCAZa7+MkIiLKVLc+ioSIiKhbEAR4rv8H5H79Yb/2L3BcciFcu3fDe8Uf0z4LM7LnsoO22C8/qkfAr06MXbvCiX6DzOrjbcnvt9TY8nSoqwnC7ZZQYOTPl4mIKLv4LwsREVGSfOddiObnX4FitcJ+642wX/83QEqvzdSSoHIZO9Cn3yAzTGYxEiwB9aUik2LTrFwCmU2MdTlDCLDySURECbBySURElILAEUejccF7yD/7VFiengdx9y40P/4UYLen9Dx6vQiDUYDXKyEUUgAhPlwWFBpw7R1DAQBVe/z4z792IuCXI0eTpHLGpcZmV58/maE+2vmaQkxldvUyJxa+VIUhIyyYc2m/lF+fiIh6N1YuiYiIUhSasi8a3vsEoWHDYfpgEQqPOxLi7l0pP4/ZooPXLcPZFEKeQ9dqQI8oChBFAYZwC2swqEQmxaZyxqUmchyJU0IwKGPTOjeCwdZVSFlW8NhdO/DaM9HjV9avcuGt5/dCkhTs3OaLhE8iIiINwyUREVEa5CFD0fj+pwgcPBP6tatReMSh0P+0NKXn0AKiogD5BYY272cwqqEzGJDh96th0GROP1w6m0NYtqQZL83bg3/fswM+b3wls742iNqqAH5e6460wP681h35uN8no7mx9RRbIiL6dWO4JCIiSpNSUIimV+fDe+6FEGuqUXDCMSlNko0NiEWlbYdLo1a5DCgIaOHSlPo/4do02qaGIKoq/QCAupog3vjv3rj7VVcGAACyDFTuUu/ncqphsu8AU9x9iIiINAyXREREmTAY4Lr3AbhuuwsIBuG45EJY775dLUd2YPBwC0QdMOUABw7/XUnbLxEOl4GAHBnwY0wjXBaEp9E21YfiKo/bNnshy9H1VoeDJwDs2uYDADib1erm0BFW9T57GS6JiCgeB/oQERFlShDg/cPlkIYNR97vL4Dtvruh27wJzoefACyWNh/2m2NLMPuY4rihOYnodIAgxlcujWkcJZJfpP6z39gQDZbFpQb1eBKnBFueDooSHxx3b1fDpas5BFEEBg234JvPGlCz1w8iIqJYDJdERERZEvjNEWhc9Any55wO89vzoduxDc3/fRly34o2H9NRsNTuYzSKCAbkyB5Igyn18zXNZh3MFhFNDeq5mmaLiLIKE+pqgmisD+L5J3bDlqeDK1ylhADs2u6DLCtwOyXYHXqU9zUCYOWSiIhaY1ssERFRFkmjx6Dhg88QnDYdhuXLUHD4TOi//y7j5zUYhXDlMtwWm0blElD3XQYDCoIBBQVFBhSE92Hu2OpDzd4Atm3yorYqALtDh/K+RjQ3hrB3tx+KAtgdOjgK9DCZRdTsDcS10uaSoihYu8KJmioGWiKi7ozhkoiIKMuUkhI0vvU/eM+9ELrqKhSceAzMzz6V1D7MthiMIiRJiUx2TWfPJQAUFEUHB+UX6iNDfrZscMfdr6yPEf0GmQEAG9eoH8tz6CEIAkrLjQgGFDQ1dM7E2HUrXXjjv3vx2J3b8dqzlZAkHoNCRNQdMVwSERHlgtEI178ehPO+hwFBQN61f4H9L3MBf3p7FQ0GtQ3W5dTCZeptsUB0YiygBs388JCf7Vt8cfcr62tCnwp1MuwvP3sAAPbwUSZlFca423Ptl43q6xiMAtavdGHp140AgG2bPbjr+i1Yt9LVKesgIqL2MVwSERHlkO+c89G4cBGk8j6wvPQ8Ck44GmLlnpSfR2uDdbsyq1xqYRIACor0KAgP+dGqgVr47NPPhNI+aojUhvrYHerHpkxzAAC+/KgeoZCc1jpSsW2LFwBwxkV9IYjA5+/Xo7kxhEVv1cDnkbH8+6acr4GIiDrGcElERJRjoanT0PjJlwhOnQbDTz+i8LBDoP9uSUrPYTCqlUp3+LzJdPdcamFS/b0hLmwCwKnn98Vxp5dhwr55KAsP75HD+dHuUCuXAwZbMHKcDU0NIXzxYT38/twFTGdzCHXVQRSXGjBslA3TDi6A3yfjsbu2R87a3LrJi2Aw9yGXiIjax3BJRETUCeTyPmhc8B68514IsaYaBScdC/PT85Leh2nIQeUyv1APi1WMtNiKItC3vwn7Ts+HTifAZtfDatNF7m/PiwZT9QgV4KuPG/DQP7ehoS6Y1no6sj1ctRw83BJ53bGT7PD71DBZXGZAKKhgxy/enLw+ERElj+GSiIios7Tch/l/f0XepRdCcDk7fKhWuZQl7anS23PZsnIpCEIkcBaVGKDTxT+v1hoLAHmOaNDs08+E86/sj6EjLfC4JKz4oTmt9XREC5eDwuHSaBJx6vl9cPqFfXHKuX0w/dBCAMDmDZ2z/zMdjQ1BbF7v7viOREQ9HMMlERFRJ/Odcz4a//chpP4DYF7wFgqOOBS6DevbfUxsG6wgAHpDeuHSZtfBZBZhsaq/gOg+y5JyY6v7a62xQHTPpWbQMAuOPbUMALB2RW6G6mgVyUHDLJHbBEHAmIl2jN8nD8NHWwEAm9d333D5zitVePE/e1Bfy6NUiKh3Y7gkIiLqAqF99kPDJ1/Cf9gR0G/ehMKjZsH0+itt3t8QU6k0mkQIQnrhUhAEnH5hX5x2Qd/IcxSEK5eJwmVs5VKbFhuruNSI8gojaqsCqK5MbxJuWyRJQU1VAFa7DvkFhoT3UfeN6lGzN9Apw4VSFQzK2P6LOhCptjo3rcNERN0FwyUREVEXUYqK0fzi63DdcBPg88Fx5SWwX30V4PO1uq8hpnKZ7jEkmqEjrRgywhr5c//B6nmWg2Oqg5rScOA0mcW4NcQaNzkPABIeCeJyhvDh2zV447lKBAOphb/a6gBkCSjv2zr0xtIqqh5X9wmXWzd58NmiOuzc6oMUUvfVNtYzXBJR78ZwSURE1JVEEd6rrkbTW/+DXFoGywvPouDYwyFu/SXubrF7LNOdFNuWifvl4U83DcbwMbZWHyvra4IgxO/VbGn0BPVxWzfFD9VxuyQ8esd2LPm8EWuXu/DLptRaV6v3BCJraI/Nrou8XndQVenHy0/uwZcf1eODBTWR25vqQ124KiKi3GO4JCIi6gaCBx6Mhs++RmDGQTCsXonCww6B6e35kY/HVy6z+8+3KAqR1tiWbHYdTr+oL353Rnmbj88vUh/rcceHu5qqAHxeGWJ4ubu2ta7Itqcq3GZbXtF+5VKbaOtxd314CwZlvPp0JYIBtVqpHZcCqIN9iIh6M4ZLIiKibkIu74OmN9+B549/gehshuP358P+l7mA291qz2VnGj3ejn4DzW1+3GgUIOpah8vmRjVMDR2ltuDuTDFcasGsJ1Uud+/wo6E2iMHDLeg3UF23EP52NbJySUS9HMMlERFRd6LXw/33m9H4+kK1TfbF51B4xEwU7twQuYshzWNIckUQBFhtOng9EpSYczudTWrYGzbKCqNJxO7tPkhScud6AkDVHj8gAGV9OqhchsOlpxuEy7pqNRAPGmbBjNnqMSlDR1ohikATK5dE1MsxXBIREXVDwUNno37xEgRmHwb9pp8x7erjMHPja4CidHrlMhkWqw6yBAT80fDY3KhW6vIL9eg3yIRgQIlrE22PzyehqSGEwmJDh59vd6pc1tWoAbKo1ICxk+w48exyHHtKKRyFeriaJQSD3WfoEBFRtnW/f52IiIgIAKCUlqLp5TfhuuUOQJFx2k/34JIvr0ZesKmrl9aKdmam1xMNeM1Narh05BswYLA6iXbXNm/rBydQuTO837KDSbFA96pc1teo4bm41AhBEDBpqgNFJUYUhPelNjWwNZaIei+GSyIiou5MFOG97Eqsf/I9VNsHYOLuL3DyvcfB8M1XXb2yONGhOtGA5wxXLvMKdJHjTtaudEGWE7fGupwhzLt/B775rAGfvlsHABg+uvUE25YilUt314dLrXJZXBo/IKmgUJ22y9ZYIurNGC6JiIh6gOCEybjr6Jfw/eBjYWusQv5Jv4XttpuBQHJtprlmsaoBr2XlUhAAe54eQ4ZbUFxmwLZNXnz8Tm3C59j6sxd7dvjx8Tu12LXdh4oBJuwz3dHha0eCbRdXLmVZQX1NEFa7LvL10GiVSw71IaLejOGSiIioBzAaRfgNNjw/41b8cNkDUGx2WB++H4VHzoJu/bquXh4s4YDndat7CmVZgbM5BLtDB51OgMEo4uw/VMBiE7FkcSPqa1uH4vq6aFVP1AHHnV4GUex4eFF32XPZ1BCCJCmtqpYAkF+ohUtWLomo92K4JCIi6gFiJ8RWzT4JDYu/RWD6gdCvXY3CI2bC8sSjgNx1w2Ks4T2XnnDl0u2UoMhAXr4+cp+iEiPGTrQDAGqrWoeshnDgPOXcPrjy/wajb/+2jz+JZTSJ0BuELq9capNiE4XLgiKtLZaVSyLqvRguiYiIegCDMfpPttEkQh44CE3z34XrptsARYH9puuRf8rvIO7a2SXri1Yu1YAXHeajj7tftD20dbisr1VvqxhoQlFJ64DWHptdB69HTumok2yrq9X2W7YeQmR3qF8Hl7Pr94USEeUKwyUREVEPYIypXBq1oKnTwXvFH9Hw0RcIjR0P49dfonDmdJhefwVQOjdkRfdcqtVTpxYuC1ILl4IYbSFNhTYxNnbPZ2eLVC7LWq/fnhdu3XWycklEvRfDJRERUQ+gNwhAOF+2PPdRGjsODR9+Ds/cP0NwOeG48hI4Lj4PQl1dp61PO4pEmxarnXGZ17JyWaz+uaHFYJtAQIarWUJBoQE6Xcf7LFuy2bp+32X1Xi1ctq5cmi0iRF3X7wslIsolhksiIqIeQBAEGAxq6DKaEoQvkwnuG29B09vvQxo4CKb/LUTRwfvD+L+FnbI+bWKrVjlMtS22ITzMJ9V22Mjrd/FZl4qioHKnH3qDgJIE4VIQBNjserhdUptHsSSjqtKPR+7YhvWrXJksl4goJxguiYiIeght32XLymWs4AEz0PD5N/Cecz7E2hrkX3Qu8i4+D0JNTU7X1nJarNYW27Jyac/TQW8QWoXL+vD5kIVphsuunhhbXxuE3yejTz9Tm5VXW54OihxtHU7HmmVO1FUHsfDlKk6eJaJuh+GSiIioh9D2XRqN7f/zreQ54LrvYTS+8TakAQNhfmcBig7ZH6aFb+VsL6alxbRYZ7P635bhUhAEFBTq4XXL8PuiIaunVy737PQDACoGmNq8jz28xvraAF6atxs/r3Wn/Dq7tvkAAH6fjLdfqUpjpUREucNwSURE1ENolUtDorbYBIIzZ6HhiyXwnn8RxLo6OP5wARwXngOhujr7azOIMBiFSFusqzlcuXToWt03UWusNim2sDi9cGnPU0Oss7lrBuZU7lRDX8WAto9PsYWH+qz+yYlN6zxYNL86pRZZWVawe4cPBqOA/EI9tm7yRva4dmTFD81Yt5KttESUWwyXREREPURpHyOsdl2kBTQZij0PrnseQOP8dyENHAzTe++g6OCpML31etarmBarDj6PDFlW4GqWoDcIMJlbv9XQwmVDTLhsCIfLogRnRCYjv7Brz5Hcs0utXPZtp3JpCwfgHVvVINpYF8LGNclXL6v3BhDwK+g3yIz+g9UQW7XH3+HjAn61yjn/xb3weiR881kDXntmD956YW/S4ZSIKBkMl0RERD3EKef2wVU3DoZen/o/38GDDkH94m/hufgSiA0NcFx2MRznnJ7VczEtVhGKok6M9bgl2PN0EITWVVZtYmxjXTQIZlq5LCjqunApy+owH4Mx8TAfjfZDgard0UD43ReNSb/OrnAo7T/IjPIKNcRW7Ql0+Lja6gAUBQgFFbz3RjU+fqcW61e5sfonJzavT701l4ioLQyXREREPYQoCjC1M8ynQ3Y73Hfci8a330doyFCYPvoARQftD8t/HgOkzCtY2sTY2io18Ngd+oT3a9kWK0kKGhuCsDt0He4nbYujwAAIic/PzLXKXf4Oh/kA0bMutYKx2SJi+xYv6mraD4h7d/vx6J3b8eXH9QCAAYPNKK9QQ2xVZceVy5q90edfs1xtjdUeH/B37nmoRNS7MVwSERH9ygSnH4iGxUvg/tNfgYAf9hv/DwVHz4Z+9cqMntdiDVfmKrVwmbh911EQ3h8Znijb1BCEIqc/zAcA9HoBeQ4dmptCkKTODUxffKiGvon75bV7v9h2ZkEEpkxzAAC2bPBEbnc2h+L2YSqKgvfn16C2KhA5O7T/YDP6aJXL3amFS0Btr568v/ragUD6k2uJiFpiuCQiIvo1sljguf4faPj0awT3nQrDiuUoOOJQ2G66AXCn1yqp7XvUJppqQ3Za0vZhasFGO4Ykk3Cpvr4Bity5Q3127/Dh57VuOAr0mDItv9372mK+HgWFBowcZwMAbA6Hy+2/eHH/TVuxZHFj5H4/r3Vj+xYvSvsYccTxJTju9DLY7Ho4CvQwW0RU7w10OBSoJlxJnnpQPgQROOJ3JZHjbIIMl0SURQyXREREv2LSmLFofO9jOO+6D4rVBusTj6DokGkwfvpRys9VHN5vuG2zGpa0NtCWtNZXrSWzvk4747Lt/YrJKNCG+tR3XrjUqpaHHF4Evb79Kb62mK9HUakBA4aYYTAK2LbZg1BIwYrvm6EowPYt3sj9vvqkAQBw+HElmDGrEPtOVwOsIAgorzAhFFQi4bwtWuXysN+W4IZ7hmPEWFv0exBgWywRZQ/DJRER0a+dKMJ34e/R8PUP8B/7O+h27kD+macg75ILIFQlf5ZiSbkaDp1Nic+41GhVs4BfrZpFJsVmWrnU9nI2dM6+S61qmV+ox+Rwi2t7Yttii0sN0OtFDB5uQcCvYPsWD9avVvdDanswFUVB1R4/TGYRI8ZaWz2ftm9ybzsTY4MBGQ11QeQX6mEyi5EArB1nw8olEWUTwyUREREBAOS+FWh+9kU0PfcKpL4VMC94C0Uz9oXlySeAUMfVwJKy+HDYduVSDTaRttgshcvOrlwu/qAOAHBwElVLANDpBFis6lsv7XMdPlptjX1/fi18nmjYliQFbpeEYEBBYYkh4dTdvv3V40g2r/e0+pimriYIRQFKy+Orwi2rx0RE2cBwSURERHECRx+Lhm+WwnPJ5RA8bthvuBaFhx0C/XdL2n2cza6D2RJ9a9HWtFi9QYAgxLTFZngMiaajyqUsK6iq9Gdl4E9jQxCb1nnUquX+HVctNdq+y6JSNeyNm2KHo0AfmbAriIAsq1NvGzr4uoyZZIPRJGDNcmeb51VqLbGlfeLDpcHYvSqXWzd5sGRxA5qbuuacUiLKDoZLIiIiakWx58H9z7vQ8OnXCBwwA/p1a1D4uyORN/dSCNXVCR8jCPHnPLY1LVYQBBhNIgJ+GYqioKEuCLNVjBxlkq72KpeSpGD+i3vxxN078MAtW/HjN00pPfeenT6892Y1vB41xNWGQ9uQEZakqpaawmI9BAEoC4c9e54eF/9pAPr0N8Fq12HsRDsAoK46iIa69sOl2azDpKkOhIIKln/fnPA+WottcVnLcBk/VKkruV0SXnmqEh8urMUDt2zFpnU8e5Oop2K4JCIiojZJY8eh6e330fzYPMilZTC/9jKKZuwL81P/TtgqW1IeDUI2e+LKJaBWzoIBGc4mCaGggqIMq5ZA+5XL996oxpplLpgtIlxOCR+9UwtFSb6CuWRxI5Z+3YRP3q0FANRprbylqQ0hOubkMpxzWb/IWZ+AejTLH/4yAH/+x2BUDFRbXetqApFw2d7XZupB6oCfLz6sw4KX9raalOtqVsOwo8X+V2Okctn1bbFffVyPgF9GSbkRigz89F1qwZ+Iug+GSyIiImqfIMB/6hmoX/ITPH+4DILLibzrr0Hh4TOh//67uLtqFTKLTWy3omc0iZBloLZaraxl2hILACaTCItNRGN9CKFQNDTJsoIVPzTDZBZx6d8GomKACQG/jKbG5FswtQrgT0uasXuHLzKhtbg0tXUXFhswdGTr4TyiKMBgFFEc3rcaV7ksaTukl/Ux4cDZhZBCwMqlTiz9Oj6YuZzq59iyiqxVLru6LbapIYilXzfBaBJw9h8qIIjqUTapBH8i6j4YLomIiCgpiiMf7tvuVs/GnDYd+rWrUXjcEci7/PcQK/cAQKQtNq+N/ZYabWJsU7jKaGtj+E+q+g8yQwop2LPDF7nN55Uhy0BBkR4FRYZIS2pNZSCp51QUBXXV4WqoAny2qA71tepjizI8PqWlknAltLYmkPRe1MN/V4KL/zwAQPwxJkC0ctnyzNHuchTJLz97IUkKpkzLR2GxAX0qTHA1S2jsxONkiCh7GC6JiIgoJdK48Wh85wM0P/oftVX2zddQNH0fWP91F/oWSRAE9RzH9mhtmc3hY0tM5uy8JRk0zAIA2LY5GrI8LvU1tKNAyvqaAADVe5MLlx63BL9PRllfI0xmEdu3eFFdqYXLzCuusQqKDRBErXIZgiAC+YUdv0Z5hRFmq4hd230IhaLVSK1y2TK8d5eBPlpI79NPDdUDhqhtwbu2+dp8DBF1XwyXRERElDpBgP+0M1H//XJ4/vgXIBSC7Z47MPS46fjLqB9wzEml7T5cq5w5w62pZkt2KpeDh6stp1s3R4/ncIcnqVrD4VKbnFpd2fb5kLG0qmVJuREDh5oRCipoagjB7tBlLRRr9HoBhcUGOJtCcDaFkF+oh07X8cAgURQwcIgFUkjB7h3q56UoClxOCVabrtVziKIAvUHo8splXU383tX+g9VwuXObt83HEFH31evD5R//+EdMnToVf/7zn7t6KURERL2OYs+D++83o/6bH+H/7fHQ7d6Fof+4DAPPOhr6ZT+2+TitLVY7eiL2CJNM9O1vgtEkYOcvXkjhfZda5VKbRhtpi02yclkXs79Sq4wC2a9aavabkR/5fSp7UbW1aa2xfp+MUFBpc2qvNlSpK7XcuzpgsPo5sHJJ1DP1+nB59tln4+677+7qZRAREfVq8qDBaH7mBTQuXITg+Ikw/PgDCo+ajbwr/hDZjxnLaNLaYrMbLnU6tYIXCCjYsVWtXrpbtMU6CvQwmUXUVAUgyx1X7iLHeZQa48JlcYqTYpN1wMyCyOukFC6Hqo/ZEQ6X0f2WicOl0SgiGFCS+hrkgqIoqKsJwGgSI9+bgiI97A4d9u72w+/PbfBVFAWL3qrG689W4oevG7Ny/inRr12vD5fTpk2DzWbr6mUQERH9KgRnHITGj7+A84FHIZeUwvzGq+p+zLtvh+ByRu5naNUWm723JINHqCHr3Tf3IBiUo5XLcIARBAGlfYwIBpSkBsdEWzcN6NvfHNmv2NG+0nSJooCT5pRj3BQ79p2e3/EDwvoOMMFgFLAzPG1VO5bE3sZwJYNB/TxCwa4JVa5mCcGAguJSAwRBXYsgCBg8zAJZbj2cKNuaGkP44asmrFvpwqI3a7B5A8/XJMpUl4bLpUuX4tJLL8VBBx2EUaNG4fPPP291n5deegmzZ8/GhAkTcNppp2HVqlVdsFIiIiJKmk4H39nnqvsx5/5Z3Y95390o2n8yzM88CQSDkbZYraqYrT2XALDv9HyUVxixYY0TC16qalW5BICyvmrVMXaqbFvqYyqXer2A/oPM4T/nJlwC6hCfU8/ri37hcy+TodMJKC03wu+T0dwUgsvZfuXSYNImxnZNa6x2VmjLr+PQUeq+2V82elo9JpucLY6i2bMjuT24RNS29ueE55jH48GoUaNw0kknYe7cua0+vmjRItx555245ZZbMGnSJDz33HO4+OKL8cEHH6CoqAgAcPzxxyd87vnz50Ony94/VID6k8TuRFtPd1sX9Q68viiXeH39SuTnw3vTrfBfcBGsd94G45uvIe+6q2Gd9ziGHPdXfKNMBcIVK4tVl7XrwWbX44K5A/DI7duwdrkTYyfZAajHcWivMWKMDcuWNOPDhTUYMsKKvPzEb4lkWUF9TRBmiwh7ng6CIOCQI4pgsTZhxBh7t7uGS/sYsWenH3XVQbjD4TIv35BwndpQJSnUNf8vNmjhsswY9/rDR6sdZ7/87MnpupzhtuEBQ8zYudWHyl3+pF+vq/8OW7akCSaziHFT8lJ6nKIokSoxdV9dfX1lokvD5cyZMzFz5sw2P/7ss8/i9NNPx8knnwwAuOWWW7B48WIsWLAAF110EQDg7bff7pS16vUiiovtnfJaqSosZNsv5Q6vL8olXl+/EsXjgNdfAVZcC1x7LXQffYTpD12G8uIJWDjlKmwpm4KKijzk5WevElhcDPQbaMHP61zYu1utPPbrn4fiYrVl9pDf2LHzlwC+XVyH9+fX4rK/Dk/4PA11AQSDCioGWlBSor6RL55hx/4zyrO21mwaPDQPK5c64XEKkEJqeOxbYUv4HsZmNwDwwmoxR74unaWxIYDmBrUdd9CQvLj1FRcDZX32oLrSD71oSuoolnRIQbUyOmnfQuzeXomqPYGU3+t1xd9hH72zF2+/VgWjScSBs/okNU0YAL7/qg7zX96NC68cglHjUgul1DV64r+RXRou2xMIBLB27VpcdtllkdtEUcSMGTOwYsWKTl9PKCSjubl7jcUWRQGFhTY0NLi7bDM+9V68viiXeH39Sg0YDrz8FgyLPwP+dj2Gbl2Nv3xyMVb1mwn/ynsRGDcmay8ligJKy034eZ0rMpAnEPSjrk6K3Oc3xxVi6Tf12LLRhbo6V8Ln+eVnNYDkF+ravE93YnOo/922xYlQeFouxFDCtQuC2g5bU+OCySq1+niuVO3x4/G7t0MJL89kkVutb/BwM6r3+vHjdzWYvL8jJ+vYu0fdY2mxKSjtY0TVngC2bW1EXht7VGN11d9ha5Y78fZrlQCAgF/GhrX16NPPlNRjf/quDq7mEJ58cAsu+etAFJVkdyCV26m2YpdXJLcealt3/TfS4bDAYGi/M7TbhsuGhgZIkoSSkpK424uLi7F9+/akn+cPf/gDVq1aBa/Xi0MOOQTz5s3D6NGj01pTd/rmxpLlrpv0Rr0fry/KJV5fv07+Q2Zh9aMfYMdt/8Vxqx7HxN1fQJl1AHxnnQPP1ddC7tc/K69T2idmv6IAmCxi3PWm0wmw5+vRUBuE3y/BYGg9iqK2Sg2mRSWGHnGtFpepVb7qvf7I0CSrXUy4dn14oI/fJ3fq51a5yxcJlnqDgKLS1l/bAUMt+OHrJuzZ6cPE/XJTZWtqVNty7Q49+vQzoWpPAGtXOCEKAvaZ7kiqJbEz/w4LBGR8sKAGADBwqBk7fvFh5zZvZP9wR2qr1WvZ65Hx7uvVmHNpv6ytTZIUPPvoLtTsDeCCuf0xcGjnVsJ7q574b2S3DZdtSbVXfN68eTlcDREREaXDaNFh6ZBjsHzgb3D4jrdwzPqnYXnxOZhffwXe8y6E549XQynPrPW0rE+0gmJtY09nnkOHhtogXM0SCotbh8vYY0h6goIiA3R6ATV7A3AUqG/z7HmJ3+4Zu2igjzZgaZ/pDkw7uAAWa+tKSGGRGpIbG4I5W0dzeKCPo0CPvv3NWLnUiUVvquHNbBUxPsX9jLn27WcNaG4MYewkO8bvk4cdv1Rizw5fUhOFFUVBfa06SEtRlMhE4Wztv1z+fTOqK9X/Vxa+UoXL/jYw8sMN+nXptt/1wsJC6HQ61NbWxt1eX1/fqppJREREPYv2xjOkM2HptPNQv3QV3H/5GxSDEdYn/43iaZNg++dNEOrr0n6N0thwaU/cyqW1QLqaEx9Joh1DolUEuzudTkBJmQFej4zaqiBEHWCxJn67p30Pgv72KyPfft6An9dl75gOj1sNlwOHWNpsocwvUr8vTUkcFZMuZ5M28EiHvgPi17F+ZfdqgVYUBd992QhRBxz+uxL0G6iud/fO5CbcOmOOfSnto04UbmrMztfW75fx+SL1/9O+/U2orwliyeLGrDx3b7T9Fy8evm0bfl7bO4++6bbh0mg0Yty4cfj2228jt8myjCVLlmDy5MldtzAiIiLKmFY1AwCTRQclvwCe625E/dJV8Fw2F5BlWB95AEVTJ8F6750QnM0pv0ZpmUkbRht3DEks7QxIbXJoS1rlMldnWuZCSblaZZUkBX37m9usTmnnXLZXuWyoC+Kjt2vx8rw9+PbzhqysTwuXbQV+QP1+6fRCziqXiqKguSkEq00HvV5E3/4mFBYbMHKcDQajgJ/XuRHsoiNaEmlqCMHnkdGnn7pOR4Eetjwdqvf4k1pn9DgdQ6Sir1UaA34ZO37xIhRK7/Pd8YsXbpeEMRNtOO70MgC5P6O0p/J6JLz1/F7U1wbxv9er4Pd1n2ssW7o0XLrdbqxfvx7r168HAOzatQvr169HTY3aknDBBRfg1VdfxYIFC7BlyxbcfPPN8Pl8OPHEE7ty2URERJQhoykaeMyW6NsRpaQE7ltuR/0PK+G94GIIPi9s996Jov0mwPLwA4A7+Z/2G4xipDW07cqlenuiyqUkKWioDcKWp4PZnN3jzXKprK8aHgpLDDj1/D5t3k8L+MFA25XLpphw99Hbtdi6KfOzJz3htlirre2vqSgKyC/Uw+uWEfBn/w24xy1DCimR68NoFDH3hkE48+K+GDHGhmBAwZYcn7OZiqpKtUJZHv7eCoKAfgPNkGVg7+6Oq5daBb6o1IjyCvWHD9V71Me992Y1nnl4F/5141Ys+64p5bU5m9T/d8r6mlDW1whBjK43m3Zt82HPzo7Ppe3OPlxYg+bGEAxGAc4mCYveqsaenWqLcm/RpeFyzZo1OOGEE3DCCScAAG677TaccMIJePXVVwEAxxxzDK677jo8/PDDOP7447F+/Xo89dRTkTMuiYiIqGcyxuzHig2XGrlPX7juvh/1S5bBe9Y5EJqaYL/tJhTvPwmW/zwGeJJ746/tlbTaEr/liVYuW4fLpoYgZFmt9vQk+0534NCjinDB3P4oaOcYD4Ox48plczg4aEFw+fepV5Bb8rjV12urmqwpKAy3xjZkvzVWC0R5+dE1iKIAQRAwJnwu6rpu1BpbvUetMsYO76kIt/ImEy7rtfbuUkPkhw9VlQG4XRLWLHNBpxfg88r47ovGlNemVf3zHHro9SJKyoxwNUtwu7L3ffP5JPz3sV147ZnKrD1nZ/P7Zaz6yQmzVcTv/zwARpOAlUudmHffTiz7LvP/r7qLLg2X06ZNw8aNG1v9mjt3buQ+c+bMweeff441a9bgjTfewMSJE7twxURERJQNsW2xZnPbb0fkgYPgevAxNHyzFL6TToFQWwP7jf+H4v0mwPLYw4Cr/QCgBUObPfFQm7z8cLhsim+LlSQFddXaG/KeMcxHY8/T49CjiuHIb39uoxbw26tcal+XAw4tgNEkYN1KF3y+zI4tibTFtlO5BBA53zJRa2xzUygykCcdWmhO9DUaMdYKQQS2bPR0m4pS9V41XMbuUS0qCX99ktiXWlcbbe+OVC4r/Vi5tBmSpGDf6Q7Y8nSorQpEj7BJklb1t4eDenk4AG/b7MVbL+zF7h2ZVxs3rnEjFFTQ1BCCJHWP70mqtv7sgSwBI8bYUNbXhAuvGoCpB6nDmFYvc3bx6rKn2+65JCIiot4rvi2245ZTadgIOP/9DBoWL4HvhJMg1NXCfsvfUTx1AiwP3w/BlfjNWcUA9TiStqqPidpi9+7x48Fbt+LVcJWkp1UukxWpXLbTdqoFuOJSA8ZOykMoqGDdiswqem6XBJ1eiLsGEskvTDzUR5YVPP3gTjzzyM601xA7KbYls1mHfgPMcDsl1FblblptR2RZweIP6rD4gzpUhVtYYyuX+SlM1I1WLo2w5+lhtetQUxXAj9+obbD7zshHeYUJshw9siRZkSpwuAtAC8Bv/HcvVv/kxIKXqlo9RvsBQ7LWLo9ecy5n7oY85dKm8FCsEWOsAIA+FSYcfVIpbHk6bN/iTflr0l0xXBIREVGn0+kEiOF3IYnaYtsijRkL57z/ouGrH+A75XQIDQ2w33YzivYZB+t9d0Noaoy7/5QDHDjvin6YsG/iYyVatsXu3ePHfx/dBWeTBClcwSnrpYfCRyuXbYdL7eviyNdj8jQHAOCrTxrg86b3RliWFXjdEqw2XYfHYBS0EZ52b/ehqSGExrpQ2seoRNtiE1d3h4xUz2nU9ph+90UDHr97O7yezgkAkqTgrRf2YvEH9Vj8QT2qKwOw2XVxx8oUtBG+W5Jl9RgSs1WMVIvL+hohS0B9bRCDh1tQ3tcUqThqezGTFdsWCwBlFW1X+r0eCQte2ot7bvgFi96qTqoy7PNK2LIh2gbvamP4VnemKAo2rfcAAjBstC1yuygKGD3eBkVGr5key3BJREREnU4QhMhRGKYUwqVGGjkKzsefRMO3P8J3xtkQnE7Y7r4dRftOgPWu2yA01ANQ37wNGWFNeMYloB7TodMLkTfIHy6ogc8jY8bsQlx27UCccl6fSKWhtzFoA32C7bXFhkNYgR6DhpoxarwNDbVBLHylKq2WUZ9XhqK0vQc2Vn4bey43rY8GDbczvaDRWB+Me42WhoxQv+dbN3lQszeADxbUoroy0Ob+RkVR0FgfjEwXztSa5U6sXe6CKaZlvGVoy8vXQxQ7rlxuXu9BKKigb7/oD0mGj1Y/v0lT83DaBX0BRCuOVXvSqFwKgC1Pa4uN/2FM7A+PFrxUhZVL1S6DH75qwgcLarF6mTPhDwkURcEbz1Xivpu2xrXCtnVsUHdWvTeA5sYQ+g00t9prPGqCusd3w5rus8c3EwyXRERE1CW0fZepVC5bkoYOh/PhJ9TBP+ecD8Hjhu3+e1A4eRxwzTUQKtsfACIIAux5OnhcEnZu9WLrJi+KSgw47LfFKO9rwvgpeVk7aL67MSYz0Kcx2vIoCAJOOKscBcV6bFjlxt7dqQcpbVJsR8N8gGjlsqlFeIo9czPdoNFQpz5nYXHiKtuAwWbodAK2bvbindeibZ3+BC3EHreER+7Yjgdv3YZH79iO9asyDwmV4fMrjz2lFH3CobBlaBNFAY4CPVzNUrvHiHz9qfqDlv0PLojcNmNWIa69YyhOPLtPXDUTSG3Sq6IocDlD6tExOvV6yi/Ux4Vi7XsOAHt2+iCKwJxLKqA3CPj+y0a89fxeLP269ZTa7b/4sHa5C4qirm3MRLXi50rzBwpdaU943+mQEZZWHxsywgKjScDm9Z6E11dPw3BJREREXULbc5fMnsuOyIOHwHXfw6j/fgW8518EBAPAvfeicN/xsP9lLnRbNrX5WK018sOFtQDUN95tVTp7E4MhXLn0J65AyrICZ3N8cLBYdZGqnsederBLdpgPoO6HFIT4gTXNTSHs3RUNP+kGjfraIESx7cqlwSii/2AzfB4ZO7dGB9L4va3f/O/c6kV9TRB5+TooAN58fi92bs3snMfaKjW4l/ZR9+UVlRgwNjzFNpY29Kitibo7t3qx4xcfissMGDU+vh3TYo3/HpT2MUIQUqtcetwyZCm+vVgQBAwdaYElXJ12h8OloijwuCVY7ToMH2PDxX8egP0OVAfaVCcItEvC56r+9tQyXH7tIAwfo65fq6b3JNrXIFEbtsEgYtR4O0JBBRt7QfWS4ZKIiIi6hLbnr71psamSBwyE654H0LBsLXDNNVCMJlhefA6FM/aD48JzoF/+U6vHaEN9dm33wZanw6T9E+/P7G0MpvYrlx63pAaHFkNvtO9boI1Q2h7tTXZb547G0unUylxzUyjS+rl5vTvyMSC9ymUgIMPVLCG/yBB5nkRmHlmEMRNtOOy3xZgxuxAA4Etw6L12huQBMwtx5PElkEIKlixuTHldsWqrA4AAlJQZMGiYBX/8+2AMHNq66lVQ1P5xLSt/VFtQpx/a8Q9MDAYRxaUGOJtCSQ+X0fbkav8PaU4+tw/+eMNgFJYY4PfJCIVk+P1qENV+sNCnwoQZs9Sva8uJt3U1AWxc64bdocP4fdT/H+3a8K0WP1DwuKW09wAn4nFLuO+mrfjyo/osPqd63bT1QxVtT/iaZQyXRERERGnR2mLT2XPZEaVPH+Duu9G4ch1cf78ZSkkpTO++jcIjZyH/5N/BsPgzILxnMPZYlJPm9IlU9Hq7jo4icbZxXIdWcW5vymxbUqlcAsCkqQ5AAb75VK1ibdusVgRHjlOrp+lULhsjLbHtTwEeOtKK0y+swEGHFUWO/UhUuayvjZ4hOWmqOvSopir9vZeBgIzGhhAKivSRfcltiRzXUp9436VWQU1233B5uAV3z87kjg9xtZgUq9HrRVisukj7s9slweNqHbDyC9XqtNamrNm0zgMowD4H5EOvV683bZhR7A8UJEnBv+/dgftv3oovP67PysTV3dt9cDaFsHlD9gbsaK3BbV33w0ZZYbGJ2Lze3eOnxv46/vYkIiKibmfy/nkYNd6GkrLcnSOp5BfA+8e/oO6nNXDe+yCkwUNg/GoxCk47AQWHz4Rp4VsYO8EMR4EeZ17cF8NG9c7hPYloIbGtfV7aGZd5+fFviLUwns6k1ki4TKJyCQAHzFTP11z2XTOam0LYuskLQQDGTlIrPelULuvDQaaog3AZS6uuJ6pc1oeH+BSVGGC16WB36FBXHUj7PMa66gCgIKn/L9qrXPp9MqorA8jL10dCaEcGD1ero79s9HRwT5VWubQ7ErcXR8KlU0r4g4XY6nTsvlGtEql9fkA0wMZOi22sD6K5MYSAX8Fn79Xhvn9sxfvzazI6C1O7Ppqz2H6rTRluK1zqdALGTcqD3AumxjJcEhERUZeYMi0fZ15c0W5rYtaYzfCddyHqlyxD85P/RXDiZBhWrYDjDxdg+gUH4Yby9zB6YM+uGKRKr1cn5foTBCYg+ua6deUy/bbYVAb6AOqb8akHFkAKKXjvjWo4m0Lo09+EknI1LKVTuWwIVxoLS5IPl1p13Z+g/bKuJggI0ecrLTdClqNnS6ZKq3qWlnccLturXO7e4YOiAAOGmJN+7eHhYzI2b0g2XCb+AYQmrnIZDpeWFpOCC0sMgBLfGqv9wCN2MJAtTwcI0UALRFuSh4+xYt8ZjsiQoFef3oNQKL2AqV0fzkYprYnIiUR/qNJ29NIGKrldPfvvIYZLIiIi+vXQ6eA//iQ0fvwFGl9fiMCs30C3cwfsN12PosljYbvxOojbt3X1KjuN2SwmbPUE2j4LMrrnMvdtsQAwfVYB9AYBG9eoFZ0hwy0JWySTpbWxFqUQLtuqXIaCMpoaQ3Dk6yPt1KV91JBQU5XaeZGa2ip1fSVJhMv2Kpc7t6mtrQMGJx8uC4sNKCo1oLoykFTlztlGW6xGO57E45LgbeN7X6idZxrTGqv9wMMU07Ku0wmw2nRwOaOhr65aDeKDh1tw3GnluOzagSgpM2DTOk/Sw3H27vHjy4/qIcvqc2otupKkZK1FNdIWa237uteF23+lNENxd8FwSURERL8+goDgobPR9NoC1H/5PbxzzoMQDMD6n8dRNG2yOvzn++8i+zJ7K5NFhCQpCAbb3kvYcqKqsYNBQO1JJ1za8/TYb0Z+5M+Dh1vVtlqhKyqX8Z9zQ10QUNT9lhqt4lhdmd6+y9oUKpeO8LClRJXLXdvU/Zb9UwiXACKt4VuSqF5q4T7RFFQg+n2OrVy2Cpfh9uTYfZeBcLg0thj2Zc/TQQop8IW/D1rlsrhU/VoVFBow7ZACAEBtdXKV40VvVuOzRXWRVmDtugeA5sYshUu3BINRaHcPrdbBkW7FtbtguCQiIqJfNWn0GLjufwR1y9bBfc31UIqK1eE/xx2BgqNnw7TgTSCYXotjd6e1HbZsjVUUBVs3eSCIQL9B8eEk2habTrhUH2NJIVwC6vEwOp0AUQQGDlPPoLTZdHA1p966qO2p0ypmyTCb1fW2rFxq4Sa2ChqtXLYOl36/HDk7tC3Ve9XHJVO5NBhE2B06NDeGIpU3QP3+7drmg04noG9/UzvP0Nrw0Wq4TGagTVs/gNBolcu4PZctWqILitXHNnTQFgu03nep7XctLot+/YvCQV/7WHucTSHsCB81s2enH4qixIXcbBx7IkkKvF65wx+oaOEyk/2i3QHDJREREREApbQUnr9eh7pla9H80OMIjRkHw7Kf4LjkQhTtPwmWh++HUFvb1cvMqki7Z4uKXPXeAFzNEvoPMkeClSaTPZdaiE31+BlHgR6nX9QXp57fN7Ieu0MHSVJarb09kqSgsT4Im13XKri0J1K5bCtclkaDoBYu9+zw4+N3alG1R22PbWoM4v6btuKxu7a3WfWtrvSjtiqA4jJD0tXd/EIDZDk+CHncErweGSXlBuj1qX2th4ywQm8QsHm9p90qWjAoo3pvAHaHLtKm3JLNrt6uTotNvnIZaYttWbkMH0ei7buM7HeNGc5UVKJ+/WMrkG1Zv9oFhD/FPbt8cDVLCAWjn3M2hvr4vBKgdFytZ1ssERERUW9kNsN/5hw0LP4WjW+8Df9hR0C3exfst92M4iljkHflJdAv+7GrV5kVbYUmrUVw6MjW03ONxvSPIvH7ZAgCYDCmPsRp5Fgbxky0R/4c3XeZfOvizm0+yBLQp19q1TyjUYAgtg7h9bXhyllMW6zNrofVpkNDXRDffNaAbz5rgM8n4fnHd8Pvk+H3tV29XP5DMwBgyv6OpNdWEK4aNsbsu9Qm/ToKEoe+9hhNIoaNssLvk7FtU9utsdWVASgy2q2MRgf6hDpsi+1ozyUQnUrrag4hGFD3uxYU6uOOD8ov1EOnEyLBvz3rVkb3Ze7Z4Y9UtYXw5dlRlTkZiY5gSUQX/laxcklERETUGwkCgjNnofnlN1H/7U/w/OEyKEYTzK+/gsKjZqPgiJkwvfoS4EvuTMDuyNxGW+wvP7cTLjM4isTvk2EyixCEzCcEa1UslzP5ALA+HCZGT7Sl9FqCIMBkFuH3xQfZmnALa1FpfIttxcBo4KqrDmDTWg/qYvYAthxEtG6lEx8urMGqpU4IIiLnZSYjP9ze2xSz77KtSb/JGj1BDfE/fN2E5x7bhRXh0Burcqdake3bv+09nfHTYhOHLJtdB4NRSKpyGft89ZH9rvHtw6IooLBYD49LihxpkkhNVQDbN3thd+hQUmZAc2MIu7er/y9rP3zYvcOHB27Ziu++aGjzeTri8SR3/A7bYomIiIh+JaThI+C+7W7UrdwA570PIjRmLAwrlsPxx8tQPHk0bP+8CeKO7V29zJSZtL2EMRW5UEjB9i1eGIxCq/2WQOy02NTeBMuygoBfTqkdtT2pVi4VRcH6VS5AiIanVJjNIgJ+JbK3UZYV7Nnhg9EktDqT8sSz++APVw+A3iCgvjaI2vBUU3O4UuxsseaP/1eHJYsb4XZJGDHG1uaAnEQSVy7bH7TTkVHjbRBE9czFrZu8+PrT1uGqcpcaxNqrXGqBytPOQB9BUKfA+rxyZP+s3y/DYBQgivE/hNAe6/XIkbDeMtirt7XfGhsMyHjjv5VQFGDaIQWoGKhe52tXqD98GDRMPe9zywYPmhpC+GBB+u3wbbUDtxQJl2yLJSIiIvqVsNvhO+9CNCxegsa334fvdydCaGqC9ZEHUDR1IhznnA7DZx8DcupVva5gjrTFRsPOhtUuBPwKho2yQq9vXWFMd6BPMKDEPT5TqVYu9+z0o7kxhIFDzG0endGelsOPKnd5EQgoqBhobhWCbHYdKgaYUVhsgNcjY+dWdXLr4OFqaGlZuXSHp96OGm/DrKOLU1pXvnYcSX3rQTTphkurTYch4bUC0QnBsSp3hSuXA9oOlzqdALNVjEyL1emEhM+lN0QnpSqKEqlwt2Sxqrd5PVJ0mE+icBkesJSoNVaSFCx8uQrVlQEMGWnBgbMLURH+HLTK5cChlrjHZHIWbzRUt3/dc88lERER0a+VICA4/UA4n3oO9cvWwn31tZBLy2D68H0UnHEyivafBOv990DcW9nVK22XKcFAnx+/aQIA7Ds9P+FjDGnuuWyr1TFdqVYuN61Tp5+mU7UEWn+ttm1WW4f7D2y7LVQLOdu2aOFSbTNuWbkEFJitIs68uCLl6a4FheE9izGVy+YMwyUAHHtqGY48oQRA9AcDGklSULUnAItNRH4H+zptdh2CAQVupwSrPXFLtLZnMhRUEAopkKXW+y2B6JRhj1uKfA3zC1uHSy1wtqxcKoqCBS/txdoVLhQU6XHSnD4QRQEVA6LfwwFDzBg5zhq3L7ikPPnJwi0le/yO9oMctsUSERER/YrJfSvgufYG1C9bi+b/PIPAQYdAt2M7bHfdhqIpY+E490wYP/4AkLJzZl42tazG1VQFsG2zFwXFegwb3Xq/JaDuaTMYhZT3XGY9XLZTuYw9lkOj7elLdZiPxmxRX0/7PLZuVsNqe+dIaiFHltSqW3mF2q4ZW7lUFAXBgBI3lCYV7VUu091zCah7GQ+YWQAIrffk1lQFIEkK+vYzdbh/NrYK2FbA0oJVKKi0e51YreG2WLcEt0v9HBPtZWzrOJLtW7xYs8yF/EI9zr+yf6SC3X+wGYceVYTfnVGGC+b2h14vxgXzQCD9wNfWESwtRfdcpv1S3QLDJREREVE2GI3wn3gKmua/i/rvlsFz5Z+gFBbC9MF7yD/7NBTtNwHWe++EuHtXV680wtxiWuzK8OCW/abnt2r1jGU0iq2qWR3JdrjUzlBsWblct9KFO67dEjcJFIhO/kxngioQU7kMfx7btqjhMtG+VI12LAagnluphRlnTLiUJAWKkt4EXUA9g9NsFdHYEIrsWdSmxWZSuQTCg4xMYqtwqX0tY48AacuEffIiv28zXMa0xWqvZUzUFqtVLj0y3OG9jLZE4bKN40iWf69e3zOPLEJBzDmnoijg0KOKsc8B0es+9jpp+fmngnsuiYiIiCgj0tDhcP/jVtSt2ICmp55DYOYs6Hbvgu3eO1G073g4zj4VxvffA4IdH5eQSy0D057wPrrhY9ufpmo0iQgFlbgWvpVLm/HCv3dj947E03P9/sTHS6Qr0hbbonK5boUToaCCd16tQlNj9iaoRoK4V51Cune3DwVF+nb3b8YOmykpM8Ke3zoQayHdYEh/X19BoQGhoBKpkjU3haDTCR3u80uGySzC75fjqsGRwNRBNQ6I7jMF2m75TFi5THCdaN8Dr1uK7FNNFC6127yeaCj0+SSsW+mCwShg3OS8Vo9pacasQuw7wxGeEpxBuEyyLVbbc9ne2aI9AcMlERERUa4YjQj87kQ0vfE26n5YCc9VV0MuKYXp4w+Rf96ZKJ40GrZ/XA/durVdsjxzeFqsP7yPsLrSD0EESsrar0hpQ1mC4dZYSVLw0Tu12LLBg6cf3IkNq12tHpPtyqXFKkLUta5c7tymhlufV8Z7b9QAUFtPmxtDMJnFtAcKxQbxmqoAFKX9YziAFuGy3AiTSYTBKMRVLiPh0pj+1yVfmxhbH0IopMDjkpCXr8vKkS8mswgo8fsukw1MgFoVjLYDJ+75jFYu5che3kTXiU4nwGwR4fWoA4JEXTRwJnq+YEzr9trlLgQDCsZNzkvqGhw51objTiuHza6DFFLSDn3aESyWZCuX3HNJRERERB2RBw+B+4abUL98HZqefQn+w46AUF8H678fRdGh01Fw2CEwP/VvCHV1nbYmkyUamDxuCa5mCcWlRuj17b9FjE6MVd8Ib97ghtspwZangyxH2w9jZTtcCoIAe54ebrcUeUPe3BhCU0MIxWUGWGwiNm9wIxSS4ffJCAaUtFtigZgzQb1ypGqW52g/MDjy9ZGKVEmZQV2zQw+fR0YwqH49tP+m2xYLINLi2dQQjOznzLQlVtNyXy6Q/D5CzekX9kXfASYcc0ppwo8nu+cSUENawK8OCLLZEwdoURSgNwgIBqNBbVd4EuyYSamdcaqtI5kBVoqiYMtGT2Q/cjAgo646AFFMvnLJcElEREREyTMYEDj2ODS//CbqV26A66bbEBo1GoZVK5B3/TUonjgSjgvPgfGj93PeNhsJDl4J1XvV4SdlfY3tPQRA7FmX6pvoFT84AaithED89FlNtsMlEB7qo0TbNHduix750W+gGbIEVO0JZNwSC8QH8ch+v7z2n08UhcjE2JJy9etqb7FXVAvoxgwql9pwI7dTyvgYkpbMicJlkvsINUUlRlxy9UAMH5042Om1abGhJMJl+DgSRQFs9rY/R4NBiKtchsJBU6vWJytRuG7Lts1evPDEbiz+oB4AsHqZEz6vjDGT7AmP9YmlC38q3HNJRERERGmRy/vAe8Uf0fDl92j4aDG8F/4eis0G07tvI3/O6SiePAa2m27IWdusOabVs7pS3W9Z1ieJcBluiw0E1IrnxjUumK0iJk1V97J5Pa3bH7Ugmq1zLoHW+y53blWrUwMGq+ESAHbv8GUlcMW2ELe336+lw44rxuxjiiMhU9ujqVUYI5XLDPZcxgagyDEkaZzl2d5z+2LOQtUql8l8/smItLF2sOcSiE6M7ej19QYRwaASGXKkhTZdByGvpVTCpTaReOsmDxRFwQ9fqcf6TDu4oMPHcqAPEREREWWHICA0eR+47roPdas3oenp5+E//EgIdbWwPvEIig6djsJZB8LyyINZnTZrMAoQRPWNc3WlVrns+KiOaFusuv9QloBhI62w2nQQhE6uXEKtAoZCcuQ8yQFDzKgYqH4ee3b4Mp4UC8RWLqPHYGgTa9szapwdhxxRFGnf1NasndOYjT2XsT8kiBxDksHnGqvdttgkK5cdSbUtVtPe199gFAAl2maq7ZnsqILYUqLP3+UM4T/37cDqn5xx99UGCFXt9uOXn73Yu9uPPv1NGDCk/b25QO/Zc5mdq46IiIiIssNkQuC4ExA47gSIVXthevN1mF97Cfq1q2Ffuxr2f/4DgekHwn/yafAfdzyUwqK0X0oQBJjD0zBrUmmLjdlzGQqpQcPu0EMUBZjCA1daykm4DFcut2z0YOHLVXC7JDgK9CgqMUReZ/cOPwrDR1Nk0hYbu+cyGG5lTSZcthSpXDpbVC4z2HMZF4DC2cTewX7QtJ47LNW22I7EDvTxtzPQB4i2xXb0+obIUB8Fen00XGajcrl5vQeVO/1Y/EEdxu9jj/zgQAvdsgx89LY6TGrf6Y6kBiuJogBR7PnhkpVLIiIiom4qtm22/vNv4Zn7Z0j9+sO45Bvk/fUqFI8fAcc5p8O08C3A40nrNUwW9czKvbv90OmjewTbY4jZc6m1iGp7CS0WHYIBpdWb5I5CQzq0APX9l41wuyQMH23FWX+oiAz7cRToUVsVQF21GpzzCtIPQ5ZwO6bHLUX2XNrb2fPX9prDZ12GK4zRo0jS/7qYLOGWXZ8Mr1eKW2+mElcuZegNQtZanFOpXFqTrlyqj9e+vlK6lUtT68+/KtxCXlcTxJ6d/sjtsT9UqdqjDvJJ5tgTjU4vQAp1fL/ujOGSiIiIqAeQxo2H+8ZbUP/TGjS+8wG8510ExW6H6cP34fjDBSgeNxx5V/wBhs8+BkLJv0ON7CX0ySjra4wcIt8eozG659Kl7T8Mv9E3hytLLauXHe2lS4dWuVQUQBCAk87pgz4V0bbefgNNUBRgw2o3AMCR33FwbkvscR/RgT5pVC7DZ106m7S22CxULmMCkC/cmmlJcERHWs/dIlzKsgKPR8pa1RKIrVym2Bbbzp5L7eupVYaz2RZbtScQ+f3KpdHJyF53/DU/bLQ1pa+TTiewcklEREREnUgUETxgBlz3PqDuz3zxNfhOOgWCLMH8xqsoOONkFI8fDvtf5sLw+acdTpyNfRM/alxyxzTE7rl0twiXWqjxeeL3XeZyzyUA9BtkbvVGfsgIa2SdAODIoHJpNImw5enQWB+EsznU5hmLHdH2QkYql8Es7LnUvuZeObLf1WzJTeXS61Fbb5M9hiQZ2tE3oaASqXC3VRWNG+jTXuXSkLhymXZbrD82XPohioAgAmuWuSJ7cL0trvnxU5KvWgJquEz3PM3uguGSiIiIqKcyGhE44mg4//0MatduQfPjT6rnZzqdsLz4HApOP1ENmn++EobPPkkYNGPD3tjJ9uReVguXASXyxlqrIprDb/619kxNTtpiY44CGT7a2urj+0x3oLgsWq3MtNpWWGyALKtHfuQ5DEntpWtJC5fNkbbYLE6L9UfbYs3WLFcuw9+/bA/zAaJVxqQG+sR8XjZb+0eRANGvb7Yqly5nCG6nhNI+RoydZIfHLeGpB3ehsT4Y+dr0H2yGLU+HURNSO1NTp1crl9qE256IA32IiIiIegO7Hf5TTof/lNMhNDbA+MEimN5ZAOMXn8Py0vOwvPQ85MJC+I/+Lfy/OxHBg2cCBkNksAwAlPXpeFIsEHMUib91W2xHlcvsHkUSDTiJzlDU60X89tQyPPfYbuh0QlphMFZhsQG7tqnHnaR71IfZrIPRJEYm2GZjWmxsANI+w3Sqqgmfu8Wew2wfQwLE7LkMKQhkc1osopXhbB1FUrVH3WNZXmHCcaeVQZIUbFjlxjefNcDrkSGIwHmX94MkKymfqanTqxNu5Y5PPem2GC6JiIiIehmloBD+M86G/4yzo0HzfwthXPwZLC+/AMvLL0SC5mDPAag27YOBY/KTfv6EbbF2bc9lG5VLnwydXki5ctTROvIL9VAURI4eaWnICCtOu6BvVqanFhZHq6CxVdNUOfJ1qK0Owu+Ts7LnUqcToDcI8IdbYvUGIaMBQbFMMVNygexPigVi9lwG5dQG+rS75zLcFhvZcylDEKJHfiQrGi7Vz1vbb1leYYLBKGLW0cXYsMqN+togvB4JFqsOBqOIdHb39objSBguiYiIiHqxuKDZ1NgqaJ6NF3Cq0YqA8wjI5b9F4LAjoOQXtPucxsi0WAVulwSTWYyEmbYqlwG/nNWWWM0Fc/sDAtodRDR2UnLtvh0pLI6+dc7L4FgTR4EetdVBNDeFYvZcZha6TebwETBZ3g/ZsnIXbYvN3vcytnLp96shsK02Ya0t1mBsf1pt7FEk2nPr02g9brtyqR5vow16qqsOIBRUkF+Y/tdFF/62ST143yXDJREREdGvhJJfAP/pZ8F/+lkQmpvUoLnoXRg//wTGRQuBRQuh6PUIHngw/Ef/FoGjj4Xct6LV82hv6j1uCX6fjKLSaJ0mWrmMhstQSEEoqCAvP/vhsqAo/QmwmbxWniP9143su2wMxey5zOxrYzaLkSpyto4hARLsudQql9lsizXE77k0mcU2W5hNZnWwUkfhPtFRJKm2xGqvB6jhUpYVbN3kBQSgTz+1Um4262Ayi2isV9ucM6noautjuCQiIiKiHkVx5MN/2pnwn3Ym4PHA+OViGN9/F6YPF8H4xecwfvE5cN3VCO6zbzho/hbSiJGAIMAcfsNdvVet4sTufdQqS76Yo0gCORjm0xUKS2LDZSaVS/V51HCZvcqlJlv7LQH1HFQgUeUy+9Nig0EFAb+C/MK2n1sQBFxy9cAOg2KkchlzFIk1jf2+seFy5zYfmhtDGDTMEtcWXVCkj7TLZhLs2RZLRERERD2f1YrAUccgcNQxcIVCMCz9HsZF78L0/nswLPsJhmU/AbffgtCQoQgcfiT0vzkCFn0FGuvUh8fufdOOwIg9liEXZ1x2BUe+HqIOkCXAnkm4zI9OjM3GUSRANAQC2Q2XWgu09j1053DPpVYV7eiHEFrlt/3njB5vIssKZCn1/ZZA/ECjNcucAIDx+8S3WecXGmLCZfpfez0rl0RERETUq+j1CE4/EMHpB8J96x3QrVsL0/vvwvj+ezCsXgn9vCdgnfcE7jBasa5sf6ytOAj6cUcBUNtnI5XL8EAfWVbQWK8egdLTK5eiKKCg0ID62mBGbbF54fM2nXFtsdmsXGYv+ImiurdRC5f1Ner3sr1JranSwqU2uTgb10lkWmxAjlQC0xkmpTcIEEX1hyXrVrggiMDYSfHnV2r7LgFWLhkuiYiIiCgxQYA0bjw848bD89frIO7ZDeOnH8P48YfQff45Ju9ajMm7FgM/3IbgKxMROPwIFEw9DIJcFKlcLny5Cqt+VCs+PT1cAmprbH1tMFw9Sy8EOPLDbbFNoawcRQIg0qoMZFY9S8RkFuFqDmHvbj92bfehqMSAkjJj1p5fC31aVTQbx9VEw6WS9jEkgNqGazKLkbUNH21tNaU2P6aSmpU9l1IHd+zGGC6JiIiIKClyRT/4zjkfvnPOx7a1Dfju1v9h/O6vsX/zEtjWrIJhzSrY8C/caSrA1mEHQd/nBOz4YQgEfQEMBhFDRli6+lPI2OxjijFomAUDh1hRX+9O6zliB/rIcjhcZly5bN2anC0mswhnE/D1p/UAgP0Pzm93Om+qUm2LTYY2ICkYVBAKh8t0psVq69F+WDLlAEerj+cXRqvYmQR7rXIZCvXcgy4ZLomIiIgoZRUj8vFz/+nY0Hc6xPP7YELeXhg//hCGjz+E5ZtvMHHdu8AV7+J2ANUVY2E/+UgEgrMR9B8AmBKfSdkT9BtoxoDBljanmSbDahOh0wtobgxF9kpmWq3L1UCf2Odes8wFo0nA5P1bB6xMaAN9ZDn+9TIR2xYbCZdpnrHqcUfPIh09ofWxNnFtsVmZFpv2U3Q5hksiIiIiSpnRKKKivxm7tvtgd+ghDR0B77AR8F56Je7/y0qM2P0dDpaXofDHL1C2Zx3wyDpYH3kAisWC4PQDETh0NgKH/gbSqNFABkGtJxIEAY4CPRpqg5AVBaKY3rCZWKYctsWKMU837ZCCrFdGW1YUszH4KXIUSTCztlggOu14/D55Cb9P3HMZxXBJRERERGmZdUwR1q10od8gc9ztYoEDP8mzsbPvUaiuuBp/OUdG2aqvYFz8GQxffwnjZ5/A+NknAACpT18EZ85Sw+bBh0IpK+uKT6XTFRSp4dLnkbNSqTNbcjPQBwDGTLTD2RTC7GOKMWHfvI4fkKKWFcXstMVGjyLJtHJ54G8KseL7Zhx6VFHCj+fl6yGIgCKrVel06cLJjNNiiYiIiOhXZ9goG4aNsrW63WzVAfUhVFcGUFBiQN6+g+HbbzR8F/4eCAahX/YTjIs/hXHxZ9Av/wnm116G+bWXAQChkaMQPPBgBA46BMEZB0MpLu7sT6tTFBYbsBVeAJmfcQnEV/uy3RY7Y1YhZswqzOpzxtLp1ImsWW2L1fZcZjjQBwAOP64Evzm2uM19pqIowJGvR1NDiJXLrl4AEREREfUu9phjKsZOtMfvTzQYEJp2AELTDoDn2hsgNDbA8NWXalXzmy+h/3kj9D9vhOXZpwAAoTHjEDjoYAQPPATBGQdCKchdyOlMhcXRITBaEMpE7DmXmQScrqI3CAj41VCVsz2XGbQedzTAaNR4G7Zu8iIvP/14pYXfECuXRERERESqw48rwZARHvQfbMaAweZ276sUFCJw3PEIHHc8AEDcsxuGb76C4ZuvYPz6K+jXr4V+/VrgyX9DEQSExk9E8MCDETzoYASnTYeSX9AJn1H2xYXLbFQuYwf6ZHnPZWfQ60UE/OFpsdk8iiRmz2W602KTcczJZVAUJaNBT5HKJcMlEREREZGqvMKE8or0JsLKFf3gP/UM+E89AwAg7tyhBs1w4DSsXgnD6pXAvx+FIgiQxoxDcNoBCE6bjuC06ZD79c/mp5Iz8ZXLzEOPOYfTYjtDbPDLdltsKJhZW2yyMgmWQHRPKNtiiYiIiIhyQB4wEP4zzob/jLMBRYG4fZsaNL/+EoYfvoN+3Rro162JtNFKAwYiuH80bEqjRsePO+0m4iuXWWiLDQcyQcxO5a+zxQ7bMWYhXGphNRQ30Kd7f12455KIiIiIqLMIAuTBQ+AbPAS+s88FAIi7d8Hww3cwfPctDN9/B936tTDv3AHzW68DAOT8AgT3n4bgtOkI7bc/gpOmALbWQ4g6m8UqwmQW4ffJ2WmLDVcrzRYx4wpaV8h25VIUBegNQlYG+nSW6DmXDJdERERERJ1O7tcf/hNPgf/EUwAAQlMjDD/+AMN3S6D/fgkMy3+C6eMPYfr4QwCAotNBGj0WwX2nIrjvfgjtOxXS8BGdXt0UBAGFJQbs3eXPSuXSaBRhteviKqI9SVy4zFLlVW8QsnIUSWfRKpcc6ENERERE1A0o+QUI/OYIBH5zhHqD3w/9yhUwfL8Ehp+WQv/TUujXroZ+7WpYnn8GACA78hGasg+C+05FaN/9ENxnaqccgVJYHA6XWdhzKYoCLvvbwJwOrcml2OCXjcoloO67dHlDkTbTbl+5ZFssEREREVE3ZjIhtP80hPafpp4qqSgQ9+yGftmPMPy4FIZlP0K/cjmMX3wO4xefRx4mDR6C4D77ITRpCkKTJiM0YSKUPEdWl6ZVGbNRuQSQ0TEYXU0fcxxL1sKlUYCiAH6feoBmt69csi2WiIiIiKgHEQTI/foj0K8/AsedoN4WDKpHnvz0o1rdXPYj9Js3QbdtKzD/jchDQ8OGIzRxEqRJU4BDZkAYPBKwpx84C4vVt+LZ2HPZ02nBT28QIhW8TGkVYZ+3p4RL9b+S1LXryATDJRERERH9uhkMCE2cjNDEyfBdcDEAQGhsgH75MuhXr4Rh5QroV66Afstm6LdsBha8BQAoQrjCOWmK+nitwllYlNTLjhxrw7oRLoyZaM/VZ9ZjaO282Zx0q1WEvR41rfWYtlhWLomIiIiIeg+loBDBWb9BcNZv1HZahAPnqpUwrFoB24Y1kJb+BN3WLWqF8+35kcdKfSsQGjsO0tjxCI0dh9DY8erQIEP8sJ38QgPOu6JnnMuZa1pVMVstsUC0IqyFy+5fueSeSyIiIiKiXwWloBDBQw6FdOgs2IrtaKxzQWlogH71KuhXrYR+1XLo166BbvMmmCr3AJ9+HH2s0YjQyNGQwmFTC51KWVkXfkbdh9bCmtVwGd7H6fOobbGsXOZerw6Xv/zyC66//nq4XC4YjUZcf/312G+//bp6WURERETUSyj5BQgedAiCBx0SvdHng37TRujWroF+7Rro162Fft1qGNasgmHNqrjHyyWlCI0eA2nESDV8jhqN0IhRaujsgedVpksb6JPdcNmz9lzqWbns3kwmE+644w4MHToUW7ZsweWXX44PP/ywq5dFRERERL2Z2YzQhEkITZgEv3abokCoroZ+nRY21eCp27QRxq+/BL7+Mu4p5IICSCNHIzRyFKSRo9TgOXIU5H79e2Xo1IKVMat7LsNtsd4e0hbLymX31q9fv8jvhw4dCqfTCUVRIPTC/yGJiIiIqBsTBCjl5QiWlyM46zfR24NB6LZthW7jBuh/3gDdzxuh+3kj9Jt/huGH72D44bu4p5FtdkgjRkAaOgzSkGGQhg1Xfz90GJSCwk7+pLJHn4u2WG2gj7uHtMWG1xdiuEzP0qVL8fTTT2PNmjWoqanBv//9b8yaNSvuPi+99BKefvpp1NTUYMyYMfj73/+OiRMnpvxan376KcaMGcNgSURERETdh8EAacRISCNGIoDfRW+XJIg7tqvttRs3qsEz/HvDiuUwrFje6qnk4mI1cIbDphY8Q0OGAfbuPZE2FwN9rDYdAMDj7mGVS7bFpsfj8WDUqFE46aSTMHfu3FYfX7RoEe68807ccsstmDRpEp577jlcfPHF+OCDD1BUpI54Pv744xM+9/z586HTqRfU7t27ce+992LevHm5+2SIiIiIiLJFp4M8ZCgCQ4YCRxwdvV1RIO6thO6XLeqvLZvV/4an1hp+/AGGH39o9XRySSmkQYMgDRwEeeBgSAMHQRowUP1z/wGA0diJn1xruahc2vJ0cX/u9pVLtsVmZubMmZg5c2abH3/22Wdx+umn4+STTwYA3HLLLVi8eDEWLFiAiy66CADw9ttvt/saLpcLl19+OW688UYMGjQoo/WKYve6ILX1dLd1Ue/A64tyidcX5RqvMcqlrr2+BKBfP0j9+kE6+JD4D0kSxN27oPtlC8RftkC3ZQt0v2yGbstmiDt3wPBTDQw//djqGRVRhNy3AvLAQZAGDoQ8cDDkQYMgDRgEuV8/yH0rAJMpp5+VxaoGQZtdl7Wva54jPuoYjWK3/jtB2yMqqV283Xqtbem2ey4DgQDWrl2Lyy67LHKbKIqYMWMGVqxYkdRzSJKEq666CqeddhoOOuigjNaj14soLu6e7QSFhbauXgL1Yry+KJd4fVGu8RqjXOqW11dZPjBlXOvbZRnYswfYujX+17ZtELZuhW7XLuh274JhyTdtPG8Z0L+/+mvAgNa/79cPMJvTXvbBsy0wGAyYOqMINnt2IkpFPwCojPy5uMSG4uL015hrIgIAAAFqqOyW11cHum24bGhogCRJKCkpibu9uLgY27dvT+o5vvzyS3z33Xeora3F66+/DgB44YUX4HA4Ul5PKCSjudnb8R07kSgKKCy0oaHBDVnuueVz6p54fVEu8fqiXOM1RrnUY68vSwEwdor6q6VAQK167tgOMfxLt2MHxD27IVbugbhnN4TqamDZsjafXi4pgdy3H+TycvVXWTmUMvW/cllZ+L/l6v7PBHNQJuxrhc/vg8+f4MnTICmBuD+7XF7o60LZefIccDnVtfl96h7R7nZ9ORwWGAy6du/TbcNlW1KZ9jpr1iysXbs2a6/dnb65sWRZ6bZro56P1xflEq8vyjVeY5RLver60hsgDxqC0KAhiT+uKBBqa6Gr3A1x926Ie3ZDV7kH4u5dECv3QBcOofralcDq9l9KsVohl0bDplxaqv65qAhKUTHkwiIoxcWQw7+H1ZrWp2Sxxu/fFHXd9/08EM3boZDaF9sTr69uGy4LCwuh0+lQW1sbd3t9fX2raiYREREREeWQIEApLUWotBSYODnxfRQFQl0dxOqqmF/V0d/XRH+v274Nuu3bknppxWKBXFgEuahYDZ9FhdEQmp8PxZEPOc8R/r0DisMB2VEAc14edDohMn1VG5jTXWnTbCWpixeSgW4bLo1GI8aNG4dvv/0Ws2fPBgDIsowlS5bgvPPO6+LVERERERFRHEGAUlICqaQE0tgE+z5jBQIQa2vUsFlVBbGuVg2mDfUQ6usg1tdBrI/5fbg6mqr7dCZ4DXZ4jHYUrSsB8h1Q7HlQrFYoVlv4vzG/t6n/RdzHbVAsFihGE2A0qP81mQB9dqOUNs2W02LT5Ha7sWPHjsifd+3ahfXr16OkpASlpaW44IILcM0112DcuHGYOHEinnvuOfh8Ppx44olduGoiIiIiIsqI0Qi5oh9kdepOxyQJQlOjGj7r6iHW10FoqIfY3AShuRlC+L9izO+F5iYEqhph9TXB4asDViQ3tyVZiigCJhMUgxEwGqGYTFCMxrjboNer99PpAEEEdCIUnQ6Iu00Xvk3Aecs9EM0G4McbgSGjs7reztCl4XLNmjU499xzI3++7bbbAABXXnkl5s6di2OOOQb19fV4+OGHUVNTgzFjxuCpp56KnHFJRERERES/AjodlKJiSEXFwLDkH/bSvN3YtNYNk+LH9TeUqWHU7YLg8UDwuAGPR/292x25TdBu80Rvg9cLIeCH4A8AwQAEvx8IBCAE/IA/AMHZDLE280lE+2u/eWU4cP0tGT9fZ+vScDlt2jRs3Lix3fvMmTMHc+bM6aQVERERERFRb2Gz69V2XbMFSnk5pPLy3L2YogDBYDRwBvzqETCSBMgyBFlSD7FsdZsUvk3Glx9UQ9TpcNydJwLOQMev2c102z2XREREREREmbDlqUdnaPsZc0oQ1PZYoxGwA+nsnJyxv3rUDYxGAD0vXIod34WIiIiIiKjnsYfDpb4zwiUxXBIRERERUe9ks3di5ZIYLomIiIiIqHey5am7APXd/IzL3oLhkoiIiIiIeiV7Z+65JIZLIiIiIiLqnRwFeog6wJ7HOaadgV9lIiIiIiLqlSxWHS7+0wDkORh7OgO/ykRERERE1GtVDDB39RJ+NdgWS0RERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZYzhkoiIiIiIiDLGcElEREREREQZY7gkIiIiIiKijDFcEhERERERUcYYLomIiIiIiChjDJdERERERESUMYZLIiIiIiIiyhjDJREREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDFBURSlqxfRE8iyAkmSu3oZrRgMOgSDUlcvg3opXl+US7y+KNd4jVEu8fqiXOqO15dOJ0IUhXbvw3BJREREREREGWNbLBEREREREWWM4ZKIiIiIiIgyxnBJREREREREGWO4JCIiIiIioowxXBIREREREVHGGC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBljuCQiIiIiIqKMMVwSERERERFRxhguu7mXXnoJs2fPxoQJE3Daaadh1apV7d7//fffx1FHHYUJEybguOOOw5dfftlJK6WeKJXra9OmTZg7dy5mz56NUaNG4cUXX+zElVJPlMr19frrr+Oss87C1KlTsf/+++PCCy/E6tWrO3G11BOlco198sknOPnkk7Hffvth8uTJOP7447Fw4cLOWyz1OKm+B9PMmzcPo0aNwt13353jFVJPlsr1NX/+fIwaNSru14QJEzpxtcljuOzGFi1ahDvvvBNXXHEFFixYgFGjRuHiiy9GfX19wvsvX74cV199NU455RQsXLgQhx12GC6//HJs2bKlk1dOPUGq15fX60X//v1x9dVXo7S0tJNXSz1NqtfX999/j2OPPRbPP/88XnnlFZSXl+PCCy9EdXV1J6+ceopUr7H8/HxccskleO211/DOO+/glFNOwfXXX49vv/22k1dOPUGq15dm7dq1ePXVVzFq1KhOWin1ROlcXwUFBfj6668jvz7//PNOXHEKFOq2TjnlFOXWW2+N/FmSJOWggw5SnnrqqYT3v+qqq5RLLrkk7rZTTz1VueWWW3K6TuqZUr2+Ys2aNUt54YUXcrk86uEyub4URVFCoZAyZcoU5Z133snVEqmHy/QaUxRFOeGEE5RHHnkkF8ujHi6d68vj8ShHH3208uWXXypz5sxR7rrrrs5YKvVAqV5fb731lrL//vt31vIywsplNxUIBLB27VoceOCBkdtEUcSMGTOwYsWKhI9ZsWJF3P0B4KCDDmrz/vTrlc71RZSsbFxfXq8XoVAI+fn5OVol9WSZXmOKomDJkiXYunUr9t133xyulHqidK+vu+66C9OmTcPBBx/cCauknird68vlcuHQQw/FzJkzcfnll2Pz5s2dsNrU6bt6AZRYQ0MDJElCSUlJ3O3FxcXYvn17wsfU1taiuLi41f1rampytk7qmdK5voiSlY3r67777kPfvn1xwAEH5GKJ1MOle405nU4ccsghCAQCEEURt9xyC6ZPn57r5VIPk8719fnnn+O7777jPl7qUDrX19ChQ3HnnXdi5MiRaG5uxjPPPIMzzzwT7777LsrLyztj2UljuOxhFEWBIAhtfjzRx9q7P1Gsjq4vokwke309+eSTWLRoEV544QUYjcZOWBn1Fh1dYzabDQsXLoTH48GSJUtwxx13YODAgdhvv/06cZXUU7V1fdXX1+PGG2/EY489BovF0gUro96gvb+/Jk+ejMmTJ0f+PGXKFBxzzDF44403cOWVV3bSCpPDcNlNFRYWQqfToba2Nu72+vr6Vj/p0JSUlLS6f11dXZv3p1+vdK4vomRlcn09/fTT+M9//oNnn30WI0eOzOUyqQdL9xoTRRGDBg0CAIwZMwZbtmzBvHnzGC4pTqrX16ZNm1BTU4MzzzwzcpskSVi6dClefPFFTr6mONl4D2YwGDBmzJhu2W3GPZfdlNFoxLhx4+Km2MmyjCVLlsT95CLW5MmT8c0338Td9u2337Z5f/r1Suf6IkpWutfXU089hccffxxPPfVUtx2xTt1Dtv4OUxQFgUAgByuknizV62vChAn43//+h4ULF0Z+jR8/HieeeCLmz5/fiSunniAbf39JkoRNmzZ1y+n9rFx2YxdccAGuueYajBs3DhMnTsRzzz0Hn8+HE088EQBwzTXXoLy8HFdffTUA4Nxzz8WcOXPwzDPPYObMmVi0aBHWrFmD22+/vSs/DeqmUr2+AoFA5FibQCCAqqoqrF+/Hvn5+aioqOiyz4O6p1SvryeffBIPPfQQyXhSuQAACHJJREFU7rvvPvTr1y+yV9xqtcJms3XZ50HdV6rX2Lx58zB27FgMGjQIgUAAX331Fd5++23ceuutXflpUDeVyvVltVpbdVpYrVYUFBRgxIgRXbF86uZS/fvr0UcfxeTJkzFo0CA0Nzfj6aefxp49e3DKKad05aeREMNlN3bMMcegvr4eDz/8MGpqajBmzBg89dRTKCoqAgBUVlZCFKPF53322Qf33XcfHnzwQdx///0YPHgwHnvsMQwbNqyrPgXqxlK9vqqrq3HCCSdE/jxv3jzMmzcPJ554Iu66667OXj51c6leX6+88gqCwSD++Mc/xj3PlVdeiblz53bq2qlnSPUa8/l8uPXWW7F3716YzWYMHToU9957L4455piu+hSoG0v1+iJKRarXV3NzM2688UbU1NQgPz8f48ePx2uvvYahQ4d21afQJkFRFKWrF0FEREREREQ9G3/kQkRERERERBljuCQiIiIiIqKMMVwSERERERFRxhguiYiIiIiIKGMMl0RERERERJQxhksiIiIiIiLKGMMlERERERERZUzf1QsgIiLqbh555BE8+uijrW6fPn06/vvf/3b+goiIiHoAhksiIqIE8vLy8NRTT7W6jYiIiBJjuCQiIkpAp9Nh8uTJHd7P5/PBbDbnfkFERETdHPdcEhERJWnXrl0YNWoU3nnnHVxzzTXYb7/9cOmllwIAGhsb8Y9//AMzZszAhAkTcMYZZ2DlypVxj29ubsbVV1+NyZMn46CDDsITTzyBu+++G7Nnz47c55FHHsG0adNavfaoUaPw4osvxt32xhtv4Nhjj8X48eMxa9YsPPnkk3Efv+6663DSSSfhm2++wXHHHYfJkyfjzDPPxKZNm+LuJ0kS/vOf/+DII4/E+PHjccghh+C6664DALz00kuYMmUK3G533GO+++47jBo1Chs2bEjxq0hERL0VK5dERERtCIVCcX9WFAUAcM899+Dwww/HQw89BFEUEQgEcMEFF6C5uRnXXHMNioqK8Morr+D888/HRx99hNLSUgDA//3f/+GHH37A9ddfj5KSEjzzzDPYsWMH9PrU/zl+6qmn8MADD+Diiy/G/vvvj7Vr1+Khhx6CxWLBnDlzIverrKzEPffcg8suuwwmkwn33HMP/vSnP+Hdd9+FIAgAgH/84x94++23cdFFF2H//fdHU1MTPvjgAwDAcccdh7vvvhsffvghTjrppMjzLliwAOPGjcPo0aNTXjsREfVODJdEREQJNDY2Yty4cXG33XbbbQCASZMm4aabborc/sYbb2DTpk149913MXjwYADAjBkzcNRRR+GZZ57Btddei02bNuGTTz7BAw88gGOOOQYAMG3aNMyaNQt2uz2ltblcLjz22GO47LLLcOWVVwIADjzwQHi9XjzxxBM488wzodPpAABNTU145ZVXIutSFAVXXHEFfvnlFwwbNgxbtmzBm2++iRtuuAHnnntu5DW0NTocDhxxxBGYP39+JFy63W589NFHuPrqq1NaNxER9W4Ml0RERAnk5eXh2WefjbvNaDQCAA499NC425csWYJx48ahf//+cdXOqVOnYs2aNQCA1atXA0BcC6zNZsOMGTOwatWqlNa2fPlyeDweHHXUUXGvd8ABB+Dxxx/H3r170a9fPwBAv379IsESAIYNGwYAqKqqwrBhw/D9998DQFxVsqVTTjkF559/Pnbu3IkBAwbg/fffRygUwm9/+9uU1k1ERL0bwyUREVECOp0OEyZMiLtt165dAIDi4uK42xsaGrBixYpWlU4AGDhwIACgtrYWNput1fCfls+VjIaGBgDAsccem/DjlZWVkXDZcsKtwWAAAPj9fgBqhdZqtbZbPZ02bRoGDBiA+fPn46qrrsL8+fPxm9/8BgUFBSmvnYiIei+GSyIiohRpexU1+fn5GD9+PG6++eZW99WqnSUlJXC73a2my9bV1cXd32QyIRgMxt3W1NTU6vUA4D//+U/CcDpkyJCkP5eCggJ4PB64XK42A6YgCDj55JPx+uuv4/jjj8dPP/3UangQERERwyUREVGGpk+fjm+++QYVFRVtViK1Kuhnn30W2c/odrvx7bffxoW68vJyuN1uVFVVoby8HADwzTffxD3XlClTYDabUV1d3apFN1UHHHAAAGDhwoVxg4BaOvHEE/Hwww/j+uuvR3l5OQ488MCMXpeIiHofhksiIqIMnXDCCXj11Vdxzjnn4MILL8SAAQPQ2NiIVatWobS0FOeffz5GjBiB2bNn4+abb4bL5UJpaSmefvrpVm2yBx98MMxmM66//npccMEF2LVrF1599dW4+zgcDlx55ZW4/fbbsXv3bkydOhWyLGPbtm34/vvv8dhjjyW99qFDh+L000/HXXfdhbq6OkydOhXNzc348MMP8cADD0TuV15ejoMPPhiLFy/GJZdcEhkYREREpGG4JCIiypDJZMLzzz+Phx56CI888gjq6upQVFSEiRMnxg3wueuuu3DzzTfjjjvugNVqxVlnnYUJEybgww8/jNynqKgIDz/8MO655x5cccUVGDduHO67775ItVPz+9//HmVlZXjuuefw7LPPwmQyYfDgwa3ul4ybbroJFRUVeOONN/Dkk0+iqKgoYWXysMMOw+LFi9sd/kNERL9egqId2kVERESdTjtD8rPPPuvqpXToqquuQk1NDV5++eWuXgoREXVDrFwSERFRuzZu3Ig1a9bg448/xv3339/VyyEiom6K4ZKIiIjaddlll6GhoQFnnXUWjjrqqK5eDhERdVNsiyUiIiIiIqKMiV29ACIiIiIiIur5GC6JiIiIiIgoYwyXRERERERElDGGSyIiIiIiIsoYwyURERERERFljOGSiIiIiIiIMsZwSURERERERBn7f5iPJ8tskQoMAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.yscale(\"log\")\n", + "plt.legend()\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")\n", + "plt.show();" + ] + }, + { + "cell_type": "markdown", + "id": "0c42f301", + "metadata": {}, + "source": [ + "### While it seems decent, lets compare with `Powerspectrum`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d754bfc9", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "ps = Powerspectrum(lc_ar4, norm=\"abs\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e44b8444", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 1.0, 'AR(4) Spectrum')" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc5dX38e/MbFOv7r3KnWJjwBgMBtNMCb0TwITQIZDQk4deQkgIJIS8QCgJAULAQDC9N2MbcO9VtmVLVm+rLVPeP2ZndlfNtixbkn0+z/VckXZnZ2eltdBP59znVizLshBCCCGEEEIIIXaB2tEXIIQQQgghhBCi65NwKYQQQgghhBBil0m4FEIIIYQQQgixyyRcCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mYRLIYQQQgghhBC7TMKlEEIIIYQQQohdJuFSCCHEXsGyLKZOnUpBQQGFhYVN7p8zZw4FBQXu/0+YMIGzzjqLTz75pNnzLVmyhIMOOoi6urpm77/66qspKCjgX//6V9LtV1xxBX/961936JqLior4zW9+w5FHHsnYsWOZMmUKV111FfPmzduhx7e3b775hhdeeKFDnlsIIUTXJ+FSCCHEXmH+/PkUFRUBMGvWrBaP+8Mf/sBrr73GY489RnZ2Ntdee22zYe7xxx/n3HPPJT09vcl933zzDQsXLmz2/FdccQUvvPACNTU1rV5vdXU155xzDmvWrOGmm27imWee4frrr0dVVebPn9/qY3eXb7/9lpdeeqlDnlsIIUTX5+noCxBCCCHaw6xZs0hNTWXYsGHMmjWLq6++utnjCgoKGD58OAATJ07kyCOP5J133uGggw5yj9mwYQNff/01d911V5PHR6NRHnjgAW688cZm758wYQLZ2dm8/fbbXHTRRS1e74cffkhZWRlvv/02eXl57u1nnHEGlmXt8OvuCIZhYBgGPp+voy9FCCFEJyKVSyGEEF2eYRh88MEHTJ06lTPOOIM1a9awYsWK7T4uJSWF/v37s3Xr1qTbZ86cSUFBAQMHDmzymJdeeolAIMAZZ5zR4nmPPfZY3nrrrVafu6amBq/XS1ZWVpP7FEVxP77ttts4/fTT+eSTTzj++OMZO3Ys5513HmvWrEl6jGma/L//9/+YNm0aY8aM4bjjjmPmzJlNzv3xxx9z5plnMm7cOA4++GB+8YtfUFRUxJNPPsk//vEPioqK3Nbh2267rck1TJ8+nXHjxrFo0SKefPJJDj744CbP0bhdeOrUqTzyyCP8v//3/5g8eTLjx4/n4YcfxrIsvvzyS6ZPn84BBxzA1VdfTXV1datfNyGEEJ2XVC6FEEJ0ed9//z1lZWWceOKJjB8/nvvuu49Zs2YxYsSIVh9nmibFxcWMHj26yfkOOOCAJseXlpby1FNP8fTTT6OqLf999oADDuC5556jurq62fAIMHr0aCKRCLfccguXXXYZo0aNavGcW7Zs4aGHHuKGG24gEAjw5JNPMmPGDD766CP8fj8A9913H2+99RZXX301o0eP5ttvv+WOO+4gOzubo446CoC33nqLW2+9lenTp3P11VdjWRbff/89FRUVnHXWWWzYsIE5c+bwl7/8BYDc3Fz3GoqKinj00Ue5+uqryc/Pp2/fvq18ZZuaNWsW48aN48EHH2Tp0qU8/vjjmKbJDz/8wA033EAoFOK+++7jscce4957792pcwshhOgcJFwKIYTo8t59910yMzM5/PDD8fl8TJo0iVmzZnHTTTclVQHBDpS6rlNTU8MzzzxDQ0MDF198sXu/ZVksW7aMU045pcnzPProo0yePDmphbY5I0aMwLIslixZwmGHHdbsMYceeiiXXHIJL774IrNmzSItLY3DDjuM8847j0mTJiUdW1lZyVNPPcWBBx4I2MF02rRpvPnmm5x33nkUFhbyyiuv8NBDD3HaaacBMGnSJEpLS/nLX/7CUUcdhWmaPPbYY0ybNo0//vGP7rmPPvpo9+Pu3bvj8/nYf//9m1xvVVUVL7zwAiNHjmz1tbfE7/fz5z//GU3TOOKII/j000/517/+xYcffki/fv0AWLFiBW+99ZaESyGE6KKkLVYIIUSXFolE+OSTTzjmmGPcNYDTp0+nqKiIBQsWNDn+1FNPZfTo0Rx66KG88MILPPzwwwwePNi9v7q6mkgkQk5OTtLj5s+fz4cffsgtt9yy3WtyHltaWtrqcbfffrt7zokTJ/L1119z2WWX8corryQdl5eX5wZLgD59+jB69GgWLVoEwOzZs1FVlWnTpqHruvv/hx56KCtWrMAwDNavX8+2bds4/fTTt3v9zenRo0ebgyXY61s1TXM/HzBgAH369HGDpXNbRUUFkUikzc8jhBCi40jlUgghRJf21VdfUVNTw5QpU9wJrQcffDA+n49Zs2Y1aW/905/+RL9+/di6dSuPP/44t99+O2PHjqVHjx4AhMNhgCbDah588EHOOeccMjIykibBhkIhamtrycjIcG9zHrsjIWnAgAHMmDGDGTNmUFFRwYwZM/jTn/7Eueee61ZdEwf+OPLy8tzwWllZiWEYjB8/vtnnKC0tpbKyEoBu3bpt95qak5+f36bHOTIzM5M+93q9SV8z5zbLsohGozIsSAghuiAJl0IIIbq0d999F4AbbrihyX3vv/8+t99+e1LFbOjQoQwfPpyxY8cyYsQITjzxRJ566inuueceIF51bLyVyPr161m0aBEvvvhi0u2PPvoof/zjH1m2bJl7W21tLUCL6y1bkpuby+mnn879999PeXm5G+jKy8ubHFteXs7QoUPd5/F4PLzyyitN2oCd89bX1wPbr6buDL/fTzQaTbpNBvIIIcS+S8KlEEKILqu+vp4vvviCk046ibPPPjvpvuXLl/PQQw8xZ86cJmsYHf379+ess87ijTfe4PrrrycvLw+fz0fv3r3ZvHlz0rFPP/00hmEk3XbxxRdz0UUXceyxxybd7jy2uWmzjoqKiqSBOY7CwkJ8Pl9SVa+8vJyffvrJbY3dsmULy5Ytc1tcDznkEAzDoLa2tsU1noMGDaJHjx689dZbTJ06tdljvF6vW7ndET169KC+vp6SkhK38vvtt9/u8OOFEELsXSRcCiGE6LI+/fRTdyDPfvvtl3TfgQceyN/+9jfefffdFsMlwOWXX87rr7/OP//5T2688Ub3sUuXLk06bsKECc0+fuDAgUycODHptiVLlpCRkcGwYcNafN6ZM2fyv//9j5/97GcUFBSg6zqzZ8/m3//+N+edd547BRbsauott9ziTot94okn3ConwODBgzn33HO56aabmDFjBmPHjiUcDrN69Wo2bNjAAw88gKqq/OY3v+HXv/41N998MyeddBKKovD9998zffp0xo4dy+DBgykrK+PNN99k2LBh5OTktDoV9vDDDycQCHDHHXdw6aWXsnnzZl599dUWjxdCCLF3k3AphBCiy5o1axYDBw5sEizBrsKdcMIJzJo1i7vvvrvFc/Tp04eTTz6ZV155hSuuuILU1FSmTZvG7bffTigUIhAI7PR1ff3110ybNq3V7UqmTJnC5s2b+c9//sPWrVvRNI3+/ftz1113NanC9u7dmyuvvJLHHnuMoqIixowZw2OPPZYUQP/v//6PgQMH8vrrr/PEE0+Qnp7O0KFDOfPMM91jTj75ZPx+P08//TTXX389qamp7Lfffm4F9YQTTmDOnDk8+uijVFRUcNppp/Hwww+3+Bpyc3N54okn+P3vf88111zD6NGjeeyxxzjxxBN3+msmhBCi61Msy7I6+iKEEEKIziQSiTBlyhR+97vfccIJJ+zUY2tra5k0aRLPP/98i9XOnXHbbbexatUq3nzzzV0+lxBCCLE7yVYkQgghRCM+n48ZM2bw0ksv7fRjX3nlFfbff/92CZZCCCFEVyJtsUIIIUQzLrzwwma3Gdme9PR07rzzzt14ZUIIIUTnJG2xQgghhBBCCCF2mbTFCiGEEEIIIYTYZRIuhRBCCCGEEELsMgmXQgghhBBCCCF2mQz02UGmaWEYZkdfRhMej4qud77rEnsHeX+J3UneX2J3k/eY2J3k/SV2p874/tI0FVVVWj1GwuUOMgyTqqpgR19GElVVyMtLp6amAdOUuUyifcn7S+xO8v4Su5u8x8TuJO8vsTt11vdXdnYqqqq1eoy0xQohhBBCCCGE2GUSLoUQQgghhBBC7DIJl0IIIYQQQgghdpmsuRRCCCGEEPsMy7IwTQNrF5ayqapCJBJB1/VOtSZO7B064v2lKKCqGorS+sCe7dnrw+Xo0aMZOnQoAGPGjOGBBx7o4CsSQgghhBB7mmVZ1NVVU19fA+z6L+xlZSqm2bmmeYq9R8e8vxTS0jJJT89qc8jc68NldnY2b7/9dkdfhhBCCCGE6EBOsMzMzMXn8wO7WKHxKOi6VC3F7rHn318WkUiYmpoKADIystt0lr0+XAohhBBCiH2bZVlusExNTW+Xc3o8KiCVS7F7dMT7y+PxAlBTU9Hm6mWnHugzb948rrzySiZPnkxBQQGff/55k2Nefvllpk6dytixYzn77LNZtGhR0v3V1dWcdtppnHfeecydO3dPXboQQgghhOgkTNMArFjFUgjREvvfiBX7N7PzOnXlMhgMUlBQwOmnn851113X5P733nuPhx56iHvuuYf99tuPF198kcsvv5wPPviA3NxcAD799FN69OjBmjVruOKKK3jnnXdIT2/bX6xUddfaJ9qbcz2d7brE3kHeX2J3kveX2N3kPSYSmabzPpD3gxCts/+NKIrSpp+fnTpcTpkyhSlTprR4//PPP88555zDGWecAcA999zDF198wcyZM5kxYwYAPXr0AGDo0KEMHz6c9evXM3bs2J2+Fo9HJS+vfdoo2ltOTlpHX4LYi8n7S+xO8v4Su5u8xwRAJBKhrEzF41Fi7Ybtoz3PJURjHfP+UlBVlZycVHw+304/ulOHy9ZEIhGWLl3KVVdd5d6mqiqTJk1iwYIFgN0Sm5KSgs/no6SkhFWrVtGvX782PZ+um9TUNLTHpbcbVVXIyUmjsrJexmCLdifvL7E7yftL7G7yHhOJ7C0dzNiAlPZZx+bxqOi6rLkUu0dHvb903cI0TSorg3g8kaT7MjNT8Hq1Vh/fZcNlZWUlhmGQn5+fdHteXh6FhYUArF27lt/97neoqoqqqtxxxx1kZ2e3+Tk763+cTNPqtNcmuj55f4ndSd5fYneT95iAzvs73J72008/cP31V/LRR1+Rmpra4nFnnnky5513IWeccc4evLrO57nn/s53333Dc8/9s6MvZY9r68/Ova6Wb1mWO9nowAMP5N133+Wdd97hrbfe4phjjungqxNCCCGEEGLHPPDA3UyePIE//en3Te675567mDx5An/5y+NtPv977/2P6dOPbnL7M8+8xPTpp7qfT548gW+//brNz9MVNPcazzvvIv74xyd3+3Nfe+0Vu/R97Ey6bLjMyclB0zTKysqSbq+oqGhSzRRCCCGEEKIr6t69Bx9//CGRSLxFsb6+jq+//oLu3XvslufMyckhEAjslnPvqmg0useeKzU1lays7D32fHuDLhsufT4fo0eP5rvvvnNvM02T2bNns//++3fchQkhhBBCCNFORo0aTU5ODt9885V72yeffMTw4SPo3btP0rGNq2/BYJDJkyfw008/NDnvTz/9wIMP3kN1dTWTJ09g8uQJPPfc3wG7LfaNN15zPwa49dZfMXnyBPfzTZs2cuutv+Lkk49l2rQj+OUvL2XhwgVNruett97gV7+6hqlTD+Pcc09j9uxvko5Zt24NN910HcccM5lTTz2Ohx++j7q6Ovf+a6+9gscf/wOPP/4oJ554NHfc8esWv1bvvDOT8847nalTJ3HhhWcxa9Y77n3RaJTHHnuEU045jqlTJ3HWWafy3/++2uprfO65vzNjxkXuOR544G7uuusWnn/+GU466RhOOGEq//73P4lEIjz66IMce+wUzjrrlKTvga7rPPjgPZx55slMnXoYF1xwJu+8MzPpnAsW/MSrr/7L/T5s3bplh742nVGnXnNZX1/Pxo0b3c83b97M8uXLyc/Pp1u3blx66aXccsstjB49mnHjxvHiiy8SCoU47bTTOvCqhRBCCCFEVzDz5WJWLK5v02MVBaydXJI2Ymwap13Qc6ef68QTT+a9995h6lR7idd77/2Pk0/+GR98MGunz+UYO3Y/rr/+Zl544Vn++U87SKakNF2H+cwzL3HyydP47W/vZcKEiaiqPdAlGAwyadLh/PKX1+DxeHn77Te55ZYbeO21t5NmnDz77NNcffX1/OpXv+Gdd97izjtv4ZVX3qRHj57U1tZy/fVX8bOfncGNN95MMNjAk0/+kQceuJuHHvqDe45Zs97hzDPP4emn/9Hi6/noo/d5/vln+NWvbmHo0GEsX76MRx65n8zMTA4//Ehef/1Vvv32K+677xF69OjBli1F1NRUt/oamzN37hzy87vz1FPPMm/eXP70p9/zww9zOeywyTz33D95443XuO++3/Hmm7NITU3FMAx69OjJ/fc/QmZmFvPn/8hjjz1Mz569mDjxEG644dds2rSRoUOHc+mllwOQnZ2zw1+bzqZTh8slS5Zw8cUXu5/ff//9AFx77bVcd911nHjiiVRUVPDEE09QWlrKyJEjefbZZ909LoUQQgghhOjqjj9+Os8993fKykqpr69n3bo1TJ16zC6FS6/XS3p6OooCeXktLynLyckBID09I+m4goIRFBSMcD+/7rpf8eWXnzFnznccd9yJ7u3HHHMcJ55oVwKvvfZG5s6dzVtvvcEvf3kNb7zxGiNHjuLyy690j7/llju54IIzqaysICfH/p1+wICB/PKX17T6ep577u9cd91NHHHEkQD07t2HVatW8Pbbb3L44UeybVsx/fr1Z9y4/VAUhZ49e233NTYnOzub66+/CVVV6d9/IC+//CJ+v88dfnTJJb/gv/99jdWrV7Hffvvj9/uZMeOX7uN79+7DggU/8dlnHzNx4iGkp6fj8XgIBAJJz/366zv2telsOnW4PPjgg1m5cmWrx1x44YVceOGFe+iKhBBCCCHE3qItVUTHntwqIi8vnwkTDub992dRW1vDlClTSU3t2D1cg8Egzz33d2bP/oaKinIMwyAcDlNSUpx03KhRY5I+Hz16LBs2rAdgzZrVzJs3h2nTDm9y/qKizW6AGjFiZKvX0tDQQFHRZh544P946KF73Nt1XXdD5PHHT+fGG6/h/PPP4JBDDmPy5CMYP/6gnX7dgwcPQVXjKwuzs3MYOHBwwufZaJpGVVWFe9sbb/yHWbPeoaRkK5FIhGg0ygEHjG/1edasWbVDX5vOplOHSyGEEEIIIQRMn34yTz/9F4LBIP/3f/c3e4yiKFgJvbq6ru+26/nrXx/nxx/ncfXVN9CnT1/8fj+//vUNTQbuxDZxaHKdYIfCww8/stmqZLdu3dyPA4GUVq+loSEIwB13/B8FBclB1OOx486IEaN4/fV3+P77b5k3bw633XYzxxxzLLfeetf2X2wz50t8LY1vA3sWDMAnn3zIU0/9meuuu4lRo0aTmprG88//P0pKSlp9nmAwuENfm85GwqUQQgghhBCd3GGHHcGjjz5ESkpqi1Wv7OwcKirK3c/XrFnV6jk9Hi+Gsf3qq8fjwTSNpNsWL17I9OmnuG2oNTU1lJY2DUxLly5h2rTj3c+XLVvCpEl2NW748AK+/vpLevXqjaa1vM5xe3Jz88jP78aWLUUcffSxLR6XkZHBtGnHM23a8Rx88KHce+9v+c1v7kBV1WZfY3tYvHgh++13AD/72RnubZs2bcLn87mfe73eJs9dUFDAl1/u+tdmT+uy02KFEEIIIYTYV3g8Hl57bSYvvvhvt/LX2AEHjOeNN/7DmjWrWbx4Ic8881Sr5+zVqxf19XX89NMPVFVVEQqFmj2uZ8/e/PDDXMrLy6ipqQGgb9/+fPHFZ6xevYpVq1Zw9913NjsI59NPP+L9999l48ZCnnrqz2zcWMipp9pB6/TTz6Kyspx7772LFSuWUVS0mdmzv+GRRx7YmS8NAJdcMoOXXvoHb7zxGhs3FrJmzWrefvtNZs78LwCvvfYyn376ERs3bqCwcANfffUF/fr1d1tcm3uN7aFv3/4sW7aEefO+Z+PGQv761z+7bcGOnj17s3TpEoqLt1JVVYVpmpxxxjnt9rXZkyRcCiHaVU24mtlbvqVBb+joSxFCCCH2Kmlp6a2utbz22hvJzs7hyisv5dFHH+Syy65o9Xxjx+7Hqaeezm9/eysnnXQML7/8YovnnTNnNqefPp3LLrsAsAf4pKamcuWVl3LHHb/hqKOOpn//AU0eO2PGFXzwwXtccsl5fPnl59x33yP07Gmvde3WrTtPPfUckUiEG2+8mosvPoe//vWJpGmzO+pnPzuTm2++jXfeeYuf//xcbrjhSj777GN3u5ZAIIV//vMFZsy4iF/+8hJqa2u5//7ft/oa28Opp57O4YcfyW9/extXXnkZ0WiU6dNPSTrmvPPs+TEXXHAmJ510DCUlxXTv3n5fmz1JsaydHaK8b4pGDaqqgh19GUlUVSEvL53y8jpMU76Non219f21cNt8FpYu4LA+kxmSPWw3XqHoyuTnl9jd5D0mEum6TllZEfn5fZpdH9cWe3KgT1c1efIEHnnkTxx2WNOhNKJ1HfX+au3fSnZ2Kl5v6y26suZSCNGudMseHmBaFiXBEhZu+4lJfQ4n3ZvewVe2fRvXNbD4p1oqSqOYloVlwcAhKRx5fF5HX5oQQgghRKcn4VII0a6M2HQ0y7LYXLuR4vpittUXk549tIOvrHWLf6rljZeKm9y+YXUDI/dLp0cvfwdclRBCCCFE1yHhUgjRrkzLnnZmYbnj0M1O3n1vmhZffVRBg1rJKScNZdioNDRNYfGPtXzxQQVzvqrilHN6dPRlCiGEEF3KN9/80NGXIPYwGegjhGhXRixcmpbphkrT6txrUlYvr2dt2XqqBn6NOmI53Xv6yevm4+AjsvH6FBb9UEuwvv3HkwshhBBC7E0kXAoh2pWRWLkkFi7p3OFy9hdV1HvKGDwijdWV8T3BUlI19p+YiR61WLqgtgOvUAghhBCi85NwKYRoV0ZsE2DLSgiXnbhy2RA0KFzTQE5qJj172xsa14Sr3fv7D0oBoLJc75DrE0IIIYToKiRcCiHalbPm0sTEioXKuroooYbO2Va6YU0DlgW9B3rdTakLawvd9aKZ2fbS9JqqaIddoxBCCCFEVyDhUgjRrpy2WCx7oE9Ntc7Lz2zi5f+3pWMvrAXrVtn71/YZEJ8Gu3DbfF5e/hKbaze54bK2unOGYyGEEEKIzkLCpRCiXTlDfCwswhGDH76tJho12bQ+RH1d52stdcJlz35e9zZ7GJHJ5rrNZGTZmwXXVHW+axdCCCGE6EwkXAoh2pVTuaytjfLBW6XU1xkoqt0eu2FNQ0deWhPVlVHKt0Xp1tNHSprdEntYn8mcOPhkAKpClXg8KqnpGjVVutsqK4QQQnRlDzxwN3fddcsuneONN17jzDNPbqcr2nu9997/mD796I6+jD1G9rkUQrQr0zLYWhRmwfdbqWkIk9vbwyEFWax9z64Sjt4/o6Mv0eVULQcPT3WHDnlUL3mBPDyqh6pwJWCvuyyuCxOsN0hLlx+bQggh9owHHrib999/FwCPx0OPHj054YSTuPDCS/B42v7foxtu+LX8wXQ3OPPMkznvvAs544xz3NuOPnoahx562G5/7gceuJuGhiD33//73f5crZHfkoQQ7aa+TufbL8pZu7Ga/HAPho1Oocf+OfRP9bMWWL+qc1Uu18WuZ3BBClWxcKkqKoqikOXPpryhjLpoHZlZHoo3h6mp0iVcCiGE2KMmTTqcW2+9k2hUZ+HCn3jkkQfQNI2LLrp0p8+l6zqappGenr4brrT9RaNRvF7v9g/sxPz+AH5/oKMvY4+RtlghRLuwLIsX/lLExg31pKSoHP+zfA4+MhtVVfCnqnTv5aOiLEpVZeeYumpZFutWBlFUGDgk1Z1sqyn2Gsscfw5gt8bGJ8bKukshhBB7ls/nJS8vn549e3LccSdy3HEn8M03XwEQDod58sk/ceqpxzNt2uFcddVlLFmy2H2s05L51VdfcP75ZzB16iSqqqqatMWGwyH++MdHOOmkY5g6dRLXXfdL1q5dk3Qd7777FqefPp1jjpnM7353O3V1dUn3m6bJc8/9nZ/97ASOOupQZsy4iPnzf0w65uuvv+Ccc37G1KmHcdNN1/L2228yefIE9/7nnvs7M2ZcxFtvvcGZZ57MiSdOBeC7777hqqsu4/jjj2T69KO5/fZfU1JS7D7up59+YPLkCcyZM5uf//xcpk49jJtvvp6amho+/fRjzj77VI4//kj+8IeHMYzWB/R99dUXXHLJ+UydOolzzvkZL7/8IqYZ31Ltuef+zumnT+eoow7ltNNO5O9//ysA1157BcXFW/nTnx5l8uQJ7utq3Bab+BpPO+1Epk07gief/COGYfDMM39j+vSj+dnPTuCtt95Muq6//OVxzj33NKZOPYyzzz6VF198zr2u5577O++//y5ffPGZ+9w//fQDACUlxdx1160cd9wUpk8/mrvuuoWystJWvwa7Qv4EL4RoF/V1BqXFEVJ7Kxx6bC69e/qoi0QAsCyTIQWpbNsaYea/Srjgit74/Lvvb1shPUTYCJHlz27xmG1bI9TXGfQbFMAfUN21oqpiX1d2wA6XleFKMrP7AhIuhRBib/Nt0ddsqt3YpseqqoJp7lxrab+M/hzW5/A2PZ/D7/cTjdp/qH388UcpLNzAffc9TF5ePh9//AG/+tU1/Pvf/6Vbt+4ABINBXn31X9x55z2kpaWRlpbW5JxPPfUE33zzFb/73f3k5+fzwgvPcfPN1/HqqzMJBAIsXryQ3//+Qa666noOO+xwvvnmK1588VkyMjLdc7z22r95/fVXuOWWuxgyZCgzZ/6X3/zmBl555U26devO1q1b+O1vb+Pccy/kxBNPYunSJfztb082uZaNGzfw3Xdf89BDj6Gq9n+TQ6EQ5557EUOGDKW+vp6nn36Su+++g7/97R9Jj33hhWf4zW/uQNM07rzzFn7721tJTU3l4Ycfo6SkhDvvvIVx4/bj2GNPaPZru3DhAh588G5uvPE3jB27Hxs3FvL73z+A1+vj7LPP4/PPP+E///k3d9/9IIMGDaGsbBubNtnvnwcffJRLLjmf0047kxNPbH0t6saNhcyf/wN//ONfKCxcz//93x2sW7eWUaPG8PTTz/PFF5/x6KMPM378RHr16g1Aeno6d911D3l5+axatYJHHnmA7OwcTj31dM477yIKCzcQCoW49dY7AcjMzELXdW6++TrGjdufv/3tOUDhueee5tZbb+KZZ150v77tSSqXQoh2UVlu/4cuI0fF61WxLLCw/6JmWAaHT8ulV18/hWsbeOfVkt16LW+s+g9vr5lJSA+1eEziekvAXXOpxMJlUuUyK1a5rJZwKYQQouMsXbqEDz98n/HjD6K4uJj33vsf99//COPG7U+fPn255JLLGTRoMB999L77mGg0yq9/fTujR49h4MBB+Hy+pHMGg0HefvtNrrnmRiZOPITBg4dyxx3/RzQacc/z3/++xqRJkznvvAvp338A559/Efvtd0DSeV599V9cdNGlTJ16DAMGDOSGG26mZ8/evPnm6wC89dYbDBw4mCuvvJb+/QdywgkncfTRxzZ5jYZhcNdd9zBs2HCGDBkKwNSpxzBlylH07duPgoIR3HLLnSxevIht25J/n7jiimsYM2YcI0eO5vjjpzN//o/cdttvGTx4KIceehgTJhzkVvSa849//D8uvvgyjj9+On369OXQQw/j5z+/jHfesauIJSXF5ObmcdBBB9OzZ0/GjBnHCSecBNhhTlVVUlNTycvLJy8vv9Xv5W23/Y5BgwZz5JFHM2rUGCorK/nFL66iX7/+XHDBxQQCARYtWuAef8kllzNmzDh69erNlClTOeOMs/nss08ASE1Nxe/3u1XuvLx8vF4vn376EYqicMstdzJ48FAGDx7CnXfew5o1q1ixYlmr19dWUrkUQrQLJ1ymxJZxWFjusADTMklN07j46j788e71rFpWj2laqKqyW67FqUJGzQgBml/n4IbLguRw6bTFOpXLqnAlfaQtVggh9kq7UkX0eFR03dz+gbvo66+/ZNq0wzEMA8MwOOaY47jssiuYP/9HDMPgnHN+lnR8JBJh6NBh7ud+v5/Bg4e0eP6ios3ous64cfu5twUCAYYNK6CwcD1gVxOPOuqYpMeNHj2WdevWAlBfX0d5eRljx8bPoSgKY8eOo7BwQ+wchYwcOTrpHI0/B+jVqzeZmVlJt23atJFnn/0by5YtpaqqCrB/vygpKaZ79x7ucUOGxF93bm4uubl5ZGVlu7fl5ORSWVnR4tdi7dpVLF68kOeff8a9zTBMd+nMkUcew2uv/Zuzzz6VQw6ZxKRJk5k06fCdrgD27t2HlJSUpGv1+eL7bauqSnZ2dtK1fvrpR7z++qsUFW0mFGpA13V69OjV6vOsWbOajRsLmTYt+X1uGAZFRZsZNWrMTl33jpBwKYRoF1XldvAK2FnNDpfEwyVASqpG734BCtc2ULYtQvee/mbPtSds22q37Pbpb4fPeFusHXhTPCn4NB+1kVoyc6VyKYQQomNMmHAwv/rVb/B4vOTn57tTYhsagng8Hv7xj5dRlOQ/1ia2vgYCOzZMpvE57L8PK+7Hje9vemxz57CI35T4cfy2xgKBlCa33Xrrr+jduw+33/478vLyCQbr+cUvfu62BzsSJ+gqitJkoq6iKK1OyQ0GG/jFL67i8MOnNHt/z549eeWVN5k793vmzZvDww/fx/DhI3jssSdb/fo01tx1Nb0Nt+16yZJF3Hvvb7n88qs46KCDSUtL49133+bTTz9q9XkaGoKMGjWaO++8p8l9ubm5O3y9O0PCpRCiXVSWR7EwSU23K3+WZbqh0vlfgN797dbYLRvDdO/pxzQtGoLtt8VHxIi4Hyc+b2OhBhOfX8Xjcf7DmVy5BPBpPuoidaRn2bdJ5VIIIcSelpISoG/ffk1uHzZsOLquU11dxZgx49p8/j59+uLxeFi4cAFHHz0NsAf8rFmzkmOOsdtWBwwYyNKli5Met3TpEvfj9PR08vLyWbRogVu9tCyLJUsWc8QRRwLQv/9A5s6dnXSOHWnNrK6uYuPGQu644//c1/n999+17cVux/DhBWzaVNjs19sRCAQ44ogjOeKIIzn++On88peXUFJSQs+ePfF4vBhG+1ezFy9eRO/efbjookvc24qLtyQd09xzDxtWwBdffEpubi6pqU3X2u4OsuZSCNEuKsujmBikpjnh0nL/Hmla8clsffrZf0Et2mivh/z6k0oe+916Nq5rn21KgtF69+OWwqVpWoTDJoGU+I/AxgN9ALyqPf5c9Rr4Ayq11a1PmBNCCCH2lP79B3L00dO4997f8tVXX7BlSxFLly7h+eefaTKltTWpqamceurp/PWvjzN37vesW7eWBx64B4/Hy7RpxwNwxhln89133/Daay+zcWMhr776LxYu/CnpPOeeeyH//OfzfP75J2zcuIE///kxiou3cPrpZwFw6qmns379Ov7+97+ycWMhH3743nYrbwAZGZlkZWXx9ttvUlS0mXnzvufpp/+yE1+pHffzn8/gvff+xwsvPMv69etYv34dH330Pi+++BwA77//LrNmvcO6dWspKtrMp59+SHp6hlsF7NWrFwsW/ERp6bZY+2776NevH1u3buHTTz+mqGgz//73P5kzJzmo9+rVy22DraqqQtd1jj32BNLS0rn99t+wcOECtmwp4scf5/GHPzxEbW1tu11fIgmXQoh2UVkexVLNeLhstObS0TvWhrolFi43rA5imvDVxy2vgdgZDXo8pJottL6EQyZYJIVL51glIVx6YuEyakZJS9eIhM09sr5GCCGE2BF33XUvxxxzHE888Rjnn38Gd911C+vWrSU/v9tOnefqq69n8uQjuPfeu7j88ouoqCjnsceedFtqx43bn1//+nZeeeVfXHrp+SxZsojzz7846RznnHM+Z511Ho8//gd+/vPzWLx4IY8++mf3Wnr37sO99z7MZ599zCWXnMeHH77HBRdckrTWsDmqqnL33Q+yfPlSLrrobP72tye55prrd+r17ahDDz2Mhx56jNmzv2XGjIu46qrLePPN192JrWlp6bz11htceeVlXHLJ+axYsZxHH33cHZI0Y8aVFBVt5pxzfsZJJx3T2lPtlMmTp3D22efxxz8+zKWXXsDatau44IKfJx1z8smn0bdvX2bMuIiTTjqGRYsWkJKSwl//+gz5+XncccfNXHjhWTz66IMoitpksFN7UazWGo+FKxo1qKoKdvRlJFFVhby8dMrL63Z6FLYQ27Mz7y9dt3jgN2vwZ0XofdZcAAZlDaY2UktZQyndU3tw/KATAbui+fu71hEJWdz+yBD+dM966mvtiuBBk7OortT52fk93JC6s9ZVreGboq/RdYv01Ydy6PiB9BuUvH6jsjzKn+/bQP/BAS673m59eW/du5Q1lHJWwbmkeOzjPyn8kC11Wzh16Gm8/rdaNm8I8au7B5KV3bU3dO4M5OeX2N3kPSYS6bpOWVkR+fl9mqxta6s9NdBnb/b003/hu+++5qWXXuvoS+l0Our91dq/lezsVLze1n8/k8qlEGKXVVdGsSzIyov/wGluoA/Yi9Z79wtgGBYb1gTdYAkw75tqVi2tZ+G8mjZfSzBWuSwqDPHD7CpefKqINSvqk44Jh+zrCaTEr7e5tth45VInLbaWNFgnrbFCCCFEW7zxxmusWLGMoqLNvPvuW7zxxmscf/xJHX1Zoh3JQB8hxC6rqrCntWXlqDgjbyyr+bZYgH4DA6xdEeSH76oBGDoyFT1qoWoK61YGWfJTLYcemdOma2nQ7Q6DrUVh0rDQoxb/eX4rv753MD5/bDPmBjsgJrbFNjfQx1lzqZtRd1BRvYRLIYQQok02bdrISy89T21tDT179uLSS6/g3HMv6OjLEu1IwqUQYpcVbQwDkJGjUhm7zbRMLOzA5vyvY9DwVL74oIKVi+2KYp/+AY46IQ/LsnjywUKKNoapKIuSm7/z7acNegPRqElZSYTcVBjUM4X1qxuorIjSo5e9riPU4FQuWx/ok7TmMs3eY0Uql0IIIUTb3Hjjb7jxxt909GWI3UjaYoUQu+SbTyr4bFY5AH0GxsNgSwN9APoOCODzK+7t3XvZi8oVRWHMARkALJnftilmDXoDJVvDWBYMKkghJxZQqyvj24jEw2W8SulcS/K0WPvvb1GpXAohhBBCbJeESyFEm1mWxefvV+DxKpx7eS/6DEyc+BZfc2lYyYFM0xT6DfaxOuNDtqTMp1tPH8vLl1ESLGHsgXa4/OHbaqKRnV/I3hANUrzZ3uty8IgAWTlOuIxvtNxcW6xpmUnBEhLaYo2ENZf1Ei6FEEIIIZoj4VII0WahBhPDsMjr5mXEmPSkEGlZllsNbG6/yT7DVKJqAyFPBYGsKPOK57Bw20906+lj5H7p1FTpfP9l1U5fU2VdHcVFYbxehX4D/WRl29XH5iuXyW2xiestIbktViqXQgghhBCtk3AphGgzp4rnbBuSFC5bmBbr6DvYDm7pWQqWage/qGn/7zEn5aGq8PUnldutFNbX6TzxwAZmf1FJ1Iiybm0tlgX9BgVQvRZZOXa4rKlqvS3WsiwURUk6d+JAH5kWK4QQQgjROgmXQog2axIuzXjwMi2zxTWXADndVUbvn87YiWnosceZsXCa183HuAmZRMIm61a2vr/s5g0hKkqjfPhWGYWbqyhca29FMmBwCpZlJrTFJobLpm2xzVcuZc2lEEIIIcSOknAphGgzp4rnBC8nHCqGSc/ZC8hatzl2e9NwaVg6g4enkttdRbfs4JcYTgcNTwFg04ZQq9eQGPae+etqGoIm+d29pGd6MC2LzGz72pLXXDZti21uzaVPswcN6aZOWpqESyGEEEKI1ki4FEK0WdO2WDu0HfvoKxx9w0OcftXDZG4tbzZc6rEWWMMyMBI+dvQbGAuX6xtavYb62vhjdFMnr5uXcRPsoUCmZeLxqKRnatRU65imXUltHC7NZva4BNASKpden4rXp0hbrBBCCNGCq666jC+//Mz9fPXqVcyYcRFHHXUol1xyPjU11ZxyynGUlm7rwKsUu5PscymEaLNgvR3KnHBpWiZZW8oY/dE8APz1IQ77xyzev/PiJo+NmnYl0bAMN1QmhsucPA9pGRrFRWEiEROfr/m/hdXFwuXJ53THyjNZGs1GQXGvByAr20NdjUFdrUFmlqfJmkunYtqkcpkw0AcgLV2jqkLHMCw0LXl9phBCCNGeJk+e0Or9l176C2bM+OUeuZYVK5bz7LN/Y8WKZTQ0NJCf340xY8Zx222/xeu1/1v59ddfUF9fzxFHHOU+7m9/e5Lu3XvwwAOPkpISIDMzixNOOInnnvs7t9322z1y7WLPknAphGgzty02YaDPqI/moVgWiy+Yzog3PmboN4vxhCJN2k6dyqVlWUQNe+uQxAqnoij0GxRgxaJ6tmwKM3BISrPXUF9rnye/hw8jV0MpUvBpPiJGJB4uc7wUbQxTXRm1w2XIvm5/IFa5xNnjsvk1l3osXKbGwmWwziAjS358CiGE2H3efvsD9+P33vsfM2f+l2eeedG9LSUl1f3YsiwMw8Djaf//NlVWVvCrX13DEUccyZ/+9BSpqakUFW3m888/xTQNwA6X//3vfzjhhJOThuMVFW3irLPOpWfPnu5t06efzCWXXMA119xIRkZGu1+v6FjSFiuEaDO3LTY9Hi77zV8NwNrjD2PdpHH4QhEGzl3epDXWCZcAISMMNF2b6bTGblzXcmtsXSzgpmdo7mAgZ8qrExozG21HEmow8fkVt/rYUuXSq9prLiNGvHIJUC97XQohhNjN8vLy3f9PTU1FVVX388LCDRx77BF8//13XHrp+Rx55CGsXr2SBx64m7vuuiXpPHfddQsPPHC3+3k4HObJJ//Eqacez7Rph3PVVZexZMniFq9j8eJFhMMhbrnlToYNG06fPn2ZOPEQbr31Tvz+AACVlZX89NM8DjvscPdxkydPoKhoM48//gcmT57Ac8/9HYD+/QfSvXt3vvnmy3b8aonOQv70LoRos8ZrLmkI0mt5IQ2ZqVQM7s36SaMp+OwH+s9f7QbHxWWLyPJludVAgEgsXCa2xYK9nQjAZ++Vs2F1kHNn9MbnTw6AzprLtAyNkno7PDrh0nIrl/HtSEzTItxgJlUe45XLxuHSG7suPel1yrpLIYTYO2RcdyW+92ftseeLnDCd2iefbrfz/f3vf+Haa39Fjx49ycrK3qHHPP74oxQWbuC++x4mLy+fjz/+gF/96hr+/e//0q1b9ybH5+bmEolE+OabrzjiiCObbNsFsGjRAlJTU+nXr79729tvf8AvfvFzTjvtTE488eSkSmtBwUgWLpzPCSectPMvWnRqEi6FEG0Wr1zaoSxtyXI8UZ0NE0diKQqbxw0FoN+C1TRYJhEjwvySH8kJ5NA3vZ97nnCsLdayrKT22b4DAkw+Jof539ewblUDG9c1MHRkWtI11NXqeLwKfr+KEQt93tiUVyfQZufaIbG8NEIkYmJZyZNiLXegT3K41FQNRVGIxK4vTbYjEUII0Yn84hdXM378QTt8fHFxcazF9j1yc/MAuOSSy/nuu2/46KP3ueCCnzd5zJgx4zj//Iv53e9uIyMjg1GjxnLQQQdz/PHT3bbWkpKt5ObmJQXPvLx8VFUlNTWVvLz8pHPm5+ezdu2atrxk0clJuBRCtJm75jLVDl1pq9YCUDKsLxYWNd2zqOyTT/6GYjaVl6LH/kMWNsJEE9pincol2O2y32/9jj7pfRiSPYxjTsonJVXj43fKKNkaSQqXhmHRUG+SleNBURR36qwziMcJl736+QEoLKyjstauhibtcdlCWyzY1Uunhddp/5XKpRBC7B12pYro8ajoetNp6HvSiBEjd+r4devWYBgG55zzs6TbI5EIQ4cOa/FxV199PeeddyE//DCXpUsX8/LLL/Lyyy/y7LMvkZ/fjXA4jM/n3+Hr8Pn8hMOtbzUmuiYJl0KINgvWG3h9Ct7YJNe0NesBKB/YE8uysCyLLaMGkVNUhnfBfBqmTgUgakTdVlOAsBH/D0x5QxkbqtezoXo9Q7Lt/9B172VXIrdtjYdQiFcQ0zPs0OeEQE+jcJmV7SEjS+PrujfQl2ViMsWdFAstD/Sxz+UhGA3ar08ql0IIITqRQCB52J2iKFiWlXSbrsf/e9vQEMTj8fCPf7zcpL01LS25M6ixnJxcpk07nmnTjufyy6/i3HNP46233uDyy68kKyub2tqaHb7u2toasrNzdvh40XXIQB8hRJsYhkVDgxlfbwlkrNkAQPmgXm5gKxlhr7/wLZjvtp9GzajbagoQ0uOhMXHdpRMWe/Sy/xpasjXiPves/25j6fxaANIyPLHH2uf3xdpinc8VRaHfwBRMTMpKIliK0ahy2fyaS4ivu9RNXSqXQgghOrXs7BwqKsrdz03TZN26te7nw4YNR9d1qqur6Nu3X9L/5+Tk7vDzpKenk5eXR0ODPXBv+PACyspKqa+v26HHb9iwnmHDCnb4+UTXIeFSCNEmoQYDrHirKJZFxtoN6F6Nyj75bqtpcYG9ttK3cGHSNNigHnQ/jpjhhI/jobMqXAVARpZGIFWltDiCaVpsWBNk3jfVfPxOGRCvXDptsY0H+gD0HWi3wxYXRbCwksJlSwN97HPZQTVqRklLs0OsTIsVQgjRGR1wwHiWLl3CJ598yMaNhTzxxGNUV1e59/fvP5Cjj57Gvff+lq+++oItW4pYunQJzz//DPPn/9jsOb/99mvuu+93zJ79LZs3b2L9+nX87W9Psn79Onc67LBhBWRmZrF48aLtXmM4HGblyuVMnHhIu7xm0blIW6wQok2CdXYgcyqXSmkp/qpatg3ujaVpbpAsHdoHQ1MJLFwY2w8r9vhovftxYhUzasSnyFaGKshPyUdRFHr08lO4toGK0ijl2+xjYgVH0jLiW6FAvHKZGGZ7D7ADZ3WVTg9MevUNuPdZlsnAOcs48uWn0H71WyInneLe51Gdltsoqekpsdcu4VIIIUTnc+ihh3HBBT/n8cf/gGWZnHXWeRx00MFJx9x11708//wzPPHEY5SVlZKTk8uYMeM45pjjmj3nwIGD8Pl8/PnPj7FtWwmBQIABAwZy//2/58ADJwCgaRonnngSH3/8AYccMqnVa/z226/p3r0HY8aMa58XLToVCZdCiDZpvA2JZ+VywF5vCfFgp/t9lA/qRfc1RShbt7iPb9Dje1cmhsvEymVFqAKAzbWbKMv7EXPtCEq2hikvjQdQgPRYW2yTNZfEw2Vub1AVMC0YOCzAfgfFN27WCgs57Y5nUE0TLruQim9/wBg2HEje6zI9PR2QNZdCCCH2rDPOOIczzjjH/fzAAyfwzTc/NHvsL395Db/85TUtnsvr9XLFFVdzxRVX79Bz9+nTl1tvvWu7x5199gX8/OfnUFq6zd3S5L///V+T415//RV+/vPLd+i5RdcjbbFCiBYFo0FqI80v0HcClhMuNSdcDuoFJFcNiwvsdZf+BQvd2xLvT5Q4ObYyFi5XV64ilL6FkFbJtq0RyrdFkh4Tr1w602KbVi5NovTo7SMlReXEs/NR1fggg9x/v2oHyxj/f191P/aoseBq6fj8CppHkcqlEEII0Uh+fj633HIXJSXFLR5TU1PN5MlHMG1a81VS0fVJuBRCtOi91e/x/rrmN5eO73EZq1wut8Nl2UA7XCYO5nHCZcqihWxP47ZYy7IwLJ2MLA1dibB1c7xy6Qy6i0+LtZ/TCYSJ4TJsRhh/WBZTp+eRnpHwo8+yyH37XUxVYfaLjwPgf3ume7ezZ2bUiKAoCmnpGsGggWkmT+MTQggh9nVTphzVartrZmYWF1zw8yaTasXeQ8KlEKJFwWgwqX016T63Ldb+MaKtXglA+cAeTY51JsYGFi/Z7nOGEyqXUTNKXbQW0zLJyvGCL0Lh2gaqKqJk5XjoPzgFFOz7aH3NZVgPoaCgqkrS7eqmjfhKtrFtaF9qDhyHPnIUnnVrUYu3AuBVk1tuU9M1sKAhKNVLIYQQQohEEi6FEC1yJr4218IabNwWu34dpqZR3SuvybFlA3ti+rykLF4CVusVv6iZ3PIa1BswLBNNU+jWVyEcMrEsyOvm5bQLenDhFb3JyYuFS3darB0uE6fFJq7rtIhfg3fu9wBsGT0ITdGIjj8IAM/8n2Ln8sauy66WpqXJXpdCCNHVxAtl0nUiROvsfyNtLS5LuBRCtMipBDYbLmOVy7R0Derr0UqKqe2Vj6VpbiBzmF4PDSMK8FRVk1lc0epzRozkYT2mabght8eA+E+6vO4+snO9DB0Z3/TZuV5vc22xCRVR02omXI4ZhKqo6AeMB8ATG8nuaRQuZa9LIYToelRVAxQikfB2jxViX2b/G1Fi/2Z2nkyLFUI0y7IsN5wZloGn0Y+LxGmx2obVAFT37QaApmpuGHPUjxlF2qIl9Fy5kZpmqpsOZ6CPR/WgmzqGZWDGQmN+H9gYOy6vm7fJY3VTR1XU+JrLhL9QR5LCZTx0eufNBexwOVzRiMbCpTcWLp2grDuVy3SpXAohRFejKAppaZnU1Nh/4PT5/MCurvtT0HWphIrdZU+/vywikTA1NRWkpWW2eV2shEshRLMSB/K0VrlMTdfQflwHQFXvbiiKgqo0bYqoGzOS7kCPVZtYdeQBLT6vsxWJV/Wim7obMAHSckxS0zWCdQZ53XzNXrOmaCix52880MfhtMsqtTVoy5cS6tmD2u45qIqKMWwIlqahrVrpXgfE22qlcimEEF1TenoWQCxg7vov7aqqYprNTz4XYld1zPvL/iOM82+lLSRcCiGataPhMiVVQ1sfC5d98tEUrcVwCdBj5Sb3NlVRm5zbCXF+zU+D3oCJ6V5LxIwwbnwG8+fU0Lu/v+k1mwZezes+f+OBPg5nzaXnxx9QTJPqA8a414PfjzFoMJ41q1Fqqt3hQM5AH6lcCiFE16QoChkZ2aSnZ2GaxvZGALRKVRVyclKprAzK9HDR7jri/aUodvv4rk7ylXAphGiWs84RkgfjOIJ1JoEUFU1T0DY4lct8VEVFaabVqHbwAAy/3w6XlgWK4gbIRE4g9Gl+9zqcawnrIU45NZ9pp+SjacnPYW9ZYhBQAk3CpWVZzbbFOustq2LhUlNi+2UOH4FnzWq0VSvxjBoIxCuqzgAjJ1wLIYToWhRFQdN27VdgVVXw+Xx4PBEJl6LddeX31z4x0KehoYGjjjqKP/zhDx19KUJ0GYalux83ri7qukkkbMYnxW5YD0BF71y7LbWZcGl6VOpGDidQ30D2ljIAAp5Ai8/v0+LbizjPHzJCqKrSJFg6x4G9VlON/WizLJNvi77mlRX/oj5a3+T1eOfOsa97nF1VVWN/rdMLCuxzrVyBT9ZcCiGEEELskH0iXD799NOMG9fyhq5CiKYSA2XjcBmstz9P3IbEUhSqeubiUT3NtlSYlkntaDu0Oa2xfq1pa6sjqXLptMUakWZbdCHetqopnqTK5dqqNeimTk2kJvn1GAaeH+dhpaZRUzAYANWpXA4dbp9r7Ro8mrPmUqbFCiGEEEK0Zq8Plxs2bGDdunVMmTKloy9FiC7FCWsARpNwGR/mQyiEWrQZo08fDJ8HvxZods2laZnUxMJlz5X2zFe/1krlUvXHHme0uKVI0vXGKq2aGl/zadJ8EDUtE23ZUtT6OqLjJ6Crdhh2HmcMHGSfa8N6fLE9M539N6VyKYQQQgjRvE4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6/5FHHuGmm27aU5csxF4jFG65Ldap2qWmqWgbC1Esi/CAAQAEPM2Pdzctg5rRdkWw+6pNsWNTWnx+py02kjDlFZIH8ySdP7Yu06PYi9EVRWmxymli4p1nt8RGD5rohlB3zeXAWCVzw3p3WqyztUogRUVRZc2lEEIIIURjnTpcBoNBCgoK+N3vftfs/e+99x4PPfQQ11xzDTNnzqSgoIDLL7+cigp7D6NPPvmEgQMHMmjQoD152UJ0eRvXNfDHe9ayfnUd0LQCGA+X8UmxoQF9Absa2eyaS8ukdmBfogEfPVZtAtMksANtsVEjeb/M7Vcu7SENKk0n0bosyx3mE514iDuwyKlcWvn5mGnpaBvWo2Cv43Sm2CqKgs+nEo10rQX2QgghhBC7W6eeFjtlypRW21mff/55zjnnHM444wwA7rnnHr744gtmzpzJjBkzWLhwIe+99x4ffvgh9fX16LpOZmYmV1xxRZuuR1V3dbPd9uVcT2e7LtH1bS4MYSoGa1bW071PNs5+YME6A49XoSFoh7G0dA+eNXa4bOjfB0WBFG+A2qhKk2WXioWlKZQM60vfxevILSol0DfgHudVvW51EOwKqKKAbkWTzhWxwknvecuyWFGxHJ/mQ1HAq3nsoT+qClioqoLVaN68pVh4583BUhTMgyZi1i5CUcATeywomIMG4VmyGK2yHJ/HR1gPuc/r9Sk01Bvyb28XyM8vsbvJe0zsTvL+ErtTV35/depw2ZpIJMLSpUu56qqr3NtUVWXSpEksWLAAgJtvvpmbb74ZgDfffJN169a1OVh6PCp5eem7fN27Q05OWkdfgtjL6JEqLEzKSsJoigfQePrRTRQXhVAU6DvAbmft3jOVtK/tFldrxEDS0/10z80hpNXSoNrrKT2qB93UycgMYFkWlWMG0XfxOgYUFtPthCyy69PRTZ10Xzp1kTr3Gnrk55BeHSCQppFuxNdmpqRrSf8W11euZ1ntAgDS0wPkZmeQl5dOZkYquqnjtZr+YM4L1qBt2ghjxpA7uC8Z61aSrgfIz8sgLy127uHDYMlicitLyMvKpCpkkp2TgqZqBAIadTUG2VlpaJ6u94O/M5GfX2J3k/eY2J3k/SV2p674/uqy4bKyshLDMMjPz0+6PS8vj8LCwnZ/Pl03qalp2P6Be5C9wWoalZX1XW4PHNG5lZY0YCkGFrB0YRWr/7sGszSfzCwPNdU6mzbY/xYsdCLLV+IDtuRkUVdXRajOoLYuRF29vTbSr/kJG2Eq/XVYWFQO7s1YIHvBGupqIoSCOiE9hDeQSl0ovp6yrjpKXV2IcqvGPRdAcXkF3dV4CC2uKKeuLn5/vS9CeXkdwfpIkz00HcaC2QCEDjyI+vI6KqvrqKsLUVUZRAvZ507t3Y8UoHbBUkIHplDXEGJraQUpnhRULfbcxTUEUrRd/Grvm+Tnl9jd5D0mdid5f4ndqbO+vzIzU/B6W/+9p8uGy5ZYltXsNginn376Lp+7M31zE5mm1WmvTXRNNdU6Vmyd5cql9fSrj3DIfumccm53Hv3tegzdfr8FUlW0dWsBqOyZixWswqv6USwFpxNVVTQsC3TTxLJMto0aCEDvxesp11JRULEs8Che9zGaoqFiPy6iR0jsam2INiS9372qP+l+BTV2f/wacgI5dEvtgWkarKlaTfpP9uCvyEEHY5oWhmlgWaBYqntufYC9Vltdvw7P+P3da/GrATxe+2dMOGzi83fqpeudnvz8ErubvMfE7iTvL7E7dcX3V5f9rSgnJwdN0ygrK0u6vaKiokk1Uwixc2qrdUzFxOezQ9R+E9M54+KeBFI0BgyOt6im+kzUzZswevWmIXasX/MnDfRxJrBalolpmVT3yiPavRs91m6hu5mKR7H/xuXTfPHHJGwn4gzSce53Pm+Jc77E7VACWoBDeh1KTiAXgMz5CwGIHnQwEJ+Gm/gYdzuS9evwqMl7XXq99nF6tGv9wBdCCCGE2J26bLj0+XyMHj2a7777zr3NNE1mz57N/vvv33EXJkQXZ1kWtTU6/oDFEdO6MXFyFocfl42mKRimQeaQKkzsabGZFZtRDANj8BB3ixC/5k/qHvDEprcazn6VikLwoAkohoH3px/QYj2m/oTJsZqi4Ynd7oTJdG8GALWR2qTrbTwR1pMwLdY9nxoPnJ5QhPTlqzDzu2EOGhy7tli4VOOtHkl7XWrJe116Y0E6GmlhGq0QQgghxD6oU4fL+vp6li9fzvLlywHYvHkzy5cvp7S0FIBLL72UV199lZkzZ7J27VruvvtuQqEQp512WkdethBdWjhsEo1YBDKge88APfv4MU07RK2vXsfmjNlU+QpRFEjdsh7ADpexENh4KxI1Vrk0Y5VLgIaDDgLAO2d2bGAQeNV45dKjetyKpzNBNieQg1f1UhmqSJr+alrJ+006z5dYhfQkhMueKzai6oZdtYyFYLdymfAj0ezTF8vjQduw3r0251q8Pvu4qFQuhRBCCCFcnXrN5ZIlS7j44ovdz++//34Arr32Wq677jpOPPFEKioqeOKJJygtLWXkyJE8++yz5ObmdtQlC9Hl1VbbYS0lLR4QnfAV1OvJyNLI6BmmjxLAu8Feb2kMGkLYsCuXAU8ApZlglxguQ264/B7PWfsD4NO8SY9xQqJDUzRyArlsC5ZQE6kmy58dO29ywHOeL+ka3FZZhb6L7GuOHnyoe79hGrH7E/7e5vFg9OuPZ/06AiE7VEZjAdrrlcqlEEIIIURjnTpcHnzwwaxcubLVYy688EIuvPDCPXRFQuz96mp0AFISdt4xY8N9IkYEBYWjT0/nyP590W6PhcvBQwgb1XhVL6qiNlpzaQc207IH+gBER47CTEvH+8NcPMYvAfAltMWqiua2yybelhvIY1uwhPJQuRsujUaVS6edNjEoagmBs++iNfY1TDrMvd8ZXqQ1CrRm/wGwfh3pxWWQCVHT/tq44VIql0IIIYQQrk7dFiuE2PNqq+0AFUjYWsmpOOqxcBW2GlBVxZ0UGx00iIgRcdcmJq65dNperYTKpebzox98CEqwnm7L7NZav9Z8W6x7HlUlPyUPgIqGcvd2p+roaL4t1r5Nixr0XroBPS0Vfcy4Jq8vqXIJGLGJsRlFdit+xF1zGWuLjUi4FEIIIYRwSLgUQiSprbHDWnPh0glXwWg9YE9StRSFYL/egL3eEkiuXMaCnWEZ7uAcRVGJHHEUAL3mLQaS11xqito0XMYqlwAVoXi4dKqqjsT1le5tsYCbtnQ53lCEiv1Hg8e+bXn5MuoidU0eA2AMGAhA6pZiIKEt1hnoE5W2WCGEEEIIh4RLIUQSt3KZGg+IbjtrLFw16A1YoRDq5k2YffoSibWJBjx2a2tzwc60rKTBOZEpdrjsOcfeczLVm+Y+TlM8KIqS3NqqaGT5s/GoHioShvqYjSqXTihVkwKufQ2Z834CoHz8WACKajczr3gOJibjuu3XZI9cY8AA+9o2b7Vfv9sWK5VLIYQQQojGOvWaSyHEnlcbW3PpS43f5qxrjMSmpZqWSXTdChTTxBg0hJARBhIqlwkhzdneI3Ggj6qoGKNGY3brTvai5ZyYfwT5KfloioZpmW610/ncfoyGoijkBHIpDW6jLlpLhi+zyVYkWnOVy9htGXN+AKB8/BjygepINQD7dz+QsfnjaMyMVS4Dm7YAsLFmA5tqC8lQJwAy0EcIIYQQIpFULoUQSeqcttiEcGk2qlwCWGtWAGAMGuzucekM5Ulsi/UkbEXiDM5RFRUUhcgRR6IYBr0XrIrfTuJ01/iPKOfjVI99YSHdDrRNBvooLUyLDYdJm/cjkRQ/laOGxs7RAECaJ5XmGP3tyqVvcxFgV2yD0SCbDHvQmC4DfYQQQgghXBIuhRCuhqDBtuIwKOBLid/uhstY5RLAWmMHQntSrB30AlrTtlinTdUiYaBP7DanNdb36UdJj3OqnYkTY53qo1f1xq4lEru2xluRNDctVrP31AwG2XjgcAyPfUy4UcW1MSs7BzMzC9/GjZDwPDn+HPsaJFwKIYQQQrgkXAohXO+9UUpDvcm48RkoWrzl0wlwieHSsz5xG5JYSPM0Hejjie1fqZu6W2V0gl/kmOOwVBXfh++DGW+HdaqdiUN91FirrVdzwqXToptcufQ1E3A9qgffZ58AsH7iCDfkNsQqlwFPCs1SFIwBA1EbGkipqnNvjq+5lLZYIYQQQgiHhEshBACF6xpY/GMtGVkeTji9W1K7qYmJZVlEEtpifRs2AE64dNpiYxNfk7Yi0VAVFd3UMS0TRVHcNZlWfj7RiYegbd2CZ+F8N0w6VcrkcGl/7FQu9Vi4dK7zsD6TmTbgOFJiQbHxUCHfZx8DsGHiSDdcxkNxfI/NxsxYa2z21viEWi22Wl0G+gghhBBCxEm4FEIAUFZiB8fxh2aSkqolTWG1LDOpagmQUrgZS1UxBgwkrDttsXblUk340aKg4FE9brhUG/3YiZxwEgC+92e5AdKd+JoQLuPB0w6XESM+XAgg3ZdJr/Te7vGJz+Mv3oZnxXLCQ4ZQ0zPPfYyz5jJFa6FySXw7kqwtZfFrccKlbEUihBBCCOGScCmEACAcsoNSIMX+sWBYiW2x8XDp1/x4whFSi0sx+/YDv7/J2sXEHT1URcWreoma0aRJsO7zHn+i/dj3/tckVCYe69zni+2H2bhy2XhfzMTKZfannwMQPOpIAHewUNgI41W9Ta4pkTPUZ1i1x63Mah5nn0upXAohhBBCOCRcCiGAeLj0B+wfC3psT0eIhctYS2x2IMet4hmDBtuPbdRemrjm0qlcAkSMSNJ9AOagweijxuBZtZLctZuBxLbY5KE8AJ5Y2TBqJlcuE4+F5GmxmbPeB6B++nQArNiemxEjQsDT/DAfhzFwIAD9KnQO6jnRfi5PbA2qrLkUQgghhHBJuBRCAPFw6fM7lct4W6xhGe4elymeFLpvstcf6sOG24+Nrbn0q7FwmVC6VBTFbWWF5IqiI3TmOQAM/eAbID7xtbk1l07lMtJooE/j8zoDgNLKqwnMmYPRuw/hA8fHHmO6w3xamhTrMPsPtK9lY6EbWFUnXErlUgghhBDCJeFSCAFAJJxcuUycwppYufSqXvIKSwAwhhUAENJDaIrmTnJNXO+oKgreWCXS/rzpj53wmWdjqSoD3/8axTDdINncmsvGA30ab2/S+HmGfbUQxbIIn3wqaqzqaWK5gTjQyjAfAKNvPyxFQSvc4FZdZaCPEEIIIURTEi6FEEDTtlijhYE+XtVLrhMuC0YAEDEj8UmxNKpcsv3KpdmzF9EjjiSlrJL+P65022I9CaHUaXt1zhU1nDWXZuw5G1UuYz/eRnz6k/36TjnNPca0TEJ6LFy2MszHPiCA2as3atFmND1WJY3lWF0G+gghhBBCuCRcCiGAhHDZTFts4kAfn+Yjt3ArAJEhQ4kYESzLSlq7mLSuUlHcaiM0rTA6QuecD8B+736XMNin6ZpLn7vPpV1JdUJwc5XLvPVb6bN0PcbAQejjD3LPZ1kWIaeVdzuVS7CH+iimiW+LHapVqVwKIYQQQjQh4VIIAUA4oS3WGXjjMInvcem1NLI2FtOQmUo0Lye+3lKLh7TEyqWKmhQuG1cY3ec/6VQi+bkM+XYx+SU1AGgJlUulceUyNnDImfzadM2lyrh3vwOg4eLLQFXd0GtaZsL2KdupXAJmbDuSlM1F9rWoJooqW5EIIYQQQiSScCmEAJLbYp2qpRMK7cqlHS4zikvxRKJU9O+BgUlIT96GBJIDpD3Qp/U1l/YJ/EQv/SWqaZHz4j+BRtNiW1hz2VLl0hPWGfXRPAyvh9C5FyQ9t4Xp7nG5vTWXEN+OxL+pyL3N61WlcimEEEIIkUDCpRACSJ4W64RLZx2lYRpEYmscM9bZ24WUD+iJYRnNVy5b2IoEWm6LBWj4+Qwsn4/Av15EqaxIOtb52KN6UBTFraQaLUyL7fXWewTqGlh3xIFY+flJx5iW6W6fsiOVSyNWuXTCpYWF16fItFghhBBCiAQSLoUQgD0t1utTUFXFrQY6018t4pXLtHWFAJQP6IFpGkScPS5bCJeqojYa6JO8z2Uiq3t3QudfhFpXS+pf/txsuAS7eunsw2laJqqiJrXiEg7T75mXAFhy4YlJ1+I8xt2KZDv7XAIYAwYB4Nu0yX2816tg6BamKQFTCCGEEAIkXAohsAfchENmk21IEttinUphytp1AFTEKpchJ1wmhLTEKqJC8kCfFttiY4I33YKVkkLKs08TKK90b3cG+jjXFTWj7trQxucMvPoyga0lrJ00hqoRQ5s8d1LlcgfCpTnAbov1xdZcmpaJ12efS6qXQgghhBA2CZdCCPSohWk2nRTrVC5Ny3TXOAbW2OGyvH8PDMskrDttsS1sRbID+1wmMnv2omHGL1EaGhj26FPNPsZp142a0SbhUqmpJvUPDwMw++Ljklpyneuxw6WzFckOhMvuPbACAXwb7cqlhYXXa7/GaESG+gghhBBCgIRLIQTJk2KBZgf6RMwoWBa+NWvQUwLUds+211zG2mWTBvq00har7MCPneCNN2P06k2Pdz9i8OwlTYf1uBNjoxiWkXR/2oP3opUUU3raSZQU9MejNtqiBBULi6gZbTJsqEWqitGvP56qKnx1DViW5VYudalcCiGEEEIAEi6FECRPigUwTPtzTdVQFdWeFmtESC+rRq2tpW5gX1BVTNNIqFy23BabNNBHbXmgj8PKzKLu0T8BMO0Pr5FRVp10v1MJjRqRpMql9+svCTz/LGZODptvvdl+PiU5PDqvRzd1PMoOBMsYZ6hPVnG5u+YSZK9LIYQQQgiHhEshRNKkWIivufSoHjeMRcwI+Ru3AVA32F6DmDgtNnFLj8TKJYqCV423zG6vLdYROfYEtp19GukVNUy/42mor3fvc87nVE01RUNdv47Myy9GsSzqHnwUMzYhtrm2WMuyMExjh4Kuw9nrMmtLORYWHl8sXMpel0IIIYQQgIRLIfZplmVRUl9MfTDW2tqoLVZT7MqlhYVu6nTbWApAfVK4tAfj+BKnxSZkSxU1qTVV3YkfO5vuvovN44bQfWUh2WedilJWBsTbdZ2qae6GrWSfeQpqZSXBq64jfMbZbohtEi5RMCwDwzJ2rCU2xug/ELArl5Zl4vXGBvpI5VIIIYQQApBwKcQ+bW3VGj7c8D6zS74E4uHS2ebDaYvVTR3d1Om+bisA9QVDgHi4VBQFX0J1MmmfS6XRtNidqBaq/gBv3zuDbaOH4P1hLjlHT8b/6sv4wnb4jdZWMeHVTzn5ivvQNm0kdMbZ1P/uXgC6pXanb0ZfBmUNTj5nrBILJF3X9jhtsdmxyqXXJwN9hBBCCCES7fif7YUQe53ioB0WN9dtAka402Kd8KUpGkpCGMtbuxmA4IjhwBZM096ixKf6Gk2IbbzmMiFc7sTftDyqh1BWGh/85U7OfuojAq+/Sub1V3Gcx8Ok/EwyymtRo1FMVaH+plsI3nqnWzb1a36m9p/W5JyJbbmN12O2xg2XRWWxNZeyFYkQQgghRCKpXAqxD3OmrDoTT+NtsQmVy9iPCcUwyFm3GTMrm0ivnvbjLLui6WxZ4kieFtt4n0uFHeWG1NQUav/6/6h892PCJ/8MPTOdrOIKoulpLJ12EO+++hjB2+5K7sdtQWK4bDxJtjXGILsCml1UigXxyqWsuRRCCCGEAKRyKcQ+pWhjiM0bQow+IJ30DA+qEy51C5V4uIwY9p6WPs3nhrGczaV4wlEi48e4lchIbL1l46mrSVVMFDRVcwfp7OhAn8TzarHH6BMPpmbiwawsX87com8ZnFfA2qo19E7vvcPnTA6XO/EjMDUVvXdvsrZuhXDYrfKGghIuhRBCCCFAwqUQ+5T3/ruNoo1hPnq7jOlndcMzSCMSMdGjFj7i02LjE2AD7kTVbmu3AKCPHuNWPEN6LFyqLVcunaDpVb1EjEiTPStb41QWG4dAr8eHpWnude5MYE28tp1piwWIDh6CZ8sW0jcXk9Pdfs2lJZGdOocQQgghxN5KwqUQ+5DqKh1FAQuLd1/fRvrYKmavtyewjiZeuQzFKpIBT8Bti+22tggAY/RYNDVW4TSdcJkcGBvvc2kf4yFiRHYqCGb5s9m/+wH0TEuuTDpttk64VXcisCptrVwCxpAh8M3XZBRuofsYezrutq0SLoUQQgghQNZcCrHPME2L+jqD9EwPx5/WDdOAtctDScc44dLZ4iPgCbhrJBMrl06Yc45rbrsPhxMmnUCo7ES4BBjXbX+6p3ZPus3diqQNlcukgT47GS71wfaU3MxNW8nJ96JpCtuKw1iWDPURQgghhJBwKcQ+oiFoYJmQnqFx0GFZHHpUNv0GpJGaFv8x4IbLhLZYJwx2W1uEparoBSPd1tawYVftmrTFJg7WiX2suesnd7zK2BKfZm97EoqF2505Z2K49O505XIYAJkbt6JpCvk9vDTUm9TVGjt1HiGEEEKIvZGESyH2EXU1dgBKz7SH6xx3ajd+dm4vevUNuMf43TWXCW2xikqgup6MsmoaBg2AQCAhXMYql43WLjbXFuuLTZTdmSpjS3ya3ZIaNaM7fc6kgT47uebSGDIUgMyNxQB072VfR2mxtMYKIYQQQki4FGIfUVdrby+Slh4PVJqi0aOPz/3cqVw26A2oiupOi3XWW9r7W+IO+XFCaOP20qSBPglrLqF9wmVACyR9vlNrLhM+3tm2WKv/QAxNJWuTEy7tr922reGdOo8QQgghxN5IwqUQ+windTM9Mx7ELMsiNy/e0upPiVcu/R47wGmKRrd19nrLyKiRQDzMRWJtsU3aS5Wmay6d1tmd2eeyJR7Vk7TOU2tr5XInw6Xi8VLdO5/UihqU2pqEcCmVSyGEEEIICZdC7CPcttiMeKCysFAUhUOPzOaMi3ri86lEjAiWZbnVwcTKZWTUGKDpGsfGIU1N+NGSuBWJ/Xn7/Njxx1pjnWvcUbvSFqsoCpX97OFC2rq1dO8pE2OFEEIIIRwSLoXYRzhtsekZTVtI87v7GDs+A4ivo3TCm6qo9Fi5CQB93DigaaWw8X6RiQN9nLZY53w+1Ud78Ce0xu7MQB+FtlcuASr7xsLl2jVk5XjweBXKSyVcCiGEEELIPpdC7CPqm2uLJb6Fhm7qeFQPDQnbkAB4QhHyCoup6Z6N1qMPEF9z6fA2nhbbzFYkI3JHkeZNp1ejPSvbKuBph8plG8JlVb94uFRVhaxsD+WlUSJhE59f/l4nhBBCiH2X/CYkxD6iriY20CexLTZhf0bDssNn48plzvJ1qKZFcUF/vLEtQBoP0PE0CptJO5HEgmaqN5WC3BFNgmlb+ZLaYtu2FUlbwmV1v56AHS4BsnLsc1RX6jt9LiGEEEKIvYmESyH2Ee5An2baYsGuXAKEdXvyqdN2mrt0NQAlBf3dCmXTNZfJlcvm1ly2t8S22J2pXCZeT+N23h1R3b+H/dh1sXCZa7/26sroTp9LCCGEEGJvIuFSiH1EXa2BpikEUuL/7BPbYo1YuAzFKpcpnhQAsmPhsnTkIDfEbW+gj9LMtNj2FkioXO7Mmks1ac3lzldRg3nZRFL8aKtXg2WRlR2rXFZJ5VIIIYQQ+zYJl0LsAwzDIlhvkJ6pJQW/xLZY3YpVLp222NiaxuylqwCoGDnEPbZxa2tL+1zurqqlfX0JA33UPbfmUlFVygf2RK2vQy3aTFaOXbmsqpDKpRBCCCH2bRIuhdgHBOsMsCCcuZX5JT82e4xuGoSNsNsWG9ACUFFB2qYtVPTtBtnZ7rGqoiYFx8b7XDr3JQ72aW+JW5HszPYmice2pS1WVVTKB9jrLj0rl8uaSyGEEEKIGAmXQnQRpmXyaeFHrKlcvdOPdbYhqUpdzeKyRQSjQSC5Lba4fguvrfg3a6rs8/s1P/zwA+Cst0zeQiSxFbXxfpFOgNud4TLQ5q1I4tfUpsolCuUDY0N9VqwgO1fCpRBCCCEESLgUosuoCldSVFfE+uq1O/W4TRsaePuVbQAE0k0Aoqa9L2NiuCypL056nN8TgHnzACge0R+f1mhoT1J7afNbkezOtlhfW9dcKrsWLlVFpcwJl6tWkOmsuZSBPkIIIYTYx8k+l0J0ERHDDoSGZe7Q8dGoyV9f+I7SZRl4rVT6Dw7gH5OKQZBw7FyJnEE+joCWEC4L+jcJkEmVyxbWXO6uYT4QXxO6s8/jHKsqapuuL7Fy6Vm5HI9HJT1To6ZKxzQtVHX3BWohhBBCiM5MKpdCdBFhw14L6exHuT1zFxby7eZvCeav4ZRzu3PJtX3xBmKVSydcJgz0qY/WA9Avoz8H9zoUTVFh7lwsTWPbsL74GrfFqi2Hy90ZKh2BNm5F4hzblqql8/ja7jmYaWloK1faE2NzvJgm1NXs2PdGCCGEEGJvJOFSiC7CqVyaOxgutxbXAlBwgJcDD8lCVRXMWNUz0kxbrHP+kXmjKMgdgbqxELZupa5gKHrAh1drvnLZXAVwTwz08ageNyCqO9UWu2vhUlEUUBT04QX2xNjNmxKG+khrrBBCCCH2XRIuhegi3LZY0w6X4bDJtq1hqhoFGsOwA+O2bXaba1pOwnYjsb0snXMlbkXicKaweuZ8D0Dd+P0BmlQunUDXXEjbE22xEL/WnRro44TLNkyKBVBiPzYjwwvs86xa4YbLKhnqI4QQQoh9mKy5FKKLiCS0xS6YW8Os/24jGrFQVbjhdwPZvCHE5++VU1Ya5agT8iiLhcvULLtaaVlWk8plc5xBOd65drhUJh1BXko2vdP7Jh2ntRIunVC5Owf6APi1APXR+qQhPdvjBN/Ge3Pu8ONjzxUtsMOltmIFmaMPAqC2WsKlEEIIIfZdEi6F6CLCsUC4Ymkti78sQVEhI0ujttqgdGuE77+somybXcX84dtqKkJhAjkKitcOPIlrNZ01l4ltsQ5nLaNnzmwA/JOPYXqPXk2Oc9ZcNlcBdKfF7sa2WIA0bxoVofKkybHb0x5rLgEiw4bZ51m5nMChBlXeQqoqM9p0TiGEEEKIvYG0xQrRRUSMMIZhsWJpDaoKP7+6D+MPzQKgukqnulJHUaBXPz+11TqmZZKR5XVbYJ2WWICIaYfQxm2xHtWDpmoo1VVoK5bDgAGYvXo3ez2aG9K8Te5zqns7067aFgf1Opij+08jzZu2w49xwqG3rZXLWGAOF9jhUlu5nDJ1PUWpP1JYtbFN5xRCCCGE2BtI5VKILiJihNmyMUQkYjByv3QGDk2lstwOjBVlUWqrdTKyPIwcl87WTWFMDDKyNKKxILkjlUtnDaP3h7kolgWTJ7d4Pa2tuVQVlQN6jCfNk7oLr3j70r3ppHvTd+oxauxvalob11w6Lbh6r16Yael4Vq7El2J/batqG9p0TiGEEEKIvYFULoXoIsJGhPVrGjAVg4MmZwO4g2Q2rW/AsiA710PBaLuKZykGmVkeLMsiakSTpsw66zcbc9pLPbH1lhx2WIvXE19z2Xx1cmz+OAZnD93xF7iHOFXVNk+LjVUuLcAoKEAJ1pNXUwZAXb1MixVCCCHEvkvCpRBdgK6bzP66lOpKnYwsjX6D7MmtTrgs2hiOfe6ley8f2bkeLEwysuz7I2ak+bbYJpVL+7ze2KTY1iqX7prLZtpiOzN1V8Ol4oRLC330WACy1qzB51eor9WbncArhBBCCLEvkHApRBfw6axy1qypxh9Q2H9ipjv1NTPbDkiGbgearBwPiqJwwhndGDshjazY/VEjgm420xZrNQ6XAYhG8c7/ETMzC0aPbvGaWpsW25k5W5G0vS3WfrxpmW64zFixhpQUDd0wCdab7XOhQgghhBBdzF4dLsPhMGeeeSannHIKJ510Eq+//npHX5IQbbJ6aT2mGuGwqblk53jd9ZNer0paerwtNTvHriIWjE5n/OQMt8oWMRu1xbawFYnfE8Cz4CeUhgb0iQeD2vKPiPiay65Vucz2Z+NRPeSn5LXp8c4+l6YVr1xmrFqLP0UFxZTtSIQQQgixz+paJYed5PP5ePHFF0lLSyMYDHLyySdz3HHHkZmZ2dGXJsQOq6/TKdkWJLWP5gbJxOE8WTke6uvsz7Ny4/+kzUYDfBL3nIy0NNBH9eH75jP7MZOPwNfKdbnTYnfzRNj2lhvI49wRF7gVyJ3lfB2Dej0Le5gcCWSuWEvgeJUQJjXVOj377PjWKEIIIYQQe4u9unKpKAppafZwk0gkYm8ib0rLmuhaNq0PYSpRcvObD47OukuIVy4hOYA2XnOpm/ZWJY2XB/o0P95vvgIgeviUVq+rq7bFAm0OlhAf6LO6chU/1q+kYUA/UouKybXCmEjlUgghhBD7rk4dLufNm8eVV17J5MmTKSgo4PPPP29yzMsvv8zUqVMZO3YsZ599NosWLUq6PxQKccopp3DkkUcyY8YMsrOz99DVC9E+Nq5rwFAi5HaL1xGNhPWTmdnxQJkYNJMG+BgRdCs59DjVy0QpBnjnfo+ZlY0xZmyr1+UM9NG6YLjcFU4wdb5+9SOGAzCobJu0xQohhBBin9apfysMBoMUFBRw+umnc9111zW5/7333uOhhx7innvuYb/99uPFF1/k8ssv54MPPiA3NxeAQCDAO++8Q0VFBddddx3HHXcc+fn5bboeVVW2f9Ae5FxPZ7su0b42rQ9hKFHyuvlwOlstxXS/79m5drhMTdMIpMRbVC1M93jdiuJBI6EzFoMoimol3Za3eCVKOEz06GmoXvvHQ0vvrzRfKooCad7Ufeo9qKn219FER1GgftRw8j/8lIElJXylWdTWGPvU16Ot5OeX2N3kPSZ2J3l/id2pK7+/OnW4nDJlClOmtNya9/zzz3POOedwxhlnAHDPPffwxRdfMHPmTGbMmJF0bG5uLiNGjGDevHmccMIJO30tHo9KXt7Obda+p+TkpHX0JYjdpKoywpZNYQIZJj16prrr/bKyU8hLt9+PfftHgVLyu/uT3qNpFT7SrQAAqRke0n0B0qsD7v3pWT4yoymkh+O39VxoV/59xx+LL/a+aun9lZ2zP32796B3Ru9dajPtarJrU0nXAwT8HtK1ABxoT9QdVFyC1cckFLQ67c+Kzkh+fondTd5jYneS95fYnbri+6tTh8vWRCIRli5dylVXXeXepqoqkyZNYsGCBQBUVFTg8XjIzMykrq6OuXPnctZZZ7Xp+XTdpKamoT0uvd2oqkJOThqVlfWYpuytt7cpK4nwwl83YxgW/Yd7qK8Pu/eVltfgCds/cAKp9jrinHyN8vI695jK6jrq6kP28RVVhHwmdXUh9/7i0kqqa4JJt3k++waAqgMPwaqs3+77K4VsKiuC7fSKu4aamgbq6kIYYZWGaIiS/oMYAHRfuxmrr8maFXW88vx6jpiWm1RJFsnk55fY3eQ9JnYneX+J3amzvr8yM1Pwelv/3abLhsvKykoMw2jS4pqXl0dhYSEA5eXl3HLLLRiGgWVZnHfeeYwYMaLNz9mZvrmJTNPqtNcm2u6rjyuoqdIZOz6DYUc3sKAsfp9hGu73vFtPHxdf3YfuvXxJ7wPdMNyBPWE9QoqmY1n2AB7d1AnrYUzTco/xNoTxz5+Pmd+N6LAC1Ni55P3VmIplgW7YX8+G7vmEszPJL9xKv74q4dUm33xSycol9Zx3eW9y87vWVi17mry/xO4m7zGxO8n7S+xOXfH91WXDZUssy3JbB4cNG8bMmTM7+IqEaJuqiigARx6fyyZrCwA+zWcP5zGTh8YMHp7a5PFGwgCfaMK02BRPCrWRWiJGxN2KJMOXweAFW1B0nfDhR5C0EFMkUWNz0KKm/f2xgOrhg+g+dyGnjG5gwHkDeff1baxZHmTmy8XMuKFfB16tEEIIIcSe02UXSuXk5KBpGmVlZUm3V1RUtHlgjxCdSU2VHQYzszyEY5NJUzwpAJiW3Qq7pa6I77d8536eKPG2iBF1tyYJxM4RMePTYg/pNYlJy2sAiB5+ZDu/kr2LO1QpVvK1sKgqGARA5vLVZOd6Of8XvUnL0CgqDBGO6Ly79h1eXfEynxZ+RNgIt3RqIYQQQogurcuGS5/Px+jRo/nuu+/c20zTZPbs2ey///4dd2FCtAPLsqip1klJVfH6VCKxQBJww6UdFD8p/IhVlSsprt/a5ByJ1c2oGUGPPcYJqFEj4gYkRVHwffYJAJGpx+ymV7V3cPa5dFhYVI4cAkDOsjWAvVaidz8/pglFRXVUhMqJGBGK6or4fsF6SoubbgMjhBBCCNHVdepwWV9fz/Lly1m+fDkAmzdvZvny5ZSWlgJw6aWX8uqrrzJz5kzWrl3L3XffTSgU4rTTTuvIyxZilzUETfSoRWa23bnuBEWfau91aTSqVDa316RhGUl7MpqmEy7tFtqIGW+L9W7ahGfNavSRozB799kNr2jv0WQyrmVRMWoYADnLVrs39+prT+Et2hwfBNYQNJj52maee2ITFWXR3X+xQgghhBB7UKdec7lkyRIuvvhi9/P7778fgGuvvZbrrruOE088kYqKCp544glKS0sZOXIkzz77rLvHpRBdVU11rCU2Fi6dSqVf8wN2cGy87rIx0zLxxEJnxIigx9ZgelXnnJYbLjO/tKfERqZOa8+XsVdqrnJZ17cHofQUsletpzIaBa+XXn3t79XWogaI/UiqqohiECUUNHn1uS384qZ+eL2d+m98QgghhBA7rFOHy4MPPpiVK1e2esyFF17IhRdeuIeuSIg9I3G9JeC2tHo1e/KoYRrURmrc461m1lwapoFX86IpGvXRejeMelX7HE6wBEj/8itAWmJ3ROPKpWXZX8mSgn4M+HEVnhXL0MfuR69+drjcuLaBpZvLyevuxetVMZUoHq/Ctq0RNqxuYNiorreHlRBCCCFEc+RP5kJ0Qm64jFUuDTO5cmlaBrWRWvf45gb6GJaBpmj4NLuVNqTb+1m6LbSWhWVZaBGdtO++x0pNIzrxkN3zgvYiitK0cmlhUVzQHwDP/J8AyMr2kJKmUl4epq7WYNO6EOXbIhiKzvDRdqB0JgILIYQQQuwNJFwK0Qk1CZduS6uz5rL1cOmEUTtc2oE0qNcD4FHsczqhqM/itWjBIJEjpoDfv7te0l5DaaZyCRbFI2LhcuH82HEKvWPrLu3joLJCB0+UYSPtda/Vla23NgshhBBCdCUSLoXohGpjay4zspIrlz6nLdZKbos1LZNVFSv5YP17GKbhbjuiqZo7HTYYDQLg0eLd8JZlMWiuPTArcpS0xO6I5tZcWpZF8YgBQLxyCTBkRCqoJn0H+NFMO7hn5Svk5Nt/JKiqlMqlEEIIIfYenXrNpRD7qsaVS71x5dI0qYlUu8eblsnG2g1sC5ZQE6nGr9kVM03xENBSks7tVC5NywTLYvB3SwCIHHPsbnxFe48may5j/1eXn0UwL4uU5UuhoQFSUjj0yGwG7NefDzZmULYhhE6YrG6QnWN/D6RyKYQQQoi9iVQuheiEGk+LNUwDj+pBUzSgmTWXmO72JKZludNlNVUjxdsoXCZsW5K+YRO5m0sJjR6N2a//7ntBe5EmlcvY2lUUhdIRg1AMA8+SRfaxioIvoOD1qvTumQFAVr5FRpYHRZFwKYQQQoi9i4RLITqhmiodn18lELDDpDOcR1PtzyNmhPpovXu8ZZnuukvDSmiLVVRSPcnh0hnoY2HR+4s5ANQeK1uQ7KiWKpcAJSPt1ljvgp+S7gcYP6Ebffr76d5PQ9MUMrI81FbrFNeW8P3W2W7rsxBCCCFEVyXhUohOJhwyCYdMt2oJsXCpaqixymV1uDrpMaZlueHEskw3XKqKltQW61E9buXNsiz6fDEXgHoJlzusaeUy/nHJiIEAeH78IeF+O/T37pPGhENzQLOrldm5HiwLftq0mFUVKygLle3eCxdCCCGE2M0kXArRyTQE7WCYmmb/8zQt094yRNHcttj6aF3SY0zLxCKhcmnaH2tKclusqqhuOPKXlpO3ZBXVPXIJjxq5e1/UXqS5yqUZS5hbRtqtxd4f5ibdD6Ci4lW9RE17iE9Wjj2cqaLarkAbprTICiGEEKJrk3ApRCcTjdhhxOuz/3nqsdBhr7m0b4sYkaTHmI3aYhPXXDauXDp6fmUHoLWTxjTZXkO0rNE2l254BAinp6CPGIm2sRC1eCsQ3yZGURR8mg/d1DEtk6zYUJ/KmmDScTtjcdki3lv3bpseK4QQQgjR3uQ3SiE6mWjUDgpen51inHCpKR53zaUj4LGnwiaGSzOhLVZT7K1IlFgi0hTN/dhZb7lm8tgmrZ6iZU2CuGUlfe2jBx0MgGfeXPc253HOtN+IEXHDZXVdKOm4nbGpZiNlDaUEE9bfCiGEEEJ0FAmXQnQy0Wiscul12mLjVcjGwSbFk2ofQ3LlMjGQKoqCX7P3WHTWXPrrgnSfs5BwVjpF44a4gVNsX3P7XDpM4uHSO29O0v0qqrtPadSMkB1ri62ps4NhW8KlEduixvljghBCCCFER5JwKUQnE43EKpdeO8Q4wcGjaO4elQ5nEmziEJ/EjzXV/ifuhFBV0VAUGPLNEjRdZ9ORB2N6kquhonVN1lwmVC4ty2oSLuOVSxIql1GycjyYGNTURmLH7XxAdP6IIG2xQgghhOgMJFwK0ck0XXMZn/zaONi4lcvENZemGa92xgYApcTaZ53KZcEX8wHYNO1QoGk1TrSstcolQHTgQMy8PDyLFkBDg70HJnYo9Wl2uIyaEfK6+/BnGlSURgk1GO5QoJ3hDAdqy2OFEEIIIdqbhEshOhndbYuNrbm0Egf6JFcZU2KVy8YDfRKnxdrHpcY+V9GqahjwwwrCWRkUHzgaQNpid0Jr+1wCGLHWWCUaxbNwAWZsiq89LTa+5lLTFEYd6McCNq4PYVgGKxbX8e1nlZjmjoVFZ/sZaYsVQgghRGfg2f4hQog9yRno44mFS9OMVyEbD/RJ8TatXCa2SKpuuEyJncND+kcfoRkm66cegulRIbwbX8xeqOk+lxYkrru0TKITDsb/wXt4583BGjHdfpyiJK25BBhxoBfmw4Y1Qf6zqQhjo/39ys33MnJc+navxfnDgyVtsUIIIYToBKRyKUQn07gtNr5+0v5bUGL1MqA502ITJ5YaSdVOgIATLlWN9HffBWDjMYe655G22B3XuMprYbmtr2CHS31ifN2lmdAWm7jmEiAlyySvm5dwyKKkOExahv29XbkkeR/T5him4T6vVC6FEEII0RlIuBSik3G3IvE23orE/ufqVC99mg+valfCnKmh9seGW8nSGlUuU6rqSP3mG4LZ6ZQcMDJeb5O22B3W3ECfJhNj9zsAy+vFO3c2lmEHP6XRmkuw22P3OyiDkePSOO3Cblx7+wBUDVYurccwWm+N1RO+5zLQRwghhBCdgYRLITqZeOXSmRabXIV0wo1f87sfOwEUYpWz2OdqbFpsXiAPTdEY/tmPKLrOiqMOxPSoSRU3sWMabwfTuHJpWSakpKAfMB61ooLAmrX241DcPwZEDDtcho0Qaekeho5Io1svLympGoOGptJQb7JpQ6jV60j8nkvlUgghhBCdgYRLITqZxvtcNh7O4/yvXwu44dKZGgqxgT6NpsVm+rM4d8QFDJj1OQDLjjsIe6Wg/VzSFrvjmltzmTTQJ7ZGNnLYZACy5v4IJE+LjYfLcJPHFYxNA2Dl4tZbYw1TKpdCCCGE6FwkXArRyejOQB9f8rRYrVHlMuDxu1U0PSFcmpaF0agtFsC3Zg3e+T8RGTqUkuH9kqptEi53XHNbkTRuiwWIHmqHy8y5P7mPc9dcmk3DpfO44aPscLlhTUOr15HcFiuVSyGEEEJ0PAmXQnSADdXr+c/KV6gOVzW5z22L9TYa6BMLik57bGLl0tkLE+ygkThh1hF4/VUA6s88y11jKW2xO6/xmkuaDPSxP44edDCWx0P2jwvAsmKVy9i02IS22Pjj7HCZleMhPVOjZEuYaKTlimQ0qXIp30chhBBCdDwJl0J0gG3BbYT0EBWhiib3uQN9nDWXprPm0g6KColrLpPXZYIdUpxAqjpbl5gm/tdfxVIU6k8/A0iuuMk+lztObTwttvFAH6dFNS0Nff8D8ZVXkruxJGlarBMMw7GQCbjVZkVR6NM/gGnC1s0t7xMjbbFCCCGE6GwkXArRAZw2xubaGeOVSyc4OlXI2FYkscDo9wRQaTrQx7AM93NP7DHeb79G21JEdPIRmH37AbFQZMmay53VbFtsUuUy/j2NTrJbY/stWIOC4lY9nTAY1uOVy8S9KvsMsLeY2VyYPNQncYKsDPQRQgghRGcj4VKIDuCsl2uunbHxQB+n5dUJlc6WJIGkttiEoGEabsBxj33t3wCEzjrXDUeJ1Tax45rsc9lS5RKITDoMgL4L16Aq8XBpxdZXJq25THhc31i4LNoYD5fVlVEeuWMtb/yzGMOwqKoOYZqyz6UQQgghOg9PR1+AEPsiZzJoc+2MeqO2WLPRmsv4tNjmtyKxiLfFaqqGUleL/913sFJTiZx0Svw4S9pi26LJPpdNKpfx76k+8RBMTaXvwrVUJzzWqRo7g30aP653Pz8oUJRQuVy3KkgkbLH4x1rWrw6yqaGQ1APrGTkuPanqKYQQQgjRUaRyKUQHcNZINldxctpiPd7k4BifFhsPl+60WCu5culWOxUP/jdeRwnWEz7lNKz0DDdIWrHNSEDaYndG07ZYWqxcWukZ1IwaTnpFDalrC93HmpZJxIy0GEoDKRr53X1UVejM+aqKaMSkaKNd5dQ8CnU1BqZisG1ruMljhRBCCCE6ioRLITpAa5VLZ0KoO9AnFkCd9ZPDcobTP3MA+Sndkiph7rkt0w2vHkUj8NLzADRcfCmQGI5kK5K2UBpXLhu1NtdH61lZscL9HpceciAAWd/Nia+5xHQnxjp7Xzb+Q8P+EzMAeP/NUt59fZvbInv5jX35xU39SMmwqK0x0A1L2mKFEEII0SlIuBSiAziTQZsd6BNbc+nxJE+LddZP9s3ox5H9pqKpWjPbYtiB1al2BhYtxrt4IfqoMejjDwKSg6RsRbLztjfQZ3nFUuZsnU1R3WYgIVx+O9utGpuW6f5hwWlzbtzaetjUHH5xUz/8AZWlC+ooKQqTlq7Rs4+fPv0D5PXQsCyoqYxK5VIIIYQQnYKESyE6gBP+mq1cRi08XgVVbTQtVtWaHJu4j6XDmRarKiqp/3wBiFUtY8EmMeDImsud12TNZaOBPsFoEIgP66kYV0Ak4CN9zjyIRlEVNSlcelV778vG7wVnS5IRY9PQoxamCb37+93vVW5P+zqqKnT3jxVCCCGEEB1JwqUQHSC+FUnzbbHONiRA0vrJxpqrXFqxfS5Tg1ECM/+LlZpG+Kxz3Puba4GVttgd12RabAsDfaJm1P7c62HzfkPR6oN4f5yHqqhYloUZmxjrrKVtKSCOPTDD/bhP/4D7cW53J1xGZaCPEEIIIToFCZdCdAC90UAfXbfDiWVZ6FHLHeZjHxNbP6nuWLh0KpcjP56HEgwSOv1MrIxM9353oE/iPpdSudxhKq1XLh1GQnW6cEIBAN4vPrPDJZa7DY3zfW2ptXXQ8FRS0+0KtbP/JUB2N/s2u3Ipay6FEEII0fEkXArRAeIDfSy+/LCch25byw/fVmMYFpYVH+aTeGxzLbDQNBhGzSimaTD6na8BCMUG+TRm0XwoEq1rtnLZzNfRrVxaJoXj7XDp+/IzFJSktlhP7PvaUrjUNIWpJ+QxpCCVAUNS4rf7TNLSNerrDIJBvdnHCiGEEELsSbLPpRAdwKk0lW5r4McPK7BMePf1bTQE7dsT22JbW3MJdiXNIF65ihgR+i5cQ97azUT3OwB9/wOTj3cmzGK57bDSFrvjmlaLrWYHI0VjlUsLi/KBPYn26IFn/k+k1DVQk+pxW1mdtliLlltbJxyWxYTDspJuM0ydvO5e6usMNm2sh2G78KKEEEIIIdqBVC6F6ACGadDQYPDVJ+VYJuw/0W5b/fazSgC8CW2xuqk32xLraBx2TMtk/OtfANBwxVUtPi6xnVPaYndc4yDeUsVRT6hcoijUHz4ZxTTpO39VswN9nAr1jk7wjZo6PXv7Adi0IbjzL0QIIYQQop1JuBSiA5SUNPDF+xVUlIXpPzjAKed2x+dXCTUk73EJduWyubWVjsbBMLuolCGzlxLMzyF86uktPqbxIBqxY5yvt7tnZYvhMla5jH2Ng4dPBqDfvOVAwv6lzppLTBaVLuCfy16gNlKz3evQTZ28Hj40DbZsanDX7QohhBBCdBQJl0I0sqpiJfOK5+y28wdDERbMrUHXLUbsn8pFV/ZBVRUys+PVyaCnjLpoHWCHkNYql43XYh7wxlcolsWas08An6/ZxygoEix3gUf1tLiFiMOpXDrtrg2T7XDZZ96y2P12+FQVDUWx12Eu2DYfgOXly7d7DYal49EU8nv4iEQNvl2yjDlbv9+FVyWEEEIIsWskXArRyPKKpSwvX0bUiLbp8XW1Op+9V+6un7Qsi5f+VsR/X9qKZVl89UkpDUGTXn39HHhoBl6f/c8wKxYuDSXCCu1L5mz5zt6L0rJaHOYDyW2x/rogY97/nqjPS+EZJ273Wi0saYltg4N6HsxBvQ4GWg6X0UZ7mVrde6CPHktW0Tayi0rdKcCqotjrZs34utnqcGXSudZXr+PLTZ8nPZcTTnv08mNh8sWSn1hZsdzdZ1MIIYQQYk+TcClEI84v8GYrA1Za88n/yvnqowq++KACgMpynXUrgyz5qY6vPqrg2y/K0TQYvX+6u98l4FYudSWMqlk06CE3QOzomsuxs77HF4qw7NiDMHNzW3yMQrwtVob57LxhOcMZnDUE2H5brHO/qqiEpx0HwKDZSzHM+O2aqmFhkeZNA6CyUbhcWbGCwpoNVCXc7py/Z18faCYb1tfZ04ZlArAQQgghOoiESyEaccNlGzamD9YbLJlfC8D8OdWEGgy2bg6593/+fgWGaTByv3RSUrWk58h0K5dRNE3FtIz4pFhl++FS1Q0OmPkVAD+dOQVPrG2zOYqiuAN9JFzumpbCXLwt1qYoKpFj7HA55Pul7l6nKqq7PYlfs/exDOmhpEpmfaxFOrGa7qzF9fs1evf3EY5E2FoUcqfQCiGEEELsaRIuhWhkR8Olrlt88UE5Tz1SyH9e2Apgr6WMWmgehUjY4qfva9iyKQyAJ7a9yOARAQYOTYk9RzyYOOHSVHQ0zQ4PRqw61dI2JBAPlyM++ZHMkkrWHTyKigE98bTyGKdyCTIpdlc4Ib05iftcgv0118dPIJSVTt+Fa6Gm2j2HqqiYlum2ygJUhOzKt2VZBPVg0jkty0I3dXyavaZ2wDA/pmKwcV1IKpdCCCGE6DASLoVoJB4ujVaP+/pju/V129YIyxbUsW1rmB++tQPDaef3AGDu11Vs2WhXLs+8uCeTj8nh+DPy3Gphc5VLEx3No6CbekLlspVpsagohsnB//4YgDkXTANab6V1AqUM9dk1TsWxOc73zvkaq4oKmkbRpAPQdIOsb793b3fCpdPqClDWUApAUA+654iYkaRz+zV7K5JuPb340yzKt0Wpq4ufQwghhBBiT5JwKUQjTuWntcqlaVrMn2NvFzFuQgYAs/5bSkVZlP6DA4w5MINBw1KoqtBZv7oBzaMwbFQax5yUjzclHuiMZtZcmkoUTVMwLAPd3LG22KHfLCJ30zY27TeULWMHb/cxgLTFtgMFpcW1uc1VLgG2Tj4QgLyvZtu3K6o7sMl5DMTDZX20Pn7OWFusE0I1xYOqqBjoZOXZ5ygvDbfDKxNCCCGE2HkSLoVoZEfaYteuCFJTpTN4eAqHT7MH5xSubQBg4uRsAMYfmuUe37O3D02LVSsT1tIlro/LSmqLVWJtksl7ITZHReHgl5Orltt7jLTFto/EttjGX0enddXZisRpXy4+9ABMVaX7V3PANFFR3fsiRsR9fEOsFdZZbwnxyqWzXtOj2uEyYkRIS7fDZUV5/BxCCCGEEHuShEshGomHy5ZbRn/63m5/PfDQLLr18NG9l732LS1DY8S4dABGjEsjJc3+J9arX8B9rJ6wri6xcukPqPj8ihsudVOPr7lsZSuSvt8vpMfqzRQX9GPLxDHu7a2uuWxlraDYcYlV3+a+R7qpJ7fFAkZmBpvHDcZfUUXPlZtQFRUloe3Z2T8zHAuaiZVL3alcxv7XGwuXpmVKuBRCCCFEh5NwKUQj26tchsMmq5YGCaSqjBhrbx0x+gC7NXbCpCw8HjtweDwqBx5sVy/7D4qHy8QpoInPoSgKmVme2LRY+zanUqW2FBQtizHPzwTsqqVHi0+Iba0tNnErEtF2idXKxC1hnNt1M9qkLVZBZf0howEY/P1SeyuShGCa4rGHPUUMu701MVxGYm2zurMWNxYuATdcVlZIuBRCCCFEx2h9UZYQ+5jEsNfSWrp1K4MYhsWokel4PPYv9odNzSY3z8vI/dKTjj3qxDwGDE1h6IhU97bEiaCNA2xmjhezxh7oA/E2SU8LlUvvl5+TvXAlZQN6suawsWSqXhqw23Nba4t1WFio8jemdpEYEFM9qdRH64maUbf92N0yRlFZd+hopjz9NoNnL2WtoiYFU4/qxaf53PWXiW2xUWegj5ncFgsJ4VIql0IIIYToIPJbpRAJEsNeS/sFrlpqV5KGj05zb/N4VMaOz3CrlvHbFYaPSkNV47cbZvy8RqOJtNk5Hkwl6m5bEo5Vr5oNipZF2kP3AvDdpSeAqibtbend3j6XsmXFLktsi038HqV67feGbhrxymWsmqkqKhX9ulPbtwc9Vm8msLUYVUk+j1f1EjEiWJbV7ECf+BRhzQ21/oCKpkGVVC6FEEII0UEkXAqRIKlyGfvYMCyWLqglFDIwTYtVy+pRVJKqkTsjMVA2bkudNDWHsRNTyOtmr+GMxiqXza3n8334Pt75P1FZMJjVR+wHgDexLXZ7A30suy1WBvq0XeLXrnHlEuJtsU1aZhWFjVMOAiD3ky8bVS41fLEtRiJmpNnKZTywxqueiqKQmq7R0GAQrG99Gx0hhBBCiN1BwqUQCZoLl2+8VMzrLxTz/RdVbN0cpr7WoP+gFFJSWx6Y05qWBvoA5Hf3MeKAgFvpDMfCRJOgaJqkPXw/AMuuuQhiIcebcFxLrbSQsM+lbEWySxK/dmrs660oCimxcBmNhcuk42I/dtcdOR6A3I8+TwqXmuLBp9l/XAhG64kYEffzSJPKpeo+LyS2xsa3NBFCCCGE2FMkXIp9Xjhs8ua/inn+yc3U1sZbCk3LpGhjiGUL7cpR4boGNq231zMOKWhb1RKStyJpbmhQ1IyHT2eoS+PKpf9/b+FZtoTohImUTj7IvT1xiM/2tiJp6fnFjkuqXMaGLvlUnzupV7d0e11rQnh0tyQZ0Z/a/CwyfviJlMpa936P6sGn2mGyMlwJQLY/B2haudQULencaekalmJSUSrhUgghhBB7ngz0EXu9iBEhGK0nO5DT5L5w2OQff95EyRb7l/Z/P1dHYV414bBFKK2E8qUJw3cMqCy3P8/r3vJ6xu1JrFwCTdomdTMeDCLumsuEcBmNkvrIAwDU3/7bpEmyiesst9cW634sbbFtlrTmMrb+MdWb6n4fdENv0nrsbDuiKyZrJo/jgLe+ps9XP7B66jD7PAlDeqpDVQBk+DIobyhzh/yYscpl40mzqeka1VhUlLW87rLx+00IIYQQor3Ibxhirzd7y7f8b93bhPRQk/tWL6unZEuEvgMDDBiSQsmWBjZtCLNta4Tli+qIRk3GH5oJQFVFlKoK+5f77Ny2h8vEgT4Qr0J9v3U2a6tWuxNiIb7XYWLrY+BfL+JZs5rI4UcSPXxK0h6JOzPQx/1Y2mLbrHHl8pgBxzK5zxHu98GZFpvcPutsU6Kz+vBxAPT9dHb8PAltsVXhKsDensSred2BPmbC3pmJw4BSUzXAoroq+Q8Yji82fca7a9/elZcshBBCCNEiqVyKvV5dtA7LsmjQgwQ8gaT7qmJr08YckMH+EzP45NMoGVomaRkaI7x5TBo1iPQMD6uW1VNTraP6DMp8q0nJ6tXm6zEaVS4NyyAUDbGqYgWrSA6FzkAfp8VVqa0h7dEHsRSFurvtNZeJW4kkrrlsbgiQaF/JwVyhR1pPAMoayoD4QJ/E72liS/Lm/Yag52TTbe5C/HVBwumpeFTN/X5Xu+EyFZ/qI6SHMEzDXXOpNmqL9fpULCxCwebbnStC5dRF6jBMw23jFUIIIYRoL1K5FHs9J6DpZtMJmlWVdtDLzvMQSNGYfEw2ffoHyM7xMmh4CukZ9i/5WTleLBPWV2ygPGMJm8Kr3XOU1BeztW4LYAeG7a1jbDzEp/Hx0YS22HCjNZepT/wJtayM8NnnYYy1q15J21jEpsVqitZqu6u0xbaPpK9jM9uS6JbepA3V+Vg3dSxNo3baMai6zqDZy9zHemNrLmuj9lrMFE9KUjXUMONbkSRWtX1+BbBoaGh+Wqw7AdmSabJCCCGEaH8SLkW7Kw2W8ubq19kW3NbRlwLEA1rjiiHQpM3VpOm0WLD3nwQwlCipaSpBPeje98Wmz/i48EN+KJ7LG6v+wwfr30t6jsbtuE4wcEKGYRkYZvNtjJGEabHq5k2k/P2vWCkp1N/+W/eYxAqlUyFrbZgPSFtse2kpmDvfB6eNNfG4xusda48/HoBhXy8E7LZYf6wt1tmqJsWbik9zwmXEfZ82XnPp8apYSsuVS+c9LYOchBBCCLE7SLgU7W5bsIS6SB0lweKOvhQgXgnUmwlwVRWxymUsPJoJ+04m/gKeFQufFiap6RrBhI3tnfC6rHwpDXoDZQ2l7rrJNZWr+c/KV1hXvdY93gm5TgCxWql2OuFCUzTSHroPJRQieNW1mL37uMck7ZEYmxa7vXBJCxU3sXOS11Imtifb31vnjwOJrcuNw2XD5MnoaakMmrscb0PYnhYb2+fSkepJcauZESOK1cK0WK93xyqXEi6FEEIIsTvs1eFy3bp1nHvuuZx00kmcfvrp/PDDDx19SfsECzsQ6UbHb4egm7r7i3TjcGlZFlUVUQKpKoEUu/qT+Et3YuugEz4txSA1TUuqXDpBrntqD7L8WQBUhioAWFK2CIDvt3wXP2+scukMbTEts9mW3UTpPy0g8PqrmN2603DtjUn3OeFCVVRUVU26ppZIoGwfLVUunUm9zrTf5qbFup8HAmw76jC84ShDvluCR9Xwxt4bjhRPqvt+0RPaYlVF+f/snXecJGWd/z9PpY7Tk3c2R5ZlWdhdYEkLSA4CpwQFRUQQ9czhTn96ZzhzOPTEdIcBwYAiqCQBQZKkJe4usMuyOYfJMz2dKzy/P6qfSt090z07w/bsft++fNHTVfXUU9XVvfWpzzf4Q24lBkVDRedSPKzwOvQEQRAEQRBjxUEtLkOhEL797W/jb3/7G2644QZ88YtfPNBTOiQQropeIdTzzcRbedXkBnI5Ez2dBXDOkU6ZMHTuq/zKPeKSl3EuLViIxmSkPc4lAITkEC6YcyHmNs4DAPQVxWV7dBIAv7A1i+MKJ8rk5rA3+8y0MOnLXwEApL7ydfB4g395UVzITHYcMm+/y7JjMsq5HBsqOZdCXOoly6TAz67EJHReeA4A4IjHVtphsZIrLjVZgyIpTs5lwSr4CvqU9ECNMORyFiyLI4h4eMLJuSQIgiAIYhw4qKvFTpvmhg7OnTsXQ0NDJT3niLHHcsSlv9ce5xwD+X40h1vetLkI58iej4E7b9mHzeszmDRFw/Gn2i5jU4v7NfA6l+VyLjmzxWXBLMCwDCiSAotbjlMojk04l97qtDkjh7ASdoSmyKGzOK+YcwkAi//2LEJr1kA//kTk3/mukuVCuDDGnAqgtTiX5GKOnkrnzi2+UyiuVzksVmISBpafgGwiitkvrEN6KA21+FACsIv5AIDm5HEWfK1Igk6oFgIsDuSy9rXqRTzEoLBYgiAIgiDGg7p2Ll988UV8+MMfxqmnnooFCxbg8ccfL1nntttuw1lnnYWjjz4aV1xxBV599dWyYz366KNYuHAhCcs3AREWK3IdOef4zc924ae3PIP7Nt+DnUM73rS5FDyVV/v7cti8PgPGgK69BTz4124AQFOz61xWEpduzqXp3LBnPaGxQmQIcSmcS+8YXZlOAG7OpRAgJjdLqneKEMjIYAqn3Hw/uCQh9d3vA1LpV9YbFitcLGWENhPkXI4Nlc6jyLnMlw2L9Z9vxiQwLYQNb1kK2TDR8vBjCHlyLoW4FKGyumXA4m61WDkgLkMR++9cIO+Sc+6GxZK4JAiCIAhiHKhrcZnJZLBgwQJ85StfKbv8gQcewHe+8x187GMfw1133YUFCxbgAx/4APr6+nzr7d69GzfccEPFcYixxc1xtIVd974Ctm7M4o2NvbAsXhJSKti3J4+B/rHN09Q9YbHrXh8EAJx2bguaW1WINEefc+mtFut5HQpJiMQkcGYhUhSX4jgsbjmCIabGoMkaBvMDxbYkbmiiKHAkhKTmVAS1nBw6QVi2Hc9Tf/k3RIYyyFxzHYyjl5Q9RjcU1i3uMmJYLLmVY8JIrUj0asJiIUFiEtafdSwAoOm+B6BIirNNRIkC8BcJEt8xWZJLnFAtbM8jG8i79OcTk7gkCIIgCGLsqeuw2NNPPx2nn356xeW33HILrrzySlx++eUAgK997Wt44okncNddd+H6668HAKRSKXz0ox/Fl7/8ZcyaNWu/5iNJ9XVDLuZTb/MC42DM7vEnSQxbNmQB2De32bQJDsuZczZjQpYZ9IKFX/1wJ9o7NHzk/+3f5+RF5wUIo2j960lEMA3HnJCAojA89kAvAKC5VXPPYXHuNtx3bi+4pB3PdzdAVW3HMmdmIUkMjIliOva6rZFW7EvvRUpPgnnG6852QpIYLFiQJQmKJNvLGAdnFryGVlgNI/HSSiy+fwUyjTHkv/iVip+zLEtgzBYaMS0KxoCGUHzY64JJcPbnnbuXur2+6gjx+duv3fMoQYYiyzAt074+JOYsE5+XQJHtdXcvmYdUawKxFc+h0N2FsBJC1sgirsUgSQwhRQNjgMl1WMXrRZZkKLLiv3bCDIMA8jnL99mZ3HNtM37AP1e6vojxhq4xYjyh64sYTyby9VXX4nI4CoUC1q5di4985CPOe5IkYfny5Vi9ejUAwDRNfOpTn8IVV1yBU089db/2pygSWlvj+zXGeNHcHDvQU/CRyEQQz4URiShobY1j11bbsePg0AsM8YSG1tY4shkTN3xpLVrbNZx+XjsMnWPvrjxCWhjxhrG5NDstFfF4GD3deQwM5HHk/BgOX9iCtvY4Hn+wF5wDs+cm0Npqu0MDLIJ43HYNGxJh32d+zoVxYEsrtvTbDqga42hpiSEeD6NBizjrzslMR6qrHzySR0MijHihmHcpG2htjSMSVRBBHC1NDYjrYSQaw1ANjviAm585JRLHsh/cAQB44XNX4YzDZlY8xj40ID4YRmM4irlTp+N9Te9BY7hx2LzLxp4oMszeXyIaGfbarrfrq55o7IkiK9nnsakx6juPzYkGp8dpU0PMWSY+L0F7WwJDchyxZBRbz1uGo//4GFoefQAtZ07CYJ5jSlsbWlvjSCvNiA+EEYkrYEYIcSOMttYG5NU44hl3PNaoohOAImu++eSNvHNtNzVF0NpQH79ndH0R4w1dY8R4QtcXMZ5MxOtrworL/v5+mKaJtrY23/utra3Yvn07AODJJ5/Ec889h56eHtxxh32j/rvf/Q6JRKLm/RmGhWQyu/8TH0MkiaG5OYb+/nTZypAHiv7BFFKpHHg+ic7OIWx4fQiAna/Y3ZVDb/8QerUUnnmsD0NJA0NJA5m79zrbv/JyD444emxufLt6B5BK5bB9SxoWC+PwRRH09qYABhx9bAO2bcpC1gz7PQC9A0NIpWxB0K+lnPedYxtIOcv39vRgmmKvzzTNWbeQAVKpHDp7+tGfTTvrp5BDd08Sg0NpaJKGISWHVMo+H1k966wHALNuug1NOzqx9cSFWPuWY3F0YB5eBgftbVWjUJxDCIPZXMX1AWBoKIdU2l4nZGZLjhOo3+urnvCex6TmP4/5jIVUQXz2eWeZ+LwE/X0ZJJP2tfDaaUtw9B8fg/6736Nw0qeRyuSQT3P09qaQSutIpXLoVgZhmPbrwf4shtJ533iQ7BDr7q40envdfOKs4e63t28IWsFfdfjNhq4vYryha4wYT+j6IsaTer2+EokIVHX4uh4TVlxWwlsN9swzz8TatWvHbOx6+nC9WBZ/U+bGOQcHL8nxCmKaFji324Ds2JpFocARjkrgnCOVNKCbOnTdwoonBpxtuva6uZHbN2dx+KKxeVKTM3LgHOjak4fFDMxdEHXO1SXv6QBgf4HFe2Lu4nXwvBqW4SxPFdLu+txzfXAGzgHTsnMpPWmXyBSyMEwTIUkCgwTOAd00oJvuuO2bdmPerXeiENbwj09fAUlShv98i/tjkKq/Djic/XHOht3uzbq+JiTDnEeZKc4yBncZt+C7JsCZ8xnuPWIWjFmzob74App296KrCQhLEVgWhwTZvl4MHRY3nc9cbCvQil1MersKuO0Xu3HaOS2YPjsMw3SvRcM06+YzpeuLGG/oGiPGE7q+iPFkIl5fdV3QZziam5shyzJ6enp87/f19ZW4mcTY8MTOx3DvprucipOVENViDcvAptftojfHnpgAh4VU0oTJLax7NYXkgIHps8MQhU1FYZ0dW8fOIU6mcigULAz0GQjHgEmT3f6B3jw4ga9abJnek95CKBk94xyrtwKoEN8Wt5zlovrnkG67uN6CLZxbTvXP2fGZuPiHf4FkmHj6AxdjaHJLSR/DIN5qsdXiq15KxX1GzXAtXUQBHrFUEPycGJj7HmPIvfNKAMDSR15Fa6QNLeFWAHCqwlqe6sISk8oU9LH/XvlcEuvXpLHyOTuMm/sK+vgLSBEEQRAEQYwFE1ZcapqGRYsW4dlnn3XesywLK1aswNKlSw/cxA5i+nK9SBaSI96YCoFmchNrX7VvbI8/tQmKZiE1ZMAwdTy7ajM2xx/B0jMkHH6k7VKecFoTIjEJe3bkoev7X82ya18ef/j1dvzzoV5wAB3T5RHbbngFZbCCa/C9jJF2hHY5kWHBcs5FVLVzOkX/y6gS9YhQ7pzTZX9+Ai2vb0bu2GOx+pLTAIzcs1KIz5rEJQnKMWE4ka56PjdftVjPa8aY3Z+0+BkyxpC/4ioAwNT7HsZFsy+CWuyHKq4Dg5uePpdyycOHULGLSS5rX3sD/Xbrm0ptdgiCIAiCIMaKuhaX6XQa69atw7p16wAAu3btwrp169DdbfcnvO6663D77bfjrrvuwubNm/HVr34VuVwOl1566YGc9kGLYZXepJZDLE8lTXT3ZDF5egjNrSoammQYBpBMFrB2+3YU1CRiU1M4921tOPmMJhx3ciNmzI7ANDl2bh0+Z7AaXn1xCAZ05LL2jXj7tJGjwEe6Afc6RnkjP6xzaTuSRXFZbCfRl7Ur1EbVGKSiKBB9Llu37sGM//lfcE1Dz/d/AC4LR7I65zLY73A4qM/l2OB7qBA4jYrHuWQVnEvRlkS8pzAF1uw50E88GfKO7VCfX+HZrni9WEHnMiBqQ/6/B/qK/WbhRhyUc+UJgiAIgiD2l7rOuVyzZg2uueYa5+9vfvObAICPf/zj+MQnPoELL7wQfX19+PGPf4zu7m4sXLgQv/rVr9DS0nKgpnxQI4SS9yZ1uPX27srDgoGFi+3iPIlmGRgANryRRC5vonWmBknhaG3RcP4l7QCAhYvj2LA2jcce6MWc+ZFRCx/OOdasHoIJHe2TNaQGDbRPHV6keeduH2fpDbgIX1Ukxc6/dM6FVzwwz1j2ctGrsDdXFJc+59ICz+Vw4bd+D0nXkfrqt8CPWASsf9XZ13CwUYTF+rYnF3PUDO9cuuKyknMZDGmWizHiuSuvgvr8CoT+9AfoJ58CwL0OTG5AXG92b1P/da2FfX9isN+wcza81zY5lwRBEARBjAN1LS5PPPFErF+/fth1rr76alx99dVv0owObQxenXMpBNe+XXm0MQMLF9thr02tMrAVWLM6CcbCmDJFc9xQwZLjG/D8UwPYtS2H1S8M4ZgTa6/sCwB7duYx0GugaS6w7C1N4OCQ1ZFvqHmVzqXMZBR4oXxYrEc0BsNiB/MDxb/dgkUWt3DY//4GkzbvxtCJJyD34Y9B9oQej+RICveL1RSIQIJyLPCe8+CDEKWCuGSsdBvxnhCQ+bddgvh/fg6he+9G6ts3ANGoGxZrGT5RGnyooIb8f5sGRzplwlI9zuUIedMEQRAEQRCjoa7DYon6weKWI6RGKuhjcQuFgoXBAQPxFo72DruIzrwjwog3yHZlVJhon6wVXRgXSWJ462W2i3nP7Z24745O5HO1uyxrVtmFc6bMsnPSZCaXCNlKcy/3WmBapu+GvmxYLErFpXAuvWJTjJF4aSUOu/VO5GNh7P7+dwFJchwswK46OhyJUAJRNYpJ0Y4Rj0/gF8MkNMeCoHOpyRXCYlHqXIq8SaX4WfNEI/IXXgwpNYTQA/c56zLGYFiGcx3JnpxLIT5Vt2aVw2CfQTmXBEEQBEGMOyQuiarwCrOR87U4+nvsPK8psxRHvEgqcNzyRkiKhXgTEE/IZYvmzJobwaXv6UAkKuHlZ5P4+Q92oGtvvqb5bn4jAwBomyZBlVUoklJVhUz/Dbhb9XZj/wbkjBxMbjo3+d71y+XUWZw7YwjnUhBVYpAYg5bO4cj/+BYY53j0U++AOWOmM4bYh1doliMkh/COw6/EorajRjw+gT+ckxgtPkcS1TqXpdeK5HzW7oOE3BXvBgCE//QHd0ymODm6ohhQU7gZUTWKybEp9vgSh1Z0L1XNHnegX/d9b0lcEgRBEAQxHpC4JKrCKy5HyteyuIX+XltcTpom+95PNCo45+3NOPPiZjAwJ9Q2yJLjE/j4f8zG4Yti6OvWce+fuqqeay5romtfAQ3NDKGILb6qdi7L3IDvGtqJFXuewcb+9bC4BZnJjpAQ56JsQZ/i/wDXuRTE1BgkSDj3B7cjsnsfdp59Mtads8xX+TPoZo0llGc59gQdYF8rElaak2u/LopL+MNiAUA//SyYk6dAffIJSDt3OOublgnTMp3rI6bG8I7Dr8RhTfMB2D00I1F7vHkL7OtuoE+nViQEQRAEQYw7JC6JqvCGr5ZzPbIZE4890IuhpB1+11d0Lts94lK4lNEGBjUi2pVUFqqxuIx3f2AK4gkZe3bY/SqrYde2HMCBKbOL7o2kQZEUX5hqJcqFDuqWfSw503UuvcV4gPLOJfeFxUZ8y8NKGB1//DOOeHwVMlMn44X//FeAMShSqbiURnAuRwP1uRwbhnMufa1IvKGwKN0mqsagyRqaQ55iZLKM3FVXg3GO8G2/BQDHgefgJbmWzjUJC00tKhSVYcFRdm7vYL8/LJYK+hAEQRAEMR6QuDzIyOct3HN7J9a9mhrTcb3hq+VyLl94agBPPtyHB//aDcO0MNCnQ1EYGlrddUT1VcMyHLFqjuAmMsYwY3YYlmUX6amGndvsNiaTZ9miTCuGxYp9lyOlp9CX6/UVOhHzdUSmqYNz7nOXrDLOpdPn0pOnqkgKNNlOhoupMSivvYIZ3/pvmIqMlf/9n8g12OLTKxhEOKwyQiuS0UA5l2PP8AV9KrQiKb7WZA3vPPxdOGHKib4xclddA84Ywn/4HWAYzrVXMAslYtb5m3NcclUH3v/J6Zg8zS4dO9Cnlzw4SQ4YWPV8Ek/9ow+ZNDmZBEEQBEHsP3VdLZaoDc457r29E2tXpbB9UxZHHB0bE+GQGjJw/9/2IjnLQKJRKZtzuXm9neP4+uoU2jrSME2gvUOFyXVnHXFza3LTEXnVhOdNnx3BulfT2Lk1i4aEjEHsw87cZpwy7bSybTp2bM0CACbNkLArZzuXBWbPw7AMR+R5+euGOwEAcxrnlp0vAORNW9z6nEsI59LFu4zDdTYjSgQFs4BEDkhcfw2kgo7HPnYpUkfNh1msIust3hMs1DKWkHM5NgznXHqvs3Jh08HX5XJrrZmzoJ9xFrTHH4X2yMOQ5ssV1xf74OBoblXR3Koim7GvXdu5dNc1LBO3/GSXE75umhxnXGA/CUrmBwEAiVDjcIdOEARBEARRAjmXBxEvPTOItatsx7KvR0fXvsJ+j2kL1i6sfmkAm99IF9/zr5PPWXYoapEXnukHALS0KU5IKeCKNYtbjrisJg9yxhzbfXnlhSR+9p3tuOXOF7A9uQ092e6SdU2TY/f2HLQQQ0u7LcpkSXZCFIPVaQG/K1swXXfUO1/AFZe2ABTuZHWtSOxQ2AjAOU797s2Qt23F4HnnYNXlp8PiljMHr9gQolIeZ+eSGCOGcy69P7U+YT/yT3D2vdcBAMK/v9X3oCF4XQRDtQEgHJEQCkvo69HxzON9yGXt62z3ziz6e3WEi7mZPV3ub8Xdm/6Kuzf9dcSq0ARBEARBEEFIXB4k5PMWHn+wD4wBRy6JAwDeeC29X2P29RTw9KP92LA2Dc4sdHcWwMFL8ha3bcrAsuz9tk/WwGRg2swQZs2LQPeIR+EA2mGx9mvL41ym9TRyRg5BpkwPQZYZerp0WBawe1cGqSGjbP5kT2cBhTzHtJlhCGNHguRU4RRid196LwqmfUM9UHQNAaBQRgxzR1zac5OY5At9BSoU9OHcLy7lMI6//TFM/8czMGfOwp4bvgcwZovLouj1igdJ5FyOg7j0QmGxo6fqnEtWPucymDdZjsL5b4XVPgnaIw+joauv4rZOkSm4opAxho6pGgyd44Wn+/HaSrtFz/q19n9POasZANDXrSPIQL5/xLkRBEEQBEF4IXF5kPDi0wPozu1DeMkbeMv5TQCAN/Yj73LXthx+/M3tePRvvQCAcJwjn+NIJc2SsFgREjv/yBg+9G8z8PZ3T8KxJzUiFJZhlBFrABxhZxQdO9My8bfN9+DJXY+XzEVVJUyZHgIASDLAmYmdW3NlQ2p7izfJ7ZM1n7Bzcy5N7B7ahYe3/R3/2P4QAKAv1+tsr5uugxN0LoXwVSTZ04rEnoO/oI8n5xKusznjuddw2i/vgxkOYfCW24Am+8be5KZvroJxDYv1CSESl2PBcK1IqgmLrYiqInfVe8EsC/Pve9KzbTAs1n2o4eVd10/Fuz84BdEGhn27C+jrKWDrpjS0EMMJpzVB1Rh6u/WS7bozpZEBBEEQBEEQw0HicoKzZUMKt/50F/75UB/6wpvQcMQ+IDGAljYVe3fl0dczutDYndvsvMW5h0dw9b9OxRFL7IIzvV2FkkqTWzfa685bEIWqSZAV9yZVN8uLS4EIi82ZOeTNPLoz3WXD8Y46No5wRMIV104BZxZ2bstCN0pDXEUOWXOr6nEVJaedh2kZjlPZm+2x/+sRlwWrsrgUy7zOpZhruRxGDjssljEGZcsmHPeF74Jxjr0/+D7Moxf7RKhhGWCMBcSlaE9B1WLrFeZ1LodpRcIqCEqpStc4+55rAABz73kUzCx9EAH4C0n1ZnuxPbkNABCNyViwKI5jTmoAADz7+AAM08KRS+IIhSS0tKnI5yxk0qbvu9edrb79D0EQBEEQBEDicsKzcV0KWzZkoBc4Zh8pI96gIGfmsOR490ZyNPR22SLthNOacNjCGKbOtm+UezoL4JxjQ996vNq9Gpxz9HXriMZkJJpsAecVkXoZseZFOH/CMTS5ibRe6riedHoz/t+35uKIo+OYPF1BPsfx6AM9eHnFIB65rweGYd8UO+KyTfW4gcwJizW4gYga8Y3dl/U6l64YFq6jcEjFjbfEvM6lOKZSZ0rkXIbSOSSueTeUoRTSn/w3hN75PgCuM2kVnctgDp0o2DIeYbEkKMee0rDY8jmXNTuXAKzZc1B4y5mIdvZg9ovrAJTmXHoL+jy/dwWe3PWE73peuCSKcISBc2DydBVnX9QGAGhptwsP9Xb7K8p2Z0hcEgRBEARRG1QtdoJz3ts6cPhRIWghCfdtX4W0XkDezOP4U5vwzGP9WPV8Eqef14KGxto+6p5uW+y1TrJvPNunyJAkoKdbh2GZeK3nFaT1NOZFjoJpcjQ0uje63pwvb85lOXEphJs313EwP4i41lCyriTZN8+LT4xh90MMa1YPYveL9g1wx7QQjj62wedcZj2hpsVNYViG70bf4pYvt6x8ASK/kyoz2RESZtmwWE9hFd3Ahd/8LZSNG5A/93xk/uPLZdcT/TP9+xm/gj6+ojKUczlqfD0rA+eRMQZFUhxX2tlmFOISALLXXAvtycex5N5nsPWkRSWup/ibcw7dsh8CmdyEClvkSgqw/MwWFPIWjpnj/ia0ttnL+7p1TJ7pXmvJQhI5I4ewEq56jgRBEARBHNqQcznBYYwh0aRCC0nIGnZ4as7IIhqTseyUJpgGx/NPDtQ8bm9XAUyyRRoAMIWjuU2FXuDo2pt3hNfgoC1CveLVKyIr5Vy6y23x6c11HCwMDju3SBxYfmYzWibJmDrDzsVcu3oIOSOHnX17AQDNLaqnTQjzhMX6c0b3pfdWrFjrFB0K5JjKUqlz6QszFaLRsnDaj/+EOSvWwJh/OIb+71eALJeuVxQBlZzL8c65JBdzbCh3HsVnV0lQVlMtVlB468XItbdg7nOvo3FPT6lzGQjHtl+7D0YsbiEWl9Hcqvreb2kvisseveQ7SqGxBEEQBEHUAonLg4SckXMLzxRbZhx7UgIAsHNbaQXW4cjnLQwNmmhuUaEoRYfOMtBWdDF3bM04+0oOlBeXEpPAGHOcwHLCEvA6l664FH32erO9WLHnGV9on9gmFldwxfsn4/2fmo5QWMLG1zN4dvvzWF14FEoiCy0kObmhdkEf+wba4IYvZ1TkpZVDhMEGc0xt57J4rB4BKxBu1sLf34vFdz+JTHMDBv/4F/BEY8k4gC2wOeclfQtnJ+Zganwq2iLtFec4WkhQjg0j5UyK0Njg+RYPI2pxLqGq2PXOt4FxjqV3P1Va0MeTBxzMFwb8D0m877thsYWS7+lQYaj6+REEQRAEcchD4vIgIWtknNeiZUZTiwpTyqOvt7aiPr1dIiTWzRkzuIH24t87tmYc52MwWRSXCVdccs4hMQmqpDquYEVxaYmcS09YbNG53Ni/Hhv7N2B3alfZbUxuYlNyPZILHkfezOHV13rAORBv8YezeqvF6pYO0yoVly3hVt8+3HxIq2TukicslpdxLiUm4fAnVmHZT/8IPazh/u99HNbMWSXHLoSFyEsNOlHTG2bgnFnnQ5O1km3HEgqLHRvKCUVV0souEw8gahKXAPZe8XaYioyjHnweas7/vQ7m+gJ+59L7kMTbAsgbFmsFKjB7Iw8IgiAIgiBGgsTlQYIIiQXssFgAKPAsdkx6CBvyK52CN9UgivkIpxIATMtCY4sKRQF27cxAN+yb0OSgLR6DOZcSkyAzeWRxye0KlXkr77w3WKzmmi86sEP6UMk29pgm9qX3omWGgbyUxOtr7O0Szf5m8oxJTsVV0zJ8Do5oiTI5Ntm3D+EilhOXctGVtZe7rUYE4RdewFu//XtYEsP9X34feo6cW/bYhaslWpyMdz9LL149SS7m6BlJHKpyMd+xJD9ydOLSnNSB9Wceg3Aqi9kP/NO3zFvQx7lmuT8sttzreEKGFmLo7ixgYNAvWCuFjBMEQRAEQZSDxOVBgt+5tEVZWk8jEmfQWRrJgeodiJ4ufzEfADC5AUliaGnXoOscfb32PpJJ+7/BsFgGu5iJEGflelK6Y5u+nMucYbclEY7eUD7pW98rWC1uor1DQ7yJIZuzj7EhIC4lSE5xHMMySsRiSA6hKdTse084neXm7i3oE8y5VF57Ba3vfTcU3cBzn34PNi8/qqKAkJiEkBxyQofHpXBPBUhQjg3l+pt6UYvX0ZiExcJ+6LHq0rcAAOb96X6feHT6XMJ1LIM5l85reLdjOObERhg6x/137vO1IxF9aAmCIAiCIKqBxOVBQkZ3xaVwwixuIhKTwJmF/t7qHQgnLLZdxYo9z+C+zXc7AqhtkgYOC91d9j6SSfv9RJmcSyHQTMus6FwCtuAT1WLFNoP5QRSKobJe59L03Oya3LSrv0oMS5dHYcFe1tAUEJeeuRi8dC7t0Ukl+Y5OAaAy65ct6AMGedNGNF55KaShIax47/l47fIznWWViChuW5Tx6GdZCUbVYseEkc6dyPVlAREprong+yOhMAX7Fs7C3iNmIbF5O9SnnywZ0+KW8z2p5FYGr+lzLm5F+2QNWzalsX5N2nHVTU7OJUEQBEEQ1UPi8iAh4wmLFc6lyU1EozI4LAz0VedcWhbHrh22cGzr0NCV6UR/rh+pgt17srlVAWcWBvvtm86hcjmX4GCMuW5hoIhOEK9zKRzElD7kOpeFpG9d57VlwSyOu2BxBGrEft3QVLzJRqm4NK3SubRH2ksqssoe5zK4vp1z6Rew0b3daHzn2yH19CBz/b/i2eve6tzgD+dOhTxtHmp1sfYHqhY7Nox0HisV9HHCYmv8CRYPQVZeZruXkV/9vGT/nHPn2ue+sFj3tRlwJFVNwjuumQw1DGxcl8H6V/IwDE5hsQRBEARB1ASJy4MEb1isxS3kzbwtLuO1icsNa9MY6DUwa14EDQnFEXNp3RaXiUYVFjORFOJyyABjQKzBvunlnDsFfbx5jsOFxVrcdIRkQ7G/pW7qTj5kRs84N7nem10LrkPDZAuLT4hi+qwQJk1Ti3Px9rmsnEPZFml3nEqBEJu8bM6l6zBasBDrHcTyj3wR8u5dyF3xbqS/9T2AMeeYhxONYdkVlzJ789rOkqAcG3zOZRkXsynUDMYYGrSE730357K2z0FcexvOWIp8azO0hx6AtGO7b0z7gUiZsFhPrjFH6cOejqkhXHZNOxQF2LymgEfu68Hf/rwXK57oL1mXIAiCIAiiHCQuDxJEQZ9E8SY2b+RgWiaiMRmcWRjoq86BWPHEAABg+ZlNAFyHQ4yvqAwNzUAmY6FQsDA0VEA8IUOS3GIigO3IOKGoZfIcvRiW4YTAxtW4PX8z54hLwHUvvdUsLct0/tYtHZOmKTjmxEYwiRfXFeKSOTfeJjcd0ccYQ0SJoC3S7jiVAsUjRs0y4lKMp3Z24YrP/BTx7buRv+AiDN34M0CSIDHJEcLD9TIMe8Ji31TnkpFzORaM5FwubD0SVy64Cq0RfzXi0Rb0cXKBVQW7rngbmGUh8sub7P0XP1NvKKvXreTDhMUKJk/XcNq5LZg3rxGGwdHVncWj9/f6HFCCIAiCIIhK1HRnUygU8H//93944403xms+xCgRzmVjqAmA3evSzrmUwcHR3zuyc7lvdx7bN2fR2q5i/pExACjrODa328KrZ18BFue+kFhvgRs3LNb03eQGMSzXuYwXncuskfPtW/Tb8zqXXqFYMPPOvt1qsm61WNlxddwcylOmnYZL578Dqqz68h1tp7O0rYNAluxqsfHuARx77SfRsrML+844Cclf3gooijNGsNhPOSKesNhgaO6bBeVc7gdViPRyrWRGKy69D0H2vOtS8FAI4d//BmxwwNm/93tTsaBPBXFpcQvxBgWnn92BCy9vR6IFMHSOdIoK+xAEQRAEMTI13dlomoabbroJyWRy5JWJN5WsnkVIDiGq2qIwZ2RhcguRiARIZlVhsVs32gJ18bIGx4ksdxPa0m5fNp378gCskkqxgH3TLHvbf5QZx63IajoupXAu04H2I0JcmoEbZCE2RZ6pvY5fXEoIikX7hlthijMHb1isxCSn0IqF8n0uo529uOIzP0Fs+y5sOuVovPz9LwOhkG+Mcq+DhOQDk3Pp3Rc5l6PH51zWINJHLS49Idl6extyV1wFKZ1C+De/dt15Tz4lr6IViRfx3dFkDZLEEClG8w7UUBCMIAiCIIhDl5rvZhcvXoy1a9eOx1yIUeLkV6pRxwkT7zHGEIlJSCVN6IXKoakAsHu7Xchn+mxX8JRzLhvb7Muma08BFrNKivkAdiio4mv/UZp/GJJDznLd0qHJGkKK/Z4QkwJRMdbg5Z1LUSHXO2chIkXPTfs9y1foR+B1hPzOJS/JTwvv7cZpH/pPNO/uwb6zT8V9/3UtoPrdqWoL5oSVA5NzSYwNoy+MNNpqsa64lJmM7Ec/Ds4YIr+8CSxvP6DZX+cScN3WiP2sp+qcbYIgCIIgDm1qFpef+9zn8Mc//hG///3vsXPnTmQyGWSzWd//iTeXjJ4GAESVqOOE5cyc42BEG+wb2Xv/1IVMunJ42+4dtvs3dYY9hijOE6Sx1b5sCgVbeLW0q84yX1hs0bk0uOtciuqZAKAJcckNFMwCVEl13hPVaRtDjcW/izmXHlfGG+KaM11xKXLLvCKSOTmXlq/Qj8AbksrAKobFNu/oxBHvugbxnXux4S1LsPJ7X4SllopCv3M5nLh0cy5l6cBUiy1XiIaojtG2dNnfarFiDHPefBQuuAhy5z5E7vozAH/oeO3i0v5+qZIKxhjCdiAE+klcEgRBEARRBTVbJVdccQUA4Jvf/Ca+9a1vlV1n3bp1+zcroiaEyxfTGhw3MGdknUqkCxbHkNor47WXh8AYcNnVk0vGSKcM9PfqaJ2kIhIthrNWqPAaigKhMEM+xzF/YQTLljc6y7jHLXR6RVoGrOJrTdacENawM9ecs0zMWey7QWvAYH4Q+WLYrOErVmJ5nEv3oYYQ1V4RKZxLb89Nn7hk5Z1Lb7XYjje247Iv/BzaYBo7LzwT93/mX3CYWr7qZ7VhseIcAP6Qx3GHCvqMCaN1LkcfFqt4XtvXS+Zjn0Lowb8h9n8/Bf73X2F5hvQW8eG+arHlc6CtwPdXi+WRxfg5l+lCGqZlDlv0iiAIgiCIiUPN4vLb3/42FQCpM4TL16A2OGGWeTPvuIQtbTLe94VZuOHLW7BlQwac85LPULiW02cNHxJrv2/g2JMakcuZuGB5K7SQe2NYrrekYZlQJHssxeNcih6PQhiqkgZFUnzFcMKy7ewJR8WbT6ZbhiNmy4XFeoWuIxY9OZTMFxYrgzHmtFGR4HcuZ730Bt725Zuh5Qroff+1WPXxd8Ia3FSxf6f3/A4rLr3O5ZsoLqnP5dgw2qq7+1st1t7W3p9xwonQjz8R6ovPY87z67D15EXOOpVyLoN9Lp33nfB1GYqkIBS1v1fjkXOZM3K4a83dmKRMx8lTThnz8QmCIAiCePOpWVxedtll4zEPYj9IFfMR41rccS7zRg4RRQgzC9GYjMlTQ9i7K4+BPgPNrapvDJFvOW2mR1xWuAE1LANtk+ycrKADIsQWg5vH6A2L9VbOFCGwos2JJttzCskh5z0hlsVcvG0WdE+rEt1ynRUzEBbLgjmXnkI/XhSmQOe6T4ya3MScR57DOd+8BbJh4qkPXoz2L34FbGCDMx5QKhL8Y1cWHZqkOWJaOkDikhg9oy7oU9xu/8Sle71kPvpJNF73Hhz/p8f84rJSWGyZPpfedeSiuAxHpZr65NZC1sjA4hZSgfxqgiAIgiAmLqOORdq0aRPuvvtu3HTTTeju7gYAbN++HalUaswmR1SHCIuNqw2OW2lwE6ZVFFnFG8YZc2yhtmNraV7szm1FcelxLivdgPortvoFqFds+cJiUZpzKUJCM8U2KqpkC8+QJ1RU5JCK7cUxAUDBcsWlfw6Vq8WanjzNYI6jyGdzcjQ5R/v//QLnf/VXYJaFhz77Lrxw1bn2eqxyNV0xRrnXQRhjzvF68+nGG3+u4Ju224OO0TrA4vwPl49bDvvatLfxOt2FCy6EMXceZryyCVNe3+a878+z5M6+K+VTm57CW4qkQFHsvMuBfgOWNba9LsX+K/3OEARBEAQx8ahZXKbTaXzqU5/CxRdfjC996Uv40Y9+hK6uLgDA//zP/+BnP/vZmE+SGJ6UXgyL1Rpct9BToVXcvM2cYzuZO7fmfNsPJQ1s3ZhBNC5j8jRX2JlW+VA4b8GQYP9KX86l5OZu8jLOpVN8qBjSqhaXaT5xGbILlxSdS2/OpVFhfuKG2it0GWNgjBVzLos30EHnUnJ7VKq6gQu+exumf/9H0MMa7v369Vhz0ckAiiG0YCX78MKqFJeAGxpLYbETj/0t6DOacy+uE991JcvIfvLfAAAn/v5h5+1yzqV46FPuwYg/T9ler6EFMA2O1NDY9roUv0uVQssJgiAIgph41Cwuv/vd72LVqlW49dZbsXLlSt/T79NPPx1PPfXUmE6QGJmhQhKarEGTNZ9b6M095JxjxlxbzO0MOJevvjQEbgFLljVAlt2b3Yq98Cyj4jquC8F8Qlc4jr6cy6KYzBadS01yw2IFqqza4lLkXHqc0kriMtjnUtzzy0z2h8Wy0rBYAAgPpHHChz6PRQ+/iPzkDtzxk89g66lLnPUkVioug9TSR1I4uPKb2OeSGBtG7VwWf3prbUUCuOIy+DAi944rkexowbwVazFp4y4A5XMu3f6ypdeueIgjex4ONbTYcxzr0FjxYMobjUAQBEEQxMSm5jubhx9+GJ/97Gdx0kknQZb9NzdTp07F7t27x2xyxMhk9AxMy0RcbQAAX/sPrxAzuYnGJhWNzQo69xaQy7rCc9XzdpuPpSfaHdN3De3Eaz2v+sJfAdeZCVZs9RKsNmmvbzqiUwhIRVIc8enmXNoiyysuvTmJQGU31UtJtVi4xVPs5inuHL3IkoLWrXvxLx/4LzSvfA17j5iJNX/+DfYdNtXnuMpMdgQrL9MzE/ALjWqdyzc153KUjhvhx3fqRtOKZBTi0uuw+9A0rLzqPACue+l1LsW16ojLMuGobkEu2Vmvodk+roHesRaXxe90hcJhBEEQBEFMPGq+s8nn82hqaiq7LJ1OlwhOYnwZytv5lg2aLS5FMRrTMn0FecSN3PTZYYADe3fZ1WH37sqjp7OAqTND6Jhii7pXuldjVefLTv9MgciXLDeuwB8W68m5FH0uiyJNZnJJeJ4mibBYf9Ef4TgC1d2IluRcem7kva1Igq7RYf94Hu/56P+gYXcXOi84E3fc+Ank2loBwKliK+YuxGOlokfV5lwCbi/PiBod8djGCgqLHRve7FYkgDcstvS39o2LTkWqJYHDn3wFrVv3lu1tObxzWRoWm2iyj6uvZ2zFJQ+ErxMEQRAEMfGp+c7m6KOPxj333FN22UMPPYRjjjlmvydFVE8yb7uOcS3uvKdISrFwTakInFLMqRTicvcOO99x/sKYs65RrLxaMP0Fcxxx6R034H44FVrBnJtfwxOiq0qqXYVSCZcUsBGi0udcyipkyRaXnHMYFcScFycsNuBQivDakrDYQgHx//gsTv3yjyEXdKz+yLuw9vtfgxHSHJdW9jg5siQ724p9BIWF5HMGh/+aLWo9GhfPexs6oh0jHttYQYJyjNjfViSjqKkmV3IuAVghDS9deRYA4IQ//KNszqUQjeUe1HhbCYnve6LVPq7ebnIuCYIgCIIYnppbkXzqU5/Cddddh2uvvRYXXHABGGP45z//iVtvvRUPPfQQfv/734/HPIkKiEqxDWrCeU9mMvJm3i8Cizdyk6fbwm3fbltcdu6xBWTH1FDJunkz79uXU4nWE5oaLMbhLQjiFvQxnPdlJuOsmedAlbQSx6I1YruE3oI+qqQF2ohU41xy33Ewj+MIuKG1MpMh7dmNxPXXQH35ReSbErj3S1fDOP1MTPG4ruJ4okrUee3uq3gMLCguq8+5lCUZLeHWEY9rLBltf0bCz2hbkYhrKToKt9rNuSwVl4wxvPIvy3HCH/6BIx5biVe3bQeWzAPgdS7t7csV0rGcnEvZEbHxFntZb3f56syjRcyHCvoQBEEQxMFDzY/Nly1bhltvvRWFQgHf+MY3wDnHT37yE+zcuRO33HILFi9ePB7zJCogKq0mQq64VCQFFregewvvFB2JKdP9zmXnHvu/k6e5oahClOrFVh9CKHmL8TjrBpzEcmGxhicsVmIMk2NT0Bpp9bUCCSthNGj2MfidS83XRqRSER/fnIYJi7WPy3ZgIv94GM1nnwr15RehH7cMj//xR9hx3AJfn0uxLoOEM2achfNmX+AbyxGwJc6lNyy2/sTbaEUR4We0YbFLJh2DSw67DM3hlpr3KfrBenteCiQmwYiE8PI7z4RkcUz9+S3OMruXqlRy7XpxnEtJdkRoOMqhagy9XXrZ9iWjRbiq5FwSBEEQxMFDzc4lABx33HH4wx/+gFwuh8HBQSQSCUQikbGeG1EFR006ClZWQUd0svOeuOkseJxH4UjE4goSTQp6Ogso5C107ilA1RiaWlzhKARjvhgW26A1YDA/iIhS+hmXhMV63EIRfmdUyHMUOZcA0B6Z5LwW4lLkOYrwWpOb+5lzWQzDzWRw9k/vQMu9zwAAstd/CKmvfRt6z0tAfxLM0xdThOFKTEKimBsJuEKikrhkqN65PBCQnhwbRtsvNHg91cLSScdhWnwG4sU8a998itfa6ktOw/G3P4r2u/6Gvs9uhjV3HixuFcPVK4tL8d2X4BbksmChpU1D554CMmkTsfio/tkoIdgyiCAIgiCIiU/NzuWKFSuQzdrVPcPhMDo6OkhYHkASoQQWth7pu8kVos4b1uq9gZs8LQTOgQ1r0yjkLXRMCUGSSluQCHE6o2Em3jL9DBzZdlTJ/iu1ImFgbkEfT+Vab/sEyZNzOcmTbyjCYkUYruwVl0Xncji3bbhqse2bduOdH/w2lt77DKzWVgz+/k9Ifef7gKY5OaCMMY9b6obFehH7545oHs65rO8WI/UoficKB6IwUlukDQtbjyy7TFxrhVgYL155FphpIvb97wKwnUKJSc6Dj2CPWvs9T0EfEXnADbROsiMbervGLu+Sci4JgiAI4uCj5kfQ73//+yHLMhYuXIhly5bhuOOOw3HHHYfm5ubxmB8xCkQ4mwjpBPwO45TpIWxYm8bqF+xiQB1TNd/24mZPiEtVUjG7cQ4G8wMl+wreoLphsSwQFlva/sPnXEY9zqVii0tR4EfyCDlvYaBgwaHg/H3OpWHg6N/fjyU//xMU3cS24xci/ut7wTtcUSvmY7ulzJm7dw6CEZ1Lz/r1KC69DjKFxY6eestd9c5h1eWn48S7nkXoL3cg86l/d8JixUOUsmGxzkMgt6CPbulobbdf93YXMHPu2DxMdHMu7T68dB0SBEEQxMSnZnH57LPP4qWXXsLLL7+MF154Ab/97W9hWRbmzp2L4447DsuWLcPb3va28ZgrUSVC1Hnzo7yNykXe5eb1GQD+Yj6At6CPyLkUrQ/KVKcMuA5esSXyuwzLX9AnOE8AaPUUtIkqUTRoDY6b6RbiMZ0w1ZAcqigunZvWYk6Xum4dEp/5GNpXr4KhKnj8Y5fi1Xechas6/NVZvf0DhfgSAr3k2Is3wo5TO4GdS2L01FvuqncOeiSEnR+8BvO+9yPE/vvbsP79bF9LnbJ9LsX31JNzaVoGWtuLzmWZirE5IwdFUsrmgA4H9+zf4pbvt4EgCIIgiIlJzeKyubkZ5557Ls4991wAQCaTwXPPPYdbbrkFd9xxB+68804SlwcYmZV+rN4byXkLopgyI4S9O21n0isuvQV6REEfN1y0nLgsHxbrFgFSfLmSPudSUjAtPg0xrcHXlkRiEi457HLnRtnNubScMFVV0nzre+fhhNnpBZz0m7+j5bbPguk6uo8+HH/798vRN2syNLn0HDktHuC6NoWAwBaM5FxK9Z5zSX0ux4R6O48skOmw512XYPZv7kDovrvR9i/zkTrycOfatMq09THL5kwb6HCcS7+45Jzj3s13oTnUjHOLxa6qxRv1YHITMkhcEgRBEMREZ1SVGdLpNFatWuU4mK+++ipCoRDOOOMMHHfccWM9R6JGyjkI3nL/qibhuo9Px723d6JzbwFTZnjEpceJFDmbwlEod/McFJc8UERHtEUpV9AHAM6edV7ZYygXVmpxyxG/omImYLuYWcPOA1YlFRa3oDy3Apd/+hto3bIbPBJB6itfx+PnHYa+zJ6Kx+INi3VDAv0Vc535jSQufWGn9edc+uZbB47bRMVf0OfAn8fgHMxQCJnPfA4Nn/83LL/lATzy/SOGrxbryVN2wtq56eRcbt2YwcP39uAt5zYjHJGhWzpyRg4pKVXzXL37p6I+BEEQBHFwULO4vOyyy7B+/Xq0trZi2bJluOCCC/DFL34RCxYsqIubK8J14LwEb960kIR3vG+K83dXpguD+QHMaJjpvOe6dsJBLO9cenMbhRnhdS6zRtbNXRxV03iRI2Z6ci5d51KIS8YYGgYyOOF/70DzQy8AAHYtnY/ITXfAmjsP0s7HnW3KHYvicWiDRZEqFfRxRXMw57K+w2LrLVdwolJv5y44Hw6O3HuuQfQnP8S8FWuxZs1WSCfZ3/FyYbFO4S1JdgtyWQaiMRkz5oSxc2sOzz7Wj2S/jne8b0rNRXlyORN3/b4T8xfGEFtYJtpgnLC4hV1DOzElNhWqXNpSiSAIgiCIsaHmu97169dDURQsXboUxxxzDI499lgSlnWGUiZ3aSRn4OXOF7FizzNI6+mSbYbPubTwyPaHcP+We33biJtccYNayQGsBm+1WMMyIDPZN05ICYOZJo69+xlc9Z4vY9FDL8Bsn4SHv3Qt7vrRZ2DNnVey73LzCMnh4n81qE47l+GdS5HXWtqKpL7FWz3OaSLidy4P/EOE4HXKwQFNQ/LfPwcAWPbLvzoPi8r9Jnhzo71hsQDw/k9Ox8f/YxYSTQrWrErh9VeGHFEY7HdbiYfv6cH6NWk8/WhfwLkcX3G5I7kdT+x8DBv614/rfgiCIAjiUKdm5/Kll15yQmIffvhh/OAHP4Cqqjj22GOxbNkyHH/88Vi6dOk4TJWolnKFMUZyBnLFsNK8mas4XjlBwmGhL9eHglmwqz4Wi+iIG20hTAumXhyr9htw5g2L5SZkSXZzNDnHrGdfxQU33oy2bftgSQwrL3sLpn7nN1i37wHf/kYSl1PiU/GW6WdgSnyqU8hH3FgHz2mpc+kfS6r7arH1LX4nCvV27oIP+YRYTL/jneA/+AamvfQ69jy/GjhMLd/n0pMb7RT04W77n7YODW971yT8/qY9eOAv3bhuXou9H5S2NfGyqX8jBnZpWLnCflgz0GcgmSxApFmOd1isiEDIGplx3Q9BEARBHOrULC4jkQiWL1+O5cuXAwB0XceKFSvwy1/+Ej/4wQ/AGMO6devGfKJE9ZTLuRzp5k04dOUqsMojOJfCtTC5OU7Opeg5aYfFqpIKmcmYtH4nTv/5PZi5aiMAYM/Sw/HCZ96LzTMTuDIRh7XXcnInvcdRaR4SkzC7cQ4Af6VdoNSVcnIuMXLOZV2Kyzqrcjph8T5EGEXI91gT/CTFdWzJEp55/0X4l6/figU//AWe/MlHyrqF3hB3N+/Y8K1z2BExLFoax9rVKbz0TD8wfXjncjA/gGf3PI2Xnx9EMy5Cc5uK/h4de3ZmIc3273e8EOMbgWMhCIIgCGJsGVVBn76+Prz00kvO/9evXw/LsjB//nwq6FMHlMu55J6bq5yZQ1yN+5YXrGHEpVRZXBqWmwdp97MMVIt1nMuiuJRqrwgpRKFh6eCco3lvH479zu2Y/sBjAIDUnJn4xwfOR/+Zp0KSFCDbA9Mynb5+AsknLoefh1eUAqXCQYzriNBhW5HUt3irN/dtIlFv565sWCxscbXhjKXo/ss8tK/dgCMeXQnrfaeVbG9y0y3GJfnDYr2ceWErXn81hWef6sPMyy1AK1nFQRTbSiUNNAM46fQmPPiXbuzZlcP02WK/FvI5C6rGIEljf07F75K39y9BEARBEGNPzeLy/PPPx44dOyDLMhYuXIgTTzwRH/vYx3DcccehqalpHKZI1IpSphWJaDHw/N4V2DywCcunnorDmucDgBPSCrgi04s0TFis7lnf4EZJKxLZcS6L/SJHU9BHOKdbtuD8G/+AI//xIiTTQrq5Ac9e+1ao130MW3pXo13WnDmKUL5KIm8kN1GWZDDGnPMykkActlpsnQkQoD7nNBGpNwc4+Lk6PV+5BTCGlZ98L87/16/itJv/hteu/FDJ9t5+k+J3RDcL6M50oy3S5hxj2yQNi49rwIqVfejcm8f0WZGShzkC0zLBOUc6ZSISlbBwcdwWl7uzmF5cp6szi1/83xYcc2Ij3npZ+1idDs9x2Q/ASFwSBEEQxPhSs7i86KKLnLzKSCQyHnMi9hOljDsobjJ3p3YBAJ7d8zRiagxT4lN9glIfJiyWMeYTXIDf6TQtA3DEmFst1rv/0YSIxnbsxgU3/h4LH10JyTSRT8Sw471X4MGLFkKPhLA8ZLuw3kJGTnXaGnIug6iSWrGgT1BslhT0qfdWJHXWQmOiUm+5qyU5lx7nEgB6jzkSPWedhrbHnsKU3/0J/Z+cgSd3PYGTpixHR2yyX1wWv7vJQhIPbv0bOmKTceq0tyCmxgAA02aGgZUWchnL2UdZcclNZDMWTBNonaQh0aiguU3Fut4Ccjlb9D39WC8K+Ri2bBifnEg3uoLEJUEQBEGMJzXf9X7yk5/EySefTMKyjhmuFUlcbXDeW9e3FgBQKBa7AIB8Weey8g201wkom3MZcFFrEZfK6pVo+PD7cdLFV2PRwy/CiEfx1PUX4a67foJtH3kf9IjdnzMRaoQqqWgKNzshvHoZcTlSzmWQ4dYvFZMB5xITKOeyDkTRRKX+nMtAWCz3i0uJSdj22Y/DkiTM/Pmt6Nu9AYP5Qeehk1cgMsac15qsoTO9D0/t+qczdjyhwGIWcrnh25EY3EBqyP4+thX7Zc6ZHwGHhR1bMhjsN7D+9SEAQG9XAYYx9vmXblgs5VwSBEEQxHgyqpzLnTt34le/+hVWrlyJgYEBNDU14bjjjsP111+PGTNmjPUciRopFxZbrh9df64fgN99HM65BOybU2/xDe+2hmV6bmLtG2054KKOKLRME9rfH0D0pp9CfX6FPafmJjz3jlMx+L73Yb2+B9PiCd+comoU71zwLiiSgsd3PFqciy16vTfb3nxPqQpBpUoqssiWn/cIzmXdh8XWgRA6GPCexnr4nCs6l6LwFJOQnzsLr158Mpbe+wym3/Rr4NqTkTfz4JyXuI/Lp50Ky7Iwu3EO7lj/Rwzk+51lDQkZHKYrLi3Tqf7qxbIspJL2705bh53LfPwpjfjbao431gxB04A4OGSFwTQ4ert0dEwNjd1JgbegDzmXBEEQBDGe1Cwu16xZg2uuuQahUAhnnHEG2tra0NPTg4cffhj33Xcffvvb32LRokXjMVeiSspWi4UIXbNv8qJqFGk9jYJZ8IvLcs6lVJ3jZ1qG25KAlXcuy7VJAQDW34fwHX9E5Fc/h7x9GwDAOGw+sh/6KNaedzxe6H8Z08MSoAOKpPoK8sjMbfjuOpd6yXy9bmJQ9JZD8RT1CRYAGsm5ZDXkdx4IyLkcG+rtPJbmXHLffyUmQWISVrzvAhz1yEpMve3PaDxvPrINMxwB5v2Ozm2c57xWJMX3W9HQqICDI5+xf1PEb0wQk5tIDRXFZdG5nDI9jMnTVazrsp3EudNkHDUjgRefHkTX3sKYi0uTCvoQBEEQxJtCzeLye9/7Ho488kj88pe/9IXGZrNZfOhDH8L3vvc9/Pa3vx3TSRK14Q2LFTmSlqddCAC0htuQ0XegP9/vu2EU/Sh943luNoe7gTa4p1os/DmXYi4+EcY51GefRvh3tyJ0/71geTs8t3DaGch++KMonH0eIEnAwEagH8gX56lKasVwV29lWaBynmUwfLAc3rmPGBYbdC7rPCwWlHM5JtRbWOxw1WLFckmSkGlJYNt178JhP7sFp/3iPjz3vYWuuKzw4EWRFOSMnONuxhMyODORyxX3UaEdiclNpJL+sFgAOHJpDOseBjSN4YLL2mDutQVl5948jkZD2bFGi+WpaE0QBEEQxPhRs7h87bXXcOONN5bkXEYiEbz//e/HZz7zmTGbHDE6ZM8NpihK44TFWnargZZwC3YO7cBArt93w+XNv3TH84jLYW6g7fYf/oI+zeEWZ7kQXNLuXQj95U6E//BbKFs2AwCshgRy774a2fddD3PRUb5xhWuYN3IAbEfROyevCHTFpWgGz0qWeec3HOpw4rKGsNi6FJfEmFDvBX1EgS3uFZfF7+GW916G6XfehwX/XI31L62GOfMce4wKD15Eex7DMqDJGhRFghYF8jkTHLxizqXtXBpgDGhuc6MBps8O4fhTmhGNMcQSEsKwxWXX3tLoif2FWpEQBEEQxJtDzeIyFAphYGCg7LLBwUGEQmMbzkTUjldsiVA2EbJmchOKpDiirz/fj5DkugnlW5FUJ5RM7obFivWmxaejQWuA0bUXhz+xCk2fv83JpQQA/YSTkL36fcj/yyVALFZ2XCEK80Xhq0oKZKlSFVh/WKz3hr/SNpXwhcViBOeypM9lfYmOIN7jqcf5TRTqzbkMfpYlziUkx5ksREJ4498+hKVf+DZOvvEPyLztU/Y6Fb4bMnPbCmmy/ZsRjTOYKcAocOfBUpB0uoB8jiPeIEOW3flxcMw/ogGplO2GTppsj9m1r/QB1/4ihC/nHKZlVhUWTxAEQRBE7dQsLs844wx8//vfx/Tp07Fs2TLn/Zdeegk/+MEPcOaZZ47pBInakT15jpqkIYMMTMttFyAzGc3hZgDAQK4fTcXXAKDvT1isZToOCQODtG8vtIf/jnfc/Qc0PfsipOIczBkzkb/kcuSueDfMBUeMeDziZlcIX0VWnfYewfxSIerKhcWyGt1EnyMq1eZc1nsrEi91oIkmLPXmXAavayEqvWGx4vtscRO7LzgDbbfdjumvbUHX724FlscrCi/h5JueSIdIjAEpIJezfM6lZXFIkn0+Nm9MAQBaPK6ld06ALf60kITmVhX9vTryeQuh0Nh9b7z70i2dxCVBEARBjBM1i8svfOEL+OhHP4qrr74ara2taG1tRV9fH3p7e3HMMcfg85///HjMk6gBv3Np39AJ59KwDITUEOJqAxRJwUC+3+lbB5SGjUlMqro4jWHqiL+xESf9/e84/OVfIvraGmdZujmOzWcuw4z3fxHGsuPtXMoqETfDoq2CwhTnveB83LBY+wbYJyhrzIP0OpdBgThiQZ86K/QSpB5ctoOBCeNceqrFuuLSAmMMj3/iclz9r99Hyw3/jfBvPg85XsG5lIRz6RGXcQCdQD5rOXmNzz81gIfv7sHys5pw+vkteGNtEgAwfU7YN55X8InXk6Zo6O/VsW9XHrPmjV27K8sjfO0HT+HKKxMEQRAEMWqqFpe5XA7//Oc/sXv3brz73e/G1VdfjW3btqG7uxvt7e1YsmQJTj311PGc66j45Cc/iRUrVuDUU0/FD3/4wwM9nTcFr7gUbgPnlq8aJGMMTaFm9GS70Z/rqzhWsLqr3wlkaNjTg1krN2DGyg2Y+8rXEOp1xzJnzUb+/LeicN5b0bdsMRpUDYYar/l4pIDLoHpyLoPzE46EUa7PpeTNHa0x53KksNgJlnNZ7+J3wlAUlPUgLAGU2NClfS6ZEzpuWAYgAV3zp+O1C0/C4vtXYPmtD2LDFxeUHdrJueQB5xJALme3ITIMC08+1AfT5HjqH/14fXUKnakcYi3ysM6lEH8z50awfk0a2zdnx1hc+p1LgiAIgiDGh6rE5c6dO3Httddi9+7dznvxeBw//OEPcdppp43b5MaC97znPbjkkktw3333HeipvGmIdgMWt1znklt2Hzq4Iqs5bIvLgfzAsGM56DraN+zA7NWvYfK67ZjxymY07ut1FluyhN4lC/H6CfMw+YqPomnxKc7N7v7UfgwKO0VyncvSPprVtSIJjlmOYavFBsVESc6lV1zWifDw4JtSHc5voiCEeb0I9OB1XS4sVlyblueB09MfuBgLn3wNS+55Bp1XXg7MLB1bKRMWGy4+K8pl7bDYNStTSKdMzDk8AnBg68YseMTAjNnhMm1SLIi3LG6hN9uLaXPt36ttm7N4y36chyCmT1xSxViCIAiCGC+qEpc33HADJEnCbbfdhqOOOgq7du3CV7/6VXz1q1/Fo48+Ot5z3C9OPPFEPP/88wd6Gm86opCPKLxhcTcnSgiwplBz5e3zBbRs68TU7T2I/WENlNUrob6yCm/PZn3rdR02DTuOPRw7jpmP2BkXYUgDtie34a1zFoyZaAnmO3pbkZQ4l8OIS9nXr3Pkufn7XJJzSZRSb+eupFgsAtViITnVpC1uwuT2BtmmON748Htw9A0/x7E/+DVw5nUlgymSW9BHEI4Wncushc0bUnjtEXs/p5/fiplzwnh5xSD+vl7DlMNKXUhvX8xkIYn7t9yLOYl50ELTsHNrFuvXpLBjSw5nX9zq5G+OFq9zaZBzSRAEQRDjRlXictWqVfjCF76A4447DgAwb948fP3rX8eFF16Irq4uTJo0aVwm9+KLL+Lmm2/GmjVr0N3djZtuuqmkYNBtt92Gm2++Gd3d3Vi4cCG+9KUvYfHixeMyn4mEEFlCIJncdMLZxLIWtRGJfb1o2t2Dxj29aNrTg6bd3Wjbtg9Nu7shWf7qj1aiEXuOnocdC6Zi78LZGFp6FHoi7jqHR0KwDFt8jqWgCgpIRVbdtiYVwnaFu+KrilqhN2Yl1OHEZQ2tSOpNgAD1OaeJiLgO6uUBQknOZTEsVjh3siQ7D1lMboJxd/11l5+FKXfcg0kvvorkPX9F/pLLfWMprIxzGbX/u3VjFve8sg+N+gzMmBPGrLlhMMZw/ClNSE5PYHdqqGSu3ONcDhXs5QUrh5lzwtj0Rga337wXnAPzj4xi9mHR0Z6S4pzdnEsKiyUIgiCI8aMqcdnd3Y0ZM2b43ps5cyY45+jp6Rk3cZnJZLBgwQJcdtll+MQnPlGy/IEHHsB3vvMdfO1rX8OSJUvwm9/8Bh/4wAfw97//HS0tLWVG3D/29+n5WCOZBtDTA7l7EFKhAOg6YOhg2Rxmvr4Z5kAvZkt7Ed23ER15FW2ZP+PtW1ajaSCH5oHPoq2rE0fp5W+0htqb0DN3CpKHz8Xc5ZfCXLwE5vzD8di2+9Gd6QZgh9UyT76mCROM2YaHLLExO1+KrPhMFE1WwMDAGKDKsm8/iiyDMcCE3VdPliVnuVpcBgByYLtyqJ79ypJ/fVmSfXOSZVZxeTX7erORZclzbFLZ+Yn36m3u9YQsSc41Xw/nSZH916UzL8aL30vZ+T5ZsMDBnfXTKODxT78D7/zMTxH/8n/AOOdc8ESjM5amaMXvlukca6TBFdXxJoZLz+vAkUsaIMvu++J3AfCfI+GqMomhYOWdOc2eH8WmNzKiRSd2bM1h7uHl2xRVDXOP0+RGXXxWxPhDv2HEeELXFzGeTOTrq+ZqsW8mp59+Ok4//fSKy2+55RZceeWVuPxy+wn71772NTzxxBO46667cP3114/pXBRFQmtr7cVoxo18Hph/JLBzJ5rKLL64wmZO7iNjwKRJ6J6cwMDUFqRmdGBgWiuS09vRP2cy5JY2ZI0sWiOtWHKk62A09sWQlWyXoSkag65knGWxuArDYojzMNpaE2iOjM35ChcY4nG3uuPk9haYlol4ZxjNDQ2+z6WfJRAfDCMcVhCXwmhujLvLM3nEO+1xWpriI36eKbkJ8QF7/fbWBFrj7vp6KIV4tzun1pYGtEbd5WY44yxvb00gpu3nzfEYI+cM55y2NMfR2lz5XDQ319fc64m8oSIeD0OTtbr4fWjKxRDPutdlQyKM1tY4EmYY8WQYrc0NmNTaiPjuMGJRDaqkIl6snCrJJvpPOxpdl52PSX99CC0//B7w4x87Y7WZCcTTYcQT7rFOmhyBojAYBsdVH5yBtyyaVjKnSJeCOLP34T1H0U4NuSwQi4agykBcCyMeD2HpiW145L4eJJoUJAcM7N1R2O9zG92rQlfsOXjnTxwa0G8YMZ7Q9UWMJxPx+qpaXH7gAx+ALJeGEl577bUl769YsWL/ZzYChUIBa9euxUc+8hHnPUmSsHz5cqxevXrM92cYFpLJ7MgrvllYFuInnoxQezsMJoOrCqCo4KoKhMPYyZJIhhnaOg7DVt6DUOsUTJt/PJ7Iv4Hm2UfipCWXAoqCx7Y/jN1Du9CgJTBUSDrDN2Y5UvkcIlYBvb0p5/3UUB6pdA4Sk5Cy8khlcs6yfpaCxS2kUjkM9GdgZfzVIUdLzsghlXL3M9ifgyZrkPUwYlazb37JpL0uzw8hrecwFMo5ywfzWWecZDKHXi2F4RhKFZz1BwYyUPLu+gOZrG9O/X1pMM9NfX827Szv60sjp5ZvMH+gSObTvmPrtUrPhSQxNDfH0N+fhmXV1/zrhYJpXyOabPmuwwPF4KD/uhxAGr29KfT2DyGVyiE5mEM/yyCVykE1MlAk2fkOp2D/d80nP4AzHn0e7Gc/w+Db3wlz6TH28qR9rN19g+hV7GNNpjI49ZxmqCqDpOplz0H/YAqpfA6KpPi/q0MZQAHSmTxSVvFaNFOIzbNw7cenY9JkDTd+fSs2b0ihq2sIsjz6p7eDQxmkCvY+uvsG0Ssf+M+KGH/oN4wYT+j6IsaTer2+EokIVHX41LKqxOXHP/7xMZnQWNLf3w/TNNHW1uZ7v7W1Fdu3b3f+/tCHPoRXX30V2WwWb3nLW/CLX/wCRxxxxKj2WU8fLsCQuulmhFrjGOxNlcxtxbYH0Zneh1OmnYoXdz+NSdEOxDqOQ+fWNKKN7bAkGbA4GrUm7OK7EJYjSHJXXCpMtcPSuOQbm4GBczt/kUFyQtcAQDftEFvO7f+P1fli3L8fGQokyHjbvEsB+Pcj1tVNvbgNc5dz5o7D2YjzkyBXXF8co/dv33g17uvNxjt/y+LDzm+k5Ycy3Cqexzr5jMX3U2BZFiyLwzRN+3trl/QB54BhGv7rtIje1or0l76Khs99GrHPfgoDDz4GyLKznW7qzrEapoGGRLHQj2lgdecqxLUGzG2c545X/C4y+H9LrOKOucWdORjF+c4uFgCaPieCLesz2LMzh2kzR9+b0jANZx8Fo1AXnxXx5kG/YcR4QtcXMZ5MxOtrworLSnDOfcVWfvGLXxzA2Rw4lEBBH4tbsEQrEk8xm+awnZsaUfzVHEPFKrNyhSqpEpMgBYqHGJbpFDappo9ktQTbjXhbhAQR+zfKFPTxFv+ppgDLfvW5xASqFkutSEZNvZ27koI+EAV9RKVo5ha94iYkXnptSkxC7r3XInz7bVBffhHhW29G7voPOQWuvK08vFVYc0YWr/euBQDMTswp+S4G8W7rvmf6/p41N4wt6zPYtim7X+JS7GvNyiHs1fdh6XW87j47giAIgjgYqL+73ippbm6GLMvo6enxvd/X11fiZh6KxDQ7uzKu2v/1tSLxiLVp8emYGp+Kw5rm+262NDkEoFTYCdHIwEqWmdxw++mN4aXlFWeKpAx7UyiEszhW77pSjdViFdkN6y09Dwj8PbFakXgPgCrHjh6nz2WdCBUWaNEj3EHxvfQuN7npfE9iqpvTITEJkCQM3XAjuCwj9u2vQ+rcV7bPpVcM5s2887on6/4ui33wgEVaXlz635tzuF0l9vEHe/Hs4/3YtikDw6j9Ca7FLeSyJrZuymLTxiFseiMz8kYEQRAEQdRMHd71VoemaVi0aBGeffZZ5z3LsrBixQosXbr0wE2sTljWcTwuOewyNBRFJocrLr1uZEgO4ZxZ52Naw3Sn1QAAqEXnMtjqw+tcssDlY1iG45SMtaAS4w3nWtrrlW9NAvgFZVV9Lj3nI+jE1tLnsh7FWz3OaSIiRGW9nE8xD/EwJOhciu+ALMl2NENRzJ02/QxnDFWyv/vmUUcj+8GPQBpKIvbFz0NmpX0uTZ+4dHM996R2Oa+FcynmIuBlxKUZcC5nzongnItbYZocD9/Tg1t/uht//2v38CehDBa30LmnYL9mBlY83l/zGARBEARBjExdi8t0Oo1169Zh3bp1AIBdu3Zh3bp16O62by6uu+463H777bjrrruwefNmfPWrX0Uul8Oll156IKddFyiSgkSo0XXyLLPkBjOIVxCFJK3sumIdiUl+AcUYDMvwOCRje7Mt5uHtPVkOTfYvZxUcxGrCdn19LkcKiy21Msvut17whcXWiTCaiNSfc1kUl8XvC3ecS+57n4E5vwkykzEpOgnvOPxKHNdxPOY0znXGS/+//4Q5fQbC996Fpn88CiDoXLqCsWC6onN3ajeAyiGx9rYjO5cAcOo5Lbj+UzNwylnNUDWG1S8mkc2YJetV4ulH+rDyhX7s2WWLX6aY2LIhi3278yNsSRAEQRBErdR1K5I1a9bgmmuucf7+5je/CcDOAf3EJz6BCy+8EH19ffjxj3+M7u5uLFy4EL/61a/GpcflREUIGwsWLMu+cavk/imS4oS2OWGxVYhLmcmQmFQUr0XncoyfW7jO5fDiMhzIHfXOw+dcVjE/u1clA+e8RCAGxcRwOZf1IjwqUe/zq2cYYwjJIYTlyMgrvwk438mAc2k5OZfu8ryZh8xlZ92oGsWitqP8A8bjGPr+j9D0rssw6YtfQuhXn4EedQVjJeeyN9uDnJHzDRUUjvbf8rDrCKbPCmP6rDDyOQsvPTuIVc8nsfzM5sonokguZ+LRB7uxI54D4wxaiGHhkWEM/RPY8Hoak6eFRhyDIAiCIIjqqWtxeeKJJ2L9+vXDrnP11Vfj6quvfpNmNPFgjIEx5su5rOTaecWXJsJipSrEpWSLS93Ux8+5lGTAHNm5DMkhSExycz8D7molsVgJVVJRMAul4jLo9lXIuaxH1xKo33lNRC6ce7ETMnqgccJiS5xL//dBLDcsY8TvlH7WOchdeRXCf/oDzvjfu/Hif33CWVYp5xIAurNdTsGwclioXlwKjj+1ES89O4iXnhnESac3jdhcetO6DEzTHlPmIUyayhFNcAwByKSqdz8JgiAIgqgOusM8BJAgwbRMJ0RNqXAjLHscTVHgIyz7n+z7qsV68iCDBULGK+dSHSHnEvBXvg3OQziK1c5P3ITX7FzWubj0QmGx+0eDlkBUjR7oaQDwikv7e8JhCyv3e1nMuXQK/lglxarKkfr6t2G2T8JRf38ek59b7bzvFYMFs+DbRrd0Xwhtac4lLxG2wZzLIB1TQ5g6M4S+Hh39vfqw6wLA+jVpcGbhyCVxHHZYIw47IgZJs+ecSZO4JAiCIIixpv7vfIn9RmISOHjRKaicc+kVUlNiU3HWzHNwZKs/TM5pNQLJcUAVpjihtqLX5ViLKjnQWmU4wsOIS3EjXe38EqFGRJRIyTmrtqBPvQo3rzimsNiDh2Dhq0rOpbfwVTWVk3lzC1Lf+x8AwCnfuwUsNQTALwaD+zBMA4blLi9XLTYYos85961nWiae2PkYdg3tdN5r77CjKgb7K+dzAoBpcmx8PQ1J4Zg1L4KTT2tDU2MIsmrPqZa8TYIgCIIgqoPE5SGACBMVLoIslf/YFY/wYoxhesMMJzxWwDyOnOzcyKqOU2JYxriIFckRl9U4l24/vGBVWK/zWg1nzzwXbzvs0mEL9th/VhCXdSrc6lX0EvuHuNzEdzOYcymXcdSr/S4ULn4bNp5+DBL7ehH75lcB2OIviIgc0C0dBh++x2W577PXDe3KdGJHcjse2/GIs6/GZvsB00Df8M7lxtfTyGUtzDpMg6LY/T0VSQHTiuIyPXwILkEQBEEQtUPi8hDAEZeB0LgglUJAvVQKi3V64HFzzIv5eOdWjXMZUdwQxWB+qXAuq6kWa+9PQUguLfpRrXNZr2GxVC324MTpYym5Ya/e/wYL/tjvjexcCp7+t/cgm4gi8utfQn3u2bI5kiHZfrhjcsMXFguUOqkiX9tLOTcUALYMbgYANLXYvzXDOZdDgwbu+1MXAGDJCXY7JonZvXklpRgWS84lQRAEQYw59XnnS4wprnM5QlhsUSAOFyYnnECJMUdEKpLsuJ5if2PNqHMuA5d4sKDJaKlGkHlFd73hc1Tr1F0laqc05zIg5pycy/JVlEdCb2vB4x+7DAAQ/9RHIWWyJetEVY9zGRSXKA3TDf5eeAWl1/lc0/MqOOdVOZf3/7kL6ZSJZac0Yt5CW+yKqtayzKBoQJZyLgmCIAhizCFxeQjg5EAVm5+PlHM5XIGP8q1IFF+1zAYtsf+TLpmbEJf7mXPpuLP7J6hKCgWVEdTLp56Kk6Ys36/9jBfkVh6cOOJStCIpOoWmU8W5NOeylodBiqRg3bnLkD33PChbt2D5TX8tWUe0ZTEssyQstlwO6HDOpdf5HCoMoSvbVZVzuX1LFrLCcNQ5WeStQnFfsvOwKRxlyGYtWBavOAZBEARBELVD4vIQQAiqQvEmq5J4VKpwLitWi/WM2TJM+4HRIsavqqCP7M25LC8CxyN0N8jsxjmYGp827vsZDb6CPiQ0Dxq817doQQS4uZFyoFqs/boWcakCjKHnv2+A1dKCpXc/hbkvbfCtEy7mPBuWDsMc2bkM/t5wr3NZnLcYc8/QLiSa7N+pgf7yzmUhbyGbtpBt24An9zyGF/c+7+xLnJ9IjAEcyGUp75IgCIIgxhISl4cALOBcVsqxkqrIufRWi/UW2fG2N2kKj9zcvFYYqncuI562EKXisrZqsZWoxrmcKJC4PHgQDw0kSQYDc8ScaElSLueymlYkAkU8qGprweB//xAAcO73bkM4mXbWEZEDhmVUdi7hdS79+/c6l2L7mYnZAIDdqd1QVQnxhIxkv1HWeRSiM5nYBADoy/U6+xK/heEYQ4+2AS/tfrnqYycIgiAIYmQm7h0xUTXihlIX1WIriEu3WuwowmI9uYXNobEXl65zWUXO5TDOpRMWW8MNdTkmuiDzFfShnMuDhkatEZqsoTXcarcgqtCKxPsbwGr4Z0BEDuiWgcxFF2Htuccj3jOAs3/0Z2cdr3NZUtBH9LoszouBDZtzKbZvCbWgQWtAX64XGT2DxmYVlgUMJUtDYwf7DHBwhKL2PkTFa5nJznUfiUjoCW3A6s5XAACv9byKNT2vVX0eqiWZH8TrvWtL2rAQBEEQxMEKictDAHEjqRebnFcKgysXMlcCKxcW6y/o0zweYbE1tCLx5lwGq8Ie3nw45jUdhpgS26/5VGo9MlEgQXlwkgg14soFV2F+8+E+59Lk/rBY7/eiJuey+P0zuAGLW3jsk5cj1dGKIx5biQWPrQQARIvVmg1ulhT0EQxf0McVYmJ7RVYwpRhivje9G03NxbzLvtLxB/p15KVBRGOybwzJU5k2FGUAs5DPmdBNHas6X8bKzpeqPg/VsqbnNby07wV0Z7vHfGyCIAiCqEcm1h0xMSpE8RpdFPSpcDPpVosdJiwWrnOpyraLockhnxMW9vSZHCumxqehKdSE1kjbiOt6e3MGcyvnNh2GU6adtt/iaqI7l4ArMA+GYyFcnM/Vc41b3AJjzHlvtNViRVi6YeowuYlCPIJnv/JhAMDZN96JePeAk/Osm6V9LqvJuSwXFqswBVNjUwEAXZkuNLYUK8aWybsc7DOQUroQiUn+fcEVsuGoPZdCwULGSJeMMVbkzTwA98EeQRAEQRzskLg8BHDDYkW12PLun8ibrLZa7MyGWThpynLMbz4caX38btAAYE7jXLztsEt9bUYOJBPduQRcUUkm5sGLt6CPv4jP6KrFit8G27m0RWD38Yux6p1nIjKUwXk3/BFhye4La3KjtBVJmZxLWQo6l95qsfZrRVIQcsJtDce5HCjnXPbpSKtdiET9v2MSY86DtnCUgcOCXuBIFVJVH3+tiDx3r2AmCIIgiIOZiXdHTNSMyKHUnYI+w4fFDpeD5RT0YRIUScHhLQsQkkPOzZPXNawHCkXnYKw5mNy+g+lYCBcG5og5Du773vvF5SicS0v3uY8rPnQJemd1YM6Lb6Dp5l8DsH9v8oHvHweHYRlO6Ku3yI6gXJ9LWVKcOZvcRGOxHUmyTDuS3v4s0nI3GuIh3/uizyUAhCIMnHEU8haG9KGqj79WRJ47iUuCIAjiUIHE5SFAVLXzC8WNZqW8ReEgDOdcOq1IApfOssknYGp8Kt4656L9nu9YMKNhJgCgJdI6LuP7WnlMUOuPROXBjcQkN+fSMn2ft7egVc2tSGCLJiGYJCYD4Qju/9L7YKgK4t/8L0zdtBeGZTgPd0KyLfQKZh5/WPc7PLL9IWeO4rdEPJjyiUvLDYsV87S4iWjRlcxmS0Xb7sHdgMQxf9Jsv1vry7m03ysUOIYKSWedsS68I5xLi8QlQRAEcYhA4vIQIKZEfX9Xdi5H7nPptjLwjxFX4zhn1vloDDXtx0zHjjNnno2rFr53XMNoJ3rO4kSfPzE83j6XFizfQyPvw6FawmJVR1zqMC17bOEIdh82Dc9+9HIwXcdbv/ZrsFQK+WKuocjD7s/1AwAKxfftsFh7XkKAmr6w2KK49AhD0zIRjtjbBPtUGgbHvtwehCMSZjTO8D1Isx1S+1pXw/Z2esHCUMF1Lp1qtmOEiBYR54ogCIIgDnZIXB4CRD19HxkrLf0vEDeO8jAVWSWnIMj+tfJ4M6imsuz+4OQsTlBx5uZcTsz5E8MjPl+LW+Ccl7h4zutawmKLRbx0s+DPmyyO8cY7z0P+/LeiaVcXzrzxDuSMLAC76BdQ+p1kjDnbhoqFgPwFfYpVbj1hsRY4wlH7NyyX8TuCg/0FDCn7EI0pmBafXlLcS/z2qcVnToWChbTu5lx6XdOxQKecS4IgCOIQg8TlIUDU03ZjuBvJjthkLGo7Ckc0H1Fxnanx6ZjffDjmNM4d0zlORCa6OJuo8yaqw+v0ef8GAjmXNbQi0SRbrOmWActy25s4fWhlFUM3/i/Sbc1Y9PCLmP3gk9Bkzc3VRmkhrISWgMQkNBWjHniFsFiRG2o7l0VxGXAut+zbC0PKYXK8AyE5BFVyxaU3LFYL2w6lnud+53LMw2Ip55IgCII4tCBxeQjgdS6HE5eKpOC4juPRFG6uuE5YCePkqafUTfjrgeRgCSud6PMnyiM+V1EUxy8uPWGxNfwz4IbFFtycS0l2ioApkgre2oqnv/5xcMZwzg/vRPveAecKE26ns28m4bjJx+OdC96FuBa31/EIPDcsVnEErMlNqKoEWWE+cZkzcnh2z1MAgDmJeQAArei02sfsikslZG9XyFu+irbB+VVi88BG7E3tGXYd0zLdsGQSlwRBEMQhAonLQwCfc1mDS0EMz4R3Lif4/InhEZ+rEGhShQqxtfwmOAV9TN3XP9JxLovj9h2/GM9dfS60bB7n/NcvIOu2uAqGnToFduSQ60yW6XMpM9kNiy0uD0ck5LKW4zY+v3cFkvkhJPRpmBOfDwA+51JizBHSFkxoGkOhYPncymqcy7yZxzO7n8Y/ikWJKiFCYgHXPSYIgiCIgx0Sl4cAqqw6uUcTIVdyokCijKhnhHAzrFLnslKI7EgIJ9DrXMqSm8soxKfMFKx43wXYvWgO2t7YimN+/DsAlcWldx7BarEyk3254mJ5OCLBNDkM3W5vsnNoB5ipYmrmWGihYm6lx7lkTHK+s4ZlIhqXYZpANuPur5qcS5FHOhKGV1ySc0kQBEEcIpC4PESIFivGkrgceyZqWGmlPDjiYKHoXHJR1bW8oKylFYnqzbnknpxLR1zaBXtUWQWXZdz/lfch39SABX96EIc/vsqXTwmUF7z+arGm44pKRXFochOGZWBvdBWycj+yWQtdmU5Y3EKCT4IMFVqI+eYr5sk8grshYc81NVRbWKyogDsSPudyjAsFEQRBEES9QuLyEEHkXdbSMJ0YnoMmrHSiz58oy7A5l55QWFaTuPRUiy2GkNq5jLJvuVJsazQ0qRmrvv0FcMZw/g1/hLZ5q2+8cuLSV9CHG74KsxIkmJaJzvQ+DIa2oV/bhlzWxJ7UbgBAwuoAANe59GwrM9kJizW5gYbG4hwHTSQHDQwNGkCZsNihQhLP7V2BnJEDUJ1zyTmH7s3lJOeSIAiCOEQgcXmIIPIuKedy7JjoBX0mvCgmhqXqnMsaHjiJiqu6pTsOI2PesFjF918ASJ62HGs/8E5o2TwO/+TnoGTznnmUFhkS+YmmZYJz7ghVsX8ODoMbUFUGDhO5rIW9abu4Tty0xWXICYv15lxKTisl0zIRb7CPOzmoY8Xj/Xj60X5ksq7bKNg8sAkb+t7A7tROAHbO5XC88NQAvvsfW9C5L+O8R2GxBEEQxKECictDBOFc1hICRwzPRHcuJ3qfTmJ4mBMWO3wrklpD5VVJtcWltxVJcYxy4lKTQ3j9A+/EtmVHILZxC8794R2OQ+h3LkUfS9u5dIr5eJ1LZjuXJjehaBI4LAykUujP9dstTXS7gaVwLjUpKC4lZ2zhXO7dmUehwGEYHKtfTJYcb8G0BadRPN6RnMsNr6eRz1l4ZXWf8x4V9CEIgiAOFUhpHCLEVLvMP+Vcjh0TPWdxojuvxPAEC/pUyrOUanzgpMoqDMuA6ankGizoI/4L2JVgISt44IvvRW7yJBz5j5dw9N9WlOzb7ctp+eatBEJbTW7CtEzbuWQcnUPdAOw+vfmcva2Tc+kp6CN55mlyC5GoBFkGTI/ue+nZAZimPzRWFOYRIj1n5oY9P73d9vpvvD4IDu7bliAIgiAOdkhcHiJEFPuJPuVcjj0T3rmcoPMnhod5QkCByjmXUo2h8iKvMmfki2NJjnB1ci59zqUGxhiyTXGs/Z9vwJQlnPWTP6PjjR1lxaVwLp0el75wXnudglkohsVayBZDWVVJRaEgxGWpcykz2XVzLQOMMcQb3HkmGmUMDhTw1D/6fC1J9KC4NCqLS8OwMNBrrz+YzGGwzz4GyrkkCIIgDhVIXB4itEbaoMka2qLtB3oqBw0T3rmcoPMmqkN8uuUK+rAKIbLVICqwZo1McXvFeWilSEJkuqItJIeca21wyZH454ffDkU38S9fuRlKtxs66rQiKYrhcmGxYh3dKkDVJAAc2awrngs5v7hUJa9zyUrc3HjCHi/eIGPxsgbIKsMTf+/DA3/pdgSmcC5FoaH8MM5lf4/h1ASymIHdO3LFMUhcEgRBEIcGJC4PESJKBFcuuApHty0+0FM5aJjoOYsUFntwIwUK5FQq4lNrHrbodZksDAIAImrUyemOqw3FMf3OpcDiFlZdfjpeP3cZEl0DmPHBfwd03TdfJ+eyOG9ftdjivAumDlVj4MxCLueK50LBVnbl+lzarUzcarEAnLzLSVM0NLdqePcHOxBPyHjx6UGsfM7OvxRVX8V5zHqcy2BfzJ4uu03JgqNigGxg68Ys9u3OV9U/kyAIgiAOBkhcHkJQ+OPY4oizCX5eJ/r8ifK4BX1EbmR5t7LWnEuRTzmYt8VlTIniyNZFePthl6IjNhmA3zHU5JBzjVncAhjDP/79Suw7fAZiK15C7IufL87DnpNbLVaExfoL+gC2c6kUw2JzeY+4zFsAA1RV9Ll05+HNDRXO5cy5Ycw5LIJ5R9jieNLUEK68bgokCXjgL93o3ldw1nXDYt2CPkHR2Ntti8s58yM45dwEOAdefnYQg8nhK8wSBEEQxMECiUuCGCUT3rmc4PMnhkcIOsMq0+dyP6vFAq6wiihRSExCY6jJWUeR/QV9xDXmuJIhDfd+83oY7a0I//qXCP/+N65zyStXixW5ogXTDovl4Mjm3JYo+bwFTWOQJCEuvdVi/QV9ACAUknHUsQ0Ih+1xObcwY04Ep53bAtPgWPdqCrpV8G3jbUVicQsFs+DMubfLdmFb2zXMOlzD7MMisDjQtW/4IkAEQRAEcbBA4pIgRslEdy5VWfO1ZyAONiq3IinXAqRa1EAl2HK9c4XbKDMZiqT4ncsiqUnN6Lzlp+CKgvjn/w2xlauK6xRzLp1qsaUhvLpVKLqTHHnhXMJ2LkVILOAPyZWY5IjcchV0vfObM98ugLZvT95Z1+KmT0iKce7a+Gf8c+fjAFznsnWSBt3S0dxin4f+fhKXBEEQxKEB3VUSxKhhgf9OLE6eshxnzzzXl9NGHDy4lVHdfpTOMk9xm1ofLngFm8i1DCIK+oh1HeeS+9t8FJafiPR3vg+m65jyrx9GrGfQEW9i3v6w2Mo5l9xisEz4xKXE3Eq23gcpIuR2TuNcHNm6CNMbZthjFOfXMTUEAOjcnfeFxQZ7XObMLPJmHil9CADQ06VDlhmaWhQYlo6GRluIDwwUyp6nIBv61uPhbQ9OiL6YBbOAXUM7fZV1CYIgCILEJUGMkokeVtoUbsaU+NQDPQ1inHDyC4vhpSwgIoXoqjUs1tvDMqqUF5cilDUk2yJNfEd4IEdRYhLy174f2fdeC6WrC2/7ys3guZxv3hWrxap2WGwuX8zRtCNSfeIScIv62DmXzDd2TI1h2eQTnD7AImw3EpXR2Kygp6eAbKEYFmuZyAYqxYqiQ5xz9PfqyKRMtLSrkCQG3TIQT8hgDBgYqC7ncsvgZuxL73OKJdUzr/W8gsd2PIKubNeBngpBEARRR5C4JIhRMtHDYomDm2DOZVBECvFZLqx1OLxhsVE1VnadqBLF5NhkzErM9s0lWACHMQYwhtR3vo/csuMxdd12nPTtXwCce8JiSwv6FMwCJIlBVtywWKMoLkMBcdkcakZci0OWZLdabKD3pxCdXheuY2oIFjcwlBRhsRbyRlBcFtuUgOOxB3oBAIuWxp1lsswQjyvIZHVkMyO7kSK/s2BW53QeSDK63YomeE4IgiCIQxsSlwQxSia6c0kc3LihqKU5l4At2kaTc+sVlxElUn7fjOG82W/FkknH+N7n8IdQOvvWNPTdfAuSHc2Y9/enEf2f/y5bLVYI5EJRhCkakM+b4OAwCvbxaiH/9/HsWefhbfMutfcHUdDHLQIEeM+VK347pmqwmIHkgJtzmQsIKb0oLnu683jt5SHEEzJOPrPZt6ylMQbOLHTtG1kwClEpjq+eEccnziVBEARBACQuCWLUkGNJ1DPBthtB53LZ5BNw4pSTax7X51wq5Z3LIOXEm3eOAIBJU3DXtz+EQjSM2Pe+hfb7H7bn7XFWJUlUdbVFqqLZYxo6d8NiNf8/axKTHPczeE7EvII9NgFg8rSQT1ya3EQ+EBZrWgYsi+PlFQMAgDPf2uo4p7qpQ5EUNDeHAQD7dvvzNcshBFvBHF3rEotb2JHcDl2cjBowLANbB7dU3ZNTzNUicUkQBEF4IHFJEKMkeGNKEPWEWxlVOJf+hyGzErMxv/nwmsdVqyjoUzqZ8uLS63zKkoyeuVPx6Nc/DC5JOOrL/42pa7b6w2ID/2TFGu28y54uHYZedC7Dlb+Pwe9qSVGjYFgsDCT7hUNnobM7jZ3bso641S0D619LY6Bfx+zDIjjmxISzvWEZkJnsist9w4tLzrnrXI5CHALArqGdeGLnY3ijfx0sbmHX0E5HSI/E671r8NSuf2JbcmtV6wsBa1rViVGCIAji0IDuiglilJBzSdQz4vo0uehzWVtuZSVUj9iLVCjoUzKXQFuUI1sX4YI5F6E50uysIwTe9pOOQupb/w25oOPtX/4VIrv2OevIkv+frBlzQuCwsGtrFkYxkjToXJabR3Cf5arZtrSpCMeBvl4DWzZk8PSjPbjzd7uw+oUh7N1uH0c6k8fm9RkoKnDJezqc/poWt2ByE5qsobXNFuNrVg06rUrKIZxAYPTOpRCnWT2LHcnteGzHI9jYv6GqbTvT9nlOFYZQMAvYMrh52Eqwbv9Pci4JgiAIFxKXBDFKxG1q0BEiiHqgUvGa/WU0zmWwWmxIDqEj1lGynsQkWNxC7voPYdO7LkZ0IIU51/8r2OAAgNLQ3klTVWgRoHNvAUMD9nGG9sO59OaEShLDeZc1gQFYuzqF7dvSkFR7/n2d9n/3dWbAi/NoanbDhYVQVCQVjYkw5i6IIJM18Idf7EGhUN7p8+ZZ5j0FfXYO7SjJ9ayEEHq6VUBaTxfHGnlbzjl6c3ZBooyRxRt9r+PpXU9iy+CmitsIIUvikiAIgvBC4pIgRgmFwxL1jBMW6ziXYyQuizmXEpMQlsPVzaX4/MURbxUeyMhMdsTKyk+/D1tOPBLhTZuRuP59gK6XiEvGOOYuiIBzYM3LKQCAplV+2FMqLplvPha3kNEzyBb7WU6bo+KoY+NQFIbDj47gkqvbwRjQt88CB0d3ly3cEs3+XrFCXKqSCokxHLk4jpmHaejt1rF9U/nwWN0jKIUr2J3pxuM7HsWr3a9UPCYvIuy4YBacMarJoRzMD3hczwyShSQAoCtTuc2ICLelnEuCIAjCC90dE8R+QiKTqEfcnMvyBX1GiyqpkJmMmBqrOjQ8WNCnUoVlxpizji5Z+NtX3of8EUdAe/JxxD/36ZLtLG5h5jy7l+ZAj71dsM+lf3yp7N8il9PiFv684U+4c/3tAOxzN/uwKC64rA2LjolBDXM0NSsopGWkkia6e+x2HI1NfnHpVLqVZCiSAsYYZi+w59ndWT40tuALixW5l/nisurCZJ1zZxWcvM1ghd5y9GR7nNdZI4tM0fX0vu/FtEznIUC1BYAIgiCIQwO6KyaIUUKikqhnhO4TN/9Sjf0sKyExCWfOPBunTju95m1FTmMlcSkz2eO+6dCjYfT+7o8wp0xF5A+/w9yf3OwfDxaaWmXfmMOKy2DOJSqHxZqW6TiQDAwmN2FaBto6NMhQ0dtVQE+P7UI2NNnbd6b3IVUYgu6IS9XJdW1ps//btbe8uPQ6lyJEVsynWgEnqt0WTL0m57In2+28zhoZJ6R2IN9ftiCQNz+02oJBBEEQxKEB3R0TxKiharFE/RJ0LoOVVveHqfFpaI+2Vz+XQLXYSt8ZkXMJuG6dPHMOBv/4F1iJRsy66RYsvvdpZ33OOWSVIxaXIf45G05cVsq5dIsfuSGeaT0FwyOiLG7B4CbaJmmQuIrufQX09eWgqgyhCEPBLODh7X/Hs3uedrYTLi8ANE2y99W9r7wL6S3iI16LczGSQBQ5mSKn1bB0x/20hinKI+guikuZyUXnMlMcz83F9KJ78kOrGZ8gCII4dKC7YoIYJZXcF4KoByoJqQNBpT6XQZx+k9xCwSwUcxYlmEcuQvI3f4Clqjj7R3/GYU+/6mxjcROJJgWMC+dyuJzL8tVihfA2PS5cSk/5HDrTMmFYBprbVIRVDfv2FKBbOhLFkFjd0sE5R9bIuqHIkuKIy3hCghriWDnwDLYPbiuZW7mwWFdcVs5r3Dm0A3es/yNe63nVWb9/MOuE7PIqcy5DcgiJUKNT6VbQWyY0VveJbsq5JAiCIFxIXBLEKHHzzUhkEvVH8OGHXAfikmN451IIMcMyoFs6VNlTgfWU07D5B98C48CF3/gtpr62xVm3sVkBK/5zFtoP59Ib4pnW0054KwAnLFaWGY47oRUAYMFEolEBL/4PsIWXW9BHccKRTW4i3pFHD9uBlTvXlszNX9BHL44/snP5Stfq4n9X2aK8YOGxhzrx4L12ZdqRci5Ny4TFLYTkECKKW6BJK1YF9obMunP1iG4SlwRBEIQHEpcEMUrEDTM5mEQ9Eiy2c0CdS1ZdQR+Rn1gw8+CcIySHfMsHL7wAj3/sUqgFHZd88Zdo2bYPhlV0LvcjLFY4moZHKA0Vkr6wWMAVfUuPbUYsoeNQpgAAxOxJREFULsNiBhqaFFjc8oSkGo5ItcNiXTe2aZI9Tm9fpmRu3lYkBbMAzrkz5nDicqhY2TWhJWBxC+teSSFXMJA389i1LTeiWyyOSZYUX9/SafHp9lxHcC5JXBIEQRBeSFwSxCgRN8zVVswkiDeTEiE1RgV9RkNJtdgK3xkx52wxh1CVNN9ymclYdfnpeOFdZyMylMHln/8/hDq70NikVFfQp0K1WLcnaNC59IvLvJmHIilQVQXHnpTA9HkKpk63BTDnrnPpVuh1w2INbqCp3X7d11/ajqRg+gv9FKwCRDrjcHmNYo4NWgKdnVns2JqDojAYUhbbN2edPqeVEK1qVElFRIk47zeFmhBTYxgqDJUU7fEK4ZHGJwiCIA4tSFwSxCgh55KoZypVRj0QVO9c2nPMmbb40jxhsd7lT33wYqw993gkugZw/ie/h6Z8BrGYve6wzmXgHIi/g8WPADvnUjiXiqQ485eZDAkSmlpUHLs8DlUrCtOig8c5R94U4tgt6GNZFhJt9ti9w4hL2ePejlTQx/u+JmvYtd0ed/7CKBpbFKSGTOzbm6t4PgB/2xSvcxlVo2gKNQEABvODvm28YbGUczmx0E0dO5LbqYUMQRDjBolLghgl5FwSdU3gupQPoHMpcJ3L8stFCKmofqoFwmKdXp2ShIf/37ux+eRFaN6+F+/4fzfhjJM1LDulEdHYcM5lhYI+wrnkHnHpaSniDc9VJMWzviusvO5i1sgW15V9OZeNrfb+B5Ol4lJUYI1rcQB2O5GRci6THtFncQt9vfYYjS0qZsy28yd37yzdl3+/btsUr3MZU+NodMRlv28bn3NJ4nJCsaF/PZ7Y+Rh2JLcf6KkQBHGQQuKSIEYJOZdEPVNXzmUwLLZSn8uiEMsVxZkm+cWlyMkEAEuR8bf/uha7jjkcHRt34a3/+zFcfFF82Ic9pTmX/u+w17nMGlnky4hcr7islHvoikvXuTS5iVDcAmNAKlUoEYyFohsYV4W4zI9YLXYgP+Dbf3+f3cIk0SgjGrf3m00P34fS685GVI9zqUTRFGou2Q8AGD7n0hbVaT2NTf0bMRhYl6gvRFSAyNUlCIIYa0hcEsQoccQlOZdEHeIVcJqs+SqvvvmTEdViue/vIIpkzzGlpwCUhsXKkv+fLCOk4e5vfRB7j5iJ0AvPo/H9VwMFf+6il5Kw2IBzaQTyB5PFG/CwR1zKzBWX3ONWWmXFpeITlxZMxOIy8nmOZNrvKArnMibEpVVwxq/kXA54HEXDNDHQX4CmMWhhCeGwvd9MdiRx6TqXUY9zGVVjjnMZFJfetimGZWBj/wb8ZcMdeHbP03h2zzPD7o84sIhrPG2UFpUiCIIYC0hcEsQoYYycS6J+8bp0cbXhAM6k1Lms5KJGizl/QsyUK+gTJB/R8Nfvfhj64QugPfYIGj76QcAs7/RVrhZbGhbr3acQvYDtrgb7ZXqPDQCyxRt3xZdzaUI3C4g12H93dflv7gtmARKTEC26hwWz4IbFory47M+54nJwoADDMtFQLG4UCttzzGbcY3q1ezXu23w3/rLhDnRn7BYjwn1VmJtzqckaFEnx5FwO+PbrraLLYaEzs8/5uzfbU1IAaCwwLAPP7V2BgVz/yCsTFREPQbI6iUuCIMYHEpcEMUooLJaoZ7yOeiKUOIAzKRWXlYiqMQBwBESwFUmldiq5xhgG77wH5szZCN97F+Kf/RRQpsJqMMrAqRZbJiy20n4VJpdUnQX8YbE5p9qtAkly8zMNy3YuAaC7239zr1s6VEl1BLXdjsQ+X5Uqsqb0Ied1X18eAEciYRcf0kISGFzncjA/gNVdq9Cf60daT6Mr0+kbW5VUKJKCxe1LsKT9GPs9WS1bMdZb2da0TKfAT0yNweJW2d6Y+8uWgc3Y0PcG7t1895iPfSghPscMOZcEQYwTJC4JYrRQQR+ijvE+9Gg40M5loFpsJZEonEvhpgVDeaUyzqWAT5mKgT/fA7NjMiK3/Rbx//xcicAscS4RDIu1b7xnJmbhiJYjoUgKpsSn+oohyZJS1nn1CkBxnMGwWN0quOKyN+Nb37AMaLKGkCzE5cjVYr0ir7+vAM4sNDTa4pIxBi3MkM0asCyOdX3rAAANmn0tCDfUcS6L7uzSScdiYeuRzrjCvUwW3OJBeqCgj3B8RW9MIVzHEsPjKndlusZ8/EMFR1zq6QM8E4IgDlZIXBLEKAm2MSCIesIrpOrFuXT+rvBARjiXgqBzWS4sFnCP1Zo9B4N/vhdWWxsiN/8CsS9/YViB6bwuzke4j2ElghOmnIh3H3E1zpp5jm+/3oI+XsqFrvoL+tgCUhTa6el1b+6FSFQlDaoQl5buiEonVzWA103s78+Dw0Ki0Z1rOCzD4hYGhjLYMrAJiqTg8OYj7PkWxbAQbaLdSpBEqBEAkMy7BWB0z36FIwsAU+JTAQDdRfGX0lPYNri17Li1Ioo8AcDantfGZMxDEfEgIGfmqB0JQRDjAolLgthfyLkk6hCvoItrB1ZcBqn0QCbqqVYKlOZcVnI8ve+bC47AwF/+Bqu1FdFf/B9i//VFn8D0ritErnhQJMSaaIniLPeKS1ZBXFqlN+pqMOfSKiAWt0VcT58rlgqmXeVVk1VoxWPWrYIjKiuJAMMywMCwcV0au3dmwRhHvNEViaGwBA5gQ+c2GJaBuY3zEFHCvjFF5VelQqsatehoevNRdU9PTotbjvs5KdoBRVLQne0G5xyvdK3Ck7uecPI79wcRagwAO4d2+FxbonpM8cCCc6fwFEEQxFhy0IvLRx55BOeffz7OP/98PPDAAwd6OsRBRLCNAUHUE95nHokDLC6DYqyiuFSiPlezpFrsCM6lwFx4JAbuvBdWczOiN/0UsW/8lyMwfc5lICy2Utiu7PlbruRclhGAMvP3uTQsE5GoBMaAvgH3xj5rui1PhJA1LXPYsFjOOUxuYtsbBt54LQ1IFo47tQGq6s4tFJYAWEgO2eMnQo3O+MJpdZ3L8tWE5aKj6a2kq1s6JCZBkRSYlgmzKMo1SUNbpA0Fs4CBfL8Tetmf6/ONaVhGza0wRAsN8QDCm286Gh7a9iD+ufPx/RpjIuJ1uzNU1IcgiHHgoBaXhmHghhtuwG233Ybbb78dN954IwrDlKkniFqgarFEPeO9LiOeFhP1QKWwWIlJCMth528tGBbrcdd8DmSZ76B51NF2iGxTE6I/vRHR73yjYohscDpBEev9W2ZSWXFpBnpRKpICxlhJzqUkMcRiMtKZHPI5W+DtTe0GALRF2n1C1xqmFYlu6ejv1bH+lTxkGTjzrS2YPd//OYciEjgspNK6c7xOZdyi0yrEhlpJXHrm7923KqmQJbl4XLp9rJKMhGaH0Wb0jNOyJNjK5JHtD+OujX+pqSdmtuhctkcmAQCGCqMXlxa30Jneh73pPaMeY6Lib5lD4pIgiLHnoBaXr7zyChYsWIC2tjY0Nzdj8eLFePnllw/0tIiDBLfP5QGeCEGUIV9HYYMlOZfDPJDx5l2WEzxCHHlzBCuFyxpHL8HgnffASjQiduP3Eb3hO2VzLiv1vxR4Ra0tGkd2LsX8ZEcsmo6QiyVkmMzA1k32zf2O5HYAwKzELCcigsPy5VoGxzcsA+teTUEyVSxa2oBEs+QTDgAQCkngjCOd0p3jdMQr/OJSrpBzqTD7feFOpoqVYzVZc4SnEJuA3cYEAPJW3gn3TRYGfGOKgj9703vL7rMcIueyLdJenEeq6m2DiJBa3dNS5VDB51ySuCQIYhyoa3H54osv4sMf/jBOPfVULFiwAI8/XhrCctttt+Gss87C0UcfjSuuuAKvvvqqs6yrqwsdHR3O3x0dHejqoipzxNhArUiIemZ/wwbHktIWIMOIy2LFWFVSy4pGIWi8wrOSuAQAY8kxGLzjLlgNCcS+/10cf+v9zhxYhYrPQfHIgmGxZf7pDAo7MT/FCSs1HFEzc04EFjPw0N096En1YSA/gOZwMxq0hM+55B5BWSoudWRSJiQomDMvBpObJeuEi87lUFLHru1ZWCZzxhdjO5V5K4hL2dNKZWP/Bvx1458B2K6y+CwMy3BeC7e5YBac4w06l4JaKpbmjBxCcsgpTjW0H9e36NPJOXfaqNTKloFNuGfTX0eVt7ixfwOe2PnYASmo4w+LpYqxBEGMPXUtLjOZDBYsWICvfOUrZZc/8MAD+M53voOPfexjuOuuu7BgwQJ84AMfQF9fX9n1CWIsqXRjShD1wKzEHADAUW1HH+CZlKsWW/mfHuFcCgcsiBBH3uXDiUsAMI5dhsE//RVWvAEn3Hwvlv/6fkjcnVNpjmXlsNhKBX3KhcUCQKgY5pszcs46HdM0TJ0to79Hx/2PrwEAzGyY5ZuLHRbrio/g+AY3oOsWwpodnmpxq6RirV3Qh+O11YNY9fwQVjw2UJJfKoSWcCiDyMwVx725XgDA9IbpWDb5BH+hI+d4hbjMo1BsWZLRM2UL8IwkzDjnWNuzBgO5fpjcRESJOG11UjXmbHopeFqpeF/Xwu7UbgzmB9Gb7al52xV7nsGO5PaawoLHCtMXFksFfQiCGHvK/2tSJ5x++uk4/fTTKy6/5ZZbcOWVV+Lyyy8HAHzta1/DE088gbvuugvXX389Jk2ahM5Ot99WZ2cnTj311FHPR5LqS0SI+dTbvA4VJMkuzCFL0kH5GdD1NbGZHO/AVUdeXVGkvZlIEvOFj0uMVby+4loMjAEhJVT22pNlGcyye2CKMWVJHvE6tU44EUN/vhvhd1yMk3/3MEIFE9JP3wcUcwW981MC46my4izXFAWKLJWGwzPue0+VVUgSQ1gKQZUVZM0MTG6AMVtsLzo+jLXrgA27duOIecCMxhmQJAaluK9UysBgOgvW4I7vnZNuGjAMIBLWoMh2mxMOex2FKdAtHZGI7AuvfX1VBmeeZYfyc1iQJAYLJhgDNEUrew7FsXNmwbLsdRe1HY0p8clQZPe8abK9fVgNgTEgY6QBuOdkSE+iXbVDWsV7OTMLSWJI62ls6t+IWYlZaAo3O/ve2L8BK7texMquF8EYEFEjSIQT9vnRUyN+5pWuMZObzhxMro/qN87gOhgDdF6oafuckXP2zVj1v6/J/CAe3vYQTpp6MqY3zKh5vgLxeQNA1szQ7/t+QP9GEuPJRL6+6lpcDkehUMDatWvxkY98xHlPkiQsX74cq1evBgAsXrwYb7zxBnp6eiDLMl555RV861vfGtX+FEVCa2t8LKY+5jQ3x0ZeiRhzmgsxxDNhNDXG6vbaGAvo+iL2l17EEB90C/W0tTagOWZfV8HraxrasSEdRlu8sez3qqkhBrlgoTWRQFay3avGSLS67+D5Z+HhX38Fb/ngN3Hsnx4F2v4D+PGPETYY4nF3fq0tDb7xWnkD4kl7eVtLI9qjjYjvC/uGjjeEEM96xkgknDEmNbcgmU9CQxghOYS8mUc8bofN5o0C4vEwpk+ahJgWQ1SXoSgq7v7NXqg8irOuURCNKmhujiKmueeqO2u7hrFYCIkGVgwb1aCaQFgJI62nEQ0zgCVtIckA02BY81IW8UVhxBtCaG2NI9KpIi6F0dHeVPZBRE5tRLwvjFhcg24xxI0wJrU1ojUWR3Nv3PkMmmNxtLbGkddaEO8Lg4UN3zllkYJzPloaEyiYBSgRjgHWiUd3PwoAkCIG5k07w9lmrxnyXTeTW1rR0d6ESc0tyBk5NLdEkdEzeGbHMzhu6nFoi7aV/diD11ha6XPmFm/U0Bqv/fc72qsizsOINig1/f7vHOx39t3YHEFrrLptu3t2gYUMdFu7saR1Yc3zFUSiKkJyHHkzDzlsHdT/dr1Z0L+RxHgyEa+vCSsu+/v7YZom2tr8/5i0trZi+3a7OIKqqvjsZz+Lq666CgDw6U9/GqFQqGSsajAMC8lkfYWQSBJDc3MM/f1pWFb5JtvE+DE4mEUqlcPgYBa94dEXl6hX6PoixorBAfu7IujvT0MtpMteX/kUkErlkGMmentLv1eZtI5UPoesZDhjhs1C2XXLsXvmdNzxw4/jHf/+v4j+7GfIDQyh/7+/55vf4EAWvcwdLzmYc5YPDeah5DO+9QGgTxvyvZeRdGdORo4hlbaXqeEoUrkcmGIvS2VzSKUspAZ15KQUckYOK57oAWcRgHP0dGXR0qaiuzeJnOaep117BwAAIUVBOpVFWs9Ak+18uqMmH4ucmcNr3a8UXUsLS45vwMA/Zbz0TD/mzcphgKXR25tC3+AQUoUckv15MFYaIjqYto+9T0lBNwtIpXJIDuQg51JIDeWdY07AQG9vCumsjlQqhz2FbqQK7vnY1rkbbWwaAEDPAqlCDkauD08kn0Eqb6/XyfrQ2+Ce93RS953TQojb57SgIpnuw459nXi9dw3e6F2PoaEczpx5NgCgJ9sN07IwpWFy2Wusc6DfGbezpx9Kvvabt96BQaSyOXT29mOK7M55MD+Afel9OLx5QdmUiQ1d25x9d/UMQs5FS9YpR1fvAFKpHLYUdqK3sfRaX9/3BkzLxJFtiyqOYVj2d0YOhZEpFGDmk1V/b4hS6N9IPwWzUBeRMgcL9Xp9JRIRqGr5tmCCCSsuK8E59/2gn3feeTjvvPPGZOx6+nC9WBav27kdzHBe7GzA6/faGAvo+iL2F4tzXxcQbjHnmgpeX23hdsxsmI25TfPKXncMEjgHFKZ6xpSqv0Y5Q/ecqbj7J5/FlZ+9CeHbfovmbBr46CngsvgHk/nGE/u09yQDnAW7msC0LN97MlOcMcJSxFkWlsPgHDCgQ9UYsoU8GMKQIMOyOLZvzGHv7jxC0MBhIZc1wbkKwzR8cxoqCpRIWIOEPDi3Q2VVScXcxsMAAK91vYqZ80KI51RMmxUGb1KR6mHQDQ7DsscrGAVIkIu/Z6XnUCzTDR26pYNzOHMNnhfL4lAkDZzb1Vw5BxpDjRjMD2IgN+B+5tw+V1k9h6yeg8QkWNxCwdB9x6ibhu+canIYlsURU+LgvBP92X5s7t8MzoGdyZ3I6nbRnyd2PI6CWcBVR15t7y9wjeWNgjNuzsiP6vetYNjnIqf7t39q51PoyXYjq2exuH1pyXY9mW5n38HPdDjyhv0ZD+WHkClkEVbCeGT7QyiYOi6cezFW7nsZhmXgiJYjK44hzieDBJkp0APnmxgd9G8kMFRI4u5Nf8WS9qVlr3ti9EzE66uuC/oMR3NzM2RZRk+PP5m+r6+vxM0kiPHAbUUy8eLhCeLNpLSgT+V1ZUnG6TPOxIyGmeWXF4vIKFVWiw0i1k3OnoaBex6EOX0GYn/9Cy76xm8h6YZvH8F9itfVFfRx5xdRor73NVmDbuqIRGXk9DwU5q677hW7PUQsYRfjyRV7YQYri6aztssYDWu+Ij3BViuLj4/j7ItbwRhDPK6CgaGQc4sFmdz0tXUJ4m+lYhbfE21WSgv6aJLtXAih2hhqAmCLOEHwWKbGi45moLhO8JxGZLuPpyjq83rvGqdQkMUtp6VL3sijYBbKimV7P26F2NFWixVjFKy87/1kYRAAsLprVdlqsN2Zbue1wY2S5ZXwthbqyXaDc449qT3Oa5ObZSsGexGVYhVJgSqpxYcFE+umlahPBvID4JyjP9d/oKdC1AETVlxqmoZFixbh2Wefdd6zLAsrVqzA0qVLD9zEiEMGakVCENVRS5/LkWiPtiOuxRHz9MOUahjP6W3JJFhz5mLgngdhzJ6DBf9cjbd/+WYouUKJeJSCrUiq6XPpEV4RNeK8ViXVubHXonaFV8myxaVlcaxfkwFjwNwFYYBx5LJCXPpFgF9cuvsKikvOOcyiKIzFVDAuoZC3im6y7WAOKy6LPT5t8eKKE+8ycVyAXdjH+8CtQbOFYM5000rEfATT4tMBoKSirGn5xVdYsXMVG4rtSPal9wEAFrUdBQDYOrgZgCvaguJUoJv7Xy1WCDXRy1PQEm5xXm8e2ORbNlRIIu9ZPzi/wfwA9qR2l5+zZ5692R6kdTec1bAMZz6GVVmwivMpM8nXIocg9hfxPQh+H4hDk7oWl+l0GuvWrcO6desAALt27cK6devQ3W0/+bvuuutw++2346677sLmzZvx1a9+FblcDpdeeumBnDZxiMC8Jf8IgqhISR/J/RCXx08+EZce9o6q+1wGkYpzcdy+GTPRd9ff0DurA3Offx3v+Nz/Qh3y9//ztyKRy/a5DAom7/yiiisuhXMJAFKkeCNm2Df6O7flkE5aaGvX0NBk96jMZ+1xg+I1K8RlRCsRlMHXQhTGYioAhnzRufQ6WZVwW5GYJev7HF2P0BTuJQCE5Qg0WUPe41yK6rWCSdFJtptr+V3EoPgKF8/jzIZZWNK+FM3hZkyOTcYxk45DSA6hM9MJ0zIdN66ScNI97+tlWqRUg5hrPrC94bkOdg7t8C3rzvj7bAevmXs23YVHtj+MdJn+k4WAczlUcPt8egXysOKyeD5t51LzHQdB7A/ie1Cg64lAnedcrlmzBtdcc43z9ze/+U0AwMc//nF84hOfwIUXXoi+vj78+Mc/Rnd3NxYuXIhf/epXaGlpqTQkQYwZ4saNnEuCGJ7SsNj9+84wxnwiari+mZXm4hOkU6fj9h99Cpd94eeYtmYrWt51DTJ33gerY3JxXX/4Z3nn0i8UZI9giyquy6p6buxZ1M6b5LotRNe9YrtRU2dEoIVZMSy2mKeI8mGxsejI4lIIjnhchQSz6FxajsPnDeENIoSkyW13TGKSx/0tdS4BOBVxxeuQHMJQYQimZTo9Ob3bNYWaoUoq0nraVzchKJSEc6lICpZMOgZLJh3jW5bP533OYGVx6XUua78Z9o4bdGq8gjh4TXRm7NZobZF2u+hQBWd1qJD0OfP2nN159mR7kPT0+Sz4jrny8XjDmhXJGHF9gqgW8ZCGnEsCqHNxeeKJJ2L9+vXDrnP11Vfj6quvfpNmRBAuU2NTMS0+DdOLIV0EQZQnKCZrcRorIXnGHE3OJYNXnDLkGmO4838+hrd95WbMfmk9tIvPw8Cd98CaPQeyNHJYbFAoqL6cS39YrCbby1jIFpeWbv9TvGu7/XfHlDBUDT7nkhcF2Qt7n0dXphPpnC3sohENxoji0h4jHlcBnkcuZxVzKPXinIZzLothsZZZkp8pB8KFBZrsVmVXZRVhJYKhwhByZg4xKeY7V22RNjDGoMka0nraDhcuOrtGcb2mUBPCShgxpXJVV+Gw5k23uqxZIafR6wIG8zyrwbt9PnAzbfnEpf+BQFdRXE6JTUFPtrui+M0ZOQwVksgZebRH2337TGgJJAtJX/isdz7D5XF6w5otLpzL2sJiTcvE37c9gJmJWTi6bXFN2xIHL45zOcpIAOLgoq7DYgminkmEGnH2rPN8Tb8JgihlPNx9VkFQVbtdubxKPRLC3d/6EJIXXQh5+zY0XXwe5LVrAmGxChhjJYI5mBOpSN6cS39Bn5BsO3BWyA5/tAr2uskBA4wB8bgGReVgslvQR4RQ7hzajr5cLwaKhTPi0ZDfxUXpayEq4g0qGCTXuawmLNaTc2lYhu9cePerMHeMkKcdgXAuAVs08WKuZ0yNYXH7EhzbcTwAOG6uN8TTKh7z8ZNPxHmz3zqs4y2OoWbnchQ3w163L7i9d5/eKyJn5DCYH0RCSyBezEO1uIlkfhC7hnb6xsibeTy160k8vO1Bp+CQcISmFh9m7k7t8q3v7r+8Gwq415DMZKjFBxy1OpdDhSR6sz3YNrilpu2IgxtR2IrCrAmAxCVBEATxJlNLGGslKoWCVrtdcBshgE1Nwd6f/hjZa94PuasTTW9/K6IvvuysJ8RWMO+ypKBPIExUiDJVUh0nU1ftvDmeV2GaHEODBhoaFSiSXSk2HJFQyNtl6C3YgjBj2NVkk3l7W1tcls99DIaX2tViJTvnEpbjWg0XFmsvV6BbOixu+caXK4TF+pxLSUO4KKbzZs45T4qkYOmkY9EaaS1uY2+vl3Hh5GHErztHey45w3UuKwktX87lKG6Gvdt7RToQDIt1rwnhWk6Kdjjn0LAMPL93BR7b8Yhv3lkjg4F8P0xuImOknXmqkoqOWEfJ2Plqw2Kd8yk7n3mtxy/c5MH8IFWaJRzEw4/g94E4NCFxSRAEQYwrY1ktVuATlzX8U+bmXFYO1ZUVDakbfoj0v30OUnIQk696N+Y981og39C/TyEqhMgSgkogKsYqkuK0JtEVO8fSKsgYGrR7EDY2K07fx3DUnqMowJMp5iQCQCZvi8x4rPqcy4YGzW5FkrcryAoh4nUdyyExyXHovOtKUoWCPh5xGZI1J1cyZ+ac8xQ8f2IbrxPoddpGwg2L9VZjreBcmmPnXAL2cQm8os/7ujNjV7btiHW4ocbcdLb1uql9uT7nM8voGXDOUTALUGUV7ZFJJfPxhcVWUdBHZrITCl2ruBQVZy1uYSDfj0e2P4QNfcOnLxEHPwVPS59gqDhx6EHikiAIghhXxrJarMArKMfEuQzmcDKGzBe+jNQ3vgMpl8PbvnIzjrn76bLrA26u3VHti3HKtFMxKdrhWy4Epde5NGTblTJzMgb77Zv2xiY3p1OL2kIyl7NgchMpT/sJXbeXxWOhgNAuzUUVoiIeL7pVORYIix3eufRXhVXKvu8v6OOGxaqy5oQB5428I7hY4PajXFismyM4srh0w2I9OZcVnUvdOTejybkMCjI9IO7EefGKy/5cHwC7mI8Q6KanAq93XW9V2ayRcfanSRqiahRxLe7bv6+gz3A5l5a3WqwIi63NZfIe+/r+9diT2oN1fWthcQsv7nse+9J7axqPqB2LW+hM7xu2p+mbjfcapKI+BIlLgiAIYlwZ62qxgF8c1hJmO1JYbHC87L9+DH0/vxmWLOGMG/+E2Ne/AlhWyfbiRi+mxjCvaX7JMUaL4lKTQ04Ophoqhq3mFQwO2Dftjc2qKy4jtoDMZy1wbvl6GxYKFhgDImG1Yh6kEJpCEESjCiQJKOQ5OLinWuzw4s2bk6lUEJdKhYI+mqQhrIicy6xznuTAPjWpTFiscC6rCIsVYilnjCy0RIipIimjci6D4lI4NZxzWNxyzgX33PyL9iJxtcGXxyrG8obTep2fjJF1BLc4r0H3Mu9tRWJWFotCSNrVYkcZFusRoyLvcjA/iK2Dm7Gu93Ws7XmtpvEORsY7LHTLwGY8tO1Bp69rPeC9ZqkdCUHikiAIghhXxsW59IV/Vj9euWqxwfGCYZj6JZfjrz/4OHINMUR/eiMaPvx+qAW/KybEQaVjO7p9MZa0L0VbpM3pe6lqxbBVr3PZ7HEuw8K5NGFaFrbs6Idp2sJQL3Boml1ltZLQFuddhNIqsoxoXIaeK/atLAoRtQbnUmHlcy7lMgV9NFkDY8x1Ls284/AGxbkqC+fSvTH1hnGOhBBsXuey3E2+cGw1WYMqqaPKuQyOKwSqmK+odiuENOccaT2NsBKGLMme3qGGx7nkZR34rJFxBLfIS50cm+JbJ+/NMx22WqwQ67LHuawxLNYzvleYv9b9KgBbDNcTb3Ze6HN7V+DPG/40rlVTRR6ut9fpgcb7PRpt71ji4IHEJUEQBDGujIdzOdbVYkvCYj1ITMKct74fO+66E+bMWQjf/Vdc/O83Ipx0m92LkMNK4rIl3Iolk44BY8wNkVWLoZkZV1wmmhVH+CpFcdnTpeP2X+/BHX/cgo2vp2GagGUBmiYX80ArOJdljiMWl8EtCYW865qN5Az6QmElb86lO763nYkIcRUCRojLnKegjxyYm1bcRvflXAqnrYqw2HKtSMqExYpjViQVmqyBc+5UZK0WJ0y1KCKFaxMMMxa9SbNFx1b0OxWtbUTvUPu1WTbMMaNnHMEtzuu8psNw6vS3YFHbUQD8YYjmcDmXYn5McdzVWsV1pdYlou9mbhTiknOOPandFT+HgVw/ujPdAOwen6JfaDU8sPVveGLnYzXPabT0Zf8/e+cdJUd1pv2nYufp6cka5ZyQECAhFAgiB2OiCWuc2TUO2Gt7l/U6Ll6vbfCHc8QEYxuDjU02JuckRBDKKMfJuXOoqu+P6ltdVR2me7pbE3h/5+jMTHd11a2qO5r71POGXiSUhKUPaaVhc8ZcBGo0MYd3AxQWS5C4JAiCIKpNtZ3LEv6UsW1zCS9GLjEzwz8TgaVr0f/YM0guOw6tG3fiqut/ipqOXgCAlm48UYzQFXkRsiBDltNhsVEBg/3psNjaTFisM93BpP1QHN1dMST5CKIRBamELkIckpQ+ZuZ6msdudmfZ6x6fCB48orGU4UKV5FyaxaVp/+bXHekCPiyM08UK+qQKFfTRhVNMiWFLz2YEE0PGtoVapdiPHx+m52PGBZRz5nkWA3P7PJIuFu3OJRsLE4uswi/bnglhSwhvHmEVTUWNMTN3l+d4zPLPhlPQHfC4pW/n8NVieZ437nkxfS5VTcVT+x/H1p4tWa4tOydGTImV7BZ2Rjrw9IEnsaVnU873H97zIP6571Gk1BSePfgUnjv4dFH7TSpJ9EZ70BnuKGk85cCEVTR9z6sBu2fmQlKjib2AD4XFEiQuCYIgiKNKKU5j/n3kdxqL+VyhnMtC+9OamjDwwGM4uPpY1B/sxL989sdoeu9Qxrks0pV1i26IUjonMiJgaCATFstCPOsbZcxb5MaseS7MX+JCko9AUYFEQl+8uxwZsZFr7Lm+9/oEQNN7XTJRZHcR7VhyMhUez/yjB9s3hSx5k5bWK2nRxsJjHZZWJPrY7WHJTFzuG9yLtzvfNIQMx3FF3V+hyII+ScMFFI3xvXDoOWzq3jjsMez7YMKKHTPjDApGxV8ARq6sR9IL8fA5QnjzicJoKpLJubQ9BGDXn/UYBIbrc5luA8OJJYXFDsT70R5ux/6hfVnO6JzauZaHE5qm5awWun9wH95oX5/znkTS+ajhVDjrPTMHhvYhloohoSSKymuMKbqLmlATRQveN9rXY//gvqK2zQU792q6iuyejRXn0l4Ui5xLgsQlQRAEUVUq4VTaGWm1WC6PuCypb6bHg2dv+jLevXA1PP1BXPXFn2LW83ovzGLP1SW6wHEcZJlDIh0WK8kcXG7eKMTD8xzmH+PF4mU+LF7uRpKLgE9JEBRdrDllXRzlLeiTI//S4xXAgUM8pg4bFrt9UwgH9kaNsNtEQsWTD/bjpaf68dTDPXkdTb+jFvPqFmBRvR62KQl60aFYKpa3oA9zEdmCmbUtGa5NinF8FhabKtyKxBxiypzAnmg3tvZsKeo4QMY5cqfFYsJWlEfg7eJSF01257JQ2xS35IYsyIimosZDAMlUhde8H0v7loI5lyxs11TQp4iQ4FBCF8cpNWkKK9aP3eKZhEZ3oz4+o6iSNTS2L9aLl4+8iB192/B215tZ+2fXMz6MWNreu934vph2F8wZ1jStqPDfcDKMHX3bsLW3+Llghz0IqKZzyYR1fMw4l/o5s/9vqplvSowPSFwSBEEQVcUuuCrjXI6wWmz6z579M/mqyOaDkyQ8/aUr8MKnPwgxkcIH/+dOrPzTk5ZWIIVgFWNlSYSS4BGLqvDXinmduhQXg8ZpEFMecCldZDgdLCw297XIFeqri0sBibiKjs4QXn2uH4f3ZS8GoxEFf/19O/52V4fx2b3vRdB9RBdQfb1JqKnMuZrFJcdxOGnSKkzxTTVec4gOxJW4IXCyw2KtrlxSSUBRlaLvB3NXzSIipabQG+lFX7TXsl9AF2osz5N9LpIsThCwfRjOZVoUGdVtOdEy7ohNXLLrmbD027SKH6/kg1t0I6WmjM87eIdlG5bzmig2LNaUw8pyZItxLlkLnISSQCotoE9oXoFTppyGZk8LljefiJWTVmFqzTQA1nBNRVXwypGXoGp6heXtvdvQFjqSc1yxHILRnIfaF8u+j4Uwi69ihBjbZzLtjN6/6z681blh2M8xEkrGIa1mYaNynMu9g3vw1/fuQTBPTuibHW/gUPBgSftkTiWb38UIeU3T0BFur3plXWJ0IHFJEARBVJXqV4sdQSuSrD9/+piKKR5j7Ifj8OZVZ+Ch//0UEk4Za2//B6Z96QYgNvyij/W6dEgZgeMP6AIrl1iOaHplSD7lhKjoIoM5l5aCPnkcXfa9r1YEp3GIRlTs3hlEb3cSD/6hB1s3WitPdnckoKlAcDCFWDpaMRxSwEOAw8kDGjDQW3xOJMsPZPmH9uss8VZXLqEmdeeyiH3rY8jOG02pKTy++3E8uf9xQ6QwZ0niRYSS1nMeSgwWdSy2IPYy5zK9uFZNziUHLsu5dDPnMsc52fNDfbLPmCMD8QF9zDYBnsvVNS/WmfiIK3Fs7dlihC8KZueyiMV9xrlMGWGxfocfM/wzAQC1zgDm1y0wxhs1Cau9g3vQH+tHi6cFq1vXAAD2DOy27J+NK5cAzCc+CuX1HRjajyPBwxbxFS9CjLJrkVSTCCdDCCVC6DL1HB0Oc+7uSAobFQsT+Hr15dJ6XbaH2hBLxXDEJvABvXDStt6teLdrY0n7ZOfNfh+iqSje6XwLA7H+vJ85EjqMJ/c/jh192/NuQ4xfSFwSBEEQVaUa1WIx4pxL5lzme724sbHcTY7jsGfNEtzzi3/HUHMAgYcfRe0l54PrLFzRklWM9bqcxmsLlngsYzGTgL5Y5ZMu8OmwWFkSs7Y356LmyiOtDUjgwCMaVhAMx9LbCXj8gW7L8braMwvlvk59ARuPqeA1AbPm6SKivyudw1eMuEz3uowm9fOwC2jZFvLJFufFi8vcQiucDCOuxNGfXuiy9isyL2NO7TxwHIc6Zz0AYCheXIVPJob8Dj+AjLNnbp1SKCw2lzvNCvrUOesxrWY65gUWGGJ0KD5ojHn4c9b3s6NvO/763j04OHQAr7e9irc6N+Bw8LD+Oa60ViRMhCfVpClPN/vY7AGCWdRt790KADiuaTka3Xp/zogtZNQI80xlO5f5XLB8eX2KquClwy/g5SMvWhzUYvIA2X3VzzNp7K9YzMeoZj6kOZS5mPBgM+z3ajCe/SCF3Zd8rmY+2Jzwyj4AwOHgIWzu2YQ3Ol7P+xlWTbea4cPjBUVVcHDowIRycUlcEgRBEFXFrNcqIixhc+hK+VM2TEGfkpxL0/Y9syfj7l99GZHjj4P01psInLsOwubc1S8BvaAPACw7vg6nnF2Hz39tOlasrc07hhTS+WNJATxzLqXCBX1yhcj660Rw4BCJKBgK6QtggecRHFSQSGRckK6OzKK1pyO9+I+q4CBi1jx97L1dxTuXzJlk7pT9nom8NZSUuV98kfcjV96oWcR0pdtXMJdF5CXM8M/Evyz4iNHSYzAxUNSxmMPlFFxwiS6EkiGjfyaQCYs1F/ThOM645+x8c+3TJTpx2tTT0ehuNJxAthC351zmnCdpMfRGu76w39G3LcuRFXihpFYkrCARkAl5lXJcb1YVmAmGttARDMQH0OBqTJ+Pfv4szDcz5oxjaHfi8onffBV+hxKDUDUVcSVuiH7zuAvBrkVKTRlCsVAOa9aYTO6oXTTtGdiFN9rXF72vQpjHVKpDGk2L3qG0G259Tx+z7tzq92hLz2b89b17LG60HXatmLhkdIQ7jAcjdti4lRKcV03T0BXpKln8jnX2D+3F84eexe6BXaM9lIpB4pIgCIKoKmYHrVLFfUYcFstakdj+/JWac2kXlwAQqavB/j//CbHLr4Rw5DACF54N+bFHc36e5Vy2NHtw+vn1aGjKCIdcY0iqCQgCoCZE8OmcS4csZY3BWtzH7Fzqr/tqRHAcj2hEwVA4Co4Dpk7Tw9kG+1PY8k4Qu7aHLc4lE5exmAqnLKJ1mi4iejtYcZzCrUyAjJhKGEWEss/RvJ9MP8zixGWuEFFzDiUTl0yssBxPgRdQI+sOZLGL1sw+ZNQ4/NA0DaFE0FTQhzfuYUpNIZqKwi26C/ZSZfs0PxBwmcQokKtabPY528VQjaMWPrnG+jlOz+2VeKkoccnCYoGMAMn1QMEpWp3LXf07AQAL6xcZn3EIjqzcVvMY7I6fvfotc7jzFSIyO3LmXNtiisyYhSx7MMHuaTGYXUSzGFM1Fa8ceRk7+rYZoq1UUmoKu/t3IaEkLNerZOcyXUF3IIe4NOeJst+FrkgHYqmY8fuTi7gt59LMzv73cn6GXZ9CfVnNdEe6cd/Oe/H4vn/g8X2PDRsOHFfiODC0v6gqwW93vom20BFomoa3OjegI9xueV/TNGzq3ohe03yqJOy6R4vM+R4PkLgkCIIgjhpVEZc5hMpwn8uuFpvb0cwHa6VhX2RzLheCv7wVoa9/G1wkAv/H/wXu//cDQLUuhuqd9Wj1tmJW7Zy8Y7QjCBzUJA8ume4fyVqR8LmFdq7vBYGD1y0hFtUQjiXgdPGor9f319OZwN//2IG/3tmOjiNx8ALgdPPo61SRTKhIpTR4PTIam/Xj9nfqCzfWz7IQTAgxlyOX22wPjQVsbVAKkGu7aA7n0uwuMlh4a65QwVyYK6bWpIXbUGLICKEUTQV97G1IGHbRbFTuNb3uszlB9uucq4VMSk1ZwuskXswbTivyomVbVVPx2N5H8cCuv+HNjjeQUlOIpWIWMcPCmnMJW+a0MgHTG+sBAEz1TTO2cUtuKJpiEZFWsWQXl/p7M/2zsHbKKVjScCyAws4loz/WZ3xfTFisuagSc1dLC4s19VhVU4YANhcwKlZM2dk3uBevtr2MPQO7c+bVFgvb3lyFmMHuLZD5XWC5qkMFHryw/bgElzG3WDXsPQO7cwrBjHNZ3PXdM7gbsVQMIi8imooOW3To3a6NeOHQc9jQ8UbB7Ybig9jSsxmbut9Ff7wPW3u2ZPVb7Yp2YWPXOyW1KxqOlJrCrv6diCtxIyR+IvUHJXFJEARBVBWLc1mpsFizcCrhTxlbvPM2MVJuWKxlPxyH6Be/gsHf/xmqxwvPzd9Dzcc/DC6YWaCJvIgzp5+DWf7ZWfvOV/1WF5civKlmBBIzMcc/Tx+L6fzNnzVfd/M4vT5dbKhIwe0REKjVncg9OyLQVCCZ0BCLqmhsljFlmhNaikdXRzqvyitDdvAI1EsI9Qk4selkLG8+cdjrJaaPn7S1LTDDxJN5jrDFan9vEr+++QD+/scOtB/OXlDnEjvmRXg0FUUwMWS8ZnZJRV6EW3IjlAwVJSZSasr4PAsFHEoMGQtlPt2KBMi4p07RadmH/aEEE1Hm6zLZOwXz6xYaP9vFdy73MKkmjfxS/edUVrEgNhckXoKqqcbiP5qKoifajWAiiG29W9EWOmIJLQUyYiCXW+00CvrEkFSSCCVC8Mk+yziZuxVOhrGpeyOG4oMWx5C5YG2hI9gzsCvTl1SQMcs/G+60459PLJofEJiFSzEO30icy2A8aMwZ+zE6Iu3YO7gH+4cyfTPt96JY2IOSaCpiFZcltCNJKAmL0LM/TImY+owykc5+X/OFt7L9AvrvL5ujU3xTMdk7GXEljs5wR47zYRWWi3Uu9YdDJzSvAKCHGdsJJUPY1L0RSSVpPNjY0bet4DGYeI6loobwtlduNvqwluA67x/cV3DOHRjah9faXsHO/vcMUVlM/vN4gcQlQRAEUVW4PEVmymGkYbFTa6Zhft1CzKyZmXN/xbY1McSl3bk0nV7i/A9g4PFnkZo1G47H/4Hac9ZB2LVz+H3n+dMsiBx4VUIiIqI1ehwavPWWsRT+PjMwny8zZpeHR329Lnx2v2ddPDVNcqB1mhM8BHS16wsln1dfPDa26F89ocmod9UPe072sFi7uAeAKd4pqHc1oN7ZYBq3vt2Wt4PobEtg81tB3Pbjw+jpTBdfSahY/9IAEtHh51VXpDOrTyPDL+vhrcHEkPE1H0k1aXze7FyyRazIiYazne949oI4LOfS3pt05aSTcNrU07Fm8tph9wHoTpu5ZYdiczKBTI9RVjGWiQO7YAslQwglrBV1M8fOvn9OwQmO4xBLRY2wy1pHwLINC/Xd0bcNG7vewba+bZaKtWyB/2bHG3i17RXDyWQPJ5gLW0xYrJliwmLNbmgu5zKUDFlETTAxhL9s/QteOfJS+hj69WP/371w6Dm8fPhF7B3YY3zGHuZbLGz89gqxpeRc2rcdsuUYm0N5mZhk16SQq8+2kQXJuD/NnhZM9uqtiA6HDmWPJe1uq0U4lwklgf5YPzySB3MD8+AUnTgSOpIVXr2r7z1s7HoHh0OHjMq1QCY8OxesiFNMiRnXxy7y2HGKLT50OHgILx5+vqDTyYRqLBU1jjeR+oOSuCQIgiCqStWdyxLEpUt0YeWkk7KKT7Bxlepc2hf8dmGozF+AgSeeQ/zscyHu3oXac9blzcPM7Dt3bp4gcBA0CeFguuKpnD3mYoSmz5dxwNxuAYGA7hgO9FpFSFOLjKZJMjiNR3dazPl9+rYz5ugu1RsvFxdKWkxY7LFNx+GCWRca4ZVA5vru36Mv/OYf44GiaHjs713QNA3PPtaLf/69G68+lV8MsvzWSCqaEYA2582XDo0dSgxhW+9WPLDr7+jMkWeWUlPQNM1waJi4DCWGMq1IuIxzyZwq+/kKNnFt7kFpZ1rNdMyunZv1un0fgC5mzeJSD5PNLcRYaxP2PnNa2DUPJUKGc2me5yIv5vw95jgODsGBaCqKgbjuntY6ai3bsKJGh4O64DAvroHMAjupJqFpmrEIZ04pc7dzuUKapuVtJ1NUn0uTyM3lXD5/8Fm8cuRldEf0ysrdkW6omop9g3sRTAwZY2dzIlc4KAuLDSfDeGTPQzg4dGDYcQGZ+RG2OcnRVBQHhw4U1ZIkyopppeemPe/SXGiJhcEyEV+oTQ8TZS7RDa/sg8AJaHa3YLJvCgBk9TXVP2PtDVuI7nQ7mCZ3M3iOx0z/LGiahiOhw5bt4ip7SGLNSzUXykkoCUtOZebBSgJhU0EjMxnXOFrUdWbXrlCOJnNuk0rSNOdJXBIEQRBEUVRKUNoptQhPIZjTVGpBH9EeFpvjXDV/LYb+cC/C//FV8KGgnof5g+9m5WHa9w1YF/WCCPCaiHBQX5DJjuwx5wuRtYjLmoyw8nglBOqt4Zar19XCWyNg3mIPmlpk8BARj+n5lb60uDxhtR8er4DNbwfR2T58yCEruJMoEBbLMId/CpwARdFwaF8Ukszhso+2oKFJwt6dUTz1SC/eeElf9O7bkX8M3nQoZkpJGgVv7Dma7rSgjStxBNOtN8KJICLJCHb2vWcsKjO5kfr5+Mw5l7kK+qRbn9idWnu+ZK6CPsNhL2LErpu5+IqipfIu4FnF16RNXAacdQCQ7vWoXwu/SSQWegDjEl1QNdUYQ63T6lyy9irsWAklnjPnkl1v5hqJhrhk/TmzF+LhZAgpNQWHKTeV/f4U0+fSLHLNIZCKquBI8LAh2gfToowJaADY1rvNOCdWIAoAljYei5WTVmFazXT9GOn5dyR4GP2xPjx/6NmiQrGZO8iuB5tfu/p34vlDz2b1Ds0FE4H1rob0eVgFYzQVhVN0GiHiKTVl3JuEkshbMTaaikLiJYi8iFWta3D+rA/AI3nglbwIOAMYjA9aIgHM7msxOZedET2sttndAiBzfe0hwez+JdWk7V5mBPk7XW/jyf2P40i6LY957rG+nNniMnPe9jY6uWAFsMzzww67Fwk1YXIuKSyWIAiCIIqiGtVigcqKy8y+ihsfZ4TFWhfaecfC84jc8DUM/uFeqF4fPD+6GTUfuRLc4EDesQDWhbwo8hA0CSG7uDSNwVyF1dKuxVwoxpcRlz6vjJpaEebbsvbMOvzHd2ahudWBukbZIoRqavSFu8PBY+2ZAUAD/nxrG15+pq9gZUZ764tCAsXsKgqciPbDcSTiGqbNdEGWeXzgiibwPPDqs/1QFP2Yvd1JxMOZkzALVFZMJ6mmDHfK7lyyn5Nq0sgzUzQV2/u24vX2V9EeagMAtKXdklpnrXFebsmNcDJsLA5ZNVYgv3OZ3YqEfbaE/GHb3GOiyiwakmoqbzuNzDnr7zPhnxGXYQymHSsmSHKN3QxznZlblc+5ZMSVeM4cQiY6mDBgziVraWNfiD994An8Y+8jAIBW72TjdSZEiivok8j5fUpLYVPPu8bPzMUz57buGdhluLysQBQAzAnMw/y6BUZxJnau5odQuwaywzZfb3sVzx58yviZzUkmbuyVWQsJGQZzCxvS99IcVhpLxaBqKlyiGzVyDTRNQ5+pIJJ+3tnRAYqqIKEkjJxil+gy5g+g5w0DMHqs6seKmj4/fM5ll+Fc6n1SmeOetD0wYC5rSk0ac9ohOJBQEobwZw89DgztB2C9z+wa5nMuAWvRo3ywOZtQEnnzNNk8TyqJnDmXewf3WMKpxxskLgmCIIjqUqAFQzmUmidZiJLDYsEK+thyLocRz4lzz8fAE88hNXceHE89gcCZp0Dc/K5lG4ugNDuXAsBrEuIx/am/7OAsY9HPY/iw2JqajPDyeR0QBA6+Gv04bo8At8csaDnU1WfCVGv9mc8uX+PH7PluDPan8PQjvdi60RqyZzmntBBK5cgttCNbiu0I2L9bX9xNT4fizpjjxr9+eSpaJjvQ2CJjxVp9Md/byYSjaLmGbCGeMjka9oI07Gd9YWrud6gvPpl7wRyi2f5MlV+2GB9ML04FXgCfngfsePbWK/Z5U8x1yYV5fjiETNEgJurM1WMvnH0RLp17ec5zBjJuol/2Q+AEhJMhDMT6wXM86hx1WZ/LxZR0ZdhoKgqe4y2OJwCjIA8jnuVc6mMwnEvW+kTQz9NoRWJyLpNKEm2hNuOzdc56Q+x4JA8ETkAsFYOiKgXDGvOFDw/Fh9Ad6TKuNRNZTFxOq5mOlJpCb1QvIsOufYOr0cj9Yy4zcynNomZLz6asBzP7h/bhcPCwIQATJgcRgCWnECjuoR1zhZnbbj7fqCFa3cb7g7aw2VxFfaJKJiQ2F5N9et7lEVPepbnCbTHOZV+sF7IgG3PJwesPUew5irmcy0DaOQ8ldCeWCchDwYPQNM0yj9hDGU3TLA88zCLcXPQoH2ZBORDLLfozzmVmrMyd1jQNrx15BW93vjXsscYqJC4JgiCIo0YlQ2TZgqqUarH5KFWoTvHpxWea3M22QQ1/fsrceRh4/FnEL/gghAP7UXv+mXD+4U4gvcDk8obFcuCR+VmWhwuLzS3qmbjkAHg8+ve1dfp+G5qzhUNDYybM0F+TETCSxOMjn5mMyz+qh6sVEpf2EM5C7WMkW1jsgXS+JcvzBIBJU5y47j+n4TM3TMPCpfpCu7stXa2V420VSplzmTTlXFrHI5mK27DFnqIpxvZxJY5gYggd4Q54JA9aPJOMz3qlTMVYdq7mPpcAsOWtMH7340NIxNP9O22uIxNYpYrLzLzljJBRIOM0ptLnzHM8As46S66x3U1m7p5DdMAtuRFX4ogrcfgdfmuocgHncl5gvuHc1cg1WefjtjlusVTMIqziKWtYLFuos/kj8vq1NedcBpP6dQ84A1jccAzmBuYZ99wpOiELMuJKHA/u/rvFDbSTLyyRCa86p164iuVXhpMh+B1+i1MKANNqZmBe3QKsaFlpvMauGXOyLZVpkxGEkpnCSbro0d833DSbkHLZRHoxxWBYnp9H8oDjOEvl2qgpb5I54PaiVnaxCWScPHs1ZEajqxGyIKMj3GE4i+Yw03yVXGOpmPEvpaaMMQP5826ZW2l+oOJPF5QKJ0Poj/Ubcy2uxNEV7bLcc/ODB0v7HXNYbJ5elKqmoiPcjpSasoTh5uonys4P0H/n2L0z8mpTYSiakvUgZjxB4pIgCIKoKuMhLLbUViSt3sm4YNaF8MpWB6FYoav5ajB0xx8R+t/vA4oC3398Eb7P/RsQDtvCYk1iUpSMcYoSB55nY87jVsK8n8x5yZKAllYZLZNlOER9//4AE5fZvSabmzOizu/PXkTOX+KB7OCxa1sY8XhuZ2i4wkdmzH0ZeV5A26E4eB5onZrdT5PnOUyb5YQkc+jtUKBBg8iLOdtfJFW90AfP8VlzJuPiZUJnVU0xnJWEEse+wb0AgDm1cy3CnS2smcvG84LxgIDlO257J4IjB2LoOKIviPPNs5E6lwInWEJ9M+JSX2jnCmVlopgVTGGLXAfvsDhjNbJVXEoFxCXP8Ua7iMZ0GKMZh+CwjIUt6NlCOq4koGma8Tobk9ktlXjJUi12KK6LoGb3JJzQvAKyIBv33Ck4jfsTTobRFmrL2xsyn3PJRIxH8kAWZAzFh9CfFn0BV8AIMwVgzL2TJq1Co7vR8rp+DH1uMfHCris7B/YeE0FMnNj7eoqciHNmnGcI2GJarTC3zCm4IHJiTnfOJboMB5w9LGEPC3rSzqxlnwoTl66s9wB9Pkz2ToGqqWgP66HlZrGWy7nUNA1P7H8M/9z3qOEUmsOA2UOUhBLH4eAh3PfeveiL9Vqcy6SahMRLxjwOJUNGexK2r0NDB/IW0TH2pSQtQjOXc9kRbsfDux/Ak/sfx5sdb1juxUC8H4PxAbxy5CW80b4egD7nMznHCeM+pNQUVE1FMD0XmIM8HiFxSRAEQVSValSLBUrPkyxuX6X9WbSL5ZLOj+MQ/fTnMPDQP6G0Tobzb39B4Nx18O7Zb2xiLjzjEDPiirmW9jHn+94eLrtibS2Wr6k1cjFr6/QFW0NTtrhsbHKmP8fB48kWFpLEY/4xHqSSGnZtzR02Fg1pGOzPLNIKXWfJ5MAlIkA4qKChWYYo5v6MKOp9N5WkgFRCg8iJFlGeEZcpKKqSU2iJQibnMmUKi2U5YXE1YYTNmV1LILOwZoKAOZeapiEUiSMSVhAe0sXSQL+1IJAdvsiHGwwmUnVxmdlnraMWIq8LiJSWyluFFsjkn7EFryw4DOeP7UsyCf5COZeA3uPwA7M/aIhMOyzv0jwH2PHiSixn6KpZODsEBxRN0XtIDu4zCjD5TK4su+cO0Wk4XQxztVAz9lw7BsuPE3kRNbIfiqagLZ1DWOeqQ8BZZ1xfey9SBhPkiklIAEBdOj9x0FSN1ZwfytxCe+sVkRfR7GnBlHRFVrv4LHQeLtFpzA0Gc2ddohuutBgPpos5Nbtb4JN96Ip0ZrmXTKi784hLAEbVWFbd1ZpzmRGXm3s2YUPHevTGetNFgILoT+d9uk3zMeNcJtAebkM0FUV3pNsUzp40HqiweRBKhIyw5cUNSwDouZz5HF/maDIxyeZ8Lufyna63DSHOHkCx0OiDQwfw8J4HsWdgN3b0bUPU1E8TyAhh88/suvtsFc3HEyQuCYIgiKpSjT6XQIWdyxHuy779SM4vtWIl+p95GYnTz4T43g4s+9AnsOCpNwFYF/JOKbNwZfmWgLWgT77elpbiPnx2Tufy1X4cv6oGy07Mflre3KyLAZdTNtxSO4uX6Yu/7ZusobGqquHJh3tw+4/a8dJT/QgO5W+5YZybScgM9uqCrbk127U04/EKEDQR8bgKgRctopwJl5TJ0bBjrpyaNIXFMmclnsr0wbOHANp/FjgeUDm88dIg/vL7Qzi4NwpOS7d/6MtdrZYxUudSd8wy51XrCEDgBCRU3QnMdc4eyYMmdzPCyTC6Il1GTp5TdFicIr+j1uJW5hPGZuqc9XmF1mTfFPgdfouz6RBkSLyEuBLP6WaZrxcLm3758It4+ciLhgCpMTk9rZ7JcIkuNLmbLfMJKF1cMrEn8iJqHPoxDgb1FiJ1rjrwHG84xQ4h9zxl14yForJjsVDbIUs1VXORmQFLmCyD3XfmMuYqWDQYH8Bjex81HLPM/HVB5EWommoIeVaMyC25jX2ysFhZkDE3MB8A8F7fe5ZjMFHqFPKLy1bPZHAclxGXSnbOZUpN4d2ud7C9dxve7XrbeL8jrFeK9ZhyOtk1TqqJTHipmmk/Ekvp1WglXjLCwMPJjLicms4LjinRvG41e525rOw+5aoWy0KWHYLDGENDOhw4qSYhcIIhFEOJkOH2AtntapJKwgjzJnFJEARBEHmYiGGx9s/Zx1QqWn09Bv/8N4T/+5vg4wlc8L0/4sxb/gIpnlloOyziMl9VWNPxLTmXuYUmW7TX1kn44JXNlmI+jMYmJ+rqRUyZkj8HaMoMfUHa12tdrHW1J/Dqs/1QUzw0AL1dw7ciMedc9nfp5980KbdQYbi9AjhNQCKuWsJiRV40FqNsoZjLeTMXt2GOjqKpRlhrUk0gxnISBauYtFdAFXgB76wPoqsjgaSSwu7tEaPVzWBf4Wq5pc4/3uxcpr93CA440+4Uc1Pz5UnO8M8EAOwf3GeIGllwWMK9/Q6/5Z4M51wOx4qWlbhozqWW6ybyEhyiwxImaEayOJeZsaiaavTMZMIP0AXsh+ZfhQZXQ1bIKAvPTKkpQ2jai7iYiafS4pITDQE7GB8Ex3Fo8ugCmYXG2l3SzPmxsFg2n/R5wETpkMkRtBaZGcgpekWjeq7+1X6O3ZFu/GPvI+iJdmNH3zYA+vxnvxvmMN2EksCBof164SZnveHEs+shCTLm1M4Fz/HYO7jb5niyBxK5cy7Zew2uRkSSEfTFerNamiiqgq5IpyG0jpj6YrI2JOb8Q5ZTHVfimcI4pqrDTPCKprDYgXg/BhOD8EgeI7w5looZhZLssGseseXbRnJUf2UPDMy5t17Zi3mB+WhyN+OCWRcaUQLB5FDesGxAF8kZ55LCYgmCIAgiJxbnsgphsZWoFsvEV6n7sp9PWeKZ5xH50n9ix12/QTjgw7GPvoozP/qfqN+nL4YtzmXesFiTi5kn5zJfTmc+ZFHCmjPqcMLKurzbuNz6/qNhq+vEQmEDAX3R3Z8Wn/a+j5bjmYREf5e+4GyeNLxzyUNAPK5B4HjjvByCAxzHQeRFY1GX65xFo6CPybk0tfGIpfSFLMdxWe6U0yY2B3tVbHsnAknmwMsqNCDLucx3/iPOuTQJBtZbUrJU3c19n6fXzACgt1hh7pfMy4bby3EcamS/bV/5q8WWglmISbxkajOS7cKJlpxL64OGlJoCx3GWUF4zzB1rcDUi4AwgmAgilAhia89mPLn/cbSH2ox7nus6mcNizQv+hXWLDBHe4NLzK+0uaWb89rBY5lzWgeM4m3OZOf+EkshZFIbdD72Qk5wV3rmjb5tFBCaUhKVlCPsdSKpJvNe/AwklgVn+2fBIHkv4PTsnp+jEFN9UJJQEeqLdhhiPmQoBFWJKuiXJkeBh4/eQ/R6ltFReN5n1jLTfW3bO7N6wViqA9SESe8gSTAShaZohAF2iCyk1lVMsAtl9RX2yD7Ig5+z1mVR0d5L14dTH68Hxzctx7szz4XfUGvnNoUTQEhactS81RWGxBEEQBDEc1XIumRtUiWqxGefyKOZc5iF00kr84bYbsH/5fNTsOYAPX/cjHPvQy3CImQW2OSw2n3As5nt71dJcSLwEgRPyFu0AAEHg4HDyiIStYV5Dg/oCd9ESvShIX2/uvo+W45mcqb7utHPZOoxz6RHAm5xLdl5soWwWDeacTuO19GI9pkQNt0/RlEzrCFWvnMrEqhn7denpUMCBx+RpTsxcoI/b59f3z3IuzdVPzZSaP8zmq8AJhjvJWjaY3cp8RXhcogtuyY1gMohYKgZZkNNCTQ+L9Uk+CLxgE5eluav5cNjcUDaPc7lJ5uuUK9zWK3nzCvNVrasxxTcVp05dh2a3ni/bE+0xKtEOmNxBuwsNZIoKibxk5NJ5JA+WNR1vbDPZOwXTa2ZgbmBezjHYw2JZTp9DcMIreRFJRoy8SrtQZAWXzFhysQWHUQwG0F3YttAR8BxvhB6z/o5uUb+vRhi4ksD23q0AgGPSuYj2hyXs94W5rL3RXrzRsR5/2/kXIyTZVcC5BDJ5l3sH9xitRVjIqqIqaE+Ly1ZvKwBrr1B93Nb7kqloqwsxc4VWdh3YOZqLU80LLEiPV/+dZS1z7L/TKcXqgrolNzySByk1leUSK5qex91kCvO2i2EmFIOJoOH25iKpJBBKBCHxkjHG8QiJS4IgCOKoUUnnssHVAK/sLRiSVSwjDrHlKhMWa99HpK4Gf7/pOmz98rXgFQVn/uQ+fOhnP4Un7WJYwmLz5VmaX8+Tl2lvEZILgRdw9ozzcPLkUwpu5/bo4k5RMq0lhgb0RdqkFje8PgGRkIJ4TCkcFpsWMpqmoa9LhcPJw19beJwerwAOIhJxFQInGufFhIi12mgu51IEx3GWkLWUmjJcr0gykm4yn73gswvOgR4VnMbB6xMwe5EDvhoBJ6wMwOXhMdifgqZpppw5q0tUekEfJlIFBNJtF1o9rcY52bfLBevTqWiKMR6fXIPFDcfg2KbjAOi/t+waFjNnisEcXizxkqkXqlVcMufZvC2gnx+7v4VcnjpnPU6fdiY8kscQQQklk6MXSgaNY9pbfACZ/pAiLyLgrMPq1rU4Y9pZlocUkiDh1KnrMCXd19GOaOvzau63yoQUcy/N1WkBoDuaS1yaHjSZWofs6t+J7mg34kocje4mQwy3hfToBxbWyx48DCYGEUvF0ORuRk16HPZqy8yNrU+HhvbH+3BgaB8SSsIYc6EHT4B+D9ySG4PxQaiaigV1C43fw2gqir5YL9ySG2snn4pF9Ytx0qTVls/bW9iwc2bXM1ehHXaN2HVscDWi3lWfNV5ZkI15z/6WGGGxRhVdN2pk/fps69lifJY5uCIvwu+oNeajxzZeI+cymcm5zJUHHUwEkVSTlpZB4xESlwRBEERVsTqXlfuzc1Lralw857KKCTrz16I/ZzufSjizxhh4Hvs/diXu++V/oL+1AXM2vIH/fuxqzOl8K7+4zJN/aQ2RzS06C9Hobhx2wePy6PuNRjKhscG0c1lb60SgXl9M9femCjrEbNEVCStQkzyaW+VhH0q4vXmcy/Si0RxKmU9oSbxkKbChmvpcstdzFWzhOM7i9gx0qwA4eHwCJKeK086txwkrA6gNSEglNYRDinH+9hy9clqRTPFNxYfmX2Xkd5lFdKE8yZq0ALGP54TmFZjpn2X8zMRUpcJirc6lZFwTu3NnF7PsHjSY+sz6ZKvTlQ/miuuFm/TjhBIhw0l0Cs6se2CEU6fn1JzAXCP0uFjsYbFJNQmO4yDwgiFahtIVY1lYMAu17Yv1Zu/PdE3YddzU/S5ea3sFzx18GoD+kIG5du1hPY/Rl85LZb9jLMzTPq/NP7NrFkhXtj0cPGR5CCPxUlF5uFO8U41rsaBukfGZtvARaJqGFs8kOEUnlreciEZ3k/E7b29fA2SHH4dzhLeyc2RO/vy6+cZ75gJEZpeQ3Qs2N9i9cAoOHN98AmRBxuaeTWgPZfJ22T44jsMxDUsxvWaGEQbL8EhecByHYCKTc5krp5Ld6/EcEguQuCQIgiCqTLVyLoHKOIVAGQV97DmXFWyLon/PoXvRTPzxd/+JPaefiUC0C1985tNY+eTPgFTKOGYucVxMWxKxxPMtBMu7jJjyLocG9e/9AQkNjemiPz3JvPdN0zRs3RiCEhdweH8MvMajZXLhfEsg7VxqAuKxdLVYlnOZDou1uEx5xJH99ZSqZFUutRfzYWRy2QT0difAgYfXl2n3wHM8auv0MQ30pgyH0mEL8Sx1/hmtSNKLb7OzahbRhRb/fpMws4/HjNkxrAT2nEt2TfJVRmWw/L4WzyRMTufysZYew5GpCpww+pmGkiGLk2g/Hsu/K8exzYTFZqqjsuvJBM2g0dMynY+ZdtlY3qH53opCtnPJHE7mfLZ4WuFJ54SyNjrsXrNzjKadOXuouMXZS4/TJbrgEl1Z4r/YyBFWPGph3SI4Radxv1lfR7/pIQfP8Yb7Z3ct9XO2ztPcFYb1cS9pPBbrpp2B2bVzjffMYbwSL5sce13UsTnI7oUkyPDJNThx0kkAgO19Wy3bsWMd07AEp05dl/V3gOd4uEU3IsmIEcJrLkDFjk/ikiAIgiCKoFo5l5VkpMWBzOdTKaFrF4U8xyPpduKtr38Dv1/1v0iILix7/Beoveg88Pv3WT5TqLdlru8rJRQAGJVmo5GM+8fCYmv8Ippb9AXr/t0RdBzOXaVx/+4o/nZXB1785xB2bY9AkkSsOm14l8jjFSFARCKuQTT1fMyExZqFVnHi0tyKhJEv/I8t/AVeQG93EgLPw+Xmjc/zHA9/IJN3mRlfec6lYHIu7YjFOpeyeZGbXygw97dSOZdWcZnJubSLS/t9memfhZMmrcai+mMwLzAfZ00/B7Nr5xR1zEzRoKTRQiKcDBnHlATJOB4bD8vBzfdQohgy1Vn145hb4jBHkAkL5paxMFSGOY/PLHTZdWQiVH9NRoOrISv3zwiL5TIhqfq5WcWaM4dzCcAIKwUyonK4Yj6MFs8kXDr3ciNXlV1fltfo4K2/C760+2cPMWXnNxyiKXqBtR/JjN0cFisZLiK7F+yhEJsjzCmd7psBnuPRHekGAKPgVzG/E0ww9qRboph/75iAZsWbaop04scqJC4JgiCIqlJN57JicCN1Lk3fV0g420UhG5NTdmDDzPPxg/P+jN6ZSyFtWI/AujVw3v0H8Oljm3P2zOMxn1e+78vF5U6HxYatYbGyg4fDyaPGJ2PxMi8UBfj7XZ2Ix9WsfXR16Iu5VFSApgGnntVohNMWwt6KhOesYbFmQZlvIWgXnSk1aQgLhjNHWCyQWawqSQ6RkILaWj2Uly1SBU5AbV1aXPYlje1dojuv8C8GFkqaSzyaC/oUct3MxVPytdLQ36tyWGyenEv78QRewLy6+Uae7CRva9HXjYkS1vMU0MNwWVilxEvGNln9S8t4EGNu/cEK9zBxWeesswiWhCnn0iyizO1hzA9LHJaQbwFrJq/FKVNOA8dxlmI2HMcZIop9PpLSz1vmCzmXmf0HHBmHeGnjMgAoqfCMV/YZfwNEYwxpgWtzT9lYczmX+fqJmin0MMA8ZomXcXzzcpwz4zw0uvSiPMydTagJ/f9gnkUICKhz1iOuxDEUH8xyLgvBzielpiALssWd9KRzfdn/N4EinfixColLgiAIoqqMB+ey0dUIl+gyKiIWizmXsVLCWbAJRLZw9jj0RV63bype/t+/I/zl/wQXjcD3pc/jA1/7Ddx9QwXCYnM7rOUsmO3Yw2LjMRXxmIqa2kxl1JnzXGhqkREOaug4kt1yor9HX6wtmjEVi+c34tTTJhV5bB6y5kI8rsIlutHg1puYN3v1nLxi2nLYC/3Yq0IC+Z1LlnMZC+nX2V9rXWzynIDa+nRYbF8KDa4GrJt2Bo5tXJa3lUwxZHIuc/XuLM659EheY84VCotlC+iqFfRh1WLtOZcVnKNGyxk1YXFIB+L9xvtsG/u9LsexZRVJU2oqS5AIvICAsw5xJY5QImjtN2rK3TMLxVwFfQBdgM6unWu03HCbHl54Ja8hkoywWEPYWe+7wxayzGCiJ+AMYG7tPCyqX4xF9ceUfkFgdk8jWccEMmLMm6PFTKGHIIxCgi9XQZ9mT4vxO2M4zEoyS6SyqrDd0S4jtLoYV9tc8XZFy4mWc3DbzrHWFCI8HqncbyxBEARB5GA8OJctnkn40PyrSv4cl0e0lYNdCLL9uhwOALrgkTwORL76TSTOPAe+z/0bZr6yCR/bsgfRH02DeuElWfvJFyJbSefSHhbL2pDU+DMLWg4campFcBqPgd4kps+yLuD70uLyY+eciUlTstt+5IPnOTQ5psLR68Gc2rkQeAFXL7wG9TVe9PaGiurTaH/dLnKA/I4JW6yGg2nnoS473LXGry+5WJEjFqpXlnNp9LnM/pxoybnMv/jlOA41jhr0x/oLLtpZvl6l8sFkm3OZL+cyXxuVER0zfR2SilVc9sf60+/LxvHs7TXKCYsF9PuhaIopvzNzXg2uRvRGe9Ad7TacS4fggE/2GeGylrBYs3Npumf2e8PaygQTQUsYJpsPrBqq/dwc6XNnrWkYk7yturAMzIfAC1jecmKpl8GAzVlW4MYemjs3MA9JNZGzvUsxYbGF7pfTlnPJYLmsyXRrF0VT4BasYb+s0FJ3pNsICS7mAQgrPjW7dg5m185FZ7jDeM9jEp41ck1FH6iMBuRcEgRBEEeNsSktR041nFirG5oRl25nZhHJqsWmlp+I/mdfwdZL1sE9GEb9pz4G3/XXgRsatFWIFSz7ZFQqfw4wVYtNO5dMRDHnkjkVbo8ADjwG+rLzLpm4rGuQSn4Q4fWKkJO1SGZrQlsrktyLTvuC1Vw5lpGveAkTIpEhJi6t++I5Dl6ffv7hoGJ7L3cl32IwCvrkzLkc3q1lsByvQs7lsqbjcfm8K42WFeXCc7wlJ5ade3ZBn8qE4Zr3FVNilpBnw7kURENs2PNPC7VzKe7YYtq5ZHl6mfNqTEdM9KTbiOih3bwlFNace5iv76dXyq5Aypw/c0Vd9nnmzttDUl3paqpZolNw4MLZF2NB3cJhz3c47HNWto1BFmQsazo+5wMdc6juSPLJXYI159K+36SaMB4u2UVvo8W5ZC708HNjkrcVl877ENZMPlnfr+m4blMLnPEeEguQuCQIgiCOAkwojNWw2JFicWUrdG6Wojx6YCwAwOXILHJk2fTn2+PBnm/fgKd+/F9Qmlvg/MufEThtNdyvv55zn9acyyqExaZbkbBiPj5/phcjoItQDjz6e1OWz6uqhv7eJNweAU5X6aKXOaeRUP7KkUCmpUShbfJhbzCfeT3tXA7kFpcCJ8Dt1Y8bto3PfD9KdS6ZcLAXbgFsfS6HeYgwxTcFPMcbrkwuOI6zLIIrARNGopAJi01WMSyWHc/euoLlxjp4h3GONbZWEeWOQ+RFqJpqtLkwiwuzG5ZUk8Y4zWGxLD9X4ATLPCnkXAKZuWHOrbXPB3trD1ZluRiHcKTYQ/LtIq4Qcp5ztlTULXC/BF4wPdjIHJeJaXOrGrvo9UgeeCQP+mP9hutabKi4OcTXfM3dYubBQaDENjdjERKXBEEQRNVhwmushsWOlHzhpuVgfxLvEvXee16HB4KgXz9zn0sAWNW6Bss+/HX0v/AaYhddCuHwIbReeRVO+8X9EKPxvPmXw4mOUsgbFmvKuQQAr1cCBw4D/VaHKjiYgpLSEGgYmVPlySPegOKcy2LCLx15nEsWFjvQq597Q5MtLJYXIIocnG4eoaBVVJcaFptMqnjjpQGEQwqm1UzHB2dfjDmmNgsMsys93OJ3du1cXLPoY5Z2EEcDr+QFz/Fw8A5jLmacPTZvKulc6kWAMq5UZt9+hx/NnhYc23gczpx+Npo8LVmfLffYABBJ5xiaz6vG4YcsyOiJdkPTNEMwWsSIIGGSZxKaPc2W/ZoFYC5xOdM/C3XOekz2TcmMxTYf7DmXTsO5rJ64zNe/tBgclnPOPAQwV661n5Md9qDIfP04joPIi0gqSaP3aa5rwHIiWXVXUSh9jprHR84lQRAEQZQIZ1QznVh/dizFiioknO2CdVXrWpw78wLIggzJwcRl7mNpdfUI3nonhn59G9SaGpzw9xfwsWtvQs36NzP7NP3pr1RxFiDjXLKwWHMbEiDjkno8rN+jVVyaQ2JHAnMGczqXQuY8i+1zyTCHwuZzLgPOAFqdMyD2TEVdgwS3y1bQJ33NPV4ByYSGhKlSbr6Q5XxsXD+Ex/7ejb/e2Q5V1VDrDOSce2ZXutx8wWqxZvIpOHfmBZAEc86lLvzYda9k6DaQu0ANAJw29XSIvAhZkNHqnZzlKJf7fxe7H5kcQ+vv3iRPq2mMuvAwi0WJl3HG9LNx5vRzLJ/L5+IZ+/W24gOzP2gRqvb5YK8WW+OogSzIqLO1Q6kk9utbyoMus+CztvTIiLTh/m9jD4Ts10LkRYtzaQ8ZBjLXnPWsHMn/o2bn0iE4jfkVcJBzSRAEQRDDkln8TjDnsgp9Lu2LLrfkRkM6J0uS9GPYnUvroDjEL7sC7c+9iN1rlqC2rRczr/4IvP/1ZXChoGURx1cy5zLdiiRiy7nMhMXqXyVRhM8vYHAgBUXJ5L2VKy4LOZeypV1D7oVgPoeMhaw5hPwFhniOxyxlJfzJKZg01WFxh4GMQ2zkXYYU7NoWRjSiWARlMQWWDu7TxcmBPVG88kx/3u0kSyjw2CwQ4pE8xty297mc7J2KFk8LpvqmV/SY5uvik304berpOH/WhVmurWi6F5UIzWUiOWb0lrTOt+k1M4zvmZvmsTiXuZ04s+NnDqMtRFZIao5qsZfPuxInTlpZ1P5GgrkIVanht+ycZUG2VH61OJfD3DMWQms/tszLUDU1b6Eh/fj6gw8mLkfy8IbjOONzrDWJR/LAW6GCWaPJ2PzfhiAIgpiQUM7l8OQLYQUAWU47l/LwQlZrmYSH/vdTWPDs2zjnl4/AdedtkJ9+EsmbbwbSEX+VdC6dLh4cnwmLDaUL13hrWEVT/SvP8aitkxAcVDA0kDL6WLI2JMX0tcyFIS6DhcNi8zlh5twqnuONgj5uyY2+WG/eYj6MtkP6YrR1qhMcF7G8ZziXPv3YOzaH8MSDPZh/jAf+00vLuTy8P53nJXF44ck+rD49YIRLmzELIpEXdCHLA05nZZ3ASmFvRVIj12DlpJMqfhxZkI2cS5GXMK0mt3g1P4SpjLi0O5dW0TLFNzVrW71NSQAJJZF3boi8CK/shWwKLR4Ou/Cy51yax1AtzA95ch2/4Gd5ATP9s+ASXbbcRXPOZeH/R2bVzkZCiWflGRuVdNPhy3ZXFwCcInMu2Twa2bXSW9DEwHM8zpx+DjRow39oHEDikiAIgqg6Ezbnsgo9PO0Ffcw4Xbzl67D74TjsOOMELLj0C5j8P/8H58MPYNLVV+GsC1bhhesuqmjIIcdxcLl1EQMAoaEUwGVEH3OCmLg8tC+Ggb6kISYN57JxZOKS5XYODqSy3hOLyLk0b+MUnUabBp/swxTfFDS6m3N+jtF+SK+82TrVYRRhYrBFP7sWe97T9/3e1jAWr1CM1dhwzmUomEJ/bxINzTJq/AL27oyipzOB5tbsfDWzOyVAxG9+eBBOF49P/8c0BIdS6OlMQJR4TJ3hBM+P/u8lc7JYcZ1KtskxYxZ1uYQDw9xztBIPYYywWCW3c2kWKL3RHuP7s2ecZ6lsm4vzZn6gpP9/7GJoNMKmzUK4mL6Vdk6ecioAYP/gPuM1q3NZ+Jym+qYZ7YDMsDDYSFo45srdZM4lexAyUnF5lklQmqsBj3dIXBIEQRBVZ6JWiy2nR2Ex+7Tn4J1zcSN6uxNGfmOx+9EamxC87S7EH7kU3v/6Epb+4zXMfGM7wv9vEnDeJRUZN6CHxkZCChJxFaEhBR6PYLhqhhvDCaipS+ddmtqR9PWWFxbrD+ifG+zPbnEiWVy84XMunYLL0gPw9GlnDXv8trS4nDTFga6k9b4ZjezTzuWhdGgrNGDXlhimLLNulw/mWk6d4YTTzWPvzig62+I5xaX5nEMDwGB/CoP9wLaNITzy1y7EY7oz+5HPtGL2/NFf2DIxxxzjauVnmx3qQoVYLFWVK+hcRlmF0Rz7PGXKaXjx8PNY2nis8VoxhW7MVVKLwZ6POxoP/cyC3V6RtRTMYa3FVostBPt/gLmSuUSq/Z6MVJxXsqDaWIJyLgmCIIijxoR2Lit0boUE67RZLhy3srg+g7nyQRMXXoSu51/B9jNOgK97AC0f+xh8134MfGdHvt2UBKsY29ebhKJo8NZkL9B5jjfcyoE+3aXSNA193UnIDs5w90ql1hCshZ3LfItOq3OZWTwW46CFQwr6e5Ooa5TgdAl576HHm+4vGMsU9Nm3M4ZUUsva1kwyoeL1F/qx6a0gAGDKDCeaJ+lj7GzL0dgTVkHU350JFX7wnk7EYyqkdIj1YH/29RoN7NeZ56uzRDXf50LhmOZ5UglnTzDCYnM7lwAwwz8TV8y/GrNzVP+tJFIRvw/VxpzvXU5VWrPr6ZJ0ccmqAo8EJlCHEoP62HIIX7u4HKs5zaMFiUuCIAii6hhhsRPMubTmXFbuTyoTGeVcr3wOKNfQhMe+8VHc/71/Q2ryFDgffgCBNSvg/P3tgKrm2lXRMEe1u10XPCzfEsg4FSwsFsg4l5Gw7nYG6kfuojhdPGQHj8H+ZFYYodndyLeYZk4fx3GWBStfhLjc8PIAAGDWXD0sz3zfzKKJ5Vwy5i5yQ0ly6OnKn1MHAM893ofHH+jBto16AZGpM5yGW9nRFs/5GbMz1NeZua+ppAZJ5rBibS0AIBEfG3leWeKySktU2dLXsEAvREtBn/IdJhYWbvRGzOPWDZfbWwnMvwPV7GVZcAxcZcbAQpv1Sr8O4/uRwsJTB+OD6f3nCIsV7c4liUszJC4JgiCIqmOExU4w59Iq4Cp3bmy/5YQGmsdjr0ALAPtWLUbfS68jct3nwYWC8N3wJdR+4GwI27eN+JhMPLUd1hfQXp95gc7EpWCI0FhUFz193eWFxAL6+dbWiUjENaOokPnY5uqMuZCMpuqSTVgUXjhGIwpee34APA+sOUNvI5BvXpjFpdsr4JjjfODAo6sjAYETEA6lcO/tbTiwN2psN9CfxPoXByDJHOoaJUye5kBDs4zGFgk8D3TmE5cmp7i3U3cn69P5rCtPqUWgXn8/mSjvgUKlsIcIVitk0OJIFhA1HMcZ9zFfheGRHFfRdBd5NAUJx3HGHK9mL8tCCKbfkbLEpUlQMsFajtPMWraw8OxCOZcMci6tkLgkCIIgqs6EdS6rUNAHqIy4zLcfjuMy/7w1CH/nexh48nkkjz0O0ptvIHDGWnj+70YgGs2327w0NOkLsf279c/6TM4lEws8xxt9OhNpYZPJtyxvocsc0Vx5l42uJjS6G7NeZ7AFqcRLlsXicK7V6y8MIB5TsWxljRHua77eZqFqFtt1DRJmL3CD13h0dyTAcRzeenUIOzaH8darg8Z2z/+zF0pKw6rTAvjC12fgX788DTzPQRR5NDTLCA0pCIdyhQJnWsB0d+hO8hWfnIQPfKgJp55TZ1QcTowRcWl3iKvmXApm57KwCDFfw3LJav8xyr1H2e9jOfmO5WBxT8sKi5UhcAKcghMOwYEGVyMmeSePeH/m9i/62KqXczlRIXFJEARBHDWqVaRjtDC7UpU8NyZUKyYubX/uefCWsLTU0mUY+OczCP3v9wHZAfdPb0HdqSdBeuG5ko7X0KQvsjoO626aOeeSHU/g+IywSYdkGm1IynAuAcAfyJ93ec6M87Ia0JuReRluyY1aR63FVSkUFhuNKHj9hQHwAnDKWXXG61y+nEtf5prXN0rw+kTUNzgRCSuIhjRs3ajnVPZ0ZfIod++I6K7o6dnN1VlobL68y+k1MzDFOw3dnQnIDh5NLTKWr/FDknhI6XuQTIzNsNhqOZeSJSy2sKhh964S4sFecXa4VhnVJvMwZXScS/PvVSEHefj98Dh92plYM/kUcByH82d9ACdNWjXi/Xlkq7jMNTaRFyuekzuRmFh/5QmCIIgxyUStFgtUJ+TXyLmskLi0L9QneSehxTPJurEoIvrpz6Hv5TcQP+c8CPv3ofZDF8F33SfBd7QXdbz6tHPJUh4tOZemME3ZwcRl2rnsKT8sFijsXA53fziOw0WzL8W6aWcWHRb72vO6a3n8Sr9xbCC/cynLHERJH0ddo36tpkzXC4js3hY1RGJvl543mkjoVXf9dRIczuy50Nyq74NVkbVz6tR1OMZ9EpIJDY0tsuUasII+Y8W5FGxzvdy5nw+zEBguNJXdu0oIXfM88jv8JVd4rTRsPKOWc1nBvM9J3lbUu+rLHRIAwC26Lb8n+VxV5l7yHD/hHpqWC10NgiAIouoYonKC5VwC5pDfylGJgj7mz9sXP6dPOwvrpp2R8zPqlKkY+sO9GLz9j1BaJsF5/98QWHUCXL/6OZDMFm1mAvUSzOtwryUsNiMumbBh+X6VEpeFnMtikAQJPMdbFr75qsXG4ypef2EAgsDh5LOsriJvznc1XRCO44zQWHauM+foTsn+XZncyXhMNSrQAkBdfe7rMm+xXnzknfVDUNXcDiQLiW1qsS6S5THmXKopziJ0q9bn0tyKZBjHiY2hIn0uTfNgScPSsvdXLkIF8hPLO77pocsouae54Dke7iL6ZVaieNBEhcQlQRAEUXUmtHNZoRBWM2zhVe4+JUEa2eKR45C48CL0v/omIp/7Irh4DN7/+ToCp6+B9PKLeT8mCJwlb9KcY+hML8YcglPPGZQ4Iyy2rycJXgBqastbqBVyLgHgvS0h/PaWg3jy4R5DuOWCz9HjMBFXceRgxiHsaosjEVcxZ6Hb6LFpfN60vLJXEWatVlhxnZZJTixb4TMEactk/Tr1diWNMQbyiMumFgdmznWhvzeJ3dsjObfp7tTFZUOzdQFvOJfx0XcuVVXDPb/rxBMP9mD9SwOIxZQsJ7NSmH8fhnPM2L0v1A+zaEwVjGf4Z5W/vzJhInvUxCVfmbDYauCVfQAK9wB1krjMC4lLgiAIoupM1II+QOVcxlz75Mt0ete0noyTp5w64s9rXh/C3/5f9D//GhInnwbxvR2ovfQD8P3bx8G3t+X8TENzZrFqLujjd9TijGln4bimEwAAsoNHIqEiFlMQCSm668mXd76Fel1u3xTCX+5oR/uhOF59th9//M2RvPvJ5Vy+8EQffvejQ9j4xhAAoDdd4dYu2oDCvUpXnlKLY1f4jHxJgRMwdaYLZ3+gCdd8utVwI3u7E0Xlop54ci0A4LnHe7F3ZySrDcvQgH4t2LVhGM5lcvSdy81vB9F+UD/XrvYEdm4NVy3UkOUYchw3rDCopHM52TcVLZ4WnDn97DERRslao4ymsDNCc8dYziJrR1JofjjSLWMo3zKb0Z/dBEEQxITHEJcTT1tWJeeSq5Bgbfa0YIpvatnjUebNx+DfHsLgbXdBmdQK54P3o27VCXD9/CdAwlpMhlWMlWTOqArLmOybArekh5zJDg6ppIbersqExAK6KyhKHAb6sntdPvKXLqgacN6ljfAHRPR1JxGLKjn3Y8m55KztVZ58uAfRiGKE8jIH0owl59KWr7d0eQ0u+XALBMHqeNc1ODFnoQf16aJIPUU4l4AeGtvQLKP9UBx/+NURvLN+yPJ+KKiLS3OIMgBIDmto8miRSql49h+94DQeJ6yqAZB2sqskwOQSHDt27yrhTjkEB86ecR5ay6hkWklYSPBohqSy3zPZVn11tGHtSAo522zMlWhTM9EgcUkQBEFUnYkcFsuwhz+WQ6VakVQUjkPig5eg75U3Ebn+S0AyAe//fguBdashPfeMsRkTl94asaDgZs4ZE1A+f/mLNI7j0NgiIxpRLWGvibiKSFhBfaOElafUYtIUfWHY1ZG7yqqQQxwyERwJKXjhiT70duufZYV5rOMwF/QpfA9ZCC5baNen99fblcjkXBYQ3oLA4VNfnILTztWr1e7eYQ2PDQV1AW0OUQZgqtg7uuJy9/YIBvtTmLfQh9apTrjcPIKDCpK523eWDXMuixGXYgUL+ow1mGCWRqkVCWBqhzKGci6BTDuSQpV0WVjsaF6/scoY+qtFEARBTHQq6e6NFTKu7Njrc1kVvF6Ev3mjHip7yjqIu3ai9spLUPPhD0HYtdMIE7WLGTtM3LCwTZerMgv4GXP0Kpz7d2X6dIZDusBi+Y5Nk/SFYXc+cWkJixWRSKgYGkjB4xPA8cCWd4LoS4fF1ucQfuaHKMPdQ3sINHNCe7uThjtayLkEAJdbwOp1AfA8cGBP1OLahobS4tLuXI6Rgj4sJ3TuAh84jjPOteNQ4eJRI0UWZIi8CHc69LEQTPhPxNDHGocfAOCX/aM2hgZXIwLOujEn0FhYbKEeoA5BD4sVq1R4ajwzBv9qEQRBEBONauQljhWqIQRrHbWQBRlOYXTbFRRCmTsPg/c9iME774YyYyYcTz2BwKknYd6t38ba4zWsOSO7L6MZFjIbHNTFpcNVmes3Y7Z+zfbtzjh4kbAusNxMXKYrp3a153Mura1IWO5jy2QHJk1xIDSkoONIHLKDs/TyZJjnwnCOtr14k8stwOMV0NeTwEBvCm6vkLMNiR3ZwWPSVCfCQcXIBwX0sFjZwcHhsO5DFDnw/Oi3IjFEeqMEgRMMcdl2IPe9KReRF3HOjPOLykU2wmInYOjjkoaluHLBv6DWWfj3tJqcNvV0fGDWB0ft+PmodzXAJbrQbG/XZMIhsoI+Y0sYjwUmvLj8whe+gBUrVuBLX/rSaA+FIAjifc+YdOLKpBohv6ta1+DyeVeOuSf6WXAcEhdciL6X3kDo29+F5nLD87tf48r/OwvLXv9TwdYlrNflUFpcOiskLqfNcgEcsH93xsGLMOfSo4uFxklpcdmRO/bSXtCHhcDWN0qYnhavmgbUNcg5HetCOZf5tjVXqJ05zwVVARRFG9a1NMPGdmCP7tomkypiERVeX25xJMn8qDuXmfBivQ0MCwFu218d5xIA6l31Rl5dIab6pqHe1YC6CvVQHGs4xkCu41iMZnEIDnxo/lUFW8a40g/+RqtP6Fhm4v2Vt/HhD38YN91002gPgyAI4n3OxM25rEZYLDDOStw7HIh+7gvoe/0dRD/6SXCDg/B97QYETlsF+Zknc37EEJcDlRWXLreASZMdGOxPGcKFhcW6vZm8Rp7PHxZrbUUiGPmW9U2yIeAAXRDl/rw557KwuBRyON/nXtIIt8faD7MYps/WQ/WYuAyzfMsc7iqgu8eJhJpV/Oho0teTBM/rbWQETkBNrQhBAA4fSOTt3VlJ9u2KYNu7IQSHsisMz/TPwgWzLhwTIowYWzR7WnBc8wlYVL94tIcy5pjw4nLlypXweIaPqycIgiCqR7UE2FiAnRM/8f+kDovW2IjQ//sJ+p95WW9dsmsn/FdfDv9Vl0LYttWyLeuzmBGXlctdYnmX61/qA5AJi2U5l6LIob5JRmhIMd4zY7SgSAt8w7lskDBtZkZc5qoUCxRuRZK9rbWgDwB4fSIuuroJgsBZxOxwTJupu7ZMXBr5lgWcS03VHdLRIBZTEBrS29AIAgeBF8DzHAJ1MhIxDR1HqlTVJ000ouCPvz6Cv97Zjh//zz50tFX3eMTEged4LGlYCr+jdrSHMuYY1b+EGzZswHXXXYe1a9di/vz5eO6557K2ufvuu3H66adjyZIluOKKK7Bp06ZRGClBEARRDhO5WiwTlRNROI8UZfExeuuSP9yL1MxZkJ99GoF1q+H7wmfAHzkMIONcMsfIWUReYbEsXV4DUeLw2P3tePPVgSznEjDnXWYLCpG35kGyHMb6Jhluj4CmdFhtfY5KsebP6d8XGxZrPf/5x3jx1e/PwvLVxRdccbkF1DdIGOxP6cLNaEOSx7k0KsaOjrhk+ZbMAWYCu6lFF9R734vk/mCFGOhLQU2nnKoqsG9ndY9HEO8HRjXmJhKJYP78+bj00ktx/fXXZ73/2GOP4fvf/z5uvPFGHHvssbjrrrtw7bXX4vHHH0ddnV5y+6KLLsq57/vvvx+CUNkKTuU2d640bDxjbVzExIDmF1FJBJ4DxwE8z4PnuQk1v3ieB8cBQvrcCAaH1PkXYPDMs+C88za4brkJznvvhuPBvyP2r9fBu+jjAAA1bRy6PULFrt/kaU58+F8n40+/PYInHuzBomP1/DqvTzSO0TrNia0bQ3jp6X7MmOO2HFsURHCc3maA5zn0dSchCHolU57ncMzxPrzweB+mz3blHbPA81A1FeIw80JKH0sUss/f4Sx9HdM0SUZvdxK9XUlDVPtqxJxjYO6xktJGZe729+rit6FJBs9zEHn9WrS0OtEJYO/OKE45u3rjYuK7tk7EQF8KHYfjRV+H0f4/bGgwBY7T7y0x8Rjt+VUOozojTz31VJx6av5qXXfeeSeuvPJKXHbZZQCAG2+8Ec8//zweeOABfOpTnwIAPPTQQ0dlrKLIo75++OTv0SAQoLBfonrQ/CIqga/bhSjvRKDWY/m/dCLMr5oOFxQphlq/Z8z+nRh1vnYD8LlPAz/8Ibgf/Qiun/8EF3h/D3Xux/HCvCuQEhyY1OpDbV3limPUr/Hiucf7cHBvBL1duohonexDfb0bAHDuRS5seTuEPTsiWP9CEB+4vNX4rCvJw9vmRI3DA5fTiXBIQUurE42NPgDAJVd58IFLpxQUfzU+N1JqCnUBX8F54Q/MwSDXjQUNC1DvKX/+TJ3hxfZNYURDPJSkPr6W1txz0+ORAMTgdrtQX+8s+9ilEg0FAQDTZujXqLbbg4QYRr3fiaBHwMF9Ufh8bsNhrTRKUg8fPnZ5AC882Y3O9mTJv8Oj8X/Y/j1h/Px7+1Hjl/DtWxYVHTVx5GAELz3TgwsunQSff4wXCyMAjM+/kWP2cUcikcDWrVvxmc98xniN53msXr0aGzduPOrjSaVUDA1Fh9/wKMLzHAIBD/r7w0cl6Z14f0Hzi6gkoVAcoXAMg4NR9EqhCTW/QqE4QrEYhhxR9PaGRns4YxgB+NJXwV31Mbhv/h4cd/8Bl77zE5z23r14ZOlnEAnPhKJVrv0Ez3Noanbg4N4IDh/Qwx2TqTh6ezOtN674eAt+/r39eOXZHqxaV2O8nlJTiIQTcKkadr83AACorRey7m8onP/4kXACCSWBocEYep2F58Ui73FADOiNlT9/fH5daOzbPYREXD9Xjk/lnJscr7/f3RmC5MguaFMtImEFf/5dGwb69LBYp0dFb28I4VACoXAMmiRixhwXtr0bwjtvdGPOwuossNuP6Dcw0MDDHxDR2RZDe9uQEbJdiNH6P6ynM4Hf/fgg4jEV3bE49u0ZgD9QnFD854MdeGf9EA7sDeHjn58KURx/rtj7hbH6N7KmxgVJKhxRMWbFZX9/PxRFQUNDg+X1+vp6HDhwoOj9/Nu//Rs2bdqEaDSKU045BbfeeisWLFgwojGNpZtrRlW1MTs2YvxD84uoBJqqt27QNOv/pRNifmkcNE3/Ou7P5WjQ3ILgLT/D26s/Bvf/3Yhlh5/Hx17/NpLn3ofwt25Ect2ZQIXyVxtb9CqfLK/O5eEt9yjQIMHjExEMppBKqZlQNAhYN/VMuEQXDm3RczLrGuXS7m96XvDgj+q8qG/ShUZXRybE0+0Vco5BlHQRFYurR3WMe94L4+DezAP7QL0EVdXAg4em6bnZM+fq4nL/nihmzXdXZRyD/Zmc1JZ0heG2QzEE6iX4/MUtkY/m/2GapuHhv3YiGlHh8vCIhlUc2h8reqw9XfrDm4N7Y3jyoW6ce0ljRcf3j791Yd+uKD7++cl5i0gRpTEe/0aOu9J2mqaVVDTh1ltvxeuvv453330XL7744oiFJUEQBDFyJnJBH+PcqKBPSaTmzsfvTrkFt5x1O/Y1Hwtp2xbUXnUZaj94LqRXX67IMZpaMi0kZAcPUcxe9vhqBGhqpl0Jo9U7GQFnXaaYT57KsPlgBXq4o9zbtaFZBji9zUrIaEWSe6Evp3Muk3E15/vVgvUddTh5nPXBBtTW6deWFT/iOV4/DwD9vdXrdxlM91itqRUxaYo+V/5yRzt+9D/70HYoVrXjjpQdm8PYvyuKhmYZp5+v9948crD4cfZ1621fOA7Y9m5loywO7Ytiw8uD6OlM4LG/dVd038T4YsyKy0AgAEEQ0NPTY3m9r68vy80kCIIgxjZMdg3XlmE8wk3gHp7VRHbo12tv4zLcfsUfMPj7PyO1YCGk9a+h9uLz4b/sgxDffKOsYzS2ZPIIPd7coVzM9Qnl6HMImNqQlCgu2cOG4fpcVhpZ5o0CNf09SYDLf+4SqxabKCwuuzriOVu2jBQm5M++qAFrTg8YrwuGuBSMUM/B/uqJyyEmLv0iJk11GGPTNGDTm8GqHXekPPtYLwDgnIsbMDXdEqetSHEZiykIhxQEGiTUNUgYGkghGqnMPdU0DY8/qK/XJZnDtndDFRevE4lQMIUnH+o2wsInGmP2r7wsy1i8eDFeffVV4zVVVfHaa69h2bJlozcwgiAIomQmsgAz+lxOQOFcTSRTkRanS0Di/A+g/7lXMfSb25GaNRvyS88jcP6ZqPnwhyBufndExzA7l+48Aou16QgO5V5oZ5zL0ooN5WsxcjRoTLt+kbCCGr8IQcj9e8dyC5OJ/GF3kbCC3/zwIH74zb1oP1wZN48JVbfHek8EPtPzs6ZWBDi9XUi1GBpIQXZwcDh5TJ7mBC+khTgHbN8UgqaNnXDEaERBd0cCdY0S5i70oLFZhiRzaDsULypsss80j5ta9d+Lro7K5Dgf3h/DkQMxtExx4NJrWgAAm98ee+J8LKCqGu7/UydefW4AD9zdOabmWKUY1b+E4XAY27dvx/bt2wEAhw8fxvbt29Hdrdvpn/jEJ3DvvffigQcewJ49e/A///M/iMViuOSSS0Zz2ARBEESJTOTQ0YksnKuJuWiK05X+XhAQv/RD6H95A4Z+9mso06bD8dQTCJxxMmo++REIO7aXdAyPV4Tbw6e/z+NcpkNGWYikGU3T0NuVhOzg8vaKzAfrf3q0nUsgk2vKC8D5l+XPq2OtSAo5l33dSaiKnjd9588PVyRM1RCXtnsimMJiRZGDr0ZEcDAFRan8AjweVxGPqfD5RXAcB69PxKe+OBXX/ec0TJ3hTOdfZvdAHS0623Uh2JIWhoLAYdIUB+Ix1XgAUgi2TV2DhOZ0n9auNv381r80gJu+vgd/u6sdHW2ln3N/2oGbPc+NGXNcln1XkmRCrcpcOJq88dKg0b/1wJ7omHTIy2VUxeWWLVtw8cUX4+KLLwYAfPe738XFF1+Me++9FwBw/vnn46tf/Sp+9rOf4aKLLsL27dtx2223GT0uCYIgiPHBRBZg/AQWztVElnOIS4YoIn7Vh9H36lsI3vxjKJNa4Xj0IQROPQm+6z4FYc+uoo9Tl3Yc7S4Zo1BYbCioIBFXUdcol3x/M87l0Z8Xi5d5MWmqA1d9shULluRvrcHuQSHncsgkuhNxDW+9Nlj2+FjOpcd2T1jOpZC+drV1IjRNdxgrTXAgk2/JmDzNCZ9fxMKl+jUbS6GdTKw1Tco46JOn6WHfxYTG9pnCu5sm6QK1sz0BRdHw4pN9iIZVbHknhMf+1lXy2IKD6X6qfgEut+469/Ukhw23LgVF0fDbWw7h9784XLF9Hm1UVcMLT/aC54HzLtUf+jxwdydu+fZeHNg7tjpSlMOolnJauXIl3nvvvYLbXHPNNbjmmmuO0ogIgiCIapBxLkd5IFXAEM4UFlsSLOcS0MNic28kI/bxTyF21Yfh+sMdcP/kFjjvvw+OB/+O+MWXIfKl/4Qyv3ChvvpGCYf3x/I6l4XCYvtGWMwHyMwHfhScy8nTnPj0V6YNux1zLpMFRABzdFes9WPDK4N4d0MQp59fX1Zz90hYP162c2kNJfYHRBzap+ddBuor25fRnG9pZ+FSL558qAc7t4Zx1oVjo85HZ7suLptbM6HerOhRX0/xzmV9kwx/QD/nrvY4dmwOIRxUMGeBGwf2RtFxJFFy8Uz2YIYVjmpulTE0kEJ3RwL9PUnMnOeCx1ue5DiwJ4qezgR4Xhdp5cy/0eLIgRiiYRWz5rmw8pRaqKqGN18ZRG93EhteHsD0Wa7RHmJFoL+EBEEQxFFjIjqXE7kSbjUxO5cO5zDLEacT0X/7LHo3bELom9+BVlcH5/33IXDKStR86qMQtmzO+9GGJn0B7vEVHxYbj6t48M+deOoRvUhJqfmWwOjmXBaLbBT0Gd65nDLDiVnz3AgOpoywvpESDinguGzH2lzQBwBq00V9cuVd3nt7G+69vW3EYzBXirUTqNeL3ugVd49e/89cHN4fw6F9UXSlw2LNzmVtnT72YooeGWGxjRIC9RJEiUNnWwJvvqo70SeeXIumSQ4k4mrJea7sWrIogOa0M3rf79vxtz90VKR67NaNevioqgLRyNGtblwpdm3Xf2/mLtL7tq46LYBP/8c0iBKHXdsiSKXGd8gvY+z+j0cQBEFMINLCawJal+NBRIxFRIkzpkVWWGw+PB5Er/939G7YjNCN34Pa2ATHIw+i7vQ1qPnoVRA3vp31keVrarHqtFosO7Em5y6ZuGTuSyyq4I+/PoKNbwzh8H493HAkziWbD6ORc1kskqN457LGL2LZiT4AwGsvDIy4EImmaYiEFbg8Qpb7xAr6GM5lHvHU15PAjs1h7NgSHnEOHgu1zdcjcuZc3UXat0sPVzy0L4qnHuk5qj0H3359ELf/9BDu/MVhtB+OQ5I5i4PLKuoO9A8vBvu6ExAlDjV+ETzPoalFRjymYt/OKPwBEXMWutHcqgtX5pIWC3P9fYZzqYtLJlLZNWRs3RjEbT8+hO2bigs7VhQN298NGz/nq+w81tm1TT+HuQs9xmuyg8fs+W7EYyr27y7voc1Ygf4SEgRBEFVnIudcYkKfW/Xgec7os5g3LDYfHg+in/k8+jZsQvB7N+s5mY8/hsDZp6Hm6ssgblif2dQr4JyLG/PmXHp8Ajgus0B+6uEeHN4fw5TpTpz5gXocu8JXMG8x7/mNg4cOkpR2Lgv0uRwyuVILl3hR1yBhz44IXnm2f0THTMQ1KCkt5/0wci55m3NpE087t6YX4RoQDo6sncZgjpxLMzPnuQEA+3ZFEIsquP2nh/HKM/04fODo9L/cvyeKh+/tgqYBqgKkkhoaW2SLIGfhrYPDOI1d7XFEIyrqGyXj861TncY+Lr2mBTzPGY5jZ1tpVWSDabHnS4eYN7Vanf6G5owgfvaxXtz3+w4cPhDD3/7QgV3bwwVborz9+iDu+V2bpRVOcByKy+BgCu2H4wjUS6hvsj6sWrBEF5s7NodzfXTcMXb/xyMIgiAmDBM5dDSTcznxzq3asIqxRTuXdlwuxK69Dn1vvIvgD38CZeo0OJ55CoELzoLv0guBZ58FhnHYeJ6DxycgNJTC0EAKG98IwuHk8eFPt2LtmXW45MMtw4ft5tpvel7w/Nh1Losp6GMUvvGLkGQeV3xyEkSJwzOP9o6ociwTCblyYI2wWNicS1s/QOYAARhx2Gp/Ok8xXy4nq3q6b2cUTz/aa7wei2YLcUXR8Njfu/CL7x/Az7+3H3095bf4YKHHp51bZwhxc74loD8c8PgEDA4kCzqq7EHAsSsy7v268+tx6Uea8dmvTsf02a70/q1VZIslOJiC08Ub7YUammSYp705jPXdDUMAB6w8pRZKSsPdv23DTV/fiy05Wpf09STxyF+6sHuHfi0aW/TxhfK0DRrLHNiju7ezF7iz/lbMW+wBxwE7NoeOqjNeLUhcEgRBEFWHCbCx7OKMFKPPJf1JLRm2GB2xuGQ4HIh97JPoe/0dBH/ySygzZkJ+8XngjDPgP3sd5EceApT8C1JfjQhV1V0VRdGwfI0fLnd5otBwLsfwvGBhsYWqegaHUnA4eeNBQEurA4uXeaFpGFET+EyPy+zrYojLAs5lPK5i/+5MmOVIhUZfb2Fx6fWJaJoko783iTdfyVTIjecQlwf2RPHGS4Po6UygtyuJP/66rWx3radTF6gz57lx2nl6l4RcBV9qAyJUJb+bN9ifxOa3gnC6eJywym+87vEKWHpCDRymlkBGFdkSxGU8piKZ0CzhxYLAGS1TAKu7HAkrcLl5nHdpI867tBEtkx2ABss9Zax/cQCaBpx0ai3+/dszsHyNPv7xGBbL7k9dQ/Z883hFzJjjQmhIMUToeGbs/o9HEARBTBjeF30uJ+C5VZtMWGyFliOShNi/fERvYfKb24GlSyG+8xb8n/oIAmuWw/nH3wOx7LBGVjF24xtDEAQOJ51SW/ZQBF5fbEv8qBbmL8hwzmUspiAR17JCR5mTWyicNh/hUO4elwAg8FZBLjt4uDw8BvtSxrH27YpY8ixH4lwqiobBviS8NYKlsJSd41bWQJI5zJjjwuz5ephsLJYtZnvTbT5OPiuARcd60d+bxPOP92ZtVwrdaXHZ2CzjxLW1+MI3pmPpcl/Wdv46XazkC41967UhqKpe7Xc4B97t0duI9HYnC+bhmmE5ufY+sJd8uAXXXNeKmloRkYgCVdWQTOhC1J1+cLPylFpcck0zgEyvTEY0ouCd9YMQJQ4nnxVAbUAywm5DIwyFLpZUSsODf+7Ezq2VC1PNPFTJ/dBqyQn6vd2cw8Edb5C4JAiCIKrORM65HM1+huOdTFhshUNHRRGJy68ANm7E0F/uR2LNyRD37oHvK19A3fIlcP3sx+CGMm6U2b059dy6vEVeSuHYxmVY0bIStc5A2fuqFqwVST7nMjjA+hdar4dRZTZeeggf63GZa5HtFHRnzilmXK85CzxQFM2oasrCRadM13MGR+JcDvanoKq5XSQzq04L4Os3z8HHPz8F89N5cbmcS9ayprFFxjkX661L2g+XFlpqRlE09HYn4PYKxnWqa5Bztt+orWPubm4XmTlhxxyfLUxz0TRJhqbpPTCLIZNvaZ0jjS0y5izw6FWaNV1cRSLZDxYC6fHbQ6y3bwohEdewdLnPaGPi9YmWYwJ6gah7b2/DXb86XLF82EP7otj4xhBee2FkecW5MMRlnpZIC5d6IQgctr0bGvdVY0lcEgRBEEeNiSguJ3I+abWZNMUBp5s3WipUHI5D8oyzMPjAP9D/z2cQv+CD4Lu74P3ut1F33GJ4vvMt8J0dmDJDFyrHr6rByWdWRgwGnHVYWL+oIvuqFkzc53MgM70grQti43NFultmCuVctnon4/RpZ2Jh3WLjtZPPCgCcnjeYTGRCYplYGolz2d+rC6dSemc6065fLJZDXPawfqgyampFyA4e3R2JEVfU7e9NQlV013I4agsU9VEUDUcOxuBw8kXtCwCmzWRVcourXJpPXDLYfQ6HFERC6f6mpgcLsoOHxytgsC9lyTdk7mTrFKfxmteo7Gwq7jOoYMfmMPbtjOK2Hx/CbT85hB2bi6tCmw8mdFm+cSUwervmcS5dbgFzF7kRi6jY8974LuxD4pIgCIKoOu+HsNiJ2Gal2px3aSO+cuPMyjuXOUidsAJDd/4J/a+8ieg1HwMXj8H9i5+g7oRjcOZ9/42vXBrEhVc0Tcg5mg9J4sDxet5cLuz9Cxkyy9UcQVhsIeeS4zhM8U2FJGREX1OLA4uO9SIcVPDyM/3oak8gUC+V5VwyMTicc2nGkQ7dznWtjB6SDRI4jkNji4xkQjMq0pYKy7c0V1nNByt6lMu57GyLI5XUMHm6M6frmYvZC/Tw3z07ihSXg8zdzlONmYnLoJI3NDRQL0FRNGuv2fR1NofystBbc84lC0lubJFR1yDh8P4Y7r29Ha8821+WuAeAocHKhd8WmvcMVkSqp7P0XOaxBIlLgiAIouq8L8Ji6U9qyXAcZ7TDOFooc+Yi9KOfo+/NzYh8/t+hOV1w/fXPmHX5aai97ELIT/xT79T+PoDjODidfF5xOWTqcWlmOMezEOFhwgNzccrZekGbF57sAwDMmOvKCI2ROJesUmwJ4tLp1I9nrxarqhr6e5JwewSjCBRzCbuLDC21Y863HA5W9CiXc3lonx4mOnWGM+u9fEya4oDbI+DgvmjeeWGGCb18oeQW5zKfuGzIDo3NJS5lmYfDyRttg4CMsF90rBfXf306rvzkJEgyh6ce7im6OE40ouDgvsy27OFDIq7mzLEdCZmw2Pz/34mi/t5Ie7eOFegvIUEQBFF1Jnkmwe/wj+n8s5FCBX3GJ2rLJIS/9R30bdym98qcMRPyyy/C/5ErEVh9Apy33wqEyguvGw84XDySCS3ngpa1APHVHp2cy3y0tDr0XoDpw82c49Jz+TBC53KYSrG5yOdcDg2koCiaxQVlLTOYSCyVjHM5vLjMOJc5xOV+XTCVIi55nsOs+S6oCrBv9/DuZaagTx5xmc6TjJjFpe3BAguL7+8t7FzqxxGQiKvGgw3mXNY36a7xwqVenHqO/jCi7VBxea//uK8Ld/z0MNoO6WKcPXwAMnnH5RIJK+AFa363HUHU/4YolHNJEARBEIWZVTsHF825FC4xu5T+uIdyLsc1mten98p87W0M3nUPEqvX6sV//vs/UH/cIj0v88jh0R5m1WCOXC6X6sBefbFtznsDKpNzWYpzCWTcSwCYMccNSeLhdPFlOZelhMUaOZdRq9hg4qauMYe47Ki+c+l0CnC6eAz0JbPCQA/v1+/f5OnFi0tAL6IEFBcay0St3d1mWHMuc7ehYSJ/OOcSyOR2svve25XJd2UwUc7uTSHicRU7tug5jgfT873PNI6hwfLzLjVNQySswO0RCj6EFNKXkJxLgiAIgngfU++sh8iL8Dv8w29MjF0EAYnzLsDgg4+h/+kXEfvQVeAiYT0vc/kS+D79CYgb1gMjzOMaqzgM0ZTtyPV0JtDQLGe1Iikn55KJhlLbz7ROdeKUs+uw6rRaYzxen4BEXEO8hHFomoa+niRkB1+Se5rvOmXEjUlcpsVNZ3scO7eFEU1XSU2lVPz1znb89paDeQVEcCiF9sNxuL1C1nXPR22dhFRSM4Q7oLdMGehLob5RKrln6+wFboAD3tsSLpi3qKoaOtvicDh5+AO5x+o2ci5TBXMuAWvf1LzOZdqxZqGxfcy5NF3/+gb9+vf1DJ+7uGtbGKmkfo7th2OIRhTEIpl7HKyAuIxFVWjq8G69IJBzSRAEQRDve+YG5uGqBR+G31E72kMhKkRq6TIEf3kr+t7agvC//we0mho4H/g7AhechdozT4HzT3cBkeIKnox12OI9bsst27tTP79Z87KjDcrJuWSioVB/yXycfn49zrm40fiZhWKGS3AvuzsSSCY0NDZLJYWyZ66T9ZwzxYEyzpk/IEKSObQdjOPPt7bhuX/2QlU1/O2uDmx7N4T2Q3EM5Sn2s+nNIDQVWHqCr+jxMWE3YMq7ZOGc+URfIXw1IqbOcGJoIFUwtLS3K4lkQkPLZEfegkFF5VzmcC7Z3JId9rBYVjFWD0fu603C4xMsRcFq60WAy7SIKcS2dzOh722H4lktUfLdp1Io1q03wmLJuSQIgiCI9zesqA8xsVBbJiHytW+h953tCN7yM6QWL4G0+V34vnw96o9dAM83/xv83j2jPcyyYA6i3ZEzxOV8d9Znysm5jMdUyA6+6OqlhfCOIO9y+yZdTMw/xlvSsXieg+zgs65TT1d2WCzPc2hqyYjNrvYEdu+IYMfmTIsJc8VTAOjqiGP7phDeWT8EADjupJqix8Z6XQ72Z4dzjrRn68Kl+vXZ/FYQz/2z1wixNdN+WH9t0hRH1nsMlhsbLpBzWVMrgufzhcVa5wm75+GggsF+vWWL2bUEAEni4a8VMTiQQjKZ/wFINKJg17YwJJmDt0ZAT2cCnW26mGZFhnq7E7j/Tx3YvX3k7UHyiWo7IjmXBEEQBEEQ7wPcbsQ+8nH0P/sy+h95ErFLL9dDZn/7S9SfdBz8V12qV5lVKte64GiRy5HTNA17d0bA8Zn2CGYkFhZbYs6lpukhrHbBMFKYixUcKt5d2r5JFwlMPJWC08UjHleNfoyapveR5HlYxCQAnHdpE865uAEcr1c07WqzOoBBmyC+/4+d+Msd7ejpTKB1mgPNk/ILNjs5nUtW6bfI0Fo7C5bo1+f1FwbwwhN9ePofPVnbtB/Wz2nS1ALi0pMr59Iqsnieg7dGRCioGGG48ZgKQeSMCqoMV/qzkbCSM9+SUd8oARqynEiGpml4+N5OJBMalhzvw5QZTmhaxsmcPkuf9+9uCGLTm0H86bdtec9xOIoVl+RcEgRBEARBvJ/gOKRWnoTgb+5A7zvbEf7qN6C0Tob87NPwf+RK1K1cBtfPfgyut3e0R1o0zhxVUA/ujSE0pGDqDKdR8MdMxrksTVwmkxo0tXDFzFIwnMtgcaK+ryeJjiNxNDTLRtGdUnA4eUDLiOre7gTCQQUtkx2QbGG+U2Y4seq0AGoDEoKDKbSlhRgT63bnkokgp5vHyWfWoRRYtdXB/mxx6ctTxXU46hokNLdmrlEoR+6hIS4LOJeSzEN2cOk+lyo4PjuPEtB7rkLLCCv9IUT2dkygRSOq0YbE7lzq40/nXeYJjX3lmX5s3xRGoF7C2Rc1GEWrWBGj6bMrV3wuElItY8+HkXM5/p5RWSBxSRAEQRAEUSJaUxMiX74BfW9uxuCddyNx8mkQDh6A97vfRv2x8+H79CcgvfTCmO+ZaRSqMYnLDa8MAACOW5k7NDOTc1maw5KvSMtIMeffFcOOzbortXCpZ0THM4R4OjR2/27dBZ1SoNUHC5dlomXmXF205HJbHU4eX/3e7JJdVX8guyBOuWGxAHDmhQ2Yf4x+rZirxlBVDe2H4xAlDg1NhYW6xysiHlMRHEzB5RZyhkSLkv5aKqkhldKQSmo554nZuRwc0M+XhQWbYde9N4e4fPW5fjz9aC9EicOHPt4Cp0tAa9p9VVU9T3TeYg94kxZsmlT6wwgGK+hUrHOZorBYgiAIgiCI9ymiiMQFF2Lw7w+j75U3Ebn209CcLjgf+DtqL7sQgVXH625mV9dojzQnRiuStGAKBVPY9m4IThePxcf5cn5GEDgIIleyc1lxcVmic8n6R06bOTJXyi7E9+/RxWWhVh+s3Uk8pkKSOUyepm9rzxNNJlSjCm+pMOfSLC6ZeB1pWCwAzF3owZWfnAQgOye3vzeJeEwtWMyHYRZm+QSWaBJWbF7ldC7d+mvRcCbMluV1mmFuZl+PtR1Jd0cCTz7UA1Hi8C//2orWqfr9mDbbhdkL3DjupBpcd8M0eLyCxfUtJ1TVCAf2Fp73VC2WIAiCIAiCMFDmzkP4ez9E76b3MPTz3yC5chXEfXt1N3PZAtR84hpIzz49ptxMh8sqmDa+MQRVAZadWFOwoqvs4ErOuTxazuWRgzHc+fPDRtgmg7l5NSOooApkel0yIb5vV9q5LCAuLS0ymmTDSTQ7l4qiQVX1QjQjwe0RIMmcNSx2oHznEmCFjLisdi9MyA7nWgLAkuMzDynsPS4ZYvrcU0ktM09yhE+ztiqRiIJw+qGCJ0cV1nxhse+sHwQAnHp2HWbNyxSrkmUeH7luMi66qtkQlWZhnqsPbLFQziVBEARBEAQxctxuxK/8Fww88gT6Xt6AyKc/B62mBo5/PIzaqy5F3YqlcN9yE/j2kRcJqRQZwaQvgA/t0yuALl5WODRTlnkkE5pR3AYADu+P4bl/9lr6LZrJ115ipHhrcjuXb702iAN7ovjbXe0Wd5W1lagZoeAyC/FUUsXhA1G4PbzhTuaizlRspqFJMgnizJiTaZEuySNzLjmOgz8gIRZVEUu3lBkaVMBxuYVXqTicPOIx1dLzkuURFrP/ecdkwpDFPALacC6Tmb6lhcJioxEV4QLOpa82e24oioZ3NwTB8frDk+FYuNSr551yR0lcCiQuCYIgCIIgiAIo8+Yj/L/fR++772Hot3cgsfYUCIcOwnPT/6HuuEWoufoyOB78OxDLbvVwNLA7l10dehhh0zDVSplATCYylVMf+HMHXniiD7+66YDRpsJMpZ1Lt0cAx2WHmDKB3NudxNOPZqqcBgdTkGTOyJ0sFXMIcXdHAqmUhtZpzoL9KM3Cs6FJhtvDgxesziW7hiN1LgGgNu3GDvaloKoaQsEUvDWCIVjKweHgoal6QSZGOJS7rUguZJk3RGjH4dx9M42cy5RWcJ6Iou6kRsMKwiFdQDM30wy7luZWJLu2hREOKZi70FOUo7t6XQCfuWE6autEJBPaiEVf8X0u9a8UFksQBEEQBEEUxuFA/JLLMXj/o+h7/W1Erv8StPoGOJ55CjX/9gnUL5kH739+CeKbbwDa0VtcOkyhnom4iv7eJGrrxGEFYKaoj754P3wght6uJESJQ2hIwcvP9Gd9ptLikuc5eHwCwsGU4aBGIwq6OxLw+fVQ0XfWD0FVNSQTKqIRFT6/WFAMFiIjxBUE045YbSC/awnoxWZYG9yGZhkcx8HrExEOKYZYYQJopM4lAPhZ3mV/EuGgAk0tPySWkatdTbFuHOOyj7YAAM74QH3O95m4TCbVgmGxgC4mY1EV4aACtyd3gSBB4CAInCHcAWD3dr2o0pITcucS58Nhm+vDEQkrxnxUVQ39vfqDhKKdSxKXBEEQBEEQRLEos+Yg/M0b0fvuDgze/VfEPngJuGgErrtuR+D8MxFYsxyun94Cvu1I1cfiNBWp6e5MANrwriUAo/gMy7vcuH4IALBirR9AxtkyU2lxCQBenwhV1cMkAV3kAsCMOW60TnUimdDQ05nI5FuWIbjMOZfhoL6/XCGZZkSRMwRoY7MeIuurEQANRs6g4VwWyHEdjppa/RjBQSVTKXaEbUjsOFxpxzaXuBymSA1j1jw3vn7zbJywyp/zfUtY7DDzhIXGKopW8PpLslVcsrnqqyktVDiXuM5HR1scN39jL9a/OAAA2LU9jOBgCjPmuArmMAOZa0BhsQRBEARBEETpiCISZ52L4G13oXfzTgRv+hGSx58AcfcueP/vRtQdtwj+Ky6G4+9/BSKRqgzBYepz2dWuhyw2FdED0tzrMplQseWdEASRw4o1uniIRbIX4tURlyy3ThdULCR26kwnJk/TRfKRg/FMvmUZ1VPNIcRGvl8RYaEr1vqxYIkHDWlxyfIuWWgsEz2SNHLn0mkSQKzHZTnnaianc8nO31P8MQqJ52LDYoFMxVigcKipKHGWsFjW4kMUS5t/JYnLw3FAA3Zs1os9vfGiXkDoxJNrh/0sOZcEQRAEQRBERdACdYh94loMPP6cXgTo+i9BbW6B/PyzqPnMtXrY7Bc/C+mF5yraZV2WeYDTW010tafzLVuLEJemXpedbQnEYypmz3cbPQdZbz8zw4U7jgR7gZxD+6MAgKkzXGhNt/1oOxQzBFc5oaJmAZcpJlNc7t5Vn2o1xIPPVuW2Es6lWQBVoselZd+OAmGxRTqXw8EEn9m5zFf4yWUKLy0k7iVZzxVlTiATbfaencORS1wmEyoe/ksnDu2LWrZl8/7IwRi62uPY814E/oBo9AsthNHnkpxLgiAIgiAIolIo8+Yj/M0b0ffONgzcez9il1wGLpmA654/ofZDF6Hu2AXwfOO/IL79Ztn5mTzPweHg085lccV8AFNYbFxFKKSLGX9A1Pfn5LP6IgIoWAV0pLCKsR1H4vj9Lw9j384oZAePpkmy0VPyyMFYhZxL/Vgs3w8YWTVWNuZgWhBXIufSLICY0C41/LOYfTNKzbkcjpKcy2LFJcvjTDvDGeeyfHG5c1sYb782hCce7LFsy65LKqnhyYf0905Y7S+qsBLPc+A4QEkNu+mYhsQlQRAEQRDEWEQQkDz9TAR/eyd6t+7G0M9+jcRpp4Pv6Yb71l8jcO7pqFu5DO4ffBfCrp0jPozTxSMRV9HRFgfH6y0zhsNwLhMZocVCVJ0uXaya25QA1cu5BIDn/tmL/buiqK0XccmHmyEIHGrrRLg8PDqPJNCf7stYVs5lOiw2GlEQTgtq7zA5l7lgjmIlnUs2tlhUMdyzSgm/XOIqHFLAC5W7l0wIppKqUTgnb86lqTpsIeeYXU92fUfuXGbnnHa26Q9iDh+Iobc7YbweDWe22b0jXUDo+OILCAkiRzmXBEEQBEEQRHXRfDWIX/VhDP71QfRu2ong925G8oTlEPbvg+dHN6NuzXLUnnEyXL/6ecmFgNgiPhxUUN8oF5WTlsm51Ixegh6vvtBni3+7e1kVcZl251LpNhmfuH4KFi7Ve3RyHIfJU51QFM2oFFqOc+lPf3awP1WWc8nCYlmobqYVSQWcy7hqiEtnjhYdZe07ff80TUMkrKRbwZTf6gQosaCPKeeycFhspgIt27f5WMVivraMjiOZliqb3gwa39vDwafMcCJQP/zDGoYgcJRzSRAEQRAEQRw9tKYmxK69DgP/fBa96zci/NVvIDV3HqTN78L7P1/XCwF98Fw4b/sN+I72Yfdn7vs4Z4G7qDFYnUtr5VSnO+PwmalOWGxGLDZNkuGvtS7kp85yAdAFIVBeHqLLLcDp5tHfm0QomO6xOAJ3kAlclhtZ0bDYqGqI+pH288y3b9YLNRZVoamVc0aBaofF6mKN5TKKJYr4XDmnnW1WcclCbiO2OV+KawmQc0kQBEEQBEGMIurMWYh8+Qb0v7wBfc+8jMjnvgh1Uivk11+F72s3oO7YBaj9wNlw3fqrvI6meRG/+DhvUcc151zaw2JdRohmbucyX6GWkWAOS80ljFes8Vsqio4kjNVMoF5CKqlhaCAFr0/M2WNxOAxxOVCdgj6sUq/LVRnx57Q5lyyvcCSubT5yFfQZrhUJULgVTOXCYq3nH40oGOxPob5RwvTZLvT3JnH3b4+kQ5L1bQL1EkSJw6Jlxf0+Mci5JAiCIAiCIEYfjoOyZCnC3/5f9L29Ff3/eAqRT38OautkSG+8Du83vor6ZQtRe8FZcP32l+CPHDY+mohnFrNTpjuLOpxsaixvhMWm899YOKbduUxUMSwWAOYszK7I6fYIOOfiBuPnkYhBM4G6jDM60j6SLjcPUeIyzmUlWpGY2qREoywstrLOZTym75e1IRk159JdonOZrGxBH1b4qrnVgcs+0oLmVhn7dkXx8tP9iIYVgAM+9rnJ+NcvTy15jgiiXqPLnq88nqhMjWKCIAiCIAhibMDzSK1YidSKlQh/53sQ334TjocfhOPRhyBtWA9pw3p4v/nfSJ6wAvEPXgJt/3EAmtDQLBedQ2fOuWRhsVnOpa3XZTyughdKX9wXwuHg4XTzUBVg2qzcwnjpCT709yRR11h87ls+zPlzXv/I9sdxHGr8Ivp6kkgm1Io4l6LIQxA4xKMqwAG8UJ5YNWMXV5k2JFUQl0ktEz6dtxVJkTmXUtq5TJqcSw7gS7zM9vNnIbHNrTJqakVcdHUzbr3lELo6EoiEFThdvNGSp1TECdDrksQlQRAEQRDERIXjkDphBVInrED4f74L8Z234HjkITgeeRDSWxsgvbUB/wWgvXEBxA99EMLmD0I5ZgkwjMg051yGQgokmTNeM5zLqC3nMqbC4eQrVgRGPz0OV1/bCo5D3kJEHMfhtHPrK3I8s7gcqXMJ6KGxfT1JDA2mDGdNLiPnEgAcLl7Pi9T0kNhKXWe7uApX0blMJlX9OFz+HFRWMEoQuIIuuFHQx9SKRBS5kq8Lc4XZ+XcwcTlZb9nDhGRvdwLJhFbWvGAhu+M575LEJUEQBEEQxPsBjkPq+OVIHb8c4W99B+K778DxyEOQH3sEk/bsAH61A/jVzVCmTkP83POROO8DSJ60GhCzl4ss5zIaURCLqKitz2yTy7lUFA3JhFYwR26kTE8X7TkaBBoy51muuAT0vMtKOJeAnhvJQlYrFRILHCXnUrSGxTocfN4QZqeLh+zg4K0RCwpFe85lKqmNyDU3F/TRNA0H98YAAC1pcely85BkDr3derubkRR5YrB+mClyLgmCIAiCIIhxA8chtex4pJYdj/A3b4Swayfkfz4Kxz//AemtDXD/7jdw/+43UAMBJM48B/HzPoDEujMAj57XyBbcvV36gtrrzSwpM85lRlwmhgl1HC/UViDnEsj02wwOpiqScwlYcxSdFSrmY95vRlzqXz0VdS5NBX3iasF+pDzP4SPXTYY0zFyy51wqKQ3SCES3+fw72xPo6UygZbIDtQF9LnAcB39AQk+nnovpKkPYG84liUuCIAiCIAhivKLMnYfo3C8j+oUvg+/sgPz4Y5Af/wfkl16A87574bzvXmgOBxKnnIbEmeegcd2ZEEQO3R36gtrsSGacy0xYbDXakIwG/oAEjtOLrvhqRp7D6TM5l4kKOZcOU+sRV4XakACZEGhDXIb0HNtqOJeRsAJow8+TqTOHd6szYbEaNE2DoozQuTT1udzylt7T8pjjrVVg/QHREJflhAtTWCxBEARBEAQxoVCbWxD72CcR+9gnwQWHID/7NOR//gPy00/C8dQTcDz1BHwAvtk4BxsbVmNL61r4TlxrfD6XczlcBdDxgihyqKkVMdifsvTYLBXmzJlzLsvpcwlYXeFKhsUKAgdJ5ox7yHqGViPnkuVzVsLhNsJik5oh1kptQ6LvhwPH6a11trzDxKW1f6U/YAoLd5cfFqsow2w4hiFxSRAEQRAEQeRE89UgftGliF90KZBIQHrjdchPPQH5mSfRuPM9nNW9G2dt/wMSr/qgPnsmEmeeDe+xpwLIOJdPP9KD9S8NABj/YbEAEGiQMNifqnzOpVRmzqXZuSxD4OTCkc7n7O9NYv/uKDw+AQ3NcsX2z0JYWc9UuQIPIYyw2IQ64jYkgB726nDyCKZbx0yd6TRCYhl+089lhcVStViCIAiCIAjifYEsI7n2FCTXnoLwjf+Hg89ux+7/dz+OOfIyFvS+CfnhB+B8+AHUAPjPusU4sP8U8Csvx1sv+5FM6IvmplbH6J5DBVh1Wi1qAxKmz/JgYDA8on2YxSVz1cp2Li05l5UV8Q4nj9CQglef64emASvW+CvaUobti4nLSjjczLlMJTWkkiN3Ltl4YmknftmJNVnv15qcy4qExZK4JAiCIAiCIN5PNK2ahzvmX4EX512BK6/y49jg25CffhLyU09ixuGtmPHqVuD8X+NGuQZHZp+Eug+fC8w9AxrqRnvoZTF/sRcLl/hGLFQAvT8jz+thsSynseycyyoV9DHve8PLg+AF4ITV/orun4XFMqFdCYdbNDmXShnOJZDplcnxwJITfFnvVyos1qiaSzmXBEEQBEEQxPsJp0tAS6sDHUficDX6kDjpXCTOOhf4gYbbr3sKiw+/jBMjG1C3fQPmbX8S+MaTwDeA1MxZSJ66DonTzkBy7cnQaiorVMYDPM/B5xcxOJCCW9VFi1CmHjSLy3JCM3NhbguybEVNWSHBubD3KK2kc5lMamWFxQIwWrwsWuqFnOMhgCUs1lNOWKz+lZxLgiAIgiAI4n3H6nW12LghiNappnBXjsNQ61w87pqJLdP/FZ2L+/HF09rQvPklyM8/C3H7Voj79sL1+9uhCQJSxy9HIi02U8efkLOv5kSktk7P3YyEFMgOvmDPxmJwOjPqtNJhsdNmudB+OI61ZwRw8lmVd55FWxuWiojLHM7lSN3m406qwTuvD+HUc3Kfe02tCHAAtEoV9CFxSRAEQRAEQbzPWLq8BkuXZ+egOV08BvuBwwdi8NZ54bnsHIQvPxdhAHxnB6QXnoP8wnOQn38W0ob1kDash+f//QCqx4vkSauQXHMKkmtPRmrJseVbemOUQL2IA3v078vNtwSqGxZ71oX1WHduXdmhu/kQBA4cD2jpAsOVcS4zrUjKdS4vuLwRZ1xQD68vt3QSBA6+GhHBwRTlXI72AAiCIAiCIIiJhbkH4rzFHosrpza3IH7F1YhfcTWgaRC2b4P8/LOQX3gW0vrX4HjmKTieeUrf1leD5KrVuthcsxapxUsmjNgMNGSqrVZEXLqqFxbLcVxFxlgIUeSMyrkVaUUimVqRlOlciiIPr2+Y3psznDiwJwpvTQWcSxKXBEEQBEEQBKFz6jn1aGgKYuoMJxYs9ebfkOOgLFqM6KLFiH72eiCRgLjxHcivvAjp5ZcgbXgdjicfh+PJxwEAqr8WyVVrkFyzFok1p0BZtBjgx2d7k0B9ZhlebhsSoLrO5dFAlEzisqLOZXmtSIrl8o+1IJXUyrqXhnNJYbEEQRAEQRAEoTNjtgszZrtK/6AsI3XiSqROXAl86T+BeBzSO29BevlFSK++DGnDejge/wccj/8DQFpsnrgSyZWrkDxxFVLLjgOczgqfTXUI1GeKwFTCFXRWsRXJ0UAv6qPHxY61gj7FwPMcZEd5+6ecS4IgCIIgCIKoFg4HkietRvKk1frPsRikt9/MiM2334TjqSfgeOoJAIAmy0gtO14XmytPQnLFSmiBsdn6xCIuK+FcMkHJVUacHW3MRX0qWtAnWX5Bn6MFG1+KwmIJgiAIgiAIoso4nUiuXovk6rX6z4kExE0bIa1/HdL6VyG98brxDz/XN0ktWIjkiWmxecIKqDNnAWVWZq0EHq8ASdZDQct1vIBMnqLTxVtah4wXpAqLS57nIAhcRQr6HC0o55IgCIIgCIIgRgtZRmr5iUgtPxHRz30BUFUIu3fpAnP9a5DWvwZxx3aIO7bD9Yc7AABqXR2Sxy9H6vjl6a8nQKsNHPWhcxyHQL2ErvZExXIuHU4e/trxubw3C79KOa9MvI8X51KknEuCIAiCIAiCGCPwPJR586HMm4/YNR/TX+rsgMjE5lsbIG7eBMfTT8Lx9JPGx1Kz5yB1wgpdbJ6wHKlFxwCSlO8oFcMQlxXIueR5Dp/8whTIFai0OhpUOiwW0MVlKKhknMsKiPhqknEuR3kgZUDikiAIgiAIgpiwqM0tSFx4MRIXXqy/EI9D3LoZ4ttvQnpzA6S334S4ZzfEPbvh/Os9AADN6URqybG62Dx2GVLHHgdl1uyKt0FheZeVcC4BoLnVUZH9jAZm57JSAlmSeGiqgkRczTrGWERIK7NUSh3dgZQBiUuCIAiCIAji/YPDgVQ6LDZ27XUAAK63F9I7b0JkYvOdtyFtWA9pw3rjY5rbg9SSpUguPRbKsuOAU1YDjVMAfuSCs64hLS6r3ENyPMBcRUHkKiYC2XWNRnSxxpzBsUqmWuwoD6QMSFwSBEEQBEEQ72u0+nokzjwHiTPP0V9QVQh790B8+02Im9+F+O5GiJs3GXmcjDqXC6lFx+ju5tJlSC5dBmX+gqJDamcvcKOxRcbs+e5qnNa4goXFVrLSLXOEY1FdrY1955JyLgmCIAiCIAhiYsHzUObMhTJnLuJXXK2/xgTnpo2QNm2Ea/sWaG+9DemtDZDe2mB8VJMkKPMWILVosS4801+1pqasKrX1jTI+99XpR/PMxixM+FVUXNqdy/EiLqlaLEEQBEEQBEFMYEyCM3n5FXDVe9HfPQTs2wdp00aIm9IO59ZNek7n1s2Wj6sNDUgtTIvNxcdAWbQYqXkLAKdzlE5obFEV51K2OZfSGBeXAjmXY5q9e/fia1/7GkKhEGRZxte+9jUsX758tIdFEARBEARBTAR4HurMWYjPnIX4RZfqr2kauK4uiNu2QNy21fgq7NwB+aXnIb/0vPFxTRCgzJ6jO53pKrepeQugzJ4DuFyjcUajhuFcVrDaLeudGQ2Pk4I+1OdybONwOPC9730Ps2bNwp49e/DZz34WTzzxxGgPiyAIgiAIgpiocBy05mYkm5uRXHdG5vVkEsLuXRmxycTnzvcg7nwP5jqvGsdBnT4jLTgzwlOZNx+a13fUT+lowAr6VNK5ZE5lNO1cUlhs9ZnQ4nLy5MnG97NmzUIwGISmaeC4sT2xCIIgCIIgiAmGJEFZuAjKwkWIX5Z5mevvg7BzJ8Rd70F4b4f+ded7EPbvg7B/H/Dk45bdKK2TocydB2XWbOu/aTOOSm/OalGdnEt9Xyzncqw7lyIV9CmPDRs24Pbbb8eWLVvQ3d2N3/zmN1i3bp1lm7vvvhu33347uru7sXDhQnzjG9/A0qVLSz7WM888g4ULF5KwJAiCIAiCIMYMWqAOqZUnIbXyJOsboRDE3TshpJ1NYed7EHbu0EVn2xHghees+xEEqFOnQZk1Gymz6Jw5G+rUaYA4tj0lFsJaybBYt0dvExMJjRPnksJiyyMSiWD+/Pm49NJLcf3112e9/9hjj+H73/8+brzxRhx77LG46667cO211+Lxxx9HXV0dAOCiiy7Kue/7778fQrrR7ZEjR/DDH/4Qt956a/VOhiAIgiAIgiAqhdeL1LLjkVp2POLm1+NxCPv2Qti7R/+3bw+EPbv179Nup/zs05ZdaZIEZcpUqNOmQ5k2A8r06boQTf+sNTRkVbI92lSjoI/XZ+1BOtadSyYuUyQuR8app56KU089Ne/7d955J6688kpcdpkeO3DjjTfi+eefxwMPPIBPfepTAICHHnqo4DFCoRA++9nP4pvf/CamTy+v1DPPj60JycYz1sZFTAxofhHVhOYXUW1ojhHVZFTnl8sJbdEipBYtQsr+XjhsCE9+7+6MAN2zG+K+vcC+vTl3qbndUKZO08Xn9BlQp06DOn06lKnToU6eDK2++uLT6dKFoNsjVOy6emusUkeW+TH9fwJzbxU9indMjzUfY9YfTyQS2Lp1Kz7zmc8Yr/E8j9WrV2Pjxo1F7UNRFHzxi1/EFVdcgbVr15Y1HlHkUV/vLWsf1SIQ8Iz2EIgJDM0voprQ/CKqDc0xopqMuflV7wWmNQOnrsp+LxwG9u8H9u3LfE1/z+3bB/G9HcB7O3Lv1+EAJk8Gpk4Fpkyx/mOvNTYC/Mhdx7XrnFAVAatPq0eNvzK5o62TrQ5gfYMH9fVjt/ULjwQAgIMuKsfc/CqCMSsu+/v7oSgKGhoaLK/X19fjwIEDRe3jxRdfxOuvv46enh789a9/BQD88Y9/RE1NTcnjSaVUDA1FS/5cNeF5DoGAB/39Yajq+LXPibEJzS+imtD8IqoNzTGimozb+dUyXf+XQ3tygwPgDx6EcHA/+AMHwB86COHgAfBtbeDbj4DfuxfYm9v5BPTQW3VSK9TWVqjNLVCbmqE1NUFtajb+aU1NUBsa8xYeWrHWi2Qqjt7eeM73S0XVkpafQ6EoxN4sv3fMEArqY4vH9RzRsTa/ampckCSh4DZjVlzmo5Rqr+vWrcPWrVsrduyxdHPNqKo2ZsdGjH9ofhHVhOYXUW1ojhHVZELNL58fyuIlSC5ekvv9WAx8RzuEtiPg246Ab2uD0HY4LT7bILQdgXDwAISDw5tAan29Ljgbm6EyAdrQCK2uDmpdPdRAHbT69NfaWkAoLGjy4fJYnVSOH7vreSATeZxK6nGx43F+jVlxGQgEIAgCenp6LK/39fVluZkEQRAEQRAEQVQRpxPqjJlQZ8zMv008Dr6jHXxXJ/iurvTXTvDd3emvmdfF3l5g+7ZhD6txHLTaWqh19dACdVDr01/r6qHW1UHz1UDz+6HV1ED16V/Zz063B4LAGa09xnxBH6MVySgPpAzGrLiUZRmLFy/Gq6++itNPPx0AoKoqXnvtNXzsYx8b5dERBEEQBEEQBGHB4YA6fQbU6TMKb6dp4IYGLQKU6+0B39sLvr8PXF8v+L5+/Wt/H/j+Poh7dpc8HI3ncZPkQVj0ISZ50binAaj1Q/N4oXk80Nzu9D8PkP6qWb6avne5AYcMTZL1HNQRuqmFoFYkZRIOh3Hw4EHj58OHD2P79u1oaGhAY2MjPvGJT+CGG27A4sWLsXTpUtx1112IxWK45JJLRnHUBEEQBEEQBEGMGI6D5q+F4q+FMndecZ+JRnXhmRagfF8vuL4+cMEh8END4AYHwQUHwQ2lfw7qr/G9A2gIt+n7WL+zYqegCQLgcECTZUCSobHvHQ5osgOQJGgOB8ALgMDr2/O8Lko5/avG84DAGz+D5/HhN8MQHBKw8evA1DkVG+/RYlTF5ZYtW/DRj37U+Pm73/0uAODzn/88rr/+epx//vno6+vDz372M3R3d2PhwoW47bbbjB6XBEEQBEEQBEG8D3C5oLomA62TUUrU6J9+ewR7tgbhVsL4r/9q0EVoOAwuEgYXiZi+RrJeg/m1aARcPAEk4uASyfTXOBBPgAuHwSeTww+mCFazb+6aAnzjfyuyz6PJqIrLlStX4r333iu4zTXXXINrrrnmKI2IIAiCIAiCIIiJgtcnQOMFJJx+qNPK63lfEE0DEomM4EzEgXgcnKbqjStVVU+mVFVwqmL5GYqa3k7Bi//sBifyuPD7VwDhsVvZNh9jNueSIAiCIAiCIAiiHDw+Xe6IUpWL+XCcHhLrcAA+YKRZk6vW6q1u4HQC4VBFh3g0GHmnU4IgCIIgCIIgiDGMx6sX3hnrlWInCiQuCYIgCIIgCIKYkHh9urgUSFweFUhcEgRBEARBEAQxITHCYgUSl0cDEpcEQRAEQRAEQUxIPORcHlVIXBIEQRAEQRAEMSHx14rgBcDrozqmRwO6ygRBEARBEARBTEhcbgHX/vtU+GpI9hwN6CoTBEEQBEEQBDFhaZ3qHO0hvG+gsFiCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpcEQRAEQRAEQRBE2ZC4JAiCIAiCIAiCIMqGxCVBEARBEARBEARRNiQuCYIgCIIgCIIgiLIhcUkQBEEQBEEQBEGUDYlLgiAIgiAIgiAIomxIXBIEQRAEQRAEQRBlQ+KSIAiCIAiCIAiCKBsSlwRBEARBEARBEETZkLgkCIIgCIIgCIIgyobTNE0b7UGMB1RVg6Kooz2MLCRJQDKpjPYwiAkKzS+imtD8IqoNzTGimtD8IqrJWJxfgsCD57mC25C4JAiCIAiCIAiCIMqGwmIJgiAIgiAIgiCIsiFxSRAEQRAEQRAEQZQNiUuCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyIXFJEARBEARBEARBlA2JS4IgCIIgCIIgCKJsSFwSBEEQBEEQBEEQZUPikiAIgiAIgiAIgigbEpdjnLvvvhunn346lixZgiuuuAKbNm0quP0///lPnHvuuViyZAkuvPBCvPjii0dppMR4pJT5tWvXLlx//fU4/fTTMX/+fPzpT386iiMlxiOlzK+//vWv+Jd/+ResWLECJ554Ij75yU9i8+bNR3G0xHiklDn29NNP47LLLsPy5cuxbNkyXHTRRXjwwQeP3mCJcUepazDGrbfeivnz5+Omm26q8giJ8Uwp8+v+++/H/PnzLf+WLFlyFEdbPCQuxzCPPfYYvv/97+Nzn/scHnjgAcyfPx/XXnst+vr6cm7/zjvv4Ctf+Qouv/xyPPjggzjzzDPx2c9+Fnv27DnKIyfGA6XOr2g0iilTpuArX/kKGhsbj/JoifFGqfNr/fr1uOCCC/CHP/wB99xzD5qbm/HJT34SXV1dR3nkxHih1Dnm9/vx6U9/Gn/5y1/w8MMP4/LLL8fXvvY1vPrqq0d55MR4oNT5xdi6dSvuvfdezJ8//yiNlBiPjGR+1dbW4uWXXzb+Pffcc0dxxCWgEWOWyy+/XPvOd75j/KwoirZ27Vrttttuy7n9F7/4Re3Tn/605bUPfehD2o033ljVcRLjk1Lnl5l169Zpf/zjH6s5PGKcU8780jRNS6VS2nHHHac9/PDD1RoiMc4pd45pmqZdfPHF2s9//vNqDI8Y54xkfkUiEe28887TXnzxRe2aa67RfvCDHxyNoRLjkFLn19///nftxBNPPFrDKwtyLscoiUQCW7duxZo1a4zXeJ7H6tWrsXHjxpyf2bhxo2V7AFi7dm3e7Yn3LyOZXwRRLJWYX9FoFKlUCn6/v0qjJMYz5c4xTdPw2muvYd++fTjhhBOqOFJiPDLS+fWDH/wAK1euxMknn3wURkmMV0Y6v0KhEE477TSceuqp+OxnP4vdu3cfhdGWjjjaAyBy09/fD0VR0NDQYHm9vr4eBw4cyPmZnp4e1NfXZ23f3d1dtXES45ORzC+CKJZKzK9bbrkFkyZNwkknnVSNIRLjnJHOsWAwiFNOOQWJRAI8z+PGG2/EqlWrqj1cYpwxkvn13HPP4fXXX6c8XmJYRjK/Zs2ahe9///uYN28ehoaGcMcdd+Dqq6/Go48+iubm5qMx7KIhcTnO0DQNHMflfT/Xe4W2Jwgzw80vgiiHYufX7373Ozz22GP44x//CFmWj8LIiInCcHPM4/HgwQcfRCQSwWuvvYbvfe97mDZtGpYvX34UR0mMV/LNr76+Pnzzm9/EL3/5S7hcrlEYGTERKPT/17Jly7Bs2TLj5+OOOw7nn38+7rvvPnz+858/SiMsDhKXY5RAIABBENDT02N5va+vL+tJB6OhoSFr+97e3rzbE+9fRjK/CKJYyplft99+O37729/izjvvxLx586o5TGIcM9I5xvM8pk+fDgBYuHAh9uzZg1tvvZXEJWGh1Pm1a9cudHd34+qrrzZeUxQFGzZswJ/+9CeqfE1YqMQaTJIkLFy4cExGm1HO5RhFlmUsXrzYUsVOVVW89tprlicXZpYtW4ZXXnnF8tqrr76ad3vi/ctI5hdBFMtI59dtt92GX/3qV7jtttvGbIl1YmxQqf/DNE1DIpGowgiJ8Uyp82vJkiV45JFH8OCDDxr/jjnmGFxyySW4//77j+LIifFAJf7/UhQFu3btGpPV+8m5HMN84hOfwA033IDFixdj6dKluOuuuxCLxXDJJZcAAG644QY0NzfjK1/5CgDgox/9KK655hrccccdOPXUU/HYY49hy5Yt+L//+7/RPA1ijFLq/EokEkZbm0Qigc7OTmzfvh1+vx+tra2jdh7E2KTU+fW73/0OP/3pT3HLLbdg8uTJRq642+2Gx+MZtfMgxi6lzrFbb70VixYtwvTp05FIJPDSSy/hoYcewne+853RPA1ijFLK/HK73VmRFm63G7W1tZg7d+5oDJ8Y45T6/9cvfvELLFu2DNOnT8fQ0BBuv/12tLW14fLLLx/N08gJicsxzPnnn4++vj787Gc/Q3d3NxYuXIjbbrsNdXV1AID29nbwfMZ8Pv7443HLLbfgJz/5CX70ox9hxowZ+OUvf4nZs2eP1ikQY5hS51dXVxcuvvhi4+dbb70Vt956Ky655BL84Ac/ONrDJ8Y4pc6ve+65B8lkEl/4whcs+/n85z+P66+//qiOnRgflDrHYrEYvvOd76CjowNOpxOzZs3CD3/4Q5x//vmjdQrEGKbU+UUQpVDq/BoaGsI3v/lNdHd3w+/345hjjsFf/vIXzJo1a7ROIS+cpmnaaA+CIAiCIAiCIAiCGN/QIxeCIAiCIAiCIAiibEhcEgRBEARBEARBEGVD4pIgCIIgCIIgCIIoGxKXBEEQBEEQBEEQRNmQuCQIgiAIgiAIgiDKhsQlQRAEQRAEQRAEUTYkLgmCIAiCIAiCIIiyEUd7AARBEAQx1vj5z3+OX/ziF1mvr1q1Cr///e+P/oAIgiAIYhxA4pIgCIIgcuDz+XDbbbdlvUYQBEEQRG5IXBIEQRBEDgRBwLJly4bdLhaLwel0Vn9ABEEQBDHGoZxLgiAIgiiSw4cPY/78+Xj44Ydxww03YPny5bjuuusAAAMDA/jWt76F1atXY8mSJbjqqqvw7rvvWj4/NDSEr3zlK1i2bBnWrl2LX//617jppptw+umnG9v8/Oc/x8qVK7OOPX/+fPzpT3+yvHbffffhggsuwDHHHIN169bhd7/7neX9r371q7j00kvxyiuv4MILL8SyZctw9dVXY9euXZbtFEXBb3/7W5xzzjk45phjcMopp+CrX/0qAODuu+/Gcccdh3A4bPnM66+/jvnz52PHjh0lXkWCIAhiokLOJUEQBEHkIZVKWX7WNA0AcPPNN+Oss87CT3/6U/A8j0QigU984hMYGhrCDTfcgLq6Otxzzz34+Mc/jieffBKNjY0AgP/+7//GG2+8ga997WtoaGjAHXfcgYMHD0IUS/9zfNttt+HHP/4xrr32Wpx44onYunUrfvrTn8LlcuGaa64xtmtvb8fNN9+Mz3zmM3A4HLj55pvx7//+73j00UfBcRwA4Fvf+hYeeughfOpTn8KJJ56IwcFBPP744wCACy+8EDfddBOeeOIJXHrppcZ+H3jgASxevBgLFiwoeewEQRDExITEJUEQBEHkYGBgAIsXL7a89t3vfhcAcOyxx+Lb3/628fp9992HXbt24dFHH8WMGTMAAKtXr8a5556LO+64A//1X/+FXbt24emnn8aPf/xjnH/++QCAlStXYt26dfB6vSWNLRQK4Ze//CU+85nP4POf/zwAYM2aNYhGo/j1r3+Nq6++GoIgAAAGBwdxzz33GOPSNA2f+9znsHfvXsyePRt79uzB3/72N3z961/HRz/6UeMYbIw1NTU4++yzcf/99xviMhwO48knn8RXvvKVksZNEARBTGxIXBIEQRBEDnw+H+68807La7IsAwBOO+00y+uvvfYaFi9ejClTpljczhUrVmDLli0A8P/bu5tQeNcwjuM/RxpRaPyZmmnkJSsvZSFvzQYLRSFKTamhJFH2NmZDUsiIkiQWmijZSUo2lIUIGzuFGEyDjBI5Z3GaqTH+Dk0djvP9LO+5e+5rlr+u+7keHRwcSFLIFdj4+HiVlpZqf3//U7Xt7u7q4eFBVVVVIecVFxdrYmJCFxcXslgskiSLxRIMlpKUlZUlSfJ4PMrKytL29rYkhXQlX2tsbJTD4dDJyYmsVqtWVlb0/PysmpqaT9UNAPjZCJcAALwhOjpaeXl5IWunp6eSpOTk5JB1n8+nvb29sE6nJKWlpUmSrq+vFR8fHzb85/WzPsLn80mSqqur3/z9/Pw8GC5fT7iNiYmRJD0+Pkr6u0MbFxf3bve0qKhIVqtVS0tL6u7u1tLSkioqKpSUlPTp2gEAPxfhEgCATwq8qxiQmJio3NxcOZ3OsL2BbuevX7/k9/vDpst6vd6Q/QaDQU9PTyFrt7e3YedJ0uTk5JvhNCMj48P/JSkpSQ8PD7q/v/9twIyKilJDQ4MWFhZUW1urnZ2dsOFBAAAQLgEAiFBJSYk2NzdlNpt/24kMdEHX19eD7zP6/X5tbW2FhDqTySS/3y+PxyOTySRJ2tzcDHlWQUGBYmNjdXl5GXZF97OKi4slScvLyyGDgF6rr6+Xy+VST0+PTCaTysrKIjoXAPDzEC4BAIhQXV2d3G63mpub1draKqvVqpubG+3v7yslJUUOh0PZ2dkqLy+X0+nU/f29UlJSND09HXZN1mazKTY2Vj09PWppadHp6ancbnfInoSEBHV1damvr09nZ2cqLCzUy8uLjo+Ptb29rfHx8Q/XnpmZqaamJg0MDMjr9aqwsFB3d3daXV3VyMhIcJ/JZJLNZtPGxoba29uDA4MAAAggXAIAECGDwaC5uTmNjo5qbGxMXq9XRqNR+fn5IQN8BgYG5HQ61d/fr7i4ONntduXl5Wl1dTW4x2g0yuVyaXBwUJ2dncrJydHQ0FCw2xnQ1tam1NRUzc7OamZmRgaDQenp6WH7PqK3t1dms1mLi4uampqS0Wh8szNZWVmpjY2Nd4f/AAD+v6L+DHy0CwAA/OsC35BcX1//6lL+UXd3t66urjQ/P//VpQAAviE6lwAA4F1HR0c6PDzU2tqahoeHv7ocAMA3RbgEAADv6ujokM/nk91uV1VV1VeXAwD4prgWCwAAAACI2B9fXQAAAAAA4L+PcAkAAAAAiBjhEgAAAAAQMcIlAAAAACBihEsAAAAAQMQIlwAAAACAiBEuAQAAAAAR+wu14s+YjPwwEQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=(12, 8), dpi=90)\n", + "plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + "plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + "plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "plt.title(\"AR(4) Spectrum\")" + ] + }, + { + "cell_type": "markdown", + "id": "082abc72", + "metadata": {}, + "source": [ + "##### As can be seen, there is improvement in both the variance and the bias." + ] + }, + { + "cell_type": "markdown", + "id": "8d01ad42", + "metadata": {}, + "source": [ + "### Attributes of the Multitaper object\n", + "``norm``: {``leahy`` | ``frac`` | ``abs`` | ``none`` }\n", + " the normalization of the power spectrun\n", + "\n", + "``freq``: The array of mid-bin frequencies that the Fourier transform samples\n", + "\n", + "``power``: The array of normalized squared absolute values of Fourier\n", + "amplitudes\n", + "\n", + "``unnorm_power``: The array of unnormalized values of Fourier amplitudes\n", + "\n", + "``multitaper_norm_power``:The array of normalized values of Fourier amplitudes, normalized\n", + " according to the scheme followed in nitime, that is, by the length and\n", + " the sampling frequency.\n", + "\n", + "``power_err``: The uncertainties of ``power``.\n", + " An approximation for each bin given by ``power_err = power/sqrt(m)``.\n", + " Where ``m`` is the number of power averaged in each bin (by frequency\n", + " binning, or averaging power spectrum). Note that for a single\n", + " realization (``m=1``) the error is equal to the power.\n", + "\n", + "``df``: The frequency resolution\n", + "\n", + "``m``: The number of averaged powers in each bin\n", + "\n", + "``n``: The number of data points in the light curve\n", + "\n", + "``nphots``: The total number of photons in the light curve\n", + "\n", + "``jk_var_deg_freedom``: Array differs depending on whether\n", + "the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a chi2 model of how the estimated\n", + " PSD is distributed about the true log-PSD (this is either\n", + " 2\\*floor(2\\*NW), or calculated from adaptive weights)" + ] + }, + { + "cell_type": "markdown", + "id": "88ba3894", + "metadata": {}, + "source": [ + "### A look at the values contained in these attributes." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "e4acf993", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "norm: abs \n", + "power.shape: (511,) \n", + "unnorm_power.shape: (511,) \n", + "multitaper_norm_power.shape: (511,) \n", + "power_err.shape: (511,) \n", + "df: 0.0009765625 \n", + "m: 1 \n", + "n: 1024 \n", + "nphots: -73.38213649959974 \n", + "jk_var_deg_freedom.shape: (511,) \n" + ] + } + ], + "source": [ + "print(mtp)\n", + "print(\"norm: \", mtp.norm, type(mtp.norm))\n", + "print(\"power.shape: \", mtp.power.shape, type(mtp.power))\n", + "print(\"unnorm_power.shape: \", mtp.unnorm_power.shape, type(mtp.unnorm_power))\n", + "print(\"multitaper_norm_power.shape: \", mtp.multitaper_norm_power.shape, type(mtp.multitaper_norm_power))\n", + "print(\"power_err.shape: \", mtp.power_err.shape, type(mtp.power_err))\n", + "print(\"df: \", mtp.df, type(mtp.df))\n", + "print(\"m: \", mtp.m, type(mtp.m))\n", + "print(\"n: \", mtp.n, type(mtp.n)) # Notice the length of PSDs is half that of the number of data points in the light curve, as the imaginary (complex) part is discarded.\n", + "print(\"nphots: \", mtp.nphots, type(mtp.nphots))\n", + "print(\"jk_var_deg_freedom.shape: \", mtp.jk_var_deg_freedom.shape, type(mtp.jk_var_deg_freedom))" + ] + }, + { + "cell_type": "markdown", + "id": "f5b3a490", + "metadata": {}, + "source": [ + "### A look at the different normalizations\n", + "The normalized S(f) estimates are stored in the `power` attribute can be accessed like `mtp.power` if the object name is `mtp`" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "f305d250", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3gc1dXA4d/MVq16sSVXjJswrtgGUwwGgyk2vdcEML2ThBZIvkBCaCEQAwkECJCEEEIPvYVmeje2ce9qVq/bpnx/zM7s7GolSy64cN48PJFmp9xdjeQ9e849VzFN00QIIYQQQgghhNgE6tYegBBCCCGEEEKI7Z8El0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIIYQQQgghNpkEl0IIsR0wTZPp06dTXl7O6tWrOz3+6aefUl5e7vw3efJkTjjhBN56662M55s/fz677747bW1tGR+/6KKLKC8v55///GfK9vPOO4/77ruvR2OuqKjgqquuYv/992fs2LFMmzaNCy+8kM8//7xHx29uc+fO5dFHH90q194U1157Lccee+wWv866desoLy/nnXfe2SLnP+OMMygvL+eBBx7o9NiUKVO45557tsh1N7d77rmHKVOmON/bv3tLlizZ4tf+5z//SXl5+Ra/jhBCbCwJLoUQYjvw9ddfU1FRAcDLL7/c5X5/+MMfePLJJ7nzzjspKCjgkksuyRjM3X333Zx88snk5OR0emzu3Ll8++23Gc9/3nnn8eijj9LS0tLteJubmznppJNYtmwZP/vZz3jwwQe57LLLUFWVr7/+uttjt5QPP/yQv//971vl2iLp0UcfJRwOb+1hbDajR4/mySefZPDgwVt7KEIIsdVJcCmEENuBl19+mVAoxPjx47sNLsvLy5kwYQLTpk1jzpw55Ofn89///jdln1WrVvHBBx9w3HHHdTo+Ho9z8803c8UVV2Q8/+TJkykoKOCFF17odryvv/46dXV1PPTQQxx55JHsueeeHHfccdx3332ce+65G37CW5Gu68Risa09jB3SbrvtRltbG08++eQWOX80Gt0i5+1OTk4OEyZMIBgM/uDXFkKIbY0El0IIsY3TdZ3XXnuN6dOnc9xxx7Fs2TIWLVq0weOysrIYPHgwVVVVKdufe+45ysvLGTJkSKdj/v73vxMMBjMGnraDDz6Y559/vttrt7S04PP5yM/P7/SYoijO13bJ51tvvcWhhx7K2LFjOeWUU1i2bFnKMYZh8Ne//pUZM2YwZswYDjnkEJ577rlO537zzTc5/vjjGTduHFOmTOHcc8+loqKCe+65h7/97W9UVFQ4pcPXXnttpzHMmjWLcePGMW/evE7lj7b0cuHp06dz22238de//pWpU6cyadIkbr31VkzT5L333mPWrFnstttuXHTRRTQ3N3f7um2sL774gtNPP53x48czZcoUbrjhhpSS5/Xr13Pddddx4IEHMm7cOA455BDuuuuujEF0OBzm17/+NZMmTWK//fZjzpw5GIYBwNKlSykvL+ezzz5LOaa9vZ3ddtttg5nhvn37cuyxx/K3v/1tgwH8K6+8whFHHMGYMWOYNm0ad911F5qmOY8/++yzlJeXM2/ePM444wzGjRvHQw895GxfsGABZ5xxBuPHj+eoo45iwYIFdHR0cN111zFp0iQOPPBAXnrppZRrvvvuu5x11lnstddeTJw4kRNPPJG5c+d2O870sth77rknpUTd/m/69OnOMdFolNtvv51p06YxZswYjjzySN57772U88ZiMW666SYmT57MHnvswe9///uU5y+EENsi79YegBBCiO598skn1NXVMXPmTCZNmsRvf/tbXn75ZXbZZZdujzMMg+rqakaPHt3pfLvttlun/Wtra/nzn//M/fffj6p2/dnjbrvtxsMPP0xzc3PG4BGsUsFYLMbVV1/N2Wefza677trlOSsrK7nlllu4/PLLCQaD3HPPPcyePZs33niDQCAAwG9/+1uef/55LrroIkaPHs2HH37IL3/5SwoKCjjggAMAeP7557nmmmuYNWsWF110EaZp8sknn9DQ0MAJJ5zAqlWr+PTTT7n33nsBKCoqcsZQUVHBHXfcwUUXXURJSQkDBw7s5pXt7OWXX2bcuHH8/ve/Z8GCBdx9990YhsEXX3zB5ZdfTiQS4be//S133nknN910U6/OvSFffvklZ555JgcddBBz5syhsbGRO++8k5aWFubMmQNAY2MjBQUFXHfddeTl5bFq1SruueceGhsbO43nD3/4AwcffDBz5szh448/5r777mP48OHMnDmTESNGMGHCBJ599ln22GMP55jXXnuNeDzO4YcfvsHxnnvuuTz99NM888wznHLKKRn3mTt3LldeeSVHH300V111FYsXL+ZPf/pTxvH+7Gc/45RTTuHiiy8mLy/P+eDl2muv5bTTTuOcc87hzjvv5LLLLmPcuHEMHjyYOXPm8Mwzz3DNNdcwefJkysrKAGve6QEHHMDZZ5+Nqqq8//77nHvuufzzn/9k0qRJPfp5nHDCCey7777O9+FwmCuvvDLlw5zLLruMefPmcemllzJ48GBeffVVLrzwQp555hlGjRrl/ByeeuoprrzySoYNG8ZTTz3Fa6+91qMxCCHEVmMKIYTYpl177bXm5MmTzWg0apqmaZ577rnmAQccYBqG4ezzySefmCNHjjS///57Mx6Pm/X19eatt95qTpo0yVy+fLmzn2EY5pgxY8x//vOfna5z1VVXmZdddpnz/ciRI81//OMfnfZbu3atOXLkSHPu3Lndjvv3v/+9WV5ebo4cOdLcbbfdzEsuucT88MMPU/a55pprzJEjR5pffvmls23dunXmqFGjzH/961+maZrmqlWrzPLycvPZZ5/tNN5jjz3WNE3T1HXdnDp1qnnxxRd3OZ5bb73VPOCAAzptt8ewcOHClO1z5swx99hjj077p78uBxxwgHnQQQeZmqY524477jhz1KhR5po1a5xtt912m7nXXnt1Ob6uXHPNNeYxxxzT5eOnnHKKefrpp6ds++ijj8yRI0eaixcvznhMPB43//vf/5pjxoxx7iv753rVVVel7HvkkUeaV1xxhfP9f/7zH3PChAlmW1ubs+3UU081L7300m6fx+mnn+7sc80115gHHHCAGY/HTdM0zT322MOcM2eOs+8JJ5zQ6Tn99a9/NXfZZRezqqrKNE3TfOaZZ8yRI0eajz76aMp+9nb3/fLuu++aI0eONK+99lpnW0tLi7nrrruajz/+eMbx6rpuxuNx8+yzz045Lv2+sH/3unqtL7/8cnOfffYxa2pqTNNM/mw+/fTTlP3cr2FDQ4M5duxY84EHHkgZzyGHHGKOHDky43WEEGJbIGWxQgixDYvFYrz11lscdNBB+P1+AGbNmkVFRQXffPNNp/2POuooRo8ezV577cWjjz7KrbfeytChQ53Hm5ubicViFBYWphz39ddf8/rrr3P11VdvcEz2sbW1td3ud9111znn3GOPPfjggw84++yzeeKJJ1L2Ky4uZuLEic73AwYMYPTo0cybNw+Ajz/+GFVVmTFjBpqmOf/ttddeLFq0CF3XWblyJevXr9/orqqlpaVOxmhj7LHHHng8Huf7nXbaiQEDBjBo0KCUbQ0NDZt1Pmc4HOabb77hsMMOS3ltJk2ahM/nY8GCBYDVbfjRRx9l5syZjBs3jtGjR/OLX/yCWCzWqWx6n332Sfl++PDhVFdXO9/PnDkTwMmirVmzhi+//LJXr/35559PVVUVL774YqfHdF1n4cKFHHrooSnbZ86ciWEYnRpC7b///hmvsddeezlf28129txzT2dbbm4uhYWF1NTUONuqq6u55ppr2Hfffdl1110ZPXo0c+fOZdWqVT1+bm5//etfeeutt5gzZw59+/YF4KOPPqJPnz5MnDix0/08f/58AJYsWUI0GuXAAw90zqWqasr3QgixLZKyWCGE2Ia9//77tLS0MG3aNKdD65QpU/D7/bz88sudylvvuusuBg0aRFVVFXfffTfXXXcdY8eOpbS0FEg2PLEDVdvvf/97TjrpJHJzc1M6wUYiEVpbW8nNzXW22cf2JEjaaaedmD17NrNnz6ahoYHZs2dz1113cfLJJztzL4uLizsdV1xc7ASvjY2N6LreZVlibW0tjY2NAPTp02eDY8qkpKRko46z5eXlpXzv8/lSXjN7m2maxOPxTq//xmppaUHXdW688UZuvPHGTo/bgeNjjz3Gbbfdxnnnncfuu+9OXl4e3333HTfddFOnJjiZnot7n+zsbA499FCeffZZjjvuOJ599llKSkpSSkE3ZOedd+aQQw7hgQce4Kijjkp5rLGxkXg83ulnYn+fPm810/0DpLz+Pp8v43Pz+/3OfWwYBhdeeCHt7e1cdtll7LTTTmRlZTFnzhzq6+t7/Nxsc+fO5a677uKGG25I+fCksbGR2traTuXqgPMBRV1dXcbn1tVzFUKIbYUEl0IIsQ2zG45cfvnlnR579dVXue6661IyZsOHD2fkyJGMHTuWXXbZhZkzZ/LnP//ZCTzsrGP6UiIrV65k3rx5PPbYYynb77jjDv74xz+ycOFCZ1traytAl/Mtu1JUVMSxxx7L7373O+rr651gIdMb9/r6eoYPH+5cx+v18sQTT6Q0A3Kft729HdhwNrU3AoEA8Xg8ZduWasizsXJzc1EUhUsuuYRp06Z1etzOlr322msceuihXHnllc5jy5cv3+jrnnDCCZxyyimsWrWKF154gaOPPjrlPuyJCy64gKOPPrrTPMLCwkJ8Pl+n+8IOuNLvu0z3xMZYvXo1Cxcu5MEHH2S//fZztkcikV6fa+3atfz85z/nyCOP5LTTTkt5LD8/n9LS0m7Xi3X/bhQUFDjbNybIFUKIH5IEl0IIsY1qb2/n3Xff5fDDD+fEE09Meez777/nlltu4dNPP2XvvffOePzgwYM54YQTeOaZZ7jssssoLi7G7/fTv39/1q1bl7Lv/fffj67rKdt+8pOfcMYZZ3DwwQenbLePzdRt1tbQ0JDSMMe2evVq/H5/Slapvr6er776ysnuVFZWsnDhQqfMcs8990TXdVpbWzuVbNp23nlnSktLef7551O6crqlZ+A2pLS0lPb2dmpqapzM74cfftjj438IoVCICRMmsHLlSi655JIu94tEIp2ypZlKUntq4sSJDB06lF/+8pdUVlZyzDHH9Pocu+yyCwcccAAPPPBAynaPx8Po0aN57bXXOPXUU53tr776KqqqZmxGtTlkyupXVFTw9ddfM3LkyB6fp6Ojg4svvpj+/ftnzCbvtddePPLII4RCIYYNG5bxHCNHjiQQCPD22287+xiGwdtvv92bpySEED84CS6FEGIb9fbbbxMOh/nJT37C+PHjUx6bOHEif/nLX3jppZe6DC4BzjnnHJ566in+8Y9/OGtXTpw40ZmLZ5s8eXLG44cMGZLSFRRg/vz55ObmMmLEiC6v+9xzz/Hiiy9y9NFHU15ejqZpfPzxx/zrX//ilFNOcbrAgpWpuvrqq51usXPmzHGynABDhw7l5JNP5mc/+xmzZ89m7NixRKNRli5dyqpVq7j55ptRVZWrrrqKX/ziF/z85z/n8MMPR1EUPvnkE2bNmsXYsWMZOnQodXV1PPvss4wYMYLCwsJuu8Luu+++BINBfvnLX3LWWWexbt06/v3vf3e5/8aYPn06e+yxB7feemu3+7W0tGTsFDpt2jR+8YtfcOaZZ6KqKocccgjZ2dlUVVXx7rvvcuWVV7Lzzjuz9957849//MPplvriiy+yevXqTRr78ccfz+23385uu+3WZZC0IRdeeCEnnHBCp+2XXnops2fP5rrrrmPmzJksWbKEP/3pT5xwwglOZ9fNbejQoZSVlXHbbbdx+eWX097enjJXsqduueUWli9fzu23356yZJDf72fXXXdln332YerUqZx99tmce+65DB8+nLa2NhYtWkQ0GuXnP/85hYWFnHjiidxzzz14vV6GDx/OU089RUdHx+Z+2kIIsVlJcCmEENuol19+mSFDhnQKLMHKwh122GG8/PLL/OY3v+nyHAMGDOCII47giSee4LzzziMUCjFjxgyuu+46IpHIRi38/sEHHzBjxoxulyuZNm0a69at4z//+Q9VVVV4PB4GDx7MDTfc0CkL279/fy644ALuvPNOKioqGDNmDHfeeWdKAPp///d/DBkyhKeeeoo5c+aQk5PD8OHDOf744519jjjiCAKBAPfffz+XXXYZoVCI8ePHOxnUww47jE8//ZQ77riDhoYGjjnmmG6DuqKiIubMmcPtt9/OxRdfzOjRo7nzzjudhjabQzgczpjhTbd27dqMpdFvv/02kydP5vHHH2fOnDlcffXVGIZB//792XfffZ3yyosvvpjGxkb+9Kc/ATBjxgxuuOEGLrjggo0e+0EHHcTtt9/e7ZqoGzJu3Dj22WefThnhqVOnctddd/GXv/yFF198kaKiIs4++2wuvfTSjb7Whvj9fu655x5uuukmLrvsMsrKyrjgggv47LPPnDUse2LVqlVomsbPfvazlO0DBgzgf//7H4qicO+993L//ffz2GOPUVVVRX5+PrvssgtnnHGGs//VV1+Npmncd999qKrKkUceyVlnnbXBDyKEEGJrUkzTNLf2IIQQQvxwYrEY06ZN49e//jWHHXZYr45tbW1l77335pFHHuky29kb1157LUuWLOHZZ5/d5HNtb9auXcvBBx/MG2+8kdJVdnvx+OOP84c//IEPPviAnJycrT0cIYQQ2wBZikQIIX5k/H4/s2fP5u9//3uvj33iiSeYMGHCZgksf+y+/vprDjrooO0usFy3bh1z587lgQce4JhjjpHAUgghhEPKYoUQ4kfo9NNPz7jMyIbk5ORw/fXXb8GR/XgceeSRHHnkkVt7GL1277338tJLL7H77rtnLNUVQgjx4yVlsUIIIYQQQgghNpmUxQohhBBCCCGE2GQSXAohhBBCCCGE2GQSXAohhBBCCCGE2GTS0KeHDMNE142tPYxOvF4VTdv2xiV2DHJ/iS1J7i+xpck9JrYkub/ElrQt3l8ej4qqKt3uI8FlD+m6QVNTx9YeRgpVVSguzqGlJYxhSF8msXnJ/SW2JLm/xJYm95jYkuT+ElvStnp/FRSEUFVPt/tIWawQQgghhBBCiE0mwaUQQgghhBBCiE0mwaUQQgghhBBCiE0mcy6FEEIIIcSPhmmaGIaOuQlT2VRVIRaLoWnaNjUnTuwYtsb9pSigqh4UpfuGPRsiwaUQQgghhNjhmaZJW1sz7e0twKa/Ya+rUzGMbaubp9hxbJ37SyE7O4+cnPyNDjIluBRCCCGEEDs8O7DMyyvC7w8Am5ih8SpommQtxZbxw99fJrFYlJaWBgBycws26iwSXAohhBBCiB2aaZpOYBkK5WyWc3q9KiCZS7FlbI37y+v1AdDS0rDR2Utp6COEEEIIIXZohqEDZiJjKYToivU7YiZ+Z3pPgkshhBBCCLFDSzbv2bRSWCF2fNbvyMY2vJLgUgghhBBCCCHEJpPgUgghhBBCCCHEJpPgUgghhBBCiB+Br776gqlTJ9PR0dHtfscffwTPPPPkDzSqbdfDDz/A7NlnbO1hbFckuBRCCCGEEGIbdPPNv2Hq1MncddftnR678cYbmDp1Mvfee/dGn/+VV15k1qwDO21/8MG/M2vWUc73U6dO5sMPP9jo62wPMj3HU045gz/+8Z4tfu1LLjlvk36O2xIJLoUQQgghhNhG9e1byptvvk4sFnO2tbe38cEH79K3b+kWuWZhYSHBYHCLnHtTxePxH+xaoVCI/PyCH+x6OwJZ51IIIYQQQoht1K67jmblyhXMnfs+06cfBMBbb73ByJG7oKqpeaKpUydz2213sc8++wLQ0dHBwQfvx5w59zNx4uSUfb/66gt+//sbneMAzjrrXGbPPp/jjz+CU045neOOO4njjz8CgGuuuRKAsrJ+PP30i6xdu4Z7772LhQsXEIlEGDp0GBdddDnjx09IGc8vfnEd7733P7799hv69u3L5Zf/nL32murss2LFMu6990/Mm/c12dnZ7LXXVC655Epycqz1SC+55DyGDx8JmLzxxmuMHj2GO+74U8bX6r//fY4nnvgHNTXV9O8/gFNOOYNZs44ErKB0zpw/8t57/6OtrZXi4j6cdNIpHH/8yV0+x4cffoCPPprLww//A7AyyeFwB8OGjeCZZ55E1w3OOOMsjj/+JP70pz/w5puvk5+fzxVXXOX8DDRN4/bbb+arr76goaGBfv36cdJJp3Hkkcc45/zmm6/45puv+Pe//wnAU0/9l0GDBm7wtdkWSXAphBBCCCF+lJ57vJpF37Vv1LGK0vvlGnYZm80xp5X1+lozZx7BK6/81wkuX3nlRY444mhee+3lXp/LNnbseC677Oc8+uhD/OMf1vzKrKxQp/0efPDvHHHEDH71q5uYPHkPVNUDWIHr3nvvy/nnX4zX6+OFF57l6qsv58knX6CgoMA5/qGH7ueiiy7jyiuv4r//fZ7rr7+aJ554ltLSMlpbW7nssgs5+ujjuOKKn9PREeaee/7IzTf/hltu+YNzjpdf/i/HH38S99//ty6fzxtvvMojjzzIlVdezfDhI/j++4XcdtvvyMvLY9999+epp/7Nhx++z29/exulpaVUVlbQ0tLc7XPM5LPPPqWkpC9//vNDfP75Z9x11+188cVn7LPPVB5++B8888yT/Pa3v+bZZ18mFAqh6zqlpWX87ne3kZeXz9dff8mdd95KWVk/9thjTy6//BesXbuG4cNHctZZ5wBQUFDY49dmWyPBpRBCCCGEENuwQw+dxcMPP0BdXS3t7e2sWLGM6dMP2qTg0ufzkZOTg6JAcXFJl/sVFhYCkJOTm7JfefkulJfv4nx/6aVX8t57/+PTTz/ikENmOtsPOugQZs60MoOXXHIFn332Mc8//wznn38xzzzzJKNG7co551zg7H/11ddz2mnH09jYQGFhEQA77TSE88+/uNvn8/DDD3DppT9jv/32B6B//wEsWbKIF154ln333Z/166sZNGgw48aNR1EUysr6bfA5ZlJQUMBll/0MVVUZPHgIjz/+GIGAn+OOOwmAM888l6effpKlS5cwfvwEAoEAs2ef7xzfv/8AvvnmK/73vzfZY489ycnJwev1EgwGU6791FM9e222NRJcCiGEEEKIH6WNySLavF4VTTM242i6VlxcwuTJU3j11ZdpbW1h2rTphELZP8i1u9LR0cHDDz/Axx/PpaGhHl3XiUaj1NRUp+y3665jUr4fPXosq1atBGDZsqV8/vmnzJixb6fzV1SscwKoXXYZ1e1YwuEwFRXruPnm/+OWW250tmua5gSRhx46iyuuuJhTTz2OPffch6lT92PSpN17/byHDh2WUo5cUFDIkCFDXd8X4PF4aGpqcLY988x/ePnl/1JTU0UsFiMej7PbbpO6vc6yZUt69NpsayS4FEIIIYQQYhs3a9YR3H//vXR0dPB///e7jPsoioLpqtXVNG2Ljee+++7myy8/56KLLmfAgIEEAgF+8YvLOzXcUZTM4wQrKNx33/0zZiX79OnjfB0MZnU7lnDYWlrll7/8P8rLUwNRr9cKd3bZZVeeeuq/fPLJh3z++adce+3POeigg7nmmhs2/GQznM/9XNK3ARiG9cHDW2+9zp///CcuvfRn7LrraEKhbB555K/U1NR0e52Ojo4evTbbGgkuhRBCCCGE2Mbts89+3HHHLWRlhbrMehUUFNLQUO98v2zZkm7P6fX60PUNZ1+9Xi+Goads++67b5k160inDLWlpYXa2s4B04IF85kx41Dn+4UL57P33lY2buTIcj744D369euPx9P1PMcNKSoqpqSkD5WVFRx44MFd7pebm8uMGYcyY8ahTJmyFzfd9CuuuuqXqKqa8TluDt999y3jx+/G0Ucf52xbu3Ytfr/f+d7n83W6dnl5Oe+9t+mvzQ9NliIRQgghhBBiG+f1ennyyed47LF/OZm/dLvtNolnnvkPy5Yt5bvvvuXBB//c7Tn79etHe3sbX331BU1NTUQikYz7lZX154svPqO+vo6WlhYABg4czLvv/o+lS5ewZMkifvOb6zM2wnn77Td49dWXWLNmNX/+859Ys2Y1Rx1lBVrHHnsCjY313HTTDSxatJCKinV8/PFcbrvt5t68NACceeZs/v73v/HMM0+yZs1qli1bygsvPMtzzz0NwJNPPs7bb7/BmjWrWL16Fe+//y6DBg12SlwzPcfNYeDAwSxcOJ/PP/+ENWtWc999f3LKgm1lZf1ZsGA+1dVVNDU1YRgGxx130mZ7bX5IElwKITarlmgzH1d+SFgLb+2hCCGEEDuU7OycbudaXnLJFRQUFHLBBWdxxx2/5+yzz+v2fGPHjueoo47lV7+6hsMPP4jHH3+sy/N++unHHHvsLM4++zTAauATCoW44IKz+OUvr+KAAw5k8OCdOh07e/Z5vPbaK5x55im89947/Pa3t1FWZs117dOnL3/+88PEYjGuuOIifvKTk7jvvjkp3WZ76uijj+fnP7+W//73eX7605O5/PIL+N//3qR//wGAVVr7j388yuzZZ3D++WfS2trK7353e7fPcXM46qhj2Xff/fnVr67lggvOJh6PO8uj2E455XQATjvteA4//CBqaqrp23fzvTY/JMU0e9tE+ccpHtdpaurY2sNIoaoKxcU51Ne3YRjyYxSb18beX9+s/4p5td+yz4Cp9MsewMrmFZQX7YJX3bar8OMxg08/aGLl0jBtLRqqqqCoMGR4iIOP7L5znOg9+fsltjS5x4SbpmnU1VVQUjIg4/y4jfFDNvTZXqWvuyl6bmvdX939rhQUhPD5ui/R3bbf7Qkhtjsx3ZrIrxsGSxoXMa/2W7J92QzJ33krj6x7rzxby9efdC6DqVwTZcjwLEbuunW78gkhhBBCbOskuBRCbFa6aXWmMzCIG1agaf//tmrx/DY+/mwt6/t+ygXHHMzYnYZimrBiSQdPP1bN68/XMqw8hMeTeY6LEEIIIYSQOZdCiM3MDiQN08BIVN3r5ubvvra5GIbJK8/U0uKrZNTuHhYZcwlkKYSyPYyekMPQ8hD16+N892Xr1h6qEEIIsV2ZO/cLKYn9kdnhg8uHHnqIww8/nMMPP5y33357aw9HiB2e5gouTdNA100+/7iexfPbtvLIMlv2fQfNjRqDd8qhtH8AgG/Xf01F6zpMTCbvnQfAutWZO+gJIYQQQgjLDl0Wu3jxYl5//XWeffZZYrEYZ511Fvvttx8+n29rD02IHZZmWGWxpmlQVx/hw7cbCVQ3sJYafn5TiEBg2/pM68uPmwHYZXwQe8bld3XzAJhUujul/UYCsL4qujWGJ4QQQgix3di23uVtZsuXL2fChAn4/X5ycnIYMGAAX3311dYelhA7tLgep7E+xluv1PLCE9U0N2koXoNY1GD+V9tWaWlLk8aSBe1k53gYsLO1mHFRsJj+Of0BWNu6hqISH16fQk1lDGmuLYQQQgjRtW06uPz888+54IILmDp1KuXl5bzzzjud9nn88ceZPn06Y8eO5cQTT2TevHnOYyNGjODTTz+lra2N+vp6vvrqK6qrq3/IpyDEj0rFmghvvlrD3LebWLKwDX9QYfSEHA4+pghIZgm3FV9/2oxpwoQpeZiKNS90XJ/xHDj4YILeILXh9WhmnD5lfqIRg5ZmbSuPWAghhBBi27VNl8V2dHRQXl7Osccey6WXXtrp8VdeeYVbbrmFG2+8kfHjx/PYY49xzjnn8Nprr1FUVMSIESM46aSTOP300ykqKmLChAmbtLaRqm5bnSLt8Wxr4xI7ht7eX1rc4J/3V7DeEyY338M+++bTb2gulZEIfQu99CnzU7kmykfvNLLntEK83i133xqmgWZo+D3+rvcxTL7+1CqEnbx3PotjGooCfq8Pj0dlYO4gljctpSZcRWm/IFVro9RWxyks6vqcoufk75fY0uQeE25yHwjRO6qqbNTvzTYdXE6bNo1p06Z1+fgjjzzCSSedxHHHHQfAjTfeyLvvvstzzz3H7NmzATjttNM47bTTALjooosYPHjwRo3F61UpLs7ZqGO3tMJCWX9PbDk9vb9WL28n3GHQp9zLfjNLGFdaQku0hZbmILl5AY44vj+P3LeKN16oo7Za45zLhm6xMT+/6HnWt6/nrAln4fNknmO94Ntmmho0ykfnMnKXItat9JMTD9KnOJ/inBzGKCOp0dbSpjaw8/ByvvmshbYmc5v9O7C9kr9fYkuTe0wAxGIx6upUvF4Fr3fzFe5tznMJkW7r3F8KqqpSWBjC7+/9B+rbdHDZnVgsxoIFC7jwwgudbaqqsvfee/PNN9842xoaGigqKmLhwoXU1tYyduzYjbqephm0tIQ3ddiblaoqFBZm09jYjmHIXDCxefX2/lowrxGAvGKTjvYojU1ttMbaaWuL0OBpZexIPxddsxOP3ruObz5rYu2aZkLZni0y9hU1awBYV7OevEB+xn3efb0GgPG751Bf30ZjUxttbRGam8L4om0EtXza26N8H13GhPxyAFYua6W+XoLLzUH+foktTe4x4aZpGoZhoGkmYGyWc3q9Kpq2ec71Q7v55t8QDnfwu9/dvtHneOaZJ3niiX/y9NMvbsaR7XheeeVF7rvvbl5+uXerVmyt+0vTTAzDoLGxA683lvJYXl4WPl/379222+CysbERXdcpKSlJ2V5cXMzq1aud7y+88EJaW1vJzc3l1ltv3aRrbqv/OBmGuc2OTWz/enp/rV0VwcQgv8iDaYJuGOiGjmlCXNcwDJM+ZX52GZfNlx+18P28NnabkodpmsSiJoHg5vl0LqbHsPvu6IbR5djXrgqjqDByTAjDMInrcUwTVNODYZj41QBZnhBtsTaKB1h/Kqsro/K7tpnJ3y+xpck9JmDbfQ+3ITff/BteffUlALxeL6WlZRx22OGcfvqZmzTV6/LLfyFN6raA448/glNOOZ3jjjvJ2XbggTPYa699tvi1N8cHBm4b+7dzuw0uu2KaJoqSrA9+8sknt+JohPjxqFgdwUCnoNgqQzVMAyPxD5duJBvh7DI2hy8/amHRd1Zw+f4bDbz3egNHnlzKuMm56JqJz7/xgWZzNNk0SDf1jPsYhklbi05uvtcpOdES+3rV5J/FgCdIe7wdX7ZGMKRStz6OYZgyd0cIIcQPZu+99+Waa64nHtf49tuvuO22m/F4PJxxxlm9PpemaXg8HnJyto8qnHg8vt0vIRgIBAkEglt7GD+Y7bZQvLCwEI/HQ11dXcr2hoaGTtlMIcSWFe7Qqa+Nk1cC/kRgaAWXVjmHbibLOnYeESIQVFm+uINY1GDeF60YBjz/RA133biS265fQeXayEaPpTnaBEB7m8Yj967h9edriUVTy0raWq2Mam5esrTDXp/T4woug94AADE9SnGJD10zaZWOsUIIIX5Afr+P4uISysrKOOSQmRxyyGHMnfs+ANFolHvuuYujjjqUGTP25cILz2b+/O+cY1955UVmzTqQ999/l1NPPY7p0/emqamJm2/+DTfccLWzXzQa4Y9/vI3DDz+I6dP35tJLz2f58mUp43jppec59thZHHTQVH796+toa2tLedwwDB5++AGOPvowDjhgL2bPPoOvv/4yZZ8PPniXk046munT9+FnP7uEF154lqlTJzuPP/zwA8yefQbPP/8Mxx9/BDNnTgfgo4/mcuGFZ3Poofsza9aBXHfdL6ipSa4A8dVXXzB16mQ+/fRjfvrTk5k+fR9+/vPLaGlp4e233+TEE4/i0EP35w9/uBVdz/zBs+3999/lzDNPZfr0vTnppKN5/PHHMIzk+4iHH36AY4+dxQEH7MUxx8zkgQfuA+CSS86jurqKu+66g6lTJzvPy/4ZZHqOxxwzkxkz9uOee/6Irus8+OBfmDXrQI4++jCef/7ZlHHde+/dnHzyMUyfvg8nnngUjz32sDOuhx9+gFdffYl33/2fc+2vvvoCgJqaam644RoOOWQas2YdyA03XE1dXW23r8Gm2G4zl36/n9GjR/PRRx8xfbp14xmGwccff8xPf/rTrTw6IX5c1q60gsGywV7sAgp3cKm5Mpder8KIXUPM/6qND//XSH1tnFCOh0iHTmuz9Qf/rRfr+MlFAzdqLM2xJgAWftNGsCpM67omli/u4PxfDMbjsTKOdoCYm5/8E2hnV71KauYSIKpHKerjp2JNlIa6OPmF2/enqEIIISwfVnzA2tY1G3Wsqiq9LhsclDuYfQbsu1HXswUCAeLxOAB3330Hq1ev4re/vZXi4hLefPM1rrzyYv71r6fp06cvYK2+8O9//5Prr7+R7OxssrM7N7n685/nMHfu+/z617+jpKSERx99mJ///FL+/e/nCAaDfPfdt9x++++58MLL2GeffZk7930ee+whcnPznHM8+eS/eOqpJ7j66hsYNmw4zz33NFdddTlPPPEsffr0paqqkl/96lpOPvl0Zs48nAUL5vOXv9zTaSxr1qzio48+4JZb7kRVrQ+sI5EIJ598BsOGDae9vZ3777+H3/zml/zlL39LOfbRRx/kqqt+icfj4frrr+ZXv7qGUCjErbfeSU1NDddffzXjxo3n4IMPy/jafvvtN/z+97/hiiuuYuzY8axZs5rbb78Zn8/PiSeewjvvvMV//vMvfvOb37PzzsOoq1vP2rXW/fP739/BmWeeyjHHHM/MmUd0+zNcs2Y1X3/9BX/8472sXr2S//u/X7JixXJ23XUM99//CO+++z/uuONWJk3ag379rLW3c3JyuOGGGykuLmHJkkXcdtvNFBQUctRRx3LKKWewevUqIpEI11xzPQB5eflomsbPf34p48ZN4C9/eRhQePjh+7nmmp/x4IOPOa/v5rRNB5ft7e2sWZP8hV+3bh3ff/89JSUl9OnTh7POOourr76a0aNHM27cOB577DEikQjHHHPMVhy1ED8urz9fy6fvNwFWcFmV2G6YBmaiaYKRVp46aa985n/VxttvVqHiZdJehUzcMx+PV+HRe9exYkmY5Ys7GFYe6vV4mqPN1NfGqK6MMaZAoY/fz/qqGDWVUfoPsoLF1pbOwaVm2pnLZDYz6LX2j+gRikpyAWioi7PziF4PSwghhNhkCxbM5/XXX+Xww4+iurqaV155keeee4WiomIAzjzzHD76aC5vvPEqp51mJVvi8Ti/+MV1DB06LOM5Ozo6eOGFZ/nVr37LHnvsCcAvf/l/HHfcLN5441WOPPIYnn76SfbeeyqnnHI6AKeeegbffPMlK1Ysd87z73//kzPOOIvp0w8C4PLLf84XX3zGs88+xfnnX8zzzz/DkCFDueCCSwAYPHgIS5Ys5qmnnkgZj67r3HDDjeTlJRvy2ee0XX319ZxwwpGsX19D376lzvbzzruYMWPGAXDoobP45z8f5cUX3yA/v4ChQ4czefLufPXVF10Gl3/721/5yU/O5tBDZwEwYMBAfvrTs3n66Sc58cRTqKmppqiomN13n4LX66WsrMy5Xl5ePqqqEgqFKC7ecBXltdf+mqysLHbeeSi77jqGxsZGzj3XalR62mk/4Z//fJR5875xgsszzzzHObZfv/4sW7aU//3vLY466lhCoRCBQADD0FOu/frrr6AoCldffb2z7frrb+Swww5g0aKF7LrrmA2Os7e26eBy/vz5/OQnP3G+/93vfgfAJZdcwqWXXsrMmTNpaGhgzpw51NbWMmrUKB566CGKioq21pCF+FHRNIOP32vC61XYc/8CRk+MU7XWeszElbk0U0tJhwzPou8gD+83v0621pdho47li9a3GZA7iANnDeapR6t54YkazrxkAEUlG26Dreumk5Vs6Gjku69aAdj7wHyUhmzWV8WornAFl3bmMs8VXBoaqqKiKslP8YJ25lKLUlRi/V1pqI33+nUSQgixbdqULOIP1c3zgw/eY8aMfdF1HV3XOeigQzj77PP4+usv0XWdk046OmX/WCzG8OHJT0EDgUCXgSVARcU6NE1j3LjxzrZgMMiIEeWsXr0SsLKJBxyQGuCNHj3WCS7b29uor69j7NjkORRFYezYcaxevSpxjtWMGjU65Rzp34MVOLkDS4C1a9fw0EN/YeHCBTQ1NUGiTqqmpjoluBw2LPm8i4qKKCoqJj+/wNlWWFhEY2NDl6/F8uVL+O67b3nkkQedbbpuYCbez+y//0E8+eS/OPHEo9hzz73Ze++p7L33vr3OAPbvP4CsrKyUsfr9Aed7VVUpKChIGevbb7/BU0/9m4qKdUQiYTRNo7S0X7fXWbZsKWvWrGbGjNT7XNd1KirW/fiCyylTprB48eJu9zn99NM5/fTTf6ARCSHcmhs1MGHA4CAHH1nCuta1zmMpcy6N1Myloijstm+Ad17WMLPaKegXp2pFFXFD47DxuzJ+91y+/byVR+6p4MKrB3e7ZElTY5w/37qa8jE5HHFyCZ99XkVrs05JXx9DR/mJrLb+WFetizrH2OW3ufnJ8xqmkdLMB5JlsRE9TFGJVQrbUC/BpRBCiB/O5MlTuPLKq/B6fZSUlDhdYsPhDrxeL3/72+MpzSyBlNLXYLBnzWTSz2H15FOcr9Mf77xvpnOYJDe5v05uSxcMZnXads01V9K//wCuu+7XFBeX0NHRzrnn/tQpD7a5O+gqitKpo66iKN12ye3oCHPuuRey777TMj5eVlbGE088y2effcLnn3/Krbf+lpEjd+HOO+/p9vVJl2lcnbcluxzPnz+Pm276FeeccyG77z6F7OxsXnrpBd5++41urxMOd7DrrqO5/vobOz22pZJx23RwKYTYtjU1WH/UC4utPyXuuZWpDX06T54fuquPnRYFKSsJoqEljo+jKApHnVJKPGay8Ns2vvmshb0PKOxyDGtXRohFTb77spX5i6tY6Qnj9yvWMieY9BuYCC7XuoLLTGWxhkbAE0g5dyDR0CeiRSnqkwgua1PXfBJCCCG2pKysIAMHDuq0fcSIkWiaRnNzk1OauTEGDBiI1+vl22+/4cADZwBWg59lyxZz0EEHA7DTTkNYsOC7lOMWLJjvfJ2Tk0NxcQnz5n3jZC9N02T+/O/Yb7/9AasM9rPPPk45x6JFCzc4vubmJtasWc0vf/l/zvP85JOPNu7JbsDIkeWsXbs64+ttCwaD7Lff/uy33/4ceugszj//TGpqaigrK8Pr9aHrmz+b/d138+jffwBnnHGms626ujJln0zXHjGinHfffZuioiJCoc5zbbeE7bZbrBBi62ust4K0giIr8EoNLs0uM5cAcTPKuEl5DNjZS1y3Aja7fFZVFfY7xPpE7ZvPWrr9lNEO9lQPtERaycv3MHmffIJZHnRTp7DYRyCopqxRmd7Qxw6E0zOXTlmsHiGU7SEQVGmoi8vaYEIIIba6wYOHcOCBM7jppl/x/vvvUllZwYIF83nkkQc7dWntTigU4qijjuW+++7ms88+YcWK5dx88414vT5mzDgUgOOOO5GPPprLk08+zpo1q/n3v//Jt99+lXKek08+nX/84xHeeect1qxZxZ/+dCfV1ZUce+wJABx11LGsXLmCBx64jzVrVvP6669sMPMGkJubR35+Pi+88CwVFev4/PNPuP/+e3vxSvXcT386m1deeZFHH32IlStXsHLlCt5441Uee+xhAF599SVefvm/rFixnIqKdbz99uvk5OQ6WcB+/frxzTdfUVu7PlG+u3kMGjSIqqpK3n77TSoq1vGvf/2DTz9NDdT79evnlME2NTWhaRoHH3wY2dk5XHfdVXz77TdUVlbw5Zef84c/3EJra+tmG5+bZC6FEBvNzlzawWXcSJanGKbhZCx1U++0Bm1MjzrHRO2v9eTxZf0DlA0MUL0uSuXaKAMGZy7rqU/MgTzxzH5Ecg3mtRejKqpzfUVR6DcwwKplYerWx+hbFug059IOijuXxVqZy6geQVEUikp8VK2L0taqp8zXFEIIIbaGG264iUceeZA5c+6krq6WwsIixowZx0EHHdKr81x00WWYpslNN91AR0cHu+46hjvvvMcpqR03bgK/+MV1/O1vf+Wvf/0ze+21D6ee+hNefPF55xwnnXQqHR3t3H33H2hpaWbo0OHcccefKCnpA1jzDG+66Vbuu+9unnzycSZMmMhpp525wUBRVVV+85vf86c//YEzzjiRIUN25uKLL+PKKy/p3YvVA3vttQ+33HInjz76EH//+yP4/T6GDBnqBMjZ2Tn84x+P8Kc/3YlpmowYMZI77rgbv9/qDzF79gXcccfvOemko4nFYsyd+8VmGdfUqdM48cRT+OMfbyUe19h33/047bSf8sILyeVKjjjiGL7++ktmzz6DcLiDOXPuZ+LEydx334P85S9z+OUvf044HKZv31J2331PZ8ybm2LKR/A9Eo/rNDV1bO1hpFBVheLiHOrr23rdCluIDenJ/fX036uY/1UbZ146kCHDsviubh5f11iflhYFi2mNtTgB56mjzsCreqkL1xH0BlnbsobPqz8FYHLZHnxR/Rle1cupo85wzv/p+028+mwtpf397LFvARP3zOs0p+Ghu9aybnWEK349hPWs4JOqj8j2ZdMeb2e30kmMLRnHa8/V8sl7TRx7einjJudx+w0riEYMbrhjGIqi0BHv4OklT1KS1YeZQw93zh3RIvxn8RMUBYs5fNiRPPVoFQu+aeOsyway09DOc0JEz8nfL7GlyT0m3DRNo66ugpKSAZ3mtm2sH6qhz47s/vvv5aOPPuDvf39yaw9lm7O17q/uflcKCkL4fF33wQApixVCbIImpyw2kQF0ZR7d3WLByg5qhsbrK19h7rr3ieoR57H2eJuzj2madMQ70AyNcZNz6VPmp6YyxotPrmftquQxtvq6GB6vQl6Bl5hhlcgGvVbgZ69d2W+QlYFcuyqCphl0tOnk5nucQFU37cxl6h9Mv8f6VM8ea3LepTT1EUIIIXrrmWeeZNGihVRUrOOll57nmWee5NBDD9/wgWK7IXVdQoiN1tQYR1UhLzF3MZ7e0IdkcKmbOoZulaq2xJopDCa7lLXH211ft/Hs0qcpDBZyxLCjufDqwbz7WgPvv9HAisUdDN45mTEMd+iE2w36lPlRVcWZu5mVWJ/SLssdVh5CUeGd+V/AKD+wU6dlSKBzWayqqPg9fqds1y7/tcuBhRBCCNFza9eu4e9/f4TW1hbKyvpx1lnncfLJp23tYYnNSIJLIcRGiccM2lqshjmqmpoBtL7WUxrfGK6OsREtQkQLO9+7g8umaBMAjZFG4nocn8fHrhNyrOBySQf7H2otFB0J69Svt4I8e5mQWKIEN+ixM5dWcJuT62VYeYgXKr/jo/khFKWM3Pwc11it/TxK5z+JWd4smqPNaIbmZGibGyW4FEIIIXrriiuu4oorrtrawxBbkJTFCiE2SlNjoiS2OBmQuRv6uDvH2t+7tzUngkhIlsWCFXjaKtsrAOhb5ieYA+tWRYhGDRrq4tzxq5U89VgVAMV97IZCdlmsnblMXm/sRCuYXL64AzDJL0iOW+8icwnutS4j5Bf6Up67EEIIIYRIkuBSCNElzdBSOri6pXeKtfZP7pu+/Ihm6E6GEKAl1uJ87Q4oO7RkFnNd61oA5tV9Te2Q14maYdYsD7NkQTu6ZtKcCPKK+lhzI2NOWWzIGoMrW7rTKBWPB3Qd8gpVdp+an/I8ATxK50nqTsdYLUp+YSJz2SDBpRBCCCFEOimLFUJ06eUlL1PT2MAxw4/v9FhTvRVIFqYEl8mgSzNTAzDD1MF0f5+5A1qHq1x2XetaTNOkPlxHQalK06ImVizpoKEuNeC1M5d2cBvwWgGhO8CNqWHGTsqluVHjp4f3o6gg2YLbHqtH7Rxc2lnQqB7Bl6WSneuhuSmOYZhOObAQQgghhJDMpRCiG02RJtpirWRasaipIbVTLKQ29Ek/Rjf1lExiV8Lx5JI/UT1KQ6QBzdTpW+ZH84SZ92Urq5aF8foUxkzMIZTjoWyAFUzGElnWUIbMZUe8nUFDshizWy7+tCUznbLYDHMu7cxlJNExtqDQi6FDW8uGn4sQQgghxI+JZC6FEF2y51Dqpt4p8GrspizWq3ozzrnsibArcwkQ06PE9ThZIQ/9Rhi0z7eCuqEjszjujDIMAzweJTHexJzLxDxJdxMhd9MgPS1rqiUynN3OuUyU7uYX+ahYE6WpMU5egfwJFUIIIYSwSeZSCJGRbuhO6WqmwNCZc1ncuSzWp/o67a+ZWqdS2UzCmpW5tDOGcSPuBK1DxyXLUHceEUJRFCewBGvOpVf14vXYZbJdBZdp80GdsthM3WLt4NIKemXepRBCCCFEZhJcCiEycnd+zVTO2lSv4fEq5OR6Uo7xqt6McxcNw+jU5CdTAx07cxnyWaWtmhF3gr/s4hj9BllB57BdQhnH7FW9TpbVHrdpmimNgoy0cdj7ZSqLDXqtZU3szGWB0zFWliMRQggh3C688Gzee+9/zvdLly5h9uwzOOCAvTjzzFNpaWnmyCMPobZ2/VYcpdiSpKZLCJFRSnCZlrmMRg062nWK+/hSmtpohobf40fN8LmVbuqYpM7DzPHn0BxtTtlmZ0tD3hCNNBJ3LWHSFm/jpLP6UV0Zpf+g1ImTmqFhmAZ+1e8ErYap81HFXNa1rXUyofZYUsbmLEXSdUOfiJ7IXBZJ5lIIIcSWN3Xq5G4fP+usc5k9+/wfZCyLFn3PQw/9hUWLFhIOhykp6cOYMeO49tpf4fNZH7p+8MG7tLe3s99+BzjH/eUv99C3byk333wHWVlB8vLyOeyww3n44Qe49tpf/SBjFz8sCS6FEBlp3WQumzPMt4zqUQzTIMublbEBkGZonYNLX+fg0hbyZQNWkGsHulE9SnY+7FKU02l/exkSn8fvZE41Q2NZ01IgdbmTTmWxRtdlsUGPnbmMWs9ZMpdCCCF+AC+88Jrz9SuvvMhzzz3Ngw8+5mzLykpW8Jimia7reL2b/619Y2MDV155Mfvttz933fVnQqEQFRXreOedtxOVQNa/i08//R8OO+wIFCX5oXNFxVpOOOFkysrKnG2zZh3BmWeexsUXX0Fubu5mH6/YuqQsVgiRkbvzq5ZWRuo08ylO/iPWFmsDINuXjaJkylxqKQ12ALL9Xf+jkpUoR43qkZRgtT3elnF/Oxj2qz5URUVRlC6703aec2l9n6lM185c2nNBnTmXjZK5FEIIseUUF5c4/4VCIVRVdb5fvXoVBx+8H5988hFnnXUq+++/J0uXLubmm3/DDTdcnXKeG264mptv/o3zfTQa5Z577uKoow5lxox9ufDCs5k//7sux/Hdd/OIRiNcffX1jBgxkgEDBrLHHntyzTXXEwhY/0Y2Njby1Vefs88++zrHTZ06mYqKddx99x+YOnUyDz/8AACDBw+hb9++zJ373mZ8tcS2QjKXQohOdN1k4fxG4oVWiaph6tStj7FicQfNjdZcS0jNXNpBX8iXQ9iVJXTOaWQoi/UlM5CqoqasfRnyWpnLSNq52uJtFAQLne9N0+Tb2q/J8VmBqs9jrV/pUTyd5ngmj0ntFpssi+38J1FVVAKeAFHdylxmhTz4/AptLRJcCiHE9i730gvwv/ryD3a92GGzaL3n/s12vgceuJdLLrmS0tIy8vMLenTM3XffwerVq/jtb2+luLiEN998jSuvvJh//etp+vTp22n/oqIiYrEYc+e+z3777Z+SmbTNm/cNoVCIQYMGO9teeOE1zj33pxxzzPHMnHlESqa1vHwU3377NYcddnjvn7TYpklwKYToZP5XrTz/ZCWRoesZvVsOLz1TzdqvW7FjQ/vfldTg0mqYk+PLoTHS4Gz3qT6r46upYTrHK5imSZY36Dwe8oWc7CdAls/KXNoZQ1tbWuZydcsq5tV+63zvV63gUlXUlHmjbrqRvhRJoiw2Q0MfsLKXzdFm4nocn8dHMMtDW4uGaZoZ/5EVQgghfgjnnnsRkybt3uP9q6urEyW2r1BUVAzAmWeew0cfzeWNN17ltNN+2umYMWPGceqpP+HXv76W3Nxcdt11LLvvPoVDD53llLXW1FRRVFSc8m9icXEJqqoSCoUoLi5JOWdJSQnLly/bmKcstnESXAohOlm3OoKhaNTWxHj3tQYGtTdTlp3HpL3y+PT9ZmJRKzgrdAWXbfFWwCqLVV1lsV7VS9yIo5uGkzHM9+fTFG0i5M12Hg95s53g0qN4nPUl09e9bIu1djt2X2IZEq/qdeZhqoqKqqjk+HJoijZ1buhjdt3QB6yOsc3RZiJ6OBFcqrQ2QyxqEghKcCmEENurTckier0qmmZseMctaJddRvVq/xUrlqHrOieddHTK9lgsxvDhI7o87qKLLuOUU07niy8+Y8GC73j88cd4/PHHeOihv1NS0odoNIrfH+jy+HR+f4BotHOVk9j+SXAphOikpjKKoWiEsj3EYwZTDsjl6IOG4PNDRXgVy+fmoqCmzLlMZi5zUUkGXH6Pn7AWRnc19BnfdzdM06Qsu5/zuD3HEqwA0ZcoUe2IW5nLbF827fF2WmKZGwA5xybW2HTPnyzLLuPAwQezuHERn1V90mVDn0xlsQBBJ9CNkOvPI5hlBc+RsE4gKFPXhRBCbB3BYFbK93ZlkJumJadxhMMdeL1e/va3xztV3mRnZ3d7rcLCImbMOJQZMw7lnHMu5OSTj+H555/hnHMuID+/gNbWlh6Pu7W1hYKCwg3vKLY7ElwKIVKYpklNZQzVr3PECf1ob48xaUAugYDK0sYldOz0DY1f9KfMHEl2TjKAczf0ca9z6U0Ee7qpO3Mqs305lGRZJTK+RBlrljc5F8On+pwg0Z7r2CfUl1jrOqrbq9EMzQkE7axj8tjknEub3xNAUZSUJUrc7IZFXZfF2h1jrSxqMrg0yJd/G4UQQmwjCgoKWbt2tfO9YRisWLGc8eN3A2DEiJFomkZzcxNjxozb6Ovk5ORQXFxMOGz9uzhyZDl1dbW0t7eRnd25o3u6VatWMnFi90utiO2TfOQuhEjR1KARjRgUlCh4PCqqmuyu2hprIRTyMGWmh+N+UpbyqWd7vA1VUcnyZqG4/rT4E0GitQ6lHcS5Hk+UsYZ87uDS7wSltoAnyIDcgWiGRmVbhbM9vZOt32PPuXQFl07AaV03vdFPsiw2c3CZZa91mWgulBWyzh0Ob91yKCGEEMJtt90msWDBfN5663XWrFnNnDl30tzc5Dw+ePAQDjxwBjfd9Cvef/9dKisrWLBgPo888iBff/1lxnN++OEH/Pa3v+bjjz9k3bq1rFy5gr/85R5WrlzhdIcdMaKcvLx8vvtu3gbHGI1GWbz4e/bYY8/N8pzFtkUyl0KIFNUVifUc+yQDQLts1A6u8gZEKB+Wk/J4VI+S689FUZSUOZd291bDlbl0B3F2pjHkKov1e5KZy+R+XkpDO7GqeSVrWlczOG+nlLEl90vOuUyeLzXgtINl0zRZ3bLKKentuiw2kbnU0zOXmbvRCiGEEFvDXnvtw2mn/ZS77/4DpmlwwgmnsPvuU1L2ueGGm3jkkQeZM+dO6upqKSwsYsyYcRx00CEZzzlkyM74/X7+9Kc7Wb++hmAwyE47DeF3v7vdyT56PB5mzjycN998jT333LvbMX744Qf07Vu6SZlTse2S4FIIkaKm0gou812N3eyMo925tTnahGEaThBpL0NiLy2SElw6mctkcOkuP7XLYbP9uc5yJD7Vj0f1pMwd8apeBuQMxKN4WNe61rl+elms35OapQTX8iSqHVxa41jbuob3170LQFGwOGXcbvZal22xNpY2LsEXzAcg0iGZSyGEEFveccedxHHHneR8P3HiZObO/SLjvueffzHnn39xl+fy+Xycd95FnHfeRT269oABA7nmmhs2uN+JJ57GT396ErW1650lTZ5++sVO+z311BP89Kfn9OjaYvsjZbFCiBTVieAytzhZ8mpnB+31Kw3ToDWWnLhvz7fM8VstyVODSyuw003dyRi652SO6zOe/QdNpzRU6mQO7Y6v7uylV/Xh8/gozS4lpsdojDSmjC39eu5rBFSrg136nMumqHWOsSXjmDm067W27DmXy5qW8nHlh9SpKwFrzqUQQgghrOVFrr76Bmpqqrvcp6WlmalT92PGjMxZUrH9k8ylEMKxeEEbyxd1oCiQUwD2IiB6WuYSoDHSSH6gAEh2is32WZ3m1AxzKnVDS5bFujKXQW/QKXG1lw+xA0T3ciJ2oJmdyI5GdSvQjRvpmUu7W6yr9NaT2kE2OYfUWtakNLusy6wlJOdc2hS/NSYpixVCCCGSpk07oNvH8/LyM66lKXYckrkUQgBQtS7Cvx+qIh4zmXFkCYovGThppo5pmk7nVkhm/SB1jUsAJS1zqSgKUT2Klihh9XSxnqQddNpNgNyZS/uYgMfKQtqdW/VEcNk/pz9l2WXk+vM6XcM+xplzmWjo05Yo581NZFy7Ys+5tIWyrOBXMpdCCCGEEEmSuRRCALBuVQTThH2mF7L3AYW8vEJz/kIYhk5Uj2KYhjMP0i5LhdQ1LgFU1+dWHtWDX/UT02N4VW+XTXMguWyJ1+NL+R6SgaZdomqX6NoB67g+u9E31Dd5XVe3WDsTamcn7Qxqa6wFRVGcbGhX7MynM07rdJK5FEKI7USyubnZ3W5CiMTvSNoyqD0mmUshBABtrVagVNzXCqTiRtx5TDd1J1NYktUHSM9cJte4BFBdf5FUVILeILqpEzNiKUFfOjvwtJcO8aV0lbWDS6tE1S6Ltedc+tKC1pSlSJyy2MRSJKaGbuh0xDvI9mV3WxJrO3TnWYws2sW6lpUIlcylEEJsJ1TVAyjEYtEN7ivEj5n1O6Ikfmd6TzKXQggA2tus4DI71/pjohlx7D8rmqERSQRzef48WqLNhLVw8th4G4qiEMow51JVVAKeINCMaZpdlsRCMkD0Zchc2nMog57UNSe1RBCcnhFNXUsz0dBHtRv6GE4pb84Gspa2vqG+tMfbWNKwCJ+TuZTgUgghtgeKopCdnUdLSwMAfn8A2MjUTPKsaJpkQsWW8kPfXyaxWJSWlgays/NS1jLvDQkuhRBAMrjMybX+LMSNOJ7Enwjd1OhINPPJ8mbh8/iIxqKYpomJ2SkDmBpcKs6cR0ht5pPODiaTmUt3WWwiuExkLu01J7XE/ElP2nlT1rlU09e5NJxmPvYczZ6wn5fHb/2xD3dIWawQQmwvcnKsZaSsAHPT37SrqophyIeMYsvYOveX9SGM/buyMSS4FEIA0N5qlZdm53gwTTNRbmoHl4aTKQx6s1xrV2pOkOeet5gaXHqcgBC6buZjnSM75f9TliJJZDPt5joRLZoYmzXuzplLj7PdvqbH1dDHLuXN2UAzn4znlMylEEJsdxRFITe3gJycfAxDx9yE+FJVFQoLQzQ2dmAYkr0Um9fWuL8UxSof39iMpU2CSyEEAO2JOZehHI8zjzHoDdJGBN3QnWVIgt6gkyWMG/FOy5BAardYqyw2mblMzzC67dZ3EsMKhlMYLAJSA0Y749k5c5k5uLSzlCkdZ13rXNrrdOb6eh5cOkGzYuAPqBJcCiHEdkhRFDyeTXsLrKoKfr8frzcmwaXY7Lbn+0sa+gghAKss1h9Q8PtVp5mPHcjppuZkLkPekNMgRzPitNsZQHfmktTg0u8ui+0mc+lRPU5gCellsT7X+fyuOZcaqqJ2asrjNAfy+FPObz0fnbZY7zOX7m6zWSGVaNTY7v7oCyGEEEJsKRJcCiHQNJNI2CA7Md9SSw8u3ZlLjztzqWUM0tIb+thNeIBuu8Wm87oCSnc5bZY3C83Q0AwN3dQzLm9iX8cd2KpOt1i91w19rOOTDYGCWSqYEI1I9lIIIYQQAiS4FEIAHXan2BwreIq7ymLBWksy7J5zmZK57FwW26lbrNdVFtvNOpfp7GxlevAYsDvG6hE0Q8sYsKqqNQa/mrpGpUfxoBs6ES1iBb6u+aAb4g5Og1nWNaU0VgghhBDCInMuhfiRM0yDNlczH0hmLn2qD6/qtYIxM+zMn7QzinEj7mQA3cGlO9hTnKVILJmyjF3xJubEpB9jB4Qd8Q4M08h4TnuOpjtzCVZprGEaaIaWUnbbE/b6nU7mEoiEdaB35xFCCCGE2BFJcCnEj1hduI5XVrxIacc4IM9Z49Kec+nz+PAoHjRDJ2bEyPJmoSiKsyxIakMfd7fYZKcxFdWZowm9K4u1g7/0IDDotTrG2oFtpuDS3scd9FpjU501O7M92Z2O6467IVAyuJTMpRBCCCEESFmsED9qixu+B+CL9Z8CqWtcghXUqarVPdY0TWcZEPdSJB3xjkQ2Mxngde4W655z2fuy2PRjgolsZHtivqc3Qwayb6gvBw85lLEl41O2u4Pb9Kzmhrgb+khZrBBCCCFEKslcCvEjsnpFmJVLOhg8NIudhmU58x9jUROFZFlsVLfWkPR7/E55KUDIZwWXdjAX0cLopk6ON7UpTuqcS4WAJ4CiKJim2W232HR2UOnzdJW5TASXXWRDy7L7ZTinO7jsXTmr4gSXJlkh6+u2Fq1X5xBCCCGE2FFJcCnEj8grT6+npjIGQL9BAfRB7Xy8og4FGEoyuGyLWeWmuYHclC6t6ZlLuyQ2PQOY3tBHURT8qp+oHu1VWWzIF7L+3xtK2W53n7WXQelNkyD38+lt5tIeu27q9B9sjWHVsjC7Ty3o1XmEEEIIIXZEElwK8SNhGCZ16+P4Ayp9Sn1UrIlSuz5MJJgs67TnXNoZwVx/bkpW0G6kY5fA2sFdwLWWJHRe59I+NqpHexUIZvuyOWznw8lNW4vSHkdrrOs5l11RN1NZ7JBhWXi8CsuXdKDrJh6PsoGjhRBCCCF2bDLnUogfieZGDV0zKe3vZ/YVg5h1fB8m7VFEn7JkYOgEl4m5jLmBXNSU9SWtDGLvMpep6032JnMJ0CfUp9NyIXYmM1kW24vMpev6AdXfzZ5dH2uYOv6Ayk7Dsoh0GFSuifTqPEIIIYQQOyIJLoX4kahbb5XDFvfxo6oKu08tYOoBJYwam+yYmp1jBWlt8VY8qoeQL5QSuHXOXCaCS7X7sliAQCK47E2WsSt2Z1rTNBPn7PncSY9rbJuSuQQYvosV5C5b1NGr8wghhBBC7IgkuBTiR6J+vdUBtrhvMhAzMckv9DF0ZBajxucQylaJ6TFieowcn1WK6s70ZXntOZdWxs/uKpteFpveLRaS8yQ9vWjo0xWP6nHGAvSuSVDKnMveZS7Tg8sRo6zAfNn37b06jxBCCCHEjkjmXArxI1Ffa2UuS/omAyoTK/M3ekIuJ+xaiqIozjzKHL+VHXRnGu2ALj2Y67YsNvEZVl4g3zqvL3X+5MbK9uUQ1sKdxrghCu7MZe+CS7Cem27qAJSU+gjleKiqiKJpJl6vzLsUQgghxI+XZC6F+JFwymLdmctEWSlATLcet5vk5CRKT9WUhj6pS5HYOjX0URTX19afmdHFYzh2xPH0DfXdtCeSYAe/0Lu1M92Zy0Avy2Kta3mczKWiKPQbEMDQobY61utzCSGEEELsSCS4FOJHon59HEWBopLUslhb3LCCozYnc2llGO0spaqoTjDmSwsu0zOX7lJaO7hUFMU55+ZgB7/WGDeuoY+vlw19wHoednAJUDbAeu7VFdFen0sIIYQQYkciwaUQPwKxqEFLk4a/uI217auc7amZyzgd8Q6nU6wdvNnBmLtj64aCS3dAqShbplQ0OyW47MWcS3e32I0oi3VnLkGCSyGEEEIIm8y5FGI7EdfjvLzivwwrGM7YPuN7fJymGXzzeQsAzSXf8cE6nX7Z/Ql6gymZy7Wtq5lX+63zvV12apeR2suQgBU0elUvmqEBXTf0Ubfg51fuzGVvymI3ZZ1L63g1NbgcKMGlEEIIIQRIcCnEdqMx2khLrIWq9soeBZfRqM5DT35E3ff5mGFrrmR+HyuYbI+3dwouq9qrUo5Pdou1/kxkpa016VE8aNjBZepjdlDpbuyzubnnXPaqLFZNjik9A9sT7o6xqqJS3MeH16dQXRHFNM0tlqkVQgghhNjWSVmsENuJjsSakvFEtnBDPv5yJe8u/4gq7/eMGpfN6ef3Z+hoK8MY1hLrMrrKYpujTYAVNA7O28kpg82UuYTUTqvpXVfdZbFbirsstjdBol0W6/f4N2p89vG6YXWMVVWF0v4BohGDpoae/WyEEEIIIXZEkrkUYjthL7uhGXE0zWTx/DaaGjRC2R4m7JGLrpusXRmhpVljWHmIJcuaANjjwAAn7d8fgM++11LO5c5c2t1iD9l5JiVZJc52byJzGUzLTtrZQp/q65ShtL/fkplLr+ol6A0S0SJ4NqKhz8Z0ioVkya+Be96ln4rVEarWRSks7n02VAghhBBiRyDBpRDbCXv9yXXr2pnzz1W0NCWzZKX9/XzyXhPzvrCWEdl5RBYr17eiKJBXamXYDNNw5kjamUv33EGbey4jQGl2KUXBYgbkDkrZbi9HkmmtSDuodDfP2RKyfTlEtAjeXlzHnnO5MZ1iIS1zmbhscT+VFm8lNVUF7Do+p5ujhRBCCCF2XFIWK8R2IqyFiYR1PvmgjpYmjfIx2YzY1SpVrVoXZdWysBVMFnhZuTRMezhGUYkPTYkAEDfizrk67MylqywWrMApmDa3sjBYxOHDjuy0PqUvkS3M1BRHVVQURdniweXIwnIG5g4kL5Df42PsMt+N6RQLrjmXrsxla/Yq1mZ/wuKqVRt1TiGEEEKIHYEEl0JsJ5rDrcz7spVoPM6U/Qo45Zz+7DYlD4DliztoadIoKfVzwGHFABhKnD5lfmJ6DN3QiSfKXgHCcStz6S6LBcj2Zfd4PHbmMlOQpioqu5dNYbfSSb17kr00onAk0wfP6FX5bXLO5caVxaqJeZqmK+ubU2R9XVPXtlHnFEIIIYTYEUhwKcR2YOnCdp7592pqKmNk5agcMLMQgNL+VoC0+Dur2U+/gQHGTc6loMiLgU5pP+vxsB5OyVxmmnMJvQsufU5ZbOYgbZeiUeyUN6TH5/uh2MHhxs65TG/oAxDMUvEHFBoboui62dWhQgghhBA7NAkuhdgOvPliHe3xDgYMDrDntHwUnxXYFBb78AcUJ6ApGxDA41E45dz+7Dczl7wCq3Q1HA8TSwkuE5nLtLLYHH9uj8eUzFxuXJC2tdhdb3sTSLu5G/rYTZAM0yA3z1r3s7Eu3t3hQgghhBA7LAkuhdjGVVdGqaxuJa9QZeKe+WTneJ0spL0Mhq3fQOvr0n4BBg9PlquGtY7UstjNkrm051xu3NzFraVfdn8OHnIoo4pHb9TxduZyedMy/r3ocarbqzBNyM23ssXrq2MbOIMQQgghxI5JgkshtnHzvmhFU8IM2CnZaEd3rXVZNiCQ8ev0Mlj394ZpENEipCUuN2tZ7LZKURTKsvs5S6n0lj2/sz5cD0BLtAUDg9w8D6aiU1sjwaUQQgghfpwkuBRiG9barPHdl63EPWEGDHYHjp2Dy8JiH1mhZHdWLa0MNq6nlmuGtY6UjqdgLe3RUyVZfQh4AvQNlfb4mB2BHVzG9ChgZX9N0yAnz8pcrlrawdKF7TL3UgghhBA/OrLOpRDbqCUL2vnPo1VocZP+u0AwK3PgOGhIEBQYPDR1CRF3ABrWwp3WdQxrYdJTl73JXPbL6c9Ju5za4/13FHZZbES3lngxTAPTNMnN92AqBiuXhlm5NEyfMj9Hn1rKgMHB7k4nhBBCCLHDkMylENuoT99vQoubTNmvgKkzrSY0dimnXeKqGRqh4hjn/WwQhx7TJ+X4zmWxVrmmHUCGtY6UOZd+j5+Qd+Oa3PyYKE7mMtnMx8AgEPAwfko2YyflstOwLGqrYzz1WBWmaVLZVsHSxiXUdNRszaELIYQQQmxRkrkUYhtkmiaVayN4vAoHH1XCp9WLAcjz59MQqXcCx9dWvkJDpJ5jR55Ali81Q6alBZexRFlsnj+P9ng7HVrY6Ra738D9KQn1waN6EN3z2N1iE+tcGhjO6zh6Uoj9B5VhmiYP3b2OitUR1q5t5/22t6wMJyaFq/dhQGEZE/fMQ0ksiyKEEEIIsSOQzKUQ26DGeo1wh+EsLRJNzO+zs472GosNEaupTFustdM54kYcVVFRFIWw1uEEm7mBfAAiWtjJXAa9QXJ6Md/yx8yec+kwTSfQtBstKYrCqLHWz2rhd000NsSIhHWa6uP87521vPjkep54qErmZQohhBBihyLBpRDboMo11ny+/oOsZj12SWsoEVzGjTitsRZnf4XOGTDN0PCpPoKeIBEt4gSoWR4rw6knMmldHS8ySw8uDdNIBpem7mzfZawVrH/xcSPvv9nAJ+83UVMZQ1MjeDwKSxa0s3Rh+w83cCGEEEKILUyCSyG2QRVrreDSbgZjN+cJebMAq+R1vWv+njuoAausVjM0fB4fWd4QhmnQFreym87SIabplHMi5Zk9Zjf0sZmJ/wFoRvLnUFLqp6Svj/YOK2Pc2qyzcmmYuBJh96lW9ri6IvoDjVoIIYQQYsuT4FKIbVDlGivocDKXup25tBr7aIZGbUets79maHyz/iueXvIkcT3uzMn0qT5y/FYGrTnaDEDAY3WNNUmWc6ryp6DHlAyZSxLBpW5qKY+N2z0PE4O+/fx4DD+aZhIq0th1vPUzqamU4FIIIYQQOw5p6CPENsYwTKrWRfD5FUpKrUAwZsRQFdXJOsYNjdrweucY3dRZ31FDR7yD1ngLgUTpq1f1kefPs86bCCTtcxjusljJXPZYeuYypSzWSM0gTz2wkMHjB/JOdT4fPq/RrMfoO9ikb3/r51pdaX1oYJqm/AyEEEIIsd2TdIUQ25jWZo1Y1KRvvwCqagUc9vxJn+oDoCPeTmOk0TnGMHWnJFMzdKd5j0/1kp9o4ANWEOlzZS7tsliZc9lz6XMu3RlgLS1zqaoKWTkKHo/CuLF9UBQoG6IQDHooKPbSWBfnm8p5PLn4X7THZf6lEEIIIbZvkrkUYhsTCVuBSig7ueSFZmhk+bPwJoLLunBtyjGaoTvzLnVDI54IgLyqj1x/Mrj0qT4nkEzNXG7BJ7SD6dzQJ7laaHrmEsBMBJ4Tdy+mcFh/vD4rAC3rH6CpXmPRujXEsmO0RJudbsA9FdbCtMfbKckq6f0TEUIIIYTYzCRzKcQ2JhKxgpFgllV+ac+f9Ko+fKr1eVBYCwPJQEc3dWcZDM3UXJlLX0rm0qf6nGOsrKVkLnvL003mMr2xEiQDTq/qJS+UTdyIE9fjlPa3ypMra60MdHrWsyc+rpzLqytfIqJFen2sEEIIIcTmJsGlENuYaCJzGQhav552Mx+/x+9kLm124KibuhOcxI04scQxXtVHwBMgkJhn6ff4UzOXUhbba+kNfUzX66gZnQNEg0TTJMVDVqLbb0QPO8FlTb21pEymrOeGtMfbMU2TqC7BpRBCCCG2vh06uPzuu+846qijnP923XVXvv/++609LCG6FYlYQUYwEVzGEmtc+lQvXjW1kj0vUfJqGLoTnOhGMtC0M515iSDUp/pREzWw7iU0pJlMz3XX0Mf+3s3+uaiKQpbX6vbboYXpNzCApkSpqGgnHjM6dZrtCXvtUm0jAlMhhBBCiM1th55zOXbsWF544QUAKioqOOOMMxg1atRWHpUQ3euUuTTsQNHvNPSx2ZlLzdSckkzN0JwAx27ek+/Pp7ZjPT7V68pSupYiUXboz5k2q0wNfUySAaVmaPgTrztYzZbACkqDXquLbzjeQWlxKeUTVRYvM/ny4xbavq4m1BTAH1A54cx+hLJTg9hM7Az1xpTUCiGEEEJsbj+ad5SvvfYahxxyyNYehhAbZM+5DGSllsX6PH5URU0JbuyMpG4YTkmmZmop61wC5AbynHPYWUp3hk3KYnuuc0OfZFksdC6NNRKPqYrqZC7tObNTDs4imKVQWxNj6aJWKtZEWbk0zIf/a2RD7EZPgDPfVgghhBBia9qmg8vPP/+cCy64gKlTp1JeXs4777zTaZ/HH3+c6dOnM3bsWE488UTmzZuX8VyvvfYahx122JYeshCbzM5cppfF+hOBol0aG/QGCSbWs4wn9gEr0HAvRQJQECiwzuEJpDT0sQMfaRfbc+llsdbr6C6LTS1RtTPKquohZM+5TASXujfM7vsUMHRkFoceW8SFVw/G61P47IMm2lq7DxjtrKX7GkIIIYQQW9M2XRbb0dFBeXk5xx57LJdeemmnx1955RVuueUWbrzxRsaPH89jjz3GOeecw2uvvUZRUZGzX0VFBQ0NDYwbN26TxmOvObitsMezrY1LbJpo1ApUskIeVFXBMDUUBfxeP6qq4Pf4iRsx8gK5eD1eFMUKLu340J675z5mcN5gdu+3B4PzdnIeMxWrW6yigEdVO91Hcn9l5vF4UmNxxQQlGZ8b6KmvmWK9xj7VS8gfQlEgYkRQVYUOrY3CYh+FxT4G9vHTrzTI7vvk8/G7TXzybhMHH9Wny3FoZqzra24H5P4SW5rcY2JLkvtLbEnb8/21TQeX06ZNY9q0aV0+/sgjj3DSSSdx3HHHAXDjjTfy7rvv8txzzzF79mxnv9dff32TS2K9XpXi4pxNOseWUljYu7XxxNa3pnkNH6/9mMNGHEZeomTVZhrWGpZ9S3MoLs4hFPeRkxOkb1EBxcU5FOXnokQ0+hf2pU9xHjm1QQLZKjmmlcXMzvVjYpITDdK3uIDiPOu+3a9kTwDaYm3k5ATJzQlimAZhNUhJcS4hXyjjWOX+SmVmRchZH3S+z8kNEPP6MWPWtvzCLIpDyb8VufEAOa1Bigpz6Jfbh5y6IL4sk+LiHDxNBjk51nG5eQGKi3M4/Hg/n7zXxPyv2zj5rCFdNlvS2zs6Hbs9kvtLbGlyj4ktSe4vsSVtj/fXNh1cdicWi7FgwQIuvPBCZ5uqquy999588803Kfu+9tpr/OpXv9qk62maQUtLeJPOsbmpqkJhYTaNje0YhrnhA8Q2Y37VYirqa1ictZKhBcNSHmtptsodo7Eo9fWwvqGJtrYI7a1x6j1tRDo02joiGFkeWpoitLVFqNOaaYtYy1HUe1sxTYO2tgitzTHq420p5++Id9DWFqHZsJaxaAtHaGhoJ+xN7XIq91dmTRHr9bM1Kx20RMJ0xK1t6+uaUbKTwWd9Y6v1s2iJkGdotLVFqNUbqa9vo7J+PW3hxM/N30J9lvWzGjgkyNqVERZ8W0+/QUHSxeMGL725guqCNnLyvNQ1tFCitHXab1sm95fY0uQeE1uS3F9iS9pW76+8vCx8vu4bDm63wWVjYyO6rlNSUpKyvbi4mNWrVzvfV1ZW0tDQwNixYzf5mtvSD9fNMMxtdmwis5gWxzQhrmudfnaRsDV/zh9QMAzT2deDF8MwUfFgmpDlyUYxVUwTIvEI9vTJuB7HMPXEMZ5O5zdN6z/dMDFN0/re6Pr+lvsrjang6t+DrlvLwKS8/q7Xy3nMVJyfnWboGIZJa7TNdVzyXhg5Opu1KyN8/10bpQOs9TA1zeCdVxsYNCTIyqVh3v24hsiQVvbav5BY2jW3J3J/iS1N7jGxJcn9Jbak7fH+2m6Dy66YpplSRta/f3/eeuutrTgiITpzlpDI0OUz0mkpkkRDn8TyFt5EY58cXw6q6kk5n3XOuLPuYfrSJUBKQx97nUtZiqTnOq1ziZnSLTa9uY7T0EfxOK+z3enVXqcSUu+F8jHZvP1SPYsXtLP/ocUAzP+qjQ/fTnaR1f1x6tbHiYR16RYrhBBCiG3CdvuOsrCwEI/HQ11dXcr2hoaGTtlMIbY1dsCYaX3CaCQ1uLQDR59qBZf9cwaQ68+lOKsEr2J9PuQOaDRDdwWkgU7nt5cdsdZmNFO2iQ1T0te5dAXpAGtb1vDi8udpjbUA1jIxYAWldmCqm7rTMdb+0MD9M+xT6qew2EfV2ih/vm01389rY94X1vk8XutnVdzP2rdiTVTWuRRCCCHENmG7DS79fj+jR4/mo48+crYZhsHHH3/MhAkTtt7AhOiBeCLTZBidl5CIhA38gWT31mSgaGUhdykaxTEjjifoDXbKogFORkxRlA1mLu0lNLpqGiM665S5NI2UpUhWNq+gMdJITXuN9TjWY6qioigKqqKiG7oTTAYSHwC4s4+KojD1oEKyslXWV8V45h/VrFgaJifPw6XX78Tsywey50FWA591q8JougSXQgghhNj6tumy2Pb2dtasWeN8v27dOr7//ntKSkro06cPZ511FldffTWjR49m3LhxPPbYY0QiEY455pitOGohNsxeh9LOOBmGaS07YphEowZ5+clfTTsQ9WYIFD1q5+BSNzViegyf6ssYNNpZSndAJJnLnksvITZMI2NZrF3yan+AYAelHsWDbuqu0mU7c5naUGnSXvlM2iufd16t573XGwAYOymXgkIfBYU+1laY5OZ7aGnWeePlGsaeqhPK7n6SvRBCCCHElrRNB5fz58/nJz/5ifP97373OwAuueQSLr30UmbOnElDQwNz5syhtraWUaNG8dBDD6WscSnEtiimxzBNk8bGKE++XMnyxR0ce0YZQ4ZngZksiQWIJ8pi/YkgxM3OhrmDm5geQzM0cv25Ga9tB5zuUk7JXPZcenBpYjrZSbeobnWBdeZcJj4IUBUV3XRnLq2fa6b5twD7zihi8fx2qiujjN89uWxNzIgxcUo+n3/UzOoV7fzl9tUcc1oZQ0dmXlJGCCGEEGJL26aDyylTprB48eJu9zn99NM5/fTTf6ARCdF7pmny3yfXk5Pr4cBZJRiGybxvGlm6uIXccIgB4VIAnnq0mqNO6QtAMMsVXBpxVEXNmKUEKxPmnnMXTszl82UIRoGUpjJ2UCmZy55LL4s10zKXNidzmchIqolZCB7VQ0yLYSSCS3terJ1xbou3UhQsds7j9Sr85KIBNNbHKeufnEMb06PkFXiZNqOIqm/9tH6t868HK/nZb3aWDKYQQgghtortds6lEFtKXbiONS2rN7xjDzU3aXz9SQsfvNVIY32cfz9cyaKFVnOWgj4qUw8qZMaRJeiayUv/qQXADHQQ163S2bgRzzh30pZp3iUkM2KZKIqC6epyKpnLnrNfK3dznkzs4NJ+3KOqznGmaRJPlEb7XZnLjys/5KXl/6WidV3KuULZHgYMTl3vMpa4P7w+hT2m5bLTOI0Gcx1V66IIIYQQQmwNElwKkeaTyo94f927XZYp9lbV2sSbfROe/FsV3y9oJjvHw34HFzHz+GIOOryEfaYXkpPnIRY10ImzwPs6cyved5as8HcTKHaV0czUKdamoDhdTiWw7L3irBL6hqws84aCSztD6Z5zCclyZ4/ideZhrm5ZBcDC+vkp51rauIS3Vr+O7moAFTNcy5iYOo3F81ib/Slr17Zs6tMTQgghhNgoElwKkSZmRJ2gbmPM/6qVP/x6BSuXdgBQuTbiPFZdEcVQ4ozfI5ecXC+6q5y1/yArMxVXO/D4TdribU52K1MzH1vXmcuug0tVUZ1GNFIS23uH7TyLg3Y6BCAl4HOLpZfFJsqR1cTPK+b8bD14VA+6oZPjtzrAVrVXpZTaLmr4nsq2ShoiDa7zu9c21cgqsO6lyqr2TX+CQgghhBAbQYJLIdLYwUJXGSlbXU2Mfz5QwZv/raNuvfVGv6YqyvNP1NDWovPKM7XouknlGivIKCiypjiPGBuguMQuhUxeY8BgKxjU1Cg+r0rciCWb+XSTufSqmadO+zxdB6QKVlmsYRoSXG4E97Iihtm5mQ9ARLMb+tjBZSJzqaZnLj1O5tL9QUFNRzVgBafN0SbrnLo1n9Y0TWJ6jKDX+kBCNzRC+dZ1qiuTH2YIIYQQQvyQJLgUIo0dVOobyFy++WIdy77v4MP/NfLQ3WvpaNd5+rFqtLhJMKRSWx3jm89aqFwbweNVOOHMfoydlMt+hyU7frqzo3bmUleieP0KcT3uZC59XQSQkAxa0nVbFuvqGCtlsRtPQdnwnMtOS5FYf3ZjifVLVdWDV/VimIbTjAlgVaJEtjHS6ASwdsBqH5vlzQKsebmKTyMQVKivjRKPZw54hRBCCCG2JAkuhUhjv5HvLnNZXRFl8fx28gq8lI/JJtJh8K8HK6mtjrHTsCzOuGAAAK8/X0u4w6Csv58Bg4Mcd0YZwVz3mojJ4LLfoETmUoni8ylohuaUTnbV+RVSy2Ldy2QE1O7nXKaXa4rec2cuM61/GdfjmKQ+npxzGXe+t7PP7lLXpkgjAI2uUtiw1pE41s5oB/CqXiKJZU/yC3zohkFtdfI8QgghhBA/FHlXKUQaO5uYvqi92wdvWm/49zmwkIMOLwFg3SrrDf6Bs4oZMDjI3gcUEItagWR/V6fP9LlytpxcL/mFXjQlitdnZcSiiUyVr9uy2GRw6S6f7a6UVlEUZ86l2HjurK+7PNneHjWinTKXyTmXybJYd/Y525cNQIdmzZ1sSAkurfsh6lr71O4+C5BX4MXEoKZSOsYKIYQQ4ocnwaUQLu75c12VxbY0aSz8to1QjoeJU/LoU+Zn5GgrIBhWHmLwUKtU8aAjSigfY23fKbENUgPK9KZB/QcF0NUoPp/1q9mRyFT5u2no4w5Mgp5kENtdcKkqqrUUCdLQZ1O4Xzv3cjF5fqv0OapFMdIzl4kPA+yGP+7MJUCWN0TAEyAct0pkG6PJ4DKSKJuNG8m5uO5j8wq8mIpBTaVkLoUQQgjxw+t6IpcQP0LuYM8ui21p1vj0/SYm751PYbGPrz9rwTRhtz3y8PmtgOGgI4oxTZODj+zjHK+qCiee1Y+K1REGDnFlLo1Yp2vY9ju4iBU+DyWlVmDYEbeyVz1d5zLgDUIiadXjpUhUCS43lrsU1v0zKggU0hxtJqpH0A3daQAEyZ+XvU6lqqrOPEwAv8dHyBeiMdJIRIuklMXa5a/2fepRvSnBZSik0oBBa/PmWUZHCCGEEKI3JLgUwkU3dUzTpLVFZ/H3LbRk5fPac7U01WtEwwYzj+/D1580AzBxr2Rjnr5lAU47b0Cn83k8ipPJtGmJeZT29dz6DQwyYWoWtR2tQDJz2X1ZbPLX2L38SGADmUv7+n663k90L7Us1gou/R6/s6RIVI+im3pKEGp/bWcfvYoXj5L8GfpUP4pXoZFGasPriekxCoOFiWDTylzawaVX8aQcG8jyYComba3ddzoWQgghhNgSJLgUO7zv6xeyumUVM3Y6xClJdNN1k88+aKKtVWe3/Xx89L9GGuo1lndUkR9P/oosX9zBiiUdNDVoDBmeRXGfjQvK3HMuTdNEN3Q8qocVTcvI9ec7AQQkM5fdlcV6uiiL7a4JkLucU7rFbjw1LeMY8ATIC+Q7WeOoHsU0zZT97GAw5lqKJP0DArukubKtEoCSrD60xlqdbrJ2Iyif6ks51h9UMTFoa8mcuVzU8D1tsVYml+2xaU9cCCGEECIDCS7FDm9l8wrqwrW0xJopDBalPBbu0Pn7nyuoWmfVkn78STsNXo2cXA+jd8mmD3mUlPqZ90ULNZUxXnt5LatDnzBj9+nOOeyun92tK+kWd2UuwcoexrQYcys+AFLnSnbErcylt4dzLt2Zyw019HG+ljmXG8392qmKyuHDjsKrelnTshqw5lXqpp7SuVdNvPb2feBRU4NLn8fnfGBQ3W4Fl3n+fLK8WbTGWtEN3Vkf1SqLTf78vR4FX4AuM5cL6+fTFmtjt76TMn7QIoQQQgixKSS4FJtdU6SRT6s/YY+yKZ2Cua3B7roZSwvqAOZ90UrVuij9BwfQ4iZraprJKlXZ+4AC9t05n/KiUusc7To1lTGW1Kwilr8eZUAFMBiA11a9QlO0kdHFY6jpqCHfn8/eA6YC1hqHdeFaSrPLnGumB5eaoaUsSeLObDoNfXrcLdYKYnyqr9slRjKVaYrec792CqrT6dUO8iNaFMM0UvazA0m7tFVN6xbr9wScYLQ5apVgFwQKCCaCy7AeTpbFqqkltQChXIVotUEsZuD3p/5s7c61mqnhQYJLIYQQQmxe8q5SbHYVbRXUtFezrnXt1h4KpmkmF57XOy/PsHiBFXgecnQfzrxkIHsfmMue0woIBD0p8yGHlYcAMBSNgUOCtGvNzmONkQZM02R+3XfUdqxnWdNS2hPlrAsbFvD6qlf5ovozZ397zmXQa5Ww6qbWKeBM7muXP/ZsnUs7qOkuGLVI5nJz6CpIt38O9rqUXa1Faj+W8gGB6ifkC6Xskx/Id0qeI1rEuYe8SmpDH4CsbOvn2Z4he2nf03aQKYQQQgixOUlwKTY7I/EG1u5suTVF9IizvEhMj1JbE+P7eW3WYxGdVcs6yMpWGTQkSCjbw5T988nJtd6su4PLwUOD+PwKBjqDh2bRGG10HrPf3I/rM56BuYMAnMC6pr0KgIX1C5z97S6hWV6r0Y9maMS7WPbE5lO7LjJQE4GJ19U5dEPBpcy53Fwyv47J4NKaI+kuQXVnKQE8ipoSfPo8PrK8yeDSq3rJ9uU490tEC6OZdrdYT+fgMscaR6Z5l/bvgjtTLoQQQgixuUhwKTY7+w2snTEEK5Bb21jJC8ueTVlaYUuzM0fWeGI88WAlT/6tim8+a2H5og4MHUaMykZNLMfhDijd61x6vSqHn9iX3adlk5vnJaJFnOdnmAZZ3iwm9J3IrsWjAahos4LLgkChc466cB2Q7BKaDC51ND01c5me3eq2W2yiLNLdGKa7ZUjSzy+Zy43XVebSfv3tkmwFd0OftOBS9eBxN/RRAymZy1x/HoqiOJluK3Np3aeZymKzsq1rZZp3aWfCJXMphBBCiC1B5lyKzc4O0KKJzGVrs8YDd66hKW8RIw5roqajJuNczIa6GP6A6mQONwe7IQ7A4kVNNNRZQdrLT6+nqMRqkjNydHansad/DTB+ch4dlVksTSQtm6KNlHn7WWtFJrJWfUOl+D1+qtqqEnMpDef4ZY1LKMkqcUpgA56uy2Kzfdm0xlqd7/09KIt1Z7G62x/SGvpI5nKjdRWk24FgON45c9kpuFS8zgcEYH2QEPQEURUVwzQoCBQAONnMsB52PviwymJTz2eXxbamZS4N172omRJcCiGEEGLzk8yl2OzsoCyiRTEMk+cer6atRaeuLkJrs+4EUppm8OqztXw2t4mOdp3771jDEw9WbtaxhLUw0ahBTWWULz+zMofDR4WIx0xqKmOEcjwMH5XMErkzOrphdDqfOwhsijZhmmbKUhOqotI/ZwC6qVPdXuWUCAOsS2Qz43ocr+p1spGaoTkZJVuuP9f5WlXUbjt7elTr2l7FS0GgkBx/Dv1zOq+56ZaaGZXgcmOld4t1f+33+J3fhZSlSNS0OZdq+lIkfhRFcTLb+YF8IDVgTZbFdj3nsq0lNYB032PpH5wIIYQQQmwOkrkUPWaaJoZpbHAJAztbF9HDfPt5CyuWhFEUMNGprogSHxYjHjN48m9VLFvUgceroGsmsahJxZooLc0aefmb59YMax188WETDXUaBbF8Jvb3c+q5/fl+XhtZIQ8DBgcJBJNv9o2UzGXneWmaO7iMNGJiAqlBRlGwmFXNK2mLt6VkizriHYn5lXECngDeRAbL3uaW488DrEDb180yJJBcN9Gjegl6gxw74oRu97fG6/5agsuNpaZkgFODxoAn4FrL0h14pmcuPSmP282bQr5s2uPt5Pnt4NIKNqN6xNXoqXNZbCCRiG9rTb1/uyr5FkIIIYTYXCRzKXrsnbVv89/lz2GaZrf7mYmAKqpF+fZzq7TzsOP6YCg6NRVRYkac99+u5etlKzAVA10z+d8r9c7xyxd1ZDzvxli1xgoss7JUhozyceTJpaiqwugJuQwdGUoJLIGUMtZM2R139qcx2ugEjymZqUTwoBu6cw47QGyMWMf4VJ+TcTJM3clE5fnzUBWV0lCpc74NNeexg/30csvuyFIkm0d3c1ftYDB9v85lsalzLu2fd3GwBI/ioSTUx9qeuIdiejRZFpshcxkMJTOXlWsjxON2E5+uS76FEEIIITYHyVyKHqsP1xHWrDX2fJ6us2n2G9f2jhhrl7dQkJ/F5L3z+ddcqGjUaG4J8+H8b1mT/TVnHTCLz54PEI8lA9bli9vZbUreRo9z8YI2li/qIB43+bSuBoCRY7KZNDrEgMHBbo9NKR3M0PTE3dW1OVEWC5mDB8PUnXPkBwqoC9eyrnUNAHmBPGc/d0OfcX3GMyh3JyJ62Dmfd4OZS7tbbM+DS8lWbh6pZbGpr2nA1VTJna1MX5ZEURRnm6qoTrA4qXQyY0rGOs197DLquKE5GXNPhjmXdnC5ZEE7Sxa0M+2QIg44rBjDdT+nl2ELIYQQQmwOkrIQPWaXbhp0novoZgdUVRVRdCXK6Ak5qKrCwJ2tN8dffNpATX0zObkehoxRKSi23kyPGpeN6oEVi8MYRjLYrFwboaW5Z2+G11dFeeLBKj77oJmvP2lhXXUTgYDCwJ2CTpfWbsfew7JYv8ePZmiu1yIZWNhz6nRTx0w8bjdlWZsILgsChU62SjOTS5F4VR8+jy8loNxw5tKbOLbnnxW5m/hI5nLjKd1kLrNcmUt3QJmpuU+mJWQ8qiela6zdpCluxJLrXGYqi81K+ZZVy6wPKtz3tiGZSyGEEEJsAfKuUvSIYRo9XsbALhWtXBNBU2KM3i0HgKGjAigKLF3cjK7EKBsQQEdjj6kFAOw+tYDBO2fR0a7z2QdNGIZJ5doID/5xLf9+qGeNfurWWwHkLuOyOfzEvuSXGozZLQ+PRyWqR3vwPN3z0jJlLq039T7Vh2EaGcti7SyVnpa5BKsJEEBBsNDpEKobmhMs2OWz7m6v3a1xCRBMZMjs7rM94V4aQ7rFbryuGvpAeuYy85xLe7sdIHbX5dfnlMXGnN9Fd1mscw0ltWy9ap3VWEtLyVxKcCmEEEKIzU/KYkWPuBvObCjrYZg68ZhBQ51GWZ7OwJ2soCeUqzBoSJD1yzRURaNsgJ+4HmOv/QsYNzmXnFwv7W06q5aFee25Or6f157oxgqVa6PUVEYp7d/9+o2N9dab7p2GZjFprzy+L8gi6Amim7rTXKU7Kd1iE4Fjfbiet1a/zt4DplolwarPeSNvZ4PcQUZyzqXhnMPOXNoKA4XOep/uhj52xtKjepylKHwbWFYkP1DAQTsdnHF5l66kLEXS46NEuu7mXLqDfU8XZbF2FtMube1ufVJFUfB7/MSNOB7Fuj9URaUgWEiWN4virBLWta5FNwxKSv3U1cTIyfPQ1qLTUBvHyJE5l0IIIYTYsiRzKXok7grMNvTGVDd1GuqsYKl0SDKQ0U2dEbtmg0fDn6NTUOQjZsRRFMVZ23LsxFzO/dkgygYGWL08zJoVEew4aN4XrZkul6KpwbpuQZGPiB7BNE1CvmwCnoBVxmpmLum15066n5udHWqI1BPVo9S0V6MZGl7V6wQS9jy2LudcmnbmMt95XFVU8gMFTjmrbuquzGXy8x47I+XbQFksQP+cASllmBvSXVAkeq67xkhZ3qDrMXdw2fleCXqzrN8Df0631/OqXmJ6DN3Unfsjx5fDCeUnM7KwHLDK1k87rz/nXDGI0ROsJW0q10UydottbdF49dlamhrjCCGEEEJsKgkuRY/UNXY4TUS6CtCiESPxuOmUp/YdlAxcdEMjlO1h30Ny2eeQHBRFSQlabQMGBznr0oEM2yWEqsIRJ/UFBeZ92YphmNR01PBx5Yfoho5pmk43TEgGl4XFPjriVtfZLG+Wk/3rKnv53rp3eH7pMxkztHaQ2aF1OJ1e0zOX7mYudjZKN3XnHD6P35k/lx/It9autBv6mHpyzqWrUVKyRLb7hj4bwx1QSlnsxkvJAHdq6OMOLjvfH5D8ACHLm8XhQ49kSr+9ur2e33Ufp3edte9J0zQoLPYxcEiQ/oOsTGjV2mjGbrGvPVfLp+838fkHzc5jdeE6ajtqux2HEEIIIUQmUha7gzEMk+++bKWlWaOg0MeYiTkbHTyYpomiKMz7ooV/PLEcbXQLE6bkpSzXYfvuy1ae+Wc1R57UF72vTv16K0grGpCc/2Uvt5FdAD6PTkRLLbfVDA0FBY/qIRBQOf38/nS0G2TnePjuq1ZWLglz7y2rKd53EXpxFTvnD+WbN7x88l4Tfcr8TJ9Z7JTFFhR5aXY137EzNTE9StAbJKyFCXgCqIo1F3NNy2qAlMyR/Qbc6X4bbwes0lU70LbnrqXOvXMHl9Zr5VE85Pnz6Ih3UBAoTJwnOecynjbn0h53e7x9g+tcbgzJXG4easrc1bQ5l97MZbFqF1/3pKzZncVOb+Bk/0zdH/70SwSXlWujlKd1i123OsKCr9sAqKlMzkd+ZcWLAJy8y2kbbCYlhBBCCOEmweV27sN36njl2UpOOLMfWl4t/3j2c2LzRqEmfrTZuQMYOjK0gbN0tr4qyiP3rGPMxFwWfNOGrsRZtzqKrrfQ+t46jjk8x1nWIxLRee35WjDhf6/UM/iEGM1N1tqS/uzOS3vopo6pW8GZ04HWNHh+2TMUBYuYPngGYGWCsnOsN98zj+3Li/+pYc2KCN+8XsPwfcLU5YT57AMdFKitjvHe6w00NcQJhlSCWR4a2qzreRSPM5ctqsdojDTw4vIXGFYwnH0G7EtF61pnjGEtuQRIsoGR9f9tMass16t6nccMs+uyWPc6lx7FQ64/j+r2agqChYltXuc66Q19rOtYX/ekLLa3JHO5eaR03U0rBAm6g8sMHWLTv+4Jf8r9kfrnW0kLLk3TpKSvH59foWJNhPnftmEWWR8Y6YbOGy8ks5PVlZ2bXa1tXc2wghG9Gp8QQgghftykLHY75/UqNDVo/PvhSuY88h7frl6Kp7iJSXtb60T2ZJ5iJt9+3kq4w+Dzuc10tOkMGOpBVa3Ok6uXd/Dqu9+zonk5AB+80Uh7q47Ho9DWojP3f/UAFJf6iBnJN62pSyFYb4DtMtWOeDsd8Q4q2ioylq72KfNz9mWDOP6nZRhKnK8/beXpxyswDDjgsGLyCrxUV0TR4iaFRb6U66mKx8nAxI0Y1e3VACxvWgbAmsTyIJAaXKZnLu3HfKq3c0Mfd9mj8ybf6harKAqKojAodzAhX4hBOYOAZBMX3bQyl3aDFps9/3KLlMWmNPSRPwMbK2UpkrQgPegqi1UyfPhgfd271979QUP6EiR2cGuYBh9Xfsjzy54BxWS3KXlocZM3XlrP4gVW9n3l8jbWrIjQt5+fkr4+2lp02ttS5ySvaFreq7EJIYQQQsi7yu3cHlOL2G1KHq3NOlUNDRQWeTn8J7nMOLIEr09h4bdtxGPdr0uZyaL5VrlcnzI/+YVeDjgijz2nFTB6Qg6mqvPxuo/5cN0HaJrB5x824/UpnHpeP1Cgvs4KKAcMDhLWIs45My3cbmfsOhKBm2marO+o6XJcY3bLZc/pOfh8Co2NEbKyVfbcr4Ahw61mNgYaBcWJ4NKws4aqE1xG9WhK45uYHqOyrcL5PuIar/1GO33ZBm/GbrGu4EFNLYu1g4mBuYM4fuRJTubSzjxZmUutUybKzlx6t0hwKUuRbA7ubGV6Qx/3MiFdrnOp9jZz6S6LzTzn0jANajvW0xprJabHOOzYPvz04gGoHoOVS8LEYgaffWx1Kp5xRAllA62sfk1lLKVbclV7lVMKLoQQQgjRExJcbucUReGIE/sy5YAcRu3hZZ8DCzEDHQSDHsrHZBOLGk62oqfqamLUr49T2t/PRdcM5tLrh+ANGhT38TN0ZIi+/b10hGO0tsRZs7qdWNRgyLAshpVnc+RJfRkxJosDDi2mb1mAiCtozNQIyM5ShrUOZ1t1exUAjZEGPq36pFNQ2megyv6HFTF+SohjzuhDVGllyPAsaoLzWZz3MqHC1JJVr+p1ymKtTpvJ831fvyBj0At0Kn21WQ19lJR9Mq9zaa2DmR502JJlsbqzxIlbti878f/ddxDdGCllsTLncqOpSvevo73WpSfD2pbW170LLn2ersti3Rlze36zYRooisLOI0IMHx1E00w+eLORpqYoO4/MYviokLO8T01l1DnOVtG6rlfjE0IIIcSPmwSXOwCvT2X3g33sNNRazqAtbmUdx0zMpiLrC15/f6Gz1EZP2MFo+RirGZDXq6SUqg4YEsBUdOrWx1i+xCq7HVpuzeucuGc+u4zPorAgiN/jd47rKoCz51y6M4Z22eqihu9Z3PA9q5pXdjomGPSw+/65NOYv5Pllz1I8WCPsacRQdPx51rl0VzMdp8umEUM3kkHugvr5ABRnlaRcI9lsR+/0htur+pJLkWQsi02dc9lVcGlfww6s04PLCX0mcsjOMynOKs54/KaQOZebR8qcyww/52AiS57+mH2P9HbOpfse6VQW68pc2hlIg+S9Pm6y9WFFR7tOdp7C4Sf0RVEUyvonM5d2JYFhmNRURqmua+nV3w4hhBBC/LhJcLmDaIk2OV+3JhrPFO0cxehTwYKaRcz7smdzL03TZP7X1r67jM2mOdpEdXtVSlfXAUN8GOjUrY+zYpkVyO48Itk0yM6W2Au+G6bR5dqY9hthd+ayIVJPTI/RkSjJqw2vTznGHotuaLTHE012csP4s61r5BSmZxWTcy5jerTTWpZe1cvQ/GEp17DfxOuJeZNuXtWTLItNBKruYM29zqW7LDad3+PHp/pSutCmjMHjozRUmvHYTbWhjJvomZRusRlex6CTuUwLLhMlrenZxw3xqT3oFovp3OOmq1ogp1ChfHSIAYMDHHRUIcV9rHOlZC4TvzMLv2njs7nN/Otva/jrnWtZX9W54Y8QQgghRDoJLncQzdHkOnXticylqWiMmZSLoei88UIdseiG514uX9RB1doopf399BsY4MOKuby1+g0n0APo098LqkltdYy1q9sJZXso7Z9802sHVPYb4bgR75T9c4sZMadZjj0fcn1HjTMPsy6c7GqpGZqTSdEMzVkfMmpE6T9ExeuFotLU+ZAe1eOUJ8b0WKexDModnDIPE3CCUc3QUspowQo87TmL9rlSusUmAgc7CO4uO5Xjz3Wd94dr3tzd+oyi51IzlxnKYhMdY9PLX+37pbdlsX5XWaynm26xyZLu5O+8buqMHJ3DxD3z8QWSx+Xme8jJ81C1Lso7b6xnfVWUNUt1vF6F3BKTqnVRHrhzLdUVEmAKIYQQonsSXO4gmhKZS0WxSlijepS4Eae4xE//nXy0t+qsWRHu9hymafLu61ajj2mHFKEoCmGtA8M0aIg0JHf06AwZloWmmWiGzs4jslBVxTmHYRqJgM6VLeyiLBYgrseczGVpdhkAbfE2Z1tjpNEpr3WX52qGRlyPO9tHTggw46g+BLKt4NNwLQNiZwXjRhwjLRO5c/5QJ/i02XM0jYyZy2RZrJ5hKRL7aye47KZpS64ruNwSjXu6sqGMm+iZlHLXDMFlfqAAgFBi/qwtWRbby26x7sxlWmDqLse2g8rU4NL9dfL3UVEUjj6llEBQ5eP3Gvj0g2Z8RpDRu+Vw6An57D41H10zWdLLudtCCCGE+PGR4HIH0RKzMpd9E2WUbbE2J7jp09/KcKxbHcl8cMKaFRHWrbKWJ9hlrNVExs6AuJfoiBsxRk/MYezEHPJLFHafmu88ZrjmOdpvhGN6vFPHVbe4odERt85fktUnMf7WlHmYdvYybriCSzO5PmRUi6CZcbweBU2316dMdou1O2tqhuZkG0uy+jA4byf65wxwgkmw3mzbWUTd1NEyNvRJZIkMu1tsamDhUTxOINzdUh/u4NLdrGVL29BcQdEz7q676etcAowuHsNRw4+hb6hvyvaNnXPpdy1Fkj5HN/mhRvJ3xHDNl3R/qJL+gcnwUdmce+UgyscHKSj0Uj6ymEE7B4kbcUbuagXGjQ1xhBBCCCG688PV4YktxjANWmOtZHmzKAwUUdNeTWusxXkDWVCi0gysW9V9cDnvyxYApuxX4GQiMzXiielxFBSGDA9xyEEDKM1Ozrd0Z/Lca0tmKv+zG/7EDStzqSoqRcEiwJp36VbbsZ7+OQOcMlh7bHYAbTcxgmSpqnudS69iN+jRnHmSY0rGMjhvp8RY3I1SPCmdXDtnLjOtc9l5Tp2uJ8tyu5LnTwbmP2jmUpHM5ebgfu0yBemqojrZSzf7nujtUiTuzGV6Wax9fXd2P70s1papTL2k1M9BRxXiX1fEiMIBLG1cQtyIOUv7NNVLcCmEEEKI7knKYgfQHG3CMA3yA/lOJqwt3ua8ycwuUPD6FNatjrB4fhtvvFCLYaR2gNR1k++/bUdVYdQ4K2tpmmbGRjwp2cO04NMd0CUzlzGnLNadebGX2ojqUSJ6hKA3SE5i2Y36sBVchnxW4OpkLlPKYuNOcGk3MbK3W2Ox3lh7Va/zRlwzdack0N0QJeVNu+JJWasy05xL+4281kXmMmUOZjeZwZSy2F5msTZFynhlzuVGSwnSe/E62h+2bMqcy64a+rh/J93dYt3b0z8wcbYn7vWgx5orGtWjFBRZ15HMpRBCCCE2RILLHUBduA6wltPI8VvBWVus1XmjaKLRb2CASNjgP49U89E7Taxenjr/cuXSDjradYbtEiKUnSwhzcSdGUkPPt1lsck5lzFnP3fjHDu4bI21YpomQU+WMzfNKenNssoJw4kSWXfX2rihOWNsjbU429PXp7TmXHqdx3TXdps76PWonpSOr+mvg9fjKot1gunOZbG27spOUxv6/HCZS6Rb7GaRkrnsxZ/TjV+KxD3nMnNw6f6ddHeLda/X2lX3ZvvDEq/H51QW+HwqOXkemhs1dH3zLUuiGRpPL3ya+XXfbbZzCiGEEGLrkuByB2Bn9YqDJU7mrz2enHNpmAYDh1iZCPvN4YolyaU/TNPky4+t4Gz0hGSw4w7k3NLnPbq5gy2fJ7m2pB2gpQaX1rXswDDky0JV1JR97MyenY10XzvimgeaOidUSxyT6OSqppbFupcosamK6gR3VuayczBq8yrebhv62OdInrvrACLbm+0cKw19tj8bm7n0OD/z3s1MSP8QpLvxQNdlsV0Hl4msvuIl4AmgGRqGaVBY7MM0oKWp68ZcvdUaa6Eh3EBF67rNdk4hhBBCbF0SXO4A6hOZy5JQHwJOOVssGWSZGgN3srZ7vNYb4BWLreBS102e/1cN33/bRijHwy5jk10t08tBbTE9GXQaRuryJskmOmndYu1yO1fgaAfC9jIqWV6rBDY7sd3aJxdFUZwg1n1td8Of1DGkLsNgl7na57EDYG/am3P7jbs15zKZBXK/QQdryRAlrQSxU0Mf17m7y04piuK8Dj9k5jJ1KZIf7LI7nExdgnvCmXPZy2ZKqqI691OmwLT74DJZJm53dU7nLhm3s6RWaWxi3uVmLI21A9yu/s4IIYQQYvsjweV2TjM0GiINZHmzyPHlpDTRsbN9pmkytDyL4buEOOqUvuTme6lcG6WlSePfD1fy7eet5BV4OfOSAQSzPNSF61jZvGKjMpf2G1i1i26xQY8VXCqKQpbP+ro5sYyKnbG051kCZPmy8CpeJ4hzX7vr8dlzLq1jnCxR4jxOdibtzbn92qlKsixWT5TFuvf1qj6nDLarzKU7W7mhpi12dtbr+eH6a0lDn83D/dr15nXc2DmXkOwqnF4Wa52vm+Ay8TvoXsM1nb0tfSmhwkRTn8bN2NTHbqzVXSdpIYQQQmxfJLjcztV31GOaJsVZJUCyk2lMjzlrQAJ4/AanXzCAcZPyGDoyC9OE+/+whqULOygp9TP78oH0LbOW4/is6hM+WPceHfGOlGv5XXMobemNQQwnuEztFpucc2llUH2qD78rM2I9Zmcuk9nTLG8Ir+oOLjf85tYOKt1ZVEh0cDX0lADYzQ6Gvao3OUdTt8oCg96g88bd51rn0nC6xXY953JD8+oKgoUAhLyhbvfbnDbU5VT0jJqSAd6IOZe97BYLOL836d1ioXOAa2RY29I+PlNprDPnUvE6y/PE9LjT1KepYfNlGe3fna7mdgshhBBi+yPvKrdz69vXA9AnsT4kWMFP3IinlJu530gOLbeCmI42nSEjsjj7soHkFyZLMmOJYM+9vAdAIPFm0x3gpZe0OU10VI8TXEb1qFOqGvAEyfPnURwsduZk2vL8eQCEvMngMugN4lW9GKaBYRopAXNX7HJgJ4hUk2WEuqtBT3rQlyyLVZ3AM2pEnX3t5+9eisTpFttpzqV7Ll73v2ZjS8YzffBBlIbKNvjcNhfJXG4mG9kYyf7wYmNKoe3fG1+G4DI9WHV3i7X/BthBo54hqHOXxQac4HILZS7t4FLKYoUQQogdhqxzuZ1rj7cD0DdU6mzze/y0xlqJaFFnm/uN5KhxOazeK0z/gUEm7pXnrGlps4PHjsS5PYoH3dQJerNojbVmLLVzvnd1YrUzJHEj7ipF9XDEsKNRFMUphwWrJLY02wqu3JnLUCJzCanrWnbHDkDTu8LaZYR28NxVWay7W6y99IlH8bJb37FE9SiKonTqzJneKTR1zmX3waXf42dg7qANPq/NKaWcUyZdbjT3z703GeBRRbuS5c1K+b3tKTv7bweJKeNJL4s1Un9XVUV15hpnzlzaZbFep/w2akQp3JJzLiVzKYQQQuwwJLjczk0om0AwnucEZmC/6WylQ2t3trnfSPr9Kkee1PWbWntfuwPrwNxB1EfqGJgzkNqO9Sn7du4Wa72ZVRQ12S3WtRSJ6lpD0p253Dl/qPPG2G7oE/AEEg1MrNs0bsSdOZeKomCamZdFsLMvhpleFmudxy7D7ZS5VAPOGO3A0y4B9qpehheOcPZNX4okPUBTe1EWuzW4hyuZy42X2tCn569jQbCQCYly6N7ao2xPRhY2pXwI44yB7rvFWs2q7A9rug4u3WWxcT1OXoGX/2fvP8Mjue4zb/iu3Dkg58k5cBLDDEkxU8wSqWxrbclB9jqs/Oxrr9dhvfbK9nqfx3K2pbVkK1tZYhJzTkNyIidjIoBBDt3o3JXfD1WnuqoD0MBgZjDD87suXsQ0qqtOVVc1zn3uf+A4BhOjCnTdBMdd+D1DFqZoWCyFQqFQKFcPNCz2CsfH+9Ad6fG8Jtqhdu5qqnMpmlHuXDb4G/HIqo9hSWRpxbZ6WcXJklvIOs6losvQnAqtpfUMd0jg8tgK52fSq5P0vCThf7qhOdViSZP3apDJKpm8kmO6HVCWYSsEIWlQ764WWxKi3keFCLJSW5OZWpEsvseM8YTtUnE5Xy5HeHFIDNd0uiucS7j7XBq2c2k/T1Wcy1JYLAeJLYXFchyD5Wv8KBYMTxsjwOqpW6ty80yQ45OQdwqFQqFQKFc+i2/WS7lgqoXL1ZvXpBu64wjmNWsSScJJ2SrFR8pD2tyhqAzDQOREK/+zSoVWkRUREAKIiBE0+Bqd1/28Hzd13ozr2m+w9sUS51JznEu/q/hN+YS6VC3WW8mVdwm+am0cyHXjGM7pOUnc2/JcNqYsLLaiFclidy7nWeWU4mWxFUYqL1LlFm2aoXlCvquFo5JFKI7lPTnTALBxm1XV+Mj+jGf/T559HK+cf2nOYy0fG4VCoVAolCufyz8boiw4YlmhHAAwZnEuh7NDODx5yCNCSbVY4jCWh9wBlrhKyykkiwkAgOnqLUneq+iKy+ErTX4ZhsGHV34ED674cMV+l8dWotXORyPH18xSziXJOwO8OZqk8TuAihYi7uqa1YQAcVpZloNk75+EFnNlbR+cnEujRisS1u1cLm5xSRtdzh92kTnAtVqRuHu+snXkXFphsd7q0Gs3hsALDI4fykFVDed3iq4gV1b8qx7c+doXW1yquoqjk0ecxSIKhUKhUCgXByour0KqVaCczbncP7YPB8b2IS2nndeIkCMCrVrbBM3Q8PL5F/Fc3zMASr3ryCSXTFDJpI4v2wfP8rO2Y+A9YbGK1eDdJaCJuBQ5ESInOmF2JAywfD/lPxNIOG6QD8Bnu5gFtVB1eyLOSu5ouXNZOu582k1cbDy5gvRrYN4w82xFcrEoF5dkscfd25U4+NUEnbtaLHHyiXMp+VisXh+EIhs4fdxaeCLfK7OJw7H8mKf69NGDGTz+wxEoiuE57sXifKYf+8b24FSy96Ieh0KhUCiU9zu0oM9VSDXncrbJH3Ho3EWACI64rOLAGaaOnJqDZmjQDM1TuMcaiy3SykJs54K7oI9maJA4ybMfUgBI5ERPXqVu6k7eWPmxq51LW7Ad9y1/EHEpDsUOvy2vOEsorxY7U1jsYhRvi8FluxpgLkPO5UyUL3IQx9L9XJJnxJipWizDQXL1qSVs3BbCsfeyOLw/g3WbQ05orfv7RVEMDPUXsWyVFbqeVbN49txTGD5fRHPvA7jzgSY8/r1xnDdz4Fbm0dLOX3TnUiF55NS5pFAoFArlorL4Zr2UC6ZaziWZSB6ePIRHT/0YA+l+53e6oTsFOUgorBsnLLaKM6PopTYj7qqwTkXYstzFanmbs0EK+siaDMM0bBFZcmcd55KVHCGqGAoM0/C2BPG0B6kucpv8TeDYUk/Lau8FSteC5KdW9rl0H3fxPWbzbaFB8bLYrmOtsFj3IgnnOJfWayTs1XrNCiW38qWtZyCtpDGYOQ9FV7BqXRCixOLk0RzkouHsQzdLudov/WwK3/jnIZw7ZX2XZOxoiIGzRZw/V8TX/mkQctGAyegYGSp6xpLP6eg/s/ACkHxHyfMoPEShUCgUCqV+Lv9siLLgiNXCYu3JW1/qHNJKGq+cfwnHpo4CKLmK5T8TeJe4LHe83NurhlKRc0lcVHcu11whTovjfrKCJ7w2JFiFRiROdISoUqXdiMe5nEXksgzrcYArnUvvdSh3rRZ9ziVD+1wuBJ7ruCicy+rVYknONcewzv2omzpGssP43onv4Oz0aec159m1c5Dzah4vDbyAH5/8AU5nTmDtpiA01UTvkSw0V99Z8oz3HrWiH0aHrGdQNVSYMDGdtLc1AV+ABVgDY0NFmKYVFmuaJv7jX4fxtX8cxORYSfAuBGScsk7FJYVCoVAoFxMqLq9CqlaLtSd+7gkwyT/KecRlpWvgFnLlIZ7u7RVdrchBFFnvWKrlOs4GEbekeq3kCn8FgOZAM7rCXVgRX+VsS9wYtkaF2PLWItVwi8taOZeEmVqRLMZqsZejhcbViHuRYTE4l0yNPpfuiAIndNzUMC1PAwDGCxPWa64iWAzDoNHfBJ7l0RXugmqoODz5HjbZVWMPvJN2WgOR/SUmFSQnrdcS9v9VQ0E+a0BVTLR3S7jzgUZ86lc60NzOo1g0kE5pUDQVJw7nMNhvib/RYXlBr4vjXOoLu18KhUKhUCheaM7lVYhQrVqsSRqWWxO+sBhGSk4hq2RQUOtzLgFrcqrrpVwtdzsB1VCq5Fx6XdT5CC0y2SUVKSXO5wlrlTgfbu+5CwAwlBkEUOrx6Q1PnbmgTzmWMLaOWe4+lofBlrt/i77PJW1FsiAstlYk5Y68YYeqOi1GGN5ZLNINzVlezCppT9Efwn3LHoAJEyzD4oe934Osy1i+JoBonMe5UwU8/VgSw6E8GpoF6IaGM70l8VYSlxpStmvZvdSHm+5sAAC09wg4PgnsfjmJc4+eQRNbEqpTE6WfFwLSZ3c+/TgpFAqFQqHUz+WfDVEWHHdYrNPGw544qoYKlmHRHe4BAAxlh5BTS0V8qjuXM7fwICi64lSLJeIqIkac3zMMM68QTDJhJuMUOclTEdf9MxkrcSjck213WGw9oao+3lUMqEyMVrQewZXlXIKGxS4Ii80BrlUt1nA5l2RhRjM0aLbzmFEyrmI+pXudYRhnnz7eB8M0oEPFf/r1ToQiHI4dSuPowSz2vpmCois421tanCqJSxXTCWvfHd2lFkLtPXaUgWICnAG5aCAQsp6VqfGFDYvVqXNJoVAoFMolgTqXVyFu59LH+6AqpXBVEvbWFe7GsamjGMqeR0SMOtvPVNAHmFkoqYbq5HiRCemy6AqcTJ7EeH7MKfgx5/Oxj0/EpY+THPeFZVivgKzIuXS3IqkeIlsLiStNhMvPu1xIlAs01lXEZz5FjC42bjG8GETRlYqnpcsicC7LFzmqFfQphcXqMGE9k1k161SFrfVskHB7RZfR1BrGL/2XLjzx+hiSp1jkcwbGxgo4e1IGLzAQRRbTCRW6bkLVFSffsqO7tGATb+aw85ZGADru2dyBUKYLko/Fl/7PACYXWFwS4WyYBhRdqVpRm0KhUCgUyoVz+WdDlAXH3X6DCCTNruaoGioEVkBLoBUCK2A0N4qMknG2L1/ZZxm27gm0oiuuwiGWoGIYBjd23gQAiPvi8zof3uW0AIDE+5xQ3fKJMBGiRZ2ExbqL+MzciqQcd+5qrWqxNf/triK6CB8zb0GfyziQKxxPePEiuJC1Cvq4w9VL0QwqdPt5NU0TKTkFoLIXLYEU+JHtfOaGJhE7bg6jo8v6jnn1+QnIRQPLVvnR1CrANIBUUsX4ZB6phAaOA5paS6LOMA0sWxlEc5sIAxp6lvnR0iZCEBlMjavzXoyqhruPJi3qQ6FQKBTKxWPxzXopF4zACc5E18dbEz/d7kMJWAKMZVi0BduhGRqGs0M191Uu3rgaBXIAy9FwJrGuCWpYjOCR1R/DHT13z+t8+LLqtxInOccWyn7H1RkWW6sVifc4M1WLLc+59P7bUzxoMbYi8YjLxTe+KwVy7RaDsAQqw70d59JVLZY8T6quQnVVe03KSXub6s+G5HIuCZqhorHV2t+pXmuRavP2CBqarGfn6Z9M4MffHoKmmYg3CmBZxvXekuDTDQ3Hpo4iKSfQ2CxCLhrIZSv7cM4X97GKGg2NpVAoFArlYkFnlVcpRHT5bOdSN3VnIkkml13hbud3tajMNSxNXstDyxRDdSaz5W5dSAghIATmfB7WGLwTZomTHBFZLi4Fp1pslVYkcxR87rDY8hYqFeJyhuqxizHnkhb0WRjItVss7nR5i5xSWGypWI9T0MfUPKJruph0tqkGed7d0Q2aqaGhSQTDAAajQRAZrNkYREOTLTiP5WFwCtZsDGDr9RHP/oirCgCThQnsHX0X740fRGOL9d7J8YUr6kMKGlnjp84lhUKhUCgXi8UxI6IsOMRlIM6lZmhOpVjSC7Ij1Fnz/UQclYs3t2giYXIEd7XYhXTryie7EudzxF65q0leJ+5EzWqx9TiXfO2w2HK3r6IVyRxDcC81i60QzZUKu+icy+o5l061WJYvOZeG5gkXnZZnFpeS/V3iFpeqoYHnGTQ0CTCgY93mEESJdcQlAHQs5bF6fQg+v/c50F3CNq2k7f0paGy2vlcWsqgPDYulUCgUCuXSQMXlVYpgCz/ivhmmDtVpNWBN/IJC0MmDJCKUQFzG8hA5zlVIp1zYKbpSqkq5gIKqIiyWl5zx+nl/2bbegj6ePpfu9iB1FNlx566WX4eKgj7lzqU753IRisvFlit4pULE3GIo5gPUrhbrtBlh+FJBH0PzOHrJ4ixhsWxlWCwRiB09EsDp2L4rAsM0EHeJy2Xrhapj011tjEixLs3Q0WQ7lwspLmlYLIVCoVAol4bFMSOiLDikv6TfcS51aPbqveDqPdkZ6gIARKWY5/0BPlixLVCqvmpVnfSKJtUdFruAk+1yl9HH+RAUgrij5y5c2369d1t74uwU9HE5qPycnUtXtVh2ZqeyPBzRfW0Wi/Bw4ynoQ53LeeM4l4vkGtZyLt1hse6CPu6cS0LNgj7VwmJt0bZkhR+/+F9asU//GV4aeB5NLSJ8fhY9y32INJL9ep853ajsl6ubGlo7LBG7/500RgYXRgi6xSV1LikUCoVCuXgsvlkvZUHw85bzGBRCAKzJlaqTVgMlwbgksswq7hNo87yfOJdCjf6OLMNWuJOKrjhuxEK6dR5RyJacl85wF0L2+RFKOZfWudYKi63HWXUX9CkXozPlWJb/ezGGxbrDeqlzOX/IfbBYriFT5qQadqsRp4clyzkVoDVDc5xHd/50zbBYp6BPyVEkopUBg6KZQ1bJYjg7jLQxhd/6wyX4+V/rdFqclFd/rZbrrRmWuLzx9jiKeQPf/NIgMmmtYru5kkwW8frzCYyPyrTXJYVCoVAoFxEqLq9StrZuxwe6bkWDz7IN3MU73IKx0d+IR1Z9DJuar/FMMEm4aXmIHBGN1iS1XFzKrqqUCyeoGIZxJryz9acrD6H1FPRh5l/QpzyMttypLBebXlG7CMUlLeizICy6sFj7K508L+U5l6VcZd5acDJUMAyDXR03OeIxKASr7pu05inPuSTktZzz89GpwwiFeQgiHHeU9NQkGDXEJQDc+WAjtt0QQSFn4LXnEnWdezmpaRXf//dhnO8r4OihFKaTGg6+k8apU0l879+H8fRPJjDYT11MCoVCoVAWktljAylXJCEhhFA05LgF7mqx5UV6Si6l4LgSTlhsDbHmzt3iGMsNUQ3VEX8L7dZxDAcNmkfwVSMkep1MtobIq6cViciJYBgGpmnOWi228t+LPCzWJSgX4/iuFBiGgciJs96Xlwpyj4ucaOdAV4bFkv/n1by1cMPw6IksQVe4Gyl5GnFfQ9V9kwJX1cJigVLeJAAMpPuRUdJO7jdQEroE3dDBo6zIjy04GYbBnQ824ejBLPa9lcLOW+OeIkH18NLPpnD8UA795/IYZotgTAaybOLF50awLGeN9dDeNH7/L1fMab8UCoVCoVBqQ2eVVzkMwzghcE5oXA1h5XYFiXtR7gQSIcKxnMdNFDgBqqE6x1howUKO5eOkGbeTOMlxYNzvI2Nyj78eSEXcypYsZedX5mSS/S/GkFiAVotdSO5Zeh9u6779cg8DQMm5JItCxB0shcV6W/gouuLc2yzD1hSWQPWCPporZ9MtLgFgsjDp2bbcudRNveL5cIvVQJDDrtvjUMwivvr3A3jzpWRFaG0tpiYUHNpn9d3MZKwFs40bmhEIcoCg4IGPtyAa51HIG1BkY6ZdUSgUCoVCmQNUXL4P4Fkehmk4uU+1QkuJkGQZFl3hbmxo2og1DWs825DJIMuUwmJFToTIijBN03E1FjoUlEyAJX52hygiRSvGW76fegr6AFbYcEgMVeynohVJ2aPEucKHFyOegj6LJF/wSiXmiyMkhi/3MAC4WwhZz7hRpVos4F1gqpVjWY7ACWAZtqZz6RzDqdisQHGJT7cwNE0Thml42v2Q8bodzk27OGQ3vIRj5it47vEJvP58sq6xvv58AqYB3Hh7HOE4IAgMNm1uxO33NOPOR6LYsSuKaNwaZy5bu88vhUKhUCiUuUHDYt8HcAwHWZc9RT2qIdrikhTN2d56bcU2Ts4lwzmVY0WXU6joykUJsyTCV5zFuQSAiBjBRH4cAMCy1UVfPa1IAOD2nrtgmEaFAJutoA85zmJ1Bd1ieLGOkTJ3SC4wqRZdGRZr3ZfuKtD1iktrv6KnoI9bXBLCYgTJYgKKLnucS8ASlQzDOOGv7tBzgm7oYDnr/iyYGWzbGcH0WhVnnzmFl55i0NwmYt1mb/h7OSeP5cFywAfubsCmmzjEzjYg6Begcz7k1TwAIBguict449xCbikUCoVCoVSHOpfvAziWg2EazqRQZGd2LsvzLL37IgVDXGGxrOAIUwCesNSFot6wWMASl4QLdS6tfp6V25aLyQrxyTAICsFF42iV4xkvdS6vGoijzrNecUkK+pTCYt3OZf3CSuIk6KbuiMpq4pI8f7JeWZm1JHZLhb/Kn0XSMgkAFDvaIhYX0HnLIGQug598e3TGFiW5rIZ8VkdDC4+h4lkwkgyf3/q+It8HhmkgGOSc7SkUCoVCoSwMVFy+DyCTN9L7sZZTQcJlZ3IyiOPFMpwzURM5CYIr1LYj1Hnhgy6DTIbrKZwSrkNcchforlYU8KnyKN2//CHcteSDF3SciwXNubw6cRfcYhimvrDYOeQFk+dP1mWYpgnd1Cu+L8L2goqsy1B1bx9NknfpVJV2LVIRdJdgJQtiAiugtUPEklvGoCom/uMrwzh7Ml91jBOj1nsyzUfwxtDr2Du2xzlncn10Q4cWSCLPTSJPw2IpFAqFQlkwqLh8H0BCWYuaJS6FGs6l4ITFzuRcusJiiQvCiZ5w1YshLslkuDxHqxrRGXIuyX4uNBeyXJBVy1v08b5ZW6dcLmgrkqsTkpPs431gwdasFuuOTuDmGBYLWEV9iGD1leVBR0Tr+ZN1GbJR3bk0XM5l+fHdbihxLjc2b4bACgitHMeG60VkUhq++S9DOPhuumKM46MKTBjIhfoAAFOFSQDWuZPvQt3UcdLcjYHgW8hldewf24v9Y3vrvg71MpGfwNsjux0xTaFQKBTK1Q4Vl+8DyIRSdpzLGjmX9TiXrkI1RLhJrOgJs7sY4pKE2gb4wKzbup3L8tzKlbFV6A73ICRcWLjqbK1IFjtuMXyljZ1SmxZ/C+7ouQsbmzaDZVjHKSxViibPb+l5nSkMvhzJ1euShK+WRxOEJev5U3SlMucSpdZI1ji4iuNrrv6Xqu1cBoUgVsVXwzANrL4jgYc+2QIAeG9vpbicGFWQ4UcQjlrnSO51juWdRSXd1MGIGnRGQzKTx5HJwzgyebju61AvJxLHcDJxAhOF8QXfN4VCoVAoi5GrvqDPhg0bsHLlSgDAxo0b8Rd/8ReXeUSXHiImC1rB/nf1yWQp57L2bcG5Cvq0BloR9zWgI9yFE1PHnG0uRs7lhqaNCIsRtARaZ93WLY7LXbnVDWuwuqwC7nyoyLm8At0/UkiFplxePTAMg85wl/OzOyyWYzhHaHlzLufuXFoFwkjfXKsAGBGwpZzLoqf4DwBP313AzrksWwCqFhYrsRK6I0twbOoo0koau66N4KkfT2B4QIZhmGDZ0k08MapgSjqNFRHec0zeVYTMMHUIovX6eGYCF6ucT9H+zi2/DhQKhUKhXK1c9eIyFovhscceu9zDuKwQZ8Gdv1QNUuinVh9MwNXnkuER88Xx4IoPAQBSxWn0p/uwOn7hwq0aYTGCDU0b5/y+i+XKecJKGeaKbOfBgoUO/YoUxpTZIf1tAbunpEvEuQXlTM97OY5zqcme1iMcw0GDBpZh4ef9TsuSvN37kohPzdTws7NPOBEIVgQEyQPlPMWCADgFgUROcp5l1VDBcQw6uiUMnC1iakJFc6uIM705TIyqODc+jIIwhfaGFchqGc85k31ohgbBXgMbz05g4WMtLIr2+N39QCkUCoVCuZq56sUlBYhJMc+/a4nLavlY5ZTC6ryibVV8NaJStC5n8VLw4IoPYSI/gSZ/00XZPxGUpmleseKMYRjAvDJdV8rssAzrcS4DQimk3B29MFOkQjk+zg8AKOqFUgVaxnIuZV12xKfESZB1GTlbXAaFIFJyClOFSes/WEWKLefSOn5IDCElpzzVYku9eQXnPiXOZmePDwNnixjqL6K5VcTTP57A5LiKgcAxhJo4XNN6DfaN7XVyzTmWd4SsYqgQfdb+Jovjjrg0TGNBF6RIKoJapaouhUKhUChXI4s62WrPnj349V//ddx0001Ys2YNXn755YptvvOd7+D222/Hpk2b8PGPfxyHDh3y/D6VSuHhhx/Gpz71Kbz77ruXauiLipgv7vzMs3xNly3ui4NjODT4G2vuKyJFwTBMhWBlGAatwbZF4+DFfQ0LEv46E6XKuYv6MaoJGfdi+cwoC4vbpQO87XfcC0hzCYslxXuKWikslmd5Z39ucWmYBtJKGjzLO9ET5W1HOJZzfkcKAXnDYknorejkiRKh1rnEet/QQBG6biIxpSIlnEdWGENzNIpl0RXw8/7SeTIl51LVFYii9fOUPOlsQ8T4bGiGVte2skacSyouKRQKhfL+YFE7l/l8HmvWrMEjjzyC3/7t3674/VNPPYX//b//N/7sz/4M11xzDb7xjW/gV37lV/DMM8+goaEBAPDiiy+itbUVp0+fxuc+9zk8/vjjCIVmbsBdC3dez2KAjGe2cTX4G5y8OpETam4f98fxc+s/PWMl1bZQK35u3ac9Tdjfr7AsA8OwGtcvtnujHliGsdwjlq06/nrvL8rihGM5MAygmSoYBhBcz77A8aXvBF6s+zMOiAEwDKAYRRjQwTCAyAvO/iRBAssykAQJjAKYMBASI+BYFgwDmIzhHJdhGXAMhx3tO7A0uhTJYhKD2QEY0J3xqKYChgH8gs8qwsPA+X33Uks4Dg0UkU3rGOd7MR09BtFkcPu6G8BzHAJCANNy0j5PAbw9Ts1UrXFKDIqK7IzJZIxZr4Vu6PjuiW+hOdCC+5Y/UHM7VVeda0SOR7m00O8wysWE3l+Ui8mVfH8tanF5yy234JZbbqn5+6997Wv4xCc+gY985CMAgD/7sz/DK6+8gp/+9Kf45V/+ZQBAa6sVprly5UqsXr0a586dw6ZNm+Y8Fp5n0dg4P1F6sYnHgzP+vsEMIj4ahmqoiEjhRXseVxqRcACKrkDipCvymobDfggag8bGMCJS7fHPdn9RFifR0QAMQUYoKiAU8iEeDDn3aZaLITRtOX9NDZG6718hZCA07oMQAMJRCaGQD42xCHShiCKXRUssjsbGEFqm48gzKQBAW9iKhMgyPkSiPoRCpeqyHMuhs6UZnWjGkfEjCOV8CEVKz5M0yCIqBtHSHIVhGgid98Ev8WhsDKEoDCEQMTE2pCCZKmJcOoYVPWH8yWc/iZ5YDwCgNd2ANKYAAM0NUShCFuOaD8GIdU18fg6paQ2SKMIE8N6eDHbuCiMWr91CKFlIIhTyoYD0jNctI2eccw1FxCvyO+JqgX6HUS4m9P6iXEyuxPtrUYvLmVAUBUePHsV//s//2XmNZVns2rULBw8eBGCFxPr9foiiiLGxMZw8eRLd3d3zOp6mGUinCwsx9AWDZRnE40EkkzkYhjnjtrzmQzKfgagFMTWVvUQjvLrJ5xQUtSI0HlfkNc3lFBTUIpKJPFSxMrR3LvcXZfGRzynIFooYm5xGNltEGKpzn2ayMrJZKx8wk5IxxdR3/6q6jmy2iHEtiSbW2m8uoKJQ0JDNFlEUDExNZVHMGc7+NZ5FUS8gmy1iMpF2XifOJbm/smlrTJPJNKZ4azxTqRQkTnLGnc8p0IsZHD9/Fk+ffRJaZxv04yvx2GvvwGRMrIisQlBvcLZX8qbnPLM56xjjU9bYecFaEU4kCjh9Io9DBwbx0mPT+OgvtGPlOusPekqexuGJw9jetgN+3o+hzJizz5me+8nCpLPdpJjClP/K+4640qHfYZSLCb2/KBeTxXp/RSJ+CMLMveKvWHGZTCah6zqamrwFWxobG9Hf3w8AOHPmDP7kT/4ELMuCZVn84R/+IWKx2LyPuZg+XDeGYc46tqgYx3huAhzDL9rzuOIwGZim9f8r8pqagGkChjnz/VPP/UVZhJgsTNPK+zNNgAXnfI4seNgdOjyvzwbH8GDBIa/koWias18WHEzTqjhtGCYERnD2H+ADKGoFmCag6brzOgwTHMs59xdj70PVVBiGCc3QoBsGBEF0xscxPFRdQ1bOwjSBWKuB0eM69vYdAQNgU/sGz7mIrM9znkzZNRF91qJKalrD+bMFrOR15HMGfvTNUfzuF5aBZRmcSpzC6eQptPhbsTK+Cik57exzpuuWVwrOdop9TpTLA/0Oo1xM6P1FuZhciffXFSsua2H17bNWo7dt24Ynn3zyMo9ocRCTrKI+c6kMSZkZcp9d6QV92MVd14syT8jnS1oQ8Z7elqVVx5mqQ1fDx/uQU3NOJVfe7nMJWC1DAEDiS6GvAT6IJKy8R9LfkkCqTwOlYj+kWmypdVIpRJVneeTVPFS7mFBDC4ez/CSKehFhtR1draXiZQDg590huLxzPMV+vyRZ16j3SBaGCWy/MYJkv4Tz54pITKhoahWddijkmFklg3oglWI13cTrL02gYXMGG7aE63ovhUKhUChXKlfsrDIej4PjOExOTnpeTyQSFW4mBU4FWPekj3JhXOnVVklrhyt1/JSZYe3PlYiiWtViuTkuOPnsCqxZJWvvi3f24bMrv0qs5GwfFILOPeZuM2Idu7L3pm63OFFsUSdxLnFpn0PRFm7xZg46YwtFI4SGJq9Q9vPu9iucczzVFq6SZI0rk9LBMsC2nWF02VVoB/utY5BWJqQ6bqZOcVm0K8UeO5jFyd4UXnhiCqZ5Za0+UygUCoUyV65YcSmKIjZs2IC33nrLec0wDOzevRtbtmy5fANbpLQGWrGr4yZc07zlcg/lqsFpRXKFPkaOOKZ9Lq9Kyp1LzuNczq/PJVByAycK4wCAoBhGULDyE8Oi5cyJLkEYEALOPWYYtZ1LMj7HubTFnOAWl/a4C6qV/86JBqIN1r59Eg9/wJsH4nMtplmtSGxxabuu0QZrf+EIhx03RhEIM+haaovLPktUEueStBPJqiVxWa0dSS6r4cSRLApqEYMDBfSfKcBgNCSnVEyNqxXbUygUCoVyNbGoYyRzuRwGBgacfw8ODuL48eNoampCc3MzPvvZz+K//bf/hg0bNmDz5s34xje+gWKxiIcffvgyjnrxsjK+6nIP4aqCuDFXqvNHncurG6enoxO+WukSlv9cD6QvZUq2qsHGpBia/c3oCHai0Y6QcIu6oBByxlIRFstWCYs1SFisJepIqK17rAUtb+/PQHMHD5wFYrHSdgQfV+pz6QmLtftntrSLuPuhRogSC4ZhYJqG0z9zcMASl6lsDqd6c1h5nYLklIq3dg9DMzWkkyrGfngad/8nEUu7YohKMYwOyfiPrwwjPa0h39mPvqwlRBvaWOA0cOp4Dk2ttSvRUigUCoVypbOoxeWRI0fwC7/wC86///zP/xwA8Fu/9Vv47d/+bdx3331IJBL4h3/4B0xMTGDdunX46le/6vS4pFAuJk7O4hWacxkQAsipuYrG9pSrAwbEuawMi3ULSm6On79bOPp5PyRb/BFhCZScS57lIXKis4BRLi55lgcM8rMl/HQiLm1RLLpcVrJNQSvY2+pobhcscRmvIi7dzqVLXBLBHeADYHylKuC6qSMa4xGKcBgblqEoBg4fSqD3ZA5tbBLnUudxuq/kXCYzOXz1+adw/wdX46amu/G1fxyEXDQQinAYSObAiMC2GyJoCPsxfBo4dSyHnbd680LdjOVGMZobwTUtW2tus1hQdRUJOYHWQOvlHgqFQqFQFhGLelZ5/fXXo7e3d8ZtPv3pT+PTn/70JRoRhVKCTN6ZKzQs9gNdt0ExFI97RLl6KHcuy3MrBVaAaqhzdi7dbmBMilXdhriNJFyWuOR6WRipe2GmFBZLci7tgj7VwmId51LHklUiGk7wWLcxUjEOlmEhcRJkXQbP8OBYb6jwqvhqNPtbcD4zgJPJXhimAYZh0LXEhxOHcxgeKGJ8MgcAOH40hWBmDEKUwZbrIvD5WaRf1nFqRMbIaBZvH52GXDSw9YYIHvhYC/71xf1QA3HE4gJ4BvAHWPSfKUIuGpB81b8z3ps4gNHcKJZEliLmqy1CFwOHJ9/DkcnDuGfZ/WgJtFzu4VAoFAplkXBlzooplEXAlV7QR+REhATa2P1qZaZqse5/z1VcuiuwRqXqAigkhLA8tgJrG9Z7xkJcyfIxAJVhsU7RHVdxIMERl5bbaJg6fEHgxjsasHxF9UqsS6PL0RXuAsdyrpxLy83lWB6d4a5SMSFb2HYvswT00WNJTCetbfMFBbKZR9cSH9o6JMTiAnbcYhUM2vNWEnveSIHlgNvuaQTHMehYziIWFyByIgzoWL0hCF038eLPvEXo3ORVSzTnbfG8mEkraQBAXs1d5pFQKBQKZTFBxSWFMk+u9FYklKubipzLsvDXVfHVWBVfPef7l1SLBYD4DO7aTZ0fwJqGtQDczqU3LNZ97FK1WEtckkI6AldZ2ZYIUN3UnX2ybPXzuL79Btzec5f1fifnUvH8uzwndM0Gy3F9581xmCYgiAwMRoPC5rBkeen8l28Q0NgsIDWtQC4a2HJdBJEYyQstgGd5+DgfDNPALffG4A+yePf1FI4fylYdKxHNRGTOlYySxlNnn8RYbhQAkLbzYuthLD+GJ888Xvd7SBVdvawCMIVCoVDe39BZMYUyT2i1VcpihtyfslMt1hv+vKVlG3Z23Djn/ZKCPgAQrREWWw7jOJeWeAuLYTT4Gj15mkTokWqxxF2U3AV9GO856EZJXNaTO8yVvb9cXJp22G5Tq4imVtFpJ7J8tR+xJgbdq1iEo6XcTQ0Kdt4aw/qtQSxb5cctd1v5/oZpQNEVSJzkhPIGIsBDn7DyE/e+WSngNENzzjmvzc8NHMuNYbIwgYFMPwYz5/Ho6Z/gVPJkXe89OnkIieIU+jP9yCoZ7Bl9xxHh1SjaQlg1qLikUCgUSgkqLimUecKCOJdUXFIWH0xFtdiFSbF3F8mplXNZMRbSisQWgivjq/Hgyg9B4kvCkWEYcAznqhZr51yypZxLd39OwHYubcFaLhyrUS6wyXvI/3XDQE7NIa/msW5zEDpjjaGxWcRtD8Zw871WXie5Booug2EYrNrgxy/+ZheiccEzdonzOdddM1QsWWH3CM1UCrKCKxQ2bwu3nJrDD3q/W7dAJEK7qBWRlJP2Pqq7pG6KWhHD2WEAltt5bOoYjk8dw/Gpo7XfY/caJYKYQqFQKBSAiksKZd7QsFjKYoZFWc7lAlUF9vN+8CyPkBjy9LOccSxl1WJruf0cyzliUbbFi+Q6RnlRIrdzWU9hKqbsWSWhtCQXUzd1/PjkD/Cjk9/Hus0haIwMhrH6YWqG5lxLP2/lWhbt0F3S71LVVZim6Yzdx0sQ7bBe1VDh87NgWCCX9YYHAyVBCQAFOyx2uphEUStiLD8667kBpXDhgpZ3eoGWhyJXYyDd75xDSk5hWk4AAPrS56purxu6cy3K82gpFAqF8v5mUVeLpVAWMzQslrKYIYLOXbxmYfbL4o6eu5xwz3ogCzGaLRxrLcjwLO/kHZL/EyEHVHcuiaCqp6VKucCulXMJANFWHUvW8pBEP3iOgWqoLnFpOZCkF6dpmtANHT859UO0hzqwpmEdAMu5JKJNM3SwLANfyEA+Z72HYRicO5XH2ZN5LL+xFAqbd1XDBUrhxLUYyQ6jyd/sOMNFrYgCZ+/DMGZ6KwDgXPqs83NaKYXspuQUksUE4j5ve6+CXhLC1LmkUCgUihsqLimUeeK0IqHOJWURUsojNAGUekQuBK3BtjltX17Qp6a4ZHhHqOXVPERO9BT0qXYOmiOeZ38Oy0PYy8NiVVeOYUKewi0PhHB00qpCqxu6E2JcLi4N00BRL0LWZSQKU87rIic5zp5mqChqRZyKPg1O6USxsBySj8Vj3x3DdEKD1pIGbB1NKrASYTpT0Zwjk4exf2wvVjeshWSHEBe0AiQ7dNeYxbk0TRPj+TFInISAEESymPD8vi91rkJckmI+1nlR55JCoVAoJeismEKZJ9S5pCxmygXcQoXFzgcyFiJ02Bp/eoi7WtALUA3VEXHO76ucg1xW+XUmyrch+ZBO/0uXCzdVmIRsF/QBLGFMRBXJuSQFfwwYTjGgol503idxouPwqoaKtJKG4DNQ4JLIZXWcOp7DdMISZ6fOlERdUS/CNE3nes0k4I5MHgIADGXOO+Jd1mUn13K2sFjVsEJ5A0LAk0NLFhAGMv0V7ym6QnipuKRQKBSKGyouKZR5QibMNOeSshgpvy8XKix2PpQ7l7V6wxKxl1UyAFAhLsvDYoFSwaJ6zo8tcz5JriXj9AQticlEccopWkPGW9SLEDnROZZiuMJi7XNTdMUJG5U4HwRXQR9ZL0KSWOisjHxWx543SiGoZ84lYcJ09lfQCtAd57J6aKtpmk6obpO/GZpLSGYVS1z2nc3i6MFMzWtSym2VEBEjOLQvg94jWXSHexCTYkjJKWTLigK5nUsaFntloRkaBtL9TkQDhUKhLDR0VkyhzBNa0IeymCkP116oarHzgTwrupNzWUNc2mIv44jLgPf3Vc6hvGflTNRqReKExRqlsNjJwqTTazNgj8M0TQis4LjA7lYdmuEWdtb4JU4E7xT00SBrMkSJhcoUMTIk4/SJPMJRDq0dIqazOWTTOiKiVZE2r+UdwVrLHUy4QlgZhoFRlpspF3W88uwkfvytUeh6dTFBnF+Rk4B8CP1nCjh1LA9RC6M91AEAGM2OeN7jzrkkYcmGaSBZTEDVqdhczPQmTuCV8y958mwpFAplIaGzYgplnrBOziUNi6UsPtyhpyzDVnX9LhVMWcGcWnnKJIQ0WbTaaASEcnFZeQ4XJi690QeKSxgVtaKTfxgUQs7rIic6+/GIS1deZEq2HEnLuSyFxRb1IkQfC5MxcPLENGACq9YFsWZjCBpTxPiIgkZ/EwCr4isR47XyJodzQ87PQ+fzeO9AErJc2rb/TAGaocPQgVRSg2ZomMhPYDw/7jhXxK2VOAnTg9ZYTQAjJ0S0By1xOZIb9hzXGxar42zqDL57/Nt44sxjeG3w5apjXQhoCO6Fk7PzeacKk5d5JBQK5WqFFvShUOYJEZU055KyGHE76g2+xsvqsDthscbMOZdRKYrzGWDUFjOVzmWlgHRakcxHXLJe59IdFgtYYoZneUhcqR+nwIpViwe5W3Kk5GkAlhso2C6fZqjQTR2SZL33XP80gCAaW0QsXemHuruIwbMmwjdGAQB5NT9rzuVI1hKXJky89uIE5DyDnDSFcIRHJMZjfEQGz1jXcGwii1eTLzqu8E1dH8Dy6Aon9FfiJAydE8CYLHhTRO8BFTfc1AaWYTGcHXKq2wLlBX1UDGUGnc9hKDuErJJBSAxXHfN8mSpM4alzT2BD40Zsa92xoPt+P0HceXKPUigUykJDnUsKZZ4wNOeSsohx35ctgZbLOJLKVh+1npmYLw4AmLYnvoEycTlTXmU9fS7Lt2HLWpGQMNiQGHIcx4gY9VSsFTmhamEhd+4h2Y+PlzwFfWRNhuizjpUpWK1CGpoEtHUJiLWaKKYEDPZa+yjUCIvNpDVMjFoCgeRCZtM68gUVot8EyzJITWs431eELJswGStf882BN5FRMk5vUuJgEfdVZEUMnFGwJL8La7kbMdhXRHbayuWUdRlJ2VVwSPO2IiGivCeyBABwNnUGgBVGvFBu43h+DKZp4sjkYZzPDCzIPt+PkM97mopLCoVykaCzYgplnrC0FQllEeMWcM2XWVyWu/u1QsnjUtzzb39ZWGyt0N655JO6r0upzyXJubQEYmeoG59Y+3O4b/mDuL3nTk+lXZGTqgpZvYqIEjnJGbNmaFZYrGT3/GQtQdbYIqCgF7B2UxC84cP+14swDNN2Li1haLgK+vzk26P4178ZQD6nO0IhMaHCYHQsW+PDPY804a6HGrH1ujCWLPdh3ZYAsvwYziTPISgEcU3zVs94iTAsZjikpzWsbO/Grh1LAQC9R7JoDjQDAKbtUGUAjttJzovkba5r3AAAODN9GgDw3sQB/KD3u8go6YprM1fSrn28NfTGrL0/Z6OoFT1hze8XSI5sXs2/L8+fQqFcfOismEKZJywNi6UsYtxFc5r9i8O5dP5dMyw25tk2UFYttlY7lblED7iFqNOKxBaXxGXjWQ4sw6LJ34SAEPC8R2DFqiG4WpnYYRgGIluqLGuJMNkJi9WYIsAA8UYBicIUGppELOmOIZtgMHDOasXiOJeufM7RQRmqYmKw3xIHPt6HqQkFJjQ0tXFgwMDn49C11I/NOyJobhcgs2kUsjrWNqx3KvCSfZN2KuPnrRzMpSv9WLkuCAA405u3Cv3AKkhEyKt5sAwLiZPs87LEZpOvCS2BVmSUDKYKUxjPj0EzNJzPnPdcm6HMIN4deccjmmcja4vLoBC0+omW9eOcK0+efQzP9T1zQfu4EnG326HuJYVCuRhQcUmhzJNSKxIqLimLD7fYKS+Mc6kpX4CpJQZZhnWqpQKVOZccyzmup9vFrCffstpYaj3D5SLWLS5FVqganusWgNZ2IhiGcVqRWGGxxZK4ZIuIxnjwPINDE+8BAB66bQtYk8WpYzkoqua0ILF6XhooFnUU8tZr/QNW7mSAD2BqQoXJ6og1V15XX9AKjc3ldPAs77iu5P4g7VT6TliiY8XqALqW+CCIDPpOF8CZgr2dAlmXcSJxHLIuw8/7IXACdFOHrMvOvpvsgkQZJY2CHT47WlYQ6MWB53EicQzn7PDZeiDO5dLoMgDAZGGi7veWo+gK8moe03Jy9o1roOoqxvPj8z7+Qri580F1uZVuN5pCoVAWCiouKZR5Qiap1LmkLEYWU2XN8jDYmZxGkncpcmLVcFciKn28z3mtnnzL8m1ZhnXGUVnop1xcloSswNVyLr0tOEgRIOL8FbUiinoRvMiAYQCNkdHYLGAg049EcQpN/mbsWLMKazdGUSyYOHE05Wktohs6UonSZ3p+0BInhRQHJc8g3MCA5SudQMnPAJyBQk4Hz3KOcHaHxSqKgcFTOvxBFstWB8DzjFVkSDExOWLtU9NVHJ08jHdH3gYAhMWw81kouuLkcgYEy/XMqTnkVSuvdCw3VtWlnCrM7j6enT6NglZAVs3Cz/udCrYXIi5JzqhhGk5+7Fw5OLEfz5z7GSbnUXX18TM/xU9P/dhTGKkeLjQUGLAWCQjUuaRQKBcDKi4plHnC0oI+M2PUH/JGWXjWNKzFusb1eHjVRy73UCrd/Rnc/pgUA1BZzIdAhJ3ElcRlrXDZmd7vfm7Ln+FyUet2SSVOclqYuCkX80RUBvkgOIZDWklB0RUwYCBKDHRGRkOziDPTpwAA1zRvAQDcencjAODo4TQUrbRPzdSQTJQE7OBwBiePZfHcj1NgwKKpjYNu6mAYxjN+AzoCEROybEJXObC2uHaHxY4OyWB0EeuvCYHjrM9mxRrr+o/02SLUUB0n8prmLbi561awDIezJ/OYHFccMU0+t7SScnJYVUOtKsLSyjSKWhEHxvbhmXNPVRTq6U/34Y2h1/HD3u/BNE1EpKjTqoWIS9M0rWq1cxBeBVfOaMEWwHOFVN1Nz1Gg5dW8I7rzWq7u900VpvCd49/E6eSpOR2vHHcf0tQFOLcUCoVSCzorplDmCRWXtQn87f+HpqVtiN19C9ihwcs9nPclPMvj2rbrEXaFmV4uKsJiZ/jTE7OL+tQK5a3mXLJzCIsl4tLtPpa/v9yZdLdAEVihqqNannPp4y2xxTAMIlLUKZ4SFIKQJBYqW0Rjs4CcLTSa7MI5bW1BtHWIyOVVnDlZEh+6qWN6ytXuJF1A75E8JE7C2g0RrFjvg2Zo4BgOETEKyS4mZJgGghHr+ufTpiPENZdzOTxQBGcK2Li11D5kuS0uh85q9vaqcw5d4R74eT/GBnQcPZjF/rdT4OF1LsvFpDs0lnx20/I0Xht8GYcnD2E8P+YUAiKUO3sRMQKJkxCVosgoGRS1Ig5NHMSLA8/j3dG3ne2Gs0MzVpR1C0p3caK5QBzPnOYVp4niFA5PvFdT7Pan+5yf1TlEF4znxwAAJxLHndcKWsERqr2JEzg+dWzGfRimAd3UEbQ/o/RlCs2lXJ1MFiZpkSgKACouKZT5Qwv6VEV44zUE//cXwBSLEA4eQPi3fx2wG7ZT3qfMISy2LdiO5kALlkaWV/09CVn1cfMLiyVC0v2e8vGU788dFityYlUxWx4WK7p6Y0alqOdnycdBY4poaBaQV3PgGM5x/jiGw/K1AZjQceRgCoZhPTu6oWHadi59fhY6Y03irt/VjC3b4uA4BqqhgmM43Lnkbjyw4kPgWA66oSNgry/kpk1HKOt2jujQSBZTowYiEQlLVpQKKDW3ivD5WUyNGDBNE4quOCGVIidA100c3mM5mXLRxOSQFalAFgVIPiNxook4IucIWC7eaG7UCaktuFqcVIP0zmzyW0L89PQpHJ48BAA4lTyJRHEKAPDm0Ot4ffDVmvtxC8q8Nj/nUraFL2npQtg3ugcHxvfjpYHnq76vL33O+Vmdw0S8YI8zUZxCWk4BAF7ofxZPn3sSAHBgfB/2je2ZcR9k4i9xPoicOO+QYAqlnKnCFJ46+wQOTRy83EOhLAKouKRQ5glxX6hz6SXwT38HAEj/w5egrV4D8Y3XILz84uUdFOWyUu5UzlQES+RE3LvsfqyMr6r6+6AQAMuwCIkh57VqYaq1IMLR7U5WOJVM7bDYmtViywr6SC5xSQQWAPh4P7o7I/BFVHT0WBN8v1ASdRzLoaFJQLyFxfS0jPf2pu1+kTqmk5a4XLMxCI1R4A+w2LKtwRHcpmmCYzn4eB+CghWOq5slcXloTw5Kwbr2r70wia/87QDefXsCnCng7oeawLKlz4VhGDS3iTBVHvmcjrffnMTxo5ZgFDkJB95JI5MwIIrWe3oPqvj+10bQu08DwzAw7QWl1mA7ACCrZJ19k5Bcwpr4WgAlAUVw5wcCcIo9EXG5f2wvDNNwQmX3jVriStZlaIZWM+/Y3aezoM4saGtBBGq+TFwSgTySG8Gp5EnP77JKBhOuIkDl5zecHcLRySNVj+cW3n3pc8ipOSSLSeTUHDRDg2qoMEzDE/ZajupaHPBxvhmvEYUyF0iI9YUUyaJcPdBZMYUyTxxRSavFOrDnByC8/CL0tnbIH/0E8r/3BwAA/9e+cplHRrmczKWgz2zs7LgJ9y57wFNJdi59LrkqRXwqnUrv/twFfkSuVlhsbXEZEaOe1zdtbMZt9zVC4UnF16Dze5ZhwTEctt8Yhi8IDPbJOH0i74TFGtBx7a0htC1lcM21YQRFv7e9iksYk3PsXinAH2DRf1LBd748ikxKQ9+5LAb6s8jndHR2hrFpeykkltDSJoI1eYwOKTh+dBr79yZgGCYmhnQ889MJcBCw46YoJInB1LCJ4+9l8eozSY+rHBEj8PE+ZNWsIzjLQ0ZXxldB4qQKoVfu7BFxuSy6HKvjaxD3NaAr3IUPLr0XPt6HkdwIFF1xigfVCtFzh9uWC9p6MEzD2Xe+LGfT7XKfz/R7fne2rDqupnvvmRf6n8O+sT2OA+vGPc7+dJ9HpBa0vHNtZaO2G6nYwlNgRUh2aPJ8woIN03COR6EApfDw2aIPKO8PqLikUOZJg68BAiug0dd4uYeyaJCe+RkY04T8sU8CPA/53gdgNLdAfP5ZsGOjl3t4lMtEva1I6sHP+9Hob/S4lfPJuWSZmcJiy51Lt7iUqjqXeoW4LAksd1isj/MhYDuVU3Zeor+snyfHcPAFgZs/GAMAnD9XhKarmE6oGI3sxVuZJ3Dbh0JobpUgchL4GkKZ/Mz7dNzywQZ0dgUwNarj8IEMDOhYvUXAyrUB3HRLa8UCAAA0t0lgTQH9ZwrQoUHRZSTGDfzwa2PQVBM33NyIxiYRK9YGIXIS/EEW6WkNRqF07gEhgJAQhmEayNkFbNwub3OgBWExgoAQgG7qHkFIejIyDAM/70dYjGCwr4jzp1Xc0LELD674EG7vuQs8yzsCPaeWHFLVqC4u3RPg+YgrtzgtL8rjPqZbRJumidN28aZ1jevt81OgG3pFbmlKTuFkohfvjrxTMeagEESymMTJ5Annd+7QXGWGUNeScyk6CwCyNrfQWEVX8MPe7+EdV44rheIUqZpngSzK1QUVlxTKPGkNtuGTa38eHaHOyz2URYP4nNWUXL77XvsFEcWHPwLGMCA++fhlHBnlclIu3hYiT5mdIay1nveVu5XuMc4UFkv6V5afU3lxFpJHCFjOJRFvEudDULBcwrG8teBSrZ+nbugIx1hE4zxyWR3nB/IoFHQY0UkU9aKTwyhxPo8Y5lxjZ+w/8YouQxBYXH9TI1hwmBpXYTIGtt8SwLrNIURDXnFLaGkXwYJDPmPAYFTojIaj78pIJTWs2RjElu0xAFZl2f/8X1dg2/WWiE6Nlq6tnw8gbOdK5pSs43qFxTB2tF2HXR032ttZY3A7dMS5vLPnbnx45Ufw+rMpfPXvz+NbXxrG+IhXFImc9RllXeJSqREiWrzAarGy6/1FregRkW5xrLvar4zmRpBVsmgNtjkLkpqh4o2h1/CTUz/0hLNmlQwOjO/DicQxZO2qtAWtAJZhsaZhnb2/0mJd3iMua+dxkt8JrOgUVZLnKK4zSgayLqMvdRamaTphuZT3N+QelHV5QVrmUK5sqLikUC6Aaqv971sKBQi734QRj0Pbca3zsvzQIwAA6fGfXq6R1QXbdw6Bv/trcKcvrNQ/pZJyMcksQJ6yJxR0LmGxTs5lmVvpEqh8mfAkgo1juKo5m0CpQA4Jhw0JpTBTjuUQEqwcUYmXHCdzxK6gWl4Zl+RKGqaO9i5rf+++lYDMZiAFrXBE0gpDKuu7Wc25JLl96zZG4PfzYEwG/hAQbTI9Yy6npd0SyKwpQGMtMafkrOt2ywcbILgEtI+XsGyVJRCTQ6VrazmX1rln1YwjRHiWx/rGDYja+ahEYLtdRdLKROIl9L5XxKvPlvpivvmSN7eLFFBy53bWcvE8OZfzCOMrL4Tjdi/dQsv9MwmJXRVb5YTOKrqKlDwNzdBQ1EvjGMoOOceYlqdhmAaKWhF+3o/l0RUVf3fcFWtnKtJDnEuB5Z3PfK7OLdmHoivoT/fh0VM/xptDrzvnmKEVaC86pmliuri4chsLnmeKupfvd6i4pFAoC4JwcD8YRYF6w40AV5rgajuuhd7eAeHttxZtaCx3shcNt+5C8C//F+J33ATu+Mwl/Slzo9zlW4giWDO1EqnnfeWC1D2myrBYSwwInODaxntMIiS2tmzHvcseQLPdWoRARJSP9zsFfkg4ZKAsLJaMTdEVtHdaIuDMyQyK3DQiUe/YRE4qy7l0O7qssx8A8PtEbNoeBgsOrd2ck5/ndlndBEMc/EEWHHgEghwiUQ6sKWDZKj86un0V/T97lvvBssBYH4PXn0/g3Kk8AnzAqfKaUUrikitzh4lz6a7eSsSlyIo4+K4lWj7y6Tb4/CwO78sgNV1y+4hYyqoZ57XygjmEglaAaIvy+YjL8jBWEgpomiZUQ3Wup+EqXERyJLvCPc7vVUNxxKBbiLor66bklDNGPx9AQAigI9jhOX6uTueSuOsCJzph23MNi3Wf+57Rd6CbOs5nBnAqeRJvDL6GPaPvzml/VxspeRp9qXOzb3gB9KXP4fEzj17048wF9wJLnuZdvu+h4pJCoSwI/LtWDo563Q3eX7As5Ac/BMY0F2dorGki9LufB5PPwQiGwBQKCP6v/3G5R3VVsZAFfZx9sJUiqh6q5VyWj6k8LJZnefh4n6cwT7lzScSByIkVwhIAtrRsxZaWrWjxt3j2A5R6Q5bGYu1bNVSEIjwiUQ4GY6BtjYxV67zbSpzkEcPVwoVJgRuO4XDLBxuwel0EK9b5PK0pqsEwDFrsvMuGJh5dS/3gGQEfuLvBvi6lY4mcBFFi0bXUB7Pow3RSw9AZAyzDOmGxWTXrOLzl7rDjXLqK+pDxyXkWZ3rzCIY4rN8SwrU3RWEYwCvPlJxMInTdQqtaqw9SIdXP++EX/JB12bk+9UIEIblnSC4pEcNEKJOquKquIq2kERJDEDkRAis650f2pRpa1UiYlDztEpfWfkloLKmY7A6LndG5tK+HyIpOH9Z6w2J1Q3fEM4GMyzANvDOy2xnvXDFNE32pcxWinTBVmMKYHQY8nh/HaG6k7n2/O/KO067mUrBn9B28NviK0y7mYkCu8WRh4qIdYy6YpulZpCmvoEx5/0HFJYVCWRAER1xeX/E7+cGHAQDSk49d0jHVg/DObohvvwVt7TpMHTsDvbsH0ovPg+3vu9xDu2ooD4NdiJxLbxhr/WGxTs5lmTh0O5Hl+2MYBg+u+DDu6Lmr5jZESNQSzg2+Rmxu3gKGYRAQAh63sFpBH6AkWHfcGMP9H2vEljsAXihdO5Gz8j/5GteiXGgyDINQmMeWHTHwYilsVGSrO5eAnXdp8og3Cli+2o9PfWYJlq0K2MdyO5fWPm75YAPWrW0EzzOQUyJ03SyFxSpZT1isG3INpoqTeOLMoziXOuv0Du09WIRpAhu3hcFxDHbeGkcgxOHA22nsfiWJn/1oHNkk4xyDoBiVOZckJNbH+x1Bezp5ChP5+ifqRJCR8GbiXDpOKyeBYRjnnkja7RnikiXKSYGoglZwhK2qK1UrsKaUlBNm6LfDp7vC3fj4mk9hTdwSmfUW9CFOrsAJzoJCsY5el4qu4MenfoC3R96qCKMN2gsj5DyyaraqWM8oaQxlBqvufzg7hNcGX8GRGiLwZ2cfx7N9TyOrZvHSwPN4aeCFuqrVyrqME4ljODp5eNZtCSPZ4QsK7SXh6tPzENn1Qj4zcqzLTUEreD4PWjGWQsUlhUK5cAwDwrvvwJQkaJu3VPxau/Y66G3tEHa/CWZicay2Enz/9q8AgPxv/BfA70fxox8HAEiPLe4c0SuJhawWS3C7lXMp6MOxla1IAG8vzmr78/N+T1hsufNJhEW95xZ19b4sL+hT7uoFQxw6lglIFhPgWd5x6UgoKM9Wth8Bqudfurch4Wvu8ypn121xbN4SR9cyPxiGQThYcjk9hY7ssaxYE8Qv/OIaNMT9kNQ4kpMqAkIQDMMgo6Sh2cU+aoXF9qXOIVlM4nxmAIquIJc28dZLlgt0zbWWAxoIcrj3EcsdfvbRSex5I4Wnvz+NbEbzhsVWcS4Ltjvm43zOMd8eeQuvnK+/Fy/ZR4NdmMcRl44zKFh5s/a5JouWwxr3xa3rZgtxt4gpdxBFTgTP8pZzabu57vBpH+9zFijqLehDigaJrDssdnbnciI/jqJWxER+vMIN3tKy1RHZpL9ptkz0jGSH8eSZx/HiwPN4e/itCvFJQqHTs4i6t4ffhKIrdo7q7OMmCw2KrszY/5NQ1Ip4YeA57B5+EwAwkZ+Yc/VTsn1KuXjOJVlAcN/r9aLqquMCV9+3MueCPOTzI847zbmkUHFJoVAuGO5kL9jUNNSt2wGpSnEQloVy/4NgDAPS009e+gHWgMmkIT37FIxQGPKHrMJDTgGiZ352OYd2VXFxxOWF5Vyy5UV7XIV66inUVS5Aycp93eLSDo3lWb4i57GaEztdTEI1VMR9DYjYk3ki6DxhsVVEZOXP1vbExZvJuYw3CrhuZxN4jlS7LW1LjsswjOccfLwPd7U8jLbCZkyMKWAZFkEhiIJWcCbGtZxLQkErIJUpYvfzWWTTOrbtjDjFjQBg49YQtu+KoGupD+uuCUHJcXj39ZQnh1DRZbxw9gW82P+8a795e4x+z2dV0Ap1h3QSIRj3WU4kaX+iOq6sAJZhHRFFxCURo+R6u0NYyx3ERl8jwmIEiq4gISfsa1S+CMFX7Mf9M6mcq+oqzqXOOr8TuFJYbD0ibapotcyxPj9LXG5p2YqNTZuwNLIc17Zdj9UNa7E0sgyAVyRO5Cfw4sDzTi7qyWQvDk+859k/GYO7jQzBLXSGs8POzzMJmLH8GKYKUx7xXt4yphp5LedUwC1oBTzT9zO8PfLmrO8jFLWi41Zn5ItX2MgRl0rl9ZqNI5OH8Gzf0xjMnK/4nazL+MmpH+LtkbfmtE+yuEG+03JqDqeSJz2OejkpeRqPnvpxTTebcmVDxSWFQrlgSEisVp5v6UJ+4EMAAOmJRy/FkOpC/NkTYIpFKA88BPjtPKn1G2A0NYM/uB/I0dyRheBiFPRhZwhjrWcs5XmapG1HeaGeWhB3cb75pMS5DJQJBmsflWNIFKcAWIImIkYAAD7iXDK1CvpUv0a8KywTgKfqazXcDqXgEqIkvLOaOG1vD4EFh4lRS4yE7eq5JFyQCNN3Xp/G1/9pEJkp7znn1CxGhwvQFQ5brovgwY+3eK41wzB48OOt+JXf6cbHfrENXV0h5LI6pqdKDpWiKziXPIfBzHkn7JXk9fl5H1oCrQBKn9noDI6OG+L2Nftb7HOywl7dfSRJxV8AOD04ClUxHOeSY7mK+0R2xmWJ3p7IUqfw05idY1guwKtddyI8jkwexk9O/hAD6X68N3EArw++iv50HwBSLbZ+53LS7scq67Jzz7QHO7GtdQc4lkNHqBM3tO9EzD4/Eq6p6ireGHoVhmlgR9t1uGvJPdb55L3XmYyhmhipJX7dubluNEPDi/3P4aWB5z1taWYSOs6x7HEUtSKyShamaSJf4zjVcAvYche2oBWcZ/hCKWokT1etmadaCzKGoexQ5e8KU1B0BQPpfmdhJKOkcWZ65grqxLls9DcBAPrTfdg9/CZeHnixZj7zUHYIaSXtVMyuF9LK6Goiq2bx+uCrFzVP91JDxSWFQrlghHesYg7V8i0J6g27YDQ1QXjjNTCJhfkje6H4fvQDAEDxIx8vvcgwUHfeCEbTIOx9f1c+XCjc+muh2ve4BdWcwmJdbUU8r9doMVJ7P9Z2buEF1N9mhYQS+oVKcVltDMSlCPB+571ilbDYWjmX3m2s10vOZe2wWMAbNut2KMlnUK2VSUubtd34qDUR9jnVYK0JOMewUBQDLz45hb7TBXzzH8aQSZQmjVkli1RSAwce6zYHZ7xvWJbBho2WsBkdLoVtppUUTFj7JBNk0vLDx/mxOr4G9y9/CLd132GN1VWldSaIyxiRIohKUWSUDPJq3tVHUgDHcjBMA6PDBTzxs7M4fkD2tKcRWAFTkwpU1Zp8E1ex0d+In1/3C1jTsNb5nFP2pLPcuay2KCDbY9g/thcAcHr6lCMO3e8TOREsw1aIt7yaR0qe9kzgp1zvJ6GYUpVjk0UPIqwOjO9HRsmgO9yD9Y0bEPfFwTIskmVtNMi5K7pSEdZbK4c0X8O5HM+PQTM0FLQCxl0iti5xaV8L1VBdbnTtMOOKMblCaN0uuGEa+GHv9/DkmcdnDFueCUVXcHTyCIpaEYpRuiZzzbsk249VKYpEFn5UQ3U+owPj+/Hm0BszFlEizmWT3wpVJ4IyUZzC8anqldfJPaJWyYuuRrKYwJNnHsd/HP8Wfnb2iVmLcOXVPHoTJ+rqwXp48pATKnx44j2M25WdCaZp4tDEQUwVLs68ZSDdj3Ops+hLL57qvxcKFZcUCuWCcYr5XFtbXILjIN/7IBhdh/js05doZLVhx0YhvPEq9NY2qDd9wPM7ZZfV2F3Y/cblGNpVhzssll2gPzuesFi2/n0Sx6jc7eRqvF57P9XFZb3itCXQirgvjp7wkorfVRsDccH8fAAxKW7/bAm2avmU1uvuPNJK0Tkf59ItLiXe5xQoKqfZFpfEuRSc/EBrAs4zPI6/l4UiGwhFOMhFA/0nvBPGVFIDawpo765ezdbN2nXWNRkblpHLasimNU9Rlb70OWiG5ggZiZfAMiwa/Y1oCbSCYZi6q5DKetEKBWZFx/2cKIw7E1nBzrkEgGOnx2BAx/R5CYbr9MaHdLz10jSOHrBEDBE2HMM7Qpo4o4A1we0/rkNRrJ3kczqSowbkojc/TjFkj5sVESNOtV4CcTwlToKsy46Q1AwNj5/5KR47/VN8v/c/kFHSTogoIW2He4pVFhSIuMwoKZimiXOpM2AZFjs7rO9TlmERlWKQdRl5NY+R7LBdMbc0XiJes0oGU4Up5/NqC7ZhaXQZ1jasB1A7LNb9GbrDaKuF3Jbjvm4lN3pm8SNrpevnFpeyLiMtpzBZmMSp5Enn9fnmI55LncW+sT04M33aI1Azav3ht4ZpOG7utDxdkU/qzhMl7jJZ1JpRXNrnFJWizncFceDfmzhQNW81Yy+Y1Cu2D08eclzXRHEKR6eOVGyjGRqGs0MwTRPHpo7gnZHdeLZv5rlGSp7GgbF92D++D1OFKRwY349DEwc824zlR3Fw/AAOju+ra6yAJYZnEsBpOYUnzjyGifyEs8h3NbVwoeKSQqFcEMzYGLj+Pmhr1sKMN8y4rfzg4gmNlX76IzCGAfnhj3r6cgKAuvMmAIDwVv35NpTauEMAFyIkFqgtqGYjJsXAMIynoI57XPWKS7Jdeb4kW6czK3IiHlzxYaxrXF/xu/JiN258vA/d4R7s7LgRG5o2WWOpIhyt/VQv6EPG7hZDM+EOhXWHYkqchLuWfNARD26CIQ7+AIvJcRWGYUKy30eECs/yOPCONTG+7yOW4yEnAmAZFiExBF03kU5pCPhEhCOzf76tLUGEoxwyaR2vPJ3Amy8loekl4aXoCgYz513tV0riSOAENPgaUdAKyChp5NU8jk8dq1nYpKgVIdkVYVsCLcjndLy175yT7ylwovM59A/Z7VKKPoyct35vmiZOHbLGMToswzDMqrmo7aEO3Nh5E8JiGLnRIB775jRe+tkUzvTm8P/98Vl88x/H8NrzCY/LqOgKzmcGPP/O5Io4eTSLdKr0eRfyOjhIME3TqSKbVTLO9VF0BUPZIY9rCZQWOar1Rg27nMtEMQFZl9Hkb4aPLy0OkNDgI5OH8Xz/szg8+Z4T5mmNwRIzrw6+gmf7nnKES9zXgA903Yr2UDuA2hNxd2ize3JfT2GeomufxLlzO18j2WG8M/K2K2Q0g28f+jZePf+yPSavO/rUuSfx1Nkn8O7o285riquw0Fh+rO7iOUQcZ5S0R5CVF0+aibya81yT0bxXMLrdVuLkETE8NoOrT5xLP+93FrzWNq7H2oZ10AwNxxNHK96TsRcRtDqcS1mXcT49AJETcd/yB8AyLA5PvOcJewaA41NH8UL/cxjMnnfOZaowiWNTlccnkO+jtJxC2hbX5dVuyb1QbwXgsdwonjjzGA5NHKy5TX+mH8liAgOZPlc49tUjLutPVKFQKJQqCLX6W1ZBvfFmGPE4xFdfBpNOwYxEZ33PxUKyQ2Llj3684nf62nUw4nEI+/cChYKTj0mZH27ncqHCYlmGdapTlvelnIn2UAc+tfbTFSKy1KKkvn2VwmLLxOUCrNl6HcdS7h5ghXMyDINV8dUVYwFqV46tlYsJzC4uRU9YrNexagu2V30PwzBobhMxcLaIyXEFAl+qbNp7JIvDx0YRTAUQjfNYuymESIyHPrYZ9/R04GjyPQyOJmGaQGvzzCGxBImT0NYhIZPKwzABRTFRLOgIhy3Rk5bTSCspxyUrD+VtCbRgqjCJicIEpotJHJk8jKAQREugFcO5ISyLLAfDMFB0BYZpwGfnLLYEWnHsYAbTAydhyBzQ7XUuR0etCTALHqdP5DA+KiM9rSE1aQI8oComklMqGgOWwOLK7ssVsVVYEVuFpw6NYxwpHDmQQWJShWkCoiCiWDCRy+oIhXmwDAtFV9DvCq+TdRmHDyXQezSP3qN5NLcK8O0ZxYnDWUy0pLH5Th2yLZbzTrEjH4paEYnCFAp83rlexEUkIbXl8CyPgBBATs1h0Ba4naFOzzZkUedUsheAJWjcziUJXy1oeWiGhml7Yk8+r1I/VK9YJBVkSfGhcupxLt3FkIhzqRkaDNNAWk7h5fMvQjM0dIQ60B3uwfn0AHRTR3+mD72JE46AbfA1IlG08hfdhZ2AUpjtaG4Ez/U9g7AYxodWPlJxPU3ThGEazqIQETzlAufg+AEcnzqG23ruREugBTNBQlFFToSiKxjLjWJ5dEXpnItJZxxj+VGYpukIn8n8BHRDr5qTnlEyVpsjIYzmQAtkXcbK2CqYpokTieM4mejFxqbNzmeoG7rzOVdrF1ROX+ocdFPHishKNPgasbZhHY5NHcX59IBncY6IzfJCR8enjmJ94wYAwKnkSbw3cQB3LfkgolLMuedlXXYWUsrzWImjm1NzUHSl6sKKG+Ly9qf7sKVlW9VtyKKAu8jZXPNnFzNz+iuoKAq+9KUv4cSJExdrPBQK5QpDeNfOt5wpJNbZWIB8z/1gVPWyhsZyvScgHDoIbfUaaJuuqdyAZaHecCMYRYFwcP+lH+BVhnvitBA9LglkAl9vER5CNXeS7Ku8DUgtSEEhsayNx1zHUg23+CufyPiFyoWOWoKSrfGzW8CQXpkzwXvCYmcWom6Wr7aEwCvPJCBxEkyY2PPuBE4ey0OVGcQaedxxfyNY1hKinCFBnQ7Cx/uRSlqOUUtLsK5jsQyLVWvCWLLCj1gDD87kkc1YorzBrupa1GQnJ7FcJAftXpwFteCZcB6dOow3Bl/DsF0AhYQ4koq9QT6M6XEORW4ab701hmJBh8AK4FkOhmFibCIHBgBjcnjt+QQe/944XnkmAc4U0NRqXcvR4VIoK18m/MdHZOi6ieEBu0JoWsfJozn4Ayy27rBcwPS0Zp+Dda1GXCGMiqFgMmFN5HkemBhTcexgFqYJ5FMc3nxpGl/5xzN49bmEM+HvDvcAABLFhONYkdeAmRcjomLUERUA0F4mLuN2SDdZMMmpubIKt8TRss6JiDxSgIgUwCp3l546+wR+cvKHME0TXeHu0vFsp7RWjqYb9z7duYyKruDVwZedMZHc3KFsqdLp3tF3MVmYsM+5tODywaX34f7lDznhvORcSR5tRslg39ieirG80P8snjz7mCNMi464tK5HSAw528q6jGHXWGpBzmlpdDkAeHIIi1oRsi4jKkXR5G+GoisYL4w7n5Nu6pgojFfsUzM05NQcgkIQHMthZ8eNeGTVx+Dn/QgIAayMrYJqqDiZKOmGrJpxhWLPLi7PTJ8GYC20AECD324BVOYUk2dI1otOXrTIicipOed3x6aOIK/mcWDc+rvuLgxFigsV9aInGsDt6NbjXibs6tApOVXTWSZCv6DmndZGbufyraE3nJY4VyJzEpeiKOLLX/4y0umLV2KZQqFcWczFuQQA5aEPAwB8P/7BxRrSrPh++D0AQPFjn/RWm3Gh7rgOAMDv23vJxnXV4rrGCxUW697XXFqRzLavesNiSc/BgBDyvF5vQZ+ZKBd/bvxcpbh0b+8Wt+5r7Sno47pes7mWgDcUttypnYldt8URifE4djCL4XMapsZVnD6VgSgx+NQvdeF3/scybN5hhVK2ODmaMgK8H9NJa9LZ1lqfuASAUMCHzdvD6OoMgTUFZNOWGCAtQ4p6ySVwO5eTYwqUnHVNZL3oTPIUXXEmpWkljayaxXsTB8AyLLY0bwUAjA0rEPKWgEkZ4zhxOAvBbkWSzehQdAUNzQICPgGGboUL77wthq07GnCNfe7jQ4ojOtyLA2d68/iX/zOAl5+awuiwt7DNxm1hdC3xgzN5pMrEpWmaaLcdZUWXkUgWwAD469/8LL7wi5/BJ3+lHb/3heXo6ggjl9UxNJrB/t0px91r8jdD4iRMy0lMFibg431ocwkmIvSqsb5xIxiGgazLkDgJjXb7FQKpKEvIKtmyME9rDCRclEzUyedFQmzduYtpOeWZ9K+IrXTyP2NS3BEYT519Em8MvVZz7LWco8nCBFJyyrm+43krv3YsPwqRE7GucT10U3fG0BNeCgBYFl2O5kAzGv2N8NvjLoUdlz7P41PHKsTyeH4cKTnlCEAiQMj745I3BaW8lU01SGuWFrvwjtsxJgIqIkadljnlRX+q9cck+yTXm2VYTwGwDU3W/XBs6qgjzt2VdGvlXE4VpjCRn4Cqq5gsTCAgBNAcsMZNFhjyah6maTruNnmGirrsnFuHvbiRKE5huph0RP1Auh+J4pRT4Asohb+6Q8UBOPt3X6dyksUEjk8dQ07NeaoCk7zf8l6r5LoVtILzfUPyrgtaAaenT2EsV1+BscXInP8Kbt68GUeP1o5fplAo7yPyefCHD8FoboGxbHldb1FuuR16SyuEV14COzK3MuQLgmFAsoWt/JHKkFiCtuNaALBCYykXhDtUdCHFpeNcLoC45OYYFru+cSPuXnoPOoIdntcXJCzWI/5c+Y6cWNUZnUv7kfKfZwvxsravXtBnNkSJxb2PWBPCt17I4HyfNYlavzmE1lavSG52qssqkDgfEhPWRKyjo35xSQRILOoHZ4qOc9loOx2yVkRRK4JjOOca5HM6/vVvBvDEt6wKqbIuOzmAmqE6k9+8lsNxe4K8vnGDI5L6Tuch6REsX+OHymcxNqyAZwRwDI90UoXOKIjGeaxZH4E/wOLnPteBD36oGdfubEIgyCEa45HN6piarMy5PHXMcmZ2vzoNTTXR3i2BRExvuS6Ctk4JrMkjndQgsIJH9PVElgIAcsUi0rkCQkEfOhtasHZ5K9ZuDCEQ5PCxj63CdTdHUYgMIJsuhSoGhSAa/Y0wTAOGaaAt2O5Z1JjJve4Md2Fn+432GJZUuOIhIeRZ0CAFc4hwy6lWr0nimJFQU/LZsgwLH+9DQStgqjBliRDbUVvbsB6PrPoolkSWOgsKYTGMoBCEZmiYLEzg7PQZp+9oOXKNtifkurQEWiFxEqYKkxjODkE3dHRFurDSdtSsayOiOdCMh1d9BDd23ux63Ro/ES3FsvBst3CTddk5/5Gc5ZiXFwLyCwFsa92BJfbnnK+jGi5xLiNSzAmNJRBhHJNiTgEo4sSSa3lq+mSFGEw74jJW9ZhhMYIlkaWQddlx/dOuHqDugknD2SH0pc5B1mU81/c0Xhx4zunx2uBapCD3Sl7L42SyF4+feRTD2SHn85O1ohO+SirYThWnMJDpB1Cq1H1k8nCFqCc4gs92dAnllY4B4N2Rd/DEmcewZ/QdvDH0GnJqzrnvTyZ78XzfM/hB73fx2JmfwDANaIbm3Nd5Le+plqwbunPdydivROb8V/D3fu/38N3vfhff/va3cf78eeTzeRQKBc9/FArl/YFwYB8YTbNcy3pz6Xge8sc+CcYwINkO4qVEeOsNcEODUG68GUZXd83t1M1bYHIc+H2VIUuUucFcJOeSCK16Q1lnYj4FfdqC7RXCdiHOz51D6m754KvhGNVuRVK67lyN1i18Pc6lLSaIIzcX1m4KonOJD8kxYLBPBscB7V2+iuvc0m5NssdHFOQSVkhrNMYjHq0/35lM4BtifnCmgGzamqDHfQ3QVBNFvQjFsCadqmJA00wc3peBIpvITrGYTmj2ZNJ2iQzFyZEjLToAy5Ei9J0uQDSCaO2Q0NAsQFFMTI4YgMlifFRxxOXNtzfjd7+wHJ09PvtaWue/dJV1fqeO2y1aXNdl4Jw1n9I1K0RvxeoAbr+/Edd/IIaObgnNbSJ4CEhNqxA4wSP8O0IdEDkRk8kcDEZHQ7Syou+65jVY3tMAJTSGNMaRzFriIygEPZP59mCHpyjPTM4lAKyMr8LDqz6Ca9uqp0o0B5rBMZwzyQcsUcOzPLJqpmr7CA4SzvTmoKoGAnwQhmng2b6n8GzfU07PxpZAC0K2MCK5wI3+JkeMEHpdIZpuajmXxNGVOKs3qmEaeM+uKNod6UaDv9E5F+KqhcWI51khbp5qizNyLCIO3QVz3EJxODts5T6WCV+JFbGxaROub99pv8crPg3TwLGpo/jpqR854ZXELQuLYesZMFQn7JaE+kalmBNyS1pydIQ6sCy6HHk177S4IaRd+6zFRrvw2LGpIzBMwxkHUBKXiq7glfMv4bXBV/Dm0GtQ7YWdc9NnAJRC24FS3m1ezTkLC4liwhGKec1qC+R2zqcKk06f1xs7P+C8VquITtEJX54GUAqvnpYrFybG7MJIPMs7iwTd4R7wLI9EcQojuREYpoG8mkeimPCcv6Irnvu9oBcwYV/3lsD7SFx+/OMfx8DAAP78z/8cd999N7Zv345t27Z5/qNQKO8PSv0t6wuJJRQ/9WkAgO+73wYucUNkImjlj31y5g2DQWjrNoAbGQY7XNlwmlI/nlYki9S5dAr61CkuS+9jZ/z3fHAX9HG3CanWE9PafvacS7cA94Td1iEuiXsqzCHfksAwDD5wVxycab23rVMCLzAV4tLduuTsEWuy1bnEN6djEhHcEPODBY9sRoPIiRg4buCZn07gdN8UTNOEVhDwD3/Rj3/5q37seWMaAMCbEkYGiyjqJadCMzSo9sQvp+ackE1GCUBVDRiGif4zBQTYMGINgnMOx/YX8Nh3JjA0IAOCioYmETzLg+NKzwEJNe5a4oPfz2JsWEF6WnMWFhTZwMigN9Sxo0fCTXc04N5HmsEwDASBRSzmh1w0YSic44KFxBDCYgQSJyE1bffPjFfpp8py2Nq6HZKPw4TvOJIZ0ku1XFy2O31Kres8u3sdFiM1F2pu6rwFD6x4yOPMSLwPQSFY0ZoEAKYTKr7zT+P41peG8e7rKQTsvGPN0KAZGvpSVgEj0hYGAFbH1+DBFR9Cd7jHCV1v8jeDZ3mcTZ2BrMvoS53Dj05+H2k5Bd3Qa7YdIc6lyAloDbYBsBwskRPRE7VyUcmCQ7W2PAAgsbZzaYtLco49EasVUa2enJOFCU+Oovt6AVaYMMdwFQWLDo7vx97Rd5FRMjg7fcZpQyJyIiROgugaT1/qHM6lzlpFsYLtCNv9WMlY/XwA17ZdD4mTcDLZi5Q8DVVXkVHSSNthpu6FgnIafI3oCnchp+ZwLnXGqcrKMixM04SqqzgzfdoRWYOZUv7oudRZAHDaLwGWiBM5EQWt4LigpNgOUBKEEudz7uPh7BCSxSRiUgxN/ib4eT+yarZm/9NiWQGl7nAPWIatmnNZ1KzWRCtcDnaTvxmbmq9BZ6gTt/Xcgc3NVm2HycLEjL1Ji1rRcS6bZynQtJiZc7XYv/zLv1ywan8UCuXKppRvWUcxHxf66jVQd1wHYe+7EF5/FeoHbr0Io6tCLgfpicdg+nxOW5SZ0LbtgHDkEPh9e6F0dM66PaU6F6+gD2/vfyHEpTWu8oIqs7/vIohLl8voDiGs6Vy6XckaQrPWz7P1uATscFyGQ4CvP0TVzeoNQbS3BXE6B3Qt9dlj8E4/JIlFNM4jmVCRO2BNMtu7JU++5+zjtCuKShIiIR+G8gYkxo+Tx/LgDAkjwzlEGoPY90IW8VTJLYg18EgkRAyel5HdnnUmuVaelDVhzalZFLQCTFnAl/5yCCvWBnDLBxtQLBhYuqIJHMeguVXCceRw6O0C8j6guVvEzu1hmMF0hbtOHGORF7BibQBHDmTRf7YAboN1/wz2F2EawPI1AQycLUBTTXT0VH7+TQ0BjKSBTBIQbHHbbodqi5zktB9paqguepZFliPsC2CSn0Qia6I15IfACU4ocUgMISSGYZqmU52Z0QUMnC1A100sW1V9vzPh433w2WKSIHGSs4jhbjNiGCbefX0ay8ctN2RksIjOtZXHDIkhj7BjGMYJ5+wIdqA/dQ472q7DmelTOJU8ieHsEEayw8ireZzPnMeS6FIAlgNXPvnPljmXgPVM3LX0g/ALfuSRxfLYSpxM9qIj1FX1nMm96eQF2qHXDb5GhMQQksWkk6fqDtU0TMMRz27cEQ0BIYCMkrGL62QR4IM4mey1+4pGkSwmMZDuh2ZojmAh78+pObw98hYA4OauW+DjK6MKyOe1rnE9Do4fwEC6H5OFSQxlB50FjZmcSwDY0LQZg5lB7B/bh6JehMAKCIsRq6quoeBk0nKTm/zNmCxMOJ8DEfzxslzdoBBEsph0Chyl5FK4aqndkAiBExCVok6u5bbWHQCsglyFXAEpOWWJXJgeAU+cZfK+mBR3ruVEfsLJ/yTHE1kRK2Or0GsXsmr0NaI91AE0bQZQSpeYLEx4hHI5eTWHycIkBFaYcbvFzpzF5SOPPHIxxkGhUK40DAP83j0w/f7qFVdnofDLn4Ow9134v/KlSyYufT/5IdhsBsWPfBxmODLr9uqOa+H/5r9D2LcHSh1ilFIdbyuShXMuV8fXYKIwXtMtmAvzdUHLz2dB8j89PTx58CwPzdA87lHt7b1tTErbuENnXdVo6xBvPMvj7qX3wsdLs25bDYZh8MnP9CC7J+y4e9VCmTduC+PNF5OQUzwaVvAIBDjwc3EubTdGYEU0xgIYGgXUrICRwSJ4U0I6VUD/6QIyiQi2rwnANEycO1XArtvjOLQng94kg5GJFGJx65iaoTo5csThGD4pQC4aONubx9qNljjq6YpgmhMRiZmQJAasySMWFbHupihCfhMZpVJME5c1KATR0l4EDgCppOpsN3DWEhir1wew/poQUkkV0VjllK25OQD0AVPDBnqus9pjrGlYC8CaXGfs0ODmplDFewHrs2kNteEsppEvqAgKTQAs5/H69p2OI8UwDCROwmQiix/9cBKhactd+sQvtaO9S8LQQBEbtswsMMoJuoph+TifEyrsDlUcHixCKTJYsiyE8+eKmBxTsdJ+DsJiGDzLI1lMotlf2+XpiSxxHEIScljQCk4xl6nipBNGG5WiFeKSuIKiLbpv7roFjb5GxPwxZ5uQEMJHV3+i5hjI503CrN0tcVoDbcgqpzGWG0VPZIlzvJZAK8bzY+hLV4pLd7XjgBBERslg/9g+nEgcQ0yKQdEVrIithI/3IVlM4njimL3PFs/7ScuUjlCHU/yGZ3mnHQ1QCvXtDvfg4PgBnJ4+5VyjglawetPabmdySsWBd9IY7Ctg521xrFpnPSOtgVbnfADg+s6dOGtXgR3KDCIlp9AcaMEdPXehN3kCS8JL8OjpnzjjiYheZzTAB5BE0lkISlTJoyXubqO/CSk5hRWxlU4l4YgYcUJY/bwfLMMio2QQ98VtoW+de0YpObNLI8uQLCbxfP8zuLX7dnSEOqEZGnRTR4gPodHfiAZfI9JKyqloS2j0W8/VZH7C+V4OiaGKtikjuRFohob2YPsVbeTN+6/86dOn8eijj+LLX/4yJiYsC7e/vx/Z7Oy9hCgUypUPd+I42HQK6tbtgFi/u0CQH/ww9NY2iM89A/bc2YswwjJME/6v/l8AQOFXfq2ut2jb7aI+NO/ygrhYOZerG9Z4imZcCKX8zQsLi12ICYHbiWQZxpmMBGqIS5Zhq+aMukWnt12JyxmtU7w1B5oRFmdfkKlFS4sfS5eHnYWGatf5zgca8elf78A1O6LYstWajNUTtktwckM5EY22U5dPChgbUsCZIjIpDVOTKnhTwm33NuBTv9qBT/1qO3bsimLF2gB4U3JaoACAaoddEjTVxMBxa/zFgoGTRy3B2dohISSEwTAMunqC4DkOt9xtuZnEqSo/X+LSBYUgAkEOHAdkUjo4hoNpmjjTa+XQ9Sz3Y8euKO64v6nqvbVqdRQcB5w+ooIthnDf8gecUECRk5BJaWAYoLmx9gJMZ8QK9ZSLhsdNXNOw1tPHVIAP+3anoOR5dC6xJu7PPzGJf/+HQfzw66NOwaZ68TqXPsfNdec+9p8qgDdF3HpPI3x+FpPjCqJ28ZhV8TVOi4/OcHXHsBzSyqeoFZwKrInClCNo/XygogcqyWckgmxZdLnTiqZeyOet2BVDiUvJMAza7FDbYbsVBnEuiSAmRWTKrxeBiL+zKUuskdDNtQ3r0eizniMiqlsDbfb7rXMhIaQkj5Hgftb99vdO3NeAkBiqEN9h0br3x0Zk/OvfDOC15xI4e7KAJ74/DlUt9fi8pnkLGIbBusb1WB5d4VyTsXwpT1HkRGxq2oyIFHUq0EalWMW9HyjLo61WdZac48bGTdjQtNGTA+w9v4DjvJJFCnJv5F33xabma7CtdQc0Q3NamZR6v1rHumPJXbh/+YMV95CP9yEshpFW0pi0+2mSz8J9jc/bRYeu5JBYYB7iMpfL4fOf/zweeOAB/PEf/zH+/u//HuPj1k37N3/zN/jnf/7nBR8khUJZfMw339JBFFH87K+AMU0EvvxPCziy6ghvvwX++FGoW7ZC27ajrvfoK1bCiETBHzoIqLP346JUxy3AFlJcLiTEgZx7zqW7aM6Fu5ZAqYcm2ScRibWcS6AkXmr2tqxRRbaeViQLhftY1aryMgyDlWuDeOTTbehssyZ/9YTtEsgET2JFtDRbk8+TBxTougnOlKAoJqbGFQiMiPYuCaLIYs2GEFiWQTjKgzNFyMXSZFjWi464NAwTxw9nwRQDIEb8iSNEXIqISNZ4t25vxH/9s2Xo7LIm62TSWy4uiasSFEJgWRbhKA9NM5HPAPveSuP8uSIamgW0dszsFsciPixbGQA0Hq8+53Vv9AKPYsFAKMzBL9beT1fMEpBy0Zgx9PnMYQ3plI4lS8L45c93YekqPxITqtNns+/U3MRlwCVoJF5yFjqKegH9Zwp486UEElMaomE/lq3yo6lVhKaaiGpduHfZA9jQuBGr4qvx8KqPYHl0RV3HJKHlRa3UciatpJ3CND7O50z0/WXPW3lv1LlAxIaiy06uKCmS1BnqBsMwGEj3wTANx7lsD7Z7nhl3Hqw7LJaITkVXwDIsWgKtWBFbiUZ/oxPeTHCH9QJucek915DLVXYLz65Qqd/p6vga64diEM89NoGv/9MgCjkD23dGsGJtAOlpDXvfTDnbt4c68PE1n3JEXmkM1jblEShEYLmL+RAC/OzRKuSzjvni2N56rSdXOFImntc0rENXuNsR9MS5LNrOrCNUmzYhKkUxVZhESp52tTYSnX1FpVjV8ZAc42QxAZ7lPW6704/VXshwL+pcicz5r/xf/dVf4cCBA/j617+O/fv3e2KUb7nlFrz++usLOkAKhbI4EXa/AQBQb9g5730UPvPLMEJh+L7zTbBDszeBvhD8//z31jF/6XP1V7ZlWWjbtoMpFMAfpy2Y5osnLHYBcy4Xko5gJ5oDLRWtRWbjYrRZ8eZQcs6/3RU7yyHika+Vc8lWF5pz6Vt5obgnd9VaqrhZHluJzlAngnPI82zyN0NgBTQFmnHD5hUIGDFMn4oBAHjDOrauA22tIfC897MKhTnwhg+KS1ySiZ5pWnl/facLCPIhXH+ztU9NNcGwVjEiMlmVeAHBEFex0FAuplv8LdjZcSM2NV8DnuERiVq/P3dCwTOPToBlgY/8pzZPEaBqiJyIFesCkAQB+3enkJouLYIl7Z738UZhRmHU3tAEzhAhF/WKyqoEwzAxcMIAA+CBD3eCZRnc9WATGBYI22PvO1O/uDRNE4lhDppdCdfnci7zSgHH3ssiMWmJ1s3XNIJlGSekenJMRXOg2XGz5uKoExFV1AueFhOk5YeP9zvPWbk7Kc3hWSkWdc/8mGOte0LWZVcbklJRnvZgO4paEWO5Uce5DAohjzhsskMr3e8FvC5eg68R9yy7z4noCIsR57mL+xqcn8n9kLLDPssXroiTxzGc57ntiVjisjXYhh1t12FD00YMvNyGt16eRiFn4IZbYnjg4y24+0NNAAO8/nzS+YytcZfuQ/JdRQr8lAtGEqZLiii5KXcuqzHTPe/OEfXzfnSHe3B7z53O60Wt4FTp9fE+j3NKFjLOTp9x7qHZKigDJbHMszx2ddzkedbiLgEtsIKnONWVyJz/Ej733HP43d/9Xdxwww3gOO+XZ0dHB4aGaFVFCuWqxzQhvvkGTI6Det38xaXZ0IjCr/4aGEVB4O+/uIAD9MK/dwDSc89A7+qG/MjH5vRe1XY5+X203+V88YbFLk5x2ehvxL3L7q9o8j4bnmJFC3RunMfpLTmX5aFrbshEzVu4p7SfWkV/ZupZuNC4J3v8LP1ENzZtwh1L7p7TNW0JtOCTa38e3eEedDU14+7uB+DXrc+ztaU0mezqqMwNDIUt57LoEpekmEg+Z2BiTIU/wOKXfm0VNm4ruTpNLSIEgXUmpUQglReZKs8xZRgGq+KrERJC4FneEWi7X0pDU03ceEfcaVsyEwIrQhRZbN4Sh2EAb7867fwuMWJN6uNNQkWYnvfcOQT1ZshFs2b+ct/pAgKJFdjSugWrOqwQ1M4eH37rD5bgN/97DwSRwflzVpGfWqiqgbdfTWJkUMbrcih2PQAAcPFJREFULyTxzX8Yw5mjZHIuOcW0RsYz0DQTDU087vlwE9avtybeza12ReGxyhBIADh3Ko+/+dNzTkhxNYiIIgVwCKN2/p3ES45QiJSJ1nqdy9EhGX/9P87hG/8yhEJed73fav9Bwn7dnwmpNtuXPoecmnMqoja6BKXbuXQLPrcoq9YbkbTjcIdhkmOTnL9y55Lcz+ULWm3Bdnyg61bc2HkzeJbHhug2JM4FEAxx+J3/uRT3PGyJ/tZ2CUuW+5HP6Zieqh71Q/K9yedQPoZl0eX48MpHqrrS7nOuFZUx0z3vXpCo1maHLAKYpgkfVzkuADiXPut8lvVUUF4eXYGNTZtwz7L7sDS6zAnRBoC4q3hPe6hj0Ub41MucRy/LMmKxWNXf5XK5CsFJoVCuPrjTp8BOjEPbsg0IVS8UUS+FX/8tGOEIfN/5JrgzpxZohF4CX/w/AID8f/mvc84P1XbQvMuFgPyxvNL/aJbD1iigcyGUu4zEXZwpFGxT0zXY3HxNnTmXl8m5tIUXwzCzOpfzxS1Gr9lRmkBu3FhyBrq7K8VlMMyBMyXIRb3id8WC9VpDk4Ce9ka0tktOaGxrh3X9wnbBESLWK3Msa4t4ni05l2qBARhgx4315fS1B9vR6G/CXTetBccz2PdWyhE0U8O2uGwUZpz8hiI8muTV8Ofb0RXu8fwuMang1Wen8M5r0/AZUdy7fafnnm9sFuHzc+he5ocimxgdkqsKTF038aNvjOKZn07iK38zgJd+NgUASI9Y18XH+51rNDhkOVnNrT4IYikksamVOJfVxWXvkRzS0xqe+MEYVMXA2ZN5fOvLQ3jmpxPONiRUkoTBknPRDA0Mw6DJ14TucDfCYrgiNHEmseJmzxvT0FQTfacK+No/DkLTrAULkRM9Ya9uUdMdXgKWYXFm+jQUXXGedZIzOZ1U8dN/S+PgGwomzzOez8Dt4jVX6Y1IzqPLlZcqciJM03Tu98qw2LD9euV3ztLoMidstv9MwalqTAphEeKN1j3tdtPdlPfYrXasiBRFYlJFYtLOVZUNqIrhWQRxn3Mt0Vh5bN5xDt3HFTkRLMNaBZ9sBzkglF0bMYwmfzOyStZpG1LPvSFyIra17nAWCdzHjbrEZVeodv/tK4U5/5XftGkTHnvssaq/e/bZZ7F169YLHhSFQlncCG9a4e/qjRdeTMWMNyD/+f8fGFVF6I9+f8H7XvJv74b0zFPQOzqd/ppzQd1KnEsqLi8EEg57tYlL5iLkk3Kegj4strdei50dN85YFXdlfBW2tHj7TNfOuXRVi51DTuOFQpyfhRLhs7F2Uwg+Pwt/gMW69SVxuXRJpXCzwmIlyMUq3z9Fa5IaCAgI8AGIEoumZmtiTHIim/xN6A73YKXd664iLHaGXF6e5RGOWdszJoflqwOIxupzlGO+OO5f/iCWtrRjy3VhKLKJvW+loOsmpkYAnmcQCnMzTn59fhZBM4621HUV2732XBIvP51A75EcOJ7Bus3VwxGXrrAm4N/68hD+3z86i0N703j9+QSe/skEdN3ES09NofdIDpEYD463vgsEkYF/ZAO2N+60W2BY5zw0agm/JW2WsCL3PXEuRwZlDA0UYRjez4qIzukpDX/3hT5881+GcOZEHm+/Ou0UXyJVb0nIaluwDTzLQ85yUPZsxaP/nkXmVAseXvVRT4VSnuXRe7iA7/zrEE4dz1X0nSQosoHD+7PgeAYdPRLGRxScs3NRyUKOO7+TIHIilkWXwzANzzk3BZqhqSb27U5jrA+Qeq/F+HObPCHI7kWnaoVgNjRtwgMrHnLCTAFLDJ06nsfzT0xhYkyuEJcNvkZEpahHkFbjbK81juWrqwhD+x52F8ly4/7uIU5tOYpi4Kt/ex7/968HcL6vgH/8iz7881/1w5QlFAs6VMXr1sZc+Y6zCT7izpafu4/3QdZlJzy53LkESn09E8Up+1izRxmU4+N8rtDusLMg5f6crlTm3Irk85//PD772c/iM5/5DO655x4wDINXX30VX//61/Hss8/i29/+9sUYJ4VCWUQIb1niUtl104Lsr/BrvwHff3wT4ksvQHzqSSj3P7gg+4WuI/wHvwsAyP3R/wSkuRdkMBsboS1bDv7MaTDJBMx4ZXEByuwwDAOYADP/IuWLkotRrKjcZWwONFd1JGajVisSzlPQ59KJS1Kc51KJS1Fi8Tt/vBqp6TyM6BTCUQ4cx6AxXjkRFkQWftGHKTsslmVYZ6LPyWEAo2gIRZzJYEePD5PjKjq6JWf723rucPbHst57YaYwYI7hIUmc1cYEHLZcO7eWHoRdt8Wxb3cab786jSXL/TAVHvFuAQzDzLiIwLIMgmEe2YwGwzDBsiX3N2mHNAZCHDZvD8Pnr/7ZLV1l5zLmrWv2k2+POb9btzmIw/syYBjgs7/dBZYDchkdb7yYxLGDJvzpTqDNcndNmBgdt7bdsXItQn4rHw4AonEevMBgdEjGV/7mPB78RAu27ywJwMkJu3iSwCCX0dHWKWHl2gDeeDGJp386gWWr/RAEFgEh4OTKhcUorm/fiae+n8TxAwqAPCbHFGzeEfaEjHPg8dSPx5FN6zh1LI9wlENLu4Qly0JYvkZy+rceOZCBIhvYtD2M5av9eGxgHCeP5rBqXdAp+pKRLXEplTlr1zRvwRm7PYfTrkII4exhE0pawPqNMaxYG8BTP5rAE98bw/otIbR1Slh/TQgSJ0HkRE8hHufzZVhPSC1gCbvEhALTBI4ezEK8uTSWvtN5HN6fwb0f+jBEaebvtLMnrRDk5aurCLC47VwmrcI+o0My7vtos3N/ud38coFHOHYwi3zOclf//R8GYT+S+P7/ncTurIrGqISbPls656grT3Y2wdcZ6sZkYbKibYjE+ZBX806hoWoOKLnOpAXKfBbpGIZBRIxA1mWInIhrmrdCN7UFaa11uZmzuNyxYwe+/vWv44tf/CK+8IUvwDRN/OM//iOuueYafO1rX8PmzZsvxjgpFMpiwZNvOc9KseVIErJ/+f8h9slHEP69zyNx7fUwWy68FLf/3/4v+KOHoV6/E/JHa/cgmw1t+7Xgz50Ff2Af1NvvuuBxvR95P4TFLpxz6ar4ys5/n6wn59LlXDKXKeeSrR4yejHpXhpAYMrAVN6Hm++0FoZqTTqjgQD6ZBO6biLiDzkOE5MPo0lejS0tq5xt73igEctXB6o6NkA157K2oCZOcvdSP7p8AazdPL9Ug8ZmEes2h3D8vSx++p0xcKbohCbOli8YinDIpDTkczpC4dLnM51QAQb4r3+6DDxfO/+1e6kPD/98K8JRHrpm4skfjoNlGSSnVBw9mEV6WkNrh4h4o3UPRGMCupf6cOxgFuf7ili+OgCe45HP6sjJMmJxHiG/H6viq51jsCyD2+9rxOH9GYyclzHYV3TEpaoYmE5oiMZ5/PznOqCqJjq6JadFxqljeRw9kMWW6yIex9DP+xAWI5gcstp9ROM8UkkN0wkNvqiA5JSCoX4ZjUEBhbSOzh4JhmHlVWZSeZw5kcdLTwPt3RIM3cTYsCVwt14fcQoQnTpmOZ3kM8ioVisPX9lnEhLD6Ah1YDg7jKDtqpmmCf7oDqwyTTz0yVYEgixOHsnh9Ik8Xn8+CY5jsGJNAPcsu29O3z8iJzk9ULPTBk7sV7D1euu6vPTUFAbOFtHcKuKGW2rnoJ87lcfEqILGFgHReOX3COnLmp7WsP/tFDIpHWs3B7FyreV+u8VlrQI9+3bbxX5CHPJZHS3tInTNus7LcDuQAUSzdB3dbvNszuWGpo3Y0LSx4nU/70MSVlVX69+Vz3hItJ5RUg3aNw/nEgDuXPJBmLZi9ieWw9BNmE0mvvkvQ/D5WfzW76+Z134vN/P6ht++fTv+4z/+A8ViEalUCpFIBH5/7RLpFArl6oHkW6rbr73gfEs36u13ovCLvwz/N/4N4d/5DaS//QPgAibW3PFjCH7hf8IUBGT+91/XXyG22ti274DvR9+HsHcPFZcXyJXcGLoaF6NabK3KrnOlVv6lN0T2ErYisVf3L6W4JPh4v1N5tZbLEAn5AdlqyRGOhh1xWcywaC1uxPqOUi5UNCZgy3W1r51ngcDVh7Qa5HqsuyaEX/i5ZfWfVBVuuiOO4+9lkZxS0dgYQMQOVxVncahDYWu8uUxJXOq6iXRKQzjCzygsAeu5vubaUr7b//M/l+H8uQL+7e8HceAd6zoSd4/QvdTu7XeOhI0KmBy3nNKGZqGqIN91WxzrNofw91/o8xT2SUyqgGkVWGpp94qKHbuiOHUsjzO9eUtculwyifNBVQxMjisIRzms2xzC269Oo/9MAWu3+LF/dxr5vIExrYhlAD74cDN6lvmhqgaSkxoS4waefXwUI+ctJzTWwOO6m2NYtsoPhrFCY4cHZEyMKs79n3Ycscp58y1dt+NkshfLY1YRm0LeAIoBtLWLCIas6/Hhn2/F269M43xfEf1nCjhxOIct18VqfjaGYSKX0Z2iUQBgqlabGp4HGEXCu29MY+v1EchFA4N9VpGad99I4bqbYx4nm7D7lSSefdTq17h5e3WnnQjO0WEZmZQlZPfvTpfEpes5rOZcjo/KVkueJgGf+tUO7H4liRtvtwpX7X4liaH+IsaGFRSmS/shzqXAlu6fQl5HYlKtq0AWUMo3Jf03qzmXwTKH2L14k81oeOL749h5awxLV1rC1DBMmCYqqj87bWRkA9/96jB0zcSHf64V504VsGTFlaur5vwNv3v3bmzZsgV+vx8+nw8+3/zUOoVCuTJZyHzLcrJ/+ucQ3nwN0gvPIfjnf4rcn/yvee2HyaQR+bXPgpFlZP/nn0PfuOmCxqVtt4v67KcVY+fL1Zpz6akWu4AhvzzLQzO0CxKX3mJDpT/3bnE3m+hYSCSW5FxeenFJXAye5WuK22g4CEwBusx6QhYLWevejcTqH3etCpbVt+Xr2q4eOnt8uPmuOAp5A7feF8VP+t6ZNSwWgCMosxkNrbCuVXpag2lYgmk+tHdL4HgGmmrlJxIxSWjrsn4/2G/lTwqsgIkRS6Q1t4k1Q4mjcR6CyGBiVIFpmmAYBpPjltBsbKkU/EtW+sGwltNmmqZHLPh4H8ZHFZgG0NYpYckKvyMuFdlAIW9A8jHgMgKWrPCjZ5l1DoLAoq1TwobNIazZ7MN0QrXyWyOcZwFt9foghgdknDyaQ3CT9RmQXL5qDrrACR43LZW0xHasoXReoTCPOx9swpneHL71pQIO78/ANE0EQzxWb6h0AN96OYkXnpjCXQ814cbbLScyNQ4wJoOmFgHFiSDGhmSoioG+03kYduhpYkLFmy8m0dwmYs3GoOe89tj9Kx/+dGtNcRmxw2KJ8AaAE0eyyGY0hMI8BNf9Xk1c7t9tLUpsuyGC5lYRD32i1J7joU+04pmfTmBsWEFuigeC1qIREezkfj/4bhrPPjqBQt7Axz/bhvXXeMeqaWbFwgkJIc4omZpjK2/ZI/ElcXngnTR6j+QwOiTjN/9gCVTFwLe+PIxiQcdv/cHSqgs1p47noCrWc/L498ed875SmfM3xi/90i+B4zisW7cOO3bswPbt27F9+3bE43Mr306hUK5MiLhUdt248DsPBpH+5vcQu/cOBP7p72C0tqLwa785t33IMiKf+TT4E8eh3HYHCv/5ty54WNr6jTAlCfz+vVbBoavMfbsUOGGxV3HO5UJWQF2oMGKO4aCbuke4MIxVbZLBxavaWg2hRiXVSwHLsOiJLJlRrMfDdvibInpyUYspBn6OQSBY/7Via1TqrUa1NjIXwh33l9pXCKxQ1/UORaxjZ9OlarnTiUphMxd4nkVnj4SBs5YT1r3MV/Z7BkuW+3D2pCWQWtdwmBhTwXFWiG+tcbMsg6YWESODMhKTKs6ezCM5ZRWNIRVl3fh8HDq6fRjqL2JyTHUEyOSYgsdfTmL9MsuFauuU0LPc+t3pE3mcPJYDywi44QNhLA13485V1RvbcxzjhPuWs2JNAK88k8DAuSI2b/GOzS1IajGdsM6L5C+6WboygECIw5kTVniuL8Di9/9ieUV0yOF9lkh6/vFJSD4WO3ZFMTGmgDNFhCIc4kwYxqRVKIm0cVm5LoDTx/N40a7qe/9Hm3HtTTEAQC6rIzGhoqFZ8FRkLkeSWPgCrJOHK4gMVMXEob0Z7LotXuZcekNPVdXAe3vTYFlgy/XVj0HCjtMTLHxRHyJiFH7ej85QJ+K+BqSnNTz63THArr30+gtJrNsccq7P6y8k8MozCdzywQbceHvccRXLczCri0uvc0kWzgCg97BVPCqV1PD4d8cwNqJgYtRa/Og/U8CKNZVhtscOZp2fNdWE5GOxYcv8cq8XA3P+q/XWW2/hb//2b7F9+3a8++67+PznP49du3bh/vvvx5/8yZ/g8ccfvxjjpFAoiwFdh/jqSzBFEer1uy7OIVauQvrr34Hp8yH0P/4Agb/+KzhLqbPAZDOI/sInIb7+CtSNm5H+6jcuKLTWQRShbd4Cdnoa3NnTF76/9yHkD/rV5lwyDHNRzo0IjQsVHEQ8lk/Uo1IUUVdlxUtByT28PC3Lbu2+HTd33VLz97GIH22FzVjKbnFcFcMwIec4hGNc1fDAWnA1clyrbssunHNZzge6bp3xnAnBEHEuS+KSVPmcr3MJlNzKQJBDQ1OlALvlHmsi/9LPpjB4VoWmmWhqFcFxzIwVdomwePQ/xvCzH07grZesnMmmluoOLSk4c+5UHn67+ufRgxkMnzXx+vPWe9s6JQRDHJrbRGRSGnIZHctXhBGJ8WhtCdYsZjQTrZ0SGMbK0XTnAAaEwIythQjVnEsCxzHYsKUkcop5wynARJhOqBgbVhAIWcWsnn10AumUhskxBZwpIBTh0NFmibfB/iLO2uLygY+1YNdtMWzbGQHLAs88OomxYdneznJeu5fOHrkYdbn9pL1O32nr/e6oiUCZgDtxKIdCzsCaTSFPDrAbspAwNaHioRUP444eK2XljiV3Y1vrDvSdyQOmddy2Tgkj52Xn2ABw+ngeumbipZ9N4ckfjDuvx6W457u8Wvgyy7BO4R2WYZ2Fs0xKw2B/EcEwB15gcORAFhOjirN403skW7EvRTFw8lgOgshgw1br89y0LTxrMaXFzJxHHo/Hcdddd+G///f/jh//+MfYs2cP/vmf/xkNDQ34wQ9+gN///d+/GOOkUCiLAH7/XrDT01BvuBEIVk/AXwjUG29G6rs/hhEMIfj//iUin/442JHhmcd2cD9i990J8eUXoa1dh/R3fwQzvHBhJaodGsvvpS1J5oPzx/oqdH2JG8ti4c6NCA32QsUlw1XN+bt32QO4Z9l9F7TvuVJqRXLpnct6CIY5NCorEZTbHVelkDfAmqU+lPXCeRztWZxLpvoCwELQGe6q6NdYDce5zJTaRhDnslqxlnrpWW4JkK6lvqr51kuW+7F2UxCppIanf2AVUGlpt3NzZ7hPSFuS8+eKntdrictlqywh0Hs0B9F2mXiBAW+UBFJbp/X6qvXW37Zdt8dx3S5L/Nbb47IcUWTR2CIiPa0hO23iwDspJCYV3Nx1a8UzOXy+6FRfJczkXALAbfc24vb7GrHWbhEz7ApBBeC0YLnm2jBuuDUGVTHx8tNTjnMZjvDoarf+Tr63J43JcRVNrSJiDQLu/lAzHvpEK+54oAm6ZjouJsnJLA9zrob73rnm2gg4jsFgXxGmac5Y0Gf/21bY7fYZQkPJZz05psDH+xyBR+i327UsXenHrttiAKwQYcAqlDQ2IoPjGfiDLN7bk0Y6ZV3rsSEVI708TNNELmPg+D7Z03pmsK+Ik0dz0LPWveMOOe+1r/fGrWF89BfasOv2OD7xS+341f/HytfuPZLD849P4ltfGsJLT01Blg2cPp6HqphYvSGIex5uxs5bY7jlniu7Kv28vslyuRwOHDiAvXv3Yt++fTh06BAkScKtt96K7du3L/QYKRTKIkF86QUAgHLHxS9qo954M6affA6RX/1FSC88B/H6LSj8p89AfuRj0DZuttqK5PMQ9u2B7zvfhPToj8EYBpRbb0f6q9+AGamvCXm9aNutfpfCvj2QP/FzC7rv9wNOzuVVFhYLWMJZN/UFDTF1nMsLdN43N2+BYlQ2nb8coamNvkZsbNqELru1xGKDFLXJZnS02RPfYkEHa/JzFlhzyblcqIWECyEUsZ3LqmGx879XVq0P4q6HmrB6fe3FyLs/1IzRYRlTCRaIAC1tszvcxLkErFzYTEqD5GMRjlZ/T/cyHwJBK4Q0/70ipF0mDI0BB+tzFaVSaOsd9zfi2hujiDcKePqcBCizV9udifYuCZNjCg4+x2HyvITQ6Go03uithq5pBr795WHIRQP/7S+XQ7JdK8e5rHH/BYIcPnB3A/a/ncKJQzmMDMrYuLUUTknEzpoNQbR1Stj/dgoH30lD8rHgGBGhsI7u1gj2MnAq3e7Y5RV0138ghleemULf6Tx03XQEfdeyOpxLWxRzHIPmVhFtXRKG+otITKpobBatPNvJPP7th2P4yEfCWLspBE0z0X+mgECQw/IqIaSEYIhDIMhhalyFrptOWOv4iAx/gEP/GWucS5b7EQhxeOHJKZw6lsf4iAxfgEMxb6CtS8KK1QG8+VIS+3encPNdDfjRN0ZxMscBYQUDx0yMnR2DP8BizcYQBvuK+OrfnQcADIeyuPZhHbFo6TqcOGw5k2s3BbFsVQBrN5Wc5c4lVmj2m7bLfqY3j0zacsgBS5CGIzw++OG5t51abMz5G+ORRx5Bb28vGhsbsWPHDtxzzz34oz/6I6xZs+aqqwJIoVC8iC/b4vL2Oy/J8fQNG5F87lUE/+6v4f/KlxD4ypcR+MqXYbIszEAQTC4Lxl5RNGIxZP/oT1H8T59ZmFDYMhzncv++Bd/3+4FSDuHV93eC/O1byII+3ALl4a1pWLsQw1kQGIbBttYdl3sYNSECK5fRnLYphbwODsKcnUtPzuUsn+HFDIutl5KwdjmXTljs/J1LlmWcIjK1aGgS8Nt/uBTHDqXx1ETUyW2tJywWAG64JYbmVhEcz9SchwoCi1/8zU784GsjGDiRR6hHhlawzisY4rBkhd8Je3bnUJLw6Pn0MSS0dUo4vC+D/uMmVuBOIAvsfXPa0+aj90jO6ec4OaY4lU3JZxCdReB3dFvbj5wvObmaZqDvVAG+AIvuZVa15A9+qBmPfncMxYKBcLMPvJBHNBBCcyuLiVEFDc0CdtwY8+zbyo314/SJPAb7ihgaKEKUWLS0zX5NSFhsU6sAjmPQvdQSWIN9RSev9uzJPMLTIp57fBKrNwSRmFBgGEBrpzhrKHpTq4CBs0VMJyyxuv/tFJ74/jj8AQ75nI6GZsGpknvDLTE899gk3no56Qjw1nYRO26M4s2Xk9j7VgrBMIfEpAq/GMP5c6NIjfvRCODtV6exZmMIx96z8lc5ngGnBZBJZdHdYC08yEUD505a15vk7rpZszGIof4i/EEWH/65Vvz4m2M4tCcDwzARDHNVizFdqcz5m6y3txc8z2PLli3YunUrtm3bRoUlhfI+gJmcBH9gP/TOLuirL2HvpVAIuT/+U+Q/9xvwPfojiM8/C+7USTC5HIzOLmibt0C54y4UP/JxIHDxmg8bnV3QW1rBHz0M5PMX9VhXI1drtVjg4vTwFBzBcelahbzfCbqcS3Ldi3kDrCk4lS/rxR3SOXtYrP1ZX07n0tWKpPdoFq8+m8DwgBViWSskcyHhOAabtkbx3jE/DLvvnzDDvR9rEMDxDHTNxIatIURjsz8nrR0Sdt4axxM/lKHnJHC5ECIxHr/1h0tqtloh94G7YMtcae8qvdcXYCEXDLz6bAJbr49C8lnfGQfeTjvbTIwqGBuWkc/qSCU0cDzjtCGpRXObJa6HB+VSBd0xy9Fb2lNqw7PluggamgU889MJrFqxAj7hLJoCzVixpoCJUQUf/FBT1WuxbHUAp0/k8eqzU1AVE8tW++rKQSaOP2kP07XUB7xq9a98940UQltaketXEYOAxISKY+9lnQI8xMGe8bxbRQycLWL4vNW25PHvWbmTRKgvdbXz2L4zilefTeDQvgz8Ac4ZV7xRwOr1QZw8msPPfjgBAPDrDTg7KCNiWGHR504VMDokO07wlmvDmNgXRDajOSHTp0/koOsmNqwPVbQcAayWOOmk5uSAbt9ZwO5XpgEAW6+LVH3PlcqcvzH27t3rhMQ+99xz+OIXvwhBELBt2zbs2LED1157LbZs2XIRhkqhUC4n4qsvgTFNKLffdVny5syWFhQ+9xsofO43LvmxAQAMA237tZCefhL8ofeg3bDz8ozjCuVqLegDXBxxubVlByYLExUl7ykXj1CYA8NYeW6i3SYinzcQmFfO5TyqxV5G51LyseAFBtm0jkN7M46wBCzX71LBs7zTmH6mnEuOY3DvI83QVLMuYUmINfBgwGLJ1J1Qc0WEejiIYu3za/a3YDQ3gphv/h0RSC4nYBVqkYsGDu3N4OCeNK6/OYZUUsXp3lKu5eiQjH27U05rioZmYVYhx3EMWjtEDA/ImE5oiDcKGLfbupAcVkLPMj8+9197APQAsCIJbr8/gG07IzUF3bJVlkg7e9LKY9x2fX1pJ6s3BLF5Rxg33BIDUOp1SioIo78LnehCc5uIiVEFb7yQxKr1garjrsbKdUHs2221GykWDDAs8LFfbMdrzyUwOiRj6UpXT1Mfa7mULybxzmvTnmM89MkWPPXjCRw7mMXyNQEosg/K0LXw63Gncu4T3x/D1LiK1g4Ry9cEIL0bQjatw28X9jlhV4ldu6n6d3YgyOGBj5fCoa+/JYa3X5uGaQBbr+C2I9WY8zeZ3+/Hrl27sGuXVSlSVVXs3r0bX/nKV/DFL34RDMPg+PHjCz5QCoVyeRFffB7ApQuJXYyo23dAevpJCPv2UHE5R0jIKBWX9dEcaEZz4MrPvbmS4HkWTa3WJFcpWJ9lPmsgBK5q/8SZ4DxhsfWJy8sZFsswDEJhDtMJzWmbAJSqrF4qBFZwxOVsOcw7ds09r56E+A71q2DAIByZ+ZpvaNqI9Y0bLig6LxDkEI3zSCU1rNscgj/A4tDeDN55dRrX3hjFwT0ZwARWrA3gzIk8Du/POMLSPebZ6OjyYXhAxlf/7jyuuykK1e4vWo8DKIrsjNu1dUrw+VkUCwY6eyRs3Baqua0bycfikU+3Of+OxniEo1aObEeP5Cxi3PtIM5756QRGh2RoqmGPe3ZxuW5zCNdcG8Z7e6xw1TseaMT6a0LoXubDicNZbNjqbedx/Qdi2P1KEoadWkzEZSjM4+OfacfEmIJIjMc7r01jsK8bgsjgkU+34d/+7jyG7LGu3hBEU4uIgN6ESGYbNjVthq6bOHUsB45nsGJtfQuCsbiAhz7RClU10Nh86foNXwrm9U2WSCSwd+9e57/e3l4YhoFVq1bRgj4UytWIrkN85UWYPA/1A7OXtb9a0ey8S2HfHhRm2ZbipZSXePWE/hDYq1g4v99o65QwMaogOWZNzAspFgyDqm00ZoKdS7XYBe5zOV+CYR7TCQ3jowpEicEv/063Ey57qSChsBdLaJMQX9J7kVTJnYmFSPv6wN0NOH+ugCUrrBDVJSv86D9TQO+RHA68Y1VGvevBJpzpHXAKvBBidYYlb7k+gv6zBUyOKXjtuaRTqbceB3A2WJbBqvVBHNmfwd0fbp73NWEYBg//fCuSUyq2Xh/BT78zhnxOx9KVfqy/JoTxkQQmx60iRs11jvu+j7Ygm9YRjvJOfm84wuPastxRAIhEeWzeHsHBd9Pw+dmKiARShXjd5v9/e/cdHlWZsHH4OVPTK0jvYuhFRKq0FUWKCoIVEYS1grrrrqvuuoqfih2FtVFFRVlZaSJ2ERUQUTqCIlaqkN6nne+PgWAEhJBMzkzyu69rrmTOnGSegTflyXvOe+L08TvpatkuTjGxdl15XV1Nn/yLigoCSmsTp5QazuD1gg/UU6wzVms+zVJRYUDNW8WULMZ0Mjoe5xqeka7MX73nn3++fv75Z9ntdrVs2VJdunTRzTffrE6dOikpKSkEEQFYzfnF57IdPChP774VenmPSONt31GmzSbHui+tjhJxDpdKowoWsCMzl9aWA5Tf4cVX0vcG5KthylNgU3KqUw5H2cetw+aQL+A74XU9k93JctldOi2m1qnGrhAlRdKUUmu6VKvOqZ9neKocIS6XTpdNcQn2klVxTzRzWVE6dUtUp25HZlq7903STzsLtXDuPnmKTTVsGqXa9dxKTnGWXKuyeasY7fi6oOR6jidSv1GUbr6zkebP2aut6/P0w47gn0BrnuTHn8jgEaep93kpJ53neJqecWS9gkuuPjKrGSx0wcvRJCY7FBV1ct9P3W6brr6x3kk/f/e+Sdr0ZY7qNzr25XGk4L/Z+Lsal/zxIbWmS2PG19e+PcWq3yhY2pOSHcrK9GnL+ly9s+CA7HZD5/SP7EuIVJQyf1UNGjSo5LzK6OjKPVwCgDVcSxdLkooHXWhxEovFxcnfopUcX2+Rbc9uBeqe/A+06i4Uh46GC6MKr4Rb3dSud+jC7Hskf6xLUX5nmQ+JPezwWD/RYbFxrnhdlnal5Qsj/nYWL7WmNQtJOSvhEOGkZOeRclnGc2kryhmtY9Xh7Hht+CJ4OOeZXYPFs2ZtlzLTvXI4DY0YXUffbcvX6Sd5mOVhp7eI1db1wUtiJKc65SrDTNofcUfZ5I4K3eGbp9VxKbmGU5kHvRUy23r853Hr+r83POEiSb8/WqFWXbdq1T3yB5fU01zKyvBp4dz9Mk1p6MhaatiEXiSp7Oum33LLLerWrRvFEqguTFPut96UaRjyXDDI6jSW8x4619K58lOLk0SWKn1YbBUuztXN4V8ef93j1VnOgapf0OWUZ2oOH+Z6Miv+Wl0speB5Z4elWHQOWMnM5QkKeXn89rqdJ3NYbCgYhqFBw09TvYZuxSc61Kp98BzGw+cZ1m8cJZfLplbt48tcDk9vcWRmsOZJnLcYLgzDUMtDi+HUPInzRMujVh13qfF+KmqcFvy39ftMteoQV+r6otXdKf3L/vLLL5oxY4bWrVunrKwsJSUlqVOnTho7dqwaNGhQ0RkBWMi+fp3se3bLe3ZXBWrVPvEHVHGenr0VPWu6nJ99ouIRl1sdJ2Ic/tW5KhawknJZgde5hDXi4h2KT7Tr4K8eHdgTkCGj5JfIsjq8II2VC/WUxW/PrzzV2dryqoyVc3+7QE5lHRZ7LE6XTdfe2kCmaZYcdt2gaZT0oXRGq1NfJTo+0aFadV3av8cT0hnAUOjaJ1n5eX517lH2xZoq22+/Rnqdx+Gwv1Xmr6otW7Zo1KhRcrvd6tOnj2rUqKGDBw/qvffe05tvvqmXXnpJrVu3DkVWABZwv7VEEofEHubt3kOmYcj16QrJNC25LEskqsqze4df04lWt0RkqF3PrR1fF2jbxuChhadcLktmLiNjXMT9pmil1rCmlIR6QR9JSko9UgriLCyXkg5d2/DIz5AzWsXq+r81KHX45alo2S5O+/dkqMGhS39EioREh4ZeFRl/xK5bP/hv27J9nGqX8/+rqinzV9UjjzyiVq1aafr06aUOjS0sLNR1112nRx55RC+99FKFhgRgEdOU681D51sOHGxxmPBgpqTK16adnJs3yvbjDwo0aWp1pIhw+HDYqnheoq0KL1ZUHTVsGq0dXxeULKxy6udcBkulPYSHeFak385cplh0zmXJZVlCuDhWyWGxhk543l1lMwxDdeqXvxCe0z9FTc+IUYMmkVUuI0n9xlEaM6G+6tSnWP5emX8Sbt68WePGjTvqnMvo6Ghde+212rRpU4WFA2CxzZtl/36nvG3aKdCosdVpwob3nODlWFyffWJxkshxuHhVxQLGYbFVS9feSarTIPgLY1S07ZQLyJGZy8gol7GHzkGLibUrJtaa0nV45rIyDouNjbMfmjmseux2Qw2bRofFubxVWaNm0RW2YFJVUuZ/EbfbraysrGM+lp2dLbebBg9UGXPnSpKKhw63OEh48Z7TS5Lk/GyFxUkiR8nMZRUsYEYVPuS3OnI6bbp0dB3FJ9rVLC3mlH9Bj7RzLhOSHEpKdajZbxaEqWyhvhSJFJy5TEhyRNwho0CkKPNXb58+ffT444+rfv36Ouuss0q2f/nll3riiSfUt2/fCg0IwCKBgDR3rkzDUPElI6xOE1Y8XbrLdDjk+vQTzrs8SbaSmcuq929Vlc8nra6SU5269Z4mspdjAs9++FzcCDks1uEwdMs/G1uawVkJq8U6HDbdfFejcv3fAji+Mn/13nnnnbrppps0cuRIpaamKjU1VRkZGUpPT1fHjh31j3/8IxQ5AVQyx8rPpN275TunN9dz/L24OPnOPEvOLz6Xffs2+Vu2sjpR2DtcKqtiAStZ0CeE54mh8jkc5ftDSKwzToZhKMZp3UxgWdls1v7xx2EP/XUuJcnNoYxAyJz0V29RUZFWrFih3bt364orrtDIkSP1448/6sCBA6pZs6bat2+vnj17hjIrgErknv+aJKl4xGUWJwlPnp695Pzic7lWfKRCyuUJVeXDYo/MXFa9WVmcurNrd1WbGm0V6zz1y0pUN3Vi66pRQmM1SWxmdRQAp+ikyuUvv/yi0aNHa/fu3SXb4uLiNHnyZJ1zzjkhCwfAIoWFci1ZLEVFyTOYS5Aci+dP/RX75KNyffC+Cm8Yb3WcsFeVDx09XJir4mJFOHV2m13xrgSrY0SUaEe0ejfg9Cogkp3UT8LHHntMNptNc+fO1caNG/XWW2+pZcuWuu+++0Icr3yKi4s1fPhwXXjhhRo8eLDmz59vdSQgIrjfeUu2vFzpwgtlJoT/xYyt4DvzLAWSk+Vc/ZmUl2d1nLBXO7a24l3xSnQnWR2lwlXl4gwAQFmc1E/C9evX67bbblOnTp3kdrvVrFkz3X///dqzZ49+/fXXUGc8ZS6XS3PmzNGSJUv0+uuv6/nnn1dOTo7VsYCwF/XKnOA7o0dbmiOs2e3y9D1Xhtcr1ycfW50m7DVLaq6hzYdH1PlnJ+vwa4pxcPgjAKB6O6lyeeDAATVo0KDUtoYNG8o0TR08eDAkwSqCYRiKjQ3+sPd4PDJNU4FAwOJUQHizf/+dXJ+ukL9BQ+m886yOE9Y8/c+XJLk+fM/iJLBS69S2GtzsQtWMqWl1FAAALBXWx/CsXbtWN9xwg3r27Km0tDQtX778qH3mzp2rfv36qW3btrr00ku1adOmUo8XFRXpwgsvVJ8+fTR27FglJSVVUnogMkW9HJy1LL56tFir/Y95+v5Jps0m1wfvBS9JgmrJbrMrJSrV6hgAAFjupFeLHTdunOzH+EVz9OjRR21fvXp1+ZNJKigoUFpamoYNG6YJEyYc9fiyZcs0adIkTZw4Ue3bt9ecOXM0btw4vfPOO0pJSZEkRUVFacmSJcrIyNCECRN0/vnnq0aNGhWSD6hyiosVNe8VmXa7iq4Yqap3AGPFMlNS5evUWc61a2TfukX+Nm2tjgQAAGCZkyqX48dbsxJi79691bt37+M+Pnv2bF122WW65JJLJEkTJ07Uxx9/rIULF2rs2LGl9k1JSVGLFi20du1aXXDBBaeUx+rrP/3e4TzhlguRy/X2UtnS01U8aIiMenUlMb5OxNv/fDnXrlHUh++qsF07q+NEDL5/IdQYYwglxhdCKZLHV1iXyz/i8Xi0detW3XjjjSXbbDabunfvrg0bNkiSMjIy5HA4lJCQoLy8PH3xxRcaMWLEKT2fw2FTampcRUSvcMnJLCKBCjJnhiTJPeFmuQ+NK8bXCVw6THrofsW8/45iHphodZqIw/hCqDHGEEqML4RSJI6vkz4sNtxkZmbK7/cfdYhramqqfvrpJ0lSenq67rjjDvn9fpmmqSuuuEItWrQ4pefz+QLKySksd+6KZLMZSk6OVWZmvgIBzvdC+djXfaWklSvla36Gss/sJltmPuPrZNRrqqTGTWT/4gtlbtquQL36VieKCHz/QqgxxhBKjC+EUriOr4SEaDmdf7weR8SWy+MxTVOGEZxCbt68uRYuXFhhnzuc/nN/KxAwwzYbIkfs8/+RJBVed5MCMqRDY4rxdWLFA4co5tkpcr65WIXX3WR1nIjC+EKoMcYQSowvhFIkjq+wXi32jyQnJ8tutx91KZSMjAwW7AHKyLZ7l9yLFyqQnKyiEZdbHSfiFA++UJLkeutNi5MAAABYJ2LLpcvlUuvWrbVq1aqSbYFAQKtXr1aHDh2sCwZEoOiZ02T4/Sq8ZqwUwxqxZeU78yz569SV8/NVMn791eo4AAAAlgjrcpmfn69t27Zp27ZtkqRdu3Zp27ZtOnDggCRpzJgxmjdvnhYuXKidO3fqvvvuU1FRkYYOHWplbCCiGNlZipozS6bTqaJr/2x1nMhks8kzcLAM05T77aVWpwEAALBEWJ9zuWXLFo0aNark/gMPPCApuHrthAkTNHDgQGVkZGjKlCk6cOCAWrZsqRkzZpRc4xLAiUXPnCZbbo4Krx6tQO06VseJWMWDL1L0zGlyL12somuutToOAABApTNM04yss0Qt4vX6lZVVYHWMUmw2Q6mpcUpPz4u4k30RJvLylNqptYycHGWsXqdA4yYlDzG+ysjnU2q7NBmZGUrf9K3MmjWtThTWGF8INcYYQonxhVAK1/GVlBRzwtViw/qwWAChFT1nlmyZmSoeNqJUscQpcDhUNPQSGX6/3IvfsDoNAABApaNcAtVVQYFinp0i0zBUcOvtVqepEoovuVSSFPXG6xYnAQAAqHyUS6Caip7xvGwHflXxRUPlPyPN6jhVgq9jJ/maNJXzqy9l+36n1XEAAAAqFeUSqIaMzAzFTJks0+FQwZ3/sjpO1WEYR2YvF8y3OAwAAEDlolwC1VDMlMmy5WSr6Kpr5G96utVxqpTi4cFy6X7jdYn10gAAQDVCuQSqGdue3Yqe+YLM6GgV/O0fVsepcvxNT5f3zE5y7PxOjq/WWh0HAACg0lAugWom5rFJMoqKVHjdTQrUqm11nCqp6PKRkqSoV1+2OAkAAEDloVwC1Yh96xZFvfaKAklJKhh/q9VxqqziYcNlRkfLvfANKS/P6jgAAACVgnIJVBemqbi7/iYjEFD+HXfLTEyyOlGVZSYkqnjwRbLl5ylqyUKr4wAAAFQKyiVQTbgX/k+uz1fJ17K1ikaPszpOlVd01ShJUtTclyxOAgAAUDkol0A1YOTlKva+4CVH8h5+XHI4LE5U9Xm79Qhe83LtGtm//cbqOAAAACFHuQSqgZgnH5N9314VDRsub7ceVsepHgxDRVddI0mKnj3d4jAAAAChR7kEqjj7tq8V/cIzMmNilX/vA1bHqVaKrhol0+2We96rMnJzrI4DAAAQUpRLoCrz+RR/200yvF7l3/lPBerUtTpRtWKmpqpo2AjZ8vPkfv01q+MAAACEFOUSqMKiX3hWzvXr5O3UWYV/vtHqONVS0djrJEnRM6dJgYDFaQAAAEKHcglUUbbvdyr2kQdkulzKfeoZyW63OlK15GvXQd7OXeT4boecK5ZbHQcAACBkKJdAVRQIKP6vE2QUFangL3+XP62F1YmqtcJx10uSome+YHESAACA0KFcAlVQ9HP/kWvVZ/K1aqOCCX+xOk61Vzz4Ivlr1Zbr/Xdl++F7q+MAAACEBOUSqGIcmzcq9qGJMt1u5Tw3Q3K5rI4Ep1NFo8fKME3FPP8fq9MAAACEBOUSqEoKChR/w1gZXq/y7v0/+Vu2sjoRDikcM05mTIyiXntFxoEDVscBAACocJRLoAqJu/efcuz4Vp5+56po7PVWx8FvmCmpKrx6tIyiIkXPeM7qOAAAABWOcglUEe6F/1P0nJkKpKYq5+nnJMOwOhJ+p/CG8TIdDkXPmiEjL9fqOAAAABWKcglUAfZvtiv+LxNkGoZynpsps1YtqyPhGAL16qv4kktly85S1EsvWh0HAACgQlEugQhn5OUq4dqRMgryVXDH3fL26Wd1JPyBgvG3SZKiX3hG8nisDQMAAFCBKJdAJDNNxf11ghw7vlXxn/qr4C9/tzoRTsCf1kLFAwbKvnePol57xeo4AAAAFYZyCUSwmCcfVdSiBfI3aKjcZ6dLNr6kI0HBX++QJMU89bhUXGxxGgAAgIrBb6JAhHIvXqDYRx5UIDZO2S//V2ZyitWRcJJ8Hc4Mzl7u3qWouS9ZHQcAAKBCUC6BCORY/5XiJ9wg0zCU+8JM+Vu1tjoSyij/73dLOjR7WVRkcRoAAIDyo1wCEca2Z7cSRl0ho6hI+fc9KM95F1gdCafA37adigdfJPu+vYp+ebbVcQAAAMqNcglEECMrU4lXDJd9/z4VjrxGhTfcbHUklEP+3++SaRiKfvpJqaDA6jgAAADlQrkEIkVBgRKvulSObVvl6d1XeQ8/IRmG1alQDv6WrVR80VDZf92v6BnPWx0HAACgXCiXQCTwepUw9mo5166Rt9NZyp49V3K5rE6FClBw579kOhyKefpJGQcPWh0HAADglFEugXAXCCj+lhvl/vB9+dJaKHvufCkuzupUqCD+pqercPRY2XJzFDP5UavjAAAAnDLKJRDOAgHF/f02Rb3xuvwNGir79UUyU1KtToUKVvDXfygQF6/o2TNk+36n1XEAAABOCeUSCFeBgOL+dquiX35R/lq1lf36QgXq1LU6FULArFFDhbf8RYbPp9hJ/2d1HAAAgFNCuQTC0eFi+cqcYLFc9Jb8zZpbnQohVHDdTfLXqauoxQvk+GKN1XEAAADKjHIJhBu//0ixrF2HYlldxMQo/+5/S5Li7vqb5PdbHAgAAKBsKJdAOPF4FH/D2CPFcuFSimU1Ujzicnk7d5Fz80ZFvfyi1XEAAADKhHIJhIu8PCVeNUJRixfI36ixsha/TbGsbmw25U16TKZhKHbS/TIy0q1OBAAAcNIol0AYMDLSlTR8iFwrlsvXqo2ylr6nQJOmVseCBXztOqho1LWyZWYqdtIDVscBAAA4aZRLwGK273cqafB5cq77St4u3ZS1eJkCtWpbHQsWyr/rXwokJyvqpVlybNpgdRwAAICTQrkELOT8fJWSB/5Jju92qHjAQGX9d6HMxCSrY8FiZkqq8u/6twzTVNw/bpcCAasjAQAAnBDlErCI+/XXlDj8QtkyMlRww3jlzJ4rxcRYHQthoujq0fK27yjnV2sVNXuG1XEAAABOiHIJVDafT7H/d68Sxl8v+f3KfXSy8u9/SLLbrU6GcGK3K+/JKTLtdsU+cJ9su3dZnQgAAOAPUS6BSmQcPKjEy4YqZupkBRISlf3q/1Q0eqzVsRCmfG3bq/CmW2TLz1PcP/4qmabVkQAAAI6LcglUEse6L5Xcv5dcn66Qr1UbZb73sbx9/2R1LIS5/L/dKV+TpnK/947cixdYHQcAAOC4KJdAqJmmoubMUtKFA2TfvUtFl1yqzGUfKNC0mdXJEAmio5X3xBRJUtzdf+falwAAIGxRLoEQMjIzlDB2lOL/fpsUCCh30mPKfXY6C/egTLw9e6lw5DWyHTyouHvusjoOAADAMVEugRBxrvxUyX17yL10sfwNGylr8dsqGnu9ZBhWR0MEyv/3/fLXqauo+fPkWrrE6jgAAABHoVwCFc3rVcxD9ytx2GDZ9+wOHgb70Wfyde5idTJEMDMpWblPPSNJiv/bLTL277c4EQAAQGmUS6ACOTZvVNL5fRX71OMyY+OU88w05T43Q2ZCotXRUAV4+/5JhWPGyZaRofi/3cLqsQAAIKxQLoGKUFysmIf/T0nn95VzyyZ5unZX5kefqXjE5VYnQxWT9+//k69pM7nffVtRr75sdRwAAIASlEugnBzrv1Jy/16KffIxyeVW7qTHlL1omQKNm1gdDVVRbKxy//OCTJtNsf+6U7Yff7A6EQAAgCTKJXDKjMwMxf39L0oa0E+O7dvkOae3MlasDi7aY+NLC6HjO+tsFdz6V9ny85Rww7WS12t1JAAAAMolUGaBgKLmvqSUbmcqes5MmUlJyn1iirL/t0SBRo2tTodqouBvd8nbqbOc675S7EP3Wx0HAACAcgmUhWPTBiUN6q/4v4yXkZmpwqvHKGP1OhVdPZpLjKByOZ3KeWGWAolJinnmaTk/et/qRAAAoJqjXAInwbZ7l+In3KCk/r3l/GqtvB06KuvtD5X3xNMyU1KtjodqKtCwkXKfnCpJShh/vWz79lqcCAAAVGeUS+APGNlZiv2/e5XStaOi/vuqzNRU5T46WVlvfyTfmWdZHQ+QZ8hFKhw9VraDBxV/058lv9/qSAAAoJqiXALHUlSk6BeeUcrZ7RUzdbJksyn/r39XxpoNKho9VrLbrU4IlMi7f5J8rdrI9dknin34AavjAACAasphdQAgrBQWKvqVFxU99SnZ9+2VabOpcOQ1KrjjbgVq17E6HXBsUVHKmfWSks7rq5inn5C3Yyd5Bg62OhUAAKhmmLkEpGCpnPasUs5ur7h//kP2fXtVPOhCZX68WnlPTqVYIuz5m56u3GenSZLix18v+3c7LE4EAACqG8olqjUjO0vRU59SSud2ivvXnbLv36fiIRcrY/kq5cx+Rf4WLa2OCJw0z3kXKP+vd8iWl6uE0VfKyMu1OhIAAKhGOCwW1ZLtl58VPe05Rb0yR7b8PElS0YVDVfDXO+Rv1dridMCpK/j7XXJsXC/3h+8r/tablTNjDpfJAQAAlYKZS1QfpinHV2sVf/2Y4EI9Lzwjw+dV4dWjlbHyS+XOmEOxROSz25X77HT5GzaW+81Fip462epEAACgmmDmElVfXp6iFsxX1JxZcm7eKEkKpKSoYMyfVXjtdTJr1rQ4IFCxzOQUZb84V8mD+yv2wYnyn34GC/wAAICQo1yiyrJv3aLoOTPl/t/rsh0698zXqo0KR49V0aVXSDExFicEQsffpq1ynpmuxDFXKeGmccp681352ra3OhYAAKjCKJeoUoz0dLkX/U9R8+fJue4rSZLpdqvo0itUOHqsfJ06c/4Zqg3PoCHK+9dExT1wrxJGXqasd5ez8jEAAAgZyiUiX1GRXO+9raj58+T68H0ZPp8kyXd6cxWNGqOiy66UmZxicUjAGoUTbpNjxzeK+u+rShh1ubIWvc2sPQAACAnKJSJTcbFcKz6Se+kSuZYtlS0nW1LwXMqiocNVNOJy+Tp2YpYSMAzlPv60bD/9KNfnq5Qw4QblTH9RsrGeGwAAqFiUS0SO/Hy5Pnpf7qWL5Xr/vZLzKE2XS8VDLlbRiMvl6Xeu5HJZHBQIM263cmbPVfKAvnK/uUix996t/Psn8ccXAABQoSiXCGu2n36U68P35frofbk+XSGjsFCSZEZHq3jQhSoefKE8/c+XmZBocVIgvJmpqcqe94aSBp+nmBeeVaB2XRXefIvVsQAAQBVCuUR4KSyUc83qkkLp2PFtyUOBuHgVDxuu4kEXBWcoY2MtDApEHn+z5sp+5XUlXTJEcRP/pcBpp6l4xOVWxwIAAFUE5RLWKiiQ88sv5Fz1WfC27ksZHk/Jw76WreTp11+eP/WX9+yuHPIKlJOvU2flzJijhKsvV/ytNylQ8zR5+/SzOhYAAKgCKJeoVMavv8q5/is5vlor1+qVcqz7UobXW/J4ICVFnm495el3rjz9zlWgXn0L0wJVk+fc85X75FQl3HqTEsaMVPbCpfJ1ONPqWAAAIMJV+XJ5yy23aPXq1erZs6cmT55sdZxqxcjLlWPTRjnWfRUslOu/kn3XL6X2CaSkyNP9HHm695C3+znyt2jJKpZAJSi+YqTy9+1V7KT/U+JlQ5W16G35W7ayOhYAAIhgVb5cXnXVVbr44ov15ptvWh2l6vJ6Zd/5nRzbtsq+7Ws5tm2VY9vXsv/8U6ndTMOQr0VLeTt2kq/DmfJ27S5/WgvKJGCRgtv+JiMrSzHPTVXS8AuV9eY78jc93epYAAAgQlX5ctmlSxetWbPG6hiRz++Xbfcu2X/4Xvbvdwbf/nDo7Y8/lDpPsuRDGjWWr007ec88S74zO8nXvoPMuHgLwgM4JsNQ/n0PyCgoUPScmUq85EJlLXlHgQYNrU4GAAAiUFiXy7Vr12rmzJnasmWLDhw4oOeff159+/Yttc/cuXM1c+ZMHThwQC1bttS//vUvtWvXzqLEESgQkJGVKVtmhoz0DNn275V97x7Z9uyRbe9u2ffskW1v8PbbcyNLfYoaNeRt2Vq+Fi3lb9lavpat5EtrKcXFVfKLAVBmhqG8R56QUZCvqPnzlHTJEGW9+a4CtWpbnQwAAESYsC6XBQUFSktL07BhwzRhwoSjHl+2bJkmTZqkiRMnqn379pozZ47GjRund955RykpKRWex2YLrwuOO7/eIu39We7sfJlerwyfT/L5JL9fhtcroyBfKiiQkZ8vIz9PRt6ht7k5MjIyZMtIl5GZKSMQOOFzBU47Tb7GTeRv0lSBpqfL36Sp/E2bKdCkiczEpKP250DXyHd4vIfbuEcI2OzKn/qcjKJCud9crMThFypn8TKZNWqG7ikZXwgxxhhCifGFUIrk8WWYpmlaHeJkpKWlHTVzOWLECLVr10733HOPJCkQCKh3794aPXq0xo4dW7LfmjVrNG/evHIt6GOapgwjjP6Di4qkhATpOLOJJyUqSqpR48gtNVWqU0eqXz94q1cv+LZuXS4BAlQHHo80dKi0bJnUrp30wQdSzdAVTAAAULWE9czlH/F4PNq6datuvPHGkm02m03du3fXhg0bKvz5fL6AcnIKK/zzlkfU408pdtePKvSZMm12yeGQHHaZdrtkd8iMjZMZGyszNlY69NaMjZMZH69ASqoUE3NyT5TrkXT0OZWo2mw2Q8nJscrMzFcgEBF/g0JFeOFFxY+8TK4Vy+Xr1Vs5C5bKPO20Cn8axhdCjTGGUGJ8IZTCdXwlJETL6bT/4T4RWy4zMzPl9/tVo0aNUttTU1P1009HVim97rrrtGnTJhUWFqpXr16aNm2aWrRocUrPGU7/uZJUdNUoxabGqSA979SyhdnrQXgKBMywG/sIIXeUsl+ap8QxV8n10QdKuHigst5YKrNWrZA8HeMLocYYQygxvhBKkTi+IrZcHs/vD1+dNm2ahWkAIAJFRyv7xVeVMPZqud9/V0lDByp7wVIFatexOhkAAAhjEbvuSnJysux2uw4ePFhqe0ZGxlGzmQCAMoqKUs6sV1Q8YKAc3+1Q4kUXyLZnt9WpAABAGIvYculyudS6dWutWrWqZFsgENDq1avVoUMH64IBQFXhditnxksqHjhEjh++V9KFF8j2w/dWpwIAAGEqrMtlfn6+tm3bpm3btkmSdu3apW3btunAgQOSpDFjxmjevHlauHChdu7cqfvuu09FRUUaOnSolbEBoOpwuZQz/UUVXTxM9p9/VNKQ82XfusXqVAAAIAyF9TmXW7Zs0ahRo0ruP/DAA5Kk8ePHa8KECRo4cKAyMjI0ZcoUHThwQC1bttSMGTNCco1LAKi2nE7lPjdTZkKSol+apaSLByp77nz5zu5idTIAABBGIuY6l1bzev3KyiqwOkYpNpuh1NQ4pZ/qarHAH2B84SimqZhJ/6fYpx6XGR2t7NmvyNuv/yl9KsYXQo0xhlBifCGUwnV8JSXFnPBSJGF9WCwAIIwYhgru/rfy7ntQRmGhEq++XO5Fb1idCgAAhAnKJQCgTApvmqDcp56R/H7FX3+tol94xupIAAAgDFAuAQBlVnTl1cqZ9YrkdivunrsU+887JL/f6lgAAMBClEsAwCnxDBysrAVLFUhNVcz055Vw7dVSQXidmw4AACoP5RIAcMp8Z52tzLc+kK9pM7nfXqqkSwbLOHS5KAAAUL1QLgEA5RJo2kxZb30gb+cucn71pZIH/kn2nTusjgUAACoZ5RIAUG5maqqy/rdExUMulv2nH5U08Fw5P11hdSwAAFCJKJcAgIoRHa2c6S+q4OZbZcvMVOKlFytq1nSrUwEAgEpCuQQAVBybTfn3/p9ypjwn2e2Kv/N2xf39L5LXa3UyAAAQYpRLAECFK778KmUtfEuBmqcpes5MJY64SEZ6utWxAABACFEuAQAh4evcRZnvfSxv2/ZyrfpMyef3lX3b11bHAgAAIUK5BACETKBefWUteUdFFw6V/ecflXzBn+RevMDqWAAAIAQolwCA0IqNVe70F5V/57+kwgIl/Hm0Yv55J+dhAgBQxVAuAQChZxgq+Osdyn7tDQWSkxX9wjNSv34y9u2zOhkAAKgglEsAQKXx9jtXmR98Kl+HM6XPPlNSvx5yrl5pdSwAAFABKJcAgEoVaNBQ2Uvfla67TrZff1XisMGKfmaKFAhYHQ0AAJQD5RIAUPmioqQXXlDelGclp1NxE/+lhJGXyjh40OpkAADgFFEuAQCWKb7yamUu+1C+05vL/cF7Su7XQ86Vn1odCwAAnALKJQDAUv42bZX53goVXX6V7Pv2KvGSIYp59CHJ77c6GgAAKAPKJQDAenFxyp3ynHKemSZFRSv28YeVOGywbHt2W50MAACcJMolACBsFI+4XJkffiJv2/ZyrV6p5H495HpnmdWxAADASaBcAgDCir9Zc2Ut+0AFf75BtowMJY66XHF/GS8jL9fqaAAA4A9QLgEA4cftVv6Djyp77usK1DxN0XNfUnLfHnKs+dzqZAAA4DgolwCAsOXpP0AZKz5X8cAhsv/0o5IuGqCYh+6XPB6rowEAgN+hXAIAwppZo4ZyZr+inCnPyYyJVexTjyvpgj/Jvn2b1dEAAMBvUC4BAOHPMFR8+VXKXL5Snq7d5dy8Ucn9eyl66lOSz2d1OgAAIMolACCCBBo1VvbCt5R3z/2SaSru//6tpEHnyr7ta6ujAQBQ7VEuAQCRxW5X4YTblPnRSnk7dZZz/Toln3uOYp54RPJ6rU4HAEC1RbkEAEQk/xlpylr6nvImPiTZ7Yp95EEln9dHjs0brY4GAEC1RLkEAEQuu12FN45X5ser5OnWQ46tm5V0Xh/FTLpfKi62Oh0AANUK5RIAEPH8TU9X9sK3lPvwE5I7SrGTH1dyvx5yrvzU6mgAAFQblEsAQNVgs6no2j8r45PP5enTT44d3ypp6CDFT7hBxsGDVqcDAKDKo1wCAKqUQMNGyv7vQuW8MEuBmqcp6r+vKqVHJ0XNfUkKBKyOBwBAlUW5BABUPYah4qHDlbHqSxWOHisjK0vxfxmvxIsHyr59m9XpAACokiiXAIAqy0xMUt6jk5W17AP5WreV6/NVSu7XQ7EPTpTy862OBwBAlUK5BABUeb5OnZX5/orgZUtcbsU8/YRSepwl96I3JNO0Oh4AAFUC5RIAUD04HCq8cbwyVq5V0UXDZN+zWwnXjQkeKrtls9XpAACIeJRLAEC1EqhXX7nTX1TWwrfka9lartUrlXzuOYr7x19lZKRbHQ8AgIhFuQQAVEveHuco88NPlTvpcZkJCYqePUMp3c5U1OwZkt9vdTwAACIO5RIAUH05HCoae50yVq9X4TWHVpX9x1+VfG4vOT9dYXU6AAAiCuUSAFDtmampyntssrI++ETeLt3k2LpZSZcMUcJVI2T/ZrvV8QAAiAiUSwAADvG1ba+sJe8oe8Yc+Rs2lvv9d5Xcu6vi/nabjP37rY4HAEBYo1wCAPBbhiHPhUOVsXKt8u5/KHg+5kuzlNqlg2KeeITrYwIAcByUSwAAjsXtVuEN45XxxUYV3DhB8nkV+8iDwUV/Xn2ZRX8AAPgdyiUAAH/ATEpW/sQHlfHZWhVdPEz2fXsVf9vNSu7TTa633pRM0+qIAACEBcolAAAnIdC4iXKnvajMtz+Up2t3Ob7ZrsQxVylpQF85VyynZAIAqj3KJQAAZeDr1FnZi99W1rwF8rbrIOf6dUoacZESLxkix9o1VscDAMAylEsAAMrKMOTtd66y3l+h7Jkvydf8DLk++0TJg/or4erLZN+6xeqEAABUOsolAACnyjDkGXKxMld8rpwpz8nfoKHc776t5H49FH/daNm3b7M6IQAAlYZyCQBAeTkcKr78KmWs+kq5kx6TWaOmohYtUHLvroofd43s2762OiEAACFHuQQAoKK43Soae73S125S3v0PKVDzNEUtWaiU3l2VcO3VHC4LAKjSKJcAAFS0mJjgNTLXblLeAw/LX6u23EsXK6VvdyWMGSn7ls1WJwQAoMJRLgEACJXoaBVed5Myvtio3Icelb92HbnfWqKUfj2UcM2Vcmxcb3VCAAAqDOUSAIBQi45W0bgbgiVz0uPy16kr99tLldy/txJHXCTnpyu4TiYAIOJRLgEAqCxRUSoae12wZD46Wf5GjeVasVxJlwxR0oC+ci1dIgUCVqcEAOCUUC4BAKhsbreKRo9Vxup1ynlhlnyt28q5fp0Srx2p5J6dFfXqy5LHY3VKAADKhHIJAIBVHA4VDx2uzI8+U9a8N+Tp1kOO73Yo/rabldK5naKf+4+MvFyrUwIAcFIolwAAWM0w5O3XX9mL31bm0vdVPGCg7Hv3KO7eu5XSoZVi7/uXbLt+sTolAAB/iHIJAEAY8Z3dRTkvzVPGJ2tUdNmVMgoLFPPsFKV0bqf468fIse5LqyMCAHBMlEsAAMKQv0VL5U59Xhnrtir/L3+TmZioqIVvKHlAPyUNPi+4+I/fb3VMAABKUC4BAAhjgVq1VXDXv5W+7mvlPvaUfKc3l/OLz5V47UildOmo6GnPcl4mACAsUC4BAIgEMTEquuZaZX62VtmvzpfnnD6y//yj4v51p1Lat1TsP++Q/bsdVqcEAFRjlEsAACKJzSbPuecr+40lyvhoZfC8zOIixUx/XindOylxxEVyvbOMQ2YBAJWOcgkAQITyt2mr3KnPK339NuX981756zeQa8VyJY66XClnt1f0lCdlHDxodUwAQDVBuQQAIMKZNWuq8NbblfHFRmW/+Ko8vfrK/svPinvgPqV2bKn48dezyiwAIOQolwAAVBUOhzwDByv7f4uVsfJLFYy7XqbTpajXXwuuMtu/t6Jems0CQACAkKBcAgBQBfmbn6H8hx5Txqbtyn3kSflatJRz43rF/+1WpbY5Q3F/nSDH+q8k07Q6KgCgiqBcAgBQhZlx8SoaM06ZKz5X5tL3VXT5VZIZUPQrc5R8fl8l9+upqFnTZeRkWx0VABDhKJcAAFQHhiHf2V2UO+U5pW/6RrkPPyFf67ZybN2s+DtvV2rbMxR/y41yfLGG2UwAwCmhXAIAUM2YiUkquvbPyvzoM2W+u1yFI6+RDJui5s1V8uD+Su7dVdHPTpWxf7/VUQEAEYRyCQBAdWUY8nXspLwnpyp9y7fKffxpeTt0lGP7NsXd90+ldmihhKtGyPXmIqm42Oq0AIAwR7kEAADBczNHjVHWeyuU8dFKFVx/s8zkFLnff1eJY0cptW1zxf3jrywCBAA4LsolAAAoxd+mrfL/b5LSN25X9sv/VfGgC2Xk5yt69ozgIkC9uij6P0/Ltn+f1VEBAGGkypfLW265RZ07d9Zf/vIXq6MAABBZnE55zr9AObNfUfrmb5U76TF523eU45vtirv/HqW0b6HEy4bK/d9XuXYmAKDql8urrrpKjzzyiNUxAACIaGZKqorGXq+s91coY8XnKrjpFpmpNeRa/qESJtyg1FbNFP/n0XK9/RbnZwJANVXly2WXLl0UGxtrdQwAAKoMf8tWyr/vAaVv3K6s1xep6LIrZTqcilq8QInXXBE8P/P2W+Rc+akUCFgdFwBQSSwtl2vXrtUNN9ygnj17Ki0tTcuXLz9qn7lz56pfv35q27atLr30Um3atMmCpAAA4CgOh7x9+il36vNK3/qdsme+pOILBssoKFD0yy8qaeggpXRspdh7/ynHpg0sBAQAVZzDyicvKChQWlqahg0bpgkTJhz1+LJlyzRp0iRNnDhR7du315w5czRu3Di98847SklJkSRddNFFx/zcCxYskN1uD2l+AABwSHS0PEMulmfIxTKyMuV+6025F8yX87NPFPPcVMU8N1W+Zqer+MKLVXzhMPlbtZYMw+rUAIAKZGm57N27t3r37n3cx2fPnq3LLrtMl1xyiSRp4sSJ+vjjj7Vw4UKNHTtWkrR48eJKySpJNlt4/RA8nCfccqFqYHwhlBhfVVxKijxXXyPP1dfItnePXAvfkPt/r8uxaYMckx9X7OTH5W92uoovGirPhUPlb92mwosmYwyhxPhCKEXy+LK0XP4Rj8ejrVu36sYbbyzZZrPZ1L17d23YsKHS8zgcNqWmxlX6856M5GTOKUXoML4QSoyvaiD1DKnNXdI9d0k7d0rz50vz58u+bp1innxMMU8+JjVvLo0YEby1b1+hRZMxhlBifCGUInF8hW25zMzMlN/vV40aNUptT01N1U8//XTSn+e6667Tpk2bVFhYqF69emnatGlq0aJFmfP4fAHl5BSW+eNCyWYzlJwcq8zMfAUCnMeCisX4QigxvqqppFrSn8dLfx4v248/yLVkkdxLFsmxYZ300EPSQw/J36SZii8KHl7rb3fqRZMxhlBifCGUwnV8JSREy+n849MOw7ZcHo9pmjLK8INm2rRpFfbc4fSf+1uBgBm22RD5GF8IJcZX9RVo2Fi+8bepYPxtsv30o9xvLpb7zYVyrl+nmKeeUMxTT8hfv4GKLxgkzwWD5e3aXXKU/dcWxhhCifGFUIrE8RW2lyJJTk6W3W7XwYMHS23PyMg4ajYTAABErkCjxiocf6uy3v1Y6V9uVt69D8jbuYtsu3cpZvrzSho2WKmtmyl+/PVyvfWmlJ9vdWQAwDGEbbl0uVxq3bq1Vq1aVbItEAho9erV6tChg3XBAABAyAQaNlLhzbco6633lb7pW+U+MUXF554nIz9fUa+/psQxV6lGyyZKGHW53K+9IuN3f4QGAFjH0sNi8/Pz9fPPP5fc37Vrl7Zt26YaNWqoZs2aGjNmjO644w61bt1a7dq105w5c1RUVKShQ4damBoAAFQGs1YtFV09WkVXj5aRlyvnRx/IvWypXO+/K/c7y+R+Z5lMm03es7vKM2CQPP3Pl//05lziBAAsYpimdVc0XrNmjUaNGnXU9vHjx5dc9/KVV17RzJkzdeDAAbVs2VL33HOP2rVrV9lR5fX6lZVVUOnP+0dsNkOpqXFKT8+LuOOxEf4YXwglxhfKxeORc+Wncr+9VK53lsm+b2/JQ/5GjVXc/3z5zr9ACUMGKD3PyxhDheN7GEIpXMdXUlLMCRf0sbRcRhLKJaobxhdCifGFChMIyLFhnVzvvS3X++/JuXnjkcdiY+Xp1UfF554vz7nnKVCnrnU5UaXwPQyhFK7ji3JZgSiXqG4YXwglxhdCxbZvr1wfvCf3B+/KtWJ5qcV/vG3aydP/PHnOPV++M8+S7H/8SxJwPHwPQyiF6/iiXFYgyiWqG8YXQonxhVCz2QylxjmV8+Y7crz3jtzvvyv7jz+UPB5ISZGnVx95+/xJnj79FKhbz8K0iDR8D0Mohev4olxWIMolqhvGF0KJ8YVQO2qMmabsO7+T6/135frgXTk/XyXD6y3Z35fWQp4+f5Knbz95u/aQYmIsTI9wx/cwhFK4jq+TKZeWrhYLAABQKQxD/tObq/D05iq8cbyUlyfX6s/k/PgjuZZ/KMc32+X4ZrtiXnhGptstb5fu8vQNzmr6W7VmBVoAOAmUSwAAUP3ExcnTf4A8/QcoX5Ltl5/lWrFcruUfyvnJx3J9slyuT5ZLEyX/abXk7dMveBhtz14cQgsAx8FhsSeJw2JR3TC+EEqML4RaucaY3y/H+q/kOjyrue5LGX5/ycO+ZqfL27O3POf0krf7OTJr1Kjg9Ah3fA9DKIXr+OKwWAAAgLKy2+U762z5zjpbBX+7U0Z2lpyffSrXZyvk/OyT4CG0O79T9JyZkiRfqzbBotmzt7zdustMSLT4BQCANSiXAAAAf8BMTJJn0BB5Bg2RJBn798u16lM5P/tErk9XyPH1Fjm+3iK98KxMm02+9h2CM5s9zpHv7C4y4+ItfgUAUDk4LPYkcVgsqhvGF0KJ8YVQq8wxZvvlZzlXfirXp8GZTfvePSWPmXa7fG3bydu1h7xdu8vbpZvM1NSQ5kHo8T0MoRSu44tLkVQgyiWqG8YXQonxhVCzbIyZpuzffyfnZ5/KufITOT9fLfu+vaV28aW1OFQ2u8nbrQcLBEUgvochlMJ1fHHOJQAAQGUyDPmbNZe/WXMVXXOtZJqy/fiDnGtWy7l6pVyrV5Zc9uTwOZv+ho2Cs5pdu8vbrbv8TU/n0icAIhLlEgAAIFQMQ4EmTVXcpKmKL79KkmTbt1fOz1fJuXqlnJ+vlmPbVtl//klRr78mSQqkpsp71tnyHlpUyNvhTCk21spXAQAnhXIJAABQiQK166j44ktUfPElkiQjM0POL9YcKpsr5di8Se5335b73bclHTpvs3Vb+c7qHCydnbso0LARs5sAwg7lEgAAwEJmcoo8518gz/kXBDcUFcmxcYOcX34h59o1cnz5hZybNsi5aYOiZ02XJAVqnlYyu+nt3EW+9h2k6GjrXgQAiHIJAAAQXqKi5OvSVb4uXVUoBc/b/OVnOdeukfPLL+T4cq0cWzbJ/fZSud9eKkkyHQ75WrSSr+OZ8nXsJG+HM+Vv0VJy8KsegMrDdxwAAIBwZhgKNGyk4oaNVHzJpcFt+flyblwfnNVcu0bOdV/JuWWTnFs2SS+/KEkyo6Pla9NO3kOF09fxTPmbNONwWgAhQ7kEAACINLGx8nbvKW/3nkdmN/fslmP9Ojk3rJNj/VdybFgfLJ5r15R8WCAxSb72HeXreKa8Hc6Ur+OZCtSpS+EEUCEolwAAAJHOMBSoV1+eevXlGXxhcFsgIPv3Ow8VzXVyrl8nx5ZNcn2yXK5Plpd8aCA1Vb427eRr10G+tu3ka9suOMNps1n0YgBEKsolAABAVWSzyX96c/lPb67iEZcHt3m9cmz/Wo716+TYsE6OjRvk2P61XCuWy7XiN4UzNk7+Nm3lbdtOvrbt5WvTTv60FpLLZdGLARAJKJcAAADVhdMZLItt20ujxgS3eTyyf7Ndzs0b5di8UY7Nm+TYslnONavlXLO65ENNlyu4aFDbdsGy2aq1fC1byUxKtujFAAg3lEsAAIDqzOWSv207+du2k3R1cFsgIPsPO+XYdKhsbt4ox5ZNJZdE+S1/3XrytWwlf8tg2fS1aiN/8zOY5QSqIcolAAAASrPZ5G/WXP5mzVU8dHhwm2nKtndPsHBu3Sz7tq/l+HqL7N/vlHvPbunD90s+3HQ45D+9+ZHS2aq1fC1bK1C/AYsHAVUY5RIAAAAnZhgK1K0nT9168gwYeGR7YaEcO76R/eutchwunNu+lmP7Njm2b5MWvlGyayA+Qf4WLeU7I03+5mnyp6XJ1zwtWDpZQAiIeJRLAAAAnLro6OBKs+06qPg3m430dDm2bZVj29ZDxXOrHNu3HXV5FEkyY2LkO/0M+ZufIX9aC/map8l/Rpr8jZtITmflvh4Ap4xyCQAAgApnpqbK27OXvD17HdkYCMj280/Bmc5vv5X92+1yfPuN7Du+Peb5nKbTKX/TZvKf0UK+5ofKZ7PT5W/aTGZCYuW+IAAnRLkEAABA5bDZFGjcRJ7GTaT+A45sN03Z9u+T/dtvjhTOb7+R49tv5PhmuxzfbJf7d58qUKOm/M1Ol69ps0OFM1g6/U2aStHRlfqyAARRLgEAAGAtw1Cgdh0FateRt1ef0g9lpMv+7bdyfLtd9p3fyf79d8G3P/141OVSDvPXqx8sm82aBQvnodlOf4NGrGILhBDlEgAAAGHLTEmVr2s3+bp2K/2AzyfbLz8HL5my81Dh/H6n7N/vDG7fvUv69OPSn8tmU6BeffkbNpK/UWMFGjWWv+TWRGZqKqvZAuVAuQQAAEDkcTgUaNJUgSZN5e3Xv/RjRUWy//TjbwrnofL580+y7fpF9l9+llZ+etSnDMTGHSmcDRvJ3/hwAW0if4OGUlRUJb04IDJRLgEAAFC1REXJn9ZC/rQWRz9WXCz7rp9l++lH2X/8MVhCD91sP/0ox9db5Ph6yzE/baDmafLXr69Ag4bS6U0VlVpLvnoNFKhfX/56DWSmpDDziWqNcgkAAIDqw+2Wv1lz+Zs1l/f3j5mmjIwM2X8+UjaPlM+fZNuzS84Dv0rr10mSYn//4TEx8terr0D9BvLXbxA8BLd+g+D9OnUVqFOX2U9UaZRLAAAAQJIMQ2ZqqnypqfJ17HT0436/bL/ul2PPLiVmH1T+19/KtusX2Xbvkv2X4FvHjm+lHd8e9ykCyckK1K6rQO3awcJZu44CJW/ryF+7rswaNSSbLYQvFAgNyiUAAABwMux2BerUla9ePSk1TkXpeQoEzFK7GLk5su3eHTz0dtcu2Xfvku2Xn2Xbu0e2fXtl37dXjm1bpW1bj/s0psOhQK3aJcXTX/vQ+6fVklmzpgI1T1PgtFoKpNaQnM5Qv2rgpFEuAQAAgApixifI3yJB/hYtj7ODKSM7S7a9e4OFc/8+2ffuCd7ft0e2ffuC2/fsDq54ewKBlJQjZfNw8Tx0M0878n6gRk2KKEKOcgkAAABUFsOQmZQsf1Ky/C1bHX8/r1e2A78Gi+bevbLt3xu8f+BA8O2v+0ved3yzXfpm+wmfOpCYpEBKisyUVAVSU2Umpyhw+P2U1OD7KakyU4LbzeRkyW6vwBePqo5yCQAAAIQbp1OBuvUUqFvvj/czTRl5uSVl0zjwq2y//irbgf1HFVEjI0OOH76Xfvj+pCKYhiEzKelQ0UwJFtOERAWSkmQmJMpMTDryflKSAofemomJMuPiOW+0GqJcAgAAAJHKMIKH4sYnyN+s+Yn3LyqSLTNDRnq6bBnppd43Mg5ty8iQkZFx6P10OXZ+V+ZYps0mMyFBZsKhApqYGCyhcXGHbvEK/Ob94O239w+9HxsnOagskYL/KQAAAKC6iIoKXhKlTl35T/ZjCguD5TMrS7bsLBnZ2cHzRku9H3xrZGeXet/+84+y/1y+yGZ0tMzYYNkMxMVL0dEyo2NkRkcFH4uOCW6Liv7N/ahD+xzaNypKijl0PypapssluVwyXW7J5ZTpDN6nyJYP/3oAAAAAji86WoF69aV69U++kB7m9crIyZEtOzNYRPPyDt1yj7yf/5v38/Jky8uVkXtoW/6hfXOyZTt4QKE+A9S02YKl0+kKlk6XW3K6ZLqcwbdu16H7Lslml+w2mXZ78NxUW/Bt8L7td/ftx97/8KHDhhG8SZLLKV0/TkqpE+JXW/EolwAAAABCw+mUmZoqf2pq+T+XxxMsmkVFMgoLpMLgW6OwUEZRoYzCQqkw+Lb0tgIZv9lXRYUyPB4ZHo/k9cgoPvTW4wk+h8cTLMUFBTKysmT4y1ypy89bJP37wcp/3nKiXAIAAAAIfy6XzJRUmSfes2L5/cGy6SmWPF4ZXo9UXCwj4Jf8geDjfv+h+4dvgd/d/+3jhz4m4JdhmtLhmxRcoMnhUPywIVKgsl9o+VEuAQAAAOB4Dh3GakZFSVLIy63NZkjJcVJ6XoifqeKxPjAAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwolwAAAACAcqNcAgAAAADKjXIJAAAAACg3yiUAAAAAoNwM0zRNq0NEgkDAlN8fsDrGUZxOu7xev9UxUEUxvhBKjC+EGmMMocT4QiiF4/iy222y2Yw/3IdyCQAAAAAoNw6LBQAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+USAAAAAFBulEsAAAAAQLlRLgEAAAAA5Ua5BAAAAACUG+UyzM2dO1f9+vVT27Ztdemll2rTpk1/uP/bb7+tAQMGqG3bthoyZIg++eSTSkqKSFSW8bVjxw5NmDBB/fr1U1paml555ZVKTIpIVJbx9frrr+vKK69U586ddfbZZ+vaa6/V5s2bKzEtIlFZxtgHH3ygSy65RGeddZY6dOigiy66SIsWLaq8sIg4Zf0d7LBp06YpLS1NjzzySIgTIpKVZXwtWLBAaWlppW5t27atxLQnj3IZxpYtW6ZJkybp5ptv1sKFC5WWlqZx48YpIyPjmPuvX79et99+u4YPH65Fixbp3HPP1U033aSdO3dWcnJEgrKOr8LCQtWvX1+33367atasWclpEWnKOr7WrFmjQYMG6aWXXtJrr72mWrVq6dprr9Wvv/5ayckRKco6xhITE3X99dfrv//9r5YsWaLhw4fr7rvv1qpVqyo5OSJBWcfXYVu3btW8efOUlpZWSUkRiU5lfCUlJemzzz4ruS1fvrwSE5eBibA1fPhw8/777y+57/f7zZ49e5ozZsw45v633nqref3115faNmLECHPixIkhzYnIVNbx9Vt9+/Y1X3755VDGQ4Qrz/gyTdP0+Xxmx44dzSVLloQqIiJceceYaZrmxRdfbE6dOjUU8RDhTmV8FRQUmBdccIH5ySefmCNHjjQffvjhyoiKCFTW8fXGG2+YZ599dmXFKxdmLsOUx+PR1q1b1aNHj5JtNptN3bt314YNG475MRs2bCi1vyT17NnzuPuj+jqV8QWcrIoYX4WFhfL5fEpMTAxRSkSy8o4x0zS1evVq/fDDD+rUqVMIkyISner4evjhh9WlSxedc845lZASkepUx1deXp769Omj3r1766abbtJ3331XCWnLzmF1ABxbZmam/H6/atSoUWp7amqqfvrpp2N+zMGDB5WamnrU/gcOHAhZTkSmUxlfwMmqiPH1xBNPqE6dOuratWsoIiLCneoYy83NVa9eveTxeGSz2TRx4kR169Yt1HERYU5lfC1fvlyff/455/HihE5lfDVt2lSTJk3SGWecoZycHM2aNUtXXHGFli5dqlq1alVG7JNGuYwwpmnKMIzjPn6sx/5of+C3TjS+gPI42fE1ffp0LVu2TC+//LJcLlclJENVcaIxFhsbq0WLFqmgoECrV6/WQw89pIYNG+qss86qxJSIVMcbXxkZGbrnnnv0zDPPKDo62oJkqAr+6PtXhw4d1KFDh5L7HTt21MCBAzV//nyNHz++khKeHMplmEpOTpbdbtfBgwdLbc/IyDjqLx2H1ahR46j909PTj7s/qq9TGV/AySrP+Jo5c6ZeeOEFzZ49W2eccUYoYyKCneoYs9lsatSokSSpZcuW2rlzp6ZNm0a5RCllHV87duzQgQMHdMUVV5Rs8/v9Wrt2rV555RVWvkYpFfE7mNPpVMuWLcPyaDPOuQxTLpdLrVu3LrWKXSAQ0OrVq0v95eK3OnTooJUrV5batmrVquPuj+rrVMYXcLJOdXzNmDFDzz77rGbMmBG2S6wjPFTU9zDTNOXxeEKQEJGsrOOrbdu2evPNN7Vo0aKSW5s2bTR06FAtWLCgEpMjElTE9y+/368dO3aE5er9zFyGsTFjxuiOO+5Q69at1a5dO82ZM0dFRUUaOnSoJOmOO+5QrVq1dPvtt0uSRo0apZEjR2rWrFnq3bu3li1bpi1btujBBx+08mUgTJV1fHk8npLL2ng8Hu3fv1/btm1TYmKi6tata9nrQHgq6/iaPn26nn76aT3xxBOqV69eybniMTExio2Ntex1IHyVdYxNmzZNrVq1UqNGjeTxePTpp59q8eLFuv/++618GQhTZRlfMTExRx1pERMTo6SkJDVv3tyK+AhzZf3+9Z///EcdOnRQo0aNlJOTo5kzZ2rPnj0aPny4lS/jmCiXYWzgwIHKyMjQlClTdODAAbVs2VIzZsxQSkqKJGnv3r2y2Y5MPp955pl64okn9NRTT+nJJ59U48aN9cwzz6hZs2ZWvQSEsbKOr19//VUXX3xxyf1p06Zp2rRpGjp0qB5++OHKjo8wV9bx9dprr8nr9eqWW24p9XnGjx+vCRMmVGp2RIayjrGioiLdf//92rdvn6KiotS0aVM99thjGjhwoFUvAWGsrOMLKIuyjq+cnBzdc889OnDggBITE9WmTRv997//VdOmTa16CcdlmKZpWh0CAAAAABDZ+JMLAAAAAKDcKJcAAAAAgHKjXAIAAAAAyo1yCQAAAAAoN8olAAAAAKDcKJcAAAAAgHKjXAIAAAAAys1hdQAAAMLN1KlT9Z///Oeo7d26ddOLL75Y+YEAAIgAlEsAAI4hPj5eM2bMOGobAAA4NsolAADHYLfb1aFDhxPuV1RUpKioqNAHAgAgzHHOJQAAJ2nXrl1KS0vTkiVLdMcdd+iss87SDTfcIEnKysrSv//9b3Xv3l1t27bV5Zdfro0bN5b6+JycHN1+++3q0KGDevbsqeeee06PPPKI+vXrV7LP1KlT1aVLl6OeOy0tTa+88kqpbfPnz9egQYPUpk0b9e3bV9OnTy/1+J133qlhw4Zp5cqVGjJkiDp06KArrrhCO3bsKLWf3+/XCy+8oPPPP19t2rRRr169dOedd0qS5s6dq44dOyo/P7/Ux3z++edKS0vT9u3by/ivCACoqpi5BADgOHw+X6n7pmlKkh599FH1799fTz/9tGw2mzwej8aMGaOcnBzdcccdSklJ0WuvvabRo0frvffeU82aNSVJd911l7744gvdfffdqlGjhmbNmqWff/5ZDkfZfxzPmDFDkydP1rhx43T22Wdr69atevrppxUdHa2RI0eW7Ld37149+uijuvHGG+V2u/Xoo4/qtttu09KlS2UYhiTp3//+txYvXqyxY8fq7LPPVnZ2tt555x1J0pAhQ/TII4/o3Xff1bBhw0o+78KFC9W6dWu1aNGizNkBAFUT5RIAgGPIyspS69atS2174IEHJEnt27fXvffeW7J9/vz52rFjh5YuXarGjRtLkrp3764BAwZo1qxZ+sc//qEdO3bogw8+0OTJkzVw4EBJUpcuXdS3b1/FxcWVKVteXp6eeeYZ3XjjjRo/frwkqUePHiosLNRzzz2nK664Qna7XZKUnZ2t1157rSSXaZq6+eab9f3336tZs2bauXOn/ve//+mf//ynRo0aVfIchzMmJCTovPPO04IFC0rKZX5+vt577z3dfvvtZcoNAKjaKJcAABxDfHy8Zs+eXWqby+WSJPXp06fU9tWrV6t169aqX79+qdnOzp07a8uWLZKkzZs3S1KpQ2BjY2PVvXt3bdq0qUzZ1q9fr4KCAg0YMKDU83Xt2lXPPvus9u3bp3r16kmS6tWrV1IsJalZs2aSpP3796tZs2Zas2aNJJWalfy94cOHa/To0frll1/UoEEDvf322/L5fBo8eHCZcgMAqjbKJQAAx2C329W2bdtS23bt2iVJSk1NLbU9MzNTGzZsOGqmU5IaNmwoSTp48KBiY2OPWvzn95/rZGRmZkqSBg0adMzH9+7dW1Iuf7/CrdPplCQVFxdLCs7QxsTE/OHsaZcuXdSgQQMtWLBAt956qxYsWKA//elPSkpKKnN2AEDVRbkEAKCMDp+reFhiYqLatGmj++6776h9D8921qhRQ/n5+UetLpuenl5qf7fbLa/XW2pbdnb2Uc8nSS+88MIxy2mTJk1O+rUkJSWpoKBAeXl5xy2YhmHokksu0euvv66LLrpIX3311VGLBwEAQLkEAKCcunXrppUrV6pu3brHnYk8PAv60UcflZzPmJ+fr1WrVpUqdbVq1VJ+fr7279+vWrVqSZJWrlxZ6nN17NhRUVFR+vXXX486RLesunbtKklatGhRqYWAfm/o0KGaMmWK7r77btWqVUs9evQo1/MCAKoeyiUAAOV08cUXa968ebr66qt17bXXqkGDBsrKytKmTZtUs2ZNjR49Ws2bN1e/fv103333KS8vTzVr1tTMmTOPOkz2nHPOUVRUlO6++26NGTNGu3bt0rx580rtk5CQoPHjx+vBBx/U7t271blzZwUCAf34449as2aNnnnmmZPO3rRpU1122WV6+OGHlZ6ers6dOysnJ0fvvvuuJk+eXLJfrVq1dM455+jjjz/W9ddfX7JgEAAAh1EuAQAoJ7fbrZdeeklPP/20pk6dqvT0dKWkpKhdu3alFvB5+OGHdd999+mhhx5STEyMrrzySrVt21bvvvtuyT4pKSmaMmWKHn30Ud18881q3bq1nnjiiZLZzsP+/Oc/67TTTtOcOXM0e/Zsud1uNW7c+Kj9Tsa9996runXrav78+Zo+fbpSUlKOOTN57rnn6uOPP/7DxX8AANWXYR6+aBcAAKh0h68h+dFHH1kd5YRuvfVWHThwQK+++qrVUQAAYYiZSwAA8Ie++eYbbdmyRe+//76efPJJq+MAAMIU5RIAAPyhG2+8UZmZmbryyis1YMAAq+MAAMIUh8UCAAAAAMrNZnUAAAAAAEDko1wCAAAAAMqNcgkAAAAAKDfKJQAAAACg3CiXAAAAAIByo1wCAAAAAMqNcgkAAAAAKLf/Bwz5f80svhilAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wb9f3H8dfdSbIs75m9ExLIYIUVwmggrDDKKoRRZtlltGVDC20ppfxoKbtll1KglE3Ye4UZsglkO8uO99a48fvjdKfTsGMnTuKEz7OPPrCl0+ksK4nf/ny+n69iWZaFEEIIIYQQQgixCdStfQFCCCGEEEIIIbZ9Ei6FEEIIIYQQQmwyCZdCCCGEEEIIITaZhEshhBBCCCGEEJtMwqUQQgghhBBCiE0m4VIIIYQQQgghxCaTcCmEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohxDbOsiymTJnC6NGjWblyZdr9X3zxBaNHj3b/P3HiRE488UTeeeedjOebP38+e+yxBy0tLRnvv+iiixg9ejT//ve/k24/77zzuPfee7t0zWvWrOHKK6/kwAMPZPz48RxwwAFceOGFfPXVV116fE/75JNPeOyxx7bKc2+Ka665Jul76/z/+uuv36rX89vf/jbtvuOOO45rrrlmK1xV9z3//POMHj2a1tZWAFavXs3o0aN5//33N/tzv//++4wePZrVq1dv9ucSQoieJuFSCCG2cd9++y1r1qwBYMaMGR0e93//938888wz3HHHHRQWFnLJJZdkDHN33nknJ598Mrm5uWn3ffLJJ8yZMyfj+c877zwee+wxmpqaOr3exsZGTjrpJJYsWcKvfvUrHnzwQS699FJUVeXbb7/t9LGby6effsq//vWvrfLcm2r48OE888wzSf+/4IILtuo1Pf/881RVVW3Va+hJ5eXlPPPMM+y+++5b+1KEEKJX823tCxBCCLFpZsyYQSgUYtSoUcyYMYOLLroo43GjR49mhx12AGDPPffkwAMP5OWXX2aPPfZwj1mxYgUff/wxN9xwQ9rjY7EYt9xyC5dffnnG+ydOnEhhYSEvvfQSp59+eofX++abb1JTU8NLL71ESUmJe/vxxx+PZVld/rq3BsMwMAyDQCCwtS/FlZ2dzS677NKlY8PhMMFgcLNez8iRI6mvr+ehhx7aLBXULfE1pAoEAl1+jYUQ4sdMKpdCCLENMwyDN954gylTpnD88cezZMkSFi1atMHHZWdnM3jwYNatW5d0+wsvvMDo0aMZOnRo2mP+9a9/EQwGOf744zs87yGHHMKLL77Y6XM3NTXh9/spKChIu09RFPfja665huOOO4533nmHww47jPHjxzN9+nSWLFmS9BjTNPnnP//J1KlTGTduHIceeigvvPBC2rnffvttTjjhBCZMmMBee+3FL37xC9asWcPdd9/NI488wpo1a9y2Uqd903sN06ZNY8KECcydO5e7776bvfbaK+05UtuFp0yZwm233cY///lPJk+ezO67786f//xnLMviww8/ZNq0aey6665cdNFFNDY2dvq6dZfTDv3xxx9zwQUXsOuuu/L73/8egEceeYTjjz+e3XffnUmTJnHBBRdkbKnu6DXrTFZWFmeeeSb//e9/qa2t7fTYmTNncuKJJzJ+/HgmTZrETTfd5LaidvY1OLfPnDmTCy+8kF122YVDDjmETz75BMMwuO2229hrr73Yb7/9ePTRR5Oe89tvv+WCCy5g8uTJ7LLLLhxzzDG8/PLLnV5nalus0zab6f+OrrwvLcvi7rvvZp999mHXXXflqquu6rAdXQghtgVSuRRCiG3Y559/Tk1NDUcccQS77747f/jDH5gxYwZjxozp9HGmaVJZWcnYsWPTzrfrrrumHV9dXc19993HAw88gKp2/HvJXXfdlYcffpjGxsaM4RFg7NixRKNRrrrqKs4++2x22mmnDs+5du1abr31Vi677DKCwSB3330355xzDm+99RZZWVkA/OEPf+DFF1/koosuYuzYsXz66adcd911FBYW8pOf/ASAF198kauvvppp06Zx0UUXYVkWn3/+OXV1dZx44omsWLGCL774gnvuuQeA4uJi9xrWrFnD7bffzkUXXURpaSkDBw7s5JVNN2PGDCZMmMCf/vQnFixYwJ133olpmnz99ddcdtllhMNh/vCHP3DHHXe44a+7dF1P+tznS/zzfv3113PcccdxxhlnuK9ZZWUlp512Gv3796elpYWnn36a6dOn8+abb5KXl7fB12zAgAGdXs8pp5zCQw89xKOPPspvfvObjMcsWbKEX/ziF0yaNIm7776bdevWcccdd7Bq1SoefvjhpGNTv4ZYLAbAb3/7W0466SROPfVUHnroIS699FKOOuooLMvijjvu4IMPPuDPf/4zu+66q1t5XLt2LbvtthvTp08nEAgwa9YsrrvuOlRV5cgjj+zS633ggQfyzDPPuJ8bhsF1112XdExX3pf/+te/uPfeezn//POZOHEib7/9NrfffnuXrkEIIXojCZdCCLENe/XVV8nPz2e//fYjEAgwadIkZsyYwa9+9aukKiDYgVLXdZqamnjwwQdpb2/n5z//uXu/ZVksXLiQo48+Ou15br/9diZPnpzUQpvJmDFjsCyL+fPns++++2Y8Zp999uHMM8/k8ccfZ8aMGeTk5LDvvvsyffp0Jk2alHRsfX099913H7vtthtgB9OpU6fy/PPPM336dFauXMlTTz3FrbfeyrHHHgvApEmTqK6u5p577uEnP/kJpmlyxx13MHXqVP7617+65z7ooIPcj8vLyztsfWxoaOCxxx5jxx137PRr70hWVhZ///vf0TSN/fffn3fffZd///vfvPnmmwwaNAiARYsW8eKLL25UuFywYEHaLwneeust9+PDDjuMyy+/POl+bxAyDIN9992XffbZh3fffZef/vSnXXrNOpObm8vpp5/Oo48+yi9+8YuMv2i499576d+/P/fffz+apgFQUFDAFVdcwbfffpv0S47Ur+GLL74A4JhjjuHcc88FoG/fvkybNo3ly5e762cnTZrE66+/zttvv+1+b6dNm+aex7Is9thjD6qqqvjvf//b5XBZXFyc9AuIv/zlL6xfv57//ve/AF16XxqGwYMPPshJJ53EFVdcAcB+++3HWWedtV2tVxVC/LhIuBRCiG1UNBrlnXfe4eCDD3bXAE6bNo2rrrqK2bNnp1UgjznmGPdjVVW5++67GT58uHtbY2Mj0WiUoqKipMd9++23vPnmm7z22msbvCbnsdXV1Z0ed+2113LKKafwzjvv8NVXX/Hxxx/z9ttv87vf/Y7p06e7x5WUlLjBEmDAgAGMHTuWuXPnMn36dGbOnImqqkydOjWperfPPvswY8YMDMNgxYoVrF+/nuOOO26D159Jnz59NjpYgr2+1QlPAEOGDKGxsdENls5tdXV1RKPRbq/nHDFiBLfddlvSbf369aOyshKwq2ypZs+ezd///ncWLlxIQ0ODe/vy5cvd/27Kawbw85//nEcffZQnnniCSy65JO3+uXPncuihhya9Noceeig+n49vvvkm6f2b6WsA2Hvvvd2PBw8enHabqqoMGjQoKaw1NjZy99138+6771JVVYVhGID9fd4Yr732Go888gh//etfGTVqFECX3pfr1q2juro6LbBPnTqVzz77bKOuRQghtjYJl0IIsY366KOPaGpq4oADDnAntO61114EAgFmzJiRFi7/9re/MWjQINatW8edd97Jtddey/jx490fqiORCEBauPnTn/7ESSedRF5eXtIk2HA4THNzs9tG6X1sNBrd4PUPGTKEc845h3POOYe6ujrOOecc/va3v3HyySe7VVfvwB9HSUmJG17r6+sxDKPDKZ7V1dXU19cDUFZWtsFryqS0tHSjHufIz89P+tzv9ye9Zs5tlmURi8W6HS6DwSDjx4/v8P7U13Dt2rWcffbZTJgwgZtvvpny8nL8fj/nn3+++33b1NcM7Crk9OnTeeKJJzjrrLPS7q+urk57bTVNo7CwMG39aab3ASS/ts7rlun19r4fr7nmGubMmcNFF13EiBEjyM3N5amnnuLdd9/t3heIXXG+7rrrOOusszjiiCPc27vyvqypqcn4tXX0tQohxLZAwqUQQmyjXn31VQAuu+yytPtef/11rr322qSq0MiRI9lhhx0YP348Y8aM4YgjjuC+++7j5ptvBhJVx9StRJYvX87cuXN5/PHHk26//fbb+etf/8rChQvd25qbmwE6XG/ZkeLiYo477jj++Mc/Ultb64aOTANhamtrGTlypPs8Pp+Pp556Kq0N2DmvMyBmQ9XU7vCu+3P09ECenpL6unz88ceEw2Huu+8+QqEQYK/Z9F5/VyvQG3L22Wfz73//m//85z9p95WVlaV9fw3DoKGhIe39k+l7uzEikQgffvghN954Y1KFPNP1bUhDQwOXXHIJO++8c9q60q68L52KZuprsKEhSEII0ZtJuBRCiG1Qa2srH3zwAUceeSQ/+9nPku777rvvuPXWW/niiy/S1jA6Bg8ezIknnshzzz3HpZdeSklJCYFAgP79+6dt3v7AAw+4rYOOn//855x++ukccsghSbc7j800bdZRV1eXtF7NsXLlSgKBQFJVr7a2llmzZrmtsWvXrmXhwoVuu+bee++NYRg0Nzd3uMZz2LBh9OnThxdffJEpU6ZkPMbv97uV267o06cPra2tVFVVuZXfTz/9tMuP35rC4TCqqiYN/Xn99deT2je78pp1RUlJCSeeeCKPPfYYhYWFSfftvPPOvPPOO/zqV79yfwny1ltvoev6ZttPMhqNpm0l09LSwnvvvdet8xiGwa9+9SsMw+Bvf/tb0i9xoGvvy379+lFWVsa7777L/vvv797+9ttvd+tahBCiN5FwKYQQ26B3333XHciz8847J9232267cf/99/Pqq692GC4Bzj33XJ599lmeeOIJd1jKbrvtxoIFC5KOmzhxYsbHDx06lD333DPptvnz55OXl+euPcvkhRde4JVXXuGnP/0po0ePRtd1Zs6cyX/+8x+mT5/uTjQFu4J21VVXudNi77rrLrfKCTB8+HBOPvlkfvWrX3HOOecwfvx4IpEIixcvZsWKFdxyyy2oqsqVV17Jb37zG379619z5JFHoigKn3/+OdOmTWP8+PEMHz6cmpoann/+eUaNGkVRUVGnU2H3228/gsGg2xK5evVqnn766Q6P3xhTpkxhzz335M9//nOPntcJPtdeey0nnHACixcv5pFHHklqJ+3Ka9ZV5557Lk8//TQ1NTVJj7vwwgs59thjufjii5k+fTqVlZX83//9H5MnT844sbgn5OXlMX78eO69915yc3NRVZV//vOf5ObmdmsLkAcffJBPP/2UG2+8kYqKCioqKtz7dtllly69LzVN49xzz+W2226jqKiIiRMn8tZbb7F06dLN8aULIcQWIeFSCCG2QTNmzGDo0KFpwRLsKtzhhx/OjBkzuOmmmzo8x4ABAzjqqKN46qmnOO+88wiFQkydOpVrr712ozeq//jjj5k6dWqn25UccMABrF69mv/+97+sW7cOTdMYPHgwN9xwQ1oVtn///lxwwQXccccdrFmzhnHjxnHHHXckBdDf/e53DB06lGeffZa77rqL3NxcRo4cyQknnOAec9RRR5GVlcUDDzzApZdeSigUYuedd3YrqIcffjhffPEFt99+O3V1dRx77LGdhrri4mLuuusu/vKXv3DxxRczduxY7rjjjqR1d5uqvb09Y4V3U40ePZpbb72Ve+65h7fffpsxY8bw97//3Z1Y6tjQa9ZVffv25dhjj3UnqTpGjRrFgw8+yF//+lcuueQScnNzmTZtGldeeeUmf42dueOOO7jxxhu5+uqrKSws5NRTTyUcDiftT7ohK1asAOztRlJ9//33QNfel2eccQYNDQ08/fTTPP7440yZMsUN9UIIsS1SLMuytvZFCCGE6B2i0SgHHHAAv/3tbzn88MO79djm5mYmTZrEo48+2mG1szuuueYafvjhB55//vlNPte2ZtWqVRxyyCG89dZbSVNlhRBCiN6s418tCyGE+NEJBAKcc8457j6B3fHUU0+xyy679Eiw/LH79ttvOfjggyVYCiGE2KZIW6wQQogkp512WsZtRjYkNzeX66+/fjNe2Y/H0UcfzdFHH721L0MIIYToFmmLFUIIIYQQQgixyaQtVgghhBBCCCHEJpNwKYQQQgghhBBik0m4FEIIIYQQQgixyWSgTxeZpoVhmFv7MtL4fCq63vuuS2wf5P0lNid5f4nNTd5jYnOS95fYnHrj+0vTVFRV6fQYCZddZBgmDQ1tW/sykqiqQklJLk1N7ZimzGUSPUveX2JzkveX2NzkPSY2J3l/ic2pt76/CgtDqKrW6THSFiuEEEIIIYQQYpNJuBRCCCGEEEIIsckkXAohhBBCCCGE2GSy5lIIIYQQQvxoWJaFaRpYm7CUTVUVotEouq73qjVxYvuwNd5figKqqqEonQ/s2RAJl0IIIYQQYrtnWRYtLY20tjYBm/4De02Nimn2rmmeYvuxdd5fCjk5+eTmFmx0yJRwKYQQQgghtntOsMzPLyYQyAI2sULjU9B1qVqKzWPLv78sotEITU11AOTlFW7UWSRcCiGEEEKI7ZplWW6wDIVye+ScPp8KSOVSbB5b4/3l8/kBaGqq2+jqpQz0EUIIIYQQ2zXTNAArXrEUQnTE/jNixf/MdJ+ESyGEEEIIsV1LDO/ZtFZYIbZ/9p+RjR14JeFSCCGEEEIIIcQmk3AphBBCCCGEEGKTSbgUQgghhBDiR2DWrK+ZPHkibW1tnR53wglH8dxzz2yhq+q9Hn74H5xzzulb+zK2KRIuhRBCCCGE6IVuueUmJk+eyN/+9pe0+26++QYmT57IPffcudHnf+21V5g27aC02x988F9Mm3aM+/nkyRP59NOPN/p5tgWZvsbp00/nr3+9e7M/9yWXnLdJ38feRMKlEEIIIYQQvVR5eR/efvtNotGoe1trawsff/wB5eV9NstzFhUVEQwGN8u5N1UsFttizxUKhSgoKNxiz7c9kH0uhRBCCCGE6KV22mksy5cv45NPPmLKlIMBeOedt9hhhzGoanKdaPLkidx229/Yd9/9AGhra+OQQ/bnrrseYLfdJiYdO2vW1/zpTze7jwM466xfcM4553PCCUcxffppHH/8SZxwwlEAXH31FQD07duP//3vFVatquCee/7GwoULCIfDDB8+gosuuoydd94l6Xp+85tr+fDD95gzZzbl5eVcdtmv2Wefye4xy5Yt4Z57/s7cud+Sk5PDPvtM5pJLriA3196P9JJLzmPkyB0Ai7feeoOxY8dx++1/z/havfzyCzz11BNUVVXSv/8Apk8/nWnTjgbsUHrXXX/lww/fo6WlmZKSMk46aTonnHByh1/jww//g88++4SHH34CsCvJ7e1tjBgxiueeewbDMDn99LM44YST+Pvf/4+3336TgoICLr/8Svd7oOs6f/nLLcya9TV1dXX069ePk046laOPPtY95+zZs5g9exZPP/1vAJ599mUGDRq4wdemN5JwKYQQQgghfpReeLKSRfNaN+qxitL97RrGjM/h2FP7dvu5jjjiKF577WU3XL722iscddRPeeONGd0+l2P8+J259NJf89hjD/HEE/b6yuzsUNpxDz74L446aio33vh7Jk7cE1XVADu4Tpq0H+effzE+n5+XXnqeq666jGeeeYnCwkL38Q899AAXXXQpV1xxJS+//CLXX38VTz31PH369KW5uZlLL72Qn/70eC6//Ne0tbVz991/5ZZbbuLWW//PPceMGS9zwgkn8cADj3T49bz11us8+uiDXHHFVYwcOYrvvlvIbbf9kfz8fPbb70CeffZpPv30I/7wh9vo06cPa9euoampsdOvMZMvv/yC0tJy7rvvIb766kv+9re/8PXXX7LvvpN5+OEneO65Z/jDH37L88/PIBQKYRgGffr05Y9/vI38/AK+/fYb7rjjz/Tt248999ybyy77DatWVTBy5A6cdda5ABQWFnX5teltJFwKIYQQQgjRix122DQefvgf1NRU09rayrJlS5gy5eBNCpd+v5/c3FwUBUpKSjs8rqioCIDc3Lyk40aPHsPo0WPcz3/5yyv48MP3+OKLzzj00CPc2w8++FCOOMKuDF5yyeV8+eVMXnzxOc4//2Kee+4ZdtxxJ8499wL3+Kuuup5TTz2B+vo6ioqKARgyZCjnn39xp1/Pww//g1/+8lfsv/+BAPTvP4AffljESy89z377Hcj69ZUMGjSYCRN2RlEU+vbtt8GvMZPCwkIuvfRXqKrK4MFDefLJx8nKCnD88ScBcOaZv+B//3uGxYt/YOeddyErK4tzzjnffXz//gOYPXsW7733NnvuuTe5ubn4fD6CwWDScz/7bNdem95GwqUQQgghhPhR2pgqosPnU9F1swevpmMlJaVMnLgXr78+g+bmJg44YAqhUM4Wee6OtLW18fDD/2DmzE+oq6vFMAwikQhVVZVJx+2007ikz8eOHc+KFcsBWLJkMV999QVTp+6Xdv41a1a7AWrMmB07vZb29nbWrFnNLbf8jltvvdm9Xdd1N0Qedtg0Lr/8Yk455Xj23ntfJk/en91336PbX/fw4SOS2pELC4sYOnS45/NCNE2joaHOve255/7LjBkvU1W1jmg0SiwWY9ddd+/0eZYs+aFLr01vI+FSCCGEEEKIXm7atKN44IF7aGtr43e/+2PGYxRFwfL06uq6vtmu59577+Sbb77ioosuY8CAgWRlZfGb31yWNnBHUTJfJ9ihcL/9DsxYlSwrK3M/DgazO72W9nZ7a5Xrrvsdo0cnB1Gfz447Y8bsxLPPvsznn3/KV199wTXX/JqDDz6Eq6++YcNfbIbzeb+W1NsATNP+xcM777zJfff9nV/+8lfstNNYQqEcHn30n1RVVXX6PG1tbV16bXobCZdCCCGEEEL0cvvuuz+3334r2dmhDqtehYVF1NXVup8vWfJDp+f0+fwYxoarrz6fD9M0km6bN28O06Yd7bahNjU1UV2dHpgWLJjP1KmHuZ8vXDifSZPsatwOO4zm448/pF+//mhax+scN6S4uITS0jLWrl3DQQcd0uFxeXl5TJ16GFOnHsZee+3D739/I1deeR2qqmb8GnvCvHlz2HnnXfnpT493b1u1ahWBQMD93O/3pz336NGj+fDDTX9ttjTZikQIIYQQQohezufz8cwzL/D44/9xK3+pdt11d5577r8sWbKYefPm8OCD93V6zn79+tHa2sKsWV/T0NBAOBzOeFzfvv35+usvqa2toampCYCBAwfzwQfvsXjxD/zwwyJuuun6jINw3n33LV5//VUqKlZy331/p6JiJcccYwet4447kfr6Wn7/+xtYtGgha9asZubMT7jttlu689IAcOaZ5/Cvfz3Cc889Q0XFSpYsWcxLLz3PCy/8D4BnnnmSd999i4qKFaxcuYKPPvqAQYMGuy2umb7GnjBw4GAWLpzPV199TkXFSu699+9uW7Cjb9/+LFgwn8rKdTQ0NGCaJscff1KPvTZbkoRLIUSPaoo0MnPtp7Tr7Vv7UoQQQojtSk5ObqdrLS+55HIKC4u44IKzuP32P3H22ed1er7x43fmmGOO48Ybr+bIIw/myScf7/C8X3wxk+OOm8bZZ58K2AN8QqEQF1xwFtdddyU/+clBDB48JO2x55xzHm+88RpnnjmdDz98nz/84Tb69rXXupaVlXPffQ8TjUa5/PKL+PnPT+Lee+9KmjbbVT/96Qn8+tfX8PLLL3LGGSdz2WUX8N57b9O//wDAbq194onHOOec0zn//DNpbm7mj3/8S6dfY0845pjj2G+/A7nxxmu44IKzicVi7vYojunTTwPg1FNP4MgjD6aqqpLy8p57bbYkxbK6O0R52zFv3jxuuCHRR7148WKee+45dtyx80XBmcRiBg0NbT15eZtMVRVKSnKprW3BNLfbb6PYSjb2/TV7/SzmVs9h3wGTGVYwgvpwPSXZJZvxSnvO2lVhfljQSmO9jqrZr8GQEdmM2zVva1/adkf+/hKbm7zHhJeu69TUrKG0dEDG9XEbY0sO9NlWpe67Kbpua72/OvuzUlgYwu/vvEV3u15zOX78eF566SUA1qxZw+mnn75RwVII0XW6aQ8PMC2L72oX8k3VV0wdcij9cvtv5Svr3Jyvm3jh3+lrRb7+rJEBg4MUlfi3wlUJIYQQQmw7tutw6fXGG29w6KGHbu3LEGK7p1v2gnTTMmnX7Wp/m75xG1RvKZGIyVsvV9OqVXPkIaMZMCSIZcKieS18M7OJmR/Uc8Tx5Vv7MoUQQggherVevebyq6++4oILLmDy5MmMHj2a999/P+2YJ598kilTpjB+/Hh+9rOfMXfu3IzneuONNzj88MM39yUL8aNnuJVLEzPedW+Yvbtt6LP36lnbXkFspy8xd5zNyDE5jNoph4OOLMUfUJj1eROtLZtvnLsQQgixPfrkk6+lJfZHpleHy7a2NkaPHs1vf/vbjPe/9tpr3HrrrVx88cW88MILjB49mnPPPZe6urqk49asWUNdXR0TJkzYEpctxI+a7gmXFvFwafX8aO+eousWX3zUQMzfxJjxuaxqrnC/hlCOxq575aPHLOZ/27KVr1QIIYQQonfr1W2xBxxwAAcccECH9z/66KOcdNJJHH+8Pc745ptv5oMPPuCFF17gnHPOcY978803e6QlVlUzj33eWpzr6W3XJbYPG/v+MjFQFFBUQDFRFFj6QzOFgyIMGBzcDFe6aVYubSPcbjJ0p3xycu1fTK1sXsbQ/OH4NT8jRufw5ceN1FZF5c9aD5K/v8TmJu8x4SXvAyG6R1WVjfpz06vDZWei0SgLFizgwgsvdG9TVZVJkyYxe/bspGPfeOMNbrzxxk16Pp9PpaQkd5POsbkUFXU8klqITdXd91dObYBcK0h+fhArHGHJJ+3UfFXFktA6/nDXuF73D/ybi+zNpnfaJY9Irh1+5zZ+w9zGbzh4+MEMH9kPWEtzo9lr/w7YlsnfX2Jzk/eYAPvnxpoaFZ9Pwefruca9njyXEKm2zvtLQVVViopCBAKBbj96mw2X9fX1GIZBaWlp0u0lJSWsXLnS/Xzt2rXU1dUxfvz4TXo+XTdpaupd+/apqkJRUQ719a0yZl30uI19f9U1NtPSFmbN6ibeequChWuaKcOioT7GnFk1DB6WvRmvuntM02L2Vw2oKpT2V/i+yd482qf60E2dORXfsU+5/XdM5dowtbXSGttT5O8vsbnJe0x46bqOaZrougX0zBwA2YpEbE5bbysSC9M0qa9vw+eLJt2Xn5/949uKxLIsFCVRGenfvz/vvPNOj5y7t/7jZJpWr702se3r7vurtS3Kd3Nb+HrBalr1NkLFGmPGZFP3BSyY3czAIb2nNXb54jZaWwxGjA6h+uqxLNh/4IH0zx3A04uepKqlEq2/Qn6hj4a6GNGoic/Xuyqv2zr5+0tsbvIeE9B7f4YTorfa2L87t9laflFREZqmUVNTk3R7XV1dWjVTCLFlLF7YymsvVrL4uzZ0w2THXXI44NBiJky029IWzm7BsnrPP/DfzbUrkTtOyMWw7N8OaqpGQAtQFCyiNdZKa6yV4lI/lgUNtbGteblCCCGEEL3aNhsuA4EAY8eO5bPPPnNvM02TmTNnsssuu2y9CxPiR0rXTf772Dra22MMHJLFiWeXs9s+efg0hWCOwsChQRrrdWZ/2by1LxWwfyP33dwWUGDMhBzM+ERbTbHbPcpCfQCobltPcZkfgLoaCZdCCCG2fbfcchM33HDVJp3jueee4YQTjuqhK9p+vfbaK0ybdtDWvowtple3xba2tlJRUeF+vnr1ar777jtKS0spKyvjrLPO4qqrrmLs2LFMmDCBxx9/nHA4zLHHHrsVr1qIH6ea9TFiUYvSoRq77pVHTq5GczSxFcle+xWyekUlLz1VRV1NlIOmbb4Og9nrZ7G6eTVHDD8SVcn8O7Q1K8M0NxoMGZFNbp4Poyk5XJZnl/EDi1jftp7i0lEA1FZHARkOIoQQYsu45ZabeP31VwHw+Xz06dOXww8/ktNOOxOfb+N/jL/sst/0qk6i7cUJJxzF9OmncfzxJ7m3HXTQVPbZZ9/N/ty33HIT7e1t/PGPf9nsz9WZXh0u58+fz89//nP38z/+8Y8AXHLJJfzyl7/kiCOOoK6ujrvuuovq6mp23HFHHnroIYqLi7fWJQvxo7V+bQSA3EJ7TaJpWVjxVlPDMhi/ex45eRr/eXAtX37cyIGHlaBpm2f94tzqOQC0RJvJzyrIeMxCT0ssgGHa4VJ1wmW8crm+rYoRZWMBqVwKIYTY8iZN2o+rr76eWExnzpxZ3HbbLWiaxumnn9Xtc+m6jqZp5OZuG9PPY7EYfr9/a1/GJsnKCpKV1XvmTWxuvTpc7rXXXnz//fedHnPaaadx2mmnbaErEkJ0ZP06e6JYTr79uRX/HySC2/AdQgwens2y79uoXLN59r30/ibWO9wr1dJFbQDsOMGuRBrxtlifaofL3EAeAS1AY6SB4lJpixVCCLF1BAJ+Skrsbp++fY9g9uxZfPLJR5x++llEIhH++c/7eOedN2lra2XkyFFcfPEVjBtn75Lw2muvcO+9d3L11TfywAN3s3r1Kl566U3uu+/vSVWuSCTMvff+nffee5u2tjbGjh3P5ZdfyYgRI93rePXVF3nkkQdpampk0qT9ku4De3nao48+yCuvvEhjYwPDh4/kkksuZ9ddd3eP+fjjD7jnnjuprq5ml1125YADpnD77X/ik0++BuDhh//BZ599wlFH/ZR///sxGhsbePvtj/nss0944olHWL58GZqmMWHCrlx++W/o06cvALNmfc2ll17AHXfczX33/Z1Vq1ax666787vf/ZGvvvqCf/zjHpqaGjn44MO44oor0bSOJ55+9NEHPPLIP6moWEFZWTlHH30s06efjqqq7jXOmPEy9fV1FBYWcdhh0zj//Iu55JLzqKxcx9/+djt/+9vtAHzyydfu92DGjHfTvsbHH3+YlpYWjj76p1x00WU88sg/efHF/+H3Bzj33PM58sifutd1zz138sknH7J+/XpKS0uZNu1oTj/9LFRV5eGH/+FWuCdPngjAXXc9wG67TaSqqpK77/4bX331OT6fj1133Z3LL7+S0tKyrr8Ju6FXh0shxLajal0EE4O8AvuvFcsyMeOVS8sz9n3YSDtcLv+hjQGDg+i6SWO9TklZ9/dSyqRVb3U/dkJtJk2NOv6AQkGRHRxT11wCBLUgTUYT+cX2Pyh11RIuhRBie/Lpmo9Z1Vyx4QMzUFWl29M0B+UNZt8B+23U8zmysrKIxex/j+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWTkAbW1tPP30v7n++pvJyckhJyd9ecd9993FJ598xG9/+0dKS0t57LGH+fWvf8nTT79AMBhk3rw5/OUvf+LCCy9l333345NPPuLxxx8iLy/fPcczz/yHZ599iquuuoERI0bywgv/48orL+Opp56nrKycdevWcuON13DyyadxxBFHsmDBfO6//+60a6moWMFnn33Mrbfe4Qa6cDjMySefzogRI2ltbeWBB+7mppuu4/77H0l67GOPPciVV16Hpmlcf/1V3Hjj1YRCIf785zuoqqri+uuvYsKEnTnkkMMzvrZz5szmT3+6icsvv5Lx43emomIlf/nLLfj9AX72s+m8//47/Pe//+Gmm/7EsGEjqKlZz6pV9vvnT3+6nTPPPIVjjz2BI47ofC1qRcVKvv32a/7613tYuXI5v/vddSxbtpSddhrHAw88ygcfvMftt/+Z3Xffk379+gOQm5vLDTfcTElJKT/8sIjbbruFwsIijjnmOKZPP52VK1cQDoe5+urrAcjPL0DXdX79618yYcIu3H//w4DCww8/wNVX/4oHH3zcfX170jY70EcI0busXxfFUg1y4+HStExMK7lyCTBsVAiA5UvsfWPff62Ou29ZyTczG3vkOlqjib0onQmwqQzDItxmkpObCJK60xarJm4LaFkAWFqM3HyNxvqYjLMXQgix1SxYMJ8333yd3Xffg8rKSl577RX++MfbmDBhFwYMGMiZZ57LsGHDeeut193HxGIxfvObaxk7dhxDhw4jEEj+ZW5bWxsvvfQ8F198OXvuuTfDh4/kuut+RywWdc/zv/89w6RJk5k+/TQGDx7CKaeczs4775p0nqef/jenn34WU6YczJAhQ7nssl/Tt29/nn/+WQBefPE5hg4dzgUXXMLgwUM5/PAjOeigQ9K+RsMwuOGGmxk1age3OjplysEccMBPGDhwEKNHj+Gqq65n3ry5rF9flfTY8867mHHjJrDjjmM57LBpfPvtN1xzzY0MHz6SffbZl4kT92DWrK87fH0feeSf/PznZ3PYYdMYMGAg++yzL2eccTYvv/w8AFVVlRQXl7DHHnvRt29fxo2bwOGHHwnYYU5VVUKhECUlpW61uSPXXPNbhg0bzoEHHsROO42jvr6eX/ziQgYNGsypp/6cYDDI3Lmz3ePPPPNcxo2bQL9+/TnggCkcf/zPeO89e7vFUChEVlaWW+UuKSnF7/fz7rtvoSgKV111PcOHj2T48BFcf/3NLFnyA4sWLez0+jaWVC6FEJssHDZorNcpKFXwac6ay0Tl0hvy+g3KIpClUrGsHV23WPydXWmc8b/1zP26mcaGGGdcNJCiko1bY9ESs6fRRqMmr/6vkt3HBRi3a17SMW2tdpAMecKlkaFyGdDsa4iZUQoKfbQ0GbQ0G+QXyF+dQgixPdiUKuKW2uT+448/ZOrU/TAMA8MwOPjgQzn77PP49ttvMAyDk076adLx0WiUkSNHuZ9nZWUxfPiIDs+/Zs1qdF1nwoSd3duCwSCjRo1m5crlgF1N/MlPDk563Nix41m2bCkAra0t1NbWMH584hyKojB+/ARWrlwRP8dKdtxxbNI5Uj8H6NevP/n5yfMSVq2q4KGH7mfhwgU0NDRAfNlNVVUl5eV93ONGjEh83cXFxRQXl1BQUOjeVlRUTH19XYevxdKlPzBv3hweffRB9zbDMN0ZEgceeDDPPPMffvazY9h770lMmjSZSZP263YFsH//AWRnZyddayCQ5X6uqiqFhYVJ1/ruu2/x7LNPs2bNasLhdnRdp0+ffp0+z5Ili6moWMnUqcnvc8MwWLNmNTvtNK5b190V8hOSEGKTVcfXW5b0TQQzC8sTLhOVS01TGDIiyOKFbSxe2Mr6dVE0TcEwLFYutauZMz+o54jjyzfqWlrilcul37ehz25k+TeVrFsdYepRid8gtrbY1+OtXGZqi3UqlxEjSn6RnzUVERrrYxIuhRBCbDETJ+7FFVdcic/np7S01J0S297ehs/n45FHnkybMeBtfQ0GuzbfIPUcdvOR4n7c2RwDZ9xB+jksEjd5P07clioYzE677eqrr6B//wFce+1vKSkppa2tlV/84gy3PdjhnaCrKEraRF1FUTqdktvW1s4vfnEh++13QMb7+/bty1NPPc+XX37OV199wZ///Ad22GEMd9xxd6evT6pM15V+G2631Pz5c/n972/k3HMvZI899iInJ4dXX32Jd999q9PnaW9vY6edxnL99Ten3be5BqDKT0hCiE3S3mbwzcwmAEr6+GiI325apjvQx7SS1z6OHpvL4oVtvPVSDQDjdstl9Dh7ct3z/65k9pdNTDmihGB2xwvuO9ISa0HXLVYuaWegahIMqHz6bj177ldAQaFdiWzLEC6d1t1M4TJqRCgotP9xbmrQu31NQgghxMbKzg4ycOCgtNtHjdoBXddpbGxg3LgJG33+AQMG4vP5mDNnNgcdNBWwB/wsWfI9Bx9st60OGTKUBQvmJT1uwYL57se5ubmUlJQyd+5st3ppWRbz589j//0PBGDw4KF8+eXMpHN0pTWzsbGBioqVXHfd79yv8/PPP9vAozbODjuMZtWqlRlfb0cwGGT//Q9k//0PjA/zOZOqqir69u2Lz+fHMHq+mj1v3lz69x/A6aef6d5WWbk26ZhMzz1q1Gg++OBdiouLCYW2zFZqsuZSCLFJHr5zFbO/bELTFIbvlFjHYXm3IkkZrDN211w0TWF1w1qiagtDRmSz44Qcdto5lwm75xGNWMz6vGmjrqc52kzFsnZiMYsdxofYYaz9l2lNVdQ9xqlchnITv19z22K9ay5VO4xGzSgFRfaxjfUSLoUQQmx9gwcP5aCDpvL739/IRx99wNq1a1iwYD6PPvog3377TZfPEwqFOOaY47j33jv58svPWbZsKbfccjM+n5+pUw8D4Pjjf8Znn33CM888SUXFSp5++t/MmTMr6Twnn3waTzzxKO+//w4VFSv4+9/voLJyLccddyIAxxxzHMuXL+Mf/7iXioqVvPnmaxusvAHk5eVTUFDASy89z5o1q/nqq8954IF7uvFKdd0ZZ5zDa6+9wmOPPcTy5ctYvnwZb731Oo8//jAAr7/+KjNmvMyyZUtZs2Y17777Jrm5eW4VsF+/fsyePYvq6vXx9t2eMWjQINatW8u7777NmjWr+c9/nuCLL5KDer9+/dw22IaGBnRd55BDDicnJ5drr72SOXNms3btGr755iv+7/9upbm5uceuz0vCpRBio0UiJjXrY+QV+Pjl9UMo7ZsIaxaJyqWRUrnMDmmMGOtnZe7HrM2exYBhfl5Y8j++qvyCvQ4oBAU+eKOWqvjemRvibXFpaGti6ff2Os6d98qlrI8deGuqEq0zrc3plUvd1JOqluCtXEbJL5RwKYQQone54Ybfc/DBh3LXXXdwyinHc8MNV7Fs2dJubzNx0UWXMnny/vz+9zdw7rmnU1dXyx133O221E6YsAu/+c21PPXUvznrrFOYP38up5zy86RznHTSKZx44nTuvPP/OOOM6cybN4fbb/+7ey39+w/g97//M++99zZnnjmdN998jVNPPTNprWEmqqpy001/4rvvFnD66T/j/vvv5uKLL+3W19dV++yzL7feegczZ37KOeeczoUXns3zzz/rTmzNycnlxRef44ILzubMM09h0aLvuP32O90hSeeccwFr1qzmpJN+ypFHHtzZU3XL5MkH8LOfTeevf/0zZ511KkuX/sCpp56RdMxRRx3LwIEDOeec0znyyIOZO3c22dnZ3Hvvg5SWlnDddb/mtNNO5Pbb/4SiqGmDnXqKYnXWeCxcsZhBQ0Pb1r6MJKqqUFKSS21ti0ywFD2uK++vmvVR7vnTSoaNyuaMiweyunkV71XYk8v65/anOdpMc7SZbF82J44+Oemx38xZy5+ff4KCQAF3/PpkXlr6AqXZZRwx/Eg+fLOW91+vo7DYxwVXDSYY7Lg9tqlR54G/VLDzHnkcdFQRN/73fpYsamPA4CwuPeEoIiv78Mwj65i4bwFHnmiv43zvtVo+equOY6b3Yde97DHqT333bxRF4eQxp7rnXlz/AzPXfsou5btS3DqGh+5cxY4Tcjjp7P6b9NoK+ftLbH7yHhNeuq5TU7OG0tIBaWvbNtaWGuizPXvggXv47LOP+de/ntnal9LrbK33V2d/VgoLQ/j9nS9ZkjWXQoiN1txoV/GcvS11M1HVS54Wm77f5MARfgYNzaJfWRA9fr9h2Y/f/5Bi1lRE+GFBK4vmtrLLnvlpj3esXhGmrdVg5gcNVNbVs6yiDU2DHXfOxbJMSsvjlcv13rZY+3ly8pKnxWapyb899TttsYanLVbWXAohhBAb5bnnnmHs2PHk5eXz7bdf89xzz3DWWedt7csSPUjCpRBiozU3JYdLJxyCPf/NCZdmhv0mTWLssmcBAc2Pbtotq044VRSFifsW8MOCVr6f39JpuGxqSLS7zl9Qg5ULY3fJJTtbwzBNisv8qGrymsvUgT6WZU+29a63BMjytMXm5GmomrTFCiGEEBtr1aoK/vWvR2lubqJv336cddZ5nHzyqRt+oNhmSLgUQmy05kY7pOXlx8OlmQiRG6pcRk077OmmTiwlXAIMG5WNP6CwZFEbsZiJ3595ibgT9naflE841MaI8hJCOZr7vJqmUFTqp3Z9jHC7QTBbSwz08RwHpK259Gt21TNiRFBVhfwCHw11Orpu4vPJknUhhBCiOy6//Eouv/zKrX0ZYjOSn46EEBst0RZrhzLdSm6LdQb6OJVBr5gRc4+LGvbgHm8I9ftVRo4JEYtaLF/c3uE1OOFylz3z2X1yDqEcjUA8FDrP6bbGxof6pO5z6TyvqqRWLu3HxeJBuKDIbpNtakgPy0IIIYQQP3YSLoUQG60pHi7znbZYT+XR3ookMUTDCXqtsVZiRsytXAK06+H441P2w4zvffnejFoWzWvJeA0N9XZgLCjyo8cfnwiX9ufuxNj4usu2FgN/QCGQpSY9b1rlUnUql/bjEhNjkzdtFkIIIYQQEi6FEJugs4E+3q1IwK4OGqbBy0te4MPV7xEzvOGyzT3GG0jHjM+hrG+AyjURnn54HZVr0rcmaazXUTXIzdPc9tpAfDCPU5EsjYfL9esiGIZFe5vptsRCIoT61NStSFIql/Fw2SRDfYQQQggh0ki4FEJsNGegT66z5tLT1updcwl2dTBqRomZMRojjUmVy7ARdj/WTZ0PV73P4vofCGZrXHDlYPaYXABAxbLk9thYzKS12SC/0IeqKu5goKAvy70GgEHD7H26Fv5QTUXNOiB5j8uO1lyqiopf9RNNqVw6FVshhBBCCJEg4VIIsVEsy6K50SCUq+HzKQDuliKQHi5Ny3BDXMSIuGsuAdpjiT1ka9qrWdm0gplrPwVA0xRG7ZQDwJqKRAiFRAWxoNBeC+lWLrXkymVJWYDiUj+ftrzCc/NfxkRP2obEaadNXXNpnytA1IhiWZYboluaZM2lEEIIIUQqCZdCiI3S3mZi6BZ5+Z4KYMo+l16GZWDGQ5xu6m4rLEC7nqhIOgERoCVmr7McMNiuPK5emQiXVesi7hpKZw9KJ9wmwmXiGpyAunpFGFMxktpi3cqlmjlcgj3d1vlanYqtEEIIIYRIkHAphNgo7jCfwsSORt41l96PwQ6b3rbZ5miz+3GbJ2iG9USAXN9aCdgtrEUl9nYi7W0G6ysj3P+XCp5/ogrwhEunLTYeLi1PuByxox1Q166KYGG6k1/ta8vcFguJoBozop7KpYRLIYQQItWFF57Nhx++536+ePEPnHPO6fzkJ/tw5pmn0NTUyNFHH0p19fqteJVic5J9LoUQG8Ud5pOf+GvEsDqrXCZ/7lQlAXdNI0DEs/6yqq2K4YUjWVi7gLX9PyVQty9rV4WprY6BBZGwfU4nKDqttqltsQB9h4KmgWFAaV8/e+5XkLi2DqbFAgQ8E2Pz8+3qZ7O0xQohhNjMJk+e2On9Z531C8455/wtci2LFn3HQw/dz6JFC2lvb6e0tIxx4yZwzTU34vfb/wZ//PEHtLa2sv/+P3Efd//9d1Ne3odbbrmd7Owg+fkFHH74kTz88D+45pobt8i1iy1LwqUQokNfrvmSqto69u63b9p9qZNiIXkrEW+wy/R5avh0tHsql1XxymVl61qyi2O0aA2sXhmhrjqa9JjCDiqX3uuJEWXUTjk01sU45cS+5OZ5Q3Hnay4BokYEf7ZKdkilpUnHsiwURcn4NQghhBCb6qWX3nA/fu21V3jhhf/x4IOPu7dlZ4fcjy3LwjAMfL6e/9G+vr6OK664mP33P5C//e0+QqEQa9as5v33340vd7HD5f/+918OP/yopH8b16xZxYknnkzfvn3d26ZNO4ozzzyViy++nLy8vB6/XrF1SVusEKJD39d8z+L6HzLelylcpg708TLNxJrLzngrl03RJtpibeimTlGJD10Js2JxG2sq7C1JnJbc4jJnoI99TU7l0nsN7Xobo3bMYeK+hWRlJz+nHq+4pm5FYp8rseYS7Mm4sahFJJI5HAshhBA9oaSk1P1/KBRCVVX385UrV3DIIfvz+eefcdZZp3DggXuzePH33HLLTdxww1VJ57nhhqu45Zab3M8jkQh33/03jjnmMKZO3Y8LLzyb+fPndXgd8+bNJRIJc9VV1zNq1A4MGDCQPffcm6uvvp6sLHvJSX19PbNmfcW+++7nPm7y5ImsWbOaO+/8PyZPnsjDD/8DgMGDh1JeXs4nn3zYg6+W6C2kcimE6JCzbtK0TFQl+XdRzY12UMwr0NKOVxQlab9KSK9cdsQbLgGaY80YlklhsR9/XoQVS9qxgMJiH6dfOICqtVGKSwPx57CfP0sLxq878ZzetZwmycHQWZuZqS02Kx5UndbdvHyN6kpoaTQIBtOPF0IIse3I++UFBF6fscWeL3r4NJrvfqDHzvePf9zDJZdcQZ8+fSkoKOzSY+6883ZWrlzBH/7wZ0pKSnn77Te44oqL+c9//kdZWXna8cXFxUSjUT755CP23//AjF07c+fOJhQKMWjQYPe2l156g1/84gyOPfYEjjjiqKRK6+jROzJnzrccfviR3f+iRa8m4VII0SFncqthGqhaSrhsyrDmMh4uvXtDuvd1MVx622Kdc+qmjqIoDB6jUvuZffuAwUFKygKUlAXSrjcrXm1MrVwmzpkcLt2tSDJULv3umku7WuoM9Wlu0intE0g7XgghhNhSfvGLi9h99z26fHxlZWW8xfY1iotLADjzzHP57LNPeOut1zn11DPSHjNu3AROOeXn/Pa315CXl8dOO41njz324rDDprltrVVV6yguLkkKniUlpaiqSigUoqSkNOmcpaWlLF26ZGO+ZNHLSbgUQmSUun7Sjz/p/kzTYp0A6VN9Gx0uncpllpZFxIigm7obWgeMVBLhckgw7bExI4ZP9bkh0UgKlx1XLo1OpsVm+ZzKpR0u8zzhUgghxLZtU6qIPp+Krm/dJRJjxuzYreOXLVuCYRicdNJPk26PRqOMHDmqw8dddNGlTJ9+Gl9//SULFszjyScf58knH+ehh/5FaWkZkUiEQCCry9cRCGQRiYQ3fKDY5ki4FEJkpHsmv2YKhs2NOqpK0n6Ruqnb4U5JX85tWSYpnbKoipq2NjOi2yEu25dth0tLd68lWBijrG+A6sqou/dl0jWbOn7N74ZE73V7K5dWhj04oYNwqSa3xebG97pskYmxQgghtrJgMHmIQKZlKbqe+Pe8vb0Nn8/HI488mdbempOT0+lzFRUVM3XqYUydehjnnnshJ598LC+++BznnnsBBQWFNDc3dfm6m5ubKCws6vLxYtsh4VIIkZF3n0ozdfKrYdHabJBX4ENVE/84GZaBpmgopK/HMEwTi+R/8LJ92bTGWpOPiz9X0BeEiF1Bdaqo7XobR59czorF7QwenhwunX00Q2rIDYmmZVLZuo7GSCNhz1pOI2WwkDNoKPNAHztcRqRyKYQQopcrLCxi1aqV7uemabJs2VJ23nlXAEaN2gFd12lsbGDcuAkb/Ty5ubmUlJTQ3t4OwA47jKampprW1hZycnI3+PgVK5az226db7Uitk0yLVYIkZFhdrxnZWuzgWUlT4o1LbPTyqVhGWkV0GxfKO04hzOURzd193HtejuDhmaz39TitN+4OmHY+/ymZfDWijf4Yt1Md1sT6LgtNtNWJEGfEy7tcOp8zVK5FEII0dvsuuvuLFgwn3feeZOKipXcddcdNDY2uPcPHjyUgw6ayu9/fyMfffQBa9euYcGC+Tz66IN8++03Gc/56acf84c//JaZMz9l9epVLF++jPvvv5vly5e502FHjRpNfn4B8+bN3eA1RiIRvv/+O/bcc+8e+ZpF7yKVSyFERt7KZWoodIf5eCbFOtNYs30hd2qrl2EZaZXLkD8E7ZmfP+jLjl9HLGlqbVgP21XNFM4wH5+auS026VpSKpfOQJ9MbbGJymVyW6xULoUQQvQ2++yzL6eeegZ33vl/WJbJiSdOZ4899ko65oYbfs+jjz7IXXfdQU1NNUVFxYwbN4GDDz404zmHDh1GIBDg73+/g/XrqwgGgwwZMpQ//vEvbvVR0zSOOOJI3n77Dfbee1Kn1/jppx9TXt5nkyqnoveScCmEyMi7Z2XqdNWmhvgwH0/lsl23U2KmVlewq4ip60BCvo7Xd2THA6TTjupo01szhks9Hi79qg9FUVAUJa3i6l5LSuXS7GTNZSA+LTZ1oE9Lo4RLIYQQW8bxx5/E8cef5H6+224T+eSTrzMee/75F3P++Rd3eC6/3895513Eeedd1KXnHjBgIFdffcMGj/vZz07ljDNOorp6vbulyf/+90racc8++xRnnHFul55bbHukLVYIkVEklpj26oSvpgad5Yvb3HDp3YakTbcDZbY/lHEPLMNMb4sN+RNtsamttE5bbGq4bI+llzrXtqxxA61Ptafaaopmb6HSwXChpGtzwmWGNZeKohDQAu51BLJU/AGF1lZpixVCCCEcpaWlXHXVDVRVVXZ4TFNTI5Mn78/UqZmrpGLbJ5VLIUSaiuXt3P3AEooPaGLg0ADr1rXzyiurWL3Sbn3NybVDmHfNpRP6Qr5s6j2BTlM0d71laltslpbl3p+lZbnVT8CtTkaM5FHlbZ6prwCVret4Z+Vb7uf+eLhUFRXDMjJWL82UCmpnay6d62yONmOYBpqqEchSCbdt3fHzQgghRG9zwAE/6fT+/PyCjHtpiu2HhEshRJrlP7ShmwbfftlAzfogcxauIjfaj6JSP/U1MVpb7DCWFC7joS/bF0qaFutTfRiGgWlZbjuqs4elX/W79wd92UnhMiu+1jGsp1QuU8Jlc7Q56XNNta9JVdS0vTYdqRVUo5M1l/a1BGmmmYgRIaSGyMpSaW020HULny+9SiuEEEII8WMkbbFCiDQ162OY6FgWVCwPo/nhiOPL+OV1Q+g3MLFJsnegj3fNpaokh0uwW2udLT8G5Q0mx59DaXYpfs2uNAa1xHnt0Gnf7qx1dNpb2/TkttgsLXnTZn/8+bxBsSxUzl799mFs6bj4taS2xTqTZjsKl8nrLgNB+1qiEaleCiHEtiDxz5LV2WFCiPifkQwrnLpEKpdCiDS11VFMxWDEDjlEowanHtyHCYMKMS2Tsgm1rFmdjYqWNNCnzVO59K5zdNpUvS2qI4pGMWnA5KT7nemwYAdSXzwcOvtT5gXyaIw00hxpTLrW1Cqkty3WkaUFGF08hu/rFmV8jHNdHVUu3Ymxpl0Jzcqyzx0Jm4RyMj9GCCFE76GqGqAQjUbw+fxb+3KE6LWi0QigxP/MdJ+ESyFEEsuyqF0fQwuY7DG5mLbWCKFcO0wtbVhCbck3NAQH0NfagaxgIsAlVy49ay7jlURvuPSGOKdC6QzwsW/zuRVPp7W1JLuUdr2d6vZqd+0jJIYNpZ4v03M415U60MfZiqTjNZfx9Z/x7VYCWfav86RyKYQQ2wZFUcjJyaepqQ6AQCAL2NRlDQq6LpVQsbls6feXRTQaoampjpyc/IzDGbtCwqUQIklri0EkbJI3SHHbW51KX2ushaygxt6H+9mlsE/SXzztehuKopDty8b7D7bTpmqYBhZOuFTT7s/2ecOl3w2l3tvKQ31Y3byKmvZq+uT0BRLBMHE+J0hqabc5z5veFtvxtFjwtsXGK5fBROVSCCHEtiE3twAgHjA3/Yd2VVUxTfl3QGweW+f9Zf8SxvmzsjEkXAohktSut/eLzC9KBEQnjIXjaw5Lh8TYaWiue79lWbTr7QS1IIqiJFUunaqh6ZkW660qaor915C3Ldav+vEpKeFS0eiX05/VzatY17rWDZepLa5OQEy+BvtcSvy29LbYzgf6uG2x8a/fbYuVyqUQQmwzFEUhL6+Q3NwCTNPA2oR8qaoKRUUh6uvbME2pXoqetTXeX4pit49vbMXSIeFSCJGkttquzuV6wqUTxpy20NQJrWEjjGVZZPvsfSszBTu7Ldb+C9Lbx+8M9PEO5vGpmvs473n6xgNlZWtiD62O1lx6q5ABNZB0XU5YjhpRPl/3GU3RJhRF6XharM8Jl/G2WBnoI4QQ2yxFUdC0TfsRWFUVAoEAPl9UwqXocdvy+0umxQohktTEK5c5Bd7KpR3gnGmprbFWdFN373e2Bwn57eqjktQW61QurYxrLouDJWiKRmFWoXu7T/WnhT1N9VGYVUSWlkVNezUxw75Ow3Md3ufTMlRPnfMZ8euoaFrJisblBNQAe/Tdq8Pf1mWpdrhsjjYzr3oOWsB+TmmLFUIIIYRIkMqlECJJ7fp45bIwcZuzD6TTFgvQEm2mMFgEQHvMGeaTXrl02l7tymV6++lOJWMZXTQGTdXQVA3DMJKqj4ZhP8an+FAUhbJQOaubV9EUbaIkuyStcpk6vAfSJ8g6A31aYy0A7NZnIqOKdujwNXHaYlc2rWBl0woUawTQTyqXQgghhBAeUrkUQriaGnVWr7BbP0P56W2xUU+4bI4lWmOdbUhCGcKl37vPZTzUee+HRAurEzqdYT7e1ljnvmB8cqtzLUbKYnfn+bwDfXyac1tyW2zqdXck6EveS9P5VCqXQgghhBAJEi6FEACE2w3+dd8aWlsMJkzMQ/MngpOzVjLiCZdNkSb343bPHpeQ0hYbn7QaM2NuK21HaxudMOkERO9QH188gAbi53OuxbB093ZN0dxr8D5HYs2ls31JPFzGWgEI+TsPlwEtOVyGAvFriGxb6yCEEEIIITYnaYsVQgDw/YJWaqqiDNshm6NP7sM7q3V3RxHTMjBMI2mdZXLlMt4W66y5TGqL1fCrfqJGFE3RUBW1w7WNiXDptMV6Kpfxj53BP862IE5Vdf+BB1KYVeSGz87aYp3HuJVLf06nr40TTt3rDMT3uZTKpRBCCCGESyqXQggA2lrswLXDTjn4fErS/pGGZRB2JqXGw1tzpNG9vz2WXLlUPeFRVVT8mp+YGcOwjA6rlpBYn+n819sW61Qx3W1BTKct1nBv91Ygvc/j62Cfy9ZYKz7VlzSpNhNFUSgP9UmcL541ZSsSIYQQQogECZdCCADa2+yglB2yQ5m3SmlYhrvGsThYDEBT1NsW6wz0SZ8WqyoqATWAZVlEjWjaeksvZ+2lU2n0JU2LTW6Ljaa0xWop5/WuuQxoyZVL07KrsFEjusH1lo7Dhh3BvgMm289ln04G+gghhBBCeEi4FEIA0N5mVwCzQ/ZfC7rlCZem4a5xzPHnEtACSesvE2su7XDpDZAKStKaRe/+k6mcMOkM4Elqi1U6aIuNVy5T98X0Vk9TJ8ialtnl9ZZeTruvzx9fgyptsUIIIYQQLgmXQggA2lvj4TInvhekp3JpWgZhPdEW61f9KftcthP0Bd3w5g2XqqK4lUPoeJiPfWw8XGZqi3Url3a4dK5Hj6+fVFPO632exJpLZ6CP1eX1lknXF/8rU3PCpVQuhRBCCCFcEi6FEEBX2mLtSmFQC7qhzzDt0GlaprveElIql4qK3zMQp7Nw6Y+H0ERbrDdcOpVLZ/pscuUy9bxOhVRRFPex3oE+buWyi22x3se7bbFSuRRCCCGEcMm0WCEEkNwWa1ompmV62kgtIu5Anyy3RVW3dLclNhRviYXkNZepbbGpFUavkYWjMC2TslA50FFbrL3PZepWJKltsU4LqxNU7XMktiJpjV93jj+3w+tJ5VZmNQtVlcqlEEIIIYSXhEshBJBcudTNGOCsb2xLmhabpWW5QU43dc8wn0QFUElqi1UJeANeJ2su++b0o29OP/dzn+qd+Jq8TUkiXHZQuXRabD2h0zvQp3Uj1lw6j7ewCARVWXMphBBCCOEhbbFCCMCuXAayVDRNcVtis3x2xdH0tsX6gm7oM0w9bZgPZJgW6x3o08m02FTetlgnLCqKQkALJA30ybR3pnO8t3KZcaCPrxtrLj2Pz8pSiUUtTNPq8uOFEEIIIbZnEi6FEJimRbjddCfFOq2mzmRWe1psYqCPty22zalc+jOvubTDZdfWXKZy2mIVRUmqeGZpWeimjmmZHe6dqbptsYG02+xw6Qz06f60WNMyCWTZH0ejUr0UQgghhAAJl0IIINweb4nNSR7m41QuDcsgrNttqFmegT66adAes8NlqKOBPigp1cOuh0vneVLDo1MJjRgRDNPI2GqrueEydYsSFcNKhOVgfA1nVzjTYp3KJUA0LJVLIYQQQgiQcCmEIMMel569I1XFHvATNZxwmeWZFutti+1i5bKTNZepnLbY1HDpTIyN6OFOKpfOmkt/0u2aomFaJjEzhl/1p7XTdsZb+QwE7Y9lqI8QQgghhE0G+gjxI2daJm3xPS5D8W1InLZYv+p3K32GYeBTffhUX0pbbDxc+juYFquoBNT0tZNd4QTR1EmwzsRYZ5hQ6v2QCILeYGtfj+K203anammf0/66LEyynHApQ32EEEIIIQAJl0L8qFW3VfP68lcpaR0LFKXtcWkHSY2YoWNYBjn+nPjtiePcyqWWCJeqkrIVSYbtQLrCCY2p4dEfD4zOc2dqtXW2GMkL5CXdrimaOwwoNXhuSPJAH/trjErlUgghhBACkHApxI/a9/XfATCn5mtgKtk5TltsIlyqqoYRX2/prHVMtMUahPWwPeTH0+6athVJF/e5TJVoi03+qyoYP5+zV2WmwFqSXcJxo04g5E+eButt2U1tmd0QNcNAH6lcCiGEEELYZM2lED9iTniLRuyhNB1VLh1OqHPCXsSIoJu6O1XWkbwViZKy5rLrf+1oHVUu4xNgnWFCvg7WceYG8pLCpH09ic8D3QyXiWmxlrTFCiGEEEKkkMqlED8irz9fzZyvmxg5JsT+hxSjotFYrxONmgRIDPRp96yj9IbL1Mpl2LDDnXe7D0gf6KMqKj7Vh27q3WyLtY9N3RszGJ9i295J5bIj3mO7Xbn0TIvNL7Rfg9rqaLfOIYQQQgixvZJwKcSPyKJ5LYTbTObPauH7+a1E+9WwsKEOgLEkKpdOu2mOPycpKGb57AE4TuhzBur4teSQlroVCdjDgXRTT6skdqYgUEhZqJzB+UOTbndCblsnay474m3Z3ZQ1l4OG2mtMVy0Pd+scQgghhBDbK2mLFeJHwjAsmhp1cvM1fnJ4MbGYRW1l8h6NTrhsj8XDZSAnqWqY2hYbdsKl2nG4TJ3amrp+sjOaqnH4sGmMLh6TdLsbLmOtQOZpsR2ec1Mql/GvxcKkvF+ArKDKmoowhiF7XQohhBBCSLgU4keiuVHHMqGoxM8Bh5ZwxkUDmHJYGf0GJKp3TlusUxEM+UOoasdtsU7lMm27j5StSLyP7U7lsiPZ8S1E2jaiLdb7/P5uhFLvY03LRFUVBg4JEotaVK6JdOs8QgghhBDbIwmXQvxINNTFACgosgPVsFEhxu1cyNCRIfeY7Bw7pLXFWlEUhWxfdsaBPk64bItXOFMrgJnaYp3hOd2pMnYk22dfs2XZFUO1g4E+mXi3SfFvQlsswKBhdshdtby9W+cRQgghhNgeSbgU4keioc6eAFtYnBwES8oTn2eHNCzLImyEyfaFUBQl40Af77RYyDB1VfFOi02tXCpsKr/mT2rF9W1k5TKgdi9cOkE5ES5l3aUQQgghhEMG+gjxI9FYb1cuC4sSoczCQlEUDjmmhBOGDMXnU2iLtWFZFjl+uzqYNNBHSx7o40itAKqkr7l0junO8J3OZPuyiUXtr6l7bbGJY7vbFqsoCoqiuOFy4JAgKLB6pYRLIYQQQgipXArxI+FULguKE4HKwm4rzcrSyC9KXm/ptJ4mtcX6kttiHakVwEwDfQblDqIoWExZqHzTvxjs9aCO7rTaeq+tuwN9wA7OTrjMCqoUFvvs7Vwist+lEEIIIX7cpHIpxI9Eg1O59LTFOmsWAWJmDE3V3AmsIbdymQiXTuUydeJr+lYknoE+8VbSAXkDGZA3cJO/DocTflOvcUOS23y71xZrP5fqhnKA0vIADbU6tdUx+g3M6vb5hBBCCCG2F1K5FOJHwq1cFmX+nZJu2uHTmQAb8uUAoKn2XxOKorhhLLVSmLoViXdabE9Mh80k25ftfrwlK5eKoiSF8tJy+zWpXR/t9rmEEEIIIbYnEi6F+BEwTYvG+hg5uRqBQOKPvdPeCXblEhJ7Rzrhzan0eVtfu9MWq/TAAJ9MQv4c9+ON3YokbRBRFx/vfd2cgUg1Ei6FEEII8SMn4VKIbUhLrAXDNLr/uCYD04C2kiW8V/F2UuXNETEiLKlfTH2kDoCceHhzwljQF3SPVRU1KTSmt8WqSf/dHLyVS1Xt+vN4W2g3as2lomKSCJdO5VLCpRBCCCF+7GTNpRDbiHa9nRcXP8ewguHsO2C/Lj8uEjH58pMGAMJ5a1ndbNGqt5Lrz01aO7i8cRmL639wP3fCmxPGnPWWDp/iI2bZ1c7UtlhnK5LNGS5DnjWXPqU7bbGJULzRay4tC8uyJ+0m2mJj3T6XEEIIIcT2RMKlENuIpmgTpmXSEmvp0vGxmMkT//uGVXOCWOEgigLlAzVAJ6yH08JlXbgu6fFO26nbFpsSxDRVc1tp/altsWz+yqV3Wmx32mKdYxVF6dZaTYd3r0tN0cjN1whkqdSsj7qBUwghhBDix0jaYoXYRoTjg3a62hb75ewKXl/0HlW+Rey8Rx4XXzOEgcPsCmNEj+/L6GmPbY42AXaIHFYw3A2TWnxPy2Bq5dITzFKD5+YMlQ7vtFhN7f6ay7Rqazcf76y7tKuXfmJRi6ZGfaPOKYQQQgixPZDKpRDbiHA8EBpW1wLMiooGAHbZ38+xh/QFQI9PjI0Y9rm8lcuoYa8Z/Mngg+kT6uPe3lHl0mlF1RQtLUwqW6At1qf6CGgBokY0bWuUzvRYuPSuu+wTYO2qCLXrYxQUbtx5hRBCCCG2dRIuhdhGOIFQN3WWL27j/ddrqauJEcrROPuygVRXRvniwwYa6nT2+Ukhqyvsqa/5ZYlzOG2sYSMCkHGwT8gzKAcSg3zyAvlJt2vxymXqMB9ItMV6tyTZHLJ92Xa47MZAH2UTw6US/9q8r11JmX2u2vVRhu8Qyvg4IYQQQojtnYRLIbYR7fHK5YK5jcz5eI17e0uTwZqVYT5+u54VS+zW2bdeqqGyvY1AnkIgxw6UupmoeDottt7KpcPbbgowJH8ohw49nNLssqTbnbbY1G1IYMtMiwXI9efSGGnMeA0dcSqx/o0Y5gPpbbEAwaIo67MWUl0zESjcqPMKIYQQQmzrZM2lENuIsN5Oe5vBwnmN+AMKJ/y8L1OOKAGgZn2M6sooqgaDhgVprNcxTIPiUj9R02539YbLSAeVS7/qTxtyoyoqfXL6pq1r9MVDWqbtPFRFRVO0jZrG2h2799mDfQdMJjeQ1+XHJNpiN+53a5naYpuyVlEdXMTSmoqNOqcQQgghxPZAKpdCbCPCRpjv57eimzp7H1DIuN3yWDinGYDVK8K0thiU9Q2wx+QCVi0PY2JQXOInakQxLRPdTGyV4azfTK1cZqe0xHbGaYsNZGiLVRSFAwdNIcsXTLuvJxUGiygMFnXrMW7lshvVTi9nKxPLU7kMFdivY319eKPOKYQQQgixPZBwKcQ2oLXF4KP317FqRZhAlsI+PykAoCS+x+Lihfb6ytI+AXackEt2qBrTMCiKrwUM6+HMlcvUcOnv+npBp8LZUUgbkDewy+fakpxw2FPTYgGygio+n0JDY0S2IxFCCCHEj5a0xQqxDXjjhWqWLm8gkKWwy575+LPs24tL/aBAuN0OOqXlfvx+lcOPK2PU+ABFxfGtR4wwsaRwGa9cWhtfuXSmxW7u1tee5gz0ydTO2xWZwiVY5ORqRKMmba1d2ypGCCGEEGJ7I+FSiF7OMCy+X9AMvhhTDi+hT/8s9Ph2JH6/SmFxogGhtI8d9CZMzGefgwpQVbuCFjEiSVuYOG2xqYJad9piO15z2Zv1DfVjQO4AhhYM26jHO9Nio2aMdS1rMS0T07II5WpYikFdTWwDZxBCCCGE2D5JuBSil1u1vJ3WSDsl5QH8AfuPrOGpQpaUJSqHZX0SHxtmcpiMedZcRgy7fdNMrVz6N6JyuY2Fy5A/xEFDDqE8VL5Rj3cqlz/ULeLtlW9S0bQSC4tQjoaFSb2ESyGEEEL8SEm4FKKXW7ywDUOJ0KdfIjh610+WliduLynPfEzEiCSFS+e2VKl7XHbGXXO5jbXFbionXLbG7HWuUSOKFW+LtRSD+loJl0IIIYT4cZKBPkL0cou/a0VXI5T3y3Jv063Eur6ScrtymF/oIysr8fsibxtsxAin7TkZMcIZpsV2faBPUbAYVVEpDhZ3+THbA+d1jMW3eLGwsCyTUK6GiSltsUIIIYT40ZJwKUQvFQ4bvPVSDevXRcnrZxLKSewzaWSoXJb2Sa4g6kltsZG0tZFhPVO47HrlcmDeIKaPOS1t/8vtnRMuo4YdLk3LxLLibbGKyYLZLaxasYIDDytmwu75W/NShRBCCCG2KGmLFaKX+uD1OmbNbCKUo7H3QckVRcNTuRwyIpu99i9k/0OSK4i6mTgmYoTdQOq0s4aNMKRNi+165RL40QVLSEybddqMrfj/skMq2bmgxyzqqmM8/0QV779euzUvVQghhBBii5LKpRC91KoV9kTXsy8dyEpqqaqBoC+YtGdlWA/THG3m8OPK0h6f2hbrhKEcfw6NkUYiesStXPbN6UvIn0PQF9zcX9Y2TyW5cmlZdrhUVYVjTiljz9JhVFdGefKfa5n5QQP7H1LM0sYfaIk1UxgsYlj+cNkHUwghhBDbJQmXQvRClmVRXRnFH1AoLvPz/To7aOb4c+1wGQ+OLy15nogR4ZiRx1KQVZh0jtS2WKeSmevPtcOlEXb3uRxfujP9cvtvga9s26emBEMT093zUtFMcvN85Ob5GDw8m2Xft1FR0cznbZ8BdpXz22URdug/iPG7523xaxdCCCGE2JykLVaIXqixQScaMSnrG0BVFbdKFoq3rRrxoOhMfM20b2XMjLnrAyNGGN2pXAbsUBP2DPSRSlrXpQ5GwrLckG5hujcPG2mvX122uNm9rbnB4OOP1vLcE5W891qt+zghhBBCiO2BVC6F6IWq19lhsryvPaTHaXF12lZ1U08OlBnCoWEa+FQfCgoRI+JWO7NU55xmIlwi4bKrUsOls+YSkqvFQ0fZ4fK7+c3MmldLcVmAvHwNXbG/tx+9VceoHUMMGtb1IUpCCCGEEL2ZVC6F6IWqq+wAUtbX3n4kFg8tQS0eLi2dhki9e7zpGd7j0C0dn+oj6AvGw2g7kLwvpVs5k8pll6WGS2darP1xohLZf1CQQJbC2tXtNDcZVCxrp3JtBEONMGSEHSgr16TvNSqEEEIIsa2ScClEL7R+nRMu7SDoVMSy4pVLw9SpbU9MIjUsA8uy3DZZw7Q/9yk+suKBtDlqt2cG4pVLSyqXG0VJrVxaltsO653iq2kKg4dnu6+xZUFNVQxTjbLLnnZrcm217IkphBBCiO2HhEsheqHqSjsklrvh0g4h3rbYpMqlZfLFupn87/tnkgb+aKqPHH8OAK2xVgB8mt0Nb3nWCkq47DqVDG2xbuUyuYK8x+QC+gzwMXaXXHym/b0rLLfoO8D+uLY6ugWuWAghhBBiy5A1l0L0MpZlUV0VJZClUFBk/xHVTR1VUd2qo24Z1IWTK5dN0UYMy6BNb3WrlT7VR64/N+n8buWSRAunDPTputTXyvRUgI2U9uTRY3MpGd6fV5dks3q+QaMepri/PQEYoHa9VC6FEEIIsf3Y7sPl2LFjGTlyJADjxo3jlltu2cpXJETnWpoMohGLfoOy3CCjm/b6SZ9q/5GNGVEaI43uY0zLwIhvh2GYJoZiVy59ikZOSrj0q3awsbASW2hI5bLLMg30cV5Hw0pf+2paJqqqMGpkEV8vqqOkv0VWlkpegY/6uhhrmtaxonkJe/Xbx/3+CiGEEEJsi7b7n2QKCwt56aWXtvZlCNFl4bAdVEIhzb0tZsbI8eegKvZt9eE6N9CAPUjGqZoZlo5u2QFIU33kBhLh0qf63DWD3m0wpHDZdWltsRZuDThTuLTi36e9JpWSO7iR/FL76JJyP82NOt+smE+DtpqRhaPok9N3s167EEIIIcTmJGsuhehlohE7jASyElVLIF65tMOlM5zHYViGu97PMA30eND0q353zaVzDqdKacpAn42SNi0W77RYM+1457Ysv5/y0hwiRgTLsiiJt8aur7Mr0N5tTLqqsnUd82rmdvtxQgghhBCbQ68Ol1999RUXXHABkydPZvTo0bz//vtpxzz55JNMmTKF8ePH87Of/Yy5c5N/0GpsbOTYY49l+vTpfPnll1vq0oXYaIlwaf/xjMWH+fhUPz7FbjZwKmSB+LYihmm4t+mW7g4A8qm+pLZYu3JpB0k7WCaql6Jr1NQyr2V1uOYSEuFSUVSCviCWZRE1o5SU2d+7moYW+7EZqp4bMnv9t3xb9Y07rEkIIYQQYmvq1W2xbW1tjB49muOOO45f/vKXafe/9tpr3Hrrrdx8883svPPOPP7445x77rm88cYbFBcXA/Duu+/Sp08flixZwnnnncfLL79Mbm5u2rm6QlV7V3XHuZ7edl1i0+gxO6hkBVVUVcHEQFHAr/nw+/xJLaz5WXn2liSKhYmJooD9UeIxAZ+fkD+bdr2dgBZAUxUUJdEKqyjg07S095G8vzLTNC25jVixIP7amxhpr5el2Pf5VDtcKgrEzAhlfexwWdfUwgAlB0sxu/1ax6xo/Hn1be77JO8vsbnJe0xsTvL+EpvTtvz+6tXh8oADDuCAAw7o8P5HH32Uk046ieOPPx6Am2++mQ8++IAXXniBc845B4A+ffoAMHLkSHbYYQeWL1/O+PHju30tPp9KScnGhdLNragoZ8MHiW1GIGBvT1FQGKSkJBelPUpubpCSgnz6lBaSuyboHtu/sJxIQyt5+VmEIn5UPUheQZY9JTY3SElRPiUlufQrKWN963qKcnIpKc4jtypIXl4QwzLItYIUF+dSGMz8/pb3V7ImNY/c+sT3IC8/SMwfJByf0FtUHEpqnW1Us8mtC1JUmIs/Ci1KPaF8HyNHF2CwkrraCKGcYvILgt3+Oya4ViPXF6SgMJuSUO/8+2lD5P0lNjd5j4nNSd5fYnPaFt9fvTpcdiYajbJgwQIuvPBC9zZVVZk0aRKzZ88G7JbY7OxsAoEAVVVV/PDDDwwaNGijnk/XTZqa2nvi0nuMqioUFeVQX9+KaUp74/aitqYNAMPUqa1tobqtkZaWMG1ajMb6MC0tYfdYM6jR0hKmrqGZxqZWYmaM2rpmNFWlpSVMS1OU2mALZtg+Lg+d+vpWWlrCNCptGJZBS0uY+rpWjKzkvw7k/ZVZY1N70vegwddGU7idlrB92/rqRvya372/tqGZlpYwzdlhooZJS0uYypo6BuSG6DPUYlG9zvcLGhlGHY0/rMfvVxg0LLtL11LX2ETUiFJd2wTtWT37hW5m8v4Sm5u8x8TmJO8vsTn11vdXfn42fr/W6THbbLisr6/HMAxKS0uTbi8pKWHlypUALF26lN/+9reoqoqqqlx33XUUFhZu9HP2pm+ul2lavfbaRPdF4tNi/X4F07SI6lEsCzR8KKh4hrwS8uViWaAb9hAfy4KYoWOY9nEqGqZpEfLluOfAUrAsME3THupjEf8883tI3l8p4q+fw/s6gv36a0rir1Yj/n3BUgioWVgWtMfasSzY+5AQHz4Dc79uYt0HFZRE7VbZsy4dyJDhGw6YUSMW/57Httnvkby/xOYm7zGxOcn7S2xO2+L7a5sNlx2xLMsdWLLbbrvx6quvbuUrEqJ7OhvoY//Xh27qKIpCyBcCQLcMz16LOmZ8Vpezb2KuP8/93JkMmxhDI9NiuyNtWqxlJk2JTR3MY8ZTp6qo+FU7PIb1CADFA0z6Dcxi3eoIeQUqw4tDLPu+jS8/bthguNRN3Z1Sm2mQkBBCCCHEltarp8V2pqioCE3TqKmpSbq9rq4urZopxLYkGrEDgxMudcvZisRuQ9Die11m+7Ld8OhMh4X45Fgz+TH5gXwAsrSg+8sXu9oWj5ey0WWXpYZLCytpz1AzLVwmpsVm+ezW1Yhht9C2x9rZda989ptaxM/OLWf6Of0IhlS+m9tCc1PnW5NEjaj78cZMmhVCCCGE6GnbbLgMBAKMHTuWzz77zL3NNE1mzpzJLrvssvUuTIhNFI2m7HNp2CHD76lcAmT7Qm7QTA0aib0x7cf0zenH5IH7M75sgqdyiexzuRGU1HBpeWvA6XtdOp+rqATjQ38ihl25bNfb0DSFwiI/KBb+gMque+VjGvDt502dXkfSLxQkXAohhBCiF+jV4bK1tZXvvvuO7777DoDVq1fz3XffUV1dDcBZZ53F008/zQsvvMDSpUu56aabCIfDHHvssVvzsoXYoNZYKwtq5rsh0Mtpi83qpC0WIOQLuUHHGzR0b7iMr/1TFIXhBSPI9mW7VUrLSlTcJFx2XXrlMrktVjczVy41VSMrHi7Derxyqbd7Hmd/z3bfuwCA7+a2dHodMc97J7VaKoQQQgixNfTqNZfz58/n5z//ufv5H//4RwAuueQSfvnLX3LEEUdQV1fHXXfdRXV1NTvuuCMPPfSQu8elEL3V93XfMb9mHnmBPAbnD0m6L3XNpeG2xdp/XJ1hMdl+b+UyES5N08DETHqMl3fNpXubtMV2mZryWm24cmkHPxVvW2yicpk4zj5HSbmf/EIflWsihNsNgtmZp7LFzES1OjXQCiGEEEJsDb06XO611158//33nR5z2mmncdppp22hKxKiZzhtrN6KoyPirLkMpFYu4+Eyvo4yxxdCU5xjPEHD0j3Vsk7CpScUSeWy61Q2bs2lqqhuJdmpUnorl84vERRFYciIbOZ900zFsjA7jE3f46q5UeepJyuIDA/Tf1BQ2mKFEEII0Sv06rZYIbZXTmA0UqpckGlabMqaS3egT8gNmrGOBvoo6VUvp63TG4qkctl1qa+VaZlJlcv0abFOuFQ8r719mzdceiueQ0fak2JXLE3cH42YPPvYOuZ+08RbL9ewcnkLSxe1ZXxOIYQQQoitoVdXLoXYXjmVq87WXDoDfRKTX53KZXzNpT+x5jJmeIe76G6bpE/zp51fUaRyuSnS11zS+VYkJKbFOm3MpmWim3rSICbve8ENl0sSbbPfzWthwWz7/wBmQKehXicSNjClLVYIIYQQvYBULoXYCpwWyEwVJ2darD+tLdYOiqXZpfhVP4VZRW5Y8Z7HsEz3MU610yux5tIEtq2NeXuDTNNivZoiTcxZ/60b+L1tsU4wNSyDcHw7Eud75A2oxaV+cvM11q2O8NHbdbS2GCxe2Jr0PDmF9vHrK6NSuRRCCCFEryCVSyG2AqfVNdOUz2jEwudX0LTkyqU/XrGcULYL40onoCpqUuXLYZiGu5az03DpCUWp1TjRsdQ1l0n7hQILa+fTrrdTkFXI0IJhbuuzpmgoioKiKJiWmfi+an5iZsz9hQPY1eUdxuYwa2YT782oZdHcFupqY2g+hVN+0Z/62hirlSqWvAHr10VloI8QQgghegUJl0JsBU74MzKEgmjEdNdbQiKIeofzOGEwUyg0LLvd0qf6Mt7vtsVK1XKjpLfFJk+LddZROhNhLU/lEuyQaZiGW6kMqAHaaEubMjvthHIm7J7HGy/UsHaVfa4RY0KMGB2yz1+homl2uGwPp/+SQQghhBBiS5NyhRBbgbO+zmlnNE3L/a8es9z1lt5jM1UhtQwDewzTIGbGMm5DAinTYmWfy25LC5eWlRYMAaLxCb5mSrhUFRULy61oOu3OqdVHTVMYOjLEIceUureN2tEzOVYz6NM/C123ePV/VTTUp08eFkIIIYTYkiRcCrEVOIExEtV5/t+V/PnaZSz9vs1db+lsQ2IfG19zqWTYViTeZukVNaOYlklADWR8bm/l0h3oI9Niu2xDlUtHzEgOl85aTQW7LdatXGrpay69hu8QYvS4HHx+hTHjE+EyakTZeWI+5X0D1NdFePjOVaxbHdnEr04IIYQQYuNJuBRiC5j7dRM/eAayrFvXymcf1PPMY2uY+3Uz0YjJc09UUrveDpLJbbExVEV1tx1JlVq9dNoxfRkqnZAIR94tNKRy2XXplUszbagPJPYydSuX8b9uNVXDsAx3va0//ksA75rLVCee2ZfLbhxKYXHie6qbMXx+hT0mFzB8pyyaGw3+df9qd9qwEEIIIcSWJuFSiM0sHDZ4/skq/vd4JbGYyeLvWvn0wxpq18doC0fZYWwOO++RR1uLwUtPVQHJ4dKwjA5bXCFzmyYkKmKdkX0uu895vZ3XrKOKY6dtsZblrrf1TotdUr+YV5e+TFgPJ53L51PJy09+DzhrcVVVYY/98hi2QzbtrSbVVbL+UgghhBBbh4RLIVLMqvqad1a+2WPnq6mMgWUP6pn3TTNPP7oK04Sxu+Qy/by+nPKL/hx5YjlqfDgLQLV/Eeta1gJ0un4SMq+7hI4rl2AHnI5Ckdgwn+pz24472gbEaYu1cMKlHUad75ezXYym+lAUBcMy+GztJ9SFa5lTPTvpXKZluhVp9/xmIkSamETKlrAi5yNqqqQ1VgghhBBbh4RLIVJUNK1kbcvajNt8dJUzoAdgfWXih/3Xn68mEtMZNjKb4TuEUNTEnpal5XZYiSltrNbmMbv6WwzTwLKsjMN8HB1tI9LZYxQULOxBNLINSfft039f9um/L9BZ5TJ9n0vvf511t6qiuBNkHevbqpLO9VXllzz/w7NJFU3v+9MwDdpz19Hqq2FtVfMmfW1CCCGEEBtLfqoUIoU7wXUjK3uzv2ziliuXsuQ7e42lt00xFrWwVIPhY+ztJLyBoqyPHS51JYLPp6KbsUR1K8MwH0dHlUu/lnmgD9gtnZnWCYquGVYwnMH5Q4COK5fReKXR9OxzCaDE/9pNfG81t5JcFCwCoD5cl/T+q2xdS8yM0RRtcm/TTd1tzTUsg2CefXxNdXJLrRBCCCHEliLhUogUzg/1HYUGR3ubwXuv1fL9ghYMww5qzU06rz9fjWFYvP9GHZZlUV1ph8uCIjsgjt45SCikxZ8jESDK+sbbLNUYPk1BN3X0+JAXfyfrJzsa9OPvpJXWqVxaWDLMZxMoitJx5TJeWTRSpsU63y9nCrCqqHbl0jKSzlXTXgPY78fmaHP8nM7emRYxM0aWlhU/xiCYaz+2tkbWXAohhBBi65BwKUSKROWy83D50Vt1fPRWHU89uI7H712NZVm89VINkbAJCqxZGWbV8rAdLhU4+uQ+DBmRzd4/yU17LoDyfvFwqUTR/HZlSzecbUgyB0hIVMJSdbQVCXi2I7EsGeazCVQ6Xrsa20BbrLdyqakapmUmtbqua1kDQEu02T1HxLCrkk5LbVALup+rfgOfT6GuNpLUli2EEEIIsaVIuBQihdMuapgdh0tdN5n9VROqCkWlfiqWhZnzVTPzvmkmN1/jsJ/aG9+//0YtjfU6RSV+RowOcdYvB5JfnPhj5w2wZX3sKpShxPD5VAzTcCeCdjacp6PKZWePsZ/blMrlJuqscqmbetJ+lk6o1Nxw6ay51NyWWe/Qnpr2aoCkVtiwbt/vTKL1awE0RSNqRLGwyM3XiEYNmps63tZECCGEEGJzkXApRAqnmmh0suZy0dxW2ltNRo/LYd8p9jq5V59dD8DESQVM3LeA/EIfy39oBxLrKSFRdUr9uLjMj6qBqUTRfIpduYxXtzqfFpv4Y+w9rrOtSBQU2YakB3iDeabvUdSIYqXsc5kY6JNoi1Xj4dK0TDdotseH9zRGGj3niyQ91q/60FTNrYLm5mmA5e6XKoQQQgixJUm4FCKFU2nqbKDPN5/bP/Dvtk8BY3fJRfMp6DELVbVv8/lUjj6p3D3eWU8JiXZISG6L1TSFkrIAhhLF57NDi1PJ2tC2Io6AZ4jPhh5jYclQn03kDebewUqJ7UaiaZXLTAN9vI/NDeSiKAphw/7FRFM0ES4j8Ypl1HDCZSDp+5+T58NSLGrWy7pLIYQQQmx5Ei6F8PAGyo7WXLY06yxf3E5egY8Ro0NkhzR2HJ8DwJgJueQX2BWskTvmsNf+hQAMGhZ0H++tVqa23pb3DcTbYu3QEo6vsetsOI/qCSbedZadbkWiyECfntBR5TIvkAfYIdD5BYLa2UAfT2uzXw2QpWURibfAettiI/FqpmE57dK+5GCap2FhUlctlUshhBBCbHkd/8QqxI+QN+x5q4o166MUl/pRVYVF81rBgh0n5KCqdrjY75BiWlsMDjy0OOl8hx1bysRJBZT2SQQ9b7hMrY5OmlLEYsVHabyNNqzb1avO22I94TI+PRTskNIRpy3WwkJRJVxuLG/lMjlc5tMQaXArl4qiuMeqqWsuVTWptdmv+ghqQcJ6mKgRpTHS4N6XOtBHU31Jz5sVVAGL1pbOh1EJIYQQQmwOUrkUwsMbKJ3g9/7rtdzzp5V8+XEDAN/NaQFgxwmJqa99+mVxxsUDKe+XCHdgh4+yvoGkEOJsL5L6fAADBgeZeEAITYtXLuOVqq63xfozfpzKnRYrlctN4n3tnL1IVUUlx2+/N6KGHS5Vz1+1zi8D3MolalL12af6CfrsSndztJmwHnY/j7jbmxjxcyU/NpBltzu3SbgUQgghxFYglUux3bMsC93UO90r0mFaJm2tBmsqwoS/qaRE8TPvG3uPwaXft7HzHvksX9xGKEdj8PDsjboeZ3sR5/lStwOJeLajaI9XLjtrcfVWLr3Vys4CqROKnKqa2DhqhmFKWVqWG+ydKa7etlcldSsSVUupPgfc49e3VQFQml3K6ubV7kCfRLhMeWyWgqWYtLVJuBRCCCHElifhUmz3vlg3k+WNyzh+h58lDbxxRKMmb79cQ2O9zn5HBfnknToiEYuWtmYKYs2oKqDA6hVhvp/fimnCmPE5bnWxu2Jm8jYRhmXgU3x8VfkFJdmlboCAxJrLjrYbAVDVjtpiNxwuUz8W3eMN5n7Vx/DCEeQH8t1gH423xXoDoFPFjBnJ+1w6fKofH/bjne1I8gL5BLSAO+DJad/2qT583vWafhULs8PK5efrZtIUaeCQoYdv2hcuhBBCCJGBhEux3atpryFmxmiNtRDQktdEhsMGj92zhsrV9g/ti5ZWEcmy6DsgwNF7lNHf34+S8gAvPVXFquVh3ntvFStDX3Hkjgdt9PUYVnq4jMQifFe7EEheuxfuUuXS0xbrOW5DA33EpksK6YrK5AH7A7CkfjEAsXhbrPd7oanOViTOPpdqSvU5sY7SCZe5/jyCWpCmaBOGaXiGBCVXLlVVIZCt0NaaOVyubVlNS7QF3dQ7XccrhBBCCLExZM2l6HHtejuz189yWzq3NmcIStRMn6C5cHYLlasjDBwapKxvgGjUIDtbZZc98xkwJMDocbmUlgcYONRe87aibjXh7PUYpWvdc7xf8S6vLn2ZqrYqZlV9zeL6Hzq9Hj21cmkaSZNpvfc7ay47C4rJay6z3OM7C5Dex3g/Ft3jfe28QdNpwY44ay69r3f8r11vQFSTwqWfLC2x5hLs6bPO9zZiRNzKpZbyWIBgtkIsahGLpW+l4zyus212hBBCCCE2lvxUKXrcyqYVzK2ew/LGZVv7UoDEXpHetY6OFUvsALzfwUWcen5/xu4WYvdJBfj9atKwnUHxcGli0Kd/gDajxb1vVXMFdeFa3lz+GvNr5vHFupluQFzbsoZnv3+a6rZq93hnrZ3TomtaRlrgTD3WGRaTSep6Peh8uqxt81Yu/Z9/RsEJx5Bzw9Vgbr9BJrlymfjY2RLG+cWGN1ymtjjblUvv2s3EQB9Hrj+XoM8Jl+HkrUjU9HAJ0N6a/ro7oTJ1kJQQQgghRE+QcCl6nBOUnD35tibd1N3riZrpG8uvXNoOCgwenk1hkZ9DjyulqMSuOnl/AB841B7eYyk6/QYGaYk1u/d5B7lk+7IxLdNtZ5y9/lva9XbeXPGae7wRv56seCXKsAx0s/Mf9jvb59IJl979EjOtLfXanGsulcYG8s88hcBH7xP65/2E/vqXHj1/b+INlN7XMVFlTA+XSkqlWEtpiw1ofoK+5GFRuR1WLpMfCxDMsa8jU2ushEshhBBCbE4SLkWPc1o8IxnC3JYW9rTm6qbODwtaee+1WkzToqEuRmO9Tp9+AbJD9g/oZtJWJImP8wt8lPUN4A9alPUN0BxtxrIswJ5Gm6VlcdKYUxhXOgGAqtZKAIqDxfFzme7xMTdcBuPXZaStw0zl62TSrdMW6VN9btDobFIspISiHl5/mf3wP1Hr6ohN2AVL08j+x33Q0rLhB26DFDK3FzvTYsN6JO0+NeWvXe8vBSBeufQMZgr6gvhUn/vLiIgRSV5zmfKLh0C86JkpXDqPMzfwywwhhBBCiI0h4VL0OKc64p16ahgWFY0VPL3oyaQW0c0t7J28Govw8jNVfPRWHV9/2mhXLYEhIxJVIu9atNR1aT+/cABHn1qKz6egmzptehtg7xXphIc+OX0AqGqzw6W3PdXZVsIJklnx6qKRoS02tRrl66Qt1nluBcV9XGeVTufYTB/3hKyXXwSg+f6HiBx3ImpjA8EXn+vR5+gtOgrpzpYwYcN+j3lDaGoba+q6Sb+aXLnM9ecBiUp31IiiW4lpsVpKJTQYsj+XyqUQQgghtjQJl6LHpYbLaMTk/r9U8Pi/FhI1otSGa7bYtXhbc5cvb6alyf6h+t0Ztcz+sgmAoSMTP8h7f+hO/QE8r8BHdm7i85b4sBXvXpFFWcUEtAA17TWYlonhCagrm1YCiXWUWfF1dZnWXIb8oaTPu7LPpaZqbpj17neZyeaqXKrLl+FbOB999BiMUTsQPvlUALJeebHHnqM36SikO23JkXjl0hso0yuXyRNffaqfLC3L/aVBXsAJl/b7JWyE3cpj6j6XAFnumsvk96/3lyWGDPQRQgghxGYg4VL0uES4tEPUx+/UUVMVZe2aNsLtyUGqujJKY0MMw7D4518reOWZqh69FqdyBPDd/EYAyvoGiIRNli9uR9OUpMql4WkXNDIMovFee1O0yf3YCRaKolAeKkc3dWraa7A8P8SvbVntnkNTNLcaaWRoi83x5yTOrSid7nPpbG2hKRq5gTxURaUoWNTh8d7rdT7rKYHPPgEgetAhAMT22ReztBT/xx+iNNT32PP0Fh1N3VUVFb/q97SveiuXGdpiU7YigUSlMtdv/0YjEVjDifOqmcKl/d/UymXSe1sql0IIIYTYDCRcih5nxtcWRowwdTVRPnuvwb4dk5rqKHq8crdiSRv3376SJ+5fy+oVYdZWRJjzdTOGYfXYtYT1CBXL2/n4nTqWLWsiK6hy5iUD2HO/AqYcUcJ5vxlETm6ihdTEzPixwxsum6NNbpD2hofS7DIA6sN1SdWillgLlmXZ4VJNtEJmGugT8oTLzqqWkBgQoykauf5cfjZ6OruU79bpY9QOBtFsKt/XXwIQ22Ov+A0+ogcdgqLr+D/5uMeep7foaKAPJA9VUlP2w/TSFC0pcPrjj3NaY3PjlctgvHIZNaLu+9Cn+FDVzJXLtpRpsd5AaUnlUgghhBCbgYRL0WWtsVYaIw0bPM4JZVEjyjefNWEYFv0GZWEpJrXrY+imTl1NjGceWYdpQE1VlC8/sc+rxywq10Q6OXv3tMfCfDenhYY6HcPU2W3vfHJyfRxxfDn7H1JMn35ZScebnmplpqEn3gqjd6iPN1g4w3RMy0wOq5ZJu96Obur4Vb8bKDKtuQz5Em2xqZWpVIlpsV2bFJt6vT3ZFut3wuXEPd3bogf8xL6uD9/vsefpLZJeOaWTcLmBgT6pay4BsuNt005brBM6o2bUHTalKWraetxAMPO02KS2WBnoI4QQQojNQMKl6LIPV73P68tnbHADdieURc0oS7+3h94ccVwZFoYbLj/9cD2VsQpyC+wfhBd869k3cnnPbWGyZGk90ag94fWoU0qYenRp59eetC4t/Qdwb4WxKdqERTxceoKFEyQMy3B/iM+OV6EaInZraEALuKHQtBJtsSMKRzI4fwgD8wa759tQ5dK75rKrOqu4bSylsQHf94swBg/B6tPHvT26vxMu3+uR59lcAm+/QcEJxxB45aUuPyZpi5G0ymXiFxfKBve5TA+XwwtH0j+3v1sJd9pldTPmvje1DbTFVixvJxq139NmJ+uJhRBCCCF6goRL0WWtsRaiRnSDVQ+nWhdu11mzpoWiUj+DhmWTX6zS2mLQ2BTmy2XzWR36kt2mpW9XsnpFe9pt3VFbHWXmB/V8+FYd8+fXATB4WJCsXBNV7TxIGUlbkXTeFtsaa8nYFuv8sG9Zpnu/09pY2brO/tyf524hoZuJymW/3P4cOGiKW7WCDW8rorptsV3/47w5Kpe+b74GIDZxj6TbrfJy9LHj0VYsR12xvEeeq6f5Zs8i/7STCHz0PgXnnO62925IZ1N3A+qGK5eqotprap1fECiae+zwghEcPORQd0iT8z6Imbr7Sw5N8aWt4XQql0sXtfHI31fz6bv2LzQ6G1YlhBBCCNETJFyKLnP3yMuwFtHLCVTVVVFMJcaI0XaLZ3l/+4fkxT80sb62mVCORr/hCrn59g/WI3cMgQKrVmx85bKhLsY9t67kzRdreP+1WipWNeLzKfTpn+VOae3KtUPmH8Cd6k9AC6Cbulu59DZIOusZDcvAir9WeW64rHQ/1zKsuXRaHL2B0reBbUW8waSrNkfl0v/NV0ByS6yjt7fG5txyM4plYQwcBEDovru79LjkinXHbbHe703S5FjnFwNqYq/SjjgVzdTKpZryfQ8kd3qzZqX95yl5mx0Jl0IIIYToeRIuRZc54WxDbbFOZbO6MoqhRN1wOXC4/cP2t1/XYyoxSsv9mBiMHmsPr9lp51zK+wZorNdparQredGIyaN3r+b912u7dI3VlVEsEwYPD7LnfgWYWpShI7PRNIWYmV4lTWUmVS4ztMXG21c1RcO0zIxrLp0WSNNTucyL71XobMOSHyhICpdOW6xbpfKso9vQnpVqyprLrunZvS0hES713fdIu683h0t1xXICH76PMWgwdR9/iVlaSuD1V1EaGzb4WO/+lakV4I7WXCoZJsw63zu/1nGV2udWunXPmsv0ttjUAnZ1lf2+N5LCZc8NzRJCCCGEcEi4FF2im7obpDYULi1MLCy7cqnFGLaDvQistK+PvHwN3dAxFZ2Scj+6GWPKtFKOOKGMnffIZ/Aw+9j/PrKOupoYs79sYuXSdmZ+0ICub/gH4uYmO6QNGxXiiOPLOfykQsbtXIhP9REzNly5TG4dTHydte21mJbpbiPiVJqc18IbLBJrKT3hMl65dF7D/Kz8xHGetljNbYFMBEptA+GyOFjM0IJhjCraYYNfn0PJUGndVNr8eVg+H/pO49Lui+09CSsrC/+nH4HRu6pmwf89A0D4xJMhJ8eebmsY+D/6cIOP7awCnOVZc9lRW2xq1bmz9bXO2syYGUtMi1V97vM4/03989lYrxOJmEm3pw6QEkIIIYToCRIuRZd4W0o31FJnWibtbSaRsEVxPwgG4yEKk6EjszGVeLgsCxAzY+Tkauw5uRBNU9j/0GL6D85i9cowj9y1ik/fs9eLRSMmFcs2vBazqcH+oTmvwIdpmRjECPmz7XDZzbZY5+PVzauYsexlvq9bhGEaaKrmBgkzwz6GiYE+phtQcwP5Sc+TG8hDzTAt1qlYetfhbXCgj6qx/8ADGZg3aINfX+o19hRl/Xq09VUYo3aArKz0A7Kzie25N2p9Pb75c3v0uTdV4I3XAIgcdyIA0Z8cZN/+wbsbfGxySE9Z+9jhQJ/094qzXtavdj7p16f60E0dwzLc90dZqJw9++3NhLJdALsqudf+hfTpH2DYKPuXNTVV0ZSqvGxFIoQQQoieJ+FSdImeFC43vOaysc4OS8V9E7cbpsGAIUH8QYv8EsgOaegpQTW/wMc5lw1ilz3zaWkyaKzX8fntH+B/WNC6wet0Kpf5BT7Cur3WLEsL4lf9dtjcwDCipMpl/Nh23Q61LbFmdEvHp/rcUOBWLkmvXHoH+uR49q3UFI0cX04HbbGJFkenermhyuXG6Ok1l74F8wDQx47v8Jjo/gcC4P/wg01+vp6iVlXinzsbY8hQOxgD0f0OBMD/+Wcbfnyn02K9+1x2XrkM+XPwq34Kg0WdPp8bLuO/5HCuYUzxjm513MTk8OPKuPCqIfQfZA+Gqq6MZlxz2dZq8M4rNW4buhBCCCHEppBwKbok1q1wadFQbx9f3Ff13G7g96sceGQBkw+1K3l6hmqipikcdVI5o8fZgezIE8sB+GGhHS5bY60sa1ya8bmbG+0fmvMKNMKGHQqDviy3ItRR9XJu9Wzer3g3ZV2afS4ncIb1MJZloSmJyqVzX0dbkTivlU/1uduR5AXykiqThmUmpn96gqQTLje05nJj9PS0WN+C+UDn4TIWD5eBjz7Y5OfrKYF33wYgMvVQd59Kq6wMY/AQfIt/2OC6y6SQnrrmMmlarOeXDxkG+gS0ACfscBJ799un0+fzuxNjY2lrLZ1zWZ73cFlf+xqqq6IZp8V++GYdn7xbz1fxfWaBLv0SRgghhBAik57/qVVsd2qrozz+xEqM8RH69M/KOAykoS7GO6/WcOBhJUmVy/yyxLHOD7S+LBNF0yFGh+sgNU3hpLP70VCnU1zq5/MPG6hcE2HmB/UYI+azrGkJ+YECWtaEmP1lM0NGBNlplzy3ApNX4KM13mrqVwP4NftjO8wGk57LtExmr/8WgIF5A9OuN1HBtPfs9K6HNN2BPgnJA30Sg1dy/Lm06+3kxVtk3XBp6mltsd7n2VBb7MbYfJXL9PWWDn3CLpgFhfi/+Aza2yE7e5Ofd1MF3nkLgOjBhyTdHtt9IlrFSnzfziJ24JQOH59pkJN77g7WXCYP9PHsb9nJMB+Hd4pwpv0yIbGuFxLhsqYqeQshwzIIhw2+/aIJgNr1iT+Hry17lZZYMyePOXWD1yOEEEII4SWVy21cW6uetBaxpjrMA7dX8Odrl/LA/1XQ3rZxFQjLsli8sJVw2OC912pZu7aN2V82EYkYxPT0Frp3Xqlh/qwW3ptRi2HqNNTHUFXILUoPl7qpu6HSaQcFWNm0gvVt693PVVWhuNT+YXqv/QsAePPFGma8uBbTtIjoYV7573pmf9nES0+t55Wnq2hu1FE1COVobgVHUzQ3oEVN+4fs2etn0RC213PWticm0UaMxERZp+roBESnPVZTfO6UUCPDmstMA31URXVbY532RdUzFCh1WqzzPN7/9qQer1wu3HDlEk0jNnl/lEgE/1dfbPJzbrJYDP8H72FlZxPbZ3LSXfpuEwHwz57V6Sk6a4vN6mBabOo+l93hT3p/pEyJddYBe7YKKi2PVy4ro0m3G6bJnC+biUbs22qrE+/7unAtUSOa9OdCCCGEEKIrJFxu495+tYqH7lzFrM8b+WLlN1z16P2sWttANGJSuTrConkbXqeYyfcLWnnyn2t56K+rWDC7BUOJEY1afPB6HX+9aRlzvmpyj62ribJgdgsA381rYf36CLGoRX6hD53ED63eyonTnhqLV+yiRpSPVn/Ap2s+yng9u+5VwAVXDabvwCzWVbYyb1Yzy5e2ULs+Rp/+ARQFVixtp7XFIC/fh6oq7vOpquZpJ9RZ0bSMudVzeHnpiwBUtq1znyeiJ/bYNFLaYp1w6VM1N5A5wTPT9FVvW6w3XOYH7KDsVCmdAS2QHBicStZmqVwm11o37WThMNoP32OU98EqK+v00Ggvao31f/k5aksz0cn7p1VR9XETANDiobkjSSE9bc1lonLZ0T6XqdXHDUmqXKb80sFbMTdMg7AeJiuoUlDko64mxjsz1hOL2e9HwzT44qMGAFQV6mpimGZyR8KallXdujYhhBBCCAmX27gJuxeiKPDGCzX86+l5NLdGGTguwknn9ANg8cKNC5dLF9ktoDXrY2DBxP1yyc5WiUYtTMXks7nfs6R+MQCfvlePZUFuvoZlwlef2hXBwmI/USPinjPTWk1nzWXEsNczNkeb3UE8qfr2z+KUc/uTFbKoWBbmlefsULjvQUWU9Q3Q0mSAZbfEgqeqiIo/XkWKGdG0tt71rZXux2Ej8dzO9Trnicarmj7V55kW2/FWJM5AH6c6NaZ4R8YU78SwguHx45wwYLhbnHjP44ufx6f17oE+vh8WoRgGxrhOqpZxsf0PAMD/0dbf7zLw9psARA8+NO0+fcedAPAtXND5STpZc5nV0bRYb9DsZuUyeYuazG2xpmXy4er3eHHJcximwaE/LSMYUpk/u8n9ZdOyJS3U1cQYOiqbvgOziEUtmpv0pD+jq5tXd+vahBBCCCEkXG7jho3MYd8pRUQjJvUtTfQdEGD/I3MYPiqEz6+w9Ps2DKP7G6avWGJX6YbFf/icsGeIyQcXMXlKISgm36z/ipnrPsUwTObPasHnVzj1vP6gQHNTDEWB/oOzktpMjQxbmDhrDcN6IoTWttd0eF35hT72nZpPdrZKOKyTk6ux08659BuY+EHeCZeJqqHithPGzFhSJdAwDaraqtzPoxnaYg0zORRrii9paA/gtsnaz5c80Mf5PDeQx5799nIrkk44MCwjafqnw6lS+TZHW2zSGsBNC5daF4b5OIzhIzEGDMQ3ZzZKfd0mPe+mCrwbX2950NS0+6ziEox+/dGWLIZw5l92QHKLa2pIVxXVDYOZtqpJ/bgr/EmVy+THOhVz55c0USNKzIyx0865XHLtEFTNYvWKMIZhMXdWIwCTDyqipMz+xUtddSypu6Cmvdqt1gshhBBCdIWEy+3AT44oYfd989hxoo+J+xYQpR1/QGXYqGwi4a7tD+nV0qxTXRmluNTPGRcP5PxfDwKfQTBbo6g0QHGZj9a2KO1tOlWV7UTCJgMGB+k3MMjhx5UxYqcgPzm8hJLSgFu5tCwrY+Uy5qlcOmrDdrjUTZ36cHoAyStS2G9qEWN3D3H0yeX4fCr9Bwdp8q2hIjST3PzkllXvmkvd1JP2+1vRtKzDDeWd4OhdqwbxyqXT+mqmT4tNtCdaWFgdBghnmItuGu4WJ17OVhbeClhP6ayds7u6Mswn8WQK0f0PRLEs/J98vEnPuynUlSvwfb8IfcyOmIOHZDxG32ksimni+2FRh+fx5vJM32fne9hxuOxuW2z6wCf3WuLfRwvTs144vs9qno/Bo7LQdYvZXzZRUx2m78AsRowOUVJm/9moXR9L+wXQupY13bo+IYQQQvy4SbjcDvj9KgceE2LIyGwUFNriU01H7ZSDQczdwqOrVi61w+jQkfY6NEVR0D1TXcv7+7EUk4Z6nVUr7ecaMMSewLrXfoWM3TWHgvwsfKrPrQR2tH2JE+y84bImXrlcUDOPV5a+lDTkB+xAmhXU2PfgAvKGNvLx6g/pM8BHQ2Alzf51kNMcf067YqupmrsVSdSIJm03srDWbnv07knofM1OIDZSwqem+lDpeM2ld6CPYRodhjfNDZcxLMtKq1COKx3PxL57Uh7qk/Hxm6InB/p0ZRsSL3dLkvff2aTn3RSBd+ItsVMP6/AYYyc7LGudtMZuKKQ725GopFYZ1aT/dpU3UKYGU29brBMSLRJdCzuMtf88r10VwVJMDjqiBEVR3MplbU0U3Up+r7fG/y4RQgghhOgKCZfbieZos/txW8wOk0PGqPxQMIPXvv2ESLjzvSm9UsMlJAbvAJT192Fh0lAXY/Uq+4fPgUMS1TWnWudTfW5lMlNLLNjh0rKsjG2xDZEGAKraKtMeY59T54f671neuAxfcTOmaj9Xtr3Th2cPStVTuYwlBd36+MTYofnDkp7DOd478dXhU7wDfewf3jNVpgzLwMTscGiLE2idXwZoKZWovEA+O5WM7ZFprqm8p9ykyqVl4VswDysrC2PEyC49JDrlYCxNI+vN18Hs+vuyJ2W99YZ9LVPT11s69J3GAonwnIm6gfZiZ6hPaoh0frGQOvF1Q5IH+nQSLuMVde+el/2G+Alm28fsdUA+o3ayB0yVlCcql6az7U67wbxZzcybXU9bq+x5KYQQQoiukXC5nWiJtrgfO2FFDUXoP9RPc7SJrz5t6NJ5TNNyK51DRmZT015DRdNKd/AOQHk/P5Zi0FCrs7rCDqIDBif2jjQtEwUFv+p3w1lH4RLsEOatXLbr7bTGWt3bnC1DwG6vdcOlaSSqippOTnzbk1Bu8rAdTdHcik/UjKZdS8gfoiyUPOXUCZeGZaQd71MzrLnMMNDHtAwsq7O2WJWgL5g0KGhL6Ym9LQHU1atQGxrsIObr2vVbRcXE9p6EWr0e36yve+Q6uqWlBf+nH2MWFhKbuGeHh+nxymVnQ30yTQn2ctti1eT3gPN+2ZQ1l2ltsZ52bOe9761cKorF3gcUsu+UQoaMSvwyqNhpi61O/NlYMKuZFUva+fCd9dz9pxVULJe1l0IIIYTYMAmX24mWmLdyaYdLw9IZOSYHU9X57P0GYtENV4mW/dBGQ63OkBHZFBT6+XztZ3y4+n3a9ERrbWGZhqJCfW2Mqqo2cvM18gsTP+g6Q2ySW1E7DpcxM0YkvjbT2a6jPlzn3uZdd+k9j2EZ6M4kVzPKoBF+cvM0ivtoSceqiur+kO/d9sMxIHdgUkUIPOHSNJLWaIJTYUxsNwKpIUN1vy5Ib4n0Cvly3I993axibQpvGO5uwPHyzY+vt4xv3dFV0cOOACDrjdc2+rk3VuDjD1GiUaJTpnYaiI2Ro7ACAXwL53V4zIam7jrrZVPfA84vILq75tLfWVts/DksrMR6YU/l0rDsbXqKSwNJtweDGgVFPmrXx/j8k1oa6mOsXwXBbIWhYwK0t5o8fu8aKtdEEEIIIYTojITL7URLLFG5jJkxokYU3dTJy/fRf1AWbS0Gayo6nnrp+OYze4rkxEn2XoxRM4JlWTRGGt1jTHQGDg2i6xamaTJwSDDph2w3XGqeVlSz43CpmzF3KmVJdilgB2RnS5LGaKPb5hfzVFB1yyAWXwsaM2IMHePnJ4eX4As6w0wSA32cllPd1NOupX/ugLS9JJ2waWImTdAEe3qrkhIuM7XFOhXWzsKbE6YhvS12c+qpyqVv3hyg++EycqgdLgNvzOiR6+iOwNsbbokFwO/HGLkDam0tSnV1xkOSvrcZKpfO9zfoCybd7jyu+1uRdDwt1jtkKnWgD5C01jj1FyzHTO+Dz6/w3uvVfPZePT4rix12ymXvKbnsfUAhhm6xZNHGbWskhBBCiB8PCZfbCWfNZUGWHQrb9TY33BSW2d/mqnXRzA92ztGo/z977x0myVmee98VO4fJs7M5J+XVapUTCAWQEIroIGMM2BhjDD4mHfuzwRgbY4x9bB/bOGCCCbKEQAEJaUE5rKRN2iBt3p3dndnJoXN3xe+Pqvet0GG6Z2d2Zlbv77p0qWemuurp6ure9677Cdi/N4dwRMDa861FMRFWOdVZWOqmhvM2xLBoaRAmDCxbFaZ/c6eiusd/1HIuNUOjLmVToInGX3J1miX1l+70XN3QoNsNSBRD8aTLumPhOY42y3E7lxzHISyFMS/SRV1WAondMHTPohzwpsWSmrZKYygccVndnYpIUc9+zxSeWsHTEJqOc1lfMx+CsWQptLXrIR48AGH/vkkfv2FME/KvnobJ81Cuf/eEm2tr1gIAxH2VU2MnauizvuVc3LD4RnSEOz2/n4qGPv7rxUnVduqj3TNd3fWXfjd+2aowPvQ7XWhuF6DrQEsyioVLg9AMFYuWWcI4k2K1lwwGg8FgMGrDxOVZQlbJQOAEtIas2sG8mqeLzHiTLS5P1U5r278nC9MAzrs4BlH01hS6UQ0VHMfhvI0x/NZnu3DxFQn6NyLsrIY+kr29VibQvPvTULJdykQgCQDIqBmP6zJeslJj3WNDdFN3zcksOHMpTb+4FKjLY7hqKK+afw3uWHk3ZEH2pBtaTqdrBmVZWqxQNorE71oJnOA6fo20WMkR5tMxz7IaU9UtVnxrD0yOo/WJjVC84y4AQODnD036+I0ibnsDwkA/1EsuhdnUPOH22tp11vP2v115gwnSiyVBwrxoV9k5npaGPvA65oC35tKfUu5n6cowPvTJTtx8Zxtuv3sBeJ6DYqh0bmw6VXlkD4PBYDAYDAaBicuzAFW3ahYjUgRh0RIreS0HzRY+sSQRl7Wdy8P7rVrNVeudVM1KMyBJ51gOHJItAnjelRJrz4T0d2it1PgmJIbo34t6ESIvIirHADhdXAmjdt2lu2utZmg0PlJn6o7ZnbLqFYu2u8oLVBCIgmvRzgvgQMS1UebyVEqL9btW9dY0usXlGU2LnaBWsK59jI1COHnC6hIbiUz8BB+l2+8EAAQf/ingctimk8AjD1vHfv8ddW2vr7HEZTV31V1L2ch55CbpXNaquSTvqTt13JMW60rv9qd609+bOkSBQ1i2rkvNUBG3xWVmnIlLBoPBYDAYtWHi8iwgrVj1kDE5hrBd45VXnbTYQBiQAzwG+0o4+HYOv3p8GIbhXczruoljhwqQZI6mwVUawwH4U1O9i1S3W0c7tOoKrXOUXemnIVsIK7oCRVcQEAJUcKbtGk+S5ks6xmqehbPjKrrTdokY1F0pumQhrpsGTQ90Oz/umksOHBWjlc6BtT+nMyd5jn8bQqUuogRvWuwZbOjjjneSziWdb3luY/WWBGPxEqgbN0E40Q1x+9ZJ7aMhdB2BR38Ok+dRuvX2up5Cnct9lZ1Lj0hv4DxOvqFP9W6x/lpfwOtc+pv7VIJ8dgKCDI7joOgKonER4JhzyWAwGAwGY2KYuDwLIPWIyWATdcJympMWa0BHR5cMVTHx0Pf68MozY+jp9jb36ekuQikZWLIi5KTEVnE3SBMdoHyR6q25JOM8nDpHd2OTsGQJSSIMA0KQikuyPUmTLdnjOjSPc+mkxeZcDY3I70yX0CWLed1wBGk1cene3qiQFivyjnNpUHe0vOay0mM/EXFm0mIxBc6luGc3AEBbPzlxCQDFO+8BAAQf+PGk91Ev0pZXIAwOQL3yGpjt7XU9x1iwEEYkajmXFdzViWouqzH5msv65lwSqtVZVrppBAC6QVx9ERIvQTM0CAKHaExANq2V3ZQ6HQzTwLPHnkV36tiU7ZPBYDAYDMbMwsTlWQBx9ZKBJB1tkVdzVGQZpoH2eZZjqCrW4rDnuFdckk6Qy1e7UmLNyk6Fx7ksE5eO2HJGkThpsWSoPOA4l0RcBsWAZ2wI4IzqIELZfWxFd2pIi645mSQd2C0iicujm5qrLtTtLjpOq8ALXjHqE9nCBHMuyTGdfVd3p8Iz1C12sumcbsS9tricpHMJAKU77oIZCiHw8IPgspmJn3AaBB56wDrmB+6s/0k8D33NGvC5LPiek+V/rvMmQvnzrHPeeM2lKy2WLz+ePwbDIy4rP3ZDPvPk5pBqqDBNE7G4CMMA8rmpa+qTUdI4PHoYB8cOTNk+GQwGg8FgzCxMXJ4FUOcy0IyALcxUQ3VElqGjoyvgeU6vS1yODqvYsSUNAFixxnHSqqXOuese/fWI7rTYSjWXAY+4tFxKMqMzIFiuZtjl5pFRDkQoay6h5xaUpuluXOKIaisWl1h0OZH+hTgVl5xAa+IqNfQROYE6f0aNbrGVHvvhOZ6ehzPZLdbNZPv5UHHZ4BgSN2ayCcXb7wSfyyLw0P9Mej8TwaXGEXzkYZjhCEq33d7Qc7U11Zv6TNa5pA19KgjEWoi8SG9kVHK6/TFUGkXCcRwM0/B8ZpxtnBsysuu7hDb1mcK6S913E4jBYDAYDMbch4nLswDS/CYRSDgdWnWViizd1NG10BJu8xYEAM5xLnNZDT/8t17ksjo2XplAa4fjGuoVmvlY+6s86sD62VVzKTijSAw73S5Q0bnM2n+zYnSnzobEIHiOpwtQ1eNcVm5QRLZ1d67lOM7aj6G75l96L38ihq20WCfF0O/yiLxInb9qQtXvitaCuJdnMi32tEeRFIsQDh6A3jkPZlvbacVS/M2PAgBC3/vOtDX2Cfz0f8AVCijecRfMWLyh5+r2OBJhX3lTn8nWXJKbF1yDabGAc51Wcj3911qlmksnXb1c1JHaaMvtJ92eXU19prDukojdWjNwGQwGg8FgzC2YuJzjKLqCnJpFXI5DtOukAEB1zX0EgK5FMu75rU7c99tdaO+UkRrTMDqs4Mf/fgqjQyrWnBfBzXdYImEwP4gj44c8LqEbtWZaLGlww7ti0cqcS57j6WOSFhuyRWXI5VwGhCBEXnSNGXEL2yqpfaTmEqT+kwysF6CbzoB5wddAR6TiUiiruXSn6gq8SN0+IlRrOZcTpT4Sp9Yfz3QyWVFEEPe9BU7XG55vWQntwg1QL7gQ4r63ID33zGnvrwzTROj7/wXAEbKNUMu55D3nsf6v08mOIvE8t8L14n8vKzXxIZ/LSp8ferOE5yHTG1UKYsmpH0dCjq8x55LBYDAYjLMGJi7nOGMF4lomATjjNdxjOgBLcK07P4Z4QsT8xZaI+97/60XviRIWLg3izvs76UiRbf1v4JXel1HQ8p5j0TQ5vb5usbXSYiVe8nSTtf5GxGWI7i8gBiFwAn0tbmFbDaOCc0n+bzX0cdJl3bgdIbJw1wwdpmlCFmRnbAnnbujjpBq6aaQWj3TEdb/u6Way6ZwEcecOAIB2wUVTEAyH/Kf/NwAg8vffPP39+ZCeewbi/n1QL7gQ2vkXNvx8Ki4rdIw90w19APd1Wu50lzmXptu5JHXP1ue4knNJbiiJnOiZUxtPWJ+HTGrqhKD/c8pgMBgMBmPuw8TlHGe0YM1/bAo20d+JvAjVUKu6fAtscZke19C5IID7Pt4FSXYuBdWwxJ57diTgLEq1WjWXcFxBp6GP4mnoExSDiMoxT4dWwJn5GHSJrKAQgMALtEZMrZKq64Y2MrJTAnlbKIq8aNVQulL/vK+POJccdaGImHV3v3XPx3Tq2LwfJXfK7USO1jmt5+Hdi9+DjnDnhK9tqphsEx+CtHM7AEC7aMNUhAPlvbdCW7Ua0utbIL368pTsk0AEKxGwjWK2t8NoboZw6ACg+a6/SXbd5V1ueqOI9Dosv67Kai5R3sRHrJUWW7HmUpmWmksnG4GJSwaDwWAwzhaYuJzjjBfHAQDJgCMuyQgBd1qru/PrijVhBMM8zt0Qw0c/vQDhiHeBS8RZUS94fi/zluvoXgyWpcUStxA8HfiuGaqnluu9y27Duxbd4BmrwHM8FVchV81lQAjSWkTN0KrWgXrj9zmX8C7kiXgub+jjci7LthWwKL4Y86PzrRpOexFPjlGzoc8EHzNZkNEVnT+p9NTJ4j7WZNwz0RaX6gVTIy7B88h/9nMAgMhf/BlgVE55bhRpyyuQXt8CbdVqKO+9dXI74Thoa9eDUxQIx456/uTputvA+7covhjt4Q60hFobDkcSGqi59KXFchxnNaRC5VpH2tCHdzosT1/NJfmcsvmZDAaDwWCcLcxMe0rGlNEV60JnZB66ovPp74jDVtQcceheZCaaJHzha8toGqwfKi41a9RHVI4iq2QRlkIY9U4wqTrn0hrtUV5zyfM87QBbcnV77Yx00kUzqbkUOAGSINH0Vd3U60qL9XeLJSmu5P8kDde/OCfnjXPNuVR0x7m8rOsKuq1/pmC5uHQ39DlzorFeTicmLp2CcOgg9EVLYLY2Lo6qUbrjbqjf/mdI27ch8PCDKN39wdPboWEg8tU/BQDkP/NHQIOdWd3oa9YCr7wEYf/b0Feuor/nJulcLowtwsLYoknFsiS+FDw4xOTyxkTl4tJ5rBs6ePD0c1A5LZaMIhEh8yRTwdUtdhpqLplzyWAwGAzG2QNzLuc4i5OLcePSmz0NZ4ioc4/q8Nc1VROWgLPoI87lkvhSbOzchLXN68u21X0OE0nD46rUXLoFndu5nB9dSB+T2sOAGLC3s51LU6NzLmu5beS10pmb1Ll0nBigvCGKu+aS7L/a8Tg6iqRat9jJzT+cCRpNkRXf3AnONKFeNAX1lm54Hrmv/TUAIPIXXwaXGj+t3QUeegDS9m1Qz78QpTvuPq19Vau7dJ+7M3UTYXXzGtyw5KaK11WtOZcmTDulm4jL6g19BN65OaToKoIhHqEwj9EhFUppalxl6lwycclgMBgMxlnD7F71MiYFqR10j+qotJCsBkmhJc6nJMhY27KOOo5u3DVdgMst5HhPWp1Of+8IOnfN5YLYAvqYOJfk/yJxWlypvu6RJtXid6f4uf9vmEbFhXmlUSSKQVxOv7j0jiKp1dBnMnV10w3HTS6dE3BSYrWLLp7SmABAvfRyFO+6F0J/H6Jf+tyk98ONjCD61T8DAGT/8m8A4fTeA6djrHccyWmPdJliysSl6/OpGzo4cJ6Zr36q1VxyHIdlq8PQdRPdh73p8rrd9KpRyHeFaZpVOz8zGAwGg8GYWzBxeRYi+hrlAPW7A+7h6kXNcj5JzWMlQeav23LPfeQ4DhIv2XMuy51LIuZEXvSk+AXFIK5ccDUu6bzU3ld5Wqy76Y9fHDnOpZOiax27tuBz11w6ro2VGux3OWnNZZVRJIInLXb2fcxOp1ustMOut7xw6sUlAGT/6m+gz+tC8OEHEXjogcZ3YJqIffb3wA8NovChD0O7ZNNpx6SvWQMAEPZXdy7PZM1sdbwxeLrFwvA0ozIrOpcklVz03BwCgBVrrJtLh/fnPPt/9MjP8PzJZxuO1C0oNVZ3yWAwGAzGWQGruTwL8XdhBcq7ulbCGtPhbFewnUuyyPSP7gDKRavpE3QiL6Kkl1w1l84+OI7DPavvqyi+liWW08dEqGmGTpt/BF3OZVAI0lhlQfak23nTU2sLPuLU8Lzj2hCB7X/tZaNIajT0aWT+4ZnCE+8knEtTEKCde94UR2VhJpuQ+advI3HP7Yj9709DX7y0IYEY+qe/R+DpX0JbthzZv/jrqYkpkYTeNR/C0SNAsQgEraZTp9sYaaqplhZLbhpZY3asz3OlESBOzaVAay5Jh+YVa6xMgsP7nC7SqqEiq2QnFWulGZwMBoPBYDDmNjO/GmJMORWdywlmyb3a+zIePvQgdeoAoORz7SotnnVTx9sjb2HX4E4AgGE7JWRbiZdgmAbtuup3DINi0FMvWvn1iPa+LeeS4zhIrue4GwCJvOiMIjENz/E8jysMoKciGjwdo0JEqz/usoY+ZWmxlY87W5hsIxq+7xSE/j5oa9cD4fB0hAYAUK++Ftm//BtwpRIS998NcevrdT0v+IPvIvq1r8AMh5H59+8C0eiUxaSvWQvOMCAcOkh/d7rzQqeaammxbhef1CBPlBYr2un1qp1eH0uI6OiSMTqsYnTY+h35rDU6q9I0Tah69a7TU81ocQQPH3wQp7K903ocBoPBYDDe6TBxeRZCRoC4mWjxNlQYRFErIqNkyv5GxFHFtFhTx56hXdg9vMv+2Tv3kTYXsjvP+msX60HgnVEkmqFB4iWPYAtLVoqsJEg0hVc39LLaStF1XioJvvZwB9rDHVgUX0TrVqnA9juXnNe59Ddz4WeZo+VnsqJI3L4NAKBdOEUjSGpQ/NjvIPfZz4EfH0fyrtsQ+MkPve1P3WgaIn/xZcQ+9xmYkoTU934M7bwLpjQep+7SSY31vLezIC227L20z5eTri7Q+ZiVvhPcM2Bl2u3Zqd1esZakxlrupVFnU55DYwcxlB+iPz/zxAj+4/92I5uxUm4rjUWZSkYKI8ipOfTlTk3rcRgMBoPBeKcz+1a9jNNGquAETrT4I+mf7g6zhFo1l7phuYmmaUIzNEds2ZcWEWmk8+xkXDwiSDVDg2Zq1KEkEOdS4iVHiJpambicqA4yIkVw09Jb0BmZR51Lun2DNZezvVusN223flEk2Q6itmF66i395P/4z5D9yl8CxSLin/k9JO54H+RfPgEukwYAcGOjCDz0AJquvQzhf/p7GPEEUv/9ANRrr5/yWLS1FTrGum8izIKvU/9NDndarPV3Z8xOpVR5dxMsyTVKiOBPja3kXGqaif5eJwMiVRrHllOv4D+efwj/+jfHcexQHlueH4eq6ujrtb5v3HN4pwMSp6pPPMqIwWAwGAzG5GE1l2chRAy6IQvJo6kjOJ7qxsbOSxCVY/bfDOrQlVxpsXR/fHVxqboEpeoeOWKLMeJclmzn0i/SGnk9RMRazqVbXNrOJS+7RohYcbnTX72pqrUvfX+qrl84OE1RbCeNq9XQZ+YdLT+TdS6l114BACiXXj7lMVWj8HufhnrxJYj94acgv/IS5FdeAgCYgQC4knO9Kpdficzf/ROMZcur7eq00Im4fHsv/d1sa+hTrebSPQqIdos1yhv6aIZGP+/kJpWqq9ANHQIvYOHSEOQAh2OH8tA0gzYA0k2rYyzHcXhx8yhe3DyKj35mARYtDSGvWkK093gJyikF//2vvTAMwBQNjAyWMG+BRGMxTROmWXtU0mQgr7/S9xuDwWAwGIypY+ZvtTOmHOIWuiGLt7eG9+Bk5gR+duinGC4MA3BcS+txoey5fI202JLL6dQM1WnoA6fmEnDNlpyMc2kLxCJtMCTR1D7AcS5lQaJjS0idmFsUinxt59IN7xql4n8uUMGprCI+gVna0IebhCjKZiHu3gW9vQPG0mXTFFlltEs2YeyF15D63o9RvO0D0JcshRmLQVu+AoUPfRjjDz2K1M+fmDZhCQDa6rUwRRHi7l003XS2jyIxYcVputK33d2XM0oazxzfjNHiCADvmB7y2R0tjuBH+36Al3peQNHMYenKMFTFxImjRY/jSAQc6SY7YLuXZJtM2q6FNgCet2IbHlTs41rPffqRYfzN/3cUuezUpsmS/btTfBkMBoPBYEw9zLk8C6k1ioRziaDdQztx/aIbaMoqABQrOpdeUebu8uh2AlRDLRv/4e9cO7m0WNGOzR6Nwoue/SSDTeA5HnE5gbxmLWwVImb5yo11KjX08SPxEk2n8y/a/W5krYY+syFd0s9knEtp2xvgdB3qZVfMTH2hKEK55X1QbnnfmT82AAQC0Nasg7R3N/iBfhid82adc8mhinPpqqV0N6M6lT2F3mwvmoLNaA62QDd1BHirEzPP8XSUEMdxOJY6ivHSGFasvRYH9uZweH8e53Z5m/KYCo/+Hus7ITVufXY0Q4OmmijkDUTjAmIJEavWRfDkLg7dKQ2KYqXUZzMatr6cgq6b6O8tYvnq8rm6k4V8jks6E5cMBoPBYEwns2/VyzhtKo0iIeLSdA1VH8wPwjRNj3NZ0irUXLocPL/IUlyLNXeKLBFfoq+50GTEJdkHiVMWZFpbCQBRKYo7V92DS+ZdSkUdcS7di23eIzQnvvTdqbFlcfvFZY2ay3qE7JlmMkJIeu1VAIB66WVTHc6cQTvvfACAuPtNAN7LYDY6lwZt6EM+l4Kn+zIRXTk1B8M0ylLJL59/JS7vuhL3rL4PEi8hq2TpvMu3dmaQKzo3lzRDw6meEki2bdolLjMZ6/H8RUF84o8W4bqbW9DaacUxPKBgeKiI7a9awhIAxkentgaTfP8pLC2WwWAwGIxphYnLs5BKziVJCyOLybZwOxRdwXhpzNPEp1ShoY+7PrFWOqmmq56ulEB57eJkhBYRdgUtT/fprisVeREhMeRJZS0Z3jEqgLcWtdLMTj/upj7+7Wulwfp/nu3OZb0NhxxxecW0xDQX0M4l4tLqjux+b2dD4yb/TQOSFusZRcI5zajI90Jey9Nt3DdSFseXYEXTSgSEAGRBhmqoSDaLWH1OBKkxDb94aACH9uUwOqzAMHX0dDvfH6kxR1xmU/b3TqfzmWrttL6ntr2awvf+9QSee2qU/m18dGob7xBxrTDnksFgMBiMaWXmV0OMKcc9ioSIO5IWpxkaeI5HZ7gTgOVeepzLGg19gNoLaCst1luLFpcTdT23FkQgkpmTEi97FsAeoUma/9hdIat1i63HQXXXrvpFsX8R73etJupMO+M06lyWSpB2bIORSNLGNu9EHOfSEpeTnRc6XZTVXNJusU6jLXKziIz2AYC8mqOPqzW7It8lqqHiAx/qQEu7hO6jWezfk8OO19LQDA093U6KPXUuTY3WW7rFZXuXc5x4Mw+YQKLJ+h0RplOFTrrFGqxbLIPBYDAY0wmruTwLcY8ikXgJiq5QR1E3dYi8iPZwBwBgMD+AiOTUNhUqNPSpVyhphkaHtpPtFseXoCnYjLHiqKdWsxEc59KKLSDItKEPx3EVO8IqduMOwZOe2pjL5HYuy+ZcYqKaS5czOAvTYt2OWz2iSHxzJ7hiEcrV11rdWN6haOvOgclxEPfuBjALu8X67hcS59LdLVak43qcesmcmqONd6plF5DPg2IoiIaiuP8T8/HI830YPcSjkDeQSik42V0ExwOyzCM9rsEwTOiGhkzaOlZbh/OZSjQLuPL6FoAzcOP6DrQZi6FrJv7lGyemwbm0jm+YBlRdhVSh6RmDwWAwGIzT5527SjyLcddcBoQgACctTDOsOZFt4XYAlricyLkU6uyyqrq7xXKO+Lu4Y+NkXwoAxzklKW2Wc2n9zj92paxbrGfeZGPOZUAIuJ5bvaay8s+zvKGPp1vsxNtLr9spsZvO3AiSWUkkAn3lKgg9J8GNjMy6eaZ+geufc8m5UscNQ6cC0zAN5FSrGVa1emSSEUE+W00tEjZdG6du5J5d48imdXR2BdDUKkHXTeRz1hxckhbb6hKXhmlg0dIImlslGDDQ0iajpV0Gx01DzaVrDqfCOsYyGAwGgzFtzPxqiDHluMUlSe00TJ027BB5EbIgoynYhJyaw4g9hgBwzW20qdWQx7+Q1Sp0iwWAedEubOjYiCvmXzmp1+MXgrIg07j88VEhapC02MqCsh430e1u+FMFy5zLGg19ZoPo8NNot1j55RcBAOpl73BxCVfd5Z5dM9M1twb+sTflcy55+pnQTA2GS3RllTSA8s8UgWREKK7UUt3UkWy2PidbXx4DAKxYG0Yiae1jZEjFzjfGkM8bCEd4yDLvea7/sSBwiCVEZFIabe4zFeiukSmsqQ+DwWAwGNPH7Fv1Mk4bq2mH9dbKtvtmmAatqSKLxzY7NXasOFphLxZ+YecWSv6utO5RJP5F7vrWc7A8ubLh1wLA0xkWsLvF2nH5F8L+brGe2kzXtnV1i/U09PFuX5YCWcPZ9LueswFPSBPFVyxCeu1VGLE4tAsumta45gLaeRcAsOouiTCfLTcQ/C6537m0ml7Z4tLQPHMq06W0vU3lGy/k86DpLnFpaFRcZvPWZ27l2gjitrj8+Q/78cYW6+ZV18JgxdjIPl879SpOZXuRbBZhmk7N5lSgu46lsLpLBoPBYDCmjdmxImJMOUT4kdROd/MO4sK126mxtfCLN/doD//fVEPz1HZNFX4hKPMydR6rOpe2O3E6DX2kGqNIysTmHGvo04hzKb7xGrhiEeqVVwMiK9OmTX32OOJyNjTzAcpvZDjdYl01l5wzisSdLppRM3SbShAn351WqhkaYgkBggCYnI5QmMeCJUHqXI6PaoCo45obm7H2vKhnf27ncqgwiINjB7B/9G0kmiT7uVMnAj1pscy5ZDAYDAZj2ph9q17GlEAWgqTDo2EaNDWMOBekqU8liCAqdwadS8bt7AH+tNipW2z7Y5CFAF0g+9NVye+JO+EVeY0JPpmv0S32HZQWKz//LABAufb6aY1prqCdcy4AQNq101NbPBson3NJaq1Jt1iR3pjRDN2TLkqcy2ppseTzrrqdS9MAz3NIJEWYMLB8TRg8zyHe5Oxj3mIR8UT5Pk2Xm0iademGjmSzS5hOESwtlsFgMBiMM8PsW/UypgTiXDppsXpZWmxUitJOsf4UV+J4ls13dC2m/emqnoY+U3hp+QWkLEhUIIs+0cfbnUxJWqw7Pde9baPOpf88+NN+azb0mUIXd6rwNvSpLYyk52xxec110xrTXMFMJKEtWw6h+xiEMavOcLbcQCi/UVChW6xrFIk7XTSj1E6LdWouHeeSjPhobpNhcDrWnGO5k4mk830yf1llseo+dl7N09+RNNvU2HQ5lywtlsFgMBiM6WJ2rIgYU45I0mJ5SyTqpu64Fy6xRtzLqOxNWQuKIXs/fufSrjEDXybQqjX0OV38rqHEy4jLCaxIrsTq5rWevznOZYVRJA0KPrmhUSTe585259IdU03ncmgI4p5d0BctgbF02RmIbG6gbbA6IMs7d8xwJF6qOZeVRpHoppMqDzgzIOvtFuve78p1EdxydzNaVmUwXhyjNZeBII/WLt5+vvcGlrvmkhxbMzQ663Kgb+q6urpTcJlzyWAwGAzG9DH7Vr2MKYEsBElarO5Ji60gLqWY5/kh0Wq+IfpEFRFZ1jB27+WjupyQqZzt6B83IgsyOI7D5fOvxOL4Eu+2vrElHpHndi7riE/21FzWdirLay5nt7isez7jr38NwHYtZ0nq52xAtcVlYPt2ALOp5rJKQx/7xpLIC/QzrBkarcV0U7Xmki/vFkuzIUQO7Ys4/Or403jsyCNINAm4/Pom3HJnGwzO2t5/nekVjm2YOuYvCiIY5rFvVxa7t6cnftF14BbRbBQJg8FgMBjTx+xb9TKmhKgcBwDE7P/rhpMW605nXRhbhKZgExYnlngWf8S5LKs1JGmx4Mr+5nEupzIt1nUckRdrijX3wtn9c63H1fA09Ck7D95ta829nMrmRlMGV2fN5a9+BQBQrmUpsW60jZcAAOQdtricJcKbfD7J9WeY3rRYnhOslHZOsLMZrM9JTHZuLlWtubQ/D5pLXLrFKambBICBfD/ec1srzt8Yp8fwjzlyO5cE3dQRCgu4+zc7wXHAYw8MIjV++mmso6MlPPPECAZOleiNJwaDwWAwGFMPE5dnKRd3bMTtK+5A3BaXnppLl9gJS2Hcuvx2LEss96StkZpLf70jWbQKvODpHAt4R5FMtVsn+pzY6tt5U+/ccbgd0HoaDrnTYv01lhM29OHdKbiz72NWl9NmmsDmzTB53uoUy6Boa9fDDIUg7dgOGMascS5JHOTzQrrFOinxTuYBueHEcRyuXXg9/a4IS+GK+6bOpUucaR5xmaePj6QOA/COQCKxECq5pmTb5asjuOy6Jmiqia0vpSZ+4RVQSgaef2oEqTEVh/ZnkM/p2LM9g5GxAn79+DD27MigVCwXuAwGg8FgMCYPmytwliLyIuKBhKfmqlJarBu3w1a95pKn2xI3j8zVVHWVCtSpFlR0bidfW1yG7Lid51VOha2n5tItticcReKfc4m5kxZbLT5h9y6gtxfapkthNjWfqdDmBqII9YKLIG95Ba0nh1BamZjpiAA476XES1B0xTXn0icuOQFFowjOtFzMpmAz3r/iDqSVFBKBZMV9y3YHatXT0Keyc3kifRxKp9chrOxceq89d6rspVcnseX5MWzfksI1NzZDkhv7HG15fgzPPzWKwwdyOJUqgANQKBh45MGTWJReCgBo65TxqS8tbmi/DAaDwWAwqjP7Vr2MKYXneHAc523oU0VcusVUSAhV3JYsTnnOaegj8iJEXrRruKbHuSTHIt1vqxESQ1Wb6ZBz4d5fLTiOo07pxA19KqfFzkZhCdSXxik/9SQAQLnxlukOZ05CmvpcdUrCJZ2XznA0Fv4RQqYvLVZwzYc1TROaodFrm+O4qsIScDuX7lEkTi2jW1xqhobB/ICnvtHvXFauuXScxHhSxLrzoyjkDbz63BgMwyzbvhq6bmL7Fqte88SxHHQd6GiLgeMscbz2vAhCYR5D/Qp0vf79MhgMBoPBqM3sXPkyphSBEzw1l/4GOQR3SmlT0HKqSKocwRFNTmMQiZcg8ZKnhmv60mKlmttxHEfHqwDlotDt3NQDEdxl4pKrnRbrFuGzkXrmXFJxeTMTl5UgTX3m7TuO+bEFMxyNhSMurevWhL9brGj/3fq/YRpVMxn8kBst1ZzLolb0bF/Si9B0d32mNwXVMI2yNHe/4Lz8uiZkpD786qk+fPefeupOYz28L4f0uIZ4UoTBWfu84IJWXHRpHOdsCuHuj8yjI0+KBZYay2AwGAzGVMHSYt8B8BwPw9Ut1j8SgEAWmSIvoiXUgntW34eg3TWWwLnSYnnqJjoLxJLd5n+6xKU0QVosAESkCDJKxoqTr+wo1tMtFgDWtZyDrJqp2tiI/uyvuZzlzqVnFEkFF5Pv7YG4ZxewciWMFasAZu6UoW24GAAgbds6w5E4kFpiySUeAUcEks8D32BzK+s5VraCt+ZSK9suIARQ0ktQdNXTWdaNaZowTbNMXJqmCcM06PUZas9hwXv34a2dWQjHbsWvHhvG++5pnzBW4lre9IE2vLUPGE/JmDcvjIhqxcPzHIJh6xjFgo5IdBY23WIwGAwGYw4yO1e+jCnF3xmymrAiC1KysPMLS8CpJbTqLEnzEImKPs3QpkVQ8XWmxQLesSp+EeikANYX49qWddjYuans99XEpP/n2dLoxc9EzqX89C+tB7fdxkaQVMHonAd9wUII+98Gl5makRmni7+hj1Nz7e2e7HYrq6XJV0ISJDqTEvA6l4SIZM3MVQ3F01nWGw8ZjSKW3dxwjw3Jq3m0tMnYdHUC+UQ3tr2awpEDuQnj7OkuQhA4rD4ngpvuaMElVyYhCtaMTyKOQ2HrXBRyzLlkMBgMBmOqOKvFZalUwl133YXbbrsN73vf+/DQQw/NdEgzgsALMEyDugjV0uBIKl2tNDme1izyrrRYEaJLsFZzRk8HmhZbx77dabH+kShkP6c7HmSihj4cxyEgBMoaDM0WPPFWEI+Bp62UWNx66xmKaG6ibrwEnGlC3Pr6TIcCwJ1Z4O0WS+bPUnE5CecSsBpqGaZBRWWlukny+VN0perYD3dttv/47n0SoRkICui4/AQ0roRHfzKIYrH8uIRiUUc+pyPZIoLnXbM4eZEeyzANhELWuSoUqu+LwWAwGAxGY5zV4lKWZXz/+9/HY489hgcffBDf/va3kU7PDofhTEIWVKq90Kteczmx8HKnlRIHVOJlT7pqW7jt9IP2IZBusfU4l3LUeR5freby9C79iUaRAMBNS2/B9YvefVrHmS5qOZdcJg3plZdgJJuAK64406HNKdRLrfMjb3l1hiOx8Df08afF8rQW2D07tn5xSWa/kkY9ZJSJG8e5VD0upCceV/da/80st7h0u6TtCwS0nzeK9LiGp38+XNZ9ljA2bLu0LWP4yf4f4si4NRaF5wTX/E8DQeJc5pm4ZDAYDAZjqjirxSXHcYhE7LvoimLV8xjvvBQospBU7HrIamlw9TiXNK0UPN2vxEue57SFO04/6LLj1jfnEnAWt9bz/CNEGmvoU40y57KCuEwEkoi6htPPJtyCwB+7/PQvwSkKlBtvAkRWll0L9fIrAQDSqy/PcCQWvKcmmnd1i/WOIfKkxTbkXNrjSFxjTvzjgdzOpepLiyXxuJ1L/1ggwygXl0sS1uiQBZvGEIkJ2Pl6Go/8eACqUv59PjZiCd8TkVehGRreHnmLvk63uOzl96I/uAfFvOGJjcFgMBgMxuSZ1eJy69at+N3f/V1ceeWVWL16NZ577rmybX70ox/h+uuvx7nnnot77rkHu3fv9vy9WCzitttuw7XXXouPfexjSCaTZyj62QNZPJaIczlBzaVQxdkEfM4lrd+SPM5le2jihhuN4jT0aTAt1icCSbdZ8TRTdyequZzteJxLn/MUeOznAADl/Xec0ZjmIvqq1TBaWiC+uQPI52c6HDQFmhASQ2gPt9NGXoCroc9p1lySz43iciUDvmwC8vlTDcXTWRZw0nQN12iU2mmxlricF+lCIpBA1hzFe38zjFhCwK6tGbz4q9GyGMdGNBjQEIyQmB1BTYSsburoNw9jNHAI+ZyGx488gl8ee6Lu81Av3aljePLoL2ijMwaDwWAwznZm9Yo4n89j9erV+LM/+7OKf3/yySfx9a9/HZ/61Kfw85//HKtXr8bHP/5xjI46C45gMIjHHnsMzz77LJ588kkMDw+fqfBnDUT4EOdyorTYWmly7m6x1WouW0Ktpx+0j4BgNRcKSeEJt3U7l35X5ML2i7Fp3mUI17GfWlSqsZxLVHMuuXQK8rO/hpFIQr32+pkIbW7BcVAvvQKcqkLa9sZMR4OoHMPdqz+IZckVlnOJynMu3TeQGnIuyTgSXaHi0p+qTj5/iq6WO5cody79mRJaBedS5EUsS64AAJRivfjQJ+YDAE4e844/AYDRYQUZqY92gHXGI3mdS1G2oknl8xgrjmG4MFT3eaiX4+luDBeGMFJ45/27w2AwGIx3JrM65+2aa67BNddcU/Xv3/3ud3HvvffizjvvBAD8+Z//OZ5//nn8/Oc/x8c+9jHPts3NzVizZg22bt2Km2++eVLx8PzsEhAknonikgTRGh5uKuA4QBKlis+RBRkcB4iCWHWfIi+A46yRBl2xeWhPt2NRYjEOjO6nfWFkceob+pzfcT46ou2YF+2ccFseAo1F4HnPa+mItqMjevrOqsgJnj44As/POYHJ8xxM04TAc/QcyZutlNjSXfeADwbodozqaFdcicATj0F+7VXo11430+FQeI6zxnrwHEwYEAWBvpeS4Fy/Uo3Pu5+AaH1H6NBgcob9fSFAEkQq4mKBKDgO0EwVmqnC3zuK5zmAM8HxnFVzKXg/SyZn0Hh0UwPHWceNyp3gOCCn59AxLwBR5DDYVwLHeW+WjI1oSEknsTLq3a8kCPT7C5wB0U62GM2PQbS3m+prnbx+Ewb7HM0A9f4byWBMBnZ9MaaTuXx9zWpxWQtFUfDWW2/hk5/8JP0dz/O4/PLL8eabbwIARkdHIYoi4vE4stks3njjDdx9992TOp4o8mhpiU684QzQ1BSp+ffm8RjSCIIDBxFBdLQmERDLG+O0mQlEs0E0J2JVX2uLEbO2ScawtGs+lnZ9EAAwbPZiQAuiKdg0TecpigWov1FQNGo5ndGEhJb41MdjmiY9BgC0ts7O2spaxKIhGKaBlpYYmkP2OXriUQBA8MP3I2hfVxNdX+94bnkP8MdfQHjrFoRn0XdEPBaGoitoaYkiFJEQgkQ/my2lOKJF6/ptTlb/vPtpKyVxshREJC4hEQ4iGg2iOR6DJhZo6ueCjjbEekMISDzkMIeoYn33mDDR3BxBT7oHRsBAJBwAz/FIxCIocBl6jEQySD+zobSIqBJER2sTRF5EdCiISFRCe3sMnfOD6DlegCQGkUhKME0Tum5iZCyDrNSP+V3LYHBOQ6GWpjh0uYgsF0SyKYxYwlKXGTWNhfZneaq/uwKDPKIIIpYIoKV59lwb7zTYdxhjOmHXF2M6mYvX15wVl2NjY9B1Ha2t3hTMlpYWHD9+HAAwMjKCL3zhC9B1HaZp4r777sOaNWsmdTxNM5BOF0477qmE5zk0NUUwNpaDYVRvRmEWRWSzTvpYaqwIgS8fbp5JlZDNFpEVFYyMZCvuK50qWNsES55tlgfXIR9Usb713KrPPZOcl9iAY6ljkEuxaYuHnFOO42bFa26UfM5KbRwdzcIMyuDGx9C0eTPM5maMnX8J+LFcXdfXO56upWhKJMG99hpGe4eBYPl82JkgmyuhqBUwMpLFeDqLgBik12k2o9DrNxes/nn3U8joyGaLGBgeAyIystkicryCfEFFQS1CFmSMjuagFAwU8mmYJRHZfBFhKYK8msORUz3Y3G3NUOV4DkKzgGJeQzZbREgKo6DmMTSSQkhNAgBGxtLIZovIjJfAcyqy2SLGuCxGRrJoaRPRcxw48PYolq+O4KHv9aH7SB7HiocRaOKwMLQEB0cP0NTaTLqEbL5E49d16/eDmWE02edieDgzpRkIw+MpZJUihkZTSJpz7ztirlPvv5EMxmRg1xdjOpmt11c8HoIk1S6nmbPishqmadLFwcqVK/Hzn/98yvY9m95cN4Zh1owtIsbgboTIga+4vcCJME1AgFB9fyZn7cvkPNuInIQL2y+m8cw0yxOrsDyxCsD0xcPBapjCVzmfsx7fexl8/DFwqoriLbfCEETAfk0TXV8MDuqllyHw9C8hbN8G9bLZMb6Fs99XXTegG97rlDN5+p1Q7fugEhIvwTSBolaEomswTSsNXYAA07S+BwzDhMCJKGol5JQcTBMICiHklBwUXXG+iwwTPMfTWIJ8CHkzD1XXaDxke4ETLffTBP17W6flPPb3lrB0ZRh7dlju51isG9GIgOWJlTg2fgyKLSI5kwcH61iKpkIUrfrLcWUUpmk91nS9bHzR6VDSSp6YGTMD+w5jTCfs+mJMJ3Px+prVDX1q0dTUBEEQyhr0jI6OlrmZ73Ticpw+rtVttT3cgYWxRViWWF51m47IPHRGOrEwtnhKY5yLkEY4c63WklDWJfZ/fgwAKN1170yEM6dRr7gKACC99MIMR+JAmteQWkjBM9tyct1iSWOtol6iI0PcsypJwx/y/5yagyzI9O+8758cgRMQD8TBczyag80AnE6yAKgwlHjZ6fRqH7d9npXaP9ivQNOsf3jHpG4ofA6dsQ4kAkkar/U6nYY+qqFCkKwa0LSaotuQRkMTUe/YEvc8UAaDwWAw3gnMWXEpyzLWr1+PV191hpcbhoEtW7bgggsumLnAZiGxgCMua92VDwgBXLfoXeiIVG+aE5WieM+Sm9EWrr/+8WyFiLNKMy7nEhw48N3HrIY0ixZDvfTymQ5pzqFcY3XWlZ9/doYjcXALKetn57Pv/h6o1j26EqQzrKKXoNmzMwXXiA8yksg9migkhugnxD1mhMS4oWMj7lp1L/2e0l2ziMkoEvcsXTKzs73LOsbgqRIyKQ3j0nEMxHYgnhDx7nMvAQAEXbXlIidSga0aKjhwkGQOiuqUCBiYWFwapoEHD/wEz5+s/V6ruurMGWXiksFgMBjvEGZ1Wmwul8OJEyfozz09Pdi3bx9aW1vR1taG3/qt38IXvvAFrF+/Hueddx6+//3vo1gs4gMf+MAMRj37iIgROvPO3/afMXnI4n3OOpcu5zX44E8AAMW7Pwjwc/ae04yhr1kLvaMT4s7t4FLjMBPJmQ6Jvr9EoHmcy0mOIgnYjqSil1yzM3m6DzJHlvwfAIJiiMbidwYFXrCuPzFI9+EWoKqhgud4azuTvB5LqCWSIuQAj8F+BWOjJfSHdqNzfhD/++7bsSi+2I7DEZc8zzturm6PUZF4ZEs6dN2EIHBQNR2BCU5HTs2ipJdwIn285nYlw5ltSYQ4g8FgMBhnO7Naaezduxcf/vCH6c9f+9rXAAC///u/j09/+tO45ZZbMDo6in/8x3/E0NAQ1q5di//8z/9Ec3PzTIU8K+E4DjE5hlQp1ZBLwaiPuepcUufVMBF88AEAQPGe+2YypLkLx0G95joEH/wJpJdfgvLeW2c6IjqTVrXFmHsWreBxMeu/mUDEWklXqIMouubcVnIug0IQqp0ealRwLv0xuYWYZmhOSi1njfvRTR1FrYjnTj4DeV4rst3N2HHwKHROxcLYEios3fGS/ZNzQo4hytZnQFUMDI1q+Ob3j+Caa7tw3c3NnptGhmnQWAta+WzNSqi64nodeo0tGQwGg8E4e2hIaSiKgu985zu47rrrJt11tRE2bdqEAwcO1Nzm/vvvx/333z/tscx1YnIcqVKqofoqRm3mfM2lHX9w61YIJ7qhXHo5jKXLZjiquYtii0v5hWdnh7is5Vy6ay4buOEUcKfFEufSnRZrO5vk/wAQEsPQFCsG3edcVhKXpJbTNE2ohoqIFPFsoxkahgqDGMoPAq0G0N2MbYf3AwBWtHjrxYM+cSnQOlQrHlm2flYUE0f259CiaXhx8yiUkoGbPmCl/h9LHcUrvS/hPUtuRnu4HXk1V9e5UlzikqXFMhgMBuOdQkP5b7Is49vf/jbS6fR0xcOYJkhTH5YWO3XQtNg56lyS+GMPWK5l6d7/NZPhzHmUq68DMHvqLmvXXDrfA418J/AcD4mXUNJLNH3V09DHbhgmuxqHhcQgvQFTlhbriom3HVSyX9VVb+ne3jANJzW2WYAOFcdGj0MwRSxv8zYaczf0EXmx7JxItnM5NqJidERDNMFDDnDY+nIKum7VS44UhmGYBsaLYwCsJkX1QOZ+AiwtlsFgMBjvHBourjrvvPPw1ltvTUcsjGkkRsRlA/VVjNqQBbPbfZlLcByHQCaP8OOPwYhEUXo/q1U+HcyODmjrzoHQfQx897GZDqdMSAmetNhyx7BeZEGGoiseR1So4VxaNZde4UiPXaGxEHFEqQB07UvkRWiGRsVlvJlHXhyGAQNRtRPNTd4ZowHXc3lXnCRVmDiXRw/kAQDnb4qha2EQum5iZEjxxEEEYl6rT1zSVGDDxLbXRnHkQH3PYzAYDAZjLtPwqvjzn/88fvKTn+CHP/whTp48iXw+j0Kh4PmPMfsgziVLi506zoaGPuuefgN8sYjSXffCjMZmOqQ5j3Kt3TX2hedmOBKA57wNcNz11pMdRQI4bmBeK9j7Eug+ZLvWUnbXXLqcy0rdYmkcJC3W3sbpFFvefIi4gvFmHgZnbS+aISSavK/FX3PJ+9JiSc1lNqODA7DugjDa55EutIrnWCT2vJqvem7clOy02O7DBezeOY7Njw5P8AwGg8FgMOY+DSuNe+65B4DVXOcv//IvK26zb9++04uKMeV0RDqxsmkVliZYTd1UQWsu52haLGcC5z9ujfIp/OZHZziaswPl2usR/pd/hPzMr1Cc4XPq1Fxa4pL3OJeT6xYLOG4gSRMNCiEqAElNpuTuFis43WLNWjWXvLdbrNOIyJUWax+npFtNdQJBDqEIABOQBAHhiPe1eNNinYY+qj0/Mxh0jr/mvAiicQEd9oiTgb4SzkEMChGXdjzutFjTNKveXFJ1BaWijgN7c5AhY6BPQSGvIxRm2SMMBoPBOHtpWFz+1V/91Zx1at7J8ByPy7qumOkwzirIwniupsXO23UQLScGUNpwMfRzzp3pcM4K1MuugBmOQH7xeaBYBILBCZ8zXfhdOncqrOipuWw0LdYSkKPFEQBATI4hJsdgmibmRxdY27jnXEqhumouieDVy5xLqWz7kkYEn46m9iAwAERjUtm/Te45l+70XbLv+YuDMAygoyuASFSAAcNxLvss51GxhSgR6SQtVlNN9PXl0dXlNBwCgP17sti1LYPkRuv/mmZCEnTABHq6i1i5zrs9g8FgMBhnEw2LyzvuuGM64mAw5hxz3blc9zMrdTP/4Y/MbCBnE4EAlGuvR+DJxyG9+hLU62+YsVCI0FIrdIut9rgeiDupGRo4jkNUjoHneFzceQndxtMt1uVcVqy5NMljuy7Trrkk3VbdY02IEC7azqVuGmhqFYABIBZzRCjBM+fSlRZLXFFJ4rFsVZhuY5oG2udZzxnoswTs8GgeO3alsOAaBcfzOfz66V4Yhol0SsOxsW5c8cESzl/fiXnRLuzbncWD3+uDaQC9h05iXFIQjQlYvTyE4gvAiWMFJi4ZDAaDcVYzacvl8OHDeOSRR/Dtb38bQ0NDAIDjx48jm81OWXAMxmyGzomcg04+39uDJS9sQzEegfL+O2c6nLOK0o03AwACm5+a0ThIEx0nvdRdZynQ67bRmkvZJRwjUqSic0+7xgqy51i6MfEoEjI/s56aS8M0kGy19hGPOXE5ccj02CIvljmXMTlG/0b2FwjwaGqRMD6ioVQ0cGD/OPpOlrD3zRSee6YPI8MqxkbtGLkSHt32PLYPbEMmreHh/+6HaVoptjpUBEMcNl2dRNt8a//Hj9TuSTCQH8DuoTdrbjNbMEwD6VJqpsNgMBgMxiyjYecyl8vhj//4j/H0009DFEXouo6rrroKbW1t+Lu/+zt0dXXhi1/84nTEymDMKjh6b2buicvQf/4beE2H/tFPgg8zJ2UqUd71HgCA/Kunga//LTBDNx/8abG8z6EUOAGaqU3CuXRSfWNS5SZQxLkM2tsS59JAPeLS2oaKYqFCzaVGnEsdi1cE0X5Axrrz4mVxcBwHmZdR0kt2Qx+vm7s0sQwrkiuxd2QvDo7up2m77fNkjI2oGOwrYWzcauBz5FAG4fFRiDEO19zYjECQx6lHDRweVDE+XsKuY2loqolNVydx8x1t0N9IIC+oCAQFSDwQDPHoPVGCphkQxcr3dXcP7kRfrg+L40uQCCQrbjNb2DO0C7uG3sQty25Fa6h1psNhMBgMxiyhYefyr//6r7Fz505873vfw44dO2CaJv3bNddcg5deemlKA2QwZitzdRQJl80g+N/fgylJKH7sd2Y6nLMOs70d6kUbIJw8AWH/zDU3q5UW6/650dm3AVeqKRlx5CcshtEaasOiuDV3knxGDMOXFuuec0nEJUmLNUhabHnNJUmLNU0DgRCw6eokFi6ufJOkJdSCmByzHVTfeBZOQFSO0XpUIi47uqzXePJkFqlxS+RmsiUUzRw658sIRwQIAof1F4cAAAffzmLn69b85w2XW+ck3gIEgoI9m1PHomUh6JqJA3urjyQhr6ugzf6u62nFer05lWUrMRgMBsOh4VXx5s2b8bnPfQ6XXnopBMG7WOnq6kJvb++UBcdgzGbmas1l8Cc/BJ9OoXTH3TA6Omc6nLMS5T1Waqy8+ZczFkN5Qx/v93VUjiEkhhq+OeJOi43KlZ1LnuNxy7L34aKOiwHU51wSkUvTYu1GOrJLXJJtSD2mbupUjApVXsf1i27Abcs/YG9D0mLtDrr2zyQOUhO6aJnluG7fOgJNs26gmpwBjSugc4Hj3K48X4YgAEcO5jAypGLBkiDaOy1hWtJL4DgOQTEI3dRxyVWW6Hz6kWEoJe95IBRtR5b8fzJk1aznpm8jNJLmWtId95jBYDAYDELD4rJUKiGZTFb8Wy6XKxOcDMbZypycc6nrCP3bvwIA8p/41AwHc/ZSuuEmAEDg6RkUlyDi0hZfvPfr/t2L34P3Lrut4f16ncs6Z6PSmkuvEHGPLBF8zmXFUSSc12U1TIMKVn/aL4HneDrmhPc5lLTjs32uyKiURUtD4AWgt9dy5VraJRjQAVlBW6cjrqWggU3XJCHbp+SiSx0nV9EVSLxEndclq4JYd0EU6XENLz8zVjFWUktKHMxG6c/14WcHH8KBsf3QDR3HUkfp2JWJODC6H48c/hl6Mifr2p7M8fS/pwwGg8F4Z9OwuDz33HPx6KOPVvzb008/jQsvvPC0g2Iw5gK0oc8cci7lJ38B4UQ3lKuvY+NHphH9nHOhL1wEadsb4PtOzUgMTlqsJQL8wiwgBBCWwmXPmwi3c1mvuKTOpS3eliaW4eLOS9AWbqPb+OdcVhxF4hPIlnPpFYq14H3/5AmcX3Rajp8c4LFwSQg6Z527rgUBnHdJGJe+OwpR4GhMqqGipVXGdbc04c4Pd+KCS+L0dWqGhoAQoHWimqHhmhubAQAnjpanvSq6Qs9PcZJpsRklAwBIlVI4nunGSz0v4ODYgbqeeyx1FAAwUhhGqjSOV3pfqumgEueSuMAMBoPBYACTEJef+cxnsHnzZnzkIx/BQw89BI7j8MILL+Dzn/88nnrqKXz605+ejjgZjFkHD1JzOUfEpWki/C//AAAofJK5ltMKx6H0XssVlJ94bIZCIM6ltfgXGpxnWQ1vQ5/KNZdlsVBxaQnHZLAJ61vPKXP9BU6g4pLUXLqdS7GSc2nq9LkT4T8H/lm1hmnQlNKlK0MwOOvcxZIiVqwPYvFKS1gH7PmZRLgHIzzOvSgGnrdej3uMCknl1UwNsbj1uJAvd/tKLreyaDuYBa2Ax488gqOpIxO+NhK/dfwScmrOE2MtFF3BUGEQgJVWe2D0AI6MH8bBsf01nwNYr4vBYDAYDELD4vLiiy/G9773PSiKgr/4i7+AaZr4p3/6J5w8eRLf/e53cd55501HnAzGrGOuOZfSC89B2r4N2tr1UK5790yHc9ZTuvX9AIDA45UzPaYbHuXNa6YCkhYbEAKetNZaEA1JhGO1z4zAC1QgEedSdh2D94lDwzToPusRz5zP3eR53vN7AwZ+eewJPHH0cSxdFabOZTwhQjM0mmIq89Y5UOyfScwExRaHsiBBpOm+GoIhHuCAYqG85rKolVyPLedyrDiKseIY+rL1ud/kXJT0oqej7kT05U5RUZ1Vs8goVu3lqSrHNUzDqXtlziWDwWAwXDQ8igQANmzYgB//+McoFotIpVKIx+MIhUJTHRuDMauZUzWXponI3/41ACD3uS8CfMP3lRgNom3YCL1rPqTXXgU3MACzo+OMHp9clo5zOamv+zIEXsDGzk3UvasrFupcmp6fy/bNCU7doS223E6p37nUTZ0KO79wrIQ/LZb87HYuhwvW3OaOlSICMQOJmAhJ4qGbOhW8QZ9zSdgzvBstwRbItgCXXfWpmqGD5zkEg3xF57KoO6mw7jme5HXWA9muqJVQEr37qMWprNOIL6tk6PkYKgxC0RVPKjTguJbW62LiksFgMBgODa8wt2zZgkLB+kcwGAyio6ODCUvGO5S5M4pEevlFSG+8Bm3NWijvbbyJC2MS8DxK77sNnGki8OTjZ/7w/rTYKXIuAWBtyzosSyxvOBYifqp9ZohzaZominoBHMd5Ggj5x6aYptnQ6/PXbBK3U3C5i4ScnsYHPtyCS69N2n/TaZMhInjdIrCoFbFzYDt2Du6Aaosv2ZcWCwBqdBg5JQ9dt4T2M08M41tfPoqxdJ4emziX5HzVapqj6ipe73sNqdI4HfWiGCWaZmvU0Tm2N9tjzQQVZOS1PLL2eBHTNNGf6yvb3p3Cq9chXhkMBoPxzqHhVfFHP/pRbNy4EXfffTe+8Y1v4Ne//jXGxip3vmMwzmYc92X2O5fhb30DAJD/319gruUZpPS+2wEAgV+c+dTY8uY1M/++k/rIam4/FXmmjpJWgszLnm0rvQZn1MrpO5ckhRgAUso4hKAGWbZFuqnRYxFxSX42TIOKx5JedGZ0ChJ1W3VDQ1bN4njkZfSHdqGQ16FpBt54KYVMSsfRI+P02KSRDnEdjRrO5Za+V3BgdB9e6nnRSYvVStT5rfVccoy8mkdEiiAZaIJpmjBNk573U7ny1NiSy7lkabEMBoPBcNNwntSrr76Kbdu2Yfv27XjjjTfwgx/8AIZhYNmyZdiwYQMuvvhi3HYbc0YYZz80LXaWi0vp1Zchv/oytJWrULr19pkO5x2Fdskm6B2dkF55CdzwMMzW1jN27ErNcmaKshEgVe5rko62Ra0A3dQRE73daCul9qp0ZuXE4tJfl+mMKLEb8bjFZXHck/5pmiZ1KgN2miipuTRh0jEmiq64ajNlKLAb3xga8moesswjy+dRzBvoPV5EqWg970RvGskW61glvQTTNKkwrJUW25vpsfev0vOrGioKmuWETpQWq9KuvDJicgyD+QEAwILoQpzMnEBftnx2NakpBVhDHwaDwWB4afhWdlNTE2644QZ86UtfwsMPP4ytW7fin//5n9Hc3IwHH3wQX/ziF6cjTgZj1kEW77M6LdY0Ef7m1wEA+T/8PMDm0J5ZeB7Ke28FZxgI/PIXZ/bQZc1rZu69Jzdg9ImcSzvGnC2MAmLQ+/cKAllroGGRvy6To3XTJIXYEZfjJa+4BCzRJ/ESPZek5tISgo64JCJUEmTqXGqmBkUvQZI56JyKQkHHW29m6b57etOeYxX1Ik1prZV6SsRhU7DZsx3pFpvPq8ikqwtAmsIryIhIEZw6WcRgfwlt4XbE5TgySqZsJIknLZbNuZxzmHWkSjMYDMZkmVSHh1wuh507d1IHc/fu3QgEArj22muxYcOGqY6RwZiVzIWGPvKzv4L8ykvQVq1G6QN3zXQ470hKt96O0H/9BwKP/hzF3/jIGTuuX0j5m+GcSchnhAiRauN7SGprzq75CwpecemvuQSckSV8HeKy6pxL0llXdzmXpXE6BzQgBFDSSzBMw5pdaT/PLT7d7mJes4SdzMvQeUvY6YYOBQokmYfOlZBJ6di/JwdR4hAK8zgxloOqGIiHIyhoBRS1gtPQp4qAy6tOnSbP8WUpsKZp4omfDWBP4ST+8MtLKn5X0RReXoJsRrBjSxqCyOGuDTG0hduRVtIYLgxhQWwhfY4nLZY5l3OK7tQxvHrqZdyw+CbPnFkGg8GYKhpebdxxxx04cOAAWlpacPHFF+Omm27Cn/zJn2D16tWzepHNYEw1xI2ZtWmxuo7IV78MAMj9f3/OXMsZQr30cis19uUXwA/0w+joPCPH9V+XM5kW63SLNTw/+yExEtet3Lks/ydLO520WM5fc+mIpoyaof+mhaWw40byUsUaTd1wXMOsYoljSZCgGCKNUzd127nUcPRQFkrJwKr1EQRDPHbvUzA6rGPhygQKWoGKWQAwUdm5JLMpAe9YFsLIoIp0SkA6r6GQNxCOlF8DNIVXkJEdlGAC0DQTmf4AWtvbcGT8cLm4dDmZmmF17O3N9mAoP4j5sYXoCJ/ZzsiM+hkpDkMzNPTn+5i4ZDAY00LD+XwHDhyAKIq44IILcOGFF+Kiiy5iwpLxjmS2O5eBhx6AuO8tqJdcCuXGm2c6nHcugoDSB+6yUmMffuiMHdYtthqZSTkt2J8RE/YokipCkIjJ8aLVJC4oeMed+Lu9Ao3N8Sxr6FMmLh0XzjRNpErWvMeQ6HREF3mJHstdz+h28Ei3VZmX6bYkLZY0COrpzQAAWtolLFoWgsYpGB1SkQg0AbCa+hCxWG3cx1DeEZdv7Unh+c1DSKecbXtPFGFyVoyZlIaCVsCx1FEcGT9E9+k4lzLSA87Ikf7DPFpDlvgg41kIJcM7imTX4E48d+IZ7B3egy29L1eMdSrIKGmW0nmakGs8q2RmOBIGg3G20rBzuW3bNpoSu3nzZnzrW9+CJEm46KKLcPHFF2Pjxo244IILpiFUBmN2QdyXas1JZpRiEZFv/CUAIPtnf+EMPWTMCMW7P4jwt/8fgg89gMLvffqMHNPtDjYHm8/IMatBay7t9M5qzmVMshr4EDETFL1jriql9hKx4XclK1HuXJKGPuU1lwRZkCHyjjCXBKlK11rXGBOVOJcyRN4Zc6IZGiTZ7sLanwWPKBJJCctWhaA/VUL/CQ5hwUrFLepF2iSoWlOe4cIwAOsc7HxjHLrCIdM9imhMQFOLhL6eEgK26zk8lsOLmc0o2GNODNPEyqZVrrEpEkZOchAMGZIZxJH9JbzrvW0QeRHDhWFPB1m3c6mbGjJqhp7HtJJGqjSORCBZMebJMpgfxFPHnsCSxFJcveDaKd33OwnS3TejpCfYksFgMCZHw+IyFArh8ssvx+WXXw4AUFUVW7ZswX/8x3/gW9/6FjiOw759+6Y8UAZj1mEvtGajcxn6zr9D6O1B6ZZboV2yaabDecejn3MutLXrIL61B8Lbb0Fft37aj+l2Lptmi7icYM5lLBAHAGRsV8Vfc1mrKVE9abH+bbgy59ISl4lAAiW9hKJWRFSKeWo9JV6sWN/pTklVXIKNpPJqhgZFVyBJ1rEKSgERRJFoEpFsEdHcySHVJ6LvmAFErY65/vPmh9R25nM6FNVAOCxBk3hkMzqyGes5su0W7+x7E8a8AmRBhqIrKNpNeUiHXFGQ0NejYFnuWsTiEvp7SshlDDQHWzCYH0CqNI5ksMl+fa5usYZGBeqC2EKcSB9HT6ZnGsSl1cW2O3UM61rOQWvozHVePpsg13iGOZcMBmOamJTlMjo6is2bN+Ov/uqvcO+99+KTn/wktm3bhpUrV+Lee++d6hgZjFkJcSxnW80lNziI8N/9DUxBQO5PvjzT4TAAgONQvOuDAIDgT//njBzSLaRm2rksF3XVnMu45+egr+ayWlOiRupJ3bGQ5zndYi1XpyMyD3ev+iBuWXYrrlv0Ls/+RVfNpZtKAtByLkm3WB2KoVDnUudsIdskoqSXsGRlCIIpY992S6gV9RLdp9u5fPLhQfzr3xyHphlUxKZGNZicjoXLAnj3+1px0+2tOHdDFJ1dMlasC6LEZ3BgdB9kQcb61nOtfdouMhGGRknA+IiGeS1NOO+cdgDA0YN5tISs+ShjJWeedcnXyIgI1GWJ5QCAk5kTAKwxKS/1vFA1rbcR3B1qX+/bctr7e6dC3PmcmmOdfhkMxrTQsHN544034sSJExAEAWvXrsWmTZvwqU99Chs2bEAymZyGEBmM2QldH88y5zLyl18Bn0kj/zufhL5y1UyHw7Ap3Xk3Il/7MgIPP2iJ/mlusOTuyDrjzqXvM1Lthkw84BWXAV/NZaVusUBj44CsrqqG53m0Wyxx8TgBHMdRd8zdSEhy1Vy6qbRQl3lHXOqGt+ZS5yz3L9ksoail0DFPxomIhN4jOsQLNagJBSInlO374Ns5jI9oGOpXoRoqJF7C+FgWJkQkWqztJZnHkuVhLFkeRnFIwt5dg5ALGlY1rUZEilj7tIUrqbkcG7Aczq5FQSxeHsLWl1Po6S5i4WLrPXALRCL0JF6CbuhUsHRG5iEkhjBUGERRK+LA2H70ZE5icXwJFsUXl52velKZCaTJEwCMFIaRVbOIStG6n+9n38jbkAUJy5MrJ72PuYjmupayambKHWYGg8FoWFy+973vpXWVoVBo4icwGGcps7HmUty+FaGf/BBGayvyn/8/Mx0Ow4XRNR/qlVdDfukFSK+8BPXqa6f1eG4BN9MLSL+YrCYGA0KApm0C5TWX1RzKRsWlf3/kd7R+03cckXc7l2JFUeR3LgVOgMALvrRY1XEuecvFDIV5HB3pBcdxuPDcThx8TsDxwwWsX6C75lzqNL5Mynrc35+DGTIRlIJIjakwOA7JFh5+iSuHAAMGCgUDITFMXxvZJ+kWO3zKEtxdCwNYsMRyjHuOF7HEFT9B0RXIgtWsqKgX6fsl8RLmRbtwdPwIRosjdD7mcGHIIy7f6Hsd+0ffxl2r7qXjXiaCiMt5kXnoy/VhvDg2aXFpmia2DbyBgBB4x4lLd4fjjMLEJYPBmHoaXhX/wR/8AS677DImLBnveJxusTMcCMEwEP3jzwOwRo+YieTMxsMoo3i3nRr74E+m/VgFV9OVRsTXdOAXl7VSyWOy4176nUuO4+hrkQWns2kjDpj7XJDH/gY9/v15ay6lit1u/amfpDsvbehjalCMEiTbudQ4BYmktd+DY/sBALdcsQGSKOBkdwHFkgrDNYLEMA0U8gZ0zRKcfX32LE0hgNSYBk4wEImXn9dgGDA5HaWCYQleKi6tfRPnsveoFf+SFWEkkiKicQEDvSVAt7vdGiqKWhF7h/dANVQEhABEXoRpmijpJciCDI7jEBbthkRagTqc/m6z+0ffBgAcT3eXxVuNnJoFx3GYF50PwJum2yglvUTjnmz3WUVXMGDXgU7muTPVrVXziUsGg8GYaia14jh58iS+/OUv49Zbb8VVV12FW2+9FV/5yldw8uTJqY6PwZi1zLY5l8Gf/BDSzh1QL9qA4gc/NNPhMCqgvO82mOEwAr94FFw6Na3HMqrMRpwJ/GmxtcRu3BaXsiBX3I4IPbfwbEQ8u91KEpf/+f6GPe6fJdd4ETeGz7mUeUv8SrYILukKFF2BIFo3pHSuhESThJ7sSWSVLOZF5mFeUzPWnZeApgFHDmRpXSRgpZFmXGNG+gcscankeOgKj3gTT8eOuBFlDpxgolDQIfC8M0bFIGNOVKiqgf4TBiIxAR1dlkhcsDgIwwBGB619qoaKt0f2YsfANgBATHYaHWmGBsnuqEvc5oJWpM7lSGGkooirR9yMFUehGdYYlZAYQkvQqgEl42omA2lIZJomFdeNsmtoJ54+9iRGCiMNP/fxI4/gZ4d+Ss/PmcTvXDIYDMZU07C43Lt3L97//vdj8+bNOOecc3D77bfjnHPOwebNm3H77bfjrbfemo44GYxZh39G3kzCDQ0h8tU/hclxyP7VN4EK8wAZM48ZjaF4+53g8vlpn3m5umkNVjWtxq3L3z+tx6mHshswNez+mGyNIwmJlbNjiDiSXeJyMg19KjmY1fbndi5FXpxwFAngiMqIGAHP8cgoaSi6Ag4cZJmDzilINIk4On4EALC6eS0AYONlSQDAoQNZzw0C3fSKy4HBHEaHFbz8VAYceCRanFpSd/wGdISiJpSSCRgC7bhLay51FcODKnhdwvLVYfC89d4sWGylxg73EhGqUzF0YccGXLPgegiciGJRh6aZLnFpPS+n5qiQUQ0V4xWcxqw9wiSjpLFv5O0yN28gP4DHjzyKp449CdM0EZGitGNtpf3Vi7shUWmSAi+rWONm0kpjN4lUXaUpvgUtX/fz8moem7t/iaH80MQb18B9nWZVNo6EwWBMPQ2vQL/xjW9g3bp1ePbZZ/H1r38df/RHf4Svf/3reOaZZ7Bu3Tp84xvfmI44GYxZB3E9ZoNzGf3TL4IfG0Pxo78N7aKLZzocRg2Kv/ERAEDwh9+f1uPIgoxLuy6f8WY+QLmWrFWnTJzLgG8MCYGkrAZcabGVRoNUo5K49Ke5lolLd0Mfob5usbIttjiOQ0SKUGEmCzIkmbfEZbNEhUaL3Tyoa0EIsYSA0ZEShgeLnv2nXeJydKyAba+kkBnl0NYWxLK1QeimDoETEBAD4DgOAifAMA2EotYbkM+a5TWXhoKh/hJ4U8KKNU79I6m7HDjlcjhJ457wPEiChFIBeO7JEWx/NUXFNEmLHS+Nes4HmckJgArRrJLBW8N78fNDD2Nr/+vYPbTL+xxbSI0WLXcwIkUQEkMIikGkSikYpoGRwggePfwz9GZ6yt6Targ7zxZdY1UaQbUdz0bdx4F8P32sNdCttTfbg/5cP94a2VPx74ZpVJ2HSjBNE5qh0ZRy5lwyGIzpoGFxuWfPHnz84x8vq7kMhUL46Ec/it27d09ZcAzGbIajNZczKy7lXz2F4M9+Cr1rPhs9MgfQLroY2tr1kPbsgrhr50yHc0bwi7dan5lEwHKmSFdTP0ToyZNMi+V9TXwqPV/wOf+86+eq3WJ9C3vJJX7djWdichySzNGaSyJ0yExPSZCwcEkIJmfg0IEsfZ5h6sikHTGiQUWpZGLpshiuvbENgSBHO7Be3HEJLum8FAJvi8uIdb6LWae+lKTxljQFg30KeIhYttoRl10LgwDnci5NjdbrSbaTe+TtIjQNGOxXoJes/ZJ05fHSuHUu7XPlrrsk7mZWzWLvsLNmIHM7Cf6aW3JNNAWaYJgGUqVx7BjYilQphe0DW+l2r/Vtwcu9L6IabnHpftwIxP30u4/7R/fh54d+inSpsqPZm+2lj931jxNB5pL25/qoiDyV7aV1q5u7n8KTR39Rcx/EtQzbjZ1KkxTWDIYf3dDxet9rnptIjHcuDYvLQCCA8fHxin9LpVIIBAIV/8ZgnG3QbrEzmBbLZTOIfuF/AwCyf/N3MKOxGYuFUScch8KHPwIACP7gezMaypmivFtsdXHZEmrBtQuvx4UdGyr+nZ+itFj3c8rTYr2N1EXfKJJKTqnuS4slNZcAEJWdz2VIDCEoSzQtljTDIY4sz/FYsDgAk9dx9FAOum53jHXVXDa3STBgCZMLL26hTYNUQwXP8ViSWIrVzWuocxm0dXouYzjOpe2aHTuahpKzRpdEY87rlAM84gkRuXHAMEzbubSOLwoSVMXAkX2OOOk/rtuvjzT0scRQe9iamZlWnBRMIo40Q0NJL6HJTnUtal6xo/rEV8QW6SQ1dv/oPvTl+gBYYrYnY/V96E4dpenGlfCmxU5OYJG6Tb9A2zW4ExklgyeP/aJinemprOOwamb98z9J+q6iK3QB/+vjm/HCyecAWLWpo8XKta0EOmqHlzxdmRmM02Ug348Do/uwb4SVxjEmIS6vvfZa/O3f/i22bdvm+f22bdvwrW99C9ddd92UBcdgzGZmQ0OfyNe+AqG3B8Xb74DynptnLA5GY5TuvAdmMIjAzx4CstmJnzDHaaRbLAAsii+uOmYiHohD4iWPs1mpBrIa/vEjQHmabq1usSIvVexO66+5dHezdYvLgBDAihVJtC/k0LlQhKIrHodO4AQEggLmLZRRLGrYsz0DEyZ006DicvnqMHROQyIpYtHCqEcM+0WzYRoI2qfy0J4iDN069y89O4zv/OMJ7Nk9Bt6UcP0tLWWvqblVAmcKyOd0bH99FAcPjFuvjZexe3sGWoFDOGIdr/uAiv/5r1N4a2vR40yTtOy8a06l/1wtTSwHUO4i+sUXec+b7X0eGjsIAFgcXwIAeGtkLwBHRPmPQ1BcgnCy7h05ht+5JKM9FF3BwbEDnr9llLQnFdUvnvuyp/B2lcW5O86+bK+nPlUzNE99azV0+3yKvABZkGGYRtVzxGA0AvkcTDYTgHF20bC4/NKXvoSFCxfi/vvvxxVXXIHbbrsNV155JX7jN34DCxcuxBe/+MXpiJPBmHXQxekMpcVKzz+L0H/9B4ymJmS/9jczEgNjcpjJJpRu+wD4XBbBRx6e6XCmnUa6xU7ElfOvxgdW3kXTSBvdH3FN3SLMLxb9TqjgGUUiVkmL9dVcVkmLlXgZS5cmcPEVCRRh3Vhwz/Mk41bOvySCQBg42V1Eb3fR09Bn45UJLFguYP2FUQREuWqKL3m8YJmIUJjH4bcL+Nn3h5DP6+g+kkf30SwKeQPz50exeHl5A6WmVgm8KWJ4UMGeXePYsXXUGuGRB575xQg4CLhwUwySzGH4lIl9u3N45dlxz3sTliIICAHkVUeE+WsDF8UWQRbkMqGn6V6hFBYtcbk4vhTntJ6L1lAbFsYW4aoF1yAoBjGQ64eqq9S9q+bMFT3isvHFsGmadN8FX82l+7X1Zr0d9E9mvD/rvprLXx1/Gtv630DKTil2447zVO4URotOTWtRK9DHtcSl17kM2PtlqbGM04dkHfg/D4x3JuLEm1gUi0W88MIL6O3txX333Yf7778f3d3dGBoaQltbG84//3xceeWV0xkrgzGrIHVDIeHMz3zlxscQ+8zvAQAyf/sPMNvbz3gMjNOjcP9HEHzwJwh+/79Q/NCHZ9HA1KmnUeeyFjzHIygGPam1k2nowzXSLZbzOpeVxKx/FInkTouV3M6ljKC9sE/ZdXn+2kKe48EHTGy6JoEnfzWIE8eKMK7VkUlrSAWOo9sYxfW3JbF/VIbEyzQt1h87eSyFTFz57iaM/TKIYwdK0JoKMDkRXct4pEIBXHJJuWsJAM0tlnPZ31OCAUBRVBQywFM/G0E+p2PdxgSaW/OYNz+A4j4R4IDRIRXz9QAAS/AExSDCUgRjxVEUtSKCYtAjxONyHPFAAkEhiLSShmZo1ClWXa4az/G0k7DIi7iow9u4LCSGUNSKKOqO0NKrpJ2ernPpHl/iFnb+Y/pF9MnMCQDAksRSdKeOVRWCaSUNWQhAM1Q695Us3iVewnBhCP05pzGQe0Gv6gpQpV6ZnE+roZI54fbV2DmwHR2RTnTZM0cZDPK5Y84lA6hTXJ48eRIf+chH0NvrFKJHo1H8/d//Pa666qppC47BmM0siS9FbFmcpmidSaJf+hyEvlMo3nUvlFtvP+PHZ5w+2qZLoa07B9KunRC3vQFt46aZDmna8DuXU9EEi6/hPNbzPL+A5DiOOl5+sepOu5WqiEt/509ZkOjjqBx1/T5Ancox233yj10h6axt80TIMoexYRXFooZsWkem/SD2j4XQHu6w9yf7UmGdx0RAq4aCYFDAuRcm8NqvCjh6IA8JUWy4MoJIIIGWWBiVaGqVwEPE8KAKkRNhcBpOHlHRvzOLeFLEpVe34GC6D+suiGLJ+fMxtieKvTuyyI0KgFUWiaAQREQKY6w4ioKWR0AIwDANyIKMqBTD6uY1AICAGASUNIp6EVE+ap9TS3xtmncZksEmcIaIh3/cj2xGw/2fmA9BcK4jIubdDmk159I9fmQysybd4tT/fLdgdDd5KmpFDOYHEBJD6AzPQ3fqGDRDxWB+EGPFUXoeyGt4ceR5jBVHcefKeyAJEl28L4ovxpHxwzg8ftDZt0tQKzWcS+IEk269AFBqcM5nupTCnuHd6Mn2MHHJoJDPwUzMbmXMPurKJfrmN78Jnufxox/9CLt27cITTzyBtWvX4itf+co0h8dgzF44jkNrqPWMN/QJPPIwgj97CHrXfGS//s0zemzGFMJxKPz27wIAQv/57RkOZnopcy6n4DNTqyFPLarNp3XXXYo1ai7JwtwvTv1psW7nMiSG6D5kQaJpsqSDqt+5JI14TBhoaZdhmMC+t9LQTQ1c2BISZM6jxMtVhTaJkQieNetj4MDDMACT19GxSLBfnyM23DS3SuDAgTME6JwKkzNw/IC1r0uuSiActJ4nSTwWL4nT2ZjZYedcBsUgbfKTV/P0PIXEEN63/DasbFplbWen0rob7JCay+ZgC5qlNvzo309hz/YMjh0s4Mh+b60j6WCbd9VAVhv14WnoMxnnUncLSN0jYlX331zH782ehGmaWBhfDFEQ7fg07BjYhtf7tnhEcVbNYCg/CEVX6CzQkmY1floUX0yfSyiojris1YGWnE+BF2harNpgUx9y7sZLY9AMDQP5AU/sjHcmxME3TIM1imLUJy537tyJz372s9iwYQMCgQCWL1+Or371qzh16hQGBwenO0YGg2HDdx9D9I8+AwDI/OO/wkwkZzYgxmlRvONuGE1NCDz+KPi+UzMdzrRRS8hNxT4b6RYrUOeyehOf8tEklhgQeZG6rn63lKTFNgWbIXAC7YBKIIJS4mXa4GfEnt/on+lJRojoho7WDkvA7duThsJnEQxZsZEFnCxIPkFZnu5LBE/XgjCSTRI4k0OiWYAQsGJ2d7Z109Riz+o0BRicZj8WwXHAeRfHPY2EJEHC/EXW60gNusSlEKKzL/OaIy797jApM3Cn1Wm0RlDAnu0ZdB8q0AZCb76R9jyfCGS30FGruHKnO4pE8QlSd2qs+yaDOy22x57DuTC6kN6gUA2NHt8tCk9le+lzM0oGuqFDNVQEhADmRbrKrnePc1ljYe+MkpHoHFb/a5kIck5N08TR8SN4+tiTePXUSwCAY6mjyCjpWk9nTBFZdXY1gnOnZrPUWEZd/8IPDQ1h4cKFnt8tWrQIpmlieJjNtGEwzgilEuK//RHwmTTyn/kjqFdfO9MRMU6XUAjF+z8CTtMQ/P53ZjqaaaPcuZyKtFi3iJrEKBKfOHTH6G7gAziC1O1g+gUocZLWt6zHB9d8iNbKEYigDAgBWjtIhEBI9IlLl+PY1mEJvxPdeZSEjGdcCGCJ1WouLqlLdRq5iFhzbhQcBDR3CLR2UBIqO5ehsIBQmIcAEeGIgERSBG+KWLYqjHhC9JxDmZfROT8AngdGejlsezWFnhMFWnMJWB1jiZvnF0jEvS26FqbuGsGDb1ndZt9/XzuCIR4H9uaQzzlCjjRQKnicy2o1lwpNJ55MGp/f7SzYMZumCc3QaCwmHHFJnOa2cDsVl5qh0mvALUrHimP0cVbN0uMFhCBEXsS86Dzv8d01lzUb+pBuse6GPo25TO797x5+EwDQn+vH8XQ3Xup5AdsHtlV55jsDRVc8nXyng2Opo/jZwYfQnTo2rcdpBLegZE19GDM3oI/BYDRE5Kt/CmnXTqibLkPui38y0+EwpojCb30cJs8j9IPvAsWz8x/lsprLKRjf4xVU9e+PNvTx/fNXywkVeREiL3pqI/3ikogDjuMr1oCua1mPFcmVaA21lY1ZCVaouQQscRSOWgLPhI7kwhJWrPHWR1ozMt2itzwtlrhgPMfjiuubsHR5BEtXBaHpltio5lwCTsfYRFJAW4cMwZRw0WWWcPbM/xRkSDKP9q4AtLyEvp4SThzUwHO8x7kkDq//HAUqpcUScWgIOHIgD0nmsHxNGOduiEHXTeza6rhkRPgXPJ1Ty4WTYRrUBQyIASiGUnM2ZCX8Aq5gu6UkXiKUiZA2TAMZJYOQGLJFrZMWS8SlZugVb7pklAxduAdFa79k9Aq5TtyCupZzqbqdS1sAV3N3q+7DlfZLXGLDNPBG32t2vLPLuezP9dG5oGeCN/pfw2NHHvFch1MNOcdjro7BM02ROZcMF3V3i/34xz8OQSj/B/MjH/lI2e+3bNly+pExGAyK/IvHEP6Pb8Nobkb63/4LEOv+6DJmOcaChVBuuRWBXzyKwCMPo/TBD810SFOOX0xORZ1yJRHVyPP84qaWuOQ5Hu9adINnvIh/GyIsqr22zsg8dEYsxyksRTwNhPxpsbzLueTAYd35UbSkIli2sYTegrs2VATP8Z5UWKFCQx/rsTXiJJ7kcfFlTcireZdzWV1cNrdK4EYExJMilq2O4MIVHVh3viWO3eeQ1DyuXBvGkYEgOABKRrJfL6m5zFER7k9LJsKppBcxmB9EMpCkaZw9R1Woiok150Ygijw2XJ7A1pdTeOXZMWy4PAFZ5qlAdtdcqnq5c0kWwbLdWCiv5lHSSzQttx6IkxiWwsireeq2kppGyxXM0NeaVTIwTAPxQMJzrhS9RLfRTa2iyM2pGRozuU6WJ1ciLEYwmB/ArqE3PQv7WjWXuuHMuSRpxPXWnB4ZP4REoKmqM0rEVM41z7ReskoGvz6+GRd2bKDC2c2WU68go6Rxw+Kb8PzJZ6EZKm5YctOE+zVMA8+e+DVCYggfWHlXw3FNhrHiKDRDQ6o0Xtaoa6ogNxDy2uyodVV0xeO8s6Y+jLpWqL//+78/3XEwGIwq8N3HEPvspwAAmX/+dxhdrEPf2Ubht38XgV88ivC//QtK9/6vs28syTQ4l5OtuSQuZ1kd6AT764h0en72b+N2ByeOgUdUiiJjp88FxPKGPm66Fgax4eIEjowf8vy+UnOhSg19qj0m9XYSX30psGRFGPwBEW2dJkSRw8K2mFN3yrnFpSXurr+lBWsvX4U/+c5r0MdEFIu6kxbrqrl012sCjnA6kT6O3UO7sL71HCpkju23FtMr11n76ewKYP0FUbz1ZhY//vdTGBpQsOz6EtBuCVhCJSFEXnPQFpcA8HLvC5gXmY/1redUPQ+V9pGQE5a4tIWVU9Mo0o6/gDVaBLDGrgCAaKch5+twHDNKhopXd+OnedEujNvzMD3OZQ0n0j3nkuyrnuYr6VIKr/S+jI5IJ+ZFvCm5y5MrcCx1lL5WRVdo2rGb7tQxDBeGcEH7RZ70cgAYLAwiraTRm+mpKC4PjVmdcXuzPXSci27oE3aJzmt5aIbWkODdMbANraE22jipUYiwyk1jTSR5H6fzGI3gdyqLzLl8x8PEJYMxi+GyGSR+8z7w6RTyn/5DKO96z0yHxJgG1Esvh3rBhZDe3AnpuWegXv/umQ5pSpkO57JS45r6nld5FIlHXNYx2sRf50mcy3qFs1tc+mfl+l09wHK20koaASEAnuNR0Ap0AV9NRFYTzOQxca2qdYsFgA2XxfHBtgUYVHrtbd0zP53HJBaO49CZbMX86HxkBlowNqxh3oIARF60usUalgiplhZLBFNGyUAzNKRHTJzYkgLHOeISAK67uQVv78qi+7Al7F5+OoOl71MhttTunEpGb8hCAKY96/FU9hQG84NY17K+rnpgMu4jHkiiL9dHBYVGnUFLXBIhTeaZxmXLuSTpxLXGpoSlMDRDQ1Zxai796dPk5kLRM+eyRrdYVw0ruRlQj7gcs+tFi1qBbi/xElRDxfLkCuTVHPpyfZAFGYquIKdmIQvOiK7u1DG82PO8fS7Gcd2id3uuTRJzXqstArcPbKWPi3oREb72fE532m5JL5V1ZfaTVbPYO7wHzcEWLIovRn+uD1E5VpbGXg3TNKmwyirTJ/zIezCZ1FtFVzCUH8T82IKqfyfXb72QGktyQ6XEnMt3PKzmksGYrRgGYr//uxD3vQ3lmuuQ+z9/OtMRMaYLjkP+9z8LAAj/8z/MbCzTwHQ09PF2d228oY9/HApt9FPnvqotvupdlJEGPxIvlQmtSuJ2vDQOwzSQDDYh4uo8CwB8lXPBVxHgZBsiSqQa4pLjOERCzqLcvS2p9eQ5vqzZ0eVt70KTuhRjI5ZwCIkhlPQSdf385znoc29LegmZbAlvPJ+Fppq44bZWxBPOMVo7ZNxyZxs2XpnANTc2A7qAnVvSHrdSNVS8ePxFvNjzgrNfV4qpu5urZmhIK6mq58ENdS7tNFeyyHc3zOE5nqa5khq5eMByLp1usU6sfsexKdCEqBSDbuoYtxv8BH3p0+Sc+1+zH8M0MFYc9TmXcsXjViJlC/6iVqT7uGTeJly/6N3ojMzDpV2X48oFV1PX0e0UjhVH8XLvi9Z1JEXQm+3FnqFdnv2TGCqJJfc4FyLSgdp1fVk1i7ya97jYhTrGpZD3VTFKKGgFbO5+Cm/01V/mVdJL9D2fzm6upE52MinIe4d345kTv0JP5mTZ30p6CT879BBeO/VqQ/skzj35PBT1IgbyA1UbagHWZ+KJo4+jP9fX0LEYcwMmLhmMWUr4b/8agScfh7Z0GdL/8T1WZ3mWo7z3NuhLlkJ+6QWIb+6Y6XCmFL/gmoq0WK5Bp9Efi98dJA1+6t1Xte0aFZeVav38zYYAZ4Efl+OIypa4lIUKabFV3Eq3+COxE0fM3x3Xj9etdMQlceD8aY6AM8aEiEuSGpux5zaS2I4fLeClX41ChFdcFtQ8BvuL0FUeF1wSx+XXeUe7AMDGK5N4713tuPamZsybF0E2qyObcsSIamg4OHIQx8aPIG0LE+L6BAQZLcEWz/5G6mz8QkRIU8CKicyipDWNnAiBE6hzSUQrSYsVeKHsBgvZJ3GAOyNdtKswaUjjT5+udN6J8BjI9eOnB/8Hw4Vh7Bt5G48feZR2F5V4kdbZ1uVc2uJWMRS6fUxOYEFsof04jmWJ5dThc4uerf2vwzANXNR+Ma5d+C4AwFDBO8KOvPZK8zKr1YRWq+szTAO/PPoL/Pr4056043pSNclrU3SFxpJX63cH3SNppjNllcxZdTeEqhci0AfzA2V/Gy+NQ9EV9GQd4Uk6INeCvBdJ+/PQkzlpj6h5uepzTmVPYaQwXFHkvtPQDR0nMycmPM9zCSYuGYxZiPz4o4j87V/DiMaQ/sEDMJPlCyvGWYYgIP97fwAACP2/s8+9JHAcNzWjSFz/fDUyN5O4dtVqLut1LomI8y/w/Y5oNchC3N/MB6gsXMmCPSSGELGFGnEuq6XCclWcSxJ7PTWXgPc1up1L0Y7TX18HWF1mAWBs2FoIE9eNuEnkffjFg4N45okRPP7jUcB0roucmkMmrYM3RSxdVbsxCsdxWL7CEm4jQ85iO6/mqDt50l7ElqiIC2B181pcteAaXDH/SgDAcGGk5nEIZHEfk+MIikGkSik6ixJwnEvDNFAs6nj88WM4eazoGU/jd4vJPttCbbh79QexrmU9vYkwWmUeaiXHmezn6e5fIq/msXtoZ1mtrsiLtAFSPXMuyY0N0zSpYJMrHJtcl0RYHU93oz/Xj2QgibUt66izlfGN6iACqaSXPE4lUL2bbTWxmCqNo6AVMF4apzcUgPqa35BrQ9EVKhR1s/4Fvzsmv6v45uAO/Pr40x63fLK4z0mjIpbENVwYKvtb1nbYi1qRbvfm4A48dOCBmk4smbOaDCQBOO9nd+oYRqp8pkjcmqlX/Lsf0zTRn+vDrsGdOJ7urus59eJ+T6bi/WmU7vRRPHfiGRz2fU7nMkxcMhizDPHNHYh/+hMwOQ6ZZzDmAQAAioZJREFUf/1P6KvXzHRIjDNE8d7/BaO1DYFfPAr+6JGZDmfKcI8KmQrXEvA1ruEbEZeVRST5fb3OI9nOv8CvV+iShTZZkLupJHDJgk0WAohKMfuxJRDEqk183IJSLNuGLIZrpcUC/pEjrrRYez9ShVEmzT7nUvJ1JxV4HsODCob6rdf19ptZHD/gLDR1U0cmrYE3RTrrsxZLllpCbGTISQt1ixjSCEahMyNlyIKMpYllaA21AXBE3EQ4+wigJdgCwzQwXhqn3WJFXqDXx6FD4+gfzqDvMO+5tkydx54dGXp+FMPaJ88JCIkhcBxH32dCUPA7l+Xvm1+MRaU4moLNnt+JvASO4yALclka7dHxw9g7vIe6pYZp0IZEAOgMR7HCbNSIz7ncN/I2AODizkto6nRIDCGrZj2LeLf7VtC9TiERy+TcEffXPbLGjXvsiDvlsp4Opu44iMPeiJtU8DiXOZoim1Nz2D20C6eypybd4XWkMIJHD/8Mg/lBT5yV3N5aEFE3Uhgp607s/rwQF3+kOAzVUDFQI321aL8XpBuym11DlbNwyDVSq7uxm4NjB7C5+ynsGnoTL/W8MOEs0VPZXjxx9HGaUl4NRVfw0IEH8Ebf6yjpJTx44Cee2l7Ael8fPPAT7BneXVes9UKuSfIezpYGTVMBE5cMxiyC7z6GxP+6G1w+j9yffAXKjTfPdEiMM0kohMJv/y44w0D4X/5ppqOZMtyCciqa+QB+t67+tFihqnNpxVgp1bAS5Jj+7et9fc3BFly54Gpc1LGhaoyVCAoBtIRaAQAJ2ynw1FnylV3MSjWXZJFaq6EP4BUSbiEaEsOIyTF0hDvLnpP0iUvR13xG4AQc2GstMFeus0aVjA94bzxk0zp4CGhtn1hcLl4SA8cBI4MKxkYUjA4rnsXaUGEQRa1Im/G4x6/E5QQkXsJosXzBXYmSXoLACRB4gQq30eIInRsq8RJ9D0/0W4v0wnAQquIIqp4jKroPF3DwLesckPfCfdNkfmwBvYFgGCZ2vFRALmsdY2xExYlDJWQzXvGjGqrHsQPKa5zJe0ga8JDXXNSKeLn3JewY2IYnjz6OgfwA0qWURwgSAVVpNqrjXFqO8UhhGLIgY16ki24TDyRgmiaySgaHxg4ir+Y9gpgstIftlEnyt+XJFbhj5V04t+08+z2oLBbdqc1uUVxowLkEgHTJeu5E4jKrOELZLWAN08BgYRAnMyewf/Rt+nutRsOlWvTlTiFVSqEv2+u5IdCIWNUMjb5G1VDLaozd7iS50UKEYy1XnziXITFMmyZ1RjoRk2PoyfRUnMdJxGWtBlRujqeP0f0aplFR6BW1Ig6OHoBu6Hh7ZC9GCsN47MgjNd1Ia45sCQP5PowXx+yGR15Xd7gwhKJWRG+mp65YAUvc1nptp7K9ePDAT3Bk/JDHMT9bYOKSwZglcCMjSNx3J/jhIRQ+8jEUPv3ZmQ6JMQMUfuvjMKIxBB/4Ifje+v8xm81w0+BcVhNOE9EebkdTsAmdrgWvex/1ClWBikuvMGsk43dZYrknVdKJpXoMshBAa6gV96y+D+ta1nti8T92nxePu2k/JouuhpxLT0MfAbevuBOXzNtUHqfMIxoXMD6qQtdNWh9K3FKBF7F/j7WYvfLdlkAzU3EEhACagk3QdRP5nI5YJAA5MPH7Gw0FkWwSUSqZePmZcbz2wjjcOtE0TZzK9lCx4hZHHMehOdRC5xMWtSKOjB+quihVDZWKvuZgC0pFHXv2O4t+gRfpezgwaL1GThfR11OisZw4ZMUxOqzAMEznua73LypFcdvyD2Bl0ypgoAvP/yKD554cxaG3c/iHv+jGT787jFeeGfMIYlVX0edymVRDQTpbwOF9ORTyljNMbohInPWeOA11vEJlpDBMu/f6qXTNhF1psSOFEeimjrZQm+fzH7Pd2LdG9mLLqVewZ3g3Sm7n0o5hy6mX8fzJZ+nPEi8hKsdoanA1J3K4St1sfc6lIy6zarm4HMgPYPvAVnpdZJQ0Htj7AJ4/8awndvJ6nzm+Gc+deAZvDe91juESho00/SFimoxXIeQbaOrj39afGut2Lom4JMet5eqTGw4hMUhryJfEl2FVk5V1VSndk9z4qSft2BJ/AwiJIVyz8HrIgowj44fL3Mv9o2/jtb5XcTJzwp41a/H2yFs19k1Gx+RoTP5UcXJeMq6bFbU4le3Fr49vxq6hnVW3ITdBxopjVFyeTfNBmbhkMGYD+TwSv3EvxCOHUbrpvch+/W/PvlmHjLowk00o/PYnwCkKwv/4dzMdzpTgFpRTUW8JTH7OZVOwGbcuvx3t4Xbf/iqPKJno+JNNi62FO83XHw9ZXLsbAU12FEm1n/146yz9Yrr6+9nUIsEwgPS4Rp9X0ooY7C/hlz8dwcnuIuJJEYuWBhFLCIgPnYv3L7sLMTmOXMYSQk1N9Q2il3gJLS6HU9eBUtESAe50TTpKw5fW2Ww7kGOlMewbeQuv9L6MU1lr/IrbgVB1FYZpuMRlM97encWjvziCg/vTNBZy7odHrIU3DxE9x4vIZjQcP1pE2jZzNM06P9W66IalMC7rugKdGcvhPrw/hz077NRUToSimCjkrdfJcRxUQ0Vf7pQTr6Fi394U9u3J4fmnRnHwrSzeeGkc//erx/Dqr7IwDJMeu0g76VoL83QpRest3XW1kp1W64fneISlMPJanjaMafN9zmJ2x9xjqaP2e5KF6hGX1vkq6SUrJdd2EMnxqbis4Fzqho7xUuU0yMk6l7qpWyNGtCKet4UiSbc9lT0FwzRwMnMCPZmT9PmksY1maGU3vkga6FB+CD87+BBeOPnchHEBjquV9gmcE5nj+FX3U3UJn7xLqAPlbmRWyYDnrPRtUitJXtNYcbTqzRYiysJiBC2hVsiCjIXxRViWXA6e43F0/EhZXSOJRa0j7bg3cxKmaWJBbCECQgArm1bBMA302p9PArl+i3rRk2572J6TCljC79kTv/ZsC1jnlzQ78jeRIuKyoBXqSpMmwrGvRioxcW5LeslxLuvo3DxXYOKSwZhpVBXx3/0opG1vQN2wEelvfwcQ6l8sM84+Cp/4FIxIFMEf/QD8qd6JnzDLmQ7nEqg+s3Iy0FrMervF0nrDyaXF1rNvoDzt1j+yA/CPZSlPf/U/9u9/IsHvbehTf9fqji4r1rd3ZemCtncgja0vpdBzVAFM4OIrEuA4zuoua/DIpSxxk0lbi7iW5vKGR5UQeAGLloTR1CKC4wDO5JG3nTpS31rSS9Qh9Kd1hsQw3YYInKJWxL6Rt/HAgR9R54b8P2TPnIzJcaSGgKKQwhtbrLRagRfoezI0YrtZJo/tr6bwd18+hu/9Uw94CAhHrG1GhlQqHqq51kMD1t/HRzW8vSsLQeCw9hzrdWXtc0ViOuVadKu6grGU9Xo0zcSBt/J48uEhjI9qGDhpYN/uLHbvHMNQv0IFWEfESnNOKSmM2K+3PdxB91krdTwiRWGaJhWPbSGfuLSdS7JIL2pFz2KeuGuksQ8RU6SuN2TfVPELgN1Db+K5k7+GYRq0htaKx3JTCw3WXLpdRc3QsH1gKz0mOSeDeafr7db+16nIarXT1gHg6gXX4salt2BVs+XikeuPpIoeT3ejL+vcDCAcGjvoGdlCxBBJeSY3AMaKY+jL9eHI+OEJXx+Jj8y4dLuRmqGhoBUQkSJIBJIoaAVklDR9n4ir78c0TeTVPEJiCAIv4PKuK/GBlXchJIYQEkOYH12Akl6iNc+AJXKJ216PWDthP3dhbBEAICEnAZTfMHDSS0seNzyjZuj1tHd4N3oyJ2mqsvs9J12M/empOdVxSOsR8Sk73Xi8NFY1NZa8FyW96DS0cl2jA/kBDOTKO/rOFZi4ZDBmEl1H7NOfQOCpJ6EtW47Uf/8PEA7PdFSMGcZsbrFqL88S93I6ai4BR1RNxT6rjSipvn3ltNipjAUod9jkCoPgvc16qnSIrTILs54aU6+4nLj+kbDp6iTAAa88OwZTE6AqBra8OATDBK68rgVf+voyXH2D5Rg2u7rLesRlS33OJQA0N4Vw5buasWJVFIIpo5DziktFV1zOpfd1kMW64nISNFPDeMlKOyViYPfQmwCAFcmVAIBC3oCeisLgNPSPD6PvZMlyLsGhVDKQL5YQjvDgOQEjQyoMA4jGBSRiQZxzIWlCpLjqX533plQy8MRPBzE04DQ+AgBNNbFkRQgLFofAmTyytstLBLJmaLTTrGpoSKUtcflbt16Duy69HhdfnsDdH+lESArg6MECfv5QD372o34qwNpC7eA5HqnSOIYLQ+A4zlM3Wak7MKHDFqGjxRFwHOcRegDK0sALWt5TQ0iEvZN6mrGPKdnvE0mLdZrnaIaGNwd34pQt0ha4alWbgk3gOR4FLY9UabxmKqq7jtPttKWVNI6MH6afp1Hb1RuyxWVbuA0ZJYP+XD8A0Ncck2NYGFuEjnAHbcZEHDXNlQ66pe+VslrfHQPbsHNwh8fJdZ+fZNDbQV6vo+sqcctIfJ40YPs8x+QYdfH94qZS59e8lodhGjQ7gOd4+lkCgBVN1ufE3bHY3Um3noY+/bk+iLxIr0GStVH03WBQXLWLxA1vC7fDNE2klRQ0Q6M3BA6NHYRhGh5BR1KqdVP3iF53urC/03EliANqmmbFrryA4yIXtRK97sh7bJomnjvxa7zS+9KEx5qtMHHJYMwUhoHo5z6D4M9+Cn3hIqQefhxma+vEz2O8Iyj8ru1e/vD74PvK72zPKbipT4sFHNHaSEOfajjisj5nbkFsAVpDbR5HxwpqCsasuF6POyWV47iKjVTcabTVHErPY9f2E9Vb+repZ3tCW4eMcy+KIZ/VsW9nAf2nSiiVTHQtDODiy5IIhpyYmlqt1zU6oiIgBJFNW4vl1gbEJRHisWgAvCkin7UEAml8ZDmXStnr2L83i8EevWwb1VDpIjOvFTCQH0Bfrg9xOY4liWUAgL6eIgJGDOGIgCKfQveRgjXnkheQzWgwOBWJZgktLdaC+IJL4vjcV5fh7t9YgLZOGYIAjAy6nUvnvdm7I4OtL6fw9CNDSI9rcN+3WHVOBK3tMnhTRDajg+d4TzfZrsh8+zUoSGdLEHgBN120CffevBHvu6cd6y+I4V03diKRFKELRaTGNOoEhSWrUVNRK6KoFdEUaEZYcm561rrBcF7bBWiyhU8y0FR2cyTuE5dEnJDXTWIg4os0nSE3VSTBapbkrk8jcziTgSRWJFdiZdNqxGXrhkJYjCAkhlDSS3ji6OP4dffTVWNXqrhMxK0iqfRjxVHk1TwyShrJYNKqiYUjSJfEl2J5cgUu67qCft9JdPSL3R3YI+yyHlfQMA0qNIiA9TcwikgRj4irp16PNEuKy3HwHF/RqY1KMYTtmxSj9g0VmuJdLK9nJUKxUtdrAJgfXYCQGEJvtpdum/O5wpU4Mn4Ih8cOIa/moegK4nKC3iAL2g59USugpJdweOwQdEOn9ayKrqCkl8BxHFqC1ppqvDSOwfwAfY8KWgEnMyc8AtUdCzk3VvMpJ95K4tIwDRxNHcGLPc9jMD/ocTdJevhYcdTzHjtpsY5zT/6fVlJQdMXzmZtrMHHJYMwEponIn34JoR/9AHrnPIw//DiM+QtmOirGLMJsbkHxY79zVriX7jrEKU2LtRcbjYwiqQaJsd602K7ofNyy7H100L1/P6eD4BGXzkJe5uWK4twrHBuruZyoU6y1T0dw19tNl0Ccyb1b8xjotRZPC5YEPfsEXKNLbOdyfNRaKLa3NyAu7dcSjwXBQ6RpsUTQqIblEIq8SM9NJq3hf77Th6ceHIdpmvbC1FpY6oZGXbWiVsCxcWs80Dmt59Hn954oQTJCWLIiBMgKxkdV8BDBgUc2rcOAhmhMwMbLmnD+xhhuvtNyjQReBM9zaG6VoWkmhgedZkCEvpPW+Tq8zxIFK9aEIQes93/1+gha2mXwsESsyIseN7Yj0gme45EtFFFQFMSjAfC899rZeO5SXP2eZhTjJ1HI667GLCEqzgArzTPomrEpVxhDQhB5EVcvuBZxOU7dXc97JEieemHi2JH3qKAVYJhGWdqk+6ZKQAxAMRSMFkcwWhyhrvKi+GJcPv9KhMQQdavDUhhBMQTTNKEZGtJK2pPO6qZaB1pyXiJSFDE5hrSSRl/OSj3ujHaiK+r82x0QApAECVfMvwqdkXnO67avTY0KIDIr1fr+GHEJN3fKL3G+/OJR4mXcvPS9uG7Ru+y/e0e4VIKIuogUgcRLHseYiKaoHKONmcZL1nntjHSC4zh0p46WpSNn7ZTRauKS53gsT66AaZo4aqfuep1LR9CdyvaiO3UMeTWPV0+9gi19r9Aa2njAuSlBnUutiAOj+/DqqZdxPNNNBTtJf5d4ic7eTJXGaS3yAjst+Mj4oapzXsnv81re4wpXSot9pfclvNzzIrpTx/B636v0OwYAutPH8Isjj+HxI4/il8eegGZongyKouakxRqmAVVX6c2SJp87PZdg4pLBONOYJiJ//qcI/8e3YbS2IvXw4zCWLJ3pqBizkPwnPw0zHJnz7qVbEE1lWizt8DoF/5RVm385EX6xPNU1l+4aR/eivNr23oY+7vNeeZv6nEsrhnrqM/20dcpYsiKEzBiHvl4FggC0tstl57m5zYpjdFhFbkxAIW8g2SwiEipPA64epyVAErEABFOkabFxWnOp0EUn4cDeHEwTUHICUuNk4eeMa9CouCzSxXlLqIU+/9TJIiQjjGSLiKYWCboOjA7olnOZ1qBzKqJxAStWx/CBD3UiECCNoKxzumCJ9fpOHLXEgfu89PV6F76d8wN4/30duOXONiSbJTS1SBAgImeLS7cAawu1QeRFjKbyMDkDiWj5tbMguhAxOYZSaBh5jCGdt0SsW5wBVhqlOxV2ohsSiUASt6+8E2tb1lX8e2uoFSIvehbPESkCkReRU3O0Ps6NJEjQNMt1CgqWWHzq2JPY3P0UrZVzz/MkGQUtwVZai0roTh2rGFe1URBOx1qZHmP/6H4AlriMSBH6WvzHIoiC9X4TQUfmms6LWg7zSMEZ1+EWikOFIeumh6/Zi8xLiAcStKa1Uk3pQH4Am7t/iTcHrVmTeepMR6zzaWjUySN1glEpSh0z4lw2BZuxMrkKiq7greE9nmMQoRj13WRzszy5AoDTNdYtLsn50AwNL5x8Di/2PI/tA1thmiZM08TJzEkAXsc76EqNJqKYOJyAJS41Q0NACCARTFqvr5RCX9ZqsHNh+wb6u2o3FEr2+SaOLnnfK4lLIoBFXqTCcH50AUReRKqUwmhxhDrFqVLK49yqhupJwS4ZJbq/Zt982rkEE5cMxpnEMBD9488j/C//CKOpCeMPPgp95aqZjooxSzFbWlD4+CfAlUoI/903ZzqcSePpFjsdDX3qdBtrwU1SXJbPy5zabrHuhXylekvrmBM39KmWOivWce6Im9ZISqybCy+NQzCt57Z1yBAErswBbWpxxGXvEcvNaOuU6aK8HoijFo8HrbTYnG4JlmEBrz43hsHRNEzThMhJeOx/BrD50SHs220t9ARTxvCAAsVwXAXd0KHZQqeg5eninNSXAcCpEyXIZhiJpISmFivWU90a3ngxhWMHCzA4DYmkVPZ6ybmctyAISeLQ11NCqWTQ688wTAyc8orLtg4Z6y+I4ZKrkgAAUeQQjwVRLJiAJtJjBMUgonIMsiAjl7EW74l4uejhOA5rW9ZDDvAYDRxGKpezn+8Xl6201hGoPOOyEa6YfzVuXf5+jxiUhQBCYsgS9z4hZRgmXn46g7/6whHs3ZGhTa2IC0SaB7kX4yuSK3H7ijswP7aACr64HAfHcTiePgbTNJEqjWNr/+tUZKlV6v+IcynxIlqC1o2FkcIweI5HV8yqA+yyRWK1G0DknDmpm9Z722nPiHU313G7lCOFYZT0UllNpkS75wbAcRydNUk4mjqCp489if5cP/aP7gNgiTqRFy131Y5HNVRklDSOjB2CwAloC7cjLEbsGBX7GEGc13YBRF7EvpG3PfFNlBYLWDcb2sMdyCgZDOT6kffVvWqGht5sDz3/5P0EgBPpbgBecSnyIiReQlF3bvgUtQK9bjKuJlAJ24EfzA9gtDhi3whoRkAIIK/mqzZ6Iu9P1t7XPNuFzria+zjbWsddFF9Mf9cUbMLq5jVoDrbgukXvojdaxkujND25EiWtREV9MsDEJYPBmAjDQPTzn0XoO/8Oo7UV4z9/Evo55850VIxZTv5TfwAjnkDwh9+DcHTijoCzkWl3Lqek5nJy9Zt+J28qXh/nbujjEnSBKuLSLa7dNaNV02L5xtJiSQyTFZfrzosiFLAWs+12B1n/eQ5HBARDPMZGVJw8ZAm6jk65oWOS1xIOyAgGJRTyOoJiELu2ZTE+aOLo0XEAwNG3FezYksarz43jyP48OJ6ISxVFrUAXueXOZQ48J+DVX2Vw6O0cshkN6XENna0JiCKHJrsp0ZZn0ji4pwhJ5nDRVWHE4mKF8S+2GyzyWLA4CNMEeo8X6XbDgwo01USyxXk/2zrLRV0yYZ3PQtak7iJp2CLxMnJZu6lRovK1syK5EkFZREbqRzqXow1Z4nZHTomXkAgkG3IuJyIgBBCT455UW0mQqeDxp4C++UYaW5/PwTCAY4fzHqELWOmEEi8hKjnuGcdx1LEmTYTWtqzHvMg8FLQCBvL92D+6H/tG3sbx9DGXkCo/T9S5FGSPIN4071LaOGmB3cm00txaoDwtlqRet4bbIPESRosjVEAWdG+zov4KIy2IWOU4DkEhWHbO9o1Y3VBlQbYds3EoukJFIIlH1RW83rcFuqnjvLbzEZEiZbV+QSGIsBTGssRy6KaOU7leHE93Y8upV5Cxm9fUEpeA0wDrwNh+Kp5ISrBmaNRNJte/U4NbsLdNePYXFINQdIV2E84oGef82c+R7RTsoBikvyP1sREpCt3Uq3Z/JeKSOKOJQBIRKYKcmisbyUKyIUg3WwCIywls6NiI9y2/DQtji9Bkj6cZK455nNtKxx2jjjFLi2UwGLXQNMT+4JMI/ff3oHd0YvyRX0Jft36mo2LMAcymZuT/4A/B6TrCX//aTIczKaZjziVgpaDxHH/aTgrgdkEb+2eRmw7n0u1E8gLdZ1Vx2eBsy0bTYgNCAMuTK7CyaXUd0ZcjyTyuur4V0ZiAzvmBshgILW0SNNVEz2EDkswh2SJBrLPBEuC8FpGXkIgFoeuAqViOpGBaQiuT0vDW9iJEiQPR2OdeFEM4JGN0WEG66DgTmqvmMqtmoegKcsMinn9qFL/+xTCG7fEgCzqthW9Ts3V8Jc+DMzlsuiaJxaus3/G+64rEGhACmLfQOiejwyrdrr/HWtyuOSeKzgUBBMM8WtsriMukJbTyKY46Th22GybxEnJZywVuSlRJ17TTU3VORaZYoC5fU7AJYSmMhfFF4DjLaSbOaHrExPNPjeBXjw3TVNXJQLrbAkCAl+n+3XVwxYKO3hMl8LbznRrTqDvIcRy93puCzVW/W9Y0r8W7Ft2A1c1raBppRsnQlMhUKUWPWUkcOs6lhI5wJ5qCzTi39Tw6XgSwuuTesPhGXNB+UcUYRCrmvM5lgA+gOdRi14NaQo0IRSLoe7M9ZftzN0oKiiF7JmgK+0f3YaQwgpHCMOJyHPPtelDiBpIZnMTlT5VSOJU9hZgcw/pW62Z3UAh6vkdIHGREzWBuANsHtuLQ2EE6y9Ht5ldicXwJRF6kNZULYgtobWdRK6A32wOJl3DVgmsg8RLOazvf83x3zSV5zYDTpChbwVEkNytI3WVQDGJdyzl2vNaxNUODLMj0NZL/E/FP0mJjcgyJQAKmaeKtkb30GKROWxIkdEXm0+81t/MPON19x0tj1G2t9G9FVs0ip+YQl+MN17fPJuZu5AzGXCGfR/wTv4XA07+EPn+B1bxn2fKZjooxhyh8/HcR+s9/Q/DRn6HwqT+AdkHlBcxsxZsWO3X3NC/ruhIFrVDWkXIyTLbm0l/vORVpvx6xCB4CJ8AwjbrEZbVRJHyVbfyNdapxxfyr6tquGte+uwMnu5xaxUojX959ayt++oN+ZDMS2jsDtqip/711O6yJWBAYB7SchOEBBbwpI5fNoud4EZzehKvf04xQiMfTjw5jw+UJqIqBXd0ShgaLaO2wFpi6qXnm/AFA/1Hr/R0ZUjE8YAmFto4QhsUQgAJicQFcSsCylVEkm3LOiBGfSCbpyCExjGjMcjLyWZ2+l6TesnN+AFe+uwmqYkKSy89Za4sl0IZO6ViaWAae57EkbtXwy4JEncvmZPXGSK3hVgCnoJYMumgXeRF3rLzbcz3LgoyhwTy2PjmKFrvZS7JFxJLlYXQfztOZpfUSEr3OJTkn7qYxp06WwJsiNlyWwI4taYyNqNTxbA93QOJF9GR6ykZzuBF5kc52DLjmZBKBN14ap2IiIkUwWhzxuFNEwEiCBEmQcOvy91c8zrxoV8XfA46YI52IFV0Bx3GQBAnNwWYM5PoxUhhGIpCkNZfzIl3WHMxceb29+4ZaSAxiDMDOwR04nu6mn4OliWX0O+BoympG1WzXCxPhRZy/ZKCJbstxHMJSmHZJJeeM3LTodjm91r4k+t002FfCq8+N49ihPK67uQUXXBKn525JfCkOjx+CyIu4pPNSvNH/GgDgROY4NEPD0sQyLIovxqL4YuiGjt1Du+j3nv+7L+hzr9OlcgeSPKc52IL+XD/Ob7uQCja3GA4KQQi8AEVXkAw0YTA/4DT0sV3GsBjGeW0XYjA/iJ0D2xEWQ1ieXOmZmysJElY3r8Gw/T66SchJcByHseIY/YwlA02edGgA1KWudT3PBZhzyWBMI9zICJJ33orA07+EtmIlxh/9JROWjMYJh5H//P8BAET+4suAr/5mtsNN0yiSiBTxDCw/Hai4bPBusVvAcRw3Ja/PPzaEOpdV6rncDk7VbrFV5lxKZ+juOHG/KsVDWLoyjE//yWLcfl8HLtpAFsGTdC7j1sKymOIxOqxAMEXksjrS4xoEU8KKNWFsvDKJP/7GcixeFkLngiB1NwmqoXm6WWq6ScWlppo4etASHS1tEl2sLlwcRTQmYuMVTfY+7C6wvpsWRDSHxCDkIA9R5JDNaPRmRe9xy72atyCAaEykNal+lq2IQhQ5HD+sopg3sSyxnL7vJC2W44BkFecSANqj1mdIUUyP4OM53nM9S5yMPTuy4A0R52+0Uhq3PD+OH/5bL5746RBOHpt4HIYbj3MpBGiqsFtc9p0sQjAlXLQpgXBEwPiIhoRsndvliRVY1WS5hwujC+s6JnGmrHmmlkCyUkZLNA7/HE8Sz+lkSFDn0r6eFF2h+2uxv8MGfZ1hSbdZIm7dnandnYGJWCEilFxzy5LLqcghQpHUjJLnE8fPL96ICw6AjrgJS2EkAomyxkckNXh8VMV3/18P3nwjjdSYhmefHIGuO/9WrW1Zh6AYxMbOTYjKMfp+j9sjOlpc3+UCL9A6y7jPBQTKGydVmvNJbjqe13YB3r34PVjtcppJzIBV70vGrxBRV3I1BwKs7972cDuuXXg9AGDfiFXHSuo8yfm8uPMS3LT0ljJXkryeglagaa/uxmDESSXici438wGYuGQwpg3+xHEk33cDpO1boW7YiPFfbIaxaPHET2QwKlC8735oK1ZCfukFSM8/O9PhNIRHgE1hQ5+pZLINfdxacqpeG8/7nEv75wBfvXMqEW7e5j7V5lw2lhY7VbjFZbXa1mBQwIWbEkhErcWe2IArLVLnUkST7dT1HNah61ZNpaqYGB1WIUCi9YtkPEc4zIM3JSiK41ipuuJZtPadLAKK8x4c3m+Ly3aZLg7Xn5vA5766FM3N1nZUXPrENBEwQTu1OxIVoOtAKcfh2KE8ThwtIp4UqYtajUgwgIVLg4AmYPurXvfGUHmUiiYiUQFBqfp+OmJWqqhSMjyCz0/PYR2pcQ3zF0Tw/vs6sHBpEKNDKlJjlmDqPdGYuHQ3v5F4yZMWm0lpOLwvh9ERDbFwEPMXB5BsEaHrJpJmF+5cdQ9WNK3EgthC3L/uN6kzOeExhXLnMqtmabMmWZCp0PILLkmYvLh011zqhg7d1On+O8OWiOzLWuNNSHOe1lCb53PrTrWUXZ9b8pqIG5oIJLAwtggxOV6Wntlsi0vyfMed9IlLyS38nfepwzVeZak96zUsRnDqZBEP/FcfCjkDGy6LY9mqENLjGvbvcZr3NAWbcc/q+2jdo+SLIeg730To+WejAtUbJ7kh51cWZNpwieCuEQ2KAaxsWo0FsQVYZNdNuseauOcLd0XnIybHMFocQV7NQ7VFqFzH92jSVXfJcZynfpfcOCAp2KRueq7CxCWDMQ2Ie3Yhecu7IR45jNKNN2P84cdhNrdM/EQGoxqiiNwffxkAEPnaVwBj8rVOZxq36JrKhj5TSTJgpS0lfelME+FOi52q1+bfJ1lg+heAnudUEMfe+svKtZin25ylEdxCdiIRTzo6+tPfakEWjGEpgrUrrBS+E7vtWlrTWhxqmomWphAkyftehSICBFOCUnI+VwXXSIi+nhL2bM9AMsJYttpaeJNtm1slemwyroWce9JkxC+m20LtWNuyDmub10PgBERi1t/HR3T88meWg3XDba0QhNo3LERexNKVIfAQsfWVcY9TlBm1nhtLijVvIrTHm8GZPBTFrHm+TxywhPb17+kEz3O47NokAOcGS19P5ZmB1fA7l0RclvQStr2awr49Vkri0uVWl1fi3o6NqB5x0MjnjnRcLukl6kqZpknnScpCgG7jryM8HZefXBfWHNWSJ5awFEZTsBkZJYOMkqYdTK2RMEm6D/fjSs4lYAmx96+4g86/jMlxen4iUoSKMirsbOfS34k67HtvCB32iJe4HMfGzk3ojHSi941m/Pu3TqK/p4TFy0O45a52XHadJaRef3G86jkhWSKOe+q99oj4quRcBquMfHEj1XCa3e9tQAhiUXwxrl90A33dVFxqpbL5wvNtl7w320O7/9Zz48HdoOeclnM959g9V5bjOCYuGQyGF/nxR5G89UYIgwMo/MZHkP7uj4Bw9bvBDEa9KO+9FeqGjZD27ELgoQdmOpy68XaLnZ3O5cLYIty35v6yO9wTMR2dcD1jQ+po6AOUd1m0flet5nJmnEv3Ym+iZhVXzb8Gd6y8u6GmFovii/GeJTdhZXIVzlu6FJcKH0BUsd5PtzBvbyv/Pg5HBAim7HEuiQjQVBM7X09B14F3vbsLl1zpLATDUQGhsEAXq+R8+sWkf+SLwAvY2LkJLaEWS1xGrb/veDWHwT4Fi5YFcc6FtZukWPuVEImKWLQogkxKx9EDzpiDtF3OFU+INRe/0aiEoJ6wnEup8r9VuayOQl8C0VAIa5ZbAmPNuVHccFsr7v2Y7bw1IC7zOR3PPJJCetxyPSVBpmmSmXwR2YyOYIjDhZtiuHCDJTJIw6SxkcojQwzDxGBf+dgONwHB6UjrTu8czA/Yfw/QbfwdUOtNizUMEzteS5XFKfGS3STKdrtcrvx8+3unN9tLay6DYhBJe04jAM+NL3/NpbONt1aP53jq/BHXEnClxVLX0CvsSLMdMuqEsCC6EPOj83Fe+wUIikG8Z8nNGNrbDI4DbvpAGz70O10QBA7LV4fR1CLhxNEishkNlSBinaQB+wXjmqa1uLD9IqxuWlP23HpuOsk1sh7c7637e9W5+aBAMzTopl7mki6wXfLebI/LuZz42uiKLoDESzi/7QJc2LHBU+bgbiTVFGguS82eazBxyWBMFYaB8De/jsTHfgMoFJD9ky8j+7f/AIisbxZjiuA4ZL/6VwBs9zKbrb39LGS2psUCEwueSkxHym95Qx8rrlriMiAEPR09/bFVq7mcihmh9eJuvDSRECfNThqB53h0RuZB4AVrhuP6JP3b0iXO4q2jo3xsAhGXqlIuTAoFK7W2rUPGlVd1ebq2trRZMZLFKnmvymquaji1Au84l0f3WwvtTVcn66rfJYvadeckAVhjOwipIeu1xJNiTdctFOER1lugKAaiVbp+HjmQQ3NpOT6w9F5ar8bzHK64vglrzokinhStOaGl6hkV+ZyOx/5nAPv3ZvHkTwex9eU0ju+33NCAq6FP/6D1vdbcKmPB4hDCAeu6J6NeqonLXVsz+JdvnMDWl1NVYyDumH8ERcoeqWGlxVrbuOvygPpd/oNv5fDYA4P4zj+cxOiwE6vES1ANFUWfcwmAdnU9le1BUSsiIATAc7zHrSTjOPyfDbcDXGl8BdmHuz6dXA8kbbu85tLap19YSYKEdy1+D5YlrN4R6XENmZSG9nkyLr0mCTlgj4fiOZp6nkmV10MC5d+3/swMSZBwbtv5FYWWOy73Y/frqOVcBoWgKyOk/PmKXkJRJ117vXF1hDsh8iL6sqdox+F6vqtaQ6344JoP4fz2C+0YnP2662nbbXd4LsPEJYMxFeRyiH/8NxH55tdhRKJI/+ABFD7zR96CLAZjCtA2bkLxjrshDPQj/I9/N9Ph1I27E+HZBMdNfVqsP7U1IFhpWbXq4a5acDXevfhGX4fYanMuK8/RnG7IgtadNjqdrFrniMgVKxy3sbOjXECFInxZWiyhVLR+FwhZXTSbWiWQU9jSRlwu4lxar7F8ruX/3959h0dR538Af8/M9k2y2VQIaYQSMJTQOwhYEGwIds9D8ayg3nk/705PTz0rp6JiBdTz1FMPBVTELooiICq9SYdAgJCezfaZ3x+T3WQhIXWzJe/X8+Qh2Z3sfmb3y2bf+22nCZd1ei5FiBAloFuvpo12ybJko19yf0wc1Bd6g4gdm22wV6tv5svUkZ5qz+Vp3mibzBKSHb2RXj3YH3J8iotc+O6LEmz5VQ18PXrXv59hWoYeigIcPVx/76UsK1jy9lH8uroC7y4sxJb16u05StWeMd+HIwBwrCZcxlvVN9++Xrb4mp7LspL6w2VhgfpGf+WXJXC7ZRw55MCbLx3G8g+O+4/R1fxf8g15rhtw9JIeKaZU5Cb0Rs+EXqc8Fk3tTdq+Sa2/qsKLt14+7N+uxfd/zbcCad3QkmxKgVbUoqCyAF7FW7slTE1PZHmpG+++fAJbVymoLDxp5dQ64chaz0Iw6bHpEAUxYF6qrz34enlPCZf+nsvT9xAW1Cw8lZ516nExNR+YNNRzeXJYb6g3strm9S+0JcsKZDlw+Hbd0Fy3B/B0H8b5VsQ9+X4lUYJG1ATMyT35diRRQrIxGW7ZjWK7ujhPU3u16/79O3k4s0+KKaVJtxXOGC6JWknctxfxF5wL/bIP4c3KRtmnX8N17nmhLouimO3+h6CYTDC9NA/igf2hLqdJfL164TrnsqWCMZ9UPClcDk8biYmZZ592EQuLPv6UNyUNLugTomGxvjeTzV00qaW69jBBpxehN4jomlP75i2tcz09lyZ1zqXbeWrPpehS3wQaDFq1x0MS/L1oiSnqv1aDFd3jeyA3obf6O6fsf9rwOWtEjT9cCoqErt1NMBia9hjpJT3yUwYizhSDvgNj4fUq2PxrJWRZQdlxBRqNAKNZPG0w0htEaAQtjFXpp3z488PXpVixvBi/bbVBlICcnvWH3s4Zattctug4Fjx9ECeOu3Bonx2/rlF7BNeuLMOubdWIT9BAq1PvQ6MVEHu0P8Z2nghdnWGxx0+o4atLshqsfD08dedc1qesRA0xVRVevPH8YSx4+hD27KzGT9+X+0MQEBgEUkwp0IgaSLIOqUUjsfarajiLYjC884iAYCUJEk4cdWPllyWottXfEwcAXq/if6zSswwoOeH2r6Lra/82X7gUA3vys+Ky/T/7/q/H6+OhKAo2/lyJooOAftsIHF3W37/Hqvr41IYUq/7Unstu8T1wde9rA4bF6iQd9u+uxmdLTqC81HNKgLLqrYjRxaBznQV86uN7XLvUFy7jauZUVtT/eNV97Tl51IWPLCuY/9RBvPyvg6iq9OClOQex8JlD0Aq1e53WHQpct7e5sd5E32iDk/9vaEUtXLILTk/94RKoDd8VrrKa+2r+MNa6czlNWrP/dZE9l0QdnG7ZR7CeNRbaLZvgGjMOpZ+vgLdX71CXRVFOTuuC6ll3QnA6EfPgfaEup0lq37RGV8/lyVuRtPVtSoKEWF1cs+eCnnw7DQfN9hu2r23ncKnVibjt7u64+sY0JMQbodcLMBpF/0qyJx+rkwLnXPqILjVQxRlN/ufYNzTWNyxWFESM7DIamXHqiuAn7+N5uiHXoiD5tyMRIKJnn/p7Bxvj21Nww0/qfpBel4Q4iwQBp98vVBQFGM0Sqm3yKfMVy+oEudw8M/SG+t82dk737XPowuGDTiycewivPleAj949jmOFTqxfqw5DvWJmGm79SxZm3pGO7O5G6Dyx0Fapi5f4HqPiUjV89c/qgQEpA9HDmgsAsFg1EASgYL8Dz/xzHw7uswfUULdHs+CAAwajiLx8NWx8/2WJ/7q6H9LEaGMxuev5iPltLL79wI1vPyvBx+8dr6mnzocwkhYfvnMM33xSjBefOICVX5Zgz04bqm2BvXIH99phr5aR08OEvJo5swf2qHX65gDa6um5BIBeibXvHXzB1qyNQeEBLypKZGRmxuDMc1IgKlqs+LQYbpes9uJpDBAFtf3G1BleWdfJr01aUYeioy54PAp277AFDA11u2RUlCi4pMel/iGcDfFtmZOeffqey/IyN44VBvZq1x2S31Av48G9dpSVqENvX32mAEVHXThy0IkfP6/Cuu9s2LNeCRjRUXdY98mP78ni9Wovb+xJj5lBY4CiKKhyVzVYm69n2T+cugUf0gmC4B+eqxW16G7tiW7x3QNW6o1UnAxG1BIuF8wP3QfT/JcAANV33AXbX+7l/EpqN9W33g7D2/+BftmH0K76Hu5RrdvkPtg6RM9lG31eGzgstuWBtaGhsKHY51K9r5pw2Y7zPLv3ikFxMXDcZsOI8VYIAPSa+nsZYgxGFLgUKIoCk9bkHzopOs3QyHp0iq3tURg6xgJBALrl1h8ET+6pbGxYrAABcfESpFIRuXktC5ddsvRIStHiyEF1ZVtJ0SI2Xn3MG3vzazKJqK7ywu1SoNPXtjnfcMTZ92Yh1tJwW+na3Ygz8mNgTdDC4fAGbItSsN+BE8dciImT0KlLbS9kpzQ9dm+vxtHDTqRlGKARJXi8CsoqqmE0ioiPNQfsTShJAtKzDTi0z4GyYg92brYhs6v6Jl9RFJSVuKE3iDj7wiQ4HTIGjYyDRiPg0H4Hdm6x4dgRJ1LT9AGhQyfpEG+worRQDXwQgGOFTrhdckAgd1SKOHzQCa1OQFWFF998UrNaEg7jjP4xOOuCRMgy8OOKUgBAr34xSMtQ7+fgXt8Q3MBhsSeHlro9i75gIwgCXJvOQBe7E5OuT0anND1+XVOOrRuqsH1TFTqn6/GHP2ViRNrIZq38rJO0sNX0wBYWOGGvEGGsGVH75ccnsO6Hctzwxwx0yWx4tITXq+DIIQf0BjFgHrJPTFxNuKzw4oP/HMWRQ07ccV82Ymt6NOv2XDY0/Hbbxtp1BUqL3ZA0AhRZwapvymAWh8EJCfoptfddd1hsY0NVB6QMRLala8DjrtZVM1e0Zl5uffsL+wKt74OClm5TMzJtNNyyG4IgYFjn4f7Ljx1xQpIEJCY2vqhXOOI7YaJmEg8eQNyNM6D99RfICQmofGE+XBPPCXVZ1NGYTLDd/xDibroeMffcjdKvvw/rDzd8n5yH84I+LdHQHMfWqBu+hFbcZsNzLutsRdLMRXNaQ9PAfMT2oJd0dd7U1v9G0GzUQ6kC3G4FJpPZHy491Vr0qDwXY7pk+o/tlmtuMFgC9Szoc5pA7evlHDDMgvPOz/LPLWwuQRCQPzQOXy0rxreflUAUNYhLVM+5seBhNEsA3Kiu9voXZQGAygoPNFoBCUna0/bMa3UiLpuhDqFUFAW9+sTg2BEnvlpWXDNMF0jtfNLCKDVB89gRdYinJGhQWeaGDAVxVu0pK+wCwIxZ6dizoxr/XXAkYHisvVqGy6kgNU2LwSMDt64YMsqCrz8pxq5tNqSm1a4GC9T2bp047oIgAjk9TNizsxrHCl1ITtdg/55q7N1pR0osYAIw5uwEdO9lwv7ddhQecuLAXju2bawKCEEms4Refc0wmiTo9Gq49XqVOtt/qMfWNyR9QuZZWHHoa5yRmAdAHRaqHE9BepwGGdlqkJ44JREfvnMcsgwcPuhEcZEL3ZJ7NPjc1EcSNLDXhEtR1uDn7ytwzkVqD/LuHdVQFGDjuooGw6UsK/jhqxK4XQq69jT494utq3ZYrAeFBU543Ap2brZh8CjLKedvrCfAybKC7ZtsgAAMHBaHX9dUYPREK7weBT98XQqDHK8e56x9Puv2XDY25F8raeud3+gL/b5eyfrmgp7cu9jUOZcnqzsPduUXJfB4FIw5y4rXnitAbJyEB+dG5hZ20fURMlEwKQr07/0X1jNHQvvrL3APGYbSr39gsKSQcV48Da4Ro6DZvhXGBS+Hupwmibaey8BhsW0151L0v5FvTRBrMFyGeCuSUITLk3ur6hNrUt+8u12yf9gbALjsAkRo/OG0Keo+9o2tQuzb788co0FW15b1Wvr0GxLnX0duwJAEfzhobDEak1l9TqqraufHeTwy7DYZsXGaZg35FgQBPc4wo2dND+z+XWpI94VJn9Q0taZjR9ThkhpRg9JidZhpvFVT7zxVSRKQlqneTt1w6fu+vmCemaM+lwUH1SGcdXvJ9JIeDocXVRVeWBO1/uGdhYccgEfCzs022Kq8OH5IBgSg/+BYpGUYMHK8FZfO6IwHnsrD6LOsSE3TIT3bgLHnJODmuzMRE6uBJAnI6GqE26Wg8JDT3/5tpxlumR6bgat6/Q5dLTnqsVVeKAoQG1f7WAwYZsH/PZyDURPVuYa7d1Sfcjt1KYoChz1w3qPHLsHjAQxGAZKiw2/b1NuotnlRUqQ+lts2VkGW69/W5etPirHi0xJotAJGjj91nicAxMSq7froEad/FWbfYkdA4JD8+noHjxx0orLcg8yuBpx/WQqum52OcecmYOL5ibjlL5no1VdtX47y2oXCfKHPt3ATADidMo4eafo2Ob55m0X24/7bOtnJi6vVnd9ZUebBwrmH8NtWm/8yRVFOu0WOvdqLFZ8WY+UXJVi3qhxOh4zUtNMP6w1n0fVXnihIhOJixM28FnGzb4ZQbUP1HXehbOlyyF3SG/9lomARBFQ98TQUjQamOY9CPHI41BU1yNdjGW2rxQZjKxKg/n0rm6spcy7bN1zWvwdke/D1LGhETYOPqdmkvsGVXVLAG3+nrWYT+tim133yir9NObYtQnecRYOpV6fi/MtSMPWyLhBFAYIgNBpwfeHSt9IsULuFRKylZXUlpuggaWr/T3RKC3yTnpisXn/0iLo3pUbU+LfuSEjSNfh4mGMkaHVCQLj0zbesL1x2TtdDEIHDB3xbgNTWoZf0KD6u/m5Sis4/d7SwwImt621wO9X7ExUtuvcywWINvH29QcI5FybjlruzcMOdGZgwORFxdYYPZ9UE2wN77f4h6L79NRuaE1i3l7uqQg3bMSd9sGGOkdCjtxpwdm+34cghB4qOulCfn74vxxP37sWmX2qHKleUKhAUAfEJWsQYjSgucsHjkVGwv3bho6oKL3ZusaGi/NTVXnduVkPiDXdmNLiCsG/Ope/xBYB9u6r9bUx70kq9J/MF0d79YiCKArK6Gf3tObWz3r+olr0mXOrE2m1kfK81+/fY8eLjB/DynIP4bZvtlPuoj2+BIP/+m/X1XJ60J2fdnsvNv1ai4IADny4ugterwOOR8dbLR/DKk4fg9dYfMPftssOXPb+uGXJ9Rv/IHBILMFwSNUr31eewjhteuxrsh5/Bdu8/AG37vSkjaoi3V2/Yb5kN0VaFmL//NdTlNMi/FUmUDYsNxmqxdW+rtbfp+/3AobbqViC+r/aikTSn1NJeBEFAsikFycbkBo+JM6tvIhW3xt+bCACOKnVXKV8AawpRrD/M18f3eLTVc9FvcBwGj7RAK2khCmKTPkAw+noubbULGvmCTXN6bOuSJAGpnWvfdJ/cEyNJAjp30cNRrYYaERJKTrggCEB8orbBQCwIAqyJWjjsMuzV3pr5ljU9ngmn/o5OLyKlkw6V5R5UlNWujOpweLFjvdMfypJStOhcM0/yyCEnfvq+HCIk5A+NxSVXdsH0azs1+zHI6Kq2qSMHHacMQdc3YZ5eZc1Kq3V7Ln3Ss43Q6QXs3WnHgrmH8PaC+j9c3L6pCooMdXGlmh68smI3REULk1lCotUERQaKjrr9q7/65ou+91ohnnlwHw7tr108ye2SUVzkRly8xj+Htj46vRgwxFoQAFkGdm5RQ17d5/fkAKcoCrb5wmUDIcta80GCrVRt4yatGXpJjwRDIjqb0+Cwe/H2K4dRXqq2jV9+DNz/dPcOG9599QhOHA8M5XH6wGHVTeu5rD1m/261F7i02I0tv1bik/eLsGenOre4oa169v5W2/vs9SiQJLX3P1IxXBI1QCguRuxtN8Jy1aWQjh+D/Zrfo3TFKniGDW/8l4nake1Pd8ObkQn9sg+h+/qLUJdTL1+PZbQNi63bExuO4bKhXjGNqGnyvn1tpXa12NC0gUnZk3FW1rkNXm+JMSHW3RnJQjY0NY+XAgVOmwBTjFTvvLKG1F3cqbEwrRGCNxe1f3I++ieffsVPQF3QB0DANhuVvnB5moV8GuMLH5IkICn11PY2cIS6AMvqb8tQVabA6VBgsWqg0QinfTx825KsW1WOR+7e49/ypKH5qr6tMg4fdPh7t7b8WoVvPqzA0v8eA6D2tMZZ1G1hfEHAajXAmqRFcpIZBmPzn5/kTuo5nzjuCgj5vr09G1NZ3vBzoNEI6NrDBK9XgSIDZcWegJ5nQB3a7AuMHreCJf89BkVR1MVxoIUpRkJyohpijhc6UVATIs++MAmd0vWIT9BAloHlHxT5h8geP+qCotQOaz6dmDqh2DdM2rd6bt15wIaTegKPFbpQesKNtAw94q31P6fxNW2gosSLc7LPw5kZ4yEIAs7vdiFGdhmNwgJ1OG6PM0wwmkTs2maDraq2F3bdD+XYsdmGhXMP+WsCAIsuMFzW9zxJohTw+unrufR6FRzY4/APTV/y9jGsX1PbY1z3furyhUtfe8nJNbaovYWL6PorT9QWFAX6D/6HhNGDYVj0LrypnVD+n3dR9fQ8KDH1L/NNFFJmM6oemQMAiPnrnwF7/X/AQql2WGz0/dmpDYLBGBbbujcYDc3dHNVlDEamjW7VbTeX7811Y0M0g0UQhNMOyzaaRGRWj0AG+vprdbsUKF7JP8SvqQLmXDay3YvvOQ7G49I3uT96J57R6HGmmn027bZTh8XG1NNr1lS+eZbJnXSQpFMf+76DYmGOkbB9UxW2rVdftxKSGh8+7QuXq74uhcet+IdeNhQu033h8oCjdsGWMg8kpTYgJKWo8/R8vZfmWAnDRidCgNDiVZXNMRIMRhHFRW5IddbQ7JXQu9F9GIGGh8X69BscC1GqHbJdd/9LQF3wx+NW0DPPjLQMPY4WOLH3NztKS9wQFQ1MJgkpSer7mqNHnCg4oK6Im5ljxM1/zsTtf89GlywDCg/Vbifj6/08Xa+lT93/N75tYXxbkmhOMyx2+8bT91oCtT2XpSVuJBoTA1aKBdTeZwDI6mZEn4GxkGX1AwUf3xBsh13GskXH/ZcbNIaAehraX9hU03upFWsXuyo85ITLKSOnpwndck0QRaBrDyPOu0QdMbF/96l/m8tK3CgpciOlsw7jz1OX7B043HLKcZEk+v7KE7WCePAA4q6ajrhbboBYXAz7tdej9Ief4Jo0OdSlEZ2Wa9JkOCdNgXRgP8xPzwl1OaeI1tVigbbrZayrLeZcAuqbtrqLW/hkxGYiPTajVbfdXL43Y03psQmFuvMOfcNinQ4ZkqLxL07SVFID813rPbZmm5hQLHTkYzT5hsW2bc9lVo4REIDMnPqfc61WxJDRFigKsPobNbwkJPvmxzYeLp2OwH1J6xsWC8C/sNG+XdXQCOrtm80iJKU24CWmqN8PGWVBdg8jfn9bFyQmqD1qLd1qQhAEJKXo4HErKDriwcovSlBY4ER+8sBTjt29wxYwLxI4/bBYAMjLj8W9c7pj4HA1WBWdFC4P1ISZ7O5GjKhZeGf1ilK151JRey47pag9ipvWVcLllNEly+D/IEAUBUy6OAmAun8qAP/QzqYsOFM3FGd3N8FgFHG80AVZVgLD5UkBbsfm2vmWDfE912XFp84JBWoWZQKQlmGo3QN2nXoOsqz23hpNIlLT1D0/j9eE3t07bPhtnXpMZYmCH74sC1jYaPd2Gzb+XAFbSc3q03U+JNhXMyQ2u4cRV9+Uhr893g2/vy1d3RZHK+DgXjveWXgETz+wD4vfOgpblQd7dqq/k9PThDP6x+JvT3Q77XlHgvBdt56oPVVXwzRvLkwvPAvB4YAnpxuqnp4H98j2/WSfqDWqHp0D7fffwfj8M3BeeDE8ffuHuiQ/f89lFIbLYOzh6RtK2dohpKO7jIOseBs/sB3E6S04J3sSLPr4UJdSr9p5h15/z6XTIUNUNM1azAcIHArb1GGxoVjoyMdkridclrduziWg9m7dcnemv5epPiPOtKKwwIltW9wQBCAhsfFhwr5wCai9oiUn3DAYRX9IPllyJx2siVocPujEZ/9zQTNMgduprgIMAAaTCHNN721unxjk9lHf3Gv21S4W01JJqVoUHHBg50oTxOPp8FR1g3hW4GPq9Sp4/42jcDpk9Mwzw2Dw7RF5+p5LIHDI8ck9l/trhmFmdTOiUxc9vrJq/KvLiiYNTGYvUpNjIIi1e5oOGhHYa9YlywC9QURhgRNer+LfOqZJ4bLm/41GKyDWIiE1TY8De+woOeFGUooOWlGLE8XVePX9o5h+aQx6nmGGx6PgeKELsRap3v0zfbQ6ETFxEspL3fB6FX8gdjpkSBp1USZAbYNGk4ikVB0KDzlxvNAJvUGEx60gNU2P3D5mHDtSjK0bqpCUqsMni4pwqFoDQycXDm4DivYVIyVNh159YnBwrx1vvXIEAHDYXIkhl3gRr68z37JmZeSu3U0QRQGiTq1JoxGRnm3A/l12/5zTTT9XQpIEVFWqz7Fv2LBeH/n9fpF/BkStoSjQfbwUCaOHwPzUEwAA211/Qem3qxksKeLI6Rmw3fcgBK8XsbffCrjdjf9SO6kNYFEYLv29sm33J9V3W60NrMmmZKSam78QSbB0MncO2OYjnJhMvqGhsr/XzOWQIaD5w2LrDv9u7AMC3+I/oVjoyMffa1tnQZ/aXrPW9UOkdtYHLOxyMr1BxJU3pGHm7VkYcWY89DXBSmxCzyUA9B8Si+tmp+PqG9MaPF4UBVx7axckJGmxb6sHxwpd8Dpqg2VWjrHeIdO+4bBNGcLaEF9AOvCbC2n2gXAXW/w9cz77d9vhsMtQlMCeuKY+B8k14bJuz6UsKzi0zw6dXkSnLnpIkoAzJyX4rxcVdbsUk8GAxJqhyPEJmlNWKRVFdfsXj1sNfceOOKHRCkhMbvwx8YVi3z6p9W0/c3CfA/YyDVZ+UQIAKC91Q1HUFYMbY03UQpbV7T8AtVd17oP7sODpQyguciM+UQOTWVL3gB2iDv/dsK6yzqrEWv9w3S3rK7F3ZzVKi93Qe2NwrNCF8hNqm9j0cyUA+HsZAUDjNcJW6fX3anu9Cg7us0Onrx1aXVd2N/V1T28QMfPOdGi0ArZuqMLenXYYTSKyuoXn62JLMFxShyVt2wrL9AthmXktpIJDcE65ECU/rEP1X+4FDOE5bIuoMY4ZM9W9L7duhmne3FCX4+cPYNEYLoOwzUpbryBKjTOaaxa1qfb69+Bz+HsumzsstjYYNbrPpdA2vdStUffc7dVe/LbN5n/D3tKtSJorO8eMpJTaN+Wnm6tad/hr915mpGcZkJZx+r/b1kQthoy2QFJ0cNgUyHYDzDESbr83G9N/X/8HML520JotewIWMqp5ifjxm9KAfQ/rhs2SE264XHLN/pseQGh8GxxfgD1xrPYDxfJSD9wuBalptfNdBwyzYNrvOkHSCOiZo84DtOji/XNjh4+z1js31jeseNvGSjjsMlI665q0wJXvQxnfhwG+3s7CAid2bbfBLMWhpEDd6qVgvwPHjzr9+2z65t6ejm+ObVmJGxXlHrw9/wgcdtnfu9o5vbZN9Bus7gG76ecKfw9vQpIWicnqFjTFx934+H/q3Eu9HIeC/XZIsvq4/rbVBofdiwN71Z7J7r1N0MgGVNu80NW0jcMHHXC7FGTmGOt9DPsNjkN6tgHTr+2EjGwjevUxw+WU4fUqyO1jrvd3IhWHxVKHIx48APMTj0D//nsQFAWe3F6oevgJuMeND3VpRK0niqiaOw/WM0fC9PQcOCdfAG+v3qGuqnZeYhR+phmMOZddYrrAI7th0kTucvSRxj80tKrOsFinDI2iadWCPo0Ndw3marFNZfT32nrx/Zcl+HFFGQB1OKPe0I7b1QgauBU1XJzu8dDq1GGGbpfcpFVLfWItGojQIMcxFs4qF0wp0mm3mPGtCNrQnpRNUXdoZ/dcE8rLPDh80IljR1zo1EUPWVawY3PtHoylxW68+dJhVJR5UFnhgTlGajR46PQiLFYNSkvccLtkaHViQO9cXX0HxarhSNcVDtmGWF0cxp3rRGpnPQaPiqvv5v3hcvW3ZQCAzK5N62VLyzAAAvy9cqmd1cfxx29K8cNXpUjN6I20Y9n+D+jWr6nwB8amhEtf7+lv22wo/rYMleUe9MwzY/cOG2QvkJZe+7zFxWuQ09OEPTur8XPNtiQJNb8/cUoi3nu9EOWlHhjNIoxiCoqdKbC4MqE3iHA6ZGz5tQoF+x3QG0Tk5pnxy24D7Lbankv/kNgegduU+CQkaXHDnbXz3PsPicOW9Y3PLY1E0fdXnqgBQlERzPfejYQRA2FY9C6UxERUPfIESr9ZxWBJUcWb0x22v94HweVC7J23At5wmHMXvT2XwQiX/ZLzcUG3i0M6VLKjMRhF6PQCykrc/t5Gh90LEZpmL2pTNxg1vs+lr/2E7rmWJDVEVtu8OLDX4b/c41ba9f9sc+aqXjc7HX/4U2az6vM9j46jcdDJMY3uXdonqS8Gpg5GijGlyfdxMmuSFjVPMbr2NPkXl9n0izrUsrDAicpyjz9AFhY4cGifA+WlHsjepg9LTk7VAQpQXNPzV3KipncuuZ59Gk0StBrJv8JqSic9xp6TAI2m/tcwX7hU2wMwdEx8k2rq1EWP//tnVwwfpx6f3FkH1Ox3CQDHDnkgQYuhYywQRGDjz5UoLvLV3Xi4HDjcAp1ewOpvy/DbVhusSVpcOqMTxk9KhCCqPYx19R+qDo319Wz6Amz33mb84U8ZyO1jxqSLk5HTLRZZttGId2di4pREAMCXH5+Ax60gM0fdnsbojYfDJiCpZu9c/2I+3ZsWvHNyTbBYNTCaReT0rD+QRiqGS4p6QmkJTE88goSh/WFa8DIUnR62//sbSn7aCPsfbgG0LR/uQhSu7DfdCvfAQdD++guMr7wY6nKCsuhNuIjmXtmORBAEJKbo4HIqsFfVLA5iEyBAaHCLi4YEbEXSyLBYX6gM9QcJphgJLqcCh73mwyhBnc/YnnyPlSAIjb5WSJIAjaZ5wdcX1Hwrg/q2YGmIRR+PPkl9WxWwJUnwh5iuPYzoOzAWEIDNv1TW9FqqvVf9BquP9W9bqwN+v6lbwfj2SHztuQJ8/cmJ2p7LxNa/x4mL1/iHR/fuH9OkXkUfc4zGP4RWrxfVECzAHzgBNSRmdTOiusrr78Vtyn3ExWtw5qREoGaE8eRLkqHVihhzdgLundMtYFgsAPTqGxMw/zexTvBO6aTHlTekof+QOH9Pq8ksYfAoC3rmmf0rE2d3NyE+QQudHIO86gtxRmIePB4Zh/apvZpN2aIFUNvFzDsycOOfMqHVRdffDg6LpaglHD8O0ysvwPDaAoi2Kig6HapvvAXVd/4flKSkUJdHFFyShMpnXoR14miYH/8nXGedA2/P3JCVE81bkQRjziWFRlKKuqJkRbH6RtJRJUAQ1DexzdGcYbG1cy5DHC5NIkqh9nxpdQL+8mhOu88DC/YQYd+WHm6XmkZM5vZ5Uz9hShIKCxzo1EUPURTQtbsR+3bZcWCP3R+mRpwZj/VrK+ByBm6v0tRe8wHD41B42ImDe+xY/W0ZuvZQA1JTegCbomsPEzb/UolRE6ytup3LZnRGtc3rD3C2Ki9S03To2sOE/bvs/rm+1iYG2GFj43Fonx1x8Vr0OKN2GkF9vbA6nYi8ATFYv6aiZnXh+p//br1MECWgZ5666usFl6fgxccPwF4tI7u7ERar+pxUlKjP1a5t1fC4FeT0NDXr/0xzX1ciRXSeFXVo4pHDML7wLIxv/huCwwFFr4d9xkxUz/4j5IzMUJdH1G68vXrDdvc9iHnkQcTe+geULf8K0LV8Sf3WqA1g0fUJLVAbJKLx3Doa3xyu8hMKZKsCp01ArEXT7B4yQA1IXsXb6EI9sTq1xypGG9p5V76tWKCoC6U0NEQymHz7iwYrXGp1IgwmEY5qNRSYY9rnbfAZ/WMCVmHtNzgW+3bZ8fnSEyg66kJKZx1SOusRa5FQWa72HKd01qlbcjRxWGxKJz1m3JaOt145jN3bq7F3pzoH0NoGPZcAMHl6MsacleDvIW2pur8/aWqy//uu3Y1YUfO9KUbyb8fSGEkScPn1Da8UfLL8IXFYv6YCicnaBj8QTEzWYdbfsv1zrWPjNLj6pi44fNCBtAw9BEHwb4NSUe7BspqFgAaOqH/OakfDv4QUNTQb1yP21j8gYUg/mBa8DIgiqm+ehZJ1m1A1Zy6DJXVI9ll3wj1sBLSbNsD05OMhqyOqey5rzo3DYiOfb/GV8hOAwy5DVHQBK5M2h+9Dh8aGxVoNCbik56Xol5zfovtpK3XnH/p6Ztqb77EK5hDhuDo9ge3Vc3myvoNikZSixdHD6vDcXn3V4Fk3CE6/thMGjYjDgGHNCyy+xXa8XgUGk9jovNKmMhikVgfL00nLNEBbsy9kc4bdNldmjgHnX5qCSZckn/a4hCRtwBDa9CwDho2J97/ex1vVbVD+91ohbFVeDBoRh159omthnpbiX0KKbB4PdB9/iPgLzoX17HEwvP8eFLMZtjv/jOJftsL20KOQO3UOdZVEoSNJqHj+FcgxsTA99zQ0a9eEpIxonnNZuydl9AXnjiaxJlyWFSnorRuGTva+zZ5v6eNr603phYvRxoR8WHVYhMt2GCJctyewsTmXwaLRiLjgilT/z736qsM5feHSYtUgpbMeF1ye2uyex4yutfMM22K+ZXvRaARk5dQM5Q1iuBQEAYNHWZCR3bp9JS01HzoVHHDAHCvh3KmnD6sdCYfFUkQSjxbC8M5bMLz1BqRDBwEAnu49YP/DLXBcdiVg5vL9RD5yVjaqHp2DuNtvQdxtN6J0xQ9QYtt3+I4YxftcBmO1WAoN37DYE8ddyHNmwuw93upwGcpVYJvDWCdcxltDE0p8w2Ib6+1tjbr7drZVr15LZOUYcc5FSSgrcaNzzZYZvlDVOaPlW590yTJAFNUVWYMZ0oIhJ9eE3TuqA/cGDVN1XxcGDIuDLsoW5WkNhkuKHF4vdF9/AcNbb0D35ecQarZXcI0bD/vNt8E1/iz41/smogDOy6+C8/NPof/kI5j//ldUPRuaFWSjelgsw2XE0+lFxMVrUFbi8W9I39Jhsb6hncEMSm3JVGdxk1D1XPp6LIMZyGMDhsWGNviPHB+4OE5GzZDW7rkt/4BcpxPRKV2PIwedTV4UJ1wMGW2BJAntvkpxS9R9XRg43BLCSsJPZLziUYcmbd8Gw+JF0C96F9KRwwAAOSkJ9suvhuOaa+Ht1iPEFRJFAEFA5ZPPQvPzTzC+8xZcZ50L1wUXtdvdR3Pvnn9BnygMzh1RUooWFWUe7P1N3RKipT2X4bIKbFPVHSJqaeE5t5YmyAv6AIHDYs0hGhbbkJyeJtxxX3aLP9DwyepmxJGDzqDOkQwGrVbEsLHxoS6jSXzbmHTLNUVcD3GwMVxSWBIPHoB+6QcwfLAImu1b/Ze7xo2H/drr4Dp3cshWvSSKVEpiIiqffRHxV1yC2D/OQmm//pCzstvlvv2rxUZhAPOdUTQG544oKVWHvb/ZUVigLrbS6mGxETKixmiqOyw2VD2XvmGxHaPnsj5tsbrr2LMTkJisQ15++PcARqrs7kZMmZ6MnnmchnUyhksKG+L+fdB/9gn0yz6C9qfaRUc8Z/SB45JL4Zw6jSu+ErWSe8JZqJ51J0zPP4O4m65D2Ueft8sHNbVDR6MvXHIrkugycIQF61aVQ5HRoj0ufXwLPfn2bgx3vqAliEBME7e/aGu+UBnUYbE156bVCVG3eb2P0SRh8EgO1QwmURQwZHR8qMsIS5HxikfRSZah2bgeus8+gf6z5dBs3+a/ypuZVRMop8Pb+4wQFkkUfWx/uw/aNT9C+/NPMD/yIGwPPtIO91oTKqM4XLLnMjp0StNj5HgrVn1d2uI9LoHaOZeRMizWWLMtR5xF06yN4NtSuwyLrVnQJxx7LYmiAcMltSuhqAi6lSugXfktdCu+hnS00H+dJ7cXXJOmwDlpMjwDB0flm1CisKDVouKV12CdOBqml+bBPWo0XOecF9S79G9FEpU7YEXvkN+O6sxzE3DsiBPpWYbGD26A5NuKJIhDPNtSbJwGObmmVp1za9UOiw3marEadE7Xo0tm6M6TKJoxXFJQCZUV0KxbC91330L33Qpotm3xX6eIIlzDR/oDpZzTLYSVEnUsckYmKp99CZbfX4nY2Tej9JtVkLukB+3+BG5FQhFEqxNxzU1dWnUbtftcRsZbLVEUcO0trTvn1mqPnktRFHDjXRlR+VpEFA4i4xWvFW6//XasXr0ao0ePxty5c0NdTnRTFIgH9kO7bq369dNaSNu3QlAU/yHe7K5wjZsA19gz4R49Boo1IYQFE3VsrvOmoPrGW2Ca/xLibrwOZUuXA9rgrHrn77mMwgDGcEn10Yjq/yVthGxFEg7aY84lEJ0fchGFi6h/xbv66qtx8cUX4+OPPw51KdFFUSDu3wfNls3QbNkIzeZN0G7cALHoeMBh3i7pcA8ZCveYM+Eae2a7rUxJRE1ju+8haH9aA+26tTA/cC9sj8wJyv1E83YdtcE5+s6NWq5/cj46mTsj3mBt/GACAMTq1EVo4vRxIa6EiFoq6sPlsGHDsHbt2lCXEbm8XoiHDkKzZxekXb9B2r0b0m87oNm6BWJlRcChiiTBnT8A7iHD4Bk6HO7BQ4M6zI6I2oBej4pX34T17LEwLXgZngGD4Jx+eZvfTe1qsdHXu8fVYqk+VkMCrAaOzmmOFFMKLs29AkaNMdSlEFELhXW4XLduHV599VVs2bIFRUVFePnllzF+/PiAY95++228+uqrKCoqQu/evfH3v/8d/fr1C1HFEcjhgHiiCOLhw5AOH4JYUACp4CDEwwWQDh2EtG8vBKfzlF9TTCa4Bw2Bp28/ePr2V//N7Q0Y+QeBKNLIGZmoeOV1WC6fiti7boen1xnw9unbpvcRzftc+ofFRuViRUTti8GSKLKFdbisrq5Gbm4uLrnkEsyePfuU65cvX47HHnsMDz74IPr374833ngDN9xwAz777DMkJLT9p4WiGF5viqTjx4DtG6ArrYTi9gBuN+DxQPC4gepqCFU2CFWVEGxVEKqqIFRVQiwuhlB8AuKJExCKiiBWVZ72PuTERHjyB8DbvSe83XvA20P9V+6aA0iBcyL4tiq6+Np7uLV7Cg7v+Amo/vsDMD90PyzXX4Pyr76DEt92w/kyLZmodJcj0ZQIURSiqn2JogBBACRJjIrziRbR1MYo/LB9UTBFcvsK63A5btw4jBs3rsHrX3/9dVx++eWYNm0aAODBBx/Et99+iyVLlmDmzJltWotGIyIxMaZNb7NVHA5gcD+guhqxLb0NiwXo0QNITgYyMoDMTPUrK8v/vWi1QgQQnCU+KBJYreZQl0Dt5YG/A1s3QvrgAyTcfjPw8ceA2DYfGyUm9sHArn1OuTwa2leS3YIjLgNSEuORGBdGfycIQHS0MQpfbF8UTJHYvsI6XJ6Oy+XC1q1bccstt/gvE0URI0eOxIYNG9r8/jweGRUV9ja/3dYw3fEnGA/shVMRoIgSoNFA0WoBSQPFZIQSEwMlJhZKTAxgNkOJiYWckAglORlyQiKg15/+DmQAxVXtci4UfkRRgNVqRmmpDbKsNP4LFB2enAfLps3QLF+O6j//BfZ7/xGUu4mm9pWm6Qo5TgO9Kw7FfM0MG9HUxij8sH1RMIVr+4qLM0KrPf1qzhEbLktLS+H1epGUlBRweWJiIg4cOOD/+cYbb8SmTZtgt9sxduxYzJ8/H7169WrRfYbTkwsA1Xf9BcbEGFQVV7WstjA7HwpPsqyEXdunIDLHoOKNdxA/aQJMc5+Ep0duUBb48YmG9mWUTOgRnwsogKxE9rlEo2hoYxS+2L4omCKxfUVsuGyIoigB+xfNnz8/hNUQEUUeb/ceqFjwb1iumo7YP86CN7srPIOHhrosIiIiCnMRuwaL1WqFJEk4ceJEwOUlJSWn9GYSEVHzuMdPRNXDj0NwOmH5/VUQCw6FuiQiIiIKcxEbLnU6HfLy8vDjjz/6L5NlGatXr0Z+fn7oCiMiihKO62+E/fczIRYdh+V3VwBVnE9IREREDQvrYbE2mw0HDx70/1xQUIDt27cjKSkJycnJuO6663D33XcjLy8P/fr1wxtvvAGHw4GpU6eGsGoioighCKh6dA6kvbuh+/47xN12Iypef6vNVpAlIiKi6BLW4XLLli249tpr/T8//PDDAIBZs2Zh9uzZmDx5MkpKSvDcc8+hqKgIvXv3xsKFC4OyxyURUYek1aJi4RuInzQB+k+XwfzwA7Dd/1CoqyIiIqIwJCgKl7ZrCrfbi7Ky6lCXEUAUBSQmxqC4pavFEp0G2xfVJe3ehfjJEyGWlaHysSfhmHljq26P7YuCjW2Mgonti4IpXNtXfLyp0a1IOLaJiIga5e3eAxX/eReKXo+Ye/4PuuXLQl0SERERhRmGSyIiahL38JGoeHEBACDu5uuhWbc2xBURERFROGG4JCKiJnNdcDFsDz0KweGA5XeXQ9qzK9QlERERUZhguCQiomax33Qbqm+eBbGkBJbLp0E4fjzUJREREVEYYLgkIqJmsz3wMBwXXQLp4H5YrpoOoaI81CURERFRiDFcEhFR84kiKue9DNeoMdBu2oC4310B2O2hroqIiIhCiOGSiIhaxmBAxX/egTt/AHSrVyHuhmsBtzvUVREREVGIMFwSEVGLKbFxKH9nMTw9c6H/8nPEzr4J8HpDXRYRERGFAMMlERG1ipKYiPJFH8KbmQXD4vcR89c/A0r4bPpMRERE7YPhkoiIWk3unIay/y2FnJwC4xuvwvzwAwyYREREHQzDJRERtQk5pxvKFn0IOT4epnlzYfrXY6EuiYiIiNoRwyUREbUZ7xl5KH9vCeTYOJiffBymp54IdUlERETUThguiYioTXkGDEL5e4shx8TC/MQjMD3zZKhLIiIionbAcElERG3OM3goyt9dDNkcA/OjD8H43NOhLomIiIiCjOGSiIiCwjN0GMrf+QCKyYyYhx+A8flnQ10SERERBRHDJRERBY1n+AiUv/M+FJMJMQ/dB+OL80JdEhEREQUJwyUREQWVe8QolL+9CIrRiJgH7uUcTCIioijFcElEREHnHjUG5f99H4rJrM7BfORB7oNJREQUZRguiYioXbhHjUHZ+x9CjrPANPdJ4I9/ZMAkIiKKIgyXRETUbjyDh6J8yTLIiYnAs8/C/KfbAa831GURERFRG2C4JCKiduXp2x8VH30GdO4Mw5v/RuysmwCPJ9RlERERUSsxXBIRUbvz5vYCVq6ENz0Dhg/+h7gbfg84HKEui4iIiFqB4ZKIiEKje3dULPscnq450C//GJYrp0GoKA91VURERNRCDJdERBQycnoGyj7+Au5++dCt+h7xF02GeOxoqMsiIiKiFmC4JCKikFJSUlC+ZBlcY86EZutmxE85B+LePaEui4iIiJqJ4ZKIiEJOiY1D+X8XwXHRJZAO7of1/LOh2bg+1GURERFRMzBcEhFReNDrUfnKa6i+4SaIJ07AcvEUaL9bEeqqiIiIqIkYLomIKHyIImyPzIHtnvsh2qpguXIa9O+8FeqqiIiIqAkYLomIKLwIAqrv/DMqnn0RABB3x60wPfYQIMshLoyIiIhOh+GSiIjCkvPKa1D+7mLIcRaY5z6J2Ftmci9MIiKiMMZwSUREYcs99kyUffIlvJlZMCz5APHTLoBQXBzqsoiIiKgeDJdERBTWvLm9ULr8a7gHDoJ23VpYz5sAac+uUJdFREREJ2G4JCKisKekpKBs8Sdwnn8RpP37EH/eRGhXfR/qsoiIiKgOhksiIooMJhMqFr6B6ll3Qiwrg+XSi2B4bQGgKKGujIiIiMBwSUREkUQUYbv/IXUlWVFE7F/vQsyf7wBcrlBXRkRE1OExXBIRUcRxXnkNypZ8Am9KKoxv/hvxl5wP4fjxUJdFRETUoTFcEhFRRPIMGYayL7+De8BAaH9aA+s546DZuD7UZREREXVYDJdERBSx5M5pKPvwMzguvQLSkcOIv+Bc6BcvCnVZREREHRLDJRERRTaDAZXPv4KqBx4BXC7E3TwT5vv+Brjdoa6MiIioQ2G4JCKiyCcIsN86G+X/fR+y1QrTKy8gfuoUiEcLQ10ZERFRh8FwSUREUcM94SyUfvU93PkD1HmYE0ZzP0wiIqJ2wnBJRERRRc7IRNnHX8D++5kQTxTBMv1CGJ9/lvthEhERBRnDJRERRR+9HlX/mouKeS8DOh1iHroPcTOuhlBRHurKiIiIohbDJRERRS3n5VehdPnX8HTNgf7TZbCeNRaaDb+GuiwiIqKoxHBJRERRzZvXB2Vffgfn5Asg7d+H+Clnw/jy8xwmS0RE1MYYLomIKOopcRZUvP4WKh97EhAExNx/D+KuuQxCcXGoSyMiIooaDJdERNQxCAIcM29E6affwNO9B/Rffg7r+JFcTZaIiKiNMFwSEVGH4u3bD6VffAfHFVdDOloIyyXnw/TEI4DHE+rSiIiIIhrDJRERdTwxMah87iVUvDAfiskM81NPwHLJ+RALDoW6MiIioojFcElERB2W89IrUPb1Srj75UO35kdYzxwJ/fvvcbEfIiKiFmC4JCKiDs2b0x1ln3yJ6ll3QqisQNytf0DsjddBKC0JdWlEREQRheGSiIhIr4ft/odQvuQTeNMzYPhwMazjRkD77TehroyIiChiMFwSERHVcI8cjdJvf4Tj8qsgHS1E/GUXw3zP/wHV1aEujYiIKOwxXBIREdWhxFlQOe9llL/6JuSEBJgWvgLr2WOh2bg+1KURERGFNYZLIiKierguuAil362Bc+LZ0Oz6DfGTJsD02EOA0xnq0oiIiMISwyUREVED5NROqPjv+6icMxeKwQjz3CfVXsz1v4S6NCIiorDDcElERHQ6ggDHjJkoXbkGrrHjodmxHfHnTYT5n/8AHI5QV0dERBQ2GC6JiIiaQM7IRPmipah86jkoJjNM8+bCOnE0ND//FOrSiIiIwgLDJRERUVMJAhy/m6H2Yo6fqM7FPP8cmP9xL1eUJSKiDo/hkoiIqJnk9AyUv7sYlc+8AMUcA9NL85Awdji033wV6tKIiIhChuGSiIioJQQBjqt+h9Lv18J53vmQDu5H/BWXIPbm6yEcPx7q6oiIiNodwyUREVEryGldUPHGf1H++tvwdk6DYfH7SBg9GIa33gBkOdTlERERtRuGSyIiojbgmnIBSn/4CfaZN0IoL0fsn2bDcvFkSL/tDHVpRERE7YLhkoiIqI0osXGoeuxJlH36NTx5faFb8yOs40fC9MQj3LaEiIiiHsMlERFRG/MMHIzSL75F1f3/BDQamJ96Agljh0H35WehLo2IiChoGC6JiIiCQauFfdYdKFm5Fs6zz4W0fx8sV1+GuN9dDnH/vlBXR0RE1OYYLomIiIJIzspGxduLUP7We/BmZUP/+adIGDMUpjmPAnZ7qMsjIiJqMwyXRERE7cB1znko+f4n2O6+BxAEmJ98HAljhkH32XJAUUJdHhERUasxXBIREbUXgwHVf/4rSr7/Cc5JUyAd3A/LtVcg7upLIe3dHerqiIiIWoXhkoiIqJ3JWdmo+M87KH/nfXi65kD/1RewjhkG8/33QCgvC3V5RERELcJwSUREFCKuieeg9Ls1qLr3H1B0ephefh4Jw/JheHU+4PGEujwiIqJmYbgkIiIKJYMB9jvuQsma9bBf83sIpaWI/dufYT1zBHRffxHq6oiIiJqM4ZKIiCgMKKmpqHp6Hkq//gGuMeOg+W0nLFdOh+XyqZB2bA91eURERI1iuCQiIgoj3j59Uf7+Ryj/z7vw5HSDbsXXsJ45AjH/90cIRUWhLo+IiKhBDJdEREThRhDgmjQZpSvXouqfj0GJjYPxjVeRMLQ/TP96DEJVZagrJCIiOgXDJRERUbjS6WC/6TaUrF2P6htvgeBywvyvx5AwNB+GV18BXK5QV0hEROTHcElERBTmlIRE2B5+AiWrf4Xj0isgFJ9A7N/+DwmjBkO/5H1AlkNdIhEREcMlERFRpJAzs1D5wnyUfrMKzrPOgXRgP+Juuh7xZ4+D9ttvQl0eERF1cAyXREREEcab1wcV/30fZUs+gXvgIGg3b0T8ZRfDMu1CaH79OdTlERFRB8VwSUREFKHco8ag7NNvUP7aW/B06w7d99/COmkC4q65DJpNG0JdHhERdTAMl0RERJFMEOA6/0KUfv8TKuc+D29GJvRffAbrWWMRN+NqSFu3hLpCIiLqIBguiYiIooFGA8fV16Jk9a+onDMX3s5p0C//GAnjRyL2DzMg/bYz1BUSEVGUY7gkIiKKJjodHDNmomTtBlQ+OgfelFQYPlwM69hhiL31D5D27g51hUREFKUYLomIiKKRwQDHDTej5KeNqHrgESgJCTC8/x6so4Yg9rYb2ZNJRERtjuGSiIgomplMsN86G8U/bULV3x+EYrHAsOhdWMcMRewNv4e0eVOoKyQioijBcElERNQRxMTAfvsfUfzzFlQ98Ajk5BQYPlqChImj1dVlf1kX6gqJiCjCMVwSERF1JDExsN86GyXrNqHysSfh7ZKuri573kRYpl8E7Y8/AIoS6iqJiCgCMVwSERF1REYjHDNvVBf+eeYFeLO7QrdyBeIvnoz4CydB+82XDJlERNQsDJdEREQdmU4Hx1W/Q8mPv6DipYXw5PaCdu1qxF8xDdbxo6Bf9C7gdoe6SiIiigAMl0RERARoNHBOuwyl361B+WtvwT1gIDTbtiDuthuRMLQ/jC8/D6GqMtRVEhFRGGO4JCIiolqiCNf5F6LssxUoW7oczrPOgXS4ADH334OEAXkwP/wAxGNHQ10lERGFIYZLIiIiOpUgwD1yNCr++z5KVq6F44qrIVTbYHruaSQM6oOYP86CtOu3UFdJRERhhOGSiIiITsvbqzcqn3sJJT9vRvVtd0DR6WF8+z9IGDUYcddcBu13K7j4DxERRX+4vP322zFkyBD88Y9/DHUpREREEU3unAbbP/6Jkg3bUHXfQ/B26gz9F58h/tKLYB03HIY3/w1UV4e6TCIiCpGoD5dXX301nnjiiVCXQUREFDWUOAvss+9Eyc+bUfHSQrgHDoJmx3bE3nU7Egf0VudlHjkc6jKJiKidRX24HDZsGMxmc6jLICIiij46HZzTLkPZZytQuvwrOKZOg1BR4Z+XGfuHGdCsW8shs0REHURIw+W6detw8803Y/To0cjNzcWKFStOOebtt9/GhAkT0LdvX1x22WXYtGlTCColIiKi0/EMHorKV15HyS9bUH3HXVAsFhg+XAzrlLMRP2m8ul+m0xnqMomIKIhCGi6rq6uRm5uL+++/v97rly9fjsceewy33XYblixZgtzcXNxwww0oKSnxH3PRRRfV++X1etvrNIiIiKiGnNYFtnv/geL121H59Dx4ep8B7fpfEXfbjeqQ2X/+A+KB/aEuk4iIgkATyjsfN24cxo0b1+D1r7/+Oi6//HJMmzYNAPDggw/i22+/xZIlSzBz5kwAwIcfftgutQKAKArtdl9N4asn3Oqi6MD2RcHE9tUBmE1wXTsDrt/9HprvV8Lw2nzoPv0EpnlzYXz+Gbgnng3HjJlwn30uIEltfvdsYxRMbF8UTJHcvkIaLk/H5XJh69atuOWWW/yXiaKIkSNHYsOGDe1ej0YjIjExpt3vtymsVs4ppeBh+6JgYvvqIKZOUb8OHwYWLICwYAF0X30B3VdfAFlZwI03AjNnAqmpbX7XbGMUTGxfFEyR2L7CNlyWlpbC6/UiKSkp4PLExEQcOHCgybdz4403YtOmTbDb7Rg7dizmz5+PXr16Nbsej0dGRYW92b8XTKIowGo1o7TUBlnmYgnUtti+KJjYvjoogwWY/Wfg5jug+3w59K+/Ct13K4B774XywANwTbkQjutugGfkKEBo3Sf2bGMUTGxfFEzh2r7i4ozQak8/0iRsw2VDFEWB0Iw/OPPnz2+z+w6nJ7cuWVbCtjaKfGxfFExsXx2UpIFj8oVwTL4Q0p5dMPz7NRjeexv6pR9Av/QDeLr3gOOqa+G47EooKSmtuiu2MQomti8KpkhsX2G7FYnVaoUkSThx4kTA5SUlJaf0ZhIREVFk8nbrAds/H0Pxxp2oeO4luAcNhmb3LsQ8dB8S83shbsbV0H35GeDxhLpUIiJqRNiGS51Oh7y8PPz444/+y2RZxurVq5Gfnx+6woiIiKjtGY1wXnE1yj79BiXfrUH1TbdCiYuDfvnHsFx9GRIG9YHpsYcg7t8X6kqJiKgBIQ2XNpsN27dvx/bt2wEABQUF2L59O4qKigAA1113Hd59910sWbIEe/bswQMPPACHw4GpU6eGsmwiIiIKIm/vM2D75+Nqb+aCf8N15gSIRwthnvskEof2h2XaBdAvXgQ4HKEulYiI6gjpnMstW7bg2muv9f/88MMPAwBmzZqF2bNnY/LkySgpKcFzzz2HoqIi9O7dGwsXLkRCQkKoSiYiIqL2otfDedElcF50CcRDB2F45y0Y3n0buu+/g+777yBb4uG86BI4LrsSniFDW70IEBERtY6gKEpkzRINEbfbi7Ky6lCXEUAUBSQmxqC4uCriJvtS+GP7omBi+6IW83qh/W4FDP99E/rPPoHgcqkXZ3eF47Ir4Zh+OeTsrmxjFFRsXxRM4dq+4uNNja4WG7ZzLomIiIhOIUlwTzgLlQvfQPGWXaj81zNwDxkGaf8+mOc8qg6bvXAS9G/+GygvD3W1REQdCsMlERERRSQl3grH769H2SdfomTNr7Dd9Rd4M7OgW/MjYv44G0hNRcwNM6D76nOuNktE1A4YLomIiCjieXO6o/ov96Lkp40o++gzOK75PaDXQ7/0A1iuuhSJ/XIR89e7oFm7BpDlUJdLRBSVGC6JiIgoeogi3MNHwvbM88DRo6hc8G84J54NobQExtcWwHrBOUgY3BfmB++DZvNGgEtPEBG1GYZLIiIiik5GI1xTp6HinQ9QvHkXKp94Gq4RoyAVHILphWdhnTgG1lGDYZrzKKTdu0JdLRFRxONqsU3E1WKpo2H7omBi+6JgO10bE48chn7pYuiXvA/txvX+y919+8N58TQ4p06DnJ7R3iVTBOFrGAVTuLavpqwWy3DZRAyX1NGwfVEwsX1RsDW1jUl7d0O/5APol7wPzW87/Ze7Bw2Gc8pFcJ5/IeTsru1RMkUQvoZRMIVr+2K4bEMMl9TRsH1RMLF9UbA1u40pCqRtW2FY8j70SxdDOrjff5W7b3+4LrgIzvMvgrd7j+AVTRGDr2EUTOHavhgu2xDDJXU0bF8UTGxfFGytamOKAs2WTdAt+xD6jz+Eps58TE/vM+CcciGcF1wMb6/egCC0ceUUCfgaRsEUru2L4bINMVxSR8P2RcHE9kXB1mZtTFEg7dwB/cdLoV/2ETTbt/qv8nTrDtf56tBZT798Bs0OhK9hFEzh2r4YLtsQwyV1NGxfFExsXxRswWpj0p5d0C37CPplHwUsBuRN6wLXuefBee5kuEeNAfT6NrtPCj98DaNgCtf2xXDZhhguqaNh+6JgYvuiYGuPNiYe2A/9Jx9D/8lH0Pz8E4Sat1RyTCxcE86C69zz4DrrHCjWhKDcP4UOX8MomMK1fTFctiGGS+po2L4omNi+KNjau40JRUXQffU59J8th+67byBUq+8ZFEmCe/hItVdz0hSuPBsl+BpGwRSu7Yvhsg0xXFJHw/ZFwcT2RcEW0jZmt0P3/bfQff4p9J8th1h03H+Vp1dvuM45D86zzoVn8BBAo2nf2qhN8DWMgilc2xfDZRtiuKSOhu2Lgonti4ItbNqYLEOz/he1R/Pz5dDs2F57lSUerjMnwDXxbLgmnA0lJSV0dVKzhE37oqgUru2L4bINMVxSR8P2RcHE9kXBFq5tTNy3F/qvPofu6y+hXfU9BKfTf527/wA1aE48G56BgwHp9G/iKHTCtX1RdAjX9sVw2YYYLqmjYfuiYGL7omCLiDZWXQ3dqpXQffUFdF9/CengAf9VstUK1/iJcE08B67xZ0FJSgphoXSyiGhfFLHCtX01JVxyoD8RERFRKJhMcJ09Ca6zJ6n7ae7e5Q+a2tU/wLD4fRgWvw8AcPftD/fYM+EaNx7uYSMAozHExRMRnYrhkoiIiCjUBAHeHj1h79ET9ltmAVVV0P2wErovP4fuu2+g3bwR2s0bYXrhWSgGA9xDR6hB88zx8OT1BUQx1GdARMRwSURERBR2YmLgmjQZrkmTAUWBuG8vdN+tgO67FdD+sBK6lSugW7kC+CcgJyXBNWYc3OMmwDVuPOQu6aGunog6KIZLIiIionAmCJBzusGR0w2O624APB5oNq5Xg+Z3K6BdtxaGJR/AsOQDAICnW3e4x4yDe9QYuEaOgZKcHOITIKKOguGSiIiIKJJoNPAMGgLPoCHAn+5Wh9Cu/gHamp5Nzc4d0OzZDeO/XwUAeHJ7qUFz1Bi4R4zm4kBEFDQMl0RERESRLCbGvzCQDYB4tBDaVd9D++MP0K76Xg2bO3fA+NoCAICn9xlwjxwN18gxcI8cDSUxMbT1E1HUYLgkIiIiiiJyp85wTrsMzmmXAQDEI4fVoOkLm9u3QbN9G4yvzgcAeHrnwTVqNNzDR8IzdDjkTp1DWT4RRTCGSyIiIqIoJqd1gXP65XBOvxwAIB4u8IdN3Q8rodm+FZrtW4GFrwAAvJnZcA8bDvewEXAPGwFvj55cjZaImoThkoiIiKgDkbukw3npFXBeegUAQCw4BO3qVdCuXQPtujXQbN8G6eB+GBa9qx4fHw/30OFwD1XDpqd/PmAwhPAMiChcMVwSERERdWByekZA2BRKS6D9+Sc1bK5dDc36X6D/4jPov/gMAKDodPDkD1R7NgcPhXvgYCipqaE8BSIKEwyXREREROSnWBP8CwQBAJxOaDZugHbtamh/Wg3tT2v8Xz7ejEy4Bw6GZ9BguAcOgadff/ZuEnVADJdERERE1DC9Hp6hw+AZOgx23AnIMqRdv0H70xpoflkH7S/rIP22E4ZDB4EPFwMAFI0Gnj594Rk4GO5BQ+AZNBjert0AQQjtuRBRUDFcEhEREVHTiSK8ub3gze0F/G4GAECoKIdm/a/Q/vozNL/+DO0v66DdsB7aDev9W6DIVqvauzlgEDz5A+DpPwByaqcQnggRtTWGSyIiIiJqFSXOAve48XCPG19zgQLx4AE1bP6yDtpffoZm80bov/4S+q+/9P+eN7UTPP3z4emXD0//AfD0z+dWKEQRjOGSiIiIiNqWIEDOyoYzKxvOqdPVy5xOaLZuhmb9r9Bs2gDtxg2Qdm4PWCwIALwpqYGBM38AAydRhGC4JCIiIqLg0+vhGTgYnoGDay+z26HZtgWaDesDA+eXn0P/5ef+w7wpqfDm9YEnry88Nf96u/cANHwrSxRO+D+SiIiIiELDaIRn0BB4Bg2pvcwXODduqA2cO7ZBWvE1dCu+9h+m6PXw5PaGJ69PQPBU4q0hOBEiAhguiYiIiCic1Bc4HQ5oftsBaesWdWjttq3QbN0M7aYN0G7aEPDr3i7pNb2bNT2cvc6At2sOoNW273kQdUAMl0REREQU3gwGdQ5mv3w4fZcpCsTCI2rY3LpFDZ7btkDasxv6wwUB8zgVrRbe7j3g6amucuvJ7a2ueMvQSdSmGC6JiIiIKPIIAuS0LnCldYHr7Em1l1dXQ7NzOzQ1vZzSzh3Q7NwBzfZt0GzfFnAT/tCZ2wvenjWhs1dveLO7MnQStQDDJRERERFFD5NJ3UtzwKCAi4XiYnVo7Y7t0OzcDum3ndDs2F5/6NTp4O2aA2+3HvB26w5P9x7q9927Q0lIbM+zIYooDJdEREREFPWUxES4R4yCe8SogMuF4mI1bO7cEfCvpqbH82Sy1aquVJt3BgwZ2fB07Q5v9x7qEFu9vr1OhygsMVwSERERUYelJCbCPXI03CNHB1wulJZA2rMb0u5dkPbugWb3Lkh71O+1634C1v0Ec93bEUXIGZnw5nSDNysb3uwceLO7ql9Z2YDZDKJox3BJRERERHQSxZoAz+Ch8AweGniF1wtN4WFYjxfA9usmiLt3Qdq9Ww2eB/ZDOrC/3tuTk1P8QdMfOrNz4M3KhpKSAghC8E+KKMgYLomIiIiImkqSIGdmAQPy4Bg8CrKs1F5ns/kDprR/H6T9eyHt3wfxwH5Ihw5Cu+44tOvWnnKTismshs7MTMjpGfCmZ0JOT4e35nslORkQxXY8SaKWYbgkIiIiImoLZjO8Z+TBe0beqdd5vRAPF9QJnvtqg+f+fdBs3wrN9q313qyi18Ob1gVyeia86elqAM2oCaJd0iF3SQd0uiCfHFHjGC6JiIiIiIKtpsdTzsyCe8y4wOsURZ3jWXAI4qFDkAoOQiwoUH8uOATp8CFo9u0F9u2t96YVQYCSlAxv5zTInTpB7pQGuXNnyJ3T4O2k/it37gzFEs/htxRUDJdERERERKEkCFASEuFJSAT65dd/THU1pMMFatgsOASx4CCkgjo/Hy2Etug4sKnhu1GMRsipndQQ2rlzbQhNTgn4UqxWDsOlFmG4JCIiIiIKdyYTvD16wtujJ9z1XS/LEIqLIR09ArHwCMTCQvXfY0ch+X4+esQ/HPd0FI0GcmKSGjSTk08Kn4E/KwkJgIaRglRsCUREREREkU4UoSQnw5OcDPTt3/BxdjvEo4WQjhZCPFqohs6i4/4voahI/f5EEaRjR5t013KcBUpCAuSEBMjWBCjWBMiJieq/J32vJCZCtiYABkMbnTiFE4ZLIiIiIqKOwmiE3DUHctec0x8nyxBKSwOCp/pVBKHO92JpCYSSkib1iNalmExqKI2Lg1Lzr2yxQImLr/0+Ng6KxQLFYoEca6n9PiYWMJk4dDcMMVwSEREREVEgUYSSmAhvYiK8vXo3frzL5Q+aYmkJhOJi9d/SEognfS+UqseIRcchHC1scYmKyQzF7PuKgWIy1X5f93KzOfBYowmKQQ/oDVD0eih6A2Co+d5gBAw1l+l0XACpmRguiYiIiIiodXQ6yKmdgNRO8Db1dxQFsNkgVlZAKC+HUFEBsaIMQoXv53KIvu8ryyHWHCNUVkCw2SBU29Rjio4H7bQUgwFKTQiFwQhFrwM0WigaDaDVAJJG/V6jBTRSne81UDRS7bE1X4okqYHV/yUG/iyKgE4L3HQDkNA5aOcVLAyXRERERETU/gQBiImBHBMDdE5r+e243WrQtPm+qgL/ra6u/b6qCnA6IDicEJyOmu/VLzjVywSHU73c6fRfLpaVQnAda7tzb/ScHMD9j7Tf/bURhksiIiIiIopcWi0US7y6j2cwybIaQL0ewO0GPF4IHjfgUX8WvF7A46lzmUc91n+9B/B41R7bgC8ZQp2fBUlC7CUXAHJwTycYGC6JiIiIiIgaI4qA0QilzkVKgwe35m4EwBoDFFcF4daDi0ssERERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqzFcEhERERERUasxXBIREREREVGrMVwSERERERFRqwmKoiihLiISyLICr1cOdRmn0GoluN3eUJdBUYrti4KJ7YuCjW2Mgonti4IpHNuXJIkQReG0xzBcEhERERERUatxWCwRERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsNlmHv77bcxYcIE9O3bF5dddhk2bdp02uM//fRTTJo0CX379sUFF1yAlStXtlOlFIma07527dqF2bNnY8KECcjNzcVbb73VjpVSJGpO+/rf//6Hq666CkOGDMHQoUNx/fXXY/Pmze1YLUWi5rSxr776CtOmTcPgwYORn5+Piy66CEuXLm2/YiniNPc9mM/8+fORm5uLJ554IsgVUiRrTvtavHgxcnNzA7769u3bjtU2HcNlGFu+fDkee+wx3HbbbViyZAlyc3Nxww03oKSkpN7j169fj7vuugvTp0/H0qVLcdZZZ+HWW2/Fnj172rlyigTNbV92ux3p6em46667kJyc3M7VUqRpbvtau3YtpkyZgv/85z945513kJqaiuuvvx7Hjx9v58opUjS3jVksFtx0001477338NFHH2H69Om455578OOPP7Zz5RQJmtu+fLZu3Yp3330Xubm57VQpRaKWtK/4+Hj88MMP/q8VK1a0Y8XNoFDYmj59uvLQQw/5f/Z6vcro0aOVhQsX1nv8HXfcodx0000Bl1166aXKgw8+GNQ6KTI1t33VNX78eOXNN98MZnkU4VrTvhRFUTwejzJgwADlo48+ClaJFOFa28YURVEuvvhiZd68ecEojyJcS9pXdXW1ct555ykrV65UrrnmGuXxxx9vj1IpAjW3fX3wwQfK0KFD26u8VmHPZZhyuVzYunUrRo0a5b9MFEWMHDkSGzZsqPd3NmzYEHA8AIwePbrB46njakn7ImqqtmhfdrsdHo8HFoslSFVSJGttG1MUBatXr8a+ffswaNCgIFZKkail7evxxx/HsGHDMGbMmHaokiJVS9tXVVUVzjzzTIwbNw633nordu/e3Q7VNp8m1AVQ/UpLS+H1epGUlBRweWJiIg4cOFDv75w4cQKJiYmnHF9UVBS0OikytaR9ETVVW7Svp556Cp07d8bw4cODUSJFuJa2scrKSowdOxYulwuiKOLBBx/EiBEjgl0uRZiWtK8VK1ZgzZo1nMdLjWpJ+8rJycFjjz2Gnj17oqKiAq+99hquvPJKLFu2DKmpqe1RdpMxXEYYRVEgCEKD19d33emOJ6qrsfZF1BpNbV8LFizA8uXL8eabb0Kn07VDZRQtGmtjZrMZS5cuRXV1NVavXo1HH30UmZmZGDx4cDtWSZGqofZVUlKC++67Dy+88AKMRmMIKqNocLrXr/z8fOTn5/t/HjBgACZPnoxFixZh1qxZ7VRh0zBchimr1QpJknDixImAy0tKSk75pMMnKSnplOOLi4sbPJ46rpa0L6Kmak37evXVV/HKK6/g9ddfR8+ePYNZJkWwlrYxURSRlZUFAOjduzf27NmD+fPnM1xSgOa2r127dqGoqAhXXnml/zKv14t169bhrbfe4srXFKAt3oNptVr07t07LEebcc5lmNLpdMjLywtYxU6WZaxevTrgk4u68vPzsWrVqoDLfvzxxwaPp46rJe2LqKla2r4WLlyIF198EQsXLgzbJdYpPLTVa5iiKHC5XEGokCJZc9tX37598fHHH2Pp0qX+rz59+mDq1KlYvHhxO1ZOkaAtXr+8Xi927doVlqv3s+cyjF133XW4++67kZeXh379+uGNN96Aw+HA1KlTAQB33303UlNTcddddwEArr32WlxzzTV47bXXMG7cOCxfvhxbtmzBI488EsrToDDV3Pblcrn829q4XC4cO3YM27dvh8ViQVpaWsjOg8JTc9vXggUL8Oyzz+Kpp55Cly5d/HPFTSYTzGZzyM6Dwldz29j8+fNxxhlnICsrCy6XC99//z0+/PBDPPTQQ6E8DQpTzWlfJpPplJEWJpMJ8fHx6NGjRyjKpzDX3Nev559/Hvn5+cjKykJFRQVeffVVHDlyBNOnTw/ladSL4TKMTZ48GSUlJXjuuedQVFSE3r17Y+HChUhISAAAFBYWQhRrO58HDhyIp556Cs888wyefvppZGdn44UXXkC3bt1CdQoUxprbvo4fP46LL77Y//P8+fMxf/58TJ06FY8//nh7l09hrrnt65133oHb7cbtt98ecDuzZs3C7Nmz27V2igzNbWMOhwMPPfQQjh49CoPBgJycHPzrX//C5MmTQ3UKFMaa276ImqO57auiogL33XcfioqKYLFY0KdPH7z33nvIyckJ1Sk0SFAURQl1EURERERERBTZ+JELERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtRrDJREREREREbUawyURERERERG1GsMlERERERERtZom1AUQERGFm3nz5uH5558/5fIRI0bg3//+d/sXREREFAEYLomIiOoRGxuLhQsXnnIZERER1Y/hkoiIqB6SJCE/P7/R4xwOBwwGQ/ALIiIiCnOcc0lERNREBQUFyM3NxUcffYS7774bgwcPxs033wwAKCsrw/3334+RI0eib9++uOKKK7Bx48aA36+oqMBdd92F/Px8jB49Gi+99BKeeOIJTJgwwX/MvHnzMGzYsFPuOzc3F2+99VbAZYsWLcKUKVPQp08fjB8/HgsWLAi4/q9//SsuueQSrFq1ChdccAHy8/Nx5ZVXYteuXQHHeb1evPLKKzj33HPRp08fjB07Fn/9618BAG+//TYGDBgAm80W8Dtr1qxBbm4uduzY0cxHkYiIohV7LomIiBrg8XgCflYUBQAwZ84cnH322Xj22WchiiJcLheuu+46VFRU4O6770ZCQgLeeecdzJgxA1988QWSk5MBAH/729/w008/4Z577kFSUhJee+01HDx4EBpN8/8cL1y4EHPnzsUNN9yAoUOHYuvWrXj22WdhNBpxzTXX+I8rLCzEnDlzcMstt0Cv12POnDm48847sWzZMgiCAAC4//778eGHH2LmzJkYOnQoysvL8dlnnwEALrjgAjzxxBP4/PPPcckll/hvd8mSJcjLy0OvXr2aXTsREUUnhksiIqJ6lJWVIS8vL+Cyhx9+GADQv39//OMf//BfvmjRIuzatQvLli1DdnY2AGDkyJGYNGkSXnvtNfzlL3/Brl278NVXX2Hu3LmYPHkyAGDYsGEYP348YmJimlVbVVUVXnjhBdxyyy2YNWsWAGDUqFGw2+146aWXcOWVV0KSJABAeXk53nnnHX9diqLgtttuw969e9GtWzfs2bMH77//Pu69915ce+21/vvw1RgXF4dzzjkHixcv9odLm82GL774AnfddVez6iYioujGcElERFSP2NhYvP766wGX6XQ6AMCZZ54ZcPnq1auRl5eH9PT0gN7OIUOGYMuWLQCAzZs3A0DAEFiz2YyRI0di06ZNzapt/fr1qK6uxqRJkwLub/jw4XjxxRdx9OhRdOnSBQDQpUsXf7AEgG7dugEAjh07hm7dumHt2rUAENArebLp06djxowZOHToEDIyMvDpp5/C4/Hg/PPPb1bdREQU3RguiYiI6iFJEvr27RtwWUFBAQAgMTEx4PLS0lJs2LDhlJ5OAMjMzAQAnDhxAmaz+ZTFf06+raYoLS0FAEyZMqXe6wsLC/3h8uQVbrVaLQDA6XQCUHtoTSbTaXtPhw0bhoyMDCxevBh33HEHFi9ejIkTJyI+Pr7ZtRMRUfRiuCQiImom31xFH4vFgj59+uCBBx445Vhfb2dSUhJsNtspq8sWFxcHHK/X6+F2uwMuKy8vP+X+AOCVV16pN5x27dq1yecSHx+P6upqVFVVNRgwBUHAtGnT8L///Q8XXXQRfvnll1MWDyIiImK4JCIiaqURI0Zg1apVSEtLa7An0tcL+s033/jnM9psNvz4448BoS41NRU2mw3Hjh1DamoqAGDVqlUBtzVgwAAYDAYcP378lCG6zTV8+HAAwNKlSwMWAjrZ1KlT8dxzz+Gee+5BamoqRo0a1ar7JSKi6MNwSURE1EoXX3wx3n33Xfzud7/D9ddfj4yMDJSVlWHTpk1ITk7GjBkz0KNHD0yYMAEPPPAAqqqqkJycjFdfffWUYbJjxoyBwWDAPffcg+uuuw4FBQV49913A46Ji4vDrFmz8Mgjj+Dw4cMYMmQIZFnG/v37sXbtWrzwwgtNrj0nJweXX345Hn/8cRQXF2PIkCGoqKjA559/jrlz5/qPS01NxZgxY/Dtt9/ipptu8i8YRERE5MNwSURE1Ep6vR7/+c9/8Oyzz2LevHkoLi5GQkIC+vXrF7CAz+OPP44HHngAjz76KEwmE6666ir07dsXn3/+uf+YhIQEPPfcc5gzZw5uu+025OXl4amnnvL3dvr84Q9/QEpKCt544w28/vrr0Ov1yM7OPuW4pvjHP/6BtLQ0LFq0CAsWLEBCQkK9PZNnnXUWvv3229Mu/kNERB2XoPg27SIiIqJ259tD8ptvvgl1KY264447UFRUhP/+97+hLoWIiMIQey6JiIjotHbu3IktW7bgyy+/xNNPPx3qcoiIKEwxXBIREdFp3XLLLSgtLcVVV12FSZMmhbocIiIKUxwWS0RERERERK0mhroAIiIiIiIiinwMl0RERERERNRqDJdERERERETUagyXRERERERE1GoMl0RERERERNRqDJdERERERETUagyXRERERERE1Gr/D7jJVSLCKlhjAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd3wUdf7H8dfMbEtPSCD0DgHpChZAUQQLWEFFTj0L9np2z3I/eznPs53t1FM8PfUs2LCdXSyA0pv0FiCkt81md2fm98fszO5mk0CAkICf5z3uYbI7OzubLIF3Pp/v56uYpmkihBBCCCGEEELsBrWlL0AIIYQQQgghxL5PwqUQQgghhBBCiN0m4VIIIYQQQgghxG6TcCmEEEIIIYQQYrdJuBRCCCGEEEIIsdskXAohhBBCCCGE2G0SLoUQQgghhBBC7DYJl0IIIYQQQgghdpuESyGE2E+YpsnYsWPJy8tjw4YNCffPnj2bvLw85//Dhw/n9NNP54svvqj3fEuWLGHEiBFUVVXVe//ll19OXl4er776atztF198MU899dROXXN+fj433ngjRx55JIMGDWLMmDFcdtllzJ07d6cev6fNmjWLl19+uUWee0/w+/0MHTqUIUOG1Pt9e/LJJznkkEP2+PNu3ryZvLw8Bg4cyJYtW+Lu+/rrr8nLy2Pz5s17/Hmbw9ixY3nooYecz2+55RYmTZq0V5570qRJ3HLLLXvluYQQojlIuBRCiP3E/Pnzyc/PB2DmzJkNHve3v/2NN998k0ceeYTMzEyuvPLKesPcY489xplnnklqamrCfbNmzWLhwoX1nv/iiy/m5ZdfpqKiotHrLS8vZ8qUKaxevZrrrruO559/nquvvhpVVZk/f36jj20uP/zwA6+88kqLPPee8OWXX1JTU0MgEODLL7/c688fCoV4/vnn9/rzNqfLL7+cBx98sKUvQwgh9gkSLoUQYj8xc+ZMkpOTGTJkSKPhMi8vj6FDhzJmzBieeOIJMjIy+OCDD+KOWb9+Pd9//z2TJ09OeHwoFOK+++7jT3/6U73nHz58OJmZmbz//vuNXu9nn31GUVERL7zwAieddBKHHnookydP5qmnnuKiiy7a8QtuQbquEwwGW/oyEsycOZPOnTvTuXPnRt8DzeXggw/mnXfeobCwcI+fOxQKoev6Hj/vjnTt2pW+ffvu9ecVQoh9kYRLIYTYD+i6zqeffsrYsWOZPHkyq1evZsWKFTt8XFJSEl27dmXr1q1xt8+YMYO8vDy6d++e8JhXXnkFn89Xb/C0HXPMMbz33nuNPndFRQVut5uMjIyE+xRFcT622xK/+OILjjvuOAYNGsTUqVNZvXp13GMMw+Cf//wn48ePZ+DAgRx77LHMmDEj4dz/+9//OO200xg8eDCHHHIIF110Efn5+Tz55JP861//Ij8/32kdtlsUY69h4sSJDB48mEWLFjXYZlq3XdhutfznP//J6NGjOeigg3jwwQcxTZNvv/2WiRMnMmzYMC6//HLKy8sb/bo1pLy8nFmzZjFx4kQmTpzIDz/8QGlpab3H/vrrr5x66qkMGjSIk08+mV9++SXu/i+//JJJkyYxdOhQRowYwemnn86cOXN2eA1Tp04lOTmZf/3rX40eV1NTw7333suoUaMYNGgQkydPZtasWXHHnHPOOVx99dW8+eabjBs3jsGDB7N9+3bn9nfeeYexY8cybNgwbrzxRoLBIIsWLeK0005j2LBhnHPOOQktun/729848cQTGTZsGEcccQTXX3/9DoNw3bZYu/W87v+ffPJJ55iVK1dy8cUXM2zYMIYNG8bVV1+d8DwrV67kzDPPZNCgQRx//PEtUmkWQog9zdXSFyCEEGL3/fzzzxQVFTFhwgQOOugg7rnnHmbOnEm/fv0afZxhGGzbto0BAwYknG/YsGEJxxcWFvL000/z7LPPoqoN/35y2LBhvPjii5SXl9cbHgEGDBhAMBjkpptu4oILLuCAAw5o8JxbtmzhgQce4JprrsHn8/Hkk08ybdo0Pv/8c7xeLwD33HMP7733HpdffjkDBgzghx9+4NZbbyUzM5OjjjoKgPfee4+bb76ZiRMncvnll2OaJj///DMlJSWcfvrprF+/ntmzZ/OPf/wDgDZt2jjXkJ+fz8MPP8zll19OTk4OnTt3buQrm2jmzJkMHjyY+++/n6VLl/LYY49hGAa//PIL11xzDYFAgHvuuYdHHnmEu+++u0nnBqsSHAqFmDBhAoqi8Nxzz/HZZ59x5plnxh0XCAS48cYbueSSS2jbti0vvfQSF110EZ9//jlt27Zl48aNXHPNNZxzzjlOaFuyZMlOhd6kpCTOPfdc/vnPf3LxxReTlZVV73G33347X331Fddddx1du3blrbfe4pJLLmH69OkMHz7cOW7evHls3LiRG264gaSkJNLS0gBYsGABpaWl3HHHHc57w+fzsXDhQi688EKSk5O59957ueOOO3jxxRed8xUXF3PJJZfQrl07SkpKeOmllzj33HP58MMP0TRtp77O//jHP+Kq1rNnz+bvf/+784uYDRs2MHXqVAYOHMjDDz+Mrus8/vjjXHrppbz99tsoikIgEGDatGlkZWXxyCOPEAgEuP/++/H7/VIlFULs0yRcCiHEfuCjjz4iPT2dww8/HI/Hw8iRI5k5cybXXXddXBUQrEAZDoepqKjg+eefp6amhj/+8Y/O/aZpsmzZMk466aSE53n44YcZPXo0I0aMaPR6+vXrh2maLFmyhFGjRtV7zGGHHcZ5553H9OnTmTlzJikpKYwaNYqpU6cycuTIuGNLS0t5+umnOfDAAwErmI4fP553332XqVOnsmHDBl5//XUeeOABTj31VABGjhxJYWEh//jHPzjqqKMwDINHHnmE8ePH8/e//90599FHH+183K5dOzweD0OHDk243rKyMl5++WX69+/f6GtviNfr5fHHH0fTNI444gi+/PJLXn31VT777DO6dOkCwIoVK3jvvfd2KVx+9NFH9OrVy/mFQu/evZk5c2a94fLaa6/lxBNPBOCQQw7hqKOOYvr06dxwww0sW7aMlJQUbr75ZucxY8aM2enrOPvss3nxxReZPn16va3Ta9asYebMmXHfq8MPP5yTTjqJZ555Ji4MVlRUMGPGDNq2bRt3Dr/fz9NPP+2EzTlz5vDf//6XV1991XlvFhQUcPfdd1NTU0NSUhIADzzwgHMOXdedCua8efN2+J62HXDAAc7HW7Zs4aWXXmLSpEnO1/Mf//gHOTk5PP/883g8HsCqZB9//PF8++23HHnkkbzzzjuUlJTw1ltv0b59ewA6derEH/7wh526BiGEaK2kLVYIIfZxwWCQL774gnHjxjn/mJ04cSL5+fksWLAg4fiTTz6ZAQMGcNhhh/Hyyy/z4IMP0rNnT+f+8vJygsFgQtVp/vz5fPbZZ9x00007vCb7sTtqOfzzn//snPPggw/m+++/54ILLuD111+POy47O9sJlmD9Q3zAgAEsWrQIgJ9++glVVRk/fjzhcNj5/2GHHcaKFSvQdZ1169axffv2XZ78mZubu8vBEqz1iLHVsW7dutGpUycnWNq3lZSUNHk95/bt25k7dy4TJkxwbps4cSJz586loKAg4fjx48c7H6ekpDBy5Ejna9m3b18qKyu5+eabmTVrFn6/v0nXkpaWxllnncWrr75KZWVlwv2LFy/GNE2OO+445zZVVTnuuOP49ddf444dMGBAQrAEGDhwoBMswfq6ud1uDjrooLjbwPra2L799lvOPPNMDjroIA444ACOOOIIwFpj3FSBQIArr7ySjh07cueddzq3//TTT4wfPx5VVZ33YefOnenUqRNLlixxvgYDBgxwgiXAQQcdRHZ2dpOvQwghWhMJl0IIsY/77rvvqKioYMyYMVRUVFBRUcEhhxyCx+Opd6jLo48+yttvv82TTz5Jjx49+POf/xwXQGprawGcoGq7//77mTJlCmlpac7zgPWP7Lohwn7szoSkbt26MW3aNJ599lm++uor+vfvz6OPPoppms4x9f2jOzs72wmvpaWl6LrOQQcdxIABA5z/33LLLYTDYQoLC531h/WFlZ2Rk5OzS4+zpaenx33udrvjApJ9m2mahEKhJp37448/xjAMjjjiCOd7c8QRR2CaJh9//HHcscnJyfh8vrjbYr+WPXv25Omnn2bTpk1cfPHFHHrooVx//fWUlJTs9PWce+656LrOa6+9lnDf9u3bSU5OdqqJsddQU1MT955p6Gte39cyJSUlrq3a7XYD0ffzokWLuPzyy8nNzeWvf/0rb775Jv/973/jjmmKO+64w1mra7dmg/VefP755+PehwMGDGDTpk3O2ubCwsK4luvYr4EQQuzLpC1WCCH2cR999BEA11xzTcJ9n3zyCX/+85/jKma9e/emb9++DBo0iH79+jFhwgSefvpp7rrrLiBaday7lci6detYtGgR06dPj7v94Ycf5u9//zvLli1zbrPDZkPrLRvSpk0bJk2axL333ktxcbETLoqLixOOLS4upnfv3s7zuFwuXn/99YQ2YPu81dXVwI6rqU3h9XoTguCuDuTZHfYvEU4//fSE+z766CPOP/9853O/308gEIgLmMXFxXGh+8gjj+TII4+ksrKSb775hvvvv5977rmHRx99dKeup02bNkyZMoWXX36Zv/zlL3H3tWvXDr/fH9eual9DUlJS3C816vte7qovvviCrKwsHnvsMee89tY9TfXyyy8zc+ZMXnjhBTp16hR3X0ZGBuPGjav3e2H/2Wrbti1r165NuL++97kQQuxLJFwKIcQ+rLq6mm+++YYTTjiBM844I+6+5cuX88ADDzB79uyENYy2rl27cvrpp/POO+9w9dVXk52djcfjoWPHjgmb3j/77LMJW0H88Y9/5JxzzuGYY46Ju91+bH3TZm0lJSX1Vm82bNiAx+OJq+oVFxczb948pzV2y5YtLFu2zGlxPfTQQ9F1ncrKygbXePbo0YPc3Fzee+89xo4dW+8xbre7SVWs3NxcqqurKSgoIDc3F7D2ytybNm3axKJFizjvvPMSXtd3333HCy+8wPr16+O+F//73/+cNYLV1dX8+OOPCe8fsFpcTzzxRObOndvkvUcvuOACXnvtNd5444242wcNGoSiKHz22WeccsopgLXO97PPPotra93TAoEAbrc7LrB++OGHTT7Pzz//zMMPP8y1115b75+rww47jFWrVjFw4MAGw/GgQYP48MMP2bZtm9Ma++uvv0q4FELs8yRcCiHEPuzLL790BvIMGTIk7r4DDzyQZ555ho8++qjBcAlw4YUX8tZbb/Hvf//bGcBy4IEHsnTp0rjjYqd4xurevTsHH3xw3G1LliwhLS2NPn36NPi8M2bM4MMPP+SUU04hLy+PcDjMTz/9xH/+8x+mTp0a12qYlZXFTTfd5EyLfeKJJ5wqJ1itnGeeeSbXXXcd06ZNY9CgQdTW1rJq1SrWr1/Pfffdh6qq3Hjjjdxwww1cf/31nHDCCSiKws8//8zEiRMZNGgQPXv2pKioiHfffZc+ffqQlZXV6FTYww8/HJ/Px6233sr555/P5s2bE8LU7ho7diwHH3wwDz74YL33f/TRR6iqygUXXOAEXFvv3r2dKtsVV1wBgM/n49FHH8Xv99OuXTv+9a9/EQqFnKFOb7zxBgsWLODwww+nXbt2rF+/nk8//ZSTTz65Sdfdrl07Jk+enLB+tlevXkycOJG7776bqqoqZ1rs2rVr+b//+78mPUdTjBo1iunTp3PfffcxduxY5s2bl7C/645UVlbypz/9iT59+jBixIi4Nc3t27enffv2XHnllZx++ulcfPHFTJ48maysLAoKCvjxxx859dRTOeSQQ5g0aRLPPPMMF198MVdddRWBQIDHH3+8wem6Qgixr5BwKYQQ+7CZM2fSvXv3hGAJVhXu+OOPZ+bMmXEDR+rq1KkTJ554Iq+//joXX3wxycnJjB8/nj//+c8J7ZM76/vvv3eGmjRkzJgxbN68mf/+979s3boVTdPo2rUrt99+e0IVrWPHjlx66aU88sgj5OfnM3DgQB555JG4APp///d/dO/enbfeeosnnniC1NRUevfuzWmnneYcc+KJJ+L1enn22We5+uqrSU5OZsiQIU4F9fjjj2f27Nk8/PDDlJSUcOqppzYY6sBq/3ziiSf461//yhVXXMGAAQN45JFH4gbr7K6ampp6K7y2mTNncthhhyUES7DW8NmTg2PD5V//+lfuuece1qxZQ8+ePfnnP/9Ju3btAGuy6VdffcUDDzxAeXk5bdu25fTTT6+37XpHLrroIt5+++2E1uF7772Xv/3tbzz99NNUVFTQt29fnn322QZ/gbEnjBkzhhtuuIFXX32Vt956i6FDh/Lcc89x7LHH7vQ5ysvLKS0tpbS0lClTpsTdd+WVV3LVVVfRo0cP3nzzTR5//HH+8pe/EAgEyM3N5bDDDnOGDCUlJfHCCy9w5513cu2119KpUyduueUWnn766T36moUQYm9TzNiJCUIIIQTWIJ4xY8bwl7/8heOPP75Jj62srGTkyJG89NJLeyQs3HLLLaxcuZJ33313t8+1r9m0aRPHHHMMn3/+edxUWSGEEKI1kmmxQgghEng8HqZNm8Yrr7zS5Me+/vrrDB06tFmrUL8X8+fPZ9y4cRIshRBC7BOkLVYIIUS9zj77bGebkbpbZjQmNTWV2267rRmv7PfjpJNO4qSTTmrpyxBCCCF2irTFCiGEEEIIIYTYbdIWK4QQQgghhBBit0m4FEIIIYQQQgix2yRcCiGEEEIIIYTYbTLQZycZhomuGy19GQlcLpVwuPVdl9g/yPtLNCd5f4nmJu8x0Zzk/SWaU2t8f2maiqoqjR4j4XIn6bpBWZm/pS8jjqoqZGenUlFRg2HIXCaxZ8n7SzQneX+J5ibvMdGc5P0lmlNrfX9lZiajqlqjx0hbrBBCCCGEEEKI3SbhUgghhBBCCCHEbpNwKYQQQgghhBBit8maSyGEEEII8bthmiaGoWPuxlI2VVUIBoOEw+FWtSZO7B9a4v2lKKCqGorS+MCeHdnvw+WAAQPo3bs3AAMHDuS+++5r4SsSQgghhBB7m2maVFWVU11dAez+P9iLilQMo3VN8xT7j5Z5fymkpKSTmpqxyyFzvw+XmZmZvP/++y19GUIIIYQQogXZwTI9vQ0ejxfYzQqNSyEclqqlaB57//1lEgzWUlFRAkBaWuYunWW/D5dCCCGEEOL3zTRNJ1gmJ6fukXO6XCoglUvRPFri/eVyuQGoqCjZ5eplqx7oM3fuXC699FJGjx5NXl4eX3/9dcIxr732GmPHjmXQoEGcccYZLFq0KO7+8vJyTj31VKZOncqcOXP21qULIYQQQohWwjB0wIxULIUQDbH+jJiRPzNN16orl36/n7y8PCZNmsRVV12VcP/HH3/MAw88wF133cWQIUOYPn06F154IZ9++ilt2rQB4MsvvyQ3N5fVq1dz8cUX88EHH5Caumu/sVLV3Wuf2NPs62lt1yX2D/L+Es1J3l+iucl7TMQyDPt9IO8HIRpn/RlRFGWXfn626nA5ZswYxowZ0+D9L730ElOmTGHy5MkA3HXXXXzzzTfMmDGDadOmAZCbmwtA79696du3L+vWrWPQoEFNvhaXSyU7e8+0UexpWVkpLX0JYj8m7y/RnOT9JZqbvMcEQDAYpKhIxeVSIu2Ge8aePJcQdbXM+0tBVVWyspLxeDxNfnSrDpeNCQaDLF26lMsuu8y5TVVVRo4cyYIFCwCrJTYpKQmPx0NBQQErV66kS5cuu/R84bBBRUXNnrj0PUZVFbKyUigtrZYx2GKPk/eXaE7y/hLNTd5jIpa1pYMRGZCyZ9axuVwq4bCsuRTNo6XeX+GwiWEYlJb6cbmCcfelpyfhdmuNPn6fDZelpaXouk5OTk7c7dnZ2WzYsAGANWvW8Je//AVVVVFVlVtvvZXMzMxdfs7W+peTYZit9trEvk/eX6I5yftLNDd5jwlovf+G29vmzfuFq6++lM8//47k5OQGjzvttBOZOvVsJk+eshevrvV58cXn+PHHWbz44r9b+lL2ul392bnf1fJN03QmGx144IF89NFHfPDBB7z33nuMGzeuha9OCCGEEEKInXPffXcyevRwHn30rwn33XXX7YwePZx//OOxXT7/xx9/yMSJRyfc/vzzrzBx4snO56NHD+eHH77f5efZF9T3GqdOPYe///3JZn/uK6+8eLe+j63JPhsus7Ky0DSNoqKiuNtLSkoSqplCCCGEEELsi9q1y+V///uMYDDaolhdXcX3339Du3a5zfKcWVlZ+Hy+Zjn37gqFQnvtuZKTk8nIyNxrz7c/2GfDpcfjYcCAAfz444/ObYZh8NNPPzF06NCWuzAhhBBCCCH2kAMOGEBWVhazZn3n3PbFF5/Tt28/OnbsFHds3eqb3+9n9OjhzJv3S8J55837hfvvv4vy8nJGjx7O6NHDefHF5wCrLfadd950Pga4+eZrGT16uPP5pk0bufnmaznxxGMYP/4ILrnkfBYuXJBwPe+99w7XXnsFY8eO4swzT+Wnn2bFHbN27Wquu+4qxo0bzcknH8uDD95DVVWVc/+VV17MY4/9jccee5gJE47m1ltvaPBr9cEHM5g6dRJjx47k7LNPZ+bMD5z7QqEQjzzyECeddCxjx47k9NNP5u2332j0Nb744nNMm3aOc4777ruT22+/iZdeep4TThjH8ceP5T//+TfBYJCHH76fY44Zw+mnnxT3PQiHw9x//12cdtqJjB07irPOOo0PPpgRd84FC+bxxhuvOt+HrVu37NTXpjVq1Wsuq6ur2bhxo/P55s2bWb58OTk5ObRt25bzzz+fm266iQEDBjB48GCmT59OIBDg1FNPbcGrFkIIIYQQ+4IZr21jxeLqXXqsooDZxCVp/QalcOpZ7Zv8XBMmnMjHH3/A2LHWEq+PP/6QE088hU8/ndnkc9kGDRrC1Vdfz8svv8C//20FyaSkxHWYzz//CieeOJ477rib4cMPRlWtgS5+v5+RIw/nkkuuwOVy8/7773LTTdfw5pvvx804eeGFZ7n88qu59tob+eCD97jttpt4/fV3yc1tT2VlJVdffRmnnDKZP/3pevz+Gp588u/cd9+dPPDA35xzzJz5AaedNoVnn/1Xg6/n888/4aWXnufaa2+id+8+LF++jIceupf09HQOP/xI3nrrDX744TvuuechcnNz2bIln4qK8kZfY33mzJlNTk47nn76BebOncOjj/6VX36Zw6hRo3nxxX/zzjtvcs89f+Hdd2eSnJyMruvk5rbn3nsfIj09g/nzf+WRRx6kffsOHHzwoVxzzQ1s2rSR3r37cv75FwKQmZm101+b1qZVh8slS5bwxz/+0fn83nvvBeDKK6/kqquuYsKECZSUlPDEE09QWFhI//79eeGFF5w9LoUQQgghhNjXHXfcRF588TmKigqprq5m7drVjB07brfCpdvtJjU1FUWB7OyGl5RlZWUBkJqaFndcXl4/8vL6OZ9fddW1fPvtV8ye/SPHHjvBuX3cuGOZMMGqBF555Z+YM+cn3nvvHS655AreeedN+vc/gAsvvNQ5/qabbuOss06jtLSErCzr3/TdunXnkkuuaPT1vPjic1x11XUcccSRAHTs2ImVK1fw/vvvcvjhR7J9+za6dOnK4MFDUBSF9u077PA11iczM5Orr74OVVXp2rU7r702Ha/X4ww/Ou+8i3j77TdZtWolQ4YMxev1Mm3aJc7jO3bsxIIF8/jqq/9x8MGHkpqaisvlwufzxT33W2/t3NemtWnV4fKQQw7ht99+a/SYs88+m7PPPnsvXZEQQgghhNhf7EoV0bY3t4rIzs5h+PBD+OSTmVRWVjBmzFiSk1t2D1e/38+LLz7HTz/NoqSkGF3Xqa2tpaBgW9xxBxwwMO7zAQMGsX79OgBWr17F3LmzGT/+8ITz5+dvdgJUv379G72Wmpoa8vM3c999/8cDD9zl3B4Oh50QedxxE/nTn67gD3+YzKGHjmL06CM46KARTX7dPXv2QlWjKwszM7Po3r1nzOeZaJpGWVmJc9s77/yXmTM/oKBgK8FgkFAoxLBhBzX6PKtXr9ypr01r06rDpRBCCCGEEAImTjyRZ5/9B36/n//7v3vrPUZRFMyYXt1wONxs1/PUU4/x669zufzya+jUqTNer5cbbrgmYeBOZBOHhOsEKxQefviR9VYl27Zt63zs8yU1ei01NX4Abr31/8jLiw+iLpcVd/r1O4C33vqAn3/+gblzZ3PLLdczbtwx3Hzz7Tt+sfWcL/a11L0NrFkwAF988RlPP/04V111HQccMIDk5BReeumfFBQUNPo8fr9/p742rY2ESyGEEEIIIVq5UaOO4OGHHyApKbnBqldmZhYlJcXO56tXr2z0nC6XG13fcfXV5XJhGHrcbYsXL2TixJOcNtSKigoKCxMD09KlSxg//jjn82XLljBypFWN69s3j++//5YOHTqiaQ2vc9yRNm2yyclpy5Yt+Rx99DENHpeWlsb48ccxfvxxHHLIYdx99x3ceOOtqKpa72vcExYvXsiQIcM45ZTJzm2bNm3C4/E4n7vd7oTnzsvL49tvd/9rs7fts9NihRBCCCGE+L1wuVy8+eYMpk//j1P5q2vYsIN4553/snr1KhYvXsjzzz/d6Dk7dOhAdXUV8+b9QllZGYFAoN7j2rfvyC+/zKG4uIiKigoAOnfuyjfffMWqVStZuXIFd955W72DcL788nM++eQjNm7cwNNPP87GjRs4+WQraE2adDqlpcXcffftrFixjPz8zfz00yweeui+pnxpADjvvGm88sq/eOedN9m4cQOrV6/i/fffZcaMtwF4883X+PLLz9m4cT0bNqznu+++oUuXrk6La32vcU/o3Lkry5YtYe7cn9m4cQNPPfW40xZsa9++I0uXLmHbtq2UlZVhGAaTJ0/ZY1+bvUnCpRBij6qoLeenLT9QE65p6UsRQggh9ispKamNrrW88so/kZmZxaWXns/DD9/PBRdc3Oj5Bg0awsknT+KOO27mhBPG8dpr0xs87+zZPzFp0kQuuOAswBrgk5yczKWXns+tt97IUUcdTdeu3RIeO23axXz66cecd95Uvv32a+655yHat7fWurZt246nn36RYDDIn/50OX/84xSeeuqJuGmzO+uUU07j+utv4YMP3uPcc8/kmmsu5auv/uds1+LzJfHvf7/MtGnncMkl51FZWcm99/610de4J5x88iQOP/xI7rjjFi699AJCoRATJ54Ud8zUqdb8mLPOOo0TThhHQcE22rXbc1+bvUkxzaYOUf59CoV0ysr8LX0ZcVRVITs7leLiKgxDvo1iz9rV99fC7fNZWLiAUZ1G0yuzTzNeYfMoKw1RURbG51MxTMjMcuFL2nfaUfYV8vNLNDd5j4lY4XCYoqJ8cnI61bs+blfszYE++6rRo4fz0EOPMmpU4lAa0biWen819mclMzMZt7vxfxPJmkshxB4VNq3hAYZpUugvZGHhPA7rOJoUd8tOtduRqsowM14rYM2K+F8iZbZxcdVt3dG0+luQhBBCCCGERdpihRB7lB6ZjmaaJpsqN7ClagsF/m07eFTL++7zEtas8JOe6WLA0FR6908mPdNFWUmY9atbV9eCEEIIIURrJJVLIcQeZZjWtDMTE8O0g2brbhuqDRgsmFOJ7vZzyQ0DSUm1Wj4WzKngvf8UsPjXSnrlte7KqxBCCNHazJr1S0tfgtjLpHIphNij9Ei4NEwDI7Kk265mtlYLf6mgWN9C9QFfs6J6nnN7v8EpuNwKyxdVEwq17tcghBBCCNHSJFwKIfYoPaZyaWKFS4PWHczm/VRBlWsr3Xsns7RoiXO7z6fR94AUagMGq5dLa6wQQgghRGMkXAoh9ig9sgmwacaEy1bcFltdFWZbfi05GVlktnEDUBWqcu7v1S8ZgIIttS1yfUIIIYQQ+woJl0KIPcqMVCkNDIi0xW7e6KdwW7AlL6tBG9ZYG0Z37OxxbttUsdH5OD3TWppeURbeuxcmhBBCCLGPkXAphNij7Molkcrltvxa3n9jG2/8a0vLXlgDNqypASC3i9u5bWHhfGasepvt/u2kZ0TCZbmESyGEEEKIxki4FELsUbo9IRaTosJa5s8ux8SgeHuoVVb/NqyNhMtO0XAZ1INUBivZULHOqVxWSrgUQgghhGiUhEshxB5lD/TJ31TDJzO2Ew6DL7KLh10lbC0CNTrb8mtJz3SRnKYAMLz9wRzR+UgAygKl+JJUXG6lVQZjIYQQYlfcd9+d3H77Tbt1jnfeeZPTTjtxD13R/uvjjz9k4sSjW/oy9hrZ51IIsUeFwmFWLK5i9sLtBNHpMySZIR0yWD7DCpeDDkpr6Ut0bFwXABO69Upy1oomu5Lpmt4NVVEprS1FURTSM1yUFIUIBQ3cHvmdnBBCiL3jvvvu5JNPPgLA5XKRm9ue448/gbPPPg+Xa9f/GX/NNTdgRuYiiD3ntNNOZOrUs5k8eYpz29FHj+eww0Y1+3Pfd9+d1NT4uffevzb7czVGwqUQYo+prgrzzWdF5Bf56eAyOfTwDDydguR63SwH1reyyqVdSe3WK8nZk1NTNVRFJcObQWmglEA4QHqmFS4rysNkt/U0dkohhBBijxo58nBuvvk2QqEwCxfO46GH7kPTNM455/wmnyscDqNpGqmpqc1wpXteKBTC7Xbv+MBWzOv14fX6Wvoy9hr5FbwQYo8wTZN/P7OF7dtryMxyMemcXHr3t7bx8KWotGnrpqggSFVl62kv3bDaCpfdeyVhRNp51ciPxUxvFgBltaWkZci6SyGEEC3D43GTnZ1D+/btOfbYCRx77PHMmvUdALW1tTz55KOcfPJxjB9/OJdddgFLlix2Hmu3ZH733Tf84Q+TGTt2JGVlZQltsbW1Af7+94c44YRxjB07kquuuoQ1a1bHXcdHH73HpEkTGTduNH/5y5+pqqqKu98wDF588TlOOeV4jjrqMKZNO4f583+NO+b7779hypRTGDt2FNdddyXvv/8uo0cPd+5/8cXnmDbtHN577x1OO+1EJkwYC8CPP87isssu4LjjjmTixKP5859voKBgm/O4efN+YfTo4cye/RPnnnsmY8eO4vrrr6aiooIvv/wfZ5xxMscddyR/+9uD6Lre6Nf7u+++4bzz/sDYsSOZMuUUXnttOoYR3VLtxRefY9KkiRx11GGceuoEnnvuKQCuvPJitm3byqOPPszo0cOd11W3LTb2NZ566gTGjz+CJ5/8O7qu8/zzzzBx4tGccsrxvPfeu3HX9Y9/PMaZZ57K2LGjOOOMk5k+/UXnul588Tk++eQjvvnmK+e55837BYCCgm3cfvvNHHvsGCZOPJrbb7+JoqLCRr8Gu0Mql0KIPcJfbbAtv5bkDiqHjc0iNV2jMmhVA03ToHvvJEoKQ3z2XhGn/CEXTVOa9XoM00BVGv79WbDWYMumACmpGtnt3KzcYv2A1lQNgExvJgClgVLSM9sBsh2JEELsb37I/55NlRt3fGA9VFXBMJrWWtolrSujOh2+S89n83q9hEIhAB577GE2bFjPPfc8SHZ2Dv/736dce+0V/Oc/b9O2rfV3l9/v5403XuW22+4iJSWFlJSUhHM+/fQTzJr1HX/5y73k5OTw8ssvcv31V/HGGzPw+XwsXryQv/71fi677GpGjTqcWbO+Y/r0F0hLS3fO8eab/+Gtt17npptup1ev3syY8TY33ngNr7/+Lm3btmPr1i3cccctnHnm2UyYcAJLly7hmWeeTLiWjRvX8+OP3/PAA4+gqtbf44FAgDPPPIdevXpTXV3Ns88+yZ133sozz/wr7rEvv/w8N954K5qmcdttN3HHHTeTnJzMgw8+QkFBAbfddhODBw/hmGOOr/dru3DhAu6//07+9KcbGTRoCBs3buCvf70Pt9vDGWdM5euvv+C///0Pd955Pz169KKoaDubNlnvn/vvf5jzzvsDp556GhMmNL4WdePGDcyf/wt///s/2LBhHf/3f7eydu0aDjhgIM8++xLffPMVDz/8IAcddDAdOnQEIDU1ldtvv4vs7BxWrlzBQw/dR2ZmFiefPImpU89hw4b1BAIBbr75NgDS0zMIh8Ncf/1VDB48lGeeeRFQePHFZ7n55ut4/vnpztd3T5LKpRBijygrsf6iS8tUcGkKhmlG97w0DUYf3Yb0TBeLf63k47e3N+u1fL3xS15f/ipho+EwuHlDAMOwWmIVRXEGESmRQJrpsyqX5bVlsh2JEEKIVmHp0iV89tknHHTQCLZt28bHH3/Ivfc+xODBQ+nUqTPnnXchPXr05PPPP3EeEwqFuOGGPzNgwEC6d++BxxO/vMPv9/P+++9yxRV/4uCDD6Vnz97ceuv/EQoFnfO8/fabjBw5mqlTz6Zr12784Q/nMGTIsLjzvPHGq5xzzvmMHTuObt26c80119O+fUfeffctAN577x26d+/JpZdeSdeu3Tn++BM4+uhjEl6jruvcfvtd9OnTl169egMwduw4xow5is6du5CX14+bbrqNxYsXsX17QdxjL774CgYOHEz//gM47riJzJ//K7fccgc9e/bmsMNGMXz4CKeiV59//euf/PGPF3DccRPp1Kkzhx02inPPvYAPPrCqiAUF22jTJpsRIw6hffv2DBw4mOOPPwGwwpyqqiQnJ5OdnUN2dk6j38tbbvkLPXr05Mgjj+aAAwZSWlrKRRddRpcuXTnrrD/i8/lYtGiBc/x5513IwIGD6dChI2PGjGXy5DP46qsvAEhOTsbr9TpV7uzsHNxuN19++TmKonDTTbfRs2dvevbsxW233cXq1StZsWJZo9e3q6RyKYTYI0qLrHDpS7UqkiamMyzAMA3a5LiZdk1nnrhvA8sWVnHCGe1QlOapXtq/ha4OVZERqUDWFbve0r5GiLbFZkXaYktrS+nubEfSeCuNEEKIfcvuVBFdLpVw2Njxgbvp+++/Zfz4w9F1HV3XGTfuWC644GLmz/8VXdeZMuWUuOODwSC9e/dxPvd6vfTs2avB8+fnbyYcDjN48BDnNp/PR58+eWzYsA6wqolHHTUu7nEDBgxi7do1AFRXV1FcXMSgQdFzKIrCoEGD2bBhfeQcG+jff0DcOep+DtChQ0fS0zPibtu0aSMvvPAMy5YtpaysDLD+fVFQsI127XKd43r1ir7uNm3a0KZNNhkZmc5tWVltKC0tafBrsWbNShYvXshLLz3v3KbrBmbk3whHHjmON9/8D2eccTKHHjqSkSNHM3Lk4U2uAHbs2ImkpKS4a/V4vM7nqqqSmZkZd61ffvk5b731Bvn5mwkEagiHw+Tmdmj0eVavXsXGjRsYPz7+fa7rOvn5mznggIFNuu6dIeFSCLFHlEYql0mRbhsz8j+IBreMLDe5HTxs2VRLeVmYzKzmXaTfWFusEy57x4dLLfIXRIo7FZfqory2zFlzWVEWas7LFUIIIRIMH34I1157Iy6Xm5ycHGdKbE2NH5fLxb/+9VrCL2tjW199vp0bJlP3HNbvhxXn48Z+IWwPnk08h0n0ptiPo7fV5fMlJdx2883X0rFjJ/7857+QnZ2D31/NRRed67QH22In6CqKkjBRV1GURqfk+v01XHTRZRx++Jh672/fvj2vv/4uc+b8zNy5s3nwwXvo27cfjzzyZJN+YV7fdSXehtN2vWTJIu6++w4uvPAyRow4hJSUFD766H2+/PLzRp+npsbPAQcM4Lbb7kq4r02bNjt9vU0h4VIIsUeUFYcwMUlKscKZaRpOYLNbTgHad/ayZVMtWzfVNku4jG2FtZ+/PiVFIVCgXXtP5Nj4gT6KouDVvFSHqknPtNtipXIphBBi70pK8tG5c5eE2/v06Us4HKa8vIyBAwfv8vk7deqMy+Vi4cIFHH30eMAa8LN69W+MG2e1rXbr1p2lSxfHPW7p0iXOx6mpqWRn57Bo0QKnemmaJkuWLOaII44EoGvX7syZ81PcOXamNbO8vIyNGzdw663/57zOn3/+cdde7A707ZvHpk0b6v1623w+H0cccSRHHHEkxx03kUsuOY+CggLat2+Py+VG1/d8NXvx4kV07NiJc845z7lt27YtccfU99x9+uTxzTdf0qZNG5KTE9faNgdZcymE2CNKi0OY6CSnWgNxTNN0fh9pxoS8Dp2tto9t+bXOccHaPfeDuCbsdz5uLFwGagx8PhVVVeKOja12ulUr/PpSTBRVBvoIIYRoPbp27c7RR4/n7rvv4LvvvmHLlnyWLl3CSy89nzCltTHJycmcfPIknnrqMebM+Zm1a9dw33134XK5GT/+OAAmTz6DH3+cxZtvvsbGjRt4441XWbhwXtx5zjzzbP7975f4+usv2LhxPY8//gjbtm1h0qTTATj55EmsW7eW5557io0bN/DZZx/vsPIGkJaWTkZGBu+//y75+ZuZO/dnnn32H034Su28c8+dxscff8jLL7/AunVrWbduLZ9//gnTp78IwCeffMTMmR+wdu0a8vM38+WXn5GamuZUATt06MCCBfMoLNwead/dM7p06cLWrVv48sv/kZ+/mf/859/Mnh0f1Dt06OC0wZaVlREOhznmmONJSUnlz3++kYULF7BlSz6//jqXv/3tASorK/fY9cWSyqUQYo8oLQljKgZJKZFwWWfNpa1DJ6s9Z+tmK1z+8FUpX39SwjmXdaJ7r8RWmKbyh6N7aRoNtL7ouhVoM9tEfwQakSisRqbFArgi4VInTEqqRnVlONLi07yTboUQQoidcfvtd/PSS8/zxBOPUFRUSFZWGwYOHMy4ccc26TyXX341pmly99234/f7OeCAgTzyyJNOS+3gwUO54YY/869//ZN//vNpDjtsFH/4wx/58MP3nHNMmfIH/P5qHnvsb1RUlNOzZ28efvhxcnLaAtY6w7vvfpCnnnqMN998jaFDD+Sss87bYVBUVZU777yfxx//G+eccwbdu/fgiiuu5tprr2zaF2snHHbYKB544BFefvkFXnnlJTweN92793QCckpKKv/+90s8/vgjmKZJnz59efjhx5whSdOmXcrDD9/PlCmnEAwGmTWr4eFBTTF69BjOOGMqf//7g4RCYQ4//AjOOutc3n8/ul3JiSeeyvz5vzJt2jnU1Ph54olnOfDA4Tz11PM888wT3Hrr9dTU1NCuXS4jRhyaMNhpT1HMxhqPhSMU0ikr8+/4wL1IVRWys1MpLq5q8ihsIXakKe8vwzC594bVuFODdJoyB4Cemb2oDFZS6N9Obkp7ju1ujf0OBg0euHkNaRkurruzBy8/tZn1q2rIyfVw+rntKS0OkTcwZZcD3PrydXy3+RsAjmp/PJ3b5Cacy1+t89fb1tK+k5dLb+wKwMdrP6KoppDT+k4h2W3tz/n5+k/YVr2NU/tM5tXHSinYEuTm+3uSlKwhdo/8/BLNTd5jIlY4HKaoKJ+cnE4Ja9t21d4a6LM/e/bZf/Djj9/zyitvtvSltDot9f5q7M9KZmYybnfj/waStlghxG6rKAtjGJDeJvoDxzRNp2IZW7n0eFRycj1UlIWprgpTEGmPLSoI8sxfN/LGi1tZtXzXf5FTE6lclpWEePKBdbzz720J/7AM1FjX40uK/gisvy3W+q1eyAiRkmb9gK2ulHWXQgghxK545503WbFiGfn5m/noo/d45503Oe64E1r6ssQeJG2xQojdVlpsTWtLb6M66ywN03DaYnUjPpB16OylcFuQFYurqfEbpGW4CNToGAboYZOl8yvpe8CuLTy311xuWh8A02TJvCo8nu2cdGZ0VHmgxroery8aJO09OTUlti3W+hEZMqy2WIDqKp2c6KmEEEIIsZM2bdrIK6+8RGVlBe3bd+D88y/mzDPPaunLEnuQhEshxG4r3BYEICNLoyxyW+xWJHZws3XrlcSiXyr5+Vvr6J59kzjm5BxMEx69az2/LakmHDZxuZreGlsTrsEwTLZuCtBBNUhO0pj3cwVHTcgmLd36kVdf5dIOwHGVS82qXIb1ECmp1iCi6ioZ6iOEEELsij/96Ub+9KcbW/oyRDOStlghxG75+dsyPplRCEC7TtHfV1lVy8SBPgC9+llrGu1Q2r6Tl5RUF6lpLnr3SyZQY7Bu1a61xtaE/ZQUhqitNenSw0u3yJCgspLoXljRcBmtUhoktsW6IlVMqy02UrmUtlghhBBCiHpJuBRC7DLTNPnfh0WoisLE09rSI88bvQ+j3jWXAJlZbnLaudnuXUalayu5Hb0EwgEM06D/4FQAlszbtRHZNeEatmwKANB7QBKZWVbgLS+NVhzttti6lUtVUeOG/3jsymWdtlghhBBCCJFIwqUQYpcFagz0sElOrpsRozPjQqRp1r8Via1znkqhbwWF3hW0aa/w7qq3+CH/e/oNSsGXpLLol0onJDZFhb+a/I0BVBV65iWRUW+4rH+gT2zVEkBT7DWXMZVLCZdCCCGEEPWScCmE2GX+aito2Xtb6mY0eMWuuawvXHbrY+0h6Uk2UL1BwkaYymAlviSNcSdY6y8//O/2HW4hUBsweOXpzSz+tRLDNFi5qoxwGDp38+FJgows63nKSxtvizUxE8KlO7LPZdgIkZIi02KFEEIIIRoj4VIIsctqqq2QlhwJl3Urlw21xQJ07O4is42LLr08Tii1/3vgYel06upl66Za1q+uafQaNqytYe3KGt759zbyt5U7azV79E3GNI0GKpcNt8XGcmlSuRRCCCGE2FkSLoUQu8yuXNrhMmxGA1z8tNh6qo8ug8PHteGAYcmEI5NajUi4VFWFQQelAbBxbePh0h8T9p75+2pq/AZtcz2kZ7gwTDOmcrmDtlgS22LtymXcViSVMi1WCCGEEKI+Ei6FELusbrg0IxXKrr/+xoQ/3Mi4//snGEbCPpcAumGFNN3U0c3ox7YuPawpr5vWNb7uMraSGDRryW7nZvBwK5gapkFyiorLrTTaFmuvD43d4xLi22I9XhW3R5HKpRBCCNGAyy67gG+//cr5fNWqlUybdg5HHXUY5533ByoqyjnppGMpLNzeglcpmpPscymE2GV1w6VuGKihMMff/yqpJRVkrd7IkIHdWHTqEQmPDRlW2AsbYcJ20IwJoe07eXF7FDatD2AYJqpa/56XVZFK4nGntoVsg9+UTBSsYw3TQFEUMrJcFG8PUVtr4PWq1AbiK5d2qE1oi3Uql9a1pqRqlJWE0XUTTWv6HpxCCCHEzho9enij959//kVMm3bJXrmWFSuW88ILz7BixTJqamrIyWnLwIGDueWWO3C7rb8rv//+G6qrqzniiKOcxz3zzJO0a5fLffc9TFKSj/T0DI4//gRefPE5brnljr1y7WLvknAphNhldktqcko0pPWetZjUkgpqstJJKq1gyIc/sPCUwzFNM26bj3AksBmm4YTL2LWZmqbQqZuP9atq2L41SPtO0W1OYtkDdnI7ejDbuVi5WUFTNHRTd86XmeWmeHuI8tIQ7dp7E9Zc2scltsW64q7VDpf+ap20dPnxKYQQovm8//6nzscff/whM2a8zfPPT3duS0pKdj42TRNd13G59vzfTaWlJVx77RUcccSRPPro0yQnJ5Ofv5mvv/4Sw9ABK1y+/fZ/Of74E+P+rs/P38Tpp59J+/btndsmTjyR8847iyuu+BNpaWl7/HpFy5K2WCHELkuoXJo6PX9aCsCPN19AUc9OtF27lTbrtyUM9QnHVCmDehBIHPzTNdIau3Fdw+su7XCZmubCMKzHuzXrLzoD6/O6Q30CNQYo4PXVDZfxbbGumDWXAClpkYmx0horhBCimWVn5zj/T05ORlVV5/MNG9ZzzDFH8PPPP3L++X/gyCMPZdWq37jvvju5/fab4s5z++03cd99dzqf19bW8uSTj3LyyccxfvzhXHbZBSxZsrjB61i8eBG1tQFuuuk2+vTpS6dOnTn44EO5+ebb8Hp9AJSWljJv3lxGjTrcedzo0cPJz9/MY4/9jdGjh/Pii88B0LVrd9q1a8esWd/uwa+WaC3kV+9CiF3m90fCZao9LVan86I1mIrC1mH9SBkzjJy1+fSYswzjOAMNjZAewqW6nGolQK1RC8SvuQTo0sP6S2v2t2Vkt/XQKy+Zuuy22JQ0jeJa62O36iZAwFkDWl+49HpVp9W2obbY2DWXQMxQHwmXQgixP0i76lI8n8zca88XPH4ilU8+u8fO99xz/+DKK68lN7c9GRmZO/WYxx57mA0b1nPPPQ+SnZ3D//73KddeewX/+c/btG3bLuH4Nm3aEAwGmTXrO4444si4yqRt0aIFJCcn06VLV+e299//lIsuOpdTTz2NCRNOjKu05uX1Z+HC+Rx//AlNf9GiVZPKpRBil0XbYq3Q5dmylYyCEgp7diSYnszGYX0A6LJgNQYGhmkwY/XbfLv5ayewAQR1K1wapoFpRifL9uiTRLdeSRQXhnjtuXyKC4MJ11BdpaOqVourvWbTrXqc80F0r8uykhCGYVIbMOImxdohVGtwWmydcFklE2OFEEK0vIsuupyDDhpB585ddqrFdNu2bXz88Yfce+9DDB48lE6dOnPeeRfSo0dPPv/8k3ofM3DgYP7whz/yl7/cwoknjuemm67lrbfeoLKy0jmmoGArbdpkxwXP7OwcVFUlOTnZqb7acnJy2LZt6268ctFaSeVSCLHL/HX2uUxdshyALQO6Y5om2/p1IeRx02nRWraHQwQ1k0A4QGmghFR3qnMeuy0WrEDoD1Xj1Xx4XB7Ou7ITH7y5nfk/V7BlYy3ZbT3RYw2T6iqdlFQNVVWcqbMeuy02Ehrbtrcesy2/NmGYT+xxdSuXiqLgUl2EdCtcJkvlUggh9iu7U0V0uVTC4cR9nPemfv36N+n4tWtXo+s6U6acEnd7MBikd+8+DT7u8suvZurUs/nllzksXbqY116bzmuvTeeFF14hJ6cttbW1eDz1z0aoj8fjpba28WnwYt8k4VIIscv81TqaS8HtsX5TmbxqHQDF3TtYg3o8LrYe0I2uC1ajrfyNcOQvwaAeJBzTAhsIR/+CqQpV8v7qGSS5kjg970wURaFzNx/zf66gsCC+clnjNzANa70l4LTa2msl7dCY29GL5lJYunk13fO3AenONiTQcFusda6YcBkJ0TX+lv3HhBBCCAHg8yXFfa4oSlwHEEA4HO22qanx43K5+Ne/Xktob01JSWn0ubKy2jB+/HGMH38cF154GWeeeSrvvfcOF154KRkZmVRWVuz0dVdWVpCZmbXTx4t9h7TFCiF2iWGY1FTrJKdozl9QqWvXA1DUoz0m1t6RBXnW+gvPogUYkRAXMkLOPpcAQSMaGqtD1QDUhKNDfNrmWpXHojrh0m5PtdtV7ZDo0ey2WOsvWJdLoUNnL6vVn5m1Zg66EqxTubSOU+r5kehW3c7k2aTIVFx7kJEQQgjRmmRmZlFSUux8bhgGa9eucT7v06cv4XCY8vIyOnfuEvf/rKw2O/08qampZGdnU1Nj/V3dt28eRUWFVFdX7dTj169fR58+eTv9fGLfIeFSCLFLAjUGphndhgQgdc0GAIq7tXeqhgV9uwDgXrjQuc0wDWr1aLWyNqZyGTvoxx/yA5ATCZd1K5d2e2pKmr3PpvW5U7kkWmHs3M0aDrR9q3WO+tpiNTV+Wqx1rmhVNDnZrlxKuBRCCNH6DBt2EEuXLuGLLz5j48YNPPHEI5SXlzn3d+3anaOPHs/dd9/Bd999w5Yt+SxduoSXXnqe+fN/rfecP/zwPffc8xd++ukHNm/exLp1a3nmmSdZt26tMx22T5880tMzWLx40Q6vsba2lt9+W87BBx+6R16zaF2kLVYIsUtq6kyKJRwmdf1m/Bkp1GSl4YtUEbdFKpfeRQvjthqpjgRHgNrIQB+AUEwVszRQQrI7meQUjZRUjeLCILpuEg6ZvP7iFtzuSMU0rU7lMhIuzZjn69zdBwtg+9ZaumPEtcUapg6mScbaTdBBBy16nz0cKGSESEq2zlsjlUshhBCt0GGHjeKss87lscf+hmkanH76VEaMOCTumNtvv5uXXnqeJ554hKKiQrKy2jBw4GDGjTu23nN2794Dj8fD448/wvbtBfh8Prp168699/6VAw8cDoCmaUyYcAL/+9+nHHroyEav8Ycfvqddu1wGDhy8Z160aFUkXAohdkndSbHaurVooTDF3bsD0WpgecdsAqlJeJcuQw9GQ6Q/0v4K8QN9amM+LqktoVNaZ0zTJDMXqtdAaVGI4qIg61dF22ZT6qy5dGvx02IB2nWxKpW1tSYmJn0HRNeWGHqYCff9m/5f/krthE+pePEVJ2C6ItXMsBEiKcWqfvplzaUQQoi9aPLkKUyePMX5/MADhzNr1i/1HnvJJVdwySVXNHgut9vNxRdfzsUXX75Tz92pU2duvvn2HR53xhlnce65Uygs3O5safL22x8mHPfWW69z7rkX7tRzi32PtMUKIXaJve7QCZe/rQCguFsuEBPsFIWCvC6otbW4V650Hh9brYzd3zIUEy7LAqUA/Fowl1UZMwkpNRQWBCkqiG5jArFrLqP7XMZdA5CUpuP1WZXOUeMy4vbMTP7+e/p/abUDeT/+EM//PnPui1YuwyQlq6BI5VIIIYSoKycnh5tuup2Cgm0NHlNRUc7o0Ucwfnz9VVKx75NwKYRo0OqS1fxWsqLe++qGS9dv1jYkxd07APHBzm6N9e3MWozYymXAGkpQESwnOU0lqFZRVBBMGOxTd82lp55wGTRCDDownbwByYw6OjPu8dn/edO6zrGjAPB+MMO5L7rmMoSqKviSVBnoI4QQQtRjzJijGm13TU/P4Kyzzk2YVCv2HxIuhRANmr15NnO2/lzvfXX3uNQi4bKoR3sgPtjZQ318Cxfu8Dlj11xWBCsIG2EM0yAtQyOs1rJ9WzBhsI99Dfb2JnW3IgEI6rV06Oyl74BUUGLGtFdXk/HN9wRSk1h69w2YSUl4PvsEdOtcsWsuAZKTNUJBs8X3NhNCCCGEaG0kXAohGmQHu7p7ZkE9ay7XWKPOS7rmJhxbkGeFy6TFS3f4nLHrL03TpLy2HN00yMhyo6tBNq6toWh7EJdb4cQp7eg3OIX2nayNm53KZWTNpRkzLTa2DTc2dHp+/gE1FGLDQXnoGZmEDhyOWlmBtvI3ILrm0g6XSZHXa4drIYQQrV+0UJb495kQIlZke7ZdLC5LuBRCNMheCxkbxmx+Z1qsCqaJtm4toSQv/qw0VCX+R0tFbhvCmRn4fvsNNRROOFes2MolWO2ouqHj8ahk5ZqUl4YJ+A2y27o56LAMzrygI5qmRK7XXnMZCZcxoTg2tBoxt7u/+QqA9SP6oaka4aEHAuBaMC9yLqsKGtatc9tbr8i6SyGE2HeoqgYoBGMGywkhEll/RpTIn5mmk2mxQogG2ZVAwzTQiP8hY1cuk5I1lOJi1KpKSnt3AUXBpbriwhyKQvWAA8j44Sdy1m9je5/ODT5nUI8f1qObuhNyc7sqbN9o3d42svdlLGdabGSdZGworjXqr1y6584GYNPQPvRUVELDrHDpnvcrtVPPdlpsncplsl25lHAphBD7CkVRSElJp6KiBACPxwvs7ro/hXBYKqGiuezt95dJMFhLRUUJKSnpu7wuVsKlEKJehmlgRlojDOqpXFZH97nU1qwFoLxTWwA0JfG3XdUD+5Pxw0/krtzUeLiMhECP5iGoB9FN3dqHEsjprLA9clxOPeFSN3VURXV+22bEtD/VhgPOx/brIhDAtXgRwaxMyjtmo6ISHjIMANeSRZHrsMOlFZbtcGnv8ymEEGLfkJqaARAJmLv/j3ZVVTEMWSIhmkfLvL+sX8LYf1Z2hYRLIUS97KolNNAWGzMtVlsXCZcdc6xwpyR23FcP6AdAu5WbYOJhDT6vXfF0q24rXBrRymV6WwOXWyEcMusPl4aOS3WhRjr+Y6/brjwCmJHbXUsWoYRCVA4+ABQFTdUwunTFTE5GW7USTDNxoE+kLVbWXAohxL5FURTS0jJJTc3AMHTqGSew01RVISsrmdJSP4Yh1UuxZ7XE+0tRrPbx3Z3kK+FSCFGv2L0nYz+2+at1XG4Fj0dFW78OgNJOOWhK/T+YKg+wwmXuyk3ObS7V5bSy2uwQ59G8VIeqMUzdCbphgvTKS+a3pdV06Oyt95q9qtcJt7HhMhBTubRvd8+zNqAuH3wAgBVKVZVw7764Fy1ALdiGOzVSudTjB/rImkshhNg3KYqCpu3eP4FVVcHj8eByBSVcij1uX35/SbgUQtQrNlCadSqXhmES8BukZVg/QuzKZVnHbFRFRalnHUtNp/aEMtJpu2YLaljHcGl4NW9CuLSH8HgjE19103DCYNCo5aQz21FSGCK7bXzl0ogcp6laXLisCdcQ1GsJGsG4YwFcv861rnuQFXw11Xqc3jcP96IFaCt/wzV8ABC/FQlEBxoJIYQQQgjL72JabE1NDUcddRR/+9vfWvpShNhnGGbDbbGBGgPTjNmGJFK5LI6Ey/raYnUMqgb0wxUKk71+KwBezdfg89vtqPZ2KAC14VpSUl106ZGUeP5IddOluJznN02Dj9a8z/urZ1AWKHWOtddcun/9FVNRKBuYB4CiRMMlgLbqt8Q1l1K5FEIIIYSo1+8iXD777LMMHjy4pS9DiH1KY2suo3tcWj9CtPXrMN1uKnMy8GieeiuXhmlQcYAV2nJ/s1pjfa7E1labvVelYRpOFTUU2ZakPuHINiSqkli5hMR9LpXCQrSN69H79KU21Qqr9lrNcK/e1utatzZmWmydrUj8suZSCCGEECLWfh8u169fz9q1axkzZkxLX4oQ+xQ9rnIZ3+8fO8xHqapELSok1LUrpqbi1Xz1rrk0MKgY0BeIrrtsrHLpcdpiw/Fbiuj171FmX69LjVYu65tya70ew1lvGT5wuPP6NHvKbLfu1ufr1+GxB/ro8ZVL2YpECCGEECJeqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u5/6KGHuO666/bWJQux39BjAl1C5TJmGxJ1ndUSG+zaFQCvVv/eYaZpUN6/DwC5KzdHjm04XFrnIX6/TKBWD9R3OHqksuiKBERFUeqdcgtW6LTXW4YOGuGEULtyqXfvAYC2YT2uyJ6Zdfe5lLZYIYQQQoh4rXqgj9/vJy8vj0mTJnHVVVcl3P/xxx/zwAMPcNdddzFkyBCmT5/OhRdeyKeffkqbNm344osv6N69Oz169GD+/Pm7fT2qurub7e5Z9vW0tusS+wczErgUVQHFjHuf2S2hKaku3BuscBno1hlFAZ/bR0D3U7d4aWJS0zmXQFoybdfko+k6SW5fwnE2r8uLokDYDMUdEzSC9b7nTQwUJVK5VJXIcB4TTVXrCZmmU7nUh4/ApMJ6rGY9lsxMjKwstA3r0RTwujyEzRCqquDzqWiate5U/uztOvn5JZqbvMdEc5L3l2hO+/L7q1WHyzFjxjTazvrSSy8xZcoUJk+eDMBdd93FN998w4wZM5g2bRoLFy7k448/5rPPPqO6uppwOEx6ejoXX3xxk6/F5VLJzk7d5dfSnLKyUlr6EsR+xjRNftsSxjBNUpK9ZGYlkepOYunCCjati+65lNMuibT5+dZj+nYjNdVHbpssjKoAgUhVUkHBxCQ9w4dpmhT170bnOcvpUlBC7qAs0vxJmJh4NE9clbJddiaplT6SUl2khqIVzuR0jeys6J9F3dD5afNPpHvTSU310SYzjezsVNJTk1EVFU1PHOGdmebFM/9XSE4mc/TBpG36ntSQj5zsNLJTI+fu3RvmziU7VEVWehr+kN/5GeDxaoRDZqv9mbAvkZ9fornJe0w0J3l/iea0L76/WnW4bEwwGGTp0qVcdtllzm2qqjJy5EgWLFgAwPXXX8/1118PwLvvvsvatWt3KVgChMMGFRU1u33de5K1wWoKpaXV+9weOKJ1W7G4imdfWo06qJihh6SxckUxn08vorw0MjTHaagPE1i6Ah9QmJNNVVWAmhSdysoAVX6rfdXey7K0rMoapNO7E53nLCdtwWqqDg5S4w8RNsKkuF1Uh6Itr/6KMFVVAYoop6oqevu2ohIyjHbO56tLVzEnf57zeZUrSHFxFf7qICEjVG9rbM2vi6GyktBho6goD1BaXkVVVYCy0hrctVUApHbuhnfuXMrnLSaQo1NZW0NBYRku1YXLDdWVBkVFlbu92fDvlfz8Es1N3mOiOcn7SzSn1vr+Sk9Pwu3WGj1mnw2XpaWl6LpOTk5O3O3Z2dls2LChWZ6zNX1zYxmG2WqvTeyb1q70Yyo6G9b6ycrRWPbzZjyVuXTvncT61TUYkbzmS9ZQ7T0uO+RgmiV4VC+YCvYMIBUN0wwT1g0MDLb17QJA7oqNBNGc+92qh9i5QZriwjQhqIfibq8J1cS933XDiLtfVbTI/Qq6Uf+ay+QFiwEIHTgcwzAJ67p1DlNxzh3u1h0voKxbh6ttBqYJgVAtyW4Nt1vFMHRCIRPXPvtTtHWQn1+iucl7TDQneX+J5rQvvr9a9UCfXWGaZr2VhEmTJnHDDTe0wBUJse8JBQ1nzeWCOZUEanRGjc3ij5d3IjM7mqaSUzRrGxJFobx9G8AaxKPG/Bl0JrBiYJoGWw/oDkDHJetI96Y7A3Ps6bBgVTs1JTJIp85An0A4flqsPfjHeaxiPV/sXpvZSTkclDuC/tkHAJC6YIl17gOHA9H1pVrMYwx7qM/6dbgj1xiODPVxexTn6ySEEEIIISz7bLjMyspC0zSKioribi8pKUmoZgohmqaiPIyhWNNQNRXGnZTF+JNyUFWFXnnJznEp7iBq/maMzl2o0ayg5dW8cftcuiIh0TB0DNOgqm0mwc6dyFm/jexaDS0SBu0tP8AKhlqk9zZoBJ3zQuK0WJP43+hp9YRLj+pmQM5A0jzpAGTMt6ZKh0ccDET39Ix9jB6zHYk7EnyDdrh0W8eFQvvWbxOFEEIIIZrTPhsuPR4PAwYM4Mcff3RuMwyDn376iaFDh7bchQmxHygvDWOic8JpHRh3Yg79BluBMqSH8Hbbho4VstKKNqOYJnqPXk7o82reuO6B2Mqlvf7RP/wgFNPE/csctAYrl5rznIATDCuDlXHXGrsfp/1YiG4rYl2DdZuCgrfKT8rqdehdu2G07xC5Niskqmp0HUF0O5J1uFU3IJVLIYQQQojGtOpwWV1dzfLly1m+fDkAmzdvZvny5RQWFgJw/vnn88YbbzBjxgzWrFnDnXfeSSAQ4NRTT23JyxZin1dRFkbzmKSlu/D6VIzIosZ15WvZ5P2Fct8GPF4F7yZrGxK9R09qI+2rHs0bVwG021sNMxoua4Zb7aiuOT9HK5cx4VJTohVNe3/JDG8GHs1DWW0pZswiS7POwB61nsqlEzgVlQ7LrDXZoRGHOPc7lcuYH4lG+w6YHk+kLTZSuYy8RpfbCpdhqVwKIYQQQjha9SiKJUuW8Mc//tH5/N577wXgyiuv5KqrrmLChAmUlJTwxBNPUFhYSP/+/XnhhRdo06ZNS12yEPu82lqDQI1BcgfFqUDaoTCg1+B2qxw83sug9HZov3wKWOEyqFtrIX0uH1BP5TImXNaOsMKle85sXFNHAPFtsS7V5YRE5zyKRhtfG7ZVb6O8toxMX5b13HWG9thBUokNl4odLhU6LrEGEMWGS/u6YgMpmobepSuuNavxBayAG61cRtpigxIuhRBCCCFsrTpcHnLIIfz222+NHnP22Wdz9tln76UrEmL/VxHZbiQ5LRoQjcjAG7ty16WvwpAu6Wj/XQOA3rMXtXopbtWNqqhxay7tITmGaThVxlDffhhp6bjn/YInsg+lJ2Ywj6poTiiNva2NL5tt1dsoCRQ74dK+NptLTaxcajGBs8MSq9oaGy6jA33in9Po2g3WrCZtaxFkxK65jLTFhqQtVgghhBDC1qrbYoUQe195mRWg4sKlHQoj4cof9gOgRbYhCXXvTlAP4nVZATFuzaXTFqs759HcHkKHHoZSU0P2UuscHs3tPCZ2zaVzHlWlTVI2AMWBYud2u6XVVn9bbOS2sEGH5RsIJyeh9z8g4RxxlUtA79odgNQt2+Nev1QuhRBCCCESSbgUQsSpKLMql0mp0dsSwmWoGgBt/VpMRcHf2RqM41Ej4bKBtlg9ch5FUQkdPgaADnOtPSfdauyaSzUxXCoa2T4rXJYESqLXllC5jK6vdG6LBNzUZSvwBIKUDe6PvUHlsuKlVIWqEh4DoHftBkByfoH1+iOVW2egj1QuhRBCCCEcEi6FEHHqD5dWZc8OVzXhGsxAAHXzJoxOnQlG2kR9kcplfcHOMM3o2kZUgkccBUD7OVa4THanOI/TFBeKotQZDKSR7snApbooDZQ4Q32MOpVLZyuSuIBrXUP6z3MBKDx4KAD5lZv5ZdscAIa2G5awR67ezQ6XW63Xb1hfG2crEqlcCiGEEEI4WvWaSyHE3lduh8uUmMmpkVBorzk0TIPQut9QDAO9Ry8CkWE+Xs0HxLfFqvUM9FEVFb3/ARg5bclctJyJOWPITspBUzQM03Cqnfbn1mM0FEUhy9eGQv92qkKVpHnSnfttWn2Vy8htaT9ZQbJoxBBygPJgOQBD2g1jUM7ghK+FEalc+jZb4XJz5UY2V27Epx0IyFYkQgghhBCxpHIphIhjD/Spry3WnpYKYK5eAUS2IQlbe1zaQ3li22JdSjRc2oNzVEUFRSF4xJEouk6Hhb9Fbyd2umv0R5T9cbLL2nMzELYCbcI+l0oD02Jra0n9ZR61KT7K+veKnKMGgJTIOeuy22I9mzYDUB2qpjpUzeawdb0h2YpECCGEEMIh4VII4QiHDQoLrNZXb0r0dqdyGWmLBWDtKsDehsS63acltsXabaom0cqlfVtwjNUa6/n6y7jH2dXO2Imx9mPcqjX4J2QEI9cWH/Dqnxar4Z73C2ogwOYhvdE1K/zW1qm41mVmtcFIS8ezaRPEPE9WZFKtVC6FEEIIIaIkXAohHF/NLKaiLEz3Pklo7miYsgNcKKZyqa2NbkMS0BupXEZaUsNG2Kky2sEvOHY8pqLg+ewTME0nTNrVztihPpoaqWo64dJu0Y2vXNqDgeq2xbq/+waADcP6RPftjFRcfa6k+r8gioLRtRuq309SebVzs8eeFiuVSyGEEEIIh4RLIQQAWzYF+PHrMnxJKqf8ITeu3bTuPpcA7vUbALtyGakARgb6oMQP01EVlbARxjANFEVx1mSaubmEDxyOtnkT2pLFTpis+1+IbjFib1lit+ja13loh5Ec1fVokt3JkePjq6ee/30GwIbh/ZxwWVv3uutht8ZmbI1uf2IXVGWgjxBCCCFElIRLIQQA2/KtoDVidAaZWe64KaymaRDSQ3HHJ23chKko6N17OCHNF2kvVWN+tCgouFSXEy7VOj92ao+fCID3s4+dABndTiSxLTZaubTWhtpBMcOXSZe0rs7xsc/jLSjEvWgBwW7dKOmWG1O5rIm77vrUFy61yCg02YpECCGEECJKwqUQAoDagBWUklOsEKfHTGE1TINgZI2jR/OghsIkbd2O0bET+HxOe6nTFhuzo4eqqLhUFyEjZIXLOntJBo+dYD3204+j24goO7PmMjq5Nvb+2Oe1ZX71HQDV48eBomBiVRwDegCX6nLCbH3s7Uh6lEVvc0W2XpHKpRBCCCFElIRLIQQQDZden/VjIa4t1jScNtQMbyYZW4tRDRO9pzV11Q6evnrWXCoocYGwbrjU++YR7tkL96IFpOdvB6KVS63OUB4Ad6Qt1t5zM7qOM36PythpsWlffgVA9bhxgFWJNUyDoB7EqzXcEgvR7Uh6lqmM6jTaei5XZA2qVC6FEEIIIRwSLoUQANTWWkHJ442ESyM+XAYjbbHJrmTabi6yjunZ23psQuUyJlwqitPKappmQrhEUaiddDoAvT79Aah/zaUdFt0JbbF6wrEQDZtuf4CkH37AyMik9uBDnNezw2E+EXrX7tb5N653rkGTNZdCCCGEEAkkXAohgMTKpVGnchmKaYvN3mBVGPW+fa3H6rWoiopHsya1xlYuVUXBHdN2mhAugdrTzgCgx6ffx02NrW/NpR0uw3XaYuue1/6873cLUWtrCR43AdVjhV8Dk9rIhFvfDiqXehdrHae2Yb3zuuxJurIViRBCCCFElIRLIQQAwUbaYk0MZ1KsW3WTvbEAgHDvaLi0gyXEBz17oE9999n0nr0JHTSCtE3b6LB8Q7RyGbfmMn4rkqDTFmuHyzqVy8iPt/7/+wWAwOlnOpVH0zSjQ4h2ULkkJQUjpy1q/mYUPbK+0xnoI5VLIYQQQgibhEshBBBti/VG2mLDkbZTsFpk7c/dqpusjdsACPXpQ0i3BvXETlyNrVwS0xYL9YdLsMIfwKCZP8WsuUysXHoaqFzWN9AntbCMrvNXoXfoSGjU4c51xbbF7mjNJYDerTtKKIR3u9UObGfesIRLIYQQQgiHhEshBFBfW2zMtFhMZ2iPW3WTuX4rQZ+HUPv2TnupJyakxa65VFGdVlZoOFzWnnYG4SQf/b74lfQqKzjG7XOpNrQViT3QJ7Ettv8Xv6CYprWmU9OcYwzTIBC5bq+r4W1IbPbEWN/mfOvczppLaYsVQgghhLBJuBRCANFw6fGqzjAfu4JomIYznTW1qByPP0BJ11x0DGojt3vjwmVMW6xSty02vsJoM9MzCE49B3cwRNv/zkg4NnErkqBzbdaxdcKlbjD0/VkABKaeHXeMieEMIUrSdtAWS3Soj2/TlsiLMnG5FRnoI4QQQggRQ8KlEAKIaYv1qc56S3sdpTXQx6ompqzbBEBJt1x0U48OxnHV3xaroOBSGl9zaQtMuwSApJeeh2AQTY3ZikSpsxVJ5Hr0BqbFtv3ye9ILStl48AD0vnlxz22YBjVO5XLHbbH2diSeSOXSJBIuZSsSIYQQQgiHhEshBADBgBWYNE1xAptdJYwNl6nrNgJQ3DUXw9Sd9tLYgT5x4VJRcGk7bosF0Pv0pfaY49DyN+N77ZX4ttiYx3k0j7MG1DANFEWJa8UF6PzKfwFYeuZxCecwTdOpXPp2qnJphUtvJFwapoHbrRIKmpimVC+FEEIIIUDCpRAiojZgOMN8nHCp2ftTRqfFJq9ZD0Qql4bu3O6NHejTyJpLrZFwCVB98+3W8/z9r7gDoZjHRYOmS3VFK5eGnlC1dH/9JRnzF1HUrT3bDh0avS57oA9GTMV1Jwb62JXLTZsBq3Lp9iiYJui6hEshhBBCCJBwKYQAwmEDXTejw3yM+iqXVoj0rVkLYK25NKNrF2PXXKp11lzuaJ/LWPqgwQROOhWtYBvdItVHVVHjAqtbdWOaJmEjjIkZf05dJ/XuvwDww7QJcVVTu8JpmIazFUlsKG6I0akzpqpGw6Vp4nZb1yPrLoUQQgghLBIuhRDUBqyA5PHVX7nUTZ2gblUKPWvWYLg0yjq1jay5rGegT501l1rMmktlJ37s+G+9A9Prpduz08naWJBQmYzd61I39Lhw6XvjNVxLF1N54BBWjx6MS41/rIIVLmP37dwhtxujU2fcBQVoQWvrFbfHek4Jl0IIIYQQFgmXQojoNiROW6z1uUt1OZW+sBHCU1WDq6CA6i4dMFwaRsxAH29DA30UZae2Ioml9+xN9Q23oAaDHPvw67jqtJ7G7nWpm9G2WHXjBlLu+DOmorDxlutBURKm06qK6lQ97de3M+zW2PRtJZFwGalcylAfIYQQQghAwqUQAgjWxu9xGTuBVVVUq9JnBMneWABAVfeu1nFGTLhUYwb6KLHhUt3pgT6xai6/muoB/ei0ZB2H/+OtuPvsyqVdNVUVFQIB0i+/CLWqkpqrr6PmwKGRY11xj1UVFRMzLpTuDL1bdwAytpVYay7dkcplSCqXQgghhBAg4VIIQUzl0g6XkUmsmqqhYoWxkB6i3aYiAKp7RsJlbFtsTOVSVeLbYmPXXO50oHO7Wf3Uo1RnpTLo3W9IfvgBiExmtdt17WCr6QbpF5+Pe87PhIYMo/rGPzshNnYbFPt6rEpsOCF4NsbejiRjazFEBvoAhIJSuRRCCCGEAAmXQvyulQZKeHXZdFaVrgSibbFGpC1WUzQ0VUM3dEJGiLbrtgHg79UDIG6fy8bWXDa1Ldamd+nCB3dfSDDZR8rDD5B2xcUohYUxlcsA6duKmXj1w3g/nUm4V2/KX3sLPB7SPemoikqmLyvunKqiOtuYNCVc6jHh0t6KBGTNpRBCCCGEbef/ZSWE2O8sKVqMYRrMLfwRGOcM9AnHVC4VRXXaZHPWbgGgul8foBLDtLYi8Wie+NAYuxWJosYP9GlCuNQUjS0De/DxM7dz4s1P4Xv7TTyfzGTEyANp285Lr6L3GP7V97hCYUKDh1Ix/T+Y7doBkOHN5Mx+ZyUEyNiWXU1pSrjsbp13a7E1LVbWXAohhBBCxJHKpRC/Y3aLajiybtDZioRo5VKN+THRZvUmTLebQK+e1uMi+1wmrGskdisS6lQud26ATuz1lef1pPSbH/FffBlKKEj7/33Hoa/9j7affY3h0lh0wSTKPv4Co1PnuMfXV5mMDcFNqlz27AVA5uZCDEyZFiuEEEIIUYdULoX4HVMj23SEwyYK0bbYsB5tG7XDWHJJBUmlFYQHDEJxW8N7gkb923koddZcunZlzSU4k141VcNsk031vQ9R/ee/sPWrt8hfNZvM7gOY081N2+xudPB4dnC2yDmJDZc7fy1mdjZ6ejpZW4owDQOPW9ZcCiGEEELEknApxO/It58Vs3RBFUMPTmf4qAy0SHAMhwzcgNdnBSZ7HaXP5XPCZdtIS2z4gAFOWAzqtUBie2nsmktVUVEUK2CGjXCT1lza4U+LfUxKCv7DR7Gsp0nX9G6EKzY06ZyxxzalLRZFIdyzJ94FC/BtLyYt03psaXF4588hhBBCCLEfk3ApxO/Iol8rKd4e4vP3i1ixuIrUIQG+nG2tIexJtC02UE+4zHHC5UDntmBkUmxj6xrtoLkr4TLVnUaKO4V2yblxt9sDfexwW3cvy8bEXptbczdyZKJwDytcpm3aQrvhVqV0+9baJp1DCCGEEGJ/JeFSiN+Rqgodt0ehba6HjWsDFOaX4/fpzv2eSFtsbSS0WeHSCmNtV0crl1qkohgIWyG0bntp3LTYyOPdqpsAgSYN9HFrbib3PSPxdmdarB0ud/6cSmxbbFMql0TXXaZt3ErbE+1wGWzSOYQQQggh9lcy0EeI34lQyKA2YJCW7uKsSzrRroMHj9uFyxUNgnblsjbcWFvsQGfdor3m0lVnzWVs2IutXEL8msdd5VatYFcTrgFwwu7OiGuLbcLjAMKRcJm+cRs+n0ZGlouS4hBBWXcphBBCCCHhUojfi+pKq0KZmq6RkqpxyQ1dOe+KrnToHN2fMtoWG61cKoqKGtbJ3rCNYJsszHbtEtZcJrTFxlUu1cgxVgBtaqCrj1ezwqVTuWzCj7K4abFNrFwaPXsDkL7J2u+zXQcPmFBUINVLIYQQQggJl0L8TlRVWOEyJc0KVJqmkOR1k9spJlw6bbFW5dLr8qKikrWpAC2s48/rA4riBLRoW2zj02IB3Huwcul1+QAwTWsbELVJlcvotTVlKxIAPSFcWl87aY0VQgghhJBwKcTvRlWVNdU0NS0axBTFWn9pc9ZchmvxaB5URUVVVNqusVpiA/37AaA5lctIW2ydgTqx6yrtoGkH0Kasj2yIR/XEBdimBNbYqqrWxHCpZGbhz0wlfUsh6LpVuUSG+gghhBBCgIRLIX437Mplano0UJmmicul0G9gCgcemo4vSUU3dEJGCK9mVQc1RXPWW4b69weiYU43rXM22hZLdKAPxFcOd5WiKHjUaCjW1L3TFqsoCqWd26KFwqibN9GuvVQuhRBCCCFsEi6F+J2oqkisXJpYbaV9DkjhpDNzURQlZlKsFZxURaXdqnwAQv0HAIlhrm4FsO4+l7HHNGXbkMb4Iq2xYAXgnRVbVa075XZnlHZuZz3nmtXk5LpBgUJZcymEEEIIIeFSiN+L6qpI5TKt/kBlmNbEU2e9ZaRyqaKQu3IjYbcLo/8BQGKYc+/EtNjc5Fx8Lh9ZvqzdfSlx11f3+XYkrnKpNm2fS4DyLpFwuW4NbrdKWrpGRXkYwzCbfC4hhBBCiP2J7HMpxO+EXbm0B/pAtHIJoBs6qqY6lUs7vKVsLSSpws/Wft1w+1KBxHBZt700tvPVXhvZI6MnPTJ67qFXAx4t2hbblGpobFW1qQN9AMpiKpcAGZluKst1KivCZGQ2PawKIYQQQuwvpHIpxO9EVcxWJDZ72ipA2LTCZ8DZ49Jqi81atgaAgrwuTqCrG+bqbi9SX1vsnubbA5XLpg70Aajo0h4A11rr65KeZZ2jvDTc5HMJIYQQQuxPJFwK8TvhhMt61lwC6IYVjupWLrOWrQJgW79uTqWvbpis2xZb30CfPc3rim6h0pQ1l7sz0AegrFNb6zntymUkXFZIuBRCCCHE75yESyF+J6oqwviSVFyu+v/Yh51wGV+5zFy6EoDi/j2cYxPaYusO9Ind53IPTIetj0eLhstdX3PZ9IE+epKPitws1E0boabGaYUtL5NwKYQQQojfNwmXQvwO1NYahIImqWkauqE7t8e2xeqRgT6BcEzl0jDIWLaKkM9DVfcuzrF1w6VWpwJoB7jmCpYQ3xarNSFcKrvZFqsqKsXd2qMYBtqa1U7lsrw01ORzCSGEEELsTyRcCrEPqQpWOhXGpqiutB6zLW0e7656ywmYsW2xtXqAJUWLKQkUA5FwuXo17io/23t3wu1Nco5VFKXRCqDdCttcLbHW9UUrl0pTKpfsXlusoigUd8u1Hv/b8phwKZVLIYQQQvy+SbgUYh9RE67hvdXvMnvrT01+7Ob1VqurnlxOTbiGmrA/4Zi15WuYV/AL2/0FQKQt9pdfANiW1xW36ok7PrZ6WXfNpT0utrmG+QB4d3mfy+jHuzIt1q5cAmgrV5CeGQmX0hYrhBBCiN852YpEiH1EVbAKwzSoDlXt9GNKi0N8+1kJC+ZUAJDT3gWECRpBIL5yWRWMP69X8znh0poU2/BelnXbS+3qYHNWLn17ZM3lLlQuUSju0cF6/G+/kZKqobkUGegjhBBCiN89CZdC7CNCkUBor43cke2F1dz61JtkVPWmXUonJkxux28pXvzhMCE9sj4wZs1lbDXTq3mtttOYymVm3cqlqkFk+WbCtNhIebA511zGDvRp0rTYSPDdlWAJkcplV6stVlu5AkVRyMh0UVIUIhg08HikIUQIIYQQv08SLoXYR9hbhMQO5GnMghWbKDcL6ZqXyTVnj8KXpLFshVVdq69y6Q9Z4XJkx9G0T2mPEg7Dr78STk2htHNb2tYJkLGBrm6429trLtUmTH21A29TAmnc41EIpiahd+iAtm4t1NaSkWWFy4qyMDntPDs+iRBCCCHEfkh+xS7EPiKoW4HQMHcuXBZut9ZZduyp4UvSIo+1qp6hyLli6ZHzpnszSPWkoS1ZDH4/lUMHgqri1uoPly7VlVCh3BuVS1VR8WhWkFOb8KPMbovd1cqlPTwo1CcPRdfR1q6JrruU1lghhBBC/I5JuBRiHxF02mJ1TNNk5bJqZn1Rwi8/lGOaJqZpUlIUZMWSKvzVuhMuUzKj5wib9l6WkcplTFuszRsJbO65swGoOnAoEN+GCqBGwmV9FcC9seYSotXLpqy5VHY3XEZeU6hvX+s8vy0nI8sK3hVlsh2JEEIIIX6/pC1WiH1EMNIWWxvSeeeVbSyZHx3A07mHj0W/VPLjV6UADDwwlcLCAIoCSWlWtdIwDSdMhuppi7V5I/tHumb/DEDy6GMYlptL78w+ccdparRyWZeyF6bFgnWtlVQ2aZ9LO/jW3Ztzpx8fea5gH+vrof22grTRRwNQWbFzVWUhhBBCiP2RVC6F2EfYbbHzfi5hyfwqMrJcdO1pBcHSohDrVlprJhUVfltSTVVlkJRUDR2rmha7VjNYT1uszW41dc2dDaoKIw5jUM5gklxJccdpjVQAnTWXzdgWC5CdlINH85DsTtnpx+x+W6z1moJ9rXDpWvkbZnIlm5PmUFRWuUvnFEIIIYTYH0i4FGIfEdSD1AZ0Nm3040tSufj6rvQ9wApVFWVhykvDaC6FPv1TCAVNTMUgLcPlBEk9Zq1myLACZ922WI/mQVVU1M2b0Lbkw+DBkJZW7/VE11y6E+5TFRWX6krYG3NPO6TDoZzWd4oTiHeGHS7du9kW61QuV66gTMun3LOZzeWbd+mcQgghhBD7A2mLFWIfEdRr2bQ+gG4YDBmRTkqqRnqW9Ue4aHsQf7VOmxw3eQNTWLm0GgODzAyNkBHCNE1nvaV1rvrbYu01jPZ6S0aNavB6VKXxttijux2Dt5nDZUPP3xg7HNbdm3NnqZHKpZ6Zgd4uF23NapK9VnCvqpKBPkIIIYT4/ZLKpRD7iJpQLRvWBjAVg+EjMwCcQTKb1gUin7vo09+qZppKmLQMK0CFjBCGEVu5rL8t1h7a47LD5ciRDV6PveayoQpgbnIumb6snXpte9PutsXajzdNEz2vH0o4TM72LShAVaUM9BFCCCHE75eESyH2AWUlIT77aCv+Kp3stm7atLOCXUZkC4yCLdawn4wsN+mZLjp29WJiOltkBI1gncplpC02oXIZmRQ7Z8eVS82ZFrtvNUDYlUfXLl63Xfk0TIPwAQMASFu5Go9Pobo6hGEkDkkSQgghhPg9kHApxD7giw+LKC710ybHxbBD0531k2kZLlDAXjqZEWmTnXxOe8adkklKaqRyqQfRDcM5nzMt1qwbLn1QVYVr6WKM9h2ga9cGr0lrpC22VVPsttjELVR27uHW401MwgMGAZC+ci2+JA3dMPFXy8RYIYQQQvw+7dfhsra2ltNOO42TTjqJE044gbfeequlL0mIXbJhXQ2GEuKQw7NIStIwTCsoappCWno0JNnhMruth07do/tSBo0QekzlsjayrUldHs2Le87PKLpO6JDDnCBWH2efy30sXLZLziU3pT1d07rt0uOVyI9NwzTRBwwEIO23NfiSVExFp7JcwqUQQgghfp/2rX8VNpHH42H69OmkpKTg9/s58cQTOfbYY0lPT2/pSxNip5WXhSgrC5DWVcPljgyTiZn8mp7pdgJNZpvo5FYjdjqsHnTaOa3PG26L9fzwvXXM6CPw0jBN3b2pqy0l1Z3Ksd2P3+XH25XLstoSliUXcKrLRdrKtfgmqfgxqawI06HRr5wQQgghxP5pv65cKopCSoo13CQYDGKaJkZMa6AQ+4L8DQF0JUhWdv3B0V53CdHKJcQH0KARjPtcN3V0Q6dOVyxezYf7RztcHt7odTltsfvYmsvdZQ/0WV++jnWBfPw9u+ErKqFt2I+JQWW5TIwVQgghxO9Tqw6Xc+fO5dJLL2X06NHk5eXx9ddfJxzz2muvMXbsWAYNGsQZZ5zBokWL4u4PBAKcdNJJHHnkkUybNo3MzMy9dPVC7BmbN9QmhEs9ZvJrbKBMjwmasceE9FDcQB+wAmddSTUhXAvmo+e2x+jdp9Hr0vbRttjdZVeAQ4b19azu1xeAnoXbQZFwKYQQQojfr1b9r0K/309eXh6TJk3iqquuSrj/448/5oEHHuCuu+5iyJAhTJ8+nQsvvJBPP/2UNm3aAODz+fjggw8oKSnhqquu4thjjyUnJ2eXrkdVG15/1hLs62lt1yX2rPwNAQwlTJsct7ME0lQM5/tub0eSmqbh9UbXX5oYzvFhM4QLLW4JpW6GUFQz7racBUtRdJ3wqMNRNet3Tw29v9K8aSgKZPjSf1fvQU21vo66GUZRwN+/D3zwCd22bsPwGVRV6L+rr8eukp9fornJe0w0J3l/iea0L7+/WnW4HDNmDGPGjGnw/pdeeokpU6YwefJkAO666y6++eYbZsyYwbRp0+KObdOmDf369WPu3Lkcf3zT11u5XCrZ2alNftzekJWV0tKXIJpJMGiwZVMAd7JOuw4pzjYaGZlJZKda78fOXUNAIdltvXHv0ZQSD6mmD4DkNBcpbi+p5T7n/tQMD+nhJFJro7e1W7gQAO9x4/FG3lcNvb+ys4fQv0svUj2t889Fc8msTCY17MPn1Uh1+eAga6hP920F0N2gqsLA1N3ktJN1lztDfn6J5ibvMdGc5P0lmtO++P5q1eGyMcFgkKVLl3LZZZc5t6mqysiRI1mwYAEAJSUluFwu0tPTqaqqYs6cOZx++um79HzhsEFFRc2euPQ9RlUVsrJSKC2tlr319kNVlWH+888thIImuX0V/NXRCa+FxRW4aq0fOL5kax1xm7YuiournGNKyiupqg4AsL2klHSPQVVVwLm/oKiU8gp/3G2ur2cBUDr0YCit3qn3Vy1VDd63P6qsDFBVFUCvVakJBSjo3JfuQNu1+Zg9TFYsqeT/rl3KUcdnc9Tx2S19ua2W/PwSzU3eY6I5yftLNKfW+v5KT0/C7W58K7d9NlyWlpai63pCi2t2djYbNmwAoLi4mJtuugld1zFNk6lTp9KvX79dfs7W9M2NZRhmq702seu+/qSYzRsCdOnhY/AxaSyvjN4X1sPO9zwn18P5V3cmp50n7n0Q1qMDe2rDQUJaCNMEt+omZIQIhGsxDNM5xlvlx7NkCXrHToS79UCNnEveX/FMU8E0IRS2vp6BrEwCOVlkbyqgc3tILXURqNH5+pNiXG6FUWOzWvqSWzV5f4nmJu8x0Zzk/SWa0774/tpnw2VDTNN0tgro06cPM2bMaOErEmLXFBZYA3dOnprLJnM7VIJH8xDU4ye/AnTrmZTw+LpbkdgDfpJcSYSCIYJ60NmKJCepLb3mL0ExDEKjDm90f8vfOzUyB80ekGSaJuV9e5D74zxOGVDN4HE92Lw+wItPbOKnb0oZNTYL0zQxMZ1Js0IIIYQQ+6N99l86WVlZaJpGUVFR3O0lJSW7PLBHiNakrNjaizKzjYvayGTXZFcyEN1mZEPFer7d9DWGmbjFTuy02KARch7jc1lBNKhHp8UOa3cgBy3ebt1+eMPrnEU0d5uRkq+JSVnfHgCk/7YGgM7dfbTN9VBVoVNeHmTG6rf5z/J/8/Haj6gJt672eiGEEEKIPWWfDZcej4cBAwbw448/OrcZhsFPP/3E0KFDW+7ChNgDdN2kvCxMWoaGy6USigRBn8savmNXJb/d9DUbKtaztWpL4jnqVC7DZrRyCRAygk5AUhQFz9dfAhA8alwzvar9g70Vic3EpLR/LwAyl612bu/Q2Rros2lTJVXBKgzTYHv1dl6evoRvPy/ZexcshBBCCLGXtOq22OrqajZu3Oh8vnnzZpYvX05OTg5t27bl/PPP56abbmLAgAEMHjyY6dOnEwgEOPXUU1vwqoXYfZXlYUwDMttY24yEI3squlUPAIYZ33/v0tzUpZs6qqJiYhI0ghhG3cplyGmL9azfgLZ+HeEBgzBzc5vnRe0nElpbTZOS/r0BaLNsFXYNuX0nLwvnVrItPwCdrdsqy8OsWVFOweJikpNVRozO3GvXLYQQQgjR3Fp1uFyyZAl//OMfnc/vvfdeAK688kquuuoqJkyYQElJCU888QSFhYX079+fF154wdnjUoh9VVmJ3RJrhUa7UunVrGqYbupO4GyIYRq4VOuPeEgPOWsE3ZHbzMj/ANK+s6bEBsdK1XJH6qtcVndsS016MpmrNlASDILHQ/tO1vdq65Ya1vr9pKZr1NYY6Ir1vf343UJ69E0mp51nr78GIYQQQojm0KrD5SGHHMJvv/3W6DFnn302Z5999l66IiH2jrISKwhmtrH+iNotrR7NCiK6oVMZrHCONxtYc+nW3GiKRnWoOqb6aQVWO1gCpH4fCZdHHb2nX8p+p27l0hrWAwV9u9L9lxW4fltOeNAQJ1yuXFrNipQqkpJVOnT2YighUtM1qip0tm6ulXAphBBCiP3GPrvmUoj9Wd3KpT2cxw6XhqlTGYzuTVLvQB9TR1M05zGBsLWfpRapXGKamKaJGgqT8uPPmMkphA4+tHle0H5EURIrlyYm2/K6AOBaMB+ApGSNzGwX4cj3rsZvsC0/iK6E6XuAtUdpRVnj1WchhBBCiH2JhEshWqFouLSCoG7Gr7nUdxAu7TBqhUurguYPVwPgUuLbYjstWYfm9xM8/AjwSBVtR5R6KpdgUtCvKxANlwAdItVLAAXwV+ughejZ15r6K+FSCCGEEPsTCZdCtELRtti6lcvI56ZOZSg+XK4uXcUXGz7DMA1nUqymas50WHsLDJcW7YY3TZPuc5YDMiV2Z9W35tI0Tbbl2eFynnPf4OHpZLdz0X9QCqphBfe0bMjMtr6P5WWhvXTVQgghhBDNT8KlEK1QaXEIFMjIsiuXVlh0KpeGQWVtuXO8YRqsr1jLlqotlNeWRcOl4sKnWeHS3nbEqVxGPu/10xIAgkePb+6XtV9IWHMZ+V9VTgb+Num4li+FgNWC3H9wKudf04luvZJwEQmXbUzSM63vgVQuhRBCCLE/kXApRCuj6yYV5WHS0l24XNYf0bARxqW60BQNiKy5jK1cYqBHWmMN03TCpaqoJLmT4s7vipkWm7Ixn+wNBQT65WF0697cL22/kFC5tLeFURQK+3VHCYdxLVsSvR8Tt0clp00qAGltIDVNQ1UlXAohhBBi/yLhUohWprpSxzRwqlsQ3bNSU61wGTJCVIeqnftN03DWXRqmgR6ZDOtSNZK0+HCpxYTLDt/OAaBqvFQtd1Z9lUv7a1+Y1w2IX3dp39e7VwaKAm06KKiqQlqGi6pKne1VxSzYPq/eoUxCCCGEEPsSCZdCtDLBoBUyPN5ohUw3dVyqyxkmU15bHq2YYVUro+FSj6lcavhcPuc4l+pyKm+madLxu7kAVI2X9ZY7K7FyGf24IBIu3fN/jd4f2fJl8LAsjju1Lcnp1ufpmS4w4ZeNC1hUuJDCmsJmvnIhhBBCiOYl4VKIViYcssKH22398TRMA9M00RTNWS9ZHaqKe4xhGhiRQKmbOrphBU1N0UhyJTvHqYrqhCN3WTk5C5dTlZ1O7eBBzfui9iP1bUViRBLm1gO6A+D6ZU70/kjod6kayV4vIcMa4mNXpssq/QAYkaFNQgghhBD7KgmXQrQyoZAVRtxuK8SEnRZXF2ok2NTqtXGPMeq0xRox02JjK5f2mk2A3B9+RdUN1hw2EEXVEDtHrSdc2vwZyYR79sK1ZjVKcTEQbYtVFAWP5iFshDFMgww7XFZY4dKuNjfF6tJVfLvp67gqthBCCCFES5FwKUQrEwpGprpGwmVsi2tsOATwRvawjA2XekxbrFW5jK65tFprrfPa6y3XjByY0OopGlZ3n0tM0wmYhmkQHn4wAO5f5zi32Y+zp/0G9aBTuSyv8scd1xQrS39jQ8X6hEq2EEIIIURLkHApRCtTty3WDoou1YVap8KY7LZaXg3qD5eqoqEqqhNCNUVDQcFVG6T9D78SSvKx6cA+zf+i9iMN7XMJ1vchFAmXrl/mOvcDqKh4NCtcho0Q6ZnWXpcV1db+o7sSLnUzvMuPFUIIIYTY0yRcCtHK2G2xTuUy0harKWpC5dKuSsZOizVNA93QncfEHqepLhQFus9ejrsmwJbRBxL2ehLWEYqG1bcViR0gTdMkaFcuf6lbuQS3agXKoGFVLk0MqvxWi7NB0wOi3TK9Ky21QgghhBB7moRLIVoZp3LpiW+L1RRXQrj0RUKjYRrOcdY+l9F1mhATLiOVy7xvFwCw6ehDgcTAJBpW31YksWseQ3l5GKlpuOf9AuGwc5+qRCuXIT1Emxw3ulZLSWEIXTcxjF0Pl4asuRRCCCFEKyDhUohWJhSy11xafzzDRnQ4T0OVS3uiLFhh1A4b9vF2CHWpGmqglp4/LSXs85I/chiQOAFVNKy+abGxQ30MVSE87CAUvx/X8qVORVJBia65NIIkp2j0HuAhGDTZujlgrZs1TMLhnQ+K0V8oSFusEEIIIVqehEshWplwnWmxRsxwnrpVM3ubkbiBPobuVLTUSLi0Q6iqaKR8+x2emlqrJdbnaeZXs/9R6/zYtEJ9TLjEIDRiBACuuXOcrUhURcUTaYsN6UEABoywJvmuWubn9X9t5p4bVvPX29ZSVhLaqWuJVi6lLVYIIYQQLU/CpRCtTMgZ6BO/FYkWmfQaGzCjlUszWsUi2iKrqfGVS03RSJ05E4CNRx/mnEfaYndevZXLmLZU3dAJjzgEAPfc2dh3qYqKW7Mrl1Z4bNcVUtM0qip1irbX4nIpBGsNlsyv3OF11N1+RgghhBCipUm4FKKViW5FUmdabKQKabe6ulSXMyAmtnJlGHpctRMgKbLXpSeok/LFF4S8bvJHDo3W26QtdqclrLk067TFYhA6yKpcuufOjg70QcGj2msurcpl0Agy8MA0OnbxMnFKDudf1RmA35ZU7/A67F86gAz0EUIIIUTr4GrpCxBCxKvbFhudFmsFRTvceDWv83HIiLZR6qaOYiqRx1j3p3kyAOg6awFqVRWrxgwlnOSNq7iJndPYViRgTes1M7MI9x+Aa/lS3Fu3WY9TVNxadFosQK1eS9tcD21zPXRs56FDjpf0TBeb1geoqgyTmtbwj+jYcCmVSyGEEEK0BlK5FKKVcQb6ONNireBgt7ja//VqPidc1g0asftcArRLbsexPSbQ7/PZACw7ZkTcc0pb7M5TdlS5jHy/QoeNBCB97q/W4+Iql9YvA4J6bdzjFEUhb2AKmDuuXtoTgWOfUwghhBCiJUm4FKKVCTe05lJxRf5rr6P0OkEnPmiYCYEUoL1fw/v1l+hZWaw/uD/WGBrruSRc7rx6K5f1hstRAKTPnQ/UXXMZrVzWfVy/QSkArFreeLiM/4WCtMUKIYQQouVJuBSiBZQGSvgxf1ZcuLCFIm2xCWsu1fhw6dV8zuRSe7sSsIJG3TWXAN7330EJh6k++RQMl2ZV3KQttsnqrrmkTlusvQ1M8FArXGb8Eg2XdafFBsKBmMdZ3/cu3ZNAga2bEt8bseK/5/J9FEIIIUTLk3ApRAtYU7aa1WWr2Fq1JeG+upXLxDWX1n89jay5jJ0wa/O9/SYA1ZNPB4irtsk+lzuv7peqobZYMzeXcK/epKzbSHJJBQoKLmfNZaQtNlLBhGj7s8erkp3jprw0TI2/4YpkbLVaBvoIIYQQojWQcClECwjb24bUEwqiW5HEVy5V1frcDpQ+zYuqxAdQ65zRLSrsQKqtWYX7118I9+xFcNgwID4USVvsztvRQJ/Y72lo5GgAOi1ei6qozvfD/v7Errk0Y9ZN5nbyAlCwpf7qpWmaLFlUTqDGfh/JmkshhBBCtDwJl0K0ADsM1tfOGArabbH2mkt7K5JIW6w90McVM9CnThXLrmrZ02K9b1lVy9rTpqBEQmrdUCR2zg63IokJeqFDraE+XRauRlGij7WPqa8tFqB9JFxuy49WNu3nAlgyr4qZ725l2cIqQCqXQgghhGgdZCsSIVqAHQbqCwVOW2xkWmzd9ZNaPVuRJEyLNWIeY5r43v4vAIHTpjiVt7jKpbTF7rQdVy5jwmVkqE+nhWtYp6jOGlm7Shm75jb2vdC+ox0uo/dXlod59m8bGToinXWr/RiEKS0KxZ1PCCGEEKIlSbgUogXY4a++dkZnKxJ7zWWdgT72mkuf5nOmxdadHGqv31NVDfcP36NtXE/okMMwuvdAqWeIkLTF7ryEyiXx61cNot9To3MX/J3a03bdVjaXVqCmRavGIT0U9/2vr3IZ2xa7eoWf6kqdH74qtc7h0anxGwRqdKlcCiGEEKJVkLZYIVqA3bZaX7gM11lzaQdHO1RmeDNQFZV0b4ZTCasbUuzHuFU3vn+/BEDN2ecC0SBpRmKRaKI6Vd66rcW6oceF/eKDh6KYJhmz5zoVYsM0qDWs4Fh3HSZAWoZGUorK9q1BZ3rw5g01cc/jSbKet7QkLGsuhRBCCNEqSLgUogXYlcX6B/oYKCpoml25tIKKK7LW8qDcEZyedyYp7pR6tsWwzm0/xl1chnfmhxgZmdSedCoQW6WMtnNK5XLnqdStXMaHy1Wlv/H6ilcpqikCoOgQa4BS+o+z49Zc2q2s7sgEWTOm4qkoCu07edF1k7/etpYFcyrI32CF0cPHZzFgaCoHjrL2wywrDkm4FEIIIUSrIOFSiBbQWFtsOGQ6VcvYY+P2rNSstsl6w6WhO1uTpLz9X5RgkMDpUyApCYiur4ytuMmay51X92tlmmbc97GwphDTNCmvtdpXtx88BID0H34GrO9Z7ERfu9257nth7PHZ9O6fTDhk8vn7RRRsqSUtw8XRE3M4/bwOtOtkPa60OOT8skIIIYQQoiVJuBSiBTTWFhsKmc4el9axkW1F1MQl0rGB02ZitcW6FA3fqy8DEDj7vHqOMxOqbmLHEtdcxn8N7ZbYUOS/tW0y2N6zI96Nm1A3rE8Ml5EpwHUDYpceSZx9SSf6DkjBX61jmtC5u8+5PzVTweVSKCsJEdZlzaUQQgghWp6ESyFagF2NrDuIxTBM9LDpDPOBaFipL0g2VLnUDZ0ui9bhWr2K0PCD0Q8Y4NwfNy1W2mKbLGFabJ3Kpc3+vpmmycbheQB4vv8WBQUT09mGRmugcmkbMSrD+bhzt2i4NNDJbudG12HOrJLdeEVCCCGEEHuGhEshWkDYjO5z6a/W+W1pFYZhxgzziQYYo8602Fj1tbNa+1zqDProBwBq/nh+vY+JrVxKW+zO21Hl0haOtCYbGGw4yAqX7u++RlGUuEDaUFusrWdeMpnZ1jGxlcuwGWbgsDQ8HoWlCyuYP7t8N16VEEIIIcTuk3ApRAuwK5fV/hAvPr6J15/fyuzvyqLbkHiifzTtIFpf5RISw07ICJFUVkWPb37FSEun9sRT4u6XKuXuSfz61d9ebK97NU2TzYN6YrjdeL7/FtW0gqS9ZYnbCZf1t7aqqsKpZ7XnqAnZdIkNl0aI5BSNg0ZmoKgmH7y5nZVLq/fAKxRCCCGE2DUSLoXYC9at8rNlU8D5vLSsll9+LGfGf7ZQvN0KId9+XkJleWTKa+yaS0NHVdQGq4t1w2VQDzL4wx9wBUMEpp4FKSlx98duh+FULiVw7rT6BvrU3Y4E4oc2hZO81Bx4IGpxMW3XbsEgOi1WUxqvXAJ065nEmGPaoKqJ7dI57TwcclQ6pgFvv7KV2loZ7iOEEEKIliHhUohmFgoZvPbPLbz+whbMSBvsj98Us3VzLTX+MP0GpzD04HQCfoOvPi4G6oRLU6+3JdZWN1yqoTBD35+FqSjUTLuk0Wtz1lxKW+xO29m2WLtyaYdG/+hRAHSZu6LBttjSQAlLi5bUG1brChvRSmePPj569UsmWGtSWhxq4isSQgghhNgzJFwKUUdQD1Id2nPtheWlYcIhk8pynaLtId55dQs1NTqdung548JczrygI0dPzAZg5TLreV11tiKpb3CPrW7Vse+3C0gtrmDL6IMwevSs/zGKIpNid4OiKDtcK+kM9Il8nWsOHw1A51+Wxd0fO9Dnk3Uz+bVgLqtKV+7wGuyJw9bHOmlZEFJqqCgNN/IoIYQQQojmI+FSiDq+2fQlH655b49tTF9WEq0kzZ1VxsrllSSnaAwekY7Lbd2eluEiKUUF0wojq9RZrChZjmma6Kbe4HpLqFNJM00OfOdbAFb/4cQGH6NgDZUxMaVquQsyPBlkerOAxsKlvebSur928BCMtHQ6LFyFFgw5a2lVVGd7EjtwFvi3xZ0rpIcory2rc/5oiDRMk43euaxO+5yS0prdf4FCCCGEELtAwqUQdfhDfoJ6MO4f77ujPKaSNHdWOaZi0K2nD5dLwSQaTDLbWEkzpPgpU7ewtmyNs1XJzrbFdli2ng4rNlLYowMlhxzY4GPs7TBM05T1lrtgQs8TObb78UDD4TJUp3Kpuj2EjjgSV22QzgtWO2syVUVBVVR0M1qhLqstjTvX7G0/8cGa9/CH/M5t8eHSAJ8fQ9EpKvEjhBBCCNESJFwKUYc9xXNXK5fbt9Xy5r+2OBXL2MqlaYKJTseuvoTnsMOloYTRNNXZUgSiQ1/qExsu7arl/ElH4FLdDT7G3g5D7BqX6kJTrWpyQ+8T3dluxrpfURSC448FoOfPy5zvrapYlUvTNMnwWntaltWpUpYGSjBNM65dO3aPVN3U8SZbH1eUy5pLIYQQQrQMCZdC1GGHgV0Nl5+9V8TyRdX89E0ZAGUlkfbHSGdrh25uklOsT/TYcJkVWXunhNA00I1wzLq8HbfFpm8rpu+3C6lJT2b5uOGNPsapXCKVy92144E+9tAkleDR4wHoOXspYd263w6Xse830zTjqpR2qLRbba2Pw3g0T+R4A3ey9fiKMllzKYQQQoiWIeFSiDqccEnj4bKkKMhr/8zn529LCQatY7durmXNCisULF1QiWGYTuWy38BU679DkhOeC6KVS10Jo2kKuqk7ex9qjQz0scPl8P9+jWoYzD/1CMI+D+4dVC7BCjGy5nLX1Q2FsUKR8Oi0xaJi5LanOK8HmVuK8a5d55zDbouNbXUtqil0zhPUgwAEDeu/hmlgmIbzPdZNHY/Puo7y8uCefplCCCGEEDtFwqUQddhhwdxB5fLnb8tYtczPpzOKmP5UPqZp8sOXJQC43ApVFTob1wUoKwmhqDDx9HacdGY7Bo2Ihks9ZjuJzDZ25TIaLu2w0fiaS42k0koGzvyZkM/D/FOPAKJTSEXzargtVo+73w7xW0YNA6DNtz9at6M4vyAIxVQmi2uKAPCHo62wduXSfl/YlUvDNDBVA49HobI8jGFIy7MQQggh9j4Jl0LUYa9FbKwt1jRNZ9uQzDYu8jcE2Lw+wLKFVSQlq4w7wdpaZNHcCiordNIzXKSkahx4aAYoMe2P9Qz0MQihagqGaThtsztac3ngu9/hDoZYdMJhBDJSAHA18hj7NUhb7O5prHIZNsJx+1naAXLLKGvQUs73PwNWu6w9DdiudgKU1lq/qIhdZxnU48OlprhQFZWQEcI0TZKSNcK6gb86+ksLIYQQQoi9RcKlEHXszJrLooIQZcVhOnbxMnh4OgCfzijEMKDfoFQGHZSOqsLCuZVgRoPj/7P33nF21XX+//OUW+dOb+khPSEQSgIIAgEUUMCGCihYsOyqK7r+Vl33q7sra1t72XV1baiIi1gQ6Yj03gkJKZCQnkymz9x+T/n9ce7nlFumZYbcST7PxyOPmbnnc8753HPPuTmv83oXqFDls0hjwLl0xpljyLmMpLIcf+ODmLrGM5e8zn19JLdT5FwCMix2kqjUi9T5rL2wWICBlUtIN9bR8vQLhNJZNywWgkV6csVQWL+4LBTDYkWxIF3V0BTNDZuNxVXADlQolkgkEolEInm1kOJSIinBqxZbPbRQuJZLjq5j8XInzHXPzhwAy46toy6hsWpNA6bpbEOEvEJ5lU9BNKoRi6tuWKy/7+FIfS6X/uluoqkMG1+/huyMdvf1EQv6yGqxk4JfUFb6jApWoSwsFj3E9pNXoBoG85/ajKqoKL6v4qjuVBIuuOIy6S4TItIfLu1/OBCNa9hYsqiPRCKRSCSSQ4IUlxJJCWMJi92ywRGXS1fWMXt+lEjUuZT0kMLCpY7YXHt+i1sh1u9c+gVl6T6aWkJuQR/wCrhUDYvNZFj+f7diKwpPvOt1gSI+I4XF+vtcSiYHv9AUrrHhE5diuYLCttesBGDh4y+iogbWjWpRFEUhZzoPKyr1tjQsr0WNX9TGYiooSOdSIpFIJBLJIUGKS4nEh1/sVasWm89Z7HolQzyhMXNOBE1TWLjMEZSLlsUJh53Lqrk1xEmvbQKgY2bYXd9fxKdcXOpYioGqF8Vl0anS1MqXauyXPyfWO8CWtcfTP68zEAo7YlisIluRTAb+Y+c/3nUhJ+/VsA0v/Lg4VlVUdqxZhqWqLHj8RVS7VJiGCKtht7hPwLksC4vVg8K0TsXGZmhA9rqUSCQSiUTy6iPFpUTiI9hrsLK43L0ji2XBUYtiqKojGI47qR4UOPHUhsDY897Sxns/NpsVqxLuayM5l0uOriMctWhodIRKvuheVXQhUyni//UdbEXhkfe9AYCQ6onYkarFKsiw2MnGL/LiuvOwoWAZWLaFoihu+KqqqGQb6ug+bhmJ3iHq178YaDWjqRphLVzMuTUDOZeG2ztTFHrSAvuNRDTAIp2aWI9WiUQikUgkkoNBikuJxIdf7AmH0bJsXnkpTaHYy3LH1gwA8xbG3LHLj0nwhW8uYtnKBH40zQmTFSIUqhf0ATjxNY287f2txOucUEcRGqlWyJ+M/eKnqD097HrDmfQdNQNwCrwIRqsWK/YvC/pMnEqhsADxonNpFivG+h1Osc6OM1cD0PLX+4LbUTTCWgRwnMq04YXFimqx4gGFv9IsQCjkONK5rKwWK5FIJBKJ5NVHikuJxEelsNj77+zjVz/cw+MPDACwY5sjLucvigXW1fWxXU7WCM4lOKGUAhEaWSoUleQw8R9+D1tV2fz37/bm4M+5HKWgDyDDYicRtSjyNEVz+0+Kgj5+8Sh+37622O/yr/cEPgNN1QkXP8fh/DCGZbhhtm61WDfnUnX3C6AXw6lzWelcSiQSiUQiefWR4lIi8SHEnmna7N2V4eVNKR682+k3uGdXDsOw2b09SySq0jkrPNKmqlIaFlsanurvdSicy9JKpLGf/hi1r4/cOy8jPX+u+7q/oM9oYbHgFC+SzuXEqVQtNqyF3c/BsArY2IFxSvH3gc5mDiyeTfSVHTRt3+su11XddS4Hsv0ANEWaAO9hg3jw4W9jAqCHFWzFIivFpUQikUgkkkPA6HFzEsk0pzfTS0+mm2Uty6uOMU2bfM7CClls2ZDkpY1p1iX30Fjwbty79+XYuyuLUbBZsCQWCHUdD/6wWHAEpl88CncKfDmXPhdS6e8j9j//ha1ppP7pn1GVfe6y8VSLlUwuuqpRF6qjMdLoCnvDMssEvDj2hmXw0umr6Hh5D3PufZz17zzJ2Y6io2nO5z2QGwCcMNuQGnILPNlVci5DIaegTy5TWVwmC0kMs0BTtHkS37lEIpFIJBKJg3QuJYc9zx54isf3PUoyP1xxeXLY4Edf38H3v7SdLS8Os3lDGkWB+YsjHLU4xvEnN5Bo0OjtKbBts5P/VhoSOx7MklBYy7awbIubXv4Tj+592HWnwMux84c+xr/3bdTBAbJXvB/rqAWuEwbB3pajVYt1f5dCc8KUhru+edHbOGfeua7IrxwW6xxv0zZ5+YxVAMy69zF3uSjoAzCUHwAgpsfQVd19MGFannPpLwakaqBqdlXn8v5d93LH9ttkMSeJRCKRSCRTgnQuJYc9WcNx//I+R1CQz1lc+6M99BxwRNwffr0PErD82AQXndXB4uY5APz6f3azbUuGx57Yx874MzTNef2E5+PPuQRHZOQKWQZzgwzmBgOiMG8J59J5Td2xndjP/xc7XkfqM//ivOYTigHncgxhsYAMi500FEKac/xDvj6XpXmtQmialknPgpnk5s+jeePL1Hf1MdzZgq7o7mcnnMuYHieshckYGaeKbPEcUkucSwWFUESp6lxmjQx5M49pm2Mq+CSRSCQSiUQyHqRzKZkSskb2UE/BRQg0wyqvoLl5fYquvXnmL4rRPiOMZVtEIgrzFsUCxXbaZzg5cHuTe0hH95Gp93LkNvVt5IXu57Ftm6HcIMP5oRHnUyksttpyt89l0bms+9qXUPJ50h//JHZHB1DeI9H5ObJwkIJycigVdgKtKNwqOpfFr13TNkFRGDr/XAAWP/QCEMy5TBccpzymx9w2M2KbYv9qST5uJKJgFGxMs9ydFOtVKiQlkUgkEolEcrBIcSmZdHYO7eCGzf/HjqHth3oqgCfQzBJRB7B/jyM8jz+5nrdc1km8XmHFqgS6prhFUwA6Zjo39jYmza0h8nbGXfbEvsd49sAz3LXjDm7aeiN3bb/DXWZYBnuTewL7FK6TEIAWVqDIT6W5a6qO/vyzRP/0e8yOTtIf+bg7RvVdxsK5LC0ANBIyLHZyUCo4yOJBQbCgT/B4J88/H4DFD60DnM9aOKCCmB533dCCmXfPzdKcS4BQ1Nl+toJ7KcWlRCKRSCSSqUSKS8mkM1zMbRzKDR7imTiIHEZ/iw9B115HXHbOijDnqCgf/ed5zF3g5FMGncuiuFQsWttDpH2N7d1tpfZj2zapQsp1nJ7vfpa7d9zFM11PueNEWKwQILZdXVwKNFTqrv5XANKf/X+Q8PppCnGhKIpb+Gc05xJkzuVkUM251IviUDwcqBQWK8iduJpsWwtz1m0l1j+MpmhE1EhgTCwUI1TMw8xbBSzLdLdVur1wcdVKvS5tHDdTikuJRCKRSCRTwWEtLrdt28Zll13GRRddxMUXX8xTTz01+kqSg0a4Kv7CNIeKgllwi5eUhqMC7N+bQ1E98eh3KwPistNb3tIeDjS2F0JuecvRdNbNAGAg57SQ2Jd0Krmu73nBHS/mIcSlaZlugZZqNN5xJ+GHHsBYtpzsu98TWCbEhYrqFvcZNSxW5lxOOv7jKPIZRbXfSq1IBKqmceDctaiWzdIHnkdXNTcsVhDX44SLYbGGVfByLlW1zKUORar3unSdS6S4lEgkEolEMvkc1uIyEonw1a9+lVtuuYVvfvObfP7znz/UUzoyKIq5QgUx92qTK+ZbgiPishmTvh5H9KaSBskhk7aOMKGQcynYPkHp/z0W12hpD6GHLZpaQ64z6YyziWgRTp55CnMSTs/JvqzTG7Mt1lY2J1EtVjhRFlZZkR8/eiZH+398CYDkV74BelA4CrHiVA4VzmUwrLIUKSgnB4XKzqUIYc0XH7D4j7da8rWrKioHLnAKRC275xk0RSfsC4uNaBFURXU/07yZ93IuqeBchkcPi7WlcymRSCQSiWQKOKzF5ezZs1m4cCEACxcuZHh4WJbgfxUQN7BGiXNpWAY7h3a8qiF5BdOrEGvYBn+8dj8//M8d9BzIs3+Ps2zGbM8l8s+tdJ7v/tAsLrykHV1TKFgFCsU2ITa2e4PfEm0BoL8oLv0OYrKQBByRC54AMa2Rw2JP+e3d6Hv3knvTWymceVbZctUnLtWJOJcyLHbSEUKw4IbFBluW+FEVlaETjmW4vYk5L2wj2t3nFu8BiIfiAK7gLFh5rOL3mKZqZQV9QlHn50jOpVmhuJVEIpFIJBLJwVLT4vLJJ5/kIx/5CKeffjrLli3j3nvvLRtz3XXXcc4553DsscdyySWXsG7duorb+tvf/saKFSukY/MqIPK6/GGxuazFxgObuG/XPa9qoZ+8bw7pTI6tm9KYhs1j9w348i29G/mRxGVbZ5jGNu+SSRtO3qV4vwDNRXEpwmL9yw6kuwAwbREW6zmXpeJS9Dls2tPNmt/9DSsaI3n1Vyq+R7WSczlKQZ9An0t5TUyY0j6XAiHucxXCYkvFpaKoqKrO5rNPQLFtWu/4KxFfWGxMd3KAvWqxhut0O85l8PMLVwmL9T9Yk2GxEolEIpFIpoKabnSWTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0t7rg9e/bwzW9+k5/85CcHNR9Vra2bcDGfWpsXio2iOCJKVRUKeYsff3MnffW7WHye47y8WnM27QLi3nvnjhSWVQfAc08OMa9YuGfmnKg3n+Lcxe/l87Tc5VkzQ7PaDNioqoqqKsTDMeLhOEP5QWyswPZ6MgdY3LwYq7iNiB4pLrOxfdsFx60qWHnO+uGN6AWT1Kf/CebNq/g0SFdVFMVxsTRVQ1EgpIVGPMaqqrj7UxSl4tiaPb9qCFWl4nGMKGEUBYzi+aeq3jJdUwOfta5q6JrG5nNOYM0N99J06x1kPvEv6JqGaZnEQ3WoqkJED7nbFOeQrunomhbYXrhYLTafswKfnWlZo5zbry7y/JJMNfIck0wl8vySTCXT+fyqaXG5du1a1q5dW3X5Nddcw6WXXsrb3/52AK6++mruu+8+brzxRj74wQ8CkEwm+djHPsa//uu/Mn/+/AnPRddVWlsTow88BDQ31x3qKQSoz0RJZKJE6zRaWxM8fG8P/b0FDqSyHB0KkWgIlx1L27a59Y/76JgR4eTTWydtLv1KiETCiRPcu8HpvdnWEabnQJ5tW9IoCqw8toX6RifkcEiNk+hzxtc3RMvmmRiKkCg4y8MJaG1NkEhESYRj7tj57bPYPbQbrc6gvj5KIueMz2hDtLYmiMV11EiclqYEXUaUpuYYmQIk+qPuftoTTcy640kWPbqBodltNPzb56mLRqlEi11PYihKQyTO/BkzqO+JMbdjxojna0NPjLTibK8hFhtxbK2dX7VEY08dGdWpjtzcVBc4jk0NCbd4U1PCW9ZjJ0gM+j7rtgaGtQQvrl7qfNZPP0M82UtrYyPpQpqZba20tiboUJpJDEWpqw9hRyIkjChtrfXkQvUkMt72Io2Ow6kqemA+BbPgXgtNTXFaE7XxfSbPL8lUI88xyVQizy/JVDIdz6+aFpcjkc/n2bBhAx/96Efd11RV5bTTTuO5554DwDRNPvnJT3LJJZdw+umnH9T+DMNiaCgz+sBXEVVVaG6uo78/hWXVTi5p/0CSZDKLbgzT0zPM3bfuB8DGYu+eFL3Nw/SGkpimzc2/66K1I8wxJ9Rz+437qW/UWLQiMsoexk5Xbz/Dw1lyWYuXtwzQqMzjkitncvPvumhuDXHiqY3kjRy9vU74Yu/gMMmkI0L7I0l648ngextMusv3dvfQYs90/g6H6O11xur5GMlklq37djGQSrnj85keenuTDA474bTD4SzJZJae3iGyZsYdB2BlM5z2td8CcN9V7+C1KQNSwbkIBgeddbVClHxS4YI5byOiRdz5VGJ4OEsy5ewvYmYrjq3V86uWGBrOuMdxMJQOHMdc2iRjOMuGbe8Yi89L0N+XZmgoSzKVY+NZx3PKdXeTuuZacm+YRzKXJZ+C3t4kyeE8yWSW7r4BcmaOZDLL4ECGoWQ2sD29mAvc1xf8XMU6AD19w+i5Q/sfljy/JFONPMckU4k8vyRTSa2eXw0NMUKhkVOvpq247O/vxzRN2tqC1ThbW1vZsWMHAA888ACPPfYYPT093HDDDQBce+21NDQ0TGiftfTh+rEsu6bmZlo2tg15I8/Lm1Ic2OcUNbGxGOw3KJgFLMvmsfv7eeaxIUJhhcYm51QcHjRJJQ1i8ZFP3LGSM3I898Qgu7bnaMrHWT43QsfMMB/8x7nuGP+xM01TFLvFNK2y41owDXd5Mp/CtCznb9vbTkiNYNuQM/Lecpy/DdPEME1CWgjFVrFtMCyTgm+/AKt+dD2NXX1sXns8O087nlNH+nxtBdt2CvNYlk24uP8Ri1fZblFfLGvkc7vWzq9aQikeewBsJXCcNEV3l4nPRowLfDS24m5n81kncsp1dxO+8Y/ob/wstg0RNYpl2WhKyD2vClbxPLQV9zwS6G61WDMwH8N3jhmmUTOfqTy/JFONPMckU4k8vyRTyXQ8v6atuKyGbdtugZKzzz6bDRs2HOIZHT5YtoVpOcJoJESbg4JVYMuLTsuOlSck2LvJZnDA6dE30F/gntt6nXF5m+efGnLX796fZ97C2KTMOVvIs293HkWB+maF085qHnG85btLr1TB1d8yJF1IuQLOX3FVFGyxbKusKFDGyGDaJlEl6o4zbTNQvXPGi9tZ8NubyCZi3POJt6OpIwttUcSntGroSMg+l1NAyXH0t4MZqaCPqnj9SbsXzaKwZCmhdc/RtqubnjaIFavFit6Zhq+gj6ZoZdvTi8Z/rqQVyUjFqiQSiUQikUgmg5quFjsSzc3NaJpGT09P4PW+vr4yN1MyOdy7825u2vqnUdu5iAqphmWwd5cThnfS6U3YWAz1G5i2xVMPD1LI28TrHEH00kavb+SB/fnyjU6Q3XuGMQyb9hlhLrqslWNOrB9x/Gg34KbvtbSRdt9roI+hInpm2u5yUf0zmXfy80JqyDfO63O5pO4oLvrun1Bsm/s/+lbSLQ2ueKyGv1rsWAlUi5WtSCaM/5iXHsdQoNdo9ePtr/KLopB9x6UAHH/POmYlZtEadXKQ9eJDBtM2vD6X/nXFfovFj7Nl1WKluJRIJBKJRDK1TFtxGQ6HWblyJY888oj7mmVZPProoxx//PGHbmKHMQO5AdKF9Ig9GcHX59I02bM7TSSqMm9BlEgchodM8oU8G3fu4KX6OznmjOKNtk+vdk+iuNy50xFz7Z1ht7jKiHNnFHFpjcG5LF5WFp5zGQ85+W19xf6XMT3mczht95ie8JvbaHx5B+nTT2f9G08BRu9ZOSFxKQXlpFMuLr3PrZpzKUS+eE1RFPLvvAyAGTffxevnnut+/kJEmrblOuxqBecyXAyL7TmQ59of7WHHVidXXDqXEolEIpFIppqaDotNpVLs3LnT/Xv37t1s3LiRtrY22tvbufLKK/nsZz/LypUrWbVqFb/61a/IZrO87W1vO4SzPnwR4my0G1OxPDlkkjcKzD/KaaXQ0qbRtR96e3Js6x6goKWYvTILdzinYSSqkstaHNifO6h5bt2c5pnHBkkOmWxNO+G27TPCGGNoHD+6c1nsL6io5MxcRedS/G77wmLjeox+oC/rhALHQ3VuGKtpm5i2Sesr+5j9o19gx2L0fv0bkH+yuK+xOZfaRJ1LGRY7YYJCMbjMHxZbKWwavAcR4jVd0bHmzCX/2jMIP/wgoUcfpvDaMwDQVC8s1r8tVQ1+7qJF5kCvwUCvQUOzzvxFseC5LftcSiQSiUQimQJqWlyuX7+e9773ve7fX/7ylwH4+Mc/zlVXXcUFF1xAX18fP/jBD+ju7mbFihX87Gc/C/S4lEwe4ubUZuSwWDFuoL+AhcGsecX2B2067IftryRJZ0zqOzSidQptHSF6DhRYfmwdLzw9fFDOpXBrBAN1GWL1KokGDdMeg3PpuwG3K9yAi/BVXdUxLMN3LPziQfFty1nuOZdFcanHg7mZuRwXfPVa1EKB5Oe/CAsWw+Yn3X2NhDIB5zKwvnQxJ4XS4xjWwu7v1ZzLUtdZ5Nfm3nkZ4YcfJHLD/3nisviQwTkHFfc1tSQARdeLi4un5kCfUz3Wf93a0rmUSCQSiUQyBdS0uDzllFPYvHnziGOuuOIKrrjiildpRkc2hj0251LcxA70FdAVg9nzHCtlxpwQrIeNLwxhK1Eamx2BNndBjJ4DBeYcFWXPzhw9XXnSKZN4nYZt2zxy7wAzZodZtGz01gmD/c6N9LJj6phzVJStDxSYuyCKgjKmsNjR8tJMXyGVvJ2vGBar+EVjcRsx3SlQNJgbBDyxKcYt+Z9f0fHyHpInryHz9x9D8wnb0RxJIS6UcUW5S0E5GfiPeakDrCmVw2KVCmGx4jXxICH3preQ+Nw/Ebn5JpJf+xbE4+4ywzICorT0oYLiE5YAg33iuvVetEbJm5ZIJBKJRCKZCNM251Ly6mLZliukRivo4zqXvQaWUnCdy9ZOnVBYIVcwsDFpaAph2gZnnNvMKWc2sWpNAx0zHLdH5Int2p7lr3/p4dY/dI9pnumks++2zjBnvL6FCy5r5uhjGlAVdWw5l6OJS8sM3NBXLOhDJXEZD2wzHvKcy/qnnmXxL39PLh5h97e/AZoWqBDrFymVaIg0ENNjdMQ7R31/AlktdvIpdy6rhMVS7lwKV1JUhLXrG8i98ULU5DCRO251xyqKUqwWa7nruesWxWfpeTvY77QdkTmXEolEIpFIphopLiVjwi/MRs/XcnryDA0ahOtst4clqk3nrDC2YmIpBo3NOqZl0tIW5o0XtxOJqCw7xnH0/vSb/WzdnGbDs04T+L7uAunU6DmTYoyoQmthENbD6Ko+aiEiKBWXjnA0LZNtg1vJm3lM23Rv8v3jK+XU2b5AxHixnYQgrtehKgrhVJaV//JlFMvink+8A3PuPHcbYh+jtSKJaBHeuewyVrYdM+r7EwSrxUomykjVYqu1IqlUWVh1P2vvQULukncBEL3h/7xtKrqbo6soCoqi0BhtIqpHmVE3AwiGv+ohBdO0SQ6boxarkkgkEolEIjlYpLiUjAm/uBwtX8uyLTJpp2F7YxsBITZjdhQbC0sxaWgsF3zHndTAuW9uo5C3+f0v97H+mWF32e7t2VHn6ReXpuXchIfVMJqiTbha7O7kLh7a/QCb+zdh2ZYj/PCK9kBlwWDZdplzKYiH4iiKytn//Sdie/az65xTefG8kwJtJUrdrMlE5llOPqUOcKAViVKekwve5yDcTH9+bX7tOVjtHYTuuwd1397iuiqmZWLZlnt+JEIJLln2LhY3LQXAtuHdH57FuW9uY+nRzsOawb5C4Lody4MWiUQikUgkkvEixaVkTFi+m9GxhMUmh5zxja1K4PX2zjBaxKKhRSEUVjEq3OS+9pxmXrO2iWzGIpU0EabPru2ZUefpisuESt5yCgOFtQi6qgfCVEeae+nvedPZTs7IYtpmoHF9JefSLzxLcy7BEQhRLUr7zXdwzB2Pk21r4cl/+TtQlEB+petqjeJcTgTZ53JyGLnPpS/n0h8KWyEsNh6qQ1d1GsON3gZ0nexll6NYFtH/+43zUtGBFw85Ks3FwmLpyjpee04zTS3OHAb6jcC57ReafT15LEvmYEokEolEIjl4pLiUjIlAWOyoAs0JwwNItPjFpYmuK5x9QTNnnOfcRJtV3MRzLmylpd1xflaf6owdk3OZ9JzLvOm0NAlroUAxlErkzBzJQjJQ6ERUixXvt2AVsG07EKZqjehcenmquqq71UNjegx968vM/9cvYSsKz371n8k0Os6mf9tizvoorUgmgsy5nHxKj2MwLLZKK5Li72EtzDuWXsopM08NbCN7+XsAiP72WrAs95zIm/kyMev+7TuHG1ucOQz0FSo+ONnw3DA/+PIOnn/SixCQSCQSiUQimShSXErGhN9hHC3n0sYmOeyIuPpmf4VKZ71InY0edX6vFp4XDqu860OzWHt+C+e9pY1QWGHPziyWZdOd7uaJfY9XFLn+sNi86VSODalhtyhONXH5h82/409bfo9hFcrmK35mDUfcBpxLhHPp4V9m4zmbwr1sMMM0fPC9aKk0j77vfLpPXoVZ3IdaISxWmwJx6Uc6lxNnJAfYHxZbra+oX2iGtXCZQDUXLiZ/2uloO3cQevD+4PlR4mi7/VV9OZdNzc55P9hnVBSXzz3h9IHdt9t7cJM1smSM0aMEJBKJRCKRSEqR4lIyKr3dea754U669jpOYKWo2KEBgxuv209fj+OQpIrOZV1TMCxW/BQiz7Sq5361d4Y5+42thMMqs+dHyedsnntiiM39G9nU9yLdmW52b89y+5+62bYljWXZAXEphJ+maujFG/FKvS4t23JFbs7MBl531hHLnPfvv8G3RmhFYvtyLlVFJaI5VXNf873foG/cQPK1p/LYFec7+7e8FieC0iqgk4l0KyeHgKAcybkMtCzxh9KO/hWcvdzp9Ru97lcVzw93HyWh2gBNwrnsL3EuschmTLZuTgPO9Sv4/Zbr+f3m60edl0QikUgkEkkpUlweZhiGzR03dvOHX+/jntt6JyWX6vEHBujan2b9c8mylgaCh/7Wx/NPDvPwPX3Ytk1yyEBRIJood0sMy3AFm1/sjZQTecIpDQD85foDPPZQj7OuZXDHjd08/sAAv/6fPdx1Uw/plJOjGYmqbl6ZiloWFpvMD7v7GswNuPsRbqd/vmI7IsxWUzRXFIw1LFZVVKJ6lOV/fYqFN96F2dHJru99B1tTi++7XFwKEavKsNiapVKurcCfc1mpVQ1QljdZidxFb8FqbCJy2y3UDaWqruvm+uIPiy3mXPYZZcWqtryYQjzbGRzwF+xy1vdfFxKJRCKRSCRjQYrLac6zT/Tz8+/vYnjQYCDbz7W3PMSj9/ez/pkkD9zVx/aXJxbeNtBf4Eff2MFzTwzxwjPDWJikkyZbN6V5/KE+UknvZtQ0bbdlyOb1KbI5g1zOpi6hYSm+cb4QWFEkxyje3Vq2xZ9f/iMP7L6v4nyOW9PA+/5hNrG4yobnh+jvyTM0mGf3jiyxuHMav/JSmnTKIh7XUFUlIPy8sFiT7nQ3f3rpDzy4+34A+rK97n4KxSJAYk7+n9miq6mpmheCOEJBH8u2fGGzCh0v7eG8b1+PraoM//jn0NHpjhPHpmLO5VQ4lwEhJMXlRBkpLFbXKrciqfZ7VWIxcu+4BCWfZ9HtD1df1z0nPXEZjWpE4yqD/QWyWf+1aLHx+aT7t9+5FPRkxtZbViKRSCQSiUQgxeU0p3t/jh1bMzzw1z7uffFJbn/uEQrRfk481XH6xlIEpxJb1qfo2pvnz7/tIpOyqC8W5tm0PsX9d/byyL0D7thXtqRJFQvpJIdMtr/suCuJeo1CBSfQjxBVWSNLMp9kX3Jv1TktWBLnvLe0Yysm654eZvMmpwjJqjUNRGMq3V15TMMmntAC+1MUz7k0bYP96X0A7BjaDkBfts/dhxC9/vVLq8ZqvlYklZ1L4SB5Tqza28sp/9+XCOUK7P/sP1E4/Ux3nL9voV8wiMqxU5FzKd3KyWGkfNWwGvbGVRWXY/scMpe/D4CFN/3NjUsvdbRVn5ueLqTdhyZzj4pSyNv89md73FzoXM7gpY1pwhGVRINGatjEMIJRDt1pKS4lEolEIpGMDykupzmvPaeNSETlmUeHuOP2Xdg2vOa8GCecXBSXOyYmLvfvyQX+PvXsBmbMDhMOK9iKzZa9O3hlcBsALxR7Uc6e7+QUblrvOCKJej1QIKdSCxMRDiocw4JVIF1IV53X8SfX0zpDY2jQ5P67nPDY5cfW0doeckP84nVBcamius3pDcugrqTnZL9PXBb88y2GF1olVWNVRQv07nSoHharmzYNH3ov0b37Sb71reif+oI7L+e4ODmXpSJSuJiqOvmX6UjhnJJxUKU4DwQdZ6XC+VFpnWqYxxxL4fgTaNy2i1kbtgPlDx38BX0e2nM/t2+7FcMyeNvlM1ixqo6hwQIvbXQe/OzYmsIo2KxYVUdLm+OwDg8Gi/50S+dSIpFIJBLJOJHicppTl9B5zVlNmKZNMptm3oIoS48LM2NOBFVznMvR+lJWQojLBUtizJwTYe6iECe9tonXXdSGjcW6wSd5eM+D2LbNlhdTaJrCWy7rACCTcfItO2eHKYzSwkTkQPpzHYfyg1XnpSgKJ62tJxZ3msnH6lTmLYzR2uG5RPG6YD6kqihuOw/DMgKOj23bY3YuBU7OZVFcUh4W6xeXlm1x1g//RPiRhygcexyZ7/3YFSSaW2SoWt/CYkEfZfLDYqlSvVQyPkYS5qqiugLwoMJii2SveD8Ax97ySHHdyq1IbNsmW+zJalgG8TqNN1/WCapF9748tm2zdYsjMo9dXU9Do3N+DQ0YgQJbA7n+QOSBRCKRSCQSyWhIcXkYcNrZzcxbGGXuMpVVa+opWDlCIZWZsyOkUyb9veO7QTRNm659eWJxlfd+bDZ//+l5oBb7NeoKiQaN4WSOgmEyPFwgk7Jo6wzRMTPCmtMa6ZgV4szzWmhpCwecy0ptR4S49Oc6Duaqi0uAaAxOPauJtk6d085qRtMU2jrC2NiYFDznEq9Sqz8s1l/YpCfTExCUfrxqsSXiUi13LoOtJoqOJHD0Xx7guBsfwGprY+hXv4V4vGycZduYdgXncgqrxfqRzuXEqeZICsRnV80pHku1WEHu4ndQqIuz/J5niA6mKjyMKA/HFu57LK7ROStELmfTcyDPnt0Z6hIaC5bEaWjyiUvfNWrbNr3ZnjHPTyKRSCQSiUSKy8OAWFzjin/o5OgT4iiK4haemXOU01dxvHmXvQec3MUZsyOuaPJXdW1u0512I0mTrn3Otts6Hefwoks6OO2cJpqanL9FmGm1KrDiZtYv8IS4TBfSvNS/pcx5NW2TuoTOO67s5IxzWwBo7QjRFX2BzQ23osWdbbnVYhXVbQthWKb7OsDO4e1Vj0NptViB41wGxwRERvGymvHwM5z13esxdY2hn1+LNWduYDtinHAuS/sWdsQ7iWgRGiNNVec4UVR56U8Ko5m+Yc25DvxCUFEU97oaj3NpJ+rZ++bz0AsGx972WFnOpd+5FNeV/9qZszACwLOPD2HZFitPSKBpCg1NzrUxVBIWC9Cf7R/z/CQSiUQikUjkHeZhQsbw8hSzhhCXTg7krnGKSxESO2N2xH3N8IW3NrWqoFgkhwy6u5xqtO2dXliqCPEMqaFRxaV43Z/rOJQfAGB9zws8uvdh9ib3BNYRc7Fsi73JPTy4+36a2jVy2hC2YqHEssXlXhsQfysSy3fDLYr6NIQbAvsoDW0NLtN8N/Ll70tRFNpf3s3az38f1bS453PvpXDqa8vGCTFZcAsFBcXCspblXLr83dSF6srWnUxkWOzEGS13VTzUqNY2ZDziEmDPuy4G4LibHkIrOfX8OZduSLfPpZ8z37mec1mbSFTh9Nc7D2b8zqV/PIBRoS+sRCKRSCQSSTWkuDxMyBhey5Fc0bmcdZTO1sTfeHjjunH1u6wsLr1wueY2HRub5LDJgQPO2PYZnri0sZ18M1Vzc7iqiUsv57LcucyaznsaLMnB9HIhTV7q38Irg9tQ6oawcPYVjZeGrKpu3qJhBZvJJ/NO8aHOuhmBfQgxWklcaorqC4v1BKwgtHcfb/uXnxBKZ3n4Axfy0vmnVnzvoaLwEE7zVPSzrIZfT8qw2ImjjJK7Kj7j0mMszpfxisvc4kXsOHEpjV19zHr42YrbDJyzvgcpze0akagzj9ec1ejmWnrisoBVvF5tbAb6CmTzlUPGJRKJRCKRSCohxeVhQjrgXDqCz46lqJuZZn9mDzu2jr3f5b7d5eLS8uViNbbq2BSdywPBsFhwQvEUFHRVx7RNbNuuKi4BTMsM5FymCikMy3AdvaH8UGC8cFOcFh5FZ0U3iSWcG+lITMzZXy1Wc9ctnYuu6rRG2wKvCRexsnNZ3opEoAwO0Paed1PfM8jmN53JY1ecW1VAqIpKWAv7Wpy8iuJSCspJYTTnMlR8SFFafGei4lJTNJ572xkALLrh1opzsfFyLcVPZ4DNSa9t4uTTG5k5z+vBKcTl4IB3bWx/KcODd/fzm5/s5KG7+yZUFEwikUgkEsmRhxSXhwmZQrlzadomc+dHsRWL558cqrZqgHzOYucrWaIxlbbOMC/1b+HJ/Y8HwuOaWzVsxSY5ZNJ9II+iQGu7d7Nq2RaKorhuocgprIZpm261WOH+DOUHyRdDZZM+cSnae4jfhTNqWAZ1Tc66kbg3FkrDYsvn0hprQ9eCRXNGci51VfecS1/RINJpGi+/hNDGF9m+ZjkPfPoKKOldWUpE8wR8ac7lVDKa4yYZGwFxWeEwirDY0oViPWWc4lJXdbaeupKhzmY6H30G7eWXfBv1ci69fGFPFFq2RXNriM5ZkUCRqkS9hqrCYJ/h5CRjs+Nl5wFTLm9w9y29PHb/wLjmKZFIJBKJ5MhkXHc2+XyeH/3oR2zatGmq5iOZIP6cy5zp3BhalllsSWLz4vNJ8vnqAk+wdXMa07BZvCKOpils7N3Axt4XSRVS7phI3KkaOzxkMDyUp6UthK57p5KFVQyL9ec5lleKFRiW4TqXjeFGAIbzw65zOZwfdsf6WyU4zqVV3EaBo0+IcfRxCVpnOCJNuDaqLyzWrDCXtlhbWbsPv7i0S/LQHEGgBOajFAo0Xnk5oSceo3DCav5y9ZUUiodkJHEZ1WPu79o4hcbBIPtcTg4BkV7RuSzmXJZ81YpzYrzHXlM1bE3j+Tc7ObzRa37qbZPysFj/gxGrRGi666kKM+ZESCVNHn+on/6eAplBjaYWnfPe3oweUrjzph52bR979INEIpFIJJIjk3HdzYbDYX784x8zNDQ2F0zy6uHPuTQsA8Ny2gqEQiqdc8Lkczb7i+GuI7F5vSMilx2TALxqrmmfuLSwmHNUFMtyBJw/JBa8sFgR5lkpFNWPaRtuaGh9sbBO3syTLwrOVCHlru93UE3bcudnWCaJJoVFy+Kum+ivFquW9JT00xptK2v3oRXFpoUVELTOMl9BH2wU02LN579F+N6/YSxfweD1f6QQj7pzG0lARLWo+/urmnMpBeWkEDiOFazLqO58vqJqrMALix2nuCyeIy9ccCpmOET0+t9CMlncfXlBH39YrL9YT+k18ObLOtFDCvf/tZt1Tw2j2TrzFsZo6dA489wWsGHXK+MrDCaRSCQSieTIY9xWyapVq9iwYcNUzEVyEAjnUtzMZs2sK27qG52Pub9v5H6XlmWz5cUUqgqLlzuxpWIbfufStAxWHp+gpVXHxqRjZrBSLIhQVM0dP9acy0TYEbU5M+c2cLdsyxW3wT58lutCFqyCWxzILnFtVEWp6OpAsbJrvMN1WQVi7rZtYRHMN9MUr8+lbRqc+53fMfuvD2HOP4rBG/6M3dyCqqieqzmic+mJy1c153IUx00yNkY7jke3HsMZc9Yyo25mxfXGm3MpHPZMU4L9bzgHdXiI6O9+G9i/35n3i0t/ZePSKsczZkW46J0d2NgMD5lE9Aiz50YxLYOmVmef6WT16AOJRCKRSCQSgHF3Z//MZz7Dpz/9aUKhEGvXrqW1tbUsZysWi1VZWzJVCOeyOdLMPmMfWcMTl/GESg7o7xlZXO7dmSOdNFmwJEYsLoRhebVX0zZRVYU1pzfSvrCRk05vcpfZvuqpmuLlOY6EaVtuzmUiVA9A1sgE2pMM54dJhOsxLb9zafpyLgvu+zWtoLhUUNBUX0/JooNzfMcJdMQ7qQvVue1bwLnxH6kVietcWhbLvvgNZt/2GNn2FlK/vwlrxkz3/QuxO2JYbMC5PDQp0DLncuKMFl4c1aMsaFxY9rp42DHefqP+vNzd73kHs/9yJ/H//SHZ93/QPX/8bYP8dXiCIbLlD3uOP7mB2NzZ/HldAwvbZpEJdVGwDOJ1zj7TKSkuJRKJRCKRjMy4xeUll1wCwJe//GW+8pWvVByzcePGg5uVZNxkjAwhNUQiXA+pfeSMLFZRZMXqoR/o7x1ZXIqcqgVL4+5rlW5Cxc1rJKJx6jlNNMT1svGBIjq2UfEmWlVULNvCsI0y59LvlIIjLmcSdC5Ny3T/zppeyK94TYhIRVHd/ds+sdgYaXIdJd13066ijtznUlVRbTjvW9cz+/bHSbY28MTPvsGxRy1wx4w1pzHicy5LQ3OnEulWThITLIw08Wqx3jmSWrmC/OlnEn7oAcJ33EbhDW8AguLSf+5WC5H1E6tTmDknyozGOl4ZdLYlxaVEIpFIJJKxMu672a9+9avS6agxDMvJWWwIN7hOWM4MOpcwurjcs9Nx72bP8wSPWaEQj1ESmurHu4FVXLFkWgZUEE5hLew4rMX566pOVHNcb38RH4DhwlBxW0H3RdxIZ305p6XFTETPTfF+KvWm9IfFOq1GhLgsb6OiWbD66h8w//bHyXa0csO3PkLHUfMCY/zXyMgFfbxjPd7KoQeDDIudHCZaGEmZoLgsfQiS+ejHCT/0APEf/RfpN74RKAkdp3IRn9I84tIx4WIVY9M2iCekuJRIJBKJRDI2xi0uL7744qmYh+QgEPmWsVDcdcL8Tl60TkFRxyIunXVmzfX3tyx3OCzfjWnp8oCgU7xqseIm2t/XMaJF3PDdglUgokWI6s6+U4WkOyZn5lyxadp+V8YrziPar4jXnZ+eiFQUTyy6hX58bqq/WmxpWKxfQCumxYJ/+SKtN/+N4bZGnvrZt+ivH6KzRFj4RcNIRVv8YbH6oSroIx8WTZhgK5JxiMsJtiLx5+Wqikr+dedhLFlK6InHCD/zDMRGcCtHCYt1XneunZCv0rNwLlMy51IikUgkEskoTNgqefnll/nzn//Mj3/8Y7q7uwHYsWMHyWLlQsmrRzLvHPO6UB3RouOQNTKug2Fj0tQcYnjQ5I4bu/nBV7aTzQZvFNMpk/6eAi3tobJ8y1IMu3LYnf9vBcV1WfzVYkVrBoBIUVjlzRyWbRHWwq5jItqpNEebnfkVHAFtlOZcirBYX86k+759IlLclPvDXP35a3qJc+mKS7yKtFre4MIv/YrWP91EurONG753Fcn5s5z3W6Ir/OJyxGqx+iHKuZSCclKYqAM84bBY33mqKRqoKpmPfByAuh//NxC8RqjSfsQuKVIlEK19dFVHV3UMyyAcVgmFFelcSiQSiUQiGZVx382mUik++clPctFFF/GFL3yB73//+xw4cACA73znO/zwhz+c9ElKRiZZcFy9RCjhCracmXMdRqd5unNT+tgDA/R1F9i7M9iWZO8YQ2IhKDrLxCXlOZeW5Qm0oLh0hGS6GNIaUsOE1WDLhpgerFobyLn0CcWsWS4u/S6quIn3C1K/a1TqCInxIkczlM7ytn/5X5bd/xz5eXN55GdfZ2B2uytgS4VF0LkcqaCPV/zqUOVcyrDYiTPR4zjxnEvvPBVFqrLvvAyrrY3ILX+hYV9vYHy1arHVnUsvT1lTNC+0vk4jk7awrMqidCJYtsVdW+9i68DLk7ZNiUQikUgkh5Zxi8v//M//5Nlnn+WXv/wlzzzzjFsdFGDt2rU8+OCDkzpByegMF53L+nA9Ud0RK/5qsTY2za1FUVf8uHq68oFt7NnliM3Z87yQ2KricgTnEjcUVfHCYv3Opa/fX8TnsgKEtRCKogR6AgqxbFUQl4avmmzOX9DHCvb4UxW/c+mF0vrDYhXF68sZcC5ti0jfAJd86r+Z/8wWDiyazY4//J7M3NmB918aEhkMl6zBnEspLicFZcIFfYqtSMb5Fex/AOGeL9EomSs/jGJZrP7j/YHx1UJhRxOXKqrrXIIjLrEhk67eUmi8DOeH2D6wnW0DWydtmxKJRCKRSA4t476bveuuu/j0pz/Na17zGjQtmCM2a9Ys9uzZM2mTk4yNZDE/MRGqJ6w5ItLfmsOyLZrbQoF1ukvE5c6tjsCbNQbn0gg4l8ExwfYfxbBYyx8W690cR3QhLrPFZY6oFKITIKYLcems73dNRe4mEHjIIdxTvwtTqfprqWsk5qvi5Whqu3byto99gxlbdrFr1SJ+972rsGfMcMNKrTE4lyOJN1VRXTHtz/uUTA8OpXPpF6aZKz+MHY1yzK2PEhlOu68Hr4vKIbJ+3BBwVfOqPU9RxVj3mq7yPSORSCQSiWT6MW5xmcvlaGpqqrgslUqVCU7J1JPMO5VU68IJVEXkOZpu/pQTFuuIS2GudO/3hNmm9Um2bk5T36gxc44n7EorwQqCrQ6CYXJ+t1CIJdMyfIVCPFdS5FeKgkRCZIV94jKsRVAUpWJYrL8Pph/Lqh4Wa9kWthu6GxQD4mZaLbYumbFxB0vfcTlNuw/w0unH8sdvfpR8Iub1uWRs4nI0ASGK+ryaOZdBx+1V2+1hx0QL+ojPerzH3u+w+3OG7bY2spdeTjib54QbveiRSgV93HD1Cte3uOY1RQsU5HIrxk5iUR+vqrMUlxKJRCKRHC6M+2722GOP5aabbqq47M477+SEE0446ElJxkcyn0RVVOr0uoDbYPvE5ay5UVQNTjilAVXznMt0yuSWG5yc2Tdd0kko5J0S1dsVjF4tVvG1/3DCYp2bXH/IqxBVGTfn0hHAEd+YkBZCRXXn4he2fufST2nOpRAAIoesmnMpxLCiqMy+6wEu+cf/ItzdwwtvPp2bv3glZtiZn6pWEJdlYbHjEJfFUGZ/m4mpRobFTg4Tbcskzo+JhEKL60orqS6c/vgnsTSVE/94H6GMEyZeKRTWX9yqFHHtqIoS6FM7Nc6lXXUeEolEIpFIpifjvrP55Cc/yV133cX73/9+fv/736MoCvfffz+f+cxnuOOOO7jqqqumYp6SKhiWQcbIUBeqQ1GUgFvoF2KNLRqf+rcFXPCODlrbw6SGTdIpk9v/1E1yyOT4kxtYurIOcG72cmbOdT7L9unPuaRUXDo3jIqvz6VheYJOCEhVUd3fM27OpQiL9UJzw2oYTdVcB2YsLofYV6lDqSrqKGGxOtg2x19zE8d/5ktohsGO//dP3P2pSwiFvcI7mqK5jpPYx4hhsaMIEBEGfMj6XErrcsKMNbe2bL0J5lwCgdxgP9b8o9jy+pOIDaVZdfMjwPidS//DIfGww7Smptel51xOXpEgiUQikUgkh5Zx39msWbOGX/7yl+Tzeb70pS9h2zb/9V//xa5du7jmmmtYtWrVVMxTUoXhnFMptj5cD1DiFgabptc36ui6QnunI+Ie/GsfLzw9TEOTzvlvbXPHPrD7Pm586Q8UrKAzKG5KR6wW6xNuQuj6i+gIQamrujtX4UCKkNlQwLkMoyqVnctqVKoWK3464rIogEtuziN5iwu+ci0n/uQPGPEYf/7yh9n7vndjYQeq3FYMi1VGCIsd5TKLCefyVcy5lG7l5DBRXT7RnEvwrsNKYvbpy88HYM0N96DljUDOpT0GcenmXAbCYk3idc6+piIsVuZcSiQSiURy+DChu9nVq1fz29/+lmw2y+DgIA0NDcRisdFXlEw6w3nRhqTefU1XdUzLDFZ19TmMbUVx+eh9AwC8+dIOt7els80h8maetOEVBhHbNSwjcDNYeoMaqNDqC9EtrRbr3LwGw/pEMaKoL+cyohbFZYWcy2pYI4jLglWoWC1W3f4Kb/zwv9OyZTvJmW1s+J9v8UrTIO3FYyic1oJVQFVUV0xWy7n0i83RBMSipiXkzByddTNGfW+ThQyLnRz8x248LuTBiEs351IpD6MeWDCbLWesYumD61h5x+PYH3udu8wLix3JufSu35AoDmYbxOuc63YynUvh+lcLv5dIJBKJRDL9GPedzaOPPkom44QxRqNROjs7pbA8hAzlvGI+gtLcQgjeSLbP8JzBs9/YwuIVdYFtipu9ghksmCPcu2BBn+CNoe1z8sTNr+Er6KMrOnPq5zC3YX6gITxAXch5D/6CPiEtHMgRqxaqG5h/SbidUuJcenllzuvhu26n+dy1tGzZzs7jF3PnL75CetmSwHv19+0MOpdFZ6jUufQLtlHsrfZ4O2vnnh2okjvVBMJipbicOBO0LoUQnZC4dM/D8nVVReXxy88D4KTr/4ZteNeweMDkOZflos7yOZf+EHuRc5maioI+jH5NSyQSiUQimR6M27n8wAc+gKZprFixgjVr1rB69WpWr15Nc3PzVMxPMgoiLDYR8sSlrurkCrmSliHeDdxRi2M0Nuscu7qeM89rKdumEF95X+9I8MJWR+qX5zqX+HK2fCG6qqJyzrxzAejNeA3fFUWhLdYOBAv6hNUScTmWsNjSarHFG3mxHbEN1bKJf+0/qPvutwDY/P63c+sVr2VmY4t70y96aaqKxsKmRWSNLIqijK9a7ATy6l5NZM7lxJlotdhFzUswbIP2WMe491kt51LM58Cyubxy0nIWPLmJllvvgPcuA/zOpRr424//OhVh6wWrMKU5l9WqUkskEolEIpl+jFtcPvLIIzz11FM8/fTTPPHEE/z617/GsiwWLlzI6tWrWbNmDW9+85unYq6SCtRH6gmpIdrj3k2qcCb8OZN+l6K+QedT/76g6jbFTV+uKC7DWpi8mXfD5CqNLf1bURRfWKy/Qqt3A+53XpojLe68w26BG8WpFitEoW2OKefSKxRSHhYLzs1yonuAtn99J5GHHsCqb2D4v37MpuOasAdeCrQu8TuXqztPcvcxelisv1ps7Yk36VZODhMNL+6Md9IZ75zQPluirQzk+onrdWXLxHn5+OXnsuDJTcz+0S9IXf5x0DQs2ypry1OKd80Encu6KRSXMixWIpFIJJLDh3GLy+bmZs4991zOPddxn9LpNI899hjXXHMNN9xwA7///e+luHwVOabjGGao8/EXXBQ5VTmf8ziecv/CuRR9JGfWzaI328PMupl0pfYHxo7UikT39cnzQlG9PDF/nz6/OBbi0l9ZFijmkY4959KrFivEpbO/+fc/zTnfuJbIUBrj6GMY+sWvMRcuRtv3mDN3VNdtNEpCaAVCSLjVYstakdR2NVb/lKTQnDiHol/oyTNPYXXnmsD1IxDn7Z5Vi9h13GLmPv8yxp//SO7tl7jiUjz4qBSO6g8Z91d7jtUXw2KHJzPn0q46D4lEIpFIJNOTCRX0SaVSPPvss66DuW7dOiKRCGeddRarV6+e7DlKRkFRlEBVSHFT6O8DOR5xWepcNkebWTv3bAay/Tx34NmSsXbFdZ2w2KLz4etz6Rdpmq86anu83f09WiIuxU20U3XWdN9jNRezWrXYcDbPud+6nlW3PgpA+u8+SuoLV0M0WpyP53B6gtYIbEMwmnNZ62GxtS5+pwuHqjBSJWEJvs9SUXjk/W/k0k/9F/Fv/Se5t1yMbdtOuKsbZl7eAsTLufQV5LINNE2hqVVnoM8gmzGJxg6+J6t0LiUSiUQiOfwYt7i8+OKL2bx5M62traxZs4Y3vOENfP7zn2fZsmXyJrVGELmOwcI7Y+8lV5pzqSjVi4+Uug5etdiSgj4lLqIzT5+4jHniUvS5FD/9OWIijzSkhsYlLvWnnuCij36Bxh17STXXc+fnruCMK78eWE/MxxGXijt3KCnQA+U5lyO1InkV+1eOGXmtTgq1VhjJP4fdxy+m/9STaH70SSJ/+B32cbbjyY8x59IfFgswe16Ugd4ke3flWLg0ftBzLc3drsnrRCKRSCQSybgY9//mmzdvRtd1jj/+eE444QROPPFEKSxrDLVCi4KxOpe2bbsuaL5YLXakAiKlxTj8YktUjDUswx1XTVzWhxvc36N6lNWdJ3FCx4mBdUzbC4sN+4r+lCKcEBsbPZun/ov/StNF59G4Yy/bTjmaX/38n9n9mmPL1tMC4lIUM8kXl5Uc03E4l7V4bchWJJNDrTnApb0vd1z1YQDqvv11KBRKci4rVYv1icuSh1Sz5zkPe/bsyAbWeal/C3uGd497rnaJuJRIJBKJRDL9Gbdz+dRTT7khsXfddRff/va3CYVCnHjiiaxZs4aTTjqJ448/fgqmKhkrulr+sY41r8mf05i3HOfS7adX4eZ5pGqx4Igyf1sUf28+VVE5c85ZxPTyVjYr247xjRMFfbxqsaJyrfN7yM0PVRTFnUPns5tY+7VfEt/TjdXQyJP/eAUPnrUEFIVwhfcinBrR0xI8ga2UPIcR729s4rL2HJnAfGtAFE1Xak2kl85h8IRjyZ/zesL33M3yOx7jlbe+fkTn0vQX9CleAwUhLucXxeVOT1yalsmjex+mKdLE7Po545qrP5rCtE30iWVpSCQSiUQiqSHG/b95LBbjtNNO47TTTgOgUCjw6KOP8tOf/pRvf/vbKIrCxo0bJ32ikrGjKxXE5RjzmgLispiz6TqXFYzu0gI7dkmYqK7qZIyMO65UaB3VWL1qrSDY51I4l17l2rAWdsVlWA2jDQyS+MyneOuvfg5A7rw3kPzm99he2AjDO533UkHwCVGu+IqZiNDgaiF71cJilRrPuZRMDsGCPjUgLkvmYNs2qc/+P8L33M1rrr2LXRed4xX0GSEsVlO0QM40wMzZERQ1KC6N4jJx/Y2HkVoaSSQSiUQimZ5M6FFxX18fTz31lPtv8+bNWJbFkiVLZEGfGkCr5FyOcvP2Qvfz7E3t5fTZZ7qvCXGpqiPkXNoW3eluTNtgRt3MssI9uqJj27avX+T4hZY/jM+wDBRFcV0VcHIzU4UUmq1w9O2P8Zr/+T2xwRSZhjoe+MQ7OfGq74OioO7aXLZNPyL01SlG5Gw/V0Vcir+FS1o2Z2o8LLbGcgWnK7XmXJaepxYWxolryJ57Po1/vZPltz7E4BXOA53K4tKrFuu1EnIEZDii0jEjTNfePEMDBg1Nelnbn/Hgv3bGUgX6YEgVUjy1/wlWtR9Hc7S8t69EIpFIJJLJYdzi8vzzz2fnzp1omsaKFSs45ZRT+Id/+AdWr15NU1PTFExRMl70CpUkRwuL3T60nf5sH8lCsmyZEEqVRJJlWzy45z7yZp7Lll8eaEUCntAV4aUT6fkonEvRikRX9EB4bVSP0P7ybl7//T8ya/02ANKXv5ffXHIMueZ6Tizu0583WUlcNkea0VWd1liLewwLVURxabXY0vfl/7MWC5XUmiiargSuiRp4iFD2WRYf9gx9+rNE/3onJ/zyZh665DJg7AV9/IWzZs+P0rU3z56dWRqaEq4oHK847N6f5+ln+4kdbRenObXO5d7kHnYMbacx0ijFpUQikUgkU8i4xeWFF17o5lXGYuW5cpJDT6Ww2NHK/Yvwz4KvfYnA7+iVYtsWeTNP3sxj2VZZzqUIrXML41QoNjQaXs6liWmZ6KruCra6nkFe8/1bmP+Xu1Etm56l87nrkxdz1sVfIL35/whVCU+t9F6aoy1ctvxyVEUlVUgB5e1MBKXVYsvnXNthsbXopk5Hak2kl4XFFq/H3LHH8tIZq1jy4Drm33Az6y9YPmKfSycsVlx3PnE5L8ozjw6xZ0eWFasSbri9PUI1atu2uXfX3cysm83ylhUoisLNN3Tx9J4+jmnKkmhUprwdibhOxUMuiUQikUgkU8O4xeUnPvGJqZiHZBJRJ+BcCocub1UQlyNUi3Xagzg3n6ZlluUgijYibojthMJiPSFn2iZRNUo4k+fUX97OSb+7h1A2T6YhzjMfvpiX3nYevYV+p4gQwfYG6ijOpf/1kC/s1nk/I4vL0uU1HxZbY1VOpy01Fl5c2jLHH7b60AcuZNHDL7DwJ9cRPvP/VXQLLdvyKj27YbGe8Cst6uP2qvQ5l5Zlk06ZJOqd9bsz3ewe3s1Dz24h9mSUt7yrk53bstgRm4H+AonG8JgLjk0Uz2Gt3L5IIpFIJBLJ5DChnMtdu3bxs5/9jGeeeYaBgQGamppYvXo1H/zgB5k7d+5kz1EyTio5l+JGsi/bS3e6m6XNXvsY27Zd8Zev5FwWxWUlEWL4KsEatuE6GG7Opetcimqu4xeXmuKFqGp5g2NuuZ81v7qVaE8fRkhj+5WXccvFx1HXNtfZb8G5mbRtO3DDHxR8I8+jtOJuqfs4miAL9rk89KKjlFpz3KYrtSbSKxX0AefhUt9RM9h60Vks+cu9nPx/d2P+++vL1jct073eKoXFtneGCYUV9uzMYVm2W13W7+A/dv8Ad/2lh498eh4zZkfcCs9d+/K0J01u+OU+Z26KxdBAAQhjWlMrLsX8JlJ4SCKRSCQSydgZ953++vXrectb3sJdd93FMcccw1vf+laOOeYY7rrrLt761reyYcOGqZinZBxUbEVSvMl8ev+TPL7vUe7bdY+7TBStgcphseoIzmXet65pGa4DIW66NUXkXBadywmEiGqqhpY3aLvuej54xZc4/dvXEu3pY+PrVnPNrz/Pzs/+I7lEHF3V3RBecUPrn7Om+n4fJTzX3w+wdF3/+3PHjyA+a7IVSQ0IocOBWhPppXMQYbHi4dILH34nZiTMiX+8H33/foBAnrWNXfZgqC/by/MHniVZSKJpCjPnRMjnLHoPFAKOpQht3bYlDTbs2+18N4gxmbTz0yjY7r4G+x2xJ7439u/N8fgDAyOG2U4EUajIkOJSIpFIJJIpZdzO5de//nWOPvpofvrTnwZyLjOZDH/3d3/H17/+dX79619P6iQl40OrFBZbvLkczA8CsGt4Jy/2buDo1pVuPiRUDosN9mxUAjd+fifAcQuDOYqlQrfS3EYkn2f27/7CST/+GQ0HBgDYeeZq9nz873mkPQNARAsX9+Vtu1BBXAZyLscg+HRVryqKR9Nm06kViRSaE6f2WpEEzzUhLsX1n5vRzp73Xsq8n17L3B/8L7u/sYB7dt7NabNOZ3HzEizb8pxL37X7fPdzbOx7kbVzzmb2/Cg7t2XZszPLzJXBdiIaGt37nWsmlSyGy9smNjaZlCdE22eE6U7aDAwUxWVRmP7l+i727swxf1GMGbMjk3ZcPOdShsVKJBKJRDKVjPuu94UXXuBDH/pQWTGfWCzGBz7wAdatWzdpk5NMjIp9Los3VzE97r62u9jzMedzKwsVCl5oIwgl/3jDMn1hsaJC68jhpdVQBgeI/df3aDlpFcv/41s0HBhg/1mncu3/fpoHv/VZUkcvc8e2RFuZnZjNwsZFrmgU/feC7qM/53J0IeDPu6xW0Mf9W6nuZNaC6Cil1hy36UqtHccy59IOiktVUdn94feRaYgz48ZbsTY639cDuX7AEYL+6ySmO9/zc+rnkDfzPLbvEWbP8/IuA86lbZLLWgz2O9deOulVki3kbQwDOmaGecd7Z/DO982gsUUjn7fJZiws22Kgv8DenY7bOTQwuSJQzLPS95tEIpFIJJLJY9zOZSQSYWBgoOKywcFBIpHJe9osmRiVwmLFzZXluxnszzo3lP5QWH+IrMB/s6koCv7Wjn7n0rANr8BN8SZXLwk/Hc0xVHfuIPaT/yF63bWoKSdcr/ecM7ntkpOpO3ktBwa3MUfVA8V5QlqY180/D4CdRcFsFG8ilSp5lmN1LquOL209UhomO859vdrUouCdjtTaYSz9XC1XXDo/FVTshkYeu+I8zv6fPzP/2z+Ef3snWTOLbdvYth04X9+w4AIA6sMNXL/pOnJmzhWXO7ZmWGUpvn1Z9HV53yUpIS4tk3TRtWxuDXHMifUANLVoMAjDQwambbJpnReemxyeXHHp5oXLsFiJRCKRSKaUcYvLs846i29961vMmTOHNWvWuK8/9dRTfPvb3+bss8+e1AlKxk+pWwhezpXIi2qMNDKYGyRdSAdzLiuGxY5eZdXZti/nskpYbMX1LYvQQw8Q+9UvCN/6FxTLwo5EyLznSjIf+Qc2t8GBvQ8zy8wWtxkKOIP+/El/8Z/S/Y0/LNZzLqtVi/WWVxeXteBolVJrjtt0JVAwqgYeIpTOoTQsVlVUNFXl+becwWv+/Bht9z7E7LedSO7U2YE2JIL6cIP7u6ZoZM0sTS06nbPCdO3Ns+GFHDRR3IdJ935PvKWGPecyk3L239jsfR80turwCmxen+IPL+4lPOTNOzk8ua1JTFnQRyKRSCSSV4Vxi8vPfe5zfOxjH+OKK66gtbWV1tZW+vr66O3t5YQTTuCf//mfp2KeknHgD4tVFRXLtspaBrREWxnMDTKQ6w9UiK3UB85/szmSEDGs8mqxfqErWhy4f3d3E73+OqK/+SX6K9sAsFpbSV/5YTJXfhi7vd3ZxsDLgBe+G1JDATe1krg0RwmLVcYQnusXxqUFgMrE5TRzLqmxXMHpSq0J82oFfcRDH1VRURQVM6zz0sevZNX/+xpn/ugm7ly9pmpPV4Gu6tiGjWVbXPCODq75wW7uu7Ob/rY+OmdFMBebHPCLy1S5c9nU4j2waWx2rqm+ngI702maCt73UHJocp1L23UuZc6lRCKRSCRTyZjFZTab5f7772fPnj28613v4oorrmD79u10d3fT3t7Occcdx+mnnz6Vc5WMEX+OpChK4/V5c1oNNEdbeGVwG/3ZfvcGFKo5l2MTSqZt+sLvnJvcmXWzeJannXVRIZ8nfO/fiPz+eiK334JScG5GC6ecSua9V5K76C1Qks8rnFNRmVZX9aCg9OdSqsK5FOLSu9nWxujACkIjhMWWCrKRxGYtistaE0XTlcDDkho4puWtSKzAT1VR3etg9wVnMf83f2TWi1uYd8f9WB99Q3FM5aJbwsk3bIP5C2Mcf3I99z1r0tdrkBw2sS6y6N7nC4sd9kLxMxXEZXO7hqJALKZy5hlN9L0Qpa0zzHNPDLnrThZuzqV0LiUSiUQimVLGJC537drF+9//fvbs2eO+lkgk+O53v8sZZ5wxZZOTTAy/4xZSQ+TNfKCZuqZqNEeaAaeQhyjaASP3uYSRXS7TMgMOCUBbrI22SCvRxx9n+d+epvWhL6AWc3atpiYyl76b7BXvx1y2vOp2xbZE+G5IDbmiUVGUiqGvFcNilfEJPk0ZQVyOGhZb461IZFjspFBrfS5LC2aJSALb99DHdfcV2PjZj/Ka93+KU370B3rf8y/ONkZwLsG5tiJahAvf2UF8SSv/d59GMmkynCzQ3ZUHBSIRlVTSKfBl2ibptBCX3jUVq1O56B0zMS2DlXPqWPb6ufT3FnjuiaFJD4v19+E0LKNiXrpEIpFIJJKDZ0z/w37zm99EVVWuu+46jjnmGHbv3s0Xv/hFvvjFL/K3v/1tqucoGSf+UNSwFiZVSLmOommZhLQQTVFHXPZn+9Hi3viK4lIdm+Nn2AaIsFjDJHT/vYTvvI3Lbvkzkf1dANihELk3XEju7e8kd94by1zKiu/HdS7z7vsT7kppuKroR1mpz+V4C/oEq8WOLCbLxWZt51z6qQFNNG2peeeyQs6lOPdt26LnhJVsOvsElt/7LLn//j68bXEg8sGPcPLFtRUKqcxdGKH+eZ1k0mTPrjSD/QbNbSF0XaF7f558zsawjIphsZZtUd8QIpk03fnV1TvX82QX9BG55uCIYykuJRKJRCKZGsb0P+yzzz7L5z73OVavXg3AokWL+I//+A8uuOACDhw4QEdHx5ROUjI+/DmXIpRNOIqmbRJVotSF6ghrYQZzA9SH693x/tYCMLpjF1jW18/M++9lyV//ypInv4A2PAyArSjsOmEpu994Fkve/3nspuZxvZ/S3pghNeSKytL5lRb0UaoU/nk1C/rUZFhsjYmi6UqtOZej5VwqvrBY0zZRUHjg79/MoofX0/y/P6H+1M+hLp5VcdvCyTd8Qs2yLerrNfYB658dBOqYNTdCatikG6fXpWk5BX10HWJx71rwh+OL751wWCUcUUkOTa5zaeN3LgvA6A+1JBKJRCKRjJ8xicvu7m7mzp0beG3evHnYtk1PT09Ni8tPfOITPProo5x++ul897vfPdTTeVXwizHhNti25T69FzeXTZFmDqS76M32VN/WCK1EwjmDmS+8zLyntzDvmS10vrQbRbQ+iETInfcG8udfQO68N6K3t7JQUbEnILRKhV1I1b2CQVXmZ1RwLqu5mNXQ/Y4to4jLEQr61KJ4q8U5TUt84dm1QOl5Xd7nUnFdf9MyUVSF4c4WnrrsHE799Z2s/d+/8Ny3VlXctnD7/O08LNsk0eC8/tKmJHHqmDM/yu7tTmXnoQGD514cwDBs6hu1wHHyh6ravt8T9Rp9PQUKBYtQaHIezPj3JfMuJRKJRCKZOg772KDLL7+ct771rdx8882HeiqvGiL0zbItz7m0La/VQFE0NUUdcZnMJ0fclvt7134W3P80Dc9tYOaL25m5aSdawQtfy8zooOvkVTx/0nwWv/0TdLQtcJcdzIlWKiB1n3NZ6mqKG2chLpUqBX2qhf75CYbFjlzQZ6S+l6UhtbVAYEo1OL/pgvica0Wsl87Dn2sNXisSKDqXtjP+ictexwl3Ps2y+55l73ObYN65ZdsW14O/4qppmyTqg47mnPlR+nocAXfbH7t5ZqAPJQILlsTL56Z429k5tIOWWCuJBkdcpoZNmlomR1yaAXEpK8ZKJBKJRDJVjPme/0Mf+hCaVl5F8P3vf3/Z648++ujBz2ySOOWUU3j88ccP9TRedUSVWHFDaNqmKy6FABNFfcqwLBq6+mnfupdZO7pp6LoD/dmn0Xbv4nW+Ydn6OFtPXcnOE5eyY/VSZhy7loyZYcfQdpbEE5P2XkqFYEgNuVVhy3IuR+pzOc5QVX0EcTlauHDNh8XKgj6TQs2Jy5JpiNBT4QxqiuZeI5ZtYtlFpz8WYcMnrmT157/J8d/6OcaFHwOtNJ85eG0527Coa3BetxULVYMZcyJs3ZwG4MC+PFbc5IzXtwR6XIIXqgswkBtgXffzHNW4gLr6ZQAkh8xAjubB4M+5NCq0W5JIJBKJRDI5jElcfvzjH5/qeVTkySef5Oc//znr16+nu7ubH//4x5x99tmBMddddx0///nP6e7uZsWKFXzhC19g1arKYV1HEuIGMqSGgRLnUtHAtmlNWcx8cTuNe3po3ttN455emvd007p9H5F0LrA9W1EwVhzN1qWdbF86g71HH0Vh8SKGjZQ7ph1z1F55E6Esr1LV3TBVf0VX//sWoXv+cFZ/i4XSMNdKjNTnshQpLo9MlBoLiy0910RYrFmhoI/T/9YTXVvOPYmZvz2KWRu2MfybX5F93wcC2/IeVAWdS11TiMdV7LTFzNkRQiHVLcwDUN+slAlLZ26ec5kqON8jeTNHQhT1SU6ewyjDYiUSiUQieXWoaXGZTqdZtmwZF198MVdddVXZ8ttuu42vfe1rXH311Rx33HH86le/4kMf+hB33HEHLS0tkz4fVa2NG0iBmkpC92703kHsXAGlkIdCASWTYdnmZ7EG+5jPRlq7ttGWUelI/oh379hEQ3+KeN8Q7fk8KypsNx+LsG/lUXQvnEVy6SJWnnU55jHHYtc38MS2W+hOHwCgORRBMT1xaWGhKI57omvqpB0vXdMDjkxEc25ynf1ogf3omtM7z7QNFAU03zx0TXW3o5WsV4mwHqo6XlO1wJw0Tam6XFUn71hMFprvWKiqUnF+4rVam3stoanOcVSVysfwUM1HoCjFz0+xnetB1dzrycLCxnbHZ6ws93ziHVz+0e9Q95WrKbzpzdht7e62QlrIXU+8V7t4zScadOwei7kLYqiq4obKAnTM1lGUYg607xgJV1VRFfJWDkVxXqsv5nCmh83JO6aK9z5NjJr4rCRTj/wOk0wl8vySTCXT+fyq6ZzLtWvXsnbt2qrLr7nmGi699FLe/va3A3D11Vdz3333ceONN/LBD35wUuei6yqtrZMX6nnQZLOwdCX09dFYYfHrKrwGUCd+6eiAmTPZ2Ramf1YzyXkz6J/dwtCcdpIzWohHEqQLaVpjrZx29Pnu+o09cTJqFICmeB0FPe1tOxHCsBQSdpTWlnqaY5NzvGIFlcTeqPt3Z3szlm2R6IrSXJ8IfC79Sj2JwSixaIiEFqW50VuuZPIkupzttDQlRv08k1ojiX5nfFtLPa0Jb7wRSZHo9ubU2lJPqy8U2Iym3eXtrQ3Uhd0jXxNoWYNEongsmhO0Nlc/Fs3NtTX3WiJnhEgkooS1cE18PzRl60hkvPOyviFKa2uCeiNCYihKa3M9Ha2NJPZEqYuHCakhEjjjVc0kvXoJ+694KzN//Sdavv4l+MUv3G21mQ0kUlHq6kPue61PRknko7R3Rul7xeKY45tpbU0wazbAPgDmLYohLh3/MYp3hclmoC4eIaRCIhwlkYjQOrMO6MUytUk7pvF9IQq68z4TDbXxWUlePeR3mGQqkeeXZCqZjudXTYvLkcjn82zYsIGPfvSj7muqqnLaaafx3HPPTfr+DMNiaCgz6dudMLZN3TsuJbp9K3lU0HXsUAj0EHYsxla7h4GIzcyZK9hi7ifWNpujlp3KnZl1tM0/hrWLzgPgsR1/ZffwLurDDQznh5xtp/NopkUylyVm5ent9Qr+JIdzJFNZVEUlaeVIprPusj5lGNu2SSazDPSnsdKTky+VNbIkk95+hgZyhNUwcbuRZjoD8xsacsbauWFShSzDkay7fDCXdrczNJSlN1y9kBHAcDLvjh8YSKPnvPH96XRgTv19KRTfTf1Axlve15ciG/LaLtQCQ7lU4L31WuXHQlUVmpvr6O9PYVm1Nf9aIW8650hYswLn4aFCnP+CAVL09ibpG0iSTGYZGswyoGRIJrPoRoqQqvuuYefnhr9/L523P4h6zTUMvuNdGKecCkByyHmvPf1D9Iac9yq2O39xhFPntDF3oU5vbxLDcnrSqirEG0xnf6oevFaH06BDKp3DtornopmkVXVczgP705N2TAeH0yTzzj66+wbp1Q79ZyWZeuR3mGQqkeeXZCqp1fOroSFGKDRyqti0FZf9/f2YpklbW1vg9dbWVnbs2OH+/Xd/93esW7eOTCbDmWeeyU9+8hOWL18+oX3W0ocLkPrqN4i2JhjuTZbN7bntt7M/tZ/Xzj6dDXseoiPeSWvnMQy/spO2UNgd3xhuYpe9i6gWY8gectcPqWFsGxS0wLYVFOd1RUVBxfbt1jCdm0Lbdv5N1vFS7OB+NHQUVM6ffwEQ3I8YWzALxXUUb7mteNuxlVHnp6JVHS/eo//vqsvHsK9XG//8LMsecX6jLT+Ssa3icayVz7jkvLQsC8uyMUyjeD17161hGmXXFoDZ0EDy379Mw8f/nrpPf4r+vz0Iuu5eD3kj775XsV1NU5i9MMxT+5+kIdzI/IbFxOIqc46KgmZiF5x9+4+RaTl5kLZlu3MwLIv6Ruc/re1bMxiGNSkhQWKeEJy/5MhAfodJphJ5fkmmkul4fk1bcVkN27YDxTV+8pOfHMLZHDoqFfSxSvpcgtOOBCCmB5uKR7RwcWzlqqiqopYtMyzTLRYylj6SY6W03chIxXW0klYk1Qr6jFagB7weoaXbgTH0uWQaFfSpkWI005FaO3al56HIawz2uaxc0EegKiq5d15G/rpfE370YWI/+zGZj3zca0XiW8dfKCdjpNnY+yIAi45ezMf/33z0kMqfX6lcmEfMzY9lm3TOijB3QZRdr2R56uFBTj6jaaxvvyr+eRpW+XuWSCQSiUQyOdTeXe8YaW5uRtM0enp6Aq/39fWVuZlHInXhegASYSe3yF8tVvWJtTmJucytn8fS5mWBG2UhSsv7OxbFI0rZMtM2vJvYSTy1/PvRVX3EG3ox1mu7chCtSDQvrLdU4Ja3uZxe1WL9b0BWi504biuSGhGZ4vr02o2UikuvhY+/PZH4nnDGqKAoJL/+HWxdJ/71r6Lu2+tWTzZ9fSL94jRv5t3fuzPd1CV0IhHV3YddYpH6BZ//NVVVuPAdHSgK/O3WXjLpgxeDqXSBpx4ZZGjQoGDlR19BIpFIJBLJhKjBu96xEQ6HWblyJY888oj7mmVZPProoxx//PGHbmI1wskzTuHiJe8gEXJEpo2/FYn3sYe1MGfPex0zE7PQfW09wloECLp9zt+q+1Oh1Lk0XDdisgWV2J6/PUjlcaUi0FfB1d+KZAxiwH88Sp3YUZ1L3/haFG+1OKfpiNuKpEaOp5iHeBgirsfShy2aqhWdS0fgnTH7LHcb4sGSuXwFmb//B9RUksQXPue2/fG38jB94jJnerme+5J73N9FFEGpU2lXEJdiezNmRzjupAZyWYtNL6TKxo2XbS+l2Lc7x8Z1SXc+EolEIpFIJp+aFpepVIqNGzeyceNGAHbv3s3GjRvp7u4G4Morr+T666/nxhtvZOvWrXzxi18km83ytre97VBOuyZQFZVEuN4VVKZlBvtcVllHEC6GwJWO9YfFBgSUomBYnnM52U6OF+Y7cpGgsBZcrlRxEMcStuvf16hhseVWZsX91gqyz+XkUHvOpXd9gucWCgdTXEcKivudoCka7fF23rH0UtbMOJmFTYvc7aX+6Z8x58wlcvOfabr7HqDUufQEY970ROeeorgcSchVcy4Fx5zguKkb102s+E53V57//up2tmxI0bXfKcZ2YF+eF9cP8L3/eIU//WY/+/fkRtmKRCKRSCSS8VDTOZfr16/nve99r/v3l7/8ZcDpu3nVVVdxwQUX0NfXxw9+8AO6u7tZsWIFP/vZz6akx+V0xc2vwsIqFtCo5v7pqk7OdG62hHNZKi79zqXqC8FTFRH+VnQuJ/m5hedcjiwuoyW5o/55BJzLMczP6VWpYNt2hfDgsedc1orwqEatz6+WURSFiBYhqsVGH/wqUOrwezmX5c5lzsyh2ZrrcsZDcY5uXRncYCJB8pvfpfFd76DjC/9K+Kf/SCHuCcZqzmVvpoeskQ1sqlRMOn9rVccctSRONKaydVOabNYkGh09T9rPM48O0nOgwO1/7mIgb6DYCrZi89hDvSxIGQz0DfPypjSf/fLCcW1XIpFIJBJJdWpaXJ5yyils3rx5xDFXXHEFV1xxxas0o+mHoigoihLIuazm2vnFV7hY0EdVxyAuVQ2FKXYuVQ3M0Z3LiBZBVVRfjllQ5FUTi9UIqSHyZr5cXJa6fVVyLmvRtYTandd05I0LLkQbJVz71cINiy1ey3ZZzmUwJ9OwjFGvqfzrziP79kuI/vEGzvzJX3jm/33MXWYFxGXQBezJdLsFwyphMbK41HWFZcfU8fyTw7y0Ic2xq+tHnKcf27bZtN4Jp+3tzkEjzJpZz96uISzF4LWva2bdU0MMD5qYpo2myQcsEolEIpFMBvIO8whARQ2ExfpzCf34b5DjehyASDH/SlApLFZXdXRVDxQImbqcy9Hdi6ju9ZssnYdwFMc6P3ETPm7nssbFpR8ZFntwNEQaqQvVRpNjT1wK59IRa5UK+ojXS4tVVSL55a9jtrRy3M2P0P7MBvd1vxj0F/QByFv5QAhtec6lXSZsS93No493QmNvv7GblzaOPfeyp6tAf08BVQNbcba5ZEkjRx+XYMmxEV53YSuxuPO+87ny8FyJRCKRSCQTo/bvfCUHjaqo2NijCj+/kJqZmMUZc9ayoiRMzm01guo6oLqiu2F4hWLe1WQLFjG30cJigUCIYul7FTfSYxV9iXA9ES1SNfe02t/ecapN4eYXxzIs9vDBH00AnnNZeu2Pty2P3dpK6sv/CcDp//kLyGYD24Vyd9QwjUDbj0rVYktD9C3bCoxbtDxG4ymb6c7s57c/3UvX3rHlSG5e7+RpnnpWM9E6BVWBWbPrWLKsnuXHR1FVhUjUmacUlxKJRCKRTB5SXB4BiDBR4SJUc/90n/BSFZUFjQsDLiDghn+qiuq6gJqqu06JYRlu+OnkvoexFfQBiIf84rKyCByruDxn3uu5aNFbRizYUwmv32dtCrdaFb2Sg0OcbqIidGmfS62Coz7WayH39kvYfspKmnZ1Ef/ONwCnUFgp4jvDsA0Mu3JBHzGfSvnffveyO9NF66puoqc+g2VZ3Hdn35jmuuVFx+U85oQE7/q7Tk49u4lYNISu6m6RoXDEed85KS4lEolEIpk0pLg8AhDisjQ0rpRqIaCBbfnCSoVwE2Gx4DgZk13Mxz+n8TqXpfmlnugb2xwjWqRiyONIrUf8y2tVxMlqsYcn4rMU16O45isV9BFU+z4o37jC/Z+5gnw0TPy/v4e2/oWKFV/F9WdYhUBYLJTngIqiWX4quaELl8Yxmvex8fnkmCq89h4ooGkKM2ZHaJ8RoqUtjKooaKrmistIUVzms/ZIm5JIJBKJRDIOpLg8AhDiUoSoVW9Foo243BmjuD/dUFVFC/TOnAq3zmtFMnrhlEDOJVXCYg/y1B9NkCmKgqqoY8pnOxQEPqMadVcl40cpCXstdS69gj7jdy4BcjM7eejDb0IxDOr/8R+gUCgbExPOpWWUtSKpNJ/S7xu/YBXOp6YptK522pvcd2fviHM0TZtU0qS+0RGupu97z9+iRTqXEolEIpFMPlJcHgGIGypT3KhVEY/C7RhJEFWuFqsHigHVh8de1XGsaK5zObq4jBWLEUGFnMsxuLNjoVRAV9remhknc2LH6oPaj0QyHqpVizVLohbGm3Mp0FWd595yOrmTTiG07jlO/M3tZWNEO6CCVR4WK+YjRGZpv1wIiku/i9k8L4fWNMymdSn27a7uXiaHnH3WN+oM5gYwfFWyxUMly7ZkzqVEIpFIJFOAFJdHAOLmTVRzrCYeXXE5ws3mSNViBU2R6u0HJsq4wmJHqhZbwbmZCGMJJV3esoKFTYsPaj9TRaBFiwyLPWxQfDnRiqKM4Fz6xeXYrwVN0bE1le7vfhc7HueUX9/BjJf2BsaI68+0jLKczNL5KCgVnEtvHbF+SA2haQqLX5sG4L47qruXw4POOqnEDm56+UbWdT9XnLsXgmtjE444v+eyUlxKJBKJRDJZSHF5BOBWb7QKxb9HDosdMeeySrVY/w3iSL3tJsp4CvrE9OrVYpVxtiKpPp9R+l5OI6bz3CVB/OJRQfHlOAZD4idS0Ae8sPTc/LkM/9t/oJkWb/jatWh5z6EUOZcFq1AeFluh72Zp/nMgLLa4/ryG+QA0LBigoUln8/oUjz84UHGOw0XnsivqtEzZPbzL3Zd4r5Zt0a/uZiC0UzqXEolEIpFMIlJcHgEIYVawRg6L9SpJjuBcKuXOZWlYbPMUOJfCbR1bWOzktSIZK7VaFbYaUlAensR1p/hUXagOBcVX0Ke6cznmgj54vXALlkHyPe9jx+qltL6yl9Ouuc0dI3IuzQrVYoVzaY+Qc+kPhRXrt8XaiepR+vI9XPSuZvSQwu1/7GbjumTZHIcHi99zEedhmvjOUBXVfbhk2RZbjWfYF3uWXM5ix9B2dgxtH/NxGCs5M8e+5N7RB0okEolEcpggxeURgLihLFjFsNgqwmpMYbEVci51VUOfcufS2ddYnMuoT1yWiqg5iTm0xtqIH2TT++nuXMo+l4cnrbFWLl76To5pW1UxLNZ1Ln2h8eMpOiWuP8M2MBWbOz/zLvJ1MU763T3MWv8K4F1/hmWUVYsV+MVuec6lV71VrB9SdWYn5mDbNtGZg7z50g4A1j87XLbtoUGDvJokGivPt/Y7l4puYSkm6Uye+3fdy/277h3zcRgrzx14lr/uuJPezMhFiCQSiUQiOVyQ4vIIwBOXzpP8ajeTXshcdbHhb0Wi+UJV/YI0EUoc/KRLaIo0oyoqjZHGUcdGtIj7e2nI3bHtx3HhwjcdfEGfEjE5nQXadBPGkpFJhBJutWKBaZuB/rP+asnjuRbclkOWgWVbDHe28MSn3oti27zhP3+Dnsm5OZeFMVaLHamgj1hfU3VmJmYBsC+1j/mLHQE70FterXZ40CCpdxONaYFtqH5xiYWmO3NJZtNjfv/jJWM4286Z2Snbh0QikUgktYQUl0cAwqksmCPnXGpjcC791WLn1M9lafMyFjQuJGNkJnPKZRzTdiyXLb+c+nDDuNabKuFUKiano0AT72Ea62LJKPjDYv2CUlN9v48nLFYRYbEFN49z+5vOZutrj6V5Tw9n/uTmQJ/LajmX/mqxpZEUViAs1vldV3Tqig+t8maO+gYdTVPo7yt3RoeHTFL6ASIlzqWqKO6DM9u2EBH2Q9ly93OyEHnu/lBfiUQikUgOZ6S4PAIocy6r5lyWtykoxRMkKjE9xmtmnUZ9uIFkYepu0ARjybcsRYQCTzaHg3M5HQWxZOwEC/pYgYgF/3dAqbs/EiGfcykEk6Zq3Pfpy8k01HHCnx+k4YGHAMcxzJdcf55zaRf3rQRCdCEoxERYrK7qgTYiqqrQ1KKTTpplfSqHBvOk9ANlYbFOzqXiHY+iczmUm7rvLpHnXlo1VyKRSCSSwxUpLo8AhJNQmndVil68yRuxz6UIiy05dU7oWIOmaJw973UHPd/JIKyFAaewyVRwOOQsihttKTIPT1RFDYSh+j/nibYi0TUn57JQDIsV+8m2NXPXpy8FoPGqj9IwkHbEpen0oxTXo2Vb3L3jTjb1veiuK75LxMOjamGxwm0V4rOp1ZmLCI1NDhv0HMjTlTwAeoF5TXMCIbelOZea7hyP4fzUO5eWdC4lEolEcoQgxeURQDwUD/xdTTwKx3Lkgj6iWmxQkLTH27n86Pcyt37ewUx10njr4rfzhgUX0hhpmvJ9TVdx5rrQ03T+kpEpLegTbD9S2cUcDVHQp2AVMF1xqaEpGi+fcRzr33QGak835/7nbzDMArlib12RB92dPsDe5F62DrxcXNfLuRRj/OLStEWFay/HWwi15hZnLv19joD73S/28d9f3UGPsZdoTGNuw7xAtIO/7YlhmYRCznmfzHsVZ/37ngwKblisbHcikUgkkiMDKS6PAER7AkG1Ah7+kv3VUH2tSGqZqB6lI94xpfvwen5OT3HmOpfT1HmVjIwIi7Vtuyws9mD7XBbMvBcW63MEH/vEZRhLlnLU4xtY9cd73UI2Ec0p8lP6YMtfGEyMCbQi8YXFinFCqDW1OnMRzuWuV5x9JfX9RGMqcxJzXMfU2Zc3T9M20HXn96ThOZe2r1LtZCDy3GXOpUQikUiOFGpbIUgmBb9zOVLeYmu0jeZoC7MTc0YcUxeqoyPeOalznM5MV3E2XectGRvi8xXCJlDQZ8LOpSPWCpZRsVelUpdg+Mc/xwzpnPm/NxHf9JIjDEV/WcrzIMNFx1KEsNuBsFghYHXXdRTuYnMxLLa/13BFYUFJk9WG0PJ1JML1gdZF/pxLwzLQil+FaWPqnEtD5lxKJBKJ5AhDissjAL+4HMmliIfivGnRW5jXML/qmKZoM29feglz6udO6hynI9PduRRM9/lLKuMXUhB0Df3VYkcq4FWKFxabdwWTpmiu8NNUHePY43jmY5ehF0ze+B+/JF6w3TNMhOl6+1Y5ofNEzpp7Dq2xViAYQirCYgPOZXG/nrgskM1Y2Njsiz0HwIpZi4rz9ZxLLeBcOq1ZdB2yvjYhpfOrRrKQJFfMJ62GZVuusJc5lxKJRCI5UpDi8gjAHxY7HpdCMjKHS1jpdJ+/pDJCSBlFgaZQWVCOKyxWE85lwXNEizmX4IXNbnnXhWxfs5y2Hfs5/X/+5K5f6gyqikpdqI55DfPLnEmoHBYrhFpTMedyoK9AatikN7KFyOxezjpzDu+58LUAhLWgc+mKSyG4dQWjYJf13xwJwzL405bf8/vN1484TuRbggyLlUgkEsmRgxSXRwBRPereVI1UCVYyPqa7KJOO5eGN+HyFkCqtnFrp99EQ4tGwCr5qsYq7bRF2r+sRbv+Xy0k3JVjxp3uYe+8TQGVxWTqPUnEpRKH47hJCLRZXiURV+nsLDA8b9IRfIhrVufy1F9BYHyvOxycuVU9cinDbkK5i2yCiVsciLjNGekxjpbiUSCQSyZGIFJdHCCI0VjqXk890FWmyWuzhTWnOZbWCPv4Q2dEQYaZ5s+A6iJqiue1MhJjTVZ10SwO3f+5yAF7zpR/RuKcHi+ri0h+yKjBts6zQmBB1+1P7SLTYFPI2W/fsx1TzdMQ7aIo2u+uHfWGxKl61WPeYFCvGGgWLTMbkzpsO0N/ricJKiAq4o2GYPnFpyWqxEolEIjkykOLyCEGExo4nv0oyMtNdlLnzn+YOrKQyIgxWuHRqlT6XyriqxYaK2/RakWiq5gpXsVz83H7K0Wy58p2Ek2nedPU1kM2UzLF8TlZJtVitJITXtE260938dcedpFpeAmDjzh0AzErMCs7XFxarqZpbUEiECuvFXpeGYbNtc5qnHh7kup/sJZP25mDZFt3pbrdoUM7wcjRHolB0jEvfk0QikUgkhzNSXB4hSOdy8lGmSVuWakz3sF7JyIjP16rkXKoTC4sVLmLBFxarKKorZDVFD/wE2HbVhzhwwgo6X9rNvK99N7C9oHMp5mu5Py3bClS41hQNy7bc0NRovfPeXt63G4C5TbMD2w9Ui0V1n6OIUOGQ61zCgX15bMWipyvPX67vctfb3LeJ21+5hd3JXQBue5XREMWInN+luJRIJBLJkcH0vCuWjJu4XhSXMudy0jhcnMvp/j4klSmtFqtMQisSRVEIa+FAQR9N8ZxLveQnQDgS59Gv/hPppgQzf/t7lt3zjLvMLy5LC/qIqrB+cakqaqAKa12DioXJvuR+NFtnZlN7YL6BarGq5su59Ar6AAwPFkgOmzS3aURjKls2pLEsx6lMFZxWJZmC47pmxuhc5n3hs1JcSiQSieRIQYrLI4R4sYecNk1dtlpkujuXAikuD0/E+VmxFUmFXMexoqt6ubhUKofFAoS1CLn2Vm77/HuwFYXzvnU9zbsOlO3bbTVS3K4IXfW7oCIsVrixdfUqGa0PW7GIG+0k6r39Ovv2/lYU1Q2LFSG9esj5e+9up63I4qPraO0IY5o2w0PO/t1elcV9jtW5NHzOZcEwRhgpkUgkEsnhw/S+K5aMGeFcypzLyWO6i7LpLoolIyPOT8ttGVJZUI43VD6khrBtm0LRmfO3+PAK+vjFpeMe7liznB0fvZJwJsdFX7wGPZevUi3WcQxNtw2Jvz+n5uy7uCxer2AqzjzCVh11CU+Ils5DpbwVici57NrrbGPBkgjNrc42+nudMaLqq3BUR+tvKSgUC/pkMyZ/uHYvt/3xwJjWk0gkEolkOiPvLo8Q6sMNAES0yCGeyeGDW211mucuTvf5Syqjus6l5zAKgkVyxisuHbGYLYaHaorqbsNtReILZY1oEfcc2/bR97HjxKV0bNvL677z+8DjGa8abNG59PW4LJ23ELbxehVbKeZ+olBXH3wv4UBYrOq5uaKgj8/o1HWFmfOjNLc6L/b3FALzEPPKGMGiRNUQ673yUoZMtsCWF1NjWk8ikUgkkumMFJdHCK2xVk6fcybHdZxwqKdy2DDdcxan+/wlI+P2uSyKIiXgXFZuSzIWRK/L4cIwAFE95mtFUizo48+51CLuXGxV4bbPv4fhtkZW3vkErdf8rmwewiE03LBbf1iss9285YhLTbOJJZxt65pGOBw8l/3OpaZoXiuSouAOh733vvq0BlTV9sRlrxCXzk8vLNZzLkUF2UoUrDyGYbNjWwYbi4Feg1xWtiSRSCQSyeGNFJdHEAsbF5EIJQ71NA4bprs4k47l4U2pS6f6C/pUyb8cC0KwDWT7AYjpMRY3LWFp8zJmJ+YAwZzLiBb2Va61SLc08JerP4AR0pjxr19Hf+wRZ35uWKwo6FPuXAoBKkJObWzqG531YnG97Jz251yqgZxLZ9uz50dZeXyCc9/USseMCBZWmbgslORcZn3OpZirH8uyGewvYFgGu7ZnKORtrKK7emDf2EJqJRKJRCKZrkhxKZFMkOkeFuuK42k6f8nIlOYXamqVarHjrCAtciiFgxcP1dEUbeY1s05zl5UW9PHyPx2Rtf/oo7jnH9+JYhjUf+A9qPv2evMtCYutFM4rnEvLtqhvctaLx4P5ls48vLBYxZcbKkKFQyGVhUvjRGPFfdg2zW1VnEvLy7m0sentzvPI/b2Ypude2rbNH369n+9evZ3HH+lh0zonFHbmXGebXfu8CrISiUQikRyOlP9vLJFIxsTh4lxO1/lLRiNYLdbvXFZqATJWSkNNK+Vx+0NZ/XmPfqdv/YWnckq3QuMv/4+GD7yHvut/UxxTUi22gssqci4t2ybROJK4DM61tBVJKZZt0dCoo2qeuNzfleLJp/qYcV6OjX1D3HrzXizLJp+z6RvqZq/5EqeePId5DfN5+tEhXnzOaV3y7JP9GGGbhctizG4P07dROpcSiUQiOfyRzqVEMkGmu3M5t34esxKzAjfgksMHt8+lyF1Ug3mW4rwdb7XYsO98iYViFceICq/hYkisl08ZzFHs/c9/o3DSyYSefpKOL15dHFMSFusTquI95H0VXEd0LkvDYkuKBjVHmwGI6lHACbNVVYWmlhCpYZN8zuKVbUkG+gy2bBzmyccOkM1YFPI28ToNQ8nxwEtPsK77eTJpkzv/3I2qwpnntWCpBvUNGsuPSVDfGKxKW410IU1XumvEMRKJRCKR1DJSXEokE8RrSj89xeXxHSfy+vnnT1txLBkZN8/RKi/oA56oHK+41H2CLa7XVRwjHliIMFmBRTBHUY1EikhcwgAAwMpJREFUGf7FbzA7Omm87rcce8sjXkGf4rz9OZfimssXQ3It22L2URHqGzUWLamcTy7moCmaT3A7wnVu/TzetfwK5jUc5W4P8PIu+woMJ52quHv3pHll+xCKAm+4uJ2z39hCKG7S05Unlzd4eVOaQt5m1ZoGzrmglQsuaeH017WgaQrRegVNVziwLzdiEaAn9j/Gna/cRqpQ+5Vldw/v4rZtt4y5eq5EIpFIjgykuJRIDhIZViqpRUqFlFrydS9cvPFWi/WHucb0ys5luNh+RIhPt1psSQEcVVGxZ85k6OfXYodCnPODP9C8blNg3ppa7lyK3pM2FnUJlbPOb2XR0sriUghdx7ksVtC1vN6fIS3kHptScdnbkyOZdObRtS/LcCZNU4uOrimoqsJRS8NYNuzbk+GlYquRZcc47zlWD3pIfDdYtHeGyaQthofMivMEx7n0/6xldg3vpCfTTU+m+1BPRSKRSCQ1hBSXEskEETfl0vmT1CJqSduN0sI9Yvl4ncuQT+zFQ/GKY8JamHPmvp5TZ50GEKgWW2kOximvof9LX0EvmJz9mW+j7tpZOSzW7XPphcWKbVYTySd2rmHNjJOLocDBokGKK7CL4hfHVWwpFvXZtzdFOmUWl1mYSp7Wdk9cL1ju5JvufCXLyxvTqBosXOocE1EIKKyFMW2TWfOcsZvWJSvOE5z2Jf6ftUy+mPcqzi+JRCKRSECKS4nkoJHOpaQWEYLOrOJcNoQbSYQT43444i/oUy0sFmB2/RwaI03OXKgsLv3XTuZ9H+C5t5xOrH+IxisuxR4eKu6vvCdnwaokLiu/jwWNCzm6dWVg/dIiR6Xid+YcRwhufHEQEcVqKxaGkqW13Xv/sxaECIUV9uzMkE6ZzF8UIxL15qgoCiE1hGVbrD61AYBH7x/AsiqHxooKvEK41TIFt2KvFJcSiUQi8ZDiUiKZINK5lNQyblis61wGv+7PnX8+b1r41nFv159HWa2gT/lkgs6gwO82qorKPVddzO6TVqJv3MCxn/0SimkFwmLVEpfVsi03j3MsVW9LRa4bGlz8r1DMb8ZsR1zu3uWEutY3aI5zqebdViUAmm6x5rRGUJ3tLVnhiW3DMgipITdntHNOiAVLYvT3FNj0QmX3UjiyExWXyUKSu7bfTnd6/KGqPZkebn/lVobzQ2Ma7/X/LO/1KZFIJJIjFykuJZIJIlt5SGqZUpeurKCPqgWqqY6VoHNZOSy2GkLUNYQbaI210hJr8eajaNiaxt1f+ijG4iV0PPAYZ/z05pKwWLVse6OFxfopHVNa8VnkhMbiGs2tISzFOXYz5kSob1GYuzhEKORV2i1YBdo6wpxyZhOLV8RZtabe3XbBKqCruiuITdvk1LOc6rTrnhqueGxEuG5+gmGxXal97E/tZ+fwdpL5Ye7Z+Vf6sr1jWvel/s10pw+wa3jXmMZ77WCkuJRIJBKJhxSXEskEEZJSOpeSWsRz6YrO5ThzK6sRyLkco7gsdQwXNi3iokVvIaJ7PTIVRUFRFDKJCIO/uYF8Yz0n/e4e2n9/ozumVBw64tKuuKwSpWOEY1mpVcqMORFsnGOXqNc4762tnH2BIw5FkSBRdGjmnDBX/P1sEvXOsTEsA9u2Cakh97iblknHLMf1FXmcfvxupaiGO17E/AtmgT3JPewe3s3uMYpFUZgna2ToTndz5/bbSRZGyg91XFZThsVKJBKJxIcUlxLJBBE3zFJaSmoSpaRa7DirwlYjFKgWO15xWbktikBFxbRMrIWLePQb/4ypqcz6wr8TeuQhoFwg29iu21iaU1px+6XiUoS2u9VsPXE5c07EdS7r6jQs23SPpQgNFkWHSsN9hfDS1ZBbSMnCIhJx9pfLlrt9/iI+oo9n3sxzz8672ZfcO+p7A0+8F6yC636OxVksmAUGcgMAZIwMrwxuoyu1n1cGtlZfR4pLiUQikVRAikuJZILIsFhJLSPOS7da7KQ5l14Py7GG1Qpzf6Qej+CE6gqhtn/1Cu7+1CUohkHDlZejbXsZVa2QczmOsNhSUau6YbFezuVL/VvYNrg1IC7jCQ3TNt0QYyGw3ZYoJe/LcMWl7obympZBuCgu87ny45DzOZci5LQn083u4V1sG6wu8vx44jI/rrDVvmyv+x4yRpq0kSruv6fqOsJptWS1WIlEIpH4kOJSIpkgrnMpw2IlNYgrLm2vp+NkENJCNIQbaI+1j3suVlE4VnMZFRRXDOXNAusvPJXBv/t71P5+Gi97O5G+wcB4f0GfMYnLkgdBSolzadkWj+59mId2P8DMORFMxUDXIRx1HFXTFZfFsNgqzqUnQr2cS8u20DQFPaSQy1VwLiuExYpjMda8Rv+xy/sq6o5Gt69XZcbIuH02e7OVxaUoPATSuZRIJBJJECkuJZIJIp1LSS0jXLlqBX0OhjcteivnzDt3zONLW31UeyCjKqorVkSYaPLf/oPchW9G2/4Kx37ss+hZT4T5ncuxvL9qYbFezqUnxMJxi2NPirF4RZ0resXcwlqJuCy6fk/se5xtg1vdSqqaoruOsajaG46o5CuIy3yFsFghWscuLr1j5zmXI7vF4OVbgiMuU8Vcy3Qh7QpNP8KxHc/cJBKJRHJkIMWlRDJhpHMpqV1KBd1khcWCE746nvO+tKBPtQcymqph2za2bZMzc06fyFCUof/5KYWTTqFh3QYu/NKvUExP0Iiw37EV9FFK/i4Vl54LlywMc/LahNtexLItVyCWhcVikzEybOp7kRd7NgQcTn/OJUA4AkbBxjQd0ffoff3877d3ksxk3X2Px7m0bIstfZvJGJlAzqXbh5LRxV9vpgdFUYhoEbJGlqzpzaWSe+nPD5WtSCQSiUTiR4pLiWSCeDfIUlxKao9SAVcqrA4FozmXmi+EtGAWCKkhZ2wsxuC115NZMJ/Fj6znnB/8AYqOnOkWLBr9/ZWG44q/vZ6ghrssmU8GHDrTNt19hUoK+vgdVMMqBAv6uNViDfJmno11t7A/+oJb1OfxBwfYtyvHrp1eZdZ8Sb6kPYJAfP7Aszy27xEe3vOALyw2T16Ero7iXNq2TaqQIqbHqA83uK8JeivkXRZ8x8mSYbESiUQi8SHFpUQyQWRYrKSWKT0vJ9O5HC9eNdaRnUu3N6dtULAKblVWALullc0//x9SzQmO/8vDnHT935yxwrkcw39npaK21LkU1WABUoUUhk84Oc5lsVpsMeey4Mu5tH2uodiOrmqBnMvh/DCECmS1fvI5i4G+AgO9ztiuAyl3X4VxhMXuGNoOOMV3hEsZcC5HcRZFqG9IDRHTY+7r9eH64na7y9bx54fKnEuJRCKR+JHiUiKZILKgj6SWqZZfeCgoy7msIi6V4n9JWSMDQFiNBJab8+Zx49f+nkI0zJk/uZnldz81roJFpWPcB0TF6ZhWMCzW8DmXgBuqqxd7fQon07ZtVwgaloFh+sJihXC1DAyrgB5SMZUCuZzFKy9l3G13d3u5jYZlYFqmK1hHCj0dyg8BUB9u8JxO23ZzJUcLixVCVlN0YiGvtcysxBxURaUv21d1HQgeM4lEIpFIpLiUSCaIdC4ltUzpQ4/JLOgzXrxqsaOExRbzE7PFnMNwSasTTdHoWjaPm//9/Viqyhu+/ls6H38emFgrErdabAXnMplPBqqigiOqdEX3xgfCQ/2uYVGwqV5BHwvLWV9XsBSDfNZi+8ueoOzu8ZxLcAr8iGI8YymaUx+uDxTvyZXkbVbDzQ/VQsS0KKmkQSZtkgglaAg3ODmYRjawTjDnUopLiUQikXhIcSmRTBDpXEpqmZoKix2jcykEonAuReGc0uWvvGYld/9/l6AZJq//3PeZsXHH2KrFVsm5FD/9YjFVSLnOpQjPtW0bTdXc8dWqpuaKBXH8BX1My3TFpYnPuVQgElXpHchgWba7r4KZH7Wgj1/8qopaMf/x8Qf6+fNv91c9JuI9hFSdsBrjobv7efyBAepCdTRGmgAYzAdbwORN//uW4nI6MZwf4ol9j7sPHyQSiWSykeJSIpkg0rmU1DRV8gsPBWXVYqtcMporLh1x5s+5BFBVTyC/cOGpPPihiwhlclz8uR8TfumlUedRLVRYXMumv6BPYdjNqYxoXniurupejqZvvD90NVMUx1pJzqVhGeghBUspcGBfnqEBg5mzI8yaF8Gw8ySHTepCCQByZn7UnMuB3ID7u7+okCCft9i4YZjnnhh2q9OWInJWNUUnPxQin7cZHjKxcxGahLjMDpSsI1uRTFe2DWxlU9+L7BzacainIpFIDlOkuJRIJogUlZJaptSlO5TOJWV9Liv/11PqXJaKy9L38MS7X88zl76O2FCajnddirpr54jTKBeXSuB1fwGfvJknY6SL8/DEpaZoVcSlt65YL+SrFmtYhutc2orN3j1OGGzHzDCdMyOYisHQYIFEUVwWrLwvh7KygBv0iUvTMsuEXk9X3q0Wm05VdhgNt7KtTnrAO74D+zTXufSLWAj25DSLonbH0HYe3fswu4d3VdyPpDYQTnW6kBplpEQikUwMKS4lkglSWmlSIqkl/OHaUT3qFqE5lIgWF9UezES0KOAVqQmrpeKy5FpTFO77yJtZ/4ZT0Pfto/Gdb0HpLq9u6g4va89SvRUJOKGxzry8eWiKXvGatwPOpS8s1pdzKQr6AHT3OgK0LqHROSuMpRQYHvCcy7wvLLZaXuNArt/9ffu2FM8/NRhwKLu78tiKs4100nTfoz+H0qtsGyLV550jPbsUGiONAAzlBwL79bciMS2Tdd3Pcf+ue3mpfwtPdz1Zca6S2kA8QEkb6VFGSiQSycQ49HcbEolEIpl0/EJK9C88VLitSBhZXIpWGMIp8zuGUPlBjg3c9elLWay0Eb39Vhovu5jBG2/BbmgsG1stLFb8NEvEJTiOnqbogb8r9dT0V00VzqWm6Giqt23LttB1Z93e3gwQp65eZ8bsKCYFBnoUYrojsPNjCIv1O5dPPjxANgXqK/0sWBqjrTNMT1cepVhEKZ0yuXfn39g17Li7Z897HXPr5/l6cmoMd2sotoJuR9m3q0BDuBVFUcqcS38rEss2nRYr7pwGyRpZosX3MVmkC2nu23UPx7Ufz+z6OZO67SMJq3ieZqS4lEgkU4S0XCSSCaJI51JSw/idy4YaEZdeWGxlcRkP1QEwlHMKyFSqFlsJW9MY+vEvyJ9+JqEXnqfhPZdBJlM2rrwVSfU+l4H9+nI9dVWrGNbrb/khiqWEVD2Qc5m3Cugh570Pp5wxiXqNGbPDROosBrrByDrj81bedUOrictkIenM27BJpwuAzeCAwXNPDPO3W3pJpyxXoO7u3+cKS3BEIHiiOKSG6DtgMDtzErMyq9mzI4uCSn2onnQhTd4nKAOtSGzTdXybo81A5d6YB8uOoe30ZLr5286/ug64ZPyIczxVkOJSIpFMDfKuWCKZIDLnUlLLBJ3L+kM4k7FXi43rTp9FEQZaXi22et6oEosx9KvfUjjuBMKPPkzj+98NuWBFzFJRK/JSS8NiFzct4bWzT6cj3snylhUBUaspelk+KwSdSyF+dF8rEtM2MS3DdS5NxRFodfUapm3SOTuEaoXYvdWZQ97MjV4ttijyUsMGNhYz5oZYc1ojCxbH0IpT1ov6fGPviwC0xdqLc7QC71lTdHoPFGix5rJ89jxyWYu+7oJXMTbnVYwtrZIr8jZn1s0C4EC6q+J8Dwb/MdidlHmdE0WcpzLnUiKRTBVSXEokE8RtRSJFpqQG8bt0iUMtLkuukdGcS0FkDGGx4Dmadn0Dg9f/CWPF0YTv/RsNH3ov5POBsf5teNViReiqc+OtqhqLmpbwhgUXcGLnmsA6/mqxfvzOpTc25IXc2sU+lyHR87MoLhM6eTPPjNkRNHS2b3Jez1sFr6APnlN31196+Ol3dmKatisMU8MmtmJR36Qxc06EY06s5+wLWlm1up6VJ9ZRUNLsHN5BRIuwqGmxs39XXDr7M3Mq6ZRJS3uIuQuckNY9u7Lug4lkwQt99bdAMSzDzeOblZgNQHfRuezL9vJC9/OT4jRmTc+J3tCz/qC3d6RiFp3LnJkLPBCRSCSSyUKKS4lkgrj3x7LPpaQGCTiXoUMcFltyjYzmXApCYwyL9Ys9u7WVgd//BWPxEiJ33k7DRz4IhlFxbGlBH+GYlhYOUgPOpVZZXFqVxKXuFlKyLBPDKqAVnUtLceaUqNcoWHla2kPEwhF2bzMoFKyqfS43v5Bkz84c/b0FDMtAUzSSSce5TDT6ijhFNeYvihGvVxkOdZHPWSxqWuweU/FehQs53O8IwLaOEB0zHVHfvT9PSC2O9wmRQrFarK7q2NiuQG2JthLWwvSku7Fsixe61/HsgWfoSlfvszlW/EWIDqS7An9PBMMyjkhxZfhzg83y0HGJRCI5WA57cXn33Xdz/vnnc/7553Pbbbcd6ulIDiOkcympZfx6riFSGzmX1f4WxPRYQIiWVYtVK4vLUvFqd3Qw+MebMY9aQOSWm6j/+N+BWXQlK4hL8VOIuFLx6BebWhXnslJFV13VPVfUNilYBqGQLyxWgXhCI2NkUFWF+fPrsU2VA/scYVmpoE867eynr9cJmw1rYce5xKKuoXxe4YiCjUE+ZxEP1bkhvZ5z6WxvqM8Z39oRpn2Gc9y79+fd3qJmSZsWTdHQVR3T8nIuw1qY9lg7pm3Sn+0nZzoCsLQgUMbI0JUan+AU7Wk8JzU5rvVLuWXrTfx1x50HtY3piP9zTMu8S4lEMgUc1uLSMAy++c1vct1113H99dfzve99j3xJiJREMlHEDa0Ul5JaxH9eloaXHmqqhcUqiuJWjIWRq8VW+11gzZzFwJ9uwZw7j+if/kD9pz4OlhU4Ll5YbHDdUofU/7euVnEuS/IiheOnFyvNOoVv/M5lgXhcQ9MUtzfkCcuPQrEV9u1xhKNlB8WlZdlk0s7vvb2OcItoEZLDJrZiU9dQflxDESesNp+3UBXVJ6Tt4rwcYTjQ7YiO9s4w7Z1FcdmVd+fvb9NiWAYhzWmzIgr6iG3XFcVfxkiTL4bPlorL27bdzJ3bb6c301s232qI9i7t8Q4Akr4KtePFtEyG8kOBVi5HCv6KyDLvUiKRTAWHtbh8/vnnWbZsGW1tbTQ3N7Nq1SqefvrpQz0tyWGC61xKbSmpQTIHGTY4mYzVuQSI617epRBofoTQ8/ftrJaLac2Zy8Afb8acNZvo9deR+MynAnsW8ygt0FPmXPqrxSp6xWqxpc6lmJ/qFjMynZxLvehkKgZ19c52dw7vAOC0Y5YSDmt078tRMMxA70zLthxhWUxf7O3LFPcTIjVkoeoWkVgVcalY5HN2IKRX5IiKsNgDe4p5k3OjRKIqDU06/T0FbNObP0B3uhvTNgn58kkLVsF9v5Gi25w3c2747FCJuBT9Q8dT+CdrZlAUhdZoGwDDhYmLS/Ge82b+iKs86z9PM4YMi5VIJJNPTYvLJ598ko985COcfvrpLFu2jHvvvbdszHXXXcc555zDscceyyWXXMK6devcZQcOHKCzs9P9u7OzkwMHDrwqc5cc/siwWEktc7Bhg5NJWc7lCE9k4iEn7zKshSuOE4LGLzxHagdkHbWAwT/djNnRSezaazjjBzeAbaMoihd9UDa/yi1LwCn2U6larFVFXIqfBcugYBbQdFBwnMu6eo2+bC/JfJLWWBuNdfUsXJrAMGDv7kygkI9pmaRT3j76+52HB0ZOxShAXb0KlAslPQQoFrmchaoo7rHyV4u1LJvuvSbhiEprh3Nc22eEsW0YHhAOp8mGnvXc/sotAET1mCv0Re4neG5zzsy7LVlKnUvBeHotZo0sES3ihcUehHMpRK/ze2GEkdXZ3LeJ6zddN6Hr7IWeddzxym1VqwBPJX4HOm1I51IikUw+NS0u0+k0y5Yt49/+7d8qLr/tttv42te+xj/8wz9w4403smzZMj70oQ/R19f3Ks9UciRS7cZUIqkFljUvQ1EUTppxyqGeSoVqsdX/6xHOZSXXEjwhGda8fMxKYs+PuXAxg3+8GautjVV/uIfXff8PqL77+vIcyxHCYhUdTR09LFYvzj+qOWG+WSODYRkoKGi6gqkUSCQ0dg05vSfnNcwHYMVKRzzt3J4ObNPCIuMTl31FcTncZ6OiEm9QKlastbEIxyCfc0KCNV/fTXCqxSaHTay8xqx5EVTV+axEaOxAjydChVu4oHEhr5l5aqDQkfi8xOfiOJeF4nvPukLTz2jOmWVbPHfgGXoyPVi2RUyPTZK49ARl3ppYqkxXej95M09/dvz3G892Pc2BdNchCcuVzqVEIplq9NGHHDrWrl3L2rVrqy6/5ppruPTSS3n7298OwNVXX819993HjTfeyAc/+EE6Ojro6vLCbrq6ujj99NMnPB/xn26tIOZTa/M6UlBVFUUBTVUPy89Anl/Tm5Z4C+9d+f6aePihqkogfNx/zZSeX4lIHYoCUT1a8dzTNZ28lSOkhdxtapo26nlqr1jB0I23EnnzuRx/00Polo368/eBqqKpWmB+uhrcXkjT3eVhXUcvGQ+AYgdeC2k6qqoQUcOEtRAZI42FiaJAKKRgZQskGnR6cz0oCsypn42qKixdUY9yG+zbncXG8lWl9vItAQYGs+T35tj20BDYKs1tTuVWVVXQFd0TUIpNNK5gJcEyVbSoM3cbC1VVsDAZ7Cug2Bpz5nnHvLNYMXao10JpAgsTy3bmv6x1Oa3xVnRNI5+30HWFkBZCVRWioQiKAmkzDXjHZCg/SGedE0kkXsuaTiGj4fwQm/s2saBxIa2xNvc9vtT3Ei/0PM8LPc+jKBALxWiINKAokDSSo37m1c4xwzbcOZh2YULfcWZxGwUrP671M0bG3beqKGNedyDbz23bbuG1c85gfsNR456vQJyDzlzS8vv9IJD/R0qmkul8ftW0uByJfD7Phg0b+OhHP+q+pqoqp512Gs899xwAq1atYtOmTfT09KBpGs8//zxf+cpXJrQ/XVdpbU1MxtQnnebmutEHSSad5nwdiXSUpsa6mj03JgN5fkkOlj4SJAaj7t+tLQma65zzqvT8mq20szkZpTXRUPG6amqoQ82ZtDY0kFGHAGiMxcd2DZ5+Mrf/8t9Z+4GrOebmh+Gf/xF++lOipkIi4Z9ffWB7rXY9iSFneVtLI23xBhL7o4FNJ+ojJDK+bTR4829vbmYoN0QEjageJRzuo4BBe2ecbFwlYUeZ09lBPBQn3qDR2hEmtbdALuvNq7k5zk7Fc5qGhnO89OQwdfkWjjulmeUnRImGQoTMOLFQjFQ+haqo6KpOPKFBEqKhGG0t9SQOREnUR2htTRDdr5McttFtnWUrm9w5L14G0EVyQKEp4YwvWAUSRpT21gZa6xJEdka559ZeOmdGeedbj6K1NUEu3EKiL4oaNQLHVI0X3G23NDY4FWejFr3s5b699wEQjissnXOUu06DGXWPO0BnSwsd7Y10NLeQKWRobomTzCd5cMeDnDT7JDrqOip+7KXnWEoPu3Orb4zQmhj/93esRydhR4nX6+P6/t852Ofuu7E5Rmvd2Nbt7tlNJK7Ra+3jxNZjxj1fANu2icVDRPV6skYWPWof1v93vVrI/yMlU8l0PL+mrbjs7+/HNE3a2toCr7e2trJjh1McIRQK8elPf5p3v/vdAPzjP/4jkcjEqiYahsXQUG2FkKiqQnNzHf39KSzryCpKUAsMDmZIJrMMDmbojdZOfttkIc8vyWQxMJAmmfQKDPX3pwjlUxXPr1wKksksWcWkt7f8ukol8yRzWbKa6W4zauYqjq3E/s4Orv/eVVzy//2QxDXXkEtl6f/udwLzGxzI0Kt42xsazLrLhwdz6Lng+wHoCw8HXkurBXdORlYhmXKWhaJxFM1pRaJqJr0DQyRzWYYH8mRUi5yZo7UjRHKfxeYXB6hf5KzX3TvIgS4vX87GJJezWDY3zrKVCslUkrzmhDweP+tkspEszx14BsvOo4WckNXu/Rnqo1GSySwDSore3iT9Q0m692eZjU5jC+6cwzFnWwf25tGTWfr0JAUzTzKZZWggi5ZNsmn9EIWCzb7dGZJDzvtNZQokk1n25A6QKnjHY/v+PbQrcwAoZCCZz1LI9PHg8GMkc864A0o/vQ3ecU8NFQLHNB+xnfnlQwyn+ti5fz8betazuW8r6WSBc+a/3tlO+gCmZTK7YVbFc6xroN/dbldPP3pu/DdvfYNDJDNZunr7maV7cx7I9rMvtY9lLcsr5gJv6dru7vtAzyBaNl42phIHegdIJrNsy+2it8nbn13MH97Y+yKGZXBs+6qq2zAsg2QyixaJks7nMXNDY75uJOXI/yODZI0sUT06+kDJmKjV86uhIUYoVLktmGDaistqiC9awXnnncd55503KduupQ/Xj2XZNTu3wxnbdv5h1+65MRnI80tysFi2jb8op20p7jlVen61RtpY0LiIBQ0LK553Ciq2DRq6b5vq2M9RW6F/Tgd//q9P865P/y+RG/6P5lwWrjoDWxP/YSqB7Yl9OnvSwFYoLTJqWlbgNU3R3W1E1Zi7LKpF0UOK04okoZIzciioqGjOeEuhfUaY7c8b7N6VZvlCZz3DNEklHcEXCitYxRYii5Y0oJLDtqFgGoTUEPPqjwLguQPPYloW4aiz80zKcucuCvkMJ7MMD1jUN+jUN2runCNRlXBEJTXofHYFo0DBKmDbuHPdvS1ffO8w0G1hLbDRVacQUKqQwrahKdLEQG6Awdyg95nbzrHKGjmyRg5VUbFsi7xRCBz3gmkEjmlYi2JZNgm9ni67i/7MANsGtmHbsHt4N5mCU/Tn/p33UrAKvPvoK5z9lZxjOSPvbjdr5Cb0/ZY3nGORM/KB9R/Y9QB92V4yhQzHd5xYtl5Putvdt2EaY953tpDFtiGZT5LKp4npMe545TYMy+CiRW/mua5nMSyDla3HjjpnBRVN0SmUHG/JxJD/R8JQbpCbtt7IqrbjOK7jhEM9ncOK6Xh+1XRBn5Fobm5G0zR6enoCr/f19ZW5mRLJVOC1Ipl+8fASyatJeUGf6mM1VeP02Wcyu35O5eVuK5KxVYstRYxNzpnBwJ9vw5w3n7qbbuTCL/0a1TAD+yjdp/i90v7KW5F484vp8cDrsXAEUzFoaNTJm/myyrdNzTqhCHTty1HIF3tc2hbporicOSeCpTi/L176/7N33nGSlHX+/1TsnCaHzTknYMksUYISliQIohjO0wM9zzv19FDx9NCf4U7UUxFUDAcoSZIgOe2SWZbNOc9OTh2rK/z+qH6qqzrMdM9MT9rv+/Xa1/Z0V1c/VfX0zPOpzzcEbL0rdcfYOJhFfuRMi5JUAo5tAWDv7ig4XcTSVYG832XBkAAlyUFVDeiGBlVn50dEPKah7XC2ME7HUfM1F29GB7EWH0FXCIAp4hi5xY+a/M0AnFVcC51TT6Y4kl8yQzm3dG6CoinWPg/0mVFLiqYM2GbEXtAnrQ2tWqzVzkR3FiqKZarHbmx/r2A12I5Eds2iGmre68VQbGPuTHTAMAy0xVvRleyEYRjQDA2aoQ1YgZadT5EXIfFS5mbBxFq0EuOTXqUXhmEUrQxNHFtMWHEpyzIWL16MdevWWc/puo7169djxYoVYzcw4piBWpEQRGmU0+dyMGq9tfDLfvikbCgjX8b+mLjiOR76tOnoefgJqDNmYv6LG3DxN38DQUnniUf7zwIvFhSXedVibYLUI3msxxIvYdnyCJYc70FNowDN0OASsukaPMeD4zg0z5Ch6zp2bIll9m9YrUgap7ihQ0V1rYRgwO2o2mofG8/xMAwDciZS7ch+xarU+/rL3fjzb49gz+4oeAhYdVIo75gCIRE8eCQTGnZuj+LIYXMsIi9i+6YYoPMIhszPbjuk4tnHO7B/h+IQqay6a1LLppVoulM0MnHJhGJ2O6f4YiF3AVcQAHA0dhQAsLjGzEHc17sHQFa05YpTRtr2OUOtFstaeig5VXAj7oj1eHfPLsdr/Uqfo2pu7vj6lT4cjbUUHrNtnJ2JDkvEsrGw8ah6ccHKzqeQycUtNAaCGArse5D7fSCOTca1uIzFYti6dSu2bt0KADh06BC2bt2K9vZ2AMCNN96Ie++9Fw899BB2796Nb33rW0gmk1i7du1YDps4RrAWUORcEsSA5PWRHIa4PKHhRKydc2XJfS5z4TNjsRy8KVPR9dBj6JpahznrNuHyr/4KYtSZX+9sRVK4z2WuYGKLdwDwih7b8xKqq7yYPttj9XmUbG1VWP/NBct8ECRg784E+vtU6IaORNz8jOUnBNAwTcS8RT6InJgnKHMfN06XIMkcNr4Zxdvr+pFO69i5LYr33+tBPKahrs6D2obsGBiBkAjOENDXo2Ldix14fV2ndT7efKUHHAQsWOaHIABHD2h4+eluPPt4J2Q+uy+34IEsyEjZnEsjpx9nnbcOsiDn9ZzMFT7uzHmcFpiOZbXLEXaFUe9rwMq64+ASXDgaPwpN1yw3rpjQStueT2tDE5dsrKlcQWy7yXCo/6DjtfZEu3PbnDnz0M4H8Pd9TyKWzu8/aRfenckO9NtasdgF8oDi0uFcspYxQzt+grCjaMzJH1okADG5GNfictOmTbjssstw2WWXAQC+853v4LLLLsO9994LALjooovw1a9+FbfffjsuvfRSbN26FXfeeSeqqqrGcNTEsQI5lwRRGvlhscP7znAc5wz/LENcsrE4BGnTFNx7+xfQOncKpr27E3M++glwXZ3Wy3ZnUCziXBoo3OcScIbFSraFfTTjPrkEp7DjwUN2A4tX+mAYwJ4dcejIhsXW1Mu44MoIaurlvPEUeuzxGzjhtBBEQcALj3ejpysNgzMguQ1wABYtDRc8V6ZzKaCzPQ2D0xGNpqGmDezZlsSRgylU17pQ1ygjXCWBM8xz1NGmWMcHmH0vXYJZaZaJKbvLK/Iiwq4IJF7KC2XNFUrMuRR5ESvqVuGSOWtx/owLwXM83KIbhmE4nMHi4tLuXJa/GLbvN9epsb+m54jjtngbAFjtVoq5hv1KX95zduHdHm93ikuHG1pcXNrDmkVeGHR7gigVci4JO+O6oM+JJ56I7du3D7jN9ddfj+uvv36URkQQWZr8Taj3NaDJ3zTWQyGICUU5TmPxfXC2x+XnXHKwi1MOibAff/7xTVj79V9jysb3IV96IXr//DD0xiYI/OBhsbkulOQQl86wWCnjajKHyi7G2Bh1Q8e02V6sewfo6UzDMHTEYxo6/VvwwpFdCMhmaKjIixAGEZeqrqG6RkZgjhf7txo4sCcJAzJOPNOPqU21aA4WbkcRCJrOZWe7Ah0CDE5DrA948e0uAMCq1WEk0I0ZczxIKV6EoiJ6ulRoKdG6dW2KSzf60Y+kloSP9zlEVY2nBjzHQxZkxNIxpPU05IzYVjPbBeQAXIIbXrF4ZVWBM89pSstWly0mnOxuXW6eZynYhV4qZzFtF5S5odLtcbPvdqOvEZ2Jjrw5w0iqSfNcaArCmTBbNuaAHEC/0o8jscNFjqe4WGZjE3gBkiEPun3hfeh4dv/fMTU4HQuqFpb1XmLywhx8csIJYJw7lwQxngm5wjh/xoWocleP9VAIYlwzEmIyF66IoCr1fYXyKhW/Bw98/x/Rf+YaiNu3IXzx+eD37skr6MNCV+1ouTmXvC3nMqegjyvjwDGHSs5xLjmOg27ocHt5uNwc+vs0JFNpJBI6Ev5DOBo7it5ULwBTrDqL+NiPi8uMzRRZ02b6wIFHy6EUDBioaRIgCJwjhNdOMCyAh4D+Xg0Gp0GHhqMH0ji0P4naBhkzZ5uitGmqG1d/bAqmzzZFdKI3OwaZl+EWzZzSlJaEYRgwDANeyYsFVYuwPFNR1QrTtIk9PSO+Tmo8BRfN+hA4cHjuiU489KejedUT2THYF7fFnEvVJqiGshge6P0O59IW/pvSUuhOdsMv+60bA5qhIpaOWY6mfduXD72Iv+193NofE8GNmfxUe8it060tnkPJ9iVyonW+0gOE0RaiX+lDS6wFO7sHvvFPHFuw+VnuzQpickLikiAIghhVygljLUaxUNBBP7tQWKztedUt48iddyB52eUQDuxH+OLz4dqWXUizRXlu3mVeQR+bc+kW3dbnSbxkOZl2gWhH4ATohg7d0BGKSDAM4OC+OAxDB1ymkGDC1HRSixf0AbKiYtoMb7atCqejqoHPfF5hcRkIms9zBg+dU2FwOg7uNhePC5f5IQnOcOHaelMgJnqzwlsWXHBnqrym1JR1nkROxOrGE1Hvrc9sZ54Dew4kczj5jFB/85VevPT3Lrz3Zj9ajzgdQybmkzbnspjQsofCDmUxbH+PbugOQakVcS7bMwKyzlsPITNWVVfx2pFX8dS+JxwCMakm0J3sQlpPW4V7FE2ByIvW+bLv2y5wc4sg2bHOJydYc04ts1ouE6P9Sj9VmiUs2PzN/T4QxyYkLgmCIIiKMpLVYhkOEVXGn7JstViu4PMAwMtu9P/iLiQ+eiOEtlY0XXUVmjbtBc/xjmqzdtjCnbmcck6oKxOUIi9aTmZvpmy/vVos27fZC1JHKGIKvH2741C5JGSXOe6EahYdkkrIuWSLveZpHoiiWVvX5QXcGUM1V9wyAmEmpAXonClC9LS5zzkLvJboY8dVkxGXsZ7s87IgwZVxLpNaMnueeGe7l6xzmRU7dqetrSWFJx/KFsTZuTXueL8VFutoeVJYXA7Xucx1++zC0C767I/bMiGxdZ56a45ohoa4moBhGI5cte5UtyVg2XVm4cK13rq88dg/fyCxzKroirxgcy7LE5earSptv9KHdYdfwf6+fWXtg5h82L9HFBpLkLgkCIIgKspIVotl2AXlUHIu85xL2xgFXgAEAdEf/g/iN38RQk8PrvzSzzH31c0FtweyQmZxzRKsqj8e9b4Gx+tMUNqdy/60WZRFyi3okxmbZmgIRUzht3dPHGk+bonL7Fid4rJQ/iUTdC5JQvM0FzhDQLBKsISFUCQs1h9gzqUAjgMEwRSaLjeP5uluZxVdXkRNXaZQUZfTuXQJZhhwUk1agovLWX6wc+B0LrNiaMfmGHQdWLDUbEGza6uzoioTSymHc1k855JdP3UoBX1y3D4lp4hQbi9RwGwfApitdLLiUrc+v5DLCQBxNY60ZvajlHkZfskPr+TMPXV8/gAFeliOJ+tzycZbDvbtd3Rvx66endjYvgEAsLVzC7qSnUXeSYwkUVsrmvGAo0gWFfU55iFxSRAEQVSUka4WCzjFYTlhtkXFpW2M1v44DrFbbkXvt74DSUnjolt+Bffdvyn4fiYOgnIQS2qW5r1uOZeCZBWmYWGFuTmXdscxnHEuuzpSSPMJ+AO5jp/kEHnO/EtY+2GvTZvpAQcOwbBgCRGpiLgURQ4+v5l36fULZvVYQ8Ss+V4IApfTokVEpEYCLwD9HRy2vh/NVI6V4M6Iy5SWFZe550fOiB17ziXLYxU4AQf3maLxpDMj8AXMn1lrFiArLh1hsUWEVlpPQ+IliLw4ROcyV1ya+zAMA7qhW8LNsAlGVrwpIAezPSZ11dqXXVwytxIAEumEdU6YAK/1ON3LlP2cDZBzaQ+LZWHb5TqX9u339O4GAPSkenCgbz/ePPo63mvbUNb+iPLZ27sHD+74C/b17h3roVjY3XNqR0KQuCQIgiAqSiWcS85RLbb0/RWqFpu3v5zXkp+9CY/d8jEYgoDAv/0zvN/7DnjkFvTRMvsp/Gd1YfUizA7PQY27xlE9FsgPobU7jm4vD1nmYEBDoF7BrPk+x7a5fS4LFTqyC7oTzwhjxmwfZsx1OZysYpi9Lnl4/QJCEREceMxZ4HXs39yHBEHgUFUjQ4kL2LU1jm0bkuA53hYWm4KeadmSFxZrOZfZhSkbHwceh/YnwfNA81QX5izwwtCBvTuzobEsLNaZf5gvtAzDgKqrkAUZEi8NKecy1+1jC2s2B6RM/qhdMMbVOGSBtY7JhsWyMWqGXtCBT6hxy81lAjw3NDbXOR1s3E7nssywWJtgT6qmkDcMAxvb3wNgHuexzMb2DXhk10MVzTuMZtrQsLD68YAzLJacy2MdEpcEQRDEqDISzmUlqsUycoUPz/HwX/sZ7PjN/0IPBOH78f/DWd//PXg1v3hLMeHc4GvEqc2nQ+AFR/VYID8slglfVVfBgUPTNDd8QR6nf8gLUbQ7rBwEXih6LgodYyAk4riTwpDdnCWsxCI5lwAQCAngIMDnFzB3oQ/Hn1SF5SeY1U4Fh7g0z1ltgwwh0+ZCiZrPZQv6JK0KsLniXC5QLZYJmWgPEOvX0NDsgiTzmLvIFNib382GBrLPd7YiyReX7JglXoIsyEMqQJI9b05Ba4lL5lxmqsUm1SRUXYVP8jnGqtqcS83Q8opCAaaLyZwgNk/mReZjRd1KzKtakPl8u7gsoRUJJ0AUhpZzWaxIEguHTdpc13KIpWNFCwQl1STi6bi1XTkhoS8fehFvt745pDENhcPRw+hJ9VjFuiqBlY9rm+tjSe53SBlCex9ickHikiAIgqgoFSnoY8+5LONPGfvsgdzUQvtbXLMENedfg55Hn4LW0IgFj72CS//jToiJbJVEoDShKwmSo4iOq4hzyfa5dFUA1322EbzHuZhk+yjW55IrkpfKCgZptoI5xTBDYU1x6fEKWLYybAlcPifnEgDWfKAKp5xRC44DoIkwDMPRioQdU75zma0We7j/kCXIAODoAfP/KTPM8Nr5i31wuXlsez+GWNTpvibVgV08K8SUl7NFhMoMjWUCjolF5lyyz2MuKjvWuBpzbM/CiUup8up0Ls3xiryIZbUr4Jf8mc8fvP2KY3x8tlpsqa1I3jz6Og707c/bf25IN3Mzy6Ej0YEHdvwZmzs3FXz9r7sexP077oNu6Hhm/1N4cu/jJe1X1VXs7d2D3T27yh7TUGFCf6giuxSYwE8N4VxXgtzvT7rMCsTE5IPEJUEQBFFZKlHQZ4jOJQuhLce5tKMtWoyeJ55B98wmzHp9C67+l5/B29WXdS5LdGXtobHFCvo4MfIcGyZSBqsWa9/W/jwTWgJf/PzNX+KD3y+hrjErbKx9OqrFmmKlodmFsz9QD39AgJEWkUrpVkGflJay8ihzw5KZcDrYfwDPHngamzo2QjM0cByHw/vNBTsTl5LMY9nxAWiagb/e04r//f5+HNqbznzGwAV9LKEmSFb7k40d75WVv5bOEZesmAlzBkVesAQ8kM239GbEoFCg+FAxB9F0LlnOZX7LGqD0gj5MlIhceWGxvakebO3cgs2dmxxhsQAwOzzHMc80Qyso1ruSndjds7Pg/vuUXutzCsHE++HoIfSmehFPxwfMLWWw/Ntybh7s6t6J9nj74BsWgY01UVFxmT/Xx5LcMFhyLgkSlwRBEERFqUxBH3vO5RAK+qC4uBxsf/qUqXj8F7fg0NJZaNx2ANd97scI7zab2pcqnD22ip/5rUjy96FDRywdgyzI1vZMIAwmIoGcariZbdI5Tlsh5i/244rrmuDzi3nb5hb0YYTkMGo99Qimm9Hfq0EWZPAc76gWm3uOmcBm4YSxdAyqrsLQOOzYYoqzKdOzgvy4k0MAgB2bY2hrUfDyk71QVcNRWCRXCNmPWeQly7nc0bUNbxx9reg5yEWxxKXTObTnNNrFJQvp9GXCodl5swuQXJHnElyQeMkUlznOJSNbIbe0nEtHWGwZBX2iinlTI60peds3+BpR7akBkL2mua5dPB3H3/c9iVcPv4JtXVvz9q9qauY4BhZLO7q2WY9TJeT1MRdVN/SS3LSEmsC6I68MK4yWXauEVkFxmZnXQ3GJK0EqR7xTziVB4pIgCIKoKLmCqxwxWIwhV4vFwNViSx2bGg7i/h9+DlvPOQ7B1m5cc9N/Y8YbW0t+P3MueY7PK6hTsLBLOmHl7bH3MgfMLvK4IoKy0PliLt5ABX3M/WdfF/nC4jXX0TwpdB6qlTno7zUXwi7BhZSWsgROsWqxjLSuQDd0bNuQRE+nirmLvKiqyW7T0OzCvMU+BMMips1yI9EP7N4Wc7hUqq4iraUdz7FjZjmXjKSaLEmwANkQVuZcKlZBHyacTeeS5VzGMo4zayFSKCw2N5cxIAfhET1QNMUSa7kON3OOc4+5GNk+l6JVIbgU55I55oquWONcVrscS2qWotk/BctqlmNuZB6a/VMA5OcCvtbyqjXGt4++iZ5kt+N1JljtIc0Mex7m4ehh23sGd8fsYaMpffBry65jSkvCMAy8dOgF7Oou7LYWQtVV64ZCIl155zI5BOeyNd6K5w48U1SY7uvdm3d9BoNdCza/Sw2LrWTRI2JsIXFJEARBVJSRcCpzGWpYLBtLriAtVuhnoM/XZAlPfP2jWPfxC+CKp7D233+Fmj/cU9L7mUCUChTTsecyMqLpPgCmoHGLbsd7HQV9iuSiFnI02aJQKPB5dpzhr1kRycYpcELeNQ4Eze36+8wFpFt0Qzd0a0Gc+5m5wknR0ujsTGDfjiS8PgGXXFOfN65rPtmIL35zBtZe1wBRkLB7exy6nhUjmqHh0R2P4ok9j1nP2Qv6xHLCjPtSfQOdBtvYzPOWLy6zziAHLi8sljmdhcR8riPol/2Wu92bCRvNzW8sdN0KLdh1Q0d7vN0KJXW2Ihl8gR/N9GNVddUS1vXeBqyqPx48x6M5MAUnN50Kv2wen925PNR/EIf6DyEoB7Gsdjk0Q8PWri2O/TOHuZDjVbxXaXEB05fqRVTpdzihpbhp7Fyk9TT6lT7s692LXUVCeQthvzmRrKRzqTOnN1W0CFIx9vTsylyTg3mvRZV+vHTohbJcfDYOAPBLAevnw/2HBgxHbo+3455tfywaKk1MbEhcEgRBEBWlEs7lUKvFZvtcFs4DLUdcZgaC9R+7EI9/7aPQBR7N3/w2fP/xFUAbOCeMVYzNFQzFxsBCE72S33ovcxGdwrGwW1kodJYt0IVBnEvREQqbHxZbSCwFQuZz0T7zPLBQXhYiysbT05XGrm2xvJDPlJZEb48KzhBx3ClBS6za4XkOHMchUi1h6jQvNA2I9mfPe1pX0RnvRG+qB32ZcFsm4mRBRqOv2bG/PqVnwPPAYGIoIJuhuaz9hlYsLDbzOhOjPMfniXHmRvllPzyiB1MCU60bECxUOC8stkA4MxtbR6IDf931ILqTXXi//T38be9j2N+3LzM+oaycSzb3FFtYbKEKw+7MeO2u2LaMkFxZfxxmBGcCQJ6oTw/gxBUL2y3mXBqGgb/tfRzPHngaCdUuLgd3OtO28GYW+lyOu2YXsJUs6MNEsGEYZec3slDs3gJznd0E6S7TuWTnlt1cOBI9jGcPPI3XW9YXfU9nsgOGYZT9WZOVofTbHc+QuCQIgiAmHEOuFjtIK5KSxWVGjDKBte284/GXH90EtSoC7x2/QPBj14KL9hd9vzezEJdz8i2LjYEtvGVespxLsUDOpeO9RYWm+XypzmWhqrDm+/i85xiBkPkeFhbLjpO5SWyff72nFX/85RFseSfhEFxJNYl4TAMPHpHq4q1SGA31puDu68mKkZSatEJT2+JtALKLOJGXsKBqIc6fcSFObjrVfG/JzmW2oI8syOhX+mEYhuVcsrBYJi63be9APKbBK2Z7lOaecyaignIQV82/BrNCs23isgdA8bBY537M8/23vY+hN9WLt1vfxN7ePc73cYJ1zUrKubSJQXb9xAKf7RGYuDQFTE+yG0eiR+CTfJgWmA5vRlyzGwy5Y1Y0Jc+JK5Q3y7YtRCwdRUpLoTfVi4St52Yp+YnsXCiaYglNvUA7m2LYx5Rb0Kcr2WmJ++Firyxcrohl56FQqxR2EySlpSw38lD/Qbx06IUBRTYTuKx6MTuP+/v2FT3vbNxqGecXQNlO7UTgcP8h3LvtT2UVFRvvkLgkCIIgKordpBkJ1zJ3P2U5lyznskhBn3KdS/sC/8jSWdjz0P1Q586D6+9PInzxBeAPHyr4fsu5LBgWmz8GttiTBNnmXIp52zseD9CKBLALrYHFpegIi80+ZsdeUFyysNhe1bENE2Y8x0FVdRzYay4+n7i/HalYdqKk9TQScQ2cISAUKUFcNjJxmV0E2xf47QlTXDKxIvESBF5Ava8BQZfpQPYppYlL+z4CchCqriKuZiuYCjZn8tCBOF59tQU73lMccyVXXLLFu13Is+vMRGruXClUiEm1uVpsH0FX0Pm+jLMq8mJJ+XFRJXuThJ3TQtec3fRgOZfbus0CPAuqFoHjOMiCDJEXLRGTHbPthkBO+Gqu+GXntZi4tIum7mSX9bgUZ8g+DiZMC/VKLYZ97Lni8rHdj+DFg88PqwgPE+X2c5Iss3gOuznQV0hc2kQ/u9Gyo3s79vXuRVu8teg+lZywWIZu6NjTu7vge6xiSyVU/WVje/nQi7h325/w5N4nSnpPqW7g0ViLdQOlJXrEcnDttMXbSs7JLpeezM2jntTkcXFJXBIEQRAVZSRaj+RSyIkr5315BX04pxM5GMwBzRMJ02eg5/GnoZy+BuLm9xE5bw3E1/LDw8LuCEReRMRdlT/GAn+amViQeRmeHOeyWJ9L+3kp1POSLVIHzbnk7KIoP+eyUIgkC4tlOZcshFPJFFbhOR5HDqagqQZEiYOSMrB3q3MxmIjp4CEgXDVw2C4ANDbli8u4bZHIFsfZsE57dVsmLktrfK/YigIFZVO49St9lugUedG6hi2tfTA4A4kup+uoKTxefa4LLYfMRXZWXGavk9dWURgo5FzmzxNNVx3ujkf0WCLVep8tVzZXPG1s34DXW17D0VgLALM4SyHRVEjYsrDYREaktGfO+azw7OwxiV4omuJwwuwCN7diLHM1m/xNmB2egwVVCwEUb3fRa7uGncnO7H5LKOhjzz+NZcRlOWGx9lBdRVOsmw2dic6C25TDgb79uH/Hfdjbu8cxpnJ7XTJR15/uz2vnYnd6+xVnGHkhp5PBvg8e0ZO96ZaZY7u6dxR8D5tHpYr3Hd3bsLd3D9J6Gm3x1kHbxWzv2oZ7t/0JB/r2D7gdq2T8RstriCr9eHr/U3jr6BuObXpTPXhy7+N4p/WtksZaKtmbBUrm/8nTH5TEJUEQBFFR7OKyEs5lWdViM9vm5rzxQ8y5LFTp1QhH0Hvvg0jc+CnwHe0IX/EhuP/wO8d2HtGDq+dfi+MbVhfddyEkXkSdtx4+yYcGb0PmWAqfi2K9O5nQtMTlIDmXfAG3EjDDQmeFZ2NeZH7ee/xBFharOd7HFqICJ+DAHnOBuWRlphBM1HnciZjpXAbDg4vLujoPeA7o7VGRTutIK7pDFPWmepFUk7ZWJNl9ukW3I7x1MFRdhciL4DgOAdl0a/qVfmi6bh0bO/dHu3sAAKk+CWlFt/ZxZL+Crg4V+3ebi322wLRfsyn+qYi4IwAAAwaO7FGhqtl9cLpghf0y0nraIZJVXcsTSOzYJUFyVDhNqklsaHsX27u24u/7nkRrvDUvP1IZoMIwcy7NqsA6elO9cItuR09XJpjj6Ri6kp1QddXhGDInLqkmEU1HbZV5/Ti1+XRUu6vN4yziStkdObtzVUpBH7tgZdVey3MunWOKq2b14gO2cNihVkjttfUCVR1hsaWLS1VXre+8YRjoz3Hq7W4rc/HZOewd4MaL1SpHcFk55M2BKahyV6Mn1eNwkK1xa86bKoPBbg6x3zWFCgHphm591o6Ma/7CwecG3C875lg6armXua4zE9YDCexcBjuuI9HDuH/Hfdjds9O6JqVW2Z0IkLgkCIIgKgrncNBGxsUcalhsjacWPsmHOq+z+igb43DFpXWokoTo93+M/h/+BAAQ+NLn4f/KvwDp7AKiWAuQQtViGZIgIyAHccW8qzEjZBZIcRT0GSQUFsgKPSakBnMu7YVjcovInNZ8BuZG5uW/R+Th8fHo7zOdtNz2GzzH48Aec4G5eKUp0IyoDyIvIigHYRgGEgkdXq8ISRr8mrhkCYGQCCVl4O8Pd+Clp/NDzNoTbZZYya3SG5RDUHUVMTU/JC6XtJ62rh1zLvuUXkfOJRP53T3mQpXXRXS0Za/90UPmOFiOKFuM2q+FLMi4cOaHMDcyD2J3I/7vF+149dludLYr+NUPD+BH39iPV57pdghMzdAcjp1mqGa/UNs27DOyRX0K95nsTfY48i3tFJq7LOcyocbRl+qFbugIu8KObVje5f6+fXhs9yPY3PG+wzFkIvCFg8/hsd1/zROzzL1Virg8xURQSWGxtsU9E9VMeAPm98V+w0LRFDy09SFs69zqGDvj2f1P48/b78H27mx/ztyWM6XCxHRKUxyCd7DeoHZyCyblniu7c9lrFcAyP7d/QOfSPG5ZkKyiU/XeBkwLTgPgbCFjjSUj4ErJadUNHR2JDsiCjBV1q8BzPPb17c0TcFs7t+DR3X9FS/QIwq6I9fyRAp/PYMeXUBOWUM91EJnYjJfwuwEww7Hv2fZHbLf1Zc2lKyOCe1I9lqgk55IgCIIgSsQuKEeqLclQxWW1pxpXzLsaDb7GgvsbSNgV2j43PDBXPCdvuBE9DzwGvaYWnt/eidCVl4BrHzikyxHOmnO+ciuG2scy4OMB3OPB+1zancvBXURGIChCTRtIJnRbAZnMIt/gcHBvAoLIYeZcD2QXh0jXclw8+1IEXUEkEzoMAwj48wseFULkRATC5jh1A4jHNKhqJpQ4I0j6Un02Eec8jhDLu0z14kj0MB7d/VdHriFDN3Tohm4Js4AcQuuRFB55eB9i8awQYue4t9dceHPg0d5qPlZSOjpazEV1KmUgmdQsgVXo2pzcdCqmJk4EAOzblcD7b/ej5VAK0AT0dKlQlaxwVHUVXY4wzDQO7I/h7w93YO8uUzxwHIeONgVKwulg5zpvdjfHDs/xBb9zAi9AFmQk1aSVRxZ2OcO+vZkQXVZkqFfpdRTtSWV6XTLXj+W/sfPN5n8xJ5IVP8qltII++fm6diH3est6/GX7vdY5aY0dRXu8He+2vZ0JH86GhwKm+6cbukPYsmPVdA3vt79XVLznwsR0PCcfMKEmSy5yk3sOcvMuB3IuB8pHZqLVLXqswl113no0ZfqeHo7m552zsZRS0KczYTrctZ5auEU3pgamQdGUvP2yuRJNRx3Cc0vnpqL7VizRnrKOPzd0mYnuUnuXtsfbYRgGDkfz270wmLhOa+mscznEkOnxCIlLgiAIoqJUos+lfb/lVIstui9W6KdEoZptw+EUo4Xer550MrqffhHpZSsgr38VkfPPhPj+e0X3XahtCKNQfmOx7e1C1x7Oaj9fHMcNeszFCvoMBsu77OtVLTGnaAr2707gD/97FIm4juZpLogij0BIhJYU4TL8kHgZ8bi56AwG8sV04TGKCIWd5yaVNF0n1l9S1dNWCKaUI5JZm5CEGseh/kPoTnahLeGsMAvYczaZuAxg764E9hzswJb3zQW4PSy2p8dcRHPg0X5UQX+fih1bYoCWPed9PdnQ0GIh3j1d5utHDqZwMFMEyec1x5BI6NY5YC4PQ9VVHDoYg6IY2PROFO+81ounHm7Hz27bj+ce6YGqGtZnM8HGhHY0HbUENnNo2ecUwy24kdbT6EyaYyjmXDLxqWgph2PDnEGWD8jcInZTg90oKLQQT2kpJNVkTsh8pgBQCQt3+z7Z5xqGAd3Q0a/0YWfPDvP8ZvL9ssegYFfPzrzzB5i5og2+Bmt+MdGzv38f3m17Bw/u+Mug4zLflxGXOcWQtndvxT3b/ojWAQruMJigYaHc+c5lAhIvZULE+2AYhnVtYulY0VDPhJoAz/FwCS6sqFuJlfXHodpTjWp3NdyiG23xVsd3yB6em5v3WQhWjKvWW+f4n7XIye436wDab1jY253s6NqO+7b9n601kTkuwzCs85EbnspyIzVDK+kmBXO9e4rc6ACy81zRFWsMA/VunWiQuCQIgiBGjZEs7sOXKQgHIlvQp7R9FSvoU+z49OYp6HnkSSQvvwrCoYMIf+gDcD10f8FtBxKXsjCwuCyWi1qooA9QuFdi/v5t4rKE7Rn1jaYQ2L0tbgmSzu443n+nH6mEgdoGGaecZYav2QsASbyERCwjLoOlOZccx2HmbB8WLPWhulYCbwg2cWku7NN6umDOpfmzeV4VLW0t9nRdx9bOLbhv+/+hKxNqyhaMrKiSW3Qj2cdB4WPYurkXBgwIfFZc9vZnnEuDx+YNUfz3t/bi/ruPmlVwM7mkprhkjmoxcZkJXU3q2LMzDlHisGCRKWLYuWK9RDtt4lLTVcQT2YX94QMprH+hBzCAZJTDnh1xdPcmoaR0SxyxIlOxdMxyrOyFpwYUlxnXriVqFgQKucOO1705xYVSmlKwoI/VIzSzsGfOpRUWm7MQ39W90yrEUpcRH0C2PUYpOZd2kWt38TRdw+aOTZZDyHIVu23VPbd1bbE+I2gT1EtrV+ADMy7E9OAMAFlxaRdVrbGjeWM51H8Qe3p2WT8zccacS+aOGoYBVVexv3ffoMfHzi1LCbC33lF1FYqmwCN6rBDxPqXX4YoWKnjFQoVZvm2TvxlLa5YBML+Tzf4pMAwDLbEj1nvs7VOKtZqxw/It2bhdRW4wsOun2r7nPMcjoSas872vbw9SWsqqYmufR8z1zhXR9nDhUkJjWWh9VIkWzaNk+0xrijVWNWf+5eZ+TiRIXBIEQRAVpRJhsUD57UNGcl9M2OaGiQ54fF4v+n9xJ6Lf+E8gmUTwM5+A75avOvIwc8eQu5CXCobF2lzJor0t+SLbD368jt6WZYTFLjvedLs2vNEHgRNgGAbefqMThgGcelYV/umr07Fgqbn4t7cukQQJibgpLoLB0pxLwMy7nLvQh3BEBm+ISOaIS7N4DBOXTpGezT/MhqlphobeVA8Mw7BEJVvwTwvMAACkFR1qvwc6p6Gtuxe9XSoETgAHmCHBqTRcbg4cBHS1p6HrgCRz8LhFzFmQrXDLPjP3evT1qtB1w3IuAcDQgeZpblTVyuAMDokEE5dua9xssZ/WVUTjpuj57FVn44azz8ep50Tw0c82QeBE7NgUw8+/vwd//l2LFdYZyeSrxdJRa8Fd46m1Pn+gGwzhTAEiJsYjttw3AHmVaxUt5ax+mhFoTFxmw2IzziWfLyx0Q8drLeuwO3Ntaj111pwNyAFwHFdSGwn74t4uqhJqHLtsBWSY4O7JOGJhdwT9Sr/lHjK31iN6UOcxhS4bDxNT9mN+r/3dvLG83rIerx55JS8fjwkO5sYzcp34QiQyrhtrvVOo9YpX8lrOZldOIZ5CfWCTmhmW6xY8ea8BptgEzF6OueMASnQu423gOM6ag9meuU5xaXcu2eOwbS4bhmEd08H+g5lts/tgxYA0Q3Pk2sZtIq+U0Fh7K5Ni7mVSZc5ldqx2d/1vex/D0/ueGvSzxiskLgmCIIjKUoGCPuZuucz/IxEWW15BH49kLqaYcMmOaZD3cxwSN30Bvfc8AD0SgfdX/4vw2g+CP9pScB+54lIWBs65LFYttliLksHyLQGne1rK9oyGZhfqm2S0tSjobtPQ05lGV4eKYEjAytVO0RG0hdDKvGy5caFQac6lfWwetwQeApScsFh7uFyeaM84wvaFqaqrVs5dSjVF0L7evRA4wSqm1NmRhqz5wQFI8b04uC9p5VwmEhp0aAiGJPh85jmsa5Tx1dtm48Mfn4LqevMz7c6lPWT54L4EfvzNvXjtxR70djvdlCkz3AiFRfAQLCFud7VrPDUATDETj5vHc/r843DxmhU47+IazJ7vw7IVERgAdE7FkYMpy9nyiF54RA/iahzRdBReyWvNd/PcFe87uqRmqXVuvZI3b77mtldJqklHXqPV/5A5lywsNiNoJcthzi7EY+molQfrFt2YGpxufS/dogcyL0PRFGxoewc7urYXHXu6SNgny51k4a79Sn+mGm4P3KI7z5Vs9DVC4iUsqF6UjYjInBNW0Mcu7I7GjuaFWyYzuZQsVDO3IFHu751UCWG/zDH0274PDOYQe0SvdWMiN+e4kHPJ9smc/Fya/M3gOM6RH5nU7M7lwOJS0zUk1AT8kt+aV8Xybtn1S9vCbsMZ5zyajqJf6bPOY3eyC1Gl33EOCoW/A84819yw5ELYz1ux3pXsHKQ1xfrcbGGtVF7I70SDxCVBEARRUSaSc8mV+GdxcfUSXDL7MtRn2oEwShXP6bPPRfczLyO9YiWkN15D5OzTIL36sjkW2xjshWfsuXx2ivW5dORcFnErSxGLjlYkJRY8YqxYbbqX2zem0NWZ6Vk4zQ1RcB5HIJRtXSIJsiWYQmU4l8xR83lkcAaPZMbRy4bFKgX7XL7+Ug/2bGG95lRrkaob2TYeaV3Bgf79SOtpTAtOt0RTZ5sC0XCjYaoLaT6BrnbFuk6JuAadU+Hx8qipMxff515cA0HgIAkiXC4Bbg+HaL+GtOps2QLAqqb7zmt90FQDXl/2takz3QhFRHCGgGRcg8AJDtFX7TbFZVpLI55U4JakvKq7p5xeizMvqALcCWiqYYUIyoIMn+SHYRgwDANhV9hRSGqgOeOX/FhUvRhAfr4lYLp59t8B7Hqw82nlXGZEB3PqmKjkOA6yIDsW//2Zxfy04HRcPf9a1HhqrGvuElxwCS6ouoqN7e/h7dY3Ha6UnWLtTZjoDrnC4DkefUov+jOCs8pThVqbq8tzPEKuMK5ZcJ0VHgpk52Z2PjmjFewFczRds46/NyNO1JztZUHG/KqFVrhyKWG/SevmgQciLzrcUyaaPKIH7owDzs4ruzaFXDgmit1iYefSJbhQ66lDQk1Y/T7tQrpYHuc7rW/hraNvWDcXvDYxbc+7jaVjeK/tXSia4gyL1dIQOMES0rF0zKqizH7/Hew/WDRsle1LN5wtjXILKrFj2NTxPh7e+QD29u5xCFCW79keb3fkQrNzoNh+JymakmkRY5535iBPREhcEgRBEBXFIS5HMufSEpfD3ycbl1BiwRqe4xF2R/LEXjnHp0+dhp5H/47EDZ8A39GO0JWXwPOznzgqu9oX8lKBfEs2lqE/Hvx4Ha1IynAuAWDpcQGAA/ZsS6K7w1y8V9VIeSLVyrnsVSHzEvp7VXAAIpHCjkghmDvk88rgICKVMkMbvZa4NB1CexuS/j4Vf3uwHc8/1gMDhqPoj2ZkF/lJNWXlxjGnCgA62tIQDRdqaiWILh3Rfg1mbV4eiZgOndPg8fFYc24NrvtME+Yt8jnGGq6SYBhAV+bc2J1n9lxHq/n/9DkeeHzm61NnuBG0OZcCLziOK+KuMgVuMo20psLryRfpzcEpCARFJLwtSKV0y4VyCS6HMxaUw1auIzB4UaclNcswv2ohltjEFYPneEu82GGfp2R6ZDJYeKpom/sSL0HJOD5pLV1wMc7cansFU8AUDfZFvp1irSBY+KXMywjIASTVJNriZpGZiDuCGm9WXNpFsJ3csFh2A4P1Me23uYJ2MWMvGmRH4ESc2HgSzpiyJvN6CeIyc33dghsCJzhcw4TlQHqt8GomeBt9TRA4AYf7D+WJsYTG3ldYXAJmz0sAOJJxL+05l/Zr3ZfqRXeyCwk1gU0d72NL52YrFNeeq2sPi93ZvR3vtW/Awf792bBYLQ3N0CDyIvySOSdi6aiVizwnPNcaT7FCT+xGQ65TWci5XHfkFbzT+hb6lD5sbN8AwzAsAdwaP4qn9z2Jv+19DH/f9zcrt5Udd1pLOwS2qqtWTi+JS4IgCIIoAlckD3C4WOJyBP6UDdUFzRWTZR+fy4XoD/8Hfbf/ApAk+L99CxZ//quQo+YCzL6Qz+3NWOgznX0u7Y5xkYI+JYXFFu7pWQr+gIjmqS5Ee4DWFgUcB4QiUt55sovLZIxHIqHDHxLgdhUPwczFCsf0Zgr65DqXmYWc/TgO7DHPs5oUEI9qmaI/trBYm3PJFuB+OZvv1tmmQNBd8AdEBEIidB3o7zayziXS8HgFhEIuzF2YFWzsnNY1mgvl1iOZ/p+269fV7lzIR6pEXHZtPS69tg4+v4hgWARnmJ9jOpfZ4wq5QhB5Ef2xJAxOh8+bLy7rPHXwiB4kXZ1II4F4kvUrlB3iMuQKOXL6ctu45CLypvDJbffDCLpC4DjOsXj2iB7wHI+klizoLNpvcLCF++N7HsETex+1wjUDtoq27LFP8lkFYBhHbcVl7BQTl0y4Cbxojflg/34AQJWnCi7BZT3vEgqHcbObVmpO8ZYqdzWAbF9J++eZz/cUHBv7vcBysHPzDxl7endbQpjl+bltziUT7yzn0iN5rLBYJnJ8kg/TQzOQ1tPY17fXsX+Wg1jMuQSA5kze5aGMuLTnXKq2gj5P738Kf9v7OPb07LaeY8V87PPRHhbLvpNJNVt1OK0r5k0kQbK+q9F01MoDnhWeYz1XzK1m4p8dH7u+iQLikl07juOsx/XeBvAcj+5kF1piZsqDqquIKv2OfaT1tGO+K7pihdUyYTwRIXFJEARBVJSRdCvtjGS1WFjVYssL+8x1KIYa9pu65jp0P/EstBkzUf3Mi7j+H3+I2l2HHQv5QsV8AKf7aHde7YJSKOJWllIdl+2z3HPDmLvIB94QoOtmbqUo5rc/sQr69KnoPGIutiJVUlmtT8TM+HxeGTwEJJM6OHCW66Hopism8iI0zYCmGVboKW+I6O1SrZA6ANAMHVpm4ZfSklYom8vmvHW0KhANF3xBAf7MMXS3aTB0oLszbTqX3vxwZiYEWUXd1hbFqjTL6MwRl+EqCfOX+LHyRDP3T5J4eNxmCLHACdZc4TkeATkIgRMQzfTe9Pny5w7HcZgenAlJAvqlFkSTzLl0OwrGhF1hx42NYg56qZzUeDLOmXZeTgVaCS7BBUVTCufh6Tw2b+hHKqlbzlW/0o/eVK9VLMYuLudHFmDN1LMwIzgzz50/GmtBIYqFaCYzYk/kBeszjkRNgRrxmM5jbrGZXLJhseaxpXPEpT0sVrEJyZ5UD1RdzRPc7HowMZvrXKq6ihcPPo9XDr2E9UdeyRxHAhzHwSW4bE6qOZ7WmCniAlIQroy4ZMJNFmTMjcwHAOzoduasstxBd5GcS3aMHtGDjkQ7kmrSkXPJWr30JLutdif2AkesSJI9LFYSzJtTiqY4elOy68eeEznREqVRJYquZBdEXkSNpwYCJyCpJh3n2nn+WAElUwiy6xtL54tLtm2tJ1ulOCAHrPm9pGap5ZZG01FrPhX7XAqLJQiCIIgyqIhzORI5l5k/h+UWB8oVzsMR0tqSpeh++kV0nbMGkcMd+Mjnfox59z8FZNyFQm1IgAEK+hRpP1K+cymWvG0h5i32gYe5wK+qkfLGAGRzLvt6VbRnxGW4WiopbNcaZ2Z8/oy4TCV1uEQX9u5I4rH72nHwUMYd0gX8/Hv7cddPDmLfLnOxyBsierpVK3QWcOZcKlrayr1jYZ2GYaCjLQ236IHbwyOYOYbWQ2k8+VAnOtrScHkNhCJi3vEyoe72mC1J4lENsT7NumZpRUdfj1PshKvyr7/PJ8MwgHSKs4R4UA6C53hIvIRkpgdmwFtY9MwIzYQo8eiTDiGWMo8v17kMukKOGxvltKMpRMgVRpO/2eHySRlxqRt6nlDSdQO//8lR/OV3R/HWut48B7+vQBihJEiYHpwBnuMtx0rkRciCjLZ4G1RdxZHoYTy+51FE01FoulY0F5ONR+REBGVT2OuGjoi7CnU+U1Aw8ZHrkjLyq8VmxKXHFJf9dnFpO/6oEi3olrH8WoE3HevcsNnNHe9jf98+AKazZhgGkmoSLsEFjuOs96f1NFpjR9GRaEfEHUGttxbuHIEs8TLqvfUIu8LoTHRYbiqQzR30FKkWy5gSmArDMHAkdtgKi2XfAU3XHH067SK/I2H2FM1tYcNCo9nnJ21Vhy1xyUvWTZKORDsUTUG1p8YMzRbdSGmpouHE7HyyfYVdYQicUDTnkuM4NPiy+fc+yY81U8/CRbMuxqr64xFwmTcl+pV+R1hw/uem0Z8mcUkQBEEQA8JVrFrs0ARhIVgIabkhtrlO5XCFrhEKY9cv/gcvfPYycIaBFd/7JS7+1m/hisaLOpeOYj2wC83y2pIUY7jOZUOzC/6AOfZwDXPXnPsSRR5en4D+Xg3th+zOZelChm0rCgI8LhmphFlBdM+OOHiIaG0zF3X7tivoak/jyIEUWo8oEAQuIy7TULSU5eaYjlGmWqyWREpLQeIlbH4nhiMHk4j2a1BSOupqAuDAWc7l269G0dWqIVwl4tzLwpAkPu/csePnOA51TVn3kl2brk5TfNQ3Za95uCr/XAT8pkhIxTnr+EOZQjoCL2aLGhVwLgGg1lMLWRKRFHoQT6as8Fq2KJcFGR7R4xB0peYlD4bsyOPM3kjI7WH53lt96Gozb7C0taQKVkyWBbloSOr8qoUAgBMaTkSDrxG6oaM93oYD/QfQmejA0WiLlXtXKHfQEpe8hKDNHT2p6RTrejX4GsBxnNXmI5dstVhnzqVf8kMWZPSl+qwQ1VzBUyhH1JGLzUtQdMXRPoWFoLLr1pPqhm7o1vFZYldXsaljIwBgcc1SAE5nHsje1Gr0NwEAOpOdaI23YmP7Bkv4DuRcAs6WJMyZYyGrqqFabjK7tuz7wgR/busVl+CCZmiIpc2qqnbRx4ShlKna7JW81n5mh8yQWNYSpz+nIi4jK1SzLVo8kgepnJxgwHR/JV6y+nCa4/XBL/mtqs2BTIhrNN2fVxnY+blp9Ct94DgOfhKXBEEQBFGYSlWLtcTEEB01O9mWAeWKy6EX9CkGzwt4++qzcO/tX0CsuQHzXnoPH/30D1C3ZU/h7css4lNuaxGX4MLM0CzMicwr6zisz+Y5nHBSBG4Ph9o6OW88jEBIgKYaOLJXgyAA/qBQlqBljprAifB5RegGwGkSertV8IaIVEKHqhrY/l4S9ss0f4kPsiSht0u1WjIA5qKR5YQl1AQUTUEqKuLBP7biiQfa0dtlvlZb5bPGDwBqigNncFi8wg85o1Vyi07Z2yrU1JrnpLc7DT4z/1i+5bRZHrMAksghVMC59PszOXexbNg0q9Iq8mLWufQXFpccxyEoB6FxKmKphLW4D8pByIJsVUMW+Gxor8iJUFUd8djgPQoHQnY4l6IlWu29B1XVwOH9Kcv5Tib0gjdZ7CGxuSyqXoxL56zF3Mg869zE1ZiVbxdLRy0nMbcPJ5DNVRR5EdWeGgTlIJbULEWdNxsGGXFX4ZLZl2Fl3XEFx5BbLZZ9nsRLCLnCplDKVEZl+ZNs7rfH2/P2Zxf4LsEFwzCsUNuUlkJnogM+yWeJOpb3x/L4WAh5NB3F4ehh+CQfZgRnWvvjHO2KzHlXlQnz7Ep04s2W17Gh7V0czRS5KnTe7DT6msBzPPb27kEsHUODryHbl1U3xSXP8Tip8RQAwILqhY7357awYXOHOYvxAuGqbNz2GyWshZBbNN+vGzpkQba+j+ycs3Npb9HiFc3vOat6y0jrZmXaGk+tdd5yxTATilElOqBzmdASiKfj8IreEY3yGW0m7sgJgiCICYFTcI2cuDy+fjVObT6tqGNRDlb+ZrnOZW5Y7AiIZ7aoOLpwOl6+7xfYceZKhI524YxPfBmen98O6HrB7c3HNrcShR1K+zalirfTp6zBkoyzMRTOPr8e511cC5ebuaD553nJSnMBZqiCGUrKc5bjUwqC7WaDLxMGqiUFU7QZIhJxHYf2J6AkOCw7LoAlq8wF4Kx5XjQ2u6GnefT02StZalaTd+aGdGXS9bo70+jrNRegkbDbDOt0CXC5OPAQEKl2IVIjWQWBcp1adt5dgsuqAJtM6NY162zPVtb98Ccacf1nmuBy5Z+zYCCzyI4CM0OzsKBqEeZVLQBgCrbBxCUAq3+jmjYsB0oSJFw653Kc1nyGtZ3ES9B1A+uf68f/+/oe/Ogbe9F+dPD+isVw8c6wWDYn7MVrujsVQOcxbWbGaepTrdBTe15bcABxydqDmJ/DisFkCzdF01HrsVfKdy5ZOLTIC5AFGZfNvQKr6o/P2y7kChe9WcNClpkTnnXXsm5oX6YYDBPX1RnXi4WG2rE7yUxo7evdi/t33Id3294BYAo6Ft7MihgFM+GZTHgx5y+cabMCZNq92AQ8e8zyQ9vibehOdWWOR7fyOBmGYaCjVYGmZZ1UWZAdYnxpzXLrnHQmO5HSUqjx1GJGaCY+svCjjkrDhSoM56YIsJYldti1YO1IZoZmZ3vh2sQw648K2NzUzHxI2qrhMmG67sjL2bxsXYNhGJB4CbIgo9pt5nPmhrSyMUTT/Uhk5lNur1IA6Mm0LpnIIbEAiUuCIAiiwlQqLLbWW4vZmUIJwyXrXJZZ0Ge41WILYBeFetCPp279NJ7+4tUwBAH+W/8DweuuAteRDZUr17l0FvoZvutbCgIvDFo1+LRzI7j4w3VwySKap3oz4yvDucxcO5EX4c+EgabjguVcJhMa+no08IaARcv9+NDVdbjkmjqsODGIpqkus6hPt7MtQG5xmc5ML/hYv2a5i8GwaC1OAyEZHHgsXGqGyjLRkpdzmRmrLLjg9mRdOSssNrPvqloJ9U0uzJxb2BmqqzfFUOuhNNyiG6sbT7RCHwVORDLOxGXxGzBhtyku02nD4Qp6RI+jeI8syDhyMImt7yagKGZBpI1v92HvzjiefKjdISZKITcsNtc1AsxWL7whYvEKs6VNtE+zxljnrbdCEUtdjDNRZm85E0tHrTBViZfzBKJiOYlD/65YYbG2kGuRFy3nGMjmjrJWJEzM9WR6XeaGwjLYedzduwvxdBw7urYBABr8jZZjxhxGljPK9hW35SfasYcHszY0rM9nR6LdEYLrFtzWd3vvzjh++YMD+Nlt+/Hc406Hr8lvtiSp9tSg0d9k3XBhxYSY+BR5ES7BZR2XT/Ll3bTLLZxUKNSUnaMZoZmocldjcab/Khtzdl8y3JmcUTaPsr0n09Y5WFC1EFMCU9Cb6sXGjg2O7dj1PWPqmbhg5gfzQrfdohuyIDtyLu03RKzvfSY/eCAnfiJA4pIgCIKoKJUKix1Jsnfty/uz6BRtI3NsuaKQ43hsvORUvHXfr6HOnQfXs08jcvapkF55ydqOLcyLjadYu5JyqrEOF0duaIHzzHEcjjs5hH//3mwsWBgGkA3fKwV7WCwTl6kYj74eFTxM5zIe1cBDQqRGgtstYNVJIYgih0BQBA8RaSW7aNYM3XIuAUDTDHTaCo0e2m8uaENh0WrFMHeBH0tW+TF/cSCzDy3v2O0/u0UXBIGDLHNIJjTrvLBKsdU1xR1HAGhs8sDl4tB6WMsLUxUzOZcch4KtSBhhTxiA6VwOFAUgciL2bE+ANwRceo0pBDa9G8WDf2zFay/2WG1dSsWepyfyoiU27L0UO9sU8BAwa74HPr+AaJ+KWk89XIILs8NzMC8yz3S8MiGdg8HEsqIrlnCwt6SQBDmvYBATEMMJv88Ni03raWt/LE+TuVZMzFZ7qhzvsTtddqHLrll3ssvxmY2+JssxY/tggoaJIdZqI1cMuWzXRuazRbjCrkjesbG5H4tquO+3LVZbnffe6oOuZ79PcyPzMCs82wp9ZcdvtUHJCa1lIbzeAg5fsaq8dtj+pwam4UOzL3HkMNpbp4h251Iyz49ia2sCZN3b1Q0nAchWC2Zh82zO+CU/qjNFmnLxSX6oumoVRArY8nNZ2C8LuZ3I+ZYAiUuCIAiiwlTKuRxJmKgsv6CP7fEIHZtDICLbtiO9YCG6//4iktdcB+FoC0JXXAzfrbcAqVRBcex0KAsLu6EW6RkKzjEU/1yez4blleMkZyto8vBlCt10thgwDLMarKoa6Os1nbBItVNAuNw8eENEOp0NOc51Lrs6FHDp7CL84F5TXAbDouWENDd7ceUNjXDJzhDPYq1ImAvn8vDQNEBJmLmXB/Ym4PHxiNQM3PZDEkQ0NLvA6Ty2b4o6X9R4pFIGPB4eslh8PxFv2DzetD6guOxqBXp7VNQ3eLFidRCNU13o7kijv9dcYOe2ThkMp3OZzblkxXVU1UBPlwqvW0ZtvWz1EfUZEXx4wUfQ4GtExF2Fi2Z9CGF3vugpBBMBZlXgbF4d+0yJF61tcgVXsT6zpWAvoKMbOnRDt/aXDX81oxGYuAy5Io55YxeX9ptCbJx2Edroa4RH9OSFXjJHjN20YcIu99gclXxt56HK1j5mSsB0Ij0ZYfbsYx1IxnUcd0oQM+Z4EO3TcGhf1lF0CS6c1nyGJb4EawxM4DrHwFzE3EqxQFbwDsRA18udI55nhGai1luHRr/Zm1W1nMts+DJgij6P6EFPqtvRB7eUm3RM6LNemHbnkuVzMtea5QZPVEhcEgRBEKPGeHUumbNQ7gLSLihHqgADnyME2X4lQQJ8PvTf/gv0/eo3MAJBeH/+E0QuOBs1+8ywN0eepSPnsnCeZTk5jcPF7vwMdq6YM5EbrlfK/kVORH2tuSDduyUT0mhkqqomDfi8EmTZ+flMXKrprNNir9ppwOyJKegu+ALm+YtFTeEZDIt5VTjZ8bHwQT5n8RlxVyHkCqHZ3wyBE+DJhMbGozreeKUXhg4cf0oIgjDw90XgBDRMcYE3BGx5zykuE1Hzvd6AMGD7kCpfNiy2UCVWxv4d5rk84aQqcByHxcudRUtYnmipyEJuzmWmIJKWxrZNUTz7WAcMA2hoMMMiA0Hz9f6+oRcSYkIprSmWoNQN3cp3lHjJmnO5lWOH812xjs1QbU5o1u2yCxY2LrfgchSysReJsf+esgtBt+jG2rlX4tzp5xd8D9sfe7+9l6Udu7Nnz79kOa4SL2F57SozH1IL4ZF7W/HO633w+Hic88EaLMzMja0bc2542M9J5nyyMNHcQk0s/zG3mI853lKcy+K/O3LDfmeFZuPCmR+0RB5zz9N6GhIvOf5u1XrrzLzSRLsVTl3K7yl76Hadt94xhtybAJECDvFEgsQlQRAEUVEcYbHj1LmcGZqFVfXHY3poRlnvq8Sx5YbFsoWpfZGXWnslul9YB+XU0yFufh9Xf/q/sPKBFyEUEbtczj4Zo+lc2sXlYJ97XP3xWN14UsHWEMVo9DWizluP5sBUHD9vPupTC8F3mE4Eb2Q/OxLOX5i6PDwEQ3KIS3vu384tMRw5mELQ78WJp4ezb+SAQCibc1koPBnId8Q9ogeXzrkcs8JzzAW6x3y9t1PH2+t7wfPACaeFMRgiL6KmTobLbYasplJZ5zWeaZ3o8wkDCqOAzw1Rdw0aFtt91Dw3c+aZi+QlqwIQJQ61Dea87Gwrz7nML+jDci5V7N9l5nV6PDzmLTA/j7V6YU7pUJAt51Jx9FPsyYQqSrxsOWjunLlXToh2LhzHQeAEqHpWXNoFYrWnBrqhoyvZZd3UkAWX5XYBcDy2ixm70PJLgUwoPZd5TbaEoz2PT8gJSc0VR6zXJc/xjugB1pezzluHak81Lpt7BQ4814x3XuuDy8Xj0mvq4fUJWLjUHOuW96KO/Ew7rIBTMYHLKhXbW3wwSiniNlAYsyPn0l68SMjOD/P/tCPvGABqPWZIeHui3VH1dzDs4b2nTTnD8bkOsctLFBZLEARBEAPhzP0bn+LSLbqxpGZp2ZVnHSG/I5Zzad+nzbnMWcDoU6ai9/5HEL3l2+B0A2f/7EHUXHct+Najeftxupj2nMvRcy7teWKDOZf1vgYsqFo44Da5BF0hXDDzItR4ahAO+LAoshyiYS4i3S6b+xLOF6wuVyYsVs2KMxYSl1Z07NgchyAAV107DQ1TbIv5gABB4Cwhwhbiubm7A7W44TkeHq/5+sY3Y0jGdSxa4UcwNPi14TkBPM9h6jQfNM3Avl3Zlgwx04yD1ycMuPh1uXm49ADUtF7UEYpFVYgdUzHFNx1Tq03BHq6S8MVvzsDHbzLDI8txLlVVx5svRZGMmcLD3ueyP56EohgIBAWce3ENpkw1hUogIy6jfUMXl+w8KFraKS4z+Y525zK3Qmk535UjB5NIK86qzgIvQNM1qKxIjG1/rB9iZ6LDCo2UeMnKOwRyw2Kz77WLskKFjZh7ySrF2t9vCbsc15C1CcmdN/XeepzcdCpOaDgRgCl4jxxIg+eBL9wyAwsyojIYFlHfJKO3W0W0iNOcW8Ap17mcEpiKDy/4CKYGpuW9txQxJw0kLh3OZXZfonXzQYWqq1YlWDs13loAQHu8zZpDpbjaM4IzMTUwDefPvAh+ye8IN7Y7zKWGeI9nSFwSBEEQo8Z4dS6HSm5+5EjvkwdvCZXcO+gAAEFA4uZ/xiO//gY6p9fD/cJziKw5CfLjjzodSpv7wBV5vtKUExY7EkyZnhUHTU3Z0LpIOL/hu8vNg4czLJaRSuowDCBSI2FKcxChSPY4gmHzMRMiTEAP5lw6XuN4uDJhsQf2mDlq8xblFzEpBDun02eai9NdWwuIS78wYE6Yy81D1gNQ1eLO5eH9Kfi0WpzRfKbjOvr8Inx+Af6ggO6O9KAVYzvbzRYV65/vwd//2oG927JCiwnwri7zGFj4sdVSYpCw2L074/jhN/Zg/+7ihYXYgj63dQWr1Craci7tRW3M10oL0T58IIk7fnQQ//frI46CNiIvZsJi80MpazymYOlItEPRFMiCDI7jrNBQwClAHOKSH1hcMsfTnuPHhBcTR7m/W1yZPpCFwqTnRuZZRYgScQ3RPg1VNRK8PuccC2RujsTjha9XrljPzbkEijuU9uftY8ytQFwMey9Pu3i0VxPO5ls6z0G1u9qqmmuFOJfganslL86adg7qM06sSyjsXE70kFiAxCVBEAQxCrA/5OM153KoVKISbm7FV/ZzrrtgZ+YZV2HnIw8g/qnPgO/qQujG61D3L1+CHDUX2nZx48i5HNWw2IGrxY40U2dmF2zNTdmFeVVVvrh0e/JzLhmsyI8k83CLLoe4DIVZ3zync1ms9UghBF6wnEvofN7YB4KFAp+4aA4AYNe2wuJyoDYaLjeP6tQcVKVmYUpgasFtWGXc5un55w4Aqmtl6DrQ01U8NHbbpih++t39+N3PDmHd86ZTmOgzj9feiqS7J9MH0O/Mgx7Mudy9PY5on2btGzBdZ8XmILJ9xdPxvPcDZuhok78Jftnv6MtojrE053L3dnPfe3cm8NqLPdn3cyIMw7D6ZuaGxQJAe8J0w5h4coRHqrLVT9GO3W0uJC6ZYxmyFYnJnQ+57pwn05ojV1jl0t5qCjAWGu3YhzdTsCeu570G5Bf1KiWPstC2rL0K4BRpA10vjuOsG0L2Y2TtYRRNyVaKzRG9Ii8i7IogqSbRn7kpMZRiT/bPtd84iNiKJk1USFwSBEEQFYeJsMnmXKIClXBz8yOb/c2oclcXLMnPaA5MwezGZYj91w/Qe8/90OrqEfzLX/DxT3wP09/YmpPHWbi4T6Up5upViqkzskKoeUr23FVVF3EuDRHpAuJSS2fEvcTBLXjgdgtwuc3ngmFzUclCFpkoyHUqB2pxw4O3el1yBg9/UEC4qjQhE3KFccHMizC9vh4NzWb1Vhae2t9tHovPLwycf5YJi61PrMjb7sCeBO7/fQt2bDGdvilFxWWmOm+RirGqauDvD5vVUA/uTVqCQ+ypQ7WnBm7RnScuw0FnkSQmLos5lyz8cufWGGJRDds3R/GDW/bi7p8fzhZW4niIvAjdMD/fHmo6r2oBqj3VmB2ei8vnXuUISQVK/64csDmnzz7eabWIyRawSWaOy1mUJ+QKIaqYBXCY8GCio+VwCrd/6xDev7cZ2D3f8Xl2B8xfoD/i4uqlOLHxZEe7FnZO2XnJFZHMuXQNUOAJANqPMnGZLwzZDZNErDTnsphA6+1Jo7fHnFe6bkDXDYfgs4f7enJajAwEC43NFY8SL5mFlbTC4bpAdt70K/0lfVYh7DcJPFJ23BQWSxAEQRAlYInLSexcjli12JyKryvqVuFDsy8pef/KOR9A90uvIbp2LQLtPbjyK7/ElK9/E1y0P2+co5lzyT5rtARtTaZ9RSAkoL4+GxZbW10g57JAtVgGr2YW2rJohQ8y95KFxfrlAM6bfr6Vi5Y7zwc6ZoEX4MkU9OHAY+oM95C+J3MWmMe4a2scum4g2mNAljlIEj/gdRYlDjxvhv/m8vpLPdj0ThRHD6UgShzqmwq7S9V15kL5hSc78YdfHka0X0W0X8XBvabQevOVHnR1pDFjjgfVtRIkmYPby8PfsQgfmPLBTFVk8xz19JnOX13EFA3MYfKHMmGxRQr6RPvN53UNuO83R3DPnS1QUjoO70/i8IFs5V/7uYi4q+AW3aj21GCKugxbN0bR15PJo7NdM5EX0dej4v13+h2hrrnouoGD+5IQJQ6LVvihqQaOHk45Pjehseqozmtid42ZqAtIARgwsHNLDLwhwtU3BdueDqGjLZvf6nAupXzn0i26Mb9qgWNOibyIfbviePKhdvT3qnkCK+KqwrzIfCyoXlT0WAGgI+Nc1tTni6usczlwziVgCrpCv9903cBd/3MIv/7xQaSSOn75gwO46yeHIHLm+eE53lHoyN4rc6CcS3PbfOcSMM9NWk/bnMt8ccluIsXSUes95cJcUsAsbsX2QWGxBEEQBFEC2YXN5BWXlQqLHQpGVTW6fv5L/PXWTyAe9qPqnvsQWXMypJdeyKkWO/ricrRuMPA8h3/++lx8/J+mIOh3QxAASeYQ8Oe7b6LIQxIkqOl8gcWr5vZed1aU5opLAGj0N1mORm7hqoFuDHDgIcocBCEjLksMic1lTiZPc9e2GKL9GvQ0D6/fXMAPdJ05joPLwxcUl/bnps5wF22NwpzLIwdS2L0tjnvvbDGFwO2H0NOdxqZ3zBsb519Wi89+ZRo+//UZaMoURurOhNKy0OGeftPZW9g0Byc3nYq5EdOp8wfMY+hsV/DiU51WKxhGtD/784E9ScgyZ7XE2PhWn/Wa3SHziB7Tpdx1Mu780RHc95sWPPQnsyCWPYxb4AQ88UA7Hvj9Ufzldy15xXoYbS0KUkkdU2a40TTVPD5LXGbEFGu9IeYIummBGdZjJhg9oge9nTp6u1U0Nnlx5oVmtdZ3X88eDxM6AieUXF1Z5CV0tKehqsCBvYk8gcVxHE5qOqVgMR07lnNZX8i5HDgs1h4qXjCfHEDbUQV9PWZRoPt/34K2FgWH9yexf3saRw8p6O8QHOI6t+rqQDBXOLcqcLZNC6ukm//dYc5uLB3LbDO0G2Ys1UHkRcwMzcLM0KwB2wFNFEbvrwpBEARxzDJZw2IrXtBnGEKMA4ddZyzH4WWzcf1d6xB87HGEr7wE/Mc+BunDi5H2uAasYjrSMIEzmqG4Dc0eSG4NR6Myjjs5BI4HJKHw0scty1BVFiYoWcU6eMVcfAbcWVdk+iwP9uxIoHlaYScvr1rsIM4lBw5ujwCui3eE85bD1BluuNw89u5MoP1oCrwhwJcpsjKYi+Ny80jEVGia4RCQiYQpDK6+sXHAcTVOdUEQzLYkhmFYOZoA0N6ioKsjDUHkUN8kg+c5BEI8IjUSsCOB7o406hpcEDgBBgz096cgCEA46MbcyDxrP6LIwR8UEO3T8PzfuiAIHE47N5ufFu1TwfHAkpUBKCkdF6ythezisP39KDa9E8X5l9VCELi8HDuRF3H0UNYJZGLQfs04CNizwxQbWzfG8MNv7MWseR4sP64KM+fLVpj0gT2mcJw202O5vK1HMvvLCYvNq0KaybsEAM0whTLHcUjsbERY8eGkCyOYs8CHF/7WiQ1v9KGhyYVItYQpM9yYHpwBl1i64y1yAlIJ8zNaDqYcYzl8IInNG6I4+6JqiOLA+2tvVQAOqKkr4Fz6MmGxcQ1vr+9F65EULlhbC54392k/v8Xyye3FmXZuyebJPv6XdhyNzUe3JMO1zF4YJ/sdHSxUdWntctR4alGbKabEYPOD5eUWGpss5IrL8sNiAWBR9WKktBQ4jsPJTacOaR/jERKXBEEQRMWZtAV9uAqExRbpTznU/STCfhz9358Dl14F/1f+BcG778YNf6/GU1++FuKcUWxFkhGyo5VzaUfiRWuxX6xtgNslQUuZoXhu2Y20YopLTnGjKb4Kq2pmW9uecnYEq08PQ3YVPpbcnMuBjpm9NnWGG7P9PjROHZq4FAQOs+Z5sHVjDO+s7wNviJZzOVjYntstAFCRSuqOqp8sX27uIi8kqfgxhMISvvTtmXB7ePR0qXjgD0ehpnW0HlFw5KCZY1lTL1vCAgCqasxFe1dHxrnkeChJHSk1jWCocJ7oZdfW4903+rD53Sh6e7LhsbpuIBbV4A8IuOKjDY73zFnow47NMezZHsfcRT5HCCgTVb3d5r68PgHxmIZ4TAMvZ89DT7uOtGJg+mwPvD4eO7fGsXVjDFs3xhCuEnHVx832LG+vN6soTZ/ttvIQW1tM4Spa4rJwWCzHcQjKQfQpfZYABQDsXoDpqoGlqwKQZB5zF5nH88AfjsLj5fFv35mFNVPPKnptCiHyIpJJ80ZKMqHj6EEVU2eY5+LFp7qwY3MMzdNcWLyieL/FVMp0VCPVEiQ5f254bWGxmzdE0d2RxnEnh7LfQ7u4LFLMh4lLUeKgpg3UNcpQ0wa6OtIIohlQAQE2J1oqraAPYFbRtd+8YLDrEss4l1IBJ5GFarPc3aEU9AFMgVuI3dtj4DgO1af6C74+3qGwWIIgCGLUmGzOpSMstkKtSEZkPxyP1KWXo+ulN5C48IMIt3Tiw1/8GWq/+u/genuGM9ySEUe5oI+dQu0GcvG6zAWu2ZIjK/DSKQ6R9Aw0hbKihee5osISKNCKZIBjZs3k5y7y4WP/OG1Qt2gg5iw0Q2M3b4iCg4BItXmsg/XhY85bbmhsPKZByuRtDobXZ/bcrKqR8OkvTsUZHzBdRVbBtqrGed7Zz92dGYeYE6xQV19ALOjaz1nowylnmTlp/baqsfGYBkMH/MH845ydyUU9cojlPtrngikcentU8AIwbbZ53TvbFCsv8dnHO7FniykQl6z048OfaMJX/msWPvZPzVh+fAg9XSp+/eOD+PWPD6L1iILGqS5Mm+VBICjA4+PR3mK2X2HzP6nlF/RhnDP9PNT7GqzcXV03kEjo8PkFS8CdcV4VahtkeH0CEnG9aBGlgRA40XIueUPElg1R6zUW6rpvV/GWLgDw/ttmqHOhfEvAFhYb0608WbsT6ezVmb8PwzBwYE8CHA9ccJnpLp7xgSqsOb8K9q+TmsiKVG/GueQ4bsj55Fa7mjQrrjR4i5RS+lwOxluv9uL1l3qQTuu4584WPPaXtmHvc6wgcUkQBEGMGpPNuRyJ/MhK7dOZW2kuwIy6OnTfdTceu+VjiId8CP7pj4icthry448OfcAlwhZgYyEuxRLEpcdlLirTigG3mF08KknzGrDFcikUOveDbctx3LDnECvqAwCrVkdQ15TJ6Rokt7aQuNQ0A8mEnte/sFSYM8lCZJnQZUQy4rKrPZtzyfIm/QGhqGtvVY3tzeZYskqx/kD+WGvrzXGw4jP2nDaJl6CqOmL9GoJhETWZwkSd7Wnw4LF7RwLxmIajB0xxNHuBKd4licfs+T58+p9n4byLa9A41YXpsz24YG0tPvXPUyFJPDjOLICkaQY62xVr/ics5zJ/HgbkIM6fcSFqvaaYSsR1wAA8tmswZYYb//TV6Vh+gukqHraFIJeKluahaYAsc+ANCXszQlJRdCsHdu+Owu1aAGDzhn489pc28Dxw4unhgtuwsNiuzrRVKGv/nqy4tOcBF6rI2tWRRrRPQ9MUF44/NYSv/NcsLFkZwPITgvj6/5uNeYvNa5GKZecJy7kcqpMIAF7R3G9PqqfovvJ6oNqORdcNvL2+Ny8neCBUVccTD7bhbw+1Y9fWuOnS1k/c3EsSlwRBEETFmaw5l07ncuT+pDLBMRwh5iw2ZHMxeQHbz16F3939NcSvugZC61GEbrwOwRuvB3+0ZeiDHgTREpejl3PJYAtEsypp4XPKxKWuOvPyVEtcln4tcl3jgbfN9MYcgfkTikhYfkIAC5f78cG1TdYcGMzFKSQukxlna+ji0jznmcjBPOeSic2uThYWK1iVWoMhsago9wUEgHP2u2SPCzmXNTni0nGjQZCszwyFJVTXMnGpoKNVQzwjEDhDQFWtlHcMHMfh9POq8JkvTcONN0/BSWvCjpzV+kaWd6lYRV+yOZeDiwdWadVbYO41TzMFzpGDA4vL/j4Vb7zSY/VrBYBkvznGYESELMjoyVyDjlYFyBTD7WhLo69IZd7XX+oBDOCKGxostzwXdjOGOaGA6Vyy9if2fO9CoafM5Zw+2+PYH2AW4AoEzZ/TsWw/VHZt7XNnx5YY7r+7pWjV2lxYUS7WFqZgtdica2cPcd72fhSP3teGJx9qt57r7kxbubyFaD2iQNcAGGbFZQCYNntohb3GAyQuCYIgiIrDHJmxcK0qid1pGklX1hKXw/gzbXfCComdRMiP6M9+hZ77HoI2bTpcjz+CyGmr4f79bwG9cIXH4TCWYbECL1g9DovhdWcWjJpT2DDn0l0xcTmyuahrr2vAh29shFvOLrQHm5vuTCuUZDK7AI9HzTngGaK4dLl5UwhmiOQIM5fLfL2nK20WEuIES8wEwsXFpSBw8PkF9PepllCxO565BIJmX9KONsXskZjjYrN8y1BERHWmME1nWxpb34uCM3jMXeTFvIUBnPuhmrx9D0Z9xjluPZzKc49LqTDKcl4LXYOmjLg8vD+J7Zuj2Le7cBjrK89044n72/Hik13Wc/19KnhDgNvNI+h3I5nQkYhrZoEewCrqvfndfqtvqp2ujjR4HliwtHhOIJtTmppt3RLt06wwaGdBn3x3MFdc5sJuJCSi2Rso7CYS+/+d13pxz6+PYNO7UWzMhPEOhi+nn3ChmwB5zqWjIJIpIre9H0UqZZ7XO//7IO76yUEoqcK/V1sOZoVn6xHzfBc77onA5PorTxAEQYxLjg3ncuTF5XAFKxOnjsqXHGc5eBzHIX3WOeh68TXEP3szuGg/Av/6BYTWfhDCrp3D+uxcWOuB0awWa2dx9RIsql5c9HVLXKo8eNvCX0kAHG+KoVLhyhCX7HyMtOhm17iU3DN2bHbnMj6Aa1YqdqevqjpfQNQ1ytA1UyBx4NHfo4LnAJ9fGPB8BEIidA2Ix8zxMucyUMC55DgONXUS0oqBvl7VEh6qaqDtkG6Jy2BYdDiXWzdGwYPHlOlunHF2HRYtL7+4CnNNuzrTeXl5hdy6XKxrUEBcRqpFeHw8jhxK4Z5ft+B3PztUcB8th0xnc/0LPZZQ7O9TwRkC3G4BoYApYro702jPFB+au9AMr37q4Q787L/24/CBrDuqpHRE+zSEq6SirWkAMy+ZCUzzZ/N/Jhrt56Ooc8kB02YVFlnsWqf6ebhFNwJyELIgY0nNUiypWYZEXMNjf2lD5v4Ddm9zhvke2JvAo/e15oWv+iTndS5UaTk359L+HTuaye1NKwa2vR/Fs4+bbXPSioG2lnyhDgBHDjndZ0nm0DTEwl7jARKXBEEQRMWharHlMVJuVjHHOE90+HyI3fpd9Dz5HNRFSyCvfxWRs06B98f/D0gVD+cqh2xY7NjMgZX1x2FZ7Yqir/s8bgTSDajlp1k9CQEgneTg8Qzu/tmxO87CIA7VSDuXdlbVH4+VdccNup0rIwJSiay4ZK4Zqzg7FCxxyQHh6vxF+sJl5kJ+84YoknFAUQwEQiJ4nhtYXGZCIg/tS+D+u1twYK+5OPcHC4/VCo09qlhCZst7Ufz512147gkzDDEUEeHzC/B4ebS1KGhrURAKueAPiEMu2BKOZKvR5or8Yu037CQy4rlQvi/HcWie5rbCjmEgr/+mYRiWE6ZpBp55tAOA6SAKEOHy8AgFM/1GO9OWc3nSmgjqm2QEQiIMA1j3XLe1T+Y85jrRhbCPe+bcTGGlg/mtXly8U6z1dKfR06WivlEumuvsD5nPR/t1XDJ7Lc6Zdh4Ac87Picw1nWrNrHQsuzjs3RmHqmbPzwt/68Tb6/vw89v2OxxFv5wjLgsIX57jHeGy7NoahoEWW/jrs4914q11vdbPxUJjmXPJ+udOGaCn7ESAxCVBEARRcSarcwlURjhnncvh/ZkuJlwWVy/B4uoledurK1ah++kXEf36NwEAvu99B5EzT4b00gvDGgcwtmGxpeB285gWPwUzxeXWwlfTDOhpvqx8S6C8ir98hZxLwOyjN69q/qDbFcq5jLOQzDIKGeVSlXECQ2ERoph/fIuW+8FxZoGYjpaM+xhi56P45zLX6oUnu7Dp3Sh2bDb7DfoDhUUgK+rT3qpYTtShfQnwEB05lwBQXStbbtfSlSEAcNxsKAd/UADPA73daUdYbKOvsWAuXy7Za1B4bkyd6XT1mAvL6Oky28s0NLvg9QnYvimGeEzLOpceHpGQzbnM5EdOme7GZ788HZ//+nR4fQK2bIyiJ1Poh7WOyc0/LYR93DPmZD4n8377+ZByqsUeGCQkFsjOgWifCrfozttHZ5v5OXWNLsyc60VaMXBgT9YhjMfNuR6PaY78SLfgLqkHJ7t+Apd12fv7zDzdukYZ/qCZQyzwHJasMgVrIXGpqjpaW1Lw+gWsWB0EAMyYwCGxAIlLgiAIYjSZZM4lkBXMfAXCYodb5MUaW45wWV63smiPNUgSEl/4ErpefA3KWedA3L0L4SsvQeAfPwG+9eiQx8JCTceioE8pMIGVTOqW25hWdHAQ4C5TYNnd2cGdy/ym8qON/dgZTNgMtaAPkBUgxYSIPyBixhwPon0a3nvdLKASDOcXZcl7X0ZYtBxK5TxfxLlsyDiXbYqVQxeulsAb2XEx16i20Xz95DPDmDrNzL8balsLnucQDIuI9mkw9OycWFKzrKT3JwYIiwWAE88I4ZJr6rB4pSleerqdbUmYmGme5sLC5T7oupkLGO3TwMPMRY1ETCHTflRBV2cawbBozQdJ5nHCaSEYOvDGK6YDZzmXBcKcc7HfmGAFaqwCTnxxATdYviWQvdb9fYUL9bAQ4OpayWpHYw+NZc48AGx9PwpdN+8ocBznyLssdu1ZuyL7cbCQ2KapblzzySZ86Oo6fOnbM3H2RdXm60fyxSUr5tM01YVTzorgA5fW4KQ1kaLHPREgcUkQBEFUHMvdm4TO5UjlRzr2iZEJlfRKXqs8f7nos2aj994H0XvX76E1NsH94P2InHwcPL/+BaAWriI5EH7Jn1m4jc/G4Hb3jrVJUBQDvMHD4ynvOpRTRbhSOZfl4C7gXLKQzOGIy6kz3ZBkDrPme4tus3il2VJj1xbTVco6l8W/T2ybXIo5l6zFSFuLYjlOHMwej4xg2Hx85vlVuOSaOpx7cY11I2Q4fQxDmdDYjqNpvPpsF1pbUmj0N+Vtd/RwKq8oT3yAgj4A4HYLWHVSyHJmc53L1oyYqW92YUnmPG96N5op6CPC7eFRFTZF0rb3Y4ABNE5xhqguP8F005jgG6pzWV0rWQWcdN2wcr6B/NDT/RmHsVi+JZC51jlVg+2w/p/VdbLVomfXNtPh1nUD/b0qfAEB02d7kIjpaMu4tof2JbF7ow7DMJCK8nmFgKL9KjraFPCas3gQkBXzDc0uTJnuxvGnhOD1CQhXSZBdPFqPpPDn37XgJ/+5D0893I54TLOq/TZNdcPl5nHKWRHrd9FEZWKPniAIgpgQTOqw2AocW1awDm8/Z007FxfMvGjoO+A4KBdfhu5X3zQL/iTi8H/9Kwh/4EyIb71R1q58kg+Xz70KJzSsHvp4KoiVd5jrXBpC2RVTHX0uS8y5HG4I9HAYMCzWN/RxhSMSvnrbbJx2TnEnZsXqABYs84GHeZ6CocHDp+2Fe+y5f3KRokuRagn+oICDe5PY8o4pklQF1mfKLt4qPhOKSFh1UgiCwFmu1XD6JjJH9OCbAXBHZsL1/ml52xiGgXvuPII//vKwIy/QEviDOOdMwLLQVQZzyhqazD6cPr+AvTvjOHo4Bd4Q4XILqIqYwotde5YHywhXiZBkDh2tCgzDsMJaS3IuM98bXjBvUkSqJegarFBkkRORTut49al+9PaY+9V1A13tCnwBoWCBJoYgcPD6BNMVNoy81zvbss5lVY2MSI2E1iMK+ntVxGMadN2cayxcd99O09V84sE2bHtLQ2d7GlveSeKhP7biwF5zznS0KfjRN/fiZ/+1H4/+XzfSad3hbLJ8y1yBzvMc6ptkpBUDWzZE0d2ZxvoXevDqc91WqO7UGRO3gE8uJC4JgiCIimMJsMmnLW05lyP3J5UbobBYv+RHQA4OezyGP4DYrd9F97OvIL36JEibNiJy0bnwf+nz4Lo6S96PT/KN25xLl9tcCJvOZUZcpg3wEB1VL0uhnFYk7LPGNiw2e+yMkQiLBUwRMJCrL4o8PnxjIy65ugGLlvvh9gx+PgKh7IJ+/mIf1l5fj6s+3jDgGK68oQE8Dzz7SA/6+1To6ez+w1ViwTEKmWuX20akHJi43L0thYbkUnTtd1mhpYyeLhW93SrUtIH+Xls7mHhpAj9cZX5GnnN52BRY9U0u8DyHJasCMHQgGdch8CJEkYPP7bJCTAWRw4KlzlYcPM+huk5GKqkj2q9ZYa3lhMUGgmaRJuZ2MveT53gc2JPEWy/F8NJTZqsUu/AbjEBQgKYZSMSz8/bt9b3YuTWGro602Q4nU5CKuZe7t8ctcRsIiZg51xSXe3cm0N+r4siBFGTdi74eFb0dpmhl4bT7dyesAkpaQkI8qjnakLCw2Prm/DzNhuas4LxgrdnWZtfWGPbvToDjTJd/sjA+f8MTBEEQk4rJHBbLGMljYwvr8VZdV1u0GD2PPIm+238Bvboanj/8DlUnr4L7rjuGFCo7nrC347Ccy5QOzuDLLmpjv9EgDCIuuQpWiy0VK+fSXi12kHy/kYTjOBx3UgSzbeGzA+Xm2nMrm6e7sfz4IBavCAz4GTPmeHHiGWFAFdHTmYauiBAlDhddWYsL1tYWfI8l/EvoSVkMFm5rF+5b3os6tjmwJxsO228L80yUKPALOZdpRUd3Zxrh6mwO5ZkXVKEm08sTWiavkpctoTh3kdcS93bYe9paUujtSsMfFIq6xHZYWCw7B+xzmLgWeRHdHQoEQ8LOrXEYhhmuCjhvIBTDbyvqA5jn9dH72nDvXS1IKwaq6yTrd6g9NJZ9RjAkYsoMN0SJw75dCWzPFIaSdC/aWhRoSfNc7NlhiksWZuz28BANU3Az5zKZMHt4RmokuN0F+pJONcXlvMU+nLQmYjmpfT0q6ptdBc/7RIXEJUEQBFFxihWWmQxU4tgq2Z5i2PA8Utdch651byPxsU+C6+1F4N//FZFzToP08otjPboh47aHxdqcSw7DrBZbcp/LsbuRYB17Soeum/0g49GB8/1GGnsOHvu5GCzfDjCL1ZRKuFqCaLigpyVwSQ/cHh6rTwtj1rzCOaFM4A61oA+QFX5AttfjpnedeXwOcdmbFZfxmA6Ow6A5eMGweT7szmVfZj9h2+d7vAI+dtMUTJvlxlknz4ZLcKHKXWX192R5mbmwnM7d2+LQ9dJcS/Z5QDaM2RKXHWl0daQxLTADWlutVbW3tUWxxl0sr9ZOwFbUJxHX8MQDbQAATTUdR3ZcADBjrhe8YDqX9t6moshj6gw3UkkdLzxpRmFIuhcdrYpV8OnQ/iSSCc3KqZy9wAshIy5Z9eGjmZYvjc2F5+PS4wK48IpaXHptPYCs2AWA6QPklk5Ehv5tIQiCIIgSGW8O3EhSiYI+Db4GpLQkvKJv8I3HCCNShegP/huJG26E/z++Ann9qwhfcTFSH7wE0W99B/r0GWM9xLKwV0wVrYI+OgRDLNtVcIrL0nIux0O12FRCx7rnuvHMY+YiWxA4yPLofXcFToBqmAv/gcSlIHBobHZBUfSShQ5g5i5y4LFE+wCUaAzuuoFF20jmXAJm9dO+HhUtB1Po7U5bwpP16QSA/l4NTz3cjr5eFYm4Bo9XAM8PfA1EkUMgKKKvV4WmGRAErqgDGAiK+MTnpwKYCsDMfz7zQjemz/Zg0fLCxbZYn9ANb5iiuKGIgMqF5cPWZqr1sp/feb0PrzzbjZUnTkdtRzYfd+fmmCVISwqLzWzT0apg19YYon0aZs33mk6jkXVcATMyYdosD/btzDqU7P2nn1eFA3uOINqnQXbxkIQqtKlVCKabwAuArgH7diXQekSBKHGYNssDYZNsVpbO/K44esi8hg1TCp8bUeRx4ulh6+fZ8714M1OBd/rsyRMSCxwDzuXnP/95nHDCCfjiF7841kMhCII45hmXTtwwqUTI74q6Vbh0zuXDCscbLbSly9D78BPovfNuaFOmwvX4I6g67QR4b/s2EIuN9fBKxuXmwXFAPKrZCvoY4CGUXdTGnitbqnM5lgV9BIGDKHFIJXVstoVsapoxqjeGHIWQBhHbH79pCj79xalljc/rN/cf7xIhQIJrkJsGs8NzMDUwDTWewmGzpWAXl41TXJiz0LxhxEIt4zHN6i8JmI7jm6/2YvO7Uahpo+S5F64SYehZ57PPFvo56HsjElaeGCwqYlm1XZaHW0yE5jJtphv/8KWpOO1cU0BWZW4EMFf83df7AGTzDXdujdmcy8HHPX+xOY7XX+rB2+t7IYgcLr++3sobZaKWMWd+Nu8SAIJh8/rPmufFhz/ZCFHisHilH81NfsyMnYlIeiaWHWfmrL/5ai9SSR31jTICQRGS7kEqqcMlmmO3V4othRlzPZaTPVBV3InI5Psrn8N1112H73//+2M9DIIgiGOcyZtzOZlDfkuG46BcshZdr7yJ2Je/BvA8fP/9Q1Sdchxc998HFKjmON4QBA7+oGjmvOnMydPAgS/a4qIYdsEzmEhi4bBjPX9cbt5cLI9hGwT7uRrsfLjcfNmOMnPFWEEZ9yDH2uRvxlnTzhlWWKzbLVjntHGK28orZQLnYKYSKROhh/cnoaaz35dSc17Z+3syIZ+sMFAp4aWDUVUrWcXY/EFhwP6TdjiOQ9NUNySJt94rSpm+rkL2O3L8qSH4AgIO7kuiq8MU2qWI4ikz3Jg2y42ujjSUlIHlJwTgD4i4+Op6fOiqOixY6hTBsxdkIkEyp9cuYOct8uFf/3MmLr66DvVNWYF4+nkRiBJnFfWpbzYLIHm0akxLH4+lmZ6lrOdqsbDYXNxuAedeXIM151eV/ftlvDPp/xKeeOKJ8PnGb1gRQRDEsUC2WuzkE5dWWOwkFM5l4/Ui/q9fRde6t5FcewWEliMIfu7TCF90DsTXXxvr0Q1KKGy6P8mM4ZpOZhfF5VBOziU/DqrFAqbQ0jTDykebs9CLD141dMduKDDHODf/cqTwZiqH9nSax+gqswrwUGHVXBunmC1BeB7YsyMBXTesVhSs3+ehfUnHe0stJhWuMl3B/7vjCF58qrOswjiDIUk8whnXcdFy/6BhusUwxaYLsovHNZ9qtJ6fNtOD5mluGHpWdAfCpY37lLOyYbUnn2k+9vkFHH9qKG+cDc2y47sczPkMt9sMQW7IVHsNRURU18pYbQtnbWhywR8QwYGDLzoNPskHVdXRfjTTPqWM833KWRGcdWF1ydtPFMZUXL755pv4x3/8R5x22mmYP38+nn/++bxt/vSnP+Hss8/G0qVLcfXVV2Pjxo1jMFKCIAhiOEzmarGTWTgPFb15Cvp/9Vv0PPIk0stWQHr7LUQu/gCCN14PYc+usR5eUZj7E+szrQ0lYV5Tf6DyOZfjwbkEgJ7ONESJw3X/0IQTTg2P6hiyxY0qcy6YC6hp5vUtt8XMUDnvkhp84NIaVNdJcLl5TJnhRjyqoa1FsXooLl7hd4yNUWoxqVUnBTF3kdfsG/lcj9VuoxQHsBSYI7d01cBVeQfj2k814aZ/n465C3047dwIVqwOIlwlWr0hWW/PUsc9b7EPS1b5ceo5EavwUDE4jrOcY9nFFazqCpgViMFle0+eenYEssv8XVDf7LJ+H0T7zXPc1qJA10sPiZ3sjKkPG4/HMX/+fFx++eW4+eab815/4okncNttt+HWW2/F8uXLcffdd+NTn/oUnnzySVRVVQEALr300oL7fvDBByEII3sXcKh3aioFG894GxcxOaD5RYwkAs+B4wCe58Hz3KSaXzxv5uoJmWMjsminnIq+Z16EfP+f4f3urXA9/gjkp55A8hOfRuJLX4ZRXVOxzx7KHAtl3J94nwHOCyhJc3Evy+WvJwSeh27oEAeZF7JohhxKgjim84eFmBqGKaYFYfTFrsiLFf0uud1mWCYLO/V4Bi+WU4xy5te8RX7MW5T9efZ8Hw7sSWL7phiOHEjC6+MxZbrbCk0GAFnmoCgGfP7S5kVNnQsf/ccp+NWPDuDw/iQO7Tcd0FBEGpFzedGVdTjhtBCmzy5cWbdUfP6s9PjAJVlnvGlqtqiNKHHw+oSSbtjxPIerP95U8ufPXejDe2/2Ixgqfl4bmtz41BemorrWPHeBoIhLPlyP3dvjmDbTA0Hg4HLxiPVr4HkOr7/YAwCYOdc7YvN2Iv+NHFNxuWbNGqxZs6bo67/97W/x4Q9/GFdccQUA4NZbb8ULL7yAhx56CJ/85CcBAH/9619HZayiyKO6urQE5tEmEqGwX6Jy0PwiRoJguxcJ3o1I2Of4XToZ5lfwqAealEQ45Bu3fyfGnM9+Cvj4dcBPfgLuttvgueMX8Nz3f8DXvgZ8/vOAu3LVEsuZY03NcQDd0NMyXLIMXeURCstDuq7BgBeqrqIqEhjw/aHIbET5EzC/Zj6qPGM3fwLBbGXNUGRoxzxcwu0+KGIMHtFTsc/3B0SrH2Skyj3szxnK77CTz+Dx/N868cozXdA0YM6CAGpqAghXSVYvxTUfqMPTj7VixqyB508u02b4cHh/0nIup88MQRSHf6OguhqYOWvYuynKwiUSgCMAgHCVjJqa4TmkxTjhFDeeergDcxcGBzyvua+ddb4fZ52f/TkYltDemkJfF4eNb/cjEBRx4aXNI96vciL+jRy3GaSKomDz5s347Gc/az3H8zxOOeUUbNiwYdTHo6o6+voSg284ivA8h0jEh+7uGHR9/BdLICYWNL+IkaQ/mkQ0lkRvbwKdUnRSza9oNIVoMok+VwKdndHB33As8+mbwK39MDw//D7cv7sL3Fe+Au2nP0P869+EcsVV2UaAI8BQ5pgom0VQ2o8o6BFSEHQZHh83pOsajylQNAV9vUl0ugd+/zzvUhhxoDM+dvOHF7LnyO0Z2jEPl1hUQTSWhCGJFft8eyisAXXInzOc32FuHzB3kRc7t5j5hY1TJXR2Rq1qtgCwek0Acxa5UNfoKmuMoarsPnwBAb298bLGNlYYnAGPl0cirsPn5ys6//75GzMgiMOb46yK7x9/vQ+GAaw5vwqxeAKxETrd4/VvZDDogSQNLKDHrbjs7u6GpmmoqXGGzFRXV2P//v0l7+cf/uEfsHHjRiQSCZxxxhm44447sGDBgiGNaTxdXDu6bozbsRETH5pfxEhg6Ga4nWE4f5dOivllcGYxVIOb+McyGlTVIPpfP0Dik/8A339+C64nHkXgs59C+n9/ivjXboFy9nnACOavljPHWDGO/m4DKxeciT2JbvgCwtCua2Ze8OAnxLyQXTZR4h/iMQ8THjwMw8xjrtTn21t7yK7hX5uh/g477ZwqS1xOneGBrhsIBM35FwgJkCTOqlpazv5rG7IOdCAkToi5x2hodmHvzgQCocrOP0E0f78M5zNY3uXRwym4vTxWnhSsyJgn4t/IcSsui2EY5fVcuuOOOyo4GoIgCKIUJnVBH3ZsVNCnLLTZc9H3uz9Bem0dfLf+B6S330Lo2iuhnHQKYl//FtQTTxr1MbGCPn09KrzpWrh1bchtAqwqwhOkRY29BYmvzAJGIwVf4YI+gLO1x2hViy3E9NkezF/iQ2ebgoZMMRsmLqtrBy5MMxB1jdmiMoEyqxyPNY1TTHE5UkWIKom96uzchT5Ha5VjnXH7Gy8SiUAQBHR0dDie7+rqynMzCYIgiPEN+7M71hUxKwE3iXt4jgbpk05BzxPPovfue6AuWAj5tXVmZdmPXAnh/dGtEO/zCxBEDr3dKqJ9ZohsuW1IGOxmw1i3GCkVu7gcq7572WqxlTtndnE50vlx5XLNJxvxT/8+HWLGSWM9KatrpYHeNiD+gGC5sxNBpNlZuMwPSeYwa97wigaNBvbvyLzFEy8vspKM27/ysixj8eLFWLdunfWcrutYv349VqxYMXYDIwiCIMpmMgsvJiImo3AeNTgOyoUfRPfz69D3s19BmzYDrmf+jqpzTkPgMzeOWvsSjuMQCouIxzR0d5pFX4brXE6UeTEenEvW57KSgtwhLt1je204jnNEPMye70MoImLRiqEXGeI4DnUNGSd0gonLqTM9+Pr/m4M5C8e/WGM3nXgemLNg/Ivh0WRMv1WxWAxbt27F1q1bAQCHDh3C1q1b0d7eDgC48cYbce+99+Khhx7C7t278a1vfQvJZBJr164dy2ETBEEQZTKZBRg5lyOIICB19bXoWvcW+r/3I2h19XA/9AAip54A/5e+AP7I4YoPIZgJjT1y0GzlMFTnks8ssSaKc+l2OJdjJC5HOyx2jMVlLrUNMr74zZmYPX944qqu0QyrDYYnlricSPgzIczTZnvg8U6M7/hoMaazbtOmTbjhhhusn7/zne8AAG666SbcfPPNuOiii9DV1YXbb78d7e3tWLhwIe68806rxyVBEAQxsZiMAoynnMuRR5aR/MSnkfzwR+C561fw/vR/4PnDb+H+8/8h8bFPIHHzF6HXN1Tko0OZBfnh/WZLCJYHVy5Z53JizAunczk2y8NszmXlzpm9oI97DHMuK8kpZ0UAAItXVKadBwHMmufBcacEsXJ1aKyHMu4YU3F54oknYvv27QNuc/311+P6668fpRERBEEQlSBb3GSMB1IBLOdyErqyY47Ph8Tn/wXJG26E9+e3w/PrX8J7xy/g+f1vkbjhxoqITLNCZz80zazQOPScSyYuJ4arYS9uM3bOZeXd3vHsXI4UkWoJH7yybqyHMakRRR4XX10/1sMYl0zObxVBEAQxLpmMzuVkroQ7XjDCEcS+/k10vvU+4jf9M8Dz8N7xC1SdsAy+//gK+NajI/ZZK08MOtpyDDXkbaLmXAoCN2aO3mgW9JFdPHievrMEMdJMjN94BEEQxAQns4ibhNal5cqSuKw4Rk0NYt/4Njrf2lQxkenxCjj+1Gyo21AFyEQTlyzn0hcQxizEmxX0GY2cy8kaEksQYw19swiCIIiKM7mL3kzeYkXjlUqLzJPXhAEAcxcNvQokm+sTpaCP1y/A5eZRWz/0HovDZTT6XPr8AiSZs3qaEgQxstA3iyAIgqg4kzl0NJtzOfmObbzDRGb8c5+H939vh+c3d5g5mXf/BqmPfBS45WtAsLbs/QZCIr783VmQpKFfU1aUhucnhriUJB7/9O/T4XKN3U0SJsQrKcglmccnvzAVHi/dDCKISkDfLIIgCKLiTGYBNpmF80Qh18k0RAnu394JzJ0L/2c/DWHb1rL36fUJkOShL5OssNgJtNQKhsQxLXJj5VxWWJA3NLsQikgV/QyCOFaZOL/xCIIgiAnPZBRgHIXFjhuYyOx6ZxPiX/k6EArB9Zd7UXXGiQh+7CMQ33lr1MbCQjwFnuZFqbBzNZEEOUEQTujbSxAEQVQc5u5NRgFGBX3GH0akCol/+yqwfz9i/3kbtIZGuP72GCIXnI3QlZdCeuUlwDAqOoYFVQsxNzIPYVekop8zmRB5002UeMraIoiJyuT7K08QBEGMOyZzQZ+scJ58xzbh8fuR/OxN6HpzI/p//FNoM2ZCful5hC//EMIXnQP58UcBTavIRzf5m3Fy06mT8oZKpWj2T8HKulWYWzV/rIdCEMQQod94BEEQRMWx8hInoQDjJnGblUmDy4Xk9R9D17q30fer30BduBjS228hdON1iJxynJmfGY+P9SiPeURexNLa5fBL/rEeCkEQQ4TEJUEQBFFxJrVzOYmPbdIhikitvRLdL6xD75/+DOW0MyDu3YPAV/4F1asWwfu9/wTX1jbWoyQIgpiwkLgkCIIgKg5zInySb4xHMvJM5nzSSQvHQTnvAvQ++Bi6n3kJycuvAtfbC9+Pf4Dq4xbD/8WbIGzfNtajJAiCmHDQX0KCIAii4iyrXYGr5l+DoCs01kMZcTgq6DOhUZetQP8v70LXmxsR/+zNMCQZnj/9HlWnr0bwI1eOSvEfgiCIyQKJS4IgCKLicBwHj+gZ62FUBLfgAgC4RPcYj4QYDvqUqYjd+l10bdiC6Le+C615ClzP/N0s/nPuGXDd80cgmRzrYRIEQYxrSFwSBEEQxDBYUrMM58+8CPXe+rEeCjECGMEQEp+7GV1vvIe+X9yJ9LIVkN5/D8EvfA7VKxfC991bwR8+NNbDJAiCGJeQuCQIgiCIYSDyIgnLyYgkIXXF1eh5+kV0P/IUkpesBdfTA+9PfoSq45ci+MkbIL22jkJmCYIgbJC4JAiCIAiCKAbHQT3pZPTfeTe63t6E2D//K4xwGK5HH0b4kgsQOfs0uP/0eyCRGOuREgRBjDkkLgmCIAiCIEpAb2pG/GvfQOe7W9F3+y+QXrYC4ub3EfjiTahesQC+//wm+P37xnqYBEEQYwaJS4IgCIIgiHJwu5G65jozZPaxp5G87HJw/f3w/vS/UbV6OULXXA75b48DqjrWIyUIghhVxLEeAEEQBEEQxISE46CuPhH9q09E7GgL3Hf/Bu4//R7yc89Afu4ZaI1NSF53A5LXfwx6U/NYj5YgCKLikHNJEARBEAQxTPSGRsS/8nV0vbMZvXffA+Xsc8EfbYHvh99D1arFCN5wDeRnngI0bayHShAEUTFIXBIEQRAEQYwUogjlwg+i994H0fXGe4h/4UswqqrhevIJhD5yFapWL4f3v38AvvXoWI+UIAhixCFxSRAEQRAEUQH06TMQ+/o30blhK3rvvBvK6WsgHDwA323/iaoVCxH86IchP/EYkE6P9VAJgiBGBBKXBEEQBEEQlUSWoVyyFr0PPIqu9W8j/tmbYUQicD31N4Q+/hFUL58P3ze+BmHb1rEeKUEQxLAgcUkQBEEQBDFKaLPnInbrd9H53nb0/u7/kDr/QnDd3fD+8meoOuNEhC84C+67fwOur3esh0oQBFE2JC4JgiAIgiBGG0mCctGH0PeH+9C5YRui3/hPqHPnQXrnbQT+7Z9RvWQuAp/9FKSXXwR0faxHSxAEURIkLgmCIAiCIMYQo74eiZu+gO5X3kT3408jcf3HYAgi3A/8GeErLkbVCcvgve3bEHbuGOuhEgRBDAiJS4IgCIIgiPEAx0E94UREf/xTdG7aib7bfwHl5FPNIkD//UNUnXo8wuetgedXPwfX2jrWoyUIgsiDxCVBEARBEMR4w+dD6prr0PvXv6HzrfcR+9o3zLDZ996F/5Z/R/Xy+Qh9eC1c998HxGJjPVqCIAgAJC4JgiAIgiDGNfq06Yj/87+aYbPPvIT4Z/4JRnUN5OefRfBzn0bN4jkIfO7TkJ57BlDVsR4uQRDHMCQuCYIgCIIgJgIcB3XZCsT+8zZ0vrcNPfc9hORV1wAA3Pffh/A1l6N62Xz4v/IvkNa/SoWACIIYdUhcEgRBEARBTDREEemzzkH/z+9Ax+Zd6PvFnVDOPhdcdxc8v70T4UsvRNWKhfD9x1cgvvE6CU2CIEYFEpcEQRAEQRATGZ8PqSuuRu+9D6Lz/Z3o/8H/QDl9Dfi2Vnjv+AUiHzoPVcctge+bX4f47tuAYYz1iAmCmKRwhkG/YUohndbQ0xMf62E44HkO1dV+dHZGoet0GYmRheYXUUlofhGVhuYYwLW2wvXYX+H664OQXl8PLrPk06bNQOrStUhddjnUJcsAjhvjkU48aH4RlWS8zq9w2AtJEgbchsRliZC4JI41aH4RlYTmF1FpaI454VuOwPXow3A9/CCkt96wntemTUfqoouRuuhiqCesBoSBF46ECc0vopKM1/lF4nIEIXFJHGvQ/CIqCc0votLQHCsOf+ggXI88DNcjD0J6523reb22DqkLPojUBy9G+rQzAFkew1GOb2h+EZVkvM4vEpcjCIlL4liD5hdRSWh+EZWG5lhp8C1HID/xGFxPPAZp3cvgNA0AoAdDUM47H6mLLoZy9rmAzzfGIx1f0PwiKsl4nV8kLkcQEpfEsQbNL6KS0PwiKg3NsfLhujoh//1JuJ54FPILz4FLJgEAhtsN5cxzoFxwEVLnng+jrm6MRzr20PwiKsl4nV+liEtxlMZCEARBEARBjGOMqmqkrrkOqWuuA6JRyM8/C9fjj0B++im4nnwcricfRwBAetVxUM67AMoHLqCCQARBOCBxSRAEQRAEQTjx+6FcfCmUiy8FFAXSKy/B9fSTkP/+JKR33ob0ztvwff+70BqbMkLzfCinrQG83rEeOUEQYwiFxZYIhcUSxxo0v4hKQvOLqDQ0xyqEYUDYthXy00/C9fcnIb71BjhdN19yu6GcvgbKBy6Ect750Juax3iwlYPmF1FJxuv8orBYgiAIgiAIYuTgOGgLFyGxcBESn/8XcJ2dkJ/9O+Snn4L83DNwPf0UXE8/BQBQFy4yczXPPhfpE08G3O4xHjxBEJWGxCVBEARBEAQxJIzqaqSuvhapq681w2dfXw/5709CfvpJiFu3QNy6Bd5f/BSGxwPllNOQPuscKGedC23OXMrVJIhJCIXFlgiFxRLHGjS/iEpC84uoNDTHxh5+/z7Izz8L+flnIb38Ivhov/WaNmUqlLPOhXLWOUifsQZGMDSGIy0fml9EJRmv84takYwgJC6JYw2aX0QloflFVBqaY+OMdBrS229Ceu4ZU2y+9671kiEIUI87Acrpa5A+fQ3Sx50AuFxjONjBoflFVJLxOr9IXI4gJC6JYw2aX0QloflFVBqaY+MbrqMD8ovPWc4m395mvWZ4PEivPskUm6edAXXZCkAcX5lcNL+ISjJe5xcV9CEIgiAIgiDGHUZNDVJXXI3UFVebFWi3bIb86kuQXn4R0rpXIb/4POQXnwcA6MEQ0qecivRpZ0A5bQ20hYsoX5MgxikkLgmCIAiCIIixg+OgLV6CxOIlSPzD5wBVhbhxA6RXXoL80ouQ3lgP15NPwPXkEwAAvaYGyqlnIH3SKUifdIopNnl+jA+CIAiAwmJLhsJiiWMNml9EJaH5RVQammOTiFTKzNd8+UXIL78I8Z23wKmq9bIeDiO9+iSkTzoV6ZNOhrp8JSBJFR0SzS+ikozX+UU5lyMIiUviWIPmF1FJaH4RlYbm2CQmGoX05uuQXl8Haf06SO+8BS6Vsl42PB6kj1+N9IknI33yqWaBIK93RIdA84uoJON1flHOJUEQBEEQBDG58PuRPuscpM86x/w5lYL47juQXl8Hef2rEN94HXLG5QQAQxShLluO9PGroR6/GunjV0NvnkJ5mwRRAci5LBFyLoljDZpfRCWh+UVUGppjxzCaBnHLJkjrX4X02npIr70KvqPDuUl9gyU008edAHX5CsDjKfkjaH4RlWS8zi9yLgmCIAiCIIhjC0GAunQ51KXLzQJBhgF+7x5Ib70B6a03IL79FsQtm+B6/BG4Hn8EQMbdXLI0624edwL0adPJ3SSIMiFxSRAEQRAEQUxeOA76rNlIzZqN1NXXms/FYpA2vAPx7Tct0SlteBfShneBO38FwKxKm16+Eir7t2Il9IZGEpwEMQAkLgmCIAiCIIhjC58P6VNPR/rU05EATHdz/z5TZL79JsS33jTdzWefhuvZp623aXX1UFeshLZiFXDGKeBmLQRqasfsMAhivEE5lyVCOZfEsQbNL6KS0PwiKg3NMWLYpFIQt26GuOFdiO+9C/G9DRC3bganaY7NtKZmqMtWQF2+AurSZVAXL4Xe1EwOJzFkxuvvL8q5JAiCIAiCIIih4HJBXbEK6opV2ecSCbNY0MYN8G99H+rrb0DYvg2uI4fhevJxazM9HIa6eCnUxUugLl4KbfESqPMXAi7XGBwIQYweJC4JgiAIgiAIohQ8HqjHnQD9hNXwV/vR2xmF3h+FuHkTxI3vmv9veh/iti2QX30Z8qsvW281RBHa3HlQFy3JCs9FS2DU1ZHLSUwaJrW43LNnD772ta8hGo1ClmV87Wtfw/HHHz/WwyIIgiAIgiAmCz4f1NUnQl19YvY5VYWwexfEze+bgnPz+xA2vQ9x6xaIW7cAD/zZ2lSPRKDNWwB1/kKoCxZYj0l0EhORSZ1zefjwYaRSKcyaNQu7d+/G5z73OTz11FND2hflXBLHGjS/iEpC84uoNDTHiEoy1PnFtbc7BKe4dQuEXTvApVJ529pFpzZ/fub/BdDr6kl0TnLG6++vYz7nsrm52Xo8a9Ys9Pf3wzAMcPSFJAiCIAiCIEYZo7YW6TPPRvrMs7NPahqE/XshbNsGccc2CNu2Qty+DcKuHZBeXw/p9fWOfejBELTZs6HNmgNtdvafOmsO4PeP8hERhJMxFZdvvvkm7rrrLmzatAnt7e345S9/ibPOOsuxzZ/+9CfcddddaG9vx8KFC/Ef//EfWLZsWdmf9eyzz2LhwoUkLAmCIAiCIIjxgyCYQnHWHCgXfSj7PBOd27dD3L41Kzr37IL07juQ3n0nb1daQ6MpNnOEpzZ1GhUTIkaFMRWX8Xgc8+fPx+WXX46bb7457/UnnngCt912G2699VYsX74cd999Nz71qU/hySefRFVVFQDg0ksvLbjvBx98EIJg2raHDx/GD37wA9xxxx2VOxiCIAiCIAiCGCnsovPCD2af13XwR1sg7N6V/bdnF4RdOyEc2A/haAtgKyQEAAbHQW9sgjZ9BvTpM6BNnwFt2nRo02dCmz6D8juJEWPc5FzOnz8/z7m86qqrsGzZMtxyyy0AAF3XsWbNGnz84x/HJz/5yZL2G41Gcd111+Hf/u3fcNpppw15fOm0hr6+xJDfXwl4nkMk4kN3d2xcxWMTkwOaX0QloflFVBqaY0QlGbfzS1HA79/nFJ67d4E/sB/84UPgdL3g2wyPxxSe06ZDmzET+tRp0KdMhd7cDK15KozaWoDnR/lgjl3G6/wKBj0TN+dSURRs3rwZn/3sZ63neJ7HKaecgg0bNpS0D03T8IUvfAFXX331sIQlAIgij+rq8RnHHon4xnoIxCSG5hdRSWh+EZWG5hhRScbl/GqsAk5alf+8ogAHDgB79pj/9u61HnO7d0PcthXYtrXwPmUZmDIFmDoVmDat8P+hUGWP6xhkXM6vQRi34rK7uxuapqGmpsbxfHV1Nfbv31/SPl566SW89tpr6OjowJ//bJZ8/sMf/oBgMFj2eFRVJ+eSOKag+UVUEppfRKWhOUZUkgk7vyINwHENwHGn5L3E9XSD378fwr694A8eAH/kMPjDhyAcOgT+yCHwTJQWQfcHYNTXQ69vyPyzPW5ogJF5zgiFKQR3EMbr/JrQzmUxyqn2etZZZ2Hz5s0j9tnj6eLa0XVj3I6NmPjQ/CIqCc0votLQHCMqyaSaX8EwtKVhpJcuL/x6Mgn+yGEIRw6DP3TQ/P/wIQiHD2WE6GErDHcgDJcLel29+a++AXptHfTqKhjVNdCrqqFX18CoNv/Xq6oBt7sCBzsxmIjza9yKy0gkAkEQ0NHR4Xi+q6srz80kCIIgCIIgCKKCuN3QZ82GPmt28W1iMfBtreBbW8G3HYXQetR83Ho0868VfHsrhIMHIBw8UNLH6j6/KTyrq0zhWVUNvaoaRigEPRSCEQqbj4Pm/+bjEODzkUM6BoxbcSnLMhYvXox169bh7LPNXkC6rmP9+vX42Mc+NsajIwiCIAiCIAjCgc8HfeYs6DNnDbxdOg2+vc0UnJ0d4Do6wHd2gu/qBNfZAb6rE3xHB7iuTvCdnRAO7INwYF9ZQzFE0RKaRigEIxiG4ffD8PlgeH3m/z4fDJ+/8GO2jccLuGQYLreZe0qCdUDGVFzGYjEcOJC9a3Ho0CFs3boVNTU1qK2txY033ogvf/nLWLx4MZYtW4a7774byWQSa9euHcNREwRBEARBEAQxZCQJelMz9Kbm0rZPp8F1dZmis7MDXHcX+N5ecL294Pp6so97M4/7zJ/5vl6InZ0jOnTD5bKEpuF2w5BlwOWG4WL/Zx4LAsALgCDAEO2PRdtrvPlz5jWrIq8sAZ/5FFDVOKJjHw3GVFxu2rQJN9xwg/Xzd77zHQDATTfdhJtvvhkXXXQRurq6cPvtt6O9vR0LFy7EnXfeafW4JAiCIAiCIAhikiNJMOrrodXXQyv3vakUuL4+8H094GKxzL8ouFgMiMetx/bnuVgMXDwGLhoFl0yAS6YAJQUuZf5DKgWuvw98R3sljtYknQS+8d3K7b9CjJs+l+OddFpDT098rIfhgOc5VFf70dkZnXDJvsT4h+YXUUlofhGVhuYYUUlofhEAAMMAFAWckgKSKXCppPUYmgZO1wDN/Mdp2cdQ1cxreuY51XzdMADDACeKCFx+MTp1aVzNr3DYO/mqxRIEQRAEQRAEQYw5HAe4XDBcLiAAjJQM5HkOiPiBzugI7XH04Md6AARBEARBEARBEMTEh8QlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhsQlQRAEQRAEQRAEMWxIXBIEQRAEQRAEQRDDhjMMwxjrQUwEdN2ApuljPYw8JElAOq2N9TCISQrNL6KS0PwiKg3NMaKS0PwiKsl4nF+CwIPnuQG3IXFJEARBEARBEARBDBsKiyUIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYlLgiAIgiAIgiAIYtiQuCQIgiAIgiAIgiCGDYnLcc6f/vQnnH322Vi6dCmuvvpqbNy4ccDt//a3v+GCCy7A0qVLcfHFF+Oll14apZESE5Fy5tfOnTtx88034+yzz8b8+fPxxz/+cRRHSkxEyplff/7zn/GRj3wEJ5xwAlavXo1PfOITeP/990dxtMREpJw59swzz+CKK67A8ccfjxUrVuDSSy/Fww8/PHqDJSYc5a7BGHfccQfmz5+P73//+xUeITGRKWd+Pfjgg5g/f77j39KlS0dxtKVD4nIc88QTT+C2227DP/3TP+Ghhx7C/Pnz8alPfQpdXV0Ft3/33XfxpS99CVdeeSUefvhhnHvuufjc5z6H3bt3j/LIiYlAufMrkUhgypQp+NKXvoTa2tpRHi0x0Sh3fr3++uv44Ac/iN///ve45557UF9fj0984hNoa2sb5ZETE4Vy51goFMJnPvMZ3HfffXjkkUdw5ZVX4mtf+xrWrVs3yiMnJgLlzi/G5s2bce+992L+/PmjNFJiIjKU+RUOh/HKK69Y/55//vlRHHEZGMS45corrzS+/e1vWz9rmmacdtppxp133llw+y984QvGZz7zGcdzV111lXHrrbdWdJzExKTc+WXnrLPOMv7whz9UcnjEBGc488swDENVVWPlypXGI488UqkhEhOc4c4xwzCMyy67zPjpT39aieERE5yhzK94PG5ceOGFxksvvWRcf/31xve+973RGCoxASl3fj3wwAPG6tWrR2t4w4Kcy3GKoijYvHkzTj31VOs5nudxyimnYMOGDQXfs2HDBsf2AHDaaacV3Z44dhnK/CKIUhmJ+ZVIJKCqKkKhUIVGSUxkhjvHDMPA+vXrsXfvXhx33HEVHCkxERnq/Pre976HE088EaeffvoojJKYqAx1fkWjUZx55plYs2YNPve5z2HXrl2jMNryEcd6AERhuru7oWkaampqHM9XV1dj//79Bd/T0dGB6urqvO3b29srNk5iYjKU+UUQpTIS8+tHP/oRGhsbcdJJJ1ViiMQEZ6hzrL+/H2eccQYURQHP87j11ltx8sknV3q4xARjKPPr+eefx2uvvUZ5vMSgDGV+zZo1C7fddhvmzZuHvr4+/OY3v8G1116Lxx57DPX19aMx7JIhcTnBMAwDHMcVfb3QawNtTxB2BptfBDEcSp1fv/71r/HEE0/gD3/4A2RZHoWREZOFweaYz+fDww8/jHg8jvXr1+O//uu/MG3aNBx//PGjOEpiolJsfnV1deGWW27Bz3/+c3g8njEYGTEZGOj314oVK7BixQrr55UrV+Kiiy7CX/7yF9x0002jNMLSIHE5TolEIhAEAR0dHY7nu7q68u50MGpqavK27+zsLLo9cewylPlFEKUynPl111134Ve/+hV++9vfYt68eZUcJjGBGeoc43ke06dPBwAsXLgQu3fvxh133EHiknBQ7vzauXMn2tvbce2111rPaZqGN998E3/84x+p8jXhYCTWYJIkYeHCheMy2oxyLscpsixj8eLFjip2uq5j/fr1jjsXdlasWIFXX33V8dy6deuKbk8cuwxlfhFEqQx1ft1555343//9X9x5553jtsQ6MT4Yqd9hhmFAUZQKjJCYyJQ7v5YuXYpHH30UDz/8sPVvyZIlWLt2LR588MFRHDkxERiJ31+apmHnzp3jsno/OZfjmBtvvBFf/vKXsXjxYixbtgx33303kskk1q5dCwD48pe/jPr6enzpS18CANxwww24/vrr8Zvf/AZr1qzBE088gU2bNuG73/3uWB4GMU4pd34pimK1tVEUBa2trdi6dStCoRCamprG7DiI8Um58+vXv/41fvKTn+BHP/oRmpubrVxxr9cLn883ZsdBjF/KnWN33HEHFi1ahOnTp0NRFLz88sv461//im9/+9tjeRjEOKWc+eX1evMiLbxeL8LhMObOnTsWwyfGOeX+/vrZz36GFStWYPr06ejr68Ndd92FI0eO4MorrxzLwygIictxzEUXXYSuri7cfvvtaG9vx8KFC3HnnXeiqqoKANDS0gKez5rPq1atwo9+9CP8z//8D3784x9jxowZ+PnPf47Zs2eP1SEQ45hy51dbWxsuu+wy6+c77rgDd9xxB9auXYvvfe97oz18YpxT7vy65557kE6n8fnPf96xn5tuugk333zzqI6dmBiUO8eSySS+/e1v4+jRo3C73Zg1axZ+8IMf4KKLLhqrQyDGMeXOL4Ioh3LnV19fH2655Ra0t7cjFAphyZIluO+++/D/27u3kCjbNYzjl1lpmiamCZphShiopZD7jLSdZNIWSqnQNpQoGAhmBupBhQolaiaiaUWlZNiGoLSITqwMojKDQooow6zEDY7tLNfBwoFJ60uG9Vmu/+/Me555n3s8kcv7fZ/x9PQcq4/wUxaDg4ODY90EAAAAAODvxr9cAAAAAABmI1wCAAAAAMxGuAQAAAAAmI1wCQAAAAAwG+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2SaOdQMAAPxpiouLdfTo0WH10NBQnThx4t9vCACAvwDhEgCAEdjZ2amiomJYDQAAjIxwCQDACCwtLeXv7/+P6z59+iRra+v/fUMAAPzheOYSAIDf1NbWJm9vb12+fFnp6elasGCBdu/eLUnq7u5WVlaWwsLC5Ofnp02bNunRo0cm7+/t7VVaWpr8/f21cOFClZaWKi8vT1FRUcY1xcXFCg4OHra3t7e3Tp8+bVKrra1VTEyMfH19FRkZqfLycpPXMzIytG7dOjU2Nio2Nlb+/v6Ki4tTa2urybpv376prKxMK1askK+vrxYtWqSMjAxJ0pkzZxQQECCDwWDynrt378rb21tPnz4d5W8RADBeMbkEAOAnBgYGTH4eHByUJOXn52vZsmUqLCzUhAkT9OXLFyUmJqq3t1fp6elydHRUdXW1EhIS1NDQIGdnZ0nSvn37dO/ePWVmZsrJyUmVlZV69eqVJk4c/Z/jiooKFRQUaMeOHQoKCtKTJ09UWFioKVOmaPPmzcZ17e3tys/PV1JSkqysrJSfn689e/boypUrsrCwkCRlZWXp0qVL2r59u4KCgtTT06Nr165JkmJjY5WXl6f6+nqtW7fOeN0LFy7Ix8dHc+fOHXXvAIDxiXAJAMAIuru75ePjY1I7cOCAJGn+/PnKzs421mtra9Xa2qorV67Iw8NDkhQWFqbo6GhVVlZq7969am1t1Y0bN1RQUKCVK1dKkoKDgxUZGampU6eOqre+vj6VlJQoKSlJKSkpkqTw8HB9/PhRpaWliouLk6WlpSSpp6dH1dXVxr4GBweVnJysFy9eyMvLS8+fP9f58+e1f/9+bd261bjHUI/29vZavny56urqjOHSYDCooaFBaWlpo+obADC+ES4BABiBnZ2dqqqqTGqTJ0+WJC1evNikfufOHfn4+GjmzJkm087AwEC1tLRIkh4/fixJJrfA2traKiwsTM3NzaPq7cGDB+rv71d0dLTJfiEhITp27Jjevn0rNzc3SZKbm5sxWEqSl5eXJKmjo0NeXl5qamqSJJOp5I82bNighIQEvX79Wu7u7rp69aoGBga0atWqUfUNABjfCJcAAIzA0tJSfn5+JrW2tjZJ0vTp003qXV1devjw4bBJpyTNmjVLkvThwwfZ2toOO/znx2v9jq6uLklSTEzMiK+3t7cbw+WPJ9xOmjRJkvT582dJ/53Q2tjY/HJ6GhwcLHd3d9XV1Sk1NVV1dXVasmSJHBwcRt07AGD8IlwCADBKQ88qDpk2bZp8fX2Vk5MzbO3QtNPJyUkGg2HY6bKdnZ0m662srPT161eTWk9Pz7D9JKmsrGzEcDp79uzf/iwODg7q7+9XX1/fTwOmhYWF1q9fr3Pnzmn16tW6f//+sMODAAAgXAIAYKbQ0FA1NjbK1dX1p5PIoSnozZs3jc8zGgwG3b592yTUubi4yGAwqKOjQy4uLpKkxsZGk2sFBATI2tpa7969G3aL7miFhIRIki5evGhyENCP1q5dq6KiImVmZsrFxUXh4eFm7QsAGH8IlwAAmGnNmjWqqanRli1btG3bNrm7u6u7u1vNzc1ydnZWQkKC5syZo6ioKOXk5Kivr0/Ozs46fvz4sNtkIyIiZG1trczMTCUmJqqtrU01NTUma+zt7ZWSkqKDBw/qzZs3CgwM1Pfv3/Xy5Us1NTWppKTkt3v39PTUxo0blZubq87OTgUGBqq3t1f19fUqKCgwrnNxcVFERIRu3bqlXbt2GQ8MAgBgCOESAAAzWVlZ6dSpUyosLFRxcbE6Ozvl6OioefPmmRzgk5ubq5ycHB06dEg2NjaKj4+Xn5+f6uvrjWscHR1VVFSk/Px8JScny8fHR4cPHzZOO4fs3LlTM2bM0MmTJ1VVVSUrKyt5eHgMW/c7srOz5erqqtraWpWXl8vR0XHEyeTSpUt169atXx7+AwD4/2UxOPSlXQAA4F839B2SN2/eHOtW/lFqaqrev3+vs2fPjnUrAIA/EJNLAADwS8+ePVNLS4uuX7+uI0eOjHU7AIA/FOESAAD8UlJSkrq6uhQfH6/o6OixbgcA8IfitlgAAAAAgNkmjHUDAAAAAIC/H+ESAAAAAGA2wiUAAAAAwGyESwAAAACA2QiXAAAAAACzES4BAAAAAGYjXAIAAAAAzPYfEC0zLr/JWK8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5cAAAJyCAYAAABQazRgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wU9fnA8c/M1tvrhTu6gBSl2guiKIoNe8cSUdTYjSYx1iQajSaGaDRGE/VnSYyx994VK1aKINLh4I7rbeuU3x+zMzt7u3fcwSEHPu+88vJ2dmb2u7tzxz77PN/nq5imaSKEEEIIIYQQQmwCdUsPQAghhBBCCCHE1k+CSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGEEEIIIYQQm0yCSyGE2MqYpsmUKVMYNWoUK1euzLj/s88+Y9SoUc7/d9ttN0488UTeeuutrOebP38+u+++O62trVnvv/DCCxk1ahT/+c9/0rafd9553H333V0ac2VlJb/+9a/Zf//9GTduHJMnT+aCCy5gzpw5XTq+p82ePZuHHnpoizz2prjqqqsYNWoUv/3tbzPuO+6447jqqqu2wKg6dtdddzFq1ChmzpyZcd+ll17KGWecsQVG1X3279TixYudbdl+JzaHxYsXM2rUKD777LPN/lhCCLGpJLgUQoitzNdff01lZSUAL7/8cof7/eUvf+Hxxx9n1qxZFBUVcfHFF2cN5u644w5OOeUU8vLyMu6bPXs23377bdbzn3feeTz00EM0Nzd3Ot6mpiZOPvlklixZwhVXXMF9993HpZdeiqqqfP31150eu7l89NFHPPLII1vksXvCM888Q3V19ZYeRpfNnj2buXPnbulh9KjHH3+cQw89dEsPQwghehUJLoUQYivz8ssvEwqFmDBhQqfB5ahRo9hpp52YPHkyd955J4WFhbzwwgtp+6xYsYIPP/yQ448/PuP4RCLBzTffzC9+8Yus599tt90oKiri+eef73S8r7/+OrW1tdx///0cddRR7LXXXhx//PHcfffdnHvuuRt+wluQruvE4/EtPYw0w4cPp6CggPvvv39LD6VLioqKGDVqFPfee+9mOX80Gt0s592QnXbaibKysi3y2EII0VtJcCmEEFsRXdd57bXXmDJlCscffzxLlixh0aJFGzwuJyeHwYMHs27durTtzz77LKNGjWLIkCEZxzzyyCMEg8Gsgaft4IMP5rnnnuv0sZubm/H5fBQWFmbcpyiK8/NVV13Fcccdx1tvvcWhhx7KuHHjmD59OkuWLEk7xjAM/vWvfzF16lTGjh3LIYccwrPPPptx7jfffJMTTjiB8ePHs+eee3LuuedSWVnJXXfdxf/93/9RWVnplA7b5aTuMUybNo3x48czd+5c7rrrLvbcc8+Mx2hfGjllyhT+9Kc/8a9//YtJkyax6667cuutt2KaJu+//z7Tpk1j55135sILL6SpqanT160jgUCAGTNm8MQTT1BXV9fpvp988gknnngi48aNY+LEifz+97+nra3Nud8u9/zss8+49NJL2XnnnTnwwAN59NFHM871xRdfcPrppzNhwgT23HNPrrvuug5Lqds7//zzeeedd/j+++873W/hwoWceeaZTJgwgd13351f/vKX1NbWOvevWbOGUaNG8cILL3DllVey2267cf755zvbX375Za6++mp22WUX9ttvP+eLj/vuu49Jkyax1157cdttt2EYhnPOpUuXcvnllzN58mQmTJjAtGnTeOihh9L2ycb93rcvRXf/f82aNc4xTz75JNOmTWPs2LEccMAB3HfffRnnffTRR5k8eTI77bQT559/PjU1NRt+gYUQopfwbukBCCGE6LpPP/2U2tpaDj/8cHbddVf+8Ic/8PLLL7PDDjt0epxhGFRVVTFmzJiM8+28884Z+9fU1PCPf/yDe++9F1Xt+HvInXfemQceeICmpqaswSPAmDFjiMfjXHnllZx99tmMHj26w3OuXbuWW265hcsuu4xgMMhdd93FzJkzeeONNwgEAgD84Q9/4LnnnuPCCy9kzJgxfPTRR1xzzTUUFRVxwAEHAPDcc8/xm9/8hmnTpnHhhRdimiaffvop9fX1nHjiiaxYsYLPPvuMv//97wCUlJQ4Y6isrOS2227jwgsvpKysjIEDB3byymZ6+eWXGT9+PH/84x9ZsGABd9xxB4Zh8MUXX3DZZZcRjUb5wx/+wKxZs7jxxhu7dW7bqaeeyv3338+DDz7Ir371q6z7LFmyhHPPPZeJEydy1113sW7dOmbNmsXq1at54IEH0va9/vrrOeaYYzj55JN56aWXuPHGGxk3bhzjx48H4Msvv2TGjBkcdNBB3HnnnTQ0NDBr1iyam5u58847NzjeQw89lDvvvJN7772X22+/Pes+9fX1nHHGGWy//fbMmjWLtrY2Zs2axVlnncXTTz+N3+939v3zn//M1KlT+dvf/pZ2Lf3lL3/hyCOP5K677uLpp5/mqquuYuHChaxduzbt/Rg9ejTTpk0DYP369QwdOpQjjzyS3NxcFi5cyF133UUsFuPnP//5Bp8bWNf4448/nrbtT3/6E8uXL3d+L+6//35uv/12zjnnHPbYYw8WLFjA3/72N3Jycjj99NMBeOutt7jxxhs55ZRTOOigg5gzZw7XXHNNl8YghBC9gQSXQgixFXnppZcoKChg3333xe/3M3HiRF5++WWuuOKKtCwgWAGlpmk0Nzdz3333EYlE+NnPfubcb5om3333HUcddVTG49x2221MmjSJ3XffvdPx7LDDDpimyfz589lnn32y7rP33nszY8YMHn74YV5++WVyc3PZZ599mD59OhMnTkzbt6GhgX/84x/ssssugPWhferUqTzzzDNMnz6dlStX8thjj3HLLbdw7LHHAjBx4kRqamr4+9//zgEHHIBhGMyaNYupU6fy17/+1Tn3gQce6PxcXl6O3+9np512yhhvY2MjDz30EDvuuGOnz70jgUCAv/3tb3g8Hvbbbz/efvtt/vOf//D6668zaNAgABYtWsRzzz230cFlXl4eZ5xxBg8++CDnnntu1sD+7rvvpn///txzzz14PB4ACgsLufzyy/n666/TvlSwg3CAPfbYg3fffZc33njDCS5nzZrFzjvvzB133OEcU1FRwYwZM1i8eDEjR47sdLyqqnLeeedx7bXXcumllzJ06NCMff7v//4PgAceeMCZ/zt06FBOPPFE3njjDY444ghn3wkTJvC73/3OuW1nB/faay+uuOIKZ5/XX3+dd955h1dffTXt/XjzzTed4HLvvfdm7733BqzfiV133ZVoNMoTTzzR5eAyLy8v7Vp69NFH+fbbb3nggQfIz8+ntbWVu+++mwsuuICLL74YgH322YdIJMI999zD9OnT8Xg83Hvvvey7777ccMMNAOy7777U19fz5JNPdmkcQgixpUlZrBBCbCXi8ThvvfUWBx10kJPFmTZtGpWVlXzzzTcZ+x999NGMGTOGvffem4ceeohbb72VYcOGOfc3NTURj8cpLi5OO+7rr7/m9ddf58orr9zgmOxjN1S6d/XVVzvn3GOPPfjwww85++yzeeyxx9L2Ky0tdQJLgAEDBjBmzBinGcwnn3yCqqpMnToVTdOc/++9994sWrQIXddZvnw569ev57jjjtvg+LOpqKjY6MASrODMDuYAtttuOwYMGOAElva2+vr6TZrPaX9R8O9//zvr/XPnzuWggw5KG8shhxyC1+vlyy+/TNvX/cWAz+djyJAhVFVVARCJRPjmm2847LDD0l7zXXfdFZ/Px4IFC7o03qOOOop+/frxr3/9q8Px7rPPPmmNpcaPH8+AAQMyxrv//vtnPcdee+3l/JyXl0dxcTG77757xvvhboYUi8W48847mTp1KuPGjWPMmDHcfvvtrFmzBk3TuvTc3L744gtuueUWrrjiCido/frrrwmHwxx66KFpr+Fee+1FbW0tVVVV6LrOwoUL074EAZg6dWq3xyCEEFuKZC6FEGIr8cEHH9Dc3MzkyZOdDq177rknfr+fl19+OaO89fbbb2fQoEGsW7eOO+64g6uvvppx48ZRUVEBWB+qgbRyQ4A//vGPnHzyyeTn56d1go1Go7S0tJCfn+9ss4/tSpC03XbbMXPmTGbOnEl9fT0zZ87k9ttv55RTTnGyrqWlpRnHlZaWOsFrQ0MDuq6z6667Zn2MmpoaGhoaAOjTp88Gx5TNpjZpKSgoSLvt8/nSXjN7m2maJBKJjNe/qwoLC5k+fTr//ve/OeusszLur6mpyXguHo+HoqKijPme2cZsv6fNzc3ous4NN9zgZNTc2s/j7YjX6+Wcc87h5ptvdrJ37cc7YsSIjO1lZWUZ4812nWR7Hn6/P+tzs699sLL0Tz31FBdddBFjxowhPz+ft99+m3vuuYdYLIbX2/WPStXV1Vx22WUceOCBnHPOOc52+5q0s6XtrVu3Dr/fj6ZpGc+to+cqhBC9kQSXQgixlXjppZcAuOyyyzLue/XVV7n66qvTMjTDhw9n5MiRjBs3jh122IHDDz+cf/zjH06AYGcd2y8lsnz5cubOncvDDz+ctv22227jr3/9K999952zraWlBaDD+ZYdKSkp4bjjjuOmm26irq7OCYKyNaipq6tj+PDhzuN4vV4ee+yxjDJg+7x2w5qebIQSCARIJBJp2za2IU9POvvss/nPf/7Df//734z7+vTpk/F66rpOY2Njt96v/Px8FEXh4osvZvLkyRn3l5eXd/lcJ5xwAvfcc0/WRjbZxgtQW1ubMVc423u/sV577TVOP/30tM7F77//frfPE4/HueSSSygqKuKPf/xj2n326/3Pf/4za7A4dOhQcnJy8Hq9Ga/Bhpo2CSFEbyLBpRBCbAXa2tp47733OOKIIzjppJPS7lu4cCG33HILn332WcYcRtvgwYM58cQTefrpp7n00kspLS3F7/fTv3//tG6WAPfeey+6rqdt+9nPfsYZZ5zBwQcfnLbdPjZbt1lbfX19WsMc28qVK/H7/WlZvbq6Or766iunNHbt2rV89913TonrXnvtha7rtLS0dDjHc+jQoVRUVPDcc88xZcqUrPu0z15tSEVFBW1tbVRXVzuZ348++qjLx28upaWlnHjiiTz00EMUFRWl3TdhwgTeeustrrjiCudLhzfeeMMpae2qUCjETjvtxPLly7NmHLvD7/czc+ZMZs2axZgxY/D5fGnjfeyxx2htbXVKY+fOnUtlZWW3xttdsVgsLXus63qnS/x05Pe//z3Lli3jySefJDc3N+2+nXfemWAwyPr16zss6QVrDvPbb7/N9OnTnW1vvvlmt8cihBBbigSXQgixFXj77bedhjwTJkxIu2+XXXbhnnvu4aWXXuowuAQ455xzePLJJ/n3v//trF25yy67ZMyZ22233bIeP2TIEPbYY4+0bfPnzyc/Pz9rOaPt2Wef5cUXX+SYY45h1KhRaJrGJ598wn//+1+mT5/udIEFK5t65ZVXOt1i77zzTifLCTBs2DBOOeUUrrjiCmbOnMm4ceOIxWL88MMPrFixgptvvhlVVfn1r3/Nr371K375y19yxBFHoCgKn376KdOmTWPcuHEMGzaM2tpannnmGUaMGEFxcXGnXWH33XdfgsEg11xzDWeddRZr1qzhf//7X4f7b4wpU6awxx57cOutt3bruHPOOYf//e9/1NbWMm7cOGf7BRdcwLHHHstFF13E9OnTqaqq4i9/+QuTJk3K2iG4M7/61a+YMWMGqqpyyCGHkJuby7p163jvvfe4/PLLszbo6cjJJ5/Mvffey9dff512PZ111lk89thjnHPOOZxzzjmEw2FmzZrFyJEjM77U6EkTJ07k0UcfZfDgwRQVFfHoo492ey7siy++yNNPP835559PU1NT2hzo0aNHU1BQwMUXX8zNN99MZWUlu+++O4ZhOF2L7777bsBasuXiiy/md7/7HVOnTmXOnDl8+OGHPfl0hRBis5LgUgghtgIvv/wyQ4YMyQgswcrCHXbYYbz88sv8/ve/7/AcAwYM4Mgjj+Sxxx7jvPPOIxQKMXXqVK6++mqi0SjBYLDb4/rwww+ZOnVqp8uVTJ48mTVr1vDEE0+wbt06PB4PgwcP5rrrrsvIwvbv35/zzz+fWbNmUVlZydixY5k1a1ZaAPq73/2OIUOG8OSTT3LnnXeSl5fH8OHDOeGEE5x9jjzySAKBAPfeey+XXnopoVCICRMmOBnUww47jM8++4zbbruN+vp6jj322E6DupKSEu68807+/Oc/O3PzZs2axeGHH97t16wjkUgka4Z3Q/r27cuxxx7LE088kbZ9xIgR3Hffffz1r3/l4osvJi8vj2nTpvHrX/+624+x22678eijj3LnnXdy5ZVXYhgG/fv3Z9999+32HNWcnBxmzJiRsSRJSUkJjzzyCLfeeiu//OUv8fl8TJ48mauvvnqj56V2xfXXX8/vfvc7brzxRoLBIMcccwxTp07l+uuv7/I5VqxYAVhZ/3vvvTftvrfffpuBAwdy7rnnUl5ezsMPP8yDDz5IIBBgyJAhadeQ/bj/+te/eO6559hjjz24+eabmTlzZo88VyGE2NwU0zTNLT0IIYQQW0Y8Hmfy5Mn89re/5bDDDuvWsS0tLUycOJEHH3yww2xnd1x11VUsXryYZ555ZpPPtbVZvXo1Bx98MG+88UZaV1khhBBiayJLkQghxE+YPQfukUce6faxjz32GDvttFOPBJY/dV9//TUHHXSQBJZCCCG2alIWK4QQP3Gnn3561mVGNiQvL49rr712M47sp+Ooo47iqKOO2tLDEEIIITaJlMUKIYQQQgghhNhkUhYrhBBCCCGEEGKTSXAphBBCCCGEEGKTSXAphBBCCCGEEGKTSUOfLjIME103tvQwMni9KprW+8Yltg1yfYnNSa4vsbnJNSY2J7m+xObUG68vj0dFVZVO95Hgsot03aCxMbylh5FGVRVKS/Nobo5gGNKXSfQsub7E5iTXl9jc5BoTm5NcX2Jz6q3XV1FRCFX1dLqPlMUKIYQQQgghhNhkElwKIYQQQgghhNhkElwKIYQQQgghhNhkMudSCCGEEEL8ZJimiWHomJswlU1VFeLxOJqm9ao5cWLbsCWuL0UBVfWgKJ037NkQCS6FEEIIIcQ2zzRNWlubaGtrBjb9A3ttrYph9K5unmLbsWWuL4Xc3ALy8go3OsiU4FIIIYQQQmzz7MCyoKAEvz8AbGKGxqugaZK1FJvHj399mcTjMZqb6wHIzy/aqLNIcCmEEEIIIbZppmk6gWUolNcj5/R6VUAyl2Lz2BLXl9frA6C5uX6js5fS0EcIIYQQQmzTDEMHzGTGUgjREet3xEz+znSfBJdCCCGEEGKblmres2mlsEJs+6zfkY1teCXBpRBCCCGEEEKITSbBpRBCCCGEEEKITSbBpRBCCCGEED8BX331BZMm7UY4HO50vxNOOJKnn378RxpV7/XAA/9k5swztvQwtioSXAohhBBCCNEL3Xzz75k0aTduv/3PGffdcMN1TJq0G3//+x0bff5XXnmRadMOzNh+332PMG3a0c7tSZN246OPPtzox9kaZHuO06efwV//etdmf+yLLz5vk97H3kSCSyGEEEIIIXqp8vIK3nzzdeLxuLOtra2VDz98j/Lyis3ymMXFxQSDwc1y7k2VSCR+tMcKhUIUFhb9aI+3LZB1LoUQQgghhOilRo8ew/Lly5g9+wOmTDkIgLfeeoORI3dAVdPzRJMm7caf/nQ7++yzLwDhcJiDD96PO++8l1122S1t36+++oI//vEG5ziAs846l5kzf84JJxzJ9Omnc/zxJ3PCCUcC8JvfXA5A3779eOqpF1m9ehV///vtfPfdAqLRKMOGbc+FF17GhAk7pY3nV7+6mvfff4dvv/2G8vJyLrvsl+y99yRnn2XLlvD3v/+NuXO/Jjc3l733nsTFF19OXp61HunFF5/H8OEjAZM33niNMWPGctttf8v6Wr3wwrM89ti/qa6uon//AUyffgbTph0FWEHpnXf+lffff4fW1hZKS/tw8snTOeGEUzp8jg888E8+/ng2Dzzwb8DKJEciYbbffgRPP/04um5wxhlnccIJJ/O3v/2FN998ncLCQn7xi18774Gmafz5zzfz1VdfUF9fT79+/Tj55NM46qhjnXN+881XfPPNV/zvf/8B4MknX2DQoIEbfG16IwkuhRBCCCHET9Kzj1axaF7bRh2rKN1frmGHcbkce1rfbj/W4YcfySuvvOAEl6+88iJHHnkMr732crfPZRs3bgKXXvpLHnrofv79b2t+ZU5OKGO/++57hCOPnMr119/Ibrvtgap6ACtwnThxX37+84vwen08//wzXHnlZTz++PMUFRU5x99//71ceOGlXH75r3nhhee49toreeyxZ6io6EtLSwuXXnoBxxxzPL/4xS8JhyPcdddfufnm33PLLX9xzvHyyy9wwgknc++9/9fh83njjVd58MH7uPzyKxk+fAQLF37Hn/50EwUFBey77/48+eT/+OijD/jDH/5ERUUFa9dW0tzc1OlzzObzzz+jrKycf/zjfubM+Zzbb/8zX3zxOfvsM4kHHvg3Tz/9OH/4w2955pmXCYVC6LpORUVfbrrpTxQUFPL1118ya9at9O3bjz322IvLLvsVq1evYvjwkZx11jkAFBUVd/m16W0kuBRCCCGEEKIXO/TQaTzwwD+pra2hra2NZcuWMGXKQZsUXPp8PvLy8lAUKC0t63C/4uJiAPLy8tP2GzVqB0aN2sG5fckll/P+++/w2Wcfc8ghhzvbDzroEA4/3MoMXnzxL/j880947rmn+fnPL+Lppx9nxx1Hc8455zv7X3nltZx22gk0NNRTXFwCwHbbDeHnP7+o0+fzwAP/5JJLrmC//fYHoH//ASxevIjnn3+Gfffdn/Xrqxg0aDDjx09AURT69u23weeYTVFREZdeegWqqjJ48BAeffRhAgE/xx9/MgAzZpzLU089zg8/LGbChJ0IBALMnPlz5/j+/QfwzTdf8c47b7LHHnuRl5eH1+slGAymPfaTT3btteltJLgUQgghhBA/SRuTRbR5vSqaZvTgaDpWWlrGbrvtyauvvkxLSzOTJ08hFMr9UR67I+FwmAce+CeffDKb+vo6dF0nFotRXV2Vtt/o0WPTbo8ZM44VK5YDsGTJD8yZ8xlTp+6bcf7KyjVOALXDDjt2OpZIJEJl5Rpuvvl33HLLDc52TdOcIPLQQ6fxi19cxKmnHs9ee+3DpEn7seuuu3f7eQ8btn1aOXJRUTFDhgxz3S7C4/HQ2FjvbHv66Sd4+eUXqK5eRzweJ5FIsPPOu3b6OEuWLO7Sa9PbSHAphBBCCCFELzdt2pHce+/fCYfD/O53N2XdR1EUTFetrqZpm208d999B19+OYcLL7yMAQMGEggE+NWvLstouKMo2ccJVlC47777Z81K9unTx/k5GMzpdCyRiLW0yjXX/I5Ro9IDUa/XCnd22GE0Tz75Ap9++hFz5nzGVVf9koMOOpjf/Oa6DT/ZLOdzP5f22wAMw/ri4a23Xucf//gbl1xyBaNHjyEUyuXBB/9FdXV1p48TDoe79Nr0NhJcCiGEEEII0cvts89+3HbbLeTkhDrMehUVFVNfX+fcXrJkcafn9Hp96PqGs69erxfD0NO2zZv3LdOmHeWUoTY3N1NTkxkwLVgwn6lTD3Vuf/fdfCZOtLJxI0eO4sMP36dfv/54PB3Pc9yQkpJSysr6sHZtJQceeHCH++Xn5zN16qFMnXooe+65NzfeeD2//vU1qKqa9Tn2hHnzvmXChJ055pjjnW2rV6/G7/c7t30+X8Zjjxo1ivff3/TX5scmS5EIIYQQQgjRy3m9Xh5//Fkefvi/TuavvZ133pWnn36CJUt+YN68b7nvvn90es5+/frR1tbKV199QWNjI9FoNOt+ffv254svPqeurpbm5mYABg4czHvvvcMPPyxm8eJF/P7312ZthPP222/w6qsvsWrVSv7xj7+xatVKjj7aCrSOO+5EGhrquPHG61i06DsqK9fwySez+dOfbu7OSwPAjBkzeeSR/+Pppx9n1aqVLFnyA88//wzPPvsUAI8//ihvv/0Gq1atYOXKFXzwwXsMGjTYKXHN9hx7wsCBg/nuu/nMmfMpq1at5O67/+aUBdv69u3PggXzqapaR2NjI4ZhcPzxJ/fYa/NjkuBSCNGjmmNNfLL2IyJaZEsPRQghhNim5ObmdTrX8uKLf0FRUTHnn38Wt932R84++7xOzzdu3ASOPvo4rr/+NxxxxEE8+ujDHZ73s88+4bjjpnH22acBVgOfUCjE+eefxTXX/JoDDjiQwYO3yzh25szzeO21V5gxYzrvv/8uf/jDn+jb15rr2qdPOf/4xwPE43F+8YsL+dnPTubuu+9M6zbbVccccwK//OVVvPDCc5x55ilcdtn5vPPOm/TvPwCwSmv//e+HmDnzDH7+8xm0tLRw001/7vQ59oSjjz6Offfdn+uvv4rzzz+bRCLhLI9imz79dABOO+0EjjjiIKqrqygv77nX5sekmGZ3myj/NCUSOo2N4S09jDSqqlBamkddXSuGIW+j6Fkbe319s/4r5tZ8yz4DJrFdwVBqIzVUhPp2+C1rb7L8hzCLF7TR3KihehRUFbbbPodd9irc0kPb5sjfL7G5yTUm3DRNo7a2krKyAVnnx22MH7Ohz9aq/bqbouu21PXV2e9KUVEIn6/zEl2ZcymE6FGaYTUPMEyTRfUL+ar6Cw4cPJUB+QO38Mg69/nsRl55qiZj+7dftDBoaA59KvxZjhJCCCGEEDYJLoUQPUozrQnphmkQTZbGRvXeXSLb1qrx5kvrafSv4KQjdmbQoDwME76f18rH7zYy+636TWpXL4QQQgjxUyDBpRCiR+lO5tLASFbd60bvLht65+U6qo3lBMd9T23/NiYOPRaAvgMCfP15M3O/bGHyISWUlEn2UgghhOiq2bO/2NJDED8yaegjhOhRmju4xAoqdbPnW3v3lGhU55s5LaiBBCPH5tIYa3SaEQUCKntMKsI04LtvWrfwSIUQQgghejcJLoUQPUo3k8ElBpgmmmby7uvrmTO7ccsOrAPfz29D10y2H5mL32/9Sfxm/VesaFqOZmgMGhIEoHZ9orPTCCGEEEL85ElZrBCiR9mZS0yTltYEn7zbgH9dMw3f1DJh9wL8gd71ndaCr62M5NCRQeqT235oWMwPDYvZpWI3BpTvAEBdTXwLjVAIIYQQYuvQuz7lCSG2epqhYxgm875u4tlH19HYoIHHIBE3Wfxd25YeXppIWGfJojZyQip9B/sA6BMqZ2Cys21V21oKi714PAp1NZK5FEIIIYTojASXQogeYxgmSxY38/bLdXz4dj3xhM6wkTlMPqQIgAVft2zZAbazaF4bhg47js/DVKx5oaNLx7D/oAPxql5qwjWgmJT08RFu1YmEe+/cUSGEEEKILU2CSyFEj3ny4So++6ieaMRgyPAg004sY8xO+Qzc3k8gqPLDwjDRaO8J0Oxgd8zOeeim1XzIo3hQFZXyUDkJI0F9tJ7SPlZWU7KXQgghhBAdk+BSCNEjWls0Fn7bij/HZNKBRRx4ZAlFpda0bkU12WFcLlrC5KG7KllfFdusY2mMNrCqeWWn+4TbdJYtDhPK8zBkeAjDsIJer2qNuTxUAUB1WxWl5dYSJDLvUgghxLbg5pt/z3XXXblJ53j66cc54YQje2hE265XXnmRadMO3NLD+NFIQx8hRI+oXmsFjKV9PRSX+jFME9O1FMlBR5TRUJdg1bIoTz9SxQVXbrfZxvLC0ucAOGHkyYR8oaz7LJzbimHA6PF5eDwKWrLLrap4AKgI9QVgfbia0j6DAKiTjrFCCCF+RDff/HteffUlALxeLxUVfTnssCM4/fQZeL0b/zH+sst+hZlci1r0nBNOOJLp00/n+ONPdrYdeOBU9t57n83+2Dff/HsikTA33fTnzf5YnZHMpRCiR1SvtbJ6eUXWbQMDI1lqqhs6+YVeZlw8kJI+PqrXxmlu1Db7mOxlUbJZkFy3cszOec4YwSqLBSjL6YOqqFZwaWcu10vmUgghxI9r4sR9ef751/jf/57j7LPP45FHHuSxx/69UefSNA3TNMnLyyM/P7+HR9rzEomt/0vdQCBIcXHJlh7Gj0aCSyFEj6iqjGFikFdo/VkxTVdwaVqBm6oqbD/KyiQuWxzeLOOI66kA0H78bGqqYigqbLd9TnJfO7i0xu9RPeR4c4jpMUrKrG+HZc6lEEKIH5vf76O0tIy+fftyyCGHc8ghhzF79gcAxGIx7rrrdo4++lCmTt2XCy44m/nz5znH2iWZH3zwHqeeejxTpkyksbExoyw2Fovy17/+iSOOOIgpUyZyySU/Z+nSJWnjeOml5zjuuGkcdNAkfvvbq2ltbU273zAMHnjgnxxzzGEccMDezJx5Bl9//WXaPh9++B4nn3wMU6bswxVXXMzzzz/DpEm7Ofc/8MA/mTnzDJ577mlOOOFIDj98CgAffzybCy44m0MP3Z9p0w7k6qt/RXV1lXPcV199waRJu/HZZ59w5pmnMGXKPvzyl5fS3NzM22+/yUknHc2hh+7PX/5yK7reee+HDz54jxkzTmXKlImcfPIxPProwxhG6vPEAw/8k+OOm8YBB+zNsccezj//eTcAF198HlVV67j99tuYNGk353m1L4t1P8djjz2cqVP34667/oqu69x33z1Mm3YgxxxzGM8990zauP7+9zs45ZRjmTJlH0466WgefvgBZ1wPPPBPXn31Jd577x3nsb/66gsAqquruO6633DIIZOZNu1ArrvuSmprazp9DTaFlMUKIXpE9doYBjoFRdafFdM0MZIlN3bgBrD9qBBzZjexbHGYnfYoYN6XLcx+u55jT+tL3wGBTR5HSzzVkVY3s/8DYpombS06uXkeVFUBQDPT51wCBDxB2hJteHM0AkGV+to4pmmiKMomj1MIIcSW91Hlh6xuWbVRx6qqgmF0r7R0UP5g9hmw70Y9ni0QCDgZvTvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpUw5AOBzmf//7D9deewO5ubnk5uZmnPMf/7iT2bM/4Le/vYmysjIeeugBfvnLS/jf/54lGAwyb963/PnPf+SCCy5ln332ZfbsD3j44fvJzy9wzvH44//lyScf48orr2P77Yfz7LNP8etfX8Zjjz1Dnz7lrFu3luuvv4pTTjmdww8/ggUL5nPPPXdljGXVqhV8/PGH3HLLLFTV+sI3Go1yyilnsP32w2lra+Pee+/i97+/hnvu+b+0Yx966D5+/etr8Hg8XHvtlVx//W8IhULceussqqurufbaKxk/fgIHH3xY1tf222+/4Y9//D2/+MWvGTduAqtWreTPf74Zn8/PSSdN59133+KJJ/7L73//R4YO3Z7a2vWsXm1dP3/8423MmHEqxx57Aocf3vlc1FWrVvL111/w17/+nZUrl/O7313DsmVLGT16LPfe+yDvvfcOt912K7vuugf9+vUHIC8vj+uuu4HS0jIWL17En/50M0VFxRx99HFMn34GK1euIBqN8pvfXAtAQUEhmqbxy19ewvjxO3HPPQ8ACg88cC+/+c0V3Hffw87r25MkcymE2GSaZlJTHScn3yQYtMpKDQxMrH90dVcGccjwHBTVylyapsmcjxqpXhvnv/et5f3X63jx8Wpi0Y4zjhvSEm8GrADy2y+bsjbhiYQNDANy8zzONrss1p5zCeD3WF1iNTNBUYmXeMwkEt74sQkhhBCbYsGC+bz++qvsuuvuVFVV8corL3LTTX9i/PidGDBgIDNmnMPQocN4441XnWMSiQS/+tXVjBkzliFDhuL3+9POGQ6Hef75Z7jool+wxx57MWzYcK655nckEnHnPE899TgTJ05i+vTTGTx4O0499QwmTNg57Tz/+99/OOOMs5gy5SC2224Il132S/r27c8zzzwJwHPPPc2QIcM4//yLGTx4CIcddgQHHnhwxnPUdZ3rrruBESNGsv32wwGYMuUgJk8+gIEDBzFq1A5ceeW1zJs3l/Xrq9OOPe+8ixg7djw77jiGQw+dxtdff8lVV13PsGHD2Xvvfdhtt92djF42//d//+JnPzubQw+dxoABA9l7730488yzeeEFK4tYXV1FSUkpu+++J3379mXs2PEcdtgRgBXMqapKKBSitLSM0tKyTt/Lq676LUOHDmP//Q9k9OixNDQ0cO65FzBo0GBOO+1nBINB5s79xtl/xoxzGDt2PP369Wfy5Ckcf/xJvPPOWwCEQiECgYCT5S4tLcPn8/H222+gKApXXnktw4YNZ9iw7bn22htYsmQxixZ91+n4NpZkLoUQm6xufRxDh7J+qcDMMNPnXNqCOR4GDA6yZkWUylUxKldajYCaGzXefbUegKJSH/setHHzE1oSVuZy5dIICz6o5hOvwVGnVDB259TckrZWazy5+ak/gXaW06O6g0srkxrVYhQWW3NFmxo0QrmpfYQQQmy9NiWL6PWqaNrm/8Lxww/fZ+rUfdF1HV3XOeigQzj77PP4+usv0XWdk08+Jm3/eDzO8OEjnNuBQIBhw7bv8PyVlWvQNI3x4yc424LBICNGjGLlyuWAlU084ICD0o4bM2Ycy5YtBaCtrZW6ulrGjUudQ1EUxo0bz8qVK5LnWMmOO45JO0f72wD9+vWnoKAwbdvq1au4//57+O67BTQ2NkLyy+vq6irKyyuc/bbfPvW8S0pKKCkppbCwyNlWXFxCQ0N9h6/F0qWLmTfvWx588D5nm64bmMnPM/vvfxCPP/5fTjrpaPbaayITJ05i4sR9u50B7N9/ADk5OWlj9ftT1VuqqlJUVJQ21rfffoMnn/wflZVriEYjaJpGRUW/Th9nyZIfWLVqJVOnpl/nuq5TWbmG0aPHdmvcXSHBpRBikxiGycK51ryL0n4e2pLbrbLY9DmXtpGjc1mzIsrrz9Wg6yYjRocoKbO+Sf3sw0Y++6CRvfcvwuvtfnFFa7wFwzBZsihMuWIQj5s8858qho0MOUGhHVzm5buD4WRZrOIui7X+0CeMOIXFVhazqSFBv4GbXr4rhBBCdMVuu+3J5Zf/Gq/XR1lZmdMlNhIJ4/V6+b//ezRjuoa79DUYDHbpcdqfw5rZojg/dzYlxG48m3kOk9Qm98+pbe0FgzkZ237zm8vp338AV1/9W0pLywiH2zj33DMzGv64O+gqipLRUVdRlE675IbDEc499wL23Xdy1vv79u3LY489w+eff8qcOZ9x661/YOTIHZg1665uTZnJNq7MbThl1/Pnz+XGG6/nnHMuYPfd9yQ3N5eXXnqet99+o9PHiUTCjB49hmuvvSHjvpKSzdNkSIJLIcQmeeQflaxYEgFg8HA/C5PbDTP1TZ/RLrgcv3s+77xax5KVNXiVAMN36MOe+xUBVvC2aF4b875sYec907+57IrWeAtrV0WJhA22295PRU4e333TyvqqOEOSzXvaWqwusu6yWM2wtqVnLq2AN6bHKCy2jm2s3/xdboUQQghbTk6QgQMHZWwfMWIkmqbR1NTI2LHjN/r8AwYMxOv18u2333DggVMBq8HPkiXfc9BBVtnqdtsNYcGCeWnHLVgw3/k5Ly+P0tIy5s79xslemqbJ/Pnz2G+//QEYPHgIn3/+Sdo5ulKa2dTUyKpVK7nmmt85z/PTTz/euCe7ASNHjmL16pVZX29bMBhkv/32Z7/99ufQQ6fx85/PoLq6mr59++L1+tD1ns9mz5s3l/79B3DGGTOcbVVVa9P2yfbYI0aM4r333qakpIRQKHOu7eYgcy6FEBstkTBYsSRCTkjlZxcOYNCw1DwOM23OZXpwWVTsY+hIH0vz3mZNzhwGbx/glWUvMa/mWyYeUAzAmy/WUV/b/e6sjZFmFn9ndaLdZZ88yvtaY6qpijn7tLUky2Ldcy5N3VmGxGaXxcb1OEV25rJROsYKIYTY8gYPHsKBB07lxhuv54MP3mPt2koWLJjPgw/el9GltTOhUIijjz6Ou+++g88//5Rly5Zy88034PX6mDr1UACOP/4kPv54No8//iirVq3kf//7D99++1XaeU455XT+/e8Heffdt1i1agV/+9ssqqrWctxxJwJw9NHHsXz5Mv75z7tZtWolr7/+ygYzbwD5+QUUFhby/PPPUFm5hjlzPuXee//ejVeq6848cyavvPIiDz10P8uXL2P58mW88carPPzwAwC8+upLvPzyCyxbtpTKyjW8/fbr5OXlO1nAfv368c03X1FTsz5ZvtszBg0axLp1a3n77TeprFzDf//7bz77LD1Q79evn1MG29jYiKZpHHzwYeTm5nH11b/m22+/Ye3aSr78cg5/+csttLS0dPBom0aCSyHERmtpsrJ45f0CDBsZcrJ/0PGcS9sOu/swFQMlJ0pOSYzaSA2rW1YzeFgOe+xbSLhV59F/VRKPdf4NYGuLxh1/WM47r9RhmAbfzltPW6tOeT8//Qb76OMEl6nGPqk5l+lzRN1ZS4CAageXMQqLrUKPJslcCiGE6CWuu+5GDjroEO68cxannno81113JcuWLaWsrE+3znPhhZcyadJ+3HjjdZxzzhnU19cxa9ZdTknt+PE78atfXc1jj/2Hs846lfnz53LqqT9LO8fJJ5/KiSdO5447/sKZZ05n3rxvue22vzlj6d9/ADfeeCvvvPMmM2ZM5/XXX+G002akzTXMRlVVfv/7P7Jw4QLOOOMk7rnnLi666NJuPb+u2nvvfbjllll88slHzJx5BhdccDbPPPOk07E1NzeP5557mvPPP5sZM05l0aKF3HbbHU6TpJkzz6eycg0nn3wMRxxxUGcP1S2TJk3mpJOm89e/3spZZ53G0qWLOe20M9P2OfLIYxk4cCAzZ57BEUccxNy535CTk8Pdd99HWVkp11zzS04//URuu+2PKIqa0dippyhmZ4XHwpFI6DQ2bp51+TaWqiqUluZRV9fa7VbYQmxIV66vFUvCPPT3Ssbtms/xZ/RlRdNyPljzHgB9c/vSEm+hLdGG3+PnlB1OSzu2uqWGmx77D/3LizjvkKN4edkLFAeLOXL7YzAMk0f/uZal34c59rQKJuxekOXRLQvntvL4/60DYOh4eGXVMygq7H9oKVNHTiY/Oph/3LqKoSNyOPOigQC89MR6vvi4iVPP68/I0VaZyH++e5iAJ8CJo05JPb/k8xldOoaRObvw198tp//gAOddMXijX1dhkb9fYnOTa0y4aZpGbW0lZWUDMua2bawfq6HPtuzee//Oxx9/yCOPPL6lh9LrbKnrq7PflaKiED5f500Nt+nM5bx58zj66KOd/48ePZqFCxdu+EAhRJc0JzOXBYXWHx/dTGX1THAyl4aZ+cfRUBLsvk8RQ3fwoxlWqamd+VRVhb0mFwE4zYI60lifKlOdv6AG04TRE/II5XrQDYOSMj+qCjXVqcxla2v6nEu7+VBG5tJVFpuX70H1QFODZC6FEEKIjfH004+zaNF3VFau4aWXnuPppx/n0EOP2NLDEj1om27oM27cOJ5//nkAKisrOeOMM9hxxx238KiE2HY0NyaDyyLrT4nmKn9NK4s1M8tiY3oseYxGol1wCTB0ZA6BoMqSRWHiMQN/IPt3YXawt8e+hURywmzfp5RQyOM8rterUFrup6YqTrhNJ5TrSc25zE/tB3Q45zKmx1BVhcIiHw11CRIJA59vm/5uTgghhOhxq1ev4pFHHqSlpZm+fftx1lnnccopp234QLHV2KaDS7fXXnuNQw45ZEsPQ4htSkuTFZTlO5nL9ODSbuhjZwZVJRWQ2QGlYRrE9GjG8V6vysgxucz7soUfFrYxZqfUOpVuduZy/G4FxAubmV3pwe/xE9fjTnDbp8IKLmuq42w3LCc15zK3fXCZ/ifR77Ga+MQNK+tZWOKloS5BU4NGWfnmmasghBBCbKt+8Ytf84tf/HpLD0NsRr36q/c5c+Zw/vnnM2nSJEaNGsW7776bsc+jjz7KlClTGDduHCeddBJz587Neq7XXnuNww47bHMPWYiflOZk51Q7c6m3a+jjntJtN/VZ21pJU6yRuJ4qUw1r1lIm7swlwI7jrfmQrz5Tw3uv1WWdN9WYzFwWlXhJJI+3y1ntJVDaN/Vpa9HxB1R8fjXtcTPLYq1GBvFklrUw+TylNFYIIYQQIlOvzlyGw2FGjRrFcccdxyWXXJJx/yuvvMItt9zCDTfcwIQJE3j44Yc555xzeO2119IWBq2srKS+vp7x4zd+DSCw5oH1JvZ4etu4xLahK9dXczJzWVTsRVUVdHRngWRFweoGm7xtKga6qfHu6rcozSmlX+4A576YHrH2x0hbYHmHsXmMnpDHd9+28t5r9QwbGWLI8FDaGJrqE/h8CvkFXvQ6DUWBHF+Q1kQLBgaqqlDRzwo2qypj6LpJLGpQ0seXem7JcXpVT9rzDSh+FMXKXKqqQnGplclsbtTk924Tyd8vsbnJNSbc5DoQontUVdmo35teHVxOnjyZyZMnd3j/gw8+yMknn8zxxx8PwA033MB7773Hs88+y8yZM539Xn/99U0uifV6VUpL8zbpHJtLcfGPsyiq+Gnq7Ppqa9ZRVdhuaBGqqpAX9pMXsbJ9uUE/WtTvlMYWFeegKAqhXD+KTyeU73X29YUgL2b9HCr08MSCJxhUMIgDhx3IRVcW8OaLVTz3v7XUVRvsumfq9zAS1omEDSr6Bygryyc37iOvNUifwmIiagv5BQFKS/PYZY8ATz68ji8XL2ZoQx3gpajI7/xOq5EEeXlBigvyMn7PSwsL0U2d0tI8+g+IAvVo8d7792BrI3+/xOYm15gAiMfj1NaqeL0KXm/PFe715LmEaG/LXF8KqqpSXBzaqOVKenVw2Zl4PM6CBQu44IILnG2qqjJx4kS++eabtH1fe+01rr/++k16PE0zaG6ObNI5epqqKhQX59LQ0CZt1kWP29D1pesmTY0J8gu9NDS0AVDX2ExrqzV/UomHaYmnfmdq6poAhdbWKGElTp7Z6OxbZdbR2mb9vKRyFfVNzdQ3LWBCwR4oikJZX6tcddGCJnbdJxXUVa+1ylXzCzzU1bVSW99Ea2uUqNegtTVKfaCFuhyr2+zA7YK81vAR3k/z0dmfQA7U1Vn31UWs48Jqwtlmi0dMWuKt1NQ2o3itctjqqnDGfqJ75O+X2NzkGhNumqZhGAaaZgI9s7yDLEUiNqcttxSJiWEYNDSE8XrjafcVFORscCmSrTa4bGhoQNd1ysrK0raXlpaycuVK5/batWupr69n3Lhxm/yYvfUfJ8Mwe+3YxNavo+urpUnDNK1mPvb9Cd3aZv2cwL2KrqZbJbSmCbpp0BJrce4Px8POz1Et5vxcG66jNKeUigF+VA+sXh5F1w0MA955pQ41+YVeYYk1hnjyMf2qH9MEzTCcsY0cm8trH8LyJRH6KgahXI9zXzw5bgU147n6kueKJKLk5Vt/MpsbNfmd6yHy90tsbnKNCei9n+GE6K029m/nVhtcdsQ0TRTXpK3+/fvz1ltvbcERCbFtar8MCaQ35Gm//Ihm6GnzKZvjTc7PES2V4YxqUefnqrZ1lOaUEidCcGA94ZUl1NcmqKtJ8NHbDc5+RcXWXEi7A20w2YjHcC2NMmy0Hz60mvFUYDBgu6Bzn71f+6VIAAIeqyQkrsfIL7Sypi1N0tBHCCGEEKK9rbZQvLi4GI/HQ21tbdr2+vr6jGymEGLjNMeaaYw2ZL8vGWAVFKaCS3e3WN1IDy4N00A3UuUd7iDSHZRGXYFmVdtaAL5e/yV15Z8RVZtYvTzKmhWpYwGKSnzJ81jBpd3l1R3g5pVo5OVZweOkqYXsvGdBaqz2UiRq5vdtPtUKLmN6nFCuB9UDLc0SXAohhBDtXXDB2bz//jvO7R9+WMzMmWdwwAF7M2PGqTQ3N3HUUYdQU7N+C45SbE5bbebS7/czZswYPv74Y6ZMmQKAYRh88sknnHnmmVt4dEJsG15f8jo1jQ2cOHJ6xn1ZM5euYK595lI3uxaQRfVU4Lg+vB7DNIhqEYpLfaxX21i9IkJDbSLtmMISawz2UiT+ZLbRPYaoHmW3SYXEIgYT9ylMq3BwliJRMr9vC3hTy5GoqtWVtqlRQ9dNPB7pPiiEEGLzmDRpt07vP+usc5k58+c/ylgWLVrI/fffw6JF3xGJRCgr68PYseO56qrr8fmsL3g//PA92tra2G+/A5zj7rnnLsrLK7j55tvIyQlSUFDIYYcdwQMP/JOrrtq0fiiid+rVwWVbWxurVq1ybq9Zs4aFCxdSVlZGnz59OOuss7jyyisZM2YM48eP5+GHHyYajXLsscduwVELse1oS7QR1aIZ5eaQPXPZfp1KN8Ps2qR0d0YzYSRoiDagGTqlfXys9URYNK8NLWHi8yvssW8RP3zXRt/+1lIjCT1ZFpsMCA1XcBnWwuQXeMkvyByLvV+2sli/av2jaa91mV/gpalBo61FTwushRBCiJ70/POvOT+/8sqLPPvsU9x338POtpyc1NJcpmmi6zpeb8//u9TQUM/ll1/Efvvtz+23/4NQKERl5Rreffft5LQS69/Jp556gsMOOzLt80Jl5WpOPPEU+vbt62ybNu1IZsw4jYsu+gX5+fk9Pl6xZfXqT0bz58/nZz/7mXP7pptuAuDiiy/mkksu4fDDD6e+vp4777yTmpoadtxxR+6///60NS6FEBvPDhZ1U8erpP+5sOcd5hdllsV6VW9GoNlZ4OnmzlyCFdTppk4g6KHvMJO2hVYguN32OUw9soypR6bK4FNlsVaw6Q4i3fM6DTN9grqe3M+jZgkuk+eK6VbHtPxCa5/mJk2CSyGEEJtNaWnq37dQKISqqs62r776gksvPZ+//OVO/vnPv7Ns2VLuvff/eOaZJ4lEwtx005+dY6+77kpyckJce+3vAYjFYvzrX//grbdeJxxuY/jwEVx00eWMHZu9+eW8eXOJxaJceeW1eDzWv4EDBgxkjz32cvZpaGjgq6/m8Mtf/sbZZmde77jjL9xxx1+cTOvgwUMoLy9n9uz3OeywI3rmxRK9Rq/+ZLTnnnvy/fffd7rP6aefzumnn/4jjUiInw7DNJzgTDd1vO3+XDhlse7MpdlxcGmYhrPmZWfsOZc+1UfCSKCZmhO0Dt5BYclCa7+BQ4IZxyaMBKqi4ktmG3XTPcczFVxmNhuyy2Iz/yTazYGczGXy+UpTHyGE2PrlX3I+/ldf/tEeL37YNFruurfHzvfPf/6diy++nIqKvhQWFnXpmDvuuI2VK1fwhz/cSmlpGW+++RqXX34R//3vU/TpU56xf0lJCfF4nNmzP2C//fbPqGQCmDv3G0KhEIMGDXa2Pf/8a5x77pkce+wJHH74kWmZ1lGjduTbb7+W4HIb1KuDSyHElqO1b87TLqlnl8XamTz7GI/iyVpe2tU5l7FkEBf0BknEE2iG5gStJQMMgjkq0YjBoA6CS6/qRU0+vrupUHrmsv18ULuhT7bMpTV/M9o+uJSmPkIIIbawc8+9kF133b3L+1dVVSVLbF+hpKQUgBkzzuHjj2fzxhuvctppmX1Lxo4dz6mn/ozf/vYq8vPzGT16HLvvvieHHjrNKWutrl5HSUlpWuBZWlqGqqqEQqG0LCxAWVkZS5cu2ZinLHo5CS6FEFm5g8v2wZhpmjQ3aoRyPfh8qSY4uqHjUT2oWRrjGKaJ2a4cNeAJOMGkLZ4sPw16c2iJt6AbujOWuBlhv4NLmPdVC0NG5GSMSTM0cn25TpBomAZtiTZiepSIFnaNpetzLt0NfcCacwmSuRRCiG3BpmQRt9Qi92477LBjt/ZftmwJuq5z8snHpG2Px+MMHz6iw+MuvPBSpk8/nS+++JwFC+bx6KMP8+ijD3P//Y9QVtaHWCyG3x/o8jj8/gCxWHTDO4qtjgSXQois3JnG9mWk4TYDXTMpqEj/E6KZGjmenKzBZbY5l7m+vIzg0maXoyaMhJOBDGthJh5QzMQDijs8v0/1OUGiYeq8suxFIlrEyUBa242sx2bLXAadOZfWP4JSFiuEEKK3CAbTv2hVFCXji1xNS/17FYmE8Xq9/N//PZpR3pqbm9vpYxUXlzB16qFMnXoo55xzAaeccizPPfc055xzPoWFRbS0NHd53C0tzRQVZf5bLrZ+W+06l0KIzSutLLZdcNmSpSTW7iob9OSgkDkfwzCNjPOEfKGM/Ww5yfs0M1UWqxmak9lsL5Fs5uNVfU5wq5u6Uw7rPi5zmZROusUmg8uoZgXBBU5wqWfsK4QQQmxJRUXF1NfXObcNw2DZsqXO7REjRqJpGk1NjQwcOCjt/8XFXW+ImZeXR2lpKZGI9W/syJGjqK2toa2ttUvHr1ixnBEjRnX58cTWQ4JLIURWibQ5l+mZvmxrXIa1NgBCvhyULJlL3dQyymtDvo6/JbUzhnE9lvYtbDjRlnV/u1OsT/WiKiqKomQEkamxtA8uk91is5XFZmQurX1kzqUQQojeZuedd2XBgvm89dbrrFq1kjvvnEVTU6Nz/+DBQzjwwKnceOP1fPDBe6xdW8mCBfN58MH7+PrrL7Oe86OPPuQPf/gtn3zyEWvWrGb58mXcc89dLF++jH322ReAESNGUVBQyLx5czc4xlgsxvffL0zrNiu2HVIWK4TISkuuGQlgYAVfkbBOY33CFVz6nH3CCWtOY8ibS0TLnEdhmEZGqU6uK7hsX8qT47UylzEtvWw2rIUpIr2UpiZc45TxepOdYj2KB93Qs5YIme3KYt1LqLSnKip+j9/JfAaCKh6vQmuLZC6FEEL0LnvvvQ+nnXYmd9zxF0zT4MQTp7P77num7XPddTfy4IP3ceeds6itraG4uISxY8dz0EGHZD3nkCFD8fv9/O1vs1i/vppgMMh22w3hppv+zC67WMuNeDweDj/8CN588zX22mtip2P86KMPKS+vYOzY8T3zpEWvIsGlECLDmpVR7v7XUor3a6HfIB9VVWFee20Ny3+IgJnKWBa4ymLt8tMcb/qcS4/iQTf1rHMug56gc3/AEyDqCkrtjGH7dS/tINa2Prye15an2sj7PFZwqSoquqlnBJaQbZ1LPXlMZubSHktLvAXDNFAVlWBQJRbbsk0chBBC/HQcf/zJHH/8yc7tXXbZjdmzv8i6789/fhE///lFHZ7L5/Nx3nkXct55F3bpsQcMGMhvfnPdBvc76aTTOPPMk6mpWe8safLUUy9m7Pfkk49x5pnndOmxxdZHymKFEBmWfh8mGk/wxScNfPN5M/+5dzXLF0fIy7eCr6xlsQm7LDY3bc6lnQ00TBMtGcTZgaNP9Tn353jTmxIEk11a2zf8sctvbU2xxrTbduZSVdSsAS1kKYs1Op5zCe55l1agGwiqaAkTTdvwup1CCCHET0FZWRlXXnkd1dVVHe7T3NzEpEn7MXVq9iyp2PpJcCmEyFBbHcdAwzRh1fIoqs/kkGPKuPx3Q+k3MNVq3O6cCu0zl5nBpW5qGMkgblD+YHJ9uZTllDmZRndwaQWd1vZYMqCzs6HtM5d2oJo61no8d6DYJ1TO7n33ZHTpGCCzW2yqpDZ7cNm+Y2wgaI0lLtlLIYQQwjF58gGdlrsWFBRy2mlnZnSqFdsOKYsVQmSoXR/HUHRGjs4jFtM57YB+jB9UTEJPUDS+kjVrCvHg66ChTyitLNaXDBIN03CCuu2LRzBxwKS0+wPJpUfACki9yeDQLost8BfQGGukKd6UNtb2WUifK3NpC3j87Fg6mu/rF2U9prOGPuBe69Kad+kPWOeORQ1CudmPEUIIIYT4qZHgUgiRxjRNaqvjeP0mu+5VTFtbjFCe9Q3j0qYltPb5jubcfvRnFMFgKrAKJ6zMZcibmxbY2RlI3dSd4NIdxNn322WwkF4uawd0pTllRLQINeH1aIbmKrdNDxTdDX1S57PWuLTHldnQp/M5l341ff6nnbmMRSVzKYQQW4NUokymMwjROet3ZGOTy1IWK4RI09ykkYibFJTilK3Ymb5wog2fX2W/Y/ycMrN/2nFhrc1qduMNouDOXCbLYg3dCQQ9Sub9QVdZrNdVFuve1je3H4ZpUNW2ztmuGR1lLj0Z2+zH1Y32mcuOu8VaY7OXRUl1jAWkqY8QQmwlVNUDKMTjsQ3uK8RPmfU7oiR/Z7pPMpdCiDS11dYSJAWlqQDQDi7t4CpUFmO7oalg0DANolrUWVpESZtzaZfFdp65DLnnXHp8GYGeV/XQP28AK5tXsK5tLQPzB6WNLbVfcs6l6snYZgec9tIq9tgTyTUyOyyLTZbsSuZSCCG2ToqikJtbQHNzPQB+fwDY1Hl/ijR2E5vRj319mcTjMZqb68nNLdjoebESXAoh0tSutwLI/KLUHxU7gLODq+ZY+rzHsJZc4zIZXKaXxdoNfXRnCRD3t2F2VtHvaszjU70ZgZ5X8dIvz8qWrmtdmxpbu46w7bOU1rnTy2J1w3Cex+srXiWiRfCq3rSA1M0+3m4uFAhIcCmEEFubvLxCgGSAuekf2lVVxTDk3wGxeWyZ68v6Esb+XdkYElwKIdLUVlvBZV5xapvd5dVeFiSmx4jpMadTa8SZbxkCyNrQR3c19PEqqT89QwqGEk60UR6qwKt60QwNj+JFURTnNoBH9ZLny6MwUEhjrJFwIkzIF+pSQ5/2cy7tzOXatrVEtAh9QuXsVrFHh69JMJm5rGxdQ9XSKlTfOOt1kOBSCCG2GoqikJ9fRF5eIYahk2UZ5C5TVYXi4hANDWEMQ7KXomdtietLUawv/ze1k68El0KINE5wWQh22GYHcHbmDqA51kyfUB8g1Sk2JxlcZlvnUjd0TDLLYgfkD2RA/kBnu4bmyj5at93nKQoU0xRroi3RRsgXyljL0tvpnMtkWWwyWG5LtAIwqmQH57lkY2dVm5IZW0NZCmwnS5EIIcRWSFEUPJ5N+wisqgp+vx+vNy7BpehxW/P1JQ19hBCOb+c0s3xJBH9AIZif2t6+LBagxbUkiL3GZcjXWeZSc2Uhs5ef2gGkHSC6513a2U57WRB7zUktI3OZuc5las5leubSXjMz15ubdTy2gDd9Lc38YJ41BslcCiGEEEI4JHMphABg7eooz/63GlWBY07ty2p1sXOfbhqYpumUxQI0x5udn8OJ5BqXyaY8iju49PhRFIW4HndKLdzBp5sdBPqcIDP1J8oOSAPJEtd4cix2FnJY0fYYpkG+vyBtf3DPubS26U7m0hq33YioI0HXGpwA3mQjWwkuhRBCCCFSJLgUQgBQuSoKJkw8sJjRE/JYsVyDZHxmGDpxI47pmqDiDi5TmctkQx9XUYSqqPhVPwkjgUfxdLjcB4AnmZ30euzMZWo5Evs4u0Q1mgwuteQyIiOLd6A8VO46V8frXNpzP+2y2NAGgsv2Y/ZZp5PgUgghhBDCRcpihRAARNqsQKmw2Aqk3OtH6qbuzLcsChQB1pxLm525zElmLlXXZHAVFb/Hj2ZYZbEdZS3BnbnsuCw2teakFVzaWcj23WWVLGtp2h1kTaxMbESLkOPN6XRMtsmDDnCWP/FKcCmEEEIIkUGCSyEEAOE2K0gL5VpBmr32IyTXsUwGc4WBIryql9ZES+pYeykSb+Y6l4qiONlG3dQ7XEsSUsGfUxbr2tfTLnMZS665qZt2w5/087qXIrEzoamlSHQiWgTDNDaYtbRtVzCEIYVDrXPbwaU09BFCCCGEcEhwKYQAIBK2gsuckD0vMdWFVTc1p4FOwBvEp/rSurRGtAg+1YfPDuLSymIVAnY0RsfNfKz77AyjN+02pILHVHAZTY7NyNjXOodrzqVdFps8h24aXZ5v6WY/L6/PKg+WzKUQQgghRIoEl0IIACJhK1CyM5f2XEawMpcxzcpcBj0BvKoXI7luZUJPENfjTqdYSG/YoyiqM+cRMstX3dqXxfrccy7tslhPelms04FWaZ+5zFyKxA4ODdNIzbfcQKdYN/t5SUMfIYQQQohMElwKIYBUWWxOroppmuiG7qxXqZuGswxJwBN0gkDN0IgkS2Lt+ZaQHlyqqAQ8Add9HQeXpcEyfKqPwmARkJ6NbF8WG00Gu4aZfc6lnaX0ql6nTNfOmhqm4ZTyditzmXxeqtcERYJLIYQQQgg36RYrhAAgYs+5DHmcbGDAG6CFCLqhO5nCgDfglK1qhpaab+kO0twNfRTVKZeFzjOXY8rGsmPp6FSGMMtalXagGjfSM5ftO7raWUp39jOVudSdzOXGBJcoJoGASlzmXAohhBBCOCRzKYQAIBzW8foUfH7VaeYTcDXisde4DHqCzvxH3XQFl15XWWz7pUhcmcvO5lza+9uydYu1zucnnmzooxkaiqJkdHz1OHM0M+d76qZOOJElKN4A91ImgaBKLGqkLc8ihBBCCPFTJsGlEALDMImGDWe+pd2BNZBc9sMwdaKauyzWygZqhuYEaTneDuZcohBQXcFlF5b9cPZNK4t1NehJBpeGaaCbuhN4ph2r2GWxrsyl4p5z2f2GPorreH9AxTQhEZfgUgghhBACJLgUQgDRiIFpQk7I+pPglMVmyVwGvAEno5hwzbnsqKFPZlls16vx7aCxfcmrX7U7xsbQDT3rOpXtlzVxj8daWiUCpM8V3RB3Q6BA0PpZ5l0KIYQQQlgkuBRCpJYhsTvFGtZtn8eHqqjohu4s/RH0BJ2gT+9C5lJV0hv6bKgs1s2eL9l+nmbQm+oYq5t6RvAJqSyju1OtfS7d1InrcbyqN2tg2pH2ZbEgwaUQQgghhE0a+gjxE5fQE06n2FAovSzWDr70ZFmsV/XiVb1OuapmakQ0KwPozlzaXWYhuRSJKzjsrKFPex5Xx1c3ew6n/djZzmlvc8+5tMajOMuouIPerlCTjYpMXMGlNPURQgghhAAkuBTiJ626rYrXV7xKUctIoJycXCtgshv6+FQfXtVLXEugm7ozP9GnurvFWnMX0xr6uLrFKigEPF1b57I9O6jsKLi0O756smQu8/x5AOT789O2exSP0wyofeC5IWmZy4D1HCVzKYQQQghhkeBSiJ+wHxoXAzC/7ltgqtPQx728h5LMXILVzMfebu8XSUQIeALpTXyUjrvFdrbOZXupstj0P1XB5PnCnWQuS4KlHDfyRHK96Q173ONsXzK7IellsdZjSnAphBBCCGGROZdC/IQk4gbNjZpz2+6kGk92PM0JpQeXPo8vLXCz5zrawV5cj6ObekZ5qbssVlWUdsuBdKNbbEcNfezgMjnf09vBPM48Xx6KK4tqjccdXHbv+7VUt1hT5lwKIYQQQrQjmUshfkKe/k8Vi+a20aevnwMOK0ErVFi5LEJbq04uOJnLcHKZjpAvlBZcts9c2p1ife3KS9s39FEVFZ/qI2EkulkW60n7r83JXCbHma2hT0fcj99+3Bvi7hZbXGoF5tVrY906hxBCCCHEtkqCSyF+QtassDq+1lTFeeLBKhoK1rNWaQFgDDhzLsPJoDHXl9tBcOlJ28/vWksSMoNLsOY3dje4LAoUM7J4FAPzB6VtdzKXycfvTqmte1//JpTFbre99VqsXBrp1jmEEEIIIbZVUhYrxE9EIm7Q2qxTXOrjtJ/3JyekosdU3FWqdrdYOyOY689NK2NtXxZrd2vtLHNpl8japbHdCQQVRWGv/hMzgks7yHUa+nQruEyNzdsuKO7qsSZW5jKvwMO6ypiUxgohhBBCIMGlED8ZjQ3WPMqiUi8jdszl4muGcNo5gxkyIsfZx17n0p25VDsri03YmctOgksncxlIO3ZT5PisMUe1aLfP6R6b37NxwaVhGiiKwnbb52AasHqFZC+FEEIIISS4FOInorHOWl6kuMQKqHLzPJSVBRmyfSq4tOdctiXa8KpeAt5Au7JYK0C0u7imMpfpQVp6Qx817Rh3cLex3MueQGY32c54eqhbLMB2w6zXbtWyaLfOI4QQQgixLZI5l0L8RDTUW8FlUWkqEDRNk9w8L8NG5rBDNJeckIpmaMT1OIXBQoB23WKtzKW9rqS9Hmb7zGX7pUggFZh6Oujs2h2qohL0Bp3MZbc60Loef1PWuQQYnAzMZd6lEEIIIYQEl0L8ZNiZy6KS1K+9ibUEyZid8jl5dD8URSEcT3aKTWYH3cGYHSB6281x7MqcyxyvFYh1t4lOR0Le3FRZbDcylwruOZfd/xOoKqoTXJb39eMPKKxbE8M0zYxlT4QQQgghfkqkLFaIn4iGemvOpV0WC6ngElJrW9rzLUO+XIBO51zaMudcZpbFji4dyz4DJtE/b8CmPZGkkC9Vzqt2IxuaNudyIwJdd3Cpqgpl5X7iMYPmJm0DRwohhBBCbNskuBTiJ8LJXLYri7XZJa5Op1hfMnPpCsaczGW7LqtdmXMZ9AbZvmhEj8y5BCtzaetO5tKdie3uOpdgPR93UF5WYZ2jtjre7XMJIYQQQmxLJLgU4ieioT6B16eQl58KrtxBUsKwgqM2p1NsHpAKxnyqz/l5w5nLzDmXPS3kSzX16dZSJLgb+nS/LFZBcTKXAH2SwWVNVaLb5xJCCCGE2JZIcCnET0A0ohMNG/hKm1nWtMTZnp651IjpMcLJ5UWcOZfJwC2QXOPSvc3WPpNpB5Sbcw5iWuayO2WxPZC5dAeXkrkUQgghhLBIQx8hthKaofHGitcYWjiMHUtHd+vY1cutxjcNRfP5qFJnQN4ggt5gWuZybesavln/tXPbzgymur0GnfsURcGrep15mu3Xi7S7xaqb8fsrd+ZS3cjM5abOuQRX5lKCSyGEEEL8xElwKcRWojHWSG2kBq/q6VJwaZomc75Yz3dz4qxYbAWXucVWMBnRwhnBZVXburTj7YY+9hqSQU8g7X6P4kHDCi7brxdpB3CbqyQWUt1noXtdX93LlvjaZVy7wr0ciaqoFJf5UD2SuRRCCCGEkLJYIbYSUc1aS1Ez9C7tP29hFbe99BCfrfySwmIvhx3Xh1HjA8lzWcEmrrLY5niz83OeP49gMlPpZC69qcwlpAd07deLtMthN2tZrM9dFtv14NIOfH2qb6PG136tS49HobSPn7ZWnXBb194bIYQQQohtkWQuhdhKRJLBpW52bcmL75fWADByD5PLjh2CqiosX2QFPxHdOpc7c2nPtTxou4MpD1U4gZcz57Jd5tIO6FRFzQjunDmXbL7gMuAJOKW53SmLdRoUebqftYTM4BKseZc1VXFqquNsNyyno0OFEEIIIbZpElwKsZVIZS411q+LMfvtBuprEoTyPJx4Zl8aGzS+/qyZpvoEu+1TyKqV1pIiFYMVVNUK8uzlRmJaDEhv6GPL9eVmzUq6G+hAqlw2W2npj1EWC1ZpbEu8pVvdYu35oBtTEgugkBlc9qnwsxCrNFaCSyGEEEL8VElwKcRWIpIsZV28qJm576xyV7SyZmWU2W81sPR7K/tYtTbG2pYw3pBCsNDKdOqG7gSTdqDqzlza2geRQwqHouk62xUOSdtuB6DtS2IhVQ67uYPLXF8uLfGWjIZCnbED0fbzRLsqW+YyVKxR6/+B2pp8oHCjziuEEEIIsbWTOZdCbCUiWphoRGfu142oqsIhx5QxcUoxYHUqrV4XQ1Wh78AAdesTJPQEJWU+4oaVpbSzlgAxPXvm0qt6M8pFvaqXkSWjMspi7TUiswVpHsWDqqgbnR3sqp3Kd2Xnil3J9xd0+Rg7OOxOQJrteINUcNmcs4LqnHn8ULNyo84phBBCCLEtkOBSiK1EVI+yaF4bCU1jr8lF7L1/MQO3swK+1cujtDbrlJb72XtyEQAGOiV9fMT1OIZpoLmCy0gHmUt7bcuu8DiZy8wgTVEUJg3Yjz377d2t59hd5aFyxpWN79Yxm565tLKypitzmVtk/be+PrxR5xRCCCGE2BZIcCnEVqC5UePt19eyekUUXwD2OcgqvSwrtwKkxQus+ZV9KvyM3imPUK4HQ9Eo6WMFflEt6qxJCa7MZbvgMsfX9eDS20nmEqxy2orcvl0+34/FDg43NquarSw2EFTxehUaGmNZ57EKIYQQQvwUSHApxFbglafXs6qykZwclZ33KsAbsAKYkj4+FBViUSvQ6dPXj8+ncsRJ5ey4cw4lpVYAFdOjJFzBpTPn0tz4zKVX6XjOZW9md5btyW6xYJKb5yGRMGhtkeVIhBBCCPHTJMGlEL1cPG6weFELik9n/8NLKe8bcLKQXq9KcWkqSOpTYQV6oyfksfvkfKexjpW5TJXFRnWrOVBG5tLb9U6nzpIeG1leuqX0y+3P9kXDGV40YqOOt7vFRrQIC+u+I6EnMEyT3HwPpqJRX5vYwBmEEEIIIbZN0i1WiF5u+eIwMS1Kn35+vB4rWHSvddmnwk99jRXQ9OmbCvR0V6YyokecTCPgzMNsX8GZ043MpV1WurGNcbaUoDfIPgP23ejj7czl9/WLWN2yioDHj5nMXDZgUF8jy5EIIYQQ4qdJMpdC9HLfL2hDU2P07Z8KHN3zJ8uS2UpFgdLyVKCX1h1Wi6G5AlKwspmZcy67k7nsfM7ltsoOLu3sb8LQnODSVAzJXAohhBDiJ0uCSyF6sXjMYPGCNnQ1Snm/1FIgmpGa12c39Skp8+H1pn6l9bQGPlE0vV1wqUcygsvcdmtcdqZ/7gDKQxUMyBvQ5WO2BXZwGXc1RTJNg1C+BxOddWtirF8njX2EEEII8dMjZbFC9FLr1sR47P61tDbr9B0Jfr8rcHRlIfsNCqT915bewCeakWGMabGMx+zOnMvSnFIOHXp4l/ffVqSCyzhgNUUyTZO8ZOZyycIwSxauYodxuRx5cgW5eZ4tOVwhhBBCiB+NBJdC9FIfvllPc6PGDuNzGXJAHovDVmBjrVmZChz79g9wxgUDKO+XHjy694nqUXIMK3AMeALE9BgRPZK2VqOqqN2ac/lTpSSDS7vs2DANTEz8QZXtRwcprQvS0qSxaF4b0eg6Zlw0cEsOVwghhBDiRyPBpRC9VPVaK7N49CkVzGtaDWHI9eXSEm9xAsfVLatY1bySvUfu42TUbO7sZlSLkvBZwVC+v4BYpCYtc7lz+S4UBYs3enmOnxI1OZvAfg9MTAzTQEFhr/0LmDxoELGowd9vWcmKJRFaWxO8V/0qLfFmioLF7FNxAHnBHFRV2ZJPQwghhBCix8mcSyF6oUTcagxTUOQlJ+QhqlvrUub6rDmRduD47qq3Wdq4hOq2qoxzaO3nXJrWPM08fx5grXVpr9XYJ1TOoPzBm+8JbUNUJT0oNJP/A9CTr3EgqLL9qBCY8MPiBuqjdSSMBGubqrj11i+476+raWqUxj9CCCGE2LZIcClEL1RTHcc0cUpd7TUq7bJVzdCdwBBSnVvdEkYCr+rFo3jS1rkMJc8Rd3WTVZAsWle1zxCbpuE07zHMVKOlYaOsMuSlP7SxZmWEhroEdTUJWqMR1q2Jcf/tawi36QghhBBCbCukLFaIXmj9OqtZTEWyQ6ydhQx6g87tplijs787qLHpho5X9eL1eGlLtDkNaPweK2B1Z9xQJLjsKo+S3qDHNE0n0NddAf+wkVYQP/fLZhbmtJCTo9J3YABdiZGTq9LSpLHs+zBjd8n/8QYvhBBCCLEZSeZSiF6oep01H7I8ubZlwgkurWyYbmrUR+uc/d1ZTLACHt3U8Xl8BDxWQNqWaAVc61Imu5yK7snIXLrLYl1LxOTleynv5yehWdsiEYPVyyNoSpxd9yoEoHZ9/EcatRBCCCHE5ifBpRC9UGbmMlkW68lJ3taoj9Y7++umzrKmpby76u20brJexUvIZ2XQmmPNAPiTTXvcQZEqfwq6TGkXXFqBffqcS9uosbmYGJSUevGYXjQNgoUaw3e03hMJLoUQQgixLZGyWCF6ofXrYigqlFVYgWDCSKAoilPSqhk6DTFXcGnoLG34gXVt62iKNTrZSq/qI89nlV3agY+duTRccwVF12XLXNqZ4/blyZMPKaH/6DgfNRbxwbMxIrRQ2h/KKqz3oHa9NPURQgghxLZD0hVC9DKRsE5Lk05pHz9eb2rZC5/qw5ts3KMZCeoj7rJY3Znvpxm6003Wq3rI96fP6cs257J9wCQ6ltnQJ1Ve3D5z6fWqlFX48PtVBg0oAqCkn0lunodAUKVufZyWWAtLGn6QQF8IIYQQWz3JXArRy9gdRPMLU41jEkaCoCfodIVtjDWScHV71U3DCWwMU0+VxapeZ+kRsJrR2GWdpsy53CjtS4gNM/ucS+d+rKB/n0kVqAsb6DNIQVEUyir8VK6M8snyL6jSV1AYKKJPqM/mfwJCCCGEEJuJpCuE6GXiMSsY8futX0/d0DFN08pcKlZw6e4UC1aJq12SqRma0wDIKotNBZde1esER+mZS+kW21XZy2KzZy4BjGTAWVQUYNy4EhKm1ayprNwqeV5b2whAwuj+/MvGaAMrmpZ3+zghhBBCiM1BgksheplYzApUAkHr19POUHpVH17V026bFWzqpu5kzayfUw197DmXAD6PDyUZSFpZS8lcdlf7QNw0DSdIb9+1171NVVSCniCGaRDX45SVJ+ddNrQA2QPTDZlT9RkfrHmPiBbp9rFCCCGEED1Ngkshepl4NJm5DNjzLa1A0ufxOWWxNns+pW7qTnCimRpacs6lR/UmlyOxus76VB8KVnDkbuhjbxMb1r5brEnHcy4hVRarKh5nndKYHnWa+tQ0JoPLLCW1GxLVowDE9Vi3jxVCCCGE6GkSXArRy9hlsYFAeubSp3rxqb60fe2spGGk5lkahpF2DEBeMgj1KF7sxJu7LFaRstgua18Wa5UkW++ZaZoZ2Us7aFQVxeniG9VilJX70UlQWxNJrkuqdXsscd0qpd2YrKcQQgghRE+T4FKIXiZmz7kMWAGflgxOPIrXmXNpc2cu7aBGMzUnoLHLZu15lz7V68pSmpK53AjZ5lyarvLi9hnIVOZSJZDMXEb1CGUVPsoGGzQ36axZGaW2Js73C1pZtjjc5bHYXyLoRmY5rhBCCCHEj026xQrRyzgNfdqVxfo9fjyqJ21fOyNpuLrF6oaOqVjBjkexM5dWcOlVfU5wZJqSudwY7bvFtp+7qps6Pnyu+91zLq3y5JgWQ1EUJh2Wy+z/wbdzWqh6fxWlcatU9mcXDmDYyNAGx+IElxuR9RRCCCGE6GmSuRSil4kl51y2b+hjB4p2NlJVVHJ9uQBorsylbmqpeZrJMlq7fNbryly6822Suey6zspiIbNE1e4kqyoqQW8OkJorWdxPZ+CQAKYJxX08jBprvZ+fvt+4wXFohpaa67kR8zWFEEIIIXqaZC6F6GXicStgyGjokwwqPYoHDY0cbw4eJdk9Vk8tY6EZmhMs2t1li4MlAIR8ISdL6W7og2QuuyxrWaxrvVAjI7hMNfSxGytFk91d27QwE3YrYNQYg72H9GFsaT/uuHE5i79ro742TkmZv8NxxF3vucy5FEIIIURvIJlLIXqZ9t1inTUrPVYW0s5chny5qeDSSA803N1iAcpD5Rwy9HDGl+3kylySKouVzGWXZXSLNTufc2kHfqqikpPMXMaS3V0jiQiqqhDK9WCYBh6Pwm77FIEJn3/Y1Ok43O+5JmWxQgghhOgFJLgUYguoCdfwzqq3sq5PGGvXLdbuAmuXuDrBpTeEmgwu43rCOV53dY51d5etCFXg8/icLKVpSkOfjZGZuWxfFpveXMe9zqWduYwly2IjWth1nBWE7rJnAQCLF7R1Og73e25IQx8hhBBC9AISXAqxBSxvWsaaltVUta3LuK+jhj6pslg7cxnCo9rZzXaZSyM9c+lmN6SRpUg2jtrutcrIXLYrUXUa+qCmLUUCEE4LLq398gu9lPfzU1+boLEhQUeaWyMYRsfrawohhBBC/NgkuBRiC7C7e7afnwfu4NIKYjpq6BPypspi4+3mXNrBZfulSyAVSErmcuNkdIvdwJxLO/DzqKrT7dfOZrozl+7jho6wOsWu+CE9sx2N6JimyfIfwtwzaxnfz7Oym/b7LYQQQgixJUlwKcQWYAeMWpYun05ZbDB7WaxPTWUu7RJN+3zQvltsluASV0MfyVx22wa7xbZf5zJ5n6KoTmBqB5LhRCq4dAeIQ0daczOX/5C6v64mzm3XLec//1zLy0/VkDASrFkVwcTM+iWFEEIIIcSPTbrFCrEFaM76hFkylxkNfax9Uw19rP+GfLnOnMu04NLQU02AXHMubU7mktT6jJK57LrMOZdklMWappnWlResjKc7cxnVoh0uYbLdsBwUBZYtjjjnWvB1K7pusnSRFXAafo1oxKSpQUPvI8GlEEIIIbY8yVwKsQXYWaqswWXcRFHA50svi7WzkDuUjmbH0tH0yenjlMW6yzI1U3fmYPo9mUtZpAJJM8s2sSHtu8Ua7Rr4LGn8gf8tepT6aF3y/tQ6l3ZgqrveI7vJjzv7mBPy0G9QgJYmjVuvXsZXnzbx/fxWAPr09RPMURk53jquujImZbFCCCGE6BUkcynEFmBnFvUsQUEsauAPqE7mK1XiamUhK0IVVIQqAJzg0s3KXCZQFMWZn+lmBzjuRjRSFtt1GZlL00wLMNe1rkU3deoj9ZQESzEw0o5TFRXDNJzyWb/HT0yPZZTTHnBoKe+9VsfaNTFeeboGLWFSVOLlwt8MJhE3+XBpNR/8ANVr4xkdaoUQQgghtgTJXAqxBXRUFmuaJvGY4ZTEWvta+2QrcbXLLN10UyOhJ9KWIXFzz7lsv01sWLY5l+7Msf2e2mtZGsn3z/4iwKN40E3dCQh9qj95XHqAOGJ0LudeMZhJBxajJazzjxqbh6Io+AMqoSKT3DwPTY0a33xRnzYGIYQQQogtQYJLIbYApyzWMFj6fRuvPL2etlaNRMLENCEQUFz7pmcu3doHOva5E0YnwaVrzmWq2YwEl13VPlvsXtLFzS57bZ+5VBQlLdvpT86l7Wg5kUkHlpBXYD3myDG5rvMnGLtLHh4PzPm4gecfW4+mSYAphBBCiC1HymKF+BE0NSTweBXy8q1fuXA0zorlYaqbamj7ai0A66viHHd6X4C0zGVqKZLMLKW93R2YRLWodY4s8y0hlaU0MZ2fJXPZdZkBvZkx7xIgrlvvm7tbLFjvV8yIOXMs7Yx0Rx1fA0GVk87qx6qlEYaOyHG2J/Q45X0DTJxSzOL3Fb75vJnmxgSnnz8AVZX3UwghhBA/PslcCrGZ6brJP2et5qG/V2KaJs2NGu++Uc28r1pZvLCFQFClpI+PFT9EeOvFWgD8wfTg0qf6Oswuti+NtQNNu9yyvbR1LmXOZbdlK4vNJm5YZbF6u7JYZ86lmZpzae9XF6njm/VfZZxz8NAcJh1UkhY0xpNfOhQV+zjk2GKKy3wsWxyhbn0CIYQQQogtYZvPXI4ZM4bhw4cDMHbsWG6++eYtPCLR261oWk5LooVxZeN75Hx16+OEW3XCrTqrlkV57rF1tCQ0yvv62X1UAcfvuh2JhMGdN61k7hctAET9NbTGC8nz56MZmtNRNJtspbGQKrfMRlEUDNNw1l0U3aMoCl7FS8JIdFjOGtetsljTKYu1AkNPu+Vj7Mylbuq8seLV5JcJfsaUje10DJpr+ZlACIpHNPJ9yypq1/ejT9/sXywIIYQQQmxO23xwWVRUxPPPP7+lhyG2InNrvqEx1sgOxTvi6yRA66rqdXHn52f+U0V9Y4Q+I/zsPqmQwYUB8gutX8OiUi+NdRqaEuN79QM+XbeeKYOnYphG1q6vto7KZbM1ALIpKM5cQcladt/I4h3wqV7m187L6PJqs4NLZ51Luyw2mWnWnHJnFa/qdebKAqxuWZUWXC6onc/ypmUcOvRw51qwz2+dS6c+dxE1wZVUrtuNHcfn9eTTFUIIIYToEklbCNGOZna8BmVXLFsc5p4/r2Ttamvu4/p1Mee+pgYNA40dxueiqkraPLuKflZ2UlOieHwQ0aIZ2a1sOsxcdlAWax9jmiamacp8y42wZ7+92KViN6DjslinoU+74FJJ/tm1l6Ox1780TIMCfwEA68PVaeda1rSU+mgdDdEG1/lTmUvd1AnmW9fS+vWRTXtyQgghhBAbqVcHl3PmzOH8889n0qRJjBo1infffTdjn0cffZQpU6Ywbtw4TjrpJObOnZt2f1NTE8ceeyzTp0/n888//7GGLrZidiZqQ8FlPG4wZ3YjlauizjIQ0YjOs49WU702ztsv1wGwPpm5zMm1ft2GjPRTVGwFi5or61XeLzn3Tonj9SpoRsIJIDrq/AqdZS47znamZS4luNxodnlxNs5SJKY9rzW1ziWkN2qymzK5vyioj1rXj2matMSbAYjrqS8q4nrcKZc2TJ1gvjWO2prUPkIIIYQQP6ZeXRYbDocZNWoUxx13HJdccknG/a+88gq33HILN9xwAxMmTODhhx/mnHPO4bXXXqOkpASAt99+m4qKCpYsWcJ5553HCy+8QF7expWM9bYOjPZ4etu4tnqKiaIAitHpazv7rQY+eKMesJaIOO28/rz1Yh0tTVZGaumiMFWVMSe4nHZ8OW+9VMs+h4T40kpqYqI7j9G3vxUo6EqcgE9FR8cwNRQF/F5fh2Pxejxkq2wNeAMdHmNvVxTr52z7yfW1YaqiYKBnff01I4GqKpjJ+30eL6qqOO+XnnxvvR4vXo+XqB4hbsadc61rW0tZqIyWeKuzb9yMoaoKCT2BokCOL4e4EUM3dbw5Bl6PNcdXUXp/kya5vsTmJteY2Jzk+hKb09Z8ffXq4HLy5MlMnjy5w/sffPBBTj75ZI4//ngAbrjhBt577z2effZZZs6cCUBFRQUAw4cPZ+TIkSxfvpxx48Z1eyxer0ppae+cx1RcnLvhnUSX5YR8eA0oKg5RFMz+nmuawdefNqMoUFjkY/GCNlb8kODLT5rIzfNwwKHlvPTUOj54o5GGugSlffwccEh/DjikP2tb1vL94iAAoRy/c12N3NEDVKErcUIhH8EcD/lFAfLygpQWFXR4/RXV5BHztGVsLy8t6vCY/LwcdFPHo3gwTF+n17ZcXx0ryA85a5ZmU1wSIrc6QNQTpE9pAQFvgOL6PNqUILn5PvIiQUqL86nRcyGaQFXAE7Cujai3mdLSPNqa6snLs7bl5HkoLc0jnAhb10VuAWY4jldVUXQ/BUV+Yo06XjVAUcnW0dRHri+xuck1JjYnub7E5rQ1Xl+9OrjsTDweZ8GCBVxwwQXONlVVmThxIt988w1glcTm5OTg9/uprq5m8eLFDBo0aKMeT9MMmpt711wmVVUoLs6loaENw5DF03tKU0sbhmmwvrYRPSf7r8i8L5tpadbYYVwuI3bM5cUn1vOff67ENGH3SYXsvFcu77/p4btvrXLGsgofdXWtANS0NNHaaqUu1USbs93jN/F4QFfjGKZOY0sr62sbaW2NEvZpzn7ttbXGaW2zzmc3hgFoa05Q5+ngmLYYCSPhlNRmO7dcXxvW1hpzzYv1ZgSa69bX09QSpjUapaE+jM+ToLUlRmtrlBqvdR00N0UJtyZojVrvoUf1oBs61XoddXWtrKhd61wvVXX19Pe20hSzrosCdKIRjbgeBiCUpwAGixc1sv2o0I/3QmwEub7E5ibXmNic5PoSm1Nvvb4KCnLw+bJPx7JttcFlQ0MDuq5TVlaWtr20tJSVK1cCsHTpUn7729+iqiqqqnLNNddQVFS00Y/Zm95cN8Mwe+3Ytka6Yc1d03Sjw9f189lNAOy2TyEDtwvy6rM1JBImqgd23bsQj1fhmFP78u97K8GEPn39zrliWpzkNDwSesLZrqpQWu5nbUMcj0fBMEzCiQimCR68HY5FQXHO51P9JHQrwPEoHR+DaZ1fUaxusZ1dP3J9dSb12qt4MJPNoOxAM6bF0HUd07Qa+RiGCaZ1TFy3rgPFVFFQnfPkevNojjcTTkQwDJPGaKNzXzQRxTBMognrWK/iSzs2L99LXDGpqYoxdETOj/xabBy5vsTmJteY2Jzk+hKb09Z4fW21wWVHTDO1tMIuu+zCSy+9tIVHJLYm7mUljA4a+jQ2JFi5NEJhsZdhI0OoqsKYnfL4dk4LY3bKd5YW2X5UiP2mlvDBG/VpH/Td2a32y1hU9A/wTWMCn9+6hqOanZHs+Fsi1dXQJ+AJEE5YWazOusUqSqqhj6x1ufHczZC8qtdp4pPvz6ch2kBMjzuNoTpcikRVnW1gfUEQ8ASc974x1ujcZ59fczV6cjduys33EMOgribVSVYIIYQQ4sey1QaXxcXFeDweamtr07bX19dnZDOF6Cp3h1j7Z00zWLygje1H5RIIqnz3jVVCOnbnfGei9f6HlmIYMOXw0rTzTTm8lD32LSQvP/Wr5g4u23ca3e/gElYG/ZSUW4FhVLNKsbvaLdaf7B4K4PN0ElyiWEuRYKJshZPFewt3d1d3kFfgL6Qh2kBCj2OYRtp+9vtlL0WiKCoe1/1+j48cM4eoFiWmx2hKCy6tgNMJWFVP2vsfzFExMWht6XgeqBBCCCHE5rLVpiz8fj9jxozh448/drYZhsEnn3zCTjvttOUGJrZq7mBPN3UMw+TpR6p44sEqPnrHWmNwQTK4HLNzqglOcamP48/oS3FpZhDoDiwhlXWyH8OtT4WfMbsHnaA1kgwuO1vnMj3r5XP93MlSJMnsvoEhS5FsAndHVvs98qpeQj5rvmNMj2UEl85SJLrVRdhaisSbdp6gx2rg0xhtIK7HyfPnOeeD1BcU3nbH+gMqpmISbtu4NVqFEEIIITZFr85ctrW1sWrVKuf2mjVrWLhwIWVlZfTp04ezzjqLK6+8kjFjxjB+/HgefvhhotEoxx577BYctehtWhOttMSa6ZfXv8N9dN1E00x0VWddZYyVSyIsqV1JsanT1GB9kF+xJExDXQGVK6MUl/noNzDQ4fk6k3AFl4ZpZAQfsWQ5JEBU717mMuDOXHZWFpsMKN1l5KL73IG5HczneHOc9yFhJKzSY9f7q2Rb59L1BYFf9Tvv6fpwNQClwTLCibBTKmuXbLc/NhBQAZNwa/bgMq7H0QzNCX6FEEIIIXpSrw4u58+fz89+9jPn9k033QTAxRdfzCWXXMLhhx9OfX09d955JzU1Ney4447cf//9zhqXQgB8vu4T1rSs4fiRJ5Hry2zpvG5NlCceqiIS1pl0RIAvP27CNCEQTqAmNIpKvETCBpWrYsz9sgWdBGN2Kt7ooExrN8/Szpa+uPQ5ykMVTnYKIKKlusB2RE0ri/Vn/TnzGFewI5nLjda+LHbPfnuT482hLWEtDRNPlsW6vwDwtAsuVUVNu9+r+vAr1ntXE1kPQIG/AL/H78pc6s5juktqvT4FVKPDzOU7q96iKdbISaOmy5cKQgghhOhxvTq43HPPPfn+++873ef000/n9NNP/5FGJLZG9gf9qBbNCC5rq+M88Lc1aAmrE9fLT63HzIfRE/KYvt9AhuQNw+9X+d8D61i8oI033v+exYUfcMTwowBrbm9TrBHDNCgOdu1LDXdZrHVbQzM1mmJNNMWa0gKWiGY15+ksuHQHF3bGTFGUTo9xB5QSZGy89MBcYVTJDgAsa1wCQFyPoZt6WubZDiTt0larLNb9BYEPT/K9Wx+2gst8fwFBT5CoFiWhJ1xNgjxp77OiKARDCm0tetasdFuilVhyTF6lV//5F0IIIcRWSD5diB63PryeD9a8y74D96ciVLGlh+PMW0wY8Yz7vpvbipYw2WPfQnTN5KPPGulT4WfYqBwU1SAYtD70DxoaZPGCNpoTjeQWeTDy651zvL3qTVrjrWxfNJzK1jUUBYo4eMhhgBVAVLWtY0DeQOeDvjtjZZhGcm6nu0ttat6nXQbZWVmsOxi1S2E72x/SA0rJXG68jl5Hu5lSzIhjmmZa6ar9ftnvs6p40rLPXtVHjteacxlPzsvM8+cR8AYhZjX10VxLnriPBQjmKGiNEIsaBHPS77ODUt3U8cqffyGEEEL0MPl0IXpcTXg94USY9W1VWzy4NE3TKSVMGJnLM6z4wcoMTti9gH4DA/QdHWWeWYiCktZsZ/AwaykRU9HpPyhAS6LZua81bjX4WZrMVlVpVbQmWsnz5TG35hvm185jVMmO7NlvLyCVuQx4AkS0CIapO8FCe3YA0mlDn2RwoSgKfo+134aCS5Dgsidka9QDqa69drdf93IvnnbBoKqoeFT3FwQ+AsmGPrY8f76TlY7qMefLiPZZT4BgrkIrEG7TM4JL+3rSDR06XwNZCCGEEKLbttpusaL3MrA+wLrnDm4pMT2GmVxhPqHH0bTUfDRNM1i1PEogqNJvYABVVRi8fRCvxwq23MFl/0EBPB4FA53+g4M0x1PBpV2WOL7PBAblDwagum0dALWRGgC+r1/o7K8lzxtMZqc0Q3OWpehIZ51f1WRWzOPKgHU23xKkLLbnZH8d/cng3s48Z2voY/O0m3Pp8/jI8aYa7qiKSq431+kgG9NSmUuP6skofw7kWONoy9LUxw4uO1rDVQghhBBiU0hwKXqcmfwAa5f02SJahHm1czO2b0525gggbiR46uEq7rhxOTXVcdasjKElTIYMz3GW/kgrT3X97POp7HdICTvsFCS/0EM4EXbmzBmmQdAbZKfyXdi+aDgAVW1VAJQEU+tehhNWljShW5lLO7ulmwb6BoLLrmQuVUV1Ao3OOsXa+9okc7nxlA4ywPZ7a69LqaY19ElPGXpUjzPHEqxusfYXDwD5/vxkVtrvnFM3DOdcGWWxIWsc2Zr6uMtihRBCCCF6mgSXosfpyaDMnbn89P0GXpn9DV9Xf8nqlpU/2liiempZj/r6CIvmtRGPmbz0xHqWL7aCvSHDc5x93B+6238An3xwCXvsX+AEES3J7KWJ6WyryO0LQFUyc2kks6YAq5LP210Waz+O1i64dAcX0LWlSNwlknZ5bEfS5gpK5nKjdVgWmwzu7fm+He0HVibTXTbrc61zCVZwCTilsjE9ju6ac+lpdz47c9l+ORLDNJwsvgSXQgghhNgcJLgUPa59WewP37Xx2rO1vPNmNbpuEusgc/n57EYWf9fWo2OJutaMnD+vAQBFhZVLI7z/utWUZ+iIVAmiu5mO+2ebO8PYFGsCrHmddsAQ8AQoDpbQlmijNd7ivBYAK5tXANbcT0VRnABET3aLdcv15aXd7nwpEuuxParHyVj6PZ2vwdm+y6nYOB039PGhKqqTpXcHlBmZy3YdX72qD4/qcTKVeb4CAILeVDZUd61z2f7aSGUu069f9/VsZz6FEEIIIXqSBJeix9kfXON6jETc4OWnreUUdN2goTbhZO7aWjX+NWsVzz9WTV1NnFeequGF/1U72ZWeENWjtDRrLFnUxnfzG0GBE8/si8+vUFTiZeIBRVT0T5WQpmcuMz+AuzOMLYkWZ6zuIKNvMnu5PlztlAgDNETrncfwqanlJnRTd7K9NveSKV7V22l20c5ceRQPZTll7N53T8aVje9w//bjlbLYjZc+lzL9dXTPe1Vd96nt9su2FAlAjtfKqOf5rS8a7MxlVI8514uapaFPR3Mu3de2zLkUQgghxOYg3WJFt2RbO689d+byy0+aaazTCARVTDRq1sdJGAnicYP/3reOtatjrFsTo7DYuhRbm3Ua6hKUlHU+Z7CrIokwX37SREuTTlE8xq6jQoyekM8O4/KceZZpY9/AB3DdlWFsjjVhkgwuXQFayJubfP7xtA/0cT1OXLeef9ATdIJC3cgsi7XPAZ1nLSE1n09VPCiKwo6lozvd3xqv6Alp+d/25ameQNaGPu3nSKqKiurqFmvPr7WCyabMslgt6iqLzZxz2VFZrPsLDCmLFUIIIcTmIJlL0WUfrHmPF5c+t8HMoruhz/cLrGU6DjuuD4ZiUFsdJ2FofPJeIytWNaCoYJrw0TsNzvGrlkWznndjVK5roaVJJy/fw4S9Qxx5UjlA1sAS0ssFs30AT8tcxltcaxVmzqkzTMO5385iNcWaME0Tn+pzgkb3UiTFwWI8isfJfsKGlxXxuLrFdlVncwBF13XWGMldmuwOANu/3hmZy2Rpc1lOGV7VS2mwDEh1DNaMhHMdelVvxpcP/uQU4nCbTiKemmfpLtGW4FIIIYQQm4N8qhRdtj5cTWOscYMfTO2AKhbXWL60hZxclfG75ZOTC031GuFwnI8WfsviglfZ9VDrXIm4q/HN8kjW83ZVIm6wbHGYRfNbmTevDoAhI3IYOT5AUUnngVpaWayRLbhMbWuKNabKYl2BhR0oGKSCyzyflX2qCluNfvL8ec5+ummgJTvIji4dw2mjf0ZRoMg534Yyl/Z5vGrXg0sphe0ZHXWLBQiklcVmn3OpKAqKoqR1/LW/LNilYjdOGHkyIZ81J9ibLJdNGJpTsp2tLDaYzFwuXtDGLVcv5YuPrLnB7u7H2a5tIYQQQohNJWWxosvcS290xg7Q7BLYcTsUo6oKFQN9rFsOy5Y1s7o6TiBPYfudTea9oxKLGvQbGGDdmtgmZS7bWjX+fstKIslmJstzG1B9MGBwkHgygOtMWtOTrJlL6xxe1UvCSKTKYrNlLg3dKa0tCBRQH61jXWulddtf5GSzNFdDH7sk0r30SGfLkLgfrzuZSyVtDqB8x7SxlE7mUqZnLrNnit2dfiH9iwRVUdPmbdoZ7ISRcAJZj+JxglGbXRYLYOiwZFGY3ScVyZxLIYQQQmx28qlSdFkiGVh1NXO5fl0MXYkzYrSVeRkw1PqgPOeTOjQzQVmFH0PRnfvH75ZPcZmP2uq4s0afppk89cg6Pv+wsUtjrKqMEWkzKKvwM2R4DroSo/92Afx+lYSx4fU1NzTn0g4CfaoPE9N5ru6slT1/Tjd15/78ZOayJlwDWMGmHRS4G/p4FSu4cAcZvg1mLq3728+965xkLnuCQicNfdQOgks1s0TW3uYOJtuzg0vNSLRbiiT9fVfU9LL1mirruncvi5OtWZUQQgghxKaSzKXoEs3QUnO3NvDB1DANTExq1sWpUOMM38FqTtNvsI9QSCXanMCreCmr8KMZCaYcXkp+oZdd9i6kem2MhtoETz9SxVHTy1m6KMz8r1pZsijMrhML8Xg6D4qaG60P3aMn5HHAYSUk5uQTzDFRFcVZFqIz6dmd1PNsijVS4C9EMzSndNHUXMGlO4NF5pzLfH9B2vkL/AW0JdqS++muzKX1K+nrRuayKFBEWU4fBhcM3uDzs6WVc8o6lxuts6679tIhkJ5Vdq9paQeX9pcKnc2vVRUVVVFJGAnnOvEoHucYv8dPXI9n/H7W11kNtDpbw1UIIYQQoidI5lJ0iZ21BNKW18jGMHWiEYNIxKCkr0Io1/pgbWIwZEQIQ9EwlARl5X4ShtUZ9pCj+xAIqOx3cAll5T6Wfh/mgTvW8OGbVqOfaNhg1bINz8VsbkoGb4VeTEwCuTq5wRA+jy+jI2v2sbvLYq2f17ZW8vySZ/m+YRG6oVtLgyQDCbtJSlqpo5qaS2lni/IDBWmPUxAodPbTDM0Zm708iXse3oYa+vg8Pg4fdgTbF43Y4POzpTeiERsrLWPdrrzYXnMU0sumPWq2slg145hsvKrXuV5URUVRFCpy+zK+zwTGlI0DrAzlTnvkU1DkZdDQIJhQWx1Py8TLnEshhBBCbA4SXIou0VzBZVfKYhvrrP1L+6dK8TRDY/CwIN6gQX6JSSjXg9buXCVlfn7+q8GM2zWf5kaNhroEXp/1AX7RvLYNjrO50XrcgiKvswxE0JODT/VlXU+yvWwNfewMY3OsGc3U8KretHmVkL2hj2mmskV5vry0+3O9ua6GPrrz+rpLYO3s1IYylxtD1rnsGZ11iw24Mpdp2Uoyg8uQLxef6ktr5JSNT7W+JLG/5LDHsFP5LhQHigHrC49jTu3LL347hMFDrdax69elZzTtQLOtVeO1Z2toatjwfGQhhBBCiA2R4FJ0iTtzueGyWJPGOisTV9LX1VzE1PH5VA6YVsQ+h1iZPHfQavP5VY45tYIdJ+SheuDoUyoA+H5+K6Zp0hxrYmHdd1mXRLHLYvMLvUR1K9MZ9AadjFAiy+MBfFH1OW+seDUt+LQ/gNtZxZgexTRNvEoqc2kHj9ka5LjnXPpUn9P1syBQkJaZ1E3D6ULryRJcbmjO5caQstiekRakt3sdA2lzLl1fPmSZc+n3+Dl+5Ens2W/vTh/P3dSn/VxL+1x2ZYGqKvTpa13366viWcti33mljk/fb2ROsqMsWOvT2l/MCCGEEEJ0h8y53AYlEgbxmEEg6MHr3fTAYe3qKPf931K8u0YYNDQnrTGIrXptjJeeXM+hx/ZBN3Ua6q0grrgitY/9gdYbNPB4dEhAooMOrh6Pwkkz+hIJG4RyPXz6fgOVq2K89mwt/vHfURlbRmlOGbU/5DBndhODhuaw68QCJ7gsKPLSaqSa7/idZRziBAmmPZZu6HxXt8B6XNcHdnu8doAY1sLWPqoXkl1inSUh0oI195xL6xyqopLryyOcCDvzL511Lg09tW6hki1zuRmCS8lc9ggly/tu66hbbHpnYdf6lp0087G5s9jtu8S611e1lfezzllTFWOkkR5ctrVqfDunBYDa9an5yM8veYaoFuWM0TPkiwchhBBCdItkLrdytetjzPmoEV03SegJ5n2/jlm/Xc5t1y3nL9cvc4Kt7tI0g4/eaaCuJs6bL9bS3BJj3lctNDdpVK4Ko+vpAeYbz9eyenmUt1+qRTd0GusTeL2QU5S5tIdmaE5zHXfmcl7tXJY3LXNuK0pqvua+U0vw+hQ++6CRF5+uJB43iCZivPpMLct/iPDBG/W8/GQNzU0aHq9CKFd1SlY9isf5UB7XrQXoP1zzPuvD6wGoiax3HjPmavpjj9fuzBlOlsdacy7VtH3cH8Ld5a6GmZqTmeuzGhsVJINLZykSU0vr/mnLtixJT5HMZc/otCzWFSy6v7RI+7kba5NCehY7o0tsluCyrMIPClSvjadl5XXDYM7sJrSE9Xtctz71e2hnLde7fi+EEEIIIbpCgsut3Ox3annx8fW891odb87/hFue+A9NsSbyCz1EIwbffdu6Ueed/1Urb75Qy79mrWb54gh4NHQd3n+9nn//azWfvt/o7Lt6RYSl31tZvWWLI6xaHkbXobDEl7b8h/vDrZ2pSyT/G9WifF39JZ+v+zTreHYYl8dl1w9hxOgQjc1RvvioifnfNNLSpDFkeA4ej8LKpREibQYFRV4URXECP1X1OFkhzUiwtHEJy5uW8drylwFY17rWeZyYnioHtMdrf1iPaFaZrVfxZJQgps+5zOwWqyqqE1QWBYuT+3mcx3Ea+rgCBl+WzrE9Jb35jASXGystSG/3OnZtncvu/QlOy1wq6Rlt+/FNTJpijVS1rcPvV+lT4ae5UeO//7eGttZkiXc8weezm1AU8PkV6mriGV8YrW5e2a2xCSGEEEJIcLmVmzSljEBA5cO3Gnji6e9JaAbjJyucOKMfAN8v2LjgctliK1iMRa3gaP9phZSUeVEUMBWT9xd9zseVswGcjq4DBlsfpr/4xLpdXOIjrsecc2abq2lnLu2gLqbHaI23ZB1TfoGXE8/sR2GZQl1NgjdfstaM3HdqCX0HBpyxFhR60x5PRXXmXMaNON522aJ1beucn91zzcxk6asd+Lk7utrZPjsAVbIED0Yyc2nfHl06lon9JzG0YBiAMw7DtIJLr+u81v2bsSy2k6BIdF22993mLnNN6xarZM657Cqfx71ETfp14S6L/WTtx7y18g00Q+PY0yroPzhATXXM+bJp4fxmwq06Y3bOo9/AAIYOjfWJtC+A1rSs7tbYhBBCCCEkuNzKlZUHmHZiOZgQV1oZPSGP8fv4GLhdkFCeh5VLIkTC3Vt2wDRNli0Ooygw+ZAS9ti3kGE7+pl4QDGHHdcHj9dgUe1ifmhYTCymsWRhG6FcD6eeNwB/QCGe0MnN87Dd9jlZy0zd7AY77qCuJlLT4dj8AZV9phbQp68fA43yfn6GjcxxAludBAVF3rTH86iqkwVMGIm0eW7hRJi6aG3GeMCduUzP6LiXInHKYrN0izWS3WLt236Pn+HFI5wA0l0+694v9ThWILE5Mpd00ohGdF1n5cWqojoBZkcBpap0ryw2PXOZ/ufbbhpkmAYxPYphGmiGRv9BQc6+dCCBHKs8NtymM+9rq4HPflNLKCu3xli3PpH2O9ocb6Yp1tit8QkhhBDip00a+mwDJuyej+rTeK8tj4JCLxEtjKoqjBydyzefN7NkUZhxu+R3+Xy11Qlam3UGbBfkgMNKAZhbs9bqcOqBPv19rKzRaG3RWbM6gmHAoKFBcvM8zLh4IM8sKaSgjwFKKiPpLhF1s7OBUVc5am2khqGFw2iKNbK0cQkT+uycNjfN49fZc99CynYqYeLI/miGxoDBQaqCs2nwL2OvglOSj5mac2l3YU3oibTM5ff1C7N2nYXMOZc2r+J1PsjrroY9NsXpFmtgmmaHwZsz5zJZFhvwBdLut5cvcS9j0lMkc9kz1A00RvJ7/MT1eCdlsZsw57J9Qx9Spdrtm1F5vSojxgZZMR8+frcBb9jPvhPyKO8XsOZlYjX1GTgy/TlUtVVRuIHlUYQQQgghbJK53AYoikL/UYZTDmqvyzhqbC71/mV8/uWabp1v2Q9WSeywkTnONndGr+9APyjWWparlltldoOGWh1Y+w8K0qefD6/Hi9/jd47raPkSzTXn0lYbsTKJC+u+Y37tPFa2rEg7JmEkUBSF7UYEWKHN5YnvH6O4v07M04Sh6Hjz7YDWChpVRcXvKovVjdRYvm9YBEBxsCTtMdzZx/Zj96o+J5AwOmvoY1gZyY5KH+3gwA7A25c57lS+C8eOON6Zo9mTNndDH3XZUnKv+TXBhx7o8XP3JtmWoHHzJ5cjaX+ffY10uyy2kzmX7rJYJ+tO6todNdZaCicSNgjlKxx8dBkApeXWOWvXx53rGcAwzLQ5yEIIIYQQGyKZy21Ei2ueor1kRunQGA0l3/Lx8hoOXzOMfgMDHR2eZnlyvuXQESFnm914B6C8vw/jG4OGugSrE9a+g4akAlF7nqFX9RJO3q8Z2bvW2h1V3R9i6yN1GKbhPI+GaD0Ubu/cb59LNzQaYg3opo63IILq18GAUH7q3GBlCO2Mj6Yn0pb7iOtxFEVhSOFQ63GSfB4fuqY7AaKbV/W4PshbAaw7WHOa/WAFph1lp/yqH4/icb4MyBYs2MuW9LQNZdw2SSRC0YlH41m9ytkUnTGzZx+jl9hQBtjuGKu2C+A9qgddzyyF3hB3WWxHcy5NTOeaNV1fjBSUqPQbGKClSWPKIcUUlVjnsstia6vj6Kb1N2LtqihfftrM93mraNt9O/bcrwhVlQy3EEIIITonmctthDu4bEtY2UTTozFix1wMJcF7r9V16TytLRo/fBcmEFQZNDTI5+s+45VlL5FwzZ0sH+DFVAzq6xKsXhVGVaH/oFTgageXdrYwoSc6zFyClYmMalbjH1VR0U2d+mg9sWQzoPpIauzuTKJmauh211kzTlG5tU9uYXqzHY/iweexM5eJjGCxT065s0yIzc4Q6aae1uQESGu8Ywe62Uods93npigKIV/IeT7uZi2bm7IZ51zmPPQAntWrMEPWlxO5t90CkUiPPkZvkV4OnXm/3TG2/RqYdiCqdnspEnfmst2xzpxL07mm3CXfuqmz28RC9j+shJy81GCLSnyoHli/Lk5jUwxdN1n4rfXFTl19lNefq+WpR6rQtI5/h4UQQgghQILLbYa7w2pEiyRL4zQGD8shmAvfz2+jribeyRksX33ajK6b7LxnAT6fytrWNdRGamiKNTn7BHMhlOehpUmntTVB34EBfP7UpWQ3p7GzLAkjkTFv0S1hJIjqVvBRltMHgOZ4E9Hk0h/1roxiesMdw8moJvQEY3YLstPu+ZRUJLOKpJYBsT+Ua0YirfQPYED+QCcQttndZa3Mavr+HiW1zqWRZSkSO+Cwx9pZ6aM7qPV2M4u1KTbnnMvA008A0PDSm0SPOha1Zj2B55/p0cfoLdLLizPf50AyuFRp33xHzbp9Q9zZyvbNgFTXNdl+zqX1cyrL7v7CxONRGD0hj2jE4NH7VvPtnGYSbT76DfBz+ElFFJV6+e6bVuZ9uXGdp4UQQgjx0yHB5TaiNWEFl36PH9M0iWgRNENDVRUGDLECpbWrY52dAl03+eIjK4jcfVIhYGUHwQr2bAkjwS575uP3K5joaSWxpnueo8cOLuMZ2b+0xzU0Ysk5l/b8wkgi4mQuY3qM1mQ2Ni24NDUnaI0bcYJ5JoOG5jjbDFfm0i451QwtI4s6MG9gRkdWO4tomNnKYlOZy2xzLhVFQVEUV+ay46Ax19Wsx7MZlhzpyOYKLtXly/DN/QZtxEj0MWOJ/uwsAILPPtVjj9GbKBsoLx5SOJS+uX0pD1Wkbbfn23rUjZ9z2X5JHdVpJKU5v4fuOZdp8ynbXdPHnFrBDuNzqW+IUbkqho8gO4zLI78E9j/EaupVX7vhL6eEEEII8dMmcy63EXZZbHmonDUta2hLtDmBYUGJSj1QVRnrtGvs0u/DNDdqDN8hRGkfKyBtv8YjQEKPU1zqZ58Diylckcse+xY697m7p6Yyl9r/s/fe8ZHc9f3/a/p2adV1J+l6L77zueF6btjG2BiDAVMSWkLyDQn5/lJI8s03IQlJIAkkIeELCYSW0IuNwTY2rric7eu9V+nUtdJq2/T5/THzmZ2Z3ZVWutVJuvs8H497nLQ75TOzM6vPa17vMqGA0UzdrRbbINmFdXJaDqonFHdUTiEmxNwwWDImMi5Flz1jJVVenbGwrDuJN6ziOmsb1yEZSiIZakBKLobesgzrtnmwcy6DBX04z0S+tM8lYAvaycJigYBzeTHF5QyFxYovPAcAUO++F2AYaDfcBLO5BcKvXgCTGoHV0Fizfc0FvJ97uWu8LdqOtmh7yeskpHXq1WIrh8UGHXMA8BZC9j4kKXlgwrN41wfbsWB3Br88HcXy5gVgEkPQTN1t7TM+Vjn6gEKhUCgUCgWgzuUlgWmZyGpZhPmwWwAmr+WgG464TNofc//5iZ3LYwftwjIbthQFaDnHkYi3WJzHHfc1uEKUjAUoDUUt1+OS9ADUTQ2yLoNlWNRJtlAdU1K+ZUnepbewkGEZroAjxX/I676xgHWL+Bim4YYHtkRasax+BQD/pN0Wl6RXpllyDuyw2Mp9Lsk2yv0cxOtc8szFE5fsJKJougivvgwAUG+82X6B46DcdQ8Yw4D44vM1289coVw4dDW4YbFTrBbr63NZoaCPZhTFpdeln0hcAgDLMuhaLmLFmihWrrAjCDRTdatQU3FJoVAoFAplMqi4vATIaVlYloW4mECEjzqvFZ3LaB0DlgUGehWkRzWcPJov2YZlWTh+KAcwwLLVEfe1cpNQ3Rea6n+/KC45N29RNYotDoigBIAwb4fTaqYGxVAgcZL7GsmzJDlr5Hffvj3OJSliRF63x2aPhWM5t3CKYZm+/pcEwZNzyTKsr61DMISQZ/mic2mW5lySbRCCze69zJpz6R1vrZxLy4L4ykuweB7aNde5L6u33gEAEJ97pjb7mUNMt6UL67YiuYA+lxWcS+896Q+L9QjNCmHq5Fon951qqNS5pFAoFAqFUjVUXF4CjMqjAOx8RSJW8nquGELKmGhqFZEdN/CNfz+P//7SeQwN+POnhvpVpEd1LOyUEIsT1678BFSbQFx6w2Ld9h+m5k5myaQVACK8LWLzWh6mZSLEhxB2XiMhsc2RZud48iX71i3DFdCknYe9Pyfn0iMieU/OJRmjtwl9MNyQvFcx55L0uXSLBgVaTXgm/nMxLBYz0IqE7ekGOzwEfcNGIFo8Lu2WrbA4zhaX5hytOGpZiHzus2hcvRiRv/trfzzpBEzXASbrzUQrEm8Iu2VVyrks/zmQBzI8y0NgBWimBlFiEYqwGE/rvuqzteDg4EGMOH1tKRQKhUKhzH+ouLwEIK5eUkq6YZY5LVfsB2kZaFtoi7rREVucnT3pbw1x/LAt3lasLYqCSr0pNbMoTIMOiOUJi+W5Ys6l4ToiIXfZiCOsSDEiiZMgcIJP6EWc43FbjnjEpWqo7mTXJy5JQR/PWMgk3isWva4R58mj9C5vlBGXHOMp6GOWFvQh2yj3c5BLqaAPv3cPAEDfuNn3upWog3b1tWCHBsEf3F+TfdUa8eePIfrZvwWbSiH6L/8E8WePVrWe93OfSogrN82wWP9DkNJ1g9dhJbey0oMjcs9zDA+BE9z7LVHHQ1MtyIXaPRzIqON4pfsV7BncXbNtUigUCoVCmV2ouLwEGPM4lyGehLMpPpFFxCWh+3RRXOZzBnZus6vB+sRlhfYhuul1QMqHxXKePpeqqbrbksqExZJiRCHnd/I6UHT2yPreCbLiFAHy7te7jFdEcqxHLJqlYbFAceLOMZwrPMv3ueTcQi7V5FwyE9xmPMu7ocIXM+fSH85Zm23y+/cAAPSNV5S8p93mhMY++8va7KyWWBaif//XAID8Rz8GAIj8+79Utaq3lcjFcS49YbFlHkYEW5v4+1z6Q2TLuZBeV19k7crTmqHNSGgsyQ1VTVqFlkKhUCiUSwUqLi8BvM4lCZtTjWIoqm7qaO+wxWV9oz1J7D5jCzNFNvE//3EeqSENK9ZGsKCzKEKNapzLQHhd2bBYQ4PphENKfBnnUrXzJYmrGRYixWX4MFiGdY/F61wqevkCRWQMXhFJ8ijtViTkdf/lT9qPcCznqxYbDCHkWd6dxHuP10vQFZ0I4l5ezLDYmSjoI7jOZam4VB1xKTz/bE32VUuE114Ff+I4tKuuQe5v/wH6ylUQ9uwGe/rUpOtOt+qum3M5xVYkDMP4HoKUbte/vXI5l+RhRrnQWHLP8wzv61M7E+KSfHeYE7QpolAoFAqFMr+g4nKeoxkaMuo4YmIMIie6bqFuaj4h1rlUwp33N+HhjyxAY7OA1JCG9JiG7/5XL3rPKehaGsJDH2wHwzAYKYzgTPq0z6H07XPCgj6kUTsLgSPOpeYJi3WayjOs+zMJiw07wtPrXEpcCDzLu+tPVEyIQEL7rEA+JMdwvjDXoOgjRX1YphgiS8JovYWI7LBYuO/bxzu9nEug6M5OJkJrSS3bjwAALAv8vj2wBAH66rUlb+vrN8JsaoKw/XUwmfHa7vsCkX7wXQCA/P5fBxgG6l1vAQCIz03usrI+cTmNarHT+AomDyHKPYyYMCzWuVbJeuXuH2/7Hm+fWrdibLp24pKMLfiAikKhUCgUyvyFist5Dinmk3T6Q5LcQc3U/IU9YOKG25JoXSChc4kt4r7+bz04c7yAtg4J7/2NBRBF+3J4o/81/KrnBRR0f1VZ4ph4Wx0EQ0Yna0USctxJgS3mVpLiPa5zGRCX3p6RXmFbCSMQQsu5lTlZX9/KYKVOMh5/zqUJ0zIhcqIrCARWKBb0cbY1Uc7lZKGPCad9TJgLT7hcLZluC41KsP19YIeHbWEpSWUWYKHechsYXYfw8ksXvL+aYRiQnnoCFs9Dufc+AIB6510AqqtuO93cVbfP5TQeKBSv09J1g2Pwhr66FZudhyjlK0E7ApThPdWeZ8a5NK1iZAWFQqFQKJRLAyou5zkjebv/YzKUdF/jWR6aqbkiC/BPJDuX2CJmbERHS7uID/zWAoTCxYmqatjhpnnNLy4lJ5/TOxksyblEsf2HtxUJ2b/ISQjxIcTEuK84CVB08EjFWPvnEDiWc1qCmL4+l5XQA61ISBsS4oBWyrkkTg3HsO46RPhyDFcMR/QU/zFccem/lbwht5M5Whuar8DWztvQFm2f9NhqRS17WwLeYj6lIbEE9dbbAcytliT8rh1gh4ehvekGWHX1AADtyqtgSRKE7a9PXt12mlV3p5tzCRQrxvJlhGk1YbEkoqCcuPRWWCZuvWbOTDsSMp5Kud0UCoVCoVDmHxex9wFlJhiTxwAA9VJRXAqsgJyW8wkx7wRu+ZoIonEOy1dHcO87WyBK/gkpEWey4a8oK7ISgOyEzdhJ/hQLfysS0yPo7l16PziG81V45RgOrZE2AHaeJUHiQm6hG8M0KuaB+sdv78t1UeGfyJOc0dKCPqL7enBZluGwqG4JCloeLMO6QoII1YkK+kwW+ihxEroSiyY9rloy3SqnleD37QEA6Bs3VVxG3eqIy+eftVt91Do0dxpITz0JAFDvuqf4oihC33QlhNe3gTtxHMbKVRXX9xX0mcLxLEosRk7LojHcNOUxu7nBVeRcWoGwWIZhwJPKyWXC3r0h4yR8dqZ6XZJ90ZxLCoVCoVAuHai4nOd01XWhNzGEhbEO9zWRE5HTcpD1ojj0TjLr6gX84V8vqTgZJuKyoNtFfxJiAuPqOKJCFCl5xLdsac6lpxUJW9qKhGVZ16EkDikAtMfa3UkzcS45hoPACW5VTN3SpxYWG8it5IJuZEnOZTHckEzcVScEmGM4XNf+JnfZYMP6UnHpzbmcfREVpNZjKorLys6l1dICbf1GCAf2gTt9EsbS5TUdw3QQn7bFpfLme3yva1ddA+H1bRC2vz6huPSL9OrPaUe8Ex3xzimO1mZF/QqEuBASYl3JeyXOpbdarGmABeurnBzE24qkmL+tu+IyPQPOZaXcaQqFQqFQKPMPGhY7z1mYWIitXbe5wgwohs3JerFVRzCvaSKXhUz2SM7l4roluKnjFqxtWl+6rFmpWqw/rM6byxUcJwB0xovOHcm5DDkFfrw9J0lBn4nCCcmxekP87P95ZzyaM0b/5U+cGm/OpetyBoSo2+eyYrXY6nMuZ4Na97nk9+2FxXHQ15ZeI160OVQ1lj19CvyRw9BXr4G5eInvPe3KLQCKorkSM9EvdDKW1i/HLZ23lr2HS53Lori0YDkh3cV84iDFBzLeglwqQiEO8ToOI4Mq8rnaiEGD5lxSKBQKhXLJQcXlJYjoaSFAmEpFRjcs1hGnPCtgSd1SX7gqoVKfS5ZhwLM8GIaBZmolQg/wN4T3Oq8RIQqO4RAT487+ncmwqbuhviFPS5Mgbridx0UFigLRtMyygo+IYY7l3BYRxZxL/63CuNVkyxf08YrRWoSd1pxpttAou6mBAXD9fTBWrgbCExclcvMu54C4lJ4mIbFvKXlPX78RAMAf2D/hNmaipcuFMFHOpWEagWJVZcJiPa1IiHOpOffA8jVRWBZw8og/F3tUTiGrZac8Vu93R7AwGIVCoVAolPnJHJz1Ui4UPlAoB6g+9Mw7ySNhtcTRK1eYpiQsFn5BJ7ACdE9YrFd0CZyAlkirLVw9vS1FTsTdS+7FjQtvttdhSO5m0bkklWXt9/1CsVjQx+8q8p7lylXp9OZcEuGrOKG7wcqcbs5lpbBYz63FXsQWI9VSS8dN2L8HwMQhsQTt6mthRmMQX34JUNVJl59JxKd/AQBQ3nx3yXvmosUwY3HwBw9MWNSn1lV3LxQGwbBYf86lN5+4fM5lsQgWue/JQ6qVa+1w9mOHirnSpmXiF6efwK+6X5jyWH0huzQ0lkKhUCiUS4LZnw1Rao63JyNhsqIZGXUcfdleX+Ef2XCcS0fclStMY1gGLMtyJ7GWVSouvdVigyLt7iVvwU0dt5RstzHc6OZm8mVyLsMe5zIseAsASa5ANkwj0G9yYjeRCEqGYSE6PThJaHBQwLo5l2aFsFivczkHbzOfoLxA55LftxcAoF2xafKFRRHajTeByecgvPHaBe33QmDGRiG8+jLMpmboV15VugDLwli3Hkw+B+70ycrbqaEDXAsqhcV6XXy2ipxLnuE9Ye32Pbd0ZQQsB5w4nINpWu57mqmVtC2qBu+DrJkOjbUsC0P5IZ/YplAoFAqFUnvm3qyXcsGUa64+mTOwrfcVPHPuaeQ9FVyDhW/KCTLDNPDM2afw+KmfOb87rUgcMeY6gE6I7XTyD90wPlOHZmjgGM7nzkb4qLsvgRNcwUtyzAje81JuHKTVisgKbmgxCQ0uybkM9rmcyLmcA45WkFqGc7ptSDZsqmp5t2rss7+8oP1eCOIzT4MxDCh33QNw5a9Jff0GABOHxs61sNigwCWRBN72O1ygGJVveU/4ureVEABIIRaLl4VRyJvoOWPfF0QUTlUcjqd1HD007hG/M+tc9mS78eTpn+No6siM7odCoVAolMuduTfrpVwwwf6RwOTiMqtlYVmWrz0IgYiycoLMtAyMyCMYlVN2L0r4+z66xYUMIi6nfsmRarGGZcCwDPAs7xOKpACQwAm+fDLDNHwTfu/4yx3LguhCXNV2DVY1rHGLmWgVCgiVVIsN6AqOndvikplmf8Zy8Pv3wmIY6OsmLuZDUJ0wVPGJn9ktSWYB8RdP2GO5+96Ky1STd+kLL54Dn3OlViTeyIEJcy494euk7yspagUAK9f5Q2PNQH5zOUzLxBOnfo7t3btw9lQBlmXhh9/ow9M/G8Rgvx12PtPOJenZm9UyM7ofCoVCoVAud2Z/NkSpOcRx8EImjZqhIa2MlbxPHDrFkEvec8NiK+RcEmdDN3V3kkkmsGSCWskBrAZS0EczNeimDp7lfWKP5GsKrODJz9RhwvQX1vH8XG4cHMthbeM6RIUoJFbyvVcp57JY0CcQFuu5teZ8tdgLCOdkRkbA9XTDWLESiMWqWsfs7IK2aTP406fAHT407X1PG0WB+OwvYUUiUG/eWnExfYMtLrkD+youw8wx55INjIFcn96w2GLOZakg1E3dDp0NtBIirHDyLo874tJ1Lj3h9H09Mh75dj8Uxd7+UGEIw4Uh/OCFl/H1L/TgR9/qR/dpGRYsDPbZ4nIqBcemA/n+I99VFAqFQqFQZgYqLi9ByjmXZCL5Wt+r+OmJR/B632vuhFMztJLell7YCcJiFc9kTTXV0iI6Jc7l1FurksmwotsTUYEVfOKQ9MUUWNFThESFZVk+YcdXyL8sh8AJPtFVWi3WP4kPCgt/tdjZFx1BalXQx+1vuWHyYj5elHvvBwBIP//ptPc9XcSXXwSby9rhuRNUt9VXrobF8+D3TyAuayTSa0Vpn0siLouOpDfn0rIsDOYHfT0n3QdDzkOqofwg9g/txZg8isZmEY3NAgZ6VaRHNbfFkDfv+qVfjmLv9gyOHXAEqNMrdixl/39wt11Z1mIMDA044bWOOO3rUbDthVFfC5VaQKrgKp7euhQKhUKhUGoPFZeXIDxXOecyJY8AAI6mDmPP4C4AgGwU3OVIhVjf9hhSLZYpmUB7l9cNrWxBH6BYWGQ6ziUJiy1WrxV8/TKJcylxoutyqkZpL8vJwmKDeEV6aVjsxOLS62hNJmRng1oVouH328V89I2bprSeSsTl4z+b9r6ni/ikHRKr3F3agsRHKARjxUpwgwNghobKLuI9d3Mh/DnooFuw7zs33DXQiuTs+Bn84vTjODZ61H7NaVcCwNc7d/fgLjx28lHsGdzlupfHDuVgeBxL3dRhWRbOnbbv07FR+x7UTA2WZSGT1t3w8cZmAZxgYWRQhWXZBcdM08KPvtmHpx4dRl9PbUUgdS4pFAqFQrk4zP5siFJzxDJhscSZ9DqH3ZlzAIC8RyCWe7LPs5VFmXd5zRMWS8RXMER3OiGiREgS91Pk/M5lc7gZaxvXYV3TBvf4SJ6YV9j5C/pMfulLXDE0tqSgTzAMNvC7v0rt3LvNalWIRiDFfKqpFOvBWL4C+uo14A8fBHfk8LT3P2VME+JTT8BiWah3lrYgCaKvWQcA4A8fLPs+W8Pc1VoQHMNEYbGGZaDg3PtjTqg8yWkmtEbbEBfjWNu4DgzD4GjqiJt3eXR/zlfx1bAMjI7oyI7br6VHSUsgHfmcAcMAOhaH8PBvtOO9v7kATe08NN3CeNpuVXT8UA4jQ7YgTQ0Ve/TWAvL9p1LnkkKhUCiUGWXuzXopF0zZsFhSNdJxGqJCFGkljYJe8LmP5ZxLzjPZrBR2BwC6qXkmsaRarN9FnZa4dLZB2h0IrOgTyQIr4qq2a9AWbXeXJaK3UiuSahxUrzCulHPp/h5w/+a6uKxZWOze3QCKlVWngvzOdwMAQj/83rT3P1WEN14DN9AP7brrYTU2Trq8vtYuUsQfOlD2/Vr2C60FpfcncS6L96W3zyUJR81rWV9FWcJdi+/B21e8E1e1XQOJk6CZGrqWhhGNczhxJI9d21OOcLRgmDq6Txe/P9KOc6mbBjJpe9st7SJWrYuhsVlEc5t9r+7dPo7vfLUbT/902F2XhNDWCnL8NCyWQqFQKJSZZe7NeikXDF8mnJPkHJHqpwtiCwEAA7l+t9gOUD7n0huCOtEEWjO1kpzLEF/MaWMZdlohmMRlzDkVHyVO8rkr5X4m4W/eybZ3uWCz+XKIXOWw2BJxGWxF4guLnYO3WQ3CYpmREXDnzkJfvgJWom7K6yvvfDcshoH0w+8Bxsy2oiBIjpBV3vGuqpY31jnO5aFKzuXc+pxLqsWWhMVy7oMVu6Ky/b2Q03Ku0OTKtDIC7IgI0zIB1sBDH2wHywHPPjmEZx8fwesvjcGwDJw75RWXxe+cTNr+uaW9GA3Q1G7fX2MpHb29eYwMae5lOVpjcUlyTsn3H4VCoVAolJlh9mdDlJrjFUWkETqZXOqmDoEV0BppBQAM5gd9DdDLVoudwLn0opmq65SQ5ZbULXXHMN0G5lzAuRQ5sWL+JHE03R6dFXIuy/UCDSJ6w2IrtCKp/Hv5FihzhVo4bvxeO2dX33TltNY3FyyEdtNWcP19EF56cVrbmBKyDOmnj8ASRSj3P1DVKsS55CqIy7le0IfkQJseV5Jc+7ppuN8LOS1X1rn0Qu4H1VCxeFkYD7y3FbE6BhwHpAY15GUN507b3x8s6wmLNfWiuGwrRgO0LODRtTiMJSvCePDXm3HLXQ24/z0tAICxkdq2JvH24/SG8lIoFAqFQqktVFxegnidyxAfAgAYZrGZOsdyaIm2AQAG8n0+51Iu41xyVYaT2jmX/glqiA9hU8v0xAfBzbl0xiZwojsOnuX9VV2d/pIk59LfimRqLpM3d9XbtxKYvFqsN4x2LvQ/DOIXRdPbhrDHCYndtHna45Df/TAAIPzf35j2NqpFfOZpsONpqG++B1ZdfVXrmG3tMJNJ8EcPA3qp4Kllv9BaULlabDHnktxPhqW71V5VQ3XzL/kK93iw7+XGLQm877fb0NIuwQJw/Mg4hvpV1DfyaGwRocgm5IIBzdQw7jqXxXuKYS3ceHszNlwZR3O7gFvvacTaTXEAtXcuvX00aWgshUKhUCgzx9yb9VIuGK8oIm6D6bQdIAU7YkIMMTGGUXkUaTXtLh9srB4Ub+wEl4zmy7ksLrcyuQod8U6sbFg9reMJClqJLYbFBl0WMnEmLVK84a/e8N5q3ETiuAKlOZfB8zBRzuVcdC5rUdCHd8SltmnLtMeh3PcAzMZGiE/8DOz5nmlvpxpC3/4mgGKuZ1UwDPS168EoCrhTJ8u87TmPc8C5DD7I8LYYAezrmLQi0T0PgwBg3PkeqHS9khxkUokZsFuIJBtt0fny83bO5PLVUdTV2/faWErH6VNZZDMGJIlBNFa8B0keONkOAEgSi0iMQzqlwzRr147Ee5xEHFMoFAqFQqk9VFxegnAs54oHIjQNy3Cf3pOCP60R270czA9U3tYE4aDBwkGaobqTWSaQi3Zb1x24rv1N0zueQG9Mb1ist10CUAyhJVUhuQqVbqtpD+IVlyU5l0HncoIw2TnZ55Kp9Ev18Ht2wWLZaRXzcQmFUPjAh8AYBsLf+K/pb2cS2FMnIT37SxgLFkJ98+RVYr3oa0neZWlRHyLM50K+JVD60KMk55ItOpe6qfscvYw6bm+jYlisfT94xZlpGkg22tsbGbbvuVXro6hL2q/9/AeDePpn/bAsoLHFXznaV2nW1HFgeD9GCiNINvAwDAuZ8dqFxnofmim0HQmFQqFQKDPG3JgRUWoOcfZIOw3DMtxiFkSsEXE5UcPyoGtYqbUHEGhFUsNLKximJ3KiKyL5gPAkY3LDYiuE9AbDXMvhrRY7Wc7lfCvoc6E5l2x/H7j+Phir1gCRyAWNRf7gR2BxHEL//XUgl7ugbVUi/PWv2vv6tQ8B/OT5tl6MdbZ45g9WFpdzISQWKH2QUQyL9eZckoI+fnGZVmznslI+MnmY5O0VqVs66pICGAYwGR2CyGDx8jDqkvayPWdlmKyOK69LYPO1Cf/YPM7lSGEYuwZ2YN/QHtQ3Fgv91ArdI2RpOxIKhUKhUGaOuTfrpdQEMhF0C/qYhtuGhEwuW6OtFdcnzlxQvHmFktfZA+xWJF6HpFYEJ7siJ7nj4gPuKe8W9NFKxstNMSxW8jqXwT6Xk1SLvdRbkfBOf0tt84Xl0wJ2YR/lgXeATaVcEVhLmMw4Qt/7NixBQOH9H5zy+sS55Mo4l+SznQshsUDlnEuSc21Xi/UW9CkKuHHHuaxc0IeExXrEpWmA4xjUJXlYMLF8dQSCwKKuwdMrs5PFwq4QWDYgfD2CL6tlne1pqG9wxOVI7fIuvc4lFZcUCoVCocwcc2/WS6kJZCIoOQV9TE9YLBFrcTGBsNMqJCjgQpy9XrAtgb+1RyAs1tTc6pS1dC6DYbESJ7oCOehqkqI9ZALp721ZvnJsJYQJci4nCoMNLl9NCO7FhrnAViT87p0AAP2K6Rfz8ZL/g0/CYllEvvgvQDZbk20Swl/9D7DpMSjveBeslpYpr6+vXA2LZcu2IyHnbq48QCh9UGBHJXjbjHjDYg1PBWc3LLZCQR8359IbFuuItsZmASZjYPXGGAC4ziUAdCwv7bsLwLfvvNNmyLBMJB1xOVpLcekr6EPDYikUCoVCmSnmxoyIUnOI8JPYYlis7rYaKIq1tmg7ACAuxn3rhyqIThJ2x3masRN0T0GfiarKTpXgtgRWREKsw5K6pViZ9BcJKhb0cXIuvWLYc9zV5VxWbkVS4lwG5vRzPSz2Qgv68HudSrE1cC4BwFi+AsqDD4EdGUHkP75Yk20CADOeRvhL/waL45D73380vY1EIjCWLgN3vgfM2Kh/+3MkHJZQ0bm0SluRBMNiiSPJV3QunWqxPufSXn/F2ijufCCJ5MpRjBRG3II+UohFS0exsnO5sQHF/pO6qaPeyeHs66mdw0idSwqFQqFQLg5zb9ZLqQliMCzWMj1hsZ6QNSfvMib4xWXYcTyDE00isjiW8wk3wA5FNcoU9LlQgqG5IieCYRjc1HELFtct8S/r5lyWhsWybPn8y0qIHmc2eKyT5VxW6q85V7ig/oyWBWHPLliCAH3NupqNKfdHfwpLFBH5wufBdp+ryTbDX/p3sGNjkN/1MMwlS6e9HdLvkj98yPe6GxY7R0Rm5bDYYkg8uR6D1WIJlXIu3T6XpqdaLCkSJrBYuIzFC93P4fFTjyGRZHHTnUm89aEWmEzpvQiUVqa2x2tgYVcIkRiHowdy2P7y2KTHXA26qbu55dS5pFAoFApl5qDi8hIlIdWBZVjUSXUA7JxLIri84axdiUVoi7ZheXKFb/JHnMtgWCwRjSzDlgg0r3NZ07BYz34EVpjQCSzmkzlhgN4CRFPMuRQmyrmcwKkM/j4XnUtcQH9G7vRJsCMj0DdeAUjS5CtUiblkKfIf/wSYQgGx//unF7w99tRJRP79X2CFQsj/wScvaFtGhbzLuVYtltyf5Po2LX+1WJbhwDAMOIbzVYtNhpLuNirmXLKl1WK9OZs5rViM6Xy2B7ff24QNW+LQnPznYOGwcuJSt3SEIxze8+F2cByDJ34yhOGBCxeDgwMFPPGjIXSfLtBWJBQKhUKhzCBzY0ZEqTlXtV6Dd658N+KiXaHRGwLnzVMM8SG8efE96Ix3+RwLknMZdDFc55LhSkJLK/W5rAVkHMEiQkGEYBhvhVYkQSeyHCSkGCiTczlJQR/vfueK8PByIQV9+DdeBwBoV19X0zEBQP73/gBG1yJIT/wM0g++O/0NWRbif/IHYBQF+f/vj2F2LbqgcbnOZSDvcq4W9CH3S7mCPoD9sMS0TOimDpZhcWvXHeiMdwEA6qT6stsmbX+8BX28eZMFPe/+fGLsuLt/IiJJWxSC5VnX3Z4Tut+1NIytdzfAMoFtL46WLFcN42kdP/h6H86fk3HsSAamBRzcm8Xp02l8+z/P45mfD2Own4bIUigUCoVSS+berJdSExiGQYgPuZNJwzLciVswzJTg7VsZ5iNll2W9zqVHaPIs74jLYm5XLSHbm0xcRviof7yeS5zzCb5qnEvBFQ2TtiIJiAvvfue8uJyiMBJe3wYA0K6pvbhEJILMv/8HLJZF7JN/AO7UiWltJvzlL0J84TnoK1Yi/9u/e8HDqtTrkmEYiJzotvyZbcjnSoRgsc+lPySeZ3nolg7DMsAxHGJCDLd23Y73rvkAuhLlhThxLtUyOZcAIOuy+/P5bA/yWt63rBkQk94+l+5rHjfzqhvqIEoM9m7PIJedeluSl59J4dDeLH74zV4M9ClgLAaaauGXT/bj+KE8Xn5mFN/89/NT3i6FQqFQKJTKzL1ZL6WmMAwDlmF9YbHBUFeC16UkOZfBypGsJ+yOCC6e5SGwgpPDNdPO5cST+BAf8olkLuAguuOvsuAQ2dbk4tL/O9n+XBSWwIWNS3jjNQAzJC4BaNddj/z//iOwuSwSD78TzNDQlNYXtr2C6N/8BSxJwviXv1aT0F2zswtmLG7nXJp+kXTHortwc8fWC95HLSCfK7luyxX0AeyHRpZlQTM1371QKd8SKIaJ+8JiPeIy73EuLcvCUGEQuic/M+hcmjBL8zA9gjMc4XDldXXQNQuPfW8QY6nqq8cqsok9b2QAACMjMiwLWLYkCZ5nYDAqbntLI+J1HHJZA7pe6qBSKBQKhUKZHnNz5kupKRzD2dViHfdCYMu3BiC5mAzDoCXahmQoiY5Yh2+ZonPJucJT5EQIrADTMssW0qnVMQBF92QiYmKsZL3g79U6q2E+XDa/dNKwWPhz3+YaXrdyKp8VkxoBf/wYjMVLptXWo1ryf/gnUO69H/zpU6h7z4NgBgerWo/fuR2J970LjK4j+3f/CGPDxtoMiGFgrF0HJp8Hd+aU762mcFPFUNKLTfHhjy0SLTcstphzCRQfMFmWVfU1Ws659Fdh9ecyaobma1tSknNpGiWRCME8zGu3JpBq3I2dR07h/332bNVhrHu2j0NVTCxeHgbD2edgwxWNuOmOBtz8ljhufnMDEnX2OSjkqLikUCgUCqVWUHF5GcAyrJ37VCbn0gvJV+QZHjEhhvuWPYCOeGdgW0VHjnNdEtEVpoqhgGGYmuegcVXmXAJAVCiKSzYYruoJ662G6xfchFs6by1dvsJ2i+PlnMXmRi5ekOlWNxW2vwFg5lxLF47D+Je+CvWGmyDs34vkW24Hv2fXhKtIP/0J6t75NrDZDHJ//GeQP/DBmg6JhMZyB0v7Xc4VyPVO7uXSsNjStiATuZVeGIaBwAruAyTAHxZLiAp2aLpiKNAC7xOBSRzVcg+6vO6lIqZwxX0ZYOMu5NQ8fvI/A9B1q2SdIHvesHt2vvltTbjvPU3YcGUMDckQGpMRROvt9cMR+1wU8qXhuRQKhUKhUKYHFZeXARzrOJduBdVKYbH2RG8i4eX2ufS0NBA4wc3xMi2zppViCdXmXAL+tirB3Eoyka50DoI0R5rdQidegsdY4lxOUcRebPw5l9WPcaZDYn2EQkh/98eQH3gQ3LmzqL/7NsT+8PfBHToIEBfMMMBvfx2JX3sYid/4IJh8Drk/+4sLrg5bDn3dBgCleZdzCfJZ8sGwWDMYFustblXdvQDY97pqqK5ILFfxlTzc0UzV1xMT8Ihdkv/N8iX3iO6pQKuZGgSBxYYrYzCXHkZ/j4IXnhyZcIymaWGoX0U4wmJBZwgrN4aweHkEPGvnhpMxh6NEXFLnkkKhUCiUWlH9rIIyb+EYzs2vAio7FcRFmMjJKIbdFQv6BCu0EueilhDHpZrCKdWExV6o6As6kuUcys54F0JO7upcY7qO6kUVlwAQCiHz5a9Bu+FmRP/mLxH+1tcQ/tbXYNbXw2xoBDs8DHY8DQAwFixE5p//Hdqtt8/IUNyiPgf3z8j2awF56FFSLZbkQrP+sFjvstUgsiLyyEMzNYicWNa5jIkxDOYHoAbCYgHHuWTsfEvAvg95lofhy+M0AOe2Jd9ZDMNg0bUZnO8bw8vPAcvXRrF4WbjsGDPjOnTNQnM7jyOpw0g4FbNZT564aZkIR+xzRZ1LCoVCoVBqx9y0VSg1hUyoSDXHSpNJbyXJybblzbkUWBGCJxeyNdp24YOuMDahmpxLX1hs+XDValqRTERJX8syt9KtXbfjTQtuuKD9zBTe8VcdIqso4PfsgllfD2PlqhkaWRlYFvKvfxipN/Yg+5efhrZpMxhZBn/qJBhFhnrTLch89vNIvb5nxoQlYDuXFsuC37tnxvZxoXhbkTAM44pLtw0RQ5z7qbXlIZCCWqppu5emZZZ8X0Sdis22c+kvwhN0Lr0REARv70yyfkSIIBLlsPrOMcACfvLf/RjoK59/mRqy10kl9+KNvtfwet8295jJ+TFMA1YoD4XNIJ+j4pJCoVAolFpBxeVlAAkNJS4CX7Ggz+Qho95qsURQCU5BH0JrpPXCBx2AjEmaYs5lqXPpHGOV1WIrUVLQZ47mVlZiOn0u+d27wCgKtKuvBdiL/9VhNTSi8Du/h7GnX8Tw6T4MnRvE8LlBpH/8M8gf+mhNqsJOSCQCY9UacH29YAf6Z3Zf04TchwIrgAXrirlgiyCvIKxUPbocohP+rhmqG14ajCaIiXZYumqovvxMexy22PU6l8H9e3MuyfqrkqvBMRyYtn5suDqM8TEdX/l8N04dyyNIatheJxs5BwDIqBn3mMl3oWEZOGT8CmeiL6GQN3EmfRpn0qerPg/VktfyOJ0+NfmCFAqFQqFcIlBxeRlAhJRq2E/6+QrVIasJi2U8uYRFN5H3rdMyg87lZK1IACAuenIuAyKyNdqKmBgr6Yc5VUpakUyzQM5s4RXD1Qpj8aUXAADajbfMwIimCMcBoVBJYaWZRtu0GQDA7919UfdbLa3RNrxpwQ1Y27jeLeQFFPMYuQsMiyWRA6qpuW5o8J4kYfHqBDmXpicHtNS5LOZAkvWjQhSL6hZDN3VsuCePW+5qgK5Z2P5KumSMqSENBXYU0bi/MrTXuTQtExBU6KyMTE7Gr3pewK96Xqj6PFTLvqE9eKnnRQzlp9ZOh0KhUCiU+QoVl5cBJOxNIeKyYlgsEZeVXT1vi42IEAFgF9AxPW0GvGGptaIrsQgtkVY0hZsnXdZb9CcYrrql9Wo8uOKhmjuXc7Vwz0QQUVmtMBZeehEAoN40B8TlLKFf4YjLPXNTXLIMixXJlYgIETAMUyy8Yxq+Pq/+gj7V3wtur0tD9bU28l7/5P63ncvy1WLdvpssV/J94y/oQ6rcClicWAIAGCoM4E1b6wEAA+dLQ2NTwyrSYjeisaJLSfZF7nsTJjjRHksqO1b18U+VvJ4DACiGPGP7oFAoFAplLjH/ZsSUKUPEpKLbE7FKYXDEuZwoLJZMzliWQ0esE29ddj9WJFcip2VrOeQSOuNduHvJW6ZcIEc3q2+8PhVKnMt5FhYLFEVlVUPP5SDs3A6zsRGGU9jmckQnzuUkbVHmAgwYTysSwycipx0W63xHqKbqa23k3Z63WmxQVFmwkNfyrmi0Ba9fXJq+sFjbuRQ5ERJn3/u6qSMU5lCX5JEa0aAo/mqvQ0MyxoRziMT8x2WH8jPuPjjBPjcj+dGqj3+qKI7zWq7wEYVCoVAolyK0WuxlQMSZ7JEn+OV6y9mvT17Qp+hcsmAYBg2hRgDAFS2bMKqkcMPCm2s27guhNdqGgVw/ElLdjGx/OmGlcw1XXFbhXAqvbwOjaVBuvGVW8i3nCvra9bB4HsKe3XY7lDn82bMM6+YsGqZRUVBWCpMvh1vQx5Nz6a3CyrM8OJaDwNotSwq6nRMpcRIUQ4GsF/Czkz8FYJ86b1isyIm+7QLFnEuBFd02SKTgT9tCCelRHUN9KjoWh/D6S2M4f1bG2fQZMGENy5sWoTfb626PjM3erg5RsreXkkcwM98SxVQEb5EiCoVCoVAuZS7fWeJlBCnFT6gUBse7zmXlySbHlu/f2BBqxIMrHpqRYj7T4c5Fd+GhVe+ZkbYohKmGlc41pjJ+0QmJ1S7jkFgAQCgEfc06sMNDYHvPz/ZoJsSbc2lYfnHJM9PLuSTFexRdhm6WijYSkk76YRb0AgC4IfSkuA6B87ieEd5exuvykZxLb143eb91gT0WUjX2yR8PYd+ODAaZU4jFOaxqWOMPkWc4MM6fPN3UIIj2z2NK0bk0rdr2vFRd55JWpKVQKBTK5QEVl5cBXnFJWhSUIxlKQuIktEwgEOukJHiWdx3LuQrLsAjz5fvg1WwfKC+05wtk3NU4rzTfskgxNHZu5l0SyOdLxFjFsNgpOJeuuDRUXwVaIlZFp+AP+T+jZsCzvFsIKLgvlmHdcNe48z1l+pzLYs4lCdcnQq11gb3N/vMKTNMOcc1xQ8jzI2iM16E9usAXRu8t6KOZGgTBvu7H1JkTlyTPnYbFUigUCuVyYX7OiilTwisuJ5pIxsUE3r36vVieXFFxmaZwE96z+n1YUre0pmOcj8x355Iw2fiZ0RT4/XthdHbBXLzkIo1q7uIW9ZmjFWMJ5HMloaXeIlb+n6fgXDpiTTHkomj1tPggBX9I+KxpmQjzYTeklbQgcffNcNjSdhVu77oTTeEmAH6Xz5tzScZMwlxb2x3nsldBZlxHlh/AueirYBjgmsWbwDCMr02KPyxWA8MwEEQGBbWYF+oNya2EZVl47twvsXtg54TL6abu6TM6M7nfFAqFQqHMNai4vAyIiXFfc/ULZb46dbVmKs7fXKRY0Gfi8QsvvwTGsqDeePOczjG8WBDnUpjjRX2KzqUjLpnyYbFTci4dB9IrLnmmGNoqueKymNcd5iPutWYEwkNJhMHCeIevByWBiECe5d0xk0JCDc0CeIHBQK+KsREN58M70drF488+dg8evP0qZzwe55It5ne6bVREFoYB1/kMjq8cOS2LnkwP9g/vm3A54loC/gq4FAqFQqFcylCVcBnAMqzbHqAW4pLiZ746l9U6r8IzTwEAtK23zfiY5gP66rWwJAn87l2AWdswylpCetKqRqlz6cu/nEJbHtETFkuK1PAs726DhL+S/wEgzIfda80MOIPlxuRrRWJoxSrWzrK6pUMxFDzX/TSk9hQU2cTuY6egszIWxhdgU/tGd30pEBbLeMJiAUAQ7XGpionBfgWf/6vTePmZlNsyheANl807eaSToXrFJc25pFAoFMplAhWXlwkJyQ6NnajNCGVqVOv8zVVcUTnR+E0T4i+fhsVxUG+9/eIMbK4jitCv2Aw2PQbu+LHZHk1FyOdLnMtKvS2n8p1AchhVQ4HhCGs7l9EfFit4CumE+HDRuQzkNHqjIMiYSCsSy7Ls3EhPdWue5WGYBobyg+jN9gLNAwCA148fBgCsbFjpH68nLNZuReJ3c0WnqI+mWjh+MId8TsMzPx/BLx8bdtc7kz6N7x35NobyQwCAvJab/EShWMwHKLqtFAqFQqFc6lBxeZmQEO1i+wJXvg0JZeq4YbHz1Lmsavy7doEdHIB2zXWw6pMXaWRzH+3qawEAwvbXZ3kklWEDLp23n6SvFckUohlYhoXAClAMxXUYOU8lV9IHU/QIwojPuSzNuXS37VSiJmGxZNzeiq8cw8GwDPe9ukYOBjScGjkDzuKxonWxb/vesFg755K4uU4VWse5TA1rSI3oiNUzECUGr/8qDcOw3cvhwhB0U3eryuaqFJc0LJZCoVAolyNUXF4mEHE5lZ52lIkhk/f5moNaVVjs448DANQ7774YQ5o3aNdcBwAQ3nhtlkdSmaC45Cv0tpxKziUASLwE1VA9jijv6VUp+f4HSM6lXzi6+/aGxQaqwRbH7XcudVN3cybrG1nk+WGYMBHX2tHY4K8QLfHFcXj7cXpzLgHgxBFbMG5+UxwLu0IwDAvDg7YALbYTsdepVlySYkSGYeHl54ZwcE9mkjUoFAqFQpn/zM9ZMWXK1EmOuGSpc1krXHE2z8NiJxz/z38OAFDvvOtiDGneQJxLfk6LSxIWO0krkinmYYusLdiIyOJY1t1GsBUJYIfSkmssKC7LhsU6yxDxKpRxWWXDrvCaSHIwGaclihVCXdJ/LBLrrRbLlQhu4lzmcyYYBli3OYq2hU4V2vO28+i2E7GIuMxWPjkeZN1e7/jhHI4dHcdzT4xUtR6FQqFQKPMZKi4vE1oirbiieRPWN22cfGFKVbjibJ6GxU42fmZgANixA8aixTBWrrqYQ5vzWE1N0JctB3/qJJjh4clXmAWCrUjYCu1HplLQBwBCjhuYklMAgAgfdavIkpxMoUK1WGuCsFgiHIkAJYWIvMWBSGivotviUpAsRBP2tkWBQzji/5M2WUGfcLS4/01XxxGOsmhdYB9ff6/jXBIH0hHpeT3vrjNRX0zNVJEZ13HicB4mDIwMasiM0/BYCoVCoVza0OoulwkMw+CKls2zPYxLiksmLLaCcyk6VWLVO++iLUjKoF99LfiTJyBsfx3qPffO9nBKCLYi8YbCTrcVCVAMeR11xGVcSqA+lERMjKMj3gkAvv6S3mqx5VqRFH/2h6x6e1y64w44l4ZloKGFA3qBRFwsuZZ9BX1Y3hMWa5+TjkUhSCEWDU0CBIGFCdN1Lvsd5zIYFpuRMzAMC6MjGraPjeKq6xrAcUQ8W3j+yRT2vDGO5htT2Lk3DcsChJAJ5ICzJwtYvzk+2SmmUCgUCmXeQsUlhTJN5rtzOVlBH/EXTwAANBoSWxbtmusQ+t63Ibzx2pwUl0GXzlchtoKLWQ2kSI5pmeAYDlE+CoZhsCJZrNQqBMNiUT4slmM5wOn6QRzUYEGfcrmixLk0LQsNzba4jCeK+wyOFbCPn5wD4oqyLIPW9qIANU0Dza0iWK4YFnv2bBrbtg2h4d48dp4dxU+e6CZDRmq8D7vHXsWN1y7G+qYNeOZnI3jlObvwz6FnB5ARDbS0i1i+OIr0L6i4pFAoFMqlz/y0XCiUOQCZvM/XnMsVyVVYkVzpc4YITDYD4blngLo6aDfdMgujm/u4RX3maMXYYlgsqerqqczKsO7DBX6K7Ykkz/USE2Nlr3/RCYsN8SHfvsxA/8hyOZck/LSYc1kMsSXHUNA9zmWr/VoyWRSJBIET3H3YLVNIYSF7H23RNsTFOOqlemd8JnieQXOriFzWQGZcx5kzGaiqhQN703j1lT5YACIxDk0tAnRGxmuHjuLk6An09ch45blRhCMs7n57M/iwjuZWEVddX4fGVnu/Z09O3CPz0MhBPH7qZ65LOpfJqOPYP7S3xI2mUCgUyuUNdS4plGlSdC7n5zOa1Q1rKr4n/vIpMIoCvPvdgCgCplVx2csVY/kKmPX14PfuBhQFkErFzWziFq9xwjqD/Sx5lodqqFNqRQL43cC4mCi7DAmdjfBRAMV7xQw6l75WJMS5tPMYy+VckmNQDOJcGli8IoT1wzFs2VRfYbwSCnoBPMu7RY5IqGtrpA1XtGzG632vYUwZgwl7320LJQz0qujrKSA1ZgvC0yezSOTGEG3jcOtbGsCAwajJ4eSwgd4eGTsG0wCArXc34tqb6zG8sAEjigEGDEQRSDYKGOxTkcsaiMbKhyKfHT+DkcIw0koajeHGssvMFQ6OHMSx1BE0hpuwILZwtodDoVAolDnC/JwVV4miKHjnO9+J+++/H29961vxwx/+cLaHRLmEYOe5czkR0mOP2j+8852zOo45DctCu+Y6MIoCYffO2R5NCcHKqFygcA8RdlNuReJxLhMVxGWYD2NL69W4snULAFSsFlu+FcnkOZekgqtpmbBgYsnyCOoS5cX9uqYNWNu4znFQ/XmdRNByrrNqi8v2DltAHzs+juy4E6ar69DYPBZ0Sq5Y3nCN3fpk/65x7NuZAS8w2HiVHfaqW6otLDkRuqlj2eoIAOClX6bKjhMAZL3g+38uQ8ZIhDqFQqFQKMAUxaWqqvjSl76EI0eOzNR4aoooivjmN7+Jxx57DD/4wQ/w5S9/GePj47M9LMolQlV9Iucj2SzEZ5+GGYsDb37zbI9mTqPdcDMAQHjpxVkeSSnBgj5BEbkiuRIrkiun/HCkGucSANY1rXcdrUo5lxO1IimXc0nyQ4k4NCzD3SbLlv9ztrZxHa5qu8a3D7eCLvxFuci2lq60RePO14dgWQDHASbjiMuu4vF3ruDR2CwgPaZCUy1suDKOcMTJCzUUcAwHiZNgWiZuenM9pBCL1381hvPn5LJjJaJZNqYnLmVdxmt92zCupKe8blbNYFvvK5D18mMLQsZKQowpFAqFQgGmKC5FUZxXAo1hGESjdliWqqqwLAumWbl0PIUyFeZ7tdhKiM/9EowsQ7v7LXMu1HOuod7oiMtXXprlkZRSdC5Lcy4BYFPLlXjTghumvF3RU4G1knNZQqBaLMMw4FgOCam4PldS0Mcetzfnkg8IZMMsistqHNjgvUr2SV4nrVKa20TE6zjkFFtALVoWhhi2UN8GxOuK+zGg4bpb6rF4hYRYgsN1W+vd91RThciJrjgOx4A772+CZQEvPztaMjbDNFwXsFClwAvSm+3BsdQRnBg7jlE5hcdOPIKBXH9V6+4f3ofjo8dwOn0KlmVNKlBJUSWd5lxSKBQKxcOUZ8UbN27EwYMHZ2IsJWzfvh2/9Vu/hRtvvBGrVq3C888/X7LMt7/9bdx2223YsGED3vWud2Hfvn2+92VZxv3334+tW7fiIx/5COrr6y/K2CmXPsTvudTCYklIrHL/A7M6jvmAsW49zGQSwo43gMLcCmUkbmEl53K6kD6XgN2GpBqIQ2g5OY2bmjfjPavfh5gYKy7jFP5xw2IdoSVw3pxL/zGYlunmaE5LXDJ+cUkKDjEMg6UrIzAZ+9w1NAm48+1J3PlAPRgwbj9P1VDAsgw2XZvAH/zVErfyrGZosCwLEieBd8SxZmpYudZ+2JkZK3X7SHsVoBhyalkWToweR07LTXpsQFHoybqM/lw/xpQx9Of6Jl3Psiz0ZLrtsakZHB09gkdP/ATdmXMV1yHO5XwoPkShUCiUi8eUxeUf/dEf4bvf/S7+53/+B93d3cjn8ygUCr5/tSKfz2PVqlX4i7/4i7LvP/HEE/j7v/97/M7v/A4eeeQRrFq1Ch/96EeRShVzWkKhEB577DE899xzeOKJJzA8RxueU+YfxVYelw5MZhzSL38BMxqDduvtsz2cuQ/LQrv+JjCqOueqxgZbkUy1KmwlSFgsaUNS3Vjs/93KogxTtpAQx3Ae59IRl95WJIF1TMt03cZqIgiCApR1e70Wcy5PjZ3AmfRpLFsVgcHYY0jUC+BFCwxvjy3EEXGpuut5HzIppi28RE5y3VbD1BGO2PvJ50vdPsUrLp2fBwuDeLX3Zewf3leyfDnIuZMN2d1eMBS5HCPyCAqOoM1q4xjKDwIAzqRPV1yHhsVSKBQKpRxTnm28613vAgB8+tOfxt/+7d+WXebw4cMXNiqHW265BbfcUrkNwte//nW8+93vxjve8Q4AwF/91V/hhRdewCOPPIKPfOQjvmUbGhqwevVqbN++Hffcc8+0xsOyc0tGkPHMtXFdLrAsC4axQ+sulc9AevwxMIUClIffBzZqFyC5VI5tptBuvgXS449BfPUlGFtvne3huPDO9WlYOhgG4Dm+Jp9liJWQDCcRE2LguOqeT3LOWEzGtMfiuWe8Y+I5Drqpg2UZqKYKhgHCQthdRuAEeAMFTBgwYVZ9fDzH+9Yn6/AsZ7/OWHil1w5xfnDVB2AwGgSBQTTGwYABA/a5DAkhMCqgW5q7HssySCtjkLgQDOd1iRfBgLGPHQakEAdBYCDnjZKxqqbijk0xZLAs425Ht7SqPjvLOb+apUIxZd/YJqI31+PuO6fnwDEFMAzQn+8Fw5RGZ6iGCss57yZKj2WuQP9GUmYSen1RZpL5fH1NWVz+3d/93ZwIA1RVFQcPHsRv//Zvu6+xLIvrr78ee/bsAQCkUinwPI9EIoFsNos33ngDDz300LT2x/MsGhtjky84CyST1bkHlNpSNxpB2gqhLhGZs9fGlHnErqgc+o2PIORcV/T6moS33g188g8Q2fYyInPoOqgvRBFTQnbFUoTQ0lSHxmhtxvehhvcDqD4kvL4QRUwOIRaVkGdCaEjG3OvKe33VJ2LIqlk0NsYg9AExNoSFLU1ubmSjGUcsG/JtOxYXEdNDaG5MTHp8VlhGbLC4flNDAo31MTQa9nZjCRGxjP1+w0IOdz3YgJNqA+LxEESORzjMI2aF0FKfRI4ZQzjGI6aFwLM8EvUSHt37FBbEF2BT2ybEYiE0J+thWiZGrRAS9SE0xmIIxxhkxkwkk1GwLIMDe9I4uGccm97CIhaz9y2EgcbGGDJcGLGREGIxccLvmJ7xHrRGWxFXJcSyIYghBlKIRUwNIRaXJv1+Sg8OIRazrxWwGkwwiDnurBkuoCXa4ls+o2TcsUbjE49tLkC/wygzCb2+KDPJfLy+piwuH3zwwZkYx5QZHR2FYRhoamryvd7Y2IizZ88CAEZGRvDHf/zHMAwDlmXh4YcfxurVq6e1P103MT4+t3KqWJZBMhnF6GgOJu1DeNHJZhRkszIyjIyRkexsD+eCYXu6Uf/CCzAXdmBs/Rawozl6fVVDSyeSLS1gtm9H6kwfEI/P9ogAAJlxGdlsMdQyPVoAJ8/OdTo+XkA2K0PUc8jKMtJjBYwKpddXPqchq8gYHEpjaHQUDMNgbLT4vZtJK75jAoARZhzZrFzV8Y3Jef85GStgxMhiPG2PbyiVdt8/1duDBUsZpIY5ZLMyOFaDpfDIyjIU0UQ2K2MYaec9Dn1DKaQzOVjqINr5UWSzMgqSDt007G2PpGHkeRyJ/xxsoQO955chFGbxva+dw+iIBr1tHNmwE8qqjGJkJIuRdAbZrIxRJlvxO2b/0D7sGtiBFcmVCPFhZLMydHkMqmQhm5MxKlZel3B26DxCXAgRIYKR7IjvvX1nj2Bza8T32nBh2D1PI8I4RiJz8/uP/o2kzCT0+qLMJHP1+kokwhCEiWscTDsJ58SJEzhw4AD6+/vxjne8A83NzTh79iwaGxsRi83eU0zLstyn6StWrMAjjzxSs23PpQ/Xi2lac3ZslzQWA8uy/78Uzr/0w++DsSwo73gXTDCAc0z0+poc9YabEHrkx+C3vQL1jrtmezg25Pp0YMDO2udomYBl2TmXlmX/bJa5vliwsCygoMlQDQ0JMeEbMwvOd0wAoOgqLKu642Ms1n9OLGcd53VV19z3U4UUZF1xf9cNA4rzu8hIsCy47xum6TzEBGRNhqzLsCxAYERYsLep6CrGCmmwooECl0Iua2CwX8HoiJ0Te/r0GMJr7H3JmgzTtKAbOiwL0A294rEdGj4IywLOjZ/D0rpl7vkTGNFZ15jwvGiGBtO0IAoSonwcw5YtLhtCjUjJI+ge78YVzZt96xRU2T0v2gRjmyvQ7zDKTEKvL8pMMh+vrykX9MnlcvjEJz6Bt771rfjzP/9z/Ou//isGB+3k/89//vP44he/WPNBliOZTILjuJICPalUqsTNpFBmArfP5RwIE79gLAuhH34PACA/9J5ZHsz8Q7vZzrUUnn92lkdSpLTtRm0K+kwHco+4PSkrFN/hnKJDpDpqiA/73i9XBIhUw62moA8baMfCuq1I7PGRIkIAMKaMuUVrCLIug2d5dxykoq1lWTCdwkKqqUI17DEJrAje2Ydu6VANBaLIQGdUFPIG9u/MuNs+d77Y4su0TCiG4lavJRVxy0EK8TSFm3zLZTXbTZxMXHqLD8XFOMZGNWTGdXQluhDmwxhVUtCc4wmuA9BqsRQKhULxM2Vx+ZnPfAa7d+/GN77xDezatQuW5zHwLbfcgpdeujj93kRRxLp16/Dqq6+6r5mmiW3btmHTpk0XZQyUyxvS6uFS6HPJ79wO/thRaBs3wVg1vdDxyxn1tjsAAOJzz8zySIowgTrGtWpFMh3IPVIUl+UfyJDcypwjjCTO32e1nLgkFVvZalqRBP7kkd/JuqSyLgCMKaNQDSK8RHf8PMu7y3vFp+5UTbUsC3k9565HxmyYBhRTgSCyMFgFuYyBg7uzYFggFGYxMJiBrlvuvmS94J6vShVfvfsXOQmmZznTMmHBwi8eHcR//FPlliJEIIucgBCiePW5Ubz24hjiQgItkVZYloUR2f8QV9GL+6XVYucX/bk+PHbiEYzJpb1WKRQKpRZMeVb89NNP4w//8A9x3XXXgeP8f8wXLFiA8+fP12xwuVwOhw8fdqvP9vT04PDhwxgaGgIAfOhDH8L3vvc9PPLIIzh58iQ+9alPQZZlvP3tb6/ZGCiUShRbkcx/5zL0398AAMjv//XZHcg8xWxfAH3tevAnT4A9U7l9w8WEqdDTcTYg9whpRVLpniFtO4hzGQ44l+UEpDaFPp6lbi7re50ILQBIK2lXvEX4Ys6hwAquCPaKUcMsuoYZNVNc1nFjdVOHZmgQJRYGo+HksSxyWQNLloexdGUEGlSMjqiol5IAbJeUuKFmBXFJWobY+zfc5QljIxoG+gsY6FUhF8pvQzWLLmt+RIJhAHLBRH44hOaIXchnMD/gW8fbNkU37ZoGA/kBHBw+gJTsz9mkzC16s+cxpozhfLZ2czUKhULxMuU4KUVRUF9fX/a9XC5XIjgvhAMHDuDXfu3X3N8//elPAwA+/vGP43d/93fxlre8BalUCl/4whcwNDSENWvW4Ktf/SoaGhpqNgYKpRJkgjzfw2KZ8TRCj/4YViQK5R3Tq6ZMsd1L/tABiM/+EvJHfnO2h+MTUiInuo7YrODcIxYs3+9BRMepHFNsVyXE+yvD8uyFicvgMuR3V1x6QjxNy8So4+6E+TDGlDEAtggj63nFnNfBy6pF55UIVN3SAdOCINrH3t1jC9CWdgkNTQL0kwpGBk3Ur0liMD+Agl5wt+/2Bw0wkO93fz56KI3UoInEch2xhP2nvfuMAouxP/fxMR0QNAzmB2BYBrrii8CxnCuoBU7EWG9xStB3jMMVW21x6RWxACAb/rDY/cN7sWdwNwAgmU7ivmUPlB3vhZLVsogJc7sy7VyHXOMZdXySJSkUCmV6TFlcbtiwAT/96U9x8803l7z31FNPYfPmzWXWmh7XXnstjh49OuEy73//+/H+97+/ZvukUKqFTEiDoXbzDemH3wdTKKDw/l+HFU/M9nDmLertdyLy7/8C8bm5IS697mBDaHYfuAWdy0r3TEK0rz/ilJXkXDKlf7JIagZXRngGCS7j3sOuuFRL1hFYAYJHmAucAK5MKLxXAGY1x7nkijmXhqlDN3UIor3u+d4MGMRQ38Bj6aoIjF8q6DsLRDjbJZUN2XUsK4XFDuXtKB4LFna8NgZdYZE9kUI0zqG+kcfAeRUi7DL2w6kcXhx/2s3RvH7BjVieXAHVOWaRFTDSw4GzBPBmCCcPKbjtng5wDIehwpCvWJ5q+MNiifBmGRaj8ijGlTQSUl3ZMU+XofwQnjz9cyyrX44bFt5U021fTpAc5XE1PcsjoVAolypTnhV/4hOfwNNPP40PfvCD+OEPfwiGYfDiiy/ij/7oj/CLX/wCv/u7vzsT46RQ5h6XQkEfy0L4W18HAMi/9qFZHsz8Rrv6WpixOMRXXgJkefIVZhivc9kQapzFkXjE5SQFfeKSLS5JWGmI8zuXwYI8vveqKegTWIYtcS7tiXedVOe6pnEx4cv1FDw5l150j3NJ8kAlTvSFxaqGClGy95VXbZFXlxTQ0MyjoQ1QswJ6T9pupex1Lj3i0rIsGIbTusXJ7cxnDSiqDiliIRRmkc0Y6DmjQNMs1y3e0bcTBb3gOtgFo+Abq8hJ6DunYnHuFqzlb0Jfj4LsuImmSDNUQ0XaEZAAoOjesFjddT87410AgLOZsyXn50IhDxxOjp3AYMBJpVQPucbJPUahUCi1Zsri8qqrrsI3vvENqKqKv/mbv4FlWfi3f/s3dHd34+tf/zo2btw4E+OkUOYcxH2ZzzmX/M7t4A8fhLbhCuhX1C7q4LJEFKHddAuYfB7Ca69OvvwM4xOX4dkVl0FRV+mBTEL0u10lYbFlnEtgavmk3rGQ9Rg359KeeLdG2/HQyvfgLUvvw21dd/j2K7BiWSFrlKmaKrAiBFYAAOiWAcWpFgsABmMLsvoGAbIuY8nKCDhLxME37NdlXXZFpTf89pFvD+ALnz4DTTVdYTg6osFkDHQtDeGO+5pw9wNN2HhVHAs6JaxcH4LMpnF05AhETsT6JvtvtOk4rUQY6jKLsZSOjqYmbNrQCgA4eSTnut6jSrEAjOxzLg03b3NZ/XIAQPe4XUDoTPo0njn7lDvOC6Gg592fX+971VdMkFI9xLnMaTla6ZdCocwI06pNv2XLFnznO9+BLMtIp9NIJBIIh8OTr0ihXEKQ+XGwcMp8IvzVLwMA5A9+pGIeHKV61NvvhPTkzyE++zS0rbfN6li8FVkbZ9u5DFxbk4XFEoLOZblqsUB1IbHusgznijUiErlAtVie4cAwDJrCTc5yxe3bRXpK91euXYi3WqxuatBM1Q2L1VkiLnnk9Sxa2kQkEyIGzlkQUhrUOtVXaZZw9mQB6VEdg/0qNFODyIkYS2VgAahrts+zILJYtDSMRUvDkIcF9PNDEAsmVjesQUSIOOO1t0nCYlP9tljrWCRh8fII3ngpjXOnZSxZKjnj9zqzxSq6hmm4ArU10oaYGMNwYQg5LYdT6RPozfbifLYHS+qWuuvrpo6CnkdcrD4MnxR5AoBReRRZLTOl9YNs738dEidhY/OmaW9jPuLNK86qGdSHkrM4GgqFciky5Vnxtm3bUCjY4TShUAitra1UWFIuS+Z7tVi29zykxx6FmUxCfse7Zns4lwTqnXcBAKRfPAHMsrPivS6DjuDFJniPVHIuRU70uZXBnEuvqPNuYyr3oHe9YkGfidu2eAsJ8SxfVswGXSC7ZQnr9hfVTT3gXCqQQizCEQ5nx0+DYRhcu7kTjMXi1LG8U/2V9Ll0HEzTQiZt76e3NwvLshDmw0inNFiMiWRjqfiWIoAFE4WCiRAfdl1Ysk3i1g522+J4YVcInUvsz6D7tAzecV69lXEVQ3GFs27pUE0VDMNA4AS0RdoBAGPyKApO+CzJDSU8e+6XeOT4j32htpNB+naS0NuUnKp63SCmZeLwyCEcGjk47W3MV3TP5zhOi/pQKJQZYMri8sMf/jCuvvpqPPTQQ/jsZz+LZ555BqOjtF8S5fKjWC12lgcyTcJf/yoYXYf8ax8GIpHJV6BMitm+ANrmK8GdPQPu8KFZHYvX6ZntvOCg+JsoP5IIYYZhSvpcMgzjCj+RLRbZmapzGRxH0EkNbs+fcylMmnNJlgOK7VUMJ+eSOJcGo6K+gYdu6jg2ehQsw+LeG7YgEhbQ260gm9V8LUgM00Aua4B0PDl/3hZbAiMhPWaAEyyE46XHG44wsBgDct4Ax3Du8ROnlVSz7T5hj3/pqgjiCR7JRgHDAyp0xXFaTQ2jcgrPnXsGuqkjxIXAMzwsy4Ksy+7xEmdUNgqQneJBQwV/juRAzq5y253pLh1wBXJaFizDYkFsIQBg9ALEJTlm1VBL2rdUS1oZw/7hfdNaf0wexZn07LQs0qi4pFAoM8yUxeWrr76Kf/7nf8aWLVvwxhtv4BOf+ASuv/563HvvvfiLv/gLPPbYYzMxTgplzhGsNDmvyOcR+tbXYPE8Ch/66GyP5pJCveetAADpyZ/P6jiigl0lNDnLlWKBUnE7kdNIQmNDXKisKCbCz+twTifnkmVYd/sl/S8DuZ3e3wVOLLs/M9AuhAhjyRlnQZehGio4jgHH2c5lfYOAk2MnoBoqFiUWoy4Sw+Zr62FZwOED6UCrE8NuJ+LQP2A/PEgPWbB0FnVNDCyUCh2Gt8CJFgp5ExzDuufPzbk0VRTyBlJ9QGOzgMZmW7QT93K4115ON3UcHz2OHkcQtsUWuK6saZluoaCw0xM0rxcgO87lqJwqm9+XnaSojGVZODh8AONKGrIuIypE3euZtImZDt6CRIonf3QqHBw+gN0DO12hPBUeO/koftXzwqTHH4S4zBeCdxtT3T+FQqFUw5RnxclkEnfeeSf+5E/+BD/+8Y+xfft2fPGLX0RDQwN+8IMf4JOf/ORMjJNCmXO4zuU8DIsN/ej7YEdHodz/AMwFC2d7OJcUyt33AgDEXzwxq+NYWr8cN3dsxV2L75nVcQClYacT5SmTirHBYj4E4iKKHldzKuKSLOtzMANO5eTOZek9H2wXIrhiKwye5ZFRx13XSBBZ6KyCuiSPnoxd/GZlw2oAwDXXN4ABcPJYDpqh+7ZPQmIBoH8wh+OHc3jusTQYi0NjCw/DMuzwVMdFBADTMhCJAbpuQVMZ13V1cy4NDYN9KliLx4q1UXc9Ii4HeogI1d1WLbd13YHr2t8EjuHQfaaA0ZQGwXGSyeeWUcZ9BYlG5JGSc5ZRx6EZGg4OH8DTZ550hSvhVPoEdg5sx6MnfgLAfmCSlOwcwVGl6Fym5JEpFfjxCkqv0JwKslNtl1TsrRZvRIFapvVNJYbyQ/jukf/B8dFjU9pfEK/Ip+1IKBTKTDCtgj65XA67d+/Gjh07sHPnTuzbtw+SJGHr1q3YsmVLrcdIocxJKrkecx5dR+Tf/wUAUPjY78zuWC5BjFWroS9ZCmHvbrDne2Au7Ji1sSyuWzJr+/ZSknM5wQOZOicsNljMh0BEoeTpPVkuTLUSbq60RyCWhMVOknNZrrCQXuJcFscXF+Ou0xYVohDFEaiMivoGASlH3JDjrq+X0LJARLpbw7kzecCpxRR0LjNZGd0HcmjiWrHhyjp0rGBgmHboa0yMI6fZOZkWLITjDJAH5CwDLs4547W3pZkqBvsUJC3BJy67ltj5roPdBpIr7LBYUvWVuJOpQRN73sggEmWx6iH7Oid5ssGcyKH8IFojrc4yIci6jIyWwcvnf4VuR2BLXAgd8U53HcP0O7ExIQ6BE5AQExhXx6EaKs6On8G23lewoWkjNrfa84+cloMFCwmpTJww/OJSNqYnLlXHASwExKmsy0irafdYg/Rmz7s/a1Oo1joiDwOwW7GsSK4seX8gPwDLMtEWba+4DdMyYVgGIkIEeS3v5rFSKLXAtMz5Nx+izAhTvgoefPBBXHPNNfizP/sznDt3DnfffTe+//3v4/XXX8eXv/xl/MZv/MZMjJNCmXMw87Sgj/TYI+DOnIZ6863QN9OHQTWHYdzQWPEXj8/yYOYIwWqxE0xAmsLNEDkRrdG2su8TYSd5xOdUJjRsOecyGBYbdDIZv3NZznk1SnIui+IyJhRFTlyMQxBZNyxWNgq+/FKWYR1hZ+LYoeLk3zQNjDvOJcsBBqPBsoBNmxuwdn0CDGMLRpZhcVvXHXjLkreCZViYlolwzD7/+YwdGgvAzefM5GQM9euQRAGLlhXPaXObCF5gMDJAnEvNLQYjOJ/B0b2Oe5czkXW0ZMQRl6RYD8nBHC4Ui/oQZzWrZnE+2+MKfWUSoRcM9R7KD2LP4C4AwJHUYVc0PnP2KTx5qnJYuk9cTtO5JGP1tkgBgN2DO/HU6ScqFgvyurPl2tdU3B8pjlQYdMf/yvmX8Ny5ZwAAL/W8gBe6n5twG8Q5lzgJIifWpEUMhQLYIdbfO/JtHBw+MNtDocwBpiwujx49Cp7nsWnTJmzevBlXXnklVq1aNesFIyiUi43b53I+Xfumici/fg4AkP/9P5jlwVy6KCTv8gkqLoFy1WIrLxsRInj3qvdWbBFBhJ7ITa+gj9t+hJ1AXJY4l5PnXFYKiwVsQUmQuBAS0RAMRkVTq93jUuIk93uEZ3m0tIsQI8D57jxGR1R3+8S5XLQ0DJPRwDLApi2NxZYllu1cRoUoElIdOJaDYRkIOYZkZtRyj3toSMHZkwXs25sCdB5XXV8Hni+eB5ZlkGwUoOU5qKqJTE5BTlacMdrFfvrOFMVRzykDQ/0qLFX0nY8Wx8HLqkWh7A3NNC0TXfFFAEqFnrf4DADExBgAIOm0z3i9fxsKegEcw0EzNRwZsYto5bQcCnqhYrEdr1s53ZxLIsyCYz47fgYAsKP/jZKcRsM00JfrdX8PHp9lWb62M14Kzpgty0Jv9jx0U8fJsRPoyXTDtEwoujJpgSI3LNvpv6oaKu0XSqkJI/IIdFPHYH5gtodCmQNMWVzu2LEDX/rSl7B8+XI8/fTTePjhh3HNNdfgYx/7GL7yla9gz549MzBMCmXuQSaD86nPpfj0L8AfPgTtqmug3XDTbA/nkkW/6moYLa0QXvkVmKGhyVe4xCmpFjvJn56JHtisaVyLlQ2rfe1VuCncg0RceccwJXHJ8mXFZbBgjejJe/T2Y5Q4CVde1YRrt8YRazRsZ9HTcoVlWLAsg9VXhGHCxPZX0pALBgzLdHMu114Rg8Fo6FwSQn087AsLDopmy7JQ12ifzxd/MYaTh2WYpoVnHh/Af/3bWZw+mUNIEHHTnaWFnxqbBbAWh/ExHT/7YR9efGbQOQcCnn1iBAw4LF5uj/3EfgVf/MxZ/Ow7I76cz3qpHizDIucJwQwK8SV1S8ExHApOddniOfWLr6hgi8v26EKwDIusmgXDMLi163YwDIMjqcOwLMsT8lu+AI6/oM90nUtblAady3qp2Ddy39Be33sD+X7fdRI8vhd7nse3D3+rbOEe75h7s+d9BY1UQ/Xk0FZ2I3VnuzzLuTnLU8n7pFAqQR6yTPdhDeXSYso5l+FwGNdffz2uv/56AICmadi2bRu+8pWv4HOf+xwYhsHhw4drPlAKZa4x7/pcWhYi//KPABzXcj45rvMNjoNy/wOIfPU/IP3sUcgfvrzTBYLi7ULc/iV1S7GkbilOjB73bH8KzqVzv07kXAZzKoNhsWWdy6C49BQc8jqXIieiLhaFyubc0NFgfinHcFi0TEAhZWH/CQtHD+RgrLWdS40pYNFGE/dE6jEsxCEGnNRyP7cu4rBqfRT6NgY//fYwIneqUDQGJmuLjSs2NyISLT2mhmYRLHj09SgoKBYygwp0LY7Duws4vDeLRIuINRtiGEtpMHrtc3TmRAFrtkqusAvzEUSECLJq1s4JZTmfu8azPBbEFkLiJRT0AizLcq+PoDgkYbHNkWa8Y+W7MJQfhMSH0BppRUJMIK2kfQK1UnVV7wQ4mDNZDbqpu8dQKoiL10FQeBJXs16qx5gyVpJzeW78LAC7QFEwLNwrgnsy3WgKN5fdj2aqCKF8vjLZn8CKMDl7/KqhlLT8mYysmoHohNZSKADctkNy4H6gXJ5Mq6BPKpXCjh073H9Hjx6FaZpYsWIFLehDuWxYGFuIrsQidHoKUMxlhF+9AGHXTujrNkC98+7ZHs4lj/LAO21x+eiPL3txGRSTtSj6wLLFbUypWixxLifIuQyKVW9BH4EVy44/6MaJvpzLWHF9TnTF5Khiu08hj3NJxmjCxMar4jhwAhjsV2AYOsbTOobqd+KZ83uxsLkDqXEGIif6xlfuuAxLx8q1UTD5BI7vNnB4XxYWIth6bwLtkQasaK8vOR6AOJc8+rplWAwLEzqG+0w88ashgAFuvasFKSGNNRtjsCIJhEZEDPWrUDIiiL4J8SFEhRiyahZ5PYe4mPAJsIWxDvAsjxAXRl7LQzEUt+Ks7gmtDfNhxIQ4zp4sQC4YWLU+hq7EIs9nZLulXrEXdAYJinFhzqVfnFZ2W73XhGmZODd+FizDYkndUuwe3AXN1GBaJlRD9VVHzuk57Bvag5Scwi0dt4JhGNcZago3Y7gwhGOjR9zlvaG56gTtSsjYeJaHBck5FhXlyx6VR9Zl/PTEI+iId+KWzlunsCblUoaEbU+3QBbl0mLK4vKuu+7CuXPnwHEc1qxZg2uvvRa/8zu/gy1btqC+vn4GhkihzE3iYgJbO2+b7WFUh2Uh+plPA6Cu5cVCv+pqGB2dEF97FWzv+cu65UtpzmUNxOUEYa0Tj6V8f1pS/AaYLCxWAMMwvuWB0mqxXlcnJsbBMAwsy4LESm54JylyE2y7wjIsNEMDJ1mob+QxOqKj+1weqmrBbE1DN+uQclp72GK3vHNJXtecUMm1G+twYvcYMuMGRMZE5woBvRm+ogPV0CSAAQtVBlhoMBkdR3bL6CqYuOLqODo6M0gNAU0tIq67YiG6t0Ux1K8iO8RBcp65hbgwIqT3pZZ3jz0hJnDdguvd4jwh3hY7sl5wzwcZ9+bWLWiNtOL1l8bw5E+GAAv4+J8uQlNrcdwkDNnbGkStKC6LoaDTaUWiesSlaqiuIwv43VbTk884mB+AYihYEFvgOrCGqeOlnhdxPtuDh1a+x102p2ZxeOQQFENBVssgLibc3NIldUsxXBjyhcUGnctKeHMuyfWvTjGMMaflYFh27qjXZaZc3hQ0+xoM3g+Uy5Mp/4W/99578bWvfQ3bt2/HD3/4Q3zyk5/E7bffToUlhTKHEZ96EsLO7dDXbYBy3wOzPZzLA5aF8rYHAdgVei9nptKKpFq8k5fpOJfBPE3vNvgK1WJZhvWs71+GuFQk3zDsVEkl6xFBIXKiGyY7lLdzGEucS8YuxGNaBpodAbV/Vxoam4MYsQVLxikWI3L+MN1y4b5EVKxcFYcocmAsBlLEQjxpb8vrsnppaLaPhQUPg7VFi5q3t7nl+jpwvkJHAjoW2aIwPVj8fEO85B57Ts+5riXHcmiLtrshmeQceF1BsizP8Dh1LI8nf2wLSwDY9Zq/RyNxLvNa3rP+5DmX03FagnmNBaPoXnrdSu/PZ52Q10WJJe5YNVPDuJqGbupu30ygKEQB+3O2LAuqqULiJXQmukrGk/e4pxPmXDoVje2cS/szn2qOHBGvqqFisDCIHx79HnYObAeACYsoUS5tvPcRdS8pUxaXv/d7v4c3velNCIfDky9MoVBmH8NA9O//GgCQ+z9/AbDzpwDRfEd5+zsAANKjP57lkcwuQXejJuLS69BNp1psQBx6x1jJufQ6mEHnk+RcbmzehJs7tqIl3OJ7n4TGSpzkisucZrts5XIuAVtcNbfZIuDIoXEobAbhiH+/Aiv6xuUVzVxAXIYkwQ6PBYfmdsEt5lLJuYwnePACA9biIYoMwmEWnCWgqVVE5+IQeE8uqsiK6FhsH8fIeQZnTuQxPqY7OZdR93iJ4AqGHhORWS6sVeQEHNxti+lb72kAwwJ73shA14tChhxDXis6l5UK+siGDJ7lfeGmUyEoyAqaJ8/T1NwHDKZHXJIHCQtiC93PSzd1Vwx6q8T25frcnzNqBoqhwLIshLgwYkIMDaFG//6rdS4N4lwKxYI+U2xH4l1+18AOFPQCjo8ew6icwk+O/RA7+rdPaXuUqTOUH8JPT/wEQ/m5UyzOm2s53fY+lEuHac0yu7u78Zd/+Ze47777cNNNN+G+++7Dpz71KXR3d0++MoVCuahIP/6BXSH22jdBvf3Nsz2cywp9wxXQly6DsGsn2DOnZ3s4s0a5ENRabnNK1WIdURMMzfVurzTncvL2J0Q0hYUwFtctKRHUnfFFiAgR1IeSvgI/AHzVYr3b1kwN9Q0CeJ6BphtALIslKyK+ZSVOKhsK6z0mr1t47c31iEQEdCwVXPFVSVyyLIOGJrtibF1SQGOrABY8rrwuAYZhSlq0RGM8kk0C8ike+3dlcXhPHjzL+8JiyXkKCvhyziUpQMNYHI4ezIFhgatvrMeqdVHkcwaO7CsKSdJXNO8VWmXyDy3LgmqokDgJEidNq7plUJAR11E3dViW5Z5Pr4s3rqYhsAKiQtTnXJJt6ZbhXjPe9TLquJsXSkKHuwLuZfU5l8S5FCCxRFxOz7kEioJZNVS82vsKDMvAUGFwStubaQp64aJWMN0zuAuPHv9xxWJStaA/14u0kkZvtmfG9jFVvNcgLepDmfJf+AMHDuBtb3sbnn76aaxfvx4PPPAA1q9fj6effhoPPPAADh4s3ziYQqHMAqqK6D/8PQAg+38+RXMtLzYMA+UBx7386U9meTCzR0krkpqIy8oFeSYcSwXn0idW2dL3trRejU0tVxaXCaxPJu6V2qysaVyLd658t1uYxovEBXMui+KSZRksWRlGUzuP294pIVHnd085lps059I+bjtPtGtpGPc+2Ir6Js4VNkKFsFjAKeoDHnVJHqvWxXDlVQ24+ga7DYz3PJGcx6Urw+At+3jkcfs1kmeZ13KuwxsMPSburWLIbnglcS6HzpvIjhvoWhJGJMrhquvt/b/4dAqm6YT2coK7D0I555IIDYkLIcyH3YI6U6G4Dcdt1YrikmwbKD5wyGpZ6KaOOqkegN3OBrBzSskYDUeYBsmoGXfiTgT4moZ12Nh8BVY1rLH3X3XOJfm8hSmHxQ7kB5DVshXF60hhGAB8LWeqRdZlvNj9fEUn7uDwAWzvfx2ALd529L9R1XYty8Ljpx7Dc+eemfKYpktPpgfj6rhbrGsmIBEH+UA14tlCN3XfveYN8aZcnky5oM9nP/tZrF27Fl/5yld8obGFQgG/+Zu/ic9+9rP41re+VdNBUiiU6RH61tfAnTsD5Y43Q7/uTbM9nMsS5e3vRPTz/4DQj3+Awu/9f5enwJ/hsNgp5VwScVmSV+nJuWRK/zSua1rv+70kLNYN95xc6HIsh4gQcfMDw3z5sFgiNlavj2HL7c04nT4FeCLOiEDg2PLC2O/u+s+X7eDZwsLblzLIgs4Q2JM8GposRKIcll/TCEG0t+s9T4Izljff34xFV6j43E9fh5bmoakmIk7+aTVhsb3ZXuwb2osrmje5E9YTB+2DXr3BDq9dtjqCrqUhnDsl49HvDCA1rGHhDToQCTiXZcVl0QUkDuGuwZ1ojbRiSd3SiufBCzlvdVI9BvMDHufSCTvlBLAM64a6jitpZ3lbFAtu8aHiWCv1m8xqGTdUmJwjgROwqeVKHB45BMAfSjxhzqUr7ItFnKoR1jkth6fPPImFsYVoDoR7L4wtxPnsefd3WZehm3pJO5+B/ABShRGsalhdco/05/pwdvwMRE5Ec6QZQUhO56LEEuwf3gfLsnBl61WT3msFvWBXINardy6Ppo6gPpREa6S16nW8kGshq2XQgpZJlp4e5DObjpCfCYJO5XTa+1AuLab8+Hj//v346Ec/WpJzGQ6H8eEPfxj79u2r2eAoFMr0YVIjiP7D38FiWeT+z6dmeziXLcaq1dA2XAH+yGHwe3fP9nBmhdJqsRcuLtkJciQnXs+pFovKYbHVVDoMiqOpiEvArjZNCBb0YcucH8PSkVbGIHKiKzJIIR6vyKskussJTeJaBYWAl+u21uOet7WjdYHkLFsUot71yFikEIu1K9rRGKtHXG/D6IiGEBcCy7DI6zkYZvmKvOQcDOYHYFomUnIKmqkhPw7s3DYOAFi13haXDMPgzffbImTfjgx6zsh49tE0MuP6pAV9ZOeYRU5yHcZjqSN4vW9bWeewHIojBOsdJ5IU1ClWY+V91YTTjrhMOOKSnMOcx2UNhqdKTh9JknPpPUcEoUz7lUp5pv7xFXMuq3EuU/IILMtCRs24IphcTysbVqM5Yoso8pkGRU9v9jx+eeYX2N7/Ol7tfbnkPJMxeF3ncuzof8Ndt5q8PnJ+DcuoSkTntTxe79uGnU7e6EhhpKTVzERYluWOK6fOnPArisuJz1c5dFOfMFfTtMyq7wMCEZPkmqBhsZQpi0tJkjA2Nlb2vXQ6DUmaWjNeCoUyM0T/4e/Ajo1B/sCHYKxbP/kKlBlDfvh9AIDQd/9nlkcyO8xEWGyl8M9q1wsWAapU6Kea/QNFl7FqcemExvIsXyLuyom9tJKGYRmol5KIOTmbxC30Hgvjyx0t71yS80WqOk7kXAoCiwULou7vJPwUgFstlmEYCJxfdN7e8jY0K2uQGtbAMAyiQhSyLruhmcFjDHH+uYNiyMjmFLz2XBZy3sQNtyfR0FQM3+1YHMItdzVg9cYotlyfgKFy2Lkt7XMAVUPFq92vYlvvK57XimGxXlRDRUYdr3ge/Mva2yBikbRhIO1oOCYgLlXHuRSJuOTdfRaP1y9+GkINiAox6KaOMWXMOUf+MZfbTjkRZVkW0spY0bnkBEjOtTNRGC1hzGl7ohiKm0u4pfVqXNd+PTrjXbim7Tpsbt2CxXVLAABZj7BKK2N4ofs5mJYJiZNwauwkDozs922/GOZZKkq8hY5I6x5g4tDLvJa3XUtPW5pCFSGkZJuKIUPWZTxx+md4rffVSdcjKIbifubZGXQVyWfmfZBSLQeG9+HJ0z9HX7a35D3VUPHDo9/D6/2vTWmb5NwmnAdmiqFgKD/k++yCZLUsnj7zJAbzcytHl1IbpvwXfuvWrfinf/on7Nixw/f6jh078LnPfQ633kqb6lIosw136CBC3/gvmHX1yP3Jn8/2cC57lAcfgiWKkH7yI0C+/EKGZqJaLFsh/HPS9VwR6V+H9L+stj9bpeWqdy5tgRgs5uMdi5cxJ4erTqrzVJ51wmJ9Ib3lz4uvoiwbcC65yuIyuK7PuXQc03LitKHJfi01bIsRUjF23BFwZMxnThbw4tMp8PCLy7yWx0CfDE1msP7KGO54q79CKgDcek8j3vPhBbj3nS1obYsikzaQHS9OaDVTx6GhQziWOuoKRxIiGeIkJENJ3/aG5eEJzwOBiMsGp0dnVrMr2eoeZ5BlWNfNHnfEYZ1UFJfBeyIYotwWW1DSskYKCPByDyGI8BjID+BHx76P4cIwjqQO46cnHrHDqmE7q0XncnJxSfIHFUNxr5nGcBNWNqxyfm7EhqaN7ni9wur1vm3QTR2bWjbjtq47AQCDuf6yx17OuawULlwp1JXkWT5z9imfs1eNA0mEuWIoyGk5WJY1JXfQ69hV+6BiOpC8V29BqGoh/VH7cqXiclQZhWIoODd+xn2tmpxk4tbWO/dTd+Ycnjz9c7zS+1LFdc5netCf6/ft63LFMA2cSZ92H/5cCkxZXP7Jn/wJOjs78f73vx833HAD7r//ftx44434wAc+gM7OTnzyk5+ciXFSKJRqsSzE/vyTYEwT+T/+U1iNpZMyysXFamiEcve9YNNjkH7x+GwP56LjFZMMw9QmLBblXblJ1yPOZYVqsdU7l07eYWCCH6xCWwniPgYdtHLbBIohcGE+jJhoi0tSiKdS+GulQj9k7KTfozBBWGxwPIIvLNbeZrlqs664HHLaoDjHSQQE6+R9/uz7A3j+iRE88s0RWGbxushpOYyP62AtHivWRie8ZliWwYoVtmsyPFicCOe0rOskkT6TxK0VOQmrG9bihoU34voFN9rr5qsTl0SQJcQ6hPmw7Sqbhht2yrN271HTMlHIG3jkkVM4d1L2hUIHBTkRDC2RFjy48iGsa1zvirWUPGKfwwphseW289TpJ5DX8tg3tAfHR4+WrEfCmKupFkucS8uy3DzRctcMeehBwmJPp0+hP9ePeqke65s2umJ+PCC8vKIu6HZVGl+hgnM5poyioBcwKo8i7Yh6oLriN0QkqYbqCkXDqn7C7+3vGBSlOwe24xenn6hJH1Cv2zzVvEsyLq8LTMg6n4usy+4Dgj2Du/CjY99H1umrWw7i+Cadhy3k8zyTPl0xBJeMW7cqu5teTMvEmfRpbO9/HSfHjle1TrWohupGnpC2P0H0CgW3asGZ8VP4Vc8LOD56bEa2PxtULS5lWcZTTz2FRx55BA8//DA+97nP4b3vfS+uvPJKPPzww/jKV76C73znO0gmk5NvjEKhzBjizx+D+PKvoK9ajcIHPzrbw6E4KCQ09jv/Pcsjufh4cwhr4VoCfueQm0Lv1koi0n29SueSLB+c4FeqFhuE5OsF25J4t+2FTNgkLuRWmyWizlt5tVLPS6/QJMsQN2eisNjg+0KZsNhy1WZJCGtq2N9Ls5jnyWGwX8XIoC2Gjh/K4/Sh4kTesAxk0wZYi0dLW+VqtoSlyxxxOVCceHtFzDlHXGrueRQhciKW1a9Ai5MzODJF51LiJDSGG90cUd0RIgLLu9fXsROjGB7Lou8E6/tcDZXBjlfTGOy3t6Wa9v8swyEmxMAyLOJCwrvbktBhvsznFgxzjQlxd9LvXY9hGIicWOJKHRjejzf6Xse58bOwLAuGabhhvUDRkRPKPFCIBpzLI6nDAIBr2q8Dy7B2WxohgqyW9YlI7xiC4auqpzcnAFegVsq59IoZrzvn7UVaCe84yLUzFTfJK2CJ8wnY5+zg8AEM5gcmzSutxEB+AN8/8h30ZXt9ebJTzbskom64MFwidMeV4v1Cqv+OFIahmzr6A26zF5JzWSfWlTwE2jW4o9wq7jVSLi+6HEdSh/GrnhdweOQQXu19xffgoBxnx8/gx8d+MGkvUMVQ8KNj38e23ldQ0Av48bEflIQF57QcfnD0u9g7VNuaCaNyyueOe8O45ztVVYvt7u7GBz/4QZw/X6wIFovF8M///M+46aabZmxwFAplajCZccT+3I4eyP7NZwBh4kkj5eKhbr0dRls7hBefB3u+B+bCjtke0kXDKyhrkW8JXHjOZVBcclN0Lsk+gy5jtceXDDXg9q473VCycmMsh8RLSEpJcAyHpnCzbyzABDmXbOn5Ut38x4m/J7gKzmWEj6A50oIF0QUl69Q38gBTDIsNClqO4XBojz3BXL85hgO7s8gM+89dJq2DB4+mlsnF5eLFMbAsMDKooedsAWCAzkVATLId0+HCEHJazi3G4xVHCakOIiciVRiBaZmTfoaKoYBneXAsh4ZQI3oyPUjJI+51zjsFfQDgbK89SS+MhCDLBkIh+9yfO6Ghr0eBqphoaZNcweq9njrinYgM21WFNc3Es4+O46Zbw2hoEnDySB7n+rMYhoqm1uKxqIaKUTnl/m6h1G0hn6HIiciqWfeYC3oBuwZsMXAkdQh3LroLEi/5HBsi6sQyDxSiTuhzVrVbr4wUhhHiQ2iLthfPtZhAXstjTBnDmfFTWFa33OdO5vQ8YmIc58bPIq/n3Ty+xXVLsLllC3qzPXj5/Euu6x7E68h5cz+ryblUzOI4iLicqEASAJwfPw/oEkRW8glY0zJxevwU8lreJ4Qm214lBvMDUAwFA/l+Xw/NqeRd6qbuClM7l3cUDaFiZFNGK7qTI4VhLEosdgtgDReGsDy5oux2icsb5iOQOAmyLqMj3omsmsFArh+D+UH3AQ6BfDbV9gM9k7b7RHfGu9CdOYc9g7txS6c/DS+jjuNo6gg2Nm/C8dGjyGk5PHn653jvmg9ULFpGrtXhwpCbl0ycesJwYQi6qaMv14dNVYzVtEwcTR3BosRit1J2kJ5MN5479wzetOAGyE6I91SqGs91qvor+I//+I9gWRbf/va3sXfvXjz++ONYs2YNPvWpT83w8CgUylSI/t1fg+vrhfzgQ9C23jbbw6F44Tgo73oYjGUh9IPvzvZoLirMTDiX02xFsjC2EJ3xLnTG/Y3o3SqyUyzoE3TtylV67OTqVAAAiBJJREFUrTiWeIc7Ifdvo/IYQlwIyVADHl7zfqxIrvSNJfizv6BPaRgxEQ1TcS69ooJlWNyz5F5c0bK5dB2BRaKOR3pUh65b7jaIOGFZDof32RPMm+5sAMMA7GgzkqEkmsLN0DQThYKJRCLktj6ZiEgohIYmAZpmYffrGex+LQOnBaZ7/fVmz7vOpRhwAZvCTTAsww2n3N7/esXiOJqpuU5sQ6gR42kdz798GrJWFOvkM+wftI+RMwWcP2sfu2laOHvUXnZ0WINhWK5D5/38IkIEb1v2IDa1bEZocDn2bpPxq6dT2Lcjg2//Zy+e+1kab7w85vb6BGzx0usp1qKbGoZG8ti5Le26ujzLYzytA7r9mZDjDAqwEXmkZKJNKHfNRPkoWIZFTstiuDAE0zLREmjpkXCKGu0b2oODwwdwOHXIl/dJnL3dgzvxRt9rrqsjciJCfMgNDfaGoHoZKpQvEFNNzqVXsGYct9brXJ4cO45nzj7lCqKRwjAeP/44njn7lF0p1ig+OAGAV86/hF0DO3By7IS7Dc3ZnmVZODt+puqcSTI2bzsf+/ds1eGawRDaYBh4xhP6SkQ6EY5DZcJoCcSxDQthN4d8cd0SrG5YCwAlYdnesVQTdpzTchguDCEmxnBTxy0I82GcHT/jhosTjo0exaGRg+jJdvu+l3cP7qy4bdKaKKflXMGrBK4tcl5IS6HJODd+Ftv7X5/Q6STO8Kg86kYtVLqm5yNVicvdu3fj93//97FlyxZIkoRly5bhr//6r9Hb24vBQVrpiUKZC/A7tyP0ta/ArK+3XUvKnMOtGvvt/wbMC8+9mS8Ecy5rsk1P7uZU3NCYGMetXbeXOIZMhRzKSrjiMlAMpyaVcD1hvsHxkBzNisV6KuZZlv+ZYZhJj1moUNBnMhqaBVgWkBpS3cmebBRw7FAO3/hCLwb7VLS0i2hdIKGugUd0eDXu6rwfUSGK7Lg96WxsKM1JLT9GocThlPP2JJwImoKed8NGxcBxEAdnTEnh+OgxHB45hN7seaiGip5MtzuB10wNlmW5xXUaw004sj+LV944hz07R92xkM9naNieeDPgcO6UjMP7snjl2VHIWft907IFJnHvglWMBU7AxuZNqBtbAwA4fjiHA7vtyW5IFGEYQC5LqtRy0E0d57Pd7vqqoeLY0TR6uxVse3EMr704hh99sw///KnTePbRNFTVdCfTxHkjDzzSyphbzMfrwIicWPY+ZhgGESGCgl5wq5EGxSXJO+1xxpjXcu7k2v49746bjMHep32+yfVfTiyqhoq0ki47tmqcS6/QI+1jTMuEaZlIK2N4rXcberO96M3ZUXwkVHSkMIIjqcPug5OGsH0tWZZV4lyRhxt9uV682P08fnL8h1WJQ+I4pgMCZ//wPnzvyLcxkB+YdBvevG2gVIhn1HFwDAee5ZFyQjbJfseU0Yohwjkta3/2fAQdsU4kQw3ojHVhSd1SCKxQIqIN03A/P62KsGMS0t4VXwSe5bGqYTUAlITqKh4H0BseftZTNOho6gh+cPS77nUle9oIpRzHP9iexy0G5iloNRGk+Fp/rq/iMiQsWDFk98FBNdueL1T1V3BoaAidnZ2+17q6umBZFoaHq8tRoFAoM4imIf4HnwBjWcj95adhNZc2oqbMPsayFVBvvBncuTMQn39mtodz0ZgJ5xKoHOI6HSpVka24PEucy0BBnxocn6/6a1Bc8qXtvio7lxV+9giYyVxLewwe53KSyrJeFi21J7FvvJx293PoUApHD+RgqiyaWkXccpedD9jo5GiODmsI8WGMp23B1NRQWk23HCzDYunyGJasCKOungdr8cjn7G2QKq2yrhRz+AI5g0S0KIbqTvI0U8PB4f147twz7kSxO2NPdEnea4SPIDPMQWHT2LF9CJpmuiGzlmVheMQRlxaHV58fxfe/1odnHx8Ba/FobLbPyfBgcZ+Vrj+Sm1nImThxOA8pxOKKzfUA4ArxsGCfK6/Q0EwVY2l7DDwPDA2oOLDbntjKGQ7bXx7Doz84j/07M+6Ev90Jc04raddhafeEPk90zZCiPifTtlsXFJfksyCCKq8XyuZcupV2nYk9ccxDPPmc/BPxp888iR8f+wEAOzqBQHI0q3IuK+QyaqaGV86/7I4pVbAdswGPuNk7tNttGdMcLv793dp5O96z+n1Y27jO3RZQdMNUQ8Xh1KGSsbxy/iU8feZJz9hsATLuOKreiAfN1NCb6Zn0+IgzR6I2Rj2utGIoUA0VcTGOhlAjVEP15WValoWRgFMI2EIxr+URFWzXenPrFty37G0QOAECJ2BJ3VLopu5zb70OajU5l+ece64rsRhA8RoL9tMkn59iyO59LnIi8lrevcaOjx6DrMs4OHzA3obnMx907pugm+yt/OvNS60EuQ4yaqZi2HLOKy6d/XnDw/cP78OB4f1l150P1Cb5hUKhzCrh//cF8IcOQL3+Rsjv/cBsD4cyAYUP2UWWQl//6iyP5OJRKQ/wQnFDWasswjMRUxWqRFQGwytr3cMzmNsW7HVo79MrHMuf60qFfqo5Xn+F2OrF5bU310MKsdi1LY38OJDN6Ni3awwsCzz4vgX4+J8uwrpNtkhraC62LglxkiuYmprK5yyVIxqRsH5zHO0LIuAsHvmsX1xqpupO4ErOqyPaVUNxJ/K6qbuiJKNmYFom9g7tAQCsa9oAABhL6WBzCViMhTF1BKeP5W1xybAo5E0ouor6JA+R56CpFniBwYYtcaxaE8f6zfaxDw+q7oSWtHchr3/uL0/j4J4MBvv8E96V66JoXRgCa3Fu+5UIbwsOy7LQGG5yjkdDetw+5r/5jffi/773fXjHB9rwvz+1BA31EaSGdezbm8LzT464wq4x3ASBFZBWxjBcGIbACmiNtLn7LlcdmLCsfjkA24HkWd5t10IIFrDKaznfZJ6EWBJRQ0IRSYQAcd28wqKgF9Cf63eF28JYp+sYJsQ6CKyAgl7AweEDbjuWclRyjkblFIYLQ+5xj8jDsCwLg/kBcAyHJfXLoBqqK8Rbo/a5aou2oSncBNEpHgUUxaU393L3wM4SV7A7cw79uX6Pw+YUfnLOVbCNjl5VeKktaMi14XX3iNiNiwm32Fiwoiw5vnLbJIIvyIqk3a7GGxrrbVUzWQ6qaZkYyg9C4iRXtLuh0YG8W5JDrhrFSACS6zmmjKGgF9xQ2tPpU5B12RcKPaqk3H16c0G94cIZrbK4dPvaenJsBys4yuThRUGX3e8bcjy6qWPP4C4cS5WGE88Xqov/AfDRj34UHFf6R+iDH/xgyevbtm278JFRKJSq4A7sR/Qf/g5WKITsP/0rUKOwQ8rMoN59L4zWNoi/fArs2TMwFy2e7SHNODNR0Me7rVo6l9XmXK5KrobACoiLCZwaO+m+Xm0rkonH4nUuPdVZnZC1IN5qsZVzLssvM5FQcJevUNBnMiJRDtffWo/nn0xh1yt59EkKLAArVkfQ0eUXjaR1yciQiqaOEDJpe7Lc3FydcwnYglGGjLp4CKxlIuc6l/UAHEfDVMEwjHsclmXhR9/qhxbLAauJc2lPUnVTcye/BT2PE6PHkVWz6Ih3uJPWnrMyJDOOSNsohvvG0dtTDIvNjOswGQ2Jeh6NYgTqMeCeB5ux5U11ePV8C46PjUGSGIyldMiKBkFkfYWXjuzPIpPW8ezPRyAXTERinCuY12yMIhTmwFoCMuM6OIbzfZYLYwsxUhiGaigYz8qQBB7L2zqBokbEfW/vwC92nUd+/zhyWQN5tzBLGHVSvSsu2qJtrmMIlK8OTFhWvwL9uX6cHDuB5nBzyf0eFxNgGMbX+gGAW7mWOD1EbJEiMxJri3+WYSFyok9YECexI96BZfUrnKIvZ5HX8ogIEYT5MMbVcewc2A6e5dER6ywJZwcqtz0heaCtkTacz/ZgpDCCMacnZGe0HYukpTg1etIdX0esEzd3bHVFpvecqWVcKsMyMCKPoNVxeXVTd5cbyg+hTqovyQMM8xG0R9vRn++HZVlVObM5pxppXIyDZ3mfqCfuXFyMuyHfRIiRz6Y/1+s6sAQiFKMVxGVjuBGN4SaMFIYxkB9Aa6TV7wpXKOjz7NmnYcHCNW3XwbRM1IeSbgSM+4DBsMXiroEduH7BTe45td1ABRxTLLg1Jo+6rVZID9rjo0d9DxS84cmKIUPgBBim4RtvpoxzOZQfwt6hXejN9mJz6xafGB3IDyAuJnA6fRISH8KGpo2+CrGyXnAdcdW0W6KMyqOwLMsV+fORqsTlxz/+8ZkeB4VCmQ6KgsTHPwZG05D9y7+Bsbx8NTfKHEIQIH/gg4j+02cQ/tbXkfu/fzXbI5pxZiLnEvC6jbUQdFPLuYyJcWxs3oSeTLfv9drkXHrFX3ESXC4kFqgut5Kt2K5k8uMlLi1pJzEVrr2lHq88N4bj+2UMNNsT5PbOUMkDgcZmp3XJkIZWU0RqWAPPM2hqql5cklDXRFwCa2koZG2hQpxLxVChGRoEpxUHAJw/p+Dg7iwKQgErl5lQDcWdpGqm5obtFQzZbclBCpUAwPmzMgQzjPYuCdlMDpm0CV1hwTK2o2gwGmIJHltvakbT1gVYscYW1TwrgAGD1oUSzp2S0XNOxpLlEd+Dhd5uexyk4u6KNRH09SgYT+tYtjoKRTbBgkN23K5e6xWXrZE28OxBjGUK0EwVzfWlLW+u6FqJM+pB/OrMaST6liGvOoVZ+AjqpDpXXDaHW3z9WCcLjb62/U2IClF0BIpmAfY1FBNiyKgZsAzruj0J0d5fXs/52pS4Rac8xxbiQhhXx7Gj/w0AcMVQW3QBFjmhkwmxHr3oRVSI2WHWntYi3ZmzWOo4rF4qOZc5x00N8XYxrZHCME6lbTHZHmtHm9gOjuFgWAZCfAgMw2Bx3RLfNsjDDHI9EWHXGm3DQK4fw/khV1x6XdnB/ACWJ1eUjE1gBdy5+G5k1HE8cvzHJSGihFE5BZGTEBWirqCJClEIrODbZtbjXJKHVURcdsa70Js9j55MT0nlV7LNSs4lAKxMrsK2wjCOjx5Fa6TV1zPTW5zopZ4XUdDzuKJ5M85n7bxWEuKd8PSIJc5lXivg5NgJ9GZ70Z055xPumqlB4iTUS7bDO6aMuQL9ipbN2D2wE92Z7orVXBVDRQxA1nm4wbM8dFMv6dEK2D1MiUN5YGgfTMtEQkxgXB3H8dGjOOq05AGAZXX2dUeue8VQfKHHiqG41Z6DLYTmE1RcUijzmMjnPmuHw954Mwof/a3ZHg6lSuRf+xAi//yPCH3nW8j90Z8CoeqKlsxXZirnsug2XrigY6bpggb3XeuwWK9zKZUJiQX8wpGrECLrFeBed7WaHEoyMZ6qsASAUIjDxqvieHlbCplxA5Eoi3hdqQNLwmJHhjQMdlswDKC9Q0RImNxZLY7T3mZdXQgsZORzBhgwiPEJpIZVxNrz0EwNMTGG0RFbvB7aY08eGUPE8KCGxcli0Q7dNNyCIwUt777uneiePydDMKOobxTQ0CQgn1PQ162hIFro65FhMhriCQ7J+hBWNkZLxrpoWRjnTsk4e6KAxcvDvs+vr9svKFoXSLjz/iYYugVJYiGKDCReQDaTA88IrjvGMAyaws0QWAH96TQsAHWJ0munTqpHZ7wLTGgP0sI5jGXt/YWFsOv2AkBzpAWSR9xN5FwC9nWyqeXKiu+valiD/lwfLMt0RUSYD0Pi7HYe5UI81RyHX72SwuZrE65YPDRyEECxGFOjp63G8uRyjCkpdCUWYSjvL1xzKn0SS+uXl1T+rSQuSaEjgRXQGGrESGHYbXjfFmsDr/Noj7WjJ9ODEFf+YQhxSokTTva1ILoAA7l+X4/VgseVHSoMwrTMkjxAMmayv6BzKesyXu19GT2ZbjSGm3Dv0vvcENYIH4XIiSjoBeim7Xr3ZO2czYTjLAPF3MGoEMWVrVvwyvmXsXNgO+5Zcq+7HyIUY2Jlcbk4sQQ7+t/A2fQZXN12reugArbYtywLWS3jhiyPKc+7758dP+2Mq859LcTZAl42Cm4eqawX3HOa1/MwLRMiJ7ru35iSwqg8CpZhsSq5GnsHdyOrZSp+X5MHTMSFbIu2oSfTU1ZcEtFaJ9W5BZfaYwthZS1k1AxiYgwCK2JUTmFMGfV9pwd7jaqG4or6xnAj5is055JCmafw219H5AufhxmLI/MvXwSm0EieMruYbe1Q33If2JERSD97dLaHM+PMVFhsTQv6YHr5myXisgZ/Vr1C0BuGGuLKO5fePD3v+L1j8QlWz/LVCEbibk4lJNbLVdfXgXWeZbctlMCAKfnMko0CGBZIDavoOW67Ga3t4pQELRE9dbEQeIZHLmc7SYd2yHj12TSOHrcnbYVxBl/8zFl88TNnsX+XPXnkLAFD/Qpkp7AJYLtMJDyzoBfcybkpS1BVE4Zhoa9HQVyKIhrj0OC4rwd3FPDYd4cwOqIjFDeRbBJKjpd3xEZ9UkB9A4/MuIHUkFbsB5o3MDqi+bIcWtpExOI86pL2ugzDoL4+BMMANJl1K+DWS0kInGD3sczY40/WlRc965s2QpRYpKRTSOecaqJc2BeS1xRuhuQNi60ilHoi1jauw21dd/hCKSVOQkSIwLCMEhdueFDFN7/Qj+ceH8GOV9KuU0kgk3Gv09MQasSbF9+DmBBDmLfdqSV1SxHmw+jL9SGv5XF09Ai+f/Q7GCmMQDf1ij1OSS6qyImeXFYVjeFGLEzYxYMWxuyilxGhgrhk/eKSiJc2p1CSN5/RW9k2raR9OXzF7dmfgcAJbk6pl92DO92oipRsH19eyyPMh8GxnCtwVEPF0dEjGMoPIhlqQGu0DRHnfBHXWOJCWFq3HMlQA4bygxjKDzmVecfcsFhS4KrssXMCltQvg2EZODV20hWE3nPizYX1hjz3OYW0SPQBYF/3pJ8mcU7zer4YSu0IQpGTkJDqwDIs+nP9UAwFbdE2iJyIqBCFrMvIe4SuFyJUiZhsibSBZ3lfcR/vsizDYkndUve1eqkeN3VsxQ0Lb8Tblj2IpXXLnM8iVdISxotsKG7V2vnsXNLZKIUyD2HGRpH4rY+AMU3kPv0ZmF2LZntIlClCCvuEv/ploMo+ZfMV74SttjmXnO//C9uWPYvnp7itoBNbi+Pz51zyrpPgneB7qabPZaV2JdUU6JE4CTzLV8yrmoy2hRK6FtmTz7YOkjvnP88cx6C+QUAmbeDEAXuS2NIuTknQEjdH5AUkYmEosgUBErrPyuAsCaMpFaZpYfsLeeiaBblgIpM20NQigIOIwT4VeS3nugm+sFg9bxeb0SR88e+68eh3BjA8qELXLHQutPPBSN7oif0qDI3FoqUh3Pn2eggC62svAxQFvsAKWLzMFiTnzynugwUSErtqfRSCyDjno/ThQrLeviby6aLoIxVaBVZ025RUEpfNkWYkpBhkLo10PguRE8GxnNuqp06qQ4gPQWSL7UcElkcua4vfC4HkzgH2Z0ceYngreJqmhZ3b0lAy9vUyMqj61iPExXjF/OFFdYvRGG7CxuYr0JVYDMuy0J/vw0jBLszTn+tzewwGCw4BxSJDAiu6RWUiQgS3dt3h3mOLEovREmnFYo/A8BLMuSR5vXExjoSYQEbNuKIqWKimO3OuZHveiIMQH4JqqDBMA4ZpQDd1nEmfBsdwaAo3w7IsdGfOwbRMtxUMeRBR0AvYPbATDMPg+gU3gmVYRAK9d0moLxFP/blevHL+Jfzs5E/dKsrRCZxLAFjp9OQ9MLwPg/kBiJyIhFtoqyguSaVf8nCDCFyvuATs0G3SIgaAz1EkIlPiRLAM61v3imbbUSfVdrNqFhzDlXxvKwHnMi7GERcTUA21pPcrCbXvihfnYfVSPZrCTVhWvwIcy7kFmEbllK+gURBZL2BMGYXIiWWvxfkCFZcUynzDshD//Y+D6z4H+e3vgPzw+2d7RJRpoN1wE/Q16yDs3gX+9ddmezgzil+A1S4sdkVyJZbWL6uYNzMVpuuCBgv41CKn1JtzyTKcO6ZKYbGcLyy2vFvpFXNeoVONeONYDvcuvQ83d2ydfPAVeOh9Hbjqhjq35QhfxiFeudae8CnjHOobeEghznX4qoEIZYEVUZewhZiW4zHYp4CzBGQzBs6dKmB8BFi8PIyupfb5vPJNdVjYEYGSYzCU8uaD6a7TlNNydoXQ04Aimzh7soDhAVsgLGi1C6TEEhxEkQELDvGYgHWb4wBnT3SDua3kvIf5MJKOKM2O6+7n1NdtC4zOJWHc9UAzbroziXhd6TlrSNpCazwFdMQ60BBqxPL6Fc4+eGQzhm+5cjRGbDeuIGuuaxUTYrh+wY24bsENAOzrWmRFaKqJJ743in/881P4wqfPoOeMDNO0UMgbFbdfCeIoAra4JNeEt9jN0IAKTWawoMNeNjWiucWFIkLEFQ4NnpDYIK2RVty79D7USfWuqFD0YvjzmDLq7rOsuHTcMZETUB9K4rauO3D3knt97UBCfAh3L3mL61AFIWHQbs6lWSxkRNxQ4sDKhu1Cktd7yrQZ8VapJufxUOogvnvkf/CrnhegmRo6E11ojthi+JTTCoSEWpIHEWNKCpqpoS3S5r7Hs7zPHSYVqkk7mrPjZ3E+2wPTMlHQC26PS8B+GHD2VAEvPp1CargYytsQsgv7EIf16rZr3FDrwfwA0koajeEm3NJ5G65uuxa3dt3urssybMmDrbBzDZCczYncXRLivaRuqXs+vE6rxEvu3xByPZHrIacVxWVn3Hanf3n2KbeKsWEaMCzDzu8MJVEv1TuCtt43FuJCjimjrtta7u/WUGEQuqnPa9cSoOKSQpl3hL72n5Ce+BmMxUtoddj5DMMg/9t2PnvkS/82y4OZWWYq53JVw2rcuPDmmmzLrTx7oWGxNc655BjW3WalsFiWYd1z7Fu3YhXZyn00K1En1V+QiG9sCmFhR1HglBPxdz3QhPvf04KOzghWr7EnecE+ohMhuuJScHMM1SyPoX4VnGWHiKaGNXCWgJvuTOI9H1mAtz7UgmtuqsOSFRFwloDRVNGN00zd1yLCgoWeY/Z5zmUM9JyxBWBTq4iYEAMDBs0tITBgcc2NSXAc47ZHCF5X5LyHhQgiUQ4MY7dqIcv19jg5eZ0Srrq+Drff21T2wcWiJU5fyUMy4kI93rrsfp+AyDvisrGh8mfXEnVCPRXT5wouT65wi8wAtoA6vC+LofMmwhEWlgW89EwKP/pmP/7pL05jbHRqTmZY8DqXkntOFL0oLs+flcFZAq7fWg9eYDA6rLliqiu+2C3g0+TpLTkRIbefqewRl2OuoyhxoRIHlAgiIlY64p0TFrApBxFzqqegj+g4a2TspIASqdpLXDySj+kVfN5WOuQzOzl6HKZluuGwy+qWIynZIqU31wugKFjJ+sSZCwXcYF/IslNIrCHUAJETkZJHfLmCpMelYVj4zn/24utf6MHzT4zgse/7c11XN6wGUKzqSx64EPezI9YBnuWxpnEt4mLCPa6EmCj5Xg2ON+j2AkUBviq5Gh3xTlzZepX7njdHNMSF3eMloo5cG6QFTIgL44rmzViRXImCXsDOgR0Aiu1PyOd7a9ftePPie3zVlQH7MwrzYaSVNDKOMG0MNXnGaq/fl7XPRbCFz3yDiksKZR7B79uD2F/+H1iiiPGvfhNWPDH5SpQ5i/L2d8JoaYX4i8fBnTox+QrzlJnKuawlxbYmUytaMxPHFgxtdZ3LCmGx3nW8OZdMBRfT+/N08ying3df5XJbWZbBldfV4Tf/oAtLltSVrDPp9jniivJuuOjweUAumOAsAYW8idERDawloG1hCJEoh6tuqAPPs0jUceAsEapSDFHXDM3Xh290WENhtDiew/vt8LamFtGdrG66KomHf6MdK1bH3G0A/jxX73GFuBBYlkE0ykGRLRgqg/SYhuOHcmA5oL2j/AMFQktTFM1tIuQMg8N7/eF2nGXnnUohBtFQ5e20Jezqn6pqlkzavaSHgLOnZERDEn77k4sQS3A4eiCHQ3uzMHQLZ45P3g7DS6lzaZ8TxVBgmhbG0zr6zysQORGrN8SQbLQ/wzZhETa1bMYVLZuwvmkj3rTgBqxyhMtkEKGkGMWep2mnByJgCzgi4ojYJUKqmrY9lfBWiyUFeshrrVFbwJPiRiTntC3aDqAYGlrv6W0p+MJiHffaCQ1lGAYRIYL22ALXQSPbIGG9ZH0iLoNREd4HSeQ9hmF8/U5JYauYEINhWHjyx0M4cSSPxmYBiXoeZ44X0NdTFH3L6lfgtq47cHPHrYExjDv79IfjEoEVF0vnOeX6/QYhzmhrtM3J8S1u3+86S27bHOLOEnFJivWQ0OBr2q6DwAroy/U6LWNI31zBHau3mq6XZCgJ0zIx6BSYagoXxSU5RreYzwRO/Hxgbv6Vp1AoJTDjacR/44NgVBXZT30a+sZNsz0kyoUiSZA/+jEwloXwf/y/2R7NjOF1XOaquCQTqFCFdh+VYGfg2NiguHSE2EST23Jhvb6CPmx5oVlNzmWt8E6IJws/jgoxOxSzgltbDiIKJE5C18J6AMCRHba44yz73OVzJhKxEKIx//4jUSIui46Mt7dgLqtj7/YMBDOCuqQtOsZGbFezqUVExHE+4lEJq9bFXGFCwvaCYjoZakBUiGJBbCE4hkM0Yb8/njLx1CPD0FQL129NIhSe+DwJLI9lqyJgLR6vPu/PBcuNMbAsIFEvTHjttCVswaHKVtl8RsLxffa53HpnKxJ1PK67ud73/vlzpe7RRPhyLlnRFeCKIeONl8bw4lMpGAbQ1RWHKLFINgrucW1s3uTmAq9IrqzagSfXk2LIvqb1ZFIvcZK7TNCdnKxK7kQIngI6XpcUsENGI0IEw4UhyHpxXDEx7gvT9YZaeu+LiOc8hvkw3rLkPrx50d1gGdZXmMnO4yM5l0Hn0n+feYWeV8i1xxa427qx4xZwDIexMxF8/i9PY8eraURjHD7wvxbixjtsIfzq82O+7XbEO93Pinz3kBzEoNtHXMRgvqV9nJNHUUz0efnCYrkQNrVciXesfJfr+hfFpeI6zIAdgbAgthC6qaMv1wvVeXhUzfcUOR7DMtAabfOJ5uAxtnh6pM5H5uZfeQqF4scwEP+tj4A/fQrKW+6D/JGPzfaIKDWi8OsfhhWJIPS9b4NJjcz2cGYEr+iqZZ/LWrK0fhm2dt6GxYnyBTkqMRPFioJCkAixiZ7WEwHKVcitZCuEy86Wcxl08oJc1/4m3NZ5R0ll0InojHdhXdN6LKlfhuvXr8Ey41pIYx3O/jw9IFuiJetGohxYS/CJS+JmmaaFV58fQzZjYMWyBmy9u+gqiBKDeB3nOiHkGIO5uMHjjQgRvGPlu7AiuRIcy7li99CePA7tzaIuyePmuyYPjeM5AU2tAhobw+jtVtDbXRR4404B0rp6fsKHCHWJMCQjDlU1K07aVdVEqlsAzzO4crPttF11Qx2WrAzjWkdk9k5BXBqGhaO7NMgFW3yLnATOER05pYDhQQ08DyzskrDpSvs8kIJJpO9nOUxz4uJoJLRc0WU3pBEABnID7jiI4xUNOGnVtO0h9HbLUNXitcQwDARWgGZqRbfLs72FsQ5YloXe3Hm3WmyYC/ty75JS0bn0hsV63eaGUAMaw41usRyBE1xX3euGEZefuIZB55IcOynwROiId0JgBSyvX4GmcBPesfJdGHi1E7msgeVrIvjAby9EfVLApmsSCEdYHNydgSyXz8clIe8kBzHYxmVZ/XK0RFrL5rGGJ4jiIEz03eEtQCRxIbAMizAfdkWiaqiuwxzcTmfC7t/ak+mG5lxD1bjazWHb0WyNtuHWztt9Ytrb3igmxqYcdj3XoOKSQpkHRD/zaUjPPA195Spk/u1LNM/yEsJKNkB+z/vAFAoIf/Nrsz2cGYetYc5lLeFZHl2JRReUc1mrfFKvQGQY1hWGlQr6ALaoYRimsnPpC4vlPetNvXfldPE6CZOd5zqpHgvjHVPafogPYUvr1YgJMUiCgGtWrQYHewLf0VF0Ktpay4jLGAfeknyCgIRDFvIG5IKJ+gYe73nfErQtLE42G1vsKqpkMkhEXNCZ5SZ48MAxHGJx+3PY/4YtLG66owGiOPkUTWAFMGCwbmM9AGDXtmLVzLEh+3pM1PM+MRIkGuUQNpJQFatiXu3pY3k0Ztfgro770ByzRUoozOHX/1cH7n57E8JRFv3nVeh6ZXGnaSa2vTCK/l4Fzz0xgse+O4TTh4qVPUlBn4HBHCzLPrdXXleH5ib780pOIi6PHczhb//4JI4eqFyNk9xDWS3rhooC/rxGskw0UNynWpf/3OkC/vNz3fj6F3p8hY4EzhaXSsC5BGxxCQDnMz2QddkVdV5B6XW3vA9qvA5wuUIwxL1s9IRhkuuBOHRBAUXEZfD1mBDDu1Y9jC2tVwMATEXAyKCBZJOA939soXtviCKLhV0hmCYwPlrat9R7DORzCLqndVI97l7yFl84MCEUqDQc3Cbgj5QIEuEj7oNO7369ObnEQQ5+7y6MdYBhGHRnzrnnr5qHdF2JRXjL0vtw56K7IHKi72Gh18Vsi7RPuq25DhWXFMocR3r0x4j86+dgJuow/s3v0DzLS5D8x34HFssi/JUvAfn85CvMQ4gIm6vO5XSZiZxLNpAr6a0sWoktrVfjuvbr/UV8WG/4q6cVicfRvKhhsc4YGIa5KOHRqzcUn/6vWlHv/tzeVloRtJxzSZAL9mvRGIeYFENTi+AWPW5qIS4XEZflqw5PFLbJszyicXt5y2ABBli9sVQAl6Mj1oGOeCduu2YNOJ7Bvp0Z9xjGBu1Je6Ken3iiHePQrKxGvbwMnfEu33uZcR173hjHwT1ZsOCxef3CkvUZhsGCzhAMw8Jgn1LyPmALiCd+NISnHh3GVz7fjVees0N4syP2uCQu5Lq7fYN2qGYy6bSWcQROgxMWO1pBXJ46loehW3j6p8MwDAtjoxoe+/6Auy97P/a2SCgmuQ4tywLLsGgMN2JRYjGaIy1Y4OTfESYS6F7277TH39ej4Nv/0QvDsD8HgRVgWZbbW9EritqjC8AyLM6Nn4Vmaq7wIMIql9Xx1A8yOL7bQGGU932Pet3mclVzW5w8yQWx4mcXvB6CIalRnojL0gdaHMu5++8561Q1Xly6XCxhf56Z8fLOZTC/PehcEnTdhKb578twwK119yl6w10rO5csw7oVbr3HyLM8WIaFYiiefEv/diROQnO4BbIuu/1Jq83HbQo3udecN4fe++CA5ODOZ6i4pFDmMNz+fYh/4n/BYlmM/+fXYCxbMdtDoswA5pKlUB54EOzwMML/843ZHs6MQETYXM25nC7MDIT8eiddLMNic+sWXNv+pgmrtXbEO7HC6SVXbmxzoaBPJVdvpli+JgKOY8ALDJavKE7eFi4sHxbLBwr6uKj25DIU5hDhIxBEFskG+1iaWuz/G0INaIm0YlFiCYByVYQrH7PtXNrvMxaHriUh18mcjJgYx21dd6A92YS1V8SgKiYO7snAsiyk+i1wHBD7/9u77/Cm6v0P4O9zcrLbppOy2rILlFEQKHsJynCBuHBccaOo94o/9erVi3qd97pxIbgRFMWFDEFAlK2yRfYqs3Q3zc75/XGatKWDrvQk6fv1PH3apmnySfvteOfzHZGaaoORwShCL0cgvqB7hRC85sccfPPZaWz/rRCCAHTsWnnobZWs/KO8ZGEWPnvvBPJzXTh90oE/tylBa+umAmzZWACDSVSmrsqAIALGk13Qp1l/GCSDf3ycOaOEr+YJyvfMt1nK+TqXvnM3s7NcmD/nBGY+ewR/rC/A8u/P4nRJ6FXW8epKN7gxNVN+br0iWhf2x671XhiLW2Bs2/HldkzVCBoU5HqxeW0eHJU8AeHj9crYvb0IggAkNNch84jdvxbV17kvcirBtmz40Wq0aB2Z5F+jayz5WY/Rx0CGjG2bC7F/uwvuP3rj2Lfdyp0xWjYYVrbLaNe4NFzeYYJ/gyDla6pD5hEbVi7ORlGhu0IQs+ijoRW1iDVWv7HMsUPK1PGkthXDpe/onKKC6juXQMmTaJU8AeL1ypj10jG8+79jsNs9+OCNTHz67nHoxLKPubTGsmtUz7dG1hdEz33seo0eTo+zTFe3kuBcMq3WdwRKbdaG+5TtXJq1Ef7fGWU3TQpVjTcfhohqRTx1EpabroVgs6Ho8afgGjla7ZIogIrvfxCGhV/COPM12P52K6Cv/R+rYCYIAiADDXnOZTAIxJrLczuXiabEckdC1FSV51yqtKGP79n9xnqCwWDUYMq0NigstCMyNg9arQBRBOIrOZZDq1NCR24lwUHjVAKVxRjhfwIhPlGL3GwX4pqV7lA7pu240s85d81lNZ1LUdBAbxSh0QACxHId19q4YEAUdvxeiD82FKBNBxPcDg0imyldLm01nRVRFGA0aVBsrdhhys4qDTHtOinHplSmZbLy++rYISVIHT9ih63YA68XuOefemz4OQ8AcN2tLaGRBOTnuvD7+gIc3JOAGIfSLfV9jc5kK+ErPaUTJKPXf25ndKwWggBkHrbjrReO4LJrE9E6pfQf9LKBa9+fxdBIAtp2MuLQXht+XpqDq6co4cqgMfg31YnSRaFnQjrWL7dh9WoPgCy0TNbjjgeSy53FKokSvp57CkcP2vHrilz0GxKN1ikGmIzlu23HDttRVOBB245GdOhixvLvzuLwPhuS2xorrDE8N5B0jeuGowVH/DUCynTJU0fdyDnjRvfmZqS0S8Bva/Oxakk2Lr2mGTQaAUbJ6J8SX9nOqpWdu6jV6HAy0wFrkQf7/rRCf0Hp19Hl8qI4X4NJna4570ZJxw77OpcVu47+zmW+G4X5bthtXiQ0Lx2Hkqb0ts/tnPpkHrbjzEnlezXn1UxknVLe3vSTHluOWRETFYG+o0t/XiLLdS6rD5cWnQWnrafKdTuVz9PD5rZV+iSAj6/rmecLl3X4PSoIAgySMhZ1og5Jkclwe10V6glFDJdEQUgoLIDluknQHM+EfdI1sE27X+2SKMA8XbrCMfYS6JcsguHzz2C/aYraJTWosO1clp0W20CTgcqHwrqH8XIhtYrNfRpzzaXvH9XG6lwCQK9+McjOLsIZqx39h0UDAqCXKv7TKQgCIgxGZDplyLIMo9boX3Ml2iMgeQ1oYSntKPQZaIHbLaN9auXd5HM39KnuMUuiBAECLNESxFwRXXrULVymtDciNkGLY4fs2P5bATSy1r+z7fn++TWZRRRbPXA6vNDpS2v3dZ1u+3sS4ppVfRttO5rQobOyk67TKfunhgLA0YM2ZJ1ywhyhQXI75UiH1ikGnDjqwME9xTh13I4WrfWQRA3cHhl5hcUwGEXER0eVO2JEkgS0TNLj+FEHzpx0Yve2In+4lGUZeTku6PQihl0cC1uxBxlDomEwinjtP4fx57YinD7pQGILvTId0b+RjR7NzS1QcDwTgA2CAJzKdMDl8vqfeJEhw14k4uhBe0kwdmP5dyW7JSETXXpEYPjYWMhe4JflOQCArj0j0LKkm3t4fzGGXhTrD/hFrkL/fZdV9ggLXwAVBAH2rZ3RwmbH+L8lokUrPXZvL8L23wqx849CtGitx23/SELf5hnQilKNZ0/oRC2Ki5QnE44fdcBeqIGppOm5/Luz2Lw2H7f9PQmtkqv+nns8Mo4fsUOnF9CsRcWfqciSHZALCzxY8NFJnDjmwP2Pt0FkSegs27msaj35rq2l62ezTjmh0QjwyjJ+XpYLnaYfimUN9GNK7ztSWxquz9dNTG/WG60jk8odCVL28wqcynmUlR0B5ZuK7Ps+VffkTXX6Ne8Pt9cNQRAwLGmE//ITx+yQJBFxcaG5sQ/DJVGwcbkQdcuNkHbtgHPIcBS++iY38Gkiiv/xIPRLFsH0+suwX3cDoG28rlKg+f7paahNb4JFYHaLrbzjWOvbqaJbWW4tZi12wKwv39TMmh4b0ZD0Gh2iS6ayVjVdLsJkgFwIuFwy4k0RpUdVFEvoWHgRBrdK8l83tVsEUrtV/Y9fhQ19qtnAyNflTM+IwphxKf4jN2pLEAT07h+FFd9nY9WSHIiiBEvJbZ2vQ22K0ABnXCi2esqFy8J8NyStgFYp+mqDi14v4oa7lDV9Xq+Mrj0jcPa0Ez/9kI3tvxXC6wWaty5/G81LzvA8melArwxlOnhhrgteWUZ0jLZc59Dn5ntbY//uYnz+/knknC3d7VUJxjISW2oxaGT5DWAyhkTjpx+ysWenVQmXZYKAL0hknXZCFIG2nUw48FcxTh13oFmShIN7i7H/LyuaRyUgAsDwi2OR0sGIowdsOJnpwLHDduzeXoTd20tDkMmsQZeeETCaNNAbRBw9ZIfbLfvDVGnnsuI4vDB5NFYd+wld4roCUAIczrRAikVCm/ZKd3DUJfH4dt5peL1KMDx7xoXOiV2q/N5URhK1sJaES9ErYdPPBRgzQTmSZt/uYsheYMvGAv9053O53TJW/qAcmdO2kxGiWHFslK65dONkpgNulzJluN/gaADnbkpU8X68Xhm7tirTsXtlROGPDQUYPCoGbreMtT/lwuhRvs9eR5lwWW5abPVj3iAZ0DoyqcLlvtDv60pWtkv3uUsU6jItFgDaWNr6317x/Vm4XDIuvCQOH848jkiLBk+9EprnXYbXU8hEoU6WEfnAvdD9vAruLmko+OATQFf3s7UotLjTe8M5chQ0R49Av3CB2uUERLh1Lssfs9Jw02J9/4TX5+tVvnNZZkOfJrLmsqyynZGqNt+INCnXcdq9/mlvAOCwihAhISqq5l+r8lOPqw/Tvu9NRKQWbTvUbCOfqqT3i4KvSd1/UAJalXT2zrfhiKnkKJSyU2NdTi9sxV5EWWreEQOUabZdekT4O7BHDijr8lq0Kv8PeIuScHnquLK2TRIl5JScHRodq630iRWtVkRyO+UxlV17mVvyeb51mWWldFBCWebhirt/GjQG2Io9KCrwIDZe69+Y5sRRBzxOEXt2WuGwyzh7wgtBBHr2i0JyWyMGj4rFNbe0xJMvd8PwMbFo3caAth2NGDEuDlMfTkZEpASNRkByOwPcLhknjtr9T2pYXVVPt2wV2RqTu9yIthblSCRrkQeyXNoFBJSg9dAz7TBktBKu9v1prXA7ZbndFTdachVr4PEARpMIjaz330ZRodu/YdKurYVV7v677JssrFuVB71BxNDRlR+Z4+tQnjzmgMup3M6uLaUhvOzackMlm5UdPaRMMU7pYMQlVzfDrfe3xrCLYzHqkjjc80gKupRsemXLK90orOwRKr4xW5Dvxp5d5XcHrk6UXul+ZhWfAVDVtNhzjqkp83s0O8uJV586hO2/le7c7HZ7q12ray1y49eVudi4Jg9rf8qF0+FFy6TzH7cSrNi5JAoi5mefguHzz+Bp0RL5876EHFXx8GAKb9a//x90K1fA9PKLcEy8Kmy6l76OZbjtFhuIziWghBO37G64cBkEG/qUrrls/HDpe5xaUVvl19QXLmW3VC6MOazK9X2dmJqozbjwfT/Od/ZnTURESrj21pZwubzo1N2AeX8pO/OeL+D61lL6pkoCSscJACItdasrNkELnV7wb5LU/JxwGRuvfPzUcQe8XhmSKCE7S+lGxjbTVvkkhMmsdARzzrogyzIEQfCvt/RttFRWi9Z6iBolXMqyXC4s6DQ6nD2t3Gd8c52/U3f8qB1erwyPC7DESBCydehxQSSizvla6PQiRo6Lx/AxlQeXNh1M2PdnMQ7tt8GSrtTmW+9ZVeAvO14K8yv/HpjMGnRKM+OX5bnY96cVURYJRrOI9qkVn5xY+1MOVi3JwahL4zD4QiUI5ud4IcgiomO1cHmNyD7jgtPhxdGDpWeV2qxebFyTh1bJerTpUL5Tt2+3EkbvfDAJsfFVzAQoCcRl18IeOWhDYb4bkRap3JT8ygLcri3K9OFu6ZEQRQFJbUsDaEJzXcn9WmHL1wBmZWaEr4Po+9pu+60Ai7/MgsPuxcQbE9HjgvPvtu87usW/oU9l02K15cNw2WmxO/8oRF6OGz9+dxZdekTA7Zbx/uuZsNs8uP/xNpCkir8PDuwpLtmTQNlECwC69QrdtZfh9RQyUQgzvfo/5cgRSzTy530Fb8uKW75T+HP3HwDnsBGQDh2E4fPP1C6nwfj+YWqodYnBIhBHkZS9rfp2+XyfX/7sTCVw+F4aiy/gqDEtVhAEtLW0KzcN7VxREco/jLJLKjeN1G4FRI2yq2pNiWLlYb4yvq9HQ30vOqWZkZYeCa1GC0mUqj2SwccfLst0Lgvylbd9u37WligK5QKlbxps2Y+3SjHA6ZCx708rBGiQfcYFjUYJiVWNE0EQEBOvhcspo6jAg1PHHaXhspIpxVqtiBatDSi2epBz1uUPCwX5bvyyuMi/KU1Cos6/TvLYYTs2/JwHERqkZ0Th+tuScdm1td9UK7lkF9WTmfYKU5NrMpWyqnAJKDv0mswaHNpnw5cfn8JXH5+utDu3d5cSBFcsysbekg5l7lkXNLIW5ggNEuIiABk4c9Lp3/21QxclTC7/7iw+nHkcf24r7Tjaij3Iy3YjNl5bZbAElK+7wVTmCS5J2dTtz5IpxGWn5J/bufR6Zfy5Tdl1t0vPyrv5vi61NVsDg2SARR8Ng2RASlQbtLd0QFGhG998dhoOu9Ix/H1dQbnP/2NDPl59+hD27Cp/LqpFX35ataGaDX18yu7GfHCv8jUsKvDg5x9z8Pn7J5F1yonCfA8yj1R+VM/+3aVHkMkyoNML6NC56t3Bg114/ZUnClHGWW/B/OxT8JojkD/vS3i6pqldEqnI+s/HAQCml14AHJX/MQo1/jWXYda5FAQhIOtJfYGkvoGjqpBqlIz+KWSNReufFqvOvx5DWg/DgJaDqvx4VIQRCfbOSBa7+df7ybIMR5GIiEip0nVlVSn7JMp5p8X6ngCoZl1mXQ1sORj9Ww487/V84dJatnOZpwSbc7t1tdGitRKutDoBsZVMWc0YGg0A+GVFLnJPe+B2y4iO00IUhXJTuc/lu62ffsjGO/89irU/KWdZVrVe1bfxT+Zhu38N3fbfCrBjkx0/fqtszhOfqIM5QoPoWAm5Z13Iz3WjZUszoiwSTHoDNJra/3z7dkfNOuUsN0tAK2phrOJcx7KqC5eiKPhDIKA8MVBUWH7HX7vNgxPHHJC0SrD7/vPTcLu9yDnrgghJOeO0ZNOYUycc/t1+R18Wj559I9EpTfkdsWRhlj+knT6h/E0698mCykSW6fZ376104o4dtPm/Bj7nrms8csAGa6Gy6645ovJx4BsDudluXNr+ClyYrOyoPyxpBHo264XjR+2QvUCPPpGIjpVw5IDN3xkHgD+3FiEv2415753Eb2vz/ZdbdOVnjFW22ZAoiP4dbgVB8D8Wp8OLY4dt0OoEQAB+XZGLw/ttSrAGcGhvxXOsvV4ZB/YUK2t+OypjIrVbBLS60I1ooVs5UZgwfPoRIv71CGSDAQVzv4C7Tz+1SyKVuXv3gWPsJdAcz4Tx4/fVLqdBlE6LDb8/O6U74TZguBR94bJ+gcMfLs8JLqNSLvL/M9ZYfFPHAhGiGoLJrEEzR1fEelL8/yw6HF4IssY/xa+myu7Oe/41lxW7yw2ljaUtkiKTz3u9yjqX9Z0WC5Suq2zeSl9pOO/U1aycB3nYjvU/KdMg4xPOvzY3tiREbitZ1+YLPlWFS99aymOH7f4pk14PIMmlHaeEROVt39TYVikGDBii7CSqq+PGVwajBpEWjbI+1KtBcbEHsiyjV+IFNfo5KCwo6R5XMSW735BoJLU1+DvEvmM7fI4ctEGWld1rU7uZUZjvwfbfCpGb7YIoa2E2a9A8UQmQmYftOJFphylCg2bNdZhwfXNMvr0luvWOQGG+G2tKdsI9mamEy3PX0Fam7M9NWq+SEFuyxrZcuDxn6qlvbWZaNVNDfd/r3GwXjJKxwjmZJ44q99O6jQG9MpTpsFs2lHYvfcfsCCKwamm2snkSlDNHyz7xVtX0Zd+6S62o9T/BeOSgDV6PMq4HXxiDlsl6DB4Vg+vvaAkAOLSvGIX5bpw4Zvff3+kTDlgLPWjdxoBRl8YjsaVO2dk6hIXfX3miEKKfPxcR0++DrNUi/8O5cA0crHZJFCSsj/wLsiDA9Mr/AGv1GzaEAv8GNWH4Z8c/5beB11w2xG1G6qLK7aDoY9FHI0rfuGu6o3RRysHsZQ49DyalAav0GAqHTYYoS4iIrF3AquqM0equq8Z0YR9zJRv6FPg6l9F1r6tdqglR0VKV68dEUcCQUco0xAN/KmEgNqHkSYhqxn5sSQCVz9kjxRJbea2tS6an7tlZpKzRAyBpBWjKhEvfmaXDx8ZhxLg43DS1FYwG5bKqdhiuiYREHWQvcORPL35alI292+1Ijelc4XrLvs3Cgg9PlpvaWvo9qHwMtU4x4Nb7k5CWrgS3rFPlZ7ocKpmi2aaDEYNLvs5rf8pFdpYLGlnpXLZIVL43238rgNcDtOtkLDfDZPSlSsD2Ta/1hcNz19BWpmwobp1iQFS0hLNZyvpO37R8GTKyMmV/2AKAPbusEERUeyxPVLQEUSy/prOs40eVLmyrZAPS+0UBArB1cwE8Hhlutxd5OS5ERUto18kEa6EHh/YpXcWVi7Px0+cO2G0eHN3rxnsvZfp/LlxOL76bfxrzZp/Ant9dkCGXC58HSzqTbTuZMOqSeNzxQDJGXRKPNh2MMEVokHnEjnf+dxSzXjqGFx87iMMHbNizU/m6duhiRqtkA6Y+lFLlLr2hIvz+yhOFCMNH7yPqvqmARoOCWR/CNbJxuwgU3DxdusIxYRLEs1kwzn5H7XLqrbRzqXIhARCIcFl6m/X7gl3UZgwuaXd5Q5RUb0bJiKtTr0N6s95ql1Ip/46pRR7/5joOh0cJl7XsXFa1mVJlStdcqtfRLd0ttjStVTcls6aiLBIemNHWP/21Mt0viMRl1zZDVJQOJpPo70hVF7bLdihTuyndz9ZtDNBqK/8ZtERLSOsVgcJ8D76YlQ27zQO3XQOh5N/gqGgJ+pIjWBISdRh2USz0htKNkM632251EporIWz3z3okWftDt2VEuenHgLJb6IbVedi1tajc1FZ/9/g8m0kllJwzeeZU+c6lLzC17WhCUhsjUtobkZ3lwvEjdkiCFkaTiITYCOj0Arwl3/qBI8qvObTEaBEdKyHrtBN2m6c0XNZiWqzJrIHRpFECqVzaYZVECceP2LFgVg5+XqZ0Ru12DwrzlTWdvid8KqPRCIiO1aKoQDmfFVCmsW/dVIBD+4px4qgDogZIbKmDJUaLDp1NKCrwYP9uK3LPuiHLQFwzLXpcoITrHb8XwlbswfrVufBazThzyomje5VjVHw7v+7ZZcUfGwqwZ6cVe7YouwyXfeLBF+bbdSq/XlIUBbTtYITXA1gLPYiJ18Jh92L10mz/eta6nm8bjBguiVRgfO9tRP7f3yHrdCj4YC6c4y9VuyQKQtaHHoWs0cA08zUI+Xlql1Mvvn+2w+2cS6BMcG7AP6m+bfrrO1VSEqUK08XUFKxTYoHyU0MlTUm4tHnr1LkUyx1FUv1jFivZdKmxVbZbbEF+/ddc1oRyPqcF05/oiBHj4vxrG6sL277OJQB0TY/AnQ8m45b7Wld7H1fe2Bxd0yPgKBJx5pQTbrsGogbo2TeywtmYPr4dTeuzq3J8Yun0zSh3S8guCRvX5JW7zl87rPA1LMsesVLTgN+szNpOH4fDi9MnnbDESP4wPm5Sgr8TbYlUOpQGrR7NWihBsX1nU6VHYLROMQAycPSgHVmnnIiI0pw38AKl02J93y9ft7Ps1NjjRx2QZD1+X5cPt1tGTsl01biE8wd636Y+uTnK56xZnotvPjuNT945jmKrB4kt9f7dWXv3V6bG/rGhwL/2Mi5Bh87dIyBpBezebsWGn/PgcsoweKJw7KANjgLlMW7dpEzZ9oV1o0mE5DWguMjjPzfVWuTGqeMORMdJla4vbpdq8n8t7344GZYYCYf32XDmpBPNWuj807LDAcMlUSMzvvEqIh57GLLBgPyP58N58Vi1S6Ig5W3XHvbJN0LMz4Pp9VfULqdeStclht+fnYY4k/JcWv/OqsETDMNduXBZEu7tdi9E1L5zWZtpsb7umFobHQHlH/v+3VZ88Eamf3OX2hzBUh8ajQitpvS+qutcRkZJyiY1AtChsxmSJJx3wyVRFNA+1QRJNkBri4HemojIKAkTrm9eZWdVKnOETV35OpcAYI5UAu2mX/L93TYA5XZjzclyYtfWQvy2Nh+FBW5IWuG8OxVHx2ohaQWcOen0T6vNyXICMtCsRWloSWyhx50PJiG9XyQuHtgdLcwtkGhqjnadTBBFYNjFlZ9Z2bpkzeq61bnweoHmLc/ftQRKQ3HcOeFyxx+F+PDNTBiz2wPH2kKEBGuRB3/tKEL2GVe5z6mOLzSfPe3Ejt8LsWpxNgBlPS0AtCoTlDulRcAUocHeP63+s1fjErTQG0R07RkBp8Pr754avBbkZLuh9SqB8NRxB04dd+DQPuXzevaNgtZrQHFxaefS97F2HSvf5TW9XxQuu7YZJt/RElqt6F8HCsA/rTlc8JxLosbi9cI8418wvTMTssmE/E+/gGvwULWroiBX/OAjMHz1BYyz3oLtb7fAm5yidkl1EogAFiwCMS22d2Jf5NpzYNKG7nb0ocYUIQKC0i3Siso/wQ6bF4Y6dS6DY7fYmtLpBWg0AoqLPNiwJs//zzcASFLjzTbQiBp4PEoyqK6TK4oCxk9qBo9b9q8XrYlIiwQBApLzh8Fms8IcX/3nxhrjkFl4DBZDdI3v41xlO1Kdu5vhdMjY8Xshdm8vQs++USi2esrtIpp9xoXNa/NLNymK1553l21RFJCQqMPJTAcK8z2Iipb8G9ace1yIOULCFZObA2gOQFn7OexiPTKGWqrcmbV1irKL6eGSANX9gpqdwdipqxnp/SL94d23wZNvfB05EIUEbxqi4yTkZbvx29p8tOmg3FdsDcJlmw5G/LY2H6uX5qCoUOnyTr69JVYsOoszJ51olVIagiVJQM8+kVi/Og+bS3aH9XVHx05MgNst48+tRWjTwQinUw/XiQEweCxo09GIw/tsWLUkGzlZLmUKdooB2rWmks6lch++9ZbnTon10WiUDr1Per8orF6WA8hA1/TQPdOyMuH3V54oGDkciLz7NpjemQlvbCzyFnzLYEk14m3REsV33wfB4YD5mRlql1MPDX9cR7AIRFc2zhiHDjEdG+z26PwkSUR0jIT8PDdkjxI6bMVeiFCOp6iNssHofNNdS3eLVe/5fkEQYIoQUVzsgd1W2lGLb+SpemWD+PlCea+MKPQZVLtNqXxTQn3TMk3nCabd43vg2s7XI0Jb986SOULj7wy3TzUhvZ8SJLZuLlnHt9MKr7f02JJ9u63+YAnUfFqy7/NXLcnGqeMOf7iMa3b+kKbRCFUGSwBo3lrnn65siZHQrXfNwpBOL+KKyc39R9JEx0rQG5Tfk0aT6N+QadQl8YiKlnB4v81/7mhNpsWmpUegTUcjsk45YbN60WegBZ3SzLjmlhYYMjqmwkZSvUqmxrpdSnfX97UxmjS46m/NcevfW+PqKS3QpoMJke4W0AkmXHZNMxhMon/jnbYdjYiO08LsTkB8cRekxXcDUHYzn/MfMaN8LbQYfnEsBgyPDqspsQDDJVHACYUFsEyeBMPCL+FJSkbeouVw981QuywKIcX33A9PYnMYvv4K0m+b1C6nTko39Am/cBmIziWpIz5RB8hAQbbyX6+9SBmvVR1xUZVyG/qEQOcSUKbGyl7gzEkHIABjJiTgsmuaNWoNUgOtNa6KL6jl5ypdrpp0PRvi+9Kuk7JbaNuOJrTtaEKkRcKhfTbk57qwe7syJXbwhcq6z9Mnym/KE1nDKdm+jt+WjQWYN/uEMi0WNZteej6SJKJFktKhGzQypk5nfgLK7//+w6KR2s2MqQ+lICJKA71BRMcuZv+ZnQf2FNe4bkEQcMlVzSBpBUREaXDhJXEln6vDhePjK5wV2ay53j/FVxSVgFf2tpLaGGEya9C25GvZMsmA2HgdLr269OegbUcTYuIkCBARkdsJFn00srOcyMt2I7GlrtqQfq7hY+Jw8RUJNb5+qOC0WKIAEk+dhOW6SZB27YA7rTvy538Fb2JztcuiUGM2w/rYvxF131REPPEo8n5YHnLbrvo39AnDABbOj62piW+mw/7dxcg/C8hmGfYiZb2b0VS7gCEIAkRBhFf2nnctpW89n9rra31dPKdDhiVGUuWsPV8QD1TQNppEaCQBHrfSuarNlNr6uOL65vC4ZX/XrmffSPy6Ihe//pSLA38Vw2AS0a13JH748gycjpLzFnUCXE65xrv19sqIQsskA778+BTOnnbiYMnOpedOi62rEWPjsHeX1d/9q8/t+NwxPRkupxd6g4j2qSb8sb4AkJVjYmr6uOOb6XDXg8nQ6oUa/Zz27h+FzMN2xMRpqwzJ7VJNGHxhDDp2Vc6yTEuPROYIOw78VYy2nYzQ60VodQLyctzwemX8sOAMACC1W3itnawr/iUkChDpj98QPXoYpF074BwyHHnfLWGwpDpzXH0dXN16QPvbJui/+1rtcmqtSZxzGYaPranxTS3MPSPDafdCdmkQXcuupY9vXJyvC9fc3AI9E9LRJbZLne6noZQ99qFsR6cxlW5uFJjQJwhCuWmm55sW21AkSfAHSwDoM9ACrU7A5l/z4fHI6NwtAhqN4D/jE1A6x1qdgLZVbBBzLkEQ0LyVHu1LdiUtzHdDoxFgiWmYPlL7VBPGTkyo8riXuoiySP7pr207mnyrJxAbrz3vBk1lxSfqYImu2ZhN6xWJ5HYG9OxXdUjWaASMujQeKe1Lp7hefHkC7n44BQaDBoIgICZOOU5k+XdncXCvDc1a6PxniTZ1/EtIFAD6L+Yh+vKx0Jw+Bdv1NyF/3peQI+v3bB81caII65PPAADMTz0B2O0qF1Q74Twt1ncESRg+tCbHt8awIEtAtLc1LK7kWk+J9fGFy/OtHRQFET2b9YJFH12n+2ko5cOlOhPbtAHuXAKl6y6Bxutcnis6VosLx8f73+/aU+l4+Y6wMBhF9O4fhUdfaI9OaeZa3XbZQBRTy5CmJpNZ49/wpyGm8lZFrxdxy31JGDq68p1xa8r3e2H96jxoNAKuvrkFdDrGKoDhkqhheTwwP/k4oqbdCbjdKHz2RRS9/AagC6/F2qQO15BhcIwZD82xozDNfFXtcmolnHeLDefH1tT4NtbIOu1EqjgQCY7OiKlj0PKvpVRxo57aCIbOpe9rJQXwaxZpKX2ctVkf19D6DbGgY1cT4ptp0S61ZIfUknDZMkkPQRDq9GRccrvS4zcCGdICoX3JTquxNdjMR21lf0a69Y5o9M2vgllo/MYjCgFCdjai7rkdupUr4I2ORsF7H8E1bITaZVGYKXr6OehW/wTT6y/DPukaeNu0VbukGhH8r0PjWfTa4LTY8GEya2CK0CA7y+k/zL2+nUu1N+qpqbJTRNXqXPq6vOc7G7Q+1JgWWxlRFDD59pYASp+g8p0fmdS2ZjuOViYiUkJ8My3OnnGFXLjsO8SC3GwXetdzXWdjiIkrHUd9B0erV0gQ4l9CogYgbdyAmAsHQ7dyBdypnZG7dBWDJQWEN6UNiu97AILdjojHH1G7nBoL5x1VA3EUCaknIVEHr6f0aIG6rrks7VyGRrg0B0Hn0hcuzzeVuD7KbhSj1rRYn3O7k13TI3D1lOYYdGH91u75psbGNQutbpolWourbm5Ro2NI1OZ70qllsh6tUwznuXbTwr+ERPXh9cI48zVEXzEWmhPHYZ90DXKXrIS3XXu1K6MwVjzt7/CktIF+2RLoli1Ru5waEcL4nEuR02LDim9qrO+8vbp2Lv3nV4Zk51LdabHn22G3PoJhzWVVRFFA156R9V67N+SiWAwcEV3j8yip9tp3NqP/sOhyx5SQgn8JiepIyM5G1I3XIOKpxwGtFoWvzEThm7OACG5FTQFmMKDouf8CACIeexiw2VQu6PxK1yWGY7jkUSThpGffSECAcsC7UPcpor6NnkKlc+lbcykI5QNYY5L8gTxw9++bFitpBej04fkzGx2jxUWXJ0Afpo8vGEiSgDETEtCiNbuW5+KoI6oD3YpliB2aAf3yZXC374DcJSthv/4mbhdJjcY56mI4xl4CzdHDML3+strl1EDJz0YY/oyE85TfpiiprRH9h0YDUIKIJNXt++rrWAZyc5qG5AuXUdFSlef/BVqgjyIBgMiS4BxsXUuicMG/hES1UVSEiAf/DsvkqyBmnYFt8o3IW/4zPGnd1K6MmqCip5+DbDTC9MYr0Ozdo3Y51fKvSwzLPzvhO+W3qRo5Pg4du5rqtbGIJsQ29ImI0qBLzwhcMMCiWg3+3WID3LlsmaxHx661O+KDiGomNJ5OIwoC0uaNiJx2J6RDB+GNj0fhS2/AOXa82mVRE+ZNToH1occQ8eS/EPnAvcj7bikgBmd4K506Gn4BjJ3L8KPTibj+jlb1ug3/brEh0rkURQHXTGmhag2N0bkURQF3PJAcsNsnaur4l5DoPISiQpgf/T9EX3IRpEMH4RgzDjk/b2SwpKBgu/NuuHqkQ7tpAwwfzlG7nCqF81mQDJdUGb1GWYtlkPQqVxI6tL5wGSLdXiKqiH8JiaqhW74UMUMyYJr9LmSLBQWvvYWCj+ZBTkhQuzQihSSh8JWZkDUamJ/+N8TjmWpXVKlw3i229CiS8HtsVHe9E/tgZPIoROqC/8y+YBFjiIVOo0O8kX9jiUIVwyVRJcTTpxB51y2wXH81NMczYb9iInJ+/Q2O624Iyw1JKLR5uveA7Z77IVqLEPHwA4Asq11SBU2hc8ndYqkss9aM1pFJapcRUmIMsbi28/Voa2mndilEVEf8S0hUlsMB4xuvIqZ/bxgWfglPy1bI//RzFM76EHIznmVEwcs6/WG427aD/sel0H/9pdrlVBBqB8rXhn9aLP+kEhFRE8e/hEQldMuXImZoBiKefgKC04Hiu+9D7q+b4LxorNqlEZ2f0Yiil98AAET880GIp0+pXFB5nWO7oHt8DySYwu9JGoFrLomIiAAwXBJBs3cPoiZPguX6qyEdOgjnyFHI/XkDrDP+AzkiUu3yiGrMNWgIim+/C2JuLiL+MS2opsfGGGLRK/GCsAxgkVrl90SELkLlSoiIiNQVGvtjEwWAmHkMpv89D8P8uRC8XrjbtoP16efgHD2G6yopZFkfmwHdyhXQr/gRhrkfw37D39QuKeylxXdD++gOMEgGtUshIiJSVfg9hUx0HkJ2NsxPPIrYAb1h/OwTyBYLimY8g9w1G5UpsAyWFMpMJhTOfBeyKML8+D8hHjmsdkVNAoMlERERwyU1IUJuDkwvPovYvj1gemcmoJFgfeAh5GzeDtvd9wJ6nkVG4cF9QV8U3/8ARGsRIu+bCni9apdERERETQCnxVLYE86cgemdmTB8MBuitQiyVgvbrXfA+o+HuAMsha3i6Y9At/xH6NavhfHdt2CbOk3tkoiIiCjMMVxS2BKPZ8L45mswfvoRBLsdsl4P25TbUDzt7/AmJatdHlFg6XQofHMWYkYPhfnZJ+EcMgyebt3VroqIiIjCGKfFUtiRftuEyDtuRmyf7jDNfhcQNSieei9yftuBohdeZrCkJsPTpSusj82A4HAg6s4pgNWqdklEREQUxti5pPDgckG/6FsYZ70F7e+/AQC8sbEovvlW2G6/G3JcnMoFEqnDdufd0K5ZBf1PyxHxr4dR9MpMtUsiIiKiMMVwSSFNPHYUhrkfwzDvU2hOngAAuDt3ge2Ou2G/8mrAaFS5QiKViSIKX38H0oiBMM79GK6hw+GYMEntqoiIiCgMMVxS6HE6oVu2BMZPP4R29UoIsgxZEOAYfTFsd9wN19DhPE6EqAw5IQGFb70Hy1WXI2L6/XD1ugDeNm3VLouIiIjCDMMlhQZZhvTHb9AvXADD119BPJsFAPC0aAn7dTfAPvlGeJNTVC6SKHi5hg5H8f3TYX71f4i66xbkff8joNWqXRYRERGFEYZLCmqafXuh/+oLGBYugObwIQCALIpwXDwW9htuhvPC0YDEYUxUE8X/90/ofl0D7W+bYH7637A+9azaJREREVEY4X/lFFxkGZrdf0K/9Afofvge2h3b/B9yXdAX9iuvguOyiTyfkqgutFoUvPs+YkYNgemdmXD16QvnZRPUroqIiIjCBMMlqc/thnbTBuiW/AD90h+gOXK49EMdO8Fx5dWwT7yKa8SIGoA3KRkFb8+G5bpJiLz/HuR17gpPp1S1yyIiIqIwwHBJqhCPHYXu51XQ/rwKujWrIObm+j/mSu8F59hL4BgzHp7OXbg5D1EDc40cjeIHH4H5v88h6pYbkLt0FRARoXZZREREFOIYLqlRCGfPKt3JNaugXb0S0sED/o/JWi2cw0fCMWY8nGPGwduylYqVEjUNxdMfVjbJ+mk5Iv8xDYWzPuATOURERFQvYR8u77vvPqxfvx6DBw/GK6+8onY5TYMsQ3NgP7SbNkDatAHajeshHdhf7iruLl3hHDoCruEj4Ow/CDCbVSqWqIkSRRS+9R6k0cNg+HYh3H36wnbnPWpXRURERCEs7MPl9ddfjyuuuALff/+92qWEJ1mGePgQpB3boN2+DdL2rZC2b4WYk1Puau72HeDq1x+uQUPgGjYC3sTmKhVMRD5yTCwK3v8E0eNHwzzjX3B3SVPOiSUiIiKqg7APlxkZGdi4caPaZYQ+WYZ48gQ0e/dA2vsXNHv3QrNvD6RdOyEW5Je/qlYL1wV9lTCZMQCuvhmQExJUKpyIquPukY7Cl15H1LQ7EXXbTchbuhKedh3ULouIiIhCUFCHy82bN2POnDnYuXMnsrKy8M4772DEiBHlrjN37lzMmTMHWVlZ6NKlC/71r3+hR48eKlUcwmQZgrUI4vHj0Bw7AvHIEWiOHYXm2FGIR49Ac2A/xKLCip9mNMLVpx/cPXrC3SMdru494UntDOh0KjwIIqoLx9XXofiv3TDNfBVRN16LvCU/QY6yqF0WERERhZigDpfFxcVITU3FxIkTce+991b4+OLFi/Hcc8/hySefRM+ePfHRRx/htttuw9KlSxEbG9vg9YhicG12IYqC0lH0uAGnC4LbBbhcgNsDweWEUFQEobAAQmFhyUvJ23l5ELPOQDxzGkLWGYhZWRCzzkAoLq7yvmRzBNzpveHplAp3p07wdEqFp2MqvO3aAxpN+boC/cCpUfjGe7CNewoM2+MzIO3ZDd3yZYi68xYUfragws92Q+L4okDjGKNA4viiQArl8RXU4XLYsGEYNmxYlR//4IMPcM011+DKK68EADz55JNYvXo1vv76a9x6660NWoskiYiLC6Kt+p1O4IILgJ07EdMQtxcbC6SkAK1aAW3bKi9t2vhfhObNIQkCJAD6hrg/ChkxMdxsqcn48gtgwADoflqOuBeeAl56KeB3yfFFgcYxRoHE8UWBFIrjK6jDZXWcTid27dqFqVOn+i8TRREDBw7E1q1bG/z+3G4vCgpsDX67debxICq+GbTJyfBoJECjgazVApIWkCTIOi3kiEjlJdL3EqW8joqCt1kivAnNIDdrBm98wvmnseZYG+dxUdAQRQExMWbk5lrh9cpql0ONQoT48XxYLhoO8eWXUdSmAxyTbwzMPXF8UYBxjFEgcXxRIAXr+IqKMkKrrX5WU8iGy9zcXHg8HsTHx5e7PC4uDkeOHPG/f8cdd2D79u2w2WwYOnQoZs2ahc6dO9fpPoPpmwtBRMGX3yIuLgJ52UX1ry2YHhsFFa9XDq6xTwHlTW6DgjmfwHLV5TBPvx/upBS4Bg0J3P1xfFGAcYxRIHF8USCF4vgK2XBZFVmWIZQ5CHzWrFkqVkNEFHpcg4ag6IWXETn9PkT9bTLyFv0IT+cuapdFREREQS5k916JiYmBRqPB2bNny12ek5NToZtJRES1Y7/xZlj/8SDEgnxYrrsS4qmTapdEREREQS5kw6VOp0NaWhrWrVvnv8zr9WL9+vVIT09XrzAiojBR/MjjsF91LTTHM2G5bhKEwgK1SyIiIqIgFtTTYq1WK44ePep/PzMzE7t370Z8fDwSEhIwZcoUPPTQQ0hLS0OPHj3w0UcfwW63Y8KECSpWTUQUJgQBha/MhHjqFHS/rEbULTci/7MvAa1W7cqIiIgoCAV1uNy5cyduuukm//v/+c9/AADTpk3Dvffei3HjxiEnJwevv/46srKy0KVLF8yePTsgZ1wSETVJOh0KPvgE0ZeOge7nVYh84F4Uvv42IITe2VtEREQUWIIsy6G1BZFKXC4P8vKK1S6jHFEUEBcXgeyG2C2W6BwcX1SWeOI4osdeCM3JEyi+7wFY/zWjfrfH8UUBxjFGgcTxRYEUrOMrOtp03qNIQnbNJRERNR5vy1bIn78QXks0TK+/DOMbr6pdEhEREQUZhksiIqoRT5euyP9sAWSTCRFPPwHDJx+qXRIREREFEYZLIiKqMXffDOR/+BlkrRYRD94P/bcL1S6JiIiIggTDJRER1Ypr+EgUvPM+IAiIvPt2aFcuV7skIiIiCgIMl0REVGvOSy9H0ctvQHC5YJlyA6QN69UuiYiIiFTGcElERHVin3wjimY8A8Fmg+W6KyFt3qh2SURERKQihksiIqoz2933wvrwYxCtRbBceyWkP35TuyQiIiJSCcMlERHVS/H0h2F98BGIhQWwXD0B0rYtapdEREREKmC4JCKieiv+v3/C+o8HIRbkw3LV5ZB2bFO7JCIiImpkDJdERFR/goDiRx5H8b3/gJiXB8uky6DZuUPtqoiIiKgRMVwSEVHDEARY/zUDxVPvhZibi+grL+EUWSIioiaE4ZKIiBqOIMA64z/+gGmZeCmkTdxFloiIqClguCQiooZVEjCt0x+GWFiA6KuvgPbXNWpXRURERAHGcElERA1PEFD88GMo+tcMCMVWWCZPgnblcrWrIiIiogBiuCQiooCx3fcAip55AYLdDsuN10K3eJHaJREREVGAMFwSEVFA2W6fisKXXgfcbkTdeiP0X32hdklEREQUAAyXREQUcPYbb0bhzHcBAFFTb4Nh1tsqV0REREQNjeGSiIgaheOqa1HwwVzIBgPMjz4EPPYYIMtql0VEREQNhOGSiIgajXPMOOR/8Q28URbg2Wdh/vs0wO1WuywiIiJqAAyXRETUqFz9B6Jg0TKgRQsY5n6MqFtuBGw2tcsiIiKiemK4JCKiRufpmgasWwdP+w7QL/0BlmsmQMjPU7ssIiIiqgeGSyIiUkebNsj/4Ue4evWGbsM6RF9yEcRjR9WuioiIiOqI4ZKIiFQjxycg76tFcFw4GtKevxAzZiSkLb+rXRYRERHVAcMlERGpKyICBZ98DtvNt0LMOoPoK8ZBt3iR2lURERFRLTFcEhGR+iQJRS+8jKInnwXsdkRNuR7Gd2byqBIiIqIQwnBJRETBQRBgmzoNBXM+AQwGRDzxKCL++SCPKiEiIgoRDJdERBRUnJdchryvf4A3PgHG99+D5fqruJMsERFRCGC4JCKioOPu3Qe5S1fC3bkLdKt+QvSYkdDs36d2WURERFQNhksiIgpK3uQU5C1eAceYcZAO7Ef0xSOgW7FM7bKIiIioCgyXREQUtOSISBR8+BmsD/wfxMICRF1/NYxvvMqNfoiIiIIQwyUREQU3UUTxI4+j4L0PlY1+nn4CkXffDthsaldGREREZTBcEhFRSHBcPhF5i36Ep1VrGL76AtGXj4F4PFPtsoiIiKgEwyUREYUMd/eeyP3xZ7gyBkC7dQtiRg2B9udVapdFREREYLgkIqIQIyckIO+r71F8250Qs7NhufoKmF75L+D1ql0aERFRk8ZwSUREoUeng/XZ/6LgnTmA0Qjzc08j6sZrIOTlql0ZERFRk8VwSUREIcsx8SrkLl0Fd4eO0C9fhphRwyDt2KZ2WURERE0SwyUREYU0T+cuyPtxNRyXXgHN0cOIHjcKhrkf87gSIiKiRsZwSUREIU+OiETB7I9Q9PRzgMeDyH9MQ+TU2yAUFqhdGhERUZPBcElEROFBEGC78x7kfb1YOa5k4QLEXDgE0tY/1K6MiIioSWC4JCKisOLO6I/clb/CMfYSaA4fQvT40TC+PZO7yRIREQUYwyUREYUdOSYWBR/OReFz/wNEERH/fhRRN1wN4exZtUsjIiIKWwyXREQUngQB9lvvQO6Slcpusit+RMyIgdD+ukbtyoiIiMISwyUREYU1T7fuyF2+BrbrboDm9ClYrrwU5v/MAJxOtUsjIiIKKwyXREQU/sxmFL32Fgreng3ZHAHT6y8jesxIaHb/qXZlREREYYPhkoiImgzHlVcjd/U6OAcMgnbndsRcNIyb/RARETUQhksiImpSvMkpyF+4CEX//g8gy4j496OwTLoMYuYxtUsjIiIKaQyXRETU9Gg0sN1zH3KXrYa7azfofl2DmGEDoF8wH5BltasjIiIKSQyXRETUZHnSuiF32SoUT/s7hKJCRN1zB6JuvQlCVpbapREREYUchksiImra9HpYn3gK+d8shicpGfpF3yJ2SF/oFy5gF5OIiKgWGC6JiIgAuAYMQu7P62G7+VaIOTmIuutWRP1tMsTTp9QujYiIKCQwXBIREZWQIyJR9OIryPv6B3hS2kC/9AfEDO4H/fy57GISERGdB8MlERHROVyDhiBn9XoU3zEVQkE+ou6biqjrr4J44rjapREREQUthksiIqLKmM2w/ucF5H23DO72HaBf8SNihmTA8MFsnotJRERUCYZLIiKiargz+iN35VoU33M/BGsRIh9+ANHjR0Oza6fapREREQUVhksiIqLzMRph/ffTyPtxNVzpvaD9fTNiRg2B+aknAKtV7eqIiIiCAsMlERFRDbl7pCNvyUoUPvsiZIMRppmvInZYf+h++lHt0oiIiFTHcElERFQbGg3st92F3LWb4Rh3KTRHj8By3SRE3n4zjy0hIqImjeGSiIioDrwtW6Hgw7nI/2gePC1bwfDtQsQM7APDnHcBt1vt8oiIiBodwyUREVE9OMeOR+6vm1B85z3Khj///D/EjBoK7YZ1apdGRETUqBguiYiI6kmOiIT16eeQu+IXuDIGQPpzJ6IvG4PIu26FeOqk2uURERE1CoZLIiKiBuLp1h153y1Fwduz4UlsDsPCBYgZcAGMM18DnE61yyMiIgoohksiIqKGJAhwXHk1ctf/rpyN6bAj4qnHETN8ALSrflK7OiIiooBhuCQiIgoAOSIS1n8/jdyfN8A5bASk/fsQfc0ERN10HTQH9qldHhERUYNjuCQiIgogT8dOyP/iG+R/MBeepGTol/6AmCEZMD/+CITcHLXLIyIiajAMl0RERIEmCHCOvxQ5v25G0b9mQDYYYXr3LcRmpMM46y3A5VK7QiIionpjuCQiImosRiNs9z2AnA1bYLtxCoSCAkT86xHEDM2AbuliQJbVrpCIiKjOGC6JiIgamdysGYpeeg25K9cq6zEP7IflpmthufJSSDu2qV0eERFRnTBcEhERqcTTNU1ZjznvS7g7pUL36xrEXDgEkXfdAvHQQbXLIyIiqhWGSyIiIjUJApwXXoTc1etR+MLL8CY0g2Hhl4gd1AcRj0yHcPq02hUSERHVCMMlERFRMJAk2KfchuyNW2H95+OQjSYY338PcRnpMD3/NITCArUrJCIiqhbDJRERUTCJiEDxP/4POZu2ofiuaYDbBfPL/0Vs3x4wvjMTsNvVrpCIiKhSDJdERERBSI6Lg/WpZ5GzYQvs114PIS8PEU88itiBF0A/71PA7Va7RCIionIYLomIiIKYt3USCl9/G7mr18MxZjw0mccQdf/diBnUB/oF8wGPR+0SiYiIADBcEhERhQRP5y4o+Hgecn9Yrhxfcuggou65AzFD+kG/cAFDJhERqY7hkoiIKIS4+2Ygf8G3yPtuKZyDh0Lavw9Rd92KmOEDoPvua8DrVbtEIiJqohguiYiIQpCr/0DkL1yEvK9/gLP/QEh7/oLltr8hZsQg6H74HpBltUskIqImhuGSiIgohLkGDUH+t0uQ9+V3cPXNgLR7FyxTrkfMiEHQf/MVp8sSEVGjYbgkIiIKdYIA19DhyFv0I/LmL4Trgj6Q/tyJqDumIGZwX2V3WZdL7SqJiCjMMVwSERGFC0GAa+Qo5C3+CXlffqesyTywH1H3343YjHQY5swCbDa1qyQiojDFcElERBRuSjqZ+QsXIfeH5XCMvhiazGOI/OeDiOvTHcaZr0EoKlS7SiIiCjMMl0RERGHM3TcDBXMXIPenX2C/bAKEs1mIeOpxxPZOg+m/z0HIyVa7RCIiChMMl0RERE2Au3tPFM7+CLm/bob9mskQCgth/u9ziOudhoh/Pgjx8CG1SyQiohDHcElERNSEeDp2QuEb7yBn41bYbrkdkGUY58xCbP9eiLztb5D++E3tEomIKEQxXBIRETVB3uQUFD3/ErK3/Anrw49Bjo2F4buvETNmJCyXj4XuxyWA16t2mUREFEIYLomIiJowOTYOxdMfRvbvu1D4v9fgbt8BuvVrYbnhGsQMzYBh7seA3a52mUREFAIYLomIiAgwGmG/aQpy1/6G/I/mwdWvP6S9exD5j2mIu6AbTC8+C+H0abWrJCKiIMZwSURERKVEEc6x45G36EflGJPxl0HIPgvz/55HXO+uiJx6G6Qtv6tdJRERBSGGSyIiIqqUu28GCj74FDkbt6L47vsgm8wwfPUFYi4egeixF0K/cAHgdKpdJhERBQmGSyIiIqqWN6UNrDP+g+ytu1H44itwd0qF9vfNiLrrVsRe0A2ml1+EkJWldplERKSysA+X9913H/r27Yt//OMfapdCREQU2sxm2G++Fbm/bELegm/huHgsxDOnYX7+P4jr1QWR996lTJmVZbUrJSIiFYR9uLz++uvxwgsvqF0GERFR+BAEuIaNQMEnnyNnwxYU33kPZL0Bhs8/U6bMjh4GwycfAkVFaldKRESNKOzDZUZGBsxms9plEBERhSVv23awPv0ccrbtRuHzL8HdJQ3a7VsROf0+xPXsjIhHpkOz+0+1yyQiokagarjcvHkz7rrrLgwePBipqalYtWpVhevMnTsXI0eORPfu3XH11Vdj+/btKlRKRERE1ZEjImG/5Xbkrl6H3EXLYb/qWghOB4zvv4fYYf0RfclF0H/5Oc/MJCIKY5Kad15cXIzU1FRMnDgR9957b4WPL168GM899xyefPJJ9OzZEx999BFuu+02LF26FLGxsQCAyy+/vNLbXrhwITQaTYPWK4pCg95effnqCba6KDxwfFEgcXyFMwHe/v1h7d8fxc88D/38z2D4cA60mzZAu2kDvP96GI7rboD9pinwtu8QsCo4xiiQOL4okEJ5fAmyHByr7lNTU/HOO+9gxIgR/suuuuoq9OjRA48//jgAwOv1YtiwYbj55ptx66231vi2N27ciPnz5+OVV16pc32yLEMQQu8bTEREpDqvF1i1CnjnHeCbbwC3W7l86FDglluASZMALmEhIgp5qnYuq+N0OrFr1y5MnTrVf5koihg4cCC2bt3a6PW43V4UFNga/X6rI4oCYmLMyM21wusNiucIKIxwfFEgcXw1QekZwDsZEGY8B8Nnn0A/92No1qwB1qyBd9q9cE64Eo4bboK7dx+gAZ7M5RijQOL4okAK1vEVFWWEVlv9zNCgDZe5ubnweDyIj48vd3lcXByOHDlS49u54447sH37dthsNgwdOhSzZs1C586d61RTMH1zy/J65aCtjUIfxxcFEsdXE9QsEda/PwjrfQ9Au+5XGOZ+DP0P38HwyYcwfPIh3KmdYZ98E+yTroGckFDvu+MYo0Di+KJACsXxFbThsiq1nZ46a9asAFZDREREdSKKcA0eCtfgoSjKz4N+4ZcwfPYJtNu2IOLfj8L89BNwXjwO9sk3wDliFCCF3L8sRERNTtAeRRITEwONRoOzZ8+WuzwnJ6dCN5OIiIhCl2yJhn3Kbchb/jNyVq5F8e13QY6MhP6H72C5/mrE9UiF+fFHIG3fCgTHVhFERFSJoA2XOp0OaWlpWLdunf8yr9eL9evXIz09Xb3CiIiIKGA83brD+syLyN6+FwXvfQjHhaMh5ObA9O5biBk1FDFDM2B8/WWIxzPVLpWIiM6hari0Wq3YvXs3du/eDQDIzMzE7t27kZWVBQCYMmUK5s+fj6+//hoHDhzAjBkzYLfbMWHCBDXLJiIiokDT6+G4fCIK5n2F7G17UPT0c3D1SIe05y9E/GcGYnunwTLxEujnz4VQVKh2tUREBJWPItm4cSNuuummCpdPmzbNf+7lp59+ijlz5iArKwtdunTB448/jh49ejR2qXC5PMjLK270+62OKAqIi4tAdnZRyC32peDH8UWBxPFFdaX5azcMC+ZD/9UX0Jw4DgCQjUY4xo6H46pr4Rw6AtBqOcYooDi+KJCCdXxFR5vOu1ts0JxzGewYLqmp4fiiQOL4onrzeqFd+wsMC+ZD9/23EK1FysVxcXBccgWcEyfBMn40svNsHGPU4Pg7jAIpWMdXTcJl0K65JCIiIqqSKMI1ZBgKX38b2bv2o+CdOXCMughCfj6MH82B5fKxQFISTI89DOm3TdwIiIioEbBzWUPsXFJTw/FFgcTxRYEi5GRDv3gR9N98Bd2vawCvFwDgSU6B4/KJcFwxEe5uPYBaHGtGdC7+DqNACtbxxWmxDYjhkpoaji8KJI4vCjRRFBDntqLoo7nQL/wS2o3r/R9zt+8AxxVXwnHZBHg6d2HQpFrj7zAKpGAdXwyXDYjhkpoaji8KJI4vCrRzx5h4PBP6b7+G/psvod26xX89d/sOcI6/DI5LLoO7Zy8GTaoR/g6jQArW8cVw2YAYLqmp4fiiQOL4okCrboyJhw7C8O1C6H74HtptpUHT0zoJjvGXwjH+crj79gM01f8TRU0Xf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVdIyJR49A/8P30P/wHaTNGyGU/FvkaZYI59hL4LjkMrgGDga02sYqnUIAf4dRIAXr+GK4bEAMl9TUcHxRIHF8UaDVZYyJp09B98P30P/wPbTrfoHg8QAAvDExcF48Do4x4+EcNgIwmwNZOoUA/g6jQArW8cVw2YAYLqmp4fiiQOL4okCr7xgTsrOhX7YYukXfQvfzKgguFwBA1uvhHDoczovGwnnxWHibt2jo0ikE8HcYBVKwji+GywbEcElNDccXBRLHFwVaQ44xoSAfuhU/QvfjEuhWLIdYkO//mCu9F5wXjYXj4nHwdOvODYGaCP4Oo0AK1vFVk3ApNVItRERERCFJjrLAMfEqOCZeBbhc0G5YB92yxdAvXQLt1i3Qbt0C84vPwtOqNZwXjYHj4nFwDRoC6PVql05E1KjYuawhdi6pqeH4okDi+KJAa5QxJsvQ7PlLCZrLlkD6fbN/QyCvOQKuocPhHDkKzgtHw9s6KTA1kCr4O4wCKVjHFzuXRERERIEiCPB07gJb5y6w3T8dwpkz0K9YBt2yJdD9vBL6JYugX7IIAOBO7QznyNFwXjgarowB7GoSUVhiuCQiIiJqAHKzZrBPvhH2yTcCdrsyffan5dCtWgFpz1+Q9vwF09tvQDaZ4Rwy1B82vckpapdORNQgGC6JiIiIGprBANfwkXANHwkrnoN49Ah0K1dAt3I5dGt+hn7ZEuiXLQEAuDt0hPPC0XCOGAVX/4GAyaRy8UREdcNwSURERBRg3uQU2G++FfabbwWcTmg3rle6miuXQ/prN6T9+2B69y3IOh1c/for6zWHDoe7Zy9AU/0aJyKiYMENfWqIG/pQU8PxRYHE8UWBFkpjTDyeqXQ1V6+E9tefIebm+j/mtUTDNWgInEOHwzV8BDxt2/O4kyAQSuOLQk+wji9u6ENEREQU5LytWsN+482w33gz4PFA2rkd2p9XQ7dmNbQb10G/+HvoF38PAPC0TlKC5tDhcA4eBrlZM3WLJyIqg53LGmLnkpoaji8KJI4vCrSwGWM2G7SbNypBc80qSNu2+o87AQB3l65wDRgE56AhcPUfBDkhQcVim46wGV8UlIJ1fLFzSURERBTKjEa4SjqVwAwIuTnQ/voLdD+vgm7NKki7/4S0+08Y338PgHLkiWvAILgGDoZzwGDIiYmqlk9ETQvDJREREVGIkGNi4bz0cjgvvRwAIJ44Du26X/0vviNPjB/OAaDsROsaOASugUrg9DZvoWb5RBTmGC6JiIiIQpS3ZSs4Jl0Dx6RrAADiqZNK0Fz7K7Trf4W0fx+k/ftg/Ph9AIC7XXu4MgbA3a8/XP36w9OhIzcIIqIGw3BJREREFCa8zVvAMfEqOCZeBQAQT5+Cdv3a0rC5dw+kgweAeZ8q14+Lg6tvBlx9lbDpTu8F6PVqPgQiCmEMl0RERERhypvYHI4rroTjiisBAEJWFrSbN0K7aQO0mzZA2rYF+qWLoV+6GAAg63Rw9+wFV8YA5bzNvhmQ4+LUfAhEFEIYLomIiIiaCDkhAc5xl8A57hLlArsd0tYt0G5arwTOzRv9Lz7uDh3h7tMPrt594L6gD9yduwJarUqPgIiCGcMlERERUVNlMMDdfwDc/QfABgBeLzT79ylBc+N6SJs2+NdtGubPBQDIRiPc3Xv6w6ardx94Wydx7SYRMVwSERERUQlRhKdTKjydUmG/4W8ASqbS/vEbpD82Q/v775C2/uGfVuvjTWgGV+8L4O6thE13r96QoyxqPQoiUgnDJRERERFVSU5IgPPisXBePFa5wOuF5sB+SL9vLgmdv0P6cyf0y5ZAv2yJ//PcHTvB3SNdeemZDnf3HpAjo1R6FETUGBguiYiIiKjmRBGejp3g6dgJjmuvVy6z2SDt2A7tH5shbfld6XDu2wtp317gqy/8n+pu174kaJYJnNExKj0QImpoDJdEREREVD9GI9z9MuDul+G/SMjOhrR9K6Qd26DdtlV5++AB5SiUr7/yX8+T0gaunr3g7tGzpNPZE3Isd6glCkUMl0RERETU4OS4OLhGXAjXiAuVzYIACHm5kLZvK3nZorw+eACaI4eB7772f66nRUu4u6bBk9Yd7q5pcHftBk+HjoDEf12Jghl/QomIiIioUcjRMXANHQ7X0OH+y4SCfEg7titBc9sWSDu3Q7N/H/QnTwA/LS/9XL0e7k6d4Unr5g+c7rTuPIeTKIgwXBIRERGRauQoC1yDhsA1aEjphTYbpL1/QfPnLki7dkAqea3dsQ3aHdvKfb4nsXlJ4OwGd2pneFI7w90xFTCbG/mREBHDJREREREFF6MR7p694O7ZCw7fZbIM8dRJSH/uhGbXLkh/KqFTs28vNCtXQLdyRbmb8CSnwN0pFZ5OneHu3MV/xIocEdnoD4eoqWC4JCIiIqLgJwjwtmgJZ4uWwIUXlV5ut0PatweaXTsh7d0Dzd6/IO35C+LRI9AfPQKs+LHczXhaJ8HTKVWZYpvaWel2dujIXWuJGgDDJRERERGFLoMB7u494e7es7TLCQDFxZD274Vmz19K6NyzG5o9f0Fz+BA0mccqdDq9cXHwtO8Id/sO8LTvAE/7jsrrNm0Bg6FRHxJRqGK4JCIiIqLwYzKVHG2SXj502mzQHNgPac/uki7nHmgO7ofm4AFoN22AdtOGcjcjCwK8SSnwtG9fEjw7Qu7YEeibDhijAQiN95iIghzDJRERERE1HUYjPN26w9Ote/nLPR6ImceU4HlgHzQH9pe+HD0MzdHD0K36qdynxBoM8KS08b9427RV3m7TDp6kZMBobMQHRqQ+hksiIiIiIo0G3pQ28Ka0gWvkqPIfKy6G5tBBaA7uh3RgPzQH9sFw5BDkPXsg7VHWeFbG07wFPG3awpvSBh5f8CwJn3J8PCCw60nhheGSiIiIiKg6JhM8ad3gSesGJwBRFGCIi0BudhHk3FxojhyGeOQwNIcPK2s6jxyG5sghpRN66iSwYV2Fm5RNZnhat4a3dRI8rZLgTUqCp1VreJOSldctWgIS/1Wn0MIRS0RERERUR7IlGu4e6UCP9IofdLkgHs8sEziV8CmWvC3t3QPs3VP57YoivC1aloTPMqEzKQmelq3hbdECsiWa3U8KKgyXRERERESBoNXC26YtvG3awlXJh4WCfIiZmdAcPwbx2DFojmdCzDwKTWYmxMxjEE8ch+Z4JrRV3LxsNMLTvAW8zVvA26IFvM1bwtuiBTwtWsKb6LusBaDTBfJREvkxXBIRERERqUCOssDT1QJP17TKr+ByQTx5AprMY8oU28xjSic08xjEUychnjoJ6dBB4NDBau/HGx8Pb2ILeErCpjchAd6EZpATmsHrf0lgJ5TqjeGSiIiIiCgYabXwJqfAm5xS9XVsNoinTkJz6iTEkycgnjpV8vokNCWvxVMnIZ09C2nXjmrvTtbp4I1P8IfN0gCaUBpCY+Mgx8XBGxML6PUN/IAp1DFcEhERERGFKqMR3rbt4G3brurryDKEnBwldJ45BfHMGYhZWRCzzpS8lHn71EloThyv0V3LJjO8sbHwxsRCjo2FNzYWcozyvjcuzv+2XOY6ckQku6NhjOGSiIiIiCicCQLkuDh44uLgQffqr+vxQMjOLhM8z0A8e9b/tpCTDTEnR3mdmwNNyXTdmpJFEXJUFOQoC7xRFv/bssUCr+9t3/uRUZAtZd6OjIJsNivnhzKgBiWGSyIiIiIiUmg0kJs1g6dZM3hqcn2PB0JeHsScbKU7mpsDITcHYnZ26dtlwqhQUAChoACao0egqWOJsiBANkdANpkgm82QzRGA2ex/WzabSz5W8rbvcoMBst4AGPSQ9QbIBmPp23o9YDRC1ivvQ68HRLGOFTZdDJdERERERFQ3Go2/K1orbjeEwgII+fkQS14rwTMfYkF+yfvKZaLvbWsRBKu15KVICbRnTgfmcQHlgqas1wOSBFmrVV5LWkArARrfZVpA0vjflks+Bq1WuUwQAVFQOq6iCLnkNQRB+VjZ93Va4K7bgdgWAXtsgcJwSUREREREjUuSIMeUrNGsz+04nRVCp1BcXPp2mddwOCDYbBAcduVthx2CzV76vt0OwW4HHHYIJe/DboeQnwfR6WyoR14zbgfwxDONe58NgOGSiIiIiIhCk04HWaeE1ICSZcDtBlwuCB7lNVxu/9uC2wW4PWXedkNw+67ngiB7ldvwegEZJa/l0teyF0LJ+4JGg8iJl6J+qVsdDJdERERERETVEQRAq1WmuZa5WK7yE+pOFAUgJgLILgrArQcWV6kSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9CbIsy2oXEQq8Xhkej1ftMirQajVwuTxql0FhiuOLAonjiwKNY4wCieOLAikYx5dGI0IUhWqvw3BJRERERERE9cZpsURERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdERERERERUbwyXREREREREVG8Ml0RERERERFRvDJdBbu7cuRg5ciS6d++Oq6++Gtu3b6/2+kuWLMGYMWPQvXt3XHrppVizZk0jVUqhqDbja9++fbj33nsxcuRIpKam4tNPP23ESikU1WZ8ffHFF5g8eTL69u2Lfv364ZZbbsGOHTsasVoKRbUZYytWrMCVV16JPn36ID09HZdffjm++eabxiuWQk5t/wfzmTVrFlJTU/HCCy8EuEIKZbUZXwsXLkRqamq5l+7duzditTXHcBnEFi9ejOeeew733HMPvv76a6SmpuK2225DTk5OpdffsmULpk+fjkmTJuGbb77BqFGjcPfdd+PAgQONXDmFgtqOL5vNhtatW2P69OlISEho5Gop1NR2fG3cuBHjx4/Hxx9/jHnz5iExMRG33HILzpw508iVU6io7RizWCy488478fnnn+O7777DpEmT8Oijj2LdunWNXDmFgtqOL59du3Zh/vz5SE1NbaRKKRTVZXxFR0fj119/9b+sWrWqESuuBZmC1qRJk+SnnnrK/77H45EHDx4sz549u9Lr33///fKdd95Z7rKrrrpKfvLJJwNaJ4Wm2o6vskaMGCF/8skngSyPQlx9xpcsy7Lb7ZZ79eolf/fdd4EqkUJcfceYLMvyFVdcIb/xxhuBKI9CXF3GV3FxsTx27Fh5zZo18g033CA///zzjVEqhaDajq+vvvpK7tevX2OVVy/sXAYpp9OJXbt2YdCgQf7LRFHEwIEDsXXr1ko/Z+vWreWuDwCDBw+u8vrUdNVlfBHVVEOML5vNBrfbDYvFEqAqKZTVd4zJsoz169fj0KFDuOCCCwJYKYWiuo6v559/HhkZGRgyZEgjVEmhqq7jq6ioCMOHD8ewYcNw9913Y//+/Y1Qbe1JahdAlcvNzYXH40F8fHy5y+Pi4nDkyJFKP+fs2bOIi4urcP2srKyA1UmhqS7ji6imGmJ8vfTSS2jRogX69+8fiBIpxNV1jBUWFmLo0KFwOp0QRRFPPvkkBgwYEOhyKcTUZXytWrUKGzZs4DpeOq+6jK927drhueeeQ6dOnVBQUID3338f1113HRYtWoTExMTGKLvGGC5DjCzLEAShyo9X9rHqrk9U1vnGF1F91HR8vffee1i8eDE++eQT6HS6RqiMwsX5xpjZbMY333yD4uJirF+/Hs8++yySk5PRp0+fRqySQlVV4ysnJwePP/443nzzTRiNRhUqo3BQ3e+v9PR0pKen+9/v1asXxo0bhwULFmDatGmNVGHNMFwGqZiYGGg0Gpw9e7bc5Tk5ORWe6fCJj4+vcP3s7Owqr09NV13GF1FN1Wd8zZkzB++++y4++OADdOrUKZBlUgir6xgTRREpKSkAgC5duuDAgQOYNWsWwyWVU9vxtW/fPmRlZeG6667zX+bxeLB582Z8+umn3PmaymmI/8G0Wi26dOkSlLPNuOYySOl0OqSlpZXbxc7r9WL9+vXlnrkoKz09HWvXri132bp166q8PjVddRlfRDVV1/E1e/ZsvPXWW5g9e3bQbrFOwaGhfofJsgyn0xmACimU1XZ8de/eHd9//z2++eYb/0u3bt0wYcIELFy4sBErp1DQEL+/PB4P9u3bF5S797NzGcSmTJmChx56CGlpaejRowc++ugj2O12TJgwAQDw0EMPITExEdOnTwcA3HTTTbjhhhvw/vvvY9iwYVi8eDF27tyJZ555Rs2HQUGqtuPL6XT6j7VxOp04ffo0du/eDYvFgpYtW6r2OCg41XZ8vffee3jttdfw0ksvoVWrVv614iaTCWazWbXHQcGrtmNs1qxZ6Nq1K1JSUuB0OvHLL7/g22+/xVNPPaXmw6AgVZvxZTKZKsy0MJlMiI6ORseOHdUon4JcbX9/zZw5E+np6UhJSUFBQQHmzJmDEydOYNKkSWo+jEoxXAaxcePGIScnB6+//jqysrLQpUsXzJ49G7GxsQCAkydPQhRLm8+9e/fGSy+9hFdffRUvv/wy2rRpgzfffBPt27dX6yFQEKvt+Dpz5gyuuOIK//uzZs3CrFmzMGHCBDz//PONXT4FudqOr3nz5sHlcuG+++4rdzvTpk3Dvffe26i1U2io7Riz2+146qmncOrUKRgMBrRr1w7//e9/MW7cOLUeAgWx2o4votqo7fgqKCjA448/jqysLFgsFnTr1g2ff/452rVrp9ZDqJIgy7KsdhFEREREREQU2viUCxEREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdUbwyURERERERHVG8MlERERERER1RvDJREREREREdWbpHYBREREweaNN97AzJkzK1w+YMAAfPjhh41fEBERUQhguCQiIqpEZGQkZs+eXeEyIiIiqhzDJRERUSU0Gg3S09PPez273Q6DwRD4goiIiIIc11wSERHVUGZmJlJTU/Hdd9/hoYceQp8+fXDXXXcBAPLy8vDEE09g4MCB6N69O6699lps27at3OcXFBRg+vTpSE9Px+DBg/H222/jhRdewMiRI/3XeeONN5CRkVHhvlNTU/Hpp5+Wu2zBggUYP348unXrhhEjRuC9994r9/FHHnkEEydOxNq1a3HppZciPT0d1113Hfbt21fueh6PB++++y4uvvhidOvWDUOHDsUjjzwCAJg7dy569eoFq9Va7nM2bNiA1NRU/PXXX7X8KhIRUbhi55KIiKgKbre73PuyLAMAXnzxRYwePRqvvfYaRFGE0+nElClTUFBQgIceegixsbGYN28ebr75Zvz4449ISEgAAPzzn//Epk2b8OijjyI+Ph7vv/8+jh49Ckmq/Z/j2bNn45VXXsFtt92Gfv36YdeuXXjttddgNBpxww03+K938uRJvPjii5g6dSr0ej1efPFF/P3vf8eiRYsgCAIA4IknnsC3336LW2+9Ff369UN+fj6WLl0KALj00kvxwgsvYNmyZZg4caL/dr/++mukpaWhc+fOta6diIjCE8MlERFRJfLy8pCWllbusv/85z8AgJ49e+Lf//63//IFCxZg3759WLRoEdq0aQMAGDhwIMaMGYP3338fDz/8MPbt24cVK1bglVdewbhx4wAAGRkZGDFiBCIiImpVW1FREd58801MnToV06ZNAwAMGjQINpsNb7/9Nq677jpoNBoAQH5+PubNm+evS5Zl3HPPPTh48CDat2+PAwcO4Msvv8Rjjz2Gm266yX8fvhqjoqJw0UUXYeHChf5wabVa8eOPP2L69Om1qpuIiMIbwyUREVElIiMj8cEHH5S7TKfTAQCGDx9e7vL169cjLS0NrVu3Ltft7Nu3L3bu3AkA2LFjBwCUmwJrNpsxcOBAbN++vVa1bdmyBcXFxRgzZky5++vfvz/eeustnDp1Cq1atQIAtGrVyh8sAaB9+/YAgNOnT6N9+/bYuHEjAJTrSp5r0qRJuPnmm3Hs2DEkJSVhyZIlcLvduOSSS2pVNxERhTeGSyIiokpoNBp079693GWZmZkAgLi4uHKX5+bmYuvWrRU6nQCQnJwMADh79izMZnOFzX/Ova2ayM3NBQCMHz++0o+fPHnSHy7P3eFWq9UCABwOBwClQ2symartnmZkZCApKQkLFy7E/fffj4ULF+LCCy9EdHR0rWsnIqLwxXBJRERUS761ij4WiwXdunXDjBkzKlzX1+2Mj4+H1WqtsLtsdnZ2uevr9Xq4XK5yl+Xn51e4PwB49913Kw2nbdu2rfFjiY6ORnFxMYqKiqoMmIIg4Morr8QXX3yByy+/HL///nuFzYOIiIgYLomIiOppwIABWLt2LVq2bFllJ9LXBV25cqV/PaPVasW6devKhbrExERYrVacPn0aiYmJAIC1a9eWu61evXrBYDDgzJkzFabo1lb//v0BAN988025jYDONWHCBLz++ut49NFHkZiYiEGDBtXrfomIKPwwXBIREdXTFVdcgfnz5+PGG2/ELbfcgqSkJOTl5WH79u1ISEjAzTffjI4dO2LkyJGYMWMGioqKkJCQgDlz5lSYJjtkyBAYDAY8+uijmDJlCjIzMzF//vxy14mKisK0adPwzDPP4Pjx4+jbty+8Xi8OHz6MjRs34s0336xx7e3atcM111yD559/HtnZ2ejbty8KCgqwbNkyvPLKK/7rJSYmYsiQIVi9ejXuvPNO/4ZBREREPgyXRERE9aTX6/Hxxx/jtddewxtvvIHs7GzExsaiR48e5Tbwef755zFjxgw8++yzMJlMmDx5Mrp3745ly5b5rxMbG4vXX38dL774Iu655x6kpaXhpZde8nc7fW6//XY0a9YMH330ET744APo9Xq0adOmwvVq4t///jdatmyJBQsW4L333kNsbGylnclRo0Zh9erV1W7+Q0RETZcg+w7tIiIiokbnO0Ny5cqVapdyXvfffz+ysrLw2WefqV0KEREFIXYuiYiIqFp79uzBzp07sXz5crz88stql0NEREGK4ZKIiIiqNXXqVOTm5mLy5MkYM2aM2uUQEVGQ4rRYIiIiIiIiqjdR7QKIiIiIiIgo9DFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvTFcEhERERERUb0xXBIREREREVG9MVwSERERERFRvf0/E8krr8igmf4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "norms = [\"leahy\", \"frac\", \"abs\", \"none\"]\n", + "\n", + "for norm in norms:\n", + " ps = Powerspectrum(lc_ar4, norm=norm)\n", + " mtp = Multitaper(lc_ar4, norm=norm, adaptive=False) # adaptive=False does not calculate adaptive weights to reduce bias, helps see the normalization similarities better\n", + " \n", + " fig = plt.figure(figsize=(12, 8), dpi=90)\n", + " plt.plot(mtp.freq, mtp.power, color=\"slateblue\", label=\"Multitaper estimate\")\n", + " plt.plot(ps.freq, ps.power, color=\"green\", label=\"Periodogram estimate\", alpha=0.4)\n", + " plt.plot(freq_analytical, psd_analytical, color=\"red\", label=\"True S(f)\")\n", + " plt.legend()\n", + " plt.yscale(\"log\")\n", + " plt.ylabel(\"Power\")\n", + " plt.xlabel(\"Frequency\")\n", + " plt.title(\"AR(4) Spectrum, \" + (norm + \" normalized\").title())" + ] + }, + { + "cell_type": "markdown", + "id": "ddda379e", + "metadata": {}, + "source": [ + "### Other attributes with the S(f) estimates\n", + "If you look closely at the attributes of the `multitaper` object, there is a `multitaper_norm_power` attribute. This attributes contains the PSD normalized according to \n", + "\n", + "\n", + "Another attribute containing the PSD is the `unnorm_power`, and as the name suggests, contains the unnormalized PSD." + ] + }, + { + "cell_type": "markdown", + "id": "c6e7f041", + "metadata": {}, + "source": [ + "## A summary of the jackknife variance estimate\n", + "Assume that we have a sample of $K$ independent observations, $\\{x_i\\}, i = 1,...K$, drawn from some distribution characterized by a parameter $\\theta$, which is to be estimated. Here, $\\theta$ is usually a spectrum or coherence at a particular frequency or a simple parameter such as the frequency of a periodic component. Denote an estimate of $\\theta$ made using all $K$ observations by $\\hat{\\theta_{all}}$. Next, subdivide the data into $K$ groups of size $K − 1$ by deleting each entry in turn from the whole set, and let the estimate of $\\theta$ with the $i$th observation deleted be\n", + "
\n", + " $\\large{\\theta_{\\setminus i} = \\hat{\\theta}\\{x_1,..x_{i-1},x_{i+1},...x_K\\}}$\n", + "
\n", + "\n", + "for $i = 1, 2,..., K$, where the subscript $\\setminus$ is the set-theoretic\n", + "sense of without. Using $\\bullet$ in the statistical sense of averaged\n", + "over, define the average of the $K$ delete-one estimates as\n", + "
\n", + " $\\large{\\theta_{\\setminus \\bullet} = \\frac {1}{K} \\sum_{i=1}^{K} \\hat{ \\theta_{\\setminus i}}}$\n", + "
\n", + "\n", + "and the jackknife variance of $\\hat{\\theta_{all}}$ as\n", + "
\n", + " $\\large{\\widehat{Var}\\{{\\hat{\\theta_{all}}}\\} = \\frac {K - 1}{K} \\sum_{i=1}^{K} (\\hat{ \\theta_{\\setminus i}}} - \\hat{ \\theta_{\\setminus \\bullet}})^2$\n", + "
" + ] + }, + { + "cell_type": "markdown", + "id": "9e982a2c", + "metadata": {}, + "source": [ + "This is just a summary of the jackknife variance estimate, kindly explore the references for further in-depth details." + ] + }, + { + "cell_type": "markdown", + "id": "1738b1ea", + "metadata": {}, + "source": [ + "### A look at `jk_var_deg_freedom`\n", + "This attribute differs depending on whether the jackknife was used. It is either\n", + "- The jackknife estimated variance of the log-psd, OR\n", + "- The degrees of freedom in a $chi^2$ model of how the estimated PSD is distributed about the true log-PSD (this is either 2$*$floor(2$*$NW), or calculated from adaptive weights) \n", + "\n", + "We'll do a combination of the valid values for the `adaptive` and `jk_var_deg_freedom` and have a look at the results." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a03504ed", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4gAAAmACAYAAADckwLtAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOz9eZhdVZnwf3/XHs5c8zxkIiEJSYAwQwgyCIKAI2pLi60tTq2A2tq2traK3WqjtkOD/uzHqbV9nre1pVsFBRVlUmZISICQQOaq1DyeeU/r/WNXVVKpMUkllVTdn+vKlZy91957nTr7VM597rXupbTWGiGEEEIIIYQQ854x2x0QQgghhBBCCHF8kABRCCGEEEIIIQQgAaIQQgghhBBCiCESIAohhBBCCCGEACRAFEIIIYQQQggxRAJEIYQQQgghhBCABIhCCCGEEEIIIYZIgCiEEEIIIYQQApAAUQghTjhaay677DJWrFjB7t27p3XMtm3bWLFiBY8//viM96enp4fbb7+dlpaWUdsff/xxVqxYwbZt22b8mtO1YsWKcf889dRT0zr+E5/4BG984xuPci+P7bUvu+wybrvttgn3t7S0sGLFCu6///4jvtbb3/52brnlllHbfvazn3HZZZexatUq3v72tx/xNQ52Ir/mQghxPLBmuwNCCCEOzYYNG2htbQXg17/+NR/4wAdmtT89PT3ccccdnHvuuTQ3N49sX716NT/96U9ZuHDhLPYO3vWud3HllVeO2rZs2bJZ6s388tnPfhbL2v9Ro6uri8997nO87W1v46qrrqKsrOyoXFdecyGEOHwSIAohxAnm17/+NYlEgpNPPvm4CBAnkkqlWLt27Wx3g6ampuOiH/PRwUHZ7t278X2f6667jpUrVx6168prLoQQh0+GmAohxAnE933uvfdeLrvsMq677jpefvllXnzxxTHt/u///b9cfPHFrF27lve///10dXWNafODH/yA6667jrPOOot169bx/ve/f8yQ1eEhgj/96U+57LLLOO2003jve99LR0cHEA5HfM1rXgPAX/3VX40M54OxQ0xvuOEGPvShD43px2233cYll1yC1hqAYrHIl7/8ZS6++GLWrFnDa1/7Wh588MEj+KmN7xe/+AXXX3895557Lueccw5vf/vb2bx586THDA4O8qlPfYr169dz6qmncskll/DpT396VJtt27bx3ve+lzPOOIMzzjiDW265Zdyf/6Hq7Ozkk5/8JK985Ss57bTTuPLKK/n617+O4zij2hUKBb785S9z6aWXsmbNGi677DL+9V//dcLzdnR0cOWVV/LOd76TfD4/bpvHH3+cM844g6997WsA/M///A8rVqxg69at/PVf/zVr167lqquu4ne/+92o4w4cYnr77bfztre9DYDXve51rFixgv/5n/8B5DUXQojjiWQQhRDiBPLYY4/R3d3N1VdfzVlnncU//dM/8etf/3pUNua+++7j85//PG9961u5/PLLefLJJ/mHf/iHMedqb2/nhhtuoLGxkUwmw3/9139x/fXX89vf/paSkpKRdhs2bGDnzp184hOfoFgs8tWvfpUPfOAD3HnnndTW1vLVr36Vj33sY3zmM59h9erVE/b96quv5rbbbiOXy5FIJIBwPuW9997Lq1/9apRSANxyyy1s2rSJm2++mYULF3LPPffwN3/zN9x5552ccsopQBhs3HHHHWzdunXKn1kQBHieN/JYKYVpmrS0tPD617+ehQsX4jgOd999NzfccAN33303CxYsGPdcX/rSl9iwYQP/8A//QHV1NW1tbaPmtu3evZvrr7+eNWvW8JWvfAXf9/nmN7/J+9//fn7+85+PPMfD0dfXR3l5OZ/85CcpLS1l165d3H777fT19fH5z39+5Of5gQ98gA0bNvCBD3yANWvW0NHRMeH8u5aWFt75zndy0kkncfvttxONRse0efjhh7npppt4z3vew0033TRq38c+9jHe8pa3cOONN/KTn/yEv/3bv+W+++6jvr5+zHne/OY3U1lZyec//3m++tWvsmDBgpHhx/KaCyHEcUQLIYQ4YXziE5/QZ599ti4Wi1prrd/znvfoSy+9VAdBMNLmuuuu0zfeeOOo4z71qU/p5cuX68cee2zc83qep/P5vF67dq3+3//935HtN9xwg161apVuaWkZ2fbUU0/p5cuX6wcffFBrrfXWrVvHPfdjjz2mly9frrdu3aq11rqnp0efcsop+u677x5p88wzz+jly5frTZs2aa21fuSRR/Ty5cv1448/Pupcf/mXf6lvvvnmkce33367PuWUUyb/YWmtly9fPubPW9/61jHtfN/XruvqK6+8Ut9+++0j2//+7/9ev+ENbxh5fM011+gf//jHE17vYx/7mH7Vq1418vporfXOnTv1ypUr9f333z9lfw908LUP5rqu/tWvfqXXrFkzcr2HHnpIL1++XN93330THnfppZfqf/mXf9G7du3SF198sb7ppptG9Xfv3r16+fLl+o9//KO+77779Jo1a/T3vve9Uee488479fLly/V///d/j2zr7e3Vp5xyiv5//+//jWy74YYbRr1uB98TWstrLoQQxxvJIAohxAnCcRzuu+8+Lr/8ciKRCADXXHMNH//4x9m4cSNnnHEGvu+zZcuWMUPgrrjiCv77v/971LaNGzfyzW9+kxdeeIH+/v6R7Tt37hzVbtWqVTQ1NY08Puuss6iqqmLTpk284hWvmHb/KysrOf/88/nNb37DNddcA8BvfvMbFi5cyKmnngrAI488Qk1NDWeeeeaoDNAFF1wwMhwR4KabbhqTzZrIjTfeyKtf/eqRx8lkEoDt27fzta99jQ0bNtDT0zOyf9euXROea+XKlXz/+9/HMAzWrVvHkiVLRu1/9NFHef3rX49hGCP9b25upqmpieeee45LLrlkWn0ej9aaH/3oR/zsZz+jpaWFYrE4sq+trY1Fixbx2GOPUV5ezitf+cpJz7Vz507e9ra3cd5553HbbbeNKiQz7He/+x133XUXn/zkJ0eGhh5s/fr1I/+uqKigsrKS9vb2Q3pe8poLIcTxRQJEIYQ4QTz00EMMDg5y8cUXMzg4CMB5551HJBLh17/+NWeccQa9vb14nkdVVdWoYw9+vG/fPt71rndx2mmnceutt1JbW4tt27zvfe8bM6ft4GOHtx3OHKurr76aW2+9lUwmQyKR4N577x21pEBfXx9dXV3jDlU1TfOQrwfQ2Ng4EoAOy2QyvOtd76KqqopPfOITNDY2Eo1G+fSnPz3m+R/oM5/5DP/2b//Gt7/9bT7/+c+zaNEiPvShD40EvH19fXz3u9/lu9/97phj29raDqv/w370ox9x22238d73vpdzzjmH0tJSNm/ezOc///mRYLG/v5+ampopz7Vhwwb6+/t505veNG5wCPDHP/6R8vJyLr/88gnPc+BQZIBIJDLpz2888poLIcTxRQJEIYQ4Qdx9990A4xZ6ueeee/jkJz9JZWUllmWNyo4AYx4//PDDFAoFvv3tb4/MB/Q8j4GBgTHnPvjY4W3TCUQOdsUVV/C5z32O++67j6amJjo7O0dlesrKyqirq+Nb3/rWIZ/7UGzcuJH29nZ+8IMfsHTp0pHt6XR60uNKS0v59Kc/zac//WlefPFFvve97/Gxj32MFStWsGzZMsrKyrj88st585vfPObYioqKI+rzvffey1VXXcVHPvKRkW3bt28f1aa8vHxagfsb3/hGMpkMH/zgB/mP//gPTjvttDFtPv3pT/PDH/6Qd73rXfzkJz854v5PRF5zIYQ4vkiAKIQQJ4BsNssDDzzAtddey1ve8pZR+7Zs2cKXvvQlHn/8cdatW8fKlSv5wx/+wPXXXz/S5ve///2oYwqFAoZhjMoe3XPPPaOG+A174YUX2LdvH42NjQA8/fTT9PT0jAQVtm0DjBryOJGysjLWr1/PPffcQ2NjI0uXLh1VYOeCCy7ghz/8IYlEYtSH+JlWKBQARobqAjzzzDO0trayZs2aaZ1j5cqVfPzjH+euu+5ix44dLFu2jAsuuICXXnqJNWvWzHhxkkKhMKq/AHfdddeoxxdccAHf+973uP/++7n00ksnPd+tt95KLpfjPe95Dz/+8Y9Hqs8OS6VSfP/73+ftb387N954Iz/+8Y9JpVIz82QO6rO85kIIcfyQAFEIIU4Af/jDH8jn8/zVX/0Vp59++qh9Z555Jv/f//f/cffdd48sV3HTTTfx2c9+liuuuIInn3yShx9+eNQx559/Pr7v88lPfpI3velNvPTSS/zgBz+gtLR0zLUrKyt53/vex8033zxSxXT16tUj8w8bGxuJxWL84he/oKSkBMuyxgzvO9CrX/1qPvWpT5FKpbjhhhtG7bvwwgtZv34973rXu3jPe97DsmXLyGQyvPjiixSLRT760Y8CcMcdd/Dtb3+bF1544bB+nmvXriWRSPCP//iPvPvd76a9vZ077riDurq6SY+7/vrrueKKKzj55JNRSvGzn/2MRCIxEizfdNNNvPnNb+a9730v1113HRUVFXR0dPDII4/whje8gfPOOw+Ayy67jHPPPZd/+Zd/mfR6BwYc69at4z//8z857bTTWLhwIXfdddeYZUmGf34f/ehH+eAHP8iqVavo6uriqaeeGql0OswwDG677TZuueWWkSqkixcvHtWmoqKCH/zgB7ztbW/jfe97H9/73veIx+OT9vlQzZfXXAghThSyDqIQQpwAfv3rX7N48eIxwSGEGbxXv/rV/P73v8dxHK644gr+8R//kfvvv58PfvCDvPDCC3zhC18YdcyKFSv40pe+xLPPPsv73vc+7r77br75zW+OmVMGcMYZZ/CXf/mXfPGLX+RTn/oUJ5988qjhgNFolH/6p3/i+eef5+1vfztvetObJn0ur3zlKzFNk76+Pq6++upR+5RS3HHHHVx33XX86Ec/4t3vfjef/exn2bBhA2edddZIO601vu9P62c3nurqar75zW/S3d3NBz7wAX70ox9x6623smjRokmPW7t2Lf/7v//LLbfcwoc//OGR+WfDyzosWbKEn/70p8TjcT7zmc/wnve8h9tvv51IJDLq3Pl8nsrKykmvVSgURrKzAB/84Ae59tpr+eY3v8lHP/pRbNseU4xIKcW3vvUt/uIv/oIf/ehHvOc97+Eb3/jGhEMdLcviG9/4BsuXL+ev//qvx50zV1tby3/8x3/Q2trKTTfddMhzDKcyX15zIYQ4USith1YmFkIIIQ7y9re/nYqKCv7t3/5ttrsyZ+zdu5dXvepV/O53v5tw7T0I5wkuXrx4ZHF6IYQQ4liQIaZCCCHEMbRhwwYuv/zyCYPDzZs38/DDD/P888/z7ne/+xj3TgghxHwnAaIQQghxDL32ta/lta997YT7h6uUfvzjHx8zBFcIIYQ42mSIqRBCCCGEEEIIQIrUCCGEEEIIIYQYIgGiEEIIIYQQQghAAkQhhBBCCCGEEEOkSM0EgkDj+8Fsd2MUyzLwvOOrT2JukHtLHA1yX4mjQe4rcTTIfSWOhuPtvjJNA8NQU7aTAHECvh/Q35+b7W6MMAxFVVWKwcE8QSB1hcTMkXtLHA1yX4mjQe4rcTTIfSWOhuPxviovT2AY5pTtZIipEEIIIYQQQghAAkQhhBBCCCGEEEMkQBRCCCGEEEIIAUiAKIQQQgghhBBiiBSpEUIIIYQQs0prTRD46Fmo5WEYCsdx8DzvuCkmIk58s3FfKQWGYaLU1JVKJyMBohBCCCGEmBVaazKZAbLZQWD2grPuboMgOH6WIxBzw2zcV4ZhUlXVgGlOXa10IhIgCiGEEEKIWTEcHJaWVhKJRIEjy3wcLstSeJ5kD8XMOvb3laa/v5vBwV4qKmoO+ywSIAohhBBCiGNOaz0SHCYSqVnti2UZgGQQxcyajfuqpKScvr5OtA5Q6vDKzUiRGiGEEEIIccwFgQ/oocyhEGImmGaY/zuSoa0SIAohhBBCiGNuf0Ga2RlWKsTcFL6fjqTgkwSIQgghhBBCCCEACRCFEEIIIYSYNc888xTr159NLpebtN2b3vQa7rzzp8eoV8fWL35xJ3//9x8Zeex5Hv/8z5/lqqsuZf36s3nppa3ceuun+a//+sms9O+mm97LHXd8Y1auPRskQBRCCCGEEGKavvCFz7F+/dl8/etfHrPv1ls/zfr1Zx9RMPGb39zFNde8csz27373x1xzzetGHq9ffzZ//vPDh32dYyGXy3HHHd/gzW9+LZddto7XvvZKPvKRD7Jp08aRNsVikR/+8P/wzne+e2TbAw/8gYcffoBvfOPb/PKX97JkyVLe+c538+Mf/5BsNjPpNd/0ptewfv3ZY/784hc/n7K/EwXrX/ziV3jXu95zKE/9sBwvr6lUMRVCCCGEEOIQ1NbW8fvf/5YPfvDDRCIRALLZDA8//AC1tXVH5ZoVFRVH5bwzwXVdbNses/0rX/ki27a9yEc/+gkWLVpMf38fTz/9JIODgyNtHnjgD5SVlXPKKatHtrW07KWpaQErV54ysm3RosUsWLCQ3//+Xl7/+jdN2p/3ve+DXH31a0ZtS6UOv1JuaWnZYR97IpIAUQghhBBCiEOwatVqdu7cwZ/+9BCXXXY5APfd9zuWL1+JYYweoLd+/dncdtvXufDCi4Awq/aqV72Cf/u373DmmWePavvMM0/xxS/eOnIcwF//9Xu48cb38aY3vYbrr7+B6677C970pjD4GR6WWV/fwM9/fhd79+7hjju+zgsvPE+hUOCkk5bygQ98iNNPXzuqPx/72Cd58ME/8uyzG6mtreVDH/ooF1ywfqTNjh0vc8cd32TTpg0kk0kuuGA9N930kZEg66ab3suyZcsBze9+dy+rV6/hK1/55pif06OP/om//du/5/zz1wHQ0NA4KhAE+MMffseFF75i5PEXvvA57rnn7pG+Dj83gHXr1vOHP/x+ygAxkUhQVVU97r729ja+9rUvs2nTRjzPpampmQ9/+O+or2/gllveD8CrXhX259WvvpZPfepz3HTTe1m5chU33fRhIMxSvu51b2T79pf5058epKKiio9//JMsWLCYf/mXz/Pcc5tYsmQpt976BRobmwGmfG0mek0BHnroAX7wg//Dnj27qKmp5bWvfQPXX//2MffaTJEhpkIIIYQQQhyiq69+Db/5za9GHv/mN3eNyVodqlNPPZ1bbvkopaVl/PKX9/LLX97L9de/fUy77373xwD84z9+nl/+8t6Rx7lcjnXrLuKb3/w23//+f7JmzWl8/OMfor+/f9Tx3/ved7jiiqv4j//4v6xffzGf+tTH6ehoByCdTnPLLX/DqlWr+cEPfsJtt32DvXv38IUvfG7UOX79618Rjyf4znd+wM03/+24z6eiopJHHvnTpPMrN23aOCpT+KEPfYy3vvUGli1bPuq5AaxcuYrnn38Oz/Mm/iFO4Wtfuw3XdfjWt77Lj370X9x44/uJRKLU1tbxhS+Ew4Z/+tNf8Mtf3suHPvSxCc/zX//1E8466xx++MP/x9q1Z3Drrf/Il7/8z7zlLX/J97//EyzL4itf+dJI+6lem4le02ef3cgXv/g53vrWt/Gf//kzPvzhv+PnP/8pP//50ZuPKhlEIYQQQghx3Hjuz4rOPcfuerULYe3Fh37cVVddw/e//+90d3eRzWbZseNlLrvscu6999eH3RfbtkmlUijFhBkw2D/cNJUqGdVuxYqVrFixcuTxzTd/hAcf/COPP/4IV1559cj2yy+/ciSYvemmD/PEE4/yi1/cyfve90HuvPOnnHLKKt797vePtP/4xz/F2972Jvr6eqmoqATCIZ/ve98HJ30+f/d3/8Ctt36aq6++jOXLV7J27ZlcfvmrWL487GM6nSaTyYx6DqlUing8jmmaY34GVVXVOE6Rvr5eampqJ7zuHXd8g+98545R2771re+yfPlKOjraufjiy1i6dBkATU3NI21KSkqBMLBNJBKTPrcLL3wFr3nN6wF4xztu5J577ub889exbl2YiX3LW67n1ls/TRAEGIYx5Wsz0Wv6gx/8H/7qr97FVVddM9Lfd7zjXfz85z/lLW+5ftI+Hi4JEIUQQgghhDhEVVXVnH32edxzz69Jpwe5+OLLSCSSs9qnXC7H97//7zz66J/o7e3B932KxeJIdnDYqlVrRj1evfpUdu3aCcDLL7/Ek08+zhVXXDTm/K2tLSMB4oFZv4mceebZ/Pznd7F587Ns2rSRxx9/lP/6r5/w8Y9/imuvfR3FYhFgZB7nVKLRKACFQmHSdjfc8M5RATEwMjf0jW98C1/72m08+eTjnHPOeVx22RUsXrxkWtc/0HCACVBZGf5Mliw56YBtVXieRyaTprS0bNqvzcG2b9/G5s3P8sMffndkm+8HaB0ccp+nSwJEIYQQQghx3FhzoYYLj/VV1WEddc01r+E737mDXC7HZz/7z+OfWSn0AauWH8nwyKl861vf4Omnn+QDH/gQTU3NRKNRPvaxD+G67kF9Gr+fAPl8nosuumTc7GBNTc3Iv2Ox+LT6ZNs2Z555NmeeeTbvfOe7ue22L/CDH/wfrr32dZSVlaGUIp1OT+tcw8VtyssnL9hTXl5Oc/OCcfe97nVv5LzzLuDPf36Yxx9/lB//+Af8/d9/mle/+tpp9WGYZR0YRoU/O9Mcuy0Iwtd+uq/NwXK5PO95z99w0UWHkeY+TDIHUQghhBBCiMNw4YWvIJ1OE4lEOeOMs8ZtU15eQW9vz8jjl1/eNuk5LcvG96fODlmWRRD4o7Zt3vws11zzWl7xiktYunQZpaVldHV1jDn2+eefG/X4hReeY9GixQAsX76CnTt30NDQSHPzglF/otHYlP2ayqJFi0YygLZts3jxEnbt2jGtY3ftCvtVUlJyRH2or2/guuvewpe//HWuvfZ1I0VxhiuxBsHMZ+em89qM95ouX76CvXt3j3ktJgqAZ4JkEIUQQgghhDgMlmXx05/+L0qpkQzcwc444yzuvPNnrFq1hnw+x3e/++1Jz9nQ0EA2m+GZZ57ipJOWEYvFiMXGBmb19Y089dQTrFq1BtuOUFpaSnPzQh544I+cf/6FaB3wne98C8Mwxxz7hz/8jhUrVrJ69ancffcv2LNnN7fd9g0A3vjGN/OrX/0Pn//8p7n++rdTUlLKnj27eOihB/n7v//UIf18br75fVx55atZvnwlqVQJW7du4f/9v/9k/fr9VUvPPfd8Nm3ayHXX/cWU59u0aSPnnHPelO1yuRw9Pd2jtsXjCRKJBN/85r9ywQUX0ty8gP7+PjZvfpZTT10LhIGjUopHHnmYc845n2g0OuVcxOmazmsz3mv6jnfcyCc/+VFqa+u4+OLLAHjppa20te3jHe+4cUb6djAJEIUQQgghhDhMyeTk6+vddNOH+cIXbuX97/9rGhubuPnmj/CRj9w0YftTTz2d173ujfzjP/49AwMDI8tcjHfeO+74Or/4xZ3U1NTy85/fxc03f4QvfjG8VkVFJe94x40MDPSPOfbGG9/Lvff+hq985YvU1NTyT/90G/X19QDU1NTy7W9/n+9853Y+/OEP4LouDQ1NhzXE8ZxzzuOuu37Jnj3/huMUqamp45prXjsqsLnmmtfx3ve+g1wuO+kcTtd1eeihB/jqV/9tyuv++79/i3//92+N2va2t72Dv/mbm/F9j69+9Ut0d3eRSpWwbt16PvCBm0ee+403vo9vfesb9Pb2ctVV1/CpT33ukJ/3eKbz2oz3ml5wwYV86Uv/yn/8x/f48Y9/SCRis3jxSbzxjW+ekX6NR+kDB0WLEa7r098/cUneY80wFFVVKXp6MiNjmYWYCXJviaNB7itxNMh9Nbd4nkd3dyvV1U0Hzec69izLwPOOXtGP48nB6zIeDz71qb9jzZrTuf76GyZs86tf/S/3338fX//6tyZsc7yZjftqsvdVeXkC2x6bUT6YzEEUQgghhBBCzJoPfvDD4w6jPZBhGHzkI393jHo0v8kQUyGEEEIIIcSsaWxs4g1veNOkba699nXHqDdCAkQhhBBCCCHmiT/96anZ7oI4zskQUyGEEEIIIYQQgASIQgghhBBCCCGGSIAohBBCCCGOuf3LBkpFWiFmTvh+mmBZzmmROYhCCCGEEOKYMwwTwzDp7++mpKQc07SAI/hUe0QUnieBqphpx/q+0mQyAyhlYBhTL2cxEQkQhRBCCCHEMaeUoqqqgcHBXvr6Ome1L4ZhEATzYx1EcezMxn2llEFlZS3qCFKIEiAKIYQQQohZYZomFRU1aB0QBAF6FpJ4hqGoqEjQ15cjCCSLKGbGbNxXSoWZ+SMJDkECRCGEEEIIMcuUMjDN2SmNYRiKSCSCZTkSIIoZcyLfV1KkRgghhBBCCCEEIAGiEEIIIYQQQoghMsRUCDHvFHyPgu9jDo3RT1gWppLvy4QQQgghJEAUQswbXhDw5+597M2ncfwAQyk0sDRVxitqmma7e0IIIYQQs06+MhdCzBtb031sTfeRNG3qYwmqIzEq7Agvp/vpKORmu3tCCCGEELNOAkQhxLzQ7xR5pq+TykiUuGlhKIVlGMRMC4ViU383wWzUVxdCCCGEOI5IgCiEmBe2Z/sp+j4pKzJmX3U0Rms+Q9pzZqFnQgghhBDHDwkQhRAzIuM6PN3bQcH3ZrsrYziBz8vpAcrsscEhgG0YeDog67nHuGdCCCGEEMcXKVIjhDhirfkMj3W301HMURaJsixVPttdGmVfPsug69AcT07YRqHISIAohBBCiHlOAkQhxGHRWtNZzLN1sJeXMwPYhkGJZfNyuv+4CxB3ZAaIGAZqaFmL8ShgwJEhpkIIIYSY3yRAFEIcsp5igWf7O9mVTQPhHL6IYeIGAW2FHH1OgYpIbJZ7GUq7DntzGcrt6KTtooZJj1M4Rr0SQgghhDg+yRxEIcQh0VrzUFcLO7KD1ETjNMaTRAwTGJrLFwRsGewjf5zMRdxXyOIEPlHTnLRd1DTpdwr4UslUCCGEEPOYBIhCiEOS9VwGXIfaaBzbGPsrpDYa57mBHu5t2z3rBWu01mxP9xOfIjiEMINYCHxyMg9RCCGEEPOYBIhCiEMy4Dl4OhjJGh4saposiCfpKebpKuaPce9G63eLdBRylE0xvBT2Zz+lkqkQQggh5jMJEIUQh2TQnbqQi1IKQyna8tlj0KOJDbgOAXrcTOf4pJKpEEIIIeY3CRCFEIekq5jHVlP/6khZNnty6ZE5fS+n+9mVHTza3RulGPiH1F4pSEuAKIQQQoh5TKqYCiGmTWtNZyFH3Jz6V0fSsmkv5Oh1ClRHYmwe6GHALXJBdQMFz6MpkaI6Gj/iPnUX8ygUVdGxVVOLnke4gMX02Eox4BaPuE9CCCGEECcqCRCFENOW9T2ynktFZOo5faZSaK3pyGeJKIN+t4ilFA91tuJqn+VOBa+sXTDp2oRTcQOfh7paSbsu51TWsaqsckx/zUM4f8QwJUAUQgghxLwmQ0yFENOScR22DPZSDCYuUHOwlGWzNd1PezGHHwTUROMsSKRYEC9hTzZNRyF3RH3amR2ku5gnahg8099J0R89pDTruViHFCAaZD0PXwdH1C8hhBBCiBOVBIhCiGl5pLuNDX2dVE0jezis1I7Q6xR4Kd2PZewP1GzDQKF4bqAHLzi8YKzge2zq76bEilBqRyj6PmlvdAGdrO9iTWO+5P5+mTiBT947PtZwFEIIIYQ41mSIqRBiSlpr+twilZEoScue9nGGUkQMg+5intRBx9VEY+zIDpDotTivqh5zikAu57m4OhhZsmJzfw+9ToEF8RRKKTSajOeOzGvUWpP3PKwDK5g6BrSnUANR0CqcnmgG6CX9EPewDQNfa3K+R8qOTPt5CiGEEELMFRIgCiGmVAx8nMCn1Dr0oKkyEqO9kCNhjg4QLcOgPpbg+YFe6mNJTkqVTXqel9L9bE33cUltMxnPZfNAN7XR+MgcRgUMOEVI7u+zqwPiaujXnK9QTzaicuM8h4KFPrN96EEYIAohhBBCzEcSIAohppT3PdwgOIT1BPezDYMFidS4+yKGScQw2JEdmDJAHHCLtBVy3Nu+GzfwiZsWsQOqqUYMkx4nP/K4GPh4Wo8MbVU7y1G5CLoiH2YMrQACUM/XonoS6N4YVBZGnq8QQgghxHwkcxCFEFMq+j6acMjoTCu3o7TmsqRdZ9J2/a5DXTROiWXTEEtSGRm9rEXMMOkuFgiG1l10ggA/CMKhq1kLdpWjzQC9uhOq8lBWhIoiemkvAGp7BQAGasq+CCGEEELMVSdMgPjkk0/y/ve/n/Xr17NixQruv//+UfuLxSK33nor5513HmeccQY333wzPT09s9RbIeaWfDCNjJqnwjl+hyhqhoVh2grZCdv4OiDjuUQMg7hpjRuoxkyLnO+RG1rovuj7I0sgqn2lKK3Qi/shPrrSKfVZdNSD/hj4CtswGJAAUQghhBDz1AkTIOZyOVasWMFnPvOZcfd/8Ytf5P777+cb3/gG//mf/0lnZye33HLLMe6lEHNTwfcBPXGD3hjqTwtRjzaHgeIhipsmz/R1sqGvEyfwx+zPex5O4GNPsrzGcIGZ9HCAGPgoVNjtthQaDY3psQcqoMQJ22ZtIobJoASIQgghhJinTpg5iBdffDEXX3zxuPvS6TR33nkn//qv/8oFF1wAhAHj1VdfzebNmzn11FOPZVeFmHMyrovB6MCvsrOPc/70HDgGj5ZdQ8YKgzfdmYTGzCGdvyoSY9BzeLK3g/JIlCXJ0fMRc76Hp6eeA6m1pqeYpyGeHAo0NfTGUUULXZmD2NjgE4CkA90JyEaIJA0yvosT+NNe71EIIYQQYq44YQLEyTz33HO4rsuFF144sm3p0qU0NjaycePGww4QDWPm51sdruG+HE99EnPDdO6ttO8QMc2RiqFmJuD8+zaTdMJhoeu83/C7s66FlnLUvhJomni46HiUUpRHYuQDj+5igaUl5aP25wMfQ6mR608kadnszA1yakU1hcBDKYVqKwl3NmYmPj4VZh1VNkLEMPFch6L2iRlz4lfkrJDfWeJokPtKHA1yX4mj4US+r+bEp5/u7m5isRip1OhKiVVVVXR3dx/WOS3LoKpq/MqLs6miIjnbXRBz1GT3lt+rKDVjJKNRvH0xmu7fR9LJsi++BDtSoGagjWWpLWyPnwN9cWJGAiMxQbZuElW2pk85VFYmRwVzLeSIDdokU9FJj48kbDpyWUhakDcpjSZQnQmwAhIn+Shr/OP9GigCViFKsjROX9olXhqlaoLqq2L65HeWOBrkvhJHg9xX4mg4Ee+rOREgAuNmBrSeZM7UFDwvYHAwP3XDY8QwFBUVSfr6sgTB4T8vIQ421b3l64DuwSwxwyTrFuH5KhZmtgGwdX0Dygq45J42mjft4KUVp6B2lpN/uAJWd0N58ZD6ooKANifHro4+Su0IOzIDtOWzGErh5D2yTH2+TN7hsT0t7M4OYu8rA99AN6bJFQqTXNhBUYM3YOJlihQLLu3dg0ROvN/pxw35nSWOBrmvxNEg95U4Go7H+6q0NI5tTz19Zk4EiNXV1eTzeTKZzKgsYm9vL9XV1Yd93uPlxTxQEOjjsl/ixDfRvZXzPBzfJ2XaaA9iAx7VThvZZJzuxlIA0qVJqrr6SZ3XQqYygupNoJ+pQ1+8+5BKYVnKwPUDugt5UqZNSzbNi+k+qiIxbGVM60ufhGGyqb+biDIp6ygHQDekYbJjLQ1RD/I22tdorcl6nrzXZoD8zhJHg9xX4miQ+0ocDSfifXXCVDGdzJo1a7Btm0ceeWRk286dO9m3bx9r166dvY4JMQfkfS9ccF4pyESoL7QA0LagBpQCpdi9tBGAptZ96DPb0dU5lGdCX/yQr2coRXcxj681+/JZHN+n33WITFGgZliFHaUmEqOOFKo/jo65UDFJ9nBY0kFpBTkbUOS8aSztIYQQQggxx5wwAWI2m2XLli1s2bIFgJaWFrZs2UJXVxclJSVcd911fOlLX+Kxxx7jueee45Of/CRnn322VDAV4ggVfB+NDodxD0aoLewBoKNxf3Z+34JaAJr2doICXRMWqVHdibBBAGTsSVfKGJa0LHZmB+kp5sl4LgsSJQQ6IGFNb8CDUoqYaQ0FeoTB4fAIdK1hom/xkmGhGjIRLKXIeLLUhRBCCCHmnxNmiOlzzz3HX/3VX408/ud//mcAbrrpJm6++Wb+4R/+AcMwuOWWW3Ach4suuojPfvazs9VdIeaMvO+NxFcqHaXaaUMDnfWVI20GKkrIpuJUdg8QyxUoVA+Nb++OwwpgdznGy5XoJX3ok/rAMyASjHu9UitCaz7LlsE+Ah2ub9gUP4xiMcWhPkTDYjkl/RnOe2gj8VyRR9atZndjZbj2IRAzTcykGz7K20QqDdISIAohhBBiHjphAsTzzjuPrVu3Trg/Go3y2c9+VoJCIWZY3nMZTsFFewOSfprB0hRexN7fSClaF9SyfMtuGvd2smPFQnSqiMpE0TkrrCQKqJ0VsLc0LBxzVtu4Qz+VUtiGQbeTx5yqMnRHErWtEr1oABYMMmqpRif89aYjHgSa8x5+loreNADrHt7M3tevo2CHbXqcAgtiYUUalbOwlEHGddFaT7m0hhBCCCHEXHLCDDEVQsyOQc8J5x/6isq+PgB6asrGtNu3sA6Axj2d4YbqHACqpRQGo2jbRxsBeAZKK9T2igmvWRGJsi+fIWnZE7bBV6itVaiCjbG1GrW1atRudUAGsXl3OxU9g7RVlbBrWTMx1+OtnUXeunA5b2heSpkdJW2H/aVgYxsGxcDHCcbPcgohhBBCzFUSIAohJjXoOSQGSlCPNFPpdADQW1M+pl13XQVOxKK2rQfT9dCNmXDH7rJwKGdNFr1+L/ri3eikg+qLQ29s3GtGDJPmeIqSyQLE1hJU0UJX5NFKQ3tq9BxHZyhAjPgs27IbgCfXLCGy/hwArBe3YyhF3LQ4vbyaAWsoQMxZ2IaBpzWFQArVCCGEEGJ+kQBRCDEhrTVp1yXRGmbqKnUbAL3jZBC1YdDWXIMZBNTt64aki67Mjczz09X5cD5gJEAvCTOR6sVqcMf/NRQ3rYmHdzoGakcFGo1e2Q0pB+Wa++cdwsi/k+4gNZ199KdilK5cSklDPX5lOWZHN6p/EIAlyTLiEZMg4kHRwtQGvg4o+P5h/dyEEEIIIU5UEiAKISYUDrP0MQs2aE1lsRPPNBioKBnTNu97bKoN10Vs3BsOM9ULwgBMo6Eyv79xfRZdlUNlI6gN9WGV08lkbNRjTdAxNJdxa3UYEDamIeVCyVBBmUzkgM6H8wub28JlObYtrGFRMgxs/ZMXAWDtbgUgapqUWhH82NBSFwULUOR9ySAKIYQQYn6RAFEIMaGC7+MGAapokdK92K5HX1UZ+oA1CbXW9DoFep0C2cWN+ErR0NIVLidRk0NX5cJAzj4gClSgT+9AlxVQAzHoTE7eka4kKh3F2FSP2liHak+hox56eU/Yh9RQgJg+IEB0TLQR0Ly3HYDepQuoioRDWv3mBgDMlvaR5pWRKG6sGD7IWyg0xUAyiEIIIYSYX06YKqZCiJkXaM3OzCClFeGC9lpr2gpZ2gs5nMBnQaIkLCrjmVQGw8NLy0fa9rsOac+lKhJjXXUjGk1LTRmLOvup6u6np7YCfWb7+Bc3NXpJH2pjA6otha7PTthPld//q0p1JdFmgF7TCfbQpMNUGNipTCSchhiAck3iVg+VPQP0peLULlw4MmTVb64HwBgVIMZoiw4FmnkbnQBXitQIIYQQYp6RAFGIeWzQdXi0u428HdBAjM193byUGRjZH2iNVQwLxVR6wwVqyki7Dn2uQ1Ukxvrqak5KlREzLQq+x7YFNSzq7KdxTyc9tRNXKgWgKo+2fehJgDPx2ogMBYjB8u6wTU0WrAMq0owMMY2Gfw8VqGnObwdgx8IamhP711LUiThBRRlmbz8ql0cn4qSsCF4sHBKr8hYKcCWDKIQQQoh5RoaYCjGPpT2HnOeyobuDX7Xu5KXMADXRGE3xJEpBT7GAURgKEPPhvMKeqjL6XYcLqup5bdMSVpVVETPDAC5mWgQnLwagfm/H1B0wgLpsOO+vpXTiuYj5oWqmzWloyIwODiEsfBPxIGuH5xief5jZCUD25MUkDqqIOpJFbA37mbRs/Nj+DKKplAwxFUIIIcS8IwGiEPNYxnPDGC2epNyO0BRPEjHC7FulHaXbKWA7EQztUZbvIx+P0he3iZkmJ5eUYxvmmHMuX7CYdEUJ5QNZIv3pKfugG8I2xvZK1J8XgHtQ5dIAKFjoqAemHnuCYSVDBWayEXBMEt4glblu+lMxKhc2j2k+HCAOz0NMWTZGcqgoTd7CQFGUKqZCCCGEmGckQBRiHutzCpiGQcyyRrKAw2Kmha8DYm6UCqcLQ2t6q8vIBwFldnRM+2EJyyJyyskA1OyeYP7hgcqLBKe3o1MOqmBDX3z0/oIVBn5xd/LzlA4VmOmJQ9GkaWh46c6FddTHU2OajwSIrWEfo6ZJPK7CNRULFqYyJEAUQgghxLwjAaIQ81h3sUDUmHgqcnM8RcyJUukMzz8sp+B71MXiEx4D4C1bDMCioeUuplSbQy/sB0D1xUbvGx5emph8yQldGxa5UR1JcEya8y8D0LNsAVFzbKYzqKpAR2zMjm4YKkZTFY3jR12UY2Fog4IMMRVCCCHEPCMBohDzlBv4DHoOsXGCp1EKFhXuUIBYXYavNZWRyQPEoLEWtzRFU/cgsXQOgM5inq5ifuKDKgrh38MZRA3sS8FgWHhGT5VBLHHQcRc1GCPV4VLpdjKQSOLXVo7fXin8umqU42L0hoV5KqMxvEg4D9F2bBwJEIUQQggxz0iAKMQ8lfFcir5PdJx5hKMULCqdDjRhgRqlFKV2ZPJjlMJfvQyA+u2taK1xfB9TGezLZ9mby5B2ndHHxL1wnmE6Ap6C9iTG87UYL1eO7B/PoOsw6DqggLoMAM1trQBsbaolZU3c16C+BgCjvSu8hGnhR8PrmEUbNwjQepJ5j0IIIYQQc4wEiELMU2nXRWuNodTEjQKI5hySfprB8hRZSxExDMqmChABf/VyABbvaiPv+8QsiwurG2iMJzmltJI+1xkdfCmgooBCQX8MdfBcxHEyiF4QMOg5ODqgrZBF14XDTJvzLwHw4pIKohPMlQTwG8IA0WwLh8LGTRNvaC1E07Hx0Xha1kIUQgghxPwhAaIQ85AbBOzODRJGZZNwTKqKYfDUVVVKVzFPRSQ2YYGaAwU1VRSryqnpz2J19dAYS7IoWcpVDYs5t6qOykiUgYOyiLo8HIKq+uJw8FzExNgAsdspsDBewqvqFqJQeKkCiZNfosLtZrAsSW95Ytz5h8P8+lpgfwYxYdoEkfA6ZtEmCDRuIBlEIYQQQswfEiAKMc9orflz9z62DPZSG4tN3rhgUemEVT53lidYU1bNRTWN075WcPopAKx4qZWmAxaqjxgma8qqGPRc/AMzdNV5NBpaS1C5CDrhoBcMoOsyYI/O5DmBj68D1pRXUR2NEzctCoHHwr4dAOxd3ABKTTqEVleWjSpUEzctVDycd2gULMkgCiGEEGLekQBRiHmmGPjszaWpjcZH1jycUN6iaihAbK8u4+SScsrs6LSv5Z26ksA0OHVvNzVqdNZxaaqcZakyWvNZ/OGhpnEPqvIod6hfFQX0yh70aZ0UAo+stz+L2FnIc3KqnIZYEkMpKiMxiq7HkpdaANi1tBENkz9HpfDra1Cuh9HTT9Q0seJhQGgUbQIdSIAohBBCiHlFAkQh5hknCPC0xjamfvurvEGF24lrWgyWJYlPY2jpKIkY7oqTiLo+NS/vHbXLNgzWVTfQHE/Rc0B1U908uP/fw5VNCYeTDrgO/U6RjkKOEjvCmZV1qKE5lDXROPX7ekjkCnQ0VDGQimMpY9IhpgDB0DxEY2geYio1NOy2aKEJ5zkKIYQQQswXEiAKMc84gU+gNcZU8w+B8t40lvboLq/Asqypl8QYh3/WGgCiT22GgyqCxkyL5aUVFA8Mwmpy6JgbDjUtP2BZDK1YmirHI6AiEmN9TSMpyx7ZXWpHWLOjDYAdyxfg6QDLMKas0uoPVTI127sBKEvYaBVAwUKhcCWDKIQQQoh55BDTAUKIE124tp8eybxNpqqvF4COqlISloWpDv07Jb+pHr+xDnNfB+b2PfjLFo3a3xhLEjNN8r4XZigV6LUdULAgfsA6hEpzckkZZ1fWEjetMdVXK7MFmvb1UIhF2LewFi/wiSpzykzpcKEasz3MIJZGInRHXexCFHwlGUQhhBBCzCuSQRRinnEOIeCpHAyzaq21KUoPyNYdEqVwLjgDgMijz4zZnbBsFiRKRlc0LXGgJjfy0B/KeCZMm6Rlj7s0R/WGFzE0vLhiAYFp4umAhDX1d2C6ohQdjWB09IwUqvGj4VxHy7HxZB1EIYQQQswjEiAKMc+4hxAgVuXD5R9aqhOUWNMvTnMw7+TF+FUVWC3tmDv2jtl/UrIMBbTkM+P2zw18IqYx4RxIlcsT27wVzzLYtCyssuppTXI6Qe1woRrPw+juI2Fa+ENLXRgFSzKIQgghhJhXJEAUYp5xAh89PP9QD/05UAAMRoj2+aS8QQYj5eSiFin7MDOIEGYRLz4XgOj9j8JBQdfCZAlXNy6hOZ6i3y2O0+eAmGFNWHAm8sgzKM+ndeVi+uzwuXlBQNKcXp/94UI17V3ETYsg6gFgurbMQRRCCCHEvCIBohDzTCHwRt746ukGeKwR7SgoGqgt1aj7F2M83kz1o2GbnmQNaHVYBWoO5C1fgtdcj9nZg7V565j9NdE4CxMlFAN/zD4n8CdcXkP1DWI//Rw6YlM4/wwCrdFa42umNcQUIBguVNPWRcy0UENrLpqeiTtOf4QQQggh5ioJEIWYZ3Keh6kUuArVF0eloxQeqoY/LUC1lIZFYmyfqlw4vLSnrAqlIG4cYU0rpShetg4NxP74KCqTG9OkMhIDQB8w709rjRMElE8QIEYfeBQVBDjnraW6qoqkaZP1PZRiyiUuhh1YqMY2DEw7vL7pm+MGrEIIIYQQc5UEiELMM3nfw1IGZCMj2/SgDYFCLxxAX7QHfXIv1cV9AHRVV6IIl6Q4UkFTHe5Zp6IKRaK/fWjMshflkSgx06QwFJR1FnLsyWUItKZknCGu1ovbsV/cQVCawjn3dCKGyeJkKZ3FPIZS0x5iqstL0LFoWKjG94lFwl+Nhm9S9CVAFEIIIcT8IQGiEPNM3vewDAWZMEDUTYPYqwbhwhb0ih6wA6yqfircTvJGgv7yGLZhHPEQ02HFS84jKCvB3rYT++nnRu2LmRY10QRZLywS4+iA8kiUYuCTOCjYU9kc0d8+DEDh6ksgEu5fkCihOhLj4pomGuLJ6XVquFCN72N09xGPhb8aJYMohBBCiPlGAkQh5hGtNXnfw1QGaihApKqAvTIDCW+kXXV3LwaarmgjTmmOiGFOueD8tEVs8q9/Fdo0iP7hEcxdLaN2N8aSFAKfQGsUipNSZVREYqPnE3o+8Tt/i5HL46xdhb9kwciupniSaxtP4qRU2SF1a7hQjdneRTIaPlfDMyn6UqRGCCGEEPOHBIhCzCOuDvC0DucgDg8xTTlj2tW09wDQeXqUYqxIiWWjxll78HAFjbUUrnwFKgiI//wezL1tI/tqYwkMFBnPJWFanF5ezZkVNfuL1Pg+sbv/gNnajt9QS/GKC0edWyk17eI0o/o0VKjGaOscySAavokjGUQhhBBCzCMSIAoxB7lBQGchN6YCpxMEeEEQzkHM2GilIeGOOb62vReAroYqnCCg1I6MaXOkvNNPoXjJ+SjXI/5fd2M9vw0Iq5nWxhK0FbLUxRJEDJOVpZXYhgGFIvE7f4u9ZTtBWQn5N10FhxEMjscfrmTa3k0sGgbDhhcOMZW1EIUQQggxX8zMJyshxHGlNZ/hgc4WoobJ2vIa6uMJdmfT1MTi+FpjuRbKsdApZ8zXRJbjUtEzQD4RJVOawM3nKLFmPkAEcC44Ixxq+sdHif/qD7jbdlG85HxWllTQksvsn0OoNda2nUTv+zPGYAa/qoL89deiU9OcYzgNuqyEIB7D6OwmOTTd0fBN8r5Hn1ukJhqfsWsJIYQQQhyvJEAUYg7K+x6uDkgoiz917yNimGQ9h5WllYBGDQ8vTY4dXlrd0YfS0FlfCUqhlCZhTa8a6OFwzz2doKaS2K/vx35xO/aL21ndXE+sNEbd3jTRgoO1qwWjPx22X7WMwqteAfHxl704bEoR1Ndg7dxL2eAgmhLwFBpNTzEvAaIQQggh5gUJEIWYgwbcIrZSlNoRkpaFF2jipklHIYfh2KitVQDo0iIHzywcGV5aXzW0Rc1YBdOJ+EsWkH3v9USeeBb72S1EWto55aA23oIGnAvOwF+66Oj1oyEMEBNdfWizAeUZRJTBvnx2KLgWQgghhJjbJEAUYg7qc4pEhqqOmsrANCFiGLTks9RtPQmViaIrc9A8OObY2rahAjX1lWit0WjiM7AG4pQiNs76s3EuPAujoxujuw98H+Ix/KY6dDJx1LswXKjG7ugGO0AVbFKmTVshixP4Iz9TIYQQQoi5SgJEIeaYQGsGXYeIMXpyoVKKcjtCJBtHGwH6jPah+Yf7c4jRXJGK3kEyqTjZkgSe1ljKIHYsAsT9HSWorxkJ1o6l/YVqOjHKwsI0cR2h10/TWyxQP911FYUQQgghTlBSxVSIOabgexT88bNdJWYEwzMh4o/77q/f1wVAe3MNKIU7lDWLH+UhpscLXZoiSMQwOnuxzLACrPJN0NDvFme5d0IIIYQQR58EiELMMTnfw9U+thrn7e0OBXqRMPgJtKa9kBtZxqG+JQwQn6tJsTefoRgEJCwLc7xzzUVKEdTXooKAcj8caotnYBmKXkcCRCGEEELMffPkU58Q80fO81Aw/sL27tBb3g4DwoLvAdCSTZMuFqht7cY3FE0rV1Jpx+hx8pQexQqmx6PhYaaVxf0BYtSw6C7mZ7FXQgghhBDHhsxBFGKOyfoueqKdzugMYjHwqYrGKEnGCFr3EHM9nMXNrKyuwx+waMlnKLVneDmJ41zQEAaIFfmu8DekZxAzTQY9RwrVCCGEEGLOkwyiEHNM2nUwxyxeMWR4iKkdBogF36cuGufqRUt4ZSbMKgZLFwKwKFFCTTROcr5lEJvqAKgYbA83eAZRw8TxfTKeO4s9E0IIIYQ4+iRAFGKOcAOfXdlBWvKZibNcQxlEPZRB9NGUR2IkLJvYzlYAvKEAMWVHWFNWRWUkdvQ7fxzRyQR+ZTnJ/CBRPwuegaEUGk3adWa7e0IIIYQQR5UMMRViDtgy2MPG/m6yrkvEMKiOxsdv6IyegwiQsmx0fxqzvYugvBRdWT6y77Ty6qPY6+OXv7ABs7efaqeNvV4lAFor0pJBFEIIIcQcJxlEIU5wvtY8P9BLEGia4klqYwmM8QrUAOqAKqZeEGAqg5Rt429+CQBv+RKY4Nj5xG9uAKC6uA/lhb8mI4aiRwrVCCGEEGKOkwBRiOPcgFtkV3aQXdlBtA7Lz6Rdh/Z8lrzvMeAWGXQdyiOR8SuXHuiAIjWFwCdmmKQsm2DTVgDcFScdzadywvAXNgJQ7bSh3fBnGjMtuouF2eyWEEIIIcRRJ0NMhThO+Vqzsa+T5wd7R6pnvq7xJFDwm7ZdZFyX08qrqIzE8bWe3lqFByxzUfTDCqZmrkiwo4UglSAYKtAy3+myEtxkkrJsN3bBwwUihkHacyn4HjFTfnUKIYQQYm6SDKIQx6ld2UGe6esiZdo0x1MjVTQHXYes51IVibEt3c/O7AARY5pv5aEMome5ZH2X2lgC66WdoDX+ipNkeOkBCg0NKKBysBuAiGHiBAFZz5vdjgkhhBBCHEUSIApxHMp5Lk/3dpCyLBLW/mxV2nPIeC4KSFgWhcCnu1ggaU0zo+WYaKXZ52U4uaScVaWVmC/uAMBbKcNLDzQ8D7Em3QEwNK9Tk5VCNUIIIYSYwyRAFOI481K6j9+07QrnFR6wSL1lKPqcIt3FPNbQcNJyK0J3MU/CPGCtQl+hNtahNtVCRxJ0uA3XCNdBtH2ipsE5FXXEXB9zZwsk4wRD8+7EkCXhz6Mm0xn+DIdkfQkQhRBCCDF3yUQaIY4jGdfh0e52bEPRFE+OKjoTNUy6inl8HRAzw6GiJXaEpGWPrlraH0N1JQFQHSl0RR4yEfAMlFYEto9pGERNE2vLS6ggwFy9DAwDAo0ImXUV5M04lcVOrAGNV64wVRikCyGEEELMVZJBFOI40l7I4QQ+FZHYmIqkMdNicGiIadQwR7aPWdIiF37vo2uz6ISD6oujXBOlw3aB7WEphaUM7Oe3hec4a9VRfFYnKKXoqKjDQFO7Iw2EQXq/I5VMhRBCCDF3SYAoxHFkV3ZwwoIzUcOk6PsUfX9UgHgwlQ+Hm+raDPr8VoKV3QRr20f2B0ZA3LQwMlnMXa0EJUmMpQtn9onMEZ3N1QDUte0vVNPvOvg6mM1uCSGEEEIcNRIgCnGcyHgu+/JZyg6Yd3ig4SIpSqnJ1zvMDc1HTHhgalgwCDU5dDSsvqlci7hpYb3wMgrw1ixHGVK9dDx9J1cCUNfXDjoM0p3Al0qmQgghhJizJEAU4jjQUyzweE8bhcAnak6cHQQ19UoUIwHi6GIq+qx96LICg4vaSZgW9nPh8FJvzfLD7/gcp8oT9EfLKfEGiHd6WIaBrzVP9XbwWE8bGdeZ7S4KIYQQQswoCRCFmGVaax7qamFndpCGWGLStvWxOHXR+CQnA/IW2vbBPmgYZNJDn7uPfHmG6oEsZmcPfm0VurbqyJ/EHBU1TVoragCo29UHQNw02ZtL89xAD79u20WfzEkUQgghxBwiAaIQsyzrewy4DrXROPYUC96bysBUk7QpmqjAgPjESzEEGpq37QXAXX3yYfV5vogYJrtrywGo7+wCoDISoy6WoDmeYtB1aM1lZrGHQgghhBAzSwJEIWbZoFvE0wGRSQrPTNsEw0sPZAU+NS/uQhsG3qkrjvyac5itDPY0pggwqO1vH7MMSMK02J1Lj9rmBgG/b9/DjszAseyqEEIIIcSMkABRiFk26DrMWImYoQqmxCcuorK0pQer6OAtX4JOTj6kdb6zDINCiU93tIGoX6Syu3/U/hLbprtYIO067MoO4gY+vU6B3dlB7u9s4cXB3tnpuBBCCCHEYZIAUYhZ1lMsYE5ZeWZ61FAGUU+SQTx1exsA7lpZ+3AqllJgQFtpMwCNu7pH7Y8YJq72eaavkwc6W9idS9NVyKEURAyD1rwMPxVCCCHEiUUCRCFmWWcxT8ywDv8EAdCeRG2sg11l4bYJAsRUf5oFXQO4ZSn8xU2Hf815whqaE7qvtgGAhr2dY9qYKF7ODFD0fV5K97MnlyFmWMQMk55iEa31mGOEEEIIIY5XR/CpVAhxpPK+R8ZzKLHswz6HerkStbscAB3xCBYOQllx3LZLtobFafKnrZx8LUUBhHMQQZOpjpG2yilP95PI5Mml9leSrYnGKQY+EcOkLZ/FUgZldgSloM9xyPkeySN4fYUQQgghjiXJIAoxi9KugxMERI+kQE13OI8wOK0DfdEeWNKPpwP6nSJO4I80s1yPk15uxTcUzmlSnGY6bMNAoQhSRdpii4GxWUTLMEhaNrZhEKApBh5R08RWBq72yXgTD/cVQgghhDjeSIAoxCzK+x4axs/mBcDeUtRjTagHF6KeC9fjY28J6pl61JMN0B9FZSPopAN12ZF3dL9bJAB6nCL7ClnSrkPZC9uJuB4vL6rDLik5Rs/wxFZqR0lZNrlYjrbYEgAaxxlmOqwmEqciEgPC11ShSHvOMemrEEIIIcRMkCGmQswiX+vxK5hqUE81ogZi+7e1laCX9aJerEYNH7WpLvy7Mj/qcDcIWFNWwZJUGU/2dtBTzHPOy+0AbF21iEYZXjotplI0x1Nsdfvoji3GMaLUtPdguh6+PfbXZ9Q0iTI6GzzoSoAohBBCiBOHZBCFmEWuDoBxipjsLUUNxNCpIsH5LejqbLi9I4VCoSvyaCtAFcMgRVeMDhB9rSmxI1RH41xRt5DrixFK0jlaasrI11Qc5Wc1t9THk/hodMqnPboIM9A0tHZN69ioYdBTLBzlHgohhBBCzBwJEIWYRV4QoPUB2TwN9MRQ2yvRSqPXdEGJE/4BVFsqbFaRh6bBoUM0VI4OQpRipDCKZRiknn4OgJZTl5E0pWDKoaiMxDANgyDh0BpfCkDzrvZpHRszTXqdAoFUMhVCCCHECUKGmAoxi7wgQKn9wYPaWoXaGy5VoRf1jwSGOumgAJWOhg1LHHRpEfaWQmkR7GDkHOGyCoq4Gb69jdZ2rN37CMpLqT9tDeXsbyumVmZHKLMjOPEC7bGFeKZFQ0sXpufjW5MXF4oaFl3FPF3FPHWxxDHqsRBCCCHE4ZMMohCzyAkCjOH5hK4BLaVoKyA4tQN9cu/+hiUHzWNLORDz0eta0Gs7Ru1ydYA9VFkTIPrIMwAU151JVTxBUzx11J7PXKSUojGeJB/NEyiLtvImLM+nfhrDTG3DwFCKp/s6yHkurfkMO7MDZGReohBCCCGOUxIgCjGLioGHMVwwpiuB0gpqM1CfZVT1moSLHso0ajOAuBduj3ujsocARd8napjEDBOjoxvr5d0EpSm8NcuPwTOamyrsGE48HMbbkjoJmP4w05ponNZchl+07uCetl38rn0Pz/RPbw6jEEIIIcSxJgGiELOoGPiYQwGi6kgCoOuyYxsaQGJoPb2Uw/ilT0NOEFBuR1FKERnKHjrnnwHmEay1OM+lbBs3XgSg3VyCZ5k07O3E8PwpjgwrodZGE0QNg6ZYkvpogh2ZAXodKV4jhBBCiOOPBIhCzCInCMIMYsGEngTa8scsWTEi5Yz+e8Jz+pRHIhjdfVgvbidIJnBPWznDPZ9fSqwIpqXQMRe/GKOtth7b86lv7Z7W8VHTJGnZKKWImia+1mxL9x3lXgshhBBCHDoJEIWYRU7gE+0qRT2yIBxeesBi9wfTZcVRf08kQFNqR4k88gwKcM47HcZZs09MX9KyiRomftxBoWgpnArAwi0dUxw5vgo7wsuZAQq+N5PdFEIIIYQ4YhIgCjGL3CAgsbsa5RvohQPo5T0TN14wQHB6OzSmJzxXVzEPKKr6MljPbyNIxHDPWH10Oj+PmEpRGYmRbexBV+Rpa6jFUVEa29uw+w59CYu4aVHwPbpljUQhhBBCHGckQBRilgRa43gaIxdFRzz0ih6wJgk2DKA2N+78w45Cjm6nQHU0zmV1zSx8fHOYPbzwbIjIuoczoToWY7BiAH12G/45XbTULsAkoHnLQcNMByPQHZ/0XEopFIqO4jjzTYe05jJskmI2QgghhDjGJEAUYpb4OsDI2uHQ0oOXsTgEgdZ4OuDyugW8umExy3qy2Nv3EJSX4J6xagZ7PL+V2dFRj3ctbwBgccue/Rs1qGfrMTY0oF6oZrIlJ5Omxe5smkDv/1Kgs5Djoa4Wuop5Hu1pY9NAjwxDFUIIIcQxJQGiELPEDTRmOhY+KJl4XmHWc+kq5uks5NBDwUTWc+lzCjiBT873SJg29bEkaE30/scAKF50rlQunUElVgTN/mCuZ0mSjFVCda6T1OMJ1CPNMBBFFcL5nqq1FFpKJzxfyrLpd4r0Oftf+13ZQTb0dfPHjr30OkUKvkd7IXf0npQQQgghxEEkQBRilvg6wMyEAaIeJ4MYaE1LLkM+8GiOp1BKkfd98r5Hv+sQM206CnmynktjPIVtGFjbdmLu68CvrcJbffKxfkpzWtKysZSBGwylBQ3FnpolACxs2YvKRlAvVgOgy8NKtGogOu65ACzDQKO5p30X93e0UPA9dmYHaYgl8IKA+lgcE8Xe3PhzToUQQgghjgYJEIWYJZ4OsLMTZxC7innq4wle17iUS+sWUG7HKAYeed+jIZbgsrpmIoZJ1nNpiCfA8/dnDy85H9QkiyWKQ5YwLeKmRTHYv/bh7qXhMNNF+RdBa1Q6DAj1ooGwQSYy6TkbYkmSpsVLmX6e6u0g7TmkLJuqaIyIYVJmR9idS5PzZJipEEIIIY4NCRCFmCWOH2BnYmgzgMToAKDge/hac1ZFHSV2GGTUxGIUfJ+C71MdjVNmRzm5pIy4ZVMViRN54lmMvgG8kxbin7RgNp7SnGYoRZkdoejvDxAzJxn0lFST8gapVC0A4VqWNTm07UM2Muk8REMp4qZFuR1hZ3YQhQrXxRwSNy1ynscDXXsZcCdf3kQIIYQQYiZIgCjEMdJdzHNv2y6eHwiXsshnwAjMMHt4QLKvvZCj1ymypqyKhnhyZHuFHcPXmgBNRSTMPK4oqaQ5nqKi4BJ55Gm0YVC4/ELJHh4llZEYzgEZRAzYtaYOgMXe5nBbVT58PZNOWIAoP3UV2dKhLwGqIqOHpCqlaI4nacvnuLdtN7uzgzPyPIQQQgghJiIBohAzyAsCNvZ1jcxTc4OAJ3s7uHPvy9y9byct+QyP97SzKztIcbj2SGx/9rDge5hKcXXDYs6prBt17pRlo4YCvxIrDDqqojGuqF9I4v7HUK6Hc+7p6Kryo/4856syO4qvRy9FsuekRlzLZEH3bqz6TvRJfeGO1NC80imGmQ6ricaJmdaY7YZSNMWTBDrgwc5W+h3JJAohhBDi6JEAUYgZ1O8W2ZLupS2fxQ0CHu5qZUNfJ572KbcjNMdTRA2Tp3s7cJyhQMPaPwZxwHVoiqeojydHgsFhKdvGUApbGaTs/UGHuWcf9paXCVJJnAvPOibPc75KWvaYdSg922LPSY1YfsBC8zlIuQDoob/JzMw6lBWRGK72SXuHvySKEEIIIcRUJEAUYgalPYfeYoGd2QF2ZAd4OdNPYyxJmR0dyQ6V2DZpzyVbHAoMrf0ZKVcHLEqOvzRCyrKJGSYJ0yY5nGnyPKL3PghA8bILIDIzwYgYX9KyUKhRaxcC7FgRzvk8adteGN43lEFU2ellEKdDA2lXAkQhhBBCHD0SIApxBDoLOfZk9y9DMOCEH9735NI829dNqRXBMka/zSKGiacDMoVwaKkeyiAWfI+IYVIfS4x7LVMZVESiVEVjI9nFyJ+fxuzpx1uyAG/Vshl/fmK0pGUTNc1RlUwB+qvK6K0uo6w/Q3Xn0BDT5KENMZ0OWxn0OIUZO58QQgghxMEkQBRiGpzAZ18+M6pASc5zebhrH3/u2TeyDEFnMU+ZHaHg+/S7Rcrs8YMDBXhDIxAxA9KuQ2exwKJESTiMcQJ1sQS10TgARmcPkcc2om2LwlWvkMI0x0DEMCmxbDqLefbmMqOWn9g+nEXcuneocYCOu2EGsTc2I9ePGibdxfyMnEsIIYQQYjxjKyIIIcbYOtjHYz3tlNoRXlm3gKpIjKf6Oukdyua8lOljTVkVPcU8MdOixIqgFGPmEQ4zlSJwVfgNjenT7zpcUFXPytKKSftxWnm4EDtBQOzX96OCgMJlF6DLxx+WKmbe2ZV1FIe+ANjY10WAJmXZ7F3cwNonXqR5Vxsbzz0FJxZBL+tFba5DvVATZhSHhpvq09uhxJ3iSmPFTJO051LwvXEL2gghhBBCHCnJIAoxBSfw2TLYS6ltk/EctqX76CrmeTndT10sTkUkwnMDPezLZykEPnHTJGqaRAxzwnPGDAt3KD5wTY+YaXJySTn2JMdAOMzUVAaRJ57FbO/Cb6zDPWvNTD5dMYWmeIqTUmWcWVHL6rIqBobmBPq2xa6lTZiBZsm2PWHjuiy6KofK26juZPh33kbtqDysa0cNEycIyHiHHlwKIYQQQkyHBIhCTGFPLs2AW6TUilAZibE9M8DmgW4gHHKYssIhpU/3duLrAFNN/baKmSb+0Gf8ovIotSPTzggZHd1EHnwCbZoUrrkEDHkbz5aGWBLN/oI1L5+yCA0seWEXXdksGo1e3YVe0kdwRhvBJTvREQ/VmTys6qZhRlpLgCiEEEKIo0Y+WQoxiUBrXhzsJW5aKKWImxZ532dPLkNVZP+8soZYgs5iHuPgNRAmEDVMtBe2LRoutdHxC9OM4XnEfnUfKggoXno+QfXhZaLEzKiOxokaJnnfo6uYp78kzp6makoKLqfu66WjmIeoj17WB9V5sDV60QAAanf5YV1TA4OurIUohBBCiKNDAkQhJtHrFOgs5Cm3oyPbqiJRLKWImvuHgxpK0RxPUheLT+u8SimiQZhBcg2fyuj0iphEH3gcs7sPb3Ez7tmnHsIzEUdDwrKojyXZm8tgDlUYfWp5IwBnbWvF8/2xBzUPoo0AOpMQjN09FVsZkkEUQgghxFEzZwLE22+/nRUrVoz6c9VVV812t8QJZl8+w5+6WkfWudubyxCgRy1VkbRsaqJjA0FDqWkNLx1m63BIaWD6lFpTL4Vg7thL5MlN6FiUwrWXSdXS48SCRIqGeJJVpZU4QcCemlLy1RUkuvpo6h5AH7RmIpaGigLKM2Bgki8G+qPgjX2NTaXIHlA9VQghhBBiJs2pMngrV67ke9/73shj05y84IcQOc+js5gj74cfuJ/u68TxfVaXVVFqR9ie6adkkmUnjogXBpOWDSUTLIcxTKUzxO66D4DCqy9GlySPTp/EIVuaKqcxniJqmGxJ9+IGAc45pxG/50HO3raPR5obRmWbAXR1DtWTQHXH0RUHrGvYHYeUA71xjOdr0Y1p9OquUcdayhi5X4UQQgghZtqcChBN06Smpma2uyGOY07g8/xADwpYWVrJHzv30pbPYgwlauKmRaA1vU6RvO/R7xZpjB2lYMwz0GgSEZPkZAVqfJ/YL36PkSvgnLUGb+XSo9MfcVhsw8A2wgB/WbKcXqeAcWozwcNPsqS1h6f701BVPvqgqlz4d08CTu4L/90fxdjQgLZ9RuredCThlK5RYz0sQ5HzXbTWEy6jIoQQQghxuOZUgLhjxw7Wr19PNBrlzDPP5KMf/Sj19fWz3S1xnPCCgPs69tKSy6CAtkKOffkMzfEUxgEftIt+lo58FqUUBmrUvpntkIG2AkrsyKQf9KMPPoHV0o5fX0PxsnVHpy9iRqwuq6QY+GCauGefSvSBx1n93E6ev/iM0Q0THjruotJR9O4yaEijOlIAKDfMNmojQPkGuicBNbmRQy1lUAhcXB0QUTJKQgghhBAza84EiKeffjpf/vKXWbRoEZ2dnXzrW9/ibW97G3fddReJxDQrRB7EMI6fb+eH+3I89elE0+cUaS9kaU6kcAKfvbk0DbEk5kHLRKTsCPuKWZwgoDwSPTpZGg3KNwiiDnHLnPB1NbfuIPL4RnQsSvG6KzEiM/+WlXtr5qQiEVJD//bOWoP5yDOs2NXBzrML5FMHzFtVQG0OdpdhbKtCt5SAH2aUObkP8haUFeH5GlRHEmrzI4dahonvObg6IGYcv7/C5b4SR4PcV+JokPtKHA0n8n11/H66OESveMUrRv69YsUKTj/9dC699FJ++9vf8oY3vOGQz2dZBlVVqakbHmMVFTL37HDt7c4Ri9mUloSFQarLxv9ZRgObtlyWQENtydG5B7SryAPYmuqy5Lj3WrCvE+dXfwAg8pdXE1/aeFT6MkzurZmWovO8NZQ+vIHVW3ez5eLTR+3Va7P4DR7eSymCnrBKrlFdJHZqOCdRu4r8Fo3qShIL8hil4bxDrTWDGZdkWYyq+OF9+XUsyX0ljga5r8TRIPeVOBpOxPtqzgSIBystLWXx4sXs3r37sI73vIDBwfzUDY8Rw1BUVCTp68sSBHrqAwRO4JP3PMoi4Yfv59o60U5ANjP1GnLpXJGkaU2r7bTlLOiPQX0GHBMFeIaHk3Pp6cmMbpvNE//hnRiOi3PxuWQbGuDgNjNE7q2jZ+DUlcQefZYFz+9i86olFOPR0Q1Ki3BKDh5pQgUGfnV69D3XlEbtLSX/x2pY3Q0NWQDyeZeOnjRG/DDWyThG5L4SR4PcV+JokPtKHA3H431VWhrHtqeenjJnA8RsNsvevXuPqGjN8fJiHigI9HHZr+PR5r4etmf6uaphMQbQUchRatljlx0Yx4JYEqXUtNqO4qmwwIg9dJyvoDuOykRhVxkqMNB9UfTCARQQGAEWxujX1PeJ33kvxkAa95RlFC84E47Bay731sxLlJTw4snNnLZlDyc/t4PNZ68c2yjuwooeaCtB12fgwHtuRTc64qG2V6A216LT/eiTewFN3vNOiNdL7itxNMh9JY4Gua/E0XAi3ldzJkC87bbbuPTSS2lsbKSzs5Pbb78d0zS5+uqrZ7tr8053Mc/Gvi4urm3CNib+lsLXwSGtG3goCr7Hi+leeosFnurtoCISxQl8Yub0F7I/ZBrUE02gQV/QAq6J2lCPSodZI6002vJRraUQhOcPLH/UGotoTfR3D2PtbcOvr6FwzaWy3uEJLGKY6PPPwNu6l6Uv7uGxFU1kbJNSO0L8wMq1zWl0c3rsCRRwUj+6rACb6lC7ytGL+tEonMA/Zs9DCCGEEPPHnAkQ29vb+du//Vv6+/uprKzk7LPP5mc/+xkVFRWz3bV5xQ0CHu9ppzWfYXWxiob4/nHXBd+j3ylSH0+yN5dme6afS2oXzHgfvCCgJZch47osTJSwNd2HiUGJfZTWMxxWNFHZcLkD3ZVAvVSFytvosgK6NgvVOfAM1JNNqLaSsJ0ZYB0QJEcefYbIxi0EqQT5N10F9px5i85bi+rq2bV8Icte3M15W1vZcs4qdmUHWJAomf5JqgpQlYeOFGQjqJjGCY7f4aVCCCGEOHHNmU+fX//612e7CwLYmu6jNZ9Boegs5EYCxILv8VBnK71ugdc3LaUll2FvLkPO80hYM3cb7smm+XP3PjwdEDdNbMNg0aF8ED9UrgFWEGZ60vsXu1cv1KA8E12VQ69t37+OnSYcMuiEz1mbAdZQltV6dgvRB59AR2zyb74afZQK5Ihjy1QGZZdeiH65hZUv7qX6onV0FXNkPIeUFZn6BEN0ykF1AJkIRkyR89yj12khhBBCzFtHZ3yfmJcCrdme6afEsklZFrtygyNz+J7q7WBXbpCM59Kaz7InlybrefQ6hRntw9Z0L3nfI2FaVEViM3ruMdqTqAcWwa6y8HF6fwES5ZloNHp5z+h3mQJKnJGHgeljKQPzpV3E7nkQbRjk33glQf3hz50Vx59YeRnumWtQnkfZE5s4pbSSfseZ+sADpcL2KmNjGQY53zsKPRVCCCHEfCcBopgx/W6RnmKBEitCyorQ5xQZdB2cwGd3Lk1VJIaJ4sXBXjKei6kU3cUjrxSb8zwGnCLdxTx7cxlqonGSlj1z6xe6BuqpBtSzddA9NIcxb6G2VKNQqJ0V4BiooQyiTg598G/IQGqcLE/J/iqVgeWTaush/ovfo7SmcO2l+EtmftitmH3OBWegIzb2xuc52TexDOPQ5hEO31eZCJYKM4gvDPSyIzNwdDoshBBCiHlpzgwxFbOvo5AjQI8UXXGDgPZijpRvk/c8KuNRFIpep4DWmqRl0ZLPsLbi8LNlT/Z2sGWwl0BrqqIxAg22McPfe+wpRfWFgaHqTBKc24LaXhlmCYeHi+4uH8kg6tM6woqUi/rHPZ0ucRgOXSuyvTT98hGU51F45Tq81ctntu/iuKETcZyzTyP6yNNUPbGZytMXkvUcIpGpy00DkPDQRgCZCCYGGd9lY38XTfEkJ6XKjm7nhRBCCDFvSAZRzJidmUFiB1QtTVoWLwz0si+fRSmFUoqEZZF2XUpsm6Rp01sskHH3D7VrzWXYOtg37Wu25bOYKCrsKN2FPNXR6NQHHQpfofaWhcNFF4SZGvViNaongY676HP3hR/a95SGBWniLqTccCmCyARFRIaGmJa53Vyz+RHMoktx3Zm4554+fnsxZzjnnY6ORbA3vcjKoibrTZxB7HUKtOaz+zcoIOmiPBPbtXGCgJ5inq5i/tCXYxFCCCGEmIAEiGJGZFyHrmKOUnt/0Y1yO0p3Mc/u7CCJA0r6n5QqpcyOEjVNioHPHzpbaM9nwwqove1sGujGm0aFRl9rMp5LzDSJmiYN8SQxc4aT4m0plGtCbRa9rBdtBajBcG6jXtwPcQ+9tA8VDL2VSqYxryzhUuJ3cVH3L4l5LulzTsV5xbkz229xfIpFKV5wJkprVjz5AkrpUcHdoOuwMzvIgFuk4PuY6qDlLIbmIdq5GL3FAhWRKFnPIy/zEYUQQggxQyRAFDOizy3i6oDIARlEQynipklnMUfKGn+JiaZ4kgGnwO879vBMXyc9xTwDbpGuacxNLPoebhDM/JDSA6iWUgD0ogGwNDSGa9XpiBfOMQRYNICuC/+tS6cuulMykOYVXb8iGhTYvHgxuYvPk7UO5xH37FMJykpI7WhhaXeG9AHVSNOew0nJMjKex6rSSmqjCQYPyLDroQDRysVYkEhRFYnhan9UGyGEEEKIIyEBopgRvcUC44U4lZEYtdHEhEGcoRS1sQSWUmzo6yJl2SigNZ+Z8pp538fTAbaawdu4Pwq5oSxkxkalo2HRmbKwsIxe2I9OFdHLe8Ecyvwo0Ku7CE7tgAWDk56+vHuAS+95nJhf4KWqFfzpvMVYprwN5xXLonjJ+QBcvHEHec9lTy6NE/goFGdW1nJV/SLWVtSwNFVG3j8ggxgPM4WqYBI3rZFCTIPe+AGi1po/de2j/cChqkIIIYQQk5BPpmIMJ/BpL0z+gdIJ/FHrsO0rZIkZY4d3GkpNmD08UEUkRlM8SUUkRokVYUdmYNTcRAg/7HYX8xSHPjAXfA/QR16tVA/92VuK8WQTalMdwP7F7BvSjES/cR99Qev+7OEwU0N9NswyTqC6o5dLfvsE0aLL1tWL+fNVzRimgTWTAa44IXinLMVvrKO0Z4AbBmFRopTduTQVkRhVkRhNiRQx06I+Fn65MnzPExn629mfqTdR9E2wXEx7Ice2dB99bnHc/UIIIYQQB5NPpicg94A5SYHWvDDQy9O9HUdc7n54rtPzA73c17Fn0qzDEz0dPNDVQqA1Bd+jx8kf8YL3w1nGlGUz6Dr8b+t2Nvd3j8zR2lfIck/bLu5seZm9uTT5wEPrQwwOA6A3Fv49GEE90Yj642LUH5ZgvFgNgEpHoWhCWwqNHhsMHoa61i4u+t2T2K7Hc2uXsenslQSArQwMGV46/yhF4ZXrACh9+GnOLqmg3I6yNFU66n4oi0RZXlJOZzFP1nPHDRBjpklnYWyAqLXm+cEe+t0ivcWZXW9UCCGEEHOXLHNxgulzCjzcuY+LqhtJ2RGe6e1kY38XoElZEZoTqVHzAKers5DjT937WF1axXMD3eR9j0d62qiOxrGVwQXVDSNtu4p5Xkr34aPDKqJKUfB9quyZWZjeUIrmRIqM5/J4bzumUpxSWskLA714gcbBZW8uExbEUYdQvTFjo56rDYeNVuYgG0EVLbTlgxGgDQ12gEpHUdsrwn2VOYgdwlp141j0citnPbIZM9Dcf/oSNq9spEEpAjQx89BfKzE3BM31uKcsxd6ynYYNW7nozBXURONj2p1f1UCJFeHpvk7yOkstjAoQ46ZFVzHHhr4uVpZWEB8q1NReyLEnm6YmGqdnggyjEEIIIcTBJEA8wfha01HI8UhPG1HD5OVMP7XROFHDpLWQpaOQY0Gi5JDP21nI0ZbPMuAU8bVmQTxFezFHb7FA3LI4q7J2JPDc3N+NVmBh8PxgTxjkaGZuYfohw0NTH+lpo6uYZ08uTW00Ts53actnCQ5l/qEG9WwdKhdBGwGqNxFubkijV3ftH0LalkQ9V4dqHSpOc4jZQ18HtOSyNMWTWEqxYuNLnPbsdgIFD5y3ktiZp5Ic7KWrmMdU6qgW2BHHv+Il52Nt20XksY0sOXUFOjl2OLahFKeWV1MdjXNf+x600gdlEC1K7YAnettwAp/zquoJtGZzf/fIEO9Bz8ENfOzD+PJICCGEEPOLfDo9AWk0e3MZdmQHaYyFSzsopTCUoiV3eMMhd+fSlNtRyiNR6mMJlFI0xJI0xZMUfJ9+J5zDlPVcWnIZquxwrtSOzCAvpQfGzXzMhJRlUxOJsy3Tj2WEAVXCtEl7Dl3FwvQDrKwdBoclRfT6vejSArqsgD6lm1HVdSr3Z1q0GUDtoRX3yPselmGQLhQ460+bOO3Z7bi2RecbrmDVxRexpryaC6obKPo+vtZE5QP7vKbLS3HOX4vyPKL3/XnStg3xJNWxOIHtgRt+KTMsZUWojsR5KdNH1nNpzWfYk09THYkRNUyKvk/mgDnDQgghhBATkQziCWphIjVmW6kVYVd2cFS2bzoyrkN3MU9FJDrmOKUUGk2vU6A2lqDXKeAEPtGhoZGLk4eerTxUUdNkQXz/87UNA08HOIE//Qxiz1AAW52DqI8+d1/4+OCkZ9RHJxxULhIGh5MUnRlPwfepx2TdA8+wsHOAXCKG+xfXkqyvGWlTE40TNU3yvicBosC54Ezs57dhv7QL9+Xd+MsWTdi2OhKnw/YwHRvtGhDZv15o0rLpzRV4bqCH3blBYoaJNfIFiibtulREZmYYuBBCCCHmLskgziFJ0yLjOew9xCxil5Mfs4bhgWxl0F7IAdBTLMz4UNLDVQz8iTOIRRP1VAN0JAFQPUNDSqvC54FibHA4rDaHRqObJ1+yAmDALdJ9QAGQZN8gr7nnCRZ2DtBVnqT9L6/FOCA4hOEhgRFynndY80XFHGNbFC5fD0Ds938Cd+JF78sjUXx7aL8z9t5JWRE29XeT9zyqD8jqayBz0FIYWc/FDQKEEEIIIQ4kAeIcopQiadls7OvaXxZ/GvbmMpgTRkthZqK9kMPXAa35DPGpCqt0x2EgOu3rH46EaZF2nQkDRLWnDNUXRz1fAxkb+mJhMZqyqcv966W96Av3Qvn+tm4QjGRPh4XD9jzcwKfo+zTtauOt920kOZilbWE9T7zmFVRXV497jZpoAm+SoFzML/7Ji/GWLcLoHyTy2IYJ26UsmyAycYBYEYlSE41RF0uM2m4rg94DCtVkXIfftO3i53tf4ome9lH3tRBCCCHmNwkQ55gKO0qPk+elTP+02vc5BXZkBqicZOhZwrTIei4vZwbodQokzElGJvfGMDY0oDbWjZojNYoG9pZAdur1ESdSakVIWTbmeENMfQWt4dBX5RuoJ5pQgRHOL5zOHW8AidFZnK5iHtsw6SoWGHQdtNZ0FHOsKatiWbKMFU9uYd0DG7G9gL4Lz8R4y7Wc29A8Yba1KhIjYppSpEaMKFyxHm2ZRB7dgOodf8maEstGT5JBhDBDfbCEabErmx6Zo7xpoJsBp4htGGzs7+K+jj0SJAohhBACkABxzlFDVQt3ZqYeHgnwcnoATwcjcwrHYyhFzDB5tLuNYuCP+wEUAE+hXgiHUyrHgsHI/n1ZG/VoM2wvh544xos1qK1V031aY1iGMSZLMhx4qi3VKNdE12bQZQWUb6DjLnrB4a0TOTwM7xU1TZxTWcuA55D2XMrsKGutBJfe9zTnvLiXom1xz8WnodefQ8K2J/45AaV2hKRpHzBHTMx3urwU54IzUb5P7N4HQY/9hiVh2RjRoe0TBIjjKbEjGAp+376bu/ft5MXBPmqicVKWTXM8xb5cdqQQlRBCCCHmNylSMwfFTYt+t0DB9yYNUnKey9ZMLxX21MNBq6IxMp6LryeZs7S3DJW30VaA8gzoTkCZA3kL9XQDqmhBoQxqh+YB9g0tWD9TMVJXAuPF/fP99KIBKC2ivdHFPA5Vr1OgOZ6iNhonYVps7OumxynwmpxB5f/eiZErkK0s5T/PXUpFXd20soIldoSEZWFNt8iOmBec88/A2vIy1u5W7E0v4p5+yqj9hlIkEmFWWjnmhEn68VRGYhR8j7RbJGXZI18KGUNZ7sIhDEsXQgghxNwln07noNhQWftB15m0XXshR973SVrTG+qZsmzKJgkm1VBBGH1KV/h4qDDMyKLzRoDyTNgXViRVgQEDM1dVUe0tC6+/qJ/g9PZwDqHBEQWHWmtcHbCytBKlFCV2hKXxFFc+t5dTfv0wRq6Ac8Yq3L9+C81NzdTHktM6b9K0KLUiWMdJwR9xnLBMCldfigaif3gElR67zEpZcuhLn6IVzvc9hNs7ZlpURGKU2pFR25WCfDBxcRwhhBBCzB8SIM5B4bw3xYDr4AXBhAVr9uTSRGYqg1UwUekoOu5CXRYd9cJCNU6YSdRKo1f2hP07sCBO7xEEiI4Bu8pQm2pRWytRvXF0zEWf3Ls/S3mEMp5LiRWhIR4Gu0ZPH5f95jFO37IHHYuQf8OrKF51MWbE5qKaJk6vGL8ozcGUUpxWXn3U1o8UJ66gqQ73nNNQRYfo7x4eM9R0JIO4rwRjQwPsm5mlZnKeBIhCCCGEkABxzjIV9Dp5NvZ38WRvx5j9Bd+jJZ+hxIqMc/Rh6BzKnNVmw+UjqnMoFGpbFco1oSIP9Rm0EaY7dF1YLEP1HRAgacKgcpoZEbW9AuOlKlRHCrWnPDzFgsGJl6+Yhl6nwM7sIHroQ/mg53JSsgwbhf34RhLf/28iHd14zfVk3/UWvJVLR441lBq/aM4EFiRKSEwzeyvml+IrziUoL8HethNr645R+2Lx0Te4moGKwbYyGHRlDqIQQgghJECcs2KmRWs+ywuDvbTmM2PmDnYUcuQ9b+olK6ZJdQ0NL60Nh8QNryGo2sLshq7Og6mhIRNmE5f2hctO9McgPRSk7ivBeKIJtaNiehfNhcFVsLoT3TQYrnHYlD6kfhd8j85CjtZ8hpZcBl9ryuwoOd/DHwoST3ICEj/5JbE/PgpoipecT/5tr0OXzUzmRogxIjaFV18CQPS3D6Ny+ZFd8YMCRNIzECAaJoOue8TnEUIIIcSJT4rUzFFx06TfdXACHy8I6HccqqLhcM6M67B5oAfbMGZm0XtfhesM2gesM1jqoKtyI/MQGVqgXq/shqV9EPWhIRPOG3y8Cb20F9USziGkLRW2maprhaHbty6LbsxMq6tuENBZDPtSE43TWSywNFVKZSSOG/g0JVJsHeyjJZfG9TwufLmNRc8+gvI8/PoaCtdeRlBTeSg/HSEOi7+4GWftKUQ2biF674MU3nAlKEXM2v+ljjaDcLmYIyz2ZBsGWc8h0HqkaI0QQggh5icJEOeoqGFSDHzqonG6i0V6nQJV0RiDrsMDnS10FnI0xqdXUGVKA1GUVuiKwqigTi/pR/Uk0DEXkkPZCYMwOAT0ih500kVtq8R4ef+SF6pgowejky9qr4GCFQal5vRqOfo6YF8+y8rSCtKey67sIKeVV7O+unHUh+K065DfvZdXPvUyNQNZtGFQfMW5OBecAbIshTiGipetw9rVgr11J95z2/BOXUHUMOk+bQdlZhRrdwWqN4HO2ZAaJwNYNMNh21PMyY0YBjnPo+D7JCz5b0EIIYSYz+STwByllGJRIhwCaRkOHYUsdbEE93e20F3M0xRPzkz2EMJhooAuL4zeXl4gWNUZBofjXUoBCwbRqSJsaAgzkU1pVGspqj2JnixAdA1UYKCT0583lfU8qqIx1tc0kvd9tg72sqqsanTGJF9g+UMbOGfzNgAKzfX4r76YoFqyhmIWRCMUrn0l8Z/8gtjv/0R2YSORVAK/PI9reVg9SehNhMNMDw4QNahn61ADMYJzWyf9wsVWBq72KQQeCflvQQghhJjX5JPAiU4TZgkUEPHHDcSSQ/MR9+WzpD2Xxlhi4uDQNVDP1ENVHr2sb/w2eQu1pRq9pA8qiqihAJGDA0QFNE1j6GdFEX1BS7jwd9SD1hJoKwkDy8Z0mHXUoLZVQtFCV+UhObSER2z6lRcznsvqskpMZZCyDM6qrNu/MwiwN75A5KEnMfIF8lGb5885hRXr14VrAAgxS/wFDTjnn0H0sQ3E7v4jwfWvwVIGntboEgcFqHQE3XDQgT1x1PAyMoORSQPE4crHec+DGapbJYQQQogTkwSIJ5jObRaxQgrigK/CDMHQPD+9uA998tigLmFZ7M1lKbVtmsYbVqqB3WUQ91D9MdRgDAZj4ZIVVgAVhVFrCaptVeE1HRN9XisMRMPqpCVHUAUx7oV/AJrTqJZS1JYadE8cfVon9MZHKpWqjtRIFdTJAkQ3CHCC/es8BlpTN846heaOPUT/8Ahmdx8acE4/hSdOX0J1eaUEh+K44Fx0DtaOPVh79hF5chPx5hKKvgclQ1+UDFf/HR4BrcMqv8NUNsJUA7G1lrUQhRBCCCEB4gklCDQtG21qgsVouwO1uxzVF0fHvDCL2FoaFnc5aJqcqQwWJyepuJmxMV4K5wBqdLigfWBgvFAbbqvLhEEahPMNh5a0UOkoelcZyjPRFflR19VaH/YQVn1KN7oxjdpci+pMwfMa8uGtqquzqO4kdA0FxZMEiB3FPBAW3TBQRAxz1LqDRncf0T88grVjDwDewkaKr1xHUF/DmYfVcyGOEsuk8JpXkviPnxN94HEarzmfl1JRSDpoy0f1x+HRZvSZ7eEXLV0J1GAMHfVQRQsyU6cFldIUJlgzVQghhBDzh1TcOIEYhqJprYvSBsbGhjA4LCmiz2uByny43mDfYSw8P1xplHARe31SP8HSXnTcRSsNvXGG0w/DWQldEy5nMVJc5oDhpYOuw/bsIF4w8YKGWusxS2+MUlZEn9kWfsBtK0H1x9EJB72yJ+xHMHTrxscPEN0gwABOTpXTVSzQUcxRHY2TtGxU/yCxu/9I4ns/xdqxh6CijPx1V5H/y9cS1NdM9pMSYtYEtVUUL1uHCgLOf3AjynHAAH1mO7o8j8pFUDvLR2UP9cru8D2cnXq9TVsZtOezR/lZCCGEEOJ4JwHiCab2ZI9sTTiMVDcPoM/eB5EAXRd+sFMdqUM+p+oOA8RgVSfBim5Y1A8n9aPX74XSYhh4Zu39y1lYPvq0DnRpIVzTsD6NXtwPgBcEDLgOtdE4GW900Qwn8OlzwkCy1ymyOzvF/MSEhz6vNVzfENBL+yDmoaMHBIUHZRC11rhBQI9TYEEixQXVDZxcUsaa0irOs5NE732Q5L///7A3bw0LgLxyHdn3/AXe8iUynFQc99yz1uAuX0JyMMclT24Lx4WWFdFrO8IlL9pSsKcUlYmiywpQk4OEi3IscCb/dV9qR9hXyJL1ZD1EIYQQYj6TIaYnGKWgZ/le4qsGRs0LpCaLVtXQmYSV3dMP/T0F/UNrGDZmxha5qSjAQCysVOq4YeXQqmyYuTi7LcwsWvtnN3U6eU5KlVJmR3m2v4tywkW8ncCno5DDUIpk4JMPPJKWjRP4RAyTCUV99BntaM8Ae+j5lhdgOBA+KEDscQo4QYBtGKwoqSRimFwWqyDy+EbsDS+gfB8djVA893Scc06DqFTkECcQpShcfSnBvg5W7Oki/VILO5cvCN8bDWlUSxlqWzUAellv+H5OOZCNhH8ihQlPHTMtup0CHYUcJ6XKjtETEkIIIcTxRgLEE5FidHDI0OOqHKo7id5XAs3p6Z2rNx6uYVidG7cCqi7PoyhH9cfQThjI6YqhD5kHrT+otUZrWFkSLgmxga6RuYgdhTyry6rod4p0FfMYKFKWTdZziUQmCRCHn6+9//nq8kJYqMYIwsqtB1w/7/tcVNNIYzxF2UCG6AP3Yz23DRUEaNuieN6ZOOeuhXh0ej8fIY438Si7r7qQZXf+nrWPv0BPTTmDFSXoBYOolrIwq7+6CyrD96lOhpVOydjhFz4AHUlUTzxcmqYuO/JetpTBnlxaAkQhhBBiHpMAcQ7RS/tQ3UnU9gp0fWZUZm8iqi3MxA0P4xyjvIhGQ18MVRwK5Cry4zbN+h4J06I2FifQEDct8r6PbRhYhsGq0io6Cjm2ZwZojKdYnCplY18nFeOebRLD8x2jPpqwsIavNVprUrbNsoECqd8/gbVtJwrCjOGZq3HPPR2diE96aiFOBF5THY+cupj1m3Zx9v3P8OBrLsRPQXDmvvDLlFJnf+Oh9RHVYBRNOlym5rkaVGCgWkvRuxz0aR2Qcim1IrTkMxR8j5h5+P899DkFCoFPVdWhD3kXQgghxOySAHEuKXXQDWlUWwl6bxks6Z+8fc6CziQ64kHtBAGiHUDKCec0Fa1wnlPKGbdp2nVZXlKOPTRktDmWZFdukKhhURmJUmZHUArK7CiLUyXURuPoqWPYsUrC56lLi7QWskQNEzuAup37uHh3N2UdvQAEqQTFc07DPWO1DCUVc0rUMHlyRTMLOgdY1N7H2Y88x+OvOB2qxhlCWhbOFVb7SsORBulIOFS8IQ1FE9WbgGca0Ov3EDdNet1wmOmiZOmE1x+vSnHWc+kpFmhOpHiqt5Oi9jltQf1MP3UhhBBCHGUSIM4xetFAWPWzN4ZeMnlbtbsMhSJYODhmuOiocy7vhWfrUL6BLs9POL/RJ6ApsT9jsLSknJezAziey8rSSpRSlNlRlpWU0RwvocSyiZgmed8jPpSt6CkW8HRAXSwx/kUAFOg1XQAkex3e0JGj8rmXMbNhZtOvLMc973TcNSvAmmL4qhAnoIhhYpkmz1x8BhV3/ZmFO9vorS7jpdXjvOljPnptO2yqQ+0qB0DHXPQp3WBoeLwpXLKmaKHiHiYGe3PpCQPE7mKeZ/u7eGXdwlHb9+bSPN7TwaqySnZlB4lZJhl3/C+ThBBCCHH8kgBxrkk64dy8wWhYQGaiwpyegn0lYUaweXDyc1bl0ee0wsuV6IXjty34HlHDHBXYNcVTNMSStOQy1MX2D+1cV9048u+TkqW8ONhH0rIosSLkAw8F+DrAVONHoioIqGvtZvHLLTTu6cTUGg24Jy/GPetU/MVNUpFUzGkx06QyEmNFRQ2/vWgNb/z9Bk57aiv9laV0NVSNPaA6jz6vFdpTkLfQzQd8KZRwIR2FggVxjxLbZk8uM2EBqa5inq5ifsz+nmKBtFfk2f4uooaB4wd05fOUsr/Nxr5O4pbNipJDHlguhBBCiGNEAsS5xgBKHNRADJ23IDHBQvLdif3DzOxJ1iMcVuKiz+iYcHfO96iMxEYygQCGUqwuq8IJfKqj48/9W1fdSFMixZ+729idS7MsVU7Wd0m7LuWR0YVkUgMZlrzUyqLtrcTzRQAKEYvC2lXos05Fl088JE6IuSRmWlxWt4CUZfNkbSV/OncFFz+2hfMf3Mh9r1lHPrn//TYyHDTphkvFHGx4LdFC+N5Nmhb9bpaOQo4FiZIxzVtzGfK+T97zRhWY6nLyVEfiRAyDuGnRVszRWchSaobvy4zn8txgD4sTpRIgCiGEEMexQw4QOzo6eOCBB2hvb6dYLI7ap5Ti7/7u72asc+IwlRbDpSm6E6icjV4wCMnRa5upziQAunZmFsbO+x6nlI7NXCxMlFBhRydcysJQiiXJMuKGxaM9bZxWXk1nIceTfR2UEyWaL9K8u52FO/ZR3dkf9hloa6rmxZMa2NlYyXVLTsGQjKGYZ1KWDUBtNM7mxbU09WdZ9uIe1t2/gfuvOo/g/8/efwdJlp3nmfhzrk9bWd60d+N9D9zAzAAiCDqBJCBRK9GIFBnSxlI+pBB3ZWJXbqnYlWJDil3yF9QGKWopR5GgAUkQIIGBncF419M97burqsunN9ef3x8nK8tluZ7useeJ6JiezJs3z72VXXnf+33f+1omUkqutOsM2d6WGy6rSC9SjQYd9XUghMASBi9Xlxh2PLLd9wEVVzMftAnThE4SM9CNsfGTmEYUUrDsnrlNxrS4Vq+TcQ38JGYl8FkJfAYs7/adFI1Go9FoNG+afQnEr3zlK/zdv/t3SdOUoaEhbNve8LwWiO8MZDFAAOLCECI1IDGU7f0qKbCcVa2ow1sdSeM0pRFHDG5zQQkQpSmJTHsXgxIYdrZe+BlCMLDDflaZyOT4oanj2IaB7Qf4l+a5d2aFiYUyotsJ1yhkeeP4BNMnDxIXclRCn4LlanGoeV8z7GY416jw0gfuprRSZ2SpyiNPn+G5j95PNQoZtD06SdzLJN1CN0tU+Bark8jjbobZTouvLEwjgAdKIxzNFSkHPn4SYyJoJ2vdCfUoJEgSRtb9DsibNnPtFpfLVdJU7blkuzTicMcWco1Go9FoNG8v+xKI/+bf/Bs++tGP8ou/+IuUSqXbtCTNfkilZCFok0qJbZiMuRlVQQQlDgEqm4TbclYZzoy2NpjTrM4UzQcdHGFQCYNtReKcryqPBzN5EimxhLGjoNwNUWuQvXgN6/wVjl6b5VjX3rTlOdw4OsH0sSkuljxiIJESO/BJZEpx000Kjeb9RtFyQII0DZ765MN8zxe/w7GLs9QHcvzpiXGO5opca++Qi7qpxRTUzb7JTI5qGNBKIkptl6O5IsvB6g0lQWe9QIxDEGxwNnVMk6JtUpQ2JhDJFIFgJfTpxDF5WzsLazQajUbzTmRfAnF+fp5//I//sRaHbyO2YWALk1YckTEtbnRaTGVzHM4WeWZlnjhNsXIR0kwRiRKIomMjfRO8BOoO4vVRAJWV2KUehZTDAMcwcITBQ4OjPFteoNWOkMgNs0j1KKRgO7iGSTUKMIWgaDu9lrc9kaYYNxaxLl3DunAVc6m89lQ2Q3TXcaonD/NlO2YlCZh0szQ6LR4fO0AqJd9evoFAULB14L3m/c2A45KzbGY6Tca8DN/61Gk++UdP88Dz51nOe4w9eJhr7R2MqLytAhHAFIJh18OJDOY6LRIpmek08QyTWKY04jWH0loYYPRxxCq5Lq0oQEqJI1SbeSxT2okWiBqNRqPRvFPZl0B8+OGHuXLlCo899tjtWo9mFwZsl9ODo3xnZQ4QHM7m+cToATKmxeVmjXocMuR4MNFEVj0oBoi5AlQykI0QL0wgYhN5pArja/OHzVhlGC4FHU4VSjxQGsE1DCIpeba8oISnoQRnNQr42MgUtmHy1cVpJPBQaWRLLtoGpERU6ljXZjCvzmJem8XorGW2JcMlkpNHiE8eJTk4AYZBBng8DPja4gxXWg1GPI+j2SLVKEAgkEiylvZZ0ry/yVs23zd5hDO1Fc7VKzgjAzz98Qf42JMv8cS3z7B85BimMDb8G96AJZFWomYQ+zgfZy2LBb/DdLvBvN9myHFpRBHVMCSRkuvtOtfbTTxzb5EyAmgl0a7baTQajUajeXvY19X1L/zCL/D3/t7fI5vN8thjj1EsbnWNzGT6u1Vqbh13DwxTj0PylsPdxSHs7kXf8VyRp1fmGXJA3rOsNl7IqVzE6SK0HERsII9VlJvhugvBREpOFUp8cGi8N1d4Z3GIVErO1cu0k5ii4RAkCZ5pcTRXxDIM7iyUGHEynCiUNi5SSkS1jjkzj3X9BubVGYz6WsVSGgbx0QPEJ5QolEMDfY+15Lh83+SRnmGGa5rKvMY0qYchGUMLRI1m0PG4f2CEi80afhLz2uQguYdO8vBLFxn9wp8w+D0PEVhJf4EI4MWIpouMDHA2uhqbwiBFcrFZJUpTHMPEMRLqUciVZo0nl2awhcHoNk7Fm5FS0I63cVfWaDQajUbztrOvq+vPfvazAPzP//P/vG216OzZs29+VZodMYXYkCW4ylQ2j1EWGysFg2pmSNTUHKI8XkEe3ygOO0mMZ5qMuJkNMRWgTGamvBxvNCoUbYdWEjG0ztnwibFDasMoxrwxhzk7jzG7gDkzj9FeM8CRQDIxSnz0AMmRAyQHJ8HZW0tqxrT48PBk7/9d02TY8ejE8Z6rFhrNe50Bx+VYrsiZehnPMLE+/kGi2MB+7Tw/8M3X+J1PPQjbtYFnYmh2sxCdreH2JoJqGPT+vTmGST0OOVNfwTPMbWNs+mEZgloU7L6hRqPRaDSat4V9CcR/+S//5c5thJq3lUHbZcLLshR01gLrnRQ51IaGi7xnCcbaW17XjCMmvNwWcbjKWCbL6w01I9hJYu538qoiuLCMubCMsbCMsVJFyDXDG2kYJJNjJAcnSA5NEh+egsyts7ef8nIs+R2y26xZo3k/ckdhkAW/zaND4xzND+B//xOIap3hmXk+9c3XeP7TH0B2bx51khhLGKoDYf0cYnGrQMxZNvN+m8PZPKBmocM0ZSXwlTHWPnAMg2qoBaJGo9FoNO9U9nV1/bnPfe52rUNzCxBC8GBplC/NXyNK017rqXx4XlUMt9H2fhJzqHvh10NKRKOFsVLl8OISn5y+zngrIF9pUOhsvYBMCzniiVHSgxMkB8ZJJsbAvn3ibcj1KNoOrhaIGk2PyW5cTG821zLp/Lnvx/oPv8WxuTI8dYbnHruPTpqwEvpY3dnEKbeovgw6/SuMBcvGEKKXZ2oI0Y2qENu3rW6DY5jUIx11odFoNBrNOxV9df0eYyqT41iuyLV2nUkvpx7scw0m0hS3EyLqDe5rtrlrIcRtnkHUmxi1BkalhohUVSELDHdflwqIhkswPkoyPkw6PkI6PoLMvrWzp+NelgdKIz0RrNFoFFuMmzIeS5//XoZ+4/c4dmGGTtblS3dN8dDACHcUBnm5tszVSp0JRhAVD3mktmWfQogtLsVFy7kpk6iMaTIb+rxYWeL04JjuStFoNBqN5h3Grt/un//85/f1Bf7f//t/f1ML0myP9ANothFxAmkKqUTIFJIU4hgRRogw4tFmg/zyAiPCxA5j3CDE9Tf9CXZ2EZSuQzI5RjpUIh0usZT3eAqftFTkB46ceouOeHscw+R4vr+xjUaj2cjg6ChLn/9enP/6R9zz8iXKrs2px+8ka9l8bGSKhdZFpJnASgZiAZbcdZ+lm8w9NYXBmJvhxeoSA7bLqc0GVzfBtVYdKSVH9e8EjUaj0WjeNLsKxFOnTuk7vO8AzFffIPj9PyW3+3UbB7p/tiM2DVo5j47nUMk6TIyNYw+WkAMF0mIeWcwjMx6s+7kPAB8OA8I0ebOHotFo3gZGDh2i+bnPUPrvX+Kjz76Bf+go8R3HMISg4NoEww28xRJyJbshAud24JkWedPi5eoSR3KFXuvqfiiHPmGaMOJkeL6yiJ/EDLsZKmFAkCaMuRkGblLEajQajUbzfmZXgfiLv/iLb8U6NLsgBwcQRw4QhxEIA2kIMA0QBhgG0jLBsZGOQ+pYvNapE1omlusSeg6+5xB0/yTd2cBFv81kJs/ExGH2kkp2sxUDjUbzzsA+foTgz/4ZvN/5Ct7vfoXOj/0gyZEDFG2H68M1vMUSYiGHfLMCsU+e4mZKtst0p8m1VmPfVUQpJc+uLFCNAh4ojbASqkzVry/NsuC3SaRkyHH50YMnMfUNTo1Go9Fo9oWeQXyXkB6cwP2bP05zpUma7l5GXFic5UqrxojrkUjZ9w59kKYczW3NstRoNO9d4rtPErQ6eF/5Fpnf/EPaf/HPUsy7tEvzDBopLGchEWDuoV1hPauisOoiXpiEO1fgru1vPQkhKFg2L1QWEdDLVt0LC36b2U6TWKa8Xi/jCINBx2Wu02LU9RAI6nFIlCaY2shKo9FoNJp9oR0+3qOMehkimTLnt1nwO1ueD9ME2zAY895acxmNRvP2Ez16P8HjH0JEMdn/9gcMluukBjDSRiQGlHf4vbCYheYmt9OOhXjyKOLcMOL8sNrHXL7/69dRsl0SmfK1xRmeLc8j5d5E6blGBSFQsT5+h0HHxTFMDmXzeKaFZQhiKQnTdE/702g0Go1Gs4YWiO9RBmynVzlUlvQbL7waUaRmdGzdNqrRvB8JH3uE4LFHEH7Iyd/9GkONNnJMtZaKxVz/FzVtjJcnEGdHNj5eziBiAzE9gKh1805rLnL9yHIi4EZe/beLEIIhx2Pcy3CmVuZSc6uD6mb8JGam06BkK1F4tM8Mo4EglVLPTGs0Go1GcxNogfgepWi75CybOwuD5C2bTrLW6tVJYtpJzIlb4B6o0WjevYSf+CDho/djdQI+/+QrZN1lpJCwlIV+xbfVymJ7YwVRNJwN/y+9GJEapOW1x8WFIYwzY3CjsGW3jmFStB2eWplnOdja8bCeVhwTJCnuDsY2QggkkkhXEDUajUaj2TdaIL5HyZkW9xWHuHdgmAkvRytWmYbtOGYl8Hl0aJxT+dLbu0iNRvP2IgTB93yUzv13kO+EPP7Vp8nklxCRqSIvNm9eUY+J0NpQCaQrENP7FknvW0AeqQKQLHU7FAITZpUwFK1N7aldirZDIlO+tXSDVrz97KJ6TmLsaj4jdAVRo9FoNJqbQAvE9yhCCB4aHCNv2UxkskQypR1HlEOfDw6P81BpZA8XWBqN5j2PEITf/wQXj4yRb/o8fu0PycZ1xJkxWMipmUOJ+lPx1l7X6Zq/SKDhIs0UJpow2YJB5SoaX87BV48gnjmASLtfN+3+AhFg3M2wHHb40tw1bnSafbdpJXvxXAahK4gajUaj0dwUt0wg/tRP/RR/5+/8HZ577rlbtUvNLWLIUa5+tSjkg8MT3D8worMtNRpND8M0efbjD3Hp8Bj5TotPVH+bXKeF8co4xssTMJ+DpqMqi6usCsSOpUxp8uFatEU+RNoJhAbEAuFbSKMr1nYQiEIIDng5mnHIU8v9TWtqUbCn6AopIZJaIGo0Go1Gs19umUCUUjIzM8PP/MzP8PnPf/5W7VZzCxi0Xe4qDPK9k0d4oKTFoUaj2UrBdfnjD9/F9WOT5IIWn6j+Fpn8AgCinIGyqh5Kq9u22ekKvUa3jbQQrO1MAPctYd9bhyeuk56+gfzgDaQTg2/1n29cfakQDDouzTiklcRbni8Hft/Ynq37AT/RLaYajUaj0eyXWxYQ9R//438EIAxDXnvttVu1W80twDIMPjo69XYvQ6PRvIMp2i6hkDzz8QeQQnDk8g2emP4i3yj8OZqVLMLvfl1MNmF6ANGxVPRhd/5QFsKNOxztYOdTwmYKQ6rllGyEqFpI34LsVvG3imOYRDKlFgXkrbWKYyJTqlG4o0HNKpYwNphzaTQajUaj2Rt7riCGYcgv/dIvce7cuR23cxyHRx555E0vTKPRaDRvHQO2o0YNDYNnPvYAV09MkW37fGLlCxQaLShnkE6MnOjOBrYcxMtjcKWk/n99BXE7VkXhDm2m66lHa6Lz+fICM+0mYZrsSSCaQtDpU4HUaDQajUazM3sWiI7j8Mu//MvU6/XbuR6NRqPRvA2MeVkcYRIkCRiCZz/6AFdPHCAbt3h86bcpRSsw1oKsqsqJlSxiMQ9OgjxWgWK4yzuA7L621566A7YwWPJV5EWUJrzRqPJcZZE4TbGM3b+6TGHQiXWLqUaj0Wg0+2VfM4gPPPAAZ86cuV1r0Wg0Gs3bxKrjcT3uCj1D8OzH7ufioRN4aYdPLH2BIes62Oma4QwgH1hAnqysGdTsRKYrLvdQQcyYFotBm1RK2klMkCasBB3kHkeoLSHwU11B1Gg0Go1mv+xLIP79v//3+c//+T/z//1//x/T09O02206nc6GPxqNRqN5d3I0V9xo7CIELz52F2cLp3FkyCee/hbjN5Ygo4SXzIVQ2kNr6SqrFcT27uPvGdOiGUe04ohOHJPIlIOZPJNudk9vZQqDME1JtJOpRqPRaDT7Yl8mNT/2Yz8GwD//5/+cf/Ev/kXfbc6ePfvmV6XRaDSat5xxL4ttGIRpsuYUmkl57bFjhDMBD555jY/96fN891CeG9yLPFjvWzlsxhGRTMnhbnyiKyxpupAIMLfGWKxiGwZxmlKPQoI0QSAwhNhzfqtlCOIkJUxTMqbBgt8ma1oUbGdPr9doNBqN5v3KvgTiv/yX/1JHJGg0Gs17lAHbZczNUA59RtzM2hOTLc5PHiIcgEefeo0PXXuSF475XJka6m3iJzHNOGLY8SiHfn8hZ6fIwQ6ikoFXxpEPzu/YxyIE1OOQVEr6RCIqJNCyIRdtEKumECRSEqYJAvj64gxCCD4+MsVEJref06LRaDQazfuKfQnEz33uc7drHRqNRqN5B3AsP8Dscqvvc1fvOETDhMe/dYZHrzyNWzrFuQdOgBBUwgDbNLnSqjOeydFOIvx44wyglBIeWIDnphDLWeR0EY5sb3xmCYOloIMtDKzNQlKiBOF0EeONEdKTK3Cs1nvcFAaJTInSlCW/Qy0KcQyDp1bm+ZEDx/XNTo1Go9FotmFfM4irXLx4kd/5nd/hl3/5l1laWgLg2rVrNJvNW7o4jUaj0by1THhZTARR2n9279WpIX7nE/cSWSb3v3iB00+dQaQpCZLjuQGG3QwPl0YZdjya0cYcwjm/zVzSRD6wAIC4WlKtptuQMa2uuAuwxbpoixUP8afHYLqAuD6g9nV5EPHaKOJPjyGeOghzeQQCP0k4Wy+TMU0GHZd6FNK+hfEXc52WjtPQaDQazXuKfVUQW60W/8v/8r/wx3/8x1iWRZIkfPzjH2d0dJR/82/+DVNTU/yDf/APbtdaNRqNRnObKdkuI26GRhwy5Hhbnk+RLB0Y5Uvfm+N7vvYSx89Pk2n7/PYH7+BYrsj9A8PkLZtmEvFau0JGqJm/ThJjCkEsU8hHyLEmYjGvqohHa33X4pkmlTAklinOumgLcWkIIQWcG0EgkEaKSA2YKyCFRDQduFyCR+Z5pbrMnN/iQCaHKQwimVCLAnLW3rIYd2I56PC1xRkeHhzl7uLQ7i/QaDQajeZdwL4qiL/4i7/Iiy++yK/92q/xwgsvqHahLo8//jjf/OY3b/kCNRqNRvPWIYTgzkKJVhypTMR1RGmKKQxsYbAwmOOrP/gR6gM5JmeW+PNfe5mBMKZgOwghGHE9JJJy4LPgt1kOfEa9TG+WUB6vAmBcGEa8MAHh1q8jxzCJZLLRNKfqImqeEoLdoUN57xJyqK3+fOw60kwhNHEMk4Wgpaqiort/CfVo98zG7Vj93ovSlGfK8ywFbWbauntGo9FoNO8d9iUQv/zlL/P3/t7f48Mf/jCmaW54bmpqitnZ2Vu6OI1Go9G89ZwqDPJQaYylsMNMp8lSoCKM2knEgO0w7HiEaUo7n+GrP/AR5sZKjFWajP7G7yNWKgAMOR5FxyFrWxzI5hmwHe4qDCGEIJUSCiHp/QvITIRYySJeHVPzg30I0xS7W0EUV0sAyLuWkYUAmQ9grIU8PY88PQ9eAnaCiE1G7QyTXm5NXKLcUVePB9gggttxRC0KmO+0eKNR2RKRcblZ4/duXOZqq85TyzeYaTc5mMmzELTwdZupRqPRaN4j7KvFNAgCSqVS3+dardYW0ajRaDSadx+GEDwyNMZkJsdy0OG5spoZbMUx9w4MYBmCa+0GAJFr8zuP389nn7vEgSs3yP36F+h87jNkjx3kh46cIG3GmIieEHO6MRqeacFECznahmcOIMpZuDyIPFHZsBYTQZCmyhVVAhUPaaQw1UAeUGvYErXhJODbEBvgbBR5GdNi0e8gpUQCX12Y5uHBUQYclz+Yu0ozjpQwlGqtx3JqxvFio8o3ltRN0D9dmCaRkkkvhyUElShgJfQ5kMnfuh+CRqPRaDRvE/uqIN5///387u/+bt/n/viP/5iHH374lixKo9FoNG8vphAczOY5mM33qn6JlIx7WfKmo6qAXXwB09/3UYIPP4TwAzL/5YtYL5xhLJPtVf5c08Q1TTKmRbjeAMeUyAcWVFvo5RIsZzaso+S45K3uvczIQMQmZCP17SXom8OI3d1/uPWmpWeaNOOQVhLTiEMWgjZXWnXmOi2qYcCY63HAy+GaJmdqKyRSEqUJL1WXyJgWU5kco67Hge6xKTdUwbLf2fJeGo1Go9G8G9mXQPxbf+tv8eUvf5mf/umf5jd/8zcRQvD1r3+dv//3/z5f+tKX+Bt/42/crnVqNBqN5m2gZLtkTYuV0CdjmYx7WTKmhRCQSMmi30YIKDou4Sc/QucHPwmA+0dfJ/rtP4FNbqgl2yVMN842kouQ9y4hEIjXxqC8Zo6TMa21TMaW09t+R+zu/qOtAlHNNaZUw4BaGNJJYq60apxvVHANA1Mo0TfkuMz7bWbaDabbTSphQMl2evvozTQCOdPkcqu2ZWZTo9FoNJp3I/sSiI8++ii/9mu/RhiG/LN/9s+QUvLv/t2/Y3p6ml/91V/lgQceuF3r1Gg0Gs3bgGUYTHhZloIOhzIFMqZFxrKQKBfPQcfjibFDTHXbK+MH7qLzlz6LzHok33oB97/+AfhBb3+DjruxgrjKeAt5pIqITMTzkzBb2LpNq+s8uptAXG0rjfp/xQkEC0GLauRjGyatOGbeb1Ny3N42pjDIGBZfX5rlleoynmlum504YLssBR1eqS7vvC6NRqPRaN4F7GsGEeD06dP8p//0n/B9n1qtRrFYJJPJ7P5CjUaj0bwrmczkON+scjinRFvGtLCFgZ8m3F8a4WiuuGH75NAknZ/5c+R+60tYl6fJ/offpvPnvx85VCJvO8ht3GjkqTIyH2KcGYOZwtqMYRfRFYgyu7MLqbQT1Xnap8UUIG9ZXG02KNg2XrcF1l/vlNpl2PVoRCGLQYcDmey272cIwZib4bXaMsfyxbWKp0aj0Wg070L2VUF86qmn6HTUnIXneYyPj2txqNFoNO9xhhyPCS/LhJcDugLRMBlyvG2NWWSpiPM3f5z41FHMcpXcf/gtzIvXyJrWdmalap5wsom0E2i4sLnQ2H7zLaYAecumFgUsB36vhfXgNsdRsB0OZ/MbWkr74ZkWKdCKd1mbRqPRaDTvcPZVQfwrf+WvYJomd999N48++iinT5/m9OnTDA4O3q71aTQajeZtZtTN8MToQTKm+sowhaBkuxzM5nomNP0Qnkvw576P5GvfxX36RTK/+YdMfuRhxKE8iZSY/Vo2BVAMECtZZMuBQqhaRSNjrcU0u7cWUxEafcWoKQxSJH4SM2BvXxncP5KoX/usRqPRaDTvIvYlEL/zne/w3HPP8fzzz/PMM8/w67/+66RpyvHjxzl9+jSPPvoon/3sZ2/XWjUajUbzNiCEYGDdfB7Ao0NjFLqmLTtiGISf/DDp5CjeH3yNwade5MemR/nCB04yWhzoP9dXCGAlC3UXCiHitTHEshJy0o3B2rYGqdilggiQMSwacdhfpN4kUoqtBjwajUaj0bzL2JdAHBwc5NOf/jSf/vSnAWi32zz99NP86q/+Kv/tv/03fvM3f1MLRI1Go3kfMObtr/IW33WC9sgQ3m99iamZJX6q1uT3P3oP9sTYlm1lMVQJFnUHeYCeOAQgt3X+cDnwQcCI03U/dXYXiEOOy9Am0ftmMYSaZVxlwW9TjwJOFXSXjUaj0WjePezbpKbVavHiiy/2KomvvPIKruvyxBNPcPr06duxRo1Go9G8B0hHBmn/9OfxvvhVCuev8Oe/8iLPPnYfsycObNyw2HU9bbiQbKrw5ZVAbMYhUSop2jZBGmMKg3Yc004ikiRgEiDcof31FlYOVzGFoBPHvf9/vbZCJQo4kS9h3Ib302g0Go3mdrAvgfi5z32ON954g+HhYR599FG+7/u+j3/4D/8hd9555235stVoNBrNewzXwf/cZ0ieehH3G9/lsW++woWlGq984E5Ss1vx82KklUDDgbb6mpKlDvJgHYY7SCmphAGWMGgnEaNulqlMjmfK80x6eYYHPXzYsYJ4OzCFoJMogViPQq63GyRSUosCBh1vl1drNBqNRvPOYF8upm+88QaWZfHQQw/x8MMP88gjj2hxqNFoNJr9IQTRY48w/aPfQ8e1OXXuGp/8g6fJ1Vvd51FGNakBq+2luQgmW+Ck1KKQQcfj7uIQUSq5uzjEfQPDfGx4iu+dOMzp4TFSM1mrIM4UEN85CMu313XbFAadRLWYzrQbhGlKimQl8G/L+023GyRyb6Y4rTjipcrSbVmHRqPRaN5b7EsgPvfcc/zSL/0SJ0+e5Mtf/jJ/8S/+RT74wQ/y1/7aX+NXfuVXeOmll27TMjUajUbzXmPwzlPc+MnPsjQ+yFC5zqd//9scvDKnniyqVlKxqKI1ZGatdbMeR9xTHOKhwVFOD41xKJvHMy0eGBwlZ9k4hkFqJ4jEhEggLg4hWg7ixQm40T/O4lZgCYHfrSBeaFbJWyov8obfuuXvVQ59ni0vUAmDPW2/4Lc5Wy9T2+P2Go1Go3n/sq8W00wmw2OPPcZjjz0GQBRFPPXUU/zKr/wK//pf/2uEEJw9e/a2LFSj0Wg07z3GRsfo/OTnePWPv8Z9r17mI19/iUtzK7x05FGghKh3WzMzKtoiSlMcw+BQtoBnWnxgaHzLPi1hgB2CD0wPICITmQ8QTRemi8ip5m05FlMY+GlCO45oxCF508Y2JLPtJlGa7hgJshOV0MczrV7MCMC1Vp2loNNrad2NpaDDUtBhPmhvcaTVaDQajWY9+zapKZfLPPfcc70/b7zxBmmacurUKW1So9FoNJp9k7Edcp/+BL8/XODTT7/OifPTDC/U+K77QzTtrgNot4IYpAmeYZK17G33J4RAdLMQjUtDAMi7l+GlCWV8k7LP/pltuFxCzBSRH5wFL8EyBHGiWmDDJMW2TRxgNmox12lxOFfY91ukUvLk4ix+GnNHfpAB26HkuLzRqBKmyZ4EopSSG50mhhBcada4U7uqajQajWYH9iUQP/OZz3D9+nVM0+Tuu+/mQx/6ED//8z/P6dOnKZVKt2mJGo1Go3mvM+pmOHTfPfzHgsefffYCk/Nl/oz4b7w88HGuZu/uVRDDNGHQ8XbNLzSdtdk8OeDDQKDmGleyyKbTa2G9aSou4tIgAoFcysGhOqYQJFJSjQJSZG+NrjB4rbbMwWx+326mjTikGgV4hslL1SVSKbENgzBNyBg27Xh3gdiKI+pRyISXZcFv04jCvWVYajQajeZ9yb4E4g/+4A/ygQ98gIceeohM5vYO+2s0Go3m/cWJ/AC1qQP85scdPnJuhtOvXuV09WtMBFd4LjlOiEuQJHvKL7THAvwVD2OijTxW6RnfsJKFuruzQJSo7Tc/tphTGYu5EHFmDNHdSKxkkIfqmMIgkSm1KAC5toNh1+OG3+JGp8XB7PYzkC9Wlhh2vA2VxkoYkKQpg16WQdRxh2mClFCNAurR7kK3EgVEMiVv2VTDgMWgowWiRqPRaLZlXwLxb/7Nv3m71qHRaDSa9zlCCE4PjTPguDxpQF3ewYfOPsWBzlWGf/cGz37sAWaGMgzYuwvEwqGIq4VzTGZyvcdkMUAAou4iaUDZg6YDh+qwmEMsZVXuYiUDmQj5gRuqFVWCOD+MuD6g9uPEiNBCjrSgnFHbd9tWBYJaGLK+UGgKA1sYnKmtcCCT29b5e67TJCXdIBDLob9le8dQ8R1OYlCPdxeI5cDviVlTCBb9NifyA7u+TqPRaDTvT/Y9gzg9Pc2///f/nhdeeIFqtUqpVOL06dP87M/+LIcOHboda9RoNBrN+4iDmTyuYbIwmeNPVv4CDwRPcrx8gY//yXMUTk7ifu+BXffhmRYpcuODxa6DZ10JTHFuBNFySHMR4swoIlk3mBiZyIWcita4NoC4PoC0EyUWu+JQPrCIeHlcta3WXSgFgCRIE6xNom7Y8ZjpNJn32xtE6ypSShpxhPA7Gx6f67TImP3zHG3DpBmFpFJu27oqpeRau9HbR86yme00d3yNRqPRaN7f7GtM/7XXXuOHf/iH+fKXv8x9993Hj/zIj3Dffffx5S9/mR/5kR/hzJkzt2udGo1Go3mf4JkWRduhVaoTj8Q8/+EH+PYnHyFwbR66OMfJ//JHGPM7Z/o5/RxD3USJvKYDoYFoqTZL8boSh3KkRfroDdKH5tXjV0uQgrg2gEQiT88hPzJDet8i8sEFMCVyqCvoyqtjF4IwTXpVvlUsw8BAcLa+0ne9QZoQpgmVMCBK1fykn8SUQ5+s2f9eri0MQpkSpMm256EaBayEPgVLHWvOsqhHoWqD1Wg0Go2mD/uqIP6rf/WvuOeee/iVX/mVDTOInU6Hv/pX/yr/6l/9K37913/9li9yP/zGb/wG/+//+/+ytLTE3XffzT/6R/+IBx544G1dk0aj0Wj2x4SX4/VghdJpJdaeamW5+P2P8snvvsHhuTLWf/htwo89Svjhh6BPhc0xTKTcVCETwICPWM4hp4trD/vqq1AeqsOgD1IZ24iaBy+Pq4rhaAsK3XbOyXUxGcNtuDCs3EwP1ZFAmKa4fQTqsOtyrdVgOegw4m6c4+8kMWGaAinNOMQ1TM42KvhJwojj9T1HtmEQpSmdJN4QgbGeBb9Nsi5iwxQGqYRyGDC4zX41Go1G8/5mXxXEV199lZ/7uZ/bYlCTyWT4K3/lr/DKK6/c0sXtlz/8wz/kf//f/3d+/ud/ni984Qvceeed/NzP/RzlcvltXZdGo9Fo9sew45F0O0TjNMUxTRZtkyf/zCP43/txMATuN54h++u/jbG4tSpnGwZCyC2Py2FV8evNE3a3kU4M3ecQIE+WkUIillU7qDxc67/QQoScbCACC3F2BANVDdxcQQQlWhPgUnPrvvwkQSIBSSUM+OriDM+XFxhy3G1nFldbRHeKurjaquNtEtCmgEW/ve1rAC40KrxaXd5xG41Go9G8N9mXQHRdl2q12ve5Wq2G67694bu/+qu/yl/4C3+Bz3/+85w8eZL/7X/733Bdly984Qtv67o0Go1Gsz+KtgNIpJREUlXA7hsYYszLEZ2+j9bP/hjxwQnM+WWyv/rfcb71HCRrrZaqgthnxyNKGIlYiSZ5rKLaRw/WNzqXDvnID8wi86Eyoxn0t12rvHMZ6caIhTyO7+Inca9it5lB2+FCs0I7jjY83kliFZmB4FKzxlynxcFMntwOeY/rX9uPahgw77e753KNrGUx57e23Z+fxLxYWeJMvUy0Q/uqRqPRaN6b7EsgPvHEE/yf/+f/yXPPPbfh8eeee45//a//NZ/85Cdv6eL2QxiGnDlzho9+9KO9xwzD4LHHHuOll15629al0Wg0mv1TtB08y8TvzublTIvHRqb44PAEAHKoROfHfxj/ez4KhoH7zWfJ/offxlhQVS9HGBhCkG5WidkYmVOtohIJR2rIj1+H49WtixgIkR+ZQT68sDX2Yj22hO4sohvtHB+Rs2w6ccKFxsb385MYKSWuYbAUdMiY5p5MZCQSP9ko4qI0QUrJK7VlEpluqWa6hkkrjvC3EZZXmnWqUUAzCpnfpdKo0Wg0mvce+5pB/IVf+AX+p//pf+Inf/InGRoaYnh4mHK5zMrKCg8//DD/4B/8g9u1zl2pVCokScLIyMiGx4eHh7l27dpN7dMw3jkOb6treSetSfPeQH+2NLeDN/u5yho2JcejGYXEUjLquFimsfFLyzBJPvQgnVNHcb/4VczpObK/9ltEHz2N+6H7sUyDBIkpDKphgGuYZCwLRtvQciAXIWzATtlZAe4BWxnLFKRHPlfcti0UVC7iC9Uliq7bi5topTGWYZC3bG74LY7lBnbcxypZ0+K12jIF2+FYvkgjCvnS3DXGvAwXm1XGvOyW/bimRTkK6KQxtTjkervBh7rCuxVHvFZfYcB28dOYy60a19p1ht0M9w4M3+zZuWXo31ea24H+XGluB+/mz9W+BOLg4CD/+T//Z77xjW/w6quvsrS0xOjoKA8++CAf+9jHbtca3xRSyj19yW7GsgyGh7cPNH67GBzcao+u0dwK9GdLczt4M5+rk+EQLy0vYgKHh0vb/04eziP/1k+QfPsF4j/4Bs43n2X04hWOfeAknQN5LGGQyBBfpAgrpXQ0IrgqsSdCnPytGY2I8oII8EwPq6DEYtoyEZkEsalXJ4eLE/i83Frhnqkx8rZN2hQU8x6jmSyj7P27J5d3WfE7PNtc5OjYIL4PbSNhJmozlM8yuMkzYJUKIVbeoe53mK23yZU8LGHwzPQ1QivlcL5IJ4mZ7rTw44Q7XfMd9Z2of19pbgf6c6W5HbwbP1d7Eoi+7/P1r3+d2dlZRkdH+chHPsInPvGJ2722fTE4OIhpmiwvbxyqL5fLW6qKeyGOU+r1zu4bvkUYhmBwMEel0iJN+w3WaDQ3h/5saW4Ht+JzZQWSVke1g6admJWV5s4vuOdOxOQE7he/hnn9Bt//e8ucu+Mg33jgKGPFAY7nB/jqwjRuRiAeC4gyMVHzFn3mpYMAgkZK0AxgxUM8P448UYET1S2b2wjmOy3emFviaK7IXKVBnCa0kv3HT3gYLLdbvDq7QDnsIMOUIc+DBFrN/vvr+BGzyzWm2w0WW00uzC3TjCNeXJhnysvRbqnznk8t8obFtXKV2XwVbxu31DfLgt/GM00G7J0Fu/59pbkd6M+V5nbwTvxcFYsZbLt/tu56dv1NPz09zU//9E8zOzvbeyyfz/N//V//1zuqaug4Dvfeey/f+c53+NSnPgVAmqY89dRT/OW//Jdvap/vlB/metJUviPXpXn3oz9bmtvBm/lcFUwHKSVI8IS1t/0MFGn/pc9ivXIO40++xd3nZzg0vUj5Ux/GG5nCNUyCJMHtziHyJj/yldAnZ9k4dqKaVENDda5c78ZoLGSRxyt9X2tKwUyzwZSbox3HeIapjvcmyJo2b9QrdNKYvGntuh8TWOy0WfI7+HHCXLvF9XaTrGFhCtF7/eqalpOYFd9nMnPr74SfrZX5bnmeI9kinxw/uKfX6N9XmtuB/lxpbgfvxs/VriY1/8f/8X9gGAa/8Ru/wcsvv8wf/MEfcPfdd/NP/sk/eSvWty9+5md+hv/yX/4LX/jCF7h06RL/6//6v+L7Pj/6oz/6di9No9FoNPukaDvKjVSgZgf3ihDED97NVz73OK8dHiHfCTn8B99g8AtfYSJMd4yF2A+NKCRIU1YCH+yuUUxkQmDCclYtpemq/+9Dwba43mnSiEPCNNnW+XQvFG2bahRsn4kYmBCvjVu4hslS2KGTxAw5LpeadZaCNiVnawVPCIEAyuH2Tq43y3LQ4bvleRzD4Fq7TuU2vIdGo9Fo9seu30Yvvvgif/tv/21Onz6N67qcOHGCf/pP/ylzc3MsLi6+FWvcMz/wAz/AL/zCL/Bv/+2/5Yd/+Ic5e/Ys//7f/3uGhobe7qVpNBqNZp9kTIuCZeMIg+xNtDYeHB3H/+z3UPvz309aKmBfuMpnf+873HH2GiJNb2pNq66ocZpSjQKOZAskSHC6AjE0YS6PkKKXsUi5/xxg1rRpxSHfXLpBlKZY+5iXF2eHES9M9CqgpjAQgCXE1rn70EB8+xDi1fHeQ063kiqlpGg7VCIfEwNzmzU4hslMu8mLlUVudHZp9d0Hc50WcZoy5HjEMuVKq37L9q3RaDSam2PXb9ylpSUOHTq04bHDhw+rlpPlZcbGxm7b4m6Gn/iJn+AnfuIn3u5laDQajeYWMOpm6CTJTc2+rTqEUhikdeQAzreex/nuSzz+4iWqVxd54cP3MDc60IuB6CQxqZSEaUInSRj3MpjrHGYW/A5+GpM1LTpJzB2FQR4qjXKt3SAyY1yAyEAsqjZMeayCuDyEWMkgJ7eKKkMILGGyFHSYyuT2bqjWthAz6thkYIKnxOmkl+2/fdVDJAZyOaMqiW6Ca5hUoxAhBI5h4gqjb/VwlZxpc73T4I1GhcdGJpnKvHnDmlRKLrdq5LrV4ZLtcLZe5o7CIPk95D9qNBqN5vZw8/0sGo1Go9HcZkbcDEOOu21la8/YNuEnP8z0j/8QsyNFSpUGn/qj73L/ky8Q1OqEacJy4BOmKVnLZtj1KIdrBi8LQYesZfHE2EEypsWdhUE+OjLJgO0w6Lg0RdfULDKhbSONFA7XVdbiSmbbWcdxL8OBTG7745vLqUrhQg66RU8xW1x73l8TzqJf9RAQFU/9FwFLSkRahkEniXqV2TEvuyUvcT1Zy2LY9hhy3FvWaloOfVYCn4KlsiPzlkMnjnmluoSfxCzqDEaNRqN5W9jTLdmf+7mfwzS3fnH89E//9JbHn3rqqVuzMo1Go9G87zmQyZO7hdWkzNQEv/k9D/PA9AqPPH+eB64vc+dchWfuO0rmgVN8z+RRhBBcbdX5yvx1UilJpSROEz42fpjJTI4j2QK2YfSqi4eyBV4MFhmyEvAt1V6aC1U24qCPqGSQi1kY37/gEVcHEU0HsZJVYjMXbZxp7FhQ2sX5tOat7W8xhzzYAOBItrivttasZZHIlEoY3HSE1CqJTDnfqJIisdbNXo66Gc7VK0y3m/hJwhNjBziSK+6wJ41Go9HcanYViH/9r//1t2IdGo1Go9FsoWA7FGznlu3PMy0GHI/Xj4zyxuQgHzlznbvOXePjL16ic30Z+X0uyeEpDmbyjLoZyqFPKiVTmTwT3RbOze2u4263tdNOEHFXvGUiAOTRKqKSQVwZRI61YTtNFRlQ9mD9NpGApo10YigG0HQQLXUupJAIKTZUEPuSCKi7yFUTnXJGvZed3pQpjmuaVMOQThKTvUnhLqXkuyvznKmtMOZubIt1TbPbcipxDME3l29QsB2GHK//zjQajUZzy9ECUaPRaDTvK45kCzxbXkCYgqXHH2XmjsPc+9SrHFiswm/8LtE9Jwk++RFOD43x9aVZOknM3cWhbStmk5kcp/IlamaES1fMZrpOqcMdZCFANFzkSgZG+ufriislxLUS6UNzMNrdpu4hEMghH3m/MoWTLVu1rBoScXYU4ds7J3XUXFXRHPTBShA3ishyBsZb+z9xgC0MwjShGUc7CkQ/ialFIeN95iIbccT5RpUxN4vbpztpfRbiTLvJdKuhBaJGo9G8hegZRI1Go9G8rxj3siCUScqQ4zF15DAXf/RTdH74e0jzOezXL5L7//0nTjx7lh8cPsCjg+Mc2MGUxRCC00PjCGfNGVVmVQURocxqQInAbWkpsSXWt4NW1d/lwLqZv1wEh+sw0G0r7exyn3d1HyUfOaT2szqTeDOoOUdo7xIVcqFR5UtzVzlXL2/JZGxEIbFM+4rDzeQsi2vtxk2v93ZxoVHheuudty6NRqO5FezfFk6j0Wg0mncxw26GvOXQiqOuyYzHkVyReGic+ORRnKdewHnmZdzvPM/Bl88y+vgHiUsjO+4zZ9k4brj2QGadgBprI3MhoppBVjwY7GPystoq2ljXTlvtVtJKfbb34o2v2wbRzWNksLMWxbFN7MZekVLQjKNtn0+l5GKzRixTnlqeY8jxGFtXSazH4bamPZvJWTbl0KcehRRvYavxm+VKq45jmBzOFTY8/kp1mclMjlH3zZ1jjUajeTvRFUSNRqPRvK+wDYPDmTxZ09oqOhyb8PEP0fqrf5HonlMYrTaZP3yS7K/9Fua12R33a7rrVE9mnYASII9V1V+3qyL2BGJXFKZAzVNuqPlw6/Z2irRS9brtxJZvImoe0ougEIKXIDORmmMMb/7r3zYE1R2cTJeCDuWww4SXJYUtYnIl6GwwptkJxzCJ05Q5v8Wr1WUaUZ9z8RaTSEk58HsZjqvUooCXq0tcb+8tyzGRKc+uzON341WutGq8Wl1mOejfhqzRaDRvFVogajQajeZ9x6FcgSO5woacw/XIgQL+D38PrZ/6HMmBccyFZbL/6ffw/vsfIVaqfV+zYUwus6kFc7ypxNlKFpqbZvdi0TO3EYEFS1nEUwcRiaGqh9t9U3uR2ibeZoNupMUG45uhrvio7FDhkqhYjaT/zKVjmBsiQFZJpaQc+lxt1ZAITGEgkTQ3ibrl0MfbIVJjM5YheLW6wlMrcyy9ReIp7Rrp9BOkrTjCTxPaSUw1WjsPl5t1KmHA9VaDVO5eIq1HIRebNeb9NktBhycXZ3lyaYZrrd0F5oLf5k8XppnrtEilxE9irrRqRGmyvwPVaDSaPugWU41Go9G87ziULXAoW9h1u/TAOO2f/FGss5dwn3wa+8JVrEvXiR66m/CjjyLza62TjifoANKNwZTUogA/TZTLqQHyUB1xfhhxfQB5z/Lam2xqExWvjCFSAznYQd61sv3ivBiarppDtLcKGbGYA0COrRnSyEEfMVtEVDzkdkY1VwcwLg4jD1eRd5a3PJ0xTaphQC0KeoYyqZQ8X17k1doyCZKh7uOOMCivE1F+EtOIQgr7cEAdtD1WQh8QtHZobb2VNKKQc/UKUZrysdGpLc8lUiKRrIQ+i0GHZhRyqVVj1M1Q6Z6bwV2MdepRSCXymWk3yFo2iZQM2d6eRHA59Hm9XuZqq07BcpBIqlHAfQPDfHh4kjjd24ynRqPR9ENXEDUajUaj2QkhiO85Seuv/g8ET3wIbAvnhTPkfvk3cL7+DARKnDmr5pvd9tJ6FBGl6ZpJy1RDtYzO5VXUxCpdgSi7vaI9cfjonDKl2Y7MDnOILQsqGRVvsX6GcfXvdXfra0BVM6+V1N/n86rVdROeaRGmCa9W18TrmdoKL1UXGXJcDq3LrnRNk/K6dtR6FBKkCe4+KoiuaTKVyeEaBrVol8zHW0QlCvDTmPONCvOdjUK6EYdIKbGFwYV6haeW53ittkIniSnZDimS5WD7FtzZdpNEptSjkDiVXG83udSsUbRsXNOkEgYkss+JX0c1DChYFuNuBpAYwKSX5fVamd+dvcTv37j8lolpjUbz3kMLRI1Go9Fo9oJlEX7kEZr/448TfvBBSFPc7zxP7pd+A/uZl8llYyXyigGdJMYzTbKmveb4aacw1USkBuL88Nrs4KrAW2deI49Xdl2O7BrViPVibyEH0wXEuREVb3GktjF70YuVSG3Z6v2XMxvnEWeKiKjb7hpasJCHmQLEG9tNx7yMEk9+iyhNOFMvM2C7WzIiXcNULZndc9CMIwRi28iQnXAMg0qf1tZ+pFIy3W5scVDdK8tBB0sYCATnm9UNz5XDAMsQ5C2ba+0GBctmKpNjysshhMAWBrPbOK92kpjvlue50WmxFHQo2Q7tJKIWBeQtG88w8bsxIjuxEvq4hollGBS7WaGOYTLmZgiThFqksio1Go3mZtACUaPRaDSa/ZD1CP7MY7T+2l8iuv9OhB/g/el3eOB3f5fBka8jj5epRAHHcgNMZXIbLvblsQrSjRE3CtA1rBGrFcSxFtJKkMNtGNq+AgUqbL6aq6nXXxlEXBiC0EC8MoZxbhRRziKzIRypAqq181qroQRsNlIzj4tZjBcnEee6Dq1tC3F5EInsCVTjtTGMs6MwXdzw/k63AniuXmHeb9OM+7eNOoZJmKa0YiVW5jotDPYvDlf3papuO1fXABb9Nt9dmadykxXH2U6TrGlSsK0tZjRLQRvXsMhZNoezhS1GR0Xb4Xq7Sb3P/GItDFgOOky3GywHHTKmhSUMLCEwhMAyDFIpaUbbC8TV6qPTpwrrmiYlx0UiCfU8okajuUm0QNRoNBqN5iaQAwX8H/oU7Z/9MaJTR7EbLf7My2f43j/4JkenlzmWLXAgkydK11WxvAT58DzSSJWjaSLWKoj5EPmxaeRD87u+dyuJqWTrtB6YRloJ4mpJVf8QSDdG2gny7uXet3wjjrAMQ1WVum2rYrYr+lYykAjEK+PK9OZYFXm0ijTXRJHoY2oz7HhcbdV5o1HBEP2rgoYQgKQVR4Rpoipu9t7nD9ejxGZCuyu4EymJNonFIFGi6Hq7wY1Oi0W/ve/3accRtTAka9pkTZtmHPWE5oLfphGHeN35PruPG2vGtAjShEvN2pbnqlFAkCRcbTVoJzGeaTHhZZnwcr1tpJQ04u3dWptxtGubrgDCPQjptwspJYt+e09mPhqN5q1HC0SNRqPRaN4E6egQ/p/7fhb/hx9kdrTIQLXJD3/7dY7/1y9xcHYJA7lxpqwQwmgbkRoqk3A17N6LVRvqpm/mZhz2hM8q1TBk1M3QGWzAIeV6uRqhIe9aRj5xbUMVMkgTRt0M9ThE5rriY0WJPhGbiLMjiIaLLHVU9dCUyEfmSB9UYpaqtyVOwzVNYpky77coWjtnFLaSiAW/TTuJyK1vQ5XA5RLiW4egvvM+bMMgTteqa1daNZ5ZWRPTC36b379xmYvNKpdaNRzD4OoeHEFBtaSuVtwqYUAoE1zTxBCCFBVr8XJ1iT+4cYUoTXd1YS3ZDuca5V5r7doaOxS7baWxTPsKTFOIDe6om2nFEYlMd4kKEe/YCqKfxHxr+QZ/sjCtIz00mncoWiBqNBqNRnMLkIem+MKnHuZLjz/A0mABZ2GZsS/8CT/+1VcoXJ2DddUSOaIqW2IpC76lWj+9rTNjUkrKYUAlCphpN5nrtKhHIYZQIfJRmiInm2pfqYEUci3KYt0+kDDqZohTuVZBXNfqKeaUo6u8Y2XtyqAUqIiMkq8qi42tAm7I9mhF8UbRtwlTCGY7Ta616lsqjeL1UYxLQ4iOjbg8uNPp7b6AnvlKOfCZ71YIW3HEt5ZusBx0eHplnlYUMeFlWfA7u87zAVxu1fjW0g0A6nG4oQnWFQaXWjVeqiwxYDtMdmcNdyJv2bTiiEV/7WeRSsmC3yJrWpg7NNp6psmSv32LcSuOd23SVS2me68gRmlKJfR3Nce5FZyrV3i9XqYZh2vzuRqN5h2FjrnQaDQajeYW4BgGpmlwfqLEyuGP8Lm2gfPNZxlZXOEHv/4Ky69f58zDp1icHIaRthKFS1mITHCSvrdsO0lC1rL59PhhyqFPOfC51m5wMJNnwssy22lCLkIWAkTDVeLQ2ljqC1JVDburOMjFZpXA67DaMCqtFNHNUZQDPgxsbW2UJR9RzqpqpwDyYc/4JmtZHLF2jgsZdjJcbdVJUsmwuy76oW0hbhSQTlckLGWhbUF2B9EgoRVFDAmb5aBDO4noJDGXmzVWwg5HsgWWw4CsZeGZFsuhz6LfJp8f2HaXqZScq5epR6oyt9I1qFklZ9mqHRLZc2fdjVUB2VzXKtqIQlpJzKjjkbfszQXZHhnTohL5NKOQvL1VlNejYIO474eJ6LXi7sZsu8k3l2fxk4SPDE9yZ3GQRhSSt+ybMhPaiShNudCsUrIdGlGsnVbfwTSjkDm/DUhOFfZw80bznkILRI1Go9FobgGWYWALg3oSUHJc4oMHiU8dhXOXiJ98ipGlKo9/+VmWxwY589BJlgbGETUl1eRYm+l2g6xpbxBR7SRi1M0y7qk/AKe7VZeZdrMnE+TBOuLsaN9sw3YSM+R4DDoeU5k8s3ETD6lExlgTuZRDRCby0DbtmF13VXFhCHFBkD44ryqLe8Q2DA5m8kTpppbKhe7c3YEGUkiMy0MwXeybvbiKZRhUAp8Jx6MahfhpQitW7asZ00IIwai7MX9wNxGy6LeZ77QxDYNmFPUcQlfJmhb1KGTM3TqHueNxC2NDxMdK6BOna62h21cQLZYCn/PNKo8Mjm15fiX0cXZsL1XnaS/VuXYc8/TKPGGS4BgGr9aWKdg2T63M8+HhCQ5k8rvuYz/M+y2qUcABL4efJFTCnc2YNG8PldDnT+anqUYBjmEy6mYpOdtE42jek+gWU41Go9FobhEZ08JPk16APELA3Se5+uM/xO9/5C5qpTwjixUe//KzPH7j9xj3ryMPV5B3LSOE2BJN4Kcpk5nshsc80+r96XGgQfrhGZjaGq/QSWKmuhf6BzI5QiPptbPKgQB5oowcb8J4s/9BDQTKVKcracR2GYq7sHneTiyoNcmJJhzsZkTOFNdmMvvgGSY3Wk3qUaDm+6SkFoUsdR1BN2MiaCXbC8Q4TTnfqKpZQ5myEvo04mhDyLwQgslMbpeZv604hkm5G8vRSWJerCyR2WN4/aDj8np9ZUt7rKpw+lviRDZjCUF7h+Ne5ZXaEuXQZ9TNMGi7VMKAp1bmmW43qOyQ5bhfOonKlHyjUcHCwBACxzCphNub8WjeesI04XqrwZOLszSTkEPZPJFMON/YPXZH895CC0SNRqPRaG4RnmliCWNLK+KRfJHlEwf5r9//AZ56/CHqAzlGq8t8bOX3+dT5LzJ1bQ4h2VJWklIy6GysiK2iBJFQM4YCZX7T5/USGOlW1YYcZTYji4FqcS35cKiBfGBx+ysCUyIfnic93q3stW/OhXQDbUuZ4uRCNRPpJnCkpjIiXxtFPD8Bl0pbjHEKts1K4HO11SBFIoTBjU6TThL3FV/KubW/WYufxDy5OMO5RpkR10OiKlxBsrND6F7xTJN6HBKlCS9XlyiHHYa3+VluJm/ZdJKEy5syGOvdfMPdhKYpDNrxzhVEP4m52Kwx5LiI7mxoyXaohAFDttub77wVzLSbfG1hhqutBsOuusHgGgaNOHxL5h41e+M7S3P88fw16lHIhKtuTA3ZHucaFRp9Yls07120QNRoNBqN5haRNS0cwyRjbazw2IbJfQPDNJKI6aMT/PGPfJzvPPEwlaEiQyt1PvrkS/zUl57nniuLpN0qYpgm2IbBoN2/YpfpitFohwvsdhKTNe1ee+qg45G1bNon55GPzkF+jzNgQ37PLZXWmxSIkYF4rds6Od7qiVp5rIr0IkQ1gyhnVcvp9Y35i6ZQOYHzfgsB2EJQCQNSJKbYekljie1n8ZaCDldadQ5kcjiGOpcrgQ/IbjzHm8MxTIIkYcHvcKFRZcTN7Gumr2jZnKtXiNa5kdaicNtjXY8lBGGa7ii+Fv0OnTgmu64aWbAdDmZyau4y6GyJEdlM3H2PREqeWr7B9dbWCjaoc+0YBge75xq65ydNehmZm4nSlDcalbc9CmPRb/NiZek9L2TDNGHWbzLsuIx7a5/VrGURpemOzrqa9x5aIGo0Go1Gc4vIWBaOYWy46F7laK5I0XZpxBEIwezRCf7kzz7GN77nURZGSwzV23zmmTf4gd/+Jodfv8Jyq8Ww421rjOKZ6r12uoivRyGHs/neRbltGEx4WZqm35st3DN2irQSVUF8E9fs4pUxRM1DDvjIw9W1J0yJvG8ROdYivWNZtbWeH4bmxuMvdKtcljDwTJNOEm9r2mIJY0vb7ip+kmAIemLL6wqWWyVHTCGQSC41qwRJ0rcFdieKlkMtDpnprLX+VsLdDWpAVU5jmfZ1MlWiTjLdbmAJo69ozZgWnSSmtoMoiNKEry3O8Cfz07xUWeLF6hJz/tY2ZSklc36L7KabJpahxP52Ar4S+rxQWWS63ejtZ77T2vbnebt4o1Hh28s3+Pby3C0TiSuBMk96J0WRVMIAf9vPqdwStaN5b6MFokaj0Wg0twjPULOBWXOrqPNMizsLg9TXt2oJwcLBUX7v04/wx5/5APMHRim0fD70zDn+xz98jh+4WkaE/S+gDSHIWfaOcQaxlBzMbnQZncrkCHe50F0IOtzobDK8EUAuUvmN/g5iJzARTx1AXBzcKiQTAeUM0omRj8yBvWmDwQD54AIcqSOPVZUYWsxt2GTAcVjpzhy6hkk9CrfNJTSFsW0lbbMYdE2TRhxh71KdIwWq7p5FciUMdjWV6YcQAlcYvFGvqDZiVDVrtwxGUMcdpylhn4v65yoL/NHcVa61GxTt/jcfDCGQEub9NucblZ6Ia3Y/u6mUPFte4EqrzkynyXOVBVzD7NuW2oojGlHYV3hICc1tZiXbSUw58HmpusRsu8mfLk7zxbkrvFxZ2vX4UympRcGOJjjtONqSU7l1m5irrTpjbobz9cotabtdCXz+aP4qv3/jCn+6MH1LRGctCnij/ubmBMuhj5Ry2yq3/ybFbDUMeLa8QCJVpMrZ2krvc61556FdTDUajUajuUU4hknOtDaYnKznWK7Iy9UlNee2bptIpvgHxjh/7Ai//8Y5PnN5iUPXFnC/8Szyuy8TPXQP4aP3I4sbXSWLtkN1m4vgVhyRsUzG3I0mN7u5EUZpStIVnetdNwHIRlDzVJtpZpuL6xt5RNOFpguBibx3ee25poNAIIvBljiOLYy24dIQYiWLPF7tPWwaBkdzRSwEEvDTeItz6SqWIYjjlCBJyVobRVozDrHWXQwrsRkwvul8bWF6AOP8MOn9CzCxTkQnQhnsrGvbtYRgJfS3Xd9uDDkes50WS0GHQcdjJfT3ZHRjCkEqJUGfi/py4Peqh4OZXJ9Xr+4DXqws0oojJjN5Rl2PmXaTz0wcIUVyrl5hwsvgGCaJTIlTST0KacfxhmphJQqIZdqrYq9HCJhuN1gJfB4ZHMVet007jnAMkwW/zZfmr2EgKNku5xoVThZKjOzgKnuhWeWp5Tkcw+T7J49smeOVUvKNpVnqcciDpVFG3Ay5eOvPaM5v4ScJo26GejfX8s04uyYy5bnyAmGaMOFlmWk3udSscSpfelORIkt+h+cri4x6GTVn3Hs/SSrlFoOoftxoN7f9vWUK0YtsacXRnuNe1nO5VeP58iI50+Jqq86s3yJr2d2bOAnHd4ii0bz1aIGo0Wg0Gs0tImtZjHnbC4yS43IsV+RCs8rBdReaUZpSsFwGbIfO+DC1+x9kuJPgPP0i1pkLON99CfvZV4jvOUn4wQdJx0cAJRA3zyCGaYItDFZCn0eHxre09uUtR80ubo6d6LIc+BzNFWglMbUwZNj1epUFmeuGyLdtoLPltUgQc6piKe0EcaOIPFZdyzZsdHP9CnswvMiHKiOx6kJogBTgqWN1DFOtCTiVL227C0ustlomZDdd8jSjaEPeoSEEBzP5XVtBRVUJbLGcRa4TiOLsCGKuQPrBWRhQrZl5y6YahX3FEYGpqpBeV8SlqGM014SzZRgI4EKjyslCiU4SU7J3EbC9BbGl/VhKSSOOGHU98tbWjMX1jLoZ/DRhxPFYCDosB21SqQTf6nJXj8sUBoahBGk9CjZ85qphoI6rDwO2w+VmDQkczw8wuk701aIQ2xCMOFnEulbgehzyanWFT44f3HbtK34HKSXtJKIaBT2BmEo1X7oYdJjttPAMk28uzSIQlKoe+dTivoFhBmyXZhTyRqOC2/03kjNNrrfrPFQauWkxd6PTYrrTYNLLYgpB0bZ5rrzAa7UVDmbyfHB44qb224gj5v0Wr9fKfGx0qvf4hUaFRb/NJ8a2P1eg2oUXgk7f1nhQ/44a3ZzQry3OcHpwjMkdbi5s3X/KxUYVSwheqC6pmwimyVPLc7SSmDE3+54TiKmULPsdhrm1UTFvFVogajQajUZziziQye9aYXhocJSloMOC32HcUxfEKZK8rTIQT+VLHMrmSXMG/g99CvHEh7Cffw3nhTPYr53Hfu088dGDhB96kNHxEpYwWPTbjHlZOknMot8hRTLqZrinOLTl/bOm1Zu3a8URlSjkWE6JOj+JQcA9xWGqUcCTi7O0khjbEEx6OeU4CojWNkHvTQfRcpD5QImk2SK0nJ5AFE0lSuReBKIARjqIGwX41mFIBXx8mv1cbxlCVRn7zXo1k2iLQO5VRkIDYmNN2G46RgAqyhEWAfgmzKuFicUssicQnW2FmHhhUlVYP34d8coYLCvhJx+d2zAfOui4XGrWmO00MYRQBjornqrg9lvf6v4RWyqIQZoQpgnFXcQhKHGa756fie5Nj9lOi0o3umOzRFoVTdUoYGKdeLjht/DM/hWsvGWTt2xmOk1acbRBIFYiX5kHbfoZDdous34DP4m3jftYDlUUSCeJWfZ9juWU+HiuvICfxBhCTXKuzxy1HIsb1QYz7SamEMQyxUD0/o3mLJtyGNCII4r27uevHyqbUvTE7oDtshL4NKKQS2mNhzdVUfdKJexQtBwuNqvcOzDUE8Qz7SaznRYPReG2a27HES9UlmhEIaVs/39ctmHQjENaccxy0OFau74vgTjvt6jHIQcyOZa7FXXPMFkKOhvcbHczX3qr2e+awjThmZUFHh0aoxIGPFdd5OTk8G1c4e1DC0SNRqPRaN5CBmyXT4we4A/nrq61mkoVizBguxsqAAAynyN8/EOEH3kE+5VzOM++jHV1BuvqDHeODjH00F387pBNM45oxREn8gOMeVmGHa/vBbQhBCVHXZj6aYLbNbpZraw8XBpjoutkOeS4DDkeV9tdB9Nst32yveliMxFq5nClK3ImmyC6IqJlw2h3u9UKYn5vlvlyuI24UUAk6iJNNhwY2f/M1uY5zURK2nHcqw5tRrw0AQ0H+ZGZjSIsEb2YD+HbyLYFqaHWuFolW8nCqV3mwUJjTSxfG0Asr7vYXskg1wnEjGlRi0LCNGHSy0LdwXhhCikkHKgjC6Gq2iZCzXU66lglcosw9pOEaHPb8D7wDLPnINtvFtIWBsvBWmXZT2KWgvbuLYlStS6ukkpJPexfefUMk5XQpxoGTGS2fr7DNKEeh+S6n/0bfhMYpxoGnK1X8NMIUxgbIkeEEHiWxbiXJU4TUqnaKte72TqGSSxTloPOTQvEThxvmV1drdDPdlosBju3sCYyZdHvbBFnlVAJwHocUg5VxTRMExaCNo04ZKbd4J6B/kLl+coiZ+tlJjPZbd17baHiYupRSJAkXG7Weag0umse5ypXW3VMlCHS+psAY16WOE1ZCn1acbzjea1FAQt+m5P50i1xGd6Neb/FS5UlPjV+qPc5rIQ+RdvF3Ob9F/w2F5pVxr0s5bBDMwp5t45ZaoGo0Wg0Gs1bzJiXZcLLshx0cE11wZQxdvlKdmyiR+8neuRerPNXcL77EuaNRSa+8h1+OuPy4vFxXjkxyZGRKU4VSjvuasjxmOu0kEjVThdHhGnCwWyehwaVmivYDj84dYxUSmY6TcI0wcmCNFNVPWtZkIshBfHyOGJVHFoJTDZ7YlC0HHVNLIGmizTSNaHZpRoG2MbW/EhG2siij6h3L+bbNrB/u/3NQilME2KZku93ziMDUeu+3/lh5EMLa891ZyhXEc9PIQK1Dykk2InKdwxMle24HY21C2FxeVC9fqyJWMyvVSjXMbG+bbnebXGVAmYGNlbyXp5ADrfV+S22tjhP+kmMhG0vcHcja1mshD4C+s5CZkyLeb/da19eCX38JGHY3nkG0zKMDYYy7SQmSJMt7dGgxJxAmapMbBJKqZQ0ooggSRiyXQwEtSikHUecb1SIZMKhTKGbJdn/35spDMxtTo+JYDFo33Q7ZCNWbbP9jskQghvtJs0owjUMjvZ5jxudFl9fmuUDg+PcWVSfGz+JaScRBcvGQFAOfE7kByiHPp0kZshRc5sSGHa8DecslZL5TpuS7fZvg+5iGQZRHLMSdjCFoBVHzPmtXmV2J9pxxNVWnZLTX/ytd7PdTiBea9X55vINgkRVvzcfQ/NNVHW3Y6HT5lKzxuFsgXsGhpluN/j28g0+PDzJ0Vyx72vmOi1qUcDr9TLtOOLdHIzyzqrlajQajUbzPuFIroifJiRSVe/2ejcewyC+6wTtn/oc7Z/8EaI7juF0Aj585jo/+8VnuPNPvosxO89Ot64HbJeo20I37Ho044hIptw/MLKh7TLXbQEcsB0VvG6ovEIhBeKCqkiIi10jmXxI+pFp5CeuK3HUbUft5Sb6FiI21PzhavahlNzwW6RAOewj/CyJ/NAN0gfm1f+3b+a+dr9KWqwqaf3ax6prJj5iKafaOVfpCjvZrYCKwFKOrNkQjlVhrDuTuNLfQEWcH0K8MNETeUCv8ihPdKuOfQTihn10z2d6xzLpPUvIw1XSB+aVkK56GJeGEK+NYQlBa5NLZyeNeTMZJZ5h4icxfpL0/bzmLZtKGHCtW3Fe9DuA2HVmzzUMKmFInKa8Ua9QjwIlMrdp73MMc4vL7vWWuoBvxCESVSl3TZMwTThbr3CmXmbY8Xruvzd1/KbVPaabQwnE7dttLzZrPLk4w+VWve82C36bWhjw1MocN7rxJ+0kVjdvDBPPNFkIlNNqOfBBQsl2KQc+31q+wdeWZjYE3jfjiFYS7Tp3awuDWCYsBR2EENiGwXR7a6RJP250jX52e4/Nn9X1XGhUSdIUIZQB0Xrm/RZ/NHeVV6vLJLeoXCel5FrXyOnl2jIvVBZ5cnGGJd9n3m/1fU0iU661G0y4WZaDdm9W992KFogajUaj0bwNjLlZDASdJMY2VKbfvhCC5OAk/ue/j8b/+Bd59e4jxJZJ7txlcr/+BbK/9ltYr74B8dZKVs6ySaQkZ9kczw2QSMmQ4zHVZ65ICMGBTL47PwUcrqlA+6UclD2YyyOFRD48pxw8V01WvFhVC1vd3MT61vbSVhKRMSyeGDtA1rJobpOJt9bauocLewnipXHEa6O9h/xNlbTVylq/VjVRVYJQlpQQWDXdgXUzlAdr6pjNFHl6DvnRGeSJCnK4+5rlPkYyEpgpIlayiBlVeZFW0n0vH/IR0ouUE2qyg6Bqdc/jkA8HGsg7yzDeRj60oNblxAgpsGOLzqYIic3nYb8IIUCqCIx+506JL4tXqstEacJ0u0FuD59rxzBpxCFzfounV+Z4vVZGCLYVljnTYiFoE60T/q0k4nKzzvVWY8v2r1SX8Axz31mUm/FMk3oc3nR+YTPaPkYlb9ldsWayHPikm8ROKiXX2w2GHQ8BvFRdIpWy25qrKpAZ06IaBYRpwo1OC9c0lflSNs+RbIFWFPF8ZbG371rXYXY3l1PRneVtdKubWdNi0W9vWWM/LjZqe/rd1oz6t51Hacpi0CFv2QzZLpeb9Q1RQY04ohz6fHdlnqvbCOv9srrPyUwWP455sbKIa5iMexmm282+0SQrgU89CijaDo5h7SmO5p2MFogajUaj0bwNDDouJcdl0fc5livivokLCjFYovHEB3npL38W//sfJxkdwpxfIvPFr5L7v38d5+vPIBprd/xzlsoQHHU9xrwsg47L3YWhbQ0ZRr0MsUyZ7TSpJJ1etUucGUWEFgx11tw4e4sCshEiNlXb5qoJS2mtlbAeRRzPF5nK5LkjP6gcL/uxOgfY2YNArLuIpZwSdh0TSxi0NwulNGHbStqqQDxZQSLXzGhgrbo36Cth+IHZDbEWDHeU6FvMKeOa9TSd3iyl6OZIrp5HeaB7YZsPVQvrTlXElq3WtalNFzdB3r3Sc4h1YodWvLEq046jDS2yN0PWMne84B+0XZYDnz9dmKYS+nuq1rld06RLzRrNOOKG39pxditjWvhJsqGK2ElUC+RK2MFZJyxHnQwlx2Vwl3iXveAaJkGS0IgiptsNLjWqfbeL0mSLUA2ShCBNthVjqy66JcelnURrN2S61KKAahiQt2xGXI8b7RYzbWXus5onuFrhnW43udFpkd907se9LJebNWrd6tZODrObEQjCNMHtCu3VmeedqIUB836LgV3aP20htq241aKg1xLsmRZhmnClVes9Xw9DXMPENU3ON9YyQyuh3xOM1TBgflPFecFvc6PT7JuFuRx0iFMVzTKZyXEgk6doO+Qsm3oUMt9p882lWZ5anmOhm42pWvbVz3HU9W7J5+3tRAtEjUaj0WjeBgwhuLs4xMdHp/jIyNSbykEDuL80wj0j40QP3UP7Z3+M9l/6LNGdxxCdAPc7z5P7f34D73e+jHltlrxpkTEtxtwsGdPig8PjHMv3n6sBNbNYsl2mMnklOiaaqlLlqwtQOd6/7arXZtp0YCmn5vRG1QWVlJIUycGMqtCdKAxgGQadfq1mpkS6MXQsZIqae7w4uLHldC4HMwXE3DqTj+UcphCqPXYdm2fzeqRA3VUir+RDIVTH2LIRFwah6q3NUA76UNh0gWxKOFhXLbjTm+azahsvGKUbw+E66cevwVRXvK9WV7cTiIkA31IOpuY2CspRx2bF1pZzqaIj3tyl35DjMbJDrqMQgikvy7zfJpZy62xbZKhIkFfGesJ7dQ5twW/3TExyfeYP17+Haxg8uTTTE2ntWLVKzvmtDe2vrvnmK4errLriNuKQs/Uyz1YW+35ep9tNnq0sbIgZ8dOYeA+ZhCpXUm5oBQUVP5NIiWUYmMLAMQxerC4y77d7M6Wrv0PO1cuEcmtbp909z6tOtIt+G3cbh9nNSCR+11TLNgziNKW2aY2vVJc4U1vp/X89Dkn6fQY24ZrmhhlU6M5WxjHVKEAiexXrAdtRZkPd874SdnANk5LtMtdp9VrVX60u83xZVUsvNKo8tTLfq/xVw4CvLFznizeu8EZ9q6HUjU4Tq8+sqCkEEskLVWXs81ptme8szxGmCRebNfLmzbUuvxPRJjUajUaj0bxN3N0nhuKWIATJkQMkRw4gag3sF87gvPQ69tlL2Gcv4Q0N8NiJKbxH1BzhbmYTA7bLD0weZTn0me201Czi4Tri4pASfWM7C0QxU0REpjJQsdVFWjOOKFhOLzdyyPG4pzjEy9Vlxr0M7TimtP4ufCZSM39tExZyiCuDEFjIe5dgMYvx2jjQNYtZPQ1LWaxxY0s1ppPEyNXKSQpcKcFYW7mxpgZyqKUqoEMdaLiIFyeUa6mQyJOVHW+vy0N1uFaCmQIcq4Cl1rNqfCOttDuL2a2YrKu8yrzKmRTNbWJEWjYCgcztULnpCkQzsolkuiHvshlv3+J4K7EMY6OxziqBiXhmau3GwqmyEruokdlmHDLp5SiK3Q1HRtwMy0GHM/UyJwol5YJpOZhCbKmc3WoW/DYLfptGHHGhUeWB0siG5y+3atTCgFYc9T7DfpLsOTZBosTVJGst3/N+C2eduBxxMywGHZY25RcaCBb8NiNOfxFvCMFS0OZIrsBi0NmzeDa6sSm9z49Q1b2D3dyZOE15o1EllZJThRKOYdKMI1Xt3gXHMGmtm6VsxhFfW5juZkU6mOuq3gXLZqbT4nq7wYl8iWoY9ERriuRqq44h4HKrTiol5dDnervBctBhrtPmYDbPcthRMSmGSXVT5VK1Rje3jafJmhaz7RYHMzkMIZjz27xcXaYS+Ux5e4/+eKejBaJGo9FoNO9h5ECB8JMfJvzYo1hnL+K89Drm7AL3lWvIF94gvvME0SP3kBychB2qmHnb6bVmSikRB+rI6SKsE31b3jvXFTwL6iJSdoVkIlMqUcBDpdENFZX7Boa52qqzHPg4psly0GFk1RY/G0E1g2xa0OxWJJo2dCzEmTG1fyERUighWnehnMFKzS1VnuZ6N8kbBYzLQ8iGq14HUFSVETnYQVwrKXFoJcgPz/YEzbZ4CYy2EYs5ZN1Vs4LQqyDK42XE+ZENrbZrJ3mXCuKq4U92+5gQ6SQIwIos4jTtzqM1ibtujxuiPSSwlFXtvxLkXSvbVyZvAWK62BPaQgp1PN3zqX4cYl8RBqutjomUtJMIyxAM2Le3tc8Rgnm/RZAmjDoeZ2ornCqUekKrEYXMtltEMqUVR3imybzf7kqcvR2bCVsqaiuhv6EN3RCCCS+Ln8QbKnQl26G9Q0ZkzrKY7bQ44ndoJzETdn9DJQAioW5wCHAMgzCOelVKp5u/mjFMEtQMZS0KkN1ZyZP5ErUo2CDutsMxTMphQC0KKVoOX1+cYd5vK5fl2N3gZiu6c66v18qMu1n8NGG4e0Ng0HZ5qbrEnN8k7lZvLzarah3C4FKzysFsntl2C1sYOIa5pbV1OfBpJREH7P5ib8jxGLTd3nkwhWCm3UDs87P7TkcLRI1Go9Fo3g/YFvEDdxE/cBfG4gr2i69jnzmP/foF7NcvkAwPEj18D9F9d0Km/0V21rRxDJMwTXEdgfz49Z2vecdayIkGYr6gWjPHWt3MtzZHcwPcv6nykrVsnhg7iBCCJE358sJ1mnFI3nKQ2RgBpC1zLSai5ahqYmwgD9WU6Do3gjxSQ8zlEXMF3Gqe6mBlQ7B6fdVNUqrqJgANB+F1q1mrQm3QXxOd66pduyELAWIxpwTQkK/aKlsOMhOpttJiAAN9Zq5yUTdGJKNmGDfNdYquQc1eKohGaJFI2Z3ZqnOxWcUWJvn1rZvzeYzXxtbWnY/AShFVF3nP8l71zN6QwI2u4c9UA2aLXdMhZezTt+K4CyrAPaaTxHSSZNtcy1uJZ1q04hgDQcF2mG43mWk3e9EyN/wWYZpgCoNmEhF0Ep4rL6hojD26bHqmucEtNUwTmnHUy3bcvJ71ZC2b7A4V1KxpsxL6vFhdwhCif0VzKYO4NKQiWw7WkHev9NrMV8l0jYKudcXRkWwBgcAzTc7WyhzPDVAO/D0Z1Jjd6JIXK0sM2A6znSYHM3mCNGHOb3EoU9iw/YDtMue3uNiqEa+rkOcsG9swmPfbjLge9ShkoWumM+pmuNKqc6rT5EanSd6yMbqRHeur7PN+m92cd9c/N+S4XG01ONDH4OvdjBaIGo1Go9G8z0jHhgk+83GCT35YVRVffB1zbhHzT76N++TTxHedIHro7i1VxYxpkjGUUYRrmtsKiDBNaMUxg46LvH8JeayqzDCcFD9R+XYfH53q2942tk4o3Fsc4qXqsmr36pqyyKa1lrGYGMoQhm51cshHTrS62zmIObB9h6B7ge2ZVi8rzzEMqLmIRjdX0LeRq3OCua5AtCQcqSJDCw5sdcfcltXW2tUMyKXuMQ0E6pwNbmPGYwCHaoirg3CthLxzZePzra1OsFvoCkQRmUgkQZpQiwIEEKQxtui2Hvom4twwEok8WVZxJZdLEBuqjfVAA0q30Kp/JaNahIfayOE2YraIaK+10t5M9cUWBpFUx5fIFEvc/stazzS52mow2f2cZk2Lc40yJ/Iqk/JSo0rGVDdRGt2g9Dm/Tc6ydyrQb3oPi3Lo8+zKAqcKJfVz7GY7vllW5wfnOq0NofU9VjKIlyfUTRGkEvJHahjZeMPPKGNaXG03GHJcgiTlcqtG0bLJWhYLfofloEM1CvdsvjXuZbjaqmMKwZib6bmyHu/T/m6uy43c/EvIMUwOZlTHQiqVu6hjGOr3VQTfWZ6nlUSU7BwpkmqU0k4iBgyXVKoW1X5CfDscw+R4roj1FtyceCvRAlGj0Wg0mvcrjk384N3ED96NsbCM/eIZ7DMXsF87j/3aedLBAaL77yS6/05kMY8QgpLjsuC3KOyw2+XAxzVN5vwWE24Wsc7p00/UrNheZp/GvRySJdXSmldiJZnzeuH0sDbb15vp6x3bmlBCKmORETfTy/EbTLOIN9QMpjRSRGog6p6aYVznECpPbTWxWAjamIi19tfNrArMlqPm7s533+fg7jb88kgNrg+oGcajVZUpuUrdURftexCIhKq5rx3HSqzb3sZWvUuDiNhEHqnCsRo0XcT8OoOfmndrBGJoIJ6d6kWUyKnGmnnRXmJLdkDFbkA9Coml7GsscqtxDJOpTJZc15Ck5DjM+20WgzaOYar5PzdDPQp7YfWeYVAO/T3PfyqX1phnywvEMuVgNr/BqOXN4pomIDYa5jRtxIUhWMkipCC9ewlCE+PSEFwtqYryOizD4HiuiCEEqZTUIuWwKoQgQeUIBmlCcY/zoKYwGHU94jTdUybsoO1SDoMdRXfGNFkKU4YdJebH3QwznZaqWAqBiVp7O44ZsF0W/DaV0Gdsu3/X2/BeE4egXUw1Go1Go9EA6fgIwfc9TvNv/GUVlXFgAqNSw/3GM+T+7/9I5r98Eev1i4yYFsEOOXBp1530kcExMqZFI96axTfm7e0CbMT18ExTzT7mYmQ+RLa3XjzKbAj2pva9dUIJoezwQQVyx7HEfe6QEoRFHw6tE265aNeroyhNu/OYG5npNFVGWzZSQrN70S0iE3moppxPd8NJ4VBdCdbpdc6yoaHMXXJRz/im/+vXHTf0cvHWG5yQAos5pJEij3ejNo5X1Jzlav5jdR/VqtBQLrL9lrWSRbQdsFLkUFuZAWViJXRbO4gHybZJJOsRQqgKYro3A5h903C25FLmLWfdDJqBIQSvVJa51mqQdJ1Kna4orIUh416WWhR2hdneGOy6xU63mxty/24Fo26G0U1OtOLSIGI5B1ZKeucyHGzAoZpy9L1RUD/jTawKVkMIBh2vd048w2Smmxe4H/GUMS0Ku0RirN/WT+MNBj2bEUK1vq6edyEEBzO5XvV3lXYS04hCvr18A0uI96Tg2y+6gqjRaDQajWYNxyZ66B6ih+5BrFSwX30D+9XzWFemsa5M85jrUDw0zNJdx6gOF7cY2zTjiAHb5VS+xFynxWynueH5BHXxuxc802LCzTHdbrCCz8RYHaep5hblgL9WPew3z7dOKLmGyUqohE8rjrBb3XbHUgd5eg6WcmuNarmdL8ZTKRHdNMH1rpTtOMIxTOpRRNFWLbGi5SDn80p4nSxvPA9SVVkOZnJYwmAp6BBJSdGyKR6qwbUBmCnC8a5rar0r2Iq7VPXWHbeUgmoYbL1QL2dU9XC0tSY2cxHyiWtKDD15VFUQJdvPIXYsxGwBOdlEvDaKqHukxgJsijwRq+Y8dy3D5LrnvFhFdiRiqzGOBPHUQXBj5CPzO85CSqQSULejeLjiYbwwhSz6ah3bmDGNuRmuthtUoqCX+6iiG0IimeCZmV61bT/kuu2aM53mnsxebhoJVDLKpfdj19c+E7aEoQ5iMY/s2ODsraJcsGwa8a0Vtf04kt2pj6E/m2cLJZJWFPJsq041DDmYfW/NEt4sWiJrNBqNRqPpixweJHziw7R+/ido//kfILrrOGYU89DFOT79xe/w6d/7NqfOXMHtBKRSXahXwoCTeZVpOOR4hOnGi2oBFLexkO/HoWyBUKaUbJfGcHVtbeNrwlP2E012VyhFJp5hshwoh8VOEmOG3fvjxUBdCa1r2ZT5ECklV1r1vhl3QXf+MmfZG/IVy1HIuJsBoVxeV4WmkEJVzTZV/fwkxjVM6lFIIw7JWBZ3FQaV2MkkMNZS7bGrbZ9dgSiLAbUo4GqrTjn0e0Y0i35b5e4ZqKpPaGIIlb/Xi/TomKpS1K1Mys3xJAK1znyo2nh9q38VLzQQz08irgwivnMQUVdCvW/VsdoV8ZvbVXORktmdPrUK30K0HEQ5q44/MBFnhxHPTEFnYxXOEoIgSbuS/dYiuqY6ou4hnp9Uldc+mMJgxPGohIG6OUB3PnJdlbknDq8OIJ4+oHIgmzu3X5rCIJXqpsuO1cfQ2FO1dVtatvqsDQRbq9OrRkn+3qufnqkyOI31P5OGs1aFjN7kem8hjjCY6bS41qoz5u3txtX7AV1B1Gg0Go1GszOGQXLyCMnJI7QaDS489TT3XJ5nuNLgoWfP8cBzb3BtvMS145NUjx/sGUuodrG1K8EwTbCE2HMbGcChbJ4nxg5Sj0Jei5cRpZC0asNYG3lRzQ72raqtryCaJpUwoJXE1KIAO+jOw63O92Wi3hwiuZBOkpC3bJYCn0OZ3Iaqg5/EDFgug47DxWZVtazKFAPBg6VRVsKAdhKTX+c0Kic2VlHVfhKGHJeV0MdPUk4PjTLsZDhXV5VGeaiOWMwjrg+oKt26CmI7jjlVKFENlUujIQSDXWfHA5kcpp1gdBys1CBO1+VCXishptXPRgoJo+3+J73kq/zH7x4AUyLvXVRCz0rhcB3x6hiiYyNzIbRspJkqw6D6JoGYCGg6SCdWFcP1ZCNYAcoZcOONLcLrZhPFuWFIVT4lABeHkfcv9p63hUksk7W8vVggLg9Cx0YWAjhe3Xp8NRdxtYQ8UIeRztbnu/thMadcZbORcvSsu9vOZWYti6PWWkVLCEEs043h6VVXtRwjoOFCw0F+ZGbHco1tCBpRSGG7Wb6Ohfj2IZhsqkzQm6HSbfke3HoupKvcgwn2JxkGbXdtxrFpq89SLkTesYJ4aQJG2sgHFlUrtJPcngrwHnAMk3ockHb/rlFogajRaDQajWbP5AoF0g88yK+dmOT+TsLRi7McuHKDY/MVjs1XkM+eJz51jOi+U+QmhzYUCoIkIWvaO84NbSZr2dxZGOR8o0Iqwf1Qhc5KqiInBn1k04FCn3a2dZU0xzCJZEozVsYhTtx1RnTj3rbkQ6h7UAhpJxHDboZGFFKLwl7YOShhdyzvMeJkeLG6zIFMjnuKQwBMZHJMZXJca9XJdTMgpZ1suPBeCXxKjnJWnXLyVKOQhJQDmTyWYSC6ph/GoI/MB0qY1Fyou0rUFUKSQHIwU+Dx0QHq3Va+rGnx1cVpZtstxq0IDwcnsfGTeM28pbNOZEw1ts+vLPmI6QFVVYpAPD/Vey4dbiPKWaQXIT80qyqAZgpPH1ICMWVN8NRd5Ya56t66/j2yEQIw3hhBXiup1sbVbbpzplJI1QprpspMZy6PmM8jD9d6bcW2YRCkydruF/KIayUAxGKO9GBdzXWuQ7wxjKh5KqsyH0AhJBpOoZRApivsl3KI1EBONpD5ULndrmT2ZdxzKFtY034piNdHEQjSO5cRS1lVIT0/jMxGMNHcsk5Q+YLT7ea2wffUuuf4Rh6OVGHVECoRiMsl5MHGrvEsoqL2LfvNyHb/jYjAQi5kVUbn8equgm79TSAxV1CV9KYLL06qvy/m4QVDfZaOV5AntppBvRW4psl0u8mhbH73jd9HaIGo0Wg0Go1mX9xdHOJCo8o1S7Lygbv40n2H+bHEY/j8Naw3LveyFY9nPD51cJj5Uwepjw7ipwkHMvmbcmPMmTYIMHIJyEAFuz+4oATJphm2VErKoc+okyDaDjIRKoav06IRReTCrlBa5xAq71pGthzIxgSdhMOZPFbO4FtLNzYIxBTJoO0x7HocyuR5bGRyQzTHwUyeC42qEq9WosRMVyWEaUI9Dumab3IkW6ARhcQyZdjNkMoU1zQJ0oSMaSEP15WoODeiLtDzAZgSIVTm22ob7yqfHDtEPQp59o0EGmBFNk2ntWZQ020TTB+/2leM9BhrkZ5aUcK74SAuDoGZImITMdMV14O+Ou+rgqQYIMoZZMuGQvex1fnDgT7CY7SFnM9Dy0H4FtI3VWstIFYdT+9aRlopDHeUmM1GiLOjiCsl5EMLgBKItSjE6s6Cim4EirQSRGyqyudYW4W+z+chEyNqHtKLwJCIpgtNl2gOEEXEeEv9cJbVz1RONJVIujCsxMyJ6vbnbRPm+s95zVUzqaUOHKojhzvwVEYJcVQsy2anUFA/5+P5HWIUuudKIODSIPLBbnV1tqDiUtqO+neyHbGASte9t9Tn57SuxVQsDCM6NulwZ+9CWQJzyoUVoVquZdFXNw/K3X83ZQ9O7G13t5qMaXE4m9+Tc+qurBpoZWKc18fBieDhN7/btwMtEDUajUaj0eyLjGnxwMAw31yeI0UynMmSnTqGf+dJ+MwnsC5cxT5zHvPyNA9emOXBC7M0CllePTxC/sF7b+o9s5alqi/rw8ZNCX26wupRSCuOGbJjLBwITYZtl1eqywgExVWBuL7tcSBUf1DXtIOOh2daGEJsMKORQMG2GXQ8fnDq2MaoAFTgu2eatM2A7BPXNjzXjmOGHU/lEgpB0Xa4szBIisQUAlOYFC2HVhyqGJCJJvLCUC+rUR6sk3RNcnLW1ku4jGmRMS0MV2U2WrFNJ4nJW90WQt9CGum2lcMeBnC0pv4+3FEid6aIeGMEbqhKy5a5z2Kg2kXrXk8giuoOJkKZBPnBG4jXRmGuAG0HMt1K62qLaTGA4rrq8FQD+cYwVNYMdGxh0OlGpwCqwtXdluslJQbH2og3RhBzhV4rqjxaU0ItMBFNF7udI7qY60V9SCNVzrPDak3SiZXgjcRWx9y94HePqdStpuYi5D1L6pzN51VW5jamQDu1PvbENFKZyfgr4CW9qiBLWQjMjXEpqzRtxAuTiFDlU24xC4K1Knvb7s2LihsF5F4FYnld/uV4C+bzqkV4MauqtCtZNeu6G6tLuw2tqFvEoQRmC+oGSb/Pbj9SVJyLFMj7F7HnB5ADrd1f9w5FC0SNRqPRaDT75khugBeqS1TCgAdLo2tzeo5NfO8p4ntPIVptzn/3WaYuzjCxUuexM9fhzHWSsWHiu04Q3X0COVTa0/tlTRvHMAgSdaGbStmLFFhFxTmYNJOIyUyOyIrUhU5oks3YNOOIehwysTpP1eeiOUjUPgYdF9e0yHfNaPKWTbVbqSp0xchmcQiQtx1OFUq8VitvyB0E6CQxB7J5mnGEY6r9bM5SHHUzlLuOq5hStd5dKSHvXIHxFmGS4Jgm+R3y5SxXCUA7sugkiQorj4Vq18zehOOnQe9CWcRdsbJJIMqij0C5lsoDDVXZrWSUIN10kS2lpB6HStR1W01p2z0x1muFzWyMSFldh6hkeq3FVrfF1Da6xidNR7lxTjUR10tQdVVlZ15VsQRCzRVOKhGNm4DXwcmnRBNl0qqjhFIh3CikhztKYFYyqiK5X7rVW+muuykx1VTrDCxVfV2d88yFW+cSUxAvTKoIlbuX17Xjds/VSEdVPWsuuO3eXGGv/fRQfYsBjbhWUuJtrKn22Y/VfyMNd80IaCEHd670F5SbEHNdwT3ZVMd7sHveDzWQhxrwzUPbu9lCrwIpLg5BPkQ+vLOr7S2h7mKcHUU6MfJj02pdVwcQVU+J237rrHqIVfOr10YBCEYbwPBtXuztQQtEjUaj0Wg0+yZrWdxVHOS1apmpTH9reJnLUnnwTr51dITRdsA90yvcN1vGXFzBXFzB/cYzJOMjxHefILrrBHJwYNv3c02TrGURJAk2sBx08NOEw12r+2oYUI9DHMPEQHAgm+eq3b0Y77onjnlZhtIUAkvNJ3Yv9KSUxF2x2U4iSrZLtivApjI5Ljar1OOIgm3zkcGJHcUZwMl8ibO1ck+wrpJIOJYbIEgTpKSvM+Wg424wluFQHbkupzFIEgqWjb1DVcnxIATM2OZUfkCJp9X2t81mMXulEKiZQCl6s5AbWBWBK1klDusuIjaQwxsrU2GaMO+3sQ0TQUSxa+YjWjYyBaSAtq1mN/tV6gZ9JX4qXm8Nx7NFnBslJR4jU7Xi5kP1M667iMuDKvz9RBmZiVTbZL8sSSeF0f6mNXJICURRySBvQiAKf/vzL8daiHIG8fI4IjJVSP2qkFql6iEqGXXsZoq8s6zEU8tW1c7RFmI5i6i7ar4zMpFehPBtjIvDcHGY9K4lOLRuv6vOuHetbN9ybEqknah51NVjiU3kcnZLpMkWYgELKm+TzY65q2TVGmXHWmtXXs9cHuPMmPp7YKl53NXqpQTx+ggyH8Hh2i0TjqLbXixCC66WkGaKcUEJPVn2+n5GxNLa70ARWkghCcbqW7Z7t6AFokaj0Wg0mpviVH4QJJTs7UPVBxyXQKbMeDZHP/Iw7dIIxnIZ6+wlrLOXMBeWMReWcZ/8LsnE6JpYLBW37Ktku1SSCBuTUKYYQiClJEgTWknMo0PjvFJdZszLcndhkGtOt00yXLu4tVITkRjKgbPLYtChncQcyxXxk4QT+bWZwolMjleqyxQdl8+MH2HA2f5YVxlxM4x7OSqhz7DbnfuTEoRk0HE5mSvRTvpcDAOFdSHs/QjShIPOzoYabkYQAiI016qcq1VTb2vVNEpT/CQma9kb5+bWYwCFQLWQ5sOtVRQvQY60EMs55Gyhd87l0MaL6aXA567iEJ04ZiloQ7b7c2jZiKcPQmIoEZrtf37kYAfBIKLiIQ+rC3BnpYBxbnRto3y3SjoQqBbGuYISi4dqN9ceCmsV0+beHXg3EOwg0EdbcG6kJ8JE1VurtHURK2ufSXG9hBzyYcBXYi0frK2v4a5V/SabyLatzHUSA3F+WL0uF3UdZm2kF/dvP12PG0O0+vNUJkViOaNaRndicc3op68gB7WWMqoS2kcgroo1OdZCLOYQ00VkqevWWncQN4pqhnM5o+ZS91DV3JVlVX2VSHVzYf16VrLIzQJRolp5AZkNEW2HZLilbnK8S9ECUaPRaDQazU1RtB1OD43vuM3RbJEPDY1zuVlnqusUmI4MEX58iPBjj/bEon32Iub8Eub8Eu7XniaZHCO66zjxncd7lcVBx2XB91kdPLSFcicthwF3F4d4ZHCMESeDKQRZy6aQNdXo0jqB2LtQ77b6pVISpSmOYZJISQIbROCw41FyPB4ojexJHK4y6maY99cuoP1EGc8M2A7DjrdtDNyA7WAbaq4u08c4I0pTBrdztOzieYIGbDzubSpY5dDHTxI802LR7zCZydKOIzKmtVWoDnQFYr9YEUCeqCCWc4grg2sxI8NrF9OJKhFyZ2GQmU6D2U4TsrGaC6xklLvlKtsIRAZUJZNKZm1mL9xYTZXdXEtZ8tUFvZUo8XCz4rC7HimkyvPrtrL2hOhe2KGCiJcoEdV01Lxpo48I7YqW9I4VjPPDiEuDyDuXe2sjH6r11V2E0a2MD3XgZNcd9HIJ49IQvD6C/MCc2g7RP0MU1Q5dDQMMIZjwYuVACsgDDWUusznSpA9iTlX35eTWmJdVVt1safWpykug6iGRyLuXlJnNQh7uKCtR2+oaEiGVgdBCDqa675UIMOT+q4qBiagrEyM51YDrA+ozN9XAeHVciW3fVOstdtuQW7aKfSn6yOMVeG2M6NDb48p6q9ACUaPRaDQazW3DNU0eHhzj/oGRrU6MQpCODhOODhN+/AMYS2Wssxexz17CnFvEnFuErz1NMjpEfMcxRg+NctZNSYTKHXRNNZOYIpnMqDv4h3NrWXTFnEkNVUnrSYOgKya6VZN6N8YiSJPufKPckDk3YLt8cGicI7mtFc2dGHCcDSKwGYeMZ3K91tDtrlvztsMdhRKvVVc42M96Xwhyu7S4eqtjjeuE02qLo1wnUIIkoZMk/JnxQziGwZfmrlEOfepRxEDXiGc9crypHCn75DoCUAyR403EQl61A9qJElFdalHIqJtl1M1QiwJ1fkwJXozwNx7TdhVETKkcU2se8toAHKltEYi99zzQQEaGmons1764HwwgFyKaLvLaAMaFYdKTZThW3bhdIhDPTSoX2zvKa4/7qu1w22iR+7pVsa8fVsJnfVxI10hHZlQrpZzPIeoeXC2p53NRr8Ir6h5ySYniDbOfR6vI2QKimkGGxprDbHGrc2kzDqlHEacKJa626kRORE+yDnWUYU/L2Tg3mKh2Uiaaai2RAWVPzVwO9W/bBXo3AkTb3nrTxDfVjGQhUC2wBxqIayXkTAFOVBGronKyCXMFxGwBOdVUlcVnp5DHqzDSRjw3qWZ4u+JRXBhUrdB2omYvs+tE+0r3H89IB05UN7jWyiuBcr19+qBq4RUSed8iYlWojrZhtIP85DXSJIZ3bwFRC0SNRqPRaDS3n21t+lcRgnRsmHBsmPATH8RYXME6dwnr/BXMpTLmUpm7gQN5j+lDY3gHRginxlkM2xgIBvq0ubpeV4ZF/SuIiUypxSEfHZ7kartBJfSxhEHeWqvgGEJwslDa9/HmLbvnmBmmCZGU3F0Y2tNr7ywMcq5ewU/iDQ6LysFUVW53wst0j3uXCuJS0OG+gWGO5opIKTmcK3CxUeNorsBsp8Xg5h0PBshPXtv86AbkPUvqon+2AAcaINTxrwQ+fpryyOAYhhAqtmSVXNRz+UxPrqgcw+HtRYU8XoGXx5VIQ90A2MCqQHQTNat3qyiE0HQRXWEmrpaQB+sbRd9SVom0wFKVLlCiMTKVwNutolUIVdWztS7fsyda2iBAnqwo99FlNffWE9NFleUpEKRHaxvbLQ2UULthq3nG1QrgugpilKZUo4AgTfjYyBR3FYfImBaXTR+HbqanrUyHxFIO2XB684Di8qA6Hx1bGSu1bFWhHPB3PubVtbfXfR7qDuJKaU24deM35ME6XBtAzBSRx6prFcSDdXVMVRWzIq4MIlID5vIQGcpY6fKgqmRGhor/6CIXcnCs1vv/XkvrSJ8505GO+vlHJrKgMkq5uO7f9HY3Tt6FaIGo0Wg0Go3mnYUQpOMjhOMjhI9/CLFSxT5/BfP8ZYo3Frn37HXuPXud0HN5fWKAuSMTFA9uNW3pV0lbdZOMnYjZTosTuQFOFEq0koirrRrDTmbXCt1eyFk2pjCI05QFv8O9A0N7DuMedDzuKJQ4W69wILN2qeZ3206L1s4CMesZSpyGpmrT61i9415trY3SFNMwuKuoLnCFEDxUGmXMzZC3HGY6N3mxa0nkycpaayP8/9m77zi56nr/469Tps/2mk2FQAIkgdBJCMUISrFSvBcBUVBBqV78cRVRypVqRcpVKYriVaygCFgQBAGxEek9hPTtdeopvz/O7OxOtmTTd7Pv5+ORR7Jnzsx8Z+aw7Hs/3+/nS0cuS2MswbRYklmFSmzCDmEQhF47noe2QjVrl65gC4rRQkVtGn/fdRj/bMJoixUDmj+zEz/sFvdT3Nr8ZC7o1Nq/VtAxYUVF8HoL+rt2Glkb3zGCtXf97/1YGgQlc0F1q2cgIPZvF+JXFUJzTRpv9zaM16uDabmF9bR+WTZYjxd2gvWWG46/KhOs2euIDkwRHbSNyLpMimnxJHPLqtg1GUzrnlNWxfJYW3BCIgi4fnkQEOkurHeMOrCu0KRlZTnM6hxYq5nYSOU26gSV1f6A2B3G+OeUgW65DNpHM+4EFcHWBH5zYmBaaiKH39SD8UY1xss1wdYhEOw76RT2x0yH8NtjA2tjCw18jPSgyqUHtMWC8QxT9fTr+4IQXJ0Kuqn+cwpGZ2xgjPHNbAA1DikgioiIyLjm11SSW7Qv5qH78WL7WlY9+QyHtKaoWtvCwreaWfhWM/5TL+HsOgNnt5m4s2fgx2NEY/071A+aalmoIKZDWZpiSd7RMA3LMKkMR3H9YJ3jiI1aNkHSDhExLbqdHBHTYkFF7ajNZza0WzIIiI7nFauvadehPhrfaDU2Yll4IQczZ8OqDRq4FEJKdz5HfSRG5aB1lbWRGLWRGB25DCal+z8Ox/E8DCPYpH1lqpeEbQ/ZtgMg73vskigvhlGAhG0TtixynotVXgg2/U1PjGC9YnMmTUM0jjnc+9Y/fTJjgxcEQn9a91b/Ib0rn6Unn2dKLI41aLqsX5kOAtLbFUEgsv2gW+6gZjJ0RTFerB1YjzmGgOiXFUJoz6Apyv1BaPA02Vld+DXpoKtnf8ir78NfU4Y/s2v4pjCFShxrywa6vRbCdf91trhmSsla2/JQmERF4bHKCu95oepovFGF8Uotfk2qOEXYyFv465LF6Z+Dm0ENyyToZNoXxm+LYTxfFzTeKQS4YNwDVU5/enewznVFBaRDwRTWkB9MJ367IlgfCcXOq0bWLnbfNVaVg+UNPM5rNRtULiPBc9eMsCdkRRZv8cpg+xWz8Bj9AbF/25SdhAKiiIiITBhNUxp5bK+ZTKlposPxePVfz3BgSy81K5sJvfwGoZffwAe8qY00zWxijbMbPanqgYYmhamWuVCOhlC4GIDKCoGuJjw04GwOyzCpDIV5rbeTBRW1lG1kWuiG6iIxpkTjtOUy1BVCV9ZzaYjEN3JPCJsmXsjFyoeCvfEGcUwXwzdIeQ77JeuHvX95KEKisP/jSON2PI81g5rw1EdjtGWHrmfz/eAH7coNGvyEzGAvx6zrEJvSixd1gi0sClKOg0fQRKc2EsPzfbryWRJ2KNg6pLD9Qskm6xvrxrkZevJ56qNxVqf7mJqwissC/ak9GDEn2BtxXTLYlmJ9orgNSBBIyoKQ0x90IgPh3PN9EnZo6F6ayUIY6o4G20TYQXXNN/yh+0KW5Uq3Gwl7+AetGfnFxBz8sFPcr8+fOVBl7HPzlNvhYT/vZI3PmvnLqawtHOgPiIUqX3+HVb+xB2NdGcbK8oFQvLEKIoWg9XItxr8ag2mpU3rw57TB01OLa1SLatJBp9DuQlU1MWg68aJV8GoNpG386V0YzxcaaE3tCaaSNseD68bwoakH//XqkoA46vTSfoNfT31fsKY3Z0LjRjq6TjAbWRAgIiIiMn40xhM0RhOUh8LEk0nW7D6dde99B70XfZTUyceR23cv/LIE1up11Dz5L969/qccu/pu9n3iJRpXtWD2BtWoTDRTstawzA5TFgpREd7MbQyGUROJYhtmcVrlpjAMgz3Kq8m4bjFk+f7QoDWcsGkF0wwh2PagwG/oZV0mxZpMHxYGjdHhw6ZlGDRGE3Tlc6xN95FxHXzfJ+U4hXH4rMn0MaesisU1U6iPxIPq4DCFvqznEjGtYbdCqQpFgsZABlBdulYt67lUhyNk3GD94qp0L5Zhsj4zaOpf1AnWmqVD+JZXrPp4vk+fk6cnP3L1KuM6haZEI8u6LiHTZHHtFBqicbrNDH7IDabv1qSDiiUElSl/oGsn/dWkQXvjQdAgqCefI+26xGybtZm+QmfXQRJ5fNPD6IxiPDoLmuNBoIvnR/ypPeXkWZMeQ0AxKIZwP5ELmrsUH8NhajwxbLW2LBSmr7JnoAts2MNPBF1T/ZmdwePh489px0/kgrV5hSY4/YGqz8mzoq8H1/fpdXKsyfQVr2umdQfbZ2AE3UP3aA2eY9Eq/INXl15XBiX7gpYEtoiLv6A5CMn1qSAIAn5dH/4erRgYGK4JFZmg6U3UCWYUuIUn6P9lyijrX0uY4B+wJhjjCM2HJipVEEVERGTCsE2TpQ3TCRkmnu8zJZagJhIDO4S720zc3WaS9X3M5jb8V98k/a+3qE21sdvrvez2+ls4xjKao9N4YYVNebKM/k4sCTtEZShC2UbW922KilCE6nCUxmhi4ycPY1o8SUUoTLeTI2mHMI3hm/FsyDZNjMLG50bWDn54X/pW0PY/A/tV1oPhj7p/ZWM0zopUN42ROG+nevDwMTCACD6QtMMcUtNI1LLZs6KGjOvwNyOYMho2B6b0plyH6nC0pNlOv6pQhOedPNlUL1M2mDqb8zzmxJKU2WF6nDwH1TRSF4nx4Nq36M7ngkY9UQd6IkHVLjxQZWrOpgibNlnPDRribLCm1Pd9mrMZQoZReC0hLMcaCCwFXfksU+NJaiMxZsTL+VdHM1ULmsExg2pl2MVPBs1K/LXJoLNqLNgewVhTXrptB+BF8nTkcxxWO4U55VX8Yd3brMukqC9UiE3DCELHvBZYWR5MX3yj/wIdOez2OHkMw6DXyZX80sP1fXzfL3lf/cZeaE7g795WErxc36d+hOp0zBroApx2HaKmBfutBdcMAm3IDa6tiBs00ukLF6eJ9of2jlyO2miMdZkUnu9TEQrTliuEVaBufgu8WRl0nO2fHjvS3olTgurfhvuZlrD84LyuaBCKLR+/qwvj7Qr8+kKFMJ6HdChYo9sXCj7HWH7kLVaGfXN2nnWHgykgioiIyIQSsSw8z8c0DA6rmzr0hEKTG7e+mgfMXah5tYz6ihdo6nubhtVtNKXfoukfwD9ex62twt11Bs4u01kypZ6yEapqm6MuEmdBRQ1xe/N+3AqbFnuWV/PXtnVAEGLLQmNroGNGBlU0ok7wA7IfhLyZibJh1woOtmuynMZYnHI7zKs9nfQ6eZqzKdqyQXWlLhovhj6rEMLKQiHSrlMSENOuy9zy4d/TGYlylloWz3W2knYdysyBcBOEiAj7VtVjGhSnAi+orOWp1rUDAbH4Zg1UAx3fZ1FVPStTPazN9BUDolfoAtvt5KgMhzm0ponlfV205DJ05bK0p9PETZuYZZP1HLKey66JoFlLfSQWBO3q1MBaUgP8GV0YL9ZjvFBY59nYW1LV8m03qI62xOmO9NEYjTOnvArLMNm3qp7frVvB2kwfvs/AtiaNfUFDmcdmBtsqwKhTNR3fY0oswapUX0lAbM6kyPseM+IDW79Qn8J/5/KScOh4HqZhUD3C/ppRy8YovH8rU73URWJURQ2K+zgM6gLq16aCLrSDxuz6wVrVPcqq+Ed7M9MSCXZPVvHH9W+TsEP0OnmIufh7to34GkuEfJjejf9WRcm05A3581pLv57TFmzV0t+5tX/K7vpE0HwGP9gOY8uXIE94CogiIiKyU7IMEyOZI2vFeTu5ByvmTsX2GqhJvk6Z/xLzWnsIt3ZgtXYQ/tu/idk27owpOLtMx509A6+6EragYU1NJEpNZPRN7Tdml0Q5yzpb6HMcDqmZMmrTmMFCUZ9iRCxUORzfxzKMYat5Q+5vWlQUgt7c8qCK9e+OlsJURp/GYapNjdEEr/a0l1Q5ffwR13VWhiNUhiOsTPXQnEkxKMZgGAZx2x6yRm9mvIx/mOvJex6hqDPws/wG6w+ToRBTYgneSg1MR1yT7iu8crLikQABAABJREFUJz6H1ExhajzJ1HgS0zSIVUR4fnUzy9pbSLsOcSvEPpV1xXBVE4kStSwynkts8PvX1IvfnBxYvzalN5geWWiSQkUWf34zpG2ydpbp4criZ9gQjfPO+ulkPZdHm1eVNCQi4gbTNfu3chi12YvBjHg5HbksvU6eZCEQu/jELJt0ofvtoNOLMq5DczbN1FhyxO1ToqYFGMG030iEPidP1UhTnSsz+LYXdHgtjDnY/zLGnuXVJOwQteEoyVCYpQ3TsQyDP6x7G7dwbY6Vv1s7zOjatHWnBqUNb+LB9WO8WRVsDbJbO9QF1UXf94MOuxvbnmeQvOexItXDjHiSrOsSt+1Nuv94ooAoIiIiO61weeEHyN4wpEJ4hsW6hjr+1ZSjZtpsqlM57OUrsd5cib1iNfabK7HfXAkPP4lXnsTZdXpQYZw5FaIbn965tSVDYQ6sbiBhh5g+uBK0EeEoFGsrhSlz+cL0z5g1dEuQsagKR4P1dyOshayNRHmxe2BaYN7zsA1zxMpUv5pwlFWpgfVwXmGqZ9waWi1N2iHKQ2H6nDyVJRXEQgguPOeGU4X7nDwRy2KXRDlr0n1D1oXG7RCzkxXMiJUBPiZGSdfZqGXTGEmwNtM3JGz585qDhirx/EClL5GHTgu/MpjeSDJPPu0NqQBPjSfxfJ+aSJQeJ0fV4PeqOl3c649EHrfQqKcqFCkZm49PXSRGUzTBylQPSTuE4wUdaBuicVale0vHPEhrNsPeFbUsrKobvlssQcXeIAiTUdMmb/pBQB8u/JhAdQqak/jF9YdOoRJslLzvsxLlwTVZ6GY70hiDx8jTnc/RGI0Hr91gy5sSFf676F/7SGE9JQRV5pZshpnxsuLr7MnnSBSmeg+nx8lRHY7SnsvieB7zK2tHPHe8U0AUERGRnVYsbpILORh94WI1xo3lCBkmEdPGr4yS33ce+X3ngetirVkfhMU3V2KuayG87CVY9hK+YeBObcCdORV31jTcpgawNy9obarB20OMVTRmFAOiX5hKl/c9YpY15irkhirCha6vBsOuhawMRTAGbY/R6+SoCkco28i+kslQmMEtPvKeR9g0SQwzNdcwDKbFkjzf1VYSEP2wi+f7ZDyXqGmRsEPYhkHYtMi6Lh25LPtW1bFvVT29Tn7EallQxRr+h/qp8SRv9XUPvSHs4R+6svRu5RnojJbsp2cAsWFCr2kY7JIo5+n29WQzKWzDpDYSxa9OY6wMpriSyNOVz5LzPNZn08UGQ/0hPGGHqI/GeaMvmO7Z35V0XnkNb6d6WJXuJWGFSip/vu+DAbsmK0atKketoBLW6+SZW15GwsnTmk0Xu+tuyJ/dEYTihl6yrkvYNJkaG34P0JBpkbDsUQNiazaD5/vE7RBd+VzJLyc83yftOpu3d+mgtYb+jK6SJkC9Tp5psSStuTRToglas2lynkfWc0ecnp1yHXZJlPNmbze2YQxMGZ6AFBBFRERkp5W0bdbHM0S6kvitwQ92+WgW2zSJbFhJsyzc6U2405vIHXEwRiqNtTwIi9byldir1mGvWgdP/BPftnGnT8GdNRVn5lS8hloYR9PJotFBaaWwN2De87ZoG48yO0zCCuHjD7sdQm0kxtRYgvWZFA3ROCnXYY/ymo3u/5i0QhgEa9XWZ9LErGAdYMQcPoDXRWN4XaXbH/SZGZpTPZTZIeqicSzDIG6HqAiFWZPuozIUYfeyKkzDGDEcbkx5KDzy+rQNPnp/dkfQEKZi8NRQg+gI1dvGaAILg6QdpitfmAZZlcE3veIa0nTOYY+yat5O99CRy1AVjha7xMYsm/JQuDi8PsdhXkWwjnRhZR0G8FxXW8l004znErXsjXbGjZgWIcOkw3WpDkdpiMZZPajiO0Qyjz+/BYDOTNDoZ7T3vDocZUVfN4yQ8TKew5H108g4Dk+1rSsZb1c+R8rN01moLm7SHqaxoGMsZrCPYj/f9/EJKpwdHUEH3ahlM7e8ipe62od9KLdQ9d6rvIaufI6oaY08DXcCUEAUERGRnVbcDpFNpol0JTFSwQ+p+WimUEkb/YdJPx7DmTcHZ94c8H3Mlnast1Zhr1iN9fYa7OUrsZevJAL40QjOjKagujhzKl5N5RatX9xSJb12+iuInrfZ4QiCSldDNF6oEA59baZhsKCillXpt3A8L+hOuZFmOABxO2iC0pnLEbYs1mdTzBslWFaFoliGiRPKEyrsOZgLBWvv2nNZ9qyoKZ7bFE2ScV2OqJ+6Ra8dgoBsG2bpWsGR2H5JOAxChz9ipa4mEuPA6gaSoRB/Wr8yaCgU8vD3Xwu2Vwwts5MVNMTiPLJ+FRUhn5znUhmOYBU63FqF8Xn41EfjWIbJAdXBfoCGYfCP9mamxxIYhkHadagKRUqaCg2nvxOsncuQtEPEC6/B9/1Rw7/v++Q8j9nJilEfvzIU4XV/+I6lru9hYlATjhKKWjzT2VIScrOeyy6JCtKuQ2s2TcOmNJkywd9vHVheScfUIDhb7FFeFXzOvk9jLIHn+7zU3Y7n+0OmjvY5eSpDEeqjMfarrA86CU/Q6aWggCgiIiI7sZBp0jN1PWXN1UHTECBnOVTam9it1DDw6mvw6mvIH7QPeB7m2mbst1ZjrViNtWodoVeXE3p1OQBeMhFMR53ZhDN9Cn5VxXYNjLHYoOeK9XeT9DdvKt4gs5MVwTrEEUyJJdglUc7rPV3EbZvaMTTpSdohwpZFRy7Lwso6fN8ftfpSHgpTZofodLLURRzIhMiH8tQW1vFVDAqC8ypq2LOiuti4ZUsk7BBRM2hUk8ln8aC4RcVgjufRmc+WTEV0fB/bMImNEMYsw2BBZS2ZQhfYbKG6199UJeU4JKxQ0PiIGHWRGB25LDnPLa7xDMJbiLZchohpUbdBtXh+RQ0vd3eQKkzJHK3D7Ib6P6OkHSJph4jaQxv29G8T0h+M+vd7nLKRbV6SowT3lBOMtTwUhODdkpW82N3O1FjwvI7v0RiNE7Nt/rhuZTG09jp50q5DXSRGn5Mn53nFa8r3fTrzOXx8khXukIDck88xNZYkatnMH/TLBtf3KLPDdOSy9LkOZuF9qQxH6HFy7F1Rh2WYzEpu+r6n440CooiIiOy0IqaFG3Lx57VgLGvEr0rj+H7JdgCbxTTxpjaSm9oIh+4PeQdr9TqsFaux31qFubaF0AuvEnrhVQC8ZLwwfXUK7owpeLXV2zQwxsIWTjiPZVLc4NwwjFEbgYzFxtZVmYbB4XXTmJWooM/Jj7ljatIOkXYc5pRVMiUaJz5KoDMNg4NrGnmsZTW5WJZwxsaL5GiIVJN13ZIGNZu7xchwLMOgOhKlOZMi47mYGEP2fQToyAfdRKvCkeJ6T8cPmrpENvJ+RC2bslCYjOOUvHe9Tp6ZiXJChefau7KWR5pXkvXc4npQ0zCoj8ZY1tHLYfVNQ4JX2LRoiMRYU9j6w/d9qkJj67JbZoeJFNZ2Ri2bCjtKr5MtuZ7WZlIYBsVAmPEcqsORjV4DCcsesgdlznPx/WBd38xEebFivVtZJS91txeb5BgEe3I2ROMkQyH63DxJO0xHLoNhGHi+T0c+C37wiwXLMEi5TrHy2pLNMDWW2OC5PaYN0xDKMkxmxMv4R8d69quqp9wO83T7OhJeCDCYPoHXHG5IAVFERER2WmHTDHJYXQrvoNUQcXB8b6ONUzZZyA6ml86aRu6IgyGTxVq5FnvlGqy312KuayH00uuEXnodAC8WDcLi9Cm405vwGmq26hrGsGnRtuAtqsNh+uNLMMVx2zfWCZnmRqcVbqg6FMXxPGoiUerHME1weryMJbVNPLLrKhr9CtyIS20kyvR4kpoxTGvdXLWRGG/0dhG3QkyNJXg71UPTBgEj4wahLet6xO3gM817HlFr6LYdw6kLx3gt11lyzPG9kueZlShnSe1U/t3ZUlIdrYvEaIzGmVs2fGOjpniS5X3dxWmSwzUbGk7CtoPKYSGgNkbjPNeVoqpwu+sXNhDxKYa3rOtSs5EOthBMA7fNgam7adehNZcBP2hC0zjoeqiLxJiRKGNVqrdQvQ2mv0Ysi92Tlfyro6X4mCYGfU5QPa8MR+jKZ6kOR4OwHS9jWqKMPzevLhlL/56Q9dHhr6EZ8TIc3+Og6kZMw+DNvi5WpXtoiCao24p7qO5oCogiIiKy0wqb1sCUyIpgup6RHttegFskGsHdfRbu7rOCr7M5rNXrsVauwXp7Ddba5pIpqX44hDutEXdGE+60KbiNdRDa/DGGzWAfOseGjmweFx+DLa8gbiu1kShlodAmdVgtD4VxY3m8aAo/4xOxrDGFyy1REYrg+B710RgLq+pYle4tqSKmXYeoFTSNybgOtmfQmctiGeZGm8H0q45Ecbq9DY4aJZVR0zCYW17F9Hiy5FqeFk9SZodHnFJbFYqAAd35HEk7XDIddzRxOzSwxURhjB4+zdk0PhApvL6kFWJtpq+wVtUfUwBN2EFDopTrEMOmJZvhgOp6OnNZ3uzrGvK+zS2r4q3ebjKuQ8Qyi691t2QlK1O9rEn3sqh2Cn1Onmc7W6kOR9mjvJonW9dSHQ4qhFPjZcWGS4P1V35HGnf/3pn99iivZk26j92SlZvWIGecG5/fJURERES2gqhlEzLMDaYCbp9KWolIGHfX6bi7Tg++zjtYa5uDsLhyDdaq9QN7MAK+aeI11uJObQyC49RG/LLR13INFjaD7SwcP2jNn7RD5GDbB+PNtGd59SgrG4fXX5HLeS4GxohdT7emMjtE0g4zK1FObSTG9HiSVaneYnOUrnyWXRIV2IbJ672dOHmPrO/huA672GOrqpbbpd1Sgz0NjWHXj244FbciNHK4gaCSFrUs2vNZ3lE3bcwbuc+IlzFt0FYV/cEyZJq4vk9rLsNhtU1UhaO8ne4J9rI0GNOaV8swmV9Rw1Nta+nKZ9mjrIqFlXX0OXnC5tB9NJtiieJU34ZovNiNuDIc4dgpM3mjt4uZiXLWZfr4d2cr0+JJdk2U8+/OFtpzGSzDoDYSxTQMLMMsbssC0Oc6zC2vHvP+hTPiZcyIl+1U00tBAVFERER2YvHClgnBfmxWYa3TOKikheygWjijKfjadTHXtWC/vRZz9TqsVeuw1jRjrWmGvz8LgFdRFuzFWAiNXv3I01JNwyBW2IDcx2fvyloyrrtdQtTmMAxjxB0kRhIxLcKGSdp1sQ1zo904t4ayUJiacLTYnXX3ZBVv9gZTNg2CZjQzE+X0OXnyngcGNEYSvN7bMeYuquWhMFHLZlW6t7C3ZBD4h9sXclNFLZvacIyoabPrJkwDNg2jJDRVhMJMiyVZUFlLn5Pnn+3NTI0nqQhFSNphep08BsaYmwPtWajE9Tg59q9uwDQMykJhltRNHXKuZZjsUVbFylTvkG1bopbNvEJjmbpwjJpwlKZYkrgd4uDqRh5ev5K6aIyKUATX9wu/YPCIWWbQKdb3aRhheulwYpbNMVNmbvbeouOVAqKIiIjstEzDoDocZV2mjzKC6WUh09zibp5bnWUNNL0B8H2Mjq4gKK5ej7V6HWZLO6GuHkIvBusY/ZCN21QfBMamBrymevzEwBTLmBWi18ljYtAUTVAxgfdlG06w/UKY1myKsGVtl/Abs2wOqwsqZRB0ba0KR+jO57BNk4QVYko0wdpMX6EJkc+0eIKOXGbMVeuyUJij6qfzdqqHZ7taiVs2laHIVgshc5KVmMPtA7oJQqbFuxtnFhvBlNtBcDYMg2mxBM91tVIWiow5INqmyaF1TeQ8d0z/bU6Pl1Edjmy02+3csiqmFKq7s5MVdOSyhC2zGHiTdoiME2yb0ZnPURYKj2lrlsF2tnAICogiIiKyk6uNxFiRCjbCznkuUdMuNtsYtwwDv7oSp7oSZ+89gmOZbFBVLFYY12OvWIO9Yk3xbl5FGe6UOtwp9UyLmawJe4Tjsa3azXM8KQ+FWJlyKAuFxzxdcktVDZryGDJN9iqv5onWNYDB3pU1RArbQYBP2LSYU1ZFVz5XsoZwYxpjCUzD4LmuVjKuS01ybN1Gx2LXssqt8jj96xFNw6BxUAOdqfEk/+5spcwOFbuujkXwno0tUJaFwuxZXk3NKNuoGIbBftX1JV8fWNNQ0jG1MhTh7VyWlOOQdh3e0TBtk8a8s9o5v1uIiIiIFJSHwvT/TJjzPOqisYm5iXU0UrqO0fMwWzuKYdFc24zZ2hFUGV9+k0XAIUBXRYLEjDVBtXFKfTA1dXuvwdxGykLhko3Td4S55VWsSffxVqqb6YXtERJ2iLBpUREKk7BDHFE3dZOvuepwlIQdpiWTGnO30fGgLhInaYeHrB3c2g6obtis+w3+HCpDEd4orKE8sLqBXRKb1n13Z6WAKCIiIju1slAYjGB9Uc5zx7z327hnmnj1NXj1NeT3mxccy+aw1rVgrW2m9+1VWGuaqezqg+deIfTcKwD4lolXXxsExsY6vMY6vNqqrbrNxvaSsILOpztyyrBlmBxU00hFOFJsVhM1LeKWTVM0aF6yOb+QsE2TplgwPXXcTYkeRdIOMSUa3+YBcWtIhkKkXYeaSJQ9y6s2fodJQgFRREREdmpldoiIaZHzPFzfpyw0cX7Y3mSRMO7Mqbgzp/L2vF14YO1bHJmoZt+UF3RNXRs0vun/dz/fsvDqa3AbaoPuqQ21eHU1W7TVxvYQtaxgTam1Yz/T8lCYAwdVtAzDoCmWGHE/vbGaEk3wdqp7zGv5xosDahrGbUOkweKWTdSy2LOsetx2+N0R9E6IiIjITi1q2STsEBnPwRhj6/2dQdi0iFoWkfIy3KlVA3sy+j5GZ3cQFNe3YK5rxVrfOjQ0GgZebRVeQyEwNtbhNtRCZOxr6ba1mGUTtixi43CN5SE1Uza5M+uGaiNRqkPRCRcQJ0L1ECBph2mIxJm9CR1dJ4Px91+TiIiIyFZWH4nxUndHYfuHyfHjT9gyids28Q1fr2HgV1XgVFXgzNs9OOb7GF09WOtbi4HRXN+C1dKO1dJO6PlXi3f3qipwG2rw6oLprW5dNX5leaFr5/YVLWxjMh6rVWPdS280VeEoSxumq3HKNlIeCnNU44xJ8z1hrPRuiIiIyE5vQWUtK9O9OJ43aSqIEdMiZoWIj2X6pWHgV5bjVJbD3F0HDvemgqA4ODh2dGF2dMHLbxbP80M2Xl01biE09v+b+LatJEUta9wGxK1FUx+3LYXDofSOiIiIyE6vIhRhUc0UXuxuH/9bXGwlUcsmYYW2aIN1PxnHTc7EnT1z4GAmi9XShtncjtnShtX/95pgfeNgXjKBV1eNVz8oPNZUwlaaEho2Lcrt0Jj3GBSRjVNAFBERkUlhVqKcabHkxNziYjPELJt3NkwntLW7k0YjuNObcKc3DRwrTFE1W9qxmtswW4LQaLZ1Yvf2wfKVA6caBn5FGV5tFW5tFV5NVbDWsaZqs9Y3HlY3daeuIIpsbwqIIiIiMmlsr83Ux4utHg5HUpii6laWDzTDAXAczLZOzOa2gapjWwdmZzdmZzf26ytKHsYrSwwExtqB4OjHR+4GqimYIluX/osSERERkW3DtvEaavEaanEGH8/lg6DY2lH822rtwOjsxu7pg7dWlTyMF4sGYbG6Ar+6Eq+qAq+6Eq+qfKtNVxWRgP6LEhEREZHtKxzCm1KPN6W+9LjjYLZ3DQmPZnsn9sq1sHJtyek+BNNVqyrwqisGgmN1BX5FGWhtosgmU0AUERERkfHBtoNGNvU1pcc9D6OzB7OjMwiQ7V2Y7Z2YHV0YXT3YXT1Dqo6+aeJXluFVBZVGrzL441eW41WWQWhydLMV2VQKiCIiIiIyvpkmfnUFbnUF7uwNbnMczI7uYPuN9k6MQeGxP0wOx0vE8SvL8avKyE+pxY7EcCvKghBZltgh+zqKjAcKiCIiIiIycdnBHoxeXfXQ27K5ICgWmuIYnd2YnT3Bv7t6MPtSsHod7vOvERl0N98yg6mrFUG10a8owytP4pcX/i5LwCRreCSThwKiiIiIiOycImG8xjq8xrqht3keRk8fVncPZfksqVUtGB1dmJ09QZAcpfroGwZ+WaIQGpN45WWFv5PFMEkkrCqkTEgKiCIiIiIy+ZiFKmFVOXZNkvxuvXieP3B7Ll+oNHZjdvdhdPdgdvVidvdidPdg9PRhd/eO+PB+OFSoNgYVRy8Zx08mCv9O4JfF8RNxVSJl3FFAFBERERHZUDgUNMupr8Ed7nbXxejpKwTGXszunuDvriBAmt29WK0d0Nox4lP4hoGfiAXBMRnHK0uUhshkECL9eFRBUrYbBUQRERERkU1lWfiV5biV5cPf7vvBGsiePozeviBM9vZh9KQwevsGjvemMHtToz6VD/ixaBAmE3H8eGzg34kYXnzg334ipr0hZYvo6hERERER2doMA6IRvGgEhmug08/zMNIZjJ7+EJkaFChTGKk0Rl8Koy+Nmc6MWpHs50fC+PEYXiKGH4tCLIofiwQhs+TPwDHtGSn9FBBFRERERHYU0yxU/+LQWDf8dFYIKpK5PEZfCrMvXRIcjb40RqoQIgu3mR1dmB3DN9kZ9uHDoYHQGB0UIKMR/EgYIhH8aDgIn5EwFI77kQjYlhry7EQUEEVERERExjvDgEI4c6srN35+3glCZDqDkc4W/h78Z4NjmQxmVw909Wzy0HzTxI8WQmQkPChIRiAcwg+Hgr9Dpf8mbA9zLKSwuYMpIIqIiIiI7GxCNn5FsIfjmHkeRmYgOJLOYGRyGNn+P1no/zqTHTiWzQXnpTJbZeh+yC6GRd+2wLaLf2Nb+CE7WAPa/3Xh78HnFc+3THzTBMsMGv30f13yb6t4+8C5RnCOaU66wLrTBMS5c+cOOfb1r3+d448/fgeMRkRERERkgjHNoAFOPLZ593ccjGyuECILATKXD6bG5vv/doJj+XzJbQP/doK/czmMVHrrvr4t4PeHRMMo/Bn874HbiufZFu6JR8PUph0y3i2x0wREgBtuuIHFixcXvy4vH6GrlIiIiIiIbF22HVTzEnH8jZ+9cZ4XTJV1Xcg74LjFf2/4N64bhMv+vx0Xw3HA9cBzg+qo6wWP6XngehiFv/uPDXu77w/6A1D6teH7hWPBeI3+81wXcvmt8S5sdztVQCwvL6eurm5HD0NERERERLaUaQbrLgcd2irBczswTYNYTRLaenf0UDbZTrXj5uWXX84hhxzCySefzK9+9asdPRwREREREZEJZaepIF500UUsWrSIcDjMX/7yF770pS+RSqU49dRTN/sxTXP8LEjtH8t4GpPsHHRtybag60q2BV1Xsi3oupJtYSJfV4bv++O2UnvTTTdx8803j3rOn//8ZxobG4ccv/HGG7nvvvv405/+tFnP7fs+xiTrWCQiIiIiIpPbuA6InZ2ddHWNvsHntGnTsCxryPFHH32Uc845h+effx7b3vRCaT7v0t09fjonmaZBVVWCjo4+PG/cfmQyAenakm1B15VsC7quZFvQdSXbwni8rsrLY4RCQ3PThsb1FNPKykoqKys3674vvfQSVVVVmxUO+42XD3Mwz/PH5bhk4tO1JduCrivZFnRdybag60q2hYl4XY3rgDhWf/rTn2hra2PhwoWEw2GeeOIJvvOd7/CJT3xiRw9NRERERERkwtgpAqJt2/zoRz/immuuAWDGjBlceumlnHzyyTt4ZCIiIiIiIhPHThEQDz/8cA4//PAdPQwREREREZEJbafaB1FEREREREQ2nwKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgQKiiIiIiIiIABMkIH75y1/mhBNOYP78+ZxwwgnDnvP000/zwQ9+kPnz53P00Udz7733bt9BioiIiIiITHATIiACnHjiiRx33HHD3rZy5UrOPvtsDj74YO677z7OOOMMLr30Up588sntPEoREREREZGJy97RAxiLyy67DID29nZef/31Ibf/5Cc/Yfr06Xzuc58DYPbs2fzzn//krrvuYvHixdt1rCIiIiIiIhPVhAiIG7Ns2TIOPfTQkmNLlizhhhtu2KLHNU1ji+6/NfWPZTyNSXYOurZkW9B1JduCrivZFnRdybYwka+rnSIgtra2UlNTU3KstraWzs5O8vk8oVBokx/Ttk1qapJba4hbTVVVYkcPQXZSurZkW9B1JduCrivZFnRdybYwEa+rHRYQb7rpJm6++eZRz/nzn/9MY2PjmB7PMErTue/7mz02AMfx6O5Ob9FjbE2maVBVlaCjow/P27LXJjKYri3ZFnRdybag60q2BV1Xsi2Mx+uqvDxGKGRt9LwdFhBPP/103ve+9416Tl1d3Zgeq7a2ltbW1pJjbW1tVFZWblb1sN94+TAH8zx/XI5LJj5dW7It6LqSbUHXlWwLuq5kW5iI19UOC4iVlZVUVlZulcdauHAhjz32WMmxJ598koULF26VxxcREREREZkMJsQ2FytWrOCll16ipaWFbDbLSy+9xEsvvVS8/T//8z95++23ueGGG3jjjTf40Y9+xEMPPcQZZ5yxA0ctIiIiIiIysUyIJjWXXXYZf/vb34pff+ADHwDglVdeAWD69Ol85zvf4brrruMHP/gBjY2NfPnLX9YWFyIiIiIiIptgQgTEH/7whxs955BDDuHee+/d9oMRERERERHZSU2IKaYiIiIiIiKy7SkgioiIiIiICKCAKCIiIiIiIgUKiCIiIiIiIgIoIIqIiIiIiEiB4fu+v6MHMR55no/rejt6GCVCIYt83t3Rw5CdkK4t2RZ0Xcm2oOtKtgVdV7ItjLfryrJMTNPY6HkKiCIiIiIiIgJoiqmIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggjis/+tGPWLp0KQsWLOBDH/oQzz777KjnP/jggxxzzDEsWLCA9773vTz22GPbaaQy0WzKtfXaa69x/vnns3TpUubOncvdd9+9HUcqE8mmXFc//elP+fCHP8yBBx7IQQcdxJlnnslzzz23HUcrE8WmXFd//OMfOfHEEznggANYuHAh73//+7n33nu332BlwtjUn7H6ffe732Xu3Llcf/3123iEMhFtynX1y1/+krlz55b8WbBgwXYc7dgpII4TDzzwANdeey3nnnsuv/rVr5g7dy4f//jHaW9vH/b8Z555hosvvpiTTjqJe++9l6OOOopPf/rTvPHGG9t55DLebeq1lU6nmTZtGhdffDF1dXXbebQyUWzqdfX0009z/PHH84Mf/IAf//jHNDQ0cOaZZ9Lc3LydRy7j2aZeVxUVFZx99tncc889/PrXv+akk07i0ksv5cknn9zOI5fxbFOvq34vvPACP/nJT5g7d+52GqlMJJtzXVVWVvKXv/yl+OeRRx7ZjiPeBL6MCyeddJJ/1VVXFb92XddfsmSJf/vttw97/oUXXuifffbZJcdOPvlk/8orr9ym45SJZ1OvrcHe8Y53+D/84Q+35fBkgtqS68r3fd9xHH/ffff1f/3rX2+rIcoEtKXXle/7/gc+8AH/pptu2hbDkwlqc66rVCrlH3vssf5jjz3mn3baaf511123PYYqE8imXle/+MUv/IMOOmh7DW+LqII4DuRyOV544QUOPfTQ4jHTNFm8eDHLli0b9j7Lli0rOR9gyZIlI54vk9PmXFsiG7M1rqt0Oo3jOFRUVGyjUcpEs6XXle/7PPXUUyxfvpz9999/G45UJpLNva6uu+46Dj74YA477LDtMEqZaDb3uurt7eXII4/kiCOO4NOf/jSvv/76dhjtprN39AAEOjo6cF2X2trakuM1NTWsWLFi2Pu0trZSU1Mz5PyWlpZtNk6ZeDbn2hLZmK1xXX3ta19jypQpHHLIIdtiiDIBbe511dPTw+GHH04ul8M0Ta688koWLVq0rYcrE8TmXFePPPIIf/3rX7WeVUa0OdfVrrvuyrXXXsucOXPo7u7mzjvv5JRTTuH++++noaFhewx7zBQQxzHf9zEMY8Tbh7tttPNF+m3s2hLZHGO9rm677TYeeOABfvjDHxIOh7fDyGQi29h1lUgkuPfee0mlUjz11FNcc801zJgxgwMOOGA7jlImmpGuq/b2dr74xS9yyy23EIvFdsDIZCIb7fvVwoULWbhwYfHrfffdl+OOO46f/exnnHfeedtphGOjgDgOVFVVYVkWra2tJcfb29uH/GaiX21t7ZDz29raRjxfJqfNubZENmZLrqs77riD73znO3zve99jzpw523KYMsFs7nVlmiYzZ84EYM899+SNN97gu9/9rgKiAJt+Xb322mu0tLRwyimnFI+5rsvf//537r77bnVfFmDr/HwVCoXYc889x+WMLq1BHAfC4TDz5s0r6brmeR5PPfVUyW8aBlu4cCFPPPFEybEnn3xyxPNlctqca0tkYzb3urr99tu59dZbuf3228dta2/ZcbbW9yvf98nlcttghDIRbep1tWDBAn7zm99w7733Fv/Mnz+fD37wg/zyl7/cjiOX8WxrfL9yXZfXXnttXHaMVwVxnPjYxz7GJZdcwrx589h777256667yGQyfPCDHwTgkksuoaGhgYsvvhiAj3zkI5x22mnceeedHHHEETzwwAM8//zzXH311TvyZcg4tKnXVi6XK26XksvlWL9+PS+99BIVFRU0NTXtsNch48umXle33XYbN954I1/72teYOnVqcb10PB4nkUjssNch48umXlff/e532WuvvZg5cya5XI7HH3+c++67j6uuumpHvgwZZzbluorH40NmN8TjcSorK9l99913xPBlnNrU71c333wzCxcuZObMmXR3d3PHHXewZs0aTjrppB35MoalgDhOHHfccbS3t/Otb32LlpYW9txzT26//Xaqq6sBWLt2LaY5UPDdb7/9+NrXvsY3v/lNvv71rzNr1ixuueUWZs+evaNegoxTm3ptNTc384EPfKD49Xe/+12++93v8sEPfpDrrrtuew9fxqlNva5+/OMfk8/nueCCC0oe57zzzuP888/frmOX8WtTr6tMJsNVV13FunXriEaj7LrrrnzlK1/huOOO21EvQcahTb2uRMZiU6+r7u5uvvjFL9LS0kJFRQXz58/nnnvuYdddd91RL2FEhu/7/o4ehIiIiIiIiOx4+nWJiIiIiIiIAAqIIiIiIiIiUqCAKCIiIiIiIoACooiIiIiIiBQoIIqIiIiIiAiggCgiIiIiIiIFCogiIiIiIiICgL2jByAiIrK93HTTTdx8881Dji9atIjvf//7239AIiIi44wCooiITCplZWXcfvvtQ46JiIiIAqKIiEwylmWxcOHCjZ6XyWSIRqPbfkAiIiLjiNYgiojIpLdq1Srmzp3Lr3/9ay655BIOOOAAzjnnHAA6Ozv50pe+xOLFi1mwYAH/+Z//yb///e+S+3d3d3PxxRezcOFClixZwv/+7/9y/fXXs3Tp0uI5N910EwcffPCQ5547dy533313ybGf/exnHH/88cyfP593vOMd3HbbbSW3f+5zn+OEE07giSee4L3vfS8LFy7klFNO4bXXXis5z3VdvvOd7/Dud7+b+fPnc/jhh/O5z30OgB/96Efsu+++9PX1ldznr3/9K3PnzuXll1/exHdRRER2BqogiojIpOM4TsnXvu8DcMMNN3D00Udz4403YpomuVyOj33sY3R3d3PJJZdQXV3Nj3/8Yz760Y/y+9//nrq6OgA+//nP87e//Y1LL72U2tpa7rzzTt5++21se9P/N3v77bfzjW98g49//OMcdNBBvPDCC9x4443EYjFOO+204nlr167lhhtu4FOf+hSRSIQbbriBiy66iPvvvx/DMAD40pe+xH333cdZZ53FQQcdRFdXFw899BAA733ve7n++uv53e9+xwknnFB83F/96lfMmzePPfbYY5PHLiIiE58CooiITCqdnZ3Mmzev5NiXv/xlAPbZZx8uv/zy4vGf/exnvPbaa9x///3MmjULgMWLF3PMMcdw55138t///d+89tpr/PGPf+Qb3/gGxx13HAAHH3ww73jHO0gmk5s0tt7eXm655RY+9alPcd555wFw6KGHkk6n+d///V9OOeUULMsCoKurix//+MfFcfm+z7nnnsubb77J7NmzeeONN/j5z3/OF77wBT7ykY8Un6N/jOXl5bzrXe/il7/8ZTEg9vX18fvf/56LL754k8YtIiI7DwVEERGZVMrKyvje975XciwcDgNw5JFHlhx/6qmnmDdvHtOmTSupOh544IE8//zzADz33HMAJdNJE4kEixcv5tlnn92ksT3zzDOkUimOOeaYkuc75JBDuPXWW1m3bh1Tp04FYOrUqcVwCDB79mwA1q9fz+zZs3n66acBSqqDGzrppJP46Ec/ysqVK5k+fToPPvggjuPwnve8Z5PGLSIiOw8FRBERmVQsy2LBggUlx1atWgVATU1NyfGOjg6WLVs2pOIIMGPGDABaW1tJJBJDGtps+Fhj0dHRAcDxxx8/7O1r164tBsQNO6+GQiEAstksEFRK4/H4qFXMgw8+mOnTp/PLX/6SCy+8kF/+8pe8853vpLKycpPHLiIiOwcFRBERkYL+tXv9KioqmD9/PldcccWQc/urjrW1tfT19Q3petrW1lZyfiQSIZ/Plxzr6uoa8nwA3/nOd4YNmLvsssuYX0tlZSWpVIre3t4RQ6JhGJx44on89Kc/5f3vfz///Oc/hzTEERGRyUUBUUREZASLFi3iiSeeoKmpacSKYH818k9/+lNxfV9fXx9PPvlkSTBraGigr6+P9evX09DQAMATTzxR8lj77rsv0WiU5ubmIdNdN9UhhxwCwL333lvS3GZDH/zgB/nWt77FpZdeSkNDA4ceeugWPa+IiExsCogiIiIj+MAHPsBPfvITTj/9dM4880ymT59OZ2cnzz77LHV1dXz0ox9l9913Z+nSpVxxxRX09vZSV1fHHXfcMWTK6WGHHUY0GuXSSy/lYx/7GKtWreInP/lJyTnl5eWcd955XH311axevZoDDzwQz/N46623ePrpp7nlllvGPPZdd92V//iP/+C6666jra2NAw88kO7ubn73u9/xjW98o3heQ0MDhx12GI8++ihnn312sQmOiIhMTgqIIiIiI4hEIvzgBz/gxhtv5KabbqKtrY3q6mr23nvvkqY01113HVdccQXXXHMN8XicD3/4wyxYsIDf/e53xXOqq6v51re+xQ033MC5557LvHnz+NrXvlasOvb7xCc+QX19PXfddRff+973iEQizJo1a8h5Y3H55ZfT1NTEz372M2677Taqq6uHrRAeddRRPProo6M2tBERkcnB8Ps3fxIREZGtpn+PwT/96U87eigbdeGFF9LS0sL//d//7eihiIjIDqYKooiIyCT1yiuv8Pzzz/OHP/yBr3/96zt6OCIiMg4oIIqIiExSn/rUp+jo6ODDH/4wxxxzzI4ejoiIjAOaYioiIiIiIiIAmDt6ACIiIiIiIjI+KCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIECooiIiIiIiAAKiCIiIiIiIlKggCgiIiIiIiKAAqKIiIiIiIgUKCCKiExgvu+zdOlS5s6dy4oVK8Z0n1dffZW5c+fy9NNPb/XxtLW1cdNNN7Fq1aqS408//TRz587l1Vdf3erPOVZz584d9s8//vGPMd3/c5/7HCeccMI2HuX2fe6lS5dy/fXXj3j7qlWrmDt3Lo888sgWP9fpp5/OBRdcUHLspz/9KUuXLmWvvfbi9NNP3+Ln6HfTTTeN+Hn3/9mazycisjOxd/QARERk8z3zzDOsXr0agN/+9rd8+tOf3qHjaWtr4+abb+aggw5i2rRpxePz5s3jnnvuYcaMGTtwdHDmmWfy7ne/u+TYbrvttoNGM7lcfvnl2PbAjx0tLS1cccUVnHrqqRxzzDFUVFRstec6+eSTOeyww4pf//CHP+Tpp5/m5ptvLh5LJpNb7flERHYmCogiIhPYb3/7W+LxOLvvvvu4CIgjSSaTLFy4cEcPg6lTp46LcUxGGwbxFStW4LouJ554InvsscdWfa7GxkYaGxuLX//ud78jHA6P+tlnMhmi0ehWHYeIyESkKaYiIhOU67o89NBDLF26lBNPPJHXX3+dl19+ech5P/rRjzjiiCNYuHAh55xzDi0tLUPOufPOOznxxBPZf//9Wbx4Meecc86QKav9UwTvueceli5dyt57780nP/lJ1q9fDwTTEd/73vcC8JGPfKQ4lQ+GTjE97bTTuPDCC4eM4/rrr+fII4/E930AstksN9xwA0cccQTz58/nfe97H3/+85+34F0b3r333sspp5zCQQcdxIEHHsjpp5/Oc889N+p9uru7+cIXvsCSJUtYsGABRx55JJdddlnJOa+++iqf/OQn2Xfffdl333254IILhn3/N1VzczOf//zneec738nee+/Nu9/9br7xjW+Qy+VKzstkMtxwww284x3vYP78+SxdupSvfe1rIz7u+vXrefe7381HP/pR0un0sOc8/fTT7Lvvvnz9618H4Je//CVz587llVde4WMf+xgLFy7kmGOO4fe//33J/QZPMb3ppps49dRTAXj/+9/P3Llz+eUvfwlsn8+8f+rsr3/9ay655BIOOOAAzjnnHCCYinz33XeXnH/TTTdx8MEHlxxbs2YNn/nMZzjooIPYZ599OOuss3jzzTe36jhFRHYEBUQRkQnqr3/9K62trRx33HG8+93vJhQK8dvf/rbknD/+8Y9cddVVHHnkkdx0003MmTOHSy+9dMhjrVu3jtNOO41bb72V//mf/8F1XU455RR6enpKznvmmWe4++67+dznPsfVV1/NK6+8Uqxa1tfX89WvfhWAL33pS9xzzz3cc889w479uOOO49FHHyWVShWP+b7PQw89xLHHHothGABccMEF/OpXv+Lss8/m29/+NgsWLOBTn/oUL730UvF+/evNxsLzPBzHKf5xXRcIAsMHPvABbrzxRr761a/S2NjIaaedxsqVK0d8rGuvvZZ//vOfXHrppdxxxx185jOfKY4bggrZKaecQjab5Stf+QrXXXcdr7/+Ouecc04xAG+ujo4OKisr+fznP8/tt9/OWWedxS9/+Uu+/OUvF8/xfZ9Pf/rT/PjHP+bDH/4wt912GxdccAEdHR3DPuaqVas49dRTmTlzJt/5zneIxWJDznn88cf55Cc/yVlnncV//dd/ldz22c9+lqVLl3LzzTcza9Ys/uu//ot169YN+1wnn3wyX/rSlwD46le/yj333MORRx4JbP3PfDQ33HADiUSCG2+8kbPPPnvM9+vs7OTDH/4wy5cv54orruCb3/wmqVSKj33sY2QymS0el4jIjqQppiIiE9T9999PeXk5hx12GOFwmMWLF/Pb3/6W//qv/yoGlW9/+9scdthhXHnllQAcdthhtLe387Of/azksQaHRtd1OfTQQ1m0aBEPP/wwH/jAB4q3tbe385Of/ISpU6cC0NTUxIc//GEee+wxDj/88OIP7bvtttuo0/mOOeYYvvzlL/PII49w/PHHA7Bs2TLWrFnDcccdB8BTTz3Fo48+yg9/+EMOOuggAJYsWcJbb73F//7v//Ktb30LAMMwsCxrTO/Z1VdfzdVXX138er/99uPHP/4x5513XvGY53kceuihPPfcc9x3330ltw323HPPceqppxbHC0E1rN/NN99MbW0tt912G+FwGAiqU8ceeyx//vOfi4Foc8ydO5f//u//LnkdsViMSy+9lMsuu4xwOMxf/vIXnnjiCW699Vbe+c53Fs8d/Hn2W7FiBWeccQYLFizga1/7WnG8gz388MNcdNFFXHTRRZx11llDbj/jjDM46aSTgGDN6aGHHsojjzzCKaecMuTcxsbG4pTTuXPnMmfOHGDbfOaj2Weffbj88ss3+X7f//73SafT3HvvvVRWVgLBZ7B06VJ+8YtfFKujIiITkSqIIiITUC6X449//CNHHXVU8Yf5448/ntWrV7Ns2TIgCHovvfRSSTgAOProo4c83rJly/jYxz7GwQcfzF577cU+++xDKpVi+fLlJefttddexXAIsP/++1NTU8Ozzz67SeOvrq7mkEMO4YEHHigee+CBB5gxYwYLFiwA4Mknn6Suro799tuvpOq3aNEinn/++eL9zjvvPF588cUxPe9ZZ53Fz3/+8+Kf/rD4xhtvcO6557J48WL23HNP5s2bx/Lly3nrrbdGfKw99tiDO+64gx/96EdD3icIws7RRx+NaZrFsU+bNo2pU6eWjH9z+L7P97//fY477jj23ntv5s2bx2c/+1lyuRxr164FggpzZWXlkM9/Q8uXL+fUU09l//335xvf+Maw4fD3v/89F154IZ/73OeGDYcQBLl+VVVVVFdXj1hBHMm2+MxHs7kh/amnnmLx4sUkk8niGBOJBPPmzdviz1ZEZEdTBVFEZAJ67LHH6O7u5ogjjqC7uxuAgw8+mHA4zG9/+1v23Xdf2tvbcRyHmpqakvtu+PWaNWs488wz2Xvvvbnyyiupr68nFApx9tlnD1nTtuF9+49tzrq64447jiuvvJLe3l7i8TgPPfRQyVYOHR0dtLS0MG/evCH33dzqUVNTUzGA9uvt7eXMM8+kpqaGz33uczQ1NRGJRLjsssuGvP7BvvSlL/Gtb32LW2+9lauuuoqZM2dy4YUXFiuiHR0d3Hbbbdx2221D7tsf4jbXXXfdxfXXX88nP/lJDjzwQMrLy3nuuee46qqryGazQDANsq6ubqOP9cwzz9DZ2clJJ51U0mV0sD/96U9UVlZy1FFHjfg4ZWVlJV+Hw+FR37/hbIvPfDTDXc9j0dHRwbJly0p+wdFv0aJFWzosEZEdSgFRRGQCuv/++wGGbfTy4IMP8vnPf57q6mps26atra3k9g2/fvzxx8lkMtx6663E43EAHMehq6tryGNveN/+Y2MJIhs6+uijueKKK/jjH//I1KlTaW5u5thjjy3eXlFRQUNDA7fccssmP/amWLZsGevWrePOO+9k9uzZxeMbrr/cUHl5OZdddhmXXXYZL7/8Mrfffjuf/exnmTt3LrvtthsVFRUcddRRnHzyyUPuW1VVtUVjfuihhzjmmGP4zGc+Uzz2xhtvlJxTWVk5puB+wgkn0Nvby7nnnsv3v/999t577yHnXHbZZXzve9/jzDPP5O67797i8Y9ke33m/QavGe0XDofJ5/Mlxzb8b6GiooKlS5cO2zU4kUhs3UGKiGxnCogiIhNMX18fjz76KO95z3v40Ic+VHLbSy+9xLXXXsvTTz/N4sWL2WOPPXj44YdL1oH94Q9/KLlPJpPBNM2S6tGDDz6I4zhDnvvFF19kzZo1NDU1AfDPf/6Ttra2YqgIhUIAxSrWaCoqKliyZAkPPvggTU1NzJ49u2S7g0WLFvG9732PeDxeEty2tv6mIoOnVv7rX/9i9erVzJ8/f0yPsccee3DJJZfwm9/8hjfffJPddtuNRYsW8dprrzF//vxhg8iWjnnDqaC/+c1vSr5etGgRt99+O4888gjveMc7Rn28K6+8klQqxSc+8Ql+8IMfDGkAk0wmueOOOzj99NM566yz+MEPfrBN9hHcXp/5aBobG0vCtud5/PWvfy05Z9GiRTz44IPsvvvu2hpDRHY6CogiIhPMww8/TDqd5iMf+Qj77LNPyW377bcf//u//8v9999f3K7ivPPO4/LLL+foo4/m73//O48//njJfQ455BBc1+Xzn/88J510Eq+99hp33nkn5eXlQ567urqas88+m/PPP59sNstXv/pV5s2bx+GHHw4EUzij0Sj33nsvZWVl2LY9ZErnYMceeyxf+MIXSCaTnHbaaSW3HXrooSxZsoQzzzyTT3ziE+y222709vby8ssvk81mufjii4GgGcytt9662WvSFi5cSDwe54tf/CIf//jHWbduHTfffDMNDQ2j3u+UU07h6KOPZvfdd8cwDH76058Sj8eLYfm8887j5JNP5pOf/CQnnngiVVVVrF+/nieffJIPfvCDxW0Tli5dykEHHcR111036vMNDpmLFy/mhz/8IXvvvTczZszgN7/5zZBtSfrfv4svvphzzz2Xvfbai5aWFv7xj39w1VVXlZxrmibXX389F1xwAWeddRZ33303s2bNKjmnqqqKO++8k1NPPZWzzz6b22+/fdhOp1tie33moznqqKP4v//7P/bcc0+mT5/Oz3/+c3p7e0vO+ehHP8qvf/1rzjjjDE477TQaGhpobW3l73//O/vvvz/vec97tvq4RES2FzWpERGZYH77298ya9asIeEQggrescceyx/+8AdyuRxHH300X/ziF3nkkUc499xzefHFF0u6eELQRfLaa6/l3//+N2effTb3338/N95445A1ZQD77rsvH/7wh7nmmmv4whe+wO67714yHTASifA///M/vPDCC5x++unFrpYjeec734llWXR0dJR0A4UgEN18882ceOKJ3HXXXXz84x/n8ssv55lnnmH//fcvnuf7fnG7is1RW1vLjTfeSGtrK5/+9Ke56667uPLKK5k5c+ao91u4cCG/+tWvuOCCC7jooouKaw77N2jfZZdduOeee4jFYnzpS1/iE5/4BDfddBPhcLjksdPpNNXV1aM+VyaTKVZnAc4991ze8573cOONN3LxxRcTCoWG7MFoGAa33HIL//Ef/8Fdd93FJz7xCb75zW+OOD3Utm2++c1vMmfOHD72sY8Nu06yvr6e73//+6xevZrzzjtvk9cYbsz2+sxHc95553HMMcdw44038vnPf5499tiDE088seSc6upq7rnnHnbddVeuvfZazjzzTL761a/S09OzVbbfEBHZkQx/SzdjEhGRSeH000+nqqqquNWAbLmVK1fyrne9i9///vdMnz59xPNOOOEEZs2aVdycXkREZFvRFFMREZEd5JlnnuGoo44aMRw+99xzPP7447zwwgt8/OMf386jExGRyUgBUUREZAd53/vex/ve974Rb+/vUnrJJZcMmYIrIiKyLWiKqYiIiIiIiABqUiMiIiIiIiIFCogiIiIiIiICKCCKiIiIiIhIgZrUjMDzfFzX29HDKGHbJo4zvsYkOwddW7It6LqSbUHXlWwLuq5kWxhv15VlmZimsdHzFBBH4LoenZ2pHT2MItM0qKlJ0t2dxvPUV0i2Hl1bsi3oupJtQdeVbAu6rmRbGI/XVWVlHNO0NnqeppiKiIiIiIgIoIAoIiIiIiIiBQqIIiIiIiIiAiggioiIiIiISIGa1IiIiIjIDuX7Pp7n4u+AXh6maZDL5XAcZ9w0E5GJb0dcV4YBpmlhGBvvVDoaBUQRERER2SF836e3t4u+vm5gx4Wz1lYTzxs/2xHIzmFHXFemaVFTMwXL2ni30pEoIIqIiIjIDtEfDsvLqwmHI8CWVT42l20bOI6qh7J1bf/ryqezs5Xu7naqquo2+1EUEEVERERku/N9vxgO4/HkDh2LbZuAKoiyde2I66qsrJKOjmZ838MwNq/djJrUiIiIiMh253ku4BcqhyKyNVhWUP/bkqmtCogiIiIist0NNKTZMdNKRXZOwX9PW9LwSQFRREREREREAAVEEREREZEd5l//+gdLlhxAKpUa9byTTnovv/jFPdtpVNvXvff+gv/+788Uv3Ychy9/+XKOOeYdLFlyAK+99gpXXnkZP/nJ3TtkfOed90luvvmbO+S5dwQFRBERERGRMbr66itYsuQAvvGNG4bcduWVl7FkyQFbFCYeeOA3HH/8O4ccv+22H3D88e8vfr1kyQE88cTjm/0820MqleLmm7/JySe/j6VLF/O+972bz3zmXJ59dlnxnGw2y/e+910++tGPF489+ujDPP74o3zzm7dy330Pscsus/noRz/OD37wPfr6ekd9zpNOei9Llhww5M+99/58o+MdKaxfc81XOPPMT2zKS98s4+UzVRdTEREREZFNUF/fwB/+8DvOPfciwuEwAH19vTz++KPU1zdsk+esqqraJo+7NeTzeUKh0JDjX/nKNbz66stcfPHnmDlzFp2dHfzzn3+nu7u7eM6jjz5MRUUle+45r3hs1aqVTJ06nT322LN4bObMWUyfPoM//OEhPvCBk0Ydz9lnn8txx7235FgyufmdcsvLKzb7vhORAqKIiIiIyCbYa695LF/+Jn/5y2MsXXoUAH/84++ZM2cPTLN0gt6SJQdw/fXf4NBDDwOCqtq73nU43/rWt9lvvwNKzv3Xv/7BNddcWbwfwMc+9gnOOutsTjrpvZxyymmceOJ/cNJJQfjpn5bZ2DiFn//8N6xc+TY33/wNXnzxBTKZDLvuOptPf/pC9tlnYcl4PvvZz/PnP/+Jf/97GfX19Vx44cUsWrSkeM6bb77OzTffyLPPPkMikWDRoiWcd95niiHrvPM+yW67zQF8fv/7h5g3bz5f+cqNQ96np576C//1X//NIYcsBmDKlKaSIAjw8MO/59BDDy9+ffXVV/Dgg/cXx9r/2gAWL17Cww//YaMBMR6PU1NTO+xt69at5etfv4Fnn12G4+SZOnUaF130/2hsnMIFF5wDwLveFYzn2GPfwxe+cAXnnfdJ9thjL8477yIgqFK+//0n8MYbr/OXv/yZqqoaLrnk80yfPovrrruK559/ll12mc2VV15NU9M0gI1+NiN9pgCPPfYod975Xd5++y3q6up53/s+yCmnnD7kWttaNMVURERERGQTHXfce3nggV8Xv37ggd8MqVptqgUL9uGCCy6mvLyC++57iPvue4hTTjl9yHm33fYDAL74xau4776Hil+nUikWLz6MG2+8lTvu+CHz5+/NJZdcSGdnZ8n9b7/92xx99DF8//s/YsmSI/jCFy5h/fp1APT09HDBBZ9ir73mceedd3P99d9k5cq3ufrqK0oe47e//TWxWJxvf/tOzj//v4Z9PVVV1Tz55F9GXV/57LPLSiqFF174Wf7zP09jt93mlLw2gD322IsXXngex3FGfhM34utfv558Psctt9zGXXf9hLPOOodwOEJ9fQNXXx1MG77nnnu5776HuPDCz474OD/5yd3sv/+BfO97/8fChfty5ZVf5IYbvsyHPvRh7rjjbmzb5itfubZ4/sY+m5E+03//exnXXHMF//mfp/LDH/6Uiy76f/z85/fw859vu/WoqiCKiIiIyLjx/BMGzW9vv+ernwELj9j0+x1zzPHcccd3aG1toa+vjzfffJ2lS4/ioYd+u9ljCYVCJJNJDIMRK2AwMN00mSwrOW/u3D2YO3eP4tfnn/8Z/vznP/H000/y7ncfVzx+1FHvLobZ8867iL/97SnuvfcXnH32ufziF/ew55578fGPn1M8/5JLvsCpp55ER0c7VVXVQDDl8+yzzx319fy//3cpV155Gccdt5Q5c/Zg4cL9OOqodzFnTjDGnp4eent7S15DMpkkFothWdaQ96CmppZcLktHRzt1dfUjPu/NN3+Tb3/75pJjt9xyG3Pm7MH69es44oilzJ69GwBTp04rnlNWVg4EwTYej4/62g499HDe+94PAHDGGWfx4IP3c8ghi1m8OKjEfuhDp3DllZfheR6maW70sxnpM73zzu/ykY+cyTHHHF8c7xlnnMnPf34PH/rQKaOOcXMpIIqIiIiIbKKamloOOOBgHnzwt/T0dHPEEUuJxxM7dEypVIo77vgOTz31F9rb23Bdl2w2W6wO9ttrr/klX8+bt4C33loOwOuvv8bf//40Rx992JDHX716VTEgDq76jWS//Q7g5z//Dc8992+efXYZTz/9FD/5yd1ccskXeM973k82mwUoruPcmEgkAkAmkxn1vNNO+2hJIAaKa0NPOOFDfP3r1/P3vz/NgQcezNKlRzNr1i5jev7B+gMmQHV18J7sssuug47V4DgOvb09lJdXjPmz2dAbb7zKc8/9m+9977biMdf18H1vk8c8VgqIIiIiIjJuzD/Uh0O397Mam3Wv449/L9/+9s2kUikuv/zLwz+yYeAP2rV8S6ZHbswtt3yTf/7z73z60xcydeo0IpEIn/3sheTz+Q3GNPw4AdLpNIcdduSw1cG6urriv6PR2JjGFAqF2G+/A9hvvwP46Ec/zvXXX82dd36X97zn/VRUVGAYBj09PWN6rP7mNpWVozfsqaysZNq06cPe9v73n8DBBy/iiSce5+mnn+IHP7iT//7vyzj22PeMaQz9bHtwjAreO8saeszzgs9+rJ/NhlKpNJ/4xKc47LDNKHNvJq1BFBERERHZDIceejg9PT2EwxH23Xf/Yc+prKyivb2t+PXrr7866mPadgjX3Xh1yLZtPM8tOfbcc//m+OPfx+GHH8ns2btRXl5BS8v6Ifd94YXnS75+8cXnmTlzFgBz5sxl+fI3mTKliWnTppf8iUSiGx3XxsycObNYAQyFQsyatQtvvfXmmO771lvBuMrKyrZoDI2NUzjxxA9xww3f4D3veX+xKU5/J1bP2/rVubF8NsN9pnPmzGXlyhVDPouRAvDWoIAoIpNS3vN4um0dGXfb/SZXRER2brZtc889v+Kuu/6vWIHb0L777s8vfvFTXn/9NZ577t/cdtutoz7mlClT6Ovr5V//+gednZ0jTqdsbGziH//4G21trcXK2rRpM3j00T/x2muv8uqrL3PFFV/ANK0h93344d/z4IP38/bbK7j11ht5++0VvP/9JwJwwgkn09HRxlVXXcbLL7/I6tWreOqpv3D99VdvylsDwPnnn83999/Lq6++zJo1q3nkkT/yf//3Q5YsGehaetBBh5TsiziaZ59dxoEHHrzR81KpFG1trSV/+hvl3Hjj1/jb3/7KmjWrefHF53nuuX8zY8YsIAiOhmHw5JOP09HRMWpznU01ls9muM/0jDPO4oEHfsP3v387y5e/yfLlb/L73z/IXXfdsdXGtiFNMRWRSWlFqpvXejuZnawgaulboYiIbJ5EYvT99c477yKuvvpKzjnnYzQ1TeX88z/DZz5z3ojnL1iwD+9//wl88Yv/TVdXV3Gbi+Ee9+abv8G99/6Curp6fv7z33D++Z/hmmuC56qqquaMM86iq6tzyH3POuuTPPTQA3zlK9dQV1fP//zP9TQ2NgJQV1fPrbfewbe/fRMXXfRp8vk8U6ZM3awpjgceeDC/+c19vP32t8jlstTVNXD88e/jjDPOKp5z/PHv55OfPINUqm/UNZz5fJ7HHnuUr371Wxt93u985xa+851bSo6deuoZfOpT5+O6Dl/96rW0traQTJaxePESPv3p84uv/ayzzuaWW75Je3s7xxxzPF/4whWb/LqHM5bPZrjPdNGiQ7n22q/x/e/fzg9+8D3C4RCzZu3KCSecvFXGNRzDHzwpWoryeZfOzq33W4MtZZoGNTVJ2tp6i3OZRbaGyXht5T2P36x5k+ZMmvdN3YWm2OZvnivDm4zXlWx7uq52Lo7j0Nq6mtraqRus59r+bNvEcbZd04/xZMN9GceDL3zh/zF//j6ccsppI57z61//ikce+SPf+MYtI54z3uyI62q0/64qK+OEQkMryhvSFFMRmXRWp3tpy2WwTYPcNlhnICIiImN37rkXEY2Ovr7RNE0+85n/t51GNLlpXpWITDq9Th6DoL9YdoPF4CIiIrJ9NTVN5YMfPGnUc97znvdvp9GIAqKITDrd+Ry2YeL4HjlXAVFERCaPv/zlHzt6CDLOKSCKyKTTk88RMkx83yfljr7/kIiIiMhkooAoIpNOr5MnZJp4+KRUQRQREREpUpMaEZlU8p5H2nMImSa2YZByVEEUEdkRBrYNVEdaka0n+O9phG05x0QVRBGZVDKug+N5hGwTxzBJu86OHpKIyKRkmhamadHZ2UpZWSWWZRO0D9sRDBxHQVW2tu19Xfn09nZhGCamufHtLEaigCgik0q6EBBt08TyTDKei+t7WIYmVIiIbE+GYVBTM4Xu7nY6Opp36FhM08TTtkeyle2I68owTKqr6zG2oISogCgik0rWc4vTLmzTwHE8sq5H3FZAFBHZ3izLoqqqDt/38DwPfwcU8UzToKoqTkdHCs9TFVG2jh1xXRlGUJnfknAICogiMskEU0qDb5zFrS48l7i+HYqI7DCGYWJZO+YXdaZpEA6Hse2cAqJsNRP5utKvzEVkUsk4TvE31KZh4OGT89TJVERERAQUEEVkkul2coTMgakXBgY5rTsRERERARQQRWSSCQJi6bc+VRBFREREAgqIIjJp+L5Pb94hVNKx1CergCgiIiICKCCKyCSSdh3SrkPEKt0bKOMqIIqIiIiAAqKITCI9Tp6875ZUEEOGSXc+uwNHJSIiIjJ+KCCKyKTR4+TAN0r2B4pYFh0KiCIiIiKAAqLIpLc23bdF9+/O52jOpOhz8ltpRNtOVz7LhnvHhk2LXidPXusQRURERBQQRSazlOPwr45mevO5zbp/znP5/boV3Lf6Tf7Wtm4rj24o1/d4rrMV19+8bSlaMxmiZun6w7BpknNd+hxnawxRREREZEJTQBSZxDzfw/V9nM3cB7A5k6Yzn6UqHGFdJkV+lMfJuM6ot49FWzbDq72d9A6qVnbkMiVfj8T1PdpzmSENaizDxMOnzx3/FVARERGRbU0BUWQScwnCoev7m3X/NeleTAzilk3KzdORy7Ay1cPy3q4h5/6ro4U3hzm+KdpyGbpyWbKDuo6+2N3Oir7ujd6318mT8dwhFUQAg6CaKiIiIjLZKSCKTGKe7292BdHxPN7q66bMDmEaBj5BgPtXRzMrU71Dzm/Jpki5WxbCVqZ6yHhOyb6FPfn8mMJdTz6P63nY5nDf9oyggY2IiIjIJKeAKDKJub6P63s4m7GmrzWbpsfJkbBDAIQNk9d6OlmfSdG1wZrGnOfS4+Tp24IQlnEdmrMpPL9038K0m6d3DNND12X6SrqXDhY2TTpzmc0em4iIiMjOwt7RAxCRHcfzfRzfx/V8gomWY9eZz+L7YBZCV9wO0ZHLkPM8ep0cnu8Xb+t18mRdl94tmMbZls2QcV0illWsIHq+T9p1CeVHD4h5z+WN3i7KC2F2QxHToiOnCqKIiIiIKogik1gQEDevgtiRy2KbA6EybtmkPZfGaJyc55EZNJ20z8mT9ZwtagTTH0hDhkFvoRKZ81xc36PPzeOPso5yXSZFj5MjOUJADJsmKTdPegunwIqIiIhMdAqIIpOYS1A93Jw1iK3ZDJFBDV9Mw2BWvIyEZeP4Xsl6w14nj+v7ZF13s7eoSDkOtmFgGya9hYph1nNxfJ+c55Ib5jXkPZe3+rp5racTC3PEKaYR0yLtOry1hU10RERERCY6BUSRSaxYQfQ2rYtp3vPocrJEraGz1PtD2OBqXEcu2H8w73klHUg3RdrNYxUCYn8lMu95hQqoX9K4pt+6TIo/rV/J8r4uaiKRER/bMAwqQmGe7WorqXyKiIiITDYKiCKTmNvfxXQTq3q9To6s6xIeZssIAB9KKoht2SwJO4Tje8MGubHocx1s0yRkmqQcB68QCg0f3A2mtPbLex4+MDWWHHGs/crtMF35HCv6ejZrfCIiIiI7AwVEkUnMK3Qx3dRpn/0b01sjTNk08ItbT+Q9j24nS9QMqo2bW0FMuQ62YWIbJo7vFaaVuhiGgWEYwwZPxw8C4lgYhkHENFmfSW3W+ERERER2BgqIIpOYR1BBzG1iaOt18vijRK+QYdKVz5J2Hf7evo4+J0/EsgCfzGZUEPvXL1qGgW2a5D2PjOuScz3Ax/cZPiB6HozSvGZDMcumJZseteGNiIiIyM5M21yITGKuH8S8rOtt9LuB7/vF9YVt2TQhY+TfL4VNi658lsdb1vBWXxeN0Xih2hhU+l7ubqc6HKU+Gh/TOPOei+N7JAwbyzDwCaaXZl0H3zfAKN0bceB+G1RGcyasS2J0RaBwPywPf5dOiDlErWC7i7TrEB+h46mIiIjIzkwBUWQS83wfr9AFdGOeaF1DUyzJtHiS9dl0SQfTDYVMkx4nz/pMmqmxBNagMNmbz/F6bxe7JMqpj8Zpz2VI2qFR1whmPRfX9wdtq2GQdd3CusSgSJhyhm6hkfXcgWmwroHx9yaMVHjoE2Rs/P3WETJM8r5Lt5NTQBQREZFJSVNMRSYx1/fxC9M3N2ZdJsVf29byt7b1tGXTlIeGCVoFUcuiK5elLhItCYeWETxOZz7L26keMq7DX1rWsCbdN+pz5zwP1/OKj+UDGc8h5eaDdYmmWVwXOVjGdTELAdFYXomRCuNXpfH2W4t30Gq8A1bjx/IYbXFojxYrpD35zd+vUURERGQiU0AUmcS8whTTIVMxN5D3PDKeS2cux4vd7dRHYsXgNRzLMJmdrCC2wTYYtmGS8VxMoCuf4/muNtZm+kbcoN71PfKeS851Gfx0pgHt2Qx9joNlmISM4QNirr+C2GfDW5X4loc/rxlq0lCRhaos/ux2AIw3qoKxY9CeS4/6foiIiIjsrCZMQPz73//OOeecw5IlS5g7dy6PPPJIye3ZbJYrr7ySgw8+mH333Zfzzz+ftra2HTRakYkh73uYsNEmNVnXwfE8psUTNERiw+5/iGMEa/xGYRsmnbks5aEwvu+zKtVLbz5HTz437PnLe7v5R3szOd8lWDAYqLDDvN7XSdrNEzKDxjUpJ4+3QXOZ/immxppyDN/An9UJsQ1ea2MffsSBzii4BlHLojmTGfV1iIiIiOysJkxATKVSzJ07ly996UvD3n7NNdfwyCOP8M1vfpMf/vCHNDc3c8EFF2znUYpMLP3TNje2BjFTWAMYMsxCN9INtEcx/jID46lpQVAcQcSy6HXyJO0wMctmTaaP6nCUrhECYsrJszrdW2hAMxD+EnaIlOOS930swyRiWmQ8t2TvRQgqiCYGrE0GXVebhtnj0ADKchgY0BciZtm05dKs28i0VxEREZGd0YRpUnPEEUdwxBFHDHtbT08Pv/jFL/ja177GokWLgCAwHnfccTz33HMsWLBgew5VZMJwfA/LNDY6xTRbCGjGoHme1c0dHPiX5yFn8lTF8fTaQXD0mxPQ1Dvs48QsmznJCgzDoDIcIWya+ECPM3xA7HXz9Dp52rLpoFvpIEnbpiOXpSIeJmQGeyP2OjmSg5rLZD2XSGcCI2vjV6cgOkIQTuSgNQ59YaLlOWwnz8PNK3l340xqI7FR3xsRERGRncmECYijef7558nn8xx66KHFY7Nnz6apqYlly5ZtdkA0zZErIdtb/1jG05hk4nN9n5Bp4XgevjHy9ZXzXShsSA9g9Xoc8sfnSOSCKtti5wF+v/97YFUlxpoymDpy9a3/MWzDoDwcIe04pDwHF5+QWTqpIeU6ZFyXLidHyDRKAmpVOIppGIQLFU3DMEi5TvE1OJ6HB0TWVQZ3aOotuX+JZLB+0egLg2FQF42zMtVDWy5DfWxsW3FIKX3Pkm1B15VsC7quZFuYyNfVThEQW1tbiUajJJPJkuM1NTW0trZu1mPatklNTXLjJ25nVVWJHT0E2YlEe8PEnTAePmUVseGnjwIr/RSx7hCJZARnTZSpj6whketjTWwXQuEMdV1r2S35Em/EDoSOGFEzjhnfeGdUgIgXIptKESuP0JXPUh+LF9c4+u0mfsYgHAuRtHwS8UjJfcuIFv8d83MQH/jvNu04RNaEsVuTYHvEd3Ux7NL793PrIAvYmQiRZHBO3M+RLI+Oy+8DE4m+Z8m2oOtKtgVdV7ItTMTraqcIiMCwlQF/g4YVm8JxPLq7x08nQ9M0qKpK0NHRh+dt/usSGayrJ42bc/Esi7b23hH3Nlzb3k0u49BnZOGFGmb0vgrAK0umYNgeRz64lmnPvslrc/fEWF5J+vEqmNcKldkxjaM3lWV5czt/bV3HPpW1zCmvwvN92rr7MB2flu4+TAz6vJEfz8u5vNXSyW5WOQA9+Rzu2xFwTfymHlKjNZ4xchjU4XRZOL3Bc6TTOTq6UrQZw0+XldHpe5ZsC7quZFvQdSXbwni8rsrLY4RCI+873W+nCIi1tbWk02l6e3tLqojt7e3U1tZu9uOOlw9zMM/zx+W4ZGLKeS6WH2x3kXNdQiP0rerO5bAMA9+BaJdDbW4tfYkYrU2FMFaeoKalk+TBq+itDmO0x/H/1YB/xIoxtsLyWdHbQ2smzavdHcxOVJDxXPKeR5kdojuXoyYcGfWXPhHDpC2TwXU9DMMg57pEC9NL/Sk9MNovjGwfIg6kQ/iuD2bQuybruvrvbQvpe5ZsC7quZFvQdSXbwkS8riZMF9PRzJ8/n1AoxJNPPlk8tnz5ctasWcPChQt33MBExjnH87FME9f3cUcJUL1OnpBhQm+YxswqANZOrwPDAMNgxewmAKauXoO/3zr82hSGY0HH2Bu8dOaDCt/6TIqOfJas2x8Qw2Q8h/AI1c1+Ecsi7TrFPRVTfRDtTuJH81A1hm0rEjkM34BU0OTGIOjyKiIiIjKZTJiA2NfXx0svvcRLL70EwKpVq3jppZdoaWmhrKyME088kWuvvZa//vWvPP/883z+85/ngAMOUAdTkVG4vodlGHi+j+sPH4Y83yfl5LFNE7rD1GfeBmB900B1fs30egCmrmwGA/y6oEmN0Vpo8OIBvaHBO1WUMDDozueoCIVxC/sj5jwXr9C4Zm6ycsT1kf1Chkne9+h1goYzqe7CDVWZgS0UfR9G+i1eIrgfvWEATMPAGeE9EREREdlZTZgpps8//zwf+chHil9/+ctfBuC8887j/PPP59JLL8U0TS644AJyuRyHHXYYl19++Y4arsiE4Pp+sE8gPs4IFcSc55L3PWKGjdEToTa3Fh9obqwuntNVVUZfMkZ1axfRVIZMbSHMtcZgLrCiEvP1avxdOvB37QDHhPBA+AqbJh25LNNjSTx83urrpiocKea6EbuPDmIYBj4+nfks9dE42f4lxJGgWU5ZZy8HP7aMWCrL35fszbppdSX3z8YyRKmA9EAF0VEFUURERCaZCRMQDz74YF555ZURb49EIlx++eUKhSKbwPE9QqaFYYxcQeyf6mmbJpF2j4TbQ3d5Eic8sN8ghsHq6fXMeWkFTSubeXPuDPxkFqM3gp+yMZqDSqKxvApWlgeNY/ZfW5z6WWaH8QHbNElYIbryWTpyY2hwsz6B8Wo1/swumN5N3LJ5oaudXRIVxYDohx3wfA5+/N9UtfcAcPBjy/jtSUcWX0PKcWg3ephBA0bKxkcVRBEREZmcJswUUxHZujzfx/MLsy/9YD3icDKFqZ6WZ1Ld0QFAW13FkPPWzGgAoOnt5uBAbQoAY1U5dEfwQy6+6YFjYvgGxhtVxftGLIu6wob0YdMk67m0ZFMjzUgNuAbGKzUYmRDmK7UYr9RQGYrQmk2xMtVDPl2oOkZcpq1YR1VbN211lbw1eyrhnMNuL79dfKhuJ0usrPBsmf4KojHieyIiIiKys1JAFJmE2rIZXN/Hw8csNJoZqYLY5+SJdCQxnpxGdW49AO11lUPOa22oIhe2qV/bhpV38JsK20OsqMDAgLo+/CUr8Y9YgZ/IYXTEoD065HH6p5NmXBeLUaaWri7DyNr4VWl8w4d1SUwMYpbNC11t5DOF+4ZddntpBQBP7DWdlxfsAsC0t9YWH8rxfCLxQhhMBRMrTAMcVEEUERGRyUUBUWSSyXseT7evpSOXwff9QgVx5C6mKdehfE0tRiZEtR+EqpfKwsVuof180+Ttphosz6NhTSsk8vjVqSAcAn5tOlgPGPbwdwkqkcbLtZAf+m0oYlr09jfGGU7OxHizCh8ff49WSOYw8hZkLSpDEVqyaTLp4PUk8t3UNXfQmYyyvKGS9vIE3eUJqtp7iPekSLsOEcsiHrZww3nI2uCpgigiIiKTkwKiyCTj+h451yPlOsFaOwwwGHG9XWcug50Ng+9TnW3GsUzWlsfoyedKzst5Ls/WB/siNq0Mppn604NWoj4+VKcHTm7sw69JYfSFMZ5pZMNCXdyy6c7nsI3Ct6jeEMZfp8L6wlrGV2qDQNjUA8k8lBXG0hvGNk08fLxM0Chn2tpgW47XZtRTH0vQkcuwttB1tX5tG935HNNjSaojUZxoYauLjK01iCIiIjIpKSCKTDKO75PzXNKug+f7wZROf+RqWUcuh5UNkfTbCeUd2mvKiYXC5DcIT1nXZd3UOjzDYMqqFt7q7cat7cWvSQVBLjTofAP8fdbjV2QwuqLQnCh5rJhl0+fkCfdXEFsSGD0RzGcbMZY1YKxL4kcc/DltAPjJQkDsCbaoiJk2ftbENz2mrVwHQGrOLPYqrybrebTUVwJQ29xB3veojcZJWCGcSOFx0nZhH0RVEEVERGRyUUAUmWRc3yPnu4MqiBCyDFqzAxW+7nyOh9e/Tc5z6c04mK5FtRdML22uKSdkmkMayGQ8l0g8xur6CqKZHI2tXWQ8F3+/dfjzWocOxPIHppquTZbcZBoGu5dVkLALDWPSAw2XjZYEvuXhz2+GUGEUyaDjqVHYw7DcCmM6NjGjneq2LjqSMepmTGdqLEnCtllZUwZATXMnBhAyTSKWhRPtD4ghDFUQRUREZBJSQBSZZFzfJ+d6pB0nWINoGMTtEOuzKbzCOsTOXJb1mTSrUr246eDbRLUTNKhZV1NO2DQJGSY5zy0+bs5zSYbCvNFUA8Be67vIb2wfwZo0fsiFtjjkSr8dWcagrwsB0ZvTije/Gf/wFVCdGbi9OMU0AkDICYLltMybALw+o46qSIyIZVFuR+gJW/SUxynv7iOazRMxLSLmQEA00jYmBj6M2LxHREREZGekgCgyybiFhjS9Tq7YxTRhh+jL54vrCvvcPO25DCtTPRiZIJxVp4N1hWuqk1SHo5SFhjaqiZgmbzZVA7DrmvYh01CHMIGGvmDd36ryIWsRiwqb1zOtB6b0gr1B/TLsBfsd9oWCx8gGY57euxyA1TMbiVvBsfJQmLzn0VofbLMxpbWH8LAVRIK1jCM07xERERHZGSkgikwyrufh+T4Z16V/nqhtmrj4dOaDqZoduSw5z6U9l8HKhjF9h4p0B+lYhI5oiPJQmPpIrBgQfd8HDOoicbqTMVor4lR19RHv6tvoePwpweb15hvVGE9Mh/wGW1t4QMbGjzhgjRLWygoNZvrCkLOIO91Up1rpSkYxGuuC7TyAslCYnOfTVgiITa1dhAsVRDc6sAbRxMAfpburiIiIyM5IAVFkkunf/9DxfQZvM2gQBEOA9lyGqlCEHiePnQ1RlWvB9H3aayvwDUjYIeqi8WJjm6znErFM6gub3fdPM521um3jA6rM4u2zDj+Zw8iEoCNWenvGDoJfLD/645QHY6ctBlmLqek3AHhleh210YHHTNg2GNBaaFTT1NZTCIg2ZsQL9lTM2EEF0UcVRBEREZlUFBBFJhnHDyqIju8W9ygEiJoW6zJ9OJ5Hdz5HeShMn5MnlA1TnQvWH7bXVeL7ELUsGqNxQqZJxnXIuC5ldpjKcISwafLG1GCa6e6rS5vTuL5PRy7DEPUp/BmdABgd0dLb+qeXxkuns27Irw+qlcb6BOQspqVfB+DV6XWUhyLF82KWjYFPT0WSvG1R19FLGIhYJrZl4kfyGDkb0zPwUQVRREREJhcFRJFJxvV9fIbuexi3Q7Rk07Tm0kFF0AxCYCQXoSpfCIi1FRiGQcy0qQhF2DVZQVsuS4+ToyEaJ2JahE2LjtpKcuUJprZ2E+sd6I7a5+Rpz2VJOcOEvapCcOyvIPrAmiR0B+HO31gFsSyHH8tjdEdJrs9TnW+mJ56ktTJBmR0unha1bPzCw7dVlxF2XKKdvVhGsA7RiwRjM7IhPF9rEEVERGRyUUAUmWRc3ydkmjieX7JVRcyySbsuL3d34PoetmkG1basTXVuPT7QUlOBQRCyAHYvqwSgMZpg74o6DMOgIhQmaoXI7rkbANPeXFN8jrznUR+NF9c6log5wTrDnjA4BqxLYL5Qj/l6dfH20eR8Fxp6g+dcuxqA5TMaidg25aFQyeu0DRPH92mpDra7sNcHlc6EFcIJB0HUzAZB0h2yoYeIiIjIzksBUWSScX0PyzBwfZ8N2sFQZts0Z1IDxz2IpHIk3B66K5NkbJOQaRK1LAAaInEOrm7g8PqpxO3+LqERKsNhvHlzAJixfCAg5jyXpB0afvsIA6jKBNNeO6MYG65FHKWC2OvkebOvG6c+aHgzLf0aAK/sWkVVKELItAYexgqqnHnPZX1VEBCttUGH1qRt40QKW11kQ/jqYioiIiKTjAKiyCTjDAo8G2afilCEznx2YG1izqImG4Sn9toK8r5b7PgJYBgG8ytrqRi0xq86HKEuEsdsqKWjMkl1Ry8V7d0AuD5Mj5dRH4mxNpMaEhL9ymA6qtERgw3XIsZLA2Le81je14Pn++QLwTOTSBPf/TWq8q10VyRYnYzQFEuW3M8yTGKWRd73WFeVAMBc1wJAwg6TDxc6mWaswpgVEEVERGTyUEAUmWQczxuoEG5QQjQNg5pwlJpwIZxlbKpz6wBoq6sk47pUhMIYxoa1xwFzyqrYu7IWgFW7Twdg11dXBk9nQNyyWVLXxIx4OavTG2yDUZvGx4fVZRipMH48hz+9C7+hF0KlYTLl5gGfnOeS8zzK7WBfxhkdbwKwctYUfMOgNrJB0AQqQmFynkdbMooTsrHWt4LnEbMsnEgQRI2MjYG6mIqIiMjkooAoMsnkPS/Y44+hU0wh2MIiUphCStqmZlBATLsuuxXWHY7ENAysQoDs2HNXHNNg5htrsPLBGsK4ZVMVjnJo7RQipk3OcwfuHHOgJo2RLzx/VQZ/jzb8vZuHhNmM6xb2NPTIez7JUIic47DLa6sAeG3XRkKGRVV4aEAssyPkPQ8Pg766Koy8g9nWScSyimsQyQRTZlVBFBERkclEAVFkksn7LqYRTCL1N9KAxUibVOWbyVs2axIRykJhpsfKxvxc8fIyXpteSyjvMG352pIGNwk7RHkoNKSjqT+te+DfVcNsiVHg+B4JqxAwDYiYFjPWdRBPZVg/pYbmWIjKcJikHRpy32Qo6FBqGD6ZhmDPRnNtMxHTwo0WpphmbcBQBVFEREQmFQVEkZ1cxnVK9h7MFaaY1kVixY3tR1LZ3oPtO7RXVdPp5plbVjVQXRyDcjvMs7OnALD7i28RMgxihYAIMCWWIO06pF2HdZlUcLAuhR/NB+G1Mj3cwxYFzWY8DHzqInEWvBlUO9+cM52U6zItnhz2fnWRGHahk2uuIZgOa61rDbbAsF1804OMje+DizfsY4iIiIjsjBQQRXZyq9N9PNPRUvw673mYhkG4sGfhaGo62gFoq60EA6ZE45v03GWhMC11lbTUVlDV2ctu67pKAmZtJIaLT1sug+N7QdMaA/yF6/EXroeYO+zjOp6HaZjF+/s+TM047LqmjXQkxJoZ9fi+T214+ABcG4kxK1GOYYDb2B8QgwqibZoQcTDyFqZn4KmAKCIiIpOIAqLITi7nubTm0sWOoXnfLa4R3Jjq7mB/wObG8qD7p21v5B6lEpZNIhRm2V4zAdjvxRUlt1eGIhgYWIZJ0h403bQsB3WpER8347nELZu6SAzHC/ZsrHvmZUwfnp0zlZxhYJkmlYO6q25oz/JqaiIxjOpK/EgYc30bEQxs08SNBOOwcqGh23GIiIiI7MQUEEV2chnXJeU49BXCl+P5A9tYbERNOqg8rqtLEjJN4tamBUSj0BX11SmVtJfHqW3uwHpzZfH2ilCEmGUzM55kWixJn+uM8miDX5NDdThK0g5hGSZlOYf486/i2hb/nN1I2nWIWzZlofCIj1EfiXFgVQMV4ShuYx2G4xBu7yJq2niFTqZWNqQ1iCIiIjKpKCCK7OTSrkPGdel1guYrOS9oUgOAX/gzmAd0h4l0uCSdbrrDlfSGg3AY2siU1OHURmLkfPjL/KCKGHnkKfCCqlzINNk1Wc4e5dU0RBM4Y5zPmfU8aiMx4naIkGly0IsrMRyX7vlzyEZCpFyHhmh84HUOwzAMZiTKsAwDd0odEOyHmLDtYidTMxtSF1MRERGZVBQQRXZyGTdPznOLFcS87xWDk/HPKfDXJvycAVkT46VajEdmYT49jdqngvu3JerIex4Vo1TjRlMeCpP3XVbNqCfTVI/V3Ib93CvF2w+pmUJTLElVOBKsCRxTIPOJ2zYxy6ImlWOPV1fih0O4h+5H1LLodfIbbcAzmNcYBERrbQtJO4RjBe+V6ZqqIIqIiMikooAospNLuS6O79Gdz+L6Hr4PJgbkDYyOGEZPhMxjtfCX6RiryoMmMSGXmlQwvbStooac5426nm80FaEIdZE4S+qn4h61BB+I/ukpjN7SNYZV4QhJO0TazY/pcSOmhWWYHPrvNzE9n9zBC4mUl1MXiWMZJhWbMF63sR4IGtUk7HBJQHS0BlFEREQmEQVEkZ1cxnWIWTatuQyu7+PhYRpA30BF0O8OgWfgz+jCP+xt/N3bqc2uAaC1tgbP90kMs5/gWFSGI7y7cQa7JCrwpjaQ338BRiZL5HePwaDqnGWY1EWipN3hO5eWMoiaFvbLbzBzxXqyyTi5g/YBYGo0QTJkUxEee0D0K8vwoxHM9W3EMfDsIBRajj3maa8iIiIiOwMFRJGdmOt75LxgQ/nOXBbH8/A8gimmvUFA9Kd2E9qrGw5dhT+3DUIedk0nVflm0macnuoYhgFxa/MCIlDSLCZ75MF4FWWEXl1O6J/Pl5xXG44FG9+PwveDhZPRTI7I7x4HIHXsERAOxlcfjdMQSZDYlIY6hhE0qnFdyrt68cwgIJquRV4VRBEREZlEFBBFdmJ5L9hbMG6HSLsO3fkcHj4mBkYhIFKTIbRHL8QHOojWtrZj4tMSacKvyOLDJm9xMaJwiPQH3oVvmUQefhLrrVXFm8rDkSE9czbk+D5hDxp+/SfMVJrcwr2wd5tVvL0+GmdpwzSMMW7l0a+/UU15SwdeaGCKqba5EBERkclEAVFkJ5bzPBzfJ2paOJ5HZz6L5/tBBbF/imkyN+R+devaAGjeJ0I+liVkmMQ2cYuL0XhN9WTefTiG5xH7+YNYK9cCUGaHMTBGbQzjug7vevoVwmuacafUkz360CHnWMamf2vrb1STaOkAK6himo5F3lNAFBERkclDAVFkJ5bzXDzfxzIMMKA9l8XDD3ZB7A3hGz7EhzaFqV/XDkDLlBrynkfItLZqQARw9tmT7JGHYOQdYj+5H/uFVykPhYhYFtlhppm2ZtN09vRwxCPL2O3tZryKMtInHQNbqbLpFgJiZH07FGbTmq6lJjUiIiIyqWzdn/hEZFzJex4+PoZhYBsGbbk0AEbewsjZ+MnckF8T2bk8VW1dpOMResvj5PO5wob0mzZlcyxyi/YNppr+6Sliv34Y+9W3mLrXVNZFKQ2kvs/UFes5ctmblKeydFUksE7/AH4ysdXG4leU4cWihFrasM1giqnhqIupiIiITC4KiCI7ga5clqhlE7FKN7IPGr4EwS5m2aQdp1A9LEwvTQydXlq7vgPDh+bGajAMHN8jubXWHw4jf9A+eHXVRH/7CKGX3+B9/5+9/wySK0sPu8//OdelLe/ggUajvffd09Mzw6EZURT1cvhKerVSaCVF7Co2QlqFGJwgJYU+SWJQihDfDwoGuUvFiitppV2KfEWKdoYcb3raTHuHbjQatrxLf905Zz/cW1mV5VAFFBoF4Pw6EGhUZt68WXUz6z73ec7zfPAxl0f7aY4NkXoOxXbE6OQ81WYW3H54dIyzLzzKZ6qVvd0RIdATo7ifXGSk2coCa+WQ2vjQsizLsqzbiA0QLesW8GZtnoOFMndWB3q+nmiNyNu+FKRLLY2RsYc4PQyA6YtYnxfslpdODHe3UXF9rid14git/+vfxH/5TcTr73JorgZztZ77zI4N8vK9h3lvrI8ny3uXOezZjwNZgDi23GDG1chUkpqdjN2wLMuyLMu6NdgA0bJuAY0kJvQLG74ea9UdNehLSawVY6ePIpoBZqgNh+sbHjMyOQ/kGURAAaWrnIG4K75H/PwTxM8+widnP2bh0iQlBLJY5J2qx+NHTrBQXyBsNfZ8PeSKlUY144sNphyFE/kkSvP1mYucrPRzvNx3XZ7XsizLsixrv7ABomXdAjoqpZluLBcNtWJl6eDK2AevVcRIjXl0Ol9/uJpDDNoRw0sNauUCrWqJlVsL60pXryffcbn71N28PTrMDxemGPILJGnKeKHEdNjiUru5oZR2r6w0qhlZbGCGNUTQihTT0QLKaBsgWpZlWZZ1y7NdTC1rn6rFEd+fmyRU6bb3U8YQa00jSdZ8TVOLIzppirtm5INnJE7qgq82ffePXJoB4JOJQVjTlCaQn16AuOLO6gAVz2c26vDo4CgDfsBwUMSXznXbH9NXQZcKDCw1QGQBd9H4HCtVmey0qCXRdXley7Isy7Ks/cIGiJa1Dy3HEX8+c4H36ossx9sHJYlWKKN7MogX203+fOYCi3HY0310VOaNXfzN19WNXpoF4NzBwe7XjDE3JEAsOi4P9o9wqjLAfX1ZuWvF9Si77vXbHyHQE2NIbehLs1mQA6JI4GTzECc7revzvJZlWZZlWfuEDRAtax+63GmyEIUIBE21cU7hWqnWKGPoKIXKFxw204RL7SbzcdgzNF6meWDlbWzNKbTmyNQSWkqmx4eI88DTkZLCdVrzdyX39w3xhfEjuDJ7DVXXp+J61zVgXSkzHYzmsi+k2XOXXZePm7WtHmZZlmVZlnVLsAGiZe1DjTTGlxIhoJ5sXFu4VmI0ymhSrYnyctSlOGTQD/CEoLK2wUycB1abZBAHZpcpJCnhkQncICBSikRrXCFuSAYRsnWTazOgfZ7P4VL1ujbN0QeyAHGokzXrWQkQC9KlnsSk2s69sCzLsizr1mUDRMvah+pJnK+1kyxE4bb3jbXGkAWKkc4Cv8U4JJAOI0ERT655mycrGcSNAeLIxWz9objzGMN+gUgrUqPxpYMv98dHhSclTw6N976mPaYOjQMw3urNIHp5F9grrQm1LMuyLMu6me2Psz7LsnrUkxhPSgLpsBiH6JVZFZvIZh0KDIZQKWKtaKTJ5p0+8wyi2SSDePByFhCpk8cYDopEWpNoQ9nxuh1QbwemXCIcqNIfNglUqxsgukKQak3bBoiWZVmWZd3CbIBoWftMrBWhTrMA0XEIlaKzTVCSrAxyN4JQp7TShEgp/M3KQuP8Lb9uDWKh2WF0qUmnr4wZGqDP8wFDajRl71OYgbjPtA6NATAST3UDRCEEQkCoNm/wY1mWZVmWdSuwAaJl7TMdlZJogy8lnpAkRtFMt25UE2sNmG7w0kwTDKZn7d4KkWy+BnHs40kA6iePgBBUXQ8QhCrN///2EuZlpiPRJCLt/ZjsaJtBtCzLsizr1mUDRMvaZzoqzbqHCpllrYDpsMXpxlK3S2ltzeiLpNs0xdBWWQaRrSpSt2hSM5EHiMldJwAYDoqcrPTTUYrSDepgeiPFhyeAPIOY9H5MtrYJ1i3LsizLsm52t9+Zn2Xtcx2V9gR4AsHrS9n6wPGghMHw3blJfmz8CBXXI9IpAoErBK0kJtVq0+whsBrsrCkx9cOIocl5WkUf78hBABwheHp4grZKKbq34cfEQB+NQoH+cB4vTFnpI+sJSeMKXWUty7Isy7JuZjaDaFn7TKgUrInvxoIiQ36AMoZWmtBMExbikNmwDUAnTXGEwJOS2ajDR43a1nMLN8kgHrwwizBw8egYxTXlpEXH5cfHj3C01Lfnr3G/c4VkcngAAQzX57pf96RDzQaIlmVZlmXdwmyAaFn7TCOJcdZEiK6U+NLBAE2VBYjLccTFdgPIAkpHCMquRy2JCKRkwPM333jsYIQBdzWDeOjcNADLJ49s6FbqS2frbOQtzJWSydEBAEYas92v+1LSTJNuqa9lWZZlWdat5jasHbOs/a2Wj7hYTwL1OEahCaTkYqdJqNI8QMyCyEPFCiiBeHMMpMGMt2CsBVpkfxInm4EoIFIKJ44Zn5qnE3iYowc//Re7T7lCMD2RZU5HmzNgDoHIZiE205RIpZRuw+Y9lmVZlmXd+myAaFn7iDGGRhpvOqIikA6LSUiqNQN+QFulzEUdQp32ZvmWC4i5MgBipoIZ7EDTh1QijMD4WfZwPu5wz9kZpDacPzqCfxuOs9iKJyX1wTIdp8hgNItbM6QDAk9IUpPNQrQBomVZlmVZtyJbYmpZ+8hs1GEpjihusoYwcCTLcUQtiQny0s9PmjVirXsDxHb2WDPWwpRixFIRkTgIk9/HW11/eN+FrHzyozsmcIX9OFjhCIkrJdODY0gMY2ezcl4hBAaz7dgRy7Isy7Ksm5k9I7SsfeT9+iIiL2Vcz5cOoVJEWhFIhwEv4Hy7gTK6J7gTnSyzZcaamGcuo++ZRz8yvbohJ8sgltsxR2aWaZcKTE4M4tgAsYfvOFw6OAjA+NR89+uekLxXW0AZvenjtDGcbiytGT9iWZZlWZZ187BnhJa1DyijOdeqc65VZ8QvbHqflfJGZTSulBQdl1AplDHrMoh56WMpBcfAkTqMtjFBPuA972R694VZBHDxjoMgJK68/ZrRbMeXknPHs1Ld8aXp7uiRkaDI5U6L863Gpo+73GnyxtIctSTa9HbLsizLsqz9zAaIlnWDaWP4+sxF/mLmQrfZzGaEEBjTMwGDsutST+ItAsTeMkjz+CSmP8TcuQjAveez8tLzJ7PmNLbEtFdBOjTLHrVggGpaozibBdiOEBQdh/fqixseo43h7do8i3GYzbO0LMuyLMu6ydgzQsu6weajDhfbTSaCEqPB5tnDFVLSUwo66AUcLJZXx1MYoONiPAXeuhLHcop5ahKGQ6qLdUaXW8z1l6kP9QHGBojrBNJFGcPs8DgA4+eWureVXY/lJCLRqucxk50Wk50WjhA2QLQsy7Is66Zkzwgt6wa72GlgTDZ770oOFspMFErdfwshqKztphk5CC2huH0TleMfXQLg/eNjaGMQAhxbYtpjwA9IjWb6wAgAE7Nz3dsC6RAptaFZzXzUAUAiaaU2QLQsy7Is6+ZjA0TLuoESrTnTqNG3VyMmtigvXUumihMfT6Kk4PSJCVKtkULi2Qxij34vwBiYO9KPRjK2PA06W4go826mjWRjgFiQDr4UNJL4Ruy2ZVmWZVnWNbFnhJZ1A81FbZppQnWvZurlHUwpbp29OnRhhiBOOHd4lKjgk5hsTEbPOkaLfs/HlZKwopgPDhCoiKH55Z77NNPVIFAbw0IcEkgnm6NoA0TLsizLsm5CNkC0rBsoVNkaNrFHwZnIM4hmmwziHacvAvDRqUNIIfIMothRievtpOJ6VFyPjkmZ6jsMwMFzveMuFuOw++9WmtBRKQXHxZMOzTRGG/Op77dlWZZlWda1sGeElnUDRVphuMYgQgPTZcQb43CuP/vaFgFipdZkbGaRerlA/dA4jpDdDKJtUtNLCMF4oURHpUyOHQDgwMXZ7u2BdFhYEyA20pjUaDwp8aUkNrp7AcCyLMuyLOtmYc8ILesGCpXiWnOH4swQ8u1xxFwZfIW+cxH6o6zkMQpJ1wxsP5lnD989eYCK7+MIQaI1rpBIW2K6wWhQJDWa5kiBhjvAQKNOqZk1ogkch0YaE+VBYCNNWBlC4glJohWhto1qLMuyLMu6udgA0bJuoFYaX3vmbj7raqofmsF89gKcWCbSisudJhrT7bTpJinHP7qEkoJ3ToxTclx8mWUQfWfz2Yu3uwEvyPK7lZipwnFgNYuYdTLVNPJ1iMtxyMp3MSsZFnRsJ1PLsizLsm4yNkC0rBuordKtA0QNXOxD/PAQ4ttHEe+MZl+/WEW8NoF45QAsB4iWjynHMN7qvqMbacyxUh+jQRGVr4M7duYyfpJy8cRBmgW/u1Yu1ZqCDRA3VXY9XCFJyxFThRMAHMwDRCkExhg+bCyhjWEm7PR8H42Bjs0gWpZlWZZ1k3Fv9A5Y1u2srVLczeYPGhCvHkTUCqtfm6pi7lxEfDCCWClMfSsb4s5Qp+fhsdYMBwVaacqsaYMxnHrvHAAf3XcMgcGXDr6UpEbjSxsgbqbguLhSkrgx84XDxDJgdHoBJ0lRnstoUOSD+hKhUsyEbcYLxdUHC2MziJZlWZZl3XRsBtGybhBtsgDC2SyDeLEPUStgKhH6mUuYkVb29ZkKAoEZ7GBcjYiyazxmsDdA1BjKrkfRcVHGcODSHNVGm7nxQZaHs0Y2npQE0iHRtsR0K56UFB2XxGhMRTEdHMPRhgOX54BsHWIgHc40lxkvFHsCbV/IniY2lmVZlmVZNwMbIFrWDZJoTWo07trmMAZYKCA+HsIIg3lgDqpx9gcQU5XsboMdOFTPH2JgaH0gIig6LgXHQWG4691PAPjwvuPdp/GlxJcOhixTZm2u6nokWkMp4XLxJACHz013bx8OChwtVTdkYYuOy0zY7pb4WpZlWZZl3QxsgGhZN0isFcqYnjWI4vQw8rWDiFTC0Vo3MDTlPEBsBNkdqzHmaA0jNQyE4OnejRtD0XHxpGRivs7Y9CLNaonJI+OYPGDxpYPvZM8dOPajYCt9nk9iFKYcM104Suq4HLg0h5NuP8Ki6Li0VUojiTfclmjFmeYyyuhNHmlZlmVZlnXj2LNCy7pBIq1I8xmEACQSLvVhXI1+cAZzanH1ztV1QUYlhoLCPHcJ88hMz02p1rh5aaQvHZ5+Pxtt8f5Dd4AUhFoRSIei4xJIFwm2xHQbVdcnNUA5QQuXqYFDuKliIi8z3YorJUprakm04bYL7Sbfmr3E9+YmibWdlWhZlmVZ1v5hA0TLukFirRCIfCQCMFdCGAFjTZho0TMgsZRgRJb5M46GYt78pJhuyB7GOms6U3RcKgvL3DG5SLtc4PwdhwBYiEJOVQcoux6OELjSwbVNarZUdNzsR1HOxoVcqtwB9JaZbkUIWIp7A8SVzqcOgtONJS60G3u9y5ZlWZZlWVfNBoiWdYNEWrF2eZqYKQNgxlsb7yyBUhagUIl7g8d1EqMouVn3zbFX3gXggwfuwDiSjkpxpeTu6iCQDXT3pOxdB2n16I6uyL//084JUtfhwMVZ5BXKTAvSZTrs/XkuxhFTnRYjQREp7KxEy7Isy7L2FxsgWtYNEmuNyLOChA4slDCu2jCyoqsS9/69zXb7XB85v0Tlo/O0Cj6f3HmIehIzF4Xc2zfIoJ+Nz3CkwBUCV9qPgq2sNPDRUmMKCSoqMDU2gZcqJi7Pb/vYouOyEIc9ZaQX2g00Jg/MJY10+5/nWqGywaRlWZZlWdeXPSu0rDWaScz35ib3dJvTYYvleOM6tChNMUbATAnxgyNZeemaYffrmf6o5++tJFrT7/v4P3gNAbx2z2FiR1JLYj47epAnhia693XzDKJnA8QtFWTW7Cc1WSdTgeBS+CAAR9+f2faxRceho1Lmo9Wg/2K7QTkPOj0haSTJjvbjo8Yyfzx1btNjybIsy7Isa6/Ys0LLWqOlUpbiaE9HE3xYX+Jyp7nh622d4koQZwcRSmZdSe9a2HpDR2roh6fh4PZr1rQxjC61cd/9EF0q8P7Jg3RUSsFxOFHuW22Kw0qA6PR0UrV6FRwHT0hirTFH65jBDlMHxohFwMHpKbylrY8VIQQCmOxkZaYdlVJLIkqOB2RzFneSQTzXqvOducssRJ1dZRwty7Isy7J2y54VWtYaqclmE+7l+IFaktDc5KS+nSa4xoGWj/FTzN0L4G4TmEpgrL3l+kNjDPNRBykER196GwGEzz2OCrwsQJQuwbpmNG6+/tCWmG5NCkHF9bNZiKNtzBNTqCfnuDR2BAfN4ffXlZnWfZgvdv9ZdX3Oteooo1mKw7yJUPb99qQk1IpkXSfT781Nbsg6OkIghaCZ7izjaFmWZVmWdTXsWaFlrZHqlQBxbzKIxhhaKt60jLCVKvx2MSstXT/G4io00gRHSH4m9ameu4weqKIeux9PSDpK0e/7qx1Tc64QeNKxJaZX0Od5G4K4c3cdAOD4pQurXzQg3pxAvn4A8d4IaKi4HrUkYj4K846mpvtz8IQk1ZqOWt12O0250G4wlweIqdZMdlpUXBdXiA1dUS3LsizLsvaSPSu0rtnFdoNzrfqN3o09oYwh1Rql9yaDGGlFovWGssCVwDFoZ81iqF77SX+sFSN+geMvvp0992efAsehkK+DG/CCDY9xhcyziPajYDtVzydZl1VeOFGm6VYZac9SeamE+MFhqAWIMFtfKC73waU+ZB4MfthYYqrTwl+TxXVlFiCubT6zlITUk5jpvCx1KYlopgklxyOQDgtReL1frmVZlmVZtzF7Vmhds8UoZC7covPmTSbJS0zTPcogRioLEDtK9ZStrgSObjMLEM1VZBA7Ku3pjpkaw4lL8ziTM6ixYdL7TwEQSBdDFuSs50mJLyS+Y+cgbqfseGw4JKTgwugJAI5euoho+YgPRgAwA9n7QdSyoHw0KPJ+fYnpqE0pb1CzQggI12QQl6KQ2CimwzbKaBaiDgaDFIJAOjTSOCt3tSzLsizLug5sgGhds1jrnkDlZqa0JtF7V2IaakVqNIlWPUFApBWpMTiNq88gzkUdptcG5qninpffy7b/+WeyyIOsyYov5YbAJLvN5Qvjhym6G2+zVgWOs+naz/MnszLTY50PwBhEIwsIzbFadodmFpT70mEsKBCqlOK6n4NB0NGrGcTJsM2A69NRKctxzOVOq7t2NHAcQpXSsusQLcuyLMu6TmyAaF2zxCjiPWzqciOtBIdrs30f1BepXeW6r1ClSASpMb0BolJobRDNAONoKO1uvl2sFb50qLge9STLPj52+hLFepP0jqOoO45071twHHzHoex6m26rsEngaPVaH9StaN4hWaiOUEnrDIlLANksy9E2xlPQ8iE/lAqOy+FipVty2mWyhkXfm5vkneV55qI2FddHY/igscj5Vp1q/rNzhEQbYwNEy7Isy7KuGxsgWtcs1ppE3RoZxDgPENM1AeLZZo2F+OrWfYVa5Zk807POLNIKN/QQSmbZwy06k26lmSaMBEUeHhhhOYkotjo89d4FtJSEP/6ZbvYQoChdAuFsmkG0dqbgODhCbuxuK+HcA+MAHE+ztZ8Md7KfZznOGhB1Ng/MV3hScLnT4oPGIi8uTNNKU4qOg4PgTKNG0XF6gnghsJ1MLcuyLMu6bmyAaF2zRGviW2RNVKRTDKZbYqqMoZEmdNYEd3NRh/dq28wrXLu9NAUDrCsjjJRCxvlJf2H77KExBrOu5LWtUo6WqhwtVfGlwwOvfICnNMuP3YsZHui5r+84FF3XZgqvQdFx8aTY9Di/cMdBEtfhyPx53IlZzB1L2Q2VfF1pc+Paz7U8KVmMQgrSYSwoMuBl3WaHgwKBlAz6hZ77C0Q3a2xZlmVZlrXXbIBoXbPEKBJzq2QQVV5iarr/jrTqKelbjELeqS30ZAS30kgTPCkw9DYiCbVCqrwxjLt9cD0TtbkctpgKWxhj0Pm+jRWKlFyP43N1jp+bpln0aT376IbHe1Iy6AcbSxutHfOlQ0G6pJsEiKnncuGOg7hKc9R5ByrZsWLyv2lun0EsOS6hThnyCwSOQ5+3um5xwN/YedYRglDvriTZsizLsixrp2yAaF2zWyuDqNFrMoixUqTrxlS0VcpCHDIdtrfcTi2JCFVKM02yURICGknM9+Ymudhu0ExjnG6AuH1DHGUMDw+MEkiXtkrpqJSS4zHsF3GU4nOvfgjADx45iV8obnj8RKHMA33Du/1WWOtU3I2jLlacvTtb83nHhxfptjvNM4iitX0GseC4HC1VdxzAO0IQ3SIl3ZZlWZZl7T82QLSu2UpjF71HnT9vpERrzJo1iFHehbSxJoPYSGI6KhtmDlkA9/byPJFSRErx59MX+B+XPuaHC9M00wQvnzM4HbZ5r77AdKdNK01wdVbyaa6QQQTBRKHEkB8QKkVHpQwHhWxExfd/RF+txdnxAT45PpF121yn4npMFMt78w26jVVdb8N4iUYSo4xmebifxZF++pebjMzmJablnZWY7pYjZDcb3UwT27DGsizLsqw9ZQNE65oYY0i6WbebP4sYa4WBbrAb5SWn7TTtvr6miun3fM636rTThPmow+vLc5xr17nYaXCuVaPP9fi4WSPUKZ6U2TqzOEQZzaVOI8ssrmQQnd7v20zY7pYyruxHyfEYK5QI85LX8aCEnF3A/+EbKNfljx45TsF1cWwZ6XVT9byeDKI2humwQy1fD/jxShbx9MXsDr7GFJMsg7hY2LC9q+UIQZSPlTndWOSjxvKebduyLMuyLMsGiNY10ZhuQLVXw+VvFG0MsdYIRDdAWzkRT7RezdokKX2uT0cpPmnVudhusBRHvFdb5IP6IkXHpeR6uCJrJuIKScnxkMChYoVaEtNO0zUlpqtBR6RUlhVSSfd5fSkpuy4DXpA1rAEGXI/CH38ToTVzn3mEsK9MZYsxFtbeKDleT7PZUCkGfL97XFw8foDEczl8bgo/zIJGc+ciAOK9UcTr44jvHUF87wg0rv5n5QhBrBXaGDppSlvZDKJlWZZlWXvHBojWNUl1ljnUxqB2uA5xqtPaUYOXT5syWSbUE6I71zFSCldIUpMFiLFWxCbLCvZ7Hu/UFvi4WWOiUGQh7jAdthnMG4uM5h0pVzKIB4plfOmQGk1q9KYBYkslDPqF7prOWCsK0iWQWfMSIQQSweE3P8KZnkMdHCd+7H586VB2bIB4PRUcl7WXQDoqpeJ63a8pz+XcyUM42mRrEQHGW5jhNqLjIebL2d8dD3F26Kr3wxECRXYMtVVKO91/7yXLsizLsm5eNkC0rkkWHO4ug/jW8jxTYes679nupfk6SldKkjxz2FFpt2wzVCmhUiTa4ApJn+tTS2IaaUyf61N2PIrSwxHZ20oKsWFEAWRjCuItupi2laLf84nUSoCo6fezwLDf8wkch8P1DgPffw3jOIR/+fOU/YDAcWwG8Toruy4C0S01DnVKn+f3jCE5c+8xDHDn++dJk4RQp5j75zAnltCPTqE//wnGTxGz5St2N92KFAKlIc2z2u19eLHFsizLsqyblw0QrWuijMFg0PQOl9+KMYZaEtHah1mPVGeZUFfIbjOSVprgrgSIWhGqFKU1rpQIIRgNCvS5WQA36AcMBxvHEqxXclxaaYpQ+duvZw2ioex6CLE6ZmPQy4JMTzqMSJefePF9hNZEX3gGPTKUjUPwAjvn8Drr83xKjksnLyk1wOFSlcBxuhnfZn+ZqSNjFDsRg2cuMh+FECjMnUsw0gHPYI7VABDnB65qPxwhUUaTaE0n72q7fk6mZVmWZVnW1bIBonVNUpN1MDWG7miI7cRaE2nFchx+Cnu3OyuvxRViNUBUWRfSbI5hSqQVa/vAFB23O7dupwY8n2OlKqT52y8fcxGqlEA6HC5VIF/tpjBUvdVM07NvfkLfcpP0+GGSJx7sfv1UZYChYO8aoVgbOUIyGhTpqJRUa1whmSiUqLgeLZVwvt0gUooP7zsOwKMfXkawyXvicB0jNcyW4Sr6OjlCoDF0VEpiNElesmxZlmVZlrUXbpkA8d//+3/P3Xff3fPnS1/60o3erVveSgZRCrGjLqbZ2AjDUhxf8b6ftjQvFXSl7GaE2mmKIyQO0EjjnmH3V0sIkY2jWMkgulnmciGOGAmKDPsFBHkHU5M1RwFwzl7k8Ntn0IWA8Gd+jLWR6t19g4wGG2cgWntrvFAiyss6K65H1fUZDYrMhJ3uwPu5iSGWhqqMLzU5NFffmN1zDQyGiFRCbZugfjmAdPOutAJBW6UobUi1JrpF5pBalmVZlnXj3VI1affccw//4T/8h+6/nU1mwll7SxmT57rMDjOIK3MFs/lxK+v19gOlNQi6XUzTPNtZclw8KaknMWXH2ywndHXS1QBxMmwxUSjz1NAEZdfDd2SerRSUXBfRaFL4w78AIPpLn8NU7VzDG2HAD0BAPYl5dGgUKQQjQZGxQpGq69NIYhCCD+49xrPff4fHP7zMi0cm8EXvZ5EZaSMWSoj5ImZwTTZ9vgiVGBaLyHfHMAcbmPvnNtkTQytNUCbrIxxrBdg1qJZlWZZlXbtbKkB0HIfR0dEbvRu3lay0Taz5/ywI/KC+xAP9w8h1c/kipdDaEAtFO02p7rI8c6/Nhu3uSX5ishEXjhAkJutYmmqD4wqqrs9kp4Ux4O5VUJvKbP2myJ732eEDDOdlokXpsRCF9Hk+/dKl8Pt/hmyHxI8/QHrPyb15fmvXBrwAV0ikFNxZGQCy0SUlx8vHnWTB3kdHx3joNZ8Tlxd4bamBGR7o3dBwO/t7oQSnlrL/Xw6Qrx/AeIruVYiZMtw7t2mtR1ul+d0E8R5kti3LsizLsuAWKjEFOHv2LM8//zxf/OIX+cpXvsL09PSN3qVbntKG7GzW5P8PS3HE2WZt03LMSCtcKbst+m+0N5fneWM5y9CsrKWUYnWtZGqytWaB42CAxSTE28MAETdbQ+ZLScldvV4z4Ps004R7+oaofPdV3EvTqIlRoh97bm+e27oqZdejz/O5qzpAv5c1JKp6PkfLVcqu1+3kGwrDR/ccRwD3v3tu44ZKKaaYIBoBnO+HWCJmKgCIxEGkDkbqrJHRQmnTfWmlCeRzSFfmdVqWZVmWZV2rWyaD+PDDD/Nv/+2/5dixY8zOzvLrv/7r/K2/9bf4wz/8Q0qlzU+wrkTKzdf/3Agr+7Kf9gnACIPIs4RaGKQUtFU26D1GUZG9ZW8pGpGXcXZ0ekNfT0elzERtlDFZySsGKUEKSWIUkVEgwJFZQDgeFDnbqnOgUOq+5qtmQCiJKWSNRgLHyUpJ8+0OBQWGCwXunV7Ef+kNTCEg+vmfQvp7/5bdr8fWfiQRPDU8zqBf2PD9Knkuguz9EBvDwsN3krz7CXd9Ms3Zx0M6lTVrRAUw1obz/cgPhzGXqqCyjDKnlqDjQn8E744iZsow1lm3JyLLeAsBBhL0vvv52ePKuh7scWVdD/a4sq6Hm/m4umUCxBdeeKH7/3fffTcPP/wwX/jCF/jqV7/Kz/3cz+16e64rGR6u7OUu7onBwf219mxWRhRqWRBYqhYYHq7wsWqgPUGxGjBc6f0eeqpBoeEBArfs3tDv8Sf1GtLPgr+am1IOChTqHtVigEgSKLkUix7lyuroioerhWsPDgGTCDqA9A1uwWW4UGRkpNq9/bgTM9BuMfS7XwfA/z/9NMWTB6/5ebez346t/WqrY3bMTSg0A8qVANdEHDo4Rv3J+xj+/pvcf/o8777wEAthh5FCESEE5pEW6kBK+lEFvZAdY3IkovBgVqZqEkHnfYOYK1PQHWTfasa9REyx7FMwWYl2sRLsy88rsMeVdX3Y48q6HuxxZV0PN+NxdcsEiOv19fVx/Phxzp8/f1WPT1NNvb7+qv2NI6VgcLDM0lILrffPzLPFeouwkzXmWFhqsiBKfDK3RL0dMr1Qpxj1BlNTi3WSSCGAc3PLHBU37k1zemGOMEwoOS6vXJ7iRLmPTpjQ0S6tNOLC3BKdTkKLaG+esO3CcgEmmhA7WadSqai1OkzIAgsLze5dh1uKw7//fYgT4s89RevAAVhz+17ar8fWzabTjuh0YlpERGFC2kqZf+AU1Zfe5si75/jmHRMsBQ4iNhRXZlb2RXBvG35wCKElaqRBq7nmeDvUQFzso/ONEbh/Hg60AIjDlLoJ6YQxEsH0YoMFcXWVEteLPa6s68EeV9b1YI8r63rYj8dVX18Rz7tyE89bNkBstVpcvHjxmprW7Jcf5lpam321X4nSaASOyRrQKKVZjEISrWmn6YZ9bSYJLgIpBEtRdENey1SnxWTY5FyzQdlxqbo+lzotXATCZNV/qTbMhh18IXc3hDzNSv7w8scoAfNFRDOAc/0ILTFLAeZoLWvt42gSbai4/ur3QimKv/dnyFqD5N47iZ59DD6F79N+O7ZuNp6QYEBrjdaGonQQ5QpvnTzAE6cv8+AHF3jvyXtpJQkFuebDuZjA3QswVcVMNGHt8Xb3PMZPER8PIt4ewzSWMacWkWTvN2nAEdBK4n37s7PHlXU92OPKuh7scWVdDzfjcXXLNKn5N//m3/Dyyy9z6dIlXnvtNf7hP/yHOI7DT//0T9/oXbulpVqDyeYgxlrRyWfEBdLZtAlNK01wpcCTklYaZ7P+9tBSHPJubaHna8m6GXEf1Bf54fw0i3FIxfWQQjAeFJkMWzhCIPMYr50m+HIXbxED4uVDiJcPZQPQIwfxykHkWxOIs4NgBMZViMt9iHMD2WNcjQBKKxklYwi+9l3ci1OoiVHCv/yFnnmH1v4VSAdHZPMJA8eh6vmUHY8P7j9OKgWPnJnilFOgs1lDmcMNzJOT4K2bZyiAO5Yxj01lx865AYgljsg6lzpC4EpJax80fLIsy7Is69Zwy2QQp6en+YVf+AWWl5cZGhriiSee4Hd+53cYHBy80bt2S0uMzoMqQWIMzTQmVoqy49JM4p77amMIlcKXEk9K2mlKqFJK7t7Nb1uIQs40l7m/fxjIGtF8bfo8D/aPcEeln0gpJsMWBwqlnucNHIfxoIgjJBKBNprYKCrOLvYtchCtbE2YmSshPhpGdDxMf4gZa8FIG1KJeOUQYipfb+hkAcFKyaH/4mv4b7yPrpTo/K9fAu+WeYve8gLHwZWCZprQ5/ndn+lnT9xF88F5Bt48zam3z/LDk0O73/hwCMMdmKlAy8epdAiVxpMSV8h90RHYsizLsqxbwy1z9vm//+//+43ehdtSrBVSCCSCRClaKgHAk5JGmmy4b2o0JeHiCUliNB2lSLSmnsYcKVU3e4pdaaQJjTQmVCkFx+XjZo3L7RaNJKHq+SRa0UlThorBhscWnNW3gzEQKc3Qleq0k2xUBQJorM50FO+NZqMKhtuYR6ZXc/WGrGQwzp5L5xnEouPivvk+wbdfxvgenb/205jq/mw6Ym3OE1mwVktDTlb6u18f8guIzz6NefcMw29+wMDhp4gLCl9eeQ3AWqYSI2aApo9TzTL2BcfDESIr7zYGZ5Ns8ysL0xwt9zFe2F9rFC3LsizL2p9umRJT68ZIdBbgZCWmmkYSIwR5CWnSs34vmytocKXIO4EaQpVyudPk/frinuxPLYmIlKajsuzku7UFhoOA1Gi+NzfJhXYThLhiJ1IhBIasdHZL02XEt47BuTwYaKwGnSJ1MBjMXQu97zIBVFczq1oqfEfSf+4yhT/9NkZKOl/+KfTE1a+dtW4MIQQlxyPRmpGg2HObqZZJHnsAkSqePX05n2G4S5XsuBFND0dIYq1wRJaNT7Um2iKLOBt1aKTxprdZlmVZlmWtZwNE65okWiOFyNZEGcWFdoOCdHHzE9i1A7xjrVFa46wZNN9RKQtxyFIc7a4ZzBaWk6jbIGey06KexvS5PuNBkYWow9lmjbJz5cyNwWQLEQESiXj1AOLNcZjPT/w7LuL9EQQC8clgNug8zyCacn4yfqAJlU0Cgepql8rUSTmy0KT6B19HGEP4M19AnThyLd8C6wYqOS4Fx6XP8zfcFj/7KMb3uOvDS7j11u43vnJcNf3s/aYVrhDdbHxbpWhjWIzD7kO0MTTThEhtsu7RsizLsixrEzZAtK5JbFS3sUusFXNRSJ/nZ1kNY3oCxFrcOy5ipRHMfNTZEExejURrmmlCarIM4nzUwSHLFgohOFAsEap005P39bRhtVzvQh9iqYiYLSNfPwA1PwsOUycrF1UScX6gm0E0D81gji9n2cNNmDUZxL72Aj/5jTcQaUr4xedI77/rmr4H1o1V8TwKjkOfu/EYM6Ui8RMPIbXmyfcuXHFbKj+Ou0opRmpo+vjCYaJQIpBONxvfTrNj/vtzkyT5eynWilgrQm3XKFqWZVmWtTM2QLSuSaoNApE3dgGls8YZjpBoownXZC4utBt4a7qCekIyG3dopgmxXncyvENnmzW+OnWer89cpJ0mJFrjCUkzTZgO2xTXZAsdITlYLPdkMLcSSEnV80AJxMX+rFz0SA0A8cEIYqGEKSaYpyazk/YLfVlDmmIClQRzahF8vfnG8wCxP5nnJ9/8Hn6SEj33GMlTD+/69Vv7S0m6VFyP8haNl+KnH0YFPvd/Mk11efu5lotxxFTYXv2CAMoJInUgchj0C91SaQO0VUIzTailEfUky1yvlHW3EhsgWpZlWZa1MzZAtK5Jt0mNELTShEJP+aYgzIO+UKVMhi2qazIrvpTUkphIKzTmqgLEDxtLXGjXudBuMBm20MZQdBxmoza1JFodSL5L44USFdeHqQoicWCshblzEeNqRL0AgDm+DMUUc3IJofO3UnUHa71KCVU1x2fn/4BCknDmwZPELzx1Vftp7S9F12OiUN56jWshoP70Q0gDD776wYablcmy4JA1Sdowh7OyWma6loOgkSTUkphaHHfXHMZak2ptu5xalmVZlrVjNkC0rsnKGsSs1X7SU75pMDTyURdzUYcwTXsyep6UWSmcEUjoyTZu51K7yUKUrbNqqZR+L0BpzaV2EzD40qGexMRaE+yyU+R64lJf9lqO1cA1cLCR/dtPszWGAMdqmPHs/01fuOl21qrWGrww9z8JdMhbx49z5qn77azDW8Txch9PDI1te5/0iQeplwscujTH6FRvGfJyHHezhkIYPOmQmNVMtFkJEFu9AaInJUtJyELUIdKKel7OHamsc3BbXUVTHMuyLMuybks2QLSumjIaA0iyYd13Vwd7WveXHZcPm8soo7ncaSFlb/dQTzjESiMEGMSOsxzv1xeZDlsoY4hU1qgjcByaaYwBfOkQaw2YK3Yr3WA5gHaedWx6iEaQNZ3pz064zdFlTCXC3LUITp7ZEWDun0M/OANH6ttufmC+xhf+9CUKKuTM8D1864mjeDtommPdHDwpe8albKYQFHjt0VMAPPzKB9lMlVyssxmiidaAwJcyP5Zzxew9IsLeYyaQDrU4ZiEOKTou83Gnu700L/XWe9AEyrIsy7KsW58NEK0rUmbztXSdNM06KcrNg7B+L2AxDnm3tsgH9UUG3N7Zg9msxJhASlwB9SRmstPk3drmzV1W9mU+6tDOnzs1GldK+lyfhTjEExJfZtlMyQ6DQ5P/udiHfOUQ4q1xgO4we3OgQXdTRYV59vJq9nCFY2CilWUZtzAys8jnv/oyQZRw+v7jvP4zx9GO6VmXad0eaqeOMD3cx+BinUNnLjKTZw2VMRRdt1tu7TsO8drmTX7+/3FvgOhLh1CndFTKgOczF4XovEmUIwTK6N7tWJZlWZZlbcGemVrbutBq8L25yU1vW0oiUq23HPi9sjbxdGMJY6Dkuhtu96VDxfXwRFYW+m5tgR8uTOflohs1k4RQKxppnJXP5WMzAsdBGUPZdXGlpK3SDc8HgAYWC9nfdR/x8kHEN44jvn4C+cEIAKIRQOTAVCUbd7E+GLwK45fn+OzXXsFLUt555E7eeuIeEAIDuDtommPdWgaCIt9+5A4AHn7tI8IwJNUaIQQF6dBIY3wpGfYKOwoQvTzTmGpNxfXpqJRWmhAqhSc2dhS2LMuyLMvaij0ztbZ1prnMZKe1aRZxKQ7hClm6Ya/AchwxVihuevuRUoWC4+YNa6KsFBX44cJUt8HNWvU0JlRp3vlUYVgdR3GsVM0aywAnSn0bRw00PcTLh5A/Ooh4fQLxxgSiVgBpwFOYQoLJZxSKjwcRkQtDHShc24n1sTOXef7rP8JVmjeevIdXHjjOhU4edK4dp2HdNqquz9RIlYvHJyh3Yl44M9PNGlY9n2aaUnRcRgtFUr0mK71FgCjzURcI8hEzmkYa00pjfOmgtO4tVbUsy7Isy9qCDRBvctezbKyRxFxsN4m0opVuDNamwjYFZ/tDKHAcjpQqVwyCsgyIItGaiUKJ5SRiOYk23K+ZJiRa0VbJthkRT8re9YcGxJvj2ZpCqRGLJUTkYg40MJ8/j/ncBcxnL2KOLQMgLufNaa4le2gM977xEU997y0w8MpnHuDD+46zGIeINYH1TsZuWLeWLLsteOvxu0ml4LH3L2CW6/hSZl1QgT7Pp+S6vf2LXI0RZkOACNnszm5ZtYFaEtNWKa6QCAHxDptAWZZlWZZ1e7Nnpjexi+0G35y5tCfb0sZ0O4OuuNxpEmuFMoZW2tsFMdGKhSikdJVjJNbzpEMtiSk5bhbYGUEz2dh5cT7qUMibeKx0SN2Rlodo+5hqhHn+IqYvxPSHmHvne5OgQ6vfA+NoGGtd1esRSvPk997mgTfOkHgO3/riY3z30CCXOy0GvAApwBiDEDaDeDsqOx4CaFQKvHrvEVylef61MxQdlxG/QOA4DHoFyo5Hz6pWQZZFTBxYt9x1vFBkLMgy9YHjcKndpJUm+RphYUtMLcuyLMvaERsg3sTONGrMRu2e+YEXWg2iq8gUzEUd/mLmAmeaywCkWnO6sZQHgKY7m23FchLTVskVOzbulCMEI36BQT9rZCME1DbJIM5FHSquR2oMjTRhw1nyVhbyEteRNgQqG3D/5ORqJ9IVgcKU8sBzrLfpTKwVZ1t12ptkU9fyooTP/sWrHP/4Mu1SgW/+pWc4O97PoB9wpFTlvv5hpJBkPWBFXh5o3U7KrkfgOERK88o9h2lXS9w9tcTd08tUXI+y61L1PEqOiytk3tU05yuEEZD0fnz70sHNGx5VXI+ZqEWoFK6QGIxtUmNZlmVZ1o7YAPEmY4xhOY6oJREX2nVCpbqZtGaa8PLiDLNRe9fbbaYJC3HId2cvc7ZZ41yrzmzY6QZs9XQ1WKslER/Wl8Cwp8HNgB90t1eQDnNRp+f2lcYbZcdDGc1yHPWUavaIHMSrB2CmDIBYKAFghvPvjWDr5ZNjbQwGc3h1ZEWqNdNhmxG/QKS3DhBLi3Ve+MPvMT61wNJglf/PFx9iebBKojX9XsBPHTjGHeU+JFnHyrVrKK3bhyclfW5ApFNSx2Hqc08A8OjL71Mygj43oOR4FF03H9ty5UY1axVkFnymRmdNkMzWc0aVMby0MN1zocmyLMuyrNvX3qR/rE/NUhzx1enz9Hs+sclmCDbShDHgcrvJTNjatvRSG8PZVo07yv09wV09ifGFQ8l1+fbsJcquR8V1kUIQSKdbftpRKV+bvkAtiRgNNm88w3wRPN2dHXg1AsdhKY5QRnfX6C3FIZFS+H620mqlhf9mxIV+xFIR6vkcw6UCxlU72idzchEO1aG0esJcT2MOFssUpMt0uHnZ6aFzUzz5vbfxUsX5w6N8+7n7mNcJRZ2dqFc9D8jWHEoh8vF3xq5BvE0N+QEzYQtXSoJ7TnLh9fc4enke+dIbPPzY3YwVijhCMuD5LCcRZbLjpzdA3FiGDSDy4yvRGlcKvHz0y2ZqScS5Vp3DpQqHipXr8Eoty7Isy7qZ2DPTm4zGUE9jLnVaDLg+AsFyks08O91YIjWahTjc8vH1JOb92uKGofRLcYfAkfR7AWXXo5HGDHhZ9rCQB2vaGD5u1liKQw4XKwSbDXhfLCBfP4B4Y3zr6k8DXKxCy9tyPwvSIdSqp7R1LuwAott8Rq1kR9ZTAi5nMwyFkoiXDyG0zNYX7uSIl/QEh5BlEPvcrGmIWjNwfD7qMNlq8uCrp3nuW2/gpoqXHjrBnzx/Hw2ZdatMjCI1ptth1ZVZWenKdmwG8fY0FBTo6BRPSsqOx9znn0I7Dv6Lr3M8Mt3y7dGg1Jv920EGEaDkOrTSBEdIHCG2LI1ejEIW43B3a3oty7Isy7pl2QDxJiSAw8UyVc+nIB3mw5C5qMN81GHELzK/rjRzrY7Khmkna0rWjDEsxhFBPs+wz/M5VKx0AzFfOoQqZT7q8G5tgX7P33TbpALx3mi2j7EL9TX3a3mIFw/DxwOwUER+MIo4PbzlfrpSoo1hKY641G6ijeFip0nJzfbRsJodWX0hwMUq4v0RROJgxpqY/hChJKaYYI7Utny+K1HGUHQ8io5Lumbkh2x2+F++8zb3vHOW2HP54889yIcPnyIyhtgYKp6XjRcwgkIeUDtCIhH5GkQbIN6uyo6HI0S2zlBK7jp6jOS5xxBKUfizb5OnmBn0A9ZOujA7DBAHvICJQlZa7UuH5SS7yLPedNiinSbbfm5YlmVZlnX7sCWmN7nAcViMQ95ezrpxll2XRpoQqnTTBjJtldJRqqfpRUcp2iplYIvAz5cOHZXy1enzdJTiSLG8+c5c7Ed0PIyrEamE+RL0x9BxET86kM0VDPthLF8HuJQPrN/iMoUxhteXZllOYh4fHGMhChn08yycyLoy9nRRnSshPxhdffyxGvRFmFSCf20z4BSGguPkpaFZQDd+aY6//N03KUUJywMVfvBjj/GxBxP56A+BwReSptYgDAW5uq++dLqzJW2TmttTxfMIpEt1zbzO+JlHcd8/g3v+Mt5bH5A8fC9Vzwdh8q63optBFLGzbYsmKUT2WKDkuMxGHWpJxKBf6N5HGcNkp0W/FzC/TeWBZVmWZVm3D5tBvMmtlGKebzcY9YsE0iHWekPX0RWtfNB8siYL1kxjYqXwtlkLd6hYoc/1OVws984XXEPkDWHMvXPZv/PGMCtD543UiNSByWydk9ASaoVNtwVQ9TzqaYwvJO/VF0i0ws+znK6Q3Q6N3ee/2J89/7Fl9MPTMBBlR/g1BofZRrOgzpcOjtY89MoHvPAXr1KKEt658yB/8peeotVXRhtD1fUxJutQOuAH3e91YU1JriclymgEwmYQb1MV1yNwJH1rL8y4DuFPfwEDBF//AaLRour6eaOa/DheySBGbrbedweH90pGfn35+XIc0UwThvwCjST7bLAsy7Is6/ZmA8SbnCsloUrxhFgzHN7QSDdfT1RPYhKjezKIrbx5xVaBH2QBTZBn0DYVOtkQ+mIC4y1MkEItgDjLJBphMPcsZM+ztn3o4tYBYr8XMB6UGA4KNNOk28J/ZX+i0OBfGES8NYY4PYRYLGIKCebU4mqWcp2VtZS7JUT2nJXlBn/9629w97ufEPku33zhIV595n46K6WuQjAaFAkch8BxGAtKpDpbK7k2o+tLSWoMUgjbpOY25UuHfjeg4vauxdWHxkmefAgRxQRf+y4lx6HieoQr3XNXMoiTVeTrB2CyuqPnc6VgutPbYGkxDvPyaYdIKep2HaJlWZZl3fbsmekt4GipsqGjaCPe/ERvOYlRxvQEiI0k5pqTWLN52elYK1skOdJGIBAfDiMSBwY7MNHEyOx5zXgTIOs0usKQBZWbZEQOFyuMr3mNRcdl4vJBnDMjiJkK4sJAtokj9S3HVyRasxiHLMWbdzKNtSLVm6djhIbxNz7gzv/2J0wsNZkfG+S//tRjxHedYND31wwhNwz6BUqux4Ab5NmhLHgvyN4MYqo1ErsG8XZ2pFRlIB8ls1b0wlPogSreh5/gnj7LSFBcbVTj946rELWNj99M2fG43Gl1S5sBzrfqBPmFJSGybr2WZVmWZd3ebIB4C3CE7Mn++dJhepNZiMqYbqfCtU1q5qNw2/LSnRBzeXnpWJahWJkhKKay7IYZ6WRD6Q80s2ziyaVs7MRyARp5id1kFfnyIcTZwc2fY91rrMbZc+r7ZzGH6tmMw0ONLfcx1opBv0BbJXkJ6KpQpUyF7U07wFZqLf7aN95k4ruvIYDvPXSCb33pKZZLAcOFIgN+gVjrbqaw6LiM+AVGCwWKjosvs+zh2gyoLx1So/MMog0Qb1ePDI5ycLPREr5H+Jc+D0Dw1e8yoVi9qLMuQKSxswCx5Ho004T5fGRNO02YCltrSlwFteTqR9NsprbFxRjLsizLsvYvGyDegvpcn6lOe0Pb+lClxFpRkLKb8Uq0ZiZsU3a3HjlxRUpkcwa9NXMG++LVofQA+f+be+Yxn70A5QQONBFGIF46BJ/0rwaGU5WtR2T0vKC8ZHO8hblvHvPYdDZ/cQuJ1hQdlwG/0JMpSbVmNgo5VKz0jLAQWnPXO5/wE//zexxcqBONDzP9t3+WV+89gsqDun7Pp8/1AUNiNK7MAsS7qoOcKPdnAaIjqa77/np5iamwAaK1BXX8MPEj9yLbHe757ps4ZBc51n5qG0dn42J2sA7REQIp4EdLM9n7PmoTKtUtfQ6kZDHau4Au0YqvXzrPsg0SLcuyLOumYgPEW1DgOMRaMbluoHtbpSRaEzhZV1KA5SSirVKKm3Q83bFagDACBsOe8k5zYjn7u5BkASFkR1yQBafm7gX0PfMgDPLMMCIP+EToQf0KWREDhG4WlDo7W1OYGE2/53N/3xC1ZDWLWE9jDhRLHC1VMXlk2j+zyI//4Q94+NUPEMbw4oPHWfxbPwtjIzhCdBvkVPLZiCtjN4rSxZOSA8UyY4USgeNQkG53BuKKIO9iKhFIuwbR2kL0Y8+hB6qUz5znM1N1FvNgSz8xiX5sEvrDrNlTe4sLPJEDs6XuP8eDEpfaTV5ZmOaTZh1vzZiYQGbzTtdn169WO01pJsma8mvLsizLsm4G9sz0FlV0HD5uLPec7HXSFCFWO4BC1qTCYK5t1MJy1mjGDKwrzxwI0ffNYh6c3XxdoACO1DGPTWEcjcFgDuWlqdNbjNJYkcjsxLiw866Lic4CxJOVAYb8gOW8nK6tUk6W+wmkgx8mPPaDd/jJP32JgaUGc+OD/PFffobXHziO53r4UuJKQUelBNKh6Lj5PDtJR6VUvY0n6v1e0NupEvCkkzepsWsQrW0EPuHPfBEDPPLSexQb7azJ0mAIwyFU8kz4ZmWmBsSb48g3J7K1vWSjL8aDEu83FjnTrNHvrT4ucBxCnY3B2QttldJKE6IdbK+exDu6n2VZlmVZ158NEG92BgidLFOw5sJ/vxdwudPiazMXuNDKgq62SjCQZ8CywGombPeuP0wk4qWDiDObrwMEsrmGr03AUnZyKfIAkfUBogAONbNxE9sZjDDPXsI8NYm5YynL4k1V4VJ1tXTOkHUqfWsMLldXMya7CBANhpLrETgOjwyM0kxTQpUiERwIioy/+zF/989+xMkPL9IOPL797H387hceYrG/jCMknpS4QuKwEgz6OEJQdj1G8nWI/ZvMkjxe7mNoXSMSVwiMMT1jOixrM+rIAeJnHsWJE3761Y9orymPNtXs/0VjkxmmC0XEyhiZ+urtgeNwqFjhaKnSUzngCUmsVber8bVqpQntJCtrv5LXl2a52Nl6/bBlWZZlWZ+ea6grtG6E2Q9dCmEFioASiDfHu/MGzfElzKklIFvjNhIUuNRukGrN0XIfs1EHT8gs26UVymimOi3Kjgvn+qGYIpYLiHoB6oVsZIWrs2zFmlmC4sPh7DljB/P0ZagFWXfS6jWsNSqm2R+Aww3EpT7E+6OYhSLmoVlYLHY7lYqZSrcL6lYBYqo1QrBhhMTKCfHxch8nK/28V1/kmeWIQ1//nzjzSxjg7KnDfO3+w9w1fpDO0hye0T0jPnzHYT7qMJhnX1wp+dKB4yzGIaVNSnVPVQc2fM0REpkHnZZ1JfFnn8Q9e4GDMwvc/e55Lj9yV3ZDHiB2u/+uHE4mmz+6QrT8Ky7rFSIbQNNKkw1dka9GK01op1cuMdXGMBd1GCuUtr2fZVmWZVmfDhsg3kS0Nlx6w2NUH8d4M4jzA4ilIqaQZhnEy31wcql7klh0XIb9AotxSDNNmOq0KDkuUghipaglMa00YTztR340DGRZNiM1Qkvke2PZ18abWZAG2XrDfKSFaASYc/2I1MEMdvYsH23uncccbCDeHkPMVuBdA53sUDUjLcR8GebyoHiLAPFip0kgHYSAA4W8wyqrAaIrJZ8TJT7z0iuMXJwBoH1onP9x30G8g+OEYYtDxTIf1BfpqJSxNWsIi9LJ1jOuyQp6UjK+ixNcV2bNaWwG0doR1yH8K1+k+B9/l6ffOss3D4+zNNIP5RjjKsRyEV48nDVqKqYwV0LUC5ggRUQuNDfJMG7CmCyw2wu1JCY1enU8xxY6KqWdpj2jdyzLsizLunHs2elNRErBoUcShJHINw5kwWE1wjx9CYY62bzBpd7B8wXHJdKKc606rTSh5Lo4QqDIZgJqY3AWVtf7CQTmjmX0yUVMMcEIA4vFbvnqSlbCjGYNcOSZLLDcUF56rfqjbG1ikCKmqojlIqYUY+5ZyPZDr0TBGwPENO9W+szwBMoYjDEoo3GEpOA4iOU6hT/6Bv3/r//OyMUZ9GA/nZ//ElN/7aeYG6qijMERkqrr0+f5NNOkZ8h9wXHwpUPZvfrrKw4SAdc8XsS6feixYaY++yiONjzz7Tdw4wQkmMemMQMdRNtHfDLQkz0098xn7+HWzroUe1KytMmol6uxHId4UtK+QslqM00IdWrXIFqWZVnWPmHPTm8yY6dSWqNZGak5XMM8MQm+xoxnAZuY2WSmmoFL7QaaLPBxhCTVhsUoBARiPst86ftm0XfPw7FluGMZ8/xF6IuywLPlrY6zcBXmoRlMX5jNNJxoYI4v7/2LLaWYpy93x2WYk0tQSDHBmqBwkwxirBW+dDha7iOQDpFWJFozEEaM/MWLlP8f/w3v7dNZA5AvPkfr//I3SO86gedkg+xTo3FENtx+LCj1jAKALOj2paTkXP1okCyDKHtmI1rWlcSPPcCZQ8NUGm0ef/HdLOXXH2EemclGXkxV4EIfohlg+kMYbUMpQcQuxFc+1nzpdDulrkjycvTdUEbTSBPKrkc73X6dcCsvQ13prGxZlmVZ1o1lS0xvMkLAwl0XKd5X61kXyGgLI0Zgtgz3zPeE/gXHoZ7EOHkrUUcIlDHMhm0C7cByPsPwYHNjt9HBEGqFrFNpnCC0xAy3sszFE1NZZtG9clv8RhLjS4cgD8J2LFCYR6cxqVydcTgQwkogvGmAqCm7LhXXo8/zkfUmD79/gbs/msTVGhP4RE89TPzkQxCslt65QuIIQax1tynNUFDAy7uVrsgCRGfT9YY7la1BxJaYWrvS5wf8/rP3MvGnr3L0kylmDwzzyV1HsvfGgQbiUj/iwxEAzJ2L2fu5EkPLz/7422cHAylppgmp1t2LF28sz9HvBdxV3aZx1TqdNCXWmqoX0I63zyA2kphY6x01s7Esy7Is6/qzZ6c3I0FvcEj+7+F2lu2brPbcVHY95qIO5XxY+0qzlbZKqdT7shmGI+1NR1GYgU72lMuF1XEWg/lJpmN2FBwCLCcxs1Gb9GrWGQlWg0NWx2kYqcHfeFIZa8WgFyAXlvjCDz/gb/zPF7n/9CWQgui5x2j+3/428fNP9ASHkJXXSSFItO428+l3fcquS2FNYBtIh4LjULqGElNXZM9lm9RYu+FLh0KpzNefux8tBI+89B59S1n3T3Mk61ZshEE/MAtD+fuknDeyaa7JeM+UEe+NwGQlqwzIBY5LR6XMRu3u12bDDuEVsoDrtVWalXq72fb0NrMVF+IQf83oHcuyLMuybix7dnoLMSez0lPx8SCkqyd9BenQ7/lU3N6SyFArCnP92WOH22xqIMrGTiwVECvrGwc7u9ovZbJsxNFyH9PRFs+zGyvrHQO1aVA7PF/j6W/8iNL/8//LoQ8vkDqSl+89wvf/5k8Sf+5pKG4yM461GUTVzXT25d+3tYGcLx0GvGBDh9TdcIRAYgNEa/fGCkXOD5V559FTuErzzLffwElSqCToxyYxT12GA83VB1SyDJ6o58d9x0W8M4q43Id8dwzx0qFu8LhyXH5Qzz5LlNHUkpi23l2A2EwTENka29SYbRvQLMYhRcclMjZAtCzLsqz9wJaY3kr6YsyBBmKqirnYDyeWgax9/ciGtvUG3XKQsxWMn8LYFoGbp6ESZ2uaIjdb51SJN7/vFjpKUZAOD/ePcLG9B7POqtnrNH2ra6WE0hw6N8WpDy4wMrcMgK6UWHj0Xv5/Iz4EAX9lbGLbzbpytcR0JWNYcj36vQBfrGYQB/2AOyr91/QS3DxbaZvUWLs14AUoYzj94B2MTS8yMTnPEz94h5deeBiGNykh7c/WCovJvqzSoOFnpeIHGhA5iMUSvHYA8/wFkDAcBJxr1ZmPOgTSIdZqV9m9RhLz+tIcgczW2Cqjey66rNVRKR2VUnJdYqUwxiDEJld9LMuyLMv61NgA8RawHEeU3GxdnDlWy7p+LhYwJ7Z7lKDv8igCgT5az8pFt2DuWoQ3xxFKZiWn28Q0m80fDFXKaKFE4GSrIK/5JFCAeWAOgEI75I7TF7njw4sUO1nAuFgtEj/9MOVHH8IIQ3D5LHdVBxj0C9ttFcjKRxOjKMjVt8ZTQxNUvdXs60hQ3CTg3h1HiKxRjc0gWrtUcjyEAITgpRce5sf/8Psc/WSKxZF+Prp/kzd9QWEemYa3xhHnBgAwhQRz7zxIAy8dykbWRC4UU3zpoIHz7TqHipU8QNxZBtEYw4vzUyzFEYdLZRwhSLUh0orqJvdv52sVh/yAlkpJjcYTu1ynbFmWZVnWnrIB4i2glsY0VcLhYiWbiyY11IOsgcwWcZhIJeXZwSwjeLi+/RMMdzBPXoYzQ5ij2993OmwjhOBQcXV0RqQ1o0ExX3cnUcbgbhMgamOQQhCqtGd2YXfftWb88jwnzlzi4IVZpDEY4PzhEV4+OcHk+CBfPnIKXIcC8OTQOIeKm3R33USWMdE9zzkcXDmw3C03X+Po2GyJtUsl18WQBWNxwecHX3iMH/uTH/LQq6dZHupj7sDwxgeNdDBPX4bpCnRczOE1F4VKCTQCCN3u2Jiy43Cp3WTQK+yqw2hLpUyFbcYKBYQQ2R/YsgFNmJeuOkKgtCHRBs9eM7Esy7KsG8oGiDc5ZTS+dHCFoJW3lacaI2oFTMeF0uYndhOt4dUyM28HjWOqCebRmSvuixQCjUEbw1TYxhUSY7KyuJUSTk02m7ClUlppwpBfwJMSbQyXOy2kgEPFCgtxiDZwpJQFd5VakxMfXebYx5e72cIo8Pjk1GG+e2yEu48cZbG+iI/paSCzm3JQXzoY6GlKcz04eXmpDRCt3So5Lp5wSIzGFw7LI/386Nn7eer7b/PMt9/gL/7Kc3TKm2S4y0l3nXKPlVmi4ep7pux6LMUx02ELbQzRDss/a3FEYrIxMyuMyDoLb2YlcFz5XEiMwv5asizLsqwba9e/iWdmZvjWt77F9PQ0UdQ7L0sIwVe+8pU92znrymKt8aTkVKWft5cXsgCxL8pGU8yXEG0v625Y7m0178xmQZcZa23YZqhSFuJwx1m3Fc00od8LSI1mMQ5xhUQbDcJQ9fxu505lDO00JjFZpq6Zxgz6BabCNqNBkfm4gzEmCyxjxdFzn3Dy3DQjs8vZPgNTh0Y4d+dhPjo4yLxKqboed1eHSLXhcqfZc4K6GwXH+VSax2QdTJ1ranRj3Z5W5nDGWneP8/OnDjO0UOPODy7w3Ddf55tfehrt7uw9YApJVmjQWf114Oel1vNRh6LjkmJ2VP65nESbfn19BrGZJlRcjyhf2ygRKKNJ9c66IluWZVmWdf3sKkD88z//c37hF34BrTVDQ0N4Xm9XTBsgfvpirSg7LsdKfbxTWwTA9EUIQHw0hNASlMTcP7f6IA3Ml7JS1OGNHUnrSUyqTc8stJ1opgmPDA4QK82LC1M8OTSOLx3ONmtUXQ9XCByyADExmiOlKr50+LCxRKqz7ONTw+N8/8LHHPrkHM+em+bQ3DIyP2dsVEucOXmAy6eOdDMk8+0mDw+McKLST8l1uadv8JpKQgPp4sgseLveAmkziNbuSSGoej6NJAJWP4PfePJeBhbqjMwt89gP3+XVzzyYDU69knyWqAiz0tUVAkFHKUqOm5d/ajzpkGjNUhwyViht2NRM2Mbf5KLH2gzidNji5YVpfnLiGB2lgNXMZGI7mVqWZVnWDberAPHXfu3X+MxnPsOv/uqvMjAwcJ12ydqNOF/fV3BcBKCMwcm7ewqdn6gtrQuY5ktZw5nR1qbNaWKtGfAD2iqlT/obbofsRDA1prvWcCXjN1Eoo41holXmzsoAA37AgBdQyNf0+Y6D0hplsk6hfa6fBaL1Jo9dmuOOH37MqfOXkfnctKRU4M2DQ3x8bIwLQxUUcLgY4OavVQrBqTUNaKqeT9XbfJ93InCyct1Po7toyfFsF1Prqgx4PgtR78Ud40he/MKj/Pgf/YATZy5T6y/zo3uO0Hel98MmJaYAJcdhOYkY8QvU8mH2JeDDxhKnG0v8L4dOdmeqQvZ+nIs6G+aDukKyHOczGY3hvdoC81FIR6W00hg3fw8IhM0gWpZlWdY+sKsAcXp6mn/xL/6FDQ73kVgr+v2AguPgSUmqNU45wTgaofITr46HCR0oKKj7iPdGATATzQ3bM3lgVnJdFqNwy5PLWGuk6P237zgMegU8KXhscJTxQgkpBHf3DXbvFwiHhlGoVDM2W+PApVnu+OgTRmurYzbiYsAbB/rR997JyXvv5dzCNGXH4YvFCi8vTBNqRUVKIqUoOA4V9+oDwvU8KfGkg/8pdBd9cnj8qkthrdvbSin3emGpwPd+7HG+8Kc/5OEffciHHpi779h07WArTSg5LqKweYBYcX2W4pii47IUR8Ra0U4T3qrNEylFK016LsbUk4hWmjBeKK7bjsfFdpNEaxaiDudaDVKjaacpzTTtBojG2AyiZVmWZe0HuwoQH330UT755BOee+6567U/1hV4QuIKSaxXG0FUXJ9AOt11Q4FwYKKJWS5AX4SYqsJSEUoJ4rUJROpgji3D+Mb1h7HWBI7DkWKVmXDz2YihSgkcp2ddkcEgBbh5eeY9fUO9DzIGsVTn7o8u0X9phgOzS5Si1QY6i9Ui9ROHGHvwfj4eLPGdmYt8buwQBc/nxyeOdu/3UWOZ+aiTrV/SKf1esKfrBV0h8YXcVWnt1VrfndWydqrkemzVonh5pJ+XX3iY5775Oj/3yhm+NjxEe3Sw5z6p1kyGLUb8IoN+gHFVtgZxTedjT0ruqPQB2fKBxGhON5ZopgkS0RMgNpOYd2uLWQXDuqx42XFZikPmow7v1xcQCBwhaKuUlkq6718hsBlEy7Isy9oHdnWG+su//Mv84i/+IqVSieeee46+vr4N9ykWr20+nLW9fj/gjnIfZ5o1DhbLgMiyAEJQ9TxqcVZeau6bzx4wU87mIl7sg5aPSCXmxFLWzXDN+aUxhlhr2iprNDNRLMHS5jMLG2nCgBewEIcoo3GERBuQrFlTZwxiuY5zaRr3wiTOuUvIepPH8m0oKWgcHsecOsEflDRTJY8vjB1muG+I/jhkOCgw4AUbXv+QX+ByJ8t8hkpxorK3Iyg8KfGlc92b1FjWtSg5Loatg6nLxyb43gPHef6dc3zum6/zzZ95jrC0+l5ppgljQSlrEEUAhRTRDDCJBH+zjqPZGsSL7SYVx6WtFM00a3yljeGbs5eYCdsbsoeQBZcYwenGEudaDUaCArNhSD2JsyoAuZJBNJtmRS3LsizL+nTtKkD82Z/9WQD+6T/9p1u2O3///fevfa+sbd3XP8zHzVq3A+BKJqrq+syF65rODGb/FrXs5NDcsYS5ozc4VEYz1WkjhaCZJtxZGWTACwikQ6RVd/3gilApHh3sp74ckWiN40hEmjIxX6Mw+QbO5CzOpWlke3VfDKAmRrkwPsBbAwEXR/r5wqETHC5VCC9+CHHULRXt8wJOVQcY2qTZzIAfoPMTY41h0NvbANEVWYmpHdZt7WdFx807f5otGx29et9hDrQjTp6d4jPfeI1v/dRTKC97L7dUyqFimUYa5xtMoZnPQvTjTbYmaKcJ9TSmnAeItTS7GLUYh8xFHQ4US1t25S27DlOdrGLBlw6+FMxFbRKtqeRrFoWAWNkSU8uyLMu60XYVIP7Kr/zKFedgWdffSFDkruogb9XmKTseJSfrZFh1fZL1JVq+xgy1oRFg7puDsdWy0XaasJhkHU9PVPq4uzrEG8uzjBWypjfDfpGFuNMTICpjKMcpd8zWkB9fZnipwehyk2qt2e02CmCkRB0YQx2eQB05QHr0IBQLXFya45OlGQxZtk4KQb8X0E5TKm72OhwheHhgdNPXXl7TAMMAlXWddK+VKwW+lDaDaO1rRcfFdySJVjhblSoLwY+ee5BCvcWh+RrPfPsNfvBjj2HymaN3VPqZizqEKqW4dh1i38YA0RhYjCMipRjyAgIpWYiyxjNTnWxW4nYjW6quz7l2gyP56BxfOjTThNTo7hpEiSDUm89t3YlEK96tLfLgwIjtDmxZlmVZ12BXAeKXv/zl67Uf1i49PjTGUhLRTpPuUPeS6266LMk8Op19fc1tS3FEpBWPD45zqFhmOCjgCMnBYjm7mzE8KHzem7zIiVDRV29TrbWoLjcot7PMwfia52gVAxaG+xg/dRJ1aBw1MQbexsPLlxJjBELQDcIG/YDFOMxmOF5B1c3mKYYqa25R2cFjdqPouJQdF9eeYFr7WOA4BMIl0ZpCnuxeWw6uTbaYcKBY4g8+cx9/+1tvc/DSHI+/+C7fe/oeCo7D4WKVs0GN+ahDoZDmsxA3fz9JAfU0xuSdgwuOw1IcoYzhbKvWc+FmM66U3Fnp7/7bl5IwH32x0gnVEaJbFbFTKyXuAPNRyMetGicr/dfUydiyLMuybne2S8ZNquC4fHb0IAtR2D3BKjouAtMdOB3kgSObXNjvJAnPF/u5p6WQU5OIegNZbyLqTWStgVyqcV+Sct+6x2kBtf4ypUMH+bjicbrkwMQosxKKrstfPXRy2/12pUSTDdxeCRD7vSDvfnrlrF3J9Qikw2zUYdAv7GkH05V9+bHxIzZTbu17Fc9jKR8fAXA5bBFIh9GgSKI1vpSMBEXeK3h85yee5It/8iInPrrErCe5/PSDlFyXo6UqlzpNqGZZQ7FUwByrbXguRwjUmlmGgXRZiEPOteosRCFjwe7WnvvSoZ4msGYdpSMkod55gHi6scSPFmcZ9gt8buwQy0nEchzSUokNEC3LsizrGlwxQPz5n//5XZ0s/+7v/u417ZC1NRNG0GwjUgVaM6ANg0ZDewHSlIFWixNTCwTpLE6SMiZdvDgliGKCcN2fKNn+uQIfdWCMWl+J9zyDHB6kMVDhYw9ODg7z3MhBFpbm+GRplkOFABOH3VKx7XhCooyhIES3C+tEodTNgl6JIwSDfkCsNc8OH7gupWQ2OLRuBlXXY3Zdp+GVgfSxVgTSZdAPAEG7XOA7P/Ekn/+TF3n6vQssHjwME0fp9wIEAgY7WSfThSKkAtzeUnVHCDoq7V7E8aQkNZoXF6ZwpNh1119XZp8Da0khCHeRQZwN27TThFaaMBW2mOq06ChFO83KVNdmFy3LsizL2rkrBoinTp2yJ8z7gPP2aaI//DrlbbrAl4G/uoNtpY6kXgpwqxW8wX5MXxXdV8H053/3VTDFAgiB0YrTlz/GGEO/FxB3mt2h9EXXYyUDoA07ChBdIfP1SqvD6Af9QnebO3FPdZAH+kc4XKrs+DGWdavpc31Ss/L+M1mgl78fY60ZDoqUXQ9PSmKtmesr8cfPP8DPfedtBr/+ImF/H9UTh3CEIEXjjbYRU1XMQmnDCJyVsRTFNRdyAuniCcGIX7rKV2AwZvV3iyezIDTVekcB51zUoep5dFTKJ806M2EbbQxtlbIcR7y0OM1PjB/tVlhYlmVZlrUzVwwQf/VXf/XT2A/rCsxgP+LYIdI4ASExUoAjQUiQEuM6aM/lw7iNE/gsC4NfCNCeR1zwCQs+Uf5HeS6XOy2+dOAYh4rbB1m+dLivOsQPFqbo97JsxMq6vyzrl518GQyuvPKJmCcljpDZPMerbARzfM1aJsu6Xa29QBNpReDI7hq+xCgGfJ+CdChIl1grGmnC4B1HCfvHKPz+n1P4gz+n/6/9NEXHJdQKd6yVjcSZKWM2BIiSVhoxsKZ0c3STLsNda+YpbkUK0VNWXnI8JsMWs1Gbg5t8Ln1vbpL7+ocY8gt0VEorTehzfTzhMBk2iZSm6nosxyElx6UWR8SbdGG2LMuyLGt79jfnTUIfniD4v/8tmgtN9DbDpD+eucg91UHenruML7du4mIw3QzeldxR6eeN2jz1JFuntLLNYj6LzRiDNmZnGUSZzUq0J22WdW3WXqCJVFZSGqmsxFQZQ5/rI4TgYLHEe/VFXCG5p2+IdKxE1OpQ+PPvUf7dP+XkTz7FB30+leEORmqYL4ES4Kx+zgTSweR/b2klKFwOEK8dgLsX4J6tS9kPFMo9/5ZCIBFcaDc2BIjaGC51GgjgM6MHaeQzFH1fIoRgoR0iEBRcl+U4JpAhbZX2NPGxLMuyLGtn7AKNW8wXxg5zqFShz/NJtGI+6jDZ6c0GmLwcbaejHEqux0P9I8zHIYHjdLuNFqSDKySpyUZ272Q9oCtEtwuiZVlXb+0FmkgrijK76GLystNi3ln02ZEDfGHsCA8PjDJWyMpBkyceJPrc04gk5fk/f4W+hXoWEI60EUrCYm/TmcBxuLPSny03mC1Bc92Fp46L+NZxxAfDiA+Hs21M7b4EvM/zOdusb+hmmhpNajQfNZdZjiMaaYIQq+uFK65LxXXxpaSexkyGLZTRJEZv9jSWZVmWZW3DBoi3mJX1NoNeQKQ1oVLo/CRyxcpw7Z1k/Fbc0zfIwUKZqut1m8sEjoubN6vQxuyoZNQTeQZR2gyiZV2LguN2L9AkxjBWKOIKSWI0BrrzUR0hOVUd4PGhsZ7Hx889RvTcY3hxws99+22qy03MWHYxScyW1z9dpukh35xAvD/S+/XFIiKViIv9iFpeeloLMGvjPCVgspL9vYWy49JKE2bWNd9JtUZpCFXK+/UFluOQtTWsg36BAT/Alw6xVtSTiNQY4l10RbUsy7IsK2MDxFvUQN7pU+TlnJ01V+Q1eZOYXawB9KXD08MTnKoMdr/m5CVhOs8g7mR7KyWmRVtialnXpCAdfOmQaI3AMBRko2JCpXCFpLyD91j8wlPUHr2XUpTwwldfphzMY4SBuRJslnxbySy2ezOIotE7VsIUUoSW6MXVr4uPhpDvjsFkdcv9EUIghKCWRD1fT4xGYxgvlHi3tsj5doPCJuWuK91VI61whCDRNoNoWZZlWbtlA8RbVMl1SbSi4nqM+EXaanUtkMqHXe8mgwhwoFjmvv6h7r9XtqHzNYieuHLZqCuyJjXFKwzWtixre66UFJ0sY2bIZnj6UtJWKb50dvYeE4L4xz/D+3dMUOpEfO4bL1GszCESJxt5sf7uS9nXROz2ZgLzAFE/MIt+YAZzbBkANRdkt0cOXM4CQ9HafF30ikBK5qL1GcRsvmtBOvR7PpOd1pYXmQSAAYENEC3LsizratgA8RZVdrJS0IlCmaOlSs8AamUMrtj97LLNeFKgs7OxHbWTd6XEl3LHDXIsy9pa1fVZSiIKjkPF9Si7Hu00oer6O54BWHA9fvD0fZw9Nk652eFz5/+EUlpHvDsGM+VszaEh+7O0pnNpJw/QDNAIMI6GiSYcaMFgCEB6tgzfOIZ4+RBC5/vT3j5ALEiHuShEG8OZ5jLtNCE1GkGWYax6PsdLVUpbBMCucLq32RJTy7Isy9q9PTtL/zt/5+/wT/7JP+HVV1/dq01a16CUnyxOFEsM5e3oV9YhKqO76wivlS+dfAbbzprUQLY2ajflrZZlba7P8yk7Hs8MH6DouJSdbC7ggO9f+cFrFDyPrz97LxeOH6DSafHC8v9BudNCvjWOfHMCpsvQ9LPM4oqVALHjZk1pKvHqssBKjPEUxBJSgQjdrEMqXDFALDouHZUyG7V5c3mehTgkXZcJ3O7i1nihyJBfwBiIlQ0QLcuyLGu39uws3RjDpUuX+Ht/7+/x8z//83u1WesqFR2XQT9gxM9OlsqOR0ulQNYyPtijLqKelKxM3ZBXGnyW6/N8SnYNomVds7uqg/z0wePcWRkAoOx5CCHo93YXIJZdl1TAyy88xIUTByhHLV5Y/j2KlRkAxGIRFvMLTW4edHXyQK+Rl5FW16wbFMADc3j31+HzF9CPT2KemsT4KYTu5usbc66UpFrzUWOZxSgk0VfXjdQR0NHprh9nWZZlWbe7PTtL/8//+T8DEMcx77zzzl5t1rpKjhD8+PgRvDxTeKLSx7u1RSquhzJmz7qI+tLJSkzZeQbxuZEDOypHtSxrewN+0PPvkuMSSIeyu7sAseR4pEZjpOTlzz6EEYJjZyf5/MU/4jvV/5XmUgkR5p8ZB5pwsR/RcbPRh/n6Q1ONezc62sGraOKmhqEwf6IEsexiQhdKWwdvQsBCHNJMYyKt8pL03X1muFL2NOey9kYjiXGE3LLE17Is61awMkLqdp3bveMMYhzH/MZv/AYffPDBtvfzfZ/HHnvsmnfMunbemjLSY6U+DAZlsj/bDrzeBV9mTWpgZ2sQd3M/y7J2JwsOvV1n6MuOS5on6YyUvPz8Q5w7eZBSO+SFhf9BtdGCxSLGTzETzeyOLR/x5hh8MpD9uxptuu0eK0HhFcpMXSGZjzoE0iFWKs8gmm0fs54jBB11/TOI81GH8FN4nv3ig8YS59v1G70blmVZ19V8HPKD+akbvRs3zI4DRN/3+c3f/E3qdfuL4WY0Vigx5BeoJ3GWQXT3qMRUOLsOEC3Luj4C6VBy3F0HiIHj0hOAScErn3mIcycPUUpbfG7u/2AgWYCxFpSyjshioYSYrYCvMCeWoC/efONrmPyx3fLULfR5PgJByXVpq5RU612Gh1mA+GkEbm8tzzHZaV3359kvIpWizG5/GpZlWTeXRCui23iZwq7WID700EO8++6712tfrOvIEYI7K/200gSNIdizElO56xJTy7Kuj8BxKLnersv/fGeTEk4peOX5Bzlz5CQF3eGFuf/BkHsBPL3acAYwD81g7lzaWQVoMQ8ud9Co5lCxjCskHZUSa7XjNc4rHJHNhDTXOZhZSrIy2NtFrHX3oqB1dT5qLNsRLJa1zyljbuv36a4CxK985Sv8t//23/gv/+W/cPHiRdrtNp1Op+ePtX8NeIVsEDUCd4+COVdKsh6mwmYQLesGG/QLPDE01lNevhO+dNj07SsErz93D+9XH8c3MS/88HuMT85BMbuqasoxDGSlpanWtNJkk42ssZJBbO8sgF0pEw2V2vUFKFcIFFfX4GanEq3oqJT2LVhiqk02e3K9RGvS6/g9vdUpY/iouUQ9uXLG3bKsG0eb1WVZt6NdXWb+63/9rwPwr/7Vv+Jf/+t/vel93n///WvfK+u6qHoeAkiN2fUJ5FZcIclK0wTOLq/wW5a1txwhmCiUd/24QDoYDMYYxPpArKh557kTxJciHn73HZ7/+o946UiFSe7HHK53M4dLSUQ9iTlZ6d/6ifLAkmYASoCz/S9eJ88gFh131xegHCFJtSHWezfWZ71IqSwwvgVP9j9u1mimCY8OjvZ8PTEapW/PE6a9oI1B6c2Db8uy9g+NQZnsPXs7VsjtKkD8lV/5lY0nD9ZNo+r6FByXpTjcswyiI0U3LLQZRMu6OfnSwRESZczmnw0HWnx44AhxPzzx4js8c/5b/OhEyCcHh7p3SbXGk3LzIHOFpzGDHcRSEd4axzw8vW0diysEodZ0VLr1L2gDtDwoJz1lro4QeYmQArYvab1aoVakRtNU22dO1T44wWilCR82lnh0cGxH94+0opluDHyT/DVbV2clK2HLdC1rf9MGtLl9S+p3FSB++ctfvl77YX0KXCkZ9APqSbxng+odITBGgDA2QLSsm5QvZVaSacy2vxTO3XWExHd55jtv8sQnPyQYOMUHD50EIVAGCo5LrPW2c1bNQzPw6kHEfAlzsQ+Obd34LAtasxLODWsQs8IFuNiHPD2CvnMBTtS6X88+j67vGpIsg2hoJVuXmIYq5Zuzl3h+5CDVXc6n3Ev1JOZSu8nDA6M7+qxO8sB8vdRmv66JxqC4fcvWLOtm0b2Ys+sWabeGq4oSzpw5w+///u/zm7/5m8zNzQFw/vx5ms3mnu6ctffGgiKOEHlp6LVzhQRhEIgbfoXcsqyr40sHV8gdrdc7c2SU3/3MvSSuw4Ovf8TjL76LyIOwQDrE2zRsmQnbzJlWFiQC4txAVmq6BVcK0jzb0vP5slBAfP0EXKwiLmQlreLsIOKdUcTXTyBePAxTFQxZU5XrJcqzaZFRWwailzst5qPOpzJyYzup0cRGb/vzWSvRilj1viZjDKnRpDa4uWpZiam2AaJl7XPa3N4Xc3aVQWy1Wvyzf/bP+OpXv4rruiil+OxnP8vo6Ci/9mu/xsGDB/mlX/ql67Wv1h7o9wOKrrOnGURtDJ6UNoNoWTcpKQQFZ/vgbkUrTZiaGOAbX3qaF77+I+748CLFdsjvPXUKPwhop5sHQpFSGCDSGioJZqyJmK1kWcTjtU0fk2UQs5PptZ9Z4uMhhBHwwQgCgZEaoSVMVTHCIJo+nB1APDaz44DoakRaZUGs1kQqxZO9GUJjDKfrizTT5IZ3w0u0zmZKak1hB0syY62ITO/3buVqus0gXr3uSSf2e2hZ+5kmWy98u5aY7ipK+NVf/VVef/11fvu3f5vXXnutp3345z73Ob773e/u+Q5ae6vP9Sk7Ht5eZhDJKr2cPdqmZVmfvpLjke6g+UikNWXHZ36owjf+8rPU+8scuDTHX/vmW/THasuAbD4OGfYLiLxcx9yxDID8aBjx2gTEW39+KKNXL0AtB4haIQsE87JTc/8cZqid/Xn+AsbREGedWeei69ddu60SvHztZrjJ656LOkyFbRwhbvgojNRoYr3zrq6JMcTrxoSk+Xoc26Tm6q2uQbzRe2JZ1nZWLojZAHEHvva1r/GLv/iLPPPMMzjr1pgcPHiQy5cv7+nOWXuv3wsYDYr5YOxr54gscygRu55TZlnW/lF23R03H/GlJNaadqXIN376WWbHBxlfavKTf/JD+motluKQ6bDdvX82xxAmims6rFZj9IMzmGKCWCgh3h5js6UegpUucvnFqHMDAJh75jHVCFOJYKyFeXwa8/g0FBR4CpE6VITH+VadVGteWZxhds0+TYctfrQ4u9tvE401HUtbSZJfbDNEavMA0WCQiBueQUy1JjZbB/DrJVqhMD3HhM4Dm9Rmv66axqDtOk7L2vdWRv3criWmuwoQoyhiYGBg09tardaGoNHafwLH4fnRQ3taYioRCAHSxoeWddMquh5tlTATtre9YmrIyj3TPOBJAo8//+JjfHR0lGKjzf/2jTcZnJzvOQFejiMOlSqMB6XejU20MM9ewlRixGIJcXZwk2fMmudIIbIAcqmAkRoONjBPX8Y8c3njbzI/C4IqFGikCR80lni3ttCTTZzptDndWCLM1wYaY/igvtgN9DY7KZgJ23xr7lLeGRWaKul+lm6WIZyPOlkAKbiupa47EWtNordeK7leorNxFsmaVJcyBoPZUabZ2py6zdc1WdbNIjEKY7BNanbiwQcf5A/+4A82ve2rX/0qjz766J7slHXzcIVACoEQwpaYWtZNrN/zmShU8KTccuB9rBWukBSk05NZiiV8+/kHWX7iAQpxype//Q4PnJkEssAr0po7KwObX5hyDOahmaws9OwAzBd7bjb5H0cISCQidaCUZL+9BGxauOBl+yaTbL7j2eYyS3HIzJoM4lTYop7EzEchAB2V8ubyPBfaDRpJzFenz21YT3m502Qu7FDLs4jtNO2W2a8PEI0xzEUdio6Lg7guTWomO80dBxqRTkmN2XHTnlgrNIZkzTrElfEMNvt19W6WrMQbS3M099F8z0QrPmltvlbZsq4HpbMLYrbEdAf+8T/+x3zta1/j7/7dv8t//+//HSEE3/72t/nKV77Cn/3Zn/GP/tE/ul77ae1TjlwtMbVdTC3r5nVnZYCfO3ySw6Uq7S2CmVgrio7LaKHUk4lKtKHk+sQ/9ixff/puEPDFV89w77ffpJ3ElF2Pg8UyrpRs+ru2nGDun0MgEO+MwWKhe5NkzRXclt+9/7a8PKhJHMqOy8V2k7GgxFzUQRtDrBXzcUhqNFOdFgDNNKGexLxfX+T9+iIzYYfWmvmGymjONmu0VUo9iUm0JtQKV0oEgva6WYgtldJKEwqOgyP2LkBsJjEmn+/4+tIctSTa0eMipVF6511MVR7IrM0WpkbnTWpuzxOmvbCypmk/n3RqYzjfrrO0w2Pr07AUR7xbW7QXJ6xPTbbmmn39Xr2edhUgPvHEE/z2b/82cRzzL//lv8QYw7//9/+eixcv8h//43/koYceul77ae1TWQaRvMTUBoiWdbObyIM/Y0zPejuAUCkG/YCK66FMliWL81EPFc+jIB2W77uT03/1C7QDj+NvneXzX3+NO90CBcfFExKRdz7eYLyFObaMSBzEjw7A5SqQD7xfCUZb+cD7KwWIfn7/RDLgBRwslun3fDoqpZHGLMcRkUoZ8Qucb9dRxnSDwdmozQeNJSKV0lmTQVzJHBYch+UkykZcaI0rshmSC1HI9+cmqcXZSXUjiUmNyUaISLknAaIxhu/PTzIXdYhUtp4w3WFGMNQpKm88s5PnSXTWkGbjGkQbIF6LlXWcibmxJcfbWZmBudWFohshNZpQKTo7OH4tay+kt3kGcdedSh5//HH+63/9r4RhSK1Wo6+vj2KxeOUHWrckR0gkcs+6olqWdWMN+QWEECzEIbUkJnAcfJmtL4+0ZjjIgj0hYCmJWIojCo5DxfEQQvDF8cM0hxN+5ydafPkH73Fseomx//ld1N/ox+0rZwHfyprCdcypRUwlRr47BpeqmEMNCo5DmJ8UijxANKXtS9+Mp7LK09hBCEExb8qVGk09ibvbq3oeM2GHpTikmSQIAZ5wUEbjSUlHZyfIidZ81FwGoChdZsM2R0tVlDG4QuBJh/PtBkprjpar9PsB9STG5JnPvcogJkbTVCkdlSKFIMyD852IVRbMrrym7ayOszA9meK1V9SNMQh7UXDXtMnW8d7opkWbCVWKn88yDZXacmQNZBcRpsM2B9Y2nrqOsk7B2bFfcb1P5Tmt25vi9r4gtquz+hdffJFOJ1vkXygUGB8ft8HhbU6KrLTUlpda1q1hJUPYTBOGgwKRyrJUl9pNJFkAWZAOYOgoxWhQpJ4klNwsCHOExBMO7b4i3/nyZzl7cIjicoPy//v3KJ292J2duikBHGhiPAWNAHTWeflYOcsm0t59iWkPA7UkZiZs5Z9bEoVhIQpZjEN8IRkvFDlQyE56W2lCqjXfnr3E+/VFRoMCRcdhMY4401hG50FSv+cz6hfwpNM98V+IQ9z8c9ERklCpa74SHStFR6WEWhHlg+zXN4xRxnCmubzhuSKj8KXcUQZmZZyFWdfFdKVJjQHbx/QqrWRhd5r5/TS9uDDNVKdFrDWp0RsqCNZaTiJeXZy5LmtrN5MaTaRUt6mUZV1vSuv8s+72DBB3lUH8+3//7+M4Dvfeey9PPPEEjz/+OI8//jiDg5t1nrNuF76UtkGNZd0iHCGZKJQpuy6ukMxHHZQxjARFnhs5wEhQZDEOAYExhrFCiaU4IljTxdrLPxMiT/JHz9/P//bxAmM/eo++3/sqTz54gvceOglbdb0WQF+EWChhWj5UY0hk9melxLS0sxJTEcueX+2+lHxQX6SWxPR7WbAZCMnlTpNa0vsafOlQT2IW45Dz7TqHimUcIXGFZDlp81FzmWE/ALILZQXHxRB1A6q5qE1BZr9iXSEIyU66fXH13b4jrYlUSpSmeEJ2y3vXaqUJ79UWGPGLDOT7Z/LSUl86dNQVvneslkEKRE8gs9KkZmUdnb0wuHs6D7DTfZiVaCQxHZ1lp5U21LcJEJfiiKZKsvLvT6GBfaoNkd5fZa+3A5OXmXvy9ptSkN7mcxB3FSD+4Ac/4NVXX+VHP/oRL7/8Mv/pP/0ntNbccccdPP744zzxxBP87M/+7PXaV2uf8oTDHk3NsCxrH3igfxiAc60ak50WqdAcLfcxVsjGVBRk1nhFCMkD/cMsxSHBmhMIN29cpbTBSMHiZx+nevQwhT/+Jk++/Qnjiw1ee+ERkmCLUrFqBAslqAdQjRHvjCHms+c2QQruFX5hb5FBHPADFuOQ0aDQLZutuB5TYQuDoeys7o8nJLUkop7GeRfV7ENOCkFqDEZn2dMeeWZIG0M7TfHzD0ZHSFKddRD1r+FEK9IpiTY00gTPcbJ1kOsCxNRommnKchJ1A8Q0H63g7TiDmJ0YSSFI1mUQs5d56580GWN4qzbP3dVBCns0NxhYzczuswyiNoa2SgiVwhMyP45i9Bbl4PNRh06afmqBbpZB1NuWvVpbu9qS8MlOi49bNV4YPXQd9mrvJFrteRCbao0xm488uh3s6rR+cHCQn/iJn+CXf/mX+b3f+z1eeeUVfv3Xf52hoSF+53d+h1/6pV+6Xvtp7WOelN1W75Zl3fyGgwLDQYGq56PJAoZhf7WzaOC4uFIy4PuMBEWeHTnAeGF1xqEQgsBxuh0HfemQ3nOS9v/556n1lTh6eZ4f/6Mf0LfU2PT5TV+WuRD1LMu3EhwCUN5+/aEyBr1FgOhLh4lCuSdIKzouHZUSKd0T5GbjPlLmww5y3SyN0aDA2PqZjrkkL89T6G6Gzc3XXSZX6CD6zvI8lzvNLW9fKf1rpgmhSrNh9utOXlKtaamEpXi1A+VKyagvHaIdlLqq/P4SSJTq+boU4rYou0qM5kKrQWOLkS9XK1u/SU/gvR+kJju2WmlMrLOfc5w3htnMVNj6VDvarqyLbeyjzqo3i1Rr/mLmIu2rOJab6z5L9qO5qMN35ib3fLsKfVtcDNvKri+LtVotXn/99W4m8a233iIIAj7/+c/z+OOPX499tPa5TWebWZZ10yu7HoJsDmHVW5Ndk5KidDhUrAAwUdjYqCJwHEKtEQj8/AKSHhnk6z/zHI9+5w1OXJrni3/8Iq8+9wAX7zjY++C+/ISkEYBad9W7sn2AONVp45uYCcgGNF7BylV1sy5T4kuHRppwudOiuK4ctrhFRskRgigfRq80SFeseY4rzyCcjdo4UnJoi6X9kVaoPEAspS7KsKHZSWqyAfczYQsYBeh2JPUdSVulxFp1s2LtNKWeRj0/w5W1hq6QROtKTAXXL4OYaMWlTpMT5f493/ZuxUrlP8u97Zqp8lWc+61JTZofs800oeL6uEKSaEWoU0r5qaIyhjeWZjlSqlKL4091Jmass8ZTtWRvA/admOw0WYyjbmXFzSbSirZK6ChFaZcNfjppNq5HGb1vlxJFSnVHD+3l+Wiafw7e6hfDtrKrAPHLX/4yp0+fZnh4mCeeeIIvfelL/PN//s+5++67bTez25gvJfr2fP9Y1i2t4mQBoiMkfV7Qc9tYobRlFg2yMtSaSnCl6Cn9cQoF/vT5+3n+wykefP1DnvnOmwzPLvPWk3ejVwKxQopxFTR8aGe/psxAB3O4DsOdDc+1MtvPlw5CGBInP4lc36RmC/2uv2HQvSsEqdF0dNJTeroduTZA3HBCJa44g7CZpps24bjQajBaKBKlKRJJqFNqSYzAEK3L8KQ6O2lfiMNu2VVqsv1ZCXoTrSnk35rpsMW5Vn1DgCjy1xOu6Xqq8jI1w/WZDXamUePd+gKHi5UbvuYp0rr7s9xLK8H1Spb2w8YSp6oDN/zke+WYbaYJoU5x8p9zJ00h7w0VqpT36otc7rSIjcrWKn5K2ZVYKwLp0Nqm7PV6MMbwzvICBm7aADHWikhd3cWORhqT6qy8t+TuzwAxNbrb4daT/p5tV+ns886WmO7A6dOncV2XRx55hEcffZTHHnvMBodWd86XZVm3lpLrETgOFdejvC5r9uzwAY6UKls+tuA4xErhCNldiwcQSAcNnH7oJN/5iSeJAo9TH5znx/7kh5Tr2dD6bqMaLWGlvLScwIHW6ozDNWajkLloNXA0kizAXAkQL1URPzgM85un5qpeViq7lhACAYSpyru2XpkjRNb1NR8ov76Jy5UyiKHKrtavNd1p8f35SabDFi2VUnSyTqntNOmOJFgrzQPBUCmW8yYjad6NbyXoXbsfsVY00njDNkB0X8+KRGscxHUZ9B6qlLdr8zTTpCdreaN0T6r3OEOWnWxmJ52hUnzcrNHc4zLWq5EYjSJbO9tK0+6xu3YsSphnVafDFiL/b6djVq5VnJeAx3rrstfrYT4Oudhp9lwoudnEKxc7ruJn1Ujj/DNj/86fXOlwu9cddZXRCFidw3ub2dVZ/auvvspv/MZvcOedd/K1r32Nv/k3/yZPPfUU/+Af/AN+67d+izfeeOM67aa1n3nSsXMQLesW5ElJ1c2Cp/UXAl0pt704WHRcIpWNVlh7AangOihjmAk7nB6p8rWffZ658UEGF+r8xB9+n8OfTGV3XFmHOJtltkxx61/+K3uR/UIX+NLJZiGmEhKBODOEaPmI1ydgcuugdqut7/QiqCMEsdk667TdSZYymsToni6NkVK8tDjDdNiiHse00oSCk33/UmMIHId4kyY12TpBQy1fr5Xk35cs6BU9Q9rjfN7d2oBPaQN5gBtqhclvS7TqZpb2uuzqk2aN5WT/nIxGWl2fDCJZZjbRmiQ/VvbDGqdUa7Q2JEazHEd5XwHTE4xFeZB0qFhmolCET3ENYqwVgeOQmL0PBLZztrlMK00+1aB0r8VaEV/FsWyMoZkkKGP2xXtyrVClvL08D2THbrjHAWJWZp83GLtNh/rsqsS0WCzy3HPP8dxzzwGQJAkvvvgiv/Vbv8W/+3f/DiEE77///nXZUWv/KrnuvuvIZlnW3hgJCvSvKy/dCT+fCVjwen/NBNLNmltoRWoUYbnCt3/qKe574wz3vvUxz377DT6eWuCNY08AA4h63hynuHWWxWCywCdfg1J0XLSrsiugF/sRiYOpRIhmABf7MAe3bgSz1sqYip2SecYt0Zr1IaUxWTC2lVhrlDE9AeJM2GYuajPsF1iIO7RVmq0LRJPoLKOyvsRUrRli38jXa/V+Phtitfrvtk5R60ZwKFYyiJJIK95cnuvOeJT5HMu9DgzmopCClCT5SI5rpYzm/foS9/UNXVU5YqQVsdZ7si9rpVrjiCxQjJTKR5Xc+AAxyS8spHm2yZUC10hqaxqURFqBEWvKYT/FElOjcIUghk9tFmI9ifmwscywXyAxes/XuH1aVjKIuw3yVh6XGr2hBP9GW4hCzrZq3Nc/RGqyESh7GSCujPNx8pEvt6NdN6lZXFzk1Vdf7f45ffo0WmtOnTplm9Tcpu6qDNzoXbAs6zp5dHDsqubdeVLiSLGhoYsrBNqs/g1gpOTdx+5ibmKIp7/zJic/vMjwTI2Xgp+h6eVzdrfIIK6s9TPGEOXrlCYKJRa9BJci8uOh7DnunYc3JrLGN5od1c8MB4Xt73B2AHGpD/PUZShk2bWVTqOwPuMqti0ljPOOpJ08myeFoJ3PLCw6LvNRhEZn2Vj1/2fvz4Jsy+6zXvQ3xmxWn323+119lUoqVanUWJ0tWXAMNgYc3AsHrgGDfX1vYIIb9wk/EATwQjiACIKXGzcwAcdxDNxz4JiDMQYbW7YkS7JUKlWVqlSlql273zv7zJWrne0Y92HMOVefuTJ37l27SvOLUGhX5lpzjjnXmCvHN77///tMNlnZGi0xTVUCV8oBBTGF1mTHBWNSMxzBYRb9ZgxBHPNWs86ZYjlTv7gPJaatOMCRMjOHuVe0o4gb7QaPVmaObcwBPTfa7imXFqbutgqjekRaPxQlbCn5TyM4zEaL4K7XJlJm3vlxzPBXwYMyqUnHB0bVfhB4u7mPH8esFEvUg9M3QXlQMOXS6tgKohebGBMrUbwfJrTikE4UESqVqaOtUzQwUslGmyUeXBn1w4ZjEcSf+Imf4ObNm1iWxTPPPMOnPvUpfumXfokXX3yRubm5+zTEHA878h7UHDk+uJjk2HkUHGlhCTniAJouNKuF4kjo9dbZJX73z36WT371NVbXd/mS+N94dfbzXC8/M6Ag9hvABH2LtnYUsVYqs1wos233jq1nPZj1TV/jbhndcrMS1hNjv4B4dx6BQG9X4EIDiSTQMV4cZWWZKVwpOYgm28WnJiGRFpnLaCMMsDCRIfuBjyUFRWmhNQhhyp+GCaIfG6LqCEk9IYimB9GMxxIiI45gFoG9CA5DpNIdc0sIPDQHvkdBSiq2k0V+nHaJaTs06qggPrJXcxrEWp2orC4bTxSgtT710sJYaSQSrcFTUbYx4MURX9u+y+eXz1GwHrxBT7oI1ghiFCVh4Vo2d702236XM6VKotD0Pnf9AEtMQ6WQGAL7IModm2HAm4095t2CUZHQSWn26WViPih4sXE/Pu5c9hLX5NSd+WHCQeAbdTNR+QXQOOT79bhIvzEl4oe2Qu5YM/2nfuqn+MQnPsHzzz9PqTTBhztHjhw5cvzQwxHG5KQ85ADqCIkUxsRmXOi1Vy7ylT/5CZ753rt86LtXeLH+Zdb8a7wUP0pAAaU1V1sNFlyT1RgqRUnaIGDf95ixXWqOQ3e+TvlgBlbb6Ef2M+MbdsvQKBxOEI2PyOjPtirgxlAJEG+sIJIXid0S+kLDLCS1MmH0Q+93paQZhhMDqyOlUEkoc+oyWg99XGll5boaiW1Ls6OfqIyhUgPHDJRxl3SlRTsKiZQaKGEsWBa7vpf9dyeOTP9j3yIo0gqtzefXjkJcKWnHEVIIZDL001QQQxXj65iKZaPRp7IYDZVK+vxOShAjHClPnSBGyYJbJeQzTPIHfRVzEAUchD4r1mR34PuFMAkFF0ITKY1lS2Ri1HS70+JMqUIrCkcyjx8EQVTJM+FKsz3xIPoBt/0ufhyznJhXDT8j7yek+Yfd+HgKWzeOsq+x97oHM91wS7/n9gLPfFcmG0EFy6IR3uOmXx9SIy6jIOYlpkfi7/ydv3O/xpEjR44cOT5AcKSFa8kRNcSWMlMWhZjwh1cK3vzo42yFj/LJN7/Bue51Fv/Pu3z7c89x6+wiM45LqBXNMCBQMWvFIkLANaWo2S4V28FfaRBdCAbiA/SMjwBEo4CmCXtFaLlwoQFbFcR22eQu7pegFKI/cdeUomoQby8ibpp8Pu1GiMBGL7Vhr2Rer8hs/9txkCltKVxpUQ8DPBWPVWWDpDctTkplq1pTD4KeA2zyO0sIKrZDN44yhS/SGidZOPmJkYwrJY3ImN74KsrGU0jGkZYGpr2P/apdWmJqC4mFYKVYYsf3CKWVkeLTbMvxY6MEOLY5X3fMxsFxEWtNcA+L+k4cUZDWqbtXRkonJaZkCkisDSnrRCHNKGTlVM84HQKlEEKjtSBCYSfzqWa7XGsf8ML8Mq0oHCixFHDqOZHjEGtNnJQ820KeKPD9uBjXz/Z+JYjdOMqcjY8DUwlh2gXu5z3vRCGtKGSlOHlj5I2DXRzL4qnaPLHW1AM/2zjwVExR2nTi6NTKgFVmUpOXmE6NW7du8au/+qu8/PLL1Ot15ubmePHFF/n5n/95Lly4cD/GmCNHjhw53mdwpKQg7ayvLft5Qg7nnCJ3u+2x7w2UCT7m3DL/Y/cv8Zz/Bzy69w6f/x8v8dZTF/jqRy/zzOIq39rdxBKCWaeAFOacJduc00rImtXP02aSEqSGMd0Rby0h2i6qEiLeWEbEfQuL0EJvVky0xo1ZxM1ZtBMbspiQQ/3cFuLVVVO22ihgzXqoxPlvuG/TETKJp4jGEsQwUe2ESHqGVIyvImZsk+slk0gBIQQzjsuM4xKoOFGiIr6xs80nF1cJkl4tW0rTQxdH+HGcGbUUpEUjWZC50iLWRjnqdzYNExVSCsH5JMpEYxbq6XFOU0H0EiMMK1Gd28dUOsYh0opInZwgdqMoMQE67R5EnSnAXrKgjZNcRBNN4gGzp3rOaeAn2YdCCLpxnCk1Vdth3euwG3i0hxREyYPpTYuSzMh0fgyXpt8PNKNg4BkWD+ha7wfMZoc8dj9tO46SUvbTeSYn4a7XZr3bPpQgtuIQKyG43SjEUzGKVEFUxuFWKbxTykJMzb5k8j36w4hjEcTXX3+dv/bX/hqFQoEvfOELLC0tsbOzw+/8zu/wm7/5m/zar/0azz777P0aa44cOXLkeJ/AFkY9dId2c52kl80YwIixJZf7gU8njlha6hAtVfnOhedY79b4+Ne/x9M/uMXq+i7Rn/uTvJKUUVYd0xtXsixKlm2iNYQkUhq37/SxG4ETIVouBBLRNgsJ8X1DDvVSG335ACKJfGUNcX0OvdpG3JhFo9EvroMTo/dLsNoCCXqhi9gtw14JOeej0IkaOHhNIjEA6cQhi4ya3wQqThRV0+/TjqKB/sqa7XAwZMIgk0zCeuizG3ST98Q99VKbEtG9wMs+B1tKYq1M3qINkdbYUgxlI6oxzp/G1c9J4g9OswfRT3qIhBBGrZhyMRomTqOVMSY0kT55iWmoFL5OYxX0qZqTxKkZTPIZxDrtPTVEccvrHn2Q+wAvySy1haAd9T5bM1bNtt/FU/FAHqoU4r72Ayqt2fI6VG3HGDdhFMQHEXPRCIOBzS2tjZPq+xEnVRBbYYAj5H2/57HSI27MwwjimBjzmlYUEmmjcptS8jgr4e/GETXn3gmi6UHUJuYidzE9Gr/yK7/Chz70If7lv/yXAz2I3W6XX/zFX+RXfuVX+LVf+7VTH+Rx8Ou//uv8q3/1r9je3uaZZ57h7/29v8dzzz33no4pR44cOX7Y4MiUIA4qiAVpGYLoljKVzx4iIykx0nYML24AcJdVfmd5lue/+hoX1nfRv/6bfPGjj/NbjyxQsmwkgrLtUEjMcdwxO797oUe10qZSn0Xfmsl+Ljzzp1BfaMC8B9oY24iDIry6ahTD5TbUkh6XM30xGYsdeGfRuJleaCAQmUo0CjFxoRXGcaIgGoKZkqSUqNUcd2Thk5a0NsKAdhziJ6YnvXNrNrwOO77HotsjpQIGFMS0lzEbi4pHTF4Fpr+yICxIiOlpwbhSmjFbQo7tTR2Hm50WW16HTy+dGfldrHRiUnP8RX2oYmKlKdk27ej0ytbAEHKZ5FEGKkYnP4uUURH3Az87351Oi7JtM+8e4aZ7CvBjs7Ew5xSYGZpnrpTcbDeMm6ndpyAmSuj9QiMM+M7+Fh9fWM2cfW1p3H0n9fKe5rkHymmFfl8qiOkmScGyMlXdnmIue3HElt+lYJnv024U3bd7Pk32aRq5AUZNTEvdI6WyDTkhODUznbTEVIoH59T7sOFY33jf+973+IVf+IURg5pSqcTf/Jt/k9dee+1UB3dc/Nf/+l/5x//4H/NLv/RL/MZv/AZPPfUUv/ALv8De3t57Oq4cOXLk+GFDjyAO/pkp2w5fWr1AxbYzgtiPlLDYQo78zisX+e0vfITvfOoZkIJnv/s2P/fl15nba1C2bSqWk5VvFi175A+7r2KCBUPusn7CpA9SuxEsJuqNAP34HlpoxE7F/P7iwfgLrYXoM02EbyPeXDLXoNRA72MKgTE/GYeuikw+njbREp0hx8hxSGMJmlFAO4qM6Umf+mdLwa7vjRAcgaCR9G8KBBIxUEqZZuL1w00MW4xJzenGXPh9rq92EhUyzaIsVL1wbD+OB4hlav5yEoOJNPutIK0+98rTQax7GZlxYoQRJZEarrToxhGtyGxEXG0fsOU/GEUx7V0VQozM3bLtcBAGmWqTwpSY3j9VLdKmv6wZBlnEiiVk8rnev0V7oGI8FQ08M1oLwvfYqOUkCFRMnGSmpqYu0+Ctxj77gTH9soXpS03fux94p/r8R0oRHDGuQMfZd6cx+wLQidOqcQaG0zNNUlqbqoYHmPX5sOFYBLFQKFCv18f+7uDggELh+GHKp4l//a//NX/pL/0l/sJf+As8/vjj/MN/+A8pFAr8xm/8xns6rhw5cuT4YYMjJE/PLzLjjP5dcKWVxWAML/TaUUTNdsaSR4AYuP3sY7R//i8SnFtlZb/F+X/7W6x+63UuFMqUbUMQy5Y18P4osckPU4IYGWVTP7JvionONwadRxc89CfuoKuBMaOZ95gE/dQOuhAhNqtYXXegV2/wuuVAxEQ/unGMLSW2hHYc0gqDbJf8MAgEB0FAN4poRWFm5mHOZ9GMAorWqIq763tJWalRO/uVzXElpmmJWvrz+BRLTNtRlKmetpQmrD0+eiGbxkMAXGsf8Ep9e+B3kdYn6iH0VYxGY0uZGWGcFmKtk8/VjM9OelN7c0ZnboypC+2DwKDyPIiyZWd9f/0KkhRGoWpHIf9j8+apK2xpf+1BFJBulqSl4/59vC/dKCJUemBzyxKceibmg0CgTNZmShCnKQk+CHxeO9hh0S0iks26SGmCOEZrzTd3N9gLJn8fHn+M6sh5HihFoM0G2H7gUbAkWoskpict6T89MmcIsEgUxJwgHokvfOEL/NN/+k956aWXBn7+0ksv8c/+2T/ji1/84qkO7jgIgoA33niDz372s9nPpJR85jOf4ZVXXnnPxpUjR44cP4wQQvCRhaWJpXmp0+bwH992FHK+XB1LHsH8sS5aFnphDv9n/zytH/80SEn5ay/xo7/5NZwtUzFSspwB9agVhcw6LqISoyqGpGk0XDpAf/4mPFofHeRsgP70bfQLm6OxF/1wNCwYpccO7Iklpv3ZhMPwEldSW0iaYcC61xlRXyfBUxGRVjSjIDPzAENId4MutaEevZJlsx10E2Vm1PgjzZzrRzEpUUuPPZzzeC9oxWFW9pZ+7tMsZFPHVzALyE2vk/3OV2Yxe5LeqSBWA1c/bvG64bXZOYG6F/eps7E2ym6o42Sua5Q2cxWMuciDIIipi+24TQ1I+xAZ2bAwJaaGIO763qmSBkgUxNgoiCnsJErmfvY+djPS0U8QxXse9XAS9G8CTbvZcaPTxI/jrLc3dfL0k8icUJ2uguur6EhlM4wNifRVzEHo40qJJcyzkpYfGyOt0xmX2QDTmYJ4EsVUac3tTvNUxvNe4Fg9iL/8y7/M3/pbf4u/+lf/KgsLCywuLrK3t8fu7i4vvPACf/fv/t37Nc4jsb+/TxzHLC0tDfx8cXGRGzdunOiYUh69e/ugkI7lYRpTjg8G8rmV435gmnlVsm2aYYgQpqxyK+hiS8n5So1Nv0uk1EjPS4ymbDvmuNKCT79A96lHKfyX38e6tU753/xHws++SPVDF41ak7y/oyJemF3m3dYB4UKbQrsAlRDhAI7icAY4BRyzMJGRTYSHLeXI2AuWKSFsxyH10Gfb6/LR+eUsiNooVrAf+hyEAedKlSN7foQw5ZRFy6YRBpmxghCCqu2yWoTSEEEs2zb7XZ+toIvARJL4Ks4+qxiNNTT+gmXzzMxCela0OL3vjHYc4kgrUSvMsSPU2OP3z6u07E3KhKjEIYGOKVp2Vmob6PHHOQwRZt6JpK8pQo8c40aniUSwUhp0Xlzvtpl1XMpjjHOATOEVSdSFKy0inZj+CIEtwNcmRzNQ8cT7kKIZBlRtZ2Se3O22OFM8ev6AWXyrRDGd9PqCJQn14POYkvkQRSMK2A26nClXjjzftNCJQumpqO/zEJAQ09P8m9U/r3wdZ59RiuFn5P2CdC5LKREimX+HXEOsFe+2D5hx3Oz6ReJoHKHQQhNh5stp3YsoUYd14pg6DKXNOWM0XRXRVTFlaRNI88wrSL6vjM58KuMS9MqthUJIJm6gTELd93mtvsMzZ1fed/MGjkkQ5+fn+Xf/7t/xla98he9973tsb2+zvLzMRz/6UT73uc/drzHeE07aVGvbksXF6n0Y0b1hfv70vnxz5OhHPrdy3A8cNq+WmhX8TotKqUDge1wsz/Kl8xdZKZW5EbXY9T0qxcES1YL2WZ6vDn4/L1bR/6+fJf6jl4l+6yu4X/02L/7gCpufeIziyiJKa4ra4ekzy7S2YvYvdODWPM5agFs9ndaIsCoIgQIusmAzUy4iug6iFJMKEQXlcL3Z4Ld3b+LHMa60+JGZ88aFdduiJhxsKbnTbvLY4jzuUGnoOBS1j2XbLNplZMHCFTa1SjFbzFTHOKYClAixihYV5VJ1XdBk99TZtikIQcUd7wZY1D61meKhfyNvtZq8vL3JF85eYPaQ9hOtNXpbMFMoZucr6YDSTIHF2uTjz89XKHRd3NBhdr6M6zngSayqw2K5QqHjUG0XsIr2sf+W3xUexYZDpVqgREBlpsDi3OAxnI7NnuePHPuPrm/wZGWBC/Pjz1nYdkxZaaBxpIV0JW7ZplB0KXdcbCmwSjYz82XcLYdCxZ04/s1Om6/tbvCFsxc4X+295sD3+f5+nQvLc8wVjja4aQYB7pbNTKmII8fPuUfGPHQUjwMAAQAASURBVCcqFISxolgtgCPYFeGx7nUQx4fO8bod4RQt7KJDCZdKMoYyAeWZIoszp79Gm5+v4Kh29vlnY3U00rKOdX2t0DgsnzZCFU/8nIaxYwUU6+Zaito/8r7dbjXpypjzM7UBQlTUAbXZEjOFIu6eTXWmxOLs6dx/p+FQxGFuvjx2PgRxTHHLIQg0uiSxXIu5cgntC1zHpoBNrVqgTkDliO+laVG3I0r7DpVSARUKZucrI5m+R6HdUlhtQ7Pej+urqQii53n84R/+IXfu3GF5eZlPf/rT/OiP/uj9HtuxMD8/j2VZ7OzsDPx8b29vRFWcBlGkaDTeG7vpcZBSMD9fYX+/jfohtdzNcX+Qz60c9wPTzKvIi2i1fSqxRdP3KBbL2F3NXrdN7MW02h6laLDM0vdCui2fXdEaPeCHnkKcWaPwX75M4eZd/vxvvcS7T2/zR89dplQsUPQAT3FgNyh8BsJSRNg6pTmvXQSgOpJmx2duZwb58ir6sX14rJ69bE0WCSNFWTisdzqs75jd+kbLp2LbSMvmjFUm7EaEHF0e6XkhASZb8SDs0o1CugRHvk+GivV60xhERAJPxVzb2OPNg102Gy2W3RLtYPy98bshe/vt8Z9BgpuNfb6zvs7mQZM/febyREWtG0cctDxqtpOdr+sF3No+oBaMLsj659VevU2747O102T3oE293eXmdh2nqtk9aKOCmL1mh93dyeMch716m243pC18ut2A7f0Wi/EgWd496LDhtbm1uZ9dW6wVN3cPmIltltUouVZa02r7FKRFNwzxMUYo+3TBUwReiBaSTdVkw2nQbPvs0Ga3ODr+bhzx39avc6Pd5BGnSsnvLeavtxtsHLTYKjeJC0fPoXrg0+4E1JRNIKYvyfWjiI6K2NhrEPox1/f2uVXZn/hZD9+L39m4yY8srjHnFuhE4cj7dlvmc6jToRMGtDHl2Z1uwNZek9nweAt2gDcP9ihaNo9UZwZ+3j+v7uwcEHSj7HwAQWieq2nn0o7f5aW9Lf7UmUvHHmN/SPsw9nyPb+9t8hMTjvu9+g6PVGepJvdyp9HC64a08el6ITtH3LfXdjbwvJCuGPwO6XoBO/stYjek0fbZ2W8xFx07Sn0s9hpt2mHA9m6T4piM2G4c0er4dMKQG9t12l0fHwc/iFC+wgtDOiIwc+Wgk30vpfmiw07a02C/1abrhXRVQDvy2ZkwtsOw3mzQaJuy64dpfTUzU8Jxjr4nR17trVu3+Lmf+znu3LmT/axarfLP//k/f6hUQ9d1efbZZ/n617/Oj//4jwOglOIb3/gGf/2v//UTHfNh+TD7oZR+KMeV4/2PfG7luB84bF4VhEWsFDrpaylKK3ttUZrg4+FeN601NnLyXJ2dofNX/izNl15h4Ssv8fhbN1i7sc7tH/044pygnJQf6kqyADqtKe+YLD8rskxpbBqjsVlGP7o/+NJEUtRam0B2YSUmOsfv7UsXkwUpacWmH2eaY1Qsh9vdFjO2a4LbleKPd9a50jpg2S3hSnnocUKtDv2+aIcRJWmb3jTfoyhHlxsHoc83dtbpRCELTiE7X9Wy+dbuBrO2y5nS+J13lcRYREoTxjFeFONHMfu+hyrP4McxtpB4UUQcj5YqHwaTyWbuo9bgR/HItXpRTCeM2Pf97NraSQ7bQRCMvTdxEvguMJ9zDBQx5dW+jBEaLGn6Qf0oSsj76LkB1jtttrpdZmyHrW6HJ6vzWS/WZqdDKwwI4t5ntN5t40jJUqE0cqwgNk6X6bimhyZWikYQUJQWfhyz1e1ysXL0QrobR7TCgGZo3vvlzVt8fvl8RmwgiX7BZDRq1ZvXWoEXRSf6e3W302KxUJr43iCK2fE9U+rcdy+kEHRjM8fSvmo/NmZG44hDOwzphCFhki95HLzV2CNQiufmRsWN/cCjEQYD40ihteZq64B5p0A5mZNBrHrfCdrkDR523za6XUrSHv3eVWaehLEiiGOCI45zHASxIlaaKFYoMXrMIDKxM1II9gMfpcy1Skx/sE6uT2AckdNx3Ww3uN1t8dmls8cek/nbYxoP1CFjOwydKCJI+lbfj+urI2ftP/kn/wQpJb/+67/Oq6++ym/91m/xzDPP8Pf//t9/EOM7Fv7G3/gb/Pt//+/5jd/4Dd59913+wT/4B3iex8/8zM+810PLkSNHjhxDKFp25oYZa51FVACUpU084e+pc9SCSwg6H3mK/+VPv8i1R85Q7QY8/d+/TvE//Daz3eBULdp7gzILASu0Eb4FO6Y3TbQK4E/YrdWm9zCNdbCPuZAEEzWgEjfMSOnJzqe+BVF/T5WkKC3KfXEjN9pN1vqcYCdBYHIGD0MzyZETpEYZg4i14hs769zutjhXqg6Us806BQTwzd31gc/qrcbegGFJqEwvVJS4MxYtKzOOCZRZQMd99vzTwuRAJj1pMNacJFAxXRUNmA51YpNDmcZUjF6zCd82XqUGaQaliZmQWeZcOifG3TswJjxSQFHabPtdQhXzOxs32PDa3O62jItr33tvdprc7bbHHitQ8YlacKUQKG0yAy1hZt60Tp9+bCJK0ngSL45HwtJjrSlIOWKsIoUxZjoJDqJgosGNF0f84dZtbnVaI1mQlhAoNWjy8nZzn+/VdyccK8ZPIhimwbbf5WbbGJq0opDGBDOrRhDQSYLih9H7LumdM+iby2mEziTE2kTmjDfH0obEJbmKJ4mPmYQgcQ2edK8inbj8Jlms6dPTc7pOntWkZ7V3XMVBMP4+HoX0eyd9Vk/iZHoQ+LzPOOEAjtzm+e53v8sv//Iv8+KLLwLw2GOP8Y/+0T/iJ3/yJ9na2mJlZeW+D3Ja/ORP/iR7e3v8i3/xL9je3uaZZ57hV3/1V1lYWDj6zTly5MiR44HCETJbKQ/vxLuWBWN2bDVMFVruSkm3WOC//chTfOjxc3z+2z/Aeec6z12/zcGHL7HzkcfRRxxnx/cQwOJQH5cXmwWtI2Xm9IcbJ//nsLq/gtDC5ChqAXslODOmNE2YHX1PRlnO27QQby5C16H24ZtEqCweYqxSFkjEH12AeQ/9wkb241Sd00mcQMGypuqzkYmr4WFoJQvNKFZjnROvthrc6jQ5W6qMLaWbdVz2A59OHFG1HUKleLOxR8VxuJy8JlTGXTB1tSxbNnu+l7lyulISJIva45SZBaoX5yGFwB8iIzohpAUp2fQ6mXlPOw4JlKIZhmOPqxJFUpC4aQidEUTjImpcOj0UnThMcuvGL+iDRF0rWTaNKOBGp8mNdpNQKQ5CHwEDxDhSig7jx9WJI+MQckxITA6nMRmShJEintJ1NUgyLL04wlMR3TgeudY4ceQNVTyweWILQTs8PkGMlKITRSNENMVWp8O7rQPOlcojqp8lRF8mpvmeakXhRFfibhRmCrc7xb7PerdFPQy4WKnhxRGtCXmpu0E32xApDSmXvjLK3ghBFOk1gHeI+2s32eAYdj0GIHnmY22I4mm5yEbJJo95jsezqXRjxZHCVAYkF2QJgaI33wRiYFMk1opmFI440k6DjCAm7q8n2VQ8iE5GTh8WHEkQt7e3uXDhwsDPLl68iNaanZ2dh4ogAvzsz/4sP/uzP/teDyNHjhw5chwBJ3Ge6//vFK60RkQNlWTITUMQTc6ioBlFWI9dpv3R53G/9h3cP36FL3z3XerXt3j5Rz7E7urkDUSjUowunLd9j8VCkW2/S9myDSlLXUxDi/LuLGAyFsXVBcRuCT2GIApM/qErj7nY7diI2+YcNVWColmsCdGvTfWhXkTEEr1TMkpiYXBxJ4RgznGp2eNNacaNOzpka1xrTTMypEHHYmQxGSrFd/e3qdnuxIWbKy1CrWhFxqXzIPRphOGAohbqOLPuD5WibNt0k1iEWJscu25C2spjz9JDJ1nsny1VCVQvziN1mO1HpDUxmorlsOV1stLOThShtVHRQqVG5qnS5n9CpCRbJyTLbDpkQfBK046ijOiOQzeOsDBRMb6Kebd5gBSCDa+TONPKkcVyMGFNb5yEj7hBYyATBSdSqfotplaWjNplws/LdowXRyMbCen4ldZYfS6QtpQDsSzTIiVAk0LZ05zPcXPSEpJYK7pxxGyS7dqJQ/YDfywBMcREHxq70AwDWlHImVKFZhjSSUhhN47pxqNkXmvNjm/ON+75C5KNhgGCGPcURBPVMfm+dZLcTXvMZBD04i00JyOIu77HW829gZLPKCm71iROvn1IxxpphcBEAHXiKNvssYRMKhnM+0zsSu8Yae6jF8dU7OMTRK1NBcG4sR0FrfXEjaL3C45fz5IjR44cOXKcAvoX0FqLgdIm87uhiItEUZjGwa8gZZKtp1koFMFxCL74I9z52Z/mztIMc/tNfvy3/5hPfPVVCp3Rnd4gVS2GFryBinGl5HNLZylKu6fSJCWmhBZ0HLRUcLFhshZ3S2N5my0k7SigE0eTlx/rFcTLa7BZId0sF3f6DDa8o/u9xL5RQAUCtsdTpXm3mGURHnm8RE2ZhHTxbwuZlGgOLko7cUg7Dqkd5fCoBa1kkbUf+DSHygNDZRaXvoqJ0UlkRJIHiSEtpgT1aFVrw+vwVsP0ivZnAsqxBNGct2zbeHGcXd9B6FOyTD+pF0fsBd4A6TFLa0MK7aQk0wRxqyxjMs35a0chKim7G6estOOoF0uhBXuBx5zjMue4mao9oCBqTTcav2DdC7oUpvzs+5Heo0hrbGFCxScpnsPwY6OuNSPflJqqeIQgpnmcq8Uy827PUdQSYiyBOgppCfAkBTFQ8cjzPoyDvhLndmTG3RpzX3sEcfLxrrUPeK1ujBUPIj+7JlN+O1qe2okjuocoy34cE+h4gJT2z2VLyEMVxE4cwVC8RwqJ2ehJr+mwUtVJuJmo3P3PcJoxqPRoGeeV1gFvNHaJlXluDEEMsxaDdINC67Qc3KjN2bGVygjiNHi1vs2bDZOjqwCESUHoLzH9QXOfzoTnqB/pd+D7GVNZ8vzCL/wC1piyk5/7uZ8b+fk3vvGN0xlZjhw5cuT4QKOfBAqhcUXv74krLUOu+hAni+gjexAx5MsWgrLlMO/2lYiuLvEfv/Q8n7izz/PfeZvL797l7M0tvv/841x55hIBZve4E4dUbYdGGAwoBK0oZLFQYqlQomhZCWG0QIK2Y/BsU15aCYyqOO8h9kvorTKsdkbG2IoiBD7OBAlHXJ9HtFzEbtncj0o42NPYtWEuJbi9fpwBHPSuX2xV0OfvLbzZ9CBOJl1+HGcKmiXEiNozLoh8HKQwpAtgy+tkpb1AVpKm0HixURLTPrhWFBIrkLa5F9OEg4dKZQv9/r6t1MCnH1FCTAvS5kCHdOOYsu1QD3zKtk0niujEES/tbfLc3BIXyrVszBqjIC4XSmhSsmmUxV72nqAVhaa/FJXcq8G1VjcKM6VHCmhGAef7ejnbnWhAQYy0ojtmoay1Zj/wT+T0CEZdiZTCtu2RHrDD4KmYKFGaZ5JyzOFe0TDJIxwupbSFpJt85scpy+4mKuXEHsQoQh9yPFsItr0OT9Xm0cl3hB8bgpiqiilakckkPWxz4manRStRu1uh2RDQWuOpiCgpm+6/9mYUECa9yuPu86QS0341/DCy1I2jRM8ehRSGIKabI4cRzXGIEwOdThzSDEMWC2a+RdoUiY4Lue9GEa04ZNE1Bkq2lHSCiGW3lF2P0jpTv6Vg4H4HWhEqfahq2o+9wOdu0hOdmjalSEtMrzTrVG2Hsu3gx/HEknyjViuK1vtXhzuSIP7tv/23H8Q4cuTIkSPHDxkcYUigTowGBktMJSIxYIHebrEl5FQlpiJZWJYsBpwRC9LClpIrj6yxfmGViy99n49ducvz336LR965zX9//hFurcyh0bwwN8fbrTqBUnSiECk03Tjiw7OLSCGYcVz2A6/vghQiShYMJUM29OU6Yr+EuDaPXukM8DdHyiToWeHGNmyWof81oYCWg3YjmPGh5SLapgw062/sUxCXxzhUEgtoFNCpwrlXglBmJbEnQVoe2Y9uHGEnn01XRWjMZ2UnpivDr51mWV+QFtt+F6U1617bxEMkKktKDuNEQVR95ZqNMEDRI4zTkBZfxXTiMHPUzRREBH48RBCTXixbmB68bhyhtKYRBrjSoitiNr0O+6E/qCBmbotJ6DsgtUhK2BQyI4EaX0XYQqAUY/vYOnGUEewFt5CVR6awxKC5TqRVZprS3/PpqZhOHDE7ZXnxMAQiUT/N8zotQexEIa6UdKKIeuAbVWwMER83T2wh6egoMSaaPnqgG0eEejJB7EQR9iEzs2TZbPldM0cS1TfSakRBDFWMl8zJSQpiKwrZ9T1AcxD6+CpGiJ5pVaSMW2g/QWyFoekVnUDEgzEmNX5fP60lxET1FEzJq5xw/ZYQ2bHVmM/qKOz6Xeqhl5SfB1lfd6RMGa4UjPT5deOQdhhmRjRFaVGW9kClSaw1bvIcmB7E3jFCpQh0PDWZ9eOYba/LK/VtKpadGX6lf4fSzzV1Tv3D7dt8YmF1cAMyG7vZjCiebN/loUBOEHPkyJEjx3uCkmXhCCvrs3IGSkxND+GG1yFQigvlStZXNq1qULIc5od29gvSwhGSSGt8x+IbLz7B1SfO8/mX3ubMVp2/+Aff49ajZ/ntD53n7Jkq616bbhTRic2CVmlYKZgyzXm3wKbX5wzpxtBNyGgpIUWLXXTNRzQL6N0SLPXyde1kRz9UMdVbq8hbC6jn12E5eU2jiECgFzz0R7YA0G3HlKxKjXhzGeE52Z7/WBXooGAUzXkP7Bhxdwa9V4LV8Y6W00Awutv/Rzt3aYQBH59fHejXsaWgM2Ty4sWHFaj2ULAs9gOfg9CnFYXMOG7WpxVrlVjdm76qOFGTLAT1wM8II4ipXEw7cUikdabcpHPRlJiqAbUqjV9JSV43jrIySeMAq9nwOjTDYKTEVCUupilkooLESmSKJwhiZUpmDQkeHH/qblpMxli07BGiNGyuky7EQxVj9b22nah3450rp0NKxlNDmWnQjiNKlukzrSemOsNmQP3lkf2wpdmg8I9JEBuhj50owunn149WGGAdch9Kls1+ENCOI9CaSBmX1WGnTC9OSARMVBB3/S6hjhEIdvwuoTIkO1XXU0Lfj4PIRyTGXePmtDE2GjSFSst0IVEQE5I3zhiqHvoTN99kShCVUfyOUz4ZqJgbnWainosBh9Z0bgvECJnuxDHtOEyUcI0tJefL1YHXKHrPpelB7L/2OCv3nga+ilgsFLnaOuBsqUKv7dX0HPsJaTffEzp77ufHHMuL46lK2x9mvH+1zxw5cuTI8b5G0bIpJIYTthADBMeVEluaRcnZUoUNr0us1dg8vUm4WK5yYWhBIYSgbDtEfQulc5cu8u+/8GF+81NP4pWLXLh6l5//7Ze49K3XWRbGJbJoWXx8YZW1Yjnb/Z51CoNKmtNbNOlyoioIY1YDIK7NDYzFTiz8g1hhd42CI/rLQevm33q2T6WshHCxAbPJIqt7xP1IjzHnoRfMcdKexJNieDGntWbP99jxu3xt5y71wM9auSwh8eJoIFetGQaMWhCNoigtPBXzan2bQKlEQUwJos5ImxfHhiwKo0KnSmBq2jMNaekmuW5eHGeEx4zflHn2L/ZirTOVV2tBOwppR6Epq03MWrw4ynreUvQ7I6aQSY9T/zl1ojw5UhoTmKGFZpCYhRzWMzpsrhMn0QTDpCNVv46TEzmM9J2GRExn5tEOQ0pJJqkpxbPwoiEzIz2eIKaGMcdVsQ7CgKI00Tpj+zr7ynbHwRgnxRyEPl6ixpYth52gO/C6bhxlZi+T3C+3vG5ybZrdxHnX9J5GiWsnI59VOzT9d3qCUttO+nXT+R4nRKa/BzHdJBiHVAEfh7QHMdIaS4yPrhmHVhTyn+9c5ZX9LeadAq6Q7Pi977PUgIYxn4mnIkJt3G71BJddR0iKSZmnFAyUVYfJJtKk2JlheHFMUZoe4k4cDUQGpc6tfkI6o2STZtJ9OImJ0sOGnCDmyJEjR473BFIIZlzXODJKOWhSIyQ2kjOlCp9bPkvZstkNfEr29DU7T88ssDYmaL1s2Vl5mCUkz84u8fnlc2w+foHbP/cz+J/5GFIIyt/4Ll/833+fx6/cZdkp8uzsIn/qzOXMJKdk2Ymjp6IRBoNlm6W+BcJKB10JEPUS9JEzW0gibXLFpJcoj82+Ur96on7O9RHEFMXk+EeY1Igkj5H5rvkfmDLTe4AUYkDV8pOF00qhRDsKueu1s74gK7HH79/ZP0gyEo9CGt3xdrPOWrGELUVGENPeJSnMzn9KcFxpFOn+df40zprdOCRGZ6WBWQ6iEMSKkX6+9PCuNIpIal4iEqOZg9DHEXKgzHMSWdCJzX//OdNes3H5cEGiUI1TgVKMEkRDNIeJRTsKxxooHQfp4n04ZuAwtBNFXifumEVpj2Qb9qtfwzCK4/H64Bqh2ejRY0g3mJ63o7JIBYJGGGTZfUXLoh4EI8+D+Wgmx8Hc6jYpSxutBQdhkG0UtBMTGsmoOVKqqMoJ196Kw4H+xFgrFIOOvMP5mNmYk1zKSUpyL47FmE8d5dCajSkMqIc+50tVKrZD0bLZC7xsw8jMbfPv/ucjjd6JVErwxk/S8+Vq1v+ZloKmxwmVxpHWVG6isU43DCVzboH9wB+YeWl/Z5jmQCb3Yty9jJTi3Vad0hSRQQ8zcoKYI0eOHDneM8w5RdO/ltiYpxBCMF8o8uzsAgtukT915hKfWljjTLF6yNGmQ9m2Mze+gmVKWZ+aWeCnzj7C6uwcwY99ivYv/mXCDz2B2/H4cy9f5Sf/6zexbtwZIDZly0ZrE3uxF3i9Pj/IehDNxYB+pG7+2aciDqgjKdFrJqRQAQdF44ZaHbMD7ii0rcz7Ji3wPQtxUEQXQ6gFUIzRpdD0MQYn//NvSkx7J00NGVxpUbZs6oGfGQnZSWxD/067CeOebvE057isFsq40jIREImDYqYgYkpAU7hSJg6PvXs7jdJkXCNNOZoaUF0ECj1Uuqay4zvS4iAM2fG72ULckZKDMGDGcQbcNtOYlmEIxEDJY0ruTA/lKMkIEqOQw0x+5FC/WaTV2Py6/cCbiqxPRm8eTOtiagxpYjN+ba6vYFkjBirRBAXRYDQ+5TD4cYynIoqWlSlrA+dSCj+ODyXdAI4QbCZl7wKM8hlHAySkdx06iWEYhBdHtKOQomXhSFOWqxOi1IlCNGaeDDuFBjrOSnn9MQpVJ4qS+a+Sa9IoxcBcjrUeW55qHIIn54WmJjV+nBLE8VEbwwiTzZR0bhcti3YUDWz0pM9S/3dKlCjeYZJleNTnko4xzVQ012+qDppTKIihSs2gBFXbwYujvudC0I3CzJk0TMx6ggmGR7e6Tba8LvPOvVVqvNfICWKOHDly5HjPMOu4pnzQskbK3D63dJZHKybvb94t8onFVT40Ozm3cFpULIcw6cnq3+XtN7PRszW8P/cnuPOXf4rNpVkqO3XK//Y/U/wPv43YrQNQth0TEK4Vc26BwOpbiJSGFnCrLUPOdsvQ6o930IhIZOY2wrdhu4z4xnlELI16OOkvdTE0r4kmvCCNtOg3vllIVMT9Q1REjYnViCeoN2KQtHRjY0ojhWDOLbAbeNlC004XpclCKkzKt6YlJTXHzZwCLSGynfs0O80Shlyla0tHWgSxyv7blMYdXu4Va42fkM5uHGXKZPp+pdXI4rXX9ylpRgHrXjvpP4Sa7bLoFnDEIOmZ3Hmp+/kstpDJQjwpvVOjCuJR62VL9AhUL0bALGp/0Nhno9tGa82W381K9E4GQRoxZ2IGjiYNacSFI2TSU2ciDIbNRMIJJjVgVNcgnk6thKRcURnnWTVGRUsdOo+KeilZNlteN+trs5IolXpfX103Ckl1sXEKYjvqbaiYrM4oIUCCdtJjK4XJ0+yHuR9irBtppEzPolHQze8irYj7SpdFYqo0vGHixzHf2ttIzjvZpEZhHFYdKc09HHNtu743YNzVv5kCpjIk1DEbXscouX3zpV9BTPsd48SwZ5q+cwEDxkChjilYMtv8OQz9LQcAl8u1zHzGFoJmFCal3TqLZImUGpmzsda8Xt+lZFknyhZ9mJATxBw5cuTI8Z6hkpCskjWaiVexnWPZ2E+LgmWBMCrCuPP2o3jxHG/8zBdp/dkvoWZrOO9cp/Kr/z8K//0rlLtGCVsqFDlfqtG1EufSQgTW0EJZgr7QAEDcnM1+rDVY/uAYxGsriI6Lnu+in949ZHDJAnJCH6LYMuW1eqVnSKPnp+hDvD6LfG0VcWWc/UK6EOst6LpxnCljlhBcKleZdZKeyoTkpApi6u43TVTJMOzUXCjulXal7rapeYeVlOql/52aaxyGUJkFpNKmBzHWvdLGNAdtoMRUqSwvz0n6SJtJT136s3m3aPL6+hb5k0pMjYbY70AqkngCc4+GFR9TXnj4cyEx9yq9LmOQY4jQD5r7XGs3aEUhjTCgfMQzcBjWiuXMtEkmGweTr7M3/nQxLhAJITeKWVp6mC70Jz7/eryKNgkp4bDTz3NMX2eo1JElpkXLphMbxbi/L26/z6gmLfVkjPEKJGW9yYaKKy1aUYgjJZqkd02bMuV2OOyOqjIFcbgc15Q7mr7V9NrSz76/THecq+/3G7vc7rQ4UxyfkQrpRolO3IrF2N5YgLcae7zTrA+Mqz+uSAhBUdp8eesW39rbTI5hNnj6SVyYkDFLSGKmizORQiTH6ZWYutIy7qNHZCGGySaQ7CPTKZxkE8hPvieCOM5eP+zQ3IoCdgKPuSFztPcjcoKYI0eOHDneM5QtY1v+IPs1XGklRivqyPO60uITS2fQzz5J+xf/Z/wvfAocG/flN5j5//5bfvSNmzxbqHKuXCG0kwVdaULPy9mmKRldr5qoCWCpUGRRmbLZdCEllDTk8OPrxpRmEkqH9CG2bdgvmbLX/h7G9N+NCQuYSCBuzJl/b1STxOhBFKQpq0sXxaZcrLcIdOWwGtxTs1KXxqOUmnGQiVqYmmUIellog+j99zTOmkG2GO31OPaPf7jMs3+B7WR9pPFIeZ4txXQ9iEM/NuZMcaYqDb8vdeE8DOl9CZXK8vUkpg/vIPS53W2xE3SJtLqnElNLiAEXyTR65DCk/XNCCObdAvOOa8of+8yA0hiTScTAlsK4iU6JVHVNVbSRvk7VMzo6DCkBq4dBppyWpD3gZuwnRE4wvt+v3Vd2XJAWrThM5o5GaQXC9N+2+l6Xxq+I5H4Px1X4iQJqCJE55yS31uENh02vS8U6fDMuddv1lZkvCj22xHQ/8NnwenmvgVImmqMPS4Uis47L1dYBfp+j8XB+ozkvIyR34hhJS0xVYvTUux/DUSTDSO/VWNdcIWlFId0oSnIq40RxVNn3RYpudPLvt4cN7/8ryJEjR44c71sYgmiNhGHfTxSSxVikoHwMV1Rsm+DTH6P1//y/EXzyo6AUT796hY/9+m9z+XvvYhd8Q/Jm/PHvdxScbSGURLy9CNooEnaQGNPM94icfnT/yOHoREEU/WRvswK3aoi3lky8xaWDQbGpGBmS2nYMj9opDfYj3p5BhEm5a2DDZhVu1yDqHcROSsw2kkXxQeAfqbz0K4j3ogkLYUrilO4piGpAowBNL+57GgUxLVmViePqOPQvhoM+g5iUcIy7JkuY8uN0wa4YT5xStTNFybKp2W5yjtGeMaOcHX4X+w1JUldMWwi2/S6+immGAddajbE9kSeFTHopjyrn699QKFk21eRaY2UW6n6i4upDiIEtBJ34aPORFP2qa2os1Y/j9DOiSVxKZXYNu4GXbUSkvYymvHn0XuwHfjZ/bCmZtV3Klp0RHHN9km6fq2tKmI2CaEqQ+zcJUsJoiZ7Dab/bbj/6Nzi01jRC/8iYEynMXlHcV+45rCDGWtGIzAZE+hx5cYQ1Zgwly6ETR+wGHhKBEINmUmESbZEaH03TgygSEpv2mGbltUJwo90YuQdf276bjTPSaqKTryNN+fNB6Gcl7Onxh91Kh91P38/ICWKOHDly5HjPULIdCg+YILqWhdZmYe6cRLksF/G/9Bna/4+/QviRpxCez8yX/5i/8odfY2Xlq+hH9ya+VT+yjy5EiLs1SAxrRKIA6pU22o7Rix1YGONcOoy0XPTaPOKdBQgk4rUV5FvLiL0yuhzApfrgewRQDk3P41YZ+d0ziLeWzO86NuLqPBqdEVT5+gryzWW4NTNwmJJlc7V9gNaag2hyflpy1dkCvB7492SaqTWZSQ2YRXg05Ha57BZZdk2P5aRFej/SxSjaBMePW971L4Z9FQ0oDQIxdv5aQqBUr+erGQRjSaLWDFBcS0jOliqGfGqzKO9HR0WZejUJaeltmJQZam0cHTOyqjX7oX+qyr3sW6AfhuvtxsiGQhrBsB/6/N7mLTqJWdAkXmALmfXrTYNhAjhatjt9P2PBsvrKSFOjmjhzsg1UjEQkbrSjxLMeeMkmlcFqsYwtZUbuJEkfqur1zqWluzLpQYwYNNrxlVHi+rMAexESPWjNgKKeOhAfZRolk4oLnfx7nHlSJ4oyI5v0XvT6KweRbn504wgpyJ7jFEFiNGULQaDj6UpMMc9RnGSHphsMc47LldbBwOZPN4643W1yt2s2uUI1afsm6ZtUioMooCAlvjZGNWkszsA9SPqxPwjICWKOHDly5HjPYCVlZvfmpHg8uFJiJRlz07ppjoOereH9mR+n8/N/kfCJy1TaHj/63e/xP/3WVzl7c3O0dhCMk+gLG2ipjKNpLHolotUA/blb6Oc3phvArI96YR1tx4jrc0b9Q6ALEdqJ0c/sjP8rn5StijsJ6dstQSwQr60a05tH6ujLdbTVW7CJIVObGcdlx/eohz7NMDxSgfDimFYY8EZjlznHPfS1h0EkgdVR4vpo+t4GS8MKlpUZ26Tui4ehV/KoM+I5iEEVz1eDbpfnShUW3NGeTlM2qQl1zPV2g5eSLLhxV3XY8nfYcbMTRYc6mEKvHDdK3F5TBdFLesgcKakHPuVT3JjJVKZDCGI98LndaTHvDt6H1ARly+twEPk0wwAFE5Wj/siTaeANKG6jvYHhhI2BcShZFq0wxJa90lrdZ1QTKENo0miIfsRJeeq4753UnMgSAlcaNXs3yQzsz/0c3ngw41cITBlx2ocXaTXyFSTEIBlOHYiP+v5N1bV0DMN9uWBKZ40SZ0qZzfHjQ8ote5s7w2Q6SDZtHCnx4ylNapINlTTqQmlzvVXboR2F3O60+o4f04pC3m3VgeQZmzBtbSkzwxxXWiZmRmssaUhyv2JeD7wT9Vc/jPhgXEWOHDly5Hjf4mK5xpz74Jr6C9LCTojFUcRmGqjlBbz/y5/mlT//BW4vzzBbb/HZ33+ZL/2Xb7B2a2uUKNYCWO4glDSZhKnJTDEyZajHGdJSF1Lzm0SR1E/voL9wY6IKqSuJ2+quIX0ishBvLiGaBfRc16iHlkZ/bB31UUNmqRcHFlBOsmh6dX+HQMU4YjLRtoRkP/B4tb5DJ4qo2n0EUQNX5xBfuwCNKYijEPhJnw+k+WyT4wnSRfphPXvpQtsSMnEMHXyt1oPqxjBBnIRUFfPjmJf2Nila1oBTborFQmEswUzHP0xw21F0aKB7BpEa8JgFs5MYohSlzazjEiYxAKeF1MjksBLTW50m0SFxCtt+l2YY0I7CibEg0F++O11paCcO+0iQIU9eHGXv9+J4QqHwKEqWyWwcvoa0Ry3M8gpH1et2orKNu++WEARJ1IItJUIIXtnfzshe6q7bv/GQwvRQpiXXhrTESo+UL5sIlR6x7kSm3Hc6l1CRGcYMR92kxxKYebAbGLdkT41XEMEQ7U4cZcfrL+NOFT1byEyRnQqCLMJI0ytRdqXM1EIw5FZpuNNtUw98Mw/E5O+ItATWlZYpLY3CrP+4/zM+CINT+ZvyMOCDcRU5cuTIkeN9iw/NLrJWHA20v19wpYUtTEnXaSqX0fk1/sMXn+OrX3qR/cUZFnYP+PzvfYcf/61vsHp7e4Ao6iVj5CC2y+DZpiypOL0i0g99xuyMCyXRQveiLCYhVRD73Q3Xa+ZYT+72VgZzvonImPOMstgcJHCrxTJvt/bpHhFbMWM7XGsf8EZjl6XCIBES319GvruA6DqIq+NdU/thIWhHJkxca6OmhHpyoHqqTB2mahmnRZEZpQwriEIMmo348XQlbyn2Q59WFFKzxxPgkmVPLLG2hghipBTNKJiK2KWLbtOjadSYVmTcVouWzeVKbWLf1UkwyQAmxUHg82ZjbyxJNuMVtJK8uXZfdMo4mHxNNXVpaDvqERWdKFff3tvky5u36cYRnainCB4FS0iers0PEEQLkbmzpr1v43Ih07k7TlWzEifXdJwrhSI3u01udZqJIpaobfQMiFL4ypjwmDLfnoI4PJctIQfKIo+jwpKZHY3vjW2FARozn9MYC9ODOP67oWTZtJOMQ1MJ0BuXF0dYGKIcTLkhA2TmY9GQK6krJa2+PETTR2xKjde99ohKP3rlaV6nRGtNKzLGQrHulc8rrWmGAc4pbrq8l3hwTR85cuTIkSPHQwApBEXLohOLeyoxHUZJ2iAEGxdW2Di/zNlbWzz73XdY3DngR//HS+wsz/HGC0+wdWYRljqGFG6XIbTAjQ/dsk1zx8aOtxKiaz6iWTDk0D6iB6bPGVXbCpHkKOpZD2ZHQ6X1nIfYKxu1UwDVAIRREdeKZdpReChhKtsO5XGkoGMj7tbQbrJI3S5Dx4by5EWrJSWdMKKozSLV9C5p5DgnDHqqVqQV9oQb7KkISc/5c7iHSCaL/xSBmkxIhyEQ7Preid1CBQwoFK0oxIsjZp1Dciz73p32rmmMIdSiW8zKb+8XxsUfdKKQP9i+QysKD41TSGMejnKdNFELaVD50TEdnb6eQZFkAW75Xe522xyEAb6OqZRdOIZXTT9kUr4b9fW+jSsxNfNo/PNpCUmgVEagLSFBG2JdsZ2kb7o37/o3LTpRhC1Md2C/UcvwXB7OUDT3edpNApGRrmFVHcxGiCskRcvKVOBIawoTiHdRGgVxxnFQelBB7CSEviAtKpZzrGdnQEFMzYCEpBmFmatroGO0FrhSsOt3KSYmQROhjarpOi6tKKKdKNJpJiIYsu0rleWhvt+RK4g5cuTIkeOHDmXLwRIS9xT7RYqJ+Q0AQnD34iq/+2c/y9e/+AL1+RpL23V+7He+zRd/+49Z2dmCWQ8R2AgtjFJ3CPYCjzt9JVLD0OdNmalenfyaDOWwt3BcaZkoDHo5jSNIzXDeWUB+87whcglcaWWB0sfGZqIan2uizxtHTTFkhjMMV0j2/O5gn5c+vMRUaX2oQpAuRi1hFr3DR5KiRxDTxee0igZo0491Qt8KKymxS9GKzGd3VA9ieu40rw3MdSwWTvhZTQkxIftvy++y5XU4Uywfqlr6cUzFtulE4aGdmeYYgqutA251moeOSeskvy8hGRJBIwroRCHnSxUUirJls1SchnSPh5XMkUj38hslowRxODi+H7YUI+XLtjRZmrFSQ28bVPBSM5jMKEipsaWZwyWmjdDHOcZcNj2Io6o6JARRWhSkRaCM4VCsJj8rQggulCrUbBcpBjcWUuVRCsH5cvUYir3OSqr73+FISajjbLPFRIZoCtJiL/CT800+h5NEz9jC9K6nmZSiL8KnE0eEOv7A9CB+MGhujhw5cuTIcQyUbTspMT1FBdGysaUpfctKyITgzqU17lxc5dyNDZ595QpLW/v82O98m+25a/zA+jQbT9bQTx4ea+Ed5TR4roma9Y26dxSspJzVc9Czvonl2C/Bamv862d9Y6qjEgWmUUAfQWingdhM8h/XWuAodGK0w8VGL+NxCCXLphEGOJh+LJmQukkLyH57/mF044ib7SaNMMhKjr0xlvr9ZZ5p/pk8pOdyGKGKT1zKLMVgLEErCsZ6H41DaiQyvFi+v9BJH+cgfBUnxGLySIw/kFm0DxOrcXCl5Ft7m1wu17hQrk18XZiUHBZlz7ioEQYEyvysZNkIIe6p3DYjiMn9tpLjDWcRhkmv4DjYQiIZrGqwhKQbp7mfvfFpbeIy0uvuxrEhVPScPIPkng+Ps19BrB+zJFIlqv2wqh4mpi+V5F5qzPhirQ7dzEgrCwRikPAe0rt4OHoVA/232ZGSMNR4KqJgGaMZrY2hVSMyfYOHnc+VFs2kUkIPbBLpjHSaTY3D5/j7CTlBzJEjR44cP3Qo2w62kKfag1i07GSnekw5oxDcuXyGO5fWOH99g2dfeYfl+g7L/CZ7b8/wVvEx7lxcZaKvf4Jxwdfm+Bjzm2kx46M9G+Y8qIboC4eoMJY2zqv7ReTVBegcXdJ3JDq2McWpBKbkVQCXDhDX5uH1ZZAaPefBo/UB5cS1LBqxT0uHmeX/glucGNeQ2vOPUxA3vDZ/uH0bECwlKmikogmqS8yO3+V79R26cTTBjXQ8unFE8YRlncMmNf0ZekfBlKeajMcHh7SPcxBBXyD6JCwWCiaGQcfJNR/+juVCCVfKI2NM/DgmUho7yQZJlWKY8CydAGl4fUpMUrdRP1G0UlMhP1GuJh3jidrswM8sIegm7qD992PWcXmjscsTtTljmpO406ZOnpFSBPE4BVHiq8go5cIo0oUpvwONv685R8myudlp8tzcEsWk59CLIxaS50Kg2Q/8jCxPc//6n1EvjqfuCR1GqvL3E2pLmOxWP47BMQTUliJTENtHKIhzjkstLZMXZJEj9KnEJuLig4MPhg6aI0eOHDlyHAOlRDk4jtnIUXCkpGTZh6sfQnD7kTP89z//eb7+hRfYX5hhYbfBZ778XX7iP32VS1fuIMaEeDtCZs6r7ShkL5giJ/EQ6Kd30R9fh+qUYeMLXuaWSvseCWIoEa+vmH+vtjMCqB+po4shol5C7JUNGb05WnIq6NntgzHLmaRSpARgnLNmPQiwhORiuZopyuEYNTJd/L9e3+HtZp3lQukQ6/5BWELSjiOK8mT78Ua97I19x/emJpspsT0ql/B0MV5BbMch1hE6ZsmyKdt24g45Lm5kFHJMHt8w0nuQEgCZuICepq5qJbmF/USuv/81xWGmLeOPaxS/4fiVmuPSCgOuNOvEWhH2KXVpYHwwZi5bQiTGKopubIj4tH3Y6fWAIah7gcebDVP58G7rAAs50PPXCP2pCbgUvZ7KQMUD13NcxFlZ9fA87OUWZopraqx0SBUCmHuaPvOpg6uVKKXpBs623/3AlJdCThBz5MiRI8cPIVzLonYPeXyTULPdibl7Wmt2/K5ZZAnBnctr/I+f/gxf+RMfZ3tlnpmDNp/82mv86f/jKzz61g1klC5mIiq2gyWNrXojDGiGUxK7SSjEWW/h1HAU2o6NgngPnEO8toI4KKJnPfTFeu8XlkZ/eAu90kY9uWPKWt9ehNYgIU3NIaYl9+NCvQG2/c6AemIl/YwjBDGJK7jttVkuFCc6jo6DJQSdKDqx9X1q8+/HxgyjEfkUpiSbEkMuJkeA3x+MI6SH5+ENwpHW1PEV08SYGJfanlooMYTfPcXNISvZvPH7yjeFAJXk8qXwjuHIaY4rEwV0UEEE813zdrNOoEwJbU9x05m75vC50tD31Lk10mq6yBTScm2dXJtg0S3yan2b1w92udFustAXVeRK61BDnmGkvatKm55dPx4fBXIUND0FcXiDQSPwkv7LbhwO3Jt46r5eM1pTZi6QmM9Uac1Gt3Os74aHHR+cK8mRI0eOHDmmxFqhfKoZcClmHIfbnfGKRjuOaEQBRcvuWf0Lweb5ZTbPL7O0ucfTr73LmTs7vPjN7/OhV9/l7Wcv8/WLi1xYXOZ2p530wJnIgqP6e04dAqiEhtx59sQ+QXwL8fIaLHfQj+0PrtNiAXsltBuhP7Y+6rg676PnNwHQsUS+u4DeqkC1nr2kZDtsd9pZT9nRGI1eiLVi1/co9i3ojIKox5aYhsrk5i06BdPU2CjArH+kyFWxHNMDeEIy4kiZnVthCMjclBsblpAEcVpi+mD6orQeT8Y7UTg1EUmV8mEHznFI1cD+Mk5zPpNxOOsWCIaMhywhaEVBr2TwFJA64Pb396URK4Olk8frrbOFwMMQOq0H31eybBpRQDMMBhTSNJJh3CaKSPrmOmnZqp6+91IiBtThiu0QacU3dtcRMOCOW5AWXTV9hEaq5KUEMc10PDYSchjr0W0RAXiRGZMXx5mrrS0EQawoOtP/PTD321R17AeecW2NQ5ZPatj1ECJXEHPkyJEjxw8dqo57qLHFiY9ruxNL+lpRwEqhTGeChf/O6gJf+5Of4Hf/zGe4fWmVYtfnoy/9gL/xm3/M8y/9gEXP2OgLISha9sBi9DBseR2a4TH6Ew9DORn7YWWmd6uIVgFxbR7x/aXB37Vc0xs04x8dx7GcZEXuDsYiVJxeftp0GCUtzTDEU/FA72K6UB5W+1IjnLT/iluzyG+f67mwpojFiNpZtm1WD4l1OAqWkCg0XRXRikLUMZQOY7qTEsQHpSKOz0HsHqO0Ms1TnAYSYxoy/Plebx/w1e27xAlRGniPEHTi6FQ3iGSigJlcwZ5SqRKykuK4BNESkkjpsXmFTtJ/uR8OmsGkJZDhhDgWjcljbEfRsfYNao7LvDu4OTHrFDhTKLNWGJzjBcson8OkdhLSsvFYa/ZD76hW7IkwrsYq6UEcnEO2EDSjMOtFTAloQVqZC+x00Flv5YzjcqfT5la3RdxvTvYBwAfnSnLkyJEjR473GGkG1qbXYT/w8PoWdpHWzDiFkYDpYdSXZvnGFz/Gf//zn+fa4+dwYsXqd9/iz/4ff8iPff37LO43KVnWVARRaY2n1JG5ctNCVxKiOcmoRoNYN8RbOzHi7ozJNkzRTBaY0xjqVAOTkVgvQCDBNwt6R1pUbPsYxi96IGMNoBkFYxXYp2pzI5mNUphYhGry2Yp6YsSxM7goFm8uIb9xAQ6mNLDxLfD6rkFhSOYQBEbx6ETRsXTA1OAm1npq59N7RRo70g+TV6gyxWZaTHOtWazD0AW2o4hb3SZXWgfcajcH1KiCtCgmcQynBaMgqqSEsVeGqYcI83CMxTTHjbVR/IY9W9Jrqgf+0Ls0nTjCn+Cea2FcXPcD7xgRF0axHBdpY0s5QoysJA5ikiHPMGRirhNrzWa3M9F06ujjQJTO+eFxCkkrKauN6ZXWFqRNJ55+w0lrkfVAFy2bQMXc7DQ+MO6lKXKCmCNHjhw5cpwSLpZr/PjqBS5XZqnYLju+6fMzRjMWlyq1qbSRbb/LVq3INz/zYf7NT3+K5qc+SuzaPHV9k7/6O9/lT/3ed1m9s40fRWPVhRStKGTWcbPeodvdNvsjC8pjoGKIppikILZcRNtFV31YSTIZ2z3VQbTMv/U0BFEAS12j3H3tIuKrFzNCdbZUndpcY5yCeGQ2YSAzYusIyYztULOT60iugf1i7xieBRsmtkNsTacYipfPIL55HmKB+O4q4vceQfz+ZXPcPmiMAncQ+j1FaLc4SLzHIDW4MarzVEO6Z8ikXK8ffqyS6JfpB1GQFuUp+rnSGJMRhTgKCJXiu/tbXG03WCn0Mg5tKblYrp3qgj6NdugOqWYCwYbX4Vu7G4TKuOkepyw8Lb3sRNHYkkuN5iAMBsi0xuSm+mp8H5+bOHfuBd59KbPvH9u0z6jAlOP6KmIv9E9s6iQSV9FwTJ6pIw1BDJQiUr3PoWzbPFqZOYYyz4BPb9my2fW9E5PahxV5D2KOHDly5MhxSrCE5NHqLI9WZ7nTafHbG9cBU9K4XChyvlTFFdah7oGRUnSiCKU1NdslqpSJvvBRvvORR2m+9AqffGedlbs7/MzdHbZnr/Lyk+dpPX0ZNWaB0owCzhQrtKKUkGlaUciM454sZywtMe0M9cHFAnFlHpJyUH2mBSJRgdoOLKcDSt43TV4joBc7iLs1RGwWb7rpwtLRGXkDxxhT9rjjdw81jhGvrEHTRX/6NqIcsZKWicYiU0+F56A7NihpxpgSg90yPHF4riWB7JHlG7OInb5y1d0Sus9ASCJohSH7gQkip+EiXz6LFhrONdC1wKi2sTB9na65P6YHTk2VKXhakDByviBx9zyOgrhcmC603pRxqpEoj1Zknjcvjlgrlh5Ir64A/LinIBporjTrdOOIZ2cXUUpj2cd77kzXoB6r6FiIMYY+IitjH0eCC5akHnrEWlM6IRGbBudL1akVbynIshP9OM7iMo6LNC4jGlNe60jjKNyNo4GeTWCgF3mac6i+ez7ruFxtN7h0H1oW3kvkBDFHjhw5cuS4D0hNG7TWdOOYD5WqVGyHGdc1zpauxd1uG0fKgQXxQRiwVCxRDzwCFVOxbVPGVSzwrcfWuP70ZX66qdDfeJkze01+4ttv0339BlefvMDVpy7glY0CpZIyq7OlKne9NmFS5rdQKLLjd0/WG1cO0ZYyKlfbhkoECsSrq1mvoLZjONPKyKBou2bJrIFWAS1Vj2gehaUOesZDNBJVreMAx1NABYwsopthODkgPJSIg+R8by+in9/s/S7toUyP/Z2zCN8spbTQ4MQm39G3jFPsJDT7VNWr8+b9Ky3EVrWnUCZwpeQg9KmHPgVLGoMcMIT09uzgMvjVNfRiB8ohcqVBrExZ44MuMd0PPHYDD1dYFC3LBKzfBxkzy/3ru0CVRME40hpbEnk/MUw8QLDldyhIy5jJMF0u4CAE8QTTltQtdKDXT2tCpSfGirjSoh0EKDRzzv0jzsf5vNN+zRudBlqffK4IzAZbKEcNemwhiZTiIPThHuajIyWdvlJwW0qerM2d6FgPM/IS0xw5cuTIkeM+oCAt7KQXB9HrTzxTLNOJjUJoyqoGiURHRZlTZaBi5pLd9IK0sISg7LpYzz7Jf/vTn+JbP/15rpxbpNj1efbVK/zUf/gDPvmVV1jY2seLQsqWw8VKDUtIuokxx0fmFg9VlQ4NVpcmr1BogXhnEQBxZQGxW0ZXA9Snb6F/9KYhR5UhQxvPRkTS9B9OuzazNfpTd1HPbSQ35/j72mkeYD86SbD4WNR76oXYrphyzhQJsdOJAip82ziylgN4pN4rq90dr4CJtxeMw2uj7xzJ4l4/lqiOQwTRkZL90MeLjeqclveqJ3dQH9pGX6yjntswRLpeRL67gHh9BSsp2+vG48sT7wdkktv35a3b/N7GLb6+c5dOHA2Q6tOGEIK4bz77SY7eSaNF7gXxGHJTtR0irTlI+l7HGcccDp2YE41XA704HuhPNCY84cTIBRN1ET94F+RDkCqd11oNFu6B1KfGTJNKTEOluN1p3ZNl07xT4FK5eg9HeH8gVxBz5MiRI0eO+4CiZWFL46pHXznX2VKV7x3s0okNgevEPTXN9CpKHqnMcr3dJNCK2QGCKJlxXIqWzedWzlJcs/lPFcklX/HU27d55J3bXLq6zqWr62wv1PjB0xepnXk0679ZK5aZcwpZmPbwYjZQMdeScqmJZVcXD9C3a4jtCnqvCOtVtNDoF9ah2EfEipFRC9tJbmLjeOWlA8hKW6eIJtBG0cRW6A9vmxzDvr64UCkCHVOZcH2ibhaoeq6LqJcQ6zX0oin5zMpCzx/AD5ZAavSL61BNxrdVRtyeReyU0WdbI+Pi9owpl036MrUdIyILPedBNUQXQ+jappTVMstYR0i8pJfQEb33suBBLcgWu3rOh6tzsFVBBDYytIm1ich4UPYZEkE3jtgPfM6XK2x4Xbb9LvfTRTUtId7xu+wFHsuFUqaWP0hoyNwtU5wrmdLhO902jTDoOeEeE+OeVTBqYD0cDGiXQtCOQhYnEC0hRK/8+yFCeq/uBRXbYdvvjiXq5vc2O373njYshLif2x0PDx6OrYMcOXLkyJHjAwZHWrjCTkKuyVw314plarbLhtdhwS0kFvmKThSy6XV4vDrL2VIFVxqr+DQz0ZWGcNYcJzlOJSs/rVeLvPaJp/kvf/GLvPSZD1Ofr7G81+RzX3+Duf/P/8pnvncd0Wwx5xYpSBtHyLF5dXuBx7xTPLxvzdKZ2iXeWEYENix0B8khmBVoOURElinbTFw/9ZzHsVFOjHi6UxDERgGxXTF9eV1rxFkzUDGxUpNL/VKC+Pi+iVvoN6NJ1b15D/3iOvoTd3rkEGCxa0pstyqDDqXJe9NeSuElZanJfdTnGuY1VUMi+lVER5qeVZ3mKbYdM67hMt1CjH5mN3OIFaGVlNeqB6ogtqOQomU2M7SGXf8En/cxIDAmNbuBx1uN/czd90FdcwZtMhnHm8kkxkgnIMoCMbanDpLNg3jQGVVCojYftsQX91XVfa/gSotYK8IxGZBg+gXTEtMchyNXEHPkyJEjR477hIptsxd42FJmJV+OtHi8OsuO3+WR6ix7iTHDbuDz8YU1nptbwhKCqu3QjiJKSWlqQUqKlkXF6pEkJ7HsD5WiZEFsW1x78gLXnjiPfXOdT1/bYvXGBh/93jU+/Pp16o9uU/jk89hJ+Hu/UU6sjcvijG0xGjM9hLUW+p0FhGfGolfbE25ACK2CITzbFdOnl+QbHguWRhci6Npohel7fHcefbbZI4/rFYh75i8A7FSQq+2BElNjmqLHK0wKaBQMyZszCp1oFtBtB7FehXqx10Mpx/RRWhrONxDX5+HWLPqJvd7vhuIvdCGCiw3USrtHrqsB7FTM/Zo1vZYmOF6BEEZZ9GwoRZnCOAI3OVZgQckshR8UFbCFpB76PFaZNf8tR/s/CSXiygKEEv2RrVMYnMhy/w5Cn93A470gAJZgIpETMFLmPP1xk2fVHl2yCyGo2jaVvmiWkmWj0IcqlWeKJR4+DfF0MGu77Ac+NXt0M8mE23+w3EbvF3KCmCNHjhw5ctwn1GyHO90WZdsZKNm8UK5xs9NkrVhm1nHZ9ju40uKJ2lymBiy4RfYCP7P7dy2LonRGSj9nbJdtv0s98BHChFcjBDdWZlh86gmqssjuH32LlTevsvjuLXj3Fn95psz3HzvL5lOXCIqGUNWDgNVCGSEEzfAIIxgJ+mIDcWXBkL6VQwgiIG7PIELLGKg4J3TVLIWm569jwWYFcW0efBv97DZslZGvrwKJWUwCsV1GrooBRTRQyrhCpgtoBVybg5WOcWNVEr3QNuvnhS40C4jvrhnXUqHRj+8fWn+lLzTgxhzcrsEj+2AnuXiJ8Y22VdKLmdzjPuVVV01kgWg5GcURCUEoWza0HQQCXTnE5GeIIE4qT7wfKNs2T1TnsvOVLYeDKOiRcd9CfOtsb2PhiT1Ddu8BGqMg+nFEO4rY8jq8F+QnVardMQTEEYLohGZBtpB0VURNjFfP14qDpZk1x6XmuGNfm+Jh6T28H6jaDvthkJmEDWO1OJ1D7g87PrgzJEeOHDly5HiPUXEcOlFESdoDodXLhRKfXz7HrFNgqWCI4GqxlJWTgiGIRcuinCiGjpBUbHvEfKLmuIQ6phWHNMNB4lC0LPRsjc3PvcC/+ulPsfUTnyM+t8pMo8OPfPcKf+Z/+30++ZVXWNrcoxOFPDkzT1FaI7EQY3GuYVSwM82JpE9XknLHTWPqoCcRyWmQlFTqlt0rwWw50LURb6yY3wmN0AK92EE7MeyVkLE1RBDjQfpwt4a8uoB4d77nLjpjxq3nu2b8noO2Y/Rnb8Glg8PHWYxhuWNKa/vMaFIFUT9qVMWxpbZpf+aQUc2iW2TeLfQMf8qT+zh1P0HE9OhNLCfUmL7J7y8h3lgyCuU9op+Mli2bZhhkmx7i1kxGtIHe9dwTTA9iN47oxiGeenA9l/0wSt94Mm7KhNWJeGuqIB7f3OYUEIr3XTWmEIKL5epEk54c0yG/ezly5MiRI8d9Qtky/WJp32AKIQRLSbTFnFOkIC0uVWYGXlN1HGYdN9sJF0LwmcUzI+pAzXEJElMOPbSGTIOwS5ZNqVhEP/oInY99hDfe+QGlV97iQze2MlObj86UsV4M2T03f7iTaQpXoT9/8/BF70obvdZEbNRMaeY9EERdNgt/1bZ6RK7tGjUxkugLB4Z0vbWEvnSAWK8i1mu49QrdxUampJlSv2TQ2qibADRdRNGoWalLKfNej3QeQ+3SNR+xVTEEaMEzZZVtF10KTVnpjJ+VkA6gksaIlEwPY6Iuzji9yBBgKgVRJARRYapTx2Kjinx9pTfuagi2QtQL6A/t3LMQZ0uJJZLyag3cTbLizjbhzkxiOtS9t5Ng3ENTt9R2dIhD7X2EJSSdOMASo+qdKyVdFZ+I5GUE8UFe03YJ8e6CKa8+f2B6W3P8UCEniDly5MiRI8d9QkFa2FJmC/xxqDoOS4XSSDj4mWJlpFxt1h0NkC5aFl4cs1J0aUeDxCEliGXLppa4nwKwssTvf+xx3v3Us1y4vs6FN2+wtteEL/8xf8KSXLywxMYzj7CzMn8Iu+BoAiFBf2Qb/UgdtMhC3FNorWlEQebUeij6FcQ0YzGWxhCGRJ1c8NBr7eR1LmIdXN9lJw650WnwSGWWIDaGLwAcFBDNJFfQc9Bpn2CifGJruFRHBzacax49xhRpaW2aAbmdZE7O+uaezU8o4ZXAhQPTw3hjDv3U0MK8PYUTbJ+CqLUw5jbjPijPQry1iEajH98zcSVX5yCSpoz1XBPmjpc5OQ4X00iAnZIpEV7ooBc7iDsziI5zzwKVRBCoGC8xdGqEAeUJ5YX3E4cpfWlUiXOC0k5HGkOp4+cnnhC7JcSra2ZTBG2I/KWDXq9vjh8K5AQxR44cOXLkuE8oWBausKjakwniglvk0crMSP5X0bI5N0XeVknauNKiYjsDBFFrMvVxuVDix5bPZSpEybKN54ljc/2JC3z13Dw/Jas88oMbyNff5pnrWzxzfYtmrcz1x89x4/FzdCv30LtTHa94deKIDa9LUdoTe4Z6xzBkJV4vZuH00Ovty3r6UiREyQptKpbNt3c3WSmU6aokF9CzED8wWY5aKoSSiEbRlD/2OYTqJ/aPc6UGKcFsu6bv7u3kPOcbR75VXzqAm7Omh/Fy3WRKpmi4ZtE+JUG0RJrNN/oy8e68idi4VIdHDqBVQGz0zbeD4qkQRAKJ+PbZLKJEn232MjKniS05AlIwQBA3vA6zzoPPqZNCEExwx3WEcSQuOscnrkVrsK/zvqHlIN5ZgN0yQgvUM9sQWMh3F+D6nFGUc/zQIO9BzJEjR44cOe4TitKmZNtZxMU4lCybTyyunXgBWLRsKradmFWYfMNYKywpM5dSIQTlvv7GfjIWa4UtJZVzZ/D/1I/x8s/9NL/78SfYWZmj1uzwke++w0/973/A53/n25y/to6MTubGOA5eHFOzHZMVOQY3Os3Elh6oROhqgO6M7m3rcgDOkBbVR5Tm3SL10Odmp0k7jLCVhfjWOUMIZzy40EfcKuG9r47KoSGayaJbhBb6wgHMTxH54Cq40DCE9VZf2XEgjblLJcyMb8a/v3fdxjhFjSqICtiqoKVCP5pEbTy6b/os55K+y/oUqm7f2FivjO9X2y0jOq7JpVzoGDOgUmSI7mE9iJqp+t8EAi+OibRx5b1Yrk7MuDwRmu5UvZlFaVG27LEEMc0e7HcNPg6cQyMrTgfi3XnETgVshXpqB8434cKBcfS9WzOfcY4fGuQKYo4cOXLkyHGfULDMorEk79+f25JlM+sUWCuW+X6Sb6i0xhZiYhZaUdqmtFBrvDimkCiQANIt8MZja9Q//DjVgxaXr9zh8rt3WLu7w9rdHQLX4eajZ7j2+HnqizOHl6AeAU/FzDpuEoUwSBbSvqtuHDOb/mqtDVeSPrxZr6cejuvnGzJrKUqL9W6bQCkK7aTcca5rgu63Kz0KVTlEnZsWEpMB2XbRG1VDvB7fO/JtKfSFA7gxC7dn4NHENTU1vJk5QtUbUBBNhl7RHpoHeyWjHi63e2SzEqK/cMOQoT+4bBTEwzIyujbiTg19poV4fRnRKKLkJgxFnojUnOfpHTjT97tiZCI7YjEa2aFBfOM8FCL0xzYOLWW2hKAThURaYUsb9zSftd0i8uWz6BnPjOMQB15bSi5VahN/n0Z/PJTQwH7JuPR+7mZvTjgaFrqIrSq664B7CopyjvcFcoKYI0eOHDly3CcUpGUMYsZkmJ0WyrbNpxbXWHCLWNJkwsVa4wiZ9SAOo2hZOEISakWgYmacAnZCJi0p0InbTWu2yusvPsUbLzzB6t0dLr9zh3O3Nnn8rZs8/tZN6vM1rj9+jpuPnsUvHUNx6oMrrZHeSYBWFDDvFKj3R26stuHKPAB6tdWLjhhHmpyEKIVJH6btsOmZOBEnTHoCZ3xDvvpKNvVh5ZvHQSWAtmt6uVY6h6t+wyjFsNI2C/ONKpxtZQRx7LX2Q2JUn0RBjFXcUxC7FuLuDDQSkj1sGiQw46wm+Y+ebYjcMEELJOI7ZxBdB67NZccX9cJoJmY9IfHD5aqV0PR9du3REmTPNoY8CcFmoWv6I5sF9Ec2zf1JL1cIPBUTa33qfXoiMdURjSJ85wz6k3fuXV2+PmtKecuhUW8nlF8fC4E05PWkl992jMo9543O0zSGxbPgXjhu04VCZBTyUIJ9D+PNcd+RE8QcOXLkyJHjPsGRks8snWFuGhOWe8Bq0RCegrCIlCLWmpJtTwzLLloWjrSIlMZXMZf7+h9tIRHCqIs7gcecU8CRko3zK2ycX8H1Ai5eu8vld24zv9fk+W+/xXMv/YDNs4vcfPQsdy6uEjtHLy+01mg0Vdth2x91smxHMefKRQ7CPsJWCRFzAaruwEoHfcX0Do5V1YYUxJJl0wg75jBB0g+X9veVwqwP8VQUxGSsKfRa69hv1xcaiK0q4uasUemmVRAB3BjRcbGUJOqLXhA35hC3zCpfCw3LnfHvn/NM/uMfnwNLo5/dMkTPVnCxgfjeCqLrmBiTtoO2lDEMagzN81hAy0W7kSGa/SiHsAvslQxx6C8R7utNFG8tgjL5lABcWUR/ZKv3ewRKJ3mPCIgE4uo8dB10zYdH66PXd1BAXJ9Dn2vA0gQX1UiYMlxLGTW4WUA3CvfWl1kvmJJjBDQL0HTRn759b6SzayP+6AKcaZlM0JNgP+kvnh+9F7qQxIb490AZWo6ZS5UA/eQu4pU1WOqgn9syz6cb52TxIUNOEHPkyJEjR477iPkh85n7iZJl04x8Yq2z/MRxMNEDFn4cE2nNXJ87qiMkGgi1IlSKda/DWrGU9U8FRZcrz1zmyjOXmd1tcPnKbS5eW+fMnR3O3Nkhsi3uXFzh5qPn2Dy7iJ5Q5uqpmKJlsVosc609mC2otQahWSmWudMdJFeFT+3T3VUmcmLeQ7dcqI0hdX1KmrlmgUIbR8iEIFKIstdSDaBRHH+sE0BXTOi9duKxC+8jMe+hq74hJgcFaBQMqZtmfK6CDtiRTUS3t/bu9s2Js4fkV855iFuziNCCEMR3zma/U4sdxF4ZXQzRn7oDXRssBd+8YAiiokd4GgWjoKburf3nKIcIQP5gCX1jzpQ2pq9J+ky10KYU1lLGTGe9itiooi8eZGXFlhCopIdVCAGbVcSNOfPfWxXU+caIe674wSLioIjYqqCrPtQCwkUFczGUEmK/XUEoiT7TRCeKKrulkxNEBeL7y4bQPrWD2C4j9srw9iK6HMJaa2ScU+Egucd3q3Cp3lMkY4G4Ooc+3zwynkXsJ0r8uB7Z5BkRvo3eLJuMzkfrxyJ0Yr2G0AJaBfjuGfPvrSq8LM1cenQf/dgJzKBy3DfkBDFHjhw5cuT4gKBs2+yHHkprKkeUtZ4v1XjtwDgTVvsMbKzE8jJUiqJlc7lS4/WDXS6UqiOK5MHiDK8ufojXPvE0K+u7XLx6l/M3NrNsRa/ocuuRM9x49Cz7S7MD/YpeHDNjF8ZGXLTjkIrlcKFU5ZX97SzDEEBWYtA+aNAf3TSEZLiHLUWipOmkz83C5CBaQXJv+hxC9dM76LZ7enb+857pPbx4cDKFSIC+2DCk4q0ls0Cv+pOvtR+pg2vgEDl94e1eko34Y9cPJyMrbdQTu4aMNl3ElQWwFCKyELdns+vD0j1CMuMj9krotgO15Gdp/+HsGOKx3Dblo20X4dloz8pKR0XqePr0DtpWsNg1ZLYcIt5cRlybQz+/CRgX06gvt1MkESjajhGRZZTPlY4Jfd+oQilCHBTRxRCkRrQK0CoQrgNiBrHaNj15O0aV12stQ5LeWTRk5rH60fd/HA4Kpid1rgsXGujFLnyjZIg4JpblRE6hyb0SCHh3Hv3RRF29UzNxKR3XPCeTEAnYT9x758Z8Tn0lpmJzEdF1UIvd6YmyBtarxpRIYMjsjGc2D/aSUu+9Ijw23eEeaqQGWqUI9/ur4Ibwwns7pJMiJ4g5cuTIkSPHBwRl205KTKF6iIIIcKFc5bWDHQRigCDaSVZbpBUly+Jj8ytseB12A4+lwvioCy0lm+eW2Ty3zMs/EnH21haXrt5l9c4OT7x5gyfevEGzVubmY2e5+cgZbpZs6kHAI9UZE6JOkteXEJl6EPDCwjIzjosrJaFS42MwLA2HGUO6MXQwKmIpomzbbHhdhJ9cb3/Z42xg/ndMNMIARyZh8P0oxsb05V6w1kK/s5BlNU4TkwFk/Zd2ZBPZfdl8no2W6lCzFcAQ2suJqrvYNST39gziB0tw10RIjPRCzvimXLRRzAiiqB9iIlSK0Z+8i3h9GdZr0HGhlCitaYnpjA8zfZ/J2Sb6B4uw3zPQkYlzb8YRW272Wm7OGTK40kH8YAmxXjNEBdCXDwxR8y1Eq4DTqRBeqWRRH1oqYxa0aMak3cgQ3lCMOuZOAy+5prlETa2E6A9tm3u2UTVZmYeZAk1ARqbRpmfV24VinKmCbJfBtwbjUlK0HMTLZxCByaccu/mQquwdx6jFmN5MPS1B3OvLv1xtw0bVlAhvlY1Ku1s2ZkVHIR3agyhF1cCdmtkgGTd3x0Fh4ly0QH9kC2djFj3bPvp9DylygpgjR44cOXJ8QFCxHOJklVmyDyeIy8USc06BrooyB1MwBFFiQr/nnSJFy+bF+RV+d/PmVEYgsWNz69Gz3Hr0LIWuz/nrG1y6epfF7TrPvnKFZ1+5ws5chfaTl3Fn1pB9hjmusOjGEY60eLw6R0FauNIi1DGFQ5ngBKQqWUIQZ2wXt2yZBTOMXzQfgkDFHIQBS26xR2ZDH0tIzpXGLKnudTFraVN6d20O/dTuiEPoRLgpQXR4vDJrDIgiYco1y8HxxyXJFsoiSu7dEEHUMx4C41qqzzWNsrtfMoT0kEV2WmpKx8nIWFYKWxoycEnGIfZLWWmxEAKFQghtFvYt17hxnm0hbs5BvWCUnQ2jYgmE6Ss80zTHLMRQ7OJWFeHaHqruGqJUCwaJ9GLXEMz9klEkj4tEvdWFvk2Jsy0zTt826mva51kJRlVnBeLlM8bc5pmdvnLc5F4tdY3qeVCAQifrK8zKTy80RgxoxI05Q95WWuaY45A+I81Cz+xoswJP7U6lZov1hHCfaZnrPZ/c9wtN9IUmfPXCZDdbyBRIcWUBqgH6hcNdbU8FjQLyzWW0G6E/d8uM6/osol405HbcOOtFRFqZ8PoyAP5yE1i8z4O9P8gJYo4cOXLkyPEBgWtZWcTFYuHw3kdLSB6vznKr0xrIZ7OlRApTillOylSXC2VcYRFrRaTgrtemYFmsuKXM/XQc/FKBd5+5xLvPXKLSaHPx2jprV++wVG+z9K034FtvEK8u8fG1GW5dXkPPz7If+Dw9M5+VntZsp5eFeOwbkhrVmDEKIYzS59umP3GKBa7SmrteO1N3bCHxVJwphpa4z/lwFxroC1Mqhwm0G5s1dGD1lNdUpRk2i5kWNd/0BGoxvhcyJYG7ZUMOGwVEJNGLE5SpFImZj2g7aAVoAR3H9G6OU+rmPUN+9k2/qCUEcQyVuwuwjHHjrPqGTNixGcfVeRP+/tgeuhSasslxrrKuguXx/aJ6wRBEsV8yrrTHhDjk/uuVNmKvhHh1FRFaJqQ+JVIp6kXEfslcu6XQT+2ZOdl2jNq53EbslBGNgiHdoYUuGqdYeWURriyint6GC33HTZ1xn96dXHJsabQTm37U9FoiC71TPnrDIhKwafI2GXbMTVE+xM0WYL2KfGPF/Nu3TT9uql5qEN9fQldDuHhwasRRJOXFIrDh+hzaUsh3DNHTe8Wxc0RsV3r/Dmy00Pgrx3tuHybkBDFHjhw5cuT4gKAgLQKlWCgWp3JOfbw2x3JxsGzUFgIryR+s2KZcz5YCKQ1ZirRi3i2w6Ja41WlyttRbGGmtudZuslQoMuO4A8dtz1R447nH+N0n1/hz7hznrq1jv/ku1uYOn9rc4VOvXmVvcYY3zi2y/MJ89r4Zxx3rcjoVhpxMAaOkxdI4cE6BUCkK0uL5uWVmnQLf2d8kSAii7ut96++TfM+RXLcIrF7WfOpCWTyeappBAjXflJBWg1HSV4zRS23ETgV9p5bdc71wxGdXTj6HtoP45nmIpSGh5fHxD3q+i2AesV9EX2wgEdi7FRaunoeryYuqiUo665sSxvWaIYsXDk5WHgo9xbTlHv66SfAPIejLbXhrKSNhol7sKW0JxG659++bc+gFD2Y9Q9aqfm98zUJP9TvTQnccY64TS8Tbi+Z9lTBxmHXQxehoJb0QZXExesGYFImd0mikyTC2ekY/E2NeKiHsYZTQMQQxJWt6pY3YqiBuzaDnErfWhou4O2N6OHdKpi91mh7do7BjvhM12mwu9I9nt4weJogaU8oL6HKA6LjEi22zyfE+xX3e9sqRI0eOHDlyPCi4UmILyYVydSqyUrEdzpaqAz+zhVEQIw0lq+cAKpFJnAA40uLJ2hyKwcVYOw6ZcV2aY3INAZpRwJxTYP7sWYLPf4LO//0v0f6Fv8g7zz/Bfq3Ewm6Dz792jaf/l/+T8r/5jzjf/C4r7WDAhOQ4yBZo/QQxXagXplPSQq2wheTZ2UUuVmosuiW82Bw3LbktWBa+OtlicNvvsuWdoGTxMIwjxveqIEJPJZwQtZE6UYpr8z1FZfEoghiZvsD9EiIxrDE/n5APOGuUTPZLoE0OYlYynI4jybLUiemKtmNDHk5KDpPxaKFNnp+m9//T4rD7X4yNW2otJXljSGhCWtSTuwCId+eh7WRjoxqY8TUKiL2E4Cx00c9tob94A/3oPkJJxPeXzHsaScnoNLEpfWPW55rZ+4+CWDc5kvrM5JiXbCOgPaYkXgP1IhqNfmbbkPzNau/zbieGRGhjeLPZ26wiFsf7fFL4FqJhTIz0o/tm7ix2UB9JjH52S6ZceLdo8hyTsYuug57x0E/uou2Y8ML725U1VxBz5MiRI0eODwhcaVFzHFaLlaNfPAGGDJpuo7T01BISKUChUVpTFJLlQomCtPDiiGJSblkPQy6Wq9zsNAdMZ1K0oojn55d6ZalCoJYX2fyRj/Jfnlzl6a5i6d3bvHC3jr2+hbW+xYvAxdkyW5fPcvfSGlFl6Rg3ZJySdrz+w0gpyradEe55t8DbLXO0UCtsKajZDu0oHDWqmQJ+nPTPnSbGEMSUeOl7IIh6tWUcKSflOs4E6NUWYrNqygGd2Kh5h8HSUIwQ3iBBmKQgYmnjmHpQRN+YRVysZ+pWhvSc55roUBpSc6+B9BKoBIhWAX1jFvnOIurxPXikPvi6WCBeOmNcbJ/c6/3cM2WHE6NFPpyoYn940RCf/riQxEhHl0wppd6oIBpFuD5nfl8JM4VXNIro7bIhU/29n5fr6Ds1RL2EDmTPYXZmjHPpMPqflYWuMexpu4N9g7EpJ2WtZcYSStgrmp7Lw1Tk5HMWHWeUz3mW6ZGs+aYE9lwTcWMOfbsGj9URKak804L1GuJODX22ZZTFb59FP1qHpQ7ipTOmh/esmbfinXlTCu3Epvey37l4N6moWOrCY/UB11p9zTeut988b0p4hUZ/eAuREtXlDix30V+8gYojeP8KiLmCmCNHjhw5cnxQULRsZp3CRLfRaSCEwLUsbCEHnEMdYfobFRpXWpRth5VimVaiFkZKIYBnZxepWA7teEyvFZold3RsVcdFCMHWbIXvPP8YjV/8n2n/zf8r/mc+hr8wy/JBh2dfvcKf/M9f48d+7Xd47lvfZ2lzz8iZhyElSuHJFcRIKyp9jrBVx0EkS9lIKRxhcbZYzVTF48KQw1MuTb1fCuK8j/7iDViYTCr0h7bRj+wbEnG+Md2lVXrkTT2+a4jlIcqjfnQfLU1fmLg5hxUOEfOUIBZi06t3r+QwRdJ3KRJiJq7P9VSkFNtlQ942+pT5WJjy0WJ09P2oBSYnsN2nImakpWPiTx5PlNodsxGUkenE8VUgjEtrf7mlpEfU6kVEqgBOoSCmxjqmL9SYDgktBpROcXUe+cYK4lpSHt52zDbTrHf4Nadj7/RtEDRcxKsrvUiVVAk+3zBq4e0ZQ6BTYna+gS6FiHrJnPfavFFL16vmf5GFuDpvFMVAIq7PI5qFUdWRvpLWpTGq/pK5fyK00DVzD8SVBUiMeJi0cfI+RK4g5siRI0eOHB8QVG2HH1s+NxBbcRI4QmJJQaHPvMaRkjCKUVrjJFmJF8s1bnVMydlBGLBaLHGmWOFCuco7zfrAOEJlSjXn3NHStIpto4FQx5QtG8eyUKtLBKtLeJ97kd/7/ms8fmeXR27vsLhd58k3rvPkG9fxii53L6xw5+IqW2cXUcNRGGOJUuomOaWCqBVVp3cdFctBa9NvGWlFzS6wUCiOlNtOD8HJauEOgaNM2WZgmUN37ey6pyXGJ4atDYF5/BglduUQdhM165EDQ24OIxVLXfQLG4jvnEXslpixzWepL9XRbpzlKZ42dDUwTq1pr2Ak4cZsRtig59opfBsdCdN7l977ach5NTDqVtPtEdJ6GmSfELzFLuqJXcSVBUPUkn5aXfPNbHIj0285PP55z/Ts7Rd7JaIzU/Tipn2rldAQ1BnflBA3kn7HYgQbCdG6NQOX671ezcoR5LwYGWU1JYgNF/GdMz23XPpyNMuRUQR3KuitSq8stRKgzzYR7y4g3lo00SFgciejxKCq66D3Sr3e2MTAR3T7lEsF7JbMeMaonnqljbg+ZyI7XtiA75wxpDQd42llqD4EyAlijhw5cuTI8QFCzTmhiUYfitJETwwTxLTE1BHm56vFMraQBCqmHUd8vLaKFIIL5Ro/aO7TjsIsQqMTh9Rsl5o9Or6K5WALSSeKWKoMKoxFy2bx7Bm+Vilw/fknWUAx9+Ytzt3YYHljj0ffuc2j79wmtC02zi+zfn6F9fPLBEV3fKnlYWYhYxBpTbVvzFXbxbUsQq2ItKbiOMw6LhJBrNUJXE3vg4IoMNceWHC7hnxrufe7e1EQ7xP0TEJsUtOTaW5HWj7p2ViueYM+37i/i/S+clk91zUE6easIUS2Nm65fWYyHBRNz186D6e497qWkNCm2yMuKRHqV0IvH6AXu8bVMyV5K2303Rr60sF4U5hEiWO91nN7PSoTEzICSm2wB1W8O4/4wRJ6sZOVCIvQQm9Us/LPI82gJMbJtO2id0uI15eN8U5C4My4eyqnvtBA7FQQN2ah6xh109GmnPjmrFEFIXNeFb6due+K2zNgqd5x3lkcUi4L5tyTnHdnfdRnbpn4FZkcIyWIaWzKBwQ5QcyRI0eOHDlyDMCxLGwphkpMZa/E1DIkaMEt8mhlhjcae1Rth3OJ4c3Fco1PLazx7f0tGmHIvOvSiSKeqtXGmueUbQdXWuwFXWbsUYXxYrnG6we7KK3xayWuPnOJd5++iOOHnLm9xbkbm6zd2ebC9Q0uXN9AA7src4YsRhUanYUeD0tLLadUEAUMEOWSZVG2bPw4JlKKquWw4BZZLpaoBwEFy+IgDDhXmq4PNIltH9uzOQ2U1sRa4wzHjbixsenfKQ/+fJKb5HuJMy1UMTIRFtMiiV8YCFk/Zq7lsdFPEM81EaXIZCNuVE0sxWYliwExhKRmSE5KdKZRb6sJGWoUTUyEbdQ1LfRoLmQtGIwbcRX6k3cnH7sUod0oy+vTl0ZVxrGY81Efu9srR00JYqLypQ6req2J2Kghbs30SPFRCiIJ0XprCfHymimPPdNEP7kLf3wu61HNsNg1TqGNRFWt9JUTf/o2vL0IXRt94QDx+qr53bkmerMCW2Uzb4SGs030lYUBgnhoeWmK/utZaZue3kDC2pQZpe8T5AQxR44cOXLkyDGAgpQ4wqiIKVyZEETNABl5emaBK60DLlVmspJSIQQfnltivlDkauuAd5p1fBWzUiyPnAuMMc6c47LptQfKOVOsFsssuEXqoU+NXr5jWHC4+dg5bj52DiuKWV7f5eytLc7c3mJpq87SVp2P8DZtq8r6Hy2xfnmJ7daaIWWTTFDG3o8+BVII5pwCG16bGDIDmydr83xl6w6dODJq2DEInyUkcZJfeVxs+106cczlcnXwfOkCvdkj3Hr1wfdI7foeVdsZ2GwYgeDQvsaJKEaIZgHdddCWOp2Ig8NQiA0pDWVCVEKTjXh7xhDGxLWTM024OwPbg5sEUxkEVUK0VKas9A8uo5/bNLl6leDenUMEhoRvVs3xDnEXHcFi3+fjKvP+jgMXD4xxDNqY8jQL5jOxpyeInG+gt8qIvbJxD316x5Qqf/q2GfNAzkRCKH+wNHr8QmyC7AHiHlHXy22Y7yK/t2p+Ptc1pjfFyJSYpmY76WbKUc67KSToj981Bj3TKLHvI+QEMUeOHDly5MgxgIK0KFn2AOGwpYXCKFau6C32V4plPjq3xPlybeQ450rV7H/frW+zUCiOvCbFQqGI27bGOoFaQvLRuWW+vHWLWI1fiMW2xcaFFTYurIDWzO41OXt7izNv77PQ3uHxKy0ev3KdSLzCVvE8d69V2Ti3RLNUwBJiIpnTMEJulgslrrebCNH73blSlaJlUbEdmqGJ5nCOIHxKa5PjJ4QhiIe+ejxCpVh0C9RDn3m37/4mwefCt83i/cevg3zw6mErCvF1zFkrMVTRGg2nkxlZjAwh0cL03d1vCAwBiaRRK90YXfUNIVqvGmfVUmj64e7OmP7AgfFOoXBK0M9uw60ZU774bmL6MmVu51HQay3YqqCf2L2nymb9sXWIpSG0TmzmViE2RjptNysTnYq0i8TF9eqccZxNVe5JavcZo/4dmmdqafO6g6IhxZZGHxwgbs6iVxKFsBxC1zE9um3HfI6l8FibR5QevpLt00BOEHPkyJEjR44cA3ClNWJ0U0gURCHoxVQkeHFh9dDjPVqd5WypksVhjMOsU6Bo2ROjIi5XapwvV9nsdpjlCBMeIThYnOFgcYY352YpvVliZfYNzrZvsnpnl7Pd65z9unnp9kyJ9bNL1C+ssr26gLJ7ZDBOCFy/ggiGFCMM0Ul/V7UdPjq3zFKhyB9s3SFQ8WjZ5xBirZFCZAriJHTjCEfIkfue4kypwluNfeacPtXS7SMjxej+q2tjoLXGliJRns21bvtdPBVzccyGwrHRr8i597m8NEW/uiRAXzxAfH8F8UbS57nWGlC1tB0bdXS7PD3JW2sbQ5mvXDKxCjCdEjcNVjroL12797bXYkyW4/BIr1RVL3UQN+bMfxxnzIUY/czudK91NFxooK/PHlqWrJ/dGfzvJ3eNip6WyqYlu5sVYz6DNnEYp9wS/H5EThBz5MiRI0eOHAMoWNaI26gjrYwgWidQfw4jh2CMaqq2M5EgWkLy4sIqf1i/y0HgMzPG7AZM9AT0kdhqgG8tcrP6NDeeOoetVlmsXmHNeoel21ssN7osN27BW7eILMn22gKbZ5fYOLfMTrWII+WIgrhUKFGxHFpROEAen5szZW8V26YbHa0sGFMbgSWMwc0krHc7VGyb1aREdy/wCJVizingWhYfmV1i1/e43W2zWizhSgvtxr117nukckRaYwlJ2bJphAGzjouv1InmzzjoYtS7xjH9h4GKsyzP+4azLfRWtde/dqZlSjATkxRmffSHt4xKdRwDnUKMrgS9jL1TUhCB+0uA5jy0rYzD62mOeQj68T24eHC8vlPBoOFN2cwfcXUegTC5lsuH9B/+ECEniDly5MiRI0eOATxWnUMPKVpmUW9WlvaxnTqPRtU5nCCC6UX80rmL/Mbbb1MQ1ti+tk3fKDyZSUxqLNJyoeOghMXm6jLXLglazz/Cs8omunKdp7ebrK7vcubODmfu7MC336JVKXJrbYGK56Iun4eiIc2OlCbKo3Uwoi4C1GyXRnj04lglBKpo2XSintoSKZURXC+OqDoOoTIL4btem6rlEqKohz6zboE5t8D/tHaRl/e3eLO5z4VSdVBRO07J3Cki1gpbCh6rzvGd/U2kEFRth04cndiUZwADCuIg+erGETc7LS6Vq0duTtwTBOhnt4yhSjnsqWaVEOoWes6UN54oi3Gh28tDPC0F8X5DAgsd2Kqi7+eYBfduSpQ8FwJhymEv1e95WB8U5AQxR44cOXLkyDEASwgYWrwbUmhI46n0jw1hwS3yueWzR5ZlPjm3wHKhRDsMJxifaAa4rZsYi7TdTI2hHOKpiKVCkdnaPH+gA/Y/UkEoxeJ2ndU7O6zd2WF+94Bn3r0L795FC0F8bpX40jniy+c5P1tiw+6MHcOs43K9fbRphTGmkVQsm2boE6iYTa9LqGMul2eQQtCOIiq2w35gXFPR8OOr53n9YJfv7G3xZM30qJVth2dmFnm7WTfKZB9B1MPulw8IUXJ9z8zMs+61udo64Pm5Za61Dwi1GuhlPRH6CKIeKjHdDXyWCyVCpSjeZxERV6E/e2tQmZvxoF4cm6c3LfRCF3ErCYt/vxBEQD+2b0jxe2CKdCz0bZzoiwf3bgL0AUJOEHPkyJEjR44cR8KSPSOX+6EggulDnAYly+Yg8Ed+bvr4xCC3FUA1QOyX0DtJxmI5ItaakuVQtmwQSdiElOysLrCzusAbH3uS1sEBz+52eGGvg3XtFvbtDezbG/BH3+HDtsW5tUVKjzdRl8+jVpcgIbdluy98O8F+4OOrmLU+J9dYa0q2RdGyiLVm2/d4rDrLzU4z60/sxjGPVGdohgH10GfGcVlwizxeneNau8FSoZcbOe8WmHUKtKKQ2QEF8cGVmPYrg5FSlGybsu3wxZXz1GyHD80ucLvbIlLq3ss/+xXEPjXJj2MsIShZFl78gK596JHQj+0bQ5jZeyiznPfQUr1nPaQnRjU0pjMPO0rGMRZpchRz9JATxBw5cuTIkSPHkbCEQGsjLJ4kjuE0UbbtsaYufhxRsmy6w6Rgxof9EqLTUxDjWFNM3VoxRip3u22WC6VMFWwVbPafuoy3dAa0Rm7vYV2/jX3jDtbNuyzc3oLbW8Afo4sFootniS+fZ25lFvp6CmOtaMchYqj5S6EpSJtS3/Vcrsxwp9tCaZONiNBcKs9wt9vmTrfNjyzOIYXgTKnMxXKNhT7nUikEF8s1XjvYGSSID0hB7EQRt7pNnqzOIRJn1rRkuGI7/NjKeTMcyyJQp2AqU4izKIP+ktrd0OOxyiwCuN5u3Pt5TgJb3xs5BHAU+sV1sD9YEQoPDSToj22ApR7OfND3EDlBzJEjR44cOXIcCVtIhDDlm9YRZaD3G2XLIRpj6uKpmIJl040HCZG+dAB3a8Y0BMBRxJHKXFNdKWlFIaFWdOJe6WqsoZr2rwmBWllErSwSfvKjoBRyfQv7+h2sG3ewbm/gvH0N5+1rPAmcLbnsnllia22Bt+ZLLM7PsjvUlxhrTcGyKEqbUCkKlsW8W8hcTX0VU5AWi4UiK4Uym14ny5K0hORLqxdG7sFaqcyrdT0Y+/CACGLq3JqWj0ZaUbFGHWdrtsuGdwrB4gITPu85GUFMy3CfmpnnTrdNdIg77PsCc6NKeY5TxCEuqD/MyAlijhw5cuTIkeNIWEKgeTgUxKJlj5RwAnhxzHKhTD3wB01QCjH62W3EK2vo+W7fcayMJO76HnNugSDuV7Y0BXvCUklK1Lk1gnNr8NkXIYyw7mxg3bgD125R3timevUul67e5ROAXy5yfbFK+9wK26sLNOaqhiBKC0dKfBUz5xaYcQpIYdTFSGnKtkPRslkulpjpuCy6pfHjSbCUKKC+iCi5kSmfcx4MSYq1pmw5eLFxD420omyPIYiOw63OKalilRDt2Vm56W7gca5UZbVQZj/wUWNnSo4cOQ5DThBz5MiRI0eOHEfCEiYH0ZHWfTGpOQ5cKSEJIY+1zmITlDYh9ne6rdGg+uUO6pN3jOKUwEl6KWccl5udFhecKnejQWVrnEvpWDg28eXzxJfPE3z+4/ynd7/P7N0dPtYMObd9gLu5y1O3PLhlstn8gsOtpRm4eA596SyWJlEPTe5iqBSxVlSkIVjzboEzxQq1MYSrHyXLpmw5BEpRfHH9gWa6RVpRtmz8pHxUY0j4MCq2y2mlFuqnd6Dr0HV8djselhA8PTOPSO7jcFlvjhw5jkZOEHPkyJEjR44cR8ISAinMcvt+mdRMC1daCGHC199p1rlUqVGUFkLAYqGY5Qru+z4WgsVC0qc3O1iul0ZJzDkFypZtyiF1j1BojkEQh8ZnFYuET1xmdu0igbS40zjglddf4+n9Lssbeyzs1Hn8zi7c2YVvvMb/27Zon1nCfWyXM0W4OVMgtmRGsNaKFZZXS1NFQ8y7Lne67ZNFK9wDlDaKZ9PrxQeMM6IxfZ+nhHIE5YgDL+BydYZnagucSSJOxrvc5siR4yjkBDFHjhw5cuTIcSRsIZGILNj9vUS68A9UbMopE9dKW0jm3WLWwxcqRTCxB01kkRo1x2XGcTlXrvJOsw6Q5UCe1GnzI3NLrBTK2ftlocCNtXniRy4QKYWIIuTdLT7b1czf3cW5u8nCrU24tcmfBGIp2J6v0j2zjP1ESHxuDatWmercc26Ra+2jXRm9OMKREuuUCH+MTsqPe/fcHdOvWpTWwGtO5dxasVascK5c7TuPWeb2lxsrrdkNPJbc4r3nMObI8QFFThBz5MiRI0eOHEciUxCFODVCcVIYYifwVUzFdgi1IlAKV0rKlk3BsoiVQqOxpCRUaiRfUWudlZhWbYczxQqLCWlQWmcZhSdVodJ8whSWEMjELXUn6OIrhb06z87KeZRb5MvrN/iSKrC0scf+1WvMbu6xttuE3Sa8fhUANVszWYzn1ojPr6FWFrNojX7UbBd9BAGLlGLD61KyLFb7ojfuBQLjVqox91ejxxJsc0/FYJ/oPUJrMVLOWrAsLCEGyo27cYSnYjb97kDkSI4cOXrICWKOHDly5MiR40hYqYKIeM9NagrSwhaCbhxRcwocBD62UFRtFykEJWmxH0UIBDXboRWFzLu9jEWVZAym5OVcqcpqsUystXHhVAqFxpaSwik5tqYEOyWfjjDnsYUpI50pFikunyN45BLfe3KNtw52qTa7fN6TXNxrYd3ZQG7v4Rw0cb5/BQDt2MRnVwxhPLuKOruCrpQp2/aRvXfbvsdaqcyOd/Ig91EI5t0ijpAESiUlpqP3r2TZ2EPE7Z7PLDQlObisLUgLW0oirXCSoEKlNTO2i69iNrw2Fcuh5rinMoYcOT4oyAlijhw5cuTIkeNI2NIE0DtSvuelea6UWFLSDH3jWoomVDGzyUK/aNl4qo0jLc6WKrzZ2GOeHkFMjW1SVVEKgSssdOIqGuoYrcEVEudew9wTWEKYvMVE2as5Lru+hyMlRcvmS6sXs9cWpEUMHNTK7D9yhtWZBfMLz8e6u2XcUm9vYN3dxL5xF/vG3ey9arbGxdVFXiwJwrUlDpbmiJzB5V6gYjSaD80s8PVgfazCehJoNLOOS9GyacehUWDH3L+iZeFIK4vFuOfzap0Y4gxepyMlRWmZ6ItkGHHSJ/mZpTNcazdY77a51W3xSClfEufIkSJ/GnLkyJEjR44cR8JKSkvf6/5DAEdamUqVEoxA6UwJKlo2XhxTsRwulGt8v7E3UM4Ya4UlxQg5EUJQcxzqgY8AanaB04IUAinAtDYKKrZDI/Qzo5zh69MAmkGCWiwQP3qB+NEk/1Ap5M5+Rhbl+hZyZ5/yQZPPA7x6DQ005qrsLc2ytzTL/tIcb5csLtdmeKI6x5uNPVpRwLxbPJXrLEiLlUKJN5t7zDqFsSWmlpAsFopsex0qR7iyToM0d7E0phy4bNvUg545kUrKXi+Ua1wo1/DjmD/avcte4FO7z8viRhhwEPpcKNdO9bihUkRaUbLeX8v6Hb/LrFM4lU2CHKeL99dMypEjR44cOXK8J7CERIiTm7acNkyZomTOKXCTJkJAJcksLFk2XhxRtV3mnQJ2YlqTlsZGWmMhsx7EfszaBba9LlIIKs69k5cU5v6lCqI2pY22O7Zc1xESgTFUPbScV0rUyiJqZZHwY8+an/kB1sY2b771JvM7dVZ3m8zWW8zWWzxy5Q4AX5CCYHkB+/wNPjlT5JuORqy56GMu1NtRaEp6LRulNSIx/vnY/Ap7SQbhOAIMcLZY4dYURjrTIFVAhxVEgKrlsqN6ZbSx1gN9pQXLYsZx2fLvf2B6IwqwE+X0tJ6jbb+bEETNxT6DnocdrSigFUXmGXZPbyMmx+kgJ4g5cuTIkSNHjqngCPnQ7PaXLRtXWiy4RSSmny1VUIqWyWqccVwKlulDC7XC7utDK1jW2FLZWbdAqBWWFlROUZHpN6kBwVqpjICxqo8lBVr3SnqPhYJLfOkcd0uab7YbrBTLFLo+CzsHLOzUmdmus7RzQHlzFzZ3eRJ4Eoil5GChxv7CDPXFGfYXZjiYr6HsyURmP/ARwvRw9sp2Laq2wxdWzrPjdya+d8EtnlpGY6AUFdsZm89ZdYyJUQqlNe7QxkDJsom1vq+ZkbHWCEzmZisKWXDvnSBqrfHjmBfmV3ilvgWkKmXA2VLloVD7x0FrzX7gs1ws4cfR0W/I8cCRE8QcOXLkyJEjx1RwpfVQKYiulCwUijhSolSckS1HmOiGmuPiSAtXDPehKarWeHWwbNloDbEwvWqnBZnEg+hEQSxJmx9dOTf2tbaQCKHRwyWmx8CcU+DdJKrDLxVYv7DC+oUV7nTbPDezyCetEtbdLfw7/3/27jtOrrre//jr1Knbd7OpEFoCJJHQSQigCFcEVFT0JwoIoheVptd7RVFpCgpWmgooXEGvcEXFgmAFUUD0qggoNdT0bC9TT/n9cWYnO9meZFv2/Xw89iE7c+ac78x8s85nPt/v57OerlfXMLsjUwoiO8vnCAyD7poU7Q01dNRXlf/Xc6PXxSg/n+g1tc0tRWkaYvEt/ScHUefGiZlRi5Lt7VdYDHyqncFbgERzYkug5IfhwGqnpsV4f+3R4xWocWLslarhL+0bd8g586U2L3MSSR7riAKvrO9R58ZYl+1lXiI1aNA82bq9ItVOjJRlk/V2bK9OPwxYl8swy02oD+Z2UIAoIiIio9I/AJhsSdvBNS1qnBgx0yYIt2TjouWGFsnSktO0bdNZ3LIPzQ/Dco+8rTXHk8Qti65iYdACK9vDNk38IAAMLHPoD+6OYRKEUVC5rRVj08Msj22IJwjTNXh1NXTvtQs/XtPA7FiCdG+O2rYu6lq7yv/btzyV1Vse312VpKO+mjVVMTbXpLCbDXoSzpDLdgeTtG3q3DhdxfyAD/IdhTyWYYy6umgxDKge4ti4ZdG/FWYwSOuN8p7PcdTjeSyva2R2IkXYtqWS7vbI+T5VjkuV7ZZ7f3phwNxSRjfjF0nbO75CaxCGBOHQy4dH0u0VWV7XSM7z2ZgbOsu8LeNal+0lZbtkfG9cAsRC4FMI/HF5XacSBYgiIiIyKq5h4RhT41v5uGVR58awDIO0Y+OFQXkPWlS90i63PUjbDi35yn1oW2eR+qRsh11T1TzR0bLDA0THMCmGPhD1WByKbZpRD8ftqKKathzCcGDYs3VvQseMCg/5QKYqSaYqybpdZ5fvj2Xy1LX1BYyd1LZ1UdWdoao7w4J+5y3aFh21aeLz1kf7Ipvq8ZsaIDl0FnFuIjVogNDjR1ml0QaIYQipITLCcdMGY8vrYMCAwMY1zXFdXhqUekLOjadpiMWpdlx6vSJVjrtdgWIu8FjgVm15D8OQMDSocVxaLYcer7CDn0lkcz7q47ktex77+mM2x1KsD3pLS653jM5igcZYAse06OxXmGhH6ijk6S3tb96ZKUAUERGRUXFNc8pkEGscl3mJ6ANqte3iBWF5z5VrWsQti0Qpg5hyHLx+H0RHqvi4W6qaVzLduNaOfa622bck0xh2f5htmOUlqduaQUzaTtQDMAgqAqKtexM6pollGvj9egX2l0/G2JBsYsP8pi2PyRep6egm3NhCY2cvc7tzVLd109TSCf2WqAIE6RRBUz3BrChgDGY1EDTUgm1T68Rgq9xdWCp2M5awwTCMIQP+uGVF7UX6BWJbZzljlkXpbRkXfZm8xlgCyzCZm0jxfE8HSdvhue4OdklWlbPdo9FeyBG3bLwgpKG0xLovg2gY0RcAKduisxgMeOyOKJDjhcE2L8nNBT5xy6YxFqetkMMvvdGdxTxVpT6m28oPA6qdBKZh0l7YcUWHMp5HRzHP3EQKL9zy5U4YhgQwZfd6bg8FiCIiIjIqbqnx+FQwN5Fmbr8A0e8XUTimScKySZQ+CCctp9x/ECAMjWE/JM+OJ2mOJYfMSm0r2zDxSsVKhs0glgrabE8GMWVHRXzygV9+z4LStfs/d9swMYmCi9EqxhxamutZWx0FeHPjKVryWRYFNisDF2tTK+bmNszNrZitHdg9vfDiq+XHh4ZBWFPFHvXVFFwIG+voqknTXZumt9R+pBAMDG4GE2VJh94vGjOt0usetcKAgRnELQFWgDkOUWJ30WPv6rpywaHZ8RRPd7fT6xWpdlzygUc8tHg50838RHrEwkS9vkePV8QoFWKyDLNUqTcoP5+k7eCFla9hIfB5qbeb2fHkkEtyR82gonXMaHUXC8xLVhG37FJP1ZAwDNmYy+LHwqh40TYKwrC8/3hHZiZ7/SLZUjGdgLA8Qzbns2R8n12T6UnvDbujKUAUERGRUZmXTO/wZZc7wtxkmobAL/+eth32rKotBw0x06r42D9Suw7HtDimecEO/9DnlJq2j7S30C4tGXTNbe87aRkm1Y5LdzFPiuh18MIAy6jMApul64wlQNz6Ol4YRhna2ir8hjn4ey3ccoDnYbZ2YG5qxdrcirmpDbO1HbOji3RHFwcDsKZ8eE8yRmd1ik1VcYLGOrpq03TVpCnEBw9osr5PzLKpGSLgiZUCkWIQ4Jb2Gm4dnLumFWVRiyHmMHtDhxOEIR3F/KABjk/A3MSWIjp1pcq7XV6BBjdBVzFPPvDxw5B84I8YIBqlPpr5wKfa7uv9aZHxilBqNZKyKrPmAF4Q0BhL0FHMk7JtrFHuFx1sBI5hlPtPjkUhCJhfWppqGyZhqQJxteOS8TzqtyNuDQDXsrAYPEBsL+1tTVr2mL7o8oKAmGXhhwEGUXXhIAzLe1+7S4V2/DDYYf1EJ5sCRBERERmVHd3ge0dpjCUqfrcMk32q68u/x7YqVBKG4cgfwschI+CU9om5pok1zPX7lphu71LAejc+YO+lZRoDspIx096m/WphGGJbUebKDynv+axg2wTNjQTNjVQ0NCgUKW5q4e/PPU1zd566rl6qO3tIdWdIZ/LM2wA8t658eD7m0FWbprs6RU91iu7qJD3VKdpjBk3JqiFfK8swSFhR78HykLYKAt1yltEfdJntaGR9j425DNW2WxF8ZH2PmGkxK54s31bruqRsh7ZCjqRl01bIUShV4fXD4TOnfXv4dklW0VLIlr8EiZsW3WGBMIyWmLqWNSAX6pXm3q7Jatbnepndb0yFwGdzPkeN44xif12IY9rloHu08n4U/PZd1zIMDKLAyjIMAsMo/fe2vQdB6d+1M0hGPO/75AKfKtthYz7LvMTgVW8H09c70wuibHXfcl6AOjfGiz2dpGyHuGWzNtvL3H6v63SlAFFERER2ajEz6nkYhiG9vkfCtmmehA9xthktdYwb1ggZxGh5aXw7A8Rax61YZuiHwaC9LGOWSVdxbBnEaHkhWJSWzRpR9mbUXAd73mxeDLp5xaAclKzv7uYwI0b7+vXM6c5R15WhqrOXqs4emja207SxvXIcQL4qid1QT1BfQ1BXQ1BfS1BfQ1hTBZZF2nbZmOsFouzb1hlEyzCI2xbduW3vyeeXAjM/DCs+XGd9jwY3XrHn1TJM5iRSFAKfOYkUa7I9FIKAZF8/xhGuYxsmS2oaCNmyrzJuWRTDKDvtGOagmX4/DEg7MfaprufVTDdhGNJSCk4NDOYmUrya6SZlOSN8QRJlnYujXAbcp72YY9dkDTVODOjr8RmWemiapFyH7mKRWjc2pvP2CcKokFaUda8cf8Yv0uDG2a+2kV9vfHXwEwzBMCj1UvUJobxnFwwWJKvww5BlNQ3UODF+tu4Fcv2+jJiuFCCKiIjITi1uRh8avTCks1hgWU3DsEVqxotjRsGUiTlslsQyoqWl21umP2U79P+g7AWD79WLmyNnrrYWfTw2StUzAyAsV5EdLcMwqLKdihYkgW0Qb27mJTdkvWmWngMYQUCyJ0tVV4Z0Zw9hWweNPXlqejJUd2cwujPw0pqK84emSVhbxRHpOGvjNn5tFbGYRSLeAE029GsFkrAc2sMsQ1mb7aEplhgyY+aH0TJELwyIseWYQuBTO8iyw7mJFH4Q0ODGCcOQQhBQ5bp0FYevvhkFU1FRnv6vd9yyKQQ+MTPqDzpYgOiFIUnLYXYiSdpxaS3k8MOQo2bNp9p2qXZcfrL2BTqKBSCkql82tLOYxwtC6t1YuRJuZgw9DIPSMuQ9q2rKt0V9QUsZOtNi91QN/9e+kVq2LUA0jKj1hmkYGEZloJ3xffaqSpGyHQzGun/SwDEscn4x+rdZ+lIEQqptlxPmLCyfK207O6QQ0GRTgCgiIiI7tVhpz1HO9zCAhanqSRmHY1jl5XQjVWt0TXOHBIj9PwxHrUAGnjNuWWPegxiWqoI6pknG8wihHMyNRZXjsrm0DDbaN2ZQ48RI2jZ5f0tGLzRNeqtT0c/sWvLBXHK+h2kYnDx7IdU9Ocz2Tsy2Doy26H+j3ztpauukrwbrgQB/+Gd0vVSSsLaasK6KpUmbpBli1NbQW5Ugm4xHqSOi4M8LQtoKOWbHB1+a6JWCnK1fRz8MqR1kf+RuqRp2SVaVi830LY8c6X3Yso+08n2MAsSApB0tIY7uNyoCIa+UpXRNiz1SNTzUso6D6pvZM11bPs+ymgYebl1PwrLpKOZpjCVoL+QoBAFeGJYzmPVujM35LK35HAHQFBt+711XsUCtE2NOv9fPNkwMoi8YovYyVTzWsZmc7435y4Y+lmGUvnyp/PcVElV8TdsOrmmSL1VTHUlfqxjXNGkvROOyTbM8V13TrAg0a904azLdChBFREREprKoL6LFhlyGRVV1NG21Z3GiRNk2RtUqJGZZg+/pG4OkZWMbZrmYiB+GJAf5UBwfJLAZSVBa3piyHFrzOVzLIr0tAaLtUgyia3cW89Q6Mapsl5Tl0FMs0OsVcczKgKirWGCvqlpsw2RjPkMqniBIJAma6gdeIF9g7Zo1PL/mZebkfOJdPezlWdid3Rid3Zi9GVi7gYXAwn4P802DTDpJbzpBVzrOrgmH9oRLrLaWbDpBLhkj7Pc++mFAwnIGzcQOlrWNAhmLhBWWg2zHtPBHaPDRtx9u6y8YouAywC4F7bFSgSMvDHH6At1+1V4XJNMsSFVV7NUF2KuqlhonxiuZLp7uipbz9nge+9c18VjH5lKAalDrxgmBTClIH0m3V2RFw+yK/Zl9S529Ul/SOjfOoqpanupqZ15iW+a+Ud6/2799Sl912lonRtyySdoOhSAgPooYzitlbGtdl5d6u6hyXFKl4DkkHLCft86JsdrvJD3NI6xpPnwRERGRkSVtm7TtcEBd06SVpO8ryuGMovJj3LRHLKQzEts0sUzKwZ8fhiQGCVYcyxpzD8Cor2C0pK7Xj/aNbcueyZTtYBghQRjS7RU5etbsqAqnHVXh3JzPkrAq94z6hMxPVjE7nixn4IYUcwnmNPG8kaXVcckFAfN2WRTtUwsCjO5erK5uWls3se7lNczOeqR6sqS6M1R19VLV1cvsQU4bGpBNxsmkEmRScTbGLILqNK1xG7u2hkwqQcGJsniDBeV94qZFzLTwzIBax+XVQd6I/r0svTAgPUj7FceMsnF9WTHXssp7XvsK7xhsCcqa40mOnjV/QNVNx7SYl0zTWczjhyHFIMAxTeYn0zzZ2Uo+8KMKubaLF/ikHYec7w+7ZDPre8Qta0Dmvi+Y6yvQA7C4qp5nuju2cZlmWN6D2V/G80jbDtWlvY8NbpxXervI+h6WYQwoctVf3/OvdxP4YUDSiorRFPIZbCMKxPtLOzu2Nc5kUYAoIiIiO72+5W3DfRgcb1a5OunIgV+V427zMrs+fT0O+0r+ByGDBnGOMfbuf0EIJiZpx8UPo71p2xJ4R0teDVoLOebEU+Ugosp2SoFFZeGWvqqgzfEkccse1WsUMy3Cfssjy61DTJOwpoqgrprswgYeqbbLvTUBrGIULJodXaQzeRYUobetjYZckWRPjkQmR7I3asi+yyDXLToWXckY6brVmNVVBOkkYTpFWJUiSKcIq5KQSlLlOBRDnxo36ivZX9b3eKm3m0VVNeXqmYnBAsTS84qXss6OYeL0643Y/7WAaP/ncC0Z4paNUQreXNOi3o3jmhZZ36OqtATYNk1mx1NsyPUOu2SzvZBn7+o60lsttY328xnkg6D82Ho3RsK0KIyxQipQbmFimUbFq5jxPRamasrve70T49lSoLt1r8itRcuybVK2jWNapO1ozuX9gGTptv5SlgPG2LLxU5ECRBEREdnpHVzfvB1933aMaO9hKWM3ggPqmjC2s2n71j0ODSMc9EN3X3aqu1igo1hgQTI94Jit9TUMj1tRi4g6d9sC74RlExJlqvavm1UeS8yKgoSmmEtHYUvhlqzv0RCLj6nIUN++sUIQDJnhiZlWec9hH9+x6aqroj3lUOPEqKlt5FcbXim3SDCCgERvFCTm2juYVwyhs4umnE+yN0uyJ0tDZwY6M0OOLTQM3pJw6Ym7xGprcA0fszpNNhEjm4yzyTFosg2KnofluHhBQGKQ+eOYUeGjpLUlAExY9laFZEb35QRQznoWgqC0b88iYVl0FvPMilskLJtq22XPdC29XpGMN/S+wSAM2SU5cN+vYxqYpoHnhRWBa8K2yXpjrygbVagdWKW2GIQVfTLTjkshCGiOx0csClQMAmqcGHEzWq6dsh1c0456UBrugCx/stRfclv7ik4VChBFRERkp7f1N/2TwTQMzFKT8ZHsqGC2strk4AFC35K8Hq9IOMIeuD59vSSjwMGmahuX1sUtm6TlsHu6ptxAHaKALWZaJG2bjmKufHsxCKixx1blMmXbJC2b9kKe+iGKqcQsa+vkXZlXWprbt8cyKBXoCU2TTFWSTFWStTUumWQVr2a6mVfKQrbns9Rj8cZUI0ZPL0Z3L2ZPL0Z3BqOnF7O7F6Onl1hPhngmD23dvGaI5xAChZhDd8zBrkoTr64mTCUIU0nCVIIa12JuTw81Tgo8D+wo69UXAPX1TxxtVi5u2RhAPvCY50TPp8aJ9uElLIeEZbN3dT1z4inWx3p5Ot8Gg1QfLZaWx9YMUqjHMkxMogI9/ceVtBy6i9vWl9MyzVLm3Ci/T4YRVnyhkLYdUrZDUyxRUUF3MF4YBchxy8I1TVK2i0m0XDs+yF7QpBUVwYn6bk7OUvYdQQGiiIiIyAToq146WAuC8dLXQB0YMkDoy4L4REv0+j5YDycgxDXM0odmZ5sK1ECUqVpW08BeVbWV47Zsqp2oWE3/TGoxDKgeJNgYjmWYLEhW8WqmZ8jXvj4WJ2ZZ9HjFAc8lqv5pkbIdYlZUAXNgBtMgudXSz0IYkk6no+I5gxXQKWnPZfB6MqRyeR596QXmeAHJTIFEJgc9GaoLHrFsnmSuSGO+CF0ZWLup4hyzgff0+z2MuRwbd+h0LMJEnLzrsIdjUL8ui5NOESbipZ9Y+b/pl5mMWxaOadLlFcpVWKvsWGmJaxQYvaa2sfzaDdX5L+d7JC170Aq3fRnuvmq4fVK2XWoj0e+1DHxe6O1iUbp20LnZtwfSLv2YhlExj/tXBE7bLk2xBHuma3mxt6tij+fWvDCkynaImTYJyy7PH7OUod2aY5qkbYf2Qg5nO4tMTabpO3IRERGRaSQqUmNgT2CAGLOi1hphGGJgDFr4Jrotqvxom1EvP3eEQjpBGBXbcU2LpGUPWjhlNEzDYFkp0OgvadnUOjGa4wme7+nYckcYLUEcqzmJFHHLGjJArHJdltY28OeWDQMCRJ+wlBmySNsued+rCA76snMp2y4tvI0Uw7C0r3B4dfEkxJNkfY9XvS66HbccyK/J9jA7nqIln2F2LMnm7k5el2pg19DGyGQxejMYvVn8nl42tLbQ5IWkckWMTJZUZy/RYtiuLRd7es1gQ4ieh+uUg8ZEPM5xYZE2C+bXd+BUVbNb6NGW6WRuwcXMGRCPEcZcajAxhlhSmfU95ierhvzCwS31KO1fWCZlOXilyrZ53y8tN/ZLVVkHn5t9VXUtw8QqBZ1BKSUcQkV7l6Rtc2zzLuXAtBgG2AweIIZA3LaJW1Y5QAyIKpsOtcy5zomzIZvBmdwV7dtFAaKIiIjIBLBKhUS2tzrpWMSs6AOtX8qmDLoHsVy4JfqgPpoCISFRU/K07bAgWTVoK4ftUeW4HDN7ARtzGfqv/TQMxrT/sE9jLEHadod9Xour6vhXRxs9XoG03S9LGVJ+XL0T58VCJzX9nm5f8Zuo72S/scKwFUy35paWR3ql198LAmzDpMGNsyGXAcOg4DiE9bX4yaqKxxYDnwfWvsCBdbPYPR01o3+2bTOPrX2ZXQyHIJPFyhU4PFWHmc1jZHMY5f8t/eRymJ3d0NkNwO6lH17YCMBupR94ruLaewHnmQYFx8ZzHfKuje86FF2bDhMaqqpx0+vAdQgdh9B1yv89t7uDwCuQTPVgBAah40SVQY2QQuCzureTPdM1eEG0T9ELQtxB/vn4YYjZbw+iaRj4YVQd12Rg1r4vo5i07IoqqoOJmzamYTA3kaLacen1i1jGwIxxn6ZYnMdHKH4z1SlAFBEREZkAlmFgmyb2BLbZiJlRFdAoiBliD2KpZ55b2veX8ysLhHQW8xSDoKICbNTYPWqrcGD9rHEZe192qS/k6qvGui0BYtp2aCotIx1K0nZojidZm+2p6GNnGAauFb1udW6MZ3sqs2V+qVdeynIGbGMcy1it0pLdvuWVucAnZlo0xhL9As9w0CxoX8uF/l8+2K5LdypBRyJFZ3VUhdSbv+fwgwgCjFwUOD65fg0b29tZWVVP2gvp6e3hlbYWdjVjVAdEx+ULGPk8QS6PkyuQyBfpH7rOB2DjkJd7Xfm//l7+r4OB5ZaJ51jkLYvQtihaJp5pEtoWhmPjWya+ZZX+16RgGmQMSK3vxXJclnS1gG2DbVEVBlR7CSzHAdMEy4x6WJom87rzbC7mSMV9AtMgMExC0yAwoz2mVuBjlf65HtIQNTwp5Hxs0xwykz03maZqB39hMtF2mgBx8eLFA277yle+wgknnDAJoxERERGpZBmDV1kcT65pEmKUGpybgxbriTKIJnVuDNsw6PEqC4R0eUW2boQRhOGAfnPjwTbM8h7Evp502xIgAuxb0zDi/s8a1+Wl3q2zP2F5WWPaqcwSAuXXNmU7pQqWQXnM8VFUrO0vbtl0lwqn5H2fxliitHS1L0AePANtGEbUfqJfVqv/PBuqPcYApkmYTBAmEwR2wLoqB+bvRdGyyBXy/G3Dy8Qb5+BulcEEaM3nKBTy1AbwSlsrz7VsJO75HFHdRCoAo1iEQhGj6GEUilAs0tLVRS6XZZ4Vw/Y8KBQJ8gWKhQJu0SeRKw4yyOG8BMCRA25/ctCjjxnVOR8CooqzAGnD4HxCTMPEMI0ord33pY9hkDIMPhAGFA2D0E7DgvljfA6Tb6cJEAGuvvpqVq5cWf69unpgSV0RERGRybBlj9TEZRBt08QgxAuj9gjWINnLvqxmYyyBFwQUg+7yfT1ekaRlk/Mry5CEMGRhjx0pukZIGIYUw6Bc3XRbbN2ofTBpyy1nKvuE4ZZCPinLIQypaAzvh1FWL1Z6ff0wGq9rmmPuZRlVW42qtmZ9n8ZSSw8DI6oIOsQyYYCjmuZV7PWz+82zvkI7YxG3LKpst5x1jVs2Ccsa8voNsTiUqsQurqkhqK/lhd5O7DkL8YbImj/dupFnetp454JF5fO25LPcvXY1FgbVlo1fKOIVCzRaLrl8nibLwfIDTN/H8gIsP6BYKIDncWhNI4Yf8HTrJkLPw/J8XAx2T6Sj7KgfQFD68QN6C3k6c1kShokZhBhBgO/52GGIHULg+6QsCwsjmgil977ge7ilqsTR/svoPoIAIwxxwjCKGQtjDXCnhp0qQKyurqapqWmyhyEiIiIygGWYE55BjLJ8Bl4QUucOnUGqclxqnBg538PvFx91FgvskqzilUxXRVXIKIM4/sV2osqvJgEhxcCnxomNWGF1eyRKDeL7+GFQUXm2rydgsV+xFD/s6xUYLdX1gpCAKMM61mA2adv4YUCPV8Q2DeYnq4hbNq5pkgs8LNMcspfh1q9L/3nmheGY94k2ugkW9asuG7Ms5ierqLJHV0V2n5p6FlXXDvqlRP9zWpgV2ehoabFJMfBxbYe2wMezXArxFG2ugRtPDThPV7GAaRgcuGAvAJ5Z/yKdhTx+GDInkWJe8y6DXv/V3i5+u/GVcmsSgBd7u0hZNrPiSdZke3jrvD2j4LekEPjcs+5FDqmfzbwheoYWg4CXM10ctnA+tPUO/0JNQdO4vs5Al1xyCYcddhjveMc7+PGPfzzZwxEREREp69uDONwH5h0tChKiDGJqmCWG+1TXMzuejPrflYYXlKpz7lVVi2NE1U37BKUiNePNKfW088OQQjD2FhdjFbesqCppKYvoh9HzdEtZtL6ej5l+jdy9MCRuRQ3SHSOqGlsMgqhn3hjf66Rpk/F8Oop5DqpvpjmeJG5GWbvOYoG4aY36C4a+rGcYRgHrWLOZtW6Mvasr23McUDeL5BiqyI7Uz9MxTZJ2ZVDuljLaXhD1NYzmnVEKvgc/z9a9FGOmhR+GFINg2BYsScuuWDAc9vW4LJ3TKF23P7sU+LvDZGQd02RRdV3F85pOdpoM4kc+8hFWrFiB67r88Y9/5OKLLyaTyfCe97xn5AcPwZzAJSAj6RvLVBqT7Bw0t2Q8aF7JeJju88ohKiLiWNaEPQfXjvbw+YRUue6Q1929Kqp82ekVSluqDLJekSrHZUGqCteKiqfE+u21ci1z3J+Ha1vYZvSB3SNqG7Gjr9l/XqUcB8ey8AGntFzUMU3idl9TdIP5qSr+2dmCYURZpYAoO2eaBgnbIuN5eGFAteuMeax7VNeSdl0Mw2Bhqrp8zSrXpcsrcHBDM5Y1ugDRtaLXLiB6P2MTOO9Gy7FM0k7lvIwbNo5p4Vo+1Y7Lhlx0n2tZmCaDBl2hQcV8jFlWFOQBVc7QcybpONiGWf4iwCsFmn1Bo2UY2FvNcxODw5rmUO/Gh/0CYDr/vZrSAeJ1113H9ddfP+wxv//975k9ezYf+tCHyrftu+++ZLNZvv3tb29zgGjbJg0Ng6eNJ1Nd3cC0usiOoLkl40HzSsbDdJ1XXhBQ052gqT5NQyI5MdfMGMTbXCCkub6KhvrhP9t4CZN4u0My5dKZKbK4tp7ZTdU0dabpLRZJxaO+fgny1Nemxv2zkh8GpDbHiNs2CdNnTkM1DXXjc826uhRVQYKatjiObZNyHLwCxHGZ1bhl/+KeVgPP5jqJpxzW9fZStGB2fZqGhjRN3SnWZXoJfIN59TVjfn0agIXUD7h913wtu9bXcuDcuaPOSiW8IqnWGPGYS8Io0liXpqF2an22nesGBLGBn7kb25NYeYuFTbW8UuwhBObUVbHRz5JKD+wt2Zv1qUsly+dpyKdZ62exgiCa90PMmZTnUdUaI+Y6xG2b3mKRWidO1veIJ1ySlk9TQ5r0VpnrBkb/Ok7Hv1dTOkA87bTTePOb3zzsMUPtOdxvv/34xje+ged52NvQUNXzArq6smN+3HgxTYO6uhTt7b0EweDNSEW2heaWjAfNKxkPO8O8mm8m8Xs8WjM9E3K97kKOXK5IEIbkugu0hsNfN1ssUMz7dIY5uvN50imL1tYerEJIV2+WmBcFJ7lskZ6uHK2M//Mo5Ir4eOSKRfI9BVqDHXvNreeVWQjpyGbBDegu5Kh2XFpbt1zTLPgUch4v5Tupc2PMjydx8watrT0EOZ/unhw+IUHWq3jc9ljsVGMZBm1j2M9WDKJxdhdz5ApFMt05Wv2JmXejlcZkb7dm4OuUDwgKHmY2IJMtYBomYdYnlyvSa+QHnKc3l6dArHyefG+B3kx0XK4nP+ScCcKQYs6jsxDi2w6dxXyUPS8W6fXz5L0iHe0Z8lZh0McPZyr+vaquTuA4I++LndIBYm1tLbW1tdv02Keeeoq6urptCg77TJU3s78gCKfkuGT609yS8aB5JeNhOs+r3VPRUs6JGr8VGpiUWkQYxojXdY2oEmfe9yCEWidGEIRUWQ6FICjvzQvDqBH8RDwPxzApBD4BITHDGrdr9s2rKsels5gvVav0ScadimtWWS5p26Eln+XIprns1u89nRVL8s+gDdOIXssdNVYbE0IGVFgdjhkaGGGUuQ7CEIuR3/+pImHapCwX14iWe1pEfSaDfvtD+/PDANswy8/PNsxS1VdzxDkTMy0KgU8Y2hT9INpjGYaldiVghNs3z6fj36spHSCO1u9+9ztaW1tZvnw5ruvy0EMPceONN/KBD3xgsocmIiIiMmn6iuLYpkHMHPljn2Oa1NoxXsl20eAmqHOj5XxJ2yHcqv/fRBXbcU0rquq5DVVBt0W141AMomoohSBgTqJyiaBpGMyJJ3EMkwWJyn6ATbEEjmlSCALiEzDW4Rillhh+qbjQRFSd3VH6Kq7GTAun1BombTsYGBXVdPsEYbQHsY9tGGQ9j32q66lz4wwnZW0pOlQMA+zS6xSEYDKxRaWmip0iQLRtm+9973tceeWVAOyyyy5cdNFFvOMd75jkkYmIiIhMHsc0o96LRljuZzeSo2bN48nOOLZplKtQDmxOH2JNUDF817TI+z5x2x5z4/lt0dcLsRgEWKbJrFhiwDGLqurYMz2wkmuNE6MhFmdzLjvmqqHjIap+GgXXQ7XHmIp2SVbhhwGxUqEd17BIWja2EVU1dbcKdoOQittsw6QhFmd5XdOIAV7StvFyURDthQGOGRUGCggxiIrSzDSTP3N3gCOPPJIjjzxysochIiIiMqVEwWGUSRxt9q3KcVnROKfitni/yo7lc09QdcaYaZIPfGrNGM4EZOVStoNhGLQVcjS4cWqdgUVRZsWHLjK0W7Ka7mJxQoLZkcQsk2I+wDbNctuL6aCv72BY6reZsKLKppYZVZbdmmFUBus1boz9aptoHuZ96pO0nXILF4MtrTnCMMQyzGnbqmJ7TJ+ZIiIiIiJj5poWcdPargAhbtnlfoSRgf3hxotrWeQDf9h+djvS3ESKxVV1dHtFFqaqxxwgzE6kaHDjE7IcdiTR/rog6tE4jQLEPoZhkLBsknY0fx3DLC+Z3Vr/ZadNsQSvqW0c1TUSFb0QDVKl+iUhYE/DFhU7wk6RQRQRERGRwY12aelw4lb0Ab0Y+FiWXc6uTATXtAjCcMICRNMwOKh+FgEhC5JjbwvRGEvw+uYFUyLzFLMsiqGPbZgT9n7taGnbJmFF733Cssl4xUGOMnC28fm5poWBQRiGhISkbAcICcIQe5q+ZttLAaKIiIjITqyv0Mf2niNmWhSDgJgZYhgTW6TGNAzStjvywTtI3LI5smneNj9+672Jk6UvgzgVlrtuq5Ttlgv+JCybruLANhcwsHDNaPXtzfRLAWHKcgCDkFAZRBERERHZ+cRMa5AiM2NjGAbVjktbIUcIGBhYE1S8wy5V40xsR+uymapvz+Z0DhD3TNeWv4xIWnZ5mXPGK+KUlk6HsM1FeGKmRUgYVTA1zajNBVHhm5maQZyZz1pERERkhqh2XKqc7c++VdkuxVJPPdOYuD2Ife0tpsKevunGMUxMDOKjaHEyVTXE4tT2a7fSV1BmUz5LWyGHH0Z7LFPWti1Bdk0LE4OM51Ftu8RMm5CQAC0xFREREZGd0LKa0RXrGEmNG8MLAwJCTAzMCfrwbJtmVGhnGmfBJottmpimsd0Z5KkiYVlQylw7pkUxDMj7Aa5plnsnjpVrWtiGSZdXYJ+aeizDKBdkmqkB4sx81iIiIiIzhGEYO6RgSrz04bwQRB/Id0Txm9GwDIO4ZU3rLNhksY1oKfDOEly7pSxyWFpmagD5wKfKdre5SmvMMst7RhvdRBQgGgZ+GEzLyq87wsx81iIiIiIyJn1ZqJzv0RhLTNgSU6e0xHRnCXImUl/2dWcJdPq+lCiGQSm7Z5DzPercgb0qR8syzCgDadnUuzEsw8CY4RlEfRUjIiIiIiNKlgNEn6ZYYsKu65gWccsuZ49k9JxS/0NnJ3nt+grKeEGU3bMw6CjkqXPj23XepG3jmCZpxyXne5gG+KWiNTPRzHzWIiIiIjImcSv6EF0MA2q2I2MzVvVujCOb5m5zG4OZLMqObX+bk6kiVtovmA98YqZFVWnfYWo7K9ymLJd5iajnpWWYGIaBH7LTZF7HShlEERERERlRvK8XohlQvQOqoo6WYRjbXIBkprNNA9c0t7kFxFQTsyxs0yDr+9S5cdK2w6ZcdpsrmPZZVFVbXsLcV6QmCMMZm0lTgCgiIiIiIzIMgyrbwQ9Dqiawab1sO6e0v25nWSrpGGZUcdQvkLIdGmIJEnYXqe38AmFOIlX+774WLkEYYu0kmdexUoAoIiIiIqNS7bgYhjFjl95NN45plVqE7Bwf+Q3DIGk5rAt6SdkOaduhxo7t8DYetmlOaK/PqWbnmC0iIiIiMu5qndh2Z2tk4jimyetmLZiwliQTIWXbGERVdZvjSQ6on7XD96c6holhMGP3vSpAFBEREZFR2aemnlILOpkmdqbgECBlOzil/bCuaZWLy+xIthntQ1SAKCIiIiIyDMswo+7kIpMkZTnYpd6Y48U2ZvYSUy0gFxERERGRacG1LOKWNa6ZUce0MFCAKCIiIiIiMqXFTIuEZY9rBtExjBm9B1EBooiIiIiITAtxM8oejmcG0TZNTIwZ2+ZiZj5rERERERGZdqocl+ZYEnc8M4hmqYrpDN1wqwBRRERERESmhZTtsKJxzrhewzGsUgZRAaKIiIiIiMiMZhnR8lIFiCIiIiIiIjOcZRhYpjKIIiIiIiIiM15f9lBVTEVERERERGY4yzCwtAdRRERERERETMOIWl2ozYWIiIiIiMjMZhkGtqEMooiIiIiIyIxnGQbOOPZZnOoUIIqIiIiIiJQkLYd6Nz7Zw5g0ChBFRERERERKat0YhzbMnuxhTBoFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkRIFiCIiIiIiIgIoQBQREREREZESBYgiIiIiIiICKEAUERERERGREgWIIiIiIiIiAihAFBERERERkZJpESB+7nOf421vextLly7lbW9726DHPProo7z1rW9l6dKlHHvssdx9990TO0gREREREZFpbloEiABvf/vbOf744we979VXX+Xss8/m0EMP5Sc/+Qnvfe97ueiii3j44YcneJQiIiIiIiLTlz3ZAxiNT3/60wC0tbXx/PPPD7j/jjvuYMGCBXziE58AYI899uCvf/0r3/nOd1i5cuWEjlVERERERGS6mhYB4kgee+wxDj/88IrbVq1axdVXX71d5zVNY7sevyP1jWUqjUl2DppbMh40r2Q8aF7JeNC8kvEwnefVThEgtrS00NDQUHFbY2MjHR0dFItFHMcZ8zlt26ShIb2jhrjD1NWlJnsIspPS3JLxoHkl40HzSsaD5pWMh+k4ryYtQLzuuuu4/vrrhz3m97//PbNnzx7V+QyjMjoPw3CbxwbgeQFdXdntOseOZJoGdXUp2tt7CYLte24i/WluyXjQvJLxoHkl40HzSsbDVJxX1dUJHMca8bhJCxBPO+003vzmNw97TFNT06jO1djYSEtLS8Vtra2t1NbWblP2sM9UeTP7C4JwSo5Lpj/NLRkPmlcyHjSvZDxoXsl4mI7zatICxNraWmpra3fIuZYvX86DDz5YcdvDDz/M8uXLd8j5RUREREREZoJp0ebi5Zdf5qmnnmLz5s3k83meeuopnnrqqfL973rXu3jllVe4+uqrWb16Nd/73ve47777eO973zuJoxYREREREZlepkWRmk9/+tP8+c9/Lv9+0kknAfDMM88AsGDBAm688Ua+8IUvcNtttzF79mw+97nPqcWFiIiIiIjIGEyLAPH2228f8ZjDDjuMu+++e/wHIyIiIiIispOaFktMRUREREREZPwpQBQRERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlBhhGIaTPYipKAhCfD+Y7GFUcByLYtGf7GHITkhzS8aD5pWMB80rGQ+aVzIeptq8siwT0zRGPE4BooiIiIiIiABaYioiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgCgiIiIiIiIlChBFREREREQEUIAoIiIiIiIiJQoQRUREREREBFCAKCIiIiIiIiUKEEVERERERARQgDilfO973+Poo49m2bJlvPOd7+Txxx8f9vh7772X4447jmXLlvGmN72JBx98cIJGKtPNWObWc889x3nnncfRRx/N4sWL+e53vzuBI5XpZCzz6n//939597vfzcEHH8whhxzC+973Pp544okJHK1MF2OZV7/5zW94+9vfzkEHHcTy5ct5y1vewt133z1xg5VpY6yfsfrcdNNNLF68mKuuumqcRyjT0Vjm1Y9+9CMWL15c8bNs2bIJHO3oKUCcIn7xi1/w+c9/nnPOOYcf//jHLF68mPe///20tbUNevzf//53Pvaxj3HyySdz9913c8wxx/DhD3+Y1atXT/DIZaob69zKZrPMnz+fj33sYzQ1NU3waGW6GOu8evTRRznhhBO47bbb+P73v09zczPve9/72LRp0wSPXKaysc6rmpoazj77bO68805++tOfcvLJJ3PRRRfx8MMPT/DIZSob67zq889//pM77riDxYsXT9BIZTrZlnlVW1vLH//4x/LP/fffP4EjHoNQpoSTTz45vPzyy8u/+74frlq1KvzWt7416PEXXHBBePbZZ1fc9o53vCO87LLLxnWcMv2MdW7197rXvS68/fbbx3N4Mk1tz7wKwzD0PC/cf//9w5/+9KfjNUSZhrZ3XoVhGJ500knhddddNx7Dk2lqW+ZVJpMJ3/jGN4YPPvhgeOqpp4Zf+MIXJmKoMo2MdV798Ic/DA855JCJGt52UQZxCigUCvzzn//k8MMPL99mmiYrV67kscceG/Qxjz32WMXxAKtWrRryeJmZtmVuiYxkR8yrbDaL53nU1NSM0yhlutneeRWGIY888ggvvvgiBx544DiOVKaTbZ1XX/jCFzj00EM54ogjJmCUMt1s67zq6enhta99LUcddRQf/vCHef755ydgtGNnT/YABNrb2/F9n8bGxorbGxoaePnllwd9TEtLCw0NDQOO37x587iNU6afbZlbIiPZEfPqy1/+MnPmzOGwww4bjyHKNLSt86q7u5sjjzySQqGAaZpcdtllrFixYryHK9PEtsyr+++/nz/96U/azypD2pZ5tfvuu/P5z3+eRYsW0dXVxS233MIpp5zCz3/+c5qbmydi2KOmAHEKC8MQwzCGvH+w+4Y7XqTPSHNLZFuMdl7dfPPN/OIXv+D222/Hdd0JGJlMZyPNq1Qqxd13300mk+GRRx7hyiuvZJddduGggw6awFHKdDPUvGpra+Mzn/kMN9xwA4lEYhJGJtPZcH+vli9fzvLly8u/77///hx//PH84Ac/4Nxzz52gEY6OAsQpoK6uDsuyaGlpqbi9ra1twDcTfRobGwcc39raOuTxMjNty9wSGcn2zKtvf/vb3Hjjjdx6660sWrRoPIcp08y2zivTNNl1110B2GeffVi9ejU33XSTAkQBxj6vnnvuOTZv3swpp5xSvs33ff7yl7/w3e9+V9WXBdgxn68cx2GfffaZkiu6tAdxCnBdlyVLllRUXQuCgEceeaTim4b+li9fzkMPPVRx28MPPzzk8TIzbcvcEhnJts6rb33rW3z961/nW9/61pQt7S2TZ0f9vQrDkEKhMA4jlOlorPNq2bJl/OxnP+Puu+8u/yxdupS3vvWt/OhHP5rAkctUtiP+Xvm+z3PPPTclK8YrgzhFnHnmmXz84x9nyZIlvOY1r+E73/kOuVyOt771rQB8/OMfp7m5mY997GMAnH766Zx66qnccsstHHXUUfziF7/gySef5IorrpjMpyFT0FjnVqFQKLdLKRQKbNy4kaeeeoqamhrmzp07ac9Dppaxzqubb76Za665hi9/+cvMmzevvF86mUySSqUm7XnI1DLWeXXTTTex7777suuuu1IoFPjDH/7AT37yEy6//PLJfBoyxYxlXiWTyQGrG5LJJLW1tey1116TMXyZosb69+r6669n+fLl7LrrrnR1dfHtb3+bdevWcfLJJ0/m0xiUAsQp4vjjj6etrY1rr72WzZs3s88++/Ctb32L+vp6ANavX49pbkn4HnDAAXz5y1/ma1/7Gl/5yldYuHAhN9xwA3vsscdkPQWZosY6tzZt2sRJJ51U/v2mm27ipptu4q1vfStf+MIXJnr4MkWNdV59//vfp1gscv7551ec59xzz+W8886b0LHL1DXWeZXL5bj88svZsGED8Xic3XffnS9+8Yscf/zxk/UUZAoa67wSGY2xzquuri4+85nPsHnzZmpqali6dCl33nknu++++2Q9hSEZYRiGkz0IERERERERmXz6ukREREREREQABYgiIiIiIiJSogBRREREREREAAWIIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiAFFEREREREQAsCd7ACIiIhPluuuu4/rrrx9w+4oVK/jv//7viR+QiIjIFKMAUUREZpSqqiq+9a1vDbhNREREFCCKiMgMY1kWy5cvH/G4XC5HPB4f/wGJiIhMIdqDKCIiM96aNWtYvHgxP/3pT/n4xz/OQQcdxAc/+EEAOjo6uPjii1m5ciXLli3jXe96F//4xz8qHt/V1cXHPvYxli9fzqpVq/jGN77BVVddxdFHH10+5rrrruPQQw8dcO3Fixfz3e9+t+K2H/zgB5xwwgksXbqU173uddx8880V93/iE5/gbW97Gw899BBvetObWL58OaeccgrPPfdcxXG+73PjjTfyhje8gaVLl3LkkUfyiU98AoDvfe977L///vT29lY85k9/+hOLFy/m6aefHuOrKCIiOwNlEEVEZMbxPK/i9zAMAbj66qs59thjueaaazBNk0KhwJlnnklXVxcf//jHqa+v5/vf/z5nnHEGv/rVr2hqagLgk5/8JH/+85+56KKLaGxs5JZbbuGVV17Btsf+f7Pf+ta3+OpXv8r73/9+DjnkEP75z39yzTXXkEgkOPXUU8vHrV+/nquvvpoPfehDxGIxrr76aj7ykY/w85//HMMwALj44ov5yU9+wllnncUhhxxCZ2cn9913HwBvetObuOqqq/jlL3/J2972tvJ5f/zjH7NkyRL23nvvMY9dRESmPwWIIiIyo3R0dLBkyZKK2z73uc8BsN9++3HJJZeUb//BD37Ac889x89//nMWLlwIwMqVKznuuOO45ZZbuPDCC3nuuef4zW9+w1e/+lWOP/54AA499FBe97rXkU6nxzS2np4ebrjhBj70oQ9x7rnnAnD44YeTzWb5xje+wSmnnIJlWQB0dnby/e9/vzyuMAw555xzeOGFF9hjjz1YvXo1d911F5/61Kc4/fTTy9foG2N1dTX/9m//xo9+9KNygNjb28uvfvUrPvaxj41p3CIisvNQgCgiIjNKVVUVt956a8VtrusC8NrXvrbi9kceeYQlS5Ywf/78iqzjwQcfzJNPPgnAE088AVCxnDSVSrFy5Uoef/zxMY3t73//O5lMhuOOO67ieocddhhf//rX2bBhA/PmzQNg3rx55eAQYI899gBg48aN7LHHHjz66KMAFdnBrZ188smcccYZvPrqqyxYsIB7770Xz/M48cQTxzRuERHZeShAFBGRGcWyLJYtW1Zx25o1awBoaGiouL29vZ3HHntsQMYRYJdddgGgpaWFVCo1oKDN1ucajfb2dgBOOOGEQe9fv359OUDcuvKq4zgA5PN5IMqUJpPJYbOYhx56KAsWLOBHP/oRF1xwAT/60Y94/etfT21t7ZjHLiIiOwcFiCIiIiV9e/f61NTUsHTpUi699NIBx/ZlHRsbG+nt7R1Q9bS1tbXi+FgsRrFYrLits7NzwPUAbrzxxkEDzN12223Uz6W2tpZMJkNPT8+QQaJhGLz97W/nf//3f3nLW97CX//61wEFcUREZGZRgCgiIjKEFStW8NBDDzF37twhM4J92cjf/e535f19vb29PPzwwxWBWXNzM729vWzcuJHm5mYAHnrooYpz7b///sTjcTZt2jRguetYHXbYYQDcfffdFcVttvbWt76Va6+9losuuojm5mYOP/zw7bquiIhMbwoQRUREhnDSSSdxxx13cNppp/G+972PBQsW0NHRweOPP05TUxNnnHEGe+21F0cffTSXXnopPT09NDU18e1vf3vAktMjjjiCeDzORRddxJlnnsmaNWu44447Ko6prq7m3HPP5YorrmDt2rUcfPDBBEHASy+9xKOPPsoNN9ww6rHvvvvu/L//9//4whe+QGtrKwcffDBdXV388pe/5Ktf/Wr5uObmZo444ggeeOABzj777HIRHBERmZkUIIqIiAwhFotx2223cc0113DdddfR2tpKfX09r3nNayqK0nzhC1/g0ksv5corrySZTPLud7+bZcuW8ctf/rJ8TH19Pddeey1XX30155xzDkuWLOHLX/5yOevY5wMf+ACzZs3iO9/5DrfeeiuxWIyFCxcOOG40LrnkEubOncsPfvADbr75Zurr6wfNEB5zzDE88MADwxa0ERGRmcEI+5o/iYiIyA7T12Pwd7/73WQPZUQXXHABmzdv5n/+538meygiIjLJlEEUERGZoZ555hmefPJJfv3rX/OVr3xlsocjIiJTgAJEERGRGepDH/oQ7e3tvPvd7+a4446b7OGIiMgUoCWmIiIiIiIiAoA52QMQERERERGRqUEBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBooiIiIiIiAAKEEVERERERKREAaKIiIiIiIgAChBFRERERESkRAGiiIiIiIiIAAoQRUREREREpEQBoojINBaGIUcffTSLFy/m5ZdfHtVjnn32WRYvXsyjjz66w8fT2trKddddx5o1aypuf/TRR1m8eDHPPvvsDr/mSK677joWL1487M9pp5024eMazHXXXcehhx66w8972mmncf755w97zOLFi/nud7+73df6xCc+wdve9raK237zm9/wxje+kaVLl3L00Udv9zW21vdvYOufn/zkJ6N6/Hi97iIi05E92QMQEZFt9/e//521a9cCcM899/DhD394UsfT2trK9ddfzyGHHML8+fPLty9ZsoQ777yTXXbZZcLH9I53vIMjjjii/Pvtt9/Oo48+yvXXX1++LZ1OT/i4dlYf/vCHyeVy5d993+fCCy/kyCOP5LOf/SzJZHJcrnviiScOCPQnY76JiEx3ChBFRKaxe+65h2QyyV577TUlAsShpNNpli9fPinXnj17NrNnzy7//stf/hLXdYcdTy6XIx6PT8Dodj5bB2WbN2+mp6eHE088kYMOOmjcrjtr1qxJm2MiIjsTLTEVEZmmfN/nvvvu4+ijj+btb387zz//PE8//fSA4773ve9x1FFHsXz5cj74wQ+yefPmAcfccsstvP3tb+fAAw9k5cqVfPCDHxywZLVvmeKdd97J0UcfzWte8xr+/d//nY0bNwKwZs0a3vSmNwFw+umnl5f5wcAlpqeeeioXXHDBgHFcddVVvPa1ryUMQwDy+TxXX301Rx11FEuXLuXNb34zv//977fjVRtozZo1LF68mJ/+9Kd8/OMf56CDDuKDH/wgMPiyy8GWI65bt46PfvSjHHLIIey3336cddZZvPDCC9s9tkwmw+WXX84b3vAG9ttvP44++mguu+wyenp6Ko7zfZ8bb7yRN7zhDSxdupQjjzyST3ziE0Oet7u7m3e96128+c1vpq2tbdBjnn32WQ4//HD+67/+C9/3y+/ho48+yvnnn8/+++/P61//er73ve9VPK7/EtMf/ehHHHXUUUCUWVy8eDHXXXcdAEEQcNNNN3HssceydOlS3vCGN/DjH/94m1+roTzwwAOceeaZrFixggMOOIB3vvOd/PGPfxz2McVisTwXly5dyqpVqzjnnHMoFArlY8brPRcRmWwKEEVEpqk//elPtLS0cPzxx/OGN7wBx3G45557Ko75zW9+w+WXX85rX/tarrvuOhYtWsRFF1004FwbNmzg1FNP5etf/zqf/exn8X2fU045he7u7orj/v73v/Pd736XT3ziE1xxxRU888wz5azlrFmz+NKXvgTAxRdfzJ133smdd9456NiPP/54HnjgATKZTPm2MAy57777eOMb34hhGACcf/75/PjHP+bss8/mm9/8JsuWLeNDH/oQTz31VPlxfXsMt9fVV19NKpXimmuu4eyzzx714zo6Onj3u9/Niy++yKWXXsrXvvY1MpkMZ555ZsVSy22Ry+XwfZ+PfvSj3HzzzVxwwQX86U9/GhBcX3zxxVx33XUcd9xx3HjjjXziE5+oeG23Hu8ZZ5xBsVjktttuo76+fsAx//rXvzjttNN43etex1VXXYVlWeX7PvOZz7D33nuXlxJffvnlPP7444Ne67WvfW15Ke+FF17InXfeyTve8Q4APvvZz/KNb3yDd77zndx0000cc8wxXHTRRdx///3lx//oRz9i8eLFA/a0DiYMQzzPK//4vg9EXwC87nWv4+qrr+a6665j//335wMf+AB//etfhzzXjTfeyM9+9jMuuOACbr31Vi666CKqqqoIgqD8Go7Xey4iMtm0xFREZJr6+c9/TnV1NUcccQSu67Jy5Uruuece/uM//qMcYH3zm9/kiCOO4LLLLgPgiCOOoK2tjR/84AcV5+ofNPq+z+GHH86KFSv47W9/y0knnVS+r62tjTvuuIN58+YBMHfuXN797nfz4IMPcuSRR5YDtT333HPY5X7HHXccn/vc57j//vs54YQTAHjsscdYt24dxx9/PACPPPIIDzzwALfffjuHHHIIAKtWreKll17iG9/4Btdeey0AhmFUBDDbar/99uOSSy4Z8+P++7//m2w2y913301tbS0ABxxwAEcffTQ//OEPec973rPNY6qvry+/dwCe5zF//nze/e53s27dOubOncvq1au56667+NSnPsXpp59ePrbvdeyvra2NM844g2Qyybe+9a1B917+4x//4P3vfz9vfvOb+fSnP12eS31OOOGE8pcChxxyCPfffz+/+tWveM1rXjPo+PfZZx8Adtttt/KcePnll/n+97/P5z//ed761rcCsHLlSjZv3sz111/P6173OgBM08SyrAFjGMytt97KrbfeWv69ubmZBx98kFNPPbV8WxAEHHrooTz//PPcddddHHjggYOe64knnuDEE08sjw0qX8/xfM9FRCabMogiItNQoVDgN7/5Dccccwyu6wLRB/e1a9fy2GOPAVGg99RTT/H617++4rHHHnvsgPM99thjnHnmmRx66KHsu+++7LfffmQyGV588cWK4/bdd99ycAhw4IEH0tDQMGQGaSj19fUcdthh/OIXvyjf9otf/IJddtmFZcuWAfDwww/T1NTEAQccUJEZWrFiBU8++WT5ceeeey7/+te/xnT9wbz2ta/dpsc98sgjrFy5knQ6XR5jKpViyZIlFePcVnfffTcnnXQS+++/P0uWLOHd7343AC+99BJAuRrt1pVDt9bS0sKpp55KbW0tt9xyy6DB4d/+9jfOPPNM3vnOd/KZz3xm0MDs8MMPL/+34zgsXLiQDRs2jOk5PfLII5imybHHHjvgvX366afL2b+TTjqJf/3rXxVzbihvfvObueuuu8o/N910ExBlxy+88EKOOOII9t13X5YsWcIf//jH8us3mL333psf//jH3HzzzTz99NPlJc/9xz+e77mIyGRSBlFEZBp68MEH6erq4qijjqKrqwuAQw89FNd1ueeee9h///1pa2vD8zwaGhoqHrv17+vWreN973sfr3nNa7jsssuYNWsWjuNw9tlnV+y5GuyxfbcNtq9xJMcff3x5P10ymeS+++6rCHLa29vZvHkzS5YsGfDYHZEx3Npgz2002tvbeeyxxyqC3T4rVqzYrjH9+te/5sILL+SUU07hox/9KLW1tWzevJlzzjmHfD4PRMsdk8nkiJVYV69eTUdHB2edddaQlUQfeughfN+vyBpvrbq6uuJ3x3EGzJORtLe34/v+kBm8zZs3VxQWGo3Gxsbylwt9giDgQx/6EL29vZx//vnsuuuuJBIJrr32WlpbW4c814c//GFM0+T73/8+X/rSl2hubuass87ive99b3n84/Wei4hMNgWIIiLT0M9//nOAQQu93HvvvXzyk5+kvr4e27YHfBDe+vc//OEP5HI5vv71r5cDB8/z6OzsHHDuwT5Ut7a20tTUNObncOyxx3LppZfym9/8hnnz5rFp0ybe+MY3lu+vqamhubmZG264Yczn3haDZctc16VYLFbctvXrUlNTw9FHHz1oBdlUKrVdY7rvvvvYb7/9uPTSS8u3/fnPf644pra2lkwmQ09Pz7BB4qGHHso+++zDxRdfTF1d3aD9CD/0oQ/x8MMPc+aZZ/I///M/49YmoqamBtu2+f73vz/o6z7Yvsht8fLLL/Ovf/2Lm2++mSOPPLJ8+0j7BGOxGBdccAEXXHABL730EnfccQdXXnklu+22G0ceeeS4vuciIpNNAaKIyDTT29vLAw88wIknnsg73/nOivueeuopPv/5z/Poo4+ycuVK9t57b377299yyimnlI/59a9/XfGYXC6HaZrY9pb/S7j33nvxPG/Atf/1r3+V974B/PWvf6W1tbW8/8xxHIBydms4NTU1rFq1invvvZe5c+eyxx57sPfee5fvX7FiBbfeeivJZJI99thjxPONh9mzZ7N69ery70EQ8Kc//animBUrVnDvvfey11577fDWGLlcrryEuM/Pfvazit8PO+wwIFqK2n+/3WD6smkXXHABN91004Bsl23bXHvttXzgAx/gjDPO4Pvf/z7Nzc074JlUOuyww/B9n+7u7oolqzta3zzs/xquXbuWv//97yxatGhU51i4cCEXXngh3/ve91i9ejVHHnnkuL7nIiKTTQGiiMg089vf/pZsNsvpp5/OfvvtV3HfAQccwDe+8Q1+/vOfl9tVnHvuuVxyySUce+yx/OUvf+EPf/hDxWP6Pqx/8pOf5OSTT+a5557jlltuGbCUEKLMztlnn815551HPp/nS1/6EkuWLClnZ+bOnUs8Hufuu++mqqoK27YHLPvr741vfCOf+tSnSKfTA4Kbww8/nFWrVvG+972PD3zgA+y555709PTw9NNPk8/n+djHPgbA9ddfz9e//vUdsg9xa8cccwz/8z//wz777MOCBQu46667BrSYOOOMM/jpT3/Ke9/7Xk499VSam5tpaWnhL3/5CwceeCAnnngiQLmJ++233z7sNftn1FauXMnll1/ON77xDfbbbz9+//vf88gjj1Qcv/vuu/P//t//4wtf+AKtra0cfPDBdHV18ctf/pKvfvWrA87/n//5n/T29vLhD3+YW2+9dUAxoXg8zje/+U3OPPNMzjjjDL73ve/tsIxe/zG/613v4j/+4z8466yzWLZsGfl8nueee46XXnqJK664AoiC3osuuohf//rXo9qHONh1Zs+ezVVXXcUFF1xAb28v1157LbNmzRr2ceeccw5Llixh3333JRaL8ctf/hLf98t9HEf7nouITEcKEEVEppl77rmHhQsXDggOIcrgvfGNb+See+7h0ksv5dhjj+Uzn/kMN910E3fffTeHHHIIV1xxBWeddVb5MYsXL+bzn/88119/Pb/+9a/Ze++9ueaaa/joRz864Pz7778/K1as4Morr6StrY1DDjmEz372s+X7Y7EYn/3sZ7nhhhs47bTTKBaLPPPMM0M+l9e//vVcfPHFtLe3D6i6aRgG119/Pd/85jf5zne+w/r166mpqWHvvfcuB1sQtTfoK2qyo5177rm0tbVxzTXX4DgO73nPe9hrr70qeiPW19dz55138rWvfY3Pf/7zdHV1MWvWLA444ICK9hvZbHbEICeXy5WzsADvete7WLNmDbfddhv5fJ7DDz+cL3/5ywMyx5dccglz587lBz/4ATfffDP19fXDZuYuvvhistksH/jAB7j99tsrMrcQLZO8+eabOf300znrrLO47bbbRvV6jcUll1zCwoUL+cEPfsC1115LOp1mzz335OSTTy4fEwQBvu8PKBIzWq7rct1113H55Zdz/vnnM3v2bD74wQ/y5z//udyTczD7778/v/jFL/j2t79NEATsueeeXHvtteUvO0b7nouITEdGuK1/dUVEZEY57bTTqKurK7eXkNErFAoccMAB3HLLLeWWHYM5//zz2bhx45D9I0VERMab2lyIiIiMsyeeeIJFixYNGRw+99xzfPe73+X+++8f0JZERERkImmJqYiIyDg78MAD+dGPfjTk/Zdffjmvvvoqp59+OmeeeeYEjkxERKSSlpiKiIiIiIgIoCWmIiIiIiIiUqIAUURERERERAAFiCIiIiIiIlKiIjVDCIIQ3w8mexgVbNvE86bWmGTnoLkl40HzSsaD5pWMB80rGQ9TbV5ZlolpGiMepwBxCL4f0NGRmexhlJmmQUNDmq6uLEGgukKy42huyXjQvJLxoHkl40HzSsbDVJxXtbVJTNMa8TgtMRURERERERFAAaKIiIiIiIiUKEAUERERERERQAGiiIiIiIiIlKhIjYiIiIhMqjAMCQKfcBJqeZimQaFQwPO8KVNMRKa/yZhXhgGmaWEYI1cqHY4CRBERERGZFGEY0tPTSW9vFzB5wVlLi0kQTJ12BLJzmIx5ZZoWDQ1zsKyRq5UORQGiiIiIiEyKvuCwuroe140B25f52Fa2beB5yh7KjjXx8yqko6OFrq426uqatvksChBFREREZMKFYVgODpPJ9KSOxbZNQBlE2bEmY15VVdXS3r6JMAwwjG0rN6MiNSIiIiIy4YLAB8JS5lBEdgTLivJ/27O0VQGiiIiIiEy4LQVpJmdZqcjOKfr3tD0FnxQgioiIiIiICKAAUURERERk0vztb//HqlUHkclkhj3u5JPfxA9/eOcEjWpi3X33D7nwwo+Wf/c8j8997hKOO+51rFp1EM899wyXXfZp7rjju5MyvnPP/Xeuv/5rk3LtyaAAUURERERklK644lJWrTqIr3716gH3XXbZp1m16qDtCiZ+8YufccIJrx9w+80338YJJ7yl/PuqVQfx0EN/2ObrTIRMJsP113+Nd7zjzRx99Ere/OY38NGPnsPjjz9WPiafz3PrrTdxxhnvL9/2wAO/5Q9/eICvfe3r/OQn97Hbbntwxhnv57bbbqW3t2fYa5588ptYteqgAT93333XiOMdKli/8sov8r73fWAsT32bTJX3VFVMRURERETGYNasZn79619yzjkfwXVdAHp7e/jDHx5g1qzmcblmXV3duJx3RygWiziOM+D2L37xSp599mk+9rFPsOuuC+noaOevf/0LXV1d5WMeeOC31NTUss8+S8q3rVnzKvPmLWDvvfcp37brrgtZsGAXfv3r+zjppJOHHc/ZZ5/D8ce/qeK2dHrbK+VWV9ds82OnIwWIIiIiIiJjsO++S3jxxRf44x8f5OijjwHgN7/5FYsW7Y1pVi7QW7XqIK666qscfvgRQJRV+7d/O5Jrr/0mBxxwUMWxf/vb/3HllZeVHwdw5pkf4Kyzzubkk9/EKaecytvf/v84+eQo+Olbljl79hzuuutnvPrqK1x//Vf517/+SS6XY/fd9+DDH76A/fZbXjGe//zPT/L73/+Of/zjMWbNmsUFF3yMFStWlY954YXnuf76a3j88b+TSqVYsWIV55770XKQde65/86eey4CQn71q/tYsmQpX/ziNQNep0ce+SP/8R8XcthhKwGYM2duRSAI8Nvf/orDDz+y/PsVV1zKvff+vDzWvucGsHLlKn7721+PGCAmk0kaGhoHvW/DhvV85StX8/jjj+F5RebNm89HPvJfzJ49h/PP/yAA//Zv0Xje+MYT+dSnLuXcc/+dvffel3PP/QgQZSnf8pa3sXr18/zxj7+nrq6Bj3/8kyxYsJAvfOFynnzycXbbbQ8uu+wK5s6dDzDiezPUewrw4IMPcMstN/HKKy/R1DSLN7/5rZxyymkD5tqOoiWmIiIiIiJjdPzxb+IXv/hp+fdf/OJnA7JWY7Vs2X6cf/7HqK6u4Sc/uY+f/OQ+TjnltAHH3XzzbQB85jOX85Of3Ff+PZPJsHLlEVxzzdf59rdvZ+nS1/Dxj19AR0dHxeO/9a1vcuyxx/Hf//09Vq06ik996uNs3LgBgO7ubs4//0Psu+8Sbrnlu1x11dd49dVXuOKKSyvOcc89PyWRSPLNb97Ceef9x6DPp66unocf/uOw+ysff/yxikzhBRf8J+9616nsueeiiucGsPfe+/LPfz6J53lDv4gj+MpXrqJYLHDDDTfzne/cwVlnfRDXjTFrVjNXXBEtG77zzrv5yU/u44IL/nPI89xxx3c58MCDufXW/2H58v257LLPcPXVn+Od73w33/72d7Ftmy9+8fPl40d6b4Z6T//xj8e48spLede73sPtt/8vH/nIf3HXXXdy113jtx9VGUQRERERmTKefMhg0ysTd71Zu8Dyo8b+uOOOO4Fvf/tGWlo209vbywsvPM/RRx/Dfffds81jcRyHdDqNYTBkBgy2LDdNp6sqjlu8eG8WL967/Pt5532U3//+dzz66MO84Q3Hl28/5pg3lIPZc8/9CH/+8yPcffcPOfvsc/jhD+9kn3325f3v/2D5+I9//FO85z0n097eRl1dPRAt+Tz77HOGfT7/9V8Xcdlln+b4449m0aK9Wb78AI455t9YtCgaY3d3Nz09PRXPIZ1Ok0gksCxrwGvQ0NBIoZCnvb2NpqZZQ173+uu/xje/eX3FbTfccDOLFu3Nxo0bOOqoo9ljjz0BmDdvfvmYqqpqIApsk8nksM/t8MOP5E1vOgmA9773LO699+ccdthKVq6MMrHvfOcpXHbZpwmCANM0R3xvhnpPb7nlJk4//X0cd9wJ5fG+973v46677uSd7zxl2DFuKwWIIiIiIiJj1NDQyEEHHcq9995Dd3cXRx11NMlkalLHlMlk+Pa3b+SRR/5IW1srvu+Tz+fL2cE+++67tOL3JUuW8dJLLwLw/PPP8Ze/PMqxxx4x4Pxr164pB4j9s35DOeCAg7jrrp/xxBP/4PHHH+PRRx/hjju+y8c//ilOPPEt5PN5gPI+zpHEYjEAcrncsMedeuoZFQExUN4b+ra3vZOvfOUq/vKXRzn44EM5+uhjWbhwt1Fdv7++ABOgvj56TXbbbfd+tzXgeR49Pd1UV9eM+r3Z2urVz/LEE//g1ltvLt/m+wFhGIx5zKOlAFFEREREpoylh4dw+ERf1dimR51wwpv45jevJ5PJcMklnxv8zIZB2K9r+fYsjxzJDTd8jb/+9S98+MMXMG/efGKxGP/5nxdQLBa3GtPg4wTIZrMcccRrB80ONjU1lf87Hk+MakyO43DAAQdxwAEHccYZ7+eqq67glltu4sQT30JNTQ2GYdDd3T2qc/UVt6mtHb5gT21tLfPnLxj0vre85W0ceugKHnroDzz66CPcdtstXHjhp3njG08c1Rj62Hb/MCp67Sxr4G1BEL33o31vtpbJZPnABz7EEUdsQ5p7G2kPooiIiIjINjj88CPp7u7GdWPsv/+Bgx5TW1tHW1tr+ffnn3922HPatoPvj5wdsm2bIPArbnviiX9wwglv5sgjX8see+xJdXUNmzdvHPDYf/7zyYrf//WvJ9l114UALFq0mBdffIE5c+Yyf/6Cip9YLD7iuEay6667ljOAjuOwcOFuvPTSC6N67EsvReOqqqrarjHMnj2Ht7/9nVx99Vc58cS3lIvi9FViDYIdn50bzXsz2Hu6aNFiXn315QHvxVAB8I6gDKKIiIiIyDawbZs77/wxhmGUM3Bb23//A/nhD/+XffddSjab4eabvz7sOefMmUNvbw9/+9v/sfvuexKPx4nHBwZms2fP5f/+78/su+9SHMelurqa+fN34YEHfsdhhx1OGAZ885s3YJrWgMf+9re/YvHivVmyZBk///ndvPLKy1x11dcAeNvb3sFPf/ojLr/805xyymlUVVXzyisv8eCDv+fCCz81ptfnvPPO5g1veCOLFu1NOl3FM888xf/8z+2sWrWlaukhhxzG448/xtvf/v9GPN/jjz/GwQcfOuJxmUyG1taWitsSiSTJZJJrrvkyK1Yczvz5C+joaOeJJ/7BsmXLgShwNAyDhx/+AwcffBixWGzEvYijNZr3ZrD39L3vPYtPfvJjzJrVzFFHHQ3Ac889w/r163jve8/aIWPbmgJEEREREZFtlEoN31/v3HM/whVXXMYHP3gmc+fO47zzPspHP3rukMcvW7Yfb3nL2/jMZy6ks7Oz3OZisPNef/1XufvuH9LUNIu77voZ5533Ua68MrpWXV09733vWXR2dgx47Fln/Tv33fcLvvjFK2lqmsVnP3sVs2fPBqCpaRZf//q3+eY3r+MjH/kwxWKROXPmbdMSx4MPPpSf/ewnvPLKtRQKeZqamjnhhDdXBDYnnPAW/v3f30sm0zvsHs5isciDDz7Al7507YjXvfHGG7jxxhsqbnvPe97Lhz50Hr7v8aUvfZ6Wls2k01WsXLmKD3/4vPJzP+uss7nhhq/R1tbGccedwKc+demYn/dgRvPeDPaerlhxOJ///Jf57//+Frfddiuu67Bw4e687W3v2CHjGowR9l8ULWXFok9Hx9AleSeaaRo0NKRpbe0pr2UW2RE0t2Q8aF7JeNC82rl4nkdLy1oaG+dttZ9r4tm2ieeNX9GPqWTrvoxTwac+9V8sXbofp5xy6pDH/PSnP+b++3/DV796w5DHTDWTMa+G+3dVW5vEcQZmlLemPYgiIiIiIjJpzjnnI4Muo+3PNE0++tH/mqARzWxaYioiIiIiIpNm7tx5vPWtJw97zIknvmWCRiMKEEVEREREZog//vH/JnsIMsVpiamIiIiIiIgAChBFRERERESkRAGiiIiIiEy4LW0DVZFWZMeJ/j0N0ZZzVLQHUUREREQmnGlamKZFR0cLVVW1WJYNbMen2u1i4HkKVGVHm+h5FdLT04lhmJjmyO0shqIAUUREREQmnGEYNDTMoaurjfb2TZM6FtM0CYKZ0QdRJs5kzCvDMKmvn4WxHSlEBYgiIiIiMiksy6KurokwDAiCgHASknimaVBXl6S9PUMQKIsoO8ZkzCvDiDLz2xMcggJEEREREZlkhmFiWZNTGsM0DVzXxbYLChBlh5nO80pFakRERERERARQgCgiIiIiIiIlChBFREREREQE0B5EEZlhNmR72ZjL0FksEBISArsmq9gtXTPZQxMRERGZdAoQRWTG2JjL8KuNr1AIAtxSha+AkDWZHurcOLVubJJHKCIiIjK5tMRURGaEvO/zp9YNhGHI/ESKWfEks+JJZsdT5AOf/2vbSDAZ9dVFREREphAFiCIyI7zQ08HGXIZZscSA+5pjCV7N9tBdLEzCyERERESmDgWIIrJDBGHI2mwP/hTMwvlhyNPdHVTZ9qDNY23TJAhDerziJIxOREREZOpQgCgi260Y+PypdT2/3fgq67O9kz2cATbmemktZKl2httjGNLjK0AUERGRmU1FakRkm/lhwJpMD491tLAxl8EAXujtZH4yPdlDq/BCTyemYWANkj3sY2LQWchP4KhEREREph4FiCIyZjnf45VMN091tbEplyVuWcxPpCgEPi/1dnFAbRNpx53sYQLQ4xV5sbeLumGzhxCzLFoK2QkalYiIiMjUpCWmIjJm929aw+83raXXKzIvkaIplsA0DOKWTd73ea6nAz8MJnuYAKzJdJPzPRLW8N+HxUyLjkJhyoxbREREZDIoQBSRMcl4HpvzWWbFEtS7ccytlm3WuzH+r20j929cQzGY3GDLD0Oe6W4nZTsjHhszLQqBT6/nTcDIRERERKYmBYgiMiZdXp5C4OOag//5SNkOcxMpXurtYnM+M8Gjq9SSz9KSz1EzwvJSiCqZemFAj6dWFyIiIjJzKUAUkTHpKvUKHKxdRB/LMDEMWJ/bUtG0GAQT3oi+t9S2YrjiNP0ZoAyiiIiIzGgKEEVkTNoKOSxGDrjStsOLPV3lvoh/ad3An1s3jPfwKhQCf8yP6VIGUURERGYwVTEVkTHZmMuMWPAFIG27bMhlaM1naYjFeTXbQ1exQH0sThCGNMeT1Lnx7R7P5nwWA2iMJQbcl/V9YPRZS9e0yhlSERERkZlIAaKIjFrO9+gqFqgaRdEXyzAICdmQ68UyTHq8InHL4sHNayn4PntX1/G6WQuGXao6Ei8I+OPmdXQW8+xf18R+tU0V9/d6BWxj9AslHMOkq6heiCIiIjJzaYmpiIxKGIaszfZSCAJipjWqx1TZDs92d7ApnyEMoSmWYHYsyYJkFS/1drMht31FbF7JdNOSz5K0bB7vaCHnV+4fzHjemAJE1zTp9Ty1uhAREZEZSwGiiIzKo20beGDTGmKmOeqsX5Xt0lHMs7qnE8eMHmObJo5pYhoGj3e0bHMrDD8M+VdXKwnLosp2KAQBPaWiNH16/SK2OfoMpVNqdZFVoRoRERGZoRQgisiorMn0UGU7g+71G4ppGFgYtBVyJLfat9gUi/Nyppu/tW8iHEV10yAMK6qgvtjbybpshjo3jlFaztrdr8BMEIZkfX9gBrFgQmsCNiWjn81JKMWojmniBQEZXwGiiIiIzEzagygiIyoEPrnAI2WNvPdwa/VunLW5HhqS1RW3W4ZJcyzBk50tzE2kWJCsGvY8z3V38GqmmyNnzcMLAv7atokq2ym3sDCA7n4FZgqBjxcGpIzSn7kQjKcaMdZWDzh3OL+TcJ/W6DyGQc4fe/VTERERkZ2BAkQRGVHW9ygGIa4z9kUHMcti91TNkPeZmLzc2zVigNhayPLPrjZCQnq9qFjOgmS6fL9rWrTkc+Xf876PFwTYZmnMG9IYa6sJHR8aM+CU0obr0xhraghn90JdjjAMyfiVS1VFREREZgotMRWREWV9jyAMsMZQ8GW0ahyHlzLdAwrMbK2jmKfOcVmT6SHrF5mbSFXcHzMt2gq58nLVfOATEEYZxryF8XQDISHhfhsJl24mXNxa+mkBwHi6EYiWxfYqQBQREZEZatoEiH/5y1/44Ac/yKpVq1i8eDH3339/xf35fJ7LLruMQw89lP3335/zzjuP1tbWSRqtyM5l1EsuR99ysCxh2eR8b9iKpkEY0lUokLQd5iRS1Lnx8tLSPnHLotfzyJYCzXzgY1A6Zm0VhmfBgi6oy1WefHYvYbKA0eNCMSqg01lQL0QRERGZmaZNgJjJZFi8eDEXX3zxoPdfeeWV3H///Xzta1/j9ttvZ9OmTZx//vkTPEqRnVN2pKItOQvjL3Mw/jy3XPBltAzDwDYMnu1qZ3VP56AtJnK+RyEIcM2h/2Q5hokX+nSXKpnmA58wJNp7uDZavhru0jnIAIB0KSDsdXBNk071QhQREZEZatrsQTzqqKM46qijBr2vu7ubH/7wh3z5y19mxYoVQBQwHn/88TzxxBMsW7ZsIocqstPpKRYxqczY1W9q5+CHngDP4JH64+kJouqmYUsSZo2tv2Gjm2BttodXMt0cM3sXFqYqC8lkfI9iGOAMs8Q1qmQKHYU8zfEkBd8HQmhNYOQcwvoMJIcIdFOlJaU9Lk7aIrv1/kURERGRGWLaBIjDefLJJykWixx++OHl2/bYYw/mzp3LY489ts0BojmG/mnjrW8sU2lMsnMYzdzq9gu4llXuf2gVPA773eOkSstCV+Z/xa/2fBt0J6Iqoc3ZMY3BsSzmJtOsy/awuZBl96rKoja5wAcDzBECtrhl81K2i31q68mHPpZpbKlaOr976P6N6ShANDIuMcui2y+QD31c0xrT85At9DdLxoPmlYwHzSsZD9N5Xu0UAWJLSwvxeJx0Ol1xe0NDAy0tLdt0Tts2aWhIj3zgBKurS418kMg2GG5u+W0GNVacVCyG3+Iy97frSOUyrIvvhm3mmZVZx55zH+P5lw7BaEkQtxKYiTGuNQWanJA2CtTVpzANgw2ZXroKBZy0QyLukkrHhn28nbBpzWWx0jZkLKqtFMbmJMR8krv7GObgjw+aIAdYuRjJqjidPR7x6hgNSf172176myXjQfNKxoPmlYyH6TivdooAERg0MzCa5ttD8byArq6xZUHGk2ka1NWlaG/vJQi2/XmJbG2kueUFAZu7ekmYFr3FPDzWwC4dzwPwzAG7YNTkmXXvOuY/8QLPLdoH46Vasn+sg6WboWps1UCNIGRdvpsXN7RR68Z4rHUjq3s62DVVRS5XoNcYeW9gVybHn15ey+qeDmIvN0BoEM7pJpMZ5rFGAQjxO20yvQWyuQLrWzpxUvq3tq30N0vGg+aVjAfNKxkPU3FeVVcncJyRV0ftFAFiY2Mj2WyWnp6eiixiW1sbjY2N23zeqfJm9hcE4ZQcl0x/Q82t3mKRgu9TbTmEfki8w6OxsJ7eVIKWvRJAgu7qFA2bO0gfsoae2jhGR5zwr7MJj3hlTKWwLMPADwI25TJU2y5rMz1szmVxDQvXMEf1pU/ctHiiowVCqFlfC0A4txuGe6wZYiQ8jKxDUATCqNei/q1tP/3NkvGgeSXjQfNKxsN0nFc7RQWGpUuX4jgODz/8cPm2F198kXXr1rF8+fLJG5jITiDre1sKtvS6zM6tAWD9giYwDDAMXt5jLgDz1q0jPGgdYX0Wo2BDR3zM17NNg/XZXrK+R2cxT8y06CzmR70fsN6Nk7JsZnu1UXGa2uyWIjTDSfVVMnUByHgjVG4VERER2QlNmwCxt7eXp556iqeeegqANWvW8NRTT7F582aqqqp4+9vfzuc//3n+9Kc/8eSTT/LJT36Sgw46SBVMRbZTzvcpr+DuijEr9woAG+duyc6vWzALgHmvbgIDwuYeAIxNpXX3XS7G47MgO/KihWo7xku9XazN9pD3fWbHk3R7ReLW6AJE0zCoclzIlY5P9wsOwxCG+hav77heB8cw6VKrCxEREZmBps0S0yeffJLTTz+9/PvnPvc5AM4991zOO+88LrroIkzT5Pzzz6dQKHDEEUdwySWXTNZwRXYa2cAjLLW4MLpcGgvrCYFNs+vLx3TWVdGbTlDf0kk8kyPXZMFTwOYkLG7FeLkGY2Ma8hbhARugYEFi8Axd0rZpKeRY3d0JBtimyZ7pmkGPBaK+i4N91VWI/ryFbnSdqo4eDn3wMRKZPH9Z9Ro2zG+qODxMFDEAI+vgmBZdxbHtnxQRERHZGUybAPHQQw/lmWeeGfL+WCzGJZdcoqBQZAfLeh6Ukm6x9oCU301XdRrPdbYcZBisXTCLRU+9zNxXN/HC4l0Ia3IYnXHCHhfaox6JRkcCHtgVAiMKFBsGLwSVtm1aClncYfoeArCmCuPpRpjfRbhnG9j9soP5UgYx5kMQcugf/kFdWzcAB//+Mb594sEU3OhPoGkYzE0kSk/YxjFNer0CQRhiDtUaQ0RERGQnNG2WmIrI5Oj2CjimAQHUt7UD0No0MKO3bpdmAOa+sgmAcFYvAMYLdRh5mzBeJDQDCAwMDIzn6suB59ZqHJfWQo607Qx+AIBvYKyuwwgNjFdrMJ6cVXG3USgFiK7P/Jc3UNfaxYaGap7ffQ7xoscpm/OcNG8PTpy7GwnLpsuKxkvOxjVNCkFAzvdH+zKJiIiI7BQUIIrIsLq9AvF8DOMfzdTno+Cvral2wHEtzXUUXJtZ61uxih7M7iE0wi37EJt7CQ9/lfColwmrcxjdsWgJ6iAsw2RRupbkcAHiuiqMgk3YkCG0AmhLVAac/TKIez71MgCPLN0Fc+VBANQ89wqNsQSz4ykOrm+m0y5lM7M2jmFSDH1ygQrViIiIyMyiAFFEhhSGId3FIqkXmzFaUtR7GwBoGySDGJom6+c3YQUBzetaIO5DY2bL/XW56DY3INwjykQaTzduCeTGwjcwXorGEO7ZBukChm9Crt+q+VIGMVXoomlTOx3pOKm9dqdpwXz8+lqsjS0YHV0A7JaqJuXaBK4HeRsjNAjD0vJaERERkRlEAaKIDKkQBBQCHyvnQhhS723Es0w666oGHFsMAv7ZHAVtc18tLTOdFwVgISHU5rYc3JAlnNONkbcx/tEcFZoZTt7C+FcjdEctKIyXSi0smnqhugDpUouKHrff4KMAcf66tQA8s0sTe1TVAeDvtSsA9svRfZZhUuu6+LECRmiUglaDrDKIIiIiMsMoQBSZwYpBwKMtG8gNkSnL+R7FIMDM26T9NpyiR3tDDaFZ+acj63tsyPXSMr8Z3zCYs2Zz1E6iMRv1IZzdA06/KNCAcN/N5UI2bE4NP9D1aYy11Zh/mg+vVsGLtYRmQLi4FYBwsAAxbxPaPvNfKWU995hPYywqROPPnwOAtWZD+fAGN04xVjpPzsEwQorBSJGriIiIyM5FAaLIDNbjFXi2u4PVXR3l2zbkenmuu4O12Z4og+aDUbCpD9cDlfsPc77H2mwvncUCB9U3s6R5DmuaaojnCjS0dESB4MHrCZdtHnhxE8KF0XWNjcMHiEa/paPm003REtDd27e0yigFiEYpw4hvYPgmSaOd+tZO2tMJmnfZtVyR1J8/OzpXvwCx1onjxUsBYtYmDKGoIjUiIiIyw0ybNhcisuP1eEW6iwX+1rKRw6tn86+ONv7Z2UpAiGtaLK9twipEhWLqvY1AtP+w1yvSVsjjmhaLqmrZt7qBhlicnO/x7IImdt3UwdxXNtE6q274ATRkowIzm5PgGZVtKvrLRGMIGzPg+ITNvRX7G8tLTHtLAWJpX+P87AsAvLDrLBaktiyLDZMJgroarLYOjEyWMJkgbTt4bqlQTc7GMgzyyiCKiIjIDKMMosgMlvE8HNOgJZfl52tf5PGOzdS7MeYn0uR9nzXZHsx8FHTV56J9ha0NNbQW8uxf18RJ83fniKZ5NMTiAMQtm3CvhQDMfnXjyAOwQmjqxQhM2JAesu0F2VLT+2UbCZduhqYM9G9P6AaErge9TrSfsW//YXcUIBYXR60s+itnEddG40zbDkG8CICRtTENg7z2IIqIiMgMowBRZAbrKhYwDZPGeALbMFmQrCJeCqRqHJeOQh4n72KGHjXZdrKJGO0Jh4RlsbSmgRonNuCci3ZZSHddFbWdvcQ6ukccQzg76j9oPtWE8dCCKJNYcQCQdQgdf+gMI0SVTEMjChLzFkmvi/pMKx3pOI277DLg8L4AsW8fYsp2sJKljGE5g6glpiIiIjKzKEAUmcHaCjlipknacal23Ir7qmyHjmIet+BSV9iMGYa0NdaQCwKqHbccSG4tYdm4e+8JQOPLGwY9pkJjhnC3dsJEESPrQGui8v68FQV+yeLw56kuLTNtT0DBZl52NQBrFs6hKT6w32I5QFwbjdE2TVLpUnCadUoZRAWIIiIiMrMoQBSZoYIwpKOYJ2YO3ofQMAwWJNIki3HqC337D2vJ+h7NgwRc/Xl77QbArqV2FxAVtCkMFnAZEO7ZHhWdAYy2fgFilxtlBGFLQZohhLOiTKSxMY1RsJiffR6A1j0XlIvT9Bc01BG6DtbGFijtNWxIxvAdL8ogYlDQHkQRERGZYRQgisxQOd8j5/u41tCN6h3TxMjZ1BVLAWJjDT4h9W582HMHc2dRrE4zr6WLWHcUuG3O59iQyxCEQywTrS8ViOkLEFsTmI/Ox/hXU/R7YqQMYp4wXsToiJPaVKC+uImOZBK/qWHw4w0Dv7kRo1DEbOsEomW1fb0QrYJDQVVMRUREZIZRgCgyQ/V4RYqBj2OM8GcgZ1Nf2EhIVKAGGLAcdQDDwF+yFwDNq9fihwGWYdAcS/JqpodXsz10FPKVj4n7hKkCRsaFnIVRWmpq5EoVTIcIEFvyOTblMgSE0BwFo/PXrwXg2fmzSDrOkMMMZkfBp7khasORsG28WHQdO+/ghSH+UAGtiIiIyE5IAaLIDJXxPQwjWko6pBBivQVSfjddtWkytolrWlTbA4vTbK0vQNztpQ30eh7VjsuKxjnsmqriNdUNdHvFgdnE/lnEjq2ylMmBS0yLQUAh8Kl2Y6zJ9hDM6gFgfvY5AJ7ZrX7IJbQA/pwoQLTWR0thE5Zd7oVo5V38MMDTMlMRERGZQRQgisxAxSDgld5uKntFDHagSUMuyq61NNSwOZ+lxnZJ2iO3UA2aGig01DKroxdncxtz4ylmxZMcN2chB9Y3MyuepK2Qq3hMWAoQjY0p6HYJjX4B5CAZxJZ8jl1TVRwzawFx06ZYnSW5cDV1xRa6alK01iRxhwsQZ88C+mUQLbvc6sLKOQRhiBcqQBQREZGZQwGiyAwThiGPtK7n6e42ZsUSwx+ctakvRFU+X6hNsDBVzeFNc0d9rWC/fQBYsno9zYlU+XbbNNmvtpF8KQNY1pAltH2MllTUG7EhS9iYIUznIVa5H9ALAgJC9qmuJ2U7JG2bnO+zS09UnObVhXPAMIgNs8cyrK+pKFSTtGyIR5lKI+fgh6EyiCIiIjKjKEAUmWHygc/LvV00xRI45sj7DxtKAeL6xmr2q2uicaSgsp/isr0JLJNlr2ymYau9jrskq9i3uo4NuSx+X5bOCmFuT/mYsCZHuHwD4WFrKYaVweSmfJZdU1XMjqcwDIN6N07B89jtuTUAvLjHXAyMYZeYYhj4s5swih5maweOaeGkorGYOYeAEE97EEVERGQGUYAoMsMUgwA/DEcuTgMYGZO64iaKlk1XTZrEEL0Ph5SMU1y8O27Rp+G5VyvuMg2Dg+qbmZ9M0ZrfstQ0nNe15aCaXLQK1ogCwo25LFnfo8crYBsmB9bNKrewaIzFmbOuhWQmx8Y5DXSm49iGOewSU4CgtA/RLO1DLPdCzNkYoCWmIiIiMqMoQBSZYfKBjx+GWMMVpympbevBDj1aaupwbJvEMMs1h+IfuBSA2P89AVtl4xzTYlG6rrLfYLpI2NhL6HpQ07/SaciuqSpa8zl6PZ/965qo69duo9qJsfSF0nLYRQvwggDbNIlZw/+Z80uVTK0NLdFzTjgEtgdZG0K0xFRERERmlDGmA0RkuisGASHh8NVLSxra2wDY0FBD0raxRpF13Jo/bzb+3GasdRuxVr+Cv+euFffPTqRwTYuc7xEvZSjD/TZCaERLTvvZp7qeJTUNVNsuVVu12qjtyTJvXSu5uMu6XWbhBT4xyxpxzH2FaqwNUQaxynHZFCvi9iYwPYuiMogiIiIygyiDKDLDFAIfY6TqpSX1XVFWbV1Tmmp76H6CwzIMCiv2B8B95G8D7k7bDnOTKTqLhS03mlQEh1E7DIO07TAvkR4QHAI0/v1pzBCeXryAwLLwwoDUKJbEhnXVhDEXc2MrBEHU6iIWjcXOxbTEVERERGYUBYgiM0y0nLMUfPU60c8QGjJR+4dXZyWocUbufTgUb6+F+A112Gs2YL3w6oD7d0vV4IUha7M9FAdZ0lkMAlzTHHIPpJHJEn/iGTzb5PE955Yfk7RGEdT2FarxPMyW9q16ITpaYioiIiIzigJEkRmmEPiEoQEhGH+dA4/OISz0yygG0U+sp0Da66LLqSUbs0ltawYRoiziUYcAELv/Edgq6NotVc1xs3dlfrKK9q16I/aNOW7aQ1YkdR/+G4bns3bvhbTb0XPxw5CUM7ox+32FajZsjoJQJxqf4VmqYioiIiIzigJEkRkmF3iYBlA0MfJ2FAS9kIp+/2cjxu92w/zt7jQ+Gh3fmmrCgPL+wG3lLdoNb/5srE2t2E88U3GfaRjMS6bZNVlFYZAlnYUgoNpxB903abR34fz1SULXIXfY/gSEhGFISBj1NRyFoK9QzfrNJCwLoxQgWp5FPvCHe6iIiIjITkUBosgMk/W8qIJpv6WlxefS8NA8jHXVYAWEZlAuUNNa00gIY29xsTXDIH/0SkIg/rtHMHoyAw5piCUwMEp7DqGtkGNttpdC4FPrDtx3CBB74BGMIKBw6HIaGxpIWQ69vgcj9UDsp3+hGse0sEtZSMu3yPsKEEVERGTmUIAoMsNkfA/bMCETBVyhEUbZw4JNOKebcNWrhLt10JhfB8Dm+nosY+j9f2MRzGumeOAyjFye2C8fHND2os6JkbYdMn4xGmspmM0GPtWD7IG0n16N8/QLBNVpCofsh2taLExVsyGXIWZaVA9SzGYwYW0VYTwWFarxfRLxLQFiQRlEERERmUEUIIrMMFk/CrqMTCmDuGc79l49hIeuJVy6GZwAe1Y7dcVNZM0k7XUxnGEKxIxV/rWHEtRU4Tz7Is5fn6y4zzZN5iZS9HgeYSl4bHAThGE44PpGb4bYL/8AQO7414IbPZ9dklXMjid5XfN8GmOJ0Q2qr1CN72O2tJOMRX8aTd+ioAyiiIiIzCAKEEVmmJzvYZv9lpjWZ3GXdUHNljYTjR0tmIS0xOZRSBZImDaOuYP+XLgO2ZP+jdAyif32YayX1lTcPSeeohgE5Et9DPeprqPejVfuJ/R8Ej/8JWYmS2H5vvi7LSjfNS+Z5oS5uzEvkR7TsPoK1VgbNpOKR9cyPYucMogiIiIygyhAFJlBioFPMQyj5vF9GcSkN+C4pg2tAGzcK0WuqpeqUVYDHa1g7ixybzgSIwhI3HUv1qvry/fNTaSIWxZthTw1Tozd0tXsXV23pc2G7xP/+W+x1m7AnzOL/LGHDzj/tmQ7+wrVmOs3kShlEA3f1BJTERERmVEUIIrshHK+x4u9nXQW8xW3F4IAPwiwiQLE0PHLLR36m7UhKlCzeY9qiqFPlT26vXxj4e23D/nXHoZR9Ejc8XPsfz4LQNJ22CNdQ0cxz7xECssw2b9uFjHLglyexA9/ifPUaoKaKrInHwf2jln66vdVMt3QQjLeb4lpEKgXooiIiMwYO+aTlYhMKetzvfx2w6vYpsny2ib2TNewJttDrRvDC0OsnIMRGoSpwoDH2oUida2dZJMxeqqT+LleqkZZ7GWsCiv2j5aa/u4REj/9LcVnXyL/2sPYPVXD6p5O6mPx6MAwxH72RWK/eQizqwe/oY7sKScSplM7bCxhTRVBIo65qYVU6S+j6ZlkfY/2Yp6m0e5nFBEREZnGFCCK7IR6vajNQ43j8pe2DTzZ1UpPscC+1fWEhJilCqYkiwMe27ixHSOETbPrwTAIQ4O4Nbp2EduieMh+BE31xO+5H+fp1ThPr2a3BXM4oS5FfbqLWCaL/dIazI7u6Ph99yT3b0dCYmBV0+1iGASzm7BffJWazm5CIwWeSUhIaz6rAFFERERmBAWIIjuhzkIexzRIWDaz4ynygY/txFify2DnHYxnGwAIqwts3Xq+vLx0dnSMYYQkzPH9U+HvtoDefz8F98//wPnHU9ivrmfXVyuP8RbMobBif/w9dh2/ccyJAsT4plZCexaGb+IaJuuyvexdXT9u1xURERGZKhQgiuyEOot53FLVUcc0cUyTMAxZk+2l+ZndMTIu4axemNcFW4WIs9ZHBWo2za4vtZowov1/4811KKw6iMLhB2JubMFsaQffh0Qcf14zYSo57kMI+u1DNOwAo2iTMl025DIUAx/HnIDXQURERGQSKUAU2ckEYUhXsTAgmDEMgyrbwc0kCM2AcNnGAWWqYpk8dW1d9KQT9FYlKYYBtmHssB6Io1Ja6tkXrE2kLYVqNmHWQZiFZOjQHuRoK+Rpjo9/kCoiIiIymVTFVGQnk/U98oFfziD2V2vHMD0LXB9M8IKAZ7vbyXlRq4vZ6zYDsGF+ExgGXhDgmNa47kGcSsLqNEEyjrmpDceKXhPDtzCA9kJucgcnIiIiMgEUIIrsZHq9IsUgwDEG+eddLAV6pdYWucCnzo3TkssCMHtNFCA+2VjF+lyGYhiQsKyob+JMYBgEs2dhBAG1XrQXE8/EMgzaC/nhHysiIiKyE5ghn/pEZo6M74FhYBhbl58BiqV/8m7U/L0Q+FTZDgCduSyz1m7GNw3m7rOYuGXRXsiPSw/EqaxvmWldviW6wTOJmTab89lJHJWIiIjIxFCAKLKTyfoeEA5+Z6GUQSwFiHnfZ24ixe7VtTS0dBIv+gS7zGOfxmYWVdWS9T2qx6kH4lQVzCkFiJkom4pnErcsurwChcCfxJGJiIiIjD8FiCI7mc5iHmtA84qS8hLTKNDxCalxYxw1dwHH9ETLTv09dgFgt1QN9W6cdCnDOFP485oBqOveEN3gmcRMi7zv010c2DdSREREZGeiAFFkJ5HxPJ7v6eDVTPfQbSkK0T/50I2CQQNIWg5pxyHx4loAvFKAWO/G2S1dQ2qGBYhhKolfX0sy00XM7wXPxDQMQkK6vcJkD09ERERkXKnNhchO4B/tm3m8s4Wc75OwLBrc+OAH9ssgBqUehynbJuzoxtqwmaC2mrC+tnz4qsa5mIPtZdzJ+bvMwWrroLGwnle9egAMDLqLChBFRERk56YMosg054cBT3e3YxsmC5JpGmOJwQvUAEa/PYjFIMA1TVK2g//EcwB4i3aDfo+dicEhgD9/DgCN+XUYXvRn0jVNFaoRERGRnZ4yiCJTWBiGbMxnyi0WFlXVYQKb81l6vCJNsQT5wKfHKzJ7NE3c+2UQ84FPwrKJWzbB489Edy/efZyeyfTi7zIXgMbCekJvPwBipkVbIUcYhkMG4CIiIiLTnQJEkSmqGAQ81LKOF3o6CQkxMMpB4K82vkxP0WNJTT2zYkkCQqzRBC2FvjYXAYXAZ04iBb1ZghfWEKSTBKUCLTNdWFNFMZWiprcFO+vhAXHLoqNYIOv7JG396RQREZGdk5aYikxRz3S18Wx3B02xBPMSaUKgxyvSVSyQ83zmxJOs/v/s/XeQXOl12H9/nxs7Tg6YGeSN2IANwAbuLpe7pCQGUZQoyvL7WrKtVH7f10m2yyrL5VCOsmRbzirrV5JLsixbtiiZEimK5FIMyyU3ERu4CTlOzp375uf94zZmMJgMzCDt+bC2CHTfe/tpoAfdp895zqmVOV0v4250kH0rgxhYAY04ptfNYZ08C1oT37V/SXnp+50/MIACuivpPERbGQRJTD2WTqZCCCGEuHVJgCjEDWjab/JGaZoux8E2Wp1H0VTDgEoYAArXNIl0wqzf3Hin0cBEoxmPatzb3sU9bV2Yx84AEN0t5aWXilr7EHtrkwAopVBAPZIAUQghhBC3LqmTEuIG89rcFO+UZwFNwVocUm8rg9nAI9Yax0gzfV12hgm/Qc+lXUtDA/XdQTA0ur8Ge8rpV0E6vQ87JmOaPNDRixWEmGdHIJ8lae27Eylj/xB8E3prU6B3ggKNoiYBohBCCCFuYRIgCnEDmQ883irP0G7Z5C7LCmZMk2m/SaI1GTP90c1ZFvuttqUXKbuoehpYqqqLns1BYEJgohKDJBtiGunwd+vEaVSSYN57OxgGJPqaPM+bgerroGlm6fKnsMqaqENhK8Wc713vpQkhhBBCbBspMRXiBjLWrBPrZFlwCGkXzXoUUo9CMqa5+kUa6bl6qILOB6j5LKruoFr7DxMrxlYGtmFgv3sCAOPQPVv/ZG52SjHZ1Y+Bpu9MFWh1Mg0lQBRCCCHErUsCRCFuEInWnKqVyJsrJ/Zdw8RPLs4vXD1AVM1WgNjVRD8yit4/T3JgevFxrHS8harWMM+NkhTzGLft3tonc4uYHuoFoH88bVTjmia1KCRI4uu5LCGEEEKIbSMBohA3iPFmnRnfo812VrxfKQVard9otNEKMHMh2Bp92zzsrKJVWj5qeDYZ08R67xQKiO67E2VI99KVlO7oBKC/NAG6FaTHsTSqEUIIIcQtSwJEIW4Ab8xP8dXJC9iGgbnGyArHTPcOrqmVQSS7NIjRj4yinYjqrilypoX9TlpeGt1351Wt/ZbWmaPkdFAMy2SnQwyliLXm2zNjvDk/RUMCRSGEEELcYiRAFOI6i3XC0co8OdOiz82ueWyfm6VnrWM00LTQdgz2ZQ1n2gP0hy5Q7ynTU65jTs0S93Wj+7qv/kncolzDYrSzVWZ6rgTAjkyWWhjw3fkpvjB2lvlA9iQKIYQQ4tYhAaIQ11ktCvGTmLy1BU2F/bRTKbnVM1uJhp0nhgEI773j6h/zFuYYBuf7uwDYMTndus2k08mwK1ugGgYMN2rLztNausEKIYQQ4uYkAaIQ11ktCkm0XrO0dMMaK5eXXspKYnqPnUMbBtH9d139Y97CLMNgeDBPgkFfaWLZGJCcZXG+UVkSEAZJzBfHz3G8Mi+BohBCCCFuOhIgCnGd1aIQzRYFEgsBYrTqIbePzGD5AdGd+9D53NY87i3KVgbNYsyMO4Ab+3TNlJbcX7QcZn2PShgw2qgRJgnTXpPxZp0Xpkc5Wpm/PgsXQgghhLhCEiAKcZ2VAx+Trekiqpppmapeo8T0vtMTAIQPyuzD9VjKQBua8bZdAAyen15yv20YRDrhtVaTobP1MmPNOoZSZEyT0eby8lMhhBBCiBuZBIhCXGczQRN3rcH360mAyRzqrT4435HetkqAWChV2TVdJmwvEO8duvLHfJ8wDYUCxvoGABi4ML3sGEcZnKyVSLTm3fIc5xsVipZNxrSYCzxiKTMVQgghxE1kC7piCCGuVKwTSkGw/uiKNahTXahWYKjtGL2rAu3+isfuazWnaRy8G2PdgYrCVgagqfW4VK0OOqolcrUmjcJiJ9leN0usNYZSjDbrGAp2ZPJorZkJPOpRuOpsSyGEEEKIG41kEIW4ji52ML2aAJGZdB9hct8k+oMX0LfNE+iYKa9BPQoXGqVYYcT+k6PEhiI8KM1pNsI2DBSKpOAzntkLwMDw1JJjlFJYhoGhFHnLwlQKs3VbrDXVMLgOKxdCCCGEuDISIApxHdWjkFgnWMYKP4oJcKEN9dIQ6vndqHfSeXwMF1Gv70B9dwBKLqruoHMBDNTBTIPBShiQs2y8JGbUa9CMIzqOnsEJI07t6ccqFq/dk7yJtdkuBcumkWkwntkHwOBlAeKlupwMOzL5hd9rralGEiAKIYQQ4uYhAaIQ11GQJCu3p0lAHRnEON6DqrmowEKNF8EzUcd6ULM5VCmLeqs/Pb6ruey6+wptfGpwP4PZHOXA59DJcQCOH9iDKeWlG2IqxWA2T81qMpPtIzBceidmMcPVu8ReyjIMZn1vm1cphBBCCLF1JEAU4jqKkmTlO4bbUeUMuuiTPD6C7q2nt08WUCh0VxNtJii/1bX0sgBRoylYDkXb4cN9u/jzvkNbtcFIbxvNvs7tfEq3nB3ZPBEanY+ZcPdgJpqB0eXNalaSMUymg+b6BwohhBBC3CAkQBTiOgr1CgHibBZ1uhOtNPq+KSgGUEjLFNV4AQDd0YSdlfTXaOi6PEulyJlp8JgxLbreeA+Ac/feRta0t+fJ3KK6nQwGCp0PGM3eBsDOcxMbOjdjmlTDgHq0+tgRIYQQQogbiQSIQlxHUZJw6RAEdbwL4/UBVGzAvhIU0sBCXwwQq256YDFA7y6jjQQ6PLAXA82LTWlyrUDQGJ3AOj9G0tFG38F72Z0tbPvzupW02y5ttoOf8ZjI7CYyLQZGpjGjeN1zXcPEiyPeK88t3NaMo9Uzx0IIIYQQ15mMuRDiOgqSGOPiLsTQgOF2tJWg75mGvvrigYXLGp0UAsjE6CdGwFwabARJgm0Y5Kz0x9t98XUA/CceZiAvzWk2y1CKHZkcI5kmWdXLeMcQu2bPs2N0mtE9O9Y8VylFj5vl3cosGdNkNvAYaVa5p62bhzv7rtEzEEIIIYTYOMkgCnEdeXG82DBmKo/SCvpr0F9nSfeaXIhWaWZQmwlkW01SshE4lweI6diMjGFiTM5gnTpP0lYguu/Oa/CMbk3dbhY/m5bxjhT2AxsvM82a6eiLV+cmOF+vYKB4rzIrZadCCCGEuCFJgCjEdeQn8cLAejXR2l+4o7b8QAPIt7KIhYCVW5+mgiShw3ZRSuG0sofB4w+BeRWzFt/nipZDlPXRaCaMfUSWycDwFMYGykwBet0sQ9nBsCozAAEAAElEQVQC/ZkcXU6GZhRxulbe5lULIYQQQmyeBIhCXEdBkqQZxPkMzGXQbgSdq4xFuFhmWlx7rl6QxHQ4DsbMPNax0yT5HOHBu7d45e8vRcvGMBVkI5Igy/hgL3YUs2N05oqu1267HK3MESQbCzCFEEIIIa4VCRCFuI6CJCY70o1xZDAdXzFUWTU7qNv91v+vPVcvRtNmuzgvvo4CgsceAFu2G1+Ngm3jGiZxLv07GKkfBGD3qfErul7RsqlGAVOejMAQQgghxI1FAkQhrqMgicmMdwCQ3DsF+0urH7yzQnJoDAZWKEEFYp0wF6TBY+d8FevdEyS5DOFD927xqt9/TGXQ5bhUd06juxqM5/YSKJfB4Uns2uazgEopDKUYaVaX3ScdToUQQghxPUmAKMR1kmhNECcYTQftRDBYW3NvIQbpvMMVjpnym0x4TfKWzdO9Q+x95Z00e/jkYXBk7uFW6HGz1Is19KEJ4g+NMNK5B5OEne/OLj0wNMBff79nm2Vzrl4lvKTMdLhR5fNjZzhTK3OuXmG0sfKXAUIIIYQQ20UCRCGuk0gnqKaVdi7NX3lHS601YZLwkf5d/NDgfg7MN7FPXyDpKBI+dM8Wrvj9rcN2SS4OrbQ05+5OR1zsvTC85Dj12gDq27tgIr/m9fJmWmb6bnmOWT/N/F6oV5loNvja5DBfGT/PS7PjxFoyikIIIYS4diRAFOI6iZIEVWsNvs+v3nimGUfM+h6zvofWaYTixRHl0CdMEhpxRNa0GMoWMAD3Gy8D4H/wUelcuoUKtg1KL/x+dn+emlmkpz5F/lwCw21Qt1BVF5UYGG/3w3Ru1esppWi3HL47N8lXJ84zH3icb1Tpy2TZmc2zK1egHAbM+GvvORVCCCGE2EoSIApxnYQ6wWykAaJeIYOYaM1os04lDOnJZIm0xktimnHETOBhKINJv0E9ChnI5LANA+vEWcyxSeK+bqJ777jWT+mWVjBtLGUQXtwjaMGFnnQm4p7X5jGO9aBOdAOgWwG/WiNABGizHXblClSjkFfnJmnEIXnTWtijqDWMNevb96SEEEIIIS4jAaIQ11CiFzNQUaKxGk76m8LyDOKM36THzfLDQ/v56I49dDouXhzjxRE7Mnm+v383ljKoxxGD2QJE8WL28JnHQa21oVFsVtayyRgm/iV7Bs/fNgjAnsYx0Bo1k5aV6v3z6QE1Z0PX7nEzjDZqGEqhLvl7K1gWZ+tl4kteN0IIIYQQ20kCRCGukUYU8dWJ83xraoRKGBDpBLuRSe+8LIPoxzGR1hzu7KPDSbOMPW4WP4nw4pheN0OH47K/0I5jmHS7GZxXv4cxXybav5t4/65r/fRueaZStDvuktmFtX2K2XwvhbhClxoBSBsO9dfRZgJVBzYQ22VNi6xp0uNkltxetG3mA49pv7Glz0UIIYQQYjUSIAqxzbTWzPhNvjU9woVGjePVEs9PjRDGCVbTRVsxOItBx4zfZCZocqCti6FcYeH2LsclSjQxmo5WIHF3sZPBTJ4uL8R58TW0YeB935OSPdwm3U4GP75krIWtOXewD4C98Vvpbb2NtNNsMUAlBjQ3NoOy08ngGEv3jJrKQCnF8cr8VixfCCGEEGJdEiAKsY1infCdmXE+P3qG0WadoWyePjfLfOhTqkQYiZFmD1vx3MXM4ff17+ax7h1LrlW00nJFhaKt9eu+TI4fGNhN7huvoMKI4NEH0N0d1/Ipvq+02+6ycs8L+wcJLZNd0xcw7xxB3z6X3nGxbHiDZaar6XEynK1XFjqdCiGEEEJsJwkQhbgK5cBnwltsIhImMa/NTVKPQmKt+e7sJO9V5uhxMwxl8xhK4RgGQRwzX21lorLR4vVCn53ZAnvybRiXZQELlo1pGJhKUbQWZxs6wxPYR0+RFPIETx7a3if8Ppe37GVzKCPb4sL+Qaw4YU/9BDhpExtd8NMDqlcXIDqGSaQ1x6tzV3UdIYQQQoiNkABRiCsUJQnfmR3jG1MjlMM0GJjymrw+P813ZsZ5aWact8oz7Mhkl5QOqlYjkobfChCtxTl3fpKwr9C+4uMVbBvXMMmZFrmLAWIU4X75+fTcD38AHHvFc8XWyFsWCrWk2RDAmbvSPZ/7TwzDxfuKrU6mF0eZXIVeJ8OxyjxjzdpVX0sIIYQQYi0SIAqxAbUo5LW5SZ4bP8+M3wTgRHWe0UaNWhhyZG6SWOuFkQTn6mXeq8wxkMkv21d2URK1UlGtALEZR2RMk4HMyqMRTGXQ4Tj0uJmF7KLzndcwZ0tE+3YR3XP7Vj5lsYK8ZeOaSzuZApS625nraae9VKNnqrVf8OJsyw02qlmLa5qYSvH6/NTimA0hhBBCiG2wse4JQryPaa15bW6So5V5lALbMHmws4fX56fpsF2ypsWZWoWd2RLnGxXabYeCZaNgyciCS7mGQRSACWgroRT4VKKQe9o6F7ODK+h3c9itgNOYmsV5+U20beF97GlpTHMNOIZJ0bKZ9Bp02C5Fy174Oz591y66ZsrsPz7MTH8X2Bpd8FE1Fz2dg75GGihGCuzNR4y9bpYxr85c4NG/ypcIQgghhBBXSzKIQqxjpFnjZK3EUDbPQCbH2XqZ78yMEyQxRdvBMgyKls1r81OUQ5+8ZS+bZ3c51zAJL062MGOqUcjTvYN8oGdwzbUc7OjlQFsXJAmZL34DlST4H3oM3dG2hc9YrOVwZz8PdPSigeFmfSGjN7x3gNC22HluHMdLs4f6jnTfoDrejTrRhfrOLtQ398JsdtOPezFrXGqVMwshhBBCbAcJEIVYQ6wTXp+fJmOY2IaBY5gYSjHSqNGfWfyQ3+G4NOIQhcLcQCbPNU3iVgViZMa4psnuXNu659qGka7j1e9hTkwTD/YTHrrvqp6j2JyhXIHHunfwqaH97M23MR+k3UVj2+LcbUOYiU73IgL0NNG9dZRno853oJo2CoU63XlFZae2Mpj2ZCaiEEIIIbaPBIhCrGG4UWPab9B1yQDzfjfLrlweUy398RnK5NmxwdI/xzAX9iAGRkSuNSh9I4zJGZznX0WbJt4PPgOG/BhfD1nTYm++iH/JnsBTB/aggX3vnSMIWlnEAzPoffMk90yTPHkBnQ9Q5QyUMqtcee3HnPAay5rkCCGEEEJsFflkKcQlvDhitNUpMtGa9yqzOMpYMnJCKbUsOLx4++WjKdaS0+n4g8AI6XLcNUtSF0QRmc//WVpa+uzjJD1dG348sfV63SyWYRAlCVprau15hod6KHgBXadHqEUBuDH69nkYqkIuQu8tAaDOr9ytdi1Z06IWhdSicP2DhRBCCCGugASI4n0l0ZrRZo3xZn3ZfV4c8cL0GN+eHiNIYmb8JhPNpdnDreQkaTOawIjodDa2J8395iuYM/NEe3cSHr5/W9YlNq7DdulyXKb8JmfqFaphwJE7032kHzw9SamVRVxiRw1txzCTg3Bz/wTbhkGkk4WxKkIIIYQQW+2W6WL6n//zf+a//Jf/suS2ffv28eUvf/k6rUjcaGKteX5qmLP1CgrF3W1dhElMpBNsw2SiWacU+pjKoBIGzIc+CRpru0o44/S62oxps9cfpm6eGcb57lvojIv3yQ9L19IbgFKK3bk2prwmd7V1crZeodzbRrOnk8LMPEPTJdhTWHqSAfTWUWNt6JkcDGxutqFCMed77MoVt+x5CCGEEEJcdMsEiAB33303v/mbv7nwe3ODe7rE+0MtDDjfqNHrZkm05mhlDkulTWVircmZFjuzBcaadSphwKzXxNrOIKyVPYqtmLy19o+iqtbIfOHPAPA+/iF0Mb996xKbsr/QRtG26XdzjDfrJBr8Rw6S/dLzHD4xxsu7BrEv+5JB96UBoprKoy8GiJFCvd0HhTAtQ63bUAzAXLrf0FKKSrRCZlIIIYQQYgvcUgGiaZr09vZe72WIG1QlCki0XhhcP5Rd+eWvlKIU+kz4DbLmNv6IxGnwaVpQsNbIIMYxmT/6KkbDIzh0H9Hdt23fmsSmtdsu7bYLwJ3FDkpBgLl7J8kL32Xf6CxvlCokXR1LT+ry0GYCM1loWpCNYCqPmsnDDKhz6fF6ZwV9YGbJqbZhUJUAUQghhBDb5Jbag3jmzBmeeuopPvKRj/ALv/ALTExMXO8liRtIOfDZSPNH1zAYadSoheH2BoiRgTYSMrZJbo3HcZ9/FWtkgnhHL/6Hn9i+9YirdrCjl8e7d4BpEh6+HwXc887Z5QeaGnobqMTA+PZu1PEu1FSaFdZFH+1EaKVhMg/J0lNtZdCIou1/MkIIIYR4X7plMogPPPAA//pf/2v27NnD1NQUv/Zrv8ZP/MRP8IUvfIFcbmOjBy5nGDfOHq+La7mR1nSj01oTab1Q3jcdemRMY91uoTnLph6HhMS42x0gmgntjoNlrvxdjXn8DM4rb6IzLv5nPorhbP165LW1dfKGTd5Omw9Fh+7DfPF17jw7yZlDHs3CZY2I7pxDuzGMFuBCOyjSrOJjY+lXd6/1o2ZzUM5Cl7dwmm2a1KOImHTv7I1KXldiO8jrSmwHeV2J7XAzv65umQDx6aefXvj1XXfdxQMPPMCzzz7LV77yFT796U9v+nqWZdDdXVj/wGuss/PG33umtWbO9+jObKwz53Z5a2aKV6YnGMoXeHJgiPp0TFdbjrzjrnleJrEZb9TJaId8Ye1jr5ROoJkY6ExEd1t+xddaMjZF8PmvAeD8hU+QvW1wW9Zy0c3w2rq5FJh87F7aX3iTe4+f5+iHHrj8buipE7ZD+FY7aDAHPNy29DUX7goIZ3PYpSLO7sXUt5PYBM0G2fYM7eu8lm8E8roS20FeV2I7yOtKbIeb8XV1ywSIl2tra2Pv3r2cP3/+is6PooRKpbnFq7pyhqHo7MwzP18nSW7sIdljzRqvzEzw0YE95Cx7xWNindCMYwqr3H+1qmHAN0cvkGjNm9U6tZrHbKNOj5OlHqw/IqBU98iaJnW1heMEKk5aMrirAoZGAbEREzZDZmcv62RZb5L9rT/ECEKCDz1KfWAALj9mi9xMr62bTem+u8m+9Ba73j3H2/fsw8+uEND1+ZDJozyLqLNKVGu95tojFB2EIy7hPh9aX0Bqrak2fSZmKkTu9f0SZi3yuhLbQV5XYjvI60pshxvxddXWlsW2168+umUDxHq9zvDw8FU1rblR/jIvlST6hlzXpU5USow3G8x6Hpnc4kusGUfM+E125YocK89zqlbiE4P7MLehU+jbpRlqYciuXIFCHHO2ViHRGlMp9AY2IvY6GRzD3NCxG1JxUK8NoCIDfaENfdscCkjMGBtz6d9pHJP9wy9jlKuEB27H/8DDcA3+zm+G19bNJlcscvT2IR44Nswd75zh7cN3Lz9IAfdNwlQe3VeDi38FTgTtHqqcIZlzl5SZajSNMCKxb/y/L3ldie0gryuxHeR1JbbDzfi6umWa1PzKr/wKr776KiMjI7z++uv89b/+1zFNk0984hPXe2nvK+XQ52ytTKw1M/5iBjbRmu/OTvDNqRHGm3Xeq8wx4TWY9hrbsoYTlRI9bjrg3jVNbMPA2kQNeN6yl40muCKBgTrejToymAaHXQ1UbKBOdQEQmzHupeNYtMZ97gWs4XHiHb14P/iszDu8iWVMi+DRB4gMxW3HLmA2PeYDHy++rMlMp4++a27Zv8h6VxkAdb7jsjsUXhKhtd66LzGEEEIIIbiFAsSJiQn+zt/5O3zsYx/jb/2tv0VnZye///u/T2dn5/Ve2vvK2VqFMEnosB1Gm4slkWfrFY5XS3hJzKuzE8wFTZSCC43qtqwhSOIlHUh73Sw7MtegBjww0v8gnWv3+gDqQrq/LNk/h354Am0lqCQ9RpvJklmLzkuv47x5lKSQo/ljHwP7lk3yv2/sHxjk1B07saOYXd87hW0YTPve+icC9NfRmQg1k4PaJeXYCvw45q3yDEcrc9uzcCGEEEK8L90ynz7//b//99d7Ce97jSjkvcos7baDbRjMBh7NOMJSBm/MT1GwLNpshwuNGkXLJmOanK6XebCzd2E24ZWKteYbk8PkLIvhRo02e425glul5KK+14++fQ6G0tJA9coQxAb60BjqeA+q6qI7m+iDk+C05hXkAyin2c3EirFamUrre0dxn38V7dg0/9wn0MUbr0mS2DzHMMk8/TjJqTEOnRpj17NP8bnyOPUoJL/eHlwjzSKqk92oM53og1MAmEAtChhrNmi3be5p797+JyKEEEKI94VbJoMorr8T1RK1KKJoO7iGiZ/EzPkew40q84FHh+1iKoPduSI9bpa8aVMNQ743P01ylWVyFxoVzjUqvFeZoxT6FLe6+Y0mHWjebH2nkoB6rxcVWKhjPdCwoOyiPBsVmqiXd6Lms+lMuwcnFoNDSAPEi5c1EyxlYJ48R+ZLz6MNg+aPfpRkx5XvnRU3nu6eHqJD92FEMV2vvsNdhS7mww02QNpVQbsRarIAc+kXC7ZhMOk1KYU+07531T8/QgghhBAXSYAotkQzjnivMkeXk2bulFJYyuDVuUneK8+RMa2F+YMXm9Iopeh3s7xZmuG1+Snmgw2W3V0mTBK+Nz9DxjDZmS2wJ1dcd9bhpngm6qWd6UDz7+xKS/3Od6DqzkK5qHqvNy0DBLQVo1DoDg99aByspR/edSFc+HVixRQnZsn+0VdRWuN98lnifbu2bu3ihhF84CG0Y2O/+S53ahNTGYRJsv6JpkbfOQuAOt4NGixlECQxQRzTjCNqUbjORYQQQgghNkYCRLElxpt16lFIwVos7ex3s5RDnwvNKp32yvPaXNOkx83wvflp/mj0DN+cGtl0oDjarDHtN+lyMlf1HFajTnalwaATobRKS0fPdKCVRj8yii4EqPksnG8HQB8eJ3lgAv3wONgrBACXZBA7G3Ps+eOvo6II7yNPEN1757Y8B3H96VyW4PBBVJzQ9+rb9LgZqlGw/omQ7kUs+KiaC00L2zCoRxEZ0yRKEirhBq8jhBBCCLEOCRDFFQmTZEknxjO1Ms5lXT+VUuzI5NiXKy7ss1tJ1rTYmSvQ7bicrJZ4ZXZiU2s5WytjGwbGdnT7nHdRE0W0E6EfH0XbMWoui0oM9L55KITou2cA0ttyARQD6GuAuUrZXyH9MN8ezvCJt7+DGYT4TzxM+OgDKx8vbhnBYw+gMw72W8c54EMjipYdE69ULqqAztYXJxUX2zAohT4Fy0YpNh5oCiGEEEKsQwLEm1yYxHxvfprSBoa/b8aKH1Iv8VZ5mq9OXKARRVTCgNFmjY5VsoQbLfd0DJP+TJZxr7HhLGItChlu1ujYpqY0F8dR6DvmwI3Re0vp73MB7Et/TaeHHmh1Y+3ZwNgON6YYT/PBmT8mE4VUHrmP4OlHt37x4saTcfE/8DBKa+589T0MpYj1YpZ5PvAYadSY8ZvMB96Sn2vdlv5alV0cw2QomyNv2VjKYNprLnuoMEk4VSvxTnmWmmQYhRBCCLFBt0wX0/ejRhTy7ekxTtZKlKOAp3uHrvqaWmveLc8y3KzxAzt2Y6rl3yF4ccTxSolS4PPizBimUgRJsnSe3xVyDJNYJ4w2akx56SiMO4urjyoZa9bw45iMm73qx16m7KJK2TQYHGiN7NhVIYkV9NeXfL2i75pF50MYqqx72WK5ytPT38BNPN7au5fupx+lTWYdvm+Eh+/Hef1d8meGufu2Po52abqdDBnToh5F3NfezYRXx1AGs0GTNu2k2fH2VrBYSb+IuVjOnTUtpv0mw40qvW6WTGu8y3uVWV6ZnSBKEqz+Xdxtd12X5yuEEEKIm4tkEG9SsU54eXac840Kg9k8Z2rlJYPpNytMYo5X5nllboKXZycYbdQYa9ZXPPZCo0o9CtmdK3C+UeV8o0rfFgZoedPiWHWeF6ZHeWV2gvIa2dHz9SqZLQhMAUiAsx0wnT4XdaG1p3B3OS3xg7Rs9LYSFC5rCmInaUbRWbvpSMdMmWe/9AqZ2ONU+z18+9A+rKsc8SFuMpaF/8zjAHzozbPsy7Ux7Xt4cYRSijvbOvmRnbfxycF9FC2H+sUGNLkQbSVpgHjJyyxnWswFHl8eP8+3pscIk4RS4PNWaYYuJ0PesplcIcMohBBCCLESCRBvMkES81Zpmu/MjHGqVmYgkydrWsStzN+Vtruf8Bq8MD3Ku+VZut0MlmFwslpadpzWmmOVeXKmhWUYDGXz7MjktiR7eFGb7TDjN2m3Hfwk4Y3S9JIyvIuiJGHab5IzN5EIL7uoY91QuawkVadjK4xTXajjPemw+8k82o5hsHaVzyjVMznHM195FdcPOX7vXl76oUGUq7EMyR6+30QHbiMe7CczPccPTDW4rdDeKpV26XIymMrANtKRMNWLAaIC2nxUYkB9cYyLZRjsyhUYzOY4X6/w0uw4z0+P4icJBcsmZ1pMePV1y8aFEEIIIUBKTG86lTDglblJLBT9bm6h+Uuvm+FErcSOTI672jZfSjbne6AUQ9k8kI6iuNCaX9h5SXfQZhxTCv1t2/OXPrbB3nwbABnT4kR1Hi+O6HQylEOfp3uHyJgW5TDAiyM67NyGrqtOdaLOtspVR9qgswlNG5wYmhYqaP04NC2Yy6K0Qveu0WxmE/pHp3ni669jxQnvPHg7Rx+4nTiOMDCwVijjFbc4pfA+8gT5//E53Odf5f6f+mEuNKrsLRQXxsAADGULvFOeRWud7uVt82EuC5UMFJdmsU1l0OtmON76Amcgk/5c5CyLSa9JJfSX/CwLIYQQQqxEPpnehBQwkM0vydo5hkmH5fDq3NQVNawZ8+pkjaXXi5KE8/XqkuNqUUAQx9jXKKixDYOhbIFJv8G7lVnO1SucqpUBKIc+idYb616qgfPtaCNB70rPV3M5VNNGlTMQmujOJrrNQ6FQ44X0tOLVN//Zc2qUp772Glac8K0H9/PNu4dIgERrnO3qvipueMnOHYQHbsOo1Rl68wQPdvSyJ9e25Ji+TJasZdFsdQzWrQ64qmEvux6kX6jsyhXodjMLgaapDBI0pXBrG1kJIYQQ4tYkGcRbSNF2KDdrzAYeHc7KHUVX4sURM36TgrX0Q2eb7XCiOs+97V3YreCxHocotfHOpFvBVGm2FNIM6tvlGfbn25gPvI2vo2GnYyg6mui7Z2FvCe1b6UzCyAArAUujTnWm2ZnZVlay7So+VGvNge+d4r43T5EoxXOP3MnMgX10AaPNOkXLJruFpbni5uM/8zjWiXM4L7/JQ/ffhb5sL2/GtNifb+NoZY6cZYPbGovhb+51o1DM+h778u1btXQhhBBC3KIkg3iLUai0XHQT5gMfP4nJXNYspWjZlMOA0Uua1dTCkOu5k6nNdqiFAW+VZpjwGhsPsKqtkthiq91/Jk67Qlo6/bWVPivdul9phUYvzCzcLBUnPPLtt7nvzVMElsnnPngvMwf28UzfTj7YO4SpFJFOcKRBzfua7mgjePxBVBTh/tl3Vjzm9kIHCkWYJODG6Y2bDBDzpsWpWokpbwNjWIQQQgjxviYB4i0ma5pM+Zv7EDgfeCiWZwWVUjiGwZlWSSfAXODhXOc9c31ujncqs8yHHtkNNqhRrQDxYgC4qsIlGcNcuBA4rkZrvawxUNho8MGvfpe9p0ep5Vw+930PcfsDB/nYwF6KtkPBssmYFo04wjXkR/D9LvjAwyQdReyT5zBPnV92f6+bZVeuwFzgXZJB3FzxR4fj4scJX528wJla+YqbWQkhhBDi1iefTm8xWdNiPvQJknhDxzeiiKPV+VUDrTbbYbRZW9gDNRd463csTWA704yuaVK0bCphuCzruaBuob6zE/XdARgpQrVVcrvensJchDZaHVPXCyaBca/BSLOGbn3gdmbm+fifvkL/xByznQX+z0ce5J4772J/oR27FQxahkGb5dCMI8kgCrAtvO97CoDMV78NYbTkbqUU97R1E2lNaMRoM9l0BhGgP5PFRPG1yWGem7jA8co8F+pVKuGVZcmFEEIIcWuSAPEW4xomfhxT3sCHPq01r89PMet7dNor71nMmhZ+EjPtNfHjmHoc4q4V1MQK9eIu1Bs7rvQpbEi77bI/37bqHkR1shvVcFClLMbRXpjLopWGfLji8YsnslBWqi/bfxgmCdUwWMi+1KMQSxn0ujmm/SZD58b5+JdfpbPmcWZnD5/98AMc2nvbQkfWS3W5GcIkwTVkG7CA+I69RLfvwShVcF5+Y9n9g9k8txXamfKb4EaoyIR48/uAOxyXHZkc036Db8+M8uWJc7w2N7kVT0EIIYQQtwgJEG8xhkr3zm0kKzDtNzlRnWdHJrtmsxcDxZhXoxaF+PE6++Ym86imDbNZCC97eTUsiFQ6UuL53XCmY4PPapPmM6jpPDoTktwzBaR7CskHGxtZ0dnaw9mxuJdzLvCY9puEWjPtN9FaMxt43N/Rw2OdvTz25hme+Oab2FHC2OMH8X70ozyzcz+3FVZuCtLpuJjKkBJTscD7/qfQlonz0huoufKS+5RSPNDRg6kUiXNljWousg2DXjfLULZAl+My5TdlRqIQQgghFsin01uQQjHZrOPF0ZrHjTbrrVELa3/QLFo25+tVRlullGuNZVCjbQtroHxJVrLkLmQW1YV2VGChLrSn5ahbTJ1OZx3q2+dhsIbubLaeyMZK6fRt8ySPjUBHmkGMkoR6FPFM306e6hkkTBKm/SY9bpZ7DJfbPv88h48N49kmX3j6PpKnDrMr38ZQrrDqY1wcYG5JgChadEcbwQceRsUxmS8/D5cFbZ1Ohh43S+S0suBXGCBeKmOke2FrUmYqhBBCiBb5dHoL6rRd3q3M8fnRM6vORIy15kytvGy0xUryls186PHK7DhFe43jazaqtDiIW823fh0r1Lu9KK1QpSwMt4LI0EyHfm+lmo2az6KzIeyogQJ99wy63UMPVNc/H9IsY9viB+bpoMnefBt7W0HfjmweP0l4phzT9dt/iHVuhLCnkz/62CNU9w7RZjnrPkTBsslaEiCKpYLHHyLu6cQ6P4r91rFl9/e7OQKr9dqsuKj3eiC48teQZRgkWm+oJF0IIYQQ7w/y6fQWlLPSYdnlMOBCY+WgaMZvUgo9ivb6wYyhFIOZPEPZAu2r7FUE0owgLAZirWBRne1ANRx0/pIREq1ujGpi9SzbplQc1OlO1NlW9nBXJd1PCFAI0Y+OQffmxn9Auu9Qa3igowdDKUyleKitix87NsGez38do+ERPHQP3k/9GAf27OOetq4NzWZcyCBe546w4gZjmXifeBYNuF97EVWtL7m7280Qt0pM1emuNGM/snyP62ZoDeXwKuZ9CiGEEOKWIp9Ob2FFy+ZUrUSsl9dxXqhX0DoNeDbCMcw1S0vxTBgroq0Efdcs2oqh4qb7EEfa0EqjHx5H99XTX98/mXYLncov36u4WQmot/pRZzpRE4X0uoMbzBauYy7w2Jkt0NsaYG7MznPHZ7/K7rdOojMOzU//AP7HPgS2xf5iB7cXOzZ0Xdswabfdhc6mQlyUDPUTPnIQ5Qe4z72wpNS0zXaIWyWmKk5fO6q2/pc8a3FNQ+YjCiGEEGKBfDq9hbXZDvOBz5TXXHL7jN/k3coc3e7q2cDNUuc70kYwu8pgJ9DhoRIDdbQnLSXtq0MmTgPDJy9Apw87aqjYQL3Zf3V7EceKqKaNzoRpp9KdlXQNVyBIYqb99M8r0ZpQJ9zV1onSGvuVN8n9t89iTkwT7dxB/Wd+nOju26542Y9172Agk7/i88Wty3/60XQ24omzWMfPLNzebjuY2cte29WrCxCzpslM4EmjGiGEEEIAEiDe0i5m/IYvKTNNtOb1uSk0esND5tcVKxgtoo0EvTvtvqgHagCoybSEVO+qtBYFZNMZjfruWXTRR5WyqO/sgrMdaZfTzUjSElYAfXAK/ew59J1zqx6utWYu8JgPlpebBknMpNcgSBKiJKEaBXTYLruaEbnf/WMyX38J0PjPPE7zJ34Y3V7c3Fov02Y7sgdRrMyx8T7+DADuV15ANdIvLWzDpJi/rDlNw76ikRcXXWxUU5V9iEIIIYRAAsRbXtGyOVevLJSZzgUeI80avc4WNoeZzqXlbn0NcFrZjR11kgPTaDS6zVsyMmKBqdEPTaC7GyjPxjjVhXphN5Q2kdmczaE8G93dgHY/bTCzymflRGuGm3UypoVlmFxopJ1ZR5t1Rpo1pn2Pe9q7KVg2XhIRhCGPnxij7bf+EHN0gnhHL42f/nMEH3gIJLAT2yzeu5PgwQMYjSbuJV1Ne9sXM4baTNKOwVdRZmoZBrFOKMk+RCGEEEIAMqX7VqBZNSgqWDZjzTozvkd/Jh3onqCvLnMVKtTZTvRQFfLhYpawv7b0uJ1VdHcTrGTV9eHG6Icn0HU7bWYzXoQzneiHJza0FDWRlmjqDew59JOYnGXx8YG9xEnCyVYXV1MpIp3Q6WTodjJ8LRqGkTE++eoJest1tGHgP/2oBIbimvM//ATWuRHs42eJ3jlBdP9dtGdsZsw4/VJmsArD7WmZafuVB3gGilk/7dYrhBBCiPc3CRBvZpFCvdMHZTft0pldPvfQUAoUTHp1+jM5LjSqZNaZe8hcBnIhZOIV71YXOlDnO2Aqjz40BjNZtJVAzwqNLlZY04ryIfqeaZjJpaMvAiMNLNeKx2IF0/m0KU3v+k02vDii3XLT0loTHursXX5Q0+MDL7/HwNGzADSG+tCfeJakp2tjz0OIreQ6eJ/8CNnf/SMyX/029d2DuJbJ/G2jdFoZsDRquB1Vc1iygzABdawH5jNgaPSh8cXs/gqypslIs8Yh+rf9KQkhhBDixibpkJtVqFBHBlHT+XTofGsf3krypsXZeoVGFDLlNdaefXi2HeO1QdTbq3xQTIDRdO+datqoF3ehEgN661f/ajKA/no6L/HtPtQ39sLYGmMwZlqlrb2NtLR0HV4c05fJrHxnkmC//g75/+f3GDh6loZj8dXH7qL0//qkBIfiuop3DRA8/hDKD8j8yddxDYNGXwmGalBoZQ2n8qiTnYsdgYfbUaNtqIaDqrkwu3ZJec60KQcBjSjc3icjhBBCiBueZBBvRhrU0V5U1UV3NtNxEmNFuG0e3OVZv4LlMO41eHF2HD+J6TWzy693ohvmM6hquv9PlTLomg2Fyz4wzuRQvoXuaEJoQt1Gt3noPaWteWr9NdRIG2oul95wvBvd01gx+6GmcwvnbEQMdDjLA0TzzAXcr72IOTOPBir33cHv3taNW8jz6AbmRAqx3YIPPoJ15gLWhTF63jiK2pEl0RojF6HdCOVbcK4Tag763mnUmQ40GvaWUOc6UeUMeqC+6vVd0yQIYuYDn9xaXyAJIYQQ4pYnGcSbzPkjNjveuAM1WUBnQ/QDk7CzkmbdVski2oZBv5vlfL2Ka6zwnUDdRl1oTwNOO14IuNTo8i6dF2/Te8rox0fSrqGPjUFxizIPnR7ajdJZiR0eKjJRJ7vSfZYX/7uo4i6cs5JKGDDcqKX7LrVGAW3WYsBnzMyT/T9fJPd/vog5M0+0e5DGT/8Y/ieegVyGHje79uxHIa4Vy8T7oY+gTYP2F15jYL5GpNO9vfrxEZLDY+hcgJrJo76zCxWZ6R7godbe3PIGGj9pOFkrcbw6T5hc+dyZRMZlCCGEEDc1ySDeRJJEUxoxcZo22onQ90+BnaD3lGG0iBpuR/c2oLu57FzXNBnKrjJzr5Rm1fTuUjoiIjDTAfbjRbhjbunXCBU3nTXY00hvN5Z/GPTiiJFmnX35NszNBliKdL9UZEA2hO/sQo21QSUDTQvaffTD45CoNHvpRitmFxOtKYcBD3T0MO7VGWvWsQ2Dou2gShXcbx/BeucESmuSznb8D3+A6I69oBQZoGg59Lpb2OlViKuU9HXjf/gJMl/9Nh998Sh/8onHIJdNX/+Ohz44Ba8OQmSguxvo2+bSfx/sGKpuWh6+xleC3W6Gs7UyJ6olxot1nugZwFlvv/Jlpv0mL8+M81j3DnbkZManEEIIcTOSAPEmYhiK+3/I4/PnzzJYzC52BnVj9IEZ1Nv9qHd60U8Nb2hP3kXqYoDY5aXXdGPoaaCm8+jpPPS3StNCAxVY6Hyw5gfNucCn3XZoxtGy/Y5aa5RSVMOAchSwM7vCHsP8YjZSHx6Hd3rTfVQAc1n0TA7sGIVCt63cuXEu8OjL5Hi4s49Jv8Gfjp+j24/p+uqLOG8dQyUJOuPiPXmI8NB9YC79IHxXsYNuCRDFDSY8dB/m+VHaT5zl8Vfe4/VnHoaLX8IUA/QTw+nP8KUNptp91EwOXXXX7HSaNS2yWYsoSThRnQfgg72DmGpjhSZzgcefTV5g2mvSn8lJgCiEEELcpCRAvMkYJiR2vHxsxI46eqyBms2hKw50bqLl/cXys/bFUk09VEkb4IwW0RcDxHor2MutXk6aaE2Cpt12KQXekgBxLvAohwG7cwVKYYBtGPhxjGuukaUoBujHRtE1Bxo2xtv9qNOdC2MtVgoQE61pJjFPdfRgGQZDgeZH3h5hz/HzmHGCdh38Rx8geOQguCvvMTzQ3r36moS4XpTC+8SzBKPj3HZ+ivmTI5y9c9fi/dnle5B1m4eayaU/5xsYhWEZBoOZPCeq8xRtm0OdG+tsOtqoUQtDBrN5TtXKPNi1tEtwmCTYMiZGCCGEuOHJu/UtRF8cRl/dxKD5wEA1HHQuWFqq2d1Myzdns9BsBXCNVrCXXz1ALIcBXU6G/YV2gkv2MQVJTDOOGcwWGGnUcU2TPjdLeSPDuQ2gLYD+Orroo6puOmYDoLj8/HIY0O1k2NMMyXzxGxR+/X+x/72zKMPAf+Jhav+/nyR46vCqwaEQN7SsyzsfeYREwYOvvEdmprT28a2gUI0XINpYybdlGPQ4Wd4rz9GINjaqZrRZI2ua5E2LehQy1lxsijPerPOl8bNUw2BD1xJCCCHE9SMB4q2kFSypzQSIrfJSOi4LtAxgsIpCpR1SAdXKIOrc6h/yqlHAXcVOepxMup+w1bBi2m9yV7GTR7r6sAyD2/Lt3FnsXBJErkuBvnMWjUZ5reR32+JaGlFEmCQUJmf5oW+/R/E3fh/7rWNgW/gfeIjGX/1Jgg89BtlN/PkIcQOKBvt58b69WHHCE9/6Hma4RhDX1Uy/WKlkUK8NpHt5NyBrmvhxTD1evwGVF0fMBE3ylo1SCtcweKc8ix/HlAOfF2ZGGWk1jBJCCCHEjU1KTG8lxVawVN14ZkxNpvuEdPvyTqB6oIo624mayqNvK0Gjdd1VMoi1KKRg2ezLt2EoRcY08ZIYA4WpDO5r76bddjjc2ceufBHHMHFMk2YcpcPrN6LLgz1lON+RZjhbYz3iMKLn9AUeOjnG4GxafpoUcviPHCR86F7JFopbimtZfOvuIXZNl9kzMc/hF9/hlacfWNyPeCkD9KExeHMHqpSFl3bCrgq6qwlOlI6yWeE0pRRKQS0K1m3YNB/4eHFMt51+4dTjZhlt1vnO+CgnZ2aphSFZ02KiWWd/oX0r/giEEEIIsU0kQLyVuHHasbDmrNuxEIDpLGqiiHaixUY0l8pH6GyIqrloz1x3D+J84HO4q29hjlqXnWU2aBIlmr35NjqcNHP3QOfi3qS7ih18rzTDUDa/4WYY+vY5CA10u0+m4bH/+DB7j18g76UBcrOjiPrAw4T33QXW5rowCnEzcA2TQGu++cS9fPrL32X32XHmeto5ee++lU+wddod+EwnnO1AnUv/A0jumIW95RVP0yjqGygxnW1lBlUrQDWUos/NcmRmEivUDGRy1KKQkWaNWCcb/lkXQgghxLUnAeKtRAFtftqopu4sZhRXkoA6mgZq+p4ZsFcp9expwHA7zOagaaUB6ApjJbw4wjVMbit0LNx2T3sX35waIdIJdxQ7lp0D8HBnP7Uo5FStTLvl0G47Cx8yV3+aCf1t77Hv5AiDF6YwtEYDtf07MR59iHjv0MqZFCFuERnDxFIGXZ0dPPf0/Xz6udc5eOQ4pa42pgdWabBkgL59Hoaq6Kk8qpRBTeVRc1n0KgGirRRz/spzRi/SWjParJO5bCRGxrS4PZ+jUQ/QWpO3bMa9BnOBLyNkhBBCiBuYfI17q7kYFFbWKamcz6B8C93dgN7Gqofp7vQ+NVJEJcaq5aXlMGAoV6DNXnzcvfk2Pty3izsKHQxkcyueZxsGT/YM8mT3AJZhMNysrdrIolCucf+R4/zgZ7/JB7/2GjvPTxI6Fm/cvYs//cwzJD/+SeJ9OyU4FLc81zTJ2xY7c0Wi/h6+9eidGFrz+PNvkq2vs88vG8GeMvr+yXSm6Rol6a5hMhcuDRC9OOJMrUwjSv8tGGnWGGnWlvzsX3Tplz2GUmg0M7IPUQghhLihbTqDODk5yTe/+U0mJibw/aWNTZRS/MIv/MKWLU5sni76KECd6EYHFuwtrby/aKq193Cl0tJLdXlopVGVVjObQhq8xVqTaL3Qtj5IEvbm25advjtfZHe+uOZDZEyL+zp6uKutk6OVeV6ZnaDY+rDpNn12np9g95kxeqZK6ZqB8aEezt2+k7FdfZwPmjzTN7Bu5lGIW4VrWLRbLt1Ohl43y9t7+thVanD7sQs88Y03+MbHHiNZr7zaAPJBWkLumwv7eZc8jmlSi0KCJMYxTLTWvDk/zfdKM+RtizsKHUx4TRzDwDHWL+fOmRYnqiXuKnZiyM+rEEIIcUPaVID41a9+lb/zd/4OSZLQ1dWFbS8dgi4B4rWXaM2k16DDcdNGLz0NdH8NpvIYp7pIehrLS001MJVHo6F3nQDRbB0zVUD31tH70wHaE16DWCcMZPLEOsE1TXZkVs4SbpRtmNxR7ODE5ChDR89x24Up+iZmUWkjVGrFHGdvH+L87UM082mJmh/HOIZx1Y8txM0kZ1k82TtIp5Ohw3GJ0bz5yAE6Ziv0TJd4+OV3efWJ+5gPA0Kd0Gm7K88bLQZQc9Msors8s+caJnOBTz0KCYyE0WaNdytz7MjkiHXC2+U5tE4YyhY2tO5222HCazLlN8gaFrZhkrNkp4MQQghxI9nUO/O/+3f/jieffJJf/uVfpqOjY5uWJDYqShLGvDrdbpZZ32NnrgCWRh+cgnPtqJPdqIkCuji39MSyiwosdGdzxf2EM36TehyyO1tEKYW+bxodzkImXnhcgD25Ns41KmgNtxfbyVv2smttlCpXsU6dJ3viLH/5/ChGazxGI+Mwum+A4b0DzPZ1LCsfrUQBA9n8QsZRiPeLLifN6rdZDmio6ZjvPPMgP/DFl9h3apSxvIN/8A5sQzHre/Sby79E0UUfNV5MZ6f2LA8QL5aFfq80w4VGlSCJyZt2K9g0FxpSbZSpDBTwXnmOSb/B/nwbj3UPXMnTF0IIIcQ22VSAODExwT/6R/9IgsMbgNaacb/BbYV27m/v4Uvj55eOi+ivwclumMjD7XNLykzVcFoKqvvqS65XjULqUYhjmnTYGapRmO4rMjWYi+VnpdCnP5Plg72DOHMGbZaz+db1SYIxNoV1+jzWyXOY04tBbJjN8OZgB+f37mC4q0h3Nrtq+ZoXxyuWtgrxftHuuPS1uoSeVjHf/vDDPPulV3jie2fZt2sPo3v6mWiOrXxyq7pAVR30KtdXKE5U5+lxsuS2oLlMh+1wrDqHo0xO18o80NFLZqNjboQQQgix7Tb1rvzQQw9x9uxZnnjiie1aj9igCa9Bp+3yWPcABcvmjmI7RyvzDGVbf6XZGN3hoUoZdNmFjtZ+0ZK7ONpisLpwvWoU4icJu3NF7mnvZsJr8Nr85IqNJ7w45q5iFznL5tm+XRtbsNao+QrW+RHMc6OY50cxmovNL+LuDuLb9xDdvpfaQA/vTQ1zsKMHp17lZK3MUDa/wiU1SkFnK5MixPtR1rT41NB+GlHIlyfO857yaTx6Jz/80jEGvvJtwj/3MeDiz8tl+/42MDt1IJNL9zVv0Z7BnGWzxyxioBhp1hiT2YhCCCHEDWVTAeIv/uIv8nf/7t8ll8vxxBNP0Na2PHOTzUr78u2UMS12ZQugFA+091BolXgdaOvidK1MNQwWyi11fy1tZT+ZR7cCRHUybYGv75gDazFn0IhD7ix08kTvIACOYfLm/BRhkiw0ooG0vNQ0DPoy6/w9a40qVTBHJrAujGGeG8Go1BbvNgyivUNEt6VBoe5a/ICYBT4xsA/bMOiwXUabdca9OlnDwk9i+twsSim8JCZjmmmJnRDvcznL5gPdA7w4M0bh/gNUrAJtLxxh5xe+QcdHDhK4yfJ9iHaSzjptOOhQgb08j7gdzWQuzkF0DZOT1RI7MrlNl6terhlHvFOe5f72bslICiGEEFdhU++in/rUpwD4+3//76/6bfLRo0evflViVQXL5qMDe5fd3ulkONzZz7dnxsiaFpZhpM1ljvekMwyZA89MM4rZEAZqS86PEk3vJY1eut0MA9kC035jycyyIIlxDZO8edmHuTDCnJjGHJ3AGJ3EHJnAaCzuadJAvKOXaO8Q8Z4h4p0D4Kz+gfBiUNrpZPiBHXt4ZW4cL44xlKIUBnQ6Ll4c0Wat0nxDiPehgWyeT++8PQ3qnuwnnK9gv3OCH3rhXb7wkYdwcys0c2rzoWlDJQPd13YERZeT4UKjyudGT9PlZOhxMzzc2Y95BUHpqWqJ785NECUxj3dLV2MhhBDiSm0qQPylX/oledO9gd3Z1snJWolqFKRll9kYXQhQNQfdtGCuVYrZ01iyJzHRGlTaYfBStxfbGW5Ul9zmJwndEbgXxjAmZzAnZzAmZzBmSyi9mH3QhkE80Ee8cwfxrgGi3YOQvbJS0G43w8d27AXgZK3E81OjdNgOXhyzvyDdS4W41ELGTym8jz+DKlXoGZngmRfe5rXvfwRtLB1/qzs81GQByu41DxAtw2BXrkA9CpkPPEYaNdptlzuLnRs634sjXp2bYGe2yDuVWdosh/cq8+zMFdmVW3u8jhBCCCFWtqkA8Ud/9Ee3ax1iC5hK0Z/J8V75kg953Q2oOTCTQ5XSAE1f9iHQi2OypkWn4y7eqDU7A7h9pkxfdZruWpNiuU5+vkqxuXT+JUBSzBPt6CXZuYN4qJ94Rx/YW1fmdfFD7758G287M5TCgFjrhU6OQogVWCbNH/s41n//Q/aNz6FffIfXnrx/aTfg9lb5eTmzaqOa7Za3bPLYmMrnyNwkOzL5Ffc/X+5srcy75TlOVcvEOmFXrshIo86870mAKIQQQlwh2ahxi+lyMsSXfMzTPQ3U+Q7UTA7KLlpp6GyikgS3GZCrN2kvVdgRJBSOT6MqNYxyFWO+TDGM+NRl108UNDrbsAf6ifu7Sfp7SPp70Llrs/fUMUwe7OjlG9MjKMWGPkQK8b6WzVD98U+gf+dz7D81SjOX4b2H71y8v+ijjSTNIGqWVBdca+22y3CjxoRXX/dn249j3i7P0mmnM2Avxry2oahEwZrnCiGEEGJ16waIn/nMZzZVVvoHf/AHV7UgsTrt+VBroKIYkgQSjdIJxAlEESoI2VGrcvfUFH1qFiuKsf0It3wcd9bHTRq4NHA/28D1w7Ufy3WIB/qotud5105QXZ1UOwqcsBKeGdp3XUdL7C+0M9qsMdpc/0OkEAKyXZ3UfvwTWP/rC9z71mmqWYfhA3vTOw2gGKQZxIYN+bX/bdhullLMB96ax8Q64e3yDOUwYGc2v+Q9yjEMCRCFEEKIq7BugHjHHXfIvsMbgPn2cfwvfI38OjVgOWBwnWtFpkE9n8HLulRyLuWsw+7BQbJdXSRtBXRbAZ3NgFKEccRbIyfJmzYZwyRq1sld5w6BhlIc7uqnt15ZnPsohFhTdnAHjc98FOv3v8Sjrx5lyoIzO3vImzad7R6UM6j3etBDVRisrX/BlWjSMgPzyotVM6bJpLf6XkitNS/OjHO0Mk+vm1n2/mQbBtUwXHmshxBCCCHWte6n61/+5V++FusQ69Cd7ag9Q0RBCMpAGwpMA5QBhoG2THBsEsfmuFfDt0zMjEtkmQQZB89y8f02/IGY2E3/2hOtGWnW+UD3DuyOHqIVHjdjWuxw84x7dUxbYRsm+atsR78V8pbNPe3d13sZQtxUzH278T/1ETJ/9FU++fIJ3vx4N9/Kh3T0NmC4HVXKokpZdNNG3za/uYuHBur1HdC00U8Og3NlQWLGtKhEPn4cr9ihuB5HnKmV6XezK95vK5NmHOAnsYy7EEIIIa6AvHveJJKdO3D/5k9Qm62RJGt/8LowNcK5eoX+zEodPhf/yqtRQLeT4e62rjWvtzNX4FyjQtCaOyhZOyFuXtGB2/HrTTJf/TYPfuVlTjx9H8nOPMbT59HlDOqdPtSZTrQdw+7Kxi4aK9RrA6hq2uhKT+Zh15VlITOGyWzgUYkCes3le5sroU+oV5jp2GIZBmGS4MUSIAohhBBXwlj/EHGz6XGzNJOIMEnWPK4WRewrtC3MHFzregpFKQhot51tGZwthLh2wsP343/oMYww4tPfeofsdAmcBHob6IfG0UaCOtEN8xvsEjyTQ1XddMYqoMYLS+/fRDLxYlloJVx5H2ElDNa8nqkUmnQEhhBCCCE2TwLEW9DOXIH9uXYmvQbNVT4kJVqj0Qxk8uter9Nx6XYyDGbzPNzZt9XLFUJcB8ETD+M/8TBuGPH9X3uNYqmV8evw0XfPoLRCHe3Z0LUWRujsn0dnQlQpC81W9i5WqCMDqCMDGw4UFYpSuHKjmhm/ibXOl1paQzORAFEIIYS4EhIg3oLabZcfGNjD3W1dlIKVv4VvxCFFy6HHXX88hakMfmDHHj46sJe+FctWhRA3o+DpRxm+7zayfsiHnnuVfLWR3jFUQ2dCqNsQb6BioNSaodrhwUAr0BwpojVwtDvd2zh/SdC4jqxpMr1Ko5opv0l2lfLSBUrjxfGGHksIIYQQS0mAeAvbnSsS6wStl39tX4lCdueK65aXXpSzLEwpLRXi1qIUMx96hHf29ZNt+HzoK6+SrbUCs1yIQq0f1MUKqi7aiSAboYeq6VzFc+0Er7ejxi4ZWD+3sXmptjKohMvHbTSiiFoUkjHWXpOJorbC+UIIIYRYnwSIt7D+TI6cZVO/rMzUj2OUTucJCiHe34qOy58dvoMLe3eQrzV55suvkKs1F+ch1tfpWlx2UVql2UNFGiTeMYfSivh8Hm3FJPvnAFAbDBAtwyDQMWGyNAtYiXyCJMZZ54st2zCoRP6GHksIIYQQS21ZgPiX/tJf4m//7b/NkSNHtuqS4iq5psnefHFZs4dpv8kdxc5VupwKId5PipaDbVm88OR9XNg7QKEVJGZVKT2gsU6AeHH/YcclAdmuCrqvjiqG8Og47C2jlU4ziBvYh2grgyhJ8C8rE61FIWi17nxD2zBWbXIjhBBCiLVtWYCotWZkZISf/umf5jOf+cxWXVZcpZ3ZIskln8j8OMY2DO6XGYJCCNLy8aJl09AJrz59kAv7BtJM4ptfIxdVUA1n6Ql66a/VVKvRVcclTWUU8MAUme+bhkIIpoZ2DxWaUFt/jqqpFJFO8C7LIAYb3FdoK5N6HBEksg9RCCGE2KwtGxL1P/7H/wAgCALeeeedrbqsuEo9bgbXMPHiiIxpUYtCet0c7Y57vZcmhLhBDGTzHC3P0eG4vPrBg2il2HNmjA8Fn+P54sdZmGjomahXhsBO0LvLAOl4izYP2i4r6VSwJNHX5UEpCzM5KJbXXI9SCgXLMoheEmNsYCt01jSZCz3mAo8dG+jULIQQQohFG84gBkHAf/2v/5Vjx46teZzjODz88MNXvTCxNXKWTa+bTUuzSFu/78oV1jlLCPF+0uNkiVuZQW0YvPrUQc7tHyQX1/jQ2T+lUKmn2cKjPajAQtUdjKO9GEd703Pumk2zhmvQfWmYqcaLGxx3ofAvywA2o2hDzbIulqDO+h61KOTt0gzxCs26NitMEs7Wyys2/hJCCCFuFRsOEB3H4dd//depVCrbuR6xDfbk2/DieOFDzUZGWwgh3j/aHReUJrkY+BiK7z51kHNtd5CL6zz7hVfoeNlGzeTRuYDk8Bi6v4ZGower0LGBhjDFEF30UXUHznagXhtYs0Oq1nrZsPtmvLEAESBjmIw0a5yozvPS7DgnKvMbOm8t036DV2YnmPAaV30tIYQQ4ka1qT2IBw8e5N13392utYht0uNmUUpRjUIypkW3m7neSxJC3EDabYeMaS2dHWgojux7gtP5+8iEPh868WW6olH0PdPQ6aEPTqGfPZf+foP0QDW99Oku1FwWdaFt1WMNpWhcFiA24ghLbextK2/ZTPsNjlXmcAyDI/OTXKhXF4PgKzDne4w3G7xVmrmq6wghhBA3sk0FiL/wC7/A7/3e7/G7v/u7DA8P02g0aDabS/4TN54ux2Vvvshc4DPg5nCMdYZMCyHeVxzDpNvJ0LwsIKMY8mb70xztfBBHB3xw5vP0N0YW77f0uqWlSwzU0Epz8X9MFCBZ+VDbMBZK4y/y4nhTGcRmHFOPQnZk8hgonps8zzemhqlHVzYjcdSr0+W4XGhUOVqZ25KyVSGEEOJGs6kmNT/+4z8OwL/4F/+Cf/kv/+WKxxw9evTqVyW2lKkMnu3bxW2FDrLmlvUlEkLcQgYyeS7Uq3hJTJ+bxTYM9O4yOhvxTv8gwTGPB44c46mvvcbLTz/A6N6BFa8TJgn2anMKnQT94AQYGnWuAzWbQ89noXv5l4uWWjrsPtYJoY7JGhv7N0wpRc6wcM30C7FuN0OUJJypVaiGId/Xv4uC7axzlUVBEjPtN2mzHaIk4cWZcab9Js/07dzwNYQQQoibwaaihV/6pV9ad/6UuDEZSrE3v3o5lxDi/e2utk46HZfz9SpHq3MMZvLYDjCUloWeuG8fgWNx+KV3+MDzb3IkiDh3564l1yiHPnOBT5fj0uGsUsrekwaD2q+hZnOoc+3oog/O0lSipQzq8WKAGCQJsdZYK7UxTUAdGQQzQT80sVAbc3k5vWUY7MzmGW7WGWnWuNvu2vCfz3zg48UR3baLMtPA81y9QjUMKG4i0BRCCCFudJsKEH/0R390u9YhhBDiOsqaFnvybQxlC6DgWGWOndkCxiVfCp67cxehY/H4t77HIy++Q6bpc+zgbaAU9SikEUXc3dbF6Vpp9QDxot462o1QcznU83vRVozeW4Z9JaBVYhqHBEmMY5gESUys9colppN5VDl9PH2+Y+EaK1FKkTVNLjSq3N228QBxLvDSTq6tx3cMk0gnTPtNCRCFEELcUja1B/GiU6dO8Ud/9Ef8+q//OtPTaYOC8+fPU6vV1jlTCCHEjcwyDB7r2sFgtsCEv7xb5+jeAb79kUOElsn9b5zk0EvvopKEchhwoL2b+9u7MVBEySqbCxceSKMfG0XvLqEzIcQGxqkuKKUzWi1lECZ6YRZimCTEOsG82KRGg3qrD/XdAdTZzvQmpVGnO6Fur/nQRctm0mvQ2OBexLnA483SNHlr6XeqJoqJZn1D1xBCCCFuFpsKEOv1Oj//8z/PJz/5Sf7hP/yH/Mf/+B+ZmpoC4N/9u3/Hr/3ar23LIoUQQlw7rmnyePcOFIpwhUBvcqiXb378MZpZl/0nhnny669jBhF9bpYuJ0O3m6ESBQvH16OQU7UywWVzDXFj9F1z6A8OL3RDVUd7IUkD1ThJ8FrnBEmMurQjznwGNVlAlbKouoNu92BPGaUVzK09yidjWvitPYXrKQU+35wawY9jOi/LihYsm+FmjVivEwwLIYQQN5FNBYi//Mu/zBtvvMFv//Zv8/rrry8ZFvyhD32IF154YcsXKIQQ4trrcjJkDXPZsPqLSt3tfP0HP0ClPc/AyDR/7ptv0R0mGEpxR6GDWhSitSZKEmYDnx2Z3LKupEsM1NAdTVTNgflWuSgw0kj3QAZJ0rolpc51pMf01tHZEH37HDqfBqXKW79Ts4HiQqNKrBMSrZnxm5yqlpYExDN+k69OXqAU+vSvMD82b9nUooBJmYsohBDiFrKpAPG5557j7/7dv8vjjz+OaS59Ax4cHGR0dHRLFyeEEOL6MJSizXGWZ/0u0Shk+fonPsBEXwf98zUGfu+LqNl59hfa6XWzjDfqjHl1bi+0sy/fTjNe/Voo0L2tQKuWlpl2OS5vlWaZC7xW4NbKIM5l0g6omRB9cBL91DB0eZBpjenw199e3+1kOFqZ4xuTI3xh7AyfHz3DN6dHGGlWF455rzJHOfAZzORXbNBmKIVlGHxjaoRz9cq6jymEEELcDDYVIPq+T0dHx4r31ev1ZUGjEEKIm1eHnVkzQAQIXZvPfeh+RvcNYpar5H/nc+RHJnm0ewemUtxV7ODJnkH6MtklVScrKrQygNW06Uvesol1wtulGYIkTvOH01nUGzsA0PtKS9/F3FaA6K0fILqmyWAmz3CjSj0K6c9kcZTB8UoJrTVBEjPSqNHpuGtep9/NgYZXZiek1FQIIcQtYVMB4v33388f//Efr3jfV77yFR566KEtWZQQQojrr8N2iDYwDN5TMPrxp/AffxDl+WT/95+w99h5PrX3dp7qHcI1TbqdDI5pLjSdWVGxtW+xttgVtNNxGW5WKYc+BqCO96ASg+TOWdhZXXp+pnVtf2NfVlqGwUA2T5eTwVQGnU6GsWaN2cBjxm/SiEJyG5gd2+G41KKQ+cDf0OMKIYQQN7JNBYg///M/z3PPPcdP/dRP8dnPfhalFM8//zy/8Au/wJe//GX+xt/4G9u1TiGEENdYzrKBtWffhkm677DLzRI8+wGaP/gsAO6Xnqf3Ky8vzFLKWTbdTmbJbMNlnBhtx2mA2ErGZU2LZhQz43tYkYlq2uhcAHvKy883dXq+Z126XXHDbMMgAd4tzzLWrINSG5r9ayqFRjPre5t/0E1aM8AWQgghtsCmAsTDhw/z27/92wRBwD//5/8crTX/+T//Z4aHh/mt3/otDh48uF3rFEIIcY3lLRvQS0pDq2HA+UaVKa9BlKRzAPcX2ulrNXGJDt5N8y98Cp3LEH/7ddz/80Xw0szarlyBRhyt/oAKKPppJ9LG4qgKUymCJCbTyKU3FIKVzwdwI1RiQHRFU5zod7Mcr5Y4VSuR30D28CJHGYw0t3fU06TX4E/GznC2vkJwLIQQQmyRjb/7tRw6dIj/9b/+F57nUS6XaWtrI5tdu6W4EEKIm0/etLCVSagTHGUS64RSGPBwRy+zgc9os4apFPe39yzJtMW7Bmj+9I+R/8MvY50ZJvff/y/NP/dxBvMFDKaIkgTLWCWAKwQwl4OqA4U021i0bEqhT3ejHQBdXCNAzMRQI80i2msctwrbMNiRyTLpNxlwcxs+r2DZjHt1giTGMbZ+P/584PH1qWHKgc935ybpd3OtDK8QQgixtTb1FetLL71Es5nOjcpkMvT390twKIQQt6iMaZExTbw4Zj7wGWnW2ZUr8HBXHz+wYzcfH9jD071DdLuZZefqjjacv/kTRHfsxZwrkf/vf0jf8CQ9bpZyGDAXeCuOvbgY/KnaYnOYvGVTjyKceutx1goQFxrVXHmQ5hgmu7KF1YPYFWRNCy+Otq3MdLhRpRaG7M23UQ4C3q3MbcvjCCGEEJvKIP7Mz/wMpmly4MABDh8+zKFDhzh06BCdnZ3btT4hhBDXiaEU7bbDyVqZoWyeBwu93FXsxFRp4DSYLax5vsq4+D/2MeJvvIL78hvkPvslPvToffyPXUW63CzzgU/h8izYxfLR2uLthlLcWWjHuBggrlFiqjNRumtyA6MuttLFDGop9BnI5rf8+ufqVfJW+pwKlsVkU2YvCiGE2B6begd98cUXOXLkCK+99hqvvvoqv/M7v0OSJOzfv59Dhw5x+PBhPvWpT23XWoUQQlxjA9k8bbbDw519ZDaxJ2+BYRA8+zjJQC+ZL36Dna++w18a62X240/zfHVmeUmme7ET6dLHUiioOWgrXpx3uJLWfcqzrqRPzVVxlMF4s86Btq4tvW61lXHtao3ccAyTShQQ62QhWBdCCCG2yqbe7Ts7O/n+7/9+vv/7vx+ARqPByy+/zG/91m/x+7//+3z2s5+VAFEIIW4hD3T0bsl1ortvo9HTReYPv8zQyDQDn/0q4x86yGkV0OteslXBidFKQ3BZiWjDRiUGuq25dmPVVQLMayFn2Uy2mvdspjx1PdN+k0gnC4G0a5hUopBaFNJurz2nUQghhNisTb+D1ut13njjjYVM4ltvvYXrujzzzDMcOnRoO9YohBDiFpD0dNL4qc+Q+ZOvY584y/d98SWiw7dTvWvvYiZMAXacBoiaxWCw3io5XaW8NEoSJrwmA66Zbq6/ij2IVypnWoyHDcphsOK+zCsRJgkjjSrmJVGxZRgkWtOIIgkQhRBCbLlNBYg/+qM/yvHjx+nu7ubw4cN87GMf4x/8g3/AXXfdtaFZUUIIId7nXAfvRz9K8vIbOM+/yg++fJw3Ziq88OB+DMuiP5MDN0YFFjo0wGkNRGxlFLW78hzA2cCjaNtM+VUG0dBwrtUzWmC05iHOh96WBIgjjRqvzE4wGzSXZlkBraG+QpMfIYQQ4mptqgbm+PHjWJbFgw8+yEMPPcTDDz8swaEQQojNUYrgAw/T/POfJMlmeOjUOD/7/Hv0NQJKgX9JmeglWcCw9XZlJws3JVoz3qzTjCPCJOHe9m4sW5EUfJRnQfPal5maKKa8q28gc6Za4s8mL9CMQ3ZmC2RX2P9ZlQBRCCHENtjUu+eRI0cWykufe+45fvVXfxXbtnn44Yc5fPgwjzzyCA8++OA2LVUIIcStJN63k8bP/jkyf/xn5IfH+cyXvsuXDt9O0xlKCyoDC0iDIBW1gkV7MYNYCn1yls2032Qgm+dAWxfNOORCsUaxloHZLGqyAO0e+vb5q1/w2fa0Cc5AfdVDOhyXo5V5upwMd19Fs5r3KvNYStHjrjxKyjUN5oMmtSgkShI6HCk1FUIIsTU2FSBms1meeOIJnnjiCQDCMOSll17iN37jN/jVX/1VlFIcPXp0WxYqhBDi1qOLBZp/4VM4LxzBefE1PvnSMY73BbxnfT/JpRnEYGkGUWtNLYp4pm8I1zDJmBamUhQsB7+9TnG8B3WqCxWaMJdFdzah+ypmFDYtjFPdaCNBd3qQWbnUNWtatNual2cn6HVzK5aahkn6HOxVGtloranFARlz9X2UrmEyF/h8e3qUWhTy0R17KNrXvqxWCCHErWfT9Tdzc3McOXJk4b/jx4+TJAl33HGHNKkRQgixeYZB8KFHiXcPYP3xV7lr6gz91h/wUukxaoOtYy7LIFajkHbbYU+uDfeSQCpjmnjFNMOnwsXb1Xu96IcmoHCFZZmlNEOnEgPOdaDvnl310IJlUw59GnFIN0sDxHLo88L0GLtzBQ6u0iHWT2LCJCFrrR7wOYZBJQqZCzwMFC/NTvCR/p0y9kIIIcRV21SA+NGPfpQLFy5gmiYHDhzgscce46/9tb/GoUOH6Ojo2KYlCiGEeD+I9+3izP/7E3R87lvsnJ/l+488x5vW3Zy9Y+eSDGItCqhEAU90Dy4JDgEyhoV2Y3Q+QNUddJsH2SgtNX15J+wroffPrz0qYwWqfEmgN1qEwSq0rdxRtXUGXrw0y9iMI742OcxIo0ZujeygF6cB4lqjMlzDpBo22JHJkjFNhhtVKmFAp7M13VOFEEK8f20qQPzBH/zBhX2G2ezK+yKEEEKIK5Vtb+MLjx7i6RdLHKh+l8MvvsPA8BSvOT2EZImtiLkg4IM9g9zd1rns/ItlmbqrkQaIu8vQX0e3+6jTnagzndC00PdOby5ILKWBlx6sosaK8OoQ+p5pGKytekrzsiYyJ6rzzPoeOzI55gIfrfWKTd68JCJBY67RAE4pxW2FtiW3NaKITqkyFUIIcZU2FSD+zb/5N7drHUIIIQRF28HIwrG2R5js7ePR6a8zNDxFt/mHHOn4MKeJyFsWtxc7VgyuMqaFbRgE+2dxepvQ1UwDwT1ldHcDXh9AjRfRQxXo9De2qEhBzUG7EfqeaXSbjzrWjTrdiR6orRhoWkot6TJai0LeKc/S6TjYyqQcBXhJvGJ3Ui+ON5vgBDSNONr0WUIIIcTlNr0HcXh4mN/8zd/k9ddfp1Qq0dHRwaFDh/jZn/1Zdu3atR1rFEII8T6RNS0yrQKVOWuA5z71JA++epT9J0d4avaLdLw6xLFH71m1wYtrmFjKIDQinO7m0jsLIXpPCXWiBzWbQ280QKy4KK3Q7V4aDO6qwGgRVXXRTQtyywMz2zCWBIjDjSqNKKQ7V0RrTZDE1KNwxQDRj2O03tjSFilqMvZCCCHEFtjUbvZ33nmHH/7hH+a5557jvvvu40d+5Ee47777eO655/iRH/kR3n333e1apxBCiPeJnlyGxIzBN4lti9ceP8hLXR/HN1zuOznKx7/4MsbE9IrnGkqRt6yFTqHLXAwa5za+TUKNFwHQ7ZcElF1rX8dSBrVocY/ilNfAMdLyV6UUClYN6BpxxGbHCzuGQSncYMArhBBCrGFTGcRf+ZVf4Z577uE3fuM3luxBbDab/JW/8lf4lV/5FX7nd35nyxe5Gf/zf/5P/tt/+29MT09z4MAB/uE//IccPHjwuq5JCCHExnW7Gap2hO256FhBYDCW3cNsTwf3Vb7M3ol59H//vwRPHSZ4/EG4rOFL0bKphqs0kMmHaDeCsguhsTA2Y1XDbaixItqJYGBxv6HubKLOd6Dmsuid1WWn2YZBPY4IkxhLGUz7zSXZQq1Xz/hVwwB7k91IHcOgFFzFGA8hhBCiZVPvQG+//TY/93M/t6xBTTab5Wd+5md46623tnRxm/Wnf/qn/Kt/9a/4a3/tr/G5z32Ou+66i5/7uZ9jbm7uuq5LCCHExhUth9hpBU+etTDiwsu5fO6D9zL17KNgKNxvvUrud/4vxtTSkRMFy1k9g6iA7iYKtTT7p1v/XWqkiDrWjVYa/cAkuJd0Je300ErDfGb5eYCtDKIkwYtjGnFEPYqWzDW0DcX8KgFdLQpWLaFdjWOYCwGpEEIIcTU29Q7kui6lUmnF+8rlMq7rbsWarthv/dZv8ef//J/nM5/5DLfffjv/9J/+U1zX5XOf+9x1XZcQQoiNy5gmfnsDAHWuY2HERWLFWKZJfPgg9Z/9caKdOzAnZsj91h/gfPsItMZK5C2beI09fLq7de2zHTCdQ73bi/rmHtR3dkHcqu2cyWIc7QUF+uAkdFxWvmlpaPNRgQUjS7uJAlhGK0BMYqphQKjjhRJTuDjo3kNrzbTf5EytnK5Na6pRiHUFGcQwSWhE0qhGCCHE1dnUO9AzzzzDv/23/5YjR44suf3IkSP86q/+Ks8+++yWLm4zgiDg3Xff5cknn1y4zTAMnnjiCd58883rti4hhBCb4xomtaFptB3DWAE1n2b6IjMkZ9rkTAvd1UHzJ34Y7/ueBMPAfeG75P77/8WYnCFjWmvv4ettoDuaqKqL8eYO1FgRFZmopg1TOQDURAEgHWXR11jxMnpvCa00xrEeONe+7H6lFF4cUYmCZV1JXdNkxm/yvy+c4POjp3lldoIwSQiShCCJN51BNJVBoqWTqRBCiKu3qT2Iv/iLv8hf/at/lb/4F/8iXV1ddHd3Mzc3x+zsLA899BB/7+/9ve1a57rm5+eJ45ienp4lt3d3d3P+/PkruqZhbL7R+Ha5uJYbaU3i1iCvLbEdruZ1lbEtbBei/bPYx/vgbDrvMLRiejIZLLMVPBkm8WMP0LxjL+6ffB1zeJzcb/8hOx+9H2NXccUxGED6znd4An2iCypuOvTeSlBv9aPG2mCgAbNZtNKovgarRpv9TTg0AUcGUKNF2FdZdoivY8qhj6mMJevJWfZCVWvGNKnFITEJIQmx1jimufr6V6PSGYrr/ZnHWtOMIwqWvXBbOfR5tzyLo0wOd/dv7nGvIfn3SmwHeV2J7XAzv642FSB2dnbye7/3e3zrW9/i7bffZnp6mt7eXh544AGeeuqp7VrjVVltEPF6LMugu7uwDSu6Op2d+eu9BHGLkteW2A5X8rqKdUJxNoO5vwknNSTpv+EqlzDY1bb83+buAvrnf5L4O68TffFb9Lz8PX7ieIFjH3mYykD36g90uA7UAdAavJMRzGVxqm0EgYXRFZBZb/J8QdM8HkLVIWNmMbKLex+z2sfIWtSimM5ilnxm6TaMPOnvoyQhaDQodmTx4hgnY9FW3HiX1SWPl7Po7i5wdH6WShBwf3cPuUsCQYDT5RJvlKf4kX13YBkGWmueOzXCcLNCr5ulvTOHtckM5rUm/16J7SCvK7EdbsbX1YYCRM/zeP755xkdHaW3t5cPfOADPP3009u9tk3p7OzENE1mZmaW3D43N7csq7gRUZRQqTTXP/AaMQxFZ2ee+fk6SbLpAVlCrEpeW2I7XO3rSvsJlaRJe4eHajWT8RKfsG4wO1tb+aR77kIN7MD+k6/TfWGcJ/7gW5y+ew/vHLqTyLFXPudSA1XUmU781zpQQNxRp17bwOiI9iaqatMcMWBg8X0j9GNeHhmlFgYMZPPUo5WvpbWm5vlMzVZpxjGeF1JXKxzrmeCb0L5yh9YkSDg1Ncs+s8CRsXFO10q8OzHFJ4f2YV6yp/HYzDQnSnMcc6cZyOZpRCHj5QpdlsNkpc7J8Rn6Mrn1n/d1IP9eie0gryuxHW7E11VbWxbbNtc9bt0AcXh4mJ/6qZ9idHR04bZCocB/+A//4YbKGjqOw7333suLL77Ihz/8YQCSJOGll17iL//lv3xF17xR/jIvlST6hlyXuPnJa0tshyt9XeUMi3oYorsbCwFibEVYylj7eu1txH/hh/neCy9y33ff4/Zj5xk8P8Ebj9/D2J4daz/orjKMF9K9iLSa2WxkYn1nEzXSBnMZ9I7F4LXbdvGSmJ3ZAoZS6DWupbXGj2P8OEJrlh9bs1FHBlGhSXJ4FDqXB5AZw2Taa9IIQ+Z8jz4ny7TXpOwHdDguzTjCMUwu1Ks0o4jztQr9bo5KEOBHMY6dZhOnvSY9zuYzmNeS/HsltoO8rsR2uBlfV+vWkPybf/NvMAyD//k//yff+973+OIXv8iBAwf4x//4H1+L9W3KT//0T/O///f/5nOf+xynT5/mn/yTf4LneXz605++3ksTQgixCTnLItIJ9Cw2iInNZGPNW5QiPHgXv/3xQ5zc20+u6fPkN97gia+9Rra+RmWIk6AfmkBbcTr3sG1pEObFESdrJaLLR2h0tsZVzGeW3GwZBgXLxtjANgeFWmhSs2xuRmigXh9Ahem3vupYD6wwxSNrmjSTmLFmnWYckbdsNJpKGDDRrPOV8fNcaFSohAH9mSxn6hWCJB3DoVTaVCdjmgw3ls913E7VMCDW68yjFEIIcc2sm0F84403+MVf/EUOHToEwG233cY/+2f/jE984hNMTU3R19e37YvcqE984hPMzc3xn/7Tf2J6epoDBw7wm7/5m3R1dV3vpQkhhNiEvOWkAWJ+cZh84sQ4av3SGIAuN4OXcfnCo3dy6I5dPPDi2wwNT9E3Pss7D9/J6bt3o1cKNvMh+omRNEa77O5aFNLjZJkNPPovLcF0Y3Q+QNUdtG8unZe4CWGSECbJ8rGK0zmUb6F762mwWMqix4qwc2kgZyqDWCcMN2pordOsJYpymAa65xtVDKWI0bRZDqNenSmvSS0K0ToNYvOWzaTXoBGFy/YubodZ3+O5ifMYSnGwo4cDben7dawTKmFAp5NZ5wpCCCG22roB4vT0NLt27Vpy2+7du9FaMzMzc0MFiAA/+ZM/yU/+5E9e72UIIYS4CgtD5RUkD49D1SF2Nz5AvtPJ4Bhp59C9B+/nC91t3P3mSQ4dH+GhV4+y7+QIrz9+D7P9K3yBuEqA5yUJ+/J5ztYrxDpZsq+PDg/qDpTdVcdirE0T6gQvjjAvG4pxscRWD1bB1KjXs6i5LHrnCpk+DfU4WGjO5hoG034TP4npsB1GGjWKto1SCgVM+Q3qUYjd6rKXMUxm4ibfnZvkqd7Bpc9xG5xvVKjFIW2WzYsz46A1txc7eW1ukvONKj84uG9Jt1UhhBDbb1NdTIUQQohrwTVMuBgodTfT/5psOEDMmhbdboZuJ0uXk+HZob28mc/zu7t7+egbZ+ifLvHhL73CudsGeevQ3fg5d/2Lorm90EGYJAw3awy4i90+dZuPGgVVdtFXECDqVolpI4qWlqRqYC6LRqelrHHrvubKb9+OYVAOAjJGGmBnDJNpv0GQJLTbDl1OBqt1/ZxpL5STuq3jlVIMZPKcqM4T6oSd2QJ3FDu2JVAMkpiT1RIdlkPRdjCVwQszY7xbmWMu8NFoztTKHOzYfKM5IYQQV25DAeLP/dzPYZrLy3p+6qd+atntL7300tasTAghxPtWGrAsFlvGWmOgsDcRqDzStYOsmb7NtTsuT/cO8Z6b5X935Hl4dJ7Dr59k7+kxhi5M8e6Dt3PqwJ6Vy05Jyz8tZdDlZHiqd4hXZyc4WSuxO1tIs3XtrX2I5SsriTQAP4nxkrQRz4KGnZaXtnlgJ2CBNhJo2Okfz2XbG7OmxUzg0e/mlvw+0gk9RmbJ2KeCZTMbeFiGQd5c/DhgGQb9mRxjjRpnahUcw2R/of2KntdaRps1KlHAzkx+YT1Z06IS+vS5GYIk4WhljruKnbgrfAa53sIkYbhR3ZY/GyGEuJ7WDRD/+l//69diHUIIIcQC1zTTQfKtWbYXSzo3mkEE6HWXduJUSnFvezdzgcebhmJmzwe5981T3H70PA9+99hC2enMjuWzE5txRNFyKFhpeeYTPQOMNmt4SZwGoYUQbSZQcVcM3NZjKoUfR3hxjHlpBnGuFXB2tQJQBeRCVM1FhwY4S5u75CwbNwoXSnQtw0j3cqKWzQS2DYMoSUi0ptNeOu/RMUz6Mrn0z6o0zc5cAcfY2iDtQr2KrYwl6zKVWth36BqaUa/OuFdnb75tSx97Kww3qrw2P0V/JkdeymCFELcQCRCFEELccBzDbDVd0VhKEWuNaSjsLQhSBrMFjlfmiTI233v0AGfv2MlDL79H3+Qcz375VS7sG+Ctw3fRzC8GmI045PZCx0IwkzEtet0sM34zDRAV0Oaj5rPoug2FcJVHX5mhFF4c04wjLEOlQeaFNtS5DgB01yXdV3MR1Fxo2uAs7bRqKsVgdulQ5oxhkjFXfrs3lcJPklVLSDttl+FmnXP1CncWO5fcN+U1OFadx4sjPtK/e2lgu44giRlt1imuEVhd3CfZiDb3Z7mdJr0Gx6vzHOrs41S1xJzvUQkDCRCFELcU2YMohBDihuMYBpZSRDrBYjFQ3EwGcTXdTgazlT2zDINKZ5HnP/You86O88CRY+w+O87QhUmO37uPY/fvp2kqQq0ZyhWWXGcoW2CkuTj3kDYf5rNpo5pNBoimUtSjkFAnOFiod3pRE0UA9EAVOi8JELOtazdsaF8+D/FyPe7qMw273QxevHrXVaUUjqGYC7xl971RmuZ8vYKpDGb85tLOruuY8Zs04pBOO7/mcQaKShRs+Lrb6UK9yjemh6mHEV4cMdqsoZWmHPoMZNd+HkIIcTORAFEIIcQNxzVMbGUQtQbGxzpZaKRytdpth3bboRaFdDit5jRKMbx/kLFdfdz99hnuevcs97x1mn0nh/nWvXvoe+Ae9uSWljl2uxnQi2Wwut1HAWqigB6obWDS8CJTKZpxRJJo3JFu1EQRnQnRD05CcWmApHNh+jgNe/lIjE1yDHPd0lFbmVSCpWuItWbe9+hyMpTDgAv16qYCxEmvCXp52etK6ysFN0aAeLpWAg27cwXO1SsYSpExLGb8NWZrCiHETWh7+1cLIYQQV0ApRZvt4MURkAYkq5VJXsm1d+eK1FvXvihMEmLb4t2H7+RLn36ac/sGyDYDPnrkJM9+4dvYF8aWHN/lZMhYJl7SysB1N9C5ADWXS4fZb4KpDGI0kU4wKukePH1wallwCECulUGczqFeGYSpjQdmV8I2jGVZvHoU4iUxGcOkzbI5Uy8TJhub/5hozYVGhby1fsDvGAaV0Efrqw2Fr06UJEx4DfKWjWUY7Mjk2OHmyJomUxIgCiFuMRIgCiGEuCEdaO/CS2JinWxpgAgwmM1jKcWs7zHlNRhu1hj36tRa+92ahSx//OgdPP/JJwgH+7GmZsn9r8+T+YMvoWZLQLoPcTBTYNpvEiUJWBr98ATaiVCjbeCtEAA1TdTpTgiWvv2arX2WidYov/U8c6uUqbZuV1UXVcmg3umDxvYVBNmGgZfESwLAahSk5b+GQcGyKYc+75XniHWy4jUSrXltfooL9SpvlKaY9JoULWfFYy/lGGaru+vGgs/tUgp9GnFErvUadAwTyzDImha1MLyh9kkKIcTVkhJTIYQQN6TduTaGsgWmvAYaTXYLRx0MZgt8uH8XL82M02VnuKvYyaTX4L3K3MJg9gRN32234d13kOjoadxvvox98hzW6QuEDx4gePIwH+gZwFSK49USu3MFyEbQ4cFUATwLMpcENjUb46VdAGnH073lhbtMpUiStFQV30pHWVgrB1u4MdpIUImBtmJUZMK7vehHxrfsz+dStjIIk4RmHC80CaqFiwGRUopuJ8Mrc5NUo4CneoeWXaMaBbxdmiHSCVpDn5tZmCG55mMbBkGSNu/JbuEXBJs1H6RZTOOykljHMAmSmHIYkJNGNUKIW4QEiEIIIW5IplLc197NV5o10JA1tvYta1euyI6daSZRKUXesjlaSbNgYZLueex2M6AU0T23E925F+e7b+G89AbO6+9iv30c+5EHOHToHs7WKwRJnO7nc1tBoW8BrSYyCag3diw8tqo5S/YPmkoRo9PjQhOdDVcflaGAtgBdcdCPjMHrA6hSFh0rMLe+FNMyDGKd4MURba1xGPOhh3nJAvOWjQLON6o8lsTLus2WgzTjOJDJoTUbCg6BhYCsEUV0rZ9w3DaTXn31Nau0kc4A0qhGCHFrkBJTIYQQN6xeN0vGTPf5OdswLN02Fufw9bpZut206UotCul1s0uzVpZF8IGHqf1/f4Lg0QcgSXBffI3+3/wsj58cx/fTYFC7rb2N/iXrHSuiPBuda+3lay4Ndg1asx6D1u3u2iWV+oEJ9BMjabfU/MrX3FqKxiV7Nmd8b2HW4kUZ08KL02za5eYCD0W613KjweGlGvH1K+GMtWasWSe/SgbTAGorPGchhLhZSYAohBDihpUxLXa4eRKtsVeZ1bdVDKW4u62LWhRSi0N2ZgsrH5jL4H/kCer/n79AeP9dKM/nkddO8GNfeJk9J0egFSCqiwFiAupsBwD63mm00umIikukM/8Uht9Kk7lLG+hc1IgiEq3BSdJyVlj8/+Y2ljhqvdAwKEwSyqGPe1lG11AKjV4xQBz36mSuOAOsqEcr/3lcC7N+k1oUkrNWXr9jGMwF648bWUusE07XygTXea+lEEKABIhCCCFucDtzBVzTvKLM02bdXujgnrZuXMNac34ggG4v4n3ywzR+9scp799JW8Pn0e+8zQ+89BUGmmcWm9TM5NLsYXcDOnzIhqjAgnBpDWmiNVbYOmeFDOJ84DEf+kxf1jVTX5yLuI0ZREMp6q0sXi0K8OMYd4WMroFizl86MzFIYmYDb9UAaz2OYVAOry4AuxrjzToJGnOVLygcw1xYXyMK04ZFmzThNfjW9CjfnBqVhjdCiOtOAkQhhBA3tB43S7vt4FyDANFUike7+3msq3/dAPGipLeL6qd/gN//vgeZ6uukvVrlibkv8eH3vsSO4SlUKc0K6v56ekLukkH3l4h1gh20jr0sg1iPQvwk4VBnH7HWSzNNrQyi2sYA0TYMKuHFADFsBUzLN0lmTZNxr77ktlLg48fpSIwrkWbovPUP3AaJ1pyulymYq2dnXcOkGUd4ccS3pkc5Mje56bEcF+pVYp1wrl7maHVuU+ddzOxqrYmS5LqPBBFC3PykSY0QQogbWqfj0u1krlkXS8cwuae9e1PnFG2Hxo5ePt/XyV1jVe77znm6mtN88GszzOXO8172ccbzrQApH8IMaYDYvliO2eVkyMXpDMTLM4ilMOC+9m4e7OylFoUcr84zlG01RbkGJaa2Mqi2SkfrUQirxCBZ06Ic+nhxtDCWZD700eiFvZ6blTEsylFAI4ooONe2U+hs4DEf+OzIrP5lQdppNWHW95j2mww3avRnc+zLt2/oMbw44my9TKftEiYJ5+tVHuroW9YxdaXzvjMzxr58G/e2d/PNqREqUcA9bV081Nm3qecphBCXkgBRCCHEDc1UBh/u37Vqid+NwFCK/kyWU7UyE3t7mTx9mAHvHPdG36FrfoanGn/CzHc6ePehO5jKFtL+n5dlENtsBxW0brssg5hoTX8mB8CefJHjl2aZrkGJqW0Y1KKQWGvKob9i9hDSbNps4lMJg4UAcdJrXNX+Uac16qIS+tc0QIx1wtHyLKxRXgqLnVZHmzX8JCZvWRyZnWIoW0i72q6iFPi8ODuGY5jUo4jOrEtiaia9JvOBn3bQXcOs71GLQt6rzDHlN5nymhiKFfeACiHEZty477ZCCCFEy40cHF7U6+aILg6Kz8RMOLfx1Y8+zUtdH6PkdNEzXeJDz32XZ9/4Gr3eMKreCujqNgSt5+cv34MYJgm2YdDlpAFDmklVi6WEdpLOVfTsVTN7V8ttDayvhQGzgbfi/kNgIUvoxen6E62ZaDYWBsxfiYvXLEfXLvDRWvNmaZrj1Xn63NxGzmC2VQbbabuUQo8L9SoAUZLwwvQo85eUydajkOenRxlr1hmuV2mzbZRSmMogRjPtN9Z9xCm/iaEUrmEy5TUYzObSjr+xNLoRQlwdySAKIYQQW6DddlCkwYVyY2gAcznGsn2M7upnsPN73PvmKXrm5niazzNd28GxqQeZSnaiu5voQxOt2YksySDWo5B226XYGsSeM21swyDUCY4y07mI2RBVc9GRAfbmm6Ss5+IsxOmgSTkI1syMAQQ6DVIqYUAtCujb4H7OVR9fKWb9a7cP8XS9zBvz0/S6WewN7H1VrTEgGcNEKUXOtHm3Msu+Qhvn6hWOVebpy+TobAX5p2slJr06u7KFZaW3WcPkXL3C3W1dqz6e1poLjQo501y4JqR7aJvXcSSIEOLWIAGiEEIIsQXaHRfHMAmShEym1ThmthUYFUNG9w4wumcHO89OcO9L5+j1J+gd+TLzdi9Hw4cY1Qb4ZpoNtBZTgY044rZCx0IgkTVNXMMkSOLFQC0bQc1Ny0ztK8i0eSZMFGBHDTIrZ6BMFOfrFfwkpmCtVeqpCVudPOdDjwR91R1oM4bFpLd+Vm0rzPhNXpoZp81yFspk1+MYBqXAp9NOmwx1Oi4jzRovzUww4dXx4oiJZoO7ip0AjHtpVnWlfZlttsNYs85os8bQKqNWqlHIfODT5bhLbjeVwr+BRmVcuhdVCHHzkJ9aIYQQYgtkTYs226EZRWQulojOpuWJutAK2pRiZP8AI4NDDJ2e5sDJ43SWpnli+jkqf1TguBFyoXsvmjRLNB/6JGj6LmmSopSi3XaWdva8tFFNIYByBtq95RtJYoV6txfdW4eBVrfRyRzq3T5UbKBrDvq+/z97fxIkWZal54HfvW/SWdVmMx9jjozIyIzIqaoyUUgUqgg0ARCggN3FRZPoFmkRdAuEG665IHdccMENKQLhgr1oEbAHijRaWBSMrEJljTmPERmzz4PNprPqG28v7lM1VTNVm9w83T3rfCIu7mGm+vTq02cW93/nnP/fmfn+yq7HbjgkMdmpVbVRm+PucIjiYuY0kxSdkVFNzFH7oE4c8fPmLrvRgOvFKl9uLJ9LkFqDmAKNXGw96HcJ05SVc1Q9C47LXtRlI58T1UqxFpT4uHNAZgwbxRKbwx6pyciMYTcczG279bWDpzXf29vkd1evU/P8Y4Y1+9GQJMuOVXIdpRlmybgt+Vny8+YuP2/tUHcDfnvlylSlUxCE55vnf6hDEARBEF4Q1gslBmkyjqlQo1zDypGqXiHj4ReX+N/+w2/ypxt/h11/g1qryzcO/pB//+7/m5c/vMvjboeC4/I7K9e4VqpOPb3hB1NRF+MsxL4H9+roH15B/eU1aE1XmNgvorYqqM8Wx/OK6tYCKtXj78+bYyw5Lr0kPlXwOUozyKMXHg97lObMK56HkVFN80geYmoM/9vWfX7Z3qefxPy4uc3ukZzIk4izjO/tbvKHW/fHM4KPBt1zO+ZWXI/XKvUpIRc4DleLZa6XKpQcj25e9WvGEYNTKmvLfoH9cMj/7+Hn/JvNu6Rmum24l8Qw43NwlCLLDiu4z4rPuy1+sL+FrxweD/t81mk90/UIgnA+RCAKgiAIwiWx5BeJTYYJDufATCE5zD48ilJs1a/ynZX/iH/3rW+zGdygHHf5+vd+yf/1X/yQ/+hei9f80jHX0Jrrk07m3eUCVHV81IGt1Ki+j/pgZfrl9m1VTA09aAdWDPY9jJtiqiEqdOe6obpak5whY89VimGakJqMbhITXDD/cGrdSqFR3Om1p74+SBNaccj6aL7PwPYZDF5GNOOQXprQjEP+cvcx/SRhLxpSds/fYHWa06kxhv1oSDMKwagTYyyUUlwrVVjyCzzod9kcTL+ng2iIp2cLxBRDbJ5dm6kxhl+0dik6DjXPZ8Hz+bzXms7uFAThuUZaTAVBEAThkrhWqnCtVOFhtsu113woJLDSP/l2rGurPbuldf58+UvU67e52f4+rz3YRX3n+5jv/pT4vbeJvv4lTM3OpJXyGcBeHj1Rq+Qv0PUhVRgM+Cmq52MSBdtlm7+4f9jmp7bLmCBBZRpTGcLCEDqBrSKWOjOXuuwHp+bzWaOUhDBNibOMygXE1iwaXsBnnRbdiRiHfhKTZBluvqaS63Kn1+HLjZV5h5liPxpiMGwUSmwO+3zSOSDKsksRtUfxtOazbpOy4+GcsevW0xpHaT7vNrlaOpxH3I/CmWt0lDUTepYVxF4S05yYj6y4Hg8GPR4Petws157ZugRBODtSQRQEQRCES6LguHx7+SrlwKVzbcfO+bnTVbfUZNMtg7lAVHnQ/UFjgf/1r73Fo//zPyT+0psQJ/jf+ynlf/rPKPzBH6K3dik5LsZYodBNYgZOZNtae56tDpZiqOftmNtl9AerqB+vW6dTL6/kbJUPsxhLMWbBtmaOKpCzKLneqaYjoxbTMEtJTIZ7UkRJM4DN8mHMxwmUXJdhmnCrfdiu2E8TlDqMwqi4HvvRkM4ZswA3Bzaj0VEaAzwYdDGYmeYxT8pyUORhv8ftXpvSOUTzgu9zp9cZv6c4y2gn0dyokdFjnhX7UUhiDucjlVJ4WnGr2z7lmZfD7V6LW91W3oYrCMJFEIEoCIIgCJdIxfOpez6xOb5JD9OUh4MeW8OJOblRLEXe2pm5Ka7S6NUlhv/B79L7z/5Twm99FXwP7/1PKP/f/2eu/X//La9utbhRrPDuwjI74QBTCQ/nA6vRYdvpvbr9O8kFxUoPUxuiBh5qu2y/VkpgYYhRxlYQn0BfOEoRZRn9JMFg5lccY4360Qb6F2uoP7kJj/MKmQEeVY7PT2Jba//k8QN+crBDajI77znxfV87JCZj6wxtpqnJ2Bz2xu2kDc9nc9ij8BSqh2DPy7VimYJ2qLr+mZ9XcFzCLOXR0JoK9ZKYKE3x55jQKNQzFYh70XFjogWvwN1+eyoL8mkwTBP+fPcx/3bzHn+59/ipvpYg/DojAlEQBEEQLpmK45Mc2aQnmRUuN0s12wI6Iq8gjqp5qZvgaj1uITSVMtHf+E26/9k/Yvi3fpusUSW4+4h/8J2f8w/+17/k6/f2qCqHpHxo4GKqEaY6mku0Qmv0mmZxCEu5QM1FmSnFttK5MEBFrjWxuSBu3ubYSaKTDW02y7a9tZyv84MVW9W8W7cVz5+vHROqdT+g7vv8cH+LR4MerTjEOfIaBe3w3b1NbnVPNkZpRhG9JKbo2PNedj1cpah5Zxdv50UpReMMbbpH8bXmYb8LWIGYGTN35tEYZt6c+FXxcNA9ZkwUOA6pyZ66WU03iQnTlNVCkUeDHt0XoIpojOFer8OD/PM9K5kxdp5VEJ4CIhAFQRAE4ZKpeN6xTfp+NORGqco7jSUmvV6Mm7d85hXExLGB68diCnyP+Otfovd/+z8y+Id/m/TKKv5ek8q/+A7/6f/yl7y1+WMKaR5dUQ2hMr15NO9sY9a7toK4mLeTjqqKuYmOeXsX46aouw3UT9Zhu3Tu9+4oRWoMnSSeFsJHUI+r+WvuYN7eQRmF/vka+lMbZKGGLuwef/2K56MM7IdDWlF0LOphOSjioviLvUf0TxAI+9GQ1JgpA6D1QvnY8Z4HKq7H42GPKEvppvEsA9MxShniZ2AI82F7n7/YfcR+NKTkHM/JbHgBH3cPTvxMnpROEmGMoei4hGn6K8vOvChxlvKnu4/4V5t3+MH+FtkZTKBGPBx0+ReP7/Cz5s4xl9vLoBWHz9wNV3h2iEmNIAiCIFwyR2MSUmOITMbbtSUqroejtTVX0XrcYjoSa4mbnOyiqTXJF14lefMVnIebeN/7GcVPbvPe7Y/5Mp/yoPgqn4ar7C9WMTrLTWgi2OhhRtmH9RCjDMrkSmPkslpMMF/ehp+toXZLsFvEfOuBNbg5I45SJCajHUfzdUzPQ7UKmFJkZyUbIZmboT5fgJ4PVzqohzXU/Tpm9fgmv+C4PBh06SXxzFbLuufzaNinm8RjQ5+jbA17M51Az8x2CfwUGk+/ilNyXA7ikL1wSDuKjlVNJzHGtvj+qrnba3Or2yZwnJnzkWXX46AfshsOuTHnM3lS2lE0Fs++1tzutegmEUXH5Y3qwlN5zYsSZxl/sfuYjzsHrAZF9qMhu+GA1cLZbsrshkNaccgP9reoeT4vl+uXtratYZ8/2rrPaqHIt5avnDv2RXjxkU9cEARBEC4Z2x56uIlvRiFrQYmrpQrGGALtEI0Eoju9mY+dmIpzhjZHpUivbZBe2+CDu7fwfvQBX/p0hxuDT7nxbz9lf6nOZ36fh+pt0saRbEDHQH0IzaI1rfEm1rA0wPzOHbi1gLq9ALcbmHd2zvzelVIoFL0knm9Qs2VnH81G9/A0rfYxK31IlV3ffhG1X8T0XCgnU08vuy77+TxbbcY8n1LWybWbxKzOePnUGB4NepRnVLrORN9F/2wdU4wxv33/Ysc4B0opMHCv32F72D+xyukoO4t3EoM04eP2ATfL1UsJsDfG0IojVgsFKifNVypFMx5yg+r8xzwBO+FgPENa83xu99p82mlS93yuFCtUnpIwvQi3ey0+7hxwpVDG1ZrMDHk46J5ZID4cdKl7vp1r7ncvTSB24og/3n5AlKXc6rZRwO+u3biUY/86kRnD+609+mnM1xfW7O/yXyNEIAqCIAjCJVM4UkEZpCnvLtRtO6NSlF2XQZJQwp0hEBPKXoXz4Cw0+JP3XubuF97lxv0HvHb7Fot7LX6DP2Gof8Ct4k0+720wLE+IgUUrECnOqA5qMC834UHNzim+3JyuIqYKHlVQu2XMSg+uHY3FMMQmO94mmzPKY2T5SHVQcej6utyH+3XoBscEYqAdwjRFKU40a2nPcTNtxSGdJGa9UJz5/ZlkwN0GuClEuUPnwMPEelpgPyVKrssvWruAYuOEdTt5DuVJ7IYDvre/yc+bu3x79SovPWH8xDBLCbOU+inmOwWt2R4OTnzMRcmMYS8ajmd3i47LghdQclweDnp81N7n64trT+W1L8K9foeCdsbCoup5fN5t8eXG8omZmgD9JGE/GlJ3fXztcL/fJc7sz9utbotftHZZL5R4r7F6otvtLHajAZ0k4lqxQpimPOj36CUx5UsU18M0oR1HZxbDzxvGGL6795gPWvsYDElmeKlcYzkonOry/KLw6/EuBEEQBOE5ItAuBoMxNjJBKahObLAWvALNKDfsOCIQEzehdM5Nhm0BU6QLGbcXrnD7SxusbO7z2gf3uPpgi7c//4gv3PqYhzfX+PzNG+ysL2KW+qhbC9bxdBaOwVxvoW8tYnZKUD40GFG3Gqg7ecteM8Bc6RxxNVB5PuGMjW6qoFmwlct5rw2YYmKLi4Pj50IpBbaoNjeSwtea/ei4GMnywHrDfKOXYyQK9bM11L7d0I7nRgE6vhXbT5mR2DlbzMjJM4idOMJRClcrvr+/yWpQOlf0xlH6SUKczXdWHVFwXHbCAanJjp37JMswMPemwulriBmkCUsTFdFRxXDJL/DL9j5vVBeeqgnRWRmkCY8HPaoTa6m6Po+HfQ6ikOXg5BsXB9GQKEsJHAffaB7GPfbCAUXX5bt7j4mzjK2hbVc9b2WxM9EaHjgOYZiyHfZZo0w/jU9d21n4RXOPzWGPv3/1lSc+1rNga9jno/YBa/mNmo/a+3zY3uelco1/b+36U4nJ+VUjAlEQBEEQLpnAcXCVJjGG0f37yda7hu8Td3NhOFF9MsqAc/6g9qLjMuV8oxQ7G0vsbCxR6g549aN7vPzpfa7f2eT6nU06tTK33rjOnS9FREsnbGZGTqhDd9puZuSMWoxtFW2/CMuTYsxWEMuzxMxBAWWUNco5aR+VVzaPvXZOxfEYnGDGEmiH/Sgci/R+EvN+a4/Pey2K2j1xju8YD2qo/RKmEKOG3qG5D0D3VyMQlVJnqk44SjHMTq4g7kVDPKVZ8AIeDHr8tLnNby6tn10wH2EUN3LaxrjoOLTjiHYcHWtt/cH+FgXH4SsLs5qCT6eTxKTGzBSYJddlLxpyp9fiy40VwFaRA+38yio+UZbySadJJ45YL5YYpikrE2JL523RrTg6VYTtRQPI54dH7cefd1t0koh+mnKtWObxoHeh1tP9KMSbuA5cpXjY73K/12GYpvztjZvj76UmY3PQx9WatTNWA/fCIR+093C1IkzTc1c4nwd+2d5HKTVu9b5WqpBkGff6HR4Nelwtna8D5HlEBKIgCIIgXDJB3jqWmIzEQODoqfmnsusfypPJCqKbgVLn3jSVHBdX63Gb2ST9SpFffP1NPnjvNa7fecwrH99neafJuz/8iHf0xzx4aZ1bb95gd3UBjm7wg1xohEe2Cz3fVkhfaqI+XEFtVTATAtGYvILoHt+sj9pLR06qcynkrz2jggjQ8AMaJz3dcWhGEYM0QSvFH27dZ3PYp+75dJKIxXPM3qmmfax5ZwceVVGPqpjVHmq7jOoEJ3i1/upxtWJ4SgVxNxxQcByUUqwVirzf2mOQJvy15SsXEkz9NOZktW9xlCbLRdCkQGxGIZ90DrhSvPjGuhWHJ7rm1j2fD9sHfKG2yH445Ds7D3mvscKbtePmNakxHETDsYi7DBHzJzsP8+gVxU44wJlhkKRR7IdDXq3MF3XdJOaTTpOye7immufzQXsPX+tx+3HV86daT8/KXjicugaqns+9vjWEqnk+mbHZpqnJ+Neb93jU7+IoxTuNJRpegdVCkbp3PMN0Pxry04MdWnFEYjLSVNFL4xdOIO6EA+702iwH078/XK1xleJnrR3Wi+Upd+QXERGIgiAIgnDJeFpT0A5xlpEZQ9X1pzZCZcdWxVJj6JoB4y2qZzf2564gui5+/nrzNoOZ63D3tWvcfe0atYMOr358j5ufP+LmrcfcvPWYdr3M52/e4O6rV4mDXMwWcqExnFhPomxVrxjDWhfz0bJ19HyLcZupqyFMU9zRJinWtrXUy2AnrzScJhCLuUAcXmyr4ilNlKW04ohPu002hz2uFSvnb/8yQCuw1d1aiKkPMRsdKMWo7bJtMX2OcJQmzJJDl9wjDNOEbhKPW5597XC1WOZWt8XrlQVulM9vINNLkjPXYxXQikIoH37t484B7SSiOFHxPS9bw8FU5esoVdfjwaDLv358l/1oSDMO6aeznU3v9zv88fYDYpOx4hf55vLGmStks+gnMY8GPdaCEkrBg36X1RlzpEXH4fGwN/c4SZbx3d3HNOOQq4XDE1jz/GOts2XH5WHcYzccsFEsHz3UTAZpQj+Np4yfyo7L9rA9jg4Zpgkl16OfJGwP+6wVSiQm4+fNXaIs4+sLa3xjaXrWc5gm/PnOI7bCPmXHZaNQZnPYoxvH57pRcxHm/RxclP1oSIaZaRS1HBR42O9xt9fmlRNE/ovAr5fljiAIgiA8J5Rcl8RkhFk6NRcF1vK/4npsDfsozxyG2LsZjlJjJ8az4ihNyXWJzdny79oLVX7yW1/kD/7jv8kP/to77C3XqbV6fOX7H/L3/z9/xDf+9Ocsb+2Dl1hhNCnSerl4LEfgGVjuoxIH9dN1iPR4PSnZeKOvfraG+tMbqO9eRfV9TGNwKADn4WYYJ4Ohx0VKdHb2087YfdTeZ71Qvths0NBFRS5UIuuuqrEtpUFq5yi7vjWweU4Y5VAezeEc0UliwiydugnhKI1Cz33OaTTj8NT5wxElx+Xj7sHYQKgTR3ySRz0M0oTBKQY7s0iNYXPYO3F2VynFol+gk0RUXZ+GF9BLZs/A7gwHpMZwrVDmIBryg/3Nc69pkt1wYmZQO7xSqc10VC06Lq04nGsy9GjQ406vzUahdOq1bL+vThScR+nm18bkZ6mU4qVyjfVCicik9PO1DdKEJDeiKjouV4sVGl4w8/Xeb+3xeNjnSqHMgl8YV9d66bRB1kE05OP2Ac38RsGTkpqMP9y6z0F0eS3g3SSeezPEUZqy6/Ljg+1TjaKed6SCKAiCIAhPgYrjs5MNiE127C551fP5OxsvYYzt6vxLJ0OlDpmX4mp9obarmuvzcI5r5yTGGLLcoCX1XO68fp1PX72K2dzhy7ce84U727z0+UNe+vwhnWqJu94ud/236WdYcdTLqwu5q6l5cw/6HmqvBB8vYb60Q8X1DjdRqbJzhyjo+5hKhHl36/SORAUUE1TXxyQXcwotaIeDKORqsXLxlq9m3i7XOLLJVEA1slEcfQ8qTy8A/jyMBGKUpjPz6zpxBEYdFxjKEJ0w03kSrXMIxAW/wINBjz/bfcjvrd7gTq/NMEtZ9gt04t6J2ZXzaMchvSQem4bMo+x6lLHHHqQJ3eT4Jt4Yw8Nhl7LjopRiKSiwFw7pxNGUqcx52A779vo/hUA77GUhrTia2ep7q9vC1erMs6J11+PjzgFv1xbP1DrcTSIwx2dJ9ehGD9BLrFFNPz1eNS45Ls04ZJAmU9fedtin4rrj44AVU/vh9M/UZ50W39/fpOR6VF2PVyp13qwuXNhBtR1H7OXV4suIcwFb/T4pZmbBC7g/6HK31+GtxuKlvOazQCqIgiAIgvAUqHgeiclQMDMbru4FNPyAouOOXTEzJ8FXDt45K4gAdT8Yb/Bbeaj6rLvwrTjidq8z9b1Hwx7B1XX+8Guv8wf/8d/kh996h93VBtVOn3f2f8jf3fx/8Nf/zQ+5dvsxTsduHUw5F6PFBPONR7YKms/qFR330Gij7aNQmMU+2Vs7mK89Av+MYq+Qi645c4insRQUWC+UnmgeSLXy+cP6jCpEJT8H3eenzdRRmswYwjlirx1Hx0ZNwW7+w1NmF2eRZBm9JMZTZ79mrxRKPOh3+f7+Jh93Dqi53liUHK0qnYWDKBzf9DgrntYzX6uXxDSjcOzq6muH2GTsznDEPQvGGO71O7MNm44wyu9sxeGx73XiiHv9Do0Z833zqLgenTjmdrd9psd3otnXxiSTFcSjv118rYnSlGY0vf5+khxzNA60Zn/iccYYHg27LPoFlv0CmTH8aH+bf/n4zpmrccM0YWt4GJ1zEIUcREPa0ek3zs7KaTdDlFJnipp53hGBKAiCIAhPgaLjMkwzio5H/YTKg6s0Jjeqybz0WIbiWZmcG+omCZ7WPBj0jonEXprQ8AN6+QYmzqxr6jcW1yg4Dh2tuP3Gdf7d3/0m//If/nU+WnuHoS6zvrnDN7/zU/6D7/9z3mt+h0a8c+ic6mVQtg6fozbTMe1cYC0ObV7iWcUhPPEc4qXQGlUQj2/azShDcvD8BLCPmCUQU2O4229TnHGN2XiM829qB2lCnGVnriCCrUitF0p81D7gIBoeXrtK0Y3PLxD3wiH6PK60WHfOME1Jj7TV7kchicmmqkQOis1B/+ghAI49/yitOKIVRzNbSmfhoNgLj9+MeDjoEmbpuUyElFJUXY8P2nvEZ6gO70TDE6tjGkU7F6+dODrmBDyKn2lOCNzUZEQzIm8C7dJJIuLMnr9uEnMQhZRdF09rap7P9VKFZn6z6yz8rLnLn+48HB9zNxwwTFN2wsvJ3oyzjH6anHozRKMu3K79vCACURAEQRCeAhuFMr+3do2/s3GTuj//rr9WauxkmjoXF4hV18Ng78QbDN9YWiNwHKJseqNiMDS8gE6+EY+yFF871D2ftaA0VVXp1iu8/+q7/Mv1/xN/+rW/xv2b67hpwqu99/lbf/zH/K3/5c95/YPbBIPwsJp2xLRFtfP3XjsusE7DnOJk+tSJNLQDTJAcuqpOMorieNL13anD7fqFZi3nMUsgPhp02RkOZrpMukpdSCAOs/RCRiC+dlgJCiz5hXH10FOKg+h810lqMh4OuzPbaU9i5Pp7tGq6Fw2PSc2K63G/3+H91l7uRGp/bn5ysMMfPLp9YrXol+090nOcn6Ljsh0eF6MP+90L/W5oeD770ZBbvZOriIM04dGge6KQ9bXDQV6Na8bhTEMsX+mpKl6YZvn1MX1WA0czTBN6if0Z2o+Gx4Q5AMZ+7zT2wiEftvc5iEK289d/NOxR93z2oiHZJcw0nvVmiFJqLFJfVGQGURAEQRCeAg3ftpCeBZXP16Vucm6DmhEVz8dTmm4SE2iHjUKZsuONhcJ2OGA1KOIph1fKNTZzM4koy6i6Po7SXCmWudOf3kiaIMEozWbtOptfrBH82w2uRx/zkvk5C/sd3vvBR3z5hx+ztbDOffNFHhzUSZcmDtC6uEAcVRDV0Hs2URK7Jdseu9KfPTNZGglYDxIFfQ9q52xnGzroT+0JM30f8/bOWRIjTsQwu130o/YBntYzW26dCwrEKE1PbUucx9FqWKAdm/F3Du72OuwMB1w5o1PnCJtTak2kRuEaxhju9zvHxGbJ9bjb6/Cd7QfcLNd4pVLng9Y+39/bxFGK9pGZwShL+bzbwhjDh+39mY6l8yg6Lu04mprjy4xhLxpe6HeDUoqa6/Oz5g4112dn2OeLjaVj7bibw96xbMaj+FrTikMyY2jH0cxqY8l12Rr2x3EYUZaSmOMVREdpDLaluEHAbjSYOadZcBweDXt8ieW56xqkCT852CYzBkcpHgw6NPyAVhSx4Ad0kphWHPJZp8mXGysXjtYYGfOcJvY1iEAUBEEQBOHJ0J6VP4mbXDi4u+y4lByPVhyyXChScFyWgwJ3e23CLKXoOjwYdLleqvJypc6Pm9sM0oQoS2n4tuo3MtOZihrIoy7U0MEMPGJd5PONN/ns6zXqe21e+uwBN24/ZmP/MRs85qt/4fLw0Qr3XrnK1soKauDZVswZJjOpydgc9ilol7rnH994PeMKosojOczyHCfIifWpTxdRD+pk72zDRvfsL7J9KGzUoypmYQBXzvD8tm9nHze6xwSlg537muThoMu9fofVOQLgoi2m9gbE5WS+BY5DL43HVe3TiLOUnzZ3KDnuuedMR4Ypk0J6Lxqym99ImcRRipfKVeIs4yAa0k9i7vXb1DyPXpIem2VsRiF/sfsYg6Go3TO9lxG+HsWzhGOB2M/dXRfOeMPpKHXP5/6gx7/ZvIsBXq7Ujxnu3O938WZkM04S5Nmi7ThimCVUnOPVRk85DNKIKG+HDbOUDDNlUDPJ6Jp70O9SmiHcyq7HTjggTNOZwm5z0ON7+1tsDftcKZQYZgm3ex2KjkecpZTdIgdxyAetfe7027xcqRM4Zxfsk/TT+Q6mk2ilzuwo/bwiAlEQBEEQnjFuOSUFoiCi4Jw/hw4YOy7eH3T4gm/z3ZaCIp92WqAyXinXGSQtrpcqFB2XjUKFR4MuicnGxhcLfoGS49HJQ7EBCHLRELrQz7cNJbshbi3V+NnS2/z8G19g9f4BN7/b4urw83G24tAPeOA94G71Ovsjy9YJ2nlguq81jwY9rhbLOMq2nh1EIeuj6LlnYQKTAXsljM5srMUsHGPbT4cu7NnFqo+XMIsDCM62QVSbtn5lXjlA3VpA7ZYwZxCI6pcrqE5A5mTWSOdxBRSYL+7gVgZ0J0TLIE343t4mvtZzczJdpRhmGWlehTkrF3U+nUWgHfYj60jq+6eLqoeDHvvRcCoT8HwYhhPrv9/vkmFmVoi0UgSOQxil3O93OYhCFv2AfppYZ9gJbPXIcK1YOXac07BGNfZnYz1/X904Ip7VfnmOY64XiqR5JTLMUiZ/ywzTxApe92QB6ilNmKXc73eI0gzPO74enbvopnlLZ5SlJzi4GoZpSpSldJKI8gzBWdAOe9GQg3jIujP9Of9of5ufNXdwlOZ60cbYlJXHnX6H7+1tUvNGx1M8GnTpxvETXa+DGa63s9BKEWfPpOfh0hCBKAiCIAjPmOJrPW7VtomLQzx98YDlJb+AozRLeQXEhqHbjcqb1QVKrg2pBrhSLHO720IpxjbygePw1YUV/nTnEYU8s21cJRu6toUSMKXpionRmq2bS2zf/Qo/HnybjVd/wM07D1l7sMtr0S947aNf0HlY4t6rV7j38gbdut04d9OELzdWeKO6wJ/sPODzboslv8B+NKTouvRUTLUY2ypkouBX6QWzU0alGrPSs/mH8yjGqNAdG9Wo2IFPFzHv7Mx/jgF1awG6HqpVwBRizM0m3G7AftF+ZCdptFiPZz3V+6uobELQ7BZxq4rehNnLR+199sLBiYLFUZrUJMRZijNRxR6kCYF2TqgApVzW8KTOXTy7STwVS9CKQ37W3OHdxsrU/KQ1TJkR2XEORi3YSZbxaecg/5k5AQN3e+18Fs3BU9NunMATG5SMjWpyFdc5IXvvrIzEpUIdm09txiFhmrLsn1xZU0pRcBw+7jRz19jjq9JKkRlDkp+DMEuZN/7nKE0rvyEQphmLMwSnUgqMdSRdn7gR8HDQ5WfNHRZyJ+jJx79Uqk5dEw5wEIfWmOgJBGInic5khqRQJNJiKgiCIAjCk1DwHMLSEFBzKzxnoeb71D2fau4KWfV8lLLHXPALXC0dCoRFv2ArToapgPE3qgvshkM+7uwDinW/iMLYwPiRW2dpjtNkJSILS9xfu8n91zYo/KDG9QePuK7fZ+nggC/+9DO++NPPaC5UuXNzjcHVBa5eq+BpzbeWr+Brh8+7LV6rNig7Hj9v7lGtRFZ8dX1YuDy7+hMZOqgP7cyTuXpKREAxgab9p1nu2aiPzQq8vm+riHsF6AZwo3Uo+u7VrEAcsdYD10BjiDooYjr+ybOMo1xJQGUaozPMKwfoz5Yg0bhK088riJkx3Oq1qeXXwjxcrUiMIcoyCvk+vRWH/JvNexQdl28srrFWKB17Xj+Jj82XPRGGsXHJiDvdNj9t7rI9HPB7a9fH4nE3HBI8wc+LMYowrwptD/q0ooiNGe9xkoLj0E6isTgqOC57R0xUnnT+7KhRTTMKz5SjeFaOzqfaduSzHX8pz7GcJ5Q0kGFI8gqanVGdrRB9rekk0bgdet5NCKVgOLHmOEv54f4WrlIzzYmOXuerefV0ezggSi/+2TSj2XOXR9EKaTEVBEEQBOHJ8LUzLhp5T7DZrrq5QMxbq6quR+A41Fx/nOs2YsEPKDgucZZRnPieVopvLq/zWrXOTw522B72Wa9EqG6A2c8rDPMEop9vimL7HsJBg8+qS3z6N6uUe11u3H7M9duPaRx0eO+gw3s/hfSHt0neehX1hVf56ytX+XJ9mYJjLfDfb+2RVkLcnbKtmP0qBGIG6hdrqNjBXG/BymzTlCTL2IuGrBUPqztmcYAqxah7DczDKtxojY+VLQ6gGtlcyE+WrKh7cw9CB25YEWqWBqiDom1XPUEgqoN8VvSVA2gFmKudw8zIxMHVml4+X9pNYlpReGqIvMZWfkYteJkx/ORgh2YU0mTIx21vpkDspfET5UwexVFqKiYhyTI+7TZZC4ocRCGfd1t8fbGAMYa9cEhwwbZLsKJ41IrbiSNQ80XKiLLrsTnss5jPAwbaCsZhejg/nDxhBbHgOHbOLz/mbjR4ovd5lKNtloM0mVvlO4pWipWgMLdCNhJno3MwOKHF1FOadhznM5zzF+AoRZgdtne24oidcHDm1mJHaRwFoAjPOGfbTWLu9tp8sW4NpHbCAZvD3mHr/Qlo1LjF9kVFBKIgCIIgPGM8rcdthU9SQVzwA96qLY4riJ52aHg+GzMcHn3tsBaU2A77lI7M/jhKs14o804941/3u2T1IU43QPXyzVFxziZrZEQTa1uFC11MJQTH0KuV+fDd1/jw3deoNjvUP73He4+aFLd2cbZ2Cf74e6TrK/hvvUr8hVfx61XWC2V6xR51FlGdADiH+csFUZ8vopoFTG2IeWNv7uOaccggTUkKEeMtYz3ELPdR9xqoBzVItW05BWgGViDmzqjZKwc2F3KSxT6waOcQX2rOL+ocWLFnNjrw6oH92mg+NNZ4SpPkEQ47w8GZQuTtxt6Mq1+PBj0+7zZZL5ToJhHtZPZNgX56PAT9SQgch/2J3LvNYZ9mFHKlWEahuNVt8W5jhShL6acJC/7F51NHrr9gQ+LPQkE7lB13/DNmTWUyukk8FohROr+t8kzr0g5xFjJMUzytOYjCC8ffHMfkbcGHtOLoWAzFSRQd1/ZtzkGhxgKxn8y/geBpTSeJ85zD+a9v55IP15yYDHWB1mJ7Q+D4765uEh+L99gPh3zQ2uNqsULJdfnu7mMMnClOZRRzcTSD9kVCBKIgCIIgPGM8pa05hTF4T1ApcJTmC7XFqa99obZ4GER+hCvFMmG+CZ39/QobxTLdSoc6djbSBAk4hkGasB9Zy/truUGEcVO7zYsdOCH/sFmv8PE7L7H+t19mtTPA/fBzvA8/w9ncwdncIfh33yXdWOWrN1b4bqUOXJ9vVJMBe0U7K1mJz2+oOTnv1/ZRdxoYN8V8eftYWvQwTdiNhqwHJQZpyqIfEAYhPmCUsQLQMVYk7pbgTmP8XNUqYK53DnMhF2ZUJmsRphhbgbpdgrUZ4eyxgo5vP4dJoZ5naZLYGIvUmLGhyNmrT2pcXWrGISZvefa0ppfE0+622CrjIEmOXz8ZcK8O2sBSH8pnd0cNtEMzj3n4WXOH+/0ujtJopai4Ho8GPbbDPg7WKfKixi1gBcOonXUvHOKfQegqpVidqKSqibnJ5Xz2d5AlT1RVdZQiw+QVYDvHVzttNvKMuErTPyL2m/Hw1Gy/82CANG8x7SfzbyD4uRDeCfsnvr6j1JRATDOb9XpeXKWOvffdcMCf7Dzkr69cnYr4GGQJO+GAB/0OiTE8Hva5dsYoFUcpQgzZswnnuRREIAqCIAjCM8ZVepzh9SQtprN4rdKY+71rpcrYoGYWjlK8XK7xveouY+ucvL10NxzyVm2Re/02/TSxx/EORYoa2i2GqR8XiP0kpux6LAQFskKJaGWJ6K9/A72zj/vhZ3gffo7zeJvXH2/zOtD0PuJR52UevlokKU/koXV81C9Wx5VNUx9ivvHo7CLx8wbqYQ3z3qZt6dzLK3MvNY9VSbtJTDMOWQ1KPBj0KDouNc9nJ+hT0ZkVwrmZjXlnGz5dhIdVWO+iNqt2NhGgHdjNbXVGxUqBeWsX9eMN1EfLmOQAVnrgT7TzdQKbzdgYTr9P97B6OxJxB1HI42HvxPDzaQ4riM1oiDcOsLfRBWEeXTBilHFXVNMiTX22iLrbsEdUBvPNB1Ce05Z8hEA7dJKYD1p7/Ky5y4IXjNtjtVJopbjf67AUFC/FuGXUinswHF5cbBo1rkSCnfF70rZbRW7wgo2DOS1776y4Sk/Fchhj6MTxpQpExWGLaT+N51YndS6Eh2l64k0MzXSLqa0gnh87mzv9c7017HO/3+En+9v83vqN8efWT+x18XG3ST+JWfSDU9uPRyjszZPkBXYyFYEoCIIgCM8YV9uKj6f1pW0Ez0LdC6ZcIWdRcFyyIMEEiXXrLI0qSfBGtQEYPu00pwSiijV05lcQe2nMa5XGdNujUmSrS0SrS0Tf/g309h7dn/8S95PbLLX3acT7vP0H0K+VeHB9lYc31ti79UVUz8c0BtDPHUH73pnFiNqs2Pf0k3XMNx7ZuAiAxoyqZxTy9cVVXi7X+V8f32ajUGa1UOJBv2tFqT/RtudlmLd34fU9az7Tse25puNNtd3OZGmA2eigHldRv1zB1KuY33h0+P2Rk2z5iMDUYJwMksNz+lmneWr4+STGHFYQ96NwLJhcrYnzltVpgZiRGDNdIdoqo+7aKiwLQ9ROGbNZhlebZ1qDqzWpMdzqtqi53rGZr4YX8Mv2PleLlSc2biloh73QZh924ujCIsnXit3wsCI8TNNTW3pPRxGOW1Uvb8ZzsmoKMMxSwiylcYbZurNjiE1mK8xpeqKRkEIRmXRmxMUIRynCCXMZO993/nPiamveNFkJv9Nrs+AF3Ol3+PHBFm/Xlii7Hu04ZMEP2B0OcLVmJTh7BVcrhTFW2L+oiEAUBEEQhGeMq2xboKvVpd7JvwwCx7F7scYQtiqYUkxsMjylKbse10pVPuoc2E2XNzKpcWwsBsw0tEmMYf2kdi2lyNaWaf321/gXry7xhc9qXP10jyvmE5bae7zxwR3e+OAOQ/0zHpde4sEXyuz0X8fcW4L9wtkEYqRR/TwqInLhkyVr+KLMTFE7ai2s+wG/s3KNwHEOw+jnGcp4uQish9DzUffrJz8+x7y9g1npoT5dsqK3dyh6VX/kJDujbdPLYOjkfh+G7bDPclA4/rg5KGVzAZPRTF1+LTp5G+UwSw8rydgKYmqyqWqZemizGcwXd6Aco3bKqK0K5owCEayzbiuOZrb0lVyX1GTc6rWeWNQopUDBw36PME2pXrCCWHBcdsPBWHiE2ZNXEA22gphirIvwJeHm83yZseH1/SQhzrJL7VwwRpFm2fj6cNV8uWEMRHMiLkY444zODEfpC5sAjbI+oywjcBw6udnNoh+QGsNPm7s8GvT4D668QjuOCbRLzXUInPOdG42tjL7IRjUiEAVBEAThGeNpO2Ol0ZcbGXAJFLSLwZBdaaPbASz3ifJWw6Ljsl4oUXBcBmlCaWIOjsixIfOu3STFWZZv0Gx1Zck/XbgUHRcFtF6B3uZX+bjwJRb+9/dY+Og+V+9ssbK5z8vdj3j5DyF2fsaWf5NHn23weCUgKpwiHlq2wmnWujZ7cMeax5jq8ereaE6z4dk1j+JCDtQQlc/7nSQITH2IelS1YfaAmSFAp9DAWh/T861pzuMK5rWRGc0JUSNuisLFJBpfO6TGnMlUY/x0pRkkCb00njn3NjjSnhfmDpXjuUSDFdk6g+W+rWpWQuuA2/XsjOgZqLguWs03Ial6PkXHvRT3VFcpNoc9UjIc7V3IWKTgOBxE0bjVengJLaYOts3R0xpjLrGCqDR9k4x/hvtpjME8UZbkcYw1ScpSW2E+wQDH1RBm2Yntm4cZnRmOo3PhdZEZRE2S2dnOwHHYDgckeZ4lwEZQYica0o5DukmEp/Ux9+ezMMqCzEQgCoIgCIJwUUYVRD8Xis8TBcfBUw7xYg//t627ZBhmLAdFtFIUHJc3Kg1+2txhRfuUAULHxkQUrSBITcaDQXfcdveNxdWpIPQTX1trIj/EaQxQzSKDYZ2DtzSfb7xO8N0l1r1PuMInrD/c4drgc67d/RxzF/ZWGzy+tsqj66u0GxUbpjbBqJ3ULAxQXop6kNfG6sOjy6CfJtS941EhFden4DiEaXryRnK1h7ndQA1zwXWaQByx0YXPF62wfPXAVnJPyqKcEOgrxbO1lU7iKMUgTegnCZkxU+3OxhzPzzsal0DfQyUOpj4cG/yY9R7qs8BWESsHZ1pHwz+57RmY3Yrd8eGgYM/N4uCYydAsSo5n59KeYEfsKU1sUjpJRMFxSEw2rr5eFBtVEuNmCu8cDqOnH9fmXY7mSa3ov9zfOTaWwlbq0iw7sd224nqo5GQTI53fhEmyDBzbYnoR6TVp3lTMMj5s79kOiRzb3pyxHQ6Is4zyBcQh5DOImCeOO3mWiEAUBEEQhGfMqIJY0M/f/5ZHIm3yTnuYpSxOCLyvLa7haYcfbe1YgTiKw8jn8gZpSsML8plFxbuNlTO9dqCd3Okwo3Clg2oWiX7SgC+GMHSJdYF7V29y980KTpKy+h3Dlb1HrJvPWd5usrzd5Es//oReucDj66s8vrbK9voimeuMK4jUQ0w1GgvEWaY6gzThlUr92NdtVTGgFYeUTtpS+Rnm64/gxxu2/bZyxjzHYoLJhbFpBbZVte/a+T5vxuZzMmbk/PqQkuOyGfZYC0vHYhqU4pjBR5im026S43M6IbLXuvDZIjyqwCsHl61Fptf4/gqqa9eQvboPrzRPfU7RcdmPh3iOe+G1KWWnITtxTMML8lbIJ/tZdpU1vnGUeqLom6M4SpPm86R40EviS/9IdJ5bGKbp0fsyx6i4PpU5LssjRsIuzgVXlKXoC6x6VCUNs5RbvRaPBjOcSQ1sDXrjNvqLYK+HFzsL8fn7P5EgCIIg/BXDzW38Ly/r7PJwlKbgOMQT1aIMQ20if85RitcrdX52sANwmP0X2OcM04S1QpmvLa6d67WVUlQ9j2YUwkYXs12B3RL8cAN1vQWAKVjRkroOmzcX2MrewCx9ndq1z7nyeIuN+9ss7rZ47aN7vPbRPRLXYWtjic3eW2wGN+hXbEC6KUV2JrFxvIKYYViaM8u3FBTYHs6IozhKMbVunqmeb1AzA7PSRzWLNvuwkKAyjakcXyMwVUG8CCXXY68f8mDQPbax95S2YfLYDfqP97fppQlMtD+qUdvupMlPKcEs9lH7JcxuEVZmxHtcBhnQ8zE6Q2UatV3GnEEgelrTTxJWSoE9xgVRKJpRyEahdGrL8RSpsnOzi8Op68LGUSRoxWyhcjGfltFibXZjHPFJp0npHG3IZ8FRiiifQbwMdB4BNHLYjbKUJymqHkQhH7T2qHvesY6NwHHYj0O4hLZbEYiCIAiCIFwYV2vc51Qggm0D2xlOVI8MVI64DpZcj5LrYpwUlebvw7fPCbOU1TM6aR6l5vrsDPN2wa9s4XywTvqoiNmy83wUJiz7r7eti+ZehTav0/pqlQ/ffY1gELL+YIcrD7ZZe7jL1fvbXGUbgNb/UmHz6jJbawfslDaOmb9kxqBQNOa4vVZd/+wbQQ3oc6qQBSsG1UHBtm7CbIMamK4gXpCi43AQhcfMkmyouRWId3sdftbctRVU34dIw1bZznLCsTZdc62D2i/ZSJGnJRD7HsrY+A8TOqhOgBk6UDhdpKwXSjQKRaL+2WYkZ1FwHHbCPq+Z+tkFYtezMS3dAHOziXljf/wt22KagIHyUQEXK9R3r0E1wnxx+9AM6YwoFK045JPOAZ0k4lqxcq7nn4bOBWJ4SQIR7M2iUctmlGYXqiBarENuO4m4PuN9F7TD8FLabsWkRhAEQRCEJyTQzlSEwPNExfV5ZHqAnSfUSh3LT9RKsRwUCN0UJxeIZiL6oX6GubJZ1Fx/3FqGAr0akj4qokazeJN5hUFqIyH+/LoVKxmgISwG3H39Gndfv4ZOU5bfD7nyyQFr2R3qzTb1Zpc3uUPiaHbWF9m6sszm1RU69TK9JKbienMFop09fELHSmM4iEMa3oystWpo4yuahUODmuJsIWPc1K4kufiNhoYXcKvXZn0iDB6sQOwmMUmW8X5rj6rnjduM1SeNw9xDPxlXjses9OzXd0pWTPpPYTarl5+bcgRV4J4P22Xr/ro4OPEjKrmenXV9gpcvaJeDOBy34Z5afeq7qB9eOay2b5Xh9f3xOq2hij1PnntE8DcLdp516MEPrmJ+4+HYDOosGGP4SXObfpJy5cjnDMCduq3A5k6050Vj41KG6cmzhefBwLiCGJv0wrPaxii2hv1j1/eIouOyEw252JTjJIpMZhAFQRAEQXgSnmeBWHW9w7v3WYbvOMcEIsByUOSem+KMOgwDa3OvUNQvGElQcr2pvDtnMWJqy1o4sgn1MqhEqIMiZnA8EzFzHHbcG+w23iF793VKxV3WH+2y9nCXtcd7bDzcZePhLvzgI3rlArfWGqSv3MBdjaFwXCQWHRel7GZyFB1wXjpJTJxlPBj0uFosT1efNNAYovZKkFdNzSyDmtF7h9MriBlWiMxYqqs1L5Wrx9oaXaUZpDE/b+2yGw64Ojm7NcpmrIaYK53jx9XA0gD1uIrpBLD0FKqI+dyrKcc2XuNeHfXxknWmfekA8/rZDHIuSsFxOIjDqTzEuSQK9dN1a+R0vQWtANUuYLo+VK1MdUcVM3PckGdssORkNl9zrwRrvTOvdbVQJMkMy6UZVf1HFfSnS/bfP9zAfP3xuUWirSCm9JL48lyZDRMziCe7np7ESlAgw8yd63S1Zpgmp7fdGqAZ2MiaOS3jUkEUBEEQBOGJKLku7nPmYDqikMdNgDUmqeQVl6PUvIDMnage+SmDNKXouMcCz8+KjWk43GipWjKeMzNONtuspRTbmb3+cYEIQL7Bph7SD0rcevMGt968gcoylnaarD3cZf3hLgt7Lb50axNubWL+8AekV9dIb14lfeka6ZU1cB2KjotW1v3wQb9HwXFZK5yvnbaTRLxVW6IbRzwc9NgoTlc3zIIViGrUwpkLxGGaEGjnsFqVzyCqRM+vf6QK9efXQRvMG3uwenx+0p+RB+hrh0E64McHO9Q9f3qDnmdemq8+nlsdNJXIXkMd/6kIRDVZQVwYWvGU5tfo/Tq81Jp9rVwSo3D03XDIqREM22Ur7Jb6mDf3bMWuXbBVu1wgjj7TmZXIkRnQtTbcbaD2ipiRQOz44KUnttb62sGfpY8ijfpw2WaBLg1QuyX4dBHz3tYp734arRRxnqV5WQJRKcYV1Ti7eItpcIY2/iW/QHBSJmYG6oMV1GYV0xhgvro5QyQaEhGIgiAIgiA8CRuFypns/Z8Fk7ORUZay7s0Oua95Ppk7Ich822a2WiifaHV/EuW8gmgDtx2Uxt61bxZs9XDGPtGUcmfGngdHDVNjbTfnxfhYK6TRmt21RXbXFvngq29gen0aD7b56+2E4M4D3AebuA824c9/hHFd0usbODc3uBKk9JZcXK0xGAZpcub8wSy37H+pXCXKMu4NOscftHAoqMx6B+ohmTE8HPSouh4rQZGtcICXavt2TzKp6fqo0K5N/Wyd7L3HZzKO0Upxo1Sd/c2Ba7MPTxJgI+HT9S8x9n2CkXNuObb5i1/ewgxdVDtAPazBvTrm1adbRXTU8azIWYyEvrnWttfvah8+W4Ltko0zGT0OxTGxaYB2AaMzzI2Wbe0d3TjYLKN/YY2gTH1onXPP82PX8e2Nl/WunW3845emWrXPiqMUQ4wViEfdZFKF+nQRs9qzxjxnxGAmWkwvXkE8C6fdzFIfLaM27c+CahbhRxvQGGJutsa/U4yx7fgvKiIQBUEQBOE54M3awrNewlwC7YxjD6LMnGjYovwJB8sgJcxS1i5oUAPWIKfguAzTlMrorn5jaAVicc5mPK8aqr43vb1Olc3Jg5l5h0fZcUC/+TLJxk0SY9A7+zh3HuDefYhz7xHu7fu4t+/zfwCGvsvj1QWim1f4i6oDa6vHshcnGc0dZsZQdX1WghLDNMFVmihLp6t49ZDszV0riPOK3yBJWPALDNKER8M+q0GRRqPMAE5uMe0dtoOqToD6ZAmz9OB8QmKSRNnsw1J08ijmKNqjM2PzbYC2b4X/Rfb9Buh5GDc7FP3LVvSawQAeVeFeDV5qnstB9ryUXJd+Ep8sgA2wV7QzbiPhX44xxdia1cR6LLSNMcfPR8+zFeLGAAopphLa53U91Me2NdR4KapVwLQDaJwxcxMOW4XLkb0eFoao3RLmoGirlmu9M7WbOnlQfJRlBEc7De7XUPfr0Pcwi5tnXpqDYpjncMZZenmtq+dl4MLDKsZLMV95jHp/1bb8tgoQO3ZuE0BiLgRBEARB+HWm4NjqWJJlKGWozJg/BGtkMnXz3U8x4dmCz+fh5k6ZzShk7Dm4MIQ72HbCWYxm9EamLhm2Fe9WA5XZjeWsvMNJBmlCYgxv1xftF5QiW10iW10i/o13IcvQj7dx7zyk9ennLG7t8/KDHXiww5tArxiwu7HE9voiD1dqRPUqamKzvBUOKDouGamd+dMaV3ks+AG9JMb3JwSiAm60p9bXS2Kulqo4SvFg0OWbyxvsqoR7cGIFcdSKaW604HHFxk/crcPLrRPPx1zy9tK5Yn1EkFqjmp5/vCJ1v4b+eJns7R24OqOCeoY1qExjqsPjgqqYwGoPtVXBbJdgo2cF9H7Biu1LLEQVHZf9KDzeYWqAzTLq1oKdJ41c60g76T5aC2HgWQGdV9ZqR1t5YSq/E7CP7Qaon6zb4653MLUI9ckSaq80HTlyCqqf//DmPz9m0baZqvdX7LEH3oQAwq51pwQb3anPX2MFYkJGeTIPMlGoOw377/7s3yHzGGUrpiYjMzzVCuJJqPs1O9d6vQ31CPNbDzEdH/WTdXhcgVf3x+29mQhEQRAEQRB+XSm7HkXHzdvnFEV3/vbB9e2myLgZqbZug/U5FcezsuKX2BxMzMotD8je3RxHQByjGNs5qnwTqj5cRj2q2bY8N7OVxBPm4FKTsRMO+friKtfntVVqTXZ1nejqOu9/4Rp/uXWf/zAr8Ppej8Fnt6ntHHDz1iNu3nrEN4Be0WdvbYnd9QXuLFVxq0V+b+06Fdcbm9IopbheqvKTg21OqydHWcaVYpnrpSpfSBZYDoq0/a79ZnzC/NREK6Z5Yw++V0R/tkSWKXi1ecqrzmCQXwtHzYJmUYmsIO0dmrGQgbpbB0C1A8xFBGJ3NH84x931Sge1VUE9qmKWB6jv3EQZNb+9NlH2PDkZVM5u0OJrh2GaHq+a3W6gP89vNIxE2OL065pKhNoCutMCcfpBoEZGRblANIt9a8gz9DBBYqMyIg0s2fbQ87TV9o6cx8U+sISK8s+4f/hzrz5cQj2wn5u5W8e83Mwr3D10HmyfGWMNdvK2UvaLh66tA/dcrauOshXE1JjcSfkZRAKlylYPlbHtwWAr0o0QrrdRtxfgbgPz5h46z5p8URGBKAiCIAjCiThKsV4ocavbQgFlZ/7dfy/Auoz6CYM0pex6VL3zVQuO0vCDadv50dzWPDQ2VH7gYR5VrDj0E+vIWIztRu+E7Lit4YCbpSpfri+faX0Vz6MQBKj1m0TvVNn9zS/x/7zzKW83B1Qe73Bjp83Sfpsbdx5z485jvgrEBR9u3CW9vkF6/QrZ2hJozUpQxBjbXjgvKmHUerjgB1Rcb1zRDYL88SfNII5EQCkCz2De24Sfr6FvLZKtd6F8zmiCkUHNWQRiNYL9khVBI4G4U7aRDTAlQM5F296AMNU51bKlAaaQoPZL8P0rKJOfp4EHHBGIQwf1F9fHBjfmessK6TMKmarrEThHXEcfW1GXvbqP+nzBVqCOCMTxjGbnhBnNh1VbFSxFsJxf/8sDslf3bWvtetcKFj+v1rYCK3bPGoExquqNKvCVGOMnhwJxOPFzvFmxN2HWuqjNKip3Ps3e3kFf7WDyn1hHKdStBdtWinVexU/tz+YMl+F5OEoRZilJZp5dBfGgYNup17rH55dvtOBuHR5U4aUmCkguMQfyV40IREEQBEEQTmWtUOL91h5138+z/2bj+yoXiCmDNGHjCQxqRlRd7/zGJuUYBh7ql9alZirTTc8/WjuOCByH31xaPxYvMI+RS2vdtxWflaDISr3ODz0Hd7XKW7VFPt3b4kudmOWtA+qPdtjY76I/uY33yW27Pt8jvbbOjWvrvFEwPEZRL802AxpmKQXHZcErTH3d96xJzlyBmAEDz4qHkUBeHsBqDx5XIXTPLRDVcH4FMcmyqXM4cjJV+0XMhq12qnu1wyecs+1wvIZcIFKbIxAVmKtt1OeLh22UYGMmjj52v4hKNaYSQuhaYeNmmNfOVolbCqY/E0IH1fetqHulabNBmwU7RztJJV97d45BSqxRHy/Z6tU7O4ezlAp4pXns/bI4sC6bB0VYOeFmyogMazYUJFPHNjdasFO2n83QsY/L8rnTcoT50g7mage1WUE9rKFatgo8jqZpBXCnjnEza5pTiu2s5ENv2mXY5I8txTOdcB2lCTMbm2MwZ3MxvVtHtX17vi5DT45uhlRmtLb7ma0i3m3YivFLHSIxqREEQRAE4deZhh/gaU3R8WbGIIwICtCD3KAmY21OIPV5qHg+Xm7eclQyxVnGdtjHGHC0Zi0o2upC6XDjmb26PzYtOcpBFFJy3LH9fSeJeW9h5Vxzk1XXZ8ErUHXt5l4rxe+sXuejzj79JOH1aoNftvd5fKXOoytLbL11lf9o7SZLe22ce49w7j/CebCFe+s+lVv3+XtAqhUHizX2VxfYXW2wt7rAsGTFRz9JWA4Kxyz7fa3J3BQ9z6Sm76GMwhxtm/TySsdJranzGFWVjgjEzWEfg62iLAdF6+q63LcGKo+q1sWyFKOaResomym7AT+nYyYA7cBWs6pzZlIBXmqSNYZ2nT0f/dN1CI+/33HG4CtN2xL7F9ftnN0ZBeIxmrlgHLVDX+tgrs1ooy2kGDe1AnHWOdgu2TnLK+3D+cMTMEtWIKrtMuYsArFv3YLN0bnel1uYl1uoH2zYz2ro2s8KDj/zxaF1Dn5YO6zmYsAo1MMqCkX22u748xm7DE/eENgton+6kUds9G2F9Up3bNijlSJMUxKTkZ4lb9SAulO3s5OvNM+d5TiLk26GAJiXmvCgBg9quOs+cUUEoiAIgiAIv8Y0vICS69I4xQK+vJxyd2OX8rUQxZMZ1IyP6biUHG/sYjjCGMOjYY83qwu8VK7x/b1NeklM1fNtYPvAtRWQOXb6mbFW/N0kYr1QzrMdDYvnXPNSUOB3165NbVoDx+Hdhq1exllG0XEZpgkGW3Gslkqk5QrpjSv2CWmK3tzBvfcY/WCT7MEjlndbLO+2eOOX9iG9cpG91Qa3FkoUX7oOaxlMVOg8ra0AG7iYVB137JxsL508j15mN+wnuZ/OY4ZJTSsOcZXmb65e406vzUedA64WXfAzzNs7qJ+toz5YGbdJmqsd1F4RFbrnaju0r+9YEVAJT3Yo1RxeB6P3OUsQj01ghla0FWIr2ibcRc+Dyl1zzdGK4bEHYgVpszjzHIxnD9d7Z3vh1R7moww2y/DG3ulrP9peepRiAk1sW+7oNE8KpSDFeIcC1wZ0mEMRPmmWUxq5DLvjQ6n9wxtJareM2i1jbi9g3tqBtT6uUgzJ6KeJrSCeJhBD57A1tnfOa2oepwhE/Ayu2Spi4aBKsngOB9nnDBGIgiAIgiCcSsFxWfSKpwo+z9UcvPKQUrGEGRpKJ8wrnhWlFNdKFT7qTFdxYpNR0C6/sbhGyfV40O/wWbdJ1bMzbqcFfA/TlKLrcq1Y4bNuk41CCVBzYzxOwjuhquppzXJQYHtoBdFqoXS87dZxxqY3AGmWsr29y2cffsiV3Tbruy1qzS7l2wNu3AZ+/DnG+zPSK6ukV9dJr6zhrS+R+S4MAoic486iuUGNObpZHomHiwjEgWuFQHD4Wu045m+sXuVqyYqaDzv7hzOVq33M9ZZt3Xxctc/dsGKeg6KdQzzPZr59xNXzLPj5jYajFcRUQde3LbijGbPFoa14HhROnnudx9EK4klUI2gWrTvo5DmINOwXrQBbmG+uNIVrz6t6UMc8rMJLp7jUjiIuThKIcGhKxJG5UwXUQjsj2fXJPDs3OBbh3sTNnaMuwzAW5ua3HmAix85tPqqiPljFrNzB0w5RFNKJ51SJQwf143VrcnSjfXhdQH7dX+CzO8oZDJlMIUEBOtPE0mIqCIIgCMKvO29WGxROmD8E8JQGBYkxuEofa4O8KDfKVX7Z2Z+yjo+zDE9rgjyUfr1Q5sP22VsBB2nCUlDgawur3O21acURpXye8LJZL5S42+uglWI1OL3t1tEOjfU1Ei/jX7X3uVIo40YxSztNvEfbvNOOqGzt4d59hHv3EQAl4O97ZZrOOnvvFzi4VuZguU7i2fOjdvLXPSqmXLt5V8mMmbyTyLAiK0jHLZGjucO1/D2uFoqUXY9eGlPJW3DNG3vQLKA6gXWTLaSHbYezjGNOYDR/aObNH85iNOMWHbk2275twa2H45k1szBAPaqiDoqYowKxFdh51nmtrZGGjm/n+s5g4mOq+Yxmx5+uFO6U7bpWe+dqvzXX26gHddSDmg1xP6Hopkazj/OcYIv28xm3WcLx91QLYa8E7YDiimNb0Ufn2J8QiEVbBZyKoWkHVgCXY2uOszhEDV3retv1cWoRBkMrjma+DXW7geoGcFfb9906FIiqd4EZ5lkM85shJ32W+XyzSm0s0IuKCERBEARBEM7Eq9XGqY/xtLWPSIwVCscs/y/IWlCi7vm0oxAv3yLGWTYVE7HgF3Byi33nDC6HgyxhvVCm6vlcLVV4v7nHO/WlJzbVmcW1UpUP2vscRMNztd1eL1V5v7lnc+V8j80ryzxcKLJ69RXwC+jdA5wHmziPttCPtynvHlCJP+faB8AHeQZ9o8J+bYFmq89+fYGD8gAzqTQuWkGMHTu3NlE9HKQJJcelkotsTzu8VKrxYXt/LBDRYL68BZ8s2XgEsO6ygOqfczOft3DONaiZhWNs3MlRgTiqYtUnqn2jyt+jCmqrjHlrF5b6qE+XUPfq1h332/dmii91u2HPz0rvbCYpI/OTI0Y1qpmv6yyzhFPHi63APShitss26H4WBtgt2fm/+rzomFEF0QOVf0JHhNKkwF2+VrRfjBw7Wzl5aTm5yBrNnLaDXJgfybGsh9b1thVAzZ6bThJhjp7M0IGHNo5GDT1Mz5uuIM4z/jkPBmvi5Kcni3Qnn5k0UkEUBEEQBEEArCAweVaZpzTuJYktV2teqzT4RX+fZRWgsC2mk9W+hu9Tdj36+RziqRgbFQHwcrnOp53mpZjqzGLRL/B7q9f5/v4mC+doYV0LStQ8n24SU/N8YmOrpiXXs1mMq0tkq0vEX/0iAP/6322z8lnKwsItFqJtFneb1Jtd6s0ucB9akP5PiuZijf3lBgfLNQ78ZXpmDXNugZg/fmK+bZAm3CjXpgT6tVKFD9pW5I5nx0rJdAtwKRcb53EybQWHJjfVCGMM9wddHKUoOd74s52Jn1h30VQd7oZH7aCTFdZCginENoojAR5VMKGDupdnN0auPW8Tzpvq8wUrWh5VMU5mTVLOQsVWyegcWfcou3KWe+YpmJebqIMi6lYDtkt2VvCN/ekHtQPr6Lo4mB//UsgriwP30AV4VgUxPx5gZxFTbT+foxQTK+YGHoyMgY5Utk3dzjGrVgFz3TqjhmmKmryFkIH6eMka+HipzVncKduKpM6HIfse6pfLEDv2xsRFHE1Dx4rYo23bR8nnYFWmiKWCKAiCIAiCYFtMtVJEWUbF9edm+V2E16sNWjrhk909NoIScZZNCUFHaTaKZT7rNE8ViKnJcLQezxtuFMqsFUqXYqozj9VCib+78fK5MtxcrblZrvJBa5+a5xNlGb52rCvoDFTZZTdYZ/tKEV6+CkDQTFj6c5eFcJuF8j0W95ss7bZY2j2cS0v5E1oHCxz0ijSXahws1mgtVMncE1qEZ7QPxiZjNShOPWy9UKbuBXSSiPo8cTxrLu0U1O0GkLtHKltRLmiXLzaW+PH+9ikCMbNjaZEDbopJFOwWbU7fpFBRYN7ZwbQCG/beLjD6+MaCpO+Bnz8ndFC3FsZPz17eP5aZNxfHWGfXvm9Fp5fZylXPs2LnLFmTR1kcYGpDVLsA3bwS+fr+lEgatR6b5RMqlIXUVhgH7qEZ0NH3VUjsY8L82pzVXjrxWMCaDI3aQY8a+YyqmbngDLRDlKWMFx9p1Purdu4xSDBf3EH9eAN1v2bbpetD62baLsBDG6dibwhcoOH0NIOaEbl41qkmy2+UvYiIQBQEQRAE4dJwtR5b0q8VLnebUfV8/v5Lr/I/9Ya0o5DMGMpHhNIb1Qb3+x22hgPWCsU5R7JRESXHHQvJkuvyW0vrrJxhPvBJuEjA90pQIjN7AMRZStUL5rbQugVDAqjocJ4wur/Bpl/l8WtLmDdXwRjKnT6Luy0W9to0dtssbHdZHOyy+MnhsTKl6NTLHCzVaS5Wx38nfi7iZhiQGDgmAj2teb3S4If7W/MFomOsOcxZoy76LmqnbNtbr9jYiDC1+ZBvVRf4ZWuPYZpQmCOkx6IlcqCUkm4Ftgq11j3uhrowtH8eV1FdH5Pk7ZjrXbhftwJx5NKZV1VNObKGKddPNocxxrAXDVEom6FYjaDvW6OaxaHNP0wc69Kqpp83SBNbST4JlQvCn69ZMQvWjGdSJO3m1/xJAlEBhQQ1yM1s/OT4eVLYFss0X+gsg5oRI6EVuva9AlSPtAn7mZ197FnBHDg2CxGMDa3/mX1PphxhvvI4d51NDuckF4a2ktueyKaMHHAvILTPKhDHFUSNgamZ6RcJEYiCIAiCIFwantI4StFP00txMD1K4DhcLZbZHvRBqWMCYL1Q5t9bu8G/fHyHKEvnZjYO0oTrpeqU0LpSrFz6ei+DBT9AK0VqMqIsOzFqxC/aTshx9Wa/YAPT/QTzat5aqBS9Wplercz9V67YKsu/fYmS26L+6odWNO63WdhrH7anfn74Gp1qieZijZZepjPocZA63Bn2GWYZvtbUZ1Tubpar/KS5c+JnYnMRXZu1N2o5NbZl05Rim4s3YtTGuHZo3BJmKWuFMiXXY61QYmvYP0Eg5sfPz1P6MG9znDenB1AbQtdHJRpTDTHVvAVycm4yyRdTieDmyeIwM4ZHgx41z6ed2BZZqhFqCzs3tzg8bC89Yh7TjEN6aUI7iVkLiidX6heHmN+5Cz/cQB0Up0VSrFGdwLaBTjiYJlmGo9T0cZf68MC21s4VSk4ebWE4sYJogiQ3JXKt+YuXzm5vrYV27rEd4C/E9KIIkynU+ytWHF5tW9OjXPCa1/Zgu2KF/moP7tanO0pjh/wn5HzkAtGcsYJIpjAGXlB9KAJREARBEITLw9MaR9k7/Uere5fFol8gy7fks1otV/Jg9jCdL0Zikz21ecPLpuYFVFyPfpIQm4yGX5j72KCgrKF/ZIWKepzn572+P7+1TgG+oZ/V6d1c59FNG7WhPl0k2MloVO7RMDss7Ldo7LepdvpUO32uswm8D9+H6Mea3kKNzmKNxm6CWV0iXVmCkl3rgl9gyS/QSyJ8f55AzLP2+t6hQGwFqNsLKCAbupDP86lxZMfhXF6YpSwGVjjeKFW51+9wEA1xlD7uTDvpZJpBulmwbZwnVNFMPUQ9yv9jYTi7LXYkEN3TWwsfD/tcKZX51tIV/sXjO/TThHI+Z6g6vr3CR9mVRwRiP015o9pga9inGYcsnHBNjJmqmh6JrShH4wrlME3YCgc4SnG1UB6LRPNyEzUSiPP0qJvZPMtMja/ByfnMMbnQUu28cluZbY5jqqHNgOx5eIuaKEupP1yx84vLPczbu9NP2OhhNiZE/tEM1KPGRGdEnbmCmL/X7PKNrn6ViEAUBEEQBOHS0Erhazt/EzwlgVj3AhQKrdRMgaiVou4F7IXz4xIMzKx0PY84SrFRLPN5twUGSiec13FX7SgkfD//woTwMcbQSxPKjntYIXIz1MDDjNo7mwHqToMI2O4tsvnmLrzbBsALY+rNDvUPMxrbfWrBJtVOk4Ud+4eP741fK6uUyVYWyVYXebfo8HMf9Ko3c7ZxVtTFKCAeQH++SDZq95whnAxQc+1nuhwUsX66inYSUXG9qfZe4+cVrMix1bpE23N0tG1ykonZRNMYHr72BQTiQTSk6nn89vJVap7PtVKFW90m5VGbZW5Uo3qjfMJpgxpjDNeKVWpuwA8PtlngDIxaPeOJcz8SPrn5SmoytsMh79aX2QkHVsQWy/YxhRSz0kPtlKeqjVOMBFJ6mIFoZraY5l8bGQPNM38ZGSClGqUUWQa1B6sYZWzl8DTqIdnv3EHdq9vZ0LMKxIFrz9fopsroepsQiN0kJsmy6bnlcczF5c1ePwtEIAqCIAiCcKkE2sXVGt95OnfRa55PyXFJMRTn5Cwu+D6PB92Z34uyFE85Y4OaF4G1QomfN/dYLxTtrNocfF9hVGarNwPXVlqq4VQVp5PEdJKY/WjIeqFkq6xeaoVZ7ICfoj5ZAhgLAtX1x22UceCxu7bI3tYqKq6QfP0BW4UDfr+2Rv2gi7O9h97ZR+/sofeauN0e3L7PO8A7gFHQq5RoNyq06+X87wodzydj8bBl0wBbZQwG88oB+taijZpYmGy9nBZO5Tync8Ev8BuLa1wtVfiTnUccROH0ecvPh4oc6Ofb4XmiZ3zwCKMzVKatoYqX2biMvmfXqhgLRHOKQOylCb9ZXx9XNq8VK3zSObAizMkORWf/eIvpyA227gV5hfxQ1EZZSjeJKTnu8fbaWfmPR1on23HMWqHI1xfX2I+G/MGj21Pus+ZL25j7NTt/OYuRwE60Pbcw26Qmj0ZRSf6YeQIxP48qsTN9DVNEp7kBTfmMraJeZg2F4LCqeRKRRv3FNWvw85Ut2C3aPEY/GX8OnTiik8S4StOKw8PZWuewxfRFRgSiIAiCIAiXSuDYeIu5s2ZPiKs1y0GRVhzizXmNmheQzknU6ycJNc+jfJrBx3PElUKZby1v8GZ1gZI7f/vmaU3qJTiRB3t59XBhupIaZik3SlWKjsNH7QOulSrTWYg9z0YLVEPMKwe2YhTOOM95hSh2YzxH4y0skC4vk77+0uFjkgS910Rv79F/vEnn4WNWOgMqnT6VTp8r96cP2XcqdFo1Wk2PjrNIp12gvVIkvNaBW4uwU4I39qyzp5eORU9qMhylx5+poxTvNJYBeKe+xB9t3WfRmMOK6eQMYm68MlekjNBg3tyzDqMjB89ShGoXMKFjq2JnqCAaY8AwJVhXCyU85RCZlCCYiOCYUSkd5OY7Nc+n6LgE2mGYJgTaYXPYZ61QYjcc0vDM1DVu/OMiSQ2mWyejLOW6X8HVmqWgYFub0/gww9Ix8NIJs5XOYcVvnklNO45oJRE3RmIbMIU54tyduC6Buh4JsXO6g+YiVcXO9G+F+zX7GhsTgrfn2bbX3ZK9yfKhvY7MW7vgGJIsoxlH/M7qNVyt+JPth3STHiXHYUHbnzmVSoupIAiCIAjCmIJ2cbQieEoCEWCtUOQkX46y4x0bk8qMYZim9NOEm+XaU1vb06Di+XxlYeXUx3lak3kJbuTDlm0NNIvTAjHKMlaCIq9W6tzpd+gmEdVx+6EeV+fMam/abfIoudCInJhAuQSzqrmuS7a2TLa2zPALL/MHDz5j2S8QpBm1Vo9as0u11aVy0KHe6lHt9Ch1u6x9CHAX+AnsQnjLo+0s0mWRzndden3oLBToJCmZ6xCmKYF2KM8wRrpRqlD3fDp5liQwUU3Th3N4pwlEgGud6f8uJdDGVvwKKeoUgWiMYZilFFyHxYm5wYrrUfU8BmlCMIrgCB0YuNapdaL1dZAmVlBqjac1S36BgyhkoFLqXsDfWrvJjw62+Lzbmr4Jkn/Gkw63R905Y2PGM66O0lwtlvmsawVhP7GveyKjlsx09gyiMYZmHNr23yCBQf55nFJBHAvv0WyfPqf7y+T85Yihg/5o2bar1iYqkvm1rlDw0zVbhV/pwapt0z6IQ64Wy7xWqaOUorzhsR0O+O7eY2p+aj2TpIIoCIIgCIJwSNFx8Z5iBRHgRqnGkj8/xsJW2RQmrxoN0oSdcEDJte2Ly8H8577IeEqT+gn0sG1xytiZvSNUPI+q5/Pl+hLf3dui7KY4ALFzWFUqxrY9T5nZFcTIwShD7CRnatctux4F7TDMUlzP42C5zsGyNT253++glOLmX75JddilGu9TY5equ0s1OaDa6rISbrHCFnwC8AvYB/M59MtFDqoF+vUqxa0h2WKDbLGOqVfBcfC0w2vVBj852B4LxI7Tp4axwm60l58V6H4ak0Y1i8O5FcQoS9ka9smMdeLdKJaPtYAuB0Vud1uHYqbro1DHnDPDLGNtIo7lWqnCrV6bouPyN1auUnJdNgplPu4cTK/VP2EGcfQa5rBNF6wr8IftAw6i6FhES5JlHMQhjlKHYteZEHQzWkzbSUTV84nSlCxIcM4rEEezfSfNis7CmyEQ8/lcZRR8voj58rb9+vDw/atuYAXk69YB2OQ3mb5QWxxXo1cLJZaCInd6LQ7CkBWMCERBEARBEIRJAsfB1das5mnR8IMTQ+1LjoenNbHJUEaxGw742uIqb1WX6CTRySHqLzCu1qTeRJ7cUv+Ye6nBUMkrbV+oLbIXDdlRQxpgN+KjlstSkjucpofRBWp8ECs0vJTYZNTc+dEbIxylWAgK7A4HVCYqW/0kpuha19msYminS7S9Je6/V4GVNQBUllHaial9v0g1aVFJWpT9bapxm1J3QLk3gM2DKYMcozWmUSVbaPBerYQhQi3U2C369AsupWKINyhYx00Yi5RRlS/OMsqui6PmX8emHFkrnF4+ozlHIG4OB7xVWyQxGb9o7vH1hdVjx1r2C3xiDg4rfblRzWQgfZjaNtGViYzPK8UKX64v83KlxtU8qmUpKKBQ49ZbYE4VzbU3AEavocxUPM1SUEArRdX16CTx+IZLZgwPBz2ulyv0k4T7/S4Fx2FRp3hwrMW0l8QcRDbL8bcW1/lFa480iBmvZJ47qDvRsjr597lbTKdbVQFU3oJtlEFtVTC3I7jZRB2tlm90DmcP8yr0tdJ0JI6jFG/XlvjDrfvgGGkxFQRBEARBmMTTGl85T7WCeBpFxyHQtvWwlUS8Xl3gK41VtFInzvC96LhKTxmkmFenq0hJluFOzOr52uG3l6/yb4v54+IJ05ZRRS1IbHRB5BwKiUSjjML4GYkxZxKIAMtBgQf9aYOTgzjiWrHM/X7XVuRaBZvLt3zYGmu0prcW0Hu3wtbHLwGQffUxLA3QSUpvd5dv6RLXBwlqv4Xeb6IPWuh9+6cO/M6RtfTdH9HXDfpOjV5QpXs7plsp8jDQtAs+Zc/j4aA3jk2ZyWg2cDQrOBIg3uFnYLMfNe81VnCUIkxT1kfOoBNUx+2vhxVE+9+HwnU77POl+vJUZudyUOTbq1enjlX3AuqeTy9JJtpqjwjEVKEi155rBfHo2ph4r3UvYK1Q4mapyo8PdohNhq8coiyl5Lr87up14izjl+099qOQLhH1/NhEDkZnZDpjbxjytYVVNool1gol7vU7RH6Mj3WUnVsRfFoVRAPsF2118O0d+OUK+rNFTNcbV//MWhc6PuaVw5+hQZrwaqU+83fb9VKFRd/GpYhAFARBEARBmMDTmornH2tJ+1WilKLhBXzSbbJeKPG1hdVnup5fFZ7WqHw+y+gMatMun2EeVD8pkj2tCQJNCqjYVhCNkx2KnJEoDCcE4mi+zEsBQ/GMhj8LXoHMmHFlK8kyFPBGbYHHwz5pOcSlirnenp21d6NNlinUbgnqtnU2dTR79TJm42Wio8IrjKxQbLbp7eySHbQod/s4zQ6Fdo9Ssgls2lSNPzt8WpZXH5ulgAeBRtVr9CtF+uUC/XKRYSnAaA2lGIM5dFWdUUHs5yKt4noopfjb6zdnXotV10ejyLzEVtY6+Sxofs47SUzdD3j3DLOoWimuFit81N4/FIheZtc6quwN878nDGoC7Ux9llopfnf1GoHj8IvWHnGW4WuHxNi/A+1QcFx+c2mDu70233MGh+chN/PZjgZcK5b5cmMZL+8qqHsBj/z82swrt0mWEZtsWow7xq75mEA8vYJojOFOv8uVQonAcTBueigQu74Vx40BXOli6iF89yrslsai37yxdxjHkRNn82+GeNrhy41lPtUZbuwyxyPrhUAEoiAIgiAIl0rZ8Vg6S3D3U2YlKKKU4jeX1g6rM7/muEozuLpPIfPQr7SPfT/KrJHJ0bZJz4cUoO+hUo2phIcCbSwQXSDf1MeT82WKwpy4kaPcKFW5WaryYNDlSrFMK45YLZS4Uaria4fBlX3K1RiW5mdY8lILM+GkGeWipTbrMw58svUVsvUVgi+8CkAGfN5r8Rcf7XPzZyuU0g7V6i7F6mPKnT5uu8tKP8bbb7G0DzbwY3PqsEbBoGTFYr//MYNWnd4HIYNmSj9eoJeFxEZDPv/6cqU2nlmbd6Oi4noUHJfIjSkCatTqOyEQ31tYnl/NPMJGscz7rb1xWygKK/ojbcXLcDrbL8pSal6Ac2R9pVwwVlyPfmLFU5xlNo904rE1zydzbEi9Grp2ftJPSU3GW/XFsTgEm0F6O8gD7fM5zp1wgKs1e+EQV2vquUsr7qRAzF1Pz1BBjPKbD/00tgZKfjp2h1XbRwycyjFUckfajrKidEY8h1JQOKED4aVyjc+d/Hkv8ByiCERBEARBEC6VjWKZjRktdL9q3l1YQTF/Q/7riKc1upDRf3Nras5vRJilLMwQ74UiDAEO8u+VDmfCTJCHyk8a1USHIegGc2bR4mrNbyyts/v4Nq04pJ8mfL26hqM0Vdenm0SUl08QhzMYZgkV1xsLmbPga4ewOqTv1ui7NZo368Qv10iylK3hgH947VUWcOCgxfc+/4RSb8DiMKbUG1LqDSh1hxT7Q0q9IZC3IP4A4AP77/8ZYs+xBjqBR3VxAX/hHqZSxlTLZJUyplrClEuQCydXaxq+T8+NmLJQ8hMyYytpVwrTs28ncaVYpnbMvTW185KpOjRjySt4YZadaDZU93yaka3axll2GH2RU3V9vNFHMDI68m3YzFFH45LjMqx3MC8fYPJMxRTDbyysEjgOjwc9Pu+2aMYRV5zU3pwwnKvFdJAm1D2fMMuv5ZE7bM+De3U7e3llot25EkG7YCMuggRmdomefK17WuO7hgTGER4vIiIQBUEQBEH4teRoJeSvAlrZal6UzQgnBxJjZhr0lBYy9rwEJzoyfwiHlZTwsDVRtayQzLwUV+njoewn0PADfmNpnT/auk9Bu1wt2JsJdd9nPzqfOAQYpOnYnOWsBNohc1JMMUYNPFQecTBIU4p5xiBKw9oysQ75UbfJemH6pofKMoq9IeWPPUoPobi0SWkzo5R0KRX2KXUH1JtdO5O3dXB8EYBRClMuWuFYKfHXPM3DVOP2+gycMkOnTN/02I0iaq7Pyjncd33t8EZ1gR8dbE20mR7O4qmuVXMjl9Qky040fqp5PrGxrZ2xMceq8q7WlIP8GhlVP/PXOzqzV3Y92z76mj0vmTEoFGuFEstBkdcqDd6qLfKvNu+SuRlOqKyoPcGkppPnK17Lr4VhlrDkl+iF8dRa1KeLqERjrrWm3FNNJTrsap5jmmPMcbF7FJ3/KCipIAqCIAiCIAjPA0XHo58c3+CmJkOhZrb/+q6mv9yk+jgPBZ+MHQjsv1Xo2va8715D5S2mqZfgaU3hnIZEr5TrPK71SI2hkguNhnsoQM5DYjJWglPy+Y7gaY2jNaY2RA08dMW+x2GasF4oT7XgjqIejmK05qAU0L9SRx+sYlbXYFCHIMV8+x4YQ9jvU+iH/PuVZZxuH93toTp9VLeH7vRQ3R6q20d3bcbetfwPfH74Qv8iN40t+DiVH2PKJUypaIVluYQpF8lKh/825SLkbZAvlav8tLmTG+U4h2K/WYAHNTunOpGTWT6hCjtdoTWUZtwUqBc9OjCuIGZeiqP0VHsp2Aqim8+gulozTBOKjkt9ooK5HBRZ8gtkTh7BkmjUCRXEgziyzsVZhqc1iYGS66BGpr75e1f7JYzOMC83pw9QnZjXDY7//IzWelq1XOVre5GNakQgCoIgCIIg/BpRcly2ZwitZhSxWijOzID0tKa/sjcWiFMVxEmTms0KKnas82U5Ilxs4ysH95yRJlopvrW8QWoON/olz7Ph5Ocgy59fP+eMaaAdXKWIXtklWAzRKxH0YJhlrB0Jg2/4AVopHg56+FqzEhRJsozNsE+cZVwrBQQA7cDO3eUGNQbYUoZvXL+GWVhlTpADZBlqMER1erT29vnlw3tc+aRBMe1TSHsElSbuYEgljNG7B7A7uxo5iQl8TKlIsVzk97Vh31G4pSJRe5OoVyf6YYFIxwxfConMkE5kXYdPygct6kPZYObMndYLViCqxH4v8xIcpY5VEEuui69tpdvVmn6asFIoHROSa4US9508OiPRkM2uIHbiiKrnUdKujbHxAsCwXihzp9chMwZnYqbQvNw8ZkBDZVIgHq/Ax8YKxNOq5eO3KhVEQRAEQRAE4Xmg7Lkk5niFpZfP+82ayfSUQ1jtj1suxwHwMGVSox5UATBf3IaFkDiKqToXMwBylMaZWErJca05yDk4iEJWguJULuBZ8LSDozRxISK43kGpUeXKHGuzXPADVoMigeNwr98BYCsc8FKpzl40YOgM8DHQss8zbspuOCAzhrrn84Xa4smL0Tqv/pVQyw0+LKU0976Ail2Mn5B9+y4PBz3+wZWXWdUeqtdH9wao/gDV66N6A/unb/89+p4+aKEPWmwAG/Neexf4of1n7Do45R9higGmUMAUC/m/A0zgs+ooXu8dUCn3SUxCtbCIMg4mCMB1QCkqwbS0SPMW5KOZqI7SlF2XQZJQws7Grs+oAi/6Be6OTF8SPXMGMTUZB3HIby2tA/D9fTt/6yuHK8UyvtaEWUqchDbrE+Cl5vFz4WcYP7HupjNaTOMso6CdYyL2KHpUQRSBKAiCIAiCIDwPFLRLdkRn9ZKYouPMndXztEYpMF/axnT9KZMa/NQaenR9m31YCaFh+/ZSk1F0LyfvsuR46KPh7idgjKGfJvzm8vqZHj+JoxSB45Bmh5WoQZJQcI5X0Ryl+btXXqKbxDwa9EgyGxfxerVO2s7YzQZQilF9K5RTJwVl5+7ea6yc2cAHrEguOq5tzYxdCFJik+Fpx7biuh4m8EkXG6cfLE5Q/QGmP+RHj+7QbXep9g2LuwGBOyBwe/hhjB9GOMOQSpSiWx1odWYergD8vamv/Gz8L6M1puDzhuuzMSiQaJ9Y+fQ/TogeGYp3muB7GM/D+B74Hq/2DthKY8qlEt00YqWSQRiB71m7UGxl2LgT0RlHZhDjLOPxsMfL5TpvVBdoxva6bMcRFc+j4QWUHI+tYR9/NaU8KOO82ppjQIOtIu67M1tM4yw7scI6YlRBlBZTQRAEQRAE4bkg0A5KHSpEYwz70ZCvL67NdDYFxlURUxui6uH0NxVQPBRA5kZrHIGRmrM7mJ5GyXXxHYcoyyg6p2+u20lEww+4Wape7PUcl4N0OHW8G8XKzPczclktOR6dJMJVmoYfsOAHPBp0bd5kfn4yJ6XmBvy9Ky+hz9kyq5WdER16MQ4BBAlRllJwnHMZAQHguZh6FepVbi5WGKQJf7bzCF/rqVnDzBgeD3v8/SuvsOoXUMPQtrwOhjAYooYRKowww5BPdrfwoxgvTrihfZwwRoUhhBFqGOH1hywyEa/ycPSP+8eW981jX/nh+F/GczGeR8n3+A9DyJIC6Z+nZElAGvukP4wYehkDBd8sllivdNDeFmXH4Zu9A4YarlcbeJ1bvNU5oDjsUgsKZCtNigOfLFQYrci0JtMKk/+dNXahuURa7mKSzH5PKVCK2GRUvdOdcg9NakQgPnPefPPNY1/7b//b/5a/9/f+3oxHC4IgCIIg/HriaY2ZECYHcciiX+StE1odPaVxlCY1BndGC6p5dwvT822FpXzYfpqYjKJz9niJk/C1Q8lxibOM4kRR0hhDL02OidthmvJapYp3ToOcESXHZWeighibjOvl2tzHa6VYLRR5v7XLeqFM1fWpej4ZYGohatNWZzPXBs6ft6o5YikoctdL8AGClDDNWC4UnyiuZVT5muVw208TSo7Hol+w7a6lIqY0u1K2s7fJ9/Y32QjK/P6N1499fzgI+d7/y+BlEZ4JGbx2m6UivFuqo+IYohgVJ6go5qDbYb/bpZIZiGPWtY+O7feJYlQUofuDvC20PU4TAeDB/Pf6W0f++zfzP+fiuJ4lU9gZWTX6w8S/889GKb6dgMkUyS6YNeD6tfO++jPn10YgAvw3/81/w7e+9a3xf9dq83/IBUEQBEEQfh0JtDNVt+qnCV9fXDuxAuVpjaOUFYj514wx7EZDSo5LuQJU4mPPM4aZZiUXpeH5PBr0pr7WjEP6aUovSVibmDVMTDYzsuOslBxvbJIzTK0b69opLYSrQZE4y9golNFKUXY8wED1sOqaOZkNZr8gdc8n9UbZfSlRlrLoHXeevQhFx2WQTrdPxllK1QvOZDT0heoCH3cOKHuzryU38Bm6mtDYecLNK/s4C1WSlSvHHvu42+KPtx9Qcz0Mit+//hrqqAjOMr73wxaDD0qol3ZwdwKcjsPBFz7jStnnK9UFdJpBnECaWnE5+jtJUUlCPwqJ44RBHNGPQkpKozKDzjK0MagsQ2cGnU3+O7OPMRkqAzBkWTY2N8KY/A8oYwD7b7IMxxiMAZUA0fGfmReBXyuBWKvVWFlZedbLEARBEARBeGZ42sFgMMaQYdCoU2enrEDUU66irTjCUYp+mtBNk5niSSlONe04D3U/4E5vegaulyR8sb7E3X6bg2jIQh7TYVAnxjKcRtF1yXJTnF4cs+gXxpEbc9fnBdS9gNXc6bTkuhjAVA9bVVM3wb9g9RCg4nokvj2eKSZkmMMcwyek6Lgk2bQDaJxl1M54Hut+wFvVRZI5cSSuVhgnQyX2GoydmKI7W27YaBRDbDIW/cJxcQigNbrkETlFjFsFt4TyArZXt/nGjZtkQZHTglGc/M8v9rZ4v7XLRrF8yjNm82DQ5X+3fpPrp7Q0//zHMZvvB3Ref8z/5WsvQ/P82Z7Pmhe3OXYG/9V/9V/xW7/1W/z+7/8+//yf//NnvRxBEARBEIRfOYHWuLnY6ye2NXMyX24W1lHUGsSAnUtrJxFfW1jlm0sbx0TFCIPCV5dXQay4/pSTaZJlaKV4vdrgndoSvTzf0RjbRPskAjHQzrgVN8pSGmcQYXU/YDEojJ1OS451y4ydFFOyMQmpkz5RVbXieoQbTeIvbMF6F3iy9znJZNV0hJ2tO3sl9r2FFb6ycEJBZhRB4Vn5PS8j01ZZFVGWniiA3dG3JkxqSt7JkRyzKLou6Rldcgdpwp1+B5Ofq4MopOr6LPmnv6YznkEUF9Nnzn/+n//nfPOb38T3ff7sz/6M//K//C/p9/v8J//Jf3LhY2r9/Hywo7U8T2sSfj2Qa0t4Gsh1JTwN5Lo6GwXPxdOaFOvy+XqtgXcG05dR+6FSilYcsloo8Vptga1hLx+3On7eFRC4zqV9JhXPQyk1fq1uGrNcKLJcKKKUQh8oMiAxhsDR1Hz/wq8duA5agdKKODU0CoVTj1XzfX5reZ2VfCaw5LkUXIc4ywhyo5rMTSm4F19X0XPxChBdaVFwXJTSVHzvUs5xyXPtLN3EZ6mUouy5Zz5+oEc1udko10AI+ClaKwJ39rFLnoerNcM0oe4Hc1/f9/OvJxoyhVEGz9PnPh+B46Anrq0RUZriHxH0wzTFUYphZudJe2nM765dp+KfLtRdzx5/ZFLzIv6+eq4F4n/33/13/Pf//X9/4mO+853vsL6+zj/5J/9k/LW3336bwWDA//g//o8XFoiuq1lamm0F/SxZWLhYWVwQTkOuLeFpINeV8DSQ6+pkjDHUdgu4jsbTKW+sLbO0cPqeZqldZmfQp1wM2O9GvL2ywvpKDdV3KBx4lCvTVSZjDEXjsbZUZal4PMPuImQlTeHAp1Dy2Bz0SVx478o6K8tVFk2Zje42qTFoHJZUmaurjQu/1iAwFJoepZIP3SHri9WznSemH3OlXWNn2Kfw5oA4c2E9ZKmx/ET7yMZekQyDqx0aboHrq43zu5jOYEUNKfb8qc+ySMTGUo2l2uXsex3/gKwHTtFQKHisLlZmHrueZdT3CsThwL5+Y/brL7USHgIuLmmqMU5GvVI89/ldcWMK3en33o0jNrsDbpRqlCccStsq5oZfohWFxKS8vbrC129eOZPxUL3eBwxebmf6Iv6+eq4F4j/6R/+If/AP/sGJj5k3c/juu+/yT//pPyVJEtw5vc8nkSQZ7fbz0zOstWJhoczBQY/saLiRIDwBcm0JTwO5roSngVxXZycLM5pJyDBLcAeGvax76nPSQUKnN6SYagb9EAYpe3td+nFENExomcGUkUmSZcRRQq81RPdPmwQ7G2GakEYJt4dNFoKA32pscJUCe3t2/asq4GetXXxtQ9BHX78IgyhkOIzp6hAMxP34TOfpKEEMre6QUtGB97oMBkN6nZA9Lr62LEzpxDZOwwC95pDeqc86nUE3ZDiM6KlDU51+P2LYidiLL77eSYyyLqmpkzAcxPTb4dxjZ1FKGqZE3Yi9dPZjwjAEPJIhkCqMlxIP4nN/9v1+yHAQ0ePwvW8P+6x4BR4ctLg2MVvYGYRUjUerP8RRilcaGzT3+2d6nTBM7HrDvD31Ofp9VasV8bzT25+fa4HYaDRoNBoXeu6HH37IwsLChcThiOflw5wky8xzuS7hxUeuLeFpINeV8DSQ6+p0io7D3V6bVyo1qq5/pvPla01qMowxGBSBcsgyg4edT4wz23Y3IskyNAoHdWmfh4/GVw47yYBvLm9ws2Qd6UfHXw/K/NTs0okjFmpLT/S6Ze0RaId+HIOjKOTv97xUXJ8kP29gzS2f9JwUtcNBlmEUZ/78zoKLtp9vvtbRjGdwwfc+C+VaQ0+8lAxz4rkoa48DFZ74+uPxy8hBGUXqZHjq/OfXzddhJmYwozTler1KN4loRyHVfBbSGMN6UGJn2Ge9UGbNL5359Ub3UEYtpi/i76vnWiCelT/6oz9ib2+P9957D9/3+fM//3P+h//hf+Af/+N//KyXJgiCIAiC8Cun5Ng5xHfqy1Oi7iSK2iXJN9DGmHFgvK81ntYkR8xNEpPhKH3hHMJZKKWoe4HNJCwed4u8UizzbmOZnzR3zhRafhKe1ix4ATvRgLIfjN/veTmazwjgPoGLKUDR8azohKnWxyfF05rJjzE2GZ7WlxpVol1DBmRekl8f889FxfXwtT7x3Ad+/vzQrtHoDO8C59fXdgYxMwadR7popbhZqlLULt/f36SXJqznDrUNP+Cd+jJXi+XZDqtzGCWAqPTFmz0c8WshEF3X5Z/9s3/Gf/1f/9cA3Lhxg//iv/gv+P3f//1nvDJBEARBEIRfPUXX40qxzPXS2ee0fMdBKWsA42pNKd+0K6UoOR79ZDrTLTUmD4S/3I3woh+w4PuUZnSBKaX4ysIqgXZYC5587nGtUOJWr8WCLtkZvwsUeiquh+JQeAA2K+8JKDsuSQZGZVScyxOIQS6SUmPyqnBGQTv4lyjyXRcSRgJRnXjsqmuruMEJj/FcRerHOJE9D8bJzpTZeBQ/j3JJTIavHPpJTMX1WPADloMii37Av9y8S5Ll7quOc7Jb6xwcN//sxcX02fLtb3+bb3/72896GYIgCIIgCM8FN0tVrhUrZzLVGDGqykRZiq+dqfy6suvSjsOpx6cmm1k9e1K+1FhGM39z7SjFlxrLl/JadT8AlHVDzatL56XsegSOJsxSio6LwVxIwEziOw4oQ4qamyN4ETzt5BEoGY6y7qtL54yLOA0394BJvARXafwTzkXBdVkM5mQgjtasNGkhGgvETGd4F4hW8bSDo9U45qObxLxRXRj/jKwUShS0wyBN0CgK+mLnfVxBzF7cNMFfC4EoCIIgCIIgHHLejDgAV1tDlDjLKLvulLgsux7xkSzExJhLcdY8ykVbPS9CzfUpOE4uFC+Grx0qrs8wSWyFDvXELaa+dnKJbObmCF7suBpXa5LM4GvbYlq7xBZWgNorQ+4nTfRiZ1y1m8dGoXxqxqOrNWkhhrb970xnJ7atzsPTGk9pkiwj1RkphhvlwzZmRykW/AKPB108rfOcxvPj5hXEF7nF9MWVtoIgCIIgCMKlseAFuErTS2PqR4LTK65/LGQ8NdnMNtAXiZrnU3RcFoLCEx1n0SsQZul4ru2JK4jaGZ/tiwqVWbi5SEqNFfuJyah5FxfHs/BLhu7VPRKdnVqFq3o+V4snt0E7SmOKh+3NF20xBXvzITWG3XDIlWL52GuvBAW6SYyr9IltrycxFogvcAXxxV25IAiCIAiCcGnU/YD1QolmFB0TiIF2UHlNKzOGzWGfbpJQvGAb3vNCwXFZCopUnrCKtuAHxMaQ5bN9TzqDOGrLNHCp84Fg33NiDEleEa65/qUef1Q9TU1G0X3ytTtKTQtEnV147rXouIRZSmIyvlRfHs+Mjqh7gTUGcr1j3zsr449LBKIgCIIgCILwovNKpU7JdSkfqQxOVlNacUjF9fhibfFCrazPG+8tLHOtfNwx9TxUPA+Fyc1fTnbuPAt+3qqqUReuZM2j5DqkJmM7HPBKuca1cxgZnQUrrAzJhBPuEx+zlIz/bRxzYYFYclz2oiE3S7WZlcuK6xE4DpUnqIw74xnEF7fF9MW+7SMIgiAIgiBcGhuFMitB8djG3rY5jsw9Ev7a8gpv15eewQovnyvFClXfZ4/owscoOx7GkJu/qHOZA81iNLun1OW2mIKtoh3EIct+ka8srF64UjYPV9lZ1tRkFC/JgdUrH86/Zk6Goy523KLrsnTC+654PkE+U3pRtAPGTUG9WNmHk4hAFARBEARBEAA7E/alxvKxyuCoxbSfJASOw43Sk1Xcft2oej6BYx0wR2HrT4KnHVytUJwcE3ERNgplvrW0wSuVOgv+k81ezsJVdt0Gc2n5in4RUp2hMo3RKY662Dle9At8bXGVpTkzpyXHpeJ6pxrnnIRSoL62STsbAo0LH+dZIgJREARBEARBGPNmdeHY13zt4GnNTjjg7foilUsQQb9OFB2XqufzeNC7lLbbkeOmp/Wl50y+XKnzMvVLPeYkjtYYY1CnZCCeh8BxaAcR3qDwRDOIL5VrJ35fK8V6ofTE5ktuIyEdXrwi/awRgSgIgiAIgiCcSNFx+ObyBp7SrBWePKD+15FVv8itbuvSRFHR8U7MEHxecZVCKTCYS1t/oB3SQi4Qn2AG8Sz8xtL6E7cIP2nMybNGBKIgCIIgCIJwIkopXqs0nvUynmuWgiKOUpc2M1h0nEtr0fxVopVCK02UpU9s1jMi0A5xMaRwAJmbPrGAO4nLEPhPGnPyrBGBKAiCIAiCIAhPSM3zKWj30lxHS653aS6gv0pcpdHYSuJlVVNdrWlv7FEJXAaNDo5avpTjPi08qSAKgiAIgiAIwl9tap5Pwbk8gXijVH3iPMVngaMUWikc9KUKxKwYkb26D8On22J6GUgFURAEQRAEQRD+ilNyXGqed2ltlZedT/irwsZzKFzFpc0g2oqcIsPkLazPuUDM5zBfVEQgCoIgCIIgCMITopTiSrFM8AK2hV4mrlI4KEBdWqvlKFsxM6Dgqc4gXgaOUrzA+lAEoiAIgiAIgiBcBl9dWHvuq1tPG6XUOJ5DXdK5sJmQkBlbQXzeW0xfhCrnSYhAFARBEARBEIRL4LLaS190XK0p6MuTGbaCaMYtps/7bKaj9AtdQZSrWBAEQRAEQRCES8NTmtIlRnSMTF8yY9DYGI3nGUc9/2s8iRd35YIgCIIgCIIgPHd4WlN0vMs7ntK4SpOYDK14MVpMn/UinoAXee2CIAiCIAiCIDxnFByXont5LaYFx8XVmmGa4r4AlbnLnL98Fjz/Z1gQBEEQBEEQhBeGmutRvkSB6GlNyXEJs/SFmPPUvNgVRDGpEQRBEARBEATh0nhvYfXSj1n3fB72u5cWnfE0cV5wF9Pn/wwLgiAIgiAIgvBXmoYXEGXp2LDmeUZLi6kgCIIgCIIgCMLTo+x6aKXx9OW5oz4tHKVfaJH1Iq9dEARBEARBEIS/AhQdF19rvBegMqcVUkEUBEEQBEEQBEF4WliB6LwQLaaBdvG0fmHnEJ//MywIgiAIgiAIwl9pSo4VXS+Ci2nJdfm9tRsvhJidxYu5akEQBEEQBEEQ/spQdG0F0VPP/wwiWCfTFxURiIIgCIIgCIIgPNc4SlN1vRdaeL0oiEAUBEEQBEEQBOG5Z8EviED8FeA+6wUIgiAIgiAIgiCcxhfri/gvQMzFi44IREEQBEEQBEEQnnsW/MKzXsJfCaTFVBAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiCIAiCIAg5IhAFQRAEQRAEQRAEQASiIAiCIAiCIAiCkCMCURAEQRAEQRAEQQBEIAqCIAiC8P9n777j5Krr/Y+/vuecKdtbdtNDSIAASSB0CKEY5YpgQUV/ooAgerFQ9HovKipNEcHrVQQsoHAFC1wVUUGwgiggooi0AKGkt+1l6inf3x8zO9nJltRNNtn38/HIQ/bMmTPfmfnuOJ/9fL+fj4iISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkQJEERERERERARQgioiIiIiISJECRBEREREREQEUIIqIiIiIiEjRbhEgfvGLX+Qd73gH8+bN4x3veMeQ5zz++OO8/e1vZ968eZx00kncc889O3eQIiIiIiIiu7ndIkAEeOc738kpp5wy5G0rV67k/PPP56ijjuIXv/gF73//+7n00kt59NFHd/IoRUREREREdl/erh7Alvjc5z4HQEdHBy+//PKg2++8806mT5/Opz/9aQBmz57NP/7xD77//e+zcOHCnTpWERERERGR3dVuESBuzlNPPcWxxx5bdmzRokVcd91123VdxzHbdf8dqX8sY2lMsmfQ3JLRoHklo0HzSkaD5pWMht15Xu0RAWJbWxtNTU1lxyZMmEBXVxe+7xOLxbb6mp7n0NRUvaOGuMM0NFTt6iHIHkpzS0aD5pWMBs0rGQ2aVzIadsd5tcsCxBtuuIEbb7xxxHP+9Kc/MWnSpC26njHl0bm1dpvHBhAEET09me26xo7kOIaGhio6O1NE0fY9N5GBNLdkNGheyWjQvJLRoHklo2Eszqva2gpiMXez5+2yAPGss87irW9964jnNDc3b9G1JkyYQFtbW9mx9vZ26uvrtyl72G+svJkDRZEdk+OS3Z/mlowGzSsZDZpXMho0r2Q07I7zapcFiPX19dTX1++Qay1YsICHH3647Nijjz7KggULdsj1RURERERExoPdos3F8uXLWbJkCa2treRyOZYsWcKSJUtKt7/nPe9hxYoVXHfddbzyyiv88Ic/5IEHHuD973//Lhy1iIiIiIjI7mW3KFLzuc99jr/97W+ln0877TQAXnzxRQCmT5/Od77zHb785S9z++23M2nSJL74xS+qxYWIiIiIiMhW2C0CxDvuuGOz5xx99NHcc889oz8YERERERGRPdRuscRURERERERERp8CRBEREREREQEUIIqIiIiIiEiRAkQREREREREBFCCKiIiIiIhIkbHW2l09iLEoiixhGO3qYZSJxVx8P9zVw5A9kOaWjAbNKxkNmlcyGjSvZDSMtXnlug6OYzZ7ngJEERERERERAbTEVERERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAUURERERERIoUIIqIiIiIiAigAFFERERERESKFCCKiIiIiIgIoABRREREREREihQgioiIiIiICKAAcUz54Q9/yOLFi5k/fz7vfve7efrpp0c8//777+fkk09m/vz5vOUtb+Hhhx/eSSOV3c3WzK2lS5dy4YUXsnjxYubMmcMPfvCDnThS2Z1szbz6v//7P9773vdyxBFHcOSRR/KBD3yAZ555ZieOVnYXWzOvfv/73/POd76Tww8/nAULFvC2t72Ne+65Z+cNVnYbW/sdq9/NN9/MnDlzuPbaa0d5hLI72pp5dffddzNnzpyyf/Pnz9+Jo91yChDHiF//+tdcc801fOxjH+PnP/85c+bM4YMf/CAdHR1Dnv/Pf/6TT37yk5x++uncc889vOENb+CjH/0or7zyyk4euYx1Wzu3MpkM06ZN45Of/CTNzc07ebSyu9jaefX4449z6qmncvvtt/PjH/+YiRMn8oEPfIANGzbs5JHLWLa186quro7zzz+fu+66i1/+8pecfvrpXHrppTz66KM7eeQylm3tvOr33HPPceeddzJnzpydNFLZnWzLvKqvr+cvf/lL6d+DDz64E0e8FayMCaeffrq96qqrSj+HYWgXLVpkv/vd7w55/sUXX2zPP//8smPvete77JVXXjmq45Tdz9bOrYFe97rX2TvuuGM0hye7qe2ZV9ZaGwSBPeSQQ+wvf/nL0Rqi7Ia2d15Za+1pp51mb7jhhtEYnuymtmVepdNp+6Y3vck+/PDD9swzz7Rf/vKXd8ZQZTeytfPqZz/7mT3yyCN31vC2izKIY0A+n+e5557j2GOPLR1zHIeFCxfy1FNPDXmfp556qux8gEWLFg17voxP2zK3RDZnR8yrTCZDEATU1dWN0ihld7O988pay2OPPcZrr73GYYcdNoojld3Jts6rL3/5yxx11FEcd9xxO2GUsrvZ1nnV19fHiSeeyAknnMBHP/pRXn755Z0w2q3n7eoBCHR2dhKGIRMmTCg73tTUxPLly4e8T1tbG01NTYPOb21tHbVxyu5nW+aWyObsiHn11a9+lcmTJ3P00UePxhBlN7St86q3t5fjjz+efD6P4zhceeWVHHPMMaM9XNlNbMu8evDBB/nrX/+q/awyrG2ZV7NmzeKaa65hv/32o6enh1tvvZUzzjiDe++9l4kTJ+6MYW8xBYhjmLUWY8ywtw9120jni/Tb3NwS2RZbOq9uueUWfv3rX3PHHXcQj8d3wshkd7a5eVVVVcU999xDOp3mscce40tf+hIzZszg8MMP34mjlN3NcPOqo6ODz3/+89x0001UVFTsgpHJ7mykz6sFCxawYMGC0s+HHHIIp5xyCj/5yU+44IILdtIIt4wCxDGgoaEB13Vpa2srO97R0THoLxP9JkyYMOj89vb2Yc+X8Wlb5pbI5mzPvPre977Hd77zHW677Tb222+/0Rym7Ga2dV45jsNee+0FwAEHHMArr7zCzTffrABRgK2fV0uXLqW1tZUzzjijdCwMQ5544gl+8IMfqPqyADvm+1UsFuOAAw4Ykyu6tAdxDIjH48ydO7es6loURTz22GNlf2kYaMGCBTzyyCNlxx599NFhz5fxaVvmlsjmbOu8+u53v8s3v/lNvvvd747Z0t6y6+yozytrLfl8fhRGKLujrZ1X8+fP51e/+hX33HNP6d+8efN4+9vfzt13370TRy5j2Y74vArDkKVLl47JivHKII4R5557Lpdccglz587loIMO4vvf/z7ZbJa3v/3tAFxyySVMnDiRT37ykwCcffbZnHnmmdx6662ccMIJ/PrXv+bZZ5/l6quv3pVPQ8agrZ1b+Xy+1C4ln8+zfv16lixZQl1dHVOmTNllz0PGlq2dV7fccgvXX389X/3qV5k6dWppv3RlZSVVVVW77HnI2LK18+rmm2/mwAMPZK+99iKfz/PnP/+ZX/ziF1x11VW78mnIGLM186qysnLQ6obKykrq6+vZd999d8XwZYza2s+rG2+8kQULFrDXXnvR09PD9773PdasWcPpp5++K5/GkBQgjhGnnHIKHR0dfOMb36C1tZUDDjiA7373uzQ2NgKwdu1aHGdjwvfQQw/lq1/9Kl//+tf5n//5H2bOnMlNN93E7Nmzd9VTkDFqa+fWhg0bOO2000o/33zzzdx88828/e1v58tf/vLOHr6MUVs7r3784x/j+z4XXXRR2XUuuOACLrzwwp06dhm7tnZeZbNZrrrqKtatW0cymWTWrFl85Stf4ZRTTtlVT0HGoK2dVyJbYmvnVU9PD5///OdpbW2lrq6OefPmcddddzFr1qxd9RSGZay1dlcPQkRERERERHY9/blEREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAPB29QBERER2lhtuuIEbb7xx0PFjjjmG//3f/935AxIRERljFCCKiMi4UlNTw3e/+91Bx0REREQBooiIjDOu67JgwYLNnpfNZkkmk6M/IBERkTFEexBFRGTcW7VqFXPmzOGXv/wll1xyCYcffjgf/vCHAejq6uKyyy5j4cKFzJ8/n/e85z3861//Krt/T08Pn/zkJ1mwYAGLFi3iW9/6Ftdeey2LFy8unXPDDTdw1FFHDXrsOXPm8IMf/KDs2E9+8hNOPfVU5s2bx+te9zpuueWWsts//elP8453vINHHnmEt7zlLSxYsIAzzjiDpUuXlp0XhiHf+c53eOMb38i8efM4/vjj+fSnPw3AD3/4Qw455BBSqVTZff76178yZ84cXnjhha18FUVEZE+gDKKIiIw7QRCU/WytBeC6667jpJNO4vrrr8dxHPL5POeeey49PT1ccsklNDY28uMf/5hzzjmH3/72tzQ3NwPwmc98hr/97W9ceumlTJgwgVtvvZUVK1bgeVv/f7Pf/e53+drXvsYHP/hBjjzySJ577jmuv/56KioqOPPMM0vnrV27luuuu46PfOQjJBIJrrvuOj7+8Y9z7733YowB4LLLLuMXv/gF5513HkceeSTd3d088MADALzlLW/h2muv5Te/+Q3veMc7Stf9+c9/zty5c9l///23euwiIrL7U4AoIiLjSldXF3Pnzi079sUvfhGAgw8+mMsvv7x0/Cc/+QlLly7l3nvvZebMmQAsXLiQk08+mVtvvZVPfepTLF26lN///vd87Wtf45RTTgHgqKOO4nWvex3V1dVbNba+vj5uuukmPvKRj3DBBRcAcOyxx5LJZPjWt77FGWecgeu6AHR3d/PjH/+4NC5rLR/72Md49dVXmT17Nq+88go//elP+exnP8vZZ59deoz+MdbW1vJv//Zv3H333aUAMZVK8dvf/pZPfvKTWzVuERHZcyhAFBGRcaWmpobbbrut7Fg8HgfgxBNPLDv+2GOPMXfuXKZNm1aWdTziiCN49tlnAXjmmWcAypaTVlVVsXDhQp5++umtGts///lP0uk0J598ctnjHX300Xzzm99k3bp1TJ06FYCpU6eWgkOA2bNnA7B+/Xpmz57N448/DlCWHdzU6aefzjnnnMPKlSuZPn06999/P0EQ8OY3v3mrxi0iInsOBYgiIjKuuK7L/Pnzy46tWrUKgKamprLjnZ2dPPXUU4MyjgAzZswAoK2tjaqqqkEFbTa91pbo7OwE4NRTTx3y9rVr15YCxE0rr8ZiMQByuRxQyJRWVlaOmMU86qijmD59OnfffTcXX3wxd999N69//eupr6/f6rGLiMieQQGiiIhIUf/evX51dXXMmzePK664YtC5/VnHCRMmkEqlBlU9bW9vLzs/kUjg+37Zse7u7kGPB/Cd73xnyABz77333uLnUl9fTzqdpq+vb9gg0RjDO9/5Tv7v//6Pt73tbfzjH/8YVBBHRETGFwWIIiIiwzjmmGN45JFHmDJlyrAZwf5s5B//+MfS/r5UKsWjjz5aFphNnDiRVCrF+vXrmThxIgCPPPJI2bUOOeQQkskkGzZsGLTcdWsdffTRANxzzz1lxW029fa3v51vfOMbXHrppUycOJFjjz12ux5XRER2bwoQRUREhnHaaadx5513ctZZZ/GBD3yA6dOn09XVxdNPP01zczPnnHMO++67L4sXL+aKK66gr6+P5uZmvve97w1acnrccceRTCa59NJLOffcc1m1ahV33nln2Tm1tbVccMEFXH311axevZojjjiCKIpYtmwZjz/+ODfddNMWj33WrFn8v//3//jyl79Me3s7RxxxBD09PfzmN7/ha1/7Wum8iRMnctxxx/HQQw9x/vnnl4rgiIjI+KQAUUREZBiJRILbb7+d66+/nhtuuIH29nYaGxs56KCDyorSfPnLX+aKK67gS1/6EpWVlbz3ve9l/vz5/OY3vymd09jYyDe+8Q2uu+46PvaxjzF37ly++tWvlrKO/T70oQ/R0tLC97//fW677TYSiQQzZ84cdN6WuPzyy5kyZQo/+clPuOWWW2hsbBwyQ/iGN7yBhx56aMSCNiIiMj4Y29/8SURERHaY/h6Df/zjH3f1UDbr4osvprW1lR/96Ee7eigiIrKLKYMoIiIyTr344os8++yz/O53v+N//ud/dvVwRERkDFCAKCIiMk595CMfobOzk/e+972cfPLJu3o4IiIyBmiJqYiIiIiIiADg7OoBiIiIiIiIyNigAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEREREREQABYgiIiIiIiJSpABRREREREREAAWIIiIiIiIiUqQAUURERERERAAFiCIiIiIiIlKkAFFEZA9hrWXx4sXMmTOH5cuXb9F9XnrpJebMmcPjjz++w8fT3t7ODTfcwKpVq8qOP/7448yZM4eXXnpphz/m5txwww3MmTNnxH9ngnzDwwABAABJREFUnXXWTh/XUG644QaOOuqoHX7ds846i4suumjEc+bMmcMPfvCD7X6sT3/607zjHe8oO/b73/+eN73pTcybN4/Fixdv92P0u/vuuzf73u7IxxMR2VN5u3oAIiKyY/zzn/9k9erVANx333189KMf3aXjaW9v58Ybb+TII49k2rRppeNz587lrrvuYsaMGTt9TO9617s47rjjSj/fcccdPP7449x4442lY9XV1Tt9XHuqj370o2Sz2dLPYRjyqU99iuOPP54vfOELVFZW7rDHOvHEE7nrrrtKP//mN7/h1ltvLTsWj8d32OOJiOypFCCKiOwh7rvvPiorK9l3333HRIA4nOrqahYsWLBLHnvSpElMmjSp9PNvfvMb4vH4iOPJZrMkk8mdMLo9z6Z/BGhtbaWvr483v/nNHH744Tv0sRobG2lsbCz9/OyzzwLovRUR2UpaYioisgcIw5AHHniAxYsX8853vpOXX36ZF154YdB5P/zhDznhhBNYsGABH/7wh2ltbR10zq233so73/lODjvsMBYuXMiHP/zhQUtW+5cp3nXXXSxevJiDDjqIf//3f2f9+vUArFq1ire85S0AnH322aUlfjB4iemZZ57JxRdfPGgc1157LSeeeCLWWgByuRzXXXcdJ5xwAvPmzeOtb30rf/rTn7bjVRts1apVzJkzh1/+8pdccsklHH744Xz4wx8Ghl52OdQy0DVr1vCJT3yCI488koMPPpjzzjuPV199dbvHlk6nueqqq3jjG9/IwQcfzOLFi7nyyivp6+srOy8MQ77zne/wxje+kXnz5nH88cfz6U9/etjr9vb28p73vIe3vvWtdHR0DHnOSy+9xLHHHst//dd/EYZh6T18/PHHueiiizjkkEN4/etfzw9/+MOy+w1cYnr33XdzwgknAIXM4pw5c7jhhhsAiKKIm2++mZNOOol58+bxxje+kZ///Ofb/FoNZ86cOdx2221cffXVHH300aU5unjxYq699tqyc/uXrKZSqdKxrq4uLrvsMhYuXMj8+fN5z3vew7/+9a8dPk4RkV1JAaKIyB7gr3/9K21tbZxyyim88Y1vJBaLcd9995Wd8/vf/56rrrqKE088kRtuuIH99tuPSy+9dNC11q1bx5lnnsk3v/lNvvCFLxCGIWeccQa9vb1l5/3zn//kBz/4AZ/+9Ke5+uqrefHFF0tZy5aWFv77v/8bgMsuu4y77rqrbKnfQKeccgoPPfQQ6XS6dMxaywMPPMCb3vQmjDEAXHTRRfz85z/n/PPP59vf/jbz58/nIx/5CEuWLCndr3+P4fa67rrrqKqq4vrrr+f888/f4vt1dXXx3ve+l9dee40rrriCr3/966TTac4999yypZbbIpvNEoYhn/jEJ7jlllu4+OKL+etf/zoouL7sssu44YYbOPnkk/nOd77Dpz/96bLXdtPxnnPOOfi+z+23316Wgev3/PPPc9ZZZ/G6172Oa6+9Ftd1S7d9/vOfZ//99y8tJb7qqqt4+umnh3ysE088sbSU91Of+hR33XUX73rXuwD4whe+wLe+9S3e/e53c/PNN/OGN7yBSy+9lAcffLB0//6AbdM9rVvre9/7Hq2trVx33XV87nOf2+L75fN5zj33XB555BEuueQSbrrpJhoaGjjnnHOG/EOLiMjuSktMRUT2APfeey+1tbUcd9xxxONxFi5cyH333cd//Md/lAKsb3/72xx33HFceeWVABx33HF0dHTwk5/8pOxaA4PGMAw59thjOeaYY/jDH/7AaaedVrqto6ODO++8k6lTpwIwZcoU3vve9/Lwww9z/PHHlwK1ffbZZ8RlfieffDJf/OIXefDBBzn11FMBeOqpp1izZg2nnHIKAI899hgPPfQQd9xxB0ceeSQAixYtYtmyZXzrW9/iG9/4BgDGmLIAZlsdfPDBXH755Vt9v//93/8lk8lwzz33UF9fD8Chhx7K4sWL+dnPfsb73ve+bR5TY2Nj6b0DCIKAadOm8d73vpc1a9YwZcoUXnnlFX7605/y2c9+lrPPPrt0bv/rOFBHRwfnnHMOlZWVfPe73x1y7+W//vUvPvjBD/LWt76Vz33uc6W51O/UU08t/VHgyCOP5MEHH+S3v/0tBx100JDjP+CAAwDYe++9S3Ni+fLl/PjHP+aaa67h7W9/OwALFy6ktbWVG2+8kde97nUAOI6D67qDxrC1JkyYwNe//vWtvt8vfvELli5dyr333svMmTNL4zz55JO59dZb+dSnPrVd4xIRGSuUQRQR2c3l83l+//vf84Y3vKFUhOPUU09l9erVPPXUU0Ah0FuyZAmvf/3ry+570kknDbreU089xbnnnstRRx3FgQceyMEHH0w6nea1114rO+/AAw8sBYcAhx12GE1NTcNmkIbT2NjI0Ucfza9//evSsV//+tfMmDGD+fPnA/Doo4/S3NzMoYceShAEpX/HHHNMaa8ZwAUXXMDzzz+/VY8/lBNPPHGb7vfYY4+xcOFCqqurS2Osqqpi7ty5ZePcVvfccw+nnXYahxxyCHPnzuW9730vAMuWLQMoVaPdtHLoptra2jjzzDOpr6/n1ltvHTI4fPLJJzn33HN597vfzec///khA7Njjz229N+xWIyZM2eybt26rXpOjz32GI7jcNJJJw16b1944QXCMATgtNNO4/nnny+bc9uif5nr1nrssceYO3cu06ZNK40R4Igjjtgh762IyFihDKKIyG7u4YcfpqenhxNOOIGenh4AjjrqKOLxOPfddx+HHHIIHR0dBEFAU1NT2X03/XnNmjV84AMf4KCDDuLKK6+kpaWFWCzG+eefTz6fH/G+/ce2ZbndKaecUtpPV1lZyQMPPFAW5HR2dtLa2srcuXMH3XdHZAw3NdRz2xKdnZ089dRTZcFuv2OOOWa7xvS73/2OT33qU5xxxhl84hOfoL6+ntbWVj72sY+Ry+WAwpLRysrKzVZifeWVV+jq6uK8884btpLoI488QhiGZVnjTdXW1pb9HIvFBs2Tzens7CQMQw477LAhb29tbS0rLLS9JkyYsE33639vh5qDu6Iir4jIaFGAKCKym7v33nsBhiz0cv/99/OZz3yGxsZGPM+jvb297PZNf/7zn/9MNpvlm9/8ZilwCIKA7u7uQdfe9L79x5qbm7f6OZx00klcccUV/P73v2fq1Kls2LCBN73pTaXb6+rqmDhxIjfddNNWX3tbDJUti8fj+L5fdmzT16Wuro7FixcPWUG2qqpqu8b0wAMPcPDBB3PFFVeUjv3tb38rO6e+vp50Ok1fX9+IQeJRRx3FAQccwGWXXUZDQ8OQ/QE/8pGP8Oijj3Luuefyox/9aNSCoLq6OjzP48c//vGQr/tQ+yK3x/a8t/PmzSt7/QfeX0RkT6EAUURkN5ZKpXjooYd485vfzLvf/e6y25YsWcI111zD448/zsKFC9l///35wx/+wBlnnFE653e/+13ZfbLZLI7j4Hkb/+/h/vvvLy2nG+j5558v7X0D+Mc//kF7e3tp/1ksFgMoZbdGUldXx6JFi7j//vuZMmUKs2fPZv/99y/dfswxx3DbbbdRWVnJ7NmzN3u90TBp0iReeeWV0s9RFPHXv/617JxjjjmG+++/n3333XeHt0/IZrODApFf/epXZT8fffTRQGEp6plnnjni9T7ykY+QSqW4+OKLufnmmwdlOD3P4xvf+AYf+tCHOOecc/jxj3/MxIkTd8AzKXf00UcThiG9vb1lS1Z3pk3fWyhkUAc65phjeOSRR5gyZco2Z5hFRHYHChBFRHZjf/jDH8hkMpx99tkcfPDBZbcdeuihfOtb3+Lee+8ttau44IILuPzyyznppJN44okn+POf/1x2n/4v65/5zGc4/fTTWbp0KbfeeuugpYRQyOycf/75XHjhheRyOf77v/+buXPncvzxxwOFojXJZJJ77rmHmpoaPM8r7Skcypve9CY++9nPUl1dPSi4OfbYY1m0aBEf+MAH+NCHPsQ+++xDX18fL7zwArlcjk9+8pMA3HjjjXzzm9/cIfsQN/WGN7yBH/3oRxxwwAFMnz6dn/70p4NaTJxzzjn88pe/5P3vfz9nnnkmEydOpK2tjSeeeILDDjuMN7/5zUChTQjAHXfcMeJjDsx2LVy4kKuuuopvfetbHHzwwfzpT3/iscceKzt/1qxZ/L//9//48pe/THt7O0cccQQ9PT385je/4Wtf+9qg6//nf/4nqVSKj370o9x2222Digklk0m+/e1vc+6553LOOefwwx/+cIdn9GbNmsV73vMe/uM//oPzzjuP+fPnk8vlWLp0KcuWLePqq68GCkHvpZdeyu9+97vt3oe4qZNOOokvfOELpeq4v/3tb3n55ZfLzjnttNO48847Oeuss/jABz7A9OnT6erq4umnn6a5uZlzzjlnh45JRGRXUYAoIrIbu++++5g5c+ag4BAKGbw3velN3HfffVxxxRWcdNJJfP7zn+fmm2/mnnvu4cgjj+Tqq6/mvPPOK91nzpw5XHPNNdx444387ne/Y//99+f666/nE5/4xKDrH3LIIRxzzDF86UtfoqOjgyOPPJIvfOELpdsTiQRf+MIXuOmmmzjrrLPwfZ8XX3xx2Ofy+te/nssuu4zOzs5BVTeNMdx44418+9vf5vvf/z5r166lrq6O/fffvxRsQaE9Rn9Rkx3tggsuoKOjg+uvv55YLMb73vc+9t1337LeiI2Njdx11118/etf55prrqGnp4eWlhYOPfTQsvYbmUxms0FONpstZWEB3vOe97Bq1Spuv/12crkcxx57LF/96lcHZY4vv/xypkyZwk9+8hNuueUWGhsbR8zMXXbZZWQyGT70oQ9xxx13lGVuobA09pZbbuHss8/mvPPO4/bbb9+i12trXH755cycOZOf/OQnfOMb36C6upp99tmH008/vXROFEWEYVjqi7kjvfvd72bFihXccccd5PN53va2t/GRj3yEyy67rHROIpHg9ttv5/rrr+eGG26gvb2dxsZGDjrooCGX6IqI7K6MHY1PWhER2aOdddZZNDQ0lNpLyJbL5/Mceuih3HrrraWWHUO56KKLWL9+/bD9I0VEREaD2lyIiIjsRM888wz77bffsMHh0qVL+cEPfsCDDz44qC2JiIjIaNMSUxERkZ3osMMO4+677x729quuuoqVK1dy9tlnc+655+7EkYmIiGiJqYiIiIiIiBRpiamIiIiIiIgAChBFRERERESkSAGiiIiIiIiIAAoQRUREREREpEhVTIcRRZYwjHb1MMp4nkMQjK0xyZ5Bc0tGg+aVjAbNKxkNmlcyGsbavHJdB8cxmz1PAeIwwjCiqyu9q4dR4jiGpqZqenoyRJEKz8qOo7klo0HzSkaD5pWMBs0rGQ1jcV7V11fiOO5mz9MSUxEREREREQEUIIqIiIiIiEiRAkQREREREREBtAdRRERERHYxay1RFGJ3wVYtxzHk83mCIBgze8Vk97cr5pUx4Dguxmy+EM1IFCCKiIiIyC5hraWvr5tUqgfYdcFZW5tDFI2dapOyZ9gV88pxXJqaJuO6my9GMxwFiCIiIiKyS/QHh7W1jcTjCWD7Mh/byvMMQaDsoexYO39eWbq62ujp6aChoXmbr6IAUURERER2OmttKTisrKzepWPxPAdQBlF2rF0xr2pq6uns3IC1EcZsW7kZFakRERERkZ0uikLAFjOHIrIjuG4h/7c9S1sVIIqIiIjITrexIM2uWVYqsmcq/D5tT8EnBYgiIiIiIiICKEAUEREREdllnnzy7yxadDjpdHrE804//S387Gd37aRR7Vz33PMzPvWpT5R+DoKAL37xck4++XUsWnQ4S5e+yJVXfo477/zBLhnfBRf8Ozfe+PVd8ti7ggJEEREREZEtdPXVV7Bo0eF87WvXDbrtyis/x6JFh29XMPHrX/+KU099/aDjt9xyO6ee+rbSz4sWHc4jj/x5mx9nZ0in09x449d517veyuLFC3nrW9/IJz7xMZ5++qnSOblcjttuu5lzzvlg6dhDD/2BP//5Ib7+9W/yi188wN57z+accz7I7bffRirVN+Jjnn76W1i06PBB/+6556ebHe9wwfqXvvQVPvCBD23NU98mY+U9VRVTEREREZGt0NIykd/97jd87GMfJx6PA5BK9fHnPz9ES8vEUXnMhoaGUbnujuD7PrFYbNDxr3zlS7z00gt88pOfZq+9ZtLV1ck//vEEPT09pXMeeugP1NXVc8ABc0vHVq1aydSp09l//wNKx/baaybTp8/gd797gNNOO33E8Zx//sc45ZS3lB2rrt72Srm1tXXbfN/dkQJEEREREZGtcOCBc3nttVf5y18eZvHiNwDw+9//lv322x/HKV+gt2jR4Vx77dc49tjjgEJW7d/+7Xi+8Y1vc+ihh5ed++STf+dLX7qydD+Ac8/9EOeddz6nn/4WzjjjTN75zv/H6acXgp/+ZZmTJk3mpz/9FStXruDGG7/G888/RzabZdas2Xz0oxdz8MELysbzn//5Gf70pz/yr389RUtLCxdf/EmOOWZR6ZxXX32ZG2+8nqef/idVVVUcc8wiLrjgE6Ug64IL/p199tkPsPz2tw8wd+48vvKV6we9To899hf+4z8+xdFHLwRg8uQpZYEgwB/+8FuOPfb40s9XX30F999/b2ms/c8NYOHCRfzhD7/bbIBYWVlJU9OEIW9bt24t//M/1/H0008RBD5Tp07j4x//LyZNmsxFF30YgH/7t8J43vSmN/PZz17BBRf8O/vvfyAXXPBxoJClfNvb3sErr7zMX/7yJxoamrjkks8wffpMvvzlq3j22afZe+/ZXHnl1UyZMg1gs+/NcO8pwMMPP8Stt97MihXLaG5u4a1vfTtnnHHWoLm2o2iJqYiIiIjIVjrllLfw61//svTzr3/9q0FZq601f/7BXHTRJ6mtreMXv3iAX/ziAc4446xB591yy+0AfP7zV/GLXzxQ+jmdTrNw4XFcf/03+d737mDevIO45JKL6erqKrv/d7/7bU466WT+939/yKJFJ/DZz17C+vXrAOjt7eWiiz7CgQfO5dZbf8C1136dlStXcPXVV5Rd4777fklFRSXf/vatXHjhfwz5fBoaGnn00b+MuL/y6aefKssUXnzxf/Ke95zJPvvsV/bcAPbf/0Cee+5ZgiAY/kXcjP/5n2vx/Tw33XQL3//+nZx33oeJxxO0tEzk6qsLy4bvuusefvGLB7j44v8c9jp33vkDDjvsCG677UcsWHAIV175ea677ou8+93v5Xvf+wGe5/GVr1xTOn9z781w7+m//vUUX/rSFbznPe/jjjv+j49//L/46U/v4qc/Hb39qMogioiIiMiY8ewjhg0rdt7jtcyABSds/f1OPvlUvve979DW1koqleLVV19m8eI38MAD923zWGKxGNXV1RjDsBkw2LjctLq6puy8OXP2Z86c/Us/X3jhJ/jTn/7I448/yhvfeErp+Bve8MZSMHvBBR/nb397jHvu+Rnnn/8xfvazuzjggAP54Ac/XDr/kks+y/vedzqdnR00NDQChSWf55//sRGfz3/916VceeXnOOWUxey33/4sWHAob3jDv7HffoUx9vb20tfXV/YcqqurqaiowHXdQa9BU9ME8vkcnZ0dNDe3DPu4N974db797RvLjt100y3st9/+rF+/jhNOWMzs2fsAMHXqtNI5NTW1QCGwraysHPG5HXvs8bzlLacB8P73n8f999/L0UcvZOHCQib23e8+gyuv/BxRFOE4zmbfm+He01tvvZmzz/4AJ598amm873//B/jpT+/i3e8+Y8QxbisFiCIiIiIiW6mpaQKHH34U999/H729PZxwwmIqK6t26ZjS6TTf+953eOyxv9DR0U4YhuRyuVJ2sN+BB84r+3nu3PksW/YaAC+/vJQnnnick046btD1V69eVQoQB2b9hnPooYfz05/+imee+RdPP/0Ujz/+GHfe+QMuueSzvPnNbyOXywGU9nFuTiKRACCbzY543plnnlMWEAOlvaHveMe7+Z//uZYnnnicI444isWLT2LmzL236PEH6g8wARobC6/J3nvPGnCsiSAI6Ovrpba2bovfm0298spLPPPMv7jttltKx8Iwwtpoq8e8pRQgioiIiMiYMe9YC8fu7Ec123SvU099C9/+9o2k02kuv/yLQ1/ZGOyAruXbszxyc2666ev84x9P8NGPXszUqdNIJBL8539ejO/7m4xp6HECZDIZjjvuxCGzg83NzaX/TiYrtmhMsViMQw89nEMPPZxzzvkg1157NbfeejNvfvPbqKurwxhDb2/vFl2rv7hNff3IBXvq6+uZNm36kLe97W3v4KijjuGRR/7M448/xu2338qnPvU53vSmN2/RGPp53sAwqvDaue7gY1FUeO+39L3ZVDqd4UMf+gjHHbcNae5tpD2IIiIiIiLb4Nhjj6e3t5d4PMEhhxw25Dn19Q10dLSXfn755ZdGvKbnxQjDzWeHPM8jisKyY8888y9OPfWtHH/8icyevQ+1tXW0tq4fdN/nnnu27Ofnn3+WvfaaCcB++83htddeZfLkKUybNr3sXyKR3Oy4NmevvfYqZQBjsRgzZ+7NsmWvbtF9ly0rjKumpma7xjBp0mTe+c53c911X+PNb35bqShOfyXWKNrx2bkteW+Gek/3228OK1cuH/ReDBcA7wjKIIrIuNWZz1IfS5T+aioiIrI1PM/jrrt+jjFm2P8vOeSQw/jZz/6PAw+cRyaT5pZbvjniNSdPnkwq1ceTT/6dWbP2IZlMkkwODswmTZrC3//+Nw48cB6xWJza2lqmTZvBQw/9kaOPPhZrI7797ZtwHHfQff/wh98yZ87+zJ07n3vvvYcVK5Zz7bVfB+Ad73gXv/zl3Vx11ec444yzqKmpZcWKZTz88J/41Kc+u1Wvz4UXns8b3/gm9ttvf6qra3jxxSX86Ed3sGjRxqqlRx55NE8//RTvfOf/2+z1nn76KY444qjNnpdOp2lvbys7VlFRSWVlJddf/1WOOeZYpk2bTldXJ8888y/mz18AFAJHYwyPPvpnjjjiaBKJxGb3Im6pLXlvhnpP3//+8/jMZz5JS8tETjhhMQBLl77I2rVreP/7z9shY9uUAkQRGZfachn+0rqGE1umUR9P7OrhiIjIbqqqauT+ehdc8HGuvvpKPvzhc5kyZSoXXvgJPvGJC4Y9f/78g3nb297B5z//Kbq7u0ttLoa67o03fo177vkZzc0t/PSnv+LCCz/Bl75UeKyGhkbe//7z6O7uGnTf8877dx544Nd85Stform5hS984VomTZoEQHNzC9/85vf49rdv4OMf/yi+7zN58tRtWuJ4xBFH8atf/YIVK75BPp+juXkip5761rLA5tRT38a///v7SadTI+7h9H2fhx9+iP/+729s9nG/852b+M53bio79r73vZ+PfORCwjDgv//7GtraWqmurmHhwkV89KMXlp77eeedz003fZ2Ojg5OPvlUPvvZK7b6eQ9lS96bod7TY445lmuu+Sr/+7/f5fbbbyMejzFz5ize8Y537ZBxDcXYgYuipcT3Q7q6hi/Ju7M5jqGpqZr29r7SWmaRHWE8zi1rLX9qXc3S3i7eOnUWE5M75q+DstF4nFcy+jSv9ixBENDWtpoJE6Zusp9r5/M8hyAYvaIfY8mmfRnHgs9+9r+YN+9gzjjjzGHP+eUvf86DD/6er33tpmHPGWt2xbwa6feqvr6SWGxwRnlT2oMoIuPOumyaV/u6sVjym6z1FxERkZ3rYx/7+JDLaAdyHIdPfOK/dtKIxjctMRWRcacjnyWyFgeHnAJEERGRXWrKlKm8/e2nj3jOm9/8tp00GlGAKCLjTirwcY0htJZ8qABRRETGj7/85e+7eggyxmmJqYiMOz1+npjj4BhDJhq9flQiIiIiuxsFiCIy7vQGhQDRNYb0KDYsFhEREdndKEAUkXEltBGZMCRmHDzjkFKAKCKyS2xsG6iKtCI7TuH3aXtaPGsPooiMK5kwxI9CarwYvo3IhP6uHpKIyLjkOC6O49LV1UZNTT2u6wHb8a12uxiCQIGq7Gg7e15Z+vq6McbBcTbfzmI4ChBFZFzJhgGBtXjG4BmHTBgWKppuz5/aRERkqxljaGqaTE9PB52dG3bpWBzHIYrGRx9E2Xl2xbwyxqGxsQWzHd9rFCCKyLiSDUMsFlMMENM2IB+FJF19HIqI7Gyu69LQ0Iy1EVEUYXdBEs9xDA0NlXR2pokiZRFlx9gV88qYQmZ+e4JDUIAoIuNMNgwwxSVMnmMIrCWnAFFEZJcyxsF1d01pDMcxxONxPC+vAFF2mN15XqlIjYiMK9mokEEEcI1DaCN8LSsSERERARQgisg40+Pn8MzGjz6DIReGu3BEIiIiImOHAkQRGVd6fZ+YKf/oy1sFiCIiIiKgAFFk3FuXSe3qIexUvUGemDPwo8+SD7XEVERERAQUIIqMa+kg4MnODfT546MXYCYMyIQBiQG9gaw15MJgF45KREREZOxQgCgyjkVYAmsJx0mRlr7AJxeGxAdkEGOOoTvI78JRiYiIiIwdChBFxrHQRoRRRGDHR4DY6+cBU9YfKOG4dOZzu25QIiIiImOIAkSRcSyylhBLuJ2diUMbEe2K7sZbqcfPs2nv2Ljj0hvk1epCREREBAWIIuNaZCG0lnAbM4ihtfxx/QruWrGUv3Ws28GjG1o62Pb9gm25DAmn/GMv4Trko4h0MD72YYqIiIiMRAGiyDgWUdh/GETblv1rz2V4LdVLZCNWpHpHzER25XPbHYT1+nn+uGHlNl0nspaOfLasQA2AaxxCG5EKFSCKiIiIKEAUGccia7crg7gumwIsDfEEfYFPt58jEwZDBnBPd7WxPN27XePdkMvQ5WfJDGhs/1qquziOkaXDgHQYkHS9QbcZILUdmUkRERGRPYUCRJFxrBQgbkMGMbKW11I9VLoernGIKGTo/t6xnme72wed35bPkN7OLN3qTB99fkA22hjMLU/10prNbPa+fX6eIIo26YHYz9CrSqYiIiIiChBFxrPtySB25LO057LUeHEAPGN4ta+bV/q66fLLq4LmwpB06JPytz1Ll49CVqX7CG1EbkAGMRX49G7BktO23PBBZMJx6Mxnt3lsIiIiInuKwWutRGTcKPRBjLapimlnPofF4hUzclVujLZclh4/T7UXKzs3Hfrkwu3b59eay5AOfOKuSy7aGCBmwoDYZrJ/kbUs7eumyhv6Iy+uVhciIiIigDKIIuNaWMwgBtsQIHblcxg29oyo9Dw68hmaExVkwoBsuDFb2Bf45KOQ1HYUqenK57CAiyntcQyiiNwWXLctl6Ezn6U2Fh/y9oTjFvYoqpKpiIiIjHMKEEXGsai4vDTchh6AbfkMSXdjRVDXOOxTXU9dLI4fRWQGBIjpICCwEfko2uaCOOkgwDMGz5jSktJ8FBJElkwYDnndXj/PPztbWdrXRWQLYxxKwnXJhiHLUj3bNDYRERGRPYUCRJFxLMISWUuwlQFiaCM687lBLSMAHGOIsGUBYrefI25c/Kh8/+DWyIQ+rjHEHIc+vxAg5qKQwEbDXrcjn+Vv7et4tqud+nhs0O0D1Xoxnu1pJx9t2/hERERE9gQKEEXGsdBaItjqoKgv8MlF4ZABIoDBkB4QIHbmc1R5HoGNyvYPbo1UGOA5DjHHIRX6WGvJRSEWS2DDstYX/QJb2CO5V1UN1d7Qy0v71cXidOXzrEhtXysOERERkd2ZAkSRcSyyFmst+a3MIPb5PpHdWKBmUxZb2s8XWUuXnystR93WADETBnjGwTMO+SgkH0XkwwiDwQK5aHCF1CCKsFu4v9IYQ9xxtqinooiIiMieSgGiyDjWHyD64VYGiIEPDB94xYxDj58ntJYV6V4yYUDccQuB3DYsMY2sJRuGpSWmgbVko6CY+bQYDNkhruvbiAF1dDYr6bi0qd2FiIiIjGNqcyEyjkXWYgF/C7J6obW4phBtdflZnBEir7jj0OXnebx9Lc93d5BwXeLF5aj5KGJDNk21F6PSG3lfYL98VChC4xkP1ziExT2H2SjEYgA7ZGbSj8LBo8w70JuAsHiLAZrS4EDSden182TDgKSrj0cREREZf/QNSGQcC4oB4pYsMf1L62qmVdYws6qW9dnyCqabijmFQGttJsXEZEUpOKRYvGZJTzszq2o5qL6ZdBCQcJ0hK4z6UUhgLX4UFfcTFoI6YwpLVTNBgEshhzhUi4pcFJaCWiyYJRMwq2sHnWendWMPaCfhuLRFhV6OChBFRERkPNISU5FxLLQRDluWQdyQzfD3jvU819XG+myamhGKviQcl9ZchrpYfEBwWOhhuCbTR2suy2upHoIo4k+tq1idHnrf32upHp7s2FDKIA7MWmbDkPSAyqa9QwWIYbjxPuuqMatrsbEQO7kXO6O78C8WYlbVQWcSYwwGU1xCKyIiIjL+6E/kIuNYYCNc4+BvJoPoRyE5G9Kdz/HPMKQuFh+2QA1AzHGYXV07KCsYcxyyYYgfRbTnsrzQ28nqTB97Vw3O6gFkg4DWXIa9o1oMBtOfDcTQ4+dIhT4xxwEMvf5wGUQHci7mhSYsFnvwemgYsM+wNot5diLmhQnYY1ZhLXT5uRFfDxEREZE91W6TQXziiSf48Ic/zKJFi5gzZw4PPvhg2e25XI4rr7ySo446ikMOOYQLL7yQ9vb2XTRakd1DGBX2FW6uD2I2DAmiiMnJKuKOoTY2TPZwQN2aoZaMesah289RG4sRWcurfd105/OkhsnYpcKAvjA/qChOrRfjpb4uUkGAa4qtL4I80SYVS3NhhGMMrK7BBC5M7ykPDgEmpbCVeUxfHHyHpOvQmsuM+HqIiIiI7Kl2mwAxnU4zZ84cLrvssiFv/9KXvsSDDz7I17/+de644w42bNjARRddtJNHKbJ7CQdkEEdqB5GNCgFipefREE8OcYKLeWIy5m9TYIRY03McOvM5arw4CddlTSZFfTxO9zAZu3TokwsjOvPlt1d7Mfp8Hz+K8IxD3HEKexLD8lYX+SjExWBW1wBgZ3QPfhADVOcL/52KkXQ9OnJZ2hQkioiIyDi02ywxPeGEEzjhhBOGvK23t5ef/exnfPWrX+WYY44BCgHjKaecwjPPPMP8+fN35lBFdhuBtbiOIbKWqNguYijZMBiwvLOgcUMnRzzyDASGxxpPoS+qAMC2VUJLesjrVLkee1fVEnMcGuMJYsbBGOj280OenwoKrSy6/VxZUw1jTKniaHVFJTHj4NuIvsCnqlgZtdDfMaSiswaTjWEb01A5uFdiYWDFDGZfnKo6j3VBmvvWvsbilulMr6wZ5tUTERER2fPsNgHiSJ599ll83+fYY48tHZs9ezZTpkzhqaee2uYA0XG2ooHaKOsfy1gak+z+IgrN7iMK1UzdYeZXvthPsD9IdPMBR//xaaqyhUBwYe63/Hafd0BvRaFK6MShs2/GGJLFvYuecWlIuKQDn2wUlsYyUDYKyNtiBVPjlAWpjfEkvk0Td1yMMTjGkI6C0u+IH1msgfja+sIdpvUOCnJLqgsBoknHMY7DlIpqVmX6SIWBfue2kT6zZDRoXslo0LyS0bA7z6s9IkBsa2sjmUxSXV1ddrypqYm2trZtuqbnOTQ1VW/+xJ2soaFqVw9B9iCJ7hhVxImspaa+Yti+hCtsioqeGFXVCcK2OFP+sIaqbJo1yb3xnBwt6TXsM+UpXl52JKatgqRbgVOx+dYZAPHIozWToaIuQcL1SBTbZ+TDkNh6j1ongZt0qXYTVFUmyu5bR0Xpv5M2h1Phln5v04FPYkUCr60KEiGVs0KMU37/flEzZAE3myBZnShdr7o2MSY/B3Yn+syS0aB5JaNB80pGw+44r/aIABEYMjMw0p6qzQmCiJ6esbMHyXEMDQ1VdHamiKJtf14iA3X3ZfH9kFjCpb2jj4w7dIC4ur0HPxuQMjl4qokZXS8D8OKhMzB1OVruX8O0Z15l6X4HYJbVk/lLA8xrhZotaxfRm8myqrWbJzs2MLeukRlVtfQFPj2pHC7Q1pPCMYZUNHx10TAX8lpbJ3u7hYCu18/DsiqwBju5l3R6hMqkJg9Ywm6PVF/hvGzGp6MrTbvp26LnIOX0mSWjQfNKRoPmlYyGsTivamsriMWG72Pdb48IECdMmEAmk6Gvr68si9jR0cGECRO2+bpj5c0cKIrsmByX7J78MMQBImvxw4jIDD23evJ5XGOwoSXZFTAhv5ZUVQVt+1YAFfTWVtHU2kX1kavoq09iupLYf0zCHrdiy0phWViR6mVVupfIWqYkq8kGAUFUaKnRkc9RH0uM+EefhOPSns2Wfj9yQUjF2obC5af0wkh/MHIspiLAZGJEPuBZDIX2Hvp92z76zJLRoHklo0HzSkbD7jivdpsqpiOZN28esViMRx99tHTstddeY82aNSxYsGDXDUxkjItsofVEZC3hCAFUX5Av9BtMxZmUXQXA2unNYAwYw/LZUwCYumYN9vA12MYMJu9B1xAVT4dgLWzIpgkiy5pMivXZNPkwBAwJxyMVBHjD7R8sijsO6dAnW6xk2tMBXi6Orc9sLEIzkqr+SqaFFh6OYbP9IUVERET2NLtNgJhKpViyZAlLliwBYNWqVSxZsoTW1lZqamp45zvfyTXXXMNf//pXnn32WT7zmc9w+OGHq4KpyAgCGxU/BMywAWJoIzJhSMw40JOgJbsCgPVTNmbn10xvAWDqyg1gwE4sLMs0G4rr7nvimKdbIDP0ogXHGFKBT00shoNhaV8XuSjEAjHHYVpFFRXuyAseEo5LPoqKPROh1KWiekBwaG0hKh5K/3mpwjJbgyHczf7iJyIiIrK9dpslps8++yxnn3126ecvfvGLAFxwwQVceOGFXHrppTiOw0UXXUQ+n+e4447j8ssv31XDFRnzrLVE1mIcB4gI7dDZslwY4kcR1Z6H6YkzIb8WC2yY1Fg6p7uhhlR1BY1t3STTWbLNLiwBWithTjtmeR1mfTXkXOyh6yDvQsXGlhMxx6E9l2VKRRVxJ2RtJkVLogJTbG5RE4sP/0QiwCnsQ7ZYeoM8ExIV5IqdNmy88Dg1XX0c9fBTVKRzPLHoINZNay57LXpjKeqox2RiWArtEYNhXhMRERGRPdVuEyAeddRRvPjii8PenkgkuPzyyxUUimyh/tYW/Qs3h8sgZqOQwBYyiInOiKqwl57aaoL4gII2xrB6egv7LVnOlJUbeHXODGxdFtOdxPbFobNQbdR0VcBDe0FkCoFiUyHNV+3FCKKImOPgGMP6bJrWXAY7TF/GklU1mBcmwLQe7D4dxIzDSz1d7FVZSz5bvG8ihMhy1J//RUNHLwBHPfwU951+Yuk5pEKfXs9SB6Usp2OMAkQREREZd3abJaYismNF1hJhSxWAh8sgZsIAMBhraOzoBKC9uW7QeWtmTARgyooNANiWFADm1QZMzsMmfawTQWQwGMzSRooJQipcj8kVheWorjFEWHr8PCPW2QoN5pUGjDWYlXWYZ1toiidZleljbSaFny2eFw+ZtnwdDe09tDfXs2z2VOL5gH1eWFG6VK/vU9Ff3ypbCBANhkBLTEVERGScUYAoMg5lw4DQWqy1OBQKzQyXQcwEAW4mhvnXRBpzheCvo7l+0HltExvIxz1a1rbj+gFM6sMau3Ef4sQU9tiV2BOWY2uzmN5EYQnqEFwMuSjEHakwzZoaTN7DNqWxbgQdFXjGwTOG57rb8bPFj7dEyD5LlgPw13l78cL8vQGYtmxt6VIhlnhl8fmXMohaYioiIiLjjwJEkXEmiCIe2rCKHj+PtYVCpIxQxbQv8KlbPgnTVkVjsA6A52vixcziRtZxWDO1GTeKmLimDZIhTEhvvL0hWzgWj7CzC5lI88IEyA3OE1Z6Hj1+Hs8Z5iMqNJhlhSym3acDqvOY0IGsR0M8wepsilym8Hyq8j00b+ikqzrJixNq6Kqroqe2ioaOXip70+SjEM84VMQcwrgPOQ+iYgZRAaKIiIiMMwoQRcaZwEbkopC+wC8sMcUwUhXTbj9HPBsHa2kM1hO4DutqKwqN6AdeN4r4e3MhWzhlZXGZ6dSewv9ioT678eSmDHZyLybnYf41sVBoZoBKN0ZPkMczxY+onIt5fgL0ForVmGX1mGwM25yC2jxUF8fSFyfuuAQ2IsoV7jttzWoAXp7RQmMiSY/vs7ZYdbVlbTt9gU9TIklzopIg4WOsgZxb3IOoJaYiIiIyvihAFBlnQmvJhSGZMMBS/BAww2cQu/wcbi5OddhBzA/oaKqlIhYnv0l2LRuFrJvSTGQMk1e1sqyvh7ApVehDOKkPYgPON2APbC0VsqG1quxaMcehKZakyivW0VpbjVldi/PXabCyBl6rxzoRdk47AHZAgAhQ6XjYnEvkhkxbUch65vefxb41DfQFPm0TGwCYsKGTTBgwpaKaKs8jSBSvk41hgFB9EEVERGScUYAoMs4ENiJvo0KAaAtFagyGVLAxI9jn5/lz62ryUUgqF+L4Ho22sGdvQ1MtMccpFZjplwtDklWVrG6pI5nNM6mtm2wUYo9Yi53fOnggDtiZXQCY9VWDbm5KJHGLGUST3Vhw2XmhGWMNdlbnxlYZxQDRFDOMdU4CJ3SpMJ00tnfTWV1B84zpTKusxjOGdRMKy1ObNhQev9L1SLgeYbL4GmQ8nOK+TKssooiIiIwjChBFxpnIWvwoIhuGxSWmhT1/azKp0jmdfo5VmT7WZFKExWIvjcF6ANY11RJ3HDzHwR+QYctGIdVejFemNAFw4PrustuH1JQpFJhprYRghII06UI7CjshjZ3cS7RgHczs3nh7fwYxVQgQPb9w/vTsKwC8OqOZ+niShliC2liCrphDb20ltT0pkrmAhOOScNwBGUQPU+zCGG0aCYuIiIjswRQgiowzgbUEUURvMWNojKHKi9Hl50gHhYxcKvDpyGVZke4tZe8as4V9hWsaq2mMJ6l0Y2QHFKqxFmKOyyuTGwGYvaaDfBSOPBjXQnMKEzmwrnpQVrKkWFnUzl+PndcKzWnKWiTGI2w8gFSssJ8xXyh8M733NQDW7j2FpOthjKEmFiMfhbS1FJaZTm7rIeY4JFyXIOEXXpOMh2MgIhp26a2IiIjInkgBosg4E9qICFsWvCVcl3wU0VVsHtjl58hFIR35LF4ujmMD6jKdZCoSdCZj1MXitCQrSpVMrbVgLM2JJD01SdrqKqnvTlHRnR5yDAPZSYXMpbOkGfPI9MGZRAtkYthYCN4IwVp1vlBgJhWDnEtl0ENjup2u6iTepJbSaXWxOH4U0V4MEKe09ZQyiLZ/yWp/BtEWMq4iIiIi44UCRJFxJowskbVlFTqNMRhr6S5WJu3IZamLxekLfJxsjIZ8K461dEyowxqo9GK0JCpKhWp8GxEzLi3JShwMLxeXmc5e2775AU1IY/fuxFb4mEwM2ivKb8+5hcCv0h/5OrXF5aGdFZD3mJopLC99adoEmpIbr1ntxQmtpa2lHoDJ7T3EiwGiqSg+RiaGYwyRRRlEERERGVcUIIqMM6EtBohRVLZKM+a4rMukCG1El5+nLpag188Ty8dpzBf2H3Y01wOQdF2aEhU4GILifsYqz6MpniTuOiybWggQ91nVVvbYQRSxPpsuL/xiwO7TWSg6A5iOAQFiT7yQEYSNBWmGYVsKmUizvhqTd5mWeRmAl2Y0UxOLl86rKC417a2rxvdcWjr7SBhD3HGIeQ5RLChkEG2hPYcyiCIiIjKeKEAUGWeCAVm/gSpdjw25DD1+nnwUknRcGuMJkvkEDX4xQJxQBxgqHI+WRAVTK6ppz2dJBT5N8SRJ16PCidHZXIdfW83Uth4qejcuM02FPtliD8ZBGjOF/+0PENsrcB6fhnm+ufBzxeYyiDls0sd0JanakKfR30BPVRWdDTXUeeUBIgDG0N5YQzwISXb1Yoyh0o0RJQu9EB3fI7LDt/8QERER2RMpQBQZZyJr8Uwh8zdQpRejx8/zQk8nobV4jkNdLIGT82jMr8cCrU11GCgVfNm/toFsFBJ3XQ6sK2QN62Jxqrw4+QNmAzD1tTWlx/CjiJZERWkpa5lkiK3KY9JxyLqY4lJTky1WMB0hQAyiiPW5NEwsZBGnrV0NwKvTJ1Lpxaj0YqVzK1wPU3wd2hprAIitLyyFHdgL0WS8QgZRVUxFRERkHFGAKDLOBDbCNU4xk7hxkaljDEnXZW02RSlpZiGRylMV9tJTX03Wc4g5Dkm3UCV0WmU1c2sbWdwynYnJSgAa4gma4hVE8+YAMOO1taXHyEcR9fEEMccpq4BaMjCL2JUsv61y+CWm6TCgN/DJt/QUxpVZCsCSmQ2FfZFm4/NMui6xYouO9cUA0V1bqNBa7cXw+wPEXKzQ5kIZRBERERlHFCCKjDOhtWCG7jnYGE/QnstuvNl3aMoWmtx3TKjDt2GpoAuAaxwWNU9lcsXGRvfTK2vYp6YOWproqq+mqbOPuo5C4BZZy+RkFfvVNNCay9Lt58oe3xYDRLO+CnrjWDMgONskgxhEEctTvUS2UJG1xouTqUpTOfMVGvw2euqqWFdbwaRi4Nov4bjEHZd8FLK2vjBuZ13hOVZ6MfxEf6GaQqZRS0xFRERkPFGAKDLOBFEE1jJUiOgah9pYjIZYonAg49GYXwdAe3M92TCkNhbHDBNgArQkK5lSUQ3A2jl7ATDrpZVAIS6tdGMc1TSJ45un0uP75Rm6pgzWCzFtVYXeiE0Z7IQ0tjoHifKeiukwICQiH4X4UURtLEYmDJjRVyhOs3LmJDCGhnh5JrK/F6JvIzqqkwQxD3d9G0QRScclTBSC1v6lreEmezVFRERE9mQKEEXGGd9GuMYwXGKsLpag0isWcsl6NPUHiC0NZMKQWVV1W/xYfXP3IXAMe72yBifvY4EKz8Mxhr2ra6nwPHID+jHiWpjSV/rR1mWxC9Zhj17NphFtNgyojcXJRxEhlgrXIwhD9l66CoAX955M0vWo7w92B6j1Cr0QQwOp5gaMH+C0d5FwXcLkxgxiYYnpFj9dERERkd2eAkSRcSYfRcUM4PBBYj+TdmjwN+C7Hq3VSRKOy9QBy0k3p6K6mqXTJxDzA6a+tpaYcUpVROPFKqnpoHxvoZ3as/GHumwhMBwiYZm3lmo3XggwbaG/4cx1nVSms6yf3MT6Co8J8SSJ4n7JgWpjcXwbYTBkJxaK6zhrN5Bw3NIeRLIeBqM9iCIiIjKuKEAU2cPZTVo1BFGIA0xIJGhKDM6uDVTf0YdnAzrqG+kM88yorKF6QE/BzamJxXl69hQA5ixZVhYgAkxKVpEtLhHt6a9sWu1jJ6Sw8QDqckNdtiTuuuSjCAy0JCuY/2oh2/nqftPJRhFThglma2JxrC3sicwXA0R3XRsJx8V4FuuFkPHAQoiWmIqIiMj4oQBRZA+3KtPH4+3rSj/no6hYsdQrC9aG0tTZAUD7hAaCyDKzunarHrvGi9ExsYHWCXU0dKWYs74bd8D+xYZ4ArC05jJ05nOlbJ09eD120Urwhs7eRcU9lE3xJGGxKuvkjM/ea9rJJGKsmdEC1g7af9hvekUNkysqC30OJxX6LLrrNhB3XTzHKfRTjBycwNUSUxERERlXFCCK7OHSQcD6bApbDL58G5W1fRhJY08bAG2TagvFXbwtzx4CxByX+niSJw+cDsBBzy0ru72wP7AwlppYnHR/6wuHwn7EYeSikITrMjFZSWQh5hgan1yCY+Hp/aaSMwbPcYbcfwjgOQ4H1zfTEE9gGuuxiTjO+nYSGDzjlPYhutm4itSIiIjIuKIAUWQPl49CegOfTDH48qMIp39TXypW+DeMpnSh/cO6lmpijrOxeM1WaE4keXFSA+21lTSu78B9dWXpttpYnErXY0ZVDdMqq+kL/BGutFE2DKn14tTHEsQdh7p8ROKZFwk9l3/MmkQmDKj2YlR5wz+3aRXVHN44kbp4gnBSMyYI8Nq7qHBdwmKrCy8X0x5EERERGVcUIIrs4dKhTy4MS8FXKYNowfxjMjw+GZsfkFGMCv8SfXmqgx56YvX0xR2SjkfSGVzwZXMa4kly1vLo/ELLi8SDj0FUyMq5xmHfmnrm1TUxpaKq0IJjC+SikAnxJFWeR9x1OeL5FZggpHf+fuSThUxkS7JyxEypMYZZ1XW4xiGcXFhm6qxrpcqLEXqFYNoErvogioiIyLiiAFFkD5cOQ3LRxgAxiEIcA/gOJudhApfg1arCz89NwPxxb5w/zGLC44X7t1c1k48i6jfT/3A4NV4czzF4++9LMG0S7oZ2vGdeLN1+eONEJiWrmBCvwHUc/C0IEkMbUR9PEHNcJqbzzH5hOTYewx57GEnXpS/I05Ko2OIxRv37ENe2Uu3FCNxCgFjYg6gAUURERMYPBYgie7hM6BcCRD9PaC2hpbDEdMDSUn9pNTwyFbOmFtwI60QbC9TUTSAfhdTHR654Opz6eIL9auo5tHEiucULsUDyj49h+tJl59XF4tTF4qTDLVlmakgUC+wc89SrOJElf9QCvJoaJiUqiRmXumH2Hw4lnNQCFArVVLsxArfQm9EJHQLtQRQREZFxRAGiyB4uE4YkHZd2P0dkIyJsIROYLhScscYWsod5Dzu5F7toJXbvLibk1gDQ3tRIiKV2K9pbDFThehzfPI1KzyOaOhH/sPmYbI7Ebx5mYCNGYwwtiQqyYbgFV7UkHBfvhVeYvGwtYU0V+SMPBmBKZTU1xWBzS9n6GmwygbO+nSQOUTFAdAOXQGVMRUREZBxRgCiyB4usJReGVHkeHbksgbVE1uIag0kXM4j7dOLt24c9ajV2XivEIryWThr8DWScSnoaKjFApTt8wZetkTvxKKK6GmIvvUbsH8+W3daUqMDfgoydBSqzeRK/+XPhmqe+DuKF8bUkKplWWU3lCAVqBjGmUKgmDKnt7iv0QQSc0N2i8YiIiIjsKRQgiuzB8lFIaCMq3Rjp0CcV+MUeggOWmDZmiM/vgbp86X4TutpwsLQlpmKr84WAbBsqmA4pHiNz2r9hXYfEHx7FXbaqdFOtFy9EfyMIooh4BJN+9SBOOkN+wYGEe08v3d6USHJ889StHlZ/oZqa1k5CrxAUOqGrNhciIiIyrihAFNmD5aOIwFoqXY9cFNLlF5rRO8ZAfwaxMhh0v+Z17QCs37cKvy5D3Lg7LIMIEE1pIfvG4zFRRMVP78dduRaA6lgM13FGrGYahgFvfPwFEms2EE5uIXfSsTtmTMVCNVWtHVBcYmrCLSuaIyIiIrKnUIAosgfLR+HGJaVAZz6HxeJYIB3DxkKIDQ6AWtYVCtS0zq4lX2xKX+FufYuLkQQHH0DuxKMxfkDFnffiPfcS1V6cCsclGw3eh5gJA/x0hhMeeop9VrQS1dWQOf1k2EGZzbAYICbWd2C8QhrTCVwVqREREZFxZQetGRORsciPImyxKI3B0J7LYC2YbAxjDbYqP+g+Xt6nob2bTGWCvtpKfD9HbSyxTS0uNid/zCGFpaZ/fIyKX/4B76VlTJ83g9dihUb3JdZS/+oqTvznq9Smc3TXVeGedRq2umqHjcXW1RBVJIm1tuM6qmIqIiIi45MCRJE9WC4K6Q/rKlyXVBgUAr2+/uWlg1tKTFjfibGwYVIjGIMfRVRtTcGXreQfeTBRcyPJ+x4k9sIrnPzCK6xqriPV0kgQc6lI52hZ00Z1XwaAl/Zq4eVFCziupnrHDsQYoknNeK+tpLkvjXWiQo9IxYciIiIyjihAFNkDPNGxnknJSqZX1pQdH7h/Lul6pEIfJ+dhXmoCwNbm2TQvWFpeOqlwTmBteTZvFIR7Tyf172cQ/9u/MP98jmmt3dDaXXbO+pZ6Ht9/Gi9PquegqsrRGcfkQoDY0tnLOjfCBA6B3ZK2GyIiIiJ7BgWIInuAzlx2yCAuH4VYWwgBk45Lez5Ly4t7YdJxbEsKpvbAJiFi45pWoJhBBCILle5O+KiIx8gvOpxo4aEsW76cFcuXE7fgVlTwTG2MBVP3YkN3O6lsiipv23oybk5/oZpJHX2s9SIc3yMI4Z+drUytqKIlOTqBqYiIiMhYoSI1ImNYt5/bovP6Qp90MHi5aDYKcIrxnykWqomlk1gnws5fP+gTIJHO0tzZR3dVklRNZfF+kNgZAWKR4zhM3ntvKhbM4x8zJvDqtCb8iiRTK6ppTiQxGBLOji2Y06+/UE1TRw9RsZJpJhvyl7Y1PN/TMSqPKSIiIjKWKEAUGaPWZlL8cf1KuvIjB4mRteTCkN4BAWI6CHgt1U06CHAHFJcxkcENPIiHQ/72N65cD8BrkxsKkWHRaAVkI9mrqoaY47Ium+aA2kbq4wma4hXEHWfUxmNrq4kqk9R39oJTKODjRR5Tk1UsT/XS6w8u6iMiIiKyJ1GAKDIGpYOAx9rXsi6bpm+IzOBAgY0Iiej1N563Npvi4Q1raMtl8MzGX/Nmp1jYZYjWFgAtqwvLS5dNbsDaQqsHay2JHdziYkvUxRLsXV1LQzzJ/LrCfsjaeJwqLzZ64zGGaFILTmSp8wsZw0angkrPIx+FrEz3js7jioiIiIwRChBFxqAV6R7achlijkNqMwFiPooIIksqzJeCuj4/T0+QY102jedszATGwuJS0fjgwismipixtpPIcVg3sRHfRoQ2wh3FjN3mLKhv5oSWqVQW91fWeHGqvdiojqd/mWl9rhAsExQ+Jqs9j6V9XaP2uCIiIiJjgQJEkTGo1/fxjIODoWczyxr9KCS0Fj+KyBUbzHf6Oeq8OBMTldQMLOiSLwZWQwSIdRs6SfoBuemT8BIJ8lGIH0V4xhB3ds1HRW0szqTkxl6HdbEEU5JVo9p2I5pc3IeYaSscKAaISdejL/DLKsOKiIiI7GkUIIqMQd1+rrTXrsPPjniuH0VExQAxGxYDxHyWhOtS6Xk4Axvc+8UAMTY4QGwu7j9kn5nUxxLkwojAWmJm12UQNxVzHI6eMJnYKAas4dSJAEzsK88gxoxTfI2DUXtsERERkV1NAaLIGNQd5Ik7LnHHoSufIyouHR2KH0U4BiyWXBSSj0JSoU98qKAuX/iVt/HBWbApqwsZs3D2DBrjSXJRSBBFVHoxjNm0W+Key1ZVkq2vpS7bRyJMlQJEz3EIooiMAkQRERHZgylAFBlj/CgkEwbEHIeE65INwxGzVnnb3+vQkAkDUoFPLoyGzvoNk0FM9mVo7uwjU1uFbaynNh4nolAAp8obf+1S01NbAJiQX1sKEKFQ2LU/SysiIiKyJ1KAKDLGpMMAP4qIO05xWWM4YiVTP4qKve4LGcRUEGCx5UtLi8wwexBbXlkDQN/s6WAM1W4MU7z2aO73G6ty0wrLTCfk1mCC8o/JTKQMooiIiOy5FCCKjDGZIChUDzVOobm9gfXZNP/qbCW0haWh3f7G3ogbi6YY0kEhgzjsgtBhMoiTigGiP2cWAA3xBDVejO4gT/XAIjfjRH7aJGBwBhEKLUhERERE9lQKEEXGmHQYgN0Y4llreLa7nSe7Wunx83Tlc/xpw+pSVjEbBTiAZwypIE+Pn8cMFyIW9yAyYA9iPJujcU0bqYo48elTAaj0YhzXPJWWROWYKVCzM5n6WnqTSer8NmLZjQFhzDj0DgjORURERPY0ChBFxphMWFgi2q8hHscAoY3oC3x6gzzt+SwbsmkAskGIawwxx6E9n2V5umf4oG6IDOKUFRswFlbPmEhiwH7DyRVVnNgylckVVZteZY8XMw5rmxowQFNP68bjjkuPP3JfShEREZHdmQJEkTGmN8gTG9DcvsqLUR9PgIVU4NMX+HTlc6xI9wKFgNI1hkrXY302TTYMaIgnhr543i0En7GNGcSpy9YB0L3P9EGnT6mopnoc7kH0HIe1LXUATOjdUDoecxz6gvyIVWVFREREdmfjrzyhyBjXlc8TM4MzgK4x9Ph5IiwJx2FVpo9sGJANQ1zjkHQ9ZlTWgO9gHpsCjsVO7IO9ugt/CrKA7xSCQ1PYx+jmfCaubSOTiGH3mrrTn+tYFXMc1k2qB6C5bz3YqWAg7jikw4BcFFLh6uNTRERE9jz6hiMyhoQ2osfPER+iEXzccenIZwmspT6eIBUEbMhmyEaFDGJJdwKTKhSWMb0JbHsl5F3Iu5jIwVbkAegNfOauWI8TWZbPmIDrjr+9hsNxjUNvQyUZt4KG3Aa8bktQb/CMgx9FZMNg2AAxspalvV3Mqq4jNsT7KCIiIjKW6duLyBiyPpumJ8gP2Voi4bp05XP0+HkSjotnHF5JdZGPovIAMV24r53ag63KYzorMKk4ZpP9hwbYf3lh+eTSWZPwjD4OBoq7LusaWnCwtLxaWM7b3zpkpEqmXX6OZ3vayyrNioiIiOwu9I1QZAxZlurBMWbIHoYJxyUbheSikKTr0hCPsyLVR2ijsuDOZIoBYmMGe8Rq7KxOogM2Flrp339Ylc4zfX0X6cokayY14CnbVSbhuqyc1ADAxLVtZbctS/UMe7/12TSd+Sy5MBz2HBEREZGxSt8IRcaITBjwaqqHumH6DsYch8BGpR6JSdcjH4UE1m6SQSwufaz0IWaxszthWi/WFAurZAq3z1mxAQOsnDUFjFN+DSHpeCybWajgOrFrHf2FZZviCV7u66IrP3SG8LW+bjJhQDZSgCgiIiK7HwWIImPACz0d/HbdctJBMOTy0n6F/oYbA7lqL0aPny8P7ooZRCrK2zHYI1Zj4wF2VhewcXnp8tlTAKslpptIOC491R7diXpq/G4qWguvZ9L18G3E0t6uQffp9nNsyGXwjEMuHH4ZqoiIiMhYpW+EIrtYOvB5omM9fb7PlGTliOd6xhAfEAzWx+LsVVmN6T9mgYyHjYUQ26QVQ10ee8IKmJiipqOHlq4UrXVV9DTWFq+tj4OB6uMJ/ChiQ+MkACYu6yrdVuvFWZ7uwW7S7qI1l8GPIpKOS2qEfYoiIiIiY5W+EYrsYutzabJhSFMiudl9gBOTlbQMCCKNMSQHVtPMFSqVUjlyM/e9lq4CYMnMFqy1GAOuoyWmA9V4cTCwbvIEACat37iPM+kWAsD0JlnCbj+HYwye49Ab5HfqeEVERER2BAWIIrvYynTfjmuHkB56eelAThAy65U1hI7hhZkT8W2Eg6MM4iZqYjEcDOum1RDh0NK1DqJCxjBmHHwbDgoC23NZEk7htewLRg7SRURERMYifSMU2YWyYcCKdC+1wxSm2WqlAHH45Y1TV6wnkfdZPq2ZXEWCIIpwHYOnIjVlarw4SdcjVe3TlphMIszR2NYFFDK3WEOfvzEIjKylM58j6brEHId04A9agioiIiIy1ilAFNmFWnMZskFAxQ5qUm+KFUrtCEtMZ724EoCl+07FNYbAWgyF5vCykec4NMQTZG3I2trpAExZvnGZqWMo63WYDnwyYUDC8YoZxoicKpmKiIjIbkbfCEV2oY5cFmPYWGRmW0TA+krM0y2wvL5wbJgAsbq7j5b1HfRUJemZNgnHmEIG0Th42oM4SEuigmwUsqZlMgCTV2wMEBOOS2suU/q5L/AJbETMKbyWfhSpF6KIiIjsdhQgiuxCa7Ipko63+RNHYF5uxHl6EmZ9NXgRdlYn1OUIbURbLkMQRaVzZxezh8/Nnkx1cY+dbwtLTJVBHKwungCgb0KCXq+e+t4eKvsKQWHSdenIF15nKASI2EKQ7RqHCKteiCIiIrLb0TdCkV0kF4a057NUetsXINJWqGoazVuPPW4FdnYn2ShgdSYFhlKxFM8PmLl0FaFjeGbvFqq8GDHHIYgi4s6OWeK6p+nfG2qr86xNzgRg8spC/8ik65KLwtI+xO4gx8BEsMEogygiIiK7HQWIIrtIl58jF4YkhwvOImBFLeaxqZg/zcA821w4vrIG8+QkzBOToSuBScWxlXmYnAK3UBSlN/DZu6qW5kQlYbFQyl4vrybuB6zcewqpRKEAS9xx8a0CxOFUul5hn2ZVjrXJvQGYUgwQXePgRxHP9bQXs7WFCqb9LJCN1AtRREREdi/bmboQkc15tquN2liCGVU1Zce7/BwWO/T+wwjM36dgupMbj62twe7TgXlhAobifZ6eWPjfxkzZ3f0oojGeJBUEBDYCa9n3+WUALD1wL4wxxBxnYwZxBxXJ2dMkXY+Y4+C7edoqppF3EjSva8f1A8KYx6RkBc92t7Mmk6LLz9EUH/B+WcgGChBFRERk96IMosgoa8tn6Rmiafr6bJrYcPv+VtZhupPYmhzR0auwzaninaoxGGxjButGmFyxaukmAWJkLVVejArXI7KWyataqelN0zqxga6mOsASNy5xxyGwEfEd1YdxD+M5DhWuh0+IrQpZl9gLN7JMXl0oVhN3XCYnqwhtREuiggp349/c4o6hLZ8d8rrWWrryuSFvExEREdmV9K1QZJSlQ5/cEEsNu/P5oZd2tldgXmnAGoudtwFq8lBdCDDN2moAbH0GpvUU/hsLjeWBiDFQ4XpUeB4hlv2eew2Alw6c2X8Gccch7rgE1pJQBnFYNV4cP4qgKs/qitkATFu2rnR7zHGoiyUGvZeVXoz12XSpiM1AG3IZHtywqqxNhoiIiMhYoABRZJTlwpDMEEsNc1GAu8nyUvNiI86TkzGhA3t3QXWhAIrtDxB7C1U1qcljZ3RjnQjqsxDbGIRYa7G2ECDGjMOkth5a1nXQV1PJmukTC7djiTluKXOoJabDq43F8KMIW+WzLjmDwPWYvKoVNxi5AE2F65EJA7ryg7PH7bkMKzO9LO3tGqVRi4iIiGwbBYgio8haSy4KyWxSzTKyFj+KygNE34GVdVgvIjpofaFdRb/qTYKM6jwkQ+zCVdiD15fdFFiL5zhUFvfPHbWk0NpiyUGzwDGkQp9KN0aV5xEvtthQBnF41V68UOinyicyHmvrp+IFIZNWt454P9cYIsuQWcKVmT6SjsuSng56/cEBpIiIiMiuogBRZBQF1hJYSyYszyCGNiLE4gwMEDdUYayBiX0wsdCioqTSx5pCNVLrRlBRvF5FAPHyJYx+FBJ3XCo8j+r2Lmat6SBdlWT5rKkAdOXzHFDbUCrA4hhDTFVMh1XheoX2FZWFQG5V9SygfJnpcBwDrbny/aHZMKA1l6Y5UUE2DFmXTe/wMYuIiIhsKwWIIqPIjyIiawf1w/MjSxTZsgyiWVfcXzipb/CFHKCqmGmqzpcHj5vIRxFVnodrHFqeeA6AF+bNwroO2TAg5rjMqq4DwDOGmHHwVKRmWEnXxQJUBlgs65y9CTyXySs34GxmmWml67E2myo71pHPkgsjko6LMYWAcWuENiKIBu9rFBEREdkR9K1QZBT5NiS0Ft9GZcVKgmIGsRQgdiahI4lNBNAwdOXL0jLTmpGXJPo2oi6WwGnrpHrpclLJGK/tM5WufI7WXJb9auqpixX2MnrF4NAbqtWGAMUMIobIKWRuo3wFa6c0EwtCJq1uG/G+lZ5Hdz5H34BlpG25LNYW2pt4xqF3iAq3I3mpt4tnutu36bmIiIiIbI4CRJFRFES2sJzURuSj8gAxshEOBpbX4fx9SqF9xdSeYbODti5X/N9hAsiifBRSG4sTf/RJDPDk/tPJuQ69gc/xzVM5smlS6VzXMXjGKIM4glIvxGIlU4BVqYMAmPHy2hHvG3dc/ChiXW7jMtLVmb5SO4yYcejz/a0aT1suQybcuvuIiIiIbCl9K5Tt9mJvJ88pozGk/gxiUCxK069/iaAxBrO6BoBo7gaY1TX8xab1EB22BiYPsQR1ExO6UnjPvURUmWTJPlPIhAFJ12WvqpqyZa2ecYg5Dt5w/RiFhOMSNw6+jbB7d2Eb06ytnEneJJiycj2xvpGXmcYdh2WpQkuSTBjQlstQ5RUDRMehdyuDvc58TktMRUREZNToW6Fst3QQ0LeVy+TGCz+K8IxDZC35KCw7DkAEpGPYeABT+kbcW4hDod/hMOdE1rIum8Y1Dns9/gwGyC48jCgeIxMGVLgeyQGN3KFQadPTHsQROcZQ3d8LsT6HPWwd4QmrWNWwFy4R057b5I8jvgO5jUV/amNx1mRS9AU+HbksuSgkUSwKFHMK+0L9TQK+bj83ZP9EP4roDfL4Q9wmIiIisiPoW6FstyCKBn3B3V2lA5+/tW++OuWWGiprCGz8gp+JFSqXVm3/ksHeIE+VF+NtQYLq11YT1dcQHjoXzzhkwqC073CgUgbR0R7EkdTEYvgDAnw8y7L9C0t1Z65YWXau+cdkzF+mw7oqoLBENReGrM2kaMtlwBpMMYvrmcLS1dyAa4fW8ufWNaxOp7DW8ljbWtYXK52mAp9cGO4xv28iIiIy9ihAlO3m27Bsf93urDfwWZ/NEFlbOpYNg7Kft0YhELSAHbQH0VoDqVjhQNX2Z2D9KKIxFmfqo/8CIHfckeC6pYbt9UMFiMXlpVpiOrKaWHxQ1q59VhV9bg0TUhuoWhbBylpIeZjeBCZycJ6ZCK2VAFR7Hn/vXM/ydA8VA3pOesYQ2Kiskmm3n6M1l6E9n6UnyPNibycPbVhFZz5LKvTJR9Ee8/smIiIiY4++Fcp28/egL6x+FBHYkGBAMPB4+zrWZFIj3Gvk6xVCS0PebswSBVEExkJfHAC7DRnETZcmBjZi5qo23DXrCVuaCObuC1Bop4ChNhYfdA23WKBGS0xHVuXGGPQ3Ag9WTCj0RNzrH504L0zAvNQEgC0G/KYYIDbEk2TCgHXZdGn/IVDKJGbDkHTgE1pLRy5LX5BnTaavsN/QRqQCnyfa1xcyiFH5/BQRERHZkfStULZbIUAcuVDH7sK3heV74YBooCufG9TofkvlorBQqZRNitQUr2/6M4jVW59BbM1lS0sPAWwQMudvzxce98SjoRh8JF2XuOtQ6XmDrtGfPVQGcWQJ1y29ngMtnz0FgL3SL4C1mLbCslI7q7NwQt/GoHxyopLGeHLQPlCsIRMG/HHDKp7vbmddNkXMOHTks6xI92IwTEgkWZ3pY2W6l03nkoiIiMiOpG+Fst18G+0xRTOCqNizsPgFPLQR6TAo2yO2NbJBgGsM1hry4cZr5KKgEDimigHEVmYQ81FIzHFIel6pQNBhL66moruPYNYMwlnTS+cmXY+445ZaKwxU6XrMrWukKhbbhmc3fhReu8HLjPv2NrRXNVMd9tBoVgEUCg5NTGHdCHrjpbsZY6j2hnidjWVNpo/12RTPdLezOpOiMZ4kF4Wsy6SoKr5/IZYuP0+F6xFau83LnkVERERGogBRtpsfRQR7SgYxCovLTAtfvvNRIfjtHdDovDOf5ZW+7hGvExW/wOeioLiMEzLRxixkLixmFlMxrBdCfOtev77ApzGeZF5tE535PBWpDEc+v4LIcci+4diybFfS9Ug4LpXu4ODEGMPe1XU4Q2THZKOk6+IaZ3Bl0Zhl2UEtAMwMny4ca04XKs3W5DGRA5nBgflAnjH0+HkskAr9YrEhDyykw4CqYlBZ58VpzWaocD0iLKG1vNjTwcu9XTv2yYqIiMi4pgBRtptvI0JL2bLM3VUuighsVNrjlY8KfQz7go0Zvg25DE90rCs7tql/dm7g+e52slGIawyucciGIR35LNkwIBdFxHPxQgBR5Y/Y3iIfhYOWuGbCgJlVNexdXUvMcZj/xAvEwojuQw/ENtWXnRt3HCpcr6w4imydCtcj5pghl3aumDUF33OZ3roCd79V2H06Cjf0LxvuG7z3cyDPOHT5OarcGBPiSeLGwTUOCdclEwbEivtDq70YVZ5HtRfDWktoI7r9PB357A59riIiIjK+KUCU7RZEERHRkH3bdje5qFCxtD/Y9YsB48A+j7kgYH02M2zmJrQRr6Z6eCXVTTYMcYzBNYZuP8eD61eyIt1LLgzx/GJGr2Lk/Y2tuSw9vs/abKHtQWQtFmhJVlLtxZjZ2sNey9bRVxEnfcwhg+4fc1ya4slSQRTZenHHJWG8IQPEIOaxYtYUvDBir9RLEC+cY6tzhRN6Rw4Q445LZz5HbSxGhevRkiwUtmmKJ5lWUV06zxhDc6Ki1FcztJZsGI74hwoRERGRraUAUbZL/xfVKCrs39vd5cKQyFIKdvNRSBhZMmFYChp7Ax/XGJb0dgxZvKYtl6U7n6MjnyMXhrjGwTWGVBCwIt1LVz5HPgpxg2JGz9t8YD2vromY45IJC9nESjdGU7wCN4w44e8vAfDogtnEK5KD7ju1oooFDc3b+pJIUXUsNuxe21fnFPZ8znppJaVypzXFSqZ9g9uLDFTjxdirsgZ3k0JBjjGl7GH5cYgoZOzzUUg62LYCSiIiIiJDUYAo2yW0lghb3BO1ZRnEV/u66fO3v+/faMiGIaHdWMU0H0VYLMGASq19gU9DLEGf77O22P6iI58tFQ1Zl0lhTCHIDLG4xpBwXNpzWRrjSdpymUKAGG55gDipopLGWIJsFJAJAyYkksQch/gj/6C2O8WrE+tYNnMScWfwMtKk69EQHxw4ytap8WKDMoh+FGGtpaupjo4JddR19TFhQ7GCaX9vywGFaoZijClUSd1CDqb4h5nCnEyHyiCKiIjIjqMAUbZLaKPifii7xb3ZXurtpG2M7pvKRSEWyvYgesbBH9DMvC/0iTkOMcdhZbqXznyW365bzj+7NpANA15L91Dpxogbh0yximnS9di3po5qL0aXnycfRTjFANFuEiBmwwBbDDb7g85K12NiRSWZMCQXhUxMVOJsaCf+16cIYx73HTKLylhMxWZGUa0XLxUvArDWsizdQ09x+fEr/VnEF1cWTohZbHUOk4lBsR8iFvC37z0yxmCLRWpyUUjeRvh7SJEoERER2fUUIMp26S+3319VcXMia+nx8+TCsfmFNltcShpGGzOI/TFXLgwJoqiwf9A41HpxVmb6WNLdQZef48mOVu5e9QobsmlqYzFqY3FSoV/WYzDpumTDgIiNASLuxgDRjyKWp/tK+8r8KCoVmWmIJbG2sIKx3ouRvO9BTBTRtnAB2ZqqoVsoyA5T4cUYmArMRSHVXpxMcS6vnDkZP+Yxbdla4tlC0Gj3LRSsMS82YV5qxDwyHfPQTGiv2K6xGDYuMQ2iiJz6IoqIiMgOogBRtktgIyIoK+wyknxUyIBlt7Hx/Gjqz4IaNmYQs2FQanSfLY7dL/YgrHBdMkHAq+keJsQraElUEHccpldU4xqHpOsxp7q+LKvnGqcQTEdsDBAHZBB7gzxNiWSp72I+Ckk4hTYVtbE4xhT2pk3711Lcda2EUybiHzaPhOuW2iHI6Ei6LgPLzWbCgNpYvDRXwpjHstlTcSNb2IsIMCGDbU5hsjHM8npMJobBYF5pGHHZ6eaZYoXdwlwdq39wERERkd2PAkTZLv39/lwMwRZkMXJRSGAtqTG4b8qPCvsPXWNKSwnTQYBnDNYWMojZMMS3EZ4xGGPwjEM6CKj2YiRcl2ovVlYtdLjKoREWExZ//QYEiOkgoCGWIB/1L3GNqIvFMcZQF4uTcF2m92Spe+RJrOuSPfVEquMJkq5LtTdytUzZPpVurJS5A0iHIZVueY/Dlw/YCwvss2Q5JixWMz2gDbt3J9GBrUTHrsBW5THdSejann2hheWloY0IokK/TREREZEdQQGibJfQWiwWY8wWZhAjgigak6X5g6hQnMYzTqkYSSYMcI2DMYZMGJCLgkIGqBj4TUxWMLWiaqsexzMOuTDEBOUBYhBFOMbQGE/SHzL6NqQuXgj8Yo7LBMfjDY89j4kicq87mmhCI65xaE5UkBiiQI3sOPXxOBWuN6ByrWVysgoHUyrQ1FdXxdrpLVRkckx4ZWWhR2EixO7TCVN7oTLAzuwCwCyv247RmNJyaLClPyiIiIiIbC8FiLJdQmtLi+4GFnZ5pqutVGBloHwYEtiI1BgJEDNhUFru6herl8Ycp5QNzUQBnmPwjKEvyJPdZClff4/DrZF0XPI2xGzS5qIjn6UpkWR6Zc3G1zSy1AzIDC58+jVqu/oIZk7DP3x+6fiC+mamVW7smSc7nmscJiUrSQc+oY0wGKZVVpN0PbJhSK+fJ7KWlw6cCcABS1aQ9ofI7E3qw8ZCaKsEf9s+gq0tZOMja3Edp7QkWURERGR77TEB4g033MCcOXPK/p188sm7elh7vEJQWAhn+jOIbbkML/d1DfmltbAsrtDge6gAcmd7uquVp7vaAEpZQ9cU9ndZa8kGhQxizHHo9vPFKqfbN+66WJwZFdUwYInp+myGmONyROPEwjJVNr6elV5hGaP76kqmPv0yUTJB9s2LYUBgOiFRQcUmyx1lx5tUUUU+ikgHAVVejIZ4kvp4nM58jg25DH2BT+ukRjoba5jY2ce0tu7BF3GA5hTGmkKQuA2MsYWenViMNeTUC1FERER2kD0mQATYf//9+ctf/lL696Mf/WhXD2mPFxWXuMHGNhdd+dywlUrzUYiDIbAb+wruSuuzGV5JdZOPwlITdMeYQusAGxFQ2G9Y48VZn02zJtNXLFqz7Uyx7UUpe+QV2hQc1zyVKRXVVHkecdctvD4GKlwP09tH8le/ByD3phOwNVu3rFV2jIZYAgx0+XlmVdXhGsOEeAWpMGBisrLwO2AMSw/cG4BDX1o95N5c21Lon2k2DHgfA4P550TM0sbC3OhKQDj8XMtFIQaD5xj6Rij69HJfF91+bhufsYiIiIw3e1TKwXVdmpubd/UwxpXQWqw1YDZWMV2XTZMrVvzcVCYMiTkGv9guIrkNWa/2XLZUEGZ75MKQniBHn++zPpsuBbsOBj8Mi/slLa5XyCBaoMfP4+2oXoPFL/+BE+A5DnWxjXsNq70YnbksCcel2ngk7/k1TjpL/rB5BPvP3jGPL1utvlgQKGZc5tY1lo5Nq6iiNpZgbaYPgGUzJ3Hg319g1up2nu7qJWjcZL9hYxbrRtBWARkPKgLYUIVpq4I2MMvqAbDTerAHtA0ah4XSH2A8Y0iPsGR7WaoH1xjqYontfwFERERkj7dHZRBfffVVFi1axOtf/3r+67/+i3Xr1u3qIe3x+rOGho1VQNdn08OW3k8HPnHHLXzB3cYM4ou9HaxK9w55W3c+x4s9nVt0nd4gTy6MiDsuy1M9xQyiKWQQo6j4fGwpIGyIxdmQzRBzdtCvTeBgnQjfRHiOU2yjUNAYS9Dt59m/ppGmR57EW7WOcFIzucULd8xjyzZJuh5TktUc2tBCZfEPFNMrazihZRqNiUSp+m3OWJ6ZMxUDHPDsa4Mv5FpoTmMiB+cvMzAvNpayibYmh40HWGNhfRUMUX/GUKiEC4WiRyNVBU4HQWn5tIiIiMjm7DEZxIMPPpjrrruOvfbaiw0bNnDTTTfxvve9j1/96ldUVm7bPh/H2UGZoh2gfyxjaUxQyGQ4Drg4BDaiN/DJRAFxxyVPOGi8haIvDmEU4hNt0/PJRiERQ78WHUGO19LdHFDfuNnr9IU+xhSWDS5L9xYaoRtwHUNAYYmpMeAUA8KqWJxUGFBdbDux3QIHXEtgLUnXJeFt/HVsTCSZXFnFoa29xB9/CptMkHvnG3HiO/5XdqzOrbHqxInT8Ab8kaDKiVEVi9GWz4IpLCEOrOWV/ffi8CUr2fe1dbxyWJZMdUX5hfbrwCZCWF0NK+rAUMgqHrWm8Ke7f0zEtFdCdwU0Zsvu6hoHsBgDMdclG4UYM7itirWWbBQQYnf6+6t5JaNB80pGg+aVjIbdeV7tMQHi8ccfX/rvOXPmcPDBB/O6172O3/zmN7z97W/f6ut5nkNT09irCtnQMLb2nlWTIdkXI+Y4JKri2EqHRLJQZCVZHR/0GpoOh1ovSW8+T7I6QVPD1r/GptOlombwtQFWk8HPQH1jZfFL9PBeDnuoSMZprqkm09tDnxdQkYxRnUgQWUjUxEkmY1RVb1yat3f1jlmmZyPIRA6mIiCW9JiQrCh7PvMqHWZHlvr/+wUA8feeQsXsKTvksYcz1ubW7maim6ciFaeqOkE6E9LcUEv3EQcy4ZGnmfvicpaccHD5HaqBCSn8OvCfrgML7uQsidrCHPOn5/HbK4l11RCfUV4Yqcr4VCQTJAmoq0jSnc9RXV9B0iv/SPejkNiGGImqoX9fRtuy3m6m19ds9ndRZGvp80pGg+aVjIbdcV7tMQHipmpra5k5cybLly/fpvsHQURPT2YHj2rbOY6hoaGKzs4UUbTrq3/26+hKkcnkiRyPdlL4aZ981sdgWNvewwyz8ZfCWktbbxrPOGTyPhs6e2mO4oTWEtrCUs8teszeFNWRQ7vbN+i2Ne09dPVlWLOhu7QEcODjm2KF0tBaXt7Qgc2HpPpyVEYur7Z1YYBsWGgbsLqth2zWJ2V2UIGPnnhhyeD0HnAK7UEiJ6QnlaXFSdDevvH5OKkME378G8j75E84ktTkydA++PnuCGN1bu1uMukcmUyeFDl6MlmmuJW0zt2X2sefZfpzy/jn/jNY6URMSlbhDMz0teQgWYXJegQNvQR9xflWF2Cox1+VwN87x8DaSLmsT2+YJZPLk7cevbkca9q6B+0zzIQBfeksG5xe2r2anfAqbBRi+Uf3esJUQL32P8oOos8rGQ2aVzIaxuK8qq2tIBbb/PftPTZATKVSrFy5cruK1oyVN3OgKLJjaly5MARbWBGXCyNW+ymSjktobaEv3ICx5sKQfBiS8BwcoC/vE0WWZalu1mZSLJyw+QxZZC25MCIXhEO+Dr1+nnwYkQkCkk5hemfCgL93rCfpehzROJFnOttZ0tMBQMJxsdaSdFwcDBWuW2ox0ZHLYGwhsNxuPXHMPyZjAge7ohY7u6Pwfd+LyIcR1U5s4/MJQyp+9gBOdy/+AfuQO+ZQ2Anv+VibW7ubmHGJrMVaix9Zqt0Y8UQFT8+ezOEvrmb60y+z9pB96PPz1MQ29rbEAPPWw4YqbEsfpS4q8QDqspjuJFFHomyZqaFQ6MnYQtXdIIrI+AE1brxsTPkgJIgsmXDo35fR5NuQIIoIokjzSnY4fV7JaNC8ktGwO86rPWbdz7XXXsvf/vY3Vq1axZNPPskFF1yA67qccsopu3poe7QginAwOBhSQZ5uP0eF6+EZh75NerPlSkVfHDxnY2GNXj9Pez471OUHP56NiIjKCtx05rP8pXU1AH2+XyiQU7w9iCL+sG4lT3e1sSLVS2QtazJ9pAOfdBCU9Q6cmKygNhbHNYbIWjryuS3Oag4r72BebML8fUohOGxMY0IH83Jxj6RX2OdYWhpoLYnf/hlv5VrCSc1kT31dWb9DGbsSjotrHMLi3tUK16PKi/HcgTMIHMNBL69llhOnd6iCMg057JyOQZ/Idnqhj6JZXl923DGFue0W54YxZsiiT76NiGxEboQ2GKMlsBY/ikrVjUVERGT3sMdkENetW8d//Md/0NXVRWNjI4cffjj/93//R0NDw64e2h4tH4U4plD5M7SWXBQywUkSWEs69EvLOvvPDWzhS61nHHr9whflHj9Pyi8/dzh+FBFGlvyAqox9gU9rLkM+CkmFPkEUkS1WUF2TSbEul2J6ZTUd+RxtuQwd+SxNieSwjeUNhQAxEwbEt7Ziab54fjwq9LV7cjKmN4F1IqJZHTCrCx6aiQk29kAEStnO+GNPEn9qCVF1JZnTT4bYHvMrusdLOC6eMaWKoZXFAPGoGfuwav+1zHx+GYe/sJolsxu3aK4DMDGFfTnAtFVi+2JQXfidMRh8Gw1YqmqHDBCDYoCW3QU9R4MoKvxBRwGiiIjIbmWP+fb5ta99bVcPYVzyrS0FiL6NwBayGZ4xZMKIfBSRKLZv6Av80u0Jx6U3yBNEEV35PH4x67e5voj9X3gHlu3PRxGpMKAznys0l6eQrbTW/n/2/jtIzuw874Z/5zypw+QZ5LDYxM3YgF1uIpfZpCiJlkSH9/0sW8Eq11eWQ9klleVYTq8slS2Vy/7D+kpySa9sWbZlm7YoieIyLsMuudzMXW5eAIuMwcROTzrnfH+cp3u6p3sSMABmsOdXhQIw3f300z0dznXu+74uXq/NEghJKD1yrTnaWOyI2JVoVxBTrRjxwxWvx3yEeHEX5qZZ2GdbA8V394GSmCOnEa9PWXE43sIcPmdFI0A1hYXi/n2NwbqY+i++SvTE05gwoPXnP40Z3nomSY6VCaXNy4yVwhOCclEV3lcZQnz0McwbJ5h88TXGDz5IK8z7ZmQHIm0VUbw5iXhnHHP4vP2xEORKdTYwDHQ2RbqxFUQGRs5cbnKji/eri9hwOBwOh2M7cc20mDquDplWnRbTRKlORqAvJLnprWqci5udikfkWSOYWp5aoWgGV0D67s9oFKYjBNvn0MpzZtOYvGhhTfKcmTTmRLPORGjFmBCCmbTVEakr0c6YS7Veyjw02EDzViFgNYgf7ECkPuK1KWj6sBAh4gCReYjv7EfMlW2m3T1nl8QhWIFYoD2FJySjx05R+sITGClp/cQn0bsvfnbWcXUQQlDxAuayhPEw6tlcMMNVsvvuROSKx14/TW2VYPs+Dixiohxxbghm7WtZCkFubHs3gIegmdsq/Hy6ZKrUFmhtsXYlUcZ0NnTWop5nPe9ph8PhcDgcVw8nEB2XRG40UtiZqEaeddo2bdbh0iygNoYTzRpDRdXEExJtTKc1NNd6XVWOtuFFpnXHPCbVmqbKmUliVFGxrKuM83ETjemIvIrnMZ+mawbdCyEQWHMaKQTEHuKp/TbQ/NsHoB7A8TFEI8T4GqGlFYsXbN6m8RUCgRmLMUfOgN+7QDZDS+JAeYr9M4tMfv5rCGOIf+QjqOsPrOOZd2xFhnyflso5WBnp24RIH74XEwYceu1dyvXm+g/qGcz7ZgAQr092TKFybToziL6UnVbrb06f6oit3JhOy3R2hSt51qDGrEsgvjg/zYnm5XHpdTgcDofDsTGcQHRcEpnWCASBlEghqHblsAmx1No2nyUsZmnP5QaYTlqdWaruCuKpVn3g7JKtINoqYl5cHqucTCsWsgQhBIGwi+WzcYOoy2Sm4gXMpC0qa7SxFmff8YYRb05YMRjmCCNs6+g7YxhhMA+cwgyliLkyHB+1j+v+M+i7z2LuOwPBgEV5VwVxtHGBH/769xG5Iv7YI+R3vG8d5+bYqlT8gKofsLtU6bvMVMqk9x9Gas37XzmxsQPvamCGEkQ9gpZftHSrTkW+/ZpfzFPmsoSFzL7GMq3wpOhU864k7crlegRiI7fmUg6Hw+FwOK4+TiA6LolMW3HnCcn11ZFlgdiCWFv3xAtJC21Mz+UeMJ8mRZOc6YjJuTTmezPnWMj68wczbeccTZGdCDbGwheyEJgGXwpqWcq5uNVjRBN5HjujcqeKuRrGGIwRMBchzg5jwhzz0ClMoBCzZYSWmOvnYCjD3HrBPlotMZUUhlPY2QRvhYXxkF28j2YX+OiL3yTKcpJH7iN7/92Dr+/YNgz5IaN+yFQ0eMY1ffBuVBRyx7GzDM/3V8wyrXtaRDsIYLxw+l2MOtEW3RXEZp4xlyTMZwkLxTHyogqujL7yFURjyLRal0lNS+XOzMbhcDgcji2CE4iOS6LXSbEXTwjebdQwxnC8sdjX2hlKrzCTKUw2igrimVaDmTQe2HKaGb1UESkWlC2lqPh+5/pWLNq20+XVwtEgWpd7ZGY0oRSdOApz8yxECnNo3v6/ksL19t+Mx5g9NfvvqXW0DkaKYTXNBy/8H0p5xut33kD62PvXvp1jy1PxfK4fGiFYKR6lFLH44GGkgbueea3v4oUs4UIaY4xhIUs42VoSkWbEij6xEOELybAfdmJYAiHJjOZ0XEdpbWdtgUTneAgM9Bg7XQns3OPaLaZtx2AnEB0Oh8Ph2BpcMy6mjiuPMgZj7PzhICbCiHebNb6/MMO7zTo7o3LP5ZHn0VI5spj5a+Qpxhjeqi/QUjkt3Z/d1m5p1cagigVvrK0QbKocWbS7NvIcg1lRvK7FnlKFoFZGzJetGNxTLNQPLKKVgF2Nnu0Vc8sMpprBvsU1jz28UOOx6a8R6ZjvHzrEOw/cyl6XdXhNcMPQKIeqI6teJz1yF4vPvsy+k9PsODPDud0TtFRO1Q/ItKbqB6RaU89zeiTTaFFZLCqI+ytLLre+FOTGUM8zxoKIs7HdqEgKR1VzFVpMc23W5WKaauXyEh0Oh8Ph2EK4CqLjoklUO9dw8MsolB7KGF6vzREI0VdBjKRHLcs68QCNPGMmjbmQtAikGGjbn2iFLyS6mEE0xhCrnFIhNgMp8YUkLionG0IDR8dgukzJ8/FP2AxNc3CBzqE8AzfOd/LoOgTaVhTD1RfDYxcW+PAXvktJxbw1ejvfPHIIf6Vqk2NbstamRCmK+N49NwJw9/deo5YlnGjVrYgzhqrnE2u7wdE2SwKgkmF8DYuRfa120TZ9SpRiLIxYyFKaeUailyr8V7rF1M4gri1M206nbgbR4XA4HI6tgROIDsC2ec2l8YZuM5/FZFqvGiY/EUZFMH2577JASjKtbAagkNTznFNNa04TCI+m6o8CSFTembvK2/b9xWzjWBAy7IeF4Y0ePGu4ECFem4TFZfmGxsZWyLcmEK9P2cD7c1VMoGDv5rgrTp2b5cNffJpSkvH0zXt5/scOogOzosB2XJtIITh/437OTY4wPrvI9W+foeoFnXbtsufTzG013BdyqbImgJEEoSU0Bs/RagxlzydVioUs7VQQ4cq3mKbFTPBawjQ1RRTHFT4/h8PhcDgcg3Er022MMnrDom4lppMW35g+RTNfauvsjpIYxGwS2yrHKhWTsudzXWW4s0hdzk1Dowz5oTXZUBlv1OcZDgJ8Iahn/QIxVqpoSbU5cJnWqMLufyoqE3m2GndTdYThoFcEirfGkU/vQ5wYRTy9D/HsbsS3DiCe3ov4xkHEmWF7xZYPs2WEEbBjFbOZDbDr1DQffPx7BFnOk3cc5Nv33gBCYApTHcd7i5Eg4pv33gDAgy+9wyiSRCkMhqEgpJZntootRW9lbaTdZtpvgqOLimOb+Swh0VZoGmMdTa8kibLnvZYwzVwF0eFwOByOLYUTiNuMWOW8ujiLMYaj9UW+deF0z+WnmvWLCpyu5xnn4xZn4gZg29q+MX2K08X/B3E2blK6xPbItrj0hSDTmoUsYdgPCaSkNkAgJnqpIqK0DbNXRuMvq8L1iVYDHB/FSI05sGCvM1tBtALEQgkyDzPewozECATijJ3vMsMDHCU3yHVvneIDX3kWX2leuP9WvnvHdQghMcagjXWgdLy3GAlCTkyMcOLQboZaKUdeO0GsFRLBzqhMKD0moxKB8HqEkykccEWzv4I45oeMB1Y4BlLajFFlnU6FsHmhK3GssbjmrOBGybRCwJqVwVSrIobDzSA6HA6Hw7EVcCY124x6nvH9+QuMBCGv1eaYTxMSpYg8j1jlPD17jvdP7GJfl4HFeljMUmp5ylu1eW4cGmUxSzndqrOvXIX+7lAyrTiXNNeZKbg2gZQ085zIs3mKgZQ0VIYxvRXKuNNiaisOmdFosw4zmmZgYyjGWphbZ+DQPCbxbSZhLsHX4BvEW+O2OjNT5NiN9ArERClCKdflhIox3PbiW9z5wltoIfjeo3fy+g17ifKU3Bg0xlYQ3T7Ne46qHyCE4aUjt7Dn3XPc+coxvrN/nGB0mF2lCmXPZ3dUIVWaer6Um0lUVPiT/o2Z7op52fM512qSGU1JSjyxFDmznFjlfH9+hpEgZCIcHM9xMaRG40m5ZotppnWnXdzhcDgcDsfVx61MtyGLecpzc+c5FzfJtO7M6p2Nm8ykrYHun2sxl7YYCyLOxA3m04TppGXz1JZlERpjeH5umlcX52jlOaVNEoiesEY17QVqIDxSrYpswyXSIvvNYKMuUq3WJ9ZqxeJ5uFhsl5R1hfSN/bdvqxemuFwY2/7ZziwE29J7vFmjlvdXNpcjlOaBb32fO194iyzw+NbHj3Ds5gM0VUbZ8wvzEVvY9FwF8T1HyfMwQHO4wjO3HcBXmo88/w6h9BgPS4yHEaNhRNX3e4VTVLwfBgjEbsqeT0NlqGKuUSIGxsYANFVOS2WbPgOYaoUv5boqiLl2LaYOh8PhcGwVXAVxG2KAs60mUgg0NkNsHDjZrLFYuBdu6HjGMJsmDPkBi3nKDxZnSJVCafvzbmKteHnhAi2lkKzt2LgR9parnX/70racJkp1RGheVBoC4dOpIGoNrN2aJgqB2BaAKzLU9XgrWUc4gq2yjoXRmgvZIMl4+OvPs+vMDM1KiW99/AgLEzb6oKUU+8rDNPNFNFYhrjSf6bh2sZsENuz+mVsPcM+JGW45M8e5s3N4BwUPTu5mIow4Hzd7BVangrj6R3cgJbnRCCSesH8GuQIDNPOcuIia2ExSpQmE7OSVroSbQXQ4HA6HY2vhShfbEIF1B90ZlcEImionUYp3m3XKnsditoYIWkasFU2VE0mPnVGZVxfnOBk3mAgjFtKkJ8C6kWekWrOvXGFPuTL4gOvTbKviFVEWcVcFMS/aST0hwFjBuOKituEjvr0f8b09cHIYapH9+VozhZUcI4tjLhOTdZUzEoQ9C3Zles9hZK7Gx/7oSXadmWF+fJiv/PDDLEyMYIxhOmkhgN3lCkLYCqIQIDcax+HY9owGIWXPp5anyDBg5sMPAnD/069BlrOrVCGQHhU/sBsJbXyD8fSaFUQAjM0qbbds1/J0YBh9U2W0VL7pMRiZWV8FsaVyfCHcDKLD4XA4HFsEJxC3KVU/sLmCwtDMMqaTFk2VMRpEawrE+rLL63lGqu1sXSg9StKjVlTL2uKx+7oGOlWJPpRAPHkA8fzuTXiUgpbKOxXRtKg0eEIghSA1ilQrjOkXWOLNSUQzRMyXka/ugNkyRhiorlFdFXTaSk3X/GGqFYGQDHlBT6D3dBJ3jH32HTvDx/74KYZrTU4d3MXXPv0QcdW2zDZVjhCCj+8+yPXVEURR/QWxqVVYx/YgKDZj5rOUUHqEt97IsX2TVGpNwu8837leNMgEKsoRuQdq9ddNVGSDekJQ8XzqeUYt7/9sqOVZJ9N0s9DGkGmNv44ZxJbK8aXcdJMch8PhcDgcF4cTiNucQEgW8pTzSRMBhFJSy7OBlQKAs60GXzl/grhL9DXyDMGS8+dkVOJQZZhQWgfFRlfLajPPEKuVB89VEa0AZsqQLXt5NX3IBbR8xBMH4Z2xVR+bwPB2fZ4/On2UmSTuzFz60hrZJEoXM4jLzmeuhJiuYkoZ+vbz9lhGQDUlYR3zmeNFdMjYUoRIPc/YEZXZGZVRXXeXG41n4M5nXuORr7+AlyueufsGnvzIveSB33O9YT/gQGUYKSQS0fkduRbT9yZ7ylVilTPsB5Q8nxfefzva8wifeh4xa512BwvE9c0hDvtB5/Z+0XK6kPYLxIU07quEXyrKaLRZanVdjZaymy9qjVZUh8PhcDgcVwYnELc5ofSYT1NONGtUPJ9AeCQDzF3AtmQ+M3ee2cL5tE0tS5clqC2JRYHoEYhzabJqsLs4NdK5HQvR0gXzUaeyKN4dRaQ+4t1R24660rEQvFNfYDZNeHVxltcWZzuuqRLrpNrM8/6Ii7fHATA3zcHeOma8Zf8/lHC0sUh9jRlNc+Mc+sGTMLZUQcy1puoHhJ7XI0irrYzPfuMVbnv5KGng89WP3sOf3rSLllbkWvNus4YxBmUMkbTn3o4dMNg2U1dBfG8yHkZUvKDjPrpv714WHzyMUIrSnz4BxhAVZjY9rFMgljyf/V1uxgKYHZCbOp+lGNbOK9wI1qVX4wu7EbLShhVAS2UE66g0OhwOh8PhuDI4gbjNCYvZork06bSdZlrRUv2VsmONRc606iitSbsWY7NpTLiCSDGYnpbU2TQhWsl1sx4g5pds8sVc8W8lEK/sQBiBmC/DiUJEZh7MDsjQKNhVKrOnVGV3qcxb9XnOJy3GQruY9oQk0Yr5LOkViPUAMVfGlDPYXQcB5tYLmNGYfM8iI0FIba0ZTc/ASO91lDFWgEsPCjG98+R5fvKLz3Lg3Byzo1W+/KOPcHTPBCNBSKwUDWXnNTNjW2NL3tKCPihyEN0M4nuXibBENfAZ9u1r+taRCbxHH0BNjeMfP0Xw0mtE0uupNgMQFu/txQjxgylI1/cxXpJ+px26TVa0kJc9b0WX04tBaTsv7EsrcFeqDhpjSLTCFwJjVr6ew+FwOByOK4cTiNucUHqFTbwmlF5RjRK08n6B2K7+CSFIiwpj2zxlpbiKUEhmi6iLXGtqeTq47Q1sRRAwe2r2B4VYFEfHEM0QU+2KkCjcGMXZlfMaPSHxpaTk+Rhsu1q7eimFnZ06FzcZDUJYDBFvjyOOFtXDA4t0dNdQhnn/abLxJpHnremqOAhlbEUmEBKpFIe/9xof+vKzVJKMo7dex3/7xL00RqokSjEShCQ6J1aKId/OLCqjewSi15lBdBXE9yolz2dXVKXid733fI/40x/BANFXnqTcjDvtoW1MUUEUb0/Yiv3JkXXdX8X3mUnjznsfrINpqhQl6ZNcRDzOSuTGoI11I9bF63/w9TS5MQTSmlKtVml0OBwOh8NxZXACcZvjC0GyLAvQGAZmITZUhl+EzLfbyVoqp5HnPeKlm6ofcKJZYyFLaKiMRCuiQdeNPTg9jPE15pYZjK9gMbJziCdHMMJg7juD2dmw/77rnHULPV/tn1UcwJ5Sxbq2FtgZRAUCfCTipV2Id8YRZ4fscffW+o6hjM1QjORFVEuEIZSS6nyNv/CVF7nllaMkoc/XHzvM9MceIvbs858ZTcXzybV9jkuehyoqiGW5JAR84aGNrdBKpw/fszwwsYuDleGen+l9u8geOIxIUka+/CQ+orf9s725ouz7RtTDdd1XSXq08pw3avOd139T5WisQFspBuNiaDsO+2J14ZdqjdL2/s0qQtLhcDgcDseVwwnEbY4QAg9pq2idH5qBWYiN3M76mK4F52KWkhlFuEJVsOoHJFrxysIM82lSiKz+l404PmaNYA4sQKBhLEZoiXh1yraS7mxASVlh+Oi7MJ7A7jpCScQLu1adRRyEJwQX0hYTQQSnhxGtAFPKrFPp/kV7DsuwbZ4+O0tlFge4Oa6G1IZ9L7zBwd/7PLvn6kzvHOO/fvII9ZuvY8QP7cwlYIxg2A+tYBfgC9mx7w+7hLUvBaaY/FxtptNxbTMWRgOr98lj70ePDRO+eYy7z873OAl3ZhDb1NYnEIUQjAYhT144w5MXTgN200gg8IqNps1CtdunhejM4A7CZiBqfCExBlzShcPhcDgcVx+3Mr0G2F+pMuQHnf8HQjKTxn279t2GLu02s/UIpamwxA8WZ/n6+ZN9hjCAtds/NYyRGnPQui+aPXUAxDnbQmoOLNrrSqBctLfeOoMZThDzZcS3D8DRMetyug6qXsDeUpWS8BFHx+zxDp/HfOQY5n2zA2+jjKEkPW4eHifRqs+sRhVVj+UMLTT48199ib3ffh4BfPvu6/nqJx9grhIyHkYMByGeaItuw+5yBSkEvpAEcsmdMeia3fSFRBvjTGocgwkD4h/6MABHvvMDZKO1dNlygdgM1oy8aDMShOyISpyK68Qq52yrgcRuUsSbKBBzbRuopRDoVWYLc6PRmE7uqb7UAFWHw+FwOByXjBOI1yBjQcRbtQW+N3uuszDLtCYpgqslEBctqHNpjLeGSUrJ85kISoyHEbtLlf4rTFdsu9vOJoRF5W53A33bNAaDGYl7IiM6eAZz71nMZBMRB8i3JhDfPAjzUf91lyGEsKJ4poKIA8xkE0YTazCzwsNRxhB5PjcOjfLo5F7m0qSnde9Es8GFZGkhnuUZe194nU/84bfYO7NIvHOS2Z/6cV64/TryYtZzyA8Z8gPGwxIzaYtAeuyKKpSkR8WzP2/PjwVd4tqX0i6FnUmNYwXUof2k99xG0Er4+HNvk7dbQKOlaqLxtK1er7PNFGyraZwrppMWp1oNhvzA5ooqhdmkGUBlbHVcAJreCmKmNS/MTaOMIdf2/GXh6utaTB0Oh8PhuPo4gXgtsGxNF3k2hPul+Qu8WZsDICmMbHwh8cSSic35OF5x/rCbiu8vtaFmAvHGBDRs1bJTJdxV773R/hrmAycw951dUbQRKcx9Z9GPnMDsqSFyD/HO+PoeNyDOVu19D5g5XE67gghw68g442HUcXtt5hlV3+9Y7U+cn+MTn3+KR194B2EM377rEOf+0o/g7Zwq2kbt9dqL69tHJjqznEN+wERYYkdUour7xeJYLKsgCpQxyKK9z+EYRPLRR9Cjw9x08gK73zxhf+gbO+uLWZq1XWebKSxF2LxVX6CeZ1T9AE8IFOaiDJwGkRuNMUv31S386nnKiWbdmmsV9ydYOw7D4XA4HA7HlcEJxO1MLhAv7EJ84yC0eueYIs9jNAh5du4880XuoTIGv2h9bKqcVCsW8qR/Bmq2ZE1nVkC8O2ZnDp/fDS0PLpQxvoapZv+Vy/nAecA+qhnm9mlMoGz0RSrXnktUAqar1pRmx4D7Xn51ozuPVQjBzlKlIxDnsoSJsEQYZ9z35Mt87E++w46FBqd2jPL5Tz/Ec3dcR+j51llVSBvuLSVDRUTBgcoQE1GJibCEEILd5Qq7S1VK0rdmNMYUERkWX0iU0QghXIupY2WikPhHP4YBHnn2DUo1+zo3t07b98u4rcz3GdVoED+YQnx7P+KpfX1RGGXPZzaNC5Mku0mhtSHVitcX5y65kpdohaAt/ugRfpnWpMZuWNnquj0Hw8qzig6Hw+FwOK4cTiBuVzKBeGYvYrpqQ+eLObxuRoKQllK8ujhLonNrilIsBmOlqGUZqVK9sRVHR5HP7kV8f9fg+9XAKeu6KFoB4skDCC1hR+PSX00S2NWweYnf34n42iE4vXIMBheK1tYdTdtaugbGCMKuKt6OqEymtW1z03D4rdP89J8+w41vnKAVBTzx8O388cfv49xICU+IjsAreR71PGPIDzoRBSXP57bhcXYUTquHR6e4dWScUHqdRXhPi6mQnTY8JxAdq6EO7KHx/sNEmeKeb7yA1hr2NGBfHYZsBA3nq4g3x5ccgU+MIk6NIJohoh7BTG/eaNX3mU3iznu/XUGcTWN+sDjDXJpc0jnPJC284tgGUF1tDqnWRfWwLRDt679dRXQ4HA6Hw3F1cQJxO2JAvLoDUYsw4y2Mp+H0MCT9Vb8hz+ds3LAOhcYuxHwpiniLDF20OYrXJxHf2Yd8axLABt7Xg77jcaGCSHzMWMvmGmqBGYkx181vzkMr2lTFbMW6oL4+uWIQuJiu9Nymm7Nxk4Vs2SJX9BrFjAYhCBh+9ww/9aXnuf3bL1FOct65eT//7w/dj7rrVoYC24baNpwBKxAbKuuJ3QA4PLaDw2NT9q6EQAhRmNToQmD2ziC6FlPHejEfeohsxwQHphe44eV3li6o5JgoRyQ+4tg44uUdkErEO2N2/veQbTEXC6We45U8HynouB9LBMpoZtOYuTRhMduYy+9yzictyoVAXF5BTLUiU7qzOWO6xKMTiA6Hw+FwXH2cQNxmHH8mYPfzNyPODWHKGebuc7B/0VbdBlQRy55PLc9YSFMQdvHlCUlmNPNZYldvjQDx7qgVnIFaEmmnhvuO1/6ZuW4B89BJ6xr64GkY7o/VuCjGY0yU26zEsdjOJL45YcsQ7T9tFqPObZaTa01mDOe6TGcwvQJxYrHJj3/jFX7k6y8xNl+nuW8X/+UT9/Lso3cRRz67ShVGg5CWyok8r1PpK3s+AsHkMoEoB7SL2oqlwJO9ArEdDC6cSY1jPfge6Wc+jpKC+154i/EL1i0YAeahk+j7T2MqKeJCFfHtA4jcszPA+4oZxYV+46d95aHOXLEQNqhlLk1YyFL72VDwTn2Bs63Guk+1mWfU86yndX25SU1q2hVE0/PqV8sHqh0Oh8PhcFxxnEDcRmhtmD/pETbLmDDH3HUeAm3Fmq8QJ0b7WslCKUm1dSxsL8Q8IVDacD5u2rbHeVtdMAfnMR86boPuhYEzw/1zgIuRvWyqaV89/iYv6ASYI2cwD5zG3H3WPq7TI4jv7Ed87RDiuT1Fz5qARoCJ8iXn1PbzZGxL55HxneRFzpo9tiEQHmJ+kdIffZWp3/5fHDozy/xQmfkf+zjn/sKnOD9RGO5g5zhHgpBE6R4jn7LnU/Z8RoK1jUFC6eFJm1XZ3WIqAa1xM4iOdaN3TvLc/bfgacNDT7yAnxabMqG2GyuHz9t53FxiJpuYG2ehnNu53lq05kyvAWpZCtjPhjZHG4tcSAe4EK/AYp6SatXTzq2WVxC1Jtemx0UYnEmNw+FwOBxbAScQtxFSCu760ZiTD76CeexdG+sA6DDH3DYNYFvMujLR2i6CsVrKQGwbpMxnCaH0bDspYCZiW1GMFEw1bcD9dHXpBDKJSH2oZJf3lVPN7GMLNeb+M5ihBFEPEUoiZstwoQK1Ipx+pH9WShmDJwQHykNMhKVOu9xwM2HvV79L9f/3+wTffx2ikFcfvIPv/PmP4d12M4Hn2eqq1kgEkfSo+gG+lJS9pXbbUlsg+msLxEBaU5vQ8zq/C2jPHboWU8fGOH7b9RzdP8VQrcmRp16BbkE1nGIeOYH54LvWOTjU9v08miCMsCJxNYwg1oqxIGK2KwJmLo2JVb76bbtov9+6X+/dpjctlXfmDxOd97z+nUmNw+FwOBxXH3/tqzi2EtIDHaie2IijjUWmJlPGJkcQMxXMYgjjS8LJQ5Bo1RGINrzakGhFWfpL7WejS1UCs2/RGuCcGsbsKtrLilgLKpvUTroehlPMg6cw9RCaAfL7uxBvj3diLcxAgajxpCD0PG4aGuXlE8e5++13uOH1d/G1wUQhyfvvJn3gMKMS7i4WqKH08IQg0Tm+lESeR8nzCKWk3FVBDKRkJAio+gNmNJfRPmZZ9s6H2mBwnEmNY0NEvs9XH7yF/2uuzsGjZzi/Z5Kj7zuwdIVyf9i9GYkRFyr2fT66svmMEIZY5YwGEfNZQi1PqXg+LZXTzNcvEGcHZKt2C7+mytHGkBlNqnRPi7WrIDocDofDcfVxAnGbY4pqWayUndmbqdhKQZdALBVziJUukSOEIFGKMVNGNENMJe1t1Zxs2fbNmbKNsigraBaCqHoFBSLYauVIasXisQRRi+B48ViGV6ggIglnFzj85As8+OpbeNqQ+pLF9x9GPHQEylYUd09ZBkVGZKysmI6kR9nzrUCUS2+Vqhewtzy0LmEXFhXEyFsuEG04ePdcosOxFpH0aAY+3/3QPXz4C9/lnu/+gJkdYyyO988LdyhEoTgzZDdWVmkLT7VmKvSYywwLWYIofhbr9QvEc3GzZ/7QmF7h11I5yhjyws20+33kBKLD4XA4HFcftzrd5uTGUPJ8GzhdiCWxrJWs7HnUsrRTQWxjMHgLxczi2DKhJYG9NdvGebqItSgqiKZyaQ6HF40A874ZG9cRFwvQkaVzOdpYZDFLmZie55PffJmh3/xvDL3yJsrzeOa2A/ynH32I+LH3d8Thcnxp5wRjpSgXpjQVzyfyfMIugbe/MsSDk7vXdcqekEUFsncvRgqBcO2ljg1S8nyU0czsHOfle2/GV5qHnngBL1tFwE20MMMJYrGEeHZPX2ZqG1PkddrWUMFcmtDMbV5qrPork4PItKKWZz0zu9BbQYxVjsAaSaVG9baYOpMah8PhcDiuOq6CuM3JjbaRCSqH4UIs1Xpn4yLpMR5GfSLFGBDn7IyhGe03oTB7aoij44jzVcyN89AsjnsRFcR6nuEL0aksGGOYz1JqecqOqNx3bisyEcN1C3B8zFY4I7twFUpzy/FpHnznLLsvLAKghyokDxzmu9ft4Kn6DGNh1GMUM4iS5zOdtBgq5gvb84ah7I8QWS8lz++pqMBSBdFb43wcjm5CKWn7fr5+1w3sPDvL7tMXuP/Jl/nuY3fDoA0HCebIaXhhN2K+DE/thwOLmIkWhDkMZSBsNmJeCLmK53GyWWfID8i0prXOGcRmnpMqxXiXgZMUVjiCrRDGShFIj0QrErVUQTS4CqLD4XA4HFsBJxC3OZnWBEKSAETKOhbWQ+tYWGgPIUQnwL2NLyTluSHE2WFMmMOuATb21RxTzhD1CBN7Fz2DqI1hLk3whSCQGVNRmYUsxQA7owpNlVGSHm83FtlXrq4pFs1Ns5BJzGhCqRlzw+snuOGNdym3rECeGy5z9PBN3PzIw+B7jDcWMPUZfCHx12jpLHl24dqeL5RCMBFGnUDxi6HqBX23l9gKoi9dBdGxfnwpEe0qmxB897G7+fjnv83Bo2eYnRrlzTuuH3zDwGCOnIF3xuHoGOKY/QOgb56BQwuMh0tZiVU/YC5NOBc3kUKQGZtbuFZLdENlaEzPxkcgJLXcfmZk2prThNJW6jNtOjOIAmdS43A4HA7HVsAJxG1OpjVl3weEbb0cSaxRTSNcqigOYFdYRry1DwBz+wUIVvDAn2rCiVGYqUDLtwI0XMMvfxn1PGMkCLlvfCdPTJ+05200+yvDeAgWGwm5MUTSYzFLOwKxkWcYTKea10ag2TXyA65/8yR73z2PNDZq++i+SZ67aQ9ndk9w4/AYN/tWlI0HpaJVdG2RV/F8tIGhLpH60OSeS6ogTkUlhpYZ2nhCIBH4rsvbsQGWV8DTUsiTH7mPj/7Jdzj8zOvMT4wwvWcSsGKrUbz3AFtJvGkO9tUw56uI+RLifBUxW8YcWug5big9MqOYSWIqno/ShkyrjkC0/156TyxkCUN+SFPlYJZlgXoes0VMRqYVyhhC6RFrm4UYFcdcPqvocDgcDofj6uBWp9uc3GhGgpBASDKjl0Th4hoRDHMlROJjJpuwo7ni1cykvUycHEZo2Wkvbam8yExbm1qeckN1lMmohMC2l6pCEA4FAVlheV/2ffsY2qeYJcynS9XKoYU6dz3zOj/8B1/ng195lv3Hz5EEHi/cdoD/+WOP8qUP3c2J3eMo6KlCjgQhQ35IaR0ir+z5BFIQ+X7Pzy5lVvCusSmuq470/EwW+YeeqyA6NsCgCt781CjPPnwH0th8xHKjBdhMwzPxgM6Acg7XLWDuOmczTWuDPytE4X5cLuYe27EXJ5t1vnLuBKYQc8povjl9ipPNGvWsv7sgkh5NlZEoRWZsLmkoJS2VodGd95atVK5v1nEQscr59vRpcr2xDSyHw+FwOBy9bLiCeO7cOb7+9a9z9uxZkqTX2EQIwS/+4i9u2sk51iY3hqmwzIW4Rao14bB1HhRvTGJSHw7NwwANIs4Xs4cDWkvrecb5pMUN1RGYiDHCIBaL9rMhKwpn0wRtDMNrhMXrorq3vzJUuIRKlDEooyl7Xmc2L9OaUEgyIcm1LlrpoJKk3HD8AtcdPc3U+Xl7zsCZfVMcu2k/T09VwPep+r414VECjSHqEohSCPaWK2TrqE5ExbzhpbSUrgcpBELQZxzkcKyGL+RAG5fjN+9nYmaBm157l0e+9jxf+9SDZEYTSg9tzGDHXQlUU9tCnnided42Fc9jLk3YVSrTyDNSo9HG8MrCDOeTFi2lqPg+s2nCubjFnlKLWp4RLtv0CKVHojRNlZFqjcFW0BOlUBqkv9RiulFxZ4zhTNxgT6nKYpZyPmnSUjnDcu2MUofD4XA4HIPZkED80pe+xN/9u38XrTUTExMEQW/bnBOIVx4DVHyfIT+klicw1cTsqsP5KvKtCfRUs7/V1ADnqxgM7OgXiItZil9kJUoPe53zQ5gdDcwNc/YQxgz0w1h+nIUsZVepwo6oTG5stUAZg0EQSq9wOxRkWjMZlQikR1pvcPOZOR58+yT7pxeQxYq4Plzh6E37OH7TPlrVMspoRBKjtK1uVH3PPibT34q3vzJMfR0Vz1DaeIv1VBsvBa9wMXUC0bERVpsBfOGB2xibWWRqep77vvMKf3jfDUSrCUSwnw31yFYRo1bPRUN+yEKWEUkPIQSpVpyNG5xs1THGUM9TKr7PhaRFPU852aqjjelr5ZbCtr/XizlEgX3958YU84pLFcRcb6zF9HSrwXdmz/KxnQdoqpx6nhFrxSqhHw6Hw+FwONZgQwLx13/913n00Uf5lV/5FcbGxi7TKTk2gsBQkj4jQchM2oLQYA6fh2OjiDcnEWeHMMOzvTdaiBCpjxlvDZwn1NjojExrIs/D3DmNyWagZCsMxhgoql/tat9yMq1ZzFMemdrDjUOjtiJo6FQQBdZwI5JW1JXrTe44foHd755j7NT5jihslkPeOrCDCzceYGbnWI9LY6o1gRRoQ2eGUWAriMsX0oeWtXiuRCAlpXXOK14KrsXUcTH4QiIRA0Wf8SRPfeRePv5HT3L9W6e4rxLw/TsOoYxZ8YPeDCeIM8M2O3WqVyAGUnKo2pZahkxrTjRrSAQKQ0NZwXe8sciIH1ojKimpDjKZMnam2M7yCiQSbZR9HD0mNeuvICpjeHFhmvNxk3qe0cgzmnlOvE7HVYfD4XA4HIPZkEA8e/Ys//gf/2MnDrcUgpLnMRKEZN2777vq8OYknK3CTbM9babihBVLZmd/9TBRilB6nZnGCA88A95S+1msFZH08IQk0WqgQJxObYvq7SMTRa6aFYe+kLbypw2jZ2fY8e45fvL1t9ixsDQH2YgCzhzaw/N7x6hefx1vNObZGVUQxuB3LYptW6pHjCLXmomwxHQS09TZRQfQh8Ij8jwieXn9mzxhl8WugujYCL6UyKIKP6gqGFdKfOujR/jIF77DB146RnN0mLPXrZLZWXQXiFq4RgKhnUc8Fzep+j61PKWWpTSKdvTxMOJCEqON6Ym4aOMJwWKWFoY5pugk0F25i3TcUtfLyWaN060GnhDUctut0I7OcDgcDofDcfFsaBV87733cvToUR555JHLdT6ODaCMRhbZglU/QIiuJV5ZYcZixHwJsxDBWDEvOh8tRVvsrfUds5an7IzK5NrYllWCvuskSjEShEgk9TyhSoAympOtRuECaheAh8d2dBZ/GIOYW+TOt0+z4/QFdp+bo5IsGVrMDJfJb7qO5MaD/C/RZFe5yoU05uFKldfq85xPWihjOFCudo6ZasVIENFSOS2dMxKE+FIglVgz73AlAikpSY/Iu7zCTVK4mDqB6NgAdo7XiqtgBY+x+alRnn7sbh752vN89MlX+JPhMunOycEHXCE7dTkGmE8T6nnGZFgiVjmzacJQ3CRRilJUti2iRg/M9gyldTJtG920RW63xhUI1AZaTBfSBIwglIK5NGE+jcmNJtZOIDocDofDcSlsSCD+0i/9Er/wC79ApVLhkUceYWSkv22vXC4PuKXjcpAVLZYlzxuYHWh21a2V/bkqphCI4k27UDQ3z4LfvxiLleJAZZiZpMVs2uq7HCDWOQejEbTRnetkWlPxfMaDEoGU3DEywY5mivfGu/jvnsY7dhK5WOfB4hhKCpoHdsPN1/O/q5oTJY8f3XuDjYM4+TZZMa+4p1TluuowN1RHeW7uPPNZyngYde5zZ1SmnmfU84yKb/MGWzJfM+9wJSajEveN77zsAfaeEEgpLvo8He9NfGmNntaKgzh+YCfcdYhHvn+Mj339Rb72I48QV0r9Vwy0zTpthphMQDD4uBKYLQRYuw17Jok7mYYAo0FIIx+ckRp5krks4WSrzo6wjFfMOPfch7CuzOulrnJ8KYik5ELSopHbecn1uis7HA6Hw+EYzIYE4mc+8xkA/v7f//tLlaFlvPrqq5d+Vo41SZRiLk2o+gGh9BjyA7sD372Dv6MBr0/ZDENmIfZsRbGcwZ563zFzbSuSu0oVUq1XdP3MtWEijMiNIdPzAMhcsWd6gU/mLYLT5/FOnkU2lwSmAdTuHRzbMcIrExWOTw3zo9fdwmRUIj3xFkEaW3MYzyeQkljl+EIy7Af8md3XdY7ztfMnGAtChLCzhqNhxFASUMtSIulR8X1q+cW3mHpCsqdcvajbbgQpBB7C5cw4NoQnRNGmbYhV3nEBXk5mNC/eeYjdjYQb3jnDo199jq9/8v2oYOn6tSyl6gd4Iwm0AlgsweTgTSFPCOswWnwkRNJjMU+pNVPGA7thU/UDqn5/x4G9vs/pxiK7SuXOfK/GILp63wXWuGa9NPMMXwgiaVterVGV/bfD4XA4HI6LZ0MC8Zd/+ZdXFIaOK8u5pMWh6jDXVWwVd8gPKHk+sVJU/UJ2lBVmKEXUQ0zLh9migjDVHBh9UctTJqMSE2GJmTS2jqADKKUZu87M4J+fYezESfYutBheqHeMZQCMlKg9O1H7d6MO7CE/uBfKJY7NnOXt+Qt4UuIXBi1VP2AxT605TDH/2FI5E1Gp5/W2u1QhkJ413Sh+XvZ8xoKI6aRF5HlUvQCP+KJbTK8UnhC2iujeT44NEnmS+TRhtpVwQ3WkI7jOxS1CKRgPS2RaU/YCXv7g3ZRrTfZML/DQEy/w5Efvw0hJpjXnkhaTRjM+FiPODcFCtKpAbKm8s/ESSkmiFAbWZegUSMkN1ZGeirkVh0sfGu0W1fXSUBm+kESex1xmOySGfH/FKqbD4XA4HI71sSGB+BM/8ROX6zwcG8AAu0plPrbrQKda6EvJWBAyn9mZwA6TTaiHcKGCmLcC0aywCKznOXeNTiGFoCw8hhoJO+dihhcaDC827N/zdarNuHObvcXfjUrEhYlhdt98E2rfLtTunRD0v7xK0rP5bHgEwi4sh3y/0yorhaDqB8ymMZVl1RGvMOjQxaLSABXPOrgGwjqiVrwAKQXBZY6puFSsg6m87K2sjmuPSPosZDXGwmjJSArIjSJTMI5tvx4rRQSezx994A7+4ldfZO/JaY489QrPPHIntTxld6nCQpYwPlq0ny+UVjSq8YWkoXIqhRi0FXwYWaFiOPAYa1T1S57HbJownyaMFW3kK2GMoZXnRcutjdEQQCA8Wkr1dlI4HA6Hw+HYEJfXqtFxWSh7PneMTvYtgCajEufiZs/PzFQTcXwMcaECCxFGGBhvIbQmaMaUGzHDzYRSrcnNi3XeZ44R1ZrcNrvAHXm/XbwWMDdSobp/L/GOCb4mWmQ7J1kIPDwp+ez+m1Y998DzrLmOFJ1qxJAfEgm/sMCHkSAkVnmfQPTFkoNjrjW+kJQLg56S53VaTAMhe9xOtypB8Xgcjo0QebaKPuwHy4LlRacgZw2cQnwhaYU+3/jEA3zsT57i+jdP0qpEfPGWveyqVphPExhOMFLbCqJhYHeBJwSNPGMiWBJuBytDl/xYugVpKD0yrTnWWOSecMeqt7Mt8JpSsckkAGMEvhRkuertpHA4HA6Hw7Eh1hSIn/3sZzfUVvo//sf/uKQTcqyMiROiVsIhJbg+AzG7gDAalIY858DCAo0LF9gt5vEzhZ/nBElOtPA60UxCpJtENIn+oEmUrN6GpcOAcxPD1EeHmB+pkIwPUxsd4mQkKZcq/Oi+61Fac+bEG9a5VClK69ixD6REG/CF6G0TDZdcFIeDAANU/V5nRa+Y29PGkBZmGWXP71QR27mKQ36wLVqhQylxMYiOjdJ+jftC0jJ2E8cUs3vtl70yMOyHaGNQBlpDZb7x8fv58J98h9tffJszvmDPB67jdNwgNjnl4dRWEJsBVPs/G8qeT9nzOoY0m0Hb7bibkSDgjfocd4xOrjpHnGhFbpbyTifCUlFBlOTGFAJx/dVNh8PhcDgcS6wpEG+++eZtsdi+1vG+/zrJ57/CbgM/tMJ1bin+rEXuSRYrEWKoymIl5HzkM18OObB3L3t27caMDJFGIZ87+SbzaUogBQcrNjC7FTfZW4g5T9ioBmUMBrOuqp1f2PRH0uu8rqaick9gfMWzxjulZbNNUohCYBrAEEkPX0p2lytUfJv1Vvb9Imtt6xNKD8/Z1Dg2SMmzAnFnqcLcom33zk07W9B03EHLnk+iVSf+5tRwiS9/+G4+9dXn+chzb9G67kYmh8vMpTHl0RgWSogfTGH21WBvr4mVLyX7yuuoGBpsm4G3ttlMIGWf4BzxQ07FDc7FTfavUqFMdW8b6XIX51j3dz84HA6Hw+FYH2sKxF/5lV+5EufhWAMzPoq4bh95moGQGCnAkyAkSInxPVLf4820SRCF6DAgC3xy3yMthcR+RJKMkOxRqMjnVKvBR3buxxeSr5w9RsXzuX3/Tehi1z0Aql7AWDXiQtIi1arTAjYe2llGUQg2Y4ytCq6juhAWc3fdxhaTUYnJaMmC31YrllpOuwmkpFW0vrZbUD0hO+e0t1RlZ1S5uCf5CrOvMsRouD3ErGPrEEmPA5VhRoOQduJfbrSdxzOGVCsQhuEgRGcJ7Z7RhSzjhpsOsVgaZeyPvkblD7/MHZ/+AF8qacyOJpwYRcyXEfNlTCvA3Di3sRPLJOK53dAKMI+egHB1kbi71P8+bW8a1VdwIrUVUUOi1KBO2AJ7ucNxtVFGIxFuk93hcGw73AziNkHv3030t/4S9Zk6eoUwaWU0T7/7JoGUNk9wIEu/cl9I9par7IjK7IoqVJbd5r7xnYyHEV88e5xYWYEoBD2tW54QpEYXFcS1BWK7glhaxUSmVFQPB7WzBVLSwGCMXSgvRwhBsE2+jG8ZHr/ap+DYhtw4NIo2htNxozPEl2tNqXD4rRd5gMN+UDh6miLCBg5WRvDv2kWSZJS+9C1u+8K3efmxO+HAEOax45iFEuLlnYh3xjGBgoOL6zspJRDP7kHU7IyiOVeFA/1ROuvBQ7C4QpbhscYiZ+NmIS4Hv88NYkWB6XBcSZ66cJabh8fYNWAzxOFwOLYyrr/tGsITkv2VoXXlgBkMfhHU/sjkHu4Yney7zsHqMMNByI6oTKxyjLHCrFsgBsJDF21t6xGIofSKFtOV9yZKnk/ZCwYKwLB9f5h12es7HNcaJc+n4gdFm7b9WWY0Fd9nOAio5SkjQWgzRYv3ZDvCZrKotGf330XyoQfxspwf+8bLjM4sQqhhRxNz7xmM1Ig3JmGutNJp9HKhgqhFNmMVEGeWtYeuP96QUHrMF7EVy4lVzqlWnabKVzxoJCXn48FOzQ7HlaSlclvRdzgcjm2GE4jXGDcMjaKKNqxVMXSiIHaXq6vayk9FZTJjXQMD6VHtmvcJC9MZDesKp/eLqIqSv5pA9CgXrqTLCaXXaTMbdLnD8V6h5Pkdc5pca4a8kFE/opnnTIVlwL7fDBArxa5Spcc1N33kPmYeuJNSlvPYl77H8HxR8RtLMLdeQBiBeHVqXefSidC5YQ5TyhDzZWgV73ElEM/sQTyzZ11CMZSS+TTtPLZuEq1ZzFLOL3Nr7qbs+cyk8dqfgQ7HZSY3GvcydDgc2xEnEK8xdpeqTIbWeKKZZwMXWdoYRJeL6FqMBCEGawxR8jxKXQLRlxKNwayzghgISVC4ja5EyfN5cHL3QLOZ0LP3p42rIDre20TSRsuoYvNmKAgYDSN86XVmetubNsoYxoL+TaD5R+/j+Zv3UopTPvT401RrhfDaV8eUMmgEoNbxOTFfHHsshj2F0Dw5bBfHr07a2ca5LtG4CqH0iHVOPKDykuicpspo5NmKnzdlz6ORZ9RWaFN1OK4UyuhObq/D4XBsJ5xAvMbwhODW4XE0sJBn1PN+y/q2vXywziDpET/EE3ZXfzyMeqoQYeEqqjHrMqkJpOyIxNWYisoDB/ujYs7KYAaa2Dgc7xUi6eELQVZkIbbNnYb9gOFic8XO/MoiN7F/w8X3PJ649wbeuWkf5WbCh774NOV60Z5ZyRCItUWdElCLMGEO5Ryzr2ZzFY+Nkj43ijg9vHTd2fKajyuUkkxrmgNyWGOlSJUi1mpFgegJicGsOMfocFwpcm2/qxwOh2O74QTiNcj7Rsb57P6buGlolIbqX2SpQiCuR9ABDAUBVT9gIipxz1hvgLVtYbNfgetpMZVCUPGDdYvT5QTSwwDGcNHHcDiuBUIpCaVHbjQgOq3ZI0HIiN8lEBGERTTGcnwhkdLjew/fwbvX76Fab/HhP/0ulXprKQ+xsUae4EKEMMJWDwVWJN48izACdbyK8RX6hlkAxDoEYntjqKn6N7dipaj4AYtZir9KiKhBMJ/FnGrWqa8gFOfSmDdr82uej+PyUc/Sa7bSa4xBFYZqDofDsd3YtBX2X/krf4W/83f+Ds8888xmHdJxkXhCUPUDdpUq5EV1oRsrENeu4i0dT/KhHfv41O5D7FzmxhZID23sunB56PVKVP3BBjTrwRcCUdiGr1fgOhzXIkIIql5AVlQpIukxEkTsiModI6lASqS0uaNDwSCBaLNMcwFPf/Aw7x7aw1AhEsti3l6puYZAbM8fjnUZyxxYxOxsIIYzeP8ZOLSAEcZWENexYDbGDKwgJjpnuBCIq20QlaTkWKPGl8+d4FSrMfA6F5KYo42FtU/mMqGM5rXF2U5u5XuRd+oLvFGfv9qncVloj164FlOHw7Ed2bQVtjGGkydP8jM/8zN89rOf3azDOi6B8bAEgr4FiEbjCdEJmV4Pu0oVKgOMZUJhTWqAntbT1XhwYhe7y9V133c3tq3MVizXO0PpcFyrVIOArJjVi6TPkB/woZ37O+9FXwg8BGNhOPD97kuJJ+1nhJGSpx87vFRJfOErVPJFRHNZa6rp/bc4X7yXx+Klnwvg7vOUPj4NQxl4BkZjROZBfQ3Bif0sGdQiGis7B32oOkzZW7n1tez5nGjWWMySwvG0n0Srq1q9auQ57zQW3tMulxmaRtZfKb4W0KZ4Xzl96HA4tiGbloP4n/7TfwIgTVNefvnlzTqs4xIYCyIqXkBL5T3RFMps3vyerRqarn+vzfK8xQ3dnxQYIxBifS2tDse1zJAXsJhnDPsBpQGmTULY9tK2q+lyfCGRyI7jp5GSpz94GCME171zmg+ln+OJ4R+ik2gYe4jv7oNAYw7a6puoRZiRGEaWRVMI6PlImIhhvgwXKjC8euUulLIv6kIZjTKGQHirikOwXQrXVYaZTeMVRWA9T0m0Rhm9oc2yQcwkMWdade4cW5/rK9jHk2vznq4gKm0GthJfC7Rn810F0eFwbEfW/a2Ypin/4T/8B1577bVVrxeGIffdd98ln5jj0gmkZGdU7ttB30wHUE/KYhFoW9UuN76QnUXnelxTHY5rmZuHx/jg1F5uGR7vcRfuZsiz7qaDkIVZVbdIMVLy9AcOc+yGvVRUnQ8d/ROGFhu2WvjqFCL1EY0Q+eoO5Kt2JtncMrNSbv3ScXdamSnODK/ZZhpI2ZfnmnbE3Po+Z3xp2+jrK+TC1rOMXGsS1d+GvxFyrfnu7JkNt0raOCK9rjiOazWyIzd64Jz8tYB122agk7jD4XBsdda9wg7DkN/4jd9gcXHxcp6PY5PZW64Sq94Wps3MELSLNYFh/RXES72/tiucqyA63uuMhRF3j+/goak9K77/bhweZXdUGXgZ2OiYPgEiBd/7wGGOjdxMRTX4yOe/y9h3AsSFKqaSou8/jdlVtwZVe2s2O9GYgTPPHYYzzHCCaIRwdAzx7J4VHVJ9IYmV6jmvXOuOwdZ68YWkNsDJGaCuMnKjOy26F8vrtTmO1hdJlNqQGMgLcbieCuK3pk+tmv24Xcm1IVEKZS5NpG9F7Pyhqx86HI7tyYZW2IcPH+aVV165XOfiuAwcrI5Q8f2eNqvNFoimY1Jz+QWbLyTG2Pt1FUSHY21uGhpbsYIINndw4DJWCp65/hHert5JKUv40Bt/ykR+CnP7NIzHmMPnMR85Zv8PzGUJx5v1/uN0YfbU7KHfnkDMlhHvjgy8ni9svmP3fF5mNlZBBLuJlBnVN+enChMcZQzJJQrEt+rzVDwfhSkcZdeHrSCu3YKYac1MGtO6BittCrMpVdytiDamM4focDgc240NrbB/8Rd/kd///d/nP//n/8yJEydoNpu0Wq2eP46txZAfcHh0irks7exua2NWbEfbKLbl07ooXokKoi8lUtjWOOdi6nBcOpH0Vl7EDme8MPoYr47fQ2hSPnjhD9nVPLl0uW86raWZ1vhSrNgO2cwz2FPHFJ8XBgNnh2CANvClIDeGtKv7IdNWSg3KR12JQEoybfrEVapVUcHTnRzJiyHTilqeUfUDlDYbOpbSplNFXI1mntFUOVkhPp+eOTtwrnIujft+ttXJit/DtWjUo7DVYScPHQ7HdmRDKuEv/IW/AMC//Jf/kv/n//l/Bl7n1VdfvfSzcmwqNw2P8eLCNLFWlD0fZdi0CqIsWkzBrNvF9FLwhEAKaQWiqyA6HJdMKAe0mBaYgwuYcs7Lu/aSvhZz9zOv8YGvPMt3HrubU4f29Fw3N5ohPyBeZooFVpAdb9a4vioo3XMWpEEcG0PMVDBzZZjs3Vz0hERp3VPdy7Te8JSzV1QiE6Wg65RilZNpa06z0QqiNkufdfU8I1GK0SiknmcbE4ho1DpMahoqo6Vycq3RxnA2brKvMsRwsOQuG6ucp2bO8tiOfQPzLrcq2liRfKlV3K2IMe0qopOIDodj+7EhgfjLv/zLG9q9dWwNyp5PKHw7H+SBEGbTqm/t2Am4MjOIgZBIrHW/i7lwOC6dSPorL2JDDftsW+gbd15PGvrc/9TLPPzECzyT5hx734Geq1c8n0ZRUesm05qyF5BpTWnKikGT1BEzFcSxUcxwYu+rG2GNaTrHMApjVnjPaxDP7AVPY+4929MbI6BvDjsp/i8FGxJ1c2nM0zPn+PjuA3hCUs8zDIZASjSmU+VbD0qbTpVpNZp5TqsQtKlWJLq/ZTYv5j/tPOX2EYh5UUW9FiuIuqiSO4HocDi2IxsSiD/xEz9xuc7DcZmpeH6PK+BqIdMbwRMCDVa0XZEKom0xDT3PbVY4HJtA5HmdmTyNZsgPV7zusfcdIAt9HvrGizzw5MuUWgmvHb6xyLMQRJ7P7IBWRysQ/d4ZvR0NTJQjZiuIJw5hfIU5tADXzwMgED3CIdeGFd/y56qIhRIA5vhY5xgABkGse1tMY60AgzFiXdWrdhTGiWad80mTRp4zEtiq4fLHuV5UUT1TazQhLuYpqdLEStl5PZ2TLpvZU0aTXWK77NVAoTtGNdcaNuaCNX+/DofDsRW5KJXw1ltv8b//9//mN37jN5ietgYFx48fp15f3aDAcfWo+F6PU9xmVRA9YeMtpBBXpMXUlwJPSCKxOS2yDsd7nbYb8GwWM7+O4PhTh/bwrY8dIfM97nr+TY489QqiECbDfjBwOZwbTdnzeiqC+Abz4CnMwXlMKQMlkW9NwLw11DGYZS2mqjd03IB4aSfie3sQR8ftj4RBvD0OjaDnenHeKxDbgsSXrJnD18xzvnDmODNJzFv1eZp5TqMQhgtZglc0vgo2JhBzs74W0/k0RgpItJ1DTFR/S6YqKojbLQ4jN4Z8E4yCtiLaGDCg9fb6nTgcDgdssILYaDT4B//gH/DFL34R3/dRSvHBD36QHTt28Ou//uvs3buXv/f3/t7lOlfHJVDxg57d+82rINp5wCvlYuoJiSesNb/D4bh0PNFOtDc9+YTaGOazhImw1Hebc/t28PUfepAPfPlZbnjjBOVmzP96//uYisq8WZtHGY3ftYmTac1YWOqPnIgU5pZZuGUWTg8hXtmJeHUH5sGTCKClck416xxvLlL2AoToOsG5EuLcUOe/ZjSG8RhxbAwzW4aqva9AChaXZSG2VI4xAk9Kmvnq7qAtlXMubvLUzBnm0hgh6FQOZ5KYUidTVmysxXSdOYhzaUrZ84iVIiuyIJeL2lzbCuJGXFS3AkobfCHW/B1sRzSm02bqcDgc240NrbJ/5Vd+heeff57f+Z3f4bnnnuvJfPrQhz7EN7/5zU0/QcfmUPEC8u7N+02tIFqzmivRYgoQSI/SJpnsOBzvdXwhO+YvvpSdKti5pMlitrLxyvzkKF/94YdZHK2y5+Q0f+5rL7Izsw7J/dmrFDPDqyyW99QxYy1EPYS5Er6QNPOMC0mLdxqLzGdxz2eMODYGgNnRwJQzzE2zmKoVgiJe+nwIpGQxSzkXNzuZh/U8JZB2jnmt+IhUK7QxnG7VMUUr/WKekGvNQpYSFp9FBrOhTMVM2+bD1SqIscppqoyy5xNrRVpUCZvLhLbuzCBuM4FoNIGUNNao4m5HjLF/tltV1+FwOGCDAvHxxx/nF37hF3jooYfwvN4F+t69ezl16tSmnpxj87CupQZT2G5vlgOoV7SWCuwc4pUgFB6h5wSiw7EZBIUo9IUk8jwSnVPLUnwhqfqrGNgAzaEyX/30w5zfNc6uuTr7/9sX2NNI+4SKEHbW0az2GSHA7CjC4OsRvpA08pzppMVCmrCYpUtdCrMl64BayjCHz2E+cAImYigVYi9Zao4JpceJVp0/Pn2Uky07BlHPc3wh8YRcUyAmWiEF7C5V2B2ViaTHTBLTUBmJVl0VRNsyuV7SwpV0tRzERp6TFvObiVZkRhUCsd+kZrtVEFXxXRRKuWab73bERlw4kxqHw7E92ZBKSJKEsbGxgZc1Go0+0ejYOtiWTIHG4AmJLzdHzHlCIgqReKUqiKEnieTm5Dg6HO912ptFofQYDyJipZjPU+4cnUQIsXaQexTw5Y8d4c2DO/AXanzqC99l59mZvuuNBRGrVhABhooKYC3El4KGyphJYwx2btATAqbLiOd3A2Cun+/9FosKsRcvfT4M+QH7y1W0sYLLGFNUECW+kEVVbmVhZY1yBKH08KWk5HnMpQnn4xZ5EZUB4CFobaBV0uY6ri4gWiovMmYlqVKdc20uE7W50eTa/tkutMVxINZu892OtNtLXQXR4XBsRzYkEO+66y7+z//5PwMv++IXv8i99967KSfl2HxC6SGE3bX1EASbZPLSMam5Qi6mACXpEW1Si6zD8V7HKzZ3RoKQHaUyjaK6dl11BA+xrgpIKuGrj95J8uA9hGnGj3ztJa5/7V2AzijCWBghEauKMYaLWcF6iC8kiVI0Vc6OqMR8luAJgXh9CqEl+n0zsL/We/tSUVlLej/f2ptiC2lCrBUtlRNJD1+KImah/5za550WQq5NKD1ilfPKwgzlrk1RKQRJl1vqk9OnWVzF9CcztnV1NQGRaoUoPlsVhlae4wlBalRPlbbtiLqdWky1sR0tgfRItNpW4nY92MfHmhssDodj+7NWJ8p2ZEOr7L/9t/82jz/+OD/90z/NH/zBHyCE4IknnuAXf/EX+dM//VP+5t/8m5frPB2XSCQ96wqoFJHn9bRFXQo2sN4uYK5U7MRwEFL2XQXR4dgMAmmNpibCiNEgItGKqajEeBDZfL91CERlDJHvk370Yd788P0g4MhTL3PbEy+iVI4vBGPF8VYVMaHCBMoKRCPJjUYbzYgfkmpNqAJEK8BUUrhuof/2nrG3j/2+YmUoJQt5QiPP7LGkxBOCXGvSZTOTLZXzpXPv0lI5zTzrOJXa43hkRjOTxoyH0dJdC9GZvVTGMJPGHbfTQdgK4uoziEkRx+EJgdJF5VN4KN2bHaiMbVfdTm6gbdkdSIEyG8uQ3A60H59rMXU4rm2U0Txx/iS1dbiAbyc2JBDvv/9+fud3foc0TfkX/+JfYIzh3//7f8+JEyf47d/+bQ4fPny5ztNxiYTSwxOSpsqZCEubGkkRSIl3BSt694zt4FBl5Irdn8NxLeMLSSAkY0HEkB9Q9QOur4wghMAvAuDXoh1jAbBw5038zw/fRRKFHHrpHR778nNUc82wHxJKb/U5OQEMJwgj8OOIvJhTE0Jw09Ao5VbFXm9olS/iKEdoCXnvZ1IoPRbTtHAgNQhhI3MGCauzcYPzSYtaltJQeZ+plzYGKXqdmz0hOwIx04p0jZlAO4O4lkmNKo5tW33reUbkSXJjlglEs/0EYnHO7d/BtdaKaVMu3Ayiw3Gto4wh09vr83c9bLgMc+TIEf7Lf/kvxHHMwsICIyMjlMvly3Fujk0klBJfCGp5xlS0ub8vX3hX1Mr7SlUqHY73Au25uoofMOyH7IhK7Cnb+IhQSlr54Pf28WaNsSBkNIhQxlDxbPZgJD1O7xjlKz/6CB/82nPsPTPDTzz+LN7/vZ8hP2AxSwCYSxMCKRjyw94DD6UwW8GrR7SGc6rd3QI1e10zvIpALCmoY6uIwdL1QmlNb9ozjW2EoM919d1GjYU0oals5qG/7DNnb6nat8nmCUFctJi2BdxqAjE3Gl+IVY1tWirDF7LTmhsrhS8kyqietlibgci2CpzXhfj3hG1jVtdqi6kTiA7HNY0uIou2k0nYethQ2eepp56i1WoBUCqV2LVrlxOH24R2BVEZzWgQrn2DDRDIzTO9cTgcVxZfCMqerRxW/YBHp/YxGdnsw0B4Ays7tvIjqGWFINKaimeFnG1nh+Zwhaf+3GMc2zfJ6GKT6v/7P7nhzGynxbSWp9Sy/hbMtvgTdduSOtwlIEW9+PdqArFjVNPbRh8I27J6Pm72tIwa0zs/0sxzTrTsbGNL5cQq73N99ou23G48ITrOpJm2M4L5KiHpmdadFteVaBQzh0IIBFZMtme9uyuIqVEIDKlZWSBqY5hPkxUvv9KoYgaxXR1V19isnmqb1Fxjj8vhcPSijd0UXO3zfjuyoQriz/7sz+J5Hrfddhv3338/R44c4ciRI4yPj1+u83NsElIIyp5HSfoM+cGmHtvOkDjTGIdjOxJIj8Njk0wU83RtcQgQFTOIqVacajU5VBlCCFHEO/jEhSuoMlAuBGInF9AYVBjwx4/ewadfP8P1L77JA48/jbrzICeP3G5bCwctntvto/WAA5Wh3suKCuJqLaamlFv5l/R+vYkih7GlcqJl5jJ1lWKM4fXaHDNpTCtXVDyfuTQm0aojflfDE6Kzi5wVmYQr7Si3Wyo9IVbddW4tE6fKtF1TRU87U6Y1vpSrVhAvJC2emzvPJ3dftyW6MNounxIBhmvOpMYYgzb05EU7HI5rD+tWfO1VEDckEJ988kmeeeYZnn32WZ5++ml+93d/F601N9xwA0eOHOH+++/nM5/5zOU6V8clUvYCIi/rb+m6RALhIYX7EnQ4tivXVQfP9PrSQ2NbF7XRxFpR9nxaKme0+BxpKWuk0haGkefhC9lpncwlnHj4MLtvuJ7wj77Kwy+/y+n5Fv/ngZuJwwFmWVHbiXTZ15MB6iHGV0t5h4MoLhOx3yc/jbHGL2HXTGEgJQtpSkvlPD1zjlQrxgJrijMdt8i1wfPXFlS2Q8OQ6iWBuJIhjzK6Ezm0kqurMYamynq6M5QxRFJiDD3GOqnSBEVkx0ooY4i1IjOacJNcrC+FdoupKCqk11orZjsHUV1bD8vhcCyjveF3rW1ybUggjo+P84lPfIJPfOITADSbTb7zne/w27/92/z3//7f+YM/+AMnELcwFc+n6gVUNtkBNJAScY3tnDgcjqUKojKGIT8kVjllzydWipuHqlTzgJPNGkIIgkJ0RUVeYHs31c6ZSfJbb+Ttssfez3+dvSen+b/na3z+0duhvKxKGCqMMJAuEzHNAKElZqQFq+m1lQQmtloYK0W1y300lJLFPKWWZ6RGsa9cRQhBLUtp6byYFVy7Q6I9S5drTWZsXuFKFb3u9sqVZhDbwfclaTs+DO0KoocU0OqK1MiMwpdWoC5VGfvvMyscW9ti/mqijen8Gg1m1VnM7YjG/s407rvR4bgWqWUpQ36AZulz/1piw0qh0Wjw/PPPdyqJL730ElEU8eEPf5gjR45cjnN0bBLVwEdTWvuKGySUEvcd6HBcewTSQxsrLoaCgPk0YRy78B2PIkbCkNcW5wik7IiOQEpC4XV2U4WhMzeXT47zXz9xL5955m32v3uO/+vLL/Dso3dx4oa9S3cqgEBZgWhYEoONojV+NQdTWKouxv0iKJSS+Sxld5dRVyA8mnlu5/PMUlxPKD0W8tS2Qa6jJVMWAjEz7fZS05OL2E1eiG5frjyDmBYzjJ5fiL3i9+AJazjWyLoEoraB86q4b8/rF4i6EIiJ1gz1XXrlsRVD+7yKtfIxtzCpVrwwN83ByjC7y9XOz9sC+FqrjDocDsuTF87wwOQuJHZU4D1dQfyJn/gJXn/9dSYnJ7n//vv51Kc+xT/8h/+QW265ZUvMNDhWZ3dUZUe4+V9WwRbYjXY4HJuPX8ztKWNbGE1R+QIY8UOG/IDHdu7DF4KprtnFiudTV4WQE0sC0ReCNPB46iP3suf513jk+8d46BsvMnl+npceuAXdng2MFCL1MZmEsPjSLSqKJlrDqbOUW1flZn8r/bAfdtoa2wRFBfFs3KDbayssMhs38s0mhOi4l2rTm1XYjTJ2+rK7FXc5qVaowunUHttW2XwhiDyPmbTVc91A2mOtdDyFPZ+VzulK02vesj1jLjKteeL8Kd6szzEaRuxmSSAqo5EIrjHfCofDgd34aYtCX0oMZst8tm4WGxKIr7/+Or7vc88993Dvvfdy3333OXG4jdi33PBhk9hVqmzb3V+Hw7EynpQI0Z598xBCEBczfMNBSNnzuXN0su921SBgPl9yzGy3PLZbNRXw7G0HOTc+xI9853Vufu04U9NzPPWhe2iMVG2baA1IvCWBmBVVsWCNzxrPwFCKqEeYlg/lpUpb5Hns8HqdtwMpybUNvo+6Nrva32vGbOT7zZAoRaxUZ+ZvEDa3UONLf8XPTjtjuFTR9IQg0RohBJH0qOUZscopeT5Z0Qab6nzFXWzVqSBujUVMb2VNbEuBuJilHG8u2qinZeefa9OpKjscjmuLdsap7vzdH5e03dmQQHzmmWc67aWPP/44v/Zrv0YQBNx3333cf//9PPDAA9xzzz2X6VQdW5VdpcrVPgWHw3EZ8AvHTGVgZ6nMTBpzJm5y09BYx7V0EFXP7wgVA50WzXbgvA2aF5zYPcHjn/kAD33jBXacm+MTn/82zzxyF6fCKXug1AdsFIbIC/EWrONLeDyGegQzZcS5IRiNMTfNrXz9Yjax5C3vhli2uD86altY9zQGHsYYQUvlJDonkCubxqgiI0+sIowS3Vtjs4Y2VuxG0uOCjqnlmRWIWuFLgVGs6KSnCjfarbLLbYXT0iPcjpuM7efaVgp7f48KjRRuBtHhuBbRxnZBtEUihQHatcSGBGK5XOaRRx7hkUceASDLMp566il+8zd/k1/7tV9DCMGrr756WU7U4XA4HFcWr2gxFUJQ9nx2lspMhBEfmNq76u0qftBpIRR0t5hKa9xRGLQoY4irJZ745Pu5/YW3uO2lt3n4iRd4e3edl+TH0EmXYEvXWUEEzHiMODGKeGsCkXkwW8aMt2AyXukWJFoxGvRGANl4i6KC2PKRb01ipMaMx1DqXwx4wuY7xspWWdOVTGqKSqAUYkVjg1RrRJeAKneJbiEEGGukMxGW0GZJhK9UQdSFw+pqTqdXEt01YLpdTWryogXZCNMnA5U2rsV0i/NOfYGqH7hNbseGMZhi5AKMoGgx3RqfrZvFhk1qZmdneeaZZzp/Xn/9dbTW3Hzzzc6kxuFwOK4h2oIOY6t/D03uIewypFmJSHpdDpW2wmKPJzoD/bIQnwBGSl65731M757gwW+8yI1n32LSn+Op+Qept7XoOiuIC1lCMKwZYpcVhwXiBzsw956FoazvNhJrFrPc/XM87DL1mrfOp0JLODaGuXWm7ziBlCxmKdpY85u2GY23bAxDFdUzgRUSg7AVxKXbDflBT4atELCQpUVkhkYW0RUrziAWO92NfA2TnytEu4oKViZuR4OHjrg3/WY0qqiStzdE1mN01EYbw/m42WN649h8zsYNJqOyE4iODaOL/F9dCEVt2DLdGZvFhgTiJz/5Sd599108z+O2227jwQcf5Od//uc5cuQIY2Njl+kUHQ6Hw3E18IVAIDACQuH1CJTV8IToWfx7XS2mUggybQ08lkuZ83un+NJnHuX9X3mZXTPTfOKZx3nBv5WjN+9fdwVxMUvxRE61miIaIWYkhnJuW02/sx+un8fcMNcTlTHsByvOC7YRC11i8dQw7K3BSK/YCovZQL+I/VCFiYG3rHVVGYMp5gtXEkatPGc1GR5JyYWkZYWfBulbwb1Si2mmNcYYGvkqGZJXkC4TUyRixczIrYx9rgVS9Lf2qi73W9Njx7s2i1nKs3Pn+Xh4kKiv7dmxWbTjZhyOjaINaKOLjSD7GnpPC8Qf/uEf7swZlsvltW/gcDgcjm2LJ61zKYKewPY1bycE3QUTr8toxWb/aQLpWfFpTI/RWVwp8Y1HH+H2r53httr3uP/Jl9lz4jzPhlNklCFQLGQJI37YZ5DWPpY2wEQLGiHm4ALsamBGE8Tb44h3xqHlY+6Y7qzZh4OQ4bUe1LwViGZvDXF6GJ7eh7l9GvbWO1cJpKSpcjwhbIuptlmG0TKplxvbmihp5xv2VxlbKuv7WTclz2M2jUm1QmM6VdqVBGeubdW2qbaGQFRmySHWttpuv8VVp+WX/kqwKjZBrImFbT9eL8rYlueWyp1AvIxkWvdtUjkc68FgOzJsq+lSi+lGuwW2Mmun/3bxt/7W3+Lhhx924tDhcDjeA/jCVrmM2VicTXewvOmajwukxBM2PsIrZvDaSzRlDHNpbAVpSfPayAN8/YYfpj5cYd+J8/yZY/+TXfExlFScbjVoDBA6WRHHIQSYG2fR952B3Q37TXfdAub9pzBRjjgz3GkZXRe5gHqIiXLM7dPoWy+AAfH2eI+PTVA8NmUMgfRQxgwUbJ0WUyE6LnjLqeUZgVz5KzqSPi2VFy2tS4uSlWYaM2PnIlurVBAXs5SzrcEGPJuN7qreCNimFUS7QBQDKohLvxNTVBDXjy7ccFtbRMxfq+RFBcjh2Ci6aCvVpv1vg0av2MGxHdnwDOKJEyf4rd/6LZ577jnm5+cZGxvjyJEj/NW/+lc5cODA5ThHh8PhcFwFPGFbQgVW/Kz/dr07qLJTQZRIYUWMJwQSOtWVRp6RaM2JVoM9fpUImPX38PhnHuWep1/lhjdP8oGZP+b17x7g9O37BgqKVCtCzyPPMwgMTLZ6rzCUYa6bR7wxhZipYMaTvmMMZDFCGIEZja2aObAIp4YRtSJKo5J3Hne7UhcIicYMFGyq3ZpYVFCV0QRd+7XKaBaytCd2YznteI65NLEVxELIryS0cm0IhEdiFJnWA8XnmVaDc0njisy+aVhqMRXbs8U00TkS24a9XOTnhYupGTCfuBa6q4LouHzkRrsWU8dFobGCUBuDFoXpmrZdBWvN6G8XNlRBfPnll/mzf/bP8vjjj3PnnXfyYz/2Y9x55508/vjj/NiP/RivvPLK5TpPh8PhcFxh2qYyXjFTt168IjhYFy2f3YIxkh651pSk35MTp41hNIi4oTrCrG5hPA2Jhwp8nn3oME9N/BCJjLjl9RP81FdeYvTCfOeY7fiGRGlK0mPVea+2aJxdfyeMOGMbUM1ol6Cc6D+OKFprlTH40grrQTvKqqvyZAw0Vc7TM2c7i9VGnpNqtapAtHcIM+mSM6snBE3Vb8IDkBcVRKX1irMyiVYsZoNvv9ko3dtimhr7O3x5YWbbLNoTpWw7Nf0xHVrbGJPeMI/1oYz9HW2VduBrlVwPrt47HGthjH2P6+KzXK6yIbhd2VAF8Vd/9Ve5/fbb+c3f/M2eNtNWq8Vf+2t/jV/91V/ld3/3dzf9JDfC7/3e7/Ef/+N/ZHp6mttuu41/9I/+EYcPH76q5+RwOBzbkXbFT2xUIIqlqoqEnpmMQHhkRlP2fUS21GJqMERScrA6zLHGIoQK0QowSkAqOV2+jpmpMe6pP87+0zP8uS8/z6t338Rrd93A+aSFATwEU36ZmWSlOAugmmGiHBYiyOTasRknRhCnhzFhDnuW5g3NeAtxfAwxW8bsry39HIEyujMTOMilNC3EkShm1ObShLNx085mCo9GnhUic/XnPBSSxSxBsNTC28xXEIjaEEhJUgjEKv2GQy2V0RzQglovjrlek6L1kKM7521dZA0LWco79XluHBpdNWdzqxAr1amwL3ePVegiyoUNC15t7CbCYrbOCvcWpZalHG/WuHN08mqfykCU0agNy3eHo11BNF0zxqIwJbt2Xk8bqiB+//vf5+d+7uf6ZhDL5TI/+7M/y0svvbSpJ7dR/uRP/oR/9a/+FT//8z/P5z73OW655RZ+7ud+jtnZ2at6Xg6Hw7Ed8aXAExIPueEW03acha0gLt029GxrZMnzewLG7ZesZCIs2XbJqBAqsd+JuIgrEV/88N08ef/7MEJw5/Nv8tE/eoqpuQaBkCRadW6/4myRACZbVpx0VxEHlXpODiNem8QIg7n7HERdlbfxGCMMzJV6b2fs7nLbQGfQjnItS/EL8W2w7bWxyjsio6Ey1qMpyp5ftCHaK/tCUl9hxrDd1muK+bZBoqWpFGnRgtrNm7V53qzNr31CG0Bp01NBzLQmVbZqFq9QOZtOWmRbyCkw1aqzGbK8UpwbU1QQ+zMS16I90zS/zQXiYp5yulVf+4pXCc3G238dDmjHXJiuWWr7OrqWZhA3JBCjKGJ+fn7gZQsLC0TRBob+LwO//du/zV/8i3+Rz372s9x00038s3/2z4iiiM997nNX9bwcDodjO9KuIIae1+cYutbthBA2LFz0ziSWpIcp/vZEOwLA/u1LwXgYUfUD0hFrliKOjfVEXCgMb9x2Hf/pz9zHhZ3jTMwu8v/58vN85PXTeNowHkb4Qva1/IGdD1nMUsxk0x776BhMVxCv7EB8/TrEtw+AKs71Qhn56g4QYA6fg7Fli3XfwEiCSH04OdL5cSBF1333CweAep4SStmpsrZUTmoUqhBmtSxjPU+3FYgKY9oxIrbFdJD4a2dPagNfO3+SJ6ZP9V2nlWcobfpEWKLzTRVmxpiuLEyKuVRVzN2t3Fr50vwFzsWtgZddDRKt7AyisBsc3Zgu46ANVxCLd0UtG/y73C5oY7b0bKlyLaaOi8RAx2CsXYXernmuK7EhgfjhD3+Yf/Nv/g3PPPNMz8+feeYZfu3Xfo2PfOQjm3pyGyFNU1555RUeffTRzs+klDzyyCO88MILV+28HA6HYzsTSK+Y61s/1qG0HecgOu2WYMWmLFpWfel1FtbaGHxhXU73lqvM7TuPCRScHkLMFZW+QNlICAQLIxW+9qkHefK+mzrVxJ/66kvsnG8i5eAK4nyWcC5pwY4mZqyFqEXIF3YjTg8jcg/RCuC8Dc0WZ4cAbJTFzubAx2kOzWOEQb42BcdGARj2Q6pdrZjLFwzGmCIrURZB6oZ6npEq3akgzqYtonW09PpF1qIQSxXETGvSAYuUTNvfxa6oTG40F5J+odVSitxokuUCUSlitTkC8a36PC/OXyDvriBihWtL5TTzrOe+WirvCO5Y5egttEOfKr3iDGLeqdjCRsMU2g6oqVZr5nNuZdoCcauKXGV0X2uw49pmpe6EjdKuHC5VEFd3kd6ObKjJ/5d+6Zf463/9r/OX//JfZmJigsnJSWZnZ5mZmeHee+/l7/29v3e5znNN5ubmUEoxNTXV8/PJyUmOHz9+UceUG8j9uty0z2UrnZPj2sC9thyrEXkeZc/f0OsjxAq9XGs8KQg82bl9yfPxpCTwJKGUNLVtQ0UsXW9Ppcob9Xm4cQ7x2hQcHbcHDjS6OCchBEYKnnnfXrxbb+S+b77I1ImzmN/7PA/eeR0v33E9YtnMXGo0Vd9Hexrv/rOYNyZgMbKh975GvLQLcXoE9jRhpowRBrGzyYrlvF0tOHIWntmDODUM1y9SDQKqQXG/oghM73ruEqXJjGbYDxBF1EdTZXY3WljjmvksIfL8dVVthQBh2nOiHpqUDE1Z9n69K+xMY8n30RhirTDCdNp/lTGkxmYq5svOOW27zm7CZ8RinjKTxgRSIqWtNEspMVrR1HkhivLOfT174RyHqiPsrwyTGY1uO59e5c8rZQw51hRJaysC2+fUFkTtCqLY4HOnhSGUdlY30Wrp9bTdEPaxIHvnkLcCush3Rdjfm/sevPbJteYb06d4dMdehoPw0g5mh8jt67v4EG7PlHe/hrbz62pDAnF8fJzf//3f5xvf+Abf//73mZ6eZseOHdx999184AMfuFzneEksD2FeL74vmZwcugxndGmMj19++3HHexP32nIMYnyxwkgYbujzUBtDZTok15pKOWTH1HBngThlGlRrIZNjQ4yZGJ3EVEsRkUiZGKkyOTnEdSUoL05TeV9G6w1DWxWEQ5Kg5LN/fJTGgiKIfEIC9l53kKH7DqO+/Rz5H3+D+146yvUnL/Dqx+5jYfdE57xKxgqvMAwo+T7c3wBsK6sxEL+Zw2yZsDZCmvrIiZTS+BoLiSFD6/UMaiElr4wsL+0gV0gpDfU+d/NJTBD5jFXKeFJSMilBFBARMDxaphJFcE4yHkb2HNdgX2SrpdXQjngs1DIqIxENpQg8yZ7KENoYSucDSp5PNQjwlY9KYobGylQKEd3MM8JzPkFqqIxETA4vnbM/5+NLsSnfibo+Ta5hOAqpEFItR/jKJ09AR4Ig8qG09P2bzBpKwxFjoxXCmYDqUAm4+p9XscoJzwUMhyGxyok8v3POudaUzoeUfI8sMYyNV5gsrd81d1jEVGoBGIiGw57fxXbigpdSikPGxquE3tay/s+1pnw+pFyNel7XV/t15bh8xHlOuBgwPFbe0PtxEM26IboQUBmKqAYh5br9nqiMlJic6H+/bsfX1boEYhzHPPHEE5w6dYodO3bw8MMP89hjj13uc9sQ4+PjeJ7HhQsXen4+OzvbV1VcD3muWVzcOrMOUgrGx6vMzTXQ15BLkuPq415bjtVImyl5LpiZ2ZjZRJ7kqEBg4py52aXw9WYtQaWKRi0maWY04oRSLmm2UlpRwsxMnVaakMQZdVrIsRhRmMmkOqHZShEVjUoUs3GTVOXQVMzmDbj9FsSe3TT+1xfYcXaWh//gCd6+9TpePvI+8jCg1crwA5hP1OAd5D01xDvjJM+O2bbBsQaN+jqMQkZbiFpA66SEPUvfG2mcMT1XZ8Zfeu7OxU3qzYS4cBGN45SF3NBIU6Zn69S8FguNmKryaIhl7YWxB4kHo2nnRwL7Rd5Ik+J4GWdnary2OEszz/n03kPWCKeZ2ugQT6OMph4nnL2wyGhQCMssodZIyIzm/Gyd4XRpQT9baxAIb8OvgUGcmV9kIUvJ45wky2iohExrGmnK2awGmeHk7CIzpTqJUkwvNpn1G5zLPBbqLeZLTRifuOqfV408o9FMiHLbmpuIvPP8ZFrTbKXg+TTTjJnZeq/B0RrMLTSJW9Y59szMItV0Q9NAW4bZWoNaPWZ6pkZpi7nSplrRaCYs0GJmpu6+B98DNPOMxXrMhQ2+Hwcx22zQamXMLTTJg5xWbN+vM3N1Zkypc72t+LoaGSkTBGtv2Kz5jj1x4gQ//dM/zalTSwPtQ0ND/Nt/+2+3VNUwDEPuuOMOnnzyST760Y8CoLXmqaee4qd+6qcu6phb5ZfZjdZmS56XY/vjXluOQYTCIxDehl8bXuEqGgjZc1uJsPmKRhRmMnaGQ2mDh71uICSeEGRaEU42OwLRBAqjDQGSsvR5t1njUHWEES9cuo/REb73w48Sff91PvjCUW567Ti7jp3m+Yfu4MzuUXwhiVU+eC7qwAKcGbKziGDNbNYzozTeQpwcgdkSZveSiPIQ1LOs5/E3s8waphbHNQZSpdCFiyfGdO6y5xzrAeKZvYjMQ99/CsYHC1djDM08YzpuMZPEvF1b4EBlyOYOysI8pTDPSXKF9ux9JLmdP5TYnfb2OWtjSJTGyEv/TlRGU8syEqVIpO6cr8DmIiZKUfY8FtMUrQ3NzLq7pkqT5YpcazJlb3e1P6/S4nxE4VWad51PrrQ1HJJLr+2NnGuudcc8xb42tufnslLWjChX2rbibSFyZZ9jpXXP83u1X1eOy0emNJkuXo+X+lmmNRpNrjWp0lC4FscrvF+34+tqzW2pf/2v/zVSSn7v936PF198kT/+4z/mtttu45/8k39yJc5vQ/zMz/wM//W//lc+97nP8fbbb/NP/+k/JY5jfvzHf/xqn5rD4XBsS3aWKowHG3eo9otcKH/Z14wvJL7w8IUViu2FsBBLc0qR9DqGK0x1GcQEupPJ2K4A3jo83jffVPYDXr5+N3/64x/kzUO7GI4zHvv6C/zIt15hf87Kzoqhxtx7FuMrm3s4ss6YgfEid3Gu1PPjUHp9UQWxUkV8+hKZ1vjSQ63k+phJxHN7EJnd9RWvTbFSdoIBZpOYlsoZ8n1emp8mNzarq/tpEvQ+D4lWnVzCWKnC7MaKRo01vrlUx0d7XHtMGy5tfy6xLra5MZQ9n1jbqIuWzkm0ItE2AiQ3W8d1MjPWeqY787Mt6NsupFLYHJONnrM2pnDNXyWuZRugsVEAW/Ex6CKOZiuem+PyoNobApvwO9fFRp4yBk17o4iOE/W1wJoVxOeff55f+qVf4siRIwDceOON/PN//s/59Kc/zfnz59m5c+dlP8n18ulPf5rZ2Vn+3b/7d0xPT3PbbbfxW7/1W0xMTKx9Y4fD4XD0cfPw2EXdLpCSPDf4Xq9484UkkBJPSkLp9XxZt+MwpBCUPY9UK6h2Bb8HtsLmC8mIHzARlthf6Z/3KHm+zfsrR3z54dt454a9vP87P+D6kxc4+D++hnfndVy46ybMIKfQaoZ55KRdoK+whXo6blD1/E57JpHCVFNEI8QkXqd9KZSSurIVs6iYwVoe4WAN8Axe4fq65O3ZxXQFkfiYHQ0rFufLmNPDsL/Wd1WJYCaNyY1mR1hmMU9pqdwKsq5jG6xLZhsrFu1z21IZry/O0lKKO0YnUBqQBmU0Ulz8LFmryHr0EEXlcMnExRj7+If9gLk0IS6cUzOtSZS2lajiz1ag+zwEbdt78LBV0c7LWvTHa65FZlQRSbI1xdV6aefEbcXH0B1y7nhv0N6sUBt+R/bT3gRSRqO1/Qxo57leK6wpEKenpzlw4EDPzw4ePIgxhgsXLmwpgQjwkz/5k/zkT/7k1T4Nh8PheE8TSo/caHyxrIIoRad66EvZEwHQXQkc8kPOxQ3rFHffGaiFUFKYlhWf42GJ20fGB842BV3CTxnDhf07+e1PRvzEOzNc99JbfPj5t5k/dp7nHrqdmV0DNhBXmU9pqRwPQS3PlgQiwFgMjRAWok4sRiA90jShqbKOQKxlac9z0n7IxgjbWlhEX3TTabHdWwPPIJ4rI2bLmAEC0S8WKQL7XOfG0MrzTnRC55iYvgoiWJHezHMWs5RASuscikFoG/5+KX6asVIYrHGcxgrFpefBPv6wyMmMVU5L2fzFTiVzC+XqdZ9H+/FoY/AKYdcW5KIQwxtBFREgsmiz3q50wsQ3YUG+2RhjClG/NV5PjsuPMjZHdzMqiLbIb4rOBtvZMijuZjuztaaGHQ6Hw3FNEBQxF77sbzENpLR/C9kz4tctGKp+sJRRNtmyf9rHlpI95dEV7zuUshMer4xhKirRVBnTH7gOdcf7KD3+TfZdWOSjX/gux27cy0tHbqFZjjoVzNWYTRP2lqucbjV6XLLNSII4BWIhwhQC0SuEQ1Pl1Js15tKYep4SLntO7MM0xUwbvSUnA8yWrWgcj0EV59ga/PXtSztjKRF4QqK0pqVyltcmjenN7Mq0Xcb7QlLLUxoqZ8QPybQushbt75NLMKOMVY4AAiFIlI0c6X6gBtH5HTRVbuc3jSFVqhNqvpUqiO2Xp4BOJhrYSBGDFf+GjQuk3OgiI3N756qpYnNhq7QFd9NuCVbb9+l1bBBdzANvRkVbY7sEdPG+72zobOP363LWJRB/7ud+Dm+ARfFP//RP9/38qaee2pwzczgcDse2JZASXbSDdtOeQfQKI5puuitcw37QJwZUYbCy/JjLCYXXCY83GEaCiNuHA6aiMuwu898/epiHTy9y97Ovc+jt0+x59xzfvv0gs3e/b3DbaUG7Mnf32BTzaUJT5VTbWYujxRziQu8cIkbQynNOtxq8XptjOAh6zl8Xs3gSYef80L3PSzOw7aUjMQQafDBSQ9PGICzvSPWFpJ5nlIvKqhC26kmRldhGCHoC6Zt5hlcItEQrmnmGX1T1TPHcX6o4aypr0BNKj1qeMdy1BFlqOLUP6VzcpFVUXhNtsyO3lEDUpvMaa4u5duXXGDottIL1+Rz1HRv7PKTbWMHkuhBhW1Eg4iqI7zVsi+nmzCC2x4Tz4pj2/SpQ11DP8poC8W/8jb9xJc7D4XA4HNcQgbSbh/6ygOCy5zMZlYg8O4fYrYW6BaJtyey9rSoC24NVRJy9b9lz20BKbhmdBKCeZ/jS450b9nDm4E7ueOEtbnr1GB998Sjzx6d5/qHbubDbXvd8bCuBO0sVwAqcsTBib3mIPeUqxxuLSwJxKLMxEotRj3ATwobDn4kbSAHTSYuD5eHOuY35IV5RtUt03mlT7DBbCM6JQoAKoJIh6hEmkxD2LnDbAnE8XGp/baq8Lw+4PWvYfR2vaPtNVE6q7bxfs6hGmsIk5lKoZRlBUUGOdY4QS2JadD1pI0HA8WaNUEoi6ZEa1Zkd2iotprnprQu2qwnQFh/tiq24qApiu2UtN9u3xVSh0WZrtt2pog14K1Y3HZeH9gzi5pnUFDO22M03KdgyG1ibgROIDofD4dh02iJuuZiLPI9HpvYAbVOapbpRtzCKpLe8OGbFk1xbIIbFbW3lQvS0dJY9j1B6ZFoRhAEvvv82vnNgko89/xb7zi/wkT99mnev38NL999CKnu/7BOl2F2ygcd7y1Xeqs0vXSiAkQQxV8Y0Ahiy4isQgtOtOo08Y3epgjKGUC513rTdWJsqI9XWLdQT0orMd0cQx8YAMBNdubyVHOoRtAIIe11SS57HWBBS6rqPlspZbpXiCVH8nM79+1IWM4gZVc8n14ZGnmGK6uOlOvTVcjvXGEmPXC+rlHbN6lW8gNNxg4oXUPJ8UlU4nxrbhrsVyLSGoo1ZInrEhjbtFlNrX7PaejRWed8crY0bEQgB6TauSNjq89Y0grFRM87F9L2EQm+ySU27IrlUQbzUTbStxPZMX3U4HA7HliaQEiEE/iqul6u1mNoKYu+XrW0xlWu2mJY8z7qoFgvUoOscPCEpe17PrMjsWIXHP/EAX3nkdlqViINHz/BD/+sbPPL9Y4TZUgUnNYaJ0Fa9xgZFf7RjMRaWLgulZ7OxMHhC9ojD5Y891ZpE53hGIF7egXxjCpH6mD01GO8SiOWi8tfst4yRQrCzVOmpGCYDjE48IWnligtJiy+fe5e5NCnafyXNPGc0CMmNpqGyTpX3Uudr2hVEX0puGR7veS66TXRksXGQaEUkPRSGRNkq4laZ8UmUwuuqEhvoLDy16W2YXamCmGnF18+fpJlnPT9XxiBEseDcIoL4YmhXa7ZilU53KohX+0wcgzgfNzds7rQWm9tiansEVDHXKBDX3AyiE4gOh8Ph2HQ8IdZsB/WKBLyl/y+JmpL0O/lybWz1TfblHi4nlB6BkJ0v6+XnUPL8nsqBMVANAl4+MMUXfvwxfnD4RgAe/MEJfvpPnuHQmydAGwSmU/GLpIcUvTl1ZtQKRHF2qJNTGEpp2zcHxVd0IYvYiVgpqid2IM4OY0oZ+qGTmDune76tTcUKCjFAIC7HL4xqlrfrekIQ65zTrTpv1eYRwJAfIIXgfcNjVPwAgaCRZ7R/R5dSbUm1IjGqY1q0/He4MyozFS21nA55PrUsJZIexhhilV/xCuJqC8lGUXEFunIQi9sV1YU2y11p22RaF3mTy2ZtOwtOG3mxXVFFG67agnN+Vri6GcStSKYVz8ydZzFLN/W4nZiLTTGpASnoVCTthg7X1AyiE4gOh8Ph2HSsCU2/EU3vdVavIPpS9sx0KGMoybW91aQQVP2QrAh/X+4aGhWh9EDHaXV3qWLnpQKfV+57H1/48cd47eAOqnHKA99+mY//0bfZf26BoWLmMJD28fXMV002MZUUMVuxYfZYsTqfJkuziqucc6xzcqPxFotYi8PnYXjAIqkQiExXEN/dC+crKx7XF3LgXIxfVCxPNusM+yETYWlZBc+Sat3jsnqxJEqRa02wQvU3Klp/24wGIYeqw3iFCG/kefF6uDILMG0MXzl3gtoKi9S2iQ+0pfeSW+lyYbnSKWcrZDvm6I5xUb6NF5z5Vs5BLCqIbUMhx9YhLzaCNrsapzexgqiNQbLkjCoQtg2/aIW/FnAC0eFwOBybjldkHcpVKmeeXJpBNPTm9EXSwxeyx5REGd3JE1yLoSAgVspWMUW/QGwvEjJjBaI1ojGdL/fWUJkvPHQr/+MT9zG9Y5Tx2Rp/7usvsfcPv4aYmbcCUfZWEPEN5r6zmDBHnBqB2IrcXaVyR1jS8hBvj0Pae05SiI4Fu0wLEVzpbT3s0K4g1iLEYgnx8k5orhR7MXgupi1uZ7OYir+y6F4yzRGXZMCQFFmG64kSATu/F3ZVaZsqs9XQK9TC1W6vbeSDfwdNlXdanUXhYtp+TSVadeYTYXmj9BKqyHVcLqC6W9byi1hwamM43li86q2dbSOfq30eg2iLeetk6thKtB2TN3tjwWZybk5VXhUt8dbJ1M4gysJqayvmfl4MTiA6HA6HY9PxC0fM1SuI0s5yFDNb3deVQlDx/WUC0VBap0Ac8QNirTrOnN1E3lIFMdOakvSYDEuUfI+4mNfTxmYczuwY44//zP189dE7qFdLRG8dp/pb/42hL32b4Vbav4gp5zBWOI7GVniNBpEVv/UA+a3rEO+Mw+nhnpu1MxOVMTbWQmrwV1i6RspeDhhfIZREvLJj4FW9dn7hskVLWzjGueoxtOnF7rjbhdCSi2lL5Xz3wpkNLeASpayRwzoFYpv2fWdGL8VuLLvf0636pi8mM61JlRo4v5lrTaJV3+uqLYSaebcpkFlR4OVad4K2e35uigpi12tiIxxvLvK92XPUVxC3Vwqt2dIVRG1MkWe39c7vvYwy2r43NrmdPCs+OzajDVQXRlIaU7gO21lkzeYL26uFE4gOh8Ph2HSkkPhSrDov6Anr1NjejV1+3SEv6GsxrXjriu+l4gdkhSPocmOYngqi1gz7ISXPZ8SPiAtnT1VUzgIpyYzh1QNTfOPPfZTkww9C4BM+9wp/8fPf4Z4X3sJPly3Eo0JUJF3nqkE8v7vzX1EPe24iizk2pQwi8+wxVnrqBDCSYqTGPHAaE+WI+TKo/hv47SrUsp+37w+xsmjzhexUYdszkgCNPONk3GAxSwbebhCDhNZ6EYXDqSckmt5ZyFxrnp2d5kLSWvkAF0FWiMBB551qRa5740hElxlNLU+7LlvZpCY3dgaxe8Hats4XiKXXhDG8MDfN2bix5nk385xnZu381tWu3OW0XUy33oK5nYPY3Rrs2BrYvNPNN6RqC87NiMrpVBCL92f7/WrM1qyYXwxOIDocDodj07EmNatXEINiTrHdouMtawUdCcKeL3MNROsUiG0TmUGmNn5X/mJmNMOBbf/cVSp3wuPbmYtDvhWpqTGMVaqkD99H/f/7l0jffzdSa+59+Rif/p9PcPMrR5G5va2JiviIpEuYnh5GxAGmUsy0tXofR7uV0mu3l0arCypz91nMIydtnEZ18DGhPYNo+vocRRFzEa1YPbS3TU0hEAUdgZhqxWKWMptuTCBeyrJJGft7Wx68nhlNU2WbXi3LjRWIyw1kYKlddrmbbnthuJCmnU0JY1aOuWi30nVvgrSFiyhiLto5gheSVlGZ7OVb06eY7/o9HG8uMpfGF1V53GzswnlrRkkYYxfA19KC/lpBFTOIa71uNtpu3m4t3Yw29e4WU6DojrDv12vl9eQEosPhcDg2Hb8IRF9VIBaXt3Pfls8rVv2gb5Gw3HBmJUqenWFcnjEH9Mwk5sZWEAEmwnKnmqCKitV4EBWZd4axdvh8pUTysUf42p//KK9ev5swzbjne6/xqc99g+vePAmFQBRtgahBHB0DwNwxjRGmL6LCE7Za5KdFZTHqFwO9T4S27ayw9Her3wjHK9oyB1Vyd5fKTIQD4joKfClIlK3CSgRpIZ4zrWnmGedaa1e02jRVtuo86mrYRbxtMdVF22ubXGtaKl+342Gscl5dnF3zepnW5NpQz/uP264qLn9O24XAdt4jtNvOVq4gLl8It9sehVjKV7QzmHnfwlMbw2ya0FBL4ng2ia04NVd/Fkpp05mj3Gq0W8gNK8+IvheZT5NOF8XVQrc3Tlap9C1kCV89d3JD7cHtz8HNeD2q4jurvcEgii4LswU2ZjYLJxAdDofDsel4UuCtEUnRdgLNtJ3hkMuuWvb8nvZHgVkxR3A5Jc8nkILygJnF7tkxUdwPwHAQFAHaphOpMRSENFVO6Nk5xW7M6DBffvB9PP6ZD3DqwE6qjZj3f/v7/Jmnvsie1jsQF/d9oWKrh5NNGEugnCFSH7LemUsD664g9pxHOxdxQAVRFKJq+XMLMOSHfVXbbnwhSbXqtP+2q2lZYSBxOm6se7e8kS25fm4UIayVvC+krah1tWTac9HrbjGdTWPeqi2seb3caDS6L6MQ7DxlP7aVMlGKlso7GxmruWTm2nTOv40qZnJlYVLTXizHKu8L+E61ItWqp8o+k8a2Kiw2p1JyKbSr8Fsxy1Fhq5tX28VUG8Mzs+cGVoevBi8tTHN6Axs/l4NBlfXlpFoTK7UhV+Os/XrcJBdTr5iPthV/Ou9XJxAdDofD4VgB62IqVxUgXhHMnhc7sMuvW/K8ZRlyq+cq9txWevjCGxiL4QvZZSFCp8o44keE0iMtqjol6VMqDG0mwxKVZVEVZemTa8Pi+DBPfuwIX/30Q0zvGme0VuOR2S/w0R98gd0nziPmbVXQ7CoWXpWVgu6XWkzNWhXEnhMpKpYDBCLQMQHaKL6QRSC8NRBqt5hm2rrJLmYpC+ucQ6x35QZeDMbYiqYxvRXEtgvobBqvS6ymWpMataZ4ah+3PmDhng4w/QFbsWupnExrgvZGhljZJbNdJelesLbz+USXSU17Ibz88bUzFNsL6UwrFvOUkuf1ZYheaZSx79x2C/lWoy0KDeaqupheSFq8VZ9nPouv4lksUcuyqy5w2lmFg9q727QjKzby2sq0WTH2Z8PnCMtaTO0nrLmGZlqdQHQ4HA7HpuOtw6QGrAjMtG3XWd6OWvb8noWuMWbVmbluIs8nkJLSgAgHvyintReJbWfUiu8z5AfEOkcZTcnziKTN59tfHuo7Tuh5PUYyMzvH+fqnHuSbH76fuWAHE60LfPArz/LRF77Ervg4VAsxVV1JIAq8tPjZsgpiolTPrFkPq7SYAkyEJUaDcOBlqxFKyWgQduY5262VmVJ42JnJC8n6FrbNPF8xA3EtDO1qlOybrcuLnMaWygdW+5aTFFW3tfIFsyIvraXyvgrTYMMd0bm+psvAZpUKVTtku2fO1tiaRLsdV2Af26CZrFTrngpiPc9IlOpU2a/mQr/dKmsriFtvway7Nk2uZgXxVKvBTBLTvMptnWCfk0aeXXVB384qTPXKz4kpjGw2Up3Otd6016Mu5uZNV0v48rib7Y4TiA6Hw+HYdPxOBXFtgdi2CV8uJiNpRV5etOF5Uq67gugJQdUPBkY4+EIiCoHjC9kjOndG1qimHalR8nxGg5CpqNx3nEDK/sqcEJw9tIOv7P4s397xKebHh5loXuADM3/ER779BDtPX8CUi7m2ZQJRG9MlEHsXR7U8ZSZdQYyt0mIK1uxn0CzmWggh2FOu2hZTREeINHWOJwQVz+cHi7PrqsbFA2Ih1ovEtoX5QmKMFT4vzV+gkWdF25hEGUNtPQIxz4vq4Nrn7AlJZlSfm2IzHzxP2a4gLr9kpeVioq34zLoEp2q3rHUdJFZ5R7D2nKNRfQIR6LznruZCVXe1yl5twTEIjX2Or2ZunTKat+vz1mgpu7qRJFC0LBs1cGPhWGPxis0mqkJ0JWqVCiIXUUEsDLc2xaRG2xl1QzumybJVTZkuBicQHQ6Hw7HptPMH16wgSltBHFRdKnkegZCdlk+vCE9fL+NBOFBQBsIu71Ot8KUg6ppTnIrKZNouxkueT9XzGQsiJqPSwOOsuBQoKc6GN/KlTz7GUxOfYj6cYGp6ng89/j0+8vxX2BGfQDQK0dYIILUh8P4KFURduOYNJNAYT0McXDbHjfbsjirm7DwhGAsjzidNTjVXn1lKtCLX/a6fG7pvrTtzlJlWHK0vMJ8mnflVg1mXk2ld5cWM0+pPVKoVoZTk2vTNHDZU3id27ewqNFWO6ZKIYpVZwLRYAKddArGdzye6lpyxVgMXw5m2MRnt87OPf+lxXdUKIu0W0y0qEI3pVICu1tM0HbeYzxLGgoj5DUTGXC5Srcm0GRgD8crCDLMrbVBtMrr4naSrRONosxQTs17axmOb8b5QRdWwbXLU/mxudztcC2x8S9HhcDgcjjXwheR9o+MM69VbG8tF1uGgSqMsqoCNomLjC7luF1OAO0anVjSp8YqWyUB4PeJ0OAitwQdWIFb8gI/vPjhYaErJioosUtAEZiucLu/k1IFd7Bl7kVuef4Op2Vke4w+Zru/mtfP3cF7vx0y2mLo7IcgGVxA1S06nfUJRYI1v6hEmlxBs/gLFzsPZyltLqc5zGArJDxZn2V8Z6jmvvKgaDvkBiWrHQlycSY0Ugswo2vXaRpbRUjmJVmRa2UqVEOvKZWzmWWd+aTXiwmhGGUOiFcNdlzXyQYY7VtgtZmnPZavNArYNgNKeFlMrdpeeS2MNaga006VaozDERSveXBr3vI+u5ixUu4K4VQVibnQxQ9a2Gbny1PIMgd0km1+nC+/lJC3iW7JlwqydCXqlWoVVsUmSmpUFosF0TJ7WS1a0mG5KDqK2GwyicDLtZgt2VF8UroLocDgcjk1HCMFdkzvWbAkteV4ROj74eiNB2GkxDeXqpjfLmYz6jWXAilc7U6epeEGPU+qIH1ojg66q5kqPYXk1M1Fd7VmlwjhmpmhNHc5488AUv/WJu/n6o3eyGIyxIznLB0/+KR+d/gP2nj3FkOcjEt9WA/3+SINAeisvtjtziBe57xt7cGx0yXl1Gb6QZNoapiRFiynAZFjiRKvG8eZiz/VPtuo8PXMWsK2UNtfvIgVi0Q7cvn0jz4rzUCRFBdETYl1zXM1iRnCtKkJStJjaf/cuVFt53lcNFVhBVsvSng2H1VrO7AaF7BGIyuhlew6i0/K8/HefaoUq3BwBZpKEqGPKdHXdFHW3Sc0WXDErbYpYgqtXaU21whib1VrPs6teeUq0QmnTV7lLtepkf14JlNFFi+nKAlG1TWrWIfbaxlbtivZm/M41tsrf3mBoV/yvtjnUZuIqiA6Hw+G4agRFG6o/KIcBGz2RFe2Jw95gE5aN4hdCs5mnVJeZ2FT9gIrn92TZrXjuRT5gu/31bNxACMGuqEKp3SI6UwHADKXESjEaRbxxXYnpA9ex7+1pbnvzdcbnp3lk+nEW//cQr8uMdycP9dU0dDET2d5d18b0tjl2G9UMpbBQgtG4fxtYCcQrOzA7GrCnaA09V0G8shOhJKYeYu6cHvic2ephTly0mLZ/XvV8npudZk+p2pl1jFXecRaNV1norYee34OwFcREqx6x6gmx6oIS7EKxmWdo3Su2FtKEqh/0PJ+JWhLB7QXzm7U5pv//7P1Jl2VZft2J/c45t3mtPeu9jz4jMiM7ZBKAABAkgSIWq0iKUqkkqAZcNdGMM34Ccs4BJ+RMiwNxppK0qCVWlUSCDUC0hUxkh+yi8/Deza03e+1tzjkanHPvu68zM/fwjMhI3J0rMtzNnt13u2dx9t37v3cyJrGa9txMZ7HoHOpsZn8v6kHMjCGQcjakBjsTfGT9+zsFcS6kRuuyWkNbQz9PaVTe+yoLVW0tEl6YvK+C8YqqlC8283VveE4kJTeXhEO9DGjcgwXm+finiInRSOEeNJ3nGaM8dw6GzwilgrgQhqRJtXkute6TQPvZ1eyCBwuWogrj4qtnreU/PnvI1zd2MPh5ZX9vXjYff/E+mnJO2FlMK9/7THNxXx5qBbFGjRo1anxmCKVCSbFyPq2lwnKuoxlcff7wIrgKDlfb0JlTGKUQbMdNlLi8UqPocSyeZMcq4J3uBgfJuKypEJnf507KxGjWgojEGGgYHn95i//wv/91/vDG3+UwusHa2YBfOfmP/Df3/++88dP7yLxCeIQg9MrmYTLmse8qG+U5gzyddiGOQnjQQ377JuJPb8NZPLvTx03Esw7iw81yZSzubiC0LL+/asUscHNuuTUzSu5GGHOcTmb608ZaM8xzly6q808059UNQl5vrZV/H+Y5mdEM89STVTlTw7EKqXGLXIMtuxSHecbvHzxibzKaeW1idNlzVhDPjwZnfOfkgPM0XZyZtd5Wq/WCxVSvWOimXkHM7OwMYjX4qAjSXzaDODY5oVQlWc4qQUD2ikrGt472eDQeXPq658VUQXyx1Mj9yYjjVam9LwBrLQ+G/TKxNDfGq9qfXYrpOM/KWe3cms88yTTRblY4m3vQkvjwmk+rzzKzhkAK7xxZfm2MD6u6bJ9SYzjLU87SBGNdeNp8Vc7z4I8OHrsHX1SqLWzRhEgZovWLgJog1qhRo0aNzwyhkChWE8SmCrDeLtd8gSTOVYiUIrNmqQV1J24uzCYuQ0Fuizm1SCpeb/fck+XGdLFnG7nvPrREvjuxhBA8693iD3b+O/7zb/xN9uJXaGcD/tqf/Zi/9//6A97+4V2CLAes75SzZNai/CPr4zThJEudagiIfoQ4cYE6YhQhfrQzs8/i2FlexSSE89iRwVGIDTS2myCS4AKbqpvz03NP34VwdSZnlTmqYZ6SWs1I5xwnE8IVCvFVIPwiusA4z8mtZZhP1Uwl5Ir6iSmcTc7N9xVk68dnxzwZDxfIZbFdVzOhGeucg2TM7WabV1qdhZAaIWCkMxfGM/e9VQpiatxCuAia+c/7j5Yeg8ERrgWCqDWxlKTG7V9uK2FP9moW036e/UyISXWW8kWsiUUAz8vCIM/4wdkhQ3+sRUgNiM9sVrOqxGPd/fNZorDIzyuFqXZziRf1Er5MFIFWxczzMlj/ebhM1ZyYnLHOGPjZYyXczOCLuJ6ttRynCcM8K2cQwSuIxYvEL07NRW0xrVGjRo0anxkKFW4VQdyIYgIhmeic5kuymALlPOOyXsW1MKIVBJfWMoRSEvjY9MwY1oKYWCm33NweYd46ckRxZ4QVLplvM4p5NOrPbihwi5zD1nX+ePur9Hof88XhX3Dr/jO+/u33+NL3P+IHb17n/rtvsB9Pg3Gs9f1bUBJEBhFop3wRacQwwuYC9tuuf/F4msYq9tvYOEcYie1MYGMC/dipiK25fcS9z0m6SBABYik5SKYq3DDPSbVmmGccpeOya/JloHhgMNROgZGImZ7GVUh9Gqi7ZpaTdMKPzo+wzC6KtVcuQqFoyIDH4z5bUYPEaHbUYt0JuDnJUe7qKIK5GcRlC8aiDDwoKzpSjtMJG2G8+FofrjFP+MY6I5IKjWGYZ74ew12XqxKzsc4vJWL7kxHbcfPSROLZ43Pezemc36zqfBnyK86XXRWlJVk710DxoABrPrMU07FXvx3c/fNZYqhzQrmoxDv18OJewpeJYqRAG0cWlyVXFzbR5JJ9SrRmnGvO87SciTUvWGafW1PacA3Tz7llOh+96vP+eUStINaoUaNGjc8MoZTOYrpCYVoLInphzNjol0oyGlIRCLGSILaD8Eqdiw0VoK0lNaYkswBWWHj9zM35Be77sVJca7RmZsyAkiAKX3R/ur7Bn/72N/l3/+3f4OO3bhFozS//9BH/h3/zh/z2n/6YrZMBoVAVUiMgMs7WOgydOtjKoOctevtt5I92Ed+57pJOQ78AfNaedjG2MuzG2G3tZLHSAxypPs9SN1s2dxANFZTkEWCoMzJjOE0TBnm29Dy7g41hrw3p1ZcjmTE0pGKidUVBFJdazhKtnSXMz40WwSCRr1qpbl/7ZN31KObpeMR7/ZMlzYdTCOFmymYTSB1h09ZymiYzC0ddWWQaDIM8Y5hn9PN0hrBIBKk1hFIuWFXH2qnW2jiFbNaaypUIVmo0owvqQbQ1fPvkGSfPafe0fieKGcznXTQ7deiTza5WkRrNxOQloaiS589KQUxMXtqRAyk4fYmW2hfBKM8IpVp4EJH6FOKLeglfJgqLqWF1HY21FmO5dO44MZrMam8xtZWQmuc/ltSY8h9bjgrP/lb4LEOPXjZqglijRo0aNT4zhNJZTEOxnEAIIXil1bnSTODzIJKKUMqZDsQCa2HEG+0e7Ssolk0VeDucZT2KCaQon1JXMdY5nSBkK2r4RNDKAqWopfDWTuv/3l/v8O3f/Br/8//pt/jzL90hCwO+eG+f/+Hff5f/9ve/z/ajA2bYRCedkoRuxXb6oOf+nftj3Rli1yaIcYjYb7uvtXLYmDhie9xkWc5C6O2MsBhq0pCKsc6d/cq6WbxQSp5NhqQrVAAyifiLG8i/vIb4L6/CUx9IYoEnncX5Sf+t3BgaKihnlJQPC6raMLU1/PDsaGYh6BRGRxGdGuAmiSRipgQ8r/Ruuu5NybNkSOsCi7OLu5/OIk2/7sjbf3j2gL3JdEYzNwZtXMiPMW4W0v2TUz210ndABktmFROtfRWHWehAvIqCaK3rvLvIYppoF1DyvAvqghBKipmv5ySIK/r4XhSpMUx8NYrbv6K77rNJndT+/isUxFgqjj6lnsFVGPlql8yYmbnMscm9WvfyCPtFKC2mS+ZuC7j+QevmuS+Am6t0+26xZVXQi1zzzBgf2KOdWr/skVHlXtfWcn94vviazwlqglijRo0aNT4zhEI5i+kFM2o7cYtuEBGtIJEvglgGBCsspkpIvra+fanFFOBWo81Ya4SwTnWsJJtWkRjNTtykGQREUs3auLyCWKp5gSYzplzETFoN/uRrr/Hv//u/ze/90uuctRvc3jvhv/5P3+V/+Hff4Usf7yG1hu5UgbDdFNst5hId0Sr63uzmBLacWliQMtvKXLXGxhiRBi7EZg5T1XJxcRX4zsB+lpJoZw9sqYChzhdUtRJ7bWdvbfv9/NGOUzXv95zi+YNrC0RVWK8gKuWJnFmqIA7yjA/6JzPKV3WBq60t+96UEIwrJCnzxLPY562oQT/L6ASrEybF0rPiFpEnPsCnX1HqcutsbqF/mOCqO/IFIiaAzDqyXb2nCrtsKCUWOM+S51YQtbVo7IWzb4nRpEY/94K6mPETwpGxF1IQXypBdPbSQnHS1hSxIp+JxTQ1Zqb/taEU53m60EF4ESY6595LIiDW2opleZbQj/KcUF4+4/uykJUdlavv4WL/LlMQJ36fU2P8/ShKi/rzIjXu9/LEaFdzIQDmQqXEVJ0+Ssb84PSQ9BOmOH9WqAlijRo1atT4zBBKWapuq7AVN+iFEdFLVBBjtVpBfB5cb7bL4IOWcnOLSi4uiDNj2YgaKCHpBtFM4IMN/AKiCIcJDQ9HfU5nit8FUaPBt9+6wf/4D36dP//tb/Jks8PW2ZD/+s/f5+/9P/+AL+19l4b2KlU3gc6sZc1+ZR97feAUxE1vJy1UxZYjCfbdQ2ygEffXEd+9Dvut8ucLdWHRI+u372fpEuNm8dpB6IjwqlTUp13/ngfYdw8QViB/cA35wZb7/iSAw9bsz/g6i1iqss9Q+ZCcasBGZgxnWTqjyri6DWePTX3ohrVLCKK/NrK0/0leb69dqGALUYSdzB5sKwiwuCTW08q+aGvKqhLjz5ulWNDOKoGZmc4qVvexmGEEp1BX01OdgnjxIji3xhOD1QtYl2Bp0M9pwywUdMmLLcivEkDyPEh92fu4JIjThf1nYTEtr59/MBZLRaK1V4KvhqNkwvdODi4lSVfaH3++IynLAJgCozxffKj1M0RurE8IXa2CW+uI/WUziMM8paGUJ96frKsw86R+nLvQsGlITeXzWkktPsvSzzyZ9pOgJog1atSoUeMzQyilD6pZrSC2g5Avrm2yHi1aDj/J+0ZSLbc+Pgc2owYbUYNQKtelJyQSuXRB3PKdixtRNLvY8pbSkqyFZqG2wVpLSwUoIWhFEaN3XuP/+rfe5X/+O7/Mh7e2aIwTvvzRT/i7e/+aXzn+92wmz6CZYaXbtu2kcGOI/eq+Uwp7ibOTljvnF6bNHPu1fawyiMMW4vvXYOiUzUBK/0R/+eIqkILjNCntXLFUDL36sIBhiDhrYFupm5W8OcB8fQ/bcftlbzllRDzszfyYFG4mKhCyLKEvCKJb2Lp9S30oydNK9cYwT931EcX3c5TAhyBNz/WVUzf3W26GkqliF8zdx00VcL3RoqEUB8mUIBY2vmImapBntFSwoDY4gjhVEE15fLMKVGbtbP/iBYvrAsX2ivTKZXAJlua5F9TF9sQLWvpy+3ItpuPc2SSHeer3r+ixEzML/E8LhSpbzPK6hxGWfnZ1gpgYzWmWcJSOP/n+eCtmJNXC9RppN0P8qRFEq32v4GL35/Q1jlynl8xFDvLMjQHMfRZe5KFAat3npKjtESXhnEIKUVrBD5Pxpfv384w6xbRGjRo1anymaMrg0tLiL60tWh4/CUIhaQfhJypLBrcgeKO9xgeDU5oqQPqZtYUFt7C0/EzjWhDNLn6D2UWEDXKUlCXZKdJKm8rZYnthRFuFCCE5vb7Ov91o8nYueesnD3j9p094ZfwBr/zeBxxv9fgwGvFYvIten1tEKgu9CZw2XWhNWNmHrTH2t+7B3Q3Exxvw8Tr2Kwf+OFYvqBsy4NlkxM1mG4E7D4M85VrcWnzxMzf7aG8Mpius3RF2ZwRauP07biKOm9hhAG3fK4lTELvSz2tWEwTF1JKWevvp0/GQzDgrZhFoo+0sQVNelSxwJWIyCpDfv45tZtjffIhAuNqKFUp4LAPOsqTcF21tZdbQkhlnUXbkegpXGF7MIDqiVixCXY+fJ4hGz7y3FJcTXZfGiE/h1aglM5aFxfR5FcDpDKJ7nPC8C/LcGF6iYYChzgilZOiTQqsK4mdhMc2Mmbl3Af+gIF39Q0u2cZ6lHCZjbjY7n2h/Ev/AwVmeKX/3GGuZlLOudmmNy8tGbqbEedU9XJTeF3bwVb/Hh3lOKCQps8r8Ve7nzBiO04kLFmOq+k4KgijAWjEzMyz8/gMzM8efR9QKYo0aNWrU+EzRDILnitB/GYikYn1JpcCL4NX2Gu90N8pjKJ7CFyhCF4qQEynl7GPnOYJoQhd/X7XASSEdQZSStTCmoQIi/2eJYNBp8oNf/SL/0z/4Hb79za9zutFl8+iMX336X/i7e/833j38No3hXAjGpv97c4lqIcG+furI49NOqSIaa1EIR+Iedp0N9ZGzinaCkNMsYd+XzgshuNXssBYuzu4VfYxsj+a+gVM4ReV7g+l1KsiRU94WYyKKBWURjz/SGSfe2jkx08TTzGhG2hXLTxeaU3K5VCU1wMfr8LBbzm6KcQiZUyWzCwhiQ7nU1YIAzC583TE1ffBO9a2LsBk3aziN53fKRPFCW75musXLC+qdgmjILwggSfzc1XMTxCLGwz9QyCszn5fBegUre5GyuhUoVLChn7d0M6bVff10kRmzcPeGQnL8HEE1ReXCg9HgE+9PcT8WIS7Tz4J7j+J32ot0Wj4PCnur8H9YoasAAQAASURBVJ/vVe+njS0rhlbNKTrFOFtKaK+iaB8lY75/elD+PfWfg8x6co8AMfu4rPi8jvLsudTgn0fUCmKNGjVq1PhM0Q2il5pQehXcanXYbSzvtHterEfxjP01loq+nSoBqXF1BE1PEJUQs/xjjiDmSqMQGL84Mp4vtYKAWCpaQUBTuX+6YYT0izopBHrD8PHGTT7+6g129o5560cPuPXoGe9+9FO+ePc9Hr96jY/eeYWD65vYrRHi7oZLPF0GZbF3zpB3N7EHLWifcaPRcmEPH60j7m24153G2Jt9F1Tjn7oXy6ZOsCQJVgs4bTjyueq9AdvM3RJ6PF2qqMqiWgHZzDpPlOpfaopKCzjJEnYbLRLjiLfFkBrLxOSVgBuXKtlUkrO5wBd3UQTi+9cQx05NKOdGAfoRojMmszltuXxZVbUQbkQNv/CdTjHlxrh5RT8TWaDoCXUL9+nCdqSzUvmy+DnFQM6832XJo7mfwdSsDoQZ5dmMtfWqqL5eAD88O2KS5/ydG6+Wx3eWJqyF0UIirvF3j/YzkvPfL/BkPGAzatC4IF22wDjXNFTAROty/rOYe/5MQmqWVHjEUnH4HARxrHPaKuQomTDIs+WftSsit6ZUpKups27uztKVkpHOHRl7eVlhCyiuvUTMJILOo5i/LUhrvGSnCnLbEu7+mD5vuNpMrGb2wYmrJfH3Je6+FszeP4W1+zRLGOmcrlwdbPXzjpog1qhRo0aNzxTf2Nj5xFbP54USYqml7mUgVmpGlUiNoR0E5ZNsUf6fR8XeaYVFS01gC1sUZQpow5PClgpoKDfz2AlCF7owr4IIwcGNLQ5ubNEajHnzpw94/YOH3Lm3x517e/TX2tx9+w73vpqSbl1w7osk1IkLWymJfJGM2swQ4xB73ITtMZGUDOcCUxZw0kBY4YJyLrrsXtks3hugF8XstAL02Cludi4EolAcEmNKC1iS51hrSX31hrSinEEMhOvgLGbemsoVwy90bj5aQxy3sI0MMQmn86IAgwjRdYvp8IKwJWuhX8zAmWqgjbeRSumDjqYnpakC3ur0SktsQbz6WVZ+ZoSf1QpmFMTLbXTaDVJ5e+xydW+QZzOK0lUxTyjvD8/JvOX3dquDsZY/PnzCr25dZzuefVCjrcWZX4UnAstvkh+dHfN2d51X22szX386HrLbaJYEUFsXUNOQitQYxr6moKg5/6wUxHmrdqwUgzx1IUxXCM8a6ZxWEJBozWmafCKCWL0fRaUiJfFpuZHvR1wVHKSt4YenRzSDgFvNDu0X3Jfi2kufWL3qwUWRXnxR92midfm56oVxRcG+WkiNsRZtpkFYYx/WY6w7U8J/dqr3T2HtPsvSn7na+rNGbTGtUaNGjRqfKSKpLkwx/bwhmiubTo2esbMW/WslqgpiYNC4xY+ry5hWLsRSshU3WAuikih2VIgUF6sgo06Tv/zld/iffve3+fPf/CqHO+t0z4d8/ds/5X/77/+//OqffoftZ8fLNxJ7ApbMkelhhMViXzsFQDxzlstuGHGcTlZaLWFqLy2SVFei4d+7qiB6ogxOub3ZbJffs3Y6gzjWGYGQBBJGJnediUwDbSZGk9tph6L2tQqZMZxkCY258CJx2nDv8ZUD7M2++/OumzES/Xg6g3hBXUsoJUc+qCaz1WWlLTvaXGLvovW5UEOL++okm5QBS0oszrwKIS6dpSxUI7AzqbpVjPL8hVJIjZ3WR2TGHVsoJO/3j/3XDGOjGeWLKY9OsWQhTXNx37KF/Z7onD872mNvPLUuF4E+DeVqWsY69zUFxQzip08QJ1ovPBuJpCLVZiZR9yKMtHtIICrBKC+KeUW7SOJ0SrwPgWJ1cf0gy/jO6QH/8dlDPhqcvvB+FNdeCkEgJf1sucOgKL03rCatRR2FEoJOELIRNaY/f4WHAk5dnz4cGWvtf7d7Zbv89ExRWLsPJuMLHxZ9HlAriDVq1KhRo8ZLRKxmZxAza2cW/VLMGRirBDF0xCWSroYjNxbr0w6lkPzNnVvlS7+xsctOo1mpWLgYJlDcf+s299+6zdpJnzffe8CrHz3h1btPefXuU857bT565xXuv3mLLPYKQMMvPCcVwpQLp+o1M7g2wP502yV6fskpXqnWrM93BmbSWUtDAwc+tOYygtj0C+XJ1ZYqQkyTL11CqZtjGnslQRuLCgRa+K5D/3ch3FIvM5p+njLRmo0qSbPAWexSX9cSbG+CvdGHVobYb0N/apG+6EFHLBXHmSOIJ2lSUcbEpVevsBE74mU5TdOy9qUh1cK8YREOc1GAhyN9ziy3agZxqLOlvZ6rcJ6l/PDsiG4QutJK4NVWB+FTeR+MBpykE0KpGOt8aQdjcYz2AqXHWMvEB+hUcZomHCZj9pMxt1ruoUXqU1qLOc5qTYG1z9/R+DJQ3J9VFPN/F9V7GGs5Tidsx03Guggm0gvX31rLj86PeavTu5IFd/b6Tq93YnRJ9AUCveJBwti4Ds+mCq5U1ZEazVmWsrNMPfbkK5ZqpqZm5nW4hyDCigsVxBWFPFe6nw0WXZm/HeucyIeHlRZTIbCV9y9mEPeTEc1PWKH0WePzTW9r1KhRo0aNnzPEUs3Yx6ydncWT88uWoGI3C11YSi+MCIvkSixKsLCgvN3qEArp5xWfb5F7vtHlu7/2Zf7t//m3+dZf/wpH2z3WzoZ8489/wj/4H/8Tv/KHP3CqYpg7YlQlaT6whnYKoYXtESJXiO9dh1TyZqdHdy6YRnz/GuIPX0H82S3EKMKuj6cEcBUCg1UGJuHKLsUqZIXojPQ0kGass8p5FEikUwesqRA6tzA/z1wf4Uxo0iRApAF0UpeuKnEBP7F2c5SDiKYIeKe7fuH+OQthRmo0p+mEuFQp7aUU0SkVzg45MZqJyUsFcT2Kud1qz77ePzS46L7Q1mKtU4aWqY2Z0WTWJVgWpOXxeHCh4rY/GXF/eE4/S8u7vFDqCmV9lLtZtlTrmSCPDwenvH9+4giiP95VC/miJ3Ey14N3kiUMdcbDUb/8WmI02hTXWjA2lZoC4bKHfpboZykfzqlqY50vf5gguDDM5zid8L8e7ZEZQ+LvcbskAGiocz7on8x1qa6GUxDt3N99d2ilDmcVeR1rNy8cCnklgvh4POD39x+VAVIFivk+KVyw03meLj0f2hffX7RPF9VyXNliWpmDnJQKoi0TaDtByFo4/d0ucOr4MM+uRMx/nvH53vsaNWrUqFHj5wwL1iJhaQbT/9wWgSUAj8dDIinZDQzkyllMrXUW0iBklGfebrX8abQQAuXDGl4EOgy494U73PvCHXpH57z5/gNe+egJr330mNc+eky/2+J+eMj96F1GBkeOhp78td1C0L5zBKMQcdSC97awXz2YexPh5g4RMIqwnRT79WcXzx+C+34zRwwibC5nqziWQAlR9hm6xbMs/1x0+SkhkcLg/ldV15xFdJCli2TNdx2yPqdmCKCbuiqOUQidixfGsVQcpwnnWcpplpYEMZLq0qAU4fsStU9mzIwpFcRlkBRhI4ZwhRbg0iKdOj1eYvVMKt14uZ/Z/P7pAZ3tcKkNFly0/1mWcpYvCfoBCiJe1BNUCcyz8YhQSnYbrfJ+XkkQjcUYu2BRfToe0g1CjtMJ/SylG7pKmSrfd52IboYMK36mFtOJzvnDg8eMdc5bnfWZry+frbzYGpwazVjnnGUJ2hoCH8Ay/zOnacJZls70e14EbWceaZXnf5hnMw+0Vll+J36uM5CC4RUIYj9LeTQa8K2jZ/zt63fKz2qhkksEkf+8DPKMjWj291+hMsLqOUWnfi6eY8sVCSLWWUx9ZU5uDY3i4Z//cffgr0IQhcAYd3+vSUl2xfP/84haQaxRo0aNGjVeIlxYiK+o8AuZVuVp8qyCaEm0mdpMQ2eHawQBnSAsu+8ummcJ5eUWxctwd3DO3nqL7/z6V/i3//1/xbd/4ysc7q7T7Y/4yvG3+Xt7/5q/8e+/ze2Pn6L6Pt6j7eeDmjn2V564hdNpY3Hj5xECgd0cYb50gP1rTyC6om7T8IvN8eXPs6VwCqKx1ieW+nlDTxCrr1u2psyM5iAZl8pcAXHm5w97S+xuHX8OBpenFRZzXAfJmNTokiDuxM0rJ+oaW5Ci1eme4MiPSz1dvS1tDNY6lXWZ1TPx9rrC6lwE+ayqz9DW8Hg8JDF5mby7ZM9IjSbz3YpnFYJ4liVl56LxaulFCqLGzszr5cbwbDLygSSmtCc6VdntTSgkHw/PXPATAiGeP6H1efC90wM+Hp6X5xKc/XO0SkG0qxUxcMR4rHNO0qS0DyuxaBE+SSecZ+lMv+dFSI2u/F6ahtScZ+lMwvSqaz/IMhSCQEjG+vLezOM0YSOKeDjusz+ZWs2r6lzx8KaqSBZ/zjG+psSu7I6cmJylI8H2aj2IZUiNn9HNrZsxXggZq6Cwdn8GuUcvHbWCWKNGjRo1arxEBGJK2FzFhSwrLqAgChUIWyGIBmPdXJkJInJjUEpcGH6ihGTyCUIqiqj4iXbJoDoM+PjtO3z89h06ZwNe/5MTXj34mOt7B1zfOyBVP+Zh423uZtuc2oZjI6GBdoYYRthUzhLAc0+wNidwu79iL1agOoe4dnGJeLFQTn3yYiACLJYJhlGFSMgyebBSUm7dYng/Gc2QeQDOCgVx0a5nm5mv4rhiaqOFZ5ORS+d8gWoXY62ruLjkdRJHRs1FZMPPIAaVfsAqEm/fLOaqtA/xmVeREq358fkR1xotBnlGL4yZGL2029RCSTLdHGFO4vsoz7KURpEAbJ0asyo9NbcGY2ev61mWMtY5vbDFuUjZn4x4rb1GanRp4d6JGzwaD9wcsE+h1D/D1fzBZEInCH0IkkapgLHWjHROb35Ol9k5WnBERjC1POc+ZOc0myWI80rh08nId31eLfAmNbokU9UwmkGeVR5OrQ4NOssSQikJpWSYu2vaClZTjKN0QkuF9PN0huQXx1vAYktSeJYm/MnRE37n2qv+AY8LPjpK3efy4ajPVtSg5e38o3xxzhOKLtXLH1AV6b25MaRCz8zzLlfHKWdtP+3app8FaoJYo0aNGjVqvEQEcvosPjOGWAYz8yhSLFlgVAiiEM52SADah2hEYnXgQSQVAy4mT8uQGk3oEzBjn843j0Gvww/ffIUfq7/Bzo0f8NrhR9y6v8+bwx/y5u/D6UaXe2/d4sEbN0k7qbOf9iPYmqpt4twTrLWrzUNVYRuLXYiroIT06pQpF3PWpwqOKiqE9PH4VZquBOwnYwZ5zmarooKmEs5jbJxPU1WrKKo4xsGVaIYSzoK3IGDc6zn29NrZSnWiqK44z9KZPsilr/VVmxeRn9SrrIGQjPPFBwxFQEkxVzVVEGfvk0Ge8YPTI7biIdZaOmG40mYocemSDWsIpSxTOwPrrl3q7XwIP3O50mLqrvHEV5gIITjLkjIBM5KytK+OtQZvNZRCcC1usZ+MnYIIZWLnMrzXP+FOs3sh2VkFay1D7azEE39fNhQM8pRUa6JokURYO2sx/cHpAS0V8s6a6xzNfE3Hqe8aFV4lryqImTEcJmNaQbhSXZtHqk2pILpzYsqi+YLszO9bFf3cKY2Bn5tOTE5rBcWY6JxRnrEWRJwjZkisnklThUBIjhKnMA7yjJHvsdS4GcSGCjhKxmhr+dbxM760tsmX1jYBZyVelqYsBeQXzCcWMNaph8bf97Mzy8shcZ/v7XiJk+Jzhpog1qhRo0aNGi8RoZClYpFZw2Y0ax+cV1YkAhu4BY8NNeBsfUIUVkF74RPpUD5/SA3AvWGf3bhJQylipVYu/mycY4Vkb+0Oe19eI/69G9xJ3+M1+wM2jvv80rd+yte+/R7PNq7z0H6ZRyc99FZlA2cvThALBVFMwislfVZJRvG0X3tLX+H7Kqye1aughOAkndAL55TAw5azx+6MlhO3VlHFEUIuYBReqHTGSjnCUsVEIT9wJ8yOIuy7BytJosFykiYLNth5SKapp6uQepUv9CXomTEz95k21s0oCtcTWQTDzKsv7uuax6MBrcB1dR4mCe0lpEoJwSTPyVTg7m2cIhoYSWoMqScmwiugF1lMjXVWw8waIqFIjC5nDSOp6HuS2s9SoooCHyvFHZ9w6s7pivveWt47P6GlAlpBd+V5XIXUK67dIGTgg5KgsEmKpRZhJRyBKvB0POR6pcol87Nw7h4S/mdmCeJZljDWOWtBVPZuXobMThVf6edxJ1qTWUNbBuW+LbOs5sYpuU0ZlNu4yNo68PUkkZQEwin3BeavdzXJdKAzEm9fNbbohlWcpil7kyGnacLHg/OSII5MvtR5IS6Z8yxgoOxBtAuvX35fKuHOXVMFz10N8/OGmiDWqFGjRo0aLxGFgmitm11Zm0v0nE8xDaXEBLkLBQjcE/RISgLrJlos4mKC+AIhNdorOLk1aCuJpFo6hwaUVRdiorDjkEw2+ejGO3z4y2v0js557cNHvPLxU24cP+UGT/nmnwQ8frLDgzdu8WxnBzEOXSXGJSEzy997sQtxFdxC2TLRuTOQFj13LLFlzjpMXSBGNuH11mzpuvCVHHbbdR5qa9ifjLneaLntV/ZPfLCJeNTDfGUfbgyW7mMkXRl6rCrXc39KAMSTLnZjDDeX/7y2tlRrOI/c7OONwQKhFBVyvAqpT4IMhPSpmDmhnN6rGlumfebeWrrMYpoZ16f4ik9SFV6hXWbvc6my+XSBbp2CFIhCQazOr62u1yhm4XJjPdlQpHpayRBKydC/z1mWEl4Q8qRXnKLUp1FeJXRlGSYmJ6883ClSNftZOpMMWoWzi7p7KjOG0yxlPZoGAiXG/Z5w/YTW/4ycIYhHyQRrLZGUDDO3rYnOaagAay1PJkNuNtozBDWpWIKl71VMjDt/hQrnlMpFFb24nr1gakWdXKDQDfKsVD9DoZYQxOm5aShH9FOjOU9Tl0hbSRYtkp4fjvokfoZ4kKW0g5BJni+1cUtP4i5DaTG1BmGL1kOnpIoV1y+Qki921xH+Pv88oyaINWrUqFGjxktEICTSWzdzaxcJolewCkRSkTdS9x/kVoa1llAqgrKfzxBeYDENpHzuKarUGFoqIPeLreK9qtDWcm94zmuRz8FMAhj5ZUPLzwVtrfH9rXf5wa98kd2HJ7z6Z2fcmnxUditOophH4SPud+9wbIvoyOdA++ohMEWP3EjnC8cy1nqGmDtb7XTxuB7F9MJoVtUxwFELK42rtcD1FxZKV6wUKOvsp5MAjhyZFO9tYTfHEC8ukmOpeJINud5olV8Te07Nsm+cIO5uIA5b2KUE0d0LqXFpiuLHO4h+jFHGBek87Thr5pcPYGt8oUUTCoupJPAzhhOj6VS+b6xFCGfJy6xGG+uI4tziOrPeilo5d6+0OisIomSitQsRQqCFZZRlhEqVBLRY/AtWp2YWgSHaGk+8QsYmp+AooZBe2coY5OnKBywCVs5pJsbtZ7WK43mQ6Gm9RlW1OpqpOJmFErIkVwM/n1edL0y0pqGCmYROKYQnx+68fTA4paEUgZQMdUY/S/kvB4/LDtXvnhzQ24noVH4vZWZqMS0I1FjnLsynrCmRHKaTBaV5rF1tSZWMzYfmfOdkn62owavtNaeg2uk2B3mKtpb/9OwBTRVSfdrhkn8nnKYJJ9mkJG3uAURxz1mOkgkNqcisZj8Zc1spcgyNJb83ZSWE5yIUlRtFcM70GkF2wS/ci8KjPk+oCWKNGjVq1KjxEhEU3YS+324+9EQKUSqMIAikZHDngOj6BN1OkYkgEpJWEJYzNhcriOq5FcTEB9KcZylaGiIVMG+byox2c2dR5oLcJ4GzUAK2lVVe5xaMz17dYv/+N/jO+G9y481v8eq9x1x7dMhb6V/y1k//kv7jFg/evMmD128w6HW4EgLrgmDGITYX1UT5BRRWu/1kNPP1ouC7Slg0BiVmr8vCwu6gjdASuzN0RNBaxlrTDaNZZauZIZKgDKoRmYIPNrFfmav7wClbW1GDtgoRH23AIEScNbCNDPvqKXy8DsfNBYXTwZZqTcf6WU9A/HAXYSr3x2ETuzVGcLH1OLcuCbI47vmgk6L6QHolr7CY5nPbzI1d4P2r7lclBBOTM9G5mxUUivujPltxw3XMYSv9dYsE9/snB1xvtsmst2QzVeZcKIl730A6gniaJmTGLLW7QkEQl5+j1DiL5Um2vKz9MjjL6/TEZMZgrSu6X00Qp4Ez51nKROczXY8TrWmpgImehsooIZj4YJnzzIXz7PoC+txYnk6GnGcpI3/OR3nGeO5hQGZMSQSLmdOJ1jMPWnphzKPxkHvDc75Q6fycaD1z/a11NuIqnk1G3Buec6PZ5jidEPqdD6Wkn2ccJWMejYcLt7wUAgMlSSySbYvKGvweD/KMVhAw1jmPxwN2Gy1yY1HB8hnEqyiIuZn2IDqyWCi24kKF9BcFNUGsUaNGjRo1XiJCKZBSlAvs5jxBRPgZKwBLJCQDDHSzUnEIpSKUkl4YsTcZXph4GUjpUzmvjtRo1qOYfu7tgAjmGUluDbFU5KGzhDEJEEVaZ6EgZgn7yZg32z0309Ya00i6PLz2Kg/fukHjW2vcefSEO/KHbJ2c8OXvfciXv/chpxtdHr52nUev32Cw1uZCdFJHvgYRbKyeqVJCOoVuPJx54o/vM6vOfm6GjYXrMoOJQvxk2/30rXN/rCkbUVyqGCWaOZz6d9oeuqqPvQ584dipiEcNGMTwigug2YobcH8NcXdjuo1rQwgsrE8QJ01sP1qYZbTWqzXWEJ63ysW7MBIrDfaNE+SHW5BPrX4XWkz1lBRgxULpfFFGLnzqo+suNAvqUGb0lbsEHYk3vuZBsB7FPJ0MyXzHnPG27HIf5rb7cDygEQTkxj1+EVhS7V4/XtIteJImZNasrIkRQrBqqe96IA3nWVoG4TwP3Bxesf/WB8zkjPKc9Wi5Iq6EKOf3zrOU1JiZeb7EJ2SOsrR88FQo57k1PBr1MUwTcnNjeDoe+U5ETxB1PjPnaH0IS0HqVWkx1TOfIykE3SDg+6cHvNLqOgUdFqyUoRQz1RTgft88Hg/4w4Mn3Bues+7Vy1AqMpPwdDJEW8NaEC0Q9khI7g/7rmvRWn/tpz19sZScpAm3mm0EgmeTkZ9VNEu7JotU3sugMRWb6XSf2sEVE4s/56gJYo0aNWrUqPESUSiIubdtLRBEIXzxuVt+dcOoVL20tSg5nTncjpu83z9datcrEL6AxTSzrt6geE/3fnZmIZwZN8dkhYVOihjE2GMfuOMJoiuxbjDROed5RjfIaABkvqR+vM6H3S0++O0u7eGAVz5+yp2Pn7J+0mf9pM9Xv/sBJ5trjiy+dp3hMrLYTeGg7RSzCwgiwHZU1BhMCUFhE6uew+pc1wIMiL+8hsgU9s4Z7ExTFH916xr3hv2ZVNSy6gKwm2NEK0M8WMc+7sIrZ+W2zObYHct5hHh/y5G6d44gUfCKI6F2a4w4aTq76hxBFIJyTlSeuOtg3ziBsxh7qz/tjMyn6tRFDw5yO7UVIhYVxBw3Wyhx5LSwf84HkMwX0V+EQEhGNmeYZ2VFQyyVr7gIypoSdy/O1lxo68jaOPczpv7/U1/xMp7vFhTCq3+ryd1lFtOClCdGzyQRXwUToyv00JGkQZ5dSFidOuWI+EEypqGU3w93DBNPrCOpyt8rRSBRbgx3h+e01Wxx+0k6ITHOqlrMgFavde7TOhuVGcSJ1pymyUJa7noY83g85CSdlOE5Z1kyY98OhFwgiBOt6QYhH/ZP2W00y31XvvJnbzJCIBbs+AAtFXCcTUh9kE7m1bzimnaDqCTOFsVplvp+zeVBQNL/br4M2tgyKMnNfrpttYPwrwRJrAlijRo1atSo8RIhhGA7bnB3cE4rCGioWTtZYTEtysTbQVjOE2m/eCwI4noUEyu5NK69wCryaK3rEMutoRNEM7Y/aykVCO3nJA+SsQvVqHSuRUo5FWc9gUGMGPoFXNPNHQmEi6vPnJVPhn5JnEmnwiUBtpOAsgzX2vzk62/xk6+/Rfe0z517e9z5+Ckbx+dsHJ/zte+8z/HWGo9eu8GDV6+x3wzphhG2mzglqx8Dy8Nbquf+VnPWvlqQ9YtI9sw2PtpEnDawaxPs20cz296IGuxNRi5opECzoqD0Euz2CPFgHfFoDbR0llOA09gRRJ+Mat44WeyF3BwBm24O8bXTBZtpqUoVBPFGH948cd8s5kOzShLpCmWvUI2iQjWChUoEZzt0x22wJEZ7hW+WII7N8r65ZVA+wCYz08qAzSjm0WjIVhQzTvKZ7Vf3f6w1mdHlTGFhfU19sqWbzax8TiyLibFzEBcE4TjS4ZJxRz7k5XkwzKd1JApHuga+4mQVYVVCom1OagyHyYS2nxMuPpepv49vVZJNi3M60jlDndGe2U/3denrJEIpGeuccYXAaeusrwUB6gQhj8fDhblCcPstxGx5/bPJeOZ3XCglAz27fW0ta0FMq7H8HA7yjKZabrttBQF7k3H5UciMmUkhjpUqP/OhkKRac5ImrEoaFUKUdt+LVOHCypobwyTXV77Hf1FQE8QaNWrUqFHjJeNLa1t8PDynMdeBCFOLqbaOYHWCsFRgcmNpVualukFIS4UXLk7UkoCZsc45SCb0wgglJMfphGuVYBSEZSOKvYop6AaRm9uyhr3RkOuNNrkxtIOQ3Brs+sQRHlztBcpynqZsx01eb6/xp0dPCYRERP7JfKbggv7D/nqXH/9Slx9//S3WTgf0PrjP2w8P2Tw6Z/PonK/9xXs83mhz+MZtHl+7xZjrq4NqDHDUdIminWyhRqSYTWytWIDOzPudR4h769hAY7+2X/rYtJ956wYRTRXMWtS8mmqFdQRQWUcSD1twb316ys8a2Dv9aS/kxnhxX9ZSp0ieNrD7Lbg2nacseIzIJfQjdx2q5LTo0syns1mFXe+HZ0cEQvBFXwFQqEbFuQqlZDAXxqKN9QqicPOXueuknFcQ07kAIMBdkwc9kBa2RtB2++nIjKmo1o4Uvdru+h+zJNpbCAWlOgguiTO1hkGe01KBs1b6xMzMaF9tMv3shFL4vrvVnx1XI7P8e27OzylcwzxjM2owyjOX2FlRoPcnI3bi5gLZGFQ6BAvlbqTzlQmY0/NjOU0TRjqjG4RlGqsU7qFNuGR21mLpZ6kj/eGsej7KM9bCiH6WOju6tWUFCFAGVRX3ghKSW802e5Mxm0uVdsFZ7j7Tidac5ZMZ1TLwCmTRGzjtEFxOOdxsbzazjdlzIksLsxDFLOfysnp3DQrleBUJFyRMw7lWodB/i17HmiDWqFGjRo0aNT4Rbjbb3G51UCwPSZCCssur5QNirF+oxbJKEB0huZggLr7HUTrh6+vbfGNjh++dHPCjs6kSVizc1sO4VFBaQUAkJP0sRVtnZdRYVx+Qa1ivBHV4QjTKc76+vuPn8qAThpTryVwiJu44bO+C/kMhON/o8pOvvsaffvlVvpxYbt/b4+bdJ9w6GXLrL97j67zHafg9nvRf5/GbTfL29vTn+xHiL3dLZdP2JthfeTKzNlRCMjY53WW2sI/WEY/XsL+05yydR16Ze+10hnyNfahPNwxpyGB2TqqVuaTTNaeUAtiv7MMHm/C4C9cHiL2um00EOHfEnO4Su6wA+6VDxHduIH66jc1PYGcIkfGBHZZo4LsZ1yeza+CCIGbTGcRiP0/SCfuTMW911gmkXFCNXFjI7P4UpLggURPtagPmZxCddXFOafpwE3F/3e2FsNhffwTtzJMZZiyNs4fvFDssSMlMX12RljnMMwLhCuIDJCPfq5dbO9N7F/mqi4tIwEUW02GeEgj30KQoc/94eM5BMua3dm8Dbk7wTw6f8ps7N9mOm3M/Py1qd+mtOSfp5FI3gLau6F5bS0MpzvPM9RQafDjL8vN2lqdz4S1eUbO6TAsNpJvTrV5r7bsnqw9WCpK4DLGUHCXu98F5njLRmq2wMfOz2jpSq5QLC1pVe1Ic8zDLZ7Yxj7UwQoA/F8bX2Kx4sXBq8qq52CKYSFt7IQkqZnBTo5mYWkGsUaNGjRo1anxCSCH45sburBWx8j0hnIVJgCeA0j/JNzNKVzHvsowEFlCiyHN0KBZGr7a6RFIRSzVjo0t9IMV6FPv+uYxIKloqZD8ZsRO3fM+aTxG0Fho5Ns5dWqcniEII2kHIRtSgHQTcbLaxTcUYEJmE/moFcRECIeFss8vZ5hr/7os3uHk+5suPj7nz8ID102PWs2Pe/bcwWmvx6M4uj1+5xtHdLyOGEXZ9DCOfCDoKoT1VSJS3lC1dWO913DF99zr2V564ughwltoKJjpnt9FCCUkzCNBV+1pkHCmNKsQpNNh3D+ELRy58pu/subYfzthul2JrjL3RRzztIn68g+11sb/6xC9WDdHEdzO25+4tCVaZUkG0dmrRdIrymKeTIXda3QXVKBCSsbdqFucps46USpxCNTa5IxzzBHF+8fysjbjvVFg2JoiDNnavDW+eFlcabSwqWLweFlu+b9G/WMAF9FgmJifSsnzPkXa2VFMhvOBI71mWrVaO/d4UPYijPOPu4IzXfBfmyBM8bW1pvz3LEp6Oh+VDllGecZiOeTjqzxBEYy3DOQVxYjSTVK9MMAVKAn2YTlzFhHca5MaiWE20LCz9XbMTN10PaJ7T9/vTVMFMdUduLQa75FHWcjSU4iRNMD41tdjvAsXvjOLhRGYvJojtIIQ8v9DuWcwmnueZC6mxdqmCCK4aI9F6wUkwu3/4+dbV10J7sp37oKBV2/tFRU0Qa9SoUaNGjZ8BrjfaXG8sPoWfWkzdDEysVNnp5lSD6X+apRC8u7a5wurlML/wyqwhEqpcVLlF6vQ1idZ0CuuqFKCd0tAKAjJj6IYRT8fD8v0NflhyfQLPOmXFhcUSCLfgvNZocb3R5qzhCCKZcrUYUBLKizHX6yAEp5s9/mJ7k5/8tS/S/UvFrQ+OuGnfZ+v8iLd/dI+3f3SPifw+T1uv8eiLbQ5GX8A+2ILjxgxBDKRLhlywQaYSMfJVEWkA72+5wBdhF0htYgy7sSNmoZCL401rK8JzipnMXgLDCPGwd/Hri7Px7gF2Z4j4YMuR3mGIVL4Tc+LvhdaSIu7QwESBr5wsQmpc92DOe+cnTLQL9KiqRqGUDPKcROe0vNJaWkz9gr9Iupyf30rnCKJ47Oyi9ssHTjU8aCOedbCeIIIjJMuVMPzivyhsn57oUe4IapEGKoUgEJLTNC2DbaokIxSKkR7RWxJ8Un0/gyOhh+MxPzg95FajQ+g7BAMpsEiOE3c/nGYJI51zmqZsxQ2fCKr5oH/KV3rbJSFMjSa3hpa3VQZSMNYZubU05eVL7/MsIRJyGhhlNdIuhi1Vj2Oi84XbUnrLZVEnUbgFEutIdSRVGQR01ZTWWAYcpRN/HiYLRE0K5zAukj8LFXjV9tfCaGk4zTIUDxCWtsCU+6cY6mwlIS0eeFQfmp2kEzaiWQXTVeEI33taK4g1atSoUaNGjZ8hCnXEYJHCLWgU0vdtQWNOYXij07twe8ovAguMdU47CKdJgVLOzD1l1nAtjAmlJBJOiQmlpB0EtIKQtSDiiR2CcGSomNGyt/purnB7OhdXWPp+Y/smDan4oDHmCJyKlSpnvQyukrEqykh97dM1C7sdQP9Nwft73+S9xlfZ+D8+YOOnD7l17xk7e8e8Pvgpr/9HyNT3eRa9ypMPb/B0JyZtuEVnQwZ0giVznGeOaNlrA9c9eOCtm91Fdc9i6UVTwv28lQe2N0E86boye8CuUFUHPt2zqQK4NsIOIxea87SDuH1GZgzNcUEQlxDvQCMIsLks01vB3RM7cZO7w3PuDc+JlZpRjUIhya2z0rV82WRW9CTiiKbxc4Ma62fhprUUcRFmYt15tdK4+0SC7SQuAXcQQsft87zaV54nK0riKhFkFbXyPE9pKlUqXoFP8zxJE07TxfMZSUlDqpXhJ1BRyHHzfYM84zRL2IoajLUmlhIpBcfpxKWopq68/ixL2IobDPKUhlSc5yl7Xp0F9xAmq4S8KCFJjAufWQ8v0eqsm1csPr8CMVNkv+zes1gys3qmLpSFQ0GzHkacZO44IqnI/Sz0VRH6WeVBnvJsMlo4vy5V1ZSf3atUSjwPMnOxxTSWitMkWTnTWFzz4rNxkk74k8On/M61V8rqDnDz4IF09S+5dXb7v0qoCWKNGjVq1KjxKaJIMc39QjgQkoZSvi7AEl5oiVuEs59OCc1Ea17vdMqF5Hykfmp0qao0VIDy1rN2ENEJQm63Ovzk/BiFoBOGmLHf9tYY+5sPgamNNRRuXztedWo3/XslytVENK+iHrKw/w0V0JCqnP2ilWPXx4jTJuNJj5MvST668QXiP9vievg+N3mf648PuD3+iNv3P8Leh6PddZ7e3uXJnV2C9c7CirKwk9qNMSLUiEeeiPdmi9GNt7OtBY6YrSqBvxC7Q+zH64iJX7SuIIjHaUIgBM2mX57dGMBHm/C0g7zt5vPUxKstSwniNKhG4BbTmXEdhm0VsOlVkvMsdcRAVEmHmOm00/64hRBg3XkIhPRqoiWUVAJI/D07ChG5wvYmZcCPvT5EfBg7FbFzUqo/y0l2EZtEGcpS4DxLiaQk1xpjQQpJJN3n5ij116wfwUkDWhlic1wStotQEIXcGPpZymma0PXhTG0RIKXgKJ1wmExIjEsZPkjGvNHpcZq6RNXMGk7TpHy/sclnVFIlnK22sKZeCOFmXncqila1yH4VilnDZXBzgY4Ixl41TLSGsDj+5yvKEQgeDPscJBPWwlkiJoTA2kUF8WWgmAm8yGIa+aTWVcpx4Yoo7q1R7mpXJjqfIYjuAYr0gTurLbK/qKgJYo0aNWrUqPEpQ/lZLiUk0ttM3eJcPDcBKbrECuTWsFOZh3KhGNPFjWVa9lykQYZ+VvFGo81GFBNISSDEyqfwbvErZ0JBALoFsRn6n4surhmo7lOxiE2MZj2KicRsmIa92UecNkm/uw5fTmASkMkGD269yv13Oqhcs/sHlptHT7huP2J7/5Tt/VO++p33GbYbPL2zy9Pbu+xf38QEqlQQ6SXYbloSxPlQnaIOou3TZYvOyOdCZLC//AS+c8PZbzvT4zrPUiyWbhAhBTPl5DSnxDjstxi3+shx6Ob7wiUL73AaVBNEskzdNHMzf8tsfZbZ+oJiFhB8obxXEMdal4vrvJwv8/dseU4rJPvaAD7chCcdeOMExax1dAZ+Pmw6g+heZ/wcYCgV6Hw2FVO4lFFrBeKHO4iB2wfz5jG8cbr8fSh/dDorZwwTo3k2GbIbN33Ng/D3peXZZERmNWthxN7EWbBPs4RYKoy2M+R6ovUMfVFCuLlVewWSYZ29cVox4WyVyqz+WYmzUa8iiNOjdTZcgeA8c6E27lo+P/l5f3CKwC70vIK/XzwxzKxh1eV+Xkic5bNac7Hsve80OxfWklSvu6sHyRmbnB5TK39BCot5ymWK9y8yaoJYo0aNGjVqfMpQUqBzSyzwSaYhR3aCZVHxu3RbfsE3yFO0tVjr0k8LzJM4gSg7EFuBJ4i+auBGo0VDBcTSNbg1g2Dpk3rtF0zz+9rxBFFkfnkRX04QC4WuiPifaM1O5IJyZjrqbgyw+x04bMG3byDunAFgG25hrgPFk1fXeWbexm79Mmu3P+Lm02fceLjP5uEZb/30AW/99AF5oHh2Y4u94ZfYi19h1EldemgrdTOJ67MKYmZ1GfYDlFazy3rUFtDULs1TyxkL63megvVzoCpkNFcybndGiNMm0WkbLYcII7GdyfzWHSoKYhC7ubPMz8Ndplwp4DSdbtfNIE5hsMRCMbB5aR/MfAJmoa6IwrZbDflp5djNEeK4hT1sEqyNmeTLlWXh5xOL2cfMv09iNKkxZQVMNWDHWVEt0gLDCCsNwkjEfht7CUGUfsbMWEuOASx7kxFf6OryoQU40n6QjBEI2kHASeqUxkGe0ZCS1Myqr+O5eUAlpCdMS+4XLdzc7OYElCWQYGz1gc40ZGmGaFUG8Vy5fU5brU4CFTOTe5bvnR6QGsOX1jZ43gcem1HMRGu2q9U5c8gryuzLEt+kECTGPUi76LPXuqTI3jJVpwd5xijPmMzVt2hjyyqVWkGsUaNGjRo1avzMEfgn00XkfUMVYRH2BRREp0IepwndICJWim5Y7SWTpSpVWEOLp/5NFRII6YrH/UwXOMuowXoCuLh4NNaiJAtF2qESWKUR2lu1oiVBKnOwTK22ubHlvN8gz2bnlyTwjWeoH11HP2lin7l5PhqObGhr+Gj9IW+3OsijDud8gbNvdvnJ198iHidcf3TAzUf7XHt8yK2H+9xiH4Cz/0+HvVvbPLt2wkHrxkL4iwvuiWcsu4WqdFGFwlJIQC4qfy5xM2U9ihnrOfK04UhbeNZCtfx1reyjtdb3BooZBbEIWkntLIlbhYZSHCQVgmhN5V60MxUKhW0w99uWmYJnbTfLCQs2XXu7jzhuIR6vsbk9ZC1YYf/zyaVFFUyRYjrxXYChdBFPjvCKcr9HOiNOGgjr6j9sohD9GDtR0Fj9kEIKgcaQW1eT0ZAB/TzjvfOTmSoTiSNgFNUvRvPB4JTEaNaCkEDqGYI4yDLUHBlMjaY7b3schK6mZRBjXz3Fvn3MtXiWdEkcQQ58+rG7AALxZ7ehm2K/vF/2LF70u0MwdRp0g4hEa0Y+3fZ5FcSmCpYqh1PYispsZ1XxT4AixGhVhcXVtyPKh0/nWUJqjL++U2h/jzkR+zkfBv0CoCaINWrUqFGjxqeMIpSmWOS2ZEDu1/bPG4ag/EzjzWabv7Vzm4NkPLMAD6QsF1aZNQRClgpiQylaQbAw37ThFYJ5e2oBpyDK5Z1uoQFPEO0VLKaFGjkNpXHWVhdnP/feAuRugn7SRIw9WfJ9hbmxBE3D+Tc+pvfnbzmyYgAJSTPm/hduc/8Lt5Fas/3DhJvvn3DN3KN3ek7vdMA73CNXkoPrmzy7uc3erR36vTaZMTPnM5SyVDtfxiJKIOiEEfeHfa4t657rJlhlCM9brG95UlyZ7TxOEwY649VWFxt4a2OuCISbn5roiysECsQy4CxLylJ2CzO2uqpql1cURCFA3Fuf9h5G+aJyvDN0Xz9oobIAFS2fS5NCuNlcXEhNQW4Tr+5IH6h0nmXlvjSk4iRLWRt7YtVOoQs8iGC/7RJtN8dLOZCbDXREdGJ9aIsxvD84YTueqnENpRjmWXk+Wirg/rCP9kE0BUErcJYlC2RtLYzKWV0ARgHi2zcRmf+8P2vDF44XrpUSgkTnxFJNidZpw82zTkL41i2Cb3xEbuyFc4rXGlPbeWEvziYjr5zNEa57PafA+iTa58eUgE10vkCWXxRFRcUn52rTkJrTLAEsw8r1M/6hixKyTAL+q4aaINaoUaNGjRqfMqR08fqFIhP5VMlALNo2L4MSgl4Y8bXeDt0wWlApAiGRfqGT+nm6Yj4nkmrpnOFG1GCYZ64GYwmMtURedVxAaKAQkK5gMbXWqUWBT3oEZ30d6XwmfbU83s2UmSVrYTG1lqYKmZDR66SIkyZ2HC4scI1SHASvcLj+FczXv0Crecj1J4dce3zItadH3Hh8yI3Hh/CtnzJsN7h7bR351uuwtg2NmFCqcl7yoh61q8PSVgGdIPAzZHPnVALrE8RRi7XjTfcTlYCaorMSWFAQ+3nq+/HmzmPhdqy8VawUJ1nCIE9LBXl6eafpouDIeEEmARi5e8h2E+zN/iIZk8DWGPG0i+3HsDVeeiaKhwSBVE7dsy5kJ6mkmRbl9dP9DhiOh2yNfOhQO3P1Gg96iPe2nHL22gn2CydL38/4Gb/Ud93daXUWXhdLxWmWlgnD61HE3mRcnh/lyXhxjs7zdIEgVnsSyQXie9ddkNOdMziLEecN7CCC7mwFirOPaiKZT5NMi4AlZRDDiPWzDVo7/aXndHqsi79XukHoLM5VPOkgP9hyf/72DewvP30BkjhVECe+kuRlQBaznJ+YcDoCmxvDMM9pqZBBpUfSeNVTVWzOC7DAaewqa1Z1mn6OURPEGjVq1KhR41NGUcBdzAdGUmGsQcnwuS2mDRXw69s3yp6+xfcSvnDbkhlNN4jLBdt23GAZB3yr08NYSz/PWGYx1daWKuQ8RDU85QoKovEW004QcjqeEElFS4WEcnlXoFjLyzkzq0xJigzG2Q3zzCV8njQdcVm2uPULbHoJo7jF3Xde4e47ryCMYevglGuPD7n++JCNozO+encP7u5hf+/P0LeuoV+9xZ0W7G+twSWzTqswYwtFsNNoMdaa9TDmPosLfbvhCKIoLJwVgqixhD6ZUvkZRJG7kKHMGn8NKxdZC8Qf3wFpsW8fwa6rLXEzbpZ+ltFUAXYumKOayvl4POBbJ0NeaXXdtn3npf3mU1ihDtpO6rbWj1YSRDdjZmhQEEFLYrQnou4+XAujmc+IEoL1MCIe+3PTTmFj4siT9q972IPXzhaCfaZF9C7Vc5UNt6EU/VHKmld4lZAoQRmVEgjBxFtVha+pWPX5AGC/jRhG2K0R9p0jp9idN5xqN0cQlXBVCzo1U0tzEQZ0+xzuryOPW8TXff1MP4JQX2itLdBSAYfphKggj6lE/GTbdYFujRGHLfhgE/tLzy7dVhXWUobUJC+xQ1AiPrG9tIC2hpF2fZDtIOA8m36mjE/TDaRkki95PwPiRzuIvS52fYz95t4vHEmsCWKNGjVq1KjxKaO0KPqFWSidwqfk86eYAlxvLLEmegRSoiRlZ13R5wfQC2N6YbzwM4XCOPLJqvPQ1pahLfMQYWXi6Dkspu0g8PH0MbFSRFIuNXcJiXtqf9pw6qGYbkd5Wcy2MvflYQg7cxvIpFucN7MFhdNKyeG1TQ6vbfKjb75NNEmI7j3h104Teg/3CB65f/4ekCv32v0bW+zf2OJkc42lbHsJ9iZjDJZbzTZguR63uNFoMcrdnNsCNqaEyl7vQyVpVeDuHxfiUqm58Ivyfp7ObnEQIRIfJvT965hfego70+2f5ynbtrFg5avGphwmYx4O+zSkcgv2ceC6Dz0BezwesBbMqdme+IhBtNK0V84gBlPLcWo0idGl3Vj5hwlV7DZaLmAI3AMBCfZrz7CTAHEeIx6vwYMe9s1ZFVFUKmcSrVcmVSohudPqzJC+6mdO+fnZ1Bhn5TaGMLhgHtATfXv73J3Y3RF8uAX7LZjbRyUEgyxjkGfO9mqB8wZWGuwrZ87aWzw42Gsj//Ka23Zv4pJzL/h1IoSg7UOpAOhH7sHL9QH2y/vw+6/NWLWvDlGG1CwQRC0QH2xid4cumOc5UO2t/CSw3mI60m7OuRPEDPO0VICND/tSYsXvoJ9uI/ZcpYk4bcJf3ID1CfbVsyu5Jj4PqAlijRo1atSo8SlD+T65KkFUQqIQy+f6PgECIZF+5jGzht6KgJBVP1tEwldtYgY70xlWhQw15RLpShZTdx5aQchE65KwXjiLuT5xBLE5OzcUKTenZVuejIzC2QWeFq4nD2aCVM6zlJM04dX2bG9e2oj5+NVd3v711wniJvLgGHXvESfvf8jW0yOuP3H2VIA0Ctm/PiWM/V575bBUbmd77QIpudZocXdwxlL7XC/BvHPoCLFX/KqIfXBKs2IxBTffmBo9u7YfTu2goh8j3t/Cbj0C6TrkjpIxr7W6LjzI74utkEWL6wXcbTQ5zRKklq77sJWWu+4skZqZs1lUe/SX3H8WOI9QzbQsbi/qGBKjvU1x6amc/vwwxAZmes9tO9Jrx2N40oUHa/Da6YLSY3GzlIm3mK5C+wK1OBBThd51Q9qFAKeZNzxqunnCgvi3M2wzc2E1mZxROpWQ3m7tPxODEJFL7PoYGhrbSdzPDULEe84aakONOGtgz2NYX965WWDG+lpYhdupI4QbE8RhC3vSdKrlteGV7KZSuPRfwCuzlXPxcA3xsAejELu5d+m25rebvzQF0VeTWGfrH9ucxGiaKsBYPEEUGDs3Cz0O4HEXG2rsN54ifrjrLL9nDciUm9v8BUBNEGvUqFGjRo1PGUGpIE4tpoEQNJR66Wl50s81Gut62C6LgJ/fz+KJenXxfJGCKCM7JYhXtJhGUtLwc2cb0bSQvpj1W5if2pjAPZydsLpPQhIKSd5M3HSgX/BigPvriLvrCOOrCyoq3ETnfrZpFrkvKG+owHX07W5hdrf43uvb3D0/5YuDlN2nR+zuHbP97ITbD55x+4Gz441bMfvXt9i/vsnh9U0G3Rb4OoJYKTI/V+fCMHxlw3yVQQEBvHK+4gwKIik5SzMI/PnOp+mjRVx/+eqCIL5yBk87rn7ifg9eP3Nzi1mG9t1v1Xtxaqd0ZHwzanB/2KeZeIJRIetSLLECxtoF1QyjRUXq4RryvW3id/bQm09nyGCiNcM8vzgxdhI45as7WeTXzRx2h4hnHex+C24MHYE+bsDuCIEjiOknsEK68+QUxPmKC8Bd5L024u6GmydNA2xvAmHllWsJjENHoCvKWiQlj8cJrxcPLyr9nYB77SBGfPe62+71PnYtRby/hThqzVaOXHYchQrrLcx209lMxQ933LbH4SwB6kdw0IIbg4Xrn2qnproEVn+xc4G4t+7+PHp+e7agUBA/aYqpu+ZOsZ8q8BOdO4JYqVvJrSWqfn4errm51jvn0Euxv/YY248Q370OTzvw5vGV7L0/76gJYo0aNWrUqPEpQ/oFUxlS46sTVqlynxSRkj7Nkkvi6WehfBDNfJKftma1ghj5So3AXGkux1g3Qxf6rsGiwzGSqrTiqvl1+/YY8/W9sgLC7ZNlPYoZ6pxEToiELReh4ifbiCdrzpYXGKckVubgck94c2NmlJ/MVz005o61GQTkAo53Nzje3eCnXweyjN2DM3b3jtl9csjm0Rmv3n3Cq3efADBuxhxc2+TedofT69vcbamygLtYQIvy/64Oi6UThBwmk0pIjfLbc3OIM8RnOLVi2reP4H9tIj/cwhiBemWfxGo/gzXlcFJQpj5WaxiuN1qoof+7Dwuyvtdy6ZXvpI6QDithLAbE/R4AatAgWzdl96bFkhpXx7BSkQMYhOUxLT1HN/uIZx3Eky52e4z4g1cRVjh7bWdAbl0QTvkQJBfuPCkDnasGtDi1tqjDmMHH68iPXMAQBQnbnJ3DtJ0U8QwYzBNExdudniOhFoSvdykecNjNkQvkmYTYOMe+fQypBLacPXTOsnohhnPncXMEbCFS/ztjNP3dIX6yhXjkrpu938O+fuoV7iESfP+mdZ8tKxE/dftTpraOg+e2rk5/F32yh2iuO1Mz1hmBFOV1L7oQi4cb0j8MkcUTCy2ceiissweD+x23nsCdc8THG3B/3c2Vfs5RE8QaNWrUqFHjU0ahhhQhNaEnQw35s/nPciQVAx/C0Aqu/h6Fgqjn1CDLaguoKlSRK3QgAhjrVJJQOptpsX+Rrw8Y5BmpSbheLeUu5rZmtmNpqID1MOYwGdNt5IhxiH3SceQwyl0iYzNzC72KemOAplKk8wTRGBpSLRxrUwYzs1DDPONpMuJ8Z439m9vwzbcJ0oydZ8fs7J2w/eyYjaNzXrn3lFfuAXzAOAo4vLbJve0ujXADbl1HCrFy6Wu8GlMl+IW6uhE1+HjQnxJEryAGPgFzRoEtSEArhdBif2kPfnANeXeTYOeUpJGU3XWFgiigfEhQVRVjpSBxhMdW0mRDKZfPinVTOG45ElQQxIO2q2wA1Nhtq/hcYN2ifayzi9W9c6eq2e4KtWxrjG3kiOMW/PlNRGEZHIfQcQqyMdZxlYlC/MmdMuDG3jlzRPoKRCYzhqHOFmYZxVNH6sybx4iPNhyBniOI5Yxmf3FGszznj7tOFWylsO3v/+0x5s1jZ629PnCEJfJq7VnsyG5wRcWtUPWKEKROho3yKUGcVFS/vY4Ls7k2QOx1ET751Lx7gNwekxpT9mTG97ecrRSXvEqk3WdzScrwRXhZITVSODJ/nqU+Odgfnk9RNl5BL9JOy3vvpOHs1NcGi/PLr5zB/R486jorc3C1338/r6gJYo0aNWrUqPEpo6iPKMhIYadsPIe69zyIpWRiXM/b87yHEhLJYjBEEYyyDIWCeBV7KTjiEUoXStNUqiRASkhCodhPhsRXIM4apwJuRg0ejwdu4TkOET92KTUznW5y/nhcAbqbm5q+V2YMW9UZLY9ozgqcW8Nu3KSfZ36eMiCPQp7eucbTOy40JMhyNp6d0HzyjHdPxjSfHXHn4T53Hu7Ddz/CRiGv3Njhl3sR6a1rnGz1MMGUmPbzlL3JmHe669P3Nc6mvB7GICwo6xbt+fS+GuucblCx2o5DRx4Kgrw9ht0hPO2i0hDdmJBqPUNxNqPGTLXEzLnzCabVupGgrAGBk3RCOwiJpCqTTMVxE3tj4H7+wdp0W6OQL3bXy3MbSskgT/1M4wWhL54gsraCIAqwt84RH21ObZTgaiasI9HaGlcxc9xEaIntJJAEjtgEBvvW5UpcajSHyWR2XxOFGEWO1L1x6rpBTxtujraKjt/3wYoZ4Uwi3tty6tVXDqbqvADeOF04XjbHLmXzpAk7i3OrCzC4sKE4n9m2feUMDtqOPE6Ue50Rjii1U+xXD7C3+oi9DuLxGuIsRu0IUuvmMeVZA3V/AxsYF5rTytys5ONwNmXY4ghtK1uZhCsEZXH9lXC/hziP3Pmq3NCOIBpPEJX/Gnw8OOfV1tqMgt5WwTScqEjr7SxJWI6MUxHvr8PH6/CF50t+/XlDTRBr1KhRo0aNTxmBlyOKf0shiCvk6GUjkoqJ1nSCqOxyuwqkcPbHRTVodV9jWBBE/4T9PEs5z1y33rqfL6zOFRprCYXw9RYBrUovY0MpduIWg/mutiUoSKsqkg5b04WnefO4DC1Z9dNu/i4n0ZrMunOVWzMlVxW4+cuKAmkt3TBiN27yYNRfUGlTo7GB4uPr62S7a9y48Sr/+v4HvHE2ZmvviG+cZwSPn9G5/4TfBPjBPYwUnGyucbS7weHuOpP1FiqYVTTyUkGMXWUDhiAwZUiN65ZMWReeQI1ChBXYTjY72xm6a6XyAG2cUlm94rFSxKs6HwtVqSSIzpab5W6bR2mCttaFoWyPXIDKk65LsWxliNOmS5Q1ri5DWFEu5pUQnGUuuKYlLvhsnMeOGHcvuE9eO8WsT9x+DiPk965DolDCKcDG93GWHYNvnDpL7J/ccXN2lxBEa912jpLJ7Of41IciFXbo233s7SWdhQ2NDbQjiMusl/stN2d583wmxXbl/mw5gij229irEMRR6JTN9tw5fP0M+/oZ4ls33LWaBO5aQXnN2Zy45ODHa3AeO2uzcR2Wrb11Nzv41mF5fcqU4eoc4mET+b0bvmJj5BTWm4OZwB7Jot199QkAca/nZiffOJ1RKiWCfp6SGFN+VneiJncHZ7zR6dEJwlJBv9GcptXOPwxZeMvXTuHRGjxaQ9w+uvJDsp9H1ASxRo0aNWrU+JRRzPapitLQViHxC1RcXAWxDEiMphuGzx2CE0r3tH0eq9JWG9ua/o1D2rfdIvY8S3m7u8G94TnDPCOWivcHp7zV6fn+R6ferYURr7V7NCvzfrtxk1Aqvnu6f4U9FQRS+sRN4Qrbx4FTQK4Qp9+QAUdmzFE68dH3jiAuC/WJpJpZphrr5kjbQbRgx9XWcH84YDt2KtzNRtspokHAo50eD3Z6vPPK20hjOH3wiPs//jGvn4zY3j9h6/CMrcMz3v4x/AZw1oo59oTx4WYXs9EhVgGdICQqLLKhRmQRVrvzMdH51LLp7aVZc8KHgzO+2N0AwIYGAchcYXAE8cp3SbFo9iEleUFg/QZiHwDiTpzBvnuA+P51xI92SpukvdVHHDURSTBjOwyEU0BnbH4L768cCegkMzOv1lrOspReGLl7XjK9DzyBJnPBSEOd+T5OWQmBmTjS1sgcaZtLF51HIGE/GTPWOevh1A4tfGqunVcM5yFwhPS0udR6Wc4eXh9evJ0Cu0PsTw3steHtowv3HVi0l86jmcMpzpZbnOYqUYo1NnQEV1npkmFNjkr9dqthOf49xCgoNyWOK+fssI04bGM/3sB+6QCuuftkWnNxhbszUVNr7HD2fBZpqJnV5YOuQEqaKuC7Jwf89e0by0XKSwgikYHbTkVUR224cfWAoJ831ASxRo0aNWrU+JQhcOpIddHbDUPC51D3ngexnwnrBYudh5fBqY+LC6JgRe+AlHDyxlParbZbzAn44toGJ9mEcZ47VVLKkkg5i6kkkoqvrW/PbOvXtm9wkk743umBCz+5kNw6a6MVrsOMbnqlgu9ipmkjink07ruC+Mr7zAfUgJuPLBIVi+CMUClaQYCeW1ieZSnXmy3OswQLXG+2CaVAShcgE/n0VpQivbHDt+0rPG22wVo6/RFb+yds7Z+y/uyYzbMhvXt7vH5vj18BMiU53lmn/cYRX2xYHvfaTrUYAami0TBcb7SnM5Q+oCZrJk4tKs6pJw8yc4Q90c+hfIwDZ8iLqzOIqlzCT5MnPXZH2Dtnzrr51NVpcMOReU6aLgilIIhSlrURKwni+VyqZ+W8n2QJoZSLFRWFspO42d9Ua7Q0SB3CIHIW3GLGbHPiFM+TxtKKkQJKSK+8zt4/CwriReimcNp06aBVgpg666sN9Uwn5oUI3HkVj3rYx1147ezi1xcVF568PZuM6IXR1JJepJSOp9TBVomSANYSxFELNYpJ2mPGWiNzb5kNK/dUQUKrCqIn5vbXHmFT5eY2n3QRP9rF7twDSXlel84hJgrxnevYW32X+Hte+V03jHAfimJXRRmmVP2d0goChjojNWZ5Q834EoLoz4kAMD+bh32fFmqCWKNGjRo1anzKkD78pRpm8bXe9sXdf58AgZQEQtKLnp8gusCRJdtcoSBKIRDC/cAgz1gLIrbiBp0gpJ+lSCOIhSpJg4ULibH0mZZXCTwMi2JrcfUgi0Lx6oVRWd8xnbcTS2ctY6kIhCS3hsgfSygEsVQLC8thnvPFtS7nWYrFJa0WnZcTo2dK32eIhRCcdJp8GAmuv3WbvcmIrrbsHJ6x+eyEW0d9rh2dc23vGPaO+e3i/aLvciKvc/TDBie324TbPYrlrDhwKk3aGRNJicGiEGU9hsjddUjMFQmiARLlyJQ/TdoaGlU7qGuAmIF9+whOG4h+7NJkG3pqOxyHgCNBgRCMrZkJzJlHMX9oK/OHxlr6ecZuo0Wqc9rME0R/fVOflOtnzkQ/dhbcXlKKVHZjjHjSRZw0sfME8Sx286zdlMATzZmAmlRCP3JzfReQivK8dP2MZj+aVQoP2m6/dofPlfpp75wjHvUQj9ZcifsFz1fEYJpumxvDSOcuOMsTRNt016e0WcLiMa0lcNQiHDQYtUcM8wyZeWWwards5u6MV2tozmNHgNuZC8fZnCAmgUu9HUSwVlhf7dLjEB+vIwYx3JfuuM+mv+vEcLYPdRq8NXtjKiHQxjAxS6pKACb+YchF19LPNwv9cuuKPm3UBLFGjRo1atT4lFGQQzmjIF69wP55EUgXgPMiM46RVDNzP8XT+5UhNZUuv0Ge8W5vEyUknSB0oRVCECk1oypdlFBZkOnL0gstXFyFsAK5dcml62GMEoJOEHKWpeX+LZu1jKQilJLcWCJJaZON5mYTEx+u8pXeFnuTEWOdsxHGrptSSvq5IRRTcqx8n16h7I11zkk64VrcdMpmI+betXU+2F1jLYx5MuzzO7LFLw00/fsPkE/22Twf0uYjbv8I+JHvoF/vcLy2wenZiOPeBs+a/ZL4K0GlHsMdq4v7v8ICN1NOjYmnC+Zpv6coazyMsLMKsAT7tWfw/parRwCXLosLqinOoAu7sRfvibdwVgNqjtMJN5otemHMR4Mlypmyru4kVaVtUQimKlavovYVyt+TDuJZG/ulQ9gaIT7YQjzouXTcv/kAJSSDPJv5jImP3fyd3RlerZmhCD+ZC6oRp36/VswSDvKU4zTllVZnbnuZI7gnTex+2xXdL4MFDltu/q83oZ+nrEfxrJJcKojh9AHMHFEqCK7qN7C7ltNsgsq23Gxl9WOkPMmaBCU5dMR8rseyl7jU27O4JIhLM2oSBY9dT6SYhNhhOKsgzp1PKdzDmfm0WffQxynoC3nCFkgCR3Qv+jWj/GepVhBr1KhRo0aNGs8DhXAJoS9YzP28CHzHYvMFehajucqCwu63KqRGVmxbxlquN1zIQzuI0Lhk0EjKyhpPXEgQlRDOpnhBOMU8aRX+a1eZtyzSK9fCiFgqrjVaDHNXFm99uuk8AimJpCyVxiKJNVazs4lDnbETN9mIGrza6vJsMipnGiOp3LlQ0/Mo/P+KKStjLUpKDO68x0pxkrrvtpTrYjS722Rvb7P/ziv83rP7vPrgGpsf5Gxs3GUj3Wfz8JTe6YDe6QB4CGfwtx4JDtc7nO6sc76zzkm0zdBew3qCmJglXX7LUMzyVebbtLVlSm+h/IVIZ6etkGFa+awFuOXJRsV2qITw53jFdTyLpyE3lYCasdb8aneD3BjesyvCZaIcMYpQRqKFdYdb2EGrdtVGjm1kroojB550sIlCPHC1DSINsJlESUE/z9iKGoiPNhxpedLFKoN945TH4wHrYbxod62i41Rm+nNKf9FduSw9ExjlObkxS+95+/op4qSJuLsO+y03K/j28ewGzmOX6Lo5htAyGufcaHZ4klUIZcPbQsfBNAV4mYIIyH4DYy2nk5SGVu76zKOZOzI3DqEIBpqzCdte4lTLswb2jg/2scyq9AbEe1suwCfUrmfxoO0USWncrTMKET/ehkxhv/YMiSDReiGwSwqBxTJZpqAnypHY5iVKsKoVxBo1atSoUaPGC0D6+cMVY3wvHYGQNKSaSQi9KiKpOM9SUk/sOkGI8nOEy1BVEBGUFsqGcnNpubW0pEL74BLBartqsT0p4CIB0WBRwtlo3XynrChZFyM3llYQ0lABvTDmZrPD/dE5uXWF7auU0pYKOMt8WTn4OcppLUihTBX22S9010uyXJyP3JoZe62z54rC8IjFEhYpsl51LtJHdxst7g3PSwLbDUNAkLUkh/Et9m824fVbAMSnOVt/HLCR7LPRfsD60QnXj/tcP+7Dew8B0PwXzk42eHwWkF7bIm2HyOvNmaqNBaT+exX7oMX6vjoX3iNxDxnc/XPBtpbMpQlREOblF198vO7e87XTkkPmvstyJ25ylqWsJJeRgRGoLCSVCWgJh03X01clKgLsVw6wZzHig004b5QEpSQko5BmT7MTN4jzCHF3o/xx87rrKMyGlkGeXUwQlUvfFaPIkfXQuJtrGDqys8LamFmXxrlAwgE2x9i1CeK8AQOvRH7heOa0FNZjuz0qQ2Dc57Zy3hvaKYzjYBoGNNcFSCPHCotIAuc+nkADlqd5FscyUVM76HyQT6HkVtRAVz/hdz6ViB/uum7IOMd++QDxnRuIh2uuhqM3cYTyvAGPXZ2K1e73yUTnrK24FktncC8LqClQkGdTE8QaNWrUqFGjxnNACE8Sn2eg6BMgkG6WaFngymVoByGvd9b4QneDjwfnPJ0MaalgJakTuOOz3hpYqIOxJwdFCExWLj7thUqqI02sJAngVStcJUdxbrW1V1rk5NbQUgFSCH5t6zqbUYNvHUlSo0sr6DK0gpCjdLqgVUIQy2BmNtF93X1/I2qwETXK18deQawm10oK9dP9oegUNH5eSvj+tl4UcL3RohtGpQLZDkJipciCDAWIdKpmpg9vsBd1efrWFvadXR6P+lwb59w8HnD9dMj64Tkb+wM2x4ds3gXu7vHXACME/V6bk60ep5vd8t955BfWmb+fQk3u7cPgrb5iqiA2lGKsc5ifBaxCWRcOU9gOKzONS9XqUYA4aDt7681pbUQ/z9iMYtbDuLSnLlWTPWlRWYCJxjSPuk6FujYgFTnDNGejmNndmLh/nnYRgwibezvm9QE87MEoRK4nbEYNGLh9te3UBabccRbX0IcSXYpuCqPIBdVsTlz/Ya5cSuuKj4m10AgUqdGLJFx4QviDa47MAmjhQmwKHPo5we0RI53RCUJuNtu8f346sx0aOWLsw2yifCY1tnyNMqAFxhp06nc4vIAgJoE7VoDuXOpnZNzs43BKmC0uXIaTBuL77phsO8V+46lPnc2nc5IbE6fknk8/d6QK1dAkRhMv+X0oECQmX3wgdVWCWCqItcW0Ro0aNWrUqPEckBQK4qfzlLmpArpeJXtevNPd4J3uBlII3u6sc56ljE1+oYIIFmcMnAbxNFTgF+qUKpuDuFBBVEIgWR6UU0Bbi5SOzBWkdL5uYhVya0vb527DLZRjpRjkGcr3My5DSwXkZhpmo4QgVpJASnKvlllw1QlLUCxOqzOIcs5OW8xVGhzRKYh5U4bsxE26QVgS0UgqukFIEqROtSnUveOGK0yPcuybx367kuFam4/W2uyHkVNZfu81WsEZ+s53eaOf0jw44cbpcGpP/Wi67/1ui9PNNc7kNv3xkBOt+Ol4SKQUIGjIoLTISuESYs+Gl3dZul7EwHXtectpSwas3b8GXeN68QoUqtK12eCWoc754tomQgjaQUjo1csFMhC57asscMmrz9wMm7025Mx3d27MhzqtTWAQIXKJ7SbYrrdAVuYmyf3OdFJ4dTr/eNV+d9tNEc9wc3Obk6m9tL2ifgL3QCaSinGe01n2Ed+cYH/rPnz7BuKk6e6NwBOdTCL6sbOBtjLyzH0eWipYTPLcGsEjZ62lkS8n3spCorAGTOLPxRIF0cY+7XMcuPCXUEO45AStJW7u8dwFGhmL+63ywx1HDm+du9AjT3jtW0ew38FeG8DuEO73Znl1pghbkjfbvRWfbUuil6SYeoJoawWxRo0aNWrUqPGzQJli+imtITaiBr+1e/uFfrZKYoUQ9KKYHqvTUAtCWCiFxc/HUhH4xboUVPTDCyoMmKaYXk1BdBbNQEgMV1BrcBbT9hxxbqqQo2RCKwiJLlAQCyJX2GSVkDMpqNaHtCxDLAP/78oMoldLCxhvk9VeUmwHIYGUZf3A6+3eTDLtVtTgYzWmBy5BE1xdAF5F8otoIaxPhvXnVOBmz2yPp3d26UcN9pMRtx+9QnxgWO88YN0esHF8xvrxOd3+iG5/xB32gB/Cn8PvfEdytNbmcL1NfOMaw8iSb28gQ8VG1ODD/vnFFwIcKTzF2Uw9QdyerCMfuPoTMwngjVO3y544VYvdrbVgLdcaTQAaUtGUAekytcgnmco0QGuIDjrOxrk9Ik8NoZQLBMj2EsQT/5eNyfK6hoIgBtP7rwjrEVKUFtiV8HOGoh+5q+O7Ky8iiNYf65m5pHevIGqpms58FtUN7bRUfasPRqrnwL5+iigIooD3+qe81u7OPngKDCIJEFZMFeZoyWfREy1xHjvltrO8BsR2E9cBOQxha8xu3CR+sOnmF7eH2HcPZ3/gxhB7ozI7Od+B6h+cLFMPgcqjmdnfN+LKCmIdUlOjRo0aNWrUeAEUxEldoJy9bLxIwueLQBYJlt4KVpC/hlIEUmCsqNgmmXnNMgg/r2kuUASNtURKlQvZWCmSJd2Ny7e/uFhsKWfX64l45TVyltliv6c22WagOE1z/1VWPgSIpCOUasZiKkrlrTwuOU18bXvCuhE7UvhLGzsz29yMGrwfetWqKAk/dmSpKKX3R42SkrRyjrIgI5o0UNZZZOPzNuLeOimwP9xk751D+LojeWGS0Tvt0/uJYX1/xFq8R7d/yo3jPjeO+3B3j7f9dofNCL2zRaMp0btbPOu2OOhGrDXbzGNZ1UVREA8gP9rEFHbPJcQpt5ZAStZCd36EEKxHMc8mQ7rz7xU5BUtkAWoYI7XCbo9AWYwPJ1qYY63MJtr1yfS9r0IQfQ3KxGg6F30WC5ulD6oRw6KfcLkCq61BItiKmzyZrEgpLVBYPbPK/V4Qn+b0ni0edBRKfHkOGhq7M0QctDHNlKYKGOTZLEH0BEkahcq86rbUYuq/VgQDrQp/KQKQvGWzJQPEvU3Xd/r20cXHC9BLML91D/Gg52ZD04tt9gp3zGoSQlix4hb32xUVxDqkpkaNGjVq1KjxXFAIFJ+exfTTREGIrHV/Lo4xkopQKIyEbhCyPxlhfVLoZURZSYk2hkGecTxI2WQ2tl5bS6ti1WxIxShfrbjMY95q1lQhidEXWnLdbGLFCuqPoaNCDs24/Poqi2kgJaGUM8R9GlLjYLyaU8wgtlVIUwV0guWVKIGUWGXdfFwqYRw4paWblCpOQTYllLZdYy3GdyEGWpFpw/rHTnEuCIEYROV+ZXHI4bVNjp7tIrIO5lce8zg6YnuS0T3u88u5ZPB4j93zEb3zEfLBU34Z4L3H7v0EjDotztc7nPfa/t8d+mGEYXNq2bTAszYWi33jBHl301VNbFStl1PilPkZvGpa72YU83A0nVEs4c+HSBXSz9WViiCCwM8MBlX/ajvFSoMw0gWqhMbVZYxCyuhZTxBtlSD64J52EHKeJTPdlwuItQvKKUjn6GKLaWac2rkVNS5v0qj0P5aYs04WqnXsH+jkc+fAfnUf+3CNZPeMdhAwyefUwcoMnvQEcWlIja9GKbo3VxJEfx5F7pOPU4XQ0gXQtK/2EIjQuEAhKJX1VVBCoBPB9e+8g9gcY7/xDA6bro8xyi9Uct0GaotpjRo1atSoUeMFUKhiq+yHn2cUx2R8QElVHewEISaztANHNox//WVpo4EQ5FjGOifBsjlHkJyCOF34xSq48gwi2DJAp0AzcCmMF9WCNCoKoqgcQzsIyf17W2vLkJp5hEISCjlzfqSfzyx2vZhBnOicgrRsxY2VBEMK4XYp0i6c48irhxvj8jWFIhRJxQC32E2NRniVJ8gDGAVE/Zabs3vjBHHQdtubRxlSY7AC8l6XB62YN3Zv8x+erbMWRETW8t81tvjJh+/Ds0N2zkZsnI9Y64/o9EfcfDi7yZHq0D9b4+w0pK826Z83ON9pktzuw91NOGjB20cu2TPUM/bF1BjaQTDzwKEVhMvtyX4GkVQRCH8+SxXNhQPlxkD1sCXYd45cYEqR4NlKEecNbKKcKrZKQZRwrdFifzLmQgggdhUcVotLLaa5dfOu61EMiAvrXWy0SJLEeNY6aXEPZEKfCpzPB+soC6+dofMMZSSIOfKnpoROVkKMFhCaKdkGbGMF8SrOY1GpUihz6moW8hKepIpstoqGh2vuPW64+dZASkw/QBqJPWy5hyw/cRZn+6XDxWCeeUh//HVITY0aNWrUqFHjeeAspvJTm0H8NFGE1BTzd1UFrROEfkHrQmcK6526xP6qvCXV+A5GO0f+tDUznWYNbw+cfn/5nGMR6d8MZpdDoZQEPn1zFVwgizvOYt4SXCBQ1Q4rVyTVBsIriJXzs2zesgj0cWRT8utbN1YG55QPHCKNSAJ45mycdrNKEA1KCtpBwGHi3ic1hoYPCFFZgB54W+PucDZtch6eaJgwR2jBZtRgrHNfaeKseiIIMNe2iToh/8uTe9xqdjhKJ7wSxKydDVk7HdA9G7B26v7p9Ie0BgOu/QTgPvBdOITkbsi52mTAJv0/CxiOoL/RoJ/rsoojs4bduYcHKwOQSjVN0hSeSDdzjLWe8CuyZX14t+fUyFYO5zjFr6ERSwmiuw+2osZi+MmqfRvhSPk4cEmtK4hJZgw9368YScneZEQoFdtxY/HFnqhVE27n0zmttS4FVwhaKlypxBefqUgoEl2Z8fSWTGkUUR5Oj2ceAkeyx/58XaIglsS7mO2TV30A5FGdvywwUcifbju76ppTJJUQ2LHyuyjge9ecCr8zhN3Rkg3PoVYQa9SoUaNGjRovgk87xfTTRNGDWNSbzyiIoSOIxdesn927aAYR3CLf4havoZ/Jq547be2MHbShFNorHxOd8/HwvExirSLz3Y6tOStp6ANnmhdYASOpUEKS+2TWwipaJHm64wO54ilA4FNXq8dehNRMl76irOxw4TviQttrQc5LteTY1zFsTIM6cmtRSJoqLIlsajQtP+uldICZFIpa5tVBu1xBTBVWWIzSKCPYjZucpQmxVH6/pxUVNxptbjbb3Gp1OEzG6DDgZLvHyXZvZpPqP92iOxnQzY5Z45BucEg3P6F7NmAnecYOz+B9gL+EY7AfwajdZLDWYq8d0d7dQfUNZrOH7XW9FXjJNWjkjoiPQprFt5uZ76aUtIKAoyQj0a4SYS1cbuudCarZnCxXEHFprp1VauY8CjIziFwP5AVzb6kxdIKIhlSshTHaGo7T5YEv5XaXzSA2ZmcQAdpBwHm2PPhGW+veVwUM83RKEL2yt6NaiJIgLiHaxXuOZ9XbBcwTxFJBfE6CGC4hiH4+V1gBH21iv7bvjr3yMEQMYkcgv3B8tfcpKnlqglijRo0aNWrUeB5I4YjTpxlS82lB4GyOjszNHt9aEPtQGokQ1tVTiItrLsBZTI21aCxtpcgzS1QhVgZLt7KAj6TCWvf9zBiUnO0mLII9UqNpyGDBYurmJeWMKjmPSEoC6bZRDdqJpZoWqePSVZcfk1MP5zv+AiFLhbQg2MUxXPZAoSSb1QX51mim805bQ0MpF37jyUpmDDLyCmKuMOVMXj5rWS3m7NzBOaIRaoxwatLNZtsFogqnZWo7nS9tqIDf2r2NsfCD08MFkl/AdCzneovzcIuHv9SBnWvuXBhD6yBj7c+bdPMzOvkZ7WifbnZOazCmPRxzDeDDp8AP3C5KydtrHdrNgHy9y7Dbcv90mgy7LUxRSl8s5ps5qXGkdjNq8Gw85DidLLWuFrDt1IXdDP2M5gqLaSgVTRUgccT5ws9+ofT5oBpizUEyJpaKtTDiLEvcfatcYm43jBBC8Ld3b6Ot5f/9+O7yTsSlKlrgHgB4y6zFovxDjZYKS4upthbt7azFMcVKshU3+N7JmI1ie4X1U8uZnsylqBLfVSQ4qGyv+u/ntpjOWVUB4S3YVljEsw724xR1+2hRLb/Rv3z2sNwooGxtMa1Ro0aNGjVqPB8K1ewXcgZRUNoL4zmC+GanhwU+HrikzWo9xUUIpCyD5yOpyG1OVA3OQMyogKEvai/eIxazltMHowFr3oq4HTcXZrYiKYk9iVqFYkYr8wXxxYLfqZ3FDOJqlTj0ITXz3xczia22VOIC5KVEuryfwuni2b55MvOaQm0N/TkFr3D5n5G5Iph4st30i+I4RyQBNlXT2btcIqzARqZUODtBxLu9BqM8c32O1hBWFNSNqMEgS8vgnfljz41hEo5Yo+F6+ban1lgrJcNrMcOvd3j23mtuv7/5FLbGkOes9cckh8f8KhGbgwR5fIo8OSM+PXfNGE8XFaBx0GQoe4zUGsO4y+DjjL2GIu916fQCtO+f3G40OUkTtuPm4kkviEMxK1gQkHCWIDaELM97ZgxKXXAtKwqi+3vORGsyY1gLI86zjIHIueWTYIt7vxNGWGvpBCETfQWCqAUiDdy5roRLFfdZWwUUGTQn6YR+nvF6e839qLd1d4NoVhMtlD0tnMIsDShHLs+zlF4YT6+7D6qx0WoL7c9MQbTAcdOpg+8ewI93kB9u0uiHJP6g7bUB9CPsGyfLt7kK0k7383OKmiDWqFGjRo0anzIC4YhB8As4hFhWNSxJJy0WhmUVxlw9xSoUCqLAh7ZUgjOsT/hsVeygoZxSb20tccVyCr5UXGuUgPVo0ToYSulUxAtmI4sZrdN04lXQ6bGJ8jXLVTLwBNOTxPljzcsld2ExLRTnyxVECyA8QZUG1mbrEbS1NFWAquynRSC8giizAJHEWKWnJKcghUmFIBZBJ6FeIPpFx2dm7AKpLZRQs8RqOdI5WXsMh2DvnC91hvLKOcYIxGELes5K+cFkwG6nST/e4su33qDdaJUvP+73+aP3fsTrqaUzGNPuj2hX/t3Mx8Cea9X4o+nbGCl5px1z3m4g1td4EArC9TVGnSajdpNJK8ZKCa3MPRAoUlVXWExD/9AhlgGZMTRWPHs4SiY05MTVcvR912OsZ86Z8DZGN//KzKysEIJrjSYfDc5oByHWV3+4a2XcvhbK3sT/u6LeVT+3cRAg/L1UdHEWKD5X8+q7DYx7VS4dWY41CDhNUqywPBoPuN5oOZW/4UNzVtlLAZRLOl4kiM+pIEqwgZ4SxEHkyPH6GG4OsL0E/uwW8qiFarj7yr59NK3jWIJEa3JraM9b0ZVBZOF8leLnCjVBrFGjRo0aNT5ltIOQv75980KF6vOKouNRW7uSABdER1tDS1wQ+e/hFETr/yzIzXTllVlDKNRM2X2VlBS2uOrPACAsBsrOvCoiqS4liOAW5qkxNCr2Q1H5f2vFSo048EmR8wRSIcv6CesTVqeJsJcoiMVs56tnkEvs66cLr8mNoamUP0eiLJdvxIIEEOMQqRW6PZkGqpQEMQA84SxL0PUC0Vd+lrJqMS2P2x/zspTZsc7RN09I1iHcuaD0/bUz7GtTFbqlQk7ShIYKaM7NaAaNmKOtNVTcWDx/RzGdP+/S0n263UOa3afI03OuTzTt/ojN/pjN/hj2Tnh1bheMgGEzJum0GI3eY3zWY/ijhPGpZpRtMDQJmZXgH25E/l7qhiEnq2YE/TkQQUoXdy3cOXbzksLbUyWuhmI/GdMKAnbmlM3tuMl7/ROejkcgLLebvktS4Eh/Kh15mSx2+1k7JfpV8mfmEnkNloYMaKgAUWVCRYrpJHDzk161nBjN19a3meic9/unTv0s3rd1gX1T4CzSJUH0qafPqyCCC2/y6bBify7AqZ1BxyXShsOm+32zZHbyNE04z1NeaXU5zRLGWi8hiJ//oJqaINaoUaNGjRqfAVaGXnzOUZAE16e2nNAUC/VChbgMCkkhYMxH76fGEEs5E94SVgiltpaWVEz0dBFaqCqJ1guEArzF1KuIF6GtQjJraFVmEKUQ5XtfpCA2VMBXelt051I3HY+YLn6jIpSHyxXEqXVPY989XPoabaEpA78tW5bLt1uOIHLi0i9la6pj2tiVys8E1aTT+TJtLc1KD6UUAol0ITVLFNKijBzcffJgNOBms0VmDY1IoZtDQuGuy1mW+G7D5UvW3AcNgbvuCwRRyGn5+fzpW0sZBWuMgjVOX+2Rvb7Go1Gf39i+yWbU4H+59z43E81/09zkvUf3UedDNicZreGYuD+iPU7ojhLAWxC/BfAj9+f/B2ShYtRuctYIEd0O0c5TvkzOPamJ19cYNxskzcgpkf5YlJSYcFZR01FOICTaWnLj1MhrjRY/Ojvib+3cnlHPAXphjLbQkJLMzpGcSLt5SS2mATVVBU9M76PqfKzxdueiRsNad75jOU2sVUJMyVFRnxFNZxt34iadIOTD/qmbkdwaYV8/wV4fLL2204tonNppeXGLKUzTYYchPOi52cublffupHDeQFqJjjKW/fpKjS4fNhkfULUAn7BaVHh8HlETxBo1atSoUaPGS4PEzVbm1lxAEB05MXaxg3AZAimdioYgkHLGLpoazXoUzxCx0JMVay3aOsI3zKfdhEIImspZ/eYTTMGRitc7vXJOcRVaQUhq9EwibaniVYJmVuFVP881894VBREgVmo6s3oFgigqx7gMQrikVWdHFWWYycaG5CDMUak/H60KaYgqFlOAiUKc+RqFyPjruFjXoa1dqDARwqW3FnOWidGEUnCSForhjB7FeZYhRc6t5vIla+bvs17sEjyDufcLpUTK5YolocU2M8Q4RJSl667eJJYKG4WI9Q3s9Vc52Wry47Mjbvi5v0ejIdJo3rSKznsRrcfQ3NqjtWdo5QNajWNagzG90wE9gL0T+OAhXwa+XNkFK2DSiBm3YvqNiFEr5kzEhMOEsWozUW1OTZ/AWjSQWU0oJG+0e5ymCW911xcOqxdGdIKQnbjJg9FcLUdlFk8UdSYzATHThxrF7K/7qlMWix5NhCCUioZSBNJ1RiqlptbaQv0Mdal69sKIjajBa+0e94bn3Gi2sG9dYb4vMAgCR2pfNKSmcuzig01ELrG3z2bIse2k5efVxBnLfjNZKp9xfCjXPFRBEGsFsUaNGjVq1KhRw4XUCDBL5s8KTC2m9sKuwQKBVywEuJqLCoVIjWY9nO18c/URnlQK60mlf+rvF8DdMGKi8wX1BRyJ+Upv69L9aig1Yx8Et4+iJDni0vnKeRQKZKEaxtKRuegSuysUxEzMhI3Ow+JCagIhEVgyY+gEIVEgGW2f0n3qS8GrqpIPExGJW6SLP7uN8BZTG2oM1td7+HNQsRnPp7SCU0WLfr3MGLpBxHE6oR2ESNy1njkfF4hFuXEzYG91ehwmiyX084rlAnoJjENkp6h5sGVCaChlGUyzHsYz950QEIYhp0HE+GYPebKL3b0G455TcP/mA7CWMM3pn5zwNdXgbSJOjo7YPzxgOzU0RxOao4TGOKE5Ttic2bG70z/+/7wjNA4ZN0LSZoONjQ1ebUQ0H/ax7Sam1cS2W9h2k1a7yVd6W+zGTR6NB7OpqQXZP23AozU3p1rpycROw47cnOp0UlV59T7wrwikKBN/c2uIUUsURMPYK/WFa+LNTo+Phqcrr+kCKkE14hMpiJX6F2kWLdjd6bxu0Fw2Jevuj2pK8VIXvfQ2289xkmlNEGvUqFGjRo0aLw2ynD9bVHOqr6FMOr2CxdS/HgHtMJx5aq+tZX3Orhv5ovvcWJckCqUqpz3xut5oMcyzldbFqyCSCiVlqVhCtewewD53Uq3yqk2R8hlLhfTF7ZfBnfvC4rr4vtoahFdyEq0BQWZdMqYSgtHOlCCWCaYwG1Kz10FkyiVftlPYHS69jkoIDCy1xcZS0bduMZ4azXbcJPfpm8M8W+gKLIJSlsGFhAS83d3g9U5v4ftCCCKl0Ga54mTfOoaNCXInxQ5cEFKRYNsKQnp+RnV+zqyYD52YnLjjicW5q3GxBaERgiwOOVxrMdi6Tr6+zdlowH/euzedCwSOxiPseExnnPI11eTg4ICb76/T1CMaeohqH9NKMhrjlGaSwdkI9o5ZnJ6d4jfiCNNq8ruBJY9j8kZEGkek53ukwx7ptxukMmPyWkJqJyQ6wipZknvAP0SgDIhSQs4Q7WKetBUEjHP/QKGYQcynDxDGOudmo12pPFFLlbfU6DJEaQaqkmRqPoGCWJkptK+fLgbQdCqBTvHycJriQZX7s5i5N7U1fNA/44vymntNrSDWqFGjRo0aNWpMVaxV6hFMSYMVzChPK7cpRJnc2A6ChSf78ypg7FWNzBoQTnUsFnKOeMHNRtvZ4p5T4asi8kEzVSJchPRYPzT5vJtXPjimsNQWpfOXBeYU7+0W9CzO2wETrWmpgG4QkdsEa52C2A0jlJAk3VFpuawGhxyJATsASYB41AXAfnkfNpwt1Iwt0Vxtg1Ofls9gRmqqAqfGsBM32YwaSCH4aHA6rd+oEJOlvX5MFchASgKWn6NYKvp6RVJmM4c7fYSIS1t0odpej1tsRo6GdYKwDIkR3kbdCUIOkjG9tie1Z56yBfPkZTo/WpCjqg14jOHtnWuk1hB3N/lhL+D06MuOiEc5B7/2HtcbbU7TCYf9M36zucnXwxZiNEYMR4jh2P0zcn+WwzFiNEadnHFj+VFPcQh825/LQDGOAoJ2i6jdJmhE/HY+QTYb3BAW0YjJooCg2UCbnFbcRxjJGpK+0cuPPdIk2rBbSZaNpCqJZ/X+OEpc5+Sr7e7sNqpVF59AQbTCTmnpa6eLL4gMNspduumKXkZTuafnH1zkxtfSSI2ktpjWqFGjRo0aNWoATrERuEj+VQqiKpIszeo5xfnXW6/GtYNwOifkSdj8HKEQgpZXoyhJZRGe47a302hy3c+TvSiiJfbPYtFfLB2fW0H0VRUFkY2U9ATx8u0U85/zClyBsc7ZbbQcmfJqo7GWjgodgRFgv7qPHUQzM4ip8gRoELnuw04C69OUUYMllrPXIBQKKeQKBXE6g2ixdIKINzprWODe8Lyc3ywIW6RcoNAygqjnKk6WoSEVp7YILTKcpilbcWPhdblx92zxPn9952b5vXYQEitFog2BFARCcq3R5slk6MhKK0OMvJK9QBCnduumCgiEU24jrwoL4Gazw1vddfpZihTSEZXM1Yrk1tIOQlKrGQUKsbWOvoIFmizn9++9TzIYEkxSojTl+iQkfqYI1ZA4GBIlGVGSEvt/r40SGCVwcEIAfO3CN/geAP87QEtBFoVkQUiWtMllRCYi0p8a3mxm3F4/Imp3sGHIWiB5+/yQuNFARCF5oMjDgEaeoALlZbrKfTNDED+BgnhzgO3Hrtdw1a+dTgrHQWmrnoe1oqyRcZjupylSh0VtMa1Ro0aNGjVq1ChR9OtpSxmXv+w1Ei6swqhCCoHx22uHjgwYa3kyHnK71WEjWlzsd4KQsywB69JGS1LJVJX6pIj8rGOV5LryiGqS6fNtU0n3s0UYRqkgXsli6jvyVogridFci1v+tU7pzKyh4UNrBAKzNkH2ZismjLDkzZRw7BQy+8rZjINVVDoQq8chYKmC6Hopp12PrSAg9KSsIK0wJWwbYYODZER3YUvuvS+bY21U3m9/MmFictajaOEeyK1x6vOSBxuhlHSDyD90cKrxDMlcS8ETRBtoJjovk3WFECg5VRBDqciMKYmohfK1gXSk2kYahkCco62lrQIy45TSqyT/up0OUOs99gLITAshYHjJQ5EnwwF/p7fLKzJED8f88cO7dLUhG0/Y0AKShK626MmEV2REmOak4zFmMqGR5jQmKW7HPR7B6wA8Lr/UAP7uJbueB8oTR4XWETqL0X+sMXmMziL0t1N0LNBKopXEKIUOpP+7cv8OFEZJjJQYKTBSYq89w4wlJhFY/zUjBbZ4zfohnG6h2wNsbtz3fCiPu5hUQoZn7+2i7kUXM4h1iulnj3feeWfha//8n/9z/v7f//ufwd7UqFGjRo0af3VRWCxXpW5WEzmvSnwKO1orCAmE5Ml4xGbc4Dd3bi1d0HeDiNS4gvF2EJbF4i5U5uX0T8ZSlQrXdF9nbaWrmxCXo6j0KGYlIz+DOG/hXPqzws2QLY/XcOh5y2QgZCmiNH1ojfLkbNl1O/zSfa7lPaewtOd76xbV4uIaL1MQI+EspoVSWJ05k0BRsJFbV2Gx22jxaLy6CuGyOdZYBhhr/dylm3Gb630HXCJq74L6mc0o5iSdoITrIVwPY6S3naq1BLHn5gpzpbk7POdL3Y2yEqI4D0rIctayjU+crZDcYq7PFlUXsdvnOAjo4GzbDXn15bv7HJiZ+pWLYKXwoTdd2Fznoe0TSslZlrAbtzhOJ2xEMSdpwu/e+QItX1vxBwePuNXsIDNN/B9vEZqU0CaILz5kaPr8xto2LWMhzRBZzvtH+4SZpmksQZYT5BqTpIS5pqktQZ4TZgXh9CE61cDTR1c+BS+Gh0vOjXDc0PqZ6OLveAJp/GswEmEk+SHYa8Cd2z/jnX35+IUhiAD/7J/9M37jN36j/Pva2mJ8dI0aNWrUqFHjZ4vCJrlqvk95e6MU4koKoiuPd5bLdhC6+H1r+c3tm3RW2AtbgauxaKqAVhCUPXLGWhpXIFtXQSQVgZydDyxyH50K9iIhNe7cWev67gIhUZIrzyDOp4AWqAbUwJTAuaqCYKogriARWTOB1nDp94AFq3ARcKKWePkC6b6X+Z7ElppeQyUk1nf3aWvohLFPv1y+X9bamQ7MZXCKJRymE15vr/FwNFh6nLkxtNVqu+pm1OCn9oTQGroqohUEREqSGYPqViy3ShNKSW4toXBBJtXzsx03OU7HQEzu+wNLBVEIAgQ61G6R7oNVYqkwylkYr5L8W6AZBExMzlbUZKzzlQ8Appjes9VKkkLlLD5DSoryoUBV0TSBYhI0SaxTqse3BpyLJv+bO18gq1ynHzy+yyjPWI+mUTuPx0PAcqsS4COMQd1rE7y/jnjtgOAgRvUV8uuPkCpD5QalDUprbJ6TpSldJIEuvm6Qxv0jjEUaW/mzQVqLMMZ/vfpn/xprcI5Ri7BgrAELiqLKxqIQCGvdPwaE0QhrEDmQzj9M+XzgF4ogrq2tsbOz81nvRo0aNWrUqPFXGlP1aFWKqSyL368yg1ioclJIGoGiF0a80VubCb6YR0MFbvEtBW0/Y6d9+MtVKiOugmJeLZoriReiWnPxnNsUbkFusERCEkhXOn8VpbWw9xbkR1vDo5Gz4c5XDRRqYygETaUwdqrULuKy41i8joG/B5aRkeK1qdELhEdVlK7cWloqpBOES+mhtq5Y/jIFMZQSISzWwq1Wh8fjwVISnVuz8oEDQNefO0ckAxdQ5CseWKsQxEATCUVuDaE3HVcflmxGcVm2XlhNm2pqsY2VwsSOWBR1I7FUWK9+XiX5t0BTulKKbhCirSEz5kKLarXnD9xDkEGelvO/hkLdnlqr3f5ULJjKQO72N1M5IYvXqKUCzrPpOdPWlFby8jxay3464Vqji1FNbNCFoIUIY8zuAMLZOcTDZIwSkkGecq3RemlOgSoejwcIBNcaLfYmIwBuedvuaZq4zta7PdbvX6f/haf8X/7a63C6WL/y847Przl2Cf7pP/2n/Nqv/Rq/+7u/y7/5N//ms96dGjVq1KhR468kHPlYPn/mvi+Qwr3uasoYPjnSkYv/6tod3lnbvPBnGj5ARiFpBUHZ4Wa8Mvey0A6CuRRTZlS851UQpQ+LcfupynO0ap5zHqpMUHUJoZk1jHVOojUbUVyS9qIfsCGVfx+fvgrcHZwzXpX6uQLzSrBTCZdbTN1rBakxdMNw5j5RJbl2RKylAj8jKdF2lhBkxhCIy2cQQ68eSyHYCOMyEXcehiUVCxX0wphASCZGu7AkIWip0JG9wGJbribBKE2kFLmv1rC+Q7BAN5jaWDOrafrjKxBJxfj6MeZLB9hrfaz/WiyVI4jPoSA2lCJSitutLrEMSM3y+oYqZgmiJPcW1YLEFt2fxeti5eZkH44GPJkMsUWATOjuv7aKFvpAm16NLJAb6/tOp18b6ZxhnpFIr8JdElKTGsObnR7XGm0/K/qzgTsW98Cheh+53lXhuiWpU0x/LvCP//E/5td//deJoog/+qM/4p/8k3/CaDTiH/7Df/jC25RXsL18Wij25edpn2r8YqC+t2r8LFDfV3+1EUivDkq58h4IpXKx/kpdep+ESqGkIFQKIQTdKMKY5ZbDAs0wIJKSOFCEStEMAjKjMXCl97wq1sJo9jitI8e+tpFArT4Hy+DCXQQWUe5nUwVX3k7oiUmZUBqEJEaTWs1us1XZhiBUkrUgQkpBKGTZc6expMbQCgqrof+JC0hqNHdOQyWdDXHJfkdKIYRb0G/FzZnvF2RbCIERrveyGQSlZbNKRLW1xEoR+/ti5b4FyvU9RhHrcYwUErzSC3CepyjtZj2bQbDyPK9FEZ0w5PE4oRWGSCnohCH9PHXb8kE1NtDESpF7wiD8+Si2uxa7e0ZbS24tO1E8857NIOA0TBB3BuTGEmpFMwxoEnC92aIRXH353gydarzVaHCQRBwlkwvPlWD2c1scRyglrSB0KjPQqlzvtSjilza2iaVTBQ+lJiKESKOtYS0KF85pOwzRTKs+3Hu43wngrv/EaLbiJukopwW+B1G4uoolPS5WwEbcYGRyzotr8pyw1vJwPKAXRmUH5sz5KR+kCKSkTEcuXANKCHJfwVGE1Hwe/zv4c00Q/8W/+Bf8y3/5Ly98zR/8wR9w/fp1/tE/+kfl1959913G4zH/6l/9qxcmiEEg2drqXP7CTxkbG58skrtGjVWo760aPwvU99VfTXTPmjT1hM2NNltry/9bun7cQGSS3e21SxWRfCRoHkWsNV1q5FXuqzAN6R432Gq22drqsH3W4iiZYLVkq9d5af+N/5X4Fu0wZKOSaNk+iAmVJAmMOwftq7/XBmOaA1epsNFpsbXVYavfcvu8cfl21o5jRjqnHcekiWXn/8/enYc3Ua1/AP/OJOleulME2QQToC0t+1JEQJBNFFARFLSyKqusRVRWQQQBadlFQcSLXC7IvSjIIspPBUFQRHFDZQellELplrbJ+f2RzLRp0jZp0w2/n+fxuTfTmcmZyUnIm/Oe98ADt7Kz4QEZdUIDbc4RcMMbNX191XsRkOyFLFMuAjVe8NBp4ett+YLsJSypgL5+9l+YzULABx4IC/ZHsFfePQjK8YVPVipCgvwQ4mObCpzlJeCVYplXeE9YMEKC89pULc0bqXIufL094S2MqB7kj5pBAQi44QWtJMPXI2/0LSvLjBAPT4SGOqpvmifdwwzfGx6oFxiEGmHV4HPdA95arVoR9+/ULJgys+Dl7YHqIf4I8S/8Pt+TGYwb17JRPcgfIUF+CDf64bowwtfXEyZDJnLMWkg1jQj08UZGbg68vT3gA0+b+xNg9kFwig9kjQyNrEHN4Go2/TE00xfJMMLXxxOZuTmopvPEXaHV4KHRoG54UJHXWpC/yRt3ZfijfvVg3NbmIuVGDnx97V9HhbcwIiTYFyHeltcsJNMXF3PT4afzwF0h1eCdlgQPrRYhPr42bX4w1FL3Iy0nBzu+TAUyAY23gMZLa3d9ABCOTHhlpah9ypgl4C3LENkSfHw9IUsSkoURNf38cTXTMjKrhRYmkwxoBXwc9EUfkY27QqrBlCbhb3NmkddZmOSsTIRofWASZvj62B/vJYzw0Gjg4+kBbykXkKC297aci1AfXyR7WwJDnbWYUFX8d7BSB4hDhgzBww8/XOQ+hc05jI6OxurVq5GbmwutC7+0KHJzzUhNrTw5w7IsISjIFykp6cX+akrkCvYtKgvsV/9sxoxsZBtzcftWJpJzHAd/xsxcGHNykJqSUUzRDOCWMRPGrBzkSpa0R2f6VY7ZjFyjCSYpF8nJaRBZZqSlZyFbmGH0zEZycuFVMV3hDQlmYy6S0/LOl5WZjRxIyMjJwc2bGfDMcv58t1OzkJWVg1zJBKPG0k5zpgnpchaSzcW3OSszB+k5OfDIkXDbaISPVovM7GxAAOb0XJtz5GbmArJZvRfZmTm4mW2ERpKQlm2Ej8ny2mVm5UACkC4Z7Z4vx2xGdrbltRbpeWmpGWlGGLNykHozA9pM23TA21lZyMzMtgyxZppsXovMdCMyMrKRbtIgKysHmWlG3BDpgNGM1NxsyB55r3ua0Qhfk6bY1zItKwu5RhN8cmXcvJGBrMwcmGQToDVb5qVmm2DylGDMykFmqhHJ2YWfzydHBnIFMm8bkWxOgznDhLQMI9KFDvA0AjFpSMvKgjbLE7eNWfDOlZGdbbkPamVSAF65Eq6nZyDTnAtR4B5kZ+QgPT0b6WYjMnJzkGU24WZKRqFFn4rT2jcMIj0XcpZAerq1rQ6YhUBWVi5u3cyAnGFW23I7wwidhwRjWjYyrH0zBJ4O73uWKRcmyQQNAJMmFxmZ2TBlmOz2zbxttPRVWPpUqjELAToPZGfn4LY5C1pZRmZmDmSdQJbJsk9uFgCTBHiYkJ5m2xeFEMjMykZ2WjZMmblIy8hGurDvr0XJNOUi2ZiFmj6++DszC+lm++OzsnJglk1Iy5GQmZ0NCRLShOU9k5GVDUn2Rq7Jcu9yjZa+Wpn+HaxWzRs6XfEpypU6QAwMDERgYGCJjv35558RFBRUouBQUVlezPzMZlEp20VVH/sWlQX2q38mCQCEZT3pwl5/LSxpjRCFFUbJdz4hQRKWuWSAc/1KAwkekgwPSYbZLOAtW6qamq2Llpdlv7QsfWBdxqGIe+CQsHzZNcMMDSSYzQLRAaHw1GidOo8MCWZhhhACuWYTZOgsc8YkDXw1Optz+FgLnijbNJIMoykXgR6eyMzNzZsPJqBWVi3IZDZDBiAXuE4ZloqqjvqAMtvOU5ZRTWObLiwJCWazWV2SRAfLa+Wr0eJWttGmDWbh3GupgWWuYDWt5blk5D2H0ZQLnWRJU81BLnTFnM9fq4OfRqfu5yFZ7p9tu8yWPmAWluqxQrJeV94+IR5euJhhCZo8JY3N3zwlDXKt5zRZ+5DkxPukMF6ype94SppCX0el3cp7V2mPDpY5iBrI0MKyrkOW2QR/rc7hfZKFlG8OogkQUN+D+WlhqUSstCXHZIK/tw43jEaYhBlmk6W6693efvhdk2o5KFsDyXr+gteQbTZBCxlekqViMYQo9DoduWbMBAQQFRACrSzjSkYahBC4lpUBf52HOjdVeQ3M1vnMljm/ZgjIMJnN0EkyPK3xt5JiWhX/HazUAaKzDh48iOTkZMTExMDDwwNfffUV1q5dixEjRlR004iIiP5xNJJsLUJT+IiHUgHUGUplUFeLy/hpdeoXO1+t1lJEAkW3yx2U9QSV+WeukK0TGM0C6uLxfkWszefouZXvxSYhEOThiVs5RstyHwUKsDQNDLUpyuIhy2pl0TThXJEakxAOiw3J1mtxNDqss665GKTzsksvVorUKOsDKn3EV6tDjtl2JNIshPqjQVF0kqVQkbrEh2wJ3gDAaDLBT6tDoJcXsjJziq0QGqDzhL9Wp+5nWZ+y4ILp1sJKyrqSsn0RnyAPS7qpSQi7Ijtaa9VVWO+Du/prwde/ICEsV5K/sJJlriSgkyWbYkZ1fBwvJaeRpLwCMjoTBOyvD4C1knDe85gh4K/1hCxZKsxmmXPhp9WhlrcvPDys+xmt55Hzgi0hBHKE2dJvNZaKuK5UeVVkm014ILw26vsG4MdbyWrpmdTcHGuBnvz3Lq+QkmVJG0BjXRNRK8vw0lnmaUqmqjf3UHFHBIharRbvv/8+FixYAACoU6cOZsyYgccff7yCW0ZERPTPo823zmHh+8jwciVAhHNrAebnr/WAp/WLXd5aec4trVEaGkmGUVgWOC8ufbYgJY4wW0deXKWV5HzLXFgCmmo6D/hr7StJKkGKQidrrJVBNWphGiEEhDWwFkLYnSPXWmio4JImlmVOHFcx1ciWALGGt/0yJZZ1IIU18JTUJUl8tR52axc6W5HWR6uF3i8w3xIfEnKt5zKaTbjb0x+1qwXg71tpxf5o4afVoXlwdfVcnnLevcrfLtk6TmoWgAzZ7j7U9a2GztXvxu+3b6Ka1vYHgPzXJGC5X+7grdFCgnV5EAd9y9EPKFrZciUesgYesgytLKOmlw9CPL3sjgcsQbGktQa3ulxIgMN1KnXWZTvy9ykfrdYSVEMg05SL+r4B0MkaBHt5wuSRA022dWhOk9cPUnOz8bcxE0E6T4R4ekG29pnixuuyzSb1tc41W+5HsM5yTVqb65eQW2Ak0lKlWFjXPM1blsVszXLw9ZBxGwBYxbRidezYER07dqzoZhARERHyFmwvauRDJ8sQcC5AVEYtXF3XrIF/gLp+oGWkSlLPV5Zk9Uuj6yOIliOUlE/X25l/qQBJsozUhHv6wLeI9f0UOkkCJAk6OW8UUiBvRMlyRbZyzGYEOqj2qLGOEha2DqKPVodgD/sgQwMZQlgCT02+19zRqJAyYlMcjSSjSUCIzXMoGX85QiDYwwu1ff1x0dvPqYA+/0LuSvtsgmfrkhDCup6lZF3SxbZNEu7xC8A9fgF258//A4ZliQz39FdPjcZSDdYsUFhdKClfdVelLbIsWZdakRGo84Tev+glZmTr+oS5HrnQShqHPwR5Ws9nEkINyLw1WjX4yjGbEehh6Vehnt646pWdL0DMG0k2mkwI8/DGX1npaOAXaD231hK4OfhBA7D02T/SbqGebzV4a7TIMpvgo9GqI/XKEi3CmsKsLK+ivq9gGSEU1tc2j4BWlqFVqv+aq+5qgndEgEhERESVh1aSC00vVFgWL3fufLI1bHI1QKzhlVc90MtaUVD50leWZNmSOlgwXc8ZSjAgSSUbOdIWGD3RyRrEBIU5FaoqQYBOltVI0GxdP1AAatCbX44ww09nH3wW9SOBVpIQ4uGFEA9v++Ms01Kt87vyUlcdBYjOppgWpJEBJQiXIOCr1SHcxxcdq9dyea6YpzXtMn+gI8ES7GhkGTlms8sj3/mvSQhLQOsOOjlvKRNHzA76rMa6XqZOtqx12Kn63fAtJlVVqnMbadpsIPi2ZU6eg2hUSVfNFWbLfERYA0TrMhpKewHL/cj1zIYnrO/nfCOIOUKguocnUnKy1BRiD+sIdf7XJD+TMMNf54HbOdmWANGUixpevmpfVT4fzNb1K81KgGi9N5KkpEDDOrKed25ZkqDcnqqcYlp1Q1siIiKqlDTWlFBNEUGJhyyrQZsz53M0z80VnhoNtJIEEwQ0ZbwumWz9wltwNMa5Y5VgzHFQVBxl/qOFZUFzLycXV9fJlnvkp/WAEkBZ0g4luy/CilxhRjUHI4iyNcCVHQRwkjXQqOZgbqUlWBCWOVzIW7TdU2MpsGI0mfB3Vkbe/iUJoiXLCKIlfdaSNlpSnhqNNQ3Rdn6kj1YHrSQhNScbIQ5GSouiyxfkCwhrQFt6Gkm2vAeE/SLzlueCXWq4zvpjj5Lu7KfVFdunPXwEMmolI1c2W4M1+wtQfozItRbikSHBU9ZYXxsB5EtP1sgycr2y811IXvuFAO728cddXr7wsRamLOw1yX+d3hotsq1zWo1mM6p75f1YoTyv0i7lRxGhrmspWdOdJTUlFrD+qJM/QOQIIhEREZGFLMmWKpZFjO7c6+/8em6yJEFbyHw2Z3nJGkvqmNlU5iOIWqVIDVz/JV6S8qpzOkrdLPa5bUYQJZdG2HSSpXCQn1anxIcQ1oIrZiHZzQG0PAMcphAqo4euvmayJEEIS3pf/h8EPGXLQvbJ2VnqF3tlf1dZCuFYipt4yBr4lqLivU7KC3Ty89ZoLfdecq2vA3lBr6WSK9zaXz01GmSZHBcgEtaAKP891ciup3frJA3M1sDPW+M4+JYlCV4aDbLNJpiEGVpZtgZ2lkq6EvKuWwIKBIj57rUkEOzhiXYhd6kpqYW9JgpzvuvMNVuSRQPyvdeU5zUJS3Cea1KOgxoumqwj67a9z9LfJSWArcIBYtVtOREREVVKGsmShlXUQJ23RlugMmDhZEmCtpCRCGdprSNpcikDTWfI+QJEl0cQrVVIfbU6+LtQvVShjMApxWV0Lnyxt1SWleGn1anXYFZGTQq9DMnh6KQsuRac5j8OkrCm9+U9qRo8mE1q4CiV8LXUSJYg2lKxVXa6HzoiSZYlNHJtKqxa2u6j1aGGlw/u8nZtoXRLlVdLsSF3zkEELPPzCk0xBex+1FDSxT1cGKn10FjabhYCnkUMf/pqdcg1C2thJMuPE1pYRxCR9wOBLEnI9cq3JqFGKcJkWU7ER6NDDW9ftRiOZK06mmt2PIKoLE8R4umFJGMmJEg2o9ka6zxepdiQUoRGIC+wzAsW8+b8CljSgTXW9klVuEgNA0QiIiJyK9maElqagK4gS0pa6b5w+Wl0kMuhiqnWmnamVDl0hTLHKdzLp2TBj3UEUZk/5UparjJS5Kf1UOdwKaMtlnL+toGFso6doyqV+QvMuEIZlRHCtrCLkn7op9XZtKWkhXzMyuicrHE5iC/IR6OF0WzC7RxllMsSuIZ4eCEiIMTlNmokGRplLU3YF7gpDS+NptAAUSijYgWK1Ogk2aVUXp2sgVlYAriiKhX7aXXIFWaYhLBWwrX8EGS2rrup3DcZksMU02yzGR4axyPAPhpdkSmmGllGQ79AVNN5oo6Pv02AaJkfLamVdC1riwpYM18hW9N0ldFE5VkkazAvaSSYNCbL4pVVFFNMiYiIyK2U1MKSpP8VxsNa1KI0lJGx0gaaxVFGASW56FHUwo7VyRqEe9kvAeHU8QAgJOSaLQU6XBn50UiS+oVbI1u+BAsIa+EQyS7B1CQsVRsdBQGhnt6Iylc51FlKmRczhM3agbK1MqhO0uF6dpYa5JSkgIsygmgWAl5uCL58tDpkmkwwmk3qPDiNJKFtaA2XixQpx1oKoSjpxu7rr5YAsfDAqeCPJ1pJglZ27UcVD+vop0k4XuJC4afRIccsoJPNqKaxBGg66zInUr4fcmRJgsnDBCGbIZllCOsIXbbZBF+N1uEoua+2iJFS6+seERCCCAd9VGMdNc0x5y3hkivM6mi6Tso/xxhQ87HzpVVfanIG/l46AIFO3rXKhSOIRERE5FZKcRF3psb5a3WFzmdy5RwaSXLbunKFka2jD4DrC11IkOCjyVvUvSTPLUmFL2BfFK0ko5pWZwnGIVtHEK1fmCHZFanJsc4dcxQEeMga1HAxtRJQUnItozUFg5IQT2/U8wvIV4inZOmXWklWl6AouIB9STT0C8AD4bXhpdFaR/2EOoJektFJZRTPbE1uLGour6uKSjFVfgzIT2MtJuNKYSdltNEkRJEjiJ5aLSRJINdsho/1va3LV2U1L5XY8h+8rXMn840gBhQyT9e7yBHEol93rWSp3JojzPDWaKGVraO51tF0nSyrVYqlAu8LS4o0YPTLgMknu9DnqOwYIBIREZFblXT+WVHah9ZEmJf9sgiu8NRqLfOcymMOonW0wfURREvKYkkK1CjPLWBJ79O5mOYb6uGFe/2D1FRTJdjRybJ1dUbbwCLHbEkhLE112YKUyrdm2C9H0jo4HPf6BearHFmyHyFkWVJHEJV1MkujupcP6vtWU9NygdKttWmb1liypTwK4yHLEMJx2wqm9QKWYForaVwaQbRcu+WHCl0R1XOVKr25QsBXZ/mRQStbRussI/3WEURlbVDvHMuBsjKCaEZQIRViLetQ2qdFAyi28I9WliHLsASuWh08JA1yzWZ1jqZSaVVS0qEBdc6v8mOK/YqhVQsDRCIiInIr2ZqqWNl4yRrrunVlPQdRzrdOmmtfFKvpPNEsqDp8Srj0gixJgIA6r8sVfjoP1POtBsDy5d0kzOpag7K18md+ucJsXRLDfSRrcOFovUovjdaybEK+4Kkko8E66xd8AbgtuNUqyzaYzZBKGLgqZOsPC8pyJ7Ibl2XJv8ZlQY5G1jTWFFNXrkcrKYu1FB2IWUYXLa+lt3XJG52kQa5ZQANJfZ/K1j4BH+sIok4ZGRSFLlGiLO1yMSMNGbm2VVvNxRRvsgR5MnKEWS1ilKv0N+t8TMscY2XOr1DXSFTSg6s6BohERETkVpZCMJXvW5KlcqrGrXMjHVFHEOH6OogaScLdPn4lfm7lC6pJCHiVIkhXipmYhVJV00GKqdkM/1KsIeiIEp+YAYdpgJKUl+IHqWQjdUoaoLvn93lqNMixjn6Vto9p1SDWvSOIymiwI2ZhqYKbnyxJliViXBxBVH4eKSoAV37AEID6g5I6gihL0Ml5RWoEAFHnFkT9FCAkbx3Mws5f18cf/Wo1QAO/AKSbcgpcp4CuiNdHmUeozEH00Wqs83Gty35AqVJs+ZxTRiqVtPqSzDutbBggEhERkVu5um5aeQnz9Eb70Jpl/jzKQuwlWQextJR0vFxhhk8plm9QAkTLqJI1QCywT45wf4CoJO2JItI/LQGiZYkDTQm+jCuFfMwF1losLS9ZixyzpbplaUeplbUaLXMQ3RdwFBXoCQiHcw0N1YIQ5OF8ynPeCGLRwa2nrFXnHCrpplpJQq51rp9yD63xPOCdC9EwBdDmLStR2PklSYKfzgM1vHyQbTbZXWdxVVk9rIGqp6yFj7XaqoBQi/Yoy9hoJcsIovKDkPKDRVUPERkgEhERkVsF6Dxwl5frBUrKmiRJJVpb0FVqOqbk+jqI7nhuWJdIKKqCZHGUgitma6qnsi6iQqmEGeJZunmhBSnzt8yFBCuAJUDMMZtLXAhJKeQjYFnmwl28NJpStSs/y2LzAITk1i/rOjlvXT8AuJKZjuvGTADK0hL2z1bfN8ClvqSR835MKCoQU9a2lCWoPygpBYg8ZFkNjNU5iAVIkIotnhPo4YWC4ZpZFJ9arJM16gihj6xFrtlynAaymiGgFCKyzEG0jH4ro8dVd4ELCy5zQURERG4V5OFVaPGIfwJ1Hb8KGEdQvlQLCPiWYnTPS6O1LHZuTRPUQLb50ptszEJNL1+XF4Evjtp+UXihI09rAR3LcgSuh0/Kc5iFZUkGd/HSaJArzPCSSl8ISaMs9yC5dwRRGZUV1iIrZghkmiwjbMoC8qWljFIWN8dTY126JMskqyOIGskSDubPQCjs+oWDQkYFBXp4QitJyDab1HM6U5zIwzpqrga4Ut5outY66qlR5ooKqEWptNKdUKKGI4hEREREbqWMIJT1XEdH8gelvqVYFkSrBmrWEUQ5r4qpWQgYzWY0CQhx+zWqpysiMNJJlkBMkhzPUyxO/vO6cykWL1lrmT+HkgWu+SmFdAA3p5jKltRNM4Q6j04ny8g2m2wWpy8NjSRZ0y3lYgM4X40OWkm2GUEsmKKujPbmp7S9uPb6arTw13kg05SvUI0TQbendd1VpW2Sdd6hRsob5ZSlvFRgszUtVrZee1XHAJGIiIjIjZQiFRURIMqSpQIoIKmLtpeE+qXYusyFFrJapCY1JxvBnl6oXYpiOoXRQFkovfBgxUOTtxRCiVJMrSmLkiTcWtHW0zpvs6i2O8tSHdPC3SOIGmsKstFsgqdGRpCHJ9JycxxWji0JrbWokUYqukgNAPhqddDKMjw1eRVLJckygqeQYR90KaOdxbVXkiTU8PK1qWTqzOujkzXqUhuW0U2hpiRrrMG7MoKtLJmiBLfuHvWtCAwQiYiIiNxI+YJYYQGiZEntK02KqY9Ga13bzTKPTEl5BIDbuTm41y+wTJYLyb+2XGH3z1O2LIUgo2QVI8tqBNESrBQfFDlDp875FG6tiqmTZcjWhd+zzSb4anRo4BuADFOuWqWztCxpopLNWoaF8dPqbJaeka1VQD0LpJgWXGLFDNtCNkUJ8fCyrpupKP6HBU+NZa6hVpbgqdHkBYHW64I1ANZYl2TJn07LKqZEREREZEO2BjkV8UXR8gXbEuB5laIAi7dWC42cf66VZaQk22yCVpbLZPQQUOZuWXIKC/vyr5M1yLVWIC1JEaC818W9QbxOlqF1Q4EawBKUK0GRe6uYWtpnEgJGkwlBHl6o7uUDwLrshxtCA60sQSNbnqu4uZheWi2q6fJ+yFBG4fKv4Zk3LzUvyDMLAVl2LsXYErgVXN+xmCqmUl6Kqad1mY9cYYZWtry/lEq1SnVfc77RV0vV1aodJLJIDREREZEbyai4NDMlHS9A51mqCqo+Gh08ZBlpudmWVE7rSMmtnGzU8vItsyJEymiRZC0A4ogSdJQ0EMtfZdKdI4g6a7XX4gqgOEMrKSm97l1XT5Is6xpmm03IFmYE6zwR5OEFH40O142Z0Lhh9NOyFqAlsCquD4Z4eNlcnTJ/0WYOIiwBl0BemGcSAjKKn+MIKO/DvOBSiOJfd60sQydZ/rNUW5WQmWNWK/paRkjz+pKSig1U/eAQ4AgiERERkVspIwhuyNZzmTICE+zp/Lp1jigpqsqXaa116QKj2eT2yqX5KaOvApYlBRxR5riVNBCT1REe985B1FkrXBa3xp4zlEIygPt/aPDUaNQCOH46D+hkGWGe3pbCP244v2VuHmxGAQsT6ukNvX+QzbFa2TZNN2/piHxBHvLm/BVHK9lW4LXMPS36OMv8SU2+QFGDHLMJGllSf7zQWkcYhXU5GF3+EcQqHiMyQCQiIiJyI6WkRmEBTllSKkD6a0u/3mOQzlMtBKOO7KHote1KS0kxFUIU+uVfI1vnt5WwHWU1B1FnXbtP54ZfBnQ2RWpKfTobXtZlQgCo81Tv8vJRR8fcQSdrbOYROktJ68w/Migr4Xy+KM9kXSvRGVoHlUWLG5W1tMG6bIUkwVejQ47ZrBb5Uaq0Wqr7Kmtq5s1BrOLxIQNEIiIiIndSgo6KKlLjqdGUaokLRYDO01qIQ86X8ohC1yd0h/yjRYWnmFpGqEoaiOUPDtwbIGqsI5vuSdNUIkS3jyDKWqTn5kAryfDVWGabBXl4wUerdV+AKMklDxBl2WZuYd7annnMQkDn5Pk1smwzf9GZIjVaSVZHEAHAV6cDrH1TqVSqpNIqy1zkf92reojIOYhEREREbqRUcNRUUIqpl6wpVQVThZ9WBw9r0JOX8ljykTtn5B99KSz9U/liXtJALH8QVBYFYNxxf5R5rMr/dydfrQ7VdJ6o61sNPtZ+EuThCV+NzmYdzdLwkDXw1rgeZsjWAFtbINiSYZtiahZwbQRRshS5kZz88UYjS/CQZTWQ9NPo1OUx8lLILa+3ELZzEC1VTl256sqHASIRERGRG8nqF8jyT9TykDVoG3IXAj1KNwcRAHy0WnhqlADR8kVYGTkpK8oX+KIWQVfmIGpLWKVV48RzlITOulyDO4rUlFUQCwBRgSGICAixmefno9UhyMPTbc/lKcvwLEGAqLGmbtqkmFrn9OUfBDRD2BSyKYpsrcJrhoAslPmLRb83A6wBtMJHq7WMXFuDVQnIS8mVlADR0h77hNaqhwEiERERkRspXyAraj20EE/3VBj10ejgJWvz1nS0Xk6ZppjCtkKkI1rZkmLq7AhSQcoXeEkqfp0+V2gky6iTe4rU5FXtdHdAblmewX57TFCYW+auApZlUkrST2RrkRptgSI1loxb22UunB9BlCHDMuooSbCun1j0PfXT6hAZEKI+9tRo1DmmaoqpdckLCMvaox7qCCJTTImIiIgoH0lSlrmo6JaUjo9WC2+NRl3vDQIQkijbFFPrfZNE4cs7KOsyljRQtaQJWr7cuzv48tJobUbmSkq2jtiWZ7BRw8t91WmbVAsp0X1Q5nDmXz9Rti50UXAOorMjiEqRJbOwFFlSUkNd4Slr1JRT9UcMyNb3uqVlyvuiqgeHAIvUEBEREbmVsm5bRaSYupOHrEF0YBgCPTzUpSdkuHfUrSBl1LCoL/FKimlJ1+yTrEtpqCOjbuSj0bol6NRI+deDrHoBRzWdR4nmIOpkGXf7+MEv3xxayRqU5S80Y3IhQFRSQc0QMEOUKLXYU9ZAJ2vU0UPlHHk/YuQVJ5JQ5acgcgSRiIiIyJ3yqhxWdEtK724fPwCwfsE2Qydpy3iZC8voniQKX6tOWQqhpIGYOo/MWnzHnXy1OrcE0AVHvP4pZElCdGCY7TZYAi5zgX21Tt4XJZAzCWF57YtIXy6Mp8YygijnK06TV3E3b04ioGQQVO3XjAEiERERkRspi73Ld1CilgwJJrOARiM5/cW8RM9jnSMmihg5U9aoK3GAKDk/F81VUQEh7pmDqKYxFp5q+0+RN4oq8m2D0yPIkiRZ1pUUAmZJlOiHgfwjiEqQmVfR1EJZmkMJaKuyO+eTi4iIiKgSUOZMyVV9EmI+siTBZK3+6I45doU+j/WrtVRMkRqtLJd4pE6Zg6gpIggtKR/r0iCllb8Yyh3UjUpMqaKbx7X1JnWypYqpsI4iuvrDgIesgYd1/U2lKmrBQlRqf6zio4cAA0QiIiIit1KCG3etKVcZ5K39Vvj6hO55HmsKIIpOIfWyjuaUhDIKVJapsqWlznUrxUjpnUSp6ppHuPT662QZZiFgBkqUYipLEmr5+MFXq8s3ipi3vqLyHIAygli1X7PK+84gIiIiqoLUZS7uoC/2yjV5umF0rPjnsh+dKcizFMVglGspy+U6Sksj5UsxvYP6UUnJ1qI9+bny+nlIGpiEgFmIEo88Nw+qjgCdZ948RuvrYxlZlwrMQSzRU1QanINIRERE5EaSdOd9sVdSHnXlECBqZAkwF13oo1lQGPzzVbp0hTJKqa3EuZtqiikqbj3NykQDGeYCKaYaF14/D+sIosi3oH1JSdZRdOU1MgnLaGbeMhdVfw4iA0QiIiIiN7JUyKz6XxLzU4KU8hlBBFBM+mewh1epnkMjlXwOY3nQKHPcrGmm/3SW7pAXIQq4NhKolWUIWNZPLG2KtEZ5f1vTrpVsAXUE8Q545zNAJCIiInIjOd8Iw51CtqY8epbDvD2NJEMukE7o/ucon9HQklKWZijL+Z5VSf4RRMvyH67NzfSQNdYRxNKnFkvW+cVKqqkEy2Oluu+dENQzQCQiIiJyIyU1sGp/RbQlW9MyPTTlMIIoSWU+CqORZOgq8Zd4ZRSaBWosNPnmIJqF7Zw/Z3jI+eYgljK1WKliqhSrkWB5XyhBIUcQiYiIiMiGpFY4rPpfFBWWgFeCp1z2Xx015RIgVoUqphxBVGjkvDFls7WCqSv3xjK6J8EsROlHEAFoJCWItwTynlLeDyfKGptlOwZethggEhEREbmRulbaHTCSoFAKcniUR4qpiwVISvQcZbyeY2nlpZjeOX2oNDTIW07CLITLRYY0sgzLzMXS/zCgrKOZlykgwUOTd847YQSx8r4ziIiIiKqg/Guk3SksKX2upfWV+Lnksn8erSRBJ1XeOYiWEbKyXXOyKpHzrYNoEgIyXCsypAR1lhHE0r3uyhqnynqnkCzrcub/e1V/67PXEREREbmRZZmLO2t5AgkSNLJcLmmZcjlUGNXKcqUfndNIlb+N5UUj5aWY5gozvDQal4pAKf3JBMCrlPNolRRyWf1f+7m5Vf1lY4BIRERE5GYaSa7yXxLzk9URxLK/KA1Q5immHlUg+KoKQWx50UqymmKaZTIh1NPbpePz7qOAv86jVG1RlrTQyspPQPZzc+UqHmJV7dYTERERVULacii0Up5kQP1SXNbKY35gdS8fBOo8y/Q5SkvrYhrlnUyW81ZBzBFmhLi4DqZWktXlMfy0ulK3JzasJoJ0ntZUYPu5uWX8+0aZY5EaIiIiIjfTyPIdlWKqVI0srzmIZT0/sKF/YJme3x20MovUKCwrY+bVBfXXujYKqCyT4anRuHysI0qQKUOCVrYvfFPVKxjzZwkiIiIiN9PeYSmmUjkWqdFa15j7p9NKcpmn2lYVWkmCEBJM1lFAf51ro4Aaa5/y13rA041reUqSBA1ku6UzqnqAxRFEIiIiIjcL8/R2SypbZaGRlCI1ZR+w3OXlW6mXoCgvWpkppgpJkgBJwGgywUujgZ+Lo4Baa1EZV1NTiyNDqfBr+zpZqs+a3Ppc5YkBIhEREZGbNQ0MregmuJWHrEHLoOqo5ob0vOLU8vEr8+eoCrQuLgZ/J9NYl44wmnMRoPN0+QcEjWyZ1xriYnGb4siSBJ2DH06qeno5ex0RERERFau6l0+Vn1tVlehkuVyqxlYFSrXQLJMJYZ6ujwJqJQk+Wp3bR/UlOJ6bW9UzgzmCSERERERUyXjJ2nKpGlsVWOakCpgEEKgrSYAow0ejRbVSLnFh3y7L6GbBEc2q/kMKA0QiIiIiokqmcUDwHbVUSmmoKZuSBG+N6+GLVpbRufrd8CrBsUWeV5Jxj1+A3ZxITRV/3RggEhERERFVMh5y2S71UZVYRhAto4glrULq7uAQsIwUNq4W7HB7VcZxayIiIiIiqrQkCTAJAY0kw8uNy1SUlao+B5EBIhERERERVVoyJOSYTdBKErzkyp8AKVfx6rNVu/VERERERHRHkyUJkmRJu/WoAoV7Kv8YZ9Eq/x0mIiIiIqJ/LBkSJEjw0+qqxPy+qtDGojBAJCIiIiKiSkuSLGsO+rt5HcOyIlfxKqYMEImIiIiIqNJSUkz93LyOYVmROYJIRERERERUNmRI0FkXu68KWMWUiIiIiIiojMiSBJ0sl8lahmVBruIhVtVuPRERERER3dEkSPCQNfCSq0Z90CpQaLVIVbz5RERERER0J5MlwIMjiOWmareeiIiIiIjuaLIygqipGiOIGhapISIiIiIiKht+Og9EBoRUmRFECZalOaoqBohERERERFRpaSQJdX2rVXQznCZJUpVeCZEBIhERERERkZtU9QCrqrefiIiIiIio0uAIIhEREREREQGwzkGswiEiA0QiIiIiIiI3kSSJRWqIiIiIiIjIsixHVcYAkYiIiIiIyE0sy1xU3SCRASIREREREZGbsEgNERERERERAWCRGiIiIiIiIrKqwtmlABggEhERERERuY1UpccPGSASERERERG5jQwuc0FERERERERQUkyrboTIAJGIiIiIiMhNmGJKREREREREACwjiAwQiYiIiIiIyDoHseqGiAwQiYiIiIiI3EQCRxCJiIiIiIgIqNKjhwADRCIiIiIiIreRULWDRAaIREREREREbiJLrGJKREREREREdwAGiERERERERG5iGUGsumOIDBCJiIiIiIjcxDIHsaJbUXIMEImIiIiIiNykao8fMkAkIiIiIiJyGyXFtKqOIjJAJCIiIiIichN/rQ7RQaHQyZqKbkqJMEAkIiIiIiJyE0mSUNPbr6KbUWIMEImIiIiIiAgAA0QiIiIiIiKyqhIB4quvvor+/fsjMjIS/fv3d7jP0aNH0a9fP0RGRqJbt27YuXNn+TaSiIiIiIioiqsSASIAPProo+jVq5fDv128eBGjRo1CmzZt8N///hfPPPMMZsyYgcOHD5dzK4mIiIiIiKoubUU3wBkvv/wyAODGjRv4/fff7f7+wQcfoHbt2pg+fToAoEGDBjhx4gTeffddtG/fvlzbSkREREREVFVViQCxOCdPnkRsbKzNtg4dOmDRokWlOq8sV57FS5S2VKY20Z2BfYvKAvsVlQX2KyoL7FdUFqpyv7ojAsTr168jJCTEZltoaChu3ryJnJwc6HQ6l8+p1coICal85WmDgnwrugl0h2LforLAfkVlgf2KygL7FZWFqtivKixATExMxIoVK4rc59ChQ6hRo4ZT55Mk2+hcCFHitgFAbq4ZqamZpTqHO8myhKAgX6SkpMNsLt21EeXHvkVlgf2KygL7FZUF9isqC5WxX1Wr5g2dTlPsfhUWIA4ZMgQPP/xwkfuEhYU5da7Q0FBcv37dZltycjICAwNLNHqoqCwvZn5ms6iU7aKqj32LygL7FZUF9isqC+xXVBaqYr+qsAAxMDAQgYGBbjlXTEwM/u///s9m2+HDhxETE+OW8xMREREREf0TVIllLs6fP4+ff/4ZSUlJMBqN+Pnnn/Hzzz+rfx84cCAuXLiARYsW4Y8//sD777+PTz75BM8880wFtpqIiIiIiKhqqRJFal5++WUcO3ZMfdy3b18AwK+//goAqF27NtauXYuFCxdi06ZNqFGjBl599VUucUFEREREROSCKhEgvvfee8Xu07ZtW+zcubPsG0NERERERHSHqhIppkRERERERFT2GCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrSQghKroRlZHZLGAymSu6GTZ0Og1yckwV3Qy6A7FvUVlgv6KywH5FZYH9ispCZetXGo0MWZaK3Y8BIhEREREREQFgiikRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiJXK+++/jy5duiAqKgoDBgzAqVOnitx/z5496NGjB6KiotCnTx/83//9Xzm1lKoaV/rWmTNnMG7cOHTp0gUGgwGbN28ux5ZSVeJKv/r3v/+NJ598Eq1atULr1q0xdOhQ/PDDD+XYWqoqXOlXBw4cwKOPPoqWLVsiJiYGjzzyCHbu3Fl+jaUqw9XvWIp169bBYDDg9ddfL+MWUlXkSr/asWMHDAaDzX9RUVHl2FrnMUCsJHbv3o3XXnsNY8aMwYcffgiDwYDhw4fjxo0bDvf/7rvvMHnyZDz22GPYuXMnunbtitGjR+OPP/4o55ZTZedq38rMzMTdd9+NyZMnIywsrJxbS1WFq/3q6NGj6N27NzZt2oQtW7YgPDwcQ4cOxbVr18q55VSZudqvAgICMGrUKGzduhX/+9//8Nhjj2HGjBk4fPhwObecKjNX+5Xi9OnT+OCDD2AwGMqppVSVlKRfBQYG4ssvv1T/++yzz8qxxS4QVCk89thjYu7cuepjk8kkOnToINavX+9w/wkTJohRo0bZbHv88cfFnDlzyrSdVPW42rfy69y5s3jvvffKsnlURZWmXwkhRG5urmjWrJn43//+V1ZNpCqotP1KCCH69u0rEhMTy6J5VEWVpF9lZGSInj17iv/7v/8TgwcPFgsXLiyPplIV4mq/2r59u2jdunV5Na9UOIJYCWRnZ+P06dOIjY1Vt8myjPbt2+PkyZMOjzl58qTN/gDQoUOHQvenf6aS9C2i4rijX2VmZiI3NxcBAQFl1Eqqakrbr4QQOHLkCM6ePYsWLVqUYUupKilpv1q4cCHatGmD++67rxxaSVVNSftVWloaOnXqhPvvvx+jR4/G77//Xg6tdZ22ohtAQEpKCkwmE0JDQ222h4SE4Pz58w6PuX79OkJCQuz2T0pKKrN2UtVTkr5FVBx39KslS5bgrrvuQtu2bcuiiVQFlbRf3b59Gx07dkR2djZkWcacOXPQrl27sm4uVREl6VefffYZvv76a85npUKVpF/dc889eO2116DX65Gamop33nkHgwYNwkcffYTw8PDyaLbTGCBWYkIISJJU6N8d/a2o/YkUxfUtopJwtl+99dZb2L17N9577z14eHiUQ8uoKiuuX/n6+mLnzp3IyMjAkSNHsGDBAtSpUwctW7Ysx1ZSVVNYv7px4wZeeeUVrFy5Et7e3hXQMqrKivq8iomJQUxMjPq4WbNm6NWrF7Zt24axY8eWUwudwwCxEggKCoJGo8H169dttt+4ccPulwlFaGio3f7JycmF7k//TCXpW0TFKU2/evvtt7F27Vps2LABer2+LJtJVUxJ+5Usy6hbty4AoHHjxvjjjz+wbt06BogEwPV+debMGSQlJWHQoEHqNpPJhG+++QabN29m9WUC4J7vVzqdDo0bN66UGV2cg1gJeHh4ICIiwqbqmtlsxpEjR2x+acgvJiYGX331lc22w4cPF7o//TOVpG8RFaek/Wr9+vVYtWoV1q9fX2lLe1PFcdfnlRAC2dnZZdBCqopc7VdRUVHYtWsXdu7cqf4XGRmJfv36YceOHeXYcqrM3PF5ZTKZcObMmUpZMZ4jiJXEs88+i2nTpiEiIgJNmzbFu+++i6ysLPTr1w8AMG3aNISHh2Py5MkAgKeffhqDBw/GO++8g/vvvx+7d+/Gjz/+iPnz51fkZVAl5Grfys7OVpdLyc7Oxt9//42ff/4ZAQEBqFmzZoVdB1Uurvart956C8uXL8eSJUtQq1Ytdb60j48PfH19K+w6qHJxtV+tW7cOTZo0Qd26dZGdnY0vvvgC//3vfzF37tyKvAyqZFzpVz4+PnbZDT4+PggMDMS9995bEc2nSsrVz6sVK1YgJiYGdevWRWpqKt5++21cuXIFjz32WEVehkMMECuJXr164caNG0hISEBSUhIaN26M9evXIzg4GABw9epVyHLegG/z5s2xZMkSvPnmm1i6dCnq1auHlStXokGDBhV1CVRJudq3rl27hr59+6qP161bh3Xr1qFfv35YuHBheTefKilX+9WWLVuQk5OD8ePH25xn7NixGDduXLm2nSovV/tVVlYW5s6di7/++gteXl645557sHjxYvTq1auiLoEqIVf7FZEzXO1XqampeOWVV5CUlISAgABERkZi69atuOeeeyrqEgolCSFERTeCiIiIiIiIKh5/LiEiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREAABtRTeAiIiovCQmJmLFihV229u1a4eNGzeWf4OIiIgqGQaIRET0j+Lv74/169fbbSMiIiIGiERE9A+j0WgQExNT7H5ZWVnw8vIq+wYRERFVIpyDSERE/3iXLl2CwWDA//73P0ybNg0tW7bEc889BwC4efMmZs6cifbt2yMqKgoDBw7E999/b3N8amoqJk+ejJiYGHTo0AGrV6/G66+/ji5duqj7JCYmok2bNnbPbTAYsHnzZptt27ZtQ+/evREZGYnOnTvjrbfesvn79OnT0b9/f3z11Vfo06cPYmJiMGjQIJw5c8ZmP5PJhLVr16J79+6IjIxEx44dMX36dADA+++/j2bNmiE9Pd3mmK+//hoGgwG//PKLi3eRiIjuBBxBJCKif5zc3Fybx0IIAMCiRYvQrVs3LF++HLIsIzs7G88++yxSU1Mxbdo0BAcHY8uWLYiLi8O+ffsQFhYGAHjxxRdx7NgxzJgxA6GhoXjnnXdw4cIFaLWu/zO7fv16LFu2DMOHD0fr1q1x+vRpLF++HN7e3hg8eLC639WrV7Fo0SI8//zz8PT0xKJFi/DCCy/go48+giRJAICZM2fiv//9L4YNG4bWrVvj1q1b+OSTTwAAffr0weuvv469e/eif//+6nk//PBDREREoFGjRi63nYiIqj4GiERE9I9y8+ZNRERE2Gx79dVXAQDR0dGYNWuWun3btm04c+YMPvroI9SrVw8A0L59e/To0QPvvPMO4uPjcebMGRw4cADLli1Dr169AABt2rRB586d4efn51Lb0tLSsHLlSjz//PMYO3YsACA2NhaZmZlYvXo1Bg0aBI1GAwC4desWtmzZorZLCIExY8bgzz//RIMGDfDHH3/gP//5D1566SU8/fTT6nMobaxWrRoefPBB7NixQw0Q09PTsW/fPkyePNmldhMR0Z2DASIREf2j+Pv7Y8OGDTbbPDw8AACdOnWy2X7kyBFERETg7rvvthl1bNWqFX788UcAwA8//AAANumkvr6+aN++PU6dOuVS27777jtkZGSgR48eNs/Xtm1brFq1Cn/99Rdq1aoFAKhVq5YaHAJAgwYNAAB///03GjRogKNHjwKAzehgQY899hji4uJw8eJF1K5dG3v27EFubi4eeughl9pNRER3DgaIRET0j6LRaBAVFWWz7dKlSwCAkJAQm+0pKSk4efKk3YgjANSpUwcAcP36dfj6+toVtCl4LmekpKQAAHr37u3w71evXlUDxIKVV3U6HQDAaDQCsIyU+vj4FDmK2aZNG9SuXRs7duzAhAkTsGPHDjzwwAMIDAx0ue1ERHRnYIBIRERkpczdUwQEBCAyMhKzZ8+221cZdQwNDUV6erpd1dPk5GSb/T09PZGTk2Oz7datW3bPBwBr1651GGDWr1/f6WsJDAxERkYG0tLSCg0SJUnCo48+in//+9945JFHcOLECbuCOERE9M/CAJGIiKgQ7dq1w1dffYWaNWsWOiKojEYePHhQnd+Xnp6Ow4cP2wRm4eHhSE9Px99//43w8HAAwFdffWVzrmbNmsHLywvXrl2zS3d1Vdu2bQEAO3futCluU1C/fv2QkJCAGTNmIDw8HLGxsaV6XiIiqtoYIBIRERWib9+++OCDDzBkyBAMHToUtWvXxs2bN3Hq1CmEhYUhLi4O9957L7p06YLZs2cjLS0NYWFhePvtt+1STu+77z54eXlhxowZePbZZ3Hp0iV88MEHNvtUq1YNY8eOxfz583H58mW0atUKZrMZ586dw9GjR7Fy5Uqn237PPffgiSeewMKFC5GcnIxWrVohNTUVe/fuxbJly9T9wsPDcd999+Hzzz/HqFGj1CI4RET0z8QAkYiIqBCenp7YtGkTli9fjsTERCQnJyM4OBhNmza1KUqzcOFCzJ49GwsWLICPjw+efPJJREVFYe/eveo+wcHBSEhIwKJFizBmzBhERERgyZIl6qijYsSIEahevTreffddbNiwAZ6enqhXr57dfs6YNWsWatasiW3btuGtt95CcHCwwxHCrl274vPPPy+yoA0REf0zSEJZ/ImIiIjcRllj8ODBgxXdlGJNmDABSUlJ+Ne//lXRTSEiogrGEUQiIqJ/qF9//RU//vgj9u/fj6VLl1Z0c4iIqBJggEhERPQP9fzzzyMlJQVPPvkkevToUdHNISKiSoAppkRERERERAQAkCu6AURERERERFQ5MEAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERERERERAAYIBIREREREZEVA0QiIiIiIiICwACRiIiIiIiIrBggEhEREREREQAGiERERERERGTFAJGIiIiIiIgAMEAkIiIiIiIiKwaIREREREREBIABIhEREREREVkxQCQiIiIiIiIADBCJiIiIiIjIigEiERERERERAWCASERERERERFYMEImIiIiIiAgAA0QiIiIiIiKyYoBIREREREREABggEhERERERkRUDRCIiIiIiIgLAAJGIiIiIiIisGCASERERERERAAaIREREREREZMUAkYiIiIiIiAAwQCQiIiIiIiIrBohEREREREQEgAEiERERERERWTFAJCIiIiIiIgAMEImIiIiIiMiKASIREREREREBYIBIREREREREVgwQiYiIiIiICAADRCIiIiIiIrJigEhEREREREQAGCASERERERGRFQNEIiIiIiIiAsAAkYiIiIiIiKwYIBIREREREREABohERERERERkxQCRiIiIiIiIADBAJCIiIiIiIisGiERERERERASAASIRERERERFZMUAkIiIiIiIiAAwQiYiIiIiIyIoBIhEREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERExZo+fTr69+9vs+3AgQPo2bMnIiMj0aVLF4fHHT16FAaDAb/99ptb25OYmIg2bdoUuc+QIUMwfvz4Uj/Xjh07YDAYkJ6erm77448/8OSTTyImJgYGgwGXLl0q9fOUl0uXLsFgMBT7X1W6JiIich9tRTeAiIgqv9GjRyMrK0t9bDKZEB8fj44dO2LevHnw8fFxeFxERAS2bt2KOnXqlFdT3a5Tp07YunUrvL291W2LFi3C7du3sXr1anh7e6N69eoV2ELXVK9eHVu3blUfX7x4EVOmTMHMmTMRERFhsx8REf3zMEAkIqJiFQzwkpKSkJaWhoceeggtW7Ys9Dg/Pz/ExMSUcevKVnBwMIKDg222/fnnn+jSpQvatWtXQa0qOQ8PD5vXRAnuGzZsWOhrlZOTA1mWodFoyqGFRERUkZhiSkRExcqfYrpjxw7cf//9ACwjiwaDAYmJiQ6Pc5Ri+s477+DRRx9FixYt0L59ezz33HM4f/683bH79+/HY489hqZNm6JNmzYYMWIELl++7PB5hBCYN28eWrVqhe+//97hPrdv38bAgQPx8MMP48aNGwAAg8GAd999F0uXLkXbtm3Rrl07zJkzB9nZ2epx+VNMlfTMCxcuYOPGjTAYDBgyZIi674EDB9C/f39ERUUhNjYWixYtQk5OTlG3tlJS0nO3bt2Krl27omnTprh27ZrDVGPlnnz22WfqNrPZjHXr1qFbt26IjIxE9+7d8eGHH5b3ZRARUQlwBJGIiFzSqVMnrFixAmPHjkV8fDyaN2+OGjVqOH38X3/9hcGDB6NmzZpIS0vDBx98gEGDBmHv3r3w9/cHAOzcuRPx8fHo3bs3Ro8eDSEEvv76a9y4cQO1atWyOZ/ZbMbMmTNx4MABvPvuu2jSpIndc968eRPDhg0DAGzatAmBgYHq3zZs2IC2bdti8eLF+PXXX7F06VLUrFkTI0aMsDuPkp45duxYtGnTBkOGDIGfnx8AYPfu3Zg8eTKeeOIJTJo0CRcuXMDSpUshhEB8fHyh98NsNsNsNhd5zyRJshm9M5lMEEIUeYwsy5Dlkv8O/O233+LChQuYMmUKvL291dfGGfPmzcPOnTsxevRoRERE4KuvvsKMGTMQGBiIzp07A7AE3i+++CI+/fRT3H333SVuJxERuRcDRCIicklwcDAaN24MAKhfv77LKaQzZsxQ/7/JZEJsbCzatWuHTz/9FH379oXZbMaSJUvQrVs3LF26VN33gQcesDuXyWTC9OnTcfjwYbz33nu499577fa5ceMG4uLi4OPjg/Xr16sBnaJWrVpYuHAhAOC+++7Dt99+i/379zsMEJX0TA8PD1SvXl29diEEFi9ejL59+2L27Nk2+8+dOxcjR45EUFCQw/uxcuVKrFixovAbZm3jwYMH1cfdunUrdDRVMXbsWIwbN67IfYqSmpqKDz/8EGFhYS4dd/78eWzZsgWvvfYa+vXrBwBo3749kpKSsGLFCjVAVFJWJUkqcRuJiMj9GCASEVG5OnnyJJYvX46ffvoJN2/eVLefPXtW/d9r167ZpTIWZDabMXHiRHz//ffYvHkz6tevb7fP9evXMXjwYISGhmLNmjUOi+nExsbaPG7YsCF+/PFHl67p7NmzuHLlCnr06IHc3Fx1e9u2bWE0GnHmzBm0bt3a4bEDBgxAp06dijy/h4eHzePVq1fbpME6UtoiMxERES4HhwBw5MgRyLKMbt262dyLdu3a4eOPP4bJZIJGo0Hfvn3Rt2/fUrWRiIjcjwEiERGVmytXrmDo0KFo2rQp5syZg+rVq0On02HUqFFqwJOSkgIAxQYnmZmZ+OKLL/Dggw86DA4By3IUSnppYZVWq1WrZvNYp9PBaDS6dF1Km0eOHOnw71evXi302LCwMISEhBR5/oKjbA0bNnQqxbQ0QkNDS3RcSkoKTCYTWrRo4fDvSUlJLqUkExFR+WKASERE5eaLL75AVlYWVq1apQZsubm5uHXrlrqPkoqZlJRU5Ll8fX3x5ptvYuTIkQgLC8OUKVPs9mnTpg0aN26MmTNnIigoqND1GktLmdM4b948Nf02v6Lm2FXWFFNHqZ8eHh52RXfyv3YAEBAQAK1Wiy1btjg8R8GKsEREVLkwQCQionKTlZUFWZah1eb987Nnzx6bVMT69esjPDwcO3fuLDaga9euHZYvX45x48bB19cXzz//vN0+zz//PNLT0zFhwgSsW7euTJamUNp8+fJlDBgwwKVjK2uKqSM1atTA5cuXYTQa4enpCQD46quvbPZp27YtTCYTbt++bZe+S0RElR8DRCIiKjdK8PDiiy/isccew5kzZ/DOO+/YpHnKsoypU6diypQpmDx5Mh566CFIkoSvv/4avXv3RlRUlM05u3TpgkWLFmHKlCnw8/OzWXZCMWXKFKSnp2P06NHYsGGD29dmlGUZ06dPx7Rp05CWloaOHTtCp9Ph4sWLOHDgABISEuDt7e3w2PDwcISHh7v0fAaDwR3NdlnXrl2RkJCAl156Cf3798dPP/2EHTt22Oxzzz33YODAgZg0aRKGDRuGqKgodR7muXPnMH/+fACWSrUzZszA/v377SrTEhFRxWGASEREZU5JNTQYDHjttdewYsUK7N+/H40aNcLy5csxceJEm/379OkDT09PrFmzBuPHj4ePjw+io6MLTU/s3bs3MjIyMHPmTPj6+joscDNz5kxkZmZixIgReO+999CoUSO3XmOvXr3g6+uLtWvXYvv27ZBlGbVr10anTp2g0+nc+lwVRa/XY8GCBVi1ahX279+Ptm3bYsGCBRg0aJDNfrNmzUK9evWwbds2JCQkwM/PDw0bNsRjjz2m7mM2m51aroOIiMqXJPjJTEREZeTgwYN4/vnn8cUXX5RJyiMRERG5V+lKnBERERXi22+/xdatW1GjRo0SV8QkIiKi8sUUUyIiKhPPP/88goOD8dprr5V6yQUiIiIqH0wxJSIiIiIiIgBMMSUiIiIiIiIrBohE5Wj69OlqdcUdO3bAYDAgPT29glvlXv3798f06dMr5LlPnDiBfv36ISoqqsKWAQCA9PR0GAwGu/L/VVGXLl3w+uuvu/Wcly5dgsFgwGeffVboPu58fxgMBmzevFl9bDabMWfOHLRv3x4GgwGJiYmlfo7SOHv2LBITE5Gammqzvbw/IwprR2mMHz/e4bIj5elO/awFnO/Lu3fvdvh5NGTIEIwfP75M2ubM+7wqef3114tdl5XoTsE5iETlaPTo0cjKyqroZtyxZs2aheDgYLz99tt2C4tTyaxYsQKBgYEV3YxS2bp1K+6++2718b59+/Cvf/0L8+fPR8OGDVGjRo0KbB1w7tw5rFixAv369bNZD7JTp07YunVroesnllc7qrryvo/lydm+/MknnyAlJcXh8i9ERAUxQCQqR3Xq1KnoJjglKysLXl5eFd0Ml/35558YMGAAWrduXeg+VfXaKkqTJk0qugmlFhMTY/P4zz//REBAgM2afJVRcHBwoes+UvFMJhNMJtMdfR+rSl8moqqFKaZE5Sh/iqkj69evR1RUFD799NNiz9WlSxcsWrTIbvv48ePx5JNPAgAyMjIwd+5cdO/eHdHR0ejSpQvmzJmDtLQ0m2MMBgM2bNiA+fPno23btujTp49T1/Pbb79h4MCBiIqKQs+ePQtt9/HjxzF48GBER0ejTZs2ePnll+3acPToUfTp0wdRUVF49NFHcerUKbRp08ap9L+jR4/CYDDAZDJh/vz5MBgMapprly5dsHDhQqxcuRIdO3ZEixYtAFhSs9atW4du3bohMjIS3bt3x4cffmh37gMHDqB///6IiopCbGwsFi1ahJycHJt99u7di+7du6Np06Z46qmn8Oeff9qdx2QyITExEZ06dUJkZCR69+6NXbt22eyj9I/PP/8cvXr1QnR0NEaOHImbN2/i/PnzGDJkCGJiYtC/f3/88ssvxd4XdyiYYvrdd9/hueeeQ4cOHRATE4NHHnkE//vf/+yOu3z5MiZNmoQ2bdogOjoaffr0sbve/I4ePYpmzZph6dKlhe5T8P2h3K+vvvoKffr0QUxMDAYNGoQzZ87YHJc/xXTIkCFYvnw5bt26BYPBAIPBgEuXLgEArly5gokTJ6J169aIjo7GsGHDHL6WBTlz3Nq1a9GtWzdERUWhffv2GDZsGJKSknD06FE899xzAIAHHngABoNBTWMrmBqppOx9/PHHePHFF9G8eXN07NgR//3vfwEAb731Fjp06IC2bdti8eLFMJvN6vP/8ccfmDhxIu6//35ER0ejd+/e2Lhxo7pPUe1w9hqvXr2KESNGoGnTpujSpQu2bdtW7L1LSEhAbGysTVsB4LPPPoPBYMD58+cBADt37sSgQYPQunVrtGrVCkOGDMEPP/xgc4zSHw4cOIDevXujadOmOHXqlMMU0zfeeAN9+vRBs2bN0LFjR0yePBlJSUk251P6/saNG9GxY0e0atUKEydOtEvBTUlJwcyZM9GhQwdERUWhe/fu2Lhxo/p3Zz9rCsrMzMSrr76K2NhY9XPxyy+/VP9eVF8ueF/27t2LY8eOqfsV/FzdtWsXunXrhubNm2P48OH466+/bP5uNBqxaNEi3H///YiMjMTDDz+MQ4cOFXsNBTnzOQgAmzdvxv3334+YmBiMHj0aR44cgcFgwNGjR4s8f2JiItq0aWMz3eCRRx7B8ePHbfb79NNP0b9/f8TExKBVq1Z4/PHHcezYMfXvqampmDx5MmJiYtChQwesXr3a5Wslqso4gkhUSaxcuRLr1q3DqlWrcN999xW7f8+ePbFnzx5MnToVkiQBsMx9O3ToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixbBmeLGWVlZGDZsGIKCgrBkyRJkZWVhwYIFyMjIgF6vV/c7ceIE4uLi0LVrVyQkJCAlJQVLlixBamoqEhISAAB///03Ro4ciWbNmmHSpEm4fv06pkyZAqPR6NS9i4iIwNatW/HEE09g6NCh6N69u82IwUcffYSGDRti1qxZMJlMAIB58+Zh586dGD16NCIiIvDVV19hxowZCAwMROfOnQFY5u1MnjwZTzzxBCZNmoQLFy5g6dKlEEIgPj4eAHD69GlMnDgRXbt2xYwZM/D777/jhRdesGtjQkIC1q9fjzFjxiAqKgr79u3DlClTIEkSHnroIXW/q1evIiEhAS+88IL6BXHmzJm4dOkSBgwYgOHDh2Pp0qWYNGkSPv74Y/W1dyQ3N7fYe6fRaIo8R0FXrlxB8+bNMWjQIHh4eODbb7/FjBkzIMuyeh3Jycl44okn4O3tjfj4eNx111347bffcPXqVYfn/OKLLzB27FiMGDECY8eOdbhPYe+Pq1evYtGiRXj++efh6emJRYsW4YUXXsBHH33k8LpmzZqFDRs2YO/evVi/fj0AoHr16rh58yaefPJJBAYGYvbs2fD29sa6devw7LPPYu/evYWOOjtz3M6dO7FmzRpMmTIF9957L27evImvv/4amZmZiIiIQHx8PF5//XWsWLECYWFhxaZHK8FNYmIitm/fjunTp+Pnn3/GlStXsGDBApw+fRpvvvkmmjRpgt69ewMArl27hvr166NPnz7w9fXFzz//jMTERBiNRowaNarIdjhzjUIIjB49GikpKZg/fz48PT2RmJiImzdvol69eoVeS+/evbFy5UocO3YMbdu2Vbfv2bMHERERqFu3LgBLcNy3b1/UqVMH2dnZ+OijjzB48GB89NFHqF27tnrc5cuXsXjxYowePRqhoaG4++67ceHCBbvnTU5OxqhRo1C9enXcuHEDGzZswDPPPINdu3ZBo9HYtMNgMGDevHn466+/sHDhQixduhSzZ88GYPkcfPrpp5GcnIwxY8bgnnvuwYULF9TAFnDus8aRl19+GQcPHsSkSZNQp04dbNu2DaNGjcK7776Lli1bFtqXCxo9ejSuXLmC27dvY9asWQBgk4r6/fff49q1a4iPj4fRaMT8+fPxyiuv4K233lL3GT9+PE6dOoVx48ahTp062LNnD55//nls374djRs3LvQaCnLmc3D//v2YN28ennzySTzwwAM4ceIEXnrpJaefIysrC1OnTsWoUaMQFhaGDRs2YMSIEdi3bx/CwsJw4cIFTJgwAUOGDMHUqVORnZ2NH3/8Ebdu3VLP8eKLL+LYsWOYMWMGQkND8c477+DChQvQavm1mf4hBBGVm/j4eNGvXz8hhBDbt28Xer1epKWliSVLloiYmBjx9ddfO32u06dPC71eL7777jt1265du0SjRo1EUlKSw2NycnLE8ePHhV6vF5cvX1a36/V68cgjj7h0LZs3bxZNmjQRV69eVbcp546Pj1e3DRo0SAwePNjm2MOHDwu9Xi9+/fVXIYQQCxcuFK1btxaZmZnqPh9//LHQ6/UiISHB6Tbp9Xrx3nvv2Wzr3LmziI2NFVlZWeq2c+fOCYPBIHbs2GGz79SpU0X//v2FEEKYzWbRqVMnMX36dJt9tm3bJqKiosSNGzeEEEKMHz9e9OzZU5jNZnWfVatWCb1eL7Zv3y6EECIlJUVER0eLxMREm3MNHz5cPPjgg+rj+Ph40bhxY3H+/Hl12+uvvy70er348MMP1W2ff/650Ov14vfffy/2fhT3n9LGwnTu3FksXLjQ4d/MZrPIyckRr7zyihgyZIi6/Y033hDR0dHi77//dnjcxYsXhV6vFwcPHhQHDhwQkZGRYv369Tb7OPP+UO7X2bNn1W379++3uzcF+0VCQoJo3bq1zbmWLVsmWrduLVJSUtRtN2/eFM2bNxebN292fHOcPG7OnDli7NixhZ7j4MGDQq/Xi4sXLxZ6D4TIu2/5++Tt27dFkyZNRLdu3URubq66/dFHHxUTJkxw+HzK67Z69WrRpUuXYtvhzDUqffLkyZPqPpcuXRKNGze2e/8X1KdPH/HKK6+oj41Go2jevLldn1CYTCaRk5MjunfvbvOeio+PF3q9Xvz00082+xe8jwXl5uaKv/76S+j1enHs2DF1e+fOncUDDzwgcnJy1G2vvvqqaN++vfp4y5YtwmAw2D2nwpnPGkd+//13u+NMJpPo3bu3GDp0qLrNUV92ZNy4cQ5fh8GDB4vmzZuLmzdvqts2bNgg9Hq9+nmsfF4fPXrU5tgnn3xSjBs3rtDnzP8+F8L5z8H+/fuLESNG2Owza9Ysodfri/03MiEhQej1evG///1P3ZaWliZatWolFi9eLIQQYs+ePUXes99++03o9Xrx8ccf252jc+fORT4/0Z2CP4UQVbCFCxdiz549ePvtt9G8eXOnj2vSpAnq1auH3bt3q3Osdu/ejdatWyM0NFTdb+fOndi4cSPOnz+PjIwMdfu5c+dQs2ZN9fH999/vUrt/+OEHRERE2PwS3aJFC4SEhKiPMzMzcfLkSbz88ss2o1ktWrSATqfD6dOnodfr8eOPPyI2NtZmlOaBBx5wqT1Fadu2LTw9PdXHR44cgSzL6Natm0272rVrh48//hgmkwnnz5/HlStX0KNHD5t92rZtC6PRiDNnzqB169b44Ycf0KtXL5vRqgcffBBvvvmm+vjMmTPIzMxEjx49bNrVq1cvTJ8+HcnJyep9q1Wrls1cVWUEJf/oivL3v//+Gw0aNCj0uv/zn/8Ue2/yF29xxq1bt5CYmIhPP/0Uf//9tzoiGx4eru7z9ddf47777nM4mpHfvn37sGvXLrz44ot46qmnHO5T3PujVq1aNiNUyv0o7t4UdOTIEbRv3x5+fn7q6+3r64uIiAj8+OOPpTqucePG+M9//oOEhAR06tQJERERNqNUrsrfF/z8/BAUFIRWrVrZnLNu3bq4cuWK+thoNGLt2rXYtWsXrl69apMmnZubW+TIiDPXeOrUKYSGhiI6Olo9rlatWoiIiCj2enr16oWNGzdi5syZ0Gq1+L//+z+kp6ejZ8+e6j5//PEHli5diu+++w7Jycnq9nPnztmcKzw83KkRrUOHDmH16tU4c+aMTbr7uXPn0KpVK/VxmzZtbO5Nw4YNkZycjOzsbHh4eODrr79GkyZNCn1OZz5rHPWFH374AUIIm88MWZbRo0cPdbTQXaKiohAQEKA+btiwIQDLe6hu3bo4fPgwwsLC0Lx5c7trcKVSszOfg4GBgfjll1/wyiuv2OzTpUsXbNmyRX1sNptt0pILZkJ069ZN/f++vr5o3749Tp06BQDQ6/W4ffs24uPj0adPHzRv3hw+Pj7q/krqcv4U64LnILrTMUAkqmD79u1DREQEmjZt6vKxvXr1wvbt2/Hiiy8iPT0dX3zxhc0/rPv370d8fDwGDRqEiRMnIjAwEElJSRgzZoxd+mb+oNIZSUlJDgs/5A8QU1NTYTKZMGfOHMyZM8duXyXlMCkpyW5ZCk9PT5t/tEuj4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc5sK7qc8vnXrlvr//f39bfbR6XR225VtxaXgOvNF2dVAZfr06fj+++8xevRoNGjQAH5+ftiyZYvN/NObN28iKiqq2HMdPHgQgYGB6Nq1a6H7FPf+KOx+OZuerEhJScHJkyexe/duu7+1a9euVMc9+uijSE9Px9atW7Fy5UoEBgZi0KBBGDduXIkCxYIVRj08POy26XQ6m3uwePFi/Oc//8GYMWMQEREBf39/fPrpp1i9ejWMRmORAaIz11jU50Fxy0v07t0by5Ytw9dff40OHTqoP3opP2ClpaVh6NChCAkJwfTp01GzZk14enri5ZdfRnZ2ts25nPkcO3XqFEaPHo2uXbtixIgRCAkJgSRJGDBggF2/cXRfhRDIycmBh4cHbt68ibCwsEKfy5nPGkeVR69duwYfHx+7yqshISHIzMxUA1R3cHSNQN57KCUlBUlJSQ6DfVf6rzOfg2azGbm5uXZ9qeDjGTNm2MzjfO2119T5/T4+PnYp4SEhIfj1118BAPfccw9WrVqFdevWYeTIkdBqtejWrRteeuklBAcH4/r16/D19XV4DqJ/CgaIRBVszZo1eO655xAfH4/FixdDlp2vHdW7d2+sWrUKJ06cwKVLl2A2m21+Of3kk08QHR2tzpcBYDMRPz9X5qEBQFhYmMMCHvl/3ff394ckSRg7dqzDEUplhCksLAw3btyw+ZvRaLQZ8SyNgtcWEBAArVaLLVu2OLzu4OBg9UvtvHnzHAZayshbWFiYzTUDsLsW5QvkjRs3EBQUpG5XjiurZSScGb3J/8WqOEajEYcOHcIrr7yCQYMGqdv/9a9/2eyn/BBRnJdffhkbNmzA0KFDsXnzZpt7oyjN+8MVAQEB6NKlC0aPHm33N19f31IdJ8sy4uLiEBcXh6tXr2LXrl1YtmwZwsPDbe5jWfrkk08wePBgjBgxQt3mbJERZ67R0XsYsPTx4qoG165dG5GRkdi9ezdatGiBzz77DBMnTlT/fvLkSfz111945513bEaFb9++7VT7Czpw4ACCgoLw5ptvqu//y5cvl+hcgYGBDuc4Kpz5rHGkevXqyMjIQGZmpk2QmJycDG9v73JdxicgIADh4eFYuXJlqc7jzOegcr8K9qWCj8eOHWuTdZA/EyIjI8OuWnVycrJNIN+pUyd06tQJt2/fxueff44FCxZg3rx5WLZsGUJDQ5Genu7wHET/FAwQiSqYXq/HW2+9hbi4OMyaNQvz5s1z+tiGDRtCr9dj9+7duHTpEtq3b2/zD29WVpbdF4miKkm6IioqCrt27cJff/2l/gJ+4sQJm39EfXx8EBMTg7NnzxZafAQAIiMjsWPHDpt/kJ2p5FpSbdu2hclkwu3btxEbG+twn/r16yM8PByXL1/GgAEDCj1XZGQkDh48iMmTJ6tfAPft22ezz7333gtvb2/s2bPH5j7s2bMH9erVK7MS/O5OMc3OzobJZLLpU2lpaTh48KDNfu3atcN7772H69evFzmi4+fnh7fffhtDhgzBsGHDsGnTJvj5+dnsU5r3hyvatWuHPXv24N5773VpGRRXj7vrrrswcuRIbN++HX/88QeAko96usJoNNq8biaTCR9//LHNPoW1w5lrjIqKwooVK/D999+raaZXrlzBTz/95FTqfO/evbFmzRq0bdsWWVlZNmmIytqx+dv/7bff4vLly4iMjCz23AVlZWVBp9PZBGwl/Vxs164dPvnkE/zyyy9o1KiR3d+d+axxJCoqCpIkYe/evejbty8AQAiBvXv3FjoaWZSCI8quaNeuHTZs2AAfHx+X0rYLcvZzsFGjRvj0008xcOBAdZ+CnzF33313kZ9d+/fvV6txp6en4/Dhww4/x/39/dGnTx988803+O677wBAzX44ePAgevXqZXOOgp9PRHcqBohElUDTpk2xdu1aDB8+HH5+fmqFTGf07NkTmzZtQlpamt2X5/bt22Pu3LlYvXo1oqOjcejQIRw5csQtbe7fvz9Wr16NkSNHYty4ccjKysLy5cvtRoGmTJmCuLg4yLKM7t27w9fXF1evXsXnn3+OiRMnon79+oiLi8O//vUvPPfcc4iLi0NSUhLeeusteHt7uzyy6Yx77rkHAwcOxKRJkzBs2DBERUWp8wrPnTuH+fPnQ5ZlTJ8+HdOmTUNaWho6duwInU6Hixcv4sCBA0hISIC3tzdGjBiBAQMGYMKECXjsscdw5swZu8AsMDAQzzzzDNasWQOtVovIyEjs27cPhw4dKnJZh9JyJs3TFf7+/oiKisLKlSvh5+cHWZaxbt06+Pn52czjiouLw86dO/HUU0/hueeeQ40aNfDnn38iIyPDZgQLAIKCgvDOO+/gqaeewqhRo7B+/Xq7tLrSvD+cFRcXh//973945plnMHjwYISHh+P69ev45ptv0KJFC5tKs64eN3PmTAQEBCA6Ohr+/v44evQozp8/r1Ybrl+/PgBg69at6N27N7y8vOxSrkurffv2eP/991GnTh0EBgbi/ffft0vPLKwdzlzj/fffj0aNGmHChAmYMmUKPD09kZCQ4PSPHz179sSiRYuwaNEitGzZ0mb+akxMDHx8fPDKK6+oSzCsWLHCZt6rK2JjY/Huu+9i/vz56NKlC7799luHS7U4o2/fvnj//fcxbNgwjB07FvXr18elS5dw7tw5TJkyxanPGkcaNGiA3r17Y+7cuUhLS1OrmP75559qJVJX1K9fH59++ikOHDiA8PBwVK9e3en7Fxsbiw4dOmDo0KEYMWIEGjZsiLS0NPzyyy8wGo2YPHmyU+dx9nPwueeew9ixYzF37lz19VFGu53JIPDy8sKyZcuQkZGB6tWr45133kFOTg6efvppAMAHH3yAkydPqvOkz507h08++QSPPPIIAEsg26VLF8yePRtpaWkICwvD22+/bffjyOXLl9GtWzcsWLBADeKJ7hQMEInKWWEBT6tWrZCYmIjRo0fD19e3yBG3/Hr37o3ly5fDw8PDbi7XwIEDcenSJWzatAlGoxGxsbFYsmRJkSNizvL29sb69esxe/ZsTJw4EbVq1cL06dOxatUqm/1atmyJ999/HwkJCZg2bRrMZjNq1qyJ++67Tx1dCg8Px9q1azF//nyMHTsWDRo0wIIFC/Dss8+W2S+2s2bNQr169bBt2zYkJCTAz88PDRs2tFlwulevXvD19cXatWuxfft2yLKM2rVro1OnTupoS1RUFJYuXYqlS5dizJgxiIyMxLJly/D444/bPN/48eOh0WiwZcsWJCcno06dOli8eLG6DEFVsWTJErzyyiuIj49HYGAgnnrqKWRlZanrDAKWtLktW7Zg8eLFWLBgAbKzs1G3bl2MGjXK4TmrV6+OjRs34qmnnsLYsWMdrjlW0veHs4KDg7F161a8+eabeO2115Camorq1aujefPmRQZrzhwXExODf//739i6dSuMRiPq1KmDefPmqe/XWrVqIT4+Hu+99x42b96MGjVq2I2YlNYrr7yCWbNmYe7cufDy8kLfvn3RrVs3mznLhbXDmWuUJAmrV6/GK6+8ghkzZiAkJASjRo3C4cOH1fm8RbnrrrvQrFkzfPvtt3avbWhoKJYvX45FixZh9OjRqFu3LubMmVPiYi33338/pkyZgs2bN2Pbtm2IiYnB2rVr0b17d5fP5enpiXfffRdLlixBQkIC0tLSUKtWLXUtWsC5zxpHXn31VbzxxhtYtWoVUlNTodfrsWbNGrRs2dLldj755JP4+eefMWPGDNy6dQtjx47FuHHjnDpWkiSsWLECa9aswbvvvourV68iICAAjRo1wpAhQ1xqhzOfg926dcPLL7+Mt956C9u3b0fr1q0xbdo0vPDCC079e+Dl5YVFixZh3rx5+OOPP3DPPfdg3bp16o8OBoMBBw8exGuvvYZbt24hLCwMjz/+OCZMmKCeY+HChZg9ezYWLFgAHx8fPPnkk4iKisLevXvVfYQQMJlMdmt4Et0JJCGcWPCMiNxi3LhxyMjIsFuDkOwdP34cTz31FN59912bqo1Uvtq0aYOhQ4cWGtwREZW1VatWYc2aNTh27FiRqdyJiYnYvHkzjh49Wo6tI7rzcASRqBzcunUL33zzDY4dO2Yzr4LyLF68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdtH+kS5cu4eDBg7h582aJ5nkREZXEjRs3sHbtWrRp0wbe3t44fvw43nrrLTz22GMuzQ8mopJjgEhUDr755htMnToVbdu2xbPPPuvUMfnXmypIluUyq+YI5KXOlOfzZ2dnY9GiRUhOToavry9iY2Mxffp0yLJcIe35p9u0aRN27dqFoUOHulRcg4ioNHQ6Hf7880/s3LlTnQP49NNP26SAElHZYoopUSV06dKlIheK79evHxYuXFhmz3/06FF1Qr8jrsxfuRPbQ0RERHSnYoBIVAllZ2eri/o6EhQU5NLyBK5KS0vD2bNnC/27KxXw7sT2EBEREd2pGCASERERERERAICTdoiIiIiIiAgAA0QiIiKX7dixAwaDAenp6RXdFCIiIrdigEhEREREREQAGCASERERERGRFQNEIiIiB44fP47BgwcjOjoabdq0wcsvv4y0tLRC91+7di26deuGqKgotG/fHsOGDUNSUpL695s3b2LmzJlo3749oqKiMHDgQHz//fflcSlERERO01Z0A4iIiCqbEydOIC4uDl27dkVCQgJSUlKwZMkSpKamIiEhwW7/nTt3Ys2aNZgyZQruvfde3Lx5E19//TUyMzMBWJauefbZZ5Gamopp06YhODgYW7ZsQVxcHPbt24ewsDAAwPTp03Hs2DEcPHiwXK+XiIhIwQCRiIiogCVLlqBZs2Z488031W3h4eGIi4vDb7/9Zrf/qVOn0KFDBzz11FPqtgcffFD9///9739x5swZfPTRR6hXrx4AoH379ujRowfeeecdxMfHAwBkWYZGoymbiyIiInICU0yJiIjyyczMxMmTJ9GzZ0/k5uaq/7Vo0QI6nQ6nT5+2O6Zx48Y4dOgQEhIScOrUKZhMJpu/HzlyBBEREbj77rvV8wFAq1at8OOPP6r7LViwAPv37y/bCyQiIioCRxCJiIjySU1Nhclkwpw5czBnzhy7v1+9ehU1atSw2fboo48iPT0dW7duxcqVKxEYGIhBgwZh3Lhx0Gg0SElJwcmTJxEREWF3vjp16pTZtRAREbmKASIREVE+/v7+kCQJY8eOxf3332/39+rVq+Orr76y2SbLMuLi4hAXF4erV69i165dWLZsGcLDwzFo0CAEBAQgMjISs2fPtjufh4dHWV0KERGRyxggEhER5ePj44OYmBicPXsWY8eOdfn4u+66CyNHjsT27dvxxx9/AADatWuHr776CjVr1kRISIi7m0xEROQ2DBCJiIgKmDJlCuLi4iDLMrp37w5fX19cvXoVn3/+OSZOnGi3/8yZMxEQEIDo6Gj4+/vj6NGjOH/+PKZOnQoA6Nu3Lz744AMMGTIEQ4cORe3atXHz5k2cOnUKYWFhiIuLAwDMmDED33zzDechEhFRhWGASEREVEDLli3x/vvvIyEhAdOmTYPZbEbNmjVx3333ITQ01G7/mJgY/Pvf/8bWrVthNBpRp04dzJs3D127dgUAeHp6YtOmTVi+fDkSExORnJyM4OBgNG3aFF26dFHPYzab7QrcEBERlSdJCCEquhFERERERERU8bjMBREREREREQFggEhERERERERWDBCJiIiIiIgIAANEIiIiIiIismKASERuNX36dPTv3x8AsGPHDhgMBqSnp1dwq9yrf//+mD59eoU894kTJ9CvXz9ERUXBYDBUSBsAID09HQaDATt27KiwNpSlzZs3V+j9raz++OMPPPnkk4iJiYHBYMClS5cc7nft2jWMGDECLVq0gMFgwNGjR8u5pXkq8v2qMBgM2Lx5c4W2oSiXLl2CwWDAZ599VuR+iYmJaNOmjfr4zz//xJw5c9CzZ09ER0fjgQcewKuvvorU1NSybjIRlSEuc0FEbjV69GhkZWVVdDPuWLNmzUJwcDDefvtteHh4VHRz6B9m0aJFuH37NlavXg1vb29Ur17d4X5r1qzBL7/8gqVLlyIgIAANGzYs55ZWLlu3bsXdd99d0c0otccffxydO3dWHx8+fBjffvstBg0aBIPBgIsXL+LNN9/EyZMn8e9//xuyzHEIoqqIASIRuVWdOnUquglOycrKgpeXV0U3w2V//vknBgwYgNatWxe6T1W9tn8yo9EIT0/Pim5Gsf7880906dIF7dq1K3a/6Oho3H///YXuYzKZYDKZ/hE/dMTExFR0E9yiRo0aqFGjhvq4d+/eeOqppyBJEgCgTZs2qFGjBoYNG4bjx48X+TlFRJUXf9ohIrfKn2LqyPr16xEVFYVPP/202HN16dIFixYtsts+fvx4PPnkkwCAjIwMzJ07F927d0d0dDS6dOmCOXPmIC0tzeYYg8GADRs2YP78+Wjbti369Onj1PX89ttvGDhwIKKiotCzZ89C2338+HEMHjwY0dHRaNOmDV5++WW7Nhw9ehR9+vRBVFQUHn30UZw6dQpt2rRBYmJise04evQoDAYDTCYT5s+fD4PBoKbNdenSBQsXLsTKlSvRsWNHtGjRAoBl0fV169ahW7duiIyMRPfu3fHhhx/anfvAgQPo378/oqKiEBsbi0WLFiEnJ8dmn71796J79+5o2rQpnnrqKfz555925zGZTEhMTESnTp0QGRmJ3r17Y9euXTb7KP3j888/R69evRAdHY2RI0fi5s2bOH/+PIYMGYKYmBj0798fv/zyS7H3xR2ys7Mxd+5ctGzZEq1bt8aCBQuQm5trt9/Nmzcxc+ZMtG/fHlFRURg4cCC+//57m31u3bqFiRMnIiYmBh06dMC6devw+uuvo0uXLuo+Sur1qVOnMGTIEDRt2hTr168HYOlvI0eORLNmzdCsWTOMHz8eSUlJLrdj27Zt6N27N5o2bYo2bdpg8ODBOHPmTJH34eeff8YzzzyD6OhotGrVCpMnT8b169cB5KUgXrhwARs3boTBYMCQIUMcnsdgMODIkSPYv38/DAaDeu3Ka3/gwAG1badOnQLgXB905t44+37dvXs3+vTpg8jISNx///1YtmyZzWuuvEanT5/GkCFDEB0djUceeQSnT59GRkYGXnzxRbRo0QIPPPAAPvrooyLvq3JP8qeYDhkyBOPHj8euXbvQrVs3NG/eHMOHD8dff/1V5HmuXbuGF198EQ888ACaNm2K7t27Y9myZcjOzi62DZcvX8akSZPQpk0bREdHo0+fPnbvz8zMTMycORMtWrRAx44dkZCQALPZrP69YIppUFCQGhwqmjRpAgBITk4utk1EVDlxBJGIys3KlSuxbt06rFq1Cvfdd1+x+/fs2RN79uzB1KlT1S8h6enpOHToEKZOnQrAMlpmMpkwceJEBAcH4+rVq1izZg0mTJiAt99+2+Z8b7/9Nlq2bIlFixZBCFHs82dlZWHYsGEICgrCkiVLkJWVhQULFiAjIwN6vV7d78SJE4iLi0PXrl2RkJCAlJQULFmyBKmpqUhISAAA/P333+qX20mTJuH69euYMmUKjEajU/cuIiICW7duxRNPPIGhQ4eie/fuCA4OVv/+0UcfoWHDhpg1axZMJhMAYN68edi5cydGjx6NiIgIfPXVV5gxYwYCAwPVNLHdu3dj8uTJeOKJJzBp0iRcuHABS5cuhRAC8fHxAIDTp09j4sSJ6Nq1K2bMmIHff/8dL7zwgl0bExISsH79eowZMwZRUVHYt28fpkyZAkmS8NBDD6n7Xb16FQkJCXjhhReQmZmJV199FTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccf230Bzc9RIFeQRqMp8hxvvPEGtm3bhokTJ6JBgwbYtm0bPvnkE5t9srOz8eyzzyI1NRXTpk1DcHAwtmzZgri4OOzbtw9hYWEALEHQt99+i5deegmhoaHYuHEjzp07B41GY/e8kyZNwqBBgzBmzBhUq1YN58+fx6BBgxAZGYnFixfDZDJh+fLleO655/Cf//wHkiQ51Y5vvvkGs2fPxvjx4xETE4O0tDScPHkSt2/fLvQe3LhxA0OGDEGDBg2wZMkSpKenY8mSJXj22Wexfft2VK9eHVu3bsXYsWPRpk0bDBkyBH5+fg7PtXXrVsyZMwf+/v6YNGmSzQjh5cuXsXjxYowePRqhoaG4++67neqDztwbZ9+vX375JSZOnIi+ffti6tSp+PXXX7F8+XKkpKRg7ty5Ntcyffp0PPXUUxg+fDiWLFmC8ePHo2nTpqhTpw4SEhKwfft2xMfHo2XLljYja874/vvvce3aNcTHx8NoNGL+/Pl45ZVX8NZbbxV6TEpKCgIDA/Hiiy+iWrVqOHfuHBITEx22Pb/k5GQ88cQT8Pb2Rnx8PO666y789ttvuHr1qs1+b7zxBh588EEkJCTgyJEjWLlyJRo2bIhevXo5fV3ffvstAPzj04qJqjRBRORG8fHxol+/fkIIIbZv3y70er1IS0sTS5YsETExMeLrr792+lynT58Wer1efPfdd+q2Xbt2iUaNGomkpCSHx+Tk5Ijjx48LvV4vLl++rG7X6/XikUcecelaNm/eLJo0aSKuXr2qblPOHR8fr24bNGiQGDx4sM2xhw8fFnq9Xvz6669CCCEWLlwoWrduLTIzM9V9Pv74Y6HX60VCQoLTbdLr9eK9996z2da5c2cRGxsrsrKy1G3nzp0TBoNB7Nixw2bfqVOniv79+wshhDCbzaJTp05i+vTpNvts27ZNREVFiRs3bgghhBg/frzo2bOnMJvN6j6rVq0Ser1ebN++XQghREpKioiOjhaJiYk25xo+fLh48MEH1cfx8fGicePG4vz58+q2119/Xej1evHhhx+q2z7//HOh1+vF77//Xuz9KO4/pY2O3LhxQ0RFRYm1a9eq20wmk+jevbvQ6/Xqtn//+98iIiJCnD17Vt2Wk5MjHnjgAbFw4UIhhBC//vqr0Ov1Yvfu3eo+mZmZonXr1qJz587qNuV9sXHjRpu2TJkyRTz44IPCaDSq286ePSsaNWokPvvsM6fbsX79evU96KzFixeLFi1aiNu3b6vbvv/+e6HX68WuXbvUbZ07d1afpyiDBw8W48aNs9kWHx8v9Hq9+Omnn9RtzvZBZ+6Ns+/Xxx9/3O79um7dOtGoUSP1WOU1yv/+Ufpk/rampqaKJk2aiPfff7/I+1HwfTt48GDRvHlzcfPmTXXbhg0bhF6vt/mMKE5OTo743//+JyIjI23uTUFvvPGGiI6OFn///bfDv1+8eFHo9XoxdepUm+0PP/yweOGFF9THCQkJonXr1oU+T0ZGhujRo4fd/SWiqoUppkRU5hYuXIh//etfePvtt23Sk4rTpEkT1KtXD7t371a37d69G61bt0ZoaKi6befOnejbty+aNWuGiIgINf303LlzNucraj6UIz/88AMiIiJsRgZatGiBkJAQ9XFmZiZOnjyJnj17Ijc3V/2vRYsW0Ol0OH36NADgxx9/RGxsrM3cwAceeMCl9hSlbdu2NnPYjhw5AlmW0a1bN5t2tWvXDr/88gtMJhPOnj2LK1euoEePHjb7tG3bFkajUU1J/OGHH9ClSxebUbgHH3zQ5vnPnDmDzMxM9OjRw2Z7r169cO7cOZt0s1q1atnMVa1bt656DQrl73///XeR1/2f//yn2P/yF9Uo6LfffoPRaLR5LWRZtnttjhw5goiICNx9993qfQKAVq1a4ccffwQA9X/zp5N6eXmhffv2Dp+7U6dOds/RrVs3yLKsPsfdd9+NWrVqqed2ph2NGzfGTz/9hAULFuCbb75xKv3w1KlTiI2NtRkVbNq0KWrVqoUTJ04Ue7yzwsPD0bhxY/Wxs33QmXvjzPvVZDLhp59+cthPzWYzvvvuO5vt+edaKn0yfz/19/dHUFBQsf3UkaioKAQEBKiPlRG3os4lhMDGjRvRq1cvNG3aFBEREZgyZQqys7PtRgPz+/rrr3HfffcVWlRIERsba/O4YcOGxaa95m/bSy+9hBs3bmDBggVOHUNElRNTTImozO3btw8RERFo2rSpy8f26tUL27dvx4svvoj09HR88cUXeOWVV9S/79+/H/Hx8Rg0aBAmTpyIwMBAJCUlYcyYMXbpm/mDSmckJSXZpHEq8n/hTE1Nhclkwpw5czBnzhy7fZUvbUlJSXbLJnh6esLHx8elNhWm4LWlpKTAZDKp8xELSkpKQkpKCgBg5MiRDvfJ3/b81wzA7r4oc8EK7qc8vnXrlvr//f39bfbR6XR225VtxaXg5g82CuMovVOhzLErrN2KlJQUnDx5EhEREXbnUAKH69evw9fX167YjKM+VNhzvPXWWw5TDJXXwpl2tG/fHq+99hree+89bNq0CT4+Pnj44Ycxbdq0QvtbUlIS7r33XrvtoaGhuHXrlsNjSsJRPwWK74PO3Btn3q8pKSnIycmxa4fyuOC1OuqT1apVs9nHw8PDqSC8oILncabPv/vuu3j99dcxcuRItGrVCtWqVcMPP/yAuXPnFnnczZs3ERUVVaI2OZsGv3jxYuzfvx8bNmxA7dq1nTqGiConBohEVObWrFmD5557DvHx8Vi8eLFLpc979+6NVatW4cSJE7h06RLMZjO6deum/v2TTz5BdHQ0Zs+erW47duyYw3MVNQ/NkbCwMIfFWPKPhvn7+0OSJIwdO9bhCKXyi31YWBhu3Lhh8zej0YiMjAyX2lSYgtcWEBAArVaLLVu2OLzu4OBgdX3KefPmOQy0lLL8YWFhdgUnCl6LMgfvxo0bCAoKUrcrxwUGBrp4Rc5xFCgV9NprrxVaOEkJDJKTk23aWPB6AwICEBkZadPPFMocu9DQUKSnp9tVJC14rxSOXrOuXbvi8ccft9tXuafOtAMA+vXrh379+uHGjRvYt28fXnvtNfj5+WHKlCkO2+LoNQYsQa8z97iklHteXB905t44834NCgqCTqezu1blh4L8I3qV0SeffIIePXpg4sSJ6rY//vij2OOUH87KysaNG/HOO+9g6dKlaNmyZZk9DxGVDwaIRFTm9Ho93nrrLcTFxWHWrFmYN2+e08c2bNgQer0eu3fvxqVLl9C+fXubACQrK8uuTH7BynwlFRUVhV27duGvv/5S09ZOnDhh8+XSx8cHMTExOHv2LMaOHVvouSIjI7Fjxw6bJSicqeRaUm3btoXJZMLt27ft0sYU9evXR3h4OC5fvowBAwYUeq7IyEgcPHgQkydPVoOaffv22exz7733wtvbG3v27LG5D3v27EG9evUKHUUrrf/85z/F7lPU+nN6vR6enp749NNP0aBBAwCW6q8FX5t27drhq6++Qs2aNe1G/hSRkZEALK+rUtQjKysLhw8fhq+vb7HtbNeuHc6cOYPIyMhCf8xwph35BQcHY+DAgdi/fz9+//33QveLjo7Gli1bkJaWpqaZnjp1CpcvXy50FNodnO2DztwbZ96vGo0GERER+OSTT9RUdMDST2VZRrNmzdx0ZWWjpJ937dq1w3vvvYfr16+7nElRnF27dmHhwoWYPn26S8VsiKjyYoBIROWiadOmWLt2LYYPHw4/Pz+1OqEzevbsiU2bNiEtLc0uuGzfvj3mzp2L1atXIzo6GocOHcKRI0fc0ub+/ftj9erVGDlyJMaNG4esrCwsX77cJkAFgClTpiAuLg6yLKN79+7w9fXF1atX8fnnn2PixImoX78+4uLi8K9//QvPPfcc4uLikJSUhLfeegve3t4uj2w645577sHAgQMxadIkDBs2DFFRUeqcrnPnzmH+/PmQZRnTp0/HtGnTkJaWho4dO0Kn0+HixYs4cOAAEhIS4O3tjREjRmDAgAGYMGECHnvsMZw5c8YuMAsMDMQzzzyDNWvWQKvVIjIyEvv27cOhQ4ewdOlSt1+fwpm0uaIEBQVhwIABSExMhFarRcOGDbFt2za7kd2+ffvigw8+wJAhQzB06FDUrl0bN2/exKlTpxAWFoa4uDjo9Xp07twZc+bMQXp6OsLCwrBhwwZ4eXk59RqPHTsWjz/+OEaOHIlHH31Undt2+PBh9OvXD23atHGqHQkJCbh16xZat26NoKAg/PTTTzh27BgmT55c6HM/++yz2LJlC4YPH47hw4cjIyMDS5YsgV6vt5tv6k7O9kFn7o2z79dx48Zh2LBhePHFF9GrVy/89ttvWL58OR5//HGXK5GWt/bt2+O9995TK6nu2rUL58+fL/a4uLg47Ny5E0899RSee+451KhRA3/++ScyMjIwYsSIErfn2LFjePHFFxEbG4uYmBicPHlS/VvBNROJqOpggEhEblfYl+FWrVohMTERo0ePhq+vb5Ejbvn17t0by5cvh4eHB7p27Wrzt4EDB+LSpUvYtGkTjEYjYmNjsWTJkiJHI5zl7e2N9evXY/bs2Zg4cSJq1aqF6dOnY9WqVTb7tWzZEu+//z4SEhIwbdo0mM1m1KxZE/fdd5/6a314eDjWrl2L+fPnY+zYsWjQoAEWLFiAZ599ttDlAkpr1qxZqFevHrZt24aEhAT4+fmhYcOGeOyxx9R9evXqBV9fX6xduxbbt2+HLMuoXbs2OnXqpM6JioqKwtKlS7F06VKMGTMGkZGRWLZsmV263/jx46HRaLBlyxYkJyejTp06WLx4MXr37l0m1+cu06ZNQ25uLlauXAlZlvHwww/j2WefxcKFC9V9PD09sWnTJixfvhyJiYlITk5GcHAwmjZtalOUZuHChZg9ezbmz58PHx8fPPnkk6hduzZ++OGHYttRv359bN26FcuXL8fMmTORlZWF8PBwtGvXTi3k40w7oqKisHHjRnz88cdIT09HzZo1MW7cODzzzDOFPndwcDA2bdqEhQsXYvLkydDpdLj//vvx4osvlvlC9s70QWfujbPv1w4dOmDZsmVYvXo1du3aheDgYAwdOhTjxo0r0+t0hzFjxiAlJQXLly8HAHTr1g0vv/wynnvuuSKPU5ZDWbx4MRYsWIDs7GzUrVsXo0aNKlV7jh49ipycHHz55Zf48ssvbf42duzYKnFPicieJIQTi4ERETlp3LhxyMjIsFuDkOwdP34cTz31FN59912byoh058jNzcVDDz2E6OhovP766xXdHCIiomJxBJGI3OLWrVv45ptvcOzYMQwcOLCim1MpLV68GE2aNEFoaCjOnj2LVatWwWAwoHXr1hXdNHKTPXv24Nq1a9Dr9UhPT8e///1vnD9/HosWLarophERETmFASIRucU333yDqVOnom3btnj22WedOkZZw80RWZZdqnbqKiEETCZTuT5/dnY2Fi1ahOTkZPj6+iI2NhbTp0+HLMsV0h5yPx8fH+zYsQMXLlyAyWSCXq/HmjVrSrTECxERUUVgiikRVYhLly4VuVB8v379bOaAudvRo0fx9NNPF/r38p4/U9naQ0RERP9MDBCJqEJkZ2fj119/LfTvQUFBRS5PUFppaWk4e/ZsoX+vXr06wsPDy+z5K3t7iIiI6J+JASIREREREREBADihhYiIiIiIiAAwQCSiKuizzz6DwWDApUuXXDquS5cubltqYMWKFbjvvvvQqFEjTJ8+3eE+iYmJaNOmjVuezx12796NHTt22G0fMmQIxo8fXwEtck52djYSExPx888/22y/dOkSDAYDPvvsswptR2ls3rwZBoOhyH127NgBg8Gg/teuXTsMGzYMp0+fttnv4MGDGDhwIFq2bInmzZujd+/emDlzJtLT09V9unTpop4nMjISHTp0wIgRI7Bz506YzeZi21tWfaXgfTh69CgMBgN+++03p45PTk5GYmKiS58JBoMBmzdvVh+789oKe6+VVHp6OgwGg1vO6c7PQWd8+eWX2LhxY7k9HxGVHquYEhG56IcffkBiYiImTZqE1q1bIyQkpKKb5JRPPvkEKSkp6N+/f0U3xSU5OTlYsWIFatWqhcaNG6vbq1evjq1bt+Kee+6p0HaUl3fffRdeXl5ISkrCqlWr8PTTT2P37t0IDw/HRx99hMmTJ+OJJ57A888/D0mS8Ouvv2Lnzp24ffs2fH191fM89NBDGDJkCEwmE5KSkvDll1/i5Zdfxq5du7B69Wp4eHgU2oZZs2ZBqy37rw4RERHYunUr6tSp49T+ycnJWLFiBVq3bu303OWtW7eW2TznqvpeKwtfffUV9u7di7i4uIpuChE5iQEiEZGL/vzzTwDAU089BT8/vwpuzT+Xh4cHYmJiKroZ5SYqKkoN9CIjI9G5c2fs2rULw4cPx+bNm3H//fdj7ty56v4dO3bEiBEjULDUQPXq1W3uW48ePdCzZ0+MGDEC69atw9ixYwttQ8OGDd17UYXw8/Mrs9c2KysLXl5e/6i+Q0TkCqaYElGpTJ8+Hf3798fnn3+OXr16ITo6GiNHjsTNmzdx/vx5DBkyBDExMejfvz9++eUXm2MzMzPx6quvIjY2FlFRUXj00Ufx5Zdf2uwjhEBiYiLatWuHZs2aYdq0aUhLS7Nrh9FoxKJFi3D//fcjMjISDz/8MA4dOuTy9ZhMJiQmJqJTp06IjIxE7969sWvXLpvrnTZtGgCgRYsWMBgMOHr0aJHn/OmnnzBgwABER0ejb9++OH78uEvPeeTIERgMBvz999/qtieeeAKNGzdGamqquq1Pnz5YtmyZwzZMnz4de/fuxbFjx9QUw8TERJt9du3ahW7duqF58+YYPnw4/vrrL5u/l/QeO3Pcp59+iv79+yMmJgatWrXC448/jmPHjgEAmjdvDgB48cUX1bZfunTJYYqpkj63bt06dOjQAS1atMDChQshhMChQ4fQu3dvNGvWDKNHj8atW7fU4zIyMjB37lx0794d0dHR6NKlC+bMmWPT1wprh7PXmJ2djblz56Jly5Zo3bo1FixYUORaoEW56667EBwcjMuXLwMAbt++jdDQUIf7SpJU7PliY2PRvXt3bNmypcj9CqZh/vXXX5gwYQLatWuHpk2bomvXrnjzzTeLPIcz98FRium2bdvQu3dvNG3aFG3atMHgwYNx5swZXLp0CX369AEAPP300+prk/88X3zxBZ577jk0a9ZMDaILppgqtm7dii5duqBp06YYOXKkzfuusNTX/PeluPfagQMH0L9/f0RFRSE2NhaLFi1CTk6Ozfn27t2L7t27o2nTpnjqqafUH6WK88Ybb6BPnz5o1qwZOnbsiMmTJyMpKcnhvitXrkRsbCyaNWuGyZMn4/bt2zZ/v3jxIkaPHo3mzZujWbNmeO6553D+/Hn174WleCv/JgCWNPt33nkHly9fVu9FYSn5RFR5cASRiErt6tWrSEhIwAsvvKAGfTNnzsSlS5cwYMAADB8+HEuXLsWkSZPw8ccfq19YX375ZRw8eBCTJk1CnTp1sG3bNowaNQrvvvsuWrZsCQDYtGkTVq5ciVGjRqFly5bYv38/Fi9ebNeG8ePH49SpUxg3bhzq1KmDPXv24Pnnn8f27dtdSgdMSEjA+vXrMWbMGERFRWHfvn2YMmUKJEnCQw89hNGjR6NGjRpYvXq1mvJX1KhKVlYW4uPjERcXh9DQUKxcuRJjxozB559/Dm9vb6ees1mzZtDpdDhx4gR69eqFzMxMnD59GjqdDt9++y06deqEmzdv4syZM5g6darDdowePRpXrlzB7du3MWvWLABAjRo11L9///33uHbtGuLj42E0GjF//ny88soreOutt0p9j4s77sKFC5gwYQKGDBmCqVOnIjs7Gz/++KMawL377rt45pln8Pzzz6NTp04ALKNg165dc/h8H3/8MZo2bYoFCxbg9OnTePPNN2E2m3H8+HFMmDABWVlZmDdvHpYsWaIGC1lZWTCZTJg4cSKCg4Nx9epVrFmzBhMmTMDbb79dZDucvTdvvPEGtm3bhokTJ6JBgwbYtm0bPvnkk0LvW1HS0tJw69YtNShs0qQJPv74YzRp0gTdunUr0ZIo7du3x+7du3Hp0iWnUy+nTZsGo9GIefPmwd/fHxcvXiw2mCnJffjmm28we/ZsjB8/HjExMUhLS8PJkydx+/Zt1K1bF2+88QamTJmCmTNnIiIiwu74l156Cf3798czzzwDT0/PQp/nu+++w9mzZzF9+nQYjUa88cYbGD16NLZv3+7U/QCKfq/t3r1bTQWeNGkSLly4gKVLl0IIgfj4eADA6dOnMXHiRHTt2hUzZszA77//jhdeeMGp505OTsaoUaNQvXp13LhxAxs2bMAzzzyDXbt2QaPRqPt99NFHqFu3LubNm4ekpCQsXrwYL730EhISEgBYgvi4uDhotVq8+uqr0Gg0SExMxODBg7Fr1y4EBgY61Z7HH38c586dw9GjR7FixQoAQHBwsFPHElEFEkREpRAfHy8aN24szp8/r257/fXXhV6vFx9++KG67fPPPxd6vV78/vvvQgiuTrydAAAYAElEQVQhfv/9d2EwGMSOHTvUfUwmk+jdu7cYOnSoEEKI3NxcERsbK2bOnGnznHFxcUKv14uLFy8KIYQ4fPiw0Ov14ujRozb7Pfnkk2LcuHHq486dO4uFCxcWei0pKSkiOjpaJCYm2mwfPny4ePDBB9XH27dvF3q9XqSlpRV5bxISEoRerxeHDx9Wt/30009Cr9eLQ4cOufScAwYMEHPmzFGvt3Xr1uKFF14QixcvFkIIceDAAdGoUSNx+/btQtszbtw4MXjwYLvtgwcPFs2bNxc3b95Ut23YsEHo9XqRmZmpPqcz97ggZ47bs2ePaN26daHnSEtLE3q9Xmzfvt1m+8WLF4VerxcHDx5Ut3Xu3Fl07dpV5ObmqtseffRR0bhxY3HhwgV12+uvvy7atWtX6HPm5OSI48ePC71eLy5fvlxkO5y5xhs3boioqCixdu1a9e8mk0l0795d6PX6QtshRF5/S01NFTk5OeLKlStiwoQJonHjxuKnn34SQghx5coV8fDDDwu9Xi/0er3o0qWLWLBggbh27ZrNuYp6D/zf//2f0Ov14uTJk4W2ZfDgwTavd0xMjPj000+LbH9+zt6Hr7/+Wuj1evHrr78KIYRYv3696NevX6Hn/fXXX4Verxdff/21zXblPPPnz7c7Rq/Xi/fee8/m2po0aSIuXbqkblP6gPJ+Ldiu/Mfmvy+O3mtms1l06tRJTJ8+3Wb7tm3bRFRUlLhx44YQQojx48eLnj17CrPZrO6zatUqh32vKLm5ueKvv/4Ser1eHDt2TN3euXNn0apVK5vPr//+97/CYDCon8//+te/7N4zV69eFREREWLNmjVCCMfvPyEs/ybkf60WLlwoOnfu7HS7iajiMcWUiEqtVq1aNsUk6tatCwBo27atuk35u5Ku9cMPP0AIgR49eqj7yLKMHj164MSJEwAsI5NJSUl44IEHbJ6vW7duNo8PHz6MsLAwNG/eHLm5uep/7dq1w48//uj0dZw5cwaZmZk2bQKAXr164dy5c0hOTnb6XAqdTmdTybRBgwYA8u6Ds8/ZokULNTX1+PHjaNmyJVq1amWzrVGjRiWeExkVFYWAgAD1sTIqqrSzpPfYmeP0ej1u376N+Ph4fPnll8jIyCjRNShat25tM1pSt25d1KpVC7Vr17bZduPGDWRnZ6vbdu7cib59+6JZs2aIiIjAk08+CQA4d+5ckc/nzDX+9ttvMBqNNn1ZlmW7vl2Uli1bIiIiAp06dcLXX3+NBQsWqKOTd911F3bs2IGNGzdi6NChCAgIwMaNG/Hwww/bpQoXRpRgWeRGjRph6dKl2LFjB65cuVLs/iW9D40bN8ZPP/2EBQsW4JtvvrF53ZyhjPgWp0mTJqhVq5b6uEWLFggJCcGpU6dcej5Hzp49iytXrqBHjx42/aRt27YwGo04c+YMAMtnY5cuXWxSgx988EGnnuPQoUMYOHAgWrRogSZNmqBjx44A7Ptw+/btbQoXPfjggxBC4IcffgAAnDp1Ck2aNLF5z9SoUQPNmjVTP5+J6M7FFFMiKjV/f3+bxzqdzm67ss1oNAIArl27Bh8fHzXNUhESEoLMzExkZ2fj+vXr6raC++SXkpKCpKQkh6ll+QOF4ihzdQp7vlu3brlcsdTX1xeynPdbnFIhUrkPzj5nq1atsGHDBqSmpuL48ePo1KkTWrZsiQULFsBoNOL48eNo0aKFS23Lr1q1ajaPC75eJb3Hzhx3zz33YNWqVVi3bh1GjhwJrVaLbt264aWXXipROpqja3HUR4UQyMnJgYeHB/bv34/4+HgMGjQIEydORGBgIJKSkjBmzBj1HpTmGp3ty0V5//334eXlhaCgINx11102/Up5rnbt2qFdu3YALMsLjBw5Eu+88w5mzJhR7PmVHwNcadObb76JZcuW4bXXXkNqaqq67IvShoJKeh/at2+P1157De+99x42bdoEHx8fPPzww5g2bRp8fHyKbaez1+Rov5CQkELn8bkiJSUFADBy5EiHf7969SoAy2dCwXY48z44deoURo8eja5du2LEiBEICQmBJEkYMGCAXR8ueH4vLy/4+PioadtJSUkO57SGhoY69UMAEVVtDBCJqEJUr14dGRkZyMzMtAkSk5OT4e3tDQ8PD/ULSsGRu4KPAwICEB4ejpUrV5aqTWFhYQCAGzduICgoyO75nJ13UxbP2bx5cwghcOzYMXz//feYMmUK7r33Xvj6+uLIkSP46aefMGzYMLe3T1HSe+zscZ06dUKnTp1w+/ZtfP7551iwYAHmzZtXaNEdd/vkk08QHR2N2bNnq9uUIjnFceYa8/fl/P3IlVHpxo0b24z6FKdDhw5o1KiR0wVOvvrqK4SFhbm09EN4eDgWLlwIs9mMU6dOITExEc8//zw+++wzm/6sKM196NevH/r164cbN25g3759eO211+Dn54cpU6YUe6wzhXoKa0dycrL6PlXmLxYsKnPz5k2H15ufcr3z5s1zOGdXue9hYWF27bhx40axbT9w4ACCgoLw5ptvqterFDEqqOD5s7KykJGRoc6pDQsLw++//2533PXr19VMg6LuBRFVbUwxJaIKERUVBUmSsHfvXnWbEAJ79+5VR8LuuusuhIWF4dNPP7U5dv/+/TaP27Vrh+vXr8PHxwdRUVF2/znr3nvvhbe3N/bs2WOzfc+ePahXr16ZFFdw9jkDAgJw7733YuPGjZBlGU2aNIEkSWjevDnWr1+P3NzcYkcQdTpdsaNhhSnpPXb1OH9/f/Tp0wfdunVTv6AWHM0sC1lZWXbr/+WvJFtUO5y5Rr1eD09PT5u+bDab7fp2STkKbIxGI/76669Cq5vmp6xVN3DgwBI9vyzLiImJwdixY5GZmVnoKJM77kNwcDAGDhyIli1bur2P/PTTTzZtP3HiBJKTk9G0aVMAecVm/vjjD3Wfq1ev4uzZszbncfReq1+/PsLDw3H58mWH/UQJMCMjI3Hw4EGblN99+/YV2/asrCzodDqbYLhgH1YcPnwY6enpNueXJAmRkZEAgOjoaJw+fRoXL15U9/n777/x3XffqZ8zISEh0Ol0NvciPT0dJ0+eLPZeEFHlxhFEIqoQDRo0QO/evTF37lykpaWpVUz//PNPtfKfRqPB8OHD8frrryMoKAgtW7bEvn37bL6QAJYS/R06dMDQoUMxYsQINGzYEGlpafjll19gNBoxefJkp9oUGBiIZ555BmvWrIFWq0VkZCT27duHQ4cOYenSpW6/B64+Z6tWrfD++++jQ4cOaupiy5YtsWjRItSrV08d5ShM/fr18emnn+LAgQMIDw9H9erVna52WdJ77MxxH3zwAU6ePIn77rsP1av/f3v3H5Xz/f9x/N5VV6VwdVHKRe0wKtRSIwtnuA5nE+MoZTOJJcWUzbIfWk1CfsSWakpnlGEMzYbFDjabw2Fnfq2zhv2oaZJ+UKqVku8frevrWpmrpsk+z9s5znFd1+v9fj3f73N1To9er9f71Y3c3FwOHDjAxIkTgYZpuT179iQrK4u+fftiZmam28bgQRk6dChLlixh/fr1uLm5cfToUU6cOKHX5l51GHKNarUaf39/EhMTMTExoU+fPuzcufMfr7dsFBQURO/evRk1ahTdu3enqKiIrVu3Ul5ezpQpU/TaXrt2jbNnz3L79m2Ki4s5duwYn3zyCUOHDiUkJMTgPm/evElQUBATJ06kV69e3Lp1i40bN2JjY6Nba/tXrb0P69ato6ysDE9PT9RqNT/88AOnTp3Sfe80Gg3m5ubs2bOHTp06YWJi0qI/DjXq0qULISEhhIWF6Z5iOmDAAN1aPjs7O1xdXUlISKBDhw7U19eTmpraZHbBvX7WGrfJqaio4Omnn0apVHL58mUOHTrEunXr6NChA8HBwfj7+zN//nwmT57MpUuX2LVr131rHzZsGBkZGSxbtgytVsvp06f57LPPmm1rZmZGSEgIQUFBFBUVsWrVKsaMGaNbe+zj40NaWhrBwcGEh4djbGxMUlISarVa931SKBRotVrS09PRaDR07tyZjRs3Ym5urtdX7969KS4uJjMzk759+6JWq1s0Si2E+PdJQBRCPDRLly4lPj6e999/n/LychwdHUlJSdFtcQEQGBjIjRs32L59OxkZGWi1WhYuXKg3rczIyIikpCRSUlLIyMigoKAAlUqFs7MzAQEBLaqp8Zehjz76iJKSEhwcHFi9ejXjxo17YNfd2j4HDRrE1q1bGTx4sN578P979P2dqVOnkpOTw6JFiygrK2PevHmEhYUZVGNr77Ehxzk5OXHkyBHi4uIoKyvDxsYGPz8/5s+frztPTEwMK1euZObMmdy6deuBjbw1ev7558nPz2fz5s3U1NQwbNgw1qxZg7+/v1675uro2bOnQffm9ddfp66ujuTkZBQKBRMmTGDmzJmsWLHiH9c/a9Ys9u/fT3x8PCUlJXTp0oX+/fuzbds23ehXo3379rFv3z6USiVWVlY4OzuzdOlSJkyY0GRd498xMzPD0dGRzZs3c/XqVd3m8x988EGTkHC31twHV1dX0tPT2b9/P5WVlWg0GsLCwggMDNTVEhsbS3JyMgEBAdTW1nLhwgWDr6WRu7s7Xl5eLF++nNLSUjw9PYmNjdVrs2bNGt5++20WLlyIra0tCxcuJCMjQ6/NvX7WvL29sbS0JDU1ld27d6NQKLC3t2fkyJG6UVBXV1fWrl3L2rVrefnll3FxceHdd9/Fz8/vb2sfMWIEERERbNmyhZ07dzJw4EBSU1N55plnmrQdN24clpaWREZGUlVVhVar1ZtebWpqSnp6OnFxcURGRgIND39KTEzUC8PR0dFERUURExODSqUiNDSUM2fO6O0TOXbsWE6ePMnq1aspLS1l0qRJD+Q7L4RoO0Z3WvPYMiGEEEIIIYQQ/zmyBlEIIYQQQgghBCABUQghhBBCCCHEnyQgCiGEEEIIIYQAJCAKIYQQQgghhPiTPMVUCCFEm/r888+prq7Gx8dH7/2AgADUajXr1q174H2WlJSwbds2Jk2a1C4eqZ+YmMiWLVs4efLkv9ZnQEAAp06dAhq2jNFoNGi1WsLDw+nYsSMAVVVVbNiwgaysLAoKCujYsSO9e/dm4sSJuqdmnjx5kunTp+vOa2Fhga2tLYMGDWLatGk4Ozv/a9ckhBCi7UlAFEII0aYOHDjA9evXmwTEtlRSUkJSUhKenp7tIiA+LEOGDGHBggXU1dWRnZ1NQkICV69e1YXysLAwcnJymDNnDn379qW0tJRvv/2Wr7/+usm2CvHx8djb2/PHH3+Ql5dHZmYmvr6+LF68+L5bMAghhHh0SEAUQgjxP626uvpv9+17lFlZWTFw4ECgYc/MqqoqEhISKC0tpby8nGPHjvHee+8xduxY3THe3t40twOWk5MTjo6OAHh5eeHv78+iRYuIiYnB09OTxx577F+5JiGEEG1L1iAKIYRoM2+++SYHDx7k1KlTODk54eTkRGJiol6bvXv3MmbMGDw8PJg1axZXr17V+7ympoZVq1YxYsQIXFxcmDBhAkePHr1nn/n5+Tz33HMATJ8+XdcvNEyXdHJy4ptvviE0NBR3d3eWLFlCfn4+Tk5OfPnll03q/+vI58WLF5k9ezbu7u64u7sTHh5OUVFRi+/N5cuXmTt3Lh4eHri7uxMaGkpeXp5em7KyMl599VUGDhzI8OHD2bBhAytXrkSr1ba4P4ABAwYADfeovLwcABsbmybtjIyM7nsuhULBW2+9hUKhYOfOna2qRwghRPsjI4hCCCHazNy5c7ly5Qo3b97knXfeAcDOzk73+blz57h27RpvvPEGNTU1LFu2jKioKNLS0nRtwsPDOX/+PGFhYTg4OJCVlcWcOXPYvXs3/fr1a9Jnt27diI+PJyIigujoaF0oultkZCQ+Pj4EBgZiZmZm8PXk5eXxwgsv4OLiwurVq7l9+zYJCQmEhoaya9cug4IVwK1bt5gxYwYmJiYsXboUY2NjEhMTmTZtGnv37sXKygpoCKinT58mMjISa2tr0tPTyc3NxdjY2OCa7/b7778DDaGwU6dOWFhYsHz5chYsWMDgwYNbdC8AVCoVLi4unDt3rlX1CCGEaH8kIAohhGgzDg4OWFlZcefOHd1Ux7tVVFSQmpqKSqUCoKioiLi4ON20zxMnTvDVV1/x4Ycf4unpCcDw4cPJzc1l/fr1zT7gxtTUVDdi2KdPn2b7ffbZZ3nllVd0r/Pz8w26nqSkJKytrUlLS8PU1BRomHo5duxYjh49ysiRIw06z+7duykoKODgwYPY29sD4ObmxujRo9mxYwchISFcvHiRI0eO6E0B9fLyYsSIEVhaWhrUz507d6irq6O+vp7z58+TkpKCi4sLdnZ2GBkZERsbS1RUFEFBQSiVStzc3HQPqDE07NrZ2ZGTk2NQWyGEEO2fTDEVQgjx0Li6uurCITQEOoDCwkIAjh8/jo2NDR4eHtTV1en+eXl5kZ2d3ep+DQ1yf3XixAnGjBmDQqHQ1dKzZ0969OjRonrOnz9P//79deEQGoKWu7s73333HYDufHdPJzU3N2fo0KF657r7vtTV1el99sUXXzBgwABcXV158cUX6dGjB/Hx8brwN378eI4cOcLy5cvx9vYmNzeXqKgoXnvtNYOvpbn1ikIIIR5dMoIohBDioencubPea6VSCTSsOwS4fv06RUVFzU4Tbe00S4CuXbu26rjr16+TlpamNwW2UUFBgcHnKSoqwtrausn71tbWXLlyBYDi4mIsLS2bTPvs0qWL3uu/3psLFy7o/v/UU08RERGBiYkJGo1GL4w3UqvV+Pr64uvrS21tLdHR0WRmZjJ79myDtrAoLCxs9lqEEEI8miQgCiGEaLdUKhW2trYkJyc/0PP+dfpkYwirra3Ve//GjRtN6hk9enSz2zqo1WqD+7exseGnn35q8n5xcbEuxFlbW1NZWUlNTY1eSCwtLdU7ZteuXffsR6VS4erqanBdSqWSGTNmkJmZyS+//HLfgFhWVkZ2djaBgYEG9yGEEKJ9k4AohBCiTSmVSt2IYEt5eXmxadMmLCwsePzxx1vUJ2Bwv127dkWpVPLzzz/r3qusrOTs2bNoNBq9ei5duoSLi4vBa/Sa4+bmxqeffsrly5d100wLCws5c+YMYWFhALi4uABw+PBhvL29gYYtOY4fP663BrElAfBuFRUVmJiYNNnio/FJqvcbZa2vrycuLo76+nomT57cqhqEEEK0PxIQhRBCtKlevXpx+PBhDh06hK2tLd26dcPW1tagY4cNG8bw4cN56aWXCA4Opk+fPlRUVPDjjz9SU1Nzz7VyGo0Gc3Nz9uzZQ6dOnTAxMfnbIKVQKNBqtaSnp6PRaOjcuTMbN25sEp7mzZuHn58fs2fPxtfXF7VaTWFhIcePH2fSpEkMGTLEoOvy8fEhLS2N4OBgwsPDMTY2JikpCbVazZQpUwBwdHRk1KhRxMTEUFlZiY2NDZs2bcLc3PwfhdNGv/76K3PmzMHX1xcPDw/Mzc3JyckhJSWFfv368eSTT+q1v3DhAlVVVdTU1JCbm0tmZibZ2dksXrxY9kAUQoj/EAmIQggh2tTUqVPJyclh0aJFlJWVMW/ePN0o2f0YGRmRlJRESkoKGRkZFBQUoFKpcHZ2JiAg4J7HmZmZERsbS3JyMgEBAdTW1uqtzWtOdHQ0UVFRxMTEoFKpCA0N5cyZM1y8eFHXplevXuzYsYOEhASio6Oprq7G1tYWLy+vFoUkU1NT0tPTiYuLIzIyEgBPT08SExN1W1wArFixgsWLF7Ns2TIsLCyYOnUq9vb2fP/99wb3dS8ODg74+flx7Ngxtm/fTnV1Nd27d8fX15fg4GBMTPR/RYiIiACgQ4cO2NraMnjwYGJiYgxapyiEEOLRYXRHHj8mhBBCPBLq6uoYP348bm5urFy58mGXI4QQ4j9IRhCFEEKIdiorK4tr167h6OhIZWUlH3/8MXl5eaxatephlyaEEOI/SgKiEEII0U5ZWFiQmZnJb7/9xu3bt3F0dCQlJYUnnnjiYZcmhBDiP0qmmAohhBBCCCGEAEDxsAsQQgghhBBCCNE+SEAUQgghhBBCCAFIQBRCCCGEEEII8ScJiEIIIYQQQgghAAmIQgghhBBCCCH+JAFRCCGEEEIIIQQgAVEIIYQQQgghxJ8kIAohhBBCCCGEAOD/ALcKCtN39HWvAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%capture --no-display\n", + "\n", + "# Setup utilities\n", + "import scipy.stats.distributions as dist\n", + "\n", + "fig, axs = plt.subplots(4, 1, dpi=90, figsize=[11, 26], sharey=True)\n", + "fig.tight_layout(pad=4.0)\n", + "\n", + "axs.flatten()\n", + "idx=0\n", + "\n", + "for adaptive in (False, True):\n", + " for jackknife in (False, True):\n", + "\n", + " mtp = Multitaper(lc_ar4, adaptive=adaptive, jackknife=jackknife)\n", + " \n", + " mtp_stingray = np.log(mtp.multitaper_norm_power)\n", + " \n", + " Kmax = len(mtp.eigvals)\n", + " \n", + " if jackknife:\n", + " \n", + " jk_p = (dist.t.ppf(.975, Kmax - 1) * np.sqrt(mtp.jk_var_deg_freedom))\n", + " jk_limits_stingray = (mtp_stingray - jk_p, mtp_stingray + jk_p)\n", + " \n", + " else:\n", + " \n", + " p975 = dist.chi2.ppf(.975, mtp.jk_var_deg_freedom)\n", + " p025 = dist.chi2.ppf(.025, mtp.jk_var_deg_freedom)\n", + "\n", + " l1 = np.log(mtp.jk_var_deg_freedom / p975)\n", + " l2 = np.log(mtp.jk_var_deg_freedom / p025)\n", + "\n", + " jk_limits_stingray = (mtp_stingray + l1, mtp_stingray + l2)\n", + " \n", + " \n", + " axs[idx].plot(mtp.freq, mtp_stingray, label=\"Multitaper S(f) Estimate\", color=palette[6])\n", + " axs[idx].fill_between(mtp.freq, jk_limits_stingray[0], y2=jk_limits_stingray[1], color=palette[4], alpha=0.4)\n", + " \n", + " axs[idx].plot(freq_analytical, np.log(psd_analytical), color=palette[0])\n", + " \n", + " axs[idx].set(\n", + " title=f\"Adaptive: {adaptive}, Jackknife: {jackknife}\",\n", + " ylabel=\"Power, ln\",\n", + " xlabel=\"Frequency\"\n", + " )\n", + " axs[idx].legend()\n", + " \n", + " idx += 1\n", + " \n", + "\n", + "text = \"if jackknife == True:\\n\\\n", + "jk_var_deg_freedom = jackknife estimated variance of the log-psd.\\n\\\n", + "else:\\n\\\n", + "jk_var_deg_freedom = degrees of freedom in a chi2\\n\\\n", + "model of how the estimated PSD is distributed about\\n\\\n", + "the true log-PSD\"\n", + "fig.text(0.5, -0.05, text, ha=\"center\")\n", + "fig.show();" + ] + }, + { + "cell_type": "markdown", + "id": "06082f55", + "metadata": {}, + "source": [ + "### Linearly re-binning a power spectrum in frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "efea10b1", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n", + "Original df: 0.0009765625\n", + "Rebinned df: 0.0068359375\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHYCAYAAABHktmQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AADrAElEQVR4nOzdd3hc5ZX48e8t09R7l9wt924MxmB67xAI4LC0zYaa3lkCWQjpyZLdX0iApcWEQBKH5gChmGIb3LvcZVWrd0295ffHSLKFbVkjjazi83keHqSZe997xroe68x53/Mqtm3bCCGEEEIIIYToNXWwAxBCCCGEEEKI4UYSKSGEEEIIIYSIkCRSQgghhBBCCBEhSaSEEEIIIYQQIkKSSAkhhBBCCCFEhCSREkIIIYQQQogISSIlhBBCCCGEEBGSREoIIYQQQgghIqQPdgDDhWXZmKY12GEAoOsqhjE0YhFDm9wrIhJyv4hIyP0iekvuFRGJoXC/aJqKqirHPU4SqV4yTYumJu9gh4GqKqSmxtHS4sOy7MEORwxhcq+ISMj9IiIh94voLblXRCSGyv2SlBSDqmrHPW7EJ1JTp05l/PjxAEybNo1HH310kCMSQgghhBBCDHcjPpFKSkri1VdfHewwhBBCCCGEECOINJsQQgghhBBCiAgN6URq7dq1fOUrX2HRokUUFhbywQcfHHHM0qVLOeecc5g+fTrXX389W7Zs6fZ8c3MzV199NTfeeCNr1qw5UaELIYQQQgghRrAhPbXP6/VSWFjINddcw3333XfE88uXL+exxx7j4YcfZubMmTz33HPceeedvPXWW6SkpADw3nvvkZmZyd69e/nyl7/Ma6+9Rlxc3Il+KUIIIYQQYoSxbRvLMrGlj0ZUqKpCMBjEMIwBazahKKCqGopy/K58xzOkE6nFixezePHiYz7/zDPPcMMNN3DttdcC8PDDD7NixQqWLVvGHXfcAUBmZiYA48ePZ+LEiRQXFzN9+vQ+xdObNogDrTOGoRCLGNrkXhGRkPtFRELuF9FbI/VesW2b1tYm2tpaAMmioqmuTsWyBrr9uUJcXALx8Un9SqiGdCLVk2AwyPbt27nrrru6HlNVlYULF7Jp0yYgPK3P4/HgdDqprq5m9+7d5Ofn9+l6uq6Smjp0KlnJybGDHYIYJuReEZGQ+0VEQu4X0Vsj7V6pqanB620lOTkVl8s92OGICAUCfpqbG4iNdZGRkdHncYZtItXY2IhpmqSlpXV7PDU1lZKSEgD27dvHgw8+iKqqqKrKD37wA5KSkvp0PcOwaGnx9TfsflNVheTkWBob22U/BtEjuVdEJOR+EZGQ+0X01ki8V2zbprq6loSEFFyukZUgDgUnYkNelyuWuLjwz1FVPUdUpRISPDgcJ+E+UrZtd/1hzJkzhzfeeCNqYw+lNwDLsodUPGLokntFRELuFxEJuV9Eb42ke8U0DcDG6XQNdiiiH8I/PxvDMNC0vqVEQ7prX0+Sk5PRNI26urpujzc0NBxRpRJCCCGEECIaDjWWGFnrvk4+4Z9ffxqFDNtEyul0MnXqVFatWtX1mGVZrF69mlmzZg1eYEIIIYQQQogRb0gnUu3t7RQVFVFUVARAeXk5RUVF1NbWAnDbbbfx0ksvsWzZMvbt28dDDz2E3+/n6quvHsywhRBCCCGEGFE2bFjHokXz8Hq9vT7n0Ucf4oEHvhPVOAZizL4a0muktm3bxi233NL1/SOPPALAvffey3333ccll1xCQ0MDjz/+OLW1tUyePJmnnnqqaw8pIYQQQgghxCEHD1by9NN/YM2aT2ltbSE9PYNzz72AW265HY/Hc8zzpk+fyauvvtXjMZ/31a9+C3sEb7I1pBOpBQsWsGvXrh6PWbJkCUuWLDlBEQkhhBBCCDE8lZWVctddtzNlyjR+8pNfkJaWwb59e/j97x9n/fq1/M///BGn03nEeYZh4HA4SE2NrA9BXNzQ2TpoIAzpREoIIYQQQggRHb/5zc/JyMjipz/9NaoaXuGTlZVFYeEkvvjFq/nLX17kS1+6lUWL5vHtb/+AlSs/Yv36tdxxx38wadIU7r//K7zzzkfExMQA8Oqrf+fZZ5+itbWF008/g3HjJvDaa8v4619fB8LT8Hw+L4888nMA7r33y0ycWAjA8uWv4/HEsGTJrVx77fVdMT7++G/46KMV1NTUkJaWxqWXXsGXvnRbV7xDydCLSAghhBBCCBFVLS3NrF37GV/84pIjkpK0tHTOP/8i3nvvna7Hnn76D5x99nm88MLLnHvuBUeMt2XLJn71q5/yxS/ezP/931KmTJnGiy++cNw43nzzNZKTU3nyyee5/vqb+O1vf8GBA8Vdz8fFxfHAAw+zdOkr3HPPV/nLX17k9df/0fcXPoCkIiWEGHaClsmLJbv4tL6KmoCXzq1JbsifwI2jCgc3OCGEECel3+zayKf1B0/Y9U5NzebrhbN7fXxZWRm2bTN69OijPj969BjeeeefXd9feOElXHzxZV3fV1SUdzv+b3/7C6effgY33HAzAAUFo9i0aQN79uzuMY7Cwsl86Uu3AnDjjUt46aU/sWnTekaPHgPA7bf/e9eGvNnZOezdu4f333+XK6+8ptev9USRREoIMey8UraHv5bvJTGgk6m7aXObtBhB/lK2h3Mz88lwxwx2iEIIIcSQpChH3//Ktu1uz02aNLnHcUpLSzj77PO6PTZ58tTjJlJjx47v9n1qahqNjY1d3//rX2/zl7/8mYqKcvx+H4ZhkJmZ3eOYg0USKSHEsFIf8PP38n3EmzqvfDYfTVXxfTeFpWW7+HPpbl4s3cXXJvb+EzohhBAiGsLVoaH7709eXh6KolBcvJ8JE46cvVFScoC8vIKu793unrvz2faRSVlvOvTpevf0Q1EULCtcgdq2bQsPPfQAd955F/PnLyA2NpY33ni125TDoUTWSAkhhpWXy3YTsEy+3zAZRwuoTRZqlcnVueOI0x28X12OzzQGO0whhBBiSElMTGLu3Pm89NLSrsSlU11dLe+888+jroU6llGjRrFjx/Zuj+3cWdSvGLdu3UJubh5f+tKtTJo0mfz8AqqqKvs15kCSREoI0SPjc2+2g8m0bT6pqyTB0Fmw+VBLVbU4RIzuoDA+GQubKn/7IEYphBBCDE3f+MZ3qKo6yPe+9022bdtKdXUVK1d+zNe+djfjxk3ghhtu6vVY1157A6tWfcwrr7xEWVkpr7zyEhs3rj/m1MHeyM/Pp7Kygvfe+xcVFeW8+OILfPbZ6j6PN9AkkRJCHNMrZXu4dtWbbGisGexQANjRXE9zKMg95eNQ/WBlaQBo+4MAZHWsjary9X7XdSGEEOJkUVAwmieffI74+Di+971vcMMNV/Hb3/6SRYsW89///fuj7iF1LDNmzOLrX/8OS5c+x2233cTWrZu59trrIxrj8xYtWswNN9zEr3/9U2677Wb27dvNzTf/W5/HG2iKPZK3G46iUMikqWnwfzlTVYXU1Djq69uwLPnRiWPrz71i2zZ/K9/LswfCJfoz0nL47uR5AxFmRP6wbysfF5fxyop5aJaC7+vJeH7TCG4F73+msqxiP08Xb+eOMVO5Om/cYIc7rMh7i4iE3C+it0bivWIYBnV1FaSl5R6x3udk96Mf/QCfz8fPf/6bPo+h62pX176B1NPPMSkpBodDO+4Y8tMXQnRT2t7Kk/u3sbGpFocSLlqva6wmZJk41OO/qQwUy7ZZVXeQm/fmoocUQos82Ok6Vp6OVmKg1JhkdlakZGqfEEIIMeBefPF5TjnlNJxOJ5988hEffPAuDz/8k8EO64SRREoIAYS74S0t2cm71aVYQL4njm8WzuGlst18Wl/FpqY65qdkDlp8u1sb0ZotrizJwnZC8Oxw0mSOcaCVGGjFIbKmdSZSg189FkIIIUa67du38uKLL+D1esnLy+P733/wiJboI5kkUkIIAB7e/in721uI1x18IX8Cl+WMwalqnJaazaf1VbxbXcrc5AzUfiwi7Y9VdQf50u48HJZKcFEMxIWrZdZYJ6zwhROpeeFEqloSKSGEEGLAPfroLwY7hEEliZQQgnYjxP72FjJcHh6fcxZxuqPrudO0dCZ/MoP9ce382ljPN6bNPeHJlG3b7DtQz93lkzA9EDrz0N4W5igdWwF1f4gYLZ4E3Um134tl24OW9AkhhBBi5JOufUIIyrytAIyNS+yWROG1SH3ey4SmWC4sz+Cq5cnsrWk44fHtb2/h8q3paLaCuTgWPIe9dblVrFwdtcVCqbfI8sQQsi0agv4THqcQQgghTh6SSAkhKPO2AZAfE3/owZCN+/kW1GoTY4KDugyDmQ0JjH42hNJkntD4avY3c25lGl6PRej0I3dat8aEkz+tOEiWOxaQdVJCCCGEGFiSSAkhKPOFK1L5no5Nbi0b159b0IpDmHk6gS8lUn6rizXpTSQ3aLj/XxO7dtfym10baTdCAx7fxJXhboE7F4TAeeR0PXNsOJFS94e6OvdVS+c+IYQQQgwgSaSEEN0rUraN87U29O1BrFQN/22J4FIYm5LEf526l3/l1aE2W0x6waR6ZxN/Kd09oLGpJSEKDjip8vipm3X0tyxztANbAa04RLorXLGqC8jUPiGEEEIMHEmkhBCUd6yRyouJw/GBF8dqP1acgv+OxK7ueJqiMikpmZ/M3EPlaRAT1Pjlp1OoW9/EfRtW8KNtn9Kf/b29RohHdqzhpdLdmIeN43w7XFl6dmI58Z5j7JYeo2JlaaiNFtl+F4CskRJCCCHEgJJESoiTXNAyqfZ7SXd5iN9g4Hzbi+1UCNyeiJ3afQPeGUlpoMBTk8t4fGoxDkvhwXUTmLbDw/rGGjY31fU5jvdqyvm0voo/lezk5zvXYds26t4g2r4Q1YlB/pVbS4LjGIkUYI0JP5dXGf6/JFJCCCFE9GzYsI5Fi+bh9R57DfLTT/+BO+740gmM6tguvfRcli9/fUCvIe3PhTjJ7WxpxALOr8/A+VErtgb+LyVg5TqOOHZ+Sib/V7yDD2vKscZAfmYiV6xI5htbx5Lmd/JGSjGzktP7FMe7VaUAxGo6K+sO0hDwk/tWOBl6dVotlgrx+rETKXOsA8cqH6kVKmRDQzDQpziEEEKIkejRRx/in/98AwBN08jIyOTss8/ljju+gsvliso1brzxS1x33Q1RGWs4kERKiJPYp/UH+WnROiY3xnHbZ9koFvi/GI818egJS35MPHmeOMp94TVV2iwPwfFJuJ9r4ZY9eSz3V1M1uo2s2LiI4tjX1sy+9mZGx8RTEJvAR7UV+Le2o5XZmDk6H2bVQwASHEcmd53Mjs59MQcslGypSAkhhBCft3DhGXz3uz/ENE0OHCjmscd+DCjcfff9URk/JiYGiInKWMOBJFJCnMTeqSolq9XFr9dPRTcUApfGYs5293jO6WnZ/KVsDwDj4pKwMp347krCfrKeS8oyKXqqDvvLHhSP1uM4h3vzYDEA52cV0BoKodqQ+YEJqIQujKGlMYhH03CoPYwZp2JlaGg1JqPNWMqCXmzbRpFNeYUQQggAnE4HqalpAGRkZHLOOeezbt1nAFiWxZ/+9CyvvbaMxsYGRo0azZ133sXChYu6jbF580Z+//vHKS8vY9KkKXz/+w+Sn18AhKf2rVr1CU8//QIQroL5fF4mTpzEyy//GYArrriaL3/57q7xFi2ax/e+9wAffbSC9evXkpubxze/+X1mzpzV7ZpPPPE7du3aRXJyMueeez533nkXTmf4g9/6+jp+9rNHWLduLenp6dx1130D8wf4ObJGSoiTmNVs8vPPJuP2q4TO8GCcefxPkU5LywbApWrkx4QrT3a2TuieZMoT/EyujMX8n7oe95r6rL6KH2//jMagn2q/l/eqy4jVdM7NLCDHGcuXi0aRWK9ijtYJTtRpM0I9Tuvr1FmVOqUpGcO2aTGCvfljEEIIIU46FRXlfPbZajQtXFd54YVneOedt/jud3/I88//hSuvvJYf/vDb7N69s9t5TzzxO7761W/xxz8+h9Pp5Ic//DaWZR3zOmvXfkZjYyP/7/89yf33f5MXXniGzz5b3e2YZ555iosvvoxnn/0z48dP4OGHf4hhGF1xfutbX+Xccy/g+edf4sEH/4vVq1fyxBO/6zr/0Ucfoq6ulv/5nz/wox89wtKlz/e4litapCIlxEnsyvVpZPvchGa6CF4S26tzxsUmckFmAeluD5py6LMYR6qT2n+P4eBzDcyvS8L6nyYCtx19rdWzxTso87XxjU0fMzE+CdO2uTJ3HPHNKme/4iauMge/w8K+LI62jjfSnhpNdDLHOnB85mdGfQJ/SQ1P70t0RGfetxBCCNET58st6NtP3Ad4xlQnwesTIjrn448/5Pzzz8A0LYLBAIqi8NBDjxIMBnnhhWf43e/+wOTJUwHIzc1jw4a1vPbaP/jWt77XNcbtt/8Hc+fOB+CBB37Mddddxrp1azjllFOPes2kpGTuv/8bKIpCQcFo/v73l9mwYR0LFpzWdcxll13J2WefB8Cdd/4H119/NRUV5YwaNZoXXniGiy66lOuu+yIAeXn53HPP13jgge9w333foKyshDVrPuX//u9PTJw4CYBvfvO73HnnLRH92fSFJFJCnKQsv8m8ygS8uol9XTyo4Slw+rbdOD/bhDFlAsHTZh9xnqIo3D9x1lHHnJCewpfP2MDN67K5tCwT9xNNBG5KwJzcPZnpbG5eG/BRG/CRoDm5vjoXz1ONKEHYltzKCwsP8mD+6bR0tGbvTUXK6qhITaiJgYnhhhNjepcfCiGEECPevHkL+PrXv43P5+Pll19EURTOPfcC9u/fh9/v5/77v9Lt+FAoxJw587o9NnXqtK6v09LSyMrK5sCB4mMmUmPGjO02zT41NZXGxoZux4wdO/6w58NTDzunF+7du4d9+/bw1ltvdB1jWRaBQID6+npKSg7gcDiYMKGw6/nCwsk4elhXHS2SSAlxkjK2+Yi3NFblNzHTmQWA0tSC+80PUCwLraYeMyMFc9yoXo+pKAozUjP45Yz9jBuVyqRPdFzPtRC8PA7jdE/Xca0dU+4mJyRTqCVy+4Y84rf7sBUInuvhezFrsVQb27ZpCYWP7U1Fyk7UsFJV0usdJAR1GmRTXiGEECdI8PoEhvqEco/HTV5ePgDf//6D3Hrrjbzxxj8YMyacyPzyl78jNTW12zlHdvQ7cu1xT+uRdb17uqEoyhH7Th5+TOdYndMFfT4v11zzBa6++gtHjJ2UlIRt93z9gSRrpIQ4SWmbw+3Bd4zzdT3mXLsFxbIwU5LC36/ZEvG4c5LTQYG/FVbhvykeNHC91obztTawbIKWSXMoSJY7hl/FL+C+13KJ325iJav4/yOJ0AVxZMXG4jNNmkKBrqSrN4kUgNmxn9SM+gTp3CeEEEIcg6qq3HLL7Tz55O8ZNWo0DoeDmpoq8vLyu/2Xnp7R7bzt27d2fV1fX0dV1UFGjRo9YHFOmFBIcfH+I+LKy8tH13VGjx5NMBhkz55dXefs2rWTUCg0YDF1kkRKiJOR1yJur0WzI0RtQUdTCNtG33sAAN9Nl2MlxqMfKEdpaYto6JmJaaiEG0osS6uk9c547FgFx0ofrhdaaGz1oVkK/1aUh/uPzajNFsYsF76vJndNzctxh+fjHfS1d1WkejO1D8AaGx5jZoMkUkIIIURPzjrrXDRN57XXlnH99Tfx3//9K956600qKsrZubOIv/xlKe+//263c/7v//7Ihg3r2Lt3D48++hB5eQXMm3fKgMV48823sGnTRn7721+yZ89uSktL+PDD9/nf//1vAAoKRjNv3in87GePUlS0naKi7fzmNz+XqX1CiIGhbw+gWvBRXgOJnnC7c7W+CbWpFTM7Azs+DqNwLM41m9H3HCA0d9pxRjwkzuFkTnIG6xpr+OP+bejjFC69pwD3M83oO4JkNsDv/FOZ3BSP7VIIXBWHMdsFh5Xlsz3hRKrc1xbR1D441LlvZn0CG4I1vY5bCCGEONnous51193Aiy8+z8sv/4Pk5GSee+5pDh6sJD4+gcmTp3DrrXd2O+c//uMefv3rn1NREW5//pOf/BxVHbjazIQJhTz++BM8+eTvueuu21FVjby8PC666LKuYx544Mf89Kc/5p57/p3U1DTuvvt+fvnLxwYspk6K/flJiuKoQiGTpqaBb6N4PKqqkJoaR319G5YlPzpxbD3dK+6nmtD2hPj6qds55ZQCrsgdi2PjdtxvfUTgtNkEzzoVrbSSmKWvYowtwHfDpRFd27As3qku5f/t3cJZ6bl8a9Jc8Fq4X2hB2x8utVdlhkj4t0zs1CP3hlpdd5BHi9ZydkYeKU43fyvfy7cL57I4I/f4F7dtXI/VozZbfPPaPTxyyukRxX6ykvcWEQm5X0RvjcR7xTAM6uoqSEvLPWL9j+g/XVcxjGO3U4+Wnn6OSUkxOBzH3w9TpvYJcbJps1D3hmiPMdmS2kKKM1yR0iqqATBzszr+n4nt0NHKD4J57D2hjkZXVRal5QCwu60JANujsObaEJvn+PjDpBI+/IL/qEkUwIykNFQUNjXW0hwKr+VK6G2JXlGwxjpQUcg8KP/ACSGEEGJgyG8ZQpxk9K0BFBu2jvJiKZDkDHfj0SqqALByM8MHahpmXjZ6cRlqVd2hx3spweEk2x1Lpa+d1lCQzU11/HTnOgjnV/zAc+zqUqzuoDAhiaKWRrY113eM1/v9oOyxTtgYZEy1G9u2B62bjxBCCCFGLqlICXGS0Tu69a3KbwQgxemCYAi1oRkrMR475lCbcnNUOOvRSyv7dK3C+CQgXJUqaum+Z0Say93jubOTwl2CqvxenKpKputQXHrRPmJ//yecKz6Fo8xO7lwnNaM+nhZjqDejFUIIIcRwJImUECcRpclEKw5hJatsTGgGINnpRq0LJzlWekq3442CcCKllVb06XoT45MB2N3SSHF7S7fn0g5LjI5mdnJ619dfnTCbuI5mE0pzK+7X3kVtasW1eiP6rv1HnGunabR4DCY2x9HU6jvieSGEEEKI/pJESoiTiLYlXI0yZrhoNAJ4NA2PpqPVhhMpM6P7JnxWVjq204FWFvk6KYDCjkRqZ2sjBz6XSCUeZ6peYXwyl2WP4b4JM7s1mXB+uim811VHrI4N2448WVEozwqi2QpmsVSkhBBCRM+h2eIjo3nGySv88+vP7H9JpIQ4iXRO6/NNd9BuhEhydLQ+rwmvQ/p8RSq8TioLJWSgVtVFfL2xcYnEaDqbmmppMYKkH1aF0o7zzqUqCl8ZP50Ls0YdetA00Yv2Yqsqvhsvx4qPRSupBO+R+0XV54U7/jgPGBHHLYQQQhyLqmqAQjAYGOxQRD+Ef35Kx8+zb6TZhBAnCaXORCs3sNI06tMMOADJHY0mDk3tSz3iPLMgB31/GXpZJcEIG044VJUFqVl8UFMOwMykNM5IyyW2j+1itZJKVJ8fY9wo7BgP5ph8HFt2opdVYhSO7Xasd7QKH0NiWZ8uJYQQQhyVoijExibQ0rH21+l0AdLUKHoUDGMgq302wWCAlpYGYmMT+tWQShIpIU4S+pZw1caY6aKho6V4Z+tztaYBW1WxUhKPOM/Iz8EFaKWVcOrsiK+7MDW7K5EaHZvA3JSMPr4C0IvDWZExcXT4/6NycWzZiXag4ohESs9y0uwIkVatEwjZ4JB/5IQQQkRHXFz438twMiVT/KJJVVUsa6D3kQonw50/x76SREqIk0TntD5jpovGYHi9UrLThdLuRfX6MNNTQDuyvG1lp3fsJ1UFlgUR7l4+JzkDt6rht0zGxCb06zVonYnU6Dzg0J5XWlXtEcemuNxsTq3mzKpUQqUhrHHOfl1bCCGE6KQoCvHxScTFJWJZ5tEayIo+UFWF5OQYGhu9A7aBs6KEp2dGY2uUkyKR8vl8XHLJJVx66aV861vfGuxwhDjhlCoDtcrEzNawM3UaK8PVqWSnG7X22NP6gPA6qdws9APlqNV1WNmRVZRcmsYlOaP5tL6KCXHJfX8NbV602gas5ETspHBCZifFYzsdqLX1RyR5KU43K1NaOLMqFW2/JFJCCCGiT1EUNO2k+HX6hFBVBafTia4HByyRiqaTotnEE088wYwZMwY7DCEGTWc1ypwZnsrX2LFANtnhOiyRSjn6yYTXSUHH9L4+uH3MVP4471xi+rg2CkA7EJ4e2FmNAkBRMDNSUUIGSmP3roDJThdbUsOPacWhPl9XCCGEEOJoRnwideDAAfbv38/ixYsHOxQhBodtd5vWB9AQClekUpzucDUHwlP7jsEsyAb6vjFvNOgdiZQ5Jq/b41ZGGgBaR+fBTpqiUp9q0qYbqCUhGNCFq0IIIYQ42QzpRGrt2rV85StfYdGiRRQWFvLBBx8ccczSpUs555xzmD59Otdffz1btmzp9vzPfvYzvvGNb5yokIUYcpQKA7XexMzXsVPCa6C6KlJOV9ceUlbGMab2AWZ2JrauoZUfDE+hO9FsG624HFtRMEbldnvKygzHrdYc2Z49yeVia0origFqubRBF0IIIUT0DOlEyuv1UlhYyIMPPnjU55cvX85jjz3GPffcw7JlyygsLOTOO++koSH8i+G7777L6NGjGTNmzIkMW4hB5zcNHty6mn+WFqNt6l6NAmgMdqyRcjhRaxuwnQ7shLhjD6hrmDmZKP5g11TAE0mtb0Rta8fKTgd39418zc6KVHX9EeclOlxslul9QgghhBgAQ3p13OLFi3uckvfMM89www03cO211wLw8MMPs2LFCpYtW8Ydd9zB5s2bWb58OW+//Tbt7e0YhkFCQgJf/vKX+xSPqg5+++TOGIZCLGLo2tHUwLqGGtbX1/Du5tOxFSieEKK8/iCZ7hgagwFUINkXQgkZmLmZqFrPn6tYo3KgtDK8Z1N2+ol5IR0OTevLP/Lez0zFVhTUmrojnvPoOnsS2gFQawz5e9MDeW8RkZD7RfSW3CsiEsPtfhnSiVRPgsEg27dv56677up6TFVVFi5cyKZNmwD45je/yTe/+U0A/v73v7N///4+J1G6rpKa2sMn9idYcnLsYIcghrBgazUAUxvjUZssqvIM7tqzGghvGWgDaW4PKQEvIcCZn0Xsce5vc9o4Qh+vw3OwBucJ/rsQLD+IBcTNnoh6lGsH0pOxaxpI8egoMe6ux5Ni3KyJC1eqnPU2CUPo7/BQJe8tIhJyv4jekntFRGK43C/DNpFqbGzENE3S0tK6PZ6amkpJSUnUr2cYFi0tvqiPG6lwf/1YGhvbh0VbSDE49tc3AnB2ZXj90IvJpXg0nQlxSWxpDq8lStSdtO+rwAl4E+Ix6tt6HjQ+kRhdw9xTQn1tS8T7SfWZYRKztxScDhrjEuAocbqSk9BrGmjaU4aVl931uGLY1LmDGE4b7WCI+tpWGCafcp1o8t4iIiH3i+gtuVdEJIbK/ZKQ4MHhOHJvzc8btonUsdi2fdQNtq655pp+jz2U3gAsyx5S8YihpcbvRbXgrMpUTMXmwJgAv551BgB3rQ83bUl2uFBKwuudzLSU499PmoaZn4NeXIZSVoWZn93z8VGilVaihAxCE0ZjKSocJU4zNRkdUGoasHKyuh53qzoo0JZik1RlYzea2MnHf2M8mcl7i4iE3C+it+ReEZEYLvfLkG420ZPk5GQ0TaOurnunroaGhiOqVEKcbGr8PmbVJ5ISdFJTYPLj004nPyae/Jj4rmNajdBhrc+P3bHvcMa4AgC0/aXRD/oYtOJD66OOxUoLb/Sr1jV2e9ythpOm5pRwp0G1xhyIEIUQQghxEhq2iZTT6WTq1KmsWrWq6zHLsli9ejWzZs0avMCEGAJqAl7O6ZjWl7ogGYd6qApzelq4kpTjdKM2NGPFxcBh64p6YowNJ1L6vhOXSOnFZeFr9yWR6thtviEpnEApNdICXQghhBDRMaSn9rW3t1NaeugXtvLycoqKikhLSyM9PZ3bbruN73znO0ydOpUZM2bw3HPP4ff7ufrqqwcxaiEGl2nbNPr8LK5KBR3Mad3bhX994mzGxSVxiRqLYq3DTDv2RryfZ6ckYiUloFXXobS1Y8cN7GJQpd2LVl2HlRSPnZxwzOOslKRw57767omURwsnkHVJIcAlFSkhhBBCRM2QTqS2bdvGLbfc0vX9I488AsC9997LfffdxyWXXEJDQwOPP/44tbW1TJ48maeeeoqUlN7/YijESNMY9DOnJpG4kI42OwY83dcVuTWd6/MnoG/bDfS8Ee8RFAVj/Cic67ai7z5AaM7UaIffTee0PmNMPhxl7WMXh46dlIDa2AyBILicwKGKVHVCEAC1VhIpIYQQQkTHkE6kFixYwK5du3o8ZsmSJSxZsuQERSTE0Ffj93JuRccmtQuO3e770PqoyD54MCaNDSdSu/YNeCKl7y4OX7NjbVZPzLRk1MZm1PpGrJxMADwdiVRNbBBbC+8lJYQQQggRDcN2jZQQ4ujqW32cXpVM0GGhzYo55nFaTTiRsjIja85i5mZhxXrQSipRvAO4JUDIQN9fiu3Qe2w00elo66TcHVP7fBjY6RpKuw3t1sDEK4QQQoiTiiRSQowwniIDt6VROd5EcR77r7haU4+tqlipyZFdQFUxJo5Fse2uitFA0IvLUEIGxvhRoB+/eN75OrRuiVT4PJ9pYKWHv5aqlBBCCCGiQRIpIUaQar+XuK3hRCEwy3XM4xSvD7XNi5WaBHrk+yoZk8cBdK2zGghd0/omju3V8VZH04zDK1IeNZw8+U0TKyP8OqXhhBBCCCGiQRIpIUaQP2zezKyaBNo9JgUzj91EQu2c1tfL/aM+zyzIwUqMRy87iNLQ3KcxehQKoe/aj61rvVofBYSTQkCtb+h6rHNqn980JJESQgghRFRJIiXECFKwR0ezFfTZsaAdu8tdVyIVSce+wykKoemFADi27uzbGD3QdxWjBEPhalRHB77jcjqwEuNRmlohGAIOTe3zmyZ2Rvhr2UtKCCGEENEgiZQQI0TQMllcHk6MrNk9b7Db2WjC7GsiBYRmTMIGHFt3gRndKo9ja7hbZ2ey1ltWWjIKoDY0AYf2kfJZBla6hq1IC3QhhBBCRIckUkKMEP6aANMa46mJC2Ll99ycod8VKcBOjMccNwq1tR19574+j/N5SlML2oFyrPhYzNG5EZ37+c59uqKiKQp+0wCHgp2sojZaELR7GkYIIYQQ4rgkkRJihNA3BQDYNKat581rTRO1rgHL48aOO3Z79N4InjIDAOeazWBHJzlxrtuKQrjihRrZW5TZ1XAivE5KURTcmo6vo2JmdUzvU2tlep8QQggh+kcSKSFGAtvu6ta3c1zPezupDc0ophWuRvWUcPWCOSoXMyMVraoOraSiX2MB4A/g2FyErWmE5k6L+PTOFujdO/dp+E0D27ax08NT/RRpOCGEEEKIfpJESogRQD1o4qmD3Ylt+NJ6To7Umjqgf9P6uigKwdPmAOBa8Vm/q1LOjTtQgiFC0yZix0ZeLeuc2vf5vaRsIGBJC3QhhBBCRI8kUkKMANomPwDv5tQRpzt6PvZgLQBmVnpUrm1MHoeZmYZ2sKZ/G/T6/Dg/3YCtKAQXzOzbGC4nVnwsSlMLGOFkyaMdvpeUbMorhBBCiOiQREqI4c6y0TcFsLH5IKf+uImUWhVOpKzs6CRSKAqBs04FwPXeqq7W45Fyrd6A4g8SmjUZu2OKXl9YaSkott3VuU/2khJCCCHEQJBESohhTj0QQm22OJhrUOcJ9pxIWRZaVS2204GVkhS1GMyx+YQmjUVtbsX10ZqIz1eranGs3Yrt0AkumtevWD7fua9rLynLhBgVK05BqTPBlM59QgghhOg7SaSEGOb0jeFufTvGewGI04+9ga1a34QSMsLT+vrZaOLzAuefge124ly7BW3Pgd6faJi433gfxbIInHUqdlxsv+I4lEiFO/e51Y69pMzwdD47Q0exQKmXqpQQQggh+k4SKSGGM8NG3xrA1mBzfjtAjxUp9WANEMVpfYex42LwX3I2AJ7X30Otre/FSTbuNz9Aq23AGJXTp059n9eVSNWHK1KH1kiFEymZ3ieEEEKIaJBESohhTNsVRPHZmJOc1GvhylRsD4lUV6OJ7IwBiccoHEtg4RyUQBDP0te61mMdlWXheucTHDv2YCXG47/i/KhUyczUo0/tO2IvKWk4IYQQQoh+kERKiGGscxNeY5abNiPc5KGnipRWFa5ImVkDk0gBBM88heC86ag+PzEvLMOxZnNXB71OSkMTnr+8iXPDNiyPG98XLun35sBdPG6sWA9qQzOYJp7Dmk2AVKSEEEIIER36YAcghOgjv4W2I4DtUjAnO2nfepxEyjRRq+ux3S7spPiBi0tRCJx3OlZCHK4Vn+F+bxXOTzdijsrFdrtQ6xvRSg+i2DZmanI4iUpOiGoIVloyekklamPLoWYTnWukZFNeIYQQQkSBJFJCDFP69iCKAaGZTnAoXRWpmGMkUmptA4ppYhTkRL3RxBEUhdCCWZij83CuXIe+qxjHjr1dT1sxHoLzZxA8ZQbo0X8bslJToKQSta4Bd0LH1D4rnDjZiSq2S0GtNcCyQR3gPwshhBBCjEiSSAkxzHxYU86K2gq+8WkBWegYs90AtBkhYjQd7RhJ0qH1UdFvNHEsVmYa/msuAl8ArboWQgZ2XAxWZhqoAzez+PAW6HEpmQA0B8PTIFEUrHQNrdxAabawk7UBi0MIIYQQI5ckUkIMM/+o2E9dfTvppWNocRu86S5j184mvKZBhstzzPO08oMAmDmZJyrUQzwuzNF5J+xyhydSY2ZPBGBvW/Oh5zPCiZRaa2JKIiWEEEKIPpBESohhpi7g46zKVDQU3smu5Y8HDnQ912PHvvIqAMy8rIEOcdAd3gI9PyYOl6qxp60Jy7ZRFQU7QwcCKDUGTDz2vltCCCGEEMciXfuEGEZClkVTKMBFB8Nd94rGeRkdc6hxxLEaTShtXtSmFsy0ZPC4T0isg8mO8WB53Kj1TWg2jI9LxGcaVPjaAOncJ4QQQoj+k0RKiGGkIegnu93FxIZYrFSNb5y3gN/NOavr+abOdUCf0zWt7ySoRgHhdVBpySimidLUwoT4JAB2tzYBkkgJIYQQov8kkRJiGKkL+Di3Ig0AY7YLFAVFUViYmg1A0LaOel7XtL7ckySR4tD0Pq2ukYnx4a93t4Y36bVTNGxNNuUVQgghRN/JGikhhpH2ah/X788BwJjl6nr8vgkzcagql2aPPup5XYlUfvaAxzhUWKkd66RqG5iYPwmAPW1N4Sc1BTtNQ602od2CWPlMSQghhBCRkd8ehBguDJvpr2vEGTo75gaw0w99DhLvcPLtSXOZkph65HnBEGpVLVasBzspuhvfDmVWVrhyp1bXkemOwaPplHlbsW07/LxM7xNCCCFEP0giJcQw4VzeTlqNztbkFirP6n3LbrWyBsW2MfOyB34j3iHEzAgnUlp1LYqikOOOxWeaNIXC68isjHAiKtP7hBBCCNEXkkgJMQxo2wI4Vvpod5n8eM4eUiPovKeVVQInUaOJTi4nVkoialMr+ALkeGIBqPC1A1KREkIIIUT/SCIlxBCn1Ju4XmkF4KkFFdR5gqT3sPHu52kHKgAwR+UOSHxDmZmZDoSrUp2JVGVHImV3VKQUqUgJIYQQog8kkRJiKDNsXC+2oPhtgmd5WJFah64oJDpcxz8XsANB1PIqLI8bK+Mo66dGOPOwdVKdidRBf0dFKl3DVkCtlYqUEEIIISIniZQQQ5hzeTtauYE5WufgYpWmUIBUpwe1l2udrOIKFMsKV6NOovVRnaysjopUVS05njgAKjs25cWhYCerqI0WBO3BClEIIYQQw5S0PxdiiOpcF2XGwBOnlfP6xlIAJnZsLtsb1p4SAMzRJ9+0PgAzs6MiVVVHjrv71D4AK11HbQii1hpYuY5BiVEIIYQQw5NUpIQYgpSGQ+ui/ndeKX9tLQbgmrxx3DNhZq/H6UykjFF50Q9yOPC4sRLjURuaSLAgRtM56GvvaoFudzScUKThhBBCCCEiJBUpIYYaw8a1NLwuqv1MF/9IqCDd5eF3c84iTo+gauLzY1dUYyXEYSefPPtHfZ6ZlYajuRW9toEcTyx725ppDAVIcbq7de6TVEoIIYQQkZCKlBCDyGcaLC3ZyY+3f8Yvd64naJn4Xm1AKzeozAry2Snt2MCk+OTIkihAK6kAG8zReSfl+qhOVkfnPrXbOqnOFuiyl5QQQggh+kYqUkIMkipfOz/YuoqagK/rseua8pm6RqHZEeKrU7fC/vBnHRPjkyMeX9tfBoA55iSd1tfBzM4AQKusIXNmeK1Ytd/LtMRU2UtKCCGEEH0mFSkhBsmzB4qoCfhYkJLFJdmjyfS6GP9meO3Or+YWU+cJUhf0A5E1mADAttH2loAC5tj8KEc+vJg5nYlUNZmuGCCcSAEQo2LHKSj1JpjSuU8IIYQQvSeJlBCDoLi9mU/qKklxuvjOpLnMjEvjwQ0TcAVV/jyuArPQyZjY8LomFYVxcYkRja/W1KO2tqOMyoGY3m/eOyK5XZipyahNLeTZ4SmONQFv19NWho5ihht8CCGEEEL01ohOpAKBANdddx1XXHEFl112Ga+88spghyQExe3N/HLnBgC+kD8Rl6Yx61MXU5ri2Z7cytOFZeR4YjknI1xJGhUbj1uLbBauvi/crU+bPDa6wQ9TVm4mAPkN4bVRVf7DEymZ3ieEEEKIyI3oNVJOp5PnnnuO2NhYvF4vl19+ORdeeCEJCSdvBzMxuFpCQb6zeSU+02BGYhoXZhWg7QyQsdqi1WHwX7N3Y6o2OZ44FqRm8lFtBedlRj41T98b3nNKnTwu2i9hWDJzMnFs2UlqbROKftjUPronUubUwYpQCCGEEMPNiE6kFEUhNja8CWcwGMS2bSzLGuSoxMlsfWMNPtPgjLQcvj1pLlqrhevl8H5R/292KdUxQQByPbEkOlz8ZvaZkV/E60etrMaKi0XJzYCG9uOfM8KZHRUpx8EaUsd5qA/4MCwLXVWx0sNvg4p07hNCCCFEBIb01L61a9fyla98hUWLFlFYWMgHH3xwxDFLly7lnHPOYfr06Vx//fVs2bKl2/N+v58rrriCs846izvuuIOkpKQTFL0QR1rfUA3Amem5qDa4XmpFabcJneamdHyo67jcjjbdfaEXl6LYNub4ApSTuO354ay0ZGynI9y5z+XBAuo6uiXaMrVPCCGEEH0wpBMpr9dLYWEhDz744FGfX758OY899hj33HMPy5Yto7CwkDvvvJOGhoauY9xuN6+99hrvv/8+y5cvp66u7kSFL0Q3lm2zobEWTVGYmZSO430v2r4QZo5O8NI4cjzh6mmMppPocPb5Ovqe8Pooc/yoqMQ9IqgqZnYGSshgejCcXHauk7ITVWyXEk6kbOncJ4QQQojeGdJT+xYvXszixYuP+fwzzzzDDTfcwLXXXgvAww8/zIoVK1i2bBl33HFHt2NTUlKYNGkSa9eu5eKLL+5TPKo6+J/ud8YwFGIRkdnT0kSLEWRGYhoJZTaOd73YToXQkgRUl9qVSOXGxKFpffyMwzDQ95VgO3Ts8QWA3CudrNxMKKlgSmsQnFAb9HX82SjYGRpqmYHWamMnDenPlwaMvLeISMj9InpL7hURieF2vwzpRKonwWCQ7du3c9ddd3U9pqoqCxcuZNOmTQA0NDSg6zoJCQm0tbWxZs0avvCFL/Tperqukpra9+lW0ZacHDvYIYgIFDXW8/Nd6wE4PzUf9/Ot2DY4b0kjdlI8ABN9qXAAxiQm9vleM7ftIRQMoc4sJDkjCZB7pZM5eTShVRuY0OKDNPiwvoIJGanMz8gikO/FLGsj0edAGxcz2KEOKrlfRCTkfhG9JfeKiMRwuV+GbSLV2NiIaZqkpaV1ezw1NZWSkvDUpvr6er7zne9gmia2bXPjjTcyadKkPl3PMCxaWnz9jru/VFUhOTmWxsZ2LEumIQ0X/7V+NQe97SxKzeGCd+Kxm0IYc934ChWobwNgijOJC7IKuCRjFPUdj0XKuXYHDsA7poD2xna5Vw6XmEQMkFZRj56ewqb6Wu795D0uyCrgGwkTcAGte9sws0/OhjTy3iIiIfeL6C25V0Qkhsr9kpDgweHQjnvcsE2kjsW27a4F9hMmTGDZsmVRG3sovQFYlj2k4hHHZtk2pe2txOsOHqibgnNnO1a6RuDKODjsZ+hUNO6fMCt8Tl9+tqaJvqcYW1MJjS1A7RhD7pUOLhdWRirOmnpemHQpa8x2ni0u4p2qUi5wZjAXB0q1cdL/Wcn9IiIh94voLblXRCSGy/0ybBcDJCcno2naEc0jGhoajqhSCTGYGoJ+QrbFgvZUnG+1Y+vgvzkBXNGd/6uVVKL4g5hj8sHV92YVI5mZnwNA8sE6zs0s4D/GTQdggzPcoKazc9/Oloaurn5CCCGEEEczbBMpp9PJ1KlTWbVqVddjlmWxevVqZs2aNXiBCfE5VX4vsSGNu1bnoZgQvCwOOzv6xWB91z4AQoVjoz72SGEWZAOglR0EYGpiCgAr7RpsDdRag7qAj+9sXsn9Gz6kpL1l0GIVQgghxNA2pBOp9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCdFPtb+fe7aNJaXNgTHNinOqO/kUME8fOfdiaijFxTPTHHyHM/HAipZdVApDsdJPtjqUk0EZrqo3SZlO1sQELmxYjyH9uW43flI16hRBCCHGkIb1Gatu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj1NbW8vkyZN56qmnSElJGayQhThCQ5OPmyvSCLhtjOviYQA2ydX3l6L4g4QmjgG3K+rjjxR2bAxmahJafRNKWzt2XCxTE1M46G/nZwW7eLRmEhPfVog5Q8NyQUMwQHF7C5MT5D1FCCGEEN0N6URqwYIF7Nq1q8djlixZwpIlS05QREJELnk3OGyVqkkQ7xmYIrC+fTcAxtQJAzL+SGIW5KDVN6GVHcSYPJ5piam8W13GqqxG3sup49zKNP6jqIDt55u8U11Kpa9NEikhhBBCHGFIT+0TYiQYvy/c+MGeMQBT+gD8AfQ9JdguJ8b4UQNzjRGkc3qfVhKe3jcnOYNY3cGClCwen1ZMozPEFaVZLGoKN62p9LUPWqxCCCGEGLokkRJiILVbTKqKpdEZIrZwYDZ61XcXo5hmuMmEPqSLzEOCOSoXAP1AOQApTjcvnnoh/zn1FArSEnl8WjEA899z4TZUSaSEEEIIcVSSSAkxgOytPjRbYX1eM5p+/I3d+sKxNTz9Vab19Y4dF4uZnoLa2IzS3AqApoTfCq/JG8dnec00TAR3E9yxq0ASKSGEEEIclSRSQgwgZZMfgJ1j/QMzfkMTemklVlJ8V6VFHJ85Og84VJXqdEpqFq+cfgnuL6RguxWuKc4iqSK80bcQQgghxOEkkRJioLRaxBywqHcFqc+1BuQSjs07AQjNmDwg3QBHKqMjkdKKy4/6vJ2gEbwiDhWF+zeOock7MImwEEIIIYYvSaSEGCD6tgCKDR9m1+N0DMC0PtPEsXUntqIQmlEY/fFHMLMgB1tV0Q6UwzGqTcYcF3tyfRS0e1D/1XaCIxRCCCHEUCeJlBADRN8SAOCDnHo8avSbQOh7S1DbfZjjCrDj46I+/ojmdGDmZqL6/KjVdUc/RlH47Gw/7bpB1qc2annoxMYohBBCiCFNEikhBoDSYqIWh/DF2WxPbsWtRT+RcmwqAiA4a3LUxz4ZmGPyAcJVqWNIzYrlD5NLUG0F1yutYMhaKSGEEEKESSIlxADQtgZRbCgbH8JWwKNFd2qf0tyKtr8UKy4Gc5zsHdUXneuk9P2lxzzm1NQsPhnXzMbUZtQqk/p/1vH/9m5hf1vziQpTCCGEEEOUJFJCDAB9S7g5wd4JQQBcUa5IOTbtQAFCMyaBKn+N+8LKTseKcaOVVYE/cNRjnKrGVfnj+OWMffg0k5yVFjt31fDk/m0nOFohhBBCDDXyG5gQUaY0mWgHDKwklfK08C/oUa1IhQwcG3eEm0zMnhq9cU82qoo5bhSKZaEfo3sfwMVZowkkK/xfYRm6rfL9LePZ3lhPlV/2lxJCCCFOZpJICRFl2tZw8mTMcOGzDADcUWw24di+G9Xnx5g0FjtBmkz0hzE+PC1S33vgmMfE6DpPzDuH62+chTlKZ3xTLF/eOYr3qspOUJRCCCGEGIokkRIiyvTN4UTKnOnCb5oAeKI1tc+2cazbCkBw3ozojHkSM8bkh9ug7ysF69h7fXk0nRing8AX4jHdcMP+HPL+ZWH3cI4QQgghRjZJpISIIqXBRCszsFJUrFwdvxmuSLmiNLVPK6lAq23AzM7Ays2MypgnNZcTsyA73Aa9sua4h9vpOsH/SKbVZXDJ3nTMl5vAkk5+QgghxMlIEikhokg/bFofioLfim5Fyrl2CwDB+dNBUaIy5snO6Oh6qO8r6dXxVo7O61e1UOsKkrjRxPWXVjAlmRJCCCFONpJICRFFWte0PjcAvo6KlDsKFSmlvhFtbwlWXCzGpHH9Hk+EGeNHA+ENjnurYEwyX124jca4EPqmAK4/tdDmC/B6xX5aQsEBilQIIYQQQ0n0dwkV4iSl1JtoFQZWmoaVHU6cOtdIRaPZhGv1RhQgMH86RHlfqpOZnZKImZKEVlOP0tLWqwYekxNSqI0L8a2FRTy5YTb6jiDBp9t4dtoOXq3cz/i4JEzb4juT5uJQ5WclhBBCjERSkRIiSvQt3af1AV1rpPrb/lxpakHfthvb7ZKW5wPA7Ozet7u4V8e7NZ1JCcnsd7bzfxdXEcpUyS9z8rPPJtPSGuCTukpW11extbl+IMMWQgghxCCSREqIKNEOT6Q6dFak+rshr/PTTSi2TXDedHA5+zWWOFKocCwA+q79vT7nrPRcAJY27uUHi3axM6mNmQ0J/GnTPC5LKgBgS1Nd9IMVQgghxJAgiZQQUaDUGmiVBlaGhp11qPrktwxcqobWj8YQSls7ji07sZ2OcCIlos7KzcSKi0UrO4jS7u3VORdlj+YP884h0xXDukAd31ywgwOZfpKrVe55J4/kgIMtzZJICSGEECOVJFJCREHn3lGHT+uDcEXK1c81Ms7PNqOYZnhKn8fdr7HEMSgKRuFYFNvu9fQ+gFxPHJfkjAbA6zDZdJ2JMcGBu8bm8dXTKG1qwWuEBihoIYQQQgwmSaSEiILOtuf+6Q7eriqh0teGadsELLNfrc+VNi+ODduxdY3gKTOjFa44CmNSx/S+nb2f3gdwQWZBV7I8JT2NwK2JmGMd5LW5mVeTxPaWhqjHKoQQQojBJ137hOgnpdpArTKxsjT+2LaTNw8ewKNp3DVuBtC/1ufOVetRDIPggpnYcTHRClkchZmXhRXrQSupQPH6sGM8vTov3uHk3gkzqPb7yHHHgqIQOtWNtj/Eoupk1jZUMz9FNk8WQgghRhqpSAnRT53T+jaMauPNgweI0XT8psmvd28Ewh3e+kJpasGxcUd4bdSps6MWrzgGVT00vW/PgYhOPTsjny8WTETpmNZpFjqxNTitOoVV1ZWEOjZmFkIIIcTIIYmUEP1h26hb/AD81rMTXVF4YMopjI9L6jqkrxUp1yfrUCyL4IJZva6OiP7p3OhY37mvfwO5VcwJThJCOmNq3KxtqIlCdEIIIYQYSiSREqIXiloaaA0FAbBtm7+W7WFzeTX6Jz70WovdCW0k58Ty+OyzmJGURpb70DS8vqyRUusa0LftxvK4Cc6fEa2XIY7DzM/GinGjHagAr79/Y00Jt6lfVJXC+zVl0QhPCCGEEEOIJFJCHMemxlq+vfkTHtmxBrvVpPnjRqa9BAv+R8H1RjsAK8Y18sDUUyiIjQcgyxPbdb67D137nCs+C+8btXCO7Bt1IqkqxqRxKJaFo59VKWOKC1uBM6tTWVNXRYWvLUpBCiGEEGIokERKiM9pCPpZU1+F1whh2zav7t7D5SWZ3P52FrGP1pP7psncuiSanSH+MaqKby3cwbxLxxCnO7rGyD6sIhXpGimtuBzHngNYSfGE5kyN2usSvROaOhEAffvu/g0Ur2KN0knzORnfHMvfyvdGITohhBBCDBXStU+Iw/yjYh9P7d8OwL3eiZy7N4XHSsejEW4i0OQOsXOUj5dSyijJ8NNiBvne5PkUxid3GyfLfVhFKpI1UpaF672VAATOPg10+St6olm5mVhJCejlVSiNLdjJCX0ey5jqQjtgcHZNGk8nl7Jk1CRSnLIXmBBCCDESyG9pQnRoDQVZWrITFyp3FhVw7b5UAOpcQbxTNP6WWsEbrgpsBVRF4fn5F+A3TTLdR7Yl7+saKcemIrTaBoz8bIzCsf1/USJyikJo6gRcK9fj2LGH4Olz+zyUOdUFb7ZzXk06f5hYQlFLA6en5UQxWCGEEEIMFpnaJ0SHNyqLIWDzv1tmct2+bFocBj+Yv5PvXbGH5BsyOWVeAZYCNjA+LolEh+uoSRRAqutQl71eT+3zB3B+tAYbCJx3OnS00hYnXuf0Pse2XWDbfR7HTtWwsjTSmsIb9Ja2t0YrRCGEEEIMMkmkhACClsnqveX8z8ppjCt1E0iBu0/fyurMRm4cU4iqKMxMSuuawjc1MaXH8bTDkiC7l7+Iuz78DNXnx5gxCSsrve8vRvSbnZqEmZ2B2tCMerC2X2MZU11AuHtfiVcSKSGEEGKkkERKCGD31hp+sWISY1tjMcc7MO5LZeq4DBan57IgJQsARVH497FTKYxP5vzMgl6P3dzRNr0nakU1jg3bsd0uAmef2ufXIaInNK2jKtXPphPm1ENt0EvaW/odlxBCCCGGBkmkxElP2+hn7ksaKUEn5bMt/LcnQozK/RNn8e1Jc1EOqy5NSkjhV7POID8m/rjjdnbuS3MdZzNdy8L91ocoQOCc02Tz3SHCmDwOW1XRt+8Bw+zzOFaOjpWsMrUpHn9TkJDV97GEEEIIMXRIIiVOSo1BP9/Y8BG7Xy7F/VIrigV/mFFC3PXpoEVnbdJjM07n38dO5ZLsUT0e51i7Ba2mHiM/m9CMSVG5tug/OzYGY/woVJ8ffc+Bvg+kKJhTwtP7Tq1KpsLXHp0AhRBCCDGoJJESI1ZzKMDjezbxuz2bCZiHqgAhy+JnW9Zx40cZzF7vIeS0+d6CIppPceBQo/dXIs3l4crccTh62JBXaW7F9fFabFUlcNGZ0mBiiAnNnAyAY3NRv8Yxph0+vU/WSQkhhBAjgbQ/FyNSUzDAfRtW0BgKALCtuY6AaeLUNBIaFL62bgyFzXFUxPh599I21vma+XrCCW43btu43/4IJWQQWDgHK63nBhbixDPH5mPFx6IVl6E0tWAn9W1PKWuUg4DbZnZdAi80NkJGlAMVQgghxAknFSkxIq1vrKExFGBOcjqF8eHpVFqzxU2fZvI/70+jsDmOorQ27l60lXc5CEB+TNwJjdGxuQh9XylWSiLBhX3fq0gMIFUlNGMSCuDYsrPv42gKzRMVHLZK4r6oRSeEEEKIQSQVKTEiVfjaAFiUlsvZsdn43mkiawMoBlgeheDZMbyRWUlLrUFLx7F5nhOXSClNLbjeW4WtKPguOxcc8ldxqArNmIRz5XocW3YSXDQP+jj90z9Zhy0G4w+4ohyhEEIIIQbDiP7tbf/+/fzgBz+gra0Np9PJD37wA+bNmzfYYYkToNzbhsdQOWVdDIlrmkkKgO2A4DkxhM70gEcluzwOOrYISnG6idEdJyY428b95gcowVB4Sl9u5om5rugTOykBc0w+enEZ2v4yzPE9Nw85FrXQjU9rprDCgxmywSHr4YQQQojhbEQnUi6Xi5/85CeMHTuWffv2cffdd/P2228PdlhioIVspm528e0dc0gK2tgahBZ6CJ4TA/GHqgk5ntiur0/ktD7H2i3opZWYmWnhCocY8kIzJ6MXl+HcuB1fHxOphBgXa9ObOLMqFf/eIOZkqUwJIYQQw9mITqRyc3O7vh47diytra3Ytt1tXyAxMti2ze62JsbudZLwTz83NWdjYROa4yJ0fix2ypGd83IPm8p3oqb1qTX1uD78DFtT8V92DmjH7ugnhg5j4misuBi0vSUojS3YyZE3ndAUlXW5zZxZlYq2XRIpIYQQYrgb0s0m1q5dy1e+8hUWLVpEYWEhH3zwwRHHLF26lHPOOYfp06dz/fXXs2XLlqOO9d577zF58mRJogZQUzDA3ramQbn2v6rLeOb9TSS81I7abPFxZgOPXFJM8IaEoyZRAJnuGFTC90NeLzbY7bdgCPc/3kExTAKLF2BlpA78NUV0aBqh2VNRAOeGbX0eZleeD0Ox0HYEwLKjF58QQgghTrghnUh5vV4KCwt58MEHj/r88uXLeeyxx7jnnntYtmwZhYWF3HnnnTQ0NHQ7rqKigl/84hfHHEdEx893ruebmz6mxu896vO2bROyzKM+1x+WbfNayT6+uWUsKgq/mLGPB+fvQs1y9nieQ1XJdHsAyD8BFSn3Ox+j1TdhjCsgdMrMAb+eiK7QrCnYqopjSxEEQ30aQ4/V2ZTagtpuo5YYUY5QCCGEECfSkJ7at3jxYhYvXnzM55955hluuOEGrr32WgAefvhhVqxYwbJly7jjjjsAaGtr4+677+Y///M/GTWqb2sbOqnq4FezOmMYCrEcrj7gY2tzHTawp72JrJhD648O+tpJd3lYXnWAJ/dt49ezz2RCfFLUrr22vpqztiYyui2Gg/kGy/NrAMiLjTvun9PM5HRaayuZkJA0oH+m+padOLbuwoqPJXDFuajawH+GMVTvlWErIRZz8jj07XtwFu3FmD0l4iESHU5WZjUwry4JfUcAY1zPyf6JJPeLiITcL6K35F4RkRhu98uQTqR6EgwG2b59O3fddVfXY6qqsnDhQjZt2gSAaZp89atf5frrr2fRokX9up6uq6Smnth9hnqSnBx7/INOoPf3VdA5UanS8HX9Wa2squAba1Zww7hCVlVXYto2n7XWcOrovKhde9Oqg9yzNxfTAZlfyYfVawEYn5Zy3J/Zfy5YSNAyB7Rjn1VdT/Dtj0FRcP/bFcTkpw/YtY5mqN0rw5l17gKC2/fg3rgd57nzI54qnBEfxyeZpXx1Gzh3hEj4t9ghN91Y7hcRCblfRG/JvSIiMVzul2GbSDU2NmKaJmlpad0eT01NpaSkBICPPvqITz/9lLq6Ol5++WUAXnjhBRISIl8obhgWLS2+/gfeT6qqkJwcS2NjO9YQWmPxzoEDXV9vq62lvr4NqynExx/sRk2CV/btwup4fmVFOUtyJkblus1+Pxd8kIDDVglcGIvlNLlr/HTeqCxmvCOe+vq2Xo3jIxCVeI7gD+B59m+owRDBxafQnpgMvYypv4bqvTKsxcXjzk5HO1hL08bdWKNyj3/OYdyWQp0nSH2mSWo1NGxrgpwT1Hb/OOR+EZGQ+0X0ltwrIhJD5X5JSPDgcBy/IdiwTaSO5fCufGeffTbbt2+P2thD6Q3AsuwhE09j0M+25jqSHS5ajCD72pphfxD92Ubu943ivKQUHpu1l/I4PwAl3laqfV7SXZ5+X7f23TpmN8VzMD1IwulpYNlcmj2GS7PHAIP8M7MsPP94F7W+CWP8KAKnzRmUBgND6V4ZCYJzpuF58wP0tVvx5+dEdG6CHp7K93pKJbdW51O1pp6MK4bWPmJyv4hIyP0iekvuFRGJ4XK/DOlmEz1JTk5G0zTq6uq6Pd7Q0HBElUoMrPeqy7CAxRm55MfEM784Hvcfm3D5FKrdAaY0xfPkRzO4pjiLs9LCn+Cvb6jp1zXfOljCtz5YwaRPdAzFou4KFwyx+bTOj9ei7yvBTE3Cd8V5MMSmcIm+MaaMx4pxo+8uRmlqiejcBEc4kfogoz78/S6rp8OFEEIIMYQN20TK6XQydepUVq1a1fWYZVmsXr2aWbNmDV5gJxnbtnm7qhSACzMLuLMonx9smoBt2fxm2n6+c+luAufH4ETlvu1j+OoH+WR6nbxdVYJh9e2XSMu2+VvZHr62dSweU+PViTWMnjC0WonrRftwrdqA7XLiu/ZicA2dpgKin3Sd0NzpKLaNc83miE5NcIT3jiqN91Ea6yO1TkdpiH4nSyGEEEIMvCGdSLW3t1NUVERRUREA5eXlFBUVUVtbC8Btt93GSy+9xLJly9i3bx8PPfQQfr+fq6++ejDDPqlsa67noL+dmTEpjP+bzelbEmh1GPzotN28Nrqa0zNzMM6LJXBvMlaWRlKJwjMfzWJckYM/HdiJbUdett3YVMvUfTGcWptMU6JJxuWZqEOo2qNWVuN+431swHfFedipSYMdkoiy4Jxp2A4dx+adKN7er51MdBxKqD/JCm/ToG0foPV5QgghhBhQQzqR2rZtG1dddRVXXXUVAI888ghXXXUVL730EgCXXHIJ3/ve93j88ce58sorKSoq4qmnniIlJWUQoz65rKw7SJrPyUMfTEDfHsRIUXng7D18khL+JfHM9PBUPivXge++ZIJneXCbGt/dPJ5Z/9D40eqVbGuuj+iaHxWXcu/20QC4vpjCnPSMqL6m/lAaW/C8shzFMAicuxBzfP9a7oshKsZNaOZkFMPAsb73G/QmdlSkAD7MDt/3zve9KNWyp5QQQggx3AzpZhMLFixg165dPR6zZMkSlixZcoIiEp/XtL+VJz6ZTlJAxRzrILAkgbuU2Xx/y0pyPHHkx8QfOlhXCF0chznZhfJSE6dXpzBteTy/LdvJrtMzuTZv/HGvFzBNTl0ZS2LIQWCBC2vsEJoy5/UT8/IbqF4/wbnTCM2fMdgRiQEUnD8Dx/ptONZvI7hgFjiP333v8IrU3qR2XhpbyRf35+B+uhn/3UnYScfvECSEEEKIoWFIV6TE0NMY9PN2VQkhy6J1XTMPfDCO1ICT0Hw3/jsSIVYlPyaeJ+efx6PTFx51DGu0A/MbaQRPc5MYcvCjDROZ/WcVbY0PvD2vm6rYVM955Wm0eAyMi4fOvl4YBp6//RO1oZnQhNEEzjtdmkuMcHZSAsbk8ag+P44tO3t1jlPV8Gg6CjAjKY0/Ti6hfrqC2mzhfroZ2qX5hBBCCDFcDOmKlDg+y7Z5ung7DQE/35o0F62fv7zbto0FxxznuQNFvH+wjLyPbU5ZF4uFwkentTL3yrRuiYNHO86t5VQIXRWPOc1F+59rmV4XD39rw/5HG+ZEJ8ZMF+YUF7gOiyNgM2q5BWhsO89kpmeIfA5gmniWvYNeXoWZnYH/ivNAHSKxiQEVPHUWjh17cK7ZTGjO1F793O8YM5WQbVEf8LGpqY7V5/i4KJSAvjOI+9lmim5U+FdjOS2hADcWFJIbM4Q+MBBCCCFEF/ltbxizbZs/7NvKqxX7+biuks1Ntf0az7JtfrZzPf/22Tu0hIJHPB+yLFp3tfHHj2dwyrpYfLrJD+fvRF0c1+fqizXeyRu3ePn6qdvZOKkdn26iFwVxv9RKzH/V4fpTC9q2AIRsnG+3k9CmsSK7jux5Q2QdnGXhfuMD9L0lmClJ+L5wca+meImRwcpMwxiTj9rcir5jb6/OuSh7FJfnjCHHE06Qtrc30HiDB7NARys1MJ6r583yYlbUVvDmwQMDGL0QQggh+kMSqWHs47pK3jx4AL0jiflXRxvyvijztvJ08XY+qaukKRTg0/qqbs8rTSbB5+v46SeTGNcay+aUFu46fSu7831MTexf6/HZKelsSmvhG+O3cMW5a3nirApCc8L7QulbA7hfaCHmv+rRV/lodRj8dV4tGe6Yfl0zKmwb19sf49ixBysxHt+Nl2PHDoG4xAkVXDgHAOfK9RBBS/88TywAb1WV8OUtH3DwJjdtqTazqhJ4cNtEFBsOtEe2T5UQQgghThxJpIYh07Y46Gvnqf3hbmE/nHIKsZrO6voqWo9SSTqe96vLuGv9B7xasR+VcFK2uv5g+MmQjeP9djy/bCCjSKHWHWD9JUF2LlH5wrzJ/H7uOTjV/i2QHxuXSIIeXoRvqjZ/iStl68Um3v9Mxf+lBIzpTjBtFBv+d8oBcjMT+nW9qLBtXO+vxrlpB1ZsDN4vXo6dIFOwTkZmQQ5GQQ5aQxN6Ue+qUgCFCSl8IX8ChfHJNIUCPFG1jf9auJcad4AzS1P4ys5RlHolkRJCCCGGKkmkhqGvr1zBHWvepSEY4OyMPBa0pfDv7eMxbKtPU4G2NNcBcHpaNj+beTqxuoNNDbUYW714ft2A820vWPC3iVXcdvZm8k7P4LLcMZyVkUes3v9pbKqicGnOaApi4rmpoBAIr8XyqSa7RvtouykO74OpvHpjC2/n11JweCfAwWDbuN5diXPNZmy3C9+Nl2GnJA5uTGJQBRfNAyKrSmmKwr+Nnsx/TTuNFKeblXUHWWPX8duzSrFjFK7fl8MFO1NpCso+U0IIIcRQJM0mhqFZaem0+gPkeuK4dcxknM+2c+XeZFYvSOYVdQ/nZeaT5vL0erzitvCn3v8+dhppLg8Xa7nMX+khsbYdAGOyk5ZL3PzPrtXkemKJi0Ly9Hk3j5rEzaMmEbJMPqwtZ0tzHTetfouQbXFp9mjuGj+DbTEt0Ar5nkFMpDqm8zk3bsfyuPHddAVWev+mNorhzxyVi1GQg15aiV60D2PqhF6fG6Pr3Dt+Bv+7dwvzUjL5YsFE/GN1tD82cFfRaHZ/2kLSmekDGL0QQggh+kIqUsPQ7ZOm88vZZ/DVibNIdLgInRZOmr6/YwKEbJaW9Lz31uEMy6LE20qC7iTV6UZf6eOuZVmcUptEXUII/20JBG5NpCo2/Kl4hmtg1wA5VI2fz1jEtIRUQraFisK71WW0GyFKva0A5A9WFzPbxvXPD8NJVKwH381XYmVIEiXC+lKV6nRKahbPLbiA+ybMJN3lwRrl4MOLvRiKxfjlNlqRVKWEEEKIoUYSqRHAnObCmOIksVXjlt15bO2Yqtcb5b42DNtiTFwCWomB8/U2FE3hqcml3LF4M/6J4epTTcAHcEKaPCQ6XfxkxkKWLriQ8zLzCVgm71eXUeZtw61qpEdQbYsa08T9xvs4NxdhxcWEk6j0IdI5UAwJ5qhcjPxstPpG9J37+j2eY0oMP5u5D9VWcC1tQak3oxClEEIIIaIlokQqGAzy+9//np07e7f5pDhxglfGYTsVbtifQ2wNBK3e/dJV3NEVrFBPxPVSC4oNwSvj2XeKSYsd6lo/VeP3ApB5gpIYVVFIdLq4JHs0AM+X7MRnGuTFxKGc6I1ugyE8f30Lx7bdWPGxeG++Eis1+cTGIIaF4BnzAXB+si7iqtTnjYqJ5928Ot6YVIsSAv0zXzRCFEIIIUSURJRIOZ1OnnjiCVpapJPUUGMnaQQvikWzFb65ZSyV7W29Oq+4rRmAyz5LRW20MKY7Mea5OC01C4DVdeHufdWBcCJ1otuOj49PYkpCCj7TACD/BDeaULw+Yl58DX1/KWZaMt5brsFOSTqhMYjhwyzIwRiVi1bfhGNr76fYHk26y8OY2ASezSvBUmz0dX4w7ChFKoQQQoj+inhq34wZM9i+fftAxCL6yTjNzcH0IJOb4lFX9e7T6/3tzZxbkUZ+kYaVqBK4Jh4UhfkpWajAuoZqAGr8HVP7BmFa3Z1jp3Z9nTnAa7QOpzS2EPP8MrSDNRj52XiXXC0tzkXPFIXAWacC4Px4LYSMfgyl8MCUUzDjFVZmNKK227DNH61IhRBCCNFPESdS3/72t/nzn//Mn/70J8rKyvB6vfh8vm7/iUGiKmw538BUbMZ9rKI09Ty9r7S9lerKVr6+dQy2AoEb4iEmfEskOJyMiU2kLuinxu+l2j84FSmAifHJzE/JBGBGUtoJuaZWfpCY5/+G2thMaOIYfDdcBh7XCbm2GN6snAxChWNRW9txrN/ar7Ey3TE8PO00VoxrAGD/vw7ym10b+XPprl5P3xVCCCHEwIi4/fn1118PwCOPPMKjjz561GOKior6F5Xos/hRMbw8toIb9+WivtZG4JZj72/0wv4ivr9xPLGGTvAsD9Y4Z7fnJyUks6+9maKWBmoDXnRFIcXpHuiXcFQ/nDyfA+0tjI9PGvBr6ZuLcL/1EYplEZw7jcB5p4MqfVlE7wUWn4K+uxjX6o2EZk0Bd9+T8HFxidxywUwatjQxvS6en+/fy3txfvI8cZyRnhvFqIUQQggRiYgTqZ/85CcnfrG/6LVcTxw/nljOeVXppG8HY1sAc9qRv8SVtLcwbq3G9MYEjByN0PmxRxwzJSGFNw8eYFNTHU2hINnuGNRB+tnrqjrwSZRl4Xp/Nc61W7BVFf9FZxKaPfX45wnxOXZqMqGZk3BuKsL56UaCHdP9+irNE4PjdBve9vKNxkK+Ebe5azsAIYQQQgyOiBOpa665ZiDiEFGS6nSjOhV+O2M/j66ehPPVNnzjHeDuXlEp3dnArbvzCek2oZsSQD8yQZqcEG7v/WFtOTA40/pOGK8fz2vvoheXYbtd+K65EHOUfNov+i64aB6Obbtxrt1KaO407Pj+ra8z5ntw/MvLtN0xOHIUKnztUYpUCCGEEH3R5/lKe/fu5R//+AdPPPEEtbW1AJSUlNDW1rtucWJgKIpCnieeVamNbBnXjtpi4Xzrc79wBSzmL3ei2Qpl56vY6UfPp9NdHhIdToIdbZxz3EdWrUYCtbyK2GdeQS8uw0xLpv3W6ySJEv1mx8cRnD8DxTBwrfgsCuOpmFOcOHxwZlUq5VKREkIIIQZVxIlUe3s7X/3qV7nssst44IEH+O///m9qamoA+PWvf83//u//Rj1IEZmbRhUSrzv40dgd+FwW+qd+1JJQ1/OOV9tIbXOwMquBlDOOvR+SoijMTc4AYExsAtcXTBzw2E8o28axZjMxS19FbWkjNHUC3n+7Fjs5YbAjEyNE8LQ5WLEeHNt2o1ZW93u80IJw18wrSzOp8LVj2dIOXQghhBgsESdSP/3pT9m4cSPPPvssGzZswD7sH/LFixfz8ccfRzVAEbn5KZn8ZvaZNLkMls6oRLHB9fdWMG20zX6c6wPUuYK8fUYTDk3rcawvj53GT6Yv5LezF5M+CK3PB4zPj3vZ27jfWwUK+C86E//l54LTMdiRiZHE5SS4eAEA7ndXQj8TH2u8AytFZXp9ApnNTuoC0iVVCCGEGCwRJ1LvvPMO3/rWtzj11FPRPvdLeE5ODhUVFVELTvRdljuWfE8cSzPK8I1WUatMnG+041oWnnr501l7GZeZctxx4hxOZiSloY2gBiNacRmxT72MY1cxVlIC3luuCTeVGEGvUQwdoemFmJlpaBXV6Dv29m8wVcHoqEpdVppBhU+mUgshhBCDJeJEKhAIkJSUdNTn2tvbj0iuxOCZk5IBCnx0Zju2Bo5VPhSfzasTqtmQ3sxpqdmDHeKJFTJw/esTYl56A7WtndC0ibTfdh1WVvpgRyZGMlUNt9AHXB+shlDoOCf0LDTPjanaXFiewcFWaTghhBBCDJaIE6np06fz6quvHvW5t99+m9mzZ/c7KBEdneubPlKqCZ0T7rjXlG7xv+OLWZCaRW5M/7qIDSdqRTUxz/4V57qt4a58V10QnsrXj/19hOgtsyCH0KTwJr3Ozzb3b7A4ldoJNgkhndjtRnQCFEIIIUTEIm5//tWvfpXbbruNW2+9lYsuughFUfjwww959tlnefvtt/nTn/40EHGKPpiWmIpDUdnSXEfgLA92gspDgXWEsLkub/xgh3diBEO4PvwMx7qtKIAxOg//ZWf3uxW1EJEKnH0a+p4SnKs3EpoxCTuh7/dg8BQX7AoxabsLLo5ikEIIIYTotYgrUvPmzePZZ58lGAzyX//1X9i2ze9+9zvKysp45plnmDFjxkDEKfrAqWpMjE+izQhRFmijbpbKZhrJ88QxKeH466OGO21fKbFPvoRz3VZwO/Fdcha+L14mSZQYFHZSAsEFM8Pt0N/9pF9jJU2OpyLWz9haD0pV/6YKCiGEEKJvIq5IAcydO5cXX3wRv99Pc3MzCQkJeDwjqKPbCDIlMZXtLQ3saGkgxekGYFLCsVuejwRKazuu91fj2LEHgNCkcQTOX4QdN4I3FBbDQnDhHBzb9+DYVUxobwnm+FF9GkfTNFaNb+YLm92Yq9tRr06KbqBCCCGEOK6IK1KrV6/G5wu33HW73WRmZkoSNYRN6ag87WhpYGdrIwCT4kdoImUYOFdtIPYPL+LYsQcrLhbftRfhv/oCSaLE0OBw4D9/EQDudz7uV+OJsikmQdXCvTEIQdlPSgghhDjRIq5I3X777WiaxuTJk5k3bx5z585l7ty5JCeP0F/Oh7nJ8ckowI7mBjLd4WSicKRVpGwbbe8B3O+uQm1qwVZVAqfOIrhwLricgx2dEN2YE0YTmjgGx+5inKs2dO0zFamMtDg+zmrg3Mo0rK0BjLnuKEcqhBBCiJ5EnEitWrWKdevWsX79etasWcPzzz+PZVmMHTuWuXPnMm/ePK644oqBiFX0QZzDyaiYeA54W6kOeHGrGgUxCYMdVtSoldW4VnyGXhLev8wYPwr/uQuxU5IGNzAhehA473T04jKcn27CmDoRKy3yDzfGxCbwSsF2zq1MQ//UJ4mUEEIIcYJFnEglJydz/vnnc/755wPg9Xr59NNPeeaZZ3j55Zd55ZVXJJEaYk5Pz+FAyS4AxsYljojNddW6BpwfrsGxuxgAMyWJwHkLMcf1bc2JECeSnRhP4Iz5uN9fjevtj/DddEXEG0KPjk1gc2oLB+MDZJeCctDAzu7TslchhBBC9EGf/tVtb29n48aNXZWpLVu24HK5OOuss5g7d260YxT99MX8icTpTpaW7OScjLzBDqdflMYWXCvXoW/bjWLbWPGxBM+YT2h6IagRL/kTYtCE5k3HsXUXemkl+tZdGDMmRXR+ktNFktPFsvyD3L1jNG0fNxF7fVpEY5i2xc6WRiYnpKAy/D9gEUIIIU6kiBOpa665hl27dpGamsq8efO46KKL+OEPf0hhYSHKCKh0jESKonB5zhguyx49bH9Gam0DztUb0XfsCSdQHjeBhXMIzZkKunwKL4YhTcN/0WJiXliG+72VtI/Nx46LjWiIL+SP5/1QKcGdFrGbbeou9pIW37vGKrZt8+tdG/mwtoL7J8zkopzRfXgRQgghxMkr4o/wd+3aha7rzJo1i9mzZzNnzhxJooaJ4fgzUg/W4P7bW8Q+9Rcc23dju10EzjyF9rtuJnTKTEmixLBm5WURmj8DxR/E9dZHYEfWfe/K3HH89xlns3dsgFhD48N39mL2cox/VOznw9rw2sJVdQcjjl0IIYQ42UX8W+i6deu6pvW98847/OpXv8LhcDBnzhzmzZvH/PnzmTVr1gCEKk4aloW+uxjHuq3oZeFf8Ky4WIILZhKaNQWcjkEOUIjoCZx5CvqeAzj2HMAo2ocxZXzEYxSckwl7W7hufQa7HRVMuCQX9J4/OHm1Yh8q4NI0tjTX4TeNPr4CIYQQ4uQUcSLl8XhYuHAhCxcuBCAUCrF69WqefPJJfvWrX6EoCkVFRVEPVJwEfH6cm4twrN+G2tIGgJWcGE6gpk8CXRvkAIUYAE4H/kvOIubF13D962PM0bnYMZHtzaeMdVJ9hkrKJxazVrowdjZgXBaHOdl51CYWzaEAdUE/BTHxFMTE80ldJVub6snNSMKybf6wbytZ7liuzB0brVcphBBCjDh9mhfV0NDAunXruv7btWsXlmUxYcIEaTYhImPbaCUVODYXoe8qRjFNAIyx+QTnTcccWxBxNzMhhhtzVC7B2VNwbtyB61+f4L/y/MgGUBTiLkvl8dQNnL4qjlNrktGfa8GY6CB4eRx2Rve3+uK2FiDcQn12cjqf1FWypqGKixjHWwdLeL2yGI+mcVnOmBHR5VMIIYQYCBEnUhdeeCGlpaVdm/IuWLCAe+65h7lz55KUlDQAIYqRSGluxbF1F44tO1GbWwGwXU6CMycRmjcdK3WEbRosxHEEzj4NfV8pjh17MSaPx5g4JuIxtEwn3z9lJ790zGP2x2703SG03zRinO4heG4MeMLLYve3NwMwLi6RecmZaIrCB9XlfLGpkWf2bwfAZ5pUeNsoiI2P3osUQgghRpCIE6lLL720ax2UxxPZ9BNxclPaveg796Pv3IdWWtnVbNkoyCE0YxLGpLHgkPVP4iTlcuK/eDExf3kT1z9XYOZmYsf2rgNfpwxX+PjteV4mfT0bx0ofjne9OD72oW/0E7wwFmOem31t4URqbGwiSU4XF2eN5o2Dxdy+4i1ClkWsptNuGuxua5RESgghhDiGiBOp+++/fyDiECOU4vWh7ypG37kXraQSpaOjmBUfS3B6IaHpk7BTEgc5SiGGBnNsAcE5U3Fu2I57+Qp8110c0dTWDFf4w60avxd0hdDiGIzZLhxvteNYH8D1tzYcn/i41JHIqbiZVevA4Wnj37VRxFUHaVFDZCXGUpiWwk/bt7C7tYnzMgsG6uUKIYQQw1qf1kiVlZXx1FNPsWHDBpqamkhKSmLu3Lnccccd5OfnRztGMZzYNmpNPfreEvS9JaiV1V2VJys2htCkcRhTxmHmZsnaJyGOInD2aegHytH3luDYVERo9pRen5vhDlekagK+rsfsBI3g9QkYp4ZwvtaGVmYwn44PL8pDQAgn8B90T5h+FzONR5KL+/tyhBBCiBEr4kRq27Zt3HLLLbhcLs466yzS0tKoq6vjnXfe4fXXX+f5559n6tSpAxFrn9x///2sXr2aRYsW8Zvf/GawwxmRlDYvWmklWkk5+r5S1Nb2rues+FhC40djTBmPmZcFasRblwlxcnE68F1+LjHPL8P13kqMUbm9rtp2VqRq/d4jnrMKHPjvTmLb/hqeKdrG7Jg0/i17EgRtlICNEoJYzYG3KYC6O0BupZupRW6Cc0ycqnTMFEIIIT4v4kTqZz/7GVOmTOHJJ5/stkbK5/Px5S9/mZ/97Gc8//zzUQ2yP26++WauuuoqXn/99cEOZcRQWtvRyg+ilVSilVag1Td1PWcrCmZuFsb4Aoxxo7AyUqXyJESErJxMgovm4fp4LZ7X38X7pat79SFEnO7Ao2ndKlIV3jYe2bGGwoRkloyaxIvefexKaueayZMx01xdx6mqgiM1DqO+DXuWC/dvG7h5dx776xqZlJE2IK9TCCGEGM4iTqS2bt3Kb3/72yMaTXg8Hm6//Xa+/vWvRy24aFiwYAGfffbZYIcxfPkDaFW1aAdrUCtrwv8/rOIEYKYkYY7KwSzIwRidDzHuQQpWiJEjuHAO+t4StMoanCvXEzxj/nHPURSFdFcMpd5W2owQcbqDZw7soMzXRpmvjY9qKwhaFtnuWE5NzT7mOHa2TkmhwZhdDoyP2uA6SaSEEEKIz4s4kXK5XDQ1NR31uebmZlwu11Gf64u1a9fy9NNPs23bNmpra3niiSc4++yzux2zdOlSnn76aWpra5k8eTIPPPAAM2bMiFoMJ41QCLWhGbW2AbW2Aa22AbWuoas1eSdbUTAzUjFzMjELwsmTHR87SEELMYKpKr4rziX2mb/iXLk+/PdtVO5xT8tweSj1tlLla6cu6OPT+irSnG7Ozszn1Yp9AFydN+64+0MpF8YT2u1l+iY3pYubCXlgbJw0hhFCCCE6RZxInXXWWfzyl78kLy+PefPmdT2+bt06fvWrXx2R6PSH1+ulsLCQa665hvvuu++I55cvX85jjz3Gww8/zMyZM3nuuee48847eeutt0hJSYlaHMOeZaH4/Cht3vB/7V7UphbUplbUphaUphbU9iPXVNiAlZSAmZ2OmZ2BlZOBmZkOTmlRLsSJYKck4b/wTDyvv4f7tXfx3nE9dkzP2050Npz42qaPuh67aVQhF2SN4tLs0expbWJBatZxr52eG8+KceWcvzeNrX8v4bnp5fzp1AtxyHopIYQQAuhDIvW9732Pu+++myVLlpCamkpqaioNDQ3U19cze/Zsvvvd70YtuMWLF7N48eJjPv/MM89www03cO211wLw8MMPs2LFCpYtW8Ydd9wRtTg6qeogr/WxbRxFezFMA2ebD9swwbLAtMLJUjCEEgiCP4ASCIa/9vlR2n1dbcePOqyqYiUnhv/LSMFOT8FKS8FKSz4iaZJWEcNH5/066Pet6BdrRiGhkgocW3bifv19Al+8tMd1hxnuQ4nW5IQUzsrI5YLsUaiKQoYnhgzP0femOtr9UnY6+IpNrjyQyStjKtne0sCclIwovTIxnMn7i+gtuVdEJIbb/dLrRMrv9/Phhx9SUVHBjTfeyJIlSzhw4AC1tbWkp6czc+ZMFi1aNJCxdhMMBtm+fTt33XVX12OqqrJw4UI2bdoU9evpukpqalzUx42EVVFD8O/vYAC9rgmpCsTHoiTEoiTEocTHQkIsSnIiSmoiamoSJMWjSDe9ESs5WaZeDnf2jRcRrK5F31+Ke8sO9HMWHPPY0+w8Xjiwk2vHTuTrM+aiRtjs5fD75YKZE/j7qq3cvCePW3bnsWVaA+dPGNvn1yFGHnl/Eb0l94qIxHC5X3qVSJWVlXHrrbdSUVHR9VhcXBy/+c1vOOOMMwYsuJ40NjZimiZpad0XQaemplJSUtL1/Ze//GW2bNmCz+fjzDPP5I9//COTJk2K+HqGYdHS4jv+gQPJ5cFxxbnEKBbegImtKKCp2KoKmgoOB7bbhe1ygtuJ7XKFK0o9/SJlA41HTusTw5+qKiQnx9LY2I5lHbsiKYYH5Yrz8DzzV0LLP6Y1LRUr9+jT8/KVGP6+6FIcqkZjQ/tRjzmao90vqTi4+KZpmD9v4uKyDL67czf1eW1ReT1ieJP3F9Fbcq+ISAyV+yUhwYPDcfyp7L1KpH7xi1+gqipLly5l2rRplJeX89BDD/HQQw/x3nvv9TvYaLJtG+WwxOGPf/xj1MYeCm8AoemF6KlxhOrbehePDfQwrU+MfJZlD4l7V/RTWgqB8xfh/ueHuJb9i/bbvgCeozf30VD7/DP//P3iinFgnh2Lc3k7l21JY9OcWmYk9b2L3893rmd/WzO/nnUGMbqstxzu5P1F9JbcKyISw+V+6dV8ro0bN/K1r32NuXPn4nK5GDduHD/+8Y+prKykpqZmoGM8quTkZDRNo66urtvjDQ0NR1SphBBiJAjNnExo8njU5lY8r797wj4kCS304I21OOtgKs99vJm713/A43s2YUV4/SpfOx/VVlDua+Pv5fsGKFohhBDixOhVIlVbW0t+fn63xwoKCrBt+4hE5kRxOp1MnTqVVatWdT1mWRarV69m1qxZgxKTEEIMKEXBf/FizNRk9H2lOD9Zd2Ku61BQL0wA4Cu7R1PqbeWdqlJW1R3s1ell3lZ+v3cLL5Xt7npsWcU+GoL+AQlXCCGEOBGGdIeB9vZ2ioqKKCoqAqC8vJyioiJqa2sBuO2223jppZdYtmwZ+/bt46GHHsLv93P11VcPZthCCDFwXE78116I7XTg+mQd2p4DJ+Sy5jw3VprGrJoE/jvuVABeLN2F2Yuq1B/3bePNgwd4t7oMBTgtNYuAZbK6l4mYEEIIMRT1umvfnXfeiaYduejq1ltvPeLx1atX9z8yYNu2bdxyyy1d3z/yyCMA3Hvvvdx3331ccsklNDQ08Pjjj3dtyPvUU0/JHlJCiBHNSk3Gf9k5eP7+Np7X36P91uuwUwZ4s1xNIXhBDO4XW5m60sGURSnsaG1gbUMVp6ZmH/O02oCPTU21qChY2MxOTmdBahar66toCAYGNmYhhBBiAPUqkbr33nsHOo6jWrBgAbt27erxmCVLlrBkyZITFJEQQgwNRuFYAqfNxrV6I56/v4X3lmsGfLNsc7oLM9eHVmbwpbbRfJ8G9rQ295hIfVBdhg1cmzeOOckZjIlNYFdrIwBNIUmkhBBCDF9DOpESQghxbMEzT0E7WIt+oBz38hX4rzyv5+0O+ktVCF0Ui/Z0MzNXuVBPhUrfsduhNwUD/LMqvB3FuZn55MfEA5DkdHU9L4QQQgxXQ3qNlBBCiB6oKv4rz8NKjMdRtBfn6o0DfklzggNzrANPPZxfnk7FMRKpgGnyo+2fUhvwcUZaTlcSBZDk6EikpCIlhBBiGOv1GikhhBBDjx3jwXftRcS8sAzXh59hpSVjTBwzcBdUFIIXxeL5f03cvjufJx2laEEvqg/wWSheG8VnEWj2873mUaQYTuLGxhAaZ4MzXC3rSqSkIiWEEGIYk0RKCCGGOSszDf8V5+H521u4X3sX75euxsocuP30rFEOjKlOMrbDD9dNgHXtRxyTgkoKseFvtoVQg80E/i0RdAVdVYnXHTSFAkdsoi6EEEIMFzK1TwghRgBj4hgCixeghAw8f/0nSpt3QK8XvCKONZNaeXlsJaVnQuCqOPw3xuO/IxHfvUn87xcOcsUFa1l1n42VpaHvDuF6qRU6dqpPcrgIWCY+0xzQOIUQQoiBIomUEEKMEMHTZhOaOhG1pQ3P394Cwxiwa9lJGpvOCfL7KSWsndOOcZoHc5Ybc6ITK9/BDkcLrU6DzNRY/HckYqWo6FsDOJe1gW0fajgRkk15hRBCDE+SSAkhxEihKPgvWYyZk4lWWY37zRXQiw1z+yrXEwdAhe/IqX0VvjZ0RSHdHYOdoOG/MwkrXsWxxo/jn+2yTkoIIcSwJ4mUEEKMJLqO77qLsBLicOzYg/PDzwbsUp2JVPnnOve1hYI0h4Jku2PROtY/2aka/jsTsT0Kzg99nL8jvHG6dO4TQggxXEkiJYQQI4wdG4Pv+kux3U5cqzfi2LBtQK6T4fYAUB/wdXu8wh+uUOXGxHWPK0vHf3sithPOWBPP5SUZUpESQggxbEkiJYQQI5CVnoLv2ouxNRXXO5+g7SmO+jXidCcK0GqEuj3euUlvjif2yLgKHPj/LRFTs/na1rGk7Ih6WEIIIcQJIYmUEEKMUGZBDv7Lz0WxbTz/eBe1oiqq42uKQrzupCUU7PZ4hbejIuWJO9ppWOOdbL/cwgbOejcWbadUpYQQQgw/kkgJIcQIZkwej//chSiGgeeVf6I0NEV1/ASHk4Bl4jcPdQis6pjal+0+siLVFdc0F7+YuQ/NVnD9qQW1OHjMY4UQQoihSBIpIYQY4ULzZxCcNx3V5yfmL2+itEdvj6l4hwPoPr2v8+sEh/OY56U43bydX8vLs6tRQuB+pgXl4MC1axdCCCGiTRIpIYQY6RSFwHmnE5o0FrWpBc9Lb4A/OtPpEvRwG/PDp/d5zXAiFas7jnleqtNNjKbzf/klBM7xoARsXK+0gjlw7dqFEEKIaJJESgghTgaKgv/yczFG56LV1BPz8nIIho5/3nF0Vp1aDmtj3t6xEXCsph/zPFVRGBuXSMAy2X+6RWseaBUG+irfMc/pDXMA980SQgghDieJlBBCnCx0Hd+1F2PmZKBVVOH5+9tgmP0a8lAidVhFygihAO4eEimA8XGJADxZvJ37x27CVGyc77SjNPYtppdLd3PT6n9S8bl9rYQQQoiBIImUEEKcTJwOvNdfipmegl5chvu1d8Gy+jxcfMf0vZbD1ki1mwYxmo7asRnvsYyLSwJgY1MtBxJ8/GVcJUoQnK+2QR8qS582VNFuGrxRGf1W70IIIcTnSSIlhBAnG48b3xcvw0pKwLFrP+5/ftinxAUgwdG5Rio8tc+0bXymQUwP66M6dVakOj03oZy6+BB6URBte2Rd/EzbpqS9FYD3q8u6dREUQgghBoIkUkIIcRKy42Lx3ng5Vnwsji07cf5rJXYfkqnEz03t85nHXx/VKccTh1vVALg4axRJMS4em7IHAP0freDrfaXsoK+dgBWeEthuGrxTVdr7FyGEEEL0gSRSQghxkrKTEvB98XIsjxvH2i0Yr6+IuDLVuUaqs+W5t+P/valIaYrCxPhkAC7MHsWvZ52JVujmndxa9FYb+58tvY6juL0ZgML4ZBTgyf3bWC5T/IQQQgwgSaSEEOIkZqUl47vxcmyPC3PFWhzvr44omYrXu3fta+9F6/PD3T9hJg9PPZXxcUkkOV08MGU+a0/30uwIEftZELW0d50Fi9vDSdcFWQV8b/I8NEXlyf3bCVn9a6YhhBBCHIskUkIIcZKzMtPw33QleNw4P92E88PPep1Mfb5rX2fr85heTO0DyPLEMjclo+t7TVFZMm0qf5hcgoKC8++921uqM5GaYMdz1pZEztayCNlW1+NCCCFEtEkiJYQQAisrDedd12O7XbhWb8T50ZpeJVOxugOVQ4lU59S+uF5WpI4mzeVh3fg2Nqe0oB00cXzS895Stm1T3NrMpaUZTH3Cwvm2ly9tyAZgd2tTn+MQQggheiKJlBBCCADUvCz8N12O7XLiWrUB58drj3uOpijE6c6uNVLtHc0merNGqieTEpL51Yx9WBo4/tWO0nDsKXrrdlfw/Y/G8q0t41ACNrYD8kodpPuc7G5t7FccQgghxLFIIiWEEKKLlZ2B94sdydTK9ThXfHrcylSCw0nAMvGbRldFqjdd+3oyKSGZsjg/m+b4UELgXNZ6ZBymTfC9Fk571sGc+kS86eC/O4nQ6R4UFC4sT5eKlBBCiAEjiZQQQohurJwMvF+8DNvtxLV6I653V/aYTHWuk6oN+KJXkYpPAeAvEyqx0jT03SHUzQGsjjjUSgPX/zSS/E4ABVg5rxX7a2lYBQ6M+W4ALivPpMLbRpvRu4YVQgghRCQkkRJCCHEEKycT701XYsW4ca7biuufK8A6+r5OM5PSAHirqiRqFamxcYk4VZXNbfVsOT88pv/vDXz74w9Rl7fi/l0jeqXJ1uQWfnZxCVOvHQW6AoCdpmOOcZDZ7mJmfQLvVZf1KxYhhBDiaCSREkIIcVRWZhq+m6/CiovFuXkn7tffB/PItUqXZo/Bqaq8U1VCTSDcGKK/FSmHqnJD/kQClsnXWz/jn/k1JAcc/Pc/J+P50A+6wlMzy/j6wu3cfupMHB0b+3bqrEpdWpbBk/u38UFNeb/iEUIIIT5PEikhhBDHZKUl411yJVZiPI4de3D/419gdE+mkpwuzsnIx2eafFRbAfS/IgVwff4Ebi4oJF53UHaOgt9t4bJU9ub7qbjPw9L8cgriEkhyuo4415juwnYqnF2dRmxIY/lB2ZxXCCFEdEkiJYQQokd2ciLeJVdhJSfi2F2M56//hFD3dUdnZ+R1+76/FSkARVG4cVQhfz7tYm6eMoW2/0jg26fu4Ftzt7NVaQJgUnzy0U92KhgzXWiGwkUHM9jf1oJpH31qohBCCNEXkkgJIYQ4LjshDu+SqzDTU9CLy4j58+vg9Xc9PyE+CV1Rur6PjUIi9XmeHA/GeAfNRpBl5fuAcHe/Y+mc3nd5RRYBy6TM2xb1mIQQQpy8JJESQgjRK3ZcDN6brsTMyUSrqCbmT/9AaQknJ05VY1xcUtex0ZjadzRnpocrX3vamoBD3f2OxirQsTI0RtW7GdMSw96Oc6JtXUM1v929EV9Hx0IhhBAnB0mkhBBC9F6MG++Nl2OMG4VW30jM839HrW0AYErCoaTGPUCJ1LmZ+UxPTAUgTneQ44k99sGKQqijKnVxWTp7BmBPqTJvKz8tWse71WW8XinrsIQQ4mQiiZQQQojIOB34rr2Q0PRC1NZ2Yv60DK38IJMPS6TUw6b5RZOmKHyjcA5pTjdnpOWgHOc6xmw3tgoXlKdzoLklqrHYts3Pd67Hb4Wbb/yjfB9+qUoJIcRJQxIpIYQQkdM0/JeeTeC02Sj+IJ4/v86cmtYTcul0l4f/O+V87pkw8/gHx6uYk5wkhhxk7lMxjrEXVl9U+b0Ut7cwOiaexem5tBhB3q4qjdr4QgghhjZJpIQQQvSNohA861T85y5EMUzSXnuf31gp/GjqggG/dCQVL+OU8PS+C0rTqPS1Ry2G3a2NAExPSuPCrFEA7Op4TAghxMgniZQQQoh+CZ0yE98V54GiMGfVVhZt2g+2PdhhdTEnOmmLMZlfm0R1VfSm9+3uWHM1MT6JLHcMALUBb9TGF0IIMbRJIiWEEKLfjKkT8N14ObbbhfOzTbiXvX3EXlODRlMon2KhohCzKXprmHa3hatPk/Qk0is1VKAu4O/5JCGEECOGJFJCCCGiwizIof2Wa8Ib9+4qJmbpayhtQ6NCE5rnAmDcDgdY/a+WGZbFvrZmYjUHo18xiftDC4sb06kP+GTjXyGEOEmM+ETq3Xff5cILL+TCCy9k+fLlgx2OEEKMaHZqEt5brsbIy0I7WNOtPfpgyspPYEtKC6ltDtTi/lfKDrS3ELQsrq/PQ98fHu+6fVlYQEMw0O/xhRBCDH0jOpEyDINf/OIXLF26lJdeeonf/va3BIPBwQ5LCCFGNDvGg+/GywlNGY/a3ErMC8vQ9g9uN7sY3cHHY5oAUNf4+jXWx7UV/Oe21bgNlWs3ZgBgexSmVMUxpiWGWv/QqMIJIYQYWCM6kdq8eTOFhYWkpaWRnJzMjBkzWL9+/WCHJYQQI5+u47/iPAKnz0UJBPG8vBzHms2D2oTi4EQTr2bi2BYEX9+m361vrOEXOzfQboT40cEpxLarGDNcBM8LN5v4QnE2tbJOSgghTgpDOpFau3YtX/nKV1i0aBGF/7+9+w6PqzzzPv49Zfpo1IsluclFNu7GBUwxGAIEQjAltDgkBLIJkITsy242m90kkE1Cwi4ppFNCSCAhkGAghNA72MaAC+6ybMsqVu/T55zz/jFFkiXZGlm2ZHN/rkuXpClnnhkdy/PT/Tz3U17Oq6++2u82jzzyCCtWrGDOnDlceeWVbN68OXVdY2MjhYWFqe8LCwtpbGw8JmMXQoiPPEUhcuYSgp88BzQV58vv4HzmFYiOzqa14zK9vFLcjBoDfVP60+9CRoy7tr+HicV/5S9k6ZYMLBtELvIQW+wkYrc4pzaPrtYjq3gJIYQ4PozpIBUIBCgvL+fb3/72gNc/++yz3Hnnndxyyy2sXr2a8vJybrzxRlpbR38+vhBCiLjYrOkEVl2KmeHBtmUX7keeQunqPubjOKuglBcmNMfHtC79/aQaQ0H8Roy5vjzOfCcDxYDoOR6sLA0cKnXzLOymimddhB9tf4/WiFSmhBDiRKaP9gAOZfny5SxfvnzQ6x988EGuuuoqLr/8cgDuuOMOXnvtNVavXs0NN9xAQUEBDQ0Nqds3NDRw+umnD3s8qjr0DSCPluQYxsJYxNgm54pIx1E/X0oKCH7+Uzj/9hxaTT3uB/9G+IoLMEuLjs7jDaAsI5PTF01k36YAk+rchBoMrHF9/xtsCAXIczjRlP5/Z+wy4mtsT23MQt8ZwczTMJa7U69ZcJkD470IZ1Rk8YuJe1AUhW+ctOjoP7FRIL9fxFDJuSLScbydL2M6SB1KJBJh69at3HTTTanLVFVl2bJlbNy4EYC5c+eyY8cOmpub0TSNTZs28f3vf39Yj6frKrm53pEY+ojIzvaM9hDEcULOFZGOo3q+5HqxvvppYk+8CGs343r4KfRPnYe+ZM7Re8yDXJ11Er8c/wY3bZ+E98MY9tlZqeseqdjOPR9+wI0z5vCFk+b2u68RasVmKFy4PgcA16p8vIXu1PWKR+e1cZs5py6P82ry+btWy9XmTE7OL+x3rBOF/H4RQyXnikjH8XK+HLdBqq2tDcMwyMvL63N5bm4uVVVVANhsNv7t3/6Na6+9FoCvfe1rOByOYT1eLGbS2Tn6895VVSE720Nbmx9zBPZCEScuOVdEOo7p+bLiNPSsLOwvvEXs0X8S3LWfyMdOB107uo+b8OaEVr6wYwLW2110nWIDn8b6lgbu2fIBAG/UVnNZYVm/+9W2dnDlnmJ8HRrGTDvtJSa09ExRtCyLx8rqOKcuj8/tn8AzExp4ZPtWJqnHxxuCdMjvFzFUcq6IdIyV88Xnc2GzHf7/pOM2SA3GsiwUpacceN5553HeeeeNyLHH0i8A07TG1HjE2CXnikjHsTpfIgtmYeRm41z9ArYPtqIeaCJ46XlYmRlH/bHNDI1Xi1v4WG0+jp+2EVqVwe9bt6Wuj5rmgK9BpDnKqooSDM0ifLEXa4DbLJs/gbrKKMUHbJzSmE1jRvCE/vcnv1/EUMm5ItJxvJwvY7rZxKFkZ2ejaRrNzc19Lm9tbe1XpRJCCDH2GBOKCXz+itTmvZ7fPY5WefT3m8qyOfjfuZV0L9BRu0ycv+1gzlYXZW4fDlWjMTzw7IOT33LgNDX2L7Gwcgf+S+UV46eR87FcAK7cM46WyOjPZBBCCHF0HLdBym63M2vWLN55553UZaZpsmbNGubPnz96AxNCCDFkVoaX4LWfJLJ4LkoojOuxf2B/410wh7fP01D4bHaimsXeixTCl3qxsPjXLWX895bpFOtu/LEogVi0z33U3RHK97pocIZpO/3QkzmMmXbMXI35LZnkN+kY1tF7LkIIIUbPmA5Sfr+f7du3s337dgBqamrYvn07TU1NAFx//fU8+uijrF69msrKSm6//XZCoRCXXnrpaA5bCCFEOjSN8LmnEbz0PLDbcLz9Pq7HnkUJHJ1qTpYtvla2MxYlvNTBv5+2nWZnhMnbbNzx2lQKgva+VSnDwvFUfC3Ur0/aR4bnMGttVYXoGS4ALt8zjrZI+ntWCSGEGPvGdJDasmULK1euZOXKlQB873vfY+XKlTz66KMAXHjhhXzjG9/gnnvu4ZJLLmH79u3cf//95OTkjOKohRBCDEdsxhT8n7scIy8bfW817gf/ilZzYMQfJ9NmB6A9GqYpFGRDZgd3f3w/xmQb41ud/PbNuUR39QQp/Z0gaqPBtoJuXh/XSqbt8E2LYic7CTgMzq7LpbNZpvcJIcSJaEw3m1i6dCk7d+485G1WrVrFqlWrjtGIhBBCHE1WbjaBz16O87k3sG3dhevhp4icsZjIqQtAHZm//SWDUEc0Ql0ovjGvN8dJ6AuZ7Hu0hlmbncz7i0WkM4Cx0In9xQCWCr+ZU4WuKri1IfzXaVf4cGaQpRu9eNdG4fIRGboQQogxZExXpIQQQnwE2W2ELl5B8KKzQddwvPEurkf/jtLlH5HDJytSHdEwB4LxY45zekBT2HMufH9+BYYKjmf9OH/WhhK2iJ7qZKurC5/N0acz7KFUzTeIKiYlGxUIyzopIYQ40UiQEkIIMfYoCrG5MwhcfwVGQS56VR3uBx5D2111xIceqCI1zhXf66nA6eal0mbuu6geM1tF7TKxvAqtZ9sxsVIhbCjcuQ5eLmnGHlHQ3wsd8biFEEKMLRKkhBBCjFlmbjaBz15GZOFs1GAI9+PP4njpbYgZwz5mpr2nIlWXqEgVJ4OUI94k4kNvB3VfdLNpfpDKy1TatQjQ06hiKHLtLv5aFl/jZXsrCMfBnihCCCGGToKUEEKIsU3XCZ9/BsHLL8ByOrCv34z7j0+gNrcN63A9FamDpvYBOXYnKrCrq53PbHmRr5Vu5EGlko5oPEj50qhI5dqdVPoC7CwKoLaaaFsjwxqvEEKIsUmClBBCiONCbPpk/DdcSWz8OLT6ZtwPPo7tvQ/BSq/Sk5ye1xYJUx8KkGmz49FtAOiqyvzsfIxex2yPhumIhhP3TaMi5XAC8PTUBgBsbwaGfF/Lsni1sZq/1+0d8n2EEEIcWxKkhBBCHDcsX3wD3/BZS8G0cL74Fq5Hn0Hp6h7yMeyqhkvTqQ8FiFlmqhqVdMesU3jitIv449LzAIiaZqoilc4aKaem49F0XstpwizQ0KpiRPf2XysViEX53x3vs62jBQDTsvjhjve4e+cGflv5IS1hWV8lhBBjkQQpIYQQxxdVJXLqQgKfvSy+59S+Gjz3/wV92+4hH6J3IEo2mkhSFCUVtgCCRoyuYUztA8h1uAiYBs2naABEHmqmfXUT6r5oas3UOy0HeL2plr9UVwCwq6uNt5t79s+q6B7eFEYhhBBHlwQpIYQQxyWzKJ/A9VcQWTwXJRTB9dSLOJ96EYLhw943Q+8JRJM8vgFv41A1VOJBKmDEAHBrtrTGmGxi8XJpM+/ltVMQdFCyFly/bsf9/Rbsj3dhfhjEYahs6Wghapo0hOIb+Lq0ePiq6GpP6zGFEEIcG2N6Q14hhBDikHSd8LmnEZs6Eec/XsW2bTda9QFCF56NUTZ+0Lt9ongSrzbWcHpeMecWThjwNoqi4NJ0gkYMfywKgEdP77/N4sS0wbUdDdx7SjNFAQfLGrL5TPdkMqstbO+FuJQcLlQX815+O62xVroK40FqWW4xLzdWU9HdntZjCiGEODYkSAkhhDjuGZNK8d9wJc4X3sK2dRfuvzxDZO4MwucsA2f/BhHnFE7gnEECVG8uTac1EupVkUozSLm8AGztjK9/0nJ1nnDXUzgln7U1dSxqzGRcpcbixixOa8iBZy0mqD42npzFohkFvN5US0VXO5ZlDXkjYCGEEMeGBCkhhBAnBqeD0CfPIVY+Gcdzb2DfvAN9TzWhC87EmDZpWId0aTom0BaJN3xw68Ob2pfsArgkp4jVtZW819bIhnALGzJbYCGU2j0U1Opc0jKOM3dn818bplG9xEmZ18eurnYaQgGKDlrLNZK2d7byWHUFszNzOb9wAt4014IJIcRHkayREkIIcUKJlZfh/8LVRGdNR+324/7rP3E+/TIE0+9+50pM5WtOdM5LtyJVkqhIJS3OKQRgQ1tjn8vPKCphT3GIO2bs5O/ljXhjOlP/ZjLTmQXAlkRF62h5rLqC9a0NPLh3G/+1ZQ1R0yBmmtxXuYU3m2qP6mMLIcTxSoKUEEKIE4/bSeiT5xC44uOYXg+2rbvw3Pco+s49aR3GqcaDU2uiIuVJsyKVY3fgVONNI7JsDqZ6swCIJSpUycl65RnZTM/IwsTip1Mq2ZDXga3e5Np3x4EFj1TtJBCLpfXYQxUyYmxqb8Kj6czIyKayu4P792zlseoKnqrbw28rP8SwzKPy2EIIcTyTICWEEOKEZUybhP8LVxGZOwPVH8T1xPM4n3wBpXtom+O6ExWpsGkA8b2h0qEoSmp6X6nLi1vXye61qe9Xps3n6vHTWZBdwLREyDJVuHdZDWamSsFWuK25nKZwkNu3ruWd5rq0Hn8oNrU3EzFNFmYX8B8zF+HVbfzjwD7+tH8nAO3RCB+2H92KmBBCHI8kSAkhhDixOR2ELzqbwFWfwPR5sW2vxHPvn7Ft2AqJytBgXL2Ck0vT0YbR8CE5va/Y7enzva4onF1QyqpJM9AUhakZWT1D9tkJf8aHpcFF63M4oyuPbZ2t/GD7e+zobE17DIeyrrUegCW5ReQ7XPxgzjJmZGQDMDczD4A3xtj0vtZISDYqFkKMOglSQgghPhKMsvH4b7yKyOK5EInifO4N3H9cjdo4eLWld5BKd31UUjI4lR4UqCa6fdjUnv+Gp3ozU1/nO9yY421ELvGimHD7B9P5l7yZAPzzQNWwxjEQy7LYdaCV3LCNRdkFAJR5M/nfeafzh6Xn8V8nLUZXVN5uOUDUHBvT+0zL4t83vcW/b3oT6zBBWAghjiYJUkIIIT46HHbC555G4LOXYxTlodU24H7wr9hfWwvRaL+b9w5S6a6PSrqoeBKXFJdxXqLdenJvqbJewQkg2+4k3+ECSH2OLXESXeRE7bK4/LU8vIrOm821dEcj/R6nKxphZ1dbWmNrbfTz4xdn8MgrC8mq6AkliqKQY3fi0W3MzszBH4tSG+xO69gjzbIsuqMRdnW10RAK0BgO0h49/ObLQghxtEiQEkII8ZFjjssn8NnLCZ17GugajjUb8Nz/F7TK/X1ud/DUvuHItjv5wpTZqZbip+aOY4I7g3MK+28YnKxKJYMUikJkpRejRMe+L8a3984kYpr9ptr9ef9OPvvuC9y28U3eb208+LADMywyHvWTHbHhMFQcf+hEf7v/2rF8hxvoabgxGkJGjG9tWcN1776QWrsFUBv0j9qYhBBCgpQQQoiPJlUlunhuvFX69Mmo7V24H/sHzidfROmKv0HvW5Eama0XS9xefnXy2czOzO133QXjJjHVm8mC7PyeC20K4VU+LLfC4i1ezq7N7RMgTMvi8eoKIompd2tbDgxpHLbn/GTXqWzP6uL9j0dAA8fTfuxPdYHRU53KsTuB0QtSlmXxox3vszHRFOODtqbUdTWB0a2SCSE+2iRICSGE+EizfF5Cl19A8PILMDM82LbvjjejWLsBd6//Jt3a8Kb2pePk7AJ+umA5ecmKVHKMORrha3xYwL9vnoK9sWe9UlskTMQ0U1WsDe1NHI62LYz9jSABm8EdCyvwLPER+pcsLI+C7Z0Qjj90QjgepnLt8S6DrZHRmUbXHg2zvrWBfIeLSe6MPtfVjfJ0QyHER5sEKSGEEAKITZ+M/wtXE1k6H2IGzlfXct5Tb7KoLbEZ7whVpIbLmG6n5Wwdl6Fxxcu5EIyHqYZQvDpVnpHNZI+P+lCAA4eY8qa0Gjge6wLgRwt2051hUOLyYk60EbwlGzNfQ98RwfmbdpQOg+xkRWqUuuTt9XcCMDszly9OmYOuKJyaWwTI1D4hxOiSICWEEEIkOeyEV5xK4MYriU0ej7ejm7u3tvC9bS0UBY/OhrjpMFd4eLuwlYIuO86HOyFg0hCOr2sqcrpTUwIHrUrFLOyPdKAELQ4shTcKWpmekY2aaOtu5WoEb87CmGJDq4vh/EU7Je3JitToBKl9iSA12eNjTlYej5xyAbdOXwAw6g0whBAfbRKkhBBCiIOYudkEr7qInRecxgGHxhmtIT773PvY31wP0dELVG6bjf9bsIf9GUG03VFc97QR2xefclfodLMwK97CfHVNJc3hYL/76892o9cY7Mz18/WSzQCckqju9DyISujzmURPdqB2mpQ/ZLC0IWvUgtTeXkEK4t0TvbqNbJuDAyE/hjU22rILIT56JEgJIYQQA1EUQtMmct3CQh4cH1+b43jrPTz3PYq+o/Kwm/kenSEp2Dw6Ny/7kOgcO2qbySdW+1i5r5BCh5u5WXmcklvEgZCfb324BqPXGLUtYRxvh+iwRfnv+TuoifhZnFPIx8dN6v9AukLkUxlEznOjRuD762ewaLvn2D3RXpIVqUmJIJVU4vJiWBb1of6dBoUQ4liQICWEEEIMwq3pRDSF30/08eKly+Pd/Tq6cK1+AdfDT6LWNRzzMWXZHPhtBg2fshO+JL7J761bypj/Dx01YvGNGYuY5PFRHexOrZ9SWnrWRf1gwW66PAbnFU7gtukLUtP6+lEUoud4CF2dgala3LBxPNq6/lWuoylqmlQHusiy2VNrtZKSGxvXyTopIcQokSAlhBBCDKJ3+3Ml20fo8gsIXHMxRkEuek09noeewPnUSygdXcdsTFmJLnpt0QixZS6+tbyCeleIjC0GrnvasTWYTM/IAhLNGKIWjkc6UcIWm04O8m5BO5+bNJOvTp+f2tvqUIwFTn56Znx/LduL8eMdK7XBbmKW1a8aBVDocKOZCoHGEJjHvjoohBASpIQQQohBuHp16nMnQpUxqZTA9VcQvPAsTI8b27YKPPf+Gfvr6yAcOepjyrLFg1RHNEzUNFjnaeE/z60gNsOO2mzg+mUbZ+7LBqA60IX9H91otTGMMhtPzY43oZjgyRj0+ANpHG/wRlELWpeF/u6xWyu1p7sDgIkeHwRM1MoI+psB7I91ctnjmTz73BIufNCN81ftqS6GQghxrIxuL1chhBBiDLMpKpqiYFgWbr3XPlKqSmzeTGIzp2JfuwH7uk043vkA28btRM5cQnTeDFCPzt8qkxWp9miYxnAQC/D6HIQ/68N8I4jteT+nveTm38dPwew0sa0JYXkVwtdksHd3vHI2wZ1ekMqxO3loeg1n1udiezVA+BTX4e90hJR2g5xXo3yvrpyFr2fj6mrpc30WKu32KAG7SVY1OO/vIHRDJriH9rr7Y1G+vWUtp+QW8anx047GUxBCnOAkSAkhhBCDUBQFp6bjj0VTFak+7LZ4cJp/Eo7X12Hbsgvnc69jW7+ZyFlLiU2bBIOtQRqmrMR0vLZImIZQT+tzVIXoWW6MCTq2Rzq4sLoAqsFSIHSNj1iGQk2gG59uT1W1hirH7mSPL0DdNIPiCuJrpS5JL4ylxbRw3t/BaU3xx7AUMPM1zHE6ZrGOOU6jJjvMF3au4RRvAbevnY6jKhYPUzcOLUy929rAzq42dna14bPZOb9o4tF7PkKIE5JM7RNCCCEOIRmgPL0rUgexfF5CF5+D/3OXE5tQjNbShutvz+H+w2q0/XUjOp5kCGqPhmlKtDjPd/RUiMwyO8Fbs9mQF58WFz3XjTnVzoFggJhlMsGTgZJmuMtxxBs9rFsYb+xgeyWAFTl6U+m0TWHUJoMt2V3cvmI3ge/mEfy3HMKf9hE9240xw0FmrhsUqDUDfH3xNjbndKLVxnDe1wH+w49tQ1tj6uvf7P6QQCx62Pvs6e6gMjHdUAghJEgJIYQQh5Bjd+JQNbyHCFJJ5rgCgtd+ksBVF2EU5qHVNeB+5Clcf3kGtX6QTXLTlJza1xGJ0BRKBil3n9uoPp2fnVXNp8/eQOvy+LirAvE24hPTnNYH8T2qALZ5O4nNsaN0mcReP0oNNgwL+0vxStt9M6pwlbnB3j/4uXUdl6bTFA6yNdzGfyzZzt6iUHwj4fvaDxmmLMtiY3sTKnBydgFRy2RXV/shh2VZFt/esoavb3qLxlCAB/Zs5dtb1vD7vduO4MkKIY5nEqSEEEKIQ/j3GQu5c+4y7Ko2tDsoCkbZhHhDikvOxczyoe+pxvPgX3E++SJK65FVNAaqSBU4+q9ZKvF4qfOEqAl2A7DfP7z1UQAlrp5W45Fz4l9Hn20/Kh389E1h1GaDquIwm3O7mJ2ZO+ht8+xOQqaBYVmEdJObFmyie7KCdsCIh6nu/mFqT3cHLzTspzUSZnpGNguz45sY7+hqO+S4DoT8tEcjhE2Dr296i9W1lXzQ1sRfa3bTPYRqlhDixCNBSgghhDiEIqeH6RnZ6d9RUYidNA3/v1xN6PwzMD0ubNt347nvURzPvYHSNbz9j1JBKtITpPIGClLu+B5TtckgFRh+kMp3uNEVldpgN9Y4ndhcB3QYaGtHeF8pw8KWqEb9vGwPKgpzs/IGvXmuo2dvKZ9uJ6yZPHDWAYxptniYure9T5iqD/r5901v8fOKTQAsyM5nRuJnu6Oz9ZBD291rSl9zJIRL0xiXqNQNZVqgEOLEI0FKCCGEOJo0jejC2fi/9GnCy5eATce+YSueXz+C48W3ULrTC1QZNjsOVaM+5KcpHA8deQ5nv9tlJwJXZzTekr0qGaTSbH0OoCkKxS4PHdEI3dEIsY95QImvlSIyclUpfUMYtcVgd3GQ97PauaSkjBx7/+eW1DtAXlY6BRV4vb0O/3U+2iaD1mBg/qoJukxMy+KnFRsJmwalLi85difL80sp8/rQFZWdXW1Y1uDPZXdi6l9OYmrldRNnUuyKh9WgETvyJy+EOO5I1z4hhBDiWLDbiCw7mcj8WdjXbcD+/hbs732IbeM2ogtmETl1AZbHfdjDqIrCRE8Gu7ra8RsxfLod5wAdBT2JPbACsRgx06Qu2E2WzU5mmh37kopdHvYHuqgN+fEV5aAt8mCs96OvCxI74/DjPizDwvZyPFT+ZPJu8uxOrp1Yfsi75PYKWXOz8piblcfG9ma2BlpZfUoll3XncEpTNua97bx3pcGWjhYmeXz8ZP6Z2Hq1p5/qzWRHVxt1QX+qknewZEXqv09aQsQ0meXLYWuiiiVBSoiPJglSQgghxLHkdhI5+1SiS+ZhX7cR2/tbsa/fjG3DNqInzyKydP5hA1WZJzPVHCHfOfCeTi4t3mQiYMSoC/qJWRYT3L5hD7skUX2pC3YzMzMH2yezib3nx/ZagNhS14ANIdKhfxBCbTXZVNjFtuxuvjllMa6BWs73kpuoSCnEpyyekV/CxvZmHt2/i81dzWxc1MRdG09i/gEfs35v8j1POeOyvHiq/FhOBRwKllNlZec43uyCug9bGV/oiM/XUeMHtlQFS7EIHggxSXEzNeJFdWmgKKmOjgEJUkJ8JEmQEkIIIUaB5XETXrGMyNL52NduxPbBFuzrNmH7YCuRk2cTXTofyz1wSJrizUx9nT/A+iig15v8aKpj33DWRyUlG07UBuJVI7XEjjHXgb4pjL42yLrZ3WTZHZR5fGm3V49Xo+LTFH87dR+Lcwo5NbfosHdLVqSKnB6cms6y3HE8uHcbmzuaAYhqFv+5YDtP5ZyOZ2uU07pzoAEg1Oc455PJ+WTCewDtAz7WvcyJf/Fye3xvri9lpYLeaFWkTMviiZrdKIrCGXnFFDhHoDIohBgyCVJCCCHEKLI8bsLnLCOydB72NRuwbdiGY+1G7O9vIbpwFpEl87C8nj73KfMMIUj1mtq3/wjWRyUl1wMlm1cAxD7mQdscJvpyJ3ca7xHSTaZ5s/i/+WegDSFMvdVUx4N7t/Gj4HwmtlnsLg2yPbub28fNGlIYG+/2ogIzfPGGERk2O/837wzu3vkBzeEgOXYnlf4Odl4Kf56ym4Z2P9+dupRc0w5hCyVkoYQtCFmsq6vD3x1hitNHicOLXVHBBExoD4fY29VJgc1FqeJBq4thezuI67TRDVLPHdjH7/dtB+CRqh3cv/jcQ64pE0KMLAlSQgghxBhgeT2EP3Y6kVMWxAPVxm3xCtV7W4jOnUHklPlYWfGpeRM9GajE3+cPFqQ8qal9UaqOoPV5UrIiVdMrSFmFOnunRiirsHNNbSlPT2ukorud6kAXkzyHn0b4RO1uWoJBHK+GAAd/mXkAYEj3hXi4+/H8MynqVYkpdXv5yYIzMSyTh/Ztp9Lfwd5AJ5uVNmJZFr7pXowBQlpGVz7f2fgGFuBUNe5bfA7ZiVDyYm0L9+7ZzucmzeSKohLc329B2xoma0n8NQ7Gjn2QagwFeHDfNlQUZviy2dbZygdtjZxbOOGYj0WIj6oTvmvfV7/6VRYvXsy//uu/jvZQhBBCiMOyMjyEzzsd/82fJrJ0PmhqvMvfb/6E8+8voza34dT01Jqlw1akjBgtkfhUtqIjmPqVZXOQZ3eyz99JRyScuvyfs5sxsbi6soRzsksADru5bVJXNMrHq/MpCjrYPT7EG64mvLqtTxOJw5makYXXZu93uaaoTE5U7t5va8JvxOIVrEEqXdMysvjBnGXM8uUQMg3Wtzamrku2mc93uMGmEFvoRDFg5s54447RWCP1UkM1QcNgZWkZl5dOBWBD28hs+iyEGJoTPkh9+tOf5kc/+tFoD0MIIYRIi+X1EF5xKt03ryJ8+iJw2LFt2YX7vkdxPvEc51pOFGDiIA0kkut3ArFYqgW6b4DAMVSKorAktwgLWN/akLp8p7ubV4tbsAdgxe745rkVh9ncFiBkxGjxB1i1uxSAH0+qIGKaTHIPY43VICYnKltvNNUCMP4wFbk5WXlcOWE6AOtb61OXN6eCVDzgRZfEP5dtsYE1OlP79vrjXQRPzR3HnMw8NEVhY3sT5iFauAshRtYJH6SWLl2Kx+M5/A2FEEKIscjlJHLGYrpvXkVoxalYHje2nXv53Eub+Pt+g8nNnTDAm2eHqqGiEDCidMUiOFUNu6od0VCW5BQCsLalJ2S0RcL8YVoNlgJT39NwxlQqutsPe6yqQBcXVBdQEHTwYWk32zPjUwYnHsE6roOVurx4dVvq+6FMbZyTmYtT1djY3kTUNABoPGjjY6tIx5ig421TmdfqG5UgtS8xXXOiOwO3rjMjI5uOaIR9/s5jPhYhPqpGNUitX7+eL33pS5x++umUl5fz6quv9rvNI488wooVK5gzZw5XXnklmzdvHoWRCiGEEKPMYSe6dD7+mz9N6PwzMTMzyNhfj/tPT+P+/d/Qt1WAaaZurigKHl2nOxbFH4uScQTVqKS5WXk4VY0PWhsJG/GQ0RIJ0ZwVxZjnQPPDVdUl7PN3pkLIYPZ3dPLp3fGpgPtP77l8qOujhkJXVf7f9AWp78cPskdUb3ZVY352PkEjvu8UxCtSKpDba+Pj2NJ4qPpEVcExn9oXMmLUh/wUOFy4E0FxQXYBAO+3NR7qrkfk2QP7+NaHa/jd3q10x6JH7XGEOF6MapAKBAKUl5fz7W9/e8Drn332We68805uueUWVq9eTXl5OTfeeCOtra2p21xyySUDfhjGoX+BCyGEEMclXSe6cBb+L11L8OJzMApy0eqbcD31Ep7f/Anbu5sgHJ/K59ZsREwTC/DpRx6k7KrGopxCQqbBbe+8RnM4SNCIkWN3EjnHjaXAtTuK+cqmSTTs7BiwUpbkez9GQchB/VSTaeX5qctHMkgBLMkt4tZp81mQlc/czPzD3wFYlAglG9ubiZkmbZEQOXYnmtLztik214HhgDPrc1H85mCHOiqqAl1YwMRer9UyewH/vmkKe/a0HLXHfby6gg3tTTxRU8nz9VVH7XGEOF6Mate+5cuXs3z58kGvf/DBB7nqqqu4/PLLAbjjjjt47bXXWL16NTfccAMATz311DEZK4Cqjsyc7ZEYw1gYixjb5FwR6ZDz5TikaphzywnNmY66rwbb2k3oe/bjfPkdHG+9R3ThLIrtFsnVTD67fUR+vv8ydTZ1oW7WN9Xzq0ROynE4UYpsxM7zoL3YzSf3F8HvDcy8VoyTXRgnO7Gye00rjFos3BBvfBE618V4bwYTPRnUBwNM9vpG/Dw8v3gi5xdPHPLtZ2bmAFDZ3U5bLBzvjuh09x2XU6Frnk7WuzFm73ajLjp2/3aS7ezLer1W097SmFldQFHAQdOpQQpHeE+pqGmk1ooBbO1o4VMTph32fqPxu6UzGmFLRzOn5I4btLmIGJuOt/+Lxmz780gkwtatW7nppptSl6mqyrJly9i4ceMxH4+uq+TmHn5KwLGSnS3rvsTQyLki0iHny3EqbyYsmolZ14Tx+nqMD7ZhX7OBuxV4Kc/FX0oyyCt1j8j/Y7l4+VHGcj714t/5INHZrjjDGz/2VV7aPpbBHx99n8W7fcxqzkB93o/teT/qDCf6qRloizzE3uokGtR5c1wr5yxaiK6q3HPGOXRFI4zPzD7iMR6pzGw3jg0ae/ydhOON+SjxZfR7/VrPNeHdZk7Z7SMnxzNiTTIO5cPWZt7tiMfj2YUF5OZ6MZujhD6Id2Zc2JLJmztbOWlFwYg+7v7uTixgbk4eO9pb2d7VRnaOZ8hB5Vj9bqnq6uT/rX+TukA3dy49gxUlh28HfyDQzU1vvMTFE6fw+Rmzj8nPURza8fJ/0ZgNUm1tbRiGQV5eXp/Lc3Nzqaoaejn5X/7lX9i8eTPBYJAzzzyTe++9lxkzZqQ9nljMpLMzePgbHmWqqpCd7aGtzY9pSmceMTg5V0Q65Hw5QThccN6ZKKeejP7eh8TWb+L8piDnNwXZXxumPerDmD4J1COb2e9WVByallon5bF0Wlp69pc665Jyrl/3IouNHL4fWYD2fgh2hIjsCGE93ISlxtcWvDyvjUVtAQBsQA62PscZTZM8PnZ2tfHO/moAMgcYW8hnsjeri5ntGbS/34Y5+cinTx5KbaCbf1n/Msl/oXmWnZaWbmxPdKIbEChWcNdZ5L8YpWXeyL6OO1qbASiyuzEzLLZ0tPDB/jomeHyH3Hz5WP5u6YiGueW9V2lNtOd/Y38185w5h73fy3X7OBDwc+/2zYSCEa6eWD4i46kLdvN07R5WlkyhyHV8BIPRNlb+L/L5XNhsh2/OM2aD1GAsy0rrLwX33nvviD32WHpzYZrWmBqPGLvkXBHpkPPlBOFxYyxfys9yFTK27uaKum4mNHXA357D9HmJnjybyNyZ4B76fk29qapCWUYm29vja5az7Y4+502+3YVXt7FZ7SC83I1yrht1bxT9/RD6hxHUsMUrxc3YShxj9nyb6s2MB6nm+CbBeXZnv7HaUPnHhEZmtmegrg0Sm2gb6FAjpibQnQpRU7yZFDs9WK0xtPUhLIeCeUM2dT+uY0aDh0BlGGsEg92BoB+AAoebbJuDLR0tfOvDtWiKwk/mn0mW3XHI+x/t3y2WZfHznZtojYRZmlPEutZ6Nrc3Dekx93b3dDr8U9VOVpZMOeIOl1HT4Htb17PP38mG1ibunn9GqjGIOLzj5f+iMdv+PDs7G03TaG5u7nN5a2trvyqVEEIIIfrTHA6eKPay6uRCXluxgNjk8aid3TheXYv3l3/A8eyrqA3Nhz/QAKZkZqW+zrb1D2QFDhdh04jvYaUqmFPsRK70EfhWLi9e3M3/zq0cdA+ssWCKNwuA3d3x/ZryBtj4WFEU1k7oIKAb6JvDEOjfdCJkxLi3cgsbRqCbXltiY+VrJkznZwuWoykqttcCKAZET3eheDWenx0Pt8qLI1uRqg/Fg1Sh081JmfH9wj7z/jjueXYGayqqR/SxhmNrZyvvtByg0OnmtvKFjHd5qQ36aQmHDnvffYF4kCp2eYhZFpWJn/mR+Mv+Cvb5O9EVhepgN/fu2XLExzze7fV3cNvGN3m1cfTPl5EyZoOU3W5n1qxZvPPOO6nLTNNkzZo1zJ8/f/QGJoQQQhwnPIm/gJuKQtfkUoJXfwL/v1xNZOFsUFXsm3bg+d3juB5+En1HZZ/26Ycz1ZeV+rp3W/CkgkSzg8bwQdPi7Qpv57US0s3Uhrlj0VRvZuprm6IyNSNrwNupDpWXiptQYqBvCPe7/oO2Rp6u28O3tqzlkaodRzSm5JS1HHv89VY6DPR3Q1h2hejp8aBXPSNGrTuEq9JArRq5FuUNofgUzCKnm1m+HE7vzmVlVRFFQSdz/qFjxY5t58KDJVvVf7J4Mm5dZ25W/I/umzsO/YcCy7Ko8ndiU1TOyo9vDr0rsaH0q401/KJiE+8016W90fGrTTUA/Hj+meiKyrstDVgjuFnySB7rWGgJh7hjyzp2drXxs12b2DMCYXUsGNUg5ff72b59O9u3bwegpqaG7du309TUBMD111/Po48+yurVq6msrOT2228nFApx6aWXjuawhRBCiOOCW+uZwZ/cR8rMzSZ8/hl03/IZQueehpmdiV59ANfqF/D86mHsb65H6Tx8NaN3RSpngGld+YkKTlM40O+65KaxI93qfCRNcGeQZXOQabPz/Tmnpp7PwVyazjMT49Um27vBfi3f60M9z//P+3exP7GR7nAkK1LJIGV7PRivRp3mBHf8Ld04j5eHp8XfxNte8g/7sQ5W3ytIORWN23efBECXI0Z5i4e2fx69tutDsTMRfqZnxJuVzMmMB6kP2w8dpFojYbpiUSa4M5jpi993V1c7rZEQP6/YyHP1Vfxg+3tpVVEMy6I5HCTH7qDMm8kUbyadsUifc+FIPFZdwap1z6fOh+PB7/ZupTkSYrzLS8wy+X8b3+DWD16ncYRek9EyqkFqy5YtrFy5kpUrVwLwve99j5UrV/Loo48CcOGFF/KNb3yDe+65h0suuYTt27dz//33k5Nz+IWDQgghxEdd7yDVbx8pp4Po4rn4v3gNgSsvJFY2HqXLj+Ot9/D86mGcf/0nWmXVoFWqKb0qUsk39r0lg0fvilTIiLGrq43qQDdZNsdh19WMJl1V+dXJZ3P/4nNTU9kG4tJ0KjL9hItV1HoDdX/fzXmTlZyTfPH3Lk/U7h72mFoTb5yz7Q6ULhN9XRDLDtEzelqdl7g8vFjSTIfPQN8VRd3fU5X6oK1xSFPdBtIQCuBQNbJsDvQPwmg1MYzxOuuujRHUDEretlD3Rob93I6EZVns6mpDVxSmeDMhYLKgyosrplIVOHRwTYb6iZ4MpiVC2M6uNv5Ws5uIaabC/ocdQw+KrZEQhmWR74j/XKYnqplvN9dx5/b1qcccjpAR4w/7ttMRjaQ1ptEUiMVY03IAl6bzkwVncnHxZFyaTqW/g2cO7B3t4R2RUW02sXTpUnbu3HnI26xatYpVq1YdoxEJIYQQJw633rsiNchCd0XBmDKR4JSJKG2d2DZtw7ZpB7aKfdgq9mFmZhCdN5PovBlY3p7OY7lOF6UuL4Zl4tT6v50oSLyJbAzFg1R1oIvvb1tPTTBe7RrL0/qSfLbDN2tIhtW2hRpFdSb6uyEivZpOJKsQ102ayf9sXcdrjTVcM6F8WPs89Z7aZ3sxgBKDyHIXeHr+Ll7s8mKoFi/MauVTa/KxvRQg/PlM1rXU8z/b3qU8I5u755+R1uN2x6J0J6o2SsTC9ly80hW52MucYg/3zHmf/9g4Fcefu/DfmsV7oSZm+HKG9PodiYqudn688wO8Nhsd0QjTvFnYYyrOB9rx1MR41LaQp6c0Yk03UNwDN49Iro+a5PHh1W2UurzUBLt5qnYPDlXj38oX8uUPXmNnZ9uQx5WsshQk/phQnpHN39nL7/fFZ2BFTJPvzFoKQNQ0eaWxGruqcnbB+MMe+42m2tTXHdHRCa7pWttygIhpck5BCU5N54tT5nBF6TSuf/cFXmmo4bqJM9GPsJPoaDk+Ry2EEEKIw3JrPW/o+1WkBmBl+4icdQr+L3+G4MrziE0qQe3owvHGu3h++TDOJ55H21udmr72o/mncde80wc8VoEzWZEK0BEN8x+b3qYm2J0KEItyRnafo9HiSgSphpkmlh30TSEI9lTxkhWpyR4fnyguI2ZZfGfLWtoj/ddTHU5yKld22Ia+Nohl61uNgnjDBIB/FNdj5qjoOyOo1VGer49vHZOcApeO3o0mbK8EULtMYgscmBNteG126mdZvFTchNphUvuHWr679V0eq9414LEsy6IzGjniNT57ujv4+qa3qA52sz0RcqZ7s3D8pROtJoaZpeKJ6azaUYL7R63YXvAP2Axkc2LqX7LyVJ7Rs4/ZNROmM8njo9DppjrYTXdsaGvOGhPTWZPrBGf0OqYzppLsPR2IRbl1w+v8vGITd+/cwAN7trK1o4WoafQ7ZkckzM8rNvFIVU8BYqBps2PR64nwd1ZBSeqyXIeThdkFtEfDvD8CjVhGy3HX/lwIIYQQQ5OsSOmKknrDPySaRmzmFGIzp6C0tmPfuA19805sO/dg27kHM9tH7JR55EydhOEdeJPfZEWqKRTkT1U76YxFOKdgPLdOn49hWdiO079AHyz5Gvt1g9g8J7b1IfSNYWKnurAsi8ZwAK9uw6PbuGbCdPb6O3i3tYE/VG3nq9PmD/lxLMuiNRLGp9txvh1CicY79ZHR93X06DaybA5qI37CZ7lwPeFHf9HPlhnxaWC6kv7rXp2YHjcrkontzXiAi3y8pzp5St44fjJnG/M7Mpmxz8VFGQVsyeg/7Wx7Zys/2LaetmiYKd5MvjNr6YDTQodibUs9Ucvk9Lxi3mk+gInFJZvy0bdEMHNVgrdk8+stm5ix3saFtYXYXw5gezNIdJkzHj69Kpvbm3m/rZECh4vZiembV02Yhk+38zG9mMnNLrQN3Xyneho/mryLiq42FmQf/g8AySpssiJV6HTj0+2cUZnFv35YxuYJ3TDZZEOgif2BLiZ7fDSGg6yurWR1bSXnFU3od248uG8bLzX0XafVFBr9/U0PJ2qabGhrwqfbUw1AAJTmGF+qmMRN2U08X1/F0tyiURzl8J0Yv8WEEEII0U+yIpWh29Pag7E3KyeL8Ipl+L98HcFPnkts/DjUtk5i/3wT18//iOvRZ9C37YZY37VBmTY7dlWl0t/BPw9U4dFtfL7sJFRFOWFCFPRUpIJGjNjSeCjQ18WbTrRHw0RMM1WF01WVz0+eBZD2IvvuWJSYZTLBcmN7J4ilQ3T5wA0wShJtvKtPMjCzVWw7o4xvia9Hi1lmaiPlodofiE/H/Nh7WfHmFme7sTJ7psqdkltEwGbw7fk7MRSLL2+dRJm//9TFN5vqaIuG8eo2Krs7+I9Nb6U9lqQ9/njXt0tKyrhu0gyuri9h2nody6UQ+lwmeFTchU7unreHlz4fInqqEwwL+2tB3D9swfb3Lh7fGu+i+KX8k3DtiGF73s/kR2J85Y+FzPxVDOejXdjeDjJzv5sfvjuTqvr2IY0tuS4wWZFSFIWrwhP51y1laCgs2J+B66dt6Hvi/2aW55dw19zTuKBoIgC7DppGuM/fycsN1fh0Oz+Zfya/PXkFAE0Hd8QcQe+21B9RY5Sk9mgYE4sStwctGeJjFs6HOpmyVmNhIIv1rQ2pqufxRipSQgghxAkquX4nYyTWqugasVnTiM2ahtbWQUbFHqLrPkTfW42+txrL6SB60jSic2dgFuWhKArJSUwmFp+ZOINM29htLjFcvYOUWapjFOtodTHUmhj1mfGwVOjoCRWeRAUrYMT6H+wQko0mPllZiBKB6DInlm/gdT/TMrLY2tnKM437uOXsqTie6Oa6XaX815L4tLDmSJAS18CVxIHs93exsNlH8W4NM1slembfkJTncPFv5QtpDAXYr1lMfkPj028WwVILHD0BPtlk4XtzTuXeyi1s62xlZ1dbn0rFUFV2d6ASnzI5q9mLc0MHlgqhVT6sgvhrXJKY5lhp6+a0leOJnu3G9noQfV0Q+1shfqhOo9thkBO0AT0NICwdjAk65ngbxnidwIfdFG11sPxpoKzvcxrIwWuklKYY17yaj2JZ/GZuFdNaPZxTk8fZf3NyYMoEfFOcTPT4+PK0ebzTfIDaoB/DstASf/x4vLoCC7h6wnSmZWRhWCYqSp8gFTJi3Ln9PbLtDi4pKWOS2zfsP540hgL8z7Z3menLGXTq7lClpqP22mvO9lIAtdHAmGZjykkFrKtu4x91+7ihbNYRPdZoOHH+JCSEEEKIPnIdTjJ0W7yT2QiycrOwXXQmwa98hsCVFxKdUQaRKPYPtuD5/V9xP/AYtnc3sdwT71T3+ckn8YniySM6hrEiGVb9sRgoCrElyapUqM/eSz23j1cJA7H0glRbJIw3onHmziwsDaLLB29WcUXpNDy6jX/U7WV7eZBGV5hljTlcQbzi0ZxmJaOmu4tbtsZ/fpELvWDr/wb9rIJSrpwwndwL8tmQ28GEdif2f/atMlQF4hvUTnL7WJJTCMDu7va0xgLx9UJN4SCl7gxcbeD8YyeKAZGVXsypPX80SIbF2kSDEytTI/JJL4Fv5LJtYQRDscgK6ZhFGtFFTsKXegl+NYvAd/MI3ZJN5JNejAVO1Kuz2ZzXSWmrA/2RdjAOvb6rqXdFKmDi/H0nSsgicpaLNTO6+N78Cjo+5SZss/h0ZQln/cWB0hw/H0rdXqKWSUOvCk1dMP71GfnFAGiKSq7DSSAQIZao6G3paOH9tkZeaqjmKx+8zr+89wrrWurTfm0BqgJdWEBN4Mg3dW5LrAXMTnToVGui2F4PYNkVwpdn8PHiieiKwgsN+zGs0d2LbDgkSAkhhBAnKKem87slH+Nr0xccnQdQVYwpEwldej7+r1xH6NzTMApy0Zpacb78Dv/5/Cb+UadwZZcC0fSCw/HCm2jikWxEEJvvwLLFm060diYqUr2ClF1V0RSFgJHeZrmtkRCX7x2HI6oSW+zEyhq4GgWQZXewauIMTOCOHet5eGp8sf+FW+LrgNKZEhY2DBbt8lLW5caYbMOYc+jqpqap/HTRPjptMWxvB1G3x99It0fCdEQjlLq86KrKVG8WEK8spasyMa1vli0b54OdKAGL6BkuYkv7TnVMNt6oDR40bSxD5feza1h53nu8f5tK8F9ziHwqg9gpLswSG2h9g6LNrvHiBV1UeQM4dsawP93db7+wpOS6uAzdhgsN58OdqM0GsVl2oud7yE2sCTtwkslPPlHDluxOMuoVXD9rQ18fZLwrA4DqXiEmeW55VR21KorteT//98oMnn1uKeqjHWBYqWpfnt3JVG8mB0J+/mfbuzxVWzmk17Q7Fk0FmarEsTpjkbQD/8FSFSm7E2IWjse7UEyIXOTBytbItjspdWfgj0UJHuFjjQYJUkIIIcQJzKXpqSlCR5PldhFdPJfADVfiv/4KIifPAbsd754aXE++gPfnD+H8x6to+2oG3ZvqeJRsK98VS7SidqnE5jlRIpC7LX5R7yClKAoezRavYKWhqyvE5fvGYaoW0bMO3zr9wnETmezx0R4N81xpIwGvyeR9DqZ2uNMKUvWtXVy/czwmFpFPemEI51I0A+6aF98vy/6XTqz2WK/9muLd8aYmqqQVw6hIVXZ3oJsK171eGA8pJ9mJXOjpdzufbser2zgQ9GP2Cj5R02BzezOaXWF67tD2Jl1cUsw3luygyxnDtjaE/sbAr2FyXVyB3Y39yW60yihGsU74Kh+oCrmOeJBqCYeodHRz66lb6TzbAVFw/LWba17PxxvRUg0+CJos2OflvzZOI/MH7bh+1Y79lQAT2pxEFZOMzQaOP3ZS3RF/ff+1fAE/XbCcb520BIBn6vYd9rnVBrr57LoXuH/PVqBviGsIH9napd4VKdsrAdR6A2OKLbWeEOJ/XACISkVKCCGEEB91ZlE+4fNOp/urnyVwxQVEZ04Bw8C2eQfuP/8dz68exvHKGtTG42ND0UPJSFakoj0VpuT0vmXveflEVQFTXH33zHLpOmHTSGsq08SNOhlRndpZJlb24NWoJE1R+dKUOfHxaBbhs+PVmut2jac5jU15XS8HyYza2DozhFk8tKX1Xt3O20VtdC+xofgtwvc3sa+7b5Dy2uwUOd3UBf34D2orvs/fyZ5DVKoqOtv52oeTKaqJr0kLXx0PKQdTFIUSl5ewadAS6XnO2zvbCJsGczPzh7x/0bysPPw+k28s3o5lA8ezfrTN/VvYJ6tfl+4pwvZuCDNDJfxZX2pdVbJLYUskFA8ZqoJyfgahL2VhZqtM3G3jgTfmMfltFedv2nF/t4V/f6+Mc2vyIGhhTLERvsjDI1e18ukVG+jONtG3R7js+RxcMZVJ7vjruzS3iHyHi/qQn9Bh1uM9e2AfYdPgneYDWJbF/l6bGDek2RTlYG3R+Gs0vtWB7dUAlh3CV2T0CeR2JX4+R47DP7BIswkhhBBCHB2ahjFtMsa0yRAKo+/ai23LLrSqWuzrNmJftxEjP4fYrOlEZ03D8g29AcJYkaxIdcZ6Nkc1J+g0zVfI32jjtg+nYNYFiHxMwZjnAFXBk1hXFYjFhtYIJGyyYLMLQ7FoOE1jaDUUmJWZy5emzMEC7AUZRF8Pc0ZDDu8e2A/TDn9/pSHGxI0a3XqM/WdC2RAfN/ma1JyjMn2/BtuCnNFsx+OczEldPrSOMFaOxixHNvWhAFet+SdXlE7lc5NP4oX6/dxTsRGfbueRU87v1zChORxkwnsKF1UXYmQofULKQIpdHnZ2tVEb6CY/0fxhb2Jq4Exf9qD3O5iuqpyWV8xzsSreOj/I6f9w4fhLJyFfFuaknv3atnW0cEpDFhe+l42lQ/izvj7TMJNT+1rCQdojYbLsDlRFwZxkI3hrNtYT7RRsdlCwwQFEMb0Kz2U3sHt8iM+fvwCc8eBnr7PT5I/w9GVdXPnPHE6q8/LTdbPJXGqDxCk1yeOjKRykOtDNtIysAZ9X2DB4uaGaOS0Z7M0IcCDk76mG0bOh9HC1RkLopsLs5zQUE8If92Ll9P1DQLKLZ2SA/bPGOglSQgghhDj6nA5ic2cQmzsDpasbfdvueKhqbEF7bS2O19YSKy0iNnMqsfIyrIz+U7XGolRFqleQQlF4dGkDW7z13L7/JMbt13E+2oX5WoDI+R7cavyNt9+IHj5IGRa214PYwxr/LG2kOL/k0Lc/SO8mH6HlLmx/D3LB+hzUyVHMcTrog4QQy8L+TDeqpfCH6TVcUDz0jmrJ16RTiRL5dBbO+zoobXRQShHsh2SHvP9mAjc7iqhzh6hzh+mc3ExjcyOXaUWENJOozY/LZQObQkgz2dDdRGe1ny9sm0BUt4h9LuuQa8WgZ51UXbCb+dn5ADQk9l8qcqZ3jp1XNIHn6qt40LMH95lTOfl1B84/dBC8ORsrLz6OlqpuvvXBdBQUQldmYI639TlGsiK119+JiZVqwgCAS8W6Npvbne8wsdvFVStm05Ab5a73KznJl5MKURDvlAhQo/jZ+ek8zPvbmNPmw/xtO6EbMrF8GhPdGaxvbWCfv3PQILVlQx13vTaDmR1e9nuCvFpSS6hXoNnZ2cbP/Bu5YvzUtDo9JrVFwly7uwRXAxhlNmKn9N83LBmkolKREkIIIYQ4NCvDS3TpfKJL56M2taBvrcC2bTd6TT16TT3Wi29hjB/XE6q8h18TNFq8emKNVK+pfaZl8XbLARqyAoTPyyJYq2F/zo9WFcP5UCf/ljeBn06NDryQP2iiVUVRq2Jo+6Ko1VGUKJiKxSNTa7lDnzTssapLPTS92MGsRi/8oh1LA7NYxyztafVt5WmgKmg7Iui7ouz3BNk7L9ZnndfhZPRqwGEV6Zg/GMcNjz/D1LCXf8ubh9pqoLSY0Bwjs81GTpud2W1ArcUXE50FAdgcBOKhxwmcjTPxFbRe4cRV2jekDKSnc1/PWp+BuikOxTRvFpPcGez1d/JvGR/w/6aWcfHuQpy/6yB4SxamafGZlwtwGxqhc10Y8/qHhuQaqd2JqYsHb0isKgp7J0V4PdDCRePm0B2KnyPJ8ywpO3G/9miYPUYXv1q6nd9smc/EGgfO37QTujGLSYlplPsCnRxMqY8R+XsbZ+6OHyfkMJngd7HsSZNHl6qUZGZQ6e/gzea61ON8Z9bStF4vAF+jwmcqSrBsiSl9A0zBtKvxECpBSgghhBAiDWZ+LpGzcoksX4pa14htRyX69t3o1QfQqw9gvfAmxoRiYjOnxEOVZ2yFKoeqYVPUPhWpNS0HaAgFmOXLId/hwiyD0E02tJ0RbM/5mXjAyU+aZ9FRH0E9J4LabaLui6JVRVEaDJReDeEsh0Jsms5v8yqp9YZSXQKHxabww3P2MmeXm2uUydhrDbTqGFp1DNaEUo9njtdRmuJViV+dtI9zS6am9TCp6Y7R+GuysaORfRlBJpblEJtx0M/PtPjDxq3srmpmfMSNFbEoVF2EQlHOzi6lVPdA1GJvWzv1XX7shoq5wMm8BflDGsvBLdABGsKJfZ7SDFKKonDBuEn8pvJDAH5avoePO8ajb43gfKiDkGFQGHTw/sQuZpw78N5YyeB0INHePHuAvdWSe5NFTCPVsc9zUJDKSlSy2qNhqgJdhHSTLZdZlLxiR98SwfmbdqZ9Ov7ck134AJROA9sLAfT3grgthTp3iD1nmkxdUkTjL2qY2+rju++Vs+lyI9UdERhWwxorZvKF90rRLZXwxz1YuQNXD23HcbMJCVJCCCGEGH2KgllSSLikkPCKU1FrG+Khakcl+v469P11WC+8hTGxmNiMKcSmTx4ToUpRFDJsNjqiESzLwgL+XBXf+PaqCdN73xBjhgNjup1XXqxg3jonE/a54IG+TRXMbBVjog1jkg1zog2zKF4hem1dC0qkZ9+qYY83R+eh8hoWL5zKJHcWSpuJWh1Fq46hVkdRa2Nou+Nv3tcXtLO5uItv5Bam9RjJilSyk+G7jfH9jOZnDRB+VIXsIg8f+PfwQWLK32WlU3iiZh+usmw+WRJ/7Gcq9/H3ur3818zFnJo3bshjObgFumVZNIQCuDSdDP3wFa2DXTRuEsUuD/+34wM6YxH8V3rx3t+JVhXDA2zL6mLj+RFmDBI8su0OHKpGODF9rs/UvgRHokITNnqC1MEVqazElND2xJ5aAPleN+FrfVh/68L2fpipD1mUn+xhn60LQia214PY3gygRKHDFuOP02rwLc/m8knxBXP/t6KBm57XWNycxdw1Np6avJfuRJt+mzKM/nSv+pnW4WFXnp+SUwffdFnWSAkhhBBCjBRFwSwtIlxaRPicZWg19ejbE6FqXy36vlqs597AKC0iNn1yPFRlj+ymw+nw6nZaI2GChsHWzhb2BbqYkZHNgkGCQ3W5wU+dG/lxbBGzqjxYeRqxiTqxiTpq1sBvzfxGFLduQz3CVvbJtTVN4SCTPD6sHI0dti6+E1jLqpNncGHBRJRGg2BtkP/pqKDY6cWmHr5LYG/JilQyBLzXFA9S87IGfjM9yZ3RMz67M7XHVGO4p9FBMNF5zpVmkHRpOjl2Jw2hAFHTJGTECBoxJrkz+jWyGApFUViYXUC+00VndwS/GkP/XCau37TTHg7z34t28pWswfdt0xSVswtKea6+CoAse//pfw4t/nqHzMGDlE3V8Og22qNhWhJBKtfhBE0hckUGOFVsbwf58ZpZ/HXSAZwvtKL5LSwdXpnVxo9LK/jszFlcOG5S6pj/Nn8RoUkRzAfCODZH+VqwjO9N3wlKz89yyK9TfQz3KyHCqslflzVzqzpp0NsmQ5pM7RNCCCGEGEmKgjF+HMb4cYTPTYSqHZXou/am1lTxypp497/pk4mVl2EW5A5pv6OR4uvVcOLDjmYAziuaOOgbdbemY6qwa2aYqecUA3DPro28vrWWy0uncuX4aX3acsdMk6BhUOjsX71IV15ijU5zr72kXmmspjMW4Te7N5PvcLF4XCH7PFG6NsWYk+b0N+jZpLgzGqE1EqKys4Nil2fQqXTJlugAZd7MVHe93vtdhYx4tSLdIAVQ4vLQGgnREAqkWoGnO63vYMlg0x2Lkul1EPzXbP5v23ra2qPkOlyHvO8niif3BKkBmo2kKlKmkZoyOtCUzmybg5pgN3WJaltqvZWqELnYg+VUcL8c4LqKUiwsoic7qDzN5H/27KDQ4eb8ogl9jpdhs5ORbyd0oxPXr9o5pyKHoGsad0+oSC9IGT0b7z5w0n5ieYcO4rJGSgghhBDiaFNVjAnFGBOKCX/sdNT6pnig2rkXrakVrakVx9vvY2ZmpCpVRmkRDHGvoOHy9mqBvqurHYDyQbqkAan25/7Em/raQDcvNuzHAv60fydZNjsX9uq25x+kKjEcBQOElA1tTQCYwK93b2bR4nNTba/TbcgAvYNllJrE5q7TMwZvNe6z2cmxO2iNhJnizaTAEX/MxlDPGJMVKaeWXnUM4uukPuxooTbYTSyxDied5hkD6R2kANAUmmPxdWYDTdfrbZLHh66oxCwz9Vx76z2171A/+6xEkGqLhvHp9lQgAUBRiJ7n4Z+B/XiqLEouKmLCVB9/370ZgJUlZWiDTNez8nRCN2Ti/G0Hn9icx06rg/fLD78xr2lZNIYCjF+roNXEaBln8LfJB1hpn3LI+9llap8QQgghxDGkKJjjCoiMKyCyfClKSxu2XfvQd+1Bq2vEvn4z9vWbMV1OjGmTiE2dSGxSKTiOoFnDIJJrgjqiEXZ3tePSNEp7TVc7mCvxpjj5Jnl1bSUWUJ6Rzc6uNvYHuvvcfrDpXcORd1CQagwFqAl2M8GdgU1VqezuoD4USHW2G07gSAbLrlgkNe0sWQkbzES3j9ZIE2WeTLLtDnRF6RP2hju1D3rCYGMokGpocORBqicsJrVFQqhA5gANJA724JJz2d7ZSvkAe1klp/aFDzG1DyDT3nMu5wzy+m45KcRLudV8Py+fCcTXVAHM8B16NzKzxEboOh/O33XwtQ/LuMtZCYsHv73SabD3rXpsGyPYO7xYOvzfvEpMBeYNNMW1F12aTQghhBBCjB4rN5vIqdlETl2A0uVHr0hUqvbXYdu8A9vmHViJilZsygRiUydh5YzMuqpk04Idna2ETIPZmbmH7HKWrEgFjRiBWIxXGqtxaRpXT5jOHVvX9dncF45OkEpO7dvQHq9GLczOR0GhsruDzR3NvSpS6e/nlWo2EY3QHI5XaXIHWAvU26WlU8i02VmQnY+qKOQ5XNSHAkRMA7uqpabkDSdI+Ww9oac9Gg8ShQNUgtKR/JknG2qYlkVbNEymzTGkDnfZdifL8ooHvG4ozSYgXpFKGuz1darx1ys5NTLZ5MI+hCqtOdVO+Gof9kc6uO39MmLzw1hT449ZHegCv8nkPXb0jWHUvVHmWnbATrUnSNMKnbVWCyf5clh4mCCVrKRFZGqfEEIIIcTosjI8RBfOJrpwNoTC6Huq0Sur0Cr3o++rQd9XAy+/g5mTSWzqJGJTJmCMHwfDmDYG4E28UX+/rRGA6YeY1gfg7lWRqg/5iZgmi7ILKE6Elo7Em/2kwVpgD0eevaci9VRtJX+t3g3AguwCTMtidW0lm9ubaUtULoZTufHoNhSgKxalJZIIUodZN7Qwu4CF2QWp7/MTQaopHKTE5e01tS/9t66pvb5iURoTAXKkp/Z1RSMYltVvX6jh6LtGavCffZZ9CEEqcU4nX7/k9DnHEBuIGHMd/HF7HZ/9oAT9D52Er8+ENoPu1xqY35iBbiWCpE/lrdI2Hs6pYlemnwmuDAjAqokzDtvUo6fZhEztE0IIIYQYO5wOYidNJXbSVDBN1LpG9Moq9N1VaI0t2N/dhP3dTVgOO7HJpcSmTMQom5DWJsDJ6kRyfdR07+DrgaCnhXnAiKWCRp7DRaatZ4pgbyNZkXJoGpk2O/WhAPft2QrAKblFzM3MI2oaqCh82NGCrigoQIHz0AFoIJqi4NVtdEYjqcrX4ab2HSy+dqiFplAySBnoipJqlZ0Ob6927G2J1/tIA8/BQao1OrT1UUMx1Kl9vfegGuz5JCt4oVSQild90unEuH5GN2Z3NdfvGo/rN/F2/YvIpMMWpb48yoTTCjAn2Xhy2y52tcXXUu0PdDHNm8XcQTo19pasjkmzCSGEEEKIsUpVMUuLiJQWxddVdXaj766KV6v21WDbsQfbjj0AGAW5GJPHE5s8HmN8EeiDv2XKOKij2owB1r305k4cKxCL9Qoarnh7cxQ6D6pI+Q/RuW048hyuVFi7sWwWK0vizQBsqsrUjMxUIMy1O/s2MEhDkdNDRXc7u7raEsdKL5AlA1xy89yQERvWtD7o2449uUlw8rLh8vbq1AikKngjWpE6XLOJ3hWpQYKqMzWNNF7t6alIDT2QenU7f5hWwydyJpK32aJmYpRfZFTwfl4HWU4HD0wqRleV1PqrpE/0aphyKDaZ2ieEEEIIcXyxfF6iC2cRXTgLojG0qtp4tWpvDVpjS7xitW4jlq5jTBgXD1Vl4zFzs/u0V+/9pnx+Vl5qHdJgPFr89gEjSkuvNUSqouCz2elMbO6bnBI1khUpiE/vqyReWTgzv6TPdSsKxqeClG+A1txDNcGdQUV3O83hEArpV2qSa7PqQwFMyyJkGmQMczwZvUJPRzRChm4btGPdUB1ckUpWuka+IhVBV9QBp+INZY2UK7kn1UFT++xpTGP16jZQoOJsE/el+fypYhPv1rfj0W20REL8z7Z3+X/TF6TWn0G8c+MZ+QOvATuYLdVsQqb2CSGEEEIcf2w6xtSJGFMnEgaUtk70vdVoe6vRq2rj66z2VMPLYGZ4UqEqNrG0T0Xq4702OB2Mq1f78+ZI36lvmTY77dEwASOWWhcz0kGqqddGtwdXUC4aN4lnD+xjf6DrsIHwUMa7vamvsx1OdFXFNK0h3z/Zaa8+6D+iPaSg53VrCYcIm0ba0wwHPOZBmw63Jqox2SNYkQoZMbpjUby6fcB1Rr0rUoN17UtVpMyDpvalESQPDo07ElXG/565mF/u3sz7bY08sHcr7ZEIOXYHnywuY7I3c8jVTJnaJ4QQQghxArGyfUSzE9Uqw0Cra4yHqj3VqAcasW/eAZt3YAEz8nO4xRbmgywHSz2HntYH8XbPDlUjEOupSCVDiy+1Tip81ILUJ4onc0/FJr5QNqvfdYqicNfc0/hLdQUrCkuH/Rjje7V/z3el39gh2QyiPhQgZA6/Yx/Eg4muqKl26kdSaUtKhYtoMkgl116NQEUqEUA6YxFiljXoz31oFamDuvYZBnZVPWwDiN56B6lALMZ+fyf5DhdzsvK4c+4yPrPuBTa2N2NikWVzcMX4aUM+NsjUPiGEEEKIE5emYYwfhzF+HJEzl0AwhL6vFm3vfvR9tTiaWrkSuLLOj7X9IcyifGITSzAmlsQ3BLb3fyPs0XU6ejVjSL4RTu5B1BGNUJwoCI1k1z6AcwsncJIvl9JeVaPevDY7NwwQstLR+9jDaViRY3diU1QaQgGCseFvxgvxcJih22hLTD0byj5PhzPYGqkRqUglnmcyZA8WpJyajkvTiZjGoM/J1avVPsSnz6W77q13kNra2YJJfM8ziIc5j25LBcnhvLbStU8IIYQQ4qPC5SQ2cwqxmVPi0wDbO+Prq6pq0arq0A40oh1ohLUb4ntXFRfEQ9XEEoySQtB13JqN1kiY+lAAl6anWqInO/d19urcN9IVKVVRBg1RI6XI6UZXVGKWOayKlKooFDrd1AS7U50Nh1uRAsiw2VNByjcCTTvcmo5KvKU6MGLdAKGnIpUMJ4cK0J+dNJOoaaIOUmFyHrRGKmyYZA0Q7A+l9zTG5w5UAXBqbhEQD6nFicYi0He64VDJ1D4hhBBCiI8oK8tHLMtHbN5MsCyU1nb0qjq0qtp4wKqpR6+ph7ffx9I0jOICvuRWeFoPsyXDTm6GL3Us3wAt0A/VuW2s0hSVEpeHqkAXecOoSEE8jNUEu6nydwJHFqR6v3YjMbVPVRQ8um2ANVIj12wiGaQO9XM/XGc8V68NeWOmiYmVVse++OPHX6893R180NZIts3RZzPhYldPkMoeTkUqERyjlgQpIYQQQoiPLkXBys0mmpsdX19lWahNrT2hqroOvfoAZwBnAAZQ52vH0foWxvhxFCTe43dGw3REwvzfzg+o9Mc77B1PQQri66SqAl3DqkhBT+e+vYkg5RxmK3YY+SCVPOaBUIBdXW0cCPnJd7iG3S6+t2RFKhmmj+Tn7uw1tS/VsW+YU/uSG05fMG5in/28il2e1NeZR1CRisjUPiGEEEIIkaIomAW5mAW5RBfPTQWr6L5q3t+8kTkdEcZ3BuH9D+H9D7kMWOLU6KiNsa+wlsZoKzg1Cl2eI27ZfaydkV/Mzq42FuUXQij9+xclAlgySLkOsZfX4fTurJg5YkHKDgT49e4PAbi8dOqIHPfgVudHsn9Y7/bnyWYOww1S8fuq/TpT9g5SWcOqSCWDlFSkhBBCCCHEYBLBSivI5a+Obr7b0cKNORO4wnKj1dQTq6qmtK2L0r0NsLeB04Gw045ZrKFG3scoKcQYVwCOkQkDR9NpecWcUVBCrsdLS6g77fsnW6DvSwYp9Qim9tl6V6SOfPod9GysXNHdTqHDzflFE0fkuP2D1PArUo5U+3OjV0Uq3al9PY//8XGT+q0DK3b2rLcbzhopm5KY2idBSgghhBBCDMWyvHFs62wlp7CAWH4JsTnl7PV38N/rXuGskEpxcyeLumJM6Y6g7KmGPdUAWICZnxMPVcWFmCWF/TYJPhEkp/Yl1844x9AaKejbcvzmaXP7THc7Eg5t5IKUpig4VI2QESM87Kl9Pa/XFQNU3Y60ItXTbEKm9gkhhBBCiCH4ZHEZ5RnZqVbSEG8f3WHTeMoGZGRy9fjpFJZORa1vRqtriH/UNqA1taI1tcLG7QBYDjvGuIJUxcocl4/l9QzyyMeHEpcHFUjWKY6oa1/vqX0j0LUP4NoJ5czIyObMgtIRXb92cNA50mM7NY2QYaSmzh0c1A7Hpqp8Y8Yi3Lo+YHv3DJudDN1GVyx6RFP7pCIlhBBCCCGGRFUUZvpy+lzm0+04VY2QaaArKmcVlIKuY5YWYZYWEU3cTunyo9U1oCaD1YEm9H016PtqUscyvR6McfmYRfkYRfnxcOUZXuOH0WBTNYpcHuqCfqBnvc9wZByFilSRy8OFrkN3zRsOVVGwq2oq+Bx5kIrvWZbcS8o2jLV2p+cXH/L6M/JL2OfvHN7UvuQaKenaJ4QQQgghhktXVb4/dxkt4RAzfdmDbvBqZXiIlZdBeVn8AsOIdwesbUCrb0I90Ija3IatYh9U7Evdz8zwJEJVAUZRHmbR2A5XE9wZqSB1RFP7EuFJV9QjqmwdKw5VSwWpI92I2ZWocHUlugCmW5Eaipunzh32fTVFRVMUmdonhBBCCCGOTHlGNmSkeSdNwyyKV5+SVSuiUdSGFrT6pni4qm8aOFz5vBiFefHugoV5GAW5WFm+MbHmqtTV08hgJPaR8tnsKGPgeR2OQ9XoYmT2D0sG0GQ79ZFo0T7SbIoqU/uEEEIIIcQYYbP1mxJIJIra2IJ2oLFvuOrs7hOuLLsNMz8XoyAXszDxOT8X7Md2L6sJ7p5EeWRrpHqC1PGgd9XoSNqfQ8/r1hGNbxqcbte+Y8GuaqlmGMcTCVJCCCGEEB8V9kHCVVMLWmMLakNz/HNjC1ptPVptfequFmBlZ2IU5mIW5MU7B+Zlx6tXR+nN+fgRClIFDjflGdmcnF0wEsM66pIt0FWUI1obBvFmEzC2K1K6qtIdix7+hmOMBCkhhBBCiI8yuw2zpAizpKjnMstCaetEa2xGTQarxhbUtg7Utg7YsafnprqGmZsd/8jPxszrHbCO7E17qbtnap/zCAKFrqrcPf+MIxrLsZSsSHl12xFPRUxO7etMVaTGXpCyqyomFsZx1nBCgpQQQgghhOhLUbByMonlZMKMKT2Xh8KpipXa3BpvcNHchtbQjNbQ3OcQyYAVKcnH5vNh5GZj5GbFA9YQQ1HvKpT7OGgSMVKSFaneGwkPl6vfGqmxObUPSDXYOF6c0Gfknj17+OY3v0l3dzd2u51vfvObLFq0aLSHJYQQQghxfHI6MCYUY0zo1Q7bslD8wXiwam7rF7DMhmZ6r/KxFAUry4eZk4WZk4mZm5X62vJ6+jW5uGP2KTSHg7hHcK+msc6hxt+ij8T+VMlKXmeya98YrEglW7Ifbw0nTugg5XA4+MEPfkBZWRmVlZXcfPPNPP/886M9LCGEEEKIE4eiYHndGF43xqTSnsstCy0YIjMSpLuyFqWpFbW1HbWlo2eKYGXfQ1k2PRGqEiErJ4vFOZmYWYVgWWOik+CxkJza59FGoCKlHtxsYgwGqeReUsdZw4kTOkiVlJSkvi4rK6OrqwvLso6LtpdCCCGEEMe1RMDScguI5eRimlbPdeFIPEy1tqO2Jj63tKO2dQw4TRDActgxs3yYWRnxilavDyszY8jTBY8Hqal9I1KRGvtT+5JBSipSaVi/fj0PPPAAW7Zsoampid/85jecffbZfW7zyCOP8MADD9DU1MTMmTP57//+b+bOTX/Tr5dffpmZM2dKiBJCCCGEGG0Oe2rfqz4sCyUQjIeqRMhSWttRO7oOHbIAy+ftCVZZPszMDKxML6YvA8vrPq6C1kgGqWTXv2iikcNYrEglx3S8bco7qkEqEAhQXl7OZZddxle+8pV+1z/77LPceeed3HHHHcybN4+HHnqIG2+8keeee46cnBwALrnkkgGP/cQTT6AlTpza2lr+93//l3vvvffoPRkhhBBCCHFkFAXL48bwuPuuw4J4yAqGUNo6UdvjH0p7r687u9E7u2F/Xb/DWonqmOVLBCufF9PnTX02fRngcoyZqYOprn0jsO9VxkHHsI/BQNkztU8qUkO2fPlyli9fPuj1Dz74IFdddRWXX345AHfccQevvfYaq1ev5oYbbgDgqaeeOuRjdHd3c/PNN/Otb32LiRMnHtF4VXX0/3ElxzAWxiLGNjlXRDrkfBHpkPNFDNXInisKeN3gdWOOL6LfW+6YgdLZhdrWidLWGf+6owulszv+0eVH7fKj1TYMeHTLpmP5vFgZHiyvB9PrTn1tpb52wwh00jucZIOIDJvtiF+7fKer37HH2r/dZEUqRnz651gb32DG7BqpSCTC1q1buemmm1KXqarKsmXL2Lhx45COYRgGt956K1deeSWnn376EY1H11Vyc72Hv+Exkp3tGe0hiOOEnCsiHXK+iHTI+SKG6pidK4WZg15lGSZ0dmO1dWK1d2K1dSU+d2K1d0FbJ0pLO7S0H/oxnA6UTC+KzwM+L0ryIxHyFK8bxeuKfz3M6s9JwXyo2sncosIjfv851dV3TVR+tpfcnLHznhYgw+UAwOGJh9Tj5XfLmA1SbW1tGIZBXl5en8tzc3Opqqoa0jHeeOMN1q5dS3NzM4899hgAf/zjH/H5fGmPJxYz6ewMpn2/kaaqCtnZHtra/H0XbQpxEDlXRDrkfBHpkPNFDNXYO1dUyMyKfww0USkSRenyo3T7UboD8SpWr6/jn7uhoQWroeWwj2Y5HVhuF5bHheV2xr9Ofu9xYbmc4HRiuRxYTgc47KAoLHDl8thpF+LVbbS0dB/RM1YsExVSFbxgV4QW68iOOdLMaHxtVFtHAPIZ9fPF53Nhsx0+BI/ZIDWYdLrunX322WzdunXEHnts/AKIM01rTI1HjF1yroh0yPki0iHnixiq4+Zc0XXIzox/HEo4gtId6AlZ3X6UQCjeKCMQRPEHUYLxz2prO7S2D+nhLUWJByqnA6czHq6SISv+tTN1vWW3YdntWA4b2O1YdhvYbf3WeSkoZNudtERCANgUZcz9LPTEPlIhIx6ojpfzZcwGqezsbDRNo7m5b2eW1tbWflUqIYQQQgghjhmHHcthx8jNOvxto9F4yPIHUQI9H6o/iBIKQzCEEgr3fATDKMHQsIZlAdhtWI5ksIoHrW8FO2mwYgQ0lcLQBuwOB9hsWLoGNh1L1xOfNdB1LJse/5y6XAddBTXxMcJNOaRr3wiz2+3MmjWLd955hxUrVgBgmiZr1qzhs5/97CiPTgghhBBCiCGw2bAybfG9roYqFusTrAjFw1WfwBWJQiSCEo6iRCLxaYnhCEokGq+WWT0VnQW9j31gyxE/JUtVQYt/WKoKqhb/XlWxNDXeal7t9b0CoMQDmKIc9D1cHPSzINhNvn8HzJxxxOM7VkY1SPn9fvbv35/6vqamhu3bt5OXl0d+fj7XX389X//615k1axZz587loYceIhQKcemll47iqIUQQgghhDiKdB3Lq2N5h9l0wbIgGouHrXCE1Xu28359DS7D5D+nzsdmWijRWDywJT/HjL7fRw2IRROfY2AYKIYJpgmJz4phoMSiYIRRrOFPxZuc+Ih078Eyjp+q1KgGqS1btnDdddelvv/e974HwJe//GW+8pWvcOGFF9La2so999yT2pD3/vvvT+0hJYQQQgghhDiIosSn+Nlt4HUTC+SxIdQEgDVrOrGjsV+WZaUCFoaJYho931sAVvw2lhUvSFnJ76EpFODF+iouKJ+NbwzuczWYUQ1SS5cuZefOnYe8zapVq1i1atUxGpEQQgghhBAnljxHz15S6tHadFhRQNeAeBA6VH3q4OtyyeXqCeOPm/2jktTD30QIIYQQQghxvOodpMTIkSAlhBBCCCHECSzX7hztIZyQJEgJIYQQQghxAsuRIHVUjNn250IIIYQQQogj59A0vjlzMT6bfbSHckKRICWEEEIIIcQJblneuNEewglHpvYJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaJEgJIYQQQgghRJokSAkhhBBCCCFEmiRICSGEEEIIIUSaFMuyrNEexPHANC0MwxztYQBgs2lEo8ZoD0McB+RcEemQ80WkQ84XMVRyroh0jIXzRdNUVFU57O0kSAkhhBBCCCFEmmRqnxBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmClBBCCCGEEEKkSYKUEEIIIYQQQqRJgpQQQgghhBBCpEmC1Bj0yCOPsGLFCubMmcOVV17J5s2bD3n7f/7zn1xwwQXMmTOHiy++mDfeeOMYjVSMtnTOlYqKCr7yla+wYsUKysvLefjhh4/hSMVYkM758thjj3HttdeyePFilixZwuc//3k+/PDDYzhaMdrSOV9eeuklLr/8chYtWsT8+fO55JJLePLJJ4/dYMWoSvd9S9K9995LeXk5P/rRj47yCMVYks758sQTT1BeXt7nY86cOcdwtIcmQWqMefbZZ7nzzju55ZZbWL16NeXl5dx44420trYOePsNGzZw2223ccUVV/Dkk09y7rnncvPNN1NZWXmMRy6OtXTPlWAwSGlpKbfddhv5+fnHeLRitKV7vqxbt46LLrqIP/zhD/z5z3+msLCQz3/+8zQ2Nh7jkYvRkO75kpmZyRe/+EX+8pe/8PTTT3PFFVfwzW9+k3feeecYj1wca+meK0lbt27l0Ucfpby8/BiNVIwFwzlfsrKyeOutt1Ifr7766jEc8WFYYky54oorrO9+97up7w3DsE4//XTr/vvvH/D2t956q/XFL36xz2Wf+tSnrDvuuOOojlOMvnTPld7OPvts649//OPRHJ4YY47kfLEsy4rFYtaCBQusp59++mgNUYwhR3q+WJZlrVy50vr5z39+NIYnxpDhnCuBQMD6+Mc/br3xxhvWqlWrrB/+8IfHYqhiDEj3fPnb3/5mLVmy5FgNL21SkRpDIpEIW7du5bTTTktdpqoqy5YtY+PGjQPeZ+PGjX1uD3D66acPentxYhjOuSI+ukbifAkGg8RiMTIzM4/SKMVYcaTni2VZrFmzhr1793LyyScfxZGK0Tbcc+WHP/whS5cu5YwzzjgGoxRjxXDPl+7ubs466yyWL1/OzTffzO7du4/BaIdGH+0BiB5tbW0YhkFeXl6fy3Nzc6mqqhrwPs3NzeTm5va7fVNT01Ebpxh9wzlXxEfXSJwvd999N+PGjeOUU045GkMUY8hwz5euri7OPPNMIpEIqqpyxx13cOqppx7t4YpRNJxz5dVXX2Xt2rWyhu4jaDjnS1lZGXfeeSfTp0+ns7OT3/3ud1xzzTU888wzFBYWHothH5IEqeOAZVkoijLo9QNdd6jbixPX4c4VIXob6vly33338eyzz/LHP/4Ru91+DEYmxqLDnS8ej4cnn3ySQCDAmjVr+MEPfsCECRNYtGjRMRylGAsGO1daW1v51re+xS9/+UtcLtcojEyMRYf63TJ//nzmz5+f+n7BggVceOGFPP7443z5y18+RiMcnASpMSQ7OxtN02hubu5zeWtra7/0npSXl9fv9i0tLYPeXpwYhnOuiI+uIzlfHnjgAX7729/y4IMPMn369KM5TDFGDPd8UVWViRMnAjBz5kwqKyu59957JUidwNI9VyoqKmhqauKaa65JXWYYBuvXr+fhhx+WzqAnuJF472Kz2Zg5c+aYmX0ja6TGELvdzqxZs/p0OTJNkzVr1vRJ473Nnz+ft99+u89l77zzzqC3FyeG4Zwr4qNruOfL/fffz69+9Svuv//+MdVuVhxdI/X7xbIsIpHIURihGCvSPVfmzJnD3//+d5588snUx+zZs7n00kt54oknjuHIxWgYid8thmFQUVExZroPS0VqjLn++uv5+te/zqxZs5g7dy4PPfQQoVCISy+9FICvf/3rFBYWcttttwFw3XXXsWrVKn73u9+xfPlynn32WbZs2cL3v//90Xwa4hhI91yJRCKptviRSISGhga2b99OZmYmxcXFo/Y8xLGR7vly33338bOf/Yy7776bkpKS1LpLt9uNx+MZtechjo10z5d7772Xk046iYkTJxKJRHjzzTd56qmn+O53vzuaT0McA+mcK263u19l2+12k5WVxbRp00Zj+OIYS/d3yy9+8Qvmz5/PxIkT6ezs5IEHHqCuro4rrrhiNJ9GigSpMebCCy+ktbWVe+65h6amJmbOnMn9999PTk4OAAcOHEBVewqJCxcu5O677+anP/0pP/7xj5k0aRK//OUvmTJlymg9BXGMpHuuNDY2snLlytT39957L/feey+XXnopP/zhD4/18MUxlu758uc//5loNMpXv/rVPsf58pe/zFe+8pVjOnZx7KV7voRCIb773e9SX1+P0+mkrKyM//3f/+XCCy8cracgjpF0zxXx0Zbu+dLZ2cm3vvUtmpqayMzMZPbs2fzlL3+hrKxstJ5CH4plWdZoD0IIIYQQQgghjifyJwIhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJMEKSGEEEIIIYRIkwQpIYQQQgghhEiTBCkhhBBCCCGESJNsyCuEEGJM+PnPf84vfvGLfpefeuqp/P73vz/2AxJCCCEOQYKUEEKIMSMjI4P777+/32VCCCHEWCNBSgghxJihaRrz588/7O1CoRBOp/PoD0gIIYQYhKyREkIIMabV1NRQXl7O008/zde//nUWLVrEl770JQDa29v59re/zbJly5gzZw5XX301mzZt6nP/zs5ObrvtNubPn8/pp5/Or3/9a370ox+xYsWK1G1+/vOfs3Tp0n6PXV5ezsMPP9znsscff5yLLrqI2bNnc/bZZ3Pffff1uf4b3/gGl112GW+//TYXX3wx8+fP55prrqGioqLP7QzD4Le//S3nn38+s2fP5swzz+Qb3/gGAI888ggLFizA7/f3uc/atWspLy9nx44dab6KQgghRppUpIQQQowpsVisz/eWZQFw11138bGPfYyf/exnqKpKJBLh+uuvp7Ozk69//evk5OTw5z//mc997nO88MIL5OfnA/Cf//mfvPvuu3zzm98kLy+P3/3ud+zfvx9dT/+/wPvvv5+f/OQn3HjjjSxZsoStW7fys5/9DJfLxapVq1K3O3DgAHfddRc33XQTDoeDu+66i6997Ws888wzKIoCwLe//W2eeuopbrjhBpYsWUJHRwfPPfccABdffDE/+tGPeP7557nssstSx129ejWzZs1ixowZaY9dCCHEyJIgJYQQYsxob29n1qxZfS773ve+B8C8efP4zne+k7r88ccfp6KigmeeeYZJkyYBsGzZMi644AJ+97vf8R//8R9UVFTw0ksv8ZOf/IQLL7wQgKVLl3L22Wfj9XrTGlt3dze//OUvuemmm/jyl78MwGmnnUYwGOTXv/4111xzDZqmAdDR0cGf//zn1Lgsy+KWW25hz549TJkyhcrKSv7617/yX//1X1x33XWpx0iO0efzcd555/HEE0+kgpTf7+eFF17gtttuS2vcQgghjg4JUkIIIcaMjIwMHnzwwT6X2e12AM4666w+l69Zs4ZZs2ZRWlrap4q1ePFitmzZAsCHH34I0Gcan8fjYdmyZWzevDmtsW3YsIFAIMAFF1zQ5/FOOeUUfvWrX1FfX09JSQkAJSUlqRAFMGXKFAAaGhqYMmUK69atA+hTbTrYFVdcwec+9zmqq6sZP348//znP4nFYnziE59Ia9xCCCGODglSQgghxgxN05gzZ06fy2pqagDIzc3tc3lbWxsbN27sV8ECmDBhAgDNzc14PJ5+jSkOPtZQtLW1AXDRRRcNeP2BAwdSQergToM2mw2AcDgMxCtvbrf7kFWxpUuXMn78eJ544gluvfVWnnjiCc455xyysrLSHrsQQoiRJ0FKCCHEcSG5tigpMzOT2bNnc/vtt/e7bbKKlZeXh9/v79flr6Wlpc/tHQ4H0Wi0z2UdHR39Hg/gt7/97YBBbPLkyUN+LllZWQQCAbq7uwcNU4qicPnll/PYY49xySWX8P777/drbCGEEGL0SJASQghxXDr11FN5++23KS4uHrTClKxuvfLKK6n1R36/n3feeadPgCksLMTv99PQ0EBhYSEAb7/9dp9jLViwAKfTSWNjY79phuk65ZRTAHjyySf7NKk42KWXXso999zDN7/5TQoLCznttNOO6HGFEEKMHAlSQgghjksrV67k0Ucf5TOf+Qyf//znGT9+PO3t7WzevJn8/Hw+97nPMW3aNFasWMHtt99Od3c3+fn5PPDAA/2m+p1xxhk4nU6++c1vcv3111NTU8Ojjz7a5zY+n48vf/nLfP/736e2tpbFixdjmib79u1j3bp1/PKXvxzy2MvKyrjqqqv44Q9/SEtLC4sXL6azs5Pnn3+en/zkJ6nbFRYWcsYZZ/Daa6/xxS9+MdXMQgghxOiTICWEEOK45HA4+MMf/sDPfvYzfv7zn9PS0kJOTg5z587t01zihz/8Ibfffjs/+MEPcLvdXHvttcyZM4fnn38+dZucnBzuuece7rrrLm655RZmzZrF3XffnapiJX3hC1+goKCAhx56iAcffBCHw8GkSZP63W4ovvOd71BcXMzjjz/OfffdR05OzoAVp3PPPZfXXnvtkI0phBBCHHuKldygQwghhPiISO7R9Morr4z2UA7r1ltvpampiT/96U+jPRQhhBC9SEVKCCGEGIN27tzJli1bePHFF/nxj3882sMRQghxEAlSQgghxBh000030dbWxrXXXssFF1ww2sMRQghxEJnaJ4QQQgghhBBpUkd7AEIIIYQQQghxvJEgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBpkiAlhBBCCCGEEGmSICWEEEIIIYQQaZIgJYQQQgghhBBp+v8g94NCrVDNAQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "mtp = Multitaper(lc_ar4, adaptive=True, norm=\"abs\")\n", + "mtp_rebin = mtp.rebin(f=7)\n", + "\n", + "print(\"Original df: \", mtp.df)\n", + "print(\"Rebinned df: \", mtp_rebin.df)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Original\", color=palette[4])\n", + "plt.plot(mtp_rebin.freq, mtp_rebin.power, label=\"Rebinned\", color=palette[7])\n", + "plt.plot(freq_analytical, psd_analytical, color=palette[0])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "163d3050", + "metadata": {}, + "source": [ + "### Poisson distributed lightcurve\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "2c4dcaa6", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD7CAYAAAB68m/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABpKElEQVR4nO29e5glV10u/K6q2ve+Tff09Mwkk0yYEGguEkw0qARkouR7sIGon+IzD5yj4vFR/DDikw9HOGZCAh4bfcRoEsMR1Afh4CEigQz4JcCgh0QuETESOpCQTDKTTGcufZm+7Utd1vfHqrVqVe2qXatq757e3b3ef2b6slf/du2q33rX+7sRSimFhoaGhsamh7HRBmhoaGho9AbaoWtoaGhsEWiHrqGhobFFoB26hoaGxhaBdugaGhoaWwTaoWtoaGhsEWiHrqGhobFFYG20AQsLq/C87KnwY2MDmJtbWQeLuoO2Kzv61TZtVzZou7Ihr12GQbBjRy32Z0oOvdls4g//8A/xta99DaVSCVdeeSVuu+02HD9+HIcPH8bi4iJGRkYwPT2N/fv3ZzLO82guh85f24/QdmVHv9qm7coGbVc29NouJYf+x3/8xyiVSrj//vtBCMG5c+cAAEeOHMGhQ4fw5je/GZ/97Gdx880342Mf+1hPDdTQ0NDQUEOqhr66uop7770XN954IwghAICdO3dibm4OMzMzmJqaAgBMTU1hZmYG8/Pz62uxhoaGhkYsUhn6yZMnMTIygjvuuAPf+MY3UKvVcOONN6JcLmNiYgKmaQIATNPErl27MDs7i9HR0XU3XENDQ0MjjFSH7jgOTp48iZe85CX4vd/7PTzyyCP4jd/4Ddx+++09MWBsbCD3a8fHB3tiQ6+h7cqOfrVN25UN2q5s6LVdqQ597969sCxLSCuveMUrsGPHDpTLZZw+fRqu68I0TbiuizNnzmDPnj2ZDJibW8kVGBgfH8TZs8uZX7fe0HZlR7/apu3KBm1XNuS1yzBIIhFO1dBHR0dxzTXX4KGHHgIAHD9+HHNzc9i/fz8mJydx9OhRAMDRo0cxOTmp5RYNDQ2NDYJSlsv73vc+vOc978H09DQsy8IHP/hBDA0N4ZZbbsHhw4dx1113YWhoCNPT0+ttr8Y2AJlfRPWT92Htv/wc6GB8vq2GhkY7lBz6vn378Hd/93dt3z9w4ADuueeenhulsb1hzC3CWFqBsXgernboGhrK0KX/Gn0H4nnsP463sYZoaGwyaIeu0X9wfUfuuhtrh4bGJoN26Br9B5+hE+3QNTQyQTt0jf6DkFy0Q9fQyALt0DX6DkRLLhoauaAdukb/QUsuGhq5oB26Rv+BO3ItuWhoZIJ26Br9B66hezptUUMjC7RD1+g78Dx0ohm6hkYmaIeu0X/QQVENjVzQDl2j/+Bph66hkQfaoWv0H7TkoqGRC9qha/QddB66hkY+aIeu0X8Qeeg6y0VDIwu0Q9foP+jSfw2NXNAOXaPvoCUXDY180A5do//g6tJ/DY080A5do/8g0ha1hq6hkQXaoWv0HzyfmWuGrqGRCdqha/QduIau89A1NLJBO3SN/oOuFNXQyAXt0DX6D9qha2jkgnboGv0HLbloaOSCdugafQeiGbqGRi5oh67Rf9CFRRoauaAdukb/Qfdy0dDIBe3QNwmK//x1mCdObbQZFwa6l4uGRi5YG22AhhqK33gEtuvBvWTvRpuy7gj1cqEUIGRjDdLQ2CTQDH0zgFIWKNwuEgSXXKT/a2hopEM79M0ALj1420SCkJ34dtnENDR6AO3QNwOEQ98mzk124j3S0Yv/8k0Yp870ZC2NFFCK0hcfBJlb3GhLth2UNPSDBw+iWCyiVCoBAG666SZce+21OH78OA4fPozFxUWMjIxgenoa+/fvX097tyV4G9ntkvVBPA/UNEBcD8R1QbtdkFKU/vVbAPXQ2rurFyZqdABZXkXx374Db2QI9tjIRpuzraAcFP3zP/9zXHHFFaHvHTlyBIcOHcKb3/xmfPazn8XNN9+Mj33sYz03ctvDcdi/24Whex5QKABusze56NtsQ9xw2Ox+1ZW+Fx65JZe5uTnMzMxgamoKADA1NYWZmRnMz8/3zDgNH+72k1xosQCgR0MuuGPRDuaCgNg2+w8nIhoXDMoM/aabbgKlFFdddRV+93d/F7Ozs5iYmIBpmgAA0zSxa9cuzM7OYnR0dN0M3o4QTGe7MEwvcOi9cMJiU9CVpxcExGfoegO98FBy6J/4xCewZ88etFotfOADH8Ctt96KX/7lX+6JAWNjA7lfOz4+2BMbeo1e2+WtraAFoGQZGOxi7X69XkBgG/UompTCqpRAAewYLMPo0m5qUTQBlAsGhjKu1a/XrJ/tcufOwQZQLRgY7hM7+/l69RJKDn3Pnj0AgGKxiEOHDuE3f/M38fu///s4ffo0XNeFaZpwXRdnzpwRv6uKubkVeF72sNf4+CDOnl3O/Lr1xnrYZZ5bQhVAq97C+Zxr9+v1AiK2OS4GAdiGAQvA4twy3Gr+TR8AyPwSBgA0VxuZrl+/XrN+t8s6t4QKgPpyHYt9YGe/X6+sMAySSIRTNfS1tTUsL7M/SinFF77wBUxOTmJsbAyTk5M4evQoAODo0aOYnJzUcst6YDulLfL3WPAllx7IJEJy0RLAhUGLaehEa+gXHKkMfW5uDu985zvhui48z8OBAwdw5MgRAMAtt9yCw4cP46677sLQ0BCmp6fX3eBtie0UFPXjBL3U0IMsF+3QLwSEI9cb6AVHqkPft28f7r333tifHThwAPfcc0+vbdKIgAdFt0PaHfGrYXua5eJus6DyRkOkLWqGfqGhK0U3A7YhQ++t5KL7q19IkBZPW9TX+0JDO/RNAMF0toND8tZBcuEnHO1gLgxE2qJm6Bca2qFvBnCHtJ0YupBcevCedR76BQUvLOrHDdR69HEYp05vtBnrBu3QNwO2keRC2hh69yyP6KDoBQXpY4Ze+srXUPz2zEabsW7QDn0TYFtVinKH7jeCE86hG2yn69cP6ONeLsRx+3Kj6RW0Q98M2EYMXU5bpIQAvC9IV2vqPPQLiaCXSx9eb9ftT7t6BD2CbhNgO6Utik3LNICC1RVDJ2t1WN/5PmCx21xLLhcIdh8XFvktmbcqNEPfDNhGlaIi8GsYoAWrK4ZuPfo4yse+BoMPWtjCD3I/gbT6NCuLj3LcwgxdO/TNgG0ouTCGXuiKoRvz5wEApNEIr62xvuCbsO2wId/9gm2Qvqod+iZAkIe+DRwSrxQVDL0Lh76wCAAg9Sb71/P6y8FsUfBNuO+GfG+D9FXt0BNgHn8W5olTG20Gg+/ICaVb3yEJycVkDL2VX3JpY+jAlj5u9w3kTTjvhlxvovCtR3t6vwdN2vpQ2+8RtEOPA6Uof/4Yiv/nmxttCYN8A/YT41kHEElyocUugqK2DWNpha3ZaAbf38LsrF9AbBu0y0B0+csPofzAV3tLqrZBcoF26DEwzszBWF4FqTfSf/kCIPRQbOGbEYDE0A2WnZIzKGosLAVf1AOHvpUzHPoClAK2A1phdQS5T0S8GGx5tUeGQUpf1Qx9W8H6wTMA0DcOPfRQbHGGLvLQDQO0i6CoMb8o/h9i6FpyWV84DggAWikDyJ+6SKsV9vq1eq8s2xZ98bVDj4H1g6cB+MG0PtCs5aj8lu/n4oUll7waLNfPAT/2wJGRoRtn5mA+81wuG7Yj+AbMHTocF2RpBdb3nsy0juzQre89CXK+BxOHeCxqC5/StEOPgXH6HKhpMOfZRVCuZ9hGkouch87SFvNdf7K8yrJkot/PeP2KD30LpQe+msuGbQn/eREO3XZQeOQxlO/9YqbTJbXY8Hnj/ArKn3kAhW9/t3vbHM3Qtx9cF8T1QAfZzL6+kF22oeQCs8u0Rc8N2geE1s/2MBPb7irTZruBSyxCcnFZ7xTia+vK6/hzhs1Tz4OgN9KLaNK2hdNXtUOPwr/pvKH+cejEdSFuvy3O0EVzLs7QPS9XZgpxPcA0gShLz8rOXLerXPhth1ZUcnHEqShTPMS/D4xFJrUQKbCdG/J9tEVZunboEfAjPu0jhw7HDfqDe/1zI5o/eCasbVLKeqd08bC0lf4D+Ryq6/lrFMLrZ90cHDcU2LO++wTQ6IFz6QMYs2dhPH+2p2uK58fPciGOG5wqs8hnkZNoT57DkHTZP89RL6EdehSCoQ8C6A+HThwn6A/eJwydrNVRvecLqNz7gPiecXYelaPHYB4/kX/hSOk/gHw6uueB+g2+AICapr9+RsnFcUUJO1ldQ+VzX0L1k/dlt6cPUfryQyh95Wu9XbQtKOoI55yHoXP04jkkjif9Xzv0bQERpR/mDL0P2JgbMPR+0dDNp06y/8gata81E7uLh4U7XJmht3IwdM9n6P51o6WcM0pdl5Wwu55wVmaPWe1GgdgOSLO38QF+AqJliaG7fcjQt2guunboEXA26A3U2Nd9wNDhuKDFIvt/nzB0nqvv7hoT3yO9aCLmeUw/JySQmXIwdOK6TEP3KxbhXz+ZpSmtw5mc7YTkGuJXoW5qeF7vHRu/XuWi+JrkYOjRbKRepBATLbn0OepNmL5j6Rk4GywVQcvFrhm68ezzIAvn038xCZ4HQqlgmr3KQydzCzCeyzlb0XVhPXVC2Bd832v/Xla7XI/JLYBg6LmKi7iGXvQllxLfEHMEReFnb0jHdKvX991GwHV7MxEqsiYQTJyC4+Rk6IHz9gaqvUkhlus5tOTSf6jc9yVU7/kCyErvyoNFUKdggZbLXTP0yn1fRumfv55/AX7j9VhyqX30U6h97B9zrWcsLoE0WwAiTErM7uzCRp6dAgQBzTxOx9fQ+RpBDCJrUNQJbJCcgDl7JrtNfQbi9r43OHeUfAOVg6Iki3TmB/+9ahnOFZex13d7WtYMvb/BMyzIWg9lEa6hFwqgle4dOpqtYMBCHvAHpNDboCh3ukYexyQ7Acme3kguLgtmAiKgmU9y8cTUIwAAdzBZg6I85c4JSy49GY230fA8EKfH74PnofMagFBQNBtD9wZqWL3xV+C8YB97fZfPokw0NEPvR/BBws3eBS7FEbRo9cShE9uBsXA+t/4ngkyl3jJ0b5hl8eSSDmTHJqdRimHMXaQthhh6F2mLPCgaZehZH+QEhp6JbfYrXBfoJoAdA+E0LROwTBDHDb6XqbAokN7Ai5R6ydC1Q+8/CCfXaPVuUSG5+Ay90cVNRCljdn4/i1zgN57vmIylFRjPPQ9QCvOJp/M7Tz87JY9DDzGdOMmlm03HdVnZP9Bd2qLrslTFQlhDzyIHUUpDDB2uzz676ALZTyB8vmYvM6f4Bmia7Dp1k7bo36NUdugtG+aTOeMXWnLpb/DASy8zUcRNV7BAy6XugqLSDSw3i8pkDz/C+g6p+NC3UP37ozBmz6D6D/8E86mcOd++Bm6emcsdKAQQcgZCkuhSQ6eRoGh3DJ1nueTQ0GUWZzsiQ4ZWSr0PJm4E1qP7oOuyLCXDYCy9i8IicR8Ih95E5dP/H6qfyhc3Izoo2t/gDJ30snLPttkNaZps/ZadXy6RbmC5nWsm+I5X3NSrayAtG9bTz7Kv88QPKAVpttj7BLI7YC4DERJ+bS+GWXuB5BKkLWZ3noGG7ksuluXbm8WhB3+XZblIRTNbgKEL5tzD1EXiuMyRA4Bp+qeAnAzdvz9FTnu9Ie57/lxkgmbofQ5+JO81Q5dYHaE0P4MJMfTFfPb48QFa9R26/33Rsz3Pje04IJ4n1sxcPcmdeLEQYei9SFuUJBfDYCwtZ6VoiKFLmq4ynLDmKuIZW4GhS3JST3vVcKkLYJ+dl5eh0/B9UC7COLcgfpyrYZpcR6ALi/oQnGH4Dt04O9/9hBPblgJpvu7ayqfRhxl6TsnFjw/w/tBiPT+HPM/pJLpmZs2bD6EoFGKLNXqVtggAKFj5ApBcuuGVoqbJGHuWzUtydEQKitJyfzF08+Sp7PbIG3EvnVuEoSNn2iJxA4YOsGtuPXE8+HkOh04cN9jge5AtRuYWQBaX0n/xAmJLOfTyZx5A8avdzQElrYChd1V6Lr2OFgtdMPSw5CK+H/l5rjUFQ88nuaBoRQqLeiC5uFLaIvxNI2dQFIYZfIamyZx6lqBoiKE7gdTUTwx9rYHKxz+LwnefyPY6+Tr08L0Qxw02ZF9yEfdF1tJ/yaF7YyNhopCLoXtBgVkPNrHK57+C8hcf7HqdXiKTQ7/jjjvwohe9CI8//jgA4Pjx43jLW96C66+/Hm95y1vw9NNPr4eNyYg4dNJqdd2bgth24ARKvWHo7sROljOfpw1s1Pkm/DwTuIxT8Vl/Xg29WIjPQ++C/ZAIQ6fFQq6HV6S98fx9y/QdTE4N3XaCoplKmTn0PuipTRoNtrlnPam568TQXVcMp+CSS57Sf9YCIugTVP/5/wsrv/U2rP7qL7C18jyTbtBCoxdBUbJaB1lZ63qdXkLZoX/3u9/Ff/zHf2Dv3r3ie0eOHMGhQ4dw//3349ChQ7j55pvXxcgk8Cb4IhPFdbsPdthOEEjrJm2OrwXAm9gJQmm+41mzCUpIUErd9vMeMPSMLXmJJLmEg6Lda+jw3BAzQ7GYUy/1giEZ4JKLmS0eEmXojt+Xnn8WfcDS+bXJ6qBCbZh7mIseDooaYcklZ1CUrWWCDg0EMmGOUzPxm9xRoDdB0WarP3o9SVBy6K1WC7feeiuOHDkC4ueGzs3NYWZmBlNTUwCAqakpzMzMYH5+fv2sjcKNMHSeV9sFiO0EToCnuuVk/fwGdid2Asino5Nmi50UZD2R5+cS0p3kIqbK5JRc+ACKyPe7y0P3wpJL0QLysDG/yZeosDVNxhy7Yeguc1aix0wPmC1ZWOqq0ZfY7LJuLqGNuIfxANcFzEDmYpJL9qAoiTp0H+KZzMnQecO2rhm6nynWbw69fehiDG6//Xa86U1vwr59+8T3ZmdnMTExAdM/HpumiV27dmF2dhajo6PKBoyNDWQ0OUCpaMADYDSaGB8fRMPzUDQJBsYHc6/ZpB7IQAUD44PwnAZaAIbLJswMa477v+uUTTgAhl98CVqfB4ZadVgZbWuBgtYq2DkxDH6oNl5wMeiJWRi7d8JwHeX3K+z6gQEHQG1iBxwAO4bLMDLY5ZQtOACKgxV48wti3VaBfR6lgoHBjO+Tr9EkAKmWxOtbA1XQhaVMnymlFE3PQ3WwAmv/BJqmgeFLJ2D/exHEgLJt7vyc+H+lwDpAugULA2ODcACMDpZgjOa/1wCg8T/+EgBQ/tN3Z3odv17uWQs2gGrBwHCGa+QZLrhLHK4UMt3fnVAgAKkUMT4+iFalBNpsgvrSlOW5wu40NA0CUim0fe7U89AEULMIChmfySYhIJUivIKJStHEUBfvmbZsND0PaHnYuaMKYpnpL0qwq5dIdejf/va38Z3vfAc33XRTT/8wx9zcCjwvuxY5Pj6I5loLBQCwHZw9tYABx0Wr3sL5s/knhNfqTbgUOH92GWSlhQEAS3PLcBTXHB8fxFn/dwvzKygDmHcIqpUy1k6cQTOjbZXzqyCWhaW5FQwQAkIp6i86APuG61H+p3+Beeq0+HvKds0toQxg2SWoAFg4twyvVFO2qbhURwlA0wNM2xHrllcaKABormX7DGTbai0bruOJ15dBYK41lN6jgOtiEMBaw0HLIcC7fhUoFFAhBrDaULZtVGLgjaU1UNOAZRhYrjvsuj2/CM/tLq+AP85Z3p98vayzS6gAqC+tYTHDGsbcEvgnvjS/onx/p9nlNFqglTLOn11G2fVgNGwYDusp7zZayu+z2nLgOTT2sxooWKgvriq/X369qo0WaKUEwzDRWq5nul5RkOVVcCo6d/Ic6EA18xry55gFhkESiXDq3fjwww/jqaeewnXXXYeDBw/i+eefx9vf/nacOHECp0+fhusfYV3XxZkzZ7Bnz57MBuaFfLQna3WmU3ebjiQFRUUAJU/gEZA6NxZAR4fzZbo0m0FknhdalIpMCywV82nojRbT5XnBRua0xaBhWFzpf1ZNPrx2VHLJERSVpx4BQWC0WMimx0fz0B0XsCypgnXjUxd5cDCz/CMHRXsZC3AcERQVQejcGjqJ/VHeQLnIkbcyBsdjIPuEfpJdUh36r//6r+PBBx/EsWPHcOzYMezevRsf/ehH8YY3vAGTk5M4evQoAODo0aOYnJzMJLd0DYnZk1U/2sw/KEphzKZPliErqyDLgYZJpKAoeCVq3j7MLYcFYCwT3ugIjHPzMI+fzJQdQZqtwKGbkkMHWL/2ZivTesbpc2yCeqkQOLzMGrrvdE0jtrAoz6ZKFpeAtYZINxTI6oR9+wAElbA+aGaHzjtvWmxz5g6hiwpWuC6M0+dC63eF3Bp6JODbI4jBIgD715M19Px56CEUi/myXPyALc0aHI+D1BCQrK4Fn+kGo6vz4i233IKPf/zjuP766/Hxj38c73vf+3pllxpkZ7JaZ//xbx7z5Cxqf/sPMM7Oxb1SoPxP/4Ly0a+wLygFpKAoTJM5hZxMjDgOe/gJgTuxE8Zag/VhOdPZptAaPCgKhBk6AJSKjF2r3pwtG7W/vgfF/5gBLZVyl/7zh5aaRvi1XeShV/7hn1D6l2+Eu+zBPwVIDZ6U7OMnBDOsa9JiMVMwjdq8kKjErjF3CF30mCk++C3U/voeGGfmejMnU2S59AtDD7JcKC/k8jxQ+CdBVWZMkx165o3ZRzDFyux6E5MZevGbj6D6N//ACMkGQykoKuPYsWPi/wcOHMA999zTU4Mywc9kIJ4nDVzwMy38/FCS0omRrNaDm8x1Wam/PCm+WMif227brOMcAPvql4OWiqh8/iuZJBzSbAlphJoGCCSGXgokIeFkOq0lbUy0VAwcXp5KUcNgTDquP0YOh07qDXZycCMOnW9eLRsoJ6RuRsH/ftQhZHUE0nxMYjsAIeyadZHOapxjWWDG3CK8sZHMr48ib5ZLSGbrcaVoSHJx2DNFy0XWFbXlABWFAKLrtZ2wOLqWXLLWI8RAfobNk7NM7q03EutFLhQ2f6VoMTIEgTt0zsTSPjjbDhhKKzhiczA2kFNDbznCPhACumPIt0nR4VEKyJILv8G5g+ffV+0HH+o25wjHmfnm5sUj/gYTNHnKX1hEHH8cmuuJXiAA8s0V5ZKLGSO52BnYPh92Ui6JSlHaJUMXqaKNRm+0V6Gh5++Y2UuGHpZcDOF4RWdU1c9R7uUSRSEfQ+dtJajVveQS0tDFcPSNj6lsaodOPC/IM+YfMHcm/OuUh5c4jngwxQcScei5g19SXxgAoFwbVnWgzVaIkbdp6PwhUe0HL93Exvz5gAlnZNTioY1q8N3koTsO21wj+ceiuCsTs45n6CKHWdWBOZJD55WiUo/1PE5F7u3dlUN3HJCF80GBTdZ7NK5LpoxmS0wEy2aXXClqshMvpHtY2aF3CIqWMjB0x4F3ljX1Yvet0TVDN87Oi8pcOXqlfD/4n916YFM7dEgOXeySnhv6OpUtthzhyInTztBRLOaWXEKdG4GAESs6PMECJIZOTSOYZF/KloUj38TO/ou6aJ/rdzI0IhtCztJ/Silj6Pwzi5b+A5mKu5I0dMH2FU9copdLqegPuOAaehdBUW7DWkNUOHNZLgsK//EYah/5FJOpkKNSNIWh1z78vzBw18czrckGgkgMPdRcizN0tWuWVFgEZNPQSw98Fa3/8VfMAfubDS0Vg5hbRhjPn0XtI/8bpf/zTZYpVpPSFRWfw8Ij30Pto58C7dE4yZB9PV/xQsKjgeTCP2Befs6ddBpDt+2AsYnxWRHJpUcMXdzoih+kqOj0mTg1jIDpIKyhK8F/6OtvvA71//sN4oHJzKj53M/IhpB7pqhvl3i/slTSheSCGMkFgDq7sx1Q03fgfrdFagUMPdfJjZ9iJIYu7MoAslYHcRwYC4vC1mx2+LIU0K6hex6MPA6Pf/78+ZGKbYKh0Yp2dnDoyNCwzTzFZuYaC+f9gLsJ95K9bNB5jjTi0HD0UiGkmavaROoNPyaT+c+nYnM7dFeWXMKauWDVnZyLn9Uiou+8+ZLMLPIGYNDO0ANGrMamAofOJRcz6CMC2aGraeiEj1CrVZldGTcYsY7jiWZXgMSI8/Zy8R9y0Qo4dP15UDRDHMNLSlvkzdZUj8Z+xkbB8odEO6ysnRA/lTHnJCWwoL2QXJIcVyfw+3zRH5SeNbDJP6Nyse19mM89H3yRpQEZf34kyUVASC6KJwnPa4uBCJOKReXBM9SfnWuc9VuSmCacyy8FkHOebihgXwp1QVW+r/i1J7336JvaoRPPC/RM34ETStk0cxXJxXGCTbLlxB/Vc6ZIAfA7N8oMPaNmzR16WZJcZIbOsz6UGTo/gfgPXMYNRoDniidp6FmPktyh8PcRI7lkkb1IAkMPJBd1rZPyIJpg6H4cI+dcUZGrv7IaOHQ5/XZBrYEbl1jE/ZszD52WSm0M3ZQdXZbPktsQJ7nwjVm1b4xHAZKUh+4PnlF4z94Qc+imn11ELRN0ZAjuzh0oPPYkjOfTa1VCkK4HLRVBK1Lmlep9RSnLztMOPQLqxXdE9LzgYevgPGVmQhxbkly6b98KIJzTDgSMNiNDh/8w0FoF3rBU8iucnapD9xm6nIUAZGfUPnuKavB5JRfKg9L8624ll4S0xcySi2DoBRD4wWfeeIpnzGSF74gNiaFzycs4t4CBuz8B89nZ9HUi9xDxvGy5+lxyKbUzdOvEqeCLLNed6/j8+ZGfI5+UEBWGTilz2IkMPcM94QdWzWfZQBiecupccRnMU6dR+5t/gDG3kPTqdkQd+vAQPP8UkImhJwR8u8XmduhuwNBDD6njBiXRnW5y+UZuOQmSS86qNPg3XBxDV2U9nEX5Drg+dR0ab3id9AcIs1U1yOpGHjiRtphVcglnuZAug6JtWRZxQdE8+eNthUVZg6IOq/Kt+S1b/a8BP3CeazSez6wbzaCXthewdgAg59O7L8YGQbNsMIKhF9sYujynNsumRSOEISR5CYausJ7YkDuU/gNqgXJeaOjLSM4lrDVJ6yeuQuOnXw0A2XqayxtpqYjmtT+Ctf/6c6CWpXxfEY+ui9wCbHaH7lEx/Fe+mKzQKF1ykXd4YttBD5Ko5CJPXcmClsPav/oQDkbVAXsR6aBSai+uMQ11hxzROBHNUlGF5zt0WbKR++hk7eUSdYxxDD1Lz5qEtMXMkovNClHoQNC4TFy7Qj6GLn9WvMgoOnNT6b1KDj1zwFH+mzEMHc2WxKgzbFp2lDDEBEVVrllC6waBLBuzdC96O4ZBR0d8Gy24F+9m62Qp9PNkhl5iPZVq1Wwn+U4B3y6xyR26f3SxzPBD6rpKkos8Wo71u+aSSyQoCuRoEOVParFi0hZVN4ckLVhGHoYuaZyUkBwaui+5yBuUXEqedYOIHsPlDTVHALJtI/QRBFizSC5WuJOeKTP0/JILgLZCLJ5TruRgpM9MzJvN2isFXEOXrr/f59vjmxiXw1bX0u8TNyLphbJc/OcoE0PvEBSF2mYjb6DOgUtCzFjEo7JMe3LbN1IA2WJtXnIVbLfY1A5d5KqaZkRykYKiHTV06TW2LUkuMZWKWR26NE9UIGvetxtjTwTUMNTXi2qc3KashUVOlKFHTjBZ89Ajjig2OyWL7JW0EWYtCHIctnHJDl0wdCtfOqvnigElAHuvhFLmSLmzU8haktl4IAll2JhFW4Ni+H04jIjwUwlvSlb78CdReOSxzmsKhu53K40JiqpszCTVocfIrEmQHfoVl4V/ljXtN7IeHZJObpkYOl03DT17RUM/wXfo1AwzdOJJGnon5xKd6h7D7MQRO2NamOF3f6T+w8a+mZERJzDNEMwMDjlOW84i2ch28W6L8CUu0VLXyi7hRK9tTHZKpg01IW0RBhtJp7oW5Qy9WhE9g6jE0JUCfBEQ14M3MYbG618D0mrBPHEKpX/9d2YzL45TqfyNY+gZJRdqGH4ltD8fVZqAJTaxlsMm8zRbIMudtWZRiMVPuPJ9VrDY56HE0P10xCQWa/GJUQrX33NBdu/EytR18MbDnWAz13Eg2GzW3vpmuLt3BWtlaRGiJZcE8FxVK8rQ3UBOUcxyAR8xBoQZbJabR17bD3DJ+iuATA40janwnylXnjphBiXWzjGCjkZL//npJjI4WglR1hYTzMzTVKutUhQZmZTjsDUICTZmkcFh5RtB57CUT++iCbiX7Qvysz1P3I8qDka+H7ltmWQp12WffbEY7oLonw68QYmhNzg5SllfBEXbC4tgGP6ppvugqFhX4ZkkLquZiDpzAKyvS8HKyNDZ3/RGR8JV4MWC8pzTTlWw3WJzO3TXY7mqhhEquiItW8q86MTQI0HRGMmljaG3bCWWwSPnXnSSCe8RrQJVDV2V8XO75RMIt2etoV5EwpscyUFRbmuxGGrYpYRUySVb6mjHjbCQgUnZwbAGvjHTbjX0SMFMKPUzS1C0W4bOh2hHJEV+OqCShi7sSTuRRCS9kORiGCx3X4lVdw6KihOmyn3v36tJYENismjo3LYuWjNTneXSBupR5jgMEjhdH6GmRxkYeqzEEWHolX+8H+X7v5pqHx+4EWXoNIsD9jwm0XT48GlGyYX6jFPANEDqDQzc9XewHvuB0jJykyMgIrnwmEEGh07bJJf2Hiy5mnPFbIS0VFRbi1LQtYZgYWJj7pKhh3qdAKH2C+J+VHEwjgvPr1L0RobYGpnSFv3AdiToH5VciG0HlchpDJ13p5QHXHCYBlAwM2W5JEsu/n2nsjnwezUBtFTMxdC7kgU9um5B0c2rocvON+oAJIfeSY4IpS227OCIZyUzdOP8EjyFzdVYXmUsLtqnwzTVe7lEH/7YP6QumRBp+ID8emNlDcR2YJxTLLDgG4Oc9ihr6ACzSfXuapNcIgzdMnOl5MU9NKps3zg3Dyyvwt3H8paFpswDfpyhZ2VbrguUpZ7Z4hrSTAydOC7cy/ahfs0rAgkt0zXy7y2JoVPpb3sxDD0tZiA2ZrHpSddfMHSF0y3tfDIVko4CMSKuB1IqJP9CqajerRSdMqiyZbnowqIo+IdptDv0EENXCIqKYI0jrckR1dBbdmj0XRLIyhpj59GH3TSypS12klv4elkZugRqGoIRct2/I3i+uWkE0oHUBwc5GHqaQ4dpZYphJJb+A8q9tHmfD+fAJQBkycVf07JEm4lMiMxMlat1s2jovDe7t3s8V392EpFcAobud4AUDN0JWjKkauhRySXC0C1VDT0tKOqfapQZeifJpdSTGgdBFFRkS62hx8D/0Jk2F34bvC0p+73kD53wiUJFiwU0eH6onFYWYeikZQM0/SEmq2vt+jmQLQipkq9qZGD8CQydMxRDpWJOMBQzmP3pylkuPuPrSkOP2GiZ6jIV0DkoKvfS7uDYzR88A3LRLtBB1mohlqHH2J6G6KlLpDC6XpDzrVpYFMn3Js2W+uAG1wM1TKlhmf83ueRSKbPN37ZF07TUrJ6k1hLwn9OCGkNPLSwyw89kR3he+KQQAS0rDlr3/M/Hddt8BADRX4bU02NRpNPwji6xeR16Lxh6i/VaYe1RbRERD0EcZ1k1pCpDN1ZWw/nLPrJp3ukMPdN6TgxbMc3ggVVx6PI0ILn0340w9AyZLjTqhKLH2axDfTt0s6M+QycLSxj404/GN2eyHZjPnYbx4hcES/o6tWiIljP7qe0zFQxd6gevMPibuMHmzDfR8pf/FbW/VOxhzrXlaFC02WItdYsFlpXSkoKiqRp6ci8XGFkYekqWC+/F36OgqMoGWvz6t1H9m3vEyaZtHX9jHLj9b1F86FudF9OSSwykTIaojECyaOj8xvW76bXtnHIAxmbdGVXYJ1lZCze/58gwLUUpvSlLYZDrtgWQYRhCn1Zz6BL7jUtbLOSRXDqU/gOsEjgLQ+eZJHHats/2jZUVEEphLC61/Qqxbca2pMIR99KLsPq2n4U3sROAdHLL0eUwdL8aPLBMA8kFSGeN8uxO6TNVOmWhk+TiDyUnRMwCEBp6yuZF1+rMJlFYFJZcVBl6kKXUIX5kmUqbaWocStGhGwtLMM4vJ5IsuQmf9WRKW16qK0Xb4Uq7eEKWS2oVpR0wdN7LpU1jlgJOQfVpCkNv2SzINFhr/5mZQXJJYRcAmEPOJLmEI5WynktW19JH9kkOXZ5Y1JblkiUX3XFDU3vaP4NsDJ24HTZCnrfP7YtzyEKDD7cg8PzeHwCCQdFZM12inylnanKHUHSWXajniWENbI0cj7HnMYcZx9D5iEMe+OW2pH0Ga41Qf/CQ4+slQ4d/j6hs8p4HEiUx8jqlUjCNqhNaNnt+PDe+cltqA+DujMl5D9mkJZc2UDmTwUhw6OVSetpioSBu3HjJRWLoXGfsoKFTSmGcmQMAeDEMneV9q6Ytuuk7eSYJx2kfGiA7dCB9NFdIcpHygUUeuqKGTmnwENlOuK90m40mWy8t4CT3RkmSqrgj4L3b48r34wrMouZnYeiS7SLlk68j5aET2xFfd2SNcQVi/E/FkYg4uG4obVHW0EWPEv/kKmxJ2bzoaj3s0OVsMcMELShuzCoFdaqbvBtz6pagWi0qKs9bdipDT920tOQSAynaLIYO8IeBz2pMcehsRJwVjLSKk1x4ub4iQ3e/9ghqf/cZ9veHBtp/ITNDT9HQszTncrx2JxB5v6myiyy5yCPsommLKTYVv/owBj/4P5kz9yc7ic0mQfbq9ACTtToG/vSjbDhDEouCvxG5XnCqiXv4eDvbTg6F94VRYOi1//n3KDz8n+yLqOQi96S3nSC7RMGhJ030UQHhJwV+0hKFRU2JofuxpSySi7wxy9fPNACroHaiSSksYuupyXCxJE1C0KArRXaRJam4U7P0XKVNECOeXxC5Dti8Dl3exfkFFgN46372SqGjHMFHxImjJZ+VGfolIvQ6lYZf3iPfhzcyhPoNPy1ymEPIIpF0kg44Mm0QTntZfTT+kJK6SGQ5QtLQeWBVlMin2FTigSPbYU2wLCt4KKIpYQqVgWS1DuK6KMw8kcrQCaXBHNMYhx503ezE0BWzXCgFWVxiee1SyqdAqLDIDgrROjp0nu8dOJHVt/8i7Bfuz9bXh2drSDnUpNkKWjRzhs67EaY54yhD5/36Ab+Pjql+ovFfkwRlGc5LIUXKDD0IWMdtpO6+PVj7pTfCufSidE1eSy4xkHONeTk2d+iUMqaQJkfwEXE+Q0/azUXJchpDb7bgPXkS9otfAGfy8tgPTZTaqyDtZgQy9XIJBdKk14e+XFVl6MwZUEKYTllvsNQ0XjSTpee7zQZHUMuKD2aqVAb6kob15Am/G2SSQ/e/z6WWTpJLp/iFKkP3PD+drRlO+eSQi7NsB96gz9A7tHTl3Snlz9LbNQY6NKDeaE1qQUAjDj0/Q49o6EB4mIplMVatktbHX5ME1UB5Wh66v3mlsmp+fVp2vDMmBO5lF7P1Uh26B6ollwjEsSwo/Zd1LFopp8oRgqEXrWBiUdxR3TJDkgtJuCGt4ycBz4PrD6GNhamYbgX4D51CpWiW5lxtaYv+Q82d5nJKcZEbOe77zcZIvcFu5ugUozR4HqjtM3R5cLUEqlIJyWWSRpONcEvpAxI8oJ2Cop0YoiJD5yeBeiMcf+DrcDv9YeWiba2Khh69VpkynrwwEZIZaERDh4qGTimwVm936FyyJCRoZpV2zeSEhyTIqaxJGwQ/ESlILqmsOk1ykdZLZ+jrV1i0KUv/K/d8ATYPLMqSi2mC+g6GVkoAIZ2LIfjMT8vvbe0lTBq3LF9y8T+ohIfGfPpZoFyCe9Hu2J8ze80MkosbHjIdA5pJcklm6LRUBC1Q0YMm2aYIy/SDjKTuszMhj3TOLhLgDL1QYCX+cTe6SjMm6TMxllbg7twR/3tc4uBl9jEMXQwL7+AIVBm6SAmtN+KZP98Aoz1UlCSXGPksU1sJ/1pzhu4PtwhlufgZW+w1XnKrg2aL9SiJOHRqBp8ptYJrRqMtMWQoaOjUTz+tfOrz8EaG0Xz9qxPXIWnNubj9HRCqEZBbYkeh5NC15BICWVkDPXWGfRFx6IJ1VMqpjIUVZ1hiIg5x2jVmgOt1TsBiEhgBWauDjAx2/rCyMHSV0v8srCymUlRsYIWC2uDjiFPipyDm0EtSKmPyezQWz0vreUHaYqEQfyJRkVx45bA4OSQ8xGbAiEP/ynAVHEEOht42MQoINhhRoVlhhT2d1hVB0ZjNOUuvfYmhkxYjNMTzguKwQoHNPnXdwPElbGChzDIZUgGaMkNXyXIxWVzLOLeQPFRbpVupygAbzws25mar46lZNH/r5Hd0lksYtFgIotKGEUguphEwTgWHLjrO8WNXo5kYwVYJipKW096MK2p7BhalVvqfoR96nJ5oBHKVUqApKhv4uf6k3vQZuqQJJ5k8Hzh04nnMSVgm+/txKWEqQVE/ldS99KLArhi0SS4d89A7ZbkobDJA0DKi3ozPTuEOnQeVC0x66sj87XiGDtNQb13supKG7rd+5VO2/FMhLVhCXhTB7oT3Kxx6VHKRsqGUpDOgc/tjH6LRV8uGMb8YT7Li6gmi60RbH8QhNDyns1wiNrROLJ1qhh5GdKybHEmXGDrtxIZ5HrRhiCIR1Juxkgs73jnpWS62DVJIUbGM3jfnyjKCrk1ykdmTQkvYNpbpNwcj9QbAN1Ggo6wkO3SuoYNr6HE3egaG7ryQjRlLTOkTmnWHoGjcsPA2mzjb7Nzoi9vMrlGzbd0g79z/WcFizqoDi6VJefJy5W4KQhlUvCKUvxd+D0vPGa+pSPoMkhw6lZu4cZkqlaGnNOcCRNoiadnsdB2TbqsknZlGKG0zDm3sXUHC6Si76KBoGLL+Rg0jPGXcChw6DDOZvVK/n7ppBtkxSQzdNJkWz1ldQpYLsR2gU6tOIFMhEOHVfB2gmodOPRquLpTtgc/KlBh6xNn5x3wuuUSdivnUSdTu+Fi4CnIh7NBhO6CmCVoqxWurVjpD507A27kD3o7hYJOOQjB0nzl3Slvs5NAJ8dv6qjF0QEoJjctD55JLoaDM0EUbWR9y5W4qpIIbWigATVt8Rjy5QB6CLNIpEyUX/4RRiUoucQw95ZopVIryKWWcYBjzi+2/o3LSiqRtxv5KZNPumP8fcehk4TwGPvTXIBESs6FB0Xe84x149tlnYRgGqtUq/uAP/gCTk5M4fvw4Dh8+jMXFRYyMjGB6ehr79+9fF0NliOntQLiXiyy5lEudJRcp/Y5PJCeUJlaBkXoj+NCTNHTeG6aT7Vkkl5Tm/AACySWtL3dM7jIgOYGCxbTbtDQ87kz4Q2+aIE1WFi0yiwBx3Y25BRjLqyBrDdBhaeMU75EHRS00f/QVscxGOK6ODD0IpNV/9vXJzoAHIVXSFjt06WM/T+9NIjt80WclVnLx33fRSu8bHp3dyaESkOZwvUCqLBUE0wUgNkN78nK2lkFAi0UUHvsB+5xjlhP9k+IkF8HQ/c1UUUNPC4rKPZuMhfOB3Ca9R6BzLARAei/zZkqvIXmtiEM3z86DNJowFhbhjg6zX/LouhUWKTn06elpDA4OAgC+9KUv4T3veQ8+85nP4MiRIzh06BDe/OY347Of/SxuvvlmfOxjH1sXQ0OQnaachy4d74Sem3Rzyy06JTaXGJRznKD0P1FycUDkzSYOXAZSGYyQlHUTWs8MbOp043L9NinLpeC3/0yL9ouH3r91TANk1Z+fKksu/Bpx5yg5ttBgEer5hUUm6OhwrLNQ6n/NN1mDiAZasb/GnYSShm4CHXyj0hi6GIYebs4VCYpyhq4UFI2v+iVevNMNDI+c1goFJl/INgBAuQT76pcDAMwnnm57PzJIvQGQ9qAoNQ0py6XQcQ2xlmpQVHq24xi6kuQCpA49adPXO5yaacnPa+ekxd905Ht3w4Oi3JkDwMrKCgghmJubw8zMDKampgAAU1NTmJmZwfz8/LoYKiN0LJebcxnhLJdOckSoyZTshDulLXJH1ElySWHoME0m9ag0wlepFJV6gXSEmCcalVzkoKgC44wwdBgGyArr/xIKinJ2xP+V17WdoA+47bLrGdOXhENlQo2SEwAkySWZofO10pidUsxBfpBX2xm60NB5UJRXzHZYlyYERamqhh7NVOKSIx+bGBcHSoljkHqTTWKKXn+5iZsIJCtmuXSsA4hUOMuSBkfaKDuONIaeQXKJpkGKU4R83TZacgGA9773vXjooYdAKcVHPvIRzM7OYmJiAqZ/U5imiV27dmF2dhajo6PrYixHSEMnUtBFZus+W0wMzsn6WojxJ6ctkmZ6UDTdofOHLrlpUOlLD7G/p/DBi/eeopvSJIYupy26brombLNRZcIBm2bgCCSGjo4M3WFaY6Mp2E/Hk4il4Aj4Bpl26olUiqZmudjJ11XuRlj760+hMXUQ7r694V8KMXTu0JM1dBQt0ILZuX7CSWCeqhp69F7gMgG3L9ahd5a9SKMBUi23fZ8WLBDeTlc11VPFEcuB5YIVDrSLdVQZeuc5sySD5IIyu5blLz0E97En4Y77vlC+d/thpugHPvABAMC9996LD37wg7jxxht7YsDYWEwDqxQ4o4Pgl2d0fBDU9GADKNfK8NbWQAGM7dsJ5/tluNTD+Phg2xqe4aIFYHCkBmPPDnBVtzJYwVDk9+3BClzXFUdZQil27hwAkScbuR6argdSsGL/nrB9qAIHwM4dNZBoAMlH89wcY7GeF2tPeL2qv14VJG5CEn+/p1kHyKEdNZjSevz1leEqYAGuF3+9OGyLwC0WML5riH192V64zz0PABjZOwoyMoQmgIFKAdb4IOySBRfAjoEiDH/dpucC1TJoo4mhsgUbwMBIDVbC36UVM7RmHNznSrAB7Ng5KP5O7HVYHUQLgCm6LTrYOTYAIh2BnYrF7i/LxPh4cvfCZqUEYgA1w0VrcRlDjbU2+5xKQdyrxUYDFMCIZCNt2WgCMP2NbWzPKOxaGXRxOfFzcB5lK45NDINIEoe7owYbwOhwpeM1oMsGu57DVVjjg3B3DsEGUKMu+6wmRtpe7zVW0AIwXCuE7h+OFqGg5WKbzd7PHgSaNmrjg+JzHCyaiZ8jANiVAlxCxD0Wew2Gq+K6Gjt3gJxvv17e6hJaAGCaHe/p1kAFdG4x+XqXTMhbUKVWTnwmqVtFE+zEZT17CqWdw3ABDEr3boN6qA6wza+TXXmQuVL0hhtuwM0334zdu3fj9OnTcF0XpmnCdV2cOXMGe/bENKTqgLm5FXgKE4BkWC0XvFZrfrEOY6WJKoB6y4XhASaAcystFJsOio6Hs2eX29Ygc0sYALC02oKz3AS/rGtNB63I7xdtD0XbgVdvCo3q3JmlMINo+GuUCrF/j6NQd1AGMHfmPGg1vuKsutYEHAeG48baE16v5a+3BFpPZnVjPrNaWrPhSOsV6jbKANYcCuJQFFp2R/tLS2uwLEv8jnnRHvBtZL7hgi6sYhDA6lIdrbPLKC3XUQSweG4Z7jB7Ta3RAq2UYQJYnl9GGcBK3Yad9HebLQwCWFlcTfwda3ENFQDzi2ugZrL9xnIDNQC00QJ34edmF0Inq+L5OkoAYJodr0UFAFYbWDk1jyqAlYV2+woLq+C81V1chgFgYakBj/+e62IQAF1rgAA4t9RA2QOMegtLCX97h/9ZnlusA2ag71qrLVQALJxbhmckx3LI0goGEFxzs+mhCqBxegEFAPMrTVCE/7ax3EINwNLcSuj+EdditYFCIebeN0tAtQScXQYch90b88sd7+nicgNFg3R+jhqOuK52rQpz9izOnj4feibNuRV2b5pGx7XKIDDXGom/U/DvUY56y8Vih/WEi27aaJ5ZgAVgZWGF3RuUYtCjWGvYGAY62pUEwyCJRDiV96+urmJ2NqjEOnbsGIaHhzE2NobJyUkcPXoUAHD06FFMTk6uu9wCxGS58CAFr0rjGS4dNXR1yYUHYEIBw4gGLo7uWSSXJPh9Y4hCAYJyqhqf95gYFLWU0hZZ8VTAA9xL9gYZLx0kFzn3nrTsQGuUB3UngUsuKqX/adkD0eZcaE9LU2rOBfjtYF2hk8bKVf519yrleMlFCiJTnoefos1Tx2GyV7QrpaFwbwFtlaYiM4MHbWNSPqOzdaMgtpteg8H19LTcfRWNWYq5eMNDbHOOtsDl9163QVERLOaZXepyiXGWxRTFvUEVcuy7QCpDr9fruPHGG1Gv12EYBoaHh3H33XeDEIJbbrkFhw8fxl133YWhoSFMT0+vi5FtSAqKmiZowYLHma9hMKcYl1EiKh5Nv9qUPUSxHxYviGi2QAkJpr3LDyYfH5aS5SIPNEhCaKiASum/v575zHMoffFBrP3Xnxc2F//1Wyh+9d/Q4jdS0sQiOSjaKQOHD9bmsCw4l+2D9cxz7Hrwv8OdSlzfcdsJutzxB6mT8zQMP6VSLculE0QQUr7+toPCN/4D5uxZNG74aZZdpLJWwWSflQh8sfdoPfo4Cv/5PdQPvUk8yHRoAAYvvolMQuL3lKjQTCksEi0cop+RYlCURLXlctihd9LQE2MsjgMUU4ZrEMIGskc16SiUHHpwDb0RxolJvQEq6/gq9QRIT1skYrKZn32UttFLMPg15RuhSo59F0h16Dt37sSnPvWp2J8dOHAA99xzT8+NSkNbYRFPVTQN2D9xdZAyJN/g0V1abgMLgBat5F4ucgBmZIgVxnhRhu7fEApZLqG/Hweps6PSxCIwVmM8f5blva7VQYfZTW6enAWtVWBd83KsORTuRRPh18tpi5afgdOhQx2f8iSj+bpXwZ5b9H+BgJZLIGs+axWO3f+Xj6uL9gZJK/7wmzEl/krGLJfQa20H1olTMHh/IL8TIUkLsPokIMrQzedOwzxxiv2OwzJ6vB1DME+f822IZoIYzEmLHioKhUVxn080ZTQJ0SwXP9XOWFkLtc+QkcbQeS1BGmixGD8lKmRferpu6Jn0B8mQeiOUrkkiz3giikX2u0mtdlstpgrIyRcdsHboTSDLq6jc9+XAFr4R8p5DGx0U7SfQaOm/1JzL2zUW/F7o+B9Jc4r2pi4WgbVG/Acq3aje2AiMGIeOjJILcb3EXOEQC1JpnwswRylyq22xNllZgzexE4U3vCZetxS5yFa410bSMdW2WbthCXR0BO7oiPjaG6wFKXo8bTHSDEsc8/n3U+WNlKpMT42hxz6Mtg1SbwbVfSoFXQiyXERJvxiaYYtTHPHZtCddn7a1DQNA0ABLMPSkk5LjtOegy+umprAmSC7NVntzLY60tEXHAUnpDAr4ck6nvilAag9z2R4KwJMcengddYYOgPWyqcRs+C0/e83/KNJaWruXXiTyzwWcgNCwRXXpf4BoYZHcRF9GJ3mjjaH7x91OzaEAMQCWROaKinasxc57ZGqaIaXh47Zq2qIbOHRIPb7Jyiq8gQ5H4WjpPzoX8MQx9DabatXgqBlh6CTBoacxFir3v479BUVtMoGhg3dDdFy1/H+gjaEL9sodlr8etayQQ4/tkggp/7sgnZRiQGO6ZgIIYkkpM2vbmKsV5IrH5qADUtpidwwdxUKq5NI21SkG4hoWC6AVJrG2OfS4gSIJNgExBUTcnpYNWiwEhEfl3iiXwp8zb9KmepLMiU3p0NuCojzPNaFohsTd4HKlKKRdOoWhizmhbZKLIkPnD53rovjQt1B64MHwz/0JN8F7UNTQPVeqfrTF3zDWGqLHdhwES5Nv2A7HfcKnPHUAHaiKAGBbYRHvF8KZoK2goQPBtJsk8HLxFOYjbxwBM7MD2aTZ9EcRpuukAUMPSy5iaIYTdJL0dgwHL4ysLWwqSgwdSNbRHSf+vvC/Z5ydR/Uj/5udOOMQ1dAJCU8pigMhjDx0YOip9z7A2mykSS4q158z9GJR9I8xT59D9a/+HuR8kEEEKAZFgWQd3XfoicQxDoSEnruo5KIdugwebQbY0aVcQv1nXgfnpS8M/16HDJB2ySXZoScO9ZXRUtXQA8nFfPpZWE+dCP888hCnt8/lm5YXMAweoF31Kzg7MHT30ovQ+KmfgLd3l1o2CR8K0gHeQI05dN7REmAVoZAYOQ+KCsmlS4aeQ0MPbLCDuEuzpcQQAYAO1kAoFZkMgoW1AumGT4nqKLnwU1Ip0NCBDoVUDTtMaiLrmLMslmIsLMa/3g1LLgCCmEanE2ZS9g0/Vapo6IWUqkyAfc5pDl08txZQKoISAuuJp2GeW4BxhtVchDLZUmwCkJjpQhpN0HIp2GgVg6IhInWBgqKb06Ebfqqh9EE5P/Ri0FqYiXYshU6QXJJK/wHAG6gmpgmKBvipvVw4Q2dpkNFjYtsDo9I+l68X6U/CWbLXgaHDMmH/yA+JdDkAHTMsiG2nPrh0oBq01BVpi1yO8B8akbaoGPxNC4pmrRSF5NBX1sTrSaMVGs/WCd6OEQCA4TNCwcJawQkJjr8BytkX0fcqdz1EOkOnjWaoE6L4fqQvTFI/GOK0SxG0HDkdxP3dpM/AdUGA9LRFgAUgUzR0leHoVGLoIAS0Ugo+h6YkeQHpn2WpM0MXraH531Rk114sQ09vPNYNNqdDB5hDUO1zEqdXC8lFCooiIcfU303p4EDgMKK9WBQZerDJuOx432iG7Ys+hGkBHfk9RvqTcB27k+QSWktkMqQx9DTJxZ+LubIWsKQoQ88aFDXNzpkfqgydEBEw5jYYSyvBj5stduRXeOC80eHwN1zO0AOHHjvHNQqpLzkABYYe79DFaY33Vk+SNmIYejBHtMNnayU0DeNtClSCokWrY843AHb9U2QSTj5E7Evq8igcukJPGLYGvxeTHTqt5GHo7DnwKmVxb2jJJQGkWFB26JXPfRnWf34v/LNEhh7zYfkPlrtrNDgqRRm6cpaLJJHwakWpIKLtIc7QnCuJoas6dP6QFGaeQO3P/xa1u/8XyFo9+LnnMQetwNDZ318NAnT8hnZ8Rh4pLEp96CwT5nOnUbvz78I2CdsUs1wICdL1OEPnmit8Z6gquQwNhByP6L8iZnC6gJsuUUXjOKkMvd5gxXNRRPrCyM7XeuxJlP/hn9gXMT1OeOpiNIMp9HcTCs+IExmM0QkpfVMA+JKLYjJArENnG1pbvn3SWnwjius0agetoeWhLirgDp0O1sS9IZIptOQSQbmonKNtzp6BxfOCfUT1tU4O3b1sH5qvexWaP/XqINc3ytBtmwXklAuB3PaObEDAdnykt8+Vco8jQVGysgoKtElRSeDOyTp+EsZqHcbCeZBFKdWR58anbFqecOhrUipfJGBYLLCCGjGsIV37Js0WjKUVmM8+H/NHM6SD8b9VKoKWi0F+OOBr6Aqs2v9boWBnlKE7Hnvf/lqrv/aLqL/pp5Lt4XJdXobO74U4h/74cRSeeJoFceOkCAWGTitlkHrMZso/W5WgaJFV13ae9Zs+2KUTQxeOWTT5yi+5BIM7ykHsTpFd2y+/Ao3XX8sSKdyw5KIZehQKkkvowkcfDn7sFJJLctoiDAOtV73Sz0XlDD0my6VYSC1G4euTRivQbSWH3s7Qs+ehC8e+usZmQarePLwacHk1sEcu2Y/2Qk8AZ+iGLLlwZyem4vgxEOUslxh5IPRHKdtQFRy6yOwxTXg7RoT2CvjOUKGwhSMU7LRZcUqomMoNUgy98bH2wD0QaOgqDN3zgKadoKFzycV3aJKD4v3C5U02TnLpdJqQs5dkiHtWqbCocwASAKvUTZNcRHaWfx0SJBdqGKHGa51sipNc5NF6wSAdRcllcAD2VS8L983Xkks8SLGYfmwJOfTIUTGir4ljV4ZCnhAUsj/k9WXZIMzQswVFaUhy8ZmZ/4AZy2sdM1za1uK2yTbI1012xp1QKLDp5yur4jqJoJDcT90wgr+lGARjNsU5Oqp+jJUq/kIOGSyjgbV1UHXojKHTcokFfuWBwq6rdl/wGI2Kht6MSFYyxDQmJ/QvKGXFcACM1dVgk5UmHqlo6LRWC6YuyVDc6AFIOd8dHLpCYZe4HwRDDyQoPv1JtUAMlsXIQEx+fGhWqjTUJRNMM9jkFdNr82JTVooCYP0nVDNAIN3kC0sof+ErcPf6JfCRarnUIGQiQ7eVgkLioUtw6NGHWFVWghvkofPCIrK6qiy3AAjn25eL7MHw7Sl+/dswnjvd9ntJ8GrVEBsUKX1iELEfA1HtWSNVRhLbQekL/wz3sn2glonC955knStVWQ//PdOEN8quD/XfF/ElF2olVExGwDcEb7AWHlMIAI6rJN/QSFC00+xNrg/HB0Uj759Lb2v1QIZZWYvN/uDxhFSG3myxdaV7PQ9DJ61W50rpVMklqJ8AIIqLvEoZpNlC6YGvovDv302f8QsgmCvagvX4cViPPo7Gz74eIERy6KUgsyZDLxfAv6ZtaYvrw6U3rUO3XnM1Vvfv6/xL8kXzb2Khp0d2W+fy/Wi+5kfhjY2orZmTofMHx1hcEt8LzdjMyNBl3ZTv+cS2GStbXIK9dyL5tVHIDY8GajAbLcEszCeehuVr10onkXJJOEcgzNB5rIEaBgxfdkp9SGRC47gozDzhN2azYD32A9g//DL1h0QaWSgYernEmi81W8pBUQBwrrgMzfPLIKt1FB57IuTQiZy22NEeLrlwlhxzUuJr8g2wA0MXv+u/Xh7+QJZXAddln4F8vRQYuhwboXLsQDSmU9HQ/b+TIrmkBTJhWWi8/lo4L2A+wH7J5aAGgfXUCZBmE4XvPgFCKTzFe4KWiiCNJsynTqLw/afQOjMHb2JnmKFnDIoKmEHbCqIll3gY+/fCmby84+/I7FY8HNzBNJrs55xxV0po/cRV6RpsQlBUmaFbFmi5CIM3s0KKhq4oAUU3BVJvgDRabZJCJ8g5yMGU93C6IQDl9DRi28HGJ69TsPxsE+n2S3lIQrq+7Q80dj1fs/bY31E8xgp93DADyaRSZqy32WIOT/WhLZfQuvZHWFGQ44b7lCinLXK2ySf7JM/eFK1c47Jc/M6NAtzRSvM2yeparE1qGjq7J0RbB75mBoauKrmoXH/7qpeJjYUOD8K+5krQUglktS6eByOpWjYCFvBtgjTY71s/eIbZyYOi5XJo7GIWxDN0neWSHWY7QxdMsdHMt0smpS22FDV0AF6tBiIz9E4aemrg12dzkkMnti2CYG250p0gBx4HfYcuerAED6DSSaRQYO8lIrlAbh0gv7cUpxcKXNZ5WpoXZDK4Lqiyhh4wLZ6lQitloMRPFQpZFjFrEscNOyqXD8BW09ChwNDRSXLx7eDgn5kxfx7UMOANVJkG7roh/Vxer1MGE5Wzl2QIDV0tywXo7NCJqyC5JK1fKobSUJVfVykzEuQ/i9aT3KE3glkBGYOiAnygteete1B000ouSpBvbu5YBENvZT86AZJD9z8YSlG55wswTp8Tx7800MEqyNwC+3+xwG4ix0HlMw8EWqavYSu3z61HGLp/zObVjEowmAxCPA+e79CjwUxAISgKMD26ZQcDl+U+J1GmQ5DOrqUTkYg/uK54GbEdpA634BAaugGUiqwC2A+qkdV6pqCoAM8QWguftkiHVsQccf2EWP93yaF7Hsr3PiCmXCU7dANiXpqQXBbh7RhiOeAra6DDA20SF89D7zisO+rQPQ/lz35ROHJSsICUFPPELBdKUf7cl2G/5HK/fXNOh1cqtqcUK4BWyow0uMw+47nTrB+OYQQpkTkGXAAIrqkbpGsqk4+M2NoOPS5tkQfnms3UfOo4UO40/AIBslaH9eQJuHt2wX7lS9XWqAWZJ97IEGMG55dh/eCZIMhTLqttOkJyCYYnENuBMb8IahigfvN/ZVgm0PICycWNkVxSOkoCvtOXCzVkhs7foxFIH2kOvf4Lb4D51AmUjn0tONG4bvA6x1E+xvIHkju15ut+DLRWReE/H2NSmOtlD3zxPjjyaYu//zSGHq2FIIRtiNI1J8urKHz/eHA6SnDo1DCCWIrvNI2lFdDhQVDThLG4BFKrtLFMb2IMzR97JZzLkkkJrZTZ+rzx2loDhe89FdhdVGi8ldDZ0JhbQGHmCdbbKMf1FzZK16X5ulfBG6iFxsclvq5SEq0qnP0Xgw5UYT32JIjrwp3YCQBwLr8UzZ+4CnQkedZp7Np8Q7el/HtV8pERW1pyCeeh854iEmPMc9NEGDq/uVuvuhLugUvU7PKZDiUEdGiAaXdc72yxiUAde8vIEHnt/lG8VgFsG8b8eXgjQ9n1Ph4wbGPokuRiKTJ0WQaSNXQrHJBWYWPe+Cjsa65k64rhGZ604bgZgqJ8I/ED4i+7Au5lF4c09PwMXcpe8tPnUnOqo6X/QDA9iq/FnahonZCQhROX2bXC0ldFHnlcrxrTROsnXwUkDC5nC7EOgkJD5xWZnG0rDrgA0MbQuWbt7tmlNoIuaX3JodsvfxGcl12h9rpKGWg0QdYa8HaNofHG61hfc/4zALRWRes1P6ocqxHg94brBKcHraHngHxzRxh69OfKMCIM3b+5O/Ycj0A07SkVA+1OZsCWGVTCpWmJfIQZD97UqgFDz6KfcxSCRmQA2PXiJf8cSgzdEjev7JyIPCCD39QZNlZqWSGGLuxyHPUHzYjXQmlJyszJuhFyhi47dFWGbhhsI5XtiTB0Y1XSrS0zWcaR7faD0mR1jclKAzUYfmpl6iaTgFBrZOkERrldaShYoGjX0E3foYt7I699XLIkJHEIe9LrCJif4PKbc/ml7GcVFY7fYW25R5KuFO0CshNyXIDS8PCGPBfVdxokwtCV+6VIv0slh45I0FHc2CqbjmGwIC8YQyetFoyF85kyXAQ4Q69UmDTheiE2ReUJUZ0g6ey0VGSO12+z2hYUzXJSKlhB+TmvxIT/IGZk6G1aaLnotyG2s5/eJIYupkXxAKaChh6V/9oYupTlg04OJhQU9bOdKBUMHQDI0nK+0yn81si+LaGh6QUrfWQfIOV8Sw690RTtHEQWT077uBRFa9VMTFp22vz/gUNXq0lIhJjH6ug89G5Adwyh+apXgtQbKD7yGLuYUil7rpsmkodu5HLoftOeUpExA8cVx3MALLUxLhMkCaYh5A1voArLXyuPQxeTzSulYCKPzxRbP/Ti9Dz9yDoAWHHHKtisVMeRTh9ccsnwOVhmaHgGJTyLxs2gocfnE4ce6oynN8ozU9Ya7OTVsoNAdYoU4fzQi+DtHg9/s1wKBbrlzBJSTm7RHNrUbCdMOHwHZyyvwBsbTX1PcfB2jcF6/HioWAlAeiaPbGOxGIqvGEsr4fbFQNeSS5bnEYh36HR4EM3XXgPHl17yIszQ+UxRLblkByFove5VgRNy3HD1XQ7JhbZp6KvsmJfhhvZkhs7LvKUjNS1Y2cqMDSOQN6rBjZwpZZHD9MeRlYo+Q3dFtoR7yV7Yr3ql2jqyHsz1Xn79I5NfSIbPITQgQZJciO1k19CjgUFZNsucmiYxdH+6jShKSemR7+7bC/uql0VsqQo5D0Do/7GdFoUdsoZuCzbt1arCUZFGK3umhg/n8ktBAJhPnmhj6KqgpWL4tdLpVMRd8kouvGtkDxw6ALR+/IfhRQerZ8UFZOhb26FzSBc0NI0nT64rCTN0srLWeYBEDEQGSakojogkpJEyhk4BpQ9epL2ZphhUAORn6LRcYmzOstjpgT9wGbKCZIYuep87DssXF6PPckgu8oPuekF73gxZLuLvRa5tyAlkdXgSQ2eNx2SHniObaiDcN8VYWQtSSTtJABGGzrV3OlANa8F5JZfd4/BqVVhPngix7CwMHRGHLgK9BUusmXcABL/XssS0gGSH3hMUAoZOVGff5sS2cOihI48jSy7589DNM3MoHz0G4/xypgZYAFjr2GIBtFQKCi1Wg2AaLZiM8ajaJ6e9ccmkYGVmKWwtM7ihTTPE0FULpwC0aegA2A0tZxclMOVOkG0QQ539tVVTwYINMOrQg88xc9qiz9CNeoN9vpJDz7IRBrZUQRpNGM8+j/LRYyBLy/B27WTXUoGh05IfD/CLbKiUaw8oZN4kgRA4l1/CSuzlFM0eMHRarQTfz6uhl3shuXSpmUfX5n2IQkFRnYeeH8KhO+ERWl1o6MVvPiK+ZSumRslovvpqeLt2CnsMyaHDKrDeFKpReu6gRkeE9u6NjmRPrwJgv/IlQQqkP9Ag1FBLEfEM3Q0xdMHCsmysMhN0XRGIY0HRrN0WI1kuncbEpdolVdnWqszZcXacw6HzU1/x376DwmM/AAC0Lt4N59ofweD+3YmvE2mnfpMqY+G8kARDrDevwwTg7Z0AeeR7MPziOACZJEdaLoV7GfnN5ERxD5BfcqmU0brmFXBefCDbC8tsLimhtPcMnWdAOY6uFO0JhOTidp/l4jsNr1YVx9msxzsALKcagHmSDd4Ia+gmvIt2o3VR8oMrgzMl5/JLg7TDPPo5AOdFLwi+8Nt+khwMPVRNKk0nimXoGR7e0NHe9QCDj7jLkuWS0GQp5PCypi0GdnljIzAWFoN+YjkZOgCY0mAWWqvC/pEfgjk+CJxNKG/nm3u1DCwuwVhYCiRBwwjYcTcOnfd0ObcoKot5UFgFIt/fB08pDrHkvA6PEDQP/niu19FyiZG+LPKRAkLdM0X7XC255AaVGbqUCpZPcgnnoQPZj3ch24qBhi4aK2W8oXiQ0Ln8UuF0M5X8J9nGR46p9kGXEcfQeXVgREMnGdMWOYgXSC4EUD6RiErRmBiKxzMcMqctSp0qR4fDwyPSBofH2cidprzRqxAH7tD9drLGwvmwlMTfX97SegT3u7HgF68B2e7ZqOTSCiQXgS42nLyglXJ807NuEWLoujlX95AZepeSC3e6YpQaunTohUBDp7Uqy0nOolVL8MZHhSySl6GHYPkNp7IMMPBBYzR0IeV0o6GHBl14kSC3ai+X5DaogiVmLiySGProSJDPbxj5sqmke4pm0IXFZlXlGS3N8FpyfCQnRD6754FWy/Aq5Wynt1IxFP8QJ0BZ8sqr8XeDSqn3cguke8N21r197raQXMIMvbu0RdE7xWf69ktfCPeSvfmN4/MMPQ+0aKF15Q/D3bcn0xKN11/LHihC4E7shP3SK+AqNgrrCNNkA6xbORh6MYahRyonc2nosg1uJPdcNWbQaSPJ6/AiDF28Xh5bmAG0WhFyRuuaK2GcXYBzscJ9wR265Ji88SDnXAT8unHo1YrQm1EqovWqK0GztGkW90MT1Kqy/j5AiB3nlly6QOuVLw1Lsr1CqQBqGizxgctvOijaBSSG3nVQVHo4vVoFjbihvxkgB8xooYDWtT+SeY1QDnOpiMabruvKJmGPZYYKi1RK/sVrZcfLH9RojnGXDJ1QCiq3TMhaKRrz+8LhZX3e5KDoQE1IGnkCouzvE1b1u7wK96LdaP34VWqv473VJfmCVzwCsuTSBQM2DGbbyhpoqaRem8Bt4PdDswX4rSpQLIRZ/gZILs7LX7Q+CxsGvJFh1vVy15j43rr8qXVZtc8gM3R5B87FAuTX9CJ4wucZImNa4IUA7+Ns2+ol/xxxGnpUcuGBoSx6buQaya1SVbNckipFAUjFN822n3WEfF8QEkgueR06IMYHZqoniEguAOCN7QjWzCkptdkmFcdlfm30xManfcnPU87Cp36FN8ocOjz1YeZ5sLWuWhLkKLPbreQSfBBdsRwOv7cFgExpgRcEfj8RMWUoCwwj0HP96j1Ryt4VQ+9gh+oxtkMPGaE91zM69Og6suSSE95gLXM9gcixF331SyHnIRx6l/cubwFNO7QhSETEofNpX6FU1w1g6OsJOjoMY2GJFcKtk9wCKEguCwsLePe7340TJ06gWCzi0ksvxa233orR0VEcP34chw8fxuLiIkZGRjA9PY39+/evm7G5IaLMkbTFLiWXXqU30UIBpNnqO4Yul/7nsq1QANymeOjbGDqPR+Rk/m1QZJ3u/otgv/xFrNVwBK1XvRJkcRmtKyfVbfLR/LFXwuU6txhinMPh+XBedgW8iZ3Z2Jy/Sbo7R2FPXs7GKkqgebN4IpA7hmZFMkOXbNpyDH0ExHVhLC6vm9wCKDB0Qgh+7dd+Dffffz/uu+8+7Nu3D3/yJ38CADhy5AgOHTqE+++/H4cOHcLNN9+8boZ2gyAP1C895wMW8tw08tzGHrEI2scMXZT+57AtOowh2qdDSCR589CjUHR83s5RNKYOxj5YtFpB4+eu79zRMAGtn3wVXK5X90BycV58IHtMhb+nchGNG346FBAFehMUBXojufCYCmnZrK3uBmvo6wkumxnn5jfWoY+MjOCaa64RX1955ZU4deoU5ubmMDMzg6mpKQDA1NQUZmZmMD8/v27G5obE0OG43euIBte8e3TT8Q0mQ9DxQoBaZlcMnQdGaaHAMjaiQdFcWS5+hkyc896AzIgk9EJyyQW+kSRsfD2TXKSOoZlfyyU4Ibn4LZWtrSu58DRi49zCuunnQEYN3fM8fPKTn8TBgwcxOzuLiYkJmP6FN00Tu3btwuzs7LoY2hUMgzmAls0yI8pdshThiHokufQrQ/eDoqTVymeb3NNdmmAUBCUj/yqAO6rYApA+cugiOHmBP1OaUn3bK8klYOg5CnF4qi6XXBw/RlPYukFRWquy+cFY35TMTB7ptttuQ7VaxVvf+lbMzMz0xICxsYHcrx0fV5+X2ShYqBIPLoDCcA3e6XOoDVUwnGENsZZpADZQrJUxEPP6LHYBQGuwAg9AZbiKoRz2qCKrXc5wFQ6AguOA1KqZX9+slkEJwfjEMBrFgqgU3TE+BGN8EM5ghc0zNk3ltd3FQdgAzIEKqNwcCkC5UsRgj69f1vfMYQ9W4AKojNTW5TNNssu98gp4roPx3SOxP6fDZdgveyGGX34ARhd20crlsB97AXa87DKQwaASVfV6NUpFVA2K4fFBND0XZLCC6vgQeP3ozt3DID0swc/7OfYSzYsmQI8/C8MK7vde26V8xaanp/HMM8/g7rvvhmEY2LNnD06fPg3XdWGaJlzXxZkzZ7BnT7aimLm5FXgeTf/FCMbHB3E2qZ9FDAYMA43FVRQANE0LBQArdRt2hjXEWiAgAJouxfnI67PaBQBlaqAAYM2maOWwRwV57Co0HJQBuMtrcGu1tveahgolME0TZ88uo2ay4cIEwPxSA7SwjEK9hTJYP3RV24zVFmoAHKuAKMestxws9vD65blmHMWWixKANRc9/0w72jW8Azj4E8m9XgDgjX7tRLd2vfl6oOEBjeV0uyKoFQuwF1exeHYZtXoLjgfYK+yzBYBz82s9kya6+Rx7ieKlF6F0/FnQ5VWcPbuc2y7DIIlEWIn7f+hDH8Kjjz6KO++8E0U/aj82NobJyUkcPXoUAHD06FFMTk5idHS001IbBiof+buUXGiPNXQRpO2zLBcRe2g0c2X00GLQAphawYxRsVaeiUVcl+97ycXXsvvtM+0TsAZdflCUpy3KFcTrqDNvFHiBl1w70Wuk3m1PPPEE7r77buzfvx+/9Eu/BAC4+OKLceedd+KWW27B4cOHcdddd2FoaAjT09PrZmjXMM1gxqMo787b0a23Gjr61KFznZW07HwB20JB0nRjMhi6qBSNdej95AT4e8oRNNwW8AdyAwiC7lmmdG1CeDvXn+ymPqUvfOEL8f3vfz/2ZwcOHMA999zTc6PWA7Rgsb4kYClEzoFL4OYdLZUj3a6jbf0aFJXL2XOk8TkHLgkKXOSikbYslwwOfWiAfXb7LxJ9wgX6iKGLjedCZ7lsEtBigZ38XBfE80IMfaulLAoQgsbBH2NzZ9cJ/UUJ1xOmCbLmD5EoFVH/xZ/Jv5YRyAi9QP9KLpEOghnhvOSFcF7ywra1gjz0fAMu6r/4MzCeP9v2o/UavJsLQnLRDj0OtGCxGQByr31+X2xVh45gDsJ6oX8ozTqDWqY44nVdsk96y9DBqwn7jM3JD1Yehx5aK65oJI+GLtaIuXX7iKEL+0r99Zn2DUze+E2ahsXbRWxRyeVCYPtcOb/qEUD3VXKcofeIUfcvQ5ckl277qwv2JQW8TF76n6NfeNyA7z7S0MUouC5K/7c0+PCUVmQaVsHaupLLBcC2ceg9GZDLYfS29N/duwvOxbu7ZsE9h9mdhi5DPLDyNcuhoQvEfYZ9xNC9vbvg7NsTTPTRCIGKxm+coVvi+7lacmgA2EYaemgkW7eOuNcMfccw6m/72Z6s1UuENr5u2S9PSZNZf48kF2pZbOBIH2no3tgO1N96w0ab0b+ITMMSsQZLM/RusG22wtBItm6DmT1m6H2LlL4gWSA2P3mtLhi6LLmItddp8K5G70ELlj+vNjw8hWrJpStsmydAljO6D4p2wSw3E/wCCG8of3sGgbiUNDNHlotYT1qHxyD6iKFrpMA0QTxPtIOQGbqWXPJj+0guMkPvWnLxK0V72GuiH+HtGIY3WEPz+mu7X6zQLrl4YzvgTuxEaWIMaCW9MAGy5CLmNGpHsFnAT1XE78fDv3Yu29dX0tlmw9b2SDKkoF63DJ32Om2xX1EsYPX/+S89WSquaIQO1rD2q7+A2vBg9r4isvMWkot2BJsGvAqZF9n4DL312h/dKIu2BLYnpelVUHSLM/SeIoahdwVCghF3mqFvPvA+QRGGrtEdtucT0HXa4jbR0HsI4ch7ec1Mk52WeE8dfVTfNOBkiDv0zDNrNWKxrRx646dfDW94sHsmR7aHht5TrEefDsNgTp0zdc3QNw8EQ2+yz01ntvQE28oj2Ve/HPbVL+9+Ic3QM4P2WnIBq8YklAYBUq2hbxqEGHqfjV7czNBXMgfyDDfe9lgPhm6ZoJQGG6yWXDYPJA1dNzDrHfQZNQ+2SdpiLxFbWNQtDL+RU7TZl0bfI8TQ9XPUM+gnIA+05JIdvPS/h0Uj1HfmQjvXksvmgTQNS/eM7x301pgHhPjZFdqhq2JdGLplsmJWvklohr55IN0HOmWxd9BXMg8MQ7PzrIhpztU1DBMwAw1dZ7lsHoTuA62h9wzaoecBIVo/z4jY9rndrmkaIDRIW9SSyyaCZujrAn0lc8DdNQaysrbRZmwuFCy4O3fAG+/doFxvYifr2GfooOhmg2bo6wPt0HPA/tFXwP7RV2y0GZsLhoG1//ZLPV2y+dOvBgAUH/w3/29ohr5poBn6ukBTGo3ND1PnoW86mAYo/7926D2Ddugamx5ixqsecLF5QEgQKNeSS8+gnwCNzQ9dKbo5wXV0XfrfM2iHrrH5oStFNyV4YFQz9N5BPwEamx+6sGhzggdGtYbeM+gnQGPTQ5f+b04EDF079F5BO3SNTQ9vxzCoZYHWKhttikYW6KBoz6G3Ro1ND+/i3Vj5f//bRpuhkRGiuEgz9J5BM3QNDY2NgQ6K9hzaoWtoaGwMeFBUpy32DNqha2hobAhEUNTSDL1XSHXo09PTOHjwIF70ohfh8ccfF98/fvw43vKWt+D666/HW97yFjz99NPraaeGhsZWg2boPUeqQ7/uuuvwiU98AhdddFHo+0eOHMGhQ4dw//3349ChQ7j55pvXzUgNDY2tB11Y1HukOvSrr74ae/bsCX1vbm4OMzMzmJqaAgBMTU1hZmYG8/Pz62OlhobG1oOpC4t6jVxXcnZ2FhMTEzD9kmvTNLFr1y7Mzs5idDRbv+uxsYE8JgAAxscHc792PaHtyo5+tU3blQ1Z7HIu2gnnqSGM7xpaR4sYtsL1UsGGb41zcyvwPJr+ixGMjw/i7NnldbCoO2i7sqNfbdN2ZUNmuyavAF54AMvr/F62zPXyYRgkkQjnynLZs2cPTp8+Ddd1AQCu6+LMmTNt0oyGhoZGIgwDKGr9vJfI5dDHxsYwOTmJo0ePAgCOHj2KycnJzHKLhoaGhkbvkCq5vP/978cDDzyAc+fO4Vd+5VcwMjKCz3/+87jllltw+PBh3HXXXRgaGsL09PSFsFdDQ0NDIwGEUppdwO4htIZ+YdCvdgH9a5u2Kxu0XdnQNxq6hoaGhkb/QTt0DQ0NjS0C7dA1NDQ0tgg2PA/d6GKwbzevXU9ou7KjX23TdmWDtisb8tjV6TUbHhTV0NDQ0OgNtOSioaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWw4aX/WXH8+HEcPnwYi4uLGBkZwfT0NPbv37/RZmF6ehr3338/nnvuOdx333244oorNtokAMDCwgLe/e5348SJEygWi7j00ktx66239sUwkne84x149tlnYRgGqtUq/uAP/gCTk5MbbZbAHXfcgb/4i7/om8/z4MGDKBaLKJVKAICbbroJ11577QZbBTSbTfzhH/4hvva1r6FUKuHKK6/EbbfdttFm4dlnn8Vv/dZvia+Xl5exsrKCb37zmxtoFcNXvvIV3H777aCUwvM8vPOd78TrX//67hemmwxve9vb6L333ksppfTee++lb3vb2zbYIoaHH36Ynjp1ir7uda+j3//+9zfaHIGFhQX69a9/XXz9R3/0R/T3f//3N9CiAEtLS+L/X/ziF+kNN9ywgdaE8eijj9K3v/3t9Cd/8if75vPst3uL47bbbqMf+MAHqOd5lFJKz549u8EWxeP9738/fd/73rfRZlDP8+jVV18tPsvHHnuMXnnlldR13a7X3lSSy9zcHGZmZjA1NQUAmJqawszMDObn5zfYMuDqq6/uy5mqIyMjuOaaa8TXV155JU6dOrWBFgUYHAwmnq+srICQ/mig1Gq1cOutt+LIkSN9Y1O/YnV1Fffeey9uvPFGca127ty5wVa1o9Vq4b777sPP//zPb7QpAADDMLC8zIZbLC8vY9euXTCM7t3xppJcZmdnMTExAdM0AQCmaWLXrl2YnZ3tCwmh3+F5Hj75yU/i4MGDG22KwHvf+1489NBDoJTiIx/5yEabAwC4/fbb8aY3vQn79u3baFPacNNNN4FSiquuugq/+7u/i6GhoQ215+TJkxgZGcEdd9yBb3zjG6jVarjxxhtx9dVXb6hdURw7dgwTExN46UtfutGmgBCCP/uzP8M73vEOVKtVrK6u4sMf/nBP1t5UDF2jO9x2222oVqt461vfutGmCHzgAx/AP//zP+Nd73oXPvjBD260Ofj2t7+N73znOzh06NBGm9KGT3ziE/jc5z6HT3/606CU4tZbb91ok+A4Dk6ePImXvOQl+Md//EfcdNNNeOc734mVlZWNNi2ET3/6033Dzh3HwYc//GHcdddd+MpXvoK//Mu/xLve9S6srq52vfamcuh79uzB6dOn4bouAMB1XZw5c6YvpY5+w/T0NJ555hn82Z/9WU+Odr3GDTfcgG984xtYWFjYUDsefvhhPPXUU7juuutw8OBBPP/883j729+OBx98cEPtAiDu82KxiEOHDuHf//3fN9giYO/evbAsS8igr3jFK7Bjxw4cP358gy0LcPr0aTz88MN44xvfuNGmAAAee+wxnDlzBldddRUA4KqrrkKlUsGTTz7Z9dr992R3wNjYGCYnJ3H06FEAwNGjRzE5OanllhR86EMfwqOPPoo777wTxWJxo80BwLTX2dlZ8fWxY8cwPDyMkZGRjTMKwK//+q/jwQcfxLFjx3Ds2DHs3r0bH/3oR/HqV796Q+1aW1sTmiulFF/4whf6IiNodHQU11xzDR566CEALAttbm4Ol1566QZbFuAzn/kMXvva12LHjh0bbQoAYPfu3Xj++efx1FNPAQCefPJJnDt3DpdccknXa2+6ARdPPvkkDh8+jKWlJQwNDWF6ehoveMELNtosvP/978cDDzyAc+fOYceOHRgZGcHnP//5jTYLTzzxBKamprB//36Uy2UAwMUXX4w777xzQ+06d+4c3vGOd6Ber8MwDAwPD+P3fu/3+kLjlHHw4EHcfffdG562ePLkSbzzne+E67rwPA8HDhzAf//v/x27du3aULu4be95z3uwuLgIy7LwO7/zO3jta1+70WYJXH/99Xjve9+L17zmNRttisDnPvc5/NVf/ZUIJP/2b/82fuqnfqrrdTedQ9fQ0NDQiMemklw0NDQ0NJKhHbqGhobGFoF26BoaGhpbBNqha2hoaGwRaIeuoaGhsUWgHbqGhobGFoF26BoaGhpbBNqha2hoaGwR/P9WOPqjG/dGXgAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts\n", + "\n", + "lc_poisson = Lightcurve(times, noisy, dt=dt)\n", + "lc_poisson.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "b9e4b55d", + "metadata": {}, + "source": [ + "### Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "dabd22b8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 7 DPSS windows for multitaper spectrum estimator\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzdd5wcdfnA8c/M7F7vLXeX3ntPCIRQQpEuGBFEUBERVJqogAIqXfgBitgQREABQToiTZBOCAnp7dKv5XrvW2Z+f8zu3t7d9pK7yz3v1yuvJHd7s3OzbZ55nu/zKIZhGAghhBBCCCGECJk62DsghBBCCCGEEMONBFJCCCGEEEIIESYJpIQQQgghhBAiTBJICSGEEEIIIUSYJJASQgghhBBCiDBJICWEEEIIIYQQYZJASgghhBBCCCHCZBnsHRgudN3A6dQP6X1aLCoOx6G9z5FGjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4f6GGuaiqoqQW8ngVSInE6d5ubOQ3Z/qqqQm5tGa2sXui4zk+NBjnH8yTGOLzm+8SfHOL7k+MafHOP4kuMbf4NxjLOyUlBVLejtpLRPCCGEEEIIIcIkgZQQQgghhBBChEkCKSGEEEIIIYQIkwRSQgghhBBCCBEmaTYhhBBCCDFEGIaBrjsxYrSmXlUVbDYbDodDmiHEgRzf+IvHMVYUUFUNRQnemS8QCaSEEEIIIYYAp9NJQ0MVuu6M6Xbr61V0Xdpzx4sc3/iLxzFWVY3c3CI0LXh3Pn8kkBJCCCGEGAJaWxtRVY2cnFFAdFfKvVksCg6HZEviRY5v/MX+GBs0N9fT2tpIdnZ+5PsVwz0SQgghhBARMAydnp5OsrMLsFisMd22xaICkjGJFzm+8RePY5yenkVTUy2GoaMokbWNkGYTQgghhBCDzF22pGlyjVuIQ8H9WoumZFACKSGEEEKIQdbbXCJ2JX1CiEDM11o0jV0kkBJCCCGEEEKIMEkgJYQQQgghhoT169exYsUSOjs7A97u3HPP4oUXnj1EezV0vf76vznjjBMHezdGLAmkhBBCCCFERO688xZWrFjCb3/7fwO+d+utN7NixRL+8IcHIt6+v0DhkUf+zhlnnO35/4oVS/jkk48ivp9D4dFH/8KKFUsG/LnssotD+nlfweOJJ57Mk08+F4e97evOO2/h5puvj/v9DDeyolEIIYQQQkSsoGAU//3vW1xxxY9ISEgAoKOjnY8+ep+CglFxuc/s7Oy4bDcW7HY7VqvvzotTpkzj/vsf7PM1f7cNRWJiEomJSRH/vIiOZKSEEEIIIUTEZs2aTXZ2Nh9//KHna++88zbTps2guHh0n9v2zxx1dnayYsUS1q9fN2C769ev4667bqWlpcWTvXn00b8AfbMz5557FgA33HAtK1Ys8fy/vLyMG264lrPO+hInn3wsl1/+HTZt2jhgf15++QWuvfYKTjjhaL7+9a+wevXHfW6zb98efvzjqzjppBWcffYp3H337bS3t3u+/4MffI8HHriPBx64l9NPP5Ebb/yp32OlaRq5uXl9/mRkZHq+/+ijf2HVqjNYufIovvKV0/nLX/4IwJVXXkZ1dRW//e29nmMBAzN2jz76F7773W/y8ssv8JWvnM7JJx/L73//G5xOJ4888mfOOONEzjnnNF599aU++/WHPzzA17/+FU444WjOO+9snnjiUU83u0cf/QtvvPEa77//P899ux+vmppqbr75Bk455TjOOONEbr75eurr6/z+/ocbyUgJIYQQQoionH76Wbz++quccMJJgHmCf9ZZ5/Dmm/+JeJtz587n6qt/wuOP/5V//MMMmpKTUwbc7pFH/s5ZZ53ML35xG0uWHIGqaoAZpC1ffgyXX34FFouVV155keuvv4Znn32FrKwsz8//9a8P8cMfXs21117Hq6++zE03Xc8///kio0YV0tbWxtVX/4BzzvkqP/rRT+js7OL3v/8Nd955C7/+9X2ebfznP69y7rnn89BDf4v4933vvXf417+e5pZb7mLixMnU19dSXl4GwF133cvFF3+Dr3zlXE4//ayA2ykrK2XDhnX85jd/oLR0P7/61Y3s27eXWbPm8NBDj/H++//j/vvvZunSZRQVFQOQlpbGzTffSm5uHrt27eSee+4kKyubs89exQUXfJPS0gN0d3dzww03AZCRkYnD4eAnP7mKefMW8Oc/PwooPProQ9xww4955JEnUNXDP18jgZQYsaxPtdCjtMM30gZ7V4QQQogBfluygc8aqqLfkAKE2OL5yNwirp2+MOy7OPXUM3j00b9QX19HR0cH+/bt4YQTTooqkLJaraSlpaEokJub5/d27jK/tLT0PrebPn0G06fP8Pz/qquu5YMP/seaNZ9yyimne75+0kmneIKTK6/8EZ9/vpqXX36Byy+/ghdeeJaZM2dx6aXf99z++utv4sILz6WpqZHs7BwAxo+fwOWXXxH0d9q9u4STTz6mz9e+/OVVXHXVtdTUVJOTk8vSpcuwWCwUFhYyZ848wAxcVFUlJSUl4LFw+9nPfklycjITJ05i1qw5NDU18b3v/QCACy/8Fk8++RibN2/0BFIXX3yp52eLiorZs2c3//vfO5x99ipSUlJITExE15197vutt15HURSuv/4mz9duuulWTjttJTt3bmfWrDlB93O4k0BKjFjaThtOB4AEUkIIIUQ0cnPzWLJkGW+88R/a2lo57rgTSElJHdR96uzs5NFH/8Lq1R/T2NiA0+mkp6eHmprqPrfrf8I/e/ZcDhzYD8CePbtZu3bNgOAHoLKywhNIzZgxM6R9mjBhInfddV+fr6WlpQNw/PEn8eyzT3PeeWdz5JHLWb58BcuXHxN2Zqe4eDTJycme/+fk5JCQkOj5v6qqZGZm0dTU6Pnau+++zXPPPUNlZQXd3V04HA5GjSoKeD979uymrKx0wLFxOp1UVlZIICXEYc1hgHOwd0IIIYTwzcwMhZ8d6s9iUXE49Oh3KIgzzjiLhx76A52dnfzqV3f4vI2iKBheE1AdDkfc9uePf3yAL75Yyw9/eA2jR48hMTGRn/70Gux2e7998r2fAF1dXRxzzPE+s035+fmefyclJQ/4vi9WawJjxoz1+b3CwkL++c8X+fzzz1i7dg13330706bN4P77f+/Zn1BYLH1P7xVF8fk1XTcfh61bN3Pbbb/g0kt/wNKly0hNTeW1117h3XffDng/XV2dzJo1m5tuunXA93JyckLe3+FMAikxMhkGivu9W49ipLUQQgghADj66GO5995fk5ycwsKFi33eJisrm8bGBs//9+zZFXCbFosVpzN4EGixWND1vldHt2zZxBlnfJljjz0egNbWVurqagb87LZtWzn55FM9/9++fSvLl5tZlmnTpvPRRx9QVFSMpmlB9yNaSUlJHHvs8Rx77PGceuoZXH75xdTU1FBYWBjysQjXli2bKS4ezTe/ebHna9XVB/vcxtd9T506nffff5ecnJxBzz4OlsN/FZgQvjj9/FsIIYQQEbFYLDz77Es88cTTfjMoCxcu5oUX/sWePbvZsmUTjzzyp4DbLCoqoqOjnfXr19Hc3Ex3d7fP2xUWFrNu3ec0NNTT2toKwJgx43j//f+xe/cudu3ayS233ORpROHt3Xff5o03XqOsrJQ//el3lJWVcvbZXwVg1aqv0dTUwG233czOnduprKxg9eqPueeeO8M5NB5Op5OGhvo+f5qamgB4443X+M9/XmXfvr1UVlbw7rtvkZaW7snuFBUVsXHjeurqamlubo7o/n0ZO3YsVVUHeffd/1JZWcHTT/+DNWtW97lNUVGRp5SvubkZh8PBl750Gqmpafz859exadNGDh6s5Isv1nLffb+mra0tZvs3lEkgJUYmh1cWyikZKSGEECIWUlPTAmYnrrzyR2RlZfP973+He++9i0suuSzg9ubOnc/ZZ6/iF7+4gTPPPImnnnrC73bXrFnNqlVncMklFwJmc4mUlBS+//3vcOON17Fy5YmMGzd+wM9+97uX8eabr3PxxRfwwQfvcfvt91BYWAhAfn4Bf/rTo9hsNn70ox/yrW+dzx//+GCfrn/h2LNnF2effWqfP9/+9tcB89i9/PILfP/7l3Dxxd9g584d3HvvA57ZXN/97veprKzg/PPP4cwzT4ro/n1ZseI4zjvvAn7zm7v5zncuZO/eXVx44bf73Oass77CmDFj+O53v8mZZ57E5s0bSU5O5o9/fIS8vFxuvPEnXHTR17j33rtQFNWzz4c7xfAuVBV+2e1Omps7D9n9qapCbm4aDQ3tnhpWEUPtOqm3m6UFXbfmoSeFXnssQifP4/iS4xt/cozjS45vL4fDQX19JXl5owesZ4nWoVojNRytWLGEe+75LUcfPbCZRKjk+MZfPI5xoNdcVlYKVmvwUk7JSIkRSfHOSDlG9oe3EEIIIYQInwRSYmTyCp4UuYgkhBBCCCHCJF37xMjk3W1Vmk0IIYQQI9LHH68b7F0Qw5hkpMSIpEizCSGEEEIIEQUJpMTIJBkpIYQQQggRBQmkxMgkGSkhhBBCCBEFCaTEiKTYvQOpwdsPIYQQQggxPEkgJUYmr+BJkYyUEEIIIYQIkwRSYmTyzkhJ+3MhhBBCCBEmCaTEiKR4N5uQgbxCCCGEEFFbv34dK1YsobOzc7B35ZCQOVJiZHJIRkoIIYSI1p133sIbb7wGgMViYdSoQk477UwuuuhiLBY5zQSoqjrI1772Zf7+92eYNGnKYO+Ox+uv/5u77rp1wNdzcnJ59dW3gv78lVdexowZs7jyyh95vjZ37nxeeeVNkpOTY7mrAzz66F/49NOPefTRf8T1foKRZ7gYmaRrnxBCCBETy5cfww033ITd7mDTpvXcc8+daJrGN7/5ncHeNex2O1ardbB3IySDsa8ZGZn84x/P9vmaqmoRb89qtZKbmxftbg0bUtonRiTv0j5FuvYJIYQQEUtIME+eCwsLOeWU0znllNP4+OMPAWhtbeHWW2/m1FOP56STVnDDDddSXV0NQHt7O8ceewS7d+8CwOFwcNJJK7j22is82/7Xv57m0ku/5fn/vn17+PGPr+Kkk1Zw9tmncPfdt9Pe3u75/pVXXsYDD9zHAw/cy+mnn8iNN/4UMDMYq1adwcqVR/GVr5zOX/7yR8/PnHvuWTzxxKP88pc/56STVrBq1Rn85z+v9vkda2qqufnmGzjllOM444wTufnm66mvr+tzm1dffYmLLvoaK1cexTnnnMaf//x7AL72tS8D8K1vfZ0VK5Zw5ZWXAWY27+abr+exxx7h7LNP4ZJLLgRgxYolfPLJR57tdnZ2smLFEtavXwf0ls+tWbOab3/765xwwtH85CdX09rayrvv/pfzzjubU089nvvuuxunM/BJjqJAbm5enz/Z2dme77/44nOcf/45rFx5FF/+8inceectnn3fuHE9zzzzJCtWLGHFiiVUVR0cUNr3+uv/5owzTuTDD9/n61//CiedtILbbvsFNpuN559/hnPOOY0zzzyJv/3t4T779fTTf+eb3zyPE088mlWrzuCBB+6np6fHs83HHnuEkpIdnvt+/fV/A9Da2sqvf30bZ5xxIqecchw//vGVlJYeCHgMoiEZKTEySUZKCCGEiIvExETsdjsAd9xxC9XVB7n33t+RmJjIgw/+hhtv/AmPPvokaWlpTJkylY0b1zN16jR27NhGYmIiW7duxuFwYLFY2LBhPQsWLAKgra2Nq6/+Aeec81V+9KOf0NnZxe9//xvuvPMWfv3r+zz3/5//vMq5557PQw/9DYD33nuHf/3raW655S4mTpxMfX0t5eVlffb56af/zsUXf49LL/0+H3/8IffccwcTJ05i1qw5OBwOfvKTq5g3bwF//vOjgMKjjz7EDTf8mEceeQJQef31f/Pgg/fzwx9ew9Kly2hpaWHXrp0APPLIE3zve9/m97//C+PGje+TdVqz5jNSUlJ54IE/h32cH3/8Ea677kY0TeOmm67nF7+4gZSUFO6++35qamq46abrmTdvPl/60mlhbxtg587t/O5393Hzzbcyd+58mpub2bFjGwDXXPNTysvLmDJlGt/5zqUAZGVlU1V1cMB2Ojs7efnl57n99ntobW3hxht/ys9+9mNGjSrkd7/7Mzt2bOOOO37FkiVHMG/eAgA0TePaa6+nqKiY8vIy7rvv11itCVx++RWceOLJ7Nu3l3XrPuf++x8EIC0tDYBf/vJnJCcnc//9fyAlJZnnnnuWa6+9gqeeej4u5YYSSImRySFzpIQQQgxtCf9qxbLNFptthXg7x+wEbOdlRHw/27Zt5a233uDMM8+mrKyUTz/9iIcffpxZs+YA8Ktf3cG5557FunVrWLr0SBYsWMSGDV/wta99nY0b13PMMcezfv06du7cwezZc9i8eQNnnGFmdF544VlmzpzFpZd+33N/119/ExdeeC5NTY1kZ+cAMH78BC6/vDer9emnH5GTk8vSpcuwWCwUFhYyZ868Pvu9cOFiLrjgIgC+8Y1vsnHjF/zrX//kllvu5N1330ZRFK6//ibP7W+66VZOO20lO3duZ968eTz22CNceOG3WbXqawCMHQtz5swFzAADIDMzc0DZW2pqKtdff1NE68kuu+wKz+9x6qln8OSTj/Pvf79NZmYWkyZNYcmSpaxfvy5gINXS0sLJJx/T52vLli3njjvuoaammqSkJI4++hhSUlIpLCxixoyZgBm4WCwWkpKSgpby2e12rr/+JgoLiwA4+uhj+fzzz/i//3sAi8XC+PETeOqpJ1i/fp0nkDr//As9P19UVMwll3yPxx77K5dffgWJiUkkJyejaVqf+960aSMlJTt59dW3PMHqtddex4cfvsenn37MiSeeHOKRDZ0EUmJE6tO1TwIpIYQQImIfffQBJ598DE6nE6fTyUknncIll1zGunVrsFqtzJw523Pb/PwCioqKOXDggCuQWsw999yOYRhs2LCeU045DcMw2LjxC5KSkmhra/OcXO/Zs5u1a9cMOPEHqKys8ARS7pN9t+OPP4lnn32a8847myOPXM7y5StYvvwYVLV3hYs70HObPXsu77//rud+y8pKB9yv0+mksrKCyZMnU1V1kEWLloR97CZPnhpxU47Jk6d6/p2Tk0NOTi6ZmVmer2Vn59DU1BhwG+npGa6sWq+kJDNzs2TJEeTnj3Idt6M58sjlHHvsShISQg3LTampqZ4gyr1fY8eO7fN75+Tk0tzc5Pn/2rVr+Mc/HqO09ACdnR3ouh60THHPnl10dLRz+ukn9Pl6T08PBw9WhLXPoZJASoxMUtonhBBiiLOdl0Es8lEWi4rDEb8WtUuWLOPaa6/DYrGSl5cXNDAwDANFMf+9YMFCWltb2bNnF1u3buaGG25C13X+97//kpSUxOTJU8jIMDNkXV1dHHPM8X2yTW75+fmef7sDAbfCwkL++c8X+fzzz1i7dg13330706bN4P77f4/i2hH3397cX+vq6mTWrNncdJOvDnc53j8R8Pf2JTk5yef9GkbvuYnD4RhwG6DPcVYUZcBx778dX1RVYcyYsT6/l5qaxuOPP8369etYs2Y1f/7z7/nHPx7n4YcfIzFx4H7742u/NK3/c0RB183naFXVQW644VpWrTqPyy+/kvT0dL74Yg333/9/Ae+nq6uT/PwCfve7gWWS7udQrEkgJUYmaTYhhBBCxERycpLPk/Hx4ydit9vZsWObJ+NTV1dLdXUV48dPBMyucZMmTebZZ58mMzOLUaMKWbhwMQ88cC8Wi4UFCxZ7tjdt2nQ++ugDioqK0bTwOsslJSVx7LHHc+yxx3PqqWdw+eUXU1NTQ2FhIQDbtm3pc/tt27YybtwEAKZOnc77779LTk4OKSmpA7ZtsagUFRWzfv1a5s9fMOD77jIzpzO0YDYrK5vGxgbP//fs2RXSz8WDxWLhiCOO5IgjjuTCC7/Fl798Cjt2bGfBgkVYrVZ0PfYnUSUlOwD6tFV/441/97mNr/ueNm0G9fV1WK1WRo0qjPl++SJd+8SIpEhGSgghhIircePGs3z5Mdx99+1s2bKJXbt2ctttv2Dy5CksWXKE53YLFiziv/99k4ULzaYShYVFZGRk8umnH3saTQCsWvU1mpoauO22m9m5czuVlRWsXv0x99xzZ8D9eOON1/jPf15l3769VFZW8O67b5GWlt4nm7Rx43qeffYpyspKeeaZJ/nss08499yvA/ClL51GamoaP//5dWzatJGDByv54ou13Hffr2lrawPgkksu46mnnuDFF5+joqKcnTu38/LLzwNmYJSYmMiaNZ/S1NTYp8ugLwsXLuaFF/7Fnj272bJlE4888qcwjnp4DAMaGuoH/AH45JOPeP75Z9i9exdVVQd5443XsFgsFBePBqCwsJht27ZSXV1Fc3OzJ6MUrdGjx2Kz2XjhhWeprKzgtdde4T//6RtIFRYWU1lZye7du2hubsZms7FkyRHMmjWbn//8J6xd+xkHD1ayadNG/vjH38Wtc59kpMTIJM0mhBBCiLi76aZf8cAD9/HTn16N0+lk0aKl3HTTrX1K6RYsWMQLL/yLhQsX9/nam2/+h/nzF3q+lp9fwJ/+9CgPPfR7fvSjH2K32ykqGs0xxxwXcB9SU9P4xz8e43e/ux/DMJg6dRr33vtAn7U+F1zwTbZs2cTDD/+JjIxMrr/+Rk+ziOTkZP74x0f4858f5MYbf0JXVxcFBaNYuvRIzzZOO+1Menq6eeaZp3nwwfvJzs7h1FPPAMyszo9+dB2PPfYIDz/8J+bNW8Af/vDwwB11ufLKH3Hnnbfy/e9/h+Li0Vx11bVce+2VYRz10LW2tnD22acO+Pq7735CWlo677//Px599GHsdhvjxk3gzjvvpaBgFAAXXHARd955CxdeeC49PT0899yrA7YTialTp3HVVdfy97//jT/96UEWL17K5Zf/kF//+nbPbY4//gQ+/PB/XHXV5bS3t3Hjjb/i9NPP4r77HuShh/7IHXfcQmtrC7m5eSxcuDhupX2KEax4UgBgtztpbu48ZPenqgq5uWk0NLSj6/IQxVriYy1YdpqV5/aTUrCdPDBVL6Inz+P4kuMbf3KM40uOby+Hw0F9fSV5eaMjbj7gT7zXSA135557FhdccBFf/er5Ef28HN/4i8cxDvSay8pKwWoNXj4qpX1iRFIkIyWEEEIIIaIggZQYmWSNlBBCCCGEiIKskRIjk3TtE0IIIQTw/PP/Dn4jIXyQjJQYkaRrnxBCCCGEiIYEUmJk8p5tJxkpIYQQg6y3iZ1c3BPi0DBfaz5mMYdMAikxMkmzCSGEEEOIqpqnZE6nI8gthRCx4H6tqWp4w529yRopMSJJaZ8QQoihRFFUEhNTaGtrRtMsQBSXyQduHYdDPuviR45v/MX6GBu0tTWTmJjSZ6ZZuCSQEiOTvfef0mxCCCHEUJCRkUNDQxX19Qdjul1VVdF1mXMUL3J84y8ex1hVNbKzC6LahgRSYmTyzkKN8CGQQgghhgZN08jPH42uOzFi9NGkqgrZ2Sk0NXWO+KHH8SDHN/7icYwVxQykoslGgQRSYiQyDBTvEnQpRxdCCDFEKIriKu2LDVVVSEhIwGKxyYl+HMjxjb+hfIyl2YQYeVylfIb7IsQQe1EKIYQQQoihTwIpMfLYXYFToiuSkjVSQgghhBAiTBJIiZHHnZFyBVKKdO0TQgghhBBhkkBKjDiKZKSEEEIIIUSUJJASI4+zfyAlGSkhhBBCCBEeCaTEyOOaIWVIRkoIIYQQQkRIAikx4iiSkRJCCCGEEFGSQEqMPO6MVIIrkJJh5EIIIYQQIkwSSImRx+HKQFkU0Og7nFcIIYQQQogQSCAlRhylTyClyEBeIYQQQggRNgmkxMjjykAZVsxgSppNCCGEEEKIMEkgJUaefqV90mxCCCGEEEKE67APpK6++mqWLl3KtddeO9i7IoYI79I+RZOMlBBCCCGECN9hH0hdeOGF3HPPPYO9G2IocTeXsGAGUwayTkoIIYQQQoTlsA+kli1bRmpq6mDvhhhKXBkpw91sAqQFuhBCCCGECItlMO987dq1PProo2zdupW6ujoeeughVq5c2ec2Tz31FI8++ih1dXXMnDmTm2++mXnz5g3SHouhqsvpoLKznfKudnqcDqyqRqKqYVVVElUNi6ri0HXshs7oVoOpaOzobGKKbiUVONjeTk56MknaoL4khBBCCCHEMDGoZ42dnZ1Mnz6dVatWcdVVVw34/uuvv86vf/1rbr31VubPn88TTzzBpZdeyptvvklOTg4AZ599ts9tv/jii2iaFtP9VVUlptsL5b4O5X0OJw09XbxYsZfSjlbKO9up6+kK+We/XTWGqYzljbpSvtpTxFRS+ckXH9GW4CBFs5CdkEiSZiFBVbGqGgmqSoKqMSophZMLxzEhNSOOv9nhRZ7H8SXHN/7kGMeXHN/4k2McX3J8428oH+NBDaSOO+44jjvuOL/ff+yxxzj//PP56le/CsCtt97K+++/z0svvcR3v/tdAF555ZVDsq8Wi0pubtohuS9v2dlSlujLc9v28FLFXgBUFMakpjE+PYMJ6ZmkWxPocTrp0Z3YnK4/uhOLKyCaV20e0xVjxpBZbYFWWJRTwAHaqe/uorKrw+/9vlSxl/m5+ayaOJWVo8eRGONg/XAlz+P4kuMbf3KM40uOb/zJMY4vOb7xNxSP8ZCtY7LZbGzbto0f/OAHnq+pqsry5cvZuHHjId8fh0OntTX0rEe0VFUhOzuVpqYOdGmEMMDBlnYArpm2gJWjxpCghh7QWDe2AV0syx9FYno3ek0PP5u8CCPL3EaPK/Ay/+jYdSc9us6W5nperzrApoY6NjXUcf/GdZxUOJbzxk0jw5oQj19z2JPncXzJ8Y0/OcbxJcc3/uQYx5cc3/gbjGOckZGM1Rr83HLIBlJNTU04nU7y8vL6fD03N5fS0tKQt3PZZZexefNmurq6OPbYY3n44YeZMWNGRPs0GC8QXTfkhelDm90GwPiUdCyoYR0jw27eVlcxZ0kBut3AcG3DqqhYNZVUzdrn5yanZvLl4klsbq7njeoDfNZQzYuurNglE2dH+ysd1uR5HF9yfONPjnF8yfGNPznG8SXHN/6G4jEesoGUP4ZhoCih10g+/PDDcdwbMVjaHXYA0izWILf0wd3+3OrdtS+0F6aqKCzIzmdBdj4bm+q4eetq6roPXaZSCCGEEEIMDUO2/Xl2djaaplFfX9/n642NjQOyVGLkaXOYGal0S/gldd4DeXFnbR1+b+5XYVIKAE32nvB/WAghhBBCDGtDNpBKSEhg9uzZfPrpp56v6brO6tWrWbBgweDtmBgS3BmplIgyUu45UqC4MlJKBKnirIREAJptEkgJIYQQQow0g1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRZDQbvDRqrFihZGmaeHO/vkPZDXGf5mkjQLyZqFJlt3+D8shBBCCCGGtUENpLZu3cq3vvUtz//vuOMOAK688kquuuoqTj/9dBobG3nwwQc9A3n/+te/emZIiZHJoet0OZ2MSkqM6Od7S/vwNJvAGdnixeyERA52ddDjdEordCGEEEKIEWRQA6lly5ZRUlIS8DYXXXQRF1100SHaIzEcuMv60iMp6wOv0j6vNVIRZKQAsq1mINVs72GUlhLZRoQQQgghxLAzZNdICeFPbyAV4ewmH6V9SqSBVEISIOukhBBCCCFGGgmkxLDj7tgXUetz+pb2KVp0pX1ZVrO8sMku66SEEEIIIUYSCaTEsBPVDCnom5FyF7fqkW0q29W5r0kyUkIIIYQQI4oEUmLYaXdnpKwRlvbZDQwFc31UlBkpCaSEEEIIIUYmCaTEsNNuj67ZhOIwzCBKid0aKWmBLoQQQggxskggJYadtliU9lldAVS07c89a6QkIyWEEEIIMZJIICWGnd41UpF27TPM1ucQdfvzLCntE0IIIYQYkSSQEsNOVF37DMMs43M3mfCskYpsX9xd+6T9uRBCCCHEyCKBlBh2PHOkrBEEUt4d+7z/jrC0z6KqZFgSaLJ3YxiRbUMIIYQQQgw/EkiJYcfTtS+S0j7XDCnDk5Ey/1IibH8OZuc+m67T6XQEv7EQQgghhDgsSCAlhp22aLr29ctIeQbyOiLPJrnXSUl5nxBCCCHEyCGBlBh22h12LIpCoqoFv3E/ijtg6l/aF01GSjr3CSGEEEKMOBJIiWHFMAzaHTbSLAkoihL+BjyBlOv/UQ7kBZklJYQQQggxEkkgJYaVHt2JwzCimyEFA9qfRzqQF8w1UiAt0IUQQgghRhIJpMSw0hZNxz68S/tcX7BE1/4cvAIpKe0TQgghhBgxJJASw0pUHfvAq7SvX7MJPYrSPquU9gkhhBBCjDQSSIlhxd2xL9alfUTRuTxLSvuEEEIIIUYcCaTEsOIexhtpIOW3tC+ajJS0PxdCCCGEGHEkkBLDiru0Lz3i0j7X356MlKvEL4o1UumWBFQUmuxS2ieEEEIIMVJIICWGFXdGKqJhvOBZIzWgtC+K9ueqopCVkEizzYZuRL4dIYQQQggxfEggJYYVd9e+tBh17fM0m4giIwVmeZ+OQZvdFt2GhBBCCCHEsCCBlBhW2u3Rdu1z/d2vtC+ajBRAtlVaoAshhBBCjCQSSIlhJdpmE72lfa7/W6JfIwWQnSAt0IUQQgghRhIJpMSw0rtGKrKMlDIgI+X6vx7dfmVLC3QhhBBCiBFFAikxrLR5BvJGl5GS0j4hhBBCCBENCaTEsBLr0r7YNZuQ0j4hhBBCiJFEAikxrLQ57CRrGhY1sqeuYnf9w52R8qyRii4jlSWlfUIIIYQQI4oEUmLYcBoGnQ575B37zI2Yf7ubTXjmSEWzZ16lfRJICSGEEEKMCBJIiWGj02HHIIqyPgC7q7TP2m+NlB7lGilXRqpZ1kgJIYQQQowIEkiJYSPajn3g1eZc69e1z+Hr1qFL1iwkqpqskRJCCCGEGCEkkBLDRtQd+8CTkcK1CUVRMDSibn+uKApZCYm0OezY9Sg3JoQQQgghhjwJpMSw0ebu2GeNIpByZaQMd0YKQI2+2QT0rpNqkfI+IYQQQojDngRSYthot0fZ+hxQPBkpr0DKokTdbAJkKK8QQgghxEgigZQYNtpdpX3RrJHydO3TvL6mEvVAXpBZUkIIIYQQI4kEUmLYiHoYL4BrjpThnZHSlKjXSIFXC3Qp7RNCCCGEOOxJICWGjbYYZKSU/nOkAEMDRSfqFugylFcIIYQQYuSQQEoMG7HMSGHpl5GCqLNSvWukpLRPCCGEEOJwJ4GUGDbaY9G1z2FgKPR95rvXS0XZcCLb6l4jJRkpIYQQQojDnQRSYthwd+2LqrTPYZhlfYqPjFSUDSfcGalmWSMlhBBCCHHYk0BKDBsxGcjroG9ZH8QsI5UlpX1CCCGEECOGBFJi2Gh32FFRSNEswW/sj8PA6BdIGar5/2iH8iaoGqkWq2SkhBBCCCFGAAmkxLDR7rCTZrGiKErwG/uiGyhO+nTsA6//x2IorzWRLqeTLqcj+o0JIYQQQoghSwIpMSzYdCc9ujO6RhPuQKl/aZ/7VRBl+3PwWiclDSeEEEIIIQ5rEkiJYSEmrc8dZqBk9M9IeZpNRL5pt+wEd+c+WSclhBBCCHE4k0BKDAux6NiHu9rOT7OJaNdIAWRZXQ0nZJ2UEEIIIcRhTQIpMSzEomOf4spI9Q+kjJhmpNyd+ySQEkIIIYQ4nEkgJYaFWJb2DWg2EaP25yCBlBBCCCHESCGBlBgW2j0ZqehL+/q3P4/VQF6AbKtrjZRd1kgJIYQQQhzOJJASw4I7I5UeRdc+JUhGSpGMlBBCCCGECJEEUmJYaLPHsrSvf/tz1/+l/bkQQgghhAiRBFJiWPBkpKIp7TM3MbC0L4YDeTOsiahAs3TtE0IIIYQ4rEkgJYYFd9e+1Gi69jl9l/YZauzWSGmKQoY1kSZbN4YR/faEEEIIIcTQJIGUGBZ6M1JRlPa5MlL+5kjFIiMFkJWQiMMwaHPYg99YCCGEEEIMSxJIiWGht/15FKV9royTv659sRjIC5CXYHbuq+/pisn2hBBCCCHE0COBlBgWYjKQ1x7/OVIAeYnJgARSQgghhBCHMwmkxLDQbreTqGokalrwG/vjDpT8lfbpkW/aW4ErkKqTQEoIIYQQ4rAlgZQY8gzDoN1hj6rRBACujJTRbzOGeyCvIzalfflJEkgJIYQQQhzuJJASQ16X04GOEV2jCbwG7mq+M1JKjDJSeQkSSAkhhBBCHO4kkBJDXpsjBsN4wZORwuq72UQs2p+DZKSEEEIIIUYCCaTEkOdpfW6NomMfeEr3jP7LrGLcbCI3IRkFCaSEEEIIIQ5nEkiJIa/NHn3HPgDF4fpHnDNSVlUlOyGRhp5unDKUVwghhBDisCSBlBjy2mNV2uduJtGva5/hehUoMcpIAeQnpqBj0GTrjt1GhRBCCCHEkCGBlBjy2j0zpGJU2jdgjpQ7IxXd5r3lSwt0IYQQQojDmgRSYsjzrJGKVWmf3zlSsSvDy0tMAiSQEkIIIYQ4XEkgJYa8mHXt85T29ft6XDJSKYAEUkIIIYQQhysJpMSQ51kjFXXXPvMvw19GKkbNJsCrtK9bAikhhBBCiMORBFJiyItd1z7fzSbcGanYNpswA6l6mwRSQgghhBCHIwmkxJAXqzVS/kr7DMlICSGEEEKIMEkgJYa82HXtM//yX9oX3ea9ZVoTsCqqrJESQgghhDhMSSAlhjx3Rio1zqV9scxIKYpCXmIyrQ4b3U5H8B8QQgghhBDDigRSYshrc9hJ1SxoihL8xoH469rnHsirR7f5/jzrpHpkKK8QQgghxOFGAikxpDl0nS6nI/qOfQAOMBQGPustsW9/DlCQ5B7K2xnbDQshhBBCiEEngZQY0hptZjYnMwaBlOIwzGxUv8yW4X4VxLC0DyAvwR1ISUZKCCGEEOJwI4GUGNJKO9sAGJeSHv3GHAxcHwVxGcgLkC8ZKSGEEEKIw5YEUmJIK+1oBWB8Skb0G3MYAzv2QW/XPj22GSlPC3Tp3CeEEEIIcdiRQEoMae6M1ITUKDNSumEO3O3faAJ6B/LGuLleb7MJCaSEEEIIIQ43EkiJIc2dkZqQGmVGyl22dwgzUnmSkRJCCCGEOGxJICWGLKehU97ZToYlgSxrYnQbc7U+N3xlpDzNJqK7i/6SNQvpFit1PV0YRmyDNCGEEEIIMbgkkBJD1sGuDuyGzvjUdJQoZ0h5yvZ8ZaQUBUMj5oEUmFkpm67T6rDFfuNCCCGEEGLQSCAlhqzSDnN9VKwaTQC+AykAFZQYtz8HaTghhBBCCHG4kkBKDFmlne71UbFofR6gtA/MACsOGSlPINUtgZQQQgghxOFEAikxZB1wtz6PttEEoNhd/wiQkYr1QF6Qzn1CCCGEEIcrCaTEkOVufT4+FsN4nYFL+wxNAT36u+lPSvuEEEIIIQ5PEkiJIanb6aCqq4P8xGRSLNboN2h3lfb525QGio4M5RVCCCGEECGRQEoMSRWd7RjEYH6Um7trn+antM/99RhnpWSWlBBCCCHE4UkCKTEkHXA1mohJWR+guLv2+ctIxWmWVG5iEioSSAkhhBBCHG4kkBJDkqf1+SHKSBma6x8xbjihKSq5ick02rpx6HFYhCWEEEIIIQaFBFJiSPJ07ItRRsrT/twapLQvLkN5kzCARlt37DcuhBBCCCEGhQRSYkgq7WxDRWFsSlpMtucp7dP83MD19fgM5U0BoFbK+4QQQgghDhuHdSC1b98+vv71r3PmmWeyatUq1q1bN9i7JELQZrfRaOtmdHIqVtVf5BMmd2lfsIyUtEAXQgghhBAhsAz2DsRTYmIid911F5MmTWLv3r388Ic/5K233hrs3RJBuOdHxaxjH/SW9vl7xsdpjRT0du6TobxCCCGEEIePwzqQGj16tOffkyZNoq2tDcMwUBQ/WQkxJLjXR41LjdH6KLxK+wIN5IW4rJEqkIyUEEIIIcRhZ1BL+9auXcv3v/99VqxYwfTp03nvvfcG3Oapp57ihBNOYO7cuZx33nls3rw5ovt69913mTlzpgRRw0CpK5CakBLLjJTrbz+BlPuVEJ81UhJICSGEEEIcbgY1I9XZ2cn06dNZtWoVV1111YDvv/766/z617/m1ltvZf78+TzxxBNceumlvPnmm+Tk5ABw9tln+9z2iy++iKaZ9VqVlZXce++9PPzww/H7ZUTMuEv7xscwIxW8tC+yjJRS78TIUUH1H6DLUF4hhBBCiMPPoAZSxx13HMcdd5zf7z/22GOcf/75fPWrXwXg1ltv5f333+ell17iu9/9LgCvvPJKwPtob2/nhz/8Ib/4xS8YP358VPurBjhZjjX3fR3K+xwKDMOgtKOVRFWjOCUNNUYZRNUVIClWdcCxVVXF80pQDQIGRX22ecBO4h+bsJ+WiuOEVL+3y0xIIFHVqO/pGnGP50h9Hh8qcnzjT45xfMnxjT85xvElxzf+hvIxHrJrpGw2G9u2beMHP/iB52uqqrJ8+XI2btwY0jacTifXXHMN5513HitWrIhqfywWldzc2LTiDkd2tv8T9MNRTWcHHU4HM7NyyM+LXUbKZunCAWTkJKPlpvT5XnZ2Kj0pHTjpISM1GS03OaRtOna1YQOSu1QSgjw3ilJTOdDWSlJGIqlWa4S/xfA10p7Hh5oc3/iTYxxfcnzjT45xfMnxjb+heIyHbCDV1NSE0+kkLy+vz9dzc3MpLS0NaRsffvghn332GfX19fzrX/8C4B//+AcZGeGvvXE4dFpbD11plqoqZGen0tTUga7Hft3OULWhoQaAMUlpNDS0x2y71jY7FqC1qxu9wexx7n2MNYfD/H5TJ3pDaPV9WkM3CUB3u522IPuabUnkALCrqo5xsexGOMSN1OfxoSLHN/7kGMeXHN/4k2McX3J8428wjnFGRjJWa/ARPEM2kPInnK57K1euZNu2bTG778F4gei6MaJemPvbWwAYl5we29/btUZKVwc+jrpuoLqaTRiO0I+32uMaOmUP/jP5CWaWq6arizHJMVz7NUyMtOfxoSbHN/7kGMeXHN/4k2McX3J8428oHuMhO5A3OzsbTdOor6/v8/XGxsYBWSpx+OidIRXjYMPT/tzP99Xwm00oPa5t2oO/qHs793WGfgdCCCGEEGLIGrKBVEJCArNnz+bTTz/1fE3XdVavXs2CBQsGb8dEXLlbn4+Pdfmbq/254W+OlDvACqP9uSeQcgT/md7Ofd0hb18IIYQQQgxdg1ra19HRQVlZmef/FRUV7Nixg7y8PPLz8/nOd77D9ddfz+zZs5k3bx5PPPEE3d3dfOUrXxnEvRbx4jR0yjvbybAkkG1NjOm2gw3kjSQjhc1wbTv4TQuTzAYXH9ZVclrReE9gJYQQQgghhqdBDaS2bt3Kt771Lc//77jjDgCuvPJKrrrqKk4//XQaGxt58MEHqaurY+bMmfz1r3/1zJASh5eDXR3YDZ3pqemxH5wcrLTPtZ5QCae0zxZ6ad+szFyW5RSyprGaGzZ9wp1zj6Iweeh1nxFCCCGEEKEZ1EBq2bJllJSUBLzNRRddxEUXXXSI9kgMptIO1/qolDh0tQtS2ucOpMIp7SOM0j5NUfj5zCXcX7Kej+oPcsPmT7hj7lGMTRl5jSeEEEIIIQ4HYa2Rstls/PnPf2bnzp3x2h8xgh3wrI+KfXCh2IOU9mmur+thbNMVSCn20G5vUVV+OmMxJ40aS4Otm59t/oR9ri6FQgghhBBieAkrkEpISOChhx6itbU1XvsjRqhup4P/1pjr5WZmxKF00xm4tM9Q+90uFGGU9rlpisLVUxdwZtFEWuw2fr7lU0pam0K/TyGEEEIIMSSE3bVv3rx5MZ3NJATAqwf302Dr5ui8IibEY2Ct3RUsaX4yUq5MVVhrpNwZqRBK+7ypisLlk+dw7pgpdDjs3Lx1NY026eYnhBBCCDGchB1IXXfddfzzn//kySefpLy8nM7OTrq6uvr8ESIcLbYenivfjaYofHvCzLjch+I0etdB+RJNRiqErn0D9sf1u55aOJ4up4P/1ZSHvxEhhBBCCDFowm42cd555wFmh70777zT52127NgR3V6JEeWZ8l10OR2cVTyR4uS0+NyJHbAG6ASoRTCQN4LSvj4/ryh8uXgSb1aX8k5NOV8dMyX23QqFEEIIIURchB1I3XXXXXKyJ2LmYFc7r1cdIFmz8PWx0+J3R04DI9F/AtaIomufort+zl/ZYADjUtOZlp7FrrZmStqamBGP9WFCCCGEECLmwg6kVq1aFY/9ECPU3w/sxGkYfG3MFDITYjuE10M3UJxgWAPcRgtzjZTD6HtbJ4FLBwM4qWAsu9qaeaemXAIpIYQQQohhIuw1Um579uzh5Zdf5qGHHqKurg6A0tJS2tvbY7Zz4vBW0trEx/UHyUlI4sujJ4X3w04DpSbExUnugCdQxsgdBIXa/tzWL3MVYXkfwLH5o7EqKh/WVdLjDKO2UAghhBBCDJqwM1IdHR3ceOONvPXWW1gsFpxOJ8cccwz5+fn85je/obi4mBtuuCEe+yoOI4Zh8Lf9ZvfHi8bPIEkL76lo+aybxFfb6f5WBs7ZQTJZriDHCLhGyvV3iKV97o59nv/bDSINpdKsCRyZW8hH9QdZ3VDF8QVjItySEEIIIYQ4VMIOpO6++242bNjA448/zqJFi5g3b57ne8cddxx/+9vfJJASQX3eWMO21kbGp6Rz4qixYf+82mhmbixru4MGUp4SvACld4YaZrOJ/hmpCDr3eTupcBwf1R/k3ZpyCaTEYau6q4MXKvbQrTtRMEcBKCgoCizKKmBFfvFg76IQQggRsrADqbfffpubbrqJI488Eme/MqTi4mIqKytjtnPi8OQ0DB7bvx2A70ychRZJ8xLX7CZtlw06dUgJUKXqLruLY0YqmtI+gAVZ+eQmJLGxuY7a7k4KklKi2t5hw26gtOsY2REuQBNDRrfTwa3b1lDe5bv8++3qMm5Wl3JkbtEh3jMhhBAiMmEHUj09PWRlZfn8XkdHB5omJzxDhfU/7SjtOrbz4zDgNgp72pup6GpnZkY2i7MLItuIK3BRnGDZ2oPjiGT/t3UFXUagp2a4zSb6ZaQUR+SlfebdK5wwaizPle/mvdoKzh8Xxw6Gw0jic21o23ro/HkupEW8pFMMAX/es4XyrnYWZedz3thpGIb5mtENg8qudv68dwu/KdnAbxemMzpeYxCEEEKIGAr7zGTu3Lm88sorPr/31ltvsXDhwqh3SsSGdU031vU9UWdLYq2ktQmARdkFEbfSV7xK6Swbe0K7bTwzUo7oj/FJBWaJ4zs15RjG0HrMBovS5ERxgFobZe2kiIldbU3U94Q/dP2dmjLerS0nNyGJn0xbxJzMXOZm5TEvK48F2fmcUTyR88dOpdPp4K7ta+l2xu/x1g2Dj+oqabEFft8QQgghggk7kLrmmmt4++23ufjii3nuuedQFIUPPviA6667jjfffJOrrroqHvspwtWle072lY5QW9EdGjvbzEBqRnp25BtxZ5kUUPfZUVoDpJLcQY4lhIG8EXbtU+wh/lwAo1PSmJmRTVV3B9tbG6Pf4OHAdRFAbRpaz+GRaF97Cz/d+BE3bPqETkfogU5pRyt/3rMFFYXrZiz2O+bgG+NnsDArn9LONn6/e5PfiwmWL7qxfNQZ0e8AZgnhPTu/4L6S9RFvQwghhIAIAqklS5bw+OOPY7PZuP322zEMg9///veUl5fz2GOP9Wk+IQaP0tJ74jnUAqmS1iYUYFo0gZTrBNs51YpigLY5wNVld9AVoJDVU/YXYmYpHhkpgBMLxgFmVkr0BqhKo7SFH2xPl5WgAzU9nfx1/9aQfqbb6eCenV/Qozu5aMIM5mTm+r2tppiBVkFiMh/UVfLqwf0+b2d9vZ3E1zrMtZFhsutOni3fBcCG5jo2NNWGvQ0hhBDCLaJFB4sXL+bpp5/miy++4IMPPmD9+vU888wzLF68ONb7JyKkNveeeCrtQ6dMrMnWTU1PJ2NT0km1BJqQG5i7XM+xJAkIXN7nKe0LmJFy3TbUc7OefsFZjMonj8kvJlHV+Li+Mq7lTcOGey2cBFKDak9bM581VJObkESWNZG3q8tY21gT9Oce2ruFss42FmXnc+6YKUFvn2FN4Oczl2JVVP62fxtbWxr63sAwUDpdWcqD4b8+3q4uo66ni/xEc03l4/t3oA9SGe2+9hYabd2Dct+HHbsB+tD5nBNCjBxhB1KrV6+mq8uskU9KSmLUqFEkJwdY6C8GxVDNSJW4yvqmR5ONAk8GSJ9oRc9V0codKA1+TrY9pX0Bthdm+3PFVdpnpJovISVGMU+qxcpRuYV0OZ18Un8wNhsdxhQp7RsSniorAeDr46Zx1dT5ADy4ayOtdpvfn3m3ppx3asrJSUjix9MWoYa4HnJqehY/mDIXp2Fw9451NPR4BRs9hudih1oZ3ovOpjt5tnw3ADfPOoLp6dns7Wjho7pD22m2xdbDvTu/4OoNH3Ddxo9H/AWTz+qruGv9Gmq7IyzX1A2S728k8e+tsd0xIYQIQdiB1CWXXMLSpUv52te+xj333MM777xDU1NTPPZNREFp9jrxbB86J6E7W2MVSJl/GRYFx3xXVmqTn6u7Xrf1yx1khdlswh1IxbKhx0mjzPK+P+7ZzFOlO0f2iZZkpAZdSVsTaxtrKEhM5qRR41iWW8hJo8bSZO/hob1bBtxeNwxertzL73dvQgWun7GYLD/rovz5UuF4TikcT7PdDDqchvke5s5GAWhhZqTerCql0dbN8twiJqdlcvGEmQD8vXQndj3+75GGYfC/mnJ+8MV7fFBXiYJZJvlM2a643/dQpBsGTx7YyW3bPueVA3u48ov3WdNQHfZ2lHYdtUmPKEMphBDRCjuQ+vTTT/ntb3/L4sWL+fzzz7nmmmtYvnw5Z5xxBr/85S959dVX47GfIkxKi1dp3xDMSM3IiC6QUrxmQzkWmCdplk1+yvtCaDYR8UDeVKXvfcTA/Kw8vuU6yftn2S5+8MV7fFx3cOR18jOM3jVSrXpMj3E4NjTVcu2GD9nX3hLxNjocdtoDZG8GU2lHK+0O/91Sni7tzUZZVfMj43uT5pCfmMyHdZV9MjpNtm5u2fYZf923DYArp84PuC4qkMsnz2FyaiZbWxt4yrUPite6qHAyUt1OB8+5slHfGD8dgLlZeSzNGUVNdydvVB2IaB9DVd3dwS+3fsZvdm2g1WHj9KIJ/HHRSpI1jZcq91LaMbKyKZ0OB3ftWMsz5btI1iycOnYC7Q47t2//nEf2bg0rsFVaXUF2/3WrQghxCIQdSGVnZ3PyySfzs5/9jBdeeIG1a9fyxz/+kZycHP71r39xww03xGM/RZjUZu/SvqHxAeM0dHa3NZOsaYxNSY9uY+6Tag2MURacRRpqtROleuDJlRJKaZ+72USIdfYDSvti0LXPs21F4byxU3lo8QkcnVdEXU8Xd+9cx8+3fMr+jshP5ocdr4dSMfpmWau6OrDrhyZL9VLlXna3N3NfyXpsEdxnt9PB1Rs+4Fufv81j+7cHDFoOtQMdrVy1/gOu+OI9n8+tHa2NfNFUS2FSCie42vODWYJ6zdQFAPxpz2Yabd2sa6zhqvXvs76pjnEp6fx24TF8qXB8xPuWoGrcMHMxyZqFf5Xv5ovG2j4ZKaXeCT2hnXC/UVVKk72HY/KKmZDaO1fv2xNmogDPlO2iM06Py+r6Kq744n02NNcxJjmNe+YdzQ+nzGNcajoXjp+B0zD4057NI+ZCSVVXBz/d9BGfNVRTnJzKbxcey61Lj+ZXs5eRbrHyysF9XL/pY6q7OkLantLmeg70GDBCjqEQYuiIqNlER0cHH3/8MQ888ACXX3451157LSUlJRx//PH8+Mc/jvU+iggozUNvjVRpRxvdupOpadloEc6P8nC4Ou25MknO+QGaToTUbCLMgbz9S/vikC0pSErh5zOXcufcoxiXks7WlgauWv8BP974IS9U7An5RGPY6lcuqTQ6aXfY+W3JBr637l3uL9kQ911od9jZ1FwPQFlnG08e2Bn2Nl6p3EdNdyc2XeeFij1cuvYdXqzYE1FQFmv/qy1Hx6DB1s0Nmz5hY1Ndn+8/VWr+vheMm4ZF7ftxsSA7nzOLJtLmsHPdxo+5Zdsamu02Tiscz28WHMPE1Myo9684Oc0TsN1fsp62lt7yXcUA9WDwY9jtdPB8xW4U4IJx0/t8b0JqBieOGkurw8aLFXuj3t/+mm09PLh7IzbdyQXjpvH7Rccx2ytDd1bxRCamZrCttZF3a8Pr1KkedJD0l2aUmuFT0raxqY5rN37oaUDym/nHMC7VvKi2LK+QBxcdz6yMHHa3N3P1hg94fP923qwqZX1TLZWd7T5fM56MlAEMnWsUQogRItA1ep9WrVpFSUkJubm5LFmyhFNPPZWbbrqJ6dOnRzxcVcSYYaC0ODEU15X8IbJGyl3WNzPKsj5wZZm8AiPH/EQS3uzAsqkb+ykpoChgGKh77VjWmidfAddIRTiQ14hDaV9/87Py+f2i43i9qpRXK/eyq62ZXW3NPLZ/O5PTMjk6t4hTisaTaQ1vHcpQp/QLpMormrixaRMNrk5nH9cfZF97C5PSoj9h92dtYw1Ow2BRdj4lrU28VLmXI3ILQy5Xa7b18HzFHiyKwh1zl/NebQX/rS7lb/u389rB/Vw4fgYzM7JJtVhJs1jRlIiubUXEHEx7EAU4s3gi/z64n19t+4xrpi7ghFFj2drSwMbmeoqTUzm+YIzPbVw8cSbrm2s52NVBusXK1VMXcFReUUz3c0V+MWe1mvv3bkUpX6cQI1lB6TJQD9rRJwbu/vnawf202G0clz/ac9Lu7RvjpvNBbSUvVe7l9OIJ5CQkxWzfH9m3lTaHnTOKJnDh+BkDvq8pKldMmcd1mz7mb/u2c0ROIRnWhJC2rW3rQdtnRyux4RgV9kd5bDgMEl5tx7EoCX1C4Mdha0sDv9r2GU7DYNWYyXx7wqwBF9TyE5P59bzlPFlawnPlu3m+Ys+A7YxNTuPGWUs9VQ2ejBTm+7KRIOchQohDJ+x335KSEiwWCwsWLGDhwoUsWrRIgqihpsNAcYCer6HUOYdMaV/MGk2Ama1I6n3OGTkaznEWtDIHarkD7AYJ/+1E229eotQLNZwzA5yguM9fw1wjFW1pn+WDTiybeui+PAsS/b+GNEXlrOKJnFk0gf0drXxSf5CP6w+yt72Fve0trGms4f4Fx0S2E0NVv2O6dk8VDTO7WVkwhtHJaTxZupNnynZx46ylcduF1fVVAJxRNJGVBWO4v2QDv921gd8vPJ4US/C3z3+WldDldHBW8UTmZOYyJzOXs4sn8cSBHaxprOa3u/pm1ZI1C2kWKzMzcrh66nySNP/3YRgGj+7dTsWODm6cvgSN8N6Dd7Y2UtfTxZyMXC6fPJeJqRn8YfdmfrNrA3U9XWxsNrNTF4yb7jfAS9Is/GLWEfyvtoIziiaQlxifDq6XTJzFztYmulrNJ4VzshXLVlvQdVKdDgcvVuxFZWA2yq0gKYWzRk/kxYq9/LO0hCtcXQkDUUvtaNt7sJ+S2tvxs591jTV8UFdJbkIS33atefRlRkYOpxSO583qUh4/sJ2rXRm4YNyVBkr34L2/a/vsWNd0o7Tp9Ezwf0GjydbN/+1ch9Mw+OHkuZxePNH/NhWVb0+YyXH5o9nb3kxNdxe1PZ3UdndR1d1BeVc7f9y9mV/PW46iKH0CKXp0SD90FyOEECLsQGrdunVs2LCBdevW8fbbb3P//fdjtVpZtGgRS5YsYenSpSxYsCAOuypCpboaTeh5GkqrPmRK+2LW+txwBYr9MkyOBUloZe0kPd7iCR71Ag3byak45yT4PeEBQFHMUsFQ25+7M1IpUXTtcxgkvNdpXlmvcgS9omvupsKktEwmpWVy0fgZlHa2cfeOdZS0NbG7rZmp6Vnh78dQ5TqmHVYnqXaNcd3J3DRzKUflFWHTnbxedYBPG6o40NHaZ91LrPQ4nXzRVEuSqrEgK58EVWV1fTWfNlTx6P5tnjbg/lR0tvNGVSkpmoWvj5vm+fq41HR+MfsItrU08HrVAZpsPXQ47bQ7zD/1PV18WFdJl9PBTTOXDiipc3uqtIQXXFfstxc2MDczL6zf7wNXk4hjC0YDZqe83IRk7t65ln+4SvrGJKdxbP7ogNsZm5IeMFCIBatrvdTWz80hvXuLupm+VUULEEgZhsHzFbtpddg4sWAsY1LS/N72a2Om8lZ1GW9Vl/HVMVMoTE4NuD8JL7WhVTlxzkhAnzjwAk2308Gf9mwG4AdT5pISZGbexRNmsrqhireryzipYCyzQsh4ut/jBjOQclc7qP5GTwBOw+C+kvU02no4edS4gEGUtwmpGQNe105D55r1H7C1tYH36ypZWTBmYEYqgt9DCCEiFfalm+TkZJYvX87VV1/NP/7xD9auXcv9999PZ2cn999/PxdccEE89lOEwb0+yshSMVIV84N2kDqeubXZbVR0tVOUlEJmmK2QB3B/ZvcPpOYlYqjmCYaer9F9QTpd12bjnJcYOIhyU0EJsbSvNyMVeWmfttuG0uU6GWoJf72MoihMSM3gDNeJyRvVB8LexlBm7zFPkvenmfNllin5nrKxBFXzDHh9Nkj76EgX8W9srqNHd7Iou4BETUNRFK6YMo8sawJvVZcGHUj7+IHt6BicN3aqz7LL2Zm5XDdjMXfNW87vFh7Ho0tP4tmjTuOpI09lbHIaaxtr+MOeTT73//WD+3mmvPf33tBvbVMwTkPnk/qDqCgcndtbirc4p4C7560g27W/3xg/Pfr1jDFSmJTKEUn5ADzcvpOOVCdKrdPnRYy6ni5u2/45/yrfjUVR+gSyvqRbEzhn9CR0DF6qDLxWSqlxoFWZr1e10fdFqidLd1Lb08Xy3CKOzA1e6phmTeC7E2cDZvMORwhd6zwl292xv1AWyv0D4ApilAan30Y9z5SVsKm5ngkp6Vw+eU5U+6UpKt+fMg+Av+3bRofD7lkjBXjWrgohxKESUQ68sbGRt99+m7vuuovzzz+fH/zgB6xbt46pU6dy/vnnx3ofRZjcw3iNTK239GyQs1K72pqBGJb1AUb/i7zpKj3fzqD7wgwzgFqQFFoA5aYpYQ3kNRIAq6tJRQSlfd6NMbwHKIdrZcEYElWND2sr49Z5bDB8dNDMmDizzWyhtbnvMTqlcDxZ1kQ+rj9IWUebz23s72jh25+/zV98zDsKZnWDWda33GvNT2ZCIle5Sq8CDaTd2tLAZw3V5Ccmc1bxpLDuN8OawK1zjiQ3IYl3asr5e2nfBhef1lfx571bsCgqV7qyYhuawwukNjXX02y3sTA7f8CFjclpmTy46DjumHNU0GwUgLazh6Q/NKE0xb95Rr5url9qT3SwKbUFRYcvtlWgu4JNp2HwauU+fvjF/1jbWENRUgq3zTmKoiAZJoAziyaSpGr8t6aMFpufUQr0HbPg63fe3dbMq5X7SNUsXD55bsi/28qCMczNzOVAZxv/crVqDyRepX3/rS7j/NVvhNRYxR3MKQ76BjQuG5pqeaZsF8maxs9mLg1YqhqqOZm5rCwYQ5O9h6dLSwZkpIQQ4lAKO5A65ZRTOProo/nxj3/Mhg0bWLZsGQ8++CCrV6/m3//+N7fcckscdlOEQ2l2lfZlqRhp7kBqcD9gdrY1AjA9Iyf6jQXowueckWhmoLQIrqJrhNz+nB4DI1Ht3YdwM1I2A2177wmZ6uMkJCS6Qc7rPVzWNplu3cn7XjN9hrOGnm4+qzYDmQk5WRjZGkq70Tu/C0jUNL46ZgoG8Gz5wKxUdVcHv9zyGY22Ht6qLqUjjCDTaeh83lCDRVFYmjOqz/e8B9L+esfaAW3DDcPgsf3bAfjm+BkkahrhKkhK4bY5R5JqsfJc+W5erdwHwLaWBu7d+QUAP52+iNOKxlOQnMKetma/QZ0vH7rL+vwEStkJSSzIzg9pW5YvetDKHVg+9zMQO4bcwcNNi5dhKzaP67qtB/nxxg/5oLaC6zZ9xMP7tmLTdb42dip/WLSSeVmhlTymWxM4pXA8Nl3ntar9vm9kGH0CqS/2VvHf6jI6HeabktPQ+f3ujejAxRNnkZsYeuMKRVG4cup8klSNZ8p2saO1MfDt4xBIvVl1gN/t3kiP7uSZ8l2eNYJ+98GrkZFS3zeorO/p4r6S9RjAVVMXBCytDNclE2eRoln4d+V+T1YMgEEscxRCjExhB1JnnHEGf/vb31i7di3PPfccN9xwAyeeeCJZWVlx2D0RCdWTkVJ723MPcuc+zyDeGGSklBAG7EbCCDUj5TDMNukJiicrpoQZSGk7elBsoOe4At0IM1LaHjvWT7o4pcRcU/Fm1YHDYh7Nk6U70VwBc0qSFT3bdZwa+z5ApxWNJ8uawId1lZR39malmmzd3Lx1NU32HtI0KzbdLGUL1baWRlodNuZl5ZHqY33LZZPmMDo5lS2ulvS3bVtDiauZysf1Bylpa2JyaqbfbnehGJ+awa9mHUGCqvLIvq38q2wXt23/HLuhc9mkOazIL0ZRFI4oKMQANrvatAdj152srq/CqqgclVsY8f65qVXmA2XZ0hP3OT7uOVK52akcOc+ca7W0M4c97S3cW7KeXW3NTEvP4oGFx/LtCTPDDmLPHj0JTVF47eB+up0D11+plQ7UeieNiWbQmtgCv9u9kW+ueYv7dn7BX/ZuZV9HK7NcDSTCNTo5jcsmz0XHXFfkN8OsG+CeqRWj4OHfB/fzhz2bsSgqq8ZMBuCBXRuoCjBmwTuQUr0CKaeh8387v6DFbuOMogkhZTbDkZ2QxEXjZ5Bm11C93hIkIyWEONTCDqSuvvpqjjrqKJKT49OdSUTPnZEysjTPGp7BLO3TDYOStmYSVDU2TQFcQYsR646/Gig6wU8G3eujEpXeYC7MZhPusj77MSkAKK2RlUVpG80sQJKuMTE1g30drexqb45oW0PFvvYW3qkpIxNzEb9hNbsyAqj9SqmSNAtfcWWl3OVQ7Q47v9j6GdXdnRyXWcxzHyzhkp1j+V9NRcj74C7rO8rP+pYUi5XfLTyOyyfNIS8hic8ba/jJpo+4acunPL5/BwDfmTgLNcr1RbMyc7lhxhIU4O+lO+lw2Dl3zBTOGt1bLnhEgbmPoZb3rWuspcPpYGnOqKBNEIKyG+b6GECtc6LUxLe8T+nSzYsXVgV9tPkGsLw7j59MX8SsjBwumzSHe+dHPsOqICmFY/NH0+aw83Z12cAbbOgC4IWJ5vNjljOTEwvGogDv11XyetUBLIrKVVPnR/zYnzxqLMtzi6jp7uTP/kpSuwzzvYrYZKRertzLX/Zuwaqo/GLWEVwycTbnjplCh9PBr3espcfp+3FV2r0GJDc4abPbeKemjJu3rGZ7ayNT0jK5dNLsqPfPlzOKJzBX6XdhTgIpIcQhFtEaqfLycn71q19x1llnccwxx3DWWWdxyy23UF4e3kBBER9Ki46hgJHhXdoXfiDVaOvmg9qKgOsFQlHZ1U6Hw86UtCysfjqQhcOzHska40Xw7nLAIOeCnqueCWC49yGcmZhdOlqJDSNZwbHYLP2JKCNlN7BsNa+MKw441XUF/M2q0vC3NUQYhsHf9m/DAFZkuYIYq4KRbQZSio/F/acXTSDDksAHtRXsa2/htm1rONDRyoKsPH6cN5ekZji2NpetrQ3UdHeGtA+fNVSjAEcGyNgkaRbOGj2JR5aexNVT51OUlMqm5npqejpZnF0QcmlcMMtyC7ly6nxUFE4eNW5Ah7yl+eY+bmyqC5iNVBqdaFt7gpb1hUOtdXhO6MGVlYoX3YAuw9Mp08y4K6jVDlbmjOb/5q/gy66MUjS+6mpi8lLl3r5NF3QD54ZOdAxq5yjo6SqJrXDt1AU8eeQp/HjaQo7MLeSKKfM8M44ioSgKV02dT25CEu/VVvBB7cALAN6ZIHunA3uozSF8eL58N3/dt41EVeNXs5exOKcAgG9OmMGczFz2dbTy8L6tvvfVq6yuZF8dF615iwd2bWRLSwN5CUn8bMYSrGr4pa2h0BSVi3KmAuBQXE17JJASYthosfcMKLlXS+0k39eIWjl81nuHfVa7detWzj77bN5++23mzJnDOeecw5w5c3j77bc555xz2LZtWzz2U7g8sm8rf96z2bO4egDdMAOpNNf6ndTw1khVd3XwYsUertv0Ed9e8zb3lqzn51s+pS2M9Rf9xbKsD+hdjxTj0r6QZ0m5M1IJCkRQ2mfZ2oPiBMecREhU0NMUc6F2qOuzXLQdtt4TB7vB8e6mE3WVYa0HGkrWNdWysbmeMclpzE0219MZVsVTAtk/IwXm7KVzxkxGB67b9DHbWxuZlp7FTbOOwGozf66oKwkMeM/HSWl/e9pbqOvpYkZGNtkhDGe1qipfKhzPQ0tWct30RawsGMMPXZ3FYuVLheN55qhTuWbaggEz+3KSkpiUlklNTyfVAQLFhP+0k/SPVirKmknWLAPWfkVCrTYfD8csM3to2RokkOrQsXzY2WetW8i6DRQDjBTX768oOEdbUJyg1oRzJSOwCakZLMkuoK6ni4+8ykFrd7SQ1qGxJbeNb8ydiZGtouhmk4UkzcIJo8Zy86wjOLlwXNT7kG5N4CfTF6FgdvGr9XpcyzvbeMLrc1btNvjOmrd5fP/2gGV4vrxQsYfHD+wgSdW4ZfayPsG/pqjcMGMx2dZE3qou5d2a3gulumGwvrEWo91Jl2Y+B9JaVNIsVk4tHM/tc47kr0tPCtpGPloTdXPd1cEUMzNfUt/Ie7Xl7GxtpMXWg2EYOA2dVruNg13t7G5rZmNTHQe72uO6X0KIwFpsPfxg3Xv8aMOHfcqotX121DqnOQ90mAi7OOqee+5h1qxZPPLII33K+7q6urjsssu45557+Pvf/x7TnRS9drY2UdLWRG5CEuf5aOmrtOsoOuiZrqu27tK+IGuk3qut4KWKPezraPV8LT8xmXSLlX0drdy2fQ23zzkqoq5LnkG8GbENpGJd2me4L5w6DQgw3NQTvHg3mwijtM9d1udYYHZLMzI11HaHueYhLfTg0LKpd3G/4jBItVg5Ln80b9eU8V5tBWeGOK/lULPrTnqcTtKsfefvOA2dv+0zTxC/M3EW2mbXsbAqntK+/muk3M4smshLFXtoc9gZm5zGLbOPJFmzoHSbxzrBrpBht/C/2nLOHzs14ADxYGV9/miKynEFYzguinVRgQQqw1uYlc++9hY2NNf57VDnvpiS3WFlwoSciJpgDNhmtavJwtxE1EYnarUTpdaBUeD7xZn4SrvZrCFFxbEk9EYMAEqn6z0spff6nz7aArvsqJUO9NFRlil6+eqYKaxrquWFij2cMGoMumFQ9nEt48mia56VKUkpGNkOKHOgNDkxsmKfdZmXlceqMVN4oWIP95Ws52czl/BM2S7erCplRX3ve6nVUOnucfB8xR6er9jDwqx8zhs7lblBmmw02rr5x4GdJKoat8050ufsquyEJK6fsZibtnzKn/ZsJi8xiZK2Zt6qLqWr1cYrxlKqUnso6klifFcKf196MloMnlehcncKrEnvYVxHMmWNLdxfss/zfauiYjd8f/YtyS7gnNGTmZ+VF/D9YMB9tukkvNyG/YSUmD7nhBhJnijdQavDRqvDxjNlu7h44izzG+5zqVhXHMVR2BmpLVu2cOmllw5YI5WcnMwll1zC5s2bY7ZzYqCrp84nUdV4snQnG33MjvGeIQWEVNr3YsUe7i9Zz76OVsYkp/G1sVP57YJj+dvSk/i/+SuYnp7NjtYm7tn5RejzRbzsjNUgXhdPaV+sM1Lu0r5gv6L3GikVDAUIMQGktOmoe+3o6Sr6JPND2HAFvWo4s6S6dLSdNowkxcyMuS7enFrkLu8bmk0nHLrOzzZ/ytc/e5Nr1n/A4/u3s7m5Hrvu5K3qMsq72pmbmcsROaP6vKHq7tK+Jt8PTorFwpVT53NkbiG3zz2KDHeQ5rV+ZBn5HOzq8GRI/XF3Kgs3kBpMC12ZBF/vCR6u521OjzVmi/9VVyClF1pwzDUvDPjLSin1DrTN5vfc6zjD4W404clIAXqx+RpSD8b26uWczFymp2dzoKOVL5pq+c++vcwrTcWhGMxeUWzed7Y7Sxq/9acXjZ/B5LRMtrc28p3P/8vrVQdItlg4Lb1v1uvhOSv5xrjp5CUksaG5jl9u/Yy6nq6A2365ci8OQ+fM4okBBwDPzcrjWxNm0qM7uWnLav5+YAc13Z0ckWA+58aOyiChIAHVARbfUwjixl1aOHuymV2dl5TLV8dMYXluERNSM0jWLIxKSmFyaibzMvNYnlvEiQVjyUtIYl1TLTdvXc1VGz7gnZoy7Hpoz0lttw3LVhuWdXEsYxXiMLarrYn/VpeRYUkgWdN4qXIvB9wX8e3xuVAeT2HvamJiIs3NzT6/19LSQmJilMNWRUDjUzO4cup87i9Zz70lX/C7hceRl9gb1HoCqUzzxDPQHCnDMHimbBdPlZWQqGr8fOYSlvQr90nSLPxq9jJu2PSxZ0DoNVMHlhf50+lwUNbRSl5CUp/9jIojTlcsXBdSFYdBoBCkd42UAopZ3hdqaZ+2uQfFMIcHu2dcGRlenftCPL+1bLWhOMC+IBGtxOa5Wj81LYvJqZns7WihpK2JGbFoNx9D/yrfTUlbEwmqyt6OFvZ2tPB8xR4SVQ0FMw/43UmzzeeX97ywVAUjAVQ/GSmAo/OKOTqvuM/XvBfiH28ZxX+p4n+1FX6PS0VnO+Vd7UxISQ9p9tBQMTszF6uisqmlHqdh+FwnZPSYz5FiezILs2KzfkutdmKooBdoGFoiCf/tRNtiw37CwGNnfa8L11KWoBlyX9zPcaN/Rgqzm14sKYrCV8dM5q4d63jywE6KD1g40T6VlikKljTzPnvX7cWvwYZVVblu+mJ+tOED7IbOWcUTuWDcdHI/sAO95X65RiLfGD+d88dN5dF923n14D7+WVrC1dMW+Nxuu93GG1UHsCoqZ3s1LvFn1Zgp7O9oZVNzHccXjOHUwgmMq0oAWiBdw0gDyh0o9fHJzvnjzkhpBVaghyI1he9MDH4BxKHrfFJfxcuVe9nd3swDuzbyxP4d3D73qOANkVzv/5E2CBJiJNMNg4f2bsEAvj1xJt1OB4/s28Yf92zinnkres+lDueM1PHHH899993HunXr+nx93bp13H///axcuTJmOyd8W1kwhtOLJtBit/F//bJESkvvDCnwCqTa+57oG4bB4wd28FRZCcmahdvmHDkgiHLLsCZw29yjyHMNCH3iwI6Q93VPezM6MSzrgzh27Qs3I+X6v0UJubTP4uqy5y7rg96MlK+BlkG3szDRDOScmOvjFKU3K1U9tJpO7Glr5tnyXSSqGn9YdDwPLzmB70+ey7KcQlQFunUnJ44ay5S0LAAU7xS/Ypb3Kd0GdIZ+nLwDqTnObCyKwkd1lX6vPnvK+vKGTzYKzJlaszNz6HDY2eMaft2frdsMNmarWVhi0PSFTh21VcfI08CiYIyyoBdoaAcdA2YKKU1OLOu9SlEjCqQGZqSMHBUjSTFbsDtjm4FdllvE6ORUdrU1c1RZFgCJS3pnIRlBsqSxMiYljT8uXslfl57E5ZPnkmFN8JRpusuR3c9zTVH5xvjppFmsvFNTRkWn77VAr1UdoMtpvt5yQlgHqCoK181YzJNHnsqlk+YwJiWt9zFMVdFzXV01Gw5tcOHOSOn5rseiJ7THwqKqHFcwmt8sOIZ75h3N4uwCmuw9vFK5L+jPKjZ3IDW4I0WEGI7erSlnV1szU9OyOHnUOM4snsjk1Ex2tDaZnVJd1T3G4RxI/exnP2Ps2LFcdNFFHH300Xz5y19mxYoVfPOb32Ts2LHccMMN8dhP0c/3Js1maloW21sbefzAds/XVU9GyvXQumYdeWek3FcEXqjYQ5rFyp1zj2J2gNIOMNdL3TbnKNIsVp6v2MM/S0uo7Gr32y3KruuUd7Z5OoTFqqwPzA51QBxK+1x/Bzkh65ORAgyLq7QuSCmd0uhEK3Og56joY3ujQHf2MNTOfQPKAz1Dgc2/jssfQ7Km8VHdwbCGtMaTTXfym10bcBoG3504i+LkNIqT0zizeCK/mH0ETx95Gg8uPI4rpszv/aF+b6ju8j5fDSf86u49psmtsDRnFG0OO2sba33ePNL1UW7qfjvJ/9foaUt/KC1wZZl8tUG36U4M1/PWvUA/Wt5lfW6OOb7L+6wfdqLoYF9kft+721vIfGSkUMw26IodlLrYnsRrisJXRk8hwamyoiYHwwrOWb0XQAI1QIm1UUkp5HtXHriCGPfaQbp633vSLFbOHTMFHXMeW3/dTgevVu5DpbdDYSQ8+5Cuoue53sPqByeQMlz3H277c0VRmJ2Zy3XTF6GisLaxxn8jJzd3IBXh7D8hRqp2h91zvvr9yXNRFQVNUbli6jwU4PED27H3uE5kYn1+F0chX9Pv7u7mgw8+oLKykgsuuICLLrqIAwcOUFdXR35+PvPnz2fFihXx3Ffhxapq/GzmEq7Z8AEvV+5jVkYOy/OKPRkp7/IKI0016/idBrX2Lp4qLeHd2nKyrAncPveokGeujEtN51ezl3HzltU8VVbCU2UlqEB+YgqFySmMSkyh1WGjorOdqu4OnF4fSLNiWWIWp8WIRojtz90f1kai6tkPxcDMZAWoarFscjWZmJ9klgS66J7SvhBr9Dd39ykPNDyBlAEJCikWCysLxvJ61QFu2vIpt8w+ktzE8Bb2x9o/9u+krLONhVn5nFY0YcD3rarKpLS+z0Ol3+PcJwMQYgmkd0ZKadQ5oWAsqxuq+V9tOcu9sk5OQ+fRfdvZ1dZMYVIKEyOcd6bttqE2OEl8pg1bl4HjqEM3b29hdgGPH9jBxqY6vt6vEc3f9+/gCocZaGV3W4nF6g53xz69qPdJ75ybCP/rRNvSg/14c0YabTqWz7sxrGA/JRXr+p4BGfJQuDNS3s0mAPRiC9peO9pBB47C2KapTxo1loydTlIcGo75ZpdNN/d7rHIIAqn+3BfG9DzNnN/Vb5bUmcUTefXgPj6uP8ie9mZPlhfgv9VltDpsHJc/OqryVfdjaKSpnkBmMDJSRqLSuxY4wvbnadYEZmXmsLWlgd3tzYEv/LkDqTZXp1U1wOeQbqBtteGcZIW0GGSBhRjGni4tocVu46RRY/tUKU1Lz+aMoom8VrWf0pZWZpLi6Yg8HIT0qVNeXs7FF19MZWWl52tpaWn89re/5ZhjjonbzonARiWl8JPpi7h12xp+u2sjJW3NXFCbQy4aey1tZNpSaLfbGZVgJweNH33yPnsUczVwbkISd85dzpiU8K5Oz8zI4Y65R/F2dRlV3R1UdXVQ09NJTU/ftss5CYmMSU5nbEoa09KzY5qRittiRNfnnOIMskbK1jcj5XnB243e8kAftE0Dy/qgd42UGuIVTssGV0C20LUd13HwXtt18YSZVHa1s6m5np9u+ohbZi9jfCyGIUdgY30tL1bsIVWzcPW0BWbpV7OOc3aQ9ZSeQMr8y50BCGdNivcJptrkZEnOKNItVtY11tBqt5FhTaDVbuPuHevY3FJPhiWBa6ctDKuLV5/7c12lVwxIfLkdpdvAvjIlom2Fa2JqBpnWBHa2NdLldJDs6rC5ubme18v3c41hlu6qkWSDfFCrBmak9CINPVdDq3B1s8vWsH7caa7nOybZHBKeqESUkepdI9X3sXGOtmDFtU5qUeS/jy8WVeWEyjygB+eCfhcjrOYsKaU5hBPqGHMHUoarpE7p7ns8kzQLXx83nT/t2czfD+zgtjlHAebaoBcr9wJw7tjIs1HglQ1K8yrti2FGSt1jM58veX6uTtkMlB7DLOvTFAxLdHOkjsgZxdaWBtY21AT8vPKU9ulmJ0wj3f/jru63k/RUK/ajk7F9OTaZYCGGMsMwz0P6DyQ/0NHKawf3k6JZBsxCBHNu3acNB2np7AFShlVpX0inovfeey+qqvLUU08xZ84cKioquOWWW7jlllt49913472PIoClOaP4+thpPFO+ixcq9vD15sU4FIVr9q5Gd5V7/9qYwZFko7c5mVCUwZyMXFaNmUxBUmQneDMzcpjplWHqcTqp6TaDqQxLAmNS0kgN0Ko5WvEr7QttjZTiyUh5lfZBwKG8Sp0DrcqJXqhh9Ltq7u6wGErNvdLgRCt3oOeq6GNc23G/4Xh1DkyxWLll9pE8uHsj79VWcP2mj7lp1hHMC9ISOda6nA5u27AaA7hs8lzyE5NJeLEJ9aCDzltyzRby/niaTbiOs6uMKVDDiQG8M1JNTqyKwrH5o/lP1QE+qqtkVmYOd2xfS013JxNTM7h51hGMivB1Ab2BlO20VKzvdpDwZgd069hPTe2ThYwHVVGYn5XPh3WVbG1pYGnOKDoddh7YtYEkZ+/JaCTrk3zen4/SPhQFx9wEEt7vQtvSg2NJEtbV3Rga2I81s3NGumqecNuNsLLKvWuk+mWk4tRwAoBuHXVHDySr6DMSBnzbyFZR23SUVv2QNlmgwzCbfLjeO+geGEB8adQ4XqrYw/qmOjY31zMvK48P6iqo6+liSXZByJUI/nhK+9IUSFExUhSUBmdsgso2naRHW9DHWej+ge+gxv1+aaS7jkGS4vM4hOqInEL+tn87axtruGjCDP839JqBprQ4e+/fB9VVbhpqtYEQw5ldd3LF+vdptvUwLT2L6a6L6NPTs/nL3i3oGFw4fobP+YypFiuXTZpLwgfmRXm7poffDW+QhJRr3rBhAz/60Y9YvHgxiYmJTJ48mdtuu42DBw9SW+t7rYE4dC6aMIPfLDiG66YsIrfHSmeqwRF5hUxJy2RWRg6ZWeYJzL1TlvOHRcfz/SlzIw6ifEnUNMalprM0ZxTTM7KjC6JCadkdr4G87vOgYOdjnoyU6/+uk0ElQMMJ94J05xgfxyZRNa/Sh5CRsniyWr3lgX1K+7xYVZUfT1vI+WOn0uF08Mutq3k/hIG0sfS3fduo7GjnqNxCTnDNV1LazFlnSlfgxzpgaV+I3BkpI0Ux2+a3G5xQMBYwh5H+dOPH1HR3ckxeMffOXxFVEAW9mQLH/ES6L83CSFZIeL+LhJfbfQ9cDnMIczCedVKuNugP79tKbU8Xx2T0ljEqncaA50rYdMPs2JegeC4EuDndbdC39GD9tAulx8CxJAkjw9VJ1DUrLeyslDsjldz3dW/kaWZHx4OOmB9PtdaJ4gBtRpLP95tD1XCi750aKB262UgoyXURxkcAYVFVLhxvBgRPHNiBbhg8X74HgK+NnRr1bnivkQLQczUUR2yaMKgNThQd1Cqn388Epc3Z5/6NRMW8yBbhc3t0cipFSans7WihPkDreMU7kAryu7q76HrKUoU4jJW0NXOwq4NOp4ONzfU8W76b27Z/zoVr3mJLSwPjUtI5w0dpv9vReUXkKObnx4b2+kO019ELKeCrq6tj7Nixfb42btw4DMOgvr6egoKCuOycCN209Gym2zNQaCQ1L5GbZx3h+Z61oh12dZHSrQZd/jOYLGu6SHizg66rsnsXUfvi7toX46SXZyBvkJMxxdY3I+V5FQX4APd8+Cb6Dv6MDNW8etmj+8/SGEZvWd98r7I4H6V9nvtVFL45YSb5icn8ac8W7itZT4vdFlLL42jtaG3kPwcPkJWQyFXTelvmK12ukw9bkJOLAc0mXCWQYWWkXGtJisx1NGqjk2njshidnEplVwcK8K0JM/namCkRl/N567NuJFuj6/Iskv7ajPWzbrS9dvPSVY9hPh9cmc2eb2bgnBmbsRGeeVLNdXzWUMU7NeVkWxP5dvEMoLeDm9IeXQZFadZRbAbOcZYB2Qd9tAU9W0Urc6DWmO3RPeul8Jpt164Hfp33v093Riq13+tDVcx1UgccKI1OjLwYXsd0B/Mpvl+T7uek0uSEiYeoqL/LMIeupymeoNJXIAVwbP5onq/YQ0lbE3/YvYnyrnZmZeQEbS4UCk8g5Xo8jDzNbIHeEH0LdPe6M6XHMNdBZQzcXv+MlLlmVTdfVxFcZFMUhSNyRvHKwX2sbazxuZYT6JeRChxIqa55aUoYnUajoW3vwfp+J93fypQ1WeKQ297aCMC3J8xkcXYBO9uaKGltoqStiQZbNz+cMi9gx1hFURhtSQF0ZudG/x51qMgr7TDiaTSR2e9DxzNLamhfFdN22VA6DU/JkD/xHsirhNhswh3wuDNCSqChvO7gK8FPIOVugR7gg1mtcqLWOnEWWzBGeZ0s+ijt6+/Uogn8YvYRJKoaj+7bxm4/LbJj6T8H9wNwxZwFZCW4AgWngeJqJKgECaT6Z6RIVjGSFfMkK8Rhw+4TTHf5mdLkRFEULhw/g3Ep6fxy9jLOGzs1JkEU9C5+92TRiix0/yALPccMlNUap9lZ02H+XooTtD0hTnMOQX5iMmOS0yjrbON3uzYCcPW0BaTpfYOLiLrmefFZ1ufZuOIZzqv0GDgWJPYJmNwnvuGWGHoC8OSBj5VnMG+s50m5noOKnxJEI5JOktHuk7sDa6rZ+h3o053Sm6oofMuVlXq7pgyITTYKwzAD4RTF874Zy3VS7u6zAEqt7+151mi51pi6L1JFtU4q11xH+Hljjd/bRJKR4hBlpCzre9BKHVh2DI1urd4e3beNq9e/z0N7tvBpfRVtQ6SjrIidbS0NAMzLzGNSWianF03g2ukLeWjJCTy3/HTmhHABR3Oar+OUpIGl1ENVyJfuLr30UjRt4FWhiy++eMDXV69eHf2eibC537T1fqU2vbOkhna7Vs+HTrCZTHEeyBtq+3NPUGT1XVrX52eCZKT0TBUNM5Ay/CR4tc1mWZ+zf7MKP6V9/S3NGcX3Js3mD3s288CuDTyw8FisanzWdXQ47HzaUEWyZuHkMRPobHG1A/cu5wuakerbbAJAz9HQKh3QbkCARd5uSreBkaB42jOrTTpOzCv1x+aH2PovVHbX4vfcfq+/PAtdP80xy7HcQZaqoB6wk/zn5pi3UV6QlU9FVzttDjunFo5nac4oaOp70hLXQApXed+HXRhK32wUeGWkwtwHpcMwj5+Phi56sWudVJUD5/wB346cOy4LEkgdytI+T9YzVTXXBeE/IwXm635mRjY7WpuYkJrBkuwYVJDYzAtH7owc0NsCPQad+5Tm3m2odU50H30xPDOkvEr7gLBboHublZFLimZhU3Md3U4HSZqP57fXSynY2iflEGek3Jk8dyOYoaKyq52XXE1O9nW08lrVfhRgUmom87Py+OrYKWRaY5OVF4PDaRjsaG0kUdWY3K8Db1jcn/vDZYEUIe7qlVdeGe/9EDHg7vrWPyPlWZPQEd83c6XKgZHdW7cf9s+7P3SCXaCP10Bed4lSsPOAfkGREUJpX29Gyve33Y+Z2qr77XWhlZofjo7p/TbiLu0LYSjwKYXj+aj+IJua63m2bHfgRdVR+KiuEpuu86XCMSRbLLh7OnqyCgTPSGE3zHJLr9IxI1uFSrO8Tw+wyNu8sVk+Z5bZhd/xL1yeTmq+Smo0ZUB5Uu8g5tju08LsfF6r2k9hUgrfnTTbvI9+J5dRB1JVrtbnhb4DcX2sBfuiRIxsrW/2FK+MVDj74HQFqTl+Suw87bdj/B7nfk0lBC7tCzsjZRgkPN+OXqjhOCa8dXme51mqihFgjZTn9orC5ZPmcn/Jer47cVaMSlgHPteNGGakvANTtdZ3UBAoIxVpKGVVVRZlF/Bx/UE2N9dzRG7hwPv1et9SA2WkdMNzkURxYH4G+KlIiBU1jEDKaejsbW9hcloWWpDnxMGudj5rqOZLheNJi2AN9Guu6oRVYyYzISWDzS31bG6uZ29HC3s7WijtbOPWOUeGvV0xdJR2tNLpdDAvMy+qge+KwzDPqeLcnCmWJJA6jLgDkf6Lvw9FRkppcJLyQBN6hkrPeenoU8NMy9oNVPdsmSABQbxK+zwBUbgZqRBK+/oP8R1w38FmSRlmyaOhgZHf7+TVkxELuNvm9hWFq6bO58ov3ue5it0szysaML8pFv5bUw7AlwrH973/PhmpwNtQ7AzIBOg5XrN7xgf5QLeBooORpEQ2zDdMvk4uAzEyVAwlNovzvZmZxzksyS7wtED3BPIpCkqnEfeMFIqC7Xzf7fa910iFzPW8MZJ9H1vDe61SDIVa2hfu/SrtBtZ13RgpCo4VyWGdNPQG7IpXaV/g96wp6Vn8eckJYe1jwH1oG/hc9wSzsSjt8zqeqr/SvgFrpKIv7QOzDfrH9Qf5vLHGZyAV6hopd1Mdz/87dYyEOHZ2tBme8n31oMO8kBTgefVkaQnPle9mQmoGl06czQLX+kpvPU4nz1fs5vnyPdgNnZ2tTdw4a2lYu9XhsPNOTRkJqsq5Y6aSYU3ghFHmmvvq7g5u3rKaL5pq2drSELT0S9vagz7O4nPNnBhc21zro2ZnRjkz1Mfn/lAna6QOI4onI+UnkIrjGin3VXW1VSf5ry0k/Ls9eIme9897fyAFy1TEq7Qv3IyU+zw+hNI+TyvvCNdIKe0GSqeBXqANKG0KtbTPrTAplW9PnIXTMHhg1wYcemxP5Ms72yhpa2JMchozvYbuQd9AKqSMVL/HOJwW6O7ZOkaSckhKsPovvg9KUzBSFfOEMIbd5lRF4ezRkxjtNSPOfazd61iiuqjiMFDqXRnBUH9XL5GskfIEDyn+L0QYWpiNSEIRpLQPq4KepvTOkgpVd283N6Ux3BJHr+eZp7Tv0JZt+7xokOJaw+hugR4pw0BpdnWEVECp8/2YuuehedqPx6C0D2BxTgEKsLaxBsPHWkzFZpaYGtbAF0GU5r7fi3fnPu9gXuk2Ar7X2XQnb1YdAMz5PjdvXc2t29ZQ3tnmuc26xhquWP8e/yzbhaooZFkT+LShio/rDoa1X/+tKaPL6WRlwVgyrH0vsBYmpXLh+OkA/P3ADp/H203dZyPpH61Y/9vp9zZiIG1rDwkvtUX8mqzsaufyde/y9wM7At5uu2t91OyMKJtE2I3ec5phQgKpw0jvGqn+pX3uQCqOJ5Gu7IKzSMNIVrB+3EXy7815QSH9vFdNfNAStXiV9rkOW7BmE0qPue7GHXgZ3gN5A/wM4D8j5Snz8hNIuUo1+s+gAsIq7XM7o2gCczJy2dfRynMVu0P+uVD817Wo/cRRYweWEXWFGDA7zc5k/aeb95bohfBcdrc+T1Ig0RW0NEV5kheAd8e+UBmZmvl8i/didHcW1R1IRZGRUmvN1tT+yvqC6c1IhXGhxR2A++meh2oGy0qHEfWJdB/9G574YGSbj2E4mcU+g6LLw2s20ud5ZnENoo1iflIkeluf98sY58WgBXqn2ZBGz1UxcjSzZL1n4PaUNt38DHA1H+nNSEX3OZdpTWRGRjYNtm72dbT2/aZhgM18/zcyNfO4+3kf8/5MA/q+98VB/4sIgcr7Pqk/SJvDztF5RfxsxhJGJaWwtrGGK13NIO7avpZbtq2huruTZTmF/GnxSn46fTEAD+3dTGuIjSKchsG/K82yvrOKJ/q8zbH5YxiXks721kbWu8Y2+OIubY91Bv9wZ32/E+tn3RGtXWzo6eaXWz6jsquDfx/cR4/T9zYMw2BbayMqCtP7XTwNi5/P/aFOAqnDiNriND9YUvt96CeYQUdc10i5Tjj0yQl0XZuNc4oVtcZJ0h+asHwU/AqSd5emoKV9cRvI6/o72Im264qkRzhd+/w1m3CVKvjLSKk1AUqpwijt82xPUbh62nwSVY1ny3ZxoP8JQ4Schs57NRWo4JnX5C3kjJSfrGM4JXqek0vXOhI9x3XCG2VZm9/7C7O0D3pLOtU4D+wckJGK4hgo1QGC+hBEskbKvVjfX0YK+rUijxHF9TxUAqxtiSjb6RX4aOXhNQbozUi5Agj3INoQO1nGgr/sqxGDhhOqp0RdMzPw9A629XCYZWxGuuopX4tFswm3I3LMkr7PG6v7fsNplguTqPSWY/tZ4+i+sOkeqxHvrrnu55/uuigX6CLmG1WlAJxeNIEV+cU8tHgll0ycRaKq8VrVfj5tqKIgMZlfzDqCX8w2h5QvyM7nS4XjaLbbeGTf1pD2aU1DNTU9nSzIymNCqu9SX01R+Kars+TfXfPOfFErzA/YQ9W443DhWacX5sW6druNX25dTU1PJwmqSpfTyRdNvrtZ1nR30mjrZnJaZm85eSSCVQAMURJIHS7srg+WzN4PFg9FMT/wOo24XY33lK5ZzSt13d/NpOesVFAg8bUOT0bFnz4ZqWAXu0K4ShwRd8lcoHMAh2FmELxPrMLp2ufvhCxVwdD8r5FSq/0v7g+3tM+tODmNb06YgcNV4uc0ov+A+qKxliZ7DwuzC8hNHDi9XAk1I+V6Dvgr7QvlZFnxzkjhdcIbZilVqHoDqdCfl8EykTHjDuRjkZFyr48qivAD06qYw1PDCqTca7z8f2R5yj5juU7KfXEkwHuNuwFGOAFcdBmpfkFMkmq+Jx3CRm39h/G6xaIFujsgMLJUdNd60P7lfT7vP0ZrpMBcZwhmeV8fXmMsgpVjuy8OekYvxDkj5X7+OWeb3e/8ZaQOdLSyvbWR0cmpzMvMA8CqaqwaM4VHlpzIqtGTuXD8dP60eCXL+q0R++7E2eQmJPFebcXAY+PDqwf3AfDl4sBzC4/MLWRqWhZ7O1r4tL7K523cow2CDXIXXpyG57USzvOv2+ngtu2fU9rZxsKsfK6ZuhCAj/yUdW5rNcv6ZkW9PspdbSSBlBgEfmdIuRhpKopB3EqIegMF1xdUBceKFBxHJZv/rQkWSIWekYpXaZ/hfjUEajbhI7MUUte+/g0q+lPNK5xKh+FzO56T11EBSvvCDKQAziqexIz0bPa0t/B+bUXYP9/fO64mEyePGuf7Bt4ZqQAnPANmSLlZFfR0NbQ1KV5rpCCyE96wBOra50dvk5E4n2S5n7fJitlwok2POIMRKKgPlZGumo9/qOWoIWSk4hEoKyGsx4xklpT3mia10hG0wU0fHX0DKSOEFuix5i/7GosW6O7Xp5GteRrr9G84ofRfH0VsM1LjU9IpSExmV1szTbbu3vt1v46soGcEvgjivjjobs3vnRFw6Dot9p6o99Ob+/nnmJmAofgPpN5wrY06tXDCgNLrzIRELpk0mwvGTffZ+j3VYuWKKfMA+MPuTXQ4/F8E2NfewtaWBoqSUlniCkz9URSFb0+YCcCTpTsHXtTr0FGb3JkVyUiFSmn3angSYgDq0HXu2fkF21sbmZaexY2zlnJkbiHJmsbnjTV0Owc+rzyNJjJ8B1Lath6S72jwVDP43V/P+21IuzpkSCB1mPA3Q8rNXQYSt/I+r4yUN88VyiAfrOGskYpbaZ+7RC/ArvaudfLxc4HWSHnaKAc4Icswg90BV+p1A7XGYTZN8PX4hjCQ1x9NUbjIVVbh72pTqFpsPXzeWE26xcqyXN8fnEqoc6TsvScs/RnZ5hX4YMFHb2lf34xUzBsSuO8votI+14lnvDNSPb0XAIw01SxDDdbsww+12oGhgl4Q+ZUMz0iGEBtOeE5CA2Sk3IFyTB9fd9c+P+3PIfrSPsVB0CHk3pQOw7zo4x5MHGQob0A9uidIDYe/9YCxaIGuen2WuZ9jal3f4zOg9TnENCOlKIqnvG9tYy0A1V0dvF16AIANnfX8p8NcC6r6axDk/j3cgZTrs/dgVztXrn+fSz5/h73tLVHvq+f+3Jm8Iou5tqxRH7Auq8vp4H+1FVgVlRNHDSy9DsURuYUcnz+aBls3j+3f7vd2vdmoiaghdKVckJ3PvMw8Krraea/fRT3Ne9B2V/Ay1v0dLdy85VPeri4Ler+HM+/PyFAyeYZh8Pvdm1jbWMOY5DR+NXsZyZqFRE3jiJxCenSnz2HV21vMQGqWn0YT2l47apve93H0JV7VRnE2jEZeiUA8M6Sy/Fwl9mqBbgS+OBQRxU8JjGdNRpBAKpw1Up6MTcznSLn+DnR12HNC6vUBHsoapWAZKdzZRIc5lDe793FUGnUUOzhHawPLNom8tM9tTmYu6RYrG5vraHfYI5oTAvB+XQUOw+D4gjF+B/32mSMVSuDp4w3VyNGgzIHS5OxznAbwlPa5rtzHuXNfZM0mDm1GigTFvIpf6zQX6yeGeS2tU0dt0c2Sqyg+7LyH8gZ8DF1CWSMVTtlnyEL4YI9klpQ7yNfTVdQ2HbXcgT46hNedYZiDnVO8mt14ZaTCfQdIeqIVpc5J189yfA469rv/Ptqfg/c8Lz/HQjf6zIXzue3m3oyU50Jc/9K+fq3Pwes4xKjZyNLcUbxWtZ+XK/fyetV+9rS3MK05lXOYR49FZ6PRyFfIZ2t5LcX2YtL7daRTm801y+5jQpfBluZ67tqxljZXJuc3Jev57cJjSYjBYHS1ybw/I01BL9ZQG5yoVQ70Sb379UFtJV1OBysLxgzooBeOyybPZWNzHW9Wl3JMfjHzs/q2Tm+ydfN+bSUpmoUT/VUn+PCtCTP46aaPebq0hOPyR3s+R1SvE3BFx7wI5Ge98bs15fxpz2Z6dCe725o5Jr84unU7w5j358qaioN8vKsNh6GjGwYOQ6fH6aTb6aRLd9DtdNDhcNBs7yE3IYnb5hzZZ0jysfmj+aCuko/qKvsMs2+29VDR1c7o5FSyEvwMVXZ/7gc9tzP/ktI+MSg8Hz6Z/jJScW6B7ifjYgT7YAVPu1uPUNpix2NgWwhrpHytdQqltM+z7itIRgoGZic8jSZ8lfVBVKV9ABZVZVluIQ7DYG3/xdUhMgzDMzvqpAAfnH2uigU64QmwNkX3tEAPLyPlyViEO/On0Yn1zQ6fncP63K5d75spCIEeZMF6zLjXnLkDKSLLggWdHxWicFug9wZSATJSntK+WDabcP0jUGlfVvgBuvu56ZxqBk9qqA0nul1rNL0H4boHoIe7dsRhoO63o7bqYa+ZUzp086JQ//czdwv0+oHdMZVaByl3NGB9oz3wtt2ZlWwNUlWz22Zd3+35Ku3DfVEgRoHU3MxcklSNss429rS3UJycyum55nvbEYWFHDVpDABt9d1ctu5dXju4v7ckzWaOqzCyNE/zp/rGdm7eupo2h52vjJ7M/Kw8SjvbeLJ0Z8D9qOxs592a8oCtwelxrZHONi+2ubNg7sHZbq+7BuOe1m++X7gyrAl8f7JZ4nf7ts+5v2Q9axtrsLtGabxZVYrD0Dm5cBwpltDfK2Zk5LAsp5Dani7e9MomuRtNuD9rfTVOsOtO/rh7E7/dtQG77mRschodToen3Hwkam/o8vy7uqmd/9aU8V5tBR/UVfJJfRXrmmrZ2trA3vYWKrs6aLX3MCY5jdvmHElBUt9B4Yuy80nVLKxrrKXTq6Rzu6esz3/bc89ncZBzu0AXUIeykRmmH4Y8HYL8lfbFuQV6b+14v0AqU8VQQWkIcL+dBordXL+hdBmhlfbF4YqFu7tSwLU3vrrvWYOX9mEzzO0H2G/dk53w3cbW38mr5+pNBKV9bkfnFfNOTTmf1Fex0ke3vWD2drRwoKOVSakZTA404DfUrn1+SkUBrxboQcpF+zebyIosY2H5vIuE97ow8jUciwc20DA3bi7qNVLVoFfc+/yYu8NWnEv7BmSk8FFCGoJYrI+CvhmpUPQ2mwhwbFMVjAQ8ayliIshAXsA8pmmKeTEohIwL4MmW6lMTYH0PWogNJ5R+66MAr1lS4QUQ7jb24MoM+qtm6M9hoHQZngsT/el5Glq5A6XVa5tOg8Rn21A6DCzbbdhPC7BfrkyOuxxdz9fQDjhQmvTeZim+MlIxLO0DSFA1fjpjEfvbW1mWW8jE1AwsJTagFSVR5dgpY4FGpujptDvsPLR3Cy9V7GV+dh5HOvJYSSJGlorDdWGlrtnsXnv11Pl8qXA8dT1dXPnFe7xUsZcjcgp9DqPd1dbEL7d+RrvDTm5Cks+hudD7nubOjrobwXh37tvR1MCe9hbGp6Qz089alnAcnVfEuWOm8O+D+3mvtoL3aitIs1hZnlfE5w01KMBZRb5bngdy0YTpfN5YzT9LSyhOSmVxTgFqpQNDAX28FW2vHaXLwPDqsl3b3cndO9exq62ZLGsC189YQqrFyjUbPuDVyn2cUTQhpPLCw4lD11m/v5ovYT6vjk0tYvScYjRFwaKqqIpCoqqRrFlI0sy/rYo6cGSJi1XVODK3iHdry1nTWO05T3A3mgg0iNd9ATXoiBZPs4mwftVBJxmpw4Q7hav7azbhXiMVzSDOQDxXEvp9XVPMeu023e+VQne7W3eHpqABgcOIzwvNlZFSAlwc9jkPKoRARrEZAbNR4HVS3dI/IxXk5NV1zCPNSAEsyMojRbOwvqmWLh+LSQMxDIPXXQuYA2WjgJC79in+nk/0ZqSCBkT9mk30aVQRxuJ+9wlqwPvrMudfhNOxD4Ak12DPCEv7lAYnzpKu4Df0Ki2NZCCuW9Qd+1zC3ocQMlIo5nuN0m1EtO7HJ4eP17sPenZ4rfXds470PA09W0WpdQbNeIJX+Wiqd0bKHUiF9zt7NyMIawZWkLWAho9ybusHnWgVrq5r9U7/2XubK7OSpXkCUj3fFRTUeu2vex8yBgZSxLDpxpG5RVwwfjqT0jLNE0z3+7/VfB0ZChT1JPG7hccxLzOPmp5O3q4u4/UdewH40FHNjXtWA5Blt3L7nKP4kisblJ+YzOWT52IAv921gU5H3/fdHa2N3LxlNe2uq/8f1lf63U/Vq0EHeAVSXo/xS/vNeYGnFU3we7IcDkVRuHjiLJ488hSum76IZTmFdDsdvF1dRrO9h2W5hRQmp4a93YmpmZxZPJFWh41fbfuM36xfh9qkY+RpvWvAXa/vToedt6vL+NGGD9nV1szMjGweWHgc87LymJyWyZzMXKq6O0LqMHi4ebqsBK2197WQpyeyIDufuVl5zMzIYXp6NhNSMxiVlEKmNZEEVQv6vDgmvxiAD73WUwdbHwX0rt8Mdf27ZKTEYOidvTE4GalAGQQ9R0Wtd6I0OjF8nIB5FuUWWNDKHIGvWhgGisP3/UTNk5EKcBtPRsprl4IFMu4hjhmBr1sYfmZJBS2ninKNFJhXm47IGcX7dZV80VjLCtcbZiBOw+DT+oM8V76bfR2tWBWV4wpGB/wZpcvAUDCbakSakQoxo9K/tA/AyDHXpCitoa3NATyPeaDSLc/rKjXMa1OKOS5ArXeav3OYz+uEv7fQU+OAX+QFLCn0HOvEaDNSMSrtiyAjZSj0eSx90bM11GonapMTPVDQFSJ/az/7M7I1KHdlTfxczOqzXa9sqT7GiqWpB7XCgT458LoVT0bKK2A3kiMLIKIOpNL9Z6TAbDihTzazItZ3OjGs5nFSa52otU5P+VmfbTcN/Bxzz5JS6pwws+/+xqv9uT/uEm0jUTEvEqapKG06k1IyuGvecpps3WxraYSWDgAOJHSytbsJh6JTrCeTm5XXZ3srC8bwWUM1nzZU8bf927hy6nwANjfXc9u2NXTrTlaNnsyrB/fxWX01P5ysY1EHHvc+5ZC4KkFSFLMs3GnQoTt4q/wAiarGyoIxMT0myZqF4wrGcFzBGNrtNlY3VLO9tZFzx06JeJuXTZrD/Kw8Htm7jdYD5rHcl9XJmKQMrMCumkaes5fzeUMNdlc55VnFE7lk4mysXsfnnNGT2NrSwCuV+wa0cj+cbWqu47ny3fyuZ7bna7FoG78gK590i5UNTbW0221oqsre9hZyEhIp7FcK6M1dUTBoo23iTAKpw4TS7KpZ93OiEe81UoHWABl5GuyyozY4cfoKpNyNMtyLcgMFUvHq2Ae9gVSAbIXnQ9p7kb4nI+Xn5xxm4BCo0QR4NR7wXi/jMFDqneZaGj8nhrEo7QNYnlfM+3WVfFJ/MGAgZdd13qut4PmK3RzsMj/kpqZl8Z2Js/osTh1AN6DH8Jx8BM5Iuf7hK5Byn4QHaeWv9Gs2Aa4TjVKHGdSHGEi5gxC12X9GKpKOfZ59ylCh3mk2GckLvWROaXR6SneUDh2SA/yszdXpTQPdE8SE+V5gGKjVToyE3vLKSHkew3DWSCUrQcvm+rRADxzTh8Y9kNeqBGwm02cY8IQQmkZ4BfnOsRYsW3rQysMIpPqU9rnuO9xAqjo+Gak+DYYcBonPtqI4oeeMNNQmJ2ptl9kG2Ucg1duxr/e5bLiH8nq1QFfadAyl3z5YMJ/jcQyk+q8FNjJcF2Y6DIx0heyEJFbkF2NN6AA6OWf2VGbNHI/6oZlpwzDwXturKApXTJnH9tYG3qwuZVluIZqicMf2z7HpOhdPmMm5Y6dS3tXO2sYaNrfUsyi7YMBu9S/tQ1HQiyxmGVydk/8Z5XQ7nZxSOJ7UCJsJhSLNmsDJheM4uTD0BhO+KIrCkblFLMwqYE+FucbpLWsVeU2NnE8R/91/gE/0WlI0C8fnjeHEUWN9lkYuzSmkMCmFzS317GtvYVKgsvPDRIuth/tL1mMAkxzpvd+IwRwzi6pyVF4Rb1eXsbqhmvzEZHQMZmfkBsxmed6bBmm0TbwNs90VPnXrKD2GeeXOz5O5N5AajIxUb8MJX6einnkb2SqGJUimIo4vNMN9khaoYsxH973ernmh/4zP+/fRbMK9jsE5KsBJcgxK+8BcTJqoaqxtrKHH6SRRG3if+9pbuH3759T1mOVk8zLzOG/sVOZn5QUvF+k2UAzQ0xSMTkJqf+7zylSyYma1gp2E91sjBV7PxSY9YOKxD9dFgj6zzvpxByURBVJeAXQ4gZS2w2sOTZCTaKXHVVqqRJ6RUlrM9xnnGEtY68B86S3tC+E5azfXUOpBMrrgNSssRg0nescWqAEDKe9ZUqHcs3eQr491lWGFsE7KfSHMd2lfeK9/JdKMVJDnuuGVkbK+04Fa7cQ52YrjqCQs683nrFrtCPhZ4B2oe0r73C3QdcMMpNL6rUdUFEhU4pyR6vtebmSoUAlKi7NPdsz9eyTlJTInMx2SG1HanOZnQb+LnZkJiVw1dQG3b/+c35ZsoNPpwGHofG/SHM4ebQ6yXZFXxNrGGj6uP+gzkOpf2gdm23Vtr53GA228ajFbkZ9ePCFGR+LQSNQ0FnVkAza0sQlUV5qfO3Os2cyfOY4lOaMCdjzUFIUvF0/i4X1befXgPn40beEh2vPBYRgGD+zeSKOth5MKxpLSrvSuPY/RIONj80bzdnUZH9VXMj3dXKg2K9CaO6fheU0GXf8+TDNSskbqMOApjfPTsQ+I+xypgO2q3UMa/cwWUT2T7DXzZC9QW+zBzkj56NrnaTbhJ5Dx+TO+WBSzQ1WLjntOhnuAnRGolCoGpX0ASZqFJTkFdOtONjTXDvi+Xde5v2Q9dT1dLMku4N75K7hr3nIWZOeHVHPveSNPViFBibi0D1WBFCXoYEbPmhHv0r4QG1X02Y67tK/Zib/5JUoEw3jd9AiH8lq299ZJBJxabxhmp0vvkz8iCKRca17cQ1KjEU4w5/7dAjaacG83pzegiYmQS/vcz6sQj2m3K0NoBX201RygGkLnPk82yEcgFdYcqTYdtd3oLUsOo2tksOe6OyOl7bdjfb8LI1Gh52vpoCqedZ7upiUDtt2vRM38t3mBzdMCvdO1HtFHaaGR6HpfCTasO1L91sj2XgTpV47dr/mT50Kmnyz6stxCTho1llaHDYeh88Mp8zxBlPn9IiyKwur6Khz6wMfZc9xcz3+HrrMjrQ2AjzeVUdnVwcK8AqamZ4X9Kw82d6OJbx49l/OnmzMPT8gYzfK84pDaxp80ahwpmoX3ayv7DFc+HL16cL9nBtQPCmejOM1yZyNJiVkgNTcrl0xrAhub6lnTYHb5ne0jG+jhfWEjaLMJ19/S/lwcakFnSIG5qF0LvZQmbAGChd521X4+PL3WdxlWxXwx+Wv1Gs8rFu5mEwEOkeI12NTDHeP4e5Pw1enPDz3TXLSO68qzp/V5gEDKE2xEWdoHZvc+gE/qqwZ87/mK3ZR2tjEvM49fzV4WducnzwlxsmKe1Ad4nAM1mwCz6UCwobJKj+tE0Ws+TsiNKry5AykHnsdlwH15yp3Cf176azISUJeOus/rAQ+UjXC4ntPu51+yYnbSDDOQco8wcJ8oR8WqmCe9oeyDp2Nf8I+rmM8Kc7jWZgX5lfXs8AI4pVs3A3xXFsUYpaG26EEDGl9rpCLp2ucu63O6SgnD6Rrpb4aUR6qrBXqnmYG2nZXa2wRhlMUMGv0MIPY0HvJe66sqGHmamY3r0H23PndzP8cjHDYdjM+MFAMvgvSOI3GtWXJdBAh08eeySXM4tXA8P5uxhNOLJvT5XprFysLsAtocdja11A/4WfcMqY4kJ/8sLeGSte/wu45tAMxuT+fSSbO576jjwv11B1+H7mk0QaJKVmYyELys21uKxcKXCsfhMHTeqCqN154OuvVNtTy2fzsWReX6GYtJ7nAF8Zmu12NPbC4waIrK0XnF6Bjs62glRbMwPjXD7+37BHDBXpfuiiPJSIlDzd0u298MKfNGinlVrDNOV+s8L4CB3zJyNLMUy88sKaXZnL9jpKtgVVAM/JfRxLOG1n2yFCiz4wkYe7/kedH72WdP5iWEN4fek2rzWIXUbtoSOCMWjiXZo7AqKp83VHtmggCUdbTxbNkuElWNK6fOi6zrk+sN1XBnpAz8B3+BMlKEsMbGMMyr/kl9XxO9JVhhnDh6vfn7O1GObo1U35bOodB22foE/AHLmfqd/KG6Fsl36GG9F3gyUrEIpDCPldJjBO/k5D75DCEj5RmOG8vSPgtBn+9hBXBO17gHr0ypc2yI86R8ZqTCXyPlGakw0WqWU0e0Rsr/MXEH246ZCTiWeI0MsCoYuWbQ6KuzouKjRA28y/ucZgdY/GekIMjrIRr9Lhj6fO3qhvmZlqZ43vONZHe3Of/7lWKxcuXU+X7Xp65wX+Ty6pgG9Jkhdf+uDTxVVkKTrZuCsenomsHsjgxWjZlMWhQDeAeL5hrEq48xH39PQBrmep+ziiehAq9X7cemx3lm3yD4X005t25bg8PQuWzyHLPLpNd5oef5F6Os1DF5xZxYmcejH8xnqTUfLdD6KK/HSglysTfYBdShSgKpw4Cng1GwrnCpinnyFaMXU599cFcZ+TrxtSoYma620/1P9p2uevcM1eyC5D7Z83NyFd/SPtc2Q8pIeR3rYHOkwshI9V8npVa75mf4G8YLvRmxGARSKRYLi7IL6HA62NRcB5jd+X63eyMOw+DC8dMpTk6LaNu9pX1ej7OfK1TBuqUFvcLrwMzs9VuPYGSaLYvDWkPjtY/+1klF3WwCBswPC8Rd1uecZH7iBCrb8DlEOl013wvCuLKr1scwIwUY6a7HMEiWXAkjI0Wy6+prk/8yzLA4jNCy3/1nSQXSPfD9INR1Up41Un0G8obftc+7jb2RoZrHOMT3j2Bd+wAci5NwjrVgW5VG/3W7nvK+moHPd6XJ1USi30VB3dNwwtGbkfLxeec5pnEKpNzv8YYrJvFV2qd0mEOT+zTMSA3yfhWCZbmFZnlfQ9/yPnfw2ZzmYE1jNYVJKTyy5ERunrcMY5QVtcOAOM+pixfVFUg5R7sCqWT3cQzv8R2VlMKRuUU02218WOe/jfxwYxgGL1Ts4Te7NmAY8KNpCzzZTE8TrwzV09E1VuV9s1Jz+MGO8UxqS+GYjrzAN/Z+XwqxtM+Q0j5xqIV8EhfPhhN2d1cwPye+uZrZ8rrfFX2lRTc72rlLOdyTy/294Nxfj+dA3kDns15tpD2CZLIUH1ksv/vgGcqrm+Vbza4hlIFO5jSzVCsWpX0Ay/OKAPjUVd73n4P7KWlrYmpaVp+6/XB5l/a5T+r9rpMKUsLpWXPg5yS8/zBeD4tinji2+gjq/e2313PRX0lgVIGUn3UWfjkNtBIbhgbOua4uiYHWx/goR42k4YR7/U/MAqkQO/cpnhlSob3m9RwNxY7/RhZOA+v/OlDqg2R/DMN8TYVYZqJnuWZJBft93Cf5XtlS3ZWR0oJkpJQOM9Do0+o+gjlSapUrKC7Swl4zF8pz3bE8me4rsz0ZG2/uMuUB5X1OwxxL4Lqo1udn8ns79/lsfe4W74xUvzVSuo+LIIqvUSTJoXUaDcRfeZ87S75BaQTge5PmeOY36UWu43Yw+Pq7SCjVjrhtG0CtMD/UdE8gFXlmxf3Z9XLlPoxYXGQZZLph8Nf923hs/3YSVY1fzD6izxxHTyCVqfUGoDHo3AeQsNVGbrd5QjPDkhnwtt7BW9BmE47An/tDlQRShwHPkMYgJ3HxnCWlBJmB4z75Uuv7B1LuDx3XB26QjFSgEsKouXZBCaH9eZ8OfMECmRC79gF9ZkkFHcTrzRKb0j6AZTmj0BSFzxqqOdjVzhMHdqApCldPm4+mRP6WoXiV9hlB1jJ4rvz6WyMVZPE2PhpNeH42xxXUh7omybu0z29GyuizX+FwD/YMdX/UA3aULgPnlITeICzAiaOv0lL3SagaaiBlGKj1TvNxS43Nh1zI88DCyUhB0IYi2uYeEt7qxPpRkEHGOuZFnhA/1Pu0Xg/AV5Cvj9IwrK7SPn8ZLcMwg5gUpW+3OotilueFmpFyGqg1DoxU11DZ9PBKS5V23bzoFGSmlz+eYbH9AinPRTUfrfUNr1lSg5qR6r9Gyl2K7Z2R8m6e5N6vENZIhcJd3vexV3mf+/72JrSzKDufI3JGeb7nntXlPTMsZnSD5EeaSfprc2yyvz64G024AymiCAhmZeQwNS2LAx2t/HjjR6xpqB62AZVdd3JfyXpeqdxHhiWBu+YuZ6nX4w6951Z6rEv7DKPPe2e+MynAjfs9VkEzUlLaJwZJKKUWQHxnSdmMgIGCZ9p9v5MbT8dBd3cjd5mcn8FtcS3tC6X9ua+MFJhru4JlpEIp7fPKToQ1/NSixKS0D8xZIAuy8ml12PjFls/o0Z187f/be/Mwuao6//997q2q3jtJd0ISIGEJpIEQIKMsIoigguOGggubyOYoCurIPLiNAm64jIPiuDPy5SsObgPDyPBFZwRmHEDgJ7KvggmELUl3J53urq7l3vP749xz7lJ3rbq3blX35/U8PpLq6rqnb517zvls78/u+2KvgXDPUyTOiFQxwnMcGZGyXk8akYKj50+c9D6T23MOtre54XozVh+3GMZyA47GnnFqlgqPWWl9+5fsfmZhh2if1NLEEalpDlblwiHSTH2cD7Gb8jYRkQKCo4e6JdIRaXio6Hesy9rS61GCE35Gvs5g7lYAq3DReNaPikgZ8zPWeS8TcyDGwZBtM0Tq2YoCwJhv24VATA7MiF5wzc4Dc7lU7vMYUpMep5rzd5baEugqIuXnOOyNdiy0hDdNtpeBFz2pfT6CGdIJ0EpECpDpfZorva+yTUjKb+mv4v17H+iq55NGK8sgaqS9ZIBNW/2xMigX8ApNiIsyoUDXxH1kljNwzcAiPDW9HV949B589E//jTu3vQizRYNq48wUvvHA/4eX52Zb+pw4TFTn8NmH/oD/2fo8lvf04+sHH4Wx4SUN79McqX1pRqS0jTXoloELwLfW0YVznY0UmxD/R6l9RNuJm1Yki4NTV+4zxAYf5kWwI1JBMrHW5qkU6Nqf2qcOTEkjUvJ3o2qkYni2TZXaZ9iGVFh9lAUvsNA+N0mR6X0vV2axqm8Q71m9b8uf6a6Rsl4MaWIMhIhNqIhUwFyW0a9en0NnEols+d3JGge/iFRd9OhoRrFPjWlY1CxFOjk4h/6obUjxGLnvQTVSQHxDSktZaMI1hpg1UkENqRs+VwqKBEWkpNphXCnehBGpqHkVZOSr9L7N/g+yX32UolcTa3CMNUAJTViH7ESGlKXE10wKq4SPWtG3l9x1bH4GiKKHwVykgU2YtsEVEpHKzJCqedZ/xsAX6eL5U427gyNSrTZFFel9yzBdr+GB7SK9b/PzOwAAa1ePYlX/kOv9KvqXhSG10U7BSCJWEhev0ISE91sKdCH7dBB7DSzCNze8Bp874DDsO7gYz8xM4cuP3YuP3Hc7HtzeqIYYh5fnZvGZB+/EL55+Ap998C7srAV4gVPgge1b8ZH7bsfDU+NYM7gIXz/kKOzW71+zrFL7FqdbIyWjUcZBIq08yqh1p/aFfzb1kSJyg02b4mAa1fA1qxqpeuNBreHagREpdz55lNhElql9qiFv2O2pWHLInuvzAhORCx/PltrUE4hNaM7UvpUxDq9FCPGAJjYXP44YWQENDAzAR9YegmKMfh1ROFP7VC1DUGpflNKhqpEK+P254HsuDak4PX/kOMwluuhl43NIbqWHlBqTw4AOHc9WQzS23rUgDmryMF6JUSPlVJqMGw2yUNLnS9PbMrKqkeKqKa+PKtyUYacXR3hHWUIpXpVSGKXcF2BIGRGCE3YPKZ85nUACXRlSVqRb1fnE6CUVKj0eF43B3KUANsdd6ax+PaSc8F1ESq40CkLlz7NK7as07nXcc//8aqTSikgBQjENAP532wt4bGoCunXfjttvz8Y392swl2hg2wzwsDWiCfS/2PM0UeuGmMj6KCk0IWk1TY0xhsNGV+AfDzkal607AmNDS7Bxdicue+RubJyZSvRZU7UqLnn4D5isVjDS04vN5Wl84dF7UlcGNDnHdc8+gc8+dBe216r46xV74OsHH4WRUnBaHZsyhWOhx07ta9WQYuMG9EerMAcZaq+SUvQR63czqX1ZqDJnCBlS3Y7yhkd/lZml9lkOmLADhzlqGQjeGimV2icjUtbrUWpueTbkLXpqFAD7wO+3fnq9mGH0CkU7tkOk9vGCffAPRTXljX5rHBaVevC3Yxtw0dhfJe4XFYi3jxQQfOCJ6iMVoYIlC+/DUvviRaSs/+9h4It1cRDyzM1WhCYkcQUnlFrfAcIqUh74kAO0X2pp3GiQ+gwZkYozF2MS15hLWiMV1tPJ2XsrqvA5afRbrmFxI1LwREvNCAn0UIM9QVNe1VLBctAkiUiFGXNJsBvz2n+rndrn/z1LCXRmutODnbRD/pzrcIlhuASC4LOnAUq6Pw0npjO97/tPP4QVsz0wdI6+xf5qRubKAhgHzM0pRko4d0ekEiiOxkUq9pkeQ6qVOiknjDG8YmQX/MPBR+GMPfZDxTTwxUfviR1RqhgGvvDo3dhcnsbhoyvwy+Pfhn2HFuPRqQlc8cSfWk4XlOyoVnDpI3/ATzc9gZKm4+/G/gof3vfg8GbEc6boo2jNTZm5kKhptw/FO8pgHKi/qs9eN6IiUo69KdLZS32kiDxIcoiLUjpregxxwrE9GsxBS5bYUQeieSNSUal99WSHm0TIhrwRNVJ+MuYqQuYzbj8vZiDMkoqvcLBZDnOXQqASouv6ypBK7wBx7C6747W77J7a57kiUqoWLiryGJHaF3QwCamRskUBYnjgHcXlco42KE/GFHsJI6ixpxf9MVEPIQ0pqQYWq0bKL7UvZkqOHZHKIrUvKjUkaUQq+Pt1etGjVC5VbVzM6LeKkEQ4qoKMfL5EAx9gImLkt45IQ8qvRqov2qCWaC+6WyqoKHgSQ6qViBScyn0OtTvruTIDIlJSAj30+nJtTiAFnwRWRcM6bnpbVmwXzXGdoiwqIpVCatVAoYi/stL7Xti+E4tqRWBE1Lv5IdP7zOdiGlL16LQ5Nmm6BTayiEh5hSYs0ozuAcKges+qffHqpSvx0twsvvb4H2FEGEEG5/j6E3/EY1OTGBtagk/s/woMFou49MDDsbynH7/f9gL+z8ZHWx7bY1MT+Oif/hv3TW7F6v4hXLHhNbH2ZFuxz3pOUlCNRNlE4d458AJQO6IvvoCK3PflIxuSCRDV9qRTIUOqy0lkSA2m5xVzEdE8VV1/1JIHdtSZsEkr/CwPFaonU8CHtKMhb9D5um7VgvkZRKoprs/v+Rxkw3Dm/sdS7APsSF6Ulz1HXDVSUap9YX3JEB1dDfL6A2Jz4VqMFCzn+IrMjnR46qTSiUjFUE6bNqFtqsMc1pQaFwoA9PADmm86UsIaqbSb8QIJ0gtnrNYKMVJjAYjvasjqW+cR79CdEamowme5rsV12vQxob4Ytb76yNGLATEYq4pghn9NS5gypKoFjDqoz5rQdlgF/LJZbDMRqRbmOuAvgS73haDUPimBDgQbUplGpDgXbT4867jdRN0EalZz3EW6O2uhaIlStKjaJ5HqfStmRZ2Kn9KhRK4V/NlK9AcbHH3fnETvj3aEvk06JOR30rQhxTm0TbXG2jE/oQn5KylLeQPCmPrY2g3Yo38If9q+FT/Z+FjIkDl++PRD+MP4S1jZO4DPHXAYenVxj5eUenHpgYdjsFDE9Zufxk0v/KWp8XDO8evnn8EnH7wD26pzOG6X3fGPhxzdUAMX+PdY34dp7Ssq9bcFQ75w7xxYlaO+oRcY1ET2jIbIXoTKcSTX+7AzSj3hmtshkCHV5TQTkULKhlTcbtRScEIeylB2hJ+lNy1uQ94sPBbyFgZ548Ia64ZE0pKo9gG24AQA8DiKfYAjta+TDSlTRO4KLFYfKc5gG7deStbBJGAuK1GQPp97ronokrbTjM7Z9otIeZX71DPY/Jz060fjpfBEFYxb0Sj5vDAmvI1h9Q9+qaU9QvAjbnRaGxde9lYjES5KwqAOHQPn4vDZzwI97r6/tsQS73Ae8KZNaFsMuw9W1HeftKeJxoA+Fl0zoIx8n7TTPcTzrj/dGD2wI1I+44lZI+VsxKvosZ6lGEZ1WoYUl2py1ng452CThvByBziceIyIlC1/nn6EBDWAcTSMzykf79tDSr6vXxOGbgxlziiOGF2JfQcX450De4nPDjA+AduQMjdGR6S0Z2vQthrQ/1ID2xKcJ65ZhlT9YEtwoJnUvjpH6Rc70ffd7ej/8gRKv55WUWQpuOIVmgAckemUlQL79AL+/oDDMFAo4leb/4zf+zTuna7XcO2mx/EfL27E4mIJnz/wCCwq9bjes6p/CJ894DAUmYYfPv0Q7h5/KdE4ykYd//DEffjBMw+DgeGCfQ7G367doIy1OGieiJSKHjVrfBocxTuFyETtKFEbJfaeGOudjEhJB3FIJkDcs2SnQYZUl6O8lHEOOJYHISqVJjExIy7Smy3ThJTXxFmUKw8tTTZqbQnGRP57wJ4QJhqhImR+h7MYNWSuz3IYUrGkz+Hw4KTUlDd1OAfmuCp6VXMlKCJV52IxDTk88wHrYOJn+Iak9gGO9L4AOXM1Dvl9lpjjdzwRqZCUq7jESa/SH7XS+vZ310KwPk1EcAMcAEHzlg9pYpOLMihmTbBZLp5fb21gi/BBTRz+A1U6RaqtKjCP+7k+EugyGmXsXRSGQ1RzyCbWGt5vfRdh6Stqbjb+TfX9xaFMf8Tn0BtSI8VjNuV1NuK1B8TAh/VYcyGNNFbx+0ykMW4xxLydMsDqnroi7+8M2f3nolL7MolIBexzTqEYbzsP1/v6mTDEUkg77C8UcMWG1+B1pd3EZ4cYUnyJBnOxBnNTBYgwlvXH7XlXeDg4gqVb9VH1Q8R8jZMW6mLORO//2YHifRXhGDA5iv9bRt/XJtBz7Q7o988BaBSaAJBOmloAK/sGcPHYK8AAfPPJ+/HM9A7sqFXw25c24ZKH/4Az/nALfv7cU+jVdFyy7gistBofe1m3aBQXjf0VTAD/+OSfMFOPtzE/N7sTF93/e/z31uexS08fvn7wUXjjyj1ckvZxUP05h2WNVGsCHfojVWiTJox9iy7nLu/XhHM7LLpfFhkFas0IW2OyrIHPEDKkupxEHkKNgQ9owoOQYiO6uHmt3oiUXR/l2ASiUtSyTO0DAA1gQR7DsMa6KrWv9YiUbMoL2D1XIrHuR1NNeQ0O7flaKp7SQCpcFJrKCJGKSAW8X4p6hMAHNHEw8dkcWEhDXsCuw4hM71OHJ/tw5BUTSKNuxFuw3kCdQ3+yBl4EjDWeovKoOqmgA2BMwQkpI26mmNZnj4GFjiE0ChOCSsN0KPfpz1hCHXsXxfyLTO2z/j/BWhMlggIgvH5vhQ5zRIO+ud5g5NtCD8GGVNQh3avYp34/ZnpfWhEpMAZzRUGkem81YE5YkamQFDUwplLJTB/pcyDb1D6/NgKA+9757mkSVduTXrRMPZtR921dD8BtZ0wQBYchpT8UsDhPm9C2GjCX6uBLhZR9ktQ+NmWg9/vboT9Vg7FSR/mjSzD7qVFUX98P9DMUHqqieJ8Yp29EKoPUPievGNkFZ+65PyqmgU8+eAfe+4ff4sqnHsAfJ7egXy/i+OWr8dWDj8K+Q4tDP+eoZbvi+OWrMVOvxUrx+8P4i/j4/f+DZ2d34hVLdsE3NxwTeY0gGmuk4jlagij+XvTHUtEoizh1Uqxsin04TvlBPSITpUMhQ6rLUXK0cTe2ASbqfNIsxo3puW2ISKmceEdEKm5qX1YeC50FKt8FbaQA7L89jRoph9KOMzoVirp+8u+1cM8c+q7cDv2x7Ppf2EITlkc5LCLFRRPcyJo7eWj1Se8La8gLwLGxRHjgHd+5PBw1RKR2Bh9wY9OrCbXGgIOs/nQNrMphrC01PGdMHtAC/pbAA2DMOim2Lf36KDWGCAl0l0BJks9VEuiOiJSs69i7CF5kwgEU5lBqQkEqTiF8qJHPGIx1VlTK8zxG9ZESn91Eah8SGFJJ95sQnHVSfNwypEIiUoAtOBHotFDtAILvQ8/VO9BzbXgNkC9BDolhTdTGTZn2nhYQkQLSjaQopcOQiBQAe049EmxIsUkD2ksGzGU6zKU69Bfqdhq+AxmNMvYswq+PVuh4X6qj95+2Q3/RgLFPEXMfWCzqyQY11N4wgNlPjaJy8iDM5TrMXXSYuzXmeKUtNuHHO3ffB0cv3RWzRh3DxRL+esUe+OKBr8JPjjgeH1l7CNYMLor1Oe9atS80MNz4/DMoG8GpklvmZvH1x+/DnGHgtNVjuGTd4Rgu+qswxkE1rbZqpKBbqdxNRKTYpAH92TrMpbrYfxxEfhd1DlazzjJR2UawjKyITJROpMvU2gkvtiRuzEP6gAbAAJsxEx9OAolpKJgNhpRfRCpCbCLLhryA8IQEPeghNVJhqX2JVPtgb8LmimAlpsbrN5/aJ78PbZsRqLPRMkr63JpzYTVScevgHMp9DZ8Skj4F2HM1UnDAWSO1yDoweSMFYQfcBPBFGrSthjgEeuaY/oQVTdmvcXNl6hBtgvu58gIiqXENKaXYl0lEKmIMCXtISUxvat+MKQ6JI5pYb5yOj4B8fNbEWhOnDjXKyK+vK6H4+zIKj1RQf5XtAWbTpvDW+tyLWH2kTC6Mll7WcNB390IKLlBQY2hR/hywhXTYi3XwmmXghUVWANSP7AOr+z8HQIyIVI2j8Hi1qT6EtkPC8wNdpCmyKbtZsF+Kourlk2JESvXeimhLYO5dBPo1aE9VfdcXwE7rM/YrgReA0m1l6A9XUD+m3/0+y5Ay9xQ3kS/SgG0G2A4DfFnwkVL7Sw291+wAK3PUN/Sg8s6hxmeryFA/rA/1w/r8PwS2M67V5sZhMMbwd/u9AqfMrsXu/UPQmzzYr+wbwDG77IbbtmzGzS9uxMm77+P7vqv/8igqpoF3r9oXp+0x1srQAdipfa56615NrLMmT5SiLc+Y5i6Nqd2Rjaad+7Dcc0NT+6IzUToRikh1OUkbJPKIRqZNjSFugWA/A+9jwsvFuVI/c+WTR3ktMmzICwBcZ9E1UiERKd/UuqoVro7ptjB3LaD6hn5U3+iff+2LDJs3k9onvVRpqzk6SBSRksZLjNQ+AL7KfWEF/YDDGI5IAXJFcwpM1BXtcKvBhR1wk+Bt7OlEf9I65Kz1OUBGpPa1HJHK0pCKUO5Tns6YPaTU56peUuJzZTTK2NvqvxVRowcgvkHvvG4cSeCQZtEAYO5RFPVDTzvUzDgXB5o+5nsI4jH6SLEJA6xmRaM8B0OvhLcvnIvI4YD/GJLiG5GKiKyYq4qonD5sz3kvxfDnWv59rIbo2kAvIQ5DvkgHMwH9+eAURZWemmIkRZu0RGCiHKk6g35QP1gd0J/yzzyQhlR9/xKMA0UEy69OSgpNGHuJTceM2QOv54adYGWO6rH9qLzHx4iKSZpS8mHojGGPgeGmjSjJu1ftCwbghs1/xpxPVOqh7dvw+20vYLTUi3ev2rela0m0HaZw7jr3JFmjlzTtdc69d7voC96DAUf03dn3LSjxhXMgRiZKJ0KGVJeTNGc9Ewn0mPLnYAzmiA5WEwcnlQaxyN48uYpI5ZXaB1HL45fyEyRb7ByPT/SeVbk4xMZdkBlD7fUDyuMXB95CQ16Za552fzEX8vAQIyIV1zAPT+2zNpKgeaI813FrpCwDcLGlBjflOOCmdLg0A+qk2IQhahJW6L6pTyq1L2iDlGInXrGJmPLjWgbS5w1jCErtazIixRdb0UOpAvaMndYHIFa+PlPrWoILx2h6zuasXnRB80VjqO/fIw7mViQSVbH2BaaPxohIKaEJn5YKyogPmwtzov1DGml9gN3Hir3oTO1r8bM1q6F5kCHlUJdLWmMTltqt7t/L1rOyyOcep10jVbFEYJbosfYW/RARWfJN76ty6H+ugvcwmHsWYe5WgLlEg/6sp1avwqG9UIc5yMBHrRR0p/x7EAYXtXDDGmpvHGgtdUumZacY2cuSVf1DOGrprtheq+I3Lz3r+pnBTfzgmYcBAGfvdUAiZb5AaqIHpUsNGY6IaMKyjtBWInIPDniWnA5UHuZsBgADwtAjQ4poN2zaFEpzQbUgHrJoypukiRp3CE6w7QY4g7sOSDrc82jIC9jNb32iUmGiEYENebnIHY9bH9U0IWIXUciFMuzw1yqql0SciFRM2enQprxz/ukr6ndjR6Ss/1CGlKdOKsXDZZBynzxM18cCcuYj6mMiI1IRawEbN4XqUquHXB+ixmAbUgmvrVuNradMoM4bvOiRjb+dP0szIsU5UPFv6u3EWCe+64Kl3sdCFPsAO4U13JDyr48Cgueek9SEJiQ9DOaIBm3ShPm8+DuDmvEmgfcw8Vz7OMNcToqk611oRMq6/9w6XPqt9ymrzcm0vqh0SIm+vh9ctwQlPAqf+tNVkTK5tiT2QMZUVMqpIKk9VwMzAXOvojqkqx54IYYUmzTBzHScMe2KSKXJe1avBQD86+Y/o2bah4vfvLgJG2emcMDwCI5Ztlsq12qoj7KwRTqaM6R8xXEi5rQypHo12zEakW3UjQVHZEh1MyYXzSoH3Z6HMEIPn80SJsLgQdVJbTXAdphi7A6jKK78eVapfeqJ8Ls9cVT7vAczw4pwxW0m2ixBhlwcrMUuy4iUXGhVeoCMCPlFpGLKxQem9tUtsYqA+ijX9aPSHDxphvLQImshog64SQg6kKj6qABDSkakAgVkKlZD20KAIRUWhahyaDtNUYOhpz+H7ahYwEYs501SQwqiboRxYUBoL9ZhLtHsWpI4NXJNOG2iGkWjyoXXNcLxZexTAi9a6VZ1HqleGEe1L0ixD0AssYnUDSnHWPjWuljTW0yPBQD0MrHm+kTnnc20s4hIAXYT1Ib3xFF0TIAWU2hCwvo0mPuUwGatJrgOVH2Uo7VC3Se9T/c4JADH3AnpJZVqnWURwnncJREpANhzYBhHjK7ARHUO//nycwCAnbUqfrLpcTAAH1izPrHEeRBe6XOJWiOS1pZJJ6ifISWf16DvQtVGs2jnlTUlKbWPaC+zYlNOsrHZHuD0a6TiPABKuW+j8Gw1eLlzTu3jcp0PkzFPotqXULGvWVJJ7cuwRkot3jK1T57l/AyZuCqQQal9UYp9aLJGCnZESh7IpAGQZkTKVSNV59CfroKXGMw9ArwHKmUjIKpT9Y/OxTGkVH3USDZbRWRUrMnUPsA2egv3zYlGxo7Dn91AO/j3mdrY418zKn3L9tBG/D0lBmNtCcxKuYo0YmL0kVKKfX6GlKOpbBBpznWJcyxxU9SiCHu2Xal9SSNDYREpR8uKoMhtlPc+KUpoIkEUT6r3FZx9yjiH/ngVnLmj3ubqAsxhTURzp921hs6088jWDYCt/Lk0BUOKWbXWZf+oYx5oT1VR/rtNqsG0H6esElGpXz33FOqmiZ9uegI76zWcsGKP2CqAcVD9Ob2Kv3L+NRmR8nP+RKn2qd/tY5FiE82I+3QKZEh1Mc1I0aqDS9IGemEk6EZtWnnV+tNiQfbWfPCoA47qI5Vxap/P7WEhNVK2ap57kbAFKlIboT+tpPbJiFQbxSagseCmqDEFRYKiq1FCEwDiR6RqXkPKuuZ2T0SqFelzC78DibaxBlYFjH2KgRsMCxObCEktjVMjpeqj0jgA+ZCV2AQAFX0q3G/1pNnbcfiLIcUbN8XUdU1p8AU9SzGMfImSrH60ajfCDZpnBQZeCEntmzOhTZhi/fWLjvcw8J5g+X0gq4iU0wBJaY6FPNvOZytpZCg0IuVURwv4OyK99wmJ1UPKg3GA2Ij0RyvKCGEvGdC2m6Jnk/O71RiMdSUwDhQeqYh+g8/WRB2VIz3UjJHal7ryZ78m2rh0SAN6/U9z4BMGtKeDW4jsM7QYr1yyC7ZUyrh646O4+cW/YEAv4L177JfqWDTVQyogtS/pvHem53mJSGV2tq/gUWITGQuJZQkZUl2MvbEl2OhVUXGKQtcJoi7yQKYF9duIksjMOo/WWnuY4XP9sMa6QQ1x2xSRQoj8eigmt2ukqojVC6QpHCF+RQ/zvZ46sMRM7fPWOrCQVAT1uzENKdYgNuGukWrmGQwck096VVRaH2AbUr6H6Lqo2/CNokrZ5p1moGdX25adYh8gxsV7WOpiE4DtqZfGmFTsk9cFQtYZoKlWC8q4D/LQyvkWlnZqUd+vBM6kIRVtsPNeJgw1n+9Se0kKTQQvnHxYE+MLEmrIMLUPQHgz3gSEPdsuQyppjU3IWu5sEGwGRaQi5kZS4vaQcrFIh7F7AdqECWbNicLjwa0V6ustY/6hCrQX6mA1wNij4BZKGWDgenhqH0vZIdOsURBI2RRjLAevhWFom0UkKkrI4RSrVurG55+BCeD0PfbDolJP4uuF0dCM10KtoUl7iIbVSEUJqDj34qhsoyZqUjuFLizrIiRqY4spfe58b5oRqSQPAB/SrEiE+HeDNy3CIEgibNEUYWITITVSPCC1LzQdMEWCrh+JZ1FlMyZ4Kf1Ds19jVV5i0Ka5KHx21t/E/Y77mFBmayK1DzFT++z6P/F/cr5qMiKV4uGSD1pKc47DXuGJENlzSZghFWHI8yEN2owh7pmPvC3LULFPjWFQEx5rnx4irdRIOdMRzUWaatILIFgcxnntZnL2Iw54kY2inQxoMPcqQn+mpgzqoBopcW0NbNrw7Y0VltYn4cMasNUA22mA9zS+z95v0lvL+FJdHMKNhAZBGPLZ9klz1JyH/cQRKes/IiNSAXNVFfuns/cqsYmIHlJejHUl6JvrKDxaQW1lAfrjImLrrI+SmHsKKX796RrMR6vqNRcaE0b4diHs4ud4sB0yKRnLcj0oc2Bxix9W5ej/6oS9R2kQe0ufBnOJhsopw+5InZcaB3vZ2ngjjJT9hkdwyOKluH/7NqzuH8KbVu7Z4uAbUTVSqaX2ybT8JlL75LWcvxtRI0WpfURbaeoQV7CbB6aWX5zkwMGY61DWIBOrWSkqUcouWZ3r5OcmjkgFeFtCmvimStD1I/Auqpml95V9FuMA5T6mQvwR90xjojfGjHsuh8m1SniPtQEkjEih14qgTIprpuql160+VdOmiBRuN6C9bMBcpoc23FSpfX4e+ErInAUi5cezbMarxmAdzP3GwGYtGfsm0j2cB3Nzb1tlDIDtHY0lNpHgorpVvxGY2hcdLXUNQaZiWbUpYfMsrCmv9nJMQwrBTrYsIlLQGfguluBESoZUYESqzl21wWnWSKGXKeM8MEVRt9aOlNRRZQ8pJIyG1w9wqPHNmtA21WEOaTB39ZkbOkP9ACHFX/zfWQCeWkMLvkgD4wEpugYHmzRgDjKgJyVDKsWIFNtpgpWFkqa5Qhfzu8qhbTNQeKqGwkM+cvEOtJfqQtwECK1RlJyz1zrsP7wEH9n3YBS09I/ggRGp3uYM+VDnTwmhwh/OtED13ERkG5HYBNFWmt3YzGFNiDakJB/KPHUkkdd3GlJ+3rsSC45I1bnYPFJSuPHCm4xIqYOeJ7WvXREpddhLWCPlXfizUu4LikgBwcZnnMMzH7DmsiPvOpbXX3527IiU9VmMgS+xUqDmUjakYKVXmeJ7iJPWByBcbCJGRAoIOTyPWy0KEnq9kxBozHEOlLmYM00873xYU+Ix3sOfvamHfECTqSa8XxPRC581LFb9ngNZJ6U+O6wWL6Qpr2b1NzKXB3+PUU151QEtTUMKlpQ2/GXZmyFIbELJQsseYinWSIEx5RQMS1Hk/VaPKz9HXRIS9pByjWG5DnNUg/58HcV7LSGW/UqBn2NY6X2sKg7N5iofQ2o4uE6KbTdFxDHNOssmoyt+yH3d2LuI8t+OoPyZUcx+cRnm3jcMANCeDS/E0p53pIHESJvbe3ARvn7w0dhveKT5QYfApqx2FZ7nlDd7z8Ick4yJ9S5I+MOZ0h/hvLLFJpINrxMgQ6qLaUZsAsggvS9mTYu6vuNQZvp473iRiQOO34NZi3+dprBuZdIaqUCRjDDjK0WaTu1riEhlUyPFZrk41Dr34JL/gSd2g2fAX3AijtdfNu6MqAljVctwd9QEyDmrTZq2CEBahpRDcEJ/Mp4hFVYjFWXIm2HKfXUuWhQs0jJNtwhUD5zjwtMbls4WhsZUlMPY23P4i8jXB2ArhCY1pMJkrpOk9kGslcZKxxrZbETqpTq4Hn6YDd0XnI1YvSlDLVL76wH0XrIbeEqGVJDYhBSIkVG5Zmukgp6l6gkDqB7f71Lw8+JKSWsBu1dQE98FYzCsqFTxv2YA+Kf1SYw1RTW3zN0Kvs+DvW41eiCziGpH9mtLQkDU3rBUUvVnwzdVpyGVtNlt6hgcbKcpnmVPw29Vn5xiHykAQB8Twh9+9c4O1b5oITHr/ykiRbQTeehNbEhJ71FKhpQtfx7v/aa1mfMC/A9JRSYK5P1qV+s8O8U+oGnVviDVvPZFpPyvH4WKFMk9LoOIFOccKJtiIXd2Wg/o5ZPkAOsngR7X6x/WuFNR5Y2NbB3KfVlEpABR/6A/VQMv+qfSuAjrIRQ3IuVjSLEJQ7RXyDCtD0Cgcp+am03UR0mqbxlA5S0D4Ms8h/SwhtCSBAa9EzVen9SxOGmnXuShV3x28FiUqpb3oDRtgs1w8GXhvcDCmvLqVrsKc+/gyEXT9GrQ9kiv4D4wIiVloaXB1mREKuhZMg7qQe11A+Fj629cr5qhldpBwE4ZlVEmY58QZ02BqfcHrUVmiAR62kITQAvRFR8Cv9cBDeZSXdR3hXxf2gsOQyvnJsFspynWbD8DW869xKl9puUEDdhDQkRUXJkoUQI/Ta63nQAZUl1M0xEpuWGGNeJMQsIUGFkcyxf7pyUog8x7yDG58HxkGfpVNVI+P6twcBZw/SCRjA5X7ZOLqjwsZ1IjVbW+tz7PPFWH2cb3A4hnSMliVx9DKrQhLwD0BDfuBCDmW61xYXcq9wlxDqRmKMv0oMJDFbAKh7GmFHkfmGbVXvhFpJT8foQh5WNAt6M+CghO7VOKfT5FznEx9u9B/ej+xmtGNYeEwymRcL0J7G+GmGmnHox14hDL+1h4U+SAiJSqj1oe/oeEOdikrLOxpgu0iQPqH6UstLlcF6IuTdZItdRcvT8dA6AVNUsAMPcoqnlq7l2M/Jtqx/Sjvm8R9cP6fH8u1y3Nx5DKQvlT/d1pCHeE1JEaq8Uzoz8XEEYxOLQX63a6aIwaqSwJqo8CWkztC1PADatXm7MyUQpw9O6j1D6ig2DTpjjYJ0x9idPFPhGWVyt0k3def2UBvAD/4lYgOO1GGjdZphmFiE2wKhdj0/yMP//Uurap9jXZkFcuqjJKmEVqHw84EAdGpJKk9slDuHPcSSJSQHCdlLyXnu9Oyhtr44ZIWUyxZkQ+m/ojlpJWmFqf8/d6reiaGWDIBzj8QyNSbVDsc43Ba0jJiHsLEalA5MEnjvx5Ug9pmJJVQrEJQKyT9YN6UH9lb+j7eEBTXlUftSL8e7RbY/hEpKy+f91gSAWJTSg1s8W6SEdqOiLVwthSSknzqzlNhM5Qt+TO6z6y5174igIq5y0OjCqFNeXNZB1Rh/f0aqT8Mk3M1WK+a5v8N1btZQPMEIYpGJJLi6cMC+ghBQAoiPNNoohUnYPVw52San32OTuwsim+K2aLsQS3trE+rwsjUl1o+xEAoBTDBvwP9qG/mrIhxXxki0OvP6Sh/LElwYXTQeou7Qj9WsYg84tIVXnwoS5v1T5pfCZtyOs1pLIQm1CGVFBEyjNm1Qg1+qP9GqDG6SMFwFVLwQd9fh4QTZR1NzI3Po1mvBKVImPNv0ihCUkvA9sB8Yw45lqUIS//Fv2JqkjrdBiFKiKVUTNeNQaV2uc5+E615nUPvWas1D4IKeSYDiL12QGNogFEqij6whgqpw9HXzcgxVNJn0dGpAL2hbIJ7fk6zGEts8bMqRKR2scXaeD9moiUJNm7EtYC+xElFx2bcuvPRu2NA+AjOuqH+0eZkmDPHZ8aqSwiUimm9oX2B5MRqWdrvqU9cg8wdy9Cf97IvUZKOgucfc3sH1qKolIYIk6KbowIOg9KGawJI8yURlhEE3TqI9WhVCoVnH766ahWqzBNE+973/vwrne9K+9hpcOcSJcym/CGhy16TVELMTCCxuCtWXD+TKm7AM5HrtlUm0QERaTq4n4HpugFqvZZ/5F1al+Mvjh+qNS+pdml9nH5mTEjUmpjSxSRcopNxEufcnqu/e5akBEia6S056MlqZPCnY09R+MfXIXH0LBkfB0/iBA74aM6aof2onjvHHp+tROV9w2rDZZl3YxXjsERkWJb6yg8XIX+SAX6c3XXz1NFRb2D38LqvKm1JizqEDvttBl6/UVH7NS+iO+xaB20pgzXQUvfWBPKbmuK8Q5fORMckbLWusW6nY5UNsGL8ea3n/BM4rFJw6fViJQ0xFpIe+XDOmqvD6/piv9ZjT3wAIj06AlDpBE2Gz3zu16KYhMsJGXTXFEALwLac3UR7fd899oL1h6wWwGsXwPG/d8Xi5qVUdCCRLwWktoHwO41V4PqjRgG82tb4iXAOaDWOvm7umjcHCw20b2pfV045PiUSiVcc801GBgYwOzsLN761rfihBNOwPBwtHev02mlyD1V1T5DGhitf5QiKJdWRtezFJuQC6DXxoyILAWm1rVLta/Z1L45b2pfBobUrJXa4V2Mg/pIJWm6rGqk7M+ILTEdldoXFJEa1sA120hO1ZBybICxo1FAoOBEnNTS6lsHoT9TQ+GxKoy751A/QniotQl3/VxWyPunbayh/x8m1evmiIb6gdEpbU1dM0aNFGq8KQeIHZHyS+1LXiMV+7p+NVKcQ3tZ9BuKI2HPhzRoWwzxTFifp9L6vMqHHYq6tz6qfVwD+ABzC4LEPQ5UeWv1UYDj0Jmv2ETq6Ax8UBNnCochwXYI6XMj5TVEZTekEZEK26N1BnOVaIrNthjgnj5sKiK1W8E2FCu8KQO398c7wHYYKP/dSNPGuq3mGJCC6XQglKK/kzg1nYFGbdknM6TISGyi22CMYWBAeFyq1So45zDNfIsB06JZoQkgvC4iMSoNK73JH9i4TT5oGZr/QTVSkSk5AXVdna7ap9LuBjXhjZ5OYWPyMuOf2hcYkUowp7jVjLIZsQnbcx3QN0d9d54faG4J6FT76vRoalxx66OAgEM0EC+1tIehcuoQuAaUbpoG21IXDpIJQ8ijZz13SwzmqGjoaa7QUX1dP8ofXYLyxSOovXkwVU+285qAz9yTcA7U0ZRCaHhEynotQ0PK2UdKNhs1dynEOpz5pfdpqj4qTW9ZhvhFpOoc2jQXz63VyBtIYNBI4ZkWnwV7brS2zjJnf54OgS+yeuA5nVpZpQc7DIJWidrbleDEJk8oxRQtAXgPAx/VQ9tQxEF7vg5t3ATb0nymkKoDDIhIJTZAY+ylQemqKu3S2TuyyELEJqz/yNJRnhG5GlL33nsvPvjBD+Koo47C2NgYbrvttob3/PSnP8Vxxx2H9evX493vfjcefPDBRNeYm5vD2972Nrz2ta/Fueeei8WLF6c0+nxpqX+NzsAHmdgsw6Sf4yC98ml6EQKKElkGRlsDQfLnUZEluU94DZl2q/Ylbshrp4jwAU0cLBOmB0YRJDYRGJFSqX0xPtvPwzvHRW1LxO9Hik2EfHfc0f9MGnNpYe5eAB9kyQ6uvT6HR8Q35M1VRdTe0A9WA3qu2wk2boCZAB9tzxZR/vASzH5iBOW/HUHt+AEhRJNlGllUjZQB0YKhibXGLr72T+3jBWRzWPAxptlL8YQmJA1NeWdNaC/WYS7WwEe6w+/q91x7+y7xpOp5KdVv+K5XzdCq2EQG+PWSkvVRqUe1dUupNAWxiShnkxKc8PSTYlsNsJoVjdIcqYvNGFImV2u3TGluBpW+6lcjBSQ2QONkdwSlq/oa+0Wr/tevT2c7zncZkWtq3+zsLMbGxnDSSSfhwgsvbPj5zTffjMsvvxyXXXYZDj74YFxzzTU477zzcMstt2BkZAQAcOKJJ/p+9vXXXw9d19Hb24t///d/x8TEBC688EKccMIJWLp0aVPj1VrIjW72WkHX1OQmPaw1NS4+rEObrkObQ/MNL+EQZSix9O5PyUr1qQPc8ZmaYf13MZ1r+d1jZj0Rmum+tupt1BNwbU3k/7Ka5/OsDVjr1Vyflzry+vVk81QeJNiALozybQb0WQ6+JJ0NWtOYWmBZv3uuMnnwq3L3mK17rfXEuGdDttqg/Aw2ZwK9DJoe/jcwKxddq8H3Opo1DlZqfMb4Eg34i/XzIT3VtaF61iKgLuZMFOq61iauVbh73lqODtYbvU4Yxw3AeLIG/S819PxqJwCALy20Z90b0oEhoG0rrIxa1Lj/32fYm3rUWtyANSe1ss9nz4m0nyzuKeu3PeLy83Xp3V4R83u0UoL0nSI9S/tL3aqPKkU+T82S+P5GISMDFfs+yN5YfLH1rFr3SivzeOuy9JYHrf8xYQO2Aef3OWzCEOtwhONDk2vqoAYWYzyp32M/ZKPyKTu1TwrWYFn66wjvZ9AmTRENaOU7sQypoDWS7ykcWvpzNdfP9RctI3E38bfJ50+vcJhJx+MwvvTn6zAPb+LvMTnYlAk+yKCVAp5VOe8riHXPNOmMCFmz2ID/eqdV7Guq1615rRloMJiY2m/9r9WWOdwkuRpSxxxzDI455pjAn1999dV4z3veg5NPPhkAcNlll+H222/HDTfcgHPPPRcAcOONN8a61sjICPbbbz/ce++9+Ou//uvEYy0UNIyO+kl7ZcuSJf7FoFWjijqAgeX9KDQxrrmlO2G+UMcSrRfaaPMpG+ZcFXMAigMFDKV0f6qLqqhjFoOlHtffZmwpowKgZ6CI4RS/C+c9rg3WUMMsBns9137ZuvZwKfDas6VtgMFd82TO2AETwJIVg2AhHe/TYLa4FTCQaJ7OVsaBAjCyfBDVJTMwNtawuNALbTS9BpnVmTIAYHCXfhRG7XttjGqoYAp9WgElx5jLfDs4gCW7DIINRd+z2dI2aLPivvM6R7kGsMV65H2ojdRRwwwG9BKKPu+t94iAa++ixu+8umsV9fvETjG06wD00daVr1qhb0mPmLd6yTVvK5iBAWB42QD0GN+peX4v5i55Hrol99u3qi/VZ61T4HWOMrZBN5nvPOE76igDKPTqGLTWh6C1uOF3F1mfXXY/i7xmomwAbKCQyV7CiwbKmEChztRaXNlehgFgcN8h6KON/bS81FYaqGEWA0YBxdFBVJ+fQx1A/yFDTe0zSYh7f+MwW9wGrWqvxfWnpsWzvKIXw6ODqC0zxLPPir7PvhfTqGEO4ygMFDDYwn3gPdZ3VGEN+6W5uYq5r21G4bXDKJ0e7uwtVyfBAYzsPgQWdGj2Ic177KW2so4ayhisF9Q9reychgFgaM0g9NF0ax3LQ9vBJ6sY6esHG2x+b50zd8IEsHiXAf+z0ChQXrod2st1jPT1gfWLa1XHK+LZ2G8QhSUDqPaJfW642AN9NNl9FvNLUHrBaGrN5VOGWF9Gi4HrS3WkijrKGNJKsZ7nmlZHDUD/aF/gc2JqdcxhAsWqe07XdFP87kiv+t25vh0wYWBksB9skdv8qDBrrxrtD50rWc7hZulYsYlqtYpHHnkE559/vnpN0zQceeSRuP/++2N9xsTEBAqFAoaHhzE9PY177rmnadW+et3E1FS5qd9tBk1jWLJkAJOTMzC9vWEAFLfMoQBgJ6vCHJ9O/PnFXo4CgB3P7oTZ1/yhmW2toRdADSZmmhiHH4V6DUUA05NlGOMOD8d4BT0AKoaB6RSu5XePC9WquPbUHIxxhxT0VuvaqAdeu1cHUOYYd/y8Z7YODcDEzCxQy9aT0qsDqJqu64fCOXpnDKBPw8TEDIolU8yJ56dhDoXImSVA0xj6Le/pTqMCc9yey1qlih4Ac1M17HTes7Ih7tn0LFCNvmc9A8IzOb5lJzDH0QfAKCHyPuhGDSUAs5NzqI83bsT6eBklAGWj7hofAOg9hiqd2mFWwMebz2tvBTmHZ3kdRQAz43OoO+ZtaWcNOoAd5TL4eIzvlAH6SYMo/XQKADDTb8BI6bnuNHp1gM/5Py9swhDrGjNRnpwJXYt9P7uXgU8b7s/eaYq5WeTxn9Ek1K2577huz6YyNAA7+mvgMa6p6TX0ACi/WMbUeAE9j8xAAzC13Iz1+80Qtdc1Q28JQNn+bgvPz6AIYLbHwM7xaeiwnv2tc6jH+LvYy3U1H1ra50yOXgaYU/WGOVD4n2kUDaCyqdyw3njp3VkHCsDEztlYl83iHnvRC3VxT18oq/W054UKNADbC1WhaJcipRKHDmDy+Z3gS5s/ypZm6tABbC+Xwce93eEFxd11FLbVsf3+7TDHxHmp9PQsdABTiwywyRkMWJHQnVvLMMaT3WP2gjhHAYCxuYrxl3YmTnFjm8Vn1AeC974CxD4xvdV9tgqiMD4n9hWzGrwP1MS6U/fM6cK2svhdXlO/W9JM8Z29PANed++5pVlrr5qdA/eZK+2Yw16Gh/tQjKHq2bGG1OTkJAzDaEjDGx0dxaZNm2J9xvj4OC6++GIYhgHOOU499VTst99+TY+pXV+e95q+17WEIswB1tS4TCkpvN1s6e/SrEJ9s5De/TGt+gFecf/tzCE2keZ34bzHprW28Lrn2lYBt1kMvt+8CGjTgFk37bB5hYMzwNR4Y91VyvACgzbDYRpmvPqSmiWh3yf+JlP2Q9rZ2pxowDKkzB7PvZM1TBXP9azvOe494/0aMGnCnDFdzRWj/gZmXZ/P+f+9Mq3BLDbON+ZU1xtgjY1w24yUPOdlz99SlfMW4DHHaB7UA/ZULwp/nEN990Ls3+s6igyo+q+vUoDEudYErsU+8H4GbcKEWTVtIZiylQoUY242hSbWICbnM+dgLxvgJcAYjjlH5b4wZcKcMqC9ZMAc0WAs0jKf40nubxS8x1oLa6aoe520noNhDabJVVoxZuKtdZrsTRey/sfGagbs/RzNasIdOSbOgTIHH9ASjyXNe9zAsDXPtxviGiYHGzfA+xnM3vTXSFl7w2dMmCMtfLa1zhtFBI7RWF1E4f4K2MYazH1LQmhicx28KDIrNJMrsYmGNTgGmqO+iBkAnq+p2qy4FP4ijEBzRA+8vimtNZ/554vsMxm2ZunWuuP5TK72fXsNleI9ZsUENz2RVCvF0tR56J6T6Rxuko41pILgnIPFLELed999ccMNN2Q8onxoRf4ccKgz7WzNk56JKl1QB2wlj5nepRoIaMgb1mtC4ZQgt8IVqllxO/J6pQfLQKwn21sMygfsw0WaBIlN8IAGfayWrF+LHDebNsEMqTIU43cD+s2ocYTMbdPqJcUZlAJYnvCAHkJKDCbh81k9aRDVtw5mr9iXI7zIAov+WxW24QMaMGGCzZrgVkpvHCnhVuG9mvibOAfbLhwLxqp4in2AQ9F1yoD+TJep9TlwCU70swY1s8AmokGkKBrk1wyYTRqq5iZSObXKhRBMB6w7TqTkthQ8YFMmWB0wVmaT0q6a8raqgFiJPsPIxrzas+KZYJPWs7Xa8Wz1B6zBccYgxUM0gJmAtrmezJDiHMW7RHJg/a+CM4wSNzKO2dye92lCBdopfe+j2uc82zWMoIvFJjpH8sXDkiVLoOs6tm3b5np9YmKiabGI+URqhlSrvaSS9PyJSVCPF7shb4YPmlzzvRtsjH5QatxO5bwKT7fHVhjSeIqrujfrPtjZ/W9SNqRmAvpIOQr+XVSRbD7Jcc+aifr0BDXutMcRvMHyJdZE6W+TkRyF6p3jUU6KcUjwhbF5bUQBAEohClItSvG6+hRJ2mBIoZeJv6nubMQb31/q3Bf0p4UVbqzpjv5RLjzPNvM0Kk16CFdrVBqGlI9ymv6YnVImDeHAsch1u4OkzwGHap91ppDS53Gbiie+njQkW5VAr5ii7UnIs26uLIAXLEU9k7v7R1kwpdqXfDxyLpirLIPtuWSp9drTNWhbDRirCzB3C35e1ZxJUbUPEM5MxuFWyiw3ztPA1jaAWnOpj1SKlEolrFu3Dnfeead6zTRN3HXXXTjkkEPyG1iHwKZNMUGb3ejTasqbRRM12ePFu5a0oSGvsUcRXAOKd5TBttp5uvEiUtZ7pSFlNStuuYljTJI25VWLpHXoU4ZU2r2kZk0hR+65D2pR9RoydZ5oPjnHrQyHBBGpIPlzFuaFLjFU39CP6hs6o/A1rI9U1CFhwRLWlLfe2rqmoqQ+/c0QQ42xWZzzQHvZkj5fnuAgW2Dg/cwypMQCbHahIaX63jgMKa7ZjscgyeZAlER2CmOTKdSOfksFK62P65ZxH+TcAVQUtWOa8UqK1tzZYQCcK+lzM6uG3mlFpOI0Wi4wmLsXwMocbJsB7Xnr2fAxpFqJSBn7SoXAZPVkxTtF/X7tyAjRo4QRqbg9Gf2+C1kO4ZY/t9Ynn7YTylnRhXtVrk/izMwMHnvsMTz22GMAgM2bN+Oxxx7D1q1bAQBnn302fvazn+GGG27A008/jUsvvRRzc3N4xzvekeew86fKwarNR6OA9CJSavKnudcGpHy1I7WPryig9jqrn87PdipvNYsRkbIPZta/29VDynP9uE15mbfz+GBWESkhR95Qt6WaojpeM0TaSpL5pA6ts2b8hR8A77Flkn2JSFutvX4A9Vflq9anCDCkWJXP/8hSk0gjqcFhgxTWNZ8mle1I7YOjKS97SRzGeIKIFCD2BlYHtK0GzKW6Sk3sKuTaUuFAnQvH47BmR497GThLEJFqNrLrhzciVTahPVMDH2AqncvZ1LYBH09/p2Au0sTzVOZ2M96MDCm/yF5iTOssFeN7NazvRt9Ud0SkHAtEKw15ZURqqQ5ziQZtqxE/arTdgP5oFXyAwVgfbuknvmcx1yzfJuRln73Ye0ZyUs/gLNkmcq2Revjhh3HmmWeqf3/xi18EAFxwwQW48MIL8aY3vQkTExO48sorsXXrVuy///646qqrVA+phUqraX3ydzlLISKlmqemn9oX2JA3Y49F7dh+6E9UoT9bR/F3s6gdP2B7CEM8VyoiVHMbX207yCZtyutp6igby8r5lQp1LqIifjLmusgJdxnM8r+bikiZtpc2QWpfYERKGu5dUCKiNivnJs6tex/UnHGhE9aUt9XUPp+IVNx6g1ZoOSIFIcigWY18uzKtD+60XbbTBON2XSMAq4EqS14jlcI+xz1Gtv5EFcwEavuV7J5GM2ZgE1tl/HVQM14JH9aBFw2wHabqIZV6M155LR9nRWLkcx5jjxZGbhnaszXoL9TBdcDcxf7bZB+pZhry2vVEDOaqIrTJCrTn6zD3id58CnfPgXGgelhf5HplG1JxI1LW8xFpSAU7jpy/G1S2IV4TEdmOSJVPSK6G1OGHH44nnngi9D1nnHEGzjjjjDaNqDtgO6Uh1cKE0xn4YGOBYOKxpJg7rpBrh/dha0NqHwBAZ6icMoy+b06geOssjLFSeJqXxJHaxwF7/G0ypKQhx2poLOT0wZvDrBbDNCNSc/YG0TgAUYfjDPPLpnxNpfbNctFJGemITTRj1OWGX0SqDjDexoholxG6qbea2qcOFn6pfVkaUvazoG2pg/cyVbsS+zOGdcgTZrcaUs60XbbdWhM8kTXep4nDfp1H7ilpiiop7721zhas+ihjXQ/0J6uun/mORWYSdJjYBGDXSWk7DDsi1cE1UkqdM0b6vbmH2OALj1bAZjiM3QrueaMiUs3USNlOTWNVAYUHK9Cfi2FI1TmK95TBGVA/PEafrh4mnJcJUvt4AdEGmk+qLCub4neda6hThMt7rRjPYafSeS4NIpI0IlKAlcJhwl0Q7bzOhIH+z29D4Z6Q/lkZFAgGHnDk4aYN5j8f1VF96yAYB3p+PqWM19Bcak/YOlY6YJr4iV2EoLyx0sgpMPBelmqNFAtQ7JPwEhMGiyyuriU3Xlze/yTpU0UI1b1maqQ6jQIDL3g2cYcUPOFDQOTb9VqTa43tlPBL7ctw27XmvfZiHaxmRaNiqtxKnBFMY+8uCMf6oCJzFd6g2Kfeo5T7Yqx3tfSeJTU3yhwwOPTHq+AFUR8TJ8qiDt2dViMFh+DEDhPaNkOs+1kZfEkV6PyIU/tswYd1kbpo7Y/O+iig1Rope580d7cEJzZHC07oD1XApjmMA0q2AFLohZgQpIljfHIOzPF4e6l33kqJfk/UNEipF4ClYhl9qU6k855EIpLUDClLcEILSO/Tn6iCzXBVdOw7lkzkz/1rF1gGCoFh1A/tRX1dCdq4XXgdtpHaYg/WPcni3oTAE6b2MU9qHyDmFKvy+Mp/UURt+iVL7UdGG5tIoXGqDapNNc5hVUbEmqyR6jh6mSutJJNncx6hUjb9NvWUxCZcYgZz8Q9tzSIPPdpGqxg+YX0UYBtS5i663Veqy7DTdk2l2OdK7YPDuRMjAp9mmrbTe6/9pQY2x2HsUwJKzM4yCUuvjnBO5YmKSG22DPnR5IZ87GvJNLW4giE+JHV2OiXJvYaUrLtrJrXPmWZv7lYEZ4AWQ3CieJclMpGgVpf3WXVsUeeEuiV8EiOFtKFGqgbhpPfO0SDnFedgdccZqsvozlVygZNmRAoA2JR/LylZUBkaBm4ighA5riCvRZtqpBSMoXLSEExHCmW42IT1a9Y4VUSjXREBR2pfLKSH3ClP6lfb4YC9VEfvtydVP40oGqJeHrinToU1UXDqVMFKWtDPezwRMSfdFJGCiHQI6Wu3Id8t4287oREp6z9alD9vt9iE/Gx9k2VIrUieViXrPur7dWc0CoArbVdT0ueeeyEdMHG882k+S465UXjUSus7QNxrv5RQLx1fIwWoHmRZ1UcBCSOKQcSofXZi7GEbTw0RKY0BPawl1T70ic/gy3VoO8zAsxkAaC/UoW+qw1ymw9wn/oZpS6CHj7NBjCrsMz3rXeDvKvlzzwdIm7Eb0uh96LwnkYhEGVItegujlPu0F8XsDt1oslDSKwUccNqY2qcY1FB915D97zgNeZVqn/X/7VocWk3tAyJ7SRUerEDfXEfp5pmY12iMermQOdPSaG7GMO+zFLhmzOQF/T1WRMxPuU1+f11iiKi/2drI2y520m0oh43Pz1pV7ctJbAK97gNNMxEpc+8iyn+zSIjsdClOIZnA1L4E8tksxbXc6b3XHxWy58b+1kKo1t+w1L7OrZEyZUQqa+lzQETwNASWJsQhqbNTRqS4BpgrGp8t3suEcWYmGxMrm+IMZZ0hjN3FdbTNwVGpgpQ8f1VvsqhfXOW+BDWdDQ2uA/Z9u47bc3+yaKPTRsiQ6kLYTmvSpRaR8nmgDA7tJWlIhSzqGUSkghrLtju1T2Ls14PK2wZQPbY/9FCq1Abr7oNsuyJSTaf2OdLgonpJySaf+l9q0DbFiEoljUhZB5ZEC6om8vDZjC1/HtfDGKrcV+Vio+4W9WfphZd1UhSRCoUHOWyAbMQm5BzLMCXLa6Q1Y0iBMZhrSl3rHQbgikh5m/FKbIMmnxopfWMN2qQJY1VBRXKiMgKAGM6pHGm4xxkJTQAQxkN/AuVFP5Km9u1WgDmswdyr6P989FqOOb904SBkLZLj+7Qb8wYYUrMmCvfPgZeA+l/FEJlwXi5mbVmSCLoauzVvWZDIVICQmK3IHHmpjqRLh72wST21b2fjQsS2GkpBLTwiZX1WmpuuZhXOB6T25ZFHW391f/SbvAZgm1X7VGpf3F5+jgJXCY/oJSUllQGg+N+zqJy5KPQS0REpa8xVS+lQpfYlu2d8QIM2YyinQOz6AceBiw+5f8SqXIwjoxz/tHFKX3MgXhPphUyIal+rqX0oMPAe5p/a15N9Q17AMhRaUXbtYpT8+Ry3m/EO+RtScZryZlEjJaNOMq0PiM4IAGDXSHVgRAq9DLxkO8QyjUhB7CvatGEJFSS/H4nrSAsM5Y8vAfQAx2CvBsAQa3Bc+6Yieic69yzbkPJ3Vhb+OAdWA2qH9yZO8YzbSyqROM6AO7oblNoXWLaRk5M8LTrPpUFEkrbYhF9ESn/BcRovB9SQIMOC9hJrSLfqdK8F96TW5abaF1MowhZmaKyR8i12rosmi+YggzmsQX+0CrYlwmqLo9oH2Atrk6mi6gCywxQFvzHvud1vxvP3ciG40U3RHG9qH0WkwokjNtHKxs77mVJmAyC8zhpsr2wWOA9jKwpd4wRIHek8KIs+UnxIa2jxYavntblGSkpQW9QPsJuo+qk9emFlLta4LFNEm4UxVy1aVtLnkpYFJ5rJGunTgvcX7xocA28bEkA8u7wA6JvrjWevGRPF/04uMiGJWyOVKLWvocl0gAM1KAtA7vskNkG0CzZt5dO26GkOS+3THIYUM+DfiRrILLeVF5j4bOci0q4+Us3iFXvIS7UvgSHFe5nrgBEWkWJbDeE5W1lA/ag+MA61oIddA0Cw10waMiq1r9mIlPU5HGLhj3uADErtMyBUh7rJCJH1MQ01UnkNqMMJEZuwN/bmP16JoFjPAJszxXzL0Lhxeo+TNuKdT8ion7bVEL3U/HppqUN4nBqpFNdyKyUNAMwRDdz5PZUYeDGG2IRn3e4k5L3mPUzVCmZ2rX73M5aUtKP2zqyA2GPwMzp0BnPXAliZg4075gLn6PnlTmg7TdRe0QO+sokFKm5qXwKxCRQYeMmOwAel9tmtbTzXakJkqpMgQ6rbqHNxAE5BlpYPaqJIP8SQUgtDwMJuN+RteThupCy2U7Sm0wsSPTVKuan2xUntM7lIZ/NGikJqpGR9lLlLAbXDe8F7GQp/mgtVFvLztjlRHl556G9Svccpr56kmJ87UvtcKA90omHkSsMm3u7512WENeRNox7T1XjV5GDVZHOzqWs6Pr+p+qh5gnquJyyhicWNRmWcnk2KqhUFSumWymsbB/Q0GNZ8UBNjMnzGZXCRBt2B0ucSKTiRpfS5Iq2IVFoOM+XMSjAenxR7ADCV4IRtdRTumkPhsSrMpTqqJ3py0WOiokdRY/RR9Q39XBmBN3mwERbkvKLUPqKdyEiB8na2gsbAhzSRKuhUmeEc2gt10STQytUN9PhIj07KUSKV2uVIu+ma1L6a+yDbtsXB28cqDLVIeuoGQiJS2hZLiWm5DvRqqB3RC2YAhf8NiUpFiE2ohVVGpJo0lp1prs0YUt6IVDf2YFJ/t5Wm2I1/Q1tR9Xk+P0uj1YKqG0jYKLoVXIbUwo1IyfvArK/RLyLVoDQWgqiXRGpRILl/1w9o9NSERlk6uBmvRAlnZFwfBcDd3LgJWEL588jxyH2uiYiUN2tDnr10S3CCvVhH6T+mwXWgcupQ02OOq1apHHIxG4g7521gbbTPuQ4ApfYR7SUt6XMJH9ZECpMjJ5ttF41NzRUFQB6sgzabGsB1BBZfNo2f56LTU/uUap/4Z7sjUsr4jGFI+dVHAQhVjVIRKcvTXX91H7gOFP8wZxtMAdcJ2vjVvWkwPiP/BPfnOAuvYy78AOzDdEBEqquMEOmFL7vvJdVIBRAakWquVs+Js94l6aGkaXSmxryQI1IowFWHZPoZUvKQFzMileZaUH1DP6rH9wv1N++4QtZgFXnp4IgUX2JFpJa1wZBKkJ7pS9p7dEupfZ6IlBSc2FwDqhy9/zIFVgeqbxxQ0apmiN1HKqnzx9mUN+B3eUBEilL7iLYiFfZaFZqQSINMc6RnybQ+c2XBUUTo/9CxlDcYRcnnkFOz0is61dHqlR9v92E8QUNeFpBOYMuf+xlSjogUhOex/opesAoXxpQf0sAKWoy9hkyTstNZRaS6yQjxpvZRH6lwgjZ1AKmJTQDiYNGOZrwSY98SjH2KKiK2IGHM5bFvaMYL2P3notLCDA5mpLsWmGtKqL1uwD/CFaLcJw2GTpQ+l9Q39KL6hn7UjkouhJAU5UBrUgI97TXSqRYZm6C9eFQH72XQnq+j9O/T0LYYqK8tot7qfY3dRypZ3ztnqqxfj0oA/uc6x787tmwjgs59GglfZO1KaoaUj+CEMqR2K0T3HKjzTMKxfkWJrM6FsdKhSlTe1L62q/Yl6SMVFHovMPBe1qgaJRX7hjVXCkLtNX3gDCjcUfb37Je5eH9QSoxS7bPe32yutDPileSwGlEj1VVGiIx2VNyGPNVIBRCm2ifbOrSwtnFnc9VKhEMhRSrvW4S59y/O/DqdjnPd9RWb0Jjo+xMVzWi3aFBIU95ObsarKDHUXj/QHkM+pnBCIGk7zOQanKBGKlCQSWMwdy+A1YDivXPggwyVdw+3nF6atI9U3DXL5TgKOl/olmKlJ52adXq2UQRkSHUZaUmfS0INKUdEytfjY3nqMlEF89TOABCpfZ38oAWp9rUttS9+jZS9eDeOjQ9owrBwfI5S7PPUXfBlBRjrStB2mijc54lKmSKliYXk86umqFX34T+x2ISjX04aYhMqItVFHrKGiFQ3GoNtJFRsIsWIFJwRKTJq20dPhCEFq0C+ykPXzHZHp0NT+zq4GW8etCp/nlWNVLLUvuAWIapGHRBGVBoiYzHruBL1kYJHvCVMqKLI7PVVUmt9vc0Tehq7DNuQSunB9zOkXqyDM2FIhXp8Mpz8qjbBVSOVTfQrNYJU+9ql/JZCah/g2Mgd6X1OxT4vtWNEs+Li72bBXvT0HwPCPZOePlJMpfZF/w2uMTtV+5Jsij3u6yukx6yLjBC7j5T1vbU7ItptFEOeF7nupCB/zmbaKDZBKOS95pq9zzW8RxokYd75dkek1IHUxzjo5Ga8OdCq2EQn10gBgDEmDg/V1/ap/24ZOcbI1L5ka5bLcRSS0s+LCBGbiHWpjoMMqS4jdbEJ2ZTXqr3CrAlt0hSKOz0stAu2PIBk4rX3Nm4zrehXBxcj5q7a10REys+z6afc51Ls82CuLqK+vgfaDhN9355E8bZZEa2UkZEkEakmjXOXimWCgn7Zb6YhIlXrQiPEG5GqtfcA2G00NIN2UrPECloR0XHWDLRLbIKwsQ7Hfs14Jc50pCDaHpGS669PC4rIvnwLDGV8tBqRSqtGqomGvEEKugBg7lXCzOdGUfvrwTSGJ9Cs9P1I1b6E6cie9Y6X4L9+lpg4yznk/VmTbU86BXoauwwlNpFS/rE3IqVZEQVzV+EaCBWbyNBTp4wSeY1uyKH19HFiVS68L21qnMiT1EjNhUWkGjdyr2Kfl8ppQ6i8ZQBgQOmWGfR+fzu054SlzRJEpNBsSl3JVitL5PUPasjbhWlx3NOQlyJSEYSITYh6zBZrERwpWu0UmyAEMsoQlNYHwHX4C6TN0ekw406JTVBECkDrESlW5WLfTEt12LsGxxlDlBJjBrVmvI8JI9IMHiebs84vMe+Na96WeXBKoJ/Dt8tT+7o0kLaAmUk3ImVaPR+UIfW8LTQBRKQ+ZKm04k276YY+A94FosLbVh8FIFFD3iD5c8CRNuqMSL0cHJESb2CoH90PY20JPb/YCf3ZOvRnd4qf9QfLLHojUq14pvigBjZpplsj1U1GSAlC1ZJqpOIhdz8/1b5a68+uu2YgmQIW0Tq2IRWy/sToJdX+Gilrz/WtkQp2gC1I4irQBZHyHt2QXh2DPOreeJ8GTFopx35GORd1Tklq8ZWIxaQJxoPnqO0kB9BjvShT+rvUIqGIVJfBdpoi5SSthXRAqKg0RKRWWjM6pJiTZelF8MhkdnozXsBeBFhNeHpYvc0H8ZDieS+hqX1eCfQAxT4/+PIC5j60GNXj+1Ufl/CIlPX/Lab2AY46qRTkz+2IVOJh5AdjQoVMekOrED3eOtn5kCeaiGIyb2oft57dVte1IgMvwSV/3g7VPsLCStsNi0jFak7aQap93dCQt63oDLwUQ3nRD5OD1VLeo5uokULZFOt0O8sWItraoArRXzTJXmpF4LUJ4XQNNPZ9MgGaVuvtEDr4WEr4wZfqIiqTlgS4xsCHNGFImRy6pdhnyNS+sNB5hmIKDWIT3ZBDqyJSaLtiH5AwtS9UbMJdIyUV+8xdYjbw0hlqrxuAsV8JxTvm0HvkEBr0TuW1ZERIRqRaaIQqF/K4KkMAIuXPuyoiBeER1SbFs8wqnKJRUZRYo+MhxTRi3q+B7TDtlCwypNqGXFv8mvGq9zgK5INoe3Ra9rfq0oa87Yb3M7AdYs1LlEafxR6tWYZdktS+OS6+zza2dXHWvnOfxpysiQi6ckooQypA4MVPSEyJ+3TnvCZDqsuY+8BiIOW5xoc0aDtMsO0m2BYD5pBmy2wWLa+2r9hEhhEpr/x5N6T26VZqVY3nI5/dTGqf34Y86PaIalvC66OCMHcronZKCdpoCRj3N6TgrYVrYU4ZB/WAzXKYKxN0bC5YogIBqX3dZoi4ip1rnGSSI+BFy5vNuX2QaVI50vfzBzRo202w7dbhgsQm2oaxbxHmwzqMfUM8fbFqpNq8FugM6GPhDXkpIqXgfQzadgSnqQWQVZ9H3stELbtzTQmiJqLfZpvXabUvBM37Zmo6pXFmWP8O+l2HkJi8erNqvZ0CGVLdRgbCBVJwQn+yCmYCxm6OacGsRb3MGxeGDMOxDc1tuyC1D4wBBWusOUSkQms+PISn9tlF8kCM+qhW0Bh4wWkwN6+WVj+0D/VDE3Z9ZwzoYfMmIqUibDutPHXqWxROkYFxiCiUtYmzFL2jMuIh013auh4scMw1JZT/biT0PZ1YIwVYBvhWQ6xDjuuysikyDzo5M6Pd9GsADLAyB+9P8HtZ7dG9DGzK+vyIz1Y1b+2OVEdIoDelMqpbaoBhPaSARucp0PViE+TWIGxD6gkRNVD1UfLnfZrwMnj6rbAsxSaU18L6dzek9gHi8FUDmBWAaetBnFlGSRz587ngDdlbIxWl2NcyPczuI1Xjbf+OeclqyulQMOreiJS7nUHXGYJthntqMcV/W/+fxjz0KGBSal9nkaxGqg0DsvBtysu5UEOjKLML1cJlhxHxTjdZRqSAmEqCsxFGR0YoB0JACmKzKqNONcmg6Dv3CokB6nzX0RlHIdATSdiG1FOWIbWr15AK8F5kedhskD/vgtQ+WOOrcztVrN0HWcuQCyViQ/b2kco0IgXLkKlBGDI13v5eYT0+h+k8UjPTwNr4NNlgmwypcGQUyukdTVFBqiEFiwypjiJOH6k8otO+TXkrXAgAkPS5C3NE7EvaeELlvrSb8Vok6SWlDJk2p2oqB0KQsdekOqRzvYuMSLnEJigiRXQ5qpeUdQBvNKQCJNBbEAaIHJNH2cV+0NK/VqoUhdqNKtZs80GWFxAtNlGz8piDDnUFBt7DhBc9gWJf08jFs5KSWlpC/CTQlbesywwR5Q3dYc0/SiULpaGJNtLd1F0e2hJrW085Ih7q4BcSkcojOu2n3MdIsc8XbhlSUuQgLmq9Tz21z7/Ju+8YcpKzV9eLTO1rPiIVJIiixMl8xSYSXa5joCeScPWk4j0MfMQzLQIiUtnKn1v/71Xt6/CIlBJ8mG3/5gtA1HwYCG+0F2Px5oOibkh7qQ5mAjyuYl8TKENmNievlJ8EepfWSClDSkakutTD1zY8fcwApJpG7GycTml9HUicPkS51EhZ13Kk9snoFPWQcmOOimdMS2hIZdWwnCeQQM+jhxQAu0YqwIFgp/YlHJcrIhXekNdvze26DBALMqQI8GH7kGyu1Bu8pjyo50CGdUAqhU8ZUl2S2ld0b4BtjwjI+xO2p8RYvOUBUHtGhGYyq48C7MOsvGedEJHq0hop5Q2dslTiKCIVjopIOV5LUSHU5aElQ6rz0Bh4X3gfonwjUg4DT63bNI+cqIjUeMKIVEbfq/p+4jTlzUlswjd11EkKEamgvynrLIA8IEOKEGlb8r93bcydC8qnbUdDXplixbol9CtrLmbzqVHhMZT7QqXP5edYG7muDKkMI1IeQ6rd6Zu+TXmrXEjZd3oqqQdlFFKNVCy4j4KUEmtJSf5c/TcZUh0J77NUO42ANTOP6LRfap809ii1zwUf1sALLUSkMlDtA2JGpGaj9+IsMCOMz2b6SAEe52zQ3+QVEgPscoTsjhmZQk8kAfQz0SsKgLlr40xWHhav9yJDQ6rhgNNNqn2wN8C2p4apXlKtpvZZhtRf2hiRms43ta8hIlVEW5skpkFDjRQZUuE4epoo5AafRvQ7hoeWyBdVcxRQeJ9PRMrjXEJ+9TQdj8bAl+hiz40TBbLIqkZKKacmEJtoe93bgIjEatsM3zKAplX7BpzrXXhqn1f+nBfQtTWkZEgRYiGyDs5eoQkASmSgIbUvQ7GJhgNOt6T2FTwbYA41UgBsw9MHu89DWGqf26tmZlkjJb/r2XxT+xpqpLrRCJGGlCV/Tn2LwlFrl0+aSRrz0BmRQg9tt52ISl33aYALINMU9iD8UvuoGW8w5qil3DeRQLkvq0hjAtW+ZtXxWoYxmEt1sJrtdHPRTB8puM8UQX+TV0hM/Dc630keAj2RBADAOKAEY7eCb+TBblroSe3L0lPnSVHrioa8gCO1L5+IVJzUvjh52c4DoDmkZZtOIu+RPDS021j2RqQMDmZ0ZzRHRaSsW9mNf0Nb8S18TjG1r59S+zqegQBHoUUuESlVw+IYE0WkAmlGuU99rxnJn7MY0TE153JYG6RzlG1tvGfNRqQQpybUx3mFOu94J3kYnX4sJdpE9e1DgT8L7CNlpcBkEkHQrOay8mFLs0lmljREpNp8fXkwrHMEmVJxaqQw6DgAZlgfBTgiUtM5ScZ7I1LdKjQBNHoQ2z3/ugy7Ia/jxRTFJlBi4EXL40qGVEei9regwntZL9nG05Jvap+qpyH/txel3DduhOosucioRipRH6m8VPsA8GUFABVoWw2Yaz0/bLZGynJK8B4WmKbX0ATdtByXXVaP7ISeSCKSoD5SmSutFJlKq+jW1L7cVPvCUvsSqPYBGddHAeqwb8ufZ3u5xuu7+36kmdrVbrwbH0WkIvBLM0m5HlNGFygi1Zmo6E9QRKpipfm2s16yR9Qt+9ZIUUPeBpqKSFUycpglqZHKMcpoLrPSIbc2Hhaa7iNlnSlC/x6VBWD9u1ta24RAhhQRTVBEKmM1I15kwmvBedel9imjM6/UvrCmvDH7SEmyVOwDGiNS7V5QG+TPuzgi1XBYpxqpcOR37Cl8BpDaPFReWjKkOhK1DvrVSHEuCuHbvRYwJubNLFdiANSQNxhVI5VAAl2m9mUVkYpjSKFsRTtzWKfNpdKQ8kntK/PQqFIQfIiBa3D1Jm14j1f+vIsdl5JOP5YSHUAu8ucAUGJgHKInkkwj7HCvhSqkzKtGxcfD7iWJ/DnQjoiUJ4rX7nvmSe1jORSXp4ZnQ+7Kv6GN+PU0SV1ER0YQkja3JNpDWETKEGt5Hs8RH2DQpiBSxPqZUs2lGqlGmolIITPVviSpfabYh3NQq+NLdXDmUyNlcqDCwYebWK96NFTOWgRzUcjves4o9jky+eU6BVrZiWhKANfQKA+b8QOgDjJVnmpvl0zxGno5yZ+nmtqXoWIf4IhIzWRsmAddfx5FpKAztwHQjX9DO5HiMJTat2BRYkp+NVIq66KdI7LwKPexWSt6QfOokSKDOayBTZrB/cA8sKwyauR+EiU2YXCwao7rQoGBL9Gg7TDdEfkqFw7sJsdljJXAV4Q4X+Wz5FFkptQ+Yn7DGNDHfMUmuI7svClOz0W3PGye9aMjVfvmYng2iwzmLjqMXQvZN4D0GDK8zXFyldpRdRtS3RrNcfbvaHuNXpfB25DaZ+5eANeyT5ElmsNXIc8iq15DcVDjmnGk9vXmE73oBviIBmYCbHtMCfSsaqR0Bl6KkdqXo9CExFwmNlttmx2ValqxLyaNqX2e17sQSu0jYsH7NGgzhpj8TsngLA+bTkUty0vcLal9ik5syDsbLy+7/KHFKQ4smAaDJafUPq/YRNdGc3oZsNP67y7enNqCctY4XpPCNilFv2uv6UPtiF7qI9Wh2O09QiJSOTxHSrlv1gTqHKzKYY7QHArCHNWhb6yDTRjgo9FOC1bl4hnPwDDlvZqo+eU8UKREzbccUzX5Mh14AmBb6oDsIRqjz2RLeMQmuqb+PQR6KolY+Eqg13imG4zTc9E1ebQOQ48XAOj51EhFNuSN49ns09ojtes1WPJuyJtnOk8KOD2JFJEKx69GKvXaT8bIiOpg1IHRLyKVo1PF1ZSXhCYikXVSsQUnKjy7SGMPE3XSteC35Cl9LrGV+xwRqax7W+kQjtx5JDZBTyURC5UGJjcbg4uFIsvJ74x8dU1qn2N8eWy+Ual9Bger8I6q1/BGpNq+oHojUt1cIwW4N8Bu/RvaRcmxxki6JPpNpERYH6kc1wLbkOK5ymR3C2YSwQmDg9UzVByO0ZTXNqTy+06VIeVK7Wuuh1RsGAOKzCE2Yb3exestGVJEPLzKRm3w2nNnB+wuOdw404FyqbGJSu3LOmzfDA0RqTZfvyB6tqBibXo5pvOkgdwAuY72R0S7DecaY9E10W8iHXQG3stCa6TyiOzK1D7MmNSMNwY8iQR6RtLnaizSCAnoTSZ+lr9xzC1DyqXcl3GNFAAhOOEVm+jS/RYgQ4qIiTe1L3Ppc8D2Fte6SLWvmHM0ICK1L470ebvJPSIFiFSMeRKR4jKNjNL6IgmTP+9mDymRDN5vPf9exbdqfoc8Z2ofNeONxo5IRYtNZC4iEqMpr70X53cM50MaeA8TqX3c2v9UM97sxsWLTKijmjz9dhM5QIYUEYuGXlIyHNuOGqkqt6/X6YcbZ41Unql9AREpFkexr93kXCMFCM8kq0Es7F2u2idT+7p2/O1EpfY5XpPR7y72kBLJUBF6b6/EHHvKuVP7qEYqkkGhlqeN20ZBIJVs1/g4TXk7Il2TMZjLdLAqB5uynOTtiEgpBxal9hELCPWwS7GJWhsOm7JGqg6gbinNdfiMdXlV8ogIyNS+oCLXWblIdtCNLFjFpxZ5RaQAABVuH6q71BBRG2CXjr+t6Ez0yMtSbILofIJ6SeWp4ClV+2ZMasYbB8bAR3QRbfJJ03S9NeusA9WUNyQ61gE1UoBPel/WNVLwZAJQah+xYFCpfR6J6Cy9CI6IFKtzIY8ZICXaMeQckbJT+wIiUh0gudoAY+4NLYcQv2oKXOn+iBSniFQyHIXPABzCNvkMh2g/Qb2kcq2RUmOiGqm4mLJOKkpwok01Up2e2gc0KvfZqX3tKdug1D5iwdCQ2tcOsQlnB+wausNj0SmqfYGpfTJFpLPupevQn1NqHwArItXdNVJqA6QaqVjwEvM05EW2jcaJjiOwl1Sea0GBiZTjaWdqH83JMKQEOosQnMi6RkpFmTo9tQ+OprweQyrLrBVlNFUd9e+U2kfMd7ypfW1Jf/HIn3e6Yh/QAap9fg1GHagNuZNS+wDXQSXP1D5W5e1JW80Q+d126/jbThFgBpTQgIh+071bSChHoTcilbOCJx8QIhhsZ2ccujud2BGpjGukkohN5K2ga6rUPqs4tI01Ukw6yR2vdSMddpoiOpaGiJT1ejvEJipWz6puSLXJPSIVntrXCZKrfrgimxSRagn1t3TxxtRWSp5npsY7Xx2USBUpNa494/FAqbWgzQOyUIITVoSFxCbCsSNS4cp9ao3PMbWvY2qklurgzBmRakP6v1xza1w55bvBUR4EPZVELILkzzP1ess82tnuCf06PZf59JES/xfUR6oT5c8BuDe0PAxmSzLcWSPVrYaUubqA+r5F1Df05D2UrsBWBwVgWo06yQhdUBgH9oAPMBT/vzkU/ndWvc4yrqWJQhpS2jYrWkCpfaGYo9b9yjkixWOITag00iwjP3EoMvDFGth2Uxg2bYhISaOJVeEQm8jscplDhhQRC5VDPuvw2gLtSe2TUZRuONx0iGqfqy+Og05JJ/Aiv1teRC6CIlzaHI6IVJb1f5nSq6Fy3mIYB5AhFQtn4bM8f3WB04ZID75Yx9z7FoEXgNJNM9AfqYgf5OxUkZEyJcPeYet2p8EXi+hK3jVSiCk2wXtYRzRNN5fqYBxg2wygbCkkt8FJjrqd2tcV57sA6Kkk4lGyZILbKTZhGSUqitINHguXal/7L68Wo4CGvCq1L28vmBe5sOa1mPpFpLp4YSfi4+5Xl29NDJEf5h5FVE4ZBgD0XDcF7bmaw6mS03xwpPLxAmhNiqJgRVemzOD0diBzZVYeVSNlcqDCc0/rk3CH4ASb48LAzFBsh8QmiIUJY0Afs1P72jH5ZURK9vbohgdNc/RE6sTUPrmwd1iuvUydya2oW4pNWBEpXgCpti0UHIXPjKTPFzTG+h5U3zQAVgN6/s8OsEkrspGb2ITDkOqwNbtT4SNWdGUyOCrVrhqpQNW+OQ7G86+Pkpi7WCIdW+pgFZ69o9UlNtFFjvIA6MkkYsP7NNEct8aV2ESWnjp1qJZNZLvBkGJMLQj51EjJ1D7/H9uqfR12L3OPSNliE6jyrq2PIpLT0GYBIM//AqZ+dB9qR/RCm+bQLNGCvCJSMrUPQOfVtXYopiU4oYWk92XeH0ym9lX8a6Q6pYeURPWS2mylsmR8PuAOsQmQ2ASxkHAKTrRF/rxkXw9A93iJ5YKQx+arWxGxkIa8HZki4qyRygFXRKpG0uELCmebhXmwqRMtwhiqbxtEfT9HbnZuhhRFpJLCLQl0NhGi3CdrpLL6XnUGXgxO7euUHlISvlTcM/054UnKvBZPrbkQznnHa90IPZlEbOxeUu2pI+Eq/IvMr5Um8hCWy2GcMaAQkNrHuSgk7RAvmJO8Jbvld8Wmrc2XDKmFg5xzNcdz08VpJkQK6AyV04Zh7FmAsaqQW1q5y5DqkEN3p2OOWMp9YRGpNqgx8l5NpPZxn71YKuN1yF7MF2ngJYBNtyljRa25vD3CZRnTLT5+ohNw9JKy5c8zvJ7nMNs1XmK5IOQkmYsC80/tmxP9uHgnSuh2SGqfanxJhtSCgTtU+/g82NSJlOhhmPvg4lyH4EztI0MqHnZEKkS5L+uIFAD0MrCdEMJPHseMUj/ulO+UMZhLC9BfaFNqn7wfNa6yZ3gXWyOdYQ4TXYGrl1Q7DhzeB6tbHjRZI5VXdKXAfFP7ZG8Nc4ne7iFFIg+zuYtN7KSI1ILDpdon/rNrnDZEtjCWSzsGiTMi1WkCQZ1Kshqp7O5pWFPeTkvtAwC+zD4XZB6Rcjivui3jyA96MonYcEdESsmHZjn5Neb2UnTJ4UYdwvKKSBUBZgIw3As4m7QW75EOfOxVRCqn60tDapoiUgsNp9gEpfYRHUUvUyqwHZlJ0In0a+B9TESk/NLqAEdpQobjCGnK24n9HM02GlLelhOcAeg8/25sOudbJDoeu0bKtL0IWR84HYZat/R2qR0lVJ/4opweL2nIeRxyjCJSwdeXhlSZUrsWHD5SvBSRIjoCjQGWAdVJh+5OxxzRwWqODAMPrMqFAyXLXklhTXnnOi8i5TSk0NsmsQlZl1pArpHfVqEnk4iPTO2bbV/jStfnd0lqn7GhF9V3DOW2MHBnIacDzeqrwUc60JAaEksRH8xpSfJED/Nopkzkg+0dnR8KUsT8Qqb3ddKhu9ORexwbD1Duq/BM0/oAuykvyn6pfR1WI4U2p/a5xCbQ9estGVJEbKT8qlNsIvMHwBHxIi9xTAKa8qrUviWd99ibexQwd84i1I7rz2cAuieNlFL7Fg6lxohUtzhtiPmPqpOiGqnYmKOWcp+f4ESdgxnIfo0Pq5Ga7cTUPnvRyzy1z3JUMktsotvPdp3zLRIdjzO1r13dqF19hbrca9E25KJUd7/cyWITYAzGWCnfBoWOqBTVSC0gPPn6QPekERPzH75YrInmMB3X4mJHpHwMqTZInwPO1D6fqJgUm8g68pOEEoMpyxHaFZGylIS7vSaV/G5EfDxiE7yATHOMAbiNJ5qtsfBN7eMcbNIQCzd5Nn3hPQxspg2yuERHwR01UpTaR3Qa1TcNoH5QD/gK2gDjYloS6H4RKaakz7MdgzKSfFX7rNc6bC/my3Rgh5l5pEytubOWkdnl6y09mURsnPLnrF15rUVK7UuMI7VPLeEzHKwKGLt2YDSqQ+AUkVqYyANV1ZnaR98/0RnwYR3GAbRuJ4EvtSJSW3wiUm2QPgegBBt8U/tUQ97OWmeqx/WjsKwCc/eMTQOZTl2eH+I+ZEgRsbENKUuysg3CAK4DbZc/bG1D3idHU14lNNGB9VEdgzPVgwypBYMrgiubQ3Z5qglBLGT4IiGBrr1cB0zuypxh1fZkHUT1keJFdNyZxlxTQnVNG5SWdICz+aOSS6cqIj49DFwTvXaYifYcNp0PGB1uYqG8Ow6xCSl9zjuxPqpDcBntXb6wEwlwSvFK50OHHXAIgkgAYzBXFMDqPnVSba6RaugjxTlQ5h0lNNF2GHOd53iXh3QW8DdJJIYxoNeuI2mH15a7HjY63MTCumdO1T7NUuwzO7EZb6fgSPWg1L6Fg/qunal9ZEgTRFdjrrDqpF50G1KqRipjQypQta9qCSx0ktBEHhTnj+OSTlVEIlxelHZMfkrtS45Pah+bpIhUFJxS+xYmLrEJmbOf54AIgmgV0xLn0F7yyNfKGqmcUvtUXVD/wt5j5lPZBhlSRCJcxZFtMKQ4pfYlJiy1z+zAZrwdg0tsIsdxEO1FGk01ikgRxHzBXOlvSKkaqcxT+6zjtTciJQ2phZzaB7iFxLr8bLfAv0kiKU5Dqi3pT6TalxyfhryaasZLhlQQFJFaoGgMvGgdsKwzF/WRIojuxk7tyycipVL7yqYQvLBgsodUhyn2tRs+j1L7KIGBSEa7U/uK8yf82zbkPZP7h2n1kBpg2eeFdzMkf75wKTKgxsFI/pwg5gc9GswRDdqEKYwna31vV0QKBQZeYtAmTPR/aRz1tSUYYyV7jeld4HEMZxSqy9dbMqSIRDjzetsiNuFMsaLZGgsVubMWbDZtgtUBYwVFo8JwRaS63ENGJIMXmWrrAIDSiAliHmCuKECbqEJ7qQ5zD/FQs3ZFpABU3jmI4h/moG2soXhfBcX7GpOhNQAAHBBJREFUKupnFJGaP6l9dDQlEuF6+Nud2keH23h4UvvYBKX1xYIiUguXEgPjjkaZXe4hJQjCEpx41G1IoV2qfQCMg3thHNwLzJnQ/1yD/ngV+hNVaFNm9k1vO515JDaxwL9JIjGO1L52GDacUvuS40ntk4p9JH0eDtVILVzkOsNmrZ4v5LQhiK5H1Uk5BCdYm/pIuejVYBzYA+PAHtFHqsIptW8eOcnJkCIS0W7VPrfXIvvLzQekN13mYmskfR4LubFyDWS0LzRkCvGsrJHKbSQEQaSErdzn6CUlI1J5OcusfpwLnfkkNrHATWIiKW3vI1VwHG717n7Y2obMN/am9pH0eTjSQ0nRqIWHjEiZANcBaDQHCKLb4aM6eMFS7uPWfphHRIpopDh/nORkSBGJcMuft+F68hpd/qC1E+5pyKvJHlJL6HEPQ9ZFUX3UwoNSiAliHqIzmMsLYGUONmWl7bZRbIIIxnl+7PbUPjpZEclod2qfvAYdbuIjU/tkRIpS++JBEamFi+M773YFKYIgbLz9pNomf06EQ6l9xEKF5yQ20e0ei7biTO0zOdh2E+aQ1vWLVdbwAQ28xMAX07K40JhP+foEQdiYKzx1UhUOzkAtDnKGz6PUvi4fPtFu2i5/XqKIVFJUal8dYDtMMJPS+mJRZCh/bMmC7++xIJlHUrwEQdjYghOOiFSJCdEHIj9ItY9YsPQwcAYwjrZ4btUDRjM1Pg7VPpXWR0ITseCjdJ8WIs50vm7f1AmCsJERKfZSXUmP8wFyLObOPKpLpeMpkQyNiTqpWd6eA0c/Q/2AEsxVNFVjI29VnUObFAW2JhlSBBHMPEozIQjCwZAGPsigbTGAKhfKnFQflTsusbIud17RlkEkhvcxsFlu917JEo2h8r5FbbjQ/EEZuHWATUihCfLAEUQQLgWvLt/UCYJwY64oQP9zDdpmkd5HhlQH4Erty3EcKUCnKyIxUnCCd3k4dt7iTO2T0ucUkSKIYOZRvj5BEG5kep++yeoJQsqsucPnUV0qGVJEYsxVBfB+UjfrWHxS+0j6nCBCKFFqH0HMV5Ry37MUkeoYCvPHeUVbBpGY6omDqL55kFJgOhWdgWtQqX2cgYxeggiB5M8JYv5irhSORIpIdRCudOr8hpEGZEgRyWGs6yf+vKcAsDkO1Dj4Ig3QaeMgiECcqn1dnmZCEIQbc3lBqA3Pima8FJHKH1ddVJevueSmJoj5SIGBVTkYp7Q+goiCxCYIYh5TZOBLHfsgRaTyx1pnuYaud/SSIUUQ8xCnV90cocecIEKZRwpSBEE0Yq6wDSmKSOWPcl51eTQKWCCGVLlcxrHHHot/+Id/yHsoBNEenAdDikgRRCh8HjWHJAiiESk4AQAgQyp/5Jo7DxxXC8KQ+v73v4+DDjoo72EQRPtw1nyQ9DlBhEOpfQQxrzFX2oYUp9S+/CmIyCAf6H4zpPv/ggg2btyIZ555Bsccc0zeQyGItuFK7aNmvAQRjktsIr9hEASRDRSR6jAYw9y5izB32nDeI2mZXE9Y9957Lz74wQ/iqKOOwtjYGG677baG9/z0pz/Fcccdh/Xr1+Pd7343HnzwwUTX+OpXv4qPf/zjaQ2ZILoDx55BqX0EEQ7JnxPE/IYv0cBL1n+TIdURmHsUwVd2v+cq179gdnYWY2NjOOmkk3DhhRc2/Pzmm2/G5ZdfjssuuwwHH3wwrrnmGpx33nm45ZZbMDIyAgA48cQTfT/7+uuvx2233YY999wTe+21F/70pz9l+rcQREdRsBVx+CKKSBFEKJTaRxDzG43BXFGA/mydVPuIVMnVkDrmmGNCU+6uvvpqvOc978HJJ58MALjssstw++2344YbbsC5554LALjxxhsDf/+BBx7AzTffjN/85jeYmZlBvV7H8PAw/uZv/qap8Wpa+x4+ea12XnOhMa/vsZQWXaxBK+RnSM3re9wB0P1NCU00sWYmwErMdT/pHmcL3d/soXssMA/ogfZCHXxFIdV7Qfc3ezr5HndsTK1areKRRx7B+eefr17TNA1HHnkk7r///lifcdFFF+Giiy4CICJUzzzzTNNGVKGgYXR0sKnfbYUlSwbafs2Fxny8x5WBGRioorC8B4M5zFsv8/EedxJ0f1tntmcrUOYYXNKHwmjj/aR7nC10f7Nnod9j/s4B4CRgICNlzoV+f9tBJ97jjjWkJicnYRgGli5d6np9dHQUmzZtavt46nUTU1Pltl1P0xiWLBnA5OQMTJO37boLifl8j4tmHQUA1SGOmfHp3MYxn+9xJ0D3Nz16CwwMHDvnKjDH7XtJ9zhb6P5mD93jbKH7mz153OPh4T4Ui9E15h1rSAXBOQdjyb0JJ510UsvXzuMBMU1OD2bGzMd7zK1O4eYSrSP+tvl4jzsJur+tw4sAA2Dq/veS7nG20P3NHrrH2UL3N3s68R53bBX6kiVLoOs6tm3b5np9YmKiIUpFEISHkjSkSLGPIGIhC9BJbIIgCIKISccaUqVSCevWrcOdd96pXjNNE3fddRcOOeSQ/AZGEF1A7dBe1A7rhXFAKe+hEERXICXQeUb1EwRBEMT8I9fUvpmZGTz77LPq35s3b8Zjjz2GpUuXYtmyZTj77LNx8cUXY926dTjooINwzTXXYG5uDu94xztyHDVBdD58ZQHVk4fyHgZBdA28zzKgesmQIgiCIOKRqyH18MMP48wzz1T//uIXvwgAuOCCC3DhhRfiTW96EyYmJnDllVdi69at2H///XHVVVepHlIEQRAEkQbVNw3COLgOvpjSYQmCIIh45GpIHX744XjiiSdC33PGGWfgjDPOaNOICIIgiIUIX1lAfWXX6S8RBEEQOdKxNVIEQRAEQRAEQRCdChlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEARBEARBJIQMKYIgCIIgCIIgiISQIUUQBEEQBEEQBJEQMqQIgiAIgiAIgiASwjjnPO9BdAOmyWEYZluvWSzqqNWMtl5zoUH3OHvoHmcL3d/soXucLXR/s4fucbbQ/c2edt9jXdegaSzyfWRIEQRBEARBEARBJIRS+wiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCSFDiiAIgiAIgiAIIiFkSBEEQRAEQRAEQSSEDCmCIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIdSg//elPcdxxx2H9+vV497vfjQcffDDvIc0bfvCDH+Dkk0/Ghg0b8KpXvQoXXHABNm7cmPew5i2XXHIJxsbGcO211+Y9lHnFSy+9hIsuugiHHXYYDjnkEJx00kl4+umn8x7WvGF6ehqXXnopjj76aBx88MF4y1vegn/7t3/Le1hdy7333osPfvCDOOqoozA2NobbbrvN9fNKpYLLLrsMhx9+ODZs2IALL7wQ4+PjOY22Owm7x9u3b8cXvvAFnHDCCTjooINw7LHH4ktf+hKmp6dzHHF3ETWHJdVqFSeeeCLGxsbw5JNPtnmU3U2ce3zffffhve99Lw4++GAceuihOOuss9o/UAdkSHUgN998My6//HJ8+MMfxg033ICxsTGcd955mJiYyHto84J77rkHp59+On7xi1/g6quvRrVaxTnnnIO5ubm8hzbvuO2223D//fdjl112yXso84odO3bgtNNOQ6lUwlVXXYVf//rX+OhHP4qBgYG8hzZvuPzyy3HXXXfhH//xH3HTTTfh1FNPxac+9Sncc889eQ+tK5mdncXY2Bg+97nP+f78y1/+Mm677TZ885vfxE9+8hNs2bIFH/nIR9o8yu4m7B5v2bIFW7ZswSc+8QncdNNN+PKXv4z/+Z//wWc/+9kcRtqdRM1hyRVXXIFly5a1aVTzi6h7/Kc//Qnvf//7cfTRR+Nf//Vf8bOf/Qwnn3xym0fpgRMdxzvf+U7++c9/Xv3bMAx+1FFH8auuuirHUc1fxsfH+dq1a/kf//jHvIcyr9i6dSt/zWtewx9//HF+7LHH8p/85Cd5D2ne8PWvf52feuqpeQ9jXvPmN7+Zf//733e9dvzxx9M6nAJr167lt956q/r31NQUX7duHb/lllvUa3/+85/52rVr+YMPPpjHELse7z324+abb+br16/nhmG0aVTzh6D7e+edd/Ljjz+eP/nkk3zt2rX8iSeeyGF08wO/e/yud72LX3HFFfkMKACKSHUY1WoVjzzyCF796ler1zRNw5FHHon7778/v4HNY3bu3AkAWLRoUc4jmV986lOfwnvf+16MjY3lPZR5x6233ooDDzwQF154IV71qlfhpJNOwo033pj3sOYVGzZswO9+9zu8/PLL4Jzj97//PbZs2YIjjzwy76HNOx5++GHUajXXvrdmzRrsuuuutO9lyPT0NIaGhqBpdBRMg+3bt+PTn/40vvKVr6Cvry/v4cw7xsfH8cADD2BkZATvec97cOSRR+J973sfHnrooVzHRU9PhzE5OQnDMLB06VLX66Ojo9i6dWtOo5q/cM5x+eWX47DDDsOaNWvyHs684dprr8Xs7CzOOeecvIcyL3nuuefwL//yL1izZg1+/OMf4+STT8ZnPvMZ/O53v8t7aPOGv//7v8fq1avxmte8BgceeCAuuOACXH755dh///3zHtq8Y9u2bejt7cXg4KDr9dHRUWzbti2nUc1vJicn8d3vfhennHJK3kOZN3zuc5/D2972NmzYsCHvocxLnnvuOQDAd77zHZxyyin40Y9+hD333BNnnnkmXn755dzGVcjtykQiOOdgjOU9jHnH5z//eTz55JO47rrr8h7KvOHpp5/Gd7/7XfziF78gT2dGcM6xfv16fOxjHwMA7L///nj44Ydx3XXX4XWve12+g5snXHvttXjsscfwwx/+EMuXL8ddd92FT3/601ixYgUOOeSQvIc37/Db3zjnOYxk/jM9PY0PfOAD2HfffXH++efnPZx5wQ033IDNmzfjG9/4Rt5DmbeYpgkAOOWUU/COd7wDgBCzuvPOO3HjjTfib/7mb3IZFxlSHcaSJUug63qDF25iYqIhSkW0xhe+8AXceuutuPbaa7F8+fK8hzNveOCBBzAxMYHjjz9evWYYBr70pS/h2muvxS233JLj6OYHS5cuxd577+16bc2aNaTumRJzc3O44oor8L3vfQ9HH300AGC//fbDgw8+iGuuuYYMqZRZunQpyuUypqenXVEp2vfSZ3p6Gueddx76+/vx7W9/G4UCHQPT4O6778Zjjz2Ggw8+2PX629/+drzzne/E5z//+ZxGNn+QAh7OvU/TNOy111548cUX8xoWGVKdRqlUwrp163DnnXfiuOOOAyCs8Lvuugvve9/7ch7d/IBzji984Qv4z//8T/zkJz/BqlWr8h7SvOL1r389DjzwQNdr5557Lk466STlRSJaY8OGDdi0aZPrtY0bN2LlypU5jWh+Ua/XUavVoOu663VN01Cv13Ma1fzlwAMPRLFYxJ133qkcMH/5y1/wwgsvkNGaItPT0zj33HNRKpXwve99Dz09PXkPad7wt3/7t65U9i1btuDcc8/FlVdeifXr1+c4svnD7rvvjmXLlrn2Ps45Nm3ahFe+8pW5jYsMqQ7k7LPPxsUXX4x169bhoIMOwjXXXIO5uTk6hKbEZZddhptuugnf/e53MTAwoGrPhoaG0Nvbm/Poup/h4WEMDw+7XisWi1i2bBn23HPPfAY1zzjrrLNw6qmn4oc//CFOOOEE3HfffbjxxhvxrW99K++hzQsGBwdx2GGH4atf/Sr+/u//HitWrMCdd96JW265BZdffnnew+tKZmZm8Oyzz6p/b968GY899hiWLl2KZcuW4eSTT8bll1+O4eFhDA4O4otf/CJe+cpX0iE0AWH3uK+vD+eccw7K5TK+/vWvY3p6WvWQGhkZaXAaEI2E3d/ly5e7Mlv6+/sBAKtXr6aMlwRErRPnnHMOvve972G//fbD2rVr8fOf/xxbt27FiSeemNuYGack5I7k2muvxT//8z9j69at2H///fHZz34WBx10UN7DmhcEqchdfvnlOOmkk9o8moXBcccdh3POOQdnnHFG3kOZN/zXf/0XvvnNb2LTpk1YvXo13v/+9+Ptb3973sOaN2zduhXf+MY3cMcdd2Bqagq77bYbTj/9dJx++ul5D60rufvuu3HmmWc2vH7BBRfgwgsvRKVSwVe+8hX8x3/8B6rVKo4++mhccskllNqXgLB7fNhhh/n+DAB+97vfYffdd896eF1P1Bx2snnzZrzuda/Dr3/9a6xdu7ZdQ+x6ou4x5xzf//73cd1112Hnzp3Yf//98clPfjLX8zEZUgRBEARBEARBEAkhSS2CIAiCIAiCIIiEkCFFEARBEARBEASREDKkCIIgCIIgCIIgEkKGFEEQBEEQBEEQRELIkCIIgiAIgiAIgkgIGVIEQRAEQRAEQRAJIUOKIAiCIAiCIAgiIWRIEQRBEKny7W9/G2NjYw3/O+uss/IeWtdz9913Y2xsDE8++WTDz66//nqMjY1hZmYmh5ERBEEsPAp5D4AgCIKYfwwNDeGqq65qeI0gCIIg5gtkSBEEQRCpo+s6DjnkkFjvnZubQ29vb7YDIgiCIIiUodQ+giAIom1s3rwZY2Nj+Pd//3dcfPHFeOUrX4kPfvCDAIDt27fjc5/7HI488kisX78ep5xyCh544AHX709NTeGiiy7CIYccgqOOOgrf+9738NWvfhXHHXeces+3v/1tHH744Q3XHhsbw7XXXut67Ze//CXe/OY348ADD8Sxxx6LH/3oR66ff/KTn8RJJ52EO+64A29961txyCGH4NRTT8VTTz3lep9hGPjBD36AE044AQceeCBe85rX4JOf/CQA4Kc//Sk2bNjQkHL3hz/8AWNjY3j88ccT3sV4fPKTn/RNsXzve9+byfUIgiAWGhSRIgiCIDKhXq+7/q3ruvrvr33ta3jDG96Ab33rW9A0DdVqFWeffTampqZw8cUXY2RkBNdddx3OOuss/Pa3v8WyZcsAAJ/61Kdwzz334NOf/jSWLl2KH//4x3j22WdRKCTfzq666ipcccUVOO+883DYYYfhkUcewbe+9S309fXhjDPOUO978cUX8bWvfQ3nn38+enp68LWvfQ0f+9jHcNNNN4ExBgD43Oc+hxtvvBHnnnsuDjvsMOzYsQO33HILAOCtb30rvvrVr+I3v/kNTjrpJPW5N9xwA9atW4f99tsv8dhN02y4v6Zpuv79oQ99CKeccor697Zt2/Dxj38ce+65Z+LrEQRBEI2QIUUQBEGkzvbt27Fu3TrXa1dffTVWr14NADj44INxySWXqJ/98pe/xFNPPYWbbrpJHfSPPPJIvPGNb8SPf/xjfOITn8BTTz2F//qv/8IVV1yBN73pTQCAww8/HMceeywGBwcTjW96ehrf+c53cP755+OCCy4AALz61a9GuVzG9773PZx66qnK8NuxYweuu+46NS7OOT784Q/jmWeewZo1a/D000/jV7/6FT7zmc/gzDPPVNeQYxweHsbxxx+P66+/XhlSMzMz+O1vf4uLLroo0bglJ554YuR7Vq9ere53rVbDmWeeidWrV+NTn/pUU9ckCIIg3JAhRRAEQaTO0NAQrr76atdre+21F7Zv3w4AeO1rX+v62V133YV169Zh9913d0VaDj30UDz88MMAgIceeggAXGl8AwMDOPLII/Hggw8mGt+f/vQnzM7O4o1vfKPrekcccQS++93v4qWXXsJuu+0GANhtt91cUZw1a9YAAF5++WWsWbMGd999NwC4ok1e3vnOd+Kss87Cc889h1WrVuH//b//h3q9jre85S2Jxi254oorsGrVKtdrt99+O/7pn/7J9/1f/OIX8dRTT+FXv/oV+vv7m7omQRAE4YYMKYIgCCJ1dF3H+vXrG16XhtTo6Kjr9cnJSdx///0NUSwAKqqybds2DAwMNAhTeD8rDpOTkwCAN7/5zb4/f/HFF5Uh5VUbLBaLAIBKpQJA/E39/f2hUbHDDz8cq1atwvXXX4+PfvSjuP766/G6170OixcvTjx2ANhnn32wdu1a12veui3JL3/5S/z85z/Hd7/7XUrrIwiCSBEypAiCIIi2I2uLJIsWLcKBBx6ISy+9tOG9pVIJALB06VLMzMw0qPyNj4+73t/T04NareZ6bceOHQ3XA4Af/OAHvobYXnvtFftvWbx4MWZnZzE9PR1oTDHGcPLJJ+MXv/gFTjzxRPzxj39sELbIggceeACf//zn8aEPfcgVySMIgiBahwwpgiAIInde9apX4Y477sCuu+4aGGGSEa5bb71V1R/NzMzgzjvvdBkwy5cvx8zMDF5++WUsX74cAHDHHXe4PmvDhg3o7e3Fli1bGtIMk3LEEUcAAP7t3/7NJVLh5R3veAeuvPJKfPrTn8by5cvx6le/uqXrRrF161ZceOGFOPLII3HhhRdmei2CIIiFCBlSBEEQRO68/e1vx89+9jO8973vxTnnnINVq1Zh+/btePDBB7Fs2TKcddZZ2HfffXHcccfh0ksvxfT0NJYtW4Z//ud/bkj1O/roo9Hb24tPf/rTOPvss7F582b87Gc/c71neHgYF1xwAb70pS/h+eefx6GHHgrTNLFx40bcfffd+M53vhN77HvvvTfe85734Ctf+QrGx8dx6KGHYmpqCr/5zW9wxRVXqPctX74cRx99NG6//XZ84AMfcKkYAkK2/Z/+6Z/wxBNPNHEHG/nEJz6BmZkZnH766S4Z+cHBQeyzzz6pXIMgCGIhQ4YUQRAEkTs9PT34v//3/+Jb3/oWvv3tb2N8fBwjIyM46KCDXClpX/nKV3DppZfiy1/+Mvr7+3Haaadh/fr1+M1vfqPeMzIygiuvvBJf+9rX8OEPfxjr1q3DN77xDRXFkrz//e/HLrvsgmuuuQZXX301enp6sOeeeza8Lw6XXHIJdt11V/zyl7/Ej370I4yMjPhGnF7/+tfj9ttv9xWmKJfLGBkZSXztIDZu3Ijp6Wm8//3vd71+2GGH4Sc/+Ulq1yEIglioMM45z3sQBEEQBNEsskfTrbfemvdQIvnoRz+KrVu34l/+5V8afnbGGWfgiCOOUHLsBEEQRGej5T0AgiAIgpjvPPHEE/jXf/1X/Od//qer15SkXq/jqaeewmmnnZbD6AiCIIhmoNQ+giAIgsiY888/H5OTkzjttNPwxje+seHnhUJB9aMiCIIgugNK7SMIgiAIgiAIgkgIpfYRBEEQBEEQBEEkhAwpgiAIgiAIgiCIhJAhRRAEQRAEQRAEkRAypAiCIAiCIAiCIBJChhRBEARBEARBEERCyJAiCIIgCIIgCIJICBlSBEEQBEEQBEEQCfn/AVWqP9WzEBgDAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ps = Powerspectrum(lc_poisson)\n", + "mtp = Multitaper(lc_poisson, adaptive=True, low_bias=True)\n", + "\n", + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtp.freq, mtp.power, label=\"Multitaper Estimate\", color=palette[4])\n", + "plt.plot(ps.freq, ps.power, label=\"Powerspectrum Estimate\", color=palette[7])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, Hz\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7b9118bc", + "metadata": {}, + "source": [ + "## Time series with uneven temporal sampling: Multitaper Lomb-Scargle \n", + "\n", + "Uneven temporal sampling is quite common in astronomical time series, and a popular method to deal with them is the Lomb-Scargle Periodogram.\n", + "\n", + "A 2020 paper (A. Springford, et al.) used the Lomb-Scargle Periodogram in conjunction with the Multitapering concept for time-series with uneven sampling. That method is implemented here in Stingray.\n", + "\n", + "Everthing works as before, just\n", + "- Create a `Lightcurve` with the unevenly sampled time-series\n", + "- Create a `Multitaper` object by passing it this `Lightcurve` object, with the desired value of NW, __just additionally pass the `lombscargle = True` keyword during instantiation.__\n", + "\n", + "__NOTE__: Jack-knife variance estimation and adaptive weighting methods are not currently supported, so setting their keywords will have no effect if `lombscargle = True`." + ] + }, + { + "cell_type": "markdown", + "id": "14120f67", + "metadata": {}, + "source": [ + "### Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "7b45c2aa", + "metadata": {}, + "outputs": [], + "source": [ + "# Loading data\n", + "import pandas as pd\n", + "# If downloaded locally, use\n", + "# pd.read_csv(\"koi2133.csv\")\n", + "kepler_data = pd.read_csv(\"https://raw.githubusercontent.com/StingraySoftware/notebooks/main/Multitaper/koi2133.csv\")\n", + "times_kp = np.array(kepler_data[\"times\"])\n", + "flux_kp = np.array(kepler_data[\"flux\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "346ea2f0", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:root:Checking if light curve is well behaved. This can take time, so if you are sure it is already sorted, specify skip_checks=True at light curve creation.\n", + "WARNING:root:Checking if light curve is sorted.\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n", + "WARNING:root:Computing the bin time ``dt``. This can take time. If you know the bin time, please specify it at light curve creation\n", + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Bin sizes in input time array aren't equal throughout! This could cause problems with Fourier transforms. Please make the input time evenly sampled.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAD7CAYAAACWq8i5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABBt0lEQVR4nO29eYAU1bn3/62q3md6mIUGehwERGWRwQUuwlVEYViikJmYIFxQDBoMQiTLe3PFvF6RX3AZrz+TXFQwxHg1RqOTm4jAiCMRFxC3iKAsDiLINgOzMnsvVfX+0dM9vVR3V3VXdVf3PJ9/YPrsVafOc85znvMcRhRFEQRBEAQhAzbdFSAIgiAyBxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIxpLsCWtPS0glB0MdRlKKiXDQ1daS7GqpCbcoMqE36Ry/tYVkGBQU5UcOzXmgIgqgboQFAV3VRC2pTZkBt0j+Z0B5STxEEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRCE3ujugf2RDTAcPprumkRAQoMgCEJncE0tAADTx/vTXJNISGgQBEEQsiGhQRAEQcgmrtCorKzE9OnTMWrUKNTW1krG4Xkea9euRVlZGWbOnImqqipZYbt27cLNN9+McePGobKyMiTP9evXY8qUKSgvL0d5eTnWrl2baBsJgiAyCx17E4nre2rGjBlYsmQJFi9eHDXOli1bcOLECdTU1KC1tRUVFRWYMmUKSkpKYoYNHToU69atw5tvvgm32x2Rb0VFBe69997kWkgQBJEuvF6AYQCOSyi5yKhcHxWIu9KYOHEinE5nzDjV1dWYP38+WJZFYWEhysrKsH379rhhw4YNw9ixY2EwZL3fRIIg+iH2/9oE27NV8SNGgdHhikOVPY26ujoUFxcH/nY6naivr48bFo9t27Zh3rx5uOOOO7B37141qprVMJ1dYBub010NgiCC8FtCKUKHKww/up3iL1y4EMuXL4fRaMTu3buxYsUKVFdXo6CgQFE+RUW5GtUwMRwOu2Z59zy+CfB4YXniPzQrQwot25QuqE2Zgd7b1NP7r9x6+uMJ7efhBmAwcrproypCw+l04syZMxg/fjyA0NVFrLBYOByOwP+vueYaOJ1OHDlyBJMmTVJUt6amDt34qHc47GhoaNcsf7vHCwCalhGO1m1KBwMLc9DY1OHTRWcJ2fieMqFN/uFeTj2D28O1dsEGwOPl0ZbiNrIsE3OyrYp6as6cOaiqqoIgCGhubsaOHTswe/bsuGGxOHv2bOD/hw4dwunTpzFixAg1qksQMXH98nGY33g33dUgCF0Sd6Wxbt061NTUoLGxEUuXLkV+fj62bduGZcuWYdWqVSgtLUV5eTn27duHWbNmAQBWrlyJoUOHAkDMsE8//RS/+MUv0NHRAVEUsW3bNjz00EOYOnUqnnjiCRw4cAAsy8JoNOKxxx4LWX0QhJaY9h2C68br010NgtAdjCiK+tDdaES/Uk89sgEA0H7f3ZqVEU4mqAiUko7nqDXZ+J4yoU1K+tJAmwGNTZ2A1QzuZB1sL74Gb8kQdN/2Pa2rGUJK1FMEQfhg2jrAfXs6pWWyjS1Ads/9+gWu/1wP+2//mO5qxIWERhZgfuNdcMdPpbsaBICcTX+B7aXXU1Ye981J5Gz6CwxffJWyMon+jW5Nbgn5mD4/CNPnB9NdDQIA4/aktDy29wwAd7YR3qDfzdvfhZibA/e1E1NaH0It9LtypJUGkVKY5lZAENJdjazHtPcgzO9/ku5qEFkICQ0iZTDNrch95mWYdDaYGQ4cgWXbznRXgyAyAhIahCyYto6k82A7ugAA3Mm6pPNSE+vrO2Dcf1jdTHle3fwyHVGE+a1dYE+fjR+XgJ79iJDQIOJiOHQUuU/9iTbbFWA4/E26q6AvBAGmT7+A7cXX0l0T5QhC0tZpTFMrmObzClLQngaRwXCnfQ4m2bONaa4JERW9jDGiCMPBr7Nn34rnYa98Bua39ySVTe7vX0buMy+pVKn0QkKDkE8W+WIitMHwZS2sm9+C8RP93W0dD6Zd4owN7xN+xr0H0lAjfUJCQ0s8Xhg/3qfNwStRRM5/Pw8jmdoSOoLp6gbQt38VgY4PIdqerUrpGRs/7JlzGbUHRuc0NMS061OYP9wL0WaFd9ylqufPdnbBkgrHejr+0Ik4dPUAnA7mhhmwSmW7eyJ/1Ljvs00tyHn+f+GeWBpWrqbFJoUOelPmYDhwBGx9g+z4TI/L968ntQe+0oHpg8/oAqgQ9PHV23/3HHLXP5/uamQ+Ggm9wMos2rgSXK4gwPzWLlUsGZOBhIYCrK/vQM5zfwVcbpjf/gDwarykFMXoM510zP6jfTheHuZ3P4Lthb+nri48D0jNDLMVQQB35FiM9x69PzAeb9SwqGnaO1U1j7X87U1fvqLouzc7RXBHjiG38hkgxSf1o8GcT9zBIneyDqZPv4Bl69sq1kg5JDQSwLz7U5g+2gfjvkPyEiQ4vts2veLr8OlGbv1TOBhY/7od9t8+l3xGcax8jJ99Cctf30iqCLahCfZHNoCtk79KDce0+5+w/XU7uKMnQgM0mgHnPPMScl74G9DjSmxfLiy+8cjxvv+rfSYmBub3PgEjCGBbes1dvTwsW/4he7bOuNyq1if36ReTzyTN6mISGonQa1ER16wwye+Za2rxzcxUxvjxPli2/ENBCl8dTB9qdE+7y634QzB8cyJ+JBmYPvw8ZrjlzfdDBrxEMBz51vfvV0cBUYTpg898ew0KYFvbAPSpM7TA9odXAqal/tWJ5c33YPnHB/I998oRYmkc8wxHv4Xxy1qY39oVMx57rglwe5D71J8SLyxGn+a+/hbGT79IPO80QkKjH2L5xwcwflmrOF1Ui5ggbH94BeY33pGdJ9PVDfsTz8K0+5/gjp9KavmeCGxjS0rL406cgfndj2DZ/k5Ky5UD19AM00efh/zm35fLJOseKZjObvkTE1FEzrOvwv7//yGJ8rpgf3Rj1HBbVTUsb+2Cnk9+R4OERkpI09Squ0fWMjzaoT2mswtQuInPNTTD9LlMtR0AplcQGQ4fhe3lLcj5/cuKytMt0V557+DLuJNT5ZnfeCdwwU82Y/zocxj3Jm9WbntlK0y7/ykvsgqr+1RPRlIJCY1ESLUMkFJlyOjYueufj7u8Nhw6ipw/VvlO8Yan/+/nYXv+byltL6OVcYHLHblxLoowHlC+4pIDd/JMcEGq569EMGsJd/wUcn/zR9/z1QDL23tg2R7brJxpaZNlFGH4+tvEK5Jqk2Edm7mT0EgA4z+V6yLZxmaIHV2wVlXD/I8PlKXt7FRcnuFALRg+cs/FcChUOPjNZKOZy3INzdCL+Wgy2J94NnLjPAmVi/nN92CN4Ucp5YN6Mq+ouwdctAE1Tr7m9z4G0+MC2yDdf9hzTfHN1EURTHsn0O2C7YW/g+ndv5FL7sY/+96tnAmHjME4HasERsH7Yxub0+oHjoRGAiiec4hAzqZX4HrgSRi+/hamj/cBAAy1x5Dz1J8Cgxd3sg7Wl7f4NtjjDWixOpnHC+vr0hvd1tfeUlr7kLLsj2yAefu7KbWUiokoAn69e5Rw847dIT+xDU3I+e//8em5E8T02QEYZHvrVWGWKmem63L7NnAVYqt6A7aq6r4fumM8zyiwbR0RExIAyHn2VZ+ZejDhllV7DyD3yRdgfvcjcKfrYdqTmMGFpXqnb9UhhxiPM+fZVxXFT4po+cZ432xXD2wvb4Hlf7drU6c4xBUalZWVmD59OkaNGoXaWumlPM/zWLt2LcrKyjBz5kxUVVXJCtu1axduvvlmjBs3DpWVlbLzzBxi9zRzzftg2zoCg5fl9R0wHD8Fpr0T9sd+n3ixGm9amvYehP2/NmlahlxMez6D/Td/BNMhvRpjz5yFKcwPkvHj/WA7u6XVFalSC2hQjvXVbdIDXhzYM6HnMcw7+1bChmMn5ZW9+a3EJiRAwDKLbWlNKL0f44EjyN34Z81UZXrDWHssLeXGdSMyY8YMLFmyBIsXL44aZ8uWLThx4gRqamrQ2tqKiooKTJkyBSUlJTHDhg4dinXr1uHNN9+E2+2WnWe/Q+H4kohllKoVSCF+F+RMexfE3JyIcO6cSqfURTEJvXbw8wvNg21oguHLWngvuxRgGAiOwoSraDhVn1C6cLNuKbVmVHTYNayv70D3/BsjfufqzoELHFhU/i65YyfBuD3wjroofuRkJwWZvKcxceJEOJ3OmHGqq6sxf/58sCyLwsJClJWVYfv27XHDhg0bhrFjx8JgiJRdsdIRQMyvNQG31NyZc0nUJQ4eb4gKidFiJRRlDFDLoSN3LAEdcpwZL1vfgJw/vArzh5/71Dh/eCXB2mUgHi9yfvc/4CTOwJg+Pyh/tSzR12NtePtVw8phYPvLVlh7T7Yng/SeTZTvOYGJCtPWAcMXXylOJxdVHBbW1dWhuLg48LfT6UR9fX3csETzTBVMSxvEvBwwbZ1gm7XdHDPt+hSs3zxW5UHVWlUN0WJGz7wZUeMYjp0EW9cAwelQrVzTux+BO1kHtr0TbGsbuhaXA1AmoJimVuT8z1/hHV6CnrnTAbMpNILSGVmi7iR4GXs4Yfs8jMsNMby+QUTo+mVg3bYTruZWxelSBSNzP4Q93w62qxvmnXskV1fGL76C54qx8fOpT/COlzQej2CD3p+oQUVsL78Otvk82kddBJiMquef9V5ui4pyE0on9rjgeuTPYCdeBuFTaV/6ublmGBz2qHl4rEbwAHLtFoQPOQ6HHT293kcLzQzcQfdm5z4TelahoCAHbFg5otuDaJ9nbq45pDz/zMt+RwWCDRMLmxshQIBfROUbRHBB5fjjWs1GSIkxR2/cgY5cuBCq1nA47Oj54LPQen3+JYSwtIKnB24ABo4NzLX8YZ7Xd4J/x/dcjLXHYPniIIzfmQrR6w20nes9IV1QGPmMAKAnzHIn/7P9gP+9hD0nh8MOURADeTsc9sAzGJBnlXw2/rqKLW1wPRK6z1NUmAOmwA5vjq8cm9UENt8KDwCTiYPUetARpT+5vZ5AfHPQRrHtm28hALC4ugPhRe4uSK1xgvMWu11wPf4cuImXRbxbs8UYUbcBA2wh7ffjMrAhc2TzB76zEFarEXlBzy+Y3Fwz2MKcwHtnzL7yTEZDoFzr4aPIn3l1IH3ey5t9Ps5+cXtIXgUFNsm2DhyYC4Zh4OJYyTm82WyEPaw9sYx2maAZv8Nhh9jjgnvDKzD+241ghwyMiM+32hBtejJgQF9YQb7V9xyMXEj/58/74hiNHHJ76+n/LRip/tLT6Tv7NLAoB4zFHKNViaGK0HA6nThz5gzGjx8PIHSVECss0TyV0NTUAUFQrh9kOjqRC4Df91XUuUBHhwuehugnmM3dHpgAdLT3wBIW1tDQjhxBBAugpakTkdr4PlpaOiEYw3LweBBNXHk375T8vaGhPSSN55lQ44Lz57vBB7XHH7e7x9cOqfwcDjsaGzoi6hJeFgAIB46GhAMA2+Jru5cXwIWF2d/5JCR9V6cLnq9OhgrV3sOBLS1dEEyR7yK8Dt0dPYC79710uELeS0NDOyCKgTTBbTjfJv1s/HXljp2GLayspqYOiB7AXv0+AMB15ATcgxywAXC7ecmPryFKf7L2eCTjC0d9G9Xek2cDuubzx8/CGidv7ui3sLW0gX8r8kY67+FjEXrr8+e7Qtrvx+blA+8tmO5uD1ol+gDg+x745t737hUguDwwAnB7vIE2isdOhTx/8bjv3Etj7WmIBXkAfANmS0uX5LfT2NAOMAxsQf0qGJfLi/Nh7Yk+/QNEsW9N0PKPTwCTEdaT9ejcvBM9N8+JiM+1dkX0Bz/nz/eFtfbG83pC+78/vcfDo83fx853R+QZ/E4Nh4+C6XbBLPoWUo2NHYBZuVEAyzIxJ9uqmNzOmTMHVVVVEAQBzc3N2LFjB2bPnh03LNE8U4kiD6FuD4wf7u1TmchceXL1cdQ1qTJvjVrfeEJXIlzGvgrTrszFM9vRFbEKSwqp9kZVdyWmRgh2UijfRDcBVDx8JsddDADfnkQUVWPcd9tbXa65FcYo96lL6f5zN/5ZVt3Uhgnak7Nuk56UJUfyG9/Wv9fAsv1dMBp79I0rNNatW4frrrsO9fX1WLp0KW666SYAwLJly/DFF75DbuXl5SgpKcGsWbNwyy23YOXKlRg6dGjcsE8//RTXXXcdnnvuOfzlL3/Bddddh/fffz9uOr1ifucjWHZ+CMPho/EjB2F58/2Y4aaPJDbvNDGu6Bt4QhzjRVmpxToTYHv+f2OWxB39FrlP/gmGr49HhJl2St/HHNNZn9xBUxTBeHsFmhrP0MvD8voOMG1RVpxq3ZUdr3lB5TDtyg+DJgIb431EEwQAZO9DyfIOEOW5pO3Oia4enwmxTM8GWuxpaE1c9dT999+P+++/P+L3TZv69Lccx2Ht2rWS6WOFTZw4Ee+9957idHqFcfXORsJXJ8mazwVvjHe7wLachzCwILk842Cufifwf1MUV9Y5z74KPPEfkmFcnA1KrncGzvXOvrmgE8XmDz+H+4YpEWmUuoGQ8s3EtHfC+JX0gGb8/CA840f31VHGysBQ+w2MB47AIJVnCs0m2SBBYamJPQlJBNur1ei8/fsQigclnZflHx+gs3hw3Him9z+JGycauU+/iPb77o4eQaN3Y/vLFnBnG8En+5x66xei6UjSPb1a0IlwTdHGMiLn+f+F9dVtqucdqG6PC5yCGwqTQTVTX5mPOnCvAhDh0dX4zy9D/rbFcBPix7p5h+8/ir9PpQnSPyM1v/Ohovjs6ejWjlKrFMPxUPfrRoUrdiUYv/pGsUZADoHVt0wVkd9ikoty4RVXdw5we6IeXuW+OZHQCf5kIKERBUbhfQepKoPr9UirjX7cNzDlPPfXkJmrtqTvEBMb5oadcXtCzCGTxbL1bVi3Sd+ypvjdqykzPB5Zq6iYxHLd0ku0gRCAimblsR9M+DsOxvr3muSLF313Y0SoIeWqS2WoL21/+jty178gHfbKNlj/ltrzayQ0omD7UwJXl0bpKOZ3P4r4zfTBP8HI3OBO9hIg2TCA4eDXgQt/0kVCYkRE0stxtrUNOZuiHLBjGDBtHbA/sgGcpGuNyLINJ+vANp+XiAtwCn1ERXNfnwi2l7eGmO0mQmCFlSBKnXaG4PHKnsnLvXmPO5WYEDXWHoOtqlqRvyylAjvQV6KML2xTah0sZv05jURRwwLB7zlWKi/zux8nnb/6MJJO57TAHEdfrfSGupxnXwXvKETXjxbEjpigYDEcOwmx1925ZN01XjDJtWiSAxdDbRQTv579fLtiT7ThJLOSzV3/PBiXG8L9P44ZT4k3AOPH++NHioGSy8PMweeXpOSAUnVTihfrtNJIAsPXx33H9cOWmIaTdWC6umE4cSZKSv2SaidoTE/kTJABkPu7/1GcFxfFPbcamD79AuY4V8PqGSGJ+8n9GE6c8XmkffpFcGk8le5fPbjXPRNTAFreiH0PRyjJj7zcsVN9frxkW/NF/pT7lLQqKhpRrdg0EiYkNJLAcPw0rFvfhjnMWsW4/zCsf96cplolQYJ6c9n3R+sBrSyaVMpXK59B7v96Ln4kGUhd1pVOuASdNPrJfeyZhF2xB2Padwi2v2xRnE7KD1u0s2FKV9/G2hhmz0lAQkMFDEciTUE5tS9y0bHXSy6DVlRa3QwY7ik2RsyYodatb2t6T7rsK0+joLfVszFJdSrDCzC/82HABDzVWIJM2+OhdOOebWpVVhm5+WqSK6E6anlrjUmCp4oZGVdtZhfamr/KvcMiEczv6XEvLf2wSg8DxvlWlBo6ZBIkNNQgBSb0bN25pK0kjHulHS8mg8gLMO2TPvyXFuIZMKR5xZboRUP8EPW8D6eMVN+rTaQEEhoZA5PU9aQAYNkuffo+GVy/fFz1PJOB+zZ9dyfLIZ7LmGiIKnkrFWkg70fQiXBCa2hA0S9qvZsUvmNOxbMlukPjFSt3XNnkR8pljlaQ0MgUaEBXhVgnhGXj0daLqJYwajlQlIFRw9vj0o7G95Ane/hSS0hoqImWAzvJDFkwKdiyCPZfRfRP5FvLZR8kNNQgVasAJXd7JEIWCKZUuQVPOf14kNIjyg4OpgttPmgSGhmE1qathkPaeRVNFYajJ9JdBW0g9SShGNoI1z3azgW1HzSiOdfLJAxHld25QRCEMkhoZAo00dQPpCki+jEkNNQgBXd4J33/AUEQhAqQ0JBC4aZjwMGYhqsBLT24EsqQew8KQWQjJDQkMHxZm1hCrdUWWlvQkApMv9C7IZRCrtFTB9Op3oU3mQWNTASRLWhlbRlXaFRWVmL69OkYNWoUamulZ+A8z2Pt2rUoKyvDzJkzUVVVlXTY+vXrMWXKFJSXl6O8vBxr165Npp3a0msOGc0PvmrFyLiXOSmy5CxA/xX6BNEHeybGHe1JEPe61xkzZmDJkiVYvHhx1DhbtmzBiRMnUFNTg9bWVlRUVGDKlCkoKSlJOAwAKioqcO+996rXWq3ReKJu+uxLTfPX0iV3KmHrGsBfPCzd1SCIrCTuSmPixIlwOp0x41RXV2P+/PlgWRaFhYUoKyvD9u3bkwojJMiOhYDmkJsPgtAOVfY06urqUFxcHPjb6XSivr4+qTAA2LZtG+bNm4c77rgDe/fq14FXH7QnoAfY1rZ0V0EDqG8RCtFokhlXPZUuFi5ciOXLl8NoNGL37t1YsWIFqqurUVBQoCifoqJcxWV7c8xQsjvBMAwcDjvcFiO09CHKcQwtNmRg6epEnsOOTL1PMNduhcFhD/nNbTIk3bccGfxMCOUYON+4pHq+amTidDpx5swZjB8/HkDoCiLRMIej76aya665Bk6nE0eOHMGkSZMU1a2pqQOCoGyoNXa6YFEQXwTQ0NAOi8sLo6KSlMF7BTJ3k4HnbDPON7RD/c8lNXR09MDTEOrC3erxJv2xNpxry9hnQiiH5wU0NCi/CoBlmZiTbVXGoDlz5qCqqgqCIKC5uRk7duzA7Nmzkwo7e7Zv5//QoUM4ffo0RowYoUZ1tYM0CLqAbW0DUnhvRKbAqHGXCNHviTt5WbduHWpqatDY2IilS5ciPz8f27Ztw7Jly7Bq1SqUlpaivLwc+/btw6xZswAAK1euxNChQwEg4bAnnngCBw4cAMuyMBqNeOyxx0JWHwQRDYYXstdFehJobrJN9AsYUcwS4/woJKSe+nAvLDs/VJSm/b67YdnyDxgTPU0uAyE/L0s3edWna9F3YXvp9XRXIyF6brwensvHhPxmfWUbDN8k5/a969/mwfbylqTyIDIH0WBAxy+XKU6XEvUUkSqyWr6rCpndRkKrr/6FVj7SSGioCV2UoxsYWpFFQOopQg1IaBBZCa00IiGhQagBCQ0pEl0xaL3SIO2ULITcHLAttNIIh4QGoQYkNCTg6hsTSqf5mE5mpLIQCshgQAoSGoQakNCQIFHVBtvVrXJNwvKnjUxZiAUDwLjc6a5GwjAaqdZIaBBqQEJDTXhaCegBIT8v3VVICkPtcW0yJqFBqAAJDSLrEAoyW2hwTS2a5EsrDUINSGioCZnc6gJhQGYLDQAAz4f8qYYJMQkNQg1IaEjANjYnmJLMm3SB0QDBnpPuWiQFdzr01jWuuTXpPEloEGpAQkMCra9tJbRHKBiQ7iokBXf8lOp5Ml4+fiSCiAMJDVUh9ZReyPjNcA2EBkGoAQkNIutgOjohZvhmOHvmHJDBZsNE9kJCQ01ooaEPBBFCfmarpxhRBHfiTLqrQRARkNBQEaatI91VIHrJZLNboWAARIOBVFSELtHtHeGZCNeQqNUVoSpMZu9piBwLoWSIJpvhBJEstNIgshMDl+4aJAU/ogRcYwuYjq50V4UgQiChQWQhGb65JALe4SUAtDG9JYhkIKFBZCmZLTiEwQMhWsy0r0HoDhIaRPbBIMNlhggwDLzDLwD37WlAJE8DhH6IKzQqKysxffp0jBo1CrW1tZJxeJ7H2rVrUVZWhpkzZ6KqqkrTMILoD/DDSsC2dYBpplsICf0Q13pqxowZWLJkCRYvXhw1zpYtW3DixAnU1NSgtbUVFRUVmDJlCkpKSjQJ0yOW12rSXQUiQIYvNXoXFv59DcO36qioRIuZ/E8RSRN3pTFx4kQ4nc6YcaqrqzF//nywLIvCwkKUlZVh+/btmoXpEUPtsXRXgQgmg2UG06uOEgvyIOTlqrYZLlrMquRD9G9U2dOoq6tDcXFx4G+n04n6+nrNwvRI19L58JYMSXc1iGyCYeAdXgLDt+qcDBetFlXyIfo3WX+4r6goV3GankTKGTsMrrcN5BxdBwzIt4J12JGpihiOY+Bw2AEAfOnF8Ow/rEq+xjwbhDpVsiIyBH8/UhNVhIbT6cSZM2cwfvx4AKGrBC3ClNDU1AFBUDaUJ/KYGxraYfUK2S+FM4Dz57vBN3Yk9B71AM+LaGhoBwAwRUVQPu2RxsVyMKqUF5EZ+PuREliWiTnZVkU9NWfOHFRVVUEQBDQ3N2PHjh2YPXu2ZmEEEZsM3tAAQkxsxRwbeEehOtmaaU+DSJ64E+N169ahpqYGjY2NWLp0KfLz87Ft2zYsW7YMq1atQmlpKcrLy7Fv3z7MmjULALBy5UoMHToUADQJI4isJuxcBj+8RBW/ZrQRTqgBI4rZfXIoIfXUIxsUl9N+392wvrRZtU1LInG6Fs4DP/wC2B/dmO6qJIQwwI7OFbcG/uaOHIftr28kna/rhskw7/ww6XyIzKH9vrsVp0mJeorwk+FqEUIXCANCd2P4C5Xv5UlBKw1CDUhoENlHhstuYYgj9AezSZV8aU+DUAMSGkR2wmS45NAAWmkQakBCg8g+SGBIY6DPnUge6kVqQoMVoQJMZ7dWOWuUL9GfIKFBEHpD4NNdA4KICgkNgiAIQjYkNNSE1FOEnqHuSagACQ2C0B3ajO4iSY1+hWjQxhMeCQ2C0B3aOGlgyAczoQIkNIjsI8PVhN6xl6S7CkQ2oNFnQEJDTTJ7rCJ0gmCzapIvqacINSChIYHIJfpY6KMkCCK7IaEhgZiXqdf3EARB9KLRFhYJDYIgCEI2JDTUhLRTBEHoBdoITyHZfS8V0V+hSU3/gtRTKSTDTTb7PfT6okAPhkgeEhpSJLjS8Iy5WOWKEISKkMzoX5B6Sv+IuTnprgIBaLYsTxWandzO8OdC6AMSGgShN2hwJ3SMLI9Wx44dw+rVq9Ha2or8/HxUVlZi+PDhIXEaGhrwwAMP4NSpU/B6vVi+fDnKy8uTClu/fj1eeuklDBo0CABw1VVXYc2aNWq1PQYJfrW0/CdUQSOpQf2TUAFZQmPNmjVYtGgRysvLsXnzZjzwwAN44YUXQuI8+uijGDduHDZs2IDm5mbcfPPNmDRpEpxOZ8JhAFBRUYF7771X/ZbHItFvlmaIhBpo1o9IahDJE1c91dTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnToVAFBYWIjRo0fjjTfeSCqMIAiC0BdxVxp1dXUYPHgwOI4DAHAch0GDBqGurg6FhYWBeJdddhmqq6tRWlqKU6dOYe/evSgpKUkqDAC2bduGXbt2weFw4J577sGVV16pqIFFRbmK4gOAi2MVT/YcDjv4Fis8iksj1Ca/wAbWYUdPuiuSIAMGWME5Ql3ZqNGWggIb3CrkQ2QGDMPA4VDfJZJqt3SsXr0aDz/8MMrLy1FcXIzJkyfD0HsJSKJhCxcuxPLly2E0GrF7926sWLEC1dXVKCgokF2vpqYOCIIyEZDj5RVbCDQ0tIM73w2bwnSpxjv8AhiOn053NTSltaULfEM7MtWD2PlWX/2DUaMtLa1dIPu+/oMoimgI60dyYFkm5mQ7rtBwOp04e/YseJ4Hx3HgeR7nzp0L7Dn4KSwsxOOPPx74e9myZRg5cmRSYQ6HI/D7NddcA6fTiSNHjmDSpEnxqp1S+EFFvv9kxJ4G6bV1D3kkIHRM3Al1UVERxowZg61btwIAtm7dijFjxoSopgCgpaUFXq8XALBnzx7U1tYG9kESDTt79mwg/0OHDuH06dMYMWJEUg3WBJYsl4lMgCYMRPLIUk89+OCDWL16NZ5++mnk5eWhsrISgG9VsGrVKpSWlmL//v146KGHwLIsCgoKsHHjRlitvstkEg174okncODAAbAsC6PRiMceeyxk9aE76Jsk1IAWGoQKeIeXxI+UALKExsiRI1FVVRXx+6ZNmwL/nzZtGqZNmyaZPtEwv3DKVESQHCESgc5pEMnjnnKVJvmSXkVNwr91UlsRiUArDSJJPGNGQhgyUJO8VbOeyiqyeiMym9uWLdA7IpKjp2KWZnnTVFhNMmH5T+OR/qF3ROgYEhpS0EdLpJXM74Ci2ZTuKhAaQUJDkgQ/2gz41kWLOd1VIOKRAf0oHvxgbfTpRPohoSFJJuiZEqQfbc6Lva5vCIJQj/4zgqSCjJA16k1jhRyrankRQWhliEHXGBMqQEJDiqy2nlIPT+nodFeB6OdodYCNiA4JDUmUCQ3R1l9n3CRctYAfeWHEb7QXJY2Qn6luKTMXEhpx6FpwU9w4Ql7/9B3K6F5m6L6C0mi07yQMyMIBNkNfcSZDQiMO/EWRs76Mhj6ymPDOQemugnYYssswwFz5i3RXoV9CQkOKbB5YNd6v6fzhD6KGdd1WoWnZcoirzmBpszhTYIyGDDE+yS5IaGhJlm2ouy+Pv/EtmoxRw/gSZ9QwLehaVB752+3fT2kdwum4a2FayyeIZCGhIYEwUP7NgD76yXRHlgyUjiSmwdxTKBkSWQ85RgtWiwa16S2/SGnfUpPUvQNP6aik0ruuv1peRBl9snPJ99B94/VJ1Yfog4SGBGJuNm9sq7f6Ea3yLXp65k5XrVytMa38t5C/ecWTCOX0zL4OHStuRcfyRZqXlQq840ej80cLEk4vqii4hQuGwHv5GNXy6++Q0OhvqKgxc0+6POK3qHNZGXsFevFXxBaHXfRljK5yUwvPVZdBHGCHWDBAMrxr/o2qlOOa+i8JpxU5bYYLtdpGpAYSGpIoHFlTrHkR9eIKhOPADCuWF1fGI9WrSah7Yqkq+SQz6Eqp2rIF/uJhkT/KVWdmqWY4Hepcuehk9MlsXNf16l9jDIw9N0wO/F80JneNiZiXm0TidG3OyyhXrx9KAj6sBIkVQ+eP06x60unjTYo0dGetJjfGH9/S94dGqzo10G/NMglbfP1ryHkPlR3pdVfMlPzdfdVlcdP2lF2jal2EwnxV8wuGLwrNW+mKyztUhvWWxCAkmpWrp6QmBmK6V1Ii4B0xVFbU7u/PifiNHy4vbSxSsT+kNfGeoXvCuJjhgj3+nqnc95QOSGhIEP7CvBf5/pZaMnovlKmeCUHZ9EjIzYmti46SnWv2dfEzjzGj4eVcFxm+cpF4RoLNCu+lF8XPK95MOExI8ENTo7LhdfwBS9FdMQsdK25F+313R4QJFwyW5ZJEyqdT9/f6Jiftq5crHti6b7xeXp9EX5fmBxUpKiNdeEbL6N8K6CmXngjqAVlC49ixY1iwYAFmz56NBQsW4Pjx4xFxGhoacPfdd2PevHn4zne+g82bNycdxvM81q5di7KyMsycORNVVVVJNFU+Ur5/AEQMiO333Y3uxZFnASRJUC3kHTkMnfcsgfvaiVHroRlhg3SipXb+9IeADJWcaIm9YhOGOGKGa4Ze1WZREA2cNquaMIOAnhuvh5Brk51ccBSCv7AYXYu+G3OV2HH34r40QxxwTbkyeqbpeDUSJ+v54sERv3nGjET7z5bKzpbJDTIHD/pepIR/OpElNNasWYNFixbhzTffxKJFi/DAAw9ExHn00Ucxbtw4bNmyBX/+85/xm9/8BnV1dUmFbdmyBSdOnEBNTQ1eeeUVrF+/HqdOnVKr7fLxj/dqDR4K5IdnfJ+9u3/m75o6MVr0uDA6PHAoMgzcl49GT3lZzHgpudhHhVfcM2tq8pkkRbR3rODdy1D9iXm56JkzTX6evQ+XH3ZBzG9JzM8L+iNOnYOCu+P0H7VwXTdJXkSWlX3mp+vWcrAXRAoePRK3ZzQ1NeHgwYOYO3cuAGDu3Lk4ePAgmpubQ+IdPnwYU6f6PpbCwkKMHj0ab7zxRlJh1dXVmD9/PliWRWFhIcrKyrB9+3Y12p0YyQwoogh21PCkihd7Z3qR50j0JwiU4L14GFw33pCAt2DtppldP/hO1DDX5CshGjgIQQOC59IRff+Po9MOxzvsAuUVjEE8R5KyLHO08FMVXGw8YRBUR2FgoazsvSMlrLC0QGXTcM+oi8APVa7m9g67IC2HFuMKjbq6OgwePBhc7+Ytx3EYNGhQYDXg57LLLkN1dTVEUcTJkyexd+9enDlzJqmwuro6FBf3PUyn04n6+np1Wq6EQAdPbJByXzUOwuCBMN75fbT/7A716pUAvJzNYD/h37XUh67GyiXBFZyghb67tzlCrFWN2YiOX96Fzp8tReedt6Bz6Q+SGkhS5vY8yqtKy4FCBf3Ge9klcePwQxy69RsmxhPACVabT9OhxeRsP4NYvXo1Hn74YZSXl6O4uBiTJ0+GwWBIKkwNioqUm6eKFhau3v87HHa4TRwEAExYp3Q4QvXGfIsVnqC//bHti+Ygr3e577hwIDzXXgX+Hx/KqktenhVcbzmekkHgT9Yh31kId1gcj0Rah8OOnrDfci8cHBI3N9cCb5SyDUYuZJyxWIzgw/J3haUJLtN42zzAaAh5TuH1AQCzyQB7bxyp8Gh1zbn8Eng+2R8RL3+AFaxEfubRw5Er8UyCMRh9H3hRYU5IHwhOk5NjxgB/m/zv5svDgWfjcNjh4liIAAwL5sD7yvbA71JtNJv72h+L8HSm/3sX3A/9PiJecJ8JTjNwYC4YkxE9Yf144KUlEXlL9Z3g3wY67GAYBvy56H1P4F0h/bSgICfovYghcXvC0nrtvndtsRhhH5QX9Z1Ze/ukeeqVyCkuBL/0e/Du/Bji8dMh+fnKlIfhuzfA+/rOqOGS31WOOdA3rVaTr05mI+wOO3rCJkVs2PP3x4sow2ICetyS5QGALceEAVHCwscmNYk7OjudTpw9exY8z4PjOPA8j3PnzsHpDJ2xFhYW4vHHHw/8vWzZMowcOTKpMKfTiTNnzmD8+PEAIlcecmhq6oAgKJsNM51d8IuahoZ2WN1eGOCbqAW/7oaG9pB0XGsXgrcFBasFbFc3GhvaAZaFw2H3pfmXK2A7fAzc6bNx69LW1g2vv5xrJ4EbdiHajRYEd4m2892QUuw0NLQH4rmumwTvxcPAtpwPidvR0YNoWlevh0fwHKmnxwP/Vmj3TTegvaEdeWFpgstsLum1wAl6Ttyt5bC9uDkkjcvtxfneOFJd3XthMTylo8CE1fX8+W5IbcO2nu8GH5Zfx48XQcy3A0H1k8Lr4WEG0OgSAvEawtK05Q0I5O/HEvRsGhraYeMFcADO59iRE/S7VBuD2x+L8HRNAifZlrbzXYE+Exze2NoNMD0wXzoCpr0HA7+Ht0/Ob42NHQAALso7aGhoB9xiSB4tLV0QLL31EkPj2sPSGtp7YIWvz7XGeGfdPR6YAHS0u+BpaAeGDIHFZIIxLD9Aum9JEeubkKovAHR0ugJpurt9dXK5PDjf0I5chI4bgiCChU8tZfzqG7hcvvcfPNA3NLQDd98KxuNFe5T2d3W64Y4SFj42KYFlmZiT7bjqqaKiIowZMwZbt24FAGzduhVjxoxBYWGonrGlpQVer0/W7tmzB7W1tYF9kETD5syZg6qqKgiCgObmZuzYsQOzZ89W9ABUobeDizLOYwTTteR76PnOtMhNRYZJ7MSnwQB+hPT1lj3Tp8S0gRfNJkmVS6xzFd4Yp7294yM93sZyix6oB6PcyltwOiTLU4JYOEDZ5UZRztJ0/PSHkia4fO+J7e7vJrIZmyK1Sm+fc82aio5Vt2tfntWC9nt/3GfAoGUzZeQt9B6KdV0/OeT3jpW3oTPI+7Dnyujnm7pvDh1/5BzU7a6YJR3gN3ePVneLGWKMMx3eMSNDy0mRma4sPdCDDz6I1atX4+mnn0ZeXh4qKysB+FYFq1atQmlpKfbv34+HHnoILMuioKAAGzduhNXqm9MmGlZeXo59+/Zh1izfQ1+5ciWGDk2fzbxrxjVg2jpgeWuXrPhiwQB4ovgSUhvP1VfAc/UVsD+yQXaa9l8uA4JUgaLFDPeVY2HesxcA4J52Ncwffi47P8GZmEmsV2Ub90RwXTMB5t3/jBrunlgKw9fHo27Wey4fA+/wklDLnzTBB7kccU39F5jf/yQ0AstCzJFvKhsLMZ7JLctK7l+4plwZ6GdK8F5YDMOJM4rTAUDnnbeA6XGBbWkL+V3MtYWaAEu49+9YvhiMxxOxj9Z592KgxwXDkeORBfr3xxzyNvKVIGWG6x17MbD5LdXLCkeW0Bg5cqTkGYlNmzYF/j9t2jRMmyZtfpdoGMdxWLt2rZwqaozv7YsmI7wTS2ULDc1gGHR/bxaMn+yH4VQ9gnc4RZYFIwgRScLvufCMuihEYAC+Q43u6yf3fcxyZua9M3LX5Bi29HHwXnZpwmmThR/iAFffAH54CfjD38A1Ywqk5naumdfCNfPa6BkxjC4EhvvKsSECwX3txEihIYFgtYDtlqv1D0rnHITOJTfDsmM3uDNx1K1Bq+uQfhaLMIHTvbhc0cQoBIvZZ3TQ2iYZ3DNrKgxffytdjYI8STsCMccG5NiAYKERtnIQB9jRtWAuLDXvg205n1jddQSdCJeDxhatiRze8Y4eCdEeqXd0Txof8rf/RK1Y4BvQ/JY6ah/+CnY61/mjW7TxXBqu0lPBcsvbq+4TBtjRdddCTS6KEnJzIFpiWFfpwOin60cL0LnkewmlFS4YDNGojolu97wZysruncWH+INK8Hl6JoxD94KbEkobr0j+oqGRF5RlqKW8emZK/YE4+xB8yRCIFhOYHnfMeJpiDjXfDO+o/PASdN88G14pz6LxiDVIBz0awVEEOKKYw+pggAzGfd0keK4Yq6lfqM6f3KZZ3nLwr6ZiIeba4quaYqU39QnFCAGp4YFSz8RS8BcMgVAcdLe7zgdjT+komD/4zLfHeOhr6O6jiAOtNOQgt9Mbjej4+Z3qlh1LUEkE+WfOsTbFvaMuCtnojemmQYKeGf+qKL6uYVnt1UoME2fCIW/QkOPoTiqvrlsrYP7/fiKrDDUQDVEcPGrhjoVhQgVGIqTYS4J31EVov+9uCAOUHwfomT0VnbcltiJUCxIaSlCx08c7tRsg0Q6t4KyLELYqcE+6HF23VUSvUtBhNMN0n0sFvkj9zT6tCfZxlNJylydWbueyhei4Z4nyhEYDmCRWEXII9gvmvSRsFevvizqZUGt+mDLeOCGG/asAz1XjIu5W6Zl9HTrvvCVKCvUh9ZQcdOivKYSg6vn3OcLN8ZTgUrCS4MZdgmYVHarxxYMlNlS1GW3StXHt319SjNmkm9sNw3H/61XwXjwMYo4twjS9++bZMO47JNsdiNYIQxzouuVG2F6t9v2g8gooqolxRDGR44r7X8aDbVa2We4JugKhY9XtgCfacV11IKGhhBTOlDyXjoCx9licWJEVEnNtaP8/P5LlVTY9xH6IXQvngm1rR84fXo0I8146AuLOPWC8vERKfcFfMATcuSZV77rWNSwb1QuxmJcLdxLXzCqmt4v1zPjXqBeW8SOHQWQYWQ48vQpuTXRffYVyIRQU3ZXk/TZqmVLHgtRTMuhTJWknNaIeEkpkFmQyKkyno5WU2RShLvMj5uWi45d3pbhCieGaeQ06f7Qg6qDVdctNfdfI6kRtoytUmP2Lebnwjk58xe0n5AK1XroWfTd5r7o6+uyUoNfpqK7omXUtzDt2g0/w8JoUYtg30fXDH4A7fiq9Z0Bo8FIPjot5qIsfeSGYwLmI9Dz4jrsWyrpFUrBadHEAM11IueTnwzwTB0zZFXqN8JFZHx4JDQnEsMtmhCEOdN9aoWmZwsACCAMLlAmNzOprihDy8yByHLimlsiwggFZcUgqUXq+Mw1i7+ayd/gFMAQ551OCWCTv6tVOBRcJKaH7phtg+nhfyG/eUWHCKc2z8Y4Vt8oyx/aMHw0wDDylo2A4+LXvxwxdScSDhIYUJiM6Vt3ef/TRfuR28mRUBzKTdt69GKY9e8G9E+kNuPNHCwBBAPdtGi7k0gGeK8YG/t/9gxuR8+yrGSlEveNHR/oUU2EvThzQe5BV7vcbY19D9vkdloUnDW7K0wHtaURBzLEpc3CXIIIagilGp3eVXQt+iMN330BU9L1kCVflwcBJ+gfKWJJ5/EYDOu+cr/isTTbjuv5qdH9/ToQKKYK0XeOb2UsQEhppwr+53vP9OcnkEjeG4HSga+kPIu53DiV6Jw5xcaLTvs4PHgjPJcPTXQ3lqGXKbTT2uZRRcRzsmfGvEFLkcDM6CTwjjoM36CZF/RDl5ch4Zx0//jd0LS5XtzoJQkIj3UTrMAG3ySmcDaWgqGBX7CLDqHKftmjPQU+M61n1jz5Xep5Jl6MzRbf6ecMtlNK2CtAnYmE++AuVXwmrBbSnoVNcs6b6TAZj+Ihy3TAZEPjMsmyxmNF5x3zk/LEKgqNQ8X3awYi9LvSFovyocbxDnWDcUnfL6Qg1x0edrgbj0T3/O/o/RJs0oe3zW1oJGvo90wISGjpFtFnhmh77ZLZoz0FPtAteNEGdj9pv+SPmyvGlFB2hZAi6Fs4Df2F0z7TJWr3xF8g/2JUNiGYTvCMTcGaZLNH2DyW6nHv8aBgPfa1tfTTFN0vgRwxF1w/mSJ4D0TMkNAjlJKk6EIvy0T1vRtzByTP2Ypj2fAbP+OhWKdFuMowF7yiU5Zur/ed3KPLhlQ10/EJlh5sa4LrpBrhuukHyiuOMgmHAX6LHvZfY9K8vQkX4QVFcf8NnEiqyGaSTjbOA6PjpDyGCgWWHegcPvePiX7wkDrBrMoh1/WiBvIgaO7bzu93wqrmJn0HdjshMSGgkQOddCyHE8PGixfWOqUF6xIl2xSmRHIKjEO3/cZesU9l6oXveDDBd3doXZPA9E9Hss/oT8nLhuXJsrBSKcU8a77vOOAWm9aFk9t4NCY0EEGSepI0F7ygEd7peezfNiojTmTO7r+uTDBIYgLwVoirljLoIruuvhvsqn6FE50r1L7Jy3zAF7humqJ5vdLJjGUhCI024Zl4D72WXRLiLdl99BQyp3uTLjr5MZBMMA/eUq9Jdi4Twu68Xc7JzhU5CI10YDJJ2167pU+CansrZD5EN8BcMBoD0WD4RIfAXD0P3TTfAO/bidFdFE2QJjWPHjmH16tVobW1Ffn4+KisrMXz48JA4DQ0NeOCBB3Dq1Cl4vV4sX74c5eXlccOamppw3333oa6uDh6PB5MnT8b9998Pg8GA9evX46WXXsKgQb7rHK+66iqsWbNGxeYTAGSrnfjiQTAePAIh0UuEUkUmGSGohDDEkXH7I1kLw0T61MoiZAmNNWvWYNGiRSgvL8fmzZvxwAMP4IUXXgiJ8+ijj2LcuHHYsGEDmpubcfPNN2PSpElwOp0xwzZu3IiRI0fi97//PTweDxYtWoSamhrceOONAICKigrce++96reckCD2YOuZWArvRUNle0dNF/3tbEUAEhiqwgd5LyD6iGs20NTUhIMHD2Lu3LkAgLlz5+LgwYNobm4OiXf48GFMnepzCVFYWIjRo0fjjTfeiBvGMAw6OzshCALcbjc8Hg8GDx6sXgsJ9WAY3QsMAOSCgkia9p/fga475muTeYYblMRdadTV1WHw4MHgemcxHMdh0KBBqKurQ2Fh3ybuZZddhurqapSWluLUqVPYu3cvSkpK4oatWLEC99xzD6699lp0d3dj8eLFmDBhQiDfbdu2YdeuXXA4HLjnnntw5ZXKvHkWFUnfnJYuHA79uQzg8yzwADBbDLAnUD+9tMl/pZEa9dFLm9SE2qQE9fN1GTmIAAoKbGCj1DsT3pFqG+GrV6/Gww8/jPLychQXF2Py5Mkw9J6mjRW2fft2jBo1Cs8//zw6OzuxbNkybN++HXPmzMHChQuxfPlyGI1G7N69GytWrEB1dTUKCuTPdpuaOiAI+hDtDocdDQ3t6a5GBIa2HlgBuHq8OK+wfnpqk/9zS7Y+emqTWlCb0o/Nw4MD0NLSBcEaWW+9tIdlmZiT7bhCw+l04uzZs+B5HhzHged5nDt3Dk5nqL+fwsJCPP7444G/ly1bhpEjR8YNe/HFF/Hwww+DZVnY7XZMnz4dH330EebMmQOHo+8OiGuuuQZOpxNHjhzBpEmTZDafkIVfndMPN5AJglBG3D2NoqIijBkzBlu3bgUAbN26FWPGjAlRTQFAS0sLvF4vAGDPnj2ora0N7IPECispKcF7770HAHC73dizZw8uueQSAMDZs2cD+R86dAinT5/GiBGZ56tF73hHXwT3xFK4ZsR2kEgQBCFLPfXggw9i9erVePrpp5GXl4fKykoAvhXDqlWrUFpaiv379+Ohhx4Cy7IoKCjAxo0bYe11XR0r7Fe/+hXWrFmDefPmged5XH311bjlllsAAE888QQOHDgAlmVhNBrx2GOPhaw+CJXgOLhmXpvuWhAEkQEwopjdTuxpT0Nb9NQm+yMbAITdNpgAemqTWlCb0o/tub+Cq29A5+3fh1A8KCJcL+2Jt6dBN/cRBEGkAO9wn8VoprsXITciBEEQKcA9bRI8V46FmGE39YVDKw2CIIhUwLIQ83XugkcGJDQIgiAI2ZDQIAiCIGRDQoMgCIKQDQkNgiAIQjYkNAiCIAjZkNAgCIIgZEPnNIisof0/7gKy28EBQaQdEhpE9kA31xGE5pB6iiAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2WW9yy7JMuqsQgt7qowbUpsyA2qR/9NCeeHXI+uteCYIgCPUg9RRBEAQhGxIaBEEQhGxIaBAEQRCyIaFBEARByIaEBkEQBCEbEhoEQRCEbEhoEARBELIhoUEQBEHIhoQGQRAEIRsSGirR0tKCZcuWYfbs2Zg3bx5+8pOfoLm5GQBw7NgxLFiwALNnz8aCBQtw/PjxQLpYYXrhySefxKhRo1BbWwsgs9vjcrmwZs0azJo1C/PmzcN//ud/AsjsNu3cuRMVFRUoLy/HvHnzUFNTAyCz2lRZWYnp06eH9DMg8TbooX1SbYo1TsSrtx7aBAAQCVVoaWkRP/zww8Dfjz76qHjfffeJoiiKt912m/jaa6+JoiiKr732mnjbbbcF4sUK0wNffvmleOedd4rXX3+9+NVXX4mimNnt+fWvfy0+9NBDoiAIoiiKYkNDgyiKmdsmQRDEiRMnBt7NoUOHxCuuuELkeT6j2vTJJ5+IZ86cEW+44YZAW0Qx8feih/ZJtSnWOCGK+m+TKIoiCQ2N2L59u3j77beLjY2N4oQJE0Sv1yuKoih6vV5xwoQJYlNTU8wwPeByucRbbrlFPHHiRKDjZ3J7Ojo6xAkTJogdHR0hv2dymwRBECdNmiR++umnoiiK4scffyzOmjUrY9sUPMAm2ga9tS9cEAbjHydEMXP6YdZ7uU0HgiDg5ZdfxvTp01FXV4fBgweD4zgAAMdxGDRoEOrq6iCKYtSwwsLCdDYBAPC73/0O3/3udzF06NDAb5ncnpMnTyI/Px9PPvkkPvroI+Tk5OCnP/0pLBZLxraJYRj89re/xYoVK2Cz2dDZ2Ylnnnkmo9+Tn0TbkCntCx4ngMz5tmhPQwN+/etfw2az4dZbb013VRJm7969+OKLL7Bo0aJ0V0U1vF4vTp48ibFjx+Jvf/sb/v3f/x333HMPurq60l21hPF6vXjmmWfw9NNPY+fOndiwYQN+/vOfZ3Sb+guZOk7QSkNlKisr8e2332Ljxo1gWRZOpxNnz54Fz/PgOA48z+PcuXNwOp0QRTFqWLr55JNP8M0332DGjBkAgPr6etx555247777MrI9AFBcXAyDwYC5c+cCAC6//HIUFBTAYrFkbJsOHTqEc+fOYcKECQCACRMmwGq1wmw2Z2yb/CT67WRC+8LHCSDx9qYaWmmoyG9+8xt8+eWXeOqpp2AymQAARUVFGDNmDLZu3QoA2Lp1K8aMGYPCwsKYYenmrrvuwq5du/D222/j7bffxpAhQ/Dss8/ixhtvzMj2AEBhYSGuvvpq7N69G4DPGqWpqQnDhw/P2DYNGTIE9fX1+OabbwAAR48eRWNjI4YNG5axbfKT6Lej9/ZJjRNA5owVdAmTShw5cgRz587F8OHDYbFYAAAlJSV46qmncPToUaxevRptbW3Iy8tDZWUlLrroIgCIGaYnpk+fjo0bN+LSSy/N6PacPHkSv/rVr9Da2gqDwYCf/exnmDZtWka36fXXX8emTZvAML4b11atWoWysrKMatO6detQU1ODxsZGFBQUID8/H9u2bUu4DXpon1Sbfvvb30YdJzKhTQAJDYIgCEIBpJ4iCIIgZENCgyAIgpANCQ2CIAhCNiQ0CIIgCNmQ0CAIgiBkQ0KDIAiCkA0JDYIgCEI2JDQIgiAI2fw/Me9yy6rjJcUAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_kepler = Lightcurve(time=times_kp, counts=flux_kp, err_dist=\"gauss\", err=np.ones_like(times_kp))\n", + "lc_kepler.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "e53378f7", + "metadata": {}, + "source": [ + "##### Plotting the first 3000 data points of the kepler lightcurve\n", + "The unevenness of the temporal sampling can be better seen with this" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "837c95a4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0, 'Days')" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6cAAAHXCAYAAABAoSyYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd5wctdnHf7O714vtOxtjbMBgjDFgG0zvhBRK6CWF/oJphoQkEJMAIRBMDZAAocV0BxJ6DYbQezHuvfd6d77e9nZ33j/2ZneKpJFmNNtO33yIb2c0kkaj9uh59EjTdV2HQqFQKBQKhUKhUCgUWSSU7QwoFAqFQqFQKBQKhUKhhFOFQqFQKBQKhUKhUGQdJZwqFAqFQqFQKBQKhSLrKOFUoVAoFAqFQqFQKBRZRwmnCoVCoVAoFAqFQqHIOko4VSgUCoVCoVAoFApF1lHCqUKhUCgUCoVCoVAosk4k2xnoCyQSOuLxRFbzEImEEItlNw8KhSiq3iryFVV3FfmIqreKfETV2/wgHA4hFNJcwynhNAPE4wk0NXVkLf1QSENtbSVaWjqRSOhZy4dCIYKqt4p8RdVdRT6i6q0iH1H1Nn/o378coVDYNZwy61UoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKBQKRdZRwqlCoVAoFAqFQqFQKLKOEk4VCoVCoVAoFAqFQpF1lHCqUCgUCoVCoVAoFIqso4RThUKhUCgUCoVCoVBkHSWcKhQKhUKhUCgUCoUi6yjhVKFQKBQKhUKhUCgUWUcJpwqFQqFQKBQKhUKhyDpKOFUoFAqFQqFQKHzyysZPce6MW9Ha05HtrCgUeYsSThUKhUKhUCgUCp9MWfMW6qPN+GzbnGxnRaHIW5RwqlAoFAqFQqFQKBSKrKOEU4VCoVAoFAqFQqFQZB0lnCoUioIimujB+s66bGdDoVAoFAqFQiGIEk4VCkVBcd2CRzFh9l1Y0rY221lRKBQKhUKhUAighFOFQlFQLGpbAwCY37IqyzlRKBQKhUKhUIighFOFQlGQ6NCznYWCIpqI4f9m3oEpq9/KdlYUCoVCoVAUKEo4VSgUBYmuK+FUJivbN2BTdwNe2fRptrOiUCgUCoWiQFHCqUKhKEiU5lShUCgU2eDBla+guac929lQKPISJZwqFIqCJKGEU4VCoVBkiZc3fpztLCgUeYkSThUKRWGiZFOFQqFQZImE2lqiUHhCCacKhaIgUZpThUKhUCgUivxCCacKhaIgUXtOFQqFQqFQKPILJZwqFIqCRHnrVSgUCoVCocgvlHCqUCgKEqU5lYsGLdtZUCgUCoVCUeAo4VShUBQkSnMqFyXsKxQKBT+qz1QovKGEU4VCUZAoh0gKhUKhUCgU+YUSThUKhULhijLrVSgUCoVCETRKOFUoFAWJMqlSKBQKhUKhyC+UcKpQKAoStedUoVAoFAqFIr9QwqlCoShI8klzqus6Pq6fhfru5mxnRaFQKBQKRQao627Cd42LPD27uasBL234GNFETHKusk8k2xlQKBSKIEjkkeb0y23zcNey59AvUoEXDrgl29lRKBQKhSKjPL/+A5SEinDGDkdlOysZ47yZkwEAD475DUZWDhN69rfz/4HGnlYkoOPnQ48JIntZQ2lOFQpFQZJPmtO1nVsBAM2x9iznRKFQKBQyyJ8RKDd4dt27mLLmrWxnIyts6qoXfqaxp7X32QbZ2ck6SjhVKBQFST5NDPLCD25eZFKhUCgUivwin+YrmUAJpwqFoiBRDpEko4pToVAoFArp+LH0KsR1YyWcKhSKgiSfzHrVGaIKhUKhUCgUSjhVKBQFSv6IpsiPpc98yKNCoVAoFHmGv/lK4Q3OSjhVKBSKLKM0pwqFQlFo5NUSqSKbqG1IFpRwqlAoFFlGiaYKhUJRWCh5Q6HwhhJOFQqFIssozalCoVAoFH0TtY5hJavC6fTp03H55Zfj8MMPx6hRo/Dxxx+7PjNt2jQcd9xxGDNmDE466SR89tlnlvu6ruP+++/H4YcfjrFjx+LCCy/EmjVrLGEeeeQR/OIXv8C4ceNw0EEHEdNZvHgxzj77bIwZMwZHHXUUHn/8ce8vqlAoMo4S9xQKhUKhUOQ6+eTAMRNkVTjt6OjAqFGjcNNNN3GFnzVrFq655hqceeaZeP311/GjH/0IEydOxIoVK1JhpkyZgqlTp+Lmm2/Giy++iLKyMkyYMAHRaDQVpqenB8cddxx++ctfEtNpa2vDxRdfjB122AGvvvoqJk2ahAcffBAvv/yyvxdWKBQKhUKhUCgUil78iKZaAa7ER7KZ+FFHHYWjjjqKO/wzzzyDI488EhMmTAAAXH311fjyyy/x3HPP4aabboKu63j22WcxceJE/OhHPwIA3H333Tj00EPx0Ucf4bjjjgMA/PrXvwYAvPrqq8R03nzzTfT09OCOO+5AUVERRo4ciUWLFuHpp5/GmWee6eeVFYqcIaEnENKUZX8uoOXB6KJMjxUKhUKhCAKlOTWTVeFUlNmzZ+Piiy+2XDv88MPxySefAADWr1+Puro6HHbYYan7VVVVGDduHGbPnp0STnnSOeigg1BUVGRJZ8qUKWhra0NlZaVw3kOh7E3sjLSzmQdZdMa78XnDXBxWMwYVkdJsZydveWL123hhw8d44YCbMaC4KtvZIeK33mqaljd1PmQSTnM1z2b5OVfzmCsUUp+r6DuoeisXTVNl6QXRMiuIeuujrmjIn7kOL3klnNbX16O2ttZyrba2FnV1dQCQ+nfgwIHUMLzp7LTTTpZrRpz19fXCwmkkEkJtrbhAK5sBAyqynQXf3DH3Tby8+lPM3mEZ7tr/0mxnJ2954cvk/u650eU4fcgRws/H9QQ+3DgTBwzcAwNKgq3bXuttaWlRTrQ7HiqaSlJ/52qe+4XKU3/nah5zjULocxV9D1Vv5VBalj9jUC7htczyud5WVpR6fu98muvwklfCKUA2f7Nfs//WdV3YbI4UBy19N2KxBFpaOoWfk0UopGHAgAo0NrYjkchv04EZW5cCAL7ZshANDW1Zzk3+09HW7akc393yLe5b/iJ2LhuMKeMnBZAz//W2u6snb+pIR3t6T3yu5rmlNd2H5Woec4VC6nMVfQdVb+XS2Zk/Y1AuIVpmhVBv29o6PdeV7u78qWfV1WUoKgq7hssr4XTgwIGor6+3XGtoaEhpNQcNGgQgqUGtqalJhdm2bRv23ntv3+kAcGhuecmFBpNI6DmRDz8YeyQTSOT9u+QCCd1b3VzVvhkAsKZzS+DfwWu91T2+W7bJ1TwnTIf25Woec41C6HMVfQ9Vb+Wg66ocveC1zPK53ib81JU8neuwyCtvKPvssw++/PJLy7WvvvoK++yzDwBg2LBhGDRoEL766qvU/ba2NsyZMycVhjed7777Dj09PZZ0Ro4c6Wm/qUIeoV6nLHE9keWc9G1KQkXugfogs5uX4YGVLyOux9HS046ZTUtTVhcslLMhhUKhUCgUiiwLp+3t7Vi0aBEWLVoEIOnQaNGiRan9oZMmTcK9996bCn/++efjs88+w5NPPokVK1bgwQcfxPz583HOOecASJrcnn/++Xj44Yfx4YcfYsmSJZg0aRK23357HHPMMal4Nm7ciEWLFmHjxo1IJBKpPBjHzZx00kmIRCK44YYbsGzZMrzzzjt49tlnccEFF2SqaBQUwobm1IdwGtcTWNW+iUtooLG1uxFburd5fj5X8CoSKeGUzB8WPoZ3tnyD2c3L8et59+P6Rf/EjOal2c6WQqFQKBQ5i3k+5mdulq/0vTdmk1Wz3vnz5+P8889P/Z48eTIA4KqrrsKvfvUrbNq0CaFQWn4eP3487r33Xvz973/Hfffdh+HDh+Ohhx7CiBEjUmEuueQSdHZ24qabbkJLSwv2228/TJkyBcXFxakwDzzwAF577bXU71NPPRUA8OGHH2LYsGGoqqrCE088gb/85S84/fTTMWDAAFx55ZU466yzgioKBSeGWa8fzeljq9/Am5u/xMRdTsPJ2x/m/gCB82feBgB495B7POcjnykJFbsHyjLZPJ2lJFSEzb2LFyvbN2D//qOY4ZXmVKFQKBR9Fd0knunQ+9yY6E8gL7yyyqpwetBBB2HJkiXU+1OnTnVcO/7443H88cdTn9E0DVdffTWuvvpqapg777wTd955JzNve+yxB55//nlmGEXmSWlOfawzvbU5afb9af1sz8JpXyeizkd1QTP95T5wFN7QolAUPl3xblw592/48XYH4BdDf5jt7CgUBUFf1CL2xXdmoWaYirwirLl7+XLDOFNSV92BJ+/TigBQ30GhyDtmNC3Fhq56PL12WrazoshB1AyDH53xq2/QF9+ZjhJOFXlFSIKOyYgj0Qf3NdhRIlEwiJar+g4KhUKhUAC3LXFaTRY6yqjXihJOFXlFWII5qWFmqUN5/FUED492uq/tr1EoFAqFIk1aPPuqcX4W86HIBZRwqsgrQjKEU01pTtN4FIrywgw1e3kUNZfOh9JUZvAKhRW1LUKhUMhAja9WlHCqyCvkmPUmq73qDBSZoGCmr6q5KBQW+uKRFwpFEPT5ptTnC8CKEk4VfQ6lOVVkFg7xVGlgFAqFosBQcwwFH6I1pScRCyQfuYISThV5hYy9eSmHSGrgKBytXp6TD3tOlaWBQmFFmfUqFHLo6+OL6PsbRyIChdkPKeFUkV9IaINGQ9Z1/w6R8t2sqxA7tVwjm+ecbu1uRFusU0pc+V3TFQqFIrPk+/wgk9hLSpUdmw1dddnOQqAo4VSRV8jUnJpXqha3rkF7rEs4rr6+2qeQhXzxtCsexfkzb8OZ0/8kPW6FQqFQKIKir82tRN/Wui2t8JQMSjhVZJS4nsD1C/+J/2z40NPzMpqg4fHXaNzzW1biN/MfxG/nPyAcV1/rQBV8mFd9eZTTQQwtrbEOqfGpuq5QKBSKYNAZv/KfrngUdd1N9ACCmuJEgR+FqIRTRUZZ17kFM5uX4um107KWB82mOV3SthYAsLZzK9fzZsEj/y1PvIlF+bBOlyt55DLrVebVCoVCocgyXfFuthDlQiwRR0tPu4Sc5P3kysL/zboD582cjKaeVuJ9cc2pEk4VihxCglmvT2+9ZkdKyqmSgoSqFQpF4aOWlBSFxoUpIarN0/NXz7sfP/v+z2iMkoUwGvbpWKGdptDYK5Ru7GqQEp+5fAqxH1LCqSLDZL8Z2TWn4pg1p4XVgSqyg+xWEdfjuHHRFKlxqrquUCgUhY0hlG7p2ubp+RUdGwEAqzs3+8pHXxttROejyqxXoZCIeRI+r2WF+PMSvfV6NYswr1jped5BZH+poFARHVrlfonFrWuxpnOL1Dj72mRBoVAo7NR3N+Pf6z9AR9zdgWI+95l+fQyIjmjO9PK59ILHqjktvJmcEk4VGcXciCYteNTX814ROee0JxHDxs56yzXzU/lu1luInVouYB5os3mUjEKhUCjkcdPiJ/DMuneJfjP87NXMNfzObMTnFjaHSPk9tRJGaU6tKOFUkVHMwly2vH/aO01WLv606HFcNPtOLGxdTXyir3WgBvkg1OZKHnlyIdshUjAOlgqjssf1ONolnf2qUCj6Fit7zVbXdybPmYwmYogmYgCA82ZOzlq+ZJNt7+zZTj/TiM4lC21Prh0lnCoyil8PYzIFDp49dLNblgMA5jQvT12zmvUWdgeh8Ib4uCFXmAwFIJgXSl2/Ys59OGP6nzyda8yDrutoiLYEErci18iNBTBe1nVuxcOrXkebWpzxjTEXOfnbP+D0727Icm5yD9G5mnN0IY83U9e9h/tXvOwpT7mMsOZUeetVKOQRz4EGZdcqiU8vCschUn5NrfIUDi2m7O9gnOWrcLK2dy/u5m45XhPtPLjqFfxy+i34auv8QOJXKLzyhwWP4s3NX+Cpte9kOyt5T8jUr8f0eBZzEgx+5zZ+jXdIqUcTPXhu/fuYtvWbvJ97+aE73oOvGxdkOxuBomYwioySU5pTCc/l+55TRTCIroLKNkEOwqS5D88FhHhnyzcAgP9t+D7LOVEUIrqu45+r38S3jQuFn23oSWr0C2lvpCIYMt3d28dM0hh60aw7U3/ngqJDLvwl/u8NHwSYj9xACaeKjBL3uYlbirfe3n+Nzk/88GO53np1Xccbm77AyvaNvuPKdb7eNh/rOrdmOxs5h7lad8WjvuMLB6A5LRSz3kyhSksRBIva1uDVTZ/hz4ufdNyr627CJo5zFAvdmUomCAWyrz+X8Out11/5kBZD66PNqb9zWTj9rnERvt5G1mzSNL4ipb2qwzpXLMSqqIRTRUaJ54T5i3hLtna06W5Exqb0uS0r8Mjq1zFx7n1Y1LrGd3wirOjInEC8sbMetyx5GpfMvjtjaeYCXLXNNLp850EjYqfwJ07+UcKjIh+JJnqo986bORn/N+sO1zgK3ZlKZuDpY/O3nP0vRgruObUl55Z+LptS37T4Cdyy5KnA4g/1AdGt8N9QkVP4P5vJ/6TbrjkVxepx2D/GodcA8Nv5D0qIkZ+XN36SsbQae1ozllYu4d8xRPBpZovGaCtWd/g7rD1X6ct7ovoK2WhlMtq2soLwTxBO53IJv92X39Jxq6O56hCoM97t6TmR8cLpU6Lw6mIk2xlQ9C1ywRTDt0MkUx/SVyegXrrCvuSkR3zPaRoZ+5iDKOsgJrS/nHELAODlA25FZaRMevwKRaEhwyqir45bMgnmuK7cwW9/L14+DtUpk1zVnGbCE3a+LD77oe/MFhUFgcwmaQzQol2wbtGcqkGed8Gh0FeaaXCdc2oO1QcnjmbrgUyhJuiKfETGxNSv7wdF3xAQMom9N85ns14WW7obiUeNicwlg/ApkWsU/hsqchZvRr3yzHq9YtZsKccSwBVz7gXgvmKY6ZXmuS0rMpqeGT8LHlu6G+VmRhJBinK5sRddLmrhShEEfsZA49l5LSvV4oxPghzN/rf1OyxrWx9gCu741pz6dYjkcj8XrPC8cPfy53HOjL/4isNuPVGIyyRKOFVkEQkrwHoC32xbgHYhUwr/uyFSf6kBHms7t+CLhrk4c/qf8MKGj6jhMm3Wu6w9u4N7Cg6h3FyLnl43zXeSQdRL2XH+Z/2Hqb+VgxaFgg8/i3xmgaEu2iQhN30Xnu/gpVdb17kV9614Eb+a93cPT8sjs+6Q+I6SMZOrC5pehXqRp/qC1l4Jp4qM4n8fg/X3u1u/xc1LnsJNBLf6QeXFPJGWsT+wEDQsr2/6HACYh7v3JbNe3bfjr8LHLIRHdboHUoVCkcZPPxo2DaA9iZiM7PRZeDymehnbW2MdXrIjnewvvOenWa934VTEIZJdc1p4cwwlnCoyQnusy3HN2wKw9aFFrasBAAtaVwnH4LXr1ak/FCwKsQOVhuSJQL4teLCOxwiKoMso+5M7RSHCY4FCr3vpPjhXJ/d9nULpN4THe7s/JJdiyFVrm0xkSx0lo1BI4I1NX+CM6Tfio7qZ0k1FvDRSnk4zoSfw3tbvKHflak7zEg8rC9k4ezMX9qVkQyQPolYGKczl6DxDoWCSDY+tPOMXra2aryvh1B+Ffpa07/7eZ/G4za1I+WvobsZ9y1/Exq56f4lnA4HiLnRP0YASThUZ4Jl17wIAXpFwpqZ9YPazj5G1QvnKxk/xtxUvEu+ZV+zyTUMVNNnWjq7u2GT5nS+ma6oWZZ7ANaeBxq7oq/AIRUo4zQTBjHW50m/4VySInu/t9NfLgiS83rfiRfyv7jvcsvgpobTlkgGz3j4guhX+GypyC8kqEk+rlxzPLG/fYHuGHC5XD4IWQYYZEU8MmRDkL+/1HGyQrQmY+V2zc75rAA6RpMdojjtXpmQKRW7DpTmlNCfz9VhCCad+KHjdlc95gbhwKpY8ae7V0N0MAFjTuQXvb50ulL4szNkWmVuJlHZYaU4VChlQVnE99X02zamHIYLnCdZk2Xx8TCFMqmUeh8Mq22yYbuaC5pTnTDLZ9SiQsla2twpFXmDuT7riUcsdA6U59UdwZr250c9me8uS25hIEvzMV+5d8YLkHIkjUoYic4BsW6hlAiWcKjKKfGHOi3CqueaFahal67hyzt9Sv3N1U74IMt6B57tmQ5D3MgFb1LoGTT1tvtI1v+kKuxbeJbwMCmHRJHACLiL1DRTZwqh5K9o34NTvrseU1W9ZrgO5sR8/nwlKQMiVOYXf/kv0edHwJMEv2wI1YH8PgfwIfPfsWGNllsJ/Q0UOQOvEs3MMix9vvQkk0BYXOVM198mVwTAIRLXCqzs247fzH8RFs+7AtmiLFJPn13qP2eHlBwP39Z1mEChhS6HIPnztMBnm/a3fAwBe2fSp41nVnv3hx7y6LxC0cEu8nwsFbspCUHMrJZwqFFLQCX/Jwd+eT4bmlHIrbruRCyt1fpFp1stOJ/NlJTo2rO/cCgDoiHfj7Bl/wb/W/y8zCZvKpiJc6i3NgMn/mq5Q5D9comlvINb5wao9B8+0rd+gIdoi9EyuLBr4XpgVfly3/XJxiESY++VGyaURyY9IWPt2tkL03quEU0XesqJ9g7fOqLche+l77R1iIZxJJtepE72TzEZZ+R3on1//gaSc8CPDXCyICU6gR8nk3LTCP4XQNyhyD556ZbQn5p57VT8zwhubvsh2FjzhV+DxrTl1dYhE2nOa/TptsU4QcogksOe0AIVRO0o4VWSAdEOS2Xk8u+5dT2YT9mZN7kDI8dq1jJnSOgZJIWh/aYgKCLLqp/B+G1M+c3Hg+aJhLpa1rc92NqSSCxMZhSIYknU7yhBOVf3PDJWR3LSECRph2yHHA+JmvblQp607TgMy6+0Dolsk2xlQ9AUozoWkxOxdOGQ7RCJjF4YzdQxLkHgT8MkCFEuuyoYg71fwzsZgJ0dzKo+mnjZMXvqsxBjtHkSz3waCIBcmSoq+iVHzWJpTVTszw6Di/kLhC6Xf8OsQyW3sJt3PNWsVkTIQybvdU3TuLWf7p/DFb0VB46UrsnvrFdFU2U1gC0HrKMOsl6tjzUJRmQeH59a/j5c2fJyhdL2Hl3FEgcxBujsRdQ8kyM1LnpIep0LRFxDxjN6jK81pUHCXXw5awuQFrma9ubnnNBNOx7wcoZhvKM2pImvIaLjl4RIJOXFiz5sh0BaCGW+QsLR+2ZgMmYW0qeveAwCcNfQHGc+HO+ayya2BJ4yw9DhnNy+THqcoQdfGXJgoKQoPLuFUVb7A0cG7KCuqQcwNMq2FtKcmes7pxo56bOyql5wrf4jtOeXHrlApxHNPleZUkTk0TUKHZ53E71G5s8/4+DqQFzd8hO54j9NbbwHMAjIlNGajpLKl2fZTprmwKtoW60ytTIcz4LY+H51lKRRZgava6r3/r+p4tsnXL+B7puazT3d72j62P73sPV/pycL83mLeekXMegtfdCv8N1TkDjkiyKXMeln5sd1qj3fh26aFTm+9SpMKAGjsaXUNk23NaS6nKzuXfsq6vrsZZ07/E/648DEAhW+Vpus6lrdvYHs2VSgIZENjwdO2jYk7c4jLkfE4nxExseaOM2e+S7DCpdsTns45zTGCymO4D4huhf+GipyC1lSjiR50x+lnssnE62S7Idrs9Nab5YFEyn5RCfnY3L3NPZ0C1I61xzrTaXlcMQ0CP++9uG0NAGBOy4pkXNl+mYD5sH4Grpr7N9yz/D9S482dSaaikBBQnPqPR8FElSGLYEtH7hF48vB6lIwIuejRXzZKOFVkDkaDOuXb63HKd38Uiw6ar0m48SSpoTfF2pzhdYK33iwOT+s6t+KEbybhlY2fZC0PdlhdZlAlNb9lFf68+Ak097Q77gVp1vvaps9wxvQ/4eO6mQD8OULIJUHGnneiy/4cyq9fvt62AADwacPs7GZEoeBAnraucNpwduArP3HneLnxXXhzEdcT+LJhHlp7OmzPi46B9t8u3npzdAzSKX+7Pydg1psDW3+CRgmniszB6Ex4G6ZdALB0BJydVdoUyzB9cj63sHU18VmHt94sdpD/3fw1AGDKmrd9xiT+Dl66xqBMoK9d8BC+bVyEf6//wJlmgN/n2bXJPS6vbPo0mVaG0uXCR/JOxxSFTa450VAo/KKn/mWNuQr/8C0CfN4wB/XdzdJizAS8Y9h7W7/DrUufwfWL/ml7PvlvZ7wbD6x8GcvbN4ilXxBmvfxzHpEpg9Ojf+EJq0o4VWSY4DoU/s7Ke0POlaNjookYXt/8ebazQYDhrTfgoiMdeUKqE7Obl6Eh2hJADnxoTi1/+y8okThmNy+jLsYYsfmJn4ds7kde1bGJK5xCkS+Q2tM7W76xhpFQr1/c8FHGjufKRXiKcHrjYty2dCounXN38BmSCG/tWNq2DgCwrH297flkDC9t+BjvbPkGV839m0t6YlZpuTIXc2I26/X2nBt9wSGSOkpGkTkk2MmbHVAk/xbf52fVm4oRz5FzTr9tXOD52QUtqyy/5c69/WvHvUIyzyZNwP6w8DEUaxG8efCdUtM3JyX+rtkbaP/Q6/jo3UPuId4n1Y9cnRbI5vqF/0RXIor79r4q21lR5CDZ0FfwCZU6Xt74CWY2L01deWDly7YQ/nly7TsAcvV4rtxgfVcdAKAj3s33QBYXw5osjg358uF2LndzzLndhge3YnA6p8yNUcmcb5H5oUj+C/HoGDuFL34rso510h5kOpxmvb2dqZfOzNEhZmhTvrH6aNCTiHuO68GVr8jIUs5B6rDTXiut3zrKOJzeK7IcIchoIzLbGamdvL91usQU/BPXE4Fow2c2L3XRKtPJlcmSorDgqVVNPe143GW7h5dtFrqu4+m10zArB84pzja6ztfG82l/4L/WvS/8TMhFjPD69qLnnOYmIsKpdwrRP5ISThV5hcP0w+Ih1dsGfF7PZ7pjl6skzSlHJ/vE2v9aVr79pNsW77T8ljuJppdl0FpmUsrGu2VCUPDqCMFLePf4/Gw6dX/27ytf8h4/KUmfz09e8gzOmfEXoX1NQdeI/Jg8KfIP93rFcyySl9q5oHUV/rPhw9QxUwp3zJrF6xf+E//d/BUzfDYXtcxbY3jzQTMxTT/PP78SwT6fyJXFQHM+ctVpUz6ghFNF4JhlP5kTNqtRr3dTSpE8OZzFZO0cTe8aW27zIsncs+zfAadA0JzqhnCaCUyDUo4MlF5wOkTK/Xf5utfM/fvGxVnOiUIRLLLao5exK1tjR67CU4Jmi56ZzUvx4KpXfccZFF4WWMOmCZ6f49RET0LIh3FJBLF5qDVsIZr5KuG0j9Ie60QL4eiNIMiU/EZLx97o/TRke1zZ6iD9pBvk+WBE7aWu4+FVr6Ohp8VyTTakvS+G6VrGFxEE09M9TQsyQ0bquKTvE9P5zd3vWf5v4vFDssitr6goFGR1ZV7adeFNgf3iXob5JTiY92Bxak5NYgRpawvv29+y5ClaTojY5zG5WM6JgE4o6AsKWSWc9lH+uPCfrt7TgkB+mzKv1JE7gmsXPIzrFjwSSF6y1UfEfe1plJFr/oFgU3cD3tz8RQB5sEIanIxiyohZr0dHCEHgb89r/o58IsLp5u5teKrXoYtC4YVsTIizqTmlve8Hdd/7zU7e4dfs1W+8QeDFP4h5UZj0DO+2KbvXdNFzTnNl3LIK6FnMSJ6jhNM+yraeFtRH+c7d8ovMzdrmtm4fKGn9wILWVZjTssL0nBFevOdw7DnNQO9D6qRldsRBd+qk/U9BpEgUTjO659S7SZPsUUxmbPk0wIoIpwDQaPFOKZfcW8dXyMbc5ueZxph8QGazvmf5fyTGlj/w9I351A9406abNKc+fICIIjv+2c3L8NbmL33HYxeZ+Z8LJmy+ooTTPkymqre1A/ebqrXzM8fmJigax8B4X+0mCYnBe+slaeEy5SVYBuTvEoDmlPBZ0956+eIQyZVzgDCvmIp9H4tRb5bGHbq5d2YFexFiiTjmNC9P/Y4LCqfmdx5XPcJTHhQKAPj9gkewrnNr4OnwtBWeMJ6sOwrRLWjA8GoOcwEvPjzMmtOEZX5m4O39Rc85bexu85SOwR8WPoaHVr2Guu4mX/GYETtKRgQlnCoKFA1aXq6+2CfuIit1/9v6nf/07etiAUsSbbFO4oRbptmot3pAfoZ41ihRuPaQpCv0c04zsYjgZWAPDvH0n1v/fupAdX8xeecfK1/BX5Y8zR3+2XXv4bqFj6Z+xwSPWDIvnJSEioWedSOfJqUKb9jbxsauemK4tR1b8NDKV9Ee6yTe95MmCR6/Al4WOFWNthLEUTLZ9fAqbv0T1siaUwPPqgBXs950/dV1HZ9snu0xJSudPp1+6V5so8UDFzyRbGdAkR2yNcjInLQ7zXrZca/p2GI86B1bEms6t/iIjE1LTzt+9v2fMbx8iOOeV+3vzKal6E70+M0ale5ED3Rdx0sbP8bStnW4YffzM7b/kjQJSGlOA0zX+BY0F/Kk72dHtjDrJb7n1r+P59a/j+tGnuM7Lq+8veVrofBfbptn+S1a18wOK/zKkt82LkSbBOFDkb/EKQLfLUuewoauekT1GH474meB54OnHfi2Ycone/8A4B1ZRPecZlNIsXxSbodI5j2nZsHM33uInHMq0/GQ3LgENKcCxWUPmovOoPyihNO+Su9MTNf1jK3w86Tilh+H5tL2LF8+0vGTNEXM/NnSf279+zhvx2OF4uBldcfm3n83Oe6JD3hJrl/0T8c1L2MI65F3tnyNJ3sdzWyNNga+Z5aFoR2QlV5TTys641EMKa0lpGX623R9WOkgoTSMvK5q34SP62fhvB1/gqJQBrtqh3lCBpKUFo+gcGoRJvz1g39e/KSv5xX5h9MHAXliuy2a3NssOt4Q0+TosLnCeNpfSDbhVNARFRyyqTn14jfBPBexPp/826vg5Ja+xYRYYpH1CFrf2CGVgehzrmH7wMKQMuvto/hxCuQVHe4djvvZVt7umeM2d5W/nne/y1NiaciE5dwll1fK3q+bkfo7rieIE7YgypG0qJHecyonxV98fwv+b9YdFA0JbVDypsW4Yu69eHHjR3hnyzfC+eTeYxvQJNYvuq5z7R+1f3HR72z+jrLbVC63UUUw0ITTQSX9AEDqfjY75sURHu2P3z6xL0yQ2dh6eUp5CAunGdiCIhPzuGsWrPXUfW/xipxzKnOhpDsRlRaXaiPeUcJpHyVtiphbCE3jNetv0r5C8wQ31Vn6WMkLYqJOi5E1OSed6Sk/B/6J6wnKwCE/TVaJyE6N9G1oe069pG3Wlj+y+nXh53nrKZ9zleCx5+OFjR/hp99ch+XtG5jP2RckRPNqDq9ESYVf4pQa2L+oCgDQFpex55ScxreNC1N/82jfPGlONYoJZx8liDKgfbtMCDpetH5h2jmnqYVhSZmz8eamL7GgZVVvGvISoZnm88JbhvY8G78Wtq7Gsrb1QmkW4tilhNM+imbSnWYuTXD0VG77DOih7ffmNC/HT7+5LvWbx0lEMp7cGHS7GCt4ogJ2lHCcix9Yna45Z3E9QQwbRBFrjO5M9jclabVJB5Dbr1OxrThfPudeX/nzgz232ZiEPr12GgDgv5u/YoaztwLSxG5jVz0+qZ9FfN68X0o5MFKIYu9XaGMM79jDlSZHGB5Nkhdtk7mFKOHUCq08/G01SNIVj+LsGX/BY6vf9JQ3XliLqtFEDxa2rmbWZdK7etVquo3Zm7obcM2Ch6jpesVrfrdFW/DoqjdQ150+opEpnNruGVuQfjf/H/jVvL8z07I/W4hjV1aF0+nTp+Pyyy/H4YcfjlGjRuHjjz92fWbatGk47rjjMGbMGJx00kn47LPPLPd1Xcf999+Pww8/HGPHjsWFF16INWvWWMI0NTXhmmuuwfjx43HAAQfghhtuQEdHR+r++vXrMWrUKMd/s2fPlvLeuUSOyGEp3PIj0tifX/++5XdqRcylIWdz0DVPllkDkYg54+LWNTj52z/gOVt5pJ4VyqEYCT1BFBiCKGOSNvnVjZ9i8pJnpO+PIq6u6uY/xdIzhyZ6Zw7o6KAca/4OxDWhznK6aNaduHPZc6lVdjPmQV2Z4Sr8Qmun81uddc8zkvacehn8LXtOc23ykAU8O2ZlQNK+L2lbi8aeVry26TPCE/JgHft397Ln8bv5/8B7W6cznict0HormRc3ussDqbR8lr7d868X/rbiRby++XPcsWyqKa7kv6STIpyLwPz0hZaXVeG0o6MDo0aNwk033cQVftasWbjmmmtw5pln4vXXX8ePfvQjTJw4EStWpA+/njJlCqZOnYqbb74ZL774IsrKyjBhwgREo2kt1LXXXovly5fjqaeewiOPPILp06fj5ptvdqQ3depUfPHFF6n/9tprL9/vnCsYk7JMC2LuelPRST19pS+shS2/jb0cflybB61VNTsXqI82U8OJaLcMD6hT173nK2/WBBmaU9OEn7bn1HiDzV3b8GHdjMDKdU7LCnyxbR42dNW5hq3vbsbtS6e6hgPcz9MUdSdv/n7/JXisjemJpBaas5z425GkiW5AiPYH79d9TzXL2trd6Lhm0ZyKZc2VQlzNVlix185MOAniOsOUYzHLb177uubU2S3yl0eU4TGf9O1kL5zRLanI1j8A8EWvZ/QZTUuseXM959Qb3zYuREtPO1dYvwslZidIvO1iS/c2/GbeA6lztjd2NQCwLlwbbeS+FS8SYvAjnhY+WRVOjzrqKPz2t7/FT37yE67wzzzzDI488khMmDABI0aMwNVXX40999wTzz33HIBkY3r22WcxceJE/OhHP8Iee+yBu+++G5s3b8ZHH30EAFixYgU+//xz3HbbbRg3bhz2339/3HjjjXjrrbdQX289o6x///4YNGhQ6r+ioiK5BZBFMm/US8oD6UxMNuwB0XovbPNoy7uXoD3WxZmCfHjPRFvcZrUG8DNRCHKSkaCZ9fb++3+z7sBfl//bMeDJz4f7O765+Qvu+GIJkpMn8sAso3yjiR6c/t0NuGHRFK7w3KKpoOCcezjby6LW1fxPWwRIhpdwD5OfXNkeoAgSPrPe4FIkk5GjZHK6XwgG5/c1C3P88Zz87R+pi8VE4VSibLq2YwtO/vYPeGz1G860Ob4pOy864W/vme/hcIqXTMlfXYzq6cUC3vN/n1zzDha3rU2ds02e5zAs/Wy3hI6d6QNtL6+Okpk9ezYuvvhiy7XDDz8cn3zyCYCkOW5dXR0OO+yw1P2qqiqMGzcOs2fPxnHHHYdZs2ahf//+2HvvvVNhDj30UGiahrlz5+KYY45JXb/00ksRjUYxfPhwXHrppTj66KM95z0Uyt4qupG2OQ+GYBgKZTJvmqWf0qA50hbJj2YTbzXNGl8kZNWc6tARCmkOjYb595fb5uHWJc+Q09M0Ysfst/zMcYa0EDM+457Dg6tGz4fbwKZpGnQtgS1djdihbCBnnumRmu8ktASgOTtSrTe/Rie7JdpIqAvOesvOk9g9e7yt8Q5nIEr6CS3hCGNZCzG/M+PbGLgNNttiLehO9GBm81Ku8rAHoT1DXAwx18eQBo32rMx+g1FGrHRI9VDXdOIzWsjZ35ifD2nO++lnvTkhy2a/rwgee/1LgFz3zEgdLyhxkczbSaFE+9xwKN3J2ZtDX6jrX9TPT/2tabD0jdTT3SjF8tz693HBzsc5ruumsSP1PUyR+y3nTxtmAwBe2/Q5rtj1VFtWzXvwyWmFbPM22vqeMR8z95uieQ9xjJ2hkEZdGeBNLw6TEMyRpv0Z81zGDK0MjWdo7c/+tyNee1yMsStfySvhtL6+HrW11vMFa2trUVeXNNkz/h04cCA1DCmOSCSCfv36pTSn5eXluP7667HvvvsCAN577z1cfvnleOyxx3DUUUcJ5zsSCaG2tlL4OdkMGFCR+jscSXZ2A2oqUBouDjRdo2+KREKoqiq1XLeXi1t+ikvSVbakJILyipL0swPKUVuWjq+8pMTybKQ4+R2Ki6zVvqIind7bdV9S066oKEZ1v1LHdb/ftrIzHWc4lK4rZ+x8JF5ZY91jQktrQE0FSsJkzX7xGnYzH9C/HH9b/CL+t/F7PHDQr3DY4L2Z4QGgvKWEeq/IVL6V1SWIxsOOMANqKlBZVJb6XVVZSn83U71lUVZGrzdV1e7frXKDMwwpHABU9ytNTUyN9h3qTg9O5eXpvBQVhZl15L0N010dXVT3S5cVT32rSpRZftOe6SGYd1VWpr9tbW0lGovKHGF488FLdRX5+5eURJjpRMLOGWElJa5KQh0z9wWstGprK4XPFtY0jbvuKvKTyqi1zyivKHJtF37bTVXM2RfYtfTlle5jellFsXCf2w/ptPsPKLfcy4U5TtC0N6UXMItLIqipSZeT+W8zRRHn+GdAKrOylvS3e3rTO7hm75+hH9Jl/UHLdPxs+NGetw2Ubk33efb0I8XpPq6isoTSJ1vreHljerww1wmjHy7blJ6XiNaRfrY5HYnk2Eu/x0O0Ix1BZRX5ve0UF1vLkSQcVvcrQ21/clw1tRWW88tLSq3jDysP5Q3W9l1eTm/L+UpeCacAeaWcpQkDkh23xfEFabXdFKampgYXXHBB6t7YsWNRV1eHxx9/3JNwGosl0NLi34W8V0Kh5CSpsbEdiURyEEvEk/82NLQFLpwa42YslkBra7ocNGhoaGizhHXLT3d32vwiGo2hvT3dqWxrbEe4I90Rxnqsq8edXVE0NLShp8c6ITfH0ROjrzi3t0fRHHJ+R/s7iNLWajIj1tPxxaLOvNDSqm9opZZbdzfbU++mhkb8b+P3AID3Vn+PPSLDXfNsLjM7sVh6RXFbUzvRs+22bW3ojqSvd7RHHe9GqrcsOjrp3o2bmp1aUXt68Sg5DVKZ1ze2piaEsVgCDQ1taIymw7Wayqc7GmPWketnPE69Z9DYlN57w1Pfmlus70t7hrT3qK0tXR8bGtrQ1E7WKHut95t69+aYaWntQkORM76u7h5mOvG4s400t3SgIeR8pq2tyxFXrCddB3uicUb7anNsE+CBt+4q8hPzeAYAbe3dru3C73hhnksYcdm3rDS1ktusmXZCXt363JZmU9+wzbof0O975QPmca+7uwcN29LvbP7bTLSHPv6Syqy1Pf19n1/5IS4ccgJaTd/87nn/Qb94FQ4YsIdQ3g3aTeOkPf0u0/yqldBfAsB3dYuxpa45ZZnW2ZGOr66hJf18aycaitvQ1ZmOU7SObGtsQ6SDvZ2uoaENzTFyvLzpbelI+/dobukkjkV2otH0d21oaEMs7pznNDV1oCFOH1OKTcJpZ6d1DsTKe3uHda7T0eGcP+Uq1dVlKCqiL9gY5JVwOnDgQMe+0IaGhpSmdNCgQQCSGtSamppUmG3btqXMeElxxGIxtLS0ODSqZsaNG4dvv/3Wc95zYYKSSOipfGipawkkCGaXwaAjYbV2dJSLW36s3uCs+zM+q5+D04YcCQDY0FmHbd0tlmcTeu/76/bFC3L8pLRJ37Gxuw39irxrSMxJhrRQKg1SXmj1aEXbRnzTuADnDvuJZTWOFo+ZK+bcl/o7pse56ipzb5Xp8VgiTkw/nrCVpU5/t4Q9LC1ZxnvGEgQPuLY4I5TukJR2NB5zhDGHs+5b4cs/i7hpjytXWdg+D6tsHddM5ZhI6Ja0eeJ048+LniLGRcsLMx3CrXgiQY6LkIalyugao5wSwpoKo3/Lhb5fEQyO+sTxveNx8bpkTdPZF9j74x7CRNmRD0o7MeIl3TO3F3u/0BfqecI+/zC9czxOfn/WuEQqM1K52qNY1b4J+/UbxZNlZpqO+ZdurVuk/DX1tOFfa/+H83dKmiSb38/iWIjwvGgdMddRWjmy+lje9MzzA1a7MGPOTiKhE/1asNuY9Qz4hG5dbGXlwZ6WvS4WAnl1zuk+++yDL7+0ml1+9dVX2GeffQAAw4YNw6BBg/DVV+mz8dra2jBnzpxUmH333RdNTU1YsGBBKsw333wDXdcxduxYatqLFi1KCb+FgeGtNxj+s/5D3Lf8Bb482M54ZGG+bx/eH1v9Zurw4otn34V5rSst93epGJJ8zodpPmlfwR8XPuY9Qlg3wvM6RLLz2/kP4oUNH+Etl3MhXfOSAYcegLMcvezn85MeiaIQezXPXDYk51q6ZaDx5iiDRkzwnFqZ3npls7V7G3fYuB5He4xsddIe68Lqzs2O60E4IlK+jRQkvFSLtzbTt454TdNeP928idNjEslHZsaKXMLRt1jWV+V0EqSxxT4vaKP0iTywvhuv08hvGxf6ep4Xo7wfXfUGTv72j9Rw/j1Pm//2Fpdfh0jJ0M7wXfGo65hWiA6Ssiqctre3Y9GiRVi0aBGApEOjRYsWpfaHTpo0Cffemz6M/vzzz8dnn32GJ598EitWrMCDDz6I+fPn45xzzgGQNNc9//zz8fDDD+PDDz/EkiVLMGnSJGy//fYpR0cjRozAEUccgRtvvBFz587FjBkzcOutt+LEE09MaWBfe+01vP3221ixYgVWrFiBRx99FK+88grOPffcTBZPoKS99QZTqZ9eNw3/q5uebFiWHtwkiJHMq13y4zi42HZ/W08LaEQ0d1MCL+WxsmOj8DNmzEKPeV+bl0k26bgMkXfidcnuW/Sx3Qj6jEme/LrVD4vAyfBA7Lzuv42RTKNZcH8fjoCy+4iQwLDzcf0snDH9T+iIOz1o/5pyULnXiQpLm+WlDNS5qQoSb/gUTkmt217nYzxHyXg659SUi8KbDwsR1xNY17XVdIWiORXsO4iOdWx9iZ+jU1jPch8FQ/GCZF4U0Qn3RTHieH3z5+jR6Qu0/hckTQvLtO+o67h/xUuYtoVsQUm0dGMJp465rPPLr++sw6nfXY/7V77MfLYQyapZ7/z583H++eenfk+ePBkAcNVVV+FXv/oVNm3ahJDJO9z48eNx77334u9//zvuu+8+DB8+HA899BBGjBiRCnPJJZegs7MTN910E1paWrDffvthypQpKC5O78e75557cOutt+KCCy5AKBTCscceixtvvNGSt4cffhgbN25EOBzGiBEjcP/993MfeZMPaCmtZbDpsDRiqTyIuGO337c9YD/b1PqobknXC0F0CubVRq+aUwOzS3QvJBirqnXdTVjatg6H1Y5hxmEpX8oHtZej5mE/nyNOxqfZ2Ol+zqlbvSCdX2bLQeov2ecdigqn9sKw77tPXScJ2fZnxVJO0dTThifXvIMzdjgSO5dvn7pO7hPYqWzorMfIymHWa131xLA07b9b21WipEIc97Zir4+khRbvKZKvJjj6iyfW/hcnDD4EFRGyIzgStDMt+yJfbJuLL7bNTf2mlYZoORH7L0fnFEzZJ2zbUWjQ+kqS5tRPv8o732LNW7jSsehPyGlu6m7AtK3fYtrWb3H84IMIefCrvdVhL/OvtyW9Q7+79Vv8ZsRZ5AwXKFkVTg866CAsWUI/33Dq1KmOa8cffzyOP/546jOapuHqq6/G1VdfTQ3Tv39/i0bWzmmnnYbTTjuNer8g0NK60yDRdeuk32qWSzIt9me+UMTSfkl41SBKy9yxVkRK8b+t36E4VOQpLfrh2nywzHIum3MPOuJduGPPy7jj06ETBU/7u/kVyt14Q+AMUxpmcyjSAGYZ4Cwr0BI0p4Q9s0HhXP/xlv/H17yFD+pmYHrTIvx7/z+nrot6vQWAbsah9Xa8ljdrcaLwpwIKL5C0H3bsmqqOeBeiiRjCmsZcTKWm6dL3AHyaUwB4YcOHuGjnnwrngZaPQodppkm5N69lJfG6na+3zcfOZdsTNZsOzamPHon1rHUBlg6trzQ//8amz9Eaa7eEXdK6FqOqduLOK28d81sXLVtyKG9unxt5afv2VC2/9D4hc3KTV3tOFfIwuou7l/870EFGJxor9OZBS4dy/kWLj/2bZ7D3qjnVoQdSVvYB4b4VL+LOZc95iot0NIgIrD2nxor/yvYN7F7UrDilBHFqTv0Lp6y9NDuVDXaPwCUL5hx3xLvRlaB7B35vy3fp5yRUGd7DyFNpcgycxp2gaIgmTewbe1ot18OEYeeR1W8w2xarrO2IvJG52rHroAcTyID3USvyA7tWJ64ncPK3f8C5MyZ7io9ss+FMg4fWmLtXXxr2dt0XYJpp+uhKV3dsxi1LnsZFs+9EnDCO2ecs/uYhDLNeV+sgNmYLn3mtKx3mqDctfkIoPl4hXKYW32vZkp9jLWbYf9PnyvyxFg5KOO2jGJ3dt40LAx5k6JPkwSVJj8o0jRM5Nvb9CEMrkzLrZcwZs7EabBkQfKZPMv8UiZFnL0tHnH6MjDNt2nKg9ZoMzSkr7yMqhvqO31z3nlk3jXl/U7fzuBQ/xBj7bUi4LeK4XbeG8VYnaQsdJM3p1u5GLGhdTY2rK84vnNLqAbEWcr6aWtFWkOCpFjSNi/dx17SY21sx7fngc4gkjllI+hVlz3ffxXsnUR9NH2VC6jcdxyP60Zwy95z6M491c6gouj2F10Gj33mTxWsuZ9nyaLNFNO0k0ZS2wOl4tgAHKCWc9lEsjg0CXIfRQddU7li2HfkB1xgNNEfeQ1oIn9XPdn0yl6DvZRTPsdteSNe8cAxOHfFuIZMf8r5G+zP+8WJy5ZWV7Zu4w+aGWS9NYHPPm2fhlPIcbR96N0M7+mnDLIF0+SdYbXGz5ihXewhFvkA27ZPswZRjEswvBIgfj9SXYVkm+ek9zOVKNuu1p+XdiovVn1vSZsRPm9Nt7W7ylCcamdIkWo8o9NZeiQ6RdB11lDJxOH7WC1PI9IoSTvsqpglikO3BbqpAFp104t9e07t92b+o95J431sWhCCf4NznwYPvFUQuL4/8nbeu08Rl3SKUyzHr5Rx0KbiZe7tp+INc5PFr1iuGfdT0GEtvgdnLVcRbr8HnDXPdA9nS5WFJ2zq+OKFjY2c9Hl/zNtpj/hzaKAoIjrpGOpPQ4PqF/8Qjq17nTEp3CEdGO7fXeV6zXmV5zs+ytvV4bv371Pt++lxzH0laXLP3oe9u+Q6nfnc91nVudYR1g3nuKu+eU/N2CFPeSBZF5rFddEsV/+kBEs16PcZFe+68mTTzfZLm1HqNt7QKUaRVwmkfJVNjkrlvoWnURHSFwt58CQ/789YrnzjF0Y6XtPzmj2dSI5KGDpogZzU98yKw2GENZHIGL5PpD8kpiQ/tpBtmTYiXBQjaI25RvbLxEzxg2zfEi6E5dQinFNN7WW2LbpbFToFdFjquXfAwXt74Cf61/j2ufKijZAofh/k8oQ4562P698zmpdzO2iYteAQnffsHdBO0d/YUeDWnonW0ECfBvLxfN50dQFLh8Cz+dia60Z3owSsbPxWOnzUexTkVBbR6c3jNWEJY7/AustDKrLWHb0817YxyEYhWEwKVguStlxqWksfWWAfxOMF8RAmnfRSrB90ghxz6wJxuX+lrD658BU2MvTjmvGqaM+88nYH3lTEEomaWeXA1jwkti5nNSzlTYQ1c1rC0OMywjhzixb/mlE5DtBmPr/mvJTVH+pQkZjUvw5qOza7ps7AIpx7qr4hDJPOVKWvexgqP5/gaE4aw7dvaf6cT5h+Ym3vaWQG44nE8Zl/Jti0UGWco08y03OJTFD4vbPjQMVH2MkaRmNea9PpaZ5p86ql/bWlINiVOp9eX67SLZY2kshERjopD4gdusOqfXyuuqki541omju6jheP18s5jvefWpkifjbWQ7JwZ+69BZ02/CefPvA1RAe/2uYoSTvsoQa7qmxux20C8sn2jxRHKF9vm4l/r6KYzbrD3HfLF4DV+r1jLy++kwr+5qZuwPLt5mY/c9F7XrYOwjPrIHgj8aYRvXvwUpm39JvWbXK/pMVw25x7X9FmIThr8nFUqa9+L8X3tmlK/WvI7lz2Hn3//Z+r9eABtVKEgYe9bm2Pt+HLbPGuYDOwjs6fBrzlVyEKe5YdzrKKN4UWauHBqr45xPYGZTUvRGe8WWNQwmeqaKhGPzwoapaFiAMDoyp1T13jzQxPoubcLmR6npem2aCDy3Uj3dJ0UnuYQiR2X37OUcwElnPZR/CiqYok4Hl31BhZSvGtahBtbK7IOojomzr0Pf1z4mCUM66xOUoOmx0971vswQnvylY2fCK9WGZ0g79lifHHKNV8lsbZzK1N7ZNHK63THDVYtuARvvT41pyyWta93DROs/YFY7Lyhg8yzMVg7Fh44PRDS+LRhNvM+zaGFm5DAGvC91FVl1ts32Ra1Wv7IXtAkLTvZU+Dv71Qd5Se43tLcp8SFNKdFwmnZ6+P7W6fj+kX/xOQlz1rHUKZDJErcxGf46tjw8u0BAINK+qeu8VoZeNV2ktKhpemmOCCeP8wI/+rGz2xhdX7v8X1gAVYJp30UP2a9H9XPxOubP8fv5v+DeJ/ufdYK7U4Jw1TFIYw6hmoOs15GHF4b/ZQ1b+OljZ9wh39781c44ZtJWNG+geohT675pkAcHFGs76rjiwvk7yxyphcvrIGIZ5DzOk1L750ObsBI2BZ13HGKWuRQPhZq3FaSKZrTbE2HdQC3L53qEoL8i7V3XtF3ofVtbmHk58Nm1suZqmhNVt5E6fhziJSGNI7RYvZk1mv7hkva1gIAZjQvEXCI5G2BkWdhz+IcSmCrBwleSzRzvmmmwG55IfYFjDnJvzd8QMiDaf7no60VQjNVwmmfxbtw2hbrZN5naQK9TKut9/gmxMRnOc4/dGvUrPQ3dtazHzbxj1WvAgBe2/S5JQcJS+fEHZ2vZxxxcHwl1uHtVmE/AdIXnbruPcv38LICbId9QHoGeusAk9CDqhc+8uw28BvfQ8YZtjLoiHfhs4Y5Ak+ILghYyY23VgQKl2O04DqGrd1NvX2bTTgNaM9p38atRcv5zkTzUEoHHtHCwvHbt7hURSpSfw8s7mcKx7vAwRYm+S1rjcVMc3ziwqUZLxZTc5qXU+Ji7yUn50sA3T7i6H16IVQJp30Uyzmngu3XzXlNwqY5DdKLqVPb4a6ple0q3MCLU58Sm1AmriGzIkVzyhGG7RnX9DflKJn/1U23CJMyBBhWPfbqhCRXsLcpN5zTY/735w3ptjc57RCJb5hxS/f3Cx6WEg/1OcaD5lt9ecKgcId0fqHU+E218f9m3YF/rnnT0R/zaoxEt1Pkdy8aLH6+sxdtIeBtO4w59paednSZzpceXFIjHJ81bv/aPrdjdUhQTXF5hVtTmdOc7XnZTytSHgnbXFlkv6qfdHMVJZz2UaydmtyKHIfZGQNjFdmLBsj0EGmS6NcU1rXRMwYO2hEZLIpDEWr6sr6KeJm4h2cNifZ3oJWZeRBwy+Oi1jX4vnExMwxrIOM5WNuv0JEps14u64MMnA/HK5zaJ1B0JS47L/NaVkr1bO2WfiGYRimChWjKJ7BgKoPXNn3uHGUDq7yqUdAI0luvzDpkPsLtZ9//GW+ajjLiNwcnj5VEzanZeRIjTrLmlHMco5r18o6Dznw44rKlwTNfEGmHyT2nfBZSbtvbCgElnCqEtUpuWq5YwnxuZ7CaBnvOPZ11KfD6rKBevJAWaUWWOC2eewnvMnHOfZjXsoKRPwmaU79RmJ5n1a2GaDPpESK/nf8gblz8uEU4aY11WJxn8TnDouO37IIcHhK24dPO7OZleG79+4wyoFkv8F+1YxcUW2MdeGPTF2jvNftPTTYkDjN+XOSLn+lIXjTijUeGky9FPpKNiaI1TRGnOgo+MmPU61xkXd9ZJ034+P2Ch/Fx/Sx62pwWOrSy8H/agF1zyvfetHD8i5nuCgovpvIii6l2KzMdusUkWkzQzX+UcNpHsXtUFXuY3U2bNad2s16eFSpW09pq8xLrZYXY88q2nvo/ItTzGxkUhcKWd3ATQlZ2bMSkBY+ys+i4JlZGfgdC675Zemw9nMcdmIklks90xaM4a/pNuGjWHcR07WRishbk6qVZ80t6lT8sfAxT172XOpOUYa9guy5Pc/q3FS/ikdWv46FVrwEwO0SSJ6RlbYXYlKySORUGpPpoX1SUUWf/t3U6875Xs17RndGFqKGRh/eysZr1Wr/dNRTHk6K0x7owr2UlMwyvbwPaAp0vJz69aWsmscSLWa4ZL0fR0OLa1N3AFZeZW5c+wx2WNVcGgLkWpUTht0MlnPZRLN7hJGtO/XrrZbHB5CWW1EEyneL40hO548WsN2xzaEAXVE1hWO8oweyRZwKyrnMr1/N2D3RmzOZFvINaVE9qzhp7ksc11Ju1r4w4eCZrudzdf8rpyCetWfQ+QeYNGbctLixqXQMAWNK2Lnm/t8x59xPz1AG+aiLebkj3WQtpuq5jXedWRxmYUXtTCx+e6ijjeK/7VrwgFJ63PxX31iv4QB/CS9kY46h5wcteX5pj7RkbnKzbR8QTdZtLsvpE40nzYiZvHqjaTg/P057424oX02ECaAhu3nq3dDfawpqedWQn/xuqEk77KLya06aeVsd9twEtrtPNemU2alKHxBLOjKSdDisETC8Y97yYL9rL0k1z6oYMxz88A0JbnO2x2RyXTDMZw4yXVI9YAihPWr7Nej3U7X+sfJUr3NrOLel0mNr7kGsYK/I0p3aMMpd7lAyHAEu9LvqutPAaPmuYg0tm322ZsCgUAKmeSZ4ocuxJ5HaIpBZQpOFl/Lh58ZOOa5u7t0mJ2w6fxQfn/IMSF/msT17LNENzKu6tl7YA5GWOwTOH+uPCx/DltnnCcdt5eu20dLq6bmnadm+9CT2BuJ7ALYufwlubv/Kddq6jhNO+inmljtIYF7Sswi++v8Wxaqu5aAjtmlNxb73eB0yejkVEQ+J4lukQyZvnPHOabntO3SA6iRKMxu/6gbmMXtjwEbVEYx7Ment6NYOk78wqLxnaCze8TCDe3uJlkKGnQztagPb6foqFJpwaNdCoB14sCmj4+Yru59TRV6PNdzQgNTH5oG6Gjxwp8h/SIhl9fAkmRWfdXtW+SXKqRtr5r5Hxiqgg37+o0jWM4RTQHPfitjWOcKKlbmx/scTBEYk5SEO0BSvbNxLDWZ0cie8RZaVtnkfxbsfxuwBuNWd2f2Z2C/m4GVH+s+HD1N92b732r56Aji1d2/B14wKLh2UShWDhoITTPgqPNvOLbXMBAO/XfW97lg2rQ5A5bIe1kOBgSQ5rcarjKYYkMibhokeG2JGzDu5Tg2j6e13nVmpPyWv+bcYwbSFqzRlxcGkS/Arl/h6Xko5hJk4qHf74+cK6nftmTFR4J3U8qfqZHLtNVNhHyaRvatCoB7UrFPbxtDPeLfwMMyyxDVivre7czBWXyHpqNBHDFw1z+R/oY9i/y//tdILwM37DAUlt3InfXufYeiPqFPDVTZ9h4tz7iOfa06oNSbDjrdppB3pms16f55xyly/570yi62y7OdIWksNrxlBC5z9KOO2jWA+SEavYbpNNs0bM22SS75mSULEjpBdvvS9u/IgzVzozb169ktI0t/JWv8Qi8p8sXwxejgXZaginguZDQWpOdcJfQcJ6z9TA7nDKIh6XGzTNt+GlNn3OKd8MuNtlNRgAVxF7P1bAXmbkqYKmAd82LnTNR3eiB8va1gd4rIci25D7ISt/XPiYazw3LJoiNU1++KXTf617D295svToG9j7Up6SNS95ycLQxn1os+rg29PvDGP4dzBDPUpGgubUbJnHO277Neu1HOGSJUEvYZtfOpycEd5RplVSrlG4b6Zg4scUw61BsBu6POHr3a3fOtNmvIvOEcYNnv1+XmI1sHi69aQ59T/I+T9ShU8wsjhE4ow7JfgQnmANZDyCsNf3TpuxenpcGFY6om2ZGJrzRVz3nApqTu9c9pxrmCA1p19sm4ffzHvAZElBS4vvfT7YOANXzvkbvmtaxJ9JRV5B1mFarzbH2gmhrMxsXsqdJqmN+10ASegJNPW0McPMdfH02tdxfgJ+8TSInb92TRvflicn3YkefGCznqNBHoPNC3uMNzW2gQjOTeu7m6njgpcF8ExsASKh2/acOs16E4QFEK03JGthNT9RwmlfRXM366U+6nKfV/snowHZB1TmWZcc78nqzF7Z+CnzWS97Tp9d925q3wkgYQVPwjkXfic6vAdE+xs4SNoDhkMkH9563cqDNkDYaY91ueaBD1Y6OjGEyLFNvF8/7lKm5j2nH9XNxEsbPuaMmRGnj2d56tvitrWYRRAU/DSJOc1y9icp8oOgNeWiWxpYGKPFLUuexi++v5m5V9X74mth4D60imtOeQUhL3XKy5FGpDDd8SieW/e+9SKlMGQs/JsFWB7N54TZd1HLkXuLCsVKJpPY95zqsC7sxnWnqC7zmLZco2/3Nn0Y61EytA6AXPHdHCJZCXig9tQB01ndQR+c2+Kdgew1+6h+Zupvc/cjawVPNBa/qdq/Acn7IGAzC+V+V50a3K9DpCjl2z619h2+rLlwxvQb8djqN33Hw3oT4z0d7YDyEKlYuPdB2dse5azFEDTcvfx5PLH2v+iKc5justL00b5FPTf+d8s3xHSFj98ogFVsBQ15giKNJptZpUyzXmPya5ipz2yia3D7unDqhpdvQBLIZMVtn9fxCbgE4ZQwLtJySxpn7fv13bDMTTn67K5ElNrmuMvNfIRfljSnCd0unNrGU0JZFLK3bdXb9FH8HO/irjlN48VzoUhu7J06l1mjj87Hi7bPO7KEU1FTT7mds9lduhkvDpGowpdLHG6DXFus0+I5z8yLG/1r/Axe2/SZtLhIiHrG/v2Ch51hfXpINFpkwqQ5NehKdPsaUP1opURNnqeseSudrum6aP6zNdlRFAbXzre20XdMiyYGmVgAUcIpG/v44SZwAvz92dR17wrnx+7plsusl7JYaX8Xq7dec1jnOMutHSbE7XWh1O26M22fFmsS0G1mu/a8JzWn1muG5rQQRxjV2yjE95y6TM4sDShgs16H0OHBIZJYevQ4ZK9ieXEukBveevme9yLop416nWkwNacuJqgsjTkvmRrUeBw/8eZkU3cDIX7OfLgM/OlzTtO1soPDcykzTR9lvC3qdOwhknIasVamNKeFC+nLyjbrXd9VZ/lNOmM6E063lHDK5r2t3wk/w/vV5rSsEI7buSDrzaxXg+Z7wZIPYzFT/CgZ2lyJ3xuy+DOycZ5zaoU0v6TNOQthzFG9TR/Fj+ZUZF+jzI3apHw6j7Ng5UVCHhjPyu4QvEw4pDhE8vkavI97cYhklDFJEGUJ85k55zQzPLb6DUYeenPB6a2XGYfPcGmHSCbNaZxugsWXJj9xPYE/L34i9ft/dXyTR9c9xoJNTGlOCxfimJSFiWFUj7kHIqBpVsGDpe1TwmkQFhNGHynfPNO++Ovm8CqZG391t4dwvqrocS7m8YLrCDgwLIa8aE6z5RAJOswjHM+3MMqqED3C9/Xeps9iHoNEOyQ3zakZHemGY++ARdsTUVsmIPy+tukzzGhaIpaoPQ8ZNOvl7Zhl41vIluTtlRi1IZwSyob1bTIxYczUAPGB7YgASx5A1pwGsZLqVqZps16rUwd/8E/4FrWuwbeNcjzlmj+t6ESyEFaxFbnNU2u874t/lLHYZSaMsOc0+ibu7T69gCcf8xjZGuvAlXP/5voM7xBm6QNN/funDbMdYY3j3xzPOdL2Pl5QzXo99L3Z6q113eWcA835nrRj2gphzJEqnHZ0dMiMThEglqNkRPecCmpOjdhDmmbp/dy8fTrjcuL0SMfmhkVTfDVbYzA5sP9oxz3pZr1ZW8HLzPNezsM1Omey4wU6os5w8hW6gMz/VWXVO2NyFDYNM76PKRJ4nPcAd764vOdbaU4LF6JZbxYmhjOavS266rqONzZ/wRW2kM9UzBZBdg3mMW9zF9kpoR2iWS9hvidiPfLltnmcaScxKz/sx+HQoC2U8i5Km/vobAl2cctsOZknezE780YRTgtgyBHqbc477zysX7+eeO/bb7/FSSedJCVTiszi5tiE93oqPqoHXeuTs5uXuWeOES9A0KDxHDQtwbR4l4ohnuPgxcukVo5Zr08BgrN8SauiH9bNwLI2ch8DpAcbkrDJEkDnetizI0ourFYa5ROU6bolLVs9SZ1BS7nuN18ynpcBqY191jCHGj4X8qzIHPk0MbRP3lmjR1836w3GLyrZ0kUGQXpy9Ro3j09i83gRI5gJE5/03eisQmE20PWEpSLw5IJ+lEwedUIUhHqbtrY2nHzyyXjhhRdS17q7uzF58mRceOGFGDNmjPQMKoLBojklmcvqCbxK8SyquVQbc2y6yT22Bn9NhuwEh3/PqQwyuZ/Iy6RWxrFX/gUIPuzHimzsrMdfl/8bv5r3d0bkdLPebOz1AvjPOc0ExiDtMOsVyhrvPh3rN6BNWCwal+wXkW9Ibez2pVOp4ZXmtJAhWXDI09hHE972kvLinNTTB5CIpsx6ZRNszyA+GSB6wc9Q/5VWYaTz/cTa/6K+u5njWYrmVNBTMABs62nB/JZVXM/JRLdpTu21Q4PmeEvaFrtCGHGEhNOXXnoJF154IW699VZMmDABH3zwAU4++WS89dZbuPfee/H3v/89oGwqZGPZc0powKy9mebmsC3awkwngbQHMhFzYBI8Zr18R8l4z4Oh7cvE+VL5aoq6rnMLV7jXN3+e+lvXdTTF3B02pDWnpIWK7HTJ6zq3Jv/IgRFB9CgZEvwHw/PFF7IthPk6SobjPYIwS/dl1pulveOK4DFqxW4VQwOJP+ijp0TqZl/XnHqxY3KP05+lCysFL9Mtb04Y+WnoacFls/+K+5a/yJ32ZXP+6hovfa4ktl3I4PqFj3E9J5OErlvmr6s7NhM+ot0qidwmc2Gh3C9CvU0kEsGvf/1rTJ06Fd999x1+9atfoby8HO+88w5OOOGEoPKoCAS25pR08HLqSVODOXvGXwghrKs/RkMJQZNiUmvGObgGa9abSYFRdE8ujUw7cPHq9EZEuCSlkS1hvjPRja+3LciJASGdB2teGnv8HKPilhYb86Q2E2a9aUsNr0IwSRuWvibcnpTmtOCxns0oD969gqLsVDYYgFif29eF01yE9fUsZ5FySqq854f7WWBc07mF6TndHnN7vMs1TpmaU4Ds/fqA/ntwxeUV+zvcsGiK6zPGwq/j/QtgyBHubRYsWICbbroJpaWlOProo7F48WI88sgj6Opyr0CK3MF6lIxzUs9yfuC659TUMnRdfLIoov1xOEQKeCJoCPIiHou9EvRRMmOqdiWnm4WeTQefOZzxvYl7TrOooXp367cZT/P6hf/EzYufslxLnXNqqzs8nhoN3L5/yHBfT22nVmRaGWRLzvOTbrbMzRXBk1p4lbCfYnbzMsdZmTK2aZC4ZOcTATjbsNpzSifIET+IeYtG+ZuZD85rMuplj81kPTVP9FDPaKXHX6rBKjV4SJ5zak3DPM/U4ByHaIsOubBQ7hehWvDggw/i5z//OQYPHoy33noLjzzyCB544AFMmzYNp5xyCmbNmhVUPhWSMVdp0uSJJXyJVHuLxkFz2syL4XzarkHjid9PHlJmvUHNGkzImtRSc0q5kR0BQOda5TQEWJJW2Z9Zr7/v2RHryvhwMLN5Kb5pXGC5JuKMamX7RuI9txh+OGg8AP7yNi90+TW95nq/VBoy26jSnCrouPlh4OEPCx/D31a8iM54tyneYMYZQwAQaY8hxp7TklCR7zwpxGHXDjl7Tt3z4K2O2q3z/ByrQ6vHvPu/eeZaQXfjieQmOMs1+4KQ/X5acwpbuPxHqEd96qmn8Kc//QmPP/44Bg9OmoX8+Mc/xttvv41Ro0bh3HPPDSSTCvmYO5Rn176LDZ11lvusVVK3yRbttt9hlhSt09V4sCtgRnqZ0JwGvYeSPqhkp2vjMQc2ckbec5rdvX25sFqZ0py6hHtq7TuYOPc+4j239h3unaR6e99MmPX6w+150ZafC/VCERCEsxn9Yu4HgxpljPFL7TkNDpFvF0QPYa6T3AIkUXVK1J16ypOZ7oTVIaKRjhdhl2rFwzuHCviUBx4SjnNOnRaMrTHrcZ1Kc9rLm2++iZ///OeO6wMGDMADDzyAu+++W1rGFAFjqtMrOjbi4tl3WW7bG0XcciYlP1bNaUho+amuuwlvbPoi5U7cmHgPLO5nyldmvfWm0suE5tSDsCUi0NLeIBtmiDpnuulzTnPLrDcDaxVUyAMwuyzf3UI3Q3Y74kmjrNbSMK9e+15w4VGcBlB//cQ4s3mptHwocgujXpgXKzN1FJcfDMFFJK9KOA2SIMx6xQcl0hgse8+pQXfcqjnVfcRL2ppmxMnDGg4njsELpwk4HB5Z7uu4buGjlvuZUJJkC6HeZtiwYcz7P/3pT31lRpE72IXTn35zHeq6m3p/uWhOzXtOTddFm9E1Cx7CI6tfNx0SnoytMlKOQwfsDYAgnAa959RYKc9Ap7C0fZ3wM+QOlJxX6kCQhUU3Xde5hHHj/UiCaDzL5pPZMt+0HNwNuuZ0fssqRBMxNPW0oi3eSY1vdstyZnrGugxtQuDInykzmXGIlESuUa91e4II9tVuReGRiW0eshhaOjDV9zvOOWW8B0s47QvHJYkKTiJ1wmu/yHpKA/Diho/wysZPfOUjGL0p0GXTnOrQPcdLW9jmXWh/bv37rmGCHt9jetyhuzH/dFoJmuuY9cFC2EoSEQnsphnVNA2///3vfWVIkRuECesWX26bh1OHHCHUkZobCemcJvIzyX+3djcCANZ0JFe1zKvURqO0N1i++P2b9ebTZIRKjpmE8AinrKNkNnTVOa5lCt66HQTmdLd00717XrvgIfxk0IFIgO9gcxq0fS40RJyuuMfFEyiAL2GJsgDavkIKZk/0EiM1Ib+u/WHkuehKJPe1CmlOmbqM/J8MyybbAoKmaXhy7TsAgIfH/s5zPIFpTm17TnVd9zyvopa1xG8Q9Lworjv3nLrVoRClTRaCWa+QcPruu+86rrW0tKCtrQ1VVVWorq5WwmmBQPLW2xVPrnR5Nuv12KEZAqHRUDVTXDEPe079YGjsSJORXJiyEgcSSsZyaccpr1mvESTb+0vtiIlrskmn++DKV/DTwYdQB7UP6qZjv/6jfKWWNuulvS+9HJzDrxiZ2HPqRi60c0VukFowlWjyaq7jQWjdty+tSS34ytpzqjxS+8OrDMXrEIn7pAQPGfHao9v3nPo5A9ur5vSzhjmojpT7SkMWCSQIHozJfxvk0hxONkLC6UcffUS8PmfOHPzpT3/CLbfcIiVTigzgUntJA1Fn72qrW09qNes1m8N568gMATT1rKal9szYzXq59i0K5yBNylsvoVvgjXdV+yYfObByZO04fNYwJ50HoT2nuaY5Tae7LdqCgaX9nGF68xbPwe43F8rNIMicGKvbvKZ85nCZ0CakjySQtwrvd5HNj1ZAkftIPS6p998vGubi04bZ0uJ986A70RHvQlWkPDV+2tsw+ygZurfeArAilI65vR9eMxZfbJtLDRvE2GE5SsaXPyTCVQnV3a459RMt7zJpTyKGolBS7Inrcdy+dCrxuX37jeRPRBLRRAxXz39AKFEttXfcfif/G6SU5b5x48bh4osvxq233iojOkWWuGz2X/HY6jfxyKrX8fiatx33eTWnOuWH1wE8LZwmCUFLmTPYNafB7zn1f5TMl9vmScnL6MqdURyyri/lrzmHblnFv3T2X8mhess/1zSnQGYnaOZ6bv7mu5QPcX/WZx1Jt2NaPNa2IbNOZka4ZV/z8j5Ks1SgBOCt16hfL2/8VFqcAFAciqB/USUAs2m+wGIm4x3zd9zJDPv7tFbxQtpXB/9CIunolc3d27Cpu8FyzTyX8/rlDS1hXXcTehKx3j2n/hYUD68dY7uefp/HVr+Bk779Q+pkCtbpACMqhjquBd2HO60A3ccdmsVGISwWCWlOWfTv3x+rVq2SFZ0iC6zp3ML0Wqan/hXYcyrBrDctnJpc7KdWfsU1p35WlViaU963a4g2e07fkp6mOVK1v9nGrnq0x7rIz9M0p1no2XRYHSLRHPYYOevRY8T72SK55zRz5WZOyzyoDSmpTYWgPuszmylnKh4iWt+5FSs7yOersghrIeKeHBLBeOslLwaIxKAoXMx96fqurVLi7IiT+20Z0MZP5jOMezp0dMS7UB4u9ZmzwiRTVhO0s6tJgg8JUpf+zFrndj4Zb6NDx8auelw0607sVjE0ZV3ipX815oY7lA60XU/z2qbPAQBfbJuHnw89hjl+uVnPZAq3NGmLTIWwWCSkOe3s7HT819LSglmzZuGBBx7AbrvtFlQ+FZLxU3ldNacWrU4aftMSHYta16R+p/ec9sZjmgp48dbr75zT3j2nhJfhjbVelnBKEC8t+5V6OnDRrDupR1nQvke2tDw8wo7xfg+ufCXo7AROV7zb87PmkjK3AZa33iT+pxUpUyJqCOtCg7k+Pbz6dU9pju+3u0uaptQDrr5eFm/6gjfTvkh6z2m6XX3buAjfNy3xHSvJO6cbuxE0PiQMyyORvt5tcfkvi59GNJFbi4bZZER5+lu4ng3vccydsuZtSz3Z1tNKDGffy0iD5FQwqCPadABL2pInEixv3+BrXmb0ryWhIsv1ul6nmmaMWkx6r5EVyRNJPm2YjYdWvmqdy2ajD3dJv5C3iggJp/vuuy/Gjx9v+e+ggw7CL3/5S9TX1+PPf/5zUPlU5AS9jUOgkVo1pyGuDujdrd/it/MfTP02zjlN7yVLTwbsHUwmPKoB/vYYyRNOnfkwd2ANPex06O+QjRVCvkEw2x4QqQgOEi9v/ASnfneD5+TM5WAWTo0VZFY78NtG0qu11u9lrk+WRSMJ3yzlhCkjh6UHq3lVFA5pb73WqdR3jYu8x9lbVbycK8pj1g+kx8+lbfbjyuj9GG0ifPCAvQAkj6C6a9lzTHPJfEZUENilgu9bAP56nM/q0z4nSm3CmcG2nhauuNoJ2nqydt1UFh77d/vxcTro3mdd4+otQbvmfur6/5mOQExCsvzZu2oXAMBRA/cBkJyjvbXlK6zqSPsHEe3DDxqwp1B4EuYUSQtJNC/hhTDeCJn13n777Y4GWlJSgsGDB2Ps2LEoKiI3DEVh4bXaexXn7HtONYRSsTkcIvFMXn2025wy6wXbrNf7/g3vefIDzcRsbUfa1Dw4ra7/eEUGBNKebq9pmVfOM6mhswuK1jyRNadeSZ2tKmC2L9VJDcUahP95aVlR5CD2eVHCg9bTwKjjLAdE1Hxw1nkjnMhCKS3mUZU74updz8Q1Cx7Cl9vm4cGVr+DqXc8saK1OLtGRSFvgFFOE09sojn94IC02yPi09q08SbNeb/126vx5TcOde16GPyx8LHVvZcdGDCrpT3jGKhgDTuHYrHEWFfi8LC7ZsZxhTtKcUs4JKIThRkg4Pf3004PKh6KAsOzPsp1z6oVYbydiPUomicOsl0f75qPpGnsdSQMvT6zRRA9aZB0PoDkHCZE9vjnlrVfXEafM4P++4uV0MIl5M3tQ9SvUacjsgEATBNMBgstNyNWs15onUU1KsRZB1LGn2LCUcH+vhKmfkMXz6z8w/fK+J0pRmNg1GLS+jAfjSS+TW16BUKYDJw0aBhRX4fbRl+B38x/Cu1u/RXWkAhftfIK0NAodPxZB5nFc5oKcAanPleEQSYdzL7/nBXWT6mKffiNx4Y7H4+l105L3bGVLsrpLWUDYF5kIwmFJqIjoadiOHOHU/LdzDKG145y1MBNA3uFcioLHqPDvbv2W/xmzsKRpnubMi9vW4P2t001mvendlg6HSAE3ymhvp+T10HVZJr2AsedU3AwrfV9aVnzDb9YrM02d+Lfn+CQc48OfVvpvi5ZSZ+859XqckyUOiqBofifrqrRYeqR6S2vvmeKThlmpv71ogpW33sLG7jXT3Cb3IR1LwUEkQM2pV/NJYpq97XX70lrcvuclqAyX4cWNH+HljZ9ISyPfCbL1m794UPtDnWnKUJ1aF6RlCKcpYU2z3jObr2sIYV3nVvxr3f9S14z79nZMGm/s+1pphCHefh3oTuHYjJZqx4U3vrhqTg8++GAh84yvv/7aV4YUuYvhTnxuywrLdfsZftbVHrMmzzv3rngBU8ff2BtPWndqn/QFrfUzzDxI78LzfrJMeoGkgGxP09yBuQvQOaQ5BV24Kw0Vp8ME5pzB3zvPal6GY7c7kDt8RAuhx5fpH1kzmYlvx+PpMw6zqbHYNyNNnI2ampk9p/IpgIVsBYHUgqmtL/1f3Xf43W4/A2Dtv3hjBbya9XKGo8zpWMIBrQqbx5nh5UPwl9EX448LH8Pja95GdaQcPxHoF3MZP/MXN021rD4riMV5N0/0XvOegI77V76UjkcH4HHxNG1Vlyxnc51M6Do2daWPwtG05LGJ5rmjsXXMru2cvPRZHFk7DlfscmoqfGmoGC1wt36LhPwvAK03Oagi7jmlaU5zcAwUxVU4Peecc9TegQLES9X9vmkJZjcvc1yP6XEUaaaqZPEwlr7s1U24gbEqqCGt9XPsOeWI308eoimzXm8dT32UzzEBF4SjZLZ0bzPd9mbWmw3Povb9J2ZKw0WmcN45b9hPMHV9erXUuojinzuXPccdNqSFAF/CaRrzMQFpb72syYQ/vmxIntP7z9Vv4oeD9iPG78esl6U5jXOZ7fvDrX94Z8s30uNU5CdGV8kSPkS/PU+cNEhtZ+eywbhrr8st17xa/vCkuWfVcPxp9wtw85Kn8PcVL6EyUo5Da/aWll4+8Ztdz8Lqjs0YUFSVkfSCsCwJ6pi0rTZPujp0z+bmxrhn1GuLFQ8Sljq6LdpCnSfaF0Ybe1rxxuYvcMUup6YaZkmYb7EpJEFz+ubmL1N/kxZm+7RDpF/96leZyIciT5hBcJH/3Pr3ceFOxxPDyzjnNBWXno6HZuYXtK19WnPq0azX5jnOD2Yh3aDR5ErebQKSa0tOtAHDbN7m5/s64yfvjc4EES2MbrjvW6GRsJj7mJ1KGN56Gfh8V2M1tznWTg3jxyESca+O4RApA5rTh1e9bjKXkkMh7AFS0GHvLxMUTinaWB5IzwwvH4L+NuGIrjll5ItSh0nP7D9gD1y72y9w17LnccfSf2Hy6AkY16/vHTV43OCDAADfNi5khpPVOwRj1svecyovFR9mvYbmtLdem+t3Qtct7fMlhrl5mCEcG+MYt1mvhD2n1vRJjql6/T/oulXYL4DhxrX0Zs6ciY4OSQ5cFAXJZw1zLL9pk0PNt9sY555TYxJ8ZO04ALyaU++k9px6XOFrkKg5ddtzyvM8iewcNk3XsFmdL7jn7SeDDsCFOzoXS1gavEy/s9+ByzxQWZw2uLyHjEnFUbX7AEhOeslpWMu6U/A8V9KiStoroft3aoq2WZ4RpbGnFZOXPiP0TP+iSuZ9tee0MDHqY1moRHrcXmov6RlSm6HuOfU0rpGfOXrgvrhyl9PQo8dwy5KnsKxtvYe4+wi+Fq+sgphsSDHK8dZr+y1h4ZmsOdUde0lpsMIZuSvhNNOXLpy6aE6vW/Bo6u9C0Jy6lt4555yD5cuXp34nEgmcc845WL16dZD5UuQopAlfEWNvjEzNqdEBmTWGxiTdGGx5Orj2WKfnPEQZe055kOkQyS0friVBeThb3nppJknW/czueetfVEnUDNg7d/PPTL+xl/1kZuiaU934g/ic3vs/PxzdexbcuOoRlDSswqnoPmvSBMH4mjwmwquNs+kyZBoQTfSgqaeNGaYQJgsKOuWRUuo9r3NuWZpTEjK99bI4cftDcd6Ox6Ij3o0bF03Bus6tGUk3CILQFhpI23MaQD+Tqb5LB1s4ZD5r15yaF7R1fo0sy1GYYZWULc0p6TuYt5cZPmGSYfMf19JznGWn65gxYwba2+kmXYrcx2uHQ3quKBSxhSH/nfQU6gOCWa8xWTU6Ap732mzalymKsb/P60Al1SESYc+pGc+Diu0xXdfx2Oo3vcUlgMgxIV6wO1OyHnmUOS+wus3MyAsJi4depxaVVkoyVtZpWkxzTTSfvcrjdt8MuWz4NafVRRVC6fnltU2fu4ZRZr2FSvK7locZwqlHs14vkI84k2OW6TVfZw/9EU7Z/nA0x9pxw8J/ok7i1pZMkqsLTBZvvRkbx8QWjEnYn/Pnj8RqCm9efEkgwb0Yw947noTXwZl8zSnBrDc1LlrJ1boqgjpKRuEb+8HPtHNO/aoyrEfJJEl7WQsT0pOP0UF4d4gkTzh1Nep1KQpes97VHZvx2qbPxDIniE5I14B0ptrgkgHCaTg0p5S/gyYBCcIpxazXqP+0svSvNzV766WXp6gTJDMks15j0sCKNyQgwMpks8kTJA1l1luYGF/V4hDQd5xyTDxZUDVUQXh71TRcNvxk/GDgeGyNNuGGRf9ES0/fUm64zUtklXqmFsFk6JAd/kLgfc+pecuXMx2d2wEYa1w22mVJOFt7TglmvQXsrFYJpwrf8Jv1ytlXYD5KxpislvV6UAt6Emjf2yD0rJ7Ath6J3nrB9sjrNsmhPWl/qqfXQ3G2MOfT0HCyNYBk74KsumEOz6rPctA9nWFo5pwZt6b+NpcFz8RW1jmnrCmVL+GUaNabdvxA45Bej6CpIBmSB/m82SvhtJCROUlM1V8PcZLGJVKToXv5ZORLODem9LQQrhnxcxzYfzTWdm7FnxY/LrwXvZCRpS3n8WYuA6vZrLc47GOErntvR8YYaNTrkGVBW+dWJrDNenuFU27Nqdx5BGnso43FhWCpw7Xc995772HevOTxAcaZlu+++y5mz55tCadpGs4++2zpmVQEgbzKazfrpaUis7nYu7CycElvGhnSnHp4tqmnzdek3Y7bKqN7SfBpToPca0NL04pTc8oOT77nNIsha/gjWsTXGaRu2L0H+o8v/V6tseCd1xkDP0vY92NexqpvrDTtA3WmNKg8C1XZOJ5JETy6bVJMDOOxHnpyTcT5EG1BJRhvr0kioTCu3/08XL/on1jYuhq3LnkGN+9xEYoZ84dcIhPjoF8y1c/IWIv5z4YPLb/9eKl2PGvz1surTGA7RDKE09zx1mvk135EYSGMNly9whNPPOG4NmXKFMc1JZz2TewmTZZVG4mdpfmgZfvgWm4Ip0Gb9TLMR9yQ7gxJs5pUV0XK0RrrSC0guWpOaQ6RsnLOKR1zPo138jIIO48dSv9tXjQI+lxnHbrUVVXzOacbuuqR0BPBCmYm9/WWy6a//azg85hWMbJlWsDIFO71pRD2APVlYok4OhPd6IpH0RnvTv6X6MY3xhEhhD5jQ2cdhpYNEh4Cl7dvwMaueo85JfvrtUObrLP6VVodFtGAloaL8Zc9LsbvFzyMmc1L8dflz+MPI8+VPpHPNZhLqYQyLwkV4aKdfopHVr8umE7+9jM6kkKkl/E3pTnVnJrTBBLc9Ytnzymv5lQ2pLZp5PabxgW2O/lbDwxchdPFixdnIh+KPMa+59SMtbP012CMuEKac7elkYfAzXp1wzuweAdqOEMqC5WgM+HfpElDCNWR8tRvw1TU2LvhJmTS95xmCUrCFrfwve/kZYWfVje64z241XR0iMwD6on5kKw5bYtbvU+7aud9fuD03k46cR+aZ5ZZL0sjazfJytREjc+oN/8nC/lCXI+js1eI7EqYhMl4NzoTUXTFu9ER70aX43cUnYnu3me7Uvc641FPWxumrvsf/rD7OcLPGccYjaneVfhZ0pYEUs2jaYhY5zzSEHVAVhkpw+TRl+Da+Q/h84a5qIq8il/tckbgi4LZhd7+n9/wAZa2rbNc271yRxy33UFcwmm+OkQiR6t5Gn/tmlOvZcK0gOide5SG+YRTNw/uopCPhOKzfstH8sOeQiEdme7teb316rq/RsM6liaSMYdI/jWng0r6Ya0El/oagKpIemKQ9liM3n+9Caf2gVTmpKEyXOYQpkhpWtInhGN/Z7JbaKcDn+TvtZ1bLNeDdjJwwczbKGXgjVabcxEdOrN9dyWivtIjOUTSdR0Npv3Ush0ipY6OYryYyFmoMuFpH4WwBygI4noCXfEouhImAbFXK9nZKxh2mQVGy++0wNkZ70o9G5W4R740VIzKSBlKQ8UoD5egNFyCsnAxSkMlKA+X4H9106nPGo5TvNZHL22oX1EFrtvtbNy1/HlmOFqNLQ+X0R8ivMYhA/bCTwcfzJ/BXmqLq3H7npfid/P/gXe2fIPqSAUu3Ml5NnVu4X1cYDnMmrruPce1MEKeTGczJZwGNUJqcB9/Bxb3c1ihpTWnyTmQeY8pb+vrF6lg7k0VNeuVbQZOPOeUkt9CGG6UcKrwzY5l21HvyZwoGg0uadZrvWdMEJtjcler7BgaTy8dj9GhDizuL0U4nd28HD/e7oDU77Q2Tjf9vzisI0L8csnwk3BE7VhcNOtOx8oiqa7oum7ReBp/szXklD2nDm0rOVzQe4uaY3I9VXbYzOrczHqXta/3lV56Z2e6POe0LLeE8bP3iSzsGftc6ZMvzW7XmyF46ksheOtN6IleTaRJ29grKKZ/R1NCpV37aAicXaa/RY8ZYlESKkJ5pBS1oRKUhotRFi5BWahXmAyXoCxUjLJwKcqMe73XDIGzLFxq+V0aKnY9d5ElnFYwjpcJispIOUZUDLVcI/ar1BjE6ulJ2x/meYvCkNJa3Db6Ekxa8Aj+s+FDVEXKccYOR3mKK9fZt/9IHF27Lw6t2Qu3L/uXa/hkveMdh9Lhltg0sEFh7fPk9W1J6xfx8ffljZ9Yflti0Pl81B9RO5aZstGHl3IKp7IhLVbRFkaV5lShIEJuGH6PsTAfJWPufkLJnQoAgA/qZvhIgR8vAkyDSTiVQWei22LWa5g16jqSykOvZr06XzgvaEieCWiPU9fJdeM33z2EL7bOc+TNywox7Rl7yl4PAs8WdsEnbvqAR9Xug08bZktNj3S22kbbcSp2s15jP7RI/NZrSVh12n6UTCa0lWWhEr72keG5gq7r6E5EXc1V01pKd4HTr8bdTLEWQVm4BAOKqkyCY6/A2KuZTAmMlt+GwJkUQMvDJSjtFUZzbd+iYVGUyYliWAtzafJpmjz2kh9hz5tPK5NdK3bALXtchOsX/RNT1ryF6ki5ZcG1UAhr4ZSJN59w6m3UfWXTpx6e8sbTa6dhbssKHDJgL6nxumlOmWOAZpj1mvec6lyLpRpcDufrjYO1jc2MbOdiIma9hUBWhdPp06fjiSeewPz581FXV4dHH30UP/jBD5jPTJs2Dffffz82bNiA4cOH4/e//z2OPPLI1H1d1/HAAw/gpZdeQktLC8aPH49bbrkFO++8cypMU1MTbr31Vnz88ccIh8P4yU9+ghtuuAHl5emJ/uLFi/GXv/wF8+bNQ01NDc477zxMmDBBfiFkCakaTVtcVlNeeems69U22ruQsMeO3A9eTD8Nj2qDSvpJy0eVSTg1JgoLWldhVccmjK0ewXyW6hAp0MmU2D7XL7bMs4VLoC3WifZ4l3DKtHqa7yaXpPPijLfbqXww4H4MpxBG3TeXW3ssbaas67pjlbemqIpfOCVUzNSeU0bdTOXLyAdXav7h6QqYxxjpOroTPURzVfv+yPT+ScO8lRQ2iq5EVFo7LtIiKAsXo7qowqp9DJkERJMW0vw7LXCWoDT1u1j6MQtZJ0f6kBAIe/YIWSsJF2H3ih2xtH2dLagzcDQRw02Ln0Bdd6Pjnoy+c6/qXXDD7ufjliVP4W8rXkJlpByH1MgVePKNEELcc4zsiCdaytvuiPId5MVK8Cdih72hR0vFY32GQzh1WdxK9Pry4BVOZZ7MAJDbGu9Z9flIVoXTjo4OjBo1Cqeffjp+9atfuYafNWsWrrnmGvzud7/DD37wA7z99tuYOHEi3njjDYwYkZyIT5kyBVOnTsWdd96JYcOG4f7778eECRPw3//+F8XFyY3M1157Lerq6vDUU0+hp6cH119/PW6++WbcfffdAIC2tjZcfPHFOOSQQ3DLLbdg6dKluP7669G/f3+ceeaZwRVIvsJoB06BwHujuaN3xTGpNzVpToVMYOTgyay3uwlAcs+ELCojzj1C1y18FAAwaTc3z9mZ79hYpcZ3RifwV5f9VLRUfjBwPM4e+mNcNPtOS3r2dHNNA+OGXfBJmvUmCWJllSQoujllqi3uhzW2vb00WHtOWZNhzbAcyKB4yntw/GOr34AGzbqX0iRUyjL7DWshlIVKMKi4X9pcNaVptP42zF3LQ6R7ScGzNFTMPCpM4Y7n7RUeBD/S5J7Wr+5RtbNDOCUJ2d82LsDs5mXCeRHhwAGjce2IX+Cu5c/j9qVTcdvoSzC2H3txNdNk0l+TyJwmG46kzEnyCmtc8ZIWVwQwnrU7UeRpSRrYZanrYsKpzHkeQPaAT1vAyH/RNMvC6VFHHYWjjuLfY/DMM8/gyCOPTGkwr776anz55Zd47rnncNNNN0HXdTz77LOYOHEifvSjHwEA7r77bhx66KH46KOPcNxxx2HFihX4/PPP8corr2DvvZOHtt9444247LLLMGnSJAwcOBBvvvkmenp6cMcdd6CoqAgjR47EokWL8PTTT/d54ZRLgDA7ShF8lgd7BxLKgnGDlwGhIdqC8nBp6kxWGfSLVAIAdiob7DCldHO6w+cOSbJZL7Xc+OqGruuY0bTULZTjyn/2vxn9i5JlNbxse6zu3CyYcg5jm1AmkEgfuxTAxIV08Hd7zKrJtg+kNcVV3PGzFgd4NKeZ/KK8wun0JqfX+xBCKA+XoKa4OmWemhIYTb+d+yOd+yXLQ6UoDStBMmuw2lkGtaoiR3GQQpFymqnc/2DQeLTEOvDI6tdx85KncPdeV2A32/7ZvoJXs95MEVTu3AREgD2PNLSf1h2xCegcWkw3na2O5HfhdYh09MB98dz697nC8iCkOc0RSw4/CI9kixcvxqOPPor58+dj8+bNeOGFF7DXXnvhb3/7G8aPHy8kbIoye/ZsXHzxxZZrhx9+OD755BMAwPr161FXV4fDDjssdb+qqgrjxo3D7Nmzcdxxx2HWrFno379/SjAFgEMPPRSapmHu3Lk45phjMHv2bBx00EEoKiqypDNlyhS0tbWhsrJSOO+hUPa6GiNtSx48ZofYcWjWuC1zS1uSMkohpGkIh0KW35kuX9IEWmPkoz3Whc5EN3YuGyzVG2xxJII3Dr4dRVoEl876qy0/7Gdp+dBs31Nm2Rrfyh6jRhiMSenqmu5ahzRCRaspMQlHWjrNUEgDNGtHLvs82qDRbfmHlm6nQXgeNtqeDj31jdpNCyGaZnWWBCQ1p9zxU9oWQHhXE+Z3TX5X7iR94N73/N/OJ2Bc9QjLnsqycCmKOPcHKnIf4rDY27/olE98SM1e+Hqb/XxCcwTi+QiHQs76qJH7UuLe+t5g5vCREMOShBK3V04begRa4x3417r/4cZFU/C3MVdhaNkgafH7QbSt+imXsBayzHFYsOYdQWEuC5nO3jRN82W5FA4ly8JSdrwTT43ubyIU0noXItNeuO33zQws7ofisNyFQtLYR6sjWii7MocMhErv008/xcSJE7Hvvvvi1FNPxT/+8Y/UvaKiIvzrX/8KVDitr69HbW2t5VptbS3q6uoAIPXvwIEDqWFIcUQiEfTr1w/19fWpMDvttJMljBFnfX29sHAaiYRQWysu0MpmwID0sSPFRd4aTlmZ84ynsvIi1NZWYury9/Hams9x0e5pl/BVlWktYVFJBOXl/g8wLikusuQjEgqjqjKznhH79XOa05aVF1O/c3Nrcr/p9pU1qK4uJ4bxQjK9ZJrhiLWjcivrkhLyCmBVVanlPZoEz7FjUVWZjFuzdZwVlSVos3X65vpqUFwcSQ4gjHM0y8pKUBaxxmV+n0g4ud9tQE0FqorKUA3G8Ql5QEmZ9V379S9DeVvy21eWy28X/fsl629RcThVrqEis2AYQlmFte7tNGAQsIEvflLfVNpbVysq6HW6rDR5L1KUzFe1noHvqukoL2NbQhy7y/4YWd03NUB9hYoKZx0oK0uOi0VF5P21e9buxBROQ2HxyWV1VRlq+1vHoOLiCHFcKt/k7P+NMcPc91ZH6eNVdXWZ9LnNb2pORzQcxYurP8H1i6bgycN/j+3KBkhNwwtlW8XMV/2US1lJMQYO5LM2qawsyfj8srQ03UeXlMoTwtZ1bkWly1yOJXRVVyXrY1VHOo6ysmJUVrmPg6WlRSivIo8vtbWVyUV7LYTtaqqp9w05vSgcQQ1h/uIH+/wOAPpR5pJVVfLbZaYRqlX33XcfTjvtNEyePBmxWMwinI4ePRr/+c9/pGfQDtFZhu2aYzO0rluukeJwC+PHTC4WS6ClRd65hqKEQhoGDKhAY2M7Eonke0R7vJ0F19Xp9NjY3hFFQ0Mb/r7wZQDAB2tnpu61tKbN/bq7e9De4d/jYzQaQ1fIfASBhva2bmr4IGhtcabX2VsOJJY3bQIA9NMq0dYq7syHhjm9RNy6stbWzi6TaJRcB5pbOtEQTsfb3MHnyIaHtrZuNDS0wW5l09rWhY5ua91obHQeudLV7V5/OjujSNjmg9ZySibeuK0N0UgczS3y3i8bdHRYv3NDYxvae691EtqrX1pakvW3q7snVa7d0XR7TCQSaG61lmlpD7+QnIgRnLJ0J+tqSyu9HzXCRHtiaGhoy8h31XUdXZ3s41CamzrQIPlAdkVu0U7oazs7k+2jh9LPdrrUm54YfQGORltbN1phHV+6Te3Ucr3LmS+j3zDPFVhja0tLh2WskMVFO/wUdW3N+Lh+Fi7/8u+4d+8rUV0kb1HXC27t3A5tLsBDTzTO/Xx775iaScx1p7NL7tyro509ZsUTdBPdtrZuNITb0G6Ko72jGy26+1jQ1dWDphbyMW8NDW2pdDtanPWgoaHNYr2fSOhobpI75zePsQa0uWRQ7VIG1dVl1AU7M0LC6cqVK3HdddcBcApplZWVaG4O1hxu4MCBKe2mQUNDQ0qrOWhQ0vyjrq4ONTU1qTDbtm1LmfGS4ojFYmhpaUlpVGnpAHBoXXkxOvpskkjoqXx4tUknPaYnEpb3szRSkxSi63Js4e0GoCFomXeWSCoHXad+57quZNuoLeondROPOT37solrWVNuJ2zvYX+nEwcfire3fCWSTRMasYz0hNPdOzEcR9npuu54d0v97P033tseWINdPhC3lVMsnt5zGsiGMSNqUz2xt/9YwjqxHlDEv+eUZCam99pGxhkVIHXETW++MtLnctbHXOj/FcGhE/uq3npIO1rNrXv24hBJB0KwTvx08Pel5vZs/K3R7JJt4eSi4Xcjfo7WWAe+b1qCGxc+jjv3vBSlEv01iCL6OWjlMmWfSbhk9t3MZ7XecVKD5uqrI6Fnfn5pLgv7+OM/cre0mR44k2Vhzp+eYI4b5nhpc4FEQk/5FyAdw2Qv/xA0ICHXrJb03rTXytj4FyBCxt21tbVYt458yO/y5cuxww7yXEqT2GefffDll19arn311VfYZ599AADDhg3DoEGD8NVX6YlzW1sb5syZkwqz7777oqmpCQsWpM1pvvnmG+i6jrFjx6bS+e6779DT02NJZ+TIkZ72m/Y1zOsW8nz1muK3bV1nOYEYUFSFq3Y5XUKqtjyQNxlRw9enzjitRnCb4fi8NKZDU/Lh0pFP2PmnQrmypklJEsDqjs2Uu2m4zw7jEGIae1rdguYF9jJJWKbDfHVtn+rduNMjeeu11zXnUTJOUyga81pWOtPsfQ32+baZ32Ojg8c5SH7v/VF4w61euNUKL6OlBg0RxzE95HhI+9FJaWbLe3lRKIIbdz8foyt3xuK2NfjLkmfQk/Bm8ZVLbFfsbqIcIjj2oYbNSv9C7/v94sdPAslbL2mxmgbrPNREr7fewSUDMLpyZ/e8SPYnQPLWW8hHyQj1OieccAIeeOABfP/996lrmqZh1apVmDJlCk466SShxNvb27Fo0SIsWrQIQNKh0aJFi1L7QydNmoR77703Ff7888/HZ599hieffBIrVqzAgw8+iPnz5+Occ85J5eX888/Hww8/jA8//BBLlizBpEmTsP322+OYY44BAIwYMQJHHHEEbrzxRsydOxczZszArbfeihNPPDGlgT3ppJMQiURwww03YNmyZXjnnXfw7LPP4oILLhB6v74CqxlkwmsYy+16ebgUe1YNl58mKT3Guzb0Cqe1xf0yJJryCF3knNhX+mV+wdQ5ZLbrK9o34Mtt85wP2OCrTxozz9t6kvt/jdXrfO/IHVpiXU+9E+8A+adRF3Knl3JORPHKDViF04gW9m2Sx3XOaW+Y75uW4NLZd6cWH4LGrxCiyH/IXm7Z1gvuXknF0TTN4bGZ1mVqhOkfKSjNSUwyfLB9Z2m4BH/Z42IML9seM5uX4p7l/5F+fiQvmRwnQqlv4957ZKN/MffD7AVDcUa4eGhmeuvtLTe7w6bl7XwOD2jv8p/1H6biDWth3LHnpcx4NE2TLpyKzKXze0aTREg4/c1vfoO9994b5513Ho4++mgAwMSJE3HSSSdh1KhRuOyyy4QSnz9/Pk499VSceuqpAIDJkyfj1FNPTe1d3bRpU0pQBYDx48fj3nvvxQsvvIBTTjkF7733Hh566KHUGacAcMkll+Dcc8/FTTfdhDPPPBMdHR2YMmVK6oxTALjnnnuw66674oILLsCll16K/fbbD7fcckvqflVVFZ544gmsX78ep59+Ou68805ceeWVOOuss4TeL5eRKTOyOguLWa+k9EK2s9yy4XZdNMWU5rSkP3VScuLgQ6Tmye4xlRfn97T/9l7atCcXta7mel4H0J1w3/vDqpNNtv1/eS+ckuwTei/x1tOKCP+eUEMINKdqr2vmCeTgkgGmyZY3jLdgnnNqaldrO7fi5Y2f+EqTDz0Qj8iKwsFr/+JlYTcEDRFOTSep2pIm5yzNXCZ6zqqicty25yXYvqQGnzbMxsOrXsvrozJ4uotwbyCesNkoCcvWLck5GFExFPftfZWnZ42+2FxsbbFO/HvDB1zP09rq0+umIQHzSQFuC5IacfHHD/ZyHldNPwdYB7+2OFcR2nNaXFyMxx57DF9//TW+/vprNDY2ol+/fjjkkEMsx7fwctBBB2HJkiXU+1OnTnVcO/7443H88ccTQifRNA1XX301rr76amqY/v37WzSyJPbYYw88//zzzDAKMuYJcdxm/iHLsNc8ITQORyYTTAMlDhqcZr113Y3EMCcMPgRvb/maPw8+RfIt3Q1c4aT2cZQy4j37NcohmIp+c6fo7b7PJ5ewmyKZBUPZyzYHDRid3tuJBOJ6HH9e/CS+b0r345u6G9ASSzqWOLxmLH4+9BhiPs4Z9mNs6W7EB3XfO+7RYH0X+yS6My7fGZQdHrPe3D6xUCGL83c8Ds+ue9dx3WtP4smsVws5NJ20eEj1kqSVZNXfTPWTtcX9cPvoS3HNgofw3y1fo1+kAufvdFxG0jaQNw669wdps173sNkYq8yLkUEIQSMrhjHSppO2zEq3gdYYv2M8thZYT8XrtiCpcYQRxT7Ou9WNPy76JwYUVeG6kWdLzUem8OQD+pBDDsEhh/jT8iiyi/d2Q/Z0TEO2yQcpBz16nCmakhrxDwbui4/rZ/nIA2FVzMWsN6KFUR2pAGtwKg+XoCPO5/3OsRfI7mHa5XmaeZT9e9oHvyAm27zDWw/jCBnPaTs6/fwyi7GvqCb0ROqbyfxSh9bsjd/v9kts6d7Wm46ORa1rLYKpwX82JM2g9u0/EiMrhxEXFY4ZOB7vmwRTY1FgYHE/wlmzWipNGnaLhO5E8MIpYC3jB8ZcjV/Puz8j6Spyi53KBguFd+tHvfRBIvsPycKps3/NlYW6HcoG4rbRl+D3Cx7G8xs+QHVRBU4dckS2syWMyD5SnrDZ+D4N0ZbU37I1p26w5pskzamI8Mx6l4SuI5w6xsZFONU06XuBRSzhdF3H3OblqCnm9/WQawjpnY855hj89a9/xcKFC4PKjyJDyDXrtWIe9CzCqS4nYbtZb08ixpS2ybf8dRwiq2I9iRiaetpQW1yNkEbvspLvxB+vXTh17jl1cYhEeQe3L+RnQTDVtdsi4V3E0LnCaYL7M2zCaZ6ZadrLZE7LckxvWgyAvV9MlAP6j0ZZuMQ2qWWXc5ixd8quod6+JOlhnfTtUg6RGAO0U3Ma/PFSMT2OZtPK/NDSgY4w+VafFN6wf+W0hYHHMc+Lt16BukYaw2KCwmmmTQd3rdgBt+xxEYq1CB5d/QY+rJuR0fRlwLO4m+63OTSnWTDfnNm8NPV3MAqIzM3PDJLTU0Zdh869aLAt2iJ17AUIC7OMd9SRXwvsJIRK79hjj8W0adNwxhln4Nhjj8X999+PpUuXuj+oKCDEqjzLo6dXvtq2wNI59OgxuuZUT+pO7fhd1RLpPI1VxtrifslnKZ2KaH8atnllFO3QM20KzUqTt26wNGfW+Pixhw3K++Goyh0Diddedo+tfhMLe/fwyhSMjAHfGHQTlLZlJszyOimQNfMxMfT8WYezTDlOeXPzF6m/KyJluGevKzOSriK3EG1rbqG9jJd++64Yoc2w+tzyMP9edVnsXb0rbhh1PkII4d7lL+DbxkwpS+SMizzVRMRbb7Y129lO3wxJqBfJX5xzIcZtrtUe75JuYUbS6tL7HMNyKn8XRoWE0+uuuw4fffQRnn/+eRx55JF45ZVXcMopp+DEE0/EQw89hNWrVweUTUUuw+sQKRnWPx3xLksP35OIMxuh4PZQLkiP096tIbXftFc4ldRhuGlO3cxteEVT5/f1k3/ys7xCJ8mduhO397aZPzsmZO7vd8seF3Hkw8rQ0kHCz/DA48FWBg7NPIczIGOyQAqngf98YuNp1vd3OgRjR/6LoT/kS1yQSgHnUorCgb1ASnrAzazXg+bUZ3uPJ8Q0p2Oqd/WVnlcOGrAnfrfbz5FAArcteRbzCcdPyUaeEMahOTU0dBwTlWyLhrxjtwis12Z76zUWUM3CKT8syywd6e9hz5+u6+jRrcccBe2tlxV7UnOa7ZrhD09653333Rc33HADPv30U0ydOhUHHngg/vWvf+GEE06QnT9FnhOEt17AZjqMBLWhbl9aQ43BV/oCHY9TOKXGKpSr47c72J4py0+v55zaBxu5342MbM0pqxydQowVt0GlSItgNxd39zzpykJEm+iH1MAvYK4YZpinGbGkfjPLnUdzKla+xaEiofAKBRty/VvUtsZTbJ72nBLawGXDTyGGJfVHRLNeSps7c4ejs2qy/qNB++Hy4acgqsdw0+InsYLzuBCvZE40FTtbdkNnvffMSCDTQhArNfJirJw9p0mHSOQ9p6Q27tdDvR173jTGjMJos/mrN/UonBp0dHRg48aN2LhxI1pbWy3HtSj6DqzOya7pkNWRORodYZA8dfsjcO1uvyA2Yb+NltTx0N6tznTGaTJtilmvYB4usHkrdDzvUtRuJiGpXwIrdm4MLCGXAa9TBZLDDgC2g+fdtHnp+w3RZjy86jXrfZdu8fjBB7umQSKoiRyr7GSmmF41TguKbppZplmvQO6MkKz9TU6NOLtOBXd4vWb7lc9TBAUvpK+8rG09I7yL5tTLnlNbnDeP+j8MKyNbbJBSJ5nC08a1XDiq4tQhR+CXQ3+EjngXblz0ODZmWVDjQWTPKU/YFzd+5DtPfghCc+p15DLGJnPfLpI/Vlizc0177roInuFlj/d8/jZ6w0pNOTsIe+vt6urCRx99hGnTpuGzzz5DIpHAYYcdhttvvx0//GEwZlKKXMLZ4Fht36o5lddk7A2f1A1cvktyxZjk/dbvhNGP5tS3TTGAAUVVBLNeOZrTIFZCp+wzCcvb1mNU5U7E+7xOFWiCWHGoCLF4WnBlfR/ze9+97Hls7vU+y/MsAFw2/CQ097TzZNeWbjCICGx+SA/MyX+betqwrJ0++QbS+6L91jXjmzAFcUFv1UF9EHu0SjTtG5D6jW09LYSQfHg7SkZj/naDtPiXaW+sopy/47FoibXjv1u+xh8XPYb79r4qtRCci/B8k5Ctr81lWE7qvOJm8E6DVG4i+WOd953Q0+ecci0wSP52Yu2wN2weO+MTEk5/85vf4NNPP0U0GsXBBx+Mm266CT/+8Y9RXZ2/7ooVMqA3mh7LHhaJwqlP7YTfVS2RjsdwiORm1puJDfQ8uO059ZLPHcu2w45l29HTJKxwvLXpK65wAFASKkruRU6GYuYlpGmpIBu7nGe9umsDw8z7NAIz6xUQ2PxgF05Xd27GQzats52U5pS055SSNR3AvXtdiRlNS/C87fB0plmvaB+QBxM/RX7gRbvoVvs8mfWKWA8QGiBRc0qJI1e8UGuahom7nIa2WCc+bZiNGxZOwV/3noiqSLm0NBJ6AotavZlneyGlOc2NImby1bb5GU2PXaWt1j2AmOb0sJoxrJSJ8ZN+0675gXTOKXVrVsohUv4iJJw2NDRg0qRJOPbYY1FTQ9vLp+jrmBsM75md4mm4XyHlh3XNL7RBvC7aBIDDrFegM+PJv5s2kirUuJxzKmOjvz0GkiD94MpXHNdo71Qa4t9SQD3qSABv9Scgs17m4CtTOE0i8v3DDBNpVhnuVb0LuhM9wIZ0aMDNhNkenzeHYF7ZqXfxxe/CmSI/IX1ndssMwKxXQHNKzq8zzXxwrBLWQrh2t1+gNdaBmc1L8efFT+L20ZegNFwiJf53tnyDBa2rpMTFQ/q79c2+g9U2eBwimZ8X8doe1kI4afCheGsLYWGc8dzGzjruNLwi0g57EjH3QDmO0J7TqVOn4pe//KUSTBUWnOdEpv8274fQ9fSAu11xf19pOieAos/7gzRBd/PWWxvwgciOfZwukxva5Mdx1XZB9vldgIhZLzlcSdgsnLK/rtXkx1kGPIsEXuRz2d77DNiDtTxSq8YCsbLqCmvlF7C+lxGKVadFzHpPG3IE4643fh6Q919FfkAzXM8k9v3yMkwLg9lTKJ+iUAQ3jboAe1TujIWtqzF56bPSJumix9VM3mOCr/SMRb2+IJqWS1pAAGiaU7EF6EiIrLPTLQ6RrDy46lWhNLxgfw/WdOKvy/+dDJPHNch1lrl8+XJEo9HU327/KfoevEOXebLZv6hKah7YK8T8V7nT43w+oSewLdqC/kWVKOrt9ILQPALOzsptpY2mhepORHHDwin4uH4WVzwy4E0jTpkoldo8rzKPFjLdIqUr4ilRhOD2nMozdWVBWpV2Q6QsWbGmzjll7B9ymDRS6tTz+92Ey4afIr1WU49/yN/5gYITt4UWykPy82Gre+zFISekNpEPmlOD0nAJbt3jYuxcNhjfNy3Bvctf8GwdY0ZkQbZIi2D/AXv4TC9/9pz65dCavR3XWPM5Vn00+mDzWMCvOU3GW8TYtiP6NQba9j4P8DHvzfW937JxNes98cQT8eKLL2Ls2LE48cQTqZVG15P22IsWLZKeSUVuI2J+ZIT0K6DxOERK3+Pf78YLabAidZotsXb06HGLgwa6t176BKciXIr21J5Kyh4Hh+bUm1nvjKalmNG8BDOal+AHA/fNSJe4oYvPy6L5na4feS5uX/YvAMk9p2l0l0EkfZdUd0dWDMP0psUuOeGrQOXhEpNpe0BmvSyHDzL3nFL227Bg7c91c5Jk/jJGkkKaU0pQo+3KnnTnyh48RebRAOG25iZ4eHE0Y1+gERdunG0i3ybFVUXluG30pfjdgn/gk4ZZqC4qxxXDT/XVPoPz7E1Jj7FXn0RCTwRi0eSF/kWVaOpp4w5fpAn7ZaVCqu8rOzYKxRFh+ZQQrENH1o7Dq5s+E3qGhvPUBPe85NPCkh3XWvHss89ixIgRAIBnnnlGDcAKDnjqiF/NpUB8hFs8DbtIizgOVhalPuUMyd2kV7Y+1XXFkNJvFdvMWgLp4Dz2I+a8mE15xc6sTMdhL6PLh5+CWc3LXGPgnfSNqBiKeb0HxHvtOs8YchRe2fQp9b4fpysieNkFxdKcipWHlz2n/sKJQpvA9gXth4JfE8mLjKNkWIvA3PUyT8x6zQws6Yc7Rl+K383/B97c/CWqIuU4b8djPccnJvj5L6+QoFlvQtcRypFuJqKFMbpyZ+7zfYsoZrQ0eM66Ntf7xp5WofjDIXmaU5l9P0nZ4LpvXVrqmce1Vhx44IGpvw866KBAM6MofAzhwrfmFPZjVFhhvaVVFi5GT4wsnPKupKaPkenvOz9u2GN1W/Gm3Y/m8GZ6cwdt1spZhVONW/IhC97BdOlBrb7LENh4MOIScojkMqnjPkrGCM+YmDjTcolb8mf2sidXUSBoTquXbdHWjHvrdVoUiS3akrKbb5pTg6Flg3Dbnpdi0oJH8Nz691EdqcApQw73FFdQ/gLc0uPtS+J6AmE9NzSnogShOfXTB7PGadF47fXGT77s7bDQxxmh2jx69GjMnTuXeG/+/PkYPXq0lEwp8gveCaYsDdxvR/zMIXuI7zl1h6WNI6VHer/67iYAsJr1UjKkQaMfSUAI65Ynr2a90USPNVwAK+dev4m5gzYLI17jc3oi5usSvaUXzGCSKc2pYaplXxhiwRZOrbkbVjYIAIhHDhn1nWXqKPrtpJv1UjWnir7I/+q+Y54D7K71EK+f9om16P55Upq5vFjpxm4VQ3HzqP9DkRbBI6tfx0d1Mz3FY3c0deGOx1PDyuhV3BzJ2UkgkbeLCMKaU8Y9GQuEoh6uWcg0tfY0XuWh1YOBUMmxJkGxWAzhsLfz/xT5jVNwooQzBfSjRSoPl/heNeJp6KwVPVL+Sc2DZNZLzbvGP7DxvL3bO9Las30yYg71k0EHIpuYzXCtx5SYS8TtvcnxJeMMzjQ0KCGFOSmRuOIf05NnFksz67X9/u2In+GsHY7GdSPPpj7D2nNqT4sWMu1cSS7pVXvnHUXhQ5rUfu+6d50Oz6Lg+H67M/PAdAzHWS8/qPueK1yuMrbfCFy/+3kIIYR7V/wH3zWK+0WxCxlBa1KNcYhUp0h9anIcy09BhOWAiAzHUTI5sr/Y3sb8LIiSvPW6vWZ+1ogkrksWGzduxIYNqcPmsHDhQnR3W8+u7O7uxmuvvYZhw4bJz6Eix5BjBumn8xA/t9RbWuwVPe9mvexnyWVZES5Fh8khEg+yNKfmPPUvqhDKAw2viwtWs17zIO3N5MXhZEC2UwlT9NLjNpLIkOY0bginATlE6l9UhYt3PjF9gfBebE+NduHUZZFC8tCdadM/RW5B+vrL2zcQrvLhpgmbtNvZGF21M/5v1h2pa8bEemTFMCxrX4+dygZTn+fZI7uwdTXmtqzgzXLOckjNXvjtiLNw74oXcNvSZ3H76EuxV/Uu3M+HJZpn8pByiERIJ6yFUguFBnE9kTdH/tgR1ZyykOHlmO3pX1BzaovLj+folliH8DMF7RDp1VdfxT/+8Q9omgZN03DzzTcTw5WWlmLy5Mmy86fIMV7c+LHjmr1PZHnhTO059dW5O/f3MEVTwk0uh0iMTpM8ESWY9RLOOKWlTMrTQQNGI64ncPFOJ+KKufeaArsL6G4OkWiDWVS3mfVa/aYy4wwamlmvFfbXNb+PvfPW9QSf2SpnMZDO6pQN+5xTeQJxrLc+ibTdMCN991VfU9n1BhbRnNITNhIIxqzX0TcpmbXg0SA+IfbrXPKYQeMdXlGNOP8+5lfojEdRGSkTjNXaJv69/gM/WcwpfrzdAWiJdWDKmrfw58VP4u69rsCuFTtwPet0NBXs/k5W/GTNaTxvxRDRdsM066VarwjkR+IWMft3lGt67eH4qjzCVTg9++yzceyxx0LXdZx88sm45557MGrUKEuYoqIi7LDDDiguLqbEoihkMr06Q2qOMsyX7BQzzHpJcRL3nKY0p+Y9p/S9afb58uCSWkzc5VRiWLdrbh2hOb9/HvV/WN6+Hs+tfx/ddrNei/aPGWXgmLWENK3cAQNGYX7LKnocFm+91jKKQ7cdSyOPoAYS1iKEXM2pkQ5/rOxJHH88RkgZe04NpJv1ZrtxKLJGEG3bz57TsBZ2FUzd8ry8fQOmNy3GdsX9sTXaJJyXXOSMHY5Ca6wD/9nwIW5YNAX37X0VhpTWuj5n71tYC2Ey5kOpM5MJ38huIQIk++YgfENkAtF+k+ecU9mWeea7QnE5jjeT941YPkoKAVfhtKamBjU1NQCADz/8EIMGDVJCqMIzMtomUWspuImda8+psObUSUO0GWWhEpSHS5n5oeVLFzAD8XPOqXkf7+qOTdRw2V6pMwsnIU3DPXtdibJwMf69/sPU9THVI7CgZbW3+PUEysIlruE87TkNqOiM70MarGQKTIZZryxvvcn88pHaJ8rSnHJ+k/SeU8lmvUb6tmxku80oMoOw5tTlPs9E1qml91fXzGn+p7dPPXPoD/DwqtcIaecnF+x4HJp72jFt6ze4fuE/ce/eV6LG5ag3u0CYObNeJ5FQGLBa9SaF0zwUVIaU1AqXJKtZ+HGIZNR9tqJDDLvlEElh8POhx0CDhv9s+NBxzw03U+58XbAABB0iDR06FMXFxYjFYli3bh2WL1/u+E+RH8jsyHhjsppT+oFk0iof5mHMRIHXSme8G+3xLtQWV1smDSJdn9B3sj0u+o3zYbJh7oxDCGHv6l0womKoMyDny9jncjp01BRVuT/HF73NIDqYEmYNqkFoTkXeQ9RbKJ1es17Wqrmo5lS2WS9jn5ii8JG9+OTFBJCkVRPBSHFtxxZ8uW0eBhRV4ViKE7x8nfZqmoardj0dh9eMxabuBtywaAraYp1CcbAW6OQswPf2JSSHSIRvnMhTh0h37HkpZI5SUo6SYSk6BBu5w0kfoXLsWDbYU35D0PLWQzMPQjuRe3p6MHnyZLz++uuIRqPEMIsWiXtCU+Q7Nm0fs8HoHGHYaHB2Z0FMCFkTa7K3Xus7kUx6AXpeNc1ZLrTOh3TVuedUUDilvK8XzWlluAyH1Y7Be1u/I6fl8XuZtcEyHNDY83Fk7TiUhUvw/Ab5e62CElqMOqJpIFQM+ZpTkfdgH4nAxiLY9wZmWQPw1oegREfaXlwlrBY+XvacuuFl8UQkD6yJ9qsbP4MOHacPORIl4WC2OWSTsBbCpJFno31xJ2Y1L8NNi5/A7aMvRWmYbBUYtzkgCrpNM08KIO05RSI13vcvqnTsRc5dvOybZC1QBmvWKxqr3fqOtC2FNJ/lQuOxjstfhJbZHnroIXzyySe47bbboOs6/vSnP+GOO+7AIYccgqFDh+LRRx8NKp8KycjsXO2DKO1cNJ36QwzRjsfruzIn1hx5SHnqLbEKp7TsEM2PTWX72xE/M98gPG9FpOPSoVNLyYs7pNJwcSADeNxi1ivXKcW5w36C2uJ+FhNsOvR3O2bg+IwKJJny1vvDQfsl45Ro1ssLjykuyzMwiaAGbiWK9lVE987JT9G/GX8yVxu76gEAh9TszZ12vlEciuCmURdiVOWOWNi6GrctfRaxRJwYtke3zmmCfvea4qT1jrHAbYbmEMkQfGqLrCbK+/UbhZO3PyyAXPqH5zgUOzwOkfw43GS3IbF47dZ3pLE6BM1Tuw1B83wiQz4gNLubNm0arrrqKhx/fPIA4rFjx+LUU0/Fk08+if322w8ffihuM63IDkGa9XYnyFp1s0DlT3NKMF9kmmJ4S4flaZSn8zPOOK3l1JwCzs7LrDk9drsDMbhkAPVZx55ThvMYR7qMfOXSvgWLQyTT97F/Y09mMgLCrludMm6TPM7KxqgjpDrpJ027xn94+RBqOjSYZr0essbaY8Ofr4D2nCqHSH0a8b1z7PrnzaxXZMHHiW77t9DrdFm4BH/ZYwJ2KtsO05sW494VLxAn/F1xypwmIFhbS2jnnBp9o30cG1Y2CBN3OU1uBhmIHGmjedCcMr3T+6ivRqysGESFXrvmlJh3j3nWtMI26xUSTjdv3oxddtkF4XAYJSUlaGlpSd076aST8N5770nPoCJzDC/b3uOT1gbC6shlTAhJTZndvL1qTlnmHe77Q+t7PRzyCqek67SVMWIp2vJb1+1cdaWh6zqxmDZ21nPH4YgzgI7T3Bmzvw8d86TQHC7oaZjX1Vz+8zrlvsHk0ROI10XG0jD4zzm1Q3pvpqfGgI93cCP9PoU9oVcQ0LxpP1gE7xCJEZbDOUyh0K+oAreNvhTbFffHx/Uz8ejqNx1l32lfcGeWs/9xb0AR3UHTydsf7riW0HWqw7pMf0OqciIDGGOsn0UV5jgtGK9dc0oSJr1uCQgh5HpcYD4jNJoPGjQoJZAOGzYM06dPT91bu3at3JwpMs7+A/aQEk9nopt4XZZDJLLjF+u1W/a4iBkHz+Keb7PeXuFwkE04ZebL8Zu259T9BRa3rRFIVyeW66/n3c+l/RM9fkXGRM6rMGIuuR7TXiIvZqYi8LyzFwHWWMAgDch+zJv6RSrxw4H7Oa7LcoikgV8rb6TJMmPi1pv2BgxKc0pysqUobHLtKBm/aQaz3JW7DCrpj9v2vBT9IhV4c/MXDp8DXXHrnCZIge8HA8dT9/lOO/iv2LFsO8f1uB5Pa07tnoUz/BHb413cYe2a0xMGH+wrbRkLhDTfG15idWhOaWa9gvEaKLPeXg488EB8//33AICzzjoLjz32GK655hr88Y9/xF133YUf/vCHgWRSkRm8nu9or/49lD2n5rC+Gg1Hb7trefpwba8Nn+X5kKw5tdJAM+sVWHW1m8gU934jUhkLv6duXSwgPd8W7+T6UucM+7Fo6r4xfx97n+9XeDx4wF7ssO6xEa64P/XmQXe6LqzYYZlR+ZlEaRpZ4BVziCRn/44RkmXGxJpUkJBtra5R+gu3CYSiMJDuEImn57VvZxCQRPqCVlSEHcu2w+TRl6AsVIKp697DW5u/TN3rjJMX3En46VaOrB2H60aeTb2vaRqxT43ridQ2HueCIPs7v3zArY5rpw05EmOrR7hnmMCB/UcLhTfnbuJwf+bHRv33teeUeU/QrFezO0SSZ9Yb0jTEdPIeaYNc2pIlitBo/tvf/hannnoqAODCCy/EpEmTsGHDBixevBjnnnsubrzxxiDyqMgQrHM9WfjxMOsFe8dD2rdg/k3eo+qeDmugJ0+6rW9YRzHrFfHqaRc8jAWE7kQP1/Pc6GTNqXHPDdln/PHg3XSH/D7m2G7e4/+wc9lgj/F7JxIKM/c6kzCfc+rAVkYH9BexjtCIToZEJsCyTG2NNGXsOU2XU0CaU1s+Ctn0SpFGtqjnZWIptOeUENRIMqitArnOyMphuHmP/0ORFsbDq17HJ/WzADjNerNZKqR+Prnn1LCgsZ/JyqYyUua4dtnwk/HjQfsL5+2kwYfiupFni1lGSVTtGgvWXiyz9qjaKfkso8SENaccTvpC0DyVgQatoMcWIWlk0KBBGDRoUOr3hRdeiAsvvFB2nhQZ5oTBB2NDZ513zaltDKXvk9QDWcnRQHCIo5H/TuWFIxthj3saDRqiLQhrIfQvquQIjd6jZKzYBX9DcxolCKei2L31+iEbjjPMadqTP3a7A/HE2v8Kxcda4CCFFsXr4oHbl0k5RCJqOa2IeLQNgbxKLwsvUesCTr7c45LbF9G+byE7rVAk8bJvjH8vOStdW58lyVtvSjTtje70IUfi1U2f+Yw7PxjXbzf8cffzMHnJM/jr8n+jMlzmMOtl9f9++hWvz8bMZr0O4dRbnfBSl46oHYcKgrBLTQOaZUHFb/XVKAuEbvSLVOCYgeMBuMxlBDPIp/DxcpxOMp+FbJWTXQ8Sipzg17ueibv2usKH5o1timowr2UlXtn0afIJH0KqZvM/rmlszanXdc5hpc69HekYnU3H/EqxRByNPa2oKap2mNkwvfU6tNDWzqc0VNx73Vl+TM+oLuigD0Y8A+bQ0kGW35kwJ6GZUQJAdVEFzhhylFh8rBUOR9rsOkV6lLsWOh52mcTqdC2HPZ8REY/E0IS1uCKIenV0e4a3/gejN01rrZTmtI8iOMzwLjqJIOat1317iRHm/B2PFc5LPnNozd74zYizENcTuHXpM2iLdQIABhX3xysHTA4sXZ5xkyQ86dBTx6w5LMs8S3xetsb4TcWfdOr16QMHjE4J9TI1p3aHSCRCmuflA8vYQhr/8nnPqatYf8YZZwhV7pdfftlXhhTZQ5ZmR+QIEy/Yc6n1rls7r3ln0m5nY/fKHfH0umnkPGga9qneDbNblqNYiyCqxywdQWNPK3ToDpPe5LO0VDWHRvfo2n0tv1nabT8mlLznnNp5cMxv0NTTit0rd7Jc1zTnu8hGrlEvqV7JhbcfFU2XdZSMHaGzQDXxfZwiuLVRy4p6778s4bQfp4WCgfQFFKpVfP5OEBT8SN9z6qHasBbsuNJkxOy8Utgmvz/Z7kC0xDrw+Jq3AQBDSmrx5L5/6F0Mzx7khXE9Jag4F8OT3LD7ebhr2fOu+xTtz4nlTXB7j83sjffp0lAxughegUO95me+jir0sShth0dz6sXqAkiOj+Zz3/848lxMXvqsJUw+jzyuJTdy5MjAzudT5BayvjKPRkSmt95RlTs5BQvTBS+Tw2MGjWc6dgpBw217Xoq2WCcWtK7CX5Y8bblvHJ5tPyuyN3fEOElXD6sdY/ldzBBO/Wu5xDWntcXVGFk5DM097Zbrfr1G8uDWoYtqHuyDPnMFlfP1MiGY6AzNXHPM+l14VnINkt8wmPwfu92BqIiUMsPs22937N9/FI6oHZdqT6y6WB4uwRlDjkpZZ9AJpm6SHKgNLR2Incszv3dZkWnkntdohHBP1fbb51wt5a3XdpQMz9FphciZOxyNlp52vLjxY1RGytJmowHNiXlKlJSyDp2x5zT5xBG147Bn1XCcM8PpAImcjjUlvr5VFGu74W1Dt+95KW5YOMVxMoSMZQOZSw92h0hH1I7F5w1znel5SrKwzXpdhdM777wzE/lQ5AIeO1yHKSpXg/GxsmVryTfufj7Wd211hEqn5C2tolCEutdG05IrlP2KKohmgg1M4ZQFO68lvWa9JHj2B14x/FQ8svr13pRM3npZDpFM2MMYna/jSU1zqU4SBhGNPajRBENafXBY9bJTd7nrvC/usIcPQwjnmTAJaU4Z+fjBwPH4uH6mQFxWjtvuINcwkVAYk0dfAgB4bv37ANgLDrXF1UJ7ZKXvOSXsd7ptz0uyfv6qIniCEFWyadZrT7kv6yf+b6cTsH1pLXYyOcgLqji49hkTPkYCeqq+hBFCTVE1tvW0GE+Yn2bGPb7f7pi4y2nEkOP67RaAcGrLHWdF27NqOF476DYc9/W1trg06BBfFDa3BVYbEh2b7cf+XDvil07hlLAtjYeQpqE8nF7gJZ4LnsdWO55GTV3XsWnTJsycORMdHR2y86TIAINLagAkTVUMPJtJ2h0icXSwLK2kG/b+a0BxlUNba+5g/ExCR1YMI+eB2OGn0zE0PbXFpMO0ad5iNdecllLOPwP4BI9IiBwmueeU/Aypg/vT7hfg4p1+iqqicuIzIYKJsmwqwmzNG9VrNCVfjgFC8ozMi4nsXXte7lqOiZSWw51ISGDPqcYa3Nw/Lq3tAOJ9jfFtaFri20ZfgrAW5hIEU3EJ5sEN0qRGWR31HYS/tZQKaNvO4ldzmmrvDA/gqZT7Rt3WNA0nDD4Ye1fvEnhaPMIEbSHWfN71nXtelg4v8JmO3e5ADCsbRHyQb+FD0KzXwzPM+Ayv7n4aF8usVzCrkVAYV+96Zup3SbjIobBI6PQtVSw0aDh64D44dfsjcN/eVxWcHYPw2SHPPfccHnnkEdTX10PTNLz88svYa6+9cNVVV2H//fdX3nvzhIt3/ikqIqX46eBDUte8DjYd8U7Lbx7NaVT3IZwS8ml3OmIOI+J4xU8ezKTMekv688fJUfwss14erZFVaE9TGi6mvhOp9Ozmxpk+Sua0IUe6TsRY5q4knE61WGH5MJedl3ce1283fL1tgUsa9ImkfbIjYvrNWizh83YtT2NovJnRlvfrNwoDiivxQd0MAMBeVcmJI+tsYifBeOtV8mjfRPSzB2EWK6Y5FUFVaivZKw8es96dys1aXrOFkY90A+rYsmcgTUam5pTvGT6rNTshLXnU2+W7nAIA+Kx+tnAcuYzQ7OHxxx/HnXfeiZ/97Gd45plnLBOfAw88ENOmkZ3HKHKPykgZJux8IoaU+tecfrFtnuU3j3dK0jmd/JDNWmhByJMAzs7L1CFfPvwU02Vnh29uD2mzXpLmlJqY69marMk3z8Sc1gnuU70b4ymvHX1wa3k8kzDRyZ89Rj9aA9Jd3gHIPglwPXLC0JwSD2e3Or8Q0d6KeJWmxeAlblZ4o52PrByGkwYf5rjPs0BjBJHuD4l4lI+a1PcVsvGtnQ7GBfLACGs/SkbVYivBmfVypE0y69V1NPa0AWAvCorUUXvIILYnaNACEXr99O3m/Fwx/FT7XeH4dqkYAgDUIwW9Kk/s35I8y81ffapQbXv++efx61//Gr/+9a+x//7WA3p32WUXrF69WmbeFJlGUifB0yBoZr3DbEeSkCC53rZra80haoqqURoqxgH993CNm8WeVcOJ10mda323YdYrtuf0ltEXMe+zJt9cmlNCmMpwGXPfA1f3Jlh1/A5I9ufJDjto0Ox6A56CcUYvmgvDOzaPRYG8oybcYZ8XJxhZb/iUdsA2qTH+5ptAGWa96XpwwY7HCWbISbps5WgqFPlDoZhv2x0ipQ0vC+P9ch2euVNVOL2V5vQhR6aeu2XJUwCAT+vnWMJ7P6jEi5ZQMLwmr4/88z7np/4mleN2JQO44jGPkacMOdxyz0teR1XuhHv2uhKPjfs98b49r0fUjuWKl2e+l7+iqaBwWldXh7333pscUSiE7m77QcWKfELWAMSzErRf/1EAgMNrxlg6A6+rc07hNE0kFMYrB07GX/a4mBKCjjlUsYtbcPNbs7310tLSMLikhrBal4YlXPDsOfVyhpeXTfXJDje4CY29HEiDkeiKpON8OMH8H14zFoNLBuDcHX9iyZnX+JwxUO7bPGuacWpOBYRTn5/voAF70uP2qDlNmTDbFlOMv0hmyz8etD8mEtqUuVwrBQ6Op+aRpDktEKFF4Y64t97Mp2l91olu+ze13KKqsYXg2rV7rdihbCCu3vVM3Lf3VQ6LkuTfdMs1t2zrlvHKip/zmo+q3YdxV05ZjqgamvqbtP1pn+qRnDEx5kgev/ve1bugX1EF8Z7d6s9soZfOkbtVji8LwRxESBLYeeed8d133xHvTZ8+HSNGjJCSKUV2kNXd8pxzesiAvfDouGtx3chzLEIVzz41UkO1N3B7JxLWQrZr6fAhaFxaVbtbcCfpVeeGaDOqI+XMPaJ2jNwdP/hgnLL94XhgzNXOMD41p5bn7cIb5Xk+A07WVIcU3h88g4Rvs17BTN446nw8M/4G7FA6kBAb/zt79tZLuGeeUJy8/eGCR/xooH1DUtmaz+S9adSFOHOHoxgxiwqnSYz30aBZ+gqWWe/gkhpURspNYZOUh0tS18S8GNPyaGiZFH2RfDOho1rK6Dp4HCL1bYIpF9711OMHH4w9q4anx0HGg55zautL7Qud5EecqY2sGIZLh59Ee0JaSZqTHlY2CGftcLTlfphzQOf1+P7EPtfxZs2CfbFf13VLuRVrzjkjKU9cZr351SVZEBJOL7jgAkyZMgUPP/xwyoS3oaEBL730Ep5++mnlDCnPEekm+hdV4u49r0j9Njc4Ho2VpmkYXr49ikIRy9mLfMKpE5ZZrxuH1ozBlb3u01nQPN3a02qNdSCqx4RNeg2KQxFcscup2L1yR8c9lmaZZ89pCUFYTh+BQYO+muoVv30mz7vS6iEtbft+TPY5p15MnoKa0ND3nJrZr//uQvkOgeEQiXCnyNQ+xlTvKkXgM3BoTmEtT+O1SO1DA7nenrnD0Tiydhzu2/sqRCTspzIEfy/n9inym+QyjlivlpPCrK7jjI//jCVt62w3VD3OBKJ1wuhz+L3TimzrsNKTcBdORQlqzykAXLTTTy2/ea3yWLkx9+dDywahOkI+rUAE+7cj5bMveoIXGpHPOuss/OY3v8GUKVNw4oknAgAuvfRS3H777bjqqqtw0km01RFFPmCu7HtU7ozLhp9MDwvrOZbmTpVHc2rGLJDShA7zsSFkxy90s14eaA3d3Bm5ydzGbS8mvfa0aLDNet2bc0WYbr5Ii5vr7DXXEHLh229BrofUc045rhiEtRCuG3kORx5Mgr3nwYRd/gmGluPH2x2QTh8as/5MHn2JxfwqF8e+5e0bACQXEqx1oFdzSuo/KPuTKyNluH7387Bn1XCEZGhOlUOkPowm7thEglrDT+0iPftpwxysaduSDqP5T6cQCc6oV9Dap/cD6bqOyt6x/UeD9qOHN+V8ePkQ3LLHRdT79r4rZjph4f4xv8aYql1FcurxnkgKtn6ewy+FeBry0W1HyZDmcSSB9djtDrRH5Iw7FxfAOBE+SmbChAn4xS9+gdmzZ6OxsRH9+vXDvvvui6qqqiDyp8gg5gZSU1yF04YcicdWv8kIbxLcIKg5Nf09uGQA2jqSx9HQBKwQwYTPjHPlUKwb4dHEDS4ZgGMGjscelTsRUzLKoMGjcMqTZabmlEM4ZQqwPsx6RZ/xbdZrH4gIMYp3zNY43ATgw2rGUO+RngxKUEmkTF2dlJlMVzWwBeT9+4/C/v1H4dOvZ6eeoJWhWxN39Wbs1yEW7H1CEqr5k0t6IprT47c7GNO2fkNOB9ak1KS+75DPE0E6TmsARe6Uh3nP6YEDRuOj+pkOoYXW107a7ZfYtWIHyzVrHbYLp2nN6SjbHMgrNKuWIGDPj/hyEYTAm7D554gQFkrt6exZNRzDy7e3XOvT3noNKisrcfjhh+Okk07CkUceiaqqKnzzzTeYMGGC7PwpMoqoOVo6jFkgFW0QN466IPU3rQMJ2fLmSME2W+bRrN2yx0UYUlKL/9vpeGp4i25G0zBp5Nk42eHBzfqsoTmlmfX6WTBnab549xM+t9+fMHX8jY7vRP3mXBnO7GDNI9wIO0QKWFXo2SGSy3uYnQS5pS+SB3Z9cuZJ5Dw9v5YN9ndJ7zl1N+slFRNpQkDj17uegX/v92fHdWL9yUX1syIQvDiO4+2zfzhwP+xYth3hjo/6xeOjILXgouqxmcA0p4JVyKg/cT2Oj+pn9l5jHSXDjz3skJLksYPFvb43SPM82iIxr6msP9zGP//xSNG+2o+Ks3vUJ7Q1+7hGUjLksyBKgktz2tLSgs8//xybNm3CsGHD8MMf/hBFRcm9a9OmTcOUKVOwcOFCDB8+PMi8KgLGaSTHj3izSKdgPmvV3uhCCCGBBA4asBf+V5d2xmXfY3pIjd2LtPsbHDRgz5RH0cZoK2/GqRgDS5Bmvb4dIkFzCM2a7V87nro811HWXyef7XNOSeFd4w9oRpNgeOs1o0PnMv020DSN+hndDaPdBWURHN9G0yz13WgXYUq8bumJ7I/VNA0Dip2WQhqhJakpfd9Ag8i+vyQ6gCf3/SMunHW7a9h9+u2G7kQU6zq3essggVzR/inS2Mess3Y4Gi9t/IQa3uj3pm35NnWNpSH08833qNoZk0dfgl1sGjs3WK1CbLmUjdv4yrv4zBak7Wn6z31SeE/Hw7vn1BlPYeEqnC5ZsgQXX3wx6uvrU9f23HNPPPjgg7jmmmswe/ZsjBw5Evfccw9OOOGEQDOrCBZrQ+MRdNJ4WTUmYW+YE3Y+EacOORzPrHs3na6mWUxMAKA0XEzNGwmHEbCfTib1rGHW2wLAi3DqDntVlEe4Tf9NWvckYRkwaRpmwuUgV/J4TJjFq6RdO+cWmmPAMBddQJPBtJMgfk0Ii+t2OxtNsTauNKnpcL4qfx1xfhvSgE3WnDqNwO1IcYik9pz2abw4RNq+tIYzLJmg65eqvRQypEke6nLuu/H9jb34gIgQRtJymu4TTjzYv/cIQHtYJrpOr6caAi3LpJVdMqc8W7d44mP95sHhrZcnXY9lJGteng1cv9bf/vY3VFRU4IUXXsCcOXPwzjvvoH///jjzzDOxbNky3HXXXXjrrbdw4oknIhTy//EV2cSsiXALafWyRnM+456SFfs5hTp0hLSQpWMJwSmckvInguWsVZ9anfpoEwC6WS9/TE5YAw9PB+blnNPNXdtc4xXF73AUhObUXrbu+yZZ94IZcPtFnGelibwnT75+MGg8Tus93J06dPrccyoKaVJAehfiogVHVuQeJaOm9H0RYYdIgsiOnaeWsuty363nst58fL/dLb8dW23ctmr03jc7obQLYTOalpgeYOenJ5F2euTlHUnPBO1/Ih2PM6YiU78uZUwOYFxP6Lq71tf+bsRCJTlEyl9cpcn58+fj6quvxrhx41BSUoJdd90VN998MxobG/GHP/wBp5xySibyqcgAVr2pWCMUNWmyY6wQ2jd5G9gFh7iLW3P3/Xf2+E3OVSxCNz9pb729mtMSsnDqp39jCWV+J8W0Mnt63TTXNDI9Iefacyq4YOKoFZJfyfOeU5f7Cc6jZNy89Yrliex+IZ0WG2GzXvun0TTiSjjJbNnuEImUsoi5Mw2jj7L0o2qvXp9A0zThBVo56fp62meQfJ765gbblQyw/Ha6dWR/o9RRMqaFEXtftqW7kfgsqe50JaKW1EWhOauk1VNRPwiiREJp41DesY/VZzvMej3k/bjBB1l+8ywu81mKFVZ7dH3j+vp6DBs2zHJt6NChAIBRo0aRHlHkKXanQ26Yw6zp2MII6c7de12OX+1yOk7f4UjL9XH9diPmrcdVc8qGNQiIa0613jjT3npLQkUp1+6OtCl9CM9Ew/9kl256KHOIcF8t9SlI82hORR0icZjsjKwYZgnhmodMHCWT8tbL0WZzRFgSzQZJc0p0HEEY0jS4fyleh0iimqTcKG1F8Hg4SkYIveAcnuQzsgQqxze11SHXRT7NOvcAnAv5YepJB87Yu+NRxl2P2N7JeXyNHEjxFJuEUxljn/sGEXfOGfZjPDru2tRvXU9wL0KIk799hq/l4khE+CQaRS4j0HjtE77fzn9QMClrWrXF/fDT7Q9FsVZkub5bxdDe8GbNZtI7HTt/Yo05LLjflkZ3vAetsQ7UFvcT7gy5zjllHSXDtaBgxt/xO6wng55I8eyruXCnE7BdyQD8edSFXHE6V0Wd3LHnZcz7LGjOevyS3nPqjuggR/uK7m7r3XWnADC2egQAYEy1yJl59BV3Ur1Y17nVEpb0nAzh1Chbt7QUhUf/SAWKQ0XU+0WE+iWyeBZEb8pTM5VZL5mg3lzUrJe47942rQ8TjtyiURlJL6ib075v76tcnqQnoNuOSjFvTdHg/o68kM16I8z7PFy800/paXrIe0gLYXj59vjdiJ9ht4qh+MGg8VzPuMG2Zco/uKTLCRMmIBx2dq4XXnih4/rXX38tJ2eKjJMLQ01RiDxJtHjmhOa6R0xcMDTtabWY9QpMIHS+M077FTn3DfLCNOvl2XMqYLLilyA7RvtAU9PrPbU0lHaMNaxsEJ4df4NApO6aU8vgLVpiAWktDZN6Xm/NMnB1iMSZzkED9sT9Y36NncvYHiDt6YU0jezVkHBtSdu6lFduGjyDv5EuDXLbyoVeVREUD475DWY2L8V+vY5iTh9yJCJaGC9u/NgS7pUDb8PJ3/7Bczp0QdbHgiJXf6EgElBfLmrWS7pv/660hTdzqEfHXYPP6ufgR4P2J4bds2o4Mx8G/YsqHdfY7xSwWa/p3b1qH32N+Qx+st2B+IntTFoafPNZ0p7T/BVPXYXTq67iXDFR5D2iK/5BdCpFIXKVtJv1njHkKCxpW4szdjhaSrp24VeEdMehu55xCgA1xdW4ZOcTMWXN29Z4eNJiCac+v4e/FczMTmPswsS5w36CnkQcJ25/qOc4HW+QIyawZkiDTXriyqN5F9WciuhO07g7VDPCaVwHupPm5jxaA8BYDDK1b0Lm7N6+afBoTs1BcrAKKSQysnIYRlamTf0vHX4y5rescginxYRxTXjamJV5pqrAmYT77HHjPqGDsTuVtO5BJc9zhpcPwfCdhgilbc/rTwYdiMElJO/TNm+9zoGWGP/Vu56F+1e+xMyDNRpnPCyz3uO3OwjTtn7reNT53uaxgz87IrgedcZh5HpYzRg8sea/aI61y8pWVlHCqSKFZT3LbXKpaYGMWzSNqN1hUVVRucXE0i/mSbvoBN4cOq05rWY+c2jNGIdw6le4yDUzLZmxmQcSwCmYVETKcNWup0tMkX+/D/nZ5D37AD6malfMa10plA9Xh0gi3noluNOn4bZbKqKFU162RRdSHJpTkDWnYcI3KdIirqkNKx2E/kWVaOphH6EjqjlVZr19D/sXp2lshKxyONMSQdVM7wRm1mvfc8rh5M6OvY8KWTzWCuRFcDXkwAF7UOKxzS1twh4tS8cPPgj/3fKV5ZgcFqR4zMoOe1ldPeIsy5yCBktxkan+3f5NSd+mIlKGqfvdiJO//WM6XP4qTgOcqSjyD+FzTn2YFIlqJwPuBKwaF29p6SbN6cDi/sywJPMXHpgHbPv0OOpvouN8mtkvCoySO5UNxmXDT7Y9Lr8+OCYGAdS5u/e6wjWMXYvHO0kwHCPRCGkh1EXJnhtp0AY38nW2t95/jP1t+r7w97MlqNH2nJLbAM+RDJftfDIzDMA+K4+851TR13DWNRm1IDsOkZTmn0ymhBK3VIhO4Wx9oHmriyVu6R+XLz67hV6QTvoilj2nfIi03s54t2iWuNK0w3vUmXN8yl/pVAmnihRiomlmtQJm0xRZx2GYMXeQ5s6c64DklJYMXGa9AFAWLsHvRvwMI8p3cMTDgjU55vtmaUT3t7DSEJc1RLQG9rXXYOpA0DMx3oHY68KFmwY1rIWwLdoqGCs5Ti97TqsiZO/VPNg9oWqgTMwC7pPY2vJQ77/Wq4q+jagljgj+xuBgF6AV4tgXtb3sObXPEcrDJdzxBYGu68x0ZeWIlIbFnN5jO2Rtd2uLd3qKUxT7djdaeQbZ12QaJZwqUmTSyyQr9uO3O5gQXm7eWJPrEobXRTd4zXqB5Ib4/U2mMH6PkuFzcEEwPSScz+iXoM/cCqJ+OldM/VsGeCmFQcX9sV+/UThjyFHE+4fVjCFed9OchrUQfjr4EA854sP9k8v7ZiGQzzmlak454uT5VqIOyQpnqqDgRcZxE3Z0yNeBiC5mKszIKRnzOHny9ofj8l1OsabixVuv7RmvZ9CLH6lHxrEI7jhzmiW4+itnL956He3XnN+gGoRLxMWaVTilzV/t41/+6k2VcKqwILcR/nu/P3t67tLhJzmuWTrcnB0x+c16DYSPvPHbkZuCOARIHx9dVBYVNVGzvxuvd1U/aWRrETKkhXDbnpfgkt52YC5bHcB1I88hPsdj1ktyzMKC9p1cNacuZed3zyk0shaaXi/c0+OZxJnTdJ6LS/irgFayFXzwnJfMui6Cql7ZQVaxRxOx1N8TdznVYTXjlg5XH2gaQKzWceJaWS/o0C0J0/tNf5DaQsR0+oP5tn1hk9/RZHYanFeFSUF761X0Hawrbu4dl9vEq7qonPk8/R4hb5I1p2Szw3K0xjo8x6XrSbPeEDQMKPZimsmh+QzQIZJUzanUuJyxZcJ8RbZ21mts9qOHaAKmm8AelijQkxYj3M459TPE2wXHpOaU36yXLz33WmvphzTNUhCFZFKl8IGtGtD6bJEJp86x5/Seva7kjo+VL1soxvNCyRU8B/RPWkGdNuRI7mfct0ew+2xSf2f37Cp2/rQ5qHztMCGRQM85NR8lY74/qnJHSzhLGTGOlAvKotAtVtopFoVM33tjBRXRyaNbGNb+SFFCAgdJ80AaFEpCRXDsyONQCRp9WQIJbIu2YkBRFfcGdlHnKazByvdRMj6eJw+y9LITFV7t41cmzHp9xUWMzFsKPxv6A/xnw4eu4YpdJrsy26P7pIp0zccg70hOIwqDJAFch841ASJNokIIIYG0RtquOY1bctRrpKY5ryn6DrwePUvCAtoQjnHIvLeQD47FUEaYfPYE6hdSf1IZKaNatdj548hzMa9lpeuZ565fiKg5tV7z6unZ7b6IZ2Fa3x+09laj/PjTqAv443CYIWcet7G9EFFmvQoTYk2PfeZfiD0hZE4WSVqX3DeVa+xpQwIJDCxhO0MyI2JmA4gfZcGXB82RF1GC1xrZzHqDGCYYK6bZpDxciuFl27uGc9PEhLWQVO0pC/LeZu/xOY6SEfDWyzuHJoWzlxfLq3e6HQW/0q7IXbiFU4oXVTqkGhps/crRoTbr+LHPAICjBu6Dq3Y9HdFEDzOc27hKGgft8wBz35lJwZCUPhDkQjP/+9Rw+AQhxRqc5tTlO/fBhqiEU0UKkUbo1lRkT4KtmtNgGuqw0kEAgB1KBwo9Z+SnvrsJgLunXsuzgp0O0yGLYLk4lVHeV9KLQ0WYsPOJprjdRAJ/y+6ZWKCQkkQG1Qt7VO7EvB/SQsKDnEjuLcZjxHQ04p9e8qFR0iC2D+5v4AwXsVlAXLDTcem07IsZJIdIfW9OobDRmSAfN7FbxVDuOES8xvPit2r27bpNWkAX5/jBByOEkOOoNN5Yebz1mjWcIt9MdIylhdahO5ZrzGkw1RRC+WXf513QtofKBcXI9iU13GHH99s9wJxkjqwLp8899xyOOeYYjBkzBj/72c8wd+5cathoNIr7778fxxxzDMaOHYszzzwTM2bMsISpq6vDtddei8MOOwz77rsvJk6ciC1btljCzJs3D+effz72228/HHLIIbj99tsRjUZT99evX49Ro0Y5/ps9e7bUd881zA1vXstKX3G5TYLZelO2qQqtO+M1qaHx+5Fn44whR+Ga3X6eusY3re0VTlPOkPiFU0ssHP0e85xTn9MNns6b5TTmzB2OxlBOwV5IZNOd9SWQ44Qcv/10j3ImLyIMLOnPvB/WQh5Me705RCLhR6PoWH2nPE/WnLKPMkiHc2J2qAEAx253oGsezFczpalW5A48E9jf7/ZL7G7b9+YpLUu6os/yPNCnJdDA2aF0IP578F3Ufapupc8659TVY7xL5H6+vFkgtnua1mx/8zsj8gKvQEofmzJh1kuLd/LoS/DI2GswyOZgsy9Y1Gd15HznnXdwxx134Morr8Rrr72GUaNGYcKECdi2bRsx/N///ne8+uqruOWWW/DWW2/hmGOOwYQJE7Bx40YAyQZx5ZVXYsuWLfjnP/+JF198EeFwGJdeeini8eTuoC1btuCiiy7C7rvvjpdffhkPPvggvvzyS9x1112O9KZOnYovvvgi9d9ee+0VXGHkGJu6G1zDuJn1yoQnvkEehUKD2uJqXDL8JCGTDzNdieQCh4hwKuoJjiWU8WjFXNYpXZ938wjL232LHDVDEi6C8NZrR9ZAZAjsu1UOY4Y7McBjXgCgIlwqXG41Rcm2YDcZ9jI4itV0G5z7m2hmvTzp7Vk13HGtOx51BjTywBEr795zReHAU9f2ItQ1Fjp0hJH5uqREUzJkuxBvpeXneDhSmmHb0XA0h0h+zXq5xwBdt8wbHIJggA6R5MRL/2XH0HCOrR4hmAg53tqiauxSMSRnt7IFSVaF06eeego///nPccYZZ2C33XbDLbfcgpKSErz22mvE8G+++SauuOIKHHHEEdh5550xceJE7LLLLvj3v/8NAFi9ejXmzJmDW265BXvttRdGjhyJO+64A0uXLsVXX30FAPjkk09QUlKCG264Abvssgv2339/XHvttXjxxRfR1tZmSa9///4YNGhQ6r+iosLelCzUuDWN2af4OUqC9KzFEQk1cvkNmEdDZE9VyKxXMD9+hTLW+/DkxU045X0fvyt/dnNLGfDuFRNBB/Dg2N/g4bG/czXju3KX093jYwj1tNzeP+bXuH7kuagprhZ+o18M+yFO3v5w3D/mantGSLkTiNmfeTFVc0q4zrsQsmPZdpg6/kbLtageo4RmTRz73kRCkSaISbIOssdOP8dc8OlNVV0mkSkTflcBkjAfMBbygxdoSJstyJgtrqznhmauhnn3yWHaUuYSxc+HHoPrdjtbyOESC6PN2+d9faFVZs1bbzQaxYIFC3DFFVekroVCIRx66KFU89menh6UlFg90pWWlmLWrFmpOAFYwhQXF0PTNMyaNQtHHHEEotFo6po5jmg0ivnz5+Pggw9OXb/00ksRjUYxfPhwXHrppTj66KM9v28olL3qZKTtlgf7fVZ4DcnvRUdjPx+ix2+eYBphIqa0QqEQ8dlwyPkcC54wFqGYll/b9UEl/bm/t2Z6r3CI7IHUzPZl6b0H9jR4Ot+QZv4uyQFD642LJ8+6prPDUW458uqakjmwhnDY+sSAkirpbcpeBrNblhPDsJ430Ex/VBaVYbci9/1l4TDDZNtYDdfoeSDuwQxpGF29M0ZX7+zIo8EPBu5LjbMyVIarRpzmuK67FD0pvpClDfPVtxS2oEY9Pn+n41ASiqT7ibBz0SJZZ61p0xhcNoCZDfOzdkE41c+aCieb/b4iO4QJ46JzbCWPYTRCmtO7byikWdaIwoJtSuMcI1n9TV+t37TzRWWXh70u2eMPE/JhjCNps970mB22za1Y+Q279Jl20TRkGpvM2dJtv81zHHud5Z3TkPKjEa6HKEoNZzrkebK9jEIu89ricBF+uN1+1Ps0aHkrCSfHNsf2EOY8wBZ3nrbRrAmnjY2NiMfjGDjQukettrYWa9asIT5z6KGH4sknn8T++++PHXbYAe+++y5mzZqFnXZKOgLZddddMWTIENx33324+eabUVRUhHvvvRfxeBz19fUAgIMPPhh33HEHnn76aZxzzjloamrCww8/DACpMOXl5bj++uux7777AgDee+89XH755Xjsscdw1FFHCb9rJBJCba2Xcy/lMmAA2215v3iZ5XdtbSXu3v8yTPr+MUfYUCiE/v3o55iGNI35zv2qy6n3o/G0BzsjTHV3Om81AypQW+p8tp9W7niORmlpEdc3qepIL3TQwpvTBYCRg4egtpLve5fXpz02DqytchUwa1GJfxRfjeGVg1Fbbk2jvNnd+2O//mWo7Z98zhjEQqFk/ayOlrEeBQAUl0aY5ZaOU0NJSXoyZX8mFObvMMMhDTU11ud3HDiQu4x5qaoqs+SzI97lCMN6d/M94ztGws62/++jbsQvP50sFLdRXhqjXZWXO7+/PWxHm/Mc378ecpnwqnJRkVMILC5JDyekPBZF02nUDKhw1F8WpXXWibnxra6utQrOLYTzhcOREKqr03XbT19sfjYU0mA+S8a412UyBXbrcxWFRyPhfG97nROt/+UVJahOWOO1xzmgfwVqq/jjrOosdQ1TW1vp2HdtUFbGN4YWItUx51hZWiK/PKpNc7Idymsd8Vd1OvNhhEmew5zs/4xrPYl0h+VWB/uB3WdGIlaBqbo6PX5GIuk6c8O+52JwTdqazNwnDqytQj+dPm8ripDrHik/GjRHf2sekyor0vXd/rx5PlidsL53P9O8qMTlG1dXlnqqA5Wt5Hnm4Nr+qC2tRHW79TtHImFqOkVFVrEuX9tozp1zquv0M+luvPFGXH/99fjxj3+MUCiE0aNH46c//SkWLFgAACgqKsIDDzyA66+/HgcccADC4TCOO+447LXXXqk4R44cidtvvx133nkn7r77bhQVFWHixIn47rvvUqvrNTU1uOCCtFp+7NixqKurw+OPP+5JOI3FEmhp6RR+ThahULLRNja2I5Ggm7i1tli9CjY0tKGtjexpMJHQ0djUTk9UTz5Po6WlEw0h8v1oIm1KZ8TR3pae8DU1dkArdnZazS0djudodHf1uIYBgFbT+9PC279tuKMIDd3ucQNAZ2f6vRoa2riEhN3DOwGdQEOnNY22NqcwZae5qRMN8eRzsXjSRDeR0JPfutX9+faOLma5xXvjjCcS6O52fkd7OB7i8QS2bbPWtdbmLu4y5qW1tQsNxew4We9uvmeYksZicccztSBr53jKVdd1arjODuf+SHvYxk6rcHrQgNGOsuWhJ+o0d40yvjcAtMXS7aSpqQPFnfznMrZ3WPuh9rZuYhqtnc5+tqcnjtaWdN3mafc0LM/q5HvdpsU1tz5XUXg0dzjroL3OCdf/9u7/b+/O46Oo7/+Bv3Y3m01C7oNAgHCEJIRADkDCqQXqBR4gUqiAyCWIR78WpC22VrQSD0SF1qPy/SoeVVHBW2q/trZfi4oHKKL9qt9WK+IPAwFCkJCQzO+PsJM9Zueendnd17OPRw27c3x25jOf+bzncwzaTwTnI6ltHmxVn7cj3dsDNTYeizip1/Hj6u6h8ai5KfxeeeLESdOPR2C59duh14Zt/5jEORSXOZVd2tq67kEnA4LTQ4e+h++4TB3tiHyZ2XayPejfTUdbcNB7aj+nvnPDjcFJ/dHa1IGVpZeguy8bRw533YMaG4/haED9KXQ/J0P2IZeezt8UXN4G3pO+/z64rhWopaXr3Anfu4KWC6wXtbbKn+Njx1p15YHmY9L1zOYjJ4Bjzfg+5DxL1Sv82tqC781Ou0YzM1MlH26Hsi04zcnJgcfjEVsr/RobG8NaU/3y8vLwwAMPoKWlBU1NTejevTuuvfZa9O7dNdFIVVUVXnrpJRw5cgSCICA7Oxtjx47FueeeKy4zdepUTJ06FQ0NDUhPT8e+ffuwbt26oO2Eqq6uxjvvvKP79zqhgtLRIcinI+Srjg5BZhiZoDiWS25fghD5eyHgc/8yroBFI60bmByl490hs//g5cLTIrffdE8qkl1e9ec75HdpmSgoVIeKdSMdu44OQdUbN9qFDtnfNiyrDHuPN2BEdnnQbwldR+srSoTQ9ZXysg5qtin3feB3gTMlqk2n/HKntid33Uh8HHbcQ/59Y/kCXcdRatZmpesvcN9Ch7YyMey6iHQcJPobC0JwOWYk30id49DvQvO9E8p+ip7QawyQug615cOODgHn9xiDrd/+LfI2Vd7TupZXcb/oENBx6ua7adgqCIKAy3bWi+snat6OdK81/Z4UsJ80d0rY9l0yZf5PB87EbZ8/jsuKz5Usm5TOn2J5LlMm+79yubo+m5g/DACw73hXnT+03iGVp6VIptvlCitvg+bYkPs9AceiJK0Xlva7EOXpxac+C+yj7NJdr5UT6Rh4BE94GhT2E3rMYvUatS04TU5ORmVlJbZv346JEycCADo6OvDWW28FtVpKSUlJQUpKCpqamvDmm2/ipz/9adgyWVmd3Qh27NiBAwcOiPsIVFDQ+V7LV199FYWFhRg8eHDEfX766afi8qRmoL7J4wFVvOfUCZM3aH2NjLlpNlYIqTln7QoTIi0sPg9DMgdgZPYgbPjnFkPpyUrqhiMnI7XqmX+uE3FGPN2/WSouVMx/+o9v+IvcI4xFkvhcz2tv1IiUhmS3F6vK5qB/QaEl+yVnU1Oma53YToCAopR8/CCvFm8c3Kk3aUHUpDNwmUIN71qMd1JHzor6h5F61oT8WpyRVx0xrxl9l73ecjU0zfKTYxo7pmrPSegvmdpzfIT0yG9H7yvuIh1L76ku9U6o20abrd1658+fj5UrV6KyshJVVVXYtGkTWlpaMG1a5ziilStXorCwEMuXLwcA7Ny5EwcPHkR5eTn27t2LO+64A3369MH06dPFbb7yyisoKChAYWEhdu/ejZtvvhlz585FSUnX1M6PPfYYhg8fjuTkZLz++uu4//77ceeddyIpqfNwbN26FV6vFxUVFQCAP/3pT3j22WdRX18frUNjC8kZ6PRuy8D3Uhdi8PTj+vZplcD9apmpN2xlg1S1nEoUglqSoDRbr8/jxel51RH3JaZDIa09fXloFfzdI6VeJaP/wLngkkzboPRi3duMxGnPLDO95oyB1PWeUwN5PTS7RNqU1Cun1FwXeshVGH5QUIu8vHTHdaki66mpUOt9/63sDPkWzNZL0qTrKHakQz4fhQemGibMUsjHsv185F6PE/ZvdWmqySrFriOfq95u+Pf6zlBwwGlPowyD0yibPHkyGhsbsX79ejQ0NKCiogIbN25Ebm7nE7pvv/02aJbFlpYWrF27Fnv37kVGRgbOPPNMLF++HMnJXROB7N+/H/X19Th06BB69OiBhQsXYuHChUH73blzJ9avX4/jx4+jrKwM69evD2tZvffee7Fv3z54PB6UlJTgnnvuwVlnnWXh0bCfmdnf7IspsIBwWstp4H61Bqd2FjqhAaKatCi1nJpleHY53jr0sfhvLU9blUgFpw/WrAx7v+1PS2Zi3f89pXs/Vjq/cAxe3L9ddhmpY5SelIq7hlyNaz/eYGj//qMXKdBXov38heZV6UqZVCtBlrebJa3iep+SU3xTk7eteRWW+RKxN4kqUTouSsdf60Pa4DBLqeVUYdu6H/qFz5SrxA2XYq80Iy3BahtLjDS6yAo5lrcOXoITHV1zF4TmA6t6AzmJ7RMizZkzB3PmzJH87tFHHw369+jRo7Ft2zbZ7c2fPx/z58+XXebOO++U/X7atGli620ikb64IweCRhoktL7ntE0IGBgf1fulth9Z4NManJpHahygqjSEvLRbTu/U7uq3K7NFo4WroeDUhbDTmuoOn5yk0Cc9cZEaHegM4j0WZdYrB1yE83qMwZIP14qfqa1I9k/raXj//vOnJTgNuslrPCxh3XojLCf1aoWfDJiBvS3faduhCqy4kxQ1uSJJR7de5f1qzI/Mvyazoluv0vfWnUPlbr06txuyYdm6oIbAUHF9ve85DXwvq2IAbOw99H41WaVB/07EB6HmHEmKW7q79Zr8xC/w5hzxQlWxyeLUznFgA7oZr6BL7TfXm6FxVfMKHaMVGDVpuaDHWFPSo5zWrq68UksaqVdJ5R+p7anJoz8vnS35ub8rqdaxZZFIpcT/gm4t63R+bjzP+VvdtZyH0LZvTfsL+XekcyPVrTdf4wMjtfql9bBkuxTb1FxfHgtaTjXHpoZ3l3gVZj/Jx/gWHA6j40K1bk/LsuEPDNVtO3w55fXUBMJKx19vftXyUNWqKyIRH4QyOCWR5jErBsa/yD9hCl83eKyj/m69tw1eiuUlM3Fe4RjFZdUK3K/X7ZVZ0lpGZvoFoFjy9kvrqRgQWUH6dxnr1qtme2qeguZ6MyU/j0a3m9AgW+0RMeM+F9itt+szAbdULMbqQQsi7VniL5X7C8sDEYJTnZN/6LFi4CzTt0lxIEJW+03FYvFvrWNOrRg2bfSaSISuhZFIHTs7Wre0Bi1aWgEVe/Vq2nPgZrUEyP59hc87oXW75jS0mNvo4mfdVIKxi8EpiaSuK6ue2Gi9iAPHOkZaVU2hl5OcgTO7nxbxxeKhtAZ8eie6MIPRqoLi0TOxhqRlS1J50EhFQO3EX0YmXepqOTXn+lnc93wAwH+UzBA/039tmtByeqrbcug1Nzy7HHU50rOeG6kMq+3Wa9bxViPbm4EphaOjtj+KDZHy+YjscvFvrT0q1Awx0Hp9WTHuNbFFP4Qwdh+U/97rUngQHTZnhfkC83RJt14AgL6pOmdB19utN8Lf0stakwfM6i4cS2wfc0rOYeYFoHSRyhWqUt8EtpxGszuRS0UlIjA9Wm/4Zgb/agLjwEr+mNwhePbbv2J8XlVnWjR241Hel7KC5Gw0tB6WXcbsLlRSXT+llzMeTEXalxsuTWOEh2WX4ZVRtyu8Ukl7dym9goJvlT8j8JxpvYbD2k01dOvVsz+1ErlrI0kzO0dc2X8axuQOMX2/SQZ7wTDvB7M6OJP83sKH4f3TeuKc7nUYkjlA8nvdr5LR2ePnvB6jkZ6UiuHZZRG3rGW/atcNHvcavNysXpPw5Devd32vu+VU/lgm4pWWeOE4RRR4AXgNPlVVupjknhy7XW5MyB+Gmb26ZlBuR3RmiQ3lU3EDT/F0zRatteXUzEIncJKNMwtGKC4/v3gybhu8FAuKp6jafpY3XVN6ZF87I45ZdAWdZ/Frxa2b3XIq8VnIcrN7n6l6H+KEQRFuVltG/gY3ls9XvT0g/JpRrrhE+FzTXtXT8p5T7fdwdeObzBrjq1YiVhpIntm9jSYXjlK1Ta37NX6PT9zcL3kPsaDXhlXv1Ty1dYV9u/AfJTPww4Lhkt+bNSGSWh6XB5MKhiNb47we4n5lv438a4LzefBWhmWVySxrnmj2CHIKtpySKLBw9Y8tjPjaFpf8bL1KBbXSRfyz0kuC/q30fk2r+NzJisukeVLEv7V36zWz5bSrsjE+rxp/anhPYm8BrbxuD6qzBnZ9p3DOlg+cqSk9al4744K+At1QdyapzyQ+DGyFWzfkKgzO6Be2TKSAzN+yGOm3pXh8SE9KU0yrHOWnrRGuXVO69cr/PmUaW05Dfmqk8y81Wy9gzjhbKYk76o4iMb+Cqm57Wverd/6AX5dfhs3f/AXTeo7XtX48iFSymr8f5QBS/7aN0jchkqY9a1lUalhawAb6yHQHlqu3BQaG7YFvjZDYp956ifJjXQanRABUjDcwSOuToMCJhlI94a/9sIpPxQRH3QKCU60tN2YWOkbHECmlpNCXq2l7HTKt3Woq9aHB16icSrx9aA8AY8dN+gXq4ectMI9q74aqPObU6JnXPVuiCVnOv2ct13Hw82dtiQjrAu2Qbr0MTymUXF7bPGK1ju0Z368UvfeL0blDMFpFN+NEkePNwKG2o+idkh/1fRt7SGusTDTnLadKy2q5v4QvG3iPTPVEbmhIkq3vdm33zcaPcB1+LLOoRcNHErDllN16SRR4cf/0VCtZpEtC6VJRHnOqLeuNz63CpPzhuHnQQk3rGZWhonUrMIDV+ooAM8sco5MxBZ4zMyZ26lAxgZLsu1CFrqWA4NfYGCmsf1EW/l5lydZUEwIaK2dwlDq8gfuz8nYmSLQMK51uY8czeOORjmvkfGHN0WBoSlpkersh09tN9/qyvZUMBqdSPUNIWuCxvmfoNVjWbyomWzI5mnWluNGH2WGTRaq8JzuxFVBugszAB7BtHSeDvgv9LVbd7514zKzGllMSBWb/AWlFpz7Td1EoBq8ag4sktwfXlco8sbJI/7Se+FHRRFRkFEdcJvC3aB9zal6h0zu1wLRtpXtSceTkMUPbkOuKrdQtNPCJp3+J4JZM/YZnl+P31dfh8g/v6Nqe1IzAJuxPbsIK409DQ1pOXUBnSq2fmF5Pt97gCZE07s/gTNGJd2snu5hdkbSqR0Rgt9785Cwk2/gatFjW3ZeDC3qOs2TbSqfUyFhEo+PzdU+IZFXrouRn6no/6Q/Uo3NnseM1RXZjyymJAi9eNYWe7CIK69v5yhUtXC4XFvSdrLobk8fGS2poZglWlc3Fw7W/iHjjkLuhmD3oXq5bb6DIN43Q1rLAY2ssraE3SOn31mmb/ViKpS2nEp8F/yzrRkYJARNayadIes9GZ+uVy6uL+56HqswSTdsnMovZde+gd1PKbFvrNRU4HGX90J8kYPXX+ZTn7tBf37DrVUJhs/WaNPTFSNArVx8Nfpe3PKsmLtLy2+Ll/cOxESFQdEhVbHV2kzPa7VcPJ1yUat+f6mf2cTg9rxo9UvJ0rWt2WuQmRNLSEuZPV2DBb/QmEBo0Ks3Wq78HgXVVvvSkVNn9Rb5yjafJPwZUS/CtIm6OSMv42ulFP8A53euCl7eo0uCEMoecRev19ZuKxaqXNbNbb+CEbLnJmZrWTXRO6WZp5D5otIEg7PVeKtezasypEXKBupbXHupOr0J9yCn5LZoYnJIoqOVUxcVg5EZpRYuSEyqKdracqqH3XV96yHXrPf/U+NHJhaNUb09N4KV6W6EtpxIbVHUNKO5H5juDvyJ0PPSRtmNRvIVpv9aM/F6tkz+ZVRb09Mk/6DHY25jikNZ8PiK7HL1MmExH6wOY5JDZehOxAqxXtOanUZyt18A5M/qAV+9QC+vymdQDZnX7lW1FlruHq+iBZYbQ/ZxXOCbisvFyS+KYUxIFVf79DacmbEtKvL63KS0pRXmhAE46CmanRW5CpJm9JuL0/Gr09OXh0a//GPa91KrBLZnGHgKEBp5Sgagr+M6mSzQrfB1Ch6r9mdGK6D89gdvSclPU3K1X49wbemcyDjW7z1l47bsd+Kjp/3StT4lHz+WlthXL7Iddfxh+g+ZJ/Ch6FMecGgpOzR1zqjr/aeurq2Fh7Zs6v3AMXty/HWPzhkZeT0OC9dZrFbsLB6ThyRE3IlvunfNx8sSUwSmJgiutrlP/b824tXidGjvwnadqOOk4mJ2W9lNjTiMFfkWnWgsi7TdsnKHEwxO9wvcpkUYVuVyppdxoBUALt8vd+btU3JseGXZ9WMuJFkrvcZUS/HBBK40tpybdoJNdHkzIr5UJTuOjIkBmCs6blRn9FddwqwwQ5XsracfuvPo4pZXZzvqDmt4pkg+ZrWpd1LHOlQMuwuJ+58tOBqYlvdHovScbmEYpDdHg7D6IFFWBl6DRbrdKhabWV8k43eicSuR4MxQLjlBWBS+GZzc14abnD2AM/0Zx+HP4wxO9QvOf1BPP4L1J709pjLFXptJp9i1ayxii7r4cZHszdO9LfI+rgb4VWoSOo9bardfIsZZ93ZGB7VJ8Cs0vt1QsUlzHjAkCjZbZTgm4YkN0jpWV3XqNis57TrUsK7W0cp3ByCzVofuUm2dDjuLEipomRIoP8RUhkCFqp91Wty15lnTrtfGqvKH8Mjw+/FeaKxlOCtLNvtFNLuyclGZmr4mmbC/wWBl9eBKe/5RubNK8EV7efdvgpShP74NFfc+PuK4VFYto5Sep2Xq1PLHVevlP6zk+ZH2l4DRkfzqPtQD5sipenlKTeUJzi5pus2bMVcDgMnqidqQVdmRrzyuZB+D+vChdPmrobeOAPK1lNuHj7SesSYOG8iFe7kns1kuS/BdkpAvTaKFoRSXazovS5XLpKkidNPbW7JSc1X0khmWVI09X17Hwc6n2lQpqaH15dsSW0wgVz+qsgbhn6E+UEmEqQRCiNlGHX7QqD8luL9I9qWhuP65qvzVZAwEA43KrcGoF3aLZNZtiX9irMlRkPq2zvKvZr+b1nXMrIpXsfP+lXG3LLROchuYzs+4hbpdb5cvrtNGSuqMnv7cgBRrrifERmzI4pS5aZ0MtTuse8Tul60PtOzDjXbSfDMqNMTKz5dwv35ele93QG1vwjdjcllOpsl/N/cCMSqW5AlsyreO/ftV0fZaiJ38FdplSWrvQl4utI29BijtZ9/6AzjzohKf3FDvUzAQeSm3LqeyESMymUROtFksruvXOKPoBfKfKRSNkAybZr6w5dh6XS3zFmYpkqCaX3sDvfG4v6nIqTdgjAezWSwGCJif1t5xGWhbquitFonVsZryybMypxGe/Kpsn34oZcLKj2Qqt9gYc9J5Tw93O3SH/lhpzqr9brx0ERK+7WW1WGQBgWHa5+Jm24FS7k0J71/oqKoepHp8plUi5vBYnEyOSicIHDCjnQbXDQeTym/EykdGt0yjeG3WUbwv7noc5fc7SmyTR9WWXRvxOPqBTT+n3l3Tr1bWs4jVkvLAOqxcFJO/p025ClrebOdsNoeXajpduvQxOKYD5LWdSuidnWzJ9fSxektHsllOa3lv2+8BzbtZsp0bIjRs03q1cueudmmsgN7lzUqGC5GzNaTD7GotmK9/SfhfiF6VzsLTfheJn2k6JnpbTgOBU4/pGjot8XrP/OiGn0d6t15yHlAwuE42d3XrL0vtE/C5aqVpXeZX4t0dpHgKdRXXg9St/vK371dpmDI4PznnsT7YLelWH+F9jF9y0nuNxpO0Y/nzgg64P2f9IFM0JDbR0EbL76ZsAiHeTrpZT856lhXe90/eEOtntxTOn3QyfgRn/YlGKJxln5NcEfaZlHLmeciWwy1Y0W3nk8p3d1wk5T9iYOpWt/Ib3y+A0aqJ1rPXel+ym3IoZsKyB/QS+Dk1q0iAzzlPgIQ7tDq11KJz+NLDllBJY8HsIO7NG5Iyu7mJZ0u9CrCy9RMea2sXiRWnnk085dh3JSfnDAQBjcoeIn5n1oCSQmdtKT0qFV8c7Q61oOXXSBFtW0lopM1KJc+o1Ss6k57pe0u8CVGWWGNsvXyUTNU45Uk49Z0qPwVVvR8PPU2w51VmrCTzGoe8GN2ueDqVWXaeeZysxOCVJaguFNRWXS37uhG6hscC6J58Ss+RpGL8SzfMXmKrlA2fi4dpVGJlTEbacmUGCmiAuWk9FzWTnTUxLYGw020crYOwcxysz5jQqqaBYoidndvfl4PbKKxSXk6tgx0oZReopnVOnPjhTO4mQke0AwXUWq+bvCJr0yBN5IikrnwsnykPnQOzWSyI9T4GKUvIM7SfRtVj0Xiw9As9KVFuhQ24wPVJyIywW3ZbTWLsf2P88SNtUF9GkZW8FydloaD0MAChP74Ovvv9/MkvbftDJYbS8k9BMRiuwsVbe2Slq3Xo1BGexwufx4se9fojuvhxTtyuV/804PIHHeNipiQAjLKl7H0r1re7JnccqzZOivC37KwKmYHBKIlfQ32o7Zmi/IBmcdunmSbVku5KvvlY47E4acyqVBjOfHqrbljlddiJu3eSKhYAOWysrWp7iG02l1ryg5fzdNeRqvHNoD07LqUB3Xw6+Pv6d1uRRArPyEpQvl43umPdl1RxyqJxUlwrMm0rl87zic0zffzTeRz2795lB/w4eCqefUn0rw5uGTcNWITNJeTZg+2tu5mBwSiI9s6HG4IM7RxmVW4kr+k3FiIBXclhHw6B6J5VwpzKZlgl3FDfpoJu6WVyn/mfb/jXs2mg6zcwLofJ9WZjSY4yqZR11nZBDWHcNylVindrFMx455f7h1O6eTjk+Zggec+oN+U56Oa3UtHYW+qR7lElsTXc6nITBKXVxSf6psIqOllOHFqh28LjcuLDnuKjsS+mo29VyqjYPmXnDUzfm1FoWtMWGHKPo3qSiWSGJZhnCSj9pYWVukavDckKk+KNlhv1YZdb4VKu4IvwdtpyB688JPdWchsEpibSMOfV/74TCwy9e+tpbRXn8StffTigsQ1PQKrSZtm1VY04t7tZrNpfL3t5mmia6MJhQTxTH9VVnDUT/tJ5hr84BnHGdkLNYW1YwvzlB9F4lE5XdmM4590vjD9zlehSa9TvNvKrj5Z7E4JREQU+ILCwVrdpyaXpvFCRnY1xelUV7iB1SgbqWMadOlOvNAACUdutteFtqxqdYXTHok1po6vZccNnaK0HbvrWn0+vyoE1o17EvY5LdXtxXvVzyu/ioBpCZrB1zah1nl/6Jyd+Vs19qD8nvO9ARzeSoZlb57IjgPCANVvWiMbNhJV7aaBickkhPgaIvoLHmAk92e/Ho8F9asu344MwuQhPya/HI19swq9ckye/9qUrx+LB15C1h4z6iwYqbZLI7CVf3vwgb/rXF/I3bQNsrArTbUHUtln64FoCTxlrFSU2ATGNlOWpl7yCnP5xMRKkeH7aM/A18bulXmDi1t5gT85LeIxX8WywKTk28j7DllOKOpgLlVOVQTx3RecVW/JF6H5fS+U1ye6xKjqyeKXl4edTt8KhozUz1+KKQIr8o5FSTgyxbJ0TStKz2dPZL62o9sHJCJC0cWjckGzmxYk7mimbPDbnXh3Q4KBAJTIl5R8foOOouegP5wG2EPhR1YrfeeOGMOzw5gpmtoPHy9CZW1WaV4tzudbixfL74mdLZTYnwdDYapANTe/NQNJ6YGlWXMzjo37HTrdcYp7ScspyjUFZeB5bmN2dcUjHBKYcqyWXPA2UpgtDVxdisoM3odnym9LKK/LoYsy513kfCMTglWR0Rnja5Qv6rBWfrtZ7H5cZPSmZgVG6l+JlSQZ8i0dpqJ3/Ws6slIip7Ndj09ovS2eLfLrhwTvc6oynSTduESJxZlEgrJ7WUJTKnlD/dfTmoziyxOxkAgvOmlvK9OK1z7gUrXqc3p89ZqM0qxW2Dl+reRuCDUJdVIZOZY07jpIxgcEoiqQL35KkJSLSso7wfsoXCgQ8c1+KUmy9gX35xyTwxdYqUgG7OLgCzek2U7QZmpWjmmWi8cF2NeKkIkLlGZldYtGWOOaVg84rPtTsJAIIbMrTkpFSPDy/W3YqbBy3Std9ZvSZhfoRjkO3NQP3gJajOGqhr20DobL3h35rBzIdO8XJHcsYdnhxB6mFXW8dJzeuo2JOelcggpcqHmjGfZDITexG4XC64XW4UmzwLsJJ0TyoAoGeK2peEG6d11kSrgshIPUsosdXlDlZeSAcrsxvvymREhxA4c7C23OR1J0m2tqrZymXF5+LHfX6oaX96hdahHHnNxMk9iRMiUQD1LaddFylbTmOFmuM+sFsvfHHsG8vToobtrVKuwD9jL9dG6+itr/oJ3jz4ES7oMS5Ke2TLKTmbVeUF85szOOl+YNXrTbQSgrr1mrNNJxxnufedm5U+Mx9yxksJweCURFKXWZug0HLKCZFiiP0FvS4Wj1Hul9ZTerexeryirCglHz/qNTGq+3TKuWE5R1KimTsXFk9RHH6jjjOuKdLGKXN4BHZNdcps6oH0ltWBh9eqifj4KplwzstBZBupCl9bh9KYU3WuGXCx7H7IGRLx3KwbcqXk50Fz9TqkAiAnkc6dR+P5sOzYxEc9gGKEVMVzRq8J+HHv6HRrJOdxSiDo1HeuGtd17wjtsWNWvcDMgLIsvY9p27KTM3I1OYLUhZaZlCa57OCMfp3rqKz0TS4cJY5Ns7oljKSpOexOeuoWrZREzsOxlU+NzKAdayybNVEjzp5K0ixqYbFyzGkiFBxxyCkPTjsseJWMmZeR7pZT85IQkZnX9ZJ+F5i3MRs54w5PjiBVoIzOrcS8Pudgbu+zgj5f1HeKfyUd+yE7aCkAndQKZ3VKnPNLSS2t3auseugioEN5IUo4VpUpVj48dFKZT+o5Zcxp4IO6C3t2zj+wsHiKoW2amSdL0nphQFoRftxLWy+DaFwXZt5H0jwpGJ1Tqbygw3HMKYmkLkG3y40f9/4h3mrcE/S5/xUWkcecSn3GVgZ78fhLk87DDnkgTRKsGvujFWfrJSI7OWWW/cD6XUVGX7xUdxuS3B4bUxQsye3BvdU/1bye3K2GD3Ss44xcTY5g9TtL/UUXL2h7qKlGO6uqHZ3URMqPcrP0maWbme8kdUjAFg1OGWdFJMWqrpZsOXUGJxW1PrfX7iQACH2VDEwJTJ1xmCOnwqz0mX1Vx8O1zJZT6iL7hEjHSmEEzWuQeZLdsXW5t5+62SW5rH36GqmiEY18Oj6vCp8c/RLjcqsMbysWbkibR6w2NLNoTeZA7Gs54JhxVuwNQlIs69bLlnpHcNJpSHZMcOqgg2KiqHTrjdNjZ0Rs1VbJUrpaTgOn2YZLdoIQ8fpzSMUyUTw67Jc41n5c1U0s8Mxc0GMsXvh/f7cuYQr8wan13ZaU86NVOdbj8mBZ/2mmbCsWrqpMbzdD69cPXqJrPatu/fFaISOi2OBzJ9udBADWTA53QY9xeLNxNxYUTzZ922rJjek1K3A1+yFniscZecII9o0ikZ7LLPDirM0qk11WYMupLQp82RHf5RkqsIi8ot9UcVZmO/hb2NwWt5xGDl1iK6eG3ijjsVXP5XI5ptUUiM9jTGZgt9545qAiyNZuvZuGrRL/FgTzJ4eryirBC3W3Rv092kHkzrVJ+cDs63ph3/NwWvYg3DXkalO3G01sOaUAka+0SBePK9IyEi0KXcGpg0p2kuRydQYCpo6J1CnJppbTaIw5peiwbvZUonBW5Te+usgZnNRhIsntwYC0Ivzz+31R33ehL1f826q8afdwJLl7v2ktpyYfurzkTNxcscjcjUYZW05JJPc0MHL3ta6V2IpAVrCqW+/KgZdgQfHkiDc/Jz0dVyXW0hsPnFRLpfjH95yShJ8MuNjuJCDJFZ9tXdG4LKqzSgAANVmlUdhbbIjP3ES6yPWtjxyauhSXEb8X2HLqeCGVbSecK49F3XonFgxTWMIl+afTOanbq1NYVacfmlWCXU1fYEzuEIv2QLEoFmfrJfWcVsTamS9WD1qAP363A5MU76exyvrZekflVGL90J+gb2oPk7YY+xicUgC54FR6PEFQIa2yFcFpBTtJcc5Jcsp73JzOCQ8SEs3MookoSStCddZAu5NCjmLNtZiTnAEAKPTlWLB1lh9qscNEl7qcwajLGWx3MmKay+VCWXofu5PhKAxOSSRXuY081bX6br0sz2OJc86WXcGpK+hv51bcLi76AZ7Z9wZOz6u2OykJJ8ntwajcSruTQQliWb9pSPOkYEbRBNO37dwSjsg+cvVa59SS4g+DUxLJjjlVNSGS9N+hnzq5op/wQjKBna3cNVkDsevIFxiSOcCW/cdKPl3U9zzMLz7Xsu7PRKSNVSVHTnIGri35kUVbJ7XY+ytxyL2DlN3srcPglERyXVUiXaBul56WU5bsjhVynkvSeuGdQ5+i3IYuJ78edBn+r+MbVHr72/KI0hVDQ04ZmBI5h94HWz19efj2xEGTU6NOrDyMo3AMkazjk3tnKA+8ZRickiqRrkF3wITPck+YAvEWGAs6z9Ks3pOQ78u2ZcKXbkmpmJBXg4MHm2VmiyYiig+yFWEiirpkdxIeHfZLpHp8Yd/x1U7WYXBKoiR35NaXiN16g1pO5bELROxJdnsxuXCU3cmwiSvC37GB8XyXopQ8AEBZN046Qc5lZynDrqpE0gp82ZKfs05rHQanJPK43Hh8+A1IcXslvlW+CLv7crDn6L9OLR2+vL+yzFddOBeL2i7MpfEjzZOC50begmTJso3IXLFZaWWJR0TOwHc0UJC85Ex0S0oN+1xNt8p5fc5WWCIWb9iUqALHYPF5SuxL8fjg5muJiIjIBGqHspF2vFOTKmqeBHdLSkVPX57MNjpx4gXn4pnpwhZ+IkoULO2ItInNHhKxgcEpqaKm5dSt8vbGm6BzsaiVxgcqRKSWWeXomorLTdoSxTMGSfbgUbcOg1NSRV3hJ1+BZwHqfP5zxFAsGINTIrJaaDkzLLvMtn2THB4rAhieWofBKakiCB2mbYs3QefjOSIiss/C4ilR3iPLfPUYlJC6HoWkj+3B6eOPP46JEydi6NCh+NGPfoSPPvoo4rKtra245557MHHiRFRVVeHiiy/G+++/H7RMQ0MDVqxYgbFjx6K2thbLli3D/v37g5bZvXs3Lr30UgwfPhyjR4/GmjVr0NraGrTMP/7xD1xyySUYOnQozjjjDGzcuNG8Hx2D1FyCHVAZwPIe6FgsaomIjNJXkvpvjT63FzN6TTAvOURkuhQ330tsFVuD01deeQX19fW48sorsXXrVpSXl2PRokVobGyUXP7uu+/Gli1bsHr1arz44ouYOHEiFi1ahH379gHonDnryiuvxP79+/H73/8emzdvhsfjweWXX4729nYAwP79+7FgwQKUlZXhmWeewYYNG/D3v/8dt912m7if5uZmLFy4EEVFRdiyZQtWrlyJDRs24JlnnrH+oDiU3MuGZ/WahLqcCqR7wmf5lcJWOSIiImkeG2aV5vxvWjjrYLFOZY+i1HwsLJ6CWyoW252UuGNrcPrQQw9h5syZmD59OgYOHIjVq1fD5/Nh69atksu/8MILuOKKKzB+/Hj07dsXy5YtQ//+/fHEE08AAL788kt8+OGHWL16NSorK1FaWor6+np89tln2L59OwDgjTfegM/nw/XXX4/+/ftjxIgRWLFiBTZv3ozm5mZxP21tbaivr0dpaSmmTJmCuXPn4uGHH47KcXEkme4LlxWfi9WDFnJ203jAbiqSYvPmz3NJFFN4D40Rzipby9J7ozqzBIv7nmd3UhLOjF4TMDy73O5kxJ0ku3bc2tqKPXv24IorrhA/c7vdGDNmDHbt2iW5TltbG3w+X9BnKSkp2Llzp7hNAEHLJCcnw+VyYefOnRg/fjxaW1vFzwK30draio8//hijRo3Crl27UFdXB6+364Xt48aNw4MPPojm5makp6dr/r1ut303Hf++jaRBcAUXxpG25T+sAgSZZVy2Hg+KTDh1WpxwjszIt2Zxu+0/Hmq5A8q2WElzvHFS3iUbBJx2LXkgcMlo5x23RGDM/CvN5bAy1o0k3DF0md3JsA3L2/hjW3B66NAhtLe3Iz8/P+jzvLw8fPXVV5LrjBkzBv/1X/+FESNGoKioCNu2bcPOnTtRXFwMABgwYAB69uyJdevW4cYbb4TX68Wdd96J9vZ2HDhwAAAwatQo1NfX4+GHH8bs2bNx+PBh3HvvvQAgLnPgwAFxm37+dB44cEBzcJqU5EZenvaA1mw5Od10r5t6OLhvfaTf4/F4AHQ+aIi0TLLX44jjQeGSPJ2dKdxul2POkZF8a5bc3G7IS3HG8VCSlOQR/3bKOUxUTsi7FH3px1LEv7Vcg56kzvLX5Yp++Zuy1xv2GcsPaYe9Xdc1j5FzsLyNH7YFp5EIghCxe+gvf/lLrFq1CmeeeSbcbjcqKiowZcoU7NmzBwDg9Xqxfv16rFq1Cqeddho8Hg/OOeccVFZWitssLS3FmjVrcOutt+L222+H1+vFsmXLsGPHDrjdXb2cQ9MgnOruqKfr6smTHWhqOq55PbO43S7k5HTDoUPH0NGhrztK87ETQf8+eLBZcrn29g7xv5GWOdkW+Tuy18mTnWOzhQ7B9nNkRr41y6HGY3D7HFdcSvKfQyDydUrWclLepehrPtYi/q3lGmw/2Xn/7LCh/G1pORn2GcsPaYeOHRP/5jGyH8vb2JGZmQqv16O4nG21rZycHHg8HrG10q+xsTGsNdUvLy8PDzzwAFpaWtDU1ITu3bvj2muvRe/evcVlqqqq8NJLL+HIkSMQBAHZ2dkYO3Yszj33XHGZqVOnYurUqWhoaEB6ejr27duHdevWidvJz88PS9fBgwfFNOjhhAumo0PQnY6OkFfJqNlO6DI1WaXYdeRzlKcXO+J4ULiu95y6HHOOjORb09IgOOMaViNw2HCspDleOSHvUvQFnnPd99xo5xuJ3THvShME4+eXzMfyNn7YNiFScnIyKisrxYmKAKCjowNvvfUWampqZNdNSUlB9+7d0dTUhDfffBMTJ04MWyYrKwvZ2dnYsWMHDhw4ILlMQUEBUlNT8eqrr6KwsBCDBw8GANTU1GDHjh1oa2sTl92+fTtKS0t1jTeNB4LKiXLk2pWvL5uLFQNn4ZLePzQnUURERERRxbGNRFaytZ/a/PnzsXLlSlRWVqKqqgqbNm1CS0sLpk2bBgBYuXIlCgsLsXz5cgDAzp07cfDgQZSXl2Pv3r2444470KdPH0yfPl3c5iuvvIKCggIUFhZi9+7duPnmmzF37lyUlJSIyzz22GMYPnw4kpOT8frrr+P+++/HnXfeiaSkzsNx/vnn43e/+x2uv/56LF68GJ9//jkeeeQRXH/99VE8Os4iaJydTmr5jKQ0/LBghFlJIoqaFHf4eCwiImnGWm+03m/NwImC1XMzOCWylK3B6eTJk9HY2Ij169ejoaEBFRUV2LhxI3JzcwEA3377bdA40JaWFqxduxZ79+5FRkYGzjzzTCxfvhzJyV2T9ezfvx/19fU4dOgQevTogYULF2LhwoVB+925cyfWr1+P48ePo6ysDOvXrw9qWc3IyMB//ud/4qabbsJFF12EnJwcXHnllZgxY4bFR8S55N5zGoyFdizzn2W+FihYisenvJDDsHMTkT30Xnt2vrIqNl+XZY8+qd1xel41KjP6250Uorhk+wwfc+bMwZw5cyS/e/TRR4P+PXr0aGzbtk12e/Pnz8f8+fNll7nzzjsV0zVo0CD84Q9/UFwuYbCmmxDEib9YUQnicdn6SmhNeOaIYpstLadR32PscrlcWFU21+5kEMWt2Klxka3UtpzyBkdERBRbvCFDF8bkDrEpJUSU6GxvOaXYIITM1qu4PJtaYxLPWrDnRq6RfDk9EVEkaicQdJIUd9fwqLqcwfhV2TwbU0NEiYzBKamiuuWUFfkYF3uVKiuleJKVFyIiinGBZZ3b5eK9nIhsw269pMrw7HJNy8fik2PqwjGnRESJw8cZyYnIIRickiqDM/rhx72U30/KkIaIiBJZLM7W63V5bNs3EVEgBqekWqEvx+4kkMXY3k1EZC/2PCKiRMbglFRTNwaFbaexrOtVMkREpI++4JLDPImIGJySBlqe5nK23tjGyTBiH69BIns0th3Vtd7Z3esAABcVnWFmcoiIYgpn6yVTMaQhshcnsyKy14S8Wjz69R8xr885mtabXDgKw7LKbB9Cw27FRGQnBqekmprWNN7SYhtb24iIjClKzcfLo26Hx6W9c1qPlFwLUqQCe8sQkUOwWy+ZzD9mkTe6WMbzR0Skn57A1E6BZT4fURKRnWKr9CRbqQlXOvwT6vApbExiyykRERER2YXBKZnKH9qw5S228ewRESUmlv9EZCcGp2QyduuNZWw3JSJKbLwPEJGdGJySBuonRGJoGqP8szSyWzYRERERRRmDUzKVwDGncYFnj4goUbHtlIjsw+CUTCWwWy8REVFM4R2biJyCwSmZqkMMTikWcUKrOMBTR0RERDGKwSmZi2MWYxpbvomIiIjILgxOSTU14QonRCIiIiIiIj0YnJKp/C1vbmYtIiKimCBE+JuIKNoYQZBqambg9c/WS7GJ54+IiIiI7MLglEzlD23cHHMakwam9wYAlHTrZXNKiIgoWgS2lxKRQyTZnQCKLwJHnca05SUz8cfvduCcwjq7k0JERNHCXjNE5BAMTkkD9QEnQ9PYlOnthhm9JtidDCIisglbUYnITuzWS6qpCTiv6D8VALCo73mWpoWIpPE1QESkFcNRInIKtpySauNyq/BS+nac3X1kxGVOz6vG2FFD4XHxuQcREVEsYGspETkFg1NSzefx4q6hVysux8CUiIiIiIi0YhRBRERElMDYbkpETsHglIiIiCiRBczWy4l7ichODE6JiIiIEhjjUSJyCganRERERAQAOKv7CLuTQEQJjMEpERERUQILnK33BwW1NqaEiBIdg1MiIiIiIiKyHYNTIqI44rI7AUREREQ6MTglIiIiSmACp0QiIodgcEpERESUwPj6GCJyCganRERERAmMLadE5BQMTomIiIiIiMh2DE6JiIiIiIjIdgxOiYiIiBIau/USkTMwOCUiIiJKYAxNicgpGJwSERERJTCB0/USkUMwOCUiiiMuuOxOAhHFmLL0PgCAvumFNqeEiBJdkt0JICIiIiL7VGcNxF1Dr0Jt74FobWq3OzlElMDYckpEFEf6dysCAFSk97U5JUQUSyoz+yPDm2p3MogowbHllIgojszrcw56+HJxRn613UkhIiIi0oTBKRFRHEnxJOPCnuPsTgYRERGRZuzWS0RERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtnMJgiDYnYh419EhoL29w9Y0eL0etLW125oGIq2YbylWMe9SLGK+pVjEfBsbPB433G6X4nIMTomIiIiIiMh27NZLREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwSkRERERERLZjcEpERERERES2YlxxIwAADHZJREFUY3BKREREREREtmNwSkRERERERLZjcEpERERERES2Y3BKREREREREtmNwGsPeffddLF26FOPGjUN5eTn+8pe/iN8dPnwYN998M84++2xUVVVhwoQJuOWWW9Dc3By0jX379uHyyy9HdXU1Ro8ejdtvvx3t7e3R/imUQOTybaDW1lZceOGFKC8vx2effRb0HfMtRZuafPvBBx9g7ty5qK6uxmmnnYbLLrss6HvmW4o2pXz7z3/+E0uXLkVdXR2GDx+OuXPnYteuXUHLMN9StD3wwAOYPn06amtrMXr0aFx11VX48ssvg5Y5ceIEVq9ejbq6OtTW1uLqq6/GwYMHg5Zh3o1NDE5j2Pfff4/y8nLccMMNYd999913+O677/Czn/0ML730EtasWYO//e1v+NWvfiUu097ejiVLlqCtrQ1PPvkkbr31VmzZsgW//e1vo/kzKMHI5dtAd911FwoKCsI+Z74lOyjl2507d2Lx4sUYP348nn32WTz55JOYPn26+D3zLdlBKd8uXboUAPDII4/gmWeeQXFxMRYvXiw+yGa+JTvs2LEDs2fPxubNm/HQQw+htbUVCxYsQEtLi7jMmjVr8Je//AV33303Hn30UXz33Xe45pprxO+Zd2OYQHGhrKxM+POf/yy7zCuvvCIMHTpUaG9vFwRBEN544w2hoqJCaGhoEJf5wx/+IIwYMUJobW21NL1EghA5327fvl0466yzhM8++0woKysT/vd//1f8jvmW7CaVb2fMmCHcddddEddhviW7hebbgwcPCmVlZcIHH3wgfrZ//36hrKxM+OijjwRBYL4lZ/Dn1ffff18QBEFoamoSKisrhW3btonLfPHFF8y7cYItpwmkubkZGRkZcLs7T/uuXbswaNAg5Ofni8uMGzcOTU1N+Oc//2lXMinBHT58GKtWrcKtt96K1NTUsO+Zb8lpDh48iA8//BC5ubmYOXMmxowZg3nz5mH37t3iMsy35DQ5OTno378/tm7diuPHj6OtrQ1PP/00ioqKUFpaCoD5lpzh6NGjAICsrCwAwMcff4y2tjaMHTtWXKakpARFRUVit3Tm3djF4DRBHDp0CPfeey9mzZolfnbgwAHk5eUFLee/iA8cOBDV9BH53XDDDbjgggtQW1sr+T3zLTnN119/DQD43e9+h1mzZuHBBx9Ev379cOmll2L//v0AmG/JeVwuFx566CHs3r0btbW1qKqqwjPPPIONGzciJSUFAPMt2U8QBNTX12PkyJEoKSkB0Jn3UlJSkJ6eHrRsXl6emC+Zd2MXg9ME0NzcjCVLlqC0tBRXXHFF0Hcul0tynUifE1lp69at2Lt3L6666irZ5ZhvyUk6OjoAALNmzcK0adNQWVmJX//618jPz8fzzz8vLsd8S04iCAJWr16NwsJCPPHEE9i8eTNGjRqFJUuWoKmpSVyO+ZbsdNNNN+Gzzz7D2rVrgz6Xyn+CICguI/c5OQOD0zjX3NyMRYsWIS0tDRs2bEBSUpL4XX5+ftjTI/+/Q582EUXDO++8g08//RTV1dUYPHgwzjrrLADA1KlTxQk9mG/JafwTdw0YMED8zO12o3///vj2228BMN+S87z99tv4n//5H6xbtw61tbUYOnQobrnlFrS0tODll18GwHxL9rr55pvx5z//GZs2bUJhYaH4eX5+Po4fPx72BorGxkaxdZR5N3YxOI1jzc3NWLhwIbxeL+677z74fL6g72tqavCPf/wjaOrt7du3IzMzM6iSRRQt1157LZ5//nk899xzeO655/D73/8eALB+/XpceeWVAJhvyXl69+6NgoICfPXVV+JngiDgq6++Qs+ePQEw35LzHD9+HADEeSiAzhYlt9st9gZgviU7CIKAm266Ca+99ho2bdqEPn36BH0/ZMgQeL1ebN++XfzsX//6F/bt24eamhoAzLuxLEl5EXKqY8eO4d///rf477179+LTTz9Ffn4+UlNTsWDBAhw/fhx33HEHmpubxSdMubm58Hg8GDduHEpKSrBy5Upcd911aGhowN13343Zs2fD6/Xa9bMozsnl28LCwqCno2lpaQCA4uJi8XPmW7KDXL4tKCjAggULcN9992HQoEEoKyvDU089hYaGBlx44YUAmG/JHnL5tqamBunp6fjFL36BpUuXIikpCY8//jiOHDmCcePGAWC+JXusXr0aL730Eu69915069YNDQ0NAICMjAykpKQgIyMD06dPR319PTIzM5Geno7f/OY3GDFiBIYOHQqAeTeWuYTQDtoUM9555x1ceumlYZ9fddVVGDlypOR3APD666+jd+/eAIBvvvkGN954I3bs2IHU1FRMmzYNK1asgMfjsTTtlLjk8u3VV18d9NnevXsxadIkvPjiiygrKxM/Z76laFPKt4Ig4P7778cTTzyBo0ePoqKiAj//+c9RVVUlLst8S9GmlG93796NdevWYc+ePWhvb0dZWRmuueYajB49WlyW+Zairby8XPLz+vp6XHTRRQCAEydO4NZbb8XLL7+M1tZWjB8/Xhzr78e8G5sYnBIREREREZHtOOaUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbMfglIiIiIiIiGzH4JSIiIiIiIhsx+CUiIiIiIiIbJdkdwKIiIgosg0bNuC3v/0tAMDlciEjIwPFxcUYN24c5syZg4KCAptTSEREZA4Gp0RERA6XkZGBjRs3AgCOHj2KTz75BE888QSeeuopbNy4EUOGDLE5hURERMa5BEEQ7E4EERERSduwYQMee+wxvPPOO0GfNzU1Yfbs2WhpacG2bdvg8XhsSiEREZE5OOaUiIgoBmVmZuK6667Dv//9b/z9738HAKxduxbnn38+amtrcfrpp2P58uVoaGgQ17ntttswadIkhD6XfvbZZzFkyBA0NjYCAJ5++mlMmTIFVVVVqKurw5w5c/D5559H78cREVFCYnBKREQUo0aNGoWkpCR8+OGHAICDBw9iyZIleOCBB7Bq1Srs3bsX8+bNQ3t7OwBgxowZ2Lt3L3bs2BG0na1bt2LChAnIzc3Fu+++ixtvvBEXXHABHnzwQaxZswa1tbU4evRo1H8fERElFo45JSIiilHJycnIycnBgQMHAAD19fXid+3t7WIL6gcffIDTTjsNAwYMwLBhw7BlyxbU1dUBAL7++mu89957uO+++wAAH330EcrLy7FkyRJxW5MmTYriryIiokTFllMiIqIYFthF969//StmzZqF4cOHY/DgwTj99NMBAF9++aW4zMUXX4zXXnsNx44dAwBs2bIF+fn5GD9+PACgoqICn3zyCdasWYN3330Xra2t0fsxRESU0BicEhERxagTJ07g8OHDyM/Px0cffYRly5ahsLAQt99+O5566ils3rxZXM7v3HPPhcvlwquvvgpBEPD888/jwgsvRFJSZ2eqMWPGoL6+Hu+99x7mzp2LUaNG4cYbb8T3339vy28kIqLEwW69REREMertt9/GyZMnUVNTg//+7/9GTk4O7r77brhcLgDAN998E7ZOWloapkyZgq1bt6JXr1745ptvcNFFFwUtM23aNEybNg2NjY147bXXUF9fj/T0dKxYsSIqv4uIiBITW06JiIhiUFNTE9auXYu+fftizJgxaGlpgdfrFQNTAHjxxRcl17344ovx3nvvYcOGDaipqUFJSYnkcrm5uZg1axZGjBiBL774wpLfQURE5MeWUyIiIodrb2/Hrl27AADHjh3Dnj178MQTT+D48ePYuHEjPB4Pxo4di02bNuGWW27BxIkT8cEHH+CFF16Q3F51dTVKS0vx/vvv46abbgr6bv369Thy5AhGjhyJnJwcfPLJJ9ixYweWL19u9c8kIqIEx+CUiIjI4Y4ePYqZM2fC5XIhPT0dxcXFuOCCCzBnzhwUFBQAAM444wysWLECjz32GJ5++mnU1NTggQcewNlnny25zUmTJuHrr7/GlClTgj4fOnQoHn74Ybz88ss4duwYioqKcPXVV2PevHmW/04iIkpsLiH0TdxEREQU9y6++GL0798fd9xxh91JISIiAsCWUyIiooSye/duvP3229i9ezduuOEGu5NDREQkYsspERFRAikvL0dmZiYWL16Myy+/3O7kEBERiRicEhERERERke34KhkiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKyHYNTIiIiIiIish2DUyIiIiIiIrIdg1MiIiIiIiKy3f8HqyjkYRAoJzkAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[12, 6])\n", + "plt.plot(lc_kepler.time[:3000], lc_kepler.counts[:3000], color=palette[3]);\n", + "plt.ylabel(\"Relative Flux\")\n", + "plt.xlabel(\"Days\")" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "6635859b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Stingray only uses poisson err_dist at the moment. All analysis in the light curve will assume Poisson errors. Sorry for the inconvenience.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using 19 DPSS windows for multitaper spectrum estimator\n", + "CPU times: user 19 s, sys: 4.61 s, total: 23.6 s\n", + "Wall time: 9.73 s\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/dhruv/repos/stingray/stingray/utils.py:126: UserWarning: SIMON says: Looks like your lightcurve statistic is not poisson.The errors in the Powerspectrum will be incorrect.\n", + " warnings.warn(\"SIMON says: {0}\".format(message), **kwargs)\n" + ] + } + ], + "source": [ + "%%time\n", + "mtls_kepler = Multitaper(lc_kepler, NW=10, lombscargle=True, norm=\"leahy\") # Using normalized half bandwidth = 10" + ] + }, + { + "cell_type": "markdown", + "id": "864f7f79", + "metadata": {}, + "source": [ + "As stated before, the `adaptive` weighting method and `jackknife` log-psd estimate are currently not supported, hence these keywords will have no effect, no matter their value." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "4082f502", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAHXCAYAAAC2xGtFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AACxjElEQVR4nOzdd5gbxf0G8FfS9V7tczl3+9x7t8EFMA41dAi9JPQWagjNgVBDCfADQgktEEISHLrpxcY27r13+3xnX+9N0v7+uJNutdquVb338zwJui2zI2klz1cz8x2bIAgCiIiIiIiISDd7uCtAREREREQUbRhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMigt3BaKF2y3A5XKHuxoAgLg4O5zOyKgLRQ/eN2QW7x0yg/cNmcV7h8yw8r5xOOyw223a17Tkal2Ay+VGdXVjuKsBu92G3Nw01NY2we3mWsqkD+8bMov3DpnB+4bM4r1DZlh932RlpcBud2hfN+ArERERERERdTEMpIiIiIiIiAxiIEVERERERGQQAykiIiIiIiKDmGyCiIiIiCKKIAhwuZwQmG+CdLDbbWhtbYXT6dSVbMJmA+x2B2w27cx8ahhIEREREVHEcDqdOHLkENxuV7irQlGkvNwOt1t/+nO73YHc3B5wOLSz8ylhIEVEREREEaO0tBR2uwM5Od0BBNZjQF1HXJwNTqfeLkwB1dXlqK2tRHZ2vvlrmj6TiIiIiMhCguBGTU0tMjPzEBcXH+7qUBSJi7MD0N8jlZ6ehaqqoxAEN2w2c2kjmGyCiIiIiCKCy9XeEHY4+Fs/BZfnHjMyHFCKgRQRERERRRgO6aNga7/HAklowkCKiIiIiIjIIAZSRERERERk2J///CDuvffOcFcjbDgAlYiIiIgoAH/+84P44otPcdZZ5+LWW30DiwUL7sXXXy/C+edfhLPOOhfnnHOaaln33PMACgp64KabrsFXX/2ElJQUv2MqKyvwyisvYsWK5aiurkJGRiaKiobiuutuRt++/ax8agCAkpLDOOec0/D22+9jwIBB3u0333w7hBAs9nX22afiggsuwllnnRf0axnBQIqIiIiIKEDdunXH119/ieuvvwUJCQkAgIaGeixe/AO6devuPeajjxZ5z3njjdewa9cO/PnPT3i3paWlYfPmTarX+uMf74AgAPff/xAKCnqgrOwofvllGerq6ix/XmrS0tJCer1Iw0CKiIiIiChAw4ePwN69e7BkyU+YO/d4AMA333yFIUOGwm5vn03jcDiQm5vnPScpKQlxcXE+27TU1dVh48YNePHF1zB69FgAQEFBD4waNUb1PLfbjX/84018/PFCVFVVom/ffrjqqmsxffpMAEBtbS2efvpxrFy5HM3NzejevQBXXXUt5s493tuLdskl5wMAxo4djxdeeAV//vODaGpqxMMPtweCN9zwOwweXASXy4kvv/wcSUlJuO66mzFt2kw88cSf8csvS9G9ew/84Q/3Y8SIkQCAqqoqPPvsE1i/fh3q6mpRWNgXV175OxxzzGxvmaWlJXjmmSfxzDNPAgCWLFkFAFi/fi1efvl5bN++HTk52Zg79wRcddW13kA22DhHioiIiIjIAieddCo+//xj79+ff/4JTjrpVEuvkZycjOTkZCxe/CPa2tp0n/fOO2/gq68W4a67/oi33/4XTj/9LPzxj3dgx45tAIDXXnsJ+/fvxVNPPY933vkAN910m7fH6dVX3wIAPP/83/DRR4vwyCNPKl7ns88+Rn5+d7z22js46aTT8PjjD+NPf7oXxx47B3//+7vo168/Hn74fu+QwJaWFgwbNgJPPvks3n77X5g371e49967sG/fXgDAI488iW7duuPqq6/HRx8t8vboFRcfwu2334zjjpuHt99+Hw8++DCWLfsZL7/8vPEX1SQGUjFGEAT8YcPP+OuOdeGuChEREVGXMn/+yVizZhXKy8uwf/8+7Nmzy9s7ZZW4uDjcfff9+OSThZg/fzZuuOF3eP31v+HgwQOK57S2tuKdd97AH//4ACZNmopevXrj9NPPxLHHzsbHH/8PAHDkSCkGDy7C0KHD0bNnL0ydOh2TJ08FAGRlZQMAMjMzkZubh4yMTMVrFRUNxcUXX4bCwj64/PLfwuVyobCwL+bNm4/Cwj646KJLcfDgAZSVHQUAFBQU4PzzL8LgwUXo1as3fvObizFq1Bj88MO3AICMjEzY7XakpKQgNzfP23v3zjtvYP78k3H22eejd+9CjB07Htdffws+/nhhSOZtARzaF3OcghsbayqwsaYCNw8ZG+7qEBEREXUZubl5mDhxCr744jPU1dVi1qy5SElJtfw6xx13AmbMOAZr167Cpk0bsXjxj3j33bfw6KNPYcqUaX7HHzp0EM3Nzbjppmt8tre1tWH8+IkAgNNOOxP33Xc3du7cjsmTp2H27LkYNmyE4boNHDjY+zghIQGpqWno33+Ad1t2dg6A9iF93bp1h8vlwttv/x3ff/8NysrK4HS2obW1FYWFfVWvs2vXTuzevROLFn3q3eZ2u9HS0oKKigrk5ekfLmkWA6kYU93WGu4qEBEREXVZJ598Kl5++QU0NjbigQceDtp1kpKSMG3aTEybNhNXXXUNbrvtJrz99t9lA6mmpiYAwF/+8jxyc3N99iUmJgIAZsw4Bv/5z8dYunQJVq5cjuuuuwqXXXYVLr30SkP1iovzDS9sNt9tNptnIVw3AOC9997Bf//bPpSwf/8BSE5OxuOPPwynU33YYlNTI8488xycccY5AACHwwaXq70nKisry1CdzWIgFWO+Kt3vfdzsciLJwbeYiIiIKFRmzDgWTz75KJKTUzBu3ISQXNNms6FPnz7YsGG97P7+/fsjPj4eR4+WYsyYsYrl5OTk4pRTTscpp5yOf/zjTXz00UJceumViI+PBwC4XG7L675x43oce+xszJs3HwDgdDpRXHwIBQU9vMfExcX7XXvw4CLs3bsHvXsXdhxjh9Npff3UsJUdYwalZXkft7hdDKSIiIiIQiguLg7/+tdC2Gw2b++LWXv27PL2GAGA3e5AXl4e7r//DzjllNMxcOAgJCYmYe3a1fjss4/xm99cIltOSkoqzj33N/jrX5+Cy+XCqFFjUFdXh/Xr1yA/vzvmzj0er7/+NxQVDUX//gPR1NSEFSuWo2/f9uF1WVnZSExMxC+/LEVeXh7i4xMsS31eWFiIH3/8Hps2bURKSgreffdN1NfX+xzTo0cPrFu3BnPmHIf4+ARkZWXhwgsvwdVXX4Fnn/0LTj75NKSmJmPnzp3YtGkjrr/+ZkvqpoWt7BiTGd+Z7tGOwD68RERERGRcaqo1QcY111zh83daWho+/vgrDB06HP/85zsoLj4Et1tAQUEBLrvsKlxwwcUqZd2A7OxsvPXW6ygpOYz09AwMGzYcl112FYD21OwvvfQ8SkpKkJychHHjJuKWW24H0B4c3nLLHXjjjVfxyisvYvTosXjhhVcseY6XXnolDh8uxq23XoeUlBScccY5mDx5is8xV155DZ588hGcd96v0draiiVLVmHw4CI899zLePXVl3DttVfAbnegd+/emD//FEvqpYdNCFVaiyjX1uZCdXVjuKsBu92G3Nw0VFTUw+32f+u21Vbi9vVLAAD/nDof6fGhyaNPkU3rviFSwnuHzOB9Q2a53S6Ulx9GTk4Pv7k2RGqMDu1zOp0oLy9GXl4vv3stKysF8fEOzTKY/jyG8Z8uIiIiIqLgYCBFRERERERkEAOpGMNeKCIiIiKi4OPg0xgmMKwiIiKiKPfM9rVYXlES0mtOze2BW4vGhfSaFH3YI0VERERERGQQe6RiGTukiIiIKMq19wyxd4giD3ukiIiIiIgstGbNKsycORGXXnoB3G7flNwzZ07Ezz8vBgBceeXFeOaZJ3z2v/POm5g5cyIWL/7BZ/vNN1+Hhx66z1R9fvzxO/z+9zfg5JOPw8yZE7Fnzy6/Y2pra7Bgwb2YN28W5s+fg8ceewhNTU2GrvP663/DlVf6rmX1yy/LcPzxM/HKKy+aqvtHH32IG274HebNm4WZMyeisdF/OaIVK5bjiisuwfHHz8QZZ5yEN998DaFY4YmBVAxjhxQRERFR+Bw8eADffPOl4v5x4yZg7drVPtvWrVuDbt26+2x3Op3YvHkDxo2bYKoeTU1NGDVqDK655kbFYxYsuA979+7BM8/8Hx5//BmsW7cGf/nLo6au5/HDD9/iD3+4DVdeeQ1+97vrTJXR0tKMKVOm4+KLL5fdv3Pndtx55y049thZePPNf+Kuu+7F//73X7z//ruBVF0XBlJEREREREFw5pnn4LXXXobT6ZTdP378ROzduwfV1dUAAJfLhY0b1+PCCy/1CaS2bNmE5uZmjBs30VQ95s8/GZdf/ltMnDhZdv++fXvxyy9Lcffd92HEiJEYM2YsbrnlDnz99SJUVlaYuuZnn32MBQvuxe9/fycuuOAiU2UAwLnn/gYXX3wZRowYKbv/u+++QVHRMFx22ZXo3bsQU6dOx8UXX4Z//evdoPdKcY5UDGPWPiIiIqLwOf/8i7Bo0Wf46KMPcdZZ5/rtHzNmLOx2O9atW43Zs4/D9u1bkZKSgl/96hS88MIzqK2tRUZGhreXqlev3gCA9evX4vbbb1K99h133IN5836lq56bNm1ARkYmhg4d5t02ceJk2Gw2bNmyGTNnHmvgWQMffPAeXn75Bdx330OYO/d4n31fffUFnnzyEdXz//KX5zBmjL55ca2trUhISPDZlpiYiPLyMpSUHEbPnr0M1d0IBlJEREREREGQkpKCSy65HG+//TpOOulUJCcn++xPTU3D4MFFWLu2PZBau3Y1xo4dj5SUFAwaNBjr16/BMcfMxtq1qzF+fGdv1NChw/DGG++pXjsnJ0d3PSsrK/yOj4uLQ3p6huEeqT17duG5557Gvfcu8AuiAGDmzGMxfLh875JHfn6+7utNnjwV//73P/Htt19j5szZKC0twfvvt782lZUVDKSIiIiIiKLRr399Nj744J/44IP3cOmlV/rtHz9+ApYvXwqgfX7UjBntvT9jxozH2rWrMW3aTGzatAG33HKH95zExCT07l1ocU1tMtsE2Gxy25V1716ApKRkvPvuW5gyZRqys30DtJSUVKSkpAZQT19TpkzD1Vdfjz//eQFaWu5BcnIyzjnnArzxxh7YbMGdxcRAioiIiIgoSBISEnDFFb/Dc889hTPOONtv/7hxE/DPf/4DlZUV2LBhHW644VYAwNix4/D663/Dtm1b0dTU5JNowuqhfTk5uaiq8u15cjqdqKur8wuEtKSmpuHpp5/HzTdfh5tuugbPPfc3ZGdne/dbPbQPAC688FJcfPGlOHq0DJmZWVi9eiUAoGfPnobqbhQDqRjGGVJERERE4Td//sl477138M47b/rtGzNmHOx2Oz744J9ISEhE3779AACjR4/Dnj278dNP36OgoIfPEDWrh/aNHDkaNTU12L59G4qKhgJoT+EuCAKGDx+huxyPzMws/PWvL+KWW67DzTdfg7/+9WVvMGX10D4Pu92OvLz287777msMHz7ScBBoFAMpIiIiIqIgstvt+N3vrsODD/7Rb19KSiqGDBmK//73A0ydOt27PSMjA/369cfChf/B7Nlzfc4xOrSvtrYGR46Uory8DABw4MB+uFwudO9egIyMTPTr1x9TpkzH448/hNtv/wOcTieefvoJnHDCicjJyTX1nNuDqZf8gimjQ/sqKspRWVmB4uJDANrnYCUmJqJXr0KkpKTA7Xbjgw/ew/TpM9Da6sSiRZ/hm2++xHPPvWyq3kYw/XmMCcXiY0RERERkzLHHzsbgwUNk940fPxFNTY0YO3a8z/axY8ejqanR9PpRHkuW/ITLL78Qd9xxCwDg3nvvwuWXX4glS37yHvPAAw+hT59+uPnm63DHHTdjzJixuP32e3zKmTlzIj7//BPd183IyMSzz76IuLg43HLLtaiqqjJc9//977+4/PIL8fjjDwMArrnmClx++YXYtm2Lz/O76qrLcPXVl2Hbti34619fwsiRow1fyyibwJa3Lm1tLlRX+6+kHGp2uw25uWmoqKiH2+3/1m2pqcCdG34GALw1eR5yE5NCXUWKQFr3DZES3jtkBu8bMsvtdqG8/DBycnogLo4DpyJJSclhnH/+GfjHP/6NwsI+4a6On7g4O5xOt+7jnU4nysuLkZfXy+9ey8pKQXy8Q7MM9kgREREREZGqX35ZitNOOzMig6hwYahPRERERESqfv1r/4yDXR17pGKYwLx9RERERERBwUCKiIiIiIjIIAZSRERERBRhOKqGgq39HrPZzJfAQCrG8GuHiIiIopXD0d40dbmcYa4JxTrPPWa3a2fnU8JkE0REREQUEWw2OzIzM1BXVw2HIw5AAN0F1MXY4HTq7VIQUFdXjcTEFNgC6JJiIEVEREREEaOgoAA1NTtRXn443FWhKGK32+F2619Hym53IDu7W0DXZCAVwzjMj4iIiKJNXFwcunfvDafTCYGNGdLBbrchOzsFVVWNuhYBt9naA6lAeqMABlJEREREFGFsNlvH0D4ibXa7DQkJCYiLa9UVSFl23ZBdiUJO4M84RERERERBwUAqxjB0IiIiIiIKPgZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAxiIBXDmHiCiIiIiCg4GEgREREREREZxEAqyrkFAbVtreGuBhGFgVsQ0ORyhrsaREREXRIDqSj31PY1+M3yRTjQUOe3T+DgPqKY9sKu9Thn6ec40twY7qoQERF1OQykotyPZcUAgJ8rDoe5JkQUal+VHgAAvLhrQ5hrQkRE1PUwkIoRcj1SRNQ1rK46Gu4qEBERdTkMpGJEVVuL/0aO7CPqEsZm5YW7CkRERF0OA6kYMTqTDSmirmpAWma4q0BERNTlMJCKESlxcQAAQWA3FFGXw489ERFRyDGQihEumQCKbSuiroGfdSIiotBjIBUj3OyJIuqyuNQBERFR6DGQihEMpIi6Ln76iYiIQo+BVIyQH9rH5hURmbOm6ihuWvMDDjZyaQUiIiI5DKRiBHukiLqwIHz8X9m9CXsaavHa7s3WF05ERBQDGEjFCKfgDncViChMgvEzyqGmegBAq9sVhNKJiIiiHwOpGNHmbg+kxA0q9lERdQ3BHMbrZG83ERGRLAZSMYJNHSKyki3cFSAiIopwDKSi2C8VpeGuAhERERFRl8RAKoo9tGWF97Hs0B52UxF1CRx9R0REFHoMpIiIolxQlzpglEZERCSLgVSUOhTg2i7VrS2oam22qDZERERERF1LXLgrQObcvOZHzWPUfke+6JcvAQCfHnOaRTUionBhnxEREVHosUcqSjW5zK/tUt3aYmFNiCjchCAMv2PWPiIiInUMpGKEkXYUF+8lii3skSIiIgo9BlIxQm6yudIE9Hh759veEkDPFhERERFRV8VAKkbYTA7E+e7oQYtrQkShFsweKfZ2ERERyWMg1RWJWkatbg7zIyIiIiIyioFUF1fdxsQTRNEuqOtIERERkSwGUjFGT4NKfESNSiBV29aK+rZWC2pFRMEUnDVzmbePiIhIDdeR6uIy4hIU9/1m+SIAwCczT4XNxkYVUVfEvi4iIiJ57JGKEXJxjtKv1EaHAdU62StFFMk4tI+IiCj0GEjFCLNDewakZWoeY+cQHyIiIiIiHwykurj8xGTNY7iAL1FkC8YcKY7mJSIiUsdAKkbIDu2zaLiPKzgz2YnIBEEQ0Ohs893GoX1EREQhx0CqCzLa5GpxuYJSDyIy7vld63Husi+wr6HWu41hFBERUegxkIoRbW43bl+3GB8e2m152Z+V7LO8TCIy56vSAwCA5RWlIboiwzQiIiI5TH8eIzbUlONwU4PPNqXmj3iknqBj2F6rmz1SRJFmWUWJ97GezzERERFZiz1SMaLR6Qxa2eOzuwWtbCIyp2dSqvcxwygiIqLQYyAVI6rbWhT31be14vGtq7CrrhoAJ6YTxYLshKSgls+kfUREROoYSHUB/z60C4vLD+OWdT/57dMTUjHwIoo8ofpcctQgERGRPAZSXcB/D+3SPEYQBJQ2N6jOtXALAu7ZsBT/2LfNyuoRkQluRjhERERhxUCqi/M0xb4sPYCrVn6Lfx7YoXhseUsTNtSU4/2DyscQUWgwjCIiIgovBlIxTGnoj9zWd/ZvBQC8d2C7Ynl2uVV/iSgs2CNFREQUXgykCABQ09aqeUyDsy0ENSEiPYL9s4YnTOPvJ0RERPIYSHVBRtec8Rz+/dFDQagNEQUqGLFO59cEIykiIiI5DKRimJF4aXBaFgAg0e4ITmWIKCoxjCIiIpLHQCpKJVkU8Hh6pzzDd9RSKnNhXqKuhHOwiIiI1DCQilJ9UtMtLc/W8buzW6XtxGQTRJEj2GGOd45UkK9DREQUrRhIRalAMnYJMo9t3r+Vy2WyCaLIZAvmjxz8AYWIiEgWA6ko5ba4PE9vk1p89ta+rRZflYhC7aPiPfiydL/mcRzYR0REpC4u3BUgc/Rk3jvYWI8Xd23wP1emiaSnR+pwU4Pu+hFRZHp1zyYAwIkFfXUdz/4oIiIieQykopRbx+/Fz+1chxa3S1d5njlS6qXyN2qiSGEmwDG69IHZ6xAREXUFMT+076abbsKkSZNw6623hrsqltLTHlIMomTO1TMNgqnRiaKbM4C5lXqUtTShnnMpiYioi4j5QOrCCy/E448/Hu5qWE5tCJ6Zcmwqvzt7jjmvzxBLrklE4eEUrJ5d2anV7cLlK77G+cu+CNo1iIiIIknMB1JTpkxBampquKthOauy9hmRGZ9o+ppEFH5Od/ACKWb1JCKiriasgdTKlStxzTXXYObMmSgqKsL333/vd8y7776LuXPnYtSoUTj33HOxYYN/8oSuyKoBOkEe6UNEESSYPVJqa9ARERHForAmm2hsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJycHADA6aefLlv2hx9+CIcjduf0BNYjJZO1T9eMcu1rNruceH3PZswr6IvB6VmG60ZEweF0u7Fg8y9BK39LbUXQyiYiIopEYQ2kZs2ahVmzZinuf+ONN3DeeefhrLPOAgAsWLAAP/zwAxYuXIgrr7wSAPDRRx+FpK4AYLeHP39VoHWw220+ZXj+tkmOEbPZOo6x2RSP8fjs0D58UbofX5Tux+ez5INcCj3P+xUJ9zBZQ/x5tNm039v1VeXYVV/j/VvvveC5jtbxTaLkNrzPiN85ZBbvHTIjXPdNxKY/b21txebNm3Httdd6t9ntdkyfPh3r1q0LeX3i4uzIzU0L+XWV2EzeKLm5aWio7xzek56RhNzcNCQkxPkcI5aWnojc3DSk1icqHuPhLrFpHkPhk50de/MFu6rEpM7PbEJCnObnLaOtxudvvZ/PuLj2nn2teyelNsFw2RT7+J1DZvHeITNCfd9EbCBVVVUFl8uFvLw8n+25ubnYv3+/7nJ+97vfYcOGDWhqasKxxx6LV155BUOHDjVcH6fTjdraJsPnWc1utyE7OxUuk5PGKyrqUd3Y6P27trYJFY56tLW5fI4Rq6trQUVFPerqmxWP8WhtbtM8hkLPc99UVTXAzcksMaG52el93NLi1Py8lVf7Lqit9/PpdLZ/N2jdO40NrYbLptjF7xwyi/cOmWH1fZORkYz4eO0pQhEbSCkRBMFnSIuWV155xbJrR9IH2uwUKbdb8Mnc5XYL7c9L8D3G91rtx4jnqSu9FnbRexNJrxe1877fFPXEi+t6PqNqcuKTfP7WfR8IncerndM3Jd142RTz+J1DZvHeITNCfd9EbPrz7OxsOBwOlJeX+2yvrKz066XqigJZR+qj4j0mryl6rBDJOVTWoyKi8ElwmPy61/mRDiQBDhERUTSK2EAqISEBI0aMwNKlS73b3G43li1bhrFjx4avYhEikDbLotLOoZGeYgx08vmcJ2U3WhARmSL+pAU1hNFZuIuBFBERdTFhHdrX0NCAAwcOeP8+dOgQtm7diry8POTn5+Pyyy/HnXfeiREjRmD06NF466230NzcjDPOOCOMtY5+wzNysKW2Uvfxne0j0VAihWMZSBFFpsqWlqCWzx4pIiLqasIaSG3atAmXXHKJ9++HH34YAHDDDTfgxhtvxEknnYTKyko899xzKCsrw7Bhw/Daa69515DqygIZ2pdg7+yI3F5bhfHZ3WAzOCRPEATZbiyj5RBRaPzn0E5zJ+r8SLuCuNgvERFRJAprIDVlyhRs375d9ZiLLroIF110UYhqFD3MhlFlLU1YV9057+zdA9sxLa+H4WsqXT+QAI+IoheH9hERUVcTsXOkSIPJNssvFaV+29ZUHfXbVu9s89smbicJaM/+t6hkP1ZWHjFXGSKyhJ6vA71fGZ8U78GBhjrDdeDQPiIi6mqiLv05tXNb2PNT3NTgt+38ZV+oniMIwMLDu/HWvq3ebf+dfrJPY8poqnoiCh6lTJtiS8oO4297Npkr39RZRERE0Ys9UlFKAJBod2BaboGh8xaV7PPb9mXpfo1fkwXJf9t7pLZKElasqjqCnslpfmcRkfX0LEegdLySx7at8tvGn0KIiIjkMZCKVh2tovzEFEOn7Ws0PmRH6fLS4X9tbjfsNt9jAODHo4dw1/olaHY5Lbk2ERnHoXdERETWYiAVpQQIsMG65A7icnbWVfvs+9fBnShvafL7BVyaQl06V8rzK/mT29dgc20lvjty0JK6EkWTPfU12NdQG+5qsIeYiIjIYgykopQA44voapXnceu6n3z2HWiswz0bl0LL0PRsSUIKX2pZvdyCgL0NNcz8RTHnprU/4oY1P+g+vqylCUvLSyyvh7RHSm44YG/R0FyjmLGTiIi6GgZSUcwGG6yKO7TKOdzUoJn+PN5uR4OrTfEotUt8fHgPblzzI/6+d7NGTYli29WrvsUjW1dig2iZAi36svZpfx7nduut+5p+5TOOIiKiLoaBVJRyC4Klk8A31OhotIlaSuUtTbKNrmd3rPM+dksaVq1ul2yxS8tL8Nqe9gDqC5lkGETRysy8pFZ3+8K2extqVI8z+vmXVkWuB8nOLJtERES6MZCKUgIA2GxhG05z/ZofEGdXv32kdXtz31bctm4xKlqa8fCWFbh7w88AgEe2rvQeIw2+iKKZU3CbPndTTYXuY/V8D/RPy/A9R+aUQBJS8KNLRERdDQOpqGVtj5Qe0uQSWuQaVtvrqvDu/m1YXlGq0FBkc4xih9NtPpAanJ5tYU2AUZl5Pn/LfdLkass+KiIiInkMpKKUILQ3cCZkdwMATMkxtp6UGT+UFUsqoX680o/bzQpD/AD2SFFsCaSHx2WgN0vPZfx7rfxPCixo4oeXiIi6FgZSUUpAe7KJSTnd8dKEOfjDsIlhqYP6fvkjmkTrSUkbmm42xiiGuET3s3TdNS1Oi39VkBYnVzo/fURERPoxkIpiNhtgs9lQmJKuOV8pGKSB0g7J+lNKjTLxelNcJJRimfj2NjrM75eKEsPBl2pdJJ9Iqz97/CQTEVFXw0AqSlmdtc+MmrZWn7+/OnLA9wAdDTWuG0WxLJAe1n2NdXhg03LF/UZLlls3ykr8KBMRUVfDQCpKtbdZwhtKiXuW5Oj5/Z2BFMUyca+PmU/r9roqXcfpydon/TzKnSFfx3D/ZENERBSZGEhFrfD3SGnR1bgLID00UaQTB1J6eqeC2mskKZu/YRAREQWGgVSUEtA+RyqS6Wmo6e2RcgluxQV9iSKVOHiKs2l/3ZodCqjnLP+fLMIbSW2qqdBcdJiIiCiSMZCKUu3xh28klZuQFJa6KNlSW4k2jQn2Lp2NuStWfIMzf/7MimoRhYy4R0pXsBPUDilphkyLyzcQmLW4XLh7w8+4cc2PFteCiIgodBhIRS3B7817eNS0sNREySNbV+JvuzeqHqO3R6qitRkAs/xRdBEHRnoCDSPBiNEOab/ASeazFKpO7jYO6SUiohjAQCpKudGe+lysMCU9PJVR8e2Rg6r75RYdFQQBj29dhY+K9/jt8wRS7+zbipd3tQdpqyuPoqoj0CKKJD6Bv44YKZg/FEiDNKuvZKg8/iBCREQxIC7cFaDYpvXLs1yPVGlzIxaXH8bi8sM4vdcAn31uCGh2OfGvgzsBANPzeuCBzcuREZeA96bNt67iRBYQz3nSEzqYDS/0xCXSYywPpAwUyDCKiIhiAXukotDhhnoAQFlLU5hrEji5RUrVhhe5BQHbajtTQu9vqAUA1DpblU4hChvfOVLhzdrn3yPlfy3ZlOhBGO/HIbpERBQLGEhFobe2bw53FSxz/ZofDB3vEgSsqTrauSHSUxdSl2Y0C5/TZIChb6mBYKc/119gIAsVExERRQoGUlEo1psgW+sqff5eXdkZODkFN+LsnbctwyiKZEaz9snNGbSK9PpywVeoPk+x/h1GRERdAwOpKPTRvl3hrkJQvbx7k8/fD2xe7n383ZFDPmnexQ0yvRkAiUJFfEdafXsKCo8Vjw/y58NI6RzaR0REsYCBFEWcBmeb9/Geet8FO1/fuxndklI6N4h/8Zc0zlyCG3sbaoLegCRSZDj9efBI+7rCmbWPn0giIooFDKQoolW1tvhtS3Z0JpsUNw6lDdWPi/fixjU/4r+HYrsHjyKXkXWhgOBmBfdLNqHzWsGoE3/cICKiWMBAiiKaXC6JJWWHvY+PNDd6H7slbbN/d6RI11rLiihYDA+/C2JfjVPyAdGbtU+Pn8qK8dKuDbqPZ7IJIiKKBQykYtzA1MxwVyEgdpnp75+W7PU+/vhw56K9wWyEEgUqqKnNdZT9r4M7fM+RK0e+dM2yn9i2Go0up+76sEOKiIhiAQOpGPObPkU+f1/Sb1iYamKNmjb960NJe6Q8vVlss1G0kLtXlRIzBJphTy7YserHCK1S2CNFRESxgIFUjPlNX99AKvqXWdLf4JI2AqP+qVPUEwymPzcS3BgdNmiWmbK1zmGPFBERxQIGUjEu2oMJm4FIUNo28ww1OtRUb2GNiPTzDXYiK3qQrY3MRrNLBKvvjazXgoiIyAwGUhTR/rJtje5ja9pa8NKuDShubA+cWt3BW9yUyDAdsYOR8OJwU4PpqrRfy7pkE37laBTEdaSIiCgWMJCKQeIEE9HeXDEyl+KNvVvwWck+/GHjz/jh6KEg1opIH6OfP9ngRqGQDTXlhsoelZmrWa5sT5GJLxHOkSIioq6AgVSU+df+HdoHdUh2OIJYk8hT0dIMAKhsbWEgRRFHV+hgMr7QM1Suu3gha53nmMesfUREFPsYSEWZt/Zt1Tzmgr5DAAC/HTAq2NWJKOLpVJwXRZHAN9mEdvQQ1NBGUrjea5kJuLTO2FZX1XksoyoiIopSceGuAFlvam4PLJxxMuLtDqypOuqzb3hGDqpam/HnUdOxq74G22or8WHx7jDV1Fo76qq9j482N4WvIhTz9jbUYGddDeYV9NF9TjAX5DUVi8iN4rMoptEqR/y95AbQtfrOiYgoVjCQilHxdvmmyfHd+3gbf92SUtAnJT1mAikxu83GCe0UNDeu+REAMCAtA4PSshSPExT/0HG8/tN0kQZpeq9lLkZTP2tQWhaWV5S2HysIsbBOAxERdUEc2hfFEuzab5+0OZMkmTelVMaTY2b6/F2YnKZ5rZl5PWW3h2OullNgxj4KPiMLRgdzjpSZouWDndD8+LBT1HvMVOhERBStGEhFsSv6j9A8psXl8j4+tWd/zMjr4bPfYZO/BYZl5Pj8fdewiZrXWlddJrs9QaF3LBp8Wbofb+7dEu5qUITS+gIVBwnhniPldy2dFwvGgrwjMju/X0qaGk1cgYiIKPwYSEWxU3r21zym3tnmfXz1wFF+gVOcXd+QmngdvV8OheE5SsFauG2sLseta39Cicp6PM/vXI//HNqFRqczhDWjSLZdlCjBrjEkzejoUrO9RLqCNEE6tE/nOlImhshqnZKXmOx9rKdnnYiIKBLxX7AoYia71ZSc7kh2OHBBnyGy++N0BjlKQZIekTr74YHNy7Gzvhov7togu39TTYXoLw4/ona3rVvsfWwL492daLCn139on/Yx5ulPf57YxZZpICKi2MFAKoqYmfeTmZCID6adhAv7DpXdrzdA0gq4Tu85QLFJ6ZIEgO9MmafrmqEi7rUTu3vDz6K/IjUcJCs43W4cbKwzfJ5Wj5SYnt9B9Bzj+STmi3p1LEtIIVOB4PyE0Fmq9PuBiIgoWjCQiirmGvM2lcaeXIB0fPdCv21qDca3p8zDVQOU52tVt7X4/J2dkKR4bCjZO15PTnanp7avwbWrv8fKyiOGztP6RBqfI6X/Xgz0vg1mVksjJfPTR0RE0YqBVBfn6ZHKFQU3ckOGHCpNxpyEJNVgTexvE+carKH12txuNDrbmHGZvBaXHwYAxWGeSjTnSCk81nO81nlu0Q5dvV06rm/VeVrn+Lwu7JEiIqIoxXWkoor1DQ6bzYaFM06BU3DjnKWft2+TCZr0BkpaeulIo241aWB49apvcbSlydsbp+9VZWOvKyhrMbaQsz2MQz6N9kj5J5uQK9MiGsGReK+bny0iIopS7JGKIsFqbsTb7T4NwiHpWX7HRNqNkhGXoPvYFrfL5++jHY1lz5yzJpcTL+/aiLvX/4xdovVtxNjU6xqM3FeAfI9Us8uJP2z4GT+VFUt6pCwe2hfgTSl3raUdPXPSI43aXleNRoW5h36l88NFRERRKtLaxxQBJucW+G2zqkfKKmYyfQmCgDdk1oQ63NSAT0v2YlNtBW5Z95PiuRT7Bsv8iKBG7lPx3dFD2FhTgSe2rfaJQaxKNgGNuX2fl+zDszvWavZAPbBpud+csJJm/zWdzNz6D2xejtvXL1E5orNQ9kgREVG0YiAVRcQNmm6ijF2WlC1qzMjdFHqyk7lD2B4y8/z3NtTiv4d2mbqe8XyJ1BXI3fINop4YKxKZ+Acygt+1xdd5cdcGfHPkIIpV1kcDgJq2Vry+Z3PA9VNyQCULomAwwCQiIopEDKSiiLixNEWm1ygQ4iBIrvcpzmbDjYPH4L7hkxXLcCmkZ89JSNRVh8x4/cOquiWl6D7Wo9FlflFdpedGscXwvCOZ4ytbm01ff2Hxbv3X1ohApENa5ep6qKle+zq6a2QOs2YSEVG0YrKJKHWFSrpxM8TrSSn1PZ1Y0Fe1DKUhOpWtLfjP9JM016IK9i/TgQzP41o3XYPRt1nueHFyE6NZ+74/ekj3tcWhvVzZR5obMDAts/OYCLqFfZJNRFLFiIiIDGCPVBTKS0o2NUdIjbg8T9a+03sOMFRGqiNecV+SIw5x9s7b7cMZJ/sdE+xfpgMp3dPYO9BQh2XlJdZUiCKOFT1SDoUfDMze38rnqZdnJCjzmCrT0x2czyXnSBERUfRjIBVFPEPTypuNpWg2ytM5pdTrJbfOFADEK2yXkyBzbJNk6N0zY4/VXZ6Wl3Zt8Ctfzdqqoz5/ewKp69Z8jz9vXYnSZvX5JxSdjDbpNddL8pkMZLQ26twa3V3Tcnv41kVHBZIdoR+kwA4pIiKKVgykokiry6V9kAU8Q/scNht+O2AETu85wCdIemfKPNlfrgPllLSojGZQU/NZyT7diSbu2bAU921a7rNNOrSvprXVsroFqtHpxCW/fIl/7NsW7qpEPeND+wykKzdYF+3yBNnHHtKeMemcKdkyQxTVcB0pIiKKBQykoojVw/mUiBfkPb3XQPx24Eif/Slx8eiWKJfsIbIbRFtqK3Udt6Gm3G+btLEXyHCnVZVH8Jtli7Cjrsp0GWLrqstQ2dqC9w/usKQ80k/uLrAp7Ld6iJxWZ1dqXJzoWAFrqso0y5RLqRKUgX3M2kdERDGAgVQUyU5IwtmFg3D/hGlBvY6eJaO6WqYtaY9UIM/+wc2/oNbZiqe3r5Xdz8n34WN8jpS/3ilpuo81Q/D+VzTPSOaeEW/RmywlHOulsUeKiIiiFQOpKHPFgBE4ua+xJBBG2RTz9gXPZf2GhfyaRkgbol+W7jc0T8rpdmNHXZVPg1cu9fR/Du7EaUs+wYEG5TV4KHgMz5GSCTzS4zrT+PsEZhbHC0aGxzl1pu+XKycYwZVPTx1/OCAioijFQIr8mA2jjDaHXhg/G9Nze+DF8XNwduFgQ+cm2R0YmZFr8IrmSdeR+ubIQVy/+gefbW1uNxaXFWNRyX6fRVkB4G+7N+L36xbjo+I9qtd5c99WAMAXpfsCrjMZZ/Tel7vnxcGIOEbY21CrWM6zO9binY73Xve1BfnreOsh2qi3Ryp0vaGCzCMiIqLownWkyOvZccei0emUXZBXyopeq36pGbhn+CTVYxLsdrS6/X9Nv7DvUKytLsOm2oqA66GHXANTOnn/vQPb8e+DOwEAv1SW4oERU7z7vizdDwBYVuGbOt0lCD5reHkYac+Gvv8wdhm9r40MBfz6yAHM7+G/FpsgCPjmyEFD1wV85zNZ1SMVjqCGQ1mJiChaMZAir0FpWbqPPadwELbWVuL8PkO821LjlNeRMiLJ7sAz49pTn8/I6+m3Hs61A0chKyERX5Tss+R6euj5Rd8TRAHAysojPvuUzna63XDIJBEx0kDXM6eNgkOrJ0jPu6gV4iiuIuXTIyU3R0p9DpWcUC08bXShYiIiokjEoX1kSnZCEp4ZdyymiNKg3zl0AibldMf9wyf7HJtmMMAamZmLwpR0AECczOKm8wraf9U/scD/1/1gcQkCalpb/LY3K6xNJY1tPI1FaUNVOmTQw+yv9Px1P/wEhTBBKTg2OkdIkPwXkH/fxetMSZcWUCxb5rhd9TUGaqeP+DK8Z4mIKFoZCqRaW1vx0ksvYds2rldD/nolp+GBEVMwObcAT46ZiYyOSfeBdJjINbLi7faO66UGULLxejy6dZXf9rOXfo7lkuF6arZLUp4rNSL1DcTyd/bSz9ASovXGSH5InTiA8U2qoL8MPXx6nBSO8HDJDI+Vs0qyELW3fIuCnb/t3ointq8JStlEREShZiiQSkhIwMsvv4zaWuVJ00QAMCwjB5nxnkBKXyh1fmH7MEFxT1NGRxnxMj1T9hCOaXNBUFyH6oltqxXP+9eBHVhUsl+1XDlmG5etbrdsNkDSx+gtdf+m5X49lUo9T+nx8j2zWu+10m7x9gONdWiTzNkzk/5cSauOxXz1+OTw3o6huto9dURERJHO8Byp0aNHY/PmzZg8ebL2wdSljc/uhoNN9Zic213X8Rf1G4rTeg3wBk8AcH6fIWhyOXFKz/5YXFaMZEfnLRvKQMotCO2NbJk2n9zwQwHAhupyvLNfvfdWsUeKv9JHjQ8O7cRvB3QuWq202Oycbr1lzzfyTvvMi5Kc+XN5CWaLriG+dqCBlNNt7f3om7qdiIgoOhkOpO644w7cfvvtiI+Px6xZs5Cbm+uX5S05OdmyClL0urT/MIzKysW4rG66zxEHUUB7AosbBo8B0J7lT8wewnx1bkFQvJpSQHfPxqWa5So1cOXmTu2pr0HP5FQkOXw/tha3cbsMp9uNn8tLMC4737vNzB1V3+ab6l6ph0XpfjUyR8onU5/ktDbJ8D1BodcnKz4B1W2tuq/pKSFYuI4UERFFK8OB1LnnngsAePjhh/HnP/9Z9pitW42th0KxKcHuwNTcHkErP6RD+1TSRwfSDFTqeVpfXe7z96aaCty94WcMTsvyZjT0kCbzkK5h5dHicsHpdoc0AI1knxzei9f3bkZRerZ3m5m0/tI5Tr5zpLTmMRntfdSf707pyN4p6aiuMbZsgNWxDrP2ERFRLDAcSD3yyCO61hkiCrZQBgQuQWUmR0cr0w6b6cQBUlVt7fNudtVXQxCAHzpSwO+sr/Y7dmHxbp+/11WXYXRWnt9xx370PgDg02NOs6SO0W5HR+IPaQIQo6T3odHsfEdamjSuIL/wrjQwk34tKw0DNPOpsXoek7huHMZKRETRynAgdeaZZwajHkSGhbJHalHpfsVheA0uJwRBMBVEec7ZXluFbkmdQ2I9z+yWtT9pliFds2p0pn8QdbCxznDdYp1VzXe/AMZnSJ38drGvSw/ovpZaQKOUch/wDcDM9LpZHeq0iXp4mWyCiIiilekFeXft2oVNmzahtLQUZ511FvLz87F//37k5uYiLS3NyjoSybKHsGNUOtROaqPBoVIe/9y/Ayf17Ifb1i9GnM2OOJsNTkHwGW5mlFx8WdHSbLq8WCXXE2ImNpcGJuKhfW6fnhf58wuSU3RfSy3kkJavdKyZ57itqhKD4tKNn6jApeN1ISIiinSGA6mGhgbcc889+PLLLxEXFweXy4VjjjkG+fn5ePrpp9GzZ0/cddddwagrkY9Q9khpqVeYl6Tl26MH8VNZMQDAKbgRZ8Fzkus4EzfojzQ3onuS/sZ7uO1vqIUNNvRJta4hD8iv32Smt8b/PpQfUqfU89IjSf96aGrD4FrcLt/hfIJ8z5jaM0y0O9Aik+r8QH0tBmUF9vor1U3v0D6XIGBZeQlGZeUiMz4xoLoQERFZwdA6UgDw2GOPYe3atXjzzTexZs0an38QZ82ahcWLF1taQSIlgcyRSrI7LKwJ8MjWlabPbfNJZNH+nKz+kV7c1q8znLEtvK5f8wOuW/O95eUuryi1pBzpl6hvj5T8Y7F6p/r7ofde+Lxkn2ISB73D55SOc6gE+GpZ93wCJtF28WO9dfvmyAE8tm0V7t24TNfxREREwWY4kPrqq69w++23Y+rUqXA4fBujPXv2RHFxsWWVI1ITSI9Us0ULjFrNqZIdMBD5iZ3zr9qCdI1gs2pRWKs5JOuI+WTqU1n3yePfB3fpvpZayHGosc5nf01bC97ZtxWVrc0+J6r1uinFRHaZtdL08E3XrtQjpa+sPfU1AIC9DVwQnoiIIoPhfx1bWlqQlZUlu6+hocEvuCIKFrVfyand8ooS3LdxGRpdznBXJWChyO5m5o6SBvQ+vVCQDx7EZuTpXyJArfenPWjp3P/3vVvwr4M78eS21bp7tZSO65eeobBHa96WfFC5rKJEdL6+2iXy3xYiIoowhgOpUaNG4aOPPpLd9+WXX2LcuHEBV4pID/HQvsv6DQMA9E5mopMvSvd5F2d9eMtKrK0uwxeH94e5VrFLmvREqUdKqR8wNyFJtXwjay7JxVkHGut805+rRovyV1A7R+9qVuIEE4ca60VH6AukzMxfIyIiCibDgdTNN9+Mr776Cpdddhn+/e9/w2az4ccff8Qdd9yBRYsW4cYbbwxGPYn8iHsCzi4cjA+mnYSL+w0NY41Co6pVPQPfz+Ul+ODgDp9t4mFxgiDgme1r8cruTUGpX7C4BWBLTQVe2rXBGygGwrOQcd+UziQKZtbIkzbwxWGBUo+MWWolnFc4WHa/w2aXJJtQfo5Kw+zUh9+pzJESl+GzODGz9hERUfQzHEhNnDgRb775JlpbW/HQQw9BEAQ8//zzOHjwIN544w2MHj06GPUk8iNt9KbEmc7mH3EqVYKl+zYt9/lbLnHG0vISn7+lvRrfHj2Ijw/v8W5rc7tVh41FAgEC7tzwMz4r2Ydvj+hfe0mJVf0b0ux/SgkWFBfqNXAttfcoOyFJtrR4m93AReQPNBsE+iwgLMj3TuntkVolWS+NiIgo3Ey1PCdMmID33nsPzc3NqKmpQUZGBpKTk7VPJLKQXNa+WBn8I04OIbVPMtn+rN6D8O6B7T7b9ksW4BX3YkmbrYeb6vG7Vd+hR1IKXp10vLkKh4A4iKiOoMyDCZJA1id4sni9JLUiBEE+JLHbbLoXi1Y6Sj0zn66i4RIlOTGzjpT0niYiIgo3wz1Sy5YtQ1NTEwAgKSkJ3bt3ZxBFYWFkFNZv+hThk5mnBq8yFkt26P+NI96u/TEWLyjslAyLu7+jh6ukuVH3NdUcaKjDUQNlba2txEodvQ3i9rb0OQRCXK6ZlPopkvfKt0fKeM+LH4Vsd1JuyPcclTQ3+PydqJL6X6l0tUBMNbjTMYTP9OtCREQUZoZ7pK644go4HA4MGzYMEydOxIQJEzBhwgRkZ2cHo35Eiow0eW0wN/8lGhgNKVySxrbaulJv79uKtLh4nNl7kO6yPWs+fXrMad7te+pr8I/923DtoNF+vW13rF8CAPho5il+qcTdCkGJ3KKxRsnNFTKTCVIa3CgmmwjyHCm18sV1VBoCqxqkWVB38fvXLzXD27Ma6UNKiYiIlBgOpJYuXYpVq1Zh9erVWLFiBd5++2243W4MGDAAEyZMwMSJE3HaaadpF0QUBDVKQUFsxlDtZBqiGXEJig1Ul2QdqQaV1OgfHNwJAAYCKfmw7t6Ny1DrbIVt10bcN2Kyd7t4yKFbABwqGfDET8eK9bas6gmRluK7CK+geJzWdvlj1XqGBNlen6Hp2T5nZcUnyp6v9oqqB1I6k02IyhD3ioUirT0REVEwGA6ksrOzccIJJ+CEE04AADQ2NmL58uV444038MEHH+Df//43AykKCbkehc01FbqPVTMwNRPDM3NwbH4vb49JKGnVtsXl8q6rI9cArnW24g8bl8qXHcSeOd+EAm44bHb8VFaMWmd7gNvgbPM53ik6vs3t8humKA4MxEGEFVn7rCINA3x6pMTbQ9Ij5X9Egt3h3To7v5diGQdV5iCp9nap1MnnOIXeOb3vZLzNHrWLSRMRUWwylWyioaEBa9eu9fZMbdiwAYmJiZg9ezYmTJhgdR2JZMnFAycU9MEPZcV+2xN0zCMSy0pIxNUDR5mtWtCdtfQz79A5pV6KTQpBpbgRW9PWongN8XGLSvZhfo9+mvUSn3O4qQGFKel4Ytvqzv0qze6K1makdKQk9/DpkfLZHjir1iWSvv6K6c9Nly96rPLE3QrXEH9ObDabYkDXqjJc0myiDJ+sfaJnsrO+WnSMvsLndi/El6VcD42IiCKH4UDqzDPPxPbt25Gbm4uJEydi/vz5+OMf/4iioqKYnYNCkUnubkuSTPzPSUhCZWszRmXmKZazcMYpOOPnT322xdkM52GxlFqDV8poR8dDW1Z4H9e0Ks+PEgcBL+zagGl5PZCpMCxM7hy5eknfs/KWJu/jNEkQJS3P6BCwurZWpMXFB/17SVotpZ4Xa3qkNOZByVzDDt97SWkoZ6tKL5/6/CvFXRCHgYprVKmdDqCipRnv7N+Ko81NGkd2crrdeGzbKkzP7YG53Qt1n0dERGSE4dbi9u3bERcXh7Fjx2LcuHEYP348gygKC7keBWkA9PTYY/CXMTMxOD1LsRzxcLLx2fkAgDFZyoFXKFS2NuOAznTPgcz1kUuuUN3aArcg+JW7vKJUszyXwqKrSsTDJuUa2uJN4tdD6zmvqyrDBcsX4R/7t2nWIVDvHdiOhYd2e/9WWjtK6fUwNkdKmRuCbFDS6nZhTXUZgPZA9tsjB2XPV+2R0pibpbxP+zit9/K1PZvwzZGD2FBTrnqc2NrqMiyvKMXTO9bqPoeIiMgowz1Sq1at8g7r++qrr/DUU08hPj4e48ePx8SJEzFp0iSMHTs2CFUl8iUXu0sDg4z4BOSprMnkMadbbzQ6nbitaDy21FZgXHY3q6ppyu76Gly/5gddxwbS0SGdR7WvoRY3rPkB03N74Ir+w332Vbd2DgPcVV+N4sZ6zOrW2+cYt8+cJ/m+hqrWZqytKsO4jqDVQ65BLS5vSflh8cGqvu5YsPdfB3fi4n7D1A+2wOt7N+OM3gMBKK8dZfZ98h3ap55ZT27/5tpKbK6tBND+44NS75LavDMrEkJIF4nWW3aFyuLUSqxMj09ERKTEcCCVnJyM6dOnY/r06QCAtrY2LFu2DK+++iqeeuop2Gw2bN261fKKEvnzj6RSJcPD9PaT3lY03vt4Yk73QCoVMvVtrXhmxzrUO80vTlspaaR61ptaWlHiF0iJeyVuWfsTAKAoPRsFyamdx4jaxOkyQ/UEAHeuX4KS5kbML+jrW75Mg1ocGIjXeDLSrF9TdRTjVQJj8TWsyOTnM0fKinWkFMr22ydovy42m3LvUjACKfFZ7yj0DmqVbCYlPRERUSiYSjZRWVmJVatWef+3fft2uN1uDB48mMkmKGTkmlfiNYomZHcL+1ynYHr/4A78Uqk93M4I8ULAdkkDVq4xXdPW6htIKSSHEPMs/OtZR0itfLP9CuKy7t+0HJ/MPFXX8GMrklgEmp1OtWyNIXZawZoNNgxKy8Su+hrvtnpnG9Li4pHkUFuo12TWPh0BmNbcMQZSREQUqQwHUieeeCIOHDjgXZR3ypQpuP766zFhwgRkZWUFoYpE8rSaVwtGTlXd3y81I6qHAH1desDyMu2iF/WKld/47JMLdDzrRtU725DsiAsoOYRTo0fKSHNauujwsooSTM/rKXus1fM7fYJJPa+HkddJI2ufZo8UgPS4BJ9t3x45gNN7DUSCXTmQkr6ePlUKMPrU+gRKF2kmIiKKFIYDqZNPPtk7Dyo5WXvuCVGwKDWA35kyT1dq6+fHzbK6SiGltpBuMMg1eF2CgKrWZlz8y1cYkZGDW4aM8+6Ta1+LExrsqKvy2bek/DDO7zNEck3R0D4DAY80UceyilK/QMpTF5+hfRZ0SYnL8Em+YXp4nL4EHm5B0L6GTa53yeZ3Hb866MzMp39PJ606m+mRanC1aR9EREQUIMOB1E033RSMehBZJjshSfOYyTnddfdEJDscaHJ1BgCPjJqOH44ewldHrO8RCje1V+TfB3dideURPDd+tnebSxCwo64aQHtSA7fGfCPxkDJpYNYkExiK51w5DcxlOtRULynH9/iKlmY0y2Sps2Yek0L686DPkdIuX+4HBk+votrpqj1SanXSrJF2vaWLNOvxt90bDZ9DRERklKk5UgcPHsRrr72GNWvWoLq6GllZWZgwYQKuvPJKFBZyzQ4KnfHZ+chNMN4zOjwjR/ex0rTco7PyMDorD2f2HoRrVn9n+NqRTKvhu6ehFls7MsAB7T0uentMtEyQSQghLjuQxViltVKaW2bFHClxgPjJ4b2Wlq0WczS7XZq9O3KBcr2zvfemWBJ8+l63s9yKlmZsqCnH7Pxemj9G6Akete6ZRJUhh0rEP3wQEREFi+FAatOmTbjkkkuQmJiI2bNnIy8vD+Xl5fjqq6/wySef4O2338aIESOCUVciP38aOS3o11BqDPZOScP8gr5YFEADPxqJ10yC4BtougIYJic3dE8pMOielGKobGk5Hxfv8T7Wm15cL8UyjG1WOFb56M9L9uHs3oMMlNauW0eClpdUenHE7+tdG5agtLkRgIA53QoDDhC1RyMy2QQREUUmw4HU448/juHDh+PVV1/1mSPV1NSE3/3ud3j88cfx9ttvW1pJIqsZSTAgt1Csx6C0LABdK5ASEyAoJpiQa/RPzS1QXNhXNv25wnXTHP6p1dVIy1aab2VJr5FSHcyWbuC0W9f9pLrfJlNcZnyiZrk/HD6IWZk9AKAjiAK21VZhTrdC9UhIR921eq30Domsb2vFa3s345Se/XUdT0REFCjDg883btyIq666yi/RRHJyMq644gps2LDBssoRBYuR37jzEpXnXJ1Q0AfJKmmjY5G4YbunoRbNbqfo7xrRcf7UXnfPXB0xpR4poyHJ0ooSbK/tTG5xQvc+BkvQz4peLSVaQ/dq2tTXFJP7ASFBx/37y1H/xXSbO4bPBTpHyqq8mf8r3oNvjhzEbesWW1QiERGROsOBVGJiIqqrq2X31dTUIDFR+9dNonC5afBY9ElJxzyLGtIOmw3H5PWypCw1MxVSd1tNTwxQ3tK5iO/b+7bi2R3rvH+LH7fKJHNQG6Yl7fnb11CL3676VvbYBqfxrGy3re9sYCeIEhiIE1NYkRBCqefJkoyAAZ4v++obKPTp7WtEpwlGT5elFXjqLb+kuQFA+zDEeKZMJyKiEDD8r83s2bPxl7/8BatWrfLZvmrVKjz11FOYM2eOZZUjstq8gj54ccIcpMUnaB/cQbMhF4IpHDcNHhP8i0Bfo/WwSlICsXf2bTN0bWkA8t9DuxSPfffAdkNl66UV7OhJYa48Rcpc79rC4t3YUF2uuH9Ot96adfKQC2SNBI/fHT0kOq+ddGFlo2UHkqBETBy4n95rgOHz11Ydxb0bl6JOo1ePiIjIw3Agdffdd6OwsBAXXXQRZsyYgdNOOw0zZ87ExRdfjMLCQtx1113BqCdR2NxeNF51f7Anw2fGJyAlzticIPN0NGp1zi9bW13mt21phf8QMY8nt632+dsexNfV7HAytTTgHkpHmA0X/nNoF+7ZuBSCIPhkAfQ4rpv+TKkHm+r8tpmtl6cn6Z6NS02W4CknoNO9WkWLayc7jCekvW/TcqyrLlcN4ImIiMR0/2vT3NyMH3/8EcXFxbjgggtw0UUXYd++fSgrK0N+fj7GjBmDmTNnBrOuRGExLCMH/5l+Es5e+nm4qxJ0aok1gq2xYx2plZVHsKTssGZPxb8O7MB5HQv4NrmcqGxtRq/kNF3XUhpOptWDIjePS28Zgc6dWl11VDYFvJEFa9dXl2N0Zl5A9fDQtUaUjmPMLlQs1SYKpIwkk5ESB2RERERqdAVSBw8exGWXXYbi4mLvtrS0NDzzzDM45phjglY5okiR5IjDaT0HIElmYr60yfbm5BNw2YqvLbt2KJM/v7BrvaXliRM86FHT1oIFm38BAKRq9MK9s3+bN5A6pyPIfX3S8bpSo7+9b6vsdq0m/RUrvtEsW67XSFy2IAjYVV+DvqnpSDCwRpLcELo53XoHFDR46qMlI0H/UFijrBraJxbIDCkr5skREVHXoOvfmyeffBJ2ux3vvvsu1q9fj88++wzDhg3Dgw8+GOTqEUWO3w0ciUv6DVM9ZnpuD+QlGl8gWE11FM/ZECd40OPRrZ1zL50megY8iSO0hgU2yyTCALSHmdU6zb8XnqIXlx/Gret+whPeoYz+F82KT8DgtCyfbW/KBH8jM3NN10daLzlD0tvrkCQzVE5Xj5Se9OcWxS3iAGhXfY3KkURERNbQFUitXbsWt9xyCyZMmIDExEQMHDgQf/rTn3D48GEcPXo02HUkimjiJnuAnQMBMZJ0IBBmMubptammwvvYzJCvQF9+td6RQIfmeRr6y8rb54kpracFtK9zpedeKm9pCqj3xaNWIVj3DHM72tTot0/P66Gnd8eqHiBxKUvKD1tSJhERkRpd/waXlZWhsNB3QnOfPn0gCALKy5WzSRF1BeKhVcFIPJHf0cP17Lhj1eth+ZXDq03HfCQA2FlX7X3sEgS0uV2mh4uJAzmpdTLJMwzpqNJiXY18fe9mvbMt4KF9P5cfxm+WL5Ld5wjBXaUVMH8vyhSoJpjrdxEREcnhYhtEAQp2UzOpYx7NIMlQLym7zYZXJx4X5NpEniPNnb0lLsGNz0v8EzIY8XXpAdntRuYzyQnGXCCjsUOhTDKO71QCFXsIulitelUsK4fxGBER6aQ7a99VV10Fh8xE+8suu8xv+7JlywKvGVGUCHb6c70NcDts6JGcGtS6RLoURzz2NRxRPaamrUV1/193rsMJBf4LNmslvzDDLcgPbDNyRxlJE2+32QwNpVMLpPTcl7qy9kVYcgcmmyAiIr10BVI33HBDsOtBFLWC/aO93rlCerLVxaKtdZXex+nx2sHOhcu/NHWdQNN0y51+2pJPZI+1wUCAbuD+M9rDZFc5XF8iCfMLGBullnY+0OGPREREchhIEQUo+D1S+hzXvX0e451DJ4gywsW+j4r3eB8LgjU9Ck0uJw43NWBgWqZ3W6CBVKvbhfKWJsTZbHBqlGXT2XMkQAha7xWgfm9XtDbrLkctoLKqB0hpDbQdddUoysi25BpERERinCNFFKD1OpMQ3DNskqny9Tbg42ztH+dj83uZuk4s+KmsGN8cORhwOecs/Rw3r/0RW0TJJ1wBBlKLyw/jshVf60qPH2ez6+6pMRTIG4z51QKv7XVV2C+ztpUctaei9boGmuK9RSHVPRERUaAYSBEF6EBjna7jpuf1MFX+0PRs2cdSHL0E/OfQLkvLe3jLSu9jrbk8f9u9ERUt2r00pc3+qcSleian+l3vzN4D/Y5rz9qnWZwPQ+GgRtnXr/lB17XUep20hv/p7UULRhp1IiIiNQykiAKkp0fg8v7DTZd//eAx3sf3DZ+seJw4VfVJPfqZvh51qnW2YnlFCZaWH9bsOfnk8F78defagK85MiMXtwwZ69cT+U2pf0/b7voaQz1Seo6cX9DX+1hPYKjGE9woDbtrP0ZfGWJyvbRKbw9/XyAiomCJ6UBqz549OP/883HKKafgzDPPxKpVq8JdJYpB4gn5co2+mwaPxVm9B/lsG56Ro7v8NFG2uMyERMXjxBPqrxs0GlNzC3Rfo6vYorJOlJKHt6zEI1tXwenunK2WEZcge+wRHb1NWq4eNBLZCUl+PTW1Tv9Fc8dm5VseKByT39P7uKS5wft4Uck+02Wq9RZpDV2V2ytXntI1jCaaKGlq0D4IwDdHDmBPfY2hsomIKLbEdCCVmJiIRx55BJ9++imefPJJ/PGPfwx3lSgmdTbU0jsa2OKeI7XMZ9bWwvdCDp0NyOm55oYchlt8x5yw3jJrIym5c8PPpq9376bOZR2UXttinY1wNZ73Uc8QM4fNZvmQTqU078/tWG+8sI4noRYsaT5PmQOuWfU9lupa2BiIM/gCrdUx53FfQy2e3bEON6390VDZREQUW2I6kOrVqxcGDBgAABgwYADq6up0peMlMuuSfsMAAFNEvUHpMr0X2So9S2ZJA7ZgZxMMN6fgxrM71hrKHmcVvUFqIPTMvXNDsPx9Fj83o0GIlCD5rxztHin//SXNDXhk6yrJcfLiA1xIWU51q/paZERE1DWENZBauXIlrrnmGsycORNFRUX4/vvv/Y559913MXfuXIwaNQrnnnsuNmzYYOpa3377LYYNG8b1RMhymfGdgVKG6PEzY4/FhX2KMCmnu3fb+9N+hdcmHqf4q//ZkiGARhhdIyjaCQC+OXIQTS5nyK+tlb48EJ53UdditmbqoXGKeC5YTwO9faqX7ChT7h8crSQRep+h0o9kgQaDRERESnStIxUsjY2NKCoqwplnnokbb7zRb//nn3+ORx99FAsWLMCYMWPw1ltv4aqrrsKiRYuQk9M+x+T000+XLfvDDz+Ew9H+S2RxcTGefPJJvPLKK8F7MtRljc7Kw/dHD/ltH5yehcHpWT7b0uLifeY8WUnaS5Ku8zpsZxrXGiEptQUYWxtKT++V+Bg7gNyEJNO9ft5kEx1/O2x2uAW35JhOqyqPINHuwKisPBPXCh1+ZoiICAhzIDVr1izMmjVLcf8bb7yB8847D2eddRYAYMGCBfjhhx+wcOFCXHnllQCAjz76SPUa9fX1uO6663Dfffehb9++qsdqsYdqsouOOkRCXaiduCdI7/ui1Hskt1lvmXF2u0+P66UDhqPJ7UJ1awvWqcz70NO4vnbQKGQnJOERUTrwcEiLi8eYrDz8XF4S1no0BrEXzGG36X7PBRj8LrBBM43dgPQM72O75J4yymZrfy6eIhw2G9okEc/yilJUtjUjLzEZD27+BQDw+Sz5H8ikdD13m/7XU2+5Zj7zXQ3/rSKzeO+QGeG6b8IaSKlpbW3F5s2bce2113q32e12TJ8+HevWrdNVhsvlws0334xzzz0XM2fODKg+cXF25OZaM8zFCtnZqeGuAnVISuzs+dF7j4jPEUtM8t+ut8y8vHTf8wA8XjALz25YrRpIJSZqfw3kZKRiTG4+sEVXVYKm3tmGuydNxalfLAxvRYIoKysVuRn63vOERAeys1N0lx0f50C8Q33OUH5u531UkJqKknL5BBqZCYmo0ZgrlJWVgtz0NDg60qjHOxxolunNu2XtT/ji5LO8f4vv+bh45fpm5aRgXXkZRuTkwuGQH6mekZmE3Cxj391an7kMd73uY7s6/ltFZvHeITNCfd9EbCBVVVUFl8uFvDzfIR65ubnYv3+/rjJ++uknLF++HOXl5fjggw8AAO+88w4yMjI0zvTndLpRW9tk+Dyr2e02ZGenoqqqAW61xVkoZIYmZ+IzAJNyuqOiol7zeABoaWmT3d7U5L9dWqbSUCulaw9IaG8Yj8/rjjXlR/zr0qrdu9LQ0IxqR+Cpva1QUx0Z9QiWmppGVLTpS5DQ1Nxm6PVoc7pgdyvvtwGorOwMnH5dMABLj8hnx0u0aU+xrapuQGqrHZUd92tdm38KdwCobGlGeXlncg3xvdzWpjyM8u2Nm/Dyro2YmdcTbU754yqrG1Hhkk9Xr0Trc1xb0/lvgd7PfFfDf6vILN47ZIbV901GRjLiVX7I84jYQEqJIAi6h5rMmTMHmzdvtuzakfSBdruFiKpPVzYrvze6JaZgYFqm7vdEKUeAXPIAaZmvTzoeyytK8di2zqxlx3UrVLz21JwCPDl2Jib16YXZH//Lb79NR5UFt/Jk/pBTCQRigeDW/10Tb7Mr3kvyhQOX9xuOuzYsQc/kNL/MgDbYfK6dpJLx7miL9g9LPx09jPP7DMHqiqOax4rX6RLXQe2+W1PZXu6S8sPok5Iue4zL7Tb8Xal1vLhK/B5Wx3+ryCzeO2RGqO+biE1/np2dDYfDgfLycp/tlZWVfr1UROFkt9kwIjMXSY7Af5dw65gyH2e3Y6Zo0dTbisbh1qJxisfbOuqXHCdfP6X5WuOy8n3L0axZ8J3as3/MZyfU8+ym5hZgYnY3/KZPkaH3RYCAooxsLJxxCmbk+a8fJn1tA03zvqaqPdD5slR7FIH4R4R6Z2fPrNonQlw/pYDLaGbDfgoBmdjhJvZCERFRBAdSCQkJGDFiBJYuXerd5na7sWzZMowdOzZ8FSMKpjD8+KYUmJzZe6DP35GwLlW3xJSYD6T0vMz9UzPw4MipyExIRKNTf+ILT0xhs9lk30/PHN1hGdkAgO5J+udfybEBaHY5saW2UvNYcdr1z0v26SrfIRpeqPTRMRpIuXQc/+a+rYbKJCKi2BTWQKqhoQFbt27F1q3t/ygdOnQIW7duRVlZ+8T4yy+/HO+//z4WLlyI3bt348EHH0RzczPOOOOMcFabyFLnFQ72Pg7HIAaldrt0IeFghS9G0nc3uZyWfmld2rGAciTR82r8IEq3X96qf+6muMdT7jqtHcPrHh89E/+dfnLAvawNLie+PnJQdt/VA0f5/N0mHtonCmbU1pny6ZFSOM7oSFClNd7EuDYVEREBYQ6kNm3ahF//+tf49a9/DQB4+OGH8etf/xrvv/8+AOCkk07C3Xffjeeeew6nn346tm7ditdee827hhRRLLhY1JgXICDBbuxjaXbqUmFyGvITk3FBnyK/faf27I9BkjWwghVJaS3IKrappsKyRbUn5XQPeOhaMOjp+TO7ILDPWSqXsdtsSNTI7qfHvoZa/G33Rtl9U0QLVQNAi8LaXGpPVU/vpNEeqfzEZM1j4nQk2iAiotgX1mQTU6ZMwfbt21WPueiii3DRRReFqEZE4SUIwBNjZuKWtT/pPkfPL+hyZub3xIV9h8ruO7Vnf5+/bbbIGNrnsFlTi+z4RDwwYgr+V7zbgtKspef5iYefGRl+J27+h/v9lAbEpc2d2Qf1him+PVLyjAZSeo52MJAiIiJE8Bwpoq5IgIBBaVk4oXsfzWMfGz0DZ/QaiEmSX/b1yklIUqmH5G8heEP7jDRzbTZrGrGe5+6IgODQDHEikPwE7R4UD3HwFO5nLr3+qkpRan4dQ/YA354hpWQTWj2egiCguLEzeYSewCsCOzKJiCgMGEgRRRAjQcXIzFxcOWCEqeQLc7r1Vg3WpCVGSsPRBhviDQ59VGM2ccWCEVMxMDXTsnqI6Rm2N79H384/jDyHCHkfAf/X3mdon85epBRRJkrlHin1MhaV7sfVq7/TdT2PCHoZiYgojBhIEUWQUK3VdEX/4YhTCUh6JPmuDJ5sQWp3NUprAAVNR0vYzBypqbkFmJDTDTcNGWttnTq0CcoL0ALtAfSQ9Gzv32a/xLfXVZk80zxxanHpKy9OoCH+FKh9IhJsnfO4FNdm0/h54ltJMgw9SxBMy/VPHU9ERF0PAymiCCJ4/xucgOquYRNwQZ8hyFYZ1vfJzFO981fuGz4Zc7r1xtTcAsuSPMjR+0VkdL6LEs8zMdMjNSozz6cMq3me4q0Kgdr9wydLAkD9NZnTrbf3sdm5dYFwiIJ36Ws/WJTcxOddVnnLxUUoBUBa98w2SUCp5xYrSE7VPoiIiGIeAymiCBLs/qhZ3XorJpjwEAdMU3ILcFvReDhs+pOUPzZ6hqE6zczrqTtI09NboIdnrlAkZu0rTEkDABynMPRSGoAYeQqn9xzQeZ7xqgVMfBdJ76gUR2dgJ/4hwaXynovLKGuRTwOvFkjVtrX6Hx+WRQiIiCgaMZAiiiDB6okKldn5vTAyM1d2391DJ8puj7frD9Ks6pHyMNMjFewAJN7eOVwtXiaxhjTZhpH62HRkuQu2awaOwh1F4/2CZ5fQueKT+G2Wew089ATgap+pQ411mufLcbmNrk5FRESxiIEUURgoNeA9DcgQTZUyRCtddpzNhisHjJDd98L42ZiZ39N02R6D0rJ0HaeXPUhfgVnxiUEpF7CuF21rbaUl5Rixu74Gp/Tsj1ndevu98p4hk0B779LBxjrZHiMxPe+eVrIJ/+O1T2gTGEgREREDKaKwOK9wCPqlZuDe4ZMAAGf3HgQAOK57YTirpUqr/X7H0AneuVcTs7uhd3Kad1+/1AzVc6fn6Zu8f1KPfrqO0+IJZIM1tO9x0fDGeTpS2RthNtOglHjdplARD5uT9iYliRKafH3kAK5d/T0u/uVL1aF2enqkXCqBkdz50d4rTEREoRPWBXmJuqrcxCS8MH629+/L+g/HuYVDvOmcw9WYU1tbSqvJKt7/4MipaHO7ccbPn2pe87huheiRnIp39m/TPLbAwOKzajwBVLCG9uUmdr6OF/QtwldHDhi+jl5JOjMqDsvI1j4ohKSvo9w97xIEtKkMo9PzXhj9LCnFXS7BjRvX/IjRmXnIT9K/dhcREcUu9kgRRQg9a+IE2/l9hlhWlt4QZWx2vmpjV5xdzqrMgY4AeqT0vDfxdjv+Om4WXpt0XEiSOuj5IjeaBMTjiTEzTZ0nZ4goM590OKdS6v8DKvOY9NwPakP15M5Wuhe/P3oIBxrr8GnJ3pAtU0BERJGNgRQReal9IWjPY9LOJpemkHJbrezL+w3XuK5xgfRIfXe0fd0h9VNtGJiWiYKkVN3zvwAgRaV3qV9qhmIwdEm/Yd7HZ3UME5Xulyap0Ksg2ZpeQED9fTYz6yjQHim5+ijNqXp2xzp9lSIioi6DgRQRiZjvPwmk50XtXLOdUL8dMALPjjtWdp8nqPBby0hHMotd9TWax/is8mSg/icW9FXcN7dbb8WMiAWiBZTPK/TvVQzki97KHjVxUJMgWRDaTC9PnI7g0KVWrMknx/4oIiICGEgRRSStbGVWS+xIud07JU3xGCsa1EoNUPEQrW6J1sw/GZSWpZjlr97ZBgBwSJ7VE2P0D3+ra2tT3GdmudyTevTDZf19e9/Er5fe1O9ygZvcELjjdSY2sXIhZvFTkJZrpkcqzq79T5ja6ya3zw0Ba6uO4qHNK9DodMqex0CKiIgABlJEESlRtJZQKPxt4lzcP3yyYo8HADS4lAMHwL8Bb4cNozPzMK+gM2td/xT57H3iU0eo1MEItWF72+uq/I65dcg4nzWclFzZvz3Fu95gV+/Qvv6pGapzttQa7z7Z8GTr4C9ZZ5IKabCZrjA8U49Wt0txn1aP1OSc7hifnW/4mmpD++QCKUEQcN+m5filshSfl+xVKLTzvOrWFsN1IiKi2MBAioiQl5iMybkFqsdorccjDRhsNhseGT0dNw0e691257AJOL9wCGbl91I8VzpPyNNwTwpCcCkOXPqkpOs6x3OcS2UtIXFvSyD9OceK1t5SK8enp0fmyEBSpkt7jrTXE1P+Z2W/SuIItaQSAPCHYZMwNksSSOnopVNLfy4bSIn3K5zXIgoId3QE5URE1PUwkCIiXcRZBc3KSUjCRf2GorskjXlOQucCttJ03gl2B96aPA/vTD0x4OtLNbo6h27pDjY6DtNaG0t6vBk3DB7jfayeLKKz+W+XG9pn4dw3ufLF3p4yz9R1FpXuV91vt/m/R3qG2KkGUjIliHuwXAqp1z1DQ9vrFYq8jEREFIkYSBGRLtnxidoH6STtCRD3ehSl+653JKB9XSa9Q9GUfDDtJL9t4kVp9TaHPcf1Tc3A6T0H4Dd9ilSPtwcQxCSIeuHEjXcpyavptz+Qpr40UNAKyjLiExSHKM7t1tt0PWwmw0G1nkPZOVKiTU6Fc8XvRSBBKhERRTcGUkSki81mwwfTfqW836LrTMktwNmiFN5WrdmT6OgMSjzB2jBR0Ca9itIQNfHz/O3AkThWMkxR7fhAjmtQDaTUe6TaZAICvQGA9HXR0wFzz7BJstvNpmAH2l8faZ31JKhQH9rnv038WhYqDPf8sazY+1irh46IiGIXAymiCGTFMLpgSImLxyOjpuOGQWP89hnJ7qYWGjlsNp/sdVZlSBPXLr4j25t4iKG0d+L6QaMVypH20Kizqv4Z8QnK19CYI/WfgztNX1cayCoFYCf36Ifnxs0CYGDYo052tN9f0ivrCbKVepUAhaF9ok16FmzWk4KdiIhiU2S21oi6uEv7DUO9sw3nFg4Od1X8jM7KU23U66GWSU1Kb9pvv2v4BQCdPMPtxNukjWrpPC5FGm1tufrnJCShsrVZX/k6iK8gV506md4svWFvWlw8RufkYUNlOQCgTWbeUJzNjmtFgafSvCEj77tYfmL7eyEN1tWCJA+XSpYUufdmZ32197GeQErc00lERF0Lf0ojikDZCUm4d/hkDJHMF4oUAY9mMtCeNtv49pz17Nhj8fDIab6Z9GSegLRRHa+wRpHR3AIOmXJO7dnfWCHQyNonTn8uU8FAUpbbbDa8Orsz0UeP5FSZo7RmaclTSrcvzdDoeUrScv++d4vmNVwq94/a/CmgMyB8avsaxWPMBvpERBT92CNFRIbJ9TgYiS/khlTdOmSsbG+HVtp1JZ7TBqVn+e1TSwBx99CJWFddhqEKQazR5AJpMkGM3OsnziBolFZb/tzCIX7bzCabk+ulkV5ebya7R0dNx6lLPvHb7pQ8IWfHfWFmceDatlbUtLYgM8E/WYqelP4tLhe+P3pI8RgGUkREXRd7pIjIEkYCjKm5PQAAx+R1rpN0XPc+mN+jn6Frzs7vhQnZ3XDNwFGGzvO2x0UN84KOoXwz83vihsFjdDfa9Rw1OjNP8xxp8GDkQlq9dhnx/sHcWaKEHkbIBlKSy+tOsKHwGrslPUWeZBla5U6VWQvty9L9uPCXL2WPV0tE4aH12upJeEFERLGJgRQRGRboj/AjM3Px5uQTcMfQCZrHyvVeedhsNiwYORXT83r471MpUy7oy05IUjxenHpdemZuQrLKlfQLpGdDeuZtReNV9wPqz1eNXG+TNNgIdG0laXDSOadNvdxeyWn4/ZBxyEtIwtUawfX/infjqe2rVY/RM6yUPVJERF0XAykiMkx2kr/BtnNeYrKuBreedqpD5uJDM3L8tk3r6LEYl50PQH+Vm1SG3SU6HHh01HSdJbWTzgECtBvkakGENLHGoLRMSdnq9clPTEb3pBRdPXtyr4Xf0D6L11by9IJp3S77G2oxt3sh3pwyD90S1QPc1/Zs1uxNcgvarx0DKSKirotzpIjIMD3Z0qyi1ivgCSDkAjK5IWi3FY3H1tpKjM7KN12fvQ21GJXlO1QvyeBiwcd174ONNRVYXH7Yu83KHilpIKPVszIuOx83DR6r61o76qo1j1Easmf2KXrK0+qRqlDJhOgWBOxrqEV5SxMm5HTXeWXBb5ihX7mWJbgnIqJowx4pIjJMdm5JkNqTeoZX6R1KluSIw7jsbrrSWoudJ0rWUN7S5LffaP9LosOBu4ZN9Nmmll1Oi18QZtPYH2RWr1Erl65eToKop0967Pa6Kty09kf8acsKLCrZp+u6ArTnUbFHioio62IgRUSGJRvsgTFjfMfwu+EZ8imyxYwGRh56z+qbmu59PEOUIMNwQQCeHnuM7HbtoX3KlOYUeWgtXGs0E6EWPQvlGtJRPbtGNcXD+aS9Yj+Lev8211bquqwgaAe4Vj7Tl3ZtwG3rFjM4IyKKEhzaR0SG9UvNwNUDRmJwehZuX78EgPn1npQ8OGIqGp1tSNOx+G+gyQ2MkFtHycicIPHaYBf3HYp39m8DEFjPxoDUDADtc50A/7lEoW6WKw11NPs22WQeGSVOrf9TWbGucwQIaHW5VI+xMuj5rKOnrM7Zisx4/3TtREQUWdgjRUSmnNprgGxCB6vYbTZdQRRgfXIDtfLjNKKB3w0Yqbvc8/p0DhkMpEdqRGYuHhs9A8+Nm9VxrO/RoU7RHaewmPFFfYeaKs/zbLR6pOTO8TATbAsA/nNol+oxelKoA8DismLcs2EpmnWsFxbs+5mIiKzBQIqIos78gr4AgDndCwH4N5I/mHaSzpLUG6w3DBqNY/J6on9ahnebXJAgvv7cbr399uvptdDbIFcyMjMX6R2Bp/RZWT7UzoRRmbnI08ikp01/gGHFcEVBABaV7lc9Rm+P1OPbVmNDTbnq4r4eDKOIiKIDh/YRUdS5btBonFs4GN06FtGVBlIpcdZ8tc3v0Q/ze/TD4aZ67zaHTf33J7mMda6OPiG1ngaXQna4GwePwX8O7sSJHcGjHtKmvVZmuchvuLfXUOuXP59nKXlS1a0thq+qax0pgwMn9QRe4Q97iYhID/ZIEZElGpzaQ5asYrfZvEGU1LyCPpZfT9ywlUtsId4iN4Qsr2PR3t4paYrXUBp+d2JBX7w66XhkJuifMyPtgYqE5AUjM7WThijxpNtXSqvusUSUUEJ6pDjVvF56XjWjvX16gtYFm3/xCd6JiCgyMZAiIkvsqq8OdxUAACd0tz6Q0mpRi4MnuYby1QNH4eQe/XD/iMmKZVgZ7IQ/bPL1+yHjcK4ohbxRZR0p5430nFnTy2Z9j9Sa6jLNY7bVVeGp7WsNlUtERKHHoX1EZIlIGR5mrIdA37FGGstyPVZZCYm4dtBo9WtYGkiFtkeqd7JyTxsAzMzviXiFBBRGaM17KhJlRLRijpRbx8tm9LVdXlEKoP0+FfewSYd21jtbDZVLREShxx4pIrJGhERS/VIzdR9rVYAhnvtkNhW70hwpM6RPK0Vj3a9AXwWtdbysujW05ixZfwtqvzJrqrR7mKROWfwxTl3yCY42N3q3HW5q8DmmWPI3ERFFHgZSRGSJCJiGA8BYognLQhdRC95s6morU5SL34r5BX1xgsa8sWXlJZplPjhyCgDgL2Nm+u3TesZGeoem5BQo7tNa/0kcz1mxtNiOumrNY37UsSbVgYY62e1flh7wPjbaY6f0I4B4vSwiIgouBlJEZAmrF+QNBb2NV60gUdxm10qIoMTK4Xc9k1MxOjMPF/QZghsGj0G83aF6fK2OYWSTcwvw6TGnya4dpvWc9b4m/VLS0Tc1XXF/iagHR/Y6Pkv3Bh5J1TvbAi4DANbXlMtuF/dCxtvU3yOx53asw5k/f4omyZpUNa0tOOPnT/H09jXmKkpERIZwjhQRWSJSeqSMSHbEYcGIqcg2kBFPjhULqFoZSNltNjwyerpl5WnR7pHSZ0x2vurrEK+Ret5qG6rlAyCjmhQCMrPv+VdH2nuydtZVY3RWnnf75toKAMB3Rw/h90XjTZVNRET6sUeKiCxhNHuZ1a7oPxwX9R1q+LwJOd0wIE19XpVmb5sFw8gCXZA3nDR7pHSWY4cNX5TsU9x/UT/j728gqtqMrz0lJQgC6pQCKdF9ZaZHVzofT6vnkYiIrMUeKSKyRLJGQoNgO7P3oLBd25IMcVE4NNJDs0dK59A+mw1ocCmvR1aQKL92mFw9IiT3CR7dugpLK+TnoIljZ6eJZCPS56iV9ENOs8uJA411GCLKeEhERPqwR4qILJEZnxDuKgSN0uK/HlY02sO5aG5uQlJA51sRSOopx0icYHaumtWUgijAN3heXKa+YHBZSxN+6Uid7iGe4+cSBDy3Y53h+j20ZQV+v24xVlYeMXwuEVFXx0CKiCyhZ82daKXV22ZFoz0cgdQdHfNoXpowJ6ByzPSEyJ2rVYrWXDSrAjojeienoUYyBHBLTQWqWps1zy0Urb8lTRwh9duV3+KhLSuwtbZSdv+G6jKU67im1PqOeWCrGEgRERnGQIqIAjIuKx8AfCa9dzVWNN/DMUdqVrfe+PSY05ASFx9QOXEBLLYrXkB5V321+sEGslqEKqQ61FSPC5d/ic017YkeDjbW4c4NP+OyFV9rnpslSnLSS2FR4/q29oyKnqF/xU313n3i4FsrENPSGOD5RERdEQMpIgrIgyOn4M3JJ2CgRsKGWBZIT8jNg8cCAM7vM8Si2oReIFkLxTODDjTWIz8x2fR1xHulC9wG25Ly9qF5pR0p2vUExuJe3B4yw0df37MZ5y9fhP8c3OndJi5WHEh9ppKkQw8n158iIjKMySaIKCAOmx15Ko3friCQkX0nFPTB3O6FAQ2PCzer6l7Z2oweSamK+40MoWwzkbwhEGaGZnrmSLW6XbKpRhYW7wYAvLlvq3eb+LjipgZsq6vCqT0HeIfoeWysLkd1WwuOye+lqy6hfr2IiGIBAykiogAFGkZEcxAF+KfhDhbtkX2dR7hC3MMiF0itqypTPWd/Qx32ptTgxjU/on9qhq7r7G+s9T7+6851AORf/z9sXAoAmJJbgAQdadGjOf0+EVG4MJAiItLhhfGzFQOecCQ5iATDM3JQ1dqCqwaM8Nt3XuEQ/OvgDkuvZ+R1doY4MJAL257esVb1nH8d3OF9jfY21Koe6/FR8R6/bSUqwxilAZ5LcGNV5VGMysz1mRunNbRvQ3U50uPj0T+16w7hJSKS4hwpIiId+qVmoDAlXXZfVwujHhgxBaMz83D/iCl4ddJxsq/LxSYXzz2j90DFfUY6vsz08qUGsBbal6X7caChDocaO5NBVJrIomeG2rDCL0v3ezP9lbU04dPD+/DQlhV4dOsqn+PUhvY1u5y4Z+NS3LjmR2sqTEQUI9gjRUQUIPkZLrFrUk53TMrpHpSyT+heiBd3bZDdZyQ0mpXfC6/s2WTo2unxCaoLAmu5bs33ps8NhNrcsVf3bAYAXD9oNP5P9LqurW4fdmiHDW4IcKkEUvXONotqSkQUW9gjRUQUIGY8M8+zlhUA9E/NQLzMfJ5kR/s2I0P7Ehza84Kkbh0yTvOY38oMYwy3Bh2BjlJWP8+ivq0q97DeQMoluPFLRSkanUylTkRdAwMpIqIAZSckIc5m966pRe0GpmVidKb6+mKzuvVGasdcHUFjXpO44+WK/sNVjzUzRapnsnLGQI/TeykPPQyXA411OK5bofpBCi+IZwik2vBAp86Mfp8e3ouHtqzA49tWaR9MRBQDOLSPiChA8XY7/jvjpIDWU4pFz449Vtdxjo7XzdNcf2PyCbjcZ0FbW8f/B/f1tcGG2fm98ENZcVCvY7WpuQUoa2lSPUYpTLJp7Af0p3bf0jEXa3XVUV3HExFFO/ZIERFZwGGzG1rnqCuw2Wy6XhPPIZ4eKemivOcWDgbg+w+WXOM+KyHR+zhJYWjfJX2Vk2DYbMDc7ho9OxEoLS5B8xjFBYo7X3zFc/UGUnrSrBMRxRIGUkREFFaenia55vo9wybinI5ASjy2T5plbk633vjdgJHev+02G/rKZVlUCewcOnu8gpVowyw963gpZeXT0yOld5RkONZDa3W7sKOuSnNYaCzbXFOB29YtRqlKGnwlTrcbnx3eq9mjSUTyGEgREVFYJXb0Hsk1xLPiO3uZxP9gudy+DeebB4/16ZECgDi7/z9xav/o2Wz6Bg/eP3wy3ps6X8eRofH2vi345shBw+cpZUeU+rn8sK7jjAy9rHe2oc2CJC2Pb12N369bjJ+ibDimle7a8DO211XhbwazVALAotL9eGn3Rty+bnEQakYU+xhIERFRWP1x2CQUpWfjjqET/Pb5Dg3sfJwnGf4n1xkil4VPrd9CbyBgs9mQEa89nC5UmlwuU+d9XrJPV4/U/2QWAZajt0OqyeXE+cu+wDWrvtN3gopfKksBcF4WoH8IpphnMeeKEK15RhRrGEgREVFYDUjLxFNjj0G/1Ay/feK2uV30xwkFhZLMff6t+H6pGX7D8L4s3a9YD3sXnOJmZQIPvclWKlraG+1HWhotu3YoBvaVNDXgy9L9ETuM0Mw7KddrS0T68RNEREQRSylZhcNmx5m9B2meL/2VvrRZufGuZ65RsE3LLQjLdQVBQG1bK05Z/DH+3rGILwCsNdDTI371nty6Gg1tsbWQ729XfYvnd67Hisoj4a6KLDP3r3g4LdfDIzKOgRQREUUscQIItYai0h4jw52CnV5dD+mQxWDzJu0D8Pe97QHUh8W7vfvv27Rc9rxWtwu76qp9emfE78/3Rw/hT6uX4ewln/nNXxKC0H9kZlibWUdVgvFw0rtwspJgvC9EsY6BFBERRS6b7EO1w3y4DTQO7bbwB1OfHd4X0uu1ujvnV1W1tngfN7mcaHP7z73aVFMBAHhky0rcsu4nLK0o8e6TvnY/HD6IRpcTT2xb7d3WGGBjX0koQ4AmlzOEV9PPs46XEYLCYyLSh4EUERFFrHhb5z9TZoYu7a2v1X2sHbaw/ypvJPCzgidRhUvSo3PO0s/xm+Vf+h1/94afAQCrOob8ra0q8+7TensWlxXj3GVf4COdySuMCOW8pbf3bwvZtYJN/LqFslePKFYwkCIioohzR9F4nNyjH/qI1oJy2Oy4euAo3DNsot/xSnOpap2tuq9pdEHlSFtPKhAlzf5rEOnteREEAV+U7MOBxjrV4z481D5kcJEo4UdFS7OuIEirkd9VQoA3927BDau/1zWfaV9DLQ411oegVkRdFwMpIiKKOLO69ca1g0b7BTen9uyP6Xk9TZc7VSOZg5GhffcOn2y6HpHIzPwsAe3D/f5v1wasry43fP6lK77Cewe2qx7zn4M7cdqST3C4STkokAu0Pj28F98fPWS4TnKaFYLKRqcTxSr1stp/Du3CvsY6bK+r0jz2hjU/4JrV6inmObSPKDAMpIiIqMvol+KbYr0wOQ0PjZyK+00ERXILCAcq2eFAsiPO8nL1GCCTfl7OO/u2eh+7BQE/6FwMV2nY4gcHd6qe92bH9b4qPaB4jNyQzJd3b8RT29foqpsW8fwxAN4EGlev+hZXr/oOZS1NllxHr08O77WkHJfQ2bPV1Ub2uQUBu+qrma2QAsJAioiIYpZ0baO0+Hifvx8dPQPjsrthssm043O79TZdNznXDByF96aeaGmZemTHJ+JvuzfqOvZfosDn6yMHsLehRt9FFBrqLkHAkrLDmqd7ArFDjfWoafMNbNwCUN7S5E2QYfWcKWnM/MS21fjw0C5UddTjRxM9X+IgxqgGmaQdvZJTZY9Vey3Ec+PCPT8w1D4v2Ydb1v6El3Xe97Hsld2b8KlFwXlXw0CKiIii1k2Dx+CyfsMU9yc6HD5/S4fuZSUkBnT9BLtD+yADEu1xiLe4TD2yEhJhtlm/o65a13FqDfXHtq3SUwDq2lpxzervcOkvX/vsKmluwGUrvsata38CANPPxYi/793iffzNkYOGzn1y22qcvuRT2YBID+l9DSgPzVQLj8S9MbEURh1tbkSLyz/rpJgngFqkskh3NGl1u/DCzvXYajB7Y72zDR8f3sOA0iQGUkREFLXmFfTF2YWDFff7/xpvbXMxSaZBG4hwrQm8t0F/dkOzpJkB5by4awPuXv+z7D4BQIOrPfBwSnpzPIku9nX81+oMdNKhfVJGM0r+2DE0cKfOIFSqe2KKfx0U5vepBbBtotcxWrL2fXhoF54UpdSXKmtpwhUrv8H1a74PYa3Cb1HJfiwq3Y871i8xdJ7LxNDG0uYG/GPftohdCiCUGEgREVHMkjYN3QG0Fed17+O37dSeA8wXKCPc61gFy2+WLcJ+jax+QPtwq021FdgvE9hVtDbjPwd36bqelcPUNlSXazZOzaTmB0QLIguCoeGIA9MyFcsCgMrWZu9jtXu+TdSI/qFjeGJ1awv+sW8bqjWCx3D5+94t+LGsWHFe2sGO+6w0QhdODpY6AxlKxcRzFx/eskLXOX/cuAzvH9yBd2NoKQCzGEgREVHMkjaoxX/LBUZKXpt4HG4YPMZve3pcgvnKyYjNMMpYGnoA+KWi1G/bT2XFPsOwVoiOyY73HaJpRe+KZ/HgxTqSaWSYvA8OdqQnX7D5F1yx8hvdwZRcQhJxEC4OpJR6YQVB8PaMAcCRjsDjhV3r8f7BHXh2x1pddQkXpddKnASm3tmGbSYWKo5Ga0RruhkhDrSXy3zu5HjulcNN/ssmdDUMpIiIKGaptUvlAiMlBcmpsr0Ocpn7/jRyqu5ypcz2bMSC9/Z3pkHXM9joT6Jfz1PifAOL1gAzsX1z5ADOXfYF3tq3VVdP2oaacrgFASsqSrHRQBr4l3dvxJ76GqyqOoqyliafoXZq5G5r8Z0jHuan1CO1o77a529Pz4RnmOe+EAz3lNPobMOja37B7nr1JCZKnxWHaBHvW9f+iNvXL+kSwdTwjBxT5wWyCLjWcN0fjxbj73s2A2ifw7Wm6mjMZUlkIEVERDHLv0eqkxVBS5zdv4y8BOPrMXl03TAKPutJGe1RqmvzTdrwWUlnBrJ/7ldfp0rOszvWAQD+fXAntuhshC8tL8GftqzAHzYuNXStNVVHvY+XV5TitMUf4zPNDGr+r4/NZsOR5kZcu+o7rKg8IjpS/rWsbfPtJfS85J7ehnKfXq3QqGtrxX0bl+F/+3bhptU/mCpD/Bkq6Xgue8IUFIZSZrx6r+iPR4tlg/xAMlxqZZ58cvtqfFi8GyVNDXhx1wbcv2k5/nVwh+nrRSIGUkREFLOkmcysTostN8E/LzHJdHnSBYi7qu+OGsuCJx06WNHSGQS8e2A7SpuDPwTpW4N19hDP5Xli22q4AbykkUFN7i5udjlx5cpvcLCpHv8QzV1RuuPzpZ+NCMjb9/t1P2Frbftiw1q1UQq25XpJ5D6nnoQdOQnmP6+BqHe24c29Wyy7N9Ver1111Xhy+2rZIF/6Omp9R+4S9WTqnXPa4nZhcccSB6sqj2ocHV0YSBERUcx6cITvMLtRWXkAgJEZuZaULw58hqZn44/DJgXU08Uwql2giQKKm+p9/l4ZgsbbSlEvkNWkwYFcW3djTYXsuXrmEgGRMd+lxMD7rtSGf33vZr9t0o7j8pYmHGlpv1a4PnNv79uK/xzahatWfmtJeWq9uGoLOLskr6RnqJ9LcOPZHWvxVel+fHZ4L2raWvDPA9txS8cSA1rE6eftsHnrF2u/FTGQIiKimNU7JQ3zCjqTShSlZ+OViXPx0Khpll9rck53TMvr4TNHQ2xOt94Yl5WPB0dMUSyDPVLWkCYB+aWiJEw10ab1o/7ismKcvuQTrK7yDQZr21pxp45U1x8V78HqyqPebHZK1lb7JytYU+UfgNa2tWJJ2WFd6eyB9rkxakPABEEwtTixUtY+ublVX5T4rhX1ronhnkbVtbV6F4iWY2YRZzVq60epzYOSvo2egOeXiiP45shBPLdzPV7avREXLv/S73Xz9GL+88B23LF+sc/7KO7htNk6/461zKQMpIiIqEvpmZyGeLv1//x5mg3SX/r/Om4WTu3ZHzcMGoOHRk1TXcTXkynuuXGz8Psh43z2pcfFIyEI9Y41JU0Nfu+B0UFr47PzrauQiNPt9mtAN2osyvv8zvUAgAWblnu3CRDwUfFuXfO33j2wHQ9sXo5rV/uuqyRtQA+SSal+/6blqG5twSNbVmJHXfuQu/s2LcNj21bha50L2Z7582c4fcmneFO0gLHYqUs+welLPkWzwTWJ/nVA/1ybnfXVaHR2li9dh0xLm9utO3AE2odZXrB8Ea5c+Y3iMQ0m12ByCwIWbP4F/zm402f7Kpmg10NtuJ60J8slCHALAl7f49+zJ7WxpgLLykvw7v7t2Fpbhf0NncG69Iqe108uQU804zcyERGRjAv7FgEAbisar+t4T8NBOrRvYFomrh44Cok6Fu+t62hUD0jLxNzuhT77bLCpZiFUMy4rOIFBJPrtqm/9Gsqe163V7cINq7/Hz+WHVcsI1tq0C4t348nta3y2LVaoy3M71mFPfY3393vxMxKgb4FjNdI5UZnxiXhs6yq/497Zvw1LK0rw+3WLAXT2+KzXkZ1Q3ID/zyH1NcCUepiUGG2PN7s7Axdx8FDR2oy6NuX0/IIg4IyfP8XpSz7xL9PlRINMIOxZg6tS51pc5S1NaHO78eruTZr35u76GqysPII3923VVTag/ENCTVuLX2/Vq3s247Qln3iHPmr589aV3sfi7z7x7emw2RS/H6MdAykiIiIZ5xcOwT+mnIg53XrrOl7vZH21ZkQw/lEem5WHS/oNC0LJkWuZZD0cz3vz9r6t2NdYh0dlAgZxY9qKxAtyvQBqw6+kvjpyADet/VF23+aaCvykY30rNdLara46iiUyjfgmUc9JlSiTn1IACACbOnoqjPT7JMr01D6yZSVe3LVB9ni5BBJ6SZ/7Jb98pXjsto6eOKnK1macvfRznLfsi/YyRe+30SG6l634Gmf8/Ck+OrxH9t4U+8BE1ju5+VM/Hi3Ghcu/9OvZ+1JnT6MccW+T+DMkvrraK7O66ii+O2IuaUu4MJAiIqKYdkLHwrtn9x5k6DybzYashETtAzuI2ypn9hpo6FoecRpD9/SuMyT28KjpyDbwPCLFdoUGrBmet0apzH8e2I4Lli/CvzuGS+nNRqakxeXCqUs+wSmLP0aTywmXIEAQBFPPSW4I2Gcl+3DUYA+O2OKyYr85V0rEd+T7OofT3b3hZ/x560q0qswRArSDj6UVJfi8ZJ/suUaDFfHnUxpYqH2uxM/BU98Wl8sn+HIJAn636ls8uW01mlxO3NbReyensrXZL/W8EXK9XH/Ztlr1HLnb+dOSPQDUA2KjbD7rl4kCKVEF5HrwPB7YtBxP71gbVWtN+S+NTUREFEOGZeTgP9NPQpIjuP/kiX+BNbvIZbxNefhfIL0k0TjB+7Z1i/HW5HmWlDUqMxe76qu9qbWlPJPo39q3FTvrqgNapBSAdz4R0D6X57OSvRiUloWaABrQVnpcpuGdk5CESpm1o8RDsRoNzuv5uHiPz9+Vrc0+6cZ3iRJDWL00gZT48yPX86ZHg7MNafEJPsMEgfahfCXNjShpbsT47G6oblMe0ucJwE7u0Q+fKQSJasTPo6q1Gc/uWKcZFMsF8IH+WCBHHNu6fXqkjF3MJQhRE6CwR4qIiGKe3iDKqrV09JZyab9huGnwWBNndtLT0xat0xLKW5qQbEEAbINNd9rmpRUlhhcElnpXtLjwwcZ6NLlciunJI4f8c/5OlByjWmHOT5vbjXqZnob/SuZF3bHON8uguHfC6Ctu9Jb2vKfipBN6zvle9Py9CRMkV790RWfvlN7vkMx45V7ietU5W52PH926SlfPYo0ksCturLe0x1eOuJ7iJBR7GmrxzPa12KeySHKgP2SEEgMpIiIiC4gbDmrtcHGD8+Qe/X3Ss6uZrTBXS8/k7SiNo+CGYEnd3zugnu7aszirR6AB9SZR0PRLZanKkaG3QSFJhJ7YUS5FOgBcseJrnL/sC5+1gwD/HixpAoN7Ny0TXV+7AuIAd2hGjs++Nrcb3x45oHjux4f34FBjPW5WmHfm8fnhvd7X6Ofyw/hGNGfHBQGv7dmE5Srv6auSbHfi3sn/68jACKj/uKHW8ye+N/VkbQQAp6T76RuTi0drET8lcTD02DbfeV/fHj2Iuzf87LNNHOwF+kNGKDGQIiIi6lCQlAoAptKMCzqHsvgGPvoaDI+NnoEr+4+QL09HqBHIxHzPHLNYUy6aYyR9v4Mx7ClS3LNxqez2KpXhaEoanU68tW+r91xpz4cRenohmkWBWo8k3+D3f8W78cyOdYrn/q94D65Z/R1KmpUXHi5vacKLuzd6XyNpJsFttVX4X/EePKtyHekcoN+vWwy3IKCytRlfiBI5HGhQXtfLyLpPSg411mNvQ41secEeRgloB0P1zja4BQGPbFmJT4r3+CwIbTQ9fTgxkCIiIurQIzkVfxkzE3+fdILhc8XNBrVGhDjI0jvkcERGjmIiCl3rsgTQrXNqz/7mT45gl634Gh8V78GDm5bDKXm/oukX8XA6d9nn3gQdAPDS7o2mXzs9p22u7ezpe3zbaly58husry5DTVsL3jKQDlxJs0s9OUaL29zaT9vrqvxeF7UkD3KvhSAI+PFose408des/g43rmnvfZNbIywYxNXWk33vQGMdllaU4G97Nvn2ZkXR5y9a5nIRERGFhHTIkF7if/rV5sOI2wh611RRy1CmZ3HhQHqkwjm/6vmd6w0nODDi1T2bZLdbNVeuq1lZeQQlTco9Pmr09EhJG9hHmhtx78ZlmJjT3dQ1tUhrZLanclttFfLzk3UfL/fjyLKKUjy5XT07n5wzf/4U3fyGrgaH+O15e/82zePFGRHFmQwDXSMtlNgjRUREZAHxcJkDjcrDdtSaCNJ9PZJSNP+h/lWPfhiekYO7h05UPCaQRTDD2aZRex2DKXqacZGnyWSvjdZ9dvu6xXhoywr/89AewFlBHEB/VXoAb+zd4rO/zWRabq008FJyP44caqo3eW236XONEiDA6XajUSXFuZgnWyYAn3ln0RRIsUeKiIjIAnr/6fcMs+mfmqF57MsTj9Mc5pIaF48nxsxs/0PhR+AUyRDCO4dOwBMaa8+Ydd/wybIN3mhS36avIRhtmoLYu+dhtg2sPi9IUFwYN1ie27nOb9s/dPSyyDEaSMkx0vPhUpljJAiCasa8QFy7+ntDx4szDoq/59TqH2nYI0VERGQBvRO4uyWl4K3J8/D02GP99kn7jRw2m66he1qkQwOPze8VcJlKpuQWBK3sUJFmlwOAnsmpYaiJMmmyBbEku/x6ZB9K0pEHg575LZWtzWiWBHVy6dO9ZYaoj/BIs//7Lqa2PpSafx3cqTn/SqzZ5cKd65fg69LOLIRGXgG1VP8C1F/rcBH3mrNHioiIqIsx8k9/bmKS7Ha1uVBWOa3nAEPHR0+TJrgGp2X5ZBYLt57JaShRaPgrBR7/PLAjmFUCAHynklo7Mz4BR5obceXKb/wCQWk6bLFQJR9YWl4StLKvWf2d7mMXlx/GltpKbKmtxAkdyyMYybS3V6XHSYD8Ar3hJl6bK5oCKfZIERERWUA8v+L47oWGzu2Tkg4AGBiC7Fq/GzjS0PFGEi/kJsgHiGStBLtd9X0JZ0N0W61yI72mrRVXrvwGABSDQDmheD6Pb12Fr1TWoQoll2guVmlTA74q3Y9VOhbe1SMUqc/N+Kms2Ps4mgIp9kgRERFZQPxPf1Z8oqFznxl7LKramr3rWGmZ0603vj96yG/7vcMn4eEtK2XPeXOy8ZTuAAx1SV03aLS5a0SBSFrU2KZRm3A2RHd3rF1kpVD0SKmlIw+1rXWdC+3euPYHNBkYFqhlZ321ZWVZqUE01DOa5kgxkCIiIrKAuK03rCOFelF6tq5zEx0OFDj0z8HJTpAP1Kbm9lA8Jy9Rf/plqXibHW2CG8kOh2qjTprUIpaEYtilXgKEsGZTDLVoWlfICmuqyryPrQyiAOCO9UssLS8Y2CNFRETUxYiHWk3O6Y4nRs9Av9TgDNXT6pGw+GJ4eeJcbKopR9/UDNWJ7J71b47J74nFZeH/hT/ZEWdZpjqnydTXweAWgLXVZdoHxohoalhT4KLp/eYcKSIiogDM694+GXxGXk/vNpvNhuGZuUiJC87vlWrzY/46bpahsq7oP1x1vw02dE9KwXEdz1NNXEeGwTuHTTBUh2Cxcs7W/jCtaSXHGUVDn6wQqqx9FBkidR6XHAZSREREAbhx8Bi8O+VEjMzMDdk17So9UgPTMjEhu5vusrSGH4qvpHZdAEjoSLst12OWozAcMdoN7xjGScETTT0UFLghOodERwIGUkRERAGw2WzIDHGQ4NCYr9O3IwtgPx2L/hoZJGhXuG7v5DRMzS3wZh+UO+r0XgMNXEnd7UXjdR2nVF8zDir0SKXGxVt2DZL3yeG94a4ChVCiQ34dtEjEOVJERERRRitA+E3fImQlJOpaeNdIEoXCjkBJ6rReA3BSj36myjQjHGkflPpE4iIoCYUZ47PzfZIbRKL/aiwkrJUEhShY2CNFREQUZfITU1T3JznicGbvQboy9SkN18uMT+i4VmcZWj1hZvRRCM6sEIpGjmc4Y7S6sM/QcFchYAyiKFwYSBEREUWJlyfMxY2Dx2BsVl7AZV3RfzhGZ+ZhULp8ZsHXJx2PNyefgPSOgMpKl/Ub5n18YoF2EgspvettWdkzNkhhseT+OoZPRjKHPbp71IjCiUP7iIiIokTvlDT0TklDWUtTwGWd2XsQzuw9SHF/kiMOSTLrQt0zbCKaXS48vWOtd5ue1ODiTFzlLc3exw6b/t9042w2XNF/BIoy9E1G10qOYYTc0L6XJszBysojll0jHKx8jYi6GvZIERERkW7T83pibvdC9EjqHF64qHS/5nlzuhV6H9c5W72PjQwXHJOVj9N6DQAATM0t8Nt/nOgaACydTJVg928y9UxOMxQIRqIon+JFFFbR/eknIiKisHhl4nHex2o9ZK9NOg4fzTwFuYmdazr1TO4cmmckEFldddT7+ObBY/32i69hNfE6YR4Om83SzIDhENLFnUlVKJdQiFSpMr3gkYyBFBERUZTJTUjC4LQsnNqzf9jqoHf+kQ02v2BpREZng1Ep653DZsOdQ5UX9pW7fjCDAqW1ucSpJoKRjCNYTu7RDy+On+P3ivn16sWQzCDM97NStM+3s8LIzMDnf4YSAykiIqIoY7fZ8My4Y3H1wFHhrgoA4w3UONEwOfHj1ycdjyHpWQDaR+WprcOaFhePM3sPxMnitOuSYxqdTkP1UrJwxskoSJLPlOgQ1V8ayEVyD8M5hYPRJzXdr87DYniB4benzDN9brDT3N80eAzXywJQmJIW7ioYwkCKiIiIAnJxX2MptMWNUvHj7kkpooa9DdIUD/O6+2b4u6L/CMwV9aBI27olzQ2G6qUk3u6A0oSrabk9Oq8v2ZcUwanRPUMSpa9ZFHWqGRZIj2VakBdenlfQN6jla1/fePZMLc+Nm2X4nAsNfpeEGwMpIiIiCkiGSo+UIJPvLk401E867M9zvFxW7jiZhA9iwRzap1RyapzynI79jXXBqYwFPNn6pFn7YnnOlPSZGWnoG31dLus3DH2DuEaa1YLxvic6jP+QEK/xGY800VVbIiIiCjqjTapAMtdJr+UZzmeDTTbluN/5ogK06q0258rIdcQcNjv+Pul4vDv1REuvF2zeJBk26fbQ1yVUpPPqBiisDabnXC2n9xqAF8bP9kmsEgqfHnNaSK+nJi9Be0HwaMdAioiIiAKiN3PdtQNH4eK+Q5EqGialdK7eZqu4R0WrsXtsfi+dpRqrUbekFGTGJ3qDrSHpWfj0mNN0N6KvGzQ6gHq1OyavJ+4bPln38Xbvf6U9UtpuKxqvv2JhNjOvJ14cPwdPjT0moHKMJhKJtztgs9lwdu/Bus/pE8YeLLPx86Sc7or7zPRIRRsGUkRERBSQ7PhExX0ZcZ37Tu7ZH+f1GYIeogBDOqTI3dEPJdduFdSyT8DSZaMCKttTTb2L3Z4kSphh1l3DJmJwR6IOPbxzpCTb5YZ4Ses3LCMb70yZh1/3GoAPZ5xssKahlRGfgD6p6ShKb1/EWSn7opp5BX2QrCMt9/Hd5TIe6ulXbXdBnyEGamUt/bX0pTfA7J4on6wl2sV0INXS0oKzzz4bp512Gk455RT8+9//DneViIiIYsYL42fjrqET0Esm09Y3p5yDv08+Hikqc4gAmYaYt0Wnb2ifuN1vdPiVll8V9MUfh00C0B543DR4LM7oNVClKpLenRBlbhjekWnPyNU6k034nlXa3IhLJBP+XZIA1g4bshOScNWAkUiI4IQagP9r0ivZeFa47okpuHvoRIzJUk7NPS4rH9fL9CwaCVBCnT7/fzNOUdxXaOJ1UnNJv+hKIqFXTAdSCQkJeOutt/Dxxx/jgw8+wMsvv4za2tpwV4uIiCgm9EvNwDEKw+XSExJQoDK07ckxM3Hf8Ml+k8tdnh4pmXNOllk3Sxy86GmGnluof6jV9YPHYFpeZ1a+eQV9MFllKJNUII0s+d4NdUYSBniOrXO2+mx3CwLO7TMEc7v19m6T9gSGKkC0ghULJgsA+qSm48+jpiseMzmnu08SFe+5Gr2oYoEmfDCaJU+avGVQx5yxBSOm4sUJc/DwyGmaZeh/etFzzxgR04GUzWZDamr7l3hraysEQYDb7Q5zrYiIiGhYRg6m5Bb4Na9O6dEeLJ3fZwjEv+d/PPNU9JNZsNSm8FjJJf2G4cbBYwzX10NPu7Ez86D5xqOZRrWRy3nqJm0Ie3pFips6U8e7Jc862E3iwjTr5gpZkY3u2Pyemse4IcgGmOJW5xOjZ6iW0ehqM1o1r2SHw1DyDDmPjJqBJ8fMxPjsfNhsNl0Z9OSyciodGYvCGkitXLkS11xzDWbOnImioiJ8//33fse8++67mDt3LkaNGoVzzz0XGzZsMHSN5uZmnHbaaZg9ezauvPJKZGVlWVR7IiKi2BTO347n9+iLNyefgDN6DURhx+T7nIRExaDETPNMaXFdqwXSiDdypqcnxMj1PNn5EiSNZc/rvL2uyrvNb2if5L2wujH51pxfWVyiee9NnY+eomFuJyvMZ5O+Rl6i7cM1FmjeVV9juH5WSomLw7CMHG9AqOeHgFhOl6+H9sy5IGpsbERRURHOPPNM3HjjjX77P//8czz66KNYsGABxowZg7feegtXXXUVFi1ahJyc9vHAp59+umzZH374IRwOB5KSkvDxxx+jsrISN954I0488UTk5SmPcSUiIurqwv3bcV5ie9rkQWlZeGz0DBTKzMGSo3fImd4kEIFSSyV+TF5PLC4/LNvLBgBp8Z2ZDXMTklDR2ix73PCMHFw/uH1ujjSgGZKehR111fJ163gNpJnipL1PQPtwP7lzPRw2O9yCNSN+0uPikRof3MVvjYiT3FPXDByFz0r2+R0nfY08jHyWlMoIlyQdWfdyEpQTzXQFYQ2kZs2ahVmzlMdzvvHGGzjvvPNw1llnAQAWLFiAH374AQsXLsSVV14JAPjoo490XSsnJwdDhw7FypUr8atfmfulwx4Biyt46hAJdaHowfuGzOK90zXZENh7bui+ETVU5Y4fna3+42e8Q7y4r/r1POU7dC76KVcf8TbpfpvkOIdKX82IrFxcPWgUshR629JFixyPzMzFj2XFsuX8ZVxnWm+Hw/d6k3MKFAOpzmMlvUs2m9/zkgZXDofvMQPTMrFN1IMViEfGqg9/M8pmk7xnoqem5/6Mc9glx9lw7aBRqHe2YVHJfpS1NAEABOl1Oh4LOq43p1tv2O02BBKKCoLxz6z4+Fa3y+/8AWmZuKDPEPzzwA7FMtJUgl5xeTYddRufnW/6eydc/1aFNZBS09rais2bN+Paa6/1brPb7Zg+fTrWrVunq4zKykrExcUhIyMD9fX1WLFiBc455xxT9YmLsyM319oMJoHIzg7tAm8UG3jfkFm8d7oWm81myb95eu6bDKHR+9jMNXNyUoFV7Y9TU9V/HfeUn40mXWXL1SfD3aC439Mj5ohzIDc3DS6VXprU1EQM7tkZJH5wwqlYuHcn/rlrGwAgJbkzkEpIVG6uieuQ2OY7xyYjLUnXeT71Skn02xef4Hv93Jw0ZIp6Ip6cORv3rViCdRVlitfrlZqG4oZ6xf3eOqdbu4hrcnKCz/NJKu58XfXcb7k5aUiSZJ68LLe9B/CrLw50lpscj9zcNNw8ajxS4+K9ZZ+WOhhv7N2Cy4pGIDc3DW/P/RUu+e4L73mvzz4RQzKzkeBwID7BfAZEM59Z8fHfHz2Ex2b6d27ckjfJJ5C6aPAw/Hv3DrS4XQDaX1895aep3IseBelpAX/vhPrfqogNpKqqquByufyG4eXm5mL//v26yqioqMCdd94Jl8sFQRBwwQUXYOhQc+kXnU43amv1ffEGk91uQ3Z2KqqqGuB2R1YXMEUu3jdkFu+drkkQgIoK7UavEiP3TU1NZyAVyDUBoLGxVXW/p/w6nf+ey9VH3Bbw39/+XJ1OFyoq6lUzttXXN/ucnwY7Lu5V5A2kxM+ltcXpfZxkd6C5oxErrUOTq/O4O4ZOQPd45blgSq91U2Or3z7x9QGguqoRzrjOoM0B4De9i1QDKbdL3/dHbV0TkK3rUF2am3yfT3NT5+uq536rqKxHksIaUi5RArP6hhZUVNTjxJxCv7I/nHEybDYbKirqkYcE3DN8Eh7ZshIA0ENIQl11+z01I6sAH+/fbeDZdWpyOQ1/fqTH6zl/dnZPHDuhJ3638tv26zYpJ8gQl1dfLz80FWhPlNHkcmFebqHp7wCr/63KyEhGfLx2YBuxgZQSQZDPiiJn8ODBWLhwoWXXjqRGhNstRFR9KDrwviGzeO90LQPTMi15v/XcN+L9AV9T43Rv+aLjrh4wEn/bs0mzbnLb/PfbvOVrPRdB4xjpfJl+qRnY11DrN3xRXIYgetwnJQ39UuTnX8nX3Vt1v31+mdnc/sdoz+/R997aLP6akb7O4mrqud/iYVc87pbB43DvpmUAAJfGvS4OqpXuobwE7d64u4dOxGPbVsnuM/r58XsPdZzf3smq7zput4Azew/ER8V7MDYzX/G4Z8bOQnpcPDITEgP+Dgj1v1URm/48OzsbDocD5eXlPtsrKyuZLIKIiCgI5hf0xYV9i3Dv8Mkhu6aVTR7pz6zzC/p6H380s3PxUfGcpFN69sd9Ms/3pQlzZK/hyfiXqLIQrVxK6AUjp+JRlXWIPE7tWCtrRp5vym1PjdVeL3EGtQanM2jrPclNQzGyXpKSGXk9FJNvWOXXvQciPzEZvx8yDgDQXSODo9prODa7MzhwGbiTG11O2e3i++b9qfNlj5mpIxW7Hi+Mn+3z9ySd66PZbEBBUipGZuTi3MLBmmlbrug/Av+bcQoy4hPw90nHK5aZGaVJKyI2kEpISMCIESOwdOlS7za3241ly5Zh7Nix4asYERFRjEqJi8MFfYqQm6g9nyGSvDNlHt6bOt+vUddf1Ch3iBZLFWeds9lsGJ/t/2u5UgO7W1IKXhg/G29OPsFvn1qjckJ2N4zK6vwhWKnZffXAUVg442T0TknDxOxuAIAxWfkY2ZE6e5xMXb3XF1XgQGOdz773p/0KT46ZqVLDdnoahnIpr+Wez5D0LB2lteuRlII/DJsU0Npb/VK015/KT0zGG5NPwNyOBY+li9j+utcAQ9c8p2OB5zn5vTWO7FSlkIEx2d45UCwtPsEvNb1RfVLSMaebfL0y433nNum9lh022G02PDZmBi7pN0zXOZ5gNCNefj5VqLJoBkNYh/Y1NDTgwIHOiXqHDh3C1q1bkZeXh/z8fFx++eW48847MWLECIwePRpvvfUWmpubccYZZ4Sx1kRERLHFkyZ7eEZOyK+tf0FPZdkJ7YGftPdAqTdB2liXCwzUmnZGek1uGDQayQpzbJTEd/R23TVsInbUVWFUZh7a3L0wJD0bU3K64+fyEtnzxM9D2jhNi4sPKEjxuY7OYp4eeyzOX/YF6p1tPoGsHCt6JmXfb426psZ1Zp17YMQUTMrpjrndCnHT2h91XfPSfsPwmz5Fuhav9VC6HzITEvHHYZPQrSOIH5OVj5WVR3SXK/XXccfCJQj4/ughAL7DWKX3vNkORSN3lPj+e3/qfJy/fJHhMiJNWAOpTZs24ZJLLvH+/fDDDwMAbrjhBtx444046aSTUFlZieeeew5lZWUYNmwYXnvtNe8aUkRERBS4h0dOx56GGowIQyClNJHfDGmDTKmBJg0y5AMua5p38xUWcNUj2RGHMVntPVCJDodi74KHT2rvjse/HTASnjDF7DNKj/PtSTDyaj00chpe37MZ5/YZjPs3LVe8htlA6vjuhTixoC+SHXF4evsak6W0y4pvH16mZ/0kMSNBFKD+48G0vB7ex0rDR8/sPRAfHtqNJ0bPwJ0bfla5kg3xopvi1F4DRIGUOf7BuP6SxMFbmqh3Su9yBJEorIHUlClTsH37dtVjLrroIlx00UUhqhEREVHXkxIX5x06FmpD0rJwXuEQjMwMPIjTOydIephcMy6QMCp8aVlEQxY7Hp8uGqom1/PmV4LMa3hJv2Focbu8PRvxKvPDpAanZ+GxMTPQ3DEvqDA5DQeb/DOznd7T2JA6oL03yDO0DtD//mspSErF2Kw8DM8IzmfCpbP7R+nZXNF/BM4vLEJKnHoz3ob2Ia2vTJzr3wvWUfi9wyfh5V0bcXE/fVmt9dxDSqRz6+4cOgF7G2qRn2htyvtQirqsfURERBQ7bDab7kacZlkB1MHK6+trJlsfbokDQrlhfHqepeeYy/sPxxt7twBon9tyW9F4rKsqQ1Vbi6m6JTni8MG0k5DocOD0JZ94tw/PyMEfhk30Ds/U8s+p83FBx5Awqck53bG7vsZU/cTsNhse1pEYxCwr3nmtIAro/MGgZ7L/2kyegGhqbg9Mze3ht1+JNBgy8smRBmHH5vfCsfm9DJQQeRhIERERUUyQNuriFOblyPUIvDrxOCTYHbh0xVcBVEB/s9KKxvTNg8dKLt95/Vy5wMRAqzdB5rV7c8oJimnO9TwfucZ/siNOdxAFAOmiIWHSa55XOATDMnLw74M7sbGmAkBkzr/RThXfTk+Af0xeTywuP6xUgoFaKXts9AzcrTqEUB+7zYZrBo7yDqGMBdE7KJGIiIhIRNrwnJZbAKC9sSkmlyWsR3KqddkKdTSU4zWSL+hxjEoq7KIM/1VtjQzLyk/yH27lsNkVh/Xp6SGRY2WgE2e3Y3x2t6CnUA/UiQV90Ts5DTdJAmGpyhblRWz1UHttjbzug9IyvY8DzbB3Ss/+lqVwjwTskSIiIqKYIG3ipcUn4H8zTvFbxFbth/7fDhiBoy1NiDMxAV5PE/OBEVPwZel+HN+9j+HypdSy8Jke5thx5pScAlwzcBTGZimnWxcbmJqJC/sWYWN1BTbUlGuf0GGCzvWLjLi47zB8cniv5eVaJSM+AS9PnKt5XFp8vOYxciH7rwr64khLo2WBlPjz458Z00BBMYiBFBEREcUEuR4XuYBIrWfm9F4DLa2T1KSc7roXP9Wi1oaVyySnJ9W8p2Fss9lwSsfiwLrqYrPhgj5FALYbCqSmdvQaWsls75gVqfitZDZGuX7wGB2Fm8u218XjJj8c2kdEREQxQW/bMHYag8rPRG7dJrNrBRmRYmE6+65Oz9tlNvgzlCRCpUdKKUV7V8FAioiIiGLOC+NnK+4L9nCkYMcrcR1PQDpkUYtbT4+UqRp1OrGgL2bl98IjOrPe5RlINGFGIOm6w62/jrleIVlIV+ExAJzUQ3+vZSzizwZEREQUE+Jtnb+OqyUcCFbj2lj6c/Pen/YrON1u1TlSskLQI5XkiMMdQyeoHjMuKx9rq8vwwvjZlqWej0XnFA5GVnwifiwrxpbaSotLNzC0T6VHKiUuDsd3L8Q3Rw5aVrNowkCKiIiIYsL0vB6YUlaA2d3U16bJFKXQtlKoej+SHHGAiRFV+oaBBf85PDhyKmraWpCjozdqck53rKg8EvQ6RaIEuwMn9+yP9dXKc85MD+0z+TbLnZbq0E6KEasYSBEREVFMiLfbcd+IyZrHpcTF48Xxc5ARpIAqmoUiFHTYbLqCKADY31iHSTndsVIumLJ40ldqXGQGBKMyc7G0ogTjs/0zKJp9BQLN6ih2QZ8hqGprwem9BuC2dYtNlhydGEgRERFRl9MnNT3cVQi5yMpJp4/exWsD8dSYY7C3oRa9ktOCfi0zTurZHz2SUzE8IzfcVYFdJgJLi0/AnRrDOWMVAykiIiIiC9Q6WwEAVa2BLaQaiCdGz4ipeUeuAAMpPa9EUUa27ALGkcJhs2GiQsp888kmzPdJUSdm7SMiIiKyUJ2zLWzXHp6Zi2EZOabPH5KeZV1lLDAwLRMTsrsBAI7J6xnm2kSeUM+RMpzgJMaxR4qIiIiIcEL3PhgaQBAWDEPSsnBSj37on5qBwREW5EUCs/11Znuy9KbcT+0i64mxR4qIiIjIQpGatEDJgI5U8b/q0TfMNen04sQ5OL3nAJzReyDsNhtGZOYioYsv/hpN/jRqWrirEBJdI1wkIiIiCpGBqZnhroIhT4yZidLmRtW1t0KtX2oGfjtwZLirEfHSOoL2JJ1B5vTcHjjQWIcEu7G+lF8V9EWr2637+F5JqYbKj1YMpIiIiIi6sCRHXEQFUXrpGp0W41N6rug/HE63G+cUDtZ1/D3DJ0EQBMMJSa4fPEbXcf+YciJq2lqQ1kWWFmAgRURERGQhuRTRZD19ywvH9puRnZCEu4ZNNHROMLM6ZiUkIishMWjlRxrOkSIiIiKyUKQ23oUQrMkUSnqej97kCERmMJAiIiIissD8gvZkDcfkR2aa7oz42OgpGJyWBQCqad7vGz4ZwzNy8OteA0NUK+qKOLSPiIiIyALXDhqNU3v2R5+U9HBXRVbvlDT8fsg49I3C+VBij4yejoONdRiSrryI7pTcAkzJLQhhragrYiBFREREZAGHzRbxQcrc7oXhrkLAkh1xqkEUUahwaB8REREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAYxkCIiIiIiIjKIgRQREREREZFBDKSIiIiIiIgMYiBFRERERERkEAMpIiIiIiIigxhIERERERERGcRAioiIiIiIyCAGUkRERERERAbZBEEQwl2JaOB2C3C53OGuBgAgPt6BtjZXuKtBUYb3DZnFe4fM4H1DZvHeITOsvG8cDjvsdpvmcQykiIiIiIiIDOLQPiIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIEUERERERGRQQykiIiIiIiIDGIgRUREREREZBADKSIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGMZAiIiIiIiIyiIFUFHn33Xcxd+5cjBo1Cueeey42bNgQ7ipRhHv++edRVFTk87/58+eHu1oUgVauXIlrrrkGM2fORFFREb7//nuf/S0tLViwYAGmTJmCcePG4cYbb0RFRUWYakuRQuu+ufjii/2+g+6///4w1ZYixd/+9jecddZZGDduHKZNm4YbbrgB+/bt8zmG3zkkR8+9E8rvHQZSUeLzzz/Ho48+iuuvvx4LFy5EUVERrrrqKlRWVoa7ahThhg4diiVLlnj/995774W7ShSBGhsbVf+xeeSRR/D999/j2WefxTvvvIOjR4/ipptuCnEtKdJo3TcAcMEFF/h8B915550hrCFFohUrVuDCCy/EBx98gDfeeAOtra244oor0Nzc7D2G3zkkR8+9A4TueycuKKWS5d544w2cd955OOusswAACxYswA8//ICFCxfiyiuvDHPtKJI5HA7k5+eHuxoU4WbNmoVZs2bJ7qurq8N///tfPPXUU5g2bRqA9kbOSSedhI0bN2LUqFGhrCpFELX7xiM5OZnfQeTj9ddf9/n7sccew7Rp07BlyxaMHz+e3zmkSOve8QjV9w57pKJAa2srNm/ejBkzZni32e12TJ8+HevWrQtfxSgq7NmzBzNnzsRxxx2HO+64A6WlpeGuEkWZTZs2oa2tzec7aODAgejZsye/g0jTwoULMWXKFJxyyil45pln/H45JqqrqwMAZGZmAuB3DuknvXc8QvW9wx6pKFBVVQWXy4W8vDyf7bm5udi/f3+YakXRYMyYMXjiiSfQt29fHD16FP/3f/+HCy+8EJ988glSUlLCXT2KEuXl5UhKSkJaWprP9tzcXJSXl4epVhQNTjvtNPTq1Qu5ubnYtm0bnnrqKezbtw9//etfw101ihCCIODRRx/F5MmTMXDgQAD8ziF95O4dILTfOwykopggCLDZbOGuBkWwY4891vu4qKgIY8aMwZw5c/Dll1/ijDPOCGPNKNrIfdcIghCGmlA0Oeecc7yPi4qK0K1bN1x22WUoLi5Gr169wlgzihR/+tOfsGPHDvzzn//02c7vHNKidO+E8nuHQ/uiQHZ2NhwOh9+vMJWVlX69VERqMjIy0K9fP/ZkkiF5eXloampCfX29z3Z+B5FRY8aMAQAcOHAgzDWhSPDQQw/hu+++w1tvvYXu3bt7t/M7h7Qo3Ttygvm9w0AqCiQkJGDEiBFYunSpd5vb7cayZcswduzY8FWMok5DQwMOHjzIid9kyMiRIxEfH+/zHbR3714cPnyY30FkyNatWwGA30FdnCAI+NOf/oSvvvoKb731FgoLC3328zuHlGjdO3KC+b3DoX1R4vLLL8edd96JESNGYPTo0XjrrbfQ3NzM4Vmk6vHHH8ecOXPQs2dPHD16FM8//zwcDgdOOumkcFeNIkxDQ4PPr3WHDh3C1q1bkZeXh/z8fJx11ll49NFHkZGRgbS0NDz88MOYOHEis2d1cWr3TVNTEz755BPMmjULWVlZ2L59Ox599FFMnToVgwYNCmOtKdwWLFiATz/9FC+++CJSU1NRVlYGAEhPT0dSUhLS09P5nUOytO6dAwcOhPR7xyZwwGnU+Mc//oHXX38dZWVlGDZsGO677z6MHj063NWiCHbrrbdi5cqVqK6uRk5ODiZOnIhbb71V1y841LX88ssvuOSSS/y233DDDbjxxhvR0tKCxx57DJ999hlaW1txzDHH4IEHHuAwmy5O7b45++yzcccdd2Dnzp1obGxEjx49MG/ePFxzzTV+SQSoaykqKpLd/uijj+LMM88EAH7nkCyte6ekpCSk3zsMpIiIiIiIiAziHCkiIiIiIiKDGEgREREREREZxECKiIiIiIjIIAZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAyKC3cFiIgocj3//PN44YUX/LZPmzYNb775ZugrFENaW1vxzDPPYP369di0aRNaWlqwfft2xeMffPDB/2/v3mOqrv84jj/5gYIiJ6TwbBKKscQFnKB1BqJgIslZyuIiM0wc1soYLiqbXDIlu3BZRgciR1IMM3XAoEVNqOYO5ilhNe9LY7QuOAJDDu4cIEH4/eH4/joeBI5i/tL3Y+OP87mcz+dz/MfXPt/P54vJZOLdd98lOTmZ5uZmAJycnFCpVMyfP5/ly5eTmJjI1KlT/6llCCHEHUuClBBCiDG5ublRVlZmUyZuTH9/P9XV1Wg0GoKDgzly5MiY7Q8dOsTzzz+vfA4JCeGll15iaGiICxcu0NzczNtvv011dTUVFRWoVKqbvQQhhLijSZASQggxJkdHR4KCgibUtr+/HxcXl5s7oduESqWiubkZBwcH9uzZM2aQ+umnn2hvbyc8PFwpc3d3t/p3iYqKIj4+nqSkJHJzc8nNzb2Z0xdCiDuenJESQghxXdra2vDz8+Ozzz5j8+bNPPzwwzz33HMAmEwmtm7dSlhYGIGBgTzxxBMcP37cqv/FixfZtGkTQUFBLF68mJ07d5Kfn09kZKTSpri4mJCQEJux/fz82LNnj1VZVVUVK1asICAggKVLl7Jr1y6r+szMTOLj4zEajcTExBAUFERSUhItLS1W7S5fvkxpaSnR0dEEBAQQERFBZmYmAJ988gnBwcFYLBarPkeOHMHPz48zZ87Y9Rs6ODhMqJ3BYCAwMJC77757zHYLFizgySefpK6uDrPZDEBnZydZWVksW7YMjUZDdHQ0hYWFXLp0SemXkJBAVlaWzfdlZGQQFxdnx4qEEOLOIUFKCCHEuAYHB63+hoeHlbqCggJcXV3R6/Vs2LCBS5cusX79eoxGI5s3b6akpISZM2eSkpLC+fPnlX5ZWVkcOnSI7Oxstm/fjtFo5Isvvriu+ZWVlZGTk0NUVBSlpaUkJSWh1+ttwlZ7ezsFBQWkpqayY8cOLly4wAsvvGC1nq1bt1JcXIxOp6O0tJTMzEx6e3sBiImJ4fLlyzQ0NFh9b21tLf7+/ixYsOC65j+exsZGlixZMqG2ixYtYmBggNOnTwPQ3d2Nu7s7WVlZlJWV8fTTT1NTU8Mbb7yh9ElMTKS+vt4qIFosFr788kvi4+MndzFCCHGbkEf7hBBCjMlkMuHv729VVl5ezpw5cwB48MEH2bZtm1JXVVVFS0sLn3/+OT4+PgCEhYWh0+n46KOPyMjIoKWlha+//prCwkIee+wx4MqZn6VLlzJjxgy75mc2mykpKSE1NZWNGzcCV8JEX18fO3fuJCkpCUdHRwB6enrYt2+fMq/h4WHS0tL4+eef8fX1pbW1lerqal555RXWrVunjDEyR5VKxfLly6mpqVECxkjg2LRpk13znqienh6OHj1Kdnb2hNqr1WoAurq6gCu7dxkZGUr9Qw89xLRp08jOzmbLli1MnTqVlStXkpeXR319PQkJCQAcOHCAgYEBVq5cOckrEkKI24MEKSGEEGNyc3OjvLzcqmzevHmYTCYAHnnkEau67777Dn9/f+69914GBweVcq1Wy6lTpwA4efIkgNVjfK6uroSFhXHixAm75nf06FF6e3vR6XRW44WGhvL+++/zxx9/4OXlBYCXl5cSogB8fX0B6OjowNfXl6amJoAxd2FWrVpFSkoKv//+O97e3hw4cIDBwcGbFjgOHz6Mh4cHDzzwwITa/313beRzRUUFlZWVtLW18ddffyl17e3tzJ07lxkzZhAdHU1tba0SpGpra4mMjGTmzJmTtxghhLiNSJASQggxJkdHRwIDA23KR4LU1ed2uru7OXbsmM0uFqDsYv3555+4urraXEwx3hmg0XR3dwOwYsWKUevb29uVIHX1bYNTpkwBUMKFyWRi+vTpY+6KhYSE4O3tTU1NDenp6dTU1LBs2TLc3d3tnvtEGAwGlixZMuHzVJ2dncD/fsuKigry8/N59tln0Wq1qFQqTp48yfbt261C1apVq0hOTua3334D4Pvvv+eDDz6Y5NUIIcTtQ4KUEEKIG3L1f/DvuusuAgICyMnJsWk78n6je+65B4vFYnPL38jjaCOcnZ0ZGBiwKuvp6bEZD6C0tHTUIDZv3rwJr8Xd3Z3e3l7MZvM1w5SDgwMJCQlUVlby+OOP88MPP9hcbDFZhoaG+Oabb3j99dcn3Ofw4cNMmTJFCbL19fXodDpefPFFpU1ra6tNP61Wy9y5c6mtrWV4eJhZs2axePHiG1+EEELcpiRICSGEmFQLFy7EaDQye/bsa+4wjexwHTx4UDl/ZLFY+Pbbb60CjFqtxmKx0NHRoZz9MRqNVt8VHByMi4sLnZ2dNo8Z2is0NBSATz/9lLVr116zXVxcHEVFRWRnZ6NWq1m0aNENjXstx48fx2w2s3Dhwgm1P3PmDHv37iUmJkb5Hfv7+21e0FtXVzdq/4SEBPbt2wdAbGyscrZMCCGELQlSQgghJlVsbCz79+8nOTmZp556Cm9vb0wmEydOnMDT05OUlBTuv/9+IiMjycnJwWw24+npyYcffmjzqF94eDguLi5kZ2ezfv162tra2L9/v1UblUrFxo0befPNNzl37hxarZahoSF++eUXmpqaKCkpmfDc77vvPlavXk1eXh5dXV1otVouXrxIQ0MDhYWFSju1Wk14eDgGg4ENGzbYBI7i4mLee+89zp49O+Z4jY2N9PX18eOPPwJXdo/gStD08vLCYDCg1WpH3R0zmUwcO3aMoaEhTCYTTU1NVFZW4uPjY3WVeVhYGB9//DEajYY5c+ZQV1fHr7/+Oup84uLi0Ov1DA4OyrXnQggxDglSQgghJpWzszO7d+9Gr9dTXFxMV1cXHh4eaDQaq8sl8vLyyMnJ4a233mL69OmsWbOGwMBAq6vFPTw8KCoqoqCggLS0NPz9/dmxY4eyizXimWeeYdasWVRUVFBeXo6zszM+Pj427SZi27ZtzJ49m6qqKnbt2oWHh8eoO05RUVEYDIZRL6bo6+vDw8Nj3LFee+01zp07p3xOT08HIDc3l/j4eBobG4mNjR21b1NTE6tXr8bJyQk3Nzfmz5/Pyy+/TGJiotUOVFpaGt3d3ej1egAeffRRtmzZorzz6+88PT3RaDTAlVAphBDi2hyGr77eRwghhLhF8vPzaWho4ODBg7d6KuNKT0/n/Pnz7N2716Zu7dq1hIaGKtexX4+Ojg4iIiJoaGiwumnwZjKZTERERPDqq6+SmJj4j4wphBD/VrIjJYQQQtjh7NmznDp1iq+++op33nnHpn5wcJCWlhaKiopuaBy1Wj3uo4GTxWw209rayu7du3F1dZV3RwkhxARIkBJCCCHskJqaSnd3N2vWrEGn09nUOzk5Ke+j+rc4ffo069atw8vLi/z8fKZNm3arpySEEP/35NE+IYQQQgghhLDTf271BIQQQgghhBDi30aClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2EmClBBCCCGEEELYSYKUEEIIIYQQQthJgpQQQgghhBBC2Om/aAMr6cN41akAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = plt.figure(dpi=90, figsize=[11, 6])\n", + "plt.plot(mtls_kepler.freq, mtls_kepler.unnorm_power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "plt.legend()\n", + "plt.yscale(\"log\")\n", + "plt.ylabel(\"Power\")\n", + "plt.xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "82aa6b7f", + "metadata": {}, + "source": [ + "#### But how does this compare to the classical Lomb-Scargle Periodogram?" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "cf030cc3", + "metadata": {}, + "outputs": [], + "source": [ + "from astropy.timeseries import LombScargle\n", + "\n", + "ls_freq = scipy.fft.rfftfreq(n=lc_kepler.n, d=lc_kepler.dt)[1:-1] # Avioding zero\n", + "data = lc_kepler.counts - np.mean(lc_kepler.counts)\n", + "ls_psd = LombScargle(lc_kepler.time, data).power(frequency=ls_freq, normalization=\"psd\")" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "4ed7d4d4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAMrCAYAAABUKTPHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOzddZhTZ9oG8Dsy7o4NDoMOg3tpaUspVaC6pV3a8lWp7Na7NeruLkupb9stS5U6FHd3nwEGxl0j3x8zyZwkR5MTmZn7t1evTY6+SU6G8+R53+c12O12O4iIiIiIiMhnxmA3gIiIiIiIqK1ggEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTc7Ab0NrZbHZYrbZgNwMAYDYbYbGERluo9eB1Q97itUPe4HVD3uK1Q97Q87oxmYwwGg3K59TlbO2Y1WpDWVlNsJsBo9GAlJRYVFTUwmazB7s51ErwuiFv8dohb/C6IW/x2iFv6H3dJCZGw2g0KZ/X5zMRERERERERAAZYREREREREumGARUREREREpBMGWERERERERDphkQsiIiIiahXsdjusVgvsrHNBKhiNBjQ0NMBisagqcmEwAEajCQaDcqVAOQywiIiIiCjk1dbW4sSJPNjtLNVO6hUVGWGzqb9mDAYjkpPTERYW4fU5GWARERERUUiz2+3Izc1FREQUYmMTAPiWYaD2w2w2wGJRm/K0o6qqHCUlBUhP7+J1JosBFhERERGFNJvNCovFiuTkBJjNYcFuDrUiZrMRgPoMVmxsAurqqmGzWWEyeRcqscgFEREREYW0ljFXzFyRvzVdY76M82OARUREREREpBMGWEREREREpJsnnngEDzxwd7CbETQcg0VERERE5AdPPPEIfvrpe8yceQn+8Q/XgGPevAfw66+LcdllszBz5iW4+OLzZY91//0Po0OHjrj11hvwyy9/ITo62mObkpJivPvum1i7djXKykoRH5+ArKx+uOmm29CtW3c9XxoAID//OC6++Hx89NEX6Nmzt3P5bbfdCXsAaulfdNF5uPzyWZg581K/n0sLBljthN1ux2v7t6BbdDwu6Nwz2M0hIiIiahfS0zPw668/4+abb0d4eDgAoLq6CsuWLUF6eoZzm0WLFjv3mT//fezfvxdPPPGsc1lsbCx27Ngue65//esu2O3AQw89hg4dOqKwsABr1qxCZWWl7q9LTmxsbEDPF2oYYLUTJQ31+OVELgAwwCIiIiIKkAEDBuLQoYNYvvwvTJ58BgDgt99+Qd++/WA0No3WMZlMSElJde4TGRkJs9nsskxJZWUltm3bijfffB/Z2TkAgA4dOmLw4CGy+9lsNnzyyYf49tuFKC0tQbdu3TFnzo0YN24CAKCiogIvvvgM1q1bjbq6OmRkdMCcOTdi8uQznFm3q666DACQkzMMr7/+Lp544hHU1tbg8cebAsS5c69Dnz5ZsFot+PnnHxEZGYmbbroNY8dOwLPPPoE1a1YiI6Mj7rvvIQwcOAgAUFpaipdffhZbtmxGZWUFMjO74dprr8PEiac6j3niRD5eeuk5vPTScwCA5cvXAwC2bNmEt99+DXv27EFychImTz4Tc+bc6Axw/Y1jsNqJvJrA/nJBRERERE2mTTsPP/74rfP5jz9+h2nTztP1HFFRUYiKisKyZUvR2Nioer+PP56PX35ZjHvu+Rc++ug/uOCCmfjXv+7C3r27AQDvv/8Wjhw5hBdeeA0ff/wlbr31DmeG6r33FgAAXnvtHSxatBhPPvmc5Hl++OFbpKVl4P33P8a0aefjmWcex6OPPoBTTjkN//73p+jevQcef/whZ9fC+vp69O8/EM899zI++ug/mDLlbDzwwD04fPgQAODJJ59DenoGrr/+ZixatNiZATx27CjuvPM2nH76FHz00Rd45JHHsWrVCrz99mva31QvMcBqJ/4oyHM+tgagTywRERERNZk69Rxs3LgeRUWFOHLkMA4e3O/MZunFbDbj3nsfwnffLcTUqadi7tzr8MEH7yAvL1dyn4aGBnz88Xz8618PY+TIMejcuQsuuGAGTjnlVHz77f8AACdPnkCfPlno128AOnXqjDFjxmHUqDEAgMTEJABAQkICUlJSER+fIHmurKx+uPLK2cjM7Iqrr/4/WK1WZGZ2w5QpU5GZ2RWzZv0deXm5KCwsAAB06NABl102C336ZKFz5y7429+uxODBQ7Bkye8AgPj4BBiNRkRHRyMlJdWZ7fv44/mYOvUcXHTRZejSJRM5OcNw882349tvFwZkXBjALoLtxsS0zvij4GjzMzs4jwQRERFRYKSkpGLEiNH46acfUFlZgUmTJiM6Okb385x++pkYP34iNm1aj+3bt2HZsqX49NMFeOqpFzB69FiP7Y8ezUNdXR1uvfUGl+WNjY0YNmwEAOD882fgwQfvxb59ezBq1Ficeupk9O8/UHPbevXq43wcHh6OmJhY9OjRMmwlKSkZQFPXwPT0DFitVnz00b/x55+/obCwEBZLIxoaGpCZ2U32PPv378OBA/uwePH3zmU2mw319fUoLi5Gaqr6bpfeYoDVTpgNLQGVnfEVERERUUCdc855ePvt11FTU4OHH37cb+eJjIzE2LETMHbsBMyZcwPuuONWfPTRv0UDrNraWgDA88+/hpSUFJd1ERERAIDx4yfi66+/xcqVy7Fu3WrcdNMczJ49B3//+7Wa2mU2u4YdBoPrMoPBMcGvDQDw2Wcf47//beqS2KNHT0RFReGZZx6HxSLf/bG2tgYzZlyM6dMvBgCYTAZYrU2Zq8TERE1t9hYDrHaIHQSJiIiIAmv8+FPw3HNPISoqGkOHDg/IOQ0GA7p27YqtW7eIru/RowfCwsJQUHACQ4bkSB4nOTkF5557Ac499wJ88smHWLRoIf7+92sRFhYGALBabbq3fdu2LTjllFMxZcpUAIDFYsGxY0fRoUNH5zZmc5jHufv0ycKhQwfRpUtm8zZGWCz6t08OAywiIiIiIj8zm834z38WwmAwOLM13jp4cL8zwwQARqMJqampeOih+3DuuRegV6/eiIiIxKZNG/DDD9/ib3+7SvQ40dExuOSSv+GVV16A1WrF4MFDUFlZiS1bNiItLQOTJ5+BDz54B1lZ/dCjRy/U1tZi7drV6NatqZteYmISIiIisGbNSqSmpiIsLFy3Eu2ZmZlYuvRPbN++DdHR0fj00w9RVVXlsk3Hjh2xefNGnHba6QgLC0diYiKuuOIqXH/9NXj55edxzjnnIyYmCvv27cP27dtw88236dI2JQyw2gm7zDMiIiIi8r+YGH2CjxtuuMbleWxsLL799hf06zcAn3/+MY4dOwqbzY4OHTpg9uw5uPzyK2WONRdJSUlYsOAD5OcfR1xcPPr3H4DZs+cAaCoh/9ZbryE/Px9RUZEYOnQEbr/9TgBNQePtt9+F+fPfw7vvvons7By8/vq7urzGv//9Whw/fgz/+MdNiI6OxvTpF2PUqNEu21x77Q147rkncemlF6KhoQHLl69Hnz5ZePXVt/Hee2/hxhuvgdFoQpcuXTB16rm6tEsNgz1Q5TTaqMZGK8rKaoLdDBiNBqSkxKK4uAo2m+dHurG0AA9tXw0AWDj+HIQZTYFuIoUgpeuGSAqvHfIGrxvyls1mRVHRcSQnd/QYy0MkR2sXQYvFgqKiY0hN7exxrSUmRiMsTPkemmXa2yH+k0ZERERE5B8MsIiIiIiIiHTCAKsdYqdQIiIiIiL/YCfWdsLu8pgRFhEREbVuL+3ZhNXF+QE955iUjvhH1tCAnpNaH2awiIiIiIiIdMIMFhERERG1Ok2ZJGaTKPQwg0VEREREFAAbN67HhAkj8Pe/Xw6bzbV0+IQJI7BixTIAwLXXXomXXnrWZf3HH3+ICRNGYNmyJS7Lb7vtJjz22INetWfp0j/wz3/OxTnnnI4JE0bg4MH9HttUVJRj3rwHMGXKJEydehqefvox1NbWajrPBx+8g2uvdZ2La82aVTjjjAl49903vWr7okXfYO7c6zBlyiRMmDACNTWe0yatXbsa11xzFc44YwKmT5+GDz98H4GYoYoBVjvEEVhEREREwZOXl4vffvtZcv3QocOxadMGl2WbN29EenqGy3KLxYIdO7Zi6NDhXrWjtrYWgwcPwQ033CK5zbx5D+LQoYN46aU38MwzL2Hz5o14/vmnvDqfw5Ilv+O+++7AtdfegOuuu8mrY9TX12H06HG48sqrRdfv27cHd999O045ZRI+/PBz3HPPA/jf//6LL7741Jemq8IAi4iIiIgogGbMuBjvv/82LBaL6Pphw0bg0KGDKCsrAwBYrVZs27YFV1zxd5cAa+fO7airq8PQoSO8asfUqefg6qv/DyNGjBJdf/jwIaxZsxL33vsgBg4chCFDcnD77Xfh118Xo6Sk2Ktz/vDDt5g37wH885934/LLZ3l1DAC45JK/4corZ2PgwEGi6//44zdkZfXH7NnXokuXTIwZMw5XXjkb//nPp37PYnEMVnshuI5Ypp2IiIgoeC67bBYWL/4BixZ9g5kzL/FYP2RIDoxGIzZv3oBTTz0de/bsQnR0NM4++1y8/vpLqKioQHx8vDOr1blzFwDAli2bcOedt8qe+6677seUKWerauf27VsRH5+Afv36O5eNGDEKBoMBO3fuwIQJp2h41cCXX36Gt99+HQ8++BgmTz7DZd0vv/yE5557Unb/559/FUOGqBt319DQgPDwcJdlERERKCoqRH7+cXTq1FlT27VggEVEREREFEDR0dG46qqr8dFHH2DatPMQFRXlsj4mJhZ9+mRh06amAGvTpg3IyRmG6Oho9O7dB1u2bMTEiadi06YNGDasJXvVr19/zJ//mey5k5OTVbezpKTYY3uz2Yy4uHjNGayDB/fj1VdfxAMPzPMIrgBgwoRTMGCAeDbKIS0tTfX5Ro0ag6+++hy///4rJkw4FSdO5OOLL5rem5KSYgZYpDemsIiIiIiC6cILL8KXX36OL7/8DH//+7Ue64cNG47Vq1cCaBp/NX58U7ZoyJBh2LRpA8aOnYDt27fi9tvvcu4TERGJLl0ydW6pQWSZHQaD2HJpGRkdEBkZhU8/XYDRo8ciKck1cIuOjkF0dIwP7XQ1evRYXH/9zXjiiXmor78fUVFRuPjiyzF//kEYDP4dJcUAi4iIiIgowMLDw3HNNdfh1VdfwPTpF3msHzp0OD7//BOUlBRj69bNmDv3HwCAnJyh+OCDd7B79y7U1ta6FLjQu4tgcnIKSktdM1UWiwWVlZUeAZKSmJhYvPjia7jttptw66034NVX30FSUpJzvd5dBAHgiiv+jiuv/DsKCgqRkJCIDRvWAQA6deqkqe1aMcAiIiIiIgqCqVPPwWeffYyPP/7QY92QIUNhNBrx5ZefIzw8At26dQcAZGcPxcGDB/DXX3+iQ4eOLl3d9O4iOGhQNsrLy7Fnz25kZfUD0FRq3m63Y8CAgaqP45CQkIhXXnkTt99+E2677Qa88srbziBL7y6CDkajEampTfv98cevGDBgkObgUCsGWO2EXdAtkB0EiYiIiILPaDTiuutuwiOP/MtjXXR0DPr27Yf//vdLjBkzzrk8Pj4e3bv3wMKFX+PUUye77KO1i2BFRTlOnjyBoqJCAEBu7hFYrVZkZHRAfHwCunfvgdGjx+GZZx7DnXfeB4vFghdffBZnnnkWkpNTvHrNTUHWWx5BltYugsXFRSgpKcaxY0cBNI3xioiIQOfOmYiOjobNZsOXX36GcePGo6HBgsWLf8Bvv/2MV19926t2a8Ey7UREREREQXLKKaeiT5++ouuGDRuB2toa5OQMc1mekzMMtbU1Xs9/5bB8+V+4+uorcNddtwMAHnjgHlx99RVYvvwv5zYPP/wYunbtjttuuwl33XUbhgzJwZ133u9ynAkTRuDHH79Tfd74+AS8/PKbMJvNuP32G1FaWqq57f/7339x9dVX4JlnHgcA3HDDNbj66iuwe/dOl9c3Z85sXH/9bOzevROvvPIWBg3K1nwurQz2QExn3IY1NlpRVuY5c3SgGY0GpKTEori4Cjab50e6vuQkHtmxBgDwxdizEWsOC3QTKQQpXTdEUnjtkDd43ZC3bDYrioqOIzm5I8xmdsAKJfn5x3HZZdPxySdfITOza7Cb48FsNsJisane3mKxoKjoGFJTO3tca4mJ0QgLMykegxksIiIiIiLyypo1K3H++TNCMrgKFv4EQEREREREXrnwQs8KiO0dM1jtEXuFEhERERH5BQOsdoIhFRERERGR/zHAaocYbBEREVHrxLsY8rema8xg8P4IDLCIiIiIKKSZTE23rFarJcgtobbOcY0ZjcrVAqWwyEU7xN9+iIiIqDUxGIxISIhHZWUZTCYzAB/SC9TOGGCxqL37taOysgwREdEw+JDCYoBFRERERCGvQ4cOKC/fh6Ki48FuCrUiRqMRNpv6ebCMRhOSktJ9OicDrDbKZrejzmpBNCcUJmp37HY7Gu02hPvQvYGIKNSYzWZkZHSBxWJhQWRSxWg0ICkpGqWlNaomNzcYmgIsX7JXAAOsNuu53RuwrOg45o86E2kRUS7r7OwkSNSmPb17PVYU5ePT0WchITwi2M0hItKNwWBo7iJIpMxoNCA8PBxmc4OqAEu38wbsTBRQy5rT5xtKTga5JUQUaCuK8gEA8w/vDHJLiIiI2h8GWG1cYX2t50ImsIjahQNV5cFuAhERUbvDAKuNC+MYDKJ265S0zsFuAhERUbvTbjuxDhw4EL179wYADBo0CE888USQW+QfHSNjgt0EIgoSk4+DdImIiEi7dhtgJSYmYtGiRcFuht9Z7U1lKe2CcjvsIUhERERE5B/sItjGWVnHlIiIiIgoYEIywFq3bh1uuOEGTJgwAVlZWfjzzz89tvn0008xefJkDB48GJdccgm2bt2q6Rzl5eWYPn06Lr/8cqxdu1avpoccsQCLZdqJ2gd/fNPLG+qxsug4f7whIiKSEJJdBGtqapCVlYUZM2bglltu8Vj/448/4qmnnsK8efMwZMgQLFiwAHPmzMHixYuRnJwMALjgggtEj/3NN9/AZDLh999/R0ZGBvbv34/rrrsO3377LWJjY/36uoLBZlc/czURtS12PwRBn+buwY/5h3FD42BcnZqt+/GJiIhau5AMsCZNmoRJkyZJrp8/fz4uvfRSzJw5EwAwb948LFmyBAsXLsS1114LAIrjqzIyMgAAvXv3Rt++fXHo0CEMHjzYq/YajcEfSO5og3tbrLDDaDTAIFhuMBpCos0UfFLXDbUNBoP+3/Uf8w8DAPZUlgLgtUPa8G8OeYvXDnkjWNdNSAZYchoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR2jvLwcUVFRCA8Px8mTJ7F3715kZmZ61R6z2YiUlNDJfCUluVYNDIsyIyUlFnENkc5lyUkxSImMCnTTKIS5XzfUNkRFh/vt75PR3NTDnNcOeYPXDXmL1w55I9DXTasLsEpLS2G1WpGamuqyPCUlBUeOHFF1jAMHDuChhx6C0WiE0WjE/fffj8TERK/aY7HYUFEhMplvgBmNBiQlxaC0tBpWa0u3wKrqehQXV6Gyos65rKS0Ggi3BqOZFGKE143NxjE1bU11TdP33x8aGiwAwGuHNOHfHPIWrx3yht7XTXx8FMLClOeYbXUBlhS73Q6Dyjlfhg0bhu+//163c4fSF91ms+NfW1c6n9vtTctsgrEYNps9pNpMwcdrom2y+/FzdRyV1w55g9cNeYvXDnkj0NdNSFYRlJOUlASTyYSioiKX5SUlJR5ZrfZqc1nLe8M/QUTtF7//REREgdfqAqzw8HAMHDgQK1e2ZGlsNhtWrVqFnJyc4DUsRJyorVbcRq6wWGVjA6otjTq2iIiCxa8BFqM3IiIiUSHZRbC6uhq5ubnO50ePHsWuXbuQmpqKtLQ0XH311bj77rsxcOBAZGdnY8GCBairq8P06dOD2OrQcPMGtznDNJZpvnz1YgDA9xPP16tJRBQknPOOiIgo8EIywNq+fTuuuuoq5/PHH38cADB37lzccsstmDZtGkpKSvDqq6+isLAQ/fv3x/vvv++cA6s9q7UqF6+Quuk6VF2ud3OIKJgYXxEREQVcSAZYo0ePxp49e2S3mTVrFmbNmhWgFrVeWu6vGm2clJioLWF8RUREFHitbgwWaaPlBis+LNz5+HB1hf6NIaKAYhdBIiKiwGOA1cZpmrdacC92vNY/c+cQUeBoHIKp7dgM3oiIiEQxwCJRDewuSNTqMQQiIiIKPAZY7YTw12apmy7h8jqrRfJYP+Yfxu8n8/RpGBH5kf9CLAZvRERE4kKyyAUFh2uXH/HOhXa7HW/u3woAmJzeBQaDpk6IRBRADIKIiIgCjxmsNs7bG6wok3jsLTyejbdvRCGN31AiIqLAY4DVDtklRr4Ll3aLiVM8jsXG2zeiUCb1XSciIiL/YYBFmghv1yx2FsIgChV1VgtyqyuD3QwiIqJ2jwFWG2eHHXk1lai1WtVs7LKfkpKGOh9aRkR6unPzMty08U8crCp3LmP+ioiIKPBY5KKNy62uxI1H/lS1rdabsb8Kj+GKbv20N4qIdHe4pil7taOixLmMc1UREREFHjNYbdz28mKPZWpuuaSHbrSs6BIV61WbiMh/dgkCLMZXREREgccAq40rbayXXFdlacSHh3aioK4GgPZfu+PDwn1qGxHpr0dMvPMx4ysiIqLAY4DVjn16ZDe+Prof16z7TfU+wsyWsMRFvdXKimVEIUD4PfRnF0F+34mIiMQxwGqHHDdd3x0/pLhtVWMDvjt2EDWWRsltaiyNmLnyBzy8Y7VubSQi7wh/+GAIREREFHgMsMjJ7lJFsMnr+7finYPb8cb+rZL75dVWAQA2lhb6sXVEpIaNmSUiIqKgYoDVHmm4/1pedBwAsLTwmNZdiSgI7BD5pcQPDAaD/w5ORETUijHAIifhjZmqsRvNm/x2ItdPLSIiIiIial0YYLVDWn7UTmiuFJgeESW5TZlMpUIiCiwDWjJL/sw4M39FREQkjgEWOdlFnoQbTQCEN22et2yT0rr4tV1E5B1ONExERBR4DLDaGL0n/20Jq6Rv1MKNvIyI2hsDc1hERESieGfcxthU/GKt5ldtxxaOgexieziO89vJPLXNI6IQtauiBHk1lep3YHxFREQkyhzsBpC+1JRoPlFXgy9y93osFwu8HBG447hiR19ZnK+liUQUYhptNty1ZTkA4PuJ56vah/EVERGROAZYbYyaAOvZ3RtQJTNxMNASbLVksDiWg6i1UTslVoPNqvnY7CJIREQkjl0E2xg191NSwZXYzZjjFsrG+Iqo1VH7w4jFbvNrO347mYs9FaV+PQcREVGoYIDVxqjJYKnhHIPlVj1QeHjHw1nd+ulyTiLynTfZ5kab/wKsk3U1eHnvZtyxZZnfzkFERBRKGGC1MWqKXHhD7qix5jC/nJOIAsPixwBLqTsyERFRW8MAq43xJYElNg+WM38lc1w1p6y3WvGf3L04WVfjXeOIyC+sdhvePLBV835qR2DtrijRfGwiIqLWjAFWG6N3BstR5MLB22IX3xzdj4+P7HZWKiMi/1PzbV1RlI+NpYV+a0NeTZXfjk1ERBSKGGC1NT5lsOyij8Weu65UPunJ+qbMVUlDnXeNIyJVhNX97Cq+mzV+7sLnr27LREREoYoBVhvj082MTBVBuaOqOaPZwEuNKBSVNtZ7t6PKPoLJ4ZHeHZ+IiKiV4l0vOe2vKnM+bqki6PrcWyYD58whCjQ139u+sUl+bUOPmHi/Hp+IiCjUMMBqY9R0CZLy+n6Rge4qAiM1Z+SkpEShKczo5T8DKv/UWHWaOoKIiKi1YIDVxvhSbFk2BBK5SWoJ5pRvoLwtjkFE/lVUX+vX4+s1Nx8REVFrwQCrzfHuZsZudw2Bnt29AYBnF0Gxo6s5I2+xiAJPzfduweFd3h1cZVLaavffHFtEREShiAFWG2PzMpJZUZTv8rywvhY7y4u9HoPl3lXRl66LROQ/ajvvNtqsXh2fXQSJiKi9MQe7ARQaNpQWeCzLral0PnbchD26Y43Hdu73T9vKinDftpUAgMu79sUV3foxg0UUIHLTLYhRk1/Kq6nEjRv+RKTR5EPLiIiI2gdmsNoYO+xICAvXvN+WMs+JRj/L3eO8+XJMOLytvFhwrpZzCs0/vNP5+PPcvThcXYGOUTGa20RE/qdmjNSNG/4EANQJslhqC9ewgCgREbU3DLDaGJu96cZnYmonTfsViAx0L2mod3bt03KPVFzvOplwRWOD6Fw4P+Ufxj1blnvd9YiIFKhIHbMADRERkb4YYLU5dhh1/MXYcetVZWnEV3n7XNY9tnMtDldXuCyz2e0obnANsHZXlIge+439W7GjogTrSk7q1l6i1uLbYwextOCYX8+hqgAN4ysiIiJdMcBqY5qKXBh0+01aWJxCrNrY3I1LFM/VNSYOcrd6coU5TtRW44U9G3GyrkbhLESth9Vuw7sHt+O5PRtU7/PziSN4cNsqWGz6VuWzqfhrkSjS7Vj97zjsI0hERO0LA6w2xw4D9Ov2k1dbpWl7q92OMIPrZWWAAT/mH9Z87qM1Vbhxw5/4s+AontdwI0oU6hq9CJJe27cFm8oKsUlkvKSQcGyUqiIXKlJYk9K6eCxT/xeGKTIiImpfGGC1MXYARoMhoN1+hFmuZ3avx9CkNI9tdlWUSu7/0t5NeGnPJtRZLfj3oR34+PBuAMANG/5AY/McOiX19Tq3mih4vAmwHPZWSn+XvCE2PtKdmiyXFHZBJCKi9oYBVhsTjHuZvwpbxpGsLj6huQ31Nit+L8jD98cP4ZujB/CfvL0e2/hyg0cUahp9mHw3LSJKx5YAUzt2U9xGTZaLiIiImjDAakOEFf9OS2/q0nNepx5+P+9Bt0IXSqQmHS5rlM5S8QaP2hKtk+8Kt1dbHh1Qlz0yeTlGSm03ZH5ziYioveFEw22II8tjMBgwNrUjFoyaguTwCHx3/FBA2+EeQLkHRzYAYtOV7pbpRuhemZCoNdP6g4Fwe70DFn1LZohhiEVERO0LM1htiOMezPF7dEpEpHOC4EBy7873xK51Ls+lMli7dR5bQhSqrIIuglLfByFhtujVfZtduuWq3c+XbSR2JCIiIhEMsNogLV2I/GFjqXyVM3Vz8/Dujdou4dQEaq5094zXs7ulq2pqDZi87X6rdi9+k4mIqL1hgNWGOG6UgpC00kTNDaDWMSpErYnWLn9yc8XJUfVjhvtznb97/CoTEVF7wwCrDXHcx4R4fKXqF3OLyipreytLsbuixNcmEQWUFdq6CGqpoqk1oHE/v/rMlP6Rk91ux9d5+7Cm+ITuxyYiIgoUBlhtiOOGx72L4KD4lGA0R9KTu9bhuMIExmq7Lf1z8zLcuWW5Hs0iChhfuwjK0Rr2uB9b7+qAWtqTX1eNDw/vwmM712rYi4iIKLQwwGpD3ItcODwwcFTA2yJnY2khnpEZQwIAFokbyl9O5OJAVbnkftvLi7G1rAgAUNHYwLFcFJJcgxoVhSg0BViC7oeqsmPu51J9KpXUH9CXCZiJiIhCBQOsNsSZwXIbhBVrDgtGc2TJBUmAa5U1ADAbDDhSXYFX923GbZuWiu5Tb7Xi3q0rcP+2ldhfVYa/rV6MF/du0q3NRHpxqSKoYnstXQS1Fq3w7CKocn99NyMiImozGGC1IQcqmoKW3JrKILfEd8X1nvNeVVkaJbe32+1YUnjU+dwxhuPPgqNSuxAFjTAIUhMQaSlyoS035hm8BXMMFhERUVvAAKsNeXN728nW3L75L49l7t2HhJUGbQCWFqibG4go2LR2hFNb9AXQXgXQfXOxgE9s6gfVgRjjMCIiamcYYLUh+TXVwW6C39jsdvx6Mtdl2Zx1vzkf11gaXbpd1VutAWsbkVZay7S7d5mVPbbGzJL/M1GMsIiIqH1hgNWGtOkAC8DSwpYMVZ3VgsL6Wufz9w5ux/DkDPXH48/qFEQuAZaKa1HL1So8nLrgTbmLYKjPrUdERBRKGGBRq3S81jWY/KPgKDpGRqvad3nhcVy4/HtsLy/2R9OINFEVPGmIsLRnsNyeq/zxQfV2PrSFiIioNWKARa2S2C/qv53Mcz4+VF0hue/zezbABjs+O7LHH00jUuRSSl3V9uppzY5VNjZ4fS4lP+Yfxhv7t6renoUziIioLWCA1U6pzfaEKrFB9xtKC5yPN5UVSu7rmGOLN3MULC5Xnqougv6baPgXt7GNemam3tQQXDWdW9PmREREIYkBVhuhNAh+bu8hLs8v65rlz+aEFE42TKFMVQZLSxdBH6/3YH5btHZvJCIiCkUMsNqIWoWqeVM7dtN0PKNIhiiUaPlFX+qmbRvHYFGQaJ2ryttsqzd7BTPIYfEZIiJqCxhgtRF6f5DG0I6v8Po+9V2PKhsb8WXePpQ11PuxRUQauFT607eKYFmjj9e5ypP5IxRifEVERG2BOdgNoMCJMYeh2tKoalujwRDSdzt7KktVb/v2gW1YXnQcm0sLcWp6Fz+2ikgdu2uEpavVxSfEzyMh3hyOCktLoQv1Ewjr//eBXQSJiKgtYAarjfjnpmWK28SawwAAXaPjFLdtsKmf2DTUHW6uKLi1vAg/5B8KcmuIAthFUMVugxNTdDmXHhrb0N8dIiJqvxhgtRG5NZWK29zXbwR6xybgzqxhktv0i0vSs1khodZqcT4+XlsVxJZQW2e329Fgkx8P6bGPmi6Cfox53I+tOoOle0uayroTERG1duwi2I70jkvEy0MnAfCcJ+qqbv1gB3BJZh9UWxqxpPAY3j6wLQit1F9xQ53zcVvKzFHouW/bSmwvL8ZX46YhyiT951XYvU7vebB8FcxCEyWC7yoREVFrxQxWG5QcHqF5n16xibi0a18YDAbEhoWjX7x4Juvyrn19bV5QWUN4XBm1ftubK1Pm11bLbufSRVDFJenPbnuhNB9cfFh4sJtARETkMwZYbdC5nXoqblMv6MY0OCEF2YmpLutNBvEygld06+fyfN7AMV60sElaRJTX+/qb0rxiX+ftw/xDOwPUGmptjBLfHzGqAhwvYyBvKhSqzWD5IzATZv3qFaaeICIiClUMsNqgi7v0VtymURBgPZU9HmFG10vBbFB3aXSKipFd3xovsEXHDuKC5d9jX2WZ5DYfHt6F/x7dH7hGUcj7STB+SGkeOa3BibehjD9zU94kg5UqDw5OaCm4EUqZNSIiIi1a4/0vuXEvvW5Q8ev5GRldMTQxDQ8PHC26XiqDpXW7+DD13RUHxCer3taf3ju4HQAkA6h32sjYNNLXG/tb5mZT+voI4wy9qwgmavjOubdFbXu8pXRsrdUViYiIQhEDrDZA7dxWQjHmMDw2eCxGJmeIrjeJZLBGJKV7LJPrCjU8KR2PDpLuQlhYX+vy/Jns8ZLbBkO9RDW4746z1Ht7sbLoOO7cvAyVjQ3KGwsodRF0HYOl70TD0WZttYvcgzex9ug1dFExwBJsEMxiG0RERL5ggNUGuHfv04NjziyhoUlpmo4xb9AY9IxNULXtHVlDVWXe9OSefWu02TSP+/DHZKsUOp7ctR67K0vxwaEdmvZT6iKolZbrTOs16b612N5iGTTvuvCpz2Hxu0VERK0VA6w2QPhruZpJhNWIMYfh2ezxeNolq+R506jXLdBp6Zk6HUk99zLa/7fuN8xc+YOmY/AWsH347WSepu2lgo+WKpb+K9MuLM/iTYxi82fFQoVDC1db+e0iIqJWigFWWyC4DzHrmAUakJDiUulPbBLiUPuVOV1DZcIqQddKi82GIrc5eI7WVOKqNb/g3GXfYkNJgegxQuvVk78M1Dg+UOy6OFZThQuWf4fPj+xxG2uk71XkOsdWy+NGm1W0O7H7d7ikvs5j2Q8iEwB70+pPc/cgT8Wk6AC7CBIRUevFAKsNEN6GmHTuLii80eoTl6jrsf3B4EXXrIrGBkxf8b3H8vy6GufEpw/vWC26L28C24dOUbGathe7LH49mQugKciwu0ZYKo6noYugxPLpK37Apat+gsVtsm337e/bthJfq6iQ6c2l/1XePty04U/pY8q0i4iIqLVggNXGaK0gpkTYTUcsdElsntS4Y6R8ufZAGZHsWYhDyZayQq9v5hhgtQ/ay6p7bn+gqlxiW2X7JPYVPZ5LBsuTmqI436iagsC7a192L0Hb+d0iIqLWSlu5KQpJwpu5m/pk63ps4WB9sSIU4UYTvhw7DREmIy5Y7pkFkpMWEYXRyR28CoqkRJhMmvex+XAf1zQhsfZzUuui9V5fbHuLYPJq4XdWKXiz2e3OqQPUkJ8iG6i0NCIhvOWHGLHzV3pRmVQPwpYwwCIiotaKGaw2JC0yChmR0boes4PI8Ua5lXaPNptFy7orKayvxQ29B2OE4HjPBqVUu/c3co6iBdvLi/F7cxcwanu0ZrDECkWEG1sCcS1d4TRnzxQCk1XF+W7bKx9TbEJxf4Q/LgEWOwkSEVErxQCrDSiqbxonVFhXq7CldmJZq7v7DRfdNsYknhCN0pBVGpCQorjNPJm5tbS6bdNSlDXWq9r2RG01Ht7uOhbLEWDdu3UFXtq7GeUqjxUoeytLvZonjVzpcasvrPapdQyWEqnCFmLBltaCHQDQTaQ6qb/DHyawiIiotWIXwTagUWJCXH+JNJlxV9Ywj4l4Pxp9Fh7fuRabygr9ev7hIhMee+tAVTmOVFeo2nbO+t89lgm7fQFomkfLcwoxVcob6rG65AQmp3dBmNH3bod7Kktxx+Zl6BgZjfdGnuHz8dozrdUyxbq3uc6Npb5Mu5pTu3atE18uRc331ZtutN5UGGUXQSIiagsYYLUBnZsrnCWG61vgQs6k9C4eyyJMJtEJigPKi3syiw83cnreBN62aSmKGupQ0lCHy7tm+Xy8A5VlAJqqIZJvtH7KYtsnhIWLrtejTLvU8cSuT+GSWqtF1fFFu+tpmNNKNWGRC3YRJCKiVopdBNuAhPAIzB99Jr4564JgN0WULzGIN92ZAsnq9uJWFOWjorFB0/5Ha6pgt9ud83B9emSPx3bLC4/j7i3L2d0vSLQHWJ575CSleX08NWd0EOZUHUGKVGXBBqu67Ld4oCb/Krx5jcxgERFRW6BLgNXQ0IC33noLu3fv1uNw5IWMyGjEhAU5ewTxmyqtt0m39skBAFzVrR8eGzxW077eVBH0hXsXwQ8O7cD921a6LKuxNOLLvH349MhuVLoFX6/v24IbNvyBpYXHZM/z9O712FlRgsUnjujTcNJE6+xqyrFBywYnJDKMdrsdj+9ci89z92o6nzCYcgQpLhkuwXq12Vvvgh3fuggyvCIiotZKly6C4eHhePvttzF8uHjxA2rdHh801iOQkBLf3A0q3IcJj6d06IopHbp6te8FnXvBarfjy7x9Xp9fC/cMFgAcdhvT9ciONdhZUQIAOFRdgQcGjHKuc0w+u7LItbKb5Pls6j4HCi6x7m1SMcrywuMY6VaZEwBKG+uxuvgEVhefUDyfUhdBqcBF7fda7Dr3TwDEebCIiKj1062LYHZ2Nnbs2KHX4SiE5CSluZRSlzOrWz9MTu+C54dMdC4bkpgKAIhxG5/VUWNJ+T6xifhk9FkAgKGJaR7rnxsyAbHmMKwrOanpuL5QcxPoCK6Apqp+Yoxu1RqlCgRoCq9EKkBSgIh8fMKgyyXjJBGqiAU10qcTBiZizRAPXCwqA3axgFFq4mTnGX2MjxhgERFRa6VbgHXXXXfh888/xyeffIK8vDzU1NSgtrbW5T9q++LDwvHPrGHoGZvgXPbPrGG4rU8O3hk+Gd1j4p3LwzVWyuseE+8s5OEekABA/+bxWpd17etN071isdtEs2VzNy5BUb3YNS8e9CwvOu7yXOq219ubzs9ExnWRelpDVfEMlvg4KKlPVMtnbXM5dstjR5AmdSi1Gazt5cUey5QKZGi5UpcXHsfKouOcB4uIiNoE3QKsSy65BLm5uXj88ccxZcoUDB8+HMOGDXP5j9qnWHMYzuzQFYnhEXh92KnO+bLE5tgS07M5KOslCNrk9gxkJUOr3Y6PDu/yWH64ugIv7d0kskfTTeNP+YexobRA8rg2iRtfrwOs3D0obwitObpaE7XXqsPLezd5TJ9glwirpI7sTZlzwDWDtaeyFHa7XTJw8aWCpjL1x35693o8uWu9SyDIDBYREbVWupVpf/LJJzXfhFD7NDgxFauLT6B/XJKq7R8bPBabS4swIa2jc9l1vQahfPdGXNtzID4+vAtdBBOhGjXnG7wn141LLINV0lCPNcUn8Mb+rYrHFQsTrRpuWt3fBS37km+O1VZj8YlcnNeph3OZ1PxUY1I6QoyWz8v12K777awoQd+4xJb1gtVqM1jS55Vuo3dlMdTPD0ZERBSqdAuwZsyYodehqI37R9+hWFGUj1PSOqnaPiEsApPSO7ss6xQVi5eGngIAeGbIBJd1pgAG+laZG1STQTxB/NjOtYrHlcosuBe5aLTZ8M3R/ZiQ1sk5H5rzGCyI4ZWyhnp8dHgXZnTp7dNx3ANsl+BB8PGaJa5XLQkc12O77lhrtUjPu+VjFCNXqt3XBJSWMWhEREShRPd5sPbv34///e9/ePvtt1FYWAgAOHLkCKqqqvQ+lU+OHDmCK664Aueccw5mzpwZ7Oa0KzHmMEzp0BWRJv/Mcy02Pstf5G4Cve3iJbfvN8cOONfb7XZ8f/wQPj6yG7dvWuqxbZ1bF7WTEuXAf8k7jPUBLAwS6t49uB2/nMzFg9tXOZfpcUVJZbCkxho12OTnqJIa0yUWVttVnHtwQors+cTboHkXkWOIH8SX7w8REVEw6XaHW11djfvvvx8///wzzGYzrFYrJk6ciLS0NLz44ovo1KkT7rnnHr1O57P7778f99xzD7Kzs1FSUqK8A7UaUpkjfzjkVpJdKK/W+x8VHF2v6qwWRIgUA7lt01LEmsOxtbwIAFArMmHsArexYWLBYHlDPR5ctwIA8P3E871ub1tS3Jx5KhRkoAxehFjue9gkxmDZJOKI7/MPqT6XXDBigEE2wyXcTk9KExE7CANCFrkgIqK2QLc70aeffhqbNm3Chx9+iI0bN7r8Iz5p0iQsW7ZMr1P5bO/evYiKikJ2djYAIDk5OcgtIj0FMoM1/9BO2fXHvAyyfjpxBMdqqnDRyh/xzO4NzuVjUjoAAA5WVziDK7XiRIp/uFcvpJabfF/H8rl3VZXMOEkEPIV16iuvygYjBumqhcI2SXWtlQveSuvrVLZQmrCgi8t7xPiKiIhaKd0CrF9++QV33nknxowZA5PJ9Rf3Tp064dixY6qPtW7dOtxwww2YMGECsrKy8Oeff3ps8+mnn2Ly5MkYPHgwLrnkEmzdKl80QOjIkSOIjIzEddddh+nTp+OTTz5RvS+FPmMI1Vpxn3RYrU+O7MadW5p+lBAGQb7c9IvdrwqzWkplt0PN5tJC7K7QP/tcI/I+eBOzuwf6LpkaFfNgjU9VN0bR/XjurDabZHU+YZukXqNcnHOgoky6TTL7CUl1s1Vb5KPOasGiYwdR2uB7sEdERKQH3boI1tfXIzExUXRddXW1R9Alp6amBllZWZgxYwZuueUWj/U//vgjnnrqKcybNw9DhgzBggULMGfOHCxevNiZjbrgggtEj/3NN9/AYrFgw4YNWLRoEWJiYnDllVdixIgR6Nevn+o2Uugy+fC7QZjBiEYfK6sJPbVrvdf7VloadWsHIJ4piRGMg6uxWBDlp3Fx/vBA8xgpvbs2OoJiX7uoyU8eLT7xr9CRGvng3I6Wbohy3fF+zD+MQYLxVfbmtrhXfZUK3uXeBbnuuGozUMIAy2U+L5UH+DpvP77I24vfT+bi1WGnqjspERGRH+l2NzV48GAsWrQIp5xyise6n3/+GUOHDlV9rEmTJmHSpEmS6+fPn49LL73UWZxi3rx5WLJkCRYuXIhrr70WALBo0SLJ/TMyMpCdnY309HQAwNixY7F7926vAyxjCKRMHG0IhbYEm9nk/XugZ3DlFwbpTIPiZ29o2aa8oR65NZXoFtsy8bPNYG8114/w5jsQbTYYDJrPYzYYXfcR7m5wXS527F9P5Moe32g0OIM4uSkyjtdVwyA4/qayAry0dyMeGTTGpRnuAaGjTXKBTqTJJPm+GGV+5xDuYxfsXiso7GGXeF/cHa+rBtDUbba1XL/tGf+tIm/x2iFvBOu60S3Auu2223D11Vdj9uzZmDp1KgwGA5YuXYoPP/wQP//8s27d8BoaGrBjxw7ceOONzmVGoxHjxo3D5s2bVR0jOzsbhYWFqKqqQmRkJDZu3IizzjrLq/aYzUakpMQqbxggSUkxwW5C0NVGtN3BG+HhZiRLXG9K12FjhMG5zd++X4yyhnrcnTPSuT4pKRop0aFzLcsRZjoC8f2LjAjTfJ642AiXfaJKwp2PY2IinI+jYyJEj31x7yx8vFd6jF9KSqwzKLLWymSSDK5/F37KPwIAeOfQdtwxZIRzeWSE6xg9R5vcJ0wWijKbkZQg/jcnorFBtu1OgrFma0pPOB/HxIq/L+5io1re11D6W0zy+G8VeYvXDnkj0NeNbgHWiBEj8OGHH+KFF17AY489Brvdjtdeew1DhgzB/PnznQUlfFVaWgqr1YrU1FSX5SkpKThy5IiqY5jNZsydOxeXXXYZAGDq1Klet89isaGiQv1gdH8xGg1ISopBaWk1bFJlydqJCsEN24ejz8RXefsQaw7Hf3L3BrFV+qivb0RRsXjhjLyTpYgWKWThcMeqJZg3aAxGpmSgrKEeALCzoKVQRmlpDT7bsRPpkdGY1qm7ru3Wm3COr6KiShyoKseWsiLM6NJLtwnP+8cnY1fzGK/6+kYUS7zvUupqXPeprG4ZI1QleFxRVSd6bFu9fJn2ouIqZ2GKUpFJrR1yElJRXOJ5fIMNKC9v2a+xwXXsmaNNcgGWzW6X/JtTLdPFVfh6hfOFNVhazlVRWavqPa+vb2m31s+IAo//VpG3eO2QN/S+buLjoxAWpjzsSdcBF8OHD8dnn32Guro6lJeXIz4+HlFRUXqeQpLYmAI5kydPxuTJk3U5dyh90W02e0i1JygELz81PAo39srG13n7gtceHVVbLLBaxbsxvrh7E+4fMFJ0ncP/jh7A8KR053PhRMk1jY34svl9mtqhGwDgRF01UsIjESZSKj6YhBMuW2x23LqxaR6wrtFxLq/PF5Fur1nr98oAg8s+wsdWl8c20WNLjc0SHs/xJ88icU0AQL+4JNHjmw1G2dfkWGexSm9jtdsl/+ZYVRy76fgtbReOx7JY1f0tW17YUgSm3f/ta0X4bxV5i9cOeSPQ141uVQRXrVqF2tqmXyIjIyORkZHhl+AqKSkJJpMJRUWuJapLSko8slrUPrXl3tlJ4RGSRQfWuU0WfF6nHh7bbCordHl+rKba+bjR5nqT/lfhMcxZ9zumr/jBu8b6kVWiGEKxTCZHK2HhCG/miJKrIuhSyU+PyXpl1lnt4gU7DHB9jVLHkCugIRsEqixSYbELg2VByXaVRUbqFSZkJiIiCjTdAqxrrrkGI0eOxMUXX4xnnnkGv/32G0pLS/U6vFN4eDgGDhyIlStXOpfZbDasWrUKOTk5up+PWh+xm2Gp7Obc3tmtaoLdMKNR8sbTvUBHtIqKgMK5tNz3f1Yw/5a7ozVVKNFQFttut+PN/VuxON+1G2+91YpdFSWihRTu3rIcD29fLX48l8ctz+pt/ilS4lXQ7vaa7C7l0cUfazyB4JH0Meywi8Y6uytLXfYSm9BaiVyA5U2ZdmFQqpTBIyIiClW6dRFcuXIl1q9fjw0bNmDt2rX46KOPYLPZ0LNnTwwfPhwjRozA+eeru5Gtrq5Gbm5LBa2jR49i165dSE1NRVpaGq6++mrcfffdGDhwILKzs7FgwQLU1dVh+vTper0camMskjferSvfZYBBdflrsc06RkZLbi81H5G7RpsVN2z4A4D6EulljfX4Mf8wAGBqx27O5c/t2YDVxSdwe98cnJHR1bm8tKEOO2XmuJLKAKkt7a2VN0d130cYSEll4Lwldwib3S4agHWPiXdZKjVBt1yGTS449CbASouIQnFz4B7i9TyJiIgk6RZgJSUl4cwzz8SZZ54JoGkuq9WrV2P+/Pn48ssv8dVXX6kOsLZv346rrrrK+fzxxx8HAMydOxe33HILpk2bhpKSErz66qsoLCxE//798f777zvnwKL2Tew+cWmh+omu5YQbjWiw2TAoIQXby4t1OaZWctkKq93mnJtILAOQX1fjHGflTjoIdVVv1d4lSyyruKm0AKuLm6rGbSwtdAmwiupbsmNi4ytd5kvSJRskT6m7mliQ5L6P5GS/OgRYcq/bZreLBkndouOc7T4tvYvk/gery2WPLfUbhdoufjapzB4zWERE1ErpWuSiuroamzZtcmaytm7dioiICJx66qkYPny46uOMHj0ae/bskd1m1qxZmDVrlq9NpnbijIxM/PuQZ8nrCJO2XrKnpHXG7X2b5nQ7d9m3urRNCwPkMwo3b1iCt0c0FW+R2uyjw7tEl5+sr3E+bpAZ1yI87rfHDuL8zj2lG9RMeONcY2lEtDkMDwq6/7kHKK7d/qyIdOvu6HojLljurwyWwmHFVrsvs0sED95mauyuMw1LskE82DEaDM6lkUYTaq0Wj20A+XFtVpkASy1hy/ZWlgmWq/sssxNSXbq6Kp5PY0EkIiIirXQLsGbMmIE9e/YgJSUFI0aMwNSpU/Gvf/0LWVlZ/MeMAkrsakuPcO0a1zU6Drk1lRgQnyJ5nE/HnIUrVv/sssxs0G3YoncMgNzd9NHaljLVWruevbZvi/Ox2izVuwe345xO3Z1ZMylWjQHF1rKWG2axVyEMUISVEJVecb3VimVFxzA2pSNiZEraux9L7c2+UEl9HRpsVoQ3j21ybXNgM1hiaw1ouUaMBgNyaypF95cb1yZf5EJmlSDIkTqG0vuyp6IUr+zbjCqL9Hxb7soa6nHVmp9xcWYfXNm9v+r9iIiItNDtbnHPnj0wm83IycnB0KFDMWzYMAZXFDLCjK6X+os5E/HeiNORITMmKSGsZTLYmV16A2jKhAXTLydysUAiA+XOl+5yB6pcu4XVWS147+B2HKou9yiGsa2spaukzW73qEYIuAZBcukgq90Om92ODwWvUexGW5i1+vVky3hNpaDyq7x9eHnvZtkCHt4QO+s3xw7g5g1LnM+lqgh6E7x5nF9pDJbIBnsqS/HozrXO5werK0T3l6vS522RC+E6qfmylKorvrJvM3JrKlHSPKebGquK82ED8J82Mm0DERGFJt0yWOvXr3d2D/zll1/wwgsvICwsDMOGDcOIESMwcuRIVvmjoHEPsCJNZnSMUr78nxw8DmaDAQMSUnBZ176IUlGZz99+aC4WIaXRZsXvJ/NQquHG090D21e5PF984ggWHTuIRccOYt7AMS7rhN0J79qyHHsqS/G/8efCLHjP1XSJ+/jwLvwnbx9u7ZPjslzsJl4YlOyvkh4j5M5ROGNDaQGK6muRGqFuKglvs0z5dS1l8CWrCHp5bLUZNjvsosH2sdqWtkkVuACAeomug4B8YRT5NrVwv9YclH4gsNpZBoOIiEKTbneLUVFRGDduHMaNGwcAaGxsxKpVq/Dee+/hhRdegMFgwK5d6n55J9LbQEFXQKWuYULZiS1zq4VCcKXGl3n78HnuXl2PKRyfk+YWlFgEN9l7KpumZihrrHcJXtR0iXNkFX4+4VrKXTyD1bJMS45ceFN+44Y/8dW4aZLbCk+rHAIpbyEVVOkRJsidvSmDpf2YjoIpETLXvffdG4UDyCS2UDi2UrdUqbMSERH5m653jCUlJVi/fr3zvz179sBms6FPnz6ailwQ+UKsYl2EqWWOn7eGnxbI5gSc3sEV4Dr27KaNf7qss4hkEhzLDlaVo0NkjNsYLG23uRYdAyzhkWqtFuwoL8bABOlxeKqPq+Il+bWKoMwxbHbxDJaQAQbnuESHtcUnMTa1IzJksnx6zIPlzbEBwMTu50REFKJ0C7DOOuss5ObmwmQyoX///hg9ejRuvvlmDB8+HImJiXqdhshrrw87FZFGE5LDI2W3+3LsNBh576ZaUX2tszKgg9Vmx/6qMty+6S90iYrF3f1afmARu2+uEozDcWTBHDaXFeB0QQl3wDVI0zLO031urTUlJ1wCLKmsiR5zVbnMg6VLOXKVZdChHACKvYWOsXZywZlsF0HZIhdQjIyVgkJvCs7kSRTyICIi0pNuAdY555zjHGcVFaVuXAORP7iPt3LoHhOvuO8V3bIQbfbua/FyzinYUVGM9w7u8Gr/1urfh3bi34d2YtGEc53LLHabs+T20doqxaIOm8oKJY/vqMInJCyAUN7YMtZMa6jiHgRsLBVvh9Jx1ZxX+B6cqG0pia9HkQvlKoJKGSzpZUrZMSGr3e7MLKkdgyV9bPn14RLfcznfHT+keR8iIiKtdAuwbr31Vr0OReSTGHMYbu6d7VGaXY0OMlUFlfSOS0TvuESc26knrlv/O07W1Sjv1IYsOnbQ+dgO6bLkYswGg2hXQADoHBXrsUx4bGFQpLXbmHuAIDVHmB5jd4SnWlNyQtP2vmy7ruQkJqR2kt1frFut44eKVwTl+90JP9dPDu/GF3l78eGoM1UUD9E2Zk2MWOBNREQUCnSd1CcvLw8PP/wwzjvvPEycOBHnnXceHnnkEeTl5el5GiJFZ3fsjuHJ6V7s6XvfQJPBgOFJ3py7dTshCChtzeXWnc8VusRNSusieVyx4Ezq5js+LFxVW6WOc6BavCKhchdBNWUwpOZ7UtxV8Yxy2aJ9VWV4Ye9G2WOJxaWOaQqkyqgDwO7SlhL9X+Q1jf1bUnDUo33u1LxkPbplAk1zn32RuxdlPlTVJCIi0kK3AGv79u244IIL8Msvv2DQoEG48MILMWjQIPzyyy+48MILsWNH++o2Ra2TXkOvrmrnk5iuKT6BMkHXvR3lxTJbA5Em6WyEWDnukoY60W21BivfHT+Efc1dGQFgcrp4oKd3F0HXff07DxbgOa+ZO7EMlhqf7d8NwLVUv2M8nVyApCZ2UhqbpvZ9+yJvLz45shsPbFupansiIiJf6dZF8JlnnsGAAQPw3nvvuYzBqq2txXXXXYdnnnkGH330kV6nI9LVTb0G49eTeRiT0kH1PhFGk+QkrLHmMIxISsf60gK9mijq/E498e3xg8obBsD+qjLn409z97isE04cXGFpQDrUd8V0z2AtKzyGZyQmChbOO6XWPVuX45vxTePH4swtGbCt5UXOx7oEQRqXK/V2dKlK6GP7xE6lJYM0Y8UPLfup2F7N+6nXLFe7mgubHPaywIXVbkdFYz2SFIrjEBEROeiWwdq2bRvmzJnjUeAiKioK11xzDbZu3arXqYh0N61TD7w09BREapjrqltMnOx6LdXtvHVNjwF+P4dawolr5bwvUgTkcHWF5PZ7BRkmAPjlRK7ktl81z6WlRYOt5VZeKlBRijVqZSbjVT62d+e8bNVP+PehpveyTuT8f+uapdgmOd4GOI7gydFl0OvzK2aw1Km3Nv0IEm40YopbNUo1nty5Dleu+UUxC0hEROSgW4AVERGBsrIy0XXl5eWIiIjQ61REIeH+/iPRNVo+yPKn7tFxMHtRSc1f1IaT20W6C+5wK58u9EFzEHGspgqrivJhVAhcD7rdCCsV2BDyZ8V06S6C3mm02/DN0QPIq6nEg9tXe6zvFZug+lhrik/oNubJ8YLkAmF1h9HWniiJbqaO7ovhRpPLfHhqOQqSbPRzNpqIiNoO3e7OTj31VDz//PNYv369y/L169fjhRdewGmnte3JXan9SY2IwuvDTpVc7x4G/Kv/SH0bEMCJVv+jYvJiLa05WlOl6fxWuw3Xb/gDT+xah2O18vveummp8/G5y77FBcu/E83wiPmz8KjocrkueHa7XbLLotBvJ8WL/TgCG7vdjryaSk0BIQD8etIzkOkQGa0YiArli1S89DbgUtNd0Zcxa1KkxpE53k+TweD1WDNAn0qSRETUPug2Buvee+/FTTfdhFmzZiElJQUpKSkoKSlBcXExhg4dinvuuUevUxGFDKPBgC/Hnq2YSTqnY3eMTe2o67nlutXprU5irJm3btjwh6btH9i2yvnYm2pwx2ur0VNFRkeuYp7cPsLxWlo5ApI/Co7ipb2bcG7HHrih92DJG/qksAiUCgqIfHP0gMc2WousiE2sLRdQdI+Jx+HqCnSMjtG0n3Mbu+P/ZebYUnkMB6UuueWNDQH9zhARUfvlc4BVV1eHpUuX4tixY7j88ssxa9YsHD58GIWFhUhLS8OQIUMwYcIEPdpKFJKizWGiy4UZBF9+OffVjM698M0xz5twvVV6EZyotU3QrVDt2DaLYGyVlmyOmOMy48tqVGbHpDjihM+aC4N8n38IN/QeLLptr5gE1NusLgGWmFqrBTEm8etSrTqrBb9KdPOrbGwAAOTXiLwvqlI9TRvJBVFKGaxy9/dARZVGXwJh7/uPEhFRe+NTgJWXl4fZs2fj2LFjzmWxsbF46aWXMHHiRJ8bR9SaCW/p/dGbb2B8MgDgnRGTcf166YxQlNksW/GwtVHbr3mJW3e/PC+ryAFAbk0lShvqRCvJ/Zh/2OvjAi337e4TU4teMgZ1Y8osNpuma65HTAJq3ALk9w7ukKzKKHdodVUEm/9fLoOl8DqPuH2eUlt7O8+YO4ZXRESklk9jsJ577jkYjUZ8+umn2LJlC3744Qf0798fjzzyiE7NI2q9/J21cmRyOkfFym5nMhjx5biz/dqWQKpWmTGqaM6yOHxyZLfodo5PSemG/so1v4gu93VSaaliDmJLDTLbi22rVpw5zOOociXvTTJdYtW0zxlgyWyrtfS89PvI0IiIiALLpwBr06ZNuP322zF8+HBERESgV69eePTRR3H8+HEUFLDiErVv/q5BobYIQKTRBJMhdKoNBopwAuFIkwl1VvEMniMQnrtxiVfnMfn4QYt9jOcu+xb/ESlzboBB1edugLYAX+uUAnKvWUtPOrlsnNYiF1KZKr3CK4ZpRESklk93XYWFhcjMzHRZ1rVrV9jtdhQV+dDXnagN8PeQDbU3oKemdwEAXNi5pz+bE3KWFR1veSLzVjkKPOSq6EJYVF+LdSUnXZZprfrnrqShDnsqSlVvr+pzNxj8GuCbZQL2E2ome3ZUTlTeRDXJTJXE4sL6Wn2OT0RE5Kb9/axNFCAri/NVbffAAO/Kt6vtQhXe3J1rTs9BXp2nLXjrwDZskJjHSEsBjNlrf8W8HWuwpazQuUwpwFIKiFYW5+OOLcsQpWKS63CjUfUEwP7somqWec/Wlxbgu2MHZfdXNQZL4fpOdRsPJ5XBkjqO2tL9REREWvlcRXDOnDkwiUzeOHv2bI/lq1at8tiOqD2Quo9MDAvHmBTvyrefkdHV+fj09Ez8XiA+z5KvXdjaAqngCgAabGpDlhb/2rYK/x13DowGA6wKgcD5y7/DvIFjFI9Zq+KGf2RyBha5BS8D4pOx022i5pN1NchUGJun1aCEFOck0UpdTt85uF12veMdkws+lQLTSLeAlBkmIiIKFT4FWHPnztWrHUTtTnpEFOYNUr7xlnJ2h27Ox7f2zZEMsIQZmgcHjMJjO9d6fc62qtKtIIYaM1f+gBiTGXf2G6647XsKAYcaN/XOxlkdumKhW8l99+AKaMp0aR1XpeTMjK7OAOtAVblzuTdzSzmCIdky7QoBk3tAJZUNk1quNcPXqDIQP1pThdSISI8AkIiI2g8GWEQB4LjXHZqYhk3N3ctu7j0EmdFxLtsNjE/GDpEbZndmg+sNtFyWyii4kRyd0gH945OwS8WYn67RcarGJYWarm7vqRqXr17s1bmqrRY8sXOd83liWDjKRIK1o7VVXh1faFhiGkwGo6qxSZEms+4dBLsJ3ldh8HPT+j+1H0zFRMNax2DZADy+cy0uzeyLPnGJLsvFmMVmV5bxZd4+xQmc82oqceOGP9ElKhZvj5is6fhERNR2cAwWUQBcnNkHAFwyVlEiXWvDJMpfu98Kaqmw5m0mY3BCilf7BVujzYrHA5ils9hbbuH9Wa3R8TlWWJSzbTa7XdPYMjXl3xsFrzNFZD4wLZxdBOXKtCtc42JrVxefwN1blrtuJ3EcuUId3trfnNnTI6AmIqLWiwEWUQAkN9+QGg0GPDl4HC7L7Iv+zRMFA8D7I07HyzmnIMzoGXQBwNU9Brg892W8ib/n5wq2/LoarC4+EZRz+3O8m5Yj2+x2XT9lk8GAasFExL4G384ugs2Xsdg/RIpdBCUCJ2Eg2HQuqTYQERH5BwMsIj8Zmpgmujw7MRWzuvdzySx1iIpB77hEyZti98yILzeHam+O1QRiXXQupNDaeVMwwx9ssGsOpOW2N8Lg/JEAaMqmReswxsgRaJlFMreW5vfSbrdj3o41+ODgDq/PIrrUD/MotO2fLoiISC0GWER+om8yQ7+bwcu69sW9/UZgVHKG7HZq2n9tz4F4MWeiTi3zzZyeA4PdBJQ11vvt2Fq6etrt2q4/AwyyWVGjwYAeMfEtz2GQ3DpCIgsrxtENUKy73rKi4/jm6H7U26xYV3LSo7iH0jfCUYZdsny7vyeqIyKidosBFpGfdG7O7nQX3Jh6S+om0RthRhMmpHVCz5gEAEDH6BifjqdlrI8/jUySDxhbO+1dBPX7XIwGg0uAN7VjN8my8onhEYrHc1zOjjnEaiSO9e9DO73q4re88DguWvkjfjx+SHIbpfL63giNbwIREQUbAywiP5nVrR+u6JqFRwaOVr2P1E2xmjFX746YjO5uFfQyIqMlt5+Z2RuzuvXDW6ecobp9YkJlTFeoBHqhwGw0aspg2WF3FmIJF+mu5/7edpC5rk7W1Sieb1tZU7n3FUXHFbeVyjTJdfH7+ug+AMAHh3ZKjuViBouIiPyFARaRn8SYw3B5tyykRkT5fCw1t4KdomLx+vDTnM+fHDwOH4yUDp6iTGb8rXsWOkaLj6OSClhOTevsfGxAaPxqf2lm3zYfYKkJZCend8HwpHSc16mHpsDXjqaJq/8z9myc07GHx3qT27F8fa+3lBXCbrfjw8O7FLe1CgKhkoY6xe0jjCbnmEWr3SYZiGkNsKTGVAoFq7gKERGFFgZYRK2ANwPyfak0CHjeVDtc1JzpCCUZkVFtPsBSM21Tx6gYzBs0BjHmMByqLlfeoZnj+ooxh4l+6tXWpgqCl2b2wZiUDog3h6s+tpTjddWqthMGQutLTjofy13d5uZrwWqX/hZYNX6nIkWmVXC3TEVGjoiI2j4GWEQhRBgjPJ093vnYm1DJ1x5QPWITRJe7dzv0V1zTW+L8Yk7U1aBGUEbcV5dl9tXtWIF0oKolqCprUF9ww+VSEfk8HcHIld3744EBo7yeW83hr8JjuH79H6LrnhsyQfTcko1zY0BL1U07pL87SmXg3cXqEFQSEVH7wACLKEQNEpRTt9tbxsio5e098N+6ZuHufsMxSdAV0OGzMVMR5Vae219jsLQEiNWWRt0mjn0p5xS/zmflLTXvszDbo6bYRMuxtZ3HV3U2q+S6GFOYy/NyQWVGYcvksrqun58+XQRD74ogIqJQxQCLqBWwAfh79/6q5rC6uXc2hiWluQRoWmRGx+KUtM6iXe7ECiD468ZTSxdHo8GAGHOY8oYKhielo09cotcBVpSKbmTeUtMiR2VIAMhOSFV/bMHrDXYg4X7dfXv8oPOxcJXU1WEwuM6r5W2Z9kabDRtKC1q259TERESkEgMsolbA8Wu9mjmGzu7YHY8OGusxObEa53XqgXGpnSTXu2c3DM3/8wctt7NGGDRlbJSYRAJJNZ4aPF6XQE+Mmm55Z3Xs5vN5pEqmB4r7yxQWtlDOSzWJU/EZKAVYCw7vxMPbV6venoiIyIEBFlEr4Pj13N+3eP/Xc5Bk9ibeHI4ItwxNemSU38Zg2e120YyZGL3a4DiMNxmsGZ17oXdcIu7KGqZPY9xY7TbZ9Zd37Ys0LytWhgmC8XWCQhKBMjwp3fnYvbjKxtJCwTM1n4sBYYIfIuoluiPKv5vA/44ddHmu5rt3TsfuKrYiIqK2jgEWEeGdkZPxQs5E2Up8n42d6nz87ojJeHDAKGS6zbslZ2xKB01t6hAVE/A5thxZIqkKinK6aHgvvBHeHDS8Oew00fV/65rl8lxLl7Y5PQc6H6frMK2AL9wzdQPik1vWCZZLTXTsvp0UuYDVYvNcpyaDlRCmXxaViIhaLwZYRK2A1DgSvWRGxyErLkn19p2iYjG6OWBSEwQNiE/GPf1GiK7rG5courxzVGzAxwP5ksEyOP/fP612dD3sGiMeyLkHJlp6tKULKkMGY+LoWHMYMiKjMS6lo2yQL1wl9RkZoG6eLrmAaXNZoccyNW+nr1MjEBFR28AAiyiEGCVvbh1dBEPvBk7N7fidWcNcCg843NtvBF7MOUV0HzvsqsuBd44SnyzZW0adKhK6UzOGTi/eFmXYXlGsc0uUlTbU4/0Rp+P+ASM9rqfBgmIdxfV12FBagIK6GtlxVmquGrkfLcS6FaqZi47jtIiICGCARRRSrukxAD1j4vHYoDEAgIu69AYATErrAsD3ua38QuFudt6gMc4MyYikdJeM1YQ06YIasAOT07uoasLpGZmqtlPiyIr4q0z7o82fK6D+tXkrkMGcr2qtFmcw7Z59Es679uHhXXh4+2pcs+43yWOpzmDJBKBie8ttf6i6HBWNDUHJ/hERUegxK29CRIHSISoGrw471fl8do8BuKJbP4R5WdVOLzObAz0xSreUwvWPDBqDqsYGXLZ6seI5p3fphaM1Vfgh/7DituE6BROOyotedRFs6SMoKtxoRO/YRABAn9hEXJzZB38UHPWileqkqhxLdX3PQV4dPyU8EsWCCn++iBQUT2l0G/8klRXKr6uRPJ6vXQTFAiWpzfNrq3HLxqWIMJowo0svxfMSEVHbxwwWUYgLdnAFuBYacKf0q737WqXqbQ5J4ZGyXQTHp3ZUeST1fMlgldTLBxsNNhsiTCZ8M/4cvJAzUVO2Q2kS5aGJaaLLY0zyv6Gdnp6J8zr3VN0OoYcHjfZqPzHRJunufpq7xRoMsKoYtGiVC7BEPhqpDNb/rf8dQFO3wpDMMBMRUcAF/86NiFQL1hgsNRkBKe6BhFK5cZfzyqzrLxP0yRmT0gGXZvYVXdcSYGn/0/h9c6ZN6Z0KN5pgNBg0lZYfJxNM3pE1DPMEXQ+FLhNUFnxl6CSP9X0kCoyoEemnSZXjw8JdnqsZ+yRUbWlUtZ1eGSyXbUJwjCQREQUeAyyiVqS0oT4o500Oj5Rcp3Vgv1zmwJ1sRTlNZ23xfz0H4W/dskTXOYobuGew3hB025TieB+KFDJZDmrb3ys2ATf1zpZcH9EcsIkxC5Yni0zELLZfd9Xl5vUbbyQMTKLcsm7qw/EWqRHS16uDluuwqR12rCg6joe3r0adRIl4hldERAQwwCJqVWJkKqf5w1vDT8OdWcPQKzZBcpu82kpNx0wOj0R2QqqzgAcADIpPEd1WmEka4zGPlnc3+HbYJf/wrSjKbz5vy7Hv7z8S3WLiFY97TY8BAIATddWq2iFdMdLVhZ17IVbmc5cLcIXBiVhWRux96KS6IqPreePN4RLbKSuor5U+i0IgNCalA7IFlQbV0lrkwm6346ld67GhtADLCo+L7ic8YlmQfgwhIqLgY4BF1AqpvTn3VWZ0HE5VqHbnXpTAnXuSxGgw4MnscZjdHJAAwP0DRuK2PjkeQZQwsEhxy6L1ik1AcngEzu3YQ/b84m2Sf/+EmZ1uKjM6HZqr3an9ZNSWoBczu3t/52P5cuwt68RO50sbtGZrpMaJAcDh6grJdUpl4x8YMAqDE8QDdDk2DV1VAdfXK5UxFAa7RTJBIxERtW0MsIjIJ30VJihWU8whPiwcZ3bo6pGp6RgV43wc65YhiTSasGDUFNzQe7CG1sIjMuggKAPusKuixPlY7fgzR7Byfid1RSN8Ga9zUWYf52O5rm7CWg9iQbnYZ6M25nI/rVFhv0clxokBQE6idAbKkVWU402gaJHN/HmuEwZPjSLzZLlv48u4RSIiat0YYBG1IqE4iD4jMtolo+IvZ3fs5lFNz5cMjMP7I89wPnZUS0wUZMvUVhR0bJUQHoEvxp6NxweNld1e7RggpbOXypRKt7tksNS+DrXvqWv7lQIKg8GACani854pBelK3P8hU/POWmQyr2KfjfC97BAZ47EeAH4UTCngr7nUiIgo9DHAImpFHOWs48ICOxZLyUWZfXBV9/6Y1rG7xzott5ly44lSI6KwcPw5zudWPwSbjm6Io5IznMvcA4fre4lnzISBSaw5DGaF8vpqSomrES1Tit2lW5vI+j9O5nks8y68kt4zKy4JTw4eBwC4rKt49UafuX1G7m0TK1cvl8ESC7CEH5dU8FQvyGwpldYnIqK2i/8CELUiN/fOxsjkDDymkB0Jhksy+2CywngtJUohhzALo7V8t5pzOIIp4e2z+/aS3dk0JiysXtXH08b1PfJs4KEa6bFPSrpExyE7pWVcVa1IZb30iCi8kDMR2c3vmVRg4m2o6ah46P4P2Y5y13Fb1SJts8iMwRILsLaWFzkfO65Dueyh/Ng4IiJqyxhgEbUi6ZHReHjgaPSUqeoXTGLd0LR049MSNHl7++ro6vX28Mke5dfFWuqeVZOq6Ke1Q5hY6fvzOmkv2CF3ZrvLY893bLQgU6eVyWDAe5OmOJ+LFQNxP6NU90P3z/1iwRgzoXD3rKAjIHa7xjaUFojuLyTXRVCpAIbNbked1YIr1/wiuY3WMvBERNR2SPctISLSyNfqhikRUQBcu3S9MexU0e52csFY//gk7KoolT1Xl2jPcuRGkRt2R9bl7eGTUVRfiySJOcHcgweldyIhLAIGuHfj89xLaWJmufhV+B6JZY8mpXlmHPvHJ2NZkXgZcjlqusQpFcJw+Hv3/vgqb5/HcvegxXFGb666j4/sRoWlAf/Xc5DIeZT3VyrDrnV+OCIiajuYwSIi3VQ0Nngs03Lze2lmX1zYuSeez5noXNYtJh6dReZmkgs7+sUl45PRZ+Gt4ad5rFPTRVAotTno6xIdi5wk11LjXQTtct8zRcVkt5nuWR+RN8uXTIhwz0iZsVpC53Tq7tW5xN479yDD18p67u+FIxBWOu6sbv3Qo3kus9PTM53LFx076LHt7ydz8WXeXtnj2ezK5WYYYBERtV8MsIhIN412z/LVWm6po81mzOk5yDPwEKF0A5sYHoEwkaxKeoRnWfaezTffvWMT1TVUjNsL7RAZg0skuro5uGfhooyeQZBSgCX3/rq/Ry8KAldAfJyQcHJnx6NJaZ1l2wAANdZGj2XuR9d7/jbH8ZSOWmVpwPNDJuL1Yad6BMnuXtq7GSfqahTPrRRisYsgEVH7xS6CRKQbsZtKPUqpi1FTsl4ssxEm0t3wscFjsbm0CBPSOgJQHxRGGE3OxyfrajwCtJzENHwp0tVNyvQuvXC4pgKri084lynfqEu31j2Acg9wlILUizP74sru/RTO32R/VbnHshKZIhB6UiotX22xIMJkQveYeBxxm9S43mrF2we2od5mxW19clSdzwY7lIpAssgFEVH7xQwWEekmkN2iTCrG/KjZBmgaDzUpvbPq7R2md+nlfCwWCKmZG8qhb1wiYsxheGDAKJdtfOoiqLBroOdVa1QYT6aV2Jg5Ma5Bteu2y4qO4deTufir8Bi+O+7ZZVCMHcrXup4ZrD2VpdhcWqjb8YiIyL+YwSIi3QxMSAEAJIZFoKxRvgiAt+7pNxzrSwqckwLL8fdkrzGCioIjfajIB8BlYmKzwegsI65Y5EJmXYTJ5PLc/ZZfKQuj97sXbjSJLvc2FHG0TyksFhbgcL8ktpS1lF/fUVGi6rx2u10xQ6Xnjw13bF4GAPh+4vm6HZOIiPyHGSwi0k1yeCS+HjcNH49uKd+t9036xLTO+EfWUNnskCMz422ApfbWuMrSUtRDLHgQ/oEdn9pR8jjx5nBEC4K11wXl45Vu1OVe4rmdemB8akfnRL/uQUGgCzGkNRcMcTciKd2r4zleu1IGyyDxGHC9RtaVnFR1XjuA307mym6j9r3dUFqAt/ZvVbW9t3O/ERFRYDHAIiJdRZrMLje8SuNj9JSd0DSh7dDEpht29wDLvciDFKWb3dPTM9ExMhrxYRHOZWLBnPB9+EffoZLncS9fLiwh70tXsyiTGff1H+mc6Nf9Bj3QXQTF9ItLwmCpyZsVOK4tLf+QuV+P3hTesNvt+J9IBUIhq8r39uHtq/FD/mFsUtEFkOO6iIhaB3YRJCL/Clx8hQcHjkJudSWy4pMAeI6B6huXpOo4SpmCf2QNhd1ux+Yy+Zti4dnDRDJcjm6AcmO/pAKsm3oNxo8njmB8aifZNghp7iIYgM8uPdKzqqN28g21yHSz3F0pP1+aGDVhjtbsYL3NorhNRWOD5DxsREQUOpjBIiK/Epsby1+iTGZncAW4Bi53ZQ1TfRw12Qc11RGF24j9sR2d3AEAME6m+6DUjfq0Tj3w+rBTEaVyfiuxYyllRALRI+30jEzljSTk1lQCUJ7AeGVRvvOx+8fmOIYWajJ/2gMszykO3F255hcsL9Q+CTQREQUWM1hE5FeVAQyw3Am77QkDLyVqb46VthJ2PxMLyGb36I/hyekY3FwcRIzarmZqeGawgtvl7PMxUxEXFu71/lWWprm3lLqh9oxNcD7WIymnlPkDlIuTuHthzyaclu4ZbLpnU3/IP4QJaeqzlkREFHjMYBGRXwWim5kUYRfBWLP6G3m1cYf3M1Q1CTOaMCwpXbT7oIPWG3U5nl0fvS+goUaOwtgqX4IrIaWMUoTL++v7BSnX5dDhkNt8W2pcsXoxzl32LeqsLd0FD1S7zi8WyIwwERF5hwEWEbULsYIqfUr0KiagxyTLes6nJNQvLklx/NaOcuWy5TO79AYAPDxwtMc6PQucRJmkg9A/Th5VfRyl7oRqbCgpUNzm89y9itvsrypzeV7eHDz9JegGWGd17TpYJ9OVsNFmRbnE9Agn62rQaNN3HjIiIhLHLoJE5FetsbJ0gk6ZFX26o+n3BvaPT8aA+GSMSemAGc2BkZzt5cWK21zbayCu7jFAdJ1e2ctB8SnoERuP744fEl2/zy1QkWuHHkHf0doqn48BAMskxlMJP/Nwo9vvoDKXw/+t+x1FDXX4cuw0RJtb/nk/WFWOWzctxaD4FDw9ZLxPbSYiImUMsIjIr0KhFLhWSeGReCFnIlJ8rNimR4ChZwbLbDTi2SETNOzh27n1ymANTkzBgapyyfXdY+KxR6YaoN5TBcidS4tjKgK1GJNr5rXWKl1tsKihDgBQ0lCHaHNLqf/dzRMob69QDpiJiMh3DLCIyK/UFATwp+eGTIBZpgy6lCyVJd3l6HFj768ugmrITeYciP2dx4EBa2UmAf579/64f9tKyfVyEw0Hy58FR7G6+IToOmEXVffuqhUW5TFY7t0g5cb4yWm0Wb3el4ioPeMYLCLyq/Ag36D1j09Gn7hEvxxbKcPlzSS27oJZ6S8lPCpo5xZSGssWo2F8nR7j4vTwwp6NkuuEQfXyItduhPFuxVpKG+qwq8J1rJxwegKb3Y7Pcvdobt97B7dj+oofcKK2WvO+RETtHQMsIvKr1thFUK3M6FjZ9Xrcy6upWKe309K7AIDG7oSeTLplsOSFRsjkKi0iCvsry5zP7XY7lhYcVRWwCMcA5lbLz9N19drfcNeW5Tgu6G4orDy5ujgfhfW1GlreZNGxgwCAvwqPad6XiKi9Y4BFRH4xPCkdADAgPjnILfEn/9/a6xWkaHFH1jB8P/F8pET4NgZNr+xlnsJYJaWuiMKsVaAq6RXW1+L2zX9hW1kRAGBbeTGe27MRc9b/rrivMCPXz23+tgpLA2qtFvx+Mhc1FoszAD8uCNwsgn65R33MQFVZG33an4ioPeIYLCLyi4cHjkaN1aKpPHpr48/Q58nB4/DZkT2Y1a2fH8/iX3r9glfWUI8wgxGNEtk8pc9BuF5NZUQ97aooweDEVJyoq1G9j7BbaJfoOI/1F6/8EQDwa3yec5kwT9xot6HWakGUyYyPDu9y2ddqt8Fmt6seW8XS7kRE2jHAIiK/MBoMbTq48rfsxFRkK0zUG+pMXhQXEbOprBCRRhMaJXqbaikmoufEzerO59noKoXJgi02G6otjXhj/1Z0ioyR3E5YFVBYXfCVvZtwsLoCbww71WOfv6/5FWWN9fh+4vkqWs8Ai4jIGwywiIi8ZDQYcGHnnpLFIIJZoCIUjE7JCMh5tPSibAhwwOAIsIRNfHnfZtl9nti1TjZjJ+bZ3Rucjw9WVwAAVhbne2xXJjERsdVux66KEmTFJbpkt5QCrD2VpUgKi0B6ZLTqthIRtXUcg0VE5IM5PQdhepdeouvaW3g1q1s/RBhN+HDUmXhz2GkYm9LRY5uPRk/x6tgzZSZG1lKt0Zshbb6Mg/siby8OV1dgv2AyZKny7EJagispcvH950f2YHt5MRptNmwrK8J/8/bh3q0r8Nb+barbUdZQjzs2L8M1637zua1ERG0JM1hERH4SjAqAwXRZ1764NLNPU1GJCPFtok3a/9npGh2H8zv3xKdu5cbNzYGPUvwjXD2tY3f8ciJX8/kPNWeFvDF34xKv9/WF3Nvyae4eIHcPzuvUA98dP+Rc/ntBHm7tm+N83mCzSh7jRB1LuBMRiWEGi4jIT7yZ4Li1U5pnSm026Ons8c7HaRFRonNdpUU0dUvTksHyJsC7p98IxW3uVbFNoFVZlCsALi1wLcPunvWS6yJYLRj3Jed4bRXu37rSJYtHRNSWtb9//YmIAqRbdBwu6tIbDw4YFeymhIwwown/13OgYkAyKCHF+dgxlm1qh24u2zhiNWFQN72zeHdNB2+6baaqKFc/Ia2TF0f2r0iTCSOap0vwlh7jCN8+sA1by4vw0LbVPh+LiKg1YIBFROQnBoMBs3sMwOiUDsFuSki5oHMvTQGJrTksmttniMtyRxBmENlWSBiAJZjDPdYDQHeRcugORoMBV/cYoLa5IaNrdLxiQFlhka9oKEdt3tBR6MOXcxERtSYMsIiIKKSJJVEu79oX1/UcBMA1gLK4dWnrFZOAKwVzicWGiQdYo2SCYCMMSAyTGFQmEBZiXULtsKNeZgyVGBvsLqXs7TIhmtrkVjC6ypY31GNlUT7s7biS54aSAty+aSmK6ms171trteDTI7txUsP8bUTUIrT+NSAiImqW0TzGKjHcM7iZnJ6JyObxVMJMisXthvqVYZM8Soj3ik3wOJ7cXFpGlePG/jPubLw7YrKqbQPh+T0bvZpY+fGd65yP5cKTz9yKjkhR+/4BwPLC48irqVS9vZQ7tyzDk7vWYVnRcZ+P1Vo9vGM19leV49Mj6j4nof/k7sXnuXtx/9aVfmgZUdvHAIuIiELSo4PGYEpGV/xfz4Ee64Q37cLgaHhSmuJx7xMZ/1VYL/1LvdrwINxoQqeoWJVbh651JSedj+USQHsqS1UdT+37l1dTiad3r8eNG/5UuYe0/ObMy8Gqcp+PpcRut6NRY6Yw1DkyVydlvhdEJI0BFhERhaTO0bG4tW8OksI9i0xI3bSPTemI14edKnvcDlExHlmsPwqOSm6vVBmxrWuwWfHc7g04IAhWCjR0HRMGw0sLjkl22ytrEJ8E2ReB6CD4wp6NmL7iB5Q21AXgbNp5c/mGGXl7SOQLfoOIiKjVkep2ZjAY0D0mXnF/ParjBdIlmX2Ccl477HjvwHYsLTyG2zYtdS6Xmly40WbD8doql2XCMvrP7FqPL/bvxv1bAlO2PRBjsJYUNpW631Fe4vdzeUOu1L4ULd06icgTAywiImp1hN0C5QoxSLFqvPEO9u3myqL8oJzXDmB18Qnn86M1VaKZpi1lhQCAR3eswXXr/8AOwdgv93v1l7dtxOayQmfZdqvdjgNV5aIVIPVof6DU2dTNCxZof8pkZ6W0th8giEINAywiImp1wgVdmCKNJs375+pQSEFv4TLdso66ZYUCpditAt0NG/7ArDU/e2z3r22rAACbmgOtzc3/D0hPBF1jbZoI+fMje3DbpqX4T+4+XdosFMhAwR/tV6usoR5Ha/S7RrT+AEFErhhgERFRq/HooDG4uXc24gTl1mPDwnFvvxF4KeeUILasxUVdenu1X4MXXbn8Lb+uxusxaFWWRly88kfFSn6/nswFAGwtL3Iue+fANsXy4sdqqvDD8UOy3QDFsmLlDfWos+qTbRKeu6wxeGOwZq35GTds+AO1Kl7XW/u34puj+2W3sdhD71okak0YYBERUasxLCkdZ3fs7rF8Qlon9IlL9Pq4/eOTPJYlhkU4S8VrMbsVTkosZ6zKibIPVbcUwbDbgQ8O7pC94XeU1Bfr4vnd8UN4fvdG2fNdv+EPvHVgm0sXRnfuGaxGmw1XrPkZl69aLHtstQ5WVzgf11qtzuIfX+ftw8PbVwe8q51SWX6LzYYf8g/j34d2KmzX0u72OJeY+3x6RFq1ywBr27ZtuOCCC5z/DRgwALt27Qp2s4iIKEi6RbsWxng6ezwWjD4T7448HYB3ldj0dH3PQbhXpLy8v3WMjMaP+YdVbXvLxpYiGF/k7cXyomOq9pO6f99eUYxdFcqFIwqaM10n62o8Ajo7mjJWji5vDc3l1Bt1ytDUu53vmnW/YXnhcXx4eBc2lBaoar9Le+12n7rniQVYyYJ55NQe2eIy2XT7sqooHxeu+B5LvRi71tZ8mbfPZdoGUq9dBliDBw/GokWLsGjRIrz55pvo0KED+vfvH+xmERGRTqZ17I6pHbqp3j7WHOZ8bAAwKCEFJoMRJi8jq+yEVK/2k9IpKhYT0jrpekw1YsxhXt9g11rVzQ0lV6Tkri3LATRlnqSq4dlhR2lDHa5d95tLpUOgaazdFWt+xrwdq1W22ndP717vfLz4xBFN+z6xax2mL//eGQhqFdM8+baQ67Wo7tMUvtfeFJEJVdvLi1GuMB3AE7uaJtp+bo98BrW1qGpswDO71mO3xmD/RG01Pjq8C/N2rPFTy9q2dhlgCS1evBhnnXVWsJtBREQ6uql3Nub2GeLVvnrcTqZGeM7d5YtgZdD2+3mi3hN11ShrbFDcbvqK7zF9xfei6+x24ERz17zjtdUu6xwZnY2lTUU39Oyy12izKmb3pAp8SFldfAI22HGi1rsJfjMiPbu0Ckuuq331jfaWAM8l2Arh7oL/t+53nLvsW8n1eytLce/WFbpMZN2afHl0H5YVHcedzT9WqFUjyM4qjYd02FRagPu3rkR5o/5z2rU2IRlgrVu3DjfccAMmTJiArKws/Pmn55fh008/xeTJkzF48GBccskl2Lp1q1fnWrx4Mc4++2xfm0xERK2YsBhClEl9VcIIown39/fsunexzvNWab1Rby3mrPtd0/Z7Kks9li08dsCZ6QLk533SM8D6Om+/cw4sKd5O2OuIiTaXFmrqopUQFuGxTBhgqe2yuKui5X3+q/k1ris5iUtW/aS522Og5Nc1BddSBUwcVRYrLMoBfVty0MsfSYTfldlrf1W1z4PbV2NreRG+yN3r1TnbkpAMsGpqapCVlYWHHnpIdP2PP/6Ip556CjfffDMWLlyIrKwszJkzByUlLV964Rgr4X9WQZeFY8eOoaSkBNnZ2X5/TUREFMIE991PDB6nerevx03DuFTPrnvCLocOM7r08qppQPDHgAWT8IZeLLNT0uBave+69S1BW6eoGJd1Vh/zk0eqK3DD+j9wrKbKWZJejqOLYEFdDSpVZOoc7t26Ao02Gx7YvsrnLlrC4LzGolxlMM9tCoP65oD16V3rUWu14N0D231qj7csNhv+PJaLGkuj7HY2iY9Y2N134dEDuGXjEtSr7MbamuXqWL5frTqF9/VwdQW2lrVUDVX6TFsjz866IWDSpEmYNGmS5Pr58+fj0ksvxcyZMwEA8+bNw5IlS7Bw4UJce+21AIBFixYpnufnn3/WpXug0Rj8f/kcbQiFtlDrweuGvNXWrh274GX0S0j2WC9VqtxkEv+dMlwkC3Z6Rld8c/SAV+0zGY1t5r3WSpidMhiVr7lCQXcmYUBhNBrwe0Ge8/mSwqOYnJGpqS03b1wCoKmCoVqHqsudBUB+nHSBqn3KGxuwqazA+XxHRTH+fXAn/tYtCyNTMqR3NHi+PwaDASWNdXhz31b0iGkp5iL1Pm52CxztsMNoNKC+eVzYvqqygF+LNZZGvLF/K/48eRQjkzMwb/AYyW2lrpEwwXfyg0M7AACbygtEfyBxaAvfuQlpnfDtsYMAxF/PuuKTSI+MQrcY10I/BrdttbwXVthkt5/b/D36ZsI5+OboAXxyeDfmDRojf217KVj/VoVkgCWnoaEBO3bswI033uhcZjQaMW7cOGzevFnTsRYvXowHH3zQp/aYzUakpMT6dAw9JSXFKG9E5IbXDXmrtV47EUaT84YRACIjWzJOYn/TY6vFx1RJ/f2PFskUdEqNF9lSncSEqJD6tyZYNlYUYmb/fqq3LxOMBUlJicX2nS3ZsOd3b8S5ffsgyuzfW6HPjrV0l9LyGdYLkqD3bFkBAHh4+2qsmXGF5D5x8ZEe5yiw1OKq1b8AgEtJ++TkGNEfDgZa0gHB7wDR0eEexwz0tThn8SIcb87ErCs5KXv+hKRoJIR7dpU0VHr+GJIQFy15rB5xCUH5zhXV1uL93VtxVd+B6BTj+/kjj0r/bVtx4hge3t5UAMb9uiowuo6jUnovlh5v+fEiPNwsub1wHF9sQhQ+Wb4bAPBbUR6m9vU+y68k0P9WtboAq7S0FFarFamprhWaUlJScOSI+mo9x48fR0lJCQYPHuxTeywWGyoq1A3+8yej0YCkpBiUllbDJpUfJ3LD64a81dqvneeHTsQtG5Y4nw+LTcXnAM7IyERxsWeXmqoq8UlkxbYFXMcBZSek4rzOPVBRJv9vhQHSRQgqK+pQbAh8V59Q89uxXPxT4j1XUlxchV0lrmXMF+87gFPSO+vRNEmrTua7tEGtqmr5a67OasH28mIMTUpzriuvqEWxuQon61q6Um4qKvA4BgCcKKpAuNEz02qrdf1xYNPJk5iS7JrpKyyqdBnb5W/H3bq5yb2PxSVVsIR5djl7YqNnV8vqqjqXY20ubcnehcGg6fPSy0NbV2FDaQEWHtqvOuMp52RFy2twfz1vbdssua680vXvlWN9RWMDbt+4FP3jk2G12zG9Sy+8tnez65xw9Y0oLq5CRWMDqi2N6CjoqntCUIimpLTlcWOj1S/vt97/VsXHRyEsTHmcbqsLsKTY7XZNs8136tQJv/32my7nDqWbC5vNHlLtodaB1w15q7VeOz2i4zEyOcNZQKB/XDI+Hj0FiWERoq9Hqnqa1Gs3Cca9nJreBWNTOqK4XvyG+bY+OThZV4Mu0bF4Xqo0tL3pXO6ZNwAwGwzOSXvbA2+vN5vNjo6RMTggmBB5b0UpJsh0EdObXNvdC3BIbetY/vyujVhZnI9rBBNb22x2rCrMx2M71yq25f/W/o4uUbEYm9oR0wSTd7ufd31Jgceyd/Zvw5yeg7CvshS9YhMRZjRiTfEJLDx2AA8MGCU6BtHd98cPoc5qwZkduooW57h3ywocr6vCR6Ndh3IYRNootKWkSPWUBo9sX4PvJ57vfP5V7j7nY7td//s7u92Oz3L3oH98MoYlpYtus6G0JSDWev4tZYXoGBmDdEE1yaWCQiwexxM8dV9ndSsW41j/4cGdOFFX46zc+ZdIoZelBcdwY69sXLbqJwBNY1Ujm6cQsArOIzyH0ufqq0D/WxWSRS7kJCUlwWQyoaioyGV5SUmJR1aLiIhIraTwSE0/1I1L6ahqO8c8Qu5zan0+ZiqeHDwOZ3boilnd+8EgUynQMS/Sx6PPwoejznRZ1ynK+25E6RFRXu/b2nx8eLdH1sVRPdJqt+OXE7keBTPc9YjxvpunnK1lRTh/+Xcuy946sE102+WFx1FjacTK4qbM2L8P7XSuswNYUXRc1TkL62uxqawQb+53rcLsfgt6enomfj2R67Lsu+OH8N3xg7hzy3K809zOx3auxfbyYnx3/KDiueutVrx9YBs+PLwLV6z+WXSb7RXFKGmo95g82mSQv3V1H0OmRJhtFlYTrbVaFMvSX7P2V3x8eLfqcx2uqcDnuXvx0HZ187I5gu5dFSUoqJMv3Z9XU4l/bVuFa9apTx7IzXHmHvCvKzmJN/ZtUT2324uCH4uERS+E77HwFEqfa2vT6l5NeHg4Bg4ciJUrVzqX2Ww2rFq1Cjk5OcFrGBERtQvvjTgdF3Xpjdv75qja3nETEeM21icuLBzZiep+GHQEX9FmM1J1DIou65ql27FC3X/y9mJfVZnLMsf93X9y9+LVfZtx1ZpfPPYTFsrQYx4osWN8eHinyJbint69XrJsdl5NpeYAw517+37MP4xX9m322G51UdN4rsUnjrjMe7TomHSAtbeyFLsqStBoly6l794G9/aYDAa8e2A7fjh+SHQbs8YbdYugLcKg4mhtFV7cu0lyvw2lBSior8V/8lxLkpc31OPeLSvwSHMQJWybUnU9d3M3LsFNG/7EXVuWKwZO7x/coenYgPi0BTvLi3Hl6p9dqvwBwLwda/CThomz1wqmF3CZi01wSmGAJzep+47yYpfum61BSHYRrK6uRm5uy68lR48exa5du5Camoq0tDRcffXVuPvuuzFw4EBkZ2djwYIFqKurw/Tp04PYaiIiak0mpnbCupKTmNqhm6b9OkbFYLagW5ayppuIMKMJ2Qmp2FpeJLqVXPLMH+NdPh1zltcT2gbT+pKTGJGsU7Wx5vu7L/P2ia5+78B2LDp+EH/v3h8Xdu4F+bBAWbWlEZc2d5v677hzUGNtRLQpDHsryzQdp0ZiridhNssb3x07iGK3LJ5FIhgSXpPzBeetkim5/c/NywA0XXtyGlyySq7qbVZ825wlO6dTj+ZtWm7UtX5XhAGQ1S3g+LPgKO7IGia630m3Sa2Bptd+xZqWjFyjzYpr1/2O0ckZuLJ7f5eKmO72VJYiwRzusizXrWS+nG1uf1fsdjue2LVOdh/31wsAL+3dhNLGenx0RH1mTonwExFeT1aZ917onq1NRV6E3TlDXUgGWNu3b8dVV13lfP74448DAObOnYtbbrkF06ZNQ0lJCV599VUUFhaif//+eP/995Gc7Flal4iISMxp6V2QFZeEDlHK1aV8SVwIbxCTRKqbqaFH5sRdQliESzGE1uKRHWvwxdizdTlWz9gE/HEyTzKIWNR8I7/g8C78ejLX5+mefxF0tfsybx/+k7cXESKFJoKhzmrBOwc957iKNplFAzqr4D0TlsZX48tc14A2r6YSmdFxzufCaodqJocW3pxr/YyEx9+pYRJlk8gk0sVu78PCYwdR0lCHn04cQYZgXJS7eqsVdzQHn8KxoVoIhxftqSjFXVuWKf4gcMQtgLPZ7cj3w98Em0RXROFSm92OBptVtPBKaxSSAdbo0aOxZ88e2W1mzZqFWbNmBahFRETU1hgMBnSO9n8ZZpfuTiq3u7ffCMSHheP+bStl9mgidUM5Ob0L/ig4Kruv8Nf+1PBIFCmMQQoV7uNyvHW4ugILj6mbm+x4bTU6RvpW6tkx/xLQMoGye9GSYJGadFfqmt0hCEa2lIlnZZcXHkdpYz3Oa840Ofzs1tXs0R1r8N7IM5zPf8gX7/4nRRhgmUTmO5LLjtTarIgFsLIoX3IboCk7FWUyw2QwoKi+Fq/t2+Jy/JN11R7Zs48O73I+LnALvoTF2YRdV1PDxaeEaDqPTWasUstrvGPLMtnXIuW3k3nKG3lD8PYLf1D4Irele+XK4nzMWPEDbukzBGcJehW4dxfVMk42mFrdGCwiIqJAc1TA8obw1k7uZlHYNWtCWidV47O6x8RLdmFSM2hcOO6htQRXgLqshhpiwZXLPD1u1fCkfon3hlRX0WARdm0T8jaY3VNRiqd3r8c7B7bBare5ZLzq3IJK9+BDmElS854Lq9ENik9xWbe5tBAXuBUQEbp67a9478B2PCnTna68sR6XrfoJdzZnmdzHmeXVVOK69X/gtk1LJY/xY/5hl+eO7oKlDXW4t7kLHADZ8Wly173a70SDzYpGiaB+Z0Wx6HJfCT9DYTvdA22gqVsuACzOP4IDVeUuwbtcoBxqGGAREREpGJmcgUlpnfHQgFGa9xXesMvdLEZ5EcS9PuxU9IxNEF0nN2jcwehDp7c3hp3q9b6+kqt+5qsr1/yClUXH8W+RogF6BXbBoqZ8uh5u27TUJYvy7bFDLuOq3Mldh2oqa68rbelS99aBbXh851oU1NWgqrEBD2xfpbj/IoXKh0eqm7rSOTJN7tff3spSAJB9je52V5aisrEBRW7TN8hlkcQCDLvdjg2lBarHB85c8QMuXvmT6Dp/Xd7Cw64qls8UGg0G7K8qw+v7t+C2TUtduqdKdeUNRSHZRZCIiCiUhBmNuKvfcK/2Fd5crC8Rn/TVfTs9qBnLIFcaXkkwxw49vWu9345d1liPJyWO39oDrEC1/kBVucvzDw7twESZuankfgtQymBZbDaXOeYK62tRWF+L/Npq0fm1fGW32z0CKW+vi10VJUiS6RKoxl+Fx/Cc1Px5IuxoClTOXfatyDr/XCHC9+dDQbdJMTVWi0vxnRprS9GU1pTBYoBFRETkR8JbAtnxNhpuHjpFxSjebFyS2Qd7K0txade+mLdjjeg2ESYfgqQgDoXY73YDHyit5/ZOnD+Kpagl19VQLvNjVchaXLjie9HlZY31HkUcvCUMPOYf3unR3c89C6VWnc3q89dod3P2TA+NGjJwWpQ11uNAVTkSwsKVN0bTVAQOwvLsrSmDxS6CREREfqT2V+EJaZ0Rbw7H7O79RY7h6u3hk/HeiNNlj5cYHoHncyZipEhJ85jmrmLulc2eHDxOVVsB7dmv54ZM0LR9KFKaiDjUSV2JUgUu9OTtzbtVTR9BEXrGkhZBG7456jlu7wu3ubDU+lghm+PODmBN8QmUCq5DLd18leaS2lAqnWH3xe2b/sJjO9fiTpky9VLUlnIPNcxgERER+ZHa7kPxYeH4bOxU0XXu1cn8MS8WANUTHwPaE1j949vmVCpTOnR1Kb8ebN2i4yQzN1IZrJkrf/BnkwAAJ+o8541y6BgZgzqrBU/sXIchbtfgmwe2enU+q475xsUnDut2LKH8uhq8tn+L8obN1hafxHN7NiAlPBILRk8BoK3witJ4NKn51YIpWdCF0uKnDJs/MMAiIiIKkBhzGKplJmKVorZrjWoiN9qfjREP7qRoKZccKnM9+YMvhUL8Qa5YiiWIGYBfZYo35NdV46KVPwIANpW5ZlmkSsAr0as75AcHd2CVYF4uvbmPV5NzqLpp2+KGOhTV1+JQdQV2lPun8l+oyBcE5q2piyADLCIiIj8SZrDGpnTQNNfMq0Mn4UhNhcskrHLGpHRwmaTV4awO3VxKIgtvPe/rPwLRJjPiNQZxWsKKJwaP1XTs1iSUwqtEhc8wmDeo3kyeq0SPsuVK1M6TFgjrBV34btzwp27zwQHK84AFy1rBddOaughyDBYREZEfCW8JRiV3AABMSuusat+esQk4LT1T9bm6RIlPnHxLnyGSbRqf2glDk9JVn0MoqrlIRkZEtOx2sWadM3AhJJQmPrXZ9Z2rK9TJBVFt8V04XF3hfKxncAVAdh6wUMEMFhEREQFwLZc+NqUD3hp+GjpFxfjlXHI3lfHmcFRYGnQ7l9FgwLsjTkdeTRVKGurwvEypaLOxKQi5tGsf/Cd3n25t8FZCWDjKG/V5L/JrpccWBVqFpQEVlfp9xqFOLqPR2kvqkydvC54EAzNYREREfvDooDEYl9IRZ3Xo6lxmMBiQGR0Hk8E///zK5VLeHSlfddDdC0MmeixLdJtXKCk8EtmJqYqTGjuCzIsy+3isiw9CditOx3Mera0SXR5qY7PaIrkS7v6cjJqCQ2s35mBigEVEROQHw5LScf+AkYiUKTqgN7nqgrHmMOQ0V2hTUzQjLixMdr3wTEoBY1xzWXix9l0lUpbeWxNTpSez9Zfi+lrR5f3jkwLckvZHbjwjM1htT3qkfFfkUMIAi4iIqI1QyiTd2icH41I64qEBoxWPpWWeq34SwcQ/+w7FZ2OmIqw5gyV2xKTwCJGl3jm7Y3fdjqWWVA7FX1nKQBnYCsrqv3twu+S61jNah9qi1v3tJyIiIqcOCr/wpkdG4/4BI9E1RrkqYZhR/BYhuTkgijW3ZLikutxFmkwu3XrEAkCpMK6rysqJoUquXHprcFnXvsFuAlGr1bq//URERIT5o87EsZoqRJl9/2f9jqyhOFJdidSIKNH1H4w8Ew02qzMrBchlzgxuz0QCLMG+M7v0xn+P7gcATO3QTTZDIaZbEIKyjIhonKyvcVk2Ob0LzBIBamsR1obnLiPyNwZYRERErVxaRBTSIqKwp7LU52PJlYU3oCmz5Z7dMhoM+PfIM2AyGPH3tb84l7sXgBALOpIEhTPKGupbttVQ/nxSWmdc32uw6kHwehZAEDvWrX1y8PaBbbqdIxhad3hIbU1YK+ty27paS0RERJKCWbcuPTIaKRGReG7IBOeyDTKTy/5fz4GYmNoJveMSncuE3Q7lCna4O1Rd4Qyu/tl3qMf6MzO6eizTy+iUDh7LzEaj4ni4UBdK83sR+WtqC39hgEVERNRGdIlq6iI3KCHFL8dXc8/dX2VxhLM7dsc9/Ue4LBuY0LKvUeYX69lulQdzayqdj7PiPAtu+DNWGC9RuVBLgBhKBsWn4KnB41hmPoQEozpmqBkl8kNGKGOARURE1EZEm83477hz8NTgcX45vtbK1xkayyoLK++ZBPf3z2SPd3YlTIuI8uiiKJxLq1NUDKZ17I5RyRnOZe7BQqmgK6IvPhx1puRrlCoSAgBDE9N0Ob8/PDhwFAYnpnoEpXdlDQtOgwLg+4nnB7sJkm7tMwTLio4HuxlB1yc2MdhN0IQBFhERURsSYTKFTPeuczv10LS9sNXCDNbAhBTn+C2xVyY8j8FgwE29szExrbPkeWqsFk3tkpIaESWZ55HrlqjX+f3B0bXRPSgNlWuqvZnSoVtQz39Zpv7VJD8fM1XzPmOZwSIiIqK2SOs9doQPleikuqgZDAaPshJiWwpvcJS668WY5SdV9kaXqFiMTemAq3sM8FiXLlGhMRQ43iv3gKo9dRn8etw0vx17/qgzg5INPC29i1f7+SOuDvfi70JrC/AZYBEREZFfmGXGUQm7GyaHRyI5PMKlW537/ZSteQcDPLsqivdcNIg8Evfu8MkKW2hnMBjwrwGjMLNLb+eyDpHRuK1PDv7uNoZMSq/YBF3aco6GCZgdgZT7e6bm/ra1zV02Ka0zLs7s47E8UsMcZlpvpNMiojApvQsu7NxT456+ub1vTkDPJyfC1PanAGCARURERH4RLTMvl7DK3vxRZ2L+qCnIFoxNcr+fd5RDF5tLS4wwIFDaJyE8Qna9HLmxVu66RsfhzA5dVRfAeGXoJG+b5fTfcefgfA038y0ZLNflYu9hb7cA8MnB43BJc8Dy8egpGlsaWDM698Jd/YY7g90YLyaGntG5l6rs5+hkz+5tsRKTc4txL+riDbXfG71kJ6Sq2q61T8gthQEWERER6eqZ7PH4R98cJIVHeqz775Tz8eqwSS5zYpkMBud/Du43hI6slcHgOfeU2Pxawi5tevcumpzeBQ8PHA0ASAiLwDU9BmCSzJgvB0erA1VhcERSOiJMJk3d+xxts7qlCWusjbjUbTxOstvnazQYcFX3/vh+4vmin30ocf8Mhialaz5GZnQcHhs8VjaYGJmcIZo9smuoGBMf5v0PAA5arrhPx5zlfCxsptlgVJ2lNKo84YMDRmloWevBAIuIiIh0NTAhBadLFHnoEhvnMveVuzeHnYaXh57isTyxOcsU5/bL/5DEVMUucGp+vb9Tw7iYf2YNw0hBlcIZXXqLzoflS3uknJEhPRG0O8dYF2/iuWM1VR7LruzeD4PiW6YAsLkFCa2pNL0ebY0ymdE7NhFPZktX7Tw9PdOlOqaDTfAjQbiGLKg3Phx1pqYxTAluAd3ZzYU23h0xGW8OP03VGLJAZ8xCDQMsIiIiUsn/N01dY+LQOzbRIyj4R9+hGJaUhjuzhrl0r3pi8DjRblouXQRVNPvU9C74V/+R3jZbE7W/7ovRcuPqyPR5U6DCPb9ia16wvaLYucw9y+Xvm8q7huj3+XhUSdS4/9QO3TA2VTmodn+PHISLP5WoqhfVPFZpU2mBxta16BgZg1Qfi6rc3GcIFo4/F+nNUxKIBYzuWlOw7Q8MsIiIiCjk9YxNwKODxqJjVAxOTe+M09K74Ons8ZLbu5R8V3n77O+bQke3MLnzKM33EyMzrs3d6c3ZLm8qsLlPVu2erQJcszCA/9+/i3rpVzLcva0ap3jDTb2zXQKNVyXGy9lgE10u7OYqNQ7JEUyXNNRpbJ3+hGMN1XzO0W10bJVa7fvVExERkWqB/E1abohKuNGEOxS6KYUJSkGrbbfJhwBByyTMcgHfBZ17wmK3YURShuj67jHxLtsuOnZQdLuPR09xjoNyP9upaZ2xpPCYbBtj3bKCYm+NRwbLbaPU8EgU6RQcvDzMs9uoL3wNBt337xmbgKy4JFQ01qOwvhaW5vfGareLZiylMltCjm6nFq0zfLvwZV+gwW71WDYyOQM5ianYXFYkuZ+W4i9Kzu2obT69UMAMFhEREYUc90IWWg0WZmBU3kv7NteO+vbK3dybDUackdHVOebslaGTXMaY2QSnkWutsMiEe7dCNfMQuQebYudyz2q5n+fJ7HGIU6iyp7ZoQmq4vnOHuX8Gevx48ELORLw38gyXK8FqtyPSZMblXfvitj45zuXndOqBeHM4buqdDaCpMIzQAwNG4ubmdeYgdrf77USex7IwoxGPD3Ydd3Z5V/0nJHZIiQjtgiliGGARERFRyPEtvHIdJ6K2i2CgbmO1jKPqFZuAG5tvtJuIvzNykxcLMygv5kzENBXzYnkGgcptdt+nU1Qsru05UHG/YPDnDbBw/jJHEHpFt344s0NL4Ze0iCh8Nnaq87MYmJCC63oOcq4fk9LROR+XcC41rfLrarzeFwDqbBZV203r2N2ly67aa1xuTizHDwtna5jHLVQwwCIiIiJZPZq7pV3RLSvILVFPeHvnnpkSZmcuFUw0KwzEXh92quhx/9ZV/D1QMzmtWGgUYzJjQHyyYBv50NI9M5XYXPFNrnuj8GY3PiwcmSqyRt4UgRC7qfSl26VQlIaxZ97o01zZMisuyedj3Z013PlYTVdAB4tdfLxWfFhLUZeBgmtF6JPRZ4ku12qOW0DcN1bd+2GAAakaSvM/NmgMLsvsi76xiTg9Xbwy5t+7D8D3E8/36K7aGjDAIiIiIlmT0zPx1bhpmNJcrjkQfBp2gqa5sWZ37487soZ5BAfC+ZyulJjEtXtMvOhkuX+TCDJHJGfgrA7d8Ejz/FhyhBmlz8ae7dI9TOplvz7sVFzXc1DT3FbNXfxSI6KQ0VzZzfH/YoQxTkFdrcu8YVd164crRIJG96BUTZwk1sVSKZOhNB9URkQ0Xh06ye8T0p7fqSfuyhru/PweGOBasVAuQ+iuQ1SMM9joprILJADk1lSKLheOJ3xmyASP9WaDwdml1FdT3b7jPWLjJbZ0ZTA0ve55g8bg/RGnK14vQ5PSMat7PxgMBszuIf4dbM2FCBlgERERkSjHL8ddo+P8foPrztcxWABwUWYfnJbexeMmP1KiW5L7DZ2WrnwmgwG39BmCEcnixSlcz2/GGRmZuKpbP5gMBlVjv7rHxOP8zj1hMBjwUs4puLxrX5zTsTvu6TccZ3fohtv7DpXcV5iNssPuklW6pGtfDEgQz4oI6XmvO3/Umaq3TY6IQE9BlztvJKqYqNdsNGJSemfENWeLxqR0dK67r/8IvJhzCmZ07qX6nK8Mm4THB43F4ETpSYjduc8/5dAzJh4XdO7pnEZAS7An5q3hp+GlnJaiIaeld5HcVu0PHY5rbHhSOjpExWhqj7Br6bxBY5yPW3F8xQCLiIiIxL05/DT8q/9IDEtKC/i5kzV0N1LiXsVNqsiEvydHFQaNt/cdiktECgOouaHtGhOHK7r1g9loRHpkNG7uM0R2riNhAOe4Eb6iWxau7zVYQ+s935su0bEa9m+RFhGFp7PHY1BCCq7o1k92W28zmed36okHB4zCSzmn+Pypdo+JR2J4BCamdVa9T0JYBHI0fm+ksnkGgwH/13MQxqY2BX3pEeLZSkcA+PbwybLnyYyOc3520SYz/iEIztX+GCHWRpfnGt514bbDk9Kdj/XqXhoMLNNOREREopLDI503dYE2OCEFN/fOxsD4FOWNNTJJ3PxpL+ugja/dHr0l/DXdEVxeLugWqKZdYu/FtT0GIi0iCp8e2aO5TYMSUvB09nhYbDZkxSVhbEoHfHh4l6DNBiSGh+MGlUFg37hE7K0sAwD8o28OTs9oKSgh2nVRw827IyjtHZuAczp2R7aGrJQWVrVZW7emO/a6pudAXNm9v6oS6VEmMz4aPQXRJrPbeMWm/38mezwWHTuIi1QW2PBmMmsHq9vYs8cGjUFZY71L18jWhgEWERERhRyDwaBb9TD3X9OlMljuBQniw8IxJqUDesTE4/Pcvbq0JRA6u3XRcslgibx2Nd0xHbtdnNkHX+XtAwDEmMNwedcs55gw0f0Ujms2GvFCzkQAcAmwzu/cA3MEVfXkxJjMeDHnFJy77FvR9ff3H4EX927C8dpqVcdz53jPDAaDW0VHfYlN5ixG7j11BFdGGDwmgnYnliV2HHtgQgoGJsj/uNExMtpZpdA9S6wl3Ipp7oqc3DyObKggi9VasYsgERERtWnuMUXv2EQAnpPpeu5nwAMDRil2Y9OX72mul4dOcnkufPl9m6vlCYnXrnPXdBSxsXgzuvTGDIlMh7BcvhZaMiJK71i/+GS8O+J0DPIyGxqojmrDmgOLUQrj+Eob6l2ei7VvgES1QWXqX+2zgoIbvnSvDTea8MXYs/HByDO8PkaoYQaLiIiI2jT3m/Ws+CQ8OXicxyS3chMAT0jthGpLo1/aBzRV8/sx/zBGqiiSocQ9CBLe/IoFPEqV/JqO0eS8Tj1wpLpCdXZxdEoHDE9Kx66KEtRY1c2pBDQFRWqpDUlv75uDOet/B6AtaJK7LvQ0MjkDbw0/DR0i5YtEyM0d5SCWlUwKi0CdzSq7n7fvi3sGS2u81RpLscthgEVERERtmti9ntg4Grl7wnv7j9CtPWIu6dpXtOiFHjxuft2oCVAch4gymXFXv+Gy2wqFGY2YN2gM3ty/FT/mH1a9n1IWx5W6EEtrdbtgUDNHWZhbkCz36oUf/Yejpyhsra00unAso3sGy98FY0IdAywiIiJq04RjkPo0dw9U2s4f9Cg97w2lm111Y398e296NZdaVzsvlJaPwr35er/LQapNIklNe8S2aarKp/TGaij+IfiQ3L873WPUzZ/VVjHAIiIiojZNeOv3zJDxqrbzB3/fqF/RNQv1Il3AlAJHLUUuvHVGRldEm8zITlCuwDelQ1evx261B1d0y8JD21er2lbrx+Z1F0G3ddM6dsM7B7ZpPHvbwauXiIiI2jTHuKaJqZ0QLlPxLr55ktnW6vJuWZjdY4DHcqWbvUCUjzcZDJiY1hkJ4dKT/j6TPR6XZfbFLb2HKB6vX1yS83GoZZj8bVhSOhZNOBf945Mkt3FkJbVmZb0NsNzPYzIYXea0am+YwSIiIqI2rVtMPL4YM9VZDlpKZnQcbuqdjZ5+6t4UrHmw/N31US9qSoM7pEVEYU9laUCCK/cxT6HAZDCif1wydlWUYmii54TGjvdFcwZLw7Wi1PX0/3oOwsmda3Fdr0GqM25tBQMsIiIiavNiVWanpuk091Zr4v8RWPqz2u3oGZOAA9XlHkU89ApkHx00Bvm11UiUyboF0xXd+qF7TDxGpXSQ2cp/n5xSdcUu0bF4e8Rkv50/lDHAIiIiIgqAnRXFQTv368NOlZ0QWEmoVYWzw+4cF6ZlziwthiWlA9K98IIuwmTC5IxM0XWOcXX+/NRCL68XOvjeEBEREQWAJVh9BNFU1a2jD2XKR6X4Pj+XnnrGJOD2vkPRLToOjwwa47KulfSI9CvHpebPOby86XraXj4aBlhERERE7Zp84PdM9njZ4iCBdHWPATAAOD0jE91j4vHG8NPQX8OkxO1FsKYEUPJ0tnQVz7aEXQSJiIiIAmBSWudgN0GT14ZNwq7yEgwIoQDm4q59MKNzr1ZTuCNYYpsLuiSoHHsYYTSJlvhXkhIeiWiT+nCib1yi5nO0RgywiIiIiAKgtYUEPWIS0CMmIdjN8KA4r5eK5E2ojSnT2619cvDuwe24sls/Vdt/MXYqbF4kvf496kxV7+Rbw09DlaURYSGSCfU3BlhEREREARCqWZfQ7EzmvVDtHhdI6ZHReGDAKNXbexv4mFRe05nRcV4dv7XiGCwiIiIiPzI334QmhYVmue/QDPu8J1ctMSMyGgDQKzb0MnPUdjCDRURERORHL+acgh/zD+PSrn2D3RRRI5Iz0D8+CaeldQl2U3zy2KAxWFp4DONTO0lu83LOKThUXYHsxNQAtozaGwZYRERERH7UMzYBc/sMCXYzJIUbTXhuyMRgN8NnQ5PSMTQpXXabuLBwBlfkd+wiSEREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOjHY7XZ7sBvRmtlsdlittmA3AwAQFmZCY6M12M2gVobXDXmL1w55g9cNeYvXDnlDz+vGZDLCaDQobscAi4iIiIiISCfsIkhERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhEREREREQ6YYBFRERERESkEwZYREREREREOmGARUREREREpBMGWERERERERDphgEVERERERKQTBlhtwKefforJkydj8ODBuOSSS7B169ZgN4lC3GuvvYasrCyX/6ZOnRrsZlEIWrduHW644QZMmDABWVlZ+PPPP13W19fXY968eRg9ejSGDh2KW265BcXFxUFqLYUKpevmyiuv9Pgb9NBDDwWptRQq3nnnHcycORNDhw7F2LFjMXfuXBw+fNhlG/7NITFqrp1A/t1hgNXK/fjjj3jqqadw8803Y+HChcjKysKcOXNQUlIS7KZRiOvXrx+WL1/u/O+zzz4LdpMoBNXU1Mj+I/Tkk0/izz//xMsvv4yPP/4YBQUFuPXWWwPcSgo1StcNAFx++eUuf4PuvvvuALaQQtHatWtxxRVX4Msvv8T8+fPR0NCAa665BnV1dc5t+DeHxKi5doDA/d0x++WoFDDz58/HpZdeipkzZwIA5s2bhyVLlmDhwoW49tprg9w6CmUmkwlpaWnBbgaFuEmTJmHSpEmi6yorK/Hf//4XL7zwAsaOHQug6eZn2rRp2LZtGwYPHhzIplIIkbtuHKKiovg3iFx88MEHLs+ffvppjB07Fjt37sSwYcP4N4ckKV07DoH6u8MMVivW0NCAHTt2YPz48c5lRqMR48aNw+bNm4PXMGoVDh48iAkTJuD000/HXXfdhRMnTgS7SdTKbN++HY2NjS5/g3r16oVOnTrxbxApWrhwIUaPHo1zzz0XL730kscvzUSVlZUAgISEBAD8m0PquV87DoH6u8MMVitWWloKq9WK1NRUl+UpKSk4cuRIkFpFrcGQIUPw7LPPolu3bigoKMAbb7yBK664At999x2io6OD3TxqJYqKihAZGYnY2FiX5SkpKSgqKgpSq6g1OP/889G5c2ekpKRg9+7deOGFF3D48GG88sorwW4ahQi73Y6nnnoKo0aNQq9evQDwbw6pI3btAIH9u8MAqw2y2+0wGAzBbgaFsFNOOcX5OCsrC0OGDMFpp52Gn3/+GdOnTw9iy6i1EftbY7fbg9ASak0uvvhi5+OsrCykp6dj9uzZOHbsGDp37hzEllGoePTRR7F37158/vnnLsv5N4eUSF07gfy7wy6CrVhSUhJMJpPHrzYlJSUeWS0iOfHx8ejevTszn6RJamoqamtrUVVV5bKcf4NIqyFDhgAAcnNzg9wSCgWPPfYY/vjjDyxYsAAZGRnO5fybQ0qkrh0x/vy7wwCrFQsPD8fAgQOxcuVK5zKbzYZVq1YhJycneA2jVqe6uhp5eXkccE6aDBo0CGFhYS5/gw4dOoTjx4/zbxBpsmvXLgDg36B2zm6349FHH8Uvv/yCBQsWIDMz02U9/+aQFKVrR4w//+6wi2Ard/XVV+Puu+/GwIEDkZ2djQULFqCuro7dvEjWM888g9NOOw2dOnVCQUEBXnvtNZhMJkybNi3YTaMQU11d7fLr3tGjR7Fr1y6kpqYiLS0NM2fOxFNPPYX4+HjExsbi8ccfx4gRI1jNq52Tu25qa2vx3XffYdKkSUhMTMSePXvw1FNPYcyYMejdu3cQW03BNm/ePHz//fd48803ERMTg8LCQgBAXFwcIiMjERcXx785JErp2snNzQ3o3x2DnR1XW71PPvkEH3zwAQoLC9G/f388+OCDyM7ODnazKIT94x//wLp161BWVobk5GSMGDEC//jHP1T94kPty5o1a3DVVVd5LJ87dy5uueUW1NfX4+mnn8YPP/yAhoYGTJw4EQ8//DC767RzctfNRRddhLvuugv79u1DTU0NOnbsiClTpuCGG27wKF5A7UtWVpbo8qeeegozZswAAP7NIVFK105+fn5A/+4wwCIiIiIiItIJx2ARERERERHphAEWERERERGRThhgERERERER6YQBFhERERERkU4YYBEREREREemEARYREREREZFOGGARERERERHpxBzsBhARUevz2muv4fXXX/dYPnbsWHz44YeBb1Ab0tDQgJdeeglbtmzB9u3bUV9fjz179khu/8gjj6CsrAwvv/wyrrzySqxduxYAYDabER8fj759+2LKlCm4+OKLER4eHqiXQUTUbjHAIiIir8TFxeH999/3WEa+qaurw9dff43s7GwMHToUq1evlt3+r7/+wq233up8Pnr0aPzzn/+EzWZDSUkJ1q5di+effx5ff/01FixYgPj4eH+/BCKido0BFhERecVkMiEnJ0fVtnV1dYiMjPRvg9qI+Ph4rF27FgaDAZ988olsgLV3717k5+dj4sSJzmWJiYkun8sZZ5yBGTNm4PLLL8dTTz2Fp556yp/NJyJq9zgGi4iIdHX06FFkZWXh22+/xd13340RI0bghhtuAACUlZXhoYcewrhx4zB48GBcdtll2LJli8v+FRUVuOOOO5CTk4MJEybgrbfewjPPPIPJkyc7t3nttdcwevRoj3NnZWXhk08+cVn21Vdf4ZxzzsGgQYNw2mmn4b333nNZf++992LGjBlYsWIFzjvvPOTk5ODyyy/Hvn37XLazWq145513cNZZZ2HQoEE45ZRTcO+99wIAPv30UwwdOhTV1dUu+6xevRpZWVnYvXu3pvfQYDCo2m7JkiUYPHgwUlJSZLfr168frrjiCnz33XeoqqoCABQUFOC+++7D6aefjuzsbJx11ll46aWX0NDQ4Nxv5syZuO+++zyOd88992D69OkaXhERUfvBAIuIiLxmsVhc/rPb7c51zz77LGJiYvDKK6/g+uuvR0NDA66++mqsWLECd999N9544w0kJSVh9uzZKCwsdO5333334a+//sL999+PRx99FCtWrMAPP/zgVfvef/99PPLIIzjjjDPwzjvv4PLLL8crr7ziEYTl5+fj2WefxY033ogXXngBJSUluP32211ez0MPPYTXXnsNU6dOxTvvvIN7770XNTU1AIDzzjsPVqsVP//8s8txFy5ciIEDB6Jfv35etV/J0qVLMWnSJFXbjh8/Ho2NjdixYwcAoLS0FImJibjvvvvw/vvv49prr8U333yDxx9/3LnPxRdfjMWLF7sEjtXV1fjll18wY8YMfV8MEVEbwS6CRETklbKyMgwcONBl2fz589G1a1cAwJAhQ/Dwww8713311VfYt28fvv/+e3Tv3h0AMG7cOEydOhX//ve/cc8992Dfvn347bff8NJLL2HatGkAmsYUnXbaaYiNjdXUvqqqKrzxxhu48cYbMXfuXABNQUZtbS3eeustXH755TCZTACA8vJyfP7558522e123HzzzTh48CB69eqFAwcO4Ouvv8a//vUvXHXVVc5zONoYHx+PKVOm4JtvvnEGHo5A5I477tDUbrXKy8uxadMm3H///aq2z8jIAAAUFxcDaMr23XPPPc71w4YNQ1RUFO6//3488MADCA8Px7nnnounn34aixcvxsyZMwEAP/30ExobG3Huuefq/IqIiNoGBlhEROSVuLg4zJ8/32VZjx49UFZWBgA49dRTXdatWrUKAwcORJcuXWCxWJzLR44cie3btwMAtm3bBgAu3QFjYmIwbtw4bN26VVP7Nm3ahJqaGkydOtXlfGPGjMGbb76JEydOoHPnzgCAzp07O4MrAOjVqxcA4OTJk+jVqxfWrFkDALJZm4suugizZ89GXl4eMjMz8dNPP8FisfgtEFm+fDmSk5MxYMAAVdsLs3GO5wsWLMCXX36Jo0ePor6+3rkuPz8f3bp1Q2xsLM466ywsXLjQGWAtXLgQkydPRlJSkn4vhoioDWGARUREXjGZTBg8eLDHckeA5T4uqLS0FJs3b/bIegFwZr2KiooQExPjURBDaYyRmNLSUgDAOeecI7o+Pz/fGWC5Vz8MCwsDAGfQUVZWhujoaNks2ujRo5GZmYlvvvkGt912G7755hucfvrpSExM1Nx2NZYsWYJJkyapHq9VUFAAoOW9XLBgAZ555hlcd911GDlyJOLj47Ft2zY8+uijLsHWRRddhCuvvBK5ubkAgPXr1+Pdd9/V+dUQEbUdDLCIiMgv3G/8ExISMGjQIDzyyCMe2zrmZ0pNTUV1dbVH1UFHtzaHiIgINDY2uiwrLy/3OB8AvPPOO6IBWo8ePVS/lsTERNTU1KCqqkoyyDIYDJg5cya+/PJLXHDBBdiwYYNHQQ292Gw2LFu2DI899pjqfZYvX46wsDBngLt48WJMnToV//jHP5zbHDhwwGO/kSNHolu3bli4cCHsdjvS09MxYcIE318EEVEbxQCLiIgCYuzYsVixYgU6deokmZFyZMT++OMP5/im6upqrFy50iWwycjIQHV1NU6ePOkcW7RixQqXYw0dOhSRkZEoKCjw6K6o1ZgxYwAA//vf/zBr1izJ7aZPn45XX30V999/PzIyMjB+/Hifzitly5YtqKqqwtixY1Vtv3v3bnz22Wc477zznO9jXV2dx8TD3333nej+M2fOxOeffw4AuPDCC51j14iIyBMDLCIiCogLL7wQX3zxBa688kpcc801yMzMRFlZGbZu3Yq0tDTMnj0bffr0weTJk/HII4+gqqoKaWlp+OCDDzy6DE6cOBGRkZG4//77cfXVV+Po0aP44osvXLaJj4/H3Llz8cQTT+DYsWMYOXIkbDYbDh8+jDVr1uCNN95Q3faePXvi0ksvxdNPP43i4mKMHDkSFRUV+Pnnn/HSSy85t8vIyMDEiROxZMkSXH/99R6ByGuvvYbXX38de/bskT3f0qVLUVtbi127dgFoyjYBTQFo586dsWTJEvx/e/cdJ0V9/w/8NbPXG1c5uAOOfsBxR+9NEBVbEFARJXxt8Wc3JkYTYxIwGsTv1xg1JtFoEBG7EKyAhaKAFOlwHP2Ao10/rt/ezO+PYfd2b9vs7uzu7O7r+Xj4kJudnXlP2d3Pez5txIgRdmvTqqqqsGvXLkiShKqqKmzZsgUffvghunfvbjXk+tixY7F06VIUFBSgW7du+Oyzz1BcXGw3nhkzZuCll16C0Wjk8OxERC4wwSIiIr+Ijo7G22+/jZdeegmvvPIKysvLkZqaioKCAqtBLZ577jnMnz8ff/nLXxAXF4dbb70V+fn5VkOgp6am4uWXX8bzzz+PBx54AHl5eXjhhRfMtV4mv/jFL9CxY0csWbIEixcvRnR0NLp3726znhp/+tOfkJWVhY8++gj//ve/kZqaareGaurUqVi3bp3dATEaGhqQmprqcl8LFixASUmJ+e9HHnkEALBw4ULMnDkT69evxw033GD3vVu2bMHs2bMRERGBxMRE9O3bF4899hhuuukmqxqrBx54AJWVlXjppZcAAFdccQWeeuop85xlljIyMlBQUABASTaJiMgxQW4/rBAREZHOLFq0CKtXr8Z3330X6FBceuSRR1BaWop3333X5rW5c+di9OjR5mHjPXH+/HlMnDgRq1evthr50JeqqqowceJE/OEPf8BNN93kl30SEQUr1mARERFpoKioCPv27cPXX3+Nv/71rzavG41GHD58GC+//LJX+8nMzHTZxFArtbW1OHr0KN5++23Ex8dz7isiIhWYYBEREWngvvvuQ2VlJW699VZMmzbN5vWIiAjzfFrBYv/+/Zg3bx6ys7OxaNEixMbGBjokIiLdYxNBIiIiIiIijYiBDoCIiIiIiChUMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSSESgAwh2kiSjtVUKdBgAgIgIEUajPmKh4MH7hjzFe4c8wfuGPMV7hzyh5X1jMIgQRcH1PjXZWxhrbZVQVVUf6DAgigLS0hJQU9MASZIDHQ4FCd435CneO+QJ3jfkKd475Amt75vk5DiIosH1fr3eExEREREREQFggkVERERERKQZJlhEREREREQaYYJFRERERESkEQ5yQUREROQnsixDklohc5wGt4iigObmZhiNRg5yQaq5e98IAiCKBgiC65ECnWGCRUREROQHra2tKC8/C0lqDXQoQamsTIQkcZh2co+7940oGpCW1hkGg+vRAh1hgkVERETkBzU1FRBFA1JTMwF494Q8HEVECDAaWXtF7nHvvpFRVVWGmpoKpKRkeL5Pj99JRERERKrIsoSmpnqkpHRERERkoMMJShERIgDWYJF73L1vEhOTUVl5AbIsQRA8G66Cg1wQERER+ZipiZLBwGfbRHpm+ox60xyVCRYRERGRj7UNasGmgUT6pnxGvRmIhgkWERERERGRRphgEREREZFuPPvsfDz11OOBDkMzZ8+ewfjxw3Hs2JFAh2Jjx47tGD9+OOrr6z3eRn19PcaPH44dO7ZrGFlwY0PgMNLaCoiiMsY/ERERkSvPPjsfDQ31eOaZ5wMdiksHDxbijTf+iYMHD6ChoQHp6RkYOLAAv/3tHxAZGdwDi+zYsR0PP3yv+e+UlFQUFAzC/fc/guzsLh5vNz9/EFauXIXY2FgtwqRLmGCFiVYj8O27Ijqkyxh1DYc4JSIiotBRWVmBRx99ABMnXoYXX/wH4uLiUFJyGmvXfntp3jHtEyyj0QiDwftJad3xwQf/RUxMDM6dO4e//e15PPHEr7BkyXsezdlkNBoRGRmJtLR0H0SqPaPRiIiI4Ehd2EQwTDTUKv+vLmP1FREREWnju+++wdy5N+Gyy0bjppumY8WKj61eHz9+OD79dAV+9auHcPnl4zBv3mwcOnQQR44cxj333I6pU8fj0UcfQGVlhc2233zzNVx77eWYNu0yvPzyC2htdTxB8969e9DU1IjHH/89+vTpi+zsLhg5cjSeeOL3iI6OMa+3a9cO3H//3bj88nG4+uop+M1vHkFTUxMA4KuvPsedd87FFVdMwPTpV+HZZ+ejpqbG/N4vv/wM1157OTZsWIdbb52FKVPGoqqqCmVlpXjssYcxZco4zJ59A9avX4trr70cX375mcN4jx07gl/96iFMnToe06dfheee+zNqa2tdnu+UlFSkpaUjL28gHnroVzhx4hhKSk4BADZsWIfbb78VU6aMxezZN2DZsiVWI+GNHz8cK1cux+OP/xKXXz4OH374rt0mgq6u6cmTJ3D//XdjypSxmDdvNnbv3mkT544d23HXXT/H5MljcMMNV+PNN1+zisXVOTM1q/z2269x//13Y/LkMdiwYR0qKyvxpz/9DjfccDUuv3wcbr/9Vnz//Tqrfd944/VYunQx5s//PaZOHY+ZM6/Htm0/4ty5c/jlL+/H1Knj8Ytf/A9OnTrp8nx7igkWEREREbmtsHA/5s9/EldeeTXefvsDzJ37P3j55RewYcM6q/XeeusNXH/9dCxevAzp6Rl4+uk/4uWXX8D99z+Mf/7zPzh//hxef/0fVu/ZsuVHnDlTgr///d948sn5+OqrL/Dee+84jCU1NRXNzc344YcNkB0M/3byZDEeffQB5Ob2x+uvL8Hf//46hg0bYV7faDTinnvux1tvvYc//3kRjh49gr/+dZHVNurr6/H+++/g979fgLff/gDx8fF45pk/obKyEq+++jrmz38W77//jtM+TRcvXsTDD9+HAQPy8J//vINFi/6GU6dO4tln5zs527ZMiWNLixG7d+/CX/4yH7fcchuWLv0Qv/zlb/Dxxx/g448/sHrPm2++hsmTp2Lp0g9x+eVX2mzT1TWVJAlPPvkbxMTE4PXXl+CRRx7DP/7xktU2Llw4j8ceewT5+YPw1lvv4eGHf42PPnoPH3/8vnkdtefstdf+jjlz5mLZso8xePAQNDU1oX//PPzv//4Nb7/9Aa688mo89dQTOHHiuNX73n//HQwbNgKLF7+LwYOHYsGCP+D555/BzTffijfffAcRERF44YXn3Drf7giOejYiIiKiELNvo4ALvnuIblfHbsDAcdp0Ffjgg3cxcuRozJt3JwCgW7ccHD58CO+99zYmTrzMvN51103H5MlTAQBz5vwcjz76AO65534MHjz00us3YOXKT6y2HR0djSeeeApRUVHo0aMnTp8+hfffX4Zbbvm53VgGDizArbfOwx//+FskJiZiwIB8jBgxCtOmXYvExEQAwDvvvIX8/EF45JFfm9/Xq1dv87+vv/4G87+zs7vgwQd/iV/96kFI0p8hikqdREtLCx577Hfo2bMXAKC4+AS2b9+KxYuXoU+fXADAr371OO644zaH5+2TTz5A//4DcPfdbX2qHn/897jtthtRWVmBlJRUh+81qa6uwptvvoaMjI7o1i0Hjz32CObNuxPTpl1rjv9//udOfPzxB7j55jnm91111TW4+urrzH+XlJy22q6ra7pt2xacPn0KL7/8L6SmpgEA7rzzHvzhD781b2PFio+RlZWNRx75NQRBQE5Od5w9W4J3312Km2++1a1zNnv2bZgw4TKrZbfcMtf871tv/Tk2bfoe69Z9i9tvv9u8fNy4iebreccdd+HLLz/D6NFjMXbseADAzTfPwYIFT0GSJPO11RITLCIiIiJyW3HxcVx22eVWywoKBuHbb9dYLevVq4/536ZCeY8ePS2WpaKystLqPX369EVUVJT574ED8/GPf5ShtrYWy5d/iKVLF5tfW7r0I3Tq1An33/8w5syZi+3bt2L//r1YtmwJli1bgjfeeBvp6Rk4cuSwVeLX3sGDB/Cf/7yOI0cO4+LFi5CkVhiNRlRUlCM9PQOAkviZkitAaS4XGRmJ3r37mpf17t3X6aAaR44cxrZtW3DFFRNsXispOe00wZo+/SoAQENDA3r37otnnnkekZGROHr0EPbu3Y3Fi/9tXre1VYIsW0+W269ff4fbBlxf0+LiE+jUKct8HQElubV04sRx5OcXWPVNy88fhH/+8xXU1dW6dc769Rtg9Xdrayvefvs/WLv2G5SWlsJobEFzczO6ds2xWs8ycbZ/z6XBaDSitvYikpI6OD0nnmCCRURERBQAA8fJwLhAR+Gd9gM8yLJss8xyYALTS9bLBJtEwNHAEYIA3HDDLEyZcoV5WXp62yANKSmpuOKKabjiimm4++77cMstM/Df/35iVVtkT0NDA37964cwevQ4/OlPzyIlJRnHjx/H73//G7S0tJjXi4mJsXqfLDuO1dm+Jky4DP/v/z1g81pGRobT9/7zn/9BbGwsUlJSERcXZ15eX9+AX/ziPkyYMMnp+2NiXI8W6PyayipHo26/Det/qz1nsbHW5/vdd5fik08+xMMP/xo9evREbGwsFi16BkZji9V67e8vADAYLNMeZZkk+WbgNyZYREREROS2nJwe2LNnl9WyvXv3ICenu9fbPnSoCM3NzeZarP379yE9PR3x8QkAoKrWISEhAWlpaWhoaAAA9O7dBzt2bLdqSmZSXHwC1dXVuO++h80Jm5p5nXJyuqO5uRlHjhxGnz5KjcyRI4etkrL2+vbNxfffr0fnzlluj/6XlZVtlVhZbvPUqWJ06dLVre215+qa5uT0wNmzZ6yaMu7fv9dq/e7de+D779dbJWb79u1GRkZHxMcneHTO2mLZjYkTL8OVV04DoPSbKyk5jU6dOntz2JrjIBdERERE5FBtbS0OHy6y+q+09AJmz74VW7f+iKVLF+PUqZNYuXI5vvhiJebMsd9Pyh1NTU343//9C06cOI7vv1+HpUsX4+abb3W4/saN3+PPf/4jNm/eiNOnT+H48WP45z9fwfHjxzBunNIUb+7c27F372689NILOHbsCI4fP4YPP3wPjY2NyMzshMjISHzyyQc4c6YE69Z9i3ffXeoyzpyc7hg+fCSef/4ZHDx4AAcPHsDf/va/iIyMdFhLM3PmTaisLMfTTz+FgwcPoKTkNDZv/gGLFj3ryakCAPzP/yj9jN566w0cP34Mx48fw5o1X2HJkjfd2o6razpixChkZWXjmWfm48iRw9ixY7tVs0QAmDHjRpw5U4KXXnoBJ0+ewNq132Dp0sWYM0fpO+XJOTPp2rUrtm79Efv27cWxY0excOECVaMv+htrsMIEJxcmIiIiT2zfvtVmAIKbbpqDRx75NebP/wv+85/XLg24kImHHvqV035Oao0aNRoZGR1x//13o7XViKuvvh633jrX4frdu/dAVFQUXnrpBVy4cB4xMTHIyemOZ555HkOHDgegDNjwwguv4LXXXsXKlZ8gJiYW+fkFmD59JlJSUvDkk3/C66//Ax98sAz9++fh/vsfxlNPPeEy1qeeWoCFC/+M+++/G+npGXjggV/imWf+aNWHzFJGRkf84x9v4l//egW//OX9aGlpQefO2S6b9zkzZsw4LFz4At566w28/fZiREVFonv3npg58ya3ttO/f57TayqKIhYufAHPPfc0fvGLecjO7or7738Yjz/+S/M2OnbMxP/930t49dWXsHLlJ+jQIRk33TQHN954i3kdd8+Zyf/8z104c6YEjz56P+Li4jBjxk0YOXKUW8foD4LsaCxLUqWlpRVVVY6H4vQXURSQlpaA8vJau+1Ja6uATZ8qFZZXzpNsXqfw5Oq+IXKE9w55IpzvG6PRiLKyEqSnZwfNZKl6ExEhwmjUfxnm5MkTuPXWG/HGG0tdDipBCl+eM3fvG2ef1eTkOERGum7WyU84EREREZGHtm3bgqamJvTs2QulpRfw97+/iJ49eyE3t1+gQ9OtUD9nTLDCBJsIEhEREWnPaGzBv/71d5w9W4L4+AQMHjwUDz/8a7dHFwwnoX7OmGAREREREXlozJjxGDNmfKDDCCqhfs44iiAREREREZFGmGARERERERFphAkWWWluVP4jIiIi7bR1LQmv0ROJgo/yGfWmOxj7YJGVdR9yKHciIiKtiaIBgiCitrYaCQkdAIRGZ37/EmA0MkEld7lz38iora2GIIgQRdfDsTvCBIuIiIjIxwRBQGpqR1RUXEBjY12gwwlKoihCkvgAmNzj7n0jCCJSUzt6NaIhEywiIiIiP4iMjEbHjl0gSa2QWRHjFlEUkJISh8rK+rCbpJo85+59Iwim2mbvapiZYIWouhrgwkkgZwAg+qCnnSxzbi0ivao4DxzdLSB/vIyYuEBHQ0SWBEGAwcDil7tEUUBUVBQiIpqZYJFqgbpvOMhFiNq4UsDhHSLOHNF+27vXC1j3oQDW0hPp0/bVIirPCTi8g09BiIiI/I0JVqiSlYJVY53jAlZ1GbB9jYCGWvc2fb5YQEuTgOYGbwIkIl+TWgMdARERUfhhghXGtq0RUHFOQOEWPuUmIiIiItJC2DYCzsvLQ+/evQEAAwcOxLPPPhvgiHzESe4kGZUX+ZSbiIiIiEgbYZtgJScnY+XKlYEOI2Rw0AsiIiIiIjYRJA3UXwS+Xiri6J5AR0JElsrPBjoCIiKi8KPLBGvbtm249957MX78eOTm5mLt2rU26yxbtgxTpkxBfn4+br75ZuzZ417pvrq6GjNmzMCcOXOwdetWrUIPSt4OWnn2mPL/o7t0eTsRhS1jM6uViYiI/E2XTQTr6+uRm5uLmTNn4qGHHrJ5/csvv8TChQuxYMECDBo0CEuWLMHdd9+NVatWITU1FQAwffp0u9tevnw5DAYDvv32W2RmZuLIkSO455578OmnnyIhIcGnxxVyWHYj0o0LJ4GyMwL6j+L8MERERIGkywRr0qRJmDRpksPXFy9ejNmzZ2PWrFkAgAULFmDdunVYsWIF7rrrLgBw2b8qMzMTANC7d2/07dsXx48fR35+vkfximLgMw1TDO1jUWakFiCItuua17GzTM0xiYIAUbTue6WHc0HqObpvKPjsWqdcw6xe1st9dW1575AneN+Qp3jvkCcCdd/oMsFyprm5Gfv378d9991nXiaKIsaOHYtdu3ap2kZ1dTViY2MRFRWF8+fP49ChQ+jatatH8UREiEhL00/NV0pK/KV/1QEA4mKjkJYWhUhBAqBMXNUWr7JOZKQBaWmxVsucH5OyTkpqHOISRJTENgNoUfE+0qu2+4aCl/K5TIiLBdBoXurrzyTvHfIE7xvyFO8d8oS/75ugS7AqKyvR2tqK9PR0q+VpaWkoLi5WtY2jR4/ij3/8I0RRhCiKePLJJ5GcnOxRPEajhJqawM+4K4oCUlLiUVlZB0mSYWq/V9/QjPLyZtRWw7ysvNw0s7Dyd0tLq82ytr/tUdaprKxHQxNQX6/2faQ3tvcNBS/lM1hzsQGW7Xe1/kxerASO7wP6jxTQKYv3DrmH3znkKd475Amt75ukpFhERhpcrhd0CZYjsixDUDlO+NChQ/H5559rtm89fdDLz8k4fajtb1lW4pMlwFToaotX+Vu2s8z5MbWtI0mALLeddz2dC1JPuZa8dsHt0ufZ4gELoP1ncsuXAowtAgAZnW7gvUOe4X1DnuK9Q57w930TdAlWSkoKDAYDysrKrJZXVFTY1GqFoy1fOkgyfdD0lK2gicKPklwBLU0BDoSIiEingm5c7aioKOTl5WHTpk3mZZIkYfPmzRg8eHDgAiMi0h0fPq3jExYiIiK7dFmDVVdXh5MnT5r/Pn36NAoLC5Geno6MjAzccccdePzxx5GXl4eCggIsWbIEjY2NmDFjRgCjDkMsYBERERERWdFlgrVv3z7MmzfP/PczzzwDAHjwwQfx0EMP4ZprrkFFRQVefvlllJaWon///njjjTfMc2CRm3zwkPvCSeDMMQEFE2SIrvsCEpGONdQCe38Q0GdI25cFn68QERHZp8sEa9SoUSgqKnK6zty5czF37lw/RUTu2rVOaX169riM7N6O15Nl63m0iEg7Wn22Dv0koOqCgG2r+WElIiJyJej6YJF7BCGwI+1IkuPXSo4C374roLbKb+EQhT4f5EBSq/bbJCIiClVMsChg9m8UIbUKOL6PT8WJiIiIKDQwwQpxTfXBlbzs3yTg0E/BFTORP12sAJobVa6s1UeJH0kiIiLVmGCFuNOHA1wycrOFYskRASf2szRHZE9DLbD5cxEblmv3GTG2AKUlzpvzEhERkXpMsAiV54GD2wTILGAR6Vr9ReX/klG7BGvv9wJ2fiviZKGbb+RzECIiIruYYIWBg9usS0KtRqDsjOUSAScLBVw47dewiMgNTQ3AmaPaZzWlp5VtVpxzvG3mUkREROrpcph20tbJQgGdure11du3UcD5Ytsik7HFs+031nkaGRGptW21gPoa91IdXyZGTLqIiIjsYw1WmNj7fVtxyF5yBcDjCYc9TcxckSSgpck32yYKNu4mVwAgSUyDiIiI/I0JVphoqNW+oKV2EtPiQmDXOgGymwncj18IWPuBqH7ENCLyWFmJe98R7n6eiYiIwgUTLPK5om0iLpwUcHS34FZtV22lUuCrq/FRYEQhqK7aP/u5cIq1Y0RERPYwwSK/ObZHwIEfbQtlDbXAT18LqKkIQFBEIabqgg8SH+ZSREREqnGQCzJrrHf++sUK1+u4Un7GdpmpQHjxG/e311gHXKwEMrrYvla0XUB8kowufd3fLlGw8qbpXtkZID1Lu1iIiIjCEWuwQsjGL7zrrFRxtu0x9cVK24La5s9F7Pyu7ZY59JPg/giCTp6EezJYxoZPlJiqy6yXtzQDxQcEHPiRtzgFJ2MzsGutgPKz/tvnjm/4eSEiIvIWf01DyImDrZpta/NnIk4ddL7OmaMCdq+3zpgqzztPlJy1NPJmouOGWuu/Tx/yfFtEelBcqPRz+ulrkQNKEBERBREmWOTQsb2uO160H4Bi22oRu9Z61mFDlrUbPv7wDt7aFNxajW2fh+1fq/9MMRkjIiIKLJZCyax9way5UcDpQ8CGTwS3RiarONdWGLSpzVJZTrxYqX5/ADyew4soGFSeC85RJg7vELDzO/enaCAiIgpmHOSCzOyNPmbqw7Rxpf0CnrFZgLPspn1Nktpi4ubP3Mv9WX4jukRHH4bj+5RP/KkiGWmdgfgOAQ6IiIjID5hgkddamtxY2YMH8dtWi0jPliEagIHjZEREur8NonCho/zK7OBW5YHJlfO86GhJREQUJJhgkdcqz6vPmprqBciyjKJt7mVaZSXK+odjgQ4ZMjr3AASVm2g1AtvXCMjuI6NLH7d2SxR89JhhERERhREmWOR3ddXAyYOe9Sk5VSTgVJGAiEgJtZb9tJwUKs+dAKrLBFSXCejSh0/QKbQxvyIiIgosDnJBfidpMJp8w0XgyK622/fcCUHVPFqSBNRf9H7/RHrlzXQHjqitLSYiIiImWBQA7Yd210LpaQGFW1wP877zOwE/rBBRcV77GIj0oPyM+mzI3mfxxy8EVJVqGBAREVGYYYJFfrf3e9/cduVnVaxzqfBZ4UYhlEiNViPQWB/oKNxTU2ZnWbmAn9yYd0trLU2+qYUjIiLyFyZYFJSKttu/dY/sEnD2mPUye31Sju0V0GrUPi4KXxuWC9jwsejeqJp+ZGxRnwBKAUpwGuuAtR+I2LaGD0CIiCh4McGikNHSBBzbI2DvD9a3dW2l/cJaaYm67TY1ACcPggkZOdXSqNxnjXUBDsSBtR8oCaBlX0WHA2IEaKSM6ks1avbm5CMiIgoWHEWQQoYs2S+UORqxsLFW3XZ3fCvgYoWApgYZfYZwjDZyTu0dsn+TgPgOMrrn+TQcM9Pnw9gMziVHRETkQ6zBorB16Cf7t3/FOaBouwD5Ukn5YoVSMDUNC19XAxzfp10zKlkCThVpP7phaytw4SRr3vytQUXi3tIElBwRHN6DvtRqbKsp0pvmxkBHQERE5D0mWETtbF8joviAgNJT1stNNRObPhVweIeIksPa7O/McaBwi4jNnymJ3MVKYN9GwevC5uGfBOxaJ+LgVja3MpFl3w9EsXud6HIqAlmDitBjez0bkXPrKgFbvhRReR4Oq9u0iM9dsqx8DoiIiIIdf80orLUagQM/Cnaf6NvMq3Wp0GlqatVQa524tDR5VjBtqBEuxSLg/Elg2yoBZ44KOLzDu8So7Izyf7V9zcLBwa1KP6TS077dT10NsO4jASVH7L+uRQJzZKeIzZ+7f4+0NCnvqSl3slIgcnK2viUiohDBBCsEyDLw45eBjiI4nTwInD6kPNEHlNojT9SUK6Of7d/kXcl09zoRxhZlG2wupb1TRcq5PXvctxlE8QEBzQ0C9m/y7VesZPTNcbDOk4iIyHNMsELAxUqOuuUp09N8QEmSNn/m+CMhy0pfKXsunFS2c+aouutwqgg2w8m742IFcL5Y5couagZkWXa7RqWqVGkq6WlCGiwkSTnX7p4fvY0kGIgmf/boJQ4iIiJfYoIVAjgppzbajzZ4sd3w7uVnBM36iBRuEW2Gk3fH5s9F7F4vqupP1NxovwmkyX//3YCNn7q3/53fCqitErDvh9BO7A9sFrD5c9FhUz9HKs7ZPy+trf5PMuprgK+X2t5rgch1Nnws4OA2++eGuRcREYUKJlhEl7RPVooPOE8eTP146i8qExebuFsYV1Pgrq8BdnwnoLbKevnR3QL2/iC43IapCaTdbV+UHc4V5ojc7v+hRJKU8w201UieLPQ+kTS2AN8uE/H1UhEXK7zenGolKmtVnVEzMqIaTQ2CJueSiIhIz5hgUVg7sb+tsFdx1rbgd3yf4/fWVSvrF7V7In/2mO12HA3pfnCrgOP7HBc4TbWTe34QUHZawO711uuWHBZw9pjg/yZpoZhZXbJng4Af/iuaBwkBgNoq75OCqtK2f+/4NvBfvRcrBOzbqC6OmvLQSIpMUyJolTASERHZE/hfeSIdO7zD9Uekfe1R+9zj6G7gm3dEVJyzfa+jSZABpW/d1++IOLEfMDYpy1qa7a/b3Kj0yfKm+ZmxRZlU2dkIe9VlwNE9nu8jGJj605Wd1japOLpbX0mKvQcBoe7MsUtTIngw+iIREZFaTLCIvNDUYGdhuyTn6G7lY7Z9jXsft8Y6pRB46CfRXAPmqFi45UulT9b5k27twsrpQ0BZiYCd3zmOc8uXIo7uahvpMJRpNZG0SVCNChmil7f+0pQIxuYQPUAiItIFJlhEXlj/kYiyEt8X1kzJlivu9qWynAvJ1eS4Wmtpth4Wv6Yc2L9ZsJ1/LEC0HowimIr0prne3HqPrPRH1Oq87dso4LSTybzra5RBM1SPpklEROQnTLCIfOhkYeD2bdN00U7BtyGAw4lv+lTA5s9E88AdP34houSwgGN7BBzeKTidCFeWgV3rBBz6Sdu0xbLWytnonLIMHNwmoPyM43UstRqB+ov2Y9VrfyB3E6Xj+4AfVogoPqDN/s8cFXBgs+OfqCO7BDTWC9i9XkRVqboaRw4TT0RE/sAEi8iHDm7T9iPW1KA+oWhoV6A/fcjitVqlQGxZa3X6sGfJSkuT/WSk8jzw7XuC1WARlprqlf3VtptL68R+Acf3CvjxCydzkklKXynTICWSBLdqvhwd6QWVtSHlZ5SRBX/6Rt313b7G8bktPaX8v7FeGfREL3NoqUlGGuuVlS5WAkd2KufC0/vIbRa72fqVqLs+bkREFL6YYIUAPpUNLt42gfN03rPCLSLqqpV/f79cxOEdygAaJpbNEM8cbetfduGk7RD2Jk0NwNoPRGxbbVu4PfCjgNYWAXu/d17w1eL23bRSwHfviV43c2xV+X53r2F1mevC/74fBJw8KGCPi/PlL6b7rK7G8TpVpcpKziboVuP0Ybg/dH27G+fcCa9CICIi0kxEoAMgCjWV5wVIkoxWo+1rJUeA/Zu8K4z+8F/PC+BbvhIw6ca2kmn9Rfvr7dsoIi5JxoDRMnatEyGKMqbOtU2FWhqVWKpKBbiTKlkO+ODJA4L2bzE1v2tpAqLj3H+/HpiaCmrdZNDTu8V0XarOu/tG91avKYfTpoCOnDuhj0SUiIioPSZYRD7wzTv2C4zeJlcA0FDrpGDponBrbBZQVaquBFxfI6C+RllXktxLoJwpPwPrpnWebNbiPZYJidpNlZ1WmhWK7S9HkJbZAzXQQ1OjjMKd3m2juUmbWHSZNRMRUVhiE0GiEHKu2PVw4D993faxb2lynlEc+NG9r4jKC8DeH5SRAB3VjrWvefAov7J4kyfNAo0tgsvBGNTWrLUagf2bPM/MvM0LThUBu9f77qvcWXy7NzbjzNF2x37pT9PgJa74M6dlc2oiIvIHJlhEIaS+RsBPXws+KUja62dlqfgAsG2ViLPHlP5QpqG+W5oE5/3G3OxTJsvAsT32Y9n7g6C6id254wK+Xy643/enndOHgJIjgav6Ktzi/Gu8+KCHG1ZxDzU1OF5p06f+/XlxWrN7CRMsIiLyByZYRCHmYqWAr5dq/9GuPO+8AHtsr+PXrSZkbrfa6cOCw1q3hlplvixLVRdgHj0QsH698pz1oBrH9gB7NthPOC9WCmioFbD5cxGFW5Sh4T1Jk1q8nLS2td2AGVqnaq3+nhRaBs4cc2N9H4V3vli/Q+ATEVFoYx8sItKEs+aGzU3KvEWyDJuakeoyAbvX23/f98uVRHHqXMncX6r9CH7tR7mzHHDjyC7lTf1HyYiMdhz7qSIl9oHj/F/FcWSXCDHCw6Eh/aB9AmjJXmJcf1HAvh8C25mt8kJbs8kr51lObhaggIiIKKwwwQoFLDSQzv34ufMaNVe1Y031QGyC8m+9NfMSBBnOqmEKt7hONg5tFxGb0HZgaibN9bXWVsAgA82Nvk2WvB1a354GB/3/iIiI/IEJFhEFl/YJlp2ES5bhchALu5u22NbZY9okFqbaMZf7vvT/VsnxKJT+tP4jJYacAdpntMYWICJSOd87v/PfsZrmgSMiIvIlJlghQGcP9Ik0d7ECKC4U0GeIrGqSX0/7oGkxjL63WnxcY+Su4gPax1NdptRKuqq51Fr5Wff3V3JYmWi71yAfBERERCGJCRYR6d6udUric+aoMpeXnhzdrU1SJtmZmDqU7dsYmKHl3bX/0iTIPQZKEA0abpiIiEJW4B/XEhGpZC+5aqxz/T5ZBg78qK/ErD1f93UKKz6o1i8/q/02iYgoNDHBCgVsI0hhTE0NUvlZ4PQh7xKYvQEeGS+UuDNvmLEF2PKVYB76vazEveHXjc1A5Xlgzdvu/dw11Co1piaBnOuMiIiCC5sIElHI2/u998+Szh4TkD+eTzO0cO64+mTlzFGgulRAdamApFQJO75171p+975n137jSgFSK5MqIiJyH2uwiIhUOryTBW6/s8hpG1Q0B9VK++SqoRY4utt2HjYiIqL2WINFRKTS8b0Cju8VkN2bNVmBILuYM6vVCBhU/qoVbhEgGoDc4equ5cUKARcrBEitMvoM5fUnIiLHWIMVAvhTT+Rf7I/jP60WSdXJg87P+/mT6rd7qkhA8QEBdTXuxVN/aRLjViNQtF3Axcq212QZKD9jHTMREYUfJlhERKRbh3e0/UyZkhuX3HjqJHmYDJ0sVOYI2/xZW3y71gn46RsR3y7jTysRUThjE0EiIgoJ+34QIYqST/chXKpEa2qwrU0rPcWaTSIiYg0WERGFkD0bRLea6B3dJUB2Iyc7X2y77Nhe9e8nIqLQxwQrBMTEBToCIiL9OLhV/U/bhVMCztlJmhyRZcEmgTuyU0R1mfptEBFRaGOCFQIiIgMdARGRH/hoRJ+WRjfDkIDGeutlW77U789pYz2wZ4P1gBxEROQ7+v1FICIisqCXEVObG4ALJ4Onv9XBrQLOnRDw0zfBEzMRUTBjgkVERMHBhxnWxUqg/Ky6dWurXa/TvobLG031QKMXkyy3NCn/b7YzMEe4qq1S+s5Jvh0ThYjCFEcRJCKisGcabv3yWyWPh2631FSvXf/Y9R8rsV05z7NsQNZL1Z+ObPpUOadRMRK69AlwMEQUcliDRUREQcFneYJFxY7UCmxf4/uaHlkCdq0VcPqQ/dcb64DCLYJVTdiBzQKTJY01aVjTSERkwhosIiKiSxrrgYuVLhIsFUmOaeh3WW6bO8tSVakyguGFUwIkSUK3ftav79kgoKpUQH1N27LThwV0zJGRnuV6/0REFDiswSIiIrqkQmU/LFeKCwVUnAO+Xiri7HHb1y1rouwNK19/Ufl/Q7u+V5JRm/iIiMh3mGAREVFQ8NUgDZYJTtF2bX4WK84C+zYq8Zr+DwBHdgnYuFKwGVzBnaZ/zY1AyRHA2KLUdJ0/qf69xmb16xIRkWeYYBEREbnhvIoh2luaBTTW2a53bI+AumoB1aXWy7d+JaDqgu12Gmqt/66pELDzOwH7N4nY9Kky/PrudSIqz6uLfctXHEnQkizzfJBnig8A370voKkh0JGQHoVlgrV3715Mnz7d/N+AAQNQWFgY6LCIiCgInD3mZqFcRe1UdZmAravafpKbG5V9yJL1vo7tEVBdpiyzTOCO71MXU1214/XqqoGda637fXmqplypYfMnWbKuCbxYqRxP+yRVK5LU1tdOjyrOAbvXCx5fB2MLR6B0pmi7CGOzgDNHfb+vVqNv7jVjC/DTN+7VgpM6YZlg5efnY+XKlVi5ciX+8Y9/oFOnTujfv3+gwyIiohAkywIuVlovq6mwn+h4WqBtblT+31gHHPpJMP+tbNT1+yUJ2Py5gNJTAn74r4jyM9avN9apj62qFPjxCxFbvvS8dkhqBS6cdJ2kWR7nhk8EbPq0bZ87vlGO58CPbctamoFNn2lTa/XNO0pzz9LTwI9f6K8mY/saEeeLBZwqcv+9LU3Ad++J2LYqtGr4Guvgl+u041sBO75z79zV18DmewJQPgvfviti8+faX4szR4DyM0otOGkr7M/oqlWrcNVVVwU6DCIiCmGniqwLR6Wn7BeWTh20X8hypaZc2d7OtQJO7Bew4WP3CmO71wmQWtve89M3bcWDM8eADZ+IOLzDdpulp5WaL0vVZcr/ndWWuXJkl4Bd60Sr5Ki9o7uBdR+KOHdC+bupQbDaZ/OlCZYt+52VHAZqLUaJFARvqmgE1F8UsPM7ETXlAo7t0Wcy0mp0Py7TPVhVqs9j8tSGT0Ss/8j3Rd+yEgFlp907dz/8VzTPx2fJ9BChtkr7a8GJtn1HlwnWtm3bcO+992L8+PHIzc3F2rVrbdZZtmwZpkyZgvz8fNx8883Ys2ePR/tatWoVrr76am9DJiIi8trBbfYLWWqZkh1JUubQkiV1heRSO4XB3esFHNkl4MwR5bUT+63Xqb8I7PxOxMaVbfEe2SWgaJt78bcagaLt1rV85ZdGcyw91basfQ3a0d3Kfk4VCeZRF71x+lBbcuhKUDWd8yTW0MqrfMreNAxEupwHq76+Hrm5uZg5cyYeeughm9e//PJLLFy4EAsWLMCgQYOwZMkS3H333Vi1ahVSU1MBANOnT7e77eXLl8NgMAAASkpKUFFRgYKCAt8dDBERhb3mBuDgNt+WxNoX+o3NcNhMr64GiE0ARCe50Pli5b2pnaw3LEtKctViZ0TC9rU4tVXKfgxOShvFhUDxAQHFB4Ar59nPBs4eA/b+IGLk1RKSM6xfqzwv4IcVnp1bZZALGbVVwIEflZNx5TxtH+tXXgDik4CoGG22V10GHN0tYMAYGTFx2myTPBdUybYfNdQCFyuAjt0CHUlg6DLBmjRpEiZNmuTw9cWLF2P27NmYNWsWAGDBggVYt24dVqxYgbvuugsAsHLlSpf7Wb16tSbNA0UxsI8vnP1AEhFR4F1w0CRQS/s3CVa1Fc2NAprqbfdbcU7A9jUCUjJldOwKxCU6367lE3pRFLB/i1Jr1DW3bWeNdQJ22TY2waZPRSSlyRh7vWlbAs6eaIUhVjAnXc3mPjGC+ffMMmpRFLD3B2XJsd0Chl/pPN6WRgEni6wHCDH9TrevbRAE5TXLZoRqftPtFapN2wKAkweVWriKc0BLk4CoGBlTbnG5WStHdwMJyUBmjvK3JCn72LZKqaE8tB0YfJmKDQnul1Pqqtr+XVspICnNrbf7hOkYHB2LLCkPDuI7uK5VMm3jwimlCWzBeEA0eB6Xo3KYJ+VDqVXA5s+Bbv2AnP6AYLFtrcub7T/bWvp+ubK90dfKNg9F/MnVfeMrukywnGlubsb+/ftx3333mZeJooixY8di165dbm1r1apV+MMf/uBVPBERItLSErzahrca62UA9QGNgYiIAuvMUesCxPY19gsUhT+KAGRUnhdUDe8eGWUAoNTqpKUl4FSRMvuxZb+y/RsNqKmwX/NTUy5g82cCWpqB/sMi8dO6RqR3FnHVrbEAgJiYJgBG8/YBwBDRAEBCq1FA1dkoAEoGFBkZgbQ0U1VQu1mYL9n8hYjGurYMKCLSgOTkGLQ0AXFxRvO2ACAuLgppaVEwNrQCaLSKwRlZtv3djYmJRFpaNABg1Y/WsTU3CkhLi3e5XZP6ixIO71Qyz9t+HQ9ji4wPXq5Hdk8DJKkVACAKlufCHiWG2FjlGN2xaktb/LHRsUhLM+DC6Vbs3NCMcddGI6GD/5/syrKMmkoJyclxECwyg8LtLUjrJOLUYSMO7jBi+JQo5A6JdLAV5bhM13jVW8rfPftHo0d/d4vEynvj4qKRlta2v6aGtntDbfmwuMgIQOk0WFsWjbrqZhRuAYaOj0ddpASgwa3tqXU+rhlAi6bbrquRcKLQaN6uATFIS/M83WhtlSFLQESkdwlSSor6z58Wgi7BqqysRGtrK9LT062Wp6Wlobi4WPV2zpw5g4qKCuTn53sVj9EooaYmsEMHNdUDbDBNRERq1NW416appaUVpt+Y8vJa2Pu9KT/nvFlddbmyz5/WKclN2VkJ5eW1kCSgsRHttq/0yzIt+3F1W0LU3GI0r+Pod88yuQIAY0srPv1PHeprBPTIl63eV1/fjNLSZtRU28ZgiqOmHEjuaP20Xxky23r/jY0tuHC+BRXn7MdmuV1XlKHy2+KpqVD+LjnWal6nudnoYpvK+xsamnHqRDPOHgO65zlvrln0Ey7Nx9YWf01NAyLLga8/UJZtWl2PYZerPhTNHNsj4NAOIHc40GOgco1rKoAd6021k8q1PbKvCendmszvazUCh3cCnXsCttdY+bumqhHl5fb3W7QdSEwBsnq1f0V5b319E8rLlf0VFwKFW9rOndpr/oPFCIG1tU1WcSrTDLT9XVcD7NsI9BsBdEi33ZY76i3Kj+7cn86s+8h6ConaWsfnVo1vlgHGFgHTbvesLaYoCkhJiUdlZR0kyfv2nElJsYiMdF3dGXQJliOyLFs90XAlKysL33zzjSb71uKCebd/gAkWERH5gtRWpkdrq3WC4o3WVhnfvidAshjlrrlJhiGibR6w9mTZ8jdXfRz1Ncq67Uc8PLpbwNHdwODJknl7lr/pu9cLuHBKwIDRErr0bYtBaYppvX9ZBvZtcjxPWvuygiwDx/YAGV1g0wSv1eJ3XZJkuwmd9bmwxzSXGrDlK6CpXkBrq4zeg2VIrUrTs/bFpuN7bWumJFm2KmdIrerLPaUlQGy80tTRXaZmmKYYiw8qMZwqkpEzQHmx2SI5b3ujdXzH9wMn9os4sb9tlfb3UNsxWmuoBY7vU85Jpx7tV7h0fi3eW7jF+vypLx+2HYMstX3GJKnduZdk7NsooPK8gG1rZEy5xbvyp2xxH7ePtaZc6TcYE2+97GIVkG2TbLZprLM+B2UlQGaO8ziNLUCEg0pHY4toNz53KefSf+X1oOu9k5KSAoPBgLIy66F+KioqbGq1wgX7VxIRka9UnresutFuu7IMq+QKaJt7qdFO3zGt92/pYoX95aa+c+Vnlf9XnAO+Xiriwin7658/oX6f54uVkRB//EIpijU1KKMwNjcC546r344apr54DReVvnrfLBOxa52HibKDa3C+GPjp67aJjU/sB3Z+K2LTp+4VNVualVqgr5eK2PKVbYz1Fy0mT1ZxCPb6IaoViAEsXO2y9dIDD0lpVYvGOuV8nTkKbF3leD42qRU4sFlA5YW2ZZafs4Za4MCPAprqlYTnxy9EbPjE+tr9+IWI/RtFmwcVJvbmrSs54vz8l59VPvdHdztdLegEXYIVFRWFvLw8bNq0ybxMkiRs3rwZgwcPDlxggcQMi4iIQoSzYeV99XNn2aQJUAqsu9Za1Cpc2rFpJMi9G21jPFUkQJKcFyaP71OSNFm2niS5uRFY/5GIY3sE7N8soLqsbTsXK4HNn6srrsmyMnKjo8Sg8kJbgbf0lIALJ+2PBulM+VmlkH+y3Zxtu9eLKD+rDO0PAId+aov5/Ek7sUqmWjillqP1UsJwdJdg7t9Xc+k8VF2wTpS2rVb+3Wi/G57bWtpaFKKqVLn+ljW3etFY13ZOTJd47w/K+dq3UUTVBQF7v1emaDh92Hqeq5IjwOnDAratarsuJwvbzumutQJOH1LuP5cTfDfZLpMkmK+9O0zX+uhuEbvXu953sNBlE8G6ujqcPNn2aTx9+jQKCwuRnp6OjIwM3HHHHXj88ceRl5eHgoICLFmyBI2NjZgxY0YAow4cDhFKRET+YK9GwWMe/HbJHhR61ezG8in7sb22E0ObmCYpbl/zpkZNBXB4R1vhNj27LbKfvmnbXukpweq1oyoKrc2NSpJQckSZaDp3uP0+ca3tCq+71olI7ihj5DR3LoaATSuBhlolrvbD2p8sFNClj/X2dq8TMekmCdHKuCaoKgW2fqWci/gOMuqqBWTmyBg0SbZbA7N1lXWCebFCQEuTjH0/tC1XhtxvS9TccXiHiLTOEooLBXMTz/gOMtKzXL9XeSDg+PyVngbikpSh+tWwTPYrzgPbV7cd454Nlk0JBexeD5s54CrOCdjypZKQypKElEzlfaZz70jDpWS1sd66YlBpEuq4CR8AVJ4Htq32vs7mfLGAxFQZPfOV5ryWUxs01CpTPgQLXSZY+/btw7x588x/P/PMMwCABx98EA899BCuueYaVFRU4OWXX0ZpaSn69++PN954wzwHVrhhgkVERP5QU65dgvXNMvcLZK4Ks/Y0uzkO1ZGdvmncU3nO+u+yEotaqgrr82pZo6JmiP91H1rHfMaiH5hlLUZLs+22qi64f05NyRWglEGM7WrB7E3YbGyGuZB/bG/b++uqlX8r867ZxnHyoP0YCrfaPy8XK90/HgDmppomB7eKyOrVtp3mRvtzmV046Xh/p4ra+mWpnV/Nci65g1usj7F97e75YgHRcbb7NtX21VUrTQdrqwTUVqnavcJiN6bPae4Ix/EXF2r3vdBqFNDUIGPjShGioe3Yvl8uaj5HnS/pMsEaNWoUioqKnK4zd+5czJ07108RBafueTJO7OfgF0REFDqaGtybtLd9879AKdquPnGzbCLokAycPa7UWLRnmbA56l+mla+XapeQ2ntgfHCr/e2fO+75da2tUmrRXLGc+sCTJoPtB72QZddzdFmqrXK9srM1Th4UkJRme1IbapXJuy0ZLyXfrS3Avh9st1q0zfPr3L726fhe4PBOEUMul+z2Zzy8wzSgij4+u57QZYJF7nFUZdqpOxMsIiIKLeeLPX9i3mKn70iwKj8rmAffcMZeAtbe2vcF9B6iXXMYpTaqHUGpjYqOhcMKJkeDJ3iq4rz95p7uDryhhVYjsOETAZ26A/1HtZ0ArY9Zje1rBKtaSEsNtcKloeEdO/CjgFHTZESonF6tfbPNw5dqiXd+a3sd6msc3D9BJugGuSBbggD0KrD9tnLWXpaIiCgYHdkpoOGiZwUwqxERyaylWbCpbTExtgCbP3PvvFk2fzSRJaU2avd60e7rgGe1RM5s16BfkD2HfrKO39jiun9idTnQ0iRYJXwNtcDGld7FaG94eUv2mvU6Sq7UqqsS8N37IupqlFo5pZmkNto3Nw1WTLBCVL+REuJUdqgkIiIKFsYW/ydJVRfCt7/z2WPCpX5N3vFnrVHJYe1rK+uqlQTwzFHYtA767j0R1U5GvwRgVWu35UsBjXXa1F45mjPOH7Z+JeBkofr1ZRnY+V14PORgE8FQ0e5+7dYvMGEQERGFmuZGAV8vDY+CYSC5qo1Ra/9mESeLtM2If/pGNI946AnLIeWrywRs+MSzwTj0pKVJQNF21+ejoVaZ1LtjNxmlp13NixUanzMmWERERERklz9r7gq3CIhL1GZb7Udm1IKnyRUA7NtorwYvNJIJV3ZvECAZhZDoW6UWmwgSERERkV2lKoaJ14ovkiIKPE/mjQt2TLBCRXDXMhMRERGFVS0HhS4mWERERERERBphghWCJt4YPDNdExERERGFEiZYISgmLtAREBERERGFJyZYREREREREGmGCRUREREREpBEmWERERERERBphghUqOKopEREREVHAMcEiIiIiIiLSiFsJVnNzM/75z3/i4MGDvoqHiIiIiIjISmtroCNQz60EKyoqCv/6179QU1Pjq3iIiIiIiIisyEE0zavbTQQLCgqwf/9+X8RCRERERERkSw50AOpFuPuG3/zmN3jssccQGRmJSZMmIS0tDYJgPcJCbGysZgESEREREREFC7cTrJtvvhkA8Mwzz+DZZ5+1u05hYaF3UREREREREQUhtxOsv/zlLzY1VqQDHlSbJqXJqCn3zbUURBmyxPuEiIiIiMKL2wnWzJkzfREHBcDoa2WseVubJMgyWUvPltHcBNSUabJpIiIiIqKg4fE8WEeOHMF///tf/Otf/0JpaSkAoLi4GLW1tZoFR/7XIcOzHoTRcRoHQkRERER0SRCNceF+DVZdXR2efPJJrF69GhEREWhtbcWECROQkZGBv/71r8jKysITTzzhi1jJGY1a43VIA6pLtdmWPV36yjh9iE0HiYiIiCg0uV2D9dxzz2Hnzp146623sGPHDshyWz45adIkfP/995oGSNpIyfRx3q9y832GBtPzByIiIiIi97idYK1ZswaPPfYYRo8eDYPBYPVaVlYWSkpKNAuOtNN/lOeJzZRbJEy9rW12t+FXBdFMb0REREREfuR2gtXU1ITk5GS7r9XV1dkkXRT8IqIA0eKypmbaWSkIW/0lJLM2jYiIiIi05XaClZ+fj5UrV9p9bfXq1RgyZIjXQZE+JaXJiEuyn5QIDv/QLw7MQURERERac3uQi0ceeQR33HEHbr/9dkybNg2CIGD9+vV46623sHr1arzzzju+iJN0YNQ1oVXjw+nciIiIiEhrbtdgDR8+HG+99Raam5vx5z//GbIs45VXXsGpU6ewePFiFBQU+CJO8pIWyYQgqNuOo1XiEvWRoA0cp/Qh61mgj3iI9CAymp8HIiLSsSD6mXK7BgsAhg0bhnfffReNjY2orq5GUlISYmNjtY6NgkhKJxkXTjnPvkZMk3Xx4cjqBXTuKbEGi8hCUipQfjbQURARETkQROU2t2uwNm/ejIaGBgBATEwMMjMzmVwFCdHgOruJjlOXAcVfGiBi+JUSRl0joWNX5+sPvVxCtI5uEyZXREREROQLbtdg3XnnnTAYDOjfvz+GDx+OYcOGYdiwYUhJSfFFfORnOf2BwzuUf0fFyOiRbz/hGnW1jPqLMpJSlb8b65xvNz3b/vLLb5OwfbWA6jLfZjyGCBmtRuf7iIiSYWzWLo7IaBktTczkiIiIiMKJ2wnWpk2bsH37dvz000/YunUr3n77bUiShJ49e2LYsGEYPnw4fvazn/kiVvKBhGQZtVVtSYBoAPqPllBxVkDBRNlhTU9EJMzJlT2JyUBNmev9Gwy+r00aMFrCuRMCKs45X69jV+DMUe32m5kDnD6k3faIiIiISP/cbiKYkpKCK664Ar/97W/xySefYNu2bXj11VeRmpqKDz/8EE888YQv4iQfGXm1bQ1V177AoEmOkys1cofbr/kyRLq3naxe3nfa6tLX9TrZvWVdNWEkIiIiojblJYGOQD2PBrmoq6vDzp07zTVZe/bsQXR0NC677DIMGzZM6xhJI5HRQFO99bIINxMeVQRlcmJ7RBFI6yyj/Ky67C2ji4wzR33fzK5zTxnlZ9icj8IYb38iItKx5qZAR6Ce2wnWzJkzUVRUhLS0NAwfPhzTpk3D73//e+Tm5kLgyAG6NvRyGXs2AHXV2l8n2Y2KJtGg+e7N8sZK2L/J7YpZpHYCys9oHIwORkwkIiIiCgXBlGa4XRItKipCREQEBg8ejCFDhmDo0KFMroJEYgoweLLvS/2BvBPiEn27/XHTJWT3ljFgjOTbHRERERFRUHK7Bmv79u3m5oFr1qzBCy+8gMjISAwdOhTDhw/HiBEjMHjwYB+ESnrmVX4dRLl5fAcgb6ySpB7YHOBgdKBDuuzzESCJiIiIgonbCVZsbCzGjh2LsWPHAgBaWlqwefNm/Pvf/8YLL7wAQRBQWFioeaAUfDJzZJwvZuE7lGR0kVF6mteUiIiIyBGPBrmoqKjA9u3bzf8VFRVBkiT06dOHg1zonR/7BXnaXC8yRkZLo+NCfHZvGSVHHLyup7K/i1j6DpdwaLv7/cUCacgUGRdOyti1LrjiDjeCIEOW9fRhICIi8o47/f0Dze0E66qrrsLJkyfNkw2PGjUKDzzwAIYNG4bk5GQfhEjhZOTVEpobgV1rHRcOe+Q7TrAEAN3zZJzYH/jCZddcGacPOY6j+wDg0Hb/xCKIMmRJm3PSsZsmmyHSTM4AGcUHAv+ZJyIiAjxIsK699lpzP6vYWE4cRHZ4XM6RkZwBlHkzz4EA9Bkqo3uejHUfulnLonH5LNLBUPWBYDAARp2NyzHyagktTcDO71gbRt7pNYgJFhFRqBODqLjgdoL18MMP+yIO8pPYBKX5UFp2oCPxHUEAomICHUV48Ka2PjlDszA0l9VLRuUFoOFiGBXag6jpBRERhZ/E1EBHoJ5HfbBOnTqFN954Azt27EBVVRWSk5MxbNgw3HXXXejatavWMZKGRAMw9TbZL32VOveUcXyfgB4DPS+5RcdpGJAfdenL0mogJaTIqK307iaP8OjbUb2EZBm1VWGUwBEREYUJtyvb9u3bh+nTp2PNmjUYOHAgbrjhBgwcOBBr1qzBDTfcgP379/siTtKQIPpnsraEZGDqXAl9hnqebCRnAL0HO27b1jVXRlJ62/YTkj3eFdKztEmKuvSVMWC099vq0kfZRmaOBnGFWTk+GA63c08m4URERKHI7We0ixYtwoABA/Dvf//bqg9WQ0MD7rnnHixatAhvv/22pkGSf8QmaF/g06K9bKcewJFd1sv6j5JwcJuAbv1lVJcB+34Q0GuQhIhI+9tQc2QpmcD4GRJ+WGE/6Kxe6s6PQaOajy59ZfQdLqPiLFQPdy8aZEitWqUXMlymKnrNEXSaYcV3kFFXrQQXTG3JiYiIAs0flQNacfsnfu/evbj77rttBriIjY3FnXfeiT179mgWHPlXcsdAR6D+k9M1V2nqGJ8EZPUELrtZQq9B3kcQG+/4tZRM/yZYABwmjI70HaY+4/FFQq0XwfQlTERERKHF7QQrOjoaVVVVdl+rrq5GdHS0tzFREPImqfC0MGz5Pj0MatGpu4xO3WV0HxC4xMXgRkKWkqkMaU8UaBGRvA+JiCh0uJ1gXXbZZfi///s/bN9uPYHP9u3b8cILL2Dy5MmaBUfBI9Iirw7X2oPkjjIKJsqIuDQ8e3QckJ4tI6OLZ4XHxBTX69jUQrm5q45OxqTpmuvetog8NewKGYMmeTGPAPMzIiLSEbfrHX7729/i/vvvx9y5c5GWloa0tDRUVFSgvLwcQ4YMwRNPPOGLOIn8bviVErav8byjjCAAQy9XSn6yLOPrpe5tSzCtbi9hFWSMvlZGYgrw9VLXGW16FlBVKqOxTn3227mnjFNFQZotW4QtCDJk2fY4ktJk1JQH7vjcfRCR1llG+dkgvR4uREYDHdIDHQUREZE2VCdYjY2NWL9+PUpKSjBnzhzMnTsXJ06cQGlpKTIyMjBo0CCMHz/el7FSmDCNBBgdp91j6aRUoPKcihUtyq+pnTTbvU1hOj7Z82OLS5IxbroMQQBklZsxRAITZ8lY83ZbIF36yoCdxCOQcodLKNru/egPcQlATZnybzECaG3xepPasDjdWb2B8ydlVJ53fQ2S0mQUTJKx9n3fXa/MnNBN4IiIiPxJVYJ16tQp3H777SgpKTEvS0hIwIsvvogJEyb4LDgKTzHxymh+WvariolXMSIelERo8GUSInzclXDUNDcSLDurulv70X71y25Wzm/VBfe240udusuaDbSSkinj3Al9JwsRkcDwK2VVNZAdu8mIjPJtPNl9gA4ZEjZ/FnzDG7KFIBER6YmqX9L//d//hSiKWLZsGXbv3o0vvvgC/fv3x/z5830cHmlG32VNG3GJ7o+gp5WO3YDUTN/uI8KLwnJ6tvf7Fw3K/4XgK0urY3G/W04YbJpbLGD8tPv4Du6/RxDU9fvzpR75Mrr1Z7pERETBTVXxaufOnfjlL3+JYcOGITo6Gr169cLTTz+NM2fO4MIFHT0CJ7IwbrqE8TO86DjvJp+NZNguOe5rMXGzIADDpnp+jMkZbf+OjtV3wXbgOM+O07LAntxR38eolRQfPyDwlT5DZPQbER7XiIiIQpeqBKu0tBRdu1oPN9atWzfIsoyysjKfBEbkiNrmcfEdlJowX0vPltGzQEZmN9/vC2irfTJJy/J8W4IAJCYHR/VmVi/161oeUaBqQgMtKkZJVOISwyBhCYNDJCKi4BGqDYSI/CYpDeg9WA7a5na+KJv2Huy/mkNyzlf35ehrmdUQEZEfBcfzYABujCJ49913w2Aw2Cy//fbbbZZv3rzZ+8iIgoXOypmZOTLOF3vwLaTRF1dcooyeBcCRXdpsb9wNEkQXScKIqyRsW+06kxAtv/GC6Itaj7Sc7y6c5s5LSJZRWxVGB0xEFIZUJVgPPvigr+MgX/NjEhBOhSW9EUVg0CTr4dj9bdwN9m+21E4yKs65H1d8kut1nPU5srwfI8O0uWCoczZdQXyyjDo9JTQ6CoWIiHyDCRYFXpgUOLrnyTix3zcHO/gyCWePC8jMcbCCH89x+wQ7LkmGsRkYPFnGd+/5KRCL3Rjcnk6dXElM0Vm1rRNjrpPxzTth8iVDRBTCgumbnEUPIj+JjFI3F5cnOnZT5krSo3HTZUC27gs06LLw7KPVuYeMI7sE5AzQ57VSS29Jq7sDmQybKuGnb4K00yQREemezn4miQgAhl0R/AnIlFskQLhUo9Uur/T1PGN61WMgkJ4tISHA802Z9CyQcb4Y6DtM+4QvpZOMSg+ahHpCNACTZ0tY+4G6pMmbkTeJiIhc4SO8ENHx0ij6nXs4KCgFU72qD3TuAUREyegzVPvExRd1EWmdfbBRNwiCuqPqmS8j1sEw4BFR4TtEuiOCqIw66WrQDq05mistLlHGuOkyMrpov8/EZO236UxktH/3R0RE5AgTrBDRIR2YdV8cCiYGOhJ9iooBptwio8fAwMXgLGWJiPJxkzE3N99zkLo3xCQAE2bIyLs0CXC3fvpr+uZJRJ0cPajwoZgE3+0zEDU23frJEMTA3w/B+mypc8/Anzt3pXQKvpiJKIgE0Rc6E6wQEhMnBOUIfsESsqPaGC3itzMDgv9oUCbK7gWMnyEhd0TwF7Auu1lCup8SkqD7vJpqNlXEHZcETL0t+O8HUm/IZF5vIiKACRaFOUOEjMgY14WCuCTZ3AzTF+I6+G7bANzOAlWvbnHq4hK9Txh8MniCm61mo2J8EIMK0QHarxqR0TIGtxuYxNnQ6CZq74dAJ5oTbwz+Po9ERKQfHOSCzDQr5ATRU/nJt6h74tp3mGw1Cp4nnJ1fAUBKpozK8/45eVaxONilZY1daifZcf8+DcV3AHrky0jOkLHzu+B//hObICMyGqgpd31dRTdqMWMTZDTU+u+DNvpaGbEJftudtlScppg434fhSESkDGNLEH1pEhEFSFQQ9bUN/hIMkRdE0fsBB9SmHV36AskdZRRMCtzT8kGTJOSOkFTVFCUkA32HSxh+pYThV8rI7mO7jtY1ToIA9Bni/aALlsXVxEsj9kXHyf6cbxsAMGGmjMwc53s1Da/vbLLk9gZPlpGQHB7NsZLSQvs4L7vZ/vEFulaPiEhvogP4MMxdYZtgvfHGG7juuutw3XXX4dtvvw10OCGF5QL7IqOAkdNkdLKYDHj4lRISkmX0H+WfQmRmDpDTX/363QcAqZ1slw+5XEKvwRLifd20UQOJqcDoayWM/Zmb59hPN/LAcUrzu5756uOLjFYmrlZDTVM+CgxDhOxWzaU7eg1y/0FO/gQ2lSQifUrJDK4fs7BsIlhUVITVq1dj+fLlaG5uxh133IGJEyciMpJjSpN/pXaC+wV/rdnZvauIMrKV/3SrXXKUlHbpH+6caj9dlohIZaJoNcbdIKGhVmnSpuefGrXJH/lOejZwdLd77+ncA9j7vW/iISIKJ2FZg3X06FEMHjwYUVFRSEhIQHZ2Nnbs2BHosEIHq7A0FYpNhXz11D7UxSfBbyMcuiMhRUZO/7akKjHFeYLVb6S6mpJR14RHjUp6trYJ6fCrJI+/N3JHhMc5JyLyJV0mWNu2bcO9996L8ePHIzc3F2vXrrVZZ9myZZgyZQry8/Nx8803Y8+ePaq336dPH2zZsgW1tbUoLy/Hjh07cO7cOS0PgSio+SqnG3O90qfLJ6MFquHOgWl1EjQoO/sqyfYqNIs3j71edmuI/q657RY4OL5gaIKqhVSN549KdaM/X3sB+2wSEYUQXX6V1tfXIzc3FzNnzsRDDz1k8/qXX36JhQsXYsGCBRg0aBCWLFmCu+++G6tWrUJqaioAYPr06Xa3vXz5cvTp0wezZ8/G3LlzkZqaisGDByMiQpenIqh07inj7DEBHbuyeVBQ8WMNmWnAiYDR8NacMFPC98v984yqS1+/7MZvQrFWVi2/HbpOz3GfITIO79RpcEREGtFlVjFp0iRMmjTJ4euLFy/G7NmzMWvWLADAggULsG7dOqxYsQJ33XUXAGDlypVO93HbbbfhtttuAwDcf//96NZNZScIO0Qx8D8WphgcxSKKgsvR8gTBu2MpGA/0HiwjPsn5NiwLV6IoIDJK+bchQra7//aL1ByL1kTB8T69PW9292exvfaFUU/25ShGURTsJh2Ck+P1GWcxutB+HcHipFmdS4tjyuoFVJc53parvbq6z03ban+/OzPqGhlbvrRep88QGdExrj8Xliz3KTjZr7P72mo902fOYp5hQbR/jnHpNWfbbb++ozjanz+127NkMLi+pwL2HX7pnrdXa+RNEiqKAjqkAZ26yzh3Qv2G1J5vZ+93RQjn7JqIPOZpWctV+dhXdJlgOdPc3Iz9+/fjvvvuMy8TRRFjx47Frl27VG+noqICqampOHDgAEpLS5Gfn+9RPBERItLS9DNBTEpKfLsldQCA5OQ4JKU4KvEo6yR2iERampeTDGS4XqVT12ZcONWC9M4i0tJiMXaahC3fNGPQ2Eikptl2zokySAAazH8np8QhIclfpf9L5yYxBmlp7T8uymuxsVFIS4vyek+RkQ0AlP4PlvdUQ5URQJP5b3X3W53VXzExzq5tPQDAYFGCjo3T5pjUUWKNjopAWlqMzXLr47U+LhNlnbbX0jJiYDpnlu9vuth2LoeMi0fhlnoH2wIMEW3XQ80+Ha1zLq4ZQIudY7G3PnBgUz0uVrVlvXEOrkX1uRYAzXa3Ex0dCVFsBSDDYBCRlhZnN9aEhGikpbUf3Md2vbbPnPJaRKQBSYlRABrbHVfdpe1afl5st9f+3KWkxCEu0fIzrbyWmhoPg6ERzq5DRKTt/p3ty94yNdfSkfHXRePgTy0oO6uu71JEhAGm4xEFAWlp8ShPsL2WMTGRAIxux5OUqmwTAC6fBSx7Qf1xpaUloNJOLGqlpsbD9H3iSGxsJEyfByIitSIjDUhLi/X4/bblY98KugSrsrISra2tSE9Pt1qelpaG4uJi1du57777cPHiRSQmJuK5557zOB6jUUJNTYPrFX1MFAWkpMSjsrIOkmRZJaFk7FVV9Whx8Ps/5nrgZCGQ3bcF5eW+/+Hr1AuQRSCjSyvKy2sBAAUTARlGlJfbrl9fA1jWJ1RV1qPJb7/Pyn4vXmy0E5vyWkNDM8rLPSuQWGppadum6bwo+25b3v41x6yf1DQ22r+2yhMdZV1Jksz/bqjX5pjUUfbZ1Gxsd2y258JRvZKyjvJaepaMmKRGu++vqW7bRkVFnd3tmdZvNTreX/t9Olunvt7RsdgXFQegqm279Q6uRW2t4/iamlogScrrra2Sw1hra5tQXt7UbqntetafOQFGYytqLjaaX287LuHSdi0/L8qyvLEy9m+yPA9t+6msqkeD1SG2XSOji+sgy7LN/i3ZO/b2y9RcS0cS0huR0gkoO6vu/UZjq3lfptjr6mxjb2pqURVTv5EyDm5tWy+7j6TqM2NPeXkt6pzcV644+kxZamhgckVE7mtpaVVZ/rHmuHzsmaSkWERGuh6pK+gSLEdkWXar6cEHH3yg2b61uGBakSTZboKlLLf/nsQUIG+s6f2+jc8UUuee6venHE7btXV2LNpzdv5MhSRt7oGufYHK8wJ6DZKs9iXbOX7XrD8LzmO8dBxW6/v/HMMmxrZzb7NuO8o6yms9CmSre8by/bLNctvtmdaXXRQUHb2//Tq2+3Qubyyw4eO27Tq6FpbHGJcoo9cgGXt/EC+9p2092Ums9rdt/5yYEjbT9mWLbbYd16XXrT4vyrLs3m0JVvt4bD9fzq+Rvficxd5+ub39e5pUtL/GAJCWJaP8jLrttT+3JmrnL0vOsI7d9pqqPy5Jkm2+b90htbo+j7Ls+bkm1zK6yCg9Hbjzm9JJRuU5Xl/SXttvmWdsy8e+pctRBJ1JSUmBwWBAWZl154mKigqbWi0ComKVmyna81pV8pNOPYDLbpbQa5B22+yaq1z/zj0cf6mMvCIagiAjb4x+HhQASp+82AR9xeQPMR7MVD9+hmx+aBGMvCmO6fEO6TPE+6gElb/O5jneiICA566JyYHdP5FeBF2CFRUVhby8PGzatMm8TJIkbN68GYMHDw5cYDo1caaMy26WEBFCcyiHch/pqBjX67gjd7iMybdISHEybHPnHAOunKdMTKonk2+RMX6GHovP9vUaFA7zB1nUlGi41Ugvu376Q5+hPri+Ovwuy+wGRMW4f3VjE1W+J0DHHBMfPN8lgTLxRknzKQN8ISlV/zES6TLBqqurQ2FhIQoLCwEAp0+fRmFhIUpLSwEAd9xxB95//32sWLECR48exfz589HY2IgZM2YEMmxdEg3aF9oDKauXjGgPnvCHLQHmURqdrqbDgp4o6jMue3IGyOiZr9QYZoTBNAVaXBelaRvQrb8c9hNPJyQHOoI2kdHAZTe7fw+Pny7rsjbRLEi+S+zp0teNM+vFRYiJA7r20/VVVATxtSTPBdtl12UfrH379mHevHnmv5955hkAwIMPPoiHHnoI11xzDSoqKvDyyy+jtLQU/fv3xxtvvGGeA4tCS2yCMtxwh3QZOQMCHQ3pXaC+hAUR6D9KxslCoPSUhlH48IDUFqV8kegOnizjwinvmzZqFVpEpAxji3YHGhMvo7FO3fZSO2m224BR26QxUIKtcBa0eKLJR4Ig9beiywRr1KhRKCoqcrrO3LlzMXfuXD9FRIEkCEDBRB1/tHQcGlkLpUuVfKnLaVKavo9q9LUSpFbb5VExQJc+3m9fq8mrI6MBo5YD3HlZ0LSX1OYMkFF8gCVYT4RLLam9b4MR0yRsW6UuA0510pyciNTT+TMnIgoInZbhRl4tIbu384RCb+mGr+KJ7wBMnCVh5DR1eyiYEJg+YklpQHJH320/voPvtt0hw7d3U+4Ix9vvkS8jIbnt9Zg4GbnD9XZ3t6MmPBfreDuwTX6A7nPdsHf63Dil/u4PKRp0fk+Tbui0WOIQEywib/nxUx+Oo+pZSs5Q5lPyVISHdfZ9h1sX2toXCgL1dDwm3sm+292XnXp4v7/OPZXjTs8Krvtw/AzJHLs7UhwkhvHJ2hx/kpNW7TFxwNifhd9ImkOnysju4/kxd9bgPrdn0CRvErfwuoZqdEiXMeZ6CWIYlUITU3gfeCNY+mSbhNGtTRT8xv6MX9DuMERan6/kjkD3PBlDp6ovLBkiZHRv1/fPVGs07AoJ6dkyuueFx3UZMEbG8Csl5OQhqMqMcYneT1WRnNH27yw1yVoQnR89iU+C7qaMmHijhMwc59NdOBOT4N3+vS5Yqnh/Zo5/z3lMvHbNe4NFYpANE6C3hztRQTbdEBMsoiBi0GWvSf0RBGDKHAmT242GJghA32Ey0rM833aXvrJ57qG0zsDQy2WrkRpDbZTL5Iy2kTsNBmVABr89dfbw992TfmlxSc5ft5rqQF/lDt1QOzlyQHiRpJjmpkvxdAhzP52X6DjPd6Tra9eOr2sy9N6v1V9GXs3z4A0mWETe0uF3UGKKDEGUg65KXUsRkd413Yu4lDSpGebeUsduSpPCsT8Ljb4gI6/W+X1kJzY1T4pNk3CbGOzcK6an+sHW789S78HW92HOAN9Fq/eRBEPd0Cmy/URJzzdokEvrHJonVxBlr2v9wx2fhxOFoNHXKT+0ui4Y61zeGBlF24DeQ9z7ARUEWDUpTOsMHNmJoJjA0x3B1lzDEx3SgcmzJXOybeLPK+ntvmLbNU9Tajl888Xg7sMIf3L3iEVRhiQJQVWbEQwTdocSQ4SMYVfI+OYdQJJC68d26OXBc9/rFZ83EYUgQfBjM64QYK/pT1wiMGSK7HU/gQ7pwISZEoZODa0frPgkYML10Rg33XfHpYczFhnt2YOKQPXLax9rp+5Az3z/xRITr4er5p5egxzXNvv6IVVsgozR12pY223v9Ks4Bj6M07e4RP9+rvR4P+gxJmdYBCOioJM3VtK0qZPvC1H+T3hN82R1SPPdPrr1jQh8R3WdNolKUnPeVcSp5ta87GYnCYLofi2sM54O9KBnvQZ5/l5vB4dIz1Z5r2jEm35aviSIsvo+bkFW0NaCJ6Oghppg6icIMMEioiCU3dt1vxg1hk2VkJgqo+/QIPvmViFvnIx+IyX0GxV6x+YLvp7zSivRsbZxRsX4b/8Dxwf+PHXpG6DaQTvL0rMDfz4sBVsh1CShA5Ddy7fBR7QbVVaz+8gPCV/XXPvL0zycMkOviXYoYYJFRCHFnZqitCxgzHUyYuJ9s/1AiowCuvXTd78Yn7FT4GlfuGovZ4D6QkdiilKwNs2PluDDyY7b65Duv33Z421trzcDzySmyoAgo/8oGZNukhDfgYVEd8WEwCinntyCgiBj0s0yJt/SVtsbnyRjyBT/DUbk6W9HYorscAThYGs2Z4+zJrrBLEiKCkREzuVPkJDdR/ZZc5uhUyWkZMro4cf+LOHO3sh+NlQWMLr1Bzp1lzH8Kvs/5qKo9FdSQxCUTuCmwUw6dgMKFeJOkgAAKUlJREFUJvi/kFAw0f19BrI8lpkjo0sfz98/+loZU29TRrWMjnWztkanBVF/FJAtd1Ew0f5JczWYh6c1JT7h4TkzGGwfOGV08TyMjl0v/aPdqemQbv9csdbIPkMkMHiy6++yYEsmOYogEYWEzj182z8kPQtI11MhI4RNukmCscW72o72IiIdFy69JQhApx7Anu99snmH/F2bmtPfu/M3aJJ3IxgKgueFrCArm3nMVZfE9qNKmuQMsL9cD+KTZXTLlVG4JfB1ApFRMlqalbtpQLsJsZPSZPQeLKNDBrD2fX3fcfFJQFN9oKNoE2zJkxqBv1uJggCL1RQMTCNNJSQH9x0bHasUADwW3IfvlKfDhpumCUjp5Pm+TfNcRUZbx+DOgDOiCEy5MQZjrtfHRYqICmwcmveZ8nB7WiXr2b1lrwf+aC+lo+M+SIHUvtmeICiDlgRDs2x7A9/Y69/pqSQHtXjhhAkWEVGIGDFNxsBxErK9aIZlqVN3bX8k+w6TQqKJZSCPoHueZ+8bOlXGxFkSktpNwpyS6f7RjLlORpbFgAS5wy22oWJznXMMPh3d0mcC9JS9/TxsbvPTDTt1roTEFNvEQyt5Y2QMm+z77MVp0uvje6CTxq0w+o203/QuItJ2mVa/GwAwwM3Blfw5kqa/MMEiIgoR0bFAVi9tnkZ36Ssjf4K2P/bd84A+Gg4ZHo48bTYpirAZzKXPUMmj2oaYeCejePozCfHRrRTfQba7aX/VTAiC9d67D1BZK6Txuc8d7l4fP183We2aC/Qbaicz8JA/v4nyVfbR7DtMdpgUeaJbP8025VPRsW2DXSRnuDFkv44xwSKisGfvaV5YcPIbZogIzXbxzmhdY+eO7D7BM2S0r6R21nehKqMr0GOgjJHT7BeAu/WTkZii/TFERJr6r7kWrMO0uyPYbvGUTBmde6hb1xCh35EeI33cnLZHPjBokoQhl8voqtX3YQAxwSJSIViG5ibPiAZgwkwJk2eH5nCxJu7MHRYsyZWWYXZI9/NIXxbB542RMfJq7+8/f9WyaH2Wxt0gYegUH557DW4UQQD6DJWR3NH+68kdZZuBDxwRI5T1YuK1PeboWE03Z6ar7wONYlFzrhLaJ8x29u3qCqptMjlsquTW53fQJN//Xhku3aedesgYebVvvxtFEcjMCY4+bGqw2EjkRMFECZ26y0jLCmAQevphC2GxCUBkdKCj8K0BY2RcdrPvf5Sj3ZhXzBOi6PyH3pvCYKAmsXVEbTQjr5bQPU9GZjf3tu/OufJlITs+SdtRI9vL6ungTHp4uQeMkZCULiMzx7P3j7lORq9BEnL6e/Z+R/dpv5HW/eOCSYeMtn/7I3lQc791bl+r7cGp7a+yP5K75QxP7z13TLxRxrgbJBRMkBHvx/n+kgI8358WmGAROdGpuzK0c7jVYDGnC02CAETF+G77426QMHC8hNRM3+0DACIdHMPA8RJSO6nrr2IacTHQo8ip5uLJeXKG0n9DCPR3lYPTGR+AkS1NIy527CYjTuPCYZc+wOhrZI+bF8cnAb0GeZ5UDhjtYK6lWGDgOO3PtSy31WZY6uwocfWA5cihHbu1jVYZm2C9j4Df4+04+73s1l92ODS+OwLV9DMyyvWIrmN/5l0ybO/8xSUCE28M7hYlnAeLiIg0EZ/k5fDqKnTspsw1s+lT25/lrJ5KTUXledfb6ZoLSJJk8xRYi4cLEVFAc6OKFYMkt3OLnRM4fobkcdO1nAEyig/YvyquTl9OfxlRMUqTvopzbcuze8soOeL8SqdkAhVndTK6mbc3pZP3d+ouqx65btQ1Mk4eBE4fattg78Eyzh7zzSO5UdfIOF8s29TyaV2Tmpgi42Klb47B1w8rew2SUVYS2EeiCcm+2a5e+6KppbPnAETUnsGHzWaCWai007anx8BQLHlrY/BlsiY/6KIB6DFQeVKqldHXScifIGm6zVAQl+j50N0dMjz/LAii0uyq/b7zxrreZsEEZTS3PkNdr9ux66U5xhz0zYKs1O4KTpq2ujO/Wddc7b4fOnaV0bGrunUTkoH+I6337bOaFVm5b3oM9G3TUUBJ5DqonLep16DAfDc7Sio7pANX/Nx+TY+7o0B6I62z7FYfXysh2mSGCRaRzqVkKk9c/dEmPZhExwGDL5Mw5rrQOy+WhTqf/vYE8Q+baTLlRA8n3vWFpFSoHi0s6OnhtLsTg6N73cHyqBhliGs1TQAHXSbj8lslRDt54h6fBHRzMlnuyGl6OKEqBPF3hiOiAU6vnaVO3d3bttVVtXPu7DVRdvdOEARg1DUS+o+2/i30ev40Nwy7Qlb14MJSnyESkjNkZPf2UVABxiaCRDonCOqeuIajjm526Kfg4+gJ+fArZVScc39QB03w4+hYGJ4bQfB+cl1f19J4y1eDoQwYI2PPBgF9hgX2xnEUs2VUQ6ZIAbtOrmoKO6Qr/yV0kLBtdXDUnXTqgZCYeN4RJlhEXgqHeUcoRAXxvRsV4/7TZDW0OiWmZoLRcTKa6kPksX+ADiMyWkZLk5c7D6J73RAJGJvdf18w3WWmGqNO3YHMHMmc4JivtZ8PxpvfcT3dWik+HmAokHQ1VYAKTLCIyFaQfZFR6LL8URUEPRVlnIuKUUbBiowCvn3XNx8oT/tnJiTLqK0SlGGxL51S0aDfczvpJhlyGDzJmnijhJYmYMe3gkcJVjAYPFlC5TnBqi+T5Wd80k0ypFbZp4Xpbv1knCyCz0c71YqWd35SuoyaMkGTkQ3JOSZYREQ6FvrFSvXG3RBcZ8PuKFhOCo5qC5VDpkgoPSV4PD/fyKtl1FXL6HBprpnBl0mazTvTuSdwfJ822zIJpmkyvMkDY+LcGzlt7M8kyDKw+TPPT5CzvkeeNntM7ayM0piebTvCXXxS26Ag9oiib653Vq+2f/cbKSN3hJPPm6Mp04Lr68fu8Y26WklgvW3SGgjxHYLrAgThKSYinwuu7zEKA4YIOeRH50tKA7J6yUjt7PwDmNEFyOji+Yc0IhLm5ArQti9jUroMVoH7h2k0zYgoGcZmARGOJkp3cKv0GSrZbVI27AoJZ48JyOoFHPhRWWZvEvaUTPsb7tQdiEuUkJACfLvMt/dCRlcZpaec72PENAkd2g2376/mZpa7iVI5kb29BNOdeAsmSjhzTLDbhFqL/oJacac/W3wHGd36+S4WX9DJaSYiItJG3KW5uKLjgutJgSD4ZpJYfzIlbhGRMowtTLT8YdKNMlqNsttNRi1rdSyldVaG3bZkGk3RsqA/aJIMY4vt+wXBOoH3pdh41+s4HD7fgjcJlwB1zySzewP1F2V07iHjxy8cV9PZq5l2p/asU3dlfjNfiu8go67au8+3O3Pjdc2VdT8QTHtBVPFORETkWnQsMHGWhPEeNCnUXUoQZPlWTBww+RYJw6/0feBu7SGAF9bbM+Gq8G+IUPr8+VJWL9uj8PU+9UZQm0k5IBqA3OGy1eTVGV2A2AQZfYa0DbEuikDeGP9PP+JOH9deg5V1+430LM6O3YLsi80DrMEiIlu6K2WGr0BdiujY4P4BjFHxZNuerrnAhVMycgYE9/H7mrMn6pFRQGOwfIf48DLHJshoqA2WE+Gcv2qk3KaD0+vNLWSIACbMtLMFi+PydW2UiSyrP5kpHYGpc6Wg6h/pb0ywiIjIbMz1Es4dF9DVyaSo/uTvjuWR0cDoa5lcBQVeprAU0JwqADvvMRBoNfp/v64wuXKOp4eIiMwSU4A+Q4Ovvbs/9MiXERUrez3XTK9BEpIzZMQnaxKW3+igskD33BkFkEgNbwfkmDpXQlYv2ePmfIE0cJyEpHTZYX9BPWMNFhERkQp9hsjoM8T77fQaBKt5gJxiVhNUYuKB4VdJiI0Htq/hxfMn0SBDavXdOQ/kMO2GCGXgkfKz7h+fKAbv4DlZvez3/wsGrMEiIiIiXfKmuGwa+c7fUjNhdyLXgBUTwyTPS8/WZjt6LM4LAjDsChlpWXqMjuxhDRYRERG55kZBPeZSghGb6P8C4fArJZSebjcRs6Mw9Jh8sAztVCBPj7/mzwoEQZCRO0LGhZMCklUMbU/OMcEiIiIiTUVGAZNnSzD4shbJQUk7tROQ2kldMTzCj6WgEC6bq+bT+8EPDBFA/ngJURZzOEVEAi1N+pnA1xs5/YGc/t6nsPYmpg43bCJIRKRnLJWRHqkog0VG63+ksT7DTAcSWtVGY67X14AGo6+VUDBB0mQQEMuvxKho/1+3zj2VyZhNhl0hI62zjAFjQuse8sS4GyQMuVyyaiI7bKoUFvNetafzrz4iIgpnSanK/5MzAhsHaa9gopIEePrEXIsiW3Ss63W04s8iZmJKgHbsQFIa0KmH9tvt1h/o0kfGqGt8n1A6ah6YlKokWXGJPg9B9+KTgIx2feHSsgBDu1FpO6Tr4Kb0sRCo0CQKDNMkkokpof9FQRQouSNkJKTI6OyDwhkFVqfuQHKGhOhQHdpc49rn6DgZTfUC4jvwN8ckIhJ+qzkK5CiCoaRgooSO3QIdhe8xwSLy0MirZVRekJEZBl8URIESEan0CwhbOinURcfJ6NpX+2Bi4u0v7zFQxqlDQGpn+69rToD257rd9tTmW+nZQMkR2+WjrpFRdlpGVm/3whDYVilwgqiJt7+Snk7d/bOfQOPHjshD0bFAp5zQHlWIiAgAJt0o+7Wmqc9QGZNny4iMcrxO9zwlg0lM1UkW6oLaKPuNlDFokm2Tt5g4oEtf9f3aBk2S0He4FBKDL7hr+FX66oPWXkyccjc4rI308y09ZY5k3azUleD4yAVUGH7siIiIyBv+KF+5eniV0x/o1F1CWQmwf5N3T7oGjJJx4Ed9PC0zRACZOd5vx7SNi5X2X9f7ACQOqbhMqZm+D0MVBx+UkVfLKD0tI7uPf8NxxOdzxunjo+VXwfrxIiIiojCn1SAVXfoCEZEap406LVQOmSIhd4TEobQd8cPTg5h4oGuukyRXp/cOqccaLCIiHeqaK+NUkRAWnYGJ9MDXfZX0UmbO6BLoCEhPYuL9kFGGYZNCJlhERDrUf5SM3OEyRIPrdYn8LgwLTN4K1CmL7wDEJclIzwpQAEGgUw8Z54vtp8BJ6TJqygQkpfk5KD/p0ocfZl9ggkVEpFNMrkLDhJkSvl/OFvlhK8DlV1EExt/AQrQzzkYDHjlNhrFZRlSMBxvWS7Wl1kL1uDTEb3wiMku6NPlfSscAB0IUQmITAENEaBVwg2301OQAfKcF2SkKexFR9j+jogjPkisKa6zBIiKzEVfKaKiVkZAc6EiISM9SOgGpnWVkdguOxDEQQ5UHx5khk3BNiH0+gmCYYoJFRGaGCDC5IiIIogxZclzkFEVg+BVMIVQJ15K7nwVbrWqgjbhKwpmjArL7evBmfvRdYhNBIqIwkzdWQnKGjE7dAx0J6dXY61mC0gxPJelQSiaQN1aGwQ99fcPxI8AEi4gozGT3Via6DESzKQoO8R2AngVKsSjSQd8Uco4VKv4la3Sb8m4nLTDBIiIi8rHeQ5RiW/cBwVN86zFQRs8CGaOuCZ6YiTymYUY8cJyE6DgZOf352QlXfH5JRETkYzn9gaxeEiKjPNxAAKpDDBFA78GhUUA09c+JjAmN4yFbeuqDldULyOrFey2cMcEiIiLyA4+TK/KaIABT5kicW85N3frJmjW987cpcyS296OAYYJFRLrA/kBE5EuWw1Fn95Fx9hiQlOa//Qfjd1y/kcGboXD4cQqkIPy4E1EoGXm1hBP7BHMfFSIiX8sbI2PAaP82K+ueJ+NiZXD1wwsm3fNknC8W0G+kFOhQvJaSqfw/LavdvRKkt0441t4zwSKigErOAAZPDtJfDSIKWv7usxMZBQydwu86X+mQDlwxV4IQAsO3xSUCk2dLiNBpYuLuXdx7sAxjM5ATRg8XmGARERHpXfiUSwImLhGobgJiEwIdCTnjLDEOheTKJDLazkIdDeThjshoIH9CeH2JMcEiIiKisDdokowTB5Th6Um/fD7ohuzg30RuYIJFREREwUujp/ox8UC/ESxRE5H3mGARERERkdti44GkdBkpHe2/PvFGCWIINdsjUosJFhERERG5TRCB0dc4rvWLifNjMEQ6wucKREREFLx03qpP5+ERkQ8wwSIiItK7IB09jEhrPhtePxg+YzrJ1oPhVAUaEywiIiIiH2FhlEKNTvI8XWMfLCIiIiJSpXNPmQNXELnABIuIiIjIR0LtaX/++FA7IiLt8RkEERERkdbYNjCoWF6uhGQlieyQHphYKPiFfIL18MMPY8SIEXj00UdVLSciIqIgwkSGNDZymowR0ySkZQU6EgpWIZ9g3XbbbVi0aJHq5UREREQUviKi4HDyZCI1Qj7BGjVqFOLj41UvJyIiItIMuywFhZz+yoXq0pcXjLwX0ARr27ZtuPfeezF+/Hjk5uZi7dq1NussW7YMU6ZMQX5+Pm6++Wbs2bMnAJESERERUajqPhCYOEtCTv9AR0KhIKCjCNbX1yM3NxczZ87EQw89ZPP6l19+iYULF2LBggUYNGgQlixZgrvvvhurVq1CamoqAGD69Ol2t718+XIYDAafxk9ERETkFPuIBQVBAGJ03rApKkb5f2Q0a9n0LqAJ1qRJkzBp0iSHry9evBizZ8/GrFmzAAALFizAunXrsGLFCtx1110AgJUrV/olVmdEMfDfnqYY9BALBQ/eN+Qp3jv+JSA0zrUv7hvLTenxHHl77fR4TIHQdh4EO8vCQ7+RgCDK6DEwsMcuCoLqudACfY0C9Vul23mwmpubsX//ftx3333mZaIoYuzYsdi1a1fgAmsnIkJEWlpCoMMwS0nR+eMX0iXeN+Qp3ju+JYr1AGQYDCLS0uICHY5mtLxvqs+1AGgGAF39HhsMyrUTBE+vXR0AfR2THkRGGQC0AgjPc5PVJZB7V+7JlJQ4xCW6yrD0df/6+7dKtwlWZWUlWltbkZ5uPQlBWloaiouLVW/nnnvuwZ49e9DQ0ICJEyfi9ddfR79+/Rwud5fRKKGmpsHt92lNFAWkpMSjsrIOksSqY1KH9w15iveOf0gSAAhobZVQXl4b6HC85ov7prYWMNVq6OkcSa0AIECSPLt2w6Yq29DTMQWS6d5paWk1L+O58Tflc1ZZWY+GZnXrBvoaaf2dk5QUi8hI112QdJtgOSLLMgRBfTXf66+/7tZyT+ipcCFJsq7ioeDA+4Y8xXvHx+S237tQOs9a3jcRUYCpMKencyTDu2tnmoNJSbLJTJahx+sdHi6dd1lWcV/q6xr5+7dKtwlWSkoKDAYDysrKrJZXVFTY1GoRERFReErPBnoWyEjP1kdBjohIt/NgRUVFIS8vD5s2bTIvkyQJmzdvxuDBgwMXGBEREemGIAC9B8tIzgh0JEREioDWYNXV1eHkyZPmv0+fPo3CwkKkp6cjIyMDd9xxBx5//HHk5eWhoKAAS5YsQWNjI2bMmBHAqImIiIiIiOwLaIK1b98+zJs3z/z3M888AwB48MEH8dBDD+Gaa65BRUUFXn75ZZSWlqJ///544403zHNgERERERGR/xh028FIPwJ6ikaNGoWioiKn68ydOxdz5871U0RERERERNTe2J9JaG4EIqMCHYn+MQclIiLSOQ7fQESBlpAc6AiCh24HuSAiIgp76mclIZ1xY0YZIgoxrMEiIiIiIiLNTJkT3hO4McEiIiLSK7YNJKIgFBEZ6AgCi00EiYiIdI6tzYiIggcTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiouDADokUBJhgEREREfkIB4IkCj9MsIiIiIiIiDTCBIuIiIiIggOrBCkIMMEiIiIiIiLSCBMsIiIiIgoOHOSCggATLCIiIp1iaygiouDDBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIyFfYzpMo7DDBIiIiIiIi0ggTLCIiIiIKChxEkIIBEywiIiIiIiKNMMEiIiIi0lh0rPX/iSh8RAQ6ACIiIqJQM3CcjMM7gV6DOMoFUbhhDRYRERGRxmLigfzxMuISAx1JaElMVf6flMbElfSLNVhEREREFBR6FQDRcRI6dg10JESOsQaLiIhIpxI6KP+P7xDYOIj0QjQAXfoAUTGBjoTIMdZgERER6dTA8TJOHgS69WNzKCKiYMEEi4iISKeiY4E+Q5hcEREFEzYRJCIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijQiyLMuBDiKYSZKM1lYp0GEAACIjDWhpaQ10GBRkeN+Qp3jvkCd435CneO+QJ7S8bwwGEaIouFyPCRYREREREZFG2ESQiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgSLiIiIiIhII0ywiIiIiIiINMIEi4iIiIiISCNMsIiIiIiIiDTCBIuIiIiIiEgjTLCIiIiIiIg0wgQrBCxbtgxTpkxBfn4+br75ZuzZsyfQIZHOvfLKK8jNzbX6b9q0aYEOi3Ro27ZtuPfeezF+/Hjk5uZi7dq1Vq83NTVhwYIFGDVqFIYMGYKHHnoI5eXlAYqW9MLVffPzn//c5jvoj3/8Y4CiJb147bXXMGvWLAwZMgRjxozBgw8+iBMnTlitw+8cskfNvePP7x0mWEHuyy+/xMKFC/HAAw9gxYoVyM3Nxd13342KiopAh0Y6169fP/zwww/m/959991Ah0Q6VF9f7/RH6C9/+QvWrl2Lv/3tb1i6dCkuXLiAhx9+2M9Rkt64um8AYM6cOVbfQY8//rgfIyQ92rp1K2677TZ8+OGHWLx4MZqbm3HnnXeisbHRvA6/c8geNfcO4L/vnQifbJX8ZvHixZg9ezZmzZoFAFiwYAHWrVuHFStW4K677gpwdKRnBoMBGRkZgQ6DdG7SpEmYNGmS3dcuXryITz75BC+88ALGjBkDQCn8XHPNNdi7dy/y8/P9GSrpiLP7xiQ2NpbfQWTlzTfftPr7ueeew5gxY3DgwAEMHTqU3znkkKt7x8Rf3zuswQpizc3N2L9/P8aNG2deJooixo4di127dgUuMAoKx44dw/jx43H55ZfjN7/5Dc6dOxfokCjI7Nu3Dy0tLVbfQb169UJWVha/g8ilFStWYNSoUbjuuuvw4osv2jxpJrp48SIAoEOHDgD4nUPqtb93TPz1vcMarCBWWVmJ1tZWpKenWy1PS0tDcXFxgKKiYDBo0CA8//zzyMnJwYULF/Dqq6/itttuw2effYa4uLhAh0dBoqysDDExMUhISLBanpaWhrKysgBFRcHgZz/7GbKzs5GWloaDBw/ihRdewIkTJ/DSSy8FOjTSCVmWsXDhQowcORK9evUCwO8cUsfevQP493uHCVYIkmUZgiAEOgzSsYkTJ5r/nZubi0GDBmHy5MlYvXo1ZsyYEcDIKNjY+66RZTkAkVAwuemmm8z/zs3NRceOHXH77bejpKQE2dnZAYyM9OLpp5/GoUOH8N5771kt53cOueLo3vHn9w6bCAaxlJQUGAwGm6c2FRUVNrVaRM4kJSWhe/furPkkt6Snp6OhoQG1tbVWy/kdRO4aNGgQAODkyZMBjoT04M9//jO+++47LFmyBJmZmebl/M4hVxzdO/b48nuHCVYQi4qKQl5eHjZt2mReJkkSNm/ejMGDBwcuMAo6dXV1OHXqFDuck1sGDhyIyMhIq++g48eP48yZM/wOIrcUFhYCAL+Dwpwsy3j66aexZs0aLFmyBF27drV6nd855Iire8ceX37vsIlgkLvjjjvw+OOPIy8vDwUFBViyZAkaGxvZzIucWrRoESZPnoysrCxcuHABr7zyCgwGA6655ppAh0Y6U1dXZ/V07/Tp0ygsLER6ejoyMjIwa9YsLFy4EElJSUhISMAzzzyD4cOHczSvMOfsvmloaMBnn32GSZMmITk5GUVFRVi4cCFGjx6N3r17BzBqCrQFCxbg888/xz/+8Q/Ex8ejtLQUAJCYmIiYmBgkJibyO4fscnXvnDx50q/fO4LMhqtB75133sGbb76J0tJS9O/fH3/4wx9QUFAQ6LBIxx599FFs27YNVVVVSE1NxfDhw/Hoo4+qeuJD4WXLli2YN2+ezfIHH3wQDz30EJqamvDcc8/hiy++QHNzMyZMmIA//elPbK4T5pzdNzfeeCN+85vf4PDhw6ivr0fnzp1x5ZVX4t5777UZvIDCS25urt3lCxcuxMyZMwGA3zlkl6t75+zZs3793mGCRUREREREpBH2wSIiIiIiItIIEywiIiIiIiKNMMEiIiIiIiLSCBMsIiIiIiIijTDBIiIiIiIi0ggTLCIiIiIiIo0wwSIiIiIiItJIRKADICKi4PPKK6/g73//u83yMWPG4K233vJ/QCGkubkZL774Inbv3o19+/ahqakJRUVFDtefP38+qqqq8Le//Q0///nPsXXrVgBAREQEkpKS0LdvX1x55ZW46aabEBUV5a/DICIKW0ywiIjII4mJiXjjjTdslpF3Ghsb8fHHH6OgoABDhgzBjz/+6HT9DRs24OGHHzb/PWrUKPzqV7+CJEmoqKjA1q1b8X//93/4+OOPsWTJEiQlJfn6EIiIwhoTLCIi8ojBYMDgwYNVrdvY2IiYmBjfBhQikpKSsHXrVgiCgHfeecdpgnXo0CGcPXsWEyZMMC9LTk62ui5Tp07FzJkzMWfOHCxcuBALFy70ZfhERGGPfbCIiEhTp0+fRm5uLj799FM8/vjjGD58OO69914AQFVVFf74xz9i7NixyM/Pxy233ILdu3dbvb+mpga//vWvMXjwYIwfPx7//Oc/sWjRIkyZMsW8ziuvvIJRo0bZ7Ds3NxfvvPOO1bKPPvoI1157LQYOHIjJkyfj3//+t9Xrv/3tbzFz5kxs3LgR119/PQYPHow5c+bg8OHDVuu1trbitddew1VXXYWBAwdi4sSJ+O1vfwsAWLZsGYYMGYK6ujqr9/z444/Izc3FwYMH3TqHgiCoWm/dunXIz89HWlqa0/X69euH2267DZ999hlqa2sBABcuXMDvfvc7XH755SgoKMBVV12FF198Ec3Nzeb3zZo1C7/73e9stvfEE09gxowZbhwREVH4YIJFREQeMxqNVv/Jsmx+7fnnn0d8fDxeeukl/L//9//Q3NyMO+64Axs3bsTjjz+OV199FSkpKbj99ttRWlpqft/vfvc7bNiwAU8++SSefvppbNy4EV988YVH8b3xxhuYP38+pk6ditdeew1z5szBSy+9ZJOEnT17Fs8//zzuu+8+vPDCC6ioqMAvf/lLq+P54x//iFdeeQXTpk3Da6+9ht/+9reor68HAFx//fVobW3F6tWrrba7YsUK5OXloV+/fh7F78r69esxadIkVeuOGzcOLS0t2L9/PwCgsrISycnJ+N3vfoc33ngDd911F5YvX45nnnnG/J6bbroJq1atskoc6+rqsGbNGsycOVPbgyEiChFsIkhERB6pqqpCXl6e1bLFixejW7duAIBBgwbhT3/6k/m1jz76CIcPH8bnn3+O7t27AwDGjh2LadOm4T//+Q+eeOIJHD58GN988w1efPFFXHPNNQCUPkWTJ09GQkKCW/HV1tbi1VdfxX333YcHH3wQgJJkNDQ04J///CfmzJkDg8EAAKiursZ7771njkuWZTzwwAM4duwYevXqhaNHj+Ljjz/G73//e8ybN8+8D1OMSUlJuPLKK7F8+XJz4mFKRH7961+7Fbda1dXV2LlzJ5588klV62dmZgIAysvLASi1fU888YT59aFDhyI2NhZPPvkknnrqKURFReG6667Dc889h1WrVmHWrFkAgK+++gotLS247rrrND4iIqLQwASLiIg8kpiYiMWLF1st69GjB6qqqgAAl112mdVrmzdvRl5eHrp06QKj0WhePmLECOzbtw8AsHfvXgCwag4YHx+PsWPHYs+ePW7Ft3PnTtTX12PatGlW+xs9ejT+8Y9/4Ny5c8jOzgYAZGdnm5MrAOjVqxcA4Pz58+jVqxe2bNkCAE5rbW688UbcfvvtOHXqFLp27YqvvvoKRqPRZ4nIDz/8gNTUVAwYMEDV+pa1caa/lyxZgg8//BCnT59GU1OT+bWzZ88iJycHCQkJuOqqq7BixQpzgrVixQpMmTIFKSkp2h0MEVEIYYJFREQeMRgMyM/Pt1luSrDa9wuqrKzErl27bGq9AJhrvcrKyhAfH28zIIarPkb2VFZWAgCuvfZau6+fPXvWnGC1H/0wMjISAMxJR1VVFeLi4pzWoo0aNQpdu3bF8uXL8cgjj2D58uW4/PLLkZyc7Hbsaqxbtw6TJk1S3V/rwoULANrO5ZIlS7Bo0SLcc889GDFiBJKSkrB37148/fTTVsnWjTfeiJ///Oc4efIkAGD79u14/fXXNT4aIqLQwQSLiIh8on3Bv0OHDhg4cCDmz59vs65pfqb09HTU1dXZjDpoatZmEh0djZaWFqtl1dXVNvsDgNdee81ugtajRw/Vx5KcnIz6+nrU1tY6TLIEQcCsWbPw4YcfYvr06fjpp59sBtTQiiRJ+P777/HnP/9Z9Xt++OEHREZGmhPcVatWYdq0aXj00UfN6xw9etTmfSNGjEBOTg5WrFgBWZbRsWNHjB8/3vuDICIKUUywiIjIL8aMGYONGzciKyvLYY2UqUbsu+++M/dvqqurw6ZNm6wSm8zMTNTV1eH8+fPmvkUbN2602taQIUMQExODCxcu2DRXdNfo0aMBAP/9738xd+5ch+vNmDEDL7/8Mp588klkZmZi3LhxXu3Xkd27d6O2thZjxoxRtf7Bgwfx7rvv4vrrrzefx8bGRpuJhz/77DO77581axbee+89AMANN9xg7rtGRES2mGAREZFf3HDDDXj//ffx85//HHfeeSe6du2Kqqoq7NmzBxkZGbj99tvRp08fTJkyBfPnz0dtbS0yMjLw5ptv2jQZnDBhAmJiYvDkk0/ijjvuwOnTp/H+++9brZOUlIQHH3wQzz77LEpKSjBixAhIkoQTJ05gy5YtePXVV1XH3rNnT8yePRvPPfccysvLMWLECNTU1GD16tV48cUXzetlZmZiwoQJWLduHf7f//t/NonIK6+8gr///e8oKipyur/169ejoaEBhYWFAJTaJkBJQLOzs7Fu3TqMGDHCbm1aVVUVdu3aBUmSUFVVhS1btuDDDz9E9+7drYZcHzt2LJYuXYqCggJ069YNn332GYqLi+3GM2PGDLz00kswGo0cnp2IyAUmWERE5BfR0dF4++238dJLL+GVV15BeXk5UlNTUVBQYDWoxXPPPYf58+fjL3/5C+Li4nDrrbciPz/fagj01NRUvPzyy3j++efxwAMPIC8vDy+88IK51svkF7/4BTp27IglS5Zg8eLFiI6ORvfu3W3WU+NPf/oTsrKy8NFHH+Hf//43UlNT7dZQTZ06FevWrbM7IEZDQwNSU1Nd7mvBggUoKSkx//3II48AABYuXIiZM2di/fr1uOGGG+y+d8uWLZg9ezYiIiKQmJiIvn374rHHHsNNN91kVWP1wAMPoLKyEi+99BIA4IorrsBTTz1lnrPMUkZGBgoKCgAoySYRETkmyO2HFSIiItKZRYsWYfXq1fjuu+8CHYpLjzzyCEpLS/Huu+/avDZ37lyMHj3aPGy8J86fP4+JEydi9erVViMf+lJVVRUmTpyIP/zhD7jpppv8sk8iomDFGiwiIiINFBUVYd++ffj666/x17/+1eZ1o9GIw4cP4+WXX/ZqP5mZmS6bGGqltrYWR48exdtvv434+HjOfUVEpAITLCIiIg3cd999qKysxK233opp06bZvB4REWGeTytY7N+/H/PmzUN2djYWLVqE2NjYQIdERKR7bCJIRERERESkETHQARAREREREYUKJlhEREREREQaYYJFRERERESkESZYREREREREGmGCRUREREREpBEmWERERERERBphgkVERERERKQRJlhEREREREQa+f8effSXsUdM9gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 11])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, 1/Day\")\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "948d53f6", + "metadata": {}, + "source": [ + "A pretty visual reduction in variance can be seen\n", + "\n", + "##### Zooming in" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "185d7f36", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAAUGCAYAAACMyxAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAA3XAAAN1wFCKJt4AAEAAElEQVR4nOydd7wcVfn/PzO7t+bm5t7c9EogIQmBFBIIvamIVAEbUqSJiAj4VRQFCwoqX1QU/QkWpIkoti8IiIjSeyCd9N6T2/u9uzvz+2PnzJw5c6btzu7Okuf9euWVu7tTnjkzc855ztMUXdd1EARBEARBEARBEHmjlloAgiAIgiAIgiCI9wukYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARQQoWQRAEQRAEQRBERJCCRRAEQRAEQRAEERGkYBEEQRAEQRAEQUQEKVgEQRAEQRAEQRARkSy1AOWOpunIZLRIj5lMqkinoz0mEQ10b+IN3Z94Q/cnvtC9iTd0f+IN3Z/4EvW9SSRUqKrif97IzrifksloaG/vjex4qqqgqakOnZ190DSqAR0n6N7EG7o/8YbuT3yhexNv6P7EG7o/8aUQ96ahoRaqmvA/dyRnIwiCIAiCIAiCIEjBIgiCIAiCIAiCiApSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIoCQXBEEQBEEQRFmg6zo0LQM9JvkkVFXB4OAg0uk0JbmIGbncG0UBVDUBRfHPFOgFKVgEQRAEQRBE7MlkMmhp2QVNy5RaFBvNzSo0jdK0x5Fc7o2qJtDUNBaJhH+2QDdIwSIIgiAIgiBiT2dnK1Q1geHDRwPIz8IQJcmkgnSarFdxJPy90dHe3ozOzlY0No7M/bw570kQBEEQBEEQRUDXNQwM9KKxcRSSyYpSi2MjmVQBkAUrjuRyb4YObUBb217ougZFyS1dBSW5IAiCIAiCIGINc/NKJMg2QBQW9ozl4/ZJChZBEARBEAQRa6ykFvFxDSTer2SfsXwSqZCCRRAEQRAEQRAEERGkYBEEQRAEQRAEERm33/4d3HLLV0stRskgR1aCIAiCIAiCKAC33/4d/POfT+L88z+BL33JrnDceust+Pe/n8GnPnURzj//E/j4x8/2PNY3vvFtjBkzFtdddzWeffYl1NbWOrZpbW3Br3/9S7z11htob29Dff0wTJ8+A9dccz0mTz4gyksDAOzatRMf//jZeOihP+LAA6ea319//VegF6FY2cc+dhYuuOAinH/+Jwt+rjCQgkUQBEEQBEEQBWLUqNH497//hS984QZUVlYCAHp6uvHyyy9g1KjR5jaPP/6Muc/99/8W69evxe23/6/5XV1dHVauXOF5rptvvhG6DnzrW9/DmDFjsW/fXrz55uvo6uqK/Lq8qKurK+r54gYpWARBEARBEARRIA45ZBY2bdqIV155Caec8kEAwHPPPYuDD54BVc1G6yQSCTQ1jTD3qa6uRjKZtH3nR1dXF5YvX4Zf/vK3mD17LgBgzJixOOywOZ77aZqG3//+ATzxxN/R1taKyZMPwJVXfh7HHHMcAKCzsxM/+ckdePvtN9Df34/Ro8fgyis/j1NO+aBpdbvkkk8BAObOPRy/+MWvcfvt30FfXy9uuy2rIF577VWYNm06Mpk0/vWvp1FdXY1rrrkeRx99HP73f2/Hm2++htGjx+LrX/8WZs06FADQ1taGn/70f7F06RJ0dXVi4sTJuOKKq3D88SeZx9y9exfuuutO3HXXnQCAV15ZBABYunQx7r3351i7dg0aGhrxgQ98CFde+XlTwS00FINFEARBEARBEAXk9NPPwtNPP2F+fvrpf+D008+K9Bw1NTWoqanByy+/iFQqFXi/hx++H88++wy+9rWb8dBDf8I555yPm2++EWvXrgYA/Pa392DLlk348Y9/jocffgzXXfdl00L1m988CAD4+c9/hccffwbf//6drud56qknMHLkaPz2tw/j9NPPxh133IbvfvcWnHDCyfjd7x7BAQdMwW23fct0LRwYGMDMmbNw550/xUMP/QmnnvoR3HLL17B58yYAwPe/fydGjRqNz33uC3j88WdMC+COHdvxla9cjw984FT8/vd/wre+9T28/vqruPfen4dv1BwhBYsgCIIgCIIgCshpp52Bd99dhObmfdiyZTM2blxvWrOiIplM4qabvoV//OPvOO20k3DttVfhvvt+hW3btrruMzg4iIcfvh833/xtHHHEURg/fgLOOec8nHDCSXjiif8DAOzZsxvTpk3HjBmHYNy48TjqqGNw5JFHAQAaGhoBAMOGDUNT0wjU1w9zPdf06TNw8cWXYuLESbjsss8ik8lg4sTJOPXU0zBx4iRcdNFnsG3bVuzbtxcAMGbMGHzqUxdh2rTpGD9+Aj796Ytx2GFz8MIL/wEA1NcPg6qqqK2tRVPTCNPa9/DD9+O0087Axz72KUycOAlz5szDF75wA5544u9FiQsDyEWQIAiCIAiCIApKU9MILFiwEP/851Po6urEiSeegtraIZGf5wMf+BCOPfZ4LF68CCtWLMfLL7+IRx55ED/4wY+xcOHRju23b9+G/v5+XHfd1bbvU6kUDj98AQDg7LPPwze/eRPWrVuDI488GieddApmzpwVWraDDppm/l1ZWYkhQ+owZcqB5neNjcMBZF0DR40ajUwmg4ce+h2ef/457Nu3D+l0CoODg5g4cbLnedavX4cNG9bhmWeeNL/TNA0DAwNoaWnBiBHB3S5zhRQsgiAIgiAIgigwZ5xxFu699xfo7e3Ft799W8HOU11djaOPPg5HH30crrzyanz5y9fhoYd+J1Ww+vr6AAA/+tHP0dTUZPutqqoKAHDsscfjL395Aq+99grefvsNXHPNlbj00ivxmc9cEUquZNKudiiK/TtFYQV+NQDAH/7wMP7616xL4pQpB6KmpgZ33HEb0mlv98e+vl6cd97Hce65H0cioSCTsaxWDQ0NoWTOFVKwCIIgCIIgCKLAHHvsCbjzzh+gpqYW8+bNL8o5FUXBpEmTsGzZUunvU6ZMQUVFBfbu3Y05c+a6Hmf48CaceeY5OPPMc/D73z+Axx//Oz7zmStQUVEBAMhktMhlX758KU444SSceuppAIB0Oo0dO7ZjzJix5jbJZIXj3NOmTcemTRsxYcJEJJMq0unoZfODFCyCIAiCIAiCKDDJZBJ/+tPfoSiKaa3JlY0b15sWJgBQ1QRGjBiBb33r6zjzzHNw0EFTUVVVjcWL38FTTz2BT3/6EulxamuH4BOf+DR+9rMfI5PJ4LDD5qCrqwtLl76LkSNH45RTPoj77vsVpk+fgSlTDkJfXx/eeusNTJ6cddNraGhEVVUV3nzzNYwYMQIVFZWRpWifOHEiXnzxeaxYsRy1tbV45JEH0N3dbdtm7NixWLLkXZx88gdQUVGJhoYGXHjhJfjc5y7HT3/6I5xzzkeRSFRg06YNWLFiOb7whesjkc0PUrAIgiAIgiAIoggMGRKN8nH11ZfbPtfV1eGJJ57FjBmH4NFHH8aOHduhaTrGjBmDSy+9EhdccLHHsa5FY2MjHnzwPuzatRNDh9Zj5sxDcOmlVwLIppC/556fY9euXaipqca8eQtwww1fAZBVGm+44Ubcf/9v8Otf/xKzZ8/FL37x60iu8TOfuQI7d+7Al750DWpra3HuuR/HkUcutG1zxRVX4847v49PfvKjGBwcxCuvLMK0adNx99334je/uQef/eylUNUEJkyYgNNOOzMSuYKg6MVKp/E+JZXKoL29N7LjqaqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Y5YnlJTKjc0wp9c7o3Xs9bQUIuKioTvMShNO0EQBEEQBEEQRESQgkUQBEEQBEEQBBER8bKxEgRBEARBEEQA7lqzGG+07CrqOY9qGosvTZ9X1HMS5QdZsAiCIAiCIAiCICKCLFgEQRAEQRBE2ZG1JJE1iYgfZMEiCIIgCIIgCIKICFKwCIIgCIIgCKIIvPvuIhx33AJ85jMXQNPs6cOPO24BXn31ZQDAFVdcjLvu+l/b7w8//ACOO24BXn75Bdv3119/Db73vW/mJM+LL/4X//M/1+KMMz6A445bgI0b1zu26ezswK233oJTTz0Rp512Mn74w++hr68v1Hnuu+9XuOIKey2uN998HR/84HH49a9/mZPsjz/+N1x77VU49dQTcdxxC9Db6yyb9Oabr+Ozn/0MPvjB43DuuafjgQd+i2JUqCIFiyAIgiAIgiCKyLZtW/Hcc/9y/X3evPlYvPgd23dLlryLUaNG275Pp9NYuXIZ5s2bn5McfX19OOywObj66i+6bnPrrd/Epk0bcddd/w933HEXlix5Fz/60Q9yOh/jhRf+g69//cu44oqrcdVV1+R0jIGBfixceAwuvvgy6e/r1q3Bl798PY4//kQ88MCj+NrXbsH//d9f8cc/PpKP6IEgBYsgCIIgCIIgish5530cv/3tvUin09LfDz98ATZt2oj29nYAQCaTwfLlS3HhhZ+xKVjvvbcC/f39mDdvQU5ynHbaGbjsss9iwYIjpb9v3rwJb775Gm666ZuYNetQzJkzFzfccCP+/e9n0NraktM5n3rqCdx66y34n//5Ki644KKcjgEAn/jEp3HxxZdi1qxDpb//97/PYcaMmbjkkssxYcJEHHXUMbj44kvxpz89UnArFiW5IAiCIAiCIIgi8qlPXYRnnnkKjz/+N5x//iccv8+ZMxeqqmLJkndw0kkfwJo1q1BbW4uPfORM/OIXd6GzsxP19fWmVWv8+AkAgKVLF+MrX7nO89w33vgNnHrqRwLJuWLFMtTXD8OMGTPN7xYsOBKKouC991biuONOCHHVwGOP/QH33vsLfPOb38Mpp3zQ9tuzz/4Td975fc/9f/SjuzFnTrDEJoODg6isrLJ9V1VVhebmfdi1ayfGjRsfSvYwkIJFEARBEARBEEWktrYWl1xyGR566D6cfvpZqKmpsf0+ZEgdpk2bjsWLswrW4sXvYO7cw1FbW4upU6dh6dJ3cfzxJ2Hx4ndw+OGW9WrGjJm4//4/eJ57+PDhgeVsbW1xbJ9MJjF0aH1oC9bGjetx990/wS233OpQrgDguONOwCGHyK1RjJEjRwY+35FHHoU///lR/Pe/z+HEE0/G7t278Mc/ZtumtbWFFCyCIAiCIAiCeD/x0Y9+DI899igee+wP+MxnrnD8fvjh8/HGG68ByMZfHXts1lo0Z87hWLz4HRx99HFYsWIZbrjhRnOfqqpqTJgwMWJJFcl3OhRF9r07o0ePQXV1DR555EEsXHg0Ghvtiltt7RDU1g7JQ047Cxcejc9//lr84Affxa233oyamhp8/OMX4P77N0JRChslRQoWQRAEQRAEQRSZyspKXH75Vbj77h/j3HM/5vh93rz5ePTR36O1tQXLli3Btdd+CQAwd+483Hffr7B69Sr09fXZElxE7SI4fHgT2trslqp0Oo2uri6HguTHkCF1+MlPfo7rr78G1113Ne6++1dobGw0f4/aRRAALr74UnzykxehtbUFw4Y14J133gYAjBs3LpTsYSEFiyAIgiAIgiBKwGmnnYE//OFhPPzwA47f5syZB1VV8dhjj6KysgqTJx8AAJg9ex42btyAl156HmPGjLW5ukXtInjoobPR0dGBNWtWY/r0GQCyqeZ1Xcchh8wKfBzGsGEN+NnPfokbbrgG119/NX72s3tNJStqF0GGqqoYMSK733//+28ccsihoZXDsJCCRRAEQRAEQRAlQFVVXHXVNfjOd252/FZbOwQHHzwDf/3rYzjqqGPM7+vr63HAAVPw97//BSeddIptn7Augp2dHdizZzeam/cBALZu3YJMJoPRo8egvn4YDjhgChYuPAZ33PE9fOUrX0c6ncZPfvK/+NCHPozhw5tyuuasknWPQ8kK6yLY0tKM1tYW7NixHUA2xquqqgrjx09EbW0tNE3DH/7wByxYsBCapuGZZ57Cc8/9C3fffW9OcoeB0rQTBEEQBEEQRIk44YSTMG3awdLfDj98Afr6ejF37uG27+fOPRx9fb05179ivPLKS7jssgtx4403AABuueVruOyyC/HKKy+Z23z729/DpEkH4Prrr8GNN16POXPm4itf+YbtOMcdtwBPP/2PwOetrx+Gn/70l0gmk7jhhs+jra0ttOz/939/xWWXXYg77rgNAHD11ZfjsssuxOrV75nbvPzyC7j66svxuc9ditWr38PPfnYPDj10duhzhUXRi1HO+H1MKpVBe7uzcnSuqKqCpqY6tLR0Q9Po1sQJujfxhu5PvKH7E1/o3sQbuj9Z0uk0mpt3YMSI8Ugm4+WAlUyqSKe1UotRMnbt2olPfepc/P73f8bEiZNKLY6NXO6N17PW0FCLioqE7zHIgkUQBEEQBEEQRE68+eZrOPvs82KnXJWSeC0BEARBEARBEARRNnz0o84MiPs7ZMEiCIIgCIIgCIKICFKwCIIgCIIgiFhj1bTdf+PQiGKRfcZC1lG2QQoWQRAEQRAEEWtUNTtlzWTSJZaEeL/DnjFV9U9m4QbFYBEEQRAEQRCxRlFUVFXVoqurHYlEEkAe5oXIUZBOk2UtnoS9Nzq6utpRVVULJQ8TFilYBEEQBEEQROyprx+OlpZdaG7eWWpRbKiqCk3bf9O0x5lc7o2qJtDYOCqv85KCRRAEQRAEQcSeRCKBkSPHQ9MyiEsVV1VV0NhYi7a23v26TlkcyeXeKEpWwcrHegWQgkUQBEEQBEGUCYqiGC6C8UBVFVRWViKZHCQFK2aU8t5QkguCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIAiCIAiCICKCFCyCIAiCIAiCIIiIIAWLIAiCIAiCIAgiIkjBIgiCIAiCIAiCiAhSsAiCIIjYsruvB2lNK7UYBEEQBBEYUrAIgiCIWLK7vwdXLvoPvrz05VKLQhAEQRCBIQWLIAiCiCXbe7sBABu6O7C6s7XE0hAEQRBEMEjBIgiCIGJJTSJp/v3YtnUllIQgCIIggkMKFkEQBBF7GiqrSi0CQRAEQQSCFCyCIAgilujc3xUKDVcEQRBEeUAjFkEQBBFLdN1SsXrSqRJKQhAEQRDBIQWLIAiCiCW8Batfy5RMDoIgCIIIAylYBEEQROzRdf9tCIIgCCIOkIJFEARBxBKN06o0kIZFEARBlAekYBEEQRCxRyMTFkEQBFEmkIJFEARBxBKds1qRgkUQBEGUC0n/Td6fzJo1C1OnTgUAHHroobj99ttLLBFBEATBo3F/6+QiSBAEQZQJ+62C1dDQgMcff7zUYhAEQRBucDqVRvpVJPxp61qs627HLYccWWpRCIIg3rfstwoWQRAEEW9sLoJkwYqEh7esBgCs7mzFjPrhJZaGIAji/UksY7DefvttXH311TjuuOMwffp0PP/8845tHnnkEZxyyik47LDD8IlPfALLli0LdY6Ojg6ce+65uOCCC/DWW29FJTpBEAQREbxKRTFY+TOQsWqJdVPhZoIgiIIRSwtWb28vpk+fjvPOOw9f/OIXHb8//fTT+MEPfoBbb70Vc+bMwYMPPogrr7wSzzzzDIYPz67InXPOOdJj/+1vf0MikcB//vMfjB49GuvXr8dVV12FJ554AnV1dTnJq6pKTvt5HSvKYxLRQPcm3tD9iTc53R9uUz3svoSDvnTa/LtXSzvuCbVvPKH7E2/o/sSXUt6bWCpYJ554Ik488UTX3++//3588pOfxPnnnw8AuPXWW/HCCy/g73//O6644goA8I2vGj16NABg6tSpOPjgg7Fp0yYcdthhoWVNJlU0NeWmmHnR2Dgk8mMS0UD3Jt7Q/Yk3Ye7P0MFq8281oRSkr92f6Oni0oZUOccuenfiDd2feEP3J76U4t7EUsHyYnBwECtXrsTnP/958ztVVXHMMcdgyZIlgY7R0dGBmpoaVFZWYs+ePVi7di0mTpyYkzzptIbOzr6c9pWhqgoaG4egra0HGkV1xwq6N/GG7k+8yeX+8H1rKp1BS0t3ocTbL9jR1WH+3d7VZ7YnvTvxhu5PvKH7E18KcW/q62tQUZHw3a7sFKy2tjZkMhmMGDHC9n1TUxO2bNkS6BgbNmzAt771LaiqClVV8Y1vfAMNDQ05y1SIF0rTdHpRYwrdm3hD9yfehLk/fNxVRqf7mi89KSvuKq1pjvakdyfe0P2JN3R/4ksp7k3ZKVhu6LoORQnmY3n44YfjySefLLBEBEEQRD5otjTtNHHJl14uBiutaR5bEgRBEPkQyyyCXjQ2NiKRSKC5udn2fWtrq8OqRRAEQZQzllKlk4KVN70ZS8FK6aRgEQRBFIqyU7AqKysxa9YsvPbaa+Z3mqbh9ddfx9y5c0snGEEQBBEptjTtJZPi/UOaU6rSpLASBEEUjFi6CPb09GDr1q3m5+3bt2PVqlUYMWIERo4cicsuuwxf/epXMWvWLMyePRsPPvgg+vv7ce6555ZQaoIgCCJKdHIRjBTeCkguggRBEIUjlgrWihUrcMkll5ifb7vtNgDAtddeiy9+8Ys4/fTT0drairvvvhv79u3DzJkz8dvf/tasgUUQBEGUPzpnw9JACla+8CpVmlwECYIgCkYsFayFCxdizZo1nttcdNFFuOiii4okEUEQBFFseJWKYrDyh7cCpsiCRRAEUTDKLgaLIAiC2D/gFQLKfpw/NhdBsmARBEEUDFKwCIIgiFhiU7DIRTBveJWKLFgEQRCFgxQsgiAIIpbwShUlucgfPqaNFCyCIIjCQQoWQRAEEUt4t0CdLFh5wyupg1qmhJIQBEG8vyEFiyAIgogl9hgsUrDyhW/BQbJgEQRBFAxSsAiCIIhYYncRLKEg7xMopo0gCKI4kIJFEARBxBJSCKLFluqempMgCKJgkIJFEARBxBJewaI6WPmj2f6m9iQIgigUpGARBEEQsYRPbEEKQf6QkkoQBFEcSMEiCIIgYkmGCg1HCq+kUlZGgiCIwkEKFkEQBBFLeBWAsgjmD6+kksJKEARROEjBIgiCIGKJTkkuIoWsVgRBEMWBFCyCIAgilvDqAMUP5Y8taQgpWwRBEAWDFCyCIAgiltgtWKRk5YtdYS2ZGARBEO97SMEiCIIgYokmfCadID90smARBEEUBVKwCIIgiFgiWqwo0UV+2LMIEgRBEIWCFCyCIAgilohKQFoXbVpEGPjMgeRuSRAEUThIwSIIgiCKyv2b3sNNS1+11bmSIbqxpTRSsPJBJwsWQRBEUUiWWgCCIAhi/+Kv29cDAFoH+zGyqsZ1O7FWU4osWHlhzyJIEARBFAqyYBEEQRBFg7dadacHfba2qwGDWqYAEu0/UNp7giCI4kAKFkEQBFE0etMp8+9frV/hua1oryIXwfwgCxZBEERxIAWLIAiCKBoDnBVqRWeL57ailYUUrPywZREkCxZBEETBIAWLIAiCKBr9GUvBOqppjOe2GrkIRgqvU5F6RRAEUThIwSIIgiCKxkAmbf49tnqI98aGFlCpZocqsmDlBxUXJgiCKA6kYBEEQRBFo5+zQvnVtWIWrISiACCrS77wMViidZAgCIKIDlKwCIIgiKIxwLkIan51sIyfFSiFFGm/wZ5FsGRiEARBvO8hBYsgCIIoGrzVyq/QMLOyKKYFi7SCfLArtNSWBEEQhYIULIIgCKJo8EqVn4sgI0EWrEjgVSqKZiMIgigcpGARBEEQRYNXsHwtWDqzYGU/k1tbfmiURpAgCKIokIJFEARBFI2gVivA0gFUsmBFgr3QMGlYBEEQhYIULIIgCKJo8FYrv2K3um6PwSLyg1eqSL0iCIIoHKRgEQRBEEUjw9Wy8pvkWxYs9pnUgnywZxGktiQIgigUpGARBEEQRSPN12IKmEVQJQtWJNhdBAmCIIhCQQoWQRAEUTQyYWKwWB0sKjQcCfYk7dSaBEEQhYIULIIgCKJo8DFYms8knykBlosgkQ82CxY1JkEQRMEgBYsgCIIoGnwWQb9JPvudXASjgZJcEARBFAdSsAiCIIiikQmRKpxZuBSWpp20grygNO0EQRDFgRQsgiAIomhktPBWFNWMwSKlIB+4picXQYIgiAJCChZBEARRNHgXQd8sgro9BquceGjzKtyxalGs0qGTgkoQBFEcynHcIgiCIMqUTIhU4ez3cswi+Ni2dXi5eSdSIbImFhpe1/NLMEIQBEHkDilYBEEQRNHI2JJc+GQRNC1Y5Zvkws9KV0w0SnJBEARRFEjBIgiCIIpGOicLVsHEKTiZGClYtiyCMZKLIAji/QYpWARBEETRsFmw/LIIMgsWcxEsQ6UgTgqWLclF6cQIja7raB7oK7UYBEEQgSEFiyAIgigamRDFbnUxTXsZkolRDJbdXbF8VKzHtq3DpW/9G8/u3lJqUQiCIAJBChZBEARRNNIal0XQZ5LPflXLuAxWnCxYvMVQi49Yvvxl+zoAwFM7N5dWEIIgiICQgkUQBEEUjUGNT3LhvS37vdySXPBKVawULLM9ywt2/zNlqWITBLE/Um79LEEQBFHGpLSM+bdvDBbsMVjlAm+lS8fJRdBsT7WsamL1ZNIA4pWRkSAIwgtSsAiCIIiiEc6CZY/BiqtSoOs6nt29Bdt7uwGEK6ZcTFh7JhSlrFwEGV2pwVKLQBAEEYhkqQUgCIIg9h96Mynzbz+FSYzBiivLO1pw97qlAIAnjz8bS9v3mb/Fy4KVRVXi5boYFKXMLJkEQey/kAWLIAiCKBrdaV7B8kbMIhhXnaB1sN/2+dcbVph/x0mR4Qs3x0eqMJSn1ARB7H+QgkUQBEEUDV7f8HOfM5MysDpYhRIqTypUayjVdB3NnMIVKwXL+D+hqGVZU6wc3RoJgtg/IQWLIAiCKBq8W6DffLlcklxUKNZQurKjxfZbRouPi6BpEVTiq6yK8IpgXGPwCIIgREjBIgiCIEqCbwyW8bOlXsVzgs1bsJ7ZvQVVasL8PBgrBSuLUkYugnz7zapvKqEkBEEQwSEFiyAIgigJvlkEBQtWXJWCJGfBenHfDhw2zFIEerikHqXG4XJZBm6C/Vra/Lu+orKEkhAEQQSHFCyCIAiiaOi2vwPGYMW80LB4FSkuc+BAJoP4wJJc8J/iDd9+WllITBAEQQoWQRAEUSKCWrBYCFZcDS6iopjia30VWxgPrDTt8bYI8gxwhanjVFOMIAjCC1KwCIIgiJIQuA5WzC1Y/MT/2BFjbQpWrNSYcnQRzJCCRRBE+UEKFkEQBFES/NI/sAl13LMI3rNhufm3CsXmIhin1OKOumKlFCYgfRkrBosULIIgygVSsAiCIIiS4GdBMS1YpktbPCfYO/t6zL816EjH1EXQak/xm/hicxEsoRwEQRBhIAWLIAiCKBq8TuU3vbcsLuWDpus2C1YclRhmwYqTdc0NsmARBFGOkIJFEARBlARfC5YYM1RogSIgo+sYtMUNlVAYAV3XocBSWONqEeThswhmdLJhEQRRHpCCRRAEQRQNflLvN71nablZkotyMGBouo5+jU/NXhyhu9Mp/HfPNgxq7mnhdWSVK6XMFFZGnJRVgiAIL5KlFoAgCILYP/G1oBg/KzFPcsGT0XUM8G5tRTrv1Yv+g/bUIB7avAoPLDxVuo0Oe1uWg8LKPyNvtu4uoSQEQRDBIQsWQRAEURL8LBKaIwYr/hpBW2rArlQVSYtpTw0CAJoH+123YS6C1sAf//Ysh1TyBEEQIqRgEQRBECXBtw6WMblOlJEFq5+zXgHFsWAFVUJMddVoz3KIaCoHGQmCIERIwSIIgiBKgn8MVpZyqtuUEZSdYsj80r6dAbe0J7koBx9BsmARBFGOkIJFEARBFA1+uhx08swMWOUw1eZrYAEoihIzoKX9NwKLweKShhRQpqggCxZBEOUIKVgEQRAR8ezuLfjeyrccVgxCjq8Fy2hHtYxcBMV7XwwFoVJNBNpO1w1roNGcWlmoWJaMTZXVJZSDIAgiOKRgEQRBRMTd65bizdbdWN3ZWmpRAvPcnq1Y09lW9PMqCFAHS0jTXg42F2etpsLLnOKsZg0VVb7bWy6ChZEnSvhEKOVQt4sgCAKgNO0EQRCRUy5JGfb29+Kna5cAAJ48/uyinJMpVQoUX+sOm1ybLoJlML9OixasIsic5pS6SbVDXbfTzRis8nER5JUqqoNFEES5QBYsgiCIiAnqslVqBsV4oSKiKkFisEQLVvxJCxasYlhdeAuWl9sfq4NlxbTFX2PRuGekHOQlCIIASMEiCIKInHKJGUqqlpzFihtjZ1GgBM4iyNqzHKbXWgmyCKZ4pc7jhKwOVnlZsLi/y0FggiAIkIJFEAQROeIkO668zKX3bvUoUFsIVEUJXAdLKSMLlnhFxUgzHsqCBSsGqxweU779yiMpB0EQBClYBEEQkWCbCJbDzBXAg5tXmX+LBXKLgV8zWdYu8Zt4Ma2uoaTnTwV09dQBoNxcBLm/qSYWQRDlAilYBEEQETCgZcy/yyFNu2ixCjpJjwpV8Z/g67oOFfGvg+V1HcVo1ZRuPXveyn0ZugjaLFgEQRDlASlYBEEQEdCfsSa5v1i/tISSBKN1oHQKFpvk+2YRRDYpQ9zxVGqK7CLoqV7pootg/FUs3i2wXCzDBEEQpGARBEFEwIbuDvPvTT2dJZQkGEnV3v2nHPWbCgOz9gSqg2UkZbA+F06ufPBquWK0atqmYPnFYCllZcHiIQWLIIhygRQsgiCICPjBqrdLLUIoxHTiKc7FsdAoyFqmgiRpLweFwGviX5Q07dy9DKSDlFMMlq3QMEEQRHlAChZBEEQE9BdRQYkC0SWQfc7oOm5a9ioe2bK6oOdXofhbsKBDVeKfQ9DrOophdMkEzLSXbU+urlgZaCx2JbAMBCYIggApWARBEPslaUHBYkWHd/X1YEVHCx7durYg59VDWCScykk8J9jeaSUKL7MesFGz1iBLXS2HtOf2QsMEQRDlASlYBEEQETCyqqbUIoRCzHTI3MzUopiLlGBZBA2LS9xNWKXOGsmf3Vtpysa0qeVjwBIKDZeDxARBEKRgEQRBRMJpYyaXWoRQOGOwsp8TSnGGBQWKb9ICDfYiw3GdXnumaS+C0EGd6HRkU96bMW1xbVAOnSxYBEGUIaRgEQRBRIBaBunEeRwWLCOGrBjXoSjZLIZpXfeJX9KhKErsFQK/2lOFxqaE+MaD8QprTBuUg7fIxV9agiCILKRgEQRBRAA/sT20vqmEkgTDYcFiLoJF8sdLGoqcX1KGMvAQxN6BPtffil0c18/pMusiGPcWtRD1xTi6CaY0DU/t3ISu1GCpRSEIIiaQgkUQBBEB/ES6HCawYpKLYhUaZlYT5orodV5dFxW++E2u13W1S79ng2sxFIKgcUrZtPcW5VBXSpQwjhL/v/VLcc+G5bhnw/JSi0IQREwgBYsgCCIC9ICpsuNCWphcDxougsVwG1NgFTr2ShBhxQxZn+PG6s5W6ffFVLL1gG502fZUYt2eIuLzGEeZX9m3EwCwpQwKjBMEURxIwSIIgogAW6xIGVgGMi5JLgoNaxnmIiha0ng0PevShjhbBDnZeCnVAC6QUcE/bm7nY88kK/JcLjitbPF7t9jiRG0yWWJJCIKIC6RgEQRBRECY+k5xQLRgpfRiRgspSBougqIcPNkYrPhnEWTYFKwiFvO1WbBczse+VrgWLUcXwWJkZQwLe3OKlYGTIIj4Q70BQRBEBPCT3HKYuGZcYrCKJbmlYHnEYMHu0hZ/LEmLasGy/e1iwWJ/KPbU93GnHCxYjGQZWQYJgigspGARBEFEgGb7O76TQIbDgsUUrEIrh8bhk0a1W08FS9ftg1QMFVd+Ss3Pr5mCVWyJvSPamIug37bxoXzUK7JgEQRhQb0BQRBEBNhrEZVQkICwulcnj5oAwIojKQYKrMmoZwwW4p+UgZdJ5iJYjGfB5p7qckL2NZ/2vhxiBUUZ42wdTpKCRRCEAfUGBEEQEcBP+8rBgtVvKFRDk5UA5C6CXhn+coUdscIniyCflCHONFZUAQAOHFIPu4tg9v9iZGUMkkXQ+p4r3FxIoSKiHN4lhhr3h5UgiKJBChZBEEQE2C1Y8Z8U9mcMBauiAoA8TbtWoMQXigIkDD81t+QaZlIGJd5JLpiCeHjjKJu7Y7tRdPYfOzcVXIZgdbAMhVXhv4lji3pTfhITBLE/QgoWQRBEBPAr7cXMx5cr/VoaADDMsGANMlc9bgZbCAsWg7lTick2GGzyr8JSsuI4uWbp7hMlTHBgr8Hmso3xf7nFYIkugXFevIivZARBFBtSsAiCICLAVosoxpNAxoBpwTJcBHVmwbLY0tMV+XmZ4uSXpt1Kxx3vnHdMCS1lgoMgFiwrBotL1B7/x7SsklwUckGCIIjyghQsgiCICCi3QsOmi6BoweL45YZlBTm3AgUJ3yyChgWL165i2K6WgmVXA6fVNQAo/iDr7iDIZREsmjT547BglUiOIJTDwgpBEMWBFCyCIIgIKLdCwwOGi6BpwTKTXFjS96ZTkZ/XTHLhk0VQ4ywuccbNRbChMpv8YtawpoLLYE9y4V0Hyx7TFv8n1WHBirES41VygCCI/QtSsAiCICLAlhyiDCauA0ZSi7qkmOSC36ZwE8aEj4sgb3Gxvosfbi6CrOhsMdzG7Gna/bcxvyuMOJEiKlRxljlVwPeFIIjyghQsgiCICNDKLIvgYCY7GaxJJJFQFGmSi75M9BYsdnzLkOJvcYlzWvGudDZboGjBYjFmxXYbc7dK8YWG42kVfGzrWnzhnefN+EDAuVgRZ6vbe52tpRaBIIiYQAoWQRBEBNjqYMV3DmjCLFhVagKVqmoWHuZF78tk0J9JR35uBVYhXre2YkpqNotg5CJExqNb1wIAegRlVDWELoY10249ddsmS5wLDT+0ZTW29HZhWUez+Z1DxHiJTBAEIYUULIIgiAjQytRFsFJVUaEkTAuWaCFYWaBVeStVuEsWQXO7uDsJZmke6Ld9NtPQF0GJsSmpri6XBjGvKwbAptSzd8lUyGMotRrzOEGCIIoPKVgEQRARYI+Did8kUGRQy6BSVaEoimnBksm9r78v0vPq4oTZx4Jls7hEKkm0iK6ALEtisV0EXRUQrj3jDlP+edQYmzErVZpKEQRhh3oFgiCICAjiphUndN1ScirUBDRkrS3F0AcUhS8eHCTrXXwn1wwdOmYMbTQ/FzMGy/bsuelXxv/loLD28zFYQhr8OMocR6saQRClhRQsgiCICCi3JBcadFPJqTBW4FPSNNPRXgs7mmp+diuMa7d0Zb+LVJRI0XTdZmVJFDOLoCCH1zaKosQ2yQWDdxE0nxelNBbBIPAyxVE+giCKDylYBEEQEWCb5JbBirau6+YAYKYU17QiZWmzMgO6WVz4Noy3OpBFvAzTglWM9uRO4XY+XeIiGNeFAN5FkCkscXYR5J/hYijUBEHEH1KwCIIgIsBuwSqhIAHRYLnpsRpOKd05PS/UpbSnBgC4p7YWLRfZ7+LbsOeOP8hmbUsU0eJidxH0sWBxpZvj2pq8gsWuLRHjVP38W5OhYsMEQYAULIIgiEgoTwtWdtKaVIvnzsZ4ZvcWAMC/jP9FmChxj8AaXlkNFcCBdcNsgiaKmEWQd7vUIbdM6TaLYJxbFLY6WOxSmKIdN6ubqNCWQ4kGgiAKDylYBEEQEaCXWQyWDitjN3NnS0tcBAtxJUGm92a2wWxGjAJIEQ26rkM12m9FR4v5vapkB9hiWrDUAG6JMW5Kk14uBmuQq9cGxM+C5VSwyIJFEAQpWARBEJFQbhYsTddNS4apYBUhi2BQ5VOmmMSxVXXoUF2UFlVRiqNgGaew3BIl2xj/K1B8a5CVmt60pWD1GcpWTTIJIH4ypwWFKhMz+QiCKA2kYBEEQUSAPZNYCQUJiEwxkE5eC6AghDGiqHzMUAwtg5oud7lToSChqEV1EfSK+5KJEcPmBGApVQDMAtjVzIIVM5nfbNlj+0xZBAmCAEjBIgiizNjc04mN3R2lFsMBr5zEbZVdBq8Y8G5jcZGcWQEVJd4xWK4WLCXrJlhMa6apYEnOyZ7JbExbnFsU6MmkzL810/3Ru25aqehOD9o+UxZBgiAAIFlqAQiCIMJw7bsvAACePP7s0goiYK9FVDIxApNVDAwFi2Vo83Ati+68AWOwzCQX8VYGNLhbsFQUyUWQZdoLkLlQVfgsgvF8UDOa5XZnJrmIaRbB6oR9GkUWLIIgALJgEQRRRuzt7y21CK7Y0rTHbhpoR9d1m6LD/s+muCiC7IqCs8ZNAQA0VFRKNykbC5auSwv3KkDxXATNTHtGkgvJOW3fxbBB+fTmsjQriiL9seSs7263fSYFiyAIgBQsgiDKiCXt+0otgit2C1a8J1lmwgNmwTL+bx3sx9O7Nku3jfrcRzWNAQC0pwY9N+RrS8WxVXXo0oFUUZSsi2ARLVjJABYsW6HhQgoVkpQmV7DEemhxSyDzj52bbJ93x3gRiCCI4kEKFkEQZUOcXe/sFqx4JmRgmGm9he+/teINPLt7a8HPrwDY3NNlySOzuPCWCyWe7mGAPZbtgNqh5vcKjCyCRZDakeRCGoPF5LJKDcepPQc5BUt8lwC7oh0nPjJmsu3z33asL5EkBEHECVKwCIKIPWwCXpVIOL6LC8WoHxUVTFE1LVge2xbqOqq5eymmugbsMVhxziLIJ7lYMHy0+b2iFC+LILtJXsWNzeeTd7mMUXPaLVicYOazanyMkcwAUJussH1urKgukSQEQcQJUrAIgog1z+zagnNffQrbervMVM1ANrlAnBAnfnGOw7IsWPYkF8U6OwCcPGqC+c2AJlGwuKx3TBlrGxwovHgh4S1YKheLpcBq30K7CdqKMrudz9KvHPvFgZSeMf+WScXaOG4ugmIbHt44skSSEAQRJ0jBIggi1vxi/VKkdQ2P79hom8xoEqtHKdE4hQAoD3dGM8mFpwmrMHWwKtUEpg9tBAAMZDKObfg4MWYV6NfSju1KjQ6dswTyCpZiWrYKr2BlCe4iaP8uDvRwxYV1ScIY1fMhLSGGqONrhgCgNO0EQWQhBYsgiLKBV1paBvtLJ4gENq8Kkiq71DiSXBTz3FyzsLbKSJRl1n4qFFSo2aEqJbF0lRpdt5Jc8PWwFMXbZS9SGYz/PQsNc+qULOthqfknl1yFv8tM6t19PQCA/ky8lGwmX9K41+kYv/cEQRQPUrAIgsDHX3sKZ778RKxXXxXYJ6qrOttKJ4wEZjVgk+o4uV+J6KbyksXLRbAQV2EWOPbYxlICs9YuIJ4KlgZLYVEFC5aXAhkl7H4mzDTtkm2M/6VFkWPAwYY1E4D0odvW1w0AeHzHxiJJFAwzg6PKlOn4PaMEQRQfUrAIYj+nOzWIPsNFa01na4mlcUdRFJvSMqa6toTSOLEmucyKUEppvGFTwFJbMhSP7IB8DJZpwYrZ5FXnrGyAvT1VWIrhgOZ0gYxUDuN/TwtWzJOGVKnWdIR3cdR13aaIx9VyXUEWLIIgOEjBIoj9nD5u8vdejBUswD5xjJu1TZzklocFiykGHttGfW7ub6+JPq8QMDnjpBAAvKKa/d82oCqKmfWy0AoWwzsGy/qu31hQ6S+SXEHgFRN7DJbd0nkEl6kxDpgugmTBIgiCgxQsgtjP4ScEsQ0kR3aSxU8c0zFzFzNjhsogBstWYwrFzSKYTQphP6+spXgZzRTdRZAvDEwRUFwsWFWGBWswUywXwQCFhhXgP3u3AQB+s2FFQeUKA79g4ozBUvCpiQcDAIZXVhVTLF+Y4mpasGLWLxEEURpIwSKI/Rx+MlbBpUGPI3wxUlntpKjRdB3NA32Btg2SyS0u8Nah7P+eW0d+bkWwnEmtfcZXKmfBipvSamW4g/G/PU17VZFcBHf2ZxNAeNbBEu45ALSl4pP23m750W1/KwqQMBo5ri54lgUrnvIRBFFcSMEiiP0cPlZoMEYuQwCwj1NuFCjY1N1hfi6GgvWztUtw6Vv/xuaeTt9t2WTbTHIR43mWmPq6mLFYOqyYGstF0LmdZcFSTEUsbkqr5qGoKoqCSmPSXWgFKxPAghVnl1VAsGDxdYb1bLsmXZTHjd0dWNHRUgwRpTBxkgpTAMmCRRAEKVgEsd/DrxzL6hGVEj4lc4Wqop1bcU8XIYsEc6V6tXmn77ZimvY4T2gtxcD+v4xCxGCJdaOkSS64Wl1WDFZu52wb7Mft772FtV3RZp4UFVWHBSuRBGBXsO5ZvwxnvvwEulKD0cjANQpTQrzrYMUTzRZ3ZY/BAp+RUXDBu27xi7hp2avoTZcmfbvpImhYK8mCRRAEQAoWQez38JOxYgXjB8W+qq2jK50yPxczo9zftm/w3cZK0x7/LIKlLN7K143ychE0E0jAUshytWD9v/XL8HrLbvzPkpdz2t8NUVG1pWnnLFiDxsKFput4yqj39Mv1y6KRgWsTKy28VwyWJePoqvhk4rQ5Ber2XxR4K+MA0Fqi7IJWHSyyYBEEYUEKFkHs5/CKQNyKePKr2s/s3oL2Qd6CVbyJTBDF01GLKNYWLMs6xP8vI+oFeb5ulBLAMqUo+acVf6Nld077+aFzboz8/4A8BqsrbVmt2iOKf+ItuUFdBG+cfjgA4OgRYyKRIQrsViun/KqHMg4AvZmU9PtCw55JMwYrzisrBEEUDVKwCGI/x+YiGGML1oCWwXaj2CgQv5ViJo3pIhhDV6G/bV+PK99+zkwWIlMMCokuKHbm95JJM3suE4piWtri1qJiwWZ+QFVgpWlnsY19nBvbzPrhkcjAv79WoWH3JBcJRTHd2eL0iPKyiOkusrff2zJcOhfBLFYdrHj1SwRBlIZkqQUgCKK08JOxuMVgedWUiV1GOTHRQOzUAeB3m94DANy07BUAdpc2N6KMJbPigOxJIWRnYEpghaJGmvq+N51CbbIi7+MAzoLNNguWwlmwjPeqh7MQR/Wu8Vn1WKY9mYugmTQEljUoTs+ozYJlq4nFaqE5t+PpKZEFi+GWhIMgiP0TsmARxH4OP2kdjFkNF6/JSrEVrDafGA8rTXv8swi2GwkWrAK5RbJgifW3PCxnKcPqU6kmPBWxsLy0b0cER8kiFmy2xWBBcbgIbu3tMn/vjcgdly1CDEkkPZNcWG6h8Ux7r7v8beJjxVzZUZoi6WYMlkoWLIIgLEjBIoj9HF6J8bIYlQKvCWCxV99TPsqnVgYWLBE20S5Wrgu3+luy+2xasFQ1UoVgXE1d3sdgiAWbVa4dFViZ5di19HBJWqKaiDML1uQh9VySC+exWdOpnMtlnKwtdquVPR4rm0nSe7sndm4stIhSmAwVZMEiCIKDXAQJYj+HVwTiNjnwkidusoqZ+eJkHXCj2EkETSsKs2B5WM6YkpBUVNPSFYW7YpSX7HR5tGcRZAMse1Z5q1VUzwdLW55QvC1TGvd8xjGmzc2CxWKwFInMvHvkofVNhRTPFdNyzQohx8wLgCCI0kAWLILYz9H0+CpYXhRbgfGzOLDg+6SZ5KLQEuXOLCPBgkwxEInyMtixRMuZ7BwZ3uLC9o9AmCgti+wZVE0Llj2LoGhR6uUsWFE9v0zJSCqqZ4kAWV2xOC0C2JUqXfhenkmSt9SNqx1SSPFcMetgkQWLIAgOsmARxH5OnF0EvSwWxZbUr7Axk7Uc0rQzmEJQLEOWmFnRK/26pbwoedfBssuQ9yEAZJNUXPrWvwFY03+7i6DiSJvex1mwono60pJsi7L3mH3DW7BipWDZat7ZfnCtg8Vbi0p9LRSDRRAED1mwCGI/J84WLC9p4mbB4mNcgGiz70UNiwUy9QEPDSvKdPOmBUusgyXZlndps+pl5SZLTcJaS8xEdF/+sn2d+bcqdRG0rpNZmfgyCFE9vywFfFLlsi16JLlQoXhuVyq8LFjZYtPZz7zM6Rj0Xey0lEWQIAgeUrAIYj8nzjFYpVawGiuqzL/92kYzLVjxdxHcbGSzYxPtYmURdBQ49igey9o7a5kx9s/xvG6JEfJhV1+P+bcspkzlLFjMomSv9RSNHC0D2eyW1WoiUKFhRbEG/lJbfXjck1wA4JRsvtkyMVCw2H2sIAsWQRAcpGARxH5OxuaaE58JFwBPDasYslYahWKBIBYsHSq8M+PFjSLnuLAm+eb53ZVR3uLCtsu1Tfm9IksuwR2HyZdQ7C0qWjX0AixmpIzncnhltakoS+tgySxYMXpG3ZJcAO61u+ztWRrFpiM1ACBbTiArR3zalCCI0kEKFkHs52i6fMISB7xjsAovaxj3yez0TkFPOhtnM6iVpmhzx+CAWUPKDzFdeqEx07QLsV+y+8zHYKkelq4gaKJFJAIOHtpo/s3k4/UrVbG+txQsi6gsaWa2RdW7IDNfFDmeLoL2e2S1j10p5y+Nl75Uis1gJtuyI6tqAMRLaSUIonSQgkUQ+zk2C1YJ5ZBRahdBvm380i/rug5VAZZ1NAMAfrpuSSFFk7KttwsXvvkv/GTN4kDbm7FQHvnao2xlTbRgeaQLl8Vg+eQZcaUQE3FeiZVlYxzQNC7GzFCwbO9aNHKw5CsJhXdJlLgImhasmGYRFETRue/dklzoIRZACoXpIsiS28SoTQmCKB2kYBHEfg4/MYkyoUGhKcZEJowFKxuMb02wd3IxOsViUeteAMDLzTsDba8I/8t+ixQ3C5aHS1uC277TcMcKf9rorbR8TSumqPIugm+27HbUGSukq2JS8bZgsW/sWQQjESESxPvC268UKJ7xekDpFBvzOVXjZxUkCKJ0kIJFEPs5hXCfigovhS+qbHBe8G3jG4MF3VYHqRSEjUPxktdy34sO0yolqG9SCxbvImh815NJY29/b+jz2lOAR3NFfMp1WSueOW6KT4xZJGKY9zxrwTJivjxcLpUyyCIIyFL6O5VHe4Ke0tjfmQxJsmARBMFBChZB7OfEOclFyV0EQ0zgmCtTKQnrJsXklSlaXm6DuSLeMy8lzlKwVJss77btDX9e23FD7y6lP8O5CBryre5qM78bU11r/m26CNpkishF0My2aFmwPJNcKIqp4PZwhY9LjfhsWG2mQ1FcimFzu8QlTXvc+lCCIEoDKVgEsZ+jcYpD3JJceFFsF8G0z/k06AVRSsIQWsEKYMEqRL55MfZLZqm00rTbvw8rjXjsqBQb3oLFFJYBTumqUhMOBbIQljQzyYXiLGzMw1waeUvre52teKc1vMJaDJgibMZgSbMIWizvaCmJkmVZsJhVkCAIghQsgtjvscVglVAOGZ5ZBIsegxUsTXspydWCJbUOFMAeF8qCxSW54AnrhunnepYrNhdBSRbBSjXhqcBG8fz2Z9L43ab3AAAJVTUVvV39zvi/u9ZmE5/8Y+cmm5z/t2ND3nJEgeM+2ax+ltWN31BUlld2tEQq09+2r8c965d5bmPFYJEFiyAIi1LPBwiCKDG8G1wu8S2FxGuuwtSd7b3dWBHxxIphzyLoZ8EqjFtdGHKNwZJJXYiCqVaiBRjn9VdAxHitdV3toRRJUUkvpAWLl7VStYZXptTZMuBFIMNL+3aYfycUBa80Zz8/u3ur534JTk4+WUcpERVfftnHzYIlNmLUb9/vNr2Hp3Zt9ix7wOROelgPCYLY/yAFiyD2czKCG5xfOvJiEiQG6+p3/oublr2K/gJMFMNbsBRHsdliElZ5MBUcD5GjnC6yyaiZ1twjMxwfM8TzzO4t+Mu2dYHPKerFUcVgySxYU+uGcd8pThdB7jqjmIizpBZAdoLfHTCmim/T3pjEYblZGnXAiMFi37vvk1QLM6XxUuhZr8DuRZwShxAEUTpIwSKI/Zw9gtWqEJaL3AnuIvhmy55oz6zrtslSKkiadgU4c+yUSOUIg59lR1T+FH/9KlIcdbA8suwxy6rMJfDhLasDn9NhwYqqDhb3nrDrOGHkeIyrGYJPTJxmfC/Iwru3RSBHklOwdvf34uLJMwEAk2uHeu7Ht2lc1AFRMXHmEJTUwRK2qlQTBZHNa9FJMy1Y5CJIEIQFKVgE8T4mrWm+A/7TuzYXR5gc8LRgCb/ebcSYRIU4pRrwsZANaBl0pAYxrKIyUjnC4HevJwoTb+bS5uWqF60FK/u/ow6WlwUrT/VPbJLoCvzyCpbxv6Lg1ws+gEsOmGl+BuRtGEWZgQrVapsBLYOGyioAwJbeLs/9+Ge01KUFTITmMC1Y5jPDNuOcB4V9CpWq3SvBDZMnyepgkYJFEARIwSKI9y2aruO8V5/E9YtfDL1fXPASRYzZmD60MdJzi+3Q46Fg7ejrNv8+e/yBkcoRBt/YJJckE8WaY+uiBctDATGTB0iEm1BTF/qc5ueInm+/rJKyc9qVg2hdBCuUROB3t4Kz9MRFwRIVXz63qQK5tVO8t4XKIuhl1ecXAhTEq/8kCKJ0kIJFEO9TBrQMNACbejpD7RcnB0EvdNgnqVOHNkR6fHGiNOgR6M7H41QnkqhUVTSUwJLVlRoMtb2V5MI+yT66aQwumjwDQLSp+01rBAQLluQUZmFcQ8ZzOMV1Qm1wBcsZgxW9BcsNh4tgAeRgVKqqZzIGN+I6CbDFYMF6Vm1KqrBPSRQs439VyRZwLpf+kyCIwhJJ3zo4OIh77rkHq1cH94snCKKwpHJMVhGnFVi/NO28FcEvy19YxIQBXhPqCkV1fPaL2Yqa/kwaLzfv9NxGlEhUdBjXTJ2N4Ya7WZRYqddFuSQugsb/bGLNZ8YL84w6swhGQ5BYRVnckCVH/s8Hr1BUqGpOMUilznzJcBYatv7nZfS691H2XfziTcajb7ESt2Tvd5z6T4IgSkckClZlZSXuvfdedHaGWyknCKJw5KpgReVCFQVekuiwx1xEHX/Rlc5ag5iLmpdLWFJQsBKKWvRsjO2pAd9tHAqWZG5966FHobGy2n2nPBAtWKqHiyB7DllKcV6JDSOSo9BwZAV+reO4KilC3JA9yUX+MvDX8qHRk3AQl8Uwl2PECVExViXKqih7lNfCv71+LoLZNPLZDKJxbU+CIIpLZN4Bs2fPxsqVK6M6HEEQeeLl0uZFnNIMe9bBEi1YEU9smIJUnUjaPstgZx5fMwRANuC9UO5KbuSiUJtJLjgF4dD6JuOv6C0bZgyWkL1QptRrwrZDkhXWb6EsWHIZ8iVIe4sukPZzR2vBGlpRCUVRMKKy2vPOibGKm3o6Y7Go4lSW7NYhSZ1hB1G+cxqnVHn1LRqshQJViVf/SRBE6YhMwbrxxhvx6KOP4ve//z22bduG3t5e9PX12f7FiS1btuDCCy/EGWecgfPPP7/U4hBE5ARVsNiEmrmERexplydeExsdGY2fBEVrMWJpuGsMt6sgge5jqrMKVkJRbRO0YsAXjB1dXRtoH1madjHpQZSPA3u2xJgvryQXTAkckkw6fgt0zgKkadeEFP5uCo3XdUbRrpphZ/nYhKnmd6qiOOITAeDUMZMAAJ+eNN1xnIEcF2OiRKYIs+8UKOZkxTsGK7p3zl4f0GNxRdctiyy5CBIEYZD03yQYn/jEJwAAt912G26//XbpNqtWrYrqdHnzjW98A1/72tcwe/ZstLa2llocQqAjNYD6ZGVs4gPKkcGAFg02UUzGsFCmp4ugbl9ZjnoVnlmsqhJZBcu72CiLLbJc3zRkJ+LFytLWl7YUrDEuCpbYRrI07Vbii0LAWSTgncHOnFwb2zBLIgDs7u8JfkYxyUXgPd0JOpH3SkMfxePKJvMVXIFd1qYadNO90hDC+D37/0fGTMY/d28BkLs7cZQ4FSzuO8Uli6Bo9Yqw77IVGfeqgwXdbFNVUWLRlmHY09+LYRWVtveLIIj8ieyN+v73v182k+G1a9eipqYGs2fPBgAMHz68xBIRPOu723HD4pdw7Iix+PrMI0otTtnyfzs2BNqOKQ57B7JW5p50CiOragomVxi8pksa9IIWRWbtwhIHBAmuZz0gi9sqpoLV61OnC5DFYDmVKdGtIcosgmJmQPF72XdMHn6PXf29WctBgLYtRKHhlGDmfa/TZZFOcGvjFYIo2jUjWPkATsHSdSS45rGKPGe/XNg0JmYKlpDkQrdUrGyMk3M7pwUrumfVbsHySnJhtX92YSU+C1R+dKcGccXbz2FkVQ3uP/JDpRaHIN5XRKZgnXfeeVEdCm+//Tbuu+8+rFixAvv27cO9996Lk08+2bbNI488gvvuuw/79u3DzJkzccstt5gKkx9btmxBdXU1rrrqKuzbtw/nn38+LrroosjkJ/Lj7ZY9AIBXm3eVWJLy5sV9OwJtJ044n9uzFVceeGghRMoB7+xdhVSwmIugqWB5yWL8zya3zHKQ1jUki5QI+w9b13j+vry9Gdu5el2AvA6WqXQVQC+0XATZ//IkF80Dfeak301BHdAygVbdHZaRCCbhogVLzDjJKLiLoKRWGJvsZ3QdFdy27LJZe/ZnLLfAXOM1I8VhabS7YBa7DpZmU7Dc+5kMLEU/6yIYmQgFp8Mo67BvIF4hHATxfiBym/D69euxYsUK7N69G+effz5GjhyJLVu2oKmpCXV1wWqX9Pb2Yvr06TjvvPPwxS9+0fH7008/jR/84Ae49dZbMWfOHDz44IO48sor8cwzz5jWqHPOOUd67L/97W9Ip9N455138Pjjj2PIkCG4+OKLsWDBAsyYMSOna1bFnMN5wI4V5THLDf7a49QO5XRvxImGl8yi4nBg3bD4XKNkcq0iu0qcXd/mZGduOhHJnjGOXcVZsNyOrSuWi6CqKkgwly2leM/LZqHeGX/ejK7j68tfc+yTULPy8pYgtp+laCmRXEP2GPZ2YodVuHba0duNz779H05GFaqqYELtUCzvaDG/79PSqK3gVQgXxJTwLvdkUesevLJvJ74wbY7N5U5GRrG/M+NrhkiP6dWX6XB/noLCpv2sjQBO2RKukz2j7J4z11cASBlHKuV7rwunVhT+uVSQMGTTFd3xjJrHQHTXwMvz4r4dWNA0Wr6driNhPs+KZz+RK4Uae3TuOdagI+nz3BNyymlusL9RynsTmYLV09ODb3zjG/jXv/6FZDKJTCaD448/HiNHjsRPfvITjBs3Dl/72tcCHevEE0/EiSee6Pr7/fffj09+8pNmcopbb70VL7zwAv7+97/jiiuuAAA8/vjjrvuPHj0as2fPxqhRowAARx99NFavXp2TgpVMqmhqCl70MiiNjUMiP2a5MGSfVX9n+PAhsXM9LYd70zloT9nt9Ywqhh/RCWMn4KVd2zFlZGNBnulcqOt21mJKqAo0TUeyIoFUtfVsVFRmu7Oo7k9NX7ZQ8JDqSqADSFQkXNulXunP7lNVgaamOlRVZGWpb6zFsALUk/KjQpDVrQBtbU0VmprqMGSvVRSZ7Te0O5uqvaamMrLnYU9b9rmsNtqpdkf2vHVDq81zvNm917ZPY0Mtmhrr8JUFR6ByeQKPb866vg4ZVo2mIf5ypXvt/UdVdYXjenRdx7defAMAcMyECfjIpCnhjlmRlLZRSyJr2aqoSKAtmUK3brlxKoqSd7vWtGfbb2id1X6VxrM3rLEW9dyzV2m8Hw3DatHUVIcPDz8Qt658EwDwfOtOzJ0wtqR9G5OPLaAMa6jF8NpsLGEioWLYsFpzO/MZNd47Rs2Q6J5V/h7/Z882fPfo4+QKiKHINjXVIZlQoUEvWP8Z9f1pTVqW14qhlRheXe2xNeFHOcwN9ldKcW8iU7B++MMfYvHixXjggQdw+OGH29z1TjzxRPzud78LrGB5MTg4iJUrV+Lzn/+8+Z2qqjjmmGOwZMmSQMeYPXs29u3bh+7ublRXV+Pdd9/Fhz/84ZzkSac1dHZGZ15XVQWNjUPQ1tYDrZx8DSJkjGp18nuau3xXk4tFOd2b1kH7xKOlpdtlS2AwlZ18K+nsNXV09KEl4b59Menq7nd8x1ygBgZTuPnNV8zvBwayk4Wo7k97Zy8AQMno5vnc2rGtI7ttajCDlpZu6JmsRaC5pRvpSrn7WNQcMKTetGKlUhmbrG4uYAP92Wvq67VkZPt1G23f2zvg+fwERVUV0+I4OJhGS0s3+vuz5+3s6rPO22NfHOjq6EOLlv3t4vHTTQVrb0s3qvv9F19a+nttn3sk1zPAucv19Qz6Xu++PnuSjXRak+7T2Z09956eHlz4n6dtv2manne7dhr3qL/Xktl89lq7kaqw7muf8X50dfajRbGf98nNG/Cl2fNL2rf1G/KpStaVtLWtBxV92WvRNA1dxjjbP5A2r7Wjw35vO7v7InlWAaBZuMfb9rajvqLSsV1G05FUjPfGaLp9zV2Rxl4Wauxp6bKusaW1G3qVfxwn4aSc5gb7G4W4N/X1Naio8C/qHpmC9eyzz+Lmm2/GUUcdhUzGPpiPGzcOO3YEiwfxo62tDZlMBiNGjLB939TUhC1btgQ6RjKZxLXXXotPfepTAIDTTjstcPyWjEK8UJqm77cvaoa77sFMxp4JKwaUw73p5zLKJRXFU14zmQAXHB+X65MlJGCWfk0HOo0YAsCKzYjq/gwaE9VKI7tixqNdWJYxxTg/c9NKZbSitWUtF4+k6/Z+KZ1xiSHRnf0X+2zWbpJskyvM7Yq1E2T3TJbwwvitUrEGtYFMJpBcYgY42fOd4sasBLzfFyDbL/HokD8b7FJ29/U6foviPTOfO+4esVildEaDluBcwLj2Fc87zqjfVsq+zdYPGTJmzGuC9axw8ov9g65F96yKde/602nUJZwuqZquZ61umm5GW6YzWkHc7aK+P3y/kNaK11e9XymHucH+SinuTWQK1sDAABoaGqS/9fT0IJHw1/byIWhGKcYpp5yCU045pYASEbnCx9WkNQ3weXQ6U4O4a+1inDv+IMxuGOG98X7CIDdw+vUpLGCfKQVxGh5kMevMgiXGjkUtN7P6sEQKnlkEmWxmkgumlJU+Oxvg/gzI6mCJRNmuZjp7ocCx/RyK8MmeIW/KkHps6un0LPxsQ0yeILmPKdt98r/ioCUQGN3pQcd3UbQri7W0JbkwF0rk5+PHyU9OPBh/2rYWRzWNiUCa/NCFa9Ghm++/wj0FfJISh4IVoTxiHOtARm4F1qE7yg6USyZBvn+i+l0EES2RLbEcdthhrnFP//rXvzBv3rxIztPY2IhEIoHm5mbb962trQ6rFlGeBM3exHh8xwa83boH35AE8e+v7OLqBPkN9mwiljAsNXGaG8hEYZMYMRtclOnEASvteW0ygIIlpMtmMkaZ1cwPe/rqYG1j1cFyUgi7MbtnYnp4Xdeh6zruWb8MrwvZQxPCwtmk2qEAgk9iM8J24mfAfp+CLHKu7WqzfXa7zUxyeS+W/7NhWX2soTzhMskXn1EAGF1d4yFfcWHSmgsoum57bmUZJyU2w8jk+c+ebbbPm3s7pdtpOmxZBLPfxagT9eCdtn3m3+UiM0GUC5EpWNdffz2effZZXHrppfjzn/8MRVHw4osv4sYbb8QzzzwjzQaYC5WVlZg1axZee82aTGuahtdffx1z586N5BxEaeEnOF71Rxi8mxiR5TcbV9g+e6WmzugaFFidQbxWX52yuFraIhabpS4emszGXXi1i1XfKfs5UQIFywu3yZNpzfC0/kd3DVYtJucZ1nd34Kldm/Fai13BElOdh1VeHVYOyW6BrWEGYrp7N0TZ7XKFOqUUsw6WJE2707pjf0Z5+eIwuTYVLMn7rUBeB8vtGFHwl+3rbZ//37plrmd1WLBK35yB+NO2tebfsoUHgiByJzIFa8GCBXjggQcwODiI733ve9B1HT//+c+xbds23H///aFinHp6erBq1SqsWrUKALB9+3asWrUK+/ZlV1suu+wy/PGPf8Tf//53bNiwAd/5znfQ39+Pc889N6rLIUoIP5ENMvE5eGhjIcUpS0ZU2gsFeyoHyBbDjVu2RjfYan2hJ4XMRbCpsto4n/u2bNLHJlgs/iI2LoKuFqwsUgtWAR4Hy+XLOD83mXazVotyhLUSiNvJ9tvNJcIIYgkdV23PSOWW0KDQr5S0DpbipmAZv7sUJS41uqAs6tBNt7yd/T2m3LY6WAGU51wZU11r+9zgkg1UB19PrrxcBHli8AgQxPuKSOtgzZ8/H3/4wx/Q39+Pjo4O1NfXo6amxn9HgRUrVuCSSy4xP992220AgGuvvRZf/OIXcfrpp6O1tRV33323WWj4t7/9rVkDK+40D/ShsbLa4foSVxa37cWIqhpMNFxzCs1KrtaNn4tgRtfxs3VLCixR+XHiqPFY0Wm1o6YDCZfHTdOzky5ZjEOpkUnCu0CNrqrFnoFe123zOrdxwIoAyhJTvtgksBQWLHsBVvffeERXPelx85JKPJa7i6CbkiImubHaNpjyasYeGX/LFKh71i9zbB/kmAxZdrnsOd1bNgqX1oyg2Gf/zv7vpljyzcwrM6WGSWBaqHXg/3ZuBGC8R+y6bK6wbkfJnzkNI7F7t5U46wOjJ0q302E9z/2GW3EcFNawlKPMBBFnIlOwmIteTU0NqqurUZ1HPYWFCxdizZo1nttcdNFFuOiii3I+R6nY1tuFz7/zPE4cOR43zpif9/F0XccL+7ZjVn0TRgkrblGwurMV31yRrQ/z5PFnR358GU/t2mz+nfKxYG3r7SqwNOWJOFR6DZ467JPbOA2zMrH5CZhX3FG+sIlcIoDFTBMmunGLxXBbUfde4ol+AYgpotaRLQuWW7ZQ0bIa1g3LsvKoSOuaVOnlF3KCLDCIW4ytltdY8WrBKGybnhYsQcrudMqQiXcntB+nlJhWYC6JTfOAVQJFlbSmM9YwOsTSBrI2MmMKjc/MErqrr8dV6Y4r5Wh1I4g4E5mL4OWXX44jjjgCH//4x3HHHXfgueeeQ1tbm/+O+xnL2rPJOV7cF03a+rda9+DHaxbjmneej+R4Il9Z+or/RgXEzwJQLlbAohMiAYSmZ2MIoqzbEh1OuZOGwpPS7VOCQk0PkgHcqDRhosWeyyBJWqLC6/rdZA9yzyO1YAluYKp5eh1tqQHpPqKMbkkc3GDXnlQsZU7khJETLBmDHNQ45nEjxuHEkeNx4eTp8u08TYP5tyxzoeOVjwRXVoDRm07hvc5Wx7Zxihky3UetYCtb/87+fKNlt2Mf83OE8jAF67QxkwHIF/ss66jhGmwIOeBSdy7OxEHJJoj3E5FZsF577TUsWrQI77zzDt566y089NBD0DQNBx54IObPn48FCxbg7LOLYwGJM9VcrZredAq1SWddjTDsMIKt+8uwQ3fjhJHj8ZKhgPp1+kklHkWI44Y4FfBLMc5bCeI00MokYZPCzT2d5oTGdeN8zs1ZPgBvi4MYg1XyJBcBJ55mkgPpb9EjTkgZmg7cuvJN6T6iHGpIF0HmRpdUVUDLSJ9vmwUrwDHZ1tOHNuLcCQe5bldo18snd20CAKR0q/+XWU+ZGy0gdxGMg/WCvUO8Aq3abJ0BnsiI3rdBLYNXjWyWdcYYLVssMc9miPaB0ZPwr91bhLT/5UGc+n2CeD8QmYLV2NiID33oQ/jQhz4EAOjt7cUbb7yB+++/H4899hj+/Oc/k4IF+4Tr9ZZd+MDoSaH2T2saPrfovziwrh43H3JksEEnIjK6XhSLUUOFFUzsN4mKo80lDohuTp7KgRH/IkuDXGqswHzrGnilis8yGbWLoBgTEiZNu8yKUEpcLVjG/15ucVHG5IlxQEGeObHPyTXJhWXBcu7HYmeAoNfrjGeSUegYLEZnKmX+LYvBslmtJEpLHCbX5rvOuQDbXZedMhaqFh5fGJotgsrd1e2W6yo1W7RRLEQdVw4YUo/NPdn085RFkCCiJdIkFz09PVi8eLFpyVq2bBmqqqpw0kknYf78/OON3g+wzgwAfrZ2SWgFa1d/D/YM9GLPQC/aB+UuNYUipWWQSET6yLieh+E3QaVBQU4YC5YOHQnbVDBGbcrXTRIsSo5Noz618X8Qa5SZ5IJZsNTSTlwdsSk+adplvxbGgsUmpPYkFykPC7yopIS1DoqWSNl+qZAWLMsS502BPQRNKlXrnTAtfNyVqBJXO8Bqyz1cFsVSwdqDj8F6lksyIWsv8auomrRPsxTuIcaYJypYHYMDGGIoX6xJ2X0oFxfBiTV15pwkTsmNCOL9QGSz5fPOOw9r1qxBU1MTFixYgNNOOw0333wzpk+fXjbpn4vBE0ZWJCC3IOcKbiBtHugreBpgniA1qaJgLxfY7DeJisPKaxwJOsEGuEKZVuhDbLC7lNnd8Ap+biGBgF+qe4Crg4USZBEMIJ9IEAtWlIhp2tnY4NW3iPc7bGpxy/KpGjI498vYgpD8j2vF3PmasFyJssX5RQc/Cx9vwWIFk/m4plIhutm+tG+HbYyUXk2BYrD48iBDJC6Cb7bsxvfeewsfmzAVgPUcmxasMlGwNnELvnEeS9OaZpa+IIhyIbInds2aNUgmk5g7dy7mzZuHww8/nJSrArCt1ypwWZVIFOw8vekUvrn8ddt3mZDFOHOlJ225u/jFBogrhXEaJDK6jt502n/DAiA2g1c7ZrMI8imzCydXWEQrkvh3cc7tn0VQXH23rCXxiMVwS2LgZcEqSBZBYRLNzuDVTuIglXOSC2ZVlGzDnz9Mwgd/C1ZxXAR5ZAqoTdHnRGqszD3bb9SI7/o/dm4Sfvd3EYyq8+KPMkTiIvifPdsAWMWITRdBY0weiJGL4D92bMStK9+UWon5gtnx6Kmc/HnbOnz01Sexsbuj1KIQRCgiU7AWLVqEe+65B1OnTsWzzz6LCy64AEceeSQ+97nP4Te/+Q2WLFkS1an2ax7fscH2uVBTzRf37cDi9n2274plwerj4iG8LADP792GGxa/ZPtueUdzweQKyw9XvY1Pv/FM0V05AedkxGvSqOnZiaBZyDNGNiyZK5ZbYhPeMtGfSeNHq9/B8vbcnwezHRQjBszHzRKwFJZEAMtM1HjWwXJVofzveZRXIKa1FtNby3BL0x7UOsinaedl4OGPJTuqruu2Cba5jY+yX0gXQTel1E/BqlCshbljR4wFAEysrctPmAgQM0zynDp6UqAHMapnlW+7GsNFkLdgNQpFh9l7VMFlOI0Lv9q4Am+37sGi1r227x1xunFaWeN4cPMqAMDTXPkWgigHInMRrKmpwTHHHINjjjkGAJBKpfD666/jN7/5DX784x9DURSsWrUqqtPtt2zgVnGyHWK0KtbTuzbjj1vX4viR4xy/FWs1nlewvDr9+za+5/ium7N+lZrXDbebNV1tWNg0pqjndhQZ9UvTHlMXQVsMlkFSlT/zvNxP7tyEF/btwAv7duRcv423SqmKEkzBMj4HSYxRTNzTtLvvUwhDoVUHy7BgGSfxmjw5XARDJmYwswh6KGb275y//2jNu3hx3w48etRpGFpRaSkDgSSQk+9CxuvNcrc+mYWP77urOFerKjU7BShmsiQ3mLSyeldT6obZSzIYfVYhXFt702nbs8Xc/ngF2y3Girnw+9VvLAWi0idmHo5LX0UQ7xcizVjQ2tqKRYsWmf/WrFkDTdMwbdo0SnJhcPDQBqztagcADM/TPSNsat3XmnfhyZ2bcPMhR5huDyK/XL8MAPCWxCe/WDV9+jN8kgv3c1ZIfLKr1cIn4QiLlRXLqSwUCocFwy/JBZ9FMEbjrDXpstjU3Ykjho/G2617XPdri8BqyCtNqqJ4u1kKikPYVOKFxr3QMFNW3PeN0qJpWfrY+f0Rt8k3yYXsevwsWKxu4equNhwxfHTwJBcu77oKpWALGUxBybhZsFTLgmW6tMUgZkiMwXL7HQDOeuUf+NGc4yJPctE80IdL3/o3GowiwaeOnmQu6PAKynOGiyCDyRxnBUt8XfYKVuO4J4yKQykBgghDZLPRD3/4w9i6dSsSiQRmzpyJhQsX4gtf+ALmz5+PhoaGqE5T9vCrREfnYNU4pL4Jb7buNo4Vbt/vr3obQDZ4+CNjD/DcdpfEZSddpGqUfE0Xr1MmJQNxnDvhry97DQlVwe2HHVPwc4mt4LY6qevZaYsCfrIYnzY0J7LcvW5LDWBkVY3rtgCwrrs9snNnXQSDWbCYRSgZszTtbmLwhX5FCpJFUIhV60gN+u7jSNMeNsmFsR2b/Ip9SkbXzD41K6O76xT7O18XQT+LaBB4Sz9/Hj8XQT7jYEJRUKmqtjT1pcKrOXRdd/z+8JbVOGvcFHHLvGRgC4vtxnOpKIrpUpkOoDSx976YBcaDIi4ssMLT5u8x6asI4v1CZArWGWecgSOOOAJz585FTY1z8kNk4Qe9XFa5DhhSzylYelFXyIs1aNhXXt3PKUvXHUc3BzZwrehsKfo5GW6Kp0yBiVcLMlcsS77pQxuliS7YNe/s63ZMHvJBMVwEg6RpZxahkhcaFvC1YHntHOElmHIYt++1ll2++4jua+GzCDILljw5xpI2e5yeeNTn9263jsXOKcSShSWhKEjrGv539Tu4ePIMjK0ZEvoY/+Ay0h48tMF2bJussPrRD46e6LCqVShqLCwuTAFYY2Q25NGgOxSEtKY5lK58H1XRjU6F5ZLsNf5ZrsHxVbC6BPf5EcIi1ZquNiwYPrqYIoUjHl0pQQQmsiQX1113HY4++mhSrnzgJ1y5BMLas13pOQXR5zrpK9Zk0TX7lYAsbWssFSzhc+tgP25Z/hpWdBRO4RInkW6WQNPyAs6VsWBShcd0EeTmhIfUD5fGabBt+UybeZ2b0wUSOcZgxSZNu18dLMnvhYjLEeNsghRkFV3GkiETCViFhv2zQfIyMvgJP2tjy0XQz4Il/519+9K+Hbhj9SLPY7ix0UixPaGmDpOH1Jvfs/b6956t5n1l44RsUUpRCueuGAbvRDw66g23PUZa17n7kCXf103cXVWUQFYphds+CjkKwa82LLd9FhcvH926tpjihCaGTUoQnkRaWGDbtm349re/jbPOOgvHH388zjrrLHznO9/Btm3b/HcuY7pTg1gVcMU8qPIQZH8NeiC3BZFcJ33/3Vuc++gWOyBSIbNgxaQb5u+TDh3PcEH8v9+yGkvam3HTslcLdn5HmnaXdjQtL4rCTVLi0YaAM7YJyCovXrWwZM9FLvC1rXxjsIz/mcJS6hgsUdla1em0CgDBBoAonwYrDjH7OUi9IPFOM1e/oAsU7BlPqnIFS4zlFJ9/3lrKjiXWPXPD7XfeiiRzxw7CiSPHAwCuPugw2/dMeX29ZTfeMuIUtxuLDrJU3SoKkywiV84Zf6DjO03XMa7GnukwrWvcwkY0GVDFZ0OBYmUE5TTAY5rG2nc033vjODEZh7wQr7U2Eb/4ZZ44ZbcliCBEpmCtWLEC55xzDp599lkceuih+OhHP4pDDz0Uzz77LD760Y9i5cqVUZ0qdly/5CXcuPSVQEoWH0iai3L0arPlUpPRdfwxh1Wn32xcEXofwFmXpBBour0b9RqoZG5icbFg7e7vMf/WdeAXRvIQoDgB0I407a4ugrwLXhwtWGwiG0LBirggJUth710Hy7IEAnwdrGJasNxxe+e962BFj6bzz1uw9hFd2l4z+sC3PJKc2M4puAiK74Y4sRQl4hX2XharZPd0dMXtdz5+Ktenlb0DoiWffzdY+nt2///LuTvyxOGdZ/fFK1ERnxgqxbkIRlV8XGwHRbHuP2/BqhOSRKnm//HKHuqF+O71xiAOT6R1sL/UIhBEzkS2ZHHHHXfgkEMOwW9+8xubm2BfXx+uuuoq3HHHHXjooYeiOl2s2GMMYlt6ujCzfrjntnzHG9ZPW9N17BnotX0uh5WyMIgDU7+HC5HcRTBykXLiqkX/Nf92uJ0UMCVyRtfxzeWvY4VQD8zdgmW5tsU1CguwT0JVRZFOStkEza1OVlj4mk1+SQnMN1mog1WqGCz+tF4ymLXPArg/RiKXcKxc2ue4keMcNfq8MJNcmC6C9t/FfkSUiP/97nVLcOqYSdw2+b/LYmxMUKz6XvIYNUCeCEhEVeJhHWCPQhCZAaAzNWhaiJOKgrSef88lLnqqUJBQnYslDkVMKDsQRwVrWl2D7XNc4kO9+OrSV8y/y0BcgrAR2VLv8uXLceWVVzpisGpqanD55Zdj2bJlLnu+f6jwKipjkMlDwRI7RLE4Z6HdPKbWDSvo8QGnpcXL2hbXLILvCa5L4n2WWd6iYnNPJ5Z1NDuSFri1CptsqopiujOVvgUtRNc7RkIWgxWx4HycTVJRoQH4z55tpruV7OSsQ7VqLhXRRdDl+tdKkgYwvO55IR5T0eKQS/vMHJpdxJrfOCrQ9qIiIvYRDuXCw0VQ3Mevyw8Sx5brggAbDxx1wmw14/yPrUCJxcIUa1Pv/pFzkdd1sw3YdeY7BopjrKIEzAxoiGwmYMlLimgZYVj92gRrUByVQBF+jhOHRQCCCENkClZVVRXa29ulv3V0dKCqqkr62/uJIAOlzYIVclQTJyNbezuF3wvbAU0f2ljQ4wPya3AbNOOaRXDfQJ/ts1j8eKlgXYqSF11cgFzTtHMueLGsgyWZRD6xc5OnS1BUGbz4mk2sXtBdaxfj2yvecGzLzmjFYAVLqFAMqri6RyJBYleivAIzdsk470cnHBT6GCyr2+qgca+wT8L97on49IgxfRkuZXiuLoI8p4yeEGArOys7WvBK804AToWEj7MKYg3KJrnI7y63Dfbj3vXLTW+OXGASeL3b4pDJkndEZbWuTdqdelQoZhvy1i2xvcwkF+z3GLz3DNaeg4J1rhwsWDzlJi9BRKZgnXTSSfjRj36ERYvsGZEWLVqEH//4xzj55JOjOlVsCbJaKCapCIOzfov9i0Knhi1G7JBs8uN21nfa9gbav9iIz8F9G+3xh/lMQvz4244N0u9dY7A4y4uZ5CKGK4V8i46orJZOwpjcv9v4XiTn5BNs8EoK76ZrbWu5EwLWpDeXLJ+5wt+3oGf1ssAUws4qKianjZkc+hjs3vcEjBlh/aZboWHnLbJ/IT5rAxk+ktbXhOVLLsrBd1a+af4tuhy/2cLHpgVwEUT+CsFDm1fjyV2b8krc41domG3FwxYdWdxl5C6CigJFUYy0+u5HFwuMx8GTguGmmJSbwhKHUgIEEYbIYrBuuukmXHPNNbjooovQ1NSEpqYmtLa2oqWlBfPmzcPXvva1qE4VW4JkL7P5cYfs4MROe1dfj+1zoSdzuaSVD4us09d0PbBbXRwGNnHCNCBk7qpJJNAXID11lLjGYBn/K4pizsVK34IWMhfBT0w8WKrkvNuWjcuR1dHJ7dyW0uRXuJh3JwRKH4PF4/VOBErFHuEl8FbBwOcXCKuQWGnaWXyM9/Z+l9uvpc2t/C1Y/teXy6IQv4+okDRWVmGXkWQnyKS02XAdy6fYMEtGIFrvw2Apws42Y0kl+HuX1jXOghVNshZxjGP9TlJRPZNSic9zHBb6GOwZcJTuMBMcFd+lcU9/L4YkKxzJQrwIknGUIOJE3gpWf38/XnzxRezYsQMXXHABLrroImzevBn79u3DyJEjMWfOHBx33HFRyBp7/LKXZXQd3elB83PYLlh0EVwkWHAyIVZ4+jNpVAvZs/wG41JZsDK6hgrB2Oo2kMfBNcPPknlIfZPU+hYFJ4wcj5f27TA/J4wCuW7tYlmwYuoiaPzPr9InXJJcMKbWDcP67o68z82UoyDKvRiTYylYpV919Zrsscl5IWpeyWUxzmsmBQh/DLFAKk9/Jo2PvfY0AOCPR52GuopKXxdBsXX8fu/PpF1jA0WCXF4urxtveRSfz0qu/wmzKPbnDWtxetOkHKQBZgxtjKxPUwUF+oyxB+ADo7NyiUoCU3pMpTvPzkt02+djKvl3WTyNw4IVo06UebaIErH+rVJNoL+Iykt/Jo0r3n4OVWoCfz32jMD7iS6OBBF38lKwtm3bhksvvRQ7dlgTurq6Otx11104/vjj8xauHOA7Ur9JyleXvmJbKQrbCfttH2Yw/eeuLThXiH94ZvcWz32KUZ3ezYIlssalrk8cBrahPqtysqfk5uWvYUN3Bx5eeCoqPGJm/BgpTD6TioqMnnFdoeTr+cQyi6AkBktV7PF3KqwaVRldw/zho6JVsAK5/rK/mAWr+DFYbmfykiGIehDlFVh1sIwJaY6KXU0iIY3BfI+Ly/rqslfxy/knm9dfY6T/Fi3Kfojv1KCm2bJvehFMwQrfwvwtFS1Y/NFkda/c6BgcCCmDbt7HMJYIN2RZEVUAn5862/zMx7OmNM28l2yxMH8Llr29FO59DvLcJCKypEUJWxgVF9m0EilY7B6GfQ/7YphGniC8yCsG684774SqqnjkkUewdOlSPPXUU5g5cya+853vRCRe/OFXtbb3SbKLcYiuS22DA6EsLn4dTBh3pFHVzlXgvS6xQcz9ohAWrJaBflz21r/x7O6tAOTuTLIJIks6IBIHlyw/EUQZmwf6sLS9Gd3pFDb2dLrsFYwuzkIKcPEqLqmgzULD3PJA6VvQgsnCu98qsNfBqk0mUWM8D/3pTGQZ0VLm6ngIC5bxOVYugl4KlmnBKpIsgmudnwXIDbe6ZNXc4sTW3i5ouo5njYWjTuPdEPtRR0yWcEwvl0Rf6YM8Ozk8IvwuYkZN/nidqew1swRFXzp4nusxw2Q3fb15F85/7Skz0UiUrtk2BctDppSumW6N1S7jQVhECxY7fVJVbQuMbkku2P9xWOhjWBYsefxaZcR1A/14N4Slc0x1rfm3mCyKIOJOXm/W4sWLccMNN2D+/PmoqqrCQQcdhO9+97vYuXMn9u4tjAtU3OC7rHs3LPdMiSyyZ6AX928KHpD/Iuf6JSOMhUlWzLGpqlqyJVBjrA4WQsF6atcm7Bvow93rlgCQu1TJJqlu/vC/yrGIcpSIA9m4miG2z2INH97dMV8Xx960ffLIJivfe+8tbO3pcpU1YQRzZ7+LD8uMjIt9GleYVSg0rAAYV1MHILtiH1WSDqvGjoqDhzZ4biu6jJVCwdJtf1uf2Jsye9gIzB42Aj+cfaz5m9cA4DXdznUCaSa5CKDYHT9iHC6ePEP6m1tdshohC9y6rnZz0eLpXZtRrSacsUbCYfzeQd3WulG4COZgweL2EZUQfsLMYqNGGH37BOM9kRGmWO8PVr2NQU3DV5a+gv5MOpJFDSsmKJiCBWQXKQFgiGFBy1cMcQxlsiR9XK2ZnHFLcqHp1pMi3iP2/kzz6dui5u51SwNvy9fuioO7dRh29nVLx1xi/yEvBWvfvn2YOHGi7btJkyZB13U0NxcuFXWcELvRRa3hFEu3rG8yDqitt312pA8WelCviYJsAKh2cU0zFSzDfSJKRUuMW5NnEZQoWDHubMOsgPvtGxax/fjV4Ldad3tub1qwYrT6urQ924/s5BK6KAD4J1WBYk6END26GDIWQJ9QVNQmvL2pnVkEA9TOKRLsHo+sqsH3Zx+DQ4c1mb+ZdkuPeayoAAxkMvj4a0/jztXvhJaFTZLMtNYeE+ivzVyAT046WPqbqijSfiEhDGli+1cnko4EM+JR/B6fnnQab7bsNuTw3jaQgpWLBcvDRfAgrl5hj7HgwixZQyvcXflkLpdu8HFS77TtzXlRo2WgH2e+/ARuXPqy2fAJ2+KJdwsyBbK+ohJA/hlQxYU7M8mFyt5n3TiPHKsfikcfai+ObJeJedywenJRpbqPEl7iuLRpUK5a9F9c8+7zpRaDKCHxe6PKDeGl/8PWNQU71RDBz130e+cnE4vb9uKsV/5hTgQAoKlSbqFiPL1rs/T7as6C9eiWNfjk609jW280KzOyGjMiUgtWGXW2YQaGfJUbcRDlJ00yOdgEhc/QFKeWPWHkeADAKaOsWkGKYMEC7MHlfBuM8HnmvTAtWKriSAgjItbBSiglmGi5nIv1CzIXMC8Fx+2nbb1dGNAyvhZ1IGudfWTLavQa7j0/WrrIJpPb2b89a6HncZmL4MqOFjy0eZXZzs7n336GmkQSaV3zzEjmVLjs39y07FVzcuqfHCRAFsGILVifmHgwTjLeG3ZsZtmuS1a6HjOMiyC/bXUimfNz/qpRy2tVZxvaUwOOY/tZsJi7pzmO5Pm6iXHM7PxM+XCzoogLBnHpQ3l5RQvWc3u2AQA293QhqSi+scNRwStyfuNdPmVtCKLU5J1F8Morr0RC4v986aWXOr5//fXX8z1d7Ijilc+ESEPO05ayByXzCta9G5YDAH6+bikWNo0BIHRWko5tW688hozVAEppGh4xFMi/bl+PGzz8+RlL2vYho+uYP3yU9PdKwWomtWCFcBFk7Orrwe2r3sanJx2MY0aM85UzSsRBw8tNLKNrwipjfoiDKP9cyVqMZWbqzaRj6SLIpOcXF1QothV0RbEsCRldt7VBPtfCW7B8g/i5emKANdEqVQwWf9p2w41qWKWz2LsVOxJicu1ntuG4Y9UirO5qQ9vgAL548Bzze2YVdzvvpNqhnsdlLoJfM+ouzR42AnMbR/pao+orKrGrvwedqUEzG6HD6hHhPcsxxMwXXkIxUUhVIoFPTDwYL+zbYfadLKGAV9HpXBWsGjWR83vGiiUDlpXNlsDGRyZ2XVEpNo46WMb/Zl07TbObzw3Yc6xw/VAc0Gxji1ym1sF+KJBbhAvB/MZReNPwpsjoumeMq83VOSZtGhZN10O53xLvH/JSsK699tqo5Chbonjl05omVVKd5/I+G9+pi/VBxP1lxzpi+Gi81rLL8b3lImgNPs/t2RZIwbplRVapfvL4s6W/iwG2QS1YXv7Yf9q6Fg9vWQ0A+P6qRa7n9uMfOzZiSXszvnHIEaEmH6K0XgPXc3u2YWy1FaOVzyCyuafTHLgYfHzXVonVkZ1vVn2TNU0r8UD27O4tOKiuAQfVDTOtJLaYKwVIcLdDAbC+K5s1cF1Hm/Cc58Y7rXuxp783646oKLho8gxzxRfIPn8266ApmxWzwbYrFm7XmvYIZmfyzmsYib9uX2+6CwHuyk8YZWyTEf/0zO4tmNM4wvz+RMPCIr5WlxwwE6OrajCaC26XkXURtEi5BPLzHNU0xrR4eFlsxTvm9Qz5dQtBWiqXd97LRRBwlgkY0DJQ4J3QYGilu3XL7fhAdqzJ1fLO9+3sHvL6u5+LTX9GVLDy67u86mABnIugcL2sOZiyGxc36yB1NytUFaqiFK3b50vVpHUNSY+7bHcRLKBQEcO3e4YUrP0WUrBiQFrXUGUsi/Vn0vjZsndwfMNYTKyxr+L6dYB8bBSricVSTOu6jvYUV4MrRGdVawSO+1mNckFMSR40i2DK4wKYcpUPb7TsMhNmbOzuCBUI7JiwecjaPNCH0VXWZDKfMeQrS172/P2lfTvw1Rnzbd9l+CQXBUjLHZaN3R1mEDSvGPOZ31Q4XQTZxOi2d1/H8ZzFMpeJTvNAH7698g0A1mq6WHvpwjf+hbvnnYjlHS04ZdQE1xisXFayl7TtQ28mFZnllc8UKcKmNnMbR+Le+adIFRvxEsJcE5+KeWWHlUKdvfei9WVq3TAc3ii3dvOI95+5iImi6bqOY0eMxavNu3Du+IPwx61rfa8hzCTdT9l0+31ew0gz2U0u75uXiyD/Hbv3A5kMqtSENGvjaWMm45ndW0KlzBeV21xHhhlDGx3Zde0lGbxl8nJ/zQVxjGPvddLQ+txqSjnqYMXED4B/zt3u0aTaoXirdY85FhSalVwpBb++hP85Lm0aBL48gqyOJ7F/QHc9T6JYqeIVo79sW48/rF+Nzy96Hj9ctch2fH8LlnUcNhCwice7bfbMdbJjuXVgo6tqkVQUpDTNXMljaX8Z77Ttxa0r3zRjLYISlQWLtwJFwb3rl5t/5zt2eylYnanByNwg/GqZjK9xthE7n6oo5nVGlYUvF9pcavHwkz9FESfmnBukjrxdBIOkA+5Op3Dd4hdx19rFeGDzKiuLoFk3J3cXwVtWvI7vr1oUel8vlQGQd/b8hHtCbZ1rsXRN1/G7TSuxoqMlVG0lHj6VNrPwiRP+oJP8oNvpsO5JUlHl98XHr9DrNvhJ4eZN+d1DjzKzOeY7hsjaQowB7NfSrqUtWNrs7y9+M3AtLF4RSXN1wYD8r0escecFGwcsy1Fep3YkRWHPSTJg0pqo5IgKsQ/h7029EY936phJrlk5o2a7EIaQ0jR8c/nr+J8lL0mTZ2kRjY3FZsCmYJWP3ES0kIKVJ5G4CHKddstAv/n3K8077Sm8XfZnhTCZ+0Ja00xrFRto9w7Ya1zJzO1iP/DTeSfg9LEH4MLJ01Ghqq6FjHVdx7dXvIG3W/fgn1yx4tc4//qgyDpRvkzuGy278O0Vb6A7lZ0Ef3rSdHxq4sH43znHYkRldWQPNN8phs2u5FbQUcZTuzbb7kUhV+maKp21z57YsRFAtgQAm8qUcjhwq/XGT/wVKLZJGD8FSyqKoCCGvxr+fvPv5nzBssIUsb9uX2+ek02oo4jB2tqbX000hui+yBNEUdGh463W3fjb9g24admrtgQzYZQtvl3Z37m+r24WC/H90WFfRJAVgBYXFMK8g36LL24WGEVRzGc63/dNpsSZzx+yys+gpjniXRn8ZPDHa94NdE5+n7Su2ReJAh3B2lcklAVLYxb4aNpSnOSLCpaYqZfBxIxbDJa4EMl/YmVZKtQEEi515aKmX7P378/u3oLF7fuwtqsdL0uS5vBjaTkpWIO8N1EZyU1ECylYMcBzsLetDMr3P3DIMADWquLvORc5a2U9gBzCuacMGYZrps5GbbICFUoCaU2THue7771l/s13Jv+72hqs3TpHcbxi+x/TNFa6zW3vvY132vaaGQ+HV1bjogNmoLGyGooQl5ErG7s7bAlEwhqwxCtl1zTRpQYN3+5R98WfnjTd/FumvDA3pWwh4uyVru9qj1aIEPxw9SLp9wuHjzH/dtTB4m5QUlVtbZhLc7oFXX9n1kJH1kuG9YyKFqxwTySf9bM1oDVBhi0OTXBf5PGav/I/8ZZF3noh1l3zglewEm4WrIDmYnG7HazIu8RF0KyvpCimMmLvc/1w38LPRdBLgWW/eE0c/7JtHZa1e5c8kSmblgXLegbdrJPXTZtr/h22zAjALFjW5zAWLNnkky+c7Pc8OOO28utAxey0poJltJ3bIiM7fVSxYFHRKRSe5+8Nu7aE8V4UQ4ER+8+/bF9v/i3zwMhvqax0DGTsLoLE/gkpWHkiM2v7DTB1yQp8/7BjzM9eg30GOjK6jk++9rQZFyLCBk7WYT6xc6Pk2PaBSrZKK8rNPxw6dFsHyA8gb7fuMf/mJ6e8+5/bKo4mTASZvDWJpKlkyTqo3kzWepDklm95a18+PLh5le1z0BWo7tQgfrzmXWwRkkmwa/zohIMc+xw5fHRBU9E2cJnj3KxDjFWGb/wLAdJvF4vhlVVIKorNvYklnoDtmyxJVRWUixxO6jKnUxTFdYK1xbA2sccx1xisOzgFsy+E8uKF2QPkaMEC7ErVf/ZayT4GvNKdC9fOZx90KzQcdDFDHLjuMbKmyrz9NE7BDHJfHHFcHnL4yStrc4Zf22/s7sADm1fhG8tf89xOGoMFS8FPaXYrjMiwiuDJLWSkOSUWCKdc+FqwfNqIPZdRWbAcdbCM/0XXUvE8ZgxWzOpg3b12ie2zzB09YSxYFSPGSXwGpwypd9kyiyZRCMuBQXIRJEAKVt7sEVzvAHmNprZBy/Xv5FETbIVLRSWDR9N1LGnbhx6PyXGFWQQxOzhM5aqfu3Vgf+VWjsxzC5/5yUGX4Q7FJphusTJ8B8orWG4DDn+9g5wvf9adx32wSnODQ9SIK71BO8i/79iI5/dux682LLd9z+QfkqhwTBcmD6n3TZ+fD3y6a7/rYEor48dr3sWvN6yIVJ6wZEsYqLb00hWqarvvfJsmFEWIwcqhPXPYZW9/ryELi/fJzUWQdy0R70eueFuwPCwsilMhAoDn924PdF5x6iyb4IsWIC95vLabYcSESmNLZX2Kb8RaMILKK98ZnrKIZTjckCkhfF04MR5XhHe3ndswMtA5h3P15dK6PQZrIEQyJKkFi2tTv5IAZgxWRGnanVkEs/+ztmMKmDhOWy7C0cgRFRt77G7GvFx8ghBWV67QiM/6KC6pjnine9Np08MCiI/SGgR+4amc5CaihRSsAiCzav2UW0m6cNJ0TKi13MW80o9mhNVBwKlUMPeYJ3duAgAsGD7a/I3VDxLnARu6OxznCtMRuFmLkpxywmcI5AfSNZ1t+P3m1Y6isBu6281MRrwbmNckVS3AIyxOWIKa+Lf3yYsvWxM84EOjJ9l+S2tazqu/PLJnDsg+K585YCYAYFd/j6MtGyssC5cYo/H83u14YufGnJMa5MOBxsIAS3HLJ0ioUFXbZJ2/W5Pr6vNO055b4Ve7LMzi5mc19KInpAXLnhDHwozBkkzEg8inw32g8FRURAuWNNud/XNgC5ZwrOn1TMESZACnYBjpqAHv9NXie1yo6ZFbQoRnd2/B5W/9Gztc6hKKMsmUPN7iwu6xm8JuLxrsXy5ElCCtabY+cmVHS8BjyDPT8vJU+sS/sr3ZPvkm2BAtamLSGrckF+ysftuVGplFSIWC5sF+6Mivvwp7fkB0G7bf66WcclWfrCyzLILOhGPE/gcpWAUgpTsnpO+0Wb7tdRWVqE4kMc9YLbQHCDtXxsTikOJEZa0RM7OapbvN0SIShd847yLIy7mE6yy/vPRl/HHbWrzVuhsZ7pQVagKDhu9yJWel8LqGZIiip0ERlZCgVgi3wYndUwUKnt2z1fZbbyadkwUrpWn41YblWNOZved/2b5Oup0C4NgRVjxbi6AYnzZ2MgDg8wcdZrtf/ETl5uXFLxDOhiRWhLuGs/hWKAkhBkvBxyZMBQDMbhoZMr7GSS5zNFbviU126yuqoCJbxDNX3BT75oE+LG7bG+LdthR8kZ6AWT9dLTUeIoh92Rstux3biEpf4BgscRHEWKVyWBZ0KxFChSLvU8RLeLXZWQvQjXx6H7esnXevW4q9A315lZvgLVh/2pZNTb+r3+ltwW8LBL+eNLcqmLVgWb81cdYt3+NInnF+oi2W8XAjTIp5L8S+njUNc5t+eV82cZNDkTe+8EuGUWp4qVjfyr/b/+KSVBX6/IDdW4T36gGAoZzrKuv/y8UaxL/T5CK4/0IKVp7I/NfdrAkispTBDv9/3dmp+LnFLedWENkkJ8jKXpgxQewMZcfgV6e+v+ptx7adqZStI0rrmhnnVZ1IBoqXiNpF8FcbljuK9QbtINMuDci7KPFJJ4DsgGbLIhjwHjy3Zyv+sXMTvrw0W/vqPa7GEI+qKDbLlBgzwya4FWrCtebIe53yY0eNTNHUjElANfe8VQougoDlauJovhwGt3xWSlVuxbu+ohIdqUGfPdyRuRpv6unApW/9G99c8QZe3Gd31eO33tDdge+seAOarjsScPAEebZ1XXdN5uDVVmK/JUvWkKuLnaiIudUnAoAOw9UuabNghVlVdr/GMPKLg61f3Tm3BRs+5tUN3hVytbEI47ctEPx6+PZLCWnaw9RTkj3j/L11S8zhtU8+aLouFICwH/fJXZvwqw3L8YqQIZe9B37JMEqNPSuf5uhH+eQMhUDsE3h5RGWbbfuBURPNecJfJKENcaRcY8eIaCEFqwCs6GjBmS8/gWveed7TvUoNsJqq6bqjsxZN6SK833KGm6j6EcaC1ZtJSzvj321aaf7tlo3NdkahI2LHrFItK4XXgO3XFmH5h+FmyRN0MuZ2uXyQ/YF1zpi4XFwEuzjLw683rLDdcx4VCho4N0BR+WfnE0V3UxYLCS8ba7OMMQnwisECrI6MzxoHFM+CJSOpqNBCTrTGcbXKZM/d682W8u83cV7Uthd7+3ut+BDJNjMN1zoZtommmwHLo63cfjqGs6iKMgW1RIj3320So0PHNsOFmsWaiNvnc7vDTOtF5YV9clv8cmuLNyWWQMe+3OKdb+2mEEklGGnbxNj+znWGWFSQPeO8pTWsgpXvq5sRlA72V7XR/8xvHCUdI9iJ2aJiZ8D4uUJzeKM9po5vbWbBsv1eYGVAPH7GQ8FiiSIqVRV7Dc+Lh4QEVHGFv5JysboR0UMKVp7I3p0fGbVEtvZ24dxXn5L6mQPyQUFWk+W+jStt34mKy8mjJmSP57FCvdXDn988t3HqSw6Yia/OmO+7/W1cenYG7x7i163osHc+W3o6zYE64ZPkguG3cikWMs4F2SprWtOwpqvNNkC4TU74OkQyhTAXF0H+THzWSMd2ioKkqppugm6TLUXJza3hgU3v4cq3n4tk5ZNfSGCyaEaSC9uqtuKMwVK4FXte9FyGtnwsWPy+srIBS9r24UuLXzKTYojwiQj8Vvfd6hrZjqcmPLMINgZw59Lhrkh5tZR7aQZ7G/EENUSI75ppwRKTBHF/1yUrAvUpIl6bhlGwRJn9lAK35zBIXT52rt39vb7uavwkW5a0SQbfP2R0zfb51pVvBjoG4FzIUWG3Gq0IGM9lxmDlqWKxpDoMJsnnpx4GAJjGJZDiYedlY3N7ajDveLAoGFVVa/usC4qxKjxLhY5zEhdL+fFInCexhD9B+rm4oXkojsT+AylYeRKkO5LFHgBWJr4+Lg5HtDBouo7tfXblSOwUTxqZVbCOHznOcY6X9u1A22A/ntxlX3UbW13r2JZ1riePmoATRo53vR6GzGqysGkMnt29BR2DA6hNyt0IGTWJpG0CdM+G5dhoJN9QECzlLa9sXjx5huP3EVXO4rphkZ3//k3v4ctLXsbfQ7gsqFCkCmEuRTrbA66QsrMlhSxY5rl1+3amHAEGhbvXLcFftq/H7v5ePLwl/5XFlJB5SdN1aHBOTCtUIQaLm5JpundWziDkM0mTKdy8DLeseB3rutvxrRXykgv8mTN+CQACTDwUxTuLoOe+3B5uz4NXW7m1vVfr+tWVYojvkWmpF7ZjbTi2utamqMuSXBxhJAcaz1kRo5JXJjMj7Ap3kLhTXnHt9slGySsU6wLWwPNyEfTin7s24xmjhqF4HMBIbsS1adCFHnOfPPUDllTHRGEuv/ZMvSKyRQzZAkmxcXjE8GONrttqjgHRjJee8nhYsFLCbyzT8W6Xxag4Qy6CBEAKVt4EmYyJ1csZa4ykFH/auhZnv/IPnPnyE44Vu7vWLnbsJ5r12YC7vKNZOqnZ0dfj+G6qZCXOzV0sDH/Zvh53r1uKP25bi1U+LkxJRXHIy7Ib8imVvWOwrEe4RzKRiKJvk7mxsGQVL3E1o/ysaYoCx4AG2DNMBlUIHt/hbrXiYTJVuMQGcLYE28o4PzkYI1HGAeDZ3VbCjv/bsRFbe+RZFINicxGEPXaNx+EiqHDxLLq3BaszNYg7Vi3ynEg+tXOz629njp3idQk2RYSJKFsVFhdNrP3tK8wifFuIlmy3FOVeFqyguNax83he3Vx7vfYJbMEStnPzEmAxnczF1KtPSQqT6SCEaVKnW2tu94N/T6868FDf7f0SmYSVI6PbnzQxTbsX/2/9Mvxi/TJuX8GCpcgXofywLFj5IboIsmfCTyL++llpjKCx2IVElvQFAN7raMGAljELEX9g1EQA2Wx9hUR8TrwsWGx+JMZElwOU5IIASMHKmyAvj1/n3MxldhP912XKkTixYivZrYMD2CnZXoZs0se8NWSrsrcderTrsYZL3IzcshHZ3eGcK87s0hTO2uM1ePODIT/hl50vV7wmurz8fvdZheKYZIlE7aLBJk+WBUs8PlNigHouYUsug4Kb0gAAXalBV7c4Bq/8abpuysDa7JGjPozfHfFBQ/m2u/GwCbcO70WPX21Yjpebd+IHkqQrjGc8MmmNqPJ2qePPzN6jMOFsskKgPIOcK2Zw9z7jHnPf/+Lwk/CLw0/y3pl7VN2UJR3ZGMC71y1x/Nbv4jY6tkausGdlzM+CJU4o2SS3wlSwWOIc3h0Vtt+c7e6hEOZhwZIp4GEtrmePPzDwtpdPOUT6fdhEQeKCU1rTA8Wp2trcuM5BIUY5odhbdF7AulyWu2UULoKcO7JpJfZW4PjvrcWs4pe3EJFlJQayii4P6/sLrQw4LMwBXOkukXimxJ1C1rYkygdSsPIkn7oR5004CABwUN2wUPuJK6x83EbQtNCyd17nJtthCNOB8Kt6GcMNjIcpa6rivdrMsBWllEwUosguJS2GKXH/8msFRbHXCZOxNqCLTlDY5YvFqBmcvQWfnHSw+YmfDAUddL0Cuy944xlc/vZznklf+Gdj30CfQ8EaVlFlZgvkFxkU8MqMaMGyy84sjt0B05PXBK4LZJyPO50YF+JYvZWscPPKmGzSymctFd32ZHdJN9wss1htdsCQehzgUoTccQx4J5F4YudGPLt7K7b0dOKv29eb27q18aeETJq54BqDJWzHnjdm5WdlCu404mR5ghQhzgexPSyrq/WdW31BnmFc0hovxAQmNS6ZX8MqWOIiTVrXArk2v9liZT9kiymbhEK4atYcbTJ9qP0a3IjOgmWPwRpq1JFkY2KHSx/H9zPui1nFR+xzmEiiZEFqThZCHr4PFPvDEcZc4OMTpxVUpkLA33qKwdp/IQWrhDDFKGyXJiZu4CftlZIJIb/1DGPAkk0irHgc7zghkXAKFhdnA91xXDZQ8vFKXsM3PxjKVr+jmCzJJrpsTtKVHvTczraPSwwWz9NcfAJPZ2oQd61ZjM3ChMQP0YLlyCLIxecw95Cx1bWOIPYg7Oz3t56yZBi6rqNLsNaKA+xaw0UkiOLMPuoQsggKt599rJeUVwCAd7l6dQBw7/wPSLdzw27BysLej3Xd7bZtpS6tPvF4TVyMRJDJEP+OhV044Td3VbC4r7/w7gu4f9N7eMlIHy9aJxhibCZL0pOVMTcLltskhgXKVyjZfnEVqxXocUzxWr1aOZ/lG/6ZZfxkzWLf/dh9vGLKLM/txGQYbm3Lv191hkLBs6KjBV9e8jJ2Gd4RzYISmNI0m6s0ILfEtXOLf2lNk26jChas4C6j+cdg6YbVPKEouO3Qo3HamMlmXDOT6t02ebZWu9UrPhYspy02+43YpyvcFrbtJYug+eCVRVCsEanBWaerXODHoDBJX4pNfyaNby5/Ha/s2+m/MREaUrCKwL8krmtA7qllxZVIPpUtP2ixVf6ugKv1ZgyWpD/zklE2ARcny2zy3sNZ/DRJ522mNA8cg8UPDYI/P+SJAoLySWPlTHZ+NuC2Dlormlt7vWOQ+LiysDy4eRX+s3cbvr7sVQDudcgcchqn86vPooCf8IlZwoI9oUMSzsmZm0A/XbsEF7zxDHZzLq2ibKu6svW3ZDEx9u8UwYLFWxXlsle7JIgQk080CS6B/i1hbaEI77eYaVFm/eabWjaxsdeNCyCN7r1wEgQdTmXY+s1Jy0B2Iu0WgyLKsXD4GO63YDgULONcYpsNChYsmcCsTXPJMJiPhVyVWLBWd8lrzsmC5v3KYIgKFrsvDjm448je9VuWv4Y1XW349cYVAJzK7GstzsLMgzLrLP+3rqNNYg1yLJyETNufjyrA5EsoCuY2jsS10+Y4+h63fjfBTaUqXBazSgFfIoT/7G6RtnPryjfxmTefjcyyJS548s8Sb73VdR2tgwNlG78kvq9xeBZkvLB3Oxa378MPVy8qtSjvS0jBKgJuhVr5wPwwiAqWLDnBQXXDzL9/awyMALDaWMGVZTZkYsgsQV7Br9J4Lpdtrnj7OfO7VZ2teFlYOdFMGeR1wkT4AW9A6MRURXXtoLtSg3hh73abIsif57MHzjKL28oVLAs2ieOVLRlpzVnYMShs1Zgpy3NDxiYwq+c2QQnk1AHwcQaii+C/d2/Flxa/hN60u0vs2q529Pu4zLI2/s/ebQCAJVzxWXEQYvdGNom1F0e1T8T4u+X25DRJsmVtD1DKwA8+Loq9leyaxYmpzIWIf5dkCxdeLoSyR523YIV99PjN/75jg3QbWd/FFEs392nxfvJZ8QJnERS2W+nSxzKXW5Y8yMtyzxDd9Ly65yhckLUASjN/r9k2CR93YzHLq1vJCn6BTtbXsvOxfo5tMbwy66oou88yV2BbXArk71s2Bsv+bgfBVFbzULGYy62sj2ZfubpZcs+wacGKwaSatYZfvStxMYixqG0v2lIDeYVC2OQRTiCOrWx8Wh4wPX9cEZ/DAQ/X+FIiZm4kooUUrBLC+rygKbcZfCevQpFm4rHVNum3JgwjPdKwauZEzDnATB3a4Lqf3yrTkGSFdOB+ZvcWbOjpsH3HMgYpimLGOf1p6zoATteUajVhu54vTptj+z2hKK6yfe+9t/CjNe/i/7iJI7/t6WMPsCxokoGSb6LedNrVHYqnZbDfttIZ5uUTB+ugihqbeLBJy2Pb1tl+5yffivWlrS00XcfP1i3Buu52PG8oRrIB983W3fjG8tds33WmBvHlJS/bjsXDP7viNaY8JjxiMVAzYYBgFeVPx98j0TIFAFe/81/b589KMrR5PekHDqnHgsZRllxs0uKyaixza9OFdnee3/t35/Hyt2B5XbTsGthZfrTmHek+4nPPWwmCPtdu24kTG2ZdkVlURPj26fBZLMmFo5rG2D6HUc5sFmXjWvwLudtxy46YUFQ8evRpqE0mPfty9hNrY+Z2KUPW2uKzK5NeFZ7SoM9sFF5kVsyns538Ds8vcrK/g4wJhUYXromN8eJ9dnMR5A4UiTziAoeb4rE3YD22uCL2zX4Lj8T7E1KwiszchhHm32zyG3a1ho+5UhV70POrzVmLkFuAuTjIMzKca1XYh8JvopeAu6LjBh+vxIpfvtW6x7bNI0edZlMGTxg5HrfOOsr8nFQU1+xnzKrIJ5Vg1zGhpg4VasJSsCTH4K0PGnRXN1Ce0dW1tpXOML7l4kQ2aGuKk3wH5uTbGmR16A4Fi5cjo+v4+GtPSw8nJun46/b1ZrpdwDnA8sf+yVp74oGUhwVLrINlrWA7ogiksgVRTg4b1uT80mO/T0462HZPxUyTDgudzELl8rfs9M76MHKFLPcYLP8dZKv07L3pc8kiKD73svgVP9YL8WyMfKaBvFR8RkyvY4ZJcT7apdwB/yx+eMxk6TZp2zvorgh44dXdDKusQl1FZaD6d6xBvO6VzJJk61OgS5Ve8V0PeoWyhCFhYfLJ+ht2fDGOksE/wyzGsNnFJbOYsGsSrWpOBcu7/dxcy8PicOEV+ggmh+jeevth7lmM44jonFCuro5EfpCCFQENFZVorKjC2Gp7gcrTJIPl97h050FWMIdIgo6bbOmZFdQlKzDVyET4TyPFtD1du3xFn9GTTuHcV57EZsM8Hzao1K/zUJXwqUpVBVjUak84MISz3P1s3omokiT0mNtoKbAJRQ0VgyUOsGZxSckx+JW3jK6b2cm8OHRYk23g8JvA8kqRGHfRMig/32cPPBSfP+gw7hxZ3NyJdHM7K5i4J5O2Tf55pSilaaFWZkU3Nq8g5w4hzoe5I/pZsHh03Z44hT+bYtvOS2rvc7hRJcR1iYWGnemt87NgiUHhMlix5iy5LfN7FfqUTby8nmuZQsK/E0EVrH0uk9dc5jEyZYBNRLOubu4HDfOIiGnrZTG444Qixwy7y25uFiw/ZTChKLb6c7LfAUteWUZU07tC5q4qPNuyBQbVZkqHo4HdXPQY+bgIpgO4CLqxvtvyxGiqzHpVDLjUv/RjfVc7dgdIGBQE1h5swZUtLDpcBIXtRaJSENhx2Pm2CaU92LMt9gNzGkZiaLIidFbXUiEuJAZNFEW8vyAFKwLmNY7Cw0d9GLM56xQgdzFSbCvv/ogrPED25WXFDNmgMKrKvbaM3wC+qrPV1iGEGbb5QqZuqIoqjX2YVDsUBw0Z5rKPgroKu3K5h5vouaW2TygqxtUMwbyGkVAVJZQywGS0FCz3GDBewdJ03TfpBFOUR1XV4LQxk/HZA2e5WhRe2bcTZ778BM599SnTJz1jDv7ZV9atiPPJoybgjHFTzM9ssuv2osvuXk86hbu54sf89ad0LZTSWifE7jmSmng8PSxOS1bAmJ8E9WbS9jpY3CHdFKwg2SXFVVTxeCKVgoJlui0ae4nxNbJ4G3uBSu8YrCCyZdsjN8s061uWdTS7biOzYHktHPnF01UEtMqcP2Gq4ztd1/HUrk3S7ZkrscySa37DiZbSNXSnBnHuq0/h7nVLXeUIY8E6wOizJxv/yya1bpZmWdIZPwvWtw450vbZb8HAL8mHqFDJ7pWX0scfVRMWQngZeAVdPMOdc47Dh8dMxgVcSYl5DSPzyubIy8RkEPFbDOPLo1jWovBKyaCWwQ1LXsKVb/8n9L4yRAneNGKvRa8MWRJG/t2OKtU4u+eyvhXg69k5f/Ny+Y8bbunxif0LUrAigHUWYhcss7DwBIkLkK0QZ3TdsZIX1J9/LKdgsZTf4rsfJjYgiGWKdYzi5GHKkHpXbU6BgnPHH2T77qEtqwPJ9Kv5p+C7hx6F9tQANMgn6DLMARZ2C5asUx/NKbSarmN8bZ3nsdkxFUXBtdPm4JzxB7kO2iyjT1rX8GcjZopNxv2CZd3Sl7thWrCE7fiVRZuLoKY7nkmvItRDhOfUYcEK8A7Is43Za7/xWQQdxTXZqil3kaIcG7kVaEYipE+duOoqFhoWLVZ+CpRsUOYnpW6ZEO3H03NcOgkWpC+beFWqqtQ6B8jdFG3xKwEtWLLj6HC6ETPOHpctyCsrY8FbcRkpLeNZcJoRxto/vrYO98w/GT+ee7ztfPyj6Nbiaclk109hmlk/3PbZTyET43ScvzMLlt3tjKfBcFeXHcGe5EKXTqL9FNYDhtTji9Pm2Nzio8ribXkJ5DctquAytuq6jm+veAM/91DSeWQLqvnA2pzVRDtmxFjb9yL810/s3Gj+nYlIQ2DnTbr0rWKWQ34hxStpVdwQ5zpkwdo/IQWrhPx1+3rX37572FGuv2m67jCVe40x4soh49p3X8Ar+3Y6ij2GCYbvD2AhYoNmi1AEWdN116x0qhJ8siWiCLUzntvr7krFD86sExQtWDJLA19HKaPrvh2/vJaT5y4ArMGeV0R0Xbcl92Ar4rLz+J5C99+OHxrSuuZoD7Gu0SJukiveQ3HlNIhv/4GSgrjik+GWYp59B9gVBnGCcfe6JY5zhLVgiduLE9IgWQTtdbCsv/syafxz12ZbyYXhLinkP3fQYaa7YnYiyyyzHsJLCLJqLVPCKtQENgrJaxgyhcQegxXMBUha887jHWTXft20uYGOn9I07A3g9humSVOahom1Q83spNYz62/BWs3FMTL3b7/+sVoYI2YIhYdF2ILCPeuXY6/ELZQ937rwmTGrfrh5bTLrFP88u3k+OOtgyVvYnuTG6u/zmX57xWD5LTp+dPyB5t9Wmvbs2PhO2178a/eWQNmCo4p1YrAzDjfCCliX43QRdLYfv+gUpC9Y3LZX+tzwsOOI1n5W0JndA/as8PfZbaE2joizotgqhnGV630CKVgRwLqApe3yIoRuuFkjnj/7E1gwfLSrv7Gm66hSc7NgicPakzs34aHNq4RjBTqUub8fqqmoCPE40F3TvypQhFiz3AkaDG6miBcULNnqU0pwEfRboZKtCgdxL2KTKF6p0WDVtLlu2hxMrWswf3PPriYnrHUjLXERFFeyv8MVVpSlB17FpdRe2SFPr83zgdGTHN+JEy82QdjZ041lRup3VZg0vM7V6xHvh2xRIWwMltOCZZzLuHeiu6pfkgv+mfrdxpX4f+uX4VcblpvfuS1OnDH2AMw3shk2D/SZ1siwWQSD1NmSWeGTiuJqBZA98x1cse6gbS6beHs5K7PzMtdqm2uyZJGBV0y95fCXlSHef1kdLLcz/oXL/vmOUQzbz/25Qk3YrJwHSBYqeFg/+e89W/GDVVkrOt8/m4tKOju+/R5/cPQkz/Zo5eLmsn2tpE8MuEAkZhFl5DP5Zm5+nS4137yYUGN5MPCulrw01y1+0Vc+sURAvlhuj+xe2S1EDKsN7Uoww09B2NHXjW+ueAOXc2VYZLAFmWph/sIULtbnsWQrfH9htqvnGeKBeJ+jLNZMlA+kYEUBi7UI+Q4dP2Kc9PtaYzXHTTHI6LqjpomXgsVbOMQXfUWnM4NhmIlYe4B0xqxjFIO8NT2rYMkmYwoUjOCsNPkMnGLyAR67e4591YzJJesc+QxpGWhSawSPmMABCOZepOk6blr6KnZxQc+PbVtrynrqmMkYVW21k9sEVWx7hpmm3VeSLO+27rWtsk6tG4ZKj3TNojwZXccmbmXUK76HESSOjp3lld07zO8sN5TsNf6DWwwQb6ns/ZFbsNzvsxiT4ig0HCCLoFuSC1n2MsfiBCcau57b3nsbbxsWxbCuVFUBLMiya0gLbpr85FPWztJsjT7IJPOaBLJ7wc7PW1Kl1hZdd81AajtugDeH9fOH1Nuv01TAA1iwZJNKWZ8i0mjUqgqyWNXMlfNY192OtKbZCkwzi5ibi6BbnS3GPzmXS3kElswCL29fWxZRzur1z91bbFlLw8Dc+GQF493u8hVTZuGkkePxgdETHdvqsKuQm3o6fV28n9q5ObC8QRDjytgwdeTw0QCymXcBeR2seY1WrUU/y1rQsgZsQUYMn2DPEnuHM8JiJ/93oEyXJcaR5CIv2ypRrpCCFQFmIgGuMzjJ6Li8+KgQYyTCD1iHcP70GV13XS3nucpIssH7qw9qGkb4DLZh5mFBJm09hltTr5A6PqVpGNAyGFlVjVMFKwUbEMYYqY35LvWmGQtCSOhd+2uYzdXP7iLI/pcNLj0Z61o0PVjSBBFxNV+WuGNpe7NDCX5kyxrbZz5WTTwmezaPbBrtKUvQyfe2vm7bpLpKTXhmflMFpUPTddzLWWGC8DcPV1qGTFk1XZokt0a8XzKrbRDLJ7+F2A5iFkExvsLXRZD7WbZI4KZ4KpC/w2EtWHMbRvluI3MR/PGad23f87FAMgVLdBcKguw4Xm8ge2bNvSQPhQKYdczSuh4o7iSIFfqrM+bjr8ec4ai9JpvUuvUjMsUriLWPWSGDxBW1CZkZF7fvk9aUY99UKCrquCy3SdWqYuXXcllXL+f3quDe7eZNwV979qzW53vXh+tfGDLFiuH27syob8RXZsy3ubbaS2PYL9JPwTqYqzcZhVsZ609Ye+3u78GZLz9h1oc7c+wBWZnZ9vz95o7jFytb7ZPkicH6LLE/qxDinWUJR1gcc2zd7TicSS7iKXNcCyC/XyAFKwJYF8B3BpcfOMt3Pz8fel4xauD+1nTdMfmTT1yYe5nVOc5tGIlTuNU2GX6WlS9Pn+f5O8+JI8ebSQrYCiarB9NrrMBXJ5KOGSETISFZtfKLJWB8aiLLNOXeufFp8FknyCZNbPW3VYgd03XdVmdMCxCDJUNs5kmcpZERZBLFJzwR7x17LqYPbURSURzHY1mlwky++YmnAsVTwRKPqkG3Kct8Vktm6TiLy4IYVDbZFkyup3dtNt2qTDmE+yVNH+6WScHg+4cdg8umWO+5Y9HD2J2tXooKUUqXZAjljs+7CMoS5uiwXwevnMnjSBxfeSLG1o2SLFSkXAZovuYY3y5uj/Mfj/4I/nj0RwLLJuuj/iIU0eZh7pR2m6bz71mGNS2jaYEC04MsTCiKIr1/iqCAZ/+WH0M2QTt51ATfc7NFrZpksAkwT1rT8LrRP8hkUBTFphzzfYso7gYhiYzbhNP5HrpYsGB/pvj7ECZJ05aeTjy0eZVvQhe3Q8rcdHklU7zM3X3eMUoNldY4/7FXn8q7WLHp9m7I9BdhsSohJOjixR20JVbxHt+Clldgi618DDPAuQiCKVjOGoh+WS7jhBh2EUelUNd1PCDISURL+F6XcIXvDIKkG/YbBnilih+8MrqGCjEGS3I0Jg+rfXFU0xg0VFaFji1hXDx5BvoyaczjVrb9Jr/HjhiLF/dl3baYa1il0TZs9aSCW/kUj8v+5zv4ER4WKZ6kkC735X07sKe/Fx+bOM3cRrW1q33VzPILt3eO4krnzr6enDp9/prPG3+Q1OUnSKIP2WTzumlzsL2v2zaQNVZWo1nw8WeB/G2DwYti8hY9RfG2QIit4swiaH0eVlGJ7X3O1c1LpxziK5M8eUK27X69cQUAYGz1ENPV0qFgeezvxuyGEdjOPQuilUCMsekRXPoGBIvWQCZjT//PtZ6bm6um65LMkfK3MqwFS0SW9OHRrWul2/7GaHPA3i5u70mdpN6fF8vbna6lf/JSsEyLs7uFReEWILJujv6ESdPuPB8csri5oC4Yblmgh1dWoTM1GMjyd9PMBbhz9bu4durs0PLpANZKioSbWTlhX6F19uIWL+/bYfucXWiRx2Dxx1jr4u4nxmC5xWT5cf3il5DWNQwVykmIuE2QeYXIPL8hwNbeLscVdqa93Tp5q3ZK17Czr8c3ds4Lq8i4vFXMTKkSayrvcRJVFjy2MDlUeN/ZOGdmETS+tytY7ll944aokMYxi2A5tGO5QxasCOG7sKEV3h024L/6eSDnMiYqAg5fdeHzbYce7Rju3jBWI8Os8PF8ctLBuHTKIXb/dyafy7DGT1KHGYMRmxgwl6mk4tyb9fvbjQB9Ftw/XDKgubF3ILtayFaT7lj9Dh7YvMo2cPBnZtm5FhvJSiy3CftxxUninWveyamzslkUFPnzELQukMipYybj8il2K2pCUaRZ9oBgKbll2ypQfGIv7OdqHujD6YZbCmAfeNxacESVf/yITAKx7fg4NvFcKzqcsYiyhQhxP9uiiktcpA4d3alB/Muw4DJLnZiB89GtdtfPVZ1tuHP1O+jLpF0n024uZTKFMz/1Sk4QFxO+HbtTKY8tg7NIsEj6wVbjZe8YrzAwZTCta66p5nly7ErN8/HnB9wD+EdW1eD5vdvwu40rDatEsBPPaxyFPxx9GmYIKduDoeOoprGWbIac/BOnSCbA2W3sz+U0zvUNyPapsi5TfOe2C4VoZdvt6e+1nTvM+Ma8O/wK+4qLIRWKio+OP1Dq1s2U/+zCov0iRTd5N3miwqu2F/+9+St3U57fu52Ty3t8syVq8diWLc6JLoWmt41mT3LBy73ByEzaLinbEXfiaHWL+lkjnJCCFQEy87qMWcIg55UcAHC3YGmQrFpzf/9oznGY2zjSdaDJJUsSDy/Ls3uyKdDd6lqoioLZw7IFmFmgNZuIskmPW5ILnuf2ZIvOdvsMUDyv7NsJwLlq6NbZiRkR2WWKk1jZYJNLB8ordyoU6f2SJTfIFZm7pflbiJT4/D1QFO/4DrFZvr9qkW92qlyGImkWQA+fOPF+TZa4Z8oQJ478PRPbgf2i6TpWcSvxLCapX7BoieUSgOwk7e/bN7jW1OPbj5dMtuARpmZTlOS6oBOUIIsQx3CKAuPutUtwK5fxEuAD6eUWFpF8rIKyeCWvQsM/XrMYf9uxAe2pgdDunrmg6fYkNLrwvwJ71ruEorgqnPJFKrkFy76fiysht93Gns5AXhmPbl2DR4X4VYbfQoHozvv3487ElUaMswivAIjS9xRZwWLnd7Vgwd1FkFduw2TJ9WpLtjjniMFyJLmwu+vzsLlAOcD6nThai+Ko9L3fIAUrAtjERfQrFjl97BTbZz7+RH5c629+hS4jcQviBxi2Qu7Wqe5wWRUMCj+RZJnM3NypVEUxsxGxTHamBcvmIujcT0aQ4syMWpfA2y2cWxc/MLAijEyxdZs8yQabXFwAHPFSISdr07j07N+etRDfnrXQc3svF4swljJeQVehhJ64uylYTHkRlZggWeZkIiQ82lOcPM9pGGn7PLa6FkGQxQhYMlkTaD5WifUT4qq42zPfkRpwfTbcBknZoUqjXhVewfLLXnfsiLGY05Bd5OGtRs/u2Yq3W/fYFVOmYCHYpChXd+vsuWCcS64k84j9S77unjJmNDitXP/iMv/JYrB4su59weTSXJwhxYQVbnXRxHbnP7/HlYHgeWTLGjyydY00btDvVocZd3iZxeP2upQlYQQpvB4GXwuW8RCye7m+u0Oq1PplyeXxusa0WxZBxe6O7yW36F4YR4ZVVKJSVc047jgqWEHKcBD5QQpWBAQd6nYJbgiKouBQYfLI1y3hj8sHu0pdBLmtmT9zELe9XJDFBblN0BOw4hr4mCvAuqaE4pyk5xPbYJ7bRaavLXvV/JufNLAzsiQLimQbQN5Z5mvBcoub8eKqg6wV1COGj8YRw70zBVr1yPxXjr14p80qJOy+Yu10J2IwqycguAgaG4v3zW2S9ZO5x1tyhLTYiPdLfJ+6AlpKFeEe8rD7q+k6XthrxaCwCYK40us2CUrp7rYUt4Fb5t6WrwXrygNn5TRgFEK9OpRLee4XizShps5x7XyrsVV1BYrtnrkl8ODxKgHhh5XkgpPLw4JVaCbW2a244lNnWrBcZLEluRB+c6St1j0KDXO3yi29vFPBsp5MmcLN38uURFnwWyDjFazDG0d6bJmtA8cQr9JPfbpv03s+W4SDnd1tLBRdBP+9ZyueMZTqiVx5BT/LGt+fdnl4yDAXQfG9YfdMA3MRdMaOMS+DyXnEpBWLlKahQlFjHTcWx7iw9xukYEWJzzvUIfEd5mM/fnH4SXjwqFPNz/zk7UUuSFg2mefHGzbh0Fy683xWXd3293IRZJ3MoEPBslwExb2jWPR2c6vi4Ts+VqeItZ+b0iGbvLLsRx8ZM9n8zs8qZMt85XE+N8IqoWzgl3WsQ0JkGeMzi7Fn9N75p9i2sdwyvV+KnkzaoYx9YJR3lktGpctihNd3DPEdEp+VoK6oXq5avIXiNa7IMcv6GCSTIZBNBDLgsirssCoY/78gJBXgfwvDkZzSvnD4mNDP6BlcvF2UXDh5uvm3n4LFTy5lijjrlxTF7iIYxGpRGaCPcYM1Jb/w5qZKixO0QrgIXjbd7vImPluiYuXldSBuKw5ZshTmgHNs+dSkgx3bAPbMqeJ+svu2rdfu7tYxOGCLJZW9Lzz8Aqff8+a2IAT413OMMm12Tzpl1gRzj8FyjlGvNmdd6we5cSJMjO56IWMkT8rFgpUUXQQlyTlmG1boclAMBjUNFWoi1pkP46j0vd8gBauIjOdWhGQcMKTelhzDbQzVdN0xNvEvMOuUuoUUsklhtSpK3OJwEooVWzQoKDBsNUuW4pVNNuc3+tficePqgw7zlA2wdzKdhgLMOn8F8s7Ry4I1vb7RzIg23s8F1HYngrvXcLuEgg2mss7+iOFjwh1MEGGM4FLHXEeDdOEsqQiDTw9+xRT3cgd85jmZdcZrUBN/CWqJEA/ppeTyFooPcXXerIKtwdjZ3+06AQxSpJaRy8IK7/ackLiAsTpy3zv0KGm2sw+NnoSzxx1ofr5w2szQMsjgJ7l+KaKTkjTxvGWBn5AnmFKs64EmlX7uiV7wbcksLG63sMuRfS76Xryuwu56JV6/GIMlkvCwwjstOR51sLjPbsmixO/5Z3u4xOrFZz5tGxzAhW/+C9e9+4Jtm2qPPoD3NPGbl9otWHaKOaV92YhBBtyzdFpzAqfMfP/pl1iC74de5xaTRILGYMlcBM0ENCHcFQtNWtPwbttem7u3rutI6xoqVNWU369QcymgJBeFhxSsCLCClb1f/A9z1g3GXGNVRn5gq3M5b4JVTFY2wX9q12bHd+LN/aAxyStETAS/EsbLWqUmwLpSNokQJyVJRXVcExPxuBHjcpaJxbgdLGSw4unlCgazNM9Vqhj4a5dN1jHxNbTYpNtvhYifGPKKaFDCWrD4FNSMKjWB+mRlzlZNJnNCUTC6ylKy2EAaZJGMuZSwdlZguYOcM/5At90woqoGN04/HD+Ze7y0JbZ5xBqK9ybXIdvL7c6K59HN53lEZTUajQmgaK1wO9SqzjbXczjeGw9Zc8lIyRfplj2fXolqgGyMB5/K+rrDDg8tg/S4nCx+Sg4/4bXeaQvefYy/Z0FcBPNxt+Zb89xXn8Jj29a5WrD6BAtmIQbuRiFbpzgpFPtBUZ3yaguHy6Cum8fj+3ixT3Pr4/i06p+YOM32PMiyjvJeB5uMbHRi/7CwKbvI9JkDnIsA04c2WrL79Bb8uyC33AXHb07hBf/uur377HnnX20mIt+3+Nbj4sSU1XNksGQhDhdBlxgs/v5b41d8FIM/bVuLb614A/esX2Z+l+YWjpli65fcpBQEKaRO5AcpWBEgzjtkQ8JZ46ZIV1rPGuc+geSPs6DRctXJeMRk8IjbMLeaKMzVfIZDwD6J4VcQk6rqsGCJk7GEqjgGLdaxBi1gKIOd10vRYbWn+BWopNHZW6vddtjx+EGCKWcJxYo5y/jcJT7lfNIjA5cbYbdvMWpd8YNlWtdc3TuDwNpAURT8cv7JpsXRVLACHGNXfzadPn+bfjrvBPz1mDN8lc4TR03AwUMbHdvdOH2+534O9yfhdzE20m07L+nYb5purdbfcPA8R30sIPtMyeqg+WEvNOxNLm/9KZy7ZqPEMsAmrm712ti7fuHk6fgEV38uX+zp8b2tj/b+xtn2zC3LEYNV4ImcqJw/tHmV64KEo6BtARbJRHdH0YJlpWnXpSLwFk6H5Ua4MI1zwphYa3l2iAs9bl1TDSfrhJo62z2WuQjyY4BYHoHBTiWzgPH4jp82mYMv5GyRZBHNZw7M2vJDoye5LgSxdrNbsOxKjvi3DFsWwYy7MjboluRCsGCx8XR3f69km/goWK8377L9D1ju5bWJpOnKKmaMjQPkIlh4SMGKEK/H9bBhckuV1wTyHa7WC29uzmZg8n85xEGtwnQR893VF7HD5SdY/GpZbSJpXmNKcBE091VUx/FYZ+rl3ucHP8F1g2XE4y1ZTOGQBaEDVscks66pnILlNyjx7aAqSmiLVFiXwj3GYMUyg2m6joyumxmcgGwcIM/M+kZ4wSvAVYmE6f5mTU79HzaxBo0CBRVqIlAMnRsnjhrv+btjFVS4V27B9SJe99isg8Wt1vNxPvw7/NDmVWY85smjJgQ6NyCbbGSP/cmJztiVMHEUDN71U5aGm93npKI6ylCwfQDggknTcemB/gWjg8JPxP3cO2UWLP65tJJc2GOwcmmvfHHr10ULViHcvEVEC57pIujyyKtQXAVzWLA8XQQV22fpubjvRev/5p5Os69j8O97v4sCwLbwW9TxHXu5n8VkOV778nFipkx5TIL5PsftiqS1/nTnuf0m4zaLsIcCxGpfijF0ZpILYd+tXMZfZiGVJSkpFZsN+fix3CqmbHmGxFGZ4d8Jt4zLRH6QghUB4kSX/8Q6DreU7F5d+V5h9YZ/WacaKbq9zPE1QuIC1eigwhTrdUO0OPGKED/pHlVdy1mw5C6CCUVxWMRY556XBcto3XXd7XjZJYal2ajjwrvNmZmVJPEa2W2zHVOjpB0TXFIPv06V75STqhreghVuc5OOwaxSySbnvAVLrAcl3heRczl3UMAaBFuMdg0yrHRIXATDElY5Fe+NOCXY4Bqobd/PrRAqYE3UHt6yGhuN4/HTR34C89ft682/Dw8Rd8jPNXjJ5ksyneVi9FAUBTfPPAI/nH2s53a9mRQum+JUoPLNWOpGwqW/kcFbLGRtwAfzm1ZveCe5uGTyDHzOpQ5SPri9L6KLVhRZVv1I6Zpt4uVMqOIug9hnOmKwuCyCtkycsL//bqUWVEEJExfiFguFqNd1tZt/uyWSeMkn0UVQ+Cu94u3n7L95dIiyREP5KFimwggFq7k6fDxsrOvmYvzYneE9MPx8ZvjFXK+FCdb24qKImOSCuWSyjL6Ad5KmYtMy0G9bGOTH8hRn1VcDzgVKAS9THJNwvB8gtTUCnEOA9c19R3wQO/p6pAHggPdqGb+CX6GottieE0aOR6WawKxh2VXj2w49GreseN22/0IhcQHrTC85YKY5QXly1ybX83vhtGBZ11GbsAfUsgHULamFAsUxEWMKT351Zqx971j9jnSblsF+PL5jIxY2WS6YTBaZKxdgdUwy2RKKGsg1ERBjsNTQk6awMVuzh43Aso5mzDLc39hKID85EV1Jqj1Wtn5w2DGYMmSY7Ts2Sfn+qkV48vizQ8ZgMSH893EQch/RgiVOAPNR7BlMpOVcplAFVhunNA0Pb16FYwVLqPhcVakJ10mhoz6SsavosvfB0RNxqIsV3Y+jR1hFet0m1UOTlahOJHFM01hbxsR8M5a6wbuO+b0HsgD9Ts6ywFbVoVjvfFrTbJNOkU+4ZLfLF7eJTpg6TFGR1jSpPG4LIWlds75zxB7ZP/OFhvnjiGdzu7d8P8W7ZduPLz/uu6125UtkU3eH1Io8sqoG+wb6MLnWO034cSPH4d9cKQo3OURkrq7BggHk8ErP83u3S7dhYx2/kMb2ytWC5RYj9XrzLuwd6ENCURzbVAiKCJOHt3SxPq3UMVjdqUFc/va/beN1ZcJepxTIXlMy4FygFPBjRz7PGeEOWbAiRGb+b6ysdo3nALxXIqsEFzJW/2GMYRU6ZsRYDDM6ormNI3Ht1Dm4/bCjzX3ETEtssBpaUYmrpx6GCbXeWQ29cChY3CRddO2yshpmJzXiQKIqzolYhnM9ypWgdX9+s3GFrQMUB/UVnS22IGlWDFK2Om93EfQeCPJNchF26jrXsGqwASqtWyttbry4131V1y9dcRb3jvuL0+YAgLW6amyaSxFV/j36+iELfLcXU+2L45/bc+dwdQrgIsijKIrZ6b7cvBN/2rYO1y1+0baN811wP4cGHd2pQYc7MC//sIpK3HDwvIIpOwAweUjW8lntElsRNfy757cwYQ/wz27LB52badph3bMBLVOSQpxuZxQV7EKkaRf507Z1NuufFYNlIMigQXd9d6VZBF2Ow38O0ieqiuJ4zsR3hveaWNHZAi/c3rfvHXo0zht/ED7NlQiQMb9xlKvbqpeLoLT8R14ugllURXEtfWElueCdZ8PHYAWxYN2+6m0A2WsSFwzY/Xtw8yq0DPSbE37+/ptZBEusrDQP9iMjxGjy95uNq7Z47BhY3UR4t+M4KoDvB0jBigKjDzhv/FQAwBUHuqeWFvHyVxYnsF+fuQDnT5iKaw6aLd3+tLGTMafBvQiiM4A491FafCG9FCFnZijhd4lywaws+cgY5uHmM+owtxT+3P+3Y4P5N+vgkxLZVCiYPzzr4rXAp/BvJRf7lFQU/0xNAmEVEdEfPB1AieVXtvjirkCwybNXty0+F/m4CPL7jDbihg6RxAQljVg3cZAOkikyux2E7dyv0O3++Cn+uz3iR0RWd7bhU288g19tWGGTjr+nhXLT42H3Uuyz6pLyNNv5wvdlfH3Besn5bGnaJccaNGOwrH6oWPFX4jvllmXO2TcUQcMS0IX/FSj4LDfWHchZs8WrcHzWrUUNsR8IEoPFk1BUVCeSOG88l2lXOGOoCaTLKSfU1uHyA2c54odkuFmcvaTwyk6bC+xZUgB8ZOxkx+/DXErCsKEwjAuZLQYrwLsjxvft7e8z//7dppUuadot63IpkSXx4Ps91m5JNd6FhvmYP3IRLAykYEUA6wKOHjEWfz7mdM/U0iJeKxv8qsiEmjqMqKrBZVMOwbAcY6jEwSqfmy+alPmOcJSRHpZ14KJi50w5bHfxePL4s80OS9z34yEykYVRzgZ1q9OUrfTzPuzsniUkCkZ1IoFLD5iJm2ceYdbhcoM/TUJRXLMvTXCpnxZW9xR92JnSuMbFPx+wpyyeOtTuDuhnXXxky2pvBYuTX7fFZISHV1rYhK1eUkNHVRQkVcX1vWOFdWXxRDLGGsrcUEmdGdnzp8Lf4rKuq90x8RZh7r/P7s66IjFXX3Zk3mW3kJYrdnzW/qLSXTgXQeu4/Lt54qjxeGThh23K9Vxu0UkmzX/2brOOC7u1vdCI1hQ3Vx1RwSq+esVNwkxLs7sy5IjB0p0Kj2xBxeEiGOBK2TbnTZhqfvcXIwsdI8yk/MOjncpIVHilaZcpWE/s3Oi+vaZha0+X6zF5C5bM/fADoy2rFt/KbJwIZcHi/k7p/guF44QxjX/ue9Ips3/m739cXARlyjOvQKU1mQUrfgoMn9lQRzxTyZc7pGBFAD/IBFnd4pnfOAqHN47Elw6e5/jNXiAz+iE1H+uQmHKZl7WhsgoPHnkq7jvig8Z57PuK7gEyCxZDnKDJapS4ESbZ0NutexznVCWTdsA7BqsuWYEKNYGjR4xFdSKJk0a6Z7P7x04r/o2P3RJxS2TiFR8lg19Ne2zbOvxt+wafPezJWRxudD5+So9uXYvdfdlA4BMl7cBbVtI67zIU/rnk92DviuwoqhHvJ1qe2LNy7IhxeOK4s1wTTYiTmQ+NmYTPHXgofjrvRE+ZeNn8Lu/McVNw1vgpntswl6d13e2cbNbvtrg679PlDf8eHN001mPL6HCb8KmKgmGVVbYJzUxO2fLqR7Mugtm/32nzjtMpNn3C4ktvCdM+88qTozaWS/NaCRfYZ/n7ruu67XkNZsFyvu/tQsmDMG5lw1yKG0eBpwVLMmC90bLbdfufrl2Ma9593rWwr2ZasBSpt4XbpL9STUDXdZvS41dyRLcpGP5tLcak8+9zpZow+2O+b0nExEVQpuAxF2mAs2ApaqxdBEWJfrp2cUnkeD9DClYE5DOBqVAT+O6hR9tWkxhhixKGRXb0oOmpPz3J7ofOxzlUqgk0VVWbCoA4SM4RiivzxXlF3AoYB6HGJ833EE5BeWTLGsc5eYnearUGOsvH2vn6iFYdr271HK4GmrjfPG7VfWtvFz574KH4iFCouiZQDJQFWwV/t20vHtq8KtA+NtcRj8yRDPEbFsMxikv3zeBTgKc0zdQQcrNgOWWQuehlM44pkhVt69xekzrRKpZQVJw1/kDTLVE8l0NOSGoaCTRVVvuueLrLmP2eX/CIsheRnZV/D2Zz7/aP5x4f4ZntNFVW44SR420uaoDl3sve0eow74jife+PN5KR8JnNosZNcRSt/m4uaIWEvf+8pfkQw9I6gyvEy29jfcFialg6bt31fQ+rYJnbeGwaZoJbiMVMhmcMlptbsssz8YKRUOgtbnFQdi5FkcfZ8s/aCdwCWEbXHeNWGAvW8o5mz20ZEzkrFt/fVahW2RZbvTu2QFhiF0FZ38zH+PGu96VyEVzd2WqW/XBDvKdL24PdNyI4pGBFQSn8NSJgV5+VZnRmfSO+PWshfiZZiZchDkJ8By6mYReVp/mCdUBRgCONLH5i9iZ+BeuyA8LV0VEURWo5YXxk7AHS79k57YGr3GqeRwyW+JWXknxgneVy56WENlVV45zxB+IgIzU/I6wF66ldmwEE70in1TWAf7jdapXxXDttru0zayvxmQBgu540Vzw7txgsay+vCRJLoy9OuCyrpHeXeMbYKThtzORAyoPUggX/WDtVUXyLncqOzd8dXvmdJ0nZHiWyewv4p/jPB0VR8NUZ83HOePuii1kSIsNKQjgVLHfV1LnQw/qA2cNG4IvT5uDL0w/HpSH7oTCU2pHoSo/4YbErUxQF04Y24J75J+P2w47JfmdubN+WvW2sb+UrOeY7fJqJGjyOFKZodCEnRV7zbDcFy09yt+vuMRZyVChCohfjuJwwtckKPHjkqQCyyrvY1/srWLxVM1hMzzauxAV/7aqimPdLrHcGhLuXhUAWY/ZeR6v5t7kAq5bORfArS1/BTcte9dzGWXaBiBpSsGJMlK+kTBngX7CEouKI4aPRkGN8l8yUzxCVB3ECrCoKxtfU4bGjT8f/CK6S/L65rCx67eE2oLFz1kriagArIYbMRVC8Vq/0p7yHnXh/TuEsmldMyU56xImsV/Y/GcdLCiPLOMVQcr9xyBG27x0KlmTQPnaE3UWMKTKyiW5SUcx6JylNwxazqGR+95lJVSFJbsAyjqV13ab87jAGe7+YoapEAtdOm2PK7S2TXAH3S7mtAJhVPxw3HDzXtWad27vAvuUVrKsKUK+JRyzLwBji8v4UEvb+jTcypE4b2uDYxusOi+/vgXX1eODID+F7hx2F2mQFTh41Ia8C2H6UOtj8vIlTHcXGGW592cTaoWabuGcRzMKnrXa90pD9vMxFUCQTwl+8ZBYsFxn9rG9uVr6frVsCIFurT7YY5pZpcTAXBUv4uV+wuPLnkiWi+dDoSebfy9qbzULRfK1JsVZWqZDNG9ZzdRPTXPkT9mwWK27sj1vX4k0Pt1Iex/tc4Fjd/RFSsCIgl7TSQfCtGB+Cn0sGTf4FkylgYfDKHOTn5sHcemqTSadlLM8MaF6DpVgnzJTHR17eRVBUWsQVcJZZ6yDOWiXbNmtV4RRe7remqqw1I9/+75gRweJjvnTwPPzt2DMwsqpGcBG0IwucFhUpr8FQUaz0ynztpFyuU6aIf+aAmTh4aANuO/Ro83cVijnx7zTSmy9rb8brxqAUZVIG2furQMGYGqc7oWM7RcEHR09y1BljyF1qufeZ097DWjq95XJ+VyVM3u474oP40ZzjUFckBevMsZbLHmuXa6fOwQWTDnYs2GRxV04di0FQMKKqpiiZGIHSK1iAf3ZQ5l7slpQHkGUNNCadquXmZVqwhHc37BvI7rlXXx9mgluo8RzwtmC5lfXo83Ep9pN2c0+ndCbhTFRlKTDib/51sOy/i0lidnAZ62T94sHcQkjLYD/aUwOo4FzsgPhkEfRTeK0SM3zJlsK/11t7uvD7LavxvffeMr/r9UhcEYe+5v0OKVgRUA56vyz5Br9glu8E4sV97vWSZJPBSybPMP/2DDzPs3G9dj+sYYQ0W5tfW/Ad6CeFgqPiBO28CQfhi9Pm4NZZRzllE9wfnt29xfaZwZQW/n75uZDJCHqPFUUxz8nXUhttZIe05JLFoAkWPJ+4qpWGn/jzXCa3fN8nNkEaVV2Ln8w9AXMbR5rPoKoo5grqrzeuwFmv/APfWP6aJX+B6jaZsinAVMHV07kNF3fgIo/svcjoulVouEgKAeB85kdX12KGJEV+oeBdIJksDZVVuHDyjNAZVx2ZVou8qssmskEspIVCZpkGrHd5U08nAHv2RRFHFkHh2GmXGKyc3IMV/33DWD2iqDE2xGVRw0sKt2m7W9Fiht+1Kci66w5NVmAKl1xCnGCz69Z03XFMv0K0ouw9GfvE/idr3/WUV6bUin2xVQer1C6CTvnnci797PpURTEzDRfD6vaSZA72x21rXben4sKFhxSsGFPod5LvYAuZNUs2SeHjb7wmMVH557vx1ZnzHd95WTFe3b3DnGAkOBcAt/NVqAl8eMxkqeul3YKl2AYplZvkWIqMdb9GCspOEA4UMjcFYVb9cHzmgJm4c85xjngXmWIsfuc3GLIrWtvVHlo2Hru7q7vrJp86V7YoEOWEWvb6somEl3WHl4Cf7PKp4GWLFmKx7M8eOAtfmX54cIFzpJAuVYHOz/0d5P55beJ4nwu8fHZ0k92KzhcpLRVuSr2oNH3vUNmikfyYbN8KLtU26xls8ZPIvc/PxR1cRhR9wI9cYjS9vFKYlW+q4O3QL7EU8u7Nfm79rL7bo0d/xObJIk76TWsLdIfy9WrzLmzk3OCcAtk/ijLvG+jjNpUoWJI2FxV9K017aRUDmQWL/4Zdn8qNNcVQCidKsg23DPS7bk8xWIWHFKwIKPUEI1eidEFsqKjCXXNPMFOz88gGLH4CUcjW8+uLZSv9vGwjOEtR++AA/ue1F7Coda+5nbNIZnBsVeo96gcxy1O+d8vtOT1smHvNJUVR8PGJ0zCzfnhOsScZc5VawU0zFjh+H12VdZfjV+xzcdHhJwuyvdl3XiUBALtrZr7IEpyYcgQ8D+9yySeHkV1DRtdtbXfO+INwkpA0Jn8kymuJh2ZbDbQgCpbHccRrKbSic5qQaOe9ztainNcLt/vJHudqNYG6ZAXmSUoZuMZgGfuybIjZ1XYry525vxJexbL6cGs/sS5dGLeyKFwEZTGngI+LoPH/iSMn2N512aPA1y70c/VKCCY5prgMFWKh2Luj6ZaCxY+P317xhofs3i6FfGIfWaiZbCIqlgExLVgldhGUnd9eMyz7P1/f08uCpes67l2/HP/Z424RDoImsYF6hW6I96E8Z7HxhhSsGHPJATMxorIa35h5hP/GOeDnax8G1cgoJUtXLZss8ApFIScTXm4sgLwN+EnaFw+eCyBbi0oM3E2qztpVYVY/+fFDbANZm/B9dFQrYjfNWIBvzVoYybFksDouqgIcN3KcwyXz6BHZFXw+mDkXRY4f4GRDmRmD5aNgRflOyLJdsVN3pgcdv5kycJMaXh7VZ1Gi1MHfpYJXCAI6wbp+60zIk7NYgRBdalnsSjFdPEXckvuwSfSgpvmmvxcfRbaYx+pTre/ukGYRzKW5zSQXvKImHCmcBSsHIQTcDuG9qMksH/b+cEKN0zKxy0gCATiLUIuIi0Y/mXc8PjR6Ej4turfDUrBYX8L3P10hCtGKSt9Axmp/mQVItvgnurQzT45SlCjgkfXr9vHHcn1l77GXEvxW6x48uWsT7sqzDpUsSYrXcy/K1JVOlVx5fb9BClYEFGoMnlBbhwcWnho4OYGMK6bMwsmjJkjrW318glUsWMz+FhYvJYn/7afzTnB857UCLkukkCuTORM6O7+fBWtkZdYVb2RVjaOzkk3Ww1hAxCQXlS6TaQbfHUbRESrIKj1hi2MD2bT+YTBXTSvskzfWBuz3U8dMQi7wyoVsADddBLlVRRm5tIUbL+zd7vjOb3X88imH2OKGeHlsha8l1+AWJB8lYkILoPRpk/kJcV4WLNmxC7yu6xYXGUsXQeMV06H7em24xWDxlhnrlc1PqWXyirultAwe2PQeNvd0hnIri8KC5fYcvtosLwoMWBYF8fzVkgUnfhFGlpW0kyu0LD5LU4YMw/UHz0WdUNOPJRjRuCQX/Hm8WsUv6+ARw0e7/uZW31JUHFkNws6U++JUMZAtZIlp6gHDIh7ARfAHqxZFIpfsHG410gBrweRQzoNlWcAaZkQwSMGKgDibVs+dcBC+PP1w6YDIT+ROFYrYBoFPIR3UKsAC/G0dt8e+I6tq8KmJB0vdy8Iyu2EEHj/uLFwxZRZ+efjJAOTZE/lJD3OveKdtL5oFf+akRMEK4y4qJrmYyK1UyhUsXonI31oxWyj4HIZVnW3+G3EkDUX5dSGFLGsDdj11Lim//eCVKtlkis805jV5jTLznUwOv6fjvAlTXeWxW7AkClY48XLiW7MWYvrQRnzzkCPN77yyyRUDvi3cXLNs23vcBHEhqtBJLtyexYVGbNZRTfJMp6VAR7a0gQ53xdPVcmPGFzXYjifbJ2iLf/6gw/DB0RMxtnqIsZ99z6d3bcFftq/Hte++gFQIq0ch7vhBRjbQ9tQANrjEMlmFgRWbBXCRZJLMu8/JLFirOq26TGESWKmKYovB4s8TxrMgIyjY07kFObGfclNoOwRFKi4Klmxxkx+P2bOuAIFcBKPyRgkbm6aZ76QV87d/+kAUDlKwIiHOKlYw3DJHecG7LnplvZJZifiJkN8k5qIDZuC4kcFqOHnBfKLPnXCQWSdH7pqgSP/+xrLXhO1USSam4M8C73KYUBR88eA5GFVVg9sPOxoAcOkBM3Ht1DnmNvyponjiipmmtcIYqEVLKbsO04c/xwubzCXwqJJMstk8IaNrnlaJXJKHhCHs6ji/OMFbR0tl4Dh4aCN+PPd4LGwag1rDujageaeRLjT8OxdIwfKwYQ2tqMQYzs250AqW2/Fn1g/HA0d+CF8vkHt4UA79/+zdd5wcdf0/8NfMXsvdpVzu0nsnpFMChNACSBNpShMQBBSQAIqCIiIoiOIPRUCxIHwREBAIUoQACQkJ6b33nku5nutlb+f3x+7szczOzM7szuzM7r2ej4dy2TLz2amf93w+n/enWzHujUweLkkdleN4m0V7ZZH/XayTkCHRLXxJ/2G4b/SU6DVcWaYQJJQputEZzTGlx4kx1cr9+rU+g3HT0LHRf1coEj7I2kIhVcZV5cO0TxTZZWXZQsdxrjfORtVDxE63dQiqMVjK9Zh1W43XgmWW2tzqWPCAIKIwKxvH2losfd4teoGMpPO3IAiWugg6Vi6bvVqirZSKa6aTY5AJcK4/TCeWCYdkImNPlOOt7ho50fBzejcA5dOwVA2St3qjMZs0WSlLEGJuDnZ+yVTFPFxZgohBhV3x0tTzo699c9Ao1eeV67KbflrPgejEvu6Tb9Tn9Rms6iYjap7wJXosFGRl4/EJp6FCaEW/LgUIaSpU8tiP0qYGjDJIk/6bCdMcTVgzqEshDjTVq17TW3y2IBp2s1Mef6oskzZbENzQPTsXje1BNMSZp8dtyt+s14XR7nIG5XfFkUjl3O1rk1GlVQBQ4nKwb8W9oyerssvJT+eNrqXa8+ezI/vwxdGD0W5IyvcrW5tjXhMgJPwUXblmCeqWgVR3Y1WW5aSevU0D0k8O78Wfd67H1Eg3Ou0RoTdBvDKphF4LVqJdTEVBQEiC7hgsM9p9ZhZwXT94jPmXTXTPzkFpUwNa2ttdnfDbjF6LUyhOC1YqsgjaaaUFoAiizYcmUOLYguWATDgmExlUrTwZzbpWDcrvioFdCnFZ/+HR19TjjWyv2rJRFtPBKxm1YMV+TkTfSPcUK5/XUt4grHxvco+O+X70WmnsS92BK3c10ZZbbk2IN3mjFSf07I3rRh4X93NGQXMyXSb1mKVpV7ookknuOs2gcwA4pAjQlNvID9ecw80NALwfdC5YfCASfznh/6qSZnjURdAvFR0B6rLIFXurgeezO9ZhY20lllUdiSxPGUx1/PecSLbLU4v7Jvy0Xzm1BSRJ1dKQ6rmTlNsnJJkn8vjzzvUAOsbLCII6yNRLw67cRvoBVse2sHOvEAUB7cougop9b5piXvOe9qGqHLDdPnwcrh8SDrAu7T8MAHBmrwGWyxftJmiSJMht8bIIdiRvEWIeIOpxKqHNv/Zt1X39msUfo16nW6XeeeaX606mYIBFAGJTolphtTk5WxTxwonn4PYR4zvWl6KnJneOnGB7PaLlACv2vUQHSFupGPbr0hHMJbrNBnYpTHoZAFRdXqyQW7AGRrpmyt3LlJNbJlsmq1KVQEB/vpfYz105cAReOPEcXKd9sgv1OIRv9B+O4QXd8LOxJxm3YKXw/jgsgXnV3KA8c/ZG5qgzEy8gVF4Km9rdbZ0zOhadSLTgCKGjLMquY/FKpz32o9M1KL4o1+8EAPeNnoy/nTgDp5X0SziTZ0AQ8MrUr4UTNUBdEU51djRl0D++e7Gt/SlAUHV11aucqwOs8G/77Mg+fHRoDwB1y9PM0ZNgVbgFS9LtPmYW92rf++3WlXhpz6Zoa478G3pkd4xx/P6ICXh72sUY2bUHAOB7w8cjnm5Z4WDTy26Cui1YqiQXHdkg5XpOKsZgGWloD+Ljw3tjXpei73dkh2QWQWexiyABSL4FKx5t1xFlQOFmN5yeikHrVn7h2G5FqrLZ6XcOJB4g2I1vEw0SLuw3BC/u3pTUMgCgv6blTulHo6fgD5qUs3IA3zMnDy+ceA56ZIdvlGK0Bctaxc0JqXpKpzfsQ2/NWYKoO0mk9vPFOXl4NjJR6I4kJ2Z2wuD8rtFJt70kWHzKbpXy/HdzAnbAOJBSHqJf7zcMHx3e42o5jISfwof/lqAeX6JHPi7r2tpU88B1dJsScFzXImytq+6odAoCAoIYHRebIwbw+0nT0U0zT5MVxbl5KMjKRrsUUk3RkeoWLOXW6ZGTC6FR8V6c648ohLvCyeJlrZN/27M71gEIZx0cGnn40S0rBwMUD9XiCUBAUApF16l88Kqd68qoPLJZB3fh40N7cXbvgdE5nrTLUGZJvajfUPx998bov6cqMg/K5Cy09W3WU8Y7TW8Mlt48WFBkrG33OHBpMWl1C3nY0pvp2ILlAN88bUxCIk8Nk6moKi/cbk7UbCeZBhAeh6NUYNL1MT8r9vlEotvEbrUw0eDIrKuKU+uf0WdQTHc3ZT/vQfld0TVSgZD3fUhRAXObly1Yeg8TzMrTVVHRUmURNPxO+l+L7FJul6lJZN2Tj71UdpMxWpXyOCnOjZ1iw21yS7f8IAQIn6PxxmDVRFoW/rZrAxoVrX8d3aYUE9oaZBEEwkk+5IDLrnCiBvVrdpJcOEF7ftq7rgk4vlvP6L/0uk8rf0675rc9s31ttEVpvMkk8npEwXiiYb2J06PvGbzeHGrH7CP7omPglNkNtbR1kGad7KTyww9tlsJU0t8fOi1Y6Li2H2iqj9sNvke2/QcKSgUmU4zodSOVy6zMVMoAy1kMsByQCVWaRFqwkqmopqoFSzXWy8J6RJ3tMMHgJtXfxpNBI7cND89TVpRtL2lF4mNNOrZBVWuzyefMZcUJyLUVsFyDi7+8FL0uRG5JVQVatz6is2qzffntIR3dBlXzYCVTsAyjPK8H6UzKalcq56AyWpMyOPdi0uE/n3g23p52MXIDAc14oo7Kox65rAO6FKoq5AcjYwlFITWt1tpuoG1SKKX7VXuvsbNmUQBO6tkHVwwIzw+l20VQcXzoJfDoSPluY8WITdOuDAwHF3ScWzWtLarus2bBl5KdbMV6XXkDmgdyXtBL2iUhHHi9smczttVVh1+MtMzKXtq9OeZ7yi55yf6ioSZdtvVS28vHVZdAFi4fMDxSHiZqdxLv007IgAjL7S6CWlYTSSTLbguW3lYYFekj7obLBxjPU2bGiRYsu/NmKHWL87RNeyPtatASqJ0Hy+0WrK5Z2aZjCZwkPxkcrOj+pxfkm41/7J6tP9eccjv1V4zNS+WlyC+3YuWpkMhY0uhyIv/NU1wz+ikypbrB6HhXVi7rPBjQHxDEaPct+RzdUV+DY5GyGF2vHjjuRADhDIj6406E6P7qqCQ7e9TqFS0YClm6x5XkONNamJ+VhZuGHBedv9HW/IiR7TEtMqWFbhfBOBOry2/bfXgZTdMeObuVvTTkbsztUgg3LPsU31r8cXQfWr0W2Okpo3eP6ZhXyruWFqMxcV8eOoi39u+IZskVob5mf6qTbr85iTGeT2xejuci3UIB80yZc8sOxATB0YQ1inTybMFyFgMsB2RCF8FEgqWAIOLx8afhmSlnJrVuNx8sqp76G6zolalfU5Ql9jMHGutjXvOaEwFWIp6edAZuHz7edN4zIDZzlVFAJpcnlKIWrPP6DE7ZeJabh43Fr8afiluHjTP9nNXWSOU+V26nkhxv0nlbfWqdSkk9rIl8VRnU3jd6SpIlsrTKGDmK+Yc2Hqt0tQzxKI/OD0p3R17TL7lcgQ5KId0WiNZQuyKzWrgy53QWWb37cVAKxW11B4AfRwJEJ1w9eHR0/ka7LViAIsW33vgZ5RiskGRYebZLjGQwlNfZJZCF748IJ4qSV1Ef7Bj/9GX5wfB7FtdnZyL3H+hM/WJl4l636QUh7ZKEulb1gxDtPterfzQrzhE7P0mSJCypPKIK2vRa1pS03TOVQXhHMg4GWE5igEUAEhuDBQCTi3phpMG8Qlalah4so7UU5+bhqoEjccuw43Xf3+eDgfxaCXcRTDKCGdOtCJcNGB73c9maAMsoVbC2spWKhxXjFOMb3JQtBnBCUW9VOv54E1ubUaUPV/ytnLw5/R/1JEBRMUnmWiJ/V5lgoNihFg0jcgruLpoutMrxR4lemx2jOD7lbsVGD6vkY3l3/THdCXLnHj0Q00XQ8RYszb/75eWjLRRCtoXzrMSl8W72xr6GPyFf4/WCJWVPrqAUMuyNYPfBqd68hEMiLVfyQ7Amxbx3cpIbqz3LLomkZrdCbx44eZsou7LVtrXiuR3rcLipwfKyk6HfRVCKCeBjx+HF0hsbZYXeMREvwGrUtJYpW7ACkag+mV4tFIsBlgPSuVLz6/Gn4oejJ8fc4FMpVWNizNZzy7DjcdXAkbrv/WjMCTGv5Xhc6clyoAUrXitUMrTbx6iLTMeA98i/XStRWI4YwDU68025SfmbkjnSjZJceJEEwa+sdMV6d9olmFYcDkrHdus4B+TvqsYLunxpygtk4Y1TL8RLJ58XfW2gZmxnD5vjM52mDFrla4bRZpGfhG+tq9at8CpbsKymfLerWpPCO4RIC5bBQyllF9tk5lEzY68LuBQpi3FrTUjTRVDb8pDotpX3jdzdLCAI0CYlUXZFk1tarbRg9crtYrme8U/F+aDUMel1Rxme2roSnx7Zp+ou5ybttg5EUttrH5RpHxbqHQOtqjFY1oMbvWAq3mTa2vIoJ0SOtmAxTbujGGA5IJ0DrClFvXFun8GeliFVAVai3Yf0nmp6PRY00VnslVvg4eNPdqYwOnIsTm4ZM9GwS8fCr8afiik9euGKAcNTnjRAWWlLpoXOKMmFsnUw0a5BnUluIICHjj8ZH06/VFV5lbdptjLDaQqu7l2zc9StnJr35QnG8wNZ+NnYk1wvj5ZyXJv8lN7omq188KM3V1EIsa0kbl/+20Lhs8Koi2AvRUuJW+OB1S1Y5uuQ7y1mXQQlVZILKablIV46fSPy3JZyBV4UOkqrndMKAPpExihaSTqRbyG4+tX4U3HXiAnR5caUTyfoPNoczoF/sMnZrvz1ba345calWFtdrnpdmwhChABJij2+tJter3U9XquTEb1joj0UMj2ytOXpaD/uSCfPFixncR4sJ6Ryds8MlKougnoZAq3Q694W0nla1NflAfFAuA97fbANQ/MTm+RVuaWLXOz+FO9pmkzeI/JNy60KzglFvXFCUe/wOlN8vqrHAarfO6VnYmnFBdUyO/5u0klt7Ba/3IoTLYcgCKhu7QgCtC0rQOoenikr3drjc0afQegSyMKEHsXonp2LG4ccF52cNRWUDwjitYwoK5nddVrevtF/OJZWhpMAmKVpd5LcDctKBruAS6VRBVVxViFZasHq+Ls9FMJOzbx4UpItWEGpI8CSX5NXqTw/RAEoa260NEGtla6uJxT1Bkw6VkTTtKu2STQEjLt8O/5zcAdWVZdhVXUZPjrjG9HXtWOwREFAO6SYB3exLVix61B2EbRTer37a3ukFc2wu6i2BUuRadLKhMhkHwMsBzC8SlKKNmBibT4GAZbO5+IlM3DCM1POxOrqcpzde2BiC0hRcGF1Rng5UDjaEn4KmYrWpVSmawbMA7o7R06I+/2BXQqj8wvJlDfmVD2g8KtkJheWVJXF8HZcVnk0+pqbc/Qpmc1xFhCEaLIEACnv4qo8X17ftw2AcWVQ+TuGFHTFVxXq96cU9cLyqiMA3BuDpSWfK0YtWDcMOQ7rar4C4GILlo3FysGTMrPbH7auxoyhQzE5Lzx+VJXkQpLw8MYlqmXI7yY6Bku+fouKMEFvYto11eX44/a10X8LMD42nGgN1pu4V35o5XSvkprW2BZYQC/A0m/B0/5avd/flmCadr2Wr3CAJSIo6T9ki2nBUiW50PQkIUewiyB5riWJVKV2JNpyYSX7VDLLt6NvXgEu7jc05a0wdk0t7mPpc9otW5+ClNSpDrCU69MGQ1b2419OPAevn3qB6rXVim4ruYEATktigt3OTFlRlffNccpxWSkqh2jwt9/ImQH3GiT+UVY0W3RaU7MEIbqdj0TGaLnfghWKrLtjyw5QjLs6TjEWNeDS2FpV5TpOTTo6UW3k2rC5tgpzjh7AQ8sWdnxGUgZY5hPf2iGvU05eIQpCNOBfWHEIbaGQqpVjWdVR3e+bLTsZeq16gsUWrGNtLahoaQIAfFlWiiPN5kkx5pUdjP5dHvkeEPvwMEsQI9slNvBSUv7zw0N78JN1C9HQ3pGR0U4aQd19Dsl0G2sDvJCiBUuMBvNswXKSn6/lacPfVV3/M3pS5LTylsQm1rVaIU+H4yBVZVR2D/qRSapr7Q2hrLnJ4JPOcWsguxFVUKXZATkWyiIKQkyZla2qxTldUGAj/bFTkmk5clIypVA+9ZYrHNNL+ht82j2CSQuWHxltc2XFVy9Ne7YYiJ7zByJjZlL1exsVlVnlOalcv1sPX5QBzy83LcVKTWCiJAdPZmWxGkAlMg8W0PFQsS7YqlrG/w7vUQUSeZreHWbrc2LLRrsI6hyB8bbIz9Yvxs3LP8eq6jL8ftsq3LZirunnlct7Y/+26N/aIKQwKxstoXbVxMtAbECjTL7yt10bsKW2GitMjgMzehMCy10E9dLbAx332q/KD+GZ7WtUmSLlcZZswXIWAyzyzLDIzOODTWYgd5Lc998uqzcpv7cqAd6Mmzmr9wDD97SVK2VXKLc4Pe9OPHotWL84fipuHz4OhXEmbDaiTDzQIycn5Yk7fCWJg1pZUd1QE55vStli7cU5nR5dPvU3unKeI70AK0uI7SiVql9bqshq2GpQkXQrwGoOqSvfj25aBkA9p5RMLpnZOR2vGtzROpFYF0G5C96owh6qrmXb62pU69b27jBtQXFg0+q3YIXFizn3N9YBAFZU2g9qlK1W2tYjOetoQ5t6X1r5vQl3ETRotQwIAi7qNxQvnXxedP4ymbztfrt1JeYcPRCdX09QPMDjGCxrrPa64hgsB6TDE0c/+t3E07G/sQ7HpWheomQGwzv5OS8l2nUkGeZPNTveG5rfFSf3tNa1MBmpnhhcNb4m8t9TkuzSN7Zbz2g3wYAgejJXUibci5WtcPLfWaqsj6nnx8vINweOxDsHdype0S/koMicSYB+F0FlC5bM6aAmWxDjJtlpM5h/yK3gttkg+czu+mMxrznRgiW/bffXaLPJCYounQBQ19aqauXQXnfsdFFLhF6A1ZEx0doylBPNS5Jk6b6tDITkdQ/oUoCTe/bBhkigop3TSvt7u2XFPkzT+x1W1LXFdqVvl0IICOEqfe+8fFzcbyh653bB7CP7sKLqqOHE8AI6sn/qdT2kWGUtTSjMiz99Rid+7OkcH94P00J+VnbKgivA/eAiHU4mLwIssxuYsjVJ74m3G1J9viorSnpdWxLxrYGj8P3h4/F/U88HkJrkIH41vLA7huZ3xTWDRtn+rrI6IVeIvN6WqX4AYIU2/b9RZQ0AZkQS8OhNohoQBNV4lvBrzm7v30ycFvczel2sAPcekhk9ANFLXR6dE9CkLPG650YzxFkrXlTHJNBykgt14KIdg1WvabUxHYPlUpILmdnSjY7Xn21YbPidEkWWXeWDg/Ck1SL+dtK5uG34+Oj1QvtAQS7Pg8edCEB/fLE6oLF2b5AkCV+UHYj+W76nt0uSahsHBAGnFPeNtiobhU7KLujtXs8/kyas1qPYgkWdRk+X0pKfWNQbq6rLMKKwhyvLd5Jfxs3IlJVJq3NnJUtZCRhZ2B1DC7phYveSlKzPqcpzliji0gHDVf9ONb8cS9miiOdPPCeh7yorXvJuSvU8WFqpTsJiiWZXm3Ulkiuc2labEQXdAYSTNqg/7+zvHaCZqFmPdqzJPaMmoSHoXrIleS4zLe2kyEDHMWnaRTBeC1bkvwlnEVS0YCnPgVapXbXuWk3QYHYVcmI3y2VR/vqOYNKkxc/gWiV3k9OjDPyVx2hQCqmut/L5qj3e5WBdnig8BKC2rRXdFN3ClV0PrT77XFdTgS8UCTjk/SFB/2FFRxdKs3M2vVqwFpSX4lhri+oemEpW73wMsKjT+N6I8a4s99Fxp6Al1I48i7PUeymVfazP6jUAjXH6KitbsLqkaPsJqqd8Iu4zScLhBGUlp1uCY67icbqSaoU/wqvkKINEed+oJob2INbxYXgVU0E1m9BarnBqW6S7ZOmf3063GhktbURhd3TLysGamnKM7lqENTUdmTi/1neIo2XQEgUB47sVY2OtukL/WGQslpI2i6CeuGOwEs4iGP6vsgVLGfC3alqwtMyCHCceVsjlU563cqOL2WGUyIS+oiqo6lhfWyikSjIUPd4NWrDU8xQGVd1C7d6PW9rbcUiT/VCCFN0GesdMdH4/SLqtyqoWrDTp9/3U1lUAgEv6D/NknKzVh4v+rxGmAT926aAOz51wFkobGzDUpWQagiCkRXAFpLaL4E8iXSPMKLs0pC7A6uDL1oIEZKeo9U9pSo9eWFp5BGMUaa7TzXl9BuPDQ+ExGTcOOQ6AOy2OdvhxLKf2smF2HZGf7msrc71yuxgs29lrktHWO6moD749ZAwa24P4x66Njq7TiiEFXWMCLFlBVjYaIgkvzCrLMqvbLNEWrHaDFqz2UCjhe4gTrSNyWdQ92eLPp2Z1XkYl5cM/ZdnbQu3oqkjm0tFFUD+LoHIf1LS1qOYsUy433latbm3Gjcs+i3m9XZKiv1zvfibfYyUJ+Pe+bTHvC+jowpouLViycKCT+uul1Z6U6VEr9Dkf3g9JYVhBdwyLdE/p7Px2+cxX3KhyA6kJEpTna3pkbIvPixas8/oMRkAQcWYKMj+65YoBI6IBVqFOqnsvjg4/HpPa+oRZ/cKoi6DVZSfN4FwQhXBltzAr25PurUYBJgBkK8ps1jpY1dqMHlm5MUFOt6wcVXc9+X27DwjkY08OSASoN6cgCAm3cjgxxlZ++KBOThN5z+R79e2x2RrjKczKARBuLZK3R7sUQgjqMXWiQQtWSyRzpLJc2+tqNJ+xvk20XWtl4cq+cWIUQdGCtUQnk7IIIfp7Emnp81I4c2Lq12v1+tF5R0Y7yH+3Q3LTeX0G4ZfjTvG6GAnxIsmFmQJFq1WqkgsoK7Cp6F6QiutDkUvjC83kBgK4sN8QVZCcbtRzIBmPX0glPz6wsxOQyJW8g5F5ruJxOgOm0eZTZSyN9GYYaGG8llOUx5f2FyuvfcrWqROK1GO35ArwZ0f3q17XjoWS/207yYW2BQtCzPXSLMDSlkOp1WLAbVq+yH+V97F4AdbOuhrMXP2l7XUp1yFnpZQnrVb2GDB6oNAS+azyHqNteVSnaTc/x7IN7o/hLoLh5egGWJH/hiQJxTmxQX44TXv4U1+Wl5qWwW+8yslhtRrFFiwH1OikzKTM9aPjTkAoTbPt+O0JlV4Kc7cpK9WpmBOrR3Yuzuk9MDrvmxtyPEhykQmUu18v2Paiu54fW7DsMAqYjH5VscMPB5TrGVbQDXsaasOvK964tP9w5AeyMDXJ6RLsUFd+1VtDmTRBeYWeVtw/Oh0D0NFSrc3EqPXcjnXhtdg8lDqSXMjBgaa1BuYtbGZaHbj3KMcTRUXHYCm6MkbmhAKA+9YuSGhdyoBHbsFqiwZYsUkutC1YcoCmPJ+bNd0InRjzFJKkjnXp7PBAtNUPGNm1O9Yfq1C9LwLR7qnppqatBX0C+SldZ1sohFCALVgp43QfciK3tEmpSYVulTrYSU3FMl6l2vH1CQLuH3MCrhw40rV1pHul3Cvx9r8nXQR92IRl5/iym3Z9iOMPHjrK2lUx95DyN2SLIi7sN9S1zLJ6AiYPdpQtWLmKynuW5oN2axp2nwN2pGnvaMFSjo0NITYDo1WOdBFUjCeSHW1pBBDO0CdJEvY31OGyrz7Eewd3JbUu5abraMEK/4YcGwGW8h53TNPCp2qJi7OvjMZHhSQpOv2Hfiu8EC273gNWQRBwfLdi85X71K0r5mCeImV9KlS3Nlv+LAMsBzC8onThuxYsRaXHkxasDAlM/FgpTwfxtpoX13Y/7kk7yWCMxgPKFb37x0yJvnZKT+dbkJQxibIi7HXykHgtWL8efyqmFffDBYqMhtoKs91nuXaDmo6JfCNjsDQJnEKShCabXf2GROaQciKBgrxv9VrRWkLt+M+BHfjg0G4AwD/3bLK0zJAk6T4kV74mt2DJ/80WFF0ERf0kFx3ZIDtee790t+oz7TaSXFS1xqb0B8LbQg6I9c5TeR1PblmpezwIEJAbCETHCKZbg8HT29akdH3vqiZcN8cAywHplnmFEndan35eFyEpvguwlF0EPWjBcnqSU6/4sVKeDuIlAfAibbHXgYAe7Rx1eSZZK+PNydY9Mi8QAFzm8jw2ynJ7faaLimtNSFNnyBZETCnqjYeOP1kV0JRoWtjsds+z+5u182DJadqfP+HsSLklNFrsTnbd4NH44ejJNktgTq8FS+mN/dts18e+8dWH+On6RTGv67dgmXQR1AQvylZAI+qgyXzf/nXXBt3XQ1JHy5pe99xmRbm0rWxARwAoPxg50Ght7KRXrI4jlyQJO+pqMPfIfvxt8zrH1v+/w3stf9bra05G4OzXncdPJp/sdRGSojcPhpdU3fVSFCaIJl110hVbsBJjtNW+1ncwRhR2180s6LY6H47pvWzAcIztVoRbh43DwC6FplMwxHto4XaSGWWFVjlnkNeBq/JaEwKwrbY67nfGdy/GHSMmoFukq6PdJEV2t++hpvD2kifglbfZgC4F4fVDshzAfHvIcTi3z2BHr+ry7/ng0G78PZJqX9lqU5iVk9BDs021VTHbVtmSIz+YlAMtdYAlt2DpB1hmrb/KoMxsz2rHbimFIHWMDdP57crup2b3f3n9d62eZ1ISb62tLo9pBQSA+YqJl2Xb6qrxw7UL8PS2NXhp60bUezDOjEkuHMAWLEoXfmvBUqcATtE6FX9nSmDideUxXRlVau4ZNTmVxVDZWhe/4p1qXbNz8PtJZwAArhg4wvSz8aYMUJ5zbsxDp1zk3kiCC8D7Vl7t+p/b2fFU/RSDZBuCIODr/YdhaeURrK0ptx1gHWlutPX5HfU1qn/LwbC8zw41NeCTw/tsLdNJym34waHd+N6I8arWrIKsrISnrFhaeRjTSjqmnFDeKeX7ZrSlSBG0yOtrDqqDILle6MRcejUG3QOBcNAtd13UtjRr6SUakfet3+oGepRziCn9v22rcXbvgarX1iiSwwDeZFBmC5YD0mX2a0peuu/q47uHB7OeWNTb45KEebE9lTe8jBmD5XUB0lSPnFzcPHRs2k674Efa6RZmjpoEEcCVkcDM9QDL8HVvz3Xt+vc21EYr6t8aZJ4AR95OdrsIrqous/V5I8rrZE2bcWXfjBOXer0HScptkisGEn5oZhaMyi1XbTqBjGjURTAkJ7mwtn6ze6HZRPLBUChavnjnk9EYLMD/AZbdsWHa7pKJJmdJBluwHMAWLEoXF/cbiv55BTi+e0+viwJA/VQpVcGO8h60sOIQHkzJWt2VKS1xXvjmoFFeFyGjKDPfnVrcFxf0HYKv9RkcrRwrj1R35r7TPxe87g6sd4qKgoDuFrq1yd81qwRfOWAEZh/Zh0aT7mR2ydvMagt5liAa14cceJqmvUcENdujOLdLwseUtoUjpJPkQi9Ne5ZBF8GCSPfigOX7mvH2MQuU26SQaZp2JbMxWGZzmPmB3fJpx4J60RDCB58O0J7klHkGRzIhleTFTtSXTgKCgBN79lal3vWS8uljqrq5ZUqrlZLXT+eJZMpgYWnlEQDG0zG4MwbL6HWvz5HY9beE2i2NDZGvWXevmo8yg5aWHDGAO0dOSKqE2p4NdvbPmK5FOEfTTQuAo32/tYt6/5B6PE5RTq6qFcdOq4dZLS7agiXFJpOQ16edSPnifkMjZbb2+81K+uyOtYbvPb55ueUAS9sFFPDDeWFNrYWxqb/fugp/2LYaQOzZ5lSANbKwu+XPMsByAFuwMt9zJ5yNd6dfgrwsfwQmmUL5lDBladpTtJ5UKm+xN9aCyC3xWhCUDzjcHoOlft3rM1+/gmel4qf8xN2r50f/HtO1KPp3liiiLcmEWz8Zc4Lq31YfRh3XtQi/nXi67jgXR5NcaJb28p7Nqn+HJEl1/AVtVKrzNQ8d23WSXHxxNJxMYUttVfQ9+YGCdk25gXC3PrePuiPNjdFWy0QeHnp9VhjRBsdWujB+WV6KL8oOorSpHtvralTvOdVF0M5YLgZYDrBzElN6CgiCb1p9MoknAZbnFS3nVZsMgiZKpXhJBpRvuxFgKa8k1w8eE/3b68pOMoPsd9cfi/6t7AKozHKZLYromZOr+t43bU5uXpido0rBb7UF69bh45AtmnQPdEi84rRLkqrMdsaL9cnLV/1b+Vvkyv3iysMAgJ2K/WEnqYuZZGqRcvINvVWZrV6AP++HW2urcOlXH6oC6HjHljIg/v7KL/Bleanh+8nYrUicE4/X15yM4MXgOaJM0FMxz0uqxhEpu0RM6dErJet0mxcZkoj0BBTdp87vMzjmfXWSC+erIMqryMQeJR2ve1yRbE/iFDXKDqcdC6Tt4tcvkl7dDrnlBbB+TZaTdbh9HYrXQhOSJFUZFmoq2Wa09bi2UCgmucjJPfsAAC6JdP8D1Me7nlR0wZOTV+htH7P1K9/LjZOBMJV+vO4rAOpJfeO1YOmNL1NyIsAqtTlHGAMsBwQ5DxZRQvoqKgCp6guuHOwu3zDT3VSDNM+Ufh45fqrXRUiKMoX1ZEWAI3O9i6Dib+Xyva7sGAUfym5+RvICBgGWYltniyIEQVAFWYl1GbOfZVVOKGDWyuBELak5zjyO7ZKkGterNy+UEe3+aZNC0cBWfq9vpJVrsuLBXKJp4fXYzZQnk8cn6QXEZqVTbiu7rZ2pZnZsTexegpaQeXIXJwIs24k2kl4jcQwWkQO8eMDsThel1BuQwJNq8pc3T70Qx9paMSC/0OuiJEV5TmlTJWvludDtWtlSpRyP43ULVkhRTxhR2B27It3MSnLzjL4SZdSSpJfNTlkfSSRzovIrlluwRP1xSNrlJSteQrF2KaSqSPe1cV3UVsCDoRByxQBaBSH6ntyKosxQp0yhLgL4xbhTUp7V9aVIVzq9ta6tKdd5Nda1g0fj9f3botkPlSRJSur8qQ+2oSHYFtMN08j0kv74quKQ6rWy5ibDz4cg4c39202X6URPM7tbwOuHOhnh3D6DvC4CUdpLVXY/t7OYecGNrlaUWoXZOWkfXAHqoEZv/h5lNbZQpzLnJGWw53W2NGXbyy7FGJ5krnuiTjCrHteaQAuW4it2uwi63VM53gOxkKT+/X/esU73c1frTM0gB1Hy9+XxXCKEaHAsB6+qlkNFmfKzsnFyzz4JzzOZ7ObT21/ayYWP76Y/RYsgCCjIytZtab1/3UI8tmlZwuW6Yels3LpiDhotZMwE9DP1PWeSSTEkSfjf4b2my2x3oKeZ3SCTd+UkDS/ohgv6DvG6GERpL1WxjqoLTIYEWJnyOyj9BRTNJnpdtFI5ZlnVRdDjU8Soi2Ay564yOJO3tbIlJpFWByGBLpzR4M6RjoDG4i1d24JV0dqs+7nGYGx3snZJwv/bugo3LfsUbaHw3FKiICAgCJDr5rrzYCn+1mYiDJfZ+jaRPylJkqq7oF6rkh69gFrbu0FvXKSsIdiGpvZgzLG6va4GK6qOWiqDHjkRnJVU64B6QuS2UCjS9TPWP046F4C17n9OdBG0+zCEAVaSzGbYJiLrvBiDlUlzYj1/wtn4+0kzvC4GdXLKSrl2sk/A/VYOI163YLkRYAlxWrCSTdtt9ftWxjq5udv/36TpACJjsCwcYA3tsS0pIUnC/PJS1LS14mhzI0KQEBAEiIKAdimE8pamaGY6ZYCl3Eb5OoFQ9+zcmNeMhct+75ov8cjGpdFXzyjpb+nbeseStlteTpxuuwBQ0WLcHS8ZVgP+NxTd/a5c9BHuWDk35jOD87siPzJtjpWHNo50EbR5OjHAIiJfSF0jTMeKjAaPp6OhBd3Qv0v6dzGjzKE3BsvtVg4ldVIEb5NRGVXwrFz2jEp+TJGGXO6aqdy+CY3BSqALtRxI6yVp6Ahsk9/+Rq1B3bJzAIR/e6IVaWULR3OoY16pQGQM1i82LIm+bzS2T28ql2xRxHunf91SGeQi7G6oxRrF2Cm9lkRlq5Yc5OntrluHjVP9W++hh5ZyvyeaeEO2V5HWPJFbvATgsM7k2t2ycqJd49mCRUSkQ+5WMaLA+gzpyVBe9NwYZE/UmSnrMXrVEafmo7FCOZYjlevVY1TttxLEKOfBMuLYGCzl3xa/bpbkQn/JiTHahcqKdqLtFMokJPVt4RYuQQgHNyFIONjUkaLbqAXLKKlLvGQvstpgq25Ao/ez7xk1CUMLuoXLHvmEXgDQNRJ8yqykY59z9IDpuu0oUwRHW+uq8ejGpahs0e+6aebsXgNU/75uyOho4LnHwtxUVs//jccq8cjGJbqteGzBIqK08ofJZ+KOERNwpuYC6pZ4TxyJKHHKaoxepUZOdZ2Xgu71yuQv8TLQuc2wi2CCgccDx52oCjjkdOGqLoLJtmCZlE05h6G8nfVamOyMQYrHaFkBxW93ogXrr7s2AAgHv6Iii6BMFWApNlGyKdtvWvaZboCoF3QV5+ThR6OnqF6zsnorAdY6ReuZcs3N7eap0PUoj6entq7CyuoyvLRnU1LLAYAe2bmq41MvMYaS8rhYXHHIMOvgwxuWYHV1OT47sj/mPXk3WE3/z9oFEXlqYH4hBnqUPS0VlTyizmSgoptqQSB2TEpJbhf8+YSzVRV0p/3ntItiWoaCHrdgGVX8E21ZO7PXAMwrOxj9t1wBbVcFWEmOwTL5frfsHFRpkkiY/RQ3e4CLit+e6PZUHh9ya1W4i6AYExxnCx33DXVSkMTaLLpmZaMukmEvpHOc6Ke/F2K6DloJ1nMtdIvfcKwSu+uPYXhhd1VwV9bchMEFXeN+P57m9nYcaWpAWUuTajJwM3I5zuk9ECFJwuB8dTnind/K4+I3W1ZGl6UdoyZnitzdENtqLC/ByjYE2IJFRJ2YtvsEESUnNxDAM5PPxL2jJhtWxoYUdHP13MvPyo7p/uv1fJXKLNHn9B4Y/btRJ+GC1qkGE4krK7/aNOMAMCCBMZlGEzXLGdtkepNI67dgOcco4AugowVL21JptVWpui2225qcpl37G7IUzVZ6qfLtqlOkL9cLEHW3oRAb0FkJqK20YAHAv/dvi6y7Y+3Kvw821uNIc0Pc5cxVdDeULas6gt9vW42HNizGHp1ARq9nibzmi/oOwU+OOxGCIEAQhOgDnVYLk1BrKccwai2tPIIttVXqMtgM3hlgEVGn1Tu3i9dFIMo4I7v2wPl9jdNBe8H7MVgd679teEfigSWVR+J+9+FxU/HhRVdgfPdi1evq7pihmPUMyrff2mDURbCfJt23XmXebAs70YJ1YlEf3dcD0RasUEwgbdSqpH21TacLqQj936lswVJ2EXRi4nplIC4fs3qBq4DY4NFozN03+g9XlNFatX9p5RH8357NqvIot9Edq77AbStis/tpaScMlm2rqwYAHG5SB2mVLc1o0umKKK9b21VQTtpxqMk82NM7//X2uXKbKjM5AvYfFjDAIqJOK5nZ6YmIrBoYCVB6ZOeoUnf3sJDGWxQE9O6SH22d0RtvFU14EHmtOMEumFa6CF43eDQONNbHvK4XwzoZ1maLIrplxbZ8KrsIVmq6LRplzdNe++t05mgSBUE1J5NMmX1WGdRkmQQvJ/cMB4fK1kuZssVGGSBHu5XqbEQBAgKitgVLf923Dj8++ndBlvWRQe8c3KkK7tpstgJbSZmvDaZ+tVl/QuPFlYd1X7eSdj5cFmtdL5Wvacsm7xurtQaOwSIiIqKMVuBxQpuzew9CuyThhKLeAMIBUGVrM7rYmCpCbp3J0kkqIQdtcotDovNrmU3E/pcTzsGuhhqc03sQvrX4fzHf1U1CIVeyHXqYpZfmXy5nY3sQ+xrrVO9lCQJuHHIc9jbUYqGiNUVbmvmROa60y9WOM1OuT/u3WQvWI8dPRU1bC1ZXl6nGzgHApB4lWBppyVSO1QuGJOSIRmOwYtdnNAYrIIh44cRzUNbShCKbgbcyQ59ei09Nawt65Og/JIjXbQ8A2jU/blecjJna3xgv4YSIcBZIvTFayyuP4EhzA0IS8DULLe52uwgywCKiTufsXgOQk0FzYBGRvgeOOxGzD+/DjD6DPC1HQBDwtb5DVP8G7HVdPLv3QOysP4aL+w0FoO5OJoum7E4woFFW8LXLGFzQ1TTJQSo6YepVcuVub9U6wVBAEHHN4NEAgIULP4i+nisGEIyTFU8UBHQJBNDUbhwoKCv8ZnNMCYIQCW5i94tyGcpWHzmg1g1chdgAy6xHxqD8rgl1GV2gCDzlAEu5DzYeq8T0XvoTITebbDeZlVYuFc1PzIkzpiw3IKKpvV032JtVuiv691mRpDFm56NyAgQrGGARUafz4+NO9LoIRJQCZ/YakLIpIOwQdbr5xXP5wBGY1KMEg/PD3QH1Kt4i7C9XSfmkv81CC4RKCiIsvU5q8rbUa6VQjqm5e+QkPL9zHa4cOAKX9BuKv+/eiBm9B0XTsmsJEJAtBNAE4+1Qr0hQYWUM1mnF/fB2lx3IEUXsjrQOKVvljim6KsrBrt6uFCIZDpXsjvkZoBlX179LQcxYpg8P7Yn+LQcpVjsK6nWv1JK77oUDm/gHkHYLx5s4OVsMB8jxgr12ScLzO9fFvF7V2hzNeNoSWYbVZxccg0VERESUQom0YImCgGEF3aPf1fuq3F3LarY4LWV5+uUVGH6uOCc2QZAc8Imq18KcGu06LDLWTMls2coK+IX9huDD6ZdiWEF3HNetJ/4w+cxoum+9KTt21tege5xslw3BjoDISgKJ/Kws/PWkGbhswHDd9+9ePT/6d9Bmkgu7rZa/nXi66t/xpi1pk2JbsH67dSU2HqvEi7s3xkxFYGXeLPkbt6+YgxuXfhb382ZdBPWOefn9eMGe0TQKNy3rKFNDJONnwOLRzACLiIiIKIXkyrjemCKrJJ1B9/ePmYITinrhwbGJtdLLFc2BXQpNu5zpBR56XahGRCaAHdO1KKHyaP107Em4bvBoXBfp9qdeWyxt4gntb5KDEr0EDu2SFJNIQmuoIuAra240/ayqHBYq6e1ylzyd90QhtgUr2aRNrXEm45a7CGqP2Z+uX4T/lu7GwnJ1xsDtdTVx1xmSJEiShLKWJtQGW+NvlZgugh3bIE+n27+cOj9esGdlGodWg0yGRthFkIiIiCiFxARasLQ6Woc6Knz9uxTiV+NPS3iZcqtJvPmj9Fqm5G6Jyq9+f8QEDC/sjhm9nRkD1zMnD98echxmHdwZfc2swhuv255ZS6KA+K0QY7v1tLwu1bIVHzXqzmk2eW5AiJ1o2Orav95vGHbU16iyWQL6SSz03jcqrzyfV1sohHllB/HsjrVxyxKChN9tXRX99+QevbCmphxZgqgb9GgD08OKoFavBTHLcguW8bZul0IICGL04QOzCBIRERH5UCJdBLXkiq5Reu5EyK0m8VpuZMpV6wV8BVnZuHzACIdK16HGZJJYJbPU6YBx5j1ZvNYK5fvx1qX6nmK9RsdAUKdLnkwUhMhEyB3d7Mpbmiyt+46RE3RfH5BfgKMtxq1w8pg8veQqSh8c2o2X92y2VJZ2SVLNlbWuphwAcP3g0fjXvq0xn9fuDXk+LUA/wM2NtGrVt5lP6G3WgtUWCiEQEKP7yerpxi6CRERERCl0fKTlY2L3koSXoRfQJEvOytYYNO9SFa1s6lRqUzG7YP+8QgDA0MgYKuU6lXOAxWtVijduKV4AphQv4YKScqlGLUcdWQSNy6VstVlTXW55/Xp+OHqK6fttZlkNgeigwAOaVPlm2g1/u/46tLvrxMi0B4D+vpS7suql21d6cstKw/f+uH2NuqwWWyoZYBERERGl0HeGjsU9oybjh2PMK7VmOlqwnAtp5Ilo43WpGt+9GIB64lwpyRTxdpzXZxDuH3MCnpgwDYA6YLln9OTo3/HSeJuVVYjzvpadFixliS/qN0T3E+0hOcmFsYCqBS257V6Uk4f/nHaR4fvxugjK7CRY2asJxnpEgmOj7a59mHCSIsDS+0ZeZP67hjhjsMzm31pUcRiSJNluwWIXQSIiIqIUygtkWZrc1IxekovkyUszr0RfP3gMRhX2wMk9+3SUJxUTYUVkiaIquAuXO1wAZQVfL/GBknn3Snttg1k2+moqPzowv1D3M9qsfQO6FKA0kkZd3vfNikA4O8HMkUpdTCbkNkpyIWuKBDF2As0FmgmeGyLjuIyCRe2rygCza1YOjqARwwq6RSdIln9PY9C8i6DS6SX9sKjisOo1CR2tauwiSERERJSh5IAm2exxSvKi4gVLuYEApvfqHx3jArgV8Fmj3ATKim281pR4XQC1LSlmn7aSpr1jOYLu30ra1OHfHTYu+rfe7rlWkVkxUWbHUptqzqpY8pipLzVBkx1yy2lBVrZ++TTbSrl/skUR751+Cf405azoa7liALmBQLTLq5VA68djToh5TYJkmMrdCAMsIiIiojQjtyQ4WZGTAw7DcTYmomPCPIiwlJV+ZcnjjYsy7wIoxQRgZq0z2XYCLM1q5bFkSh3zYIX1yM7FCUW9IADonRs7D9lQnTnCnFTaVA8AaDWZtLc11G45AQkA9MnL1319SlEv3de12025/0QIyBYDqteyRAGFWdloaG+DJElxu74WZGXrtgSGJEWWTM6DRURERJSZpI4mLOeXncSXnEy6kax4JTELsEKI3bT9uxhPvmwrTbvm74fHTY35TDCkSSohAI+NOxX/nf51R7oD2rW08ggAqLL+aZkFX3oaDFqUjFoetdtY+W/lvhzbLTzv2pQevVGYnYP2SHAVL8AyCoo+PLS7o4ugxd3MMVhEREREaUbusORoC1ak9pjIeCq5Rc3JLouJUAZB8ZJUBOKlade8/4vjYwMhq+vSLlm5jr55sYFbe3QMVmT5ECAIgmGZ481j5ZT/27vF8L1mgwDmqoEj8a5i7jKZUZc9o9ZAbWCpasFSbJaHj5+KA431mFhUgrcPhdfb1B5ES5wA0OjhwEuKtPMcg0VERESU4dxoMUqoi6DNJABuKVKkaY8nbgCmeP+7w45HX4dasJTBgNHX2qJZBK1t135d9LvbOWWAyW+XfXJ4b8xr04r7YWhBbBdIoOMhgVaWKOp2edQmvxAVYYzyPOienRvNdFmYHR7P1RAMxm3BsrILrYaxDLCIiIiI0syYruFuUHJF0glnRzLzXdhvqO3vdszL5R/JBp/KCvfwgu6mn7XTgqVXrrN6DVD9+6PDu/HYpmU43Nwof8mUnSQbiQjGm2EYwFsHdsS8JgjmkxP3iMxVpZQtivjV+FNNWwwB4y6CSnLCjIb2NgstWGF9DcaGAUB9W6vpMmTsIkhERESUZm4fPh6ju/bAGZqKeTKuHDAC47r1jE6EbIcbEx8nK15JWuN0q1P+lskGiRdk2QlONCyv40djpqgy8G2prTYsi5tOKOqFfQ11qNRMznu0pRFHImni7RAgmLaIat8REQ4We+bkYVIP9UTcXbPUwZgyqDKan6swEsA1BttQEyc4qo9kGzy5Zx98eGiPpfIaYQsWERERUZrJz8rCRf2GotAgpXUiskQR47oXJzWOyuMhWGpxytInLzYbn5KdVqn8gPX9oNy+8l8iBJxa3Nf4OzqvTSvuZ3mdVj027lS8PPV83RT2z+9cZ3t5AUEwnZw4qHlPOc5K2+1SmxVS+f7BSJZDrS6RybOXVB7B09tWm5Y1GBn3VtNqnAmxWCeDox4GWERERESUlJBPxmApxWv1yRYDGGfSWhdvniwAuGf0JBzXoyfO6TMw7md1sb611QAAzTFJREFURVYhCAIePn4qhttItx5vTFFCxREEiIKA/0y7KOa9ypaOVq2TinpbWl5IkkwDrJBmfqksC93+9N43yjwoL+9jnfFhOQatjhebdJGNN7datGyWPkVEREREFEc6dREMf0b/U09POgNf6zsYAPDNgSMNv39hv6F4ZcZF6BKwPupGGbhp1949O1f/OzrBxqrqMsvrtCsvkIU7RkzAT8acGH2tTpH17+dxxkfJQpBME0NoJy5WdrW0MxG0URdNs7nQ3p12ie7rE3qU4D+nXaz7ntVkJhyDRURERERJkSu78Sb3ddOPx5yg+reVqrDR+KAxkbmUXj/1AnTLik3EkBRlFkFNKb/WdzDW1JRbWowIIZoe3w1f7z8MAPD7basAAPXB8BimUYU9kC2K6JdXgMPN5uOy4rVgaZNnKCdzjtdVNV6afcA8+YfZ8vOzYkOky/oPj7s+GVuwiIiIiCgpPznuBIwq7IGfH3+yZ2U4LpJZUWZlLJlcvTeqEHfPznV8bi/lurRLnl7SX/c7eiXoFkngYCWFuhPk8VJZkTzzVroohiSgj0lWPm2AaCdZiLIFyyiEixfw3zNqkuX15dlqpSQiIiIiSsKwgu7445QzMbKwh2dl0AZC9lqwBFw5YITjZdIjqJuw1O8ZBHN6XRnlliG3U7RryV33tKnl9YQg4aSi3rh31GT8cfKZpssDYicTNi2HclsZtJJlifrb8/bh4wAAPQy6ZOoxGrOlWzbLnyQiIiIi8qlE2pnkerkgwNGU91ZZHbOmF3e1R4JDO9kOnSAHgd8ZOhanl5hnMhyS3xWCIOD8voMxzCCBRxdFdzztZMJmlOOhjMZ56QWffztpBi6LBNNmrZNXacbe2Wpds/zJDLJhwwZcdtll0f8df/zx2LJli9fFIiIiIqIEaQMNK8GLcoJks/manCTqpGlPxNmRgDBekJOsMzWBp1zmLFHEtYNHG37v+sFjVO8bJYhQZuazEyxa+azeZ4oUrVbK938wcqLqc9+KCbCst651yiQXEyZMwPvvvw8AKC0txY033oixY8d6XCoiIiIiSlRMgGWhri4HVQIEyym4vaCXUe+24eNxZq8BOK5bkc43nDO9pD8WKCZBVgauwwq6Y0L3Ymw4Vqn6zqX9h+H6IWNUrxm1Fim3+876Y6r3TizqbZgtUZnkQjLoIqhd4x0jJiBfMXecsqXpSHOj6rOipvXLThfBThlgKc2ePRsXXHCB18UgIiIioiRoK9N2UsYLAjA4vyuuGTQKo7u6G7AoW3IsJ9DQ+Vh2ZGJot/XVJKnQFrmXYvLdh48/GbMP78O1g4xbtrRyA8aB7cAuhYYBljKkOmAw0bB2s03qUaL6t3Ki45Z2ddIO7fCtbBtj3XzZRXDFihW44447MH36dIwZMwbz5s2L+czrr7+OGTNmYMKECbj66quxfv36hNY1e/ZsXHRR7GRqRERERJQ+tBVgS0ku5DFYECAIAm4cOhanFPd1vnAKOYoWG6shoJeziw0v7K76t7Y1TdlyOKF7CR4dfyq651hPHmHWcmjWadNKl05tAGvWrVAbfGnHb+WkexfBxsZGjBkzBldeeSVmzpwZ8/7HH3+MJ598Eo899hgmTZqEV155Bbfddhtmz56Nnj3DM3JfdtllusueNWsWApFIubS0FFVVVZg4caLuZ60SDTKUJLMsJ5dJzuC+8TfuH3/j/vEv7ht/4/6xLjcrS7WdBEGIu92UlfREtnEi+yc3SzHmSIxfRgCAhd+SKoKg/r3KoCVg9fco5GlasFTfFwxe17yn974oxrZhZomi5hjpeG9ar36qgEwbsOcE0ryL4FlnnYWzzjrL8P2XX34Z11xzDa666ioAwGOPPYb58+fjvffew6233goA0TFWZj799NOkuwdmZYkoLi5Mahl6iopSM6cB2cd942/cP/7G/eNf3Df+xv0TX99e3VSV/fwu2XHraIFIsBMQhaTqc3b2T0NuR867nkUFKO5iPE+UrGv3Liju5nx9MxG5OVmqbdUlr2NM08DePWzPG1aYp57IWbnsvIPZuq8DQDehOfp395xc3f0nVKnLUtKzEMX5Hfuqa2tH98aSkq6m5ezRPR/Z2dZasXwZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL36RVHmCwRBqa5uSWoaSKAooKipAdXUDQqHUZLMha7hv/I37x9+4f/yL+8bfuH+sq65qUP27pTmIykr9sTmyYDA87kaSEPezehLZP/XNHYFBTXUjxEajJOMdqqrr0b3NH0k42traVdvqhMJeeB+7cHbvgajS7AMrpKB6uymX3dTUqvs6ANQc60hKMb5bz5j39Vqwamsakd3Usb66uo46fLz9X9Amoq2t3VKQlXYBVnV1Ndrb21FSou4nWVxcjH379llezqFDh1BVVYUJEyYkXSY3LnihkMQLqU9x3/gb94+/cf/4F/eNv3H/GPvD5DPQGgrFbB8J8bfZpf2H4Znta3HNoFFJbV87+0dSfE6SrH2vTef3eUWAoCrLiUW98Y+TzkXvvPyEyqgc0/XtwWNUywgpklBol10Q6Ahjxncr1l13TIglqZejTD4Yr+xS/Dg4Ku0CLCOSJNlqkuzfvz/mzJnjYomIiIiIyG1GWf+sZBE8r89gnFzUx1ZShmQlMjFwyCANeaqcUdIfCysOAdBPuNGvS+JdWAOCEF3+pf2HWf7eoPyuuH34ODQEg7jY4HvaTa038bCZE4p6YXV1eXhZNr7nyyyCZoqKihAIBFBRUaF6vaqqKqZVi4iIiIg6J6sV4lQGV4A68NOb36pHdk7Ma/mB7JjXUumB406M/m0n/b0VAUHAT447EbNOvwSFmt9+bp9BAIBvaib9lV02YASuHzLGcBJjbVmNPmdEGdfa+WraBVg5OTkYN24cFi9eHH0tFAphyZIlmDx5sncFIyIiIiKKQ5nsTq81668nnYvnTzhb9drAfG8TXAiCfuY9J2QJIkRB0E2DPrprEd6ZdjFuHnZ8QsvWltVu6+GamvKOZdkILH3ZRbChoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyC7vZ7FJF1YKlU8bCrGwUZmXjvtGT8cz2tbhusPVJe1PB6a0aL+jJCyQeriTbgqValo2v+jLA2rhxI2666abovx9//HEAwN13342ZM2fi4osvRlVVFZ599lmUl5dj7NixePHFF6NzYBERERFR5+bP8EpdUTcLLs7rMxgnFfVBd50ug14KJjEe7Lw+gzDn6AEMK+iGPQ21AJILeuLRTp2VVICV7i1Yp5xyCrZt22b6mRtuuAE33HBDikpEREREROnErwGWGGcMllKPFI8Ps2JF1dGEv3vvqMn4ztCx+M+BHdEAK8tm4gk7qhQp8YHY7W3nGMnoJBdEREREREZ+M2EapvToha/byEiXSspWq0QyCqYzQRBQlJOnCnTcbMH65MCemPUnys53fdmCRURERESUiIk9SjCxh38zS6vHYHlYEA8pA8uA6N/2nmnF/bC48jAAtmAREREREfmSKougbzsyukvZGLSjrtqzckzsUYIRBd1xi0GWwtNL+kX/TvsxWEREREREmUhZUfdrpkO3KQPLtTUVJp90V44YwJ9OOMvkE4mlp2cLFhERERFRinTWboFKLaH26N+5OvNf+YUyqGIXQSIiIiIiH+psiS30fHioI/nEzFGTPCyJOUH1N7sIEhERERH5TkAQ8eBxJ6Jrlr/mt/JKN5/N86XURTHJMVuwiIiIiIh86oxeAzC5qJfXxfCFbBfnwbpmxHHRv5+cMM32908o6h392854OQZYRERERERkanz3YleWm+VimvZJxR1B7IQEUvcru3OyBYuIiIiIiBzjVkuTmy1YbaGQY8tigEVERERERL7nZgtWSJIcW5adLoJMckFERERERKacTH4oQkAI4eAny8UWrDFFRTi1uC+m9Eh+vJudn88Ai4iIiIiITNlJUx5PtihG58LKcnFisIAg4pHxpyAUSr4ly056fXYRJCIiIiIiU06GQQFFsJInpkd7T46NCZEZYBERERERkSk7Y5Diubjf0OjfeQHrgYuX2IJFRERERES+dO3g0dG/7bQMeeGEol6YZDPFe3q0yRERERERkWec7CKYrQiq7LQMeeFX40+z/R22YBERERERkSknk1wEfB5UJYstWEREREREZMrpmOjS/sOQH8h2dqE+wQCLiIiIiIhMOd3m9P0RExxeon+wiyAREREREZmaUtQbAHBqcV+PS+J/bMEiIiIiIiJTF/YdgkFdCjGqaw+vi+J7DLCIiIiIiMiUKAiYYDNdeWfFLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA4RJEmSvC5EOguFJLS3hxxdZnZ2AG1t7Y4uk5zBfeNv3D/+xv3jX9w3/sb942/cP/7l9L4JBESIohD3cwywiIiIiIiIHMIugkRERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgOUTR44cwf3334+pU6di8uTJuPLKK7Fr1y6vi0UAZsyYgTFjxsT877HHHvO6aBRRX1+PRx99FGeccQYmTZqEr3/96/jvf//rdbEI4X3zq1/9CmeddRYmTZqEm266CTt37vS6WJ3SihUrcMcdd2D69OkYM2YM5s2bp3q/paUFjz32GE455RRMmTIFM2fORGVlpUel7Xzi7Z+33noLN954I0444QSMGTMGDQ0NHpW0czLbPzU1Nfj1r3+NCy64ABMnTsQ555yDJ554AvX19R6WuPOId+489thjOP/88zFx4kSceuqpuPPOO12vYzPA8oFjx47h+uuvR05ODl588UV8+OGHuPfee1FQUOB10QjAO++8g6+++ir6v5dffhkAcOGFF3pcMpI9+eSTWLJkCf7whz/go48+wnXXXYef/exnWL58uddF6/R+/vOfY8WKFXj66afx3//+FyNGjMAtt9zCiocHGhsbMWbMGDzyyCO67//mN7/BvHnz8Mwzz+DVV19FWVkZ7rnnnhSXsvOKt3+amppwxhln4I477khxyQgw3z9lZWUoKyvDgw8+iI8++gi/+c1vsGDBAvziF7/woKSdT7xz5/jjj8dvfvMbfPzxx3jppZcgCAJuu+02hEIh9wolked+//vfS9ddd53XxSCLHn/8cem8886TQqGQ10WhiEsuuUT661//qnrta1/7mvTiiy96VCKSJElqamqSxo4dKy1YsCD6Wnt7u3TaaadJb7zxhoclo9GjR0tffPFF9N+1tbXSuHHjpNmzZ0df27lzpzR69Ghp/fr1XhSxU9PuH6WlS5dKo0ePlurr61NcKpKZ7R/Zxx9/LE2YMEFqb29PUalIkqztmy1btkijR4+WDh486Fo52ILlA1988QXGjx+PmTNn4rTTTsOVV16J999/3+tikY7W1lZ88MEHuOqqqyAIgtfFoYgpU6Zg7ty5OHr0KCRJwsKFC1FWVoZp06Z5XbROLRgMor29Hbm5udHXRFFEdnY21qxZ42HJSGvjxo1oa2vD6aefHn1txIgR6N+/P9auXetdwYjSVH19Pbp27QpRZFXbTxobGzFr1iwMHjwYffr0cW093Os+cODAAfz73//GiBEj8NJLL+Gqq67Cz3/+c8ydO9fropHGnDlzUFdXhyuuuMLropDCww8/jMGDB+PMM8/E+PHjcffdd+PJJ5/E2LFjvS5ap1ZYWIhJkybh+eefR3l5Odra2vDSSy/hyJEjqKio8Lp4pFBRUYG8vDwUFhaqXi8uLua+IrKpuroaf/nLX3Dttdd6XRSKeP311zFlyhRMmTIFCxcuxEsvvYSsrCzX1ufekskySZIwYcIE3HfffQCAsWPHYuPGjXjjjTdw7rnnels4Unn33Xdx5plnuvrUg+x77bXXsGXLFvz9739Hnz59sGTJEjz00EPo27cvJk+e7HXxOrXf//73ePDBBzF9+nQEAgGceuqpOPPMMyFJktdFIw29VnnuJyJ76uvr8f3vfx+jRo3CnXfe6XVxKOIb3/gGTj/9dJSXl+Of//wn7rvvPrzxxhvIyclxZX0MsHygpKQEw4cPV702YsQIrF+/3qMSkZ7S0lIsXrwYzz33nNdFIYXm5mb88Y9/xAsvvIAzzjgDAHDcccdh/fr1eOWVVxhgeWzIkCF48803UV9fj5aWFhQXF+Pqq6/G8ccf73XRSKGkpARNTU2or69XtWJVVVWhpKTEw5IRpY/6+nrcdtttyM/Px3PPPedqCwnZ07VrV3Tt2hVDhw7FpEmTMHXqVMydOxcXXXSRK+tjF0EfmDJlCvbt26d6be/evejXr59HJSI9s2bNQnFxMc4++2yvi0IKwWAQbW1tCAQCqtdFUXQ3QxDZUlhYiOLiYhw4cAAbN27EjBkzvC4SKYwfPx7Z2dlYvHhx9LU9e/bg0KFDfEhBZEF9fT1uvfVWZGdn44UXXlCNPSX/kSQJra2tri2fobUP3Hzzzbjuuuvw97//HRdccAFWr16N999/H3/605+8LhpFhEIhzJo1C5dffjmfSPlMYWEhpk6dit/97nd4+OGH0bdvXyxevBizZ8/Gk08+6XXxOr0FCxZAFEUMGTIEO3fuxBNPPIGzzjoLZ555ptdF63QaGhqwf//+6L8PHjyILVu2oKSkBL169cJVV12FJ598Et26dUNhYSEef/xxnHTSSZgwYYKHpe484u2f8vJyVFRURD+zfft25OXlYfDgwZzWJQXM9k+XLl3w3e9+F01NTfj973+P+vr66FQUPXv2jHkASM4y2zetra348MMPcfrpp6O4uBhlZWX4+9//jry8vGivFzcIEjtY+8KcOXPwzDPPYN++fRg8eDBuv/12XH755V4XiyK++uor3HrrrZg9ezaGDRvmdXFIo7y8HE8//TQWLVqE2tpaDBgwAN/+9rfx7W9/2+uidXofffQR/vCHP6CsrAw9e/bEN77xDcycOZNPdz2wbNky3HTTTTGv33333Zg5cyZaWlrw29/+Fv/73//Q2tqKM844A7/85S/ZRTBF4u2f5557Ds8//3zM+//6179wyimnpKKInZrZ/pk6daruewAwd+5cDBw40O3idWpm++baa6/Fz3/+c2zcuBG1tbUoLi7GSSedhB/84Acxw3OcxACLiIiIiIjIIRyDRURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERE5LrnnnsOY8aMifnfzTff7HXR0t6yZcswZswYbN++Pea9WbNmYcyYMWhoaPCgZEREnVOW1wUgIqLOoWvXrnjxxRdjXiMiIsokDLCIiCglAoEAJk+ebOmzzc3NyMvLc7dARERELmAXQSIi8tTBgwcxZswYfPDBB3jggQdw0kkn4Y477gAA1NTU4JFHHsG0adMwYcIEXHvttVi3bp3q+7W1tbj//vsxefJkTJ8+HS+88AJ+97vfYcaMGdHPPPfcczjllFNi1j1mzBi89tprqtfefvttXHLJJRg/fjzOOecc/OMf/1C9/9Of/hRXXnklFi1ahEsvvRSTJ0/Gddddhx07dqg+197ejr/97W+44IILMH78eJx55pn46U9/CgB4/fXXMWXKlJiue0uXLsWYMWOwdetWm1vRmp/+9Ke6XTVvvPFGV9ZHRNQZsQWLiIhSJhgMqv4dCASifz/11FM4//zz8ac//QmiKKK1tRW33HILamtr8cADD6Bnz5544403cPPNN+Ozzz5Dr169AAA/+9nPsHz5cjz00EMoKSnBSy+9hP379yMry/4t7sUXX8Qf//hH3HbbbZg6dSo2bdqEP/3pT+jSpQtuuOGG6OcOHz6Mp556CnfeeSdyc3Px1FNP4b777sNHH30EQRAAAI888gjef/993HrrrZg6dSqOHTuG2bNnAwAuvfRS/O53v8Onn36KK6+8Mrrc9957D+PGjcNxxx1nu+yhUChm+4ZCIdW/77rrLlx77bXRf1dUVOBHP/oRhg4dant9RESkjwEWERGlRE1NDcaNG6d67eWXX8bgwYMBAJMmTcIvf/nL6Htvv/02duzYgY8++igaAEybNg0XXnghXnrpJTz44IPYsWMH5syZgz/+8Y+4+OKLAQCnnHIKzjnnHBQWFtoqX319Pf785z/jzjvvxN133w0AOP3009HU1IQXXngB1113XTQgPHbsGN54441ouSRJwg9+8APs3r0bI0aMwK5du/DOO+/g5z//OW666aboOuQyduvWDV/72tcwa9asaIDV0NCAzz77DPfff7+tcssuu+yyuJ8ZPHhwdHu3tbXhpptuwuDBg/Gzn/0soXUSEVEsBlhERJQSXbt2xcsvv6x6bdiwYaipqQEAnH322ar3lixZgnHjxmHgwIGqlpmTTz4ZGzduBABs2LABAFTdAQsKCjBt2jSsX7/eVvnWrFmDxsZGXHjhhar1nXrqqfjLX/6CI0eOYMCAAQCAAQMGqFp9RowYAQA4evQoRowYgWXLlgGAqnVK65vf/CZuvvlmHDhwAIMGDcInn3yCYDCIr3/967bKLfvjH/+IQYMGqV6bP38+nn/+ed3PP/7449ixYwfeeecd5OfnJ7ROIiKKxQCLiIhSIhAIYMKECTGvywFWcXGx6vXq6mqsXbs2ptULQLQVpqKiAgUFBTEJMbTLsqK6uhoAcMkll+i+f/jw4WiApc1+mJ2dDQBoaWkBEP5N+fn5pq1op5xyCgYNGoRZs2bh3nvvxaxZs3DuueeiR48etssOACNHjsTo0aNVr2nHhcnefvttvPXWW/jLX/7C7oFERA5jgEVERL4gj12Sde/eHePHj8ejjz4a89mcnBwAQElJCRoaGmKyDlZWVqo+n5ubi7a2NtVrx44di1kfAPztb3/TDdCGDRtm+bf06NEDjY2NqK+vNwyyBEHAVVddhf/85z+47LLLsGrVqpiEGm5Yt24dfvWrX+Guu+5StfwREZEzGGAREZEvnXbaaVi0aBH69+9v2CIlt4h98cUX0fFNDQ0NWLx4sSqw6dOnDxoaGnD06FH06dMHALBo0SLVsqZMmYK8vDyUlZXFdFe069RTTwUA/Pe//1Ulx9C64oor8Oyzz+Khhx5Cnz59cPrppye13njKy8sxc+ZMTJs2DTNnznR1XUREnRUDLCIi8qXLL78cb775Jm688UZ897vfxaBBg1BTU4P169ejV69euPnmmzFq1CjMmDEDjz76KOrr69GrVy/885//jOkyeMYZZyAvLw8PPfQQbrnlFhw8eBBvvvmm6jPdunXD3XffjSeeeAKlpaU4+eSTEQqFsHfvXixbtgx//vOfLZd9+PDhuOaaa/Db3/4WlZWVOPnkk1FbW4tPP/0Uf/zjH6Of69OnD8444wzMnz8f3//+91VZFYFwevnnn38e27ZtS2ALxnrwwQfR0NCAb3/726p094WFhRg5cqQj6yAi6uwYYBERkS/l5ubiX//6F/70pz/hueeeQ2VlJXr27ImJEyequrb99re/xaOPPorf/OY3yM/Px/XXX48JEybg008/jX6mZ8+eePbZZ/HUU0/hBz/4AcaNG4enn3462uolu/3229G7d2+88sorePnll5Gbm4uhQ4fGfM6KX/7yl+jfvz/efvtt/OMf/0DPnj11W6jOO+88zJ8/XzchRlNTE3r27Gl73Ub27t2L+vp63H777arXp06dildffdWx9RARdWaCJEmS14UgIiJykjzH1BdffOF1UeK69957UV5ejn//+98x791www049dRTo2njiYjI/0SvC0BERNQZbdu2De+++y4+//xz1VxZsmAwiB07duD666/3oHRERJQodhEkIiLywJ133onq6mpcf/31uPDCC2Pez8rKis6nRURE6YNdBImIiIiIiBzCLoJEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYREREREREDsnyugDpLhSS0N4ecnSZWVkigkFnl0nO4L7xN+4ff+P+8S/uG3/j/vE37h//cnrfBAIiRFGIv17H1thJtbeHUFPT6NjyRFFAcXEhamubEApJji2Xksd942/cP/7G/eNf3Df+xv3jb9w//uXGvunRIx+iGIi/bkfWRkRERERERAywiIiIiIiInMIAi4iIiIiIyCEMsIiIiIiIiBzCJBdEREREKSJJEkKhdkgWx9yLooDW1lYEg0EmUfAh7h//SmTfCAIgigEIQvxMgWYYYBERERGlQHt7OyorDyMUarf1vYoKEaEQ04D7FfePfyWyb0QxgOLifggE4mcLNMIAi4iIiCgFamurIIoB9OzZB4D1J+RZWQKCQbaO+BX3j3/Z3zcSamoqUFtbhaKiXomvN+FvEhEREZElkhRCS0sjiop6Iysr29Z3s7JEAGwh8SvuH/9KZN907doD1dVlkKQQBCGxdBVMckFERETkMrmbUiDAZ9tEfiafo8l0+2SARUREROSyjqQWyQ2eJyK3hc9Rq4lo9DDAIiIiIiIicggDLCIiIiIiIocwwCIiIiIi33jiiUfx8MMPeF0Mxxw+fAjTp5+E3bt3el2UGKtXr8T06SehsbEx4WU0NjZi+vSTsHr1SgdLlt440pKIiIiIdD3xxKNoamrE448/5XVR4tq6dQtefPEFbN26GU1NTSgp6YXx4yfipz/9BbKz7WVu9JvVq1finnvuiP67qKgnJk6chLvuuhcDBgxMeLkTJkzC++/PRpcuXZwoJkUwwCIiIiKitFZdXYUf/vAHOPPMs/HHP/4F+fn5KC09iHnz5kYmdnY+wAoGg0lNRpuIt976L/Ly8nDkyBE888xTePDBH+GVV95IqBzBYBDZ2dkoLi5xoaTOCwaDyMpKj9CFXQSJiIiIKCFffDEHN9zwLZx99qn41rcuw3vvvaN6f/r0k/DBB+/hRz+aiXPPPR033XQNtm/fip07d+B737sZ5503HT/84Q9QXV0Vs+x//vNvuOSSc3HhhWfj2WefRnt7u2E5NmxYj5aWZjzwwM8xatRoDBgwEFOnnooHH/w5cnPzop9bu3Y17rrrNpx77um46KIZ+MlP7kVLSwsA4JNPPsJ3v3sDzj//DFx22QV44olHUVtbG/3uxx9/iEsuORcLFszH9ddfhRkzpqGmpgbl5eX48Y/vwYwZp+Oaay7Hl1/OwyWXnIuPP/7QsLy7d+/Ej340E+edNx2XXXYBfvvbX6O+vj7u9i4q6oni4hKMGzceM2f+CHv37kZp6QEAwIIF83HzzddjxoxpuOaay/H666+oUo1Pn34S3n9/Fh544D6ce+7p+M9//q3bRTDePt2/fy/uuus2zJgxDTfddA3WrVsTU87Vq1fi1ltvxDnnnIbLL78I//zn31Rlqagw32Zyt8q5cz/HXXfdhnPOOQ0LFsxHdXU1fvnLn+Hyyy/Cueeejptvvh4LF85Xrfub37wUr776Mh599Oc4++xp+Na3LsOKFUtx5MgR3HffXTjvvOm4/fbv4MCB/XG3d6LSIwwkIiIiyjAbFwkos1LHEwBIzqR37z0YGH96EvmnFbZs2YRHH30It912B84++1ysWbMKzzzzexQXl+DMM8+Ofu7//u9FzJz5Q9x33/145pn/h1/96hH07NkTd911DwoKCvHLX/4Mf//7X/Dggw9Hv7Ns2VLk5ubh+ef/gQMH9uPJJ3+FkpJeuP76m3TL0rNnT7S2tuKrrxbgzDPPhiDEbq/9+/fhhz/8AS6//Ju4//6fAgBWrFgKKZKPOxgM4nvfuwuDBg1GZWUFnnnm/+EPf/gdHn30iegyGhsb8eabr+HnP38MBQUFKCgowIMP/hC1tbX485//DgB49tk/mI5pqqurwz333InLL78K9913Pxobm/Dcc3/AE088iief/H+Wt78cOLa1BbFu3Vr85jeP4r77foIJEyZh//59eOqpJ5CdnYOrr74u+p1//vNvuPPOmbjvvp8gEAigtPSgapnx9mkoFMJDD/0EvXv3wd///gqOHavBM8/8XrWMsrKj+PGP78U3vnEFHnnk19i1ayeeeupxdO3aFVdffT0A4PHHf4m6urq42+xvf3seM2f+ECNGjEJeXh5aWlowduw43HDDzcjPL8CXX87Dww8/iFdeeRNDhw6Lfu/NN1/DHXfMxPe+dydefvlFPPbYLzB69BhcffX1+OEPH8Bvf/trPP30b/HMM3+xvL3tYIBFRERERLa99da/MXXqqbjppu8CAAYPHoIdO7bjjTf+pQqwvv71y3DOOecBAK677kb88Ic/wPe+dxcmTz4h8v7leP/9d1XLzs3NxYMPPoycnBwMGzYcBw8ewFtvvW4YYI0fPxHXX38THnnkp+jatSuOP34CTj75FFx44SXo2rUrAOC11/4PEyZMwr333h/93ogRI6N/X3rp5dG/BwwYiLvvvg8/+tHdCIV+DVEMd/pqa2vDj3/8MwwfPgIAsG/fXqxYsQwvv/w6Ro0aAwD40Y8ewC23fNtwu7377lsYO/Z43HZbx5iqBx74Ob797W+iuroKRUU9Db8rO3asBv/859/Qq1dvDB48BD/+8b246abv4sILL4mW/zvf+S7eeectVYB1wQUX46KLvh79tzbAirdPV6xYhoMHD+DZZ/+Knj2LAQDf/e738Itf/DS6jPfeewf9+w/AvffeD0EQMGTIUBw+XIp///tVXH319di3by9WrlxuaZtdc823ccYZZ6teu/baG6J/X3/9jVi8eCHmz5+Lm2++Lfr66aefiUsvvRxZWSK+851b8cknH+HUU6dh2rTpAICrr74Ojz32MEKhUHTfOokBFhEREZEHxp8uAafH/1xWloBg0JlWJyft27cHZ599ruq1iRMnYe7cz1SvjRgxKvq3XCkfNmy44rWeqK6uVn1n1KjRyMnJif57/PgJ+MtfKlBfX49Zs/6DV199Ofreq6++jb59++Kuu+7BddfdgJUrl2PTpg14/fVX8Prrr+DFF/+FkpJe2Llzhyrw09q6dTNeeunv2LlzB+rq6hAKtSMYDKKqqhIlJb0AhAM/ObgCwt3lsrOzMXLk6OhrI0eONk2qsXPnDqxYsQznn39GzHulpQdNA6zLLrsAANDU1ISRI0fj8cefQnZ2Nnbt2o4NG9bh5Zf/Ef1se3sIkhRSff+448YaLhuIv0/37duLvn37R/cjEA5ulfbu3YMJEyaqWhEnTJiEF154Dg0N9ba22XHHHa/6d3t7O/71r5cwb94clJeXIxhsQ2trKwYNGqL6nDJw7tkzvD3Vx1wxgsEg6uvr0K1bd9NtkggGWERERESUEG1XPEmSYl5TJiaQ31K/JsQEAnpd/OTvX375VZgx4/zoayUlHUkaiop64vzzL8T551+I2267E9deewX++993Va1FepqamnD//TNx6qmn45e/fAJFRT2wZ88e/PznP0FbW1v0c3l5earvSZJxWc3WdcYZZ+P73/9BzHu9evUy/e4LL7yELl26oKioJ/Lz86OvNzY24fbb78QZZ5xl+v28vPjZAs33qQRrP1e7DPXfVrdZly7q7f3vf7+Kd9/9D+65534MGzYcXbp0we9+9ziCwTbV59TJMMLrCgRiXwuF3HlwwQCLiIiIiGwbMmQY1q9fq3ptw4b1GDJkaNLL3r59G1pbW6OtWJs2bURxcQkKCgoBwFKrQ2FhIYqLi9HU1AQAGDlyFFavXqnqSibbt28vjh07hjvvvCcasFmZ12nIkKFobW3Fzp07MGpUuEVm584dqqBMa/ToMVi48Ev069ffdva//v0HqAIr5TIPHNiHgQMH2VqeVrx9OmTIMBw+fEjVlXHTpg2qzw8dOgwLF36pCsw2blyHXr16o6CgMKFt1lGWdTjzzLPxta9dCCA8bq609CD69u2XzM92HLMIEhEREZGh+vp67NixTfW/8vIyXHPN9Vi+fCleffVlHDiwH++/Pwv/+9/7uO66G5NeZ0tLC37/+99g7949WLhwPl599WV861vXGn5+0aKF+PWvH8GSJYtw8OAB7NmzGy+88Bz27NmN008Pd8W74YabsWHDOvzpT09j9+6d2LNnN/7znzfQ3NyMPn36Ijs7G++++xYOHSrF/Plz8e9/vxq3nEOGDMXJJ5+Cp556HFu3bsbWrZvxzDO/R3Z2tmErzZVXfgvV1ZX41a8extatm1FaehBLlnyF3/3uCd3PW/Gd79yKjz/+EP/3fy9iz57d2LNnNz777BO88so/bS0n3j49+eRT0L//ADz++KPYuXMHVq9eqeqWCABXXPFNHDpUij/96Wns378X8+bNwauvvozrrguPnRoyZChOOmmqrW0mGzRoEJYvX4qNGzdg9+5dePLJxyxlX0w1tmARERERkaGVK5fHJCD41reuw7333o9HH/0NXnrpb5GEC30wc+aPTMc5WXXKKaeiV6/euOuu29DeHsRFF12qSm6gNXToMOTk5OBPf3oaZWVHkZeXhyFDhuLxx5/CCSecBCCcsOHpp5/D3/72Z7z//rvIy+uCCRMm4rLLrkRRUREeeuiX+Pvf/4K33nodY8eOw1133YOHH34wblkfeeRXePzxx3DXXbehpKQXfvCD+/D444+oxpAp9erVG3/5yz/x178+h/vuuwttbW3o129A3O59Zk477XQ8+eTT+L//exH/+tfLyMnJxtChw3Hlld+ytZyxY8eZ7lNRFPHkk0/jt7/9FW6//SYMGDAId911Dx544L7oMnr37oP/9//+hD//+U94//130b17D3zrW9fhm9/sCJAffvgxPPnkry1vM9l3vnMrDh0qxQ9/eBfy8/NxxRXfwtSpp9j6jakgSJLkv1GTaaStrR01NcapOO0SRQHFxYWorKx3rV8oJYb7xt+4f/yN+8e/uG9SIxgMoqKiFCUlA2xPlpqVJSIYDMX/IHlCu3/279+L66//Jl588dW4SSUozK1tlsi5Y3au9uiRj+zs+N062YJFRERERJSg5cuXobGxCcOHj0B5eRmef/6PGD58BMaMOc7rovnWihXL0NLSkrHbjAEWEREREVGCgsE2/PWvz+Pw4VIUFBRi8uQTcM8999vOLtiZZPo2Y4BFRERERJSgadOmY+rUaV4XI62cdtp0nHbadK+L4RpmESQiIiJyWceDeY5zI/K38DmaTGMaAywiIiIil4liuMrV3h70uCREZEY+R0XR3hxlSuwiSEREROQyQRCRm5uPuroaBAJZAOw8HhcQDLLly7+4f/zL7r6RUFdXg9zc/KTGgzHAIiIiIkqBbt16orLyMCoqDtn6niiKCIWYpt2vuH/8K5F9I4oBFBX1Tmq9DLCIiIiIUiAQCKBXrwEIhdphdRZSURRQVJSP6upGzlPmQ9w//pXIvhGEcICVbDZDBlhEREREKSIIQqSLoDWiKCAnJwdZWa2swPsQ949/eblvmOSCiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIiIiIiBzCAIuIiIiIiMghDLCIiIiIiIgcwgCLiIiIiIjIIQywiIiIiIiIHMIAi4iIiIiIyCEMsIiIyLdqyoEF7wioPup1SYiIiKxhgEVERL61cZGA5kYB6xYIXheFiIjIEgZYREREREREDmGARURERERE5BAGWERERERERA5hgEVEREREROQQBlhEREREREQOYYBFRERERETkEAZYRETkW421TM9ORETphQEWERERERGRQxhgEREREREROSTL6wJ4Zdy4cRg5ciQAYPz48XjiiSc8LhERERmSvC4AERGRNZ02wOrRowfef/99r4tBREREREQZhF0EiYgopXatAw7vsfkl5rogIqI04csAa8WKFbjjjjswffp0jBkzBvPmzYv5zOuvv44ZM2ZgwoQJuPrqq7F+/Xpb6zh27BiuuOIKXHfddVi+fLlTRSciIhOtLcCudSI2LPTl7YeIiChpvuwi2NjYiDFjxuDKK6/EzJkzY97/+OOP8eSTT+Kxxx7DpEmT8Morr+C2227D7Nmz0bNnTwDAZZddprvsWbNmIRAIYO7cuejTpw927tyJ733ve/jggw9QWFiYUHlF0blHq/KynFwmOYP7xt+4f/xN3i+CJMS8ZkRSjruSuG/dwnPH37h//I37x7+83De+DLDOOussnHXWWYbvv/zyy7jmmmtw1VVXAQAee+wxzJ8/H++99x5uvfVWAIg7vqpPnz4AgJEjR2L06NHYs2cPJkyYYLusWVkiiosTC8zMFBUVOL5Mcgb3jb9x//hb9+5dADQBQNxrpyRJABoBAKIoorg43+XSdW48d/yN+8ffuH/8y4t948sAy0xrays2bdqEO++8M/qaKIqYNm0a1q5da2kZx44dQ5cuXZCTk4OjR49i+/btGDRoUELlCQZDqK1tSui7ekRRQFFRAaqrGxAKMW2Wn3Df+Bv3j7/J+6fmWMf1srKy3vQ74RYsIfJ3KO7nKTE8d/yN+8ffuH/8y419061bF2RnB+J+Lu0CrOrqarS3t6OkpET1enFxMfbt22dpGbt27cIjjzwCURQhiiIeeugh9OjRI+EyuXFChUIST1Sf4r7xN+4ffwvvG0HxtzFVgGXh8xRf2X7g6D4B406XIGqGwfHc8TfuH3/j/vEvL/ZN2gVYRiRJgiBY62N5wgkn4KOPPnK5RERERP6ydn44quo9WEKfIR4XhogoQ6VdGqeioiIEAgFUVFSoXq+qqopp1SIiIqJYoZDXJSAiylxpF2Dl5ORg3LhxWLx4cfS1UCiEJUuWYPLkyd4VjIiInMXeNkRElIZ82UWwoaEB+/fvj/774MGD2LJlC0pKStCrVy/ccssteOCBBzBu3DhMnDgRr7zyCpqbm3HFFVd4WGoiInINgy1HMaE0EZF7fBlgbdy4ETfddFP0348//jgA4O6778bMmTNx8cUXo6qqCs8++yzKy8sxduxYvPjii9E5sIiIyKcYKBERUYbzZYB1yimnYNu2baafueGGG3DDDTekqERERJRqqliMTS7O4vYkInJN2o3BIiIiIiIi8isGWERE5H/sWmhqxxoBu9Z5XQoiIgIYYBERUQoxTnLHng0Cdq2zcUtnF0EiItcwwCIiIv9jQEBERGmCARYREaUOm7CIiCjDMcAiIiJ/kgz+pqSxQZCIyD0MsIiIiIiIiBzCAIuIiPyPTS5ERJQmGGAREZGKJAGVh4C2VneWndgXHS0GMWAlInINAywiIlI5shdYNUfEqs9ZC89U3LNERO5hgEVERCrHysPV79pKVsPjaW4EVnwmoOqo1yUhIiK/YIBFRES+pOoV6NNYb+caAdVHBKz8lLdTIiIK4x2BiIj8z6djsELtXpcgQT4NWImIMgEDLCKiTqy+Bti4SEBrs9clISIiygxZXheAiIi8s2K2gLZWAZIETJjus2YiZXHY4kJERGmCLVhERJ1YW2s4cmlrUbzIYIaIiChhDLCIiCh1OA+WLwgMoomIXMMAi4iIKEHKiZNXfia4MjkzERGlFwZYRETkf2nQ4lJ1RMD+LV6Xwlg15+oiIkoJBlhERJQyyp5+8Vp7lK1D6dJFUAr5NxIsO9BRNilNticRUTpigEVERJ5QJdbIEH6OW1TjrvxcUCKiNMcAi4iIPMFWFCIiykQMsIiIKHUS7fbn3553MVqagPKDDCCJiDorBlhEROQJWwFIGgUriz8QsOYLEVWHvS6JsTTanEREaYcBFhFRhti5VsDuDV6XwpyqAStDa/ltLeHmtvoab8thKkO3PRGRH2R5XQAiInLG7vUCAAHDJ4S8LooxRcU+UwMsv5K47YmIUoItWEREnYiVinXKhjuxku+ZnDyvS0BElLkYYBERdSLLPxGw6nN/ZIzI9FYUP/88MeB1CYiIMhe7CBIRdSLHKuTgyvvqf9wAy/siUgpJUvh/Ih/9ElGa42WMiIg8Ifl4qFhGUgSspTv80YqptPR/Aua+LmR8yyYRZT4GWERElDJ2Ei3UH3O3LK7zWaCgLE7pTv8FWHVVAiRJQKjd65IQESWHARYREXkiXoBVUdoRBLQ2+y8gSDs+C/isKjsAbFwkIMQWTyJKExyDRUREaqmKZdK0wk8u0xx/a+eFnwX3Hiyh9yAPykNEZBNbsIiIyBOZnuSCY4mcxa6DRJQuGGAREVHq2BiDlY7xSSjY8Xdjrb+6NaZjwNeQ7uPwiKhTYoBFRNRJ6VW4d6wWsG9zagKDTGzBUo4T8mMiiXTT3OB1CYiI7OMYLCKiTujoPmDdl7HP2PZsdDcokAz/ofPZNAywBMZUSVNuwkC2Z8UgIkoYW7CIiDqhzcsYCXQ26RKwKoupClh5yBJRmmCARUTUCXlWV1XUntfOF1FT5lVBknN0H7DhKyFmsuTSnebfa2sN/4+IiDIXAywiIkJLozfrXT7b+Dbk5xaXdV+KOLxbQOVh9evtQfPQdd6bIua96dGt18fbU8WgnGzAIqJ0wQCLiIhQV83qayLipQ6vq05NOaxIl/iKiCjdMcAiIl9rbgQObldnZyMHeBRP2arkZ0BEsORDH91mM2B7+lFzI2JaMomoc2MWQSLytRWfCmiqE9AeDGHI8V6XJnP4YQyWgx/1joA0KWgG8Gkj64J3wkH0aZeG0LXI48IQkS/46NEaEVGsprpwrYpd2ByWDpvTocAl2Aos/0TA4T3OLI9IT1Od1yUgIr9gCxYRpQU/Jzwgdzi1z0t3AjXlAmrKBfQb5nBf0wTLKEmcM8uKdNpG7MZMRDK2YBFRWtCmw/ajykPAod1elyJzHNjmTO3al8G5B2Xy5XbQYVROv8da6xewSkVEYWzBIqK0kA5Ph1fNCVew+g4JQQx4XJg40qllwNcSHIMlSakPGCoOpXiFRESdFB+3EFFakJ9qp8tTeL9rbvAmwvJk/1n4qe1x0q07zcntYHVZrU2MqomIUoEBFhGlBSkEtLUAn78qYssyf1cUGQOml4pSYO7rIvZtTt06+aAgAT467XesEbD8EyEtui4TUeoxwCJygSQB9TXpMW4onVQdDf/XqbE5rsngynNFKbD0fwKaG7wuiXXxjpa9m8Of2LYyhbdEl44RBm6psWdDOGlKIzMHEpEOBlhELjiwFVj8gYhtq3weCKQROxXH3euBNV8InlU2M7mSu3quiNpKATvX8thORgYfIkREnR4DLCIXHN4Trnwe2OZxQTKNxVrpzrUiyg8KaGl0tziGOkHtOeEgshNsGyOZHHgTEVEHBlhElLE8a8HyYp0mKz20C1j5mYBmrwJOBcYYEdwQxozStLPRlIjSBAMsIkoPElSDaZrqPStJfD6rPG9cJKLqiIAF73Rc8ov6+KyQLvJDiv9QCL47LoiIyB0MsIgITfVA6c406MKkKN+mxf59nO377QggkMGzILYH1f/esdr8Vuf2kbR1hYA5r4nutSBKBn93EulwvhFR58IAi4jw1X8FbFosomy/1yUxpq1EtbV6U45MVledgpW4XBk+uAOY+28RR/Za/47b9fP9W8IhnPL8cisoWPiegNpKd5adKnY2TX1NeOqG/VvdKg0RkX0MsIgIUihcAUyrlMMpemp9aDdQeSj+51qaOv5OiyfqOs02Sz5M/1vCjkjmzt3rvWnhzMs33vmpOC6aGwRft+46bV8kxf7W5R4du51nUxORDel/NyUiXaEQEGyz8Ln2jr8rDqVfbaG1ObZLmFNC7cDGr0SsmiMi2BbulmjUOvDl24rLqSdZLux9POk9nQ5BpEVOHvXNjcZLcyvAaqh1Z7lERJQYBlhEGWrx+wK+eEOMG3wc3tPxd/UR/wZYenXTYBsw/z8iFn+gX+5kK7StLR1/790koHSngKX/i3/ZzKDYgxDujnp4t/phRCLcCrDkVhxZXbV/z2O7VNvMhz+Lk8kTkR4GWEQZqrEuXBtRdl3TY6WVyxek2H82HAv/3VTvTs1LmXWvrcXkgxqVpS4UJkOkKvh0cj3rFwjY8JWYfLdDRaHSohupz/gwvkL5Qa9LkNm2rRSw9H8CA1lKOxmcR4qIMk3pLkUVS/Lv0+NwC0Jqa9C21+ZVbTVOQUOh8H71U5bDykjX2Zry5JbDoMoao5ZCP24/v16DMoXcOtvUICG/q8eFIbKBLVhEmc6HlZJEVRz04zPsWGLA6xLEl+yWdOuwWvCOgLn/FpOuTPvxSJEkP5bKf/Zs1N9O21b6cPtpihSvxwARdQ4+ekZIRG7IoPgqbRT0SIOt7rO6asUhoKEGaG2OFCzJTejLPdDJ56uyqqZM//XG2tS3DMcjaM4jtxLuEFF6YQtWJxIKhSsx7UkO1CZKrXCFStui4WV3oXjdgroUpKYc6chov62eI2LbSvNbUuVhCyvwWeCopPzt1WVAc4N3ZfE1H+9DLSFOLUqSgAPbO8aLplprM7B2vmAYtBKROxhgpZmmemDjIgFN9fa/u2udgNVzRGxd5v+7V4j92h2T9mME5MPVRw+uP39NxIFtxu9XHRYy/xj2YH+s+tzCLctHx4mWMsBav0DEgncz5xbcUAvs3pB8pkUg3JKZLrQtWNrjr6IU2LJUxKL3vdnXu9cLKNsvYPnszDnWiNIBz7g0s36hgEO7BGxYaD9IqohkNjuyz/gz5QeBg9sTLJxDqo8Cc14TPS9Hutq2UsDu9R3/Prjd24C6vib8UKC1ObHvJ1V6m5VtO61iW5YZXz53bxCwd6O9dSfNx4EFhfkxSYNTlnwoYOcaEQccuG63B/3/EFCmDbDaWtX/9rqVMl6WWCcCYiKKxQArSVII2LMx9qLqlpbG8H+bkxlIa3KTX/OFiM1LRU+fvssDnDcv5eGZiH2bBexc27Ht6mu8KwsArPg0/FBg+6rkKk1u1033bAQ+f1V0bNLWitLEfm+qKuExT94zhY9/l98CrD0bw5NnOyHUHl5Oc4OzO8Bv20xL20Vw2cf+um+ZnecHdwBzXhdxdH/qykPUWfjrSpCGGuuAHatFbEmDbnfxKlSJtjA4LSvb3udDIXtzFFFqtbWED7yEjy+D49bpiteO1eHLoVGL34Ft7p/jwTZg7r8FbFzk/rr8Phg/6d3rx4q5w2Vqbkju2rdjtYjSnYLtufCaG8LjeuqqE193pkjnBxXbVoQLn/T8bkQUgwFWkuRKSspuNA7coI0WsWudPy6y8QYNay37WMC8t0TfBIh+k84VABWdAzfe6eDHOraZuqpwS8ChXe7vtERb2JKWbjslDjtb0cmeAaF2YMG7Yvjal+IHTJuXhcf1rJ6TKReXWJJkLeV6xlxffY7bmdINAyynpLjS4Ma4FLtPMf2iriq8NbzuCkfe8qIr0dYVAqqOpH69ZEGKKmRexYvKbLDlB1Jb+5RbzTL5oda2lQK+fFtE2QHzz9l9IJhqh/d6XQKizsnnlwZylA+zsemx86RKTtxBaSDBOqDhYSupF7lmXmLLT8b+LQJWfha+jObl+/zE8gm9reRKcOzGMtPoKfrONTYK69ND18vxV/u3hLff4d3m29HvLSuhNEoYQpRJGGD5VEsTsOBdAQd3OLdMW/GVT2+4WqvndhzCfh8M7Zl0v78aHLiNdYLqpbL9zv7QmnJ7n/f68PN6/UlJ48JLIX8GMrs3WC+XWbGaG70ZrxdqBxa8I2Dlp8a/Q5LCWWfdxPsKESWCAZZPHdgWzsa0eYl6FzlxrbdVIfCA358IJuJYBbB1ucCUuKmWxAlzdF+SB2ICX3eqLndknz8qhqEQsH6BgKMmU0MABr872fIbbP+kWr2TLJMPdok+g4K1tQIL3hHx5TuC/uddvFbXHwNamgSETO5XpTvDD1pc5dud1rkc2u11CYjsYYDViWRyf3kAvr4RLvtYxP6tzrZIWmU3YPVyYuKy/YitjKc64E70OPL6+FNOYvul6HqFRBvA6SVwqDgIHNkrYN2XiluNbh/B2JeSTetvtD9WzxW9e9Chl6glwePG6tZpbQY2LBRQV2V/HfK0IMFW907CdoN9YeW6VXXY/YtD3P3j9XnfSexay+oqpRcesQ6RJKDqqL8TRXg5t5UdmdiCJUvVfGnJcKs7kJXduna+qKqMS1LHGAI/tMiYcaR4Dv5GOflLKhzZF54c/Mhe9etWA5k5r8feivZv1S//0v8lnx484c2c5Cb1IrDbvkrA4T0Cls826WqXwvIo7d8KzH1dRPlBjwpggc8vO46oqxJ8P20DUbphgOWQxloBKz8VseYLdys1ciWzqd6F9Ui6f7qurhpYPVdAY13kBQd+2u71wKL3BcOno17R+2nBNmDLMgHLPxHQ3JjyIsXwU4XC7fEVjvLThksxubVp+0r1EW6xscqW2koBG7/qWE/lIaCp3t4yEr3ESKFw5ki74/Nkh/ek/umRnPGv3SzZgUfH7tbl4SrI3k2xZfPNg7ZOcl4n3WJMRCoMsBxWfdTdi1RrU2LLrzoCtDT68wK65gsBFaX6k6vaebKpbOHYuVZEwzEhqQr60X1A5eHEvw+Ex7sdqzD/zJZlAg5sE1BTLmDHauN9dHg3Eurmk9vF/nf8QvVU1WJFx4knsc0NwL7N7nRRy0SpTqAjn+sNx4BVc0QsnJWaW1n1UQH7twhY/omD6+tEx4khnVPNLwFWRamAxR8IOLDN65K4ixl5iZzFACsDVBwClnyoaAHSsXmJM3erI3uBsgPOdteSu821y90rFcu281RN9/cnUc51X4pY9Xnyp8iyj82XUXmo42+j4KChFtjwlYglH9kvT89+PqnBpajCpOymm8hxKgHYtT75wtaUC77v1piu5Mp3c4Pzyz60y/llmnH7ELG7fElypyvz0X3Ask+EaItaPH4JsACgvkbAlmWZXV1K9lrV3AAs/4TzAhLJMvuK4TONdYh2AWs4Fg4enBiztXqOiLpq89YPKySDf9TXhAO4mjJg/QIRa+eJWPaJC3e/yCIT3SZydxOl2kqfjd3R2WxWime1UuIIP20vryQSmOl8R/lUePXccDfQjJQmc+xZsXFR57stKo/dlZ8JmPemiJbG+NdOO0fzui9FHCsXsN9iS1BtAq31XsiAQx5A8vfJ7avCvTDkeQGJOrssrwvQmXz1XvjCM+bkELatCP8tisDIKf6+RG9aIqCuWsDKzzteq60Q4Nat5che5yqhO9eKEAMhDB3n2CKdJxn8bfSZTsqRKQqk1D4ZXztPwPk3hkteUepuFOLlg4SUh41OrzAN417Lu9vKBxWfkbu5H6sEuhTaLZVD5UH4YR6lTrLXj3RJokWUKryCuWDR++YpceXgCgi3aEkhYN2XAg7vSUHhEhG58Iba07AWAgfmM0ohL+rI2q3jqxY/JasZEwzK3x4E5r0pYPPS1B0PkmRvXY5ue7/uRwcYBckJJ7Xxcls5mLrdwSKYbpMMPrR8nQnYVcnu1BQcFL69NxHpYIDlgoZjAjYutlaxOrRLQOWRcBCwYWHqdockhRNfxEsI0NoMHKvI/IkcQ+2p6YanVzFU3TSMtkWSu2D3BugmEUmlhNau+FIih4kynfexCiDYJuDgdpe2Q4qO48O7gXn/EdBYm5r12RF3yiBJci0d9L7N4ZTfbS0d+7e5EdjwVez+9sElx9CmxQI+f1VM6ZQO5QeATcvSYA6JOLYsS+7c3rRYwBdviNi6XH85lYeBJR+pxzuX7U+fB3hmkg1e3Din0mFaEyIjDLB8wIuJXUt3Ais/E7HuS/0arCSFW9VU73vBjWz0UjhphHK7L/5AwLy3HKzUOF1uC3ev8lIYZizcuUbEoV3OjPlLWCLbJMm79oaFImorE1htgskxUmHDVyLamgXs2eijip2F3o+hduDff2jE2vnOlbtSMdHstpWxt7MtywQc3m1hfT7alKU7w4U5ui88Hqq6zOCDDh5wm5YIWPtVG5oUSUNSHYRaPecajhm/d2BbcjtS3vb7twqAEFugVZ+LqKsSVMmXGGC5ZwdTx1MaY4DlEjvjPLy4sFVFKiYd40LUasrCrWqJpJ3ftyX8lN0RTqR01vz76F5g0X9FbFJkVmysC//dFHkyWbbf4ZVa/GyiP7e9HVgzV4ybsTCt6XWlsvC1RAIscohiBzU5mPGvtjI8F5Xe/ElKrU3OrdMtRsfw9lUCqo4IWDE7dee0aiJks5NLfs+D+q/yoV8i987GunBrfrwMlKY/zYfBiJ5EpzlJiAvbpEHbSp9G233DVwLHpXVyGVwb6xxiLkAOWb8wsTunJIXHmG34Sv/QaqoHVs3RnxuqqS751jwrLVBHI08cD+0y/o2pHKejkuANxGy7HbWZNCSVAX/cdcUruhtlTXSZFr/X2qypyDqxbg8o9538QMms+AGHUyoZPRyyxE/b2WTMoJFgG/Dl2ym4RvlpO0XI1/iGY4mNr133pYBDuwRsiNdlOgMaT+JNz6KafNqH+1orDYoIAFjzhYjDuwWUHfC6JOQlBlh+kMRVw61xQ8FWd+4u21YIqDwkYMVnscsPtukkILBZjHlviimfx8aOHatFbFuh/lFu3zTKDvizplBTDnz+qvvJXeTtaydwdDPInP8fEV/9N/l9kupAeOfacKuR+QdTUhwAwG4rc5U5cOjX1yS/jIQYbMvmBuCLN0SEQu6e16k8vgTA8rHT0iigpRFY9H5i1ZeWyFQp8Vo3TbeuPy+ptnB8k/v8OE6WUocBlg8dqwxh59rkruChEFC6C2hpCnc1kbvApVpTfXgsgUx+KhtSPDlT3lflPvCylsb4iTi0YlqmXK4oHNlrryvGvi2C9a44FjmaejwFFavaSkQCTfPkLsqfZdjq4xN2NltzQ3rV0CpKwwHN8k/S65aRzFZuaw0/wNq32V/7quJQ/M+kIzvnz5fvJH8cJt16ng5MfkMwHQOsdGnCiti5RlTNhUidS3rdLdNUezAc6Fj18avJDxw4uA3YtEjEik8F3XEKqUp2sHCWiHVfiti0WAjf0GzetIKtAha8q/5S9VHgyD6DLzhEeR2Pt63WLxCx5gvNqRTnd+7ZqL8uPww0Vrb4HKuwH+DGU1sJLP2faDs7ZVN9/M/XVoVwTDvmKlXbNMX7Liao1ll/cyNUYw0TldKJrmN4c1LMe1PEvLfcv0UanfOGCUXtjO8N2bymSKb/TAtHHGoRT+V8eTJJSt292enxQckcK5LkTbKvVDi8JxMidUoEA6xkWTh3vnxHwJdvG29qbQXb6Em9na5UddXhgjXW6hcwqfELZgyusqU7BVQcSuympUy7LEnAik9FrP9STHzOG5sSGusQ526za53ieFB8tvKQkFiXJBdasMr2A8s+FrF2nrPHSq3JHHF2aSuPH77chNVzHSivzdpCsE0zniE1qzVflhQeg1G6I/nU1WaaG2Epi2DCOmv9xOYcanqSCq7TMboCsH6hGD4mk+XBcbd6bjhNvJUHssG28FQriT6Ua6pT/zvp3Z3gAvZtBj5/VcQXbwm+eMBox5G94V46RHoYYKWAnfFMW5cbv5fKebLs2rlWwJ4N5tfY5gbo37RsXFT3b+n4e7PFucYSoiiTExVn3VWEgEUfCDETOG9baW19VUeAeW8JqD6aXDn2GGRiqzoSfl2ZCjsZdoPrYxVA+cH0qF07Np2BgxWMA9sERx6klO4UTB/6LHhHRENNeD2+i68MvpxuFTkVGxvELJFPvGVL0f9zpixxObhPnOj+5kULVuWh8EqNpttQWjtfwMrPRBzaafwZs59gafoCh9TXhOcPqy4DqsuABbM6ph+Qp1dobxPiHgN+Om2rjoR7ryyc5d96GXmLR4YPrJvfsRv2bUmPCqXW7vUCdqyJfzgle9M6oJgkNtVN763NwFcfNVu6+VmpeLQ2I1oxVYnMQVa6Q/WSStn+8DxmbS1CeALhBO88+7eGB42rVq+zrPagexkrjSz7WEx6XhtA8XtMtpGye4ok2d+ccsUoWavnJn5JdrPysXmpfrkO7UzBOZiel0TXuLo5/FSDJVPyVCtVCUylAqT2/rl5qYC6qvCUAytmi2iuF7A+kYdSPjo+G+vifwaAr8pMqcUAK8OkqttcQiRvngo6ZedaYN+2diz5SEB7MDzw37Afu5WLqsG2OFYRTj+8aYl+N0IAWDs/sVNXu/13rjHeIcrPLp8tYNF/RUe795mx3MLgwM2rpRH4/LWO7RlsA9qak1+uk6RQ+Ljw27wqYkDzgpW5k2zy4pKhPP6SbSGOvzKXl5+gYKvXY+9ckuoDyuX1pcM9Na1bjJOk99MlCag8zEyOmc7hmUlIZvnphoOO7hNwdJ+A076emlpYSxMACcjNt/6dZG8GiX6/rhrYs1HAmJMk04v95mWCYcpgZWVjy7LwXCrDJrh752iqB3asFnDEbC4rO4PeLRQ3+hnFcuuqOrqudOsZ+522ViArO/U3+1Vzkn9GpM0AmcquM1bt2QjsXCtiyPEdO1CSwuMXDu8RcPKFHtRgJECIs/mVpVo+O8H1eLA7VszuWKnbGVht7zmbxbGVPECx7C3LUvv81W918GST+wRbgawcqH6YZPUho1Mbw8axEgoKaKqX0KXQoXXHkchP3LZSwODjJBT2cLo0qVW2H1j3pYiuRRJOu9RvRz45hS1YLgm2Cji635t1798qxKQ7t8LuU6Yv3xZj0+WaLKOpXgiPw/LAitkCjuwRsH2V+XaprRBwrEJAW5xxc3LqeW0K1mAbUF6a3P1RWWld/EGc4ApAU52AA9uTWKHGqs8FbF0h6N6bla8d3QfM/4+AQ7vDGdfiTWppa1JQF+456Xwbk7vzaOd427ZSRG2lgEoPUgGXHRBQddj6572aKiIRNeX+LavdksljKf0s1I7Un6DxxvuYzDMWL0g6shf44k0R+zarX1d2+zazdr6I1XMFZ5J12LBwlpjwPdqs/qC7uSzsb+3Yz4PbBSz9X+zStq8SsOxjwZ+ZCHV+p5xBV05GRpmJAZaLyvZ7c/Ic2u3JamPWrb3g7t0k2E7NrZVoV4NgW3i9ba3utbLUVQNLPxKwZq6IWgu/02h8kbJ8VhNsbF/p3KncVC9g/xbBsCZXXxMeYL3uSxGtzQI2fhVedyJBPdmjzKjph65B8nkls5oR1ZYkfqcftpEVh3Z5OKFxAuTrcCgoONJttaZcsDWVSTK0h0Rzo/0U4XKCBiPyw6Ydmi7YdiZ9ryiNjK+Nw+4x3tIErPzM+EsNx+wtz0nK68f+LdCtL2iTQgEddYsmjx7gploolKHddzMMAywXpUu/YycncJW7kgHwbZOBcr/UaudMsrqMyH+Vv3fJh6Ktp/S71xsEWC6eldo5YhLZRavnCKYPD6RQuLIoSbEVDKsrdfTQ8elxaEsquxUlQ1GG1XMFbF6S/MGcJjFSwmorgI2LRCz+wOK28tkGsTPJOhCeokJv7InbY90ajoUDo9bI+MrGOgE1ZeEsmOsW2NuorU3mn1c9eFDeEk3me6o6EvtaswspwHeuEVLfqpnAbWDrClZPjSx+X8C8t/TPIzsObgfWL/Bpy18G4BHsJocqPLVViJlsV6adyyIRuzc4d7FVnqi7DAKI2C/F/8jeTYmVBzAPdJf+T/RkvJwZNwOsqiPW5xqpNOj+1RrnydmW5QIWfyCidAewx8FjK2l+CEAc5PcHOE5lVkymFcqsVUSe5qDK7SQWcTSnqOXGLYk8oNu3Wa9lwoHCmFj0fjiDnaSYX6w8Mo2BW71NQu0Cdq/rWHblIcHwXr7ys9RUx+IlwkrZZcWpFu5OSH6Qm0z9T5LC2WGP7BXw+Wuipy2XmYoBlouO7BWwd3P8z8Wz9CMRzQ36F+UNX+nsQptXyLpIZjgnKmzKZRi10MR8R/PvvPzYgmxfZf1pTdypWzTF2rrcX+lim+vNy5PM4OsjewXLczbVJ9g//GAklf4RO2OuNJycvHHrCjGxfeyQHasFR+blMeOXWMsv5ZAZTbQOCdi4SOiY5iCNuNrtMYEdmEh59K5hO1anfj+IovtHbIumtUv7b7eUH0RMvaHiEGyPsQq2WqwbJLAprc75mM4qD3ldAgOa/bVmXubvi1RjFkGXOTk2xi1O3mKcGIfT3Ki/DKeasbU3C6uTsSq/ptcPPFWSfeoXflqbeM7sVPz2Rf919rzZv1VA9xL93+x2FWvPRiHpjGS6CUc6y/3Q7d/pcVRo9+e1pDjxgSt0trl2PF8qZMQ5ZPAb1ut0e1xtM+tqc2O4C2XPvhJO+przJ8rhPfE/k+7CCbP89ugplt+mJskE/q/9k222T2WPzv1Wmyd0KGTyRFqh2qx/eYK/deVngiPdMTsTv9VddFt7U8TJFjmZ6kGBX+7ffilHBtvm4kO7hLpLC7HZVONJ9WFi1P3Jze7YqWJ4nXXgAnysIvzfZMds6QayuhNEJbWa6Hra272ZKicRTiUDag+GxzEm3BPJbzfsDJABlxdv+fKYtHmCVZQK2LzEPHGBG3atE9BUb54OV2nbCu/GdFQdST4DolMqdQZDU2K2rRQMszmmk3Vfio6m6vcTN1oZ/BoHGmUSDLWHK1DlLqfjrym39jll5kABwOq5/q5KLHpfv3yiv4ttjcH54cRpY2UZddXAwR2aDKIWeptIJstPtkv10o8EfPWeiMba5JaTCmvmCZjzuohgW3LL2fCVgBWfijhocSoAv14DM0kmXF46LeObrf1L68EdiV+O4w2aNRJqB9ba6Pdrax4lJeWVRPB/coB4Srd7FxBYHVcHAJWHYz+77ktn0jo7oT0YHmyf6Fgzv9m5xgeX83Q6t+Td7nWZFYefXvIHANi3JTy5+RqXA5ld66ydCw01+lnyLPN6m6cLDy9N7cHwfFzxLPlQxOYlImorOl77/DUxbvKYYGvsfJP1NeEusGstjhM20nAs/P3aqqQW45jDu4E1X+jf+yoORhJWJNnLQX5ALicXsp3GPTNug77CMVhpzO2brVUbFiZ2ZjY3AvXMXOMtmxUdo2QrVh3dJyT9pM4JVUeAbsUpXGGyNy+d7/tx/IiEcOY+p1qbASArO7E5X+I9RffL5rNSjtpKwbeD5f2yHROS1oWPI9HfFrknHN1v72vaMXR71gvoeb69G8zS//mjTuM0uXt6xUEJvQfrfyYr27n1lR0A1s4T0WeIhOxcYNSU8H/NZPKp4JXMPJoppRLtWlh5SEh9H3jJnxVTO5zoW15b6d3Epn5IzZuqlMiycoMJRpsbw8FIvGkI6qtjX/NrS+z2lQKO7HXuJItXMTBidU46P21Go6fYgoC0qQFZCYb9cuymySb1hF/2USZprAN2rk0s6VFzo/V7ttwj6eg+AQe3C9juQYZOYgsWeUwUgFT3GEv3G0dTnDTuVshPCgPZzm4MO10+OztJAhb9V0B7MFx7Lu6vPhMa64AuBfJA/DTZrlL8edL8yDcPXYyyykv+OQJirp+agikfoFQeBvZuEjBhuk8vun7ZqElw69g1W+y2lQKqjwKnXGRxv2bAdnbC9lWJP9hb8E74u+fdEL/GpN3cljKPch85jgEWeSoVLVh1yjE2vIioON2aVGbQUqOU7gGuU6rLEAmuwrRdJ796L9zFY9JZ3GCO8+kmNTp7Eh5/6qDGunDq7x691a+bVfBXfR6+wG9e6mLBdCRyjdnqYLdWP3Dz18hjBZsarG1oz7ZsZu1SAPHv2WX7BfQaaGG/aD7S2iQgFJIyI/GLT3BTkqdSfTJzrgcf8GnlNtW0Y4Ram2I/Y1axtjvNQSqk1a6VUzoHE0/U05ms+lxAbaWA/VvUx6Q2u6pecKPtRn6s0vHiJaSmrKNc2t+V9lLwc+ym50+5OBek9mB4Qma7DxrrqoC9G318vCRYtMrDzhYjU1l9gMMAizyVqlntZX5Jtd6Z6V2bWnSCC9f5LBpY96W9y3FbkqmMXSGlz/kllzTYKpjPneeyZmX3HR9vPqOuyXYyi8pqfXIddnKsoF8E26yn20/W9pUm28/FTdseDCfhSPbByNblAtZ8Idoeo7TkI9HyGE+nWekSqh3za7lF12f3RL+qs5idkgEWdTqpnu+L1FoaYl+zmh7aSV7fS5IeO+H1DzBQHSc9s11dCp1dHhCeS84vrVZVOtMZpDN2AfbW8tkCln8ioq0lueOqdJeF7t5W33T4EN+yTMC6+SJ2rEpuweUHw//1Q0scz5v0YWWeN4ABFhGlWHNj7E1RCgG71nlQGA9ZnUxz5WfpVQEPtTtb3oALI4VrygS06ByHXuhW0vG3b5JtJGnflvQ7br10eLf+61aOB+1nnJrXz1KrbpygQA4anD4S5DlAy0vDcyu6rbkRWPaxf6dKSES6xHM7VgvYtzl16zu6z3oLVTwMsIg6MSnkj0pQsA3YtS7FlyOP7zAbF1nb9lUGFR12d01cY63XJeiwZ0OG7UcJ2LZCNDxuU6WpHlg9V0CtT8Z7mZHnScok7e3A56+KmPOaC8dB5NrdVCeYJ4BxaNU71wg4ViFg1Rwf7KcMu1zEs2ejgG0rw9s92GYxI2KCmhvCXfWXfOTMfmYWQSLynB+ypKWadmJOSp2KUm57t/jlyfiWZQIqSoWUjUfyTORQbm50p7XXjNm+rq0I/zcUEuJ80v/idQlLZCL0lNLb/DqvHauwmIHQA63NwPz/hAOfGdeFHJ2YWeb0fvRBOE5ElHrs806+kwlxn8Xzyu1KqRxEB1szYaOaC4XC8yTNe9M/vQCUb6VrkGv1HrF+obvlUGpvi/+ZRO1eL1hKntRwDFg1R7A88XGilNt/m2IaBT9m0NXDAIuIOiUGWOkhU8YlWZEJP9XqaTXvLVY/nCAgnFXPu7XHp5zvL1001Ia7OO7bEv+YrnBibJbFE0duxXFh0QCsjQ3e8JWAykMC1s5Pbr+GLCaLAIAmRXIst+4JTlcJeIVLkp0DhIiIyFD61UNj8cFFWmvWyfIafa8RqHI4S2iq1FaFE680GIy/1HYDPLAtfDJuWyHGP6b9fsw7XD45CAsm0Zq2dxMw5zXR8hhJZVBVXdaRATLV7LS8M8BKlt9PLCLSxRYs8ptMiK/IeabXKocPmm0mc1steEfEyk8tVhvdvL4msOy1XwioOiJg+SfhxCctjUBrc/i3NtYK+OJNQb2dbaxDcmD+v1Tfjuzc/0LtwNr5Ao7ui7wg/9wkCr19Vfg4kgNZOzZ+JWLNF6In9/D5b1svLwMsIuqcGGCRz5QdSP8Qiw8unHVgO/D5a8C+bUEE28LbVzsxu5NHjdH8cIf32FuO3w4DubWlrUXA0v+JWPaJequ1BwXf9Ug6uCOcrMVrR/eH5w9d92U4ZJBbk/x0rre3A6u/EHDE5nFql53My8wiSESdkp9uDkSZovKQ9xXCTLJlabhS+9VHLcjOBQaNEbB7vXobNzuYulo02H0bFmbW8/jmBp0fqrgn2Lo/CO7cTDYvCW/zYeP1l2+1u1qypQt5NSl7nMmqpRCwa4OAPkMkVJQCFQcFVBwU0HeY/UhZCsWfMkOSgLwC61uTARYRERFljE1L/B/kNRwD9m4SMHKKSYVN8zPaWgTsXq/5iAAs/sC54EcQzcdhWebiA6xEFp3MtBhH9sb5bqSL4OIPgdpK5wNRo2BvxxoBxf0tbA3NR1qakkuMIii6CIZCQH010LWnuwmJ9BZdujOc+XD3egGDxiR3wB3ZazxdTG1lOHPhluWCfmBugAEWEXVK+zb7vxJGbGkk+2rTYBLulZ8JaGkSEmgdkODmaL32oIAF7zqxfP/vAye1NEmorUziNydwnbOaZKL6qIB9WyQMGRv+95dvGweByuvtkT1Abr7xciUAO1YL2LdZwMgpIQyfYK08euTumaKN+NRoPsO21vBy7MwLZ9YKvPR/iQXNmdXmS0Rk0f6tnasCkK48655C5JK188PBFQC02J3Th5ct1yTzMOedvzjYT9MF21bYq+4H24D1C0Ws0EtqomjBKt0Z/vPInuQOzC//I+CLN9TLiLc7yg/qr3PemyLmveX9idIpW7A2bNiAhx9+OPrvHTt24N1338XYsWM9LBUREWl5lY6XyC1l+y1W/nRqmIL+y52LxQ2QTBXby5bzYBtUSTgMu94lUEarXQPNfr8boUtbqyJqS4B2G4Xaw2eKUStfRSmQnQt0L0lodZZ0ygBrwoQJeP/99wEApaWluPHGGxlcERERkW80HItfla2rTkFB0kTZfnW3sESq6pIUrqzXlDtWLNvK9gMNNc6HMdVlwIrZCXRc025IRRbBVE0En8h69m4Ctq8ScNblQXTp0fF6KASsnhveDl+7KdI30YWAutN3EZw9ezYuuOACr4tBREQ6hE5/lyIyxqyNHbatFLF5aeIXjANbgc9fFdBwDKivTu12VbYYWW09a6wTbLW02QmulL9+0xL195TBjgNTYlmSSFIOea6travVzVhWttnquQIqD9lfp5Ivb10rVqzAHXfcgenTp2PMmDGYN29ezGdef/11zJgxAxMmTMDVV1+N9evX6ywpvtmzZ+Oiiy5KtshEROSCVD0hJfJCsNXmF3g+uFaZ37FGBCBg3xaPN7KNH+javE8WNoFkId9KdRmwYaFgOSGHkZryOCsyeVv7VkgnWNNu8opSAavmJBci+bKLYGNjI8aMGYMrr7wSM2fOjHn/448/xpNPPonHHnsMkyZNwiuvvILbbrsNs2fPRs+ePQEAl112me6yZ82ahUAgACDcPbCqqgoTJ05078cQEVHC8gqsz/dClG7sZp6zM9Fppmq3mHJdFARUHw1fQ+wwe6gjuPTERxSFjgx6Qux7RpobBVuZ9+IRhPDyDu3Sf18UBVWa9uj3oF/OFbPDrxX0AEZO0luf+nuqZdgINOPtFnm5ezcDW5fHrs/o+2bbPh5fBlhnnXUWzjrrLMP3X375ZVxzzTW46qqrAACPPfYY5s+fj/feew+33norAETHWJn59NNP2T2QiMjHsrMCAOxPHElEnVuWmIsVn9ptIgTy8rIB6PdJE9u7ALCb+jG+7t3z0aM4HClVFbQB6Ch3UVE+gCbd7+Xn56C4OAeAE5OXAUU98tG1SMTs5frLKy4uRFZ2E4AQIHQEd6F2EbvXBjByYjaKeikjvvByssVsFBfnxrxefVREcXF+9N/FxYXRT7S3SwCsZWdsqTe/TxQVhaPsT1eof5e8vsP5rQBim9nC7ye2bX0ZYJlpbW3Fpk2bcOedd0ZfE0UR06ZNw9q1a20ta/bs2fjFL37hcAmJiMgpwWA72C+KiOyqrmxBIteO5uY2w+9VVjYltMx4jhxqRHU10K0nUF8H1TqqaxoN19nY0IrKylbHyrRlTWMks57R769HMBh+P9QenrQYABrrJGxfG8T2tUFc8B0JddVAYY+O5TQ1t6GyUhnAhF9vqJVQWVkf/Xf477DwFB3WfteR/eYP4aqrGxAKSZFGsY5lyutrbNBfl7JsdqVdgFVdXY329naUlKhzKxYXF2Pfvn2Wl3Po0CFUVVVhwoQkZkYjIiJXcaJhIkpEotcOs+9JVgYeJWDV5+FlzrguFJl0t2MdoZDxOiVJivl8MnasMV9OKCQBkvlnDu6UsGmRiH7DOjakJMm/Q6b/+5SfcfJ3hUKS7naU1xfe57HrMtv28fgyyUUiJEmy1Te2f//+mDNnjoslIiIiIqJMcWinu63pwbbYjHnLZxuvc+daEdVHXS2SbeUHwuU9rJh8uLEWSSe6cITNoLupPv5njKRdgFVUVIRAIICKigrV61VVVTGtWkRElN7YgEVEflFe6u7yV8wWsGO1umreXG8e1K383P9dqMsPClg4S0BDLdBYF//zoZA/rv0LZyUeJqVdgJWTk4Nx48Zh8eLF0ddCoRCWLFmCyZMne1cwIiJynh/uskSUdg5sS+x7ktlwHpevR01xgik96ZJZsq1FwKL/ivjqPfPQo7UZmPOaiLmvOxSiCAZ/K7ixW305BquhoQH79++P/vvgwYPYsmULSkpK0KtXL9xyyy144IEHMG7cOEycOBGvvPIKmpubccUVV3hYaiIiIiLyg7aWxAIPs25hYiDBwpBlnnR5dCHC8mWAtXHjRtx0003Rfz/++OMAgLvvvhszZ87ExRdfjKqqKjz77LMoLy/H2LFj8eKLL0bnwCIioszABiwiSiWza86AURJ2rU2PFiOvNNZ6XQK1YJsicYlm525aLKDUpXF1vgywTjnlFGzbZt62e8MNN+CGG25IUYmIiMgLDTWszBBRCplEWE5O6pu24lyS65O9Zjt8ya84FMLmpcDYU2Lfcyu4AtJwDBYRERERkRvM07Snrhx+dGg3XO9W4EbIc2Cb4N7CDTDAIiIiIiIC2C/ZxMavnA8byvbH/4wTtq8S4s7h5SQGWEREREREMG+lqiljl2WnW4HWzk9NKLJ3U2r3HQMsIiIiIiIAxyqMK+IVpQywXJchm5gBFhER+VqfIeyzQ0TkB6F295ZtZRLidMEAi4iIUq73YOtB04BRDLCIiPygrsq9JqalHwnYtiIzmrB8maadiIgyW16+1yUgIiI/CbYJCLZ5XQpnsAWLiIiIiIjIIQywiIjI39hDkIiI0ggDLCIiIiIiIocwwCIiIiIiInIIAywiIiIiIiKHMMAiIqLUy4xMvFHde3GgGBERhTHAIiKi1MuweKTfsAz7QURElDAGWERERERERA5hgEVERKlno4tgurYN9eybriUnIqJkMMAiIiJyQ4aNMyMiImsYYBERka+la5zSo1dq11cygC1mRER+wACLiIh8LV3Dht6DUlvy4RPTdUsREWUWBlhEREREREQOYYBFRESUAYR07UtJRJRhGGARERF1IunYlZDjy5w1bDy3J5GbGGARZSAxizdPItI3cnL6XR+Gjku/MhNR58UAiyjDFXRnxYTSXBocwuyeR2mFxyuRqxhgkW3ZeWlQ26Go/sO5v4jcVtzP6xJkOAYERJRGGGARZbih470uQWYr6ssAtjMbOk7CjGtDyO/mdUnYikbW8VAhchcDLKIMx0qXu0ZOCgdY3UoYaHVWWTlelwCYdHYo7me6FUuYfkX8z/kRL2MO4wYlchUDLKIEiQFWqAko6gOcf0MIA0byeCDvdC+O/5n8ruH/ERGRuxhgkX2sR4bxCSBFCLySUhoYOYUXbyKiVGC1gKgTKCxixcptBT4Yg5NJivqkxzGb3y09ygmkd+uVGPC6BJlFENLnuCVKRwywiBKUUAOWRzc1Nra5r2dfr0uQYdLkoB0wwusSRAhIm21m1+DjJAZYRJRWGGARpUifIRJEnnFEGSOvQPJV99BE46vcLv5uzejey9/lS0sZGowT+YWPbg2UNnivy0jDJ3DHEnVG3Uq8LgGlGuMrIncxwCLKQIncPHN8/hSbOpdMqABKqT6lEtxo6bCtvZhuIiuH10QiSgwDLKJEJXLDT4eaDEUdf1oIJ56XnvMG+V2XAvPKK6u2qcNtrS+vwOsSuIj3IiJXMcBKE70H8RZoRU5e6rZTpt2fOCFxrIGjgOL+XpciM+V28boE7uM5RUTUOTHActigMe5U8IdxfExcRX0knH21v7dTqupb/t4K/ubWOUz2KM+VlHe1c0gqy51MMMc4UJ92u5yQQa3ZDP6J3MUAi2zza13npPO9LdmEMzLn5tuZFfX26xFOZCyZCnMyR/zA0RJ6D+4c50wJW7OJyCIGWJQxvE6XnJ3r7fqV7Na1+g3vHBUkS/hkN2UE0dpxl2lP27u6NPG3V9sp0/YPEVGyGGARJUow/aensnOAXoMkDJ8YvyJ32qUhjD+dARal3vTLJYw7PX7Lb7p2ETRy2qXO/6BM7iLo9/IREWlleV0ASkMZVtnJVFPOsbajsrIjlTPWYsK4HVKmSyEwoBDYtMjrkmSABI/bwh4SL+mdEFsdidzFFiyHZdqTVjI2clJm7WzebymlMvCAO25qCANGeXNdsFthHnVCuOVw6kVpcB3LwGOFiDIbAyyiBBX1TeBLrCi4YuDoNKgk+lTfodx2Thl8HDDuNPe2Z16+8bLtBljDxgNfuykUbsFOslyu0xQwvyuP2aT5fqcTpTdbAVZrayteeOEFbN261a3ykAG2jGUGz+5pvJla1tk2Va+B7lxcSgYkvtyuPdPjgtfckNqjpbDI5E0PD1y3u5tplx/wcHBDz77pcWzG09muc0SpZivAysnJwV//+lfU1ta6VZ601WeIhFMu9jZNd1GfzLjwp0J2rvPbqqC744tMXCJ3zzS64wayXDzW02g7ZKLTLwth6oW8ltklIHMfxHl1SuboTIY96SwJ407jlBxEZM52F8GJEydi06ZNbpQlrfUfIaF7idelSI1MuIef9nXnf0VegeOLTFwm7CQTOXnqf3PAduYo6O5tC0XaEpC5571H57ded8/sXGDAKCA7J803Nq+ZRK6yHWD95Cc/wRtvvIHXXnsNBw4cQGPj/2/vzsOkqO69gX+ru2ffNwYYZgYYmGEYZphh3xFEJYrKEhci+mj0JvoqMffNfWNcbqKJEU2uMWpyc2O4GkyMRr2o0Rg0cRdwXxAvwSVRAVH2ZRZgmDrvHz1L90wvVdWnqk51fz/PwwN0V1f96pxTp+pXy6l2dHR0hP1JaR7vc73El8BVDDfO9Cp1hSuJlQxJrHJT4bjDrtsCQyXj1ZScAmHbO6wSpWnJWeZAhHVzaCONedIs5OgpM8d7Be+LcPTnT/PeehCpyvR5wrPPPhsAcOONN+LHP/5xxGm2bNmSWFRkWvEQAcG7FpQ2YpzAZ1tS4fDdXXnFwN6dcuc5/XQdGx9PjjGBRrfo6DymYff24P89cUilSJAzzhBoPwSsf0y97TiZEywVz3ooGJJhJUMFhtYAW14N/7xqDPDP99yJiSjZmE6wbrrpJmi8H2eAnh2bW/u3SScJvP6Ue/WiaQJCOLx8jx1M+ANQYq+s+QSErkAgCXC66vNiDS4QQckQgb071SxjfxrQeSzkA5sKMxl3EzLWad459p0JS9YEKwmbkmsq6wTqp0ZuKMm4zRK5xXSCtXTpUjviIAPqp+rY8qqcs+gVowRGtQi88JD5+ZUOBb78NPyz2csEXnyYvXM8E04UeO0v7pbTuJkC773UF0PPTpW1101GQShemJ44kNKi/NuknsGHXn3SnSuQgTSB4519K5CWIX8ZzSck9+0LnmivHjFmcpJm4USKsbzH+eijj/Doo4/iv/7rv7B7924AwKefforW1lZpwXmSjX3XkJGJ/b7/yEcZEUZIMqJsmMCMM5J7h26ElZ1+YVno/+xrLJbm7OGDGB6AWVc2zO0IDEhgUykohdQBiMxcJdI02L5dZecLDKoK/jtpbxN3aPv2+ZM/+dCS405nsolXXpHhBaY3tba2Nlx55ZVYtGgRrrvuOtx+++3YtWsXAOBnP/sZfvnLX0oPkmyQ4A4rt1BKFABSeXj55M8K3HhnTF6x44v0NDuuqBiSxM1/7DQdg4eLYFu0aRNIzxw446S9RdChttI4S04BFg5K0oqgpDf5FLZdWUwnWDfffDPefvtt/Pa3v8Vbb70FEdKjz507Fy+99JLUAMkeKh3b8OqDs5ws7sJBDi6s29CRQGGZ9Z1ESrTHVFhHCTKyrLWjYbVA0xzhSFsKXYYbCZYT65iW7vwyE1E7gQep5E2qb1teYjrBevrpp/Fv//ZvmDZtGvx+f9h3Q4cOxY4dO6QF5yle60+5EaWuaHXvpTbRf3sLiV3TgPLhXtsgSUVNcwUaZobfd2c6iXFwu3LtXYw2r6PXrkrnlbgdgTWaJiJeGSUi80wnWEePHkVhYWHE79ra2gYkXSSP3WcWEhndqv+LX81w44yJUi8FtkEy3Wc/e2myPljiTXOWpVZ9JNw92XS8Gmm2gTR7lqWEkBXuPOpeGMmuqNztCMhVXjrRqjjTh2GNjY147LHHIn731FNPoaWlJeGgvKz/2c2GGWoejERKahJ5FiPSSwtVNbzBmVt33NQ8N7whWl3fyjr3z2Zm5QKZufLiKHLhuTDVJNL8/abHnrUWg9UYE33RdLwYvNTXJauO1iTvwN3CYk15qjcBLz3faHpXceWVV+Lpp5/GhRdeiIceegiapuGFF17A//t//w/r1q3DypUr7YjTsypGuR2BfNKbt8JbdH6pNzbm5nl62IAS+TFuUYmWSEeqhvRM4cpAFWaZaUKZ2cGXPqtiZJPzsQweEVzm8AYLy1Z4ewWACQvsLc/sfJM/iFJeLfPVPPnmdQVu9NnqdCdEyc1D25rpBGvSpEn47W9/i2PHjuFHP/oRhBC48847sW3bNtxzzz1oamqyI07lmanzrDzzLSQ7z/RPPEPlq0leuOM1p0BgUKXxKwvFg03M3KW6ye63jQyqjPOD/nHG2MQ0TZ1bKE86X8eoZuf3GLmFwILzdNROlLtsu0YENTNXu/sT0/OPEnwy3aasUheea/Kl4KGycuXEoFJ5mOHVuIlUZOkwY+LEifjDH/6AN998Ey+88ALeeustPPDAA5g4caLs+JLS9EUCgTRzByKJPOMUiUpJjRtn8I2K9UB7pDJ0+vJ1Zq7AxJOML9MXMHd7pFvPn8xaEv7D2gkCfpPbjBe4uR36bDh5kOg8ayfxqo5hEjeHYbXy5hVN0xyH6jaBcskvARpnWYtzfJK/7DmatPTk65eTQXa+xXpR6NjQ60wnWBs3bkRHRwcAIDMzE+Xl5cjKsvjG2mRi8uWTPivPMchs+IpsROmZot/Ld71tVIuzO5uqOoHM7ARnovX7WyZJ8/T5gZIhcualafDUbQaqiVWliT6fNHh4Yr+XTkb7VaSvjWVQJRLvR+LIMXtrZT9ObbKDqq39rqxCbhyusNBWdYkVU17NjjlRg6qCZShrf6kaL7UQ04f5X//61+H3+1FfX49JkyZh4sSJmDhxIoqKErgun0QMDeHrgR2uU1S6khaRya3ZZ2F9cgoE2g4qWhAqhWWiLrzUCfc3tEbg849jF3xVvcBnW1SqnKBAevxpSBLJ1Z+eoeFIu41nvaNMUzFKYMdH6rRlvx9oPkGXftdIshISL9zlFgp8+ak6bcGLGmYIDK0RKCgFtm1NvrLMzgMO7nY7CmNMJ1gbNmzAG2+8gTfffBOvvfYa7r33Xui6jpEjR2LixImYNGkSzjjjDDti9QYbjuxKK4Iz9eIFLH9AYOqpAhv+ZMNDLwmWdct8HZ9t0bB3p7XSMPM+nBGNfRPPXqpD14H1jwbLJD0TaDtoKQSpopaCin10vLKP8X1escDRDhVXKsjIaJ7DRstNsOado+O5PxrcRtUtOlsom6yrFJjFWMZM1lFVD2MJloPrO6jKuWV5nkrtkOAPBK9IW32Vgerde90kgZ3/UD3KINMJVlFREU466SScdNJJAID29na88soruOeee/Dggw/ioYceSukES/YFrNpJOqrrB35eNFig9QDQeST63IbVCmz/IMr3ibRPU0+cBx+oH/CxJiCEuxtJ2TCgbJjA0/dGjyPWqkbswKLMKjOnb06yHqR2gje6MXNXQofVAh+/a08cuUUCrfs15BQAez+3OBMXDljSMgB/mkBXp1dq3ENS4AA0jVd7koKlrd8HIDUfP1NSwj24zbuAQJrAcYv7maJygTQP3SVh6Y0mbW1tePvtt3uvZG3atAkZGRk44YQTONCF5J1pRmbkg8fJJwu88VcN+3b2fRb6gPmwWoGx02IkWJQw3cRORZla8PDBnqzQ7XyP0YQTBXb+Q6CyDkrewqeUOMWT0f1MUEaW8HS7lWlUi0D7IaB2ksD7G+S2r0SKuNrgLauaT0Do5uIOPTlFNrPQpNjLKUqBilH68QcHmE6wli5diq1bt6KkpASTJk3CwoULce2116Kurg6a8g/U2MeNXcDoFoHXvgDGzQouvX6qwMuPBOsgXlU4VVUqtghT696vYgNpwPHO4L/1LmkhqUvFCpTBpg02+I4te+YdypbtV4Hj2NDVqp0o4PMHD95bD7gVkQQS6yo7r2+EzfflzTZhRkePnLNM4IWHkq9TUWDTsWTKV3Ts2aHhH5sSqJMEq3NUi46P3u4765WeJXBM4Vu4lZdg0cnct4xsFHjv5dStS9Pncrdu3YpAIIDm5ma0tLRgwoQJKZ9cAejtYZ0c5KKgFFiwQmDIiOD/Q9+VFS2Oou6XxhZ54OWx8biyBiF150/r+/fMM5PgHgkb7ia1JkrNirhT9H3v5eateFfqVFefngmMnSaQU+DM8qJKtC15uS1KluHAgMOe3vYdVliGhN/Dl2h3ELZ9a/a8PoLUkfD2qfj+MZTpK1hvvPFG7+2BTz/9NG699VakpaVhwoQJmDRpEiZPnozm5mYbQqVIzB7sTJgv0HZQIK/Y6C8EorXoyafoeP0pRd7YmoC5X9XxwsOR16N/XxBaEoWlff/ueWlo1PrwUKfgPvPjqHvx/E56VvxE0lEyypAHt47pPBqssK7jLgdikNHkKjtPoP1w7Mbo8wvoXZGnkf0C555lmbpV0YP9kWsU7zNitTWiWEwnWFlZWZgxYwZmzJgBAOjs7MTGjRvxm9/8Brfeeis0TcOWLVukB+oV0s+eSd6u/YHgyxRNLT/KOuXKGJk/wTsTZBR3Rqz3vySwAJUT0EGVAru2GXhmItH2p/jO003DRrsdgb1Khgrs2RG9AaXMIYvNK3qkzb4Xu+UVCRzer8W9bcvIfs/osOctJwqsfzTePe7G5iVF97qlp/DrPmM+S+OxDdnIazDCeGz9evbZHgs7KVka5GLfvn144403ev9s3boVuq5j9OjRHOTCTgluMVZ2wQnvum3cyp0+ds8vESgbkoaPN3efMo6zbgUKv0B5/AkCf/1d+AokWlWZuQJHWvvNxcBMayfq+OBNZxPRVL6NKOGkOdbvQ74rGwZsfT3BZSUDD7e1pjkCRzsE9n2h4R+bnFmmX9FbxGI1++p6D1dyiKE1wME95n4je9Q6uxODcTP7EqzRE3R8+JaaJ0GTVXJsKcaYTrBOOeUUfPbZZ70vG546dSouv/xyTJw4EYWFhTaE6DESWs+iC7PwxG87APTb2bjRMhPMsAZVSovEVb6AwIzTgX+8E2WCOHuFvZ9rGDbahgq0uDcKPcjWBvzD2vwzMoEJ83W8/ayGjv6JVgxDRgAfvBn6SeRycqz589SfFHbftulPE6idILDl1YEHSFl5Ah1xbjMzwou3nsrkDwDFg4H9X0a/VRyA3I3TSJnHWp7kjiLe7PwBgeEN5kaVVZWllytb2EYaZup4f72x2/L7D4JBBinadyUUlmZvn9wwQ8f7G+S1NdMJ1mmnndb7nFVWVgpfM+/PzCAXcRSU+NAyT2DnP4HSYdbmEakROr29+fwC9VNT6XxF9I3/aLuzcbgltzD4TqWOVhtmHqspyWzckptsZZ2A0IEvPgWOH7MW6ODhAiUVIupBiZNiroEAhjcIHNgd+VmYytF+bPtQzvCbWTlAZR2w5dXo02RkK9D/SGybqZ7wqSjmLeYeY6l9WfhN6PPLrl7SMLBsbnJyKdAjRzW0Bnh/g7z5mU6wvvWtb8lbehKSNYhgeTVQVtlvbg5s6SObRNiQrZEuYIWOVhhL2bDgGVAv64k/0svttCj/jvWZbHYvw7M7F4V68TFTBDQN+OJT66WZlgFU1ADvr5cYmE1qJ0Yv/GE1cRIsA0UUSBfxE1WF6t/TDDbZjKzg81oFZTD37sXuSbPzBdoPaTEXafTkpdNVnwxJr5X3k/X+1sJvUvkWbepTVC6w/0vjLcj24x3JC7B0+Ltt2zasXr0ab731Fg4cOIDCwkJMnDgRF198MSork+SeMKtsHKbdiX58VLNAzXiB5x7QcLxTQ04BcHh/+DRF5YnHM7QG2PERUDEqgZnEkcgbw3s0zBD4+2vA6AlxbpFRnYHQiwfbH4Y0cbazRPbfgbT401jh4dYjjRcPrMqrgH++J1BZ58HgzUhg9TQfMP304Awsvdze7LIVqoreNq1QTGbNP1dA6DFWwM7Oy8WO0cNVJlVapkDnEYcqIqTQy6vNJVheY/p+k82bN+PMM8/E008/jXHjxmHx4sUYN24cnn76aSxevBjvv6/S6w+dY3RDbZ6nh2XJ2fnGN3HNF3wx4Iwz4t/sHelAxuiSNA2YuVhg0sm6uREHTRjZJDD9dB014+3r4ka1JD7v7DxgwokCeZFGTIx0G2aCd3DVT7XnRv6iQcG/S4ZEnybS/fdFFpKuwcPNl/vspTrSMsJ/N3aajnEzjZWH2S460vYxfm5w2/L6VVfZhtUK12+1C12607vjQHrw5b7VYx1esEsyor0+IIpB/e+0SJSBCo65RI8dNTfOcv/hLX8g2M4pAgPtUfN5rNH1U+XgyaPqsUBWrsC4WXpSXP2NxfShxC233IKxY8fiN7/5TdgzWB0dHfjGN76BW265Bffee6/UIL0k1hnasmEi4UEfCh0amS4jK/hn5z9iTJTIEOsaIictJuQVAYf2Rv8+LSOx+VuRW5jY7ytGxX6mxKpRzQL5xQJlkZ7pi1GP+Ybfl9anemz/QSvi0ICs3OALJw/s6vt4WK25eSQqIztYf7HalDIc3DH5fMD4uQKv/YWDRlC42Ut1ZOW6HUWfvGI1DnTNNPPiIcD0RTo2PpHY2bkxk3X8/XWbntF0qFi92j3Y96KEyEJvqZUzv+DfPn9wLdLSBTotPi8cT2a2wOylwX9v+8CWRSjD9Nb43nvv4ZJLLhkwwEVWVha+/vWvY9Mmh8ZyVVWMrWxQtRqdf7IYP9dceQ6tEdA0gYoERvOLd4uTqgeQ/gAwZKS5s5TpmdbKKawM3GryCm1qqrYJMwpK409jhMxbBBWqYuc43JbiLc6O5MrKFeSeA0NbtrWehhbtNVAJLlNWzGlWRgB0wOARybOlNp/g/tVGO+QWApMX6pi9NFhXJ5wt0DzPnnUtrej7d6JNv2SoUOakSiSmE6yMjAwcOHAg4ncHDx5ERoYLlw0UMnqigC+gboUnE7OjN1WPFViwQhgepMPUbVFJcBBti37lMqhKzrYR2klLYyG0SScn5w5XadzWkprPg+/BUoGt8Tm58v36YSt3UVhdViRhg1lFOGIuGSKUbBxmE/eiQcG7loDgetpxsmLs9ASvePeLqXaisO2ZaRlMJ1gnnHAC/uM//gNvvPFG2OdvvPEGbr31VsybN09acF6UXwzMP0edBKthOg8AQxntNGYt0THzzNj1GG9ejrcC2R2iDR1s8WA5Vw/HTEmsdLPzov/eTOLulYFBCgclVl5Gt5t4S5Gy01ane3Wc48dxzj/3bkhGjDfEOD2Qiozl+WQ892ljXSUy68SvUgATF5g7jhnR6FwjyMpLjrsUnODrn3EkWG6JPmZiN9MJ1ve+9z1UVlZixYoVmDlzJs444wzMmjUL559/PiorK3HVVVfZEaf6YmzPY6fpyC8RKK9yLpweFaOdX2YyyM6zPppcVb1AWaVwvtN1/llz1yQ6EEXE7aJ7hTOygGmLdMw9K/ZO3ZYXR9ukZV78WKPWt10Nwcx8I4SvcvtMNkIkVtoTT4pzgGxyU5q4QIQPxuHhxqBpQE6+jBlJmIcdJNxCWTLU3G9GSxjgSsVleY7kNtkzu2G1AiObhKFlJHpyMRGGD1OOHDmCF154ATt27MDy5cuxYsUKfPLJJ9i9ezfKysowfvx4zJo1y85YPWtYbbBBOCkVzqiouopjJjtY16oWQg+X+rZ4i/X5AH9AoOt45AI0clvK2One2LFmZAtDt10ZXpsE2pzXnsFKpStudoZp5rYgI0WeUwCMmyXw5l/d7wB72ojmC94ulp0PS9uI2XcCDYjD8i8Tk3C76T+DOCtSPVag8yjw+cexJ2yaq2PTC7GvIcho8/64J2IFapoF2g5o+OIT99uro+I9s25xtmOn9c041jwGjxCoGAW8+VeLC0qQoQRr27ZtuPDCC7Fjx47ez3Jzc3Hbbbdh9uzZtgXnWR7ahrJyBTpaPRRwImw8gpBWgqbHG5e14BjcvD/E6GK0fu8pi1IuFaNcPNp1qCzGTNHx99dsGk0sDkdWMcZCeEu0BIruDmIm5woksZoGTDwpGIgr73tTtN5Mi1N26ZkCdZPiJ1ilJq96WRWv2OedK5CWDmx60ZFw+nihPdgco9tFYGgv/NOf/hQ+nw/33Xcf3n33Xfz5z39GfX09rr/+epvDI6uMdvDNJ1jfEyR0djfhe2/jx+3UkPbK8MAzWAmJVeUGY22Y0TcTu97xFpVDB11VY5xZDoAB7ylz5BmsGHL73ZOvRBMOCWLKVxROABVIUgAkXGlefAZLBmlt3en1sWkjldbXKNGJeFSKl52hBOvtt9/Gt7/9bUycOBEZGRmoqanBD3/4Q3z++efYtWtX/BmQslQd2nX83OgHIvVTdUxbFH8vkJYBzDtXkQMaFZ5j8QoJ62Rk59o0R2B0iyLtw0ZGz+RGK7JYRTm0xmw0Erl4YFtaYX7huUXC9EmfAc/5JeP2HsHwBpPlK6FcRoyLvExF8id1ebmAZMSuQcntsn9I+aVerqhuCpZzLIYSrN27d6OyMvwNuVVVVRBCYM+ePbYE5jWWm67Lbd7O9ppv8f0Eo1p0lFdH/z6Q3n0AbSD4AaPW2EWFDd/tQS5klYGE9agcE3y4taY5egKVkQWMaEx8WYb1K5/gbY1SZhVVyRAxcMRFk/UUyEiCHbNkmTn2L8PnF64/5yfrKoDZ+YxyYeCAnMLIy+wZsTDayciEyyjVr7TYVdURyqOyzvl25dVqcUSU6tB8kuopSuFXj3WmHbhzo34y8ugxiB1hj5mso2GGjuqxcuc76WQdlXWiL/nyaJn3qBoTXIGkeRGjkdVIYFXN/DQtHZiyUGBQZfxp3ZLoyGxGDKoWA0ZcjDYCY6TyzcgWqK6XF09ZhcSXHEUoPhm3azm18yVgULSRdRWqgokLBAYPF6ifqlBQDul5gXOio7a6IVLvGu0qpdn5WJlGlVtJnRTvNvxoRTLzDIG6STqGjLSn0Jxqz4YXc8kll8DvH7hzvPDCCwd8vnHjxsQjSxVJeHojLRMYMkL+fIsHJ/geJYmxyFh43SSBYbUCOQXAllckLCMJ21KiUmE0TUNCymHwcOM/a5gh90WOeYUSz+klsEH7AgJ6lBEkaycKfPq/7jec+mnJfUQ2tEYgs/udc6Frqmly++qcAoG2g331OeUrOvZ/AXz4dnhbjFbjuYXB24lVJ6uvC13TeecIdB0XeOd5czP3+QR0XYsaV9gLe7Uo/3aAEye57JCeAbS7HYQBVl8/kJ0PVI8Fuo4L7PxHXx3JGqHZ5+s3KJZNDCVYV1xxhd1xJBVvbrIW2PVwqokJB1UJ7PrMuRKXeRZK8wV33soyW6wGpjdUfBaqM9pPUvGsYSit399A9Ntmk6HfMnKQmZYuMOVUgfWPRp5YlaS8ovv5tilf0fHaX1LsZhOJdTBupsCrT/bNsLAMOLR34HQp3lVE5A9YO9tfN1lgy6sDK3HcLB0Hd2vIzpMQnEOGNwh8+Hb0Bhn3cQUb+pOa8QJv/s39jmrmmTrWP5ZA3xRnowtte3WTdeQURJjI/WKIiglWCvD5BfQuTc7LDA1wqr1rWnAUxKfvNbZEo3H1vsDOZCxJR8I6pWdKPFPUr1oqRgns+EiL9JUnRHsGy451CSbzIvIOKhaPFWxPQh0r7JHjhWN9oQyhA2MkUzcT1mfKbGcKtNmk3B+YMKwWOLBLIKdAoP1wX2EMHQkM7X/bl4PPYFlROCj+PJ2u7rQMAxM5EJSZ99tFYqbqraxOQakzV6qiSbHTYqkjtIOftUSgZb6OovII0yWyjAR+6wajG7M/oMAe2kHxDgbyimJ/H0vPA+KmGCz+qvr4E7p5oDNmio5RMQbZSIjJ9dI0YPrpAuPnJt62rRdp+LJT5SC0rCL4d/Fgd+OwIlYdJTJIi2x25WpOSvhqu0Lbk6YBjbMFRja5HUk/BspoaI2FipBU9jPP1DFnWfKPbNtjcIzBzPqzsnlU1kb+PCxpthETLEnCKl+Bji60s87MBsqGRZnOmXAGUKCIwuQaeK9WqqoZn1jZ9DwoLVvowZ9q7QkIvo9KpQOMeAlNWaQBQcwWrF2bkVtXOCQ0rPppAuPn6hg9QcJKONDQjS6ioFT+sjNzgmUUqa0WlABlwwTGTLHnAFSdPsRaO1EnfpPcftSgn/LqGOVv82FCTgGQbuWkpEelZSQ+smP0ZydF+LN+3YY3CMdOdjHBksSznZsdVBm21oSw9814KNeys6h65u0PBEeTk8LIbCSuVCBd3ryc4lZfMtb2QRVcWDMFOuZAGlBeDUQYI8rbopRttOHOTc1a60u2ej/zAS3zRe+LtEOTMBkt1/MnGzXYd8U8AZ6/Uu3iIBxusnT3iYL6t7/8Eue2dCZYCcrKD45sVz7c7UgoIps7xMHDBQrL5G2wSvXfir2fxUopZ2YD2fkeypjh3oGelKFrE6xraQdj3qrypDL1KwkUvlIdYGyNswUC6cKBExPGaDD4bI4VsVZRjdUfyNDY6XIW1XOrm5UTkYH0ficSZAQkYT75JcC4mTpmnBEjaVd4e+15JKZ4MDBkuDtnt5hgJSg9A5h0ski+s5MJiPTg45CRAoWDVO2J+4nRaRSUhG8yTXMEpiRyQOFxwTp1aP0tLiba7bFkQKQyj7VTtakplFUGzzzWT9UHLD/T7EFNxPhTdxvuEfEZoJjPYEX+3FKibqH4Q+MNC8WhqiwZAsw/V0R8ttkU1Q5SU2BT6EmEcg1cbTVSPfVTgfnLMjBmsvlYHNs/WajXoTVyRzq24wXtg6oir1jPLdk+HzB/WZS3hNuMCVaKM9u3B0dliWzWEh3j5+oR781vnCUwZWG0PaJDjHYwMaarHW/xNL9d6+tQOfYM7R1ICy+cKQuFqasOOYXBv9PSU2AvTjFFOtse7UF/fwCYdppAZd3A72YtERgyUiAzRyC/uPtDk9tFMg9db1pKrrQ7qz14uLz3zGXl8bUUoWLtl6adJtA0Rzd255GBZ319fmDI8EDUfsQVZhq0A+2meqyEkxERDK2J/HnUix4ObugefD83yWRmu6qbrMd8SWl2Hjz1fgsrfH7Fjj5s7BhD13T8XIH/fQVomC6w8Qlt4IQG4ygZAjTP01FQArzwcGJlmVMQPHtVNEig63hCs1KKYi1MuumLBPZ9KcKGH0+Ezx88gRMmSQ807XyeJTtXQ9shgYxs4EibfcuRJVJZJJJguNFkxvVvtyb5/ALTTxfQu5J/32vF6BYd/jTg76+FZz4ZWeZeuO6oJN0BVIwydzI2YQqUo0r5Nimuut7jDz4qsMF5VX5J8KxfXnGEL00cI2gaMKgSyMhOPKae96BVj018XipJ0tygV0FpsC9xjYIFPKzW/aBmnpaBitECTbOdj6VniRG7aJP9tupXcXw+eQFmZgM5+Ym9SiNRMotbkzzDEY3oHRTFLaoM8lEyJPh3aUWEApYQY6KjASYjJlg2UGWDsp3i66lp7tyb7ygnhhG0Z/LUk+IFNHi4whtgtLqJ9mJRyXU5qtn9ssnJ96FxZvgztFZWU/r+z+QJHNVVxTu54IF1kMpi07cyXL/dRev+VhxdbpHA3LN0tMx3JsrhDSqXhjN4i2CScmJH4/MBoyfoUq5GJKJ4sEC6O88wypdAvbm9X2Z3GkcKF1BBmUDjLLejkEf1qySOcLvDiSDZ6yUtQ6DzqPMFn1Cxmg03ZPqKUdGX7IVk2k2RyifqHUhxKjgtU6DzyMAZRquCQVXC8Hv/8opEjDkZoPCJYF7BSlJGdzSJNrYR44ChIxOcSYImnSzQNEfentWOfbQTCaBKxxZDa4LRmHqoNc4KJPvBky0UOQgpHSoMjS5n5KBJkVVKDQpdIbe8GIUbjNnQ5p9rSxi2iruO/Sfo7uczcwUaZrjf6cdqP5rmfnxOMPvqhcxs49tdxSigdqJ672+TgVewKGXIHG7UrJGN3uuIzR6YhE4+bqbA2OkiOKqS9FU3OUNVil7lkTMV4UgSrfABd7JSLclRLR6jXIs7ge2ytEJg+4da1OG0o7FlVSXOdP5y3Zb68GrbDGNiHTQfMHgE8MGb9oXjFl7Bcsm4mQI+vzovKUwFPoPvKrPjalMgXf48Vdc7ZK3RztamHQu3sORkORlLkQZRXi1QPVbSyib4XHzc/i/mKBfm9G8XkdoJr4ZHJ7toyiqBGWfo0e8y8WhdBNIivPPN7HsDvU6BdZMVgh1X0Zhg2cjnj95zlA4FFpwnUDzYwYAi8GjfZqto71VQnQJ9XUSqxpWIkU0e2XJ4htUT7ChTnx+omyQwqNLdtjp7qW74XU8yRhFMKR4oG00L3j0i6x1RPSdALb3Q2kXJntR7bf2mn65jVEtfUjW8Qf4yPNZEvWP+cl2tl86RYaw3uQz3u/EmlHiWOxElQ4Tro74xyZFcBklYnj3lU1AmsGubeysYOiphKKciUm1bCbuTIjQ2K12Kxw5qIzJYP9NO0/HlZxqGdD/zPXg4sGeHwBefKFbBySgZ2lmP7uaSVxQ81vvobfsWxUNJmwTSjN+S1qNmvI7pi5xtyeyakkey9IHx2qRbbbbnOboKBd5Z5BQ3368jhdHGYrJKVThoz8yOHbSMM8p2rGfPO7/KjQ7bn0SbW8lQgeFxbtt0u2mNGi+gaQKNswzeMiWxfvwxrnTmlwCjW0TvCVCfH2iaI1BUbm8DSXQbcLs+U5UKfTSvYCmkYjSQHeVsX7KJPTKPc3GQelQ9nqppFqiqT6JXAsRQN1nHkBHOjH5plZu3pJRVCmzbqrn6bq+sPOBIu2uLt3zkWD81eAXYtrZloErc2sc0zxPwxznxaqpF2bAe+SXAghXC0TKadLKOzz/WUDEa+GSzc8slMmJ4g8An75vfIJhgJSnVkxSv3a+bKCfqQ/Eqj8+uFZDU1jTNvoSjtEJgz45gAaSlJ/heEAnsXFcn1DQJvL9Rs230ztKhwWeLMt18B6DLG7zVxUdqW0rsDpQIIjGlFXLm4/TxQ/Hg4PssVad+hNHFqlJHBm+1q00lMNpxz3vB/IHYJZBTYG2fzAQrSaVaAhOV57OOFCD6/R1nMq+K1RSb5wns+iyYZFWPBT5+17GwklLFaKB8uPHBFayI9myRJYr3U45te4qXgxM0WC/v7Lzg89/P3m/v0x/pmQLHIrx4Vgav9/PJyO46cWuzD6QDc5bppkd5zikwNh2fwaLklQI767CzQkmyvqZfTGnoR2rz+YIPbY+bKQYkBZnZAsMbeNhhlqnkKkr7Uf1OgEgyc4JtJSdfxkNYic/CiNzuA5ac/MRjsLzWNq1rw4y+Z5mcKE47TyoAwdv5qupTqD/yYB9gViJXo70uM8fANtN/PQ2uNxMsIoWY7bBCr1TWTRLILxGYeJJab0W3lDBFEmuf7oH9fWFZvw8Mrvecrwq5V0tsNKTGAxWR5KYsFKidpKPahmGH7dI4W2BEo0DDDIvtJ8ZofOlZlsOSomJU37+9unX0xO3zBV8tY+eBtWrH7HbGU1phb4uYtijkWCCBFQnwXjdLmGARJYmsXGDaaQIlQ9yOhCJpmCkwZkrIDk/hoy0rB1CDKgXKJD0D4jiF68KszBxg+FjEHUzBiJjNQOKRZ0ZWcIS4iM/9JVg3mdnhV5GicqENeO4KQE+8Ht1ezI7sPICV9Y5Sx3PP0tEy396CzC82Nl28KDLcfNZUAVY3UyZYpJzyarcj8A7P7aDtEqMcVHkeMS0dqBrjdhT2SctwO4LUktGdjGRkKdLAFSZr8AennHC2jppmhe5EcLCJ2bGoSSfrGDdTR5rJZ20A2HYJyx/g/tsVDpY5L/wphNsaUD9V98ztUGRM3B0mjw/JDDs6Sg92vnWTBXx+8Pk8AzKygOZ5cfYtCo30mp4Z5Xk0sqR4sKQZxalAMyfzkiW5GlQlsOszDWXDBLZ/YHGlEigLlYuRCVaKS88EsvMECvo/H+IWiVuLShtesnSmoVrmO3uGtWffZbYo80uCQ6wGh1pVSIwVaZyt472XeINBqrDSPWRkBQdFoXDRDnIHVTobRyz5JQLth8z9ZtaiDABHbInHtCTcnxmSpJtbItXZNEeg47AwPLKeVT4P7g6ZYKnEhU5L8wEzFzv7UkFKDmXDgn87ts+xmGENrQECaTqKyqVHpIwhIwV2/mNgwcjcrE/8mkK3LAFSGx67vyhUeCG8meUk0iYc6Mh6FjH1VGF6eUrto0XEf6Y8perIhETq0OczOGy5xbJpnqdjx4cahtZY+70UFmNngqUSl3oqr3YKpJhoQ11b/J0smqbmc30yz8gl/PC2Af6QvUXLfB1+m4eDdpLrB4nsgxPiteLTNHgvaIrL1PO+rH9DBlUGB1CKSuFyZIJFZNLYaQKa5vohmXpYJIa0nKhj2981VNbJm6f0fUycGfZcvXSVwjvWZBMIBG+zVVW0rmfSKSauurr8DJYnuk91m4BtEj0B3ftzEeXzCJrn6fAHgDf/GvksnBMn1JKVkxcUPHhXYxJLwc4rlrrJit2S1K1qDFAx2uSPUrhuOchFuLIKYMKJA18oHMZEmZTFOrtnUVaO9FnKl2Ltxg093VblGGDwcIFJJ7vQJydwVaDYi7cFe21fwe1QukGViPm6lZwCoGqMQONsa9tjbpG9lea1JhwPh2mnpFNdn/g8km1DV5qKz2QkqdCzcAWlQtoxzqzFOhpm6CgZKmmGNnByEEHePh0USAs+zC5tNDYbWX4tgyqJguj3dwxOt09bFqdKudvFhkLTNGDMFIEhI6zF4cUBI7yIxUzkIaXDRPj7UTxwAOiBEKlbdj5QMYqJBXWL1Q4MtJHZSx264hVykJ6RFfzb51PnyD23UAAQ0GIccam8ybnyLkGVC0Qi9rVqG5XA++iYYCmEGxqFqps0cMOumyhQ0+RCMHYy2e65mRC5p3GWDk0TGDU+/lF3eqaEBZrc4Ec2ClTWCUw9TZ0Ea/rpAgtWxB6tV51oHRatTJK9QLrX20jympWb7IVhnaYF359qh6JygZEJHG+lbIK1evVqLFq0CIsWLcIzzzzjaiz103RUjRFydkakJCtJQW6h7CjcURzjXnIzXDmL6hXRyobZKEk2ZCSwYIVAfonbkUQWSAfqpwrkFZn8oY3biqaZuC2L26xSTJ34NriPqq4Xpm7Tq4lxMmPqqTqmfMVkgpFkbayyDva+55LDtBu3detWPPXUU1i7di2OHTuGiy66CHPmzEFamjvjDlfWAsl/uobs4IV+ctxMgece0KKfhWPTJ/KUpLzbgv2QYSyqxNRNlleCBaUSZuJAhSZjlxFPSl7B+vjjj9Hc3Iz09HTk5uaioqICb731ltthkR1U2apVicMFaenBl9TOWszdslMGVQXL2guDEpC6CYsScZnoNpSI1yp2j+FcqssBd0qYicPCLaBOtVnZi2mcpeYozypRMsF6/fXXcemll2LWrFmoq6vDc889N2Ca++67D/Pnz0djYyPOPvtsbNq0yfD8R48ejVdffRWtra3Yu3cv3nrrLXzxxRcyV4FUoIE7LUX4A4j5gLcpXj6IMqioOzEqr7bWgMfPFZi/XEdWrsSgiMxKgW3VLkruurSwv6i/CJXm6aQ/hvLqGF+qvM4OxqbkLYLt7e2oq6vD0qVLsXLlygHfP/nkk1i1ahVuuOEGjB8/HmvWrMEll1yCdevWobi4GABw5plnRpz32rVrMXr0aJxzzjlYsWIFiouL0dzcjEBAyaJIefPO1fHcA0qeByCyTWZ28Kqf1RdKahpiv2eLjFH5QIF6KZmMKGbSKXrvCIumOVnArEznWenn2DfGpWRWMXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPxVzGeeedh/POOw8A8H/+z/9BVVWV5Xh9PnktrWdeic4z+FBt4nGFnn2Rup6aFvEhT63f5xkhA3+YXb7Pp4X1AbF+b2Q9E6kbny/y+vaYtUSg63j4vLUIy+lfPv3/b0W02OK1of7faRE+M7V8E21twLIltNNobdItvvQY34W2E02zbTs1I1Z7CbbT+NtPvO0kOLPw6c2Kt82EztPONhE630jrYfSzeBLp2xJtSzLKL1q7CusHwz6PH3OkqwqakbZngeEy7FdPkWJMpE2UDkmgLvu3oTizMtNuBrSRkKtklvvyBNptrG1AC6mUsH6i+99ahErr/c5AfFH7TwPb5ZCRAhlZsefRU879p7CyncbrqyOVY7Tp+3+eaD8XOo8BcZhc10hxG41OyQQrlmPHjuH999/HZZdd1vuZz+fDjBkz8M477xiez759+1BcXIz//d//xe7du9HY2GgpnkDAh5IS+ffhFBXlWPxlGwAgMzMNJSUZCceRkXkUwHEAkLSewfiKirORleMb8HluTgZKSvqfem8zufzu6Ytzum9La4/7+z05nQCOGVqOuboJxlJcnIPM7OibZUnYiFzB3+TnZQE4EjZdYWE2Ckp8vdPk5kYqL3OxFRWFxtbW+63f70NJSXbU3/WWkwj+P5DmR0mJmVOkPcvPRlauD4FABwAdgIaSkoFlHPAHv/dpA7/fmX0MQGfv+pgTjKOgIAslJRYvGTmmr8yADgBAdnY69E4Budup+ZgyMiL1OcHvsrLSUVQUzBgj14+x7QQAfL52ACJG+4wdZ05vH9PX1kMPjILlF/yusDAb+cX2ZFg+XUdPHRYX56CnnwqPo4fZPrDPFyHbhvG+zfrywn+fA3/A6kFysJ59vsj1fLy9C339Y3AZgYCxPmhvbl9/3yOxvjQSc2WY1t3/ad392+FdxwEcDZsmWD/G++hQifQLPX1vT2yh/W2kw01jywrGmJeXiZKSvkPR3no3uH2npfXsN8wuPzyOHnl5mQgt96LCvr429LtIy8jJyUD/OuuZLj39CICuAb/NyIh1jNW3nw9tr5GWPX9JhFULmUdoOQf6lVlBQRaK4+77wsuppDgHPn//uu/p70P3Bd19aVE28goj96VH2gVC+z8rbdXvD7abePPIzw9vbwP1rWda9zHN4d3h26I/YGyf4LkEa//+/ejq6kJpafjQKSUlJfj0008Nz+eyyy7D4cOHkZeXh5tvvtlyPMeP6zh0qMPy7/vz+TQUFeVg//426LqVa+XBBn/kSCf27u2MM218R4/0zXPv3taE59czr/372tF+ZODnrW1HsXfv0Yi/Mb787un3tcHnA8bNANIyY/++rS3+cqzVTXCe+/a1IcNwMwn+5tDhDvTfeR040N7dFccqL3PL2b+/Dekd4Z8BQFeXHqUsIpWThuPHu0y2ke6y2d+OzKPA8eM9n4mI8+n5XoiB33e0h6+PuW0n+LuDBzugJX5OwmY969je++/29mM2bKfmYzp6NFKfE/yuo+MY9u/vjLH9GN9OdD04ffT2GTvOtt5tpq+tCyEQXn7Bfx842I5Om25ZOnywL6Z9+9rQf1vvv30N/MyY9pBtw3jflmhb6vl9G/wWjzJ66lnXI9ez7gt+n1so0H44+G+jfVBba1+MPVpbE+lLIzFXhp39+rfWCDHu3x9+kBuvjw6VSL9wvKt7nt2xhbap9CyBjsOx2m40wd8cPnwEe/f2fdpb7wa3787OvnmZW354HD0OHz4S9tn+A319beh3ocvo2X7a2ga2n57pjh1DxN8ePRr589DY2lrD+ysr6xdazsf7ldnBgx0QcbfTfmXcfXwVaZrw48/uvnR/O451RZ7z0Y7w+Vtpq109bbTfPHrqpsehQ0eQsRcx9M2js7Mr4rbYdVxHWnr8k7GeS7CiEUJEvDwbzR//+Edpy7aWCMWfZyIJlhBy4hKir0zlrGdwfroQ3R1p+OdiwOchvzGZ1PRMP3QUuv8f/RfBkYOMLcdc3cRar9i/CT3Q6YtT9O6AAEDoZuYbfTl98wg96IxWFv3LyWqb67cOcdqaQPTv9X71ZyWOgW1SRd23PQT62oYQwobt1HxMkeu/+/YYX1/ZRq6fSG0xCsvr2n9bjLy/CN3uDMVjUWgMuhi4rYevm9k+sI+1vs368oL61ktLsH8SUeIIpAMnnC0QSAeevd9cmxAh8+/9THpdmyzDfu06tE8L/Tx2OwlfdvzpDOq/zYXENrJJ4P31RmKKHOOAflfErvdo8zG//Mi/71/GYsD2EL1eY23H0fvoWG03cv+Q0H623zJ75he/7Rtvd+H7gvj71/79cSLHvvHmEf9YbOB8RL9t0Wh0nkuwioqK4Pf7sWfPnrDP9+3bN+CqFlGycfJlu1bPPJN95p6lo/OodwawmHiSjm1bNVTWyZ83n4VXn/FTnjHEqOj0zOjfWZ0nmWNXXySl7cigTCAJirEe2flSZ0fdFHqk25j09HQ0NDRgw4YNvZ/puo6NGzeiubnZvcCSVEb3LdCaj3skp7nZgWXnCTTOUqzOw0+IhUmVzj4jC8gtdDsK40qGAM0nCLkHYQ5WtlOLSpX2azsWpCMU2zN4QtmwYKkNHq5O6WmawIlf0z1zws5xCfYnSp6jbmtrw2effdb7/+3bt2PLli0oLS1FWVkZLrroInz3u99FQ0MDmpqasGbNGhw5cgRLlixxMerkNLwhOLpdxSh1OgUvsvIOqIgX4Ptv8DYdUEw6WSDT6jgrFgW6n3+yfFaayCoemKvLjrrxQn2n+C432Va/YjSQV6wjr8j8b21rrloCd6qotg3ZEM/YqcFWWFoBZOUNfNYwHiUTrM2bN+OCCy7o/f+NN94IALjiiiuwcuVKnHrqqdi3bx/uuOMO7N69G/X19Vi9enXvO7BInkAaUDfJhq4u2XrPOFTri1Q0dqrAVn/wnv5YWJYkW7K+DDRlJLA/CaQJHO/UkFMgL5xkk2K7a1toGlDAp1giktH/Gp6FwQlLK0RvnxBIA2YvEXj63iRIsKZOnYqtW7fGnGbFihVYsWKFQxERJchKB5Jie7XMHGD83OgrPXi4wEfvaBhS42BQlBJ8PmD8XB3pVl/ESkqw0s3OXCzQdlAoc/CrZK7f7/ZsJ2JUshzIFk4+W+5ku1IywSKSQaUOWtYZcic7ItWMGAeUDNWRxwvVZIPy6ggfqtSJkDShL7DPyAr+UV1apBePu9Q+pe6GvLRPixerwuuS7F1ZUTlweL/bUYTz3CAXRF5kKcFys0c0tWxnAtV8wVsszL5xnpKUwgcz5CyzTaGsEhg9Qcf009V5L0O8dRhcHeG9Ow5vA5F6ei8NuhPJnGWx20BS3j6chOs0eoJA4yx1tmeACRaRM7zWoVnYcSfljoiIXNHzLObIRvlZhKYFr4hbGXDALWbe8ylbrBrIyQemn65jylcsHty6vN9wejCnZGG2OdrdfP0BYMhIe5dhFm8RJHKApc7FY2foU/n2xVSWVyxweJ+G/FI2AJJn2Ghg8PDUGULa0vGn08lJlOXlFQGtBxyNxD6p1I0psq7JenKWCRY5yucX0Ls0BCLdT57EPNeBeC1ecs3EBQL7vxQYVOl2JLFpPgGha8jKczsSMipVkiu7ZGQJHO2Q0JkrciDuNteOW7g/lidOWeYUCLQd1Cy9fLk/JljkqBPOFug6Lqy/e8EMdkqOcjWJZF27Jj0zygARipm1OJgIlg1zOxKSLsZLyL1CZg7TM/R8WSWw/QOJM5Yov0Tg0F4N+R4atKioHBgxTqB4iLMZZyo9dzx+rrvPUU1cIPD5xwJV9YnPiwkWOSqQxrOSMsk+niivFjiwy4Mv+03xM6y8PTO+rNzgHxV57go32UdCW5i9VKCjVWD/l5JmaIMpXxE4fkx4al+jacHBFJzSPE/Hl58GE+Ue5dWJL1+1FhG6/3L7ZF1mDjCySc68mGARUa/xcwWEMHfAl1so0HpAs3zwqqXQ2TlbMLnyPM0HzFysIxAAXnhY7gYxrBb48jOB6no2lFSRlhH8E0ywJIqxXzB7ksfn88aJPDdPfgyqBAZVhhfs0FEWt2PVsqoUwASLCMFL/wBQWCb3IGTqqTr0LqmzDGdDp2l2hzLhRIFtW4HhDebKrnmejvbDknay3HmkjGSt6hwJ9/xHkpYOTDvVpeTK4crydNsQMf8bkVPr25M89SwvtyD4d1oGk3anebqNpxgmWEQIjoI0e6mOjGy58y0olTOf6nqBvTsx8MFLBfZvmTnWbptQfVAEIiIaqKwSaJqro7DM7UiC+9j9XwLFgwX2fZF4+pHIQBahe8Gpp+rosvPkahJx8iqhk8tigkXUTdXnMwCgbrICmZTCVK472/GUpm1UeTZqwom6MrGQTTxUv5oGDFZkYJuaZoHcQoHSCuD5BxMsRE303s2SKFknV8m7mGAReZmHdsp2Kq8Gxk4TGNWQjWNd7W6HQyRVaYXbEagtKU8/JeVKyef3A0NrAF3C4HOjxouBJzJM7GOz+NJiCsEEiyjF+fxuR5A4TQOqxgB5hT7s3et2NA7jgRiR96m8HXtgGHwVQiseDIybqaNAgVsnyX1MsIgUlZ0HlFYIFA6yZ887eaGOo+0cNj8tQ6DzqPVREMkdKh+PEiVMhYyhHydC8vp2PbTG7QiM83pZq44JFpGqtOAIfXYpGmTbrD1l9lKBzqMCGVluR0KG2HCUxwONcGOn694sFAWTEssUKn+FQiEZbN5O+LxoEN9AQ0rJ8MB7MSi5BNJSfJAMon6GjQ6+P4vIaTw2j0NGAVnImJvmSHjILcXwChYpYfoiHXs+R9gbyxPFsyiUEtjOKdXxEgvZ1A8mS/ea6PFQyRDj05p96XSy4hUsUkJeMTBiHJOiUMkw+AQ5IMV2Zg0zBHx+gYbpKbbiRG5xcJAL5bZqxY5JpISj2DolK17BIlLMhAU62g4CmZJfekyUDEqGACd+LcJwypTC2BhcJzszcrBKfX4BvUtDVp5zy1SCTdms0n0zXzRMlLpKhwb/GKJyR0ZkE6V34OSapGgXCq+DwqElZOaZAnt3Cgwe7nYk0WXnCbQf1pBT6HYkZBQTLCIiogiS4oCdKEFO3raXnQsc63D2pb1ZucGBXVQ24wyBY0eF6TtbisoF9n+pIb/EnrgoOiZYlHQaZ+k4dtTtKJLXiHHK3SWf2pgEJI5N2hZsmhaYaYtOF7ADy2uaI/DJ+9zP9OfzW3tsYNLJAsc7BdLS5cfkRU5uMkywKOkMGel2BMlt9ATu+JTC6iBSTsv8xIa1VmqzNhCMrHgzc4AxU8zPjVebI9M0SEmuEh0ZMBXrhwkWERGlthTc+ZO9yoZZ/CHbIjlGg2KpfFLhMO1ERB7H944kiOVHFF8KJn/JeOUl0XWafy5fOmwEEywiD0vCvp9SUF5xMMNJy3A5EPKk3KJg+8lOtWG2ncITEEkl0RNyAT7PZQhvESQiIldNO01A6AI+nvIjCybMF9j+IVA91vuZgJmTZk6dYDP0nmHvFz2lAr4Hi4iIUoWmAZrfveWXDInyhQuXiOcv15PntiSH1iMzBxjVzCN8IiOSpn9RHBMsIiJKWcMbBEY2qXNwHkhzOwJykxjwDyKSxcnckjdkEHkYD8aIEjNkhOB2RErLzlMk20qRKx+BdEXKmzyNV7CIPGjSyTp2b9dQVul2JEREJEukHGbWEsfDCJdi+caMMwRefDhYE34eJXvKvHPUGeGQTYfIg4oHA8WDU2yvRyRRbqFA6wENWbluR5LEBFLmqoedVBn8JVWqMjMbWHCeDl0HNEXKnoyJOxItB7kgIiKyz/RFAl3HBYccJiUYHTq7+QQd7zzv7FF/Kp7K8/mDf3R1LoiQxzA3JyKilKP5+D4X26XKJQ8HDaoCAmnOpjzagH8QpS6jozDyChYREVEEPJ60Zs5XdXQd53DQyaJ5nsDmDUDjzFS8lkVkDRMsIiIikiYz2+0IklvZMGDnP4HiaO9vk6ygFJh5RuzkyugtjnYKpAtksO3ZQoX69RomWEREREQqiXFAWz9NYFC1QFmFc+F4wbyzBS87G5CdB+z/EsgpYNZkJyZYREQelpYJ4JDbUSQpHqyRggJpQHmV21GohyP+GVM7SSA9ExhWywTLTmyOREQeNO00HdVjBSpq3I6EiIi8Ii0dGD1BOPuKihQ8WcUrWKS8eefqqbhtEsWUXwLkl/AMJBFF5uMRXsJ47GGeyoPbOBkbNz9SXhqHUiYiIjJlaA2w/wuBoTU8EUPO4YAYQUywiIi8jjs0IurH7wea5rBzIHIDn8EiIiIiUgjTotSg8u10oXwmsgWvrJPdeAWLiIiISAU8OFWLzfXhldvp0jKAmvE6svPdjsQ7mGARERERKcTMFQMiJ9SMdzsCb2GCRUREROSmflcyBg8Hvvi0Z4AKXtYi8homWEREREQK6EmlfH5gwnyP3D9G5BEcpp2IiAzjYRhRcvDqtuyVZ4lUwwEhnDFmssCez4G8IueWyQSLiIiIyE080CayzfAGoKre2bMAfIySiIiIyE0evwKUlRv8O5Du8RVxGK/8JS9ewSIiIiJSgFcvZGVkAbOW6EjPdDsSIjUwwSIiIiKihGTnuR2B9/AZrOTFBIuIiIiIKILcIoHsXLejIK9hgkVEROSwrJzuv3P5EAaRqjQNmL5I8EoTmcYEi4jI63iM7jmBdGDeOTr8aW5HQkSxMLlKXCoWIUcRJCIickFaBuDjXpgoZRWUirC/U1GynmTiFSwiIiIiIodVjALSs3QUlbsdiXv8fmDmmToCSZZoMcEiIiIiInKY5gMGVbodhWQW7gfMKZAfhtt4cwIREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiKyRwqO084Ei4iIiMhFqTtIN1FyYoJFREREpIIUPNNPlIyYYBEREREREUnCBIuIiIiIiEgSJlhERERELqppCj6FVTuRT2MRJYOA2wEQERERpbLyamDBeTp8frcjISIZeAWLiIgoAo0DDpCDmFwRJQ8mWERERBEI3q1FREQWMMEiIiIiIiKShAkWEZHH8UoLERGROphgERERRcBnsIiIyAomWERERBHwyiAREVnBBIuIiIiIiBLGC/9BTLCIiDxuyIjgpZZhtbzkIhNvESQiIiv4omEiIo8bVAXMWaYjI9vtSIiIiIhXsIiIkkBmDq+4EBGRO/JLg3dQFA7inRQAr2AREREREVECJp0k0HpAoKDU7UjUwASLiIiIiIgsC6QBhWVuR6EO3iJIREQUAYdpJyIiK5hgERERERERScIEi4iIKAIOGkJERFYwwSIiIiIiIpKECRYREVEEvIJFRERWcBRBIiKiEI2zdbQfAtIy3I6EiMj7UvFkFRMsIiKiEENGuB0BERF5GW8RJCIiIiIikoQJFhERERER2cLndzsC5/EWQSIiIiIikmrWEh2dR4FAmtuROI8JFhERERERSZWdByDP7SjcwVsEiYiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYCWZonIR9jcRERERETmHg1wkmZb5Aof3CRQOcjsSIiIiIqLUwwQryQTSgKJyt6MgIiIiIkpNvEWQiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJwgSLiIiIiIhIEiZYREREREREkjDBIiIiIiIikoQJFhERERERkSRMsIiIiIiIiCRhgkVERERERCQJEywiIiIiIiJJmGARERERERFJkvQJ1re+9S1MnjwZ//qv/2rocyIiIiIiIquSPsE677zzcMsttxj+nIiIiIiIyKqkT7CmTp2KnJwcw58TERERERFZ5WqC9frrr+PSSy/FrFmzUFdXh+eee27ANPfddx/mz5+PxsZGnH322di0aZMLkRIREREREcUXcHPh7e3tqKurw9KlS7Fy5coB3z/55JNYtWoVbrjhBowfPx5r1qzBJZdcgnXr1qG4uBgAcOaZZ0ac99q1a+H3+22Nv4fPp0mfl8x5khysG7WxftTG+lEX60ZtrB+1sX7UZUfdaAZn5WqCNXfuXMydOzfq9/fccw/OOeccLFu2DABwww034Pnnn8cjjzyCiy++GADw2GOPORJrNIGADyUludLnW1TE2xdVxbpRG+tHbawfdbFu1Mb6URvrR11y6qYNAOD3G7v5z9UEK5Zjx47h/fffx2WXXdb7mc/nw4wZM/DOO++4F1g/x4/rOHSoQ9r8fD4NRUU52L+/DboupM2XEse6URvrR22sH3WxbtTG+lEb60ddcusmeOmqq0tHIC3+HXLKJlj79+9HV1cXSktLwz4vKSnBp59+ang+3/jGN7Bp0yZ0dHRgzpw5uOuuuzBmzJion1thxwal64IbqqJYN2pj/aiN9aMu1o3aWD9qY/2oS07dBBMsYXA2yiZY0QghoBm9ARLAXXfdZepzIiIiIiIiq5Qdpr2oqAh+vx979uwJ+3zfvn0DrmoRERERERGpQNkEKz09HQ0NDdiwYUPvZ7quY+PGjWhubnYvMCIiIiIioihcvUWwra0Nn332We//t2/fji1btqC0tBRlZWW46KKL8N3vfhcNDQ1oamrCmjVrcOTIESxZssTFqImIiIiIiCJzNcHavHkzLrjggt7/33jjjQCAK664AitXrsSpp56Kffv24Y477sDu3btRX1+P1atX974Di4iIiIiISCWuJlhTp07F1q1bY06zYsUKrFixwqGIiIiIiIiIrFP2GSwiIiIiIiKvYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREVEcmmZsOiZYREREREREkjDBIiIiIiIikoQJFhERERERURxCGJuOCRYREREREZEkTLCIiIiIiIji4CAXREREREREDmOCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJAm4HQAREREREZGqGqbrOLhHg89vbHomWERERERERFFUjAYqRgvD0/MWQSIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJEywiIiIiIiIJGGCRUREREREJAkTLCIiIiIiIkmYYBEREREREUnCBIuIiIiIiEgSJlhERERERESSMMEiIiIiIiKShAkWERERERGRJJoQQrgdhJfpukBXly51nmlpfnR2dkmdJ8nBulEb60dtrB91sW7UxvpRG+tHXbLrxu/3wefT4k7HBIuIiIiIiEgS3iJIREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJIwwVLEF198ge985zuYMmUKmpubsXTpUnz88cduh0UA5s+fj7q6ugF/brjhBrdDo26tra24/vrrMXv2bIwfPx6LFi3Co48+6nZYhGDd/PCHP8TcuXMxfvx4XHDBBfjoo4/cDislvf7667j00ksxa9Ys1NXV4bnnngv7/ujRo7jhhhswdepUtLS0YOXKldi7d69L0aaeePXzxz/+Eeeffz4mTJiAuro6tLW1uRRpaopVPwcOHMCPfvQjnHLKKWhqasK8efPw4x//GK2trS5GnDribTs33HADTjrpJDQ1NWHatGm47LLLbD/GZoKlgIMHD+JrX/sa0tPTsXr1ajz++OO48sorkZOT43ZoBODhhx/Gyy+/3PvnnnvuAQAsXLjQ5ciox6pVq7Bx40b87Gc/wxNPPIHly5fj6quvxmuvveZ2aCnv2muvxeuvv45bb70Vjz76KGpqanDRRRfxwMMF7e3tqKurw/e///2I399000147rnn8POf/xy/+93vsGvXLnzrW99yOMrUFa9+Ojo6MHv2bFx66aUOR0ZA7PrZtWsXdu3ahauuugpPPPEEbrrpJrz44ov493//dxciTT3xtp2xY8fipptuwpNPPom7774bmqbhkksuga7r9gUlyHU//elPxfLly90Ogwy68cYbxYIFC4Su626HQt1OO+008V//9V9hn5188sli9erVLkVEQgjR0dEh6uvrxYsvvtj7WVdXl5g+fbq4//77XYyMamtrxbPPPtv7/0OHDomGhgaxbt263s8++ugjUVtbKzZt2uRGiCmtf/2EeuWVV0Rtba1obW11OCrqEat+ejz55JOisbFRdHV1ORQVCWGsbrZs2SJqa2vF9u3bbYuDV7AU8Oyzz2LcuHFYuXIlpk+fjqVLl+Kxxx5zOyyK4NixY/jTn/6EZcuWQdM0t8Ohbi0tLXjmmWfw5ZdfQgiBl156Cbt27cKMGTPcDi2lHT9+HF1dXcjIyOj9zOfzIS0tDW+//baLkVF/mzdvRmdnJ2bOnNn7WU1NDYYOHYp33nnHvcCIPKq1tRV5eXnw+XiorZL29nasXbsWVVVVKC8vt205rHUFbNu2DX/4wx9QU1ODu+++G8uWLcO1116LZ555xu3QqJ+//e1vOHz4MJYsWeJ2KBTiuuuuQ1VVFebMmYNx48bhiiuuwKpVq1BfX+92aCktNzcX48ePxy9+8Qvs3r0bnZ2duPvuu/HFF19gz549bodHIfbs2YPMzEzk5uaGfV5SUsK6IjJp//79+M///E+ce+65bodC3e677z60tLSgpaUFL730Eu6++24EAgHblmffnMkwIQQaGxvx7W9/GwBQX1+PzZs34/7778eJJ57obnAU5n/+538wZ84cW896kHm///3vsWXLFtx1110oLy/Hxo0bcc0112Dw4MFobm52O7yU9tOf/hRXXXUVZs2aBb/fj2nTpmHOnDkQQrgdGvUT6ao864nInNbWVnzzm9/E6NGjcdlll7kdDnU744wzMHPmTOzevRv//d//jW9/+9u4//77kZ6ebsvymGApoLS0FCNHjgz7rKamBps2bXIpIopkx44d2LBhA+688063Q6EQR44cwW233YZf/epXmD17NgBgzJgx2LRpE9asWcMEy2XV1dV44IEH0NraiqNHj6KkpARnn302xo4d63ZoFKK0tBQdHR1obW0Nu4q1b98+lJaWuhgZkXe0trbikksuQXZ2Nu68805br5CQOXl5ecjLy8Pw4cMxfvx4TJkyBc888wy+8pWv2LI83iKogJaWFnz66adhn33yyScYMmSISxFRJGvXrkVJSQlOOOEEt0OhEMePH0dnZyf8fn/Y5z6fz94RgsiU3NxclJSUYNu2bdi8eTPmz5/vdkgUYty4cUhLS8OGDRt6P/vnP/+Jzz//nCcpiAxobW3FxRdfjLS0NPzqV78Ke/aU1COEwLFjx2ybP1NrBVx44YVYvnw57rrrLpxyyil466238Nhjj+H22293OzTqpus61q5di8WLF/OMlGJyc3MxZcoU3HLLLbjuuuswePBgbNiwAevWrcOqVavcDi/lvfjii/D5fKiursZHH32EH//4x5g7dy7mzJnjdmgpp62tDZ999lnv/7dv344tW7agtLQUZWVlWLZsGVatWoX8/Hzk5ubixhtvxKRJk9DY2Ohi1KkjXv3s3r0be/bs6Z3mgw8+QGZmJqqqqvhaFwfEqp+srCx8/etfR0dHB37605+itbW191UUxcXFA04Aklyx6ubYsWN4/PHHMXPmTJSUlGDXrl246667kJmZ2XvXix00wRuslfC3v/0NP//5z/Hpp5+iqqoK//Iv/4LFixe7HRZ1e/nll3HxxRdj3bp1GDFihNvhUD+7d+/GrbfeivXr1+PQoUOoqKjAeeedh/POO8/t0FLeE088gZ/97GfYtWsXiouLccYZZ2DlypU8u+uCV199FRdccMGAz6+44gqsXLkSR48exc0334w///nPOHbsGGbPno0f/OAHvEXQIfHq584778QvfvGLAd/fe++9mDp1qhMhprRY9TNlypSI3wHAM888g2HDhtkdXkqLVTfnnnsurr32WmzevBmHDh1CSUkJJk2ahMsvv3zA4zkyMcEiIiIiIiKShM9gERERERERScIEi4iIiIiISBImWERERERERJIwwSIiIiIiIpKECRYREREREZEkTLCIiIiIiIgkYYJFREREREQkScDtAIiIyHuivfR0+vTp+O1vf+t8QEnk2LFjuO222/Duu+9i8+bNOHr0KLZu3Rp1+uuvvx4HDhzAz3/+c5x//vl47bXXAACBQAD5+fmora3FySefjLPOOgvp6elOrQYRUcpigkVERJbk5eVh9erVAz6jxBw5cgQPP/wwmpqa0NLSgldeeSXm9C+++CK+9a1v9f5/6tSp+L//9/9C13Xs27cPr732Gv7jP/4DDz/8MNasWYP8/Hy7V4GIKKUxwSIiIkv8fj+am5sNTXvkyBFkZmbaG1CSyM/Px2uvvQZN0/D73/8+ZoL1wQcfYOfOnZg9e3bvZ4WFhWH1smDBAixduhTLly/HqlWrsGrVKjvDJyJKeXwGi4iIpNq+fTvq6urwpz/9Cd/97ncxadIkXHrppQCAAwcO4Pvf/z5mzJiBxsZGnHvuuXj33XfDfn/o0CF85zvfQXNzM2bNmoVf/epXuOWWWzB//vzeae68805MnTp1wLLr6urw+9//Puyzhx56CKeddhrGjRuHefPm4Te/+U3Y99/73vewdOlSrF+/Hqeffjqam5uxfPlyfPjhh2HTdXV14de//jVOOeUUjBs3DnPmzMH3vvc9AMB9992HlpYWtLW1hf3mlVdeQV1dHf7+97+bKkNN0wxN9/zzz6OxsRElJSUxpxszZgzOO+88PP7442htbQUA7Nq1C1dffTVOPPFENDU14ZRTTsFtt92GY8eO9f5u2bJluPrqqwfM76qrrsKSJUtMrBERUepggkVERJYdP3487I8Qove7n/zkJ8jJycHtt9+Ob37zmzh27BguuugirF+/Ht/97nfxy1/+EkVFRbjwwguxe/fu3t9dffXVePHFF3HNNdfghz/8IdavX48///nPluJbvXo1rr/+eixYsAC//vWvsXz5ctx+++0DkrCdO3fiJz/5CS677DLceuut2LdvH7797W+Hrc/3v/993HnnnVi4cCF+/etf43vf+x7a29sBAKeffjq6urrw1FNPhc33kUceQUNDA8aMGWMp/nheeOEFzJ0719C0M2fORGdnJ95//30AwP79+1FYWIirr74aq1evxsUXX4y1a9fixhtv7P3NWWedhXXr1oUljm1tbXj66aexdOlSuStDRJQkeIsgERFZcuDAATQ0NIR9ds8996CqqgoAMH78ePzgBz/o/e6hhx7Chx9+iCeeeALDhw8HAMyYMQMLFy7E3Xffjauuugoffvgh/va3v+G2227DqaeeCiD4TNG8efOQm5trKr7W1lb88pe/xGWXXYYrrrgCQDDJ6OjowK9+9SssX74cfr8fAHDw4EHcf//9vXEJIXD55ZfjH//4B2pqavDxxx/j4YcfxrXXXosLLrigdxk9Mebn5+Pkk0/G2rVrexOPnkTkO9/5jqm4jTp48CDefvttXHPNNYamLy8vBwDs3bsXQPBq31VXXdX7/YQJE5CVlYVrrrkG1113HdLT07Fo0SLcfPPNWLduHZYtWwYA+Mtf/oLOzk4sWrRI8hoRESUHJlhERGRJXl4e7rnnnrDPRowYgQMHDgAATjjhhLDvNm7ciIaGBgwbNgzHjx/v/Xzy5MnYvHkzAOC9994DgLDbAXNycjBjxgxs2rTJVHxvv/022tvbsXDhwrDlTZs2Df/5n/+JL774AhUVFQCAioqK3uQKAGpqagAAX375JWpqavDqq68CQMyrNl/96ldx4YUXYtu2baisrMRf/vIXHD9+3LZE5OWXX0ZxcTHGjh1raPrQq3E9/1+zZg0efPBBbN++HUePHu39bufOnaiurkZubi5OOeUUPPLII70J1iOPPIL58+ejqKhI3soQESURJlhERGSJ3+9HY2PjgM97Eqz+zwXt378f77zzzoCrXgB6r3rt2bMHOTk5AwbEiPeMUST79+8HAJx22mkRv9+5c2dvgtV/9MO0tDQA6E06Dhw4gOzs7JhX0aZOnYrKykqsXbsWV155JdauXYsTTzwRhYWFpmM34vnnn8fcuXMNP6+1a9cuAH1luWbNGtxyyy34xje+gcmTJyM/Px/vvfcefvjDH4YlW1/96ldx/vnn47PPPgMAvPHGG7jrrrskrw0RUfJggkVERLbof+BfUFCAcePG4frrrx8wbc/7mUpLS9HW1jZg1MGe29p6ZGRkoLOzM+yzgwcPDlgeAPz617+OmKCNGDHC8LoUFhaivb0dra2tUZMsTdOwbNkyPPjggzjzzDPx5ptvDhhQQxZd1/HSSy/hRz/6keHfvPzyy0hLS+tNcNetW4eFCxfiX//1X3un+fjjjwf8bvLkyaiursYjjzwCIQQGDRqEWbNmJb4SRERJigkWERE5Yvr06Vi/fj2GDh0a9YpUzxWxZ599tvf5pra2NmzYsCEssSkvL0dbWxu+/PLL3meL1q9fHzavlpYWZGZmYteuXQNuVzRr2rRpAIBHH30UK1asiDrdkiVLcMcdd+Caa65BeXk5Zs6cmdByo3n33XfR2tqK6dOnG5r+73//O/7whz/g9NNP7y3HI0eODHjx8OOPPx7x98uWLcP9998PAFi8eHHvs2tERDQQEywiInLE4sWL8cADD+D888/H17/+dVRWVuLAgQPYtGkTysrKcOGFF2L06NGYP38+rr/+erS2tqKsrAz//d//PeCWwdmzZyMzMxPXXHMNLrroImzfvh0PPPBA2DT5+fm44oor8OMf/xg7duzA5MmToes6PvnkE7z66qv45S9/aTj2kSNH4pxzzsHNN9+MvXv3YvLkyTh06BCeeuop3Hbbbb3TlZeXY/bs2Xj++efxzW9+c0Aicuedd+IXv/gFtm7dGnN5L7zwAjo6OrBlyxYAwatNQDABraiowPPPP4/JkydHvJp24MABvPPOO9B1HQcOHMCrr76KBx98EMOHDw8bcn3GjBn43e9+h6amJlRVVeHxxx/Hp59+GjGeJUuW4Pbbb8fx48c5PDsRURxMsIiIyBEZGRm49957cfvtt+POO+/E3r17UVxcjKamprBBLW6++WZcf/31uOmmm5CdnY2vfe1raGxsDBsCvbi4GHfccQd+8pOf4PLLL0dDQwNuvfXW3qtePf7lX/4FgwYNwpo1a3DPPfcgIyMDw4cPHzCdET/4wQ8wdOhQPPTQQ/jNb36D4uLiiFeoFixYgOeffz7igBgdHR0oLi6Ou6wbbrgBO3bs6P3/lVdeCQBYtWoVli5dihdeeAGLFy+O+NtXX30V55xzDgKBAPLy8lBbW4t/+7d/w1lnnRV2xeryyy/H/v37cfvttwMATjrpJFx33XW97ywLVVZWhqamJgDBZJOIiKLTRP9hhYiIiBRzyy234KmnnsKzzz7rdihxXXnlldi9ezf+8Ic/DPhuxYoVmDZtWu+w8VZ8+eWXmDNnDp566qmwkQ/tdODAAcyZMwf//u//jrPOOsuRZRIReRWvYBEREUmwdetWbN68GX/961/xs5/9bMD3x48fx4cffog77rgjoeWUl5fHvcVQltbWVnz88ce49957kZOTw3dfEREZwASLiIhIgssuuwz79+/H1772NSxcuHDA94FAoPd9Wl7x/vvv44ILLkBFRQVuueUWZGVluR0SEZHyeIsgERERERGRJD63AyAiIiIiIkoWTLCIiIiIiIgkYYJFREREREQkCRMsIiIiIiIiSZhgERERERERScIEi4iIiIiISBImWERERERERJL8f7OHFRknddK3AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f, ax = plt.subplots(2, 1, dpi=90, figsize=[11, 18])\n", + "ax.flatten()\n", + "ax[0].plot(mtls_kepler.freq, mtls_kepler.power, label=\"MTLS estimate \\n NW=10, K=19\", color=palette[4])\n", + "ax[0].legend()\n", + "ax[0].set_ylabel(\"Power\")\n", + "ax[0].set_xlabel(\"Frequency, Hz\")\n", + "ax[0].set_yscale(\"log\")\n", + "ax[0].set_xlim([5.8, 13.2])\n", + "\n", + "ax[1].plot(ls_freq, ls_psd, label=\"Lomb-Scargle Periodogram\", color=palette[6])\n", + "ax[1].legend()\n", + "ax[1].set_ylabel(\"Power\")\n", + "ax[1].set_xlabel(\"Frequency, 1/Day\")\n", + "ax[1].set_yscale(\"log\")\n", + "ax[1].set_xlim([5.8, 13.2])\n", + "f.show()" + ] + }, + { + "cell_type": "markdown", + "id": "13ba292c", + "metadata": {}, + "source": [ + "## References\n", + "\n", + "[1] Springford, Aaron, Gwendolyn M. Eadie, and David J. Thomson. 2020. “Improving the Lomb–Scargle \n", + "Periodogram with the Thomson Multitaper.” The Astronomical Journal (American Astronomical \n", + "Society) 159: 205. doi:10.3847/1538-3881/ab7fa1.\n", + "\n", + "[2] Huppenkothen, Daniela, Matteo Bachetti, Abigail L. Stevens, Simone Migliari, Paul Balm, Omar Hammad, \n", + "Usman Mahmood Khan, et al. 2019. “Stingray: A Modern Python Library for Spectral Timing.” The \n", + "Astrophysical Journal (American Astronomical Society) 881: 39. doi:10.3847/1538-4357/ab258d.\n", + "\n", + "[3] Thomson, D. J. 1982. “Spectrum Estimation and Harmonic Analysis.” IEEE Proceedings 70: 1055-1096. \n", + "https://ui.adsabs.harvard.edu/abs/1982IEEEP..70.1055T.\n", + "\n", + "[4] Thomson, D. J. 1990 “Time series analysis of Holocene climate data.” Philosophical Transactions of the Royal Society of \n", + "London. Series A, Mathematical and Physical Sciences (The Royal Society) 330: 601–616. \n", + "doi:10.1098/rsta.1990.0041.\n", + "\n", + "[5] Lomb, N. R. 1976. “Least-squares frequency analysis of unequally spaced data.” Astrophysics and Space \n", + "Science (Springer Science and Business Media LLC) 39: 447–462. doi:10.1007/bf00648343.\n", + "\n", + "[6] Scargle, J. D. 1982. “Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of \n", + "unevenly spaced data.” The Astrophysical Journal (American Astronomical Society) 263: 835. \n", + "doi:10.1086/160554.\n", + "\n", + "[7] Slepian, D. 1978. “Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete \n", + "Case.” Bell System Technical Journal (Institute of Electrical and Electronics Engineers (IEEE)) 57: \n", + "1371–1430. doi:10.1002/j.1538-7305.1978.tb02104.x.\n", + "\n", + "[8] D. J. Thomson, \"Jackknifing Multitaper Spectrum Estimates,\" in IEEE Signal Processing Magazine, vol. 24, no. 4, pp. 20-30, July 2007, doi: 10.1109/MSP.2007.4286561." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8d79e398", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Performance/Dealing with large data files.html b/notebooks/Performance/Dealing with large data files.html new file mode 100644 index 000000000..1829fb3d7 --- /dev/null +++ b/notebooks/Performance/Dealing with large data files.html @@ -0,0 +1,546 @@ + + + + + + + + Data preparation — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

In this tutorial, we approach the case of a very large event file, larger than the memory of our computer. Will we be able to analyze it?

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%load_ext memory_profiler
+import psutil
+import os
+import numpy as np
+import gc
+
+from stingray import EventList, AveragedPowerspectrum
+
+
+
+
+
[2]:
+
+
+
pid = os.getpid()
+python_process = psutil.Process(pid)
+memory_use = python_process.memory_info()[0]/2.**20
+print(f"Current memory use ({pid}): {memory_use:.2f} MB")
+
+
+
+
+
+
+
+
+Current memory use (29237): 91.16 MB
+
+
+
+

Data preparation

+

Now we simulate and load a full dataset. Let’s simulate a large observation, about 2GB. We use HENDRICS, you can install it with pip install hendrics

+
+
[4]:
+
+
+
fname = "events_large.evt"
+
+
+
+
+
[5]:
+
+
+
!HENfake -c 20000 --tstart 0 --tstop 10000 --mjdref 56000 -o events_large.evt
+
+
+
+
+
+
+
+
+/Users/meo/devel/StingraySoftware/hendrics/hendrics/io.py:38: UserWarning: Warning! NetCDF is not available. Using pickle format.
+  warnings.warn(msg)
+/Users/meo/devel/StingraySoftware/hendrics/hendrics/fold.py:38: UserWarning: PINT is not installed. Some pulsar functionality will not be available
+  warnings.warn(
+
+
+
+
+
+

Naive procedure: create light curve, then calculate PDS

+
+
[6]:
+
+
+
%memit events = EventList.read(fname, fmt="ogip")
+
+
+
+
+
+
+
+
+peak memory: 5645.70 MiB, increment: 5347.78 MiB
+
+
+

Loading the observation into memory takes about 5 GB. Now, we want a power spectrum with very high frequencies. Let us do the traditional way, creating first a light curve, then analyzing it with AveragedPowerspectrum

+
+
[7]:
+
+
+
fine_sample_time = 0.00001
+segment_size = 128
+
+
+
+
+
[8]:
+
+
+
%memit lc = events.to_lc(dt=fine_sample_time)
+
+
+
+
+
+
+
+
+peak memory: 15315.70 MiB, increment: 9670.00 MiB
+
+
+

This very finely sampled light curve will take a lot of memory: 10000 s, sampled at 10 \(\mu\)s, will give ~1B float objects, or 8 GB, for the time array and the same for the counts array. Here, the value that comes out is slightly smaller because the operating system is using swap! Some of the swapped data will come back in the main memory when calculating the power spectrum.

+
+
[9]:
+
+
+
%memit ps = AveragedPowerspectrum.from_lightcurve(lc, segment_size=segment_size)
+ps.power
+
+
+
+
+
+
+
+
+78it [00:28,  2.69it/s]
+
+
+
+
+
+
+
+peak memory: 14324.80 MiB, increment: 2063.22 MiB
+
+
+
+
+
+
+
+
+
+
+
+
[9]:
+
+
+
+
+array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,
+       1.10340774e-04, 1.07141777e-04, 9.10072280e-05])
+
+
+
+
[10]:
+
+
+
del events, lc, ps.power, ps
+gc.collect()
+
+
+
+
+
[10]:
+
+
+
+
+0
+
+
+
+
[11]:
+
+
+
memory_use = python_process.memory_info()[0]/2.**20
+print(f"Current memory use ({pid}): {memory_use:.2f} MB")
+
+
+
+
+
+
+
+
+Current memory use (29237): 1876.75 MB
+
+
+

So, if we want to take the maximum memory usage for the full procedure, we can profile the three steps done until now:

+
+
[12]:
+
+
+
def legacy_pds_procedure(fname, sample_time, segment_size):
+    events = EventList.read(fname, fmt="ogip")
+    lc = events.to_lc(dt=fine_sample_time)
+    return AveragedPowerspectrum.from_lightcurve(lc, segment_size=segment_size)
+
+
+%memit ps = legacy_pds_procedure(fname, fine_sample_time, segment_size)
+ps.power
+
+
+
+
+
+
+
+
+78it [00:28,  2.70it/s]
+
+
+
+
+
+
+
+peak memory: 16715.56 MiB, increment: 14837.95 MiB
+
+
+
+
[12]:
+
+
+
+
+array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,
+       1.10340774e-04, 1.07141777e-04, 9.10072280e-05])
+
+
+

Let’s clean up the memory a little bit.

+
+
[13]:
+
+
+
del ps.power, ps
+gc.collect()
+python_process.memory_info()[0]/2.**20
+print(f"Current memory use ({pid}): {memory_use:.2f} MB")
+
+
+
+
+
+
+
+
+Current memory use (29237): 1876.75 MB
+
+
+
+
+

Slightly better: PDS from events

+

What if we get the power spectrum directly from the events, without previous binning of the full light curve? In this case, the binning will happen only on a segment-by-segment basis, freeing memory.

+
+
[14]:
+
+
+
def pds_from_events(fname, sample_time, segment_size):
+    events = EventList.read(fname, fmt="ogip")
+    return AveragedPowerspectrum.from_events(events, dt=sample_time, segment_size=segment_size)
+
+%memit ps = pds_from_events(fname, fine_sample_time, segment_size)
+ps.power
+
+
+
+
+
+
+
+
+78it [00:28,  2.71it/s]
+
+
+
+
+
+
+
+peak memory: 7543.30 MiB, increment: 5701.02 MiB
+
+
+
+
+
+
+
+
+
+
+
+
[14]:
+
+
+
+
+array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,
+       1.10349785e-04, 1.07137039e-04, 9.09968704e-05])
+
+
+

Much better! The memory increment is now dominated by the loading of events, so just about 5.7 GB. Let’s clean up the memory a little bit again

+
+
[15]:
+
+
+
del ps.power, ps
+gc.collect()
+memory_use = python_process.memory_info()[0]/2.**20
+print(f"Current memory use ({pid}): {memory_use:.2f} MB")
+
+
+
+
+
+
+
+
+Current memory use (29237): 2245.31 MB
+
+
+
+
+

Let’s be “lazy”: lazy loading with FITSTimeseriesReader

+

Now, let’s try not to even pre-load the events. What will happen? First of all, we use the new class FITSTimeseriesReader to lazy-load the data, meaning that the data remain in the FITS file until we try to access them. This occupies very little memory.

+
+
[16]:
+
+
+
from stingray.io import FITSTimeseriesReader
+%memit fitsreader = FITSTimeseriesReader(fname, data_kind="times")
+
+
+
+
+
+
+
+
+peak memory: 2245.34 MiB, increment: 0.00 MiB
+
+
+
+
[17]:
+
+
+
from stingray.gti import time_intervals_from_gtis
+start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)
+%memit interval_times = np.array(list(zip(start, stop)))
+
+
+
+
+
+
+
+
+peak memory: 2245.36 MiB, increment: 0.00 MiB
+
+
+

Let’s create an iterable that uses the FITSTimeseriesReader to send AveragedPowerspectrum the pre-binned light curves for each segment. Events will be read in chunks from the FITS file, and streamed as light curve segments on the fly.

+
+
[18]:
+
+
+
from stingray.utils import histogram
+def fits_times_iterable(fname, segment_size, sample_time):
+    """Create light curve iterables to be analyzed by AveragedPowerspectrum.from_lc_iterable."""
+    fitsreader = FITSTimeseriesReader(fname, data_kind="times")
+    start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)
+    intvs = [[s, e] for s, e in zip(start,stop)]
+    times = fitsreader.filter_at_time_intervals(intvs, check_gtis=True)
+    for ts, (s, e) in zip(times, intvs):
+        lc = histogram(ts, bins=np.rint((e - s)/sample_time).astype(int), range=[s, e])
+        yield lc
+
+
+%memit ps_it = AveragedPowerspectrum.from_lc_iterable(fits_times_iterable(fname, segment_size, fine_sample_time), segment_size=segment_size, dt=fine_sample_time)
+ps_it.power[:10]
+
+
+
+
+
+
+
+
+78it [00:32,  2.43it/s]
+
+
+
+
+
+
+
+peak memory: 4531.69 MiB, increment: 2286.30 MiB
+
+
+
+
+
+
+
+
+
+
+
+
[18]:
+
+
+
+
+array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, 1.13488540e-04,
+       1.10641888e-04, 1.11452625e-04, 1.15657206e-04, 1.04863608e-04,
+       9.25844488e-05, 9.50754514e-05], dtype=float64)
+
+
+

Hurray! We managed to keep the memory increment to ~2GB, comparable with the sole AveragedPowerspectrum operation!

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Performance/Dealing with large data files.ipynb b/notebooks/Performance/Dealing with large data files.ipynb new file mode 100644 index 000000000..1010d934c --- /dev/null +++ b/notebooks/Performance/Dealing with large data files.ipynb @@ -0,0 +1,567 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "24df35e1-e5c9-40a8-89ab-73c782e070b3", + "metadata": {}, + "source": [ + "In this tutorial, we approach the case of a very large event file, larger than the memory of our computer. Will we be able to analyze it?" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "8957430d-d905-40a2-87cc-dcbdbaec91d7", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%load_ext memory_profiler\n", + "import psutil\n", + "import os\n", + "import numpy as np\n", + "import gc\n", + "\n", + "from stingray import EventList, AveragedPowerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "73c7f674-c04e-44c9-bf02-54713675352b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 91.16 MB\n" + ] + } + ], + "source": [ + "pid = os.getpid()\n", + "python_process = psutil.Process(pid)\n", + "memory_use = python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "ac2a89f2-c520-4c32-9f28-9da5a0029b46", + "metadata": {}, + "source": [ + "## Data preparation\n", + "\n", + "Now we simulate and load a full dataset. Let's simulate a large observation, about 2GB. We use HENDRICS, you can install it with `pip install hendrics`" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "ed97efbf-1310-4651-bf46-6830d92fb6f8", + "metadata": {}, + "outputs": [], + "source": [ + "fname = \"events_large.evt\"" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "c2221d2a-a3fa-4119-860e-e090affc17b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "/Users/meo/devel/StingraySoftware/hendrics/hendrics/io.py:38: UserWarning: Warning! NetCDF is not available. Using pickle format.\n", + " warnings.warn(msg)\n", + "/Users/meo/devel/StingraySoftware/hendrics/hendrics/fold.py:38: UserWarning: PINT is not installed. Some pulsar functionality will not be available\n", + " warnings.warn(\n", + "\u001b[0m" + ] + } + ], + "source": [ + "!HENfake -c 20000 --tstart 0 --tstop 10000 --mjdref 56000 -o events_large.evt" + ] + }, + { + "cell_type": "markdown", + "id": "b7d9d777-09ad-4a7c-a479-a50548bedc90", + "metadata": {}, + "source": [ + "## Naive procedure: create light curve, then calculate PDS\n" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "c0b076b3-33f2-4ff2-86e1-f33c796d4e17", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 5645.70 MiB, increment: 5347.78 MiB\n" + ] + } + ], + "source": [ + "%memit events = EventList.read(fname, fmt=\"ogip\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "0c7520ca-69f2-4445-83df-4a888c10082e", + "metadata": {}, + "source": [ + "Loading the observation into memory takes about 5 GB. Now, we want a power spectrum with very high frequencies. Let us do the traditional way, creating first a light curve, then analyzing it with AveragedPowerspectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "40c1a77b-2ac5-4bb9-8f8c-1204eecbd5fb", + "metadata": {}, + "outputs": [], + "source": [ + "fine_sample_time = 0.00001\n", + "segment_size = 128\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "5dde9f16-9fd6-4618-9ef4-8f5013e01f1a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 15315.70 MiB, increment: 9670.00 MiB\n" + ] + } + ], + "source": [ + "%memit lc = events.to_lc(dt=fine_sample_time)" + ] + }, + { + "cell_type": "markdown", + "id": "42b15eee-88b1-43bb-bdef-4ca7b7946887", + "metadata": {}, + "source": [ + "This very finely sampled light curve will take a _lot_ of memory: 10000 s, sampled at 10 $\\mu$s, will give ~1B float objects, or 8 GB, for the time array and the same for the counts array. Here, the value that comes out is slightly smaller because the operating system is using swap! Some of the swapped data will come back in the main memory when calculating the power spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "b009941b-a1a3-455b-9b64-4c5021affdd7", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:28, 2.69it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 14324.80 MiB, increment: 2063.22 MiB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,\n", + " 1.10340774e-04, 1.07141777e-04, 9.10072280e-05])" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "%memit ps = AveragedPowerspectrum.from_lightcurve(lc, segment_size=segment_size)\n", + "ps.power" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f19ebe91-bdad-41c6-a9c6-ca1bc2cc02e7", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "del events, lc, ps.power, ps\n", + "gc.collect()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "920771d2-0a75-41b4-8533-b9c7f572bdca", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 1876.75 MB\n" + ] + } + ], + "source": [ + "memory_use = python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")" + ] + }, + { + "cell_type": "markdown", + "id": "7c81b95f-3bec-4046-a3ba-af944cb3f34e", + "metadata": {}, + "source": [ + "So, if we want to take the maximum memory usage for the full procedure, we can profile the three steps done until now:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "8b7d8223-5f2a-435c-9510-dc4c4d13da09", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:28, 2.70it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 16715.56 MiB, increment: 14837.95 MiB\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,\n", + " 1.10340774e-04, 1.07141777e-04, 9.10072280e-05])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def legacy_pds_procedure(fname, sample_time, segment_size):\n", + " events = EventList.read(fname, fmt=\"ogip\")\n", + " lc = events.to_lc(dt=fine_sample_time)\n", + " return AveragedPowerspectrum.from_lightcurve(lc, segment_size=segment_size)\n", + "\n", + "\n", + "%memit ps = legacy_pds_procedure(fname, fine_sample_time, segment_size)\n", + "ps.power" + ] + }, + { + "cell_type": "markdown", + "id": "7838fc58-1231-4bcf-9257-05cb5293cc2c", + "metadata": {}, + "source": [ + "Let's clean up the memory a little bit." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "1db9bc50-c624-46e5-ab43-44cf40f387cd", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 1876.75 MB\n" + ] + } + ], + "source": [ + "del ps.power, ps\n", + "gc.collect()\n", + "python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "6d127938-71a9-4815-813f-e1cc5ba97503", + "metadata": {}, + "source": [ + "## Slightly better: PDS from events\n", + "What if we get the power spectrum directly from the events, without previous binning of the full light curve? In this case, the binning will happen only on a segment-by-segment basis, freeing memory." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ef2ebf7f-7526-4ade-b543-7ddb1669e410", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:28, 2.71it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 7543.30 MiB, increment: 5701.02 MiB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, ...,\n", + " 1.10349785e-04, 1.07137039e-04, 9.09968704e-05])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def pds_from_events(fname, sample_time, segment_size):\n", + " events = EventList.read(fname, fmt=\"ogip\")\n", + " return AveragedPowerspectrum.from_events(events, dt=sample_time, segment_size=segment_size)\n", + "\n", + "%memit ps = pds_from_events(fname, fine_sample_time, segment_size)\n", + "ps.power" + ] + }, + { + "cell_type": "markdown", + "id": "ce8f04da-9c8e-46d3-ba77-a04d8f60bb86", + "metadata": {}, + "source": [ + "Much better! The memory increment is now dominated by the loading of events, so just about 5.7 GB. Let's clean up the memory a little bit again" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f2d79666-b03c-4a11-bd22-bfb5f691e218", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Current memory use (29237): 2245.31 MB\n" + ] + } + ], + "source": [ + "del ps.power, ps\n", + "gc.collect()\n", + "memory_use = python_process.memory_info()[0]/2.**20\n", + "print(f\"Current memory use ({pid}): {memory_use:.2f} MB\")\n" + ] + }, + { + "cell_type": "markdown", + "id": "1eeef29a-56f3-4b41-9691-d276369c99ee", + "metadata": {}, + "source": [ + "## Let's be \"lazy\": lazy loading with FITSTimeseriesReader\n", + "\n", + "Now, let's try not to even pre-load the events. What will happen?\n", + "First of all, we use the new class `FITSTimeseriesReader` to lazy-load the data, meaning that the data remain in the FITS file until we try to access them. This occupies very little memory." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "74ef9faf-ac33-4590-8f1e-46c11a0882d0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 2245.34 MiB, increment: 0.00 MiB\n" + ] + } + ], + "source": [ + "from stingray.io import FITSTimeseriesReader\n", + "%memit fitsreader = FITSTimeseriesReader(fname, data_kind=\"times\")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "0e7440ca-3c8d-4e6c-a2fd-cc486156bc11", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 2245.36 MiB, increment: 0.00 MiB\n" + ] + } + ], + "source": [ + "from stingray.gti import time_intervals_from_gtis\n", + "start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)\n", + "%memit interval_times = np.array(list(zip(start, stop)))\n" + ] + }, + { + "cell_type": "markdown", + "id": "89acff6e-1fe9-4705-8891-13ec6cd47fc6", + "metadata": {}, + "source": [ + "Let's create an iterable that uses the FITSTimeseriesReader to send AveragedPowerspectrum the pre-binned light curves for each segment. Events will be read in chunks from the FITS file, and streamed as light curve segments on the fly." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "92518923-fbc7-429a-b1d8-dc81591fc965", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "78it [00:32, 2.43it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "peak memory: 4531.69 MiB, increment: 2286.30 MiB\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "array([1.02539377e-04, 1.03036920e-04, 9.54479649e-05, 1.13488540e-04,\n", + " 1.10641888e-04, 1.11452625e-04, 1.15657206e-04, 1.04863608e-04,\n", + " 9.25844488e-05, 9.50754514e-05], dtype=float64)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from stingray.utils import histogram\n", + "def fits_times_iterable(fname, segment_size, sample_time):\n", + " \"\"\"Create light curve iterables to be analyzed by AveragedPowerspectrum.from_lc_iterable.\"\"\"\n", + " fitsreader = FITSTimeseriesReader(fname, data_kind=\"times\")\n", + " start, stop = time_intervals_from_gtis(fitsreader.gti, segment_size)\n", + " intvs = [[s, e] for s, e in zip(start,stop)]\n", + " times = fitsreader.filter_at_time_intervals(intvs, check_gtis=True)\n", + " for ts, (s, e) in zip(times, intvs):\n", + " lc = histogram(ts, bins=np.rint((e - s)/sample_time).astype(int), range=[s, e])\n", + " yield lc\n", + "\n", + "\n", + "%memit ps_it = AveragedPowerspectrum.from_lc_iterable(fits_times_iterable(fname, segment_size, fine_sample_time), segment_size=segment_size, dt=fine_sample_time)\n", + "ps_it.power[:10]" + ] + }, + { + "cell_type": "markdown", + "id": "2da603a0-6e82-4076-9e33-576145024735", + "metadata": {}, + "source": [ + "Hurray! We managed to keep the memory increment to ~2GB, comparable with the sole AveragedPowerspectrum operation!" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3265e2f0-264d-48d8-8187-fb44b10d4f72", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Powerspectrum/Powerspectrum_tutorial.html b/notebooks/Powerspectrum/Powerspectrum_tutorial.html new file mode 100644 index 000000000..7c3c0b8f2 --- /dev/null +++ b/notebooks/Powerspectrum/Powerspectrum_tutorial.html @@ -0,0 +1,730 @@ + + + + + + + + Power spectrum example — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Power spectrum example

+

This tutorial shows how to make and manipulate a power spectrum of two light curves using Stingray.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum
+
+import matplotlib.pyplot as plt
+import matplotlib.font_manager as font_manager
+%matplotlib inline
+font_prop = font_manager.FontProperties(size=16)
+
+
+
+
+

1. Create a light curve

+

There are two ways to make Lightcurve objects. We’ll show one way here. Check out “Lightcurve/Lightcurve tutorial.ipynb” for more examples.

+

Generate an array of relative timestamps that’s 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve.

+
+
[2]:
+
+
+
dt = 0.03125  # seconds
+exposure = 8.  # seconds
+times = np.arange(0, exposure, dt)  # seconds
+
+signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000  # counts/s
+noisy = np.random.poisson(signal*dt)  # counts
+
+
+
+

Now let’s turn noisy into a Lightcurve object.

+
+
[3]:
+
+
+
lc = Lightcurve(times, noisy, dt=dt, skip_checks=True)
+
+
+
+

Here we plot it to see what it looks like.

+
+
[4]:
+
+
+
fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(lc.time, lc.counts, lw=2, color='blue')
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_7_0.png +
+
+
+
+

2. Pass the light curve to the Powerspectrum class to create a Powerspectrum object.

+

You can also specify the optional attribute norm if you wish to normalize power to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is ‘none’.

+
+
[5]:
+
+
+
ps = Powerspectrum.from_lightcurve(lc, norm="leahy")
+print(ps)
+
+
+
+
+
+
+
+
+<stingray.powerspectrum.Powerspectrum object at 0x17fc10fd0>
+
+
+

Note that, in principle, the Powerspectrum object could have been initialized directly as

+
ps = Powerspectrum(lc, norm="leahy")
+
+
+

However, we recommend using this explicit syntax, for clarity. Equivalently, one can initialize a Powerspectrum object:

+
    +
  1. from an EventList object as

    +
    bin_time = 0.1
    +ps = Powerspectrum.from_events(events, dt=bin_time, norm="leahy")
    +
    +
    +

    where the light curve, uniformly binned at 0.1 s, is created internally.

    +
  2. +
  3. from a numpy array of times expressed in seconds, as

    +
    bin_time = 0.1
    +ps = Powerspectrum.from_events(times, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm="leahy")
    +
    +
    +

    where the light curve, uniformly binned at 0.1 s, is created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand.

    +
  4. +
  5. from an iterable of light curves

    +
    ps = Powerspectrum.from_lc_iter(lc_iterable, norm="leahy")
    +
    +
    +

    where lc_iterable is any iterable of Lightcurve objects (list, tuple, generator, etc.)

    +
  6. +
+

Since the negative Fourier frequencies (and their associated powers) are discarded, the number of time bins per segment n is twice the length of freq and power.

+
+
[6]:
+
+
+
print("\nSize of positive Fourier frequencies:", len(ps.freq))
+print("Number of data points per segment:", ps.n)
+
+
+
+
+
+
+
+
+
+Size of positive Fourier frequencies: 127
+Number of data points per segment: 256
+
+
+
+
+
+

Properties

+

A Powerspectrum object has the following properties :

+
    +
  1. freq : Numpy array of mid-bin frequencies that the Fourier transform samples.

  2. +
  3. power : Numpy array of the power spectrum.

  4. +
  5. df : The frequency resolution.

  6. +
  7. m : The number of power spectra averaged together. For a Powerspectrum of a single segment, m=1.

  8. +
  9. n : The number of data points (time bins) in one segment of the light curve.

  10. +
  11. nphots1 : The total number of photons in the light curve.

  12. +
  13. norm : The normalization, one of leahy (Leahy et al. 1983), abs (absolute rms), frac (fractional rms), or none

  14. +
+
+
[7]:
+
+
+
print(ps.freq)
+print(ps.power)
+print(ps.df)
+print(ps.m)
+print(ps.n)
+print(ps.nphots1)
+
+
+
+
+
+
+
+
+[ 0.125  0.25   0.375  0.5    0.625  0.75   0.875  1.     1.125  1.25
+  1.375  1.5    1.625  1.75   1.875  2.     2.125  2.25   2.375  2.5
+  2.625  2.75   2.875  3.     3.125  3.25   3.375  3.5    3.625  3.75
+  3.875  4.     4.125  4.25   4.375  4.5    4.625  4.75   4.875  5.
+  5.125  5.25   5.375  5.5    5.625  5.75   5.875  6.     6.125  6.25
+  6.375  6.5    6.625  6.75   6.875  7.     7.125  7.25   7.375  7.5
+  7.625  7.75   7.875  8.     8.125  8.25   8.375  8.5    8.625  8.75
+  8.875  9.     9.125  9.25   9.375  9.5    9.625  9.75   9.875 10.
+ 10.125 10.25  10.375 10.5   10.625 10.75  10.875 11.    11.125 11.25
+ 11.375 11.5   11.625 11.75  11.875 12.    12.125 12.25  12.375 12.5
+ 12.625 12.75  12.875 13.    13.125 13.25  13.375 13.5   13.625 13.75
+ 13.875 14.    14.125 14.25  14.375 14.5   14.625 14.75  14.875 15.
+ 15.125 15.25  15.375 15.5   15.625 15.75  15.875]
+[9.75294222e-02 1.37192421e-01 6.62062702e+00 5.42273987e-01
+ 1.26707856e-01 7.14262683e-02 1.46986106e+00 9.35172244e-01
+ 2.04574831e+00 4.88638843e-01 1.46127864e+00 3.24027874e+00
+ 2.95907471e+00 1.46905530e-01 1.42916439e+00 3.58020047e+02
+ 3.04922773e+00 2.14088855e+00 3.89197375e-01 3.48148529e-01
+ 2.32409725e+00 3.72418140e+00 5.10604734e-01 5.98258473e-01
+ 1.75462401e+00 2.24000263e-01 1.06137267e+00 1.07517074e+01
+ 1.14917349e+00 4.59646030e-01 1.30278344e-01 2.09102366e+00
+ 2.17910753e-01 5.49240044e+00 7.32466747e-01 3.46833517e+00
+ 1.93866299e-01 3.93997974e-02 1.97441653e+00 4.28610905e+00
+ 2.93970456e-01 2.72920344e+00 4.52529974e+00 5.42552369e+00
+ 3.00538316e+00 3.14413850e+00 1.65733555e-01 6.16733137e-01
+ 2.85338470e+00 5.56565439e+00 1.60825816e+00 2.83059003e+00
+ 3.84807029e+00 6.35749643e-01 2.52661012e-01 9.73415923e-02
+ 2.64107250e+00 1.31206307e-01 2.20321939e+00 2.08750811e+00
+ 4.61234244e+00 1.15633604e+00 3.60363976e-01 2.24498998e+00
+ 1.71646651e+00 3.38371881e+00 3.32514629e-02 1.67607504e+00
+ 1.77957522e+00 6.92787087e-01 3.35553415e+00 1.94034115e+00
+ 1.16770721e+00 3.76130715e+00 4.34584431e-01 5.72348179e-01
+ 1.14572517e+00 1.41890460e+00 1.64121258e-01 1.96499122e+00
+ 3.52679951e+00 2.58201128e+00 1.05541840e+00 3.76982654e-01
+ 3.81558230e-01 1.09665960e+00 3.52309943e+00 3.00115328e+00
+ 2.81888737e-01 3.46916554e-02 4.78900280e-01 5.10837621e+00
+ 7.05428845e+00 1.79144555e+00 1.45542292e+00 4.14645129e+00
+ 5.47936328e-01 1.43060457e-01 3.85238243e-01 2.86842673e+00
+ 7.07492195e-01 2.11192195e+00 8.18724669e-02 3.11165001e+00
+ 2.71594888e+00 8.22251145e+00 4.21393967e+00 4.85809743e-01
+ 1.66578478e+00 4.52801220e-01 1.39963588e+00 3.83710679e+00
+ 8.29760812e-02 2.04827673e-01 4.46966187e-01 4.58682373e+00
+ 5.11398498e-01 7.53864807e-01 1.49293643e-01 1.48889204e+00
+ 1.55536424e-01 1.34814529e-01 1.31907922e-01 1.49852755e+00
+ 8.75140990e-01 9.00289904e-02 4.72042936e+00]
+0.125
+1
+256
+7984.0
+
+
+

We can plot the power as a function of Fourier frequency. Notice how there’s a spike at our signal frequency of 2 Hz!

+
+
[8]:
+
+
+
fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)
+ax1.plot(ps.freq, ps.power, lw=2, color='blue')
+ax1.set_ylabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (raw)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_15_0.png +
+
+

You’ll notice that the power spectrum is a bit noisy. This is because we’re only using one segment of data. Let’s try averaging together power spectra from multiple segments of data. # Averaged power spectrum example You could use a long Lightcurve and have AveragedPowerspectrum chop it into specified segments, or give a list of Lightcurves where each segment of Lightcurve is the same length. We’ll show the first way here. ## 1. Create a long light curve. Generate an array of +relative timestamps that’s 1600 seconds long, and a signal in count units, with the same properties as the previous example. We then add Poisson noise and turn it into a Lightcurve object.

+
+
[9]:
+
+
+
long_dt = 0.03125  # seconds
+long_exposure = 1600.  # seconds
+long_times = np.arange(0, long_exposure, long_dt)  # seconds
+
+# In count rate units here
+long_signal = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000
+
+# Multiply by dt to get count units, then add Poisson noise
+long_noisy = np.random.poisson(long_signal*dt)
+
+long_lc = Lightcurve(long_times, long_noisy, dt=long_dt, skip_checks=True)
+
+fig, ax = plt.subplots(1,1,figsize=(10,6))
+ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue')
+ax.set_xlim(0,20)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_17_0.png +
+
+
+

2. Pass the light curve to the AveragedPowerspectrum class with a specified segment_size.

+

If the exposure (length) of the light curve cannot be divided by segment_size with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we’re using 8 second segments.

+
+
[10]:
+
+
+
avg_ps = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm="leahy")
+
+
+
+
+
+
+
+
+200it [00:00, 50515.52it/s]
+
+
+

We can check how many segments were averaged together by printing the m attribute.

+
+
[11]:
+
+
+
print("Number of segments: %d" % avg_ps.m)
+
+
+
+
+
+
+
+
+Number of segments: 200
+
+
+

AveragedPowerspectrum has the same properties as Powerspectrum, but with m $>$1.

+

Let’s plot the averaged power spectrum!

+
+
[12]:
+
+
+
fig, ax1 = plt.subplots(1,1,figsize=(9,6))
+ax1.plot(avg_ps.freq, avg_ps.power, lw=2, color='blue')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (raw)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=16)
+ax1.tick_params(axis='y', labelsize=16)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_23_0.png +
+
+

Now we’ll show examples of all the things you can do with a Powerspectrum or AveragedPowerspectrum object using built-in stingray methods.

+
+
+
+

Normalizating the power spectrum

+

The three kinds of normalization are: * leahy: Leahy normalization. Makes the Poisson noise level \(= 2\). See Leahy et al. 1983, ApJ, 266, 160L. * frac: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level \(= 2 / meanrate\). See Belloni & Hasinger 1990, A&A, 227, L33, and Miyamoto et al. 1992, ApJ, 391, L21. * abs: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level +\(= 2 \times meanrate\). See insert citation. * none: No normalization applied. This is the default.

+
+
[13]:
+
+
+
avg_ps_leahy = AveragedPowerspectrum.from_lightcurve(long_lc, 8, norm='leahy')
+avg_ps_frac = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='frac')
+avg_ps_abs = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='abs')
+
+
+
+
+
+
+
+
+200it [00:00, 56159.93it/s]
+200it [00:00, 56752.64it/s]
+200it [00:00, 43677.02it/s]
+
+
+
+
[14]:
+
+
+
fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))
+ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (Leahy)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=14)
+ax1.tick_params(axis='y', labelsize=14)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+ax1.set_title("Leahy norm.", fontproperties=font_prop)
+
+ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')
+ax2.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax2.set_ylabel("Power (rms)", fontproperties=font_prop)
+ax2.tick_params(axis='x', labelsize=14)
+ax2.tick_params(axis='y', labelsize=14)
+ax2.set_yscale('log')
+ax2.tick_params(which='major', width=1.5, length=7)
+ax2.tick_params(which='minor', width=1.5, length=4)
+ax2.set_title("Fractional rms-squared norm.", fontproperties=font_prop)
+
+ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')
+ax3.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax3.set_ylabel("Power (abs)", fontproperties=font_prop)
+ax3.tick_params(axis='x', labelsize=14)
+ax3.tick_params(axis='y', labelsize=14)
+ax3.set_yscale('log')
+ax3.tick_params(which='major', width=1.5, length=7)
+ax3.tick_params(which='minor', width=1.5, length=4)
+ax3.set_title("Absolute rms-squared norm.", fontproperties=font_prop)
+
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+    ax2.spines[axis].set_linewidth(1.5)
+    ax3.spines[axis].set_linewidth(1.5)
+plt.tight_layout()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_26_0.png +
+
+
+
+

Re-binning a power spectrum in frequency

+

Typically, rebinning is done on an averaged, normalized power spectrum. ## 1. We can linearly re-bin a power spectrum (although this is not done much in practice)

+
+
[15]:
+
+
+
print("DF before:", avg_ps.df)
+# Both of the following ways are allowed syntax:
+# lin_rb_ps = Powerspectrum.rebin(avg_ps, 0.25, method='mean')
+lin_rb_ps = avg_ps.rebin(0.25, method='mean')
+print("DF after:", lin_rb_ps.df)
+
+
+
+
+
+
+
+
+DF before: 0.125
+DF after: 0.25
+
+
+
+

2. And we can logarithmically/geometrically re-bin a power spectrum

+

In this re-binning, each bin size is 1+f times larger than the previous bin size, where f is user-specified and normally in the range 0.01-0.1. The default value is f=0.01.

+
+
[16]:
+
+
+
# Both of the following ways are allowed syntax:
+# log_rb_ps, log_rb_freq, binning = Powerspectrum.rebin_log(avg_ps, f=0.02)
+log_rb_ps = ps.rebin_log(f=0.02)
+
+
+
+

Like rebin, rebin_log returns a Powerspectrum or AveragedPowerspectrum object (depending on the input object):

+
+
[17]:
+
+
+
print(type(lin_rb_ps))
+
+
+
+
+
+
+
+
+<class 'stingray.powerspectrum.AveragedPowerspectrum'>
+
+
+
+
+
+

Power spectra of normal-distributed light curves

+

Starting with Stingray 0.3, we can also get Leahy-normalized power spectra of normally-distributed light curves. Let us calculate such a light curve by subtracting the noise level and normalizing

+
+
[18]:
+
+
+
long_norm = (long_noisy - long_noisy.mean()) / long_noisy.max()
+err = np.sqrt(long_noisy.mean()) / long_noisy.max()
+
+long_lc_gauss = Lightcurve(long_times, long_norm, err=np.zeros_like(long_norm) + err, dt=long_dt, skip_checks=True, err_dist='gauss')
+
+fig, ax = plt.subplots(1,1,figsize=(10, 6))
+ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue', label='Original light curve')
+ax.plot(long_lc_gauss.time, long_lc_gauss.counts, lw=2, color='red', label='Normalized light curve')
+ax.set_xlim(0,20)
+ax.set_xlabel("Time (s)", fontproperties=font_prop)
+ax.set_ylabel("Counts (cts)", fontproperties=font_prop)
+ax.tick_params(axis='x', labelsize=16)
+ax.tick_params(axis='y', labelsize=16)
+ax.tick_params(which='major', width=1.5, length=7)
+ax.tick_params(which='minor', width=1.5, length=4)
+plt.legend()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_34_0.png +
+
+
+
[19]:
+
+
+
avg_ps_gauss_leahy = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8, norm='leahy')
+avg_ps_gauss_frac = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='frac')
+avg_ps_gauss_abs = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='abs')
+
+
+
+
+
+
+
+
+200it [00:00, 46520.67it/s]
+200it [00:00, 39276.19it/s]
+200it [00:00, 43715.71it/s]
+
+
+
+
[20]:
+
+
+
fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))
+ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')
+ax1.plot(avg_ps_gauss_leahy.freq, avg_ps_gauss_leahy.power, lw=2, color='red', zorder=10)
+ax1.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax1.set_ylabel("Power (Leahy)", fontproperties=font_prop)
+ax1.set_yscale('log')
+ax1.tick_params(axis='x', labelsize=14)
+ax1.tick_params(axis='y', labelsize=14)
+ax1.tick_params(which='major', width=1.5, length=7)
+ax1.tick_params(which='minor', width=1.5, length=4)
+ax1.set_title("Leahy norm.", fontproperties=font_prop)
+
+ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')
+ax2.plot(avg_ps_gauss_frac.freq, avg_ps_gauss_frac.power, lw=2, color='red')
+ax2.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax2.set_ylabel("Power (rms)", fontproperties=font_prop)
+ax2.tick_params(axis='x', labelsize=14)
+ax2.tick_params(axis='y', labelsize=14)
+ax2.set_yscale('log')
+ax2.tick_params(which='major', width=1.5, length=7)
+ax2.tick_params(which='minor', width=1.5, length=4)
+ax2.set_title("Fractional rms-squared norm.", fontproperties=font_prop)
+
+ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')
+ax3.plot(avg_ps_gauss_abs.freq, avg_ps_gauss_abs.power, lw=2, color='red')
+ax3.set_xlabel("Frequency (Hz)", fontproperties=font_prop)
+ax3.set_ylabel("Power (abs)", fontproperties=font_prop)
+ax3.tick_params(axis='x', labelsize=14)
+ax3.tick_params(axis='y', labelsize=14)
+ax3.set_yscale('log')
+ax3.tick_params(which='major', width=1.5, length=7)
+ax3.tick_params(which='minor', width=1.5, length=4)
+ax3.set_title("Absolute rms-squared norm.", fontproperties=font_prop)
+
+for axis in ['top', 'bottom', 'left', 'right']:
+    ax1.spines[axis].set_linewidth(1.5)
+    ax2.spines[axis].set_linewidth(1.5)
+    ax3.spines[axis].set_linewidth(1.5)
+
+plt.tight_layout()
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Powerspectrum_Powerspectrum_tutorial_36_0.png +
+
+

As expected, the Leahy normalization, being normalized by the variance, yields exactly the same result in the Gaussian and the Poisson case, while the fractional rms (that depends on the mean count rate) and the absolute rms (that depend on the variance and the mean count rate) change.

+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb b/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb new file mode 100644 index 000000000..080f1b969 --- /dev/null +++ b/notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb @@ -0,0 +1,779 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectrum example\n", + "\n", + "This tutorial shows how to make and manipulate a power spectrum of two light curves using Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from stingray import Lightcurve, Powerspectrum, AveragedPowerspectrum\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.font_manager as font_manager\n", + "%matplotlib inline\n", + "font_prop = font_manager.FontProperties(size=16)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 1. Create a light curve\n", + "There are two ways to make `Lightcurve` objects. We'll show one way here. Check out \"Lightcurve/Lightcurve\\ tutorial.ipynb\" for more examples.\n", + "\n", + "Generate an array of relative timestamps that's 8 seconds long, with dt = 0.03125 s, and make two signals in units of counts. The signal is a sine wave with amplitude = 300 cts/s, frequency = 2 Hz, phase offset = 0 radians, and mean = 1000 cts/s. We then add Poisson noise to the light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "dt = 0.03125 # seconds\n", + "exposure = 8. # seconds\n", + "times = np.arange(0, exposure, dt) # seconds\n", + "\n", + "signal = 300 * np.sin(2.*np.pi*times/0.5) + 1000 # counts/s\n", + "noisy = np.random.poisson(signal*dt) # counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now let's turn `noisy` into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "lc = Lightcurve(times, noisy, dt=dt, skip_checks=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here we plot it to see what it looks like." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA18AAAIeCAYAAABENbUUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD3OUlEQVR4nOydeZhcRbn/vz1rkpnsM9kgC7KEgCwJAZSwyCWAREAWuShrWAT0XpTFBfSKwassPwRUEJUrCIgRlM0gigGUhLCHhDUGAmQlC1knk0yS2fr3x6HmvKe6zr5Vdb+f55lnerp7uqtPn1NV3/q+71uFYrFYBMMwDMMwDMMwDJMqVXk3gGEYhmEYhmEYphJg8cUwDMMwDMMwDJMBLL4YhmEYhmEYhmEygMUXwzAMwzAMwzBMBrD4YhiGYRiGYRiGyQAWXwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkQE3eDTCV7u5urFy5En379kWhUMi7OQzDMAzDMAzD5ESxWERraytGjBiBqip3f4vFV0RWrlyJkSNH5t0MhmEYhmEYhmE0Yfny5dh5551dH2fxFZG+ffsCsA5wv379cm4NwzAMwzAMwzB5sXnzZowcObJHI7jB4isiItSwX79+LL4YhmEYhmEYhvFNR+KCGwzDMAzDMAzDMBnA4othGIZhGIZhGCYDWHwxDMMwDMMwDMNkAIsvhmEYhmEYhmGYDGDxxTAMwzAMwzAMkwEsvhiGYRiGYRiGYTKAxRfDMAzDMAzDMEwGsPhiGIZhGIZhGIbJABZfDMMwDMMwDMMwGcDii2EYhmEYhmEYJgNYfDEMwzAMwzAMw2QAiy+GYRiGYRiGYZgMYPHFMAzDMAzDMAyTASy+GIZhGIZhGIZhMoDFF8MwDMMwDMMwTAaw+GIYhmEYhmEYhskAFl8MwzCMsfz738DttwPr1+fdkvC8/Tbwy18CGzfm3RKGYRgmK2rybgDDMAzDRKG7G5gyBViyBHjjDeD//i/vFgWnsxM49lhg5Upg4ULgttvybhHDMAyTBex8MQzDMEbS3m4JL8ASMCaxebMlvADgnXfybQvDMAyTHSy+GIZhGCPp6lLfNoHOTvv29u35tYNhGIbJFhZfDMMwjJF0d9u3qZgxgY4O+/aOHfm1g2EYhskWFl8MwzCMkbDzxTAMw5gGiy+GYRjGSKjzxeKLYRiGMQEWXwzDMIyRmOx80bBDFl8MwzCVA4svhmEYxkhMzvli54thGKYyYfHFMAzDGEm5OF9ccINhGKZyYPHFMAzDGAnnfDEMwzCmweKLYRiGMRIquEwLO6TOV1eXee1nGIZhosHii2EYhjGScnG+AHa/GIZhKgUWXwzDMIyRlEvOF8Dii2EYplJg8cUwDMMYSTk5X1x0g2EYpjJg8cUwDMMYSbnkfAHsfDEMw1QKLL4YhmEYIykn54vFF8MwTGXA4othGIYxEpNzvlh8MQzDVCYsvhiGYRgjMdn5ksMOOeeLYRimMmDxxTAMwxiJyTlf7HwxDMNUJiy+GIZhGCMpJ+eLxRfDMExlwOKLYRiGMRIquIpFpxjTHXa+GIZhKhMWXwzDMIyRyGLLJPeLnS+GYZjKhMUXwzAMYySy2DJJfPEmywzDMJUJiy+GYRjGSNj5YhiGYUyDxRfDMAxjJOXkfLH4YhiGqQxYfDEMwzBGIjtfJpWbZ/HFMAxTmbD4YhiGYYzEZOeLww4ZhmEqE23F19SpU1EoFDx/truMVq+99hpOO+00DB06FL169cIuu+yCSy+9FB9//HHGn4JhGIZJC5NzvrjgBsMwTGVSk3cD/Jg0aRJ222035WPV1dUl9z300EP4yle+gs7OThx44IHYZZddMHfuXNx+++3485//jDlz5ri+HsMwDGMOstgyKeyQnS+GYZjKRHvxdeGFF2Lq1KmBnrty5Uqce+656OzsxG9+8xtcdNFFAICuri5MnToV999/P8444wy8/PLLKBQKKbaaYRiGSZtycr5YfDEMw1QG2oYdRuFnP/sZ2traMHny5B7hBVgO2a9+9Sv0798fr776KmbOnJljKxmGYZgk4JwvhmEYxjTKSnw9+uijAIAzzjij5LHGxkaceOKJAIBHHnkk03YxDMMwyVNOzhfnfDEMw1QG2ocd/utf/8Jbb72F1tZWDB48GAcddBCmTJmC+vp6x/NaW1vx/vvvAwAmTpyofK2JEyfi97//PebPn596uxmGYZh04ZwvhmEYxjS0F1/33XdfyX3Dhw/H3Xffjc9//vM99y1ZsqTn9qhRo5SvNXLkSADA4sWLPd9z69atvu0K8hyGYRgmPcrJ+WLxxTCVzbPPAlu3AlOmAFyWoLzRNuxwv/32w89//nO8/fbb2Lx5M9asWYOZM2fikEMOwapVq3DiiSfi2Wef7Xl+a2trz+2GhgblazY2NgIANm/e7PnejY2Nvj8jRoyI/yEZhmGYyHDOF8Mw5cBbbwFHHgkcfzzw9NN5t4ZJG23F1+WXX45vfOMb2HvvvdG3b18MGTIERx99NObMmYMvfvGL6OjowGWXXZZ3MxmGYZicYOeLYZhy4K237NtvvplfO5hs0FZ8uVEoFHDttdcCAN544w0sX74cANC3b9+e57iFBG7ZsgUA0K9fP8/32LJli+/PypUrk/g4DMMwTERMzvnighsMwwioEy674kz5oX3Ol4px48b13F6xYgVGjhyJ0aNH99y3bNky7LPPPiX/J4TamDFjPF/fLWyR0mXSEivDMEwZYrLzxWGHDMMI6GIMi6/yxzjnCwDWr1/fc1s4Xv369cNuu+0GAJg7d67y/8T9EyZMSLmFDMMwTNqYnPPFYYcMwwio4Gpvz68dTDYYKb4eeOABAJbgGjt2bM/9J598MgBg+vTpJf+zZcsWPP744wCAU045JYNWMgzDMGkiO18mhR2y88UwjICdr8pCS/H1+uuvY8aMGeiURtLu7m7cdddd+N73vgcA+MY3voHa2tqexy+77DL06dMHTz/9NP7v//6v5/6uri58/etfx6ZNm3DggQfimGOOyeaDMAzDMKnBzhfDMOUA53xVFlrmfC1ZsgQnn3wyBg4ciAkTJmDo0KHYtGkT3n77bSxbtgwA8JWvfAU//OEPHf83YsQI3HPPPfjKV76Ciy66CHfddRfGjBmDV199FR9++CGGDh2K6dOno8AbKDAMwxhPOeV8ccENhqlc2PmqLLR0vvbbbz9cdtll2HvvvbFw4UI88sgjeOaZZwAAX/rSl/DEE09g+vTpqKkp1Y6nnXYaXn75ZZxyyin48MMP8eijj6Krqwv/9V//hTfeeKMnL4xhGIYxm3JzvorFfNrCMEy+sPNVWWjpfO2yyy649dZbI///AQccgIcffjjBFjEMwzC6UU45X93dVvtJJD3DMBUC7bu44Eb5o6XzxTAqtm8vnWwxyVEsAm1tebeCYYJTTs4XwHlfDFOpcNhhZcHiizGCN98Ehg8Hxo0Dtm3LuzXlyYknAgMHAg89lHdLGCYYJud8qcQX530xTGXCYYeVBYsvxggeeQTYtAl47z1gzpy8W1N+rF4N/PWvVrjDfffl3RqGCYYstkwOOwTY+WKYSoWdr8qCxRdjBDQcjleHk6elxb69eXN+7WCYMJSb88Xii2EqE3a+KgsWX4wRUMFl0uq2KWzZor7NMDpjcs4XO18Mwwi44EZlweKLMQIWX+nS2qq+zTA6w84XwzDlADtflQWLL8YIWHylCztfjImUU6l5gEOqGaZS4ZyvyoLFF2ME1IY3aYJlCux8MSZictghO18MwwjY+aosWHwxRkBXhLljSh7Z+SoW82sLwwTF5LBDzvliGEbAzldlweKLMQIOO0wX6nbxZsuMKbDzxTBMOUAFFxfcKH9YfDFGwOIrXeQ8L877YkzA5JwvFl8MwwjY+aosWHwxRsDiK13kPC/O+2JMwFTnq7u7VDgCXHCDYSoVFl+VBYsvxghYfKULO1+MiZia8+XWh7HzlSxLlgBnnAH86ld5t4RhvCmXghsrVgBnngn8/Od5t0RvWHwxRsDiK13Y+WJMRBZbpvQNbpMrFl/JcvPNwB//CFx6KbBuXd6tYRh3ysX5uvVWYPp04LLLLCHGqGHxxRgBi690YeeLMRF2vhgvVq60fnd1ARs25NsWhvGiXApufPCBfXvt2vzaoTssvhgj4FLz6cLOF2MipuZ80T6stta+zTlfybJtm32bF+0YnSkX54s6zNyfucPiizECdr7ShZ0vxkTKwflqbLRvs/OVLFR8mXJuMJVJueR8UbfLZAcvbVh8MUbA4itd2PliTKQccr769rVvs/hKFna+GFMoF+eLxVcwWHwxRsDiK13Y+WJMhJ0vxgsWX4wpyM5XsZhfW6LS0QFs3Gj/zeLLHRZfjBGw+EoX2eli8cWYQDnkfLH4Sg8OO2RMQZ7XmHi+ykVtWHy5w+KL0Z5i0XkRs/hKlmKxVGxx2CFjArLzZUrf4OZ8cYJ6srDzxZiCfH6aKFzk6obcn7nD4ovRHjn+2eR4aB1pby/t+Nn5YkzAVOeLww6zgcUXYwrlMM+RxZeJAjIrWHwx2iOvnvAgmiwql4udL8YETM354oIb2UCPpynnBlOZyPMaFl/lDYsvRntYfKWLyuVi56uyWLsWeOwxoK0t75aEg50vxo1ikZ0vxhzY+aosWHwx2sPiK13Y+WKOPRY4+WTgiivybkk4TM35ohOrhgb7Nouv5OjocJ4fppwbTGVSDs4X3WAZ4JwvL1h8MdrD4itd2PmqbLq7gfnzrduvvZZvW8JSDs5XbS1QX2/d5slKclDXCzDn3GAqE1lsmegasfMVHBZfjPaw+EoXdr4qGzopNe3aKoecr9paoFcv6zY7X8khiy/Tzm2msigH54vFV3BYfDHaw+IrXdj5qmzo9WTatVUOzldNDYuvNGDxxZgE53xVFiy+GO2RxZeJnZLOsPNV2Zgsvsoh54vFVzpw2CFjCsVieThfcs4Xiy93WHwx2sPOV7qoXK4dO8zs/Jnw0O/ZtO+8HJwvGnbIOV/Jwc4XYwqqfsu0vhjgTZbDwOKL0R4WX+ni5nJx6GFlUE7Ol4niq6bGLrjBzldysPhiTEF1bprmGhWL7HyFgcUXoz0svtKFiqwBA9T3M+WLyeJLFlumtN+r4EaxmE+byg0OO2RMQdVvmeZ8bdpU+jlYfLnD4ovRHvkCNmWCZQrU+Ro+XH0/U76YLL7KxfkS4qtYNG/SpSuyi2jauc1UDqpr3rR+QA45BFh8ecHii9Eedr7ShTpcVHyx81UZmCy+TM35cnO+AA49TAoOO2RMoRycLznkEOCcLy9q8m4Aw/jB1Q7ThTpcw4ap79eJri6gutr98WLRCoEAgKoqoH//TJplLCaLr3JxvkTOF8ATlqQwNexQnNNVvDReMbDzVXnw5c1oDztf6WKS8/X000BTE3DSSercmE2bgHHjgEGDrJ8BA4Cjj+Y8Gi9MFl/llvMFsPOVFCY6XytWAGPGAHvvDbS05N0aJivKoeAGi69wsPhitIfFV7q45XzpKL7uvdcSWH/5C7B0aenjTz4JvPuu876nnwbeeSeT5hmJyaXmy8X5YvGVPCaKrwcfBJYvBxYuBGbOzLs1TFaw81V5sPhitIfFV7oIkVVba7lFAh3DDtva7Ntbt5Y+TieuhYJ9W56IMTbl5HyZIr7Y+UofE8MO16yxb9O+jilvyjXni8WXOyy+GO1h8ZUuQnz17Wv9yPfrBO3MVZNUOsFqbLRvmzaQZQm9nrq7S90knZHbakrfwM5X+pjofFH3gPusyqFcnS/OX3WHxRejPSy+0kU4XI2NTsGio/NFzwU/8dW7t32bV+Dcka8nExwCQTk4X1xwIx1MFF/UPeA+q3IoB+eLww7DYZT4+s53voNCoYBCoYAf//jHJY9Pmzat53G3n4ULF+bQciYOLL7SxVTnSzVJpecGdRNMG8iyRL6eTLq+yiHni8MO08HEsEM6geWJa+VQTgU3qqrshU/TPkOWGFNq/oUXXsDNN9+MQqGAok/psv322w/777+/8rH+XHfaOLjUfHp0d9u5UyY4X2HCDqnzxeeMOyaLL1OdLw47TB8TN1nmsMPKpJzCDgcPtq61bdtYfHlhhPhqa2vD1KlTMXz4cBx44IF47LHHPJ9/0kknYdq0aZm0jUkfdr7SgxatMM35YvGVDPKxMelYmZrzxQU30sfEsEN2viqTcgg7FCGzzc3A+vXWbQ6hdseIsMOrr74aixYtwp133snOVQXC4is9qLtlgvMVJueLww6Dwc5X9ng5XzxhSQbTwg537HD2uSy+KgfTna+2Nrs6Z3MzUFdn3eZz2B3txdezzz6L2267Deeccw6mTJmSd3OYHGDxlR7U3SoH58st54sHAXdMFl+m5nzJzhctuMHOVzKY5nzJpbpNmnwz8TDd+aKObVMTi68gaB12uGXLFpx//vkYOnQofvaznwX+v3nz5uGqq67Chg0b0L9/f4wfPx4nnHAC+tKZJWMM8gWs+yBqErLz1auXlTDb3a2n8+VXcIPDDsNjsvgqR+eLxVcymCa+5GpxPHGtHEx3vui529xsLybxOeyO1uLrW9/6FhYvXoxHH30UAwcODPx/jz/+OB5//HHHff3798cvfvELnHPOOb7/v1W1e2uE5zDJwM5XesjOV6Fg/W5pMdP5MlF83Xsv8NJLwA9+AIwYkf37myy+OOeLccO0sENZfOncZzHJYnq1Q+rauoUdPvQQ8I9/AN/7HrDLLtm2T0e0FV8zZ87Eb37zG3z5y1/GSSedFOh/dt11V1x33XU47rjjMHr0aADAggULcMMNN+Cvf/0rzj33XFRXV+PMM8/0fJ1GmvjC5I4svopFayCtrs6nPeWE7HyJ3y0t+jtfYcIOdZ3IrF0LXHCBdT43NgI33ZR9G0wWX+x8MW6Y5nzJYYcmTb6ZeJjufNFzl4Yd7thhzdfa2oBzz7V+F4vAb3+bTzt1Qkvx1dLSggsuuADNzc247bbbAv/f2WefXXLfpEmT8Pjjj+Mb3/gGbrvtNlx++eU47bTTUCfODkZ73PZzYvEVH+puUfElP6YL5VZw4+OP7TavWJFPG+Rjo/sklVIuOV/0XJVFAxMN08QXhx1WLqbnfG3ebN/u398WX4D12TZssAtyrFyZbdt0RcuCG5dddhlWrFiB22+/HU1NTYm85rRp01BdXY21a9fi5Zdf9nzuli1bfH9W8hmUGX6b6TLRoe6WSIkUv7dssVapdCJq2KGuExl6HufleMjXkkmDviy2TOkXZOeLnqssvpKBww4ZUzBdfMnzCFpAqL3deS2a9LnSREvn69FHH0VNTQ3uuOMO3HHHHY7HFi5cCAC466678PTTT2PYsGF44IEHfF9z0KBBGDJkCFatWoUVPkvMDQ0Nvq/XpXtPXkaw+EoPL+eru9vqNPv0yb5dKorFcAU3THC+dBRfJl1bpjpfLL7Sh50vxhRMDzuU5xHU+WLxpUZL8QUAnZ2dmDVrluvjS5YswZIlS3pyu/zo6upCS0sLAHDVQ8Ng8ZUeXs6XeFwX8dXV5XTiyiHni7aLxVd4TM35ksMOqfjinK9kkI+j7uc153xVLqYX3JDnEVR87djhFF+6X4dZoWXY4aZNm1AsFpU/5557LgDgf//3f1EsFrFkyZJArzljxgy0tbWhUChg4sSJKbaeSRoWX+nh5XzJj+eNfB6UQ7VDdr7iwc4Xo6JY5LBDxhzK3fmiY5tJnytNtBRfUVi2bBnuv/9+bFfMYB577DFceOGFAIAzzzwTw4YNy7p5TAxYfKWHn/Olk/iSVwLLQXzRdqnO8ywwWXyZmvPFBTfSxcQxg8MOKxfTc77kLWs47NAfbcMOw7JhwwacffbZ+NrXvobx48djp512wrZt27BgwQIsWrQIAHDkkUfiV7/6Vc4tZcKiGkj5Ak4GP+dLp3Lz8mQkTM6XrhMZdr7iITtfxaL1Uyjk056gsPOVLqpjqPt5zeKrcjHd+ZK3rOGCG/6UjfgaOXIkvvvd7+LVV1/F+++/j3nz5qG9vR1NTU04/vjjccYZZ+D0009HVVXZmH0Vg4mrmKYgr1jR3/LjeRPE+eKcr3htUP2tM6pQsq4uS9DojOx8UbHI4is+qmOoc9hhVxewfr3zPpOuQyYe7HxVHpoPUaXcc889uOeee0ruHzx4MG644YbsG8SkDouv9HDbZFn1eN6UY9ghO1/xkJ0vwGq/7uJLHONCAaiqsgRYVZVdYZSJh2nO18aNpdt6sPNVOajGJ5O+fzFPqKmxhBcX3PCHbSDGwcqVwJw5+uzvJJcXF5hwAX/wAfDaa3m3whu6YiV2WNDF+Vq1ynkulmPBDc75io5KeAF6OxwC8b3X1lq/CwX7fM1TfK1ZA8ye7X5sTcE08SWHHAJmTb6ZeJSL89W3r9WXsfPlD4svpoetW4FPfxo47DDgd7/LuzUWbheqzgMpAKxYAYwbB0ycCMycmXdr3BErVg0N1so7oIfztW0bsM8+1rn4299a95Vj2CE7X9ExWXyJY0wdurzF144dwP77A0ccAdx+ez5tSArTwg5V4kvXPotJnnLJ+RJzB8758ofFF9PDu+9a4Q8A8Nxz+bZF4OYG6D5BfPllu5N58cV82+JFW5v1m+7lRW+Lx7Nm0SI7B+KFF6zflVBwIw/H2VTx5TaZ1nmSLZCdLyB/8bV4MbB6tXX7X//Kpw1Jwc4XYxLl5HwB7HwFgcUX0wO9KHQptGCq+KLHT+fORrgtVKjQVSsdQuFEG8ox54u2q7s7n/PaVPHl5nyZ0H5dnS+BSgyYhGniS95gGWDxVUmYLL66u+35jnC+vHK+TPlcacPii+nBJPGl+wVMj5/Og6g4vm7iK6+2q8LxwuZ8mRZ2COQTeigfG50nqRSTnS8dxRc990wXX359g25w2GFlY3LBDRodoxJfsvNlyviSNiy+mB5oB6BLlTtTnS96/HTuRE1wvkQbw+Z8meZ8Afkcb/la0vVYyZic8+UVdrhjRz4FL+j1pHJiTMI054vDDisbk50vOtcRYYec8+UPiy+mB9oB6O586TyQAmaEHRaL5Se+2PmK3wbdry1BuTlf9HzN47qj596GDeacBypMFl/CNWDxVTmYXHCDznWCOF+mfK60YfHF9MDOV3KY4Hx1dNgFHkwUXzt2lBaocMv50vk7oLD4Co7JOV9ezheQT+ihfO7Jm/6ahGnVDqnTOHy49ZsnqZWDyc6XvMEy4C2+ikW9r8WsYPHF9GBSzpfuEywTnC96bKng0kF8qfa/kgWUqkAF7dTp59D1O2DnKzrl5nzlLb7ka93kvC9Tna+aGqC52bqt64IRkzx0fBLCRdcxS4YuNAcpuAGY89nShMUX0wM7X8lhgvNFJ/rU+ZI7zjwIUnCDPqb6v9pae3Kra2fPzld0yjXnC9DD+So38aXzeSGOdVOTvWjU3a13m5nkoH2u2OpF13mDTBDny2ucrlRYfDE90Ingtm16dPx0wk33n9J1Mi0wodqhm/jSwfkKEnZIHxPQc7a62p7c6nq+yINQHse73KodmtB+HZ0v+VoyueiGSc5XsWiLr+ZmpyDXtd9ikoV+z2KeY8p3r3K+vApuAOZ8tjRh8cX0IA9OOoQe0sloQ4N9W9eBVEA7JF06mmLRmSNVDuJLbp9p4ktH50vXYyVjqvNVLNrH3HTnK49NwYNgkvhqbbX7tubmUteAKX9UzpfOuVH0ug+b8wWYM8akCYsvpgf5gmDxFR3dnK9Nm4AJE4D997cT6emxNVV8eYUzVFXZk1sdvgMVnPMVHVPFF22fTs5X2Jyviy8GRowAZs5Mr01RMSnskDqMLL4qE5O2SPnFL4ChQ4Ff/tL6m3O+osHii+lBviB0yPsyVXzplvM1Ywbw+uvAm28Cf/mLdR+d6OtWcIN+v6INQXK+xASruhooFPR3vlh8RcfUghv0+OokvsI4X2vWAHfeCaxeDdxxR7rtigI9flWfzHJ0Pa/ff9++PWwYhx1WIqqwQ/l+XbjlFqtvuOEG6292vqLB4ovpQUfniwoXk8SXbtUOW1rs25s3W7/dwg5raizhAuhR7TBKzld1tfVbd/Gl4ybLul9bAlNLzdPvXOewQ6+cr9Wrgz0vL+hnEavxup4Xs2fbtw8+mJ2vSkQVdgjoOW5t3Wr9XrPGCj+MkvOl67WYJSy+mB50d77EhQ3of/Hq5ny1tdm3RUfoJr4KBbvz1MH56uqy/o4ivnQv28vOV3TKzfmi16AO4svL+aKCiy7s6AI9fmI1Xtfzgoqvww9n8VWJuDlfOn7/ov/q6LAWctn5igaLL6YHLriRDF1dTrGjQwcqVqsAf/EF6CW+AKutQQpuyFXkTHO+WHwFx9ScL1OcLy/xRR/btCmV5sRCJb50PK+3bwdeftm6veuuwE47cdhhJWJSzhdt09q1/jlfLL7UsPhietDd+aLiS+eLlwodQI+2qpwvt02W6d95CUeV+Aqb8wXoL750cL641Hy2BMn5yuM8CFNwgz6mu/MlJoTFortgz4uXX7b72MMPt36z81V5iD6YVuil9+sE7b/WrnUu0qvE19atpX21jp8ra1h8MT3omPPlts+XzhMs+bjpMICa7nzt2BEv50uH70CFjs6XKQMjO1/Josr5cislT8VXa6t+x1wcv6oq53HVrZ005PCII6zf9JzQtd9ikoVGbOguvmTnSxV2SBdzVc64jp8ra1h8MT2Y5Hyx+ApHmJwvQD/x5RZ26FZqXhZfnZ167kmkwybLpoYdllvOl27iq7PT3dWSi2yIIj66II5f797OY6zbuS3newFO14AnqZWB+J5ra/X+/ru7nYte69Y554lijkY/g6oP0e06zAMWX0wPnPOVDLJo1aEDrRTxJSbeYsJFBwEdzxkdnS8dj5MKdr6SRXXuuYUeyvfrlvdlgvjq6ABeeMG6vfPOwJgx1m0OO6w83Jwv3b5/+fqhzlefPqWFrgC1+NJhTpQ3LL6YHnQPOzSl2qGOzpcq7NBtk2Ugf/GlEiVBCm64hR2qXlMHdMj5MlV8lXPOF4uveLiJL52E+Wuv2YtiRxxhb++h8+SbSQfqfOk8ZqnEl1hspvMzFl/+sPhieuCww2SQj5sOA6if8yUX3BCdZ2dnPknqSRfcAPTs8Fl8RYedr2RRXV9BxZduRTeo+BJ9AaDXua0KOQT0Djtj0sGUnC8v50vkewEsvoLA4ovpQXfny5Rqh/Jx06GtUcMOAT3ykMLmfMml5gE9RLCMDpssu1U73LYN+OEPgdtvz75NQaAiS7gG8v15UiwCt94K/OQnzmNskvPltoGyqc6XTuJr1iz7tpv40rHP0pEnnwSuvBJYvjzvlkRDnJdhnK9f/xqYNs05tqeN3B6a80Wdr6oq+7pT9Ss6zInypsb/KUylwM5XMujofEWtdghY3wGdGGZB0tUOAT07fB2dL3GcHnwQ+NGPrNvjxgFHHZVtu/ygzlddnd1X6CK+nnsOuOIK6/YeewCnnWbdNkl8qZyv7m5g/XrnfTo5X93ddl/Rq5e+YYdif68hQ4CxY+37dV8w0o0dO4DTT7eKvmzcCNx9d94tCo/oc2tqgjmf8+cDX/uadXvkSOCCC9Jtn0AeK1autM9R6nwB1udwm6fpPH/LCna+mB644EYyyMdNh0p75ep8+eV86R7Co3PBjWXL7PtmzsyuPUGhE2kdC6vQ47dkiX3bLeyQXoM6i6+NG0tDPnVyvujn0DnsUByzkSOdzq3ufZZubN5sV9tcuDDftkTFzflyE9+LF9u3aT+TNvL5SNtBnS/AeR77vU4lwuKL6YGdr2RQHbe8OxvqfInJSZCCG/LzsoJzvvJrg/ibDvw0REoXqACg37Mu7gY9rvR71dX5CprzpbpPJ/FFj52uYYddXfZ56pZvC7DzFQR5018Toc5XkDGLjudZjmvy9UMdb5Xz5YaOY3HWsPhietAx54sOPqaIL9Vxy3sQDVtwI2/xFbTaYZicLx07fJ2dL3q8X3tNj/6A4uZ86S6+dC24IdrYr599nyrnSzXB1Sns0Et86XJu0GtL7ns57DAc9Ds1VXyFzfmi43mW45rXe8nOl3xeB32dSoHFF9OD7s6XKaXmVcctz0G0WCzfsMMwzpeOExmdN1mmx6uzE3jxxezaFAQ550ugS99A20G/Vzfnq6bG/jtP8TV8uJUwD6gnsypBprPzpWPYIT0fvJwvnqT6Q8VXS4ue/bwfcZyvLD+v1/XDzlc4WHwxPejofNFBiq4M6zKIqlAdtzw7m+3bnTlnJoqvIAU3ikV7Qm5K2GHezlex6F7tUD7etDS2DpSb8wXYfVweDqh4zz59gMGDrdtBww5Ncb50GTeCii8ThUTWyNe7XAxGd7q77XEraMENE5wvL/Gly3WYJyy+mB7kC6K1Nf9CEWKQqqvTfyIt0M35kkvRbttmfa9Bc77yaLuX80XPA/oZ6CBsSsGNvHO+VHtliTbJols38aV7zhc934LkfAG2+Mra+eruttvbqxfQ3GzdLrecL13ODS/xpbtbrxvyd2pa6CHtD4IW3MhLfHmJJi64EQ4WX0wP8gXR1ZWP60ER719fr+cKpgrdcr5U+4Ds2KF3zpdXwQ2ak0I/Ax2EOecrGKrrSLRJPmdffjkfR8aNcna+shZf8kJMU5N1u62ttP8wzfnisMPyppzEl+4FN7zeSw475Jwvb1h8MT2oLoi8875MFF+6VTukHbVg2zbzxJcQA0HElylhh3k7X6rryC3scMcO4JVX0m9TUMot5wvIT3zJfYFwvoDSHC+TnS9dzg0OO0yOchJfuhfcYOcrOVh8MT2oLoi8875MFF8mOF9UfNXXO/eZEfcJdBNfdIUtjPjScSKTd8GNMOIL0Cv00FTnS55sUXQQXzTsECidzFIxNnCg9dsU8aXLuUGvc3mSqnufpRvyd6oqCKMzdN7FBTcqBxZfTA+qC4udLyfLlwMffuj9HN3El5/zJed7AfmLL7lzpgU36uvt9vnl0uTlfK1fD7z1lv/zdAw7dMv5AvTa78vN+dJlgh0k7FB2vsS12NGR7ecII77E3zU1wOjR1u2WlvzzgwXyZ+Gww3gsWAB8/HG4/ykWs9uewiTn6/XXSxcq5MUY+fvv6rJCvuk5wwU3zIfFF9OD7s4XnUjncfEuXgx86lPArrtaA4sbuoUdujlf4tjqKL7k73fLFnuyXVdnt9mv4EYe4mvLFmDsWGDffYEHHvB+rsrhy3ISG9T5GjTI+v3CC/oMnG7Oly7tC7vJMpDfXl9yzlcQ8dXUBAwYYN3u7FT3M3nAYYfJ8eSTwN57W+NeGEfpppuAiROBgw9WF/VJEvk71VV8/fa3wPjxwD77OL9/L+ervR34xjeAz3wGOOEE+34dww7Z+QoHiy+mB5NyvvK4eJ9/3u58nnnG/Xm6OV9Bwg5laMepg/javNm+TcWXX9hhHqvI8+bZ5Y69zhOgtE2q0u9ponovlfg64ADrd1ubPqWcTa12GKTgBpCt+JLdIuFoAcAbb9i3i0V7ctvcbIsvQJ+iG9Tp79PH6Xzpcm6YUu3wn/+0fm/dGm6fP+GQL1gArFmTfLsopjhfzz5r/V6xAvj3v+37/XK+Zs60bv/zn/bCnI4FN3iT5XCw+GJ60M35KhadoWZ5r2DSAdNtorFjh/o4cthhOLzEl1vYoS7OFx38/SakqvM4y+MdtNph//727bwroApMyvkKW3ADyE981dcDhxxi/03z/LZutT+LLL50yfuiY1bfvvmPGypMCTukC3dhRA09zmnPIUwRX/S7pG30y/kSz6XVp9n5Mh8WX0wPuokvOvmrrweqquzCEHkMorQ9bhMNt+OlY9ihqeLLzfnyy/nKSgDTgdVvQqo6L7LM+woSdlhX5xQFupSbL4ecL12dr6Ym4NOftv6eN8+OgKDndnOzU5TrIr5otIbp4itv5ysJ8ZV29IwpBTfod0mPpVep+bY25wKeOJZ5FdxIKueLxReLL4agW8EN1QAlBtK8xZebo+F2vHR0vkzK+aLHVfecLzr4ezlfxaJaKOgivugG5/Qc0UV8cc5XcsjiCwAOP9z63dVl5foBzkkjzfkC9Ak7pAtgjY0cdhgHOnaEETXsfJVCxx96LOXFGNqXrVrlfA1xLE13vnTpo/PEKPH1ne98B4VCAYVCAT/+8Y9dn/f0009jypQpaGpqQu/evbHnnnvi+9//PrbkXT1Cc3R3vgB9xFdY50u3nK/Nm+34cR3Fl3wu0omd7HyJz6GL+ArqfLmdw7qIL+p85X0+qNA95yuu85XleSAX3ABs8QXYoYfsfCVDJYUdZu18rV+ffpGPKLiFHXo5XytXOl9DHEvdqh1WV3vvFRr0dSoJY8TXCy+8gJtvvhkFeUMiiVtvvRVHH300nnzySey999444YQT0NLSguuuuw4TJ07EOl09aQ3QreCGaoASHVPeOV9uEw16vOiKq25hhxs32rdVnWTek22/nC8xQaQFKlSOQh4TmaA5XyaJL5OcL93Fl+7Ol7j2qfgSBRRk8WWC86Wj+FItLAp0CjukzpcpOV9dXc7xTReC5HzJBTdk8SWOZV4FN9yun759S/cK5bBDb4wQX21tbZg6dSqGDx+OL37xi67Pmz9/Pq688kpUV1fjiSeewKxZs/CnP/0JH3zwAY466ii8++67uOSSSzJsuVno5nyZGHZIj5cozy3/b9aowg6peNTR+fLafFh2YsTEsVycryyPd5Bqh1TsAvqIL7ecL10m2EEKbuia8wUAw4cDu+9u3X7lFas9dO1S14IbsvPFYYfRMdH5AvTM+4rifMlhh62t1vPpeZGX+KLbUcj5XgCLLz+MEF9XX301Fi1ahDvvvBP9aZyDxPXXX49isYjzzjsPxx13XM/9ffr0wV133YWqqio8/PDDWLhwYRbNNg5xQdDBShfnS1zIQnzlcfEGCTukx0sX8eXnfJkgvihuToyf+MrqO6AD/44d7mLF7RzO2/kSuWjsfMWDfr/t7bZY9NpkWSfxBdjuV0eHtdGrnPNFh2N2voJjYtihrjlfqu9Ux7wvOv7QY+lXap6yZUvpeJ5XwY3hw+3bQcRXQ4P6dSoV7cXXs88+i9tuuw3nnHMOpkyZ4vq89vZ2PPHEEwCAM844o+Tx0aNHY9KkSQCARx99NJ3GGo7oBAYOtO9j58smjvOlc9ihn/jKQziGEV/iPNHR+QLczxVdww7F/W4FNzjnKxhu7q1X2CE9zjqJL8AKPfQKO9TF+RJ9cK9e1vE1TXxVV9shXHk7X1HDDuk1mIfzpaP4Clpq3ssxam0tHc/zcr5GjLBvy8U2gNLzul8/9etUKjX+Tymlu7sbr776Kp555hnMmzcPa9aswcaNGzFw4EAMHToUBxxwAP7jP/4DBx54IKqqouu7LVu24Pzzz8fQoUPxs5/9zPO57733Hto+OSsnTpyofM7EiRPx3HPPYf78+Z6vtVUVpxXhOSZRLNoXxKBB9sqMLs6XDuKLtqe11er0qUso7hfo4nypTtVydL78Ss1nMUjRTWgFmzYBQ4eWPldX50vc71Zwg52vYMjHdvt2y9nSsdS8quAGABxxhH179mxr02JBc7NzsUkX8SX6YLEab1rYYaFgnRft7fmLLzrR37LFOodV44VMnjlfgFniy8v5klE5X3kV3AjrfPXrZ4dRsvMVUnx9/PHHuPPOO/Gb3/wGKz/JBCyKUmME4SyNGDECl1xyCb761a9iyJAhoRv3rW99C4sXL8ajjz6KgdSOUbB48WIAwIABA9BXJcMBjBw50vFcNxpVZ1KZQzsAuprJzpeNPBBu3ux0CQE9c75MLLjh1Tm75SCpnK+sQ3haW0u/a+F8Pf88cP75wJQpwK236u18dXTYxyuPsMOrrgIeeQS4807gc59TP8eknC/Ae5FAoEPYIb32R48GRo0Cli0D/vlPZ1L94MHO9usWdiimAbo7Xyqno67O6kfynqTKY8fatcAn0yhPdMv5mjEDuOIK4MILrb4lD+h3uX69vXjrtcmyzJYtpYupeTlfVHypptzyeU2fk/d5rQOBxNeOHTvw//7f/8ONN96ItrY21NTU4IADDsAhhxyCvffeG4MHD0a/fv3Q0tKC9evX4+2338YLL7yAN998Ez/4wQ9w/fXX46qrrsK3v/1t1HvVnyTMnDkTv/nNb/DlL38ZJ510ku/zWz+5whtoYKmEEFWbaek0BoDzYujTx+7883S+VKEwOomvTZtKxRc9XoMH27fz7GzKoeAGReeCG6q8CHGsf/5z4L33rJ/vfc+9PVkeb7fjTCf+WRfc2LwZ+H//z3IRb7nFXXyZ5nyJ71VH58st7BAAjjwSuPde67ZYa915Z6sv1rnUvFhD1V18qaZE4nzOc9GuWCwdO6KILx2cr5/+FPjgA2DaNOC73y2tzJcF9LovFoENGyz32KvghkzeYYf0vT71Kes4FotOISZg8eVNIPE1duxYLFu2DPvssw/OP/98nHnmmWhqavL9v3Xr1uH3v/89fve73+Gaa67B3XffjQ8//ND3/1paWnDBBRegubkZt912W5AmJkqQ/cA2b96METTo1XBk67tvX2t1Jk/ni66kikE+z1LzKvElY6LzZaL48nO+VGGHWXwHqnAXcZ589JF9n6hapSJL58ttEKSTrqydr7Y2e5IvV/uimJbzZYrzJfcHP/wh8PHH9vnbp481gQWs9jc0WOeLDs5XZ6f9WUwNOwTs8znPcaOjo/R4BS26oZv4EuemKIBEr7OskL/Ldess8eVVal5G5XxleY7Q73XUKOCmm6xc0CuuKH2ul/jSZREkTwKJr969e+PPf/4zTj311FAv3tTUhMsvvxyXX345/vznP+Oaa64J9H+XXXYZVqxYgQcffDCQyAPQE2rolYslRFU/mvmnwMs9E3Tp0osnhNwBNDZa4itP54uKGxEKqZPzpZpslEvBDdpx6i6+VIUM8nK+VOJLnCdyFUTa3vp6+3PoEHZIz5msN1mmbfLK3TDN+RLfq47Ol1vOFwDssgvwt7+5/++AAdaEUAfni/a/poQdejlfukVMBM2lyjvsUG4nPd5bt+YjvuTvcu1aYNy40sUYeUGGopPzVVMDXHml9aNCPq/79LHG5a4udr6AgOLrnXfeiVU4AwBOO+20wOLt0UcfRU1NDe644w7ccccdjsdEmfi77roLTz/9NIYNG4YHHngAY8aMAQBs2rQJra2tyryv5cuXA0DPcxkblfgC8nW+6GAunK88S83Lk07VZEPnghs1NXZHTztwHXO+vCZJYXK+dBBf4jyhj+3YYbs7gDVR1El85el8BRVfuud8yeebqc6XH/37W66YbuLL5LBDHZwv1aJdFPGlg/NFj7fqc2WBSnzJ99fW2gVX3PZdldsvtgaRi3+lgdcehTKy89W7t/U/LL4sAomvuMIryut0dnZi1qxZro8vWbIES5YswejRowFYoZF9+vRBW1sb5s6diyOPPLLkf+bOnQsAmDBhQsiWlz9yByC0a1tbdhe2DHWWZOerq8vqdLKM3Y7jfOkwiA4aZIUPyagmWzU1djy3buIrzD5fWRfcUIXltLRY703dRvl8aGy0/1eHnC9ZnGcpvuj32NZm/dAqe6rnlaPzlaUIdyu4EQTRN7e1WZ/Nb1KWJvIGy4CZYYc65HwlJb50KLhBj2NehardxJdblV7VeNXaqm5/R0c2czSvPQpl3MTX9u0svgBN9/natGkTisWi8ufcc88FAPzv//4visUilixZAgCoq6vDF77wBQDA9OnTS15z6dKleOGFFwAAJ598cjYfxCDki4oWfMyrs/JyvoDsB9IgOV9uzpcO4SNuEbwq8VUo2JMCU8SXDqXm3Zyv9eud98lhh/R608H5ksMO83K+APc8EzfnS5cJdpR9vkx0vmh13LzzvsrF+SqnsMO8NlmmkQU6Ol+iX1O5SW4LGCrnS/XaaZGE8wWw+AIiiq9ly5ZhxowZWLFiheP+d955B0ceeSQGDhyI8ePH46mnnkqkkUG56qqrUCgU8Lvf/Q5PPvlkz/1tbW244IIL0NXVhVNPPRV77rlnpu0yAVXBDUFeeV9ezheQ/UAaxvmSj2FeK5hdXfbA07+/enXMbbKVl/jq7nZOrGXccpD8wg7zKrjR0qIOg9FZfOkSdgi4T/jcnC9dJthBCm7okvMVN+xQkLf4UjlfJoovXcMOoxTcyMP52r7d2YfpKL5UYYeqRUOKm/OV1XnitXAkI5/XvXvnm7OvG5HE109/+lOcfPLJjuIWW7duxeTJkzFr1iy0tLTgjTfewIknnohFixYl1lg/JkyYgJtvvhldXV2YMmUKjjzySJx++unYbbfd8Mwzz2Ds2LH49a9/nVl7TMIt5wvIL+9L5XzRTinrCzhMzldjY/YTfxV0AtenjzrRWDfx5fe9mpjzpRJftD1UqOclvqiA0aXgBuAuvkytdugVukPPa10KbvhBna+8875UzpfJYYddXd4LUWkSx/mixznLnC+ahiDn2AryiOTp7i4991Rhh6IfU+39BuTvfHmFTMuw8+VNJPE1e/Zs7L777hg7dmzPfdOnT8eaNWtw0kkn4fXXX8ePfvQj7NixA7fffntijQ3C5ZdfjqeeegrHHnss3nzzTfzlL39BY2Mjrr76arz66quBqydWGm45X4Be4ksn58ur1HzfvtnnG6mgA01Dg1p8ueV46Cq+wuR86SK+5BVjXZwvekzouZFnzldc50uXCbappebD5nyx8xUe0adWV6ujEXQYO6LmfBWLzuPc3p7u4iO93pub7duiz+3udh7DPJwv1XcY1fnSJewwas4XwOILCFhwQ2bVqlU44IADHPc9+eSTKBQKuO2227DTTjth3333xR/+8Af885//TKShgnvuuQf33HOP53MmT56MyZMnJ/q+5Y4svmiCe95hh7172xMCesFnfQEHCTukzhftfPJyvmhH3aePelXbNOdL55wvMeAPGmRNnrdtcw87pOcHFV95Fdzo3ds+p3UKOzQ150s+31SbLOsmvqqr/SdVMro7XzqKLzEeuAldOWoirCBOgqjiS+XUbdnizIFOEnq9Dx1qF5USbZXH3jycLy/xFTbny63gRhbEKbjRqxeLL0ok52vjxo0YJF1JL730Evbaay/stNNOPffts88+JXlhjJ7IF1UWzteWLcCNNwKPPqp+XAzkdGVVZ+eru9vuGPv21SPsUBZfUcIOs257OThfzc32eesWdqiD80XbQI+pTgU3yjXnq7q6tFprVZX9WfIQX2FDDgFn/5y3+DKt2qGbqNJh4U41yd+40f/6Uj2e5gIu/U6HDbNvi35DXszSxfkSi0pBnC9RKLytTX0sueCGeUQSXw0NDVhLRsQlS5Zg1apVmDRpkuN5NTU16NRlJGQ8kS8qOhlMq+P87W+Bq64CvvQlYOnS0sfFKjxdWdVJfMnOl7zqqkPoSJCwQxOdr6AFN6qr7YEr7UnMjh32tdLcbJ+3bs6Xbjlf9Dzwcr50zPnKswqqG345X26TF3GNmiK+uNpheMQ15Jbbo8PYoRIpxSKwYYP3/6mOcZqpC7LzJdBdfImKjH4RGwAwcqR9W7VdTFYCPYzzxQU3vIkkvvbaay/MmTOnR4BNnz4dhUIBhx12mON5y5cvx1B6NTDaIocdZrHfzIcfWr+7u4H333c+1tUFbN5s3dbF+fIruPHRR/btYcP0WL1Mwvnq7Mw26dtvsuGWg+QWj57VahsVCU1N9qR082ZgzRrnc01zvuhkQEfnq6rKFty6iy9xbFV7lwH5iC/Rt0URX3ntTaaCTvJNyPkKGnaYB7QPoALbL/QwT+eLtlO0Xx638wg7VH2H7e3WcVEVsZBF+S672LflsQRg58tEIomvc889F9u2bcPEiRNx8skn49prr0Xfvn1x4okn9jxn+/btmDdvHsaNG5dYY5n0kDuALKqb0feUV8ZoZ0071DyrHfo5X9S9Gz1ajwE0iYIbgB4b/wrChB0C2XX4NDeJhh0C9kKDQHa+dBZf9fVWeJx4XMecr6oq/VZV3cQXzQtVkafzFSW3KOvQXi/ouGFCtUNTwg5Hj7ZvRxFfaTpf9P0aGuzb4pzW1fkCrGPp53xVV/s7XybkfFHx1dXl3IetEokkvr761a9i6tSpWL58Of7yl7+gV69euPvuu9GXxM7MmDED27Ztw+GHH55YY5n00E18qSodAnqFHW7a5OxAZPFVKNjt1SF0JKrzBbD4CgKdlNCwQwCQd9yQnS/qgmR5rINUOxSDaFbiy60ks9fzaNU4XSbYbpss04qoKkwLO9RJfJWL86Vb2GFc8ZWV80XFlzjGOjhfbt/hunX+BTeamoB+/ey/8xRfSTlfQP59Rd5EqnZYKBRw991349prr8WaNWuw5557olFaxttjjz3w6KOP4jOf+UwiDWXSRV59oRdOFuJL7pyp+NIh56tYLBVfnZ3WACU6fFl8AdZx7OzUI3TERPHVp0/pSmVdnVP0euV8iecD2Ysv6tjIiwuy+Kqttb6H7dvzc77ouSHnfAH5OV9Bcr5MCTukRXmCOF/FYmlRjjRISnzluSkwoHa+TBRfOhxT2geMGWPf9ttoOc+cLxOdL7+CG83Nzr5CdXx1LDWvyvmSxZdbzmMlEEl8CUaOHImR1A8l7L///th///3jvDyTIbo5XzSkz018Zbly0tmptslbWrzFl+hsdBhAwxbcyEKAq5BzoeTBsr7e+V0EzflK+zuQxdeqVe7PlcMOdRBfXgU3gOwKsMiTi40brWMlr7TKYlt857qIL7l/2r7deVzdnC/xPXR3W8fCb4U5Ll1d9jEvR+dLt7DDri67HTqHHZrufOkqvqqq7IUjOexQ5Xw1N7v3FYI8Cm749Uvy47TgBqDPQkheRAo7rK6uxgUXXOD7vK9+9auoCbtpCJMLeYgvevF5OV86hB26dW60nUuW2Lep8wXoETri5nzpnPOlcgd0DTukK8JNTc7zVkZ2vmpq7OOtg/iSc77o41k7X4C6wpqb86XLoK5yvlTOjEzWe33Ra9t08SWOb6FgH0fdJnz0eJsSdjhqlH3bT3ypBG6ezpcO+3zRNgwZYt92c77o99/U5N5XCLJ2vgoFu4qwG/IG4hx26CSS+CoWiygGzJYL+jwmX0x0vnQQX7SdwvkaMsQe+PN2vugA2tCgnly5Wf8svsLhlfMl4+Z8iceyImi1Q/p4HuJLNeHTOeeru7vUKd++Xe3MyGQtvuj3GaXghg5CQSCOb2OjHa5povjSOexQt4Ib9HqnubO6Ol8jRti3k3K+si64EdRToX0D3WSZvlalEkl8BaWtrQ21acdMMImQt/gy3flqbwdWrrRu0xAN0fnoMICqnK9evdxzSvISX25VAAWi9Llot0p85V1q3k98tbeXOl9ZiRtKFPG1Y0e6laqCii+dc75Un4HuAwfo43zR861cnC86WdUt7DCs86XDwp2JYYe6Ftyg4mvduvA5X36vnybiuw06rafnNztfTlITX5s2bcKcOXMwfPjwtN6CSRC3ECgg/2qHOpSadzsGop0rVtgTUpX40iF0xE18uaGj8yUm2bT0uWgb/T8dCm74hR26OV9Zii/aBr+cr6w2Wo7qfOmU86X6DLLzxeIreajzJTDR+dLBTRRjR1WVFfomvmcuuBGeoM6Xm/gqB+dLzvnKu6/Im8AJWZ/61Kccfz/00EN49tlnlc/t7OzE6tWr0dXVhYsvvjhWA5lsSNv5am+3wvJ23139nvLKGA3n09n5Eu1UFdsA8g879Cu4kYX46uqySq2PHRuscpvbvi1ym+rrrclp0LDD9vbkqsd99JElZgcOtO8TAqGx0TqufmGHXjlfWVW5c6t2qMr5ks+HKBP1sG0SqCZ8Oud8BRFfuoQdJpnzlWe1w2JR7XyZKL50OKZi7OjTx+qLmput6A6dnS/VfolBxdeKFdZ547VoFhU61xk2zL69dq1TjLmFHfo5X1mdI2GdLyG+CgU7YkV+rUolsPO1ZMmSnp9CoYAtW7Y47qM/K1asQFVVFU499VRcd911abafSYg0xVexCBxyCLDHHsDtt9v304svqPOV18oJ7dxo5yza6Sa+8g479HO+vHI8kjoHvvhFYNw44Jprgj3fy/mSY8iB4OJLfk5Unn/e2vRyzBhnIQghEJqarN9RnS8g+8EUCL7PF5CuO1cOOV9u4kv3sEOTN1kWpfwB57E1Pewwb+dLLIA1N1u/163zDjvOc5Pl+nq7EISb+FKFHT7/vDVujx6tLu4TF9qf9+oFDBpk3XZzvuj3Xw7OV+/elgDTpa/QgcDia/HixVi8eDE+/PBDFItFfOlLX+q5T/756KOPsGXLFvzpT3/CAK/lX0YbvMRX3Ing2rXAa69Zt//+d/V7ejlfuhXcoNWKVM4XTU6mIW951J5JKuwwzjnwt79Zv+l370VQ8SVXB/QrNQ8k0+H/9a/Wd7l5M/DCC/b9mzdbv8X5Gtb5yiqsj+KW80VdpazFl2qCHCTnS6ewQ9V5FtT5om5vmpNWQdywQx2EAuAcQ3R2vmhfqnPOF3W+AGDwYOt3R4e3k5Wn81VdXRqOHsT5+sc/rP6kpcXZpyeFPL8S7teqVc7vV4xV48ZZv+vrgb32Ui/U0GqDuuZ87b239fvTny79v0oXX4HDDkeT5fxzzz0Xhx12mOM+xmzSdL5oZ0zfJ2jOl25hh0OHWmF0gL/zJdvsWdefyTvskFZ9Czoppt+rPEGlkxI5lyuI89XRoS63HwYqBMR5QTfhFsctTLVDWXxt3w706xevnUFwE18U05wvHSbYcQpu0POGLkKlRbnkfLnl09FJqg7nBu1L3SrN6hB2KDtf8nnp1j/lmfMlxFdbWzjni14DabjN9Lqoq7NK9y9YYL2vKNQF2PObiy6yzuGxY635hmrhtl8/e/6hq/N1553Aww8DX/iC9bcufYUORNqE63e/+13S7WByJs2CG0HEl1u1w6oqPZKn6TEQ4ReAPTlS7fEFlK5gZi2+6Cpf797Ziy/6HQcVX17VDmmbgoqvpFfmaf6R6r3Fd9zQYLVD9bll50te8Miq6EZU8ZV1wY0wOV86OF9xcr5UYc1pUi77fLk5X4WCfR3qcG6YEHZYLNpjh3C+ZPE1cqT6f3VxvtzEl6g0S+cS9Dlpi6/aWucc4cMPnY8B1mc4/3z7flVfMWBA9uIrrPM1bBjwX/9l/80FN2wiVTtcvnw57rvvPrz77ruuz1m4cCHuu+8+rFixInLjmOzIyvmiq3hB9vnq399ZeCCvhE23sEPZ+erf3zl5ynsQFat8vXtbE9SsxRf9jqI4X3TfFsB5POViJn6l5ulz46Byvujr0iRjei7Q0Di/sEOdxJeq4IbOzpcOE+w4OV8mO195FtzwqiQprjvdnC9dww6pABF9cNBFgbydLzkcXTV2yQKLXgNp9G3y/IqmJtAFUjdHSRQ9odDvI+sc4aDOlwwX3LCJJL5uu+02nHfeeZ4bKBeLRUydOhV33HFH5MYx2SF3DvQiScv5kgtu0NNJdO5y6JYOYYfU+dq0yVqBX77c+luOxM17YiKvXmZdcIN+R9SpCPo/8kKAKuxQHFe3UvNJr8wHFV+Ac4BsanLmI3gV3MhKfNE2uIVj6hp2qHPOl0nOV7kU3HBzvgDzxJcu4wbgHnbohur608n5AkpDD7MMO5SdL4FwaFUUCqULCrSf0DXsUEaXvkIHIomvmTNnYty4cdhzzz1dnzNu3DjstddeePLJJyM3jskOuXMQpUGBbMIOu7vtTq9YdDpfFB3EV0ODPSC1tFhJs+KzyJ1q3iuYsviSV7Z1d75kR0glvorF0pCirMSXeD35+hHQCUtzs31MdSy4obP4UlVYo+KLOl80zzAvKinni4Z86pjzBejlipoQdigXagLiOV9btwZffAtL2IIbQGnRjbTFl1xUQyW+/ASNfE7TfkLXsEMZFl82kcMOd9ttN9/n7bbbblguLAFGa1SV4uhEMQ60c3QTX4A9eG7bZj/m5XxlefHKSdJiINq0yb3SoXiuIM+wQyEWw4Qd0rbrKL7k1eEsxFdHh3PiEcb5ksWXV6ivTmGHeYov6ljIQoR+31QAyI/lgeo86+hwfgYdna+oe7eJa0wX8WW685X3oh11htxyvtxQHWOaQ5Y0cri5OIc7OqzHdHO+6uqiiS/5nM5afBWL7HwlSSTx1dbWht4BSob17t0brWn6zUxiqFbukxJfQZwvwF4VdtvjC9DD+aqrs9vV0uJe6RDQJ3zELexQd+dLDsdzC0GUxRc9T5IUwOvXO//2E1/0/G1qCu585SG+3CaCbpssZ9EmeUNSipvzBeQvvtz6Jlo4RBfnK27BDUAP8eXlKupUCbMcwg7DOl9Aenlfcri5HEEQxPnKuuDG8OGl7pGfm5S380X726jOFxfcsIkkvoYPH47XX3/d93lvvPEGhtDqBIy26CC+ROdMJxw6hh1S8bV1K/DBB/ZjOoUddnTYx8jN+coy5ytKtUO58qYq7FD8T5CcryT2rFO1NUrYoQ45X+KYVVX5l73Ow/kaPty+LR972fnSaT+nIOKL7udFMS3nCygtfpMHQZyvvEU5YEbYocr5oudlWOcLSC/vy63gBmCd26pzMuuwQ7mvr6oqrRYZ1vnKuuCGPC5HgQtu2EQSX4cddhjee+89PPzww67PeeSRR7Bw4UIcfvjhkRvHZEdW4ot2EvLFZ4rzVV/v7PjefNO+7SW+sh5EVQOoCaXmdQ47lAVAnLBDnXK+amrUA6rI/wT0E18mO18NDc79pyj19fax5rDD4Hg5X6aFHbLzFRy3nC/A3fnKu+AGUJqiENb5yrrghhyREgUOO7SJJL6++c1volAo4JxzzsHPf/5zR2hha2srfv7zn+Occ85BVVUVvvGNbyTWWCYea9YAhx1mhfIMG2atvPzkJ9Zjpjhfea2cyDlfdCB69FH7tk5hh6qk6TzDDqNUOwxScAPQV3y5hR22tzv/R3b4sq526Ca+6GdRia9vfhM45BDg3/9Ork30e6Rhh+ecY4mxr37VLrIikCuF6Sq+Nm60frvlewloWHMazJ0LTJgAfOc7yYgvec+9pFm3Dpg8GfjSl5zvcffdwH77WRu5ejlfpoUd5p3zlVTBDboRc1bOl9xP6VhwAyidK+ie85W08xW2zR99BBx5JHD22ekVb8mSSOJrwoQJuP7667Ft2zZcccUVGDRoEEaNGoVRo0Zh0KBBuOKKK9DW1oYf//jHOOigg5JuMxOR228H5syxRNiaNcCKFcAPfwhs3pxuwY1yzPmiK/KiHf37O8vQi+eqXiML6GQkSsENHXK+ZPFF2yQLW9U5LD8v7iAlb/brF3ZIz5NRo5ztp4N83mGHbuKLtldeUX73XeAXvwBefBG4887k2wQAn/qUfXvzZmD1auC3vwXeeMMegMXEmrZfV/ElcMv3EtCCPmkwbRowfz5w000AzSDQ1fl64AHgmWcskfXUU/b93/++FXlw2WXBnK+8zwvA3LDDKAU36P/k4Xy5iS8dnC+vhVoVeed85e183X8/8Oyz1u/nn4/2/joRSXwBwLe//W089thj2HfffdHV1YUVK1ZgxYoV6Orqwr777otHHnkEV111VZJtZWLy7LP2bdGhdnVZHamX89XREa90s0p8ySvXgN050wmHV85XloOSLL6+/nXgc5+zQgfGjAHGjQN+9rPSjRDzHERVDmJ1tbMDNE18eeV86eh8ffnLwIknAmecAUyZ4jymdAJQU5OPq0tLB6sGVPpZZGdu9Wr7782bk28TABx3nLXSOWaMsy/YuNH+vkX4Hv3O83Y44oovMbFqbU1eMHR1Ac89Z/89a5Z9W1fxRRc9xDVYLNr3r1jhDP82vdqhjmGH1MUK6nwNHGjf1kl85VlwQ/SppjlfboubYYgzf6PzGXkR1EQiHkKLE088ESeeeCLWrFmDZcuWAQBGjRqFoUOHJtI4Jjm2bQNeecW6vfvuwGc/C9x3n/V3W5u3+AKsASBqMrZKfKkGQbFySS8yXZ2vXXcF/vUv///LcxB1O469e9vfQ9CCG1HbnoT4ClJwwyvsMEn3MUrO11/+Yv/tJr5qa/NZWPBzvrzCDun5laRAkCswin5q2jTg2mut2zt2lDpfOoUd+n1/fmGHVGhu3uycxMbljTecYplONnUtuEEny2KckPMm582zb5te7VDHsMPqauu8bW0NvskyHXfSDjssFKwfeZFIh7DDNJyvSiu4Qc+rtLYtyJJY4kswdOhQFlya88or9gV6+OHOi2DrVn/xtWNHMuJLtEE1OVE5XzqKrzDHIc9B1M1B7NXLnnzp7nzJ4XhBC26kFXYYttqhDD2mdCVYdiSzdr6iiC96fiXZXrcVVvl89HK+8hZf9DMUCqWRA0GdL8Ca6CYpvmbPdn9MV+eLLlSI68bLSdE57NBtoYaiU9ghrco5YIAlonR0vsT1H7fgRhoh30HEV5xqh5UQdkjfX/7+TCRy2CFjFjS05PDDnR1qEOcrTt4XHfBEuKGX+NKx1LxccCMouoQdys6XQEfxJa+wBdnnK2ip+aRzvvycLxmV81VTY03QdXS+3HK+dBBfpuR8qYRW0IIbQPJ5X3QskIkrvjo744Wou6FyvtyclPr60skhhx2GQ+V8AfZ4HCXnK23nS3zHphTc2HlnZ5qC7jlfeRfcoOdVOThfgcTXrbfeivaYPUB7eztuueWWWK/BRIeudh5+uLNDbWvzLrgBxBNf8oDX0aG+8IIU3Mir2mHQybVMnoOom/OVpfii33MlVjuUUTlf4nrLY2EharXDHTucEzDdnK+8J9n0/VVCK2jBDSBZ8dXd7cz3kolb7RBI59jTyZaf86U6thx2GA5VwQ3AHo+3bXNvV9YFN8T7qZyvIAU3isV8wg7r6oCddrLv9xM09LyurnYuoFea81Ux4uvKK6/E2LFj8Zvf/MZRVj4ILS0t+OUvf4ndd98d3/72tyM1kolHezvwwgvW7VGjrOR12qHKYYeiE6MDQBbiK2zBDRPEly5hhyY5X0FzvnTY5yts2KHKCRXPz2MPlDBhh3IuhW7Ol65hh6rNlMM4X0mWm1+wAFi/3rpNK3EK4jpfQDrnLp0s+zlfqmNLz6O8y1SbUO1QVXADCLbRcl7Ol7j+w+Z8ycc3q4IbgDP0MEzYYZ8+2Z8jSThfcaI7KjLs8NFHH0VVVRW+9rWvYdiwYTjrrLPwu9/9DgsXLkRRijEoFov497//jbvvvhtf+cpXMGLECHzjG99AbW0tHqUbIjGZ8dprdoci9rx2Czukm6qm6XwFLbiho/iKmvOlQ7VDwCm+vD5LTY3tKphQ7dBt0p6UAO7uTjbsUJCn8xWm2qFXwQ0dnC+Twg7zcr5oBMR//3fp+Ri34AaQTj8X1/nKa9xQYXLYYZBwWJ1yvoKILznHKyvnC3CKrzBhhw0NzsWmLM6RpJ2vsNdhuTlfgfTrF7/4RRx33HH4xS9+gdtuuw3Tp0/HH//4RwBAVVUV+vfvj379+mHz5s3YtGlTjyArFosYNWoULr30Ulx66aWoC2MZMIkhhxwC7s4XvTiyDjuUna8+fdxj98XrZEXUnC9dwg6jOF+AdQ5s25aM+AIsAVPls+Sja9hhS0vppD4J8WWK8yVPaui6W5ITWrfCKWGcr7wn2EnmfCXpfNGx4JhjgH/8w76vpsZ5DMOQdj+nKrgRxvmSz408pyImiC+3sMMgiwJ5O19uBTcGDLDbTD+fLuIrrPNVKFiv5TafShqdcr4qxvkCgLq6OnzrW9/C4sWL8fDDD+Oss87CzjvvjK6uLmzYsAFLlizBhg0b0N3djZ133hlnn302HnnkEXz44Ye48sorWXjlCE2wPuII67dbzlcW4qu93TvnS0w25HwvQA/nq1IKbgB2+5MSX0EcCa9qh16bLNPXpgIvKVEjhxzS14tS7VCgg/MVpeCGbs6XTmGH9HzQxfkqFu2xoG9fYP/97cU4IHrIIZCt8yXGiajOV97nRhDxJSbWgF5hh0EWBXR1vmhb/JyvpIvGqApuANGdLzF/y/Ic4ZyvZAmtX6uqqnDyySfj5JNPBgCsX78ea9asQUtLCwYMGIAhQ4Zg8ODBiTeUiUZXFzBnjnV76FBrjy/APezQa7ITlajOV7mJL9MKbgD2OZCk+PLruL2qHQbZZLm62r2KVNLiK8mww6yLydCNzkWIqVwW3avgBl0hNjHn65lngHffBc47z3lNJIGOztf779sbY0+aZB3bI44Afvxj67444ivtRSZV2CF1UnbaCfjoI+u2X85X3q5oEPEF2K6GTs6XKuxw5kzr3Dr/fOscoseXjjt5OF9UfNG2eDlfxWK8fU1VJO18iflbXV1pteq00Mn5qkjxJTN48GAWWxrz9tt2p3f44fakVMeww9ZW637RMcr5XnL7TMj50iHssL7eOSDR7z5t8SV/z0GS3aOGHcpVrwS6iy/RvqxDalXhfTU17snhoiS+qA6Wd8GNODlfq1cDn/+89V6dncA3vhGvzTJxc77SKDUvii4BtuP12c9ax62zU2/nS1VwgzopU6YA//d/1m2vaoeAPuKruto7zFNMrPPM+aqrc15XcsGNJUusY9/VZfUL//VfpZuk9+5tLdTkUXBj2za7Pb162W2hk3fV2LZtWzbia8wY9f0q5LBD+j9ZO19ccCM+vM9XmbNokX17/Hj7tlfBDUHWBTe2bLFXLwFg2LDS55jsfOUVdiiL2BNOsCbRY8cCe+7p/RppOF9h/qemBjj2WGvgbGgAJk+2H3MLO5QnNEm5j2mHHWa9sKBayZQHVXrsCgV7gi6HHSYZykU/Ow0fTTLna8kS+znvvRe5qa7Edb7SCDukxWJ23dX63dAAnHmmdfuEE6K/dh4FN+hk/oQTgN12s85R1efQMezQb3Ivrr08ww7pQh1Quigwb559PMV1JC/qiD4jzhzCC699vjZvtm/X19vzHq+wQyD5vC/xHVZXO/u03Xe352XHH+/9GgMG2GkjnwSe9Vx3lVBwg55X7Hwx2rN0qX2bWtxyzpef+IpzcYdxvtzaK9Bhk+UwHY8OYYdy+OappwIrVgBNTf4rWDqIr9GjgZUrrUGLTkq9wg4pSU0M5UqHgNnOl2owra11Tjzk9vbqZT2ehfMlh48mmfNFj28ak/Ekna+kwg7dwt3uvhv44Q+dq/BhSdPhLxb9na8hQ6woj7Vrrc1rZXQMO/QTX1lOrGXE8ZbFl+x80fFaXFNy/522O+O1zxe9durr7c/jFXYIpCe+5LlDdTXwyivAqlXAyJHer1EoWKHSH31kbRlEX4/DDs2DxVeZE0R8bd2absENVYU41YW3fTvw4Yfq9gryqnYoBkC/UBGZvMIOu7vtVT9V7tyIEcFeRwfxBTiTpQVu1Q7lgUH3sMO8nC/VcfZyvgB7YrNpk/NYpiG+vNrS3h4v5yvKFghhiOt8NTZaorK7Oznny018VVUBu+wS77XTdL7odw1YE6+uLqfz1bev9ZlUwgvQM+wwqPOVZ9ihvEed7HxRZ0m0kx7f6ur0HTyvnC9ZfAV1vlT3xcFNfAFWP+cnvATV1bbwoq9XaQU3OOwwRf7whz/gnHPOwX777YchQ4agtrYW/fv3x0EHHYTrr78eWxSlc6ZNm4ZCoeD5s3Dhwhw+TX5Q8UVXNnUsuAEA77xj39bJ+RIDS9iinXmFHba22oUTVLlzQRHnQFdXtElqUuJLhSxs88j5SiLsUAfnK6j4Eu2XXcAsxFeYnC+/9qQtvuJWOywU7Os2becrCdLs51Sr3Fu3Op0vv+OpY9ih31iiY9ihKudLoBJfWThfYcQXdb7E+JiF8yWOTVTR4kaW5wg7X8mirfP1q1/9Ci+88ALGjRuHCRMmYNCgQVizZg1efPFFvPrqq7j77rsxa9YsjFAs4e+3337Yf//9la/bP85M1EBE51hbCwwfbt+vY8ENwAodEajCYPIWX2EnLXmFHbqVmQ+LHHoatipcEqXm3cg67JCKrz59nMnwJm6yHMf5kksx5yG+knK+0jjW9DVl9wDwd74Aa6K7cWP6zlcSpOl8qVa5t2xxOl9hxJcpzldeYYddXXYb/XK+li2z/84r7NCr4Iac8yU+T3e3XdHQreBGkojPnvSOS6Y5X1xww0Zb8XXzzTdj9913x6BBgxz3r1+/HieddBLmzJmDK6+8smezZ8pJJ52EadOmZdRSvRHO18iRzkRPHQtuAPo6X0FXK2XyCjt0KzMfFvkciCu+glQ7DLrCFjTsMCkBLNye6morx2TJErM3WQ4ivlQ5X36vlVS7wjpfJoUd+okFwJ7otrRYYpfmv0UhasXWIKR57qpWuVtbwzlfHHYYHLc9voBS8UUja/ycr7Q+R5SwQ8D6nPX1+eZ8xSVLgZ608xX2Oiw350vbsMODDz64RHgBVmn76667DgAwc+bMrJtlFC0tducjC5naWvsCoiFqeTtfK1ZYvxsb1Xk+eTtfpoQdUvGVlPMV5RyQP3M5hB0OHmwfF5M3WQ5b7RDIRny5iWg/5ytMaFmW4kt2uWpqgvUj4rrt6EhmMpiV85X0RNDP+aqr8z+eOoUdBo2iEJ+pszP5TX+9cNvjC7Cuf9Gu5cstZ1ZgUtghYH/OchBf3d3BFjbjoFPO1/bt6X/etNFWfHlR80lPWp/0CFJm+FUOFB0R7aDoxUEHtDTFl+prHD1avdJbKNidrGniK6+wwySdr7CkmfPl5nylLb6am0tXpZN2vnQPO/R6raTaFcf58mtPntUO+/YN5mIlXW7e1LBD1Sr3li228xUkhFOXsEOaOxs07BDIduHOy/kC7EWBxYud97uFHdK8pDREZFTxJT5nOYgv+h5poVPOF2C++5Vo2GGxWMR9992H119/HaNHj8ZXv/pVNKiu3hi0trb2hBSeeOKJyufMmzcPV111FTZs2ID+/ftj/PjxOOGEE9A3SC9dRviJr4YGKyaadlBZFNyQqx0OHGhtekpRtZe2savLjJwvHcIO83S+4oivQsEZKiuTZc7X1q32gNzcbOcShBVfqsdUwifPUvMUt4IbXq+VVLuyyvlKW3zJQ2CQkEOgtNx80AqlbpRTwY3WVtv5CnI8dQk7DPMdyItLSecLuUGPt+x8AdaiwMcfl97v53wB1rUWdeKugrofbpssC+Swwyydr7QKbshjW5p+RBKbLCctvoL2pToS6RDefPPN+MlPfoKHH34YRx55ZM/9J598Mh5//PGev++55x68+OKL6B02UYQwc+ZMTJ8+Hd3d3T0FN1pbW/H5z38eN954o/J/Hn/8cUc7AKvQxi9+8Qucc845vu+5NUA2X5Dn5A2tRKQqXuHnfGUVdjhoUHjxtWNHtquBUXO+VJOSjz6yip94CYu4pFFwI2vx5dfBu22ynEapeVrdr7nZHrC7uqwJgImbLOvufMkiWmzzIAoCiImXW87Xxx/bBQHq6oBPf9p+bpbiq77eOq7ivqBrgOx8WbiFHUZ1vvIMO4wqvrIc67zCDgH38SSI+OroSFZ8yRs6i9+in6C4OV8mF9zI8hwJOsZ5UVVlLaoWi+HbK3+fpjtfkaZ/f//731FdXY3DDz+8575//etfmDFjBpqbm/HNb34T++67L9566y3cc889sRq4YMEC3Hvvvfj973+PmTNnorW1FWeccQbuueeeksqFu+66K6677jrMnz8fGzZswIYNGzBnzhwcf/zxaGlpwbnnnos//OEPvu/Z2Njo+6OqsqgbQcMO6epRHgU3VLldXht+ik42qxXMYjG5sMMbb7T2ohE71KdFUgU34oaexhFffh28fGzTzPmilQ6bmkoHPdM3WY5bcCPJCa2X+BbtoZMjVc7XrFmWU3TggdbPfvsBxx1X+h5A+qXma2qcxy2q8xUXU8WXapLV0mLfH+R46hJ2GOY7yCtqwi/s0G08Ed+7LIjS/BzynmICVT+lKrgBpO98FYvBx7SwZHmOJOF8AXab4xTcAMyveBhJfL333nvYe++9UU3O9oceegiFQgF//OMfccstt2D27Nno169fILHjxWWXXYZisYj29na8//77uPnmm/H3v/8de+21F2bPnu147tlnn42rr74a+++/PwYOHIiBAwdi0qRJePzxx3HppZcCAC6//HK057FrYQ4ECTuUyWKTZdn5UokvP+cLyG4Q7eqyY9XjVjsUl8OMGem2X9ewwzDVDv06+KBhh0nk3dHjOXBg6feaRKn5qiq1M5MWujtfQcWXyvm6997SfmfmTNstydL5ksWXDs5XWiWvgWycLxopEeR4mhh2mNT4GxZ6bamClsI4X9XV6Z4b9NoNIr7yKLiRRKEKN7LM+Urqc0QtwFJuOV+RxNf69etLnJ85c+agqampJwyxb9++mDRpEhbLWZkRqa2txa677oorrrgCf//737Fx40acddZZ2BbwKpk2bRqqq6uxdu1avPzyy57P3bJli+/PypUrk/hYqSLEV6FguS0yqpCCPMIOw4qvqCsnUQk6sVYhT9KpIE6zs9Sl4EacaodRww7TcL7oZ+/du1T4JbHJMmB/5rw2zTRFfNGBV5XzJSZUdXXAqFH2/aqiAGmLr9raynK+kl7bVE2yVq2yb4d1vkwJO6TnTNJhcF74tTFs2GGaoXFhxFddXT4FN5II13PDtIIbQHLiqyKdr+7ubmwnZ+zWrVuxYMECTJo0yfG8gQMHYsOGDfFaqODggw/GXnvtheXLl2Pu3LmB/mfQoEEYMmQIAGCFqGfuQkNDQ6Af3RET/REj1KJB9RHyKrgho5PzFWd/HJGnAlg5KHTTxzQ7S12dryTFV9B9vpIYoOgATcsti/em50jUnC/6v7o6X3kW3KDv7+d8CQ4+GNh339LXpudB2pssR3W+5D2V4iKuX9onJUXWYYdxxJcpzhd1nXQSX35hhzo4X6p2hwk7VN0XlaBjQxTY+TKXSOJr1KhRmD9/fs/fM2fORFdXV4n42rhxo3KvriQQ4udjVdkdBV1dXWj5ZPmwEqoetrXZFYnchEwY5yvOamaQghuUujpg6FD318tafMUN1xHHlBZAASrD+cpDfKkKNQiSEl9uYYd+E1udnK8g1Q512mSZtkflfKmef/jh6glK1mGH9DgGdb7SCjtMoyJamu6GaoWbiq9yDTvUVXwFdb5EGLXuYYdpF9xI0/nKq+BGHOcr6hjH4gvA5z//eSxbtgxf//rX8Ze//AVXX301CoUCvvCFLzie9/rrr2MUjflIiHXr1uGNN94AAOyxxx6B/mfGjBloa2tDoVDAxIkTE2+TbogqX4B78Yo8ww69Cm6MHu1dCTBP5yuK+BL/o8p9SwsxWSsUgq+0q9BZfNFzlYojWfwUCvE3+qSvX1/vHnboN7j6OV9ZnttJ5nwVi8lsetndbedXqr5/uvGswMv5OuIItethQs5XWmGHaYgvk5wvU8IOdRVfbot5svhSVXHNW3zlUXCDfmaTci1lkna+uOBGBK6++moMGzYMv/71r3HKKafgvffew5lnnok999yz5znz5s3DypUrccghh4R+/QULFuAPf/iDI7RR8N577+G0007Djh078JnPfAb77LMPAGDZsmW4//77lf/z2GOP4cILLwQAnHnmmRg2bFjoNpmGX7ENILuCG2FzvrxCDoFs3QEgOfHl9bpJI8RX//7xStrrLL7ocaWDpdekPeoxDxp26Hd+qB6n11xckRiGJMWX/HpRUZWOpqgmg6qcL/H3Zz+rLuGfp/gqR+cra/EVtuCGjmGHfn2FruLLzfmSXWWV+Ep6zDOh4EZWOV9p15HTLefLdOcr0iEcNmwY5s2bhzvvvBNr1qzBQQcdhLPPPtvxnHfeeQdf/OIXccopp4R+/Y8//hhnnXUWLr74YowfPx4777wz2tvbsWzZMsybNw/d3d0YN24cHnzwwZ7/2bBhA84++2x87Wtfw/jx47HTTjth27ZtWLBgARYtWgQAOPLII/GrX/0qykc2jiDiK0/ni3aaUcWXCTlfgHuHm0XYYZyQQyB+6Gmcaod+A1V1tSUsu7vVpccpcUUNPf+9wg79JlSFgvUceixNcr68zv/Ozvgru37ljFXvLxYX5OdPnGgJHVUJ/zxLzeflfEXdKD4IaU4CVSvc9Psr102WdRBfqus5aNihuO6yKrhBr/Mg4osLboQj6VLzlV5wI/IhHDp0KH7wgx+4Pn722WeXCLKg7L333vjJT36C5557DgsXLsT8+fPR0dGBQYMG4aijjsIpp5yC8847D/Wk9xo5ciS++93v4tVXX8X777+PefPmob29HU1NTTj++ONxxhln4PTTT0dVmjvbakRU8aVK/gfSFV/9+tmTaMBffGVd7TBuzpfb/2QRdhin2Aagt/MFWOfCjh3piy8v5ytM2CFgHVO3JGzdCm4EzfmSXy/JNnm1B3B3vsQ2lOx8WZST80Up102WqfhKsgCEHyaFHbrt8xW34EaS4qtcCm4kJSLZ+bKIJL7OP/98HHrooTj//PM9n3fPPfdg9uzZuPvuu0O9fnNzM773ve+F+p/BgwfjhhtuCPU/5UwSYYeFgtVh7diRfLVDkdcBWBPZxka7EqDOzpcJ4mv7drvNSTpfupWaB6xju2OHd84XkK74CuN8AdYxbW21/1Y5X6aVmgeSmdS6TaYEXs6Xm/hSOV/0s2dRap62O6jzVVtrLZC1temf85V1wQ0KVztMlrBhh+IcDRJ2mHfOFxfciE5SzlfUMU7up00XX5FsoHvuuQdz5szxfd7zzz+Pe++9N8pbMDGhlfXcap74hR0C9sWdZs5Xba1zAA0qvrq7k0ny9yOu+Mo67DCpMvOA/s6X+D78cr6SLrgRNexQ/D9Fh1LzbtUOs875ihN2SCdfhQJw6KHW7Tydr0LBal8U5wuwr192vixUxZNNqnYYJoRdV/ElL+jttpv1u6vL/gH0F1+y81Vfb/clXHCjlDQKbtBF+DDvD5gfdphqDF5XV1fFhPnpwHPPWfva7LEH8Mor1n3NzWqHC/B3vgC7840jvlRV/mTxRQdQt+qMgqxDSOLmfGVdcCOpMvNA9uKrWAwfdgioS49T0iy4ESXskJJlqflVq4AvfAH47/9O3vnKO+yQPn+//WzhkkfOl3wORxVf4vqNK746O+2FKlPFV02NWnzlXe1wzhzgyCOBIAE+5eZ8DRrkzNmmlYzFdZlkPuDixcDkycBVV1l/x6l2KBfc6N3bPuamOF8mF9wAgl+LtAquwHTnK8Yh9GfRokXoH3f2xwTmW9+yRZdg113dnx/E+UpCfKmcL3oh1dQATU3Au+9a77fTTt6vJ0+mku7QZEzL+TLZ+aJOZhjni7Yti4IbccMOKVk6X7/9LfC3v1m3zzmntA1xC27EJY7zRRdwjjhC/Toq5yvNTZbFe9MJanNz8NcRw+fWrda1E3Vz5DCT/ihkUXCjTx+1y5V32OGPfww8+ywwdy4wdap3ddkw3wMVEDqJr759rbZt3265XvJCVJphh9deCzzzjPVz0UXJiq9evazX2LrVTPFlmvMFWG0OMs6rrtmKEV8/+tGPHH+//vrrJfcJOjs78c477+CFF17A5MmT47WQCURrq9X5A9bJ3K+fNeB71ETxLbgBZCO+amuBq68Gvvtd4MIL/S9G2rHu2KH+HEnCYYcWSYgvvzDRsB286vvwKjWf9ibLQc4P+Tkq50uEZBQK0drrBt3/b8GC0vc1ueDGwQcDX/oSsHy5tRAlyGOTZfE+4jNceKEVmbD//sBeewV/HbnoglsUgx9Ziq+0nK8+fdRCK++www0brN9btljfkdd4VA7OV1UVcP311kLOD38I3HGH/Vh7e7rVDp991r69caNT6AYpuFFXZ+exiwgRKr5Em1l8lZKG89XR4TzP3VBds6aHHQY+hNOmTUOhUEDxk1nz66+/jtdff93zfxoaGnDNNdfEaiATjOeftye2F18M3H67//9kFXaoKrhBJ5W1tVYolLRHtyu0Y82iCpRpBTeSDDukbc/C+QrbwasGMy/nSxR7CStqvDZZ3r7dXkyIEnboVmG0qyveIKdi7Vr79gcflLbBxLBDmvP15z+XPp7nJsvivffcE3j55fCvIy80JSG+ks47kV8zrYIbDQ3JOF9Jf9/0XNq2rfzFFwBcdpn1AwD/93/2/SrxlZRAWLrUWUhMdk2COF+AtSC5Zo09TtJcSNHWJOcV5VLtMCnnSxUGHua9BRXjfF1zzTU94utHP/oR9t9/f3zxi19UPreurg4777wzjj32WAwZMiSxxjLuzJ5t3xZVvvzIM+xQFl9hoB0ri69SdHK+wlY7DFtRSXVsvXK+isVoosYr52vLFu/2yATJ+QKCh2SEgYqvjRtL3zes+BLhR0D+myy7oSq4kVW1w7iTraT6Ona+7NtJO1/0/PETSSaIr7A5zlmFHdI5jngtOo/wE1+inf37W+JLjJPU+RKLaKYU3Miy2mEazlfQa7HinS+BEF8//OEP02gTE4G0xZcIFYwSBlVO4ivJTZa54Ib389MQX0A0UeO1yTIdBOLmfKVdEpuKL1Ub5OMin7vypGbwYOCjj6zbeTtfbuhQcCMqlS6+6Abqbs5XkLDzNK8r2fnywgTxFfZckfNfvcRXnDFPFl/t7c6+Psgmy4C9INnaal374vPK11pSYd/lUnAj6U2WAXa+QtOdRX1vJjBtbXahjT32AIYNC/Z/qhAWr5yP9vZoA7ef+Ap7IWctvrjghoWO4ks1mHmVmges8zhInDnFy/mi4itutcMoq4JhWLdOfb+q1Hxtbamwkdve1JS/+IrifLH4Spa0JoFUdKicr8ZGf/ENpBt2WG7OV9hzRf7us3S+6GsHyfkC7DGxWHQuRvXq5ZyXbN8efpxQUY45X0kW3AhCOYovrgNfBrz8sn0SB3W9gHDOFxA99DDIPl9hkPMg0obDDi10FF9RnK8ok0M68a2rSzbs0M35Svr86Ohwhhqq2kDfX/VZ5BXlpib7dtLiy+97FJSz85VUfqupzhedYKmqHQYt259V2KHfdxRmIc8U8SXnBYu1+SQLbqxaBbz3nvO+jo7g1Q4LBbs9NBpkzRrn/6RxzMtFfOXpfKn66IoJO1SxcuVK/Otf/8JHH32E7S69TqFQwA+8Su4xsaErQrTEsh9hCm4AyYovOmEK2yGZVnAj62qHOocdhql2mGbYYVjoRpyFQrJhh1k5X+vXuz8WVXwNHmzfTkLEsPPlJKmFprih036klXtCr62GhlKxFSTfCzA/7DCLcU4QNtKDXl+qze6TEAjPPVd6XxjxJfptwLkgScVXfb3zPElKfJVLwQ3x+tXV8cIxueCGReSh4YorrsDtt9+Ork/O/qK0A5oozsHiK31mzbJvh3G+VJZ6GuJLntzIsdrlnvNVLs5XFMcoTrXDIOdF1LDDsNCkbCDZsMOsnC+3fC/6vjo5XybnfMml5qNiYtihjs6XiWGHee/zpQo7VkH7CdpO1SbLUc8NOeRQvFYY8SXwcr7chGQcyqXgRlILSlxwwyLSYbzlllvws5/9DIVCAcceeyzGjRuHfv36Jd02JgDt7cCLL1q3R48GRo0K/r/V1faeF4KsnC/qgATp4Ckm53wNHWp3+Fxww/v5OoUdyknZaYUdpul8ueV70TbQtnjlTYjn0m5f15wvletBJypZbLIcFVPEl1gNLxbTFV+qnK+g7ROY4nxVVdnjcx7iK+h54ia+kiy4oRJf7e3RxBddkFy92vk/aYuvcii4EfczJJXz1dlZmvdnEpGGhrvuugs1NTWYOXMmPve5zyXcJCYMc+fag3IY10vQ0OAcELxKTachvmprw1vYpuV80c5h991t8ZW289W7d/yVtpoaaxLQ3V0epeZVbQqC7HylFXaou/NFz4f+/ZMXi2k4X3lsslxppeYB67O2t6cbdig7XzqEHablfAHW95+X+Ao6dtBznIrlpMIO168H3nqr9H4v50s+tkHFl5uQjEO55Hwl5eYnJb4A63yLu8CcF5EKbnzwwQc49NBDWXhpAA05DJPvJZCLbmRdcCNKZ2Razhf9n913t2+nLb6S6pTi7PWWR7VDr02WAb3DDtN0vrzEl6raoepcLxTsY9C/f/KOQlbOV5riq1hMp+BGnIWmrMQXkOwKfFLOV5abLHtBHw/yPYjUAFOcL5X4irvwJSJ7AGeOaRphh1xwwx3dnC/A7NDDSOKrb9++GD58eNJtYSLwwgv27SjOV17iK86FbFrO1+TJ1u+BA4Ejj7TvT6uzFMckyP43QdBZfLm5M17PiyO+xLHIapPlJEnC+QKAY46xfk+ZkryjEGWT5TDOVxbii4ZUV0rYIWAfZx2dLx02WS4Wgddft2737x9sccw08ZVGwQ3qTu29t/O13PqLoGGHcsGNNMRXuRXciNunJVVwAzC76Eakw3jYYYfhjTfeSLotTAQeegh47TXgpZeA3XYL//9yxcMsxFd7u72TvGniK4rzdeyxwPvvW6t2L71k359WZ5nUqrsgSfFlYrXDYjHdsENdc77cPstDDwELFlgToZtusu83wflShR0Wi8ltqCq/diWJL3G+6JjzpYPztXChvQBy6KHBcp1NEF9phx3S16TCiS7iAsk7X0nNLbjghpOkCm4AZouvSM7XNddcg/fffx+//e1vk24PE5L6euCQQ4Arrog2ecg77DDKhWxawQ0A2HVXa+DIorOME9KpIi/nK2q1w6TDDun3lEbYYR7Ol7zoErTgBmAd3332sSaPSTtfaed8qZwvINkJeaWKrzScLz/xZVLOV5QtYaj4kgpKp0bSYYdpia80Cm6YHHaYdsGNpOYVHHZoEWlo2Lx5M6644gpcfPHFmDlzJo4//niMGjUKVS6j4OFR4uGYTHCbhAniiq9isXRiE7czMq3gBiWLzjJp50t85izEFz03dAk7pJPeJKodys9xKzWfZs7XhAnOvXPCOF8UHcRXFOdLVQgmqesl7DnsRRriK+nVd0EeYYcmVTuk4ivolEiIge5u67im9d0JikX9qh3Sc4C6VlELbtDXoNEAposvE50vDjsMyec+97mefbwefvhhPPzww67PLRQK6Eyjli+TCGGcrygdp2qyHbczMq3gBiWLzjKpxFhBHOerHKodqsSXiZssC/HVqxew1176iy/V92ia8xX3GuSCG/btpJyvNPf5chuPikW7OFZDg7X4EQRZDKQtvmjfmFTYYdxoD6+ww7jOF3UTWXx5k6fzRb9nUW0XqEDn6/DDD0chqQB5JlfSDjtUTcg6OuwQSdNyvuJOXNLuLKnTmHfOl8r1NLHaIT3HVAU3vPbJU5HXJstilbepCRgzRt2GOOIriUltHjlfAIcdJkEWYYf19db7iPeIkvOV5KJGd7dzAu82YV+8GPjoI+v2IYcEH/fkHKS0y2pHGevSLrhBJ9hRxRdtY2OjcwIv4IIb3iTlfMUtuNGvn13RueKcr2effTbhZjB5kXbBDdWkpr3dLPGVZMhO2p1lkhM/gTgHurqsH7/JrkD13evgfCUddujXHpk8nK9i0RZfzc3WhuyqNtD3DzL50iHsMAnnK8ljXaniK42CG3LYIWBNnjdutG8HIa2wQ7k/c5uwRwk5BNIRA15EOU/cxJc45knmfAUNO/RyvqqqnBN4+j/0/0xwvvIouJGk8xWl4Ea5iK9IBTeY8iEP56ury54Am1BwI8mww7Q7yzQ6+qjngOq7z6LaoV/OV9jjTj+zKuzQrz0yeThfmzbZx1YlvnQMO2TnyyzxlYXzBThDDfMOO2TxlV+1Q6+CG145X/LrCLIIO0w6bDSrghtJRtTEzfmiAtzksEMWXxWOLL6SLrjhNiFLap8vLrjhJE3nC4gvvkwPO/RzvnTdZJkW20hSfGW9ybKqTX7Ol98my4AZ4itOX5dk6LQb4txVhRtHxc35EuQddii/ltuEXeR71dcDBx0U/PXTcGK8iOt8+YmvrApuVFd7V25VhW9yzpc7SeaxxhVf/frZt012viINDbPpMk4AuNqhvqQddug30JlUcKO6OnjInRtpd5ZpO19hBs8o4its+7MOO1TlfPm1RyaPUvNUfDU1AcOHO3Nnytn5UgnasIVggtDSYk3qkqx2mFRfl6XzBVjXGJ3IRiUp5yvoIkFrq/U+UUOrVRP2FSuADz+0bh98cGlInBcmOF9p53wFDTuUr7VevexKtEGcr7RyvspBfCXZpyUpvkx2vmJVOwwCVzvUmzzCDr3eLwh55XwlETJgcs4XoJ/zpUO1Q4quzhctqdzcbLlFo0YBH3zgbEOQfb4oSYsvr8mUW5vCOF9phR1ecw3wv/8LXHklcO656veOgolhh4B1nNMSX3GdL7fv+umngS98AdhzT+C114J9d0GcL1pVNOw6tAniK6tqh1VVzu/ba5NlILz4YufLnSSdr7gFN6gArzjny63aYXd3N5YuXYrly5cDAD772c+iNumzjUkUP+fLrapbUMpBfAmnxATxpVPOl+rzZRF2qPq/OKEvqpyvQsF6H/n8NsH5am62fk+YYImvYcPsdo8ebX22YhHYZRf/1zXV+UpafN1/v/X73nuBM89Uv3cUTBJfaeSz0pVtIb722AN45hlrBXzIkGCvE+Q8ve8+q294803g7beB/ff3f90gzteCBfbtz3zG/zUpJoivtDdZFudAQ0PpOeYWdgg4r508ww7TrHZYKFifu6vLHOcrShQKhx1+gl+1wzfffBNTp05FQ0MD/va3v0V5CyYj8na+olzIeYUdJiG+0i64wc5XNtUOxWsmIb6yzvlqarJ+//SnwG67Wav9wj0aMwZ44AHg/feBCy7wf92sxZcI/ZX3ffEiC+dLnCOtrVxwA0iubxOTq/p6+7q+5hpg0CDgyCNLxy83goQdLl1q3w468Q7ifNFrb8SIYK8ryFN8BR3v/MIO6bGP43z16VO6iOYlvuh5rovzlcY+bXV1VlvTLLiRZJ8mb58Q9v0rOuzQj3333RePPPII9t57b9x000246qqr0ngbJgHyKrghiLISVFNjT8CyLLiRtPOVRmepk/OVV7XDLMIOAfXxjRJ26OZ8pVlwA7DCDq+7rvS5//mfwV83602WAev40RVPHZwvcS3v2KGegEbFxE2WgeSdLzpODRsG/PjH4V4nSNjhkiX27aDHOojzpVr4CIoJzpdf2GGhYOeXxim40dBQeo6l6XwltbCbZtiheM1t27JzvuJ+hijnNP2ey8X5Sq3a4ZgxY3DggQfivvvuS+stmASgYYfV1fb+WwIdxRdgd6xZOl9JTFo45yv4/+gSdqgquAGohZ+upeblnK+kyHqTZaD0+IV1vqJs/u0H/a7o/kFxr0Fatc0k5yuphSUxuZLD48NCzxFVv9TZaW+CDATv5+TXUn1HqoWPoJggvvycLyDeNgRuzlcc8VUuBTfoa2aV85Wk8xXFYWbxFYDm5mYsoctJjHbQFUVVx5DGJssUE8RXkgU34oZg+JFkYqwgS/Gle7VDOewwSHtk5A0/6cQwq1LzSZF12CFQOpEK63y5Tb7jQM8psQEwkMwCSBJ9XZIbxbuRZthh0PBCN0RuDKD+rj/6yNk3peF8NTaGq3QImC2+6HUZdQPuYtF5DiSV8+UWdlhTY1+zSYsveg4mSRbiK2/ni/f5CkF7ezteffVV9InbazKpQlcU0xBf5eR8JTFpESEYQPoFNyrB+QoqvuJMDFUFN+TX9LpPhh5P+TOmXXCjqgoYODC519VBfIV1vqKcl36YIr6S2C7DjTQLbsR1vgD7u1B91zTfC4jufHmJryiLHmmEwXkRN+yQ/n8Szhc9nlmEHdLfSRfcSKv2XKU5Xw0NdoQWO1+ErVu3Yu7cuTj11FOxfPlyHHnkkUm/BZMgYZyvKKEkaRTcAMwVX/R1TAk7jFrxMq9qh7o7X/Q5cvvTdr4GD/YXK2HIepNlILzzJQvEpMVXV5czl5GKryQmXOKcSyLnK62QQyB556ujw36dJNZwxXmg+v6jii/5vJEFQVcXsGGDdTtsvhdgnvNFSUJ8yVsNeIkvr3z1oM4XYB/zpJ2vtBxn8bpZFdxIsoJrFPFVW2svxpjsfEWanlUHWDorFosYMGAAfhw2M5bJFDqo+ZV21sn5Eu1Ku+AGnVglNXERn7kSC25k4Xyp/k8n8ZWH8yVyvpIMOQTMcL6ChB3GEV/y95RkzheQrPNlkvhS7fEVB6+wQ1l8RSmBLdi2zd6PasMGK3QOiHbtRZmoxiFt8RW276WT64YG50JLe7v/Pl9ubZSdr6oqu71piS+Tna8kI2riOl81NVZ/sGVLBTpfxWLR9aempgajR4/GhRdeiHnz5mHs2LFJt5lJEA479CaNXIk0O0vdC27kVe0wzsTQreBG1LBD2mb5M6bhfLW12YOU7uLLb5NlIJ7zlUbYoTyhTDrsUHzeShZfuoYdql6LTijj5lpm7XzRczlK2CElDedLDttPKuervt4OZWPxVUqSzldS4gswW3xFGhq6/WZQjDGkXXAjbfElVrKTEhoydDAyQXxVmvNlYthhoWA9r729tP1pOF9xSl37YYLzRTcirVTnK8mKrW4kXe0waefLK+xQrgsWNecLMFt8peV8RQ21V50DdXV2SGpSOV/0uSy+SknS+YobdlhdXR5hh6lWO2T0p1cve8XHbyVfR/EFpBt6aJr40t35MjHs0K3gRlTxBdjHNAvnK61Kh0A+4ks+xkEKSIjXonlEFJ2dL3HOCfEYBZOcrz//GTj0UODEE+37sg47TMr5ols8lGvOl9s5noTzJYcdyq+VpviSXz8qWRXc6Oy0Q1yTJsl5RaEQvqiJl/OV1mdOGxZfFU6hYFvwIk5dfjxOfhW9aOhAIohbcANIV3ylEXaYZsGNtJ2vMMJFp1LzSYUdJlHtELAHf/maS8P5Wr/evl2JzhfgnKCkHXaYlvMFRO/rshBfSVU7/NrXgOefBxYssO9LokKnm/PV3Q0sW+a8r1LDDqOILxoKSEkj7FB+LS/xRfeDorcB61ylgl4lvoBkjnlWBTfoeyVN0vOKsO6iPC4IIV4sZnNdpEEs8bV+/XrccMMNOPbYY/HpT38an/70p3HsscfixhtvxHo64jNa84MfAKNGAVdeqX48TfEVt+AGkG7eF31tVfujwM5XsP8p17BDALj6auua+853nPen4XzRwSnpnT/SFF9ujlbYnC/A6XylHXaYlvMFRO/rTHG+2tudiwU1NcDYscDUqbGaBsB90evjj0v7NQ47DHeu+EUgiHOjuzvcteYlvtrbvcXXuecCe+0FnHwycMABpa9N3S96jdE+MomcoqzCDul7JU3S8wpxXgftz+RcYCqmN2+O3548iHwYZ86cia985SvYtGkTisT3W7BgAZ5++mncdNNNmD59Oo455phEGsqkx+WXWz9uiI5VJ/GVxIQkCHTAS1p8pVHtUKdNlrMoNZ/1Jsv0WMQRX1//uvUjk7SYAaJPqIJA25tEiE5ezlecY+0VdpjENRh3oamzM/mKrSqSmATSye6xxwJPPhmvTRS3cUwOOVQ9xw3VOU+/o0oSX3L+jUp8Ada5EXSvuThhh3vuCbzzjvtrDxgArFpl3aaflRZ3YfFV+ro6OF+0YMqmTcCwYfHblDWRxNeiRYtwyimnoK2tDfvuuy/OO+887LrrrgCADz/8EPfccw9ef/11nHLKKZg/fz523333RBvNZEsc54t2jiy+LCp5k+Usqh2q/i+LTZZFYYc4pBF2mJX40nWfL/paWVQ7pBM2HZyvNL9/ShIFN5IuskFx2w8pjvgK43xFCfkVVfiyCq+Keq74RSDIoXH0nPbCreCGeJ0g1VHdyML5KhbLQ3yl5XwlIb5aWuK3Jw8ihR3ecMMNaGtrw7Rp0/D666/jm9/8Jo4//ngcf/zx+MY3voF58+bh2muvRVtbG2688cZIDfvDH/6Ac845B/vttx+GDBmC2tpa9O/fHwcddBCuv/56bNmyxfV/n376aUyZMgVNTU3o3bs39txzT3z/+9/3/B/GHR3DDvMQX0EHDD9oCEbShUM57FA9Ga+utgvLpBV2mERMfxphh+UuvvLO+fKa8FSq+Io6CaROR9LiS3z29nZnkn7SzpdbwY0ozhctTpD2tipA+mGHQLhzw8/5ChKm7AadwLuJr7jV9Lq67HOtXMRXkhvHb9sWrGCGPC5Q4UxzbE0ikvh65plnMHbsWFxzzTWuz/nBD36AsWPH4umnn47UsF/96le4//770dnZiQkTJuC0007DxIkT8fbbb+N73/sexo8fj5UrV5b836233oqjjz4aTz75JPbee2+ccMIJaGlpwXXXXYeJEydiHe0NmUDoWHAjbgn8oKThfKWZIFtppeaDhh2K8u5AdPElJ5anIb7ScL6i7N0TFHqsTXC+sii4oXrfOMQtuJGV+EqiX0t6by+KaF+x6Py+5TLzQPLOV21tadGHoCRd+tyLqAWm0hJfcQpu+OEmvpIMO6SfNa2CG0lv8aAi6YgacU4Xi8HazM7XJ6xevRoTJkzwfd6ECROwevXqKG+Bm2++GevWrcM777yDJ598EtOnT8czzzyD5cuX49BDD8X777+PK6UKEfPnz8eVV16J6upqPPHEE5g1axb+9Kc/4YMPPsBRRx2Fd999F5dcckmk9lQy7HxZJB12CCQvvkx3vsKKR+poCdw+d9RwT3F+0Y04Ve1LQuym7XwlPQHQYZPlIM5XlqXmVe8bhySdr7QmgID+zhf97PSYpOl8CfHV3FzaTwUlL/EVN+wwbfHlV3DDjyBhh3GdrzQWQ2WyqHaYtPMVNpeRna9PaGhowMcff+z7vI8//hgNEZevDj74YAwaNKjk/sGDB+O6664DYBX9oFx//fUoFos477zzcNxxx/Xc36dPH9x1112oqqrCww8/jIULF0ZqU6UiOuGOjvB7KrD4KiXNlapKc75UZY7dBuG4zpccdmqK81XuYYdBJl0mhx3GLbhhUthhFs4X4OwD0sr5KhZt8RVni4eweyLFIYuwwzD9r1fYIc2nAuI5X/SzJpnzlYX4yrrgRpLOFxBefFVXV7Dztf/++2P27Nl46623XJ/z5ptvYtasWdh///2jts2Vmk++/XpyxbS3t+OJJ54AAJxxxhkl/zN69GhMmjQJAPDoo48m3qZyJuo+TwCLLxWmOV9uK8Zh2iJIWnwBwTfdjSq+xGfOQnxxzpf6tSlxna8sww6TzI8AzBFfOhbcUI1jxaItvgYPth9PwvlqbbX79zibm5vgfOURdgg4r4eknK+0wg5NFl9pFdwA2PkKxVe/+lV0dHRg8uTJuOOOOxyFLLZs2YLbb78dRx99NLq6unDRRRcl1lgAaG1txbRp0wAAJ554Ys/97733Hto+uVImTpyo/F9x//z58xNtU7kTJ7+KXjSqwZTFVzKvqXq9vJ0v1WdLutohENz5iht2KIuvNMIO2flSvzZFN+eLc74sTAo7FN/Zpk2WSAIAWpQ5Cecrbpl5ARVfYSNPwpJW2GHU0DiVE0pfK474yqLgRrmIr7RKzQPRxJdcat5EIg0NX/7yl/H3v/8dv//973HppZfi0ksvxeBPlo3E5srFYhHnnHMOTj/99FgNnDlzJqZPn47u7m6sWbMGL774IlpbW/H5z3/eUUlx8eLFAIABAwagb9++ytcaOXKk47lubA1wxQV5TrmQlPjKquBGsQg8/TTQty/wmc9Ee32BaQU3TM/5SsL5cvs/E8IOTXO+qqrsUthJiy83RyuO89XVlXzOF1c7tDCl4AZgHxMacrjHHsBLL1m3g/YRXs5X0uILsNqdVNVdFboV3FCJcfpadHzW0fmi51EW4iutght5O19yLnA5hB1GPoz33nsvPvvZz+KnP/0pPvzwQ0cVwV133RXf+ta3cPHFF8du4IIFC3Dvvfc67jvjjDNwyy23oD+5elo/Wb7yyjFrbGwEAGz22RJbPI+xSFN8peF8PfWUtUEnAPz739Zmi1Ghr22C86XTJsvlEnZIC254vW/SOV8miC/AarNceSwq4jN7ffdxnC9ALWCS3GSZooP4SrPaJcVE54uKr113tRcSkna+4uR8yRPVLMRXbW2wRQ1BHgU3gOScryxyvtIqdpNFwY00na8gfRqHHUpccskleP/997F8+XK89NJLeOmll7B8+XIsWrQoEeEFAJdddhmKxSLa29vx/vvv4+abb8bf//537LXXXpg9e3Yi78F4EyfnK49NlufOtW+//nq01xeYXHCjUpyvNMMO6UQsi7BD2nYTwg4BZxn3uAQRX/IkJozzBahXWnUOO+SCG8ngFnYoaGoKX9lXdd6I7ygN5yvtvC9xXMKeJ35bfiRRcMPP+Qp7rR10kP2ahx9e+j7y+0ch62qH5ep8eYmvinO+KDvttBN22mmnJF7KldraWuy666644oorMGnSJHz2s5/FWWedhXfffRe9e/fuCTX0CgcUuWn9fDbcCLIZ8+bNmzFixIgQn8BcohZcAJwXjWrFLg3xRQfwuPlgpuV8pRF2WFNjTXC7u7MtNa+D80Wfm0XYYaFgfW633KQolJv4iut8JS2+OOzQwsSCG/Kxqa+3jnESBTfibrAsyFJ8ic+dhPhK0vmqq7NfLynnq6kJeP99SyTvu699v2kFN7LIf0/6c9A2RxFfdXXWdbFtm7nOV+Ch4dVXX8WqVaswbtw47E4zUxW89957WLhwIUaMGOFa/CIOBx98MPbaay+88847mDt3Lg477DCMGTMGALBp0ya0trYq876WL18OAD3PdSNIefyuJGJsDCHOykoeYYdUf1ea+Eqrs6+vt45FmO8/jvOl2r/LjbA5X93dVjuCDNb0/MlCfAG2+DLF+RLHMS/xFdb5UvUJOjtfXHAjGVSLiCrxJd/vRZYFN+hrp0VU8ZV2wQ16LiRVcAMAhg+3fiimOV9ZiC/dnC/AChs1WXwFCjtct24djjrqKHzta1/DABoo68LAgQPx9a9/Hccccww2pXRkhEAS+42NHTsWfT65aubSuDOCuD/IBtGMTVLiSzWYplFwIy3nK6lYe9OcLyDaRttxqh2GaXvYsEO3tqnwEl9phB3S12HnS00U5yuvsMNKKjVvUsENL+dLvt+LoAU3ksr5SrOyL6Cf8yXEDz0Xkiq44YZpBTeyFl86VDsE7NBDU8MOA4mv+++/H1u2bMG1116L5gBLOM3NzfjRj36ETZs24f7774/dSJl169bhjTfeAADsscceAIC6ujp84QtfAABMnz695H+WLl2KF154AQBw8sknJ96mcsa0fb7oalWUlWKKadUO03S+gOxyvsKIr7Bhh0Dw85ieW1kU3ACce1IlgUniS5wfSTtffgU3OOwwPiY5X0mJL3a+LNIOO6TngupaLhSCR0r4YVrBjbjOeBB02WS5ULD7e+EDtbYmU+wpawKJr7/97W9oaGjAueeeG/iFzz77bDQ2NuKvf/1r6EYtWLAAf/jDH7BdMdK89957OO2007Bjxw585jOfwT777NPz2FVXXYVCoYDf/e53ePLJJ3vub2trwwUXXICuri6ceuqp2DNO+bsKxLSwQ5NyvpJOkNXJ+cpLfPmFHQLRxFdWYYfsfJWP88UFN8KhQ86XfL8XQXK+CgXnBs5hCZsfE4e0wg7jFtxwc75omHpSmBZ2GLd/CIIuYYf0e6ZBeD4FzLUk0GF8++23cfDBB6M2xNlTW1uLgw46CG+99VboRn388cc466yzcPHFF2P8+PHYeeed0d7ejmXLlmHevHno7u7GuHHj8OCDDzr+b8KECbj55ptxxRVXYMqUKTjiiCMwZMgQPPfcc1i1ahXGjh2LX//616HbU+kkVXCDxZeFqTlfgJ7iK82wQ/p5swo7TNr5SrvUeN7iK6zzZZr4SjLnK63Vd8CsaodZ5nwNGhRPHGTlfNHKrjo4X52d9rXl5nwJ0hJfXHDDQpdNluk5JZebHzgwfruyJNDQsGHDBgwbNiz0iw8dOhRz5swJ/X977703fvKTn+C5557DwoULMX/+fHR0dGDQoEE46qijcMopp+C8885DvaKHuPzyy7HPPvvg5ptvxiuvvIKtW7di1KhRuPrqq3H11Ve7bsDMuJOm85VEzhcX3LAx3fkSxyNMBx+09HilO1/V1clOUgQmiK80nS8OO7RIwtHXJeyws9PKT/U7t4LkfMXJ9wKyE19xQuT8xFeUUHv6Wd0KbgiS7Neqq63zYMcOFl8CXZwv+t7U+TKx6Eagw1hfX+9Zwt2NtrY2pUDyo7m5Gd/73vdC/59g8uTJmDx5cuT/Z5ykWXAjCecri4IbtbXJdfCmbbIM6O180fOzqso99r/Sc77SmninIb68rjXeZDkcJoYdVlUl31bV9S+7wnIhJ78FNzfna/t2QOxYEyffC8hOfMU5T9LYZJlOOd3CDlXvlQR9+ljHI27YYbkU3Mjb+VLlApu+11egnK9hw4bhzTffDP3ib775ZiTHjNEL0wpuUPEVNwFVvHZSrheQXcGNJAck0eauruAugWpi4lbtcOtWYPVq+/yKGnbo9X+VXu0wrZAzccyTSHout1LzaVU7LBaD98UmVTsUk90+fZIroCAIk/MlP+Z2rN2cr6SKbQDeE9WuLj1yQ9MIO3TL/0s77BCwxV4lFdzw6k/SdL6CCMZydL4Cia9DDjkES5Ys6akWGITnn38eixcvxiGHHBK5cYwexMn5ooNTVpsspxF2mKT4Mtn5AoKfA6rPppqsPPKINUEZPtyetER1vrwG4SjOl1fOV9rOV9KTKpOcL95k2UYOsW5vBw44wLpeXnvN//9NdL6SDjkE/MMO6+rU/dx//ifQty+gKKKsPOe3b09ug2XAXXx9/DGwyy7Wz+rV8d4DSF580esyrvjyc76SFl/i/KuUghvf+hbQ2Aj87Gfqx/N2vvxyvsrW+TrzzDNRLBZx0UUXoSXAp9y0aRMuuugiFAoFfOUrX4ndSCZfdKx26NXhpBF2mJb4SrraYVrOVxTxRb97MTiqJrm/+11pB7zzzsHblqb4yjPnq5LDDsvF+Uqj4MacOcD8+cCGDcCf/xyufaaIr6SLbQDBCm7IfcTGjdYxbm8HfvrT0td0c75WrbL/HjIkXrvdJqqPPgosXw6sWAHMmBHvPYDkww7dxFfQvtct/88k58uEsMOuLuC226xr9q671M9pbbVvJzEXClvBs2Kdr8mTJ+Ooo47CggULcMABB2DGjBkoFoslzysWi/jLX/6CiRMnYuHChfjc5z6HY445JvFGM9mSlPiqqyudKEWdnFRX2/8riwF2vix0El/i/1WTFdpxfvGLwLnnAj//efC2lVvYoWnOl5j4dHZa4XBx4FLzpcgLTR9/7Pzbj6ycL/pZ4xbcyMP5UoUd0knn66+XrrCr+tuuLuCDD+z7R42K1WxP50uQxMp/ks5XdbUzbDRKSKpb2GHaBTfo+3V0xBujs7j24oqvVavs60HkKcosW2b9rq0Fhg4N/x4ySRfcMNH5Cjw0PPDAA5g0aRLee+89nHzyyRgwYAAmTJiAIZ8s63z88ceYN28eNm3ahGKxiN12262kFDxjJknlfNXUWB0n7SDiTFh79bI6C/p63d3OvytNfKVdah6IJr7q6qzBVDXJFR1+bS3w2GPh25aV85V1wY3u7mAV1/zIyvkCrPZGnQjRfEAv0RK0uiUlr7DDJCaFVVXWZ25vt85Hmk8UpP/ISnwVCtb31tkZrV8rFtN1vqLkfNE+rFi0XMcvfMG+j543fftaThkALFxo3z96dLx2u+XH0PPAbdIchiTFl3z9pl1wIy3xBVjnJA1xC0MWrnNc8bV0qX3bTQgtWWL9HjUq/ngEpFNq3jQCi6/BgwfjlVdewX//93/jj3/8IzZu3IhnnnkGhU+WN4QTVlVVhTPOOAO33XYbBlBpyhhLUvt81dRYHWea4ku+kOMkoHZ22u1X5atFJc2CGyY6X2LiEHUXiHINOwSsYxj3dbMUX52d0SdCQc9dU5yvqqpkJiqAde6pxFeQ8zgr8QVY52pU8UWvNV2cL9nJnT3bXXw1NqrF15gxsZrtOlGl5wF16KISRyjI43gS4kuHghuiHVHFVxbXXpSxmeInvjZtsjcxjruQIEh6k+WyFl8A0K9fP9x333249tpr8de//hVz587F2k96gObmZhxwwAE4/vjj8alPfSqVxjL5kFTYoRBflLjiC3AO2nKCbBznK409vgDzna+g5wD97sV3pap2KCYOjY3R2kY/p9cgbNomy4DVzjjiS+xXBGQnvqK+T1DxJfYrExPfsM5XVjlfae2zp6vzBcTLV0xzjy8g3CbL4jE59Hf2bOff9HHaf1HxFTfs0C0/hhb1KEfnS4eCG3I7wmJC2KGf+KKPJyW+6uosp7xYrNyCG5GGh1122QWXXnpp0m1hNCVN8RVngiI6M9rhyB2l7uIr6YIb9HgnteoOxK92mJXzFTRczSTnKw5ZDP6y+IpKGNe2vt6+1vN2vuh5LiYUQLKLH3ShqVzFl9tkOym8nK+amtK9xXbsKO3r5s61RKJon+x8CVautH4PHRo/aiKI82WS+DKh4AZ9vzgVD00TXx0d1jlNj2ca4qtQsM7rtjYuuMEwriSZ8yW7FHH2chGdDu3gTBNfaTlftbXJ7pOTVthhd7c9uEV1vsot7FB2vuJgqvjym0zRz5KE85XUJst0QpCk80XFF3U8dBVfURaV0na+vHK+xGNyPydPvDs7gRdfdP4tUC0eJTFZzSrsMMlqh2mGHfrtKZYEcthhVLK49uhYH1d8AaViKA3xBdjnddRNlhsa7HHCROeLxRfjS1LOV3W187Xirgxz2GEpQarFRSEp8VUsOvMo6PcV1flKM+zQq+BG2pssA+x8uUE/S97Ol+gTC4VsxFcc5yutjV4FSTlfWed8uYkv1cSbhh66OV+CtMRXsWiW8xUlz1mXghu6O1+FgnohOiiimIZA7h/p43mIr2JRPa8pFOzQQ3a+mLIkqU2WZecrKfHV1WVfnPJgGafgBp14Jym+sii4kfSeIklUOxTQc4Ku2CbhfJVD2GFSYgbIptoWbW8cERNVfIV1vlTnbxJhh7W1zgWENHK+4hTcELlyaSKuAd3DDuWcr6DOF+AUX245X4K0xFdrq/MY5+18qUrNU0wvuBGVrFxnVQpGEIrFcM5X3OIxFHFe+7XZqwquWOxi8cWUJUk6X2mIL8C+gCvd+RKvp5PzJU/66ESXrtjqWO3Qq+BGFjlflRp2mKbzpSIJ56uuzjkBT8P56u6OHnaYdsghYE7BDfGdid9hnK+XXrLHFbnUvEwS4qu21l5gEGMSFeBA/s5XuVU7NKngBqCOAgrCunWlYkt+DSG+qqqAnXeO1j4Vos1+zpfXuCCcr5aW+HtMZg2LL8aXJMSXKLucpPiSNx8FzMv5Cno8//EP4MwzgVdf9X6ejmGHNTXOwZGuZCXhfGUVdphHtUMTwg7pMc9DfIV1vlQkJb7Scr7ouUcnGeUkvvIsuBFEfDU32/eLftjP+UrCKRDFCQB38ZW08xV2ISntghvlEHaYZshvVPElu16Au/M1YkSyETXU+fISTl7jgnC+OjvjieQ8YPHF+JJEwQ1x0dCLN+7khE5IRCcnX4A0JDEsujhfxSIwdSowfTrw7W97P5eGQCVJkuLLJOfLS3xVVTnfj52v7MSXmOiKksV+pOl80WuOTsDTqHbo9t5e5CG+yrHgxjHH2LdfecX6nUXOF2AfD9Ee3ZyvtEvN+xXcqPSww7TEV1ubfa4lme8FuG8eLhPE+QLMK7rB4ovxJYlNlsVFk0bBDcA97BCInveli/jasAFYvdq6LUoYu5GW8xXlHKCTUjfxZVLOl2rwpK+pY86XSeJLzg/14r/+Cxg0CLjyymCvnVXYYRbOF0VX8dXdrd7Tz4ssC26IDZTFsRGPeTlfu+5q3xbjTBY5XwAwbJj1e+XK0tBTwBJfccOu0gw7jJLnrMs+X7oX3ACiF9zwE1/Lltm30xRfXqGHXlVwTS43z+KL8SWJsEOV85WG+FKtUkUNPaQdQty9WihhByLaQfp1rpXofOW1ybL8mmltshyHLMJe8nC+zjzTmoBed12w184q7DCtnC+3iVuQ/ljOa0qTOMWE0g47lEPfOjttwaJyvtrbnW2iEz1xTL1yvgYMAPr1i9tqCxG+2NEBrFpV6nx1dwcr2e2Fbs5Xnvt8meZ80U3Yw4hwP/GVVqVDIJr4YueLqShYfOXrfNEO0u+z6JrzRfNy3MSXaft8ya/JmyxnJ76AcPvYZRV2yM6XfTus+Eo77JAW/mlvV18bsjtG20QneuKzeTlfSU5W6WstXVoqvoD4eV+6iS86ltPzXzVvSHq8S6rgBh1nssj5AsK5X3KZecA570mr0iGQjPhi54spa9LK+Uqj4IYqREBn8RXkeIYRX6Y5X3TCoHPOV1WVeoBPO+yQc76Swe96SGKT5SyqHcqUk/hK2/kC7GPgJr68wg7pRE98Ni/nKy3xtWSJWnzFzfvKqtph2IIbffo4F+9MDDukFSvTQLUQHQQ/5yutDZYBFl8svhhfqqvtjiNqzpfoHLMuuAHoLb4qxflyq3aYhPMV9JyKU+2wvl7ttKQRdsjOV/KTqXIpNS/jdx53dtrXm+7iK23nC7AXSHbsCCa+/Jwvr4IbSToFsvMl53wB5et8yeeCiWGHaV975Sy+vHKBOeyQKXtE56qT81UpBTdoaEB7u3ciexabLAc9B8I6XzqHHbpNftn5ymeT5bCklfPV3W3/r45hh1nlnAiiOByCtAtuAM5xLKzzpXvYYVznK86G7H7iq1Cw7wsrvmQXNItqh0nv85X2tRdlcXTzZrVb5Ca+Ro2K1DRX2PlimABEFV9iYpJVtcMknS/6f0mKrzgFNwD376Cry0621cH5ohs+m1pqXnzWLMUXO1/Jn79pOV/0+pWdryQXQKIW3MhTfOkYdhhVfNXWOifkcsGNqqpSwZik+KIumo45X/K5ruqHw+4BR8MOvd7L7f3ikHTYoY7OF51X0MIwKvHV3Jz8ggiXmmeYAOjofAXZZJk+Fpa0nK+wzoYsvtw+D+2kdMr5SrvUfBZhh27iK+1qhyy+kkH13dD7ooovOaG+0p2vONUOswg7DJvzJdrU0KDuP2hYvTxGJCm+mpvt10/L+Uoz7BAIJ76KRQ47DENc8bXnnvZtMe9pbwc++si6nXTIIeBsMztfDOMCHbTCoEPYoW7iK0wIxpYt1j5fFLfPQ19LB+crbLVDHZ2vPMIOTdtkmR5zXcWXX7GUJJwveZNl3cRXmtXWBEk5X7rkfFEBoPps4rypri79jpKcsBYKdtjXhx+qhVY5ia/2dvvYyi5oFuKrVy87x7cSnC+V+Fqxwo6kSbrSIZB8qXkWX0xZQgetMHiJr0otuAHYx8FPBKgSYoM4X2mLr1WrgBkzgnWapuV87dgBPPII8H//Z59PboOn7pssx8njCEoemyyHxW0yKBYF2PlKhiDi6733gOeeK92PSMecLxr65uV81dQ4x4jevYGmpmTbLsSc2xgcJexw+3bg8cctJy3Naof0OUEWvrzOhSzEV6Fgv69oy/vvA089FW7zcJ3FF80lV4mvNIttAMlvssxhh0xZomPYoakFN4Dgq4BhxJe8Cp8kdPBoawMOPxz44heB73xH/fzubnuQClrtMGqeR9KbLF95JXDqqcBFF9nnb5Zhh6Y5X6aGHdLzMinxpbPzpUPBjVWrgE9/2uo/ZsxwPib67tra5PsvQdScr4YGdUgldb7oGDF6dLh96IKgmgAPG2bfjuJ8ff3rwIknAscdF+9codEcQHznK2/xRd+3rQ1Yvx7Yf3/gmGOA3/422P8Xi/YxTdt1jhKZsmyZfZuKLzG/0FF8sfPFVBxJiS+TCm6kKb7EcYgivtw616ycr5dftlYBAeChh0pXsIFSF8PP+WpoiL4PysiRwIgR1u2DDnJ/XlDn6+WXS+/7zGfUzxX3jx3rTFqOA+d8Zed8xRVf8oLHqFHAzjtbf3udi2Fx++5otUUVWYsvvypx8+bZx+z5552PuVW3SxJxDGhOEb2fHqNt2+zjJztfov+g41uvXsB++1l/H3108m1XTYB32cW+HcX5euUV6/drrwH//rd9f5RzhfavXmG+QcTX5s32bTkcXRZ6bu8XF3Eub90KvPqqvTjwpz8F+3/6OXV0vjZutG/TSoZi3rN+vX0fFflJkYT4qqmx+wvTnK8UTlmmHImS80XdD9U+XyYV3HBbeY5K0FVA1Q70eTtfK1bYt1evBhYtAvbYw/l8ucP0q3YYNd8LsD7ra68B77wDfO5z7s8LKr7EY7W1wK9+ZYUPHXec+rnXXmu95wEHJLeJpsml5nUVX37OV9R2y85Xba01UXv7beDII6O9pgqv/qejw33lP2vx5ZcATyMT5MmSW3W7JKF9ABUrKvFFJ6duBTeo81UoAP/8pyVovPqhqKjybnbZBXjxRet2FOeLfh+0X4/i1PilFIRxvui5Qc8p+lpp7gsI2JP6tjbnIugLL1jXvd8xyvLaiyK+aN9FHSQx76HXR5zx2Y0kxBcA3HyzdT4MH55c27KAxRcTCNHRdHVZP0E6O1UOR1phh6KjS6vgRl7iS5ecL6+BZvbsUvElF//wE19R870Ew4b5r84FDecTg1KfPsAFF/i/5jHHBGtjULjUfDabLKcRdggEOxfD4ie+3B7PIueP4hcGRBfH5MfdqtsliZv4EveL4kDd3c5CR0FyvgBg0CDg859Pvt2A2vn61Kfs21GcL9ViZW1ttJBJP+crjPii5wY9p+hr0fE57bBDOg5v22Y5uG7REALTxRcV83HHZxVJbLIMABdfnFybsoTDDplARKkUpxIDaRXcSNP5qq9PztUQpF1wI03nS2b2bP+2uFU7FBOGNFbWZOj55ldwA8hmsqqCnS9zcr7SdJspfuLLjTydL1UYEF0ccxNfaYYd0nGMhrbRYyNu0/YFqXaYNn5hh3GdL0HU8ySo+AoyfwjifFHSFF/d3VaRGMqsWf7/n+XChyoKyA/RN9DQPUDtfOUpvtIcF/KExRcTiCjiK0vna/t2a0BUTUTiFtxIOt8LiOd8uX2eNEvNy+XiKaqBKEjYYXu73eY0OneZQiFY7qJ4LIvS3CpMdr6iihgg+5yvmhr7/iSdrzQwUXz5OV90gt3V5cyvSgu/sEP6HPp4Q4N6ixDZ+UqTESNK3ydOzpec9yaIep74FT4Sj3d1qfOEKX7Ol3ytpRl2CAALFjgfUy04yuTlfAWd79BxTrXnVhLbwHjB4othAkA7jzjOV5oFN+hAQt8nrvOVhvgKknwsSrrL5OF8Ae4DyLJlpSLRS3yJPMC0Y8pVBBG9eYuvtApupPV5Ktn5ykp8ydfe4MH2bZ3EF50oq5wvt7BDen8WBTcAd/GlOk5CEMruTZbOV3W1XcxFEMf52rFDLYLScr7CbMBNz428nS/AymumzJnj32eYEnZYV2ctrIrvJyvnK2ibWXwxFQ3tOMNusguk43zJVjsdwAcNcj4WBfF/eTlfy5er789jk2WgdAA58UT7trwSGMT5SjumXIVpzpcJYYembrJsctihqO4JBAuhBfRwvtwKbtD783a+VMdJCEK53xbnTVaTQrnoxrBh9rkR1vly2zw4CefLK+wQ8O/X6LnhlvNFSdv5kvu1zZuBN97w/n+TxBdgz3PY+coGFl9MINLI+Uq64AYdTJIQX1mEHXZ2uodgUDeJrnTnUXADcA4gffsCl15q/x1FfOXhfAURX1ntzeIGl5rPxvlKotR8XmGHVHyVm/OVlfjyy/miyM6XHHaYhfMFOPO+Ghut80L0nWGdL1XIIZB+zhdgnvMloKH3fqGHuosvObdZFl9ifK6qSmcOxOKLYQJgQsENOpgEESteFIvZiC/AfSCiZeZpNcE8Ss0DzgHk0EOBQw6x30fO+wpS7TAP5ytM2GFeBTdMc76SEl9+Va3ikGW1wzSQxRetpqiT+ArjfG3fbrcvq7DDqM6Xm/jK2vmi4qu52fot+s6wzlee4stvDhG24Eaa+3xRJk+2b/sV3cjy2ouyyXJQ56uxMfkNw+n70fdUkfaWAnnB4osJhO7Ol1fYYZSCGx0ddm5SXuKLOl9jx9q389hkGXB28EccYQ1OYiPZRYuc+WlyW1TVDtOOKVfh53x1ddnfOztfwTDB+VIVizE17HDgQGefpJP4amiwj6lfwQ3AnmRnFXYYNedLCEI5VzdP56upyfrt53xt22Yd361b7b4N0DvsULeCG4IpU6zrDwCee855PGV0d77CiK808BNf4tiy88VUNFFWVlQrFkkW3JBzvpIMO6SdQZoFN4Dw4ksH5+vww52/AWswEsjFP/ycL13CDrNyMrxIw/mqrk5vgmiC+CoU1KvlSW+ynBb02mtuDn6OZFFwhVIo2JNlv7BDwJ5k5xF2aFrBDcDb+dq+vfQ8Pvdcq+2NjdbP7rvbmynTY77nnvZtHQpu6JDzpToPd9kFOOww6/b69cC//+3+/yaLr2Ix/W1g6LxAFl/f/KYVvfTQQyy+mAonKeeL5irE3ZGcxiK3tCRbcCNt8RVk8iQGSSBY2GHanZT4vvr3Bw44wLpNN5p8+233tvhVO9Ql7FAH8ZWk85VFCKUJ4kv1miaFHdbX26HUu+0WPIQra+cLsMPE/MIOAbXzpWPYoargRne3na+b1aRwzz1tF3fXXa3ftO+kC1qrVwP33ef8/w8/BP78Z+s2PebHHGN/7qjjcho5X/L+aqrXArITX6NHu495MjqLr2LRXXx1d1vfT9rOF31POt/atg247TbrHLjjjvIVX2X0UZg0SUp8TZoETJsGbNwI/Od/xm/XyJHWBojLlqXnfHntsROVIAPR2rXW77o6YMgQ+/68nK8bb7TaccYZ9vlA4/Fpu8JWO9TF+cpjsiqTxibLpomvNCZTtbXO6zqJfb6yCjssFIB77gH+9Cfg298G/vAHdRtk8jifqfNVLDrzRcrF+erocJ4zWTlfO+0E/OY3wIsvAt/5jnUf7TtbW+0+ef16+/5evez+WXXMR4wA7r8f+MtfgO99L1rb0gg7VOV7ya8FZBd2OHq0+5gnk6XrHFZ80UJfcsENwDr+4vxOW3xt2eLslzdvtttG2wGw+GIqkKTEV6EA/PCHybVr9GhLfG3d6nSK4uZ8Zel8uR3Pdeus383NwTrXtFeIxo+3BmiKW7t0LzUvcrvkXCAdnK80Nlk2TXxl4XyZVO0QAI4/3vqR30s38SUmp52d1gSfTmKDiC8T9vnq6MhvRf7CC60fgZvzRZ3HffcFXnnF+RxZ8H7pS9ZPVNIouKEKOZRfC8jG+erXzzq3gwodnQtuqPotOs/5+GP7dpoLoyrni57DW7aUr/PFYYdMIKJsspzFigWNgae70Dc22p2KiWGHxaK7+ApScCPNVXiKW7vCFtzIepNlQH3cdRBfJjtfUUUMkP4g65XzZYL4okTJ+cpafAGleV9Bwg6zcr7odxe24EZnpz5V2GjfSSeu9NjTzZlFv5t0qCc9tqrjEfSc7ey0P4eb85VHwQ2xx1pQoaNz2KGf+BJRN0D2YYd0XtDayuIrUzo6OvDMM8/g29/+Ng488EAMGDAAtbW1GDZsGE488UQ88cQTyv+bNm0aCoWC58/ChQsz/jTlQVKbLCeNm/hqaLA7PB3Fl9/KdUuLfX9TU7DONe1NllXIRU/c2qKb8wWoFxF0EF/sfGWf80Xzd8KQVdihTNCJrJvASBPqVsh5XzqFHVLCOl+As7/Lc1JI+046caXHnoovN+crLn5hh0HdWrr/Wp5hh/IxEXONoEIny2svCfFFXyMr50u8J21zpThfWn6UWbNm4eijjwYADBs2DIceeigaGhqwYMECPP7443j88cdx0UUX4de//jUKig0I9ttvP+y///7K1+7v5mMzniQVdpg0VHzRykN9+lgXdmtrNPFF/ycP54uuPEUJO8zD+QobdpjnJsuA+rhnXR1ORRql5tMc/Ol3q7P48nK+AEuAhZ3EsfNVitdeX27OVx77fLndH1R80QU6dr6SK7jhV2Zefi1AT/GV5bUnoku6u4PNd1Rty9P5am+35gXV1c55wZYtzj6WxVfKVFVV4dRTT8U3v/lNHCbqen7Cgw8+iDPPPBN33nknJk2ahHPOOafk/0866SRMmzYto9ZWBiaIL7piJsQXoKfzFVZ8uTlMlDycryDiSy41L6od5rnJMuDvfJXTJssmOF9phyl7OV/i/U0UX7pVO6QTZioAikV35yuPfb7c7g9S7RBg50smKfHlt8Gy/Fpu7xcXWZDqLL4KBes9tm1LPuwwi5wvwGp3Q0PpfnV0XsebLKfMf/zHf+Chhx4qEV4AcPrpp2Pq1KkAgPvkOqpMakTJ+cpCfIk4bJmGBruT1L3ghmogEvlegD4FN1SY7HzpGnaYZBifELomiK88ww6BaHlfeYUdmlBwA3AKALlCIH08b+eLHhvVc0x0vuixHzbMzrsV/W7WYYfsfKVLmPlOmIIbWThfgH090XkBYFXGFpST86Wl+PJj/PjxAIDly5fn3JLKIW7OV1qD04gR6tfu00fvnC+/lWuvsEO345/HRDBowQ1dcr5MKLiRlPOV1eBvivjyCzuM0nYdnC+dxRd1MeSQQ/p4HgU3BHJBINVxEmOAm/jS0fmix37gQFukiX43z7BDrwVcKr50KjUvxJeOBTeAcJE+Ojpf4nqSnS96PpST+DLyoyxatAgAMNxlN8B58+bhqquuwoYNG9C/f3+MHz8eJ5xwAvpmtbxehugadlhTY4VULF3qvJ86X9u3l+4340feBTdo59fUFCymOw/ni34OL+fLq9phbW12E0O/87iccr6y+iymiC9Vqfm4lRpZfJXiVnBDDjmkj+dZcEM+LvLfvXvb/Zdbf6e789W/vyXSWlrSc77SCDt0c76yqHZoqvOVRM6XTs4Xiy9NWL16Ne655x4AwKmnnqp8jijKQenfvz9+8YtfKHPEZLaqlugiPKec0FV8AVanKIsvmvPV3W21JYwblHfYoex8FQrW52lry2+TZRUi1nzHjujVDrNyvYBwYYem53yZ7HyltckyxeSwQ53Fl5vzpRJfWRfcUB0DP/FFJ+E6hh0Gcb4GDLCfp3u1Q12cL3pMevUChgyxbwvomPfSS9ZG6BdfbO2JqbP4Yucrf4z6KJ2dnTjrrLPQ0tKCffbZBxdffLHj8V133RXXXXcdjjvuOIz+ZJliwYIFuOGGG/DXv/4V5557Lqqrq3HmmWd6vk9jlrNBQ9BdfMlQ8QVYHVJU8UVfJynC5nwBVgfuJb7yKsnaq1ep+AqT85WlIW1C2GEazpdp4suUnC8dnK8gBTdk9zlN3Jwv1XqleJxOuHRzvqgY1LHgRhDnq18/Z9hhsZh82CH93lT9TZoFN9IQX3V19sLi6NF25Iyb+PrqV4G33wbefBN44YXsxVeYNAsdc77EYgDnfGnIJZdcgmeeeQaDBw/GQw89hDqpJz377LNx9dVXY//998fAgQMxcOBATJo0CY8//jguvfRSAMDll1+O9qDqgekh7A7qQDabLAOl4ku4RFHaLNDN+QL8E2rzKDUPqFfcvMSXXO1QV+dLB/EVx/nKysUrh02WAbPEV9iCG1m2za3ghlfY4YoV1u/GRv3El6nOlzi2ffta7RPP6+622p6083XKKcDw4cCeewJHHln6uGkFNwDg61+3zodPpo8A3POclyyxfi9eXPpYls5XR4c9xrrhJ742bLBvpzk+9+tn3xbnbqU4X8aIr29+85u46667MHDgQDz11FPYY489Qv3/tGnTUF1djbVr1+Lll1/2fO6WLVt8f1auXBnn4xiHSc5Xnz62ABOELbqhS8GNQsFKlgb8wwryKDUP2AOLW8ENudR8V5c1OIiV1yydLxPEV1WV7VKw85Uc5VTtMGzYYZYhtG6l5lXOV2ur9b0vW2b9PWZMuNzcsCTpfOlScMNvny8hhunzWlvt76OmJplzd9ddre9xwQL1hD2oW6uL8wUAt9xiHav/+i/7PrdtX8Rt8R1knT8cpCiXwE98UdIcn1Uuuex80fOhnMSXER/lyiuvxC9+8QsMGDAAM2fO7Kl2GIZBgwZhyJAhWLVqFVaIZTYXGgJ48F1xlngNRGfxJZebF1+fzuIraMGNwYPtgcVPfJnifHV1WauuxaL1d5bOl9+kVYeCG4B1zNrbzRBf5bLJsknOlyniy8/5KhaBRYvs46gKIU+SuM4X/X9TnC/xfdDnbdlifx9J5th5XbdJOl/y95jm/ELuN1Tzis5Ou//assVaXMzL+RLt8pq3qNrmll6R5visyg+VnS/q4pWT+NLe+frOd76DW265Bf3798fMmTMxceLESK/T1dWFlk++Xa56GB6dxZfK+QLiiS/6/Dz3+RIhh4C+zlcQ8SVXO8yjzDxgRsENwD4/KrXgRlbVDll8JU9NjX1N+xXcAIA33rBvpy2+kiy4oUvOF63GKPrV9nZbHKqcLyq+0gzzpJhWcMMNumgjzgEqxAHr2OYtvrzQxflShSjLzheFN1nOiKuuugo33XQT+vfvj6eeegoHHnhg5NeaMWMG2traUCgUIgu4SkbXTZYBYORI598mOF9ek6dt2+yQECq+xHfgFtOdZ8ENwC7pr2qLPMnNY4NlwIywQ8D+/kxwvpISX2nniJZrtUOv/lg8lvVCgnAs3Apu0OOepfhKK+wwz0lhoWCLXdGvqsq1yw6Z+D7SrC5JCVtwo7raXRjmKb6A0gVHWXxt2ZL9Qp5bOKSKMOIrzcVRVYiy7HxR2PnKgP/5n//BjTfeiAEDBgQSXsuWLcP999+P7Yqz7rHHHsOFF14IADjzzDMxbNiwVNpczui6yTJgdYT0KxUdtqkFN1TFNgD/mO68JoK0XaJT9ys1n5fzZUK1Q4CdrzxyvkzaZDlswY2sxZdY0XZzvmh//eab9m0dxZfuzhdQuoGyyj3K2/kKG3Y4YIB7/l/e4kvOc5bFV2treeR81denO5cI63zlfZ0liZYfZcaMGfjJT34CANhtt93wy1/+Uvm8pqYm/PSnPwUAbNiwAWeffTa+9rWvYfz48dhpp52wbds2LFiwoGdT5iOPPBK/+tWvsvkQZYbOYYeANWivXm3dTiLsMM+CG/IGywK/mO68nC9Z5NbXe4cddnfr63zplPMFmOF8pZHzlcZkSiW+ktxkOctrTuewQ8Be0d661Wpfba1TfI0YAXz0kXU7b+dLvs805wso3cPLz/lqabHHxDzEV5CCG24hh/JrAXo6X+Laq63NZpuHMPMdv02WBWkvjFay86XlR9lA6lzOnTsXc+fOVT5v9OjRPeJr5MiR+O53v4tXX30V77//PubNm4f29nY0NTXh+OOPxxlnnIHTTz8dVVltdlJmmCC+RBFLE8IOvVauVXt8Af6fRwfna/t2q3ys/N3TFUzO+fLHJOdLVGcUm5lHRfwvrfaYJGmGHdbWplulTyaI+OrstMOT83K+AGtS1dTkDDscMcK+LUQYUFo8KWni5ny5FdzIe1IoFrBaW63Qbz/ni+7jpFPYIW27W7ENoFQw6ya+qPOV1bWXRs5X2gujKueLxVeOTJ06FVOnTg31P4MHD8YNN9yQToMYI8SXIEnnq1BIxwGJEnboF9Odd84X4Kz+JKittXPBgHxzvkwJOzTJ+QKSqc4o/jetiVSamyxnfa4EmchmnfBPUYkv2fmSqa8HhgxJt12qRSnT9/kCnHt4bd+uLtdOF7nWrLFv61Rwo63Nvg7LxfnK6tpLI+crS+dr0yZrDPBqezmJL7aBmEBEyZ/KUgzQFVOxkpdEzlfv3umsaMfN+fITX3k6X3JbTK12yDlfwQkiFteuBZ5/3l3kiP9Nq69Is9Q8iy8nqnLzbs6XYNSo9MOzqqtLJ+rysZG/S7ewQ51yvuRiGqpy7XSRKw/xFeScDVJmXn4tID/xFSTnKw/na8cOqw2zZ6v7ZF3EV3293e6WFm/XC8j/OksSFl9MIKI4X2lXL6Ok5Xy57X0Rl6Diyy3ny6/ghk7Ol0nVDjnnKxqivW4CZvt2YPx44NBDgZ/9TP2ctMVXGqXmadhhlgTJn9HJ+QL8na+0870EfjleUQpu5O18yRsoh3G+8gg7dDtng5SZl18LyK/gRkeH1W/o4HzRcXjbNmDyZOCII4Bvfav0uaq+ob6+dKE5i7FZfM+bNnkX2wBYfDEVSHW1fWHqGHZ44IH2IDlhgvU7jvgSg1e/fvHbpsJrIIqa85WX86VyGINssizIauUVMC/ssFycrwUL7Nye6dPVz1m/3vqd1oBfTs5XkBAu3Zwves0PH176P1mJLz+xZWLY4eDB9u01a/ydL5rzlVX/S50Vtz3fVIVCVKiu5SyRF0J1c75WrwZeecW6/c9/lj5XNc4VCqWLzVlEpYjvudKcrzL6KEyaiNynHTv0FF9DhlgFNxYvBqZMse6LKr66uuyJIBU/SZJG2KFOzpfcFrovWXe3c2KYlruowrSCG0k5X2mLAzH5dGvv0qX27ddftwZaOrnavt1ejU9rEl7JOV9Zt0/lfPmFHerqfFFnSNeCG/TYLV2qdpDydr5U54RMUOdLl4IbgNV36eZ8vfuufZsu5grcFhl79XJ+liydr82b3c8LQd6LHEnCzhcTGHlvCz+yLgDx6U8DJ5xgX6BRxdfGjXaBCBr2lyReK9duYYdhCm7olvMlT3Jp+3UVXzo4X52dzmIlYchSSPo5X1R8dXdbuV+UZcvs22lNwtOudpgluud8qaqYUbdjp51K/0dX8WWC8yWLL79S82JbFiA750t1TsiowiVV5B12KI958nich/NF3+e99+zb69aVjiFu45yc95Wl8wUAK1e6P69QyKZkf1aU0Udh0kZcpFGcrzwGp6gFN9ycpyQJ4nz16+f8DCY5X7qKL1PCDmk7o4gCQK+wwyVLnH/Pnu38m4qzLJ2vuBtEm+J86RR2WFUFDBpUOpFKu8y8II7zpWvBjSDOF3UxaNuzEl+9etnHPojzZULBDUAddkh2S8qsb3Bzvjo6So93UPGVpfMFACtWuD8v72ssaVh8MYGJI77yuHCiOl95iy8RJiC7bn4FN3QoNa/K+ZI3mdTZ+dKt4AYQPfRQJ/FFxRVQKr6oODMx7JALbjjxCjtsaLD6A3lyzTlf0fFyvlRhh5Sswg4BZ3EFFaY4X3IUiiy+RNqC/Nw0oePo4sXOx+icBnDvG/Jwvlh8MYwPLL6Sw018dXbaq2bye+vqfKnCIf2cr7wmhqblfAHRi27oLL5efdWZA0QfT8sBkSdscasdFov2581aqBcK/kVZdHW+hJihz6muVocipoGf8yVvjRFEfOU9MRwyxB4fqPNVV2ffX1OjXujKsuARLa6gwkTnSyW+aJ5VHuKL5ljL7QH0cr7o98zii2EUiE6kksRXWjlfbivXdMUsrPgSx7uqKtvYaA47TJ5yd746O4GXXlI/borzRc+fPM4Vv73g8lxI8HK+xGSfPmennbIbI/zEl3xfkIIbeTtfhYK1TxrgFF+ye6RyMrIUX6I9LS2lAgEon4IbeTtfMrLzpVPOl5vzJVeaZvHFVCziItW14IZMmB3fKW6l3pPEreCGl+sWtOBG1iFQQaod0sGxu1vfsENxX1VVvhOqcnK+tmxx5kAIaOhhFuIr6YIb9PzJ+pqj76mj8+VVcEOIGbrinVXIIRBefAXZ50uHiaE4hlu32ts6yO6RysnII+ywWFTv6RS11LxuOV95iC+v94kqvrJ2vpYvt28PG+Z8ng7XWJKw+GICEzbsMMtNllX45Ui5kWfYIRV+XjlfXmGHee55orvzFTTnK0/XCzDX+VIJGCqsPvc5+7ZKfA0enN5ksNKcrzzFV69edvtaWqzJthx2SAVanuJL9d25OV+6brIMOI+h6DN0c77oRFsVehh1k+W8xzwdxFcY50vXnC+xaACU7gXI4oupWMQg1dUVbKKSt/NlYs6X13sHLbiRp/MVdJNl3cMO8xZf5eR8UfF16KF2TtdLL1lt7Oy0B900J+FpOl95ii8dC24UCs7iCnRyqnK+sqp0CPgX2JDvc3O+aPluHSaGqmtHFjC6OF+AuugGFWRy2Bklb+fLr+AG7Qd1FF9urn3epebpWMfii2E+wWtvKsHcucCnPgV8+cvOC1xX8bVhAzBxInDQQXbHn7X4evppa/Corgb+8z/d31tX58uv4Iaq2mFeVQWDhh3mWWwDMM/5EpOfrq7SPWXkSoZHHGHd3r7dKryxYoUtfNIUX0k4Xxs2AAceaPUXtJ/II+xQnMs6Ol+APanatMm5x5duzpeX+Kqqcj7f7XvWwflSCVg5dM8U56ux0Xscy1t8+TlfFB3El1vBDTHvEORdap7C4othPiHIvll33GGVOX3wQWdYka7i66GHgNdesyaBf/qTdZ/oqGprvVff4lBb6+x0urtLE5B32cX5d9CCGzrkfMnC2835qq+3Vsmzgg4uqpwDXZwveq15Dexe5OF8AaUiRs7nOvxw++/Zs7PJ9wKScb4ee8xaYHr1VeAPf7Dv57DDUgYOtH5v2uScaIvJ/siR9n177plZswKJr6FDrd8jRjj7J7fvWYeJYVTnK4+CG4C38+WV7wXoX3CDonPOl3wcZQGXddghRRZfOixwJIkGXQZjCn6uAQB8+KF9e80a+3YeFw5tr5v4WrXKvi32xhAdVVNTesKgqgr49a+B229XC9kjjnBOUgH/ghs65Xxt2WK3pa7OXXxlGXIIWJOPvn0t4UWTewW65HwNHmzfpvkDYchLfHV2Ov+Wy8jTRYVZs4Cdd3Y+nhbydVFbG95hpIVDFi60b7P4KmXkSEukFovAe+/Z94swt/POA954w3repEnZtSuI+LrhBuCmm4Dzz3fer7PzpRJfQZyvvMIOVc6XGDf8HBednC9VwQ2KDs6XW86X3La8C25Qyt35KrOPw6RJEPEll5QW5HHhiJCR9nZ3p452SkuXWhMFcV9aIYeC00+3foISNOdLJ/HVt68lYN2qHWYtvgoFa5Ly9tvAsmVWW2hIpC7OFy22Ig+cQRHniLxvURp4iRjaJ4wcaQ34I0YAK1cCzz8PfOYz9uO6hx1St/T99+3bXO2wFPpd/vvf9m3htAweDPz+99m2CQiW8zVpkloQ6iy+Royw2kHPY92cL9X+b4Ji0Rzx5Zfz5fbcNImS8yWPc3kX3BBUVZXOv8pNfHHYIRMYP/HV2al2E4D8LhzRIbk5XzQWeulSa3IlPlva4issQXO+dCi4ISapovP2CjvMGjEpbG8HVq92PqZLzhc99+KKryw+SxDxNWyYda4UCraru3WrFcon0D3sUEwOAaf40r3gRh7toy7mggX27SydFhVBnC833PpWHSaGNTVOFxkI5nzJE+408Qo73LbNDr33m/TnLb50DDtUiS8RZRBFfBUK2QjzxsbSxcHGxlIBrsM1liQsvpjA+OV8rVzpPoHRVXzRTmnJEu9S73kTNOdLh4Ib8gqmPMkV50/WzhfgnBTKTq0uzlcS4itLIekmvnbssEN7qbCiIbVvvmnfNsn5otdgHucLrT4rFzkB9HK+qPjK0mlRkYb40sH5AkqvHz/nq1evbNvuVXCDXlt+4quqyjlhz1t8eVVTzqpvkPuzIUPsvMq2NmfRmyDiq6Eh/YgJwBJ5qv3oWHwxzCf4OV9uIYdAfheOGFiDiK+VK60fgW7OV9Ccr7wLbnR32+JLDKJytcO8wg4B5wSFnrN0CwWdxJdcqSooWeavuYkv6oS7iS9BY6NdpCENkna+vF47C/y2I9BJfKnCDvMijvjSueAG4C++ZFGT9Xfh5XzRaytIrhE9//MMtdcl50t+r9Gj3ceRIOIri3wvgeo8lc9VXa6xpGDxxQTGRPEVxvkqFoH58+2/dRNfujpfcrvoCpub86Wj+Mp73yZKkjlfeTpftMw8dRz32qvUWR49Ot3Kl0k4X27iK8+wQ0B/8UUn2nmHHQbJ+XLDNOfLL+ww6+8iKecLcF5zeTtfuogv2q4xY9wjKIIU3Mgi30vAzhfDeBBHfOU1OInOSBUmWSyWugpz59q3dRZf8ucpFu3JY97Ol2oQpd//9u12mBSLLzUm53xREeNWRr5QAA47zPkaae/1JF8XtbXxwg4pOoovej7nIb4GDMi/wIOKcs35AsKHHZaD81UoZLtdCaBnwQ3AOZ7KzpcYR4rFYM5XluKLnS+G8YB2In7ii5aTrq7OvnMUUOdLzotoaSktDkDFl245X3SlXna+6OfIupOqrbW/3x071IMoneRSZyzvFXk38ZV3wY2+fe2B0QTxRb9fei567eElhx6mWWYeSNf54rDDUkRlUZm8na844kvONRLo4nzJ15Cf85W1+BLVb4FS8RXW+RLnfx7H3gTna/Ro5xxGLDTTHFFdwg5Vzld9vbPPZvHFVCz0QlU5STTE6Kyz7Nt5XjSiMyoWSycoqkktzU3QzfkC3MMo6YQ364lgoeDMrfNzvrZutW/n4XwNGWK3V1fnq1Cwz7+4OV95hh16ia8jjnD+nbXzVVPjvTm0Cp2cL79IhLzFF6D+Tk12vgB1/6rLxDCs85W1EK6qAvr1s27LYYdRna+8xdfmzeqCNwLdnC+vcU4n56tQcLZBlwWOpGDxxQQmaNhhnz7AySfb9+d50dCO75xzgK9/3RZYKvFFO1EdxZdbAREqLPOYCFBRqBpEaWhI3uKrqgoYNcq6LfZ2A/IvzS0jVi3XrrXb+I9/WJvTnn229fP//p/a9ejstMs26yq+9t3XnoipHk8aP+cryCbLnPMVDh2dL/lYhP3uVM/XZWIoqtsBVn8ri5i8nS/AnmiXi/O1caP3c3UpuCHmO179Av1ceRfcoL8BfRY4kqLMPg6TJl7iq1i0Nq0FrNCHffe1rOSWlnwnsnRwefBB6/ebbwJz5vg7CjqKLx2dL8DZLrdBtKrKchfyFl+AdY4uWmRNpjdssDZ81cn5Auzzr6PDWl0tFIBTTnGGbQLWZ/nP/3TeR88PHcTXwIGlg3l1NXDoocDf/mb9naXzVShY52NSOV8cdqhGFUqqk/MVZQNynZ2vXr2A4cOt7R369y/9bHnnfAF2iFlc50uMHXn01W7iq3fv0hDELK89+n2OHu1cTA7ifNGFkbzDDuU26HKNJQU7X0xgvMTXxx/bE77Ro61JzWWXWX/TEMSsOeOM0sHy9detTskrl6ZQAAYNSrVpkXArIKKL8+WW8wXYE10qHvISX6q8L51yvoDSVctFi0qFFwB88EHpfXTLhCFDkm+bjEp8dXYCK1ZYt93yuf77v63rc//9gYkT02yhOn8gjPgqFtn5CovuYYdRjotKfOnifAHARRdZ49d555U+lne1Q8B2OXbscC4ShXW+zjnH+pznnJNo8wJBzxsqvlQLtllee2eeaQnuL3/ZEjSqqrle4mvffYEJEywR+eUvp99eQSU6Xyy+mMB4bbKsCi+aNs1a3brtttSb5srppwOrV1sTV1FdbetWYP16b/E1cKCeF3sQ5yvvsEO3QVRMUOgkV4dJoUp86eR8Ada5SnMqP/tZ+7ZKkNHnpu0oAWrxtXKlfdutDccdZ12Lc+emf97GFV9iDzsVLL7U6Bh2mIb40mmsmDbNCum75ZbSx3RwvuhEm7pfYZ2vq66y/v/nP0+saYGh5w0Nn1QtdGV57X3ta5YY/OMfrb9VBTe8xrnqauDVV63F9KOOSretFHa+GMYDL+fLLbeD5nTkxaBBwG67AWPH2vctXeoUX/LKi44hh4C7+KKTrzxCoGgump/zRdHJ+dI15wuwBk56jY0fb9+mYZwCr1yrNFCJr6Bt6Ns3G+eAXheqfBE/8eUWcii/dlbQ9/QquBEltC4pdHS+6GS4HJ0vwH3c7d3beS7kGXYIOIVLWOcLyDY0jkKL9VABmbfzBTi/+/p6++8gOV+AdX5kWWwDYOeLYTwJKr7SLhkdFdqupUudOV9yyJOu4kt0lp2dTrdLF+drxw4rP0ngV61IJ/Glu/NFr7G99rJvq5yvrK/HOOIrK+I6X24hh0D+1Q69nK88z2VaWVRguvOlc8ENP+QKcnmGHQJO8RXW+cobWklZkLfzpUKMI0HCDvOCnS+G8cBLfGUd5hQFecJNnS9TxJfbRsu6FNwArDAyganiK+8BEwguvkx3vrKCXhdRxJeX86Vz2GGe5zKtLCqg5azzoNzDDv2gfXLezhd1jaI4X3miOnd0cL5kRJs2brT6CR3FFztfDONB2Jwv3XATX1VVVsI/RbcNlgVu4kuXghuAU3zRlStV6FNeA9NOO9kTb9Ocr5oaK4xW4Od8ZS2+hIjRrU9QOV9h9vmiK/Py58k77FBX8QU4j1VdXf6TqHIvuOEH7ZPZ+YqOauFw4MDScyHvsYTOZTZs0G+cA9z3o2Pni2EQLOywrg4YNiy7NoWBTgKWLLHF1+DBwC67OJ9rgvNF8750cr6oo6ir81VTA+y8s3VbuLa6DUr0HFy3zm7nzjs7ByUv8TV4cDYTLNV+WbqFIifpfO29t/Mxdr7cof1u3iGHADtfeTtfbgU36PWlw3nih2rs6t27VDjmff3Ji3i6RXgApWGHKufLpAWOILD4YgITRHyNHJlfcrcfI0Y43Q6R89XcXLqSbZr4ytv5op04zaXTteAGYH/nGzZYq646F9z44AN7lXj0aOekSQ477OiwS7xn5Th5hR02NOixbYNfzpffJst0Zf7Tn3Y+lrf48iq4kfcEiwrvvIttAJVRcMOLvMWXW8ENcX317m2GmHUTX3LIZN7Xnyy+dBvnAM75YhhP3MTXpk12kQUdVrjdoG7HokX2pLWpyUqUpZ2pruKLduTsfMVDDkPVzfkaNMhKkAeA+fPt+8eMcYZvyc7XRx/ZJdHzEl/Foi2+Ro+2P0eeJFntcMwYZ+5SHtecX8ENcT7nPfkrN+dL1TeYNDHUKexQ5XyZkO8FqMeuXr1K25/3WOLlfOXdNkFtrXMhgHO+GIYgi6+WFuAf/wAeeMC+X4fcDi9E+6hb0NxsTQ5p2znnKxy0XdT5ooO7SeIr7wkrYB2vwYOt2/R8Fe0Wg5UsvvLItZLFl7zpug7Q8y9I2OGOHcC8efb9ck6KnMuUNSaGHergfFV6zpfuzpcJ+V6A+tyRww5ra/OPBDJBfAFOUc7ii2EItLNpaQH22w/4/Oetjf0Euky03FA5c6Jzom3X1fkKkvOVt/jats363aePc1KimqDkOTHU3fkC1OehLL7ksMM8cq3oOdfRoV+xDcCaBImJUBDxdfrpwAEHABddZP1tkvjq7LTdTxZfTio954uKg7xzvlT7fJnsfMlhh3lfe0DpfpE6jnOAWnxx2CHDwHmhPvOMc4IlOOSQ7NoTBdVEUExwJ02yfvfrB+y+e3ZtCkOQnK+8ww4F8gqmagUwT+drp53s22vW6BkLr3JgxTksXEUdnC/azkWL9BRfALDPPtZvkbPlJr42bgRmzLBu/+Mf1m+5FPahh1q3+/a1w5mzxEt8+W2kmiU772yfA/vum29bACv3VzjK4nwIg+nOl6jsW18PjB2b/furwg47Ouxz1nTxRce9vK89wNk3r1+vV99AmTDB+r3XXvY1ts8+9rxBLnJkOmWmJZk0oRNSkdAPAGeeCeyxh+WEHXVU9u0Kg2oiKDqnb3/beny//fQNfdDV+VJ14vIgqlvYoTwJoJ9BF/EVxfnKY889sXABALNnO797nfJAZ8wAnnoKOPlk62838TVnjr156tq11m3Z+brySqvA0H775TNhNEV8VVcDM2da58Vpp+XbFsDqc2bNAubOjdYeWXxVVemR0xiUCy+0+r7ddlNvCpw2qrBD2ofpOvbKmOJ8yfuq6ep8/fznwBFHAJMn2/eNGWNdqytXAqecklvTUoHFFxMYtwv1xhudLoLOeDlfvXsD556bbXvCYkLBDYE8iOosvjZtcv6tw6AJlIqvQsGa8AO287VtmxViJlYI83CdRo2y3mvpUuDFF53OsU7O16hRwAUX2H+7ia/Zs+3b7e2W6yU7X3n3F17VZ3USX4C1OLfHHnm3wmbvvaOvpMv9q0muF2CdN2ecke/79+5t9VvC+TJtg2XAHOdLXmTUVXwNGmQtDMiICINyg8MOmcCoOpJddzVHeAHe4ssETCi4IdDd+ZJXYHUclORzc/hw+zqk+RpUiAvx1dhobfqZFYcfbrflscfs+3USXzJumyzPmuV83tq1+m0Ca4rzVW7IfUO55aJkgeh7hfOl27UVBLeCG7o5X/Iio47jXCWipfjq6OjAM888g29/+9s48MADMWDAANTW1mLYsGE48cQT8cQTT3j+/9NPP40pU6agqakJvXv3xp577onvf//72EKvcCY0qgtVTLhMQbgGFFPFVzk4X3kOTiasCMo5X27FC0TYTnc3sGyZ/dwsw6GOOMK+/fHH1m+dN10H1M5Xa6tV5ZCydq1+q/MsvvLBdOdLB0Tfy85X+vTqZY9nsvjSoX2Vipbia9asWZg8eTJ++tOfYsWKFTj00ENxyimnoLm5GY8//jiOP/54XHzxxSiKoHzCrbfeiqOPPhpPPvkk9t57b5xwwgloaWnBddddh4kTJ2IdrYPNhKIcxFevXqWTQV3LyqvQdZNlE50vupnnpk16FtyQFwbc9kwSRTfWrLEH16xzrVR9gc6brgPqTZZfeKG08qHsfOkwQQwqvnQ5l8sFFl/xEc7X5s3WtWai82VKzhfgFLvcN+iBlsNiVVUVTj31VMyePRurVq3CX//6Vzz44IN466238MADD6C6uhp33nknfv/73zv+b/78+bjyyitRXV2NJ554ArNmzcKf/vQnfPDBBzjqqKPw7rvv4pJLLsnpU5mP6kKlq92mIIdBmSS+dM35Ug0yulc7LBScg5KOzpeX+FI5X3lWGdxtt9KFDZ1DDgG180XzvQRUfNXX53ONybDzlQ/yd89hh+GhUQebN5ev86XLOELDPHUc5yoRLcXXf/zHf+Chhx7CYYcdVvLY6aefjqlTpwIA7rvvPsdj119/PYrFIs477zwcd9xxPff36dMHd911F6qqqvDwww9j4cKFqba/XKmpcYYx7byzXpXMgkLb3K+fWZMTdr6SxW1Q0uWcCCq+hPOVR6VDQaFQ6n7p3j8EFV/r1tkTRF1W5k0quFFOsPMVHznk20TnS3Vd9eqlt/O1ebNz3sDiKz+0FF9+jB8/HgCwfPnynvva29t7csHOUJTyGT16NCZ9Ug/50UcfzaCV5Ueh4LxYDz/crBK7AhM2U3bDreBG3s6XqeJL93AM2ZWlYkYVdpj3/lqyE26a87VtG/DKK6XPo86XLivz7HzlAxfciI9c7KgcnC8xP9It5wuwx7nubmDDBvt+XdpXiRgpvhYtWgQAGD58eM997733Hto+mYFMnDhR+X/i/vnz53u+/tatWwP9VCJ04DEx5BBwTghNCjkEzHK+ghTcyDt8SwxKXV3OQUkX8WVS2CFQ6nyZJr5eftl2kT77WfsxWnBDl5V5L/Glo4tbLrDzFZ9ycL7kMa93b0uA6eh8UbEriiEB+oxzlYhx4mv16tW45557AACnnnpqz/2LFy8GAAwYMAB9Xa7ekZ+UuhPPdaOxsdH3Z8SIEQl8GvOQnS8TKRfn65ZbrFLiRx9tV40C9BFffs5Xr175O6e6D0r19c7JiF/BjbzF1157Wfu15NmGMMjii4Yc0k09V6+2XDFAn5V5dr7ygXO+4lOOzlfv3tZvnZ0vQM9xrhIxSnx1dnbirLPOQktLC/bZZx9cfPHFPY+1fnL1NtAZiUTjJ1f15s2b021oGTN4sPV72DBg7Nh82xIVutnnqFH5tSMK1Klrb7cGrqefBu69175f14IbKvGVN3RQWrvWvq3LoAnYAmbECKfgUuV8rVhh/a6tBYYOzaZ9lKoq4HOfs//ebbfs2xAGWXzRoIgTT7QXB2gunS4r8yy+8oGdr/jQ/QfXry8f5wtw9ru6RNZQsUvHORZf+WHUms0ll1yCZ555BoMHD8ZDDz2EupTOnCD7gW3evLki3a8bbwRuvRW48sr8XYuo7L478MMfAi+9BFx2Wd6tCcfuuwPf/z7wyCPWBOvDD637qZmrq/MlVzvUQXzp7nwB1jV3003Af/+3835V2KHYtHTQoPxKvP/v/1rt+I//sIry6EyhYB2n7m5LfG3caD82cqR1HNevd4ovXVbmueBGPrDzFR+63+ayZWY6X/J1JcTXyJFWH/j888Cll2bfLhXsfOmHMd3GN7/5Tdx1110YOHAgnnrqKexB7QugJ9TQKxdLiKp+/fp5vpeXeybokjeCqRBOOsn6MZ1p0/JuQXR+/GPrp6PDWkGUT3ldCm74OV86TArpoKRjwQ0AmDLF+pFRhR0K8UVFZdbstRfwzDP5vX9Yqqtt8SWOX12ddU43N1vii54buqzMs/OVD3LfwM5XeGg48pIlzsUDXa4vP9ycLwD4n//Jti1+0PGA+wY9MCLs8Morr8QvfvELDBgwADNnzuypdkgZ80kZsE2bNvWEIMqI6ohjdK9/zDABqK0FDjmk9H5dnS8dww5VIqVQMGNCJTtf3d32CjIVlYw34rvu7LTF14AB1nmgChvSZWWexVc+sPMVHyq+li410/nyEl+64TYe6LTIWGloL76+853v4JZbbkH//v0xc+ZM10qGY8eORZ9PZiNz585VPkfcP2HChHQayzAZoyp6YorzpYP4Ug1KdXVmhNTKOV+bNwPFovV3ns6XaYjzsqvLLlwjjp+qII8uk0MWX/nAOV/x6dfP7nuXLi2vnC8dYfGlH1qLr6uuugo33XQT+vfvj6eeegoHHnig63Pr6urwhS98AQAwffr0kseXLl2KF154AQBw8sknp9NghskYlfjKYyVWNcEz1fkyZbIqhx3SipfsfAVHnJcdHfYxFMdPJb50mRyy+MoHdr6SQbhfy5fb111VlR7jQhDkdurcbrfFOBZf+aGt+Pqf//kf3HjjjRgwYICv8BJcddVVKBQK+N3vfocnn3yy5/62tjZccMEF6Orqwqmnnoo999wzzaYzTGYcdFDp5Iqdr+C4OV8mIIcdipA5gMVXGMR52dJS6hzq7HzR89RLfJlyPpsCO1/JIMRXZyfwydat6NvXjKgDwL3gho6oxoPqaj5380TLNZsZM2bgJz/5CQBgt912wy9/+Uvl85qamvDTn/605+8JEybg5ptvxhVXXIEpU6bgiCOOwJAhQ/Dcc89h1apVGDt2LH79619n8hkYJgt69QIOPti5P1EeK7E1NXbVOIFftUMdVuRNFl9ezheHHQZHTEDWr7fvM8354mqH2cEFN5KB5n2JsENdFjaCYFLYoWo8MGWcK1e0FF8bNmzouT137lzXHK7Ro0c7xBcAXH755dhnn31w880345VXXsHWrVsxatQoXH311bj66qtdN2BmGFM5/PD8xVehYA1GoupeTU3ppE9H58vkQYmdr2SgBTcE4rzgghuMDIcdJoOq7plJ0zOTxJfJi4zlipbdxtSpUzF16tTI/z958mRMnjw5uQYxjMbIeV95hB0CTvHV2FgaPqKj+FINSqZMVuWCG1R8sfMVHNXk2QTnq6rKdptZfGUHhx0mA3W+BLosbATBJPElwjlFWDXA4itvtM35YhgmGJ/9rHMCkNdKLJ3kqSaoOoov1ZZ/pgxKsvjighvRUE2evcSXThNEIQQ6OqzNU3/yE+CFF5xhiCy+koWdr2Rg8ZUdVVWlYx33C/nC4othDKexEaA7MOQlHuhgpBpEdRRf1dWlQtEU8VVdbQ+gctghO1/BUYkvr4IbujhfgFN8fe971uauU6Y489d4kpUs7Hwlg0p86XRt+WFSwQ2gdEHOlHGuXGHxxTBlwCWXWL8nTgR23jmfNlAxFcT50mVSKAsVkwYlUXSDna/oeDlfOud8Afa52t4OiNTolhZnDqgu11m5IPcP7HxFo6mpVLDodG35YZr4MnmcK0dYfDFMGTB1KrB6NfDii/mV6vVzvuRqhzo4X4DZK4Ii9FDO+WLxFRwv56tXr9JzWafVeep8LV1q309qVrH4Shh2vpKhUCh1v3S6tvyornaeC7qLL5PHuXKExRfDlAlDh+a7Cmti2CFQOiiZNFkV4mvrVi41HxUv5wsoDT3UaXVeTP7Wr3eKb4pJ57MJcM5XcsjiS6drKwh0DNNdfLHzpRcsvhiGSQQTC24AZg9KNOyQna9ohBFfhYKz0EneCCEg9klSweIrWdj5Sg6TnS/AeW3pMp65YfIiYznC4othmEQI63zp0vmbHI4hhEB7O7BunXW7UDBvBTlPvMIOAaf4Um2hkCdBtpXQ5TorF9j5Sg55ry/T+i12vpiosPhiGCYRwhbc0GWl0ORBibowq1ZZv/v3L82vY9zx2ucLcBbd0G1l3u9cranhcyFp5GPOzld0THe+TBJfJi8yliPcLTMMkwic85U9IuwQsPZ5AjjkMCzyeVkoOCeBsvOlE37Ol0nnsilw2GFycM5XdrD40gsWXwzDJIKf86VrtcNycb6KRes3F9sIhzx57tfPea5S8aXbyrxKfNHryqRz2RQ47DA52PnKDnlc4IWZfGHxxTBMItDO3GTny6QJK3W+BOx8hUM+L+XjZ5LzVSgAJ5xg/80TrORh5ys5hg93ilfdri8/6PWlu/gyeZwrR1h8MQyTCKZusmzyoKSqvMfOVzjk81I+fjrnfMlCYPhw4Oij7b91ucbKCXa+kqO6Ghg50v5bt+vLD5OdL5PGuXKExRfDMIlgas6XyYOSSnyx8xUOk50v+VwdPRo4/HD7bxZfycMFN5KFhh7qdn35YZL4MnmRsRxh8cUwTCKMG2f9LhTs2xRdxVe5FNwQsPMVDj/na4897InV3ntn06agyC7M6NFWe3ff3fp77Njs21TuVFc7txtg5ysen/mM9btvX6cLZgJinBs0CBg6NN+2+ME5X3rB3QbDMInwla8AHR3AzjsDu+1W+vj/b+/eo6I47zeAP8udLLCAN+TmNVGjFEFAUzHFWxTvVq23IKgxtdYYrNfk6JFWG2+1LaLRNkfF69GjVQIhUYwBkShECxop0WrEIIoKKhcRZJH39wc/KIRFgYWZneX5nLPn6Mzs5GGyMvud7zvvGGrxxc5X6/aqzpejIxAXB1y+DISESBSqgXQVXyoVEBNT+ZoxQ55cxs7cvPLZegA7X/r66KPK4bK+vsrrfK1aBbi7A2+9ZTjns/qw82VYWHwRUbOwsADee6/+9YY626GST0osvvT3886FruPn71/5MjS6ii+gsuPFrlfLqVl8sfOlHzs7YNEiuVM0jUYDfPCB3CkaRskXGY0Rhx0SkSQMdcINJZ+UOOxQf68admjI6iu+qGXVPO7sfJESWFryMRSGhMUXEUnCUIcdWlnVPhEZSlHYEOx86e9Vww4N2c+/QHXuLEuMVqfmcWfni5Si5u82Fl/yYvFFRJIw1OJLpard7VDSSYmdL/2x80WNxc4XKVHN321KushojFh8EZEkDLX4ApR7RZCdL/0pufNVswho00Z3MU7Nr+ZxZ+eLlEKp5zljxOKLiCRhqPd8Aco9KbH40p+xdL7Y9ZIOO1+kREo9zxkjFl9EJImasx2qVHWHTMmJww5bL2PpfLH4kg6LL1IipZ7njBGLLyKSRM0vKVZWtR9UKreaX7gNqSP3Kro6Xyy+GkfJxVfNL1AsvqTDCTdIiZR6njNGLL6ISBI/L74MiVKvCP68+LK2VlZ+Q8Bhh9RY7HyREin1PGeMWHwRkSQMufhycvrfn5XU+fj5sEMlZTcUP+9cKKn4qvn/+/XXZYvR6nDCDVIipZ7njBF/bRCRJGoWX4Y25GHePCApqfILrLe33Gkarmr4phCVf1dS4WAofn5RwNA+my8zbRrwxRdAu3bAiBFyp2k92PkiJXr3XeCrr4C2bYGAALnTtG4svohIEobc+erUCUhIkDtF46lUlUMPi4sr/86rmY1X83OptOPn5AR8/bXcKVofdr5Iidq3B06fljsFARx2SEQSqTnboaEVX0pW874vpRUPhkDJxRfJo+b9Mux8EVFjsfgiIkkYcudLyWoWXxx22Hg1P5c8ftQQ7HwRkT5YfBGRJFh8tYyak26wc9N47HxRY/GeLyLSB4svIpKEIU+4oWTsfOmHnS9qLHa+iEgfLL6ISBLsfLUM3vOlH3a+qLHY+SIifbD4IiJJsPhqGRx2qJ+anQseP2oIdr6ISB8svohIEpztsGVw2KF+OOyQGouzHRKRPlh8EZEkeM9Xy2DnSz8cdkiNxWGHRKQPFl9EJImaw3PY+Wo+7Hzpp+bnksePGqJm54vDDomosVh8EZEkvLwAJydApQICA+VOYzxGjao8ps7OgLe33GmUZ+jQyk7Ga68BQ4bInYaUYMSIyn9z7doBPj5ypyEipVEJIYTcIZSosLAQGo0GBQUFsLOzkzsOkSIUFwOPHwNubnInMS4//VT5RbBmF4wa7v79ym4shx1SQ2VnAw4OtYf9ElHr1tDagA1zIpKMWs0vKy2hUye5Eyibk5PcCUhpXF3lTkBESmWwww6vX7+OiIgIhISEwMPDA2ZmZlCpVFi3bl297wkLC4NKpXrp69q1axL+FERERERERJUMtvO1Y8cOhIeHN+m9np6e6Nu3r851Gt5RTUREREREMjDY4qtPnz5YunQpvLy84O3tjU8++QT79+9v0HsnTJiAsLCwlg1IRERERETUCAZbfL333nu1/m5iYrAjJImIiIiIiF6JFQ0REREREZEEDLbzpY/U1FSsXLkSjx8/hkajgZeXF8aOHQtbW1u5oxERERERUStllMVXTEwMYmJiai3TaDTYunUrZs2a9cr3FxcXN8s2REREREREVYyq+OrWrRs++eQTBAYGotP/P/gmIyMDGzZswBdffIHg4GCYmppi5syZL92PjY2NFHGJiIiIiKgVMariKygoqM6ygQMHIiYmBosWLUJERAQWL16MKVOmwMLCQoaERERERETUWrWaCTfCwsJgamqK3NxcpKSkvHTbp0+fvvJ17949iZITEREREZExMKrO18s4Ojqiffv2yMnJQXZ29ku3VavVr9zfixcvmisaERERERG1Aq2m8/XixQsUFBQAAGc9JCIiIiIiybWa4is6OhrPnj2DSqWCj4+P3HGIiIiIiKiVMZriKysrCwcOHEBpaWmddVFRUXjvvfcAADNnzoSTk5PU8YiIiIiIqJVTCSGE3CF0SU1NxYIFC6r//uOPPyIvLw+urq5wcXGpXn7ixAl07NgRly9fhpeXF2xsbODl5QUXFxeUlJQgIyMDN27cAAAMHjwY0dHRzTKVfGFhITQaDQoKCmBnZ6f3/oiIiIiISJkaWhsY7IQbhYWFOmclzM7OrjVhxvPnzwEAbm5uWLFiBS5evIibN28iNTUVZWVlaNu2LcaMGYMZM2Zg6tSpMDExmmYfEREREREpiMF2vgwdO19ERERERAQYQefL0FXVrIWFhTInISIiIiIiOVXVBK/qa7H4aqKioiIAlcMdiYiIiIiIioqKoNFo6l3PYYdNVFFRgXv37sHW1hYqlUq2HMXFxXB2dgYA3Lt3r0EPiKaG4/FteTzGLYvHt+XxGLcsHt+WxePb8niMW5ahHF8hBIqKiuDs7PzSOSbY+WoiExMTuLq6yh0Dpqam1X+2s7PjP+hmxuPb8niMWxaPb8vjMW5ZPL4ti8e35fEYtyxDOr4v63hV4dR/REREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEuBDlomIiIiIiCTAzhcREREREZEEWHwRERERERFJgMUXERERERGRBFh8ERERERERSYDFl4IdPXoUAQEBcHBwgFqthqenJzZt2gStVit3NMW7fv06IiIiEBISAg8PD5iZmUGlUmHdunVyR1M8rVaLM2fOYNmyZfD19YW9vT3Mzc3h5OSEcePGITY2Vu6IRuHgwYOYNWsWPD090b59e5ibm0Oj0cDPzw/r16/H06dP5Y5odJYvXw6VSsXfFc0gJCSk+ljW9yotLZU7plEoKyvD1q1b4e/vD0dHR1hZWcHV1RWBgYE4cuSI3PEU6/bt26/8DFe9EhMT5Y6rWFlZWVi4cCF69OgBa2trWFlZoUuXLggODsaVK1fkjqeTmdwBqGlCQ0MRHh4OMzMzDBkyBDY2Nvjmm2+wYsUKxMTEIC4uDtbW1nLHVKwdO3YgPDxc7hhG6ezZsxg+fDgAwMnJCf7+/lCr1cjIyEBMTAxiYmLw/vvvY+fOnVCpVDKnVa4dO3bg/Pnz6NWrF7y9veHo6IgHDx7gwoULuHjxInbv3o2zZ8/C2dlZ7qhG4fz589iyZQtUKhU4iXDzGThwILp3765znampqcRpjE92djZGjBiBjIwMtG3bFgMHDoRarcadO3eQmJgItVqNqVOnyh1TkWxsbBAcHFzv+oyMDFy8eBG2trbo16+fhMmMR0pKCoYPH46ioiK4uLjgnXfegampKS5fvox9+/bh0KFDOHToEKZMmSJ31NoEKc6JEycEAGFjYyP+/e9/Vy/Pzc0VHh4eAoBYsmSJjAmV77PPPhNLly4VBw8eFD/88IMICgoSAMTatWvljqZ4Z86cEZMmTRKJiYl11h0+fFiYmpoKAGLv3r0ypDMeycnJ4tGjR3WW5+XlCX9/fwFATJs2TYZkxqe4uFi8/vrrwsXFRUyYMIG/K5pBcHCwACD27NkjdxSj9ezZM9GzZ08BQISFhYmysrJa64uLi0VaWpo84VqBwMBAAUDMmzdP7iiK9Ytf/EIAEO+//36tz++LFy/EqlWrBABhb28vSkpKZExZF4svBfL19RUAxLp16+qsO3funAAgLC0tRX5+vgzpjFPVFwF+oWp5c+fOFQDE0KFD5Y5itBITEwUA4ejoKHcUo7Bo0SIBQMTGxvJ3RTNh8dXyVq9eXf3FlaSVnZ0tTExMBACRnJwsdxxFysvLEwAEAPHw4cM668vLy4W1tbUAIFJTU2VIWD/e86Uwd+/excWLFwEAM2bMqLPe398fbm5ueP78Ob788kup4xHpzcvLCwBw584dmZMYLzOzyhHnlpaWMidRvoSEBERERGDWrFkYNWqU3HGIGkSr1WLHjh0AgGXLlsmcpvWJjIxERUUFevfujf79+8sdR5Eac/5q27ZtCyZpPN7zpTBpaWkAAEdHR3Tp0kXnNj4+Prhz5w7S0tIwffp0KeMR6e3GjRsAgI4dO8qcxDgVFRUhLCwMADBu3Dh5wyjc06dPMWfOHHTo0AF///vf5Y5jlOLj43H16lUUFRWhTZs28PPzw6hRo3jhQE+pqanIy8uDs7MzunfvjqtXr+L48eO4d+8eHBwcMGjQIAQGBsLEhNfoW0JkZCQAYO7cufIGUTAbGxsMGjQI586dw6pVq7Bt2zaYm5sDACoqKhAWFoaSkhIEBgbCzc1N5rS1sfhSmMzMTACAu7t7vdtUfciqtiVSivv371eflCZNmiRvGCMRFxeHQ4cOoaKionrCjaKiIowcORIbN26UO56iLV26FJmZmThx4gQcHBzkjmOU9u3bV2dZx44dsXv3bowcOVKGRMbh+++/BwC4urpi5cqV2LRpU62JYjZu3AgvLy9ERUW99PsGNd7Zs2dx8+ZNWFhYICgoSO44ivbZZ59h1KhR+Oc//4nY2Fj4+PjA1NQUaWlpuHv3LoKCgrBt2za5Y9bBSxoKU1RUBABQq9X1bmNjYwMAKCwslCQTUXMoLy/Hu+++i4KCAnh4eOC3v/2t3JGMQkZGBvbu3Yv9+/cjLi4ORUVFmDFjBiIjI6HRaOSOp1hxcXH4xz/+gWnTpmHChAlyxzE6np6eCA8PR3p6OgoLC/HgwQPExcXhl7/8JXJycjBu3DgkJCTIHVOxHj16BKByNM3GjRuxYMECXL9+HQUFBTh9+jTeeOMNpKWlYfTo0Xx8TTPbvXs3gMqRB4Y2HE5pevTogQsXLuCdd97B3bt38fnnn+P48ePIzMxE9+7dERAQADs7O7lj1sHii4gMwvz583HmzBm0adMGx44dg4WFhdyRjEJoaCiEECgrK8PNmzexZcsWfPXVV3jzzTf5bJkmKigowNy5c9GuXTtERETIHccoLV68GIsWLULv3r1ha2uL9u3bY/jw4UhKSsL48eOh1WoRGhoqd0zFqupyabVaTJ8+Hdu2bcMbb7wBOzs7DBs2DKdPn4aVlRXS09Nx+PBhmdMaj8LCQhw7dgwAMGfOHJnTKN+3334LDw8PpKen49ChQ7h//z4eP36MmJgYaLVazJ071yCHdrL4UhhbW1sAQHFxcb3bVD081RCrfSJdPvzwQ+zatQsODg7VV12peZmbm6Nbt274wx/+gK+++gpPnjzBu+++i5KSErmjKU5oaCiys7Oxbds2XrmWmEqlwh//+EcAwJUrVzgxTxNVfZcAoHOUgbu7O0aPHg0A+PrrryXLZewOHz6MZ8+ewdXVFSNGjJA7jqLl5+dj4sSJyM3NxfHjxzF9+nR06NABDg4OGDNmDE6ePInXXnsNu3fvRnx8vNxxa2HxpTCdO3cG8PKZ4KrWVW1LZMiWLFmCrVu3wt7eHnFxcdWzHVLL6d+/P958803cuXMHly5dkjuO4pw4cQJmZmb49NNPERAQUOt18uRJAMCuXbsQEBCAadOmyZzW+PTq1av6z9nZ2TImUa6uXbvq/LOubXJyciTJ1BpUDTkMCQnhZCZ6io2NRW5uLrp27apzxsiayw3tAgIn3FCYqi+mjx49QmZmps4ZD6u+THl7e0uajaixli9fjr/+9a/QaDSIi4uDj4+P3JFajar7Rh8+fChzEmUqLy/H2bNn611/+/Zt3L59G506dZIwVetQdb8SULuDQw3n7e0NlUoFIQTy8vJ0zgaXl5cH4H/3kZN+MjIykJKSApVKhdmzZ8sdR/GysrIAvHyUV9V9zY8fP5YkU0Ox7FYYV1dX+Pr6AgAOHTpUZ31SUhLu3LkDS0tLPnOGDNrKlSuxefNmaDQanD59uvpzTS0vLy8PV65cAQAO8WyC/Px8CCF0voKDgwEAa9euhRACt2/fljesEaq6B8nOzg49evSQOY0yOTk5wd/fH4DuroBWq62+uODn5ydpNmO1a9cuAMDgwYPr7TZSw7m4uAAArl27hoKCgjrrtVotUlNTAaDeRzPJhcWXAn388ccAgA0bNlR/sIDKq4ELFiwAACxcuJAzmZHBWrVqFTZu3Ah7e3sWXi0gIyMDBw8eRGlpaZ11//3vfzFlyhQ8f/4cAwYMgIeHhwwJiep3+fJlREdHo7y8vNbyiooK7Nq1q/ocuGjRourn+lDjrVmzBgCwfv16JCcnVy8vLy/HkiVLcOvWLdja2rJL0wy0Wi0OHDgAgM/2ai6BgYFQq9UoKSnBvHnzquc7AICysjIsXrwYWVlZMDc3x+TJk2VMWpdK1HywAynGhx9+iK1bt8Lc3BxDhw6FWq3GmTNnkJ+fj4EDB+L06dOwtraWO6ZipaamVheyAPDjjz8iLy8Prq6u1VdbgMp7P/gw4MaJjo7G+PHjAVQ+ELx37946t2vbti3+8pe/SBnNaCQkJGDw4MFQq9Xw8vKCq6srysrKkJWVhdTUVFRUVKBXr144efIkn+HTzEJCQrB3716sXbsWq1atkjuOIkVFRWHixIlwcHCAt7c3OnTogPz8fKSnp1cPNZo+fTr27dsHMzPePaGPdevWYfXq1TAzM4Ofnx+cnJyQmpqK27dvw9raGkePHq2eeIOa7sSJE/j1r38Ne3t75OTkwMrKSu5IRuHAgQOYPXs2ysvL0a5dO/j6+sLc3ByXLl3C3bt3YWJigu3bt2P+/PlyR61NkGIdOXJEvP3228LOzk5YW1uLPn36iA0bNojnz5/LHU3x4uPjBYBXvjIzM+WOqjh79uxp0LHt1KmT3FEV6+HDh+LPf/6zGDlypOjcubNQq9XCwsJCODk5ieHDh4sdO3aI0tJSuWMapeDgYAFArF27Vu4oinXr1i0RGhoq/P39hYuLi7CyshKWlpbC3d1dTJ48WcTGxsod0aicOnVKBAYGCkdHR2Fubi7c3NxESEiI+OGHH+SOZjTGjBkjAIgFCxbIHcXoXL58WYSEhIiuXbsKS0tLYWFhITp16iRmzpwpUlJS5I6nEztfREREREREEuA9X0RERERERBJg8UVERERERCQBFl9EREREREQSYPFFREREREQkARZfREREREREEmDxRUREREREJAEWX0RERERERBJg8UVERERERCQBFl9ERGQwVCpVo18BAQEAgICAAKhUKiQkJMj6MzSH8PBwqFQq/Otf/2ryPgoKCtCmTRv0798fQohmTEdERE1lJncAIiKiKsHBwXWW3b9/H6dOnap3fc+ePVs8l5Ryc3MRFhYGX19fTJo0qcn70Wg0+Oijj7Bs2TLs27dP57EjIiJpqQQvhxERkQFLSEjA4MGDAeClHZysrCw8e/YM7u7ueO2116SK1+wWLlyI7du3IzY2FqNGjdJrX6WlpXB3d4eZmRkyMzNhaWnZTCmJiKgpOOyQiIiMgru7O3r27Knowis/Px+RkZFwcXHByJEj9d6flZUVZsyYgZycHBw5cqQZEhIRkT5YfBERkVGo756vkJAQqFQqREZG4vr165g6dSrat28PtVoNX19ffP7559XbpqSkYNy4cWjXrh2sra3x1ltv4cyZM/X+N0tKSrBlyxYMGDAA9vb2sLKyQo8ePbB8+XI8evSo0T/Dnj17UFxcjKCgIJiY1D1FP3/+HJs3b0a/fv1ga2sLCwsLODk5wdfXF8uXL8fjx4/rvCckJAQAsH379kbnISKi5sXii4iIWoXU1FT069cPV65cwdChQ+Hp6YlLly5h4sSJOHbsGKKiojBo0CBkZ2dj6NCh6NGjB5KTkzFy5EgkJSXV2d+9e/fQv39/LF26FDdu3ICvry9GjRpVXSD5+Pjgp59+alTGqKgoAMCwYcPqrKuoqMDo0aOxfPly3Lx5E4MGDcLkyZPh4eGB3NxcbN68GVlZWXXe17dvX7Rr1w7fffcdcnJyGpWHiIiamSAiIjJg8fHxAoB41SnrV7/6lQAg4uPjay0PDg6ufv+6detERUVF9bqtW7cKAMLV1VU4ODiIffv21XpvaGioACCGDRtWa3lFRYUYOHCgACDmzp0rCgsLq9dptVqxZMkSAUAMHjy4wT/ns2fPhIWFhTAxMam1vypnz54VAISXl5fO9RcvXhR5eXk69z1u3DgBQOzfv7/BeYiIqPmx80VERK2Cn58fPv74Y6hUquplv/vd7+Do6Ijs7GwMGzYMQUFBtd6zatUqAEBiYiK0Wm318lOnTuHbb79F3759sXPnTtja2lavMzMzw6ZNm9CnTx/Ex8cjPT29Qfn+85//oKysDK6urrX2V+XBgwcAgEGDBulc7+PjgzZt2ujcd+/evQFUdv+IiEg+LL6IiKhVCAwMrFV4AZWFUpcuXQBA58yCbdq0gaOjI8rKymrdwxUbGwsAmDRpEszM6j61xcTEBG+//TYA4Pz58w3KV1Vc1VdAeXt7w9TUFLt378b27dsbNYSwap9V/w0iIpIHiy8iImoV3N3ddS63sbF56fqqLlNpaWn1slu3bgEAVq9eXe/Dnz/99FMAlc/taoiCggIAgJ2dnc713bp1w9/+9jdotVosXLgQzs7O6Ny5M6ZPn46DBw+irKys3n1X7fPJkycNykJERC2DD1kmIqJWQdfsgY1ZX1NFRQUAwN/fH926dXvptlVD/l7F3t4eAFBYWFjvNh988AF+85vfIDo6GklJSUhKSsLhw4dx+PBhrFmzBufOnUPHjh3rvK+qsHNwcGhQFiIiahksvoiIiBrJzc0NADB+/HgsXbq0WfbZvn17AHjlFPUdOnTAvHnzMG/ePADAtWvXMGfOHFy4cAErV67E3r1767ynap8dOnRolqxERNQ0HHZIRETUSIGBgQCAo0ePQgjRLPvs3bs3LCwskJ2djaKioga/r2fPnlixYgUA4PLlyzq3qZr0o1+/fnrnJCKipmPxRURE1Ejjx4+Hr68vvvvuO8yePVvnfV1PnjzBzp07UV5e3qB9WltbY8CAAaioqEBKSkqd9d988w2+/PLLWrMuAoAQAl988QUAoFOnTjr3feHCBQDAkCFDGpSFiIhaBocdEhERNZKJiQmioqIwevRo7N27F8eOHYOnpyfc3d1RVlaGW7du4erVq3jx4gVCQkJ0zoioy4QJE5CYmIjTp0/XedDy999/j8WLF8POzg7e3t5wdnZGSUkJUlNT8dNPP0Gj0eBPf/pTnX2mpaXh0aNH8PPz03k/GBERSYedLyIioiZwdnZGcnIydu7cCT8/P1y/fh3Hjh1DUlISAGD+/Pk4deoUrKysGrzP2bNnQ61W48CBA3jx4kWtdWPHjkVYWBh8fX1x69YtHD9+HAkJCdBoNFi5ciXS09PRt2/fOvuMjIwEAPz+979v8s9KRETNQyWaa7A6ERER6W3hwoXYvn07oqOjMXbsWL32VVpaCjc3N5ibmyMzMxOWlpbNlJKIiJqCnS8iIiIDsmbNGtjb2+scQthYERERyMvLw/r161l4EREZAHa+iIiIDEx4eDhCQ0Nx9OhRTJ48uUn7KCgoQNeuXdG9e3ckJydDpVI1c0oiImosFl9EREREREQS4LBDIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpIAiy8iIiIiIiIJsPgiIiIiIiKSAIsvIiIiIiIiCbD4IiIiIiIikgCLLyIiIiIiIgmw+CIiIiIiIpLA/wFYNv5CU/sxtAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(lc.time, lc.counts, lw=2, color='blue')\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `Powerspectrum` class to create a `Powerspectrum` object.\n", + "You can also specify the optional attribute `norm` if you wish to normalize power to squared fractional rms, Leahy, or squared absolute normalization. The default normalization is 'none'." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "ps = Powerspectrum.from_lightcurve(lc, norm=\"leahy\")\n", + "print(ps)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that, in principle, the `Powerspectrum` object could have been initialized directly as\n", + "\n", + "```\n", + "ps = Powerspectrum(lc, norm=\"leahy\")\n", + "```\n", + "However, we recommend using this explicit syntax, for clarity. Equivalently, one can initialize a `Powerspectrum` object:\n", + "\n", + "1. from an `EventList` object as\n", + "\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(events, dt=bin_time, norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally.\n", + "\n", + "2. from a `numpy` array of times expressed in seconds, as\n", + " ```\n", + " bin_time = 0.1\n", + " ps = Powerspectrum.from_events(times, dt=bin_time, gti=[[t0, t1], [t2, t3], ...], norm=\"leahy\")\n", + " ```\n", + " where the light curve, uniformly binned at 0.1 s, is created internally, and the good time intervals (time interval where the instrument was collecting data nominally) are passed by hand.\n", + "\n", + "3. from an iterable of light curves\n", + " ```\n", + " ps = Powerspectrum.from_lc_iter(lc_iterable, norm=\"leahy\")\n", + " ```\n", + " where `lc_iterable` is any iterable of `Lightcurve` objects (list, tuple, generator, etc.)\n", + "\n", + "Since the negative Fourier frequencies (and their associated powers) are discarded, the number of time bins per segment `n` is twice the length of `freq` and `power`." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "Size of positive Fourier frequencies: 127\n", + "Number of data points per segment: 256\n" + ] + } + ], + "source": [ + "print(\"\\nSize of positive Fourier frequencies:\", len(ps.freq))\n", + "print(\"Number of data points per segment:\", ps.n)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Properties\n", + "A `Powerspectrum` object has the following properties :\n", + "\n", + "1. `freq` : Numpy array of mid-bin frequencies that the Fourier transform samples.\n", + "2. `power` : Numpy array of the power spectrum.\n", + "3. `df` : The frequency resolution.\n", + "4. `m` : The number of power spectra averaged together. For a `Powerspectrum` of a single segment, `m=1`.\n", + "5. `n` : The number of data points (time bins) in one segment of the light curve.\n", + "6. `nphots1` : The total number of photons in the light curve.\n", + "7. `norm` : The normalization, one of `leahy` (Leahy et al. 1983), `abs` (absolute rms), `frac` (fractional rms), or `none`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1. 1.125 1.25\n", + " 1.375 1.5 1.625 1.75 1.875 2. 2.125 2.25 2.375 2.5\n", + " 2.625 2.75 2.875 3. 3.125 3.25 3.375 3.5 3.625 3.75\n", + " 3.875 4. 4.125 4.25 4.375 4.5 4.625 4.75 4.875 5.\n", + " 5.125 5.25 5.375 5.5 5.625 5.75 5.875 6. 6.125 6.25\n", + " 6.375 6.5 6.625 6.75 6.875 7. 7.125 7.25 7.375 7.5\n", + " 7.625 7.75 7.875 8. 8.125 8.25 8.375 8.5 8.625 8.75\n", + " 8.875 9. 9.125 9.25 9.375 9.5 9.625 9.75 9.875 10.\n", + " 10.125 10.25 10.375 10.5 10.625 10.75 10.875 11. 11.125 11.25\n", + " 11.375 11.5 11.625 11.75 11.875 12. 12.125 12.25 12.375 12.5\n", + " 12.625 12.75 12.875 13. 13.125 13.25 13.375 13.5 13.625 13.75\n", + " 13.875 14. 14.125 14.25 14.375 14.5 14.625 14.75 14.875 15.\n", + " 15.125 15.25 15.375 15.5 15.625 15.75 15.875]\n", + "[9.75294222e-02 1.37192421e-01 6.62062702e+00 5.42273987e-01\n", + " 1.26707856e-01 7.14262683e-02 1.46986106e+00 9.35172244e-01\n", + " 2.04574831e+00 4.88638843e-01 1.46127864e+00 3.24027874e+00\n", + " 2.95907471e+00 1.46905530e-01 1.42916439e+00 3.58020047e+02\n", + " 3.04922773e+00 2.14088855e+00 3.89197375e-01 3.48148529e-01\n", + " 2.32409725e+00 3.72418140e+00 5.10604734e-01 5.98258473e-01\n", + " 1.75462401e+00 2.24000263e-01 1.06137267e+00 1.07517074e+01\n", + " 1.14917349e+00 4.59646030e-01 1.30278344e-01 2.09102366e+00\n", + " 2.17910753e-01 5.49240044e+00 7.32466747e-01 3.46833517e+00\n", + " 1.93866299e-01 3.93997974e-02 1.97441653e+00 4.28610905e+00\n", + " 2.93970456e-01 2.72920344e+00 4.52529974e+00 5.42552369e+00\n", + " 3.00538316e+00 3.14413850e+00 1.65733555e-01 6.16733137e-01\n", + " 2.85338470e+00 5.56565439e+00 1.60825816e+00 2.83059003e+00\n", + " 3.84807029e+00 6.35749643e-01 2.52661012e-01 9.73415923e-02\n", + " 2.64107250e+00 1.31206307e-01 2.20321939e+00 2.08750811e+00\n", + " 4.61234244e+00 1.15633604e+00 3.60363976e-01 2.24498998e+00\n", + " 1.71646651e+00 3.38371881e+00 3.32514629e-02 1.67607504e+00\n", + " 1.77957522e+00 6.92787087e-01 3.35553415e+00 1.94034115e+00\n", + " 1.16770721e+00 3.76130715e+00 4.34584431e-01 5.72348179e-01\n", + " 1.14572517e+00 1.41890460e+00 1.64121258e-01 1.96499122e+00\n", + " 3.52679951e+00 2.58201128e+00 1.05541840e+00 3.76982654e-01\n", + " 3.81558230e-01 1.09665960e+00 3.52309943e+00 3.00115328e+00\n", + " 2.81888737e-01 3.46916554e-02 4.78900280e-01 5.10837621e+00\n", + " 7.05428845e+00 1.79144555e+00 1.45542292e+00 4.14645129e+00\n", + " 5.47936328e-01 1.43060457e-01 3.85238243e-01 2.86842673e+00\n", + " 7.07492195e-01 2.11192195e+00 8.18724669e-02 3.11165001e+00\n", + " 2.71594888e+00 8.22251145e+00 4.21393967e+00 4.85809743e-01\n", + " 1.66578478e+00 4.52801220e-01 1.39963588e+00 3.83710679e+00\n", + " 8.29760812e-02 2.04827673e-01 4.46966187e-01 4.58682373e+00\n", + " 5.11398498e-01 7.53864807e-01 1.49293643e-01 1.48889204e+00\n", + " 1.55536424e-01 1.34814529e-01 1.31907922e-01 1.49852755e+00\n", + " 8.75140990e-01 9.00289904e-02 4.72042936e+00]\n", + "0.125\n", + "1\n", + "256\n", + "7984.0\n" + ] + } + ], + "source": [ + "print(ps.freq)\n", + "print(ps.power)\n", + "print(ps.df)\n", + "print(ps.m)\n", + "print(ps.n)\n", + "print(ps.nphots1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can plot the power as a function of Fourier frequency. Notice how there's a spike at our signal frequency of 2 Hz!" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAykAAAIECAYAAAAdL2E2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC4tElEQVR4nO2deZxUxbn+n56VWYBhHRRQEBEXUEFQ45Ig4oYat0SNiZFEjcZLiF5NQozE5GqM0WgurjGJGu8vmsQN4oILbnFHDIpiEFEhgsq+zgDDLOf3x7Gm6pw5+366n+/nM585093TXd19TlU99bzvWwVN0zQQQgghhBBCSEYoS7sBhBBCCCGEEKJCkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBQphBBCCCGEkExBkUIIIYQQQgjJFBVpN4AY6ejowNq1awEAtbW1KBQKKbeIEEIIIYSQ8Giahq1btwIA+vbti7Iye7+EIiVjrF27Fo2NjWk3gxBCCCGEkNhYtWoV+vfvb3s/w70IIYQQQgghmYJOSsaora3tPF61ahXq6upSbA0hhBBCCCHR0Nzc3BkxpM55raBIyRhqDkpdXR1FCiGEEEIIKTrc8q4Z7kUIIYQQQgjJFHRSUqa5udnxb0IIIYQQQkoNipSUqa+vT7sJhBBCCCGEZAqGexFCCCGEEEIyBZ2UlGlqajL8rVY9IIQQQgghpBShSEkZVu8ihBBCCCHECMO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmC1b1ShjvOE0IIIYQQYoQiJWW44zwhhBBCCCFGGO5FCCGEEEIIyRR0UlKGO84TQgghhBBihCIlZbjjPCGEEEIIIUYY7kUIIYQQQgjJFBQphIRg6lRgjz2AV15JuyWEEEIIIcUDRQohAVm9Grj5ZmDJEuD229NuDSGEEEJI8UCRQkhAtmyxPiaEEEIIIeGgSCEkIK2t8njHjvTaQQghhBBSbFCkEBIQihRCCCGEkHigSCEkIBQphBBCCCHxQJFCSEAoUgghhBBC4oGbOaZMc3Oz498ku1CkEEIIIYTEA0VKytTX16fdBBIQVZhQpBBCCCGERAfDvQgJCJ0UQgghhJB4oJOSMk1NTYa/m5ub0djYmFJriB8oUgghhBBC4oEiJWXq6urSbgIJCEUKIYQQQkg8MNyLkIBQpBBCCCGExANFCiEBoUghhBBCCIkHihRCAsLqXoQQQggh8UCRQkhAzE6KpqXXFkIIIYSQYoIihZCAqCIFANra0mkHIYQQQkixQZFCSEDMIoUhX4QQQggh0UCRQkhAKFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQExixKKFEIIIYSQaKBIISQgdFIIIYQQQuKBIoWQgFCkEEIIIYTEA0UKIQGhSCGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHirSbkCp09zc7Pg3yS4UKYQQQggh8UCRkjL19fVpN4EEhCWICSGEEELigeFehASETgohhBBCSDzQSUmZpqYmw9/Nzc1obGxMqTXEDxQphBBCCCHxQJGSMnV1dWk3gQTELFLMfxNCCCGEkGAw3IuQgNBJIYQQQgiJB4oUQgJCkUIIIYQQEg8UKYQEhNW9CCGEEELigSKFkIDQSSGEEEIIiQeKFEICQpFCCCGEEBIPFCmEBIQihRBCCCEkHihSCAkIRQohhBBCSDxQpBASEIoUQgghhJB4oEghJCCs7kUIIYQQEg8UKYQEhE4KIYQQQkg8UKQQEhCKFEIIIYSQeKBIISQgFCmEEEIIIfFAkUJIQChSCCGEEELigSKFkIBQpBBCCCGExANFCiEB0DSgrc14G0UKIYQQQkg0UKQQEgCziwJQpBBCCCGERAVFCiEBoEghhBBCCIkPihRCAkCRQgghhBASHxQpIXjwwQdxyimnYJdddkFtbS322Wcf3HDDDWi1msGSooIihRBCCCEkPirSbkCe+e1vf4shQ4bguuuuQ2NjI1599VVcccUVeOedd3DPPfek3TwSIxQphBBCCCHxQZESgkcffRT9+vXr/PuII46ApmmYPn16p3AhxQlFCiGEEEJIfDDcKwSqQBEccMABAIDPPvss6eaQBLESJBQphBBCCCHRUHQiZfHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667znOeyYsvvoiqqioMGzYszNsgGYdOCiGEEEJIfBRduNftt9+OGTNmBPrfiy++GDNmzEBFRQUmTJiA+vp6PPfcc/jJT36CRx99FE8//TRqamps///f//43ZsyYge9973vo0aNH0LdAcgBFCiGEEEJIfBSdkzJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPn277/2vXrsXJJ5+M3XffHddee21Ub4dkFIoUQgghhJD4KDon5bzzzjP8XVbmTYddc801AIBp06ZhzJgxnbf37dsXt912Gw4//HDccsstmD59Onr27Gn43y1btuC4447Djh078MILL6Curi7kuyBZhyKFEEIIISQ+is5JCcKnn36KefPmAQDOOuusLvcfdthhGDx4MFpaWjB79mzDfS0tLTjppJOwbNkyPPXUU9h5550dX6u5udn1h2QfihRCCCGEkPigSAHw1ltvAQB69+6NoUOHWj5m7NixhscCQHt7O84880zMmzcPs2fPxogRI1xfq76+3vGHZYvzgZUgaW0FNC35thBCCCGEFBtFF+4VhKVLlwIAdtllF9vHDB482PBYAPiv//ovzJo1C1dddRXa29vx+uuvd9639957M3m+iLEr9tbaClRVJdsWQgghhJBigyIFek4JAMdckvr6egDA5s2bO2978sknAQDTp0/vklT//PPPY/z48V2ep6mpybEtzc3NdFNygJ1I2bGDIoUQQgghJCwUKSFYtmyZ7/9hUn1x4CRSCCGEEEJIOChSAHTv3h0AHJPWhQMSdQiX+TWZOJ8PKFIIIYQQQuKDIgXAkCFDAADLly+3fYy4Tzw2KkQYGckXFCmEEEIIIfHB6l4ARo8eDQBYt26dITFe5c033wQAwx4qpHSxEyMUKYQQQggh4aFIATBo0CCMGzcOAHDfffd1uf/ll1/G8uXLUV1djUmTJkX62k1NTYafVatWRfr8JB5UJ6VQkMcUKYQQQggh4aFI+YLLL78cAHDttddi/vz5nbevW7cOF110EQBgypQpXXabD0tdXV2XH5J9VJGifmUUKYQQQggh4Sm6nJT58+d3igoA+OijjwAAd9xxBx577LHO22fOnImddtqp8++TTz4ZU6dOxU033YSDDz4YRx55JOrq6vDss89i48aNOPTQQ3HVVVdF3l4mzucTs0gRlaUpUgghhBBCwlN0ImXz5s2YO3dul9tXrFiBFStWdP7d0tLS5TEzZszAoYceiltvvRWvvvoqWltbMWzYMEybNg2XXHIJqmLYAIOJ8/lEFSn19YCI0qNIIYQQQggJT9GJlPHjx0PTtMD/f/rpp+P000+PsEWkGGG4FyGEEEJIfBSdSMkb5h3oueN8PrATKXaliQkhhBBCiHcoUlKGifL5RHVMamutbyeEEEIIIcFgdS9CAsBwL0IIIYSQ+KCTkjKs7pVPKFIIIYQQQuKDIiVlWN0rn1CkEEIIIYTEB8O9CAmAuQSxgCKFEEIIISQ8dFJShtW98gmdFEIIIYSQ+KBISRlW98onqhihSCGEEEIIiRaGexESADophBBCCCHxQZFCSAAoUgghhBBC4oPhXinDEsT5hCKFEEIIISQ+KFJShiWI8wmrexFCCCGExAfDvQgJAJ0UQgghhJD4oJOSMixBnE9Y3YsQQgghJD4oUlKGJYjziXBSCgWgpkbeTpFCCCGEEBIehnsREgAhUiorgaoqeTtFCiGEEEJIeChSCAkARQohhBBCSHxQpBASAIoUQgghhJD4YE5KynCflHwiREpVFUUKIYQQQkjUUKSkDPdJySd0UgghhBBC4oPhXoQEQIgRihRCCCGEkOihk5Iy3Ccln9BJIYQQQgiJD4qUlOE+KflEFSnl5UBZGdDRQZFCCCGEEBIFDPciJACqSAGkm0KRQgghhBASHooUQgKgVvdSf1OkEEIIIYSEhyKFEJ+0t+uhXQCdFEIIIYSQOKBIIcQnwkUBKFIIIYQQQuKAIoUQn1CkEEIIIYTEC0UKIT6hSCGEEEIIiReWIE6Z5uZmx79J9qBIIYQQQgiJF4qUlKmvr0+7CcQnFCmEEEIIIfHCcC9CfKKKFHMJ4rY2WfmLEEIIIYQEg05KyjQ1NRn+bm5uRmNjY0qtIV5Q3RKzkwLoIqa6Otk2EUIIIYQUExQpKVNXV5d2E4hPnMK9AF3EUKQQQgghhASH4V6E+MSLSCGEEEIIIcGhSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRCfOFX3AihSCCGEEELCQpFCiE/cqntRpBBCCCGEhIMihRCfMNyLEEIIISReKFII8YmbSFHvJ4QQQggh/qFIIcQndFIIIYQQQuKFmzmmTHNzs+PfJHtQpBBCCCGExAtFSsrU19en3QTiE4oUQgghhJB4YbgXIT5hCWJCCCGEkHihk5IyTU1Nhr+bm5vR2NiYUmuIF1iCmBBCCCEkXihSUqauri7tJhCfWIV7id8ARQohhBBCSFgY7kWIT5iTQgghhBASLxQphPiEIoUQQgghJF4oUgjxCUUKIYQQQki8UKQQ4hNW9yKEEEIIiReKFEJ8wupehBBCCCHxQpFCiE8Y7kUIIYQQEi8UKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITihRCCCGEkHihSCHEJ6zuRQghhBASLxQphPiE1b0IIYQQQuKFIoUQnzDcixBCCCEkXihSCPEJRQohhBBCSLxUpN2AUqe5udnxb5I9KFIIIYQQQuKFIiVl6uvr024C8QlFCiGEEEJIvDDcixCfUKQQQgghhMQLnZSUaWpqMvzd3NyMxsbGlFpDvECRQgghhBASLxQpKVNXV5d2E4hPhAgpLwfKvvAihVhR7yeEEEIIIcFguBchPhFOiipMysv1H4AihRBCCCEkLBQphPjESqQAMuSLIoUQQgghJBwUKYT4hCKFEEIIISReKFII8QlFCiGEEEJIvFCkEOITIVLUil7q3xQphBBCCCHhoEghxCdChNBJIYQQQgiJB4oUQnzCcC9CCCGEkHihSCHEJxQphBBCCCHxQpFCiE8oUgghhBBC4oUihRAfaJq7SGlv138IIYQQQkgwKFII8YEqPuxECiCFDCGEEEII8Q9FCiE+UEO57EoQmx9HCCGEEEL8QZFCiA9Uh8TJSaFIIYQQQggJTkWQf9q4cSOeeuopPPvss5g/fz5WrVqFDRs2oFevXmhsbMQBBxyACRMm4JhjjkFDQ0PETSYkPShSCCGEEELix5dIeffddzFjxgz89a9/xfbt26FpmuH+rVu34tNPP8X8+fPxpz/9Cd26dcNZZ52FH/zgB9h3330jbTghaUCRQgghhBASP55EyurVq/HTn/4U99xzDzo6OtC3b18cf/zxOOSQQ7DPPvugT58+6NGjBzZt2oR169Zh4cKFePXVV/Hiiy/izjvvxN13343JkyfjmmuuQf/+/eN+T4TEhleRwsR5QgghhJDgeBIpw4cPx5YtW3DCCSfg3HPPxfHHH4+KCvt/Pfroo/Hf//3faGtrw6OPPoq77roLd911Fx566CFs2LAhssYTkjR0UgghhBBC4sdT4vyBBx6IefPm4ZFHHsFJJ53kKFBUKioqcMopp+DRRx/F3LlzMXbs2FCNJSRtWN2LEEIIISR+PImUOXPm4IADDgj1QuPGjcOcOXNCPUfW+PDDD3HhhRdizJgxqKysxJAhQ9JuEokZOimEEEIIIfETqLoX0Xnvvffw2GOP4cADD4SmaQxlKwEoUgghhBBC4ifQPinLli2LuBn55MQTT8SKFSvw8MMP46CDDkq7OSQBKFIIIYQQQuInkEjZbbfdMHz4cFx44YV48MEHS9ZBKCvjXpilBkUKIYQQQkj8BJplDxkyBB999BH+8Ic/4IwzzkC/fv0wduxYTJs2Dc888wxaWlqibqdnFi9ejJtvvhmTJ0/GqFGjUFFRgUKhgKuvvtrT/z/wwAMYP348evXqhbq6Ouy333647rrr0MqasgQUKYQQQgghSRAoJ+Xjjz/G0qVL8cwzz2DOnDl4/vnnMX/+fMyfPx/XX389qqurccghh2DixImYOHFiolW9br/9dsyYMSPQ/1588cWYMWMGKioqMGHCBNTX1+O5557DT37yEzz66KN4+umnUVNTE3GLSZ4odZHS2go8+ywwZgzALY8IIYQQEheB45WGDh2K888/H/fffz/WrFmDf/3rX7j22msxceJEFAoFPP/88/jZz36Ggw8+OMr2ujJy5EhcdtlluPfee7Fo0SKcffbZnv5v1qxZmDFjBurr6zF37lw89dRTeOihh7BkyRKMGjUKL7/8MqZPnx5z60nWKfUSxFdeCRx3HHDYYUBHR9qtIYQQQkixEll1r9GjR2OvvfbC/vvvjz322AN33nkntm/fHtXTe+a8884z/O01b+Saa64BAEybNg1jxozpvL1v37647bbbcPjhh+OWW27B9OnT0bNnz+gaTHJFqTspr76q/16yBFi3DujXL932EEIIIaQ4CSVSNE3Dm2++iWeeeQbPPPMMXn31VezYsQOapqGhoQHHHXccJk6cGFVbY+PTTz/FvHnzAABnnXVWl/sPO+wwDB48GMuXL8fs2bPxjW98I/BrNTc3h7qfpIuTSFH/LlaR0tQkj7dsoUghhBBCSDwEEim///3v8cwzz+D555/Hxo0boWmaZR5KoVCIur2x8NZbbwEAevfujaFDh1o+ZuzYsVi+fDneeuutUCKlvr4+8P+S9Cl1J8UsUgghhBBC4iCQSLnoootQKBSw55574rzzzsPEiRNx+OGHo1u3blG3LxGWLl0KANhll11sHzN48GDDYwFg69atmD17NgC9mMDWrVvx4IMPAgDGjRuHXXfdNa4mk5QodZGiChNVsBBCCCGEREngcC9N0/Dxxx9j3rx5aGhoQO/evXHAAQdE2bbE2PLFzKuurs72McIB2bx5c+dtq1evxte//nXD48Tfd999NyZPntzleZpcZnbNzc1obGz01G6SPKUuUuikEEIIISQJAomUuXPnGvJQXnjhBVxxxRXo1asXJkyYgIkTJ+Koo46yDZ0qFoYMGQJN03z9j5MQItmnlKt7aRpFCiGEEEKSIZBIGTduHMaNG4ef/vSn2L59O1588cVO0fLQQw/hwQcfRKFQwNChQ3HUUUfh9ttvj7rdkdK9e3cAzknrwgHp0aNHpK9tfk0mzmebUnZStm83lh2mSCGEEEJIXATeJ0XQrVs3HH300bjuuuswf/58rFy5Epdddhmqq6vx8ccf4w9/+EMU7YyVIUOGAACWL19u+xhxn3hsVNTX1xt+GOqVbUpZpJhFCXNSCCGEEBIXkeyTYt59fv369Z1hUNXV1VG8RKyMHj0aALBu3TosXbrUMkztzTffBADDHiqk9ChlkWIWJXRSCCGEEBIXgUTKhg0b8Oyzz3aGeImKV5qmoVAoYP/99+8sRXz44YdH2uA4GDRoEMaNG4d58+bhvvvuw89+9jPD/S+//DKWL1+O6upqTJo0KdLXNifSM3E+21CkSChSCCGEEBIXgURKv379oGlap1sydOjQTlFy5JFHonfv3pE2Mgkuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlSuS7zTORPl+UskgxixKKFEIIISpNTcDq1cBuu6XdElIMBBIpDQ0NOPLIIzuFSZaqeM2fP79TVADARx99BAC444478Nhjj3XePnPmTOy0006df5988smYOnUqbrrpJhx88ME48sgjUVdXh2effRYbN27EoYceiquuuiry9jJxPl+UcnUvs5PCnBRCCCGCrVuBESOAzz4D/v534PTT024RyTuBRMratWujbkdkbN68GXPnzu1y+4oVK7BixYrOv1taWro8ZsaMGTj00ENx66234tVXX0VrayuGDRuGadOm4ZJLLkGVeVYaAdyBPl+UspPCcC9CCCF2/OtfukABgAceoEgh4YkkcT5LjB8/3vfeJSqnn346TueVRWygSJFQpBBCCBF8/rk8fu+99NpBioeiEyl5g4nz+aKURQpLEBNCCLFDuCgAsGSJPg7GEIBCSojA+6S0trbihhtuwMEHH4xevXqhvLzc8qeigjrIibq6ui4/JLuUskihk0IIIcQOVaS0telChZAwBFIQLS0tOPLII/Haa6+5hlaFCb0iJGtQpEgoUgghhAjUcC9AD/naZ5902kKKg0BOyowZM/Dqq6/i6KOPxuLFi/Htb38bhUIBLS0tWLhwIX7yk5+guroa06dPR0dHR9RtLiqam5u7/JDs4iRS1L+LUaSwBDEhhFijacDcuXr53VJFdVIA4N//TqcdpHgI5KQ88MAD6N69O/72t7+hZ8+eKBQKAIDKykrsvffe+PWvf41DDjkEJ598MkaNGoWvfe1rkTa6mGB1r3zhVIK4rAyoqNBt7mIUKSxBTAgh1tx2GzBlCtCvH7BsGVBbm3aLkscsUpg8T8ISyEn54IMPcNBBB3VubChESnt7e+djTjzxRIwePRo333xzBM0kJBs4OSmAFC6lIFJaWwGLSt6EEFJSaBogpjpr1pTu5JxOComaQCKltbUV/fr16/y7pqYGgL5HicqIESPw7rvvhmhe8dPU1GT4WbVqVdpN8kR7O/DII8D8+Wm3JFlKWaRYhXcx5IsQUuosWAAsXiz/XrMmvbakRXMzYJoC4oMPinMsJMkRSKQMGDAAnysZUmLn9kWLFhke99lnnxncFdKVvFb3+utfgZNOAg4+uGuyXDFTyiLFKryLIoUQUur89a/Gv0tRpFjNA1jhi4QlkEjZa6+98OGHH3b+fcghh0DTNFx33XWdifL//Oc/8dJLL2HEiBHRtJRkirfe0n+3tgILF6bbliShSHG/jRBCSgVNA/72N+NtpShS1FCv8nJ5zJAvEoZAIuWYY47BihUr8MYbbwDQd3nfe++98eijj2LgwIE44IADcNRRR0HTNFx00UWRNphkg+3b5XEpFSRTRYrVFkClJlLopBBCSpnXXwc++cR429q16bQlTVQn5cAD5XGp5ueQaAhU3euss85Cnz59OhPny8rKMGvWLJx22ml49913sWrVKpSXl2Pq1KmYPHlylO0tOswlh/NSglhNmC6l1XQhPiorgS/qRRgoZpHCnBRCCDFidlEAOikTJwKvvaYf00khYQgkUvr27YtvfvObhtt23313LFiwAIsXL8b69euxxx57oE+fPpE0spjJawliVaTkRFdFgnBSrEK9gOIWKXRSCCFE0t4O3H+/flwo6KFfAEXKl7+sj4U7dtBJIeEIFO714osv4pVXXrG8b8SIEfjSl75EgVLklHq4V6mJlI4O6++5lFw0QghR+ec/gZUr9eNJk+TtpShS1HCvwYMBkY7MCl8kDIFEyvjx4zF9+vSo21KS5LUEcamGe3kVKR0d+ipbsbB1q1wlVKGTQggpVdRQr29/G2ho0I9LMSdFdVJ23hnYe2/9uK0NUOosEeKLQCKlV69e2HnnnaNuS0mS1xLEDPeyvl/dhb6YVo9UIVqm9BpJihQrkUS888YbwJVXAsuXp90SQvLPjh3AQw/px3V1wPHH67vNA6XppAiRUl8PdO8O7LOPvI8hXyQogUTK/vvvjyUsfl3SqOFedFIkpSBSGhvlcVIiZfFiYI89gGOO0Vfm8sx77+kboX5RrT0R2tuBr34V+J//AS69NLnXJaRYeeYZYP16/firX9WFSt+++t+bNhVX/+8FIVLE+rVwUgAmz5PgBBIpU6dOxbx58/D4449H3R6SE0rVSVGre1lRrCJFFSNf7N0KIDmB+pe/6CEDTz8NvPpqMq8ZB2+9BRxwgL4R6h/+kNzrfvQRICJJ3303udclpFhRQ73OPFP/LZwUoLRCvpqa5Bghxgc6KSQKAlX3Gj16NKZMmYJTTjkFkydPxmmnnYYhQ4agpqbG8vG77LJLqEaS7FGqIkU4KaoYUVFvV/dUyTuqGFFFSlJOyqZN8lisXuaNjg7g+9+X185jjwEXXpjMa6uThJykvRGSWbZtA2bO1I979tQdXsAoUtaska5CsaMmzYv3vPvu+mJeayudFBKcQCJl6NChAABN03DnnXfizjvvtH1soVBAW97jM0gXGO5lfX+xOinqd6wOvEmJlG3b5LEqWPLEH/8IzJ0r/3777eReW50kbNign5t2QpsQ4szs2bJPPPVUoLpaPy5VJ8WcNA/omx2PGAEsXKhX+GpttR83CbEjkEgZPHgwClY72RHfFMNmjjlpciRQpKTjpKgiZfPmZF4zSlavBqZNM9726af6aqs6sYkLc7jF6tXAoEHxvy4hxcgTT8hjEeoFyJwUoLSS51UnRR0f9tlHFymtrcCSJcY8FUK8EEikLFu2LOJmlC7FsJljqTgpmibLCpeaSFHFiJo4n9R3n3eR8qMfARs36sdikzNAd1OOOir+1zeHW6xaRZFCSFDWrZPHo0bJY3O4V6lg5aQAXZPnKVKIXwIlzhNSips5qjkmpSZSVDHS0ACI9LOknBT1fMubSPnnP4H/+z/9uKEBuPpqeV8SIV/t7cD77xtvY14KIcFR+0N1nZEixShSmDyfTVat0r+PDz/U90DLMhQpKVMMmzmWikhRRUcpixRRBx9guJcbO3boyfKCX/9aJtkCyYiUjz4yXq9AcYqU7du5lw5JBrU/rK2Vx6Wak+IU7iVg8nx2uOMOYORIYPhw4IUX0m6NM55EymeqTA5BVM9TTBTDZo6lEu6lOileqnsVk0hRxUj37lKkMNzLmRtvBBYt0o8PPBD43veAPfeU50kSIsVqclBsIuXxx4HevXUBSKFC4kb0e7W1QHm5vJ1OilGkDBsmF/Ty5qQ8/jjwla/IDTuLCXX+Joo+ZBVPImX48OGYNm0aNmzYEOhF1q9fjx//+McYPnx4oP8n2aK93bihXqk4KQz30qmvlyEOdFLsWb1a3zwRAMrKgN//Xv9dVSVXGN9/3/je4sBqclBsIuWOO/TPcc4cPYSBkDgR/Z45pbRUE+eFSFEXsAB9nBwxQj8WFb7ywk9/Crz4op5PWGwUnUg5+uijcd1112HQoEH41re+hTlz5qDFHD9goqWlBU899RS+8Y1vYNCgQfjtb3+LY9Q4B5JbzF99W1txTcjtoEjRUcO9duxI5n3mUaQ8+6xs9/e+B4weLe/bf3/9d0dH/JsrloKTogqT1avTawcpDUR/qE7IAX3XeZGvV0oiRYR7qS6KQCTLt7bmawFh5Urj72IiTyLFU3WvmTNn4plnnsEll1yC++67D3/9619RWVmJ/fffH3vttRf69OmDHj16YPPmzVi3bh3+/e9/Y8GCBWhtbYWmaRg5ciRuvPFGTJw4Me73QxJATWIWNDXp4RbFTCmLFLtwL3Ffnz7xvn5a+6R0dACXXaa/5owZXVdOnXjtNXl88snG+4RIAfSQrwMPDNFIF4STUijIUKhiEint7XrejaCUJockHYRIseoP+vUDPvmkdHJStmyR44PV5pXm5Pm99kqmXWER3/G2bfpCbEWgWrjZRJ3DFYVIAYCJEyfi3XffxZw5c3DLLbfg6aefxhtvvIE33ngDgL5po6YEA1dXV+PEE0/ElClTKE6KDCsTrbmZIgUoXpFi56SI++IWKWlV95o9G/jd7/TjQw8Fvvtd7//7+uvy2CxCVFclzrwUtbLXiBHAsmX6Z1lMbsOnnxqvtVKZHJJ0aG2VY6CTSFm3Tl/kKPNYnuijj/Tqf3H3pVFjtdu8Sh6T59vajAtjTU36d1MsFJ2TonLUUUfhqKOOQktLC1555RW89dZbWLVqFTZt2oSGhgb0798fY8aMwSGHHILqrL97EggrkVIKyfMUKTp1dcbBOYm8lLTCvd55Rx77qfuxbRvw1lv68Z57Ar16Ge/fd195HKdI+fhjeb3us4/erv/8p7icFHMICZ0UEidqDqaVSBF5Ke3twIYN3kTHnDnA0Ufriz/LluVrwc+u/LBA5KQARsczy5jzbLdsKV6R0q1beu3wQmADq7q6GhMmTMCECROibE/Jkccd563CvXLQ7NCwBLG+6lJZ2TXcK27MIkXT9PCluFmyRB77Ocfnz5fFJb70pa739+wJ7LabLiIWLNAnNGqVoKhQk+b33htYvlwXKWvXFk8Ig1mk0EkhcWK3R4rAXOHLi0h59FH995YtugM7aVK4NiaJXflhgbpAk5d8QvOia1IFYpIiT04K90lJmfr6esNPo7qdd0axC/cqdliCWIqTJEVKa6s+iVf/dqnbERmqSPGz6ZUa6nXwwdaPEXkpW7fGl1CqipR99gFE96JpxTOZp5NCksSvSPHCp5/K47xNiN2clKQXtKKAIiU7UKQQ3zDcq3SdFDEom3NS4sSqRG9SK3LqBNiPEPciUpLIS1FjwFWRAvgL+brrLmDUKOBvf4uubVFBkUKSxI9I8boQoIqUvLgNAjeRklRo8EMPAaeeCrz5ZvjnMrez2ERKnhLnKVJSJo87zpdquJcXkaLeHqdIWbMGuP/+5CpdmUVKkjkpVudbEgP55s3GibwfJ0VU9qqvNyaOqpgrfMWBcFLKy/Xdhfv3l/d57Wq2bAGmTAEWLgSuvDL6NobFHOdeLA6RXzRN/54mTtRD+kg8xO2k5E2kuIV7lZXFv69Weztw7rnAzJnA9Onhn49OSnagSEmZPO44z3Cv9J2UU08FzjgDOOec+F5D0N4uJ+hphHtZOSlJiDPzCr3Xc3zFCjnpOPBA+1yTuEWKWtlr+HB9MAripDz8sPwOslYVTNPopAjefBO49VZ9f54//Snt1hQvbiLF74aO7e3GiX7eRIrdbvMqYryIa6xYtUqOCVHsa1IqIqWiIp5cyCihSCG+YbhXuiJl1Srg5Zf143nz4nkNFatqNmmLlCQGcjUfBfAuUryEegHAwIEyqVZUAosSc2UvIJhI+X//Tx5v2qSXVc0KK1d2dbhK1UlZtkwe58CQzy1ROymrVhlz7pLcByoKhEjp0cN+HykxXsTVb69YIY+jyFcsFZGSdRcFoEghASjVcK+sVPd65RV5nMRk3WpQznJOyvr10ZyP5hV6r+FeqkixquwlKBSkm7JqVfQ7G5srewH+RcqKFcBzz8m/NS1bA7ZVwYHmZutzpthRz58sfEe/+AWwyy7Agw8m+7pPPKHne82YEc/zR52TooZ6AflzUpx2mxeI8aKpSW4oGyXLl8tjq/mJXyhSsgNFCvENnZR0q3sJFwXQP3d1FS4OzLvNA8nmpPgRKQsW6IPl4MHhV9SDOinqTvMHHeT82DiT581J84B/kfLXv3adVGRppdeuKlpcbkpbW7acJBU1ZCjtSdWWLcBVV+mTx//+72Q/s5//XL+WLr4YePzx6J8/aiclzyJlyxb5eVglzQvEuNHR4S+3zytROymlkjhftCLlxRdfxCvqci4pKZiTkq6T8tJLxr/j7kDdnJQsiZRHHtE/9w0bgBdeCPe6QUTKjh3Av/6lHw8bZpywWBFnXkoUTooa6iXYuDFUsyJFFSmDB8vjOPJS3n8fGDAAGDkynokWoAvC//kf4LLL/E+2suSkLFgghcny5V37rDhRiwace27054KbSOnZU8b5F7tIcavsJYh7vGC4lz+K3kkZP348pkdRQoHkkjyHe6lJ4H7JgkhpauqavxD3oJa2SPFT3WvdOnkcdiJpFilenm/BAjkAOIV6CZIQKeXlwB576Me9eslz102kLFgAvPtu19uzKlLUzzsOkXLXXfr5tWgR8OKL0T8/oAvrK68EbrgBuPNOf/+ripS0J7rmPuree5N53dZWo4u2ahXwve9FG2LkJlLKymTyfCmJFKdwrx495HHcIoXhXu6IMSrru80DAUVKr169sLOTbCZFTV7DvbZt08Ne+vXT45X9DlxZEClz53YN70pDpKiDc5ZyUtavl8dhRMqmTV0nGF6EuBrq5ZQ0LxgxQg4UUSbPW1X2AvQ8GFGG2E2kqC6K6lJkUaSUlwNjx8rb4wj3UsPn4sp5+fhjeayGdXohS+FeZsH9wAPJbMC6enXXfn3WLOCee6J7DTeRAkgHdc0a93FGnWAD+RIp6jnn1UmJ4/2pOSl0Utwpeidl//33xxLzMiMpGfIa7vX888Dixfrk9eKL9VAAPx1aFkSKVdhE3DkCVjkpaYd72b3nqESKXUK224TDa2UvQUWFvkkioDs3YnBcuBD44Q+B0083Tly9olb2EqFeAhHytWaNfa5Aeztw3336cWWlfq0IsiJS1PLDu+5qnCTF4aSoIiWuUE71/PW7KV2Wwr3MgnvjRmD27PhfV/0Mhg+Xx1OnGqufhcGPSGlpcR8b8+KkbNjQ1V3OYrhXW1v4PM1izknRtBIQKVOnTsW8efPweBxZaSTzWNmpeXBSzBPPu+8GjjjCe1WlLFT3slpdTcNJqaiQDkCWclKiCveyWoNpbzcKVSuESKmpAfbd19triZAvTQN+/WvgsMN04XLTTfoK9G9/67nZnVglzQuESGlvN35eKs89J1dJJ03S82sEWREpa9fK82D33YPt9O2V5mbjJDcuV0AVKUuWeP+s29uNe9ikOanasUMX2YCxn0wi5Etd2f/mN4HJk/XjLVuAb387miIjfkQK4C6Y8yBSNm0Chg7VnV+1aloWREpHR9fPMOz1WcxOijovKVqRMnr0aEyZMgWnnHIKvve97+Gpp57C4sWL8cknn1j+EHuam5u7/GSdvDopVqvjr72mh4l4WbX066REERtrfn01nEiQhkgB4t+gS5BGuJcqUgoFeex0nq9aBSxdqh+PHWt/jphR81KuucZYYlo8r1/UpHk7keL03Gqo19lnAw0N8u+sVPdSr+fdd/e/iZ4fFi82umhJOCkAMH++t/8zu2LbtukrymmwaJHsK085RYYXPvpo/AJXXXAaMECfUO+6q/73Sy8BN94Y/jW8iBQ/56J5gr1lS/YqyL3xhn7da5pere2pp/Tb3XabF8QpUlav7nquhx17i1mk5Gm3eSCgSBk6dChuvfVWtLW14c4778SkSZOw9957Y+jQoV1+dtttt6jbXFTU19cbfhrVGURGyatI+egjefzYYzLO/tNPgcMP7zo5NOOlBHHv3kBtrX78+uvRlgd++2058a6okLfHLVKswr0AOUBnNSclTN6AeQIscBI+fkO9BKpIEaihKkHeh1VlL4HaxVjtIN/crO8yD+iVio4/3ihSsuKkqNez2UmJWqSozhSQnEjxGvJl5QanNbFSQ73GjgXOPFM/3rEDeOiheF/bLFJ69NDzUcRCw69/HV4AqP1dXZ31Y7yei5s3W/efWYtMUCf9HR3AGWcAH3yQjcR5NR9FQCfFHvWzKdrE+cGDB2OXXXbBrrvuil122cXxZ7CacUmKgryHe9XW6iEs8+YBhx6q37Z9O3D//c7/79VJOeYY/XjNGmvnIyhqqNfhh8vjuFe203ZSvFb36uiIx0kROSOAsxj3uomjmYMOAr7yFT1E7Jvf1Fd8FyyQ9wd5H2JSrVb2Erg5KbNmyfd5+un6QJZFkeLkpEQd7kWR4h1VpIwerZ/TgrhDvqxW9r/yFdlfbtgQvuiB6A+rq+3HAa+hh+akeUHYhaeODuDWW4FbbonGlTH3wZs2AV/9qlwo6NnTXrAB8TopVp9hWJFSzDkpeXNSKtwf0pVlUWWgETSZZvfNzc2Zd1Py6KS0tclQnN1311fWGhuBO+7Q9z0A3IWWF5EC6CEOM2fqxzNn6jkGUaAmzR9/vF4IAEg/3KulRf9svIY3+cWrk7J5s3FAjkKkDBxonHA4ned+NnFUKS+X36VY8dU0/VjT/L8PtbLX7rt3HYjcRIo51AvQJyGCLIqUYcN0kVdXp39HeXVSzDlCXkWKOjkXpDWxUit7jR6tu8vDh+vX1Asv6JPKQYPieW2zkyJQz9+mJucJtRuiP7QL9QK8OynmUC9B2D59zhxgyhT9eLfd9EW5MKgiRfRLixfL25xcFCDe6l5WIoXhXvbkTaRwx/mUqaur6/KTddSTvKZG/511kbJ8uRQZahKwaD/gvsLmVaQcf7zczGvWrGhq9GuadFIaGowr9UmGe1mJFCBeJ82rSDGvQgcVKRs3ytXP4cONExq752xr0505ANhlF+ckUisKBWPuS6Egz02/K7/r18tB2ira1kmktLToSfOA/j6E05hlJ6VQkO9TTA6LxUlZurTrbVZkxUnp6JAiZfBgoE8f/fsRboqmAX/9a3yvr4o19TyPsmS6F5HiNSdFFSlqCHHYPl0VEGroZ1DUMf+nP9WFp4pbf5c3J8V8jrS2JlNCOwlUAUeRQooS9STv00f/vXVr9pL9VMzx6wKRPwK4T2q9ipTevYHx4/Xjjz+23hDPLx98IAe7Qw9NNpFZ7bCtclKAeCdE6iRdiL84RYoa6jV8uPEcsRPj770nX89PqJcT4nX9vg/1c1AnSwKRyAx0FSnvvSfP88MP1zemA/TvWhxnLXF+0CAZWy3e77p10eWDbd9u7D+A5EQKAPzrX+7/lxWRsnSpvDbVXCs15Osvf4nv9cXn0Lu3cQKWtEgJ4qSoYZlhRYr6/1EIdnXM32svveqg6IuBdEWKVU5K1E4KUDxuSkk5KS+99BJOP/10DBo0CNXV1ThXKaY/Z84cXH755Vjptb4ryQ3qSS5EChB+h+84sUuE9uOkeClBLDj5ZHk8a5Zb69xR81EOO8yYiJh2uBeQnEhR9x8wr2yZQ2WCno/mc0V1UuxEijpQmhPVgyLOTb/vQ/0czCuegLOTolaTOuAAeVwoSGEchZPy/PN6cYE77gj2/xs2yPepXs/i/NA0/TFR8MEHXRdg4lhVtdtTw0vIl1W4VxqlbM2hXoLdd5chkO+8I0sUR4mmSZGihnoB0YmUjg75HXkVKU4iQRUpe+0lj8MuBMQpUrp1AyZMMJYidiu3HmfifNROSlubtcihSEmHwCLl6quvxvjx4/Hggw/is88+Q2trKzQlrqVnz574zW9+g4dFmRhSNKgXsDoJynLyvBeR4sdJsavuJTjpJHks8lPCYE6aV2OskxQp6oQ9KZGinm/qBNv8vpNwUuyeU33/6oAcBvG6fsO9VJGiLiKotwlXxCxS1FX7MWOM90UpUq6+Gpg7F7j00mDhkHbOaBxliM2hXkA8TooqqtTqbl5ESlacFHPSvErcCfSbN8trxZwjEZVIUa9/J5GiXndO56E6wVYXN8L26arIieI6MIsUALjoIuBvfwOuuko/diLpcK8wTord+VGMIqVoq3s98cQT+PnPf46BAwfi/vvvxyqL7MsDDzwQ/fr1w2OPPRa6kSRb2DkpWc5LMSfZCiorpW0dVU4KoMdjjx2rH7/9dvjdjkXSfHW1/rx1dTKHIakd52trjRZ/GjkpaYgUL06Kl70T/BJFuJeVSCkvlyu9Tk6KuTSyKlLC5lmJ1d3m5mATCrtFhzjKECclUtTv7UtfkudRXkWK+fw54wzZfzzxRPSvbZc0D0QnUrxe55WVQK9e+rGXcK/ycqMwzXK4l5jYFgr6d3rFFe6FCOISKVYbOQLhnJRSEilF66TMmDED1dXVeOKJJ/C1r30N/dSRQWG//fbDEqutm0muUU9y0RED2RYpYuW1qspYWUZNUI4qJ0VwyinyOEzI1+efy/aPG6d3LGVlsuNPykkxD8pp5KQ4iRRzuFfQUqNql7Xbbt4S5+32kgmDOC9bW/1tzOcW7gXIz3H1aik4Wltl6ePhw41uHSD/bm8Pf62rk54g35MXkRJV8nwaIqVfP+lkffKJ9X42Klmp7iXCvXr1kpsoCvr3B4YM0Y+XLo2moIiK08aCUS2o2BURsUK4el5EyoABxrE0DyLFD1VVMvogyvFqzRrra5EixZ6SECnz5s3DgQceiH3MWxmb6NevH3NSihDRYVVXR5uQGBcdHXKSv9tuRjcA8B5Wk5ZIUTeZVPdHEZPGtERKGjkpSTgpakJ2ba23xPk4RIr6un4m8m5OCiA/xx07ZPjWokVyADOHegHRFmtQ30+Q78lOpOQ53Ev93nr3lk4s4Jw839Qkr1G1b0t6UrV6tdzcb//9jdXqBEKkbN4cfZW4LDkpgBTMmzdbT5pbW6X4HDgw2jxD9f+juA6iCBGKY18tNdRLPd8Y7mVPSVT3am5uxgBzL2DBpk2b0JHlkk8kEKLD6tbNWyhM2nz+uZwUqRMaQVxOyp57yootL70UfLBQ90dR91wRg1pS4V5pi5SqKuNEOQ6RoiZki/ALL+d43CLFz3vx46QAMuTLLmleEGUZYlWkhHVS1PDNqJ2UHTuks6Y6S0mLFKeQLzVkb+hQeZx04rxTqJdAiBQgfAismayKFKCrywvo45JwkwYOjDbPUP3/jRuNY1cQopjYivEqLpGi7hsexklR26f2ecUiUkrCSWlsbMSH6ihhw+LFi7njfBEiTnKzk5JVkWI3oRF4dVL8VPcC9JUd4aZ0dABB07NE0nyhABxyiLxddPpbt/oLB/KDWh/ePPlOOielpsZ5tdGqupffkBJzPgqQfriX0+ta4cdJAaxFipuTElakqJOeIGJSOKM77WT8fqJ2Uj78UF5b6sQ7jupeZpEybpz820mkqGFOal5D0pMqu8peKmoI2H/+E+3rO4V7pS1SrM5FdYI9aFB8Tgrgba8dJ8KGewHxOynqAmRUTopaWrkYRUrRJs4fdthhePvtt/GKGodi4rHHHsOHH36II444InDjSDYRHYDZSclquJddJSBBECfFrbqXQC1FHLTK16JF+u899jBOFNWVt7g6UFV4ppWTIs43s0gxO0jmgbi93f8KoipSxLniJdwrzsR5ILiT4kekqCFFVpPMrDgpTU1y1dx8PQdJnG9pAf7wB+DZZ7vep4Z6qSIlCSdl2DB5jTuJFNVBUPfaSHpS5VTZS1BKToqbYFYTvqMO9zL3jWEFe5QipaUluutHLf2u9gVR5aSoYrcYRUrROimXXnopCoUCTj31VMyaNQttpmXcJ598Eueddx4qKyvxgx/8IJKGkuygOil5CPeyi18XiMmg26TWb7gXABx4oOzonn7a/wC5Y4ecxJnrUzhN2KPCaVBOOtyrWzfngdxqtdDvKr16rmQp3MvPRF6IlIoK+4mUWaS0t8uV8KFDrcPEVFEcRqS0tho3WnT6jpYt08ub3nyzfJzTokOQcK877gAuuAA45hhZOECQpkgpFGTI12efyXwPM1kTKdXVwIgR1o+JU6TkzUkxixS13wgjUjSt6/+HDX2MUqQA0Z2bqpOiRklE5aRQpKRPIJEyZswY3HDDDVi7di1OO+00NDQ0oFAo4KGHHkJDQwOOP/54rF69GjfccAP2jmpnM5IZ7MK9suqkuIkUr2E1QURKWZncM6WlBXjqKW//J1DFh7naUhIbOjpNvpMWKX7DvQD/IqWYwr369LFOXga6ipQPPpCvYRXqBUSXOG+eQDgJsOnTgdtvB6ZO1Se4115rDEszh2/27CmTx72uHr/3nv67vR245RbjfWmKFMBb8rw6OR82TH7nSU6qmprktTNqlH3/mISTYs5dA+IRKW7XuZtgNouUigq5MBGmP9+2zbgIYPf6fsiDSKGT4o2SSJwHgB/+8IeYPXs2xo0bh23btkHTNGzZsgWbN2/GqFGj8Mgjj2DKlClRtpVkBLtwr6w7KeXlXctiAt5XrIOIFMBY5euRR7z/H+AsUpLY0NGrkxJm4F+wwDlm2otI6eiw3mE8qEgpFOQE2E91r7Iyo7gIQ9hwL7ukeaCrSHHaxFEQVbiX+Rpzem9qOMeaNcBPfwp897vyNvOiQ1mZDLPxOjFT38u99xr/FiKlosK4I3gaIsUu5Et1UnbaSV6nSSbOv/OOzP+yC/UC9Bj/igr9OC6RMmBAV3GeBycFkP1bmO/O6n/tBHtHBzBtmu4kOk3Co1h9j1OkNDQYQ1ujSpwv9pyUohYpAHDMMcfg9ddfx+rVq/HGG2/g9ddfx6effoq3334bJ5xwQlRtJBmirU3v2ID0wr2WLQPef9/bYzVNhofsuqu1uPDrpBQKXcsYO/GVr8hjD/UmDHh1UtII94oiJ+Xee/UV6j33tP7s1dCgmhp7YbZ5szwvVfzmOwiRMmiQXDH0k5NSX2/vXvglSLhXS4tso10+CmAUKatXu1f2AqITKX6cFPWcKLMYraycUXV/Ci+FE9RrZ9s24J579OO2NmDxYv14jz30/k5MsOMUKeXlckIXRKTEkaDshpfKXoD+3nbZRT+OMnG+tVVOxM2hXkA2RYrqAsQtUuwE+7PPAr/5jZ6T9fe/2z+nuGYLBX8LdCrqeBXFualp8jMcNMg44Wa4lz0lkThvpk+fPhg7diwOPPBA7GTVQxBbmpubu/xkGbMKTzrc68MP9TCcvfYCXnvN/fFr18pO22pCA3ifDIqJid9OWhVzfid3xR7u9dxz+u81a2TYjYo62Dg5KVahXoD/MCnhxqhVkioqZKEEt3CvqEK9gGDhXlar8Vb06yfF1KpV7pW9gHScFHFffb3uakyeLBcIevTQxa0ZMTncvt3b52Z+L7fdpk+APv5YXvMiallMhOKs7iXyUQB9YUWIzTfftBZdItyrvFx/bBoixUtlL4FwszdujG6vFHWzS6vdEbp1kyI3a4nzDQ1yfFBFStDNLv2IlA8+kMdWG4IK1OiJoIswUTspa9fK61BdVAIY7uVESTgpf/7zn7FCXQYggamvrzf8NKpLnBnEHJuatJPy1FOyJOgLL7g/3i0fBfDvpARZSRK7CVuFJDmR5XCvykrZyQXtwNXP2+o51Amtk0ixCxfzI1Ks8lEE4jx3C/eKUqQECffyUtkL0IWXuH/lSilSBg/uWqBBEJdI8eKk1Nbqydh3361/T9dfr/cFav8j8FuG2OxCfvCBLp7VfBQhUoRYjdNJUcWlmjy/erVx9V0gnJTGRn0iLq6Rpqbod3W3QzgphQKw777Oj1XzUqJyU9QJtpVIKRRk/5UFJ0XTpEgRLgogv7uOjuCb0Vq56nbXgVqMwek6VEVKUKIWKeYSznE4KY2N6eR4xUlJiJTvfve72HXXXbHnnntiypQpmDVrFjYnvXMUSYUsOCkCLzHnXkSK35wUr+WHVcQEL0qRkna4FyAHnqDfvToQWz2H+n1066YLFbGSrr5nVaSooXh+BvqlS+Wx+VwRk2Gr59M02fa4RIrXcC8ve6QIxHrIf/4jB2A7FwWIrrpXkHAv9bMYOhS47DLg4IOt/8dvGWKr93LbbcmKlLY2eT6bHTCnkK/2dukiiFVfcQ6Gmej6ob0dWLhQPx4xwlo4qsSRPG8OebMiaZFSWyvPW/NYtX69HEutRAoQvE/346SkJVKimC6aN3KMykkxRw+I77lYREpJJM5PnjwZgwcPxgcffIDbbrsNp512Gvr06YODDz4YV1xxBV544QW0ht3itERoamoy/KxStw/OIGaRkrST4lekqOVKrTZyBJJ1UrZv97fKk6VwL6tBOWwH7tdJKRSs47ZVB0FNdvQzSVMnIObqQGKyYXWOq5tGph3u5WW3eUH//l1vcxIpPXrIVcUwothPuJf4vFWR4obfMsTivey5p1yF/8c/gDlz5GPiFinq4oWTSHnjDeN9a9fKnC3R9qgng25s3izHBavCJGbiFilWTgqQvEgB5LloFstWSfNANH16UJHiNC5l0UlRi2rE5aR0755O+GSclISTctddd2HZsmVYvHgxbr31Vpx00kno3r073njjDVxzzTU48sgj0atXLxx77LG44YYbom5zUVFXV9flJ8ukHe6lhuSk5aSEESmAv1XoLIV7WU3Aw3bg6jnj5qSISbuVSFEdhEGD5LEfkeKUUOgU7uUm5IISJNwriJOiYpc0DxhDiZII99I0ayfFDT/hXi0t8vX79gW+9z39uL1dhpOWlcn9R+ISKU65RAceKI/nzjXeZzU5T6o0uMBpw1cr4g738uKkBA2D8ytSxLm4bp2xsIc5VEkQl0gJG+6lbjsQlKgT582fYRw5KbW1xS1Sij5xfvjw4fj+97+Phx9+GOvWrcPcuXPxq1/9CuPHj0dbWxuefvpp/OQnP4mqrSQDmFV4VZWctMcd7tXeriezCvyIlEIB2G0368ck4aSoK/N+Qr7yEu61fbvMFfKDXycFiE+kONngQqS0tXXd8DOOPVKAYOFefpwUK5Hi5KQA8jyOMtzL7jvasUNO7OJyUtTrpqEBOP/8rpX7dt9dng9hRYrd5NhJpOy8s6yI9cYbxj0wrCbnaYoUL2tsaTspbW3Bvz/RH6rFNJwQ52JHh/E7TsNJsTr3mJPSFfEd19YaK+0lmeMVJyXhpFjR2tqKLVu2dO6VInah14rhWyWdWJ3gbknFUfHJJ8YJoh+RYl5pUYm7uhdgdFLiECl+BrRt24AnnvAmbNxESticJDeRYq7uBcjPYft2+Z1E7aSYO2+nMsRxiZSw4V5+nZQBA+xXoQWqSAnatXt1UtT3HJeTYhYpgwbJzVcF6n7EQap7tbYCv/+9Hm66997GSlQCt6psIv+muVnmfwDWk/OoV6zd8Osu7LyzFIJRiRS3xHkgmvxJv6XGVcGsChM7kRKFO66e06JktlWlu+3bjeed3XXY0SH72ayKlMGDjX12FE6KOF+SzvGKm5ISKW+//Tauv/56HHPMMejVqxeOOuooXHvttViyZAmOP/54zJgxAwvVHpXkHqudZ5MSKeY9RtxEysaNctJml48CGCeDpRDu9f3vA5MmAV62MnKbgIcdePwkzpudFPU11cm5KlL87JPi1Hk7hTUm4aQkEe7lFOolECJlx47gq5VenZSgIsVP4rx6LYrr6aKLjI9RRYrqpLiJNE0DHnwQ2Gcf/Zr7+GN9f6eHH+76WK8iBQBef10eZy3cy4uTUlGhTyqBeJwUuwKZUYsUL6jnzowZ8jgpJ0V1rczXgrnksN31HFV4UFyJ8z166M9dUSHFbxSJ86K9SV9PcZO3xPmKIP905pln4rnnnsO6deugaRoqKytx8MEHY+LEiZg4cSIOPPBAlPvZ7Y7kBquJXBQJiV4wi5TNm/XJgp3tribN2+WjAN4ng1FU9wKic1Jqa/V4+Y4Of+FeYm+S117TJ1JOK4Jew72AYB24OsFxC/cSA6R5IO/TJ/pwL7ucFKvn9LuS7JWkw73cQr0A4zm4aZNR4HslbiclTLgXAEyYoFepEhs5WokUTdPDripsRtAXXwR+9KOuie6A9cTcr0i54AL92C3cK4nE+SDn/5Ah+uewYYP+HZj7Nr8IkdK7t/3EK4rNZ/2KlAsu0DdL3LhR3yT0ssv08ykpkTJsmBw31641ihY11Auwvw6d+kU/eB0r3MYk8RiROK/299XVer8RRbiX2UkB9HbbOXV5QZ3DBZnLJE0gJ+X+++/HunXrsO++++Lhhx/Ghg0b8M9//hPTp0/Hl770JQqUIsYt3CvO6D41aV5gt4kf4C1pHkjeSQkiUgqFrqv0dpWunOjokBOb9nb3ya8fkRI23CuIkyLetzrJC1rdqxjCvZJyUoDgeSleq3upt/upJ6K+7yBOSqEA/PjH+nFlJfDlL8vHqIO6XV7Dq68C48cbBYq6C/snn3T9HzeRMnq07Hfy7qQA0SbPa5rs05zCFcM6KWqpca8ipVcvYNo0/bijA7j8cv1YiJSqKmN4YtQiRc3DNAv2pEWKlzDE735Xrzr41FPOz7V+vWyXcOXU9gV1Ulpb5f/aiZS8I95fVVXwjTmTJJBI6d69OzRNw4IFC/DNb34Tp556Km644QYsWLAg6vaRjGHVYUWRkOgFs5MCRCNSvDgp7e1SgKUR7tW9u9wxWUVMrLwOaGvWGBPc3f5P7ZStVrPDrE6azxe/ifOA/HzEedDQYLw/KpHi5KRkKdxLfA5iTxkngjgpUYgUr/ukBHVSqqvlORDESQGA73wHePZZfZNCdRLkRaS88YbsK/bZB3j8cV24CIKIlG7d5E7u778vFzqyIFKCOimCsCJl82Z5TjmtcocVKdu3y0IOfhzTH/xALpz84x/6uSBClXbe2divxylSzILdq0iJKodBOP+A9Xn52Wf6Zq1r1+r7FDlhVx1NtC+ok2JVqa5YRUoeKnsBAUXK+vXr8corr+CXv/wlxo4di+effx4/+tGPMGbMGDQ2NuKss87C3XffzV3pixAnJwWINy/FyklxmoSoIiVsToqasJ9GdS+7cAgxqHkN9zIPTG4DobpyaCWSwnTg5s/aa+K8k5PSu3ewyT3gHHudtpPidzNHNxcFMO6T0revcbC3Iy0nxY9IAeTqdBAnBdBXGCdM0EWGiheRop5HV12l53/V1MgwtCAiBQC+9CV5LFwa4SD06CE/o6QT58M6KWHzUrwkzQPhRUrQsM7aWuAXv5B///d/y+9bDfUCohUp1dXGa9rNSbGb2EflpBQKzvtqqe1RxbcVdiIlrJNiVU6+WEVKHvJRgIAipby8HF/60pcwffp0/POf/8SGDRvw2GOP4Yc//CEGDBiAv//97zjvvPOw6667Yq+99oq6zSRF0hIp5vLDAieR4mUjR8DbpDasSAkb7uUmUtRKV06EESlWhOnAzedK0HCvjg75mYYRKV5KELu1O0qRUlEhzzUv70PTpJPiRaRUVwOHHaYfn3aaN+s/DpEStZMCSEGwYYNzaWz1PZg38LTCi0ixm9SJMsKfftq1TV5EilXyvJjMqZPzPDgp6qaPYUWKl93mgfRECqA7cyNG6MfqXjdxiBQxZvToYQwlSzvcC3Dec0Tdx9qqAp6KeSNHQVgnxaovLzaRIj6bohYpZmprazFp0iTceOON+L//+z9ceumlqK6uhqZp+OCDD6J4CZIRnMK9gPiS51essJ4UeHFSGhudJ49eVqzV104q3Ku1VbbHTqSot3vpQNWETcB7uJcXkeL3u3cKmxJ4SZzftEmGYfTpE42TEjTcK8rEeUC+Fy/vY+tW+R7ckuYFTz4J/POfwE03eXu8OpEPujeP1+peqhgM6qQAziGhToUprPBS5tTuPBIipaOj63UoREqhYN8Os0hpbpbnnp1ISSJxPm0nxcseKUC6IqWiAvjVr7reHqeTYhYpTrveA8mKFKv35kekmMsPC4KUCFex+o6zLFKWLfNfFrkknBSVFStW4O6778Y3v/lNDBgwAGPGjMENN9yA7du3o7KyEocffngU7SQZIU4n5e23gXfesb5PDfUSK1KAvUhpbpZhAE75KEB2nRQvEyi/GzqaV8/cOl3RaduJvDA5KU5VsgRWToq59LJ5FTpIwjmQvcR59XW9hHv5SZoX1NXpieFeq7yon30enBTAOeQrDifF7jxS3QNzyJf47hoaum4mqf6/yCOaO9d+l/U8OCmDBkW3V4qX3eaB8EU+wlbxO/VU4MADjbeZQyzDCkxNM4oUp0p3aTgpYrxqapILSwJVbG7d6jyX8BLuFaSIT5wiZc4cfe6ihv6F4YEHgKFD9ZDUIONcUYuUWbNmYcqUKdhzzz2x66674rzzzsNf//pXrFmzBiNHjsTFF1+Mxx9/HBs2bMALL7wQcZNJmjjtkwIEFynz5umJoaNHA2++2fV+Nb9Ejc22EyleQ70A/zkpQcr21dRIcROXSPEyqPlxUnbskO87jnAvv06KXbiXWaRUVcn8GT/7pHgtQZykSBHv2csg5Kf8cFDykpPitQyxXeK8HX7DvaycFMBepDiJy0JBuikbNugOmCDNcK8gTkpFhZxchk2cz4OTAujf37XXGm8zOynV1fKcCSJStm+XoYQ9ehjPJzeRYjexj2qfFMB4bpr7UdVJAZzdFLfEeSBYEZ84c1JuvBH44APg6quj2RRy9mz997JlwEsvef+/kkicP/XUU3Hbbbfhgw8+wKBBgzB58mTce++9+Pzzz7FgwQLccMMNOO6441Drd2QhmcdpnxQgeLiXiLHu6NBXCMyoIkUNe7CbgKgDn1rhxAovK+9hnZRCQbopXid3XkSK3w0d/eSkeBmUo85JMQ+SXkSKeZf1QsFfmJQga9W9AH/vI4iT4pe4qntZTY6iSJwHvDspXsK9/DopVjkpgFGkmHOqnFD7vlmz5HFcIuXWW/V8JbFnjBVBJ+8i5GvdunDtzHrivMoRRwDHHCP/Hjq062P8FkNRUfvznj3180+0Vb0OtmxxL1RidVvY1Xenc9OPSBE5KfX1xvFAvd6ChHzFmZMi5irt7cFDZVXUts6b5+1/OjqkiM2LkxJoM8eTTz4ZRx11FCZOnIjhw4dH3SaSYeIK91Ino+oKoUAN9/IiUtTJuFvVospKPfTAad+QKDZA6tVL73jTDPfy46R4ybWIMidF0/Tb1PPJrbrXpk3WSce1tXp7goiUQqHrJn1O4V5xJc6rrysm8k7J7Xl1UgD9ezaXTE7SSamu9rayGCbcy06kbNokRZofkTJnjjxWw5wqK/X3sn17uJyU118HpkzRj+vr9c0IrQjipADG8Lf//AcYOdJ/G4F8JM6r3HEHcP75usM/blzX+3v00AVFkO9O/R/RT/brp7ddvQ7Mu80Ltm3reh3GkZMCuIsUu8UFTZNOyuDBxj5Rvd62bzeOFV6IM9xLfe4tW5zPVb/P51WkRFVOOkkCiZSHH3446naQnBBX4rw6IXnzTf151OcVTkp1tR6DKXZat5uAqJNxdXM/KwoFvWN2mtRGsVouJnibN+uCyG3P0zjCvYI6KUnkpIjnUCc6QcK9gHBOSnV1VzHgxUkpKwu2A7sT6uTcaiKvYnaU4iCOxHnAenKUpJPidcfzOESKl8pegrFjZd+nvo7ZQejeXf+cw0yqfvYzeWzuN1TUfsKPSDEnz4cVKdXVziF7YcepqApk7Lor8PTT9vere1952X1dRb0mRT/Zty+wdKl+nolxx+77tFtAECQpUuyclE2bZN9gFS4nCOukxClSoigwpD6HVYi8FVG6YkkRSXUvUjok4aS0txs3P+vokDkmw4bpq9xiEmZXuUfthN1ECuCeoBzFKprfCl9Rh3u1tHSdsKUZ7mUlIMydt5fqXlYOQhCRIjpwq4HYS+J8fX30O/j6KQKQRLiX+tlH6aRYvbegO84D/hPnveSjAN4mQXYTgX795N9qOKofkVJfD4wa1fV2K5ECBJ9UPfec/iNwep6gVdiiqvAlXIEBA5yvv6w4KW6Ia6ytzX8pXSsnRQh2NazQTqS4hXtFKVLMY49XkeJUKEFtX5AyxHGKFPV/o8gVU6+7zz5zXkgQ5NFJCSVSFi1ahAsvvBAjRoxAfX096uvrMWLECHz/+9/HokWLomojyRBJiBTAGPK1YoV8XRFdKDpeL+FeXkSKW4JyFE5KHCLFT7iX1QZZUYZ7hc1JsXoOKyelrk4mxpudFDE5V0WK1yovTlVPvCTORx3qBRgnfW5FAJII96qokOdClCLFTbjEEe7V0SHP/7icFHXSVFYm3ZT//Eeel35ECmAM+RKYJ2thRIqmGV0Ut+cREzt1R3EvRCFSWlvl9+uUjwLkT6QA/kO+7MK9BOKzUsdH9b3E7aTYbTTa2mq8DgB7keI0tod1UqzG+ShEiqbF66QA3kK+oiyCkBSBRcqf//xnjB49Gn/84x+xZMkSbN26FVu3bsWSJUtwxx13YPTo0bjHLoiV5JYkwr0Ao0hRk+ZFOWEhUpqarFdMREdWWeltVTkJJ8XvrvNRh3uZ81EAb5MPwH4CXlUlJ25hc1Ks2mMlUgoF+b7dwr06OrxXefEqUuxKJ8ctUrLgpADyPI4qcR5wd1LiCPfaskUKBa9OSphwL0CKlKYmeX37FZdmkVJebny/gDwXd+zwP1l77DFZyETgxUnx2y+qIiVohS919d1NpKjnUCmIFDFmWG3oqE701eqXVuNflKvvdhN+K0ES1kmJKtyrulrmKAYVKdu36xEigiiclLAipaidlH/96184//zzsWPHDhx//PGYOXMm3nnnHbzzzjuYNWsWTjzxROzYsQPnn38+3vQaLEdyQVJOyhtvyEmKmjRvFimAdciX6IR32snb6l7STkpUIsVPuJeVHRw23Eu9L85wL7WsMOAuUoLsleJUmtEu3EtdIYtj4uLnfSThpADhRUoSTkqPHrIKn52T4ncjR8C/SDEX2bDKSwnrpDQ2du3j7Fas3ejoAK64Qv4tnteLSPEbkjdokHz+oE6K16R5QH8t0cZSECnmcC9ACnY/IiWJnBRzqBcQTKSYE+f9YvUdFwrhwyfN5xtFincCiZTrr78eHR0duPPOO/HII4/gpJNOwsiRIzFy5Eh89atfxT/+8Q/cddddaGtrww033BB1mzPDhx9+iEmTJqG+vh59+/bFRRddhOYwuxnmADeREpWT0toqV/NUJ8Uc7gV0nYTs2CE7Yy+hXoCcBLW3G8sNC7Kak+In3MvKSQkb7gUE78C9hHuJgcacVK2KFHVyLj5jP2FS5tfyE+61davclCxtJyVpkbJtW7C9CLzmpITZcb5QkH2EnZPidyNHwN8+KWZhDUQjUvbYw9iXWDkIQUNUHnhAbqg7diyw//76sUjitiKoSK+slInPUYgUNycFkG0sVpFilTjvFu5VTCIlDicFiF6khA330rSu4+ebb7qHNpdM4vxLL72E/fffH9/5zndsHzN58mSMGTMGL774YuDGZZlNmzZhwoQJWL9+PR544AHMmDEDDz30EL797W+n3bRYcQv3ispJAWTIl5uTYhYp6sDlVaS4rVhn1UnxM6CFcVKc3nPQDtyPk2InUrZulYOZulu3n8m9wCncq6JCTlDV54tzjxTAn9gSk93u3YOXyfZC2ApfdtW9zKifc5CqaWJytnat9eDtdyNHwJ+TYnUeqSJFhDj5FSllZcBBB8m/oxIpbW3Az38u//7Vr+R11tFh/R2pZdv9OimADPlauzbYxM3rbvOCYhcpbk6KWaQ0NBjPubQS563yJcPmpARxUuwW5sKKFPP/hXVStm+Xi2OC9euBjz92/r+ScVLWrl2Lvfbay/Vxe+65J9Y6FanPMXfccQfWrFmDRx55BMcddxy++c1v4vbbb8fDDz+Mf/3rX2k3LzbiCveymkgKkSKclKoqueeJk0jxmzQPuE8Gs5qT4ifcy6+T4vU9iw582zZj3K0bfnJSzIOjOpCLjb3UwdavSGlrk52+XectnlM9x+PcIwUIFu4Vp4sCGM85vyFfmua/ule3bv4SsgWij9ixw3pS4HcjR8BbYq6TSFH3BgnqpADGkC+ryXkQkfL//p++IzYAfPnLwFFHuT+P+r0F6RfD5qXQSTHiJdxL0+QYufPOxr41rcR5KydFtNWM13CvsE6KOq8R18HWrf7GOKvntfo77PMJ3EK+SiZxvqGhAZ+ohd5t+OSTT9DTa++fM2bPno0JEyagf//+nbd99atfRX19PR577LEUWxYvVhveRRHuJTrHsjI5cL3+un67Wn5YrJRHLVLUyaBVR512dS+71+zWTX4Pbqva6uciVnSjzEkx/48bfkSKnZMCyB101WRxvyLFy0AsznNVpCTppDi9D02Tk904k+aBcBs62rkPTsLFb6iXwK0McVzhXl6dlDAi5bDD5LHVruV+RUpbG/DLX8q/f/UrYyy+3fME3chREFakeN1tXiD6qpYW67BeJ0TfJvbViouoE+fN4V6bNsnrbeed3ce+pMO9xHfU1mbdv4jvvEePrn1DVCWI1QqSQLhNi63+J6yToj6f2nf5ESlF7aSMGzcOr776Kp5TC6mbeO655/DKK6/gINWXjpnFixfj5ptvxuTJkzFq1ChUVFSgUCjg6quv9vT/DzzwAMaPH49evXqhrq4O++23H6677jq0WvRm//73v7u4SRUVFdhjjz2KuvyyupeEqEnvtIeEV9TJ6Fe+oh+3tAAzZ8rXFKFegHEiFrWT4haGFEVOih8npXt3+40fzZWunBBOSn29dKS2bZOTfDNec1LUiZXTnhRmrM4Vv+Fedu3wK1K8dN5iEmYX7hXH6qrXcC+xQSgQv5MSRqTYvQcnJyWoSGlslMdWK7VxJc477bcjrjvAWqSofYQTEyYAl14KnHaavnu5Gb8T3ffekyLhqKOkCHITKWH7xbBliP0kzgPhQpPtJrBRE7eTYh4f3URKEtW91Otzn33ksVXIlxApVt93VE6K+VwOW4Y46nAv9dwV8yWAIqWTH/zgB+jo6MCJJ56IH//4x3jvvfc6SxAvXLgQl112GU488cTOxybF7bffjqlTp+Kee+7BwoUL0e7Dl7v44otx+umn45VXXsGBBx6IY489Fp988gl+8pOfYMKECdhmuno3bNiABovlt169emG9ueB3EWG1SlhWZh0K4wd1QqJedHfeKY9VkeJU3SurTkrQcC+3CZS6Q7ETqsXvpfqP11Amqzh7L7g5KW1tcuKdBZFidY7H7aR4DfdKqvwwEI9IicNJUVfWrWLe03BSamoAYb6bRUqPHtIVdaNQAH77W+DBB+XzqfidVP373/J4wgR57DZhjtJJCStSVFFqR5hy+XGWGleJWqT06iVF1dq1ziIlyZwUO5GiblZqFilbtsjvwWpsjypxPmqREme419ChMox0/nzncLSSSZw/5phj8LOf/Qzbtm3DDTfcgH333Rfdu3dH9+7dsd9+++F3v/sdtm3bhiuuuAJHH3101G22ZeTIkbjssstw7733YtGiRTj77LM9/d+sWbMwY8YM1NfXY+7cuXjqqafw0EMPYcmSJRg1ahRefvllTJ8+PebW5wO7AThMrC9g7aQAxl2PRWUvIN6clKw5KW4iRQxGTuFeauc+cKC3gdDre1bj7P1MNNw+Z6s9UgRWn0mYcC8vsbpiEtbaKkNFshLupQr1JEWK38R5dZBUz6k4nBR1pVUNCxLEXYLYbhIgRP1nnxk3sYvSAfM7qVLNfzVAIG4nJWjfIRB9fZ8+3opFRCFS4sxHAaKp7lVVJc+/sjLZJ1iJlCRzUtxESk2NsdqYWaS4FUqIKnHe3JdnzUkx586MHasfNzcbr2UzJeOkAMBVV12F2bNn44gjjkB1dTU0TYOmaaiqqsKECRMwe/Zs/FINck2A8847D9dffz3OOuss7Lnnnijz6Mlec801AIBp06ZhzJgxnbf37dsXt912GwDglltuwSZlVOvVqxc2WiwjbtiwAb3jjrdIEbtQBqt4fT+oE5KhQ41hEQI7JyXJnJSysuDxyD16yBA5txXo1lb5mXgVKU4bt6lJ82YnxW4g9BrKpE40onRS1O/BKXFeEMZJ8bLCZPWccSfOew33Sqr8MBCdk6K20/ze2tqkCAiyQg+k46R0dEgBa3ceieulowNYsSLfIiWskzJ4sOwT/YqUjg7Z14tSxm7kTaT4XQQQfbm5f1TLcfsN94pSpFRUyNdTxx0hUhobjY6YX5ESxknZsUNe01l3UtTrrr4eGDdO/u0U8lVSIgUAjj32WDzzzDPYsmULVq5ciZUrV6KpqQlz5szBscceG1UbY+XTTz/FvC++1bPOOqvL/YcddhgGDx6MlpYWzJ49u/P2vfbaq0vuSXt7Oz744APHymfNzc2uP1nGbpUwzCZZgNFJKRSMbopAFSlqaISdSOnWzfvkw6uTUl8vB1W/lJVJweHmpFglQNrhpcKXOjANHGhfClJFtLGqylmYBRUp4lRXJ352IsVvuJfbwGvGT04KINsed05KFsO9wlT3shMp5vemPi6KcK+onBS3mHcvjpwaHvnee/HkEgUVKVVVwG67eX+esE5KVZVcSBJV+ryydq0UhHGLlB075GvFLVL8VGw0Ix5vPp+FSGluloVoAP8iJYqJrbmcb1ubXGRpbDSGLybppJgn/lZtBqIRKVE6KUFFSlFW9/rwww9x3XXX4aKLLsIll1yCe+65B9u2bUN5eTn69++P/v37o9wuwzejvPXWWwCA3r17Y6hVmRQAY7/w0sRjAWDSpEl4/vnnsUbJFH700UfR1NSE448/3vb16uvrHX8avQTWpohbuNe2bV3rd7vR1iYHANFhmkVKZaVxcFc3a7MTKTvv7F1QeHVSwq6Wi5AvN5HiZwLlZeUtiJOirvA6fY5hnRS1+ozXcK80E+fV58xiuFeWnRR14uDkpITZbV6gTmKSclK8nEdqP/b22/I4yu/NT8hQW5ssPTx8uDEvJm4nBZACY9UqfxW3zH2aF4KKlKTKDwPBw700zd5JUfvYd9+Vx35yUioqvOdMOWEWKWqp4ShFil8nxek7znq41wEHyL9L1kn53//9X+y999746U9/ijvuuAM33XQTvvvd72LEiBFYuHBhnG2MlaVLlwIAdlFHDhODBw82PBYALrjgAvTu3RsnnXQSnnjiCdx333248MILcdJJJ3WKmmJD09zDvQDvm+cJrFZNzSJlt926VriyEinbtkkB4HXgUl8XcHdSwiBEysaNzrvDBhUpXp0UL4nzXvfd6NFDvq8gIqW+Xp4/YZyUuEsQW1Wxy8pmjnlMnHdyUqIQKX37yoRhK5EirjFzqV0n8iJS/EyqPv5YigNzEIBb3xLF5F2E9mqateNlhypS4nZSkhQp1dX6ohzgT6SoZZXtwr0Ao0gZMMA9J8Utx8ovZpFiLn7gVDrcLZQ7TAlip748a+Fe5vOxZ09gxAj97wUL7AVa0SbOv/zyy7j00kvR1taG2tpajB49GsOGDUOhUMCKFStw2mmnocPv8nlG2PLFGVfnsAxU/0WvtFnpMRoaGvDcc8+hR48e+NrXvoYf/OAHOPnkk/GXv/zF8fWampocf1ZZ1crMCG1tcmJtF+4F+L8ArSajw4cbwzXUpHmB6Hi3bZOTGnWQ8yNSnJwUTYuusouYzLe3O39OfkSKl/AAv07K9u3yM/Uy6RVuyooV3je7UvOQxOeqfiZqh5o1J0WIlKxs5piWk+I3Zt5rToq6Qh9UpJSXy/h2q8mvEFg9engvKesmUrxMArImUuzyUbw8TxROipp/uGKF9/8LK1L8TDaTFCl+ysqrWFX2EqgiRfQjffvq56jXcK+owoPEOdXaqve76pTHLFKKxUmxCvdyWqR0wyo0TYR8tbYahahK0Topt9xyCzRNwznnnIOVK1fizTffxAcffID58+dj2LBh+PDDD/Hkk0/G3dbMsccee+DJJ59Ec3Mz1q1bh9///vedgsaOuro615+s4hTPGKb+vNWqqTkvRc1HEVglzwdJmldf19wewBjCFnYi6rUMcdThXk5OitVAqLbNy+RJiJS2NuNr2aEmRtfWyvMnqpyUUg73ynJOil24VxxOCiAXOlat6hqGKtruNdQL8OekeMlJUfMD8ihS7Hbo9oMqMJIUKVl1UoBgIkXt+53CvQRifExapJjHHrNIqauT51KSifNJhnu1twcrkSywaquXvJSiFSmvvfYaBg0ahDvuuMMwid53330xY8YMaJqG119/PbZGxkn3L84+p4T1pi/OiB5WM6OQ5Clx3mmV0GqV2St2k9EjjpDHVrUIohQpTh11lMnRXnedjzrcSx3QBwxw/x+/u2D7zUtRJ6F1dcYQALHC5FTdK84SxF6qeyWVOJ/FcK+qKtmuuKp7RSVSxESmvb1r7prXEt8qUYR79etnPeGLUqTU1Eh3KCknJWy4F2Dsp9wIIlKC7hyeB5HiVGxFHSsF4jPzmpMStZMC6OeUWaQAMi/FTqSo7rtKmMT5JJ2UoM9j9Xxi7uVXpBRV4vyqVaswduxYVFkUIj/si61pV1ttDZoDhnyxm9Ryh9Ii4r4h6s5TEZGnxHmnAThMaUe7Sj7nnAN8/evASScBFoXXDJMxsZIch5MSZUiP171Sog73Ep+LsPjdqnv5DR8KI1JUJ0V1WPw6KeqKeBw5KWk4KX7DvQoFf85AUMQ5F8ZJUa+FuESKXRni7dtlf+bn81L7vaAipVAwuimCKEWKmmfjNtEVIqVQkHHtgiSclLTCvfIgUlpavK+4ew33Eojx0es+KWmIlHXr9DFB4FYUJyonJe59UoI+j8BqcWD//WVhg5JzUnbs2GG5uzog3YUddjtbZZzRo0cDANatW2dIjFd58803AcCwh0op4jSRC+OkqBMSdVLWrRtw//3ArFnWA0MenZQ0wr2s9hPw46T4yUkBgokUq0HASaTU1RkHqYYGY2EFrw6EIKyTUlYWbjJtR3W1fJ9eShCbP4e4EOdxGCelrk5+1nGHewHGUJEg5YcBo5NiNQnyuqdE3CIFkNe402RI04D339ePhwzpep0l4aSEDfeqqrKehFuRN5ECeJ/MOokUp3CvqirZx6QtUsT1qlb4EmP7tm3yurUK9QLCOSlO43wcTkqY5Hmr87GmBhg5Uj/+97+t52FFmzhfzAwaNAjjvvDJ7rvvvi73v/zyy1i+fDmqq6sxadKkyF8/T4nzThO5qBPnvZBUTkpcTkpS4V5r18rVKPGZuA2CcYd7mROjrcIwnBLny8qM/2MWUl4dCEHYxPkw++c4USjIc9PLZo5J7SMrREpTk3Gl0w3ztW733qIO9wKMTkqQ8sNANOFeQDIixVxFyYpPP5X3W4XUVlfL92zVt0RZgli0xyvisX5KzedRpHgN+QrqpBQKsr+02lRVFEKJuroX4O6kADLkyy0fxdzGLOWkJBHuBchSxB0dcvFBJY9Oiueq1x9++CH+7//+L9D93/72t/23LEEuv/xynHLKKbj22mtx3HHHdTom69atw0UXXQQAmDJlCnr6WXLzSJYT5c14DfeKInHeC3l0UtII97IKi3AbBJMM96qrM1Y68eKkAPp7EG03tzHpcK84Qr0ENTX6NWX3Ptrb5aQ77nwUgTqx37zZ+wTb/DnX1OjXgZOTEqaLtAv3CuqklJfrkzpNy49IaW7WJy1WFcyc8lHU51m3Lp7NHAH9POjbV+/DvTopaql5r6FeQHGLFKfEeSeRAujX4datXd2HOHIY7ERKdbVst1WFLy8iJUwJ4iQT582v5xc7kaJ+blbnTVGLlFdeeQWvvPKK5X2FQsH2/kKhkJhImT9/fqeoAICPviidcscdd+Cxxx7rvH3mzJnYSTnLTz75ZEydOhU33XQTDj74YBx55JGoq6vDs88+i40bN+LQQw/FVVddlch7yDJxhXvF4aTU1/ubOCblpKQR7mUl3NxyUvyGe/Xtq39327YFC/dSV0L9iBSBeYJXWalPKNvbk0mcj3PiIl7X7n2oe+6kIVI2bvQ+wU7TSVEnOUGdlEJBdxZaWoKXIAaMol4Ql0gB9D7MKo8rrEiJwkkBdKGxdq2+oGInqFSC5KMAxS1SnBLn6+pk/yxQRYoYz83XodfwRT/YVfdqbJTjgOqkiL1SvGwv4BaO6YTTd1xRob//7dv9i5SODus5URQ5Kd26GTfYdCuxncfEeU8iZZdddkEhjliGiNm8eTPmzp3b5fYVK1ZghbJE02Jx9s6YMQOHHnoobr31Vrz66qtobW3FsGHDMG3aNFxyySWWRQOiwFzNK8vVveIK94rDSfHjogD5dlLcBjSrAb2iQv+st26NprpXoaBPvN5/XxcpmuYcgmH+ztU8CnH+OFX3Aozv2zw5F2FSW7bEF+4V5f45TriFeyW5R4ogaBlis0gR110SOSlRhHsBziLF6yTA7KSo+TlRYV6ICCNSAOfV4OrqcLuRDxqkb0LX1qZPSt3qxwQVKUHHqbyJFKvvum9fQK0PZHZSgGREinpebtwoRYj6nVuFe6mLbXZOSqGgn4t+Cg4I3IqgdO8eTKTYjT9RhHs5OT5W53fROinLli2LuRnRMH78eGghdsg5/fTTcfrpp0fYInfc9lXJEnGFe0XlpGzZIi/8MCIlazkpbpWv3cK97ELgune3FylBJr5CpGzbpn8fVsmaAnNOiroGEIWTIp43LpGydWu0++c4YTeRFyRZflgQdNd586RHFWCqsM1q4jwgz9Uow73iEJdekq+9iBTxPNu36xvFid3QAXkdh41aNlf4ikukqCviWRYpXio2mvEjUsrKjEIgLZGydKl0gd1EipdwL0CKlCjDvQC93WvW+BcXdo+PItzLfN35cVLyIlJKPnGeeMdruFdUJYjdUFcf164Nvts8IMODzO0B0q3uVV/vXq1JTW61CveyG9CdavEHmfiqISxu6xrmnAOrMAw3kaIO5HYixfxadngZjM3hXnGXHza/blubPkk0k4aTEnTXeTsnBTB+B1HsOA8Y9+CJykkRfY7VSq3XSYA6KQfi+d68xNELkdLYaFxA8fo8diu6fvFb4SuoSAFkW7MsUrxs0GvGTaSoi0aNjUbnSxUp6jpv3CLlww+NbRKEESminVGGewHOjuK6dfY7yNstcsbtpFg9v/g+y8rCOZ9JQpGSMsVS3SuqxHk/TkqhIN2UtWuDJ82L57JbTYpyMuo33MvrKq+T4LD7XNT/MXewQqSoG/e5oW4j5JaX4qUEsVN1L8Cbk2J+LTuChHvFvZGjwK2ccjE4KYDxvUXlpAByQhNF4jzg7KR4zUnp1s04KUtDpKxfLyeAdi6K2/PE4aR4qfBVSiIlSidFYB4f1f5VPa/jWHmPW6SIdsbhpAD656N+RlddpX+2Z59t/bzqNaO2O6iT0tEh+0dzO91yrsT3mRcXBaBISZ26urouP1nFa05KUuFegOx4160zDlx+RQpgP6mNcoCqrJSflZdwL68TKPE4p5yUigrjapoYyDo6uk5+1ZK2XtPR/FT4CrtPCuCckyKeVzyPWxRokHCvpJwUt3LKqpOSdZHi5KSo7y1KkSJCvjZvls8bNicFCJeTAhivlzREipdQL6fnUXOywvaLfjd0TFqkJLUgIYi6uhfgLFLsNnSMO3FeddxVkaK21ZyTUl1t7/qJ+4HgOSlq2XcVq+ugvR343e/04/vuk+WaVdTzTBUpQZ0UdTwzTxfdrnnxmeQlaR6gSCE+iCvcK8yEREzKWlqAJUvk7UFEShJOCiA7WDsnpa1NCj2/TsqmTV0n5KJz32knY9Ucp4FQrM77mfT6ESnmcB63cC+rTlVdbbNaWRPfZ0eH9YRSxcvk0hzuFWWukhNu5ZTTDvcKI1KScFKskufTzkkBjHkpcYsUq4luWJGyfbv9ZMkvfsO9wrjmoq/ZutV6UmmFXcnXuAjjpFRVWfdh6gKVk5MSt0hRzyeR0wcYRUplpbwmzE7KTjs5L5yJdgZ1UurqrKvLWV0Hc+fKcVzTrEPzohYpXksl00khkdDc3NzlJ6tkLXEeMK64vPOOPM6qkwLICZ6dSHEqJWmHGNTa2oyd844dsnqKecXRbiDcvl1+Bn4mT0GdFDVvAPDupHz728CXvwyccQYwfnzX+/3sleIlTKeyUiYNJ+mkZDHcK2h1L6t9UgRxOSlWZYiTcFLSFiluifNeRYrd80TZLwYN9+rTx//kWW2rl1BQQL7Xmhr3HMEoCCNS7AqteA33SlKkqKiLCYAUVatX69eaWIxxCvUCgjspbq6g1Rj1xBPGx1iN6VGHe6nzK6dwLycnJU8iJSepM8VLsVT3iircy++EJEqRkrSTsn27/mPu/IOs8pqrwYj34lRMwG6lVe1o/UyedtpJDylra/Mf7qUOkl4T53feGfjnP+1fwyxSnEIEvE4ua2v17yfJxHk/4V55SZwXhSrSclJUkRLUSWlt7Vpq28+kLkknJapwL7WfiGqPFECfWHfvrrfTzUnp6JBOit9QL6Cra+vl2o0qrM0rcYiUcePk8UEHGe+zK2ARh0jp1k3uYaVirujWvz+weLH+2S9dKm93Eymine3t+ljkNUE8CpGyfj0wbJj18wLpOyni+8yTSKGTQjzj1GFVVcnOIEy4Vxgn5Yu9OwG4d2RW2FVRitrqdytDHESk2FWDUcMivDopQXMcysuBwYP14yQS593w46R4FSni+08rcd7qfeQpcV4IEfF9ujkpFRXGkrdBUPsCc7hXt27+B2z18WY3xY+T8uUvy2PzpDEKvIqU7t2dF3XsnifqflH0TytWOOeQrV0r++coRIoXikGkHHAA8PTTwKxZwNFHG+/zkpMS1cS2ULAWhlYiRbBggTx2W4BU2+nHTXHb88p8HaxaBfzrX8bHqH2x+XkB44JJUCfF6borRieFIiVliqW6FyAvkLTCvQQNDcFWX+0sb3Gx19REU7bPrQxxWJGiDmpOxQTs/sfvRo4qIuRr40bnwdWck+IU7lVV5b4DtRVBw72cVgzFoJBWuJeTk1Je7r6nTlSEre4lPmM3JyWKya/VXimizX5DvQDjnj5hRMro0cArrwDPPWcULFHhJFK2bpULCXvt5Rzjb/c8TmEnQRAhX1u3OrtzYZLmgXyIlNpa2ed5ESnq5qJOfcBRRwEnndT1+7Yb++LaodzcxqqqrteinUjx6qQA3kWKWrHLq5Py5JNdH+MW7tXQID/rOJyUmhp53pjPbU2jSCEBKJbqXoCcUCSZOG8lUoKEeplfW21T1AOUWxlidYD2Oomy2/zLq5OidphRiBTA2U3xs09KEBcFCO6kOK3ci+dMMnHebgIhCFKJLSyqAxGnkxI21AtwdlL8hnoB0YkUADjkEOCII+L53pwS5xcvlm6FU6iX+XnidFK8VvhKWqSoeX5JiZRCwbmsvJkwhSCAZHNSgK79Zf/+Xa+BoCJFve68Js97ya8yXwfmUC/A3Unp3l0+f1CR4rQ4UCjYP39bm7zmWd2LFCVuHVZYJ6VQ8K/woxQpbk5KVBPRJMO9gjgpYXIcgoiU2lpdGIjv3uykBO1Qg4iU6mrnCaOYjO3YYRSYaTopQSqxRYFbAQgr/DopUYgUs5PS3i7P96idlLgmdUFwclL+/W957CZS7BYzonZSvFb4SlqkRP0+veJHpLjtkeJGkjkpQNf+0hzqBUQjUrw6KX5FysaNeuicGau+0Pzc4nniCPcC7J8/j7vNAxQpxAdenZTmZvd9KVTEhKSmxv+KYh6dlCTDvYLkpITJcQgiUsQAad6/IEonxcqBUPFqg6uDghqZmVZOyo4dcuKYVNK8QEwiVq40lhJ1Ig0npW9fWZFp5UrjRDttJyVOnKp7eU2aB+wdmTidFKcKX0mLlKQ3chQkKVKS3CcF8C9SVNHqNr6r7QzipHjJSXnmGTl2q+eglZNizl102rneb1utzkc7JyWO/KIkoEhJmbyWILbqsMRA1dbmvi+FSpjJaNxOSmurfN9xOClRiRS7cC8nJ8Vu8pFEuJc4zbt1kzG05s47rEhxq4qlYl7ht0OdNKsiJa0SxGkkzQvEd71jh/GzsKO9XfYL4ruxem/qjspRiJSyMjkJWrkyXPlhID8ixSmJNqhISSInBciWk5K2SNm6VR9TnYjSScmKSFH3dVGJw0nxUgRFbfOcOfL4G9+Qx37CvVpajAV6vOJ2PqpOirpYnKW+yQ8UKSlTX19v+Gm0ulozgpsSD7pXiugUg0xIrCZmUTopcQxQSYV7rVghq4/U13cdvLIQ7qWuwJpFijjfksxJCeqkpFWCWGx0BhhXHpNALaHrVs0NsF7ksHpvaj8ThUgBZMjXqlXGiUQQJ8VpEpSl1Uq1xLOdSKmqAoYOdX4eLyIlyupeAEUKYDw33Vbd4xIpcU1szW10c1IEFRXuizFhnRQvIkUVF2edJY/dEudVJ8X8ul5xu+5E+zs6kvku44YihXjGa7gX4E+kqOFefjHvsQFE66TEUcEpDifFLDg6OoDJk+Xgddpp7v8jCLM6L0oQA95EijoJFZ3r9u36uSZWD0tdpDi9jzRFip/NOwHrKn5WTkqUe6QIxOpre7uxVHkxOymAPC/V67u1FViyRD/eYw/3ioVeEuejdlK8hHtVVwdzD/MiUvyUIY4ycT6LOSmCAQPcKz0mkZMiGDPG6ES6OSn19e5lgt3w6qSYHxtXpba4oUhJmbyWIHYK9wL8rRCEDesxh3xl3UmJIyfFHO51003As8/qfw8cCNx4Y9f/iaO6V3W1/PyXLbN/nBCx6meudq5r1sjjJERKkHCvtWv134VCdJNpt9c0h3upn5NdeERcRCFSrJyUOESKmjz//vvyOK6clIqKZHYmd8Mq/v2tt+QCgFuoF6D36yJXME4npW9f+dl6cVJ23jlYVTS/K9lZECluG6bmPSfFvNs8oC/mma8hL2N7kBLEQUXKpEn664l+zClxvqZGfz9hnRSvOSmA8XrN2gKKVyhSUiZPJYjjCPdqb5cXT9AJSVQiJQ0nJY5wrzfeAKZNk3/fc4+12HAL96qqCvadiMnrqlX2druTkwIYHYKkq3s5oV6eIt63vj7e0r9ZDffyK1KsJjxJOymAUaTE5aRkZRIgrvEtW+T5+sc/yvuPOsr9OdTN9+wS56OYvBcKxg0drdi2zTph2Q9hnJQ4HVMzfpyUYsxJKSvruvDiZZPmsCWIvSTOC447Tv8txnSnxHlx3rltsuqGWy6YnQjKUiiqHyhSiGf8hHt5XSEIu6s40FWkWK3KeCGNnBQ3J8XrgKM+7q235Hd1ySXAkUda/49Y2QGsw7369Ak2+VYnr5980vX+1lYZ02uVkwIk66S0t+s/gHvnbTVpjnvikodwL6vv2UwWnZS4ShBnZRIgzs32dr1tmzcDf/2rvE9N+vXyPHE6KYAM+dqwwfqaDZuPAvgPtykFJyWLIgXo2qf5FSlRJs6bz/FevYCDDtKPxSKgk5Mi3nOQzUStns+qTebnp5NCSgrRYZWXW8cx++lUBWqHGIWT0rdv8AswKSelpkZuGOgkUurrvYeMWA1MI0cC11xj/z92K6RCpAQtaeu2wm73naufrzr5jluk+Om8nerSx0VWw70aG+WE3W+4l1XivJWTEtXkVxUpixfL47jCvbIS821etb33XikuvvUt75NuK5ESx+TdLS8lapGS5XAvNd9GhJbaUYz7pADBREpcifNlZcb7jjlGjs9irNy2rWsfbd7CIKyTEkVOCkUKKUrcQhlUsaBWiHLCar8Mv6ivGzTUC0jOSSkUpJviFO7lZwJVVWXsnKuq9AmJ28BirsW/fbt873GJFHUF1i7cK2onxWmfFD8DcRoiJavhXmVlssKX33Avq8T5OJ0UdXKjnn9BnBS1/8t6uJe5zPjvfy//vuAC/8+jljWNw0lxq/BVSiJFXXRQ+0MrVJESRHjb5aQkUd2rosIYXaCSlJPi9TtWrycR6gXYR0e0tcl+TzxvlInzVv2jFyclK4soXqBISZk87pNi11n5WfkRWIWA+CUqkZKUkwLITs3JSfE72Kgd/69/Dey7r/f/EYNcFPtuuIkUu0lo1OFeXvdJ8TMQZzncy2rPoLgRImXzZmvBreIW7hVnTopdCGhYJ8U8CcqySJkzB3jnHf344IOB/fbz/jyin9A0KU7idlIoUuSxm0gJEiKskma4V//+9hW7zO6w38T5KHNSAONne+yx8lhd0FPHdKvnjaoEsRqurUInhURKHvdJseuswjopUYR7ReWkiI46rgFKrOBu3izzIQD9WLym3wnU8cfL3xdf7O1/RKe7bZu+6hOmspfAj0hRV2DtEuezHu4V98TFbgIByMlLQ4Nx8pwUfpLnrSY8aeSkqMSVk5KVlUp1UqVW+PPjogDWG7+KyVJ5eXTnXhLhXlVVMty2WERKEjkpUU5s1fPJacqTpZwUADjzTP332Wcb26Y6KeoYavW8UYV72bXTzklh4jwpevLgpHjpxOywmjDF7aQAxhXoMLb9n/4ELFwI/OMf7rXkBeYyxEmLFC9OStzVvfzY4GmEe6mTQDsnJelQL4EfkWJ1rZeVyf5E3G8XDhiG2lrryVuUOSmaJv/OyiRAPTc//FD/3dAAnH568OcRfaI6WYqqul0S4V6AnMhlWaSo17S6aGOFGDcqK4Ode24iparK+5jihThFSlwliAHgF7/Qx6Z77jHe7sdJiSpx3kupZDopJDR53CfFS05KEJESdEJyxBH6ZKOiAjj55GDPYX79uJ0UO5ESZlOusjJgn3387c9gLnMZZrd5QX29/F8/OSlpJc77WWFKI9xLfV31fbS0yMlJXkUK0PW9xeGkAF0nOOZEWK/YiRT1OCuTAKtz89vf9v+5WokUcR1HWTXfT7hXGNc8qEhJcocAtbqiVyelR49ggtEuRCouZ3DXXaWLKSpkWaH2a2Vl3vq5sCWI3fqEvn27fsbqWKku9Fk9b1QliP06KXkVKS57zZK4yfK+KGbcOizVSUkycb5fP2D5cn0SFGaylpaToq68hN052C/mMI4oclIAfRBav16faLS1GavB2U1Co06cr6zUX7etLd/VvQD9c9q40TjRT7Oyl8BPGWK7+PaaGv0aiDMnBdBDvtTKXj16BFsdthMpWZwEWJ2bfkO9zM9jdlKiHMLEjuIdHc7hXmGqOAL5cFLKy/XJ77p13kVK0DHDbTPHqEVKbS3w4ovA/PnA179u/zh1PG9s9LYAFyZxPujGvH7CvcIkzre3y/7R7rqzE0FMnCdFjaa5OylVVfICSdJJAfTXDbuanEZOCpCuSDE7KVGEewFy8treDnz+ufE+u5yUqBPnAWsHwkzYxPkkJi7iM1DfR5qVvQR5clLMeSlB8lEA++pecSUZh8EsUg4/HNh7b//PYw4LBdxXdINQUSG/J7OT0tEBfPaZfhwm1AswihRRrcyOOMIPvSIWH7wmzgfJRwH0ybk4Z62qe8UhukeNAs45x/kzVfs1r6HcYRLng4YuJpU4r/aNXpwUhnuRkkFsvgc4n+Ai5CtJJyUqspCTkrZIiSLcCzAOKOYIRi9Oivq5xy1Ssl6CGLB+H1kQKYMGyUE9qEgRx3E7KeZJTlCRYlfdK4uTAPO5GcRFMT/P5s26OLPakDUKRMjXqlXGcWfNGt0VBaITKZrmXJ4ckOejmj+VFEKkNDXZt7OlRYrloCIF6HodAukXgthpJ3nueRXXYRLng57Ldk5K1OFeXhZN7Z6fifOkqPE6kRMhQuvXG6tW2RFF4nxUWCUPJpGTklUnJUy4l5oMaRYpXnJSVMIMkOL5nSYieQn3AvTrsKNDP85CuFdVlZz8B6nuBRi/I01LzkkJen3lKdxLvb779AFOOy3Y85gnPuo1HLWTKESKphld2KiS5gF/yctq7k1UBQK8oi4+2LkpYSt7CcT4l0ROildqaoC//x2YOhW4+mpv/+PXSWltlQ5d0MI7dk6K1SJnmMR5L3sTMXGelCReT3DhpHR0uO+bAMQ3IQlCZaWMeTU7KeXl0XbUWQz3iqq6F+BcmcZLuJdK1sO9khApVjtCZ8FJAWTI16pVzpMCNycFMG4mCkS7Sh+Hk2IX7pWVScDw4bJPu+CC4H2YWaTEmUxuV+ErCyIlabyUIY5KpJjDvTQtfZEC6JsmzphhDC11wq+TsmyZXFAdPtx38wD4S5yvrpYlsONwUtTztBgS5ylSiCe8nuB+k+ez5KQUCl0tb3GRR1lmEyj+cC8nJ8VLuJdKmPNCzeWwiz3303lXVRmLAADJOimA/PyyJlIA5+R5NycF0K+7YnBSspKT0tiob+J46616+dSgpOGkABQpfkVKmDHDPPa1tso+Myvnsxf8liBeskQe7757sNfs2VPOD9wS59XjOERKRYX8LumkkNDkZcd5r+FefssQR5U4HxXmlXdxkUc9Ec1KuJddda/q6nDfRxCR0q2bdfWWKJwUtfCDGb8Jz+bJShKJ81ZFHbIQ7gV4T5734qRs3ZqvnJSsh3sBeon2iy6Sq7dBMDuuXsJOgmK3oSNFivVjog73EmGXWSwE4QW/JYjF/kFAcCelrEz2J26J8+qx33Avr+HnViIoi4soXmAJ4pSpT7KmYQj8hnsB3pyULCXOq20wOylRi5QshnupIqV373DOkVO4l11OSqGgd67qZwBEI1IA/Vyz6pz9Ti5ra41tTDrcK69Oilt1L/GYYnBSsiRSosC8mBFnWd4shXu1t8vvNasiRe2LohApHR16gYK8ns9+w72icFIAfeFxwwb3cC9AXk9+nRSviwPdu+vnC50UUjJ4VeF+d53PUrgXYHRSOjriKbMJGJ2UxYvlZCdLIiUMXp0Uc0drNeGPUqRY4bfz9tLmqHEK9yoUwhU5CItXJ8VpnxSB6qQUCtEOpn36GEP1oihBrJ47WcxJiQqncK84nZQVK/SJ1uLFwPvvy9uTEilplh8GvO06H3VOCqCPy3RS/CHGzI0bZXETu+qg4vxrbpaP9UIYJyWv/RNFSsrkZcd5rye433CvLCXOA0YnRc1jiHoi2qOHnNwtWACccYYuVNIUKatXy+8j7KS3e3d5nngN9xL/ZyaK6l7m11UJG+6VtEgxh3v17ettk7O42GUXeRwk3Mv83sTEsLY22jywsjKjeI4z3CtPkzovOCXOx+mkPPCA/tp77gm89pp+W3V1+EUUryIlriIOXvHipKg5jVE4KUC+RUpFhewP/Tgp9fXhHGmx8NjRIYWjm5MCGIWwG16vO/H8LS2yjDedFBKIurq6Lj9ZpBQS5wE5YWprM4ZhRT0Ql5UBd90lO/9Zs3Shogq7MAOOV9TXUCeYYScBhYKcEDpV9zKLFKvPOWtOipc2R41TuFea+ShAfDkpcSxaqCFfDPfyTpJOSrdu8nuyKnZx6KHhxWsQJyWrIkUNg9t55+CvVSwiBZDtdXNSWlv16l6A7qKEOa+syhDbiYqgu857PR+tzu+89k/MSSGe8LpKmPfEebWjVifXcayWT5gAPPoocOKJemc6a5a8r66uaxWpOFDf19Kl8jisSAH0ValPPtHPg/Z2ubrlFEIRZ7iX02ZoAr/hXoVCMpMXs9hqbpaT+TTzUQD9OxPx2F7DvdTP2S4nJY7+QE2eL5XE+SgQFYO2bYvfSQGA//kf4Je/1D/HQYPkz5AhwJlnhn/+vIgUddHPTqQsXy6PBw8O/lrmUuB5FinV1fp35+akqOWHw+SjAF3LEA8dKgVIoWC/J5if5Hm/Tor4n1698uv0UqQQTwQJ98pj4rzakagiJa7V8okTjUJFkESoF9B18iGIIsdBOCkdHfq5ICbTTt953pyUqEtTe3nNbduME5a0RQqguykbNug5BKogVREisVs342eWpJOihhIFPce97JOSp0mAV7p317/DzZvjn7yff77+Exd5ESmVlXIBwC4nRRUpaj6PX5xyUvImusV7cRMpUeWjANa7zotzyzxOBN113m9Oivr86meh9mFZh+FexBNBwr38OilZGNiTdFIEEycCjzxifP9JiRTAOqwsCifFLnleTEJravSwNxXz51xV1fUxfrAKkzITJicliXwUoOv7UM/NtMO9ABny1dYmd282Y7cxnFlIxilSLrhAX40/5RRgv/2CPUcpOimAsSJR3E5K3HhdyU5bpAByEcLNSenVK1wbzeFeeV15B+T15xbuFVVlL8A63MuuOmjQXeeDOimA/CwqK8ONqUmTo6aSNPHaYVVXy4vHT+J8t27ZuHCSdlIERx1lFCojR8b7eipxiRR1hd9KpFhNQs2fc1h3Le7qXkmJFPP7yEr5YYGXvBSxIGH+TtW/N22S4RdxiJTRo4GPPwYefji4A6aKFPXcKSWRkoXJexjy4qQAchFiy5auzkBHh8xJCRPqBRRXToq4/rLkpKgEdVKC5KSYnZS89U0M9yKe8GP99umjX5x+EuezEOoFGNuhrlwlMRk96ihg3jxg9mzgW9+K//UESTgp6qRard5kxvw5hx0ckwj3SgLz+8hiuJfAbq8Uu2tdfW9qnxHXpDBseF5ZmR4m2dZWWk6K6CdaW417QeTRSQlS3SutnElz8rwa0rVmjTwHKVIkXhPn43RSNC16kRLGSaFIIUWNnwG4b199NXXdOn2lx8khiTO0IwhpOSmCkSOTdVEAa5ESRU6Km5NiNQk1i5SknZQ8hHtt25a9cC8vZYjtwr3U96a6r1npE6yoquoqUvI8qfOCeq5//rk8ppMSL04iJap8FMB4zhZD4jygX5+aZr8wIZyU+nrjoloQzInzLS16HwEkH+7l5KTk7bvMQIANyQN+JnIieb6jo+vu4Way7KQklZOSNlbvLU4nJWvhXn4TRBnu1ZUw4V52TkrWRQpQWk4KRUp87XFCFSnm5PmoKnsBxemkAPYhX62tsqLl7ruHd1jN4V5OgiKKcC+nsbGYnBSKFOIJv+FeAre8FDFxycqEJG0nJQ2STJxvbZWbS3kJ98piTopdKck4yVO4l5VIaW2VuSZOOSl5clIAihQgn32jmgOZdZGiXt/m5PkVK+RxnCIlb+ez2l47kfKf/8g+KWw+CtA13MtJpIR1UurqnCNUrJwU8X3m7bukSEmZ5ubmLj9ZxG+4l8BJpGganZQskGS4l1uMd5xOShz7pDDcS7ZBtNFKpDityqrfUZ5FSp4ndV5Qz3XV8cpK3+2HQkH2NVkXKU4bOkYZ7lVM1b28OClR5qMAXZ0U1SExjxNhc1LcFgaKyUlhTkrK1OdkGcqP9et113n1ObMy0NFJ0TuxKL6PPn301Z6ODvlZqiLFS05KEonzfieXWUicF59nRUXwTQmjpFDQ81IWL9ZFijkO3G63efPfeREpasy7IM+TOi9YLWa4rehmmfp6fc8Xp0linkRKWCfFnJMi8inM9+UBtR+3S56PsrIXoPdj1dV6P+DmpMQtUsxOSkeHjGDIm0jJafdCkiYOJyULlVPMqBMm9T2XkpPSu3c0GxSWl8tzwauTEnW4l5d9UsT3XFXl7X2rA0Da4V79+mVnkihCvrZu7bo44bQfUp5zUkqxBLFKHvNRBH6dlKxU91KJ00nJc06Kl3CvqJ2UQkGGfLk5KUHDvcT56HbdmZ0UdTElb99lRoa30qWpqcnws0otg5QhgooUJyfFaXU1LewGolJyUqII9RKIvJTVq/XV9TTDvdxEiteJ5Ze/rA9GVVXACSeEa59X7DZzzEKol0Ct8GUuQ+zkmqp/q4/Lg0gp1ZwUQZ77RVWkaJr1Y9yc3yTwkjjft2+0Czp5FylmV8iKqJ0UQIZ8xZE439Ym34tfJyXPfRPDvVKmLidLUUHDvZycFFWkZGVCYtfRF7OTYn5vUSTNCxobgXff1TvJzZvdVybTTJz32nn37q1PwrdtMwryOFHfx8qVcnKchaR5gTl5fswY+bfTgoTdtZ+VPsGKUs9JEeRk+LJETOTa2vQ+wGpcy0K4l9rHqE5Kezvw2Wf6cVgXBegqUlThljeR4sdJiaL8sECMnWY3OYrEefVc9JuTkue+iU4K8UTc4V5Zd1LyPBi7YRXuFRXm5Hm3lck0SxD7GYjr6pITKIA+KRZhXWpiepZFiorTIofd554HkdLRISsEFXtOSrE5KVbJxWayIFKqqmTemSpSVq2SeSNh81GAro5mnie2bk5KayuwbJl+HEX5YYGaPK+G4pmvndpa2Z97dVLUc9RPuFfenRSKFOIJPye518T5vDgptbV6fkWxkkS4F6CHKmQ5JyXLnXehID8vde+hLIV7OYkUJyelrMz6s8/ywoAQKYB0U/I8EfCCXeJ8XlH7ms2brR+TBZECyOtcFSlRJs0Dxol93qt7uTkp//mPFHhR5KMI1AU+NeTVLObV6nJeRYofJ6W6Ws5ZKFJISRBHuFdenJQ8rxZ6IUknxS3cyzwRCDs4VlbqP0C+RQpgfY3kxUlxyz+zOheysnBhhXqumEVKWZleda3YKDYnRe337CaKor9SJ31pIETKpk3yfItapJRSTkoc+SiAvUhxuna8hnt53W0e0EWQeM2mJooUUgL4OclrauQEI2+J81btKOZ8FCBekeLXSSkrMwqVKM4L8Tp2+6QECfdKA6vPK0siZeBAOZHzE+4FeBcuWUF1UkTfmJfzKCjFlpOi9ntuTkra79Oqwpe6kWMcOSl5FiluTkrUlb0EariXk5MCyOspSLiXl8UB1anJsytGkUI84VeJi3j9vCXO00mJL9zLS04KYJwMRSlSrJyUjg5p+2d9hcnq3MxSuFdFhS5UgOJ3UpzCvbJ+HgWl2JwUP+FeaZ+LVrvOx+mkmHNS8jaxdRMpSTgp6vdjdZ14qS6n4jf0UHVS8pxfRJFCPCFO8ooKb7a3ECnr1nkr70gnJT3irO7llDjvpdxzFOeFeA4rkZInGzzr4V6ALEO8bp3x83YTKXl2UkpZpKTtMITBS7iXOIfTfp9WTkrcOSl5Filu4V5JOClq5T+ra0fc1t5uXyZZJaiTQpFCSgK/A7BYjW9vNyb6qmTRSbGaLOV5tdALaqURIN5wLy+boyXppORJpGQ93Asw7pWiTqLcJjx0UrJPt25dc23y3De6OSmalu1wL/X6Eg5mGMrK5HltTpwXeX15wauTUlcHDBgQ3evajZ1O4V6At5AvvyJFPL+mARs2yNvz1j9RpBBPiAvd64qKlzLEWXRSKiu7OkXF7qQUCsZVxShFijq4enVS4hQpZlcvT6uFWQ/3Auw3dCwFJ6XYc1LUZFxB2pP3MLg5KTt2yPLSab9Pp5yU/v2jm3iK61B1Urp1i65Eb1I4OSltbcDSpfpxlOWHAfux0y1U0kvyvJ8SxObnV3ODKVJIUSIudL9OCmCfPJ/FxPlCoWtb8rxa6BV1wI4yJ6VbN6BnT/3YnDhv19Gqn3cUEz51smsesPLkpJjPy+rq7AloO5FSbE6KU3WvrJ9HYTCfb3nuG90S57NSfhjouut8W5vcyDGKUC+B6GPUnJQ8im4nJ0UtPxxlPgpgDPcSVFYaFzUEfp0UPyWIzc+vLhTn7fukSCGe8DsA+3VSsjQhMbclaxPBOIjLSQFkSFLaTgrQNeQrTyLF/Hn175+9Fc4onZSsLFxYYa7upWmlKVLSnryHwW2SmCWRYk6c//xzvegHEK1IERNYs5OSN5yclLjyUQDrsdNOUIRxUvzkpADGOVje+ieKFOKJOMK9suikAKXppOy3n/57xIjovwuRl7J5s9FVSypxvphFStZQJ0xqzLzf6l5p70vhhjncq7VVhhJm/TwKQzGJlLw6KWvWRJ80L7AL98obTk5KXJW9AKChoettdoucYXJS/FT3AvItUopwyykSB3GHe9FJSZf//V/g0EOBo46KfnVeTZ5ftkwe233n6mr8zjuHf331dcx7peQpJ8U8uc9aPgoQPNzL/N7SnhS6YRYped6HwA/mcuV5XsBxS5zPktOvLvqZRUoUe6QIVJEixoG8TWoBZ5ESp5NSXq6HN6vFguyukbgT54slJ4UihbiiaTLuOq5wLzop6dK3L/D978fz3OqKv0hYBOwnohdeqMcN77UXsMce4V+fTkpy9OypD75btvgL9zK/t7QnhW44iZSsn0dhKFYnJevhXtXVens3b9ZzUtSNHONwUtra5PvPo+h2CveK00kB9JAvVaTYLXL6DfeKKiclb/0TRUrKNKtnnsXfWUCt9+21w6KTQgSqk6JOBuzOpf79gTvvjO711UkxRUq8FAq6m/Lee7pI0TT9Nr85KVnqD6ygSNHJ8wKOm5OSJZEC6M7p5s3xhnupfbKobJZHkeLFSYm6/LCgVy/jYlzWnJS8fZ/MSUmZ+vp6w0+jOqPLCEE2AqKTQgRWk+maGuPeLHHi5KQw3Ct6RMhXS4ssl+q3ulfeREqeN0vzQzE5KRUV8prKupMCyOt940bg44/l7XE4KSpZ7xetsHNSOjpkyPFuu8VTeMScPB9H4nwp5aRQpBBXgqwSqk5K3hLn6aREi5XuTnISynCvZLHKSyk2J8W8UlsqOSnF5KQAMuQrD06Ker2//bb+u1CIJm9PUCwixc5J+fxzvcgFAAwZEs9rm8sQR5U4L85Hq20SrFCvTfX8zvo4Z4YiJWWampoMP6tWrUq7SV0IMgDX1soLKU/7pAB0UqLGSqQkOeirE15zNCVFSvS4iZRidFLydB6FwZw4n4XJexjERDEPIkV1TkW414AB0e4GXywixc5JUQu3xCVSvDopQcO96uu9OUB24ihv/RNzUlKmLgu9nwtBQxn69tU7U7dwr6qqbJUbpZMSLVaT6SQnoWpZyI0bjfflaXKZl3AvNfxEiBTRh5SVWU+q8uaklKpIKaZwL0CKri1bZP6UIMsiRRBlqBdgLUjyeD7bOSn/+Y883nXXeF7b7KREHe7l9Vy0e928fZ90UogrQQdgEfK1bp3cQ0BFrK5mbUJCJyVa0g73Ule21q833pennJQ8OilixVdc6zU11quAeXdS8nQehUEVKdXVel5HnhEipa2taxWoLJUgBqxFSpTlh4HicVLsREoaTkrU+6R4nY/YvW7evk+KFOJK0AFYJM+3tTnXoc9SqBdAJyVqunfvKm6TXJl0Eil5WgE3n5dZdVKswr3cNoajk5IP1L6wGBZvnCaKpeikFItIUa9Pdf6ShJMSJNzLTwlir9cdnRRSMgQdgN0qfNFJKQ0Kha5uSlaclDxNLtXzsq4ue9eNYOBA6ZaYc1LsFiTy7qTk6TwKgzqxysLEPSxOu85nTaRYOacUKdYUCvI6TNpJ8Zo4r55Tbk7Kjh1yK4iwTkre+ieKFOJK2HAvwDp5Pg9OSkVF/i7qLJIVkbJhg/G+PIXpqJ9ZVkO9AH0Cv9NO+rFXkZI3J0XtE0pJpKiT+mJYvHHaKyVrIiWtnJSs94t2iHZbOSm1tcb5SZR4dVLKy2U/5yZSgpyLdo/LW/9EkUJcCRvuBXR1UjTNfeKSFmp7vFbSIM6YJ9VJTkLVla08Oyl5ESmADPlauVL/jN3CvcznQxYmhU6oTor6/oD8Tuq8UMxOSh7DvZiTYo/ZSdE0KVKGDIlvXPeaOK/e5xbu5Xe3ecAoglSyPs6ZoUghrsThpOzYIZPps7ZqqraH+SjRYHZSkhz0q6vld5pnkaJ+ZlkXKeoK7/LlxeekMNyLTkrSpJWTktfz2eykrF4tj+PKRwG8J86r97k5KX53m3d67bx9nxQpxJWgG5U5OSlZ3W0eMLaHIiUa0nRSADlw5FmkDBoETJigl/D99rfTbo0zavL8kiXy2KuTQpGSTfr1k/36nnum25YoyJOT0q2bcYJaVibDKqOimJ2UJPJRAO/hXoCcX7g5KX53m7d77UIh2n11kiDnBQRJEoTZJ0VgFinq5m5Zm5Co7SmG1cIskGZOCqAPHCtW6CJF3Q8hT2E6hQLwzDP6gJV18ayKlA8+kMfF6qQE7SPzRlUV8OijwAsvAOeem3ZrwuOUOC8W0gqF7PQN/fvLCevOO0dfArqYRYpa2StOkVJbqwsBsbO9U18t5hctLfrj7QREVE5KdXX+wtfppBBX4gj3opNSWmRBpAD6uawK5LytgBcK+Tgn/YqUYnJS8jqp88rBBwPTpmW3BLYfvJQgrq3NzsRO/cyjzkcBijtxXnVS4gz3KhSMboqTqFDzV+6/3/5xQXJSrB6bhzHODEUKcSWOcC91opg1kUInJXrM4V5Jh0/YlSHOm0jJC3Yixa7/MN+edZFSqtW9ig0vJYizEOolUEVK1PkoQHE6KR0d+l5tSTkpgFF8OM0hvvENefy97wELF1o/LkonJW9QpBBXgoYyODkpWQ73opMSPVlxUgBjGWJOLuNBFSmLF8tjuwWJsjLjZChrfYIZc3Uvnkf5xEviPEVK9K+TBGq7t29PzkkB9L2iAL0fcxIVZ54JfOc7+vHWrcCppwKbNnV9XFQ5KXnsmyhSiCtBB+DaWtlR5ClxfsgQGRs6YkSqTSka0k6ctytDnKeclDzRp4+8rpcvl7c7XevqfXkSKeacFJ5H+cFL4nypi5Q8TmwBY7tbWqST0q1b10WzqLnySuCww4Abb9RLAdtRKAC33gqMHq3/vWSJLlpE5VNBVE5KHvsmihTiStBwr0JBuil5Spzv1w945BHg2muBqVPTbk1x0KePvlouSNNJYbhX/BQK1pMop/5DPSey1ieYKdXqXsWGXbhXR4cco7IkUoYOlcd77BH98xdjTgpgdFJ22SX+HKPDDwdeegm44AL3x9bUAA8+KBfSZs4Err/e+BjmpBDiQJjKNSIvZd064+pAlp0UADj2WOAnPzEOYiQ45eXGVUDmpBQ/asiXoFidFJ5H+cQucV5dRMuSSPnmN4FzztEXz449NvrnL6ZwL/U6/OwzOdGPOx8lCLvtBvzlL1I8/fSnwD/+oefSAMHDvYohJ4UliIkrixbJ44YGf/8rREprqz4IiEl/lp0UEg/9+wOrVunHWXFShACvrDQ6PSQ8YURKliaGVqilXylS8ou60qw6KerKdZbGp+7dgT//Ob7nL1aRoubFxZ2PEpRJk4Dp04H/+R/dyTv5ZP2z328/Y54KnRRCFDZtAubM0Y8HDgT23tvf/9slz2e5uheJBzUOOCsiRUwu89h5Zx0rkVIs4V6FgjxnmJOSX8rLpSC2EylZF8xRUkwiRW23KlKy6KQIfv5zo0O2fTswdy7w/vvyNlb3IkThscfkpkSnneZ/tdmuDHHWw71I9Ki7IycdRkeRkjx+nRTx+F698jExFCFfrO6Vb0RfpIZ7lapIKaaclLw5KYAummfNAm66CTj9dGD33Y3319RY96t2mAVNHr9LhnsRRx58UB6fdpr//1edlNWr5THDvUqPCy7QXblDD+3a+caNWwliTiyjx6+TcvXVejjpySdHv5N2HAiRwnCvfNOjB/D553RSAP26q6iQuRBAfs/nPDopgP55/+AH+g+gR7O8/bYedn/wwf62RSgGJyUHQwFJi6Ym4Mkn9ePGRn1y6Re1GsmiRcDxx+vHdFJKj0MP1RMY09i92a0EcR5XmLKOXydljz2AP/whvvZEjSpSwhQXIekiJnJbtujFXQqF0hUpgH6Nqq5SXvtG9TpcskQeZ9lJsaJnT+ArX9F//MKclBLnww8/xIUXXogxY8agsrISQ7Iu0X0ye7YcfE85xbnetx1jxsjj+fPlMZ2U0iQNgQLonbVYnWe4VzIMGtT1tmJakLByUgoFuccSyQci3KujQy6elbpIUcmrSFHbLeYblZXGsONipxicFIqUELz33nt47LHHMGTIEIwcOTLt5kTOQw/J4699Ldhz7L23HMzfekveTieFJEmhIEO+KFKSoabGWHYayO+ExworkVJdnZ4QJ8Gw2nVeHZ9KTaSYr9G8XrNWffrgwcEWW/MKnZQS58QTT8SKFSvw8MMP46CDDkq7OZGybRvw+OP6cZ8+waxGQF+5GDVKP168WNb7ZnUvkjRmkdLRoU8wgfwOxFnHHPJVTNe6Wt2LYje/WO06n9USxEmgXqPl5fnID7PC6lossmAXV7jjfIlTVsQbKzz1lOyowyayipAvTQMWLNCPGe5FkkaIlC1b9Ip1QqAAnFzGRTGLFLW6lwiL5XmUP6ycFIZ76eT5fLaakOctHyUsdFJiZvHixbj55psxefJkjBo1ChUVFSgUCrj66qs9/f8DDzyA8ePHo1evXqirq8N+++2H6667Dq2ipi6xJWxVL5XRo+WxCPliuBdJGnOFL1Zkih+zSMnjSp4dQqS0trIAQ55xc1JKWaTk+Xymk1IcOSmZNvJuv/12zJgxI9D/XnzxxZgxYwYqKiowYcIE1NfX47nnnsNPfvITPProo3j66adRw9mxJS0twKOP6sc9ewJHHhnu+ayS5+mkkKQxixS14lceO+88UApOCiDDWHke5Q9VpNBJMQqTPIsUOil6H6WWlM5j/5RpJ2XkyJG47LLLcO+992LRokU4++yzPf3frFmzMGPGDNTX12Pu3Ll46qmn8NBDD2HJkiUYNWoUXn75ZUyfPt3wP3/+859RKBRcfx5ULYYi5ZlnZGf91a8aB+Mg7LuvTFYTIoVOCkka84aO3CU8fkrBSQHkpDaPk4BSR11tppNCJ6WYKBSM53ce+6dMOynnnXee4W+vOSDXXHMNAGDatGkYoyzj9+3bF7fddhsOP/xw3HLLLZg+fTp69uwJADjllFNw8MEHuz73wIEDvTY/t0RR1UulpgbYc0/gvff0n5YWY0nAvCbmkXxh3iulb1/5dx477zwweLDx72JakLBavMnzpK5UsXJSSrm6V7GIFDopOt27yw2M8zjOFd308NNPP8W8efMAAGeddVaX+w877DAMHjwYy5cvx+zZs/GNb3wDANCzZ89OwRInzeoSTYD746a1FZg1Sz+urweOPjqa5x0zRhcobW3AwoVSpBTTpIVkG7OTwpyU+CmVcC8Bz6P8wcR5I8UiUszXYnm59d5NxY6aPJ/H7zPT4V5BeOuLzOzevXtjqLrducLYsWMNj02S+vp6x5/GxsbE26TywgtSdZ9wQnQntTkvRaxUFdOkhWQbp3AvTi7jobHRuLlhHgdJO6zOGZ5H+YMliI2o12iez2dz2wcOLM2oDYZ7ZYylS5cCAHYxL+EpDP4iBkE8Nihbt27F7NmzAQAff/wxtm7d2pmzMm7cOOyaQ28xyqpeKuYKX8JJKbUBgKSHk5NSTJPnLFFWpod8ffyxLlaKaSM1OinFARPnjRSLk2Jue6nlowhUJyWP/VPRiZQtXyyF1Dn0LPVffGubRY8UkNWrV+PrX/+64Tbx9913343Jkyd3+Z8mUQbGhubm5lTdlJUr9d81NcBxx0X3vPvvL4/ppJA0YLhXOnzjG8CvfgWcckraLYkW5qQUB0ycN1IsIsXcp+dwzTgS6KSUMEOGDIGmab7+xyye0s5BMfOPfwDLl+ubLkbZOffsCey+O/Dhh/pzi4306KSQpOA+Kelw9dXA977XNYk+79BJKQ6cnJTKSmO4YilQLCKFTooOnZSM0f0L2eg0+RduRg+1d0qJevOWoBlg8OB4JhSjR+siRc0FoJNCkoIliNPDIfo2t1CkFAdOifOl5qIAxSNSzNdiqYoU9fzO4/dZdInzQ744E5cvX277GHHfkFI9a1NCTZ4XUKSQpFCL9zHci4SFIqU4qKvT95MAZLiXCEcuRZFSrJs5lmq4l7pAtNNO6bUjKEXnpIz+IkN73bp1WLp0qWWFrzfffBMADHuopIU5RyXtnJQ4sfq4Ge5FkqK8HGhoADZupEgh4bE6Z/I8qStVysr01ebNm+mkAMaFwzz3i3RSdM4/H1i6FBg+HNh777Rb45+ic1IGDRqEcePGAQDuu+++Lve//PLLWL58OaqrqzFp0qSkm9eFurq6Lj/FilrhS0AnhSSJCPmiSCFhoZNSPIiQGHPifCkuohVjuFehUHw5cV7p0we44w7gssvSbkkwik6kAMDll18OALj22msxf/78ztvXrVuHiy66CAAwZcqURDZvJJJ+/bpuplSKgwBJDyFSNmyQZbCBfA/GJB0oUooHkZ66ebO+oXFrq/53Ea8Z2lIsIqW8XO6LsvPO1tcryT6ZDveaP39+p6gAgI8++ggAcMcdd+Cxxx7rvH3mzJnYSQm2O/nkkzF16lTcdNNNOPjgg3HkkUeirq4Ozz77LDZu3IhDDz0UV111VXJvxAFzgn/Wqn1FzZgxwIoV8m86KSRJhEjp6ADWrJG3c3JJ/EKRUjyoTooagV2KIkVNtM5gXR9fjBkDvPEG8JWvpN0SEpRMi5TNmzdj7ty5XW5fsWIFVigz3RY1buMLZsyYgUMPPRS33norXn31VbS2tmLYsGGYNm0aLrnkElRlRFZnsbpXnIweDTzyiPybTgpJErXC1+efy2NOLolfuE9K8aAW+ly1Sh6XokgZPx448ED9czjjjLRbE45HHwWefx449ti0W0KCkmmRMn78eN/7kKicfvrpOP300yNsEQmLOXmeTgpJElWkfPaZPObkkviFTkrxoIoUsaExUJoipboamDtXd5vLcp4Q0L9//oVWqZNpkVIKlFJ1L4AihaRLr17ymE4KCYPVOcPzKJ+oIU6lLlIEeRcopDigSEmZYq7mZcXAgUDfvsDatfrfDPciScJwLxIVDPcqHlQnRe0XSmx4JiRzUCuTRCkUjG4KnRSSJKpIYeI8CQPDvYoHOyeFi2iEpAtFSso0Nzd3+Sl2VJHCQYAkiSpS1HQ3roATv1CkFA90UgjJJhQpKVNfX2/4KeZ8FMFZZwGVlfrq1RFHpN0aUkqoIkWFk0viF4qU4oE5KYRkE+akkMQZNUovb1goAA0NabeGlBIUKSQqmJNSPNBJISSbUKSkTKlV9xKoVZYISQqKFBIVrO5VPLAEMSHZhCIlZUqtuhchaWInjrkCTvzCcK/iQQ33EpUnAYoUQtKGOSmEkJKhutq6WAMnl8QvFCnFg+qkqLCwCyHpQpFCCCkpzCFf5eX6DyF+YE5K8aA6KSp0UghJF4Z7pYy55HAplCAmJE169wZWrJB/c2JJgkAnpXiwc1IoUghJF4qUlKmvr0+7CYSUFGYnhRNLEgSKlOKBIoWQbMJwL0JISUGRQqKA1b2Kh5oaoMxiNkSRQki60ElJmVItQUxIWlCkkChgTkrxUCjobsrGjcbbKVIISReKlJRhCWJCksUsUjixJEGwEilWt5F80L17V5FSU5NKUwghX8BwL0JISWHeK4VOCglCZaXx76oqfUWe5BNzXopdCBghJDl4CRJCSgqGe5EoMJeupiOXb8wihUEOhKQPRQohpKSgSCFRoYZ38TzKN+a9UihSCEkf5qSkDPdJISRZmJNCoqK6Gti2TR6T/EInhZDsQZGSMtwnhZBkoZNCooJOSvFAJ4WQ7MFwL0JISUGRQqJCFSl05PINnRRCsgedlJThPimEJAvDvUhU0EkpHuikEJI9KFJShvukEJIsdXVARQXQ1qb/zcklCQpFSvFgdlJqa9NpByFEwnAvQkhJUSgY3RROLklQKFKKB4Z7EZI9KFIIISUHRQqJAuakFA8M9yIke1CkEEJKDlWkcHJJgqIKXIrdfEMnhZDsQZFCCCk56KSQKGC4V/FAJ4WQ7EGRQggpOShSSBQw3Kt4oJNCSPZgda+U4Y7zhCQPw71IFNBJKR4oUgjJHhQpKcMd5wlJnl695DEnlyQoFCnFgznciyWICUkfhnsRQkqOPn3kcU1Neu0g+YYipXigk0JI9qBISZmmpibDz6pVq9JuEiFFz8knA/36AQMGAMcdl3ZrSF5RhQnDBvNNdbW+yauAIoWQ9GG4V8pwx3lCkmfgQGDFCv1YXQ0nxA90UoqHQkF3U9av1//m0ExI+tBJIYSUJFVVFCgkHBQpxYUa8kWRQkj6UKQQQgghAaBIKS7U5HmKFELShyKFEEIICQD3SSku6KQQki0oUgghhJAA0EkpLhob9d8VFUDPnum2hRDCxHlCCCEkEKowoUjJPz/+MfD558BJJ3XdN4UQkjwUKYQQQkgA+vWTx/37p9cOEg0HHQS8+mrarSCECChSCCGEkACccQbw8stAQwNwxBFpt4YQQooLihRCCCEkAD16APfck3YrCCGkOKFISZnm5mbHvwkhhBBCCCk1KFJSpr6+Pu0mEEIIIYQQkilYgpgQQgghhBCSKeikpExTU5Ph7+bmZjSKYu2EEEIIIYSUIBQpKVPHbW0JIYQQQggxwHAvQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKagSCGEEEIIIYRkCooUQgghhBBCSKaoSLsBxIimaZ3Hzc3NKbaEEEIIIYSQ6FDntuqc1wqKlIyxdevWzuPGxsYUW0IIIYQQQkg8bN26FfX19bb3M9yLEEIIIYQQkikKmpvXQhKlo6MDa9euBQDU1taiUCjE9lrNzc2dbs2qVatQV1cX22sVI/z8wsPPMBz8/MLDzzAc/PzCw88wHPz8wpPkZ6hpWmfUUN++fVFWZu+XMNwrY5SVlaF///6Jv25dXR0v7BDw8wsPP8Nw8PMLDz/DcPDzCw8/w3Dw8wtPEp+hU4iXCsO9CCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCIoUQQgghhBCSKShSCCGEEEIIIZmCmzkSQgghhBBCMgWdFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEghhBBCCCGEZAqKFEIIIYQQQkimoEgpUR544AGMHz8evXr1Ql1dHfbbbz9cd911aG1tTbtpmaa1tRXPPvssfvSjH2HcuHFoaGhAZWUlBgwYgK9+9at4/PHH025iLvnxj3+MQqGAQqGAq6++Ou3m5IYdO3bgpptuwmGHHYbevXujW7duGDRoEI477jj8/e9/T7t5meaTTz7BlClTMGLECNTU1KBbt24YOnQozjnnHCxYsCDt5mWCxYsX4+abb8bkyZMxatQoVFRUeL5Gn3nmGUyaNAl9+/ZFTU0N9txzT/zsZz9DU1NTAi3PBn4/v46ODrz66qv4+c9/jsMOOwx9+vRBZWUl+vbti6OOOgr33nsvSq0ga5hzUOW2227rHGPOO++8mFqbPcJ8fh0dHbjnnnswceJE9OvXD9XV1dhpp50wYcIE3HbbbQm0HoBGSo4f/vCHGgCtoqJCO/roo7VTTz1Va2ho0ABohx12mLZ169a0m5hZ5syZowHQAGgDBgzQjj/+eO3000/XRo4c2Xn79773Pa2joyPtpuaGV155RSsrK9MKhYIGQLvqqqvSblIuWL58ubb33ntrALS+fftqJ5xwgnbGGWdohxxyiFZbW6uddtppaTcxs7z++uta9+7dNQDawIEDta9+9avaKaecog0dOrSzb7z//vvTbmbqiLHC/ON2jd54440aAK1QKGhf/vKXta9//evagAEDNADaiBEjtDVr1iT0DtLF7+e3ZMmSzsf07t1bO/roo7UzzjhDGzduXOftJ5xwgtbS0pLwO0mPoOegykcffaTV1dV1jjHnnntujC3OFkE/v40bN2pf/vKXNQBajx49tGOPPVY788wztcMPP1xraGjQDjjggETaT5FSYsycOVMDoNXX12v/+te/Om9fs2aNNmrUKA2Adumll6bYwmzz7LPPaqeddpr24osvdrnvb3/7m1ZeXq4B0O65554UWpc/mpubteHDh2sDBw7UTj75ZIoUj2zdulXbc889NQDaL37xC23Hjh2G+5ubm7W33norncblgH333bdzQUH97Nrb27UrrrhCA6A1NDRo27ZtS7GV6fPHP/5Ru+yyy7R7771XW7RokXb22We7XqPz58/XCoWCVl5ers2ePbvz9ubmZu3II4/UAJSMgPb7+X344YfahAkTtCeeeEJra2sz3PfCCy9odXV1GgDtl7/8ZRLNzwRBzkGV9vZ27fDDD9fq6+u1c845p+RESpDPr6OjQxs/frwGQLvgggu0LVu2GO5vaWnR5s2bF3fTNU2jSCk5xIrM1Vdf3eW+l156SQOgVVdXaxs3bkyhdfnn3HPP1QBoRx55ZNpNyQVTp07VAGiPP/545wBCkeLO9OnTOyfZxB9r167tXE1cvXp1l/vb2tq0mpoaDYA2f/78FFqYXbxco1//+tc1ANp5553X5b5ly5ZpZWVlGgBt0aJFcTY1k4Tt46666ioNgDZs2LCIW5Yf/H6GwtW79dZbtSuvvLLkRIoZL5/fnXfeqQHQjjnmmARbZg1zUkqITz/9FPPmzQMAnHXWWV3uP+ywwzB48GC0tLRg9uzZSTevKBg9ejQAYPny5Sm3JPu88MILuPnmm/Htb38bkyZNSrs5uaG1tRW33347AOBHP/pRyq3JH9XV1Z4f27dv3xhbUnzs2LGjMy/PaozZddddceihhwIAZs6cmWjbigGOL/5YvHgxfvazn+ErX/kKvv/976fdnNxw0003AcjG+EKRUkK89dZbAIDevXtj6NChlo8ZO3as4bHEH0uWLAEA7LTTTim3JNs0NTXhu9/9LhobG/G///u/aTcnV8yfPx9r167FzjvvjN133x3vvvsufvnLX+KCCy7AtGnT8Pjjj6OjoyPtZmaW+vp6HH744QCAK664wlAspKOjA7/4xS+wbds2HHfccRg8eHBazcwlH3zwAbZu3QpAjiVmOMYEh+OLd9rb23HOOeegUCjgzjvvRKFQSLtJuWDVqlVYsGABysvLccghh+Djjz/GtddeiwsvvBCXXXYZHnjgAezYsSOx9lQk9kokdZYuXQoA2GWXXWwfIwZl8VjinZUrV+LPf/4zAOC0005LtzEZ57LLLsPSpUsxc+ZM9OrVK+3m5Ip33nkHADBo0CBMmzYN1113naHiz29+8xuMHj0as2bNcrzWS5k//vGPmDRpEv7whz/g8ccfx9ixY1FeXo633noLn376Kc4++2zccsstaTczd4hxo6GhAd27d7d8DMeYYGzdurVzhZvjizvXX3895s6di9/97ncYNmxY2s3JDWJ86dOnD/70pz/h0ksv7VL1dbfddsPMmTOx7777xt4eOiklxJYtWwAAdXV1to+pr68HAGzevDmRNhULbW1t+Na3voVNmzZh1KhRuOCCC9JuUmZ5+umncccdd+DMM8/EySefnHZzcse6desA6CvRv/nNb3DRRRdh8eLF2LRpE+bMmYM99tgDb731Fo4//niWFLdhxIgReO2113D00Ufj008/xT/+8Q88/PDDWLp0KXbffXeMHz8ePXr0SLuZuYNjTHxcdNFFWLp0KXbeeWdcfvnlaTcn0yxcuBBXXnklDjnkEEydOjXt5uQKMb6sX78eU6dOxUknnYR3330XW7ZswWuvvYaDDjoIH3/8MY499tjOx8YJRQohEXDhhRfi2WefRZ8+ffDggw+iqqoq7SZlkk2bNuHcc89Fv379cPPNN6fdnFwiXJPW1lZ84xvfwC233II99tgDPXr0wMSJEzFnzhx069YNCxcuxN/+9reUW5tNXnnlFYwaNQoLFy7Efffdh5UrV2L9+vV49NFH0drainPPPRfnnntu2s0kBABw1VVX4Z577kG3bt1w//33o0+fPmk3KbO0tbXhnHPOQVlZGe666y6UlXGa6wcxvrS1teFLX/oSHnjgAYwcORL19fU4+OCDMWfOHDQ2NuLzzz9PZK8UfnslhLDfm5ubbR8jNtriKqJ3fvjDH+LOO+9Er169OleyiTUXX3wxVqxYgVtuuYVJyQFRw2isHLtddtkFxx9/PAB9Qz1iZOPGjTjllFOwZs0aPPzww/jGN76BxsZG9OrVCyeccAKefPJJ1NbW4q677sLzzz+fdnNzBceY6Lnxxhvx85//HNXV1Zg5c2Zn4QFiza9+9SvMnz8fv/zlLzFixIi0m5M73MaX7t2741vf+haAZMYX5qSUEEOGDAHgXBlE3CceS5y59NJLcdNNN6GhoQFPP/10Z/UVYs3MmTNRUVGB2267rcsqzPvvvw8AuPPOO/HMM89gwIABdAIs2G233SyPrR7z+eefJ9KmPPH4449jzZo1GDZsGA466KAu9++222446KCD8Pzzz+OZZ57BEUcckUIr84kYNzZu3IgtW7ZY5qVwjPHOzTffjEsvvRRVVVV46KGHcOyxx6bdpMwjqsY9+uijXaqULlu2DIDeB4wfPx6AXmWSSLI2vlCklBBiAr1u3TosXbrUssLXm2++CQAYM2ZMom3LIz/+8Y9x4403omfPnnj66adtq9kQI21tbfjnP/9pe/+yZcuwbNky7Lrrrgm2Kj+MGTMGhUIBmqZh7dq1lhWo1q5dC0DG/xPJJ598AsB5Jb9nz54A9Lhs4p0RI0agtrYWW7duxZtvvmkp8DjGeOPWW2/F1KlTOwWKcEeJN15++WXb+1auXImVK1cm2Jr8sMcee6B79+7YsmVL5zhiJsnxheFeJcSgQYMwbtw4AMB9993X5f6XX34Zy5cvR3V1NfetcGHatGm4/vrr0bNnT8yZM6fzcyXObNy4EZq+iWyXn3POOQeAHn+taVrnqhcxMmDAABx22GEArO321tbWThF44IEHJtq2PDBw4EAAunO3adOmLve3trZi/vz5AGBbqp1YU1VV1TmZthpj/vOf/+DVV18FAJxyyimJti1P/P73v8eUKVM6BcoJJ5yQdpNyw9tvv207xlx55ZUAgHPPPbfzNmKkoqKis6CNXTjXnDlzACQzvlCklBiiKsi1117bORADurty0UUXAQCmTJnSuZJIunLFFVfgN7/5DRoaGihQSCqIwfbXv/41Xn/99c7b29racOmll+Ljjz9G9+7d8Z3vfCetJmaW4447DnV1ddi2bRvOP//8zhwJQN+M8JJLLsEnn3yCyspKfO1rX0uxpflk2rRpKBQKuPvuu/Hkk0923r5161ace+65aG9vx2mnnYY999wzxVZmlz/+8Y+46KKLKFBIalx++eWorKzEH//4Rzz22GOG+66//nq8/PLLKC8vx3/913/F3paCRilZcvzwhz/ETTfdhMrKShx55JGoq6vDs88+i40bN+LQQw/FnDlzUFNTk3YzM8kjjzyCk046CYC+Kdk+++xj+bi+ffvit7/9bZJNyz2TJ0/GPffcg6uuugpXXHFF2s3JPFdffTWmT5+OiooKHHjggRgwYADmz5+PZcuWoaamBg888ABDRGz4y1/+gu985ztoa2tDv379MG7cOFRWVuLNN9/Ep59+irKyMtx666248MIL025qqsyfP79z8QoAPvroI6xduxaDBg3qdKQAPQ9A3WDwd7/7Hf77v/8bhUIBX/nKV9C/f3+89NJL+PzzzzFixAi8/PLLJVE4w+/n9/bbb2PMmDHQNA177rmnZc6UQOzJVewEPQet+MUvfoFf/vKXOPfcc/GnP/0ptjZniaCf3z333IPvfve76OjowNixYzFkyBAsXLgQ77//PsrLy3H77bfj/PPPj/8NaKQk+fvf/659+ctf1nr06KHV1NRoI0eO1K699lqtpaUl7aZlmrvvvlsD4Pqz6667pt3U3HHOOedoALSrrroq7abkhqeeeko77rjjtN69e2uVlZXa4MGDtcmTJ2uLFi1Ku2mZ5+2339YmT56s7bbbblp1dbVWVVWl7brrrto3v/lNbe7cuWk3LxM8//zznvq7pUuXdvnfOXPmaMcee6zWu3dvrbq6Whs+fLj205/+VNu8eXPybyQl/H5+Xh9fSlO3MOegmSuvvFIDoJ177rnxNzwjhPn83njjDe20007T+vfvr1VWVmoDBgzQvv71ryfaP9JJIYQQQgghhGQK5qQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRTUKQQQgghhBBCMgVFCiGEEEIIISRT/H/nb65T8rLR1wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6), sharex=True)\n", + "ax1.plot(ps.freq, ps.power, lw=2, color='blue')\n", + "ax1.set_ylabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You'll notice that the power spectrum is a bit noisy. This is because we're only using one segment of data. Let's try averaging together power spectra from multiple segments of data.\n", + "# Averaged power spectrum example\n", + "You could use a long `Lightcurve` and have `AveragedPowerspectrum` chop it into specified segments, or give a list of `Lightcurve`s where each segment of `Lightcurve` is the same length. We'll show the first way here.\n", + "## 1. Create a long light curve.\n", + "Generate an array of relative timestamps that's 1600 seconds long, and a signal in count units, with the same properties as the previous example. We then add Poisson noise and turn it into a `Lightcurve` object." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD4dklEQVR4nOydd7hUxfnHv3sL7dJBQFSwoIDGhqhRxIoaSzCIibHFGjX6s2HvMbEnWKJGTQJqErEiEWM0CLFhR7CBCAooSFF6517u3d8fx8OZnZ05Z9opu/t+noeHvVtmZ8+ZM2e+87ZcPp/PgyAIgiAIgiAIgih5qtLuAEEQBEEQBEEQBOEGEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJNWl3oFRpamrC/Pnz0aZNG+RyubS7QxAEQRAEQRBESuTzeaxatQrdu3dHVVW6NjQSeIbMnz8fW221VdrdIAiCIAiCIAgiI8ydOxdbbrllqn0ggWdImzZtAHgnsW3btin3hiAIgiAIgiCItFi5ciW22mqrTRohTUjgGeK7ZbZt25YEHkEQBEEQBEEQmQjdoiQrBEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAmZF3j19fX405/+hP322w8dO3ZEixYtsOWWW+KII47AU089JfzM+PHjceSRR6Jz585o2bIl+vTpg2uvvRarV69OuPcEQRAEQRAEQRDJUZN2B8KYN28eDj/8cEybNg2dO3fGgAEDUFdXh7lz5+KNN95AXV0djj/++ILP3H333Rg2bBhyuRwGDhyIrl274s0338Stt96K0aNHY+LEiejcuXNKv4ggCIIgCIIgCCI+Mivw1q1bh0MPPRTTp0/Hb3/7W1xzzTWora3d9PratWsxY8aMgs9MmTIFl156Kaqrq/HCCy/giCOO2PTewYMHY8KECTj33HPx7LPPJvpbCIIgCIIgCIIgkiCzLpq33XYbpk+fjrPPPhs33nhjgbgDgFatWmG33XYr+kw+n8fpp5++Sdz57x0xYgSqqqowevRoTJ8+PYmfQBAEQRAEQRAEkSiZFHgNDQ148MEHAQCXX3650mfq6+vx4osvAgBOPPHEotd79uyJAQMGAADGjBnjqKcEQRAEQRAEQRDZIZMumpMnT8bixYvRvXt39OrVC59++imee+45zJ8/Hx06dMDAgQNxxBFHoKoq0KczZszA2rVrAQD9+/cXttu/f3+8+eabmDJlSiK/gyAIgiAIgiAIIkkyKfA++eQTAMCWW26Jq666CnfeeSfy+fym1++44w7svvvu+Ne//oUePXoAAGbPng0AaN++Pdq0aSNsd6uttip4r4w1a9ZE9lHlPQRBEARBEARBEEmSSYG3ZMkSAF7SlPfffx/nn38+LrzwQnTr1m3T31OmTMFRRx2FyZMno7a2FqtWrQIA1NXVSdtt3bo1AGDlypWh3++/jyAIgiAIgiAIopTIZAyeb61raGjACSecgPvvvx877LAD2rZti0GDBuGVV15BixYt8Nlnn+HJJ59MubcEQRAEQRAEQRDZIJMCj3WxPOecc4pe79GjB4466igAXlFz9jNhrpN+ofO2bduGfv/q1asj/82fP1/vRxEEQRAEQRAEQcRMJl00t912W+Fj0XsWLFgAANh6660BAMuXL8eqVauEcXhz584teK+MMDdPn8bGxsj3EARBEARBEARBJEkmLXj9+vVDLpcDACxevFj4Hv95P16ud+/eaNWqFQBg0qRJws/4z/fr189pfwmCIAiCIAiCILJAJgVet27dsN9++wEIXDBZGhoa8PrrrwMA9tprLwBAs2bNNrltjho1qugzX3/9Nd5++20AwJAhQ2LpN0EQBEEQBEEQRJpkUuABwI033ggAuO222/Duu+9uen7jxo249NJLMWvWLLRp0wann376pteuuuoq5HI5PPLII3j55Zc3Pb927VqceeaZaGxsxNChQ9GnT5/kfghBEARBEARBEERC5PJsgbmMcfPNN+P6669HTU0N9tprL3Tr1g2TJ0/GnDlz0LJlSzzzzDObrHY+d999N4YNG4ZcLocDDjgAXbp0wZtvvokFCxagd+/emDhxIjp37mzdt5UrV6Jdu3ZYsWJFZNIWgiAIgiAIgiDKlyxpg0wLPAAYN24c7rnnHrz33ntYtWoVunXrhkMOOQRXXnml1BI3fvx4DB8+HO+//z7WrFmDHj164LjjjsPVV18tLYKuS5ZOIkEQBEEQBEEQ6ZElbZB5gZdVsnQSCYIgCIIgCIJIjyxpg8zG4BEEQRAEQRAEQRB6kMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARBEARBEARRJpDAIwiCIAiCIAiCKBNI4BEEQRAEQRAEQZQJJPAIgiAIgiAIgiDKBBJ4BEEQBEEQBEEQZQIJPIIgCIIgCIIgiDKBBB5BEARBEARBEESZQAKPIAiCIAiCIAiiTCCBRxAEQRAEQRAEUSaQwCMIgiAIgiAIgigTSOARBEEQBEEQBEGUCSTwCIIgCIIgCIIgygQSeARBEARBEARBEGUCCTyCIAiCIAiCIIgygQQeQRAEQRAEQRBEmUACjyAIgiAIgiAIokwggUcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMoEEngEQRAEQRAEQRBlAgk8giAIgiAIgiCIMoEEHkEQBEEQBEEQRJlAAo8gCIIgCIIgCKJMIIFHEARhwfr1QD6fdi8IIlk2bACamtLuRTpU8m8nCFesW5d2D8obEngEQRCG/O9/QOfOwP77k8gjKoepU4EttgB23BFYuzbt3iTLlClAt27ALrt4Qo8gCH1OPBFo1w545JG0e1K+kMAjCIIw5JBDgDVrgIkTgQkT0u4NQSTDL34BLFkCfPEFcO+9afcmWY46Cli+3BO5tDglCH3mzQOeeAJoaADOOCPt3pQvJPAIgiAcsHp12j0giGSYPj14vHBhev1IgwULgsfLlqXXD4IoVT77LO0eVAYk8AiCIBxQXZ12DwgiGcgd2aN587R7QBClB7tBRMQHCTyCIAgH1NSk3QOCSJ5cLu0epAcJPILQ5/PP0+5BZUACjyAIwgEk8AiismjRIu0eEETpMW1a8Lh37/T6Ue6QwCMIgnAACTyCqCzIgkcQeuTzXoIin7Zt0+tLuUMCjyCIiuHyy4FBg4BZs9y3TTF4RKVAMXgeJPAIQo9FiwqTEzU2pteXcof2nAmCqAjefBP44x+9x8cdB0ye7Lb9KtouIyqQSo7Ba9Ys7R4QRGnx1VeFfzc1pdOPSoCWJARBVARs5q4pU9y3T1YNgqgsaFOHIPRoaCj8mwRefND0RBAE4QC6URGVSCVb8GhThyD04O+TdN+MDxJ4BEEQDqBYAoKoLGhxShB68NcM3TfjgwQeQRCEA2ixR1QiZMEjCEIVsuAlBwk8giAIB9CNiiAqC7rmCUIPEnjJQQKPIAjCAXSjIojKIi0L3syZwFVXuc8ETBBxw18zdN+MDyqTQBAE4QCKJSCI8iYr1of99wcWLgTuuIPcRInSgmLwkoMseARBEA6gnUiiEqmkGLz16wv/TktcLVyYzvcShC1Z2SSpBEjgEQRBGECuJgRRWfACj655gtCDBF5ykMAjCIIwgAq2EkRlsW5d4d/kHkkQetDGaHKQwCMIgjCgvr7wb4olIIjyJosWPBKZRClBMXjJQQKPIAjCAF7gZWGxRxBJU0kxeFm04NG8Q5QS5KKZHJRFkyAIwgASeARRGcybB3zxBdCmTeHzaVzzvKhsbASqq5PvB0GYEJfAy+eB998HWrcGdtrJTZulTmYteKeddhpyuVzov/W8v8QPfPjhh/j5z3+Orl27okWLFthmm21wwQUX4Lvvvkv4VxAEUa5s2FD4Nwk8gig/1q0DdtsNGDQIuOuuwtfSsOBt3Fj4N7m4EaVEXALvjTeAH/8Y2Hln4Kuv3LRZ6mTegjdgwAD06tVL+Fq1YNvq2WefxQknnICNGzdizz33xDbbbINJkybh/vvvxzPPPIOJEydK2yMIglCFYvAIovz573+BJUu8x089VfhaGps6/MYSzTtEKSGyQLvg7beD9idNArbbzk27pUzmBd5ZZ52F0047Tem98+fPx6mnnoqNGzfi4Ycfxtlnnw0AaGxsxGmnnYZ//vOfOPHEE/Hee+8hV0mBAwRBOIdcNAmi/GPwwn5fGhY83nGJt+gRRJaJy4K3Zk3wmDY9PDLromnCPffcg7Vr12LQoEGbxB3gWfoefPBBtGvXDh988AHGjRuXYi8JgigHSOARRPkTJvDIgkcQesQl8NauDR7TNeFRVgJvzJgxAIATTzyx6LXWrVtj8ODBAIDnnnsu0X4RBFF+kMAjiPKnKmSVlIYFjwQeUcqQBS85Mu+i+eqrr+LTTz/FqlWr0KlTJ+y111448sgj0bx584L3rVq1Cl9++SUAoH///sK2+vfvj3/84x+YMmVK7P0mCKK8oRg8gih/sm7BIxdNopSIKwaPBF4xmRd4f//734ue23zzzTFy5Ej85Cc/2fTcnDlzNj3u0aOHsK2tttoKADB79uzQ71zDjhSL9xAEUb6QBY9IgnweWLUKaNs27Z6IoRi8ZCELHlHKkItmcmTWRXPXXXfFvffei88++wwrV67EokWLMG7cOOy7775YsGABBg8ejNdee23T+1etWrXpcV1dnbDN1q1bAwBWrlwZ+t2tW7eO/Ne9e3f7H0kQRGK4XoyRwCOS4PjjgQ4dgL/+Ne2eiCGBlywk8IhShlw0kyOzAu+SSy7BhRdeiJ122glt2rRBly5dcOihh2LixIk45phj0NDQgIsvvjjtbhIEUSK4XozRQouImzVrgGee8RZBTN4wIkHCYvCy4KJJ8w5RSvDXTD7v5t5MAq+YzAo8GblcDjfddBMA4OOPP8bcuXMBAG3atNn0Hpn75OrVqwEAbSN8XVavXh35b/78+S5+DkEQCeF6MUYWPCJuaEylT9aTrFAMHlFKiOY0F/McuWgWk/kYPBF9+/bd9HjevHnYaqut0LNnz03PffPNN9h5552LPueLwa233jq0fZmLJ0sjjSCCKClcX7Ik8Ii4KYUxVckummmcH74OHi1FiFJCtCnS1ARUV9u1Sxa8YkrOggcAS5Ys2fTYt9y1bdsWvXr1AgBMmjRJ+Dn/+X79+sXcQ4IgsgZZ8IhSoxQWKmlYsZIk7BxkwYJXCmOEIHzisuCRwCumJAXek08+CcATdb179970/JAhQwAAo0aNKvrM6tWr8cILLwAAjj322AR6SRBElojbgkc3FcI1pTCmKlngZSEGj1w0iVJCdM24mOdI4BWTSYH30UcfYezYsdjIzVxNTU0YMWIErrnmGgDAhRdeiNra2k2vX3zxxWjVqhXGjx+PvzIpxxobG3Heeedh+fLl2HPPPXHYYYcl80MIgsgMZMEjSo1SWKiU+7gnCx5BuINi8JIjkzF4c+bMwZAhQ9ChQwf069cPXbt2xfLly/HZZ5/hm2++AQCccMIJuPHGGws+1717dzz66KM44YQTcPbZZ2PEiBHYeuut8cEHH2DWrFno2rUrRo0ahVy5Bw0QBFEECTyi1OAXKo2N9rEqrin3cR/2+7JgwaPFLFFKxCHwNm4svB/TNeGRSQverrvuiosvvhg77bQTpk+fjueeew4TJkwAABx33HF48cUXMWrUKNTUFOvTn//853jvvfdw7LHHYtasWRgzZgwaGxtx/vnn4+OPP94Up0cQRGVBSVaIUoMfs+wudVYo93GfdQseuWgSpYQsyYoNfOJ8EngembTgbbPNNrj77ruNP7/HHntg9OjRDntEEESpE7cFj24qhGv4MbVmDcBUBMoElSzwyIJHEHrEEYPHb3zRNeGRSQseQRCEa1wvxviFVrkvdInk4ceUpMRrqpT7uM+aBY/KJBClTBwummTBE0MCjyCIioBcNIlSg1w004cseAThjiQEHrkte5DAIwiiIqAkK0SpIXLRzBrlPu6zZsGjGDyilIkjBo9cNMWQwCMIoiKgOnhEqUECL33IgkcQ7ogjBo9cNMWQwCMIoiKoJAveyy8DJ50EnH46MGlS2r0hTCEXzfQJ+31ZsOBldTG7cCFw+eXA88+n3RMiS5RKDN7LLwOXXgrMnWvfVlpkMosmQRCEaypF4K1bB/ziF8CqVd7fU6YAH32UapcIQ8iClz5Zt+Bl1UXz1FOBceOAP/4RWLQI6NIl7R4RWaAUBN6aNcARR3iP33gD+OADu/bSgix4BEFUBJWSZGXJkkDcAaW9A1npkMBLn6zH4GXVgjduXPB4+vT0+kFkizgEnusYvMWLg8el7AFDAo8giIqgUurgUcB5+cCPWXLRTJ6sW/BK4frO5dLuAZEVRJsiWYvBa9bM7vNZgQQeQRAVQaW4aPI3u6z0i9CnFCx4aVixkiRrFjyqg0eUMqXgolkucxoJPIIgKgLXC6GsFjqnjGLlQykIvKyM+7jIugUvqzF4BCGiFFw0y2VOI4FHEERFUKkWPBJ4pQtl0UyfrFnwStFFkyB8SsGCVy7XFAk8RyxeDDzzDLByZdo9KeT994G33sqmyTmf9/p2333Av/9dPhcVkU2yWgevoQEYOxb4+mv7PgHFIqDcF+BZYuNGby778ks37cVtwVu4EBgzxsu8akq5j6+sl0l44w3gvfeS7wdBmFAKdfDKZU4jgeeIX/7SS01+yilp9yTgo4+AvfcG9tsPePvttHtTzLvven278ELgpz8FRo5Mu0dEOZNVC94f/gAccwyw++7FizcTyIKXHg884M1le+7pRozFKfDyeWDgQODYY716ZaaUy2JIRtZdNB97DPjxj7NdCiWLG8xEOojGQtYteKU6fkngOWD9emDCBO/x2LHp9oVl2LDg8XnnpdcPGR9+WPj35Mnp9IOoDFwvxvhkB6btX3ut9/+yZW524kVJVkr1BlVqXHyx9//y5cB//2vfXpwCb/XqwNL4wAPm7VSywMuCBc/nssuS7QdBmFCKMXj8vb5UIIHngC++SLsHYtibTxbTFPPB4RQsTsSJ6105VwLPdRuiOC0SeKVJnGUSXN0TKlngZcGC55PFe7wPzT+ETynG4GUx9lkFEngOmDo17R6IybrAa2gI/5sgXMLfRGwXHXzckgtXSBdtiKw85KZZmsRpwXMlTipZ4GWhTIJPVYZXczT/ED6lGIOXxezFKmR4SigdSOCZwQs6suARccJP2rY3gaxa8EjglQ9xCjxXY6KSBV6WLHgk8IhSII4YPNcumqVQnkaFDE8JpQMJPDNI4BFJwk/atjcV3oKXFYEncicp90V4uRKnqxAJPDWyZsErRRdNurcTPqXgohmna3ySkMBzQCUKvKVL7V0qKQaPSIolS4rHq81NpbHRvr2mJuD774ufy+eB774z7xtZ8LKBi4yoZMFLn7DfZ/Pbly7Vv+fl85Vnwfv++2Atk88Xz5lEaZGEwLNdS5IFjwDg7eLPmlX4XBZveC4F3vjxQNeuwI47FqeK14Fi8IgkeOEFoFs3r04li82iQxQHo9veoEFev/g2fvYz7/q6/36zvpHAywYuMq9lUeDxVqss3u9cEocFb8IE79rfcUe9+17Ye7Ms8EwX3I8+6s2Fhx7qHetBg7y/qaRS6RJHDF7cWTRJ4FUo339fPBiyIlTich859FBvwv7yS+D5583bIRdNIgkGDxaPLZuFqagwtE57X30FvPpq8WdWrw5KrVxwgVnfRDejcl+EZxGb4uE+/Hlz0aasbVVI4AWY/vZBg7z738yZwFNPqX+u0gTe6ad7423CBO/f//7n/X3mmW77RyRHKbhokgWPACAeSDZWLZckEYPn0oJHAo9IEpubisg6o9OezLrjwuojihcgC17yxGHBc3keTdvix3klCzwXm6grV7rpS5YFnotxu2iRfRtE+rhOstLQULyWpDIJHhmeEkoD0cDMogUvLoHXurX5Z3lBl5XjRlQGNjcBWwue7L0ubiTkopkNXFjb+PPW0ODOM4MEnhpZyqIZ9n1ZFnguNm9XrbJvg0gf1xa8OO535KJJACCBZ7vzwkIWPCJJXFvwdG4qskV6XAKv3BfhWSQOCx7g7lyaLoJcZ6PNOnFb8HTuzWF9yXIWTRcbTCTwygPXMXhxeKyQiyYBgFw0bXapSeARaZKmBU+2MHRh9SEXzXTgj3EcFjzA3TxJFjw1yIJnj4sxu3q1fRtE+pSiBY9cNCuUSrPg8SmabXapSeARaZJmDJ7svS5EAblopgM/N5LAKw/Cfl/SdfBKVeCRBY/wcR2DF8f9jix4BADxQDIReOedB3ToAPTsCYwebd8vHlcCb/Hiwr9tFjEUg0eosHYtcPjhwIEHAsuWuWs3zSyacVrwbF00N2wAjjoK2G8/tzWnZs0C9twTaNfOaztrSROmTwf22CPI3KcLf+7ictF0NU+SwFMjSxa8UnXRdLEpsXy5fRtE+ri24MXhsUIxeAQA8cDUddGcPRt48EFvAvvmG+D22510LZbdRX7BRy6aRNzccgswbhzw+uvAVVe5a9e1i6ZOe6pJVnSv4Xze/oZ3773Af/4DvPWWeakGEX//OzBpkpc18K23iusSps3Pfw5MnuzV3nr5Zf3P82MijjIJgLt50nRRxY+lpK1YSRN3DJ4OlWzBI4FXHriOwUvCgkcumhWKix1W3vVAJ21yGOyF5Gp377vvCv8mF00ibt59N3j8zjvu2k3TRVM1yQrv9hdFfb14TtK54X30UfD4tdf0vj+MFSsK/87aruhnnwWPZ8zQ/zw/JuKy4JGLZrJkyYJXqgLPxZh16b1BpEcpxuBl7V6lSoanhNLARQyeKBW2C9hFpKvJP04LHrloEiLYa6y6Op52dYmrTAKfSED3+pLdiHT6xs4VLmP3+Os7y8LAZC6Kw4JHLprpkyULXqnWwXMh8JYsCR67vA8QyVIKLpoUg0cAcOOimYTAy6IFj5/0yYJHiGCvD5eLGJubgK0FT/bdvMDTvb5kriQ6v5VdPMUp8LKc+MVkDi51C56qWCGBF+Dit+uIxFKx4PH9dHGtswLPpv4ukS6lkGSFsmgSAOKx4LkqsxCHwKMYPCJp2OsjyxY8nZuK7L38zcqVBS8LAo+f17IsDLJswYtL4KmeD6qDF5AlC16WNkz4vrgYs0uXBo9J4JUupRiDRxa8CsVFHTx+wGfZgscLPIrBI+ImLoGXpgVPNtb5G4nu9eVC4JGLZmVa8FTPdaVZ8EqlTEKWBZ6LvrHXU12dfXtEOlAMXnKQwLMkyzF4LHG5aGYlBu/BB4FLL6VMW+VIXC6aacbgJW3B0+lbUi6aWREG48cD55xT+FyWLXim8+SHH3q/009aZGplqTSBVypJVrK0QSoKv3j5ZeDcc80SGPHU1tq3kWXeeAM4+2zg44/T7omc6dO98/nKK3qfoxi85KhJuwOljosbcBIumq6Isw6e6Q3q7be9OoKAdyE+9JB5n4jsUSoumi4seLZJVrIcg8fPa1mwOOTzwKGHFj/vwoKXtTIJ/ft7///lL97v5tsmgScmbhdNFxtDQLYEHt/P9euBI47wHv/nP145KJftlxsHHOD9/8gj2U0+d/DBwIIFwMMPe2NY1YhQiha8Uo3BMxJ4TU1N+OCDDzBhwgRMnjwZixYtwrJly9ChQwd07doVe+yxBw4++GDsueeeqMpS5G8MVFqSFT5texZcNNkdpIcfJoFXbsSVRdO1i2YcMXi615ds7jAVeC4X71m04MnKULiw4JWriybF4AW4+O0657NUXDT538SWgpo71779ch9zPlkS7TwLFgSPGxqAZs3UPifaFHEdg2d73OKIIU0DLYH33Xff4S9/+QsefvhhzJ8/HwCQF5ytMWPGAAC6d++Oc889F7/+9a/RpUsXB93NHnFY8PJ57znbxWwcAo8f6FlIslIpk32lQhY8dWQ3SnLRFCNzvSlHF82otsmCJyZuC54rgZelRWjcGbLLfcyVGvX16gIvThfNli29ede1Ba9Ux5uSwNuwYQPuvPNO3HHHHVi7di1qamqwxx57YN9998VOO+2ETp06oW3btlixYgWWLFmCzz77DG+//TY++eQTXH/99bjttttw1VVX4fLLL0fz5s3j/k2JIprgbQUe4F0wLVua9cknCYHn0oJnunAp1YuPUCOLAi+uMgkq36PablVV0CdTC55LsphF06XAoyQr5UmWLHiVnEUzrH0iXXS81uJ00Wzb1o3AiyNJUBooCbzevXvjm2++wc4774wzzjgDJ510Ejp37hz5ucWLF+Mf//gHHnnkEdxwww0YOXIkZs2aZd3pLOEii6Zsl7YUBJ7LGDw/LkTXqzfpTGZEsmTRRTMuC57K96i226xZIDKyIPCyWAdPFlvhwoK3caP3r8Yi0j1JgUcWPDFkwdOH74urvAI+5TzmSvG3ZUXgtWsHLFpEFjwfpaV0y5Yt8cwzz+Djjz/GRRddpCTuAKBz58645JJL8Mknn+Cpp54qO+sd4CaLpos2RJSaBU/UvgqlevERapSKBU/npqI6zm0seKzLjM5vjStsutxdNEXnytaKF5fAa2ykGDxVwn4fWfDE8H2Rxbq6ar+cEIXsZB0dgec6Bo/dpGvTxr490edLdbwp3cqnTp2KoUOHWn3Rz3/+c0ydOtWqjSwSRwwe4GbHKw6Bx/fVZQye7LkoSvXiS5vVq4F//hPgjerr1gFPPgl89VU6/fJZuRJ4/HHg66+D57JgwZs0CXjppeDvVq28/+Nw0bSJwWMFXhYseOXuoik6V3//u91mXVwxeA0NZha8777zfhNLU5NXhPrxx4vL6JQDZMHTJ24L3rp1wNNPq5VcWL0aeOIJ+8ydceHf57791vs77mNnSj7vlZR57bXi19Ky4M2a5WVRB7z7nemmZlR/snCvMkHJecRVJsxyzKgZRxZNILupccmCVz5ccYVXP3DrrYGZMwNXst/+FrjzTm837PvvgbQM7//3f8A//lH4XNp18BYsAPbZp/C5li29XcQ4XDRdWfBMC527JIsWPJcumqJzdf753rm+8EL99gC3ZRJYGhrMyiQMHgy8917hc01NwPHHe4u/vfYqfr3UyVIMXqkIPBeln8LE85Il3pirrfVq3/qbbCIuuggYORLo1s0TUVlbhp57ridAt9nGEyyiMJgsOL+99VZQUsavpemThsDbuDEoJwEAdXXFCcJMz3VFWfAIOZVmwYszi6aofRVKwYUhizz4oPf/nDmF1ro77/T+X7UKmDYt8W5tghd3QPoumi++WDhGmzcPhHEWLHh8DJ5PHH3TJYt18GQWPJP5V3auLrpIvy2fuFw06+vNFjEi8dbU5Ik7AHj/ffu+ZY24LXguyqvothM3/Bg1cdFU+T0NDdEbCiNHev8vXFicpTgLPPGE9//s2d54crmJ7hJ2HrvsssLXdM6vK4G3dCkwb17w90EHucsAzfcnS9eWDkYC75tvvsHYsWMxjz268Fw5DzroIHTo0AG77747XtEtcV+CxCXwSiUGb90685ucaKFCFrx0kAm5rLiH+KTtoslXe2nRItgljCMGLw0XzbgsAVm04MkEnsnGlYuyCDxZc9EUkYXzGCdkwdPHhZuh6u/RWX9kfTPYT8zEEse8YgJrReQFna0Fz+RezLbTooUnlF0JPNFnsz52RBgJvD/+8Y8YMmQI1jB3xzVr1mDQoEF4/fXXsWLFCnz88ccYPHgwZs6c6ayzWUR00rPiopmEwGtqMre6uYrBK/cFRhzw41YWHlvOAs/FuKmtDfqUtTIJpgIvrt3KLAo8mYumya552Gdk3xNFXBY8kcAzPe9ZOI9xkqUYvFKx4LlIsqL6e3TOQdbHan19di147P3ERuCJzpfJeWHbOeIIr39xWfBs20sLI4H3xhtvYPvtt0fv3r03PTdq1CgsWrQIP/vZz/DRRx/hd7/7HTZs2ID777/fWWezSJZdNNlBGpfAA8x2mGQXi60FL2v+9VmFd1WpRIFnMmHzN7bFi4Mxl8UyCT5ZdNHMwmIrKQve55/rtwck66Jp2m4p7mzrkKUsmmTBsyPri/SGhsq04JlcR6J1X5wWvCzcr3QxWg4vWLAA2267bcFzL7/8MnK5HO677z7ssssuuO6669C7d2/873//c9LRrFLpZRIAsx0m2e+zjcEjgafG998X/l2JLpomE7boeMQp8NKw4CXlopmFxZZM4Lm24JnGsroSeLwIIwueOlmy4IUd6yxcTz4uLHgk8DyyYsFr0SJ4zPep3AReRVvwli1bho4dOxY89+6772LHHXfEFltssem5nXfeuShOr9wQnfT58+ULB9U2XAs8V7iy4Mkmb9syCZUm8BYv1htrPnw68+nTxeckrWyusu91tVEBuBd4cbhBphGDl7SL5rx56d08k7LgmVYIcnVvEGU1LIUYvMbGwkQKIhYuDF9gbtwYpKA37YOMLNXBKzcLXhwumsuWeck58nng00+9kje2c8/cue6uAdF1mUULHn8+047BIwueGKPlcF1dHb5nTABz5szBggULMGDAgIL31dTUYGOWZp0YEJ300aOBnj299L0qxOWiyeJqcGbRglepLpqTJgHduwM9eng3Lh14C159vbjuXVoWPNnC2+Uka3IDEB0Pkxi8LBc6T9JFc8QIYKutgP32S8fVL6kYPFOB56pMAt+OSZkE2RiKq2ZUPu9lxttqqyDjL8+LLwJbbAH07Su+pzQ1eaUbttyyuH6fKq4teCblKWSfNW0nblyUSYjj9/TtC2y+OTBgALDLLsCeewL7728+99xzj3f//clP3PQvyxY8VuDxorPcLHiiz1aMBW/HHXfExIkTN4m8UaNGIZfLYeDAgQXvmzt3Lrp27WrfywwjO+lLlngXv2kbri14Lm66sjZMdphI4NkzZIh3HJcuBe69V++zvMADvBpvPGkJPNnCW3cch924XVjwTj/dzEUz6TIJabtoipIqNTUBZ53lPX73XeCLL9x/bxQuLXhhbmimRZZduWjy7Zi4aMq+10awhDFvHvDmm97j884Tv+foo73vnzXL21jlefddYMoU7/Gpp5r1w7UFz8ZyWioumkmVSQD0xVl9PfDOO8Hfb7/tecKYcMkl3v+vvOLdh23JcgweK574eTONJCuiHBNxumhWjAXv1FNPxbp169C/f38MGTIEN910E9q0aYPBgwdves/69esxefJk9O3b11lns0jYSVe9MEtF4MluRGkLvEqNwWNdl3Sz9PEumoB4HJrcmF0gW3jrTtquEySwN7K99gLuuKP8YvD498ZV68uVi6ANLgWe/3vatgUefRR4/HFgs82851auNOpeplw0ZWMorppRuu2I5kDRPOeyHybXBn+cyUVTrY04cbHecnGvFGXRzIrAY88hf7zIgpdNjJbDv/71r3Haaadh7ty5eP7559GiRQuMHDkSbdq02fSesWPHYt26ddh///2ddTaLhA3Mujq1NpIodB6nwDNxIXAZg1epFjyWVq303i+y4InGYVruIa5cNF2nFWevy2uv9RbwWY3Bq60NHttYF10sfkTzWRZ2RGUbI6J6VFH4x6221rMWnXiiJ/YAtwIvaxY8G8EShovxoRomEUbcFjydeaNULHhZLZNg+11huKpPmVUXzbBzaFvo3OT4izb2yYJXSI3Jh3K5HEaOHImbbroJixYtQp8+fdC6deuC9+ywww4YM2YMfvzjHzvpaFZxIfCSyKJZzha8OMpBlBotW+q9X9WCl9buoWzhrTtpu16csULFt5DFGYOXhoumyNrDtmWCLD4qbcISFK1fD3C3tVD848ZuMrVr5/2/cqU3H+vOT0kKvKh2Za/z4t2VwHNhEXEh8MLGKVnwxJSaBc/Fd7kQYvX1xeMtKxa8sN+XRQuezTktFwuekcDz2WqrrbDVVlsJX9ttt92w22672TRfEoSddBsLXikJPEqykj66Aq9SLHhh48nWgueLnqy6aLJB8TYxeC68CVQEXhqbMy4Fnv972EWGb8HbuNFrT/c6jUvgiVw0o8aI7HVe5LhaCGVF4LneJLIReKVqwTNB9bhkxYLn4l7Z0FD8e0rBgpd2DB5Z8MQYLYerq6tx5plnRr7v17/+NWpqrDRk5gk76WzdkDCScNGMc8J1acEjF00zVMeaj6rAS2v30FUMXhIWvCwlWYnDRdPFXCRqg/+eNAReWOyq6bEXCTwAWLFCrz22TRYXMXguLXim74tCV+CJFo662YVFZCkGr1SyaLroi+ocmaSYDMPFvTLLSVZcCbw4LXis3KAYPEOBl8/nkVec2VTfV6q4mPzjsuCxZM2CpxrPoYJrgTdihJf6+P777dtyxfr1wMEHe6Ji662Bt94qfF138lF10Uxr99BVFs0kBV4cmSqzkGQlKQue7vk4/XRghx2AW24BttnGi4nUJcqCp0OUwDOJw8tSmYQ4Ftz+vLbHHsANN3jz7k03eSnsXYTvsxtZ7LnQQfR7/Gu+XFw0m5q8rMzNm3tlJ/7zH/O2gGRFV5JiMgxXLpqlGINXbnXwKtqCp8ratWtRy24jW3LFFVcgl8shl8vh5ptvlr5v/PjxOPLII9G5c2e0bNkSffr0wbXXXovVq1c764uPix21UnfRTDsGjz1+7AVuyllnecVLL7ggndpcIsaNA1591TtuX39dXBdKd7yIdrYrzYJncgNgb3I2MXiq3617c2evn1Jz0dTp45QpXqbKmTOB664D5swBbr01XLCJCHu/CwueH4MHmAm8LLloxrHgvuMOb16bPBn4/e+9efe3v/WKULsYd6zAa9/erA3RcfGtzeXiovn++8C//uUd8/nz9cvu8JAFzwyy4Jm1Q1k0xcQm8JYvX46JEydi8803d9Le22+/jeHDhyMX4cdz991349BDD8XLL7+MnXbaCT/96U+xYsUK3Hrrrejfvz8WmxY8keBiARmXiyZ7AbgWeKwp3CRWIi6B59rN69tv3bZnyqpVhX/zAk1X4InenyULXhIxeK4teID6hkBcu9Ol5KJpI/BkYkm3r0la8ErdRTOOBfcHH6i/N+raEr3OCjzd+Ecf9vccfTTwxhvpWfDictHk7y8mY5UlSdHl4ruyYsETXZck8KLboTp4YpQD5LbddtuCv5999lm89tprwvdu3LgRCxcuRGNjI8455xyrDgKeJfC0007D5ptvjj333BP/+te/hO+bMmUKLr30UlRXV+OFF17AEUccsenzgwcPxoQJE3Duuefi2Wefte6TT5YteGy7LgYn215dXXATsBV4LVsGk5jJ72Y/Y+uiyd+wp04FttzSrk0X8MeYX+Dq3txF7xc9R1k0C2FvZL6FjB1zTU1qVmTV37Fxo172xVJy0dQVGCxMRZ7I75GRzycbg5clC57LMgmm7wP0jnF9faFVWgXWFd30nuoflz33BF54wXuclgUvKiSkqcnsHsgfG9t5nyx4ZtTXF8/15eai6SrJSpxlEsrFgqcs8ObMmbPpcS6Xw+rVq0NdHps1a4af/exnuPXWW606CABXX301Zs6ciRdffBFPP/209H233XYb8vk8Tj/99E3iDgBatWqFESNGYNttt8Xo0aMxffp09OnTx7pfgBuBJ2rDxaLKtcBjf4+twGPbYgWeyUTrUuDxC76pU4HDD7dr0wX8eFi4sPBvncVLU1O4H3xtbdAeuWgWEmXBa2xUE3i6u/aqrsdxlElwkc3QtYumzHKiM2+uXx9ugdEd+/7vYcdDVgWey0LnPDr9CxPYPOvWhQs8/lzm8wDrsGMi8PL5oF32GsyiBQ/wzpHJPZC/brIg8JKMwcuKwGtoKJ7rK8GCRzF48aA8FcyePRuzZ8/GrFmzkM/ncdxxx216jv/37bffYvXq1Xj66afR3tTx/Qdee+013HffffjVr36FI488Uvq++vp6vPjiiwCAE088sej1nj17YsCAAQCAMWPGWPWJxYVPfKlY8HiB5+PCgif6DpO2bAUevwibOtWuPVfwE+iCBYV/64wX2bhkBZ4PuWgWElYHT6dNnXFuusPPCjybEg5ZdNGUvVfnOoiK13PhopnVGLw4LXg651FH4OmejxUrCseDyTiWJfCyseDZWK6jjq3popa/bmznfXLRNCPLhc7D+mFb6Jxi8OJB2YLXs2fPTY9PPfVUDBw4sOC5OFi9ejXOOOMMdO3aFffcc0/oe2fMmIG1P9wt+vfvL3xP//798eabb2LKlCnO+ugiq1WpCzzbOniswDP53Wy/XAu8adPs2nMFvzjhF6c6x002Lv3x0qxZsPAqZxfNOCx4qteZCzET9d6su2jqZnFUea/OdRAlLsqpTIKLLJppu2jqng8+U7Bt7GJcFjydazNqfjG1RJGLpn0brlw0+byElWDBy5rAqzgLHssjjzyCM844w3Vfirjsssswe/ZsPPjgg+jQoUPoe2fPng0AaN++PdpIAjT8ouz+e2WsWbNG6R8QnwXPxaKKnbRcT4JZtuDNn+9lwnz4Yf22+EXYtGlmN/HXXwd+9Svgvff0Pysiajy4WByzAs9HRbx/9x1w7rnAAw+o9yEKVxY8FzF4b7/tncs333Qn8OKy4MXhovn5515JgiefVG+DR6UOngvRqzNvJmHBy0qZhCRdNHXOo87iNep88PM0X+vTpcDLYhZN3bZY+OumlCx45VQmIcsWvKzF4JEFLxqjKuRz587Fq6++ir333hu9e/cWvmf69Ol4//33cfDBB2NLgywV48aNw8MPP4xf/vKX+NnPfhb5/lU/pIGqY5UHR+vWrQEAKyPutP77VKhUC16rVsFjFzF4oudVYY9VLgf83/8BY8Z49ez23x/o21e9LX5orFzpuUN2767XpwMP9P7/xz/clFqImkBdumiyY0VlAXbuud7xBoD99gN23VW9LzKyVOj8B89u/OMfwMCBwfOyGDzbfvGk7aJ5wQXe/48+CvzkJ2bp5l3H4Llw0UzaglcpLppxxuDpwCfMNtk0TcKCl0UXzbgteCrJYCrBgsePn6yWSWhsDD/OFIOXTYwsePfddx9OP/300CLm+Xwep512Gv785z9rt79ixQqceeaZ2GyzzXDfffeZdDExKAYvWxa8xsZAbAD6FjTRIsxkYeYalwIvyoLHjhWV3UP2eOukPQ/DVaHzsPFk66LplwophRg8Vy6hS5eqt8PiWuC5cNGMWjjpzGuyZBxxxOC5KJOQFQtenDF4fOp/suDJ4Y9NY6Od6IkaAyrHrRJi8ETXZRYteFFzYdoumq7LJJSLBc9I4I0bNw59+/YNzUTZt29f7Ljjjnj55Ze127/44osxb9483H///ejcubPSZ3y3zDUhfjd+1s+27Laq5H1R/+bPnw8gPguerYumnzLZx7XAY42cLgWebQwefyx1Cx+LFmG6bcRBkgKPPYa6u4eu6hBmyYLH4p+HZs2C3xp3DF6WBB4fH6KKSpIVF5YMnXnTpcCTCQFXMXhsm+VkwRMtXrfYQvzeqPPF7zfzc0hTk938kQULnkoWTRNE142N5UjFgheF6m8p5SyaotjYLFrw4hB47Foha2USysWCZ+yiOZD1VZLQq1cvvPXWW9rtjxkzBjU1Nfjzn/9cZAGcPn06AGDEiBEYP348unXrhieffBJbb701AK/A+qpVq4RxeHPnzgWATe+VEebm6dP4w+gJm+BtyiTYWvD4NivJgseiK85Ei7AsCLyoY+wyBo89hrq7h3ELvDRi8Fj888CKp1KIwbNx0WRx5QImaitpF82ohZPO2JdlW3TlotmiRXBNxCXw0iiTIKJdO+Dbb4uf152LRNZBURr6MOLIohmni6YrCx7gXR+yepNRuBB4SVrw0hJ4KtdluQq8mppg3FEMXjwYCby1a9eiJbsql9CyZctNsXG6bNy4Ea+//rr09Tlz5mDOnDmbMnn27t0brVq1wtq1azFp0iQcdNBBRZ+ZNGkSAKBfv35GfRLhIktfHC6afJtxFDr3yVIMHlnwouFFgN+2aQweS9YseHG5aLL1uExi8KLGOVuLMEsWPJcLyLRj8KIEgwsLXrNmnjhbv95O4DVv7lbgiVw0XYkH24WQTFTozkWiOaShwTsfqlSKBU903di4BrqIFXQx3lTPj8lx49s2OV78+awEF03/uLECj2Lw4sHIRXPzzTfHRx99FPm+jz/+GF26dNFuf/ny5cjn88J/p556KgDg97//PfL5/KYC7M2aNcNRRx0FABg1alRRm19//TXefvttAMCQIUO0+yQjqy6acQi8UrDg8b9zyRK9tkSLMJ04kbiIS+CxQsWFi6ZtmQofVzF4cbpo+pjE4EXdfDp2DB5nSeC5dAGLo0xC1lw0gcCKZ5NFkz2X5VImQTaW4hZ4OmQtBi8uC14pu2i6mK9cbJq4suBl0UXT5WaYf+5Zd3+y4MWD0XJs4MCBmDFjBkaPHi19z3PPPYfp06dj//33N+6cLldddRVyuRweeeSRgti/tWvX4swzz0RjYyOGDh0aGjuoiwsLgeh9//oXYODdKm3TtRsDm0XTtg4e25aLGDxWZPCpssN49VXgb38rfl7XgiearN54A3jmGbcLZBYXAu+TT4DHHiucrDdu1Lv5TZniZVu03XVMIgbPxoIXt4umqcCLo0wC3/60aV6GWh3njCy6aCZhwQMCgWcTg8depy4Wo08/Dfz3v4XPJZ1kRTZ+ZAJPt0yCaJNIZwOgvh74+9+Dv11Z8HRdY1mStOCtWwe8+CLwn//otTV9uvg+yuLSRTPsfXHERMs+44/P+fOBv/4VWLgwug2+fy+8UJi0zG/XZi3ogrhcNPnnPvwQePxxtbk3SuCpjp+PPwZGjgQWLfLua9On21nw0j5XLEYumhdddBEef/xx/OpXv8K8efNwxhlnbIp5W7VqFUaOHIlrr70WVVVVuPDCC512OIx+/fph+PDhGDZsGI488kgccMAB6NKlC958800sWLAAvXv3xkMPPeT0O8MGtu1O5oEHAl99BfTood2t2C14tbWBe1+WLHiNjZ510V888MVuZcycCRx8sPg1XYHHH/vp04EDDvAeP/aYV1NNl7jq4LELx6ee8v7xrF9fmFQnjHvv9f6fPRu46Sb1PrHk8+5i8Fzc/Fn8m7hM4LlaBLu24LmKwVu9Gjj0UO/6+vRT4J571NoULSD5MZ21GLw4LHj5vJ4bM5tkpbra+9uFwFuzpvgaSzrJisyiKcuBFnW++DFua8F74AHg6quDv+Oy4OmM+6SyaALAK68AV1zhPX7nHeDHP45up74e2HvvaGt1OVjwZJa2I4/0RMOAAcDEieFt8P374gvx+/bbD5g7FzCoOOaEOAQeb2377jugf3/v72++Kbz2wtoBzC14q1d76+zly4PnunUDdt65+L2qY+nNN9XelwRGFrx+/frhtttuw7p16zBs2DB07NgRPXr0QI8ePdCxY0cMGzYMa9euxc0334y99trLdZ9DueSSS/DKK6/g8MMPxyeffILnn38erVu3xtVXX40PPvhAOSunKuzEeO65ha/ZTlAbN3o7CybELfBqagJxYCvw2JgI1zF4qha8p5+Wv6brosn/hvvvDx6feaZeWz5JWPBkmFjjfvc7/c/4rF4dnQhGFdcumv5YSNKCZyp84rDgvf12sHnii3kVROPXRuC5cNFMyoLnl0pobLSrree7NLkQeCKStuDJREDLluJEKFHnSyX+WmeeHDas8G+RwEuzDt7pp0e3rYrouvkhZQEAz7tDhW++UXNFTioGL2w+9sWEan+ivtcfnx9/7P2vYsnRuQf9kF8wFZKw4L3wQvD3NdeotwOYl0n47LNCcQd4llfRulF1jKR5nniMI2Yuv/xy/Otf/8Iuu+yCxsZGzJs3D/PmzUNjYyN22WUXPPfcc7jqqqtc9hUA8OijjyKfz+O6666TvmfQoEF46aWXsGTJEqxfvx4zZszArbfeKsysaQs78IcNKxQKSWaBimrTtcCrrg6EmcskKyYumrzAYwWZqgUvrJC5rgUv7Aauk8GNJa5C5yoCL+kYgDBR7jIGz5WLZhwxeJ06BY+zFIM3dap6Oyyi8ck/5yIWKcsWPEA/Do8VeP6CyEUdPJP3uLbgyVxWa2sL7wk+uhY8WxdNHpGLpisLnqpQZL/vV78CPv8c+CEtwaa2TBCNKdaFVvUeUKPoE5ZUmQRZG+PHA+efr9aG6ve6iMHjYT1nXNRGNiWOJCt8DJ7u2BWVSWDHn0p7Mjdx0WdVr/XPP1d7XxIYuWj6DB48GIMHD8aiRYvwzTffAAB69OiBrl27OulcKcAO7KoqYNddg79tyiT4mOwQAqVlwWNj8Gwn2nXrCo/ZkiXeb49K/sEuhnlcCjzVGyBPqVnwAO/Ys0JFlTBRnrYFzyduCx5bINvU/VYU46DbBo9LgefKRXPvvYH33hO3GUYSZRKA4lp43bqptysSeFm34Nm6aNbUeJuHP5St3UTSFjweUZkEFxY8wOu7yr2BH2d9+pjPFSxRAk/1WlA9vkmVSZB9z667AgsW6H8XiyjbpW47UcdhwIAgVtZFKQdTkrDg6d6PXbhoyjaTRb9Hpb2GBuDLL6PflxRWAs+na9euFSXqWNiBUF1dGF/hwqWFv8mpUkoCz2UMHn/DbWoCli4FojxzwyYoWxfNJASeixg8GaYWvKlTAZMcSy4teLZJkGTfF3cMHtu+iWXLj9nS7VfUe1mBF2b15hGNX37eMO2jqQdA0klWADsLXtwumq4seLYumqYWPBWBl0ULnv+cyr2B/Y2mVgsRouNiYsFTPb5JCTzZazU19seN/8y6dfprhajvZcNXysWCJxJ4jY3ZF3gq/Zs5M10hzuMoqXnlwlvwTLL4hA1EVRfDqDazLPBsYvDy+egLWeUYhk1QthY89viYCryoYxynBc9G4JkQJvCStuDJPi+rg+fKgseOkywJPHbRpxPwr2LBM92kMBV4SbloshYWXYHnj6eqKjsXTRcL6iRdNEW16pJOssITVwye7DkR7G/0+2Oy5uBx5aKputB3seGg8j7ZuK+psT9uIhdNFxm3WWzDV1yRhAVP997uQuDJ1oamFjzTNU9cKAm8u+++G/WWhdnq6+tx1113WbWRRXgLnsmuUNj7dNL8h7XZ0OBlaDJ1+eTbZAWeiQufrOSC7iSm8n6VY5iUwMtCDJ5LF8043PnCBHnSdfBkn7eNwYtaUJguPvz31tSYCU9Afd7SaTNOF01WDGQxyYrrGLysu2jGZcHTddEUWVNcCTyXhc5lz4mIy4LnykUzDQueiZdGHBa8xYs9C45NGzxZEXhR57+hQf1aYAud+6Ql8Fxb8EpS4F166aXo3bs3Hn74YazSKX4EYMWKFXjggQew/fbb4/LLLzfqZJYpFQve6tWev/5ll5m1B8gteBs36i+8Xbloqrzf1oJn66LJTo5Zi8ELiz30Cdu9DZv4s2DBs3XRVBF4JkIq7LubNUvXghdHcijR+OUXBEm7aKaRZEW3Fl6SAi/pJCtRMXg8SbtoskkggPjKJMieExGXBS+LLpqlZsEDgnJIqkQdB9sM465QmQt1z30WYvBcW/CmTYt+T5IoCbwxY8agqqoKv/nNb9CtWzecfPLJeOSRRzB9+nTkubt0Pp/H559/jpEjR+KEE05A9+7dceGFF6K2thZj+AqOZUCpWPB8bIyoMoEH6Ltpsu+3SbKisqBT2TXnL+hf/zp4bFsHj22bXzSokqYFL+zchgm8b79V7xNLqVnwTGLwwsZ5q1bZddFk0emXyvg0FaHlGoPHL+bLrUyCbOPM1ILn2kWTnxuzYMETLWpN5woW0XFhj3eWLXgmMXimazXV7/WxLUyfFQueK4HHXi8uY/BMyyS4tuCpFLdPEiV7wjHHHIMjjjgCf/rTn3Dfffdh1KhReOKJJwAAVVVVaNeuHdq2bYuVK1di+fLlm0RfPp9Hjx49cMEFF+CCCy5AMxVzQYnBXnRxWfB0i+PqfLdpm/wu64YN4puyDPbmy8aoxOGiqXKhsxf00UcDd94J/PWv3t+l4KIZZ5KVsGMctrOra/n0KYUYvDgteDYCj3XRNHEdzefdlXpgUbn5m5ZJMHXRzHoMHt9muZVJkL3PNAaP7X8+b++iyS9XXFnwRMfZRDzHnWSFJcsxeGHjTXR+qqq88xeHBU/0nrBlb7nE4AFq515kgfafz7qLpssxmxTKSVaaNWuGyy67DLNnz8bo0aNx8sknY8stt0RjYyOWLl2KOXPmYOnSpWhqasKWW26JU045Bc899xxmzZqFSy+9tCzFHVC8eDdZmIVd5PX18lodYcQx0Fxa8FjR1L69+DtUcCXw2P5fconXJ9+yaOui6SLJij/hyMo9mFrwRAupsPfzhO3s6gpjH9+CJxLDSdfBk/32OGPweIFnYn2rro4nuyeLqQVPtlmVtIumSwueTpkEVWQCL+sWPNuNTRcxePX14vZ1NgD4uZE9r1mw4MWdZIWlnCx4/nVka/lUFXhhVJoFjx+/7EaJ7ppVVAfP1EWzVy/gvPPCP+vSrTgptJebVVVVGDJkCIYMGQIAWLJkCRYtWoQVK1agffv26NKlCzqZFL8qUfgYPNcumoC3y8AuEly0aQI7WVVX2wk8VjTZ1PFReb+uBc9fvNfVef20teC5jMHr0MGrL8cTZ6HztCx4m21W7PLgMgavHC14ti6aSQi85s3FC0bT7zZNJe6yDl4cLppJCzxXFjxbIVhTY1/oXDZn64wP/jxmIQYvySQrLKoWPNV1QJoxeCKBF5eLpq3Ay2IMXvPm4vOs66JZVeX9890zk47Bq68PNty6dIn2ripFC551HbxOnTpVlKDj4WPwXLtoAt4uw3bb6fUrrE3Vmjuiz/m4suDxN/O0LHgygff999kokyATeNXV3u+LMwbPVODV1+uPtXw+2FUTCbykLXilGoNn6qIZR6weUHh9tWghFk+mLprs/JFFF00XMXhVVYUxeLpu+1kskxBmwRN5FuhY8GSbSzrzJD+WshqDF1eSFZYs18HTTaTlz61JuWiGUYoumm3bil0bdS14rMCzjcEzEXjsb9hss2iBV4oWPKqDZ4lLC57M/W7hQrcLW1PXOXaCcSXw6uoKj1kcMXgqE7FI4MXhomkag+e30aZN4fN+sem0YvCiFl26Y23VquBcdOlS/HrWY/DSFnj+e01dNHXGhqkFT+YWXMoumknG4PGv6bYlI+kkK2ExeKJ5UicGTzbv6GwA8Oc/axY8vz9JWPBcu2i6GI8qbaVtwYs6rjoWPFOBZ1May4c9/zJvMlOB5z8fRwxe2G9nBV6XLtEb0aVowSOBZwm/eGcXVboTlGzxf+yx3kX14IPq/XIp8PJ54JhjgDvuCJ7jBZ5uLTxfNPECL2sWPMA7XjqTpGsLXlNT0Ca/6PYFX5wWvLBzErXo0h1r/K4aT1ZcNNnjxl63++8PfPihebtAdlw0d9lF/b1R8C6atu3Jkqy4dNGsr1e/7sMEHrsp4yIGD9CfJ0styYpos9PURdO0zmqYwEvagjdvnlfm6B//KO5DEjF4pVomodIteE8/DWy+OXDDDfqfZeEteCJ0BR6b6CYOgffYY0C3bsDNN4s/TxY8IhJRoKc/gehOUNXVwNZbi9+zZg0wfLh6v8K+W9ci9dJLwNixhc+5tOCxF7ruJBZ3DB7gnWMdAevagsceEz5Xke+2lZaLZtRx0R1rS5cGjzt29DKasmTdRRMAjjsuut2wcTtkiPniQybwTFw0RRZUFp1+sdeXbMyZWqFNXTRVrmkTiwR/jTdrFohQGwseW2IlDoGXtAVP9r6aGrH7adQ9RmbBY5N42Qg89l6ftAXvl78Evvii8DmRBc/WRVPmRVTuSVbKNQbv+OOBRYuA3//ebKz6LFsWPJZFZKmsAcMseC5cNNk58ttvvXCP668Xf54tx6Qi8FxanZOCBJ5D+KxWuhNUVZUnpI4/HnjiCeCKK4ABA4IFkU42TZcWvAULip9zJfD83VXTBAJxuGj6v8sXeICeUOG/j939NJlkefH5yiueiHjtNXuBp5Lc1jQGD9Afa7yl569/BU49NXiuqUlv1zxpF00AmDMnvM2w33DFFcBpp7kpk2CbRbOmxhtrKu9V7ReQHRdNFauE6rwWJvCAYNfblYum7kZYqVnwRAJPp6YYO1+zAk9VgGzcGF5XL2kL3ltvFT8XR5IVmXUmyxY8XS+NJC14UddpkjF4qudQhF/Au7YW6N1b/B6V8yVKsuJ/1kUdPJWs4D68iyZZ8IhQ+AlXN3C6uhrYeWfgySe9Hbs77gAmTgyseqYxITy6i26RCBDVwVNl48bgRuCLKBOhovp+Uwse69qjc8z472N3P00mab5vgwYBzzwDHHBAMNZ0dsCyHIPHJ/Lp1g149FFgn32C523cZVniEnimbV51lXfN87G8Sbpo8plyBw0Cnnoq+r1RsGOI3WVlSdJFs6kpuK7CrgGTrICi8eDH4bkSeFm24LlIsiI6hlHXq8xF08SCJ5rXVq8OHqcVg8cSh4tm69ZicV2qMXiqFjxbgXfjjUC/fuHvUe0fi0uBZ5N7YcYM73Hv3oUb3ywq59RlDJ7Ie04m8ERrBt6CRzF4hBT2hmTjoinCX4C4Eni6bnOiBZCNBY/9/qwIPLb/vIsmoDc5hk3qLgQei4nbVpIxeDYJatgJ10SsRL3XlYumrtutrE3RHAKYCzzb8g0iFzAWE4EnS6DBf3cUti6a7IKVT1wke18YOhY807i+UonBc5FkRSQyotp16aIpup+xAs/Ggif6HWHHVjamXSZZ8b+DdSdmybIFT9dLw9Vx469PkfUz7Rg8FlOB9+WXwXfvtJNdDDUv8FzH4InKq8j6RhY8Qhl2cJi6aMoGmD/hrl9vtjjg0b3QXQs89vttBV4SMXiAnYum6msyVAWe6rHLsgVPZukxEStAOi6aUcjGgEzgmQha//OsC4zO54FogWeSZEVmnQHclEkwsdC0bl34GjsPu3bRbGxUn0tkZRIA/XmylMok8O7FPkm6aIrOOzuXubbghV1LvvWEJw4LnqxExYYNamsPl3XwSqlMQk2NmcCLmkPZ+7NtfJdpXdqpU4PHYQJPpX+8W6XrGDyZBU/UN90kK2TBq2CSsOAB6jd2lwJP1C9XFrwsxuDZumjGacHjJ1eTRR87NuKsgwfYu2j6ZNmC50rgsb/RxFqTzxe6e7P/m1hVRK5MsveqtitbvANuXDRVF/DsuOUteOzGjmuBB6i7aWbNguc6yYrrGDyXLppRAi/JGDx2gc0SRwxeba3cChJXUiIZpVQmoaamsByKj00MXk2N3aYOj6kFjx1/O+5oZ8FTjcFTuafqWPBEx4510ezcOdpFs+ItePl8Ho899hguueQS3HPPPVhjOqJKkDgteCZCyqXAE7VVXW1eJsGlBS+OGDz/Qo/DRfOrr4AjjvDS6T/8sFp7IvdRH5NFn0sLXlIumqYWvCRi8NJ20XzlFeCww4CBA4v75P8/ZQpw2WV6i/goC55OwhvXLpqmMXjvvAP8/OfAmDHBc7wFj93YcSXwTGrhZS0GL+0yCToWvLgFni9AdQXec88Bjz9e/LyJwOOv8ah2wohy0QTU3DTjdtEUjQvTGDyXFjxTF82wvvOZc5MQeF9+CZxwAjByZPCcqgUvao756isvgaAP66L59dfAffcFr6ncU11Z8Nq398Z9OVrwDKpyAcOHD8ctt9yC0aNH46CDDtr0/JAhQ/DCCy9s+vvRRx/FO++8g5YyWV1GJGXB27AhPGaEb1OEbeFuIDsumq4FXrNmwc2bXfix8RdRRE3qL7/s/f/22142TFnaYb5vfv9YknDRDPs9cSZZYX9bHBa8OF0083mxFQLQd9GMGk8XXghMn174nH+82DaHDwd+9CMvS6cMHYHnv1+ltqNrF01+nFRXe32Jugb23df7/9lng+d4gReHBY+ds00FHjuedLMWJ5lkxfZ9tbXA9tvrt8u+zs7XHToEj21cNHfaKXjMnouwa51n6FDx82HHfuZM8fMiC56JUMnng88lZcEzddHs0yfI6OiTFQue6xi8XC55gXf00V45jiefBI46CujaNXARrq0FevUC3nxT/NmoY3jMMYVikbXg8SQh8HwLnl9vl2LwfuCll15CdXU19t9//03Pvfrqqxg7diw222wzXHTRRdhll13w6aef4tFHH3XV10zjwoInG+xpW/BEE4trF804Y/B0XDTZhXvHjsHjxYvd9gnwzhFbXyaqb0D2YvDiLJPgwoIXl4sme9xE123YJoprC97ChcXPiXapAeC//w1vi1+08H0Je38YKgLPVLizO906dfB8khB47Hgxra3HzkdsvUjdtkzfk5QFr6YG+PWvgYMPBnbYwXOfAoqve956xr7OztfdugWPTS14u+4K3HJL8LdtAiMek0RWrpKF8JslsnuCiQVvu+3E79NdLHfvDhx0EPB//1f8vizE4MkseFHjLer+5FLgqWzss7UWv/3W+98vz9WuXfG6jyXqGPKWaDYGj0fXRdPfYMnlxP3jj92GDcFGm1/vlbJo/sCMGTOw0047oZq5Qp599lnkcjk88cQTuOuuu/DGG2+gbdu2eFzkj1CG2Fjw+LgZnrQFnsyCZ1omQWTBizMGT9eC5+Pv7ACFAblRmFoiZMQp8GQp61nSLJPgY2rBS6tMwooV+n0yFXii10XuW0C0oOcXLaI2or477H1xxOBVVwfnw2QR5CIGLyp+xMTKwv9Gdj5i40d023r9dWCrrYrfk6UyCbW1wIQJnmWateaxoo6/ftn22Pl6iy2CxyYWvMsu81yc2ePPW/BUCBubuiIFcJdkhb+/yGqj6lrwvvwSuPxy8ft0LcozZwL/+594/nJhwXORZEUUg2djwdu40a6PYXUcVfC/2z/v/nrPJgaPpapKbvlWEXiiMgmA2ALNHzs+wQpAFrxNLFmyBN27dy94buLEiejcufMml802bdpgwIABmD17tn0vS4BSisEjF81iRDWx/J0dILsCzzYGr6YmemLLQgwe28esZdEULXzC3PBULHg6i7YwgcffKKMK2+u6aKqOuTjLJLDJCFwIPDYGz1WZBNcCT2c+ErUlGgeuLHgukqz48Lv87DWrKvA23zx4bJJltXnz4oWoiQUvLoFna8HjMxfL5ghdC17z5vK2dOdePiuw7H0qr4kseLYumnHE4OXzdhY8/v2myfX88+4LJ5cCb8GC8O8OQ7apFpfAqxgLXlNTE9YzM+CaNWswbdo0DBgwoOB9HTp0wFJdX5ISRbT7HofAU11whH23KwteHHXwNm7UC1x3nUVTZsHT2TEvJQteTU20a0KSMXgqZRJcxeDZTNjseViypPj1MIGXhAVP5qIpi1HwMYnBUyHOMgmsYMmqi6ZJvUp+AWO64SRqS7TwTjrJSpgFj0V27YcJPH++7thRLwmPD3veRQtaEwte2HExec1VkpW4LHhhbenG4IV5E+h6acRlwYujDp6NwOPnQt3NVv+6U7Xg6R7DqqroGo9hyASe6B4XJvD8eZUseD/Qo0cPTJkyZdPf48aNQ2NjY5HAW7ZsGTqygQNljCjFuaskKyaukFmOwWO/n4/BA9wIJPYGrHIe/P6zNyTTBZUrF0KfuAVenBa8OFw0k7Tgyc4Pex5E8ZlJCTw2QQKLCxdNlRg8EwtenDF4ablo6ljwTMqZuHTRNLXguU6yEhaDxyK79vnvYV/z5+suXQp/q4mLpmjByI7htF00s2rBcynw/N/qwoIXR6HzmprCecPHJgYPcCvwdO/FfpbkOC14Jq+x/RO9X2TB448dO3/68yrF4P3AT37yE3zzzTc477zz8Pzzz+Pqq69GLpfDUUcdVfC+jz76CD169HDS0awjcq/KqovmqFFeanVVXFnw/vc/4JFHgOXLg+f4GDzZ98mQTXrsRW4ag1dXF7RTzhY8G4En2tVlF0RxlElwJaDjtOCFxeC5TLIia0vmohkl8OK24LmKwXPpoplEmQQXLpo2FjwVgZe0BU/FRRPQd9Fcvz5IDLHZZnpz5OuvA3/7W+EGTZQFz4WLpomngasYPFWBp2LB40v6yNrSmXvZDLK6Ai/Mguc6yYqudVHWPxYbK6OtwGtsFG90uBJ4YZlnbQRelAVvyRLgqquCv1UteKUo8IzKJFx99dV49tln8dBDD+Hhhx9GPp/HySefjD59+mx6z+TJkzF//nwczxa+KGPitOC5FngAcPjhXl2SbbaJbktF4EVN/rNmAYcc4j1mF1C8iybg3XBUK2vIdmRbtgzEhanAA7wFwjffxBeDp9M3oHhytV04xmHBa906GA9xlEnIQhZNdpyIbiguLXgm2fdMLXhxxOCx9fLCYvDIRTO8zbgteK6SrNi+z9ZFk4+vURV4c+cCBx7oPd555+B50TXj2oJnYt1zVSaB30CU/Z60LHgyTw4f0xg8001D0WdqagrXNT621xT7e5N20dy4sXBd56/JZG7+Li14ccbgXXllkCEUcJdkRWddkhRGFrxu3bph8uTJuOmmm/Cb3/wGjz76KB577LGC90ydOhXHHHMMjj32WCcdzToiC14+r+e3m1SZBL9v//qXWluiSaqqSi/19xNPBI/DyiQAehOZLIcPO9lGTbL5fPCd/A3J391ZvFj9AnZtwQsrdJ6EBU83Bo9dMMdRJsEmBo+9OYVZ2aK+iz0Pt91WvAi0TbKiumiLcnOzEXiuyiTwFoKsuWjyC7O4s2iaxIE1a1boUWBrwRNlz123LjqrnwpJWfBkLpqs+NVx0Xz66eDxp58Gj11Z8MKOi25ZlVwu6IOtwIvDRTOXk28kAHrrItl9wMc0Bs/vY1QbMngL3h57eHVGVfsm6x8LWwsvaRfNxsbCc24Tgyf6nVVVXoZaEboCj70eoyx4n38ePO7cGfjxj73Hovuczroja9Y7wFDgAUDXrl1x/fXX4/7778evfvUr5Dh76ymnnIIxY8YUxeWVKyILHqB20pMuk+CjGh4pm1h0YhtEu1uA3IKnCl9bRfR9UceC/T6RBQ/wzpFqvqBKctEUjUd2kZB2Fk22vQ8/BObN84q1AmqLZNnYYa/JHXbwrLzsHldSMXiycyNz0YxClNjA1oIXt8CzddHkFyxxx+Cpzg+i3XN/w8lW4MnOqe/aGNXGZ58Bd94pfp9tkhXVGDzXFjzZuY7DgrfvvsCLLwZ/67p0s8fEtlYaf33KFvA6SVaaNZPXJAP0LHiiDOUsphY89rELC15VFTBpEnD11cHzOjF411wDXHJJ8XvSFHiiOcjERVM0dqqqvDnkmmvEr0WhUyaBPXZsP2fPDjakozwvosZs2Qi8M844AyNHjox836OPPoozzjjD5CtKDtMU5/l8MFCTFni2GTldCjzTXchp08TP68TghQkoE7eoShd4uVxwvl0lWXFhwevWDejUKTiny5dHj1sVCx7gLbxZd+ekYvB0XTR1XIbiEHhhMXim1w1rKWhs1HeV4Xd8s1Imgd099+czf+wuXmxn8ZRd86obEzvsYB+L49qCJxJ4XbqoW09l5zqOGLyddircYNW1+LPHxFbgqbpV6ljw/GPmIgYvyoJnGoMHuLXgAd7v7t1b/J6o/m2zDdC+ffF7TGsE8/dm3c1W3oJnI/BE6wC/Dt4uu4hfi8I0Bo/dOGC9jaIEXtSYNRlDcWMk8B599FFMnDgx8n1vvfVWketmuSKz4JksqHhMyiSoTKBhNxWWJASeyU3q++/lO9mswIs6B2ECyiSxQZICL+06eCKBV1UVnFdXZRJcxOD5bbDnVJQBU/Z5FtHChU2TnZQFT9dFU2c+krUhe78MPq7SRR28MJdD2XiVjZskLHgmMXjsXO8vWnyBl8+rexQAxYshmWhXFRrV1fZCPSpBkI9qDJ7IRXOzzQrd3MLuUzoCz9aCV1tbWBhbd74wLami0i8XZRL8NlzE4LHjQddFU9WC56JMguixznzLh734pGXB42PwbFw0Rd/tb5KI2lO5pkxj8GQ5L8iCp0ljYyOqdH2EShSTBAn860lb8FRikAD5xKITgyebFGxi8GTumWy7gJ4Fj++nSXHhUrLghe3mi97PI7PgmQq8OLNo+u3pnFMdgWezYAPMvAB0XTR1diFLxUWTF3iyuUjF3RbITpkE0e45uzmhk2hF1YIXdk/wz7VffNz2PMrGjmpRcVUXTUBtkbxsmfh5kUXA1oJXW1u4IZQlF00XFjyXAs8myUqUBc+li6bocdT5YPsni1lMSuCJrqe4LXiA+PpSGR+mZRJkAk90n9Ox4FWcwJs5cybasaueMkbmJ+7Cgue6Dp5PkhY8WX9sLHiswNt++8LXdFw0w5KYkIummQXPF9hpxuCtXw9MnlzcBr9IXrjQy6AnIg4LXjm5aKaVZMX/Hb6bD3s+ZONV9tv5BUtWyiSEWfCA8M2JfN6Lk1u/3rNSf/VVYf9sXDRFWQhF74tC9Xyr1sHz/+aTrABqi2TZ/O7KgsfPbTbzhQsXzcZG4KOPCseZq0LnLgSeaCHuog5enC6afPu6FrwwK5LKuZ06FXjpJWDBAv0smvxcx8fg2ZRJEH23fy5F7enkrmDbAqJdNEWuv0B5WvCUyyT87ne/K/j7o48+KnrOZ+PGjZg6dSrefvttDBo0yK6HJUIpWvBsBZ5fnyafjxZ4ojaaNRNn6lOdbFmBt/POwMyZwd+uYvBMXDRNLUwysizwRDd91oLX0OD9E2Xti+ob+xldC14+D+y/vyfefPzfyS6SP/gAOOoor80pU4rjAWQZ7ETHjC2YrWIJ4YnDRVO2CJZRKjF4/OJP5TpQFXhZcdG0seANHw5cfjmw1VZe3Sd2gWUq8PiFUVwWPB5VC57/t8iCp1JGQza/xxGDV1vrxf/4909di78LC95ZZwGPPlroeVBba1cmwb9eogSejmt3lAVPN3ujTUkrFpkFT+daV7Gsq7qRPvYYcNppwWfuuqvw9SgLHj/XbdxY2L+4LHii9lxb8GQxeCy2MXglLfB++9vfIpfLIf/D1f/RRx/ho48+Cv1MXV0dbrjhBqsOlgouLHhJlkkA7AWev3O+YYOZwGN3ME1uUosWBY+3267wNZ0yCWECStXtjsW1BY/9XnbxCaQbg9fUJP7O4cO9fz5r1oiDx6O+y8aCt2aNJ95YRC6a114bPD7nHOCddwo/I7qO/AxxPLW13r+GhvDdUtnxjMOCxwvwqDEisqDaWvB40e7SRVMk8GRzkarAY4W6qotxHGUSRLvnW2wRPCcrEQN44g4QW6ZtLXhRGVpN5qEwTOvg5XJeUiVAzQqiI/BcxODlct49cMUKOwueaQzeo496/7ObUWEbcUm7aPJiESg/Cx4/b9hY8MaPL/ze//yn8HVdgce7aPpzUFUVsPnmnpWwZcvgPS5j8HQFnk6ZBFMXzbK24N1www2bBN7vfvc77LbbbjjmmGOE723WrBm23HJLHH744ejCbjmWMaYWPN4HW4RLgbfHHl66eMA+Bg8IBF5Uv0RtsAttE4HHLuT4JC6uLHi2FrIoVCYFPisci0n/+J1H0xg89pwfcICXHrq+Hjj0UOChh4LX1q5VF3iuYvDCdr1lU9Lq1cXPyQSejJoa7zyE9VF2rZjMIVExeLzAS9uCF2YhMBF4ft9UXDRVY/DY7IZhZQNkbceZRXPHHYPnwmKQwzCNwVO14Ll20dTNoulbNjt2LN6kCOubjoumCwseEAg83Rg8l1k0WcLmtqRdNP1NMnZT03UWzbRj8FQseKoCj9/YYot5A/Yumuya6u23gQkTvM2w448P3i9D10VTZXzYlklQcdFkx2/ZW/B8fIF34403xtGnkiTOGDyXAu/ii4FTT/UuIBcWKRXXF1kb7ELbVuDxF3WpCDyV9/JZ4VjSdNFkx2KLFsDhhwd/s4JbJ9GKqxi8sMQE/DH0ES1GdAWe/x0uBV6SFjzRfBQ2PkwEnuwzJteNCxdNfse3Q4fgseomWNwCz+9j797eOGlqshN4Jlk0VS14rl00Vevg8S6aog3EsM0q2W+PKwYPCLxYknbRlB0H37IoIsqCx3p0+HOkaR0837UfKLyXyJKs5PPifqdhwdNx0XRpwYsSeOvWed8nu25F9wrRHAQAW28NnHkm8OqrwXMuXTTjjMEzddEsawseS5NuoaEKIKkyCbYCz8/etXx5+gKPvQGbLIDYY8ELvObNvePZ2GjnomkSO+Na4PkLlpYti100k8iiqSLwwuKYdASerEyCCwue34bMgidyTxJ9l2zRArgTeH7ykHzeLgbPRuD5bfgxh6LfpJtkpaZGfqPMiotmq1beImH9evU5Mo4YPNHuecuWwLbbAl9+CXz+efiCTYZtmYQsW/DWrQss8ex1HmXBC4uvjtOC54cArF3r9U10XnRcNFXvATLLdFgZkygLHvvdtjF47D0jyoIHeOdA1G9VC56twHNRJsE2Bo+/r4jKqKxdW1j7LezzYRY8H1VjRpZi8CiLJqFNUklWbOvgsdm7VBcvUS6aQLTAi9tFk7+omzVTW2zz7WTZgicSJjYxeH6SnLgFnk4mTRULnspEKkuOAgCdO4s/oyrwVCx4YedCdg3zixeVG7trF02VuBLZ+2XwC1uXdfD8tlxm0ayu1p8jdSx4NmUSAK9Itv/6nDlqbbHEHYOnuvuuavnSicETJVgBguMvO/a6As9FDB6glkkzSuCxc7jqPUBmmbYpdC4qNySbN6IW8Ow9Q0XgycZcmCcH27+0XDRV6lP6Y6WpKfy4Ra3BgPB7cVQMXpTAS9pF03WZBLLgccyfPx+vvvoqvv32W6yXrFpyuRyuv/56m68pCZJ20YzauQ0TeP6uoar7Udhv8Pvm2kXTv2nK3EXY76ypKZ4YXQk8k4WZS4HX2OhlwQPEroU2AlQliUZYH8MEnq6Lpj+eVWLwdGooiWjWzIsJXL68+Hkekxg82ed8VCx4flsNDXYumvyxMp2PbEQZn2RFt05dWJv+8WavgxUrxJlbVQWeP0d+9130HNnU5C1e2GsvzjIJgCfwnn/eezx1qmfR08E0Bo8/5jYWPJ1zrZNFk028JRJ4Jha8uOrgAcUCj43/9IkSKX57jY3q9wCZmKytld8PojaX+XILQJCIjb/mRceMXdOw94woF01AT+CJ6o2y4yJqbeWvTVwkWeHn2ygrUkOD3INEReCF3YtVyySwqAq8sCQrruvgqbpo6pZJKEULnrHAGzZsGO6//340/vCr8tw2lp+QpVIEXpwWPHbArlwJ7LOPlx1t3LjCoHuWMNct/6aybp1aCvskXDTZPixeDPzoR97kMnGil7FJBBvQzR879jkd1wZ+8kzbgrd0aXBDEVnwbPqnEmMV1i47+du4aD78MHDFFcCllxaLAR9dC17Ucd1ss2KB59KC50LgqYzfKBdNHtP5yKUFL44yCew5OfhgL47uySeBww4Lb18kdngLniy+5+uvgYMOKs5mGWeZBCCw4AGewPvpT9XaY/tnUybBhQVP51zLYvD475k5E9hrr+Bv0Qai7HvDSk5EuWjaxOCpZGkOczf3qa315mMXAk+2Hgiz4H3xBdC3b/A3ez2qCLynnvKyGJ92GnDPPfoumrLzKhIK7LnjN+T+/GcvWdiVVwLXXFP82WXLgAEDvPf37FncDhBfDB6QrMDjY/BEljFVMZtkDJ6piyZZ8H7grrvuwj333INcLofDDz8cffv2RVt2K6oCSapMwtixweMrrwReeEH8GdlEzxdYXbVKvGvIwv8G9v1xCLx77gGmTfMen3lmcbpfnyiBp+p+keUYvLAEK4AbC17aMXjnnuv9f+ONhYtVGwte1Dnv3LmwbiIgXtiIzk9SAk/FRTPKgqf6ftHrMrcjFt0YvLjKJHTvXvj6smXAyJHRAs8ft3V1wTitqgrmSN9Cx8e+AsDo0eJSBVFlEmwteNtvHzz++mu1tlhsXTRdWPB460fYuVe14PGILHiyhByieCXAO+6iY6U7HwHRFjyZ9VTVgsd/RxhhLpoygRdmwTv//EKhyws8Hv43/fKX3v/33gvccYfcRdOFBY+F30Q7/3zv/2uvFQu8K67wYl8BYMYMcb9sLHi77Rb8feiheu2pCLyw61u1TAKLCxdN0fjIYpmEirHgjRgxAjU1NRg3bhwOPPBAx10qTZIqk8ASlkVNdiHzAk/mFsLC3jSOPhq45Zbgb//i9N0qZS6VohuPKAgeKFy0vPSSvF+qFrxSjsGTxZT4JCXwROc2yzF4/HF95ZXCv9mdcx+XLpph59WlwIuKweNJ24IXlrXVxkXztNO8xCOffgq8+ab3HG9xCBN477zj1W78xS+8v/k5UiTwZBsXccTgsYsW9rFJcgiRwGvTxtvsS6pMAnuumzcPnyNUY/B4ZPeXjRuLRYzsXPbuLX7exIIXVwweoJ8sJCxjqOxaD7PgTZhQ+HeUwAs7d2vW6FvwZHOHqgUvn1cTFVOmiJ93FYPXqxfwt78B774L+InrVe/xKgJv8WL5a7ZJVkyzaLIJxXySiMHTddGsGAveV199hf3224/EHUNSMXgsO+wgbzdM4OkW72Z/w+OPF96U2Mm7vl7eVx0LXteuxe5zIrIq8EwWqjLCauABxcdf5ztVBR7g/SZ+QnQZg+cjK3RuY8E76yxg0KDC10UCL20XTdmOYpIWvDgEHu92G4eLZocOwAMPePGqfhId/hyECbyddw4KPwOF42PFCrGbuOx6c10mgY8x1t3s4BElc2jb1hN4SSVZkW3kiFDNoskTlqVZVeCx7rAqfQojLIsmYO+iyX9HGGECTzZ3qBQ693Ep8Nh7iYskKyy615LsGLjMon7mmd4/H5cCL8wVWadMgo+qMSNM4PmPdTZvAHkdvLjKJJSiBc8oi2abNm2wuSwwqkIxqWEF2Am8rbeWt6tqwVNJtCKLiwLUBYaOwOMnUdmFwwo8fuJnXTSjzkGaSVaiJoU4XDT5HSwVgSf6TXwdPBbTMgnsTcZVDJ7o94k8ykXvSzMGT8XFWDcGT2c+kgls2ftlJOGi6RM2TkTtixYDgJplRcd6alMmgd+RthF4/rHn+6iSNZSfN2TeGroWvKj5RxaDp+OiGXX8ZXOULMbdVQyeqQXP1kUzTODJ5jeZi6aoLR2Bx7e7dq3cgqe7cRU1RnQ3XmQCz0UMnuy3uRR4YcmEki6TwF5D/D1BJctu0mUSStGCZyTwBg4ciI8//th1X0oa2Q6OiyQrsvS5YRkmZcKNTSAAqFnwZFYVQF3giSamTp2Cx3wWPBZRnAv7fUlZ8NKIwYuy4CXhoilrOw4XTfa9rix4omtHJPBEv1E0dsLq4JW6i6ZMGMtuti6TrLgWeHzfwix4PK4Fno2LJi9CdTxEZH3j++hbklavlp+HUrPgyVw0RcdfNkfFbcGL2myVtW1rwZOtD8IEnkzc+PHyLOzaJCqJBi861qyJt0wCS9haTTTnqQg8nWtdJQeDyxi8MAteWjF4/GMfU4En6qd/HlhXXLLgSbjhhhvw5Zdf4m9/+5vr/pQsotS7gBsLHiCeJMMmD50YvCjCbsY2FjyZKOZvPqIbCBBMSCKBx7qalHIMXpQFL04XTXZM6wo8UxdNmcBzbcETuWiqCjxbC57LOnhJuWjKbra6FrywGDyT64afj8IWbK4FXtwumjILXtQGYtg58fsmctH0ERXBzufVY/D8RCZhRG3AsJjG4LEbiFHHX9dFM6kYPNm5jCsGr0WL8CyNomMuuj/PnRs8jrLgiQSeKxfNqDHCXqv8/C/6rGzuNnXRdGnBk20cssRpwbNx0RT99qhzZ2LBC5t3bGPwTOKh48YoBm/lypUYNmwYzjnnHIwbNw5HH300evTogSrJ1bf//vtbdbIUkF3gRx0FfPghsMsu4s+p7OAA3qTLXyRhAyqOGLzq6mKroY3AYwkr1TB1KjB4cPHzrsokhAm8qirvX1NT5SVZad482MGzseCZCDx+rNnUwVO14InGbxZcNE0Ensy6b+pRoGvBq68H/u//vPbYzHBhFjwgugYV308dF00dgcfH4ImI20XTv/Z0XTTD5mGZBY8XGu3bF74uWohGncewDcuoDRgW0yyabLumLpqyGoOuCp2z4+yWW7xYYTa1geoGjt/eqlVeIrQTT/T+yQhz0Qz7PevXFwouQJzs7csvg8dRAo+3Krl00RRdH6IkK4A4KRP/fa5dNFXWf3HE4H38MXDddcCQIcAZZ3jPRZVJiIrB03XRjEvghcXghRlUVC14jz/uleC58Uagf//i17OEkcA78MADN9W5Gz16NEaPHi19by6Xw8YsSlvHhFnwBg8G5swRf07VghdmdubJ59UFXlhWJR/ZbjlQuECKS+B98UXxc42NwQUuCgzXKZMQVs8N8Nqpr09H4PlFzoEgeQRLnAKvRYtgghf1U7UOno6Lpn8jCNtdU5lI43TRVBF4Sbloyl7zn2/ZsvAmHTXedF00ZefixReBv/7Ve7zPPsHzUQKvsTFa4LHWpLgEno2LpusyCWEumqYCjy21sPvuXhZNH9HvFW2YiDKLsu9XFXibbw7MmxfdZ0DPRZPF1IIn+w0mhc5Fx5Cf06+8EnjvveBvVQseex948UXv39Ch8vEd5qIZ9ntEAo8vNwMU1iM0seC5ctHU2QTg71MbNxYfP5UEWWlZ8HRi8K65xis/NX68txHQokW4i2Z1tXiNZuOiGRaDF9Ue4F7gqcTgNTR49Rr9+YItU1Y2Am///fdHLiwArAIJyzgXVqtI5QIH9Fw0160LT76w3XbB39Ony7+T/x7RBWAag8eXPwgTeMuWFT/HW91sYvBYkSsqGVFb631fGjF4US4ScbposmMuLhdN/tyoCDxdC55qkhUXAs/vtx8kLpomXRY6l80B/vMTJgAnnBDMQVHXAtse+zt1LXiLFgWP2QVgbW34PNfYGD4XAIXnnx8n7DGMOwbP1EVTZSOmqSkYJ2EumqLfFDYP+OPxF78AnnnGq+X15JNe7dGwz4s2TPbbDzjySG+R2K0b8M03hf0Ki1Vl29tpJ08QjBtXmMnUx8SC9/jjhX/rxODdcAPw2GOFxySsTzYWvG239TImjhjh/b1wYeFnZNcrP6+IrpkZM7zssCLCLHhhc4TIgsXeo/bd15vDb7opeE60bmC/g7fghblo6sYW61jw+PuU6oYp304aMXj5fHDddu4s37j3j/Xkyd7/69d7Vl+ZwJO5ifuoCryoTLCi365jwWPPacuWnnWNHYP+edB10eTd4b//Phgn/MZE2Qi81157zXE3Sp8oc7OMOGLwwtwua2q87Ju+22FYLT2fMAueiYvmV18Vu76ExWGIfg8v8ERZNFUFnmoikzQseP7ruVy0C4Fu/2TuWj7sTlhcLpp8u/4NJWzh7sKCJ4rBc+miCcjd1JKw4Pm/ZZ99vOtNNUZHtAgFChexbM0i2blgfyO72KipCbfQ2WZg9K+TxkZ3FjwXLpq6FjxZkXO+fV0Lnt/nqiqvULtP1Dwi2jCpqfEsRT6HHRbUm9RJ5lNTA9x/v/y9ujF4f/lLsXuiqgWvWTNvYcguDkWYWPBk19bf/ga8+iowa5Z6GAb/naI5bupUM4EXNj5FMWjsORk3rtiyK+qbTgyeigXPNIsmey2tXq3WpgjTLOquLHjs92y5ZbHA23xzYMEC71gvWVK4keCL9rAyCbJsw6oJBUWv2bpoysokAF4NwWOPBXbd1fvbPz5hG7+iPlRXB2vlpqbCscrPs1kUeEZJVohiwix4YdgIPNnkESXwWrTwCmoCwOefq9+MRbuEJgJP1E7Yrr2KwAtz0bRNZJKmwPO/U3Z84o7BC2vbRZkEWZ/531sqFjyVHU2TMgm6FjT2t4RZtXhk8ajs97PPy9qT/UYVF80oouZM2caOqK+yhYtKnHKcMXhhlnsbgSd7LWoeV0mKYloeyHUWTdH1qRqDF+Z2KuuTjQXPx/9efq5UdT0U3R/CNm9NyiQAYgte1FwbtXjnBV5YDJ6LLJoyC57IRVMFPl7c9DqwicFjr9mOHYvXi1tuGXz+nXcKX/PnGlsLnu5GpEsLnujzomte10XTz8Hgf5ZdK4qOV9YggecI2Q5OFHFY8MJq2/l987ODrV8vjw/0UbXghWVxCiu1AIQLPNHvcemi6d9gWrUqji9g+5tGofMw91hA30WTrS+jI/BE/Qyz4FVXB8+FxeDJ+hy3BS9uF01AX/zIBJ6sH2Hfwf4W1vqr46KpsqmQtsATnVuZa2spuWiGJTewcdGUnS8TCx6PTpysTpIV2eaObAEouj5VXTRF878IVzF4Pv73rl+vJmL550XXqiz7NGBWJgEQCzzV65ElLMlKWAyeroumjgUvykVT1hbfJ1YURF3rrix47DXfvHmxJ9IWWwSPeQc8/5yGxeDJNsJUr/koC57LGDwf0Typ66JZXR08X4oWPCMXzTfeeEPr/ZWWRTNLLppt2hSmvWYF3pgx3uOpUwvj8mTf48pFU1fgmVrw2AtTFg8FBDcYkXsm27c4YvBUF9yuLHiiCS4OF03AW7Rs2GBmwYs7Bi8JF03ZudUtk+C3JbpuVG74fluNjW5cNFVqA4UJPNXkGyrvCRNTaSVZibJipGnBk6Ej8LJuwZMlygrrW1YseIAnblq39h6rZod0YcGrrpZbMfzjHuWiGbW5IfpMnGUSou6vOhY8UfkQvg32OZW4fVcxePx6aLPNCktV+BY8oFjgubLg6Qo8dj3mMoumj2hTJ+zekcsVhh/47coseGUr8PwsmipUYhZNUwteVJkEHhWB16FD4cTkD2q2vo+sDIFPEi6aujF47GQUVQcPkC+QGxuBpUu9xyL3TLa/acbguRJ4ooVaXAKvrs5LkONC4KlY8JYvB0aO9OLOohakcRU6j8NFE5AnrVCx4Pltbdgg79P06cDYscDs2cFzMhdNGytlVAxenC6aOufSdQxeLuf99o0b1eaHMAteHAJPx0UzaQuebgxeEi6aLmPw+O9dsyYQeKqWKdEc9+WX3nXIj/GGBrElzn8f31abNsE1EGbB8xfIPEm4aJrG4IUlWeHbDMtMzuMnZvvoI+C557x4sKj+qVjwpk/3Shz84heFeQz49RC7lqmq8pIg+Xz4YWH7MgteQ4M8k6+P6qZOHDF4rl00/ef4uYm9n1SEBU+WRbOpqQlff/015v6wdbDPPvugNiolmoTHH38c//3vf/Hxxx9jwYIFWLZsGVq1aoXevXtjyJAhuOCCC9DanwU5xo8fj7vuugvvv/8+1qxZg549e2Lo0KG4+uqrpZ+xJcqCJ6vvpGrBC0v9ysMLPDa7Ge+iCXhxeGG4TrKia8HbsKH4RqUTgwfIBd6SJcHiNcqCZyPw2F3QqPeyRFnw2IWjysJOR+BFxeBFlZfwb8wmLpomMXiXXRZko3v44eB50XkXuWK5jsFz6aIpa0v2PD/NRWXk3H334t15mQVPxXVUZqVMMgbPxkWztjYoMSETeLKxG7YTryrwVC14Ua7Tqrhw0WTHRdRc5MKCZ+qiyR+zhobgN6u6aMZtwfOxicFrbBRn0pRZomTXQuvWwTUguq7D1geAvsBjXTT5jVoXWTTZkiBse1EWPJnAi7JaDh3qiap+/cL7pxKDN2yY9/9//gOwjnT8eohdy/B/88gseOzxyHoWTRMXTdl5Y/vKWvAqxkUzKovmJ598gtNOOw11dXX4z3/+Y/IVePDBB/H222+jb9++6NevHzp27IhFixbhnXfewQcffICRI0fi9ddfR/fu3Qs+d/fdd2PYsGHI5XIYOHAgunbtijfffBO33norRo8ejYkTJ6KzqKCYJVEWPNbtgkW1TMIxxwD//rdXWHHSJO85lRg8vmCt3zf2gg+L2WO/x1WZBF2BB3iTK7srpeOiCcgvvqgEK2x/bQReXZ34xmobgwd4x27jRnMLnuzGYhODBwSLpaQseL64A4I00IDcosLjwkVTRfy4FHjs8bvzTuDaaz3304svFrelI8iyGoMXtVmkk2QlzBrburUn8GTjV8eCB+jNI6ylhF9cRV0LcbhoRpVrAbxMfT6zZ8uLhANuYvB0kqyExeDJ4r3CiCsGDygcbzYCDxCny5dtvsiuBVYQhVnwVCy7Pn7/m5qK74usiyYvuG3r4G2xBXDWWcHfOmUSdCx4/HN//Svw4IPF71PZ4Bed2zffLPybXw916FD499Zbi9sG5Ba85cuDxzK7iGpsfJSLpm0Mnuh+HuWiqRIvym4wlKKLZixJVnbZZRc899xzmDhxIv7whz8YtTF8+HAsXrwYU6dOxcsvv4xRo0ZhwoQJmDt3Lvbbbz98+eWXuPTSSws+M2XKFFx66aWorq7Giy++iNdffx1PP/00vvrqKxxyyCH44osvcO6557r4iUVE7TLJFgmqFryzzvJ8qt95J5iIVVw0ZQJPx7UvbIfOpNC5qcBj4YOKw8ok8N/Pwu7IRLlo2sTgyRYOthY89jVTgSfztnbhoul/p2xsxBWDx44XVZfppLNo8sfd1oK3777A/PlezTs+xjDKgidCxUUzjRg81ZgfW4EXtUFhKvBsXTSjkubE4aIpc5lj4d3+w1CJ6fOJ24Kn8tvC+uTagsf2xyYGDxBv3sraVBF4YTF4KpZd/jMiwci6aPLnQ/YdKsfp9dc9t1V2g4JtL6pMgmwjXCXuUHZso6xQQPTaCIi24O24o/yzMgueH7oCiEMagMK5SNdFM6zMAWBXJgEws+Dxz7VoUdoWvNiyaG699dbYc8898fe//93o83vvvTc6CqpOd+rUCbfeeisAYNy4cQWv3Xbbbcjn8zj99NNxxBFHbHq+VatWGDFiBKqqqjB69GhMV6nurUmUBc9W4AFeoGxNTfSCXkXgsTdBVYHnKgZPNRCbJUzgqbpoimB3ZFRcNFVu5i4FXlQMHhCcA1MXTdlvsimTAMjdjlhUXTR1s2iy40U16VFSSVZkBaxlhc4BNYFXW+sVuQ3LBCtqR3YjVXHRLKUYPJ0yCUC0i7FOFk1Ab6MoymLmWuBFbfjJkl6w6Ag8UxdN9nM6Frwwq7OJwIs7Bs/H1oInsjrZCLywMgkmFjzRtcW6aPLnw8aCt/nm4RlpTV00VTasZcdWZf2nskEpSrLC/t29uzixGCCvg7dsWfBY9lkgOkMzm7mbRVbKh/1cGHHE4PHHumXLcAse+7sqSuABwGabbYY5UTn4Daj54Sw0Z66a+vp6vPhD1dUT+SqnAHr27IkBAwYAAMb46SMdwg4W0WCTLRJ0BJ5PlKsPH4PH4n8HO/ijFgQuYvBYV0ORxcjGgicSeLylQHbx6VjwwtphKRULnn98XAi8MBdNQN8KYmvBE2WOjSIq9sjHpkxCPh+M3SiBp2vBC/udYTdh2Zhmxxx7zEvFRdMmBg8oFHhRCxTR9/OYumiKRGiYYI9D4Km4MfbtGzzWseDpJFmJw4LH/ra0YvDY7zWJwZNd+yJRIht/YTF4PmEumiYxeKL7gksXzagYt7AyCa5i8ER/+8RhwWvevFjg5XKFGzAsMhdNFQseEC3wZM+z4zDuLJoqZRJE/WjRQl4mASj8DRUl8Orr6/HBBx+gleqMqciqVavw29/+FgAwmEn9OGPGDKz9YWbs37+/8LP+81OmTHHaJ6BwgPGmfsCNBc8naic4LAbP76eqi2ZjY3HdNBZdC55soouaxHj3iCiBV1WlL/BkFryw+A0RovMiuwxcxOD558DURVO2QGEXliYxeCrFzl3G4LGYWPCScNFkj5kLgRcV28q/JmpHFgCvEhNi4qIZJvCy6KKZz4sXtnG6aCZtwXPhotm+fVBva9q0cOGjY8GTbe64qoOXlAUvbGMiLhdNFxY8dnFv4qKpK/CWLw/6qOqiqSKEo4QYvwnPjxOZi6ZKDJ7N+s/WRdM/rzKBZ+OiCUTHd8ue55OZqH7Ox3WZBNFzLVsGbYsSbrHHPYsCzyjJShhr1qzB559/jptuuglz587FsbL8sIqMGzcOo0aNQlNT06YkK6tWrcJPfvIT3HHHHZveN/uH/N7t27dHG9angGGrrbYqeG/Yb4iCfw87MNgLI3i/uB3VMgksOi6avAWP/a7qau/7w4RBVHkD1ULntgJP14LHf5fspqaSZEXFYgEAn37qpSMWvUf2u8Pay+f1LHhJumh+9x3w3nvi9/qoCDzVQue8cHr/fe+GJVuQsROxjgWPr5foSuDV13uJX3bYIXjOtQUvbIyE3YRFbfNtyergmVjwwgT3Rx8VZ/3zaWwEPvig8PjbumiqWPAAb/G3fLlnGe7d23vOJIumrB88URa8uF0016/3zsWee3rfpSqCdtoJ+PZbz71r4cLCxCssLix4sgWV6JzG6aKpYsGbOdPLaCnqD/+9Ki6accTgydyV40iy4n9GdF9g78mqLpoffAD89KfF3kFR66s4yySofNbUgse/N8pFE9C34LFjR8WCp7oZ4RMl8GwteNXVQV07Fy6avPUOKFOBV62wJZ7P59G+fXvcfPPNJl+xiWnTpuGxxx4reO7EE0/EXXfdhXaMY/CqH3yy6kJmaL9EwkrZ1ca9Twf2kIgmVZmLpmoWTRabGDy+ncZGu+QouhY82Y1I1HaXLsFkbyLw4nDRlB3zf/0LGDJEnm3KRODJ3OJk/TMtdK5iwWPbXr3aW+SybpCi/qnE4Mn6HBaD99vfAtdcA+y6KzBlitjl10TgAd75iLJQmbhoHn+8N0aOPjp4Lg0XTVULXpjAs0myEhWD96tfeZtS7HHyuewy4J57Cjet4iqTABSO3y+/BA44wJt33ngDGDhQPauuTxwxeHG4aNbXe8d/wgTg//4PuO8+tRg8wEvm4IfGT50qF3guYvDiSLJi4qIZtRCdNMkTyuxn+WvA1kUzTgsee08zKZMgej4sBo+N/VIVeDff7G0M/eIX4u8BotcILsskhIklFtMYPD+uzb/3RSVZAYAePcTtyyx4LDYxeCreJ3G4aALesWtocJNkRUTWBZ6Ri2Y+n5f+q6mpQc+ePXHWWWdh8uTJ6O1vdxpy8cUXI5/Po76+Hl9++SWGDx+Ol156CTvuuCPeYAuBpAw7CM46q3hQyCwYrDun6s0lKpbDn6hqasKTCKgIgygXMJMYvLC+sLCLA35yjSp0DqgJvDB3VlHfZMdqyBDvf5F7LuBZbvzqHBddFD0p8t/lKsmK6HzqWvDGjy9Mody8uVhksWNPtPPLt8sSZsHzf+fHHwOLFok/z/ZPduNka+XJ+iM6PyaFzv/1L+//f/87eC4qvkT3+Km4aKpa8PhFsm6SFdM6eEBhGnOWe+7x/mcXgDplEnTPJbu4vOqqYNwdf7z3v66Q0onBi7ovhJ1PWxfNhgZP3AHA/fd7/6uWEth+++AxW3+Vx0WZBFcumrZlEqIseGPHFv4dtRlmkmQlzhg8tm+uyyREOUvxY1+W8RkoPs5s34DoRBz8vTtsnMja8OG9uGwseLvuKn6e/W38eqiuDvjRjwo/f9BBgVA78sjg/f45DZs34ojBY+eAe+8tfl1H4MnGBT/n6pZJYC14IspS4DU1NUn/bdiwAbNmzcJf/vIXbB1WfEOT2tpabLfddhg2bBheeuklLFu2DCeffDLW/TA6fbfMMPfK1T9cwW3DRusP74v6N3/+/ILPsIOgRw/g3XcLd6Fl3VLJ4sgTtRPsD7pmzcIXUyqxW64teDoCr1u34HFUDF5UALWKK5lMDOvG4Ilo1cpzK3ziCeDWW9XctVQFno4Fjw/GBvRj8Hi3X9nCQCVTq6qLpmwcy/rOTv6yMXfGGcBzzxWOM5XUx7ZZNH2iBB47TckWCC4seKJ+qrh7yj4LmMfgAXLRLsI2Bi/smLHnh60n5i+IdOcCHRdN9nyLds/DFlW2hc5FY03VjZG9h4lcmnxclEkwrYPnukxC1EKUTzgj+r26MXhJWvDY+4CrMgmqAi/qfPzzn8FjUWKfKAseO1b4enz8cZJd7yILO7vBCMjnbxUL3vbbe+Wx7rxT3j9+PZTLAS+95B0ff2OsfXvgrbeAJ58ErrsueL9/TsPmM5UYPBsXzYEDvU0ldoMo6v4ZVSZB1Lc4LXg6JYiSItYsmnGx9957Y8cdd8TcuXMx6Yeq376YXL58+SZ3TZ65c+cWvFdGXV2d0j8WfhDsuWew0wvId39UXAR5ohb0bNxW2OBUid2KivHRrYOn46IZZsHTjcFTWYjKFu6qMXhhNGsGbLMN8MtfegtHXYEXtgjy+9fUFD0pin6vrgWP3y1TCQ6PGqthnw37DnYcyCzgYQuPIUMANieTigVPVeBFjZUoF01dgaciylRdNMMseHHG4Im+D5CPa9sYvDCLADvFs7v7/nmK00WTPd+ixVWcMXj84hRQd2NkBR67eclj6qJpasFTjcFT9aLRseDxwsOFBS/JOnjs867KJITF4LFECbzBg4OY2OnTw632orUQO1b4OdZG4PHYWPAA4Mc/Bi6/HBg0SNw/fj0EeGW1TjqpMIZyp528dSm7aaSyYRWHiyb7fC4HHHyw98/HhQWPn3NtYvBElKUFLwv4Auu7H+4ivXv33pSx0xd9PP7z/fr1c94f0SBQSROvkuSDx5XAS9KCF+WiyRbM9FEVeM2bm7to+gtRf9dLhIpQiVqk8IsOFYGnunjXqWkouhHoxuDxfWZd5lhsBJ6qBY8VErLFWdS5CeunTQxe1IQfJfDYm6orC56LJCtx1sHz4RwksGSJvD0e9rey/ZZlC5XBLi7ZPUP/M6Yumhs3RouCKIHnukwCO6ajYsjDFt3sPUzVgqeTZMW0Dp5qmQTXFrwNG7z4TRbRXJ5kDJ6uiyZ7PMMseCZlEmQb3z5RgruqKkgesn49MGuWuG+yfugIPN3kNCw2MXgssnEsuq+HIXL/D1uLxO2i6aNjGfdfD5vDwyx4qmUSKi4Gz2fJkiW4/fbbcfjhh+NHP/oRfvSjH+Hwww/HHXfcgSWyO7IDFi9ejI8//hgAsMMPaemaNWuGo446CgAwatSoos98/fXXePvttwEAQ/yAKYeIBoFKFkETC17UQkHVRTPJGLwoF022Pz62FjwdgRcWi6MiVKJ28UwEnq6LZlj/fHRuBDILnupEpjI2TLJosqgIvKgbZ1g/43TR1LHgyRYIujF4+XzxjTPJJCsqLpqAl2afRSYWonZh2d+qa8FjxxMr8HK5YvGogo74Z8+3roumrQVPtGGj6saoKvDiLJMQNSZcl0kIGwczZqhZ22xdNHVi8Fxb8FzF4EWtoWRts9kh+XkjykIW5qLJj5M0LXg+snGsK/DYPrty0bSpg+cTl8CzKZNQkRa8cePGYYcddsC1116LV155BdOmTcO0adPwyiuv4JprrkHv3r0xzk+npcm0adPw+OOPY71gu2jGjBn4+c9/jg0bNuDHP/4xdmZyal911VXI5XJ45JFH8PLLL296fu3atTjzzDPR2NiIoUOHok+fPkb9CkM0CHQEXl2duntIVJY/1oIXNjhduGiyk0mYu4WtwPMXPH7KW1dlEnQFnsxFJWqS59tnJx6VLFOqAk+WjMNHJwaP7TPbR9WJLGkLnk4MCItLCx4v8PJ5+fGyddFsair8/aZxc65dNDduFAs830qvspDh3dpk7n46Gzu67tXs/M2Oi6oqs1hclfnIhz3foqo/cdbB410083l1EdSxY3B+w1w02Vu7aZkE1fpzgHsXTdVC56K4sCRdNHUEnswSxY6NOMskiDa4dQUef7yjLGTsPS5qXpRd8yoWvDVrxOdS14LHnuf164OxJ7qvhyGy4JkKPD6+W9XyGSXwoix/KgKPXeM2Nuq7aEZZ8Nj7XNkIvJkzZ+LYY4/FsmXLsPPOO+Puu+/G2LFjMXbsWNxzzz3YddddsXTpUhx77LGYOXOmdvvfffcdTj75ZHTu3BkDBw7ECSecgKFDh2LPPfdE37598dprr6Fv37546qmnCj7Xr18/DB8+HI2NjTjyyCNx0EEH4fjjj0evXr0wYcIE9O7dGw899JDJT45ENAhkbhcs/k1QNcEKEL1w9i/2pF00H38cOPXU8HZUhQrgZZ30v3PlSm+S3Hlnz7f8s88K+yC6ybqy4LG/u39/4NJLg78vv9yb/MIWM34fRX37+msvyceHHxZ/RtU6w7bdtStwww3y97pw0UxC4KnG4LETrOxGEnXjjMtFc8kSLz5km23E7+UFHt/PMBfNFSuAvn2B114TfzdPWGygTR08/vj89a/e9SCK4/I/p7KQ4RdqOhY82W+1icHj27e1kqkKvObNxXOTaxdNtm+8tbihofD+FSaCqqqCbMGyc3bppcCwYcHfrpOsiHCdZEW10LlI4Il+b1wumitWFM/vNhY8kzIJqi6aIoEXJbirq73SHD788dax4PG4jMEDii2EgFocGQt7jHv08NZDa9bYW/CamuTjuLY2XMSym03XX+9tSPmJXfznRYjGocxa7zN6tJcs5uST9Sx4330H9OoFLFhQ/Jrs+4EKteDdfvvtWLt2LX7729/io48+wkUXXYSjjz4aRx99NC688EJMnjwZN910E9auXVtQjFyVnXbaCbfccgsGDhyIefPm4YUXXsC///1vzJs3D4cccggefPBBTJkyBT0EhT0uueQSvPLKKzj88MPxySef4Pnnn0fr1q1x9dVX44MPPkBn/+7jGNFFHmXBa2wM0umqumcC0Qtn/7mkXTQB4O9/F09kUTF4otfatQt2r1et8uoxTZ3qZdl7+unCPrDH38+hoyPwVMpJ+Nx1V3Cj++Mfo61mfh9ZeCEweHDxZ1Rj8PjXfv97+XtNBV7YRLbvvuLPu3TRVLHgyRYuOvGRUS6aLVoEC1gR7Jh78UWvwPEPuZ2KsMmieccdhYWTAfVrS8WCx4+pSy4JHrMe7vxnzz5bfj34feB/p6iwOZ9iX7aBEnWTjrLgyVKQA/LFZS5nb8GL+rx/vmU756YWPLYeG0uYi+a6dXoiyN+s/O674rll/Xpv/mQxjcHTseCFHXt2vKou1pOy4Nlm0dy4sViUqcTgsfejPfYI2jfJonnYYcXPiVw0u3Ytfl/UWKuq8koQ+cyeLe6brH9hYog/TrJzIRozbLIQH5E11e9fVZW+wAO88fXHP+oLPN7tNir+Lqxv7Fx0883eGGHvF7K1lyhSKspF87jjvDHz+OPe5jgQ3jf2eM2Z4wlQvt8s5RaDF7H0EeNbw24IMRVcf/31GDVqFMaPH6/d/mabbYZrrrnGpGsAgEGDBmEQm24oAUTl/qIE3pIlwc1Bx4IXtVDQzaLpx/KJLhQdC57PunWFbkWsm5qOi+YOOwQTkShYne1Ds2ZeWuDnnw8sbCoZDf0blqqLps8XX4QvDkV9ZOGPA59UAjBz0fRpahKfex2Bx964wlwRRoyI7peti6aNBc+Vi+b55wMHHqjmrgIU10Li0RF4vFVl3rzi9sKudV0LHj9e/Rtj167AD6HOAPRuav5x5vv5f/8HfPWVV1DZv6XwfTKNwZMJvMMO87wNwhIqyxaXSbho+udblr3OROCdd57ncSAizEVz/frC+1eUCPI3Kzds8LKPsveCL74ofr/rGDwRYcde170NsLPgyUIdqqu982niohl2DFeuLDxnKha8v/7Vuzb69we2287rW0ND8fdGlSEAgL33Bh56yCv4/re/FX6O/a1suRofFYtq8+be8auvL/aUSsKCJ9ocHjnS24R76qngPiCKo1axQrGIzvOcOUD37sHfKgIvl/P6vX6998/UPZPtk2xjjx0zJ50E9OzpzWs/+1nxe3Vi8Px5SsWC58OW4IkSeLmc13YpW/CMBN7ChQsxdOjQyPf169cPo0ePNvmKkoP1A/dhJyeRi6ZJBk0g2tVH10UT8C5w0cSgE4Pnw8ffsANfNU5om22848cKPBl+H37yE++fqD1XSVZ8pk0DdtlF/hlZH0V9k6Fb6JxlzRpx7I7OTh8rQGQC7w9/AGQhrWyfZYtOVRdN2Thmd5TjdNHs2DEo+hwG+12ywHofmxg8fuFTW6u+k2liwaurA26/3XusIqpFyARe586e5W/DBjcCTyZm2d/95z97C9cwwgRenC6a+by6BU/VRfOYY4AHHjDr27p1wf2rVatoSwOfaIWdh/gkGEAyLpphv89E4KlY8NavF29KiubyXM47tqtWyV00a2vV50v2vStXFlrHVARely6FxadlLsGqWXzPOQc48cRA4Ili8NiYex9Vl9m6Ou888hvpNhY8GxfNnj29OaZly8BiHWbBU3FbB+TrAJVyTzwtW3pjdN06O4EX1Xf2OLZuDdxyi/y9KjF4YZ/h4Y9XLhdcr1Gbg7L7FUvWBZ6Ri2ZdXd2m8gRhfPfdd0X14soV0eQUVSaBXbS4isFjs7upumiK2vExseDxYkw1loz1j/YFs47A44ly0WxqCn6fagyez9SpejvItgJPx/IJyMWFTh08FQte2OTustC5igVPNsG6cNFUvQGz3xWnwOOtfzpWEH7hIjpuqhsxUQKPFQOyGDx/BzzsenXtoqly/aVlwVu3Lui3bHHFZkXlr1/RXBm16As736wFT+V2HlYLT2TRSiLJiqoFT3VxrGLBmzFD/Jps7PnHVmbB0/HiYM8BbznSjcED5JkSdZKEiM4jK2aj1lBhiI4d+z389/vEZcHzUUmUBZjdX3zyebMx7Pc7yoIXVgMPiO67zhiJisEToWPBa91a/hr//f5xLGULnpHA22233fDGG2/g008/lb7nk08+weuvv47ddtvNtG8lg2xXk83uGCXwXMXg8VafsN1WXQuL6IIQ3RT4BYbqwortgy/w/EnId/cRYSrw2H7qWvCmTtW7oE0EnmkMHiBPq6/joskeExOBl3QWzTgteKo3YJcWPDbBBn8++c9GjaewBa6Ki6asn1HXALtok8Xg+b8lTIS6dtFUuf5UY/BU9zBVY/CiauAB4XObaC4Pmz+A8PPNxuCp/NawUgmqSUdYdOvgiQg79iaLYxULnui3AvK5RCRS2DEb1jf+/LLngJ+HdOvgAXKLse3i3ZUFz79WeU8pNsZNRFwxeD5RtUyj+sfjUuD5/VaJwdPtE4vtJkAUpgIvyvtDZsFj/y5LgffrX/8aDQ0NGDRoEP785z9jNbPyXr16Ne6//34ceuihaGxsxNlnn+2ss1mFDfJlyeWCCcqli6bqzUrnpm5qwRNdJKYCj8XPjMVa8GSLPNmEFrVjnnWBZ+OiKRMXaQk8XRfNJGPwwq6DNAUeENxcXVrwTFw0WfxyB7LPsmy5ZXGb/O/0N3H8mAdRH12XSbC14LHjmV00hKFqwYuqgQfoCzwbCx7ropmGBS/uGDwT9zYVC55M4IkSlQDRFjzV7L1A4TmIKuDtY2LBMy1Yzwu8qiqzMgn8+2QWPFnfkrTghcXg2VjwADsLXpIumqabOaqf4eG/j71uVV00+fexGxFlKfB++ctf4pRTTsH333+PCy64AO3atUOXLl3QpUsXtGvXDhdddBG+//57nHLKKTj++ONd9zlzhJXV8xdicblohk1CzZqF3wSjLCwzZgBsrpoowegTJvBU2+BdNPN54Ntvxe+V3ZjitODNnAkohKFK25dNdOvXA6ec4qUBZrOR6lrw+Jv6nDnA0UcDV10VPKdT6DxpF03VGLwNG7yUzIcfLm9Lx4Lnt9HUBPzmN8GYS8NFEwgW+CtXAqNGAYcc4pVG4BcVUdeVrgVPtb3ly4Ff/hI44wzxOd5qq+I2ZRY8tt2NGz2L/QkneOUgZNV2ojadlizxrtNf/7pwDLt00RTFuopQjcFTseCpuhyKvjuqbzysBU/FZY634M2e7c09V17pJdPhMY3Bc1UHjz1eqhuQuha8Xr2Cx7JkFP6x3bAhmGNVBZ6OBU+3Dh6gZsEzWbyzGweizQxdF02+Rq6NBc9FmQSRi+bq1V484umnB2Jf1YInuk55C55qHKnfb9skK7J7o39dpGnB448Xa2iJunfI7ldbbBE89o/7TTcBDz8c3dekMUqyAgCPPfYY9tlnH/zxj3/ErFmzsHjx4k2vbbfddrjssstwzjnnOOlk1hGlAfaR7SwBAHPIQlOv8+i4aKoKPNGi4PzzC/9WvfmFpWVWbaNvX+9/drISZQ4E3Lhoht3cZH1+6SX5Z3hULXh//CPwz396j9mMc7YxeCedBLz9duFz/rHdbTcv7TCPrP5RGi6ast//9dfA8OHyPoR91kfUz2ee8TK/qbbhwx4P0TXPwt+Ioyx4J53kPf7f/7wMbSw6Lpomhc55/N/51VfBol2UdKhTJ+83rFwZ/BZZDJ7fT78o7XPPAU8+qdYP2XPnnAO8/37xe2xcNE0FXpZdNMNeX748WKzpWvDmzweOPx744AOvbIgI00WfaxfNZs3UUtUDahY8P8FKs2be/cz/W1YTl0/K1qZN4bW5887BPXC//Qo/G7eLZlwxeKzrr2is61rwAO/Y+fNXlIUs7DeHra1YwtYO7dsHj/313m23AU88Ufg+GwteU5OdBa+xMbzUk6mL5saN3rh0FYMnO/5h1yz/GnvtRfVFFoO35ZbBPWXDBmDKFOC3vw1vKy2MLHg+5557Lr788kvMnTsX7777Lt59913MnTsXM2fOrBhxd9xx8uLeQGEMGQ8bU6a6SADCF878hR4m8KIsLHyFC9mF/Oc/F/5t6qL54oueNfSOO4LFFTsByxbMabho6qIi8DZuBF5+Ofh70iS1Poh+P+8Owos79nMXXujtsPOLBpcWPNs6eDI3uDlz5N8va4tH1E9eFJi4aEahI/CirG42SVZsLHgsEyYUP9e8OXDrrd51feWV3nNhFjzWUrBkifg9LKJ5k+2bSNyx3xNGy5bixUPcLprsgtyVi2bU+czl5GOI3YhUWXBvv33w+PPPPXEXhqnblujeJjuvKhZP1YUx3yeZBc+fM+vqCsepisDz73V8ivlf/hLYay+v3iwLf37ZccNvuJq4aLqIwQsTeK1aqVvwnnjCm0/8jJz8+0Quri4seCYxeGym3unTvf///e/i99nE4AF2MXiAuHaxj0qx+bA+mVp5+etbdt2EHTt+c4M9TqJ+i7zN+PbZjPn19eLSL1nB2ILHssUWW2AL1m5ZQYwYET7AwrJA6hSPZQnbjTS14KlkhZMtEn7zG6847rXXen+bCrwjj/T+sai4G5ha8Ngbn47Aa91anvBFhkpM2apV8t0oWxdNEf5xa9YMeOEF7zH7/WkmWQlbsLCopKs3SbLC71raxkiI4MdtmMDj4RcbOoLMNgYPEB8P0UK3eXPPE4D1BlB10WT79c9/el4OBxxQ+FnR8VE5VyrnyU9dz28slaKLpsoxqa0V94sV2iouc127emVFli6Vx6Hp9E0nBk92XlVcNHUEnooFz/+emprCMR7logkEi1k+iyZv+fHhfzc7bsLuxywqFjzTMgk+VVXe8VKx4DVvLh4bv/yl949FVnM4iRi8MIHXs6d3XteuDa4F0TVkUybBNskKEC7wwiyUQLjAq6szj9Pk71OyDf6w9feyZfLXRH0R5T3g38fWP66vVxfnaaDctQ8++ABjx47FTFkwBMOMGTMwduxYTGJNEBWKP2lu3Bi+I6Ej8JJy0eQJm8BlYkDUJx1UBJ6szbhi8KJcFqL6AoiP5cqV8snCVZKVqM+x1NQE/Uk7i2arVtGF22WYuGiaCjwdCx5//EXiXiZsderPAfaFznlkrkI8osWBLMkKUFjAm188itoSHR9XAg8Qz8tJJllx5aIpszKxyM45K/BU7lO5XLDLzZa+keGyDl6WLHhsgiYVgRdlwVOda4HC60JV4IWdBxcumkBhEqWmpmCTta7OO0ZsGzprIpnASyIGL0wAVVUF4SZffeWde5HAs7XgmSQKYvsdtl4IE7CAngXPJgbPtcATHUuRUGbvy61bAx06FL6/5AXe4sWLccghh+A3v/kN2rNOxRI6dOiA8847D4cddhiW++XmK5Qw4cMOWNVgYkA9YNzGRTOfV4+DAgonCxdZNEXtimBFCE/YohZQF3hhu6Oqn1EVeDILnqs6eCwqNwKRi3EaLpq5nPi4q1ieVX3t2f7w4yEtgScba/zvDouhANwnWdGx4EV9VmbB42N3RQsN0fFRmWNUz5NoXi7FMgkqyM65rsADCt2YonCZZEVF4MnCGlSTUwD6Fjx2HMneLxIpqvdOHRdNk1gmFy6aQHAum5qKN7hzucJ+6wg8kfXT/56wvumUSTCx4AHBtZDPe26aovenUQdP1YIX9fui3EZdxeCZuGguXar2XT4iYwSb3K9Pn+L1QskLvH/+859YvXo1brrpJmymkM9/s802w+9+9zssX74c//QzRlQoKgKvulpv9zAJC96aNcWTedgucNjvtBF4UTdd1dTRSVvwogSC6DisWOHORVNWB49FZcyJXIzTsOAB4uMeJWxkbbGI+smP4SQEnghVF03Zzc8nTBCIrg1XFjzRdcXfENm2ZBa82lrxZo+Ji2Z1tXoyDdEikxd4qptzScXgicIBVH6vbI7RjcED9ASeqduWaNzKrnXXFjz2eEZZ8HiBJyPKRVPHgmfiohk2RlTKJOhsrDQ1iTe42X5nzYJnkn0UKLwWpk4VCyaXdfBU11iqFjwbF03AvEyCCwteGKJ+i8qM+bGTgCfw2Htafb35hloSKB2a//znP6irq8OpYdlEOE455RS0bt0a/xZFlFYQskyEQKH/ueqCAyhekDY2Ag8+CDzySPEADRNlbDtr1wL33RdkUxTVnAtLaKEq8Fy7aIZN0Gm6aEYl0NC14KXhogmIBZ6qT71M4DU0AH/6k5f2XzUGDxAvdqMyVUb1UdZPfgzbutCIULEYuBJ4cZVJYDEVeOyYl8Xg6Vjwos63zjkSLTL5BZWqwEszBs+Vi6bqb/XrmKqgkyDI1ILHHvvnn/fmHh9bF80oCx7voinDxkXTRQxe2BwXhwVPlIOAjWfV8WoyjcELm+dcxOABhQJv2jT3MXjvvhskk9LJBOvKgheXi6aLGLwwRPOOyILHbiL37VtswZPVtcwCSre6zz77DHvvvTdqNVbntbW12GuvvfDpp58ad64cCBM+/qJMZyIDit1NRo0CzjvP+/vyy4PXmjULb5sdqH/6U5DGukcP8c3ORQyeawueSuYvwK5MgonA69OnMHMlP0m6jMGL00XTP76yMglh51Pmovm3vwEXXRT+eVULnorAM8miyY9h1aQ6ri14qsllonYRk0iyIloAqQg8FtZSwM8brix4OnOQaP7k3UdVY3JVLXhs3EgWXDSzZMFz4aIJeBkpt90W+PGPg2vdtQWPddHs2jV4XvY9Ll00WaEUdj9mCVvIs9dlPh/8fpsYPHZTyr/O2D7obAbLXDSjLHi5nPc9omPiIgYPKNzs+PxzoFu34vfYbCCyG+86bsZsv22SrETFBbqKwTNx0Qwj6h7mX6d+YiDAS7DCrxdUvIjSQunQLF26FN1EozKCrl27Ygm7/VeBqLho6rgiAMU7wbffHvzN1gSrrfUKI++2m3cRPv+8vB22RtFjjxVb8Dp08NLpywizVLp20WRvrnw2LRZXZRJ0Y/BatfKyqz7yiDc5HHIIsM024W0C2YjBu/hi739/oyAOF81rrgkeyxa63bsXPyc67irCy4WLpuo0lpSLZpTFjsd1khXR9aIq8MKOEWspiLLgNW8ubl+nJmAUorm5oaHwt3bt6pUZyeWKS8bIvjcsBs/PY1ZVJb4OAH2Bp7KrLzvnbAwKm2AgDIVIjk24TLKis2H0j394YsU/F64teGySlRNOAHbYwfsOWT1Al0lWVGPir7jCa3effYDdd5e3L7Oi2ljw2H7513bUpqwMUwseID/v7DXKZv7kibJwsTWOV68Wj0VXWZrD1kM8KiWoAHsLns76LywGT9bHsLlNdq3x3+UjsuA9+aT33j32AA4/vHC8bNhQBha85s2bY43KVjnH2rVr0VxnS6EMCZtoXQi8hobCAcdeFLW13oQ6aZIXk9Wxo7wdlqoq4Lvvgr+HDwfOPjs8W1ySMXjvv++JqBYtvF1YGWm4aP74x8C4cd4Oap8+3sKvU6fi98li8Fxl0VSJwRP95rvv9gSYv0CLQ+Cp3MxEFoA0XTTDgrVZbMokiJCNNZsyHS4seKKbvksLHi/wRDF4KtatsO9QQTQ3b9xYnNRg7FhvE4BdzPGouGg2Nnq7/ADQq5d89zwOF03ZOWd3qNki5mFUVXkLL5XvNXXbMi2T4NOypXjHXgVdC16zZl781cqVxfdhH5cxeKr345NP9kRehw5qMXj+50Uum7oxeKLEIKpWbh7TGDzAO1ai+wj7/WF90bFw8dZ/H1UrVNi8vMsuwF/+otYO31bYfdQ2Bi/NLJpHHumtZUXzlqrA+/nPgYMO8q7bqqrSsuAp3eq6deuGTz75RLvxTz75xMjyV06E1RLzlb+ui2aYwGPxn6+uFt9UwurHsRa8nj2jU4EnGYPXurUnnqKIqw5emMBr167QPUa24Muyiya7+84KPN81xzaLporLpGjaMHHRzOWib54qLpphyYpYknLR1N1v07XgRV2nopu+SFjoCrywMgnV1YXuVKYCT+ccqbho1tZ64yxM3AFqi9fZs4N5KczNMUkXTRZdy5xKltskYvBE39GihVn2QUDfguf3QSbugGgXTZ0YPJ2s1qINSB7ZeLOx4MUl8HSyaLLfzcN+f9g41skyyc9rPi4seDvvrNaGD5+DQUapx+Bttpn3vXx7qmUSgMK5vZRi8JT2Dfbdd1/MmTMHb7NBRRG89dZbmD17Nvbdd1/jzpUDMuHDqn5dCx7v6iMTJ1E37DALHivwVG7qYTcUmxg80UJS9Xi5KpOgI/BUBaxoojNNsmIq8FT66h+XfD44hqoTNvuajgVv++3VSwZEWQhUbpwqFjxVknLRtLHguXDRVLXgidpRsRSIyiQAhfOBTPwm7aKpes2ruGhOmxY8NhF4fn0xHhsXTRZVCx5gdlxEuHDR9C2KLDYCT9eCp0KUi6aOm77rmHjZ/GETgyeq3WbqosluxOha8FRcNMMEXpTA4NchNha8sPOlksiHhf3dYVYo0xg81xY8mxg80TlWteCFtZV1C57SsDrppJOQz+dx9tlnY4WC79fy5ctx9tlnI5fL4YQTTrDuZCkjm2hFGaRU4V19ZBOUjcBjXTRVbupJumia1J2ycdHUicFTXdSIJvmVK+U3NV0XzVWrwq1OYfUDWUTCXXXC9gPYAb1Fxfbbi5+XLejDUBlvIoFnuiunKvByObX3uhJ4YQsnVxY8lUQFou9nCSuTwJMlF00VVKwTU6cGj00Ensx6Z+OiyeIyts4niSQrov7wAk8nmiSq0HlTU/C86nGIy0XTRUy87F6q21YSFjxXMXiqFrwo2M0FmcBzYcGLEmI8qi6aWY/BU1nHqMaCmwi8krfgDRo0CIcccgimTZuGPfbYA2PHjkVeMKvl83k8//zz6N+/P6ZPn44DDzwQhx12mPNOlxJxC7wwC17UwkPVRVPlpi76nevXA//7X2GGJhcumqourWnE4Kku9kQWohUr5JYj3SQr+Xy4CFDtp+i86uzI+d+zYAHw5pvepK1iwROhmq2QReXGqeKiqYrqgkk1nbXsN+u6aLoukyC66Yt2MkU3v7Bj6/ezqUm8KcAuCtMSeKtXAy+/HPytOqepxOCpCjz2N4wfH8yxNjWZon5H8+bRrvosJuJBhMhta+VK73fz6Iig6mo3Frw1a7z7nD/Wv/kmSFsf1ScWl0lW2L9dhEzIvGF0LXhZjMFTEXg6fRHBblzFFYNnY8GLw0XznXe8DJ9pxuD5qGaFVxF47Jro1VeBWbOivz8tlG91Tz75JAYMGIAZM2ZgyJAhaN++Pfr164cuP5h3vvvuO0yePBnLly9HPp9Hr1698NRTT8XW8VJBtpMmShGsimoMngsXzepqtcxpIiFwyinAs88Wvs/WgldVpb7TmkaZBNUbpmghFibwdF00/fZkfTUReP741Zmw/b4tXAjsvz9w553RY6BXL/HzJgLP1IIXt4um6hiOQ+C5KHQuul5EGwqixUyYCGH7yc6XaQk80dy8bh3wxhvB3yauiLIFo++iWV3tZV2Uwf7Ga64BnnvOExWycevCRbNLF/N6rWFEtcnv6ufzwMEHA4sWFb837NzyrzU0uInBu+wy7/+hQ716tH36FG522Lhoqlo/+DGfy3lzzIYN7l0044zBY8+BTvp7WZmEOCx4qsmDWGpqgsRRccXg2VjwwgSeqYvm7bcD99wDXHJJ8JxNDF7SLpphBhB/DOTzwH/+E/39aaF8CXXq1Anvv/8+Tj75ZFRVVWHZsmWYMGECnnzySTz55JOYMGECli1bhlwuh5NOOgnvv/8+OkdFnVcAcVjw4o7Bq64OsgZ26KBvAvcXZry4A+wFnk5ReFdlEpKy4K1daybwZN/pT4giV6akLHh8v6+4InwMdOoEHH+8+LU0Bd7116t9n+qN2j/+Rx/t/X/QQfL3iW6wvMBjS6VE9SsuCx5fS6l1a2Dw4OL37b57kETnd7+T91Mk8NiFVVoxeDwmLpoyl68FC7z/t9hCvcYn4GVK3rChcNHsz9tVVYWLLBlR51zHPRMIP85+spE+faI3OPld/XXrgA8/FL/3wQfV+1NfL44DU0F0Dxo92stCzFuyVecEURyZjjv8Hnt4j8880/tflAEZMHPRlM0fpi6ajY1igXfLLcFzOhkhZRY8/zoL65tuDJ7uhjwQbcFTLT/iMgYv7iQrgDeH33ln8HfSZRJ8VAWev2atqvLWKrLv05kr0kRrud22bVv8/e9/x0033YR///vfmDRpEr7/wdSz2WabYY899sDRRx+NbcNy11cYsuQjScTgmbpoVlUFSTpU457CYvBYbAWezuQal4tmmJuS6q616BitWydf+JlY8PyFhui7knbRZBHtfm67LXDvvUDv3vIxZxKD5yLJyhNPAMceq/Z9Oi6aAPD4456r2cEHy9/btm2xqyNrLXv8cS+Vs2q/4orBY9vt0gWYOFF8zmprgffeAz7+2KsrJOsn+5tF/ZHNm3G7aPKYWPBkcYh+iHvUWBf9hvXrCxfNv/gF8Otfe8Jsyy2j+5ekwBs+HGjf3isrE7VA4wWeKIHUmDHemPvxj+Xt8L+vvt6NBY9F1DcTC55uDB4AvPSSd835UTEuBZ7rJCsyC16fPt5mxZo1wMCBan0DxAKPdfMOu7/rWvBatTL3oJDF4LHF0MMIu0Z1LXiqLppR10XUeS8lF82f/hSYMMGb63r0CG/P1MsnSTSX2x7bbLMNLrjgAtd9KUtULHhZc9Fkb6KqVhNVgWcbg6cjhl0JPH4i0I2HEyFyU1u/Xu66ZfKd/gI5TYEn6pvoZtKiRWDNkpGWBe/nP1ffhde14LVtGy0e27UrTHoEFI6TIUOix52uBc8kiybLT38qj6UEvJun6AbK9pM9B6LzKLtm43bR5HHlotnQEGzKRI110W/kBV6LFuEbBzwqLpo6hB3nNm2An/1MrR3ebUskovbZxys4Hwa/YLQReDJRKprbbGLwVMskAN6idMiQ4G9/we86Bs/GRVMWg8dey74lUgeRi6bq/V03Bs+ktLN/LcgseGHxtqJ2RMRlwYvagNGZT7OeRTOXU5szbWMyk0LDy5kwQSZ82MFqm2RFdgFG3bBkk/uqVdG1pnj43ynL4OjCRVOVqAWVaR08E39+HpkFz6WLZpgFT/UmFYcFT7QTZ1MyIAyVRYdonPi/1a+/5vL7AL3FZNTvVrmmkkiywqJzzFiiYvBYZMewFFw0RcecdXGNsuCJju+6deaCBXBvwTPxOhDBu22JBJ7KIo9fIMZhwRMtQnWs+v57dcskiJBZ8LJQJkFmwTOlujr4vf6xU42xl90LZS6aJnOb/xlZDJ4LgecqBk8n9hHQOx4mCZV8XFvwTO9RQLZLI7CQwIuZJGLwZLsJUTdR2aTKZtA0ddE0yQYpgp+0suCiqZPNTIZLgRenBc+mTIKsb6KJWuW4pVEmQXe3VtdFUwUXAi+JMgm6fRIRFYPHEhYEr/odUcTloik65mwFIpNzzlvw0hZ4OglPwlBx0Uxa4OlY8EwsxiYumjz+3JXFMgmyGDwb/GtVJPBcumjqCiDAnYtmXHXweMu/j45VVgWduTluF00bgVcqkMCLGZFla8MGty6apgJP9jor8FStJmzg6YYN8h2OJC14/KKW75OpwHPhoikSXevXuxV4/u8VpapP00XTtD9xWfDCXDR1BV7SFjw/o1cUuhY8WxdNU4GnE4MXliRK9TuiUJmbXVnwWOFi4qJpa8Hj38+LeJcumjYCT1SKV+W642N/47DgiRahJhsKJi6aPFExeKq1OPnvdmXBM01wI8M/dl995Z3ruASeTiZZn6gkK23aqLXjskyCrC32uldZz7gUeCIXTb/uqOs6eKb3qFKCBF7MsANrzRqgXz8vU+CECcHztklWZALP1EVz8eLgsc6imr2hyAReWjF4Dz7o/ZYzzgieU3Xh4CelOF00ZUUzwyYjmTus6yQrJmUSVL9HZVzo3sAA+xi8LAi8MMul7Q48kC0LnkzgiY5rEgJPZb5xldU3bYHHH08+RjItF02VGDwTqwqfdVTnWpedc5H4NBlvLl00GxvFVjed9lyVSYiqg2cDuxmz996FgsBlDJ6JwIuy4Om2I8LGRVPWjsp1GmcM3tKlwHbbeUmivvwy+jMyyIJHxAI7sYwd62WOW7MGeP754HnbGDyTzIuAfGKzFXjr18uFiu6C2SaLJjtR+ZbORx4RJ9II6xfbTt++blw0L7yw+Dl/p0q33U6dxM9nNcmKCJUCyjY3VtX3ZFHghV2DtmnORX8D9jF4Ll00q6qCm/jZZwevH3KI2XfriAuVuVnVshV2DoBC4WISg+faRXO33Qr/7t1brz1XFjyVGDyTxZqNBU92HzK1LvLtunTRBArvASqlA3hclUnwf9+6dYXHyoXA22674PEHHwCvvRb8rSPw/N8hi8HbZ5/g8S9+odY31oLHX/vsnBZFXC6aLOyxcm3B043B+93vgG++KfQq43FZJkGVAQPMP5skFWCkTBf2YpEt3nVdNF3F4MleX7IkeKwT96RiwdPdBbax4MnKMG7Y4P12nSya//sf8MILwAUXuHHR/M1vvFT3dXVeu//7X/j7w9pt1Qp4+WVg3DhP7F17rfd8FsokqB6PPn3U3vfee8CoUV5x0Zkzo9+v6jZUVeUtHvkkK3HF4Om0GybwXKTod1XoXPZ9OrCf888B+xtvv90b4z/6kbfZIiLqnOvMIVHvHTtW3b0q7hi8desK3RBtXTRvu8071kuWAEccEV54XbWPKq/xqLhomljwbASeTOwuX178nIkFb8OGYsubrcDz1xm2FjwbF83evb05PJ8HPv00eN6FwLvrrsKi05MnB491BF67dt6Yl7lo9uoFPP20V87h8svV+iaz4F15JXDNNWptAG7LJKh4QKjcX2QeRFFtR73e1ATMnl38ns6dC40QLsskqDJihFcnb+xY8zaSgARezLAXnaj+F2BvwTN10ZS9zl6wpi6aMgtekgJPZtnasMGzGLHCJ2oiO+igoBg1n7KeRfVG1axZIMTGj49+f1T/Dj/c+8cWlw+z4KkKA5HA04kLUT0eqlnE9trL+7dggZrAU53EfcHPW/B0b5pZddEsZQse21aHDsCtt6q3IUJnDgnbfDvlFK8chCpRdfBsXTTXry/czdZdNPPnbNttgT//Wa+NsPZUX+NxlWSFx6bQec+e3tjgk6rYWvD4UgkmCVF8ZDV4/TZNM5nauGiyyUSmTAkeuxB4vXt7VrsDD/T+NhV4bduGC7zaWq90TlTtURZRmYQuXbwNKx3iKpNg856wEgs8NmUSfFwJPBsLXu/enjeYbI2ZFchFM2bYiYUtTsxiG4Nn6qKpcvG6jsHTDdS3cdGsrQU6dix+3r/ZsZkSddz/XLhosqiICNWbO9tWmAVP9fdGWfBcucOpZhET9csFfj8bGgoD9MvFRdN1kpUkLHgmlgaV9+u6ecuuFRvrbhIxeLr9c536O8kYvKRdNKuqxBZk0b3YNKnPmjXZcdF0ZcFjN/Jcu2jy7bMCL2y+4r/bF0rsuTSpHcjClknw2zVpx2UMnuyY63oB6BR913HRDBN4ss/IiCMGzyTpW9KQwIsZFYGXtSyaLDqDmC2sKrLgNW+uFmvFf4ZFVwyLLIb+zS4ONzyTSVtl5021XbatMAueqltFUi6acQk8kaVEBCvwbBbJSZdJMLHguUiykoQFz7Qtlxa8XE7+ft0FlY6LZpRrfBxlElj3Qt3fJiLJGLykXTQBN7XLeNixtnZtPALPZZIVXQuj7Ji52rDr3Fm8iRzWPv8a607pY1I7UNam6cZV1GfisOC5Fng6FjzZvZtf06Ul8EohCycJvJjhs2iKiKsOnqmLJotJDF5Dg9hs36WLfqIM/iLUPVaiyZ4XPi6tNCY7kVGLKTbJhE5bYRY8VeFjWwdP9XjYCn8ZsmuDh70Bq8ZmikjagueiBltWC52r9kX3u3XnENkGXNYteDYCr317vc+KSDIGzyQBU1ICz5WLpo3AYzdcbV00bSx4vmsrjysLHiA+Lzoumv5xCXPR1EVUJsGknSTKJOi+R2a4EGFTB8/HlcBzIdCyLvJI4MUMO7EkHYOXlosmIL4J68bfidC1dqpY8FzGWcVhwdNpk7fgPfQQ8MtfFr/PxIJnUibB5HiooHrOVAUea8HLmsBzHYP38steFrBHHvH+Fh2jqHaTcNE0bculiyYgn59J4IUTh4umzIJnIvDefrswSYbu8erVS+19phY81y6aCxYAP/kJsHChfr9clUmoqhJ7a2RJ4LGbff6azVbgRSWPMmmHJw4XTd0YvCixpWPBu/12cRITPu4tzTIJLsdtHJDAi5moRUDr1voXOnshr16dvRg8QJxNzIXAc+mi6S+GdC/SpAWezo2YbWv1ai9bpwhVC14SLpp+8hod4nTRzJrA69pV/ppOEhmfKVO8xa1fEzJLhc6z5qIZ9v40BV4cLpps+vcjj9T7rIg4LHiyGDwVorKd6p7PH/1I7X02Fjx//qqq0hex/Nx9wQXAf/8bPJdGmQRAnDHZ5UJZ1L6JwAOC4+8qBg8IPGvSFniy79cVeP37B4+HDAl/r04MnowOHQr/VrkuROffxK2bhwRehRM2sfTsCdx5p/7E3bp1IFy++CJeF02XAk83wYoIFy6afDZI3Yk2bJKKw0VTp39sW2y5C56kBF7U8dhvP+Dvf1fri6xfYSRtwYsjBm+HHby6iaKxrPp9ssVtPl94jHbaCRg+PHpMJmnBS9tFMymBpxODF4cF7/LLPWF31FFe/SlbkojB69dPPdPn+PHAnnvKX9c9XjvsAFx3XfT7dH4re52uXBnMtSbWBn7uHj3avF+uLHiAOPGZy4WyqP2wa5Vff4muU1cxeEDgPeM6Bk9XsLiy4F14IXDMMV4W7z/9Kfy9OhY8GfzcaGLBc+VayR+f3Xf3SmhkhYx7kJY+tbXeBMK7Z/7tb8CZZ5q3u9NOXkrgRYvkF005WvBcumj6k7fuzTNsQsmSiyabSpgnC0lWRo8Gjj1WrR9h/eKprg76qCpkk47B02333nu9BfhWWxU+rzo2ZNcxX3j3o4/Ubn6lbMHTnUNcxeCpFjqvrjaLcbS14LVuDbz4ot5nwog7Bq9XL+DDD9Xb2Wsv4P33vY0SUeFkE5Hx+997Lmp33SV/j879hV28rlxpl5BDlmTFJ40YPEC8YeJS4InaD7tW+WuRz1IOuHXRtGnHZciDqxi8Fi2Af/3LeyzzJvPRicGTwd/LTASeC/dMvt1jj/XWNKYeBnFAFryYyeXEk4vthcr6mc+fL35P1HfkcuEDvXlzvUVMVAxe1ix4/s3J5OZpKqpFlLMFL6zvuudS1i8e9hjYumhmoQ6ej+g3q45dmcDjY3hV+1/KMXhZteD5C4O2baO9OmQWPNO6bnHgKgaPPRasi6ZpmnLZcTE9XlG/RWf8sr/J1oLHJ8ji++GiTIKJi6boenIpXHQFHi9K+CR2/HtsXTRt2nHhVqjz/ba1NHVfV/l9WRV47OZaViCBlwA2CzMZKhm8VL4j7ALWvYGWWgyeqQUPkB9bk0VCXDF4YQLPlQUvanINOx5xCTz2NRMXTTbjnO4iXvUGnCWBxy4iTeojisiyBc+VwIurTIJK5uI4YvBc48qCl8sF43L16mC86mR4ZnEt8KI+l5bA4+duvo20XDR5i3h1tbsFt6h9IPxaDRN4/nVqG4PnyoJnkkworC1Rv3RdNPk2w3DhoulC4Lly0WTbjbJepgEJvASI24InwncNjSKsH7oCj51ESyGLpo37S1YteM2aBeddJLJ9XAg8lcD/sL7rnktZv3jY46kr8GxdNKOs4j6uBJ7q2KiuFguV+nqz6yDqvGc5Bi8tF03ZItlHxzIVR6Fz17gSeEDwe5ctC54zteDJjktcFjxTF80VK+w2IfkMyPwxz4qLputxGreLpqv1QhZS7IvGALs2cJ0F21UMHttOmhY89viQBa9CSUPgqd6swvqhu0MaZcHTrXUmQvcmLKuDx05iLgVeHBY8XXcmFcuCqsBj2+LLJNgKmSxZ8NgxwNarNFl8xCXwbGv5iBbErIumywUHuWgWw/Zr0iTgqqu8JFmAtzjwry9XAi9tC54rF00gWMSx4QhZcdFMwoLnIgbPlQVv40bggQe8BHHseDMVeK7Hqa3AY3/rffd5Fq2sxOC5hu9DbW3hb3V9bqLGnGoMHttvctGUk4E9hPInDoHXqZMnXr77Tvy6avtxuWiyO60+fHpbE3TdoviaKYB3s7MpIBv2mTiSrOguJFu2DFIxy+CTdah8t4nAC3uPjQUvbBywfdaNwQPsBV5NTfRkb3LjzOW8z7Ft6y4eFywofC4ugWd6A82ii6YsA6mNwFuyBLjjDmDECC/hh06JBL4tn1Jy0XSR2Mq0Vl/SMXg6v5UXeK4seLYxeOz3jx8PPPWU95i9llTb4+d91+NUdF8Ju1bZNcI22xS+97bbvMyyWYnBc42oyPvWWwe1Erfc0u33uXLRZMeaiqdaXAJv++2ByZO9x6prqiQhC14CxBGDB4S7PKpOHmEXsK7AYyfWpUsLXzvoIGDXXfXa83n0Ue+CHDwY6N5d77M1NcDppxc+t2FD4cLfZbpi1y6auRxw0knu2gO8G9o996i1xSZ88EW7jsALs6CZ7sAD8bloAl6cj8r3yIjLggcU90dn7Ios8qYumlFkyUWT/7yuwBs6VOx94KKEhp/pls14K9qU4ikFC55sDFRV6SeLEL3/5z/X7xOQ7SQrvIumP+eaiNm4LHi+uAMKN8NK1YJ3/vmesGvd2suC+ItfFL4+e3Z2YvBcw/ehpgYYOdIbb1tuCVx/vdvvi0PgpRmDd9ddQOfO3r8//MFNmy4hgZcAogW3i4s7bCGvOmmGuXraCDzWRXPqVGDCBPMA4VNP9QSjn4pXl5EjgUceCf6O04LnykXziSeAmTM9l6TLL7dvz2faNGDePPXdpurqYMHpW4t1BF6YJcvGZTeuLJpAaQk8nXmkFFw047Dg8eNM13K8xx7ejjafCt9VAp7GxsK0/SqxynGUSXCNy00w/vc+8QQwcKB+O4D8uJjGgkUdZ537C2stXrgwEFAm8etRAs80Bs/mPUD8Ak/XgteqFTBjhne8d98d+OlPPfdTn/p6t3XwbNpxjchFs29f4NtvPWFrmshIhguBV11d2G++BJkI/vy7suB17+6tp+bOdW/tdAEJvASIw0VT1q6PqO6NiDCBp3txy3bGu3Sxz/6kkjo8DDYWz4UFL+4kKy1benWeunVz055P27b6bq7+4sJfhOoIPFlmqTZt7CZZ1Rg83Tp4QLYFHn/uXMbgucxkl6UYPF7gmcR+1tUVjwWTBDyi37J0aaGrvUo5GVE7WbPgyeZCk7HBL/xsSu5k2YLXrFlwjX/1VfC8icDjyyTwawJTC57Ne4D4XTRraorbVMn6y84LXbsGjzdsqCwXTcA7R3EIUBcxeHw7Kl46cbloAt7Y0l1TJQUJvARIQ+CFFblm2XFH+Wu6FjzZwikqxiwJ+N1MWwuey91p0fGxySwWdrxN2vUXU2vXejvKLgSejXsmoC7wVJPJyCx4JhO3yo3R9PyWu4tmHBY8PobO9ObO98NkbIi++/vvK8uC50Lg2dxTsizwgOA6ZeMyTQQtf89j3Sl1+6Xy3qxY8ETfoXut8skzKsVFM+4+ubDgAfYCLwvW0yQggZcAccXguUgvHJeLJksWdjfCBF7aWTRFx8fm3KomIFGFXXB+/72exUfmohmnwDMZb+SimQ2BF0cMnixJii58P0wT8PB8912hBc9U4GWt0HmcAs/mniI7LqbC36WLJiC+Tm1dNFevLp6Ly9VFU/QdutcqL/DK1YInisGLk6wIPJcWvCxDAi8B0rDgqdKjh/w1Fxa82tpsXEx8NkiT+j0scWfRzJIFjxd4Oqm707bgqVKqAs+Fi6ZNKnYZWXbRNIVv15XA4y14KtaaUkiyIpsLXSyQ47DgmYYAuLbgia5TWwueKKu1TqIbly6apS7wyikGT+aiGQcqdXNJ4LmFBF4CJCXwtt1Wv42wC85FDF4WrHeAewue7DMmE0eSAs9k3LGLi+++03PRlAVA2wZvh40rk8Wfyxg8lfFEWTTFJJFkxZS4BN533+m7aJZymYS0XTRdF9Z2WSYBiMeCx2e1BtTj9AG3Fjze08f1+XDxHZVqwXPdJ/Y6dTmGRMXowyCBR8RGUgKvZ09gt928x+edp97OTTeJn3fhopmF+DugWODFkWRll13Mfq9IrJjc0MPaA4C99zbbpZZZ8FQmyWuvFe/KxWnBu+SS4PVnn1Vrj70e2fhVE/e+OC14/CZKmoXO/aySoiRKaVrwSk3gff+9GxfN9euDRXttrX1iK1tKyUXzkEPctsdiGoPHYnI/YOcKdgPBZ+1a9bZcxuDxxysJC57ueou9tkshBm/0aLPPxSHwrrnG+3/77YHevYPnVcaHaK3AZs0cPtz7nz2eMi8hlt69C0uN7LVX9GfKgQwYicufpGLwamuBV14BPvhA74Z11VXe4n/ECOCZZ4LnXbholoIFz4WL5h13AGedZbao4o9R69Z2RTNFIvNvf/PqeZlgY8HbemuvTMaYMcHED8Qr8Dbf3PvOBQuAAQPU2mNvbPPnB49NXKPiFHj8cbONwbOx4F14obep0bcv8KMfFbqBuSx0bhuD52oBGWcMnr8Ab9FCTZDKju+qVd7/aVvvALeJqOJMsvLEE8BRR5m3l4QFz2QeYtth5zQfHYHn0vrCk4TA070vu7bgxSXw/vEPr4bfvvuafT6O5CO//S2w//5Av37AkCHB8yrlDPjr/NxzvTJRLVp4JZ4OOsh7XteCV1cHfPIJMH68t4Fic72XEiTwEiCpOng1NV7BxSOO0GunWTPg8MM9ccjiwkUzKxY8PmW0awvekUcCHTua9Y2/+ey4o93uu2i8DR1qViwXsLPgAUCfPt6EzxKnwKupAbbbzvunikzgmeycJynw0rTgVVcHG0k25RuiPmcbg+fKkpWEBW+zzdT6KzsmK1Z4/2dB4Lksk8BfUy4teMcdZ7ewTSIGz2QeYr0PFi0qft21Bc/0GMYxVnVrXfK4jsGLy0Vzhx3srFFxWPBqa731JFB4napY2niBd8QRQehR9+7B87oWPMDbND/9dLX3lgvkopkASblo2u6+8BOtCwteVgRe3GUSXPp0h2U2VUF0zE1qf/nYCjygeKzaxuBFCTxd2M/4VpCaGjNRzLYlc/E0vf7542Ybg7dhQ7CzajN/8GMuSzF4OskkwuD74Sp2d9GiwC1Y1VIju/b81PpZEHhxuWhWVdndP11bLeJ20czlgE6d9NoAvDESZg1Oy0WTf28SFjxdkrDgubCW2W5eJRmDp1KyiB9DsvOom2SlUiGBlwBJCTzbNm0FnmjXrBRcNF3syGVJ4PHHvLbWbmzYuGjK+mRrwaupkd/cTM6n6PioWlN42OMiE3imN3fXLprsIs9mwRGnBc/WRdOVwOP7YTI2RL/viy+CxY+qpUZ27fkxeOUs8Fq0sFvYuj42cbtodupkfn8Jm2fTdNFkx0DWBR6/XiinJCtxZ9HUXf/xczUJPDtI4CVAUjF4aVvwmjd3GyvhkrjLJGRJ4PHH3NZdpWPHYEHlyoJnK/ByObkVz+RciG5sJnEv/PfLBJ7pAtW1i+a6dcFjmzHsyoJXSi6aJoiOsW6CFVk7LFkQeC5dNNn7iu09JWmBZ+uiaZNwy5XAc+2iyb7X1QYMS5wumlmKwbM9dkla8FTgf4/sPJLAU4MEXgKUootmixb6N8JcrnjHJSsWvOrqYFEUR5mELAk8/pjb7mZWV3uxnYC5Bc+1wAPkY8ulBc8EFRdN0xtznAIvCxY8Fy6a/LGNy0UzjjZUNxWi2smCwHNZdoMdF7b3FNfHxnWhc95F03SjCciuBY+db9nNVlfE6aJpMp/EZcGz3byKI8kKC1nw0iWTAq+hoQETJkzA5Zdfjj333BPt27dHbW0tunXrhsGDB+PFF18M/fz48eNx5JFHonPnzmjZsiX69OmDa6+9FqvZAlcJUioCj23PdAHO77jYTrQu8X9fHElWbAXeoEHB4y23tGuLjxtzcQ4239z7f/78bMTgidr0cRFTCZgLvK239v7ffHN5DEy3bmZt28TgicSmK4GXJQsezy9+ETy+9lrzdpIQeKrjImqMx1FbTBeXi0WXFryk6+DpHocddij822bDL2yeve469XZEv6FDh8K/TQWeapIMHVwLvCVLvMdt2rhzzTa9PtgkejqJxETwY9e1x5Vue6oxeHGPn3Ihk1k0X3/9dRx66KEAgG7dumG//fZDXV0dpk2bhhdeeAEvvPACzj77bDz00EPIcVfb3XffjWHDhiGXy2HgwIHo2rUr3nzzTdx6660YPXo0Jk6ciM6+OSIhRDcUFxafOGPwTAUef0HauJe4pnlzb9cyjjIJtufzoYeAv/4VOPZY+125Pn0K/3Yh8Pr29dIMmx63OCx4soWayfFz6aJ5xx1e6uqjjwZuvLHwtZ/8BLjySnMXIpsYvOpq4K23gNNOA2bO9J7LmsCLY6d7n32Af/4T+OYb4KKLzNtxsSkXdVx23FGtnVJw0ZT9VpPr06XAc10f0LUFb489vJJFr7/uCf5hw8z7Jppnf/Yz75o4/3z1dkS/oXt389IoumnudbG18rL3luXLgVmzvMf8vVUVly6ajzwCPPCAl5nadqOU74Pr9VpcFry4x0+5kEmBV1VVhaFDh+Kiiy7CwIEDC1576qmncNJJJ+Evf/kLBgwYgF/96lebXpsyZQouvfRSVFdX44UXXsARP2x1rF27FoMHD8aECRNw7rnn4lnV6seOECW9cHGTidNF05XAs3EvcY1/HrJowdtuO+D22+3a8OF3fG3jEQDxwjOrAs8Ely6aPXoAt97qPeaP0a23ArvvbtYuYOeiCXj1kv7wB2+RB2TPRTMOC15tLXDSSXZtuOiHShuq1ppScNF0Gc/D3i9tF++ud/xdW/AA4IwzvH+2iObZ884Dftg/V0b0G7p18+qNhr1Hpb04LDAu10KffBJkGja1prrcuOraFfjd78w+y8PPE64FHsXgpUsmXTQPPvhgPPvss0XiDgCOP/54nHbaaQCAv//97wWv3Xbbbcjn8zj99NM3iTsAaNWqFUaMGIGqqiqMHj0a06dPj7X/PK6FmI+rRZUPe7Gb7gzxF2TWLHhA9ssk2NKpU+HE6sKCJ7qxlbvAc7E54XojwMZF04e9zl1l0cxSmQSeUonBq6vzajWpUMoWPJWCxzzshpytBa8UBJ4rRPdxk/uBaLz5bvs+OtdZ3C52LjaFfPzSI4C5wIsryYotcVvwbAWebJ4jgadGJgVeFLv/sAU+d+7cTc/V19dvis078cQTiz7Ts2dPDBgwAAAwZsyYBHoZ4NqVUtYuWfDCkQm8LFjwXNOzZ/CYtdKYYivw+Ik7zhg8E1zG4LG4Tvhha8EDCuefuCx4ptdDVhdCgBuvi7BjvOOO6uOjlAWeCX75ByB7FjzXLpouEd3HTQSe6FzyAk/n+ojbgmd7zNmkbCyqLtQq/UlT+Pvwc6vr9Zrutap63uIeP+VCSQq8mT8EkGzOzDAzZszA2h+2o/v37y/8nP/8lClTQttfs2aN0j9VkhJ4FIMXjizJShZi8FzjJ/oAgDlz7Nvr1at4IWPzm8MK8KpSiRY8mxg80WeyFoMXV0FgF7jI9hcl8FQpBYEnG5smQrm+Pnhsa8FzveOfZQue6D5u4rIvc9E0JW4LjItjLrqGys2ClzUXTdW5gSx4amTk1qnOwoUL8eijjwIAhg4duun52bNnAwDat2+PNpLc5Fv94P/iv1dGaxerTway4GUD/3itX5/tMgku2Gab4PG8efbt1dQAvXsDn34aPGfzm124zWU1Bo/FddFtFxY89jpnnRmyYMHL6k43EL/Ak5XUEBE1jrIg8Fy6aLICL2sWPNeFzl0Sl4tmy5bF2Zp1yLqLJuBdQ+wGWOvWXny1CVktdJ41C54qJPDUKCkL3saNG3HyySdjxYoV2HnnnXHOOedsem3VqlUAgLqQ2csXbitZp+oEiCsGz3W7HTsGj01350ohBg+wt1xk3YJ3+OHBYzZNvA19+xb+nfZvdnnziEvgqcYUqMJ/3lXNP8Buwcbu1FZVmQvZLFvw2PGgI8ZYwn7LAQeYtQkUz7uu052b4PK8sQLPdmOHTXL005/atQVEj/WsWfBMxi7/G+rq7OKo2VT/Bx9s3o4MNtvlrruatcFvkvTube6mnVULXtZi8FTZZ5/g8eDB8XxHOVBSAu/cc8/FhAkT0KlTJzz77LNoFtM25erVqyP/zZ8/X7m9UnHR3Gsv4JxzPHFgmsGL19esaEwb9nixySXK0UVz8GDgwgu9+np33OGmTb7uke7C5dlnvSyOzz3npj/8+N93X2D0aLO2RNeOi0Qwri14PLYumiznnmveD/ZGbrOgdbXTPXq027EGeGnhb7/dS0/++utmbfC/7/bbvYyGZ57plUjRYeRIYMAAYPz44oVZr15m/XOJyzIJbAyercA77jjg7LO9kiUPP2zXlgpZisHr2tVM4PG/oVUru/nxuuu883DcccAVV5i3I2PPPYGrrvLE4zPPmLXBLy9t1jJZ3bhy+RtV2ldhxAhv7h4/Xv6eU0/15syjjgLuvde8f+VOBoaYGhdddBFGjBiBDh064JVXXsEOXDVQ3y0zLDbOL3TeNmJmCrMC+jRq+OuIyiS4wLUFL5fz6rHZwB+6LAkf9nixw6QcLXi5nPuJj7cS6P7moUO9f65gz+eQIXaLeX4MtGnjRozFPU5sXTR9xowpLrCsAzvH2cxDrhZCxx6rL5hUuPJK758p/G/Zaitg3Diztk4/3fsHeK5VX38dvGZTHNsVLi0UrAXPdl83l0tG2PlkKYumqxiyujq7RFmtWpkLL1Vuu83u8/w4syk3VCoumq7vTybXqkqJkKoq4G9/M+tTJVESFrxLL70Uf/rTn9C+fXuMGzduUxZNlq1/yCqxfPnyTe6aPH7Wza3ZDBQJUCoxeC5wUXMtLthFqK0Fjz/Wri0zWSRr4p0d/y7TYgNurHeA+yyaUe2rIJp/bEtpxGnBy8K85gr+t7i6F/AWPNNsfy5xGYPHxtlkIb4wDNfli2zg5zFXWSBtXTRLAX59ZTNHloqLZqm1T4ST+WXpFVdcgbvuugvt2rXDuHHjpBkye/fujVY/qItJkyYJ3+M/369fv3g6K6FU6uCVO3Fa8CoBEnj6xG3BY13XVBEtkG0FXtYseFmF/y2uxAqfHCHLLpq2ZF3g8S6QWXLRdGXBs3XRLAX4cWYzR2bVghd3iYEs/MZKJtMC76qrrsIf/vAHtGvXDq+88gr23HNP6XubNWuGo446CgAwatSoote//vprvP322wCAIUOGxNNhCaUSg+cCjeoRiSMTeC5i8CoBWxdN17Dn03bsJyXwXFvwWEu0KqJjZWt5d2XBy+pOtyvisuDxCXKycMxclklgcZk9Nw54gZclC56pwBNZ8FzUMs0yLl00s7pxtXx5vO1nYR6qZDIr8K677jrccccdaN++faS487nqqquQy+XwyCOP4OWXX970/Nq1a3HmmWeisbERQ4cORR82xVICVJKLpsmCMylcWvCycKyTppwtePznXS1eXGfR5HEl8Fxa8Gx+I7lomsEmhs6Ku7hLF02WrFvw+CpLac6TvNg0FXi8KK+rs58zsk4lWPDiFnhZv1bLnUzeOseOHYtbbrkFANCrVy888MADwvd17twZf/zjHzf93a9fPwwfPhzDhg3DkUceiQMOOABdunTBm2++iQULFqB37954yDaLiAGVJPDY8goSb9rUIBdNO7Im8Fy5BQKlZcHr0AFYtsx7bNLPOFw047TgZWFec0VcLppbbBE8jiPtvAnkoumR5vjl5xtXWRJbtbK3xGYdlwIvq54JnToFj03LSYRR7lberJPJW+fSpUs3PZ40aZI0pq5nz54FAg8ALrnkEuy8884YPnw43n//faxZswY9evTA1VdfjauvvlpaBD1OkqqDl4UJ44ILvPTdy5YB//xn2r0phHWxYPPwkIumGuSiqU8cMXgvvwwcdphXzP744/U/H4eLpiuxndWdblfEZcG76CLg0Uc9i+5f/uKmTVtclklgKTWBl/Y8edllwN13A7//vbs2fbFz1VXAH/8I3Hyzu7azQtwumlmoVXn++V42ymXLgKeect/+9tsDP/uZd8/K2nqwEsikwDvttNNw2mmnGX9+0KBBGDRokLsOWVJT493UfNcUVzd1ftLIwk53mzbAF18AjY3ZuxGzO3CsSxO5aKqRNQteKSRZiSOL5l57AQsXer/fZLGc5SyaZMEzo1MnYNYs7x6TFUEcVz8oBk+PP/wB+N3v3AoKf7647TbghhuyIVZcE7eLZhZcXJNYr40ZA6xbV55jJOuU0a0zu+Ry3g73unXe365ufPziLu0biU91dfqLfxHsDhwr8MiCp0Y5C7y4YvDiyqLJZ9DVobq6eMPJdk6iMglq8L/PpQjK2nGSjfVKi8HLQkyk68U1ey8o14V73C6aWSkplcR6rVzHSNbJwNRTGbh0J5ORtRt81mAn6BUrgscUg6dGOQu8UorBsyWXK/y9LhYarlw0RcennOa1uFw0s0hcYz3rAs9m86VUyIo4iZM4LXhVVdm3RBOlTwaWG5WBy8WojHJeLLhAJvDIgqcGxeDpE3cWTVPY3+vCVciVBS+XK28RFJeLZilR7mUSst4/F2TBvTBu+PPoMgavrq78k9QQ6UMCLyHIgpc+MhdNisFTgyx4+mTRggcUCgsXizWXGU35Y1ZO11o5i9ekyLooJoFXHsRpwasECyiRPhlZbpQ/JPDSh52gGxqCx+SiqUY5C7xSi8GzJU4Lnu1vzGLyKFeQwLP/zVl3gayEeKNKEChxxuBVgkAm0ocEXkIkIfAqcbGgg2xSJRdNNbLmorn33sGNc9997dpKyoKXFbccth8uFmvNmgF77uk9tj0X/DHr3NmuvSxBLprAgw/qf+a++7z/u3cHDjrIbX9ccMcd3v/bbJO9+q9xUAkCJc4yCZVw/Ij0KaO90WyTRAxeOe10x4FsgiYXTTWyZo3acktg5kwvntK2SGtSMXhZgbVgu1hs5HLAhAnA5MnAfvvZtcVeW127FhbjLXUq2YL33nveddWnj/5nzz8f6NcP2GGHbIriyy7zNjZ23NG7BsqdShAocbpoVsLxI9KnApep6cC6lVTSTT1LkAXPLVk4Bltv7aadpCx4WcG1wAO8mkoHHGDfztKlweOddrJvL0tUssDbaSfzsZbL2VuG46SqKtjYqITNP3LR1IMfE5Vw/Ij0yej+cvmRhItmU1M87ZYLsgmaYvDMKKeFTFIxeFmhvj54nOXFRrkLvCxao+KinOaLMCrhd1aCBcqliyZZ8Ig0IIGXEEkIvMbGeNotF8iC55ZyOgZ8bBxfrNiUSnHRjIsdd0y7B27JmptzklSC8AEqwyqb5TnDFbzAszmvFINHpEFGlx/lRxIxeCTwwqEYPLeU8+LUlTDL6jFirf1kwUsOft7IStKdJMjqZodrKuHekOU5wxUuy11QmQQiDSpkyk0fctFMn2bNxAtukxtypSxWwqANhWiyKvBYsly3q9wFXiVRKWK2Es5xJVigXLpPkwWPSANapiZEXALv1FODx/36uWu3HMnlxBOrySK8UhYrYWzYkHYP3NK+vfd/z57u2iyFjYCsxYEdfLD3f20t0LFjun1xTSUs/lnKTaCrUK4umgMHBo8rodYfCTyi1Kmw2016xCXw7rkH6NsX2GMPYLPN3LVbrrRqBaxcWfhcpS26XLF+fdo9cMtbbwHPPgucfLK7NkvBgpe1Belf/wr84x/A0KFp98Q9lTbX/Oc/wGOPAYMHp92T5CjXc/zEE8DIkcCRR5bGxpUtLgUeuWgSaVCmU1H2YMskuLwBtG8PXHmlu/bKHbLguaPcBN6OOwI33OC2TRJ4+my7LXDjjWn3Ih7KdfEvo0cP4Prr0+5FspTrOd5ii8o6ly7v8WTBI9KgAvZhskESMXhENKKJtVxvyHHAjuNyE3hxUAo73Vlz0SxnaK4pf+gclwcbN7pri8okEGlQAsuP8oAEXjYQuUaUgpUlK7CW6HKLwYuDUhhbNB8lBy3+y59SuOaJaNhSMrbw1kASeEQSkMBLCBJ42cCVBa9SXTTJgqdHKSz2aD5KDhJ4BFEauBR4PBSDRyQBCbyESKIOHhGNqxi8SoW14JHAi4ZcNAkWmmvKn0rd/Cs3XLpo8pAFj0iCElh+lAdshstOndLrR6VDMXh2sJkNDzwwtW6UDFld0O+7b/B4553T60elkdXxQLijbdvgMd1bSpdddw0eH3KI27ZJ4BFJQNNPQhx3HPDKK179mMMOS7s3lYvINYJuwur8/vfAwoWeJe83v0m7N9knqwv6f/4TuPBCoH9/YK+90u5N5UDWnfKndWvgoYeA0aOB225LuzeEKQcc4GUo//xz4IEH3LZNLppEEtDSNiHatAFGjUq7FwSVSbCjro7GsQ5ZddHcZhvghRfS7kXlkc+n3QMiCc45x/tHlDa33x5Pu2TBI5Igo8sPgogHisEjkoTGFsHS1JR2DwiCSBsSeEQSkMAjKgreNSKXy66VhSh9SOARLGTBIwiCXDSJJKClLVFR8DtnpvF3leqiSehBmwcECwk8giDIgkckAS0/iIqCn1jJwkLECY0vgoVcNAmCoNI0RBKQwCMqCt41wtSC17mzfRtE+UMCj2Bp3z7tHhAEkTbkAUQkAQk8oqJgaxQB5uLsJz/xauN07Ai89pp1t4gyhVw0CZa99waOPhpo1w4YPz7t3hAEkRT33OOVybruurR7QlQKZHsgKgpe4JlaWHI5b4G2cSNZ8Ag5tFNLsORyXnkKmjcIorK46CLg/PPpuieSg/aXiYqiXbvCv20nW5qsCYLQheYNgqg86LonkoQEHlFRuLLgEQRBEARBEEQWIYFHVBSuYvAIgiAIgiAIIouQwCMqCrLgEUlCMXgEQRAEQSQNCTyiomje3PvnQxY8giAIgiAIopwggUdUHKwVjwQeQRAEQRAEUU6QwCMqDlbgkYsmQRAEQRAEUU6QwCMqDrZUAgk8giAIgiAIopwggUdUHKwFr74+vX4QBEEQBEEQhGtI4BEVByvw1q5Nrx8EQRAEQRAE4RoSeETF0bp18HjNmvT6QRAEQRAEQRCuIYFHVBytWgWPSeARBEEQBEEQ5QQJPKLiqKsLHq9bl14/iPKnf//g8VlnpdcPgiAIgiAqB6oCRlQcrMAjiDjp2BGYOBGYNAk4/fS0e0MQBEEQRCVAAo+oOEjgEUkyYID3jyAIgiAIIgnIRZOoOEjgEQRBEARBEOUKCTyi4iCBRxAEQRAEQZQrJPCIioPNokkQBEEQBEEQ5QQJPKLiIAseQRAEQRAEUa6QwCMqjp12Ch7vsUd6/SAIgiAIgiAI15DAIyqOXr2Ae+4Bjj0WePLJtHtDEARBEARBEO7I5fP5fNqdKEVWrlyJdu3aYcWKFWjbtm3a3SEIgiAIgiAIIiWypA3IgkcQBEEQBEEQBFEmkMAjCIIgCIIgCIIoE0jgEQRBEARBEARBlAkk8AiCIAiCIAiCIMqEzAq8L774Avfddx9OO+007LzzzqipqUEul8PNN98c+dnx48fjyCOPROfOndGyZUv06dMH1157LVavXp1AzwmCIAiCIAiCINKhJu0OyHjwwQdx7733an/u7rvvxrBhw5DL5TBw4EB07doVb775Jm699VaMHj0aEydOROfOnWPoMUEQBEEQBEEQRLpk1oL3ox/9CJdddhkef/xxfP755zjllFMiPzNlyhRceumlqK6uxosvvojXX38dTz/9NL766isccsgh+OKLL3Duuecm0HuCIAiCIAiCIIjkyawF76yzzir4u6oqWovedtttyOfzOP3003HEEUdser5Vq1YYMWIEtt12W4wePRrTp09Hnz59nPeZIAiCIAiCIAgiTTJrwdOlvr4eL774IgDgxBNPLHq9Z8+eGDBgAABgzJgxifaNIAiCIAiCIAgiCcpG4M2YMQNr164FAPTv31/4Hv/5KVOmJNYvgiAIgiAIgiCIpMisi6Yus2fPBgC0b98ebdq0Eb5nq622KnivjDVr1kR+n8p7CIIgCIIgCIIgkqRsBN6qVasAAHV1ddL3tG7dGgCwcuXK0Lb89xEEQRAEQRAEQZQSZeOiSfx/e/ceF1Wd/3H8PYCAgoCIFxBRs8J9KKupqLvieq1VNK3oZg8VWrfdrawsy1sX7br7qEf1ULO1dkutpQet13LtohZe0MQLbJtbmS7eMCvUBAJFhe/vjx4zP4kBZoYhmDOv5+PB4wHnnO9nvuec+ZxzPsw53wEAAADg7yzzCZ79tsy6bp20f9F5REREnbFc+UL0kpISxcXFudFDAAAAAGhclinwunbtKkk6c+aMSktLnT6Hd+zYsWrL1qau2zztKisr3e4jAAAAADQmy9yimZiYqFatWkmS9uzZ43QZ+/S+ffv+bP0CAAAAgJ+LZQq84OBgjR07VpL01ltv1Zh/5MgR7dixQ5J0/fXX/6x9AwAAAICfg2UKPEmaPXu2bDabli5dqg8++MAxvby8XFOnTlVlZaXS0tLUo0ePJuwlAAAAADQOmzHGNHUnnMnLy9Ndd93l+Pt///ufTp48qfj4eHXq1Mkxfc2aNYqNjXX8/eKLL+qBBx6QzWbT0KFD1b59e23btk0nTpxQYmKicnJyFBMT0+D+lZSUKDIyUsXFxfUO2gIAAADAuppTbdBsB1kpKSlRbm5ujemFhYUqLCx0/F1RUVFt/v3336+kpCQ9//zz2rVrl8rKypSQkKA5c+Zozpw5tX4JOgAAAAD4umb7CV5z15yqdAAAAABNpznVBpZ6Bg8AAAAA/BkFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWAQFHgAAAABYBAUeAAAAAFgEBR4AAAAAWERQU3fAVxljJEklJSVN3BMAAAAATcleE9hrhKZEgeeBsrIyRUVFSZI6d+7ctJ0BAAAA0Cx8++23ioyMbNI+UOA10PHjxxUeHt7U3fA7ZWVliouLkyR9/fXXCgsLa+Ie+Re2f9NjHzQ99kHTYx80PfZB02MfNL1L90FsbGwT94YCr8EiIyNJpCYQGBjo+D0iIoJ98DNj+zc99kHTYx80PfZB02MfND32QdO7dB8EBDT9ECdN3wMAAAAAgFdQ4AEAAACARVDgAQAAAIBFUOABAAAAgEVQ4AEAAACARVDgAQAAAIBFUOABAAAAgEXYjDGmqTsBAAAAAGg4PsEDAAAAAIugwAMAAAAAi6DAAwAAAACLoMADAAAAAIugwJO0YsUKDRs2TG3atFFYWJh69+6tZ599VhcuXPAo3t69e3XTTTepQ4cOCg0NVbdu3XTPPffou+++83LPfduFCxf00Ucf6aGHHlJycrKioqLUokULdezYUePHj9f69evdjjl//nzZbLY6f7788stGWBvflZGRUe82O3funNtxyQPXHD58uN7tb//ZunWrSzHJA+f279+vRYsWKSMjQ0lJSQoKCpLNZtNTTz1Vb9tNmzYpNTVVMTExatmypXr06KGHH35YP/zwg8f9OXjwoDIyMhQfH6+QkBDFx8crIyNDBQUFHsds7tzdB1VVVdqxY4cee+wxpaSkqG3btmrRooViYmJ09dVXKzMzU56MFbds2bJ6c+SDDz5o6Oo2S57kQWMeU/wtDzzZ/q6eI9544w2X++GvOdDQa09fORcEedzSIqZPn64FCxYoKChII0aMUHh4uD7++GPNmjVL69at04YNG9SyZUuX461cuVITJ07UxYsXlZycrG7dumnPnj166aWXtGLFCuXk5Ojyyy9vxDXyHVu2bNHVV18tSerYsaNSUlIUFhamzz//XOvWrdO6dev0hz/8QUuWLJHNZnMrdu/evdWnTx+n8yIjIxvadUsaPHhwre/NwMBAt2KRB64LDw9Xenp6rfM///xz7d69W61bt1a/fv3cik0eVPfXv/5VCxYscLvdiy++qAceeEA2m01DhgxRhw4dtG3bNj3zzDNatWqVcnJyFBMT41bM7du365prrlF5ebl69uyplJQU7du3T8uXL9fKlSu1adMmDRo0yO2+Nnfu7oOCggINHjxYkhQdHa3+/furTZs2Kigo0KZNm7Rp0yZlZWVp1apVCg4Odrs/3bt3V0pKitN5nTp1cjueL/A0DyTvH1P8MQ882f51nSOOHj2q7Oxs2Ww2DR061O3++FsONOTa06fOBcaPrVmzxkgy4eHhZu/evY7pRUVFJikpyUgyM2bMcDne8ePHTatWrYwk88orrzimX7x40UyaNMlIMsnJyaaqqsqr6+GrPvroI5OWlma2bt1aY15WVpYJDAw0kszy5ctdjjlv3jwjycybN8+LPbW29PR0I8ksXbrUK/HIA+8aM2aMkWTuuOMOl9uQB8797W9/Mw8++KDJzMw0X3zxhZk8ebKRZJ588sla2+Tl5RmbzWYCAwPNe++955heVlZmRo4caSSZtLQ0t/pRVlZm4uLijCQzZ86cavPmzJljJJnOnTub8vJy91bQB7i7Dw4ePGhGjBhh3n//fXPx4sVq8zZv3mzCwsKMJPP444+71Y+lS5caSSY9Pd3TVfFZnuRBYxxT/DUPPNn+dbnzzjuNJHP11Ve71c5fc8DTa09fOxf4dYGXnJxsJJmnnnqqxrxt27YZSSYkJMScOXPGpXgPPfSQkWRGjRpVY15paamJjIw0kswHH3zQ4L77g6lTpxpJZuTIkS634cLWfd4u8MgD7yksLDQBAQFGktm5c6fL7cgD19jf+3VdWN10001Gkvn9739fY97hw4cd++eLL75w+XUXL15sJJkrr7zSVFZWVptXWVlprrzySiPJLFmyxPWV8VGu7IO6PPnkk0aS6d69u1vt/PXi1hlX9kFjHFPIgx81JAfOnj1roqKijCSTlZXlVltywLnarj197Vzgt8/gHT9+XLt375Yk3XbbbTXmp6SkqHPnzqqoqNB7773nUsw1a9bUGi88PFzjx4+XJK1evdrTbvuVq666SpJ07NixJu4J3EEeeM+yZctUVVWlnj17auDAgU3dHb9z/vx5x/MYzt7PXbp0cdw+aH/fu8K+7K233qqAgOqn4YCAAN1yyy2SyBFXcJ7wXeRBw61atUpnzpxRdHS0rrvuuqbujiU4O6b44rnAb5/By8/Pl/TjPf3dunVzukz//v117Ngx5efna+LEiXXGKy0t1cGDBx3taov35ptvOl4bdTtw4IAkKTY21u22eXl5mj17tk6fPq3IyEhdddVVuvbaa9W6dWtvd9MysrOz9dlnn6m0tFRt27bVgAEDlJqaqpCQEJdjkAfetWzZMknS1KlTPWpPHjTMV199pfLyckl1v5+3bdvm1vvZvmxdMS9dDrVryHlC+nFwg0ceeUTfffedwsPD1atXL40fP97t52j8hTePKeRBw73++uuSpEmTJrl1rr4UOVCds2OKL54L/LbAO3TokCQpISGh1mU6d+5cbdm6HD582PF7bTHdiefvvvnmG8fFbVpamtvt7Q/KXioyMlILFy7UlClTvNFFy3E2+lZsbKxef/11jR492qUY5IH3bNmyRQcPHlRwcLAmT57sUQzyoGHs79GoqKhaL2DdfT+Xlpbq1KlTkurPkaKiIpWVlSksLMytfvuL8vJyLVy4UJJn5wnpxwEOtm/fXm1aaGio5s+fr1mzZjW4j1bjrWMKedBwhw8fVnZ2tiTP/wkokQOXqu3a0xfPBX57i2Zpaakk1bmxwsPDJUklJSUux6srpjvx/NnFixc1adIkFRcXKykpSX/84x9dbtu9e3c988wzys/P1+nTp3X69Gnl5ORo3LhxKi4uVnp6ujIzMxux976nd+/eWrBggfbt26eSkhJ9++232rBhg37961/rxIkTGj9+vDZv3uxSLPLAe+z/mfXkP6nkgXd4+zxxacy64tpjuhPXH9111106dOiQ4uLiNHfuXLfaduzYUQ8//LByc3NVVFSkkpIS7d69W1OmTFFFRYVmz56tZ555ppF67nu8fUwhDxpu6dKlMsaof//++uUvf+l2e3KgurquPX3yXOD2U3sW8fTTTxtJZvDgwbUuM3fuXCPJXHPNNfXG2759u5FkJJkLFy44XWbDhg1GkgkODva43/7A/oBr27Ztzf79+70W95577jGSTLt27UxFRYXX4lpVVVWVmTBhgpFkevfu7VIb8sA7iouLHSORXjpalzeQB/+vvsENMjMzjSTTqVOnWmO8+uqrjofkXXH8+HFHjhw4cMDpMl999ZVjma+//tqluL7K0wEmnnjiCSPJhIaGmpycHK/26fnnn3cMsvbNN994NXZz1NCBbjw5ppAH/8+T7V9ZWWkSEhKMJPPyyy97vU/+lgPG1H3t6YvnAr/9BM/+EWtZWVmty9i/tDAiIsLleHXFdCeev7rvvvv02muvqU2bNtq4caOuvPJKr8WeP3++AgMDVVRUpNzcXK/FtSqbzabHH39ckvTpp5+6NIgBeeAdWVlZKi8vV3x8vH772996NTZ54DpvnycujVlX3Eu/MJc8qemFF17QY489ppCQEK1Zs8YxuIG33HfffYqJiVFFRYU2bNjg1dhW5MkxhTxomE2bNuno0aNq2bKl00E/GsrfcqC+a09fPBf4bYHXtWtXSXWPvGWfZ1+2Ll26dHH8fvTo0QbH80czZszQwoULFRUVpQ0bNjhGMvKW6OhotW/fXpJUWFjo1dhW9Ytf/MLxuyvbjDzwDvvtmRkZGTVG1moo8sB19vfomTNnqt1Ocyl338+tW7dWdHS0pPpzJCYmhueOfmLRokWaMWOGgoODtWrVKpefD3ZHYGCgrrjiCknkiCs8OaaQBw1jP0ekpaV59AXz9fGnHHDl2tMXzwV+W+DZd+CpU6dqfSByz549kqS+ffvWGy8iIkKXX355tXYNiedvZs6cqRdeeEGRkZHasGFDrSMKNURlZaWKi4sliVEEXWR/AFhybZuRBw33+eefKzc3VzabTbfffrvX45MHrktMTFSrVq0keff9bF+WHHHP4sWLde+99zqKu7Fjxzbaa9mPfeRI/Tw9ppAHnjl9+rTWrl0rqWGDq9THH3LA1WtPXzwX+G2BFx8fr+TkZEnSW2+9VWN+Tk6Ojh07ppCQEKWmproU8/rrr6813g8//OAYeeqGG27wtNuWNHv2bD333HOKjIzUxo0bHfvF2959912Vl5fLZrM1SgFpRVlZWZJ+LNwSExNdakMeNMxrr70mSRo+fLguu+wyr8cnD1wXHBzsKCKcvZ+PHDmiHTt2SPr/970r7MtmZWWpqqqq2ryqqiq9/fbbksiRSy1ZskTTpk1zFHfjxo1rtNfKy8vTV199JUkaMGBAo72OVXh6TCEPPJOZmamKigp1795dQ4cObZTX8IcccOfa0yfPBW49sWcxa9asMZJMeHi42bt3r2P6yZMnTVJSkpFkZsyYUa3N6tWrTWJiohkxYkSNeMePH3cMjPDqq686pl+8eNFMnjzZSDLJycmmqqqq8VbKxzz88MNGkomKijK7du1yqc2iRYtMYmKimTx5crXpR44cMW+++aY5e/ZsjTZr1qwx0dHRRpKZNGmSV/puBfn5+eadd96pMSBKZWWl+fvf/25CQ0ONJPPII49Um08eNI7z58+b9u3bG0kmMzOzzmXJg4ZzZXCDvXv3GpvNZgIDA83777/vmF5WVmZGjhxpJJm0tLQa7XJzc01iYqJJTEysMa+srMzExcUZSWbu3LnV5tkH94qPjzfl5eUNWDvf4Mo+ePXVV43NZjPBwcFm3bp1Lseu7ThVVlZmXnrpJVNSUlKjzZYtW0zXrl2NJJOSkuL6iviw+vZBQ44p5EH93B1kpU+fPkaSefrpp+tdlhxwzpNrT187F/h1gWeMMffee6+RZFq0aGFGjx5t0tLSTFRUlGOEzZ9u1KVLlxpJpkuXLk7j/fOf/zSBgYFGkhk4cKC55ZZbzGWXXWYkmQ4dOtQ6Uo4/eueddxyjA/Xv39+kp6c7/flpkT1v3jwjyQwdOrTa9Pz8fEfBPmTIEHPrrbeaCRMmmCuuuMLxOsOHDzelpaU/41o2b/Z/crRp08aMHDnS3HbbbSY1NdUxOpckM3HixBoFIHnQOFavXu046Ti7mLoUeeC+vXv3moEDBzp+YmJiHCfQS6f/dLSyF154wUgyNpvNDBs2zNx8880mNjbWSDKJiYmmqKioxmtlZ2c7trczOTk5jn+E9OrVy9x6662mV69eRpIJCwszn3zySaNsg6bm7j7Iz883NpvNSDI9evSo9TyRnp5e47VqO059//33jhECBw0aZG6++WZzww03OLa/JJOUlGTZkRs92QeeHlPIg5o8PQ4ZY0xeXp6RZAIDA83x48frfS1yoCZPrz2N8a1zgd8XeMYY8/bbb5vf/OY3JiIiwrRs2dL06tXL/OUvf3E63G99F7bGGLNnzx5zww03mHbt2png4GDTpUsXc/fdd/vNULOusm/L+n5+uq1ru7A9efKkmTVrlhkxYoRJSEgwYWFhpkWLFiY2NtaMGzfOvPXWW6aysvLnW0EfUFBQYKZPn25SUlJMp06dTGhoqAkJCTEJCQnmxhtvNOvXr3fajjxoHOPGjTOSzF133VXvsuSB+y490db1c+jQoRptN27caEaPHm2io6NNSEiIueKKK8ycOXOc/gf8p69VmwMHDpgpU6aYuLg406JFCxMXF2emTJliDh486K1Vbnbc3QeuLu9sO9d2nKqoqDCPPvqoGTNmjOnWrZtp3bq1CQoKMu3atTOjRo0yr7zyiqW/QsTdfdCQYwp5UFNDjkPTpk0zkkxqaqpLr0UO1OTptaedr5wLbMYYIwAAAACAz/PbQVYAAAAAwGoo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAAAAAMAiKPAAAAAAwCIo8AAAAADAIijwAADNhs1mc/tn2LBhkqRhw4bJZrNp8+bNTboO3rBgwQLZbDatWrXK4xjFxcVq27atBg4cKGOMF3sHAGjOgpq6AwAA2KWnp9eY9s033+jDDz+sdX6PHj0avV8/p6KiIs2fP1/JyclKS0vzOE5kZKTmzJmjhx56SG+88YbTbQcAsB6b4d96AIBmbPPmzRo+fLgk1flJ1NGjR1VeXq6EhAS1atXq5+qe102bNk2LFy/W+vXrlZqa2qBY586dU0JCgoKCgnTo0CGFhIR4qZcAgOaKWzQBAJaQkJCgHj16+HRxd+bMGS1btkydOnXS6NGjGxwvNDRUt912m06cOKG3337bCz0EADR3FHgAAEuo7Rm8jIwM2Ww2LVu2TPv379ctt9yi9u3bKywsTMnJyXrnnXccy+bm5mr8+PFq166dWrZsqV/96lf66KOPan3Ns2fP6vnnn9egQYMUFRWl0NBQJSYmaubMmTp16pTb67B06VKVlZVp8uTJCgioeYquqKjQc889p379+ql169YKDg5Wx44dlZycrJkzZ+r06dM12mRkZEiSFi9e7HZ/AAC+hwIPAOAX8vLy1K9fP3366acaOXKkevfurT179uj666/XypUrtXbtWg0ZMkSFhYUaOXKkEhMTtXPnTo0ePVo5OTk14n399dcaOHCgHnzwQR04cEDJyclKTU11FGH9+/fXkSNH3Orj2rVrJUmjRo2qMa+qqkpjx47VzJkzdfDgQQ0ZMkQ33nijkpKSVFRUpOeee05Hjx6t0a5Pnz5q166ddu3apRMnTrjVHwCADzIAADRj2dnZRpKp75Q1dOhQI8lkZ2dXm56enu5o/9RTT5mqqirHvIULFxpJJj4+3rRp08a88cYb1dpOnz7dSDKjRo2qNr2qqsoMHjzYSDJTp041JSUljnkXLlwwM2bMMJLM8OHDXV7P8vJyExwcbAICAqrFs9uyZYuRZK666iqn83fv3m1OnjzpNPb48eONJPPmm2+63B8AgG/iEzwAgF8YMGCA5s6dK5vN5ph25513Kjo6WoWFhRo1apQmT55crc0jjzwiSdq6dasuXLjgmP7hhx9q+/bt6tOnj5YsWaLWrVs75gUFBenZZ59Vr169lJ2drX379rnUv//+9786f/684uPjq8Wz+/bbbyVJQ4YMcTq/f//+atu2rdPYPXv2lPTjp5gAAGujwAMA+IUxY8ZUK+6kH4uxbt26SZLTESvbtm2r6OhonT9/vtozdevXr5ckpaWlKSio5jcOBQQE6De/+Y0kaceOHS71z17A1Vak9e3bV4GBgXr99de1ePFit263tMe0vwYAwLoo8AAAfiEhIcHp9PDw8Drn2z8tO3funGNaQUGBJOnRRx+t9QvYX375ZUk/fq+dK4qLiyVJERERTud3795dL774oi5cuKBp06YpLi5OXbt21cSJE5WZmanz58/XGtse8/vvv3epLwAA38UXnQMA/IKzUSndmX+pqqoqSVJKSoq6d+9e57L22yPrExUVJUkqKSmpdZl77rlHN998s959913l5OQoJydHWVlZysrK0rx587Rt2zbFxsbWaGcvHtu0aeNSXwAAvosCDwAAN3Xu3FmSNGHCBD344INeidm+fXtJqvfrFTp06KA77rhDd9xxhyTpyy+/1O9+9zt98sknmj17tpYvX16jjT1mhw4dvNJXAEDzxS2aAAC4acyYMZKkFStWyBjjlZg9e/ZUcHCwCgsLVVpa6nK7Hj16aNasWZKkf//7306XsQ/00q9fvwb3EwDQvFHgAQDgpgkTJig5OVm7du3S7bff7vQ5u++//15LlizRxYsXXYrZsmVLDRo0SFVVVcrNza0x/+OPP9Z7771XbTRPSTLG6F//+pckqUuXLk5jf/LJJ5KkESNGuNQXAIDv4hZNAADcFBAQoLVr12rs2LFavny5Vq5cqd69eyshIUHnz59XQUGBPvvsM1VWViojI8PpSJvOXHfdddq6das2btxY48vO//Of/+j+++9XRESE+vbtq7i4OJ09e1Z5eXk6cuSIIiMj9cQTT9SImZ+fr1OnTmnAgAFOn88DAFgLn+ABAOCBuLg47dy5U0uWLNGAAQO0f/9+rVy5Ujk5OZKkP/3pT/rwww8VGhrqcszbb79dYWFh+sc//qHKyspq86699lrNnz9fycnJKigo0OrVq7V582ZFRkZq9uzZ2rdvn/r06VMj5rJlyyRJd999t8frCgDwHTbjrYcHAABAg02bNk2LFy/Wu+++q2uvvbZBsc6dO6fOnTurRYsWOnTokEJCQrzUSwBAc8UneAAANCPz5s1TVFSU09st3bVo0SKdPHlSf/7znynuAMBP8AkeAADNzIIFCzR9+nStWLFCN954o0cxiouLddlll+nyyy/Xzp07ZbPZvNxLAEBzRIEHAAAAABbBLZoAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBEUeAAAAABgERR4AAAAAGARFHgAAAAAYBH/B+lJ1xUb/OFxAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_dt = 0.03125 # seconds\n", + "long_exposure = 1600. # seconds\n", + "long_times = np.arange(0, long_exposure, long_dt) # seconds\n", + "\n", + "# In count rate units here\n", + "long_signal = 300 * np.sin(2.*np.pi*long_times/0.5) + 1000\n", + "\n", + "# Multiply by dt to get count units, then add Poisson noise\n", + "long_noisy = np.random.poisson(long_signal*dt)\n", + "\n", + "long_lc = Lightcurve(long_times, long_noisy, dt=long_dt, skip_checks=True)\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10,6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. Pass the light curve to the `AveragedPowerspectrum` class with a specified `segment_size`.\n", + "If the exposure (length) of the light curve cannot be divided by `segment_size` with a remainder of zero, the last incomplete segment is thrown out, to avoid signal artefacts. Here we're using 8 second segments." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 50515.52it/s]\n" + ] + } + ], + "source": [ + "avg_ps = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm=\"leahy\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can check how many segments were averaged together by printing the `m` attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of segments: 200\n" + ] + } + ], + "source": [ + "print(\"Number of segments: %d\" % avg_ps.m)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`AveragedPowerspectrum` has the same properties as `Powerspectrum`, but with `m` $>$1.\n", + "\n", + "Let's plot the averaged power spectrum!" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAIeCAYAAAAxuAm3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABonklEQVR4nO3deXgT1f7H8U9KS4EWKGsBAVlEFEQBARVQkU0UN8QVF1Bc0Iu4gIoLohf1KopXFvW64HavehUEXOAqiyICCijIosgioLKp7DSF0pLz+2N+aZImadN0pkmb9+t5+tBkJpOT0GTmM+d8z7iMMUYAAAAA4ICkWDcAAAAAQPlF4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcExyrBtQnnk8Hu3atUuSVKVKFblcrhi3CAAAACg5Y4yys7MlSbVr11ZSUvh+DAKHg3bt2qXMzMxYNwMAAABwzB9//KG6deuGXc6QKgAAAACOoYfDQVWqVMn//Y8//lBaWloMWwMAAADYw+1254/k8T/mDYXA4SD/mo20tDQCBwAAAMqdouqUGVIFAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAx3AdDhu53e5CbwMAAACJhsBho/T09Fg3AQAAAIgrDKkCAAAA4Bh6OGyUlZUVcNvtdiszMzNGrQEAAABij8Bho7S0tFg3AQAAAIgrDKkCAAAA4BgCBwAAAADHEDgAAAAAOIbAAQAAAMAxBA7g/337rfTKK1J2dqxbAgAAUH4wSxUgaf9+qUcPK2zs2SONHBnrFgEAAJQP9HAAkn7/3dez8fPPsW0LAABAeULgACQdPRr6dwAAAJQMgQMQgQMAAMApBA5AUl5e6N8BAABQMgQOQPRwAAAAOIXAAYjAAQAA4BQCByACBwAAgFMIHIAIHAAAAE4hcACiaBwAAMApBA5A9HAAAAA4hcABiMABAADgFAIHIAIHAACAU5Jj3YDyxO12F3ob8cs/ZFDDAQAAYB8Ch43S09Nj3QREiR4OAAAAZzCkClBgrwaBAwAAwD70cNgoKysr4Lbb7VZmZmaMWoPioIcDAADAGQQOG6WlpcW6CYgSgQMAAMAZDKkCRNE4AACAUwgcgOjhAAAAcAqBAxBF4wAAAE4hcACihwMAAMApBA5ABA4AAACnEDgAUTQOAADgFAIHIHo4AAAAnELgAETROAAAgFMIHIDo4QAAAHAKgQMQgQMAAMApBA5AFI0DAAA4hcABiB4OAAAApxA4ABE4AAAAnELgABQ4jMrjkYyJXVsAAADKEwIHoOBeDXo5AAAA7EHgAETgAAAAcAqBAxCBAwAAwCkEDkAEDgAAAKcQOAAFX3uDwAEAAGAPAgeg4IDBxf8AAADsQeAAxJAqAAAApxA4ABE4AAAAnELgAETgAAAAcAqBAxBF4wAAAE4hcACiaBwAAMApBA5ADKkCAABwSnKsG1CeuN3uQm8jfhE4AAAAnEHgsFF6enqsm4AoETgAAACcwZAqQME1G9RwAAAA2IMeDhtlZWUF3Ha73crMzIxRa1Ac9HAAAAA4g8Bho7S0tFg3AVEicAAAADiDIVWACBwAAABOIXAAInAAAAA4hcABiAv/AQAAOIXAASg4YNDDAQAAYA8CByCGVAEAADiFwAGIwAEAAOAUAgcgAgcAAIBTCByAKBoHAABwCoEDEEXjAAAATiFwAGJIFQAAgFMIHIAIHAAAAE4hcAAicAAAADiFwAGIonEAAACnEDgAUTQOAADgFAIHIIZUAQAAOIXAAYjAAQAA4BQCByBqOAAAAJxC4ABEDwcAAIBTCByAKBoHAABwCoEDCc/jCb6PwAEAAGAPAgcSXqhwQeAAAACwB4EDCS9UuKBoHAAAwB4EDiQ8ejgAAACcQ+BAwiNwAAAAOIfAgYQXavgUgQMAAMAeBA4kPHo4AAAAnEPgQMKjaBwAAMA5BA4kPHo4AAAAnEPgQMIjcAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER9E4AACAcwgcSHj0cAAAADiHwIGER+AAAABwDoEDCY+icQAAAOcQOJDwqOEAAABwDoEDCY8hVQAAAM4hcCDhETgAAACcQ+BAwiNwAAAAOIfAgYRH4AAAAHAOgQMJL1SBOEXjAAAA9iBw/L+pU6eqX79+aty4sapUqaLWrVtr3Lhxys3NjXXT4DB6OAAAAJyTHOsGxItnn31WTZo00dixY5WZmanFixfr4Ycf1qpVq/TWW2/FunlwEIEDAADAOQSO//fJJ5+oTp06+bfPOeccGWM0atSo/BCC8onAAQAA4ByGVP0//7Dhdeqpp0qStm/fXtrNQSkicAAAADgnrgPHunXrNHHiRA0aNEht2rRRcnKyXC6XHn/88YgeP2XKFHXr1k01atRQWlqaTjnlFI0dOzbiuowFCxaoYsWKat68eUleBuIcReMAAADOieshVS+99JLGjx8f1WPvuusujR8/XsnJyerevbvS09P1xRdf6P7779cnn3yi2bNnq3LlymEf/9NPP2n8+PG65ZZbVK1atWhfAsoAejgAAACcE9c9HCeddJJGjBihd955R2vXrtV1110X0eNmzJih8ePHKz09XUuWLNHnn3+uDz/8UBs2bFCbNm20cOFCjRo1Kuzjd+3apUsuuUTHHXecnnrqKbteDuIUgQMAAMA5cd3DcdNNNwXcTkqKLB89+eSTkqSRI0eqffv2+ffXrl1bL774os4880xNmjRJo0aNUvXq1QMee/DgQZ133nk6cuSI5s+fr7S0tBK+CsQ7AgcAAIBz4rqHIxrbtm3TsmXLJEkDBgwIWt61a1c1atRIOTk5mjVrVsCynJwcXXzxxdqyZYs+//xzNWjQoFTajNgicAAAADin3AWOFStWSJJq1qyppk2bhlynQ4cOAetK0tGjR3XVVVdp2bJlmjVrllq2bFnkc7nd7iJ/EP8oGgcAAHBOXA+pisbmzZslSY0bNw67TqNGjQLWlaS//e1vmjFjhsaMGaOjR4/q22+/zV/WqlWrkIXj6enpdjUbMUQPBwAAgHPKXeA4ePCgJBVae+ENCgcOHMi/77PPPpMkjRo1Kqig/Msvv1S3bt1sbiniBYEDAADAOeUucERry5YtxX5MVlZWocvdbjdXKC8DCBwAAADOKXeBo2rVqpJUaP2ENyiU9PoazGBVPoQKF9RwAAAA2KPcFY03adJEkvT777+HXce7zLsuEluocEEPBwAAgD3KXeBo166dJGn37t0BReH+vvvuO0kKuEYHEhdDqgAAAJxT7gJHw4YN1bFjR0nSu+++G7R84cKF+v3335Wamqrzzz+/tJuHOETgAAAAcE65CxyS9OCDD0qSnnrqKS1fvjz//t27d+v222+XJA0dOjToKuMlxXU4yiYCBwAAgHNcxhgT60aEs3z58vyAIEm//PKLdu3apYYNG+qYY47Jv3/69OmqX79+wGPvvPNOTZgwQSkpKerRo4fS0tI0b9487du3T126dNGcOXNUuXJlW9vrcrnCLsvKyqLIPE6NHi39/e+B96WmSocPx6Y9AAAA8c7tdudfaqKo49y4nqXqwIEDWrJkSdD9W7du1datW/Nv5+TkBK0zfvx4denSRS+88IIWL16s3NxcNW/eXCNHjtTdd9+tihUrOtp2lB30cAAAADgnrns4ypqCQ6j8r8NBD0f8GjlSevrpwPtcLsnjiU17AAAA4l256eEoawgUZVOo3gxjrJ9CRskBAAAgAuWyaBwoDv/AUaFC6PsBAAAQHQIHEp5/sPAv7eFq4wAAACVH4EDCCxc46OEAAAAoOQIHEp5/TwaBAwAAwF4Ujdso1CxViH/+wSI1NfT9AAAAiA6Bw0beqcFQthA4AAAAnMOQKiQ8isYBAACcQw+HjbKysgJu+1/4D/GLonEAAADnEDhsxIX/yiaKxgEAAJzDkCokPHo4AAAAnEPgQMILVzRODQcAAEDJETiQ8JilCgAAwDkEDiQ8hlQBAAA4h8CBhEfROAAAgHOYpcpGXGm8bGJIFQAAgHMIHDbiSuNlExf+AwAAcA5DqpDw6OEAAABwDj0cNuJK42UTReMAAADOIXDYiCuNl00EDgAAAOcwpAoJz1ur4XJJyX4RnMABAABQcgQOJDxvsEhOlipU8N1P0TgAAEDJETiQ8LyBo0KFwMBBDwcAAEDJETiQ8AgcAAAAziFwIOH5Bw5qOAAAAOxF4EDC89ZqFOzhoIYDAACg5AgcSHgMqQIAAHAO1+GwkdvtLvQ24lO4WaoIHAAAACVH4LBRenp6rJuAKNDDAQAA4ByGVCHhUTQOAADgHHo4bJSVlRVw2+12KzMzM0atQaQoGgcAAHAOgcNGaWlpsW4CosCQKgAAAOcwpAoJj6JxAAAA5xA4kPDo4QAAAHAOgQMJj6JxAAAA5xA4kPDC9XBQNA4AAFByURWN79u3T59//rnmzZun5cuX648//tDevXtVo0YNZWZm6tRTT1X37t117rnnKiMjw+YmA/YKN0sVPRwAAAAlV6zAsXr1ao0fP17vvfeeDh8+LGNMwPLs7Gxt27ZNy5cv12uvvaZKlSppwIABuuOOO3TyySfb2nDADsZYPxJF4wAAAE6IKHD8+eefeuCBB/TWW2/J4/Godu3a6tu3rzp37qzWrVurVq1aqlatmvbv36/du3drzZo1Wrx4sRYsWKDJkyfrjTfe0KBBg/Tkk0+qbt26Tr8mIGL+oYIaDgAAAPtFFDhatGihgwcP6oILLtDgwYPVt29fJSeHf2jv3r11zz33KC8vT5988olef/11vf766/rwww+1d+9e2xoPlFTBwEEPBwAAgL0iKhrv1KmTli1bpo8//lgXX3xxoWHDX3Jysvr166dPPvlES5YsUYcOHUrUWMBuhQUOisYBAABKLqLkMGfOnBI/UceOHW3ZDmAn/1BBDwcAAID9opqlCqG53e5CbyP++IcKisYBAADsF1Xg2LJli5o0aWJzU8q+9PT0WDcBxUTROAAAgLOiuvBfs2bN1KJFCw0ZMkRTp06lEBxlFjUcAAAAzoqqh6NJkyb65Zdf9Msvv+jVV1+Vy+VS27Zt1bNnT/Xs2VNnnnmmUlNT7W5r3MvKygq47Xa7lZmZGaPWIBLMUgUAAOCsqALHpk2btHnzZs2dO1dz5szRl19+qeXLl2v58uV65plnlJqaqs6dO+cHkESZnSotLS3WTUAxUTQOAADgLJcpeLnwKK1YsUJz5szRvHnztHDhQh0+fNh6ApdLeQk6NsXtdufXdWRlZRFI4tDmzVKzZtbvV14pjRwptWtn3b71Vulf/4pd2wAAAOJVcY5zbZulql27djrxxBPVtm1bHX/88Zo8eXJ+6ADiVcFZqigaBwAAsFeJAocxRt99953mzp2ruXPnavHixTpy5IiMMcrIyNB5552nnj172tVWwHYUjQMAADgrqsDxr3/9S3PnztWXX36pffv2yRgTsm7D5XLZ3V7AVhSNAwAAOCuqwHH77bfL5XLphBNO0E033ZQ/M1WlSpXsbh/gKIrGAQAAnBX1kCpjjDZt2qRly5YpIyNDNWvW1Kmnnmpn2wDH0cMBAADgrKgCx5IlSwLqNubPn6+HH35YNWrUUPfu3dWzZ0/16tVLTZs2tbu9gK0oGgcAAHBWVIGjY8eO6tixox544AEdPnxYCxYsyA8gH374oaZOnSqXy6WmTZuqV69eeumll+xuN2ALisYBAACclVTSDVSqVEm9e/fW2LFjtXz5cu3cuVMjRoxQamqqNm3apFdeecWOdgKOYEgVAACAs2y5DkfBq47v2bNH3usJpqam2vEUgCMIHAAAAM6KKnDs3btX8+bNyx9GtXnzZklWIbnL5VLbtm3zp8c988wzbW0wYKeCs1RRwwEAAGCvqAJHnTp1ZIzJ78Vo2rRpfsDo0aOHatasaWsjAacULBqnhwMAAMBeUQWOjIwM9ejRIz9kMBuVxe12F3ob8YeicQAAAGdFFTh27dpldzvKhfT09Fg3AcVEDQcAAICzSjxLFVCWETgAAACcZcssVbBkZWUF3Ha73crMzIxRaxCJgkXjSX4RnMABAABQclH3cOTm5mrcuHE6/fTTVaNGDVWoUCHkT3Jy4mSatLS0oB/Et4I9HC6Xr5eDGg4AAICSiyoN5OTkqEePHvrmm2/yZ6oKp6jlQCwVnKVKsgLH0aP0cAAAANghqh6O8ePHa/Hixerdu7fWrVun66+/Xi6XSzk5OVqzZo3uv/9+paamatSoUfJ4PHa3GbBNwR4O/38JHAAAACUXVQ/HlClTVLVqVf33v/9V9erV5XK5JEkpKSlq1aqV/vGPf6hz58665JJL1KZNG1122WW2NhqwC4EDAADAWVH1cKxfv16nnXaaqlevLkn5geOo3xHahRdeqHbt2mnixIk2NBNwRsGicck3tIrAAQAAUHJRBY7c3FzVqVMn/3blypUlSQcOHAhYr2XLllq9enUJmgc4q7AeDorGAQAASi6qwFGvXj3t2LEj/3b9+vUlSWvXrg1Yb/v27QG9HkC8CVc0XnAZAAAAohNV4DjxxBO1cePG/NudO3eWMUZjx47NLxL/6quv9PXXX6tly5b2tBRwADUcAAAAzooqcJx77rnaunWrli5dKknq1q2bWrVqpU8++UTHHHOMTj31VPXq1UvGGN1+++22NhiwE4EDAADAWVHNUjVgwADVqlUrv2g8KSlJM2bMUP/+/bV69Wr98ccfqlChgoYNG6ZBgwbZ2V7AVhSNAwAAOCuqwFG7dm1dc801Afcdd9xxWrlypdatW6c9e/bo+OOPV61atWxpJOAUisYBAACcFVXgWLBggSpUqKAuXboELaNmA2UJReMAAADOiqqGo1u3bho1apTdbQFKHTUcAAAAzooqcNSoUUMNGjSwuy1AqSNwAAAAOCuqwNG2bVtt2LDB7rYApS5U4KBoHAAAwD5RBY5hw4Zp2bJlmjlzpt3tAUpVqFmqKBoHAACwT1RF4+3atdPQoUPVr18/DRo0SP3791eTJk1UuXLlkOs3bty4RI0EnMKQKgAAAGdFFTiaNm0qSTLGaPLkyZo8eXLYdV0ul/I4VYw4VdgsVZLk8UhJUfUDAgAAQIoycDRq1Egul8vutpR5bre70NuIP4XVcHiXEzgAAACiF1Xg2LJli83NKB/S09Nj3QQUU2FDqiSrjiMlpXTbBAAAUJ5w7hYJrbCicYk6DgAAgJKKqocDoWVlZQXcdrvdyszMjFFrEImiejgIHAAAACUTUQ/H9u3bbXkyu7YTr9LS0oJ+EN+KKhoncAAAAJRMRIGjRYsWGjlypPbu3RvVk+zZs0f33XefWrRoEdXjAadEUjQOAACA6EUUOHr37q2xY8eqYcOGuvbaazVnzhzl5OQU+picnBx9/vnnuvrqq9WwYUM9++yzOvfcc21pNGCXSIrGAQAAEL2IajimT5+uuXPn6u6779a7776r9957TykpKWrbtq1OPPFE1apVS9WqVdOBAwe0e/du/fTTT1q5cqVyc3NljNFJJ52k5557Tj179nT69QDFQtE4AACAsyIuGu/Zs6dWr16tOXPmaNKkSZo9e7aWLl2qpUuXSrIu8GeMyV8/NTVVF154oYYOHUrQQNyiaBwAAMBZxZ6lqlevXurVq5dycnK0aNEirVixQn/88Yf279+vjIwM1a1bV+3bt1fnzp2VmprqRJsB21A0DgAA4Kyop8VNTU1V9+7d1b17dzvbA5QqisYBAACcxYX/kNAoGgcAAHAWgQMJjRoOAAAAZxE4kNCYpQoAAMBZBA4kNIrGAQAAnEXgQEIrqmicGg4AAICSIXAgoVHDAQAA4CwCBxIagQMAAMBZUQWOBQsWaNGiRXa3BSh1FI0DAAA4K6rA0a1bN40aNcrutgClzj9QJP3/p4EL/wEAANgnqsBRo0YNNWjQwO62AKXOGyj8QwYX/gMAALBPVIGjbdu22rBhg91tAUqdN3D4hwyGVAEAANgnqsAxbNgwLVu2TDNnzrS7PUCpInAAAAA4K7noVYK1a9dOQ4cOVb9+/TRo0CD1799fTZo0UeXKlUOu37hx4xI1EnCKd8gUgQMAAMAZUQWOpk2bSpKMMZo8ebImT54cdl2Xy6U8BsIjToXq4aBoHAAAwD5RBY5GjRrJ5XLZ3Rag1FE0DgAA4KyoAseWLVtsbgYQG9RwAAAAOIsrjSOhETgAAACcReBAQqNoHAAAwFklChxff/21rrjiCjVs2FCpqakaPHhw/rI5c+bowQcf1M6dO0vcSMApFI0DAAA4K+rA8fjjj6tbt26aOnWqtm/frtzcXBlj8pdXr15dTz/9tKZNm2ZLQwEnUDQOAADgrKgCx//+9z898sgjOuaYY/TBBx/ojz/+CFqnU6dOqlOnjj799NMSNxJwCjUcAAAAzopqlqrx48crNTVV//vf/9S6deuw651yyinasGFD1I0ra9xud6G3EX8IHAAAAM6KKnAsW7ZMnTp1KjRsSFKdOnW0ePHiqBpWFqWnp8e6CSgmAgcAAICzohpS5Xa7Va9evSLX279/vzweTzRPAZSKULNU+ddzUMMBAABQMlH1cGRmZmrjxo1Frrdu3To1atQomqcok7KysgJuu91uZWZmxqg1iAQ9HAAAAM6Kqoeja9eu+uGHH7Ro0aKw63z66afauHGjzjnnnKgbV9akpaUF/SB+GSN5O+DCzVJF4AAAACiZqALH8OHD5XK5dOmll2rGjBnKKzDu5LPPPtNNN92klJQU3XHHHbY0FLCb/2g/ejgAAACcEVXgaN++vcaNG6ddu3apf//+ysjIkMvl0ocffqiMjAz17dtXf/75p8aNG6dWrVrZ3WbAFv5hggv/AQAAOCPqC//deeedmjVrljp27KhDhw7JGKODBw/qwIEDatOmjT7++GMNHTrUzrYCtvLvmAvXw0HROAAAQMlEVTTude655+rcc8/V7t27tXnzZnk8HjVq1Ej169e3q32AY8L1cDCkCgAAwD4lChxetWrVUq1atezYFFBq/MMEReMAAADOiGpI1ZtvvqmtW7fa3RagVNHDAQAA4LyoejhuvPFGuVwutWjRQj179lTPnj3VvXt3VatWze72AY6haBwAAMB5UQWOQYMG6YsvvtD69eu1fv16vfTSS0pKStKpp56aH0C6dOmilJQUu9sL2IaicQAAAOdFNaTq9ddf15YtW7Ru3Tq98MILuvjii1W1alUtXbpUTz75pHr06KEaNWqoT58+GjdunN1tBmzBkCoAAADnRT0triS1aNFCt912m6ZNm6bdu3dryZIleuKJJ9StWzfl5eVp9uzZuv/+++1qK2ArisYBAACcV6LA4S83N1cHDx7MvxaH9+rjxhi7ngKwFT0cAAAAzivRtLg//PCD5syZo7lz52rhwoU6fPiwjDGqVq2a+vbtm1/PAcQjisYBAACcF1XguOqqq/TFF19o9+7dMsYoJSVFp59+en7A6NSpkyr4H8EBcYiicQAAAOdFFTg++OADuVwunXzyyRo9erR69+6tKlWq2N02wFEMqQIAAHBeVDUcVatWlTFGK1eu1DXXXKNLL71U48aN08qVK+1uH+AYisYBAACcF1UPx549e7R06VLNnTtXc+fO1ZdffqnZs2fL5XKpdu3a6tGjh3r16qVevXqpYcOGdrcZsAU9HAAAAM6LKnBUqFBBZ5xxhs444wyNGjVK2dnZmj9/vubOnat58+bp/fff1/vvvy9JOv7447V27VpbGw3YIZKicWo4AAAASqZEs1R5ValSReeff77OP/98rVy5Uu+8844mTZqkw4cPa/369XY8BWA7ejgAAACcV+LAsXXr1vypcefNm6e//vpLkvJnrzrjjDNK3EjACZHMUkXgAAAAKJmoAseMGTPy6zc2bNggyQoYLpdLJ510Uv70uGeffTazVyFu0cMBAADgvKgCx6WXXpr/e6NGjfIDRo8ePVS3bl3bGgc4iVmqAAAAnBdV4LjkkkvUq1cv9ezZUy1atLC7TUCpoGgcAADAeVEFjmnTptndDqDUMaQKAADAeVFd+A8oDygaBwAAcF6JAsfatWs1ZMgQtWzZUunp6UpPT1fLli112223ce0NxL1wPRxJSaHXAQAAQPFFPS3um2++qSFDhig3N1fGmPz7N2zYoA0bNuiNN97Qyy+/rIEDB9rSUMBu4YrGvbfz8ggcAAAAJRVVD8f333+vm2++WUeOHFHfvn01ffp0rVq1SqtWrdKMGTN04YUX6siRI7r55pv13Xff2d1mwBbhejj8b1M0DgAAUDJR9XA888wz8ng8mjx5sm644YaAZSeddJIuuugivfnmm7rxxhs1btw4vffee7Y0FrBTJIGDHg4AAICSiaqH4+uvv1bbtm2Dwoa/QYMGqX379lqwYEHUjQOcFK5o3P82gQMAAKBkogocu3bt0oknnljkeieccIJ27doVzVMAjqOHAwAAwHlRBY6MjAz99ttvRa7322+/qXr16tE8BeC4oorGC64DAACA4osqcHTs2FGLFy/WF198EXadL774QosWLdJpp50WdeMAJ1E0DgAA4LyoAscdd9whj8ejCy+8UPfdd59+/PFHZWdnKzs7W2vWrNGIESN04YUX5q8LxCOGVAEAADgvqlmqzj33XD300EN64oknNG7cOI0bNy5oHWOMRo0apd69e5e4kYATCBwAAADOi/pK42PGjNGsWbN0zjnnKDU1VcYYGWNUsWJFde/eXbNmzdJjjz1mZ1sBWzFLFQAAgPOivtK4JPXp00d9+vTR0aNHtXv3bklSrVq1VKHg0RsQhwrr4fAWjVPDAQAAUDLFChwbN27UtGnTtGXLFqWmpqpt27a64oorVLlyZdWtW9epNgKOKGyWKno4AAAA7BFx4Hj++ed133336WiBI7BRo0Zp1qxZOumkk2xvHOAkajgAAACcF1ENx8KFCzV8+HDl5eWpSpUqateunZo3by6Xy6WtW7eqf//+8ng8TrcVsBWBAwAAwHkRBY5JkybJGKOBAwdq586d+u6777R+/XotX75czZs318aNG/XZZ5853VbAVhSNAwAAOC+iwPHNN9+oYcOGevnll5WWlpZ//8knn6zx48fLGKNvv/3WsUYCTqBoHAAAwHkRBY4//vhDHTp0UMWKFYOWde3aVZL0559/2tuyUrZx40YNGTJE7du3V0pKipo0aRLrJsFhkRSNezySMaXXJgAAgPImoqLxI0eOKCMjI+SyatWq5a9Tlv3444/69NNP1alTJxljtHfv3lg3CQ6LpIZDskIHMz0DAABEJ+oL/5U3F154obZu3app06bptNNOi3VzUAoiDRzUcQAAAEQv4mlxN27cqLfffjuq5ddff33xW1bKkpLIXommsKJx/yFWBA4AAIDoRRw4Fi1apEWLFoVc5nK5wi53uVxRB45169Zp9uzZ+v777/X9999r7dq1Onr0qMaMGaOHH364yMdPmTJFL7zwglauXKkjR47ouOOO0zXXXKO7775bKSkpUbUJ5UekPRwUjgMAAEQvosDRuHFjuVwup9sS5KWXXtL48eOjeuxdd92l8ePHKzk5Wd27d1d6erq++OIL3X///frkk080e/ZsVa5c2eYWoyyJpGi84HoAAAAonogCx5YtWxxuRmgnnXSSRowYoXbt2ql9+/Z68skn9e9//7vIx82YMUPjx49Xenq6vvrqK7Vv316StGvXLnXv3l0LFy7UqFGj9Oyzzzr9EhDHqOEAAABwXsRDqmLhpptuCrgdaZ3Fk08+KUkaOXJkftiQpNq1a+vFF1/UmWeeqUmTJmnUqFGqXr26fQ1GmULgAAAAcF65q5Tetm2bli1bJkkaMGBA0PKuXbuqUaNGysnJ0axZs0r0XG63u8gfxC+KxgEAAJxX7gLHihUrJEk1a9ZU06ZNQ67ToUOHgHWjlZ6eXuhPZmZmibYPZ1E0DgAA4Ly4HlIVjc2bN0uyCt3DadSoUcC6kpSdnZ3f47Fp0yZlZ2dr6tSpkqSOHTvq2GOPdarJiBGGVAEAADiv3AWOgwcPSpLS0tLCrpOeni5JOnDgQP59f/75py6//PKA9by333jjDQ0aNChoO1lZWYW2xe1208sRx5ilCgAAwHnlLnBEq0mTJjLGFOsxhYUaxD96OAAAAJxX7mo4qlatKkmFFmx7eyaqVatWKm1CfCoscPj3eFDDAQAAEL1yFziaNGkiSfr999/DruNd5l0XiamwWaro4QAAALBHuQsc7dq1kyTt3r07oCjc33fffSdJAdfoQOJhSBUAAIDzyl3gaNiwoTp27ChJevfdd4OWL1y4UL///rtSU1N1/vnn2/rcXIejbKFoHAAAwHnlLnBI0oMPPihJeuqpp7R8+fL8+3fv3q3bb79dkjR06FDbrzLOdTjKFno4AAAAnBfXs1QtX748PyBI0i+//CJJevnll/Xpp5/m3z99+nTVr18///Yll1yiYcOGacKECTr99NPVo0cPpaWlad68edq3b5+6dOmiMWPGlN4LQVyiaBwAAMB5cR04Dhw4oCVLlgTdv3XrVm3dujX/dk5OTtA648ePV5cuXfTCCy9o8eLFys3NVfPmzTVy5Ejdfffdqlixou3tLXhdDq7DEd8oGgcAAHBeXAeObt26FfvaGP6uuOIKXXHFFTa2qHBcl6NsYUgVAACA88plDQcQCf8gkVTgk0DgAAAAsAeBAwnLGyQqVJBcrsBlBA4AAAB7EDiQsPwDR0EUjQMAANiDwIGE5Q0SoQIHPRwAAAD2IHAgYRXWw0HgAAAAsEdcz1JV1hS8sjhXGo9v3iBR8CrjEoEDAADALgQOG6Wnp8e6CSgGajgAAACcx5AqJCyGVAEAADiPHg4bcaXxsoWicQAAAOcROGzElcbLFno4AAAAnMeQKiQsAgcAAIDzCBxIWIXNUkXROAAAgD0IHEhY9HAAAAA4j8CBhEXgAAAAcB6BAwmLWaoAAACcxyxVNuJK42ULPRwAAADOI3DYiCuNly0UjQMAADiPIVVIWPRwAAAAOI8eDhtxpfGyw+Px/U7gAAAAcA6Bw0Zcabzs8B8mReAAAABwDkOqkJD8QwSBAwAAwDkEDiQk/xBB0TgAAIBzCBxISPRwAAAAlA4CBxISgQMAAKB0EDiQkCgaBwAAKB0EDiSkono4qOEAAACwB4EDCYkhVQAAAKWD63DYyO12F3ob8aOoWaoIHAAAAPYgcNgoPT091k1AhOjhAAAAKB0MqUJCInAAAACUDno4bJSVlRVw2+12KzMzM0atQWGKmqWKonEAAAB7EDhslJaWFusmIEL0cAAAAJQOhlQhIVE0DgAAUDoIHEhI9HAAAACUDgIHEhKBAwAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJiaJxAACA0kHgQEKihwMAAKB0EDiQkAgcAAAApYPAgYRE0TgAAEDp4ErjNnK73YXeRvyghwMAAKB0EDhslJ6eHusmIEJFFY27XNaPMQQOAACAkmBIFRJSUT0c/vcTOAAAAKJHD4eNsrKyAm673W5lZmbGqDUoTKSBIy+PGg4AAICSIHDYKC0tLdZNQISKKhqXrKFWOTn0cAAAAJQEQ6qQkBhSBQAAUDoIHEhIBA4AAIDSQeBAQipqliqJwAEAAGAHAgcSUiQ9HN4gQtE4AABA9AgcSEgMqQIAACgdBA4kpEhmqSJwAAAAlByBAwmJHg4AAIDSQeBAQqJoHAAAoHQQOJCQKBoHAAAoHQQOJCSGVAEAAJQOAgcSEkXjAAAApYPAgYREDwcAAEDpIHAgIVE0DgAAUDrCHGohGm63u9DbiB/FKRr3eCRjJJfL+XYBAACUNwQOG6Wnp8e6CYhQcYZUedcP1xMCAACA8BhShYRUnKJxiWFVAAAA0eKcrY2ysrICbrvdbmVmZsaoNShMND0cAAAAKD4Ch43S0tJi3QREqLiBg4v/AQAARIchVUhIkcxS5X8/PRwAAADRIXAgITGkCgAAoHQQOJCQKBoHAAAoHQQOJCR6OAAAAEoHgQMJqTgX/pMoGgcAAIgWgQMJKZKicXo4AAAASo7AgYTEkCoAAIDSQeBAQiJwAAAAlA4CBxISs1QBAACUDgIHEhJF4wAAAKWDwIGERNE4AABA6SBwICFRwwEAAFA6CBxISAQOAACA0kHgQEIqbtE4NRwAAADRIXAgIRW3aJweDgAAgOgQOJCQGFIFAABQOggcSEgEDgAAgNIRZkJQRMPtdhd6G/HDGyCSkiSXK/Q6BA4AAICSI3DYKD09PdZNQIS8ReDhejcKLqNoHAAAIDoMqUJC8vZYFBY4KBoHAAAoOXo4bJSVlRVw2+12KzMzM0atQWEiCRwMqQIAACg5AoeN0tLSYt0ERMgbIJIL+QQQOAAAAEqOIVVISPRwAAAAlA4CBxJScWs4KBoHAACIDoEDCam4s1TRwwEAABAdAgcSEkOqAAAASgeBAwmJonEAAIDSQeBAQqKHAwAAoHQQOJCQKBpHosjNjXULAACJjsCBhETROBLBkCFSerr00kuxbgkAIJEROJCQGFKF8m73bunll6UjR6SnnpKMiXWLAACJisCBhETROMq7b77x/f7bb9Ivv8SuLQCAxEbgQEIqbg8HNRwoaxYvDrw9b15s2gEAAIEDCam4ReP0cKCs8e/hkKQvvohNOwAAIHAg4Xg8vvHs1HCgPMrNlZYuDbzviy+sv30AAEobgQMJxz88EDhQHq1aJWVnB963a5e0enVs2gMASGwEDoS0e7d07bXSmDHlb3abkgaODz+Ubr9d2rHD/rYBdvCv32jZ0vc7w6oAALFA4EBIw4dL77wjPfKINHNmrFtjL//wEOksVd6i8eXLpcsus65rcPfdzrQPKCn/+o0HH/T9TuE4ACAWCBwIsnu39N//+m6//HLs2uKESHs4QhWNjxzpu++zz5i9CvHJ28NRpYp09dVS3brW7a++4srjAIDSR+BAkDfekHJyfLdnzZJ+/z127bGbf0gozpCquXOlOXN89+3fL33/vf3tA0pi2zbp11+t3zt1klJSpO7drdtZWdJ338WubQDg7/BhaefO8jd0G8EIHAjg8VjDhQre99prsWmPE6Kp4cjLC+zd8PIPIEA88B9O1bmz9W+PHr77GFYFOGfJEqlJE+m886yDaYSXm2udDKlfXzr1VOm99xg1UJ4ROBBg9mxp0ybr9/btfQfdr71Wfr4Iogkc06f7ejOaNvXdT+BAvCFwALFx6JA12cqvv1pDbt94o/D1t2+X9u4tnbbFow8+8H1frVghDRggHXecNH681RuL8oXAgQAvvuj7/ZFHpAsusH7fvl369FN7n8vtli691Ppxu+3ddmGiKRrfutX3+0svSc2bW79/8035/2LMzpamTpXWr491S2LnwAFr5/jhh/Hf9e8/Q9Xpp1v/Nm1qnXX1Lj90qNSbBZR7Tz4pbdzou/3MM+FP1M2aJTVuLDVrFnyRzkRgjDRuXPD9v/4q3XWX9d7MnVvqzYKDCBzIt2WLL1Q0aiT17SsNGeJbbnfx+OTJVs/B9OnSW2/Zu+3CRFM07tW9u9S7t9Srl3U7N1dasMDe9sWTDRuk006TLr9catVKGjYscc7IHTxodfH362cVXV95pTVD2YQJsW5ZeIcP+3riWraUatXyLfP2chw5Ii1aVPpti5XVq6Xjj5cuvpghLojshMHHH0unnGId+EZ6gmHtWunppwPv27zZOllTUE6ONHSotS/at086/3xp5crInqc0TZtmhahffrF/2/PnW70akjWc6osvrGFoXnv3StddV/5P6CUSAkc5t25d5FcXfuUV35frLbdYB9y9e/vOjH7+ufUFapfPP/f9/tVX9m23KNEMqfJ66inJ5ZJ69vTdV16HVX3yidShg7RmjXX76FFp4kSpRQvrb6W8Xgxx/Xqra79uXevfGTMCJ1F4/PH43Ql+/71vFirvcCqvRB1WNWKEFZw//lh67rmSb89b0/bvf5ffz0A8OXLEvm39979SRoZ1Mu2330KvM368dMkl1sUzx48P7DEMx+ORbr3V99nznpCSrBBSMLRMnBi4L923z9rXxlMv8pdfSv37Sw89ZAX2K66Qli2zb/v+n8Xhw6VzzrF6fVavlrp2te7fuVMaO9a+50SMGTgmKyvLSDKSTFZWVqk//7ffGpOebsygQcbk5RW+7uHDxtSpY4xkTHKyMTt2+JY98YR1v2TMAw/Y07bDh42pUsW33fr1jfF47Nm2l8djzMaNxrz7rjFTpxpz6JB1//r1vue95prwj//5Z996kjGXX+5btmePMUlJ1v0nnWRvu2MtL8+Yhx8OfO3NmgX+f0nGtG9vzNKlzrVj505jLrnEmNtuM+bgwfDr/fKLMVdcYcyNNxqzf3/Jnu/2262/f//XKRlTr54xrVr5bj/1VPG2vWSJMW+9ZUx2dvTti8Qzz/ja+Oqrgct27PAt69TJ2XYUR26uc9v+5ZfA/8e0NGO2bi3ZNp9/3re9M84wZt264j1+6VJj3n/fmK++MmbDBmNisGsoE3791Zh+/azv2XPPtd6rkti715iaNX3/d9WqGfP22779Tl6eMXfcEfzZv+66orc9ebJv/ebNrc95x46++z77zLfuX38ZU726db/LZUybNr71GjWyXnc8OOec4PdCMqZbN2M+/7xk2167NvA1HzkSuHz9emNSUqzllSsb89tvJXs+OKc4x7kEDgfFMnAcOGBM7dqBB8s5OeHXf+cd37pXXhm4bMcO30FYZmbwl0M0vvwy+IuspDsUY4xZudKYv//dmL59A1+/ZEyTJsZ8+GHgl93114ff1oYNvvUqVLC+BP116uRbvn17ydseD3bvtnbuBYPWwYPG/P67MVdfHbisUiVjli8vfJt//WXtMPbuLd7B5TXX+J7n1FOtQFDQ999bf5Pe9c4/v+hwXVBWlvU3k54e+Npq1bLCzvz51jbXrvWFzJo1rc9YJF58MTCkObnz7NfP91xr1gQvb93aWpaUZP1/xNq//mUF2R49nHlf7r8/+Hvm2muj317B71XvAdHzzxtz9Gjhj/3hB2N69w59EFe1qjFnnml9xhLdkSPGjB0bfIIjNdX6nB4+HN12H3gg9Ht/6aXGbN5szIUXBt5fsaLveXfvDr/dP/8MDDKzZ1v3T53qu++cc3zr+4eaG26wTl6dcorvvuOOCzzhFwsLFwaeDPT/jvX+vPde9Nu/9Vbfdp55JvQ6d99dvNBnh/HjrQD05JOl83x22b3bOqaKBQJHnIh1D8fUqb6zBN6DsXBnWLt08a331VfByy+7zLd8yhTf/QcOWGdvt20rXttCffm//nrodXNzrQO/q68u/Az2zz8Hvt5wP/5nlG68Mfz2Dh0yJiPDWm/YsODlDz7o287bbxfv9cejw4eNOf30wJD17LPBPU9ffWXMySf71jv2WCtUhPLcc76DdP8Dh9q1rQO/cOHV/+De+9O0qfV/7PX558EhQTLmnnsif80rVxrTsGHg49PSjHnssdC9Kv4h6Iknit7+2LHB7cvMNGbRosjbGCmPx3dgUL166APgYcN87Zgxw/42FMfixdbfmH/AmzXLvu3n5Ph6bVNSjKlRw/dcixdHt81HHw38fPj/v551ljE//hgceH/7zZiBA62z2UV9N/XpY39Pr9fu3casWlX09hcsMOYf/4hNIP36a6vHuLD3qGVLY774onjb3brVCobeIHH55YHb9P+/SU425o03jLnzTt9948eH3/b11/vWGzDAd39enjHHH+9btmSJ1RvmPXlXpYpvv/nHH4HrtmlTeK+u0847L3C/fOiQ1WPq38ZTTolu23/+aZ2o8gbtfftCr7dnT2CQW7YsuufzeIz56COr97qwz/3EiYF/E2+8Ed3z2c3jsb7L9u61/l5+/tmY6dONGT3amIsuMqZxY1+bY3Hik8ARJ2IdOIwx5n//8324Jas71P/M7OHD1pAj7/LWrUPvkObMCVzniiuMadHC90VdrVpwD0BhTj01eEdyww2h133jDd86d90VfptDhwZur2ZN64tz9GjrDGqondfNNxfezvXrrV6RUGfN/XtpCuspKQs8Hmvonff11KlT+E790KHAHp4ePYJ7L55+uugDrGefDb19/wN775lG70HpokXW8CT/oU9t2wbefu21ol/z0qWBB6EVKljBNlRPite6db4gVKNG+ADs8QQPS/N/rpQUaxiGnTZtCjxwDWXGDN86N97o3MFtUfbts3ocQ/1NPPSQPcOs/vtf3zavvNKYF17w3e7YsegeiYL+/NMXcJOTrbBa8DvH+3d0zDHGnHaaMRdcEPj9K1kB/dFHrTO4V11lBZVq1XzL33mn5K+9oF27rDZJ1nd3qINZj8cKyN7v9K5di99bGK09e4y56abgEDB0qHWQNWJEcMAbMyby7d98s+9xd99t3Td1qvV94r/N6tWNmTvXWr5mje/+Vq1Cf1bmzfOtk5ER/N3x6qu+5ZdeaszFF/tujx4duO5vvwUePD7ySOSvz07ffedrQ+PGgSeFjh61/q69y1esKP72H3ss+P8inPHjfeueeWbxv69++smYXr1820hOtr4HCm7n3/8O/hxXrGgNSy+OffvsGyK6aJH1XVHw776wHztP2ESKwBEjWVlZAT9//PFHzAOHMdYZ6apVfX+UnToZ85//WDuegmeIX3gh9DaOHrW6egv7Yx8yJLL2/PWXb6d2wgm+A8rjjgu9/kUX+Z6jWrXQO8uDB3077cqVrTON/l8qHo91VqBp0+jaHIp/HYrdNSh791ohr7T+bP75T997UrmyNVSpKFu3Bna1jxjhW/aPfwS+z716WUO1One2eke8//9VqgSPWfbv3ahVyzqj49+j4h9AJGsYUXa2NTzH/4B+/vzwbV+wIPgz4d97Uhj/M5p//3vw8qNHA8+OSlYX/a5dxnTvHnj/sGHRncmcMMEanjNunLVdY6zPdGHtMsb6u/LvOerdO/yJgj//tEJ1NENYZs60Duofeyx4B+zxWAHA24Yzzgj8jEvWiZGSnq3r1s23vS+/tNrhf/Y81BlM79C/UPyHePh/b3zxRfjw5P+TkWEF7FDvp38QrFPH93/qLzfX+v++6y7r/6Y47rknsC2tWwfWnuTkWCd8Crb5sceK9zzF5fFYPeYFh+ycemrwGe0ffgjugY1k6JH/90m1aoG9sTt3+oZSNWkSPAzRv+d/4cLAZVlZVm2bd/nLLwc/9+HD1r6h4Ptav37o7/affgqsXSis3qgk+5ulS60e4lDb8B+W+eKLwctfesm3vLATgKEcOmRM3brWY5OSrKFshTlyJLBX5cMPI3ueffusz2uoejzJmFtu8Q0x/+ijwIN6/1q9+vUjH73x7LPWY2rWtD5LM2dGP/wvN9eYE0+MLGSkp1snB+64w/qMlDYCR4x43/RQP7EMHMYEn80N9dO8eeHj0v3PEErW0JiOHX0H3ZUrFz7W1cv/zOO99wZ+qRfcgWRlBZ8hDPUl6H8mqahhUk88YQ2bcbmMmTat6PYWxr/rOdSY+eLKzbXeZ+//VcOG1pk4J89Ef/554EHof/8b+WMXLAj8Un/33cBJBiRjHn88+HG33+5bftFFgcsGDPAt8xZn79sXupfq9tsDz8L6H+jXqmVNGhDq9XqHV0jGnH125PUYxli1Pd4dVEZG4AHqL78E17lMmOBbfuRIcGFqlSpWiJk3L7Kz7v4Hp97P4bXXWkMmvffNmRP+8QXrGipWtM6mZmdbO9dJk6wx596/idNPL16x+44dvqGIkhUy/UPl66/7llWvbsyWLdbf9zPPBO7469WLfuiZf51Wy5a+z8/cub77MzOtHqq9e62DKG+PXbVqxnz6aeD2fvvNep+933MFD0IOHLAOzi+6yKrTycz0heqKFY0ZPrzo78b+/X1tGzgwcNnhw9YZcu/ydu0inyBh8+bgkO59nTNmWAfgZ50VuMzb9qSk4ANtu2zdGnjGX7JOAkycGL5n5ejRwPH/4XpI/fkfQIcbBrl5c+jhnW+/7XtswToC/+GJZ54Z/rMbalhlYb2b/t9h4fZlq1dbYef444tf7zFrlu+zPWCAbzIVYwJ7derXD1zmtWeP77NQp074YbHPP2/VUv7tb9b/6Zw5voNyyTrhGYmPPgo8RimsFtXjsXorvKHG+9O4ceCJIsk6SH//fd9r8e5PcnICPw+nnRb6ffD366+B2/H/jF1zjRWUinMI+Nprvm3UrWu19dxzrb/lAQOsIekffGDti4rbU2s3AkeMxHPgMMYav1vwTFLNmtbObfr0og8qPB7rg/P229a2vF80/gdQTz9ddDtuvDHwwGjkSN/tDz4IXHfatOAP8YknBvdetG/vWx7JWM/9+4s+uxKJceN8z/v88yXb1vz5gWfy/X/OOy/0wXNJrV8feHD44IPF38akSb7HFzyj9I9/hH7Mvn3WAaV3PW89wdq1voOd2rUDz/7n5FgH1t7HPPlkcBDLzbWGE3nXOeYY62z6iBHWgf/zzwcefPXpY4zbXfzX7P83PHq0dZb74osDx4InJYWvS3r11dD1Ro0bWwf/4QLQzp2+uoRwP0lJhR+MejzW56pRo+DvgnB1BgMGRB56CwYuyQrQ06dbvUj+xcAFP+8LF/qG/kjWexTqzHFR/HsjnnsucJn/AejJJwef0PAecI8b53vNgwf7lt13X2RtyMmxwlSkPVjbt/tmL/J+NxpjHaiEKjbv0SOyM6j+n5nrrw88gysF7hMqVbJOOPjXqjRuHNzrs3On9f/coIEVFIt7QuT99wN7GCWrpyGSovl163yPOemkwp978eLAA+ji7oazs33fj/7F419/7fusVK5c+HDi/fsD/19PPrnwoWq7dgXOYrVyZeDy3bsDe1Yeeijy17NzZ/DB+Gmn+UKL/8megp8bf1dc4Vvvo4+Cl3/2WeHfUZJV0xIJjydwxqxBg0L38G3bZg1h9H+OSpWsv2Xvd/zbb4cOBt7vOO/B+59/Bg5vGziw8L8z/zAT7ju0cmVrH/Hmm4WffMjODvwO/PrryN6nWCFwxEi8Dqnyt3GjdaZm2DDrIMmO8Ybr1/s+ZA0bFj6LlcfjK9KtVMk6czBzpu/Ddccdgetfd13gAVHBnbEx1heX9/4OHUr+eopj1Srfc/ftG902fv89cIiJ96fggUGlStZQmQ0bCj/LUxS32xrvv3hxYLfthRdGd7bE4wk9HGPs2MIf9957vnUbNbIOzPx3eKHCq8djnaUubMjXvn2RdUdfemn0Xd6bNoXvrpesg+qCB9MFrVplDc3xPxjx/zsuuFPyeAJn0unTxxoqU7Dn8uSTI3sNWVlWb0e413HccVZPoPd2uPDo7/PPAz+vBYca+YelcPVTf/4ZPCXnLbdE/n+Vne37rgg1w9Avv4Q/6GjQIPD2jTda/0/eM8LVq0fWixutl1/2PXezZlYI8e8Brlw58P/7yisL/8yuWOH7bq5Z0woOBw8GF01LVvDwjlnPzbXOqnqXXXGF74BrypTgmbouuyzyXsIlSwLDdmam9VkpTmjp3Nn3+HDfBR6P1fPgXe+VVyLfvj//nozx463vzxYtfPcVdmDuNWpU6H1XOP7TW597ru/+vLzg8Nm8eWTv3dGjwTMQ+n//Tpni+zuvXbvwcOa/z7700sBleXlFF/536VJ0e/0tXx54IJ+WZgWtvXut1/7224EnziSrx3DLluBtLV0a/Dm/4ILg45YVKwJ7wv/5z9Bt++GHwM/Y9u3WCbTrrgv93S5ZPbk33xz6WMm/9vHCC4v3PsUCgSNOxEPReGnxPxB6//3w6/30k2+93r2t+/bu9X1g27b1rXvkiG/nWq1a4Bh1/w+if7Gz3YW4RfGfGSgtzQoCHo9VN3PDDdZwlLfeCr9DmDUrMEhJ1nCJhQutx0ydGni2w/vjclnBrWtX60zjgAHWQcTFF1u9IT16WDvb006z3tNWraz6lVCzOknW8pJcw+LQocB558eNi+y98995Xnpp+N6N4vrll8CDkoI/115b8rDtX4jq/TnmGKvnJdysXaEcOmR9Zs4/P3BoW9u2gWP5/YcN1q1rzWxjjHWA/fbb1k68Zs3iDYkzxqp38h7gt25t9bCsXOnrCfH/m/v44/Dbyc62Dn78P4t79wYOFfL+nHBC4Qc0ubnW+HD/x5xxRmTjqf2HwYSbAveRR3zr1KplHVSuWGEdlPkv8x7ke38PNTzQTkePBh4k+/cCVKtmne1cvDiwTXfeGf77xf/z5X9g7PFYw1u8Q9hOOSV4WuJffw08iHvuOavIPdxnqlWroicO2b3bKoT1PubKK60hOsX1yiu+bRQ8SeX1ySe+dVq2jP7zXrB43L8e5owzIiusz8uzhgLPnBnZcx46FPg+ea/jcd99od/7SK6H9NxzvvXr1bOm7y04Q5/3p6hpYXNzfT3UKSmB31P+/zcdO1p/s6++ag0r7NvXCj1r10b2PvibNCm4NzIjI3g4YGam1ZtaGP8gf+654Ud3vP++b7tJSdbfVEH+Ia7gfi8nx5q455ZbQk8tfM01gScMdu/2feaSkqyhc/GOwBEnEilw+I+N7tw5/Hr+s074j7/1zkPucvm67/1nALnqKiuAeL8gXS7roHLPHt+XUPXq0Q2PKSn/GZUGDw5dXN+nT+A49tzcwGl1vQfZr7wSvAM7cMD6si7ObBXF+alRw57hWn/9ZQ2Pmzo18sds3Bj6bHNRvSOROnTI6hGaN8/qyv77363xsXaMe/31V99O9/TTrR6bkl6jZvXqwB3TySdbZ/w3bgzsbQg1jKGkwgW8v//d97zp6eFrlR56yLfeWWf5DoI9HqtGwvv/XLFi5MWNBYdApKRYBy1vvRV+Ok3/oBmu/sDjsc6qf/RR6J6T994LPrjJzCydqUrXrg2uuahdO/BM/iefBH4fhLoQpf/Mgk2ahH6dq1ZZY97D7Z6mTAn/vXHppdZJIP8ZtqpVC31QZoz1mfMf8tK5c/Sfl337fP8/NWsGv7bDhwOLjUtaq+ffy+T9SU2N7sA5Uv6zR7ZpE3jCLTk5sFe5qNmeli8P7FXyXrhvx47AWae8B/GRnHwaMcL3mIkTrfsOHAgcsmX3cKDt262akHDT3w8YEHrChVA8Hl/9WGH8v9fS0gKvO+V/3HPssYX3wublWTVpw4cHfr6HDPG14d57ffeHm7Uz3hA44kQiBQ6PJ7AbNdz4zL59feusWuW7378OxHsWyP8+71nbJ5/03XfPPYGzK4W6VkZpePPNyA7sq1a1ZlLavj1wBh3J6pkoaqjGmjXWAf0VV1hnjooay+/9qVjReu7ata0zfWedZfWGDB1qDZOJ9UULx4wJPrgqKx+X3btDd9uXxNq1gTPbtG4deFBw0032Pl9RPJ7AMdvNmgX34Pz4o+8gICXF6sksaM0aq9jxm2+K9/zffRdcb+L9u774YmtY2H33WTtr/2lqw03xHaklSwL/H7wHVaXBf+rQY44J/X76F99LVq+vd+aho0etnlLvsv/8J/q2+NevSNYJinfe8b2369YFD/8cOjT4wM+/eLpWrZJf5NC/Vqjg7EX+71+XLiWfdOOtt4L//iKpVyyJo0cDe439hxRNnGh993g/cw0ahD+JkpVl9Sh6H+s/m6Ax1kkZ/6Gsjz4aWftWr/Y9xjuU2f/gvH//6F97UTZvtoY7enuEI+nViNbRo4FDnhs0sP52jx4NrB39978j3+aMGYEnDEaMCJyYIjW17FxdncARJxIpcBgTOLOC/wWQvPynka1XL3An8MEHvseOHGkt8x5kpKT4zrj89ZfvQ1m9emBvQqidcmnYujV4Z9Sjh7WTnzYteLyo/9mNChWiK7r0ysqyhjFs3Gh9Qe3YYe2IDhzwDe+Kd4cPB+4Q7erdKMvWrQs9lK5Zs+LNqGUXtztw51qlinW2+oUXrL89/2FADz9s//P/+ad1ZjDUexLux46A8Pvv1ljs4cPtm18/Ejk51pncSy+16oXC8T8B4/1p2TIwJLRrV7Ievaws3wxeffuGHtZ24EDgxWG9weT5561ejAULfAdYLpc1zKSk/OuF/IfYrl/v20ckJwee2IqWf/G4ZL0fpfH38NVXwf+/N9zg+1737zEKNw24/9DP9u1D1/95PNb+aty44r0u/+tp+V/zKyXFmUlOCtqwwTrQd7Kuyhjr//+MM3yv9ZRTAuut2rYt/mfsnXcCQ6T/RAD33uvIy3AEgSNOJFrgyM72FRMmJwfvmL780veBKjjF4I4dgWek/C8+VPAiZqEKlLt1c/SlFenpp61hNY89FnzGe+/e4LOE3jMl8T4DRWn57jurxqRXr9gMi4tHGzcGntl3corSSPz2W+hxyP4/zZsXbwrd4jp61HoP7rgjcJazgj+NGoUfclWeeDxW6As3Fl+yxuqXVG5u0dOveutC/Gchk6yhTf49RXYF0rw8XwCtUMGagcnjCbzQm50Hbt4hsJUq2TMFeqT8pw7u1ClwitZ33vEtu/XW4Md++mngSYJIrzUUqQkTArfv/f2ee+x9nnjw55+BocCOz5h/aPH+ZGQ4H6DsROCIE4kWOIwJvLpywen6/GsWQnU/ensrKlYMHB9acFrM5cuDP6SFFarHi9mzfYWAPXv6in6BcDZt8hViF+fKyk7ZuNEK/OEO9u04uI1UXp41BfYXX1hnd7/6yjqTvmhR6dRaxJPcXKt26uyzA/8/evUq/bZs3Rp8zQPvzznn2Hv18gce8G37uecCZ75r3NjeoZm5udZ+5scf7dtmJLZssc6gn3568IUADx70TSBQq1ZgTcyBA4FB9LXX7G/bX38F11PUrBndRABlwdq1wbNhlfQz5j+1vuT8UD27ETjiRCIGjm3bfNNs1qxpjTP2jtXt0MH3oQp1tsy/58L7JepyhV7Xf8rGzMySTRNbmnJyrOEyZWGoE+LDoUPWBAnx5OhRK/g/8YQ1nCojwzr4Q+ytWmUNxxowIPKrJDth2bLA7+l69Yp/kbqi/Pyzb/snnBAYhJ2YWCEe+ddXzZrlu9+/BrJXL+f2Of7XtZECL3RaHn35ZWDI8i8ij9bjj1s92G3bOttD7ITiHOe6jDFGcITb7VZ6erokKSsrS2lpaTFuUem49lrpnXcC7zvhBGndOusjevLJ0sqVwY974w3pxhsD7zvjDGnx4uB1p06VLr/c+v3hh6UxY+xpOwDAHsZIM2ZIX38t3Xqr1LKl/c/RubP0zTeB9118sfW8iWDGDKlfP+v3666T3n5b+vZb630xRqpcWVqzRmrWzJnn/+gj6ZJLrN+PP956rpQUZ54rXsyYYR1zXHONdM899mxz1y6pevWy994V5ziXwOGgRA0c69ZJ3bpJO3eGXj5ihPTMM8H3//KLdNxxgfc9/bR0333B6xojTZxoPcejj0oVK5a01QCAsuaVV6ww41WlirR2rdS4cezaVJpycqTMTGn/fik9Xdq6VerSRfrxR2v5s89Kw4c79/x5edZJxu++k/7zH+n00517LsQfAkecSNTAIVlfQkuXSrNnS3PmSEuWSEePSsnJ1u/t2wc/xhjpmGOkHTt8961fL7VoUXrtBgCUHfv2SfXqWQfekjR2rHTvvTFtUqm78UZrhIBkhY1Fi6zfTz3V6u1ITo5d21C+Fec4N6m0GoXEkpxsdek++qj15bd7t/S//1lnQUKFDUlyuaQzz/TdbtWKsAEACC8jQ7rjDuv3Ll2ku+6KZWti46qrfL97w0aFCtKrrxI2ED8IHCgV1atLffpIp5xS+HpnneX73TsuFACAcJ56SvrpJ+mLL8reGHg7dO8u1a0beN/w4VK7drFpDxAKgQNx5dprpQ4dpDZtpKFDY90aAEC8q1BBOvHExK3lS072TaIiWQXio0fHrj1AKAQOxJXq1aVly6RVq6T69WPdGgAA4t/tt0tpaVbR/OTJ1r9APGF0HwAAQBnWqpW0ebM1YQsn6xCPCBwAAABlXJ06sW4BEB5DqgAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBjCBwAAAAAHEPgAAAAAOAYAgcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwAAAADHJMe6AeWZMSb/d7fbHcOWAAAAAPbxP7b1P+YNhcDhoOzs7PzfMzMzY9gSAAAAwBnZ2dlKT08Pu5whVQAAAAAc4zJF9YEgah6PR7t27ZIkValSRS6Xy7Hncrvd+b0of/zxh9LS0hx7rvKI96/keA9Lhvev5HgPS4b3r+R4D0uG96/kSvM9NMbkj+apXbu2kpLC92MwpMpBSUlJqlu3bqk/b1paGh/SEuD9Kznew5Lh/Ss53sOS4f0rOd7DkuH9K7nSeA8LG0bljyFVAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAwX/gMAAADgGHo4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIGjHJgyZYq6deumGjVqKC0tTaeccorGjh2r3NzcWDctruXm5mrevHm699571bFjR2VkZCglJUX16tXTRRddpJkzZ8a6iWXSfffdJ5fLJZfLpccffzzWzSkzjhw5ogkTJqhr166qWbOmKlWqpIYNG+q8887T+++/H+vmxbXffvtNQ4cOVcuWLVW5cmVVqlRJTZs21cCBA7Vy5cpYNy8urFu3ThMnTtSgQYPUpk0bJScnR/wZnTt3rs4//3zVrl1blStX1gknnKCHHnpIWVlZpdDy+FDc98/j8Wjx4sV65JFH1LVrV9WqVUspKSmqXbu2evXqpXfeeUeJNmdPSf4G/b344ov5+5ibbrrJodbGn5K8fx6PR2+99ZZ69uypOnXqKDU1VfXr11f37t314osvlkLrJRmUaXfeeaeRZJKTk03v3r3NpZdeajIyMowk07VrV5OdnR3rJsatOXPmGElGkqlXr57p27evueKKK8xJJ52Uf/8tt9xiPB5PrJtaZixatMgkJSUZl8tlJJkxY8bEukllwu+//25atWplJJnatWubCy64wFx55ZWmc+fOpkqVKqZ///6xbmLc+vbbb03VqlWNJHPMMceYiy66yPTr1880bdo0/7vxgw8+iHUzY867ryj4U9Rn9LnnnjOSjMvlMmeddZa5/PLLTb169Ywk07JlS/PXX3+V0iuIreK+fxs2bMhfp2bNmqZ3797myiuvNB07dsy//4ILLjA5OTml/EpiJ9q/QX+//PKLSUtLy9/HDB482MEWx5do3799+/aZs846y0gy1apVM3369DFXXXWVOfPMM01GRoY59dRTS6X9BI4ybPr06UaSSU9PN99//33+/X/99Zdp06aNkWSGDx8ewxbGt3nz5pn+/fubBQsWBC3773//aypUqGAkmbfeeisGrSt73G63adGihTnmmGPMJZdcQuCIUHZ2tjnhhBOMJPPoo4+aI0eOBCx3u91mxYoVsWlcGXDyySfnnxzwf++OHj1qHn74YSPJZGRkmEOHDsWwlbH36quvmhEjRph33nnHrF271lx33XVFfkaXL19uXC6XqVChgpk1a1b+/W632/To0cNISpgwXNz3b+PGjaZ79+7mf//7n8nLywtYNn/+fJOWlmYkmccee6w0mh8Xovkb9Hf06FFz5plnmvT0dDNw4MCECxzRvH8ej8d069bNSDK33nqrOXjwYMDynJwcs2zZMqebbowhcJRp3jMljz/+eNCyr7/+2kgyqampZt++fTFoXdk3ePBgI8n06NEj1k0pE4YNG2YkmZkzZ+bvDAgcRRs1alT+ATOKZ9euXfln+f7888+g5Xl5eaZy5cpGklm+fHkMWhi/IvmMXn755UaSuemmm4KWbdmyxSQlJRlJZu3atU42NS6V9DtuzJgxRpJp3ry5zS0rO4r7Hnp721544QUzevTohAscBUXy/k2ePNlIMueee24ptiw0ajjKqG3btmnZsmWSpAEDBgQt79q1qxo1aqScnBzNmjWrtJtXLrRr106S9Pvvv8e4JfFv/vz5mjhxoq6//nqdf/75sW5OmZGbm6uXXnpJknTvvffGuDVlT2pqasTr1q5d28GWlD9HjhzJr2MLtY859thj1aVLF0nS9OnTS7Vt5QH7l+JZt26dHnroIZ199tm67bbbYt2cMmPChAmS4mP/QuAoo1asWCFJqlmzppo2bRpynQ4dOgSsi+LZsGGDJKl+/foxbkl8y8rK0o033qjMzEw9//zzsW5OmbJ8+XLt2rVLDRo00HHHHafVq1frscce06233qqRI0dq5syZ8ng8sW5m3EpPT9eZZ54pSXr44YcDJsrweDx69NFHdejQIZ133nlq1KhRrJpZJq1fv17Z2dmSfPuSgtjHRI/9S+SOHj2qgQMHyuVyafLkyXK5XLFuUpnwxx9/aOXKlapQoYI6d+6sTZs26amnntKQIUM0YsQITZkyRUeOHCm19iSX2jPBVps3b5YkNW7cOOw63h2sd11EbufOnXrzzTclSf37949tY+LciBEjtHnzZk2fPl01atSIdXPKlFWrVkmSGjZsqJEjR2rs2LEBM9c8/fTTateunWbMmFHoZz2Rvfrqqzr//PP1yiuvaObMmerQoYMqVKigFStWaNu2bbruuus0adKkWDezzPHuNzIyMlS1atWQ67CPiU52dnb+mWf2L0V75plntGTJEv3zn/9U8+bNY92cMsO7f6lVq5Zee+01DR8+PGj20mbNmmn69Ok6+eSTHW8PPRxl1MGDByVJaWlpYddJT0+XJB04cKBU2lRe5OXl6dprr9X+/fvVpk0b3XrrrbFuUtyaPXu2Xn75ZV111VW65JJLYt2cMmf37t2SrDPETz/9tG6//XatW7dO+/fv15w5c3T88cdrxYoV6tu3L9Nch9GyZUt988036t27t7Zt26aPPvpI06ZN0+bNm3XcccepW7duqlatWqybWeawj3HO7bffrs2bN6tBgwZ68MEHY92cuLZmzRqNHj1anTt31rBhw2LdnDLFu3/Zs2ePhg0bposvvlirV6/WwYMH9c033+i0007Tpk2b1KdPn/x1nUTgAAoYMmSI5s2bp1q1amnq1KmqWLFirJsUl/bv36/BgwerTp06mjhxYqybUyZ5ezNyc3N19dVXa9KkSTr++ONVrVo19ezZU3PmzFGlSpW0Zs0a/fe//41xa+PTokWL1KZNG61Zs0bvvvuudu7cqT179uiTTz5Rbm6uBg8erMGDB8e6mYAkacyYMXrrrbdUqVIlffDBB6pVq1asmxS38vLyNHDgQCUlJen1119XUhKHrMXh3b/k5eXpjDPO0JQpU3TSSScpPT1dp59+uubMmaPMzEzt2LGjVK7Fwf9eGeXt4na73WHX8V6UibN7kbvzzjs1efJk1ahRI/8MM0K76667tHXrVk2aNImC3Cj5D1UJ1ZPWuHFj9e3bV5J18TUE2rdvn/r166e//vpL06ZN09VXX63MzEzVqFFDF1xwgT777DNVqVJFr7/+ur788stYN7dMYR9jv+eee06PPPKIUlNTNX369Pyie4T2xBNPaPny5XrsscfUsmXLWDenzClq/1K1alVde+21kkpn/0INRxnVpEkTSYXPcOFd5l0XhRs+fLgmTJigjIwMzZ49O38WEYQ2ffp0JScn68UXXww6O/Lzzz9LkiZPnqy5c+eqXr16nKEPoVmzZiF/D7XOjh07SqVNZcnMmTP1119/qXnz5jrttNOCljdr1kynnXaavvzyS82dO1fnnHNODFpZNnn3G/v27dPBgwdD1nGwj4ncxIkTNXz4cFWsWFEffvih+vTpE+smxT3v7GeffPJJ0GybW7ZskWR9B3Tr1k2SNVsifOJt/0LgKKO8B8O7d+/W5s2bQ85U9d1330mS2rdvX6ptK4vuu+8+Pffcc6pevbpmz54ddlYWBMrLy9NXX30VdvmWLVu0ZcsWHXvssaXYqrKjffv2crlcMsZo165dIWdS2rVrlyTfeHn4/Pbbb5IKP8NevXp1SdY4ZkSuZcuWqlKlirKzs/Xdd9+FDGvsYyLzwgsvaNiwYflhw9tricgsXLgw7LKdO3dq586dpdiasuP4449X1apVdfDgwfz9SEGluX9hSFUZ1bBhQ3Xs2FGS9O677wYtX7hwoX7//XelpqZyXYQijBw5Us8884yqV6+uOXPm5L+vKNy+fftkrIuHBv0MHDhQkjVe2RiTfzYKgerVq6euXbtKCt2lnZubmx/oOnXqVKptKwuOOeYYSVaP2v79+4OW5+bmavny5ZIUdvpwhFaxYsX8A+NQ+5hff/1VixcvliT169evVNtWlvzrX//S0KFD88PGBRdcEOsmlRk//PBD2H3M6NGjJUmDBw/Ovw+BkpOT8ydzCTdkas6cOZJKZ/9C4CjDvLNbPPXUU/k7Vcnq9bj99tslSUOHDs0/w4dgDz/8sJ5++mllZGQQNhAT3h3nP/7xD3377bf59+fl5Wn48OHatGmTqlatqhtuuCFWTYxb5513ntLS0nTo0CHdfPPN+TUFknXhurvvvlu//fabUlJSdNlll8WwpWXTyJEj5XK59MYbb+izzz7Lvz87O1uDBw/W0aNH1b9/f51wwgkxbGX8evXVV3X77bcTNhAzDz74oFJSUvTqq6/q008/DVj2zDPPaOHChapQoYL+9re/Od4WlyEWlml33nmnJkyYoJSUFPXo0UNpaWmaN2+e9u3bpy5dumjOnDmqXLlyrJsZlz7++GNdfPHFkqwLWLVu3TrkerVr19azzz5bmk0r8wYNGqS33npLY8aM0cMPPxzr5sS9xx9/XKNGjVJycrI6deqkevXqafny5dqyZYsqV66sKVOmMAwjjP/85z+64YYblJeXpzp16qhjx45KSUnRd999p23btikpKUkvvPCChgwZEuumxtTy5cvzT0RJ0i+//KJdu3apYcOG+T1FkjVu3v9idP/85z91zz33yOVy6eyzz1bdunX19ddfa8eOHWrZsqUWLlyYEJNGFPf9++GHH9S+fXsZY3TCCSeErDHy8l7zqbyL9m8wlEcffVSPPfaYBg8erNdee82xNseTaN+/t956SzfeeKM8Ho86dOigJk2aaM2aNfr5559VoUIFvfTSS7r55pudfwEGZd77779vzjrrLFOtWjVTuXJlc9JJJ5mnnnrK5OTkxLppce2NN94wkor8OfbYY2Pd1DJn4MCBRpIZM2ZMrJtSZnz++efmvPPOMzVr1jQpKSmmUaNGZtCgQWbt2rWxblrc++GHH8ygQYNMs2bNTGpqqqlYsaI59thjzTXXXGOWLFkS6+bFhS+//DKi77vNmzcHPXbOnDmmT58+pmbNmiY1NdW0aNHCPPDAA+bAgQOl/0JipLjvX6TrJ9JhWEn+BgsaPXq0kWQGDx7sfMPjREnev6VLl5r+/fubunXrmpSUFFOvXj1z+eWXl+r3Iz0cAAAAABxDDQcAAAAAxxA4AAAAADiGwAEAAADAMQQOAAAAAI4hcAAAAABwDIEDAAAAgGMIHAAAAAAcQ+AAAAAA4BgCBwDEiSZNmsjlchX68/zzz8e6mbDJihUrVKFCBd1xxx0B98+fPz///7swW7ZsyV9vy5YtUbdj//79qlWrlk477TRxLWAATkiOdQMAAIG6dOmi4447LuSyVq1alXJr4JQ77rhDlStX1qhRo2LajurVq+uBBx7Qvffeq7ffflsDBw6MaXsAlD8EDgCIMzfddJMGDRoU62bAQVOnTtWiRYt07733qm7durFujoYOHaqxY8fqgQce0FVXXaXU1NRYNwlAOcKQKgAAStk///lPSdLgwYNj3BJLpUqVNGDAAO3YsUPvv/9+rJsDoJwhcABAGeSt99iyZYs++ugjde/eXTVr1pTL5dL8+fPz19u7d69Gjx6ttm3bqmrVqqpSpYratGmjxx9/XNnZ2SG3nZeXp+eff15t2rRRpUqVVKdOHfXv31+rV6/Wm2++KZfLFdQD8+ijj8rlcunRRx8NuU1vXUK3bt1CLt++fbvuuecenXjiiapSpYqqVq2qjh07atKkScrLywtaf9CgQXK5XHrzzTe1efNmXXfddapXr55SU1PVvHlzPfzww8rJyQn7/n3//fcaOHCgmjZtqkqVKqlmzZo65ZRTdO+99+rXX3+VJL3xxhtyuVw699xzw25n+/btSklJUeXKlbV79+6w6/lbsWKFFi9erNNPP10tW7aM6DHF4f2/KOqnIO//6QsvvGB7mwAkNoZUAUAZNm7cOE2aNEkdOnRQnz59tH37dlWoUEGS9NNPP6lPnz76/fffVb9+fXXt2lUpKSlaunSpRo0apQ8//FDz589X9erV87fn8Xh0+eWXa8aMGapYsaK6deumGjVqaMmSJerUqZNuvPFG21/DggULdMkll2jv3r1q0qSJevXqpZycHC1dulR33HGHPvnkE3366adKSUkJeuwPP/ygO++8UzVq1NDZZ5+tPXv2aNGiRXriiSf0448/avr06UGPeeaZZzRy5Eh5PB4df/zxuvjii3Xo0CFt3LhRzz77rFq3bq1BgwZpwIABuv/++zVnzhytX79exx9/fNC2Xn75ZeXl5em6665TrVq1Inq9M2bMkCT17NmzeG9UhNq2bRu2DmPdunX69ttvlZQUfL6xbdu2qlOnjpYuXaodO3aofv36jrQPQAIyAIC4cOyxxxpJ5o033oh43QoVKpiPPvooaHl2drZp3ry5kWQefvhhk5OTk7/M7Xabq6++2kgyN9xwQ8DjJk2aZCSZzMxM89NPP+Xfn5uba2677TYjyUgyAwcODHjc6NGjjSQzevTokO398ssvjSRz9tlnB9y/Y8cOU6tWLeNyucyLL75ojh49mr9s165dpnv37kaSeeyxxwIeN3DgwPy2PPTQQyYvLy9/2erVq01aWpqRZBYvXhzwuI8++shIMpUqVTLvv/9+UDt//PHHgNf90EMPGUlm2LBhQeseOXLE1KtXz0gy33//fcjXHUrXrl2NJDNz5syQy73vVVG76M2bN+evt3nz5iKf99dffzX169c3ksykSZNCrnPRRRcZSebf//53kdsDgEgROAAgTnhDRLgf/4N177o33nhjyG299NJLRpK54IILQi4/ePCgqVu3rklOTjZ79uzJv/+4444zksxLL70U9JhDhw7lH2DbFTjuv/9+I8kMHTo05OO2bt1qUlJSTJ06dYzH48m/3xs4Tj311ID7vYYMGWIkmb///e8B97dt29ZIMuPGjQv5fAVt27bNpKSkmOrVq5usrKyAZe+9956RZM4444yItuXlDUObNm0Kudw/cET6U1Tg2Lt3r2nVqpWRZO69996w6z3wwANGkrn77ruL9ZoAoDAMqQKAOBNuWtwTTjgh6L7LLrss5DZmzpwpSbryyitDLk9PT1eHDh00a9YsLVu2TL1799a2bdu0ceNGSdK1114b9JhKlSrpiiuu0IQJEyJ+LUUpqp3HHHOMWrRooZ9++kkbNmwIGtZ0wQUXhKxHOPHEEyVJ27Zty79v586d+uGHH5SUlBRxsXaDBg102WWX6b333tO///1vDRkyJH+Zt9Zh6NChEW1Lktxut9xutyRFNASrsClqs7Ky9OGHHxa5jSNHjuiSSy7RTz/9pKuuukpPP/102HW9bfrjjz+K3C4ARIrAAQBxpjjT4jZp0iTk/Zs2bZIkXXfddbruuusK3cZff/0lSdq6daskqXbt2kpPTw+5btOmTSNqV6S87TzzzDOLXPevv/4KChyNGzcOuW61atUkSYcPH86/77fffpMk1a9fP6BupSjDhg3Te++9pxdeeCE/cKxatUoLFy5UZmZm2NAXyv79+/N/r1q1apHrv/nmm2GXbdmypcjAYYzRoEGD9NVXX+nss8/OL/oPx/u+7d27t8i2AUCkCBwAUIZVrlw55P0ej0eS1KdPH2VmZha6jWOPPdb2doVrT7j7L7vsMqWlpRW6jVA9AqGKn+12+umnq1OnTlq6dGn+gbu3d+OWW25RxYoVI95WRkZG/u8HDx7MP8B3ysiRI/Xee++pVatWmjFjRpHX1/AGoho1ajjaLgCJhcABAOVQo0aN9PPPP2vw4MERn4E/5phjJEm7du1SVlZWyF6OLVu2hHys96D74MGDIZd7p5oN1c4NGzbo/vvvV4cOHSJqZ7S8vSE7duzQ/v37i93Lce2112rSpEk65ZRT9M477yg5OTlgiFUkqlSporS0NLndbu3evdvRwPHiiy9q7NixatCggf73v/8FhJ1wvFP7FhVSAaA4uA4HAJRD5513niTpgw8+iPgxDRs2VLNmzSRJ7777btDynJwcTZkyJeRjvWFl7dq1IZd7azXsaGe06tWrp1NOOUUej0evv/56sR57xRVXqH79+poxY4aeeOIJud1u9evXTw0aNCh2O9q3by/JmrbYKR9//LGGDRumqlWraubMmWGHnhW0Zs0aSdKpp57qWNsAJB4CBwCUQ7fccouOPfZYTZkyRffff3/InoedO3fq1VdfDbjvrrvukmRdPO7nn3/Ov//o0aMaMWKEtm/fHvL5unfvrqSkJH3++ef66quv8u83xmjChAlhaw3uvfdeZWRk6LnnntO4ceN05MiRoHU2b96s//znP0W+5kiMHj1akvTQQw+FbNNPP/0UMjSlpKTotttuU15enp599llJxSsW93fOOedIkr755puoHl+UpUuX6uqrr1ZSUpKmTp2qtm3bRvxYb5u6d+/uSNsAJCYCBwCUQ2lpaZo5c6aaNGmisWPHqnHjxjr77LN1zTXXqF+/fmrdurUaNGigUaNGBTzub3/7my688ELt2LFDp5xyivr06aOrr75aLVq00Guvvabbbrst5PM1atRId9xxhzwej3r06KFzzjlH/fv3V4sWLTRixAiNHDky5OMaNmyojz76SDVq1NCIESPUqFEj9ejRQ9dee60uvPBCHXfccWrWrJkmTZpky/vSr18/PfHEEzp8+LAuu+wynXjiibrqqqt08cUXq3Xr1mrdurWWLFkS8rG33nprfg3EySefrLPOOiuqNlxyySWSpDlz5kT1+KI88MADys7OVsOGDfXuu+9q0KBBIX8KWrFihXbv3q1OnTpx0T8AtqKGAwDKqdatW2vVqlX617/+penTp2vVqlX65ptvVLt2bTVs2FAjRoxQv379Ah6TlJSkadOmacKECZo8ebLmz5+v9PR0de3aVdOnT9eKFSv00ksvhXy+f/7zn2rcuLFee+01LV68WOnp6erSpYs++OADHThwQE899VTIx5111ln68ccfNWnSJM2cOVPLli1TTk6O6tatq8aNG+vaa69V//79bXtfHnzwQXXv3l0TJkzQggULNG3aNFWtWlWNGjXSfffdF/bsft26ddW2bVstWbJEf/vb36J+/nbt2qlz585avHix1q5dmz+Fr12OHj0qyeoZ2rx5c9j1Cs6A5b1dktcGAKG4jDEm1o0AAJQNb775pm644QYNHDiw0Clby6P169frhBNOUPXq1bVt2zZVqVIl6m1NnTpVl19+ue655x6NGzfOxlZG5/Dhw2rUqJFSUlK0efPmImezAoDiYEgVAAAReOSRR2SM0W233VaisCFZ0wB36dJFL7/8clxcZG/ixInatWuX/vGPfxA2ANiOwAEAQBgff/yxBg8erNNPP13vv/++6tWrp/vuu8+WbU+cOFGHDh3SmDFjbNletPbv36+nnnpKnTp10vXXXx/TtgAon6jhAAAgjOXLl+v1119X1apV1bNnTz333HMRXc8iEu3atcuvt4il6tWr519/AwCcQA0HAAAAAMcwpAoAAACAYwgcAAAAABxD4AAAAADgGAIHAAAAAMcQOAAAAAA4hsABAAAAwDEEDgAAAACOIXAAAAAAcAyBAwAAAIBj/g+IT/wTorwWDwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax1 = plt.subplots(1,1,figsize=(9,6))\n", + "ax1.plot(avg_ps.freq, avg_ps.power, lw=2, color='blue')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (raw)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=16)\n", + "ax1.tick_params(axis='y', labelsize=16)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now we'll show examples of all the things you can do with a `Powerspectrum` or `AveragedPowerspectrum` object using built-in stingray methods.\n", + "\n", + "# Normalizating the power spectrum\n", + "The three kinds of normalization are:\n", + "* `leahy`: Leahy normalization. Makes the Poisson noise level $= 2$. See *Leahy et al. 1983, ApJ, 266, 160L*. \n", + "* `frac`: Fractional rms-squared normalization, also known as rms normalization. Makes the Poisson noise level $= 2 / meanrate$. See *Belloni & Hasinger 1990, A&A, 227, L33*, and *Miyamoto et al. 1992, ApJ, 391, L21.*\n", + "* `abs`: Absolute rms-squared normalization, also known as absolute normalization. Makes the Poisson noise level $= 2 \\times meanrate$. See *insert citation*.\n", + "* `none`: No normalization applied. This is the default." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 56159.93it/s]\n", + "200it [00:00, 56752.64it/s]\n", + "200it [00:00, 43677.02it/s]\n" + ] + } + ], + "source": [ + "avg_ps_leahy = AveragedPowerspectrum.from_lightcurve(long_lc, 8, norm='leahy')\n", + "avg_ps_frac = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='frac')\n", + "avg_ps_abs = AveragedPowerspectrum.from_lightcurve(long_lc, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk4AAASmCAYAAADYniQgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT59sH8G+YslFRQEVw0LrFOupGEUFRq9ZdB+CqtY5Wrata7dBWq9Zabat14K5a956gFa1a9xYHuKkiokRk5Xn/8M35ERIgQEIO+P1cVy7NmXcOJ8md+3nOcxRCCAEiIiIiypGZqQMgIiIiKiyYOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBERERHpiYkTERERkZ6YOBFRnnh5eUGhUCAsLMzUoWhp0aIFFAoFIiIiTB0KERUxTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYgKTFJSEmbPno2GDRvC2dkZxYoVw7vvvouxY8ciLi5Oa/nU1FSsWrUKvXv3RpUqVeDo6AgbGxu8++67GDFiBB4+fJjjPs+dO4cPP/wQLi4usLa2RrVq1TB79mwIITSW8/X1hUKhwNq1a7Pc1syZM6FQKNC9e3e9Xm9YWBgUCgVCQkKgVCoxYcIEVK5cGdbW1nBzc0NwcDAePHiQ5fonT55E9+7dUaZMGVhZWaF06dLo0KED9u/fr3P5kJAQqd/ZpUuX0KNHD7i7u8Pc3BxTp04FoNn/659//kG7du1QsmRJODg4wNfXF3///be0vT179qBVq1YoXrw47O3t0bp1a5w5c0av105UZAkiojzw9PQUAMSyZcv0Wv7BgweiZs2aAoAoUaKE8Pf3F507d5a24+XlJaKjozXWuXfvngAgnJycRMOGDUW3bt1EUFCQKFOmjAAgSpUqJaKiorT25evrKwCI8ePHCysrK1G1alXRs2dP4evrK8zNzQUAMXLkSI11Nm7cKACIxo0b64w/PT1deHl5CQDi8OHDer3mZcuWCQCiU6dOolatWsLZ2Vl06NBBdOzYUZQuXVoAEJ6enuL58+da6y5atEiYmZkJAKJOnTqiV69eonHjxgKAACCmTp2qtU5wcLAAIAYNGiSsra2Fl5eX6N69u+jQoYOYNWuWxrEZM2aMsLCwEHXq1BE9evQQPj4+AoCwtrYWkZGRYv78+cLMzEw0btxYdO/eXbzzzjsCgLC3t9d5zIneFkyciChPcpM4qVQq0aRJEwFADBgwQLx48UKal5qaKkaPHi0AiJYtW2qs9+LFC7F161aRnJysMT0lJUVMmDBBABBBQUFa+1MnBwDE77//rjHv4MGDQqFQCHNzc3Hv3j1pelpamvSazpw5o7XN7du3CwCiVq1aOb5eNXXiBEAEBgaKhIQEad6zZ8+kZGX69Oka6124cEFYWFgIhUIhVqxYoTFv165dwsrKSgAQ+/bt05inTpzUSWN6enqWx0ahUIiVK1dqzBs1apQAIN59911hb28vDhw4oHF8unTpIgCIgQMH6n0MiIoaJk5ElCe5SZx2794tAAgfHx+RmpqqNT89PV3UqFFDABAXL17UO4YyZcoIMzMzjURMiP8lBx9++KHO9dq0aSMAaCUlM2fOlJK7zAIDAwUAsXDhQr3jUydOdnZ24uHDh1rz//zzTwFA+Pn5aUwfMGBAtvEPGzZMABCtW7fWmK5OnN555x2Rlpamc131senWrZvWvLi4OCnx+uKLL7Tmnz59WgAQFSpUyPI1ExV17ONEREa3c+dOAECXLl1gYWGhNd/MzAzNmzcHABw7dkxr/vnz5zFnzhwMHz4c/fv3R0hICEJCQpCWlgaVSoWbN2/q3G+HDh10Tq9atSoAaPUvGjhwIGxtbbFmzRrEx8dL02/evIl9+/bB2dkZffr00eMVa6pXrx7c3d31jkM9/lRISIjO7Q0YMAAA8PfffyM9PV1rfqdOnWBubp5tTEFBQVrTSpQogZIlS2Y539vbGwD06ltGVFRpf4IRERnY7du3AQCTJ0/G5MmTs132yZMn0v+VSiX69u2LzZs3Z7vOixcvdE4vX768zumOjo4AgNevX2tML168OPr27YuFCxdiyZIlGDNmDADg119/hRACoaGhsLW1zTYWQ8ShTqQqVKigc71KlSpJ68XFxaF06dIa8728vPIck729PeLi4nTOd3BwAAAkJyfnuH2iooqJExEZnUqlAgA0bdpU+tLPSvXq1aX/T5gwAZs3b0aVKlXwww8/oH79+nBxcYGVlRUAoHHjxjh+/LjWFXJqZma5L6qPGDECCxcuxG+//YZRo0bh9evXWLZsGRQKBT799NNcby+vceSHjY1NjsvkFFNBx0xUWDBxIiKj8/DwAAB07NhRquLoY/369QCAdevWoVatWlrzo6KiDBNgBtWqVYO/vz8OHDiA3bt34+HDh3j+/Dnatm2bY9JnKGXLlsWtW7dw+/Zt1KhRQ2u+uoJXrFgxlChRokBiIqI3+JOCiIyubdu2AIANGzZkWR3S5dmzZwAAT09PrXl79+7F06dPDRNgJiNHjgQAzJ8/HwsWLAAADBs2zCj70qVFixYAkOV9AJcuXQoAaNasmc4+Y0RkPEyciMjoOnbsiPr16+PkyZMIDQ3V6MekFh8fj99//x1paWnSNHXn6V9++UVj2evXr2PIkCFGizcoKAiVK1fGnj17cP78eVSqVElK/grCyJEjYWFhgS1btmDVqlUa8/bt24eFCxcCQK6qd8bWr18/VKlSBfPnzzd1KERGxcSJiPLl22+/RcOGDbN8nDlzBmZmZtiyZQt8fHywfPlyVKhQAU2aNEGvXr3QpUsX1KlTB6VKlcInn3yikThNmTIFCoUCkydPRq1atdCrVy+0atUKNWvWRMWKFdG4cWOjvCYzMzONCtPQoUOhUCiMsi9datasiQULFkChUKBv376oW7cuevfujaZNm6JNmzZITk7G1KlTERAQUGAx5eTu3bu4fv260aqARHLBGi8R5cvt27elPje6qK94K1OmDP755x+EhYVh3bp1uHDhAk6ePIkSJUqgTJkyGDJkCD744AMUK1ZMWvfDDz/E4cOH8fXXX+P8+fO4desWKlasiKlTp2LMmDFGTRwCAwMBALa2tujfv7/R9pOVwYMHo3bt2pg1axaOHj2KCxcuwMnJCUFBQRg5ciRat25d4DEREaAQuelwQET0lpg0aRKmTZuGwYMHS01jRERMnIiIMnn06BGqVauGFy9e4NKlS1JfKyIiNtUREf2/8ePH48GDBzhw4ACeP3+OIUOGMGkiIg2sOBER/T8vLy/cvXsXbm5u6NGjB3744QdYW1ubOiwikhEmTkRERER64nAERERERHpiHycTUalU0ngntra2BTpGDBEREb0hhMCrV68AAC4uLjnep5GJk4k8ffoUrq6upg6DiIiI/l9sbCxKly6d7TJsqiMiIiLSEytOJmJrayv9PzY2FnZ2diaMhoiI6O2kVCqlFqCM381ZYeJkIhn7NNnZ2TFxIiIiMjF9+huzqY6IiIhIT0yciIiIiPTExImIiIhIT+zjVECUSmW2z4mIiEj+mDgVEHt7e1OHQERERPnEpjoiIiIiPbHiVEASExM1nmccN4KIiIgKByZOBYTjNBERERV+bKojIiIi0hMTJ5K9f//9Fz/88AP+++8/U4dCRERvOTbVkaylp6ejQ4cOePz4MW7fvo1FixaZOiQiInqLseJEsqZUKvH48WMAwM2bN00cDRERve2YOJGspaWl6fw/ERGRKTBxIllLT0/X+X8iIiJTYOJEssaKExERyQkTJ5I1VpyIiEhOmDiRrGVMllhxIiIiU2PiRLKWMVlixYmIiEyN4zgVEKVSme1z0o0VJyIikhMmTgXE3t7e1CEUSqw4ERGRnLCpjmSNncOJiEhOWHEqIImJiRrPlUolXF1dTRRN4cHhCIiISE6YOBUQOzs7U4dQKLHiREREcsKmOpI1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlnjAJhERCQnTJxI1jgAJhERyQkTJ5I1VpyIiEhOmDiRrGVMllQqFYQQJoyGiIjedkycSNYyN8+xuY6IiEyJiRPJWubmOSZORERkSkycSNYyJ0rs50RERKbExIlkjRUnIiKSEyZOJGvs40RERHLCxIlkjU11REQkJ0ycSNbYVEdERHJiYeoA3hZKpTLb56QbK05ERCQnTJwKiL29valDKJRYcSIiIjlhUx3JGitOREQkJ6w4FZDExESN50qlEq6uriaKpvBgxYmIiOSEiVMBsbOzM3UIhRIrTkREJCdsqiNZY8WJiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I13quOiIjkhIkTyVrmChMrTkREZEpMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHI6AiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrHE4AiIikhMmTiRrHACTiIjkhIkTyRorTkREJCdMnEjWWHEiIiI5YeJEssaKExERyQkTJ5I1VpyIiEhOmDiRrLHiREREcsLEiWSNFSciIpITJk56+v7771GvXj04ODjA1dUV3bt3R3R0tKnDKvJYcSIiIjlh4qSnw4cPY/jw4Thx4gT27NmDZ8+eoW3btqyAGBlHDiciIjmxMHUAhcWePXs0nv/xxx+oWLEirly5glq1apkoqqKP96ojIiI5KbCKU1paGi5duoSDBw/ir7/+wsGDB3Hp0iWDfRGuWrUKH3/8MerVqwdra2soFAqEhYVlu86pU6cQFBQEZ2dn2NnZoWHDhli/fr1e+0tISAAAlChRIr+hUzbYVEdERHJi1IrTq1evsHLlSmzZsgVHjx7Fq1evtJaxtbVF06ZN0blzZ/Tp0we2trZ52tekSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dw+jR4/Oct309HSMGTMGQUFBKFeuXJ7iJf2wczgREcmJUSpOz58/x5gxY1C2bFkMHToUe/fuxatXr+Dm5obq1aujUaNGqFatGlxdXaFUKrF371588sknKFu2LL744gs8f/481/tcvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE7NMvIQQGDJkCO7evZtjRYvyjxUnIiKSE4MnTr///ju8vb0xZ84cWFlZYcSIEdixYweePn2KBw8e4MKFCzh69CguXryIhw8f4unTp9i2bRuGDRsGS0tLzJ49G97e3li4cGGu9uvv7w9PT0+9lj106BBu3bqFjz76CD4+PtJ0JycnTJw4ESkpKVi+fLnWekIIDB06FAcOHMDBgwdRqlSpXMVIuceKExERyYnBE6ehQ4eiTJky+Ouvv/DgwQP89NNPCAoKQvHixXUuX6JECbRv3x4///wzHj58iA0bNsDd3R1Dhw41dGiSiIgIAEBAQIDWvMDAQABvrqLLSAiBTz/9FDt37sShQ4fg4eGR7T6USmWOD8oZK05ERCQnBu/jtHLlSnz00UdQKBS5D8bCAl26dMGHH36INWvWGDo0SVRUFADA29tba56bmxvs7e2lZdQ+/fRTrF27Ftu3b4eNjQ0eP34M4E3iZ2VlpbUde3t7I0T+9mHFiYiI5MTgiVPv3r3zvQ2FQmGQ7WRFfUWck5OTzvmOjo7SMmq//fYbAKBZs2Ya08PDw9GiRQvDB0kAWHEiIiJ54ThOehJC5Gr5xMTEbOcrlUq4urrmJ6S3AitOREQkJ0Yfx6lhw4ZYvXo1UlNTjb0rvakrTZmrSmovXrzIshqlLzs7uxwflDNWnIiISE6MnjidPHkS/fr1g4eHByZPnowHDx4Ye5c5UvdtytyPCQAeP36MxMREnf2f8oOdw/OGt1whIiI5MXri9Oeff6Jp06b477//MH36dFSoUAHdunXTumqtIPn6+gIA9u3bpzVv7969GssYir29vcaDzXT64S1XiIhIToyeOHXv3h2HDx/GxYsXMWjQIFhbW2Pjxo3w8/NDrVq1sHDhQp0jihtTq1atULFiRaxZswbnzp2TpickJGD69OmwsrJCv379CjQm0o0VJyIikhOFyG2v53x68eIFwsLC8Ouvv+LGjRtQKBRwdHRESEgIhg4dmucmssWLF+Po0aMAgIsXL+LMmTNo0qQJKleuDABo2rQpBg4cKC2f1S1XYmJiMGvWrGxvuZIXmZvmMnYOT0xMZJ8nHYQQMDPTzO0/+OADbN261UQRERFRUaNUKqUhhPT5Pi7wxCmjAwcOYP78+di2bRsUCgUUCgUCAgIwevRotGrVKlfbCgkJ0Tnat1pwcLDWLVJOnjyJKVOm4NixY0hNTUXNmjUxatQo9OjRIy8vJ1dy+4d6G6Wnp8PCQvPCz6CgIOzcudNEERERUVFTaBInpVKJFStWYMGCBbhy5QoAwNzcHOnp6VAoFGjbti1Wr16d76vb5IqJU86Sk5NRrFgxjWmBgYHYs2ePiSIiIqKiJrffx0bv45TZjRs3MGLECJQtWxbDhg3DlStX4Ofnhy1btuD58+dYtGgRvLy8sHv3boM3l5kSr6rLPV0dwdnHiYiITKlAKk5CCGzbtg0LFizAwYMHIYSAjY0NevfujREjRqBGjRoayyuVStSuXRsvX75EbGysscMrENndgoYVJ910jafVokULhIeHmygiIiIqanJbcTL6yOEzZszA77//jrt370IIAQ8PDwwdOhSDBg1CiRIldK5jZ2eHpk2bYuXKlcYOj2RMV8WJwxEQEZEpGT1xmjBhAgCgSZMmGDlyJDp37gxzc/Mc16tRowaaN29u7PAKTOZbsPCWKznT1SzHpjoiIjIloydO/fr1w8iRI1GnTp1crTdmzBiMGTPGSFEVPDbF5R4rTkREJDdGT5wyDwFApC92DiciIrkp8KvqiPSlK0lixYmIiEzJ6BUntRMnTuDAgQN48OABXr9+rXMZhUKBJUuWFFRIBUrXyOGUPVaciIhIboyeOKWkpKBXr17YsmULgDdDE2SlKCdO6ksdSX+sOBERkdwYPXH69ttvsXnzZtjZ2aFv376oWrUqHB0djb1bKgJYcSIiIrkxeuK0du1a2Nra4sSJE6hWrZqxdydbHI4g91hxIiIiuTF64nT//n34+vq+1UkTwOEI8oIVJyIikhujX1VXvHjxLEcIJ8oOK05ERCQ3Rk+c/P39ceLEiWw7hRPpwooTERHJjdETp2+//RbPnj3D1KlTjb0rWVMqlVoPyh5HDiciIrkxeB+nFStWaE0LDQ3Fd999hz179qBdu3YoX748zMx052z9+vUzdEiywOEIco/3qiMiIrlRCAO3oZmZmUGhUGhNV+9G17yMimpFIbvXnZiYyM7jOoSHh8PPz09jmr29PV6+fGmiiIiIqKhRKpVScUOf72ODV5z69euXY3L0NuJwBLnHzuFERCQ3Bk+ceFNf3VhRyj12DiciIrnhTX5JtlhxIiIiuWHiRLKlK0lSqVQc2oKIiEzG6COHZ3Tt2jVcv34dL168yPLLr6heVUe5l1WzXHp6OiwsCvTUJSIiAlBAidM///yDwYMH4/Lly1kuI4SAQqFg4kSSrJrl0tLSmDgREZFJGP3b58aNG2jdujWUSiUaNWqE2NhY3LlzBz179kRUVBTOnTuH9PR0dO7cGY6OjsYOx2QyD3jJATBzll3FiYiIyBSMnjjNmDEDSqUSv/76K4YMGYLQ0FDcuXMHq1evBgBcvnwZ/fr1Q1RUFI4fP27scEyGA2DmXnYVJyIiIlMweufw8PBwVKpUCUOGDNE5v3r16tixYwdu3bqFadOmGTscKkSySpxYcSIiIlMxeuL06NEj1KhRQ3pubm4OAEhJSZGmubu7w9fXF5s2bTJ2OCaTmJio8YiNjTV1SLKXVWWJFSciIjIVozfV2djYaHTkdXBwAADExsbCw8NDmu7o6Ih79+4ZOxyT4QCYuceKExERyY3RK05ly5bF3bt3peeVK1cGAI3+TEIInDlzBsWLFzd2OFSIsOJERERyY/TE6f3338eVK1eQlJQEAGjTpg0A4PPPP8fOnTtx8eJFfPLJJ7h16xbq169v7HCoEGHFiYiI5MboiVNQUBBev36NHTt2AAAqVaqEwYMH49GjR/jggw/g4+ODRYsWwcrKCt99952xw6FCJGNlydLSUud0IiKigmT0Pk4ffvghUlNTNaYtWLAA3t7e2LBhA549e4aqVati4sSJqF69urHDoUIkY2XJ2tpaOo9YcSIiIlMxyfDLZmZmGDVqFEaNGmWK3VMhkbGyZG1tjcTERK3pREREBYk3+SXZylxx0jWdiIioIBVYxUkIgd27d+PYsWN48uQJ3n//ffTv3x8A8OTJE8THx6NSpUrSOE9ETJyIiEhuCiRxOn/+PHr06IGoqCjpZr6pqalS4rR//3707dsXW7ZsQYcOHQoipALHe9XlXuamOl3TiYiICpLRm+ru378Pf39/3LhxA23btsXMmTMhhNBYplOnTrC0tMTWrVuNHY7J2NvbazxcXV1NHZLsseJERERyY/TEafr06YiLi8PcuXOxY8cOjBkzRmsZW1tb1K5dG6dOnTJ2OFSIZKwsWVlZ6ZxORERUkIyeOO3ZswdVqlTBiBEjsl3Oy8sLjx49MnY4JsN71eUeK05ERCQ3Ru/j9PDhQ3Ts2DHH5RQKBV68eGHscEyG96rLPfZxIiIiuTF6xcnOzg5PnjzJcbk7d+6gRIkSxg6HChFWnIiISG6MnjjVrFkTp0+fxtOnT7NcJiYmBufPn0fdunWNHQ4VIqw4ERGR3Bg9cerTpw9evnyJgQMH4tWrV1rzU1JSMHToUKSmpqJPnz7GDocKEVaciIhIbozexyk0NBSrV6/Gtm3bUKVKFbRp0wbAm7GdRowYgW3btuHu3bvw9/dHjx49jB0OFSKsOBERkdwYveJkbm6O7du3o1evXnjw4AEWL14MADh79izmz5+Pu3fvokuXLti0aZOxQ6FChhUnIiKSmwIZOdze3h6rV6/G5MmTsWvXLty+fRsqlQoeHh5o27YtfHx8CiIMKmSySpxYcSIiIlMpsHvVAUCVKlVQpUoVnfN2796NJ0+eoF+/fgUZEslYVk11rDgREZGpGL2pTl/ffPMNQkNDTR0GyQgrTkREJDeySZyIMmPFiYiI5KZAm+reZkqlMtvnpC1jgsR71RERkRwwcSog9vb2pg6h0GHFiYiI5IZNdSRbHI6AiIjkhhWnApKYmKjxXKlUwtXV1UTRFA4cAJOIiOSGiVMBsbOzM3UIhQ4rTkREJDcGT5y++eabPK13//59A0dChR0rTkREJDcGT5ymTp0KhUKR6/WEEHlaj4qurK6qY8WJiIhMxeCJU/PmzZkAkUGoEyRzc3NYWPzvVGXFiYiITMXgiVNERIShN0lvKXWCZG5uDnNzc2k6K05ERGQqHI6AZEudIFlYWLDiREREssDEiWSLFSciIpIbgydODx8+lNV2qPBixYmIiOTG4ImTt7c3xo8fj/j4+Dyt/+zZM4wdOxbe3t4GjowKG1aciIhIbgyeOAUEBGDmzJkoV64c+vTpg/379yM5OTnbdZKTk7F371706tUL5cqVw6xZsxAYGGjo0KiQYcWJiIjkxuBX1W3evBkHDhzA559/jjVr1mDt2rWwtLSEj48PqlatipIlS8LR0REvXrxAXFwcrly5gvPnzyM1NRVCCNSoUQNz5syBv7+/oUOjQoYVJyIikhuj3HLF398fFy9exP79+zF//nzs27cPJ0+exMmTJwEACoUCQghpeWtra3To0AHDhg1jwkQSjuNERERyY9R71bVu3RqtW7dGcnIyIiMjcfbsWcTGxiIhIQHOzs4oXbo03nvvPTRu3FjjlhpEgGZTHStOREQkBwVyk19ra2v4+fnBz8+vIHZHRUTGprqMFScmTkREZCocx4lkK6uKE5vqiIjIVJg4kWyx4kRERHJTIE11BCiVymyfkzZWnIiISG6YOBUQe3t7U4dQ6LDiREREcsOmOpIlIQQrTkREJDusOBWQxMREjedKpRKurq4mikb+VCqV9H8OgElERHLBxKmA2NnZmTqEQiVjcsQBMImISC6M3lR35MgRREZGGns3VMRkTI44ACYREcmF0ROnFi1aYPLkycbeDRUxrDgREZEcGT1xKl68OMqUKWPs3VARkzFxYsWJiIjkwuiJk4+PD6Kiooy9GypiMlaVMncOZ8WJiIhMxeiJ04gRI3Dq1Cns3LnT2LuiIiRzxcnMzAwKhUJrHhERUUEy+lV1derUwbBhw9C5c2eEhISgS5cu8PLygo2Njc7ly5cvb+yQqBDIXHEC3iRQqamprDgREZHJGD1xqlChAoA3AxouWbIES5YsyXJZhULBL0UCoF1xAt4kUKmpqaw4ERGRyRg9cfLw8JCaWIj0lVXFKfM8IiKigmT0xCk6OtrYu6AiKPNwBBn/ZcWJiIhMhfeqI1nKPABmxn+ZOBERkakwcSJZyq7ixKY6IiIylQJLnP7++290794d5cqVg7W1NQYMGCDN279/PyZOnIjHjx8XVDgkc6w4ERGRHBVI4vTdd9+hRYsW+Ouvv/Dw4UOkpqZCCCHNd3JywowZM7Bp06aCCIcKAVaciIhIjoyeOO3evRtfffUVypYti/Xr1yM2NlZrmQYNGqBUqVLYsWOHscOhQkLXcASsOBERkakZ/aq6n3/+GdbW1ti9ezeqV6+e5XK1a9fmrVlIoms4AlaciIjI1IxecTp16hQaNGiQbdIEAKVKlWIfJ5Kw4kRERHJk9MRJqVTCzc0tx+USEhKgUqmMHQ4VEqw4ERGRHBk9cXJ1dcXNmzdzXO769evw8PAwdjhUSOjqHM6KExERmZrRE6emTZvi3LlziIyMzHKZHTt24ObNm2jZsqWxw6FCQtdwBKw4ERGRqRk9cRo9ejQUCgU+/PBDbNmyRetLb8+ePRg4cCAsLS0xfPhwY4dDhQRvuUJERHJk9MTpvffew+zZs/H06VN06dIFzs7OUCgU2LhxI5ydndGuXTv8999/mD17NqpVq2bscKiQyG4ATCEE+8MREZFJFMgAmCNHjsSuXbtQv359JCUlQQiBly9f4sWLF6hZsya2bduGYcOGFUQoVEhkV3HKPJ+IiKigGH0cJ7XAwEAEBgYiLi4Od+7cgUqlgoeHB9zd3QsqBCpEshuOAHhTkbK0tCzwuIiI6O1W4Df5LVmyJOrVq4cGDRoUqqRp06ZNaN26NUqUKAGFQoHo6GhTh1SkZTccAcCKExERmYbRE6ewsDDcv3/f2LsxOqVSiebNm+Obb74xdShvBX0qTkRERAXN6E11/fv3h0KhgLe3N/z9/eHv7w8/Pz84Ojoae9cG1bdvXwDApUuXTBzJ24EVJyIikiOjV5xCQkLg4eGBGzdu4Ndff0WXLl1QsmRJNGzYEJMmTUJERARSU1PzvZ9Vq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXr893LJR/2Q2AmXk+ERFRQTF6xWnp0qUAgKioKBw4cAD79+9HREQETp48iZMnT+L777+HjY0NmjZtitatW2P06NF52s+kSZMQExMDFxcXuLu7IyYmJtvlw8PDERgYiGLFiqFnz55wcHDAxo0b0aNHD9y7dy/PcZBhZDcAZub5REREBaXAOod7e3vjk08+waZNmxAXF4cTJ05g2rRpaNGiBdLS0rBv3z6MGzcuz9tfvHgxoqOj8eTJEwwZMiTbZdPS0jBo0CCYmZnhyJEjWLRoEWbPno3z58/jnXfewcSJE3NMvMi4WHEiIiI5KvCr6gAgNTUVL1++lMZyUlcPhBB53qa/vz88PT31WvbQoUO4desWPvroI/j4+EjTnZycMHHiRKSkpGD58uV5joXyjxUnIiKSowIbx+ncuXPYv38/Dhw4gKNHj+L169cQQsDR0RHt2rWTOo4XhIiICABAQECA1rzAwEAAwOHDh/O1D6VSma/5bztWnIiISI6Mnjj17NkThw4dQlxcHIQQsLS0RMOGDaVEqUGDBhqVhIIQFRUF4E3zYWZubm6wt7eXllF79uwZ7t69i1u3bgEArly5gufPn6N8+fIoUaKE1nbs7e2NEPnbgxUnIiKSI6MnTuvXr4dCoUCtWrUwZcoUBAQEwNbW1ti7zVZCQgKAN01zujg6OkrLqG3btg2hoaHS83bt2gEAli1bhpCQEOME+hZjxYmIiOTI6ImTg4MDXr58ifPnz6N3795o1qwZWrduDX9/f9SuXdvYuzeYkJCQXCVIiYmJ2c5XKpVwdXXNZ1RFl64BMFlxIiIiUzN64vTs2TOcPHkSBw4cwIEDBxAeHo59+/ZBoVDAxcUFrVq1QuvWrdG6dWuUK1fO2OEA+F+lKXNVSe3FixcoXrx4vvZhZ2eXr/XfdroGwGTFiYiITM3oV9WZm5ujUaNGmDx5Mg4fPoz4+Hjs2LEDI0eOhJubG9atW4eBAwfC09MTVatWNXY4AP7XtylzPyYAePz4MRITE3X2f8oPpVKp9aCs6WqqY8WJiIhMrcCHI7C1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3CiQGHx9fQEA+/bt05q3d+9ejWUMxd7eXuPBZrrs6eoczooTERGZWoENRwAA9+/fl4YkOHjwIJ48eQIA0tV2jRo1KpA4WrVqhYoVK2LNmjUYMWKENJZTQkICpk+fDisrK/Tr169AYiHdWHEiIiI5MnritGXLFql/k7ppTAgBhUKBGjVqSMMS+Pr65utqu8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgTwpnKxePFiBAYGonnz5hq3XImJicGsWbPg5eWV9xetQ+bO4uwcnj1WnIiISI6Mnjh9+OGH0v89PDykRKlVq1YoXbq0wfZz9OhRrdG+IyMjERkZKT1XJ04A0LJlSxw9ehRTpkzBunXrkJqaipo1a2LGjBno0aOHweJSY2fx3GHFiYiI5MjoiVOnTp2k4QcM3eE6o7CwMISFheVqnQYNGmD37t3GCYjyJacBMFlxIiIiUzB64rRp0yZj76JQyHwVHa+qy15OA2Cy4kRERKZQoJ3D32a8BUvu6BrHiRUnIiIytQIbjuDq1asYMmQI3n33XemS/HfffReffPIJrl69WlBhUCGha+Rwdg4nIiJTK5CKU1hYGIYMGYLU1FQIIaTpUVFRiIqKwrJly7Bw4UIEBwcXRDgmwavqcoedw4mISI6MXnE6ffo0Bg0ahJSUFLRr1w6bN2/GhQsXcOHCBWzZsgUdOnRASkoKBg0ahH///dfY4ZiMnZ2d1oOyxuEIiIhIjoxecfrxxx+hUqmwZMkShIaGasyrUaMGPvjgA4SFhaF///6YPXs21q5da+yQqBBgxYmIiOTI6BWnv//+Gz4+PlpJU0YhISF47733cOTIEWOHQ4UEK05ERCRHRk+cnj59qtfNe6tUqYKnT58aOxyT4U1+c4cVJyIikiOjN9U5Ozvj7t27OS539+5dODk5GTsck+FwBLnDihMREcmR0StO9evXx7Fjx3Do0KEslzl06BAiIyPx/vvvGzscKiRYcSIiIjkyeuI0fPhwqFQqdOjQAWPHjsXly5fx6tUrvHr1CpcuXcKYMWPQoUMHadmiKjExUeMRGxtr6pBkTdcAmKw4ERGRqRm9qS4wMBBffvklpk2bhtmzZ2P27NlaywghMHnyZAQEBBg7HJPh8AO5o2sATFaciIjI1Apk5PBvv/0Wu3btQsuWLWFtbQ0hBIQQsLKygp+fH3bt2oWvv/66IEKhQiKne9Wx4kRERKZQYPeqa9OmDdq0aYP09HTExcUBAEqWLKlRRSBS09U5nBUnIiIyNaMlTjdv3sSmTZsQHR0Na2tr+Pj4oHv37rCxsUHp0qWNtVsqIlhxIiIiOTJK4jR37lyMHTtW68tt8uTJ2LVrF2rUqGGM3cpa5nGbOI5T9tQVJTMzMygUCgCsOBERkekZPHE6evQoRo8eDSEE7Ozs8O677+LFixe4ffs27t+/jy5duuDq1aswMyuQ7lWywXGcckeddGdMllhxIiIiUzN49jJ//nwIIRAcHIzHjx/j33//xY0bN3DmzBlUqlQJN2/exJ49ewy9Wypi1BWljMlSxiSKiRMREZmCwROn48ePo1y5cli4cKHGJfi1atXCzz//DCEE/vnnH0PvVvY4jlPu5FRxYlMdERGZgsGb6mJjYxEUFAQrKyuteU2bNgUA/Pfff4berexxHKfcUSdGGRMnVpyIiMjUDF5xSklJgbOzs855jo6O0jJE2VEnRlk11bHiREREpvB29dCmQkNXxYmdw4mIyNSMMhzBzZs3sWLFijzN79evnzFCokKGFSciIpIjoyROkZGRiIyM1DlPoVBkOV+hUDBxIgAcjoCIiOTJ4IlT+fLlpQEL6X84AGbu5DQcAStORERkCgZPnKKjow29ySKBA2DmDitOREQkR+wcTrLEihMREcmR0W7yS5oSExM1niuVSri6upooGvljxYmIiOSIiVMB4QCYuZPTAJisOBERkSmwqY5kSddwBKw4ERGRqTFxIllixYmIiOSIiRPJjkqlkv7PihMREckJEyeSnYxJEStOREQkJ0ycSHYyJkWsOBERkZwwcSLZ0afixMSJiIhMgcMRFBDeckV/+lSc2FRHRESmwMSpgPCWK/rLquJkZmamcxkiIqKCwqY6kp2M1aSMiZNCoZCes+JERESmwIpTAeEtV/SXsZqUsXkOeJNIpaens+JEREQmwcSpgPCWK/rLquIEvEmkUlJSWHEiIiKTYFMdyU5OFafMyxARERUUJk4kOzlVnDIvQ0REVFCYOJHssOJERERyxcSJZCer4QgyPmfFiYiITIGJE8lOVgNgZnzOihMREZkCEyeSHVaciIhIrpg4kezo0zmcFSciIjIFJk4kO/p0DmfFiYiITIGJE8kOK05ERCRXHDm8gCiVymyf0/+w4kRERHLFxKmA2NvbmzqEQoMVJyIikis21ZHscABMIiKSK1acCkhiYqLGc6VSCVdXVxNFI2+85QoREckVE6cCYmdnZ+oQCg19Kk4AoFKpYGbGoikRERUcfuuQ7GQ3AGbGRIpVJyIiKmhMnEh2smuqy/ic/ZyIiKigMXEi2cmuqY4VJyIiMiUmTiQ7rDhRWloaBg8ejK5duyIhIcHU4RARSdg5nGSHFSfatGkT/vjjDwBA7dq1MXnyZBNHRET0BitOJDusOFF4eLj0/927d5swEiIiTUycSHZYcaLDhw9L/z9x4gSePXtmwmiIiP6HidNbTKVSITExEUIIU4eiITcVJyEEVCpVgcVGxvfff//h6tWr0nOVSoUDBw6YMCIiov9h4vQWGzBgABwcHPDdd9+ZOhQN+lacUlJS0KVLF9jY2GDdunUFFh8Z199//601bc+ePSaIhIhIGxOnt9SpU6cQFhYGAPjuu+8QGxtr2oAyyG4AzIzPFy5ciM2bNyMlJQXffPNNgcVHxnXkyBGtaXv27JFdZZSI3k5MnN5Sc+bMkf6fkpKC33//3YTRaNK3qW7u3LnS/69cuYLo6Ghjh0YFQN2/SaFQoHHjxgCAR48e4eLFi6YMi4qge/fuYeDAgVi+fLmpQzGI1NRUDBs2DIGBgViyZAmSkpJMHVKRxMTpLXT37l1s2LBBY9qvv/6K5OTkPG3v33//xa1btwwRGoC8dw7ftWuXwWIwhsJ4FWBqamqBVnri4+Nx4cIFAICPjw969uwpzWNzHRlSSkoKPvjgAyxZsgQhISE4deqUxvyEhAR8++23OHjwoIkizL2lS5diwYIF2LdvHwYOHIhy5cph7Nix+O+//0wdWpHCxOktNG/ePOlL3NbWFsCbDrl//vlnrre1bds21K9fHzVq1MDt27cNEp++FafMz+WaOF25cgUNGjSAo6MjPvvsMzx9+tTUIWVJCIGzZ89i6tSp8PHxgZWVFbp161ZgydPRo0elfTVv3hxt2rSR5hWGxGnPnj3o2LEjIiIiTB1KkZeWloZXr15pTU9PT8ecOXPQp08f3Lt3L8v1p02bhnPnzknPp06dKv1fCIFevXrhq6++QuvWrbFkyRJDhq7Ty5cvMW/ePOzatStPP7JSU1Pxww8/aEx79uwZfvzxRzRu3BhKpdJQoZIgk0hMTBQABACRmJhosO2qVCrx2WefiaVLl+qcn5CQIBwdHQUAYW1tLTZv3izFUadOHaFSqXK1v06dOknrz549O89xv3r1SsTFxQkhhPj666+lbe7cuVNjuU8//VSaB0BMnTpVuLu7CwDCxsZGvHr1Ks8xGJpKpRILFy4UNjY2GjE7OjqKadOmCaVSma/tX79+Xezdu1ekpaVpzbt27ZrYv3+/3n/PtLQ0sXr1alGlShWNWNWP9evXZ7t+UlKSiI+Pz8vL0DBmzBhpn5s2bRIqlUpUrFhRABCWlpbixYsX+d6HsSQkJAgHBwfpb/zgwQO9112zZo1o0aKFmDt3rkhNTc122eTkZPH8+fNcv1flSKVSiV27donvvvtOxMTE6L3eq1evROPGjYVCoRB9+vQR//33nxBCiGfPnom2bdtK51C7du10rn/69Glhbm6udZ7/888/QgghNm7cqDXvt99+y/8LzkabNm2kfVWsWFHMmjVLPHv2TO/1w8LCpPWbNGki+vbtK6ysrKRp48aNM2L0hVtuv4+ZOJmIsRKnH3/8UdrulClTtD5c58yZI80fNGiQUKlUon79+tK0w4cP672v169fCzs7O2ndoKAgrWVUKpXOL/a0tDQRFhYmQkNDRa1ataQPsVatWokuXbpI29yzZ4/GeiNGjJDmeXp6ilevXokBAwZI03bv3q13/Mb0/Plzjdeh61GlShXpA19NpVKJU6dOid27d4u///5bnDlzRsTGxmptPyoqSjr2QUFB4vnz59L6c+bMEWZmZgKAGDBgQLZfsOnp6eLPP/8UVatWzTbWSpUqieTkZJ3bCA8PF6VKlRIWFhbim2++Eenp6Xk+bg0aNJD2+eTJEyGEZrK8devWPG87O48ePRJt27YVrVu3Fv/++2+etvHTTz9pHLOuXbvqtd6VK1c0vsTfe+89cerUKa3lHj9+LEaNGiUl4tbW1sLT01M0a9ZMHDp0KE8xm9K5c+dEy5YtpdddrFgxMXnyZL0+DzP+uAIgSpYsKWbPni0qVaqkde7euHFDY93Xr1+L6tWrS/Pr1q0r/b9NmzYiMTFReHh46Hwf/PLLL0Y5FocOHdK5P2dnZ3Hu3Lkc109LSxPvvPOOtF5kZKQQQoirV69KyZOFhYW4fPlyvmPdtm2bCAgIECtWrMj3tnIrISFBREZGit9//13n52JeMXEqJIyVOI0cOVLjjRcaGipSUlKEEG+qAp6entI89Zto9erV0jQ/Pz8xe/ZsERISIjp27Cj9AtNl7969Gvuyt7eX9iWEEGfPnhUODg6iWrVq0pegWsYELrvHgQMHNNabPn26NG/Dhg1CCM1fh8OHDzfIccyPpKQk0axZM43XMXToUHHz5k0xePBgjS/Jxo0bi6SkJCHEm1/RGSt46odCoRCrV6/W2Ef37t01lnn33XfFxYsXRWhoqNb6X375pc44lUqlzv01btxY/Prrr+L+/fvCz89Pmj5v3jytbaxevVrjVy0AERAQoJUQ6uPFixfSsalevbo0ffv27dK2P/nkk1xvNycpKSmiadOm0j4sLCzE9OnTdSb8WUlLSxMVKlTQOpbbt2/Pcd2goCCt9czMzES3bt3E+PHjxbx588SYMWOEra1tlu+TEiVK5KrCldGTJ09E3759xZgxY8TLly815h04cEA0bNhQ9OzZ02CfU7GxsWLQoEFCoVDofC1lypQRW7ZsyXL9mJgYrSquruOn/v+IESM01p8wYYI0z8fHRyQmJgovLy9pWsa/R0BAgBg3bpzGtletWmWQ46CmUqlEo0aNpO3Xrl1bY39t27bNcRt//vmntHyLFi005k2ePFljXk6Vyvv374uBAweK4sWLi379+omEhARp3ooVKzSOrTGSJ5VKJZYuXSqGDx8uBg4cKHr37i3atWun8TcCILZt22awfTJxkqnExESNR2xsrFESJ5VKJWbPnq1xgvn6+ooPPvhA44M345sxOTlZlClTRucHUPny5TWSoYyGDx+utfyxY8ek+d26dZOmT5w4UZqekpIiypYtK80zNzcXtWrV0npjABDh4eEa+4yLixOfffaZWLBggfQBkJCQICwsLATwpsSd2yaMuLg48csvv4jdu3fnu/kjPT1d43UXL15cbN68WWOZS5cuSc2LAET37t1FfHy8aN68eZZfBI6OjlJTxsmTJ7P90tD1yPxL+b///hMNGzbUWKZJkybiwIEDGsfg33//lea7uLhoVLa+//77LPdXtmxZsWHDBikp1OXVq1diyJAhon379mLp0qXir7/+0pkgvXz5UkrOrKysxPjx46UP89TUVBERESF++ukncfv27Wz/NgkJCSIkJET06NFD45d35h8b6kfTpk3FnTt3st2mWsYmb1dXV433T2JiolCpVOL8+fNi2bJlGj8idu/erXHMatasmePfslixYqJFixaiRo0awsnJSeM9nfFvt3LlStGzZ09x/PjxbGPPeL56e3uL06dPi/T0dDF9+nSNL8mPPvooX++P1NRU8fPPP2vErH7PDho0SFhaWkrTLCwsxNWrV3VuJ+OPhtDQUK0fEXXq1BFnzpyRkisHBwfpfDl69Kj0miwtLcWFCxeEEEIsXrxY6zhbWVmJGzduCJVKpZF8uLi4SN0K1B4+fChOnDiR4/GJj48Xc+bM0ficzPjDoHr16iItLU1cu3ZNlC9fXgBvfjhlPg9TUlJEbGysUKlUIj09XdSoUUPaRuYfm69evdJI6rNK/OLj48WECRO0ktLKlSuLs2fPirCwMK1k18LCQmt/ag8ePBA1a9YUJUqUEN27dxcrV64UT58+zfb4CCHEokWL9PpMmzZtWo7b0hcTJ5nK7gQwZOKktn79emFtbZ3lPiMiIjSWz+5LcPny5VrbV6lUOn9hf/fdd0KIN192Gd+Azs7OUv+UjBWuoKAgqV9ScnKy+OWXX0SpUqWkD4x79+7p9XozlvyvXbum1zqvXr0SM2bMEM7OztK6LVq0EGfOnNFrfV0+//xzaVt2dnY6m1yEeNPHImMzZ8mSJTXWGz9+vBg9erRG5ap169ZCpVKJFi1aSNPGjh2r8aGp/mJdu3atmDdvnjRNoVCIiRMnitWrV4sdO3aIypUrS/McHBzE1q1bs/zQ/+ijj6RlR40aJcLCwrSSrsGDB4t9+/ZpJA3Am4QvODhYHDx4UGu7gwcPzvKcW7t2rcay/fr105hfqlQp0a1bN1G8eHGNL7TMzTIZhYSESMtaW1uLWbNmiZUrV2p8UQ4ePFgjWXBychJ//fVXjn93X19faZ2dO3cKf39/jb9bxqYhd3d3ceTIEZGamqrRRLpmzRqRkpIiZs6cqXFuZIx55MiR4uHDh9J+nz59Ktzc3KRlFi5cKNLS0jSSQRsbG633u5quJiJLS0uNCkjGR8aq471798S4cePEr7/+mmN17tixY1pJoYODg5g5c6Z4/fq1EEKIGzduiICAAGn+yJEjtbYTERGhcQ6o+9Vt375dtGjRQnz22WdS38GM59fcuXPF8+fPNSruGb94U1JSpL506sekSZM09p0xQRs6dKg0/dSpU8Le3l4AEH/88UeWxyApKUm89957GttPSUkRtWrVkqZt2rRJWv67776TpmesGj969Ej6kWlra6vRRNewYUOd7+OdO3dKy7i6uopbt25J81QqlVi2bJlwcXHJ8v1obW2tkTRl7Avp6OgoJaAZ9ezZU2s7ZmZmomnTpuL7778XFy5c0Ir12bNnWcbh4OAgGjVqJAYPHix++eUXcenSpSyPdW4xcZKprE5Iff9QefH333+LEiVKSPspXbq0CA4OFnv37tVaNjU1VUybNk18/vnnYunSpRodDatVq6bVb+XKlSvSfG9vb+n/fn5+Qggh1q5dq/U6Z8+eLVQqlahXr540TdcH+osXL0RYWFiWH/a6zJo1S9rmnDlzhBBvqiqnTp3Sil2lUonVq1eLcuXK6fx7qDuc/v7772LXrl3i4sWLIioqSly+fFmcO3dOnDp1SkRGRorw8HCxZ88esWbNGjF37lyNvlbm5uZaHdsz2759u8aXtPrL/+TJk9Iy8fHxGtW5jEmMut/RixcvROfOnQXwpmqRMVnL2Cyh61GmTJkc+1Dcvn1bqzku42P69OnSB+CjR480ktiMj88++0z6W2RMnnU9Mjc7JSYminHjxmUbB/CmevH48WOdxzq79YA3SYcQb943maufn376aZbVszNnzkjLvfvuuyI9PV1ERUVl+8PF3NxctGvXTnreqFEjjS8RpVIpLl26JPbv3y9WrFgh/vjjD3H//n2d+8/4pWhnZ6fROTrj9KNHj2qsl5qaqpF063o/KBQKjS9ACwsLcfjwYfHzzz9LyQLw5gdHVk2Fp06dEsWKFdPYbmhoqM6/U1xcnLSss7OzxsUeqampGklGdkmKEEJcvHhR473Sq1cv6XmzZs20kr2lS5dK8728vLQu3rh3756U0CoUCnH69Glx584djR8LVapUyfIHSMbPh4zni/r/9erV01j34cOHUiXdzc1Nqvz37t07y/Nqx44dWR6PjM3y5ubmom/fvmLXrl1alW4rKyvx+eefi1OnTmn0/1I/RowYIVJTU0WHDh2kaWXLlhV3796V9pUxwc3uUa1atSyrv507dxYXLlwQUVFR4uHDh0a9GIKJk0wVVFNdZnfv3hW///67OHnyZK477Wbs95G5z0HGTuizZ8+WfslZW1uLpKQknX1nypUrJw4ePCg9z8tVfFnJmMhVq1ZNBAYGSv1lGjRoIHX4jYuL02iaAN78CurVq5dGFSa/j5w+1NV++eUXaZ3y5cvrbJ7I2JyT8bFu3TppGZVKJa5du6b15a5SqcSQIUOy/NDS90qmUaNGaa1fs2ZNjV/Iaunp6WL37t0iODhYuoJT/ejdu7e4ePGixpfu1KlTxZAhQ6TKX+Y+Ghndvn1b45e/k5OT6NGjh6hWrZrGF1DGvjpxcXEaVZnAwECtJofQ0FCNc/H58+daTUBVqlQR33//vdbfKDg4WFrm119/laZnrBgAb5pCM76nMj5OnDih198hK7qqd+bm5hoVDgcHB439ZDz36tWrJ5KSksQXX3whTStevLh0scXYsWOl6Vn1TXJxcdH6sfDw4UONxL9u3bo5Nh1mrC6GhYVJ0+fPny9Nf++99/Tqg9aqVSutOJ2cnHSe96mpqaJHjx6iUqVKWkmm2owZM6Tt1K9fX+dFFbr6hWZsCixWrJjOK/r27duntV7GC0z++usvjQqhvb298Pb2lpKrzE21mcXExGTZJUP96Natm0az4OvXr8WwYcOk+Z999pm0j8TERI0Li6pUqSKePHmileAuWLBAREREiNGjR2skiupHqVKlxPnz58Xly5el42JjY6ORiBkbE6dCwlidww1px44dUozvv/++xpsyY9PE9evXRf/+/aXnW7ZskX5tu7q6avyyLl26tPT/lStXGixWlUqls49Uxg/7kJAQjQ9xAKJ9+/bi4sWLQog3TYVz5szRaLrL7cPMzExqrtTXunXrxPjx47Pt3Jv512q9evVylQhfuHBBrFu3TsyZM0eMGjVKfPnll7m61PnZs2eibt26wt7eXgQHB4tjx47plfQmJSWJefPmaVTWMlaNgoODNZY9ceKE1HSTnaioKPHPP/9Iv8Lv3bunUTHx9/cXR44cEcnJyRq/0IOCgoRKpRIRERFSU/P777+vcxgL9XASmaslwJsKRv369UX9+vWlvjnOzs4a7+X09HSxaNEi8dNPP4no6GghxJtO5BMnTtTYVt++fXN8vTl5+fKlRlOTvb292LNnj0hKShKtW7eWpltbW4tevXqJrVu3apznGZOZo0ePimnTpmkkF6mpqToriX379tWqVPXu3VvcvHlTJCUlaTTpNmnSRK+/7bFjx6R1GjZsKIQQ4s6dOxrNl1klNplt27ZNK+Y///wzl0f3f5KTk3UO2ZGx/+iQIUM01vn33381qo+rVq0SERERGpWqrDpt79u3T2OZjImaukKampoqHj9+rNf78dmzZ+Lrr7/WaIkA3lRqM1/BnPk1REREaO0jNjZW4wdn3bp1Nbp96Epwb968KX7++WeN5usSJUpoJGHffPNNjq/FkJg4FRKFIXFSqVQavxzUlzzHx8dLvwwqV64shBBi1apV0nIZ29yHDRsmjh49qvVB4+7unuXl7XmVuZOvp6enRjNixkfx4sWlq/IyS0hIEHv27BGLFi0SkyZNEsHBwaJPnz4iNDRUDB48WHz66adi1KhRYvz48WLy5Mlizpw5YuXKlWLv3r3SF6ShPX/+XOMLqrBdfr5lyxatBKRatWoGPfcvXbqklfRm/EJzdnbWaO569eqVOH78eJYXP6hduHBBvP/++zkmzWPHjtU71m3btgl3d3dRpUoVjT5L+fHPP/+I4sWLi8qVK2s0vyqVyiybTzMnr9mJjY2VfpxUq1ZN/P3330KIN/2sPvjgA41tWlhYaFwd5uHhobNpTpfMnztnz57VuLpz8ODBeh+T9PR0jSEK9H2t2dm/f7/Ga1VXTNSJnZOTk1T5jY+P1+hX9emnn0rbefjwoejcubPw8fERV65cyTL+zH2vgDdV9PwM+/Hy5Uvx448/iqZNm4qpU6fma/y7O3fuZFnJUg+LoEt8fLzO95WXl1eBj8fHxKmQKAyJkxBvBuZTx+nn5ydevXol1q1bJ01Td+B88OCBzjfOkSNHhBBCNG7cWGO6Ia+IUEtISBBDhw4VI0eOFJGRkUKlUonk5GTxww8/aHyBtmrVKsv+InJ2+vRp0apVK/H999+bOpQ8OXLkiHRFla2trUHGlMns8OHD0iCUmR/5vXT61q1bYs6cOaJZs2bSDweFQiHMzMxE3bp1cz0EQ3p6usH7baSnp+tswkpMTBRjx47VuAgBeNN8l5vE7cWLFyIyMlLrR49KpRILFizQ2j7wptkltxdcLFiwQKMaov5/+fLlNS6P18emTZuEmZmZaNCggcEGUFX3+7KxsZGa5jI22aqrWn369JGmNWzYME8/Fn/44QeN42lmZiZOnz5tkNdhKJcvX9aqYulTSU1ISBBNmjTRWE+fizEMjYlTIVFYEqfU1FSNDy4rKyvpqjcAYv/+/dKymUvYZcuWlX4Vbd26VeODVJ/LUg3p7t27YsKECWLp0qX5+qVG+XPt2jUxZswYvZta8iI2NlaEhYWJvn37SsM+hISEFImRtvPr9evX4s8//xT+/v6ifPnyWVZd8yohIUFMnTpVI3nNadT5rLaj68pCXf2A9PH69escR2TP7faWLVumkfyHh4dLcbZp00Zs2LBBep5xOJHcio2N1RiqIWPVSk5OnDgh9V20t7fXOyF/+fKl1BetY8eOJnmfMnEqJApL4iSEEEuWLNH5C97e3l7jF9TQoUM15n/22WfSvPT0dOkS7dz2ASLKK5VKVWRuT1KYPHnyRMyfP1/jh1VuDRw4UOPzJDdNdKaQnp4uNcuZmZlpDJWR32qnuvN/uXLlDHJrI2M5deqUGDBggNb4ezlRX9ySU7O5seT2+1ghRAHe+pwkSqUS9vb2AIDExETY2dmZOKKsCSGwefNm7Nq1CxEREbh16xYA4PPPP8ecOXOk5TZu3IiuXbtKz48dO4ZGjRpJz1NSUvD06VO4u7tDoVAU3AsgokLn9OnTqFevHgCgfPnyuHjxIhwdHU0cVfamTJmCb775RmNaly5dsGHDhnx95qWkpGDfvn2oX78+XF1d8xsmZZLb72MmTiZSmBKnzO7du4enT5+iZs2asLCwkKbHxcWhVKlSEEKgfPnyiI6OZoJERHn2/fff48CBA5g1axbq1Klj6nBydOvWLVSuXFl67urqikuXLsHFxcWEUVFOmDgVEoU5ccrO1KlTsWzZMsyaNQvdunUzdThERAWqRYsWOHz4MABg+/btaN++vYkjopwwcSokimriRET0Nrt58yYmTJiAgIAADBo0yNThkB6YOBUSTJyIiIhML7ffx2YFERQRERFRUcDEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9MTEiYiIiEhPTJyIiIiI9GSR8yJkDBkHbFcqlSaMhIiI6O2V8TtYn5upMHEykVevXkn/d3V1NWEkREREBLz5blbffiUrbKojIiIi0hNv8msiKpUKT58+BQDY2tpCoVDkaTtKpVKqWMXGxvJmwf+Px0U3HhfdeFx043HRjcdFt8J6XIQQUiuQi4sLzMyyrymxqc5EzMzMULp0aYNu087OrtCcqAWJx0U3HhfdeFx043HRjcdFt8J2XHJqnsuITXVEREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREeuIAmERERER6YsWJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMRJpk6dOoWgoCA4OzvDzs4ODRs2xPr163O1jeTkZHzzzTfw9vZGsWLFUKZMGQwePBj//fefkaI2ngcPHmDu3LkICAhA+fLlYWVlBTc3N3Tp0gUnTpzQezsRERFQKBRZPsLCwoz3IozEy8sry9fTokWLXG1r9erVaNCgAezs7FC8eHG0b98eZ86cMU7gRhQWFpbt31mhUKBVq1Y5bqewni+rVq3Cxx9/jHr16sHa2jrHWF+8eIFRo0bB09MT1tbW8PLywhdffIHExMRc73vv3r3w9fWFg4MDHB0d0bJlSxw8eDAfr8Zw9D0uqamp2LhxI4KDg1G1alXY29vDwcEB77//Pn777Tekp6fnar+GfI8aQ27Ol6lTp2b7noiOjs7Vvm/cuIHu3bvDxcUFNjY2qF27Nn777TfI+bo1C1MHQNrCw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHj85xGyqVCh07dsTevXvRsGFDdOnSBVFRUVi8eDEOHjyIf/75B6VKlSqAV2MYv/zyC2bMmIFKlSohICAApUqVQlRUFLZs2YItW7ZgzZo16NGjh97b8/X11fmB5ePjY7igC5CTkxM+++wzreleXl56b2PatGmYNGkSPD09MWTIELx8+RJ//vknGjdujIMHD6JJkyaGC9jIfHx8MGXKFJ3z/vrrL1y+fBmBgYF6b6+wnS+TJk1CTEwMXFxc4O7ujpiYmCyXVSqV8PX1xblz5xAQEIBevXrh7NmzmDVrFg4fPowjR46gWLFieu131apV6Nu3L0qVKoWQkBAAwLp169C6dWusX78eXbt2NcTLyzN9j8utW7fQtWtX2Nvbo1WrVvjggw+QkJCA7du3Y+jQodi1axe2bdsGhUKh974N8R41ltycL2rBwcE6Y3d2dtZ7v1euXEHjxo2RlJSE7t27o0yZMti5cyeGDh2KK1eu4JdffsnFqyhAgmQlNTVVVKpUSVhbW4uzZ89K058/fy7eeecdYWVlJaKjo3PcztKlSwUA0atXL6FSqaTpv/32mwAgBg8ebIzwjWbjxo0iIiJCa/qRI0eEpaWlKF68uHj9+nWO2wkPDxcAxJQpU4wQpWl4enoKT0/PfG3jxo0bwsLCQrzzzjvi+fPn0vSzZ88Ka2trUbVqVZGenp7PSE0vOTlZlCxZUlhYWIjHjx/nuHxhPV/2798vfU58//33AoBYtmyZzmW/+uorAUCMGzdOY/q4ceMEADF9+nS99vns2TPh7OwsXFxcxL1796Tp9+7dEy4uLsLFxUW8ePEiby/IQPQ9Lvfv3xcLFiwQiYmJGtMTExNFvXr1BACxfv16vfdriPeoMeXmfJkyZYoAIMLDw/O93+bNmwsAYteuXdK05ORk0axZMwFAHDt2LN/7MAY21cnMoUOHcOvWLXz00Ucav2adnJwwceJEpKSkYPny5Tlu548//gAAfP/99xq/ij7++GNUrFgRq1evRlJSksHjN5YPP/wQvr6+WtObNWuGli1bIj4+HhcvXjRBZEXDsmXLkJaWhi+//BJOTk7SdB8fH/Tq1QtXr17F0aNHTRihYWzZsgVxcXFo3749XF1dTR2O0fj7+8PT0zPH5YQQWLx4Mezt7TF58mSNeZMnT4a9vT0WL16s1z43bNiA58+fY/jw4ShXrpw0vVy5chg2bBiePn2KzZs35+6FGJi+x6Vs2bIYOnQo7OzsNKbb2dlh1KhRAIDDhw8bJUZT0Pe4GNKNGzdw5MgRtGzZEm3btpWmW1lZ4dtvvwXwv+8xuWFTncxEREQAAAICArTmqZsWcnrDvn79GidOnMC7776r9WZQKBRo3bo1Fi5ciH///RfNmjUzTOAmZGlpCQCwsND/dI6KisLcuXORlJSEcuXKwc/PD2XLljVWiEaXnJyMsLAwPHz4EI6Ojqhfvz7ef/99vdfP6bwLCwvD4cOH0bx5c0OFbBLqJGDgwIG5Wq+onS9qUVFRePjwIQIDA3UmCU2aNMHevXtx7949eHh4ZLutnM6hqVOn4vDhw+jXr5/B4jeFvHzeAPl/j8rNkSNHcOLECZiZmcHb2xv+/v6wt7fXe/3szpemTZvCzs5OtskpEyeZiYqKAgB4e3trzXNzc4O9vb20TFZu3boFlUqlcxsZtx0VFVXoE6e7d+/iwIEDcHd3R82aNfVeb82aNVizZo303MLCAsOHD8ePP/4Ic3NzY4RqVI8fP0ZoaKjGtPr162Pt2rWoVKlSjutHRUXB3t4ebm5uWvMyni+FWUxMDA4ePIhy5cqhTZs2uVq3qJ0vatl93qin7927F1FRUTkmTtltq6icQwCwdOlSALq/8LOT3/eo3GTuQ+js7Iyff/5Z78Q4u/PF3NwcFSpUwJUrV5CWlpbrJNXY2FQnMwkJCQCg0VySkaOjo7RMfraRcbnCKjU1FX379kVycjJmzJih1xdYqVKl8MMPP+DSpUtITExEbGwstmzZgsqVK+Onn37C2LFjCyBywwoNDcXBgwcRGxsLpVKJs2fPom/fvjh16hRatWqFly9f5riNhISEIn++LFu2DCqVCiEhIXonO0XxfMnIkJ8V2W2rqJxDixYtwu7du+Hn54egoCC91zPEe1QuateujaVLl+L27dtISkrCnTt38Msvv0ChUCAkJATbtm3Tazv6nHsqlUqWx0ZeaRyRntRfgEeOHMGgQYPQt29fvdarXr06qlevLj23s7NDx44d8f7776NWrVqYN28exo0bh9KlSxsrdIPL/MvPx8cHK1asAACsXLkSf/zxh9Qv422lUqmwbNkyKBQK9O/fX+/1iuL5QnmzY8cODBs2DJ6enli1alWu1i1K79HOnTtrPPfy8sKwYcNQtWpVtG7dGpMmTcIHH3xgougKBitOMqPOvrP6ZfbixYssM/TcbCPjcoWNSqVC//79sWbNGvTp0we///57vrfp5uaGjh07Ii0tLVfjQsnZxx9/DACIjIzMcVknJ6cie74AwIEDB3D37l34+fmhQoUK+d5eUTlfDPlZkd22Cvs5tGvXLnTt2hWurq44dOgQ3N3dDbLd3LxH5a5Vq1aoVKkSLl68KP29s6PPuadQKODg4GDQOA2BiZPMZNcX4PHjx0hMTMyyP4JaxYoVYWZmlmV/gpz6NciZSqVCaGgoli9fjl69eiEsLAxmZoY5jV1cXAC8GdemKMjN6/H29kZiYiIeP36sNa8wny9qee0Unp2icL7k1PcoN3/77LZVmM+hnTt34sMPP4SLiwvCw8NRsWJFg227KJxDGalfz6tXr3JcNrvzJT09HXfu3EGFChVk178JYOIkO+pL7vft26c1b+/evRrLZMXGxgYNGjTA9evXtQYyE0Jg//79sLOzQ7169QwUdcFQJ00rVqxAjx49sHLlSoN2zFVXDuQwIJ0h5Ob1GOK8k6u4uDhs3boVJUqU0GpmyI+icL54e3ujTJkyiIyM1PryViqViIyMRIUKFXLsGA4UzXNo586d6NKlC0qUKIHw8HBUrlzZoNsvCueQmlKpxOXLl2FnZyclUNnJ7nw5evSoNDCrLJl6ICnSlJqaKipWrJjtAJh37tyRpj98+FBcvXpVY9BCIYreAJjp6ekiODhYABDdunUTqamp2S7/5MkTcfXqVfHkyRON6f/++6/O5efOnSsACG9vb5GWlmawuI3t6tWrQqlU6pzu5uYmAIjDhw9L058/fy6uXr0qHj58qLH89evXi+wAmD/99JMAIEaMGJHlMkX5fDH0AJhKpVJcvXpVxMTEaEx/9uyZcHJykvUAmBnldFx27dolrK2thZubm7h27VqO20tJSRFXr14VN2/e1Jie2/eoqWV3XF68eCGuX7+uNf3Vq1eiV69eAoAIDQ3Vmn/16lVx9epVrek5DYAZGRmZvxdjJAohZHxDmLdUVrdciYmJwaxZszRuuRISEoLly5dj2bJl0i0OgDfVmaCgIOmWK76+vrh58yY2bdoELy8vnDhxolDdcmXq1Kn4+uuvYW9vj5EjR+os33bq1EkaNFS9/JQpUzB16lRpGS8vL1haWqJevXooV64clEol/vnnH5w9exbOzs7Yu3cvGjRoUECvKv+mTp2KOXPmoHnz5vD09ISdnR1u3LiBXbt2ITU1FRMmTMD06dOl5cPCwhAaGorg4GCte1FlvOVKly5dpFuupKSkFLpbrmRUs2ZNXLp0CRcuXMhyyIqidr4sXrxYGrD04sWLOHPmDJo0aSJVTJo2bSo1WyqVSjRp0gTnz59HQEAA3nvvPZw5cwb79u1D/fr1cfjwYdjY2EjbjoiIQMuWLeHr6yuNxaOW8ZYr6lsgrVu3Dk+fPsW6devQrVu3Anj1WdP3uFy7dg0+Pj5ITk5Gz5498e6772pty8vLS+MzNzo6GhUqVICnp6fG/dpy+x41BX2PS3R0NCpWrIj69eujatWqcHNzQ2xsLA4cOID79++jZs2aCA8PR8mSJTW2rx6EOXO6cfnyZTRp0gRJSUno0aMH3N3dsXPnTly+fBnDhg3jLVcod06cOCHatGkjHB0dhY2NjWjQoIH4888/tZZTV2F0/Tp4/fq1mDp1qqhUqZKwsrISbm5uYuDAgXrdakJu1K8zu0fGY6C+LUDmW2X88MMPomXLlqJMmTLC2tpa2NjYiCpVqojPPvtM41dyYRERESG6d+8uvL29haOjo7CwsBBubm6iY8eOYu/evVrLL1u2TAAQwcHBOre3atUqUa9ePWFjYyOcnJxEUFCQOH36tJFfhfGcOHFCABANGjTIdrmidr7k9H7J/Pd//vy5+Oyzz4SHh4ewtLQU5cuXF6NHj9ZZIVLfhsbX11fnvnfv3i2aNWsm7OzshL29vfD19RX79+83wqvMPX2Pi/o1ZvfI/Prv3LkjAGjdWiW371FT0Pe4JCQkiE8//VTUr19flCpVSlhYWAgHBwfRoEEDMXPmTPHq1Sud21dvR5dr166Jrl27ihIlSghra2tRs2ZNsWDBAo2WErlhxYmIiIhIT+wcTkRERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EREREemLiRERERKQnJk5EbzEvLy8oFIpsH3PnzjV1mGQgZ8+ehbm5OYYPH64xPSIiQvp7Zyc6OlpaLuP92HIrISEBJUuWxPvvv691/zIiudO+UyoRvXUy3tAzs2rVqhVwNGQsw4cPh42NDSZPnmzSOJycnDBhwgR88cUXWLFiBYKDg00aD1FuMHEiIgwcOFDjTu9U9Pz111+IjIzEF198gdKlS5s6HAwbNgwzZ87EhAkT0LNnT1hbW5s6JCK9sKmOiOgt8NNPPwEABgwYYOJI3ihWrBg++ugjPHr0COvWrTN1OER6Y+JERHpR94eKjo7G1q1b4efnhxIlSkChUCAiIkJaLj4+HlOmTIGPjw8cHBxga2uLmjVr4rvvvsOrV690bjstLQ1z585FzZo1UaxYMZQqVQpdunTBxYsXERYWBoVCoVURmzp1KhQKBaZOnapzm+p+Oy1atNA5/+HDhxg1ahSqVq0KW1tbODg4oH79+pg/fz7S0tK0lg8JCYFCoUBYWBju3LmDvn37ws3NDdbW1qhUqRImTZqE5OTkLI/f6dOnERwcjAoVKqBYsWIoUaIEateujS+++AIxMTEAgGXLlkGhUCAwMDDL7Tx8+BCWlpawsbFBXFxclstldPbsWRw7dgwNGzbEu+++q9c6uaH+W+T0yEz9N12wYIHBYyIyFjbVEVGuzJ49G/Pnz0e9evXQpk0bPHz4EObm5gCAK1euoE2bNrh37x7c3d3RtGlTWFpa4uTJk5g8eTI2btyIiIgIODk5SdtTqVTo1q0btmzZAisrK7Ro0QLFixfHiRMn0KBBA/Tv39/gr+HIkSPo1KkT4uPj4eXlhdatWyM5ORknT57E8OHDsX37duzYsQOWlpZa6547dw4jR45E8eLF4evri2fPniEyMhLTpk3D5cuXsXnzZq11fvzxR4wfPx4qlQrvvPMOOnbsiKSkJNy8eROzZs1C9erVERISgo8++gjjxo3D/v37cePGDbzzzjta21q4cCHS0tLQt29flCxZUq/Xu2XLFgCAv79/7g6Unnx8fLLsp3T9+nX8888/MDPT/p3u4+ODUqVK4eTJk3j06BHc3d2NEh+RQQkiemt5enoKAGLZsmV6L2tubi62bt2qNf/Vq1eiUqVKAoCYNGmSSE5OluYplUrRq1cvAUCEhoZqrDd//nwBQLi6uoorV65I01NTU8Unn3wiAAgAIjg4WGO9KVOmCABiypQpOuMNDw8XAISvr6/G9EePHomSJUsKhUIhfv31V5Geni7Ne/r0qfDz8xMAxNdff62xXnBwsBTLl19+KdLS0qR5Fy9eFHZ2dgKAOHbsmMZ6W7duFQBEsWLFxLp167TivHz5ssbr/vLLLwUAMWLECK1lU1JShJubmwAgTp8+rfN169K0aVMBQOzcuVPnfPWxyukr4c6dO9Jyd+7cyXG/MTExwt3dXQAQ8+fP17nMBx98IACIlStX5rg9Ijlg4kT0FlMnQ1k9MiYd6mX79++vc1u//fabACDat2+vc/7Lly9F6dKlhYWFhXj27Jk0vXLlygKA+O2337TWSUpKkhIFQyVO48aNEwDEsGHDdK53//59YWlpKUqVKiVUKpU0XZ041a1bV2O62pAhQwQA8c0332hM9/HxEQDE7Nmzde4vswcPHghLS0vh5OQkEhMTNeatXbtWABCNGjXSa1tq6qTu9u3bOudnTJz0feSUOMXHx4tq1aoJAOKLL77IcrkJEyYIAOLzzz/P1WsiMhU21RFRlsMRVKlSRWta165ddW5j586dAIAePXronG9vb4969eph165dOHXqFAICAvDgwQPcvHkTANCnTx+tdYoVK4bu3btj3rx5er+WnOQUZ9myZeHt7Y0rV64gKipKq7msffv2OvvrVK1aFQDw4MEDadrjx49x7tw5mJmZ6d0pu0yZMujatSvWrl2LlStXYsiQIdI8dV+gYcOG6bUtAFAqlVAqlQCgV9NedkMDJCYmYuPGjTluIyUlBZ06dcKVK1fQs2dPzJgxI8tl1THFxsbmuF0iOWDiRES5Go7Ay8tL5/Tbt28DAPr27Yu+fftmu40nT54AAO7fvw8AcHFxgb29vc5lK1SooFdc+lLH2axZsxyXffLkiVbiVL58eZ3LOjo6AgBev34tTbt79y4AwN3dXaNfV05GjBiBtWvXYsGCBVLidOHCBRw9ehSurq5ZJq+6JCQkSP93cHDIcfmwsLAs50VHR+eYOAkhEBISgsOHD8PX11fq3J8V9XGLj4/PMTYiOWDiRES5YmNjo3O6SqUCALRp0waurq7ZbsPT09PgcWUVT1bTu3btCjs7u2y3oatCo6uTs6E1bNgQDRo0wMmTJ6UERF1tGjx4MKysrPTelrOzs/T/ly9fSomKsYwfPx5r165FtWrVsGXLlhzHZ1IndsWLFzdqXESGwsSJiAzCw8MD165dw4ABA/SuiJQtWxYA8PTpUyQmJuqsOmV1aw918vDy5Uud89WX+OuKMyoqCuPGjUO9evX0ijOv1NWpR48eISEhIddVpz59+mD+/PmoXbs2Vq9eDQsLC42mO33Y2trCzs4OSqUScXFxRk2cfv31V8ycORNlypTB7t27NZK2rKiHVMgp2SaSC47jREQG0bZtWwDA+vXr9V6nXLlyqFixIgBgzZo1WvOTk5OxYcMGneuqk66rV6/qnK/uy2SIOPPKzc0NtWvXhkqlwtKlS3O1bvfu3eHu7o4tW7Zg2rRpUCqV6Ny5M8qUKZPrON577z0Ab4aLMJZt27ZhxIgRcHBwwM6dO7Ns0szs0qVLAIC6desaLTYiQ2LiREQGMXjwYHh6emLDhg0YN26czkrQ48eP8ccff2hM++yzzwC8GUTx2rVr0vT09HSMGTMGDx8+1Lk/Pz8/mJmZYe/evTh8+LA0XQiBefPmZdkX54svvoCzszPmzJmD2bNnIyUlRWuZO3fuYNWqVTm+Zn1MmTIFAPDll1/qjOnKlSs6kz9LS0t88sknSEtLw6xZswDkrlN4Ri1btgQAHD9+PE/r5+TkyZPo1asXzMzM8Ndff8HHx0fvddUx+fn5GSU2IkNj4kREBmFnZ4edO3fCy8sLM2fORPny5eHr64vevXujc+fOqF69OsqUKaN1g9lPP/0UHTp0wKNHj1C7dm20adMGvXr1gre3NxYvXoxPPvlE5/48PDwwfPhwqFQqtGrVCi1btkSXLl3g7e2NMWPGYPz48TrXK1euHLZu3YrixYtjzJgx8PDwQKtWrdCnTx906NABlStXRsWKFTF//nyDHJfOnTtj2rRpeP36Nbp27YqqVauiZ8+e6NixI6pXr47q1avjxIkTOtf9+OOPpT5CtWrVQvPmzfMUQ6dOnQAA+/fvz9P6OZkwYQJevXqFcuXKYc2aNQgJCdH5yOzs2bOIi4tDgwYNOPglFRrs40REBlO9enVcuHABv//+OzZv3owLFy7g+PHjcHFxQbly5TBmzBh07txZYx0zMzNs2rQJ8+bNw5IlSxAREQF7e3s0bdoUmzdvxtmzZ/Hbb7/p3N9PP/2E8uXLY/HixTh27Bjs7e3RpEkTrF+/Hi9evMAPP/ygc73mzZvj8uXLmD9/Pnbu3IlTp04hOTkZpUuXRvny5dGnTx906dLFYMdl4sSJ8PPzw7x583DkyBFs2rQJDg4O8PDwwNixY7OstpQuXRo+Pj44ceIEPv300zzvv06dOmjcuDGOHTuGq1evSkMnGEp6ejqAN5W6O3fuZLlc5iv21M/z89qICppCCCFMHQQRUVbCwsIQGhqK4ODgbC+VL4pu3LiBKlWqwMnJCQ8ePICtrW2et/XXX3+hW7duGDVqFGbPnm3AKPPm9evX8PDwgKWlJe7cuZPj1XdEcsGmOiIimfrqq68ghMAnn3ySr6QJeDP8QpMmTbBw4UJZDDb5yy+/4OnTp/j++++ZNFGhwsSJiEhGtm3bhgEDBqBhw4ZYt24d3NzcMHbsWINs+5dffkFSUhK+/fZbg2wvrxISEvDDDz+gQYMG6Nevn0ljIcot9nEiIpKRM2fOYOnSpXBwcIC/vz/mzJmj13hI+qhTp47UH8mUnJycpPGbiAob9nEiIiIi0hOb6oiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnIiIiIj0xMSJiIiISE9MnKhQ8/LygkKhyPYxd+5cU4eZJ+rXFh0dbepQci0iIgIKhQItWrQwdShUBLRo0QIKhQIRERGmDoUIFqYOgMgQmjRpgsqVK+ucV61atQKOJmchISFYvnw5li1bhpCQEFOHQ0REemLiREXCwIEDi1wCcvDgQaSmpqJs2bKmDoWIiP4fEycimapUqZKpQyAiokzYx4neGhn7DG3duhV+fn4oUaKERt+JJ0+eYN68eQgKCkKFChVgY2MDR0dH1KtXDzNmzMDr16+z3P6rV68wd+5cNG3aFMWLF4e1tTU8PT3RoUMHrFmzBgAQHR0NhUKB5cuXAwBCQ0M1+mNNnTpVZ7y69vXDDz/gvffeg4ODA2xtbVG9enVMmjQJ8fHxWsur9+vl5QUhBBYtWoS6devCzs4OTk5OCAgIwPHjx3W+rpMnT2Ls2LFo0KAB3NzcYGVlBVdXV3To0AEHDhzQ8+jrR30cAGDZsmVo1KgRnJycpOOQ8XWoVCrMmzcPtWrVgq2tLdzd3TFkyBA8e/YMAJCcnIxvv/0WVapUgY2NDcqUKYORI0dCqVRq7VelUmHRokVo0qQJnJ2dYWlpidKlS6N27doYPnx4rvuZJSQkYNKkSahZsybs7OxgbW2NMmXKoEmTJvjqq6+Qmpqqtc7x48fRtm1bODs7w97eHvXq1cPSpUu1jotaxmORlazOoStXrmDKlClo0qQJypYtCysrK5QsWRL+/v5Yv369zm1l7Lf26tUrfPXVV6hatSpsbW21Yjh9+jR69+6N8uXLw9raGiVKlEBgYCB27dqVZaz37t1D//794e7ujmLFisHb2xtffvklkpKSslwnOyEhIVAoFAgLC8OdO3fQt29fuLm5wdraGpUqVcKkSZOQnJyc5fp//vknWrVqhRIlSkjv5f79++PGjRs6l9fn8yXj33HVqlVo0KAB7O3tUapUKfTq1Qt3794FAAghMH/+fPj4+MDOzg4uLi4ICQnBf//9l6djQQYmiAoxT09PAUAsW7ZM72WHDRsmAIh69eqJXr16CV9fX3HkyBEhhBArV64UAETZsmWFr6+v6Nmzp2jVqpWwt7cXAESjRo3E69evtbZ99+5dUa1aNQFA2NraitatW4uePXuKZs2aCScnJ+Hp6SmEEOLJkyciODhYVKpUSQAQTZo0EcHBwdJj8+bNWvHeuXNHY19xcXHCx8dHABCOjo7igw8+EF26dBEuLi4CgKhQoYLWOnfu3BEAhKenpwgODhaWlpbCz89PdO/eXbzzzjsCgLC2thb//POP1mtr1aqVMDMzEzVr1hRBQUGiW7du4r333hMABAAxd+5crXXCw8MFAOHr65vj3yUj9TaHDRsmzMzMRNOmTUWvXr3E+++/L6KjozVeR69evYSNjY1o06aN6NSpkyhdurQAIOrUqSMSExNF06ZNpePTvn174eTkJACItm3bau03NDRUABDFihUT/v7+olevXiIwMFB4e3sLABp/l5wolUpRo0YNAUCUKlVKdOjQQfTs2VO0aNFCuLm5CQAiPj5eY53169cLc3NzAUDUqFFD9OrVSzRt2lQoFAoxatQo6bhklPFYZCWrc2jAgAECgKhSpYoIDAwUPXr0EI0aNRJmZmYCgPj888+1tqX+m77//vuifv36ws7OTrRt21b06NFD+Pv7S8vNnTtX2o6Pj4/o2rWraNq0qbCyshIAxNdff6217atXr0p/P3d3d9GtWzcRFBQkbGxsRKNGjUSjRo0EABEeHp7j8VcLDg4WAMTIkSOFo6Oj8PT0FN27dxf+/v7CxsZGABCdOnXSWk+lUol+/foJAMLCwkL4+fmJnj17Su8TW1tbsXv37iyPdXafL+q/4/jx46Vtd+3aVZQvX14AEB4eHuLZs2eie/fuolixYqJNmzaic+fO0rGpVauWSE5O1vsYkHEwcaJCLS+Jk7m5udi6davOZa5cuSKOHz+uNf3Zs2ciICBAABAzZ87UmJeeni7q1asnAIiAgADx33//acxPSkoSO3fu1Jim/lDPLu6svvR69OghfYE9ffpUmv7y5UvRtm1bAUA0btxYYx31l6z6i/b69evSvLS0NNG/f38p/sx27dolHj58qDX92LFjwtHRUVhaWor79+9rzMtv4uTo6Kjz75DxdVSqVElER0dL854+fSolOjVr1hQNGjTQOD63b98WxYsXFwDE0aNHpekxMTECgChXrpx49OiR1j6vXLkiYmJi9H4Ny5cvlxK0lJQUjXnp6ekiIiJC48vv0aNHwsHBQQAQc+bM0Vj+wIEDolixYgZPnCIiIsStW7e0lr927ZooV66cACBOnDihMU/9N1V/ges6Vnv27BEKhUK4uLiIw4cPa8y7cOGCtO2IiAiNefXr1xcARPfu3UVSUpI0PSYmRvqRkdfECYD48ssvRVpamjTv4sWLws7OTgAQx44d01jvt99+EwCEi4uLOHv2rDRdpVKJKVOmCADC2dlZ632uz+eLOp6SJUuKc+fOSdNfvXolmjZtKp27mc/tJ0+eiMqVKwsAYtWqVXofAzIOJk5UqKk/rLJ6ZPziVi/bv3//PO3r+vXrAoCoX7++xvQtW7ZIv5Rfvnyp17bymjjFxMQIMzMzoVAoxPnz57XWuX//vvRFGxkZKU3PmHBs27ZNa71Hjx5JVafMX/bZmTBhggAgFixYoDE9v4nTN998o3N+xteRORkVQog5c+YIAEKhUIiLFy9qzR8+fLhW1ePkyZMCgPjggw9yFWtWZs6cqTMJysp3330nAIiGDRvqnD9y5EiDJ07ZWbhwoQAgvvjiC43pGRMndQUls/fff18AEH/99ZfO+evXrxcARJcuXaRpR48eFQCEnZ2dRqKrtnnz5nwlTnXr1hUqlUpr/pAhQ3Sea+pEbd68eVrrqFQqUatWLQFATJs2TWOePp8v6teR+f0ihBCbNm3K9tyePXu2ACBCQ0Oz3D4VDHYOpyIhq+EIqlSpojWta9eu2W4rPT0dEREROHbsGB49eoSkpCSINz8yAADXr1/XWH7Pnj0AgI8++gj29vZ5fQl6OXLkCFQqFd577z3UqlVLa37ZsmURGBiIrVu3Ijw8HI0bN9aYb2FhgTZt2mit5+bmhuLFiyM+Ph5xcXFwc3PTmB8XF4edO3fi0qVLiI+Pl/roREVFAdA+JvmV09/IwsICAQEBWtO9vb0BAOXLl0eNGjWynP/w4UNpWpUqVeDg4IBdu3Zh2rRp+Oijj1ChQoU8x16/fn0AwMyZM1GyZEm0b98eJUqUyHJ5df+X3r1765wfHByMn3/+Oc/xZCUxMRG7d+/G2bNn8fTpU6SkpAAAHj16BCDrv2np0qXRrFkzrelPnz7FyZMnYWNjgw4dOuhcVz2u17Fjx6Rp6tffpk0blCxZUmudjh07wsnJCQkJCXq/tozat2+v1T8MAKpWrQoAePDggTTt/v37uHXrFoA3xz0zhUKB0NBQfP755wgPD8fEiRO1lsnp3AWAoKAgrWnqczOnczvjuUumwcSJioTcDEeQXWfaqKgodO7cGZcvX85ymRcvXmg8j4mJAaA7STM09Yd8dl/s6qvxMn4hqLm7u8PS0lLneo6OjoiPj9fqAP/HH3/g888/19mpWi3zMcmv7P5GwJvXYWGh/fGlTlzLly+vcz0HBwcA0HiNDg4OWLZsGUJDQzFp0iRMmjQJ7u7uaNiwIdq0aaOVEP/www+4du2a1rZnzZoFFxcXtGjRAuPGjcOPP/6I4OBgKBQKeHt7o0mTJujYsSM6dOgAM7P/XZdz//59AFn/TfOTxGVl+/btCA0NRVxcXJbLZPU3zepvc+fOHQghkJSUBGtr62z3/+TJE+n/Ob1+dQf48+fPZ7vNrGR1Ljg6OgLQPBfU75mSJUtK8zPL7v0F5HzuZhWT+hzL6tzWde6SaTBxoreOjY1NlvO6du2Ky5cvo3379hg7diyqVasGR0dHWFpaIiUlJccvBLnL+IWtj9OnT+Pjjz+Gubk5ZsyYgQ4dOqB8+fKwtbWFQqHAokWL8PHHH0vVOEPJ7m8E5Pw6cvs6u3TpAn9/f2zbtg1///03IiMjsXnzZmzevBlfffUV9u/fj5o1awJ4U2E8fPiw1jamTp0KFxcXAG+SqyFDhmD79u04evQoIiMjsWzZMixbtgz169dHeHg47OzschVjXqhUKq1pDx48QI8ePZCUlISxY8eid+/e8PLygr29PczMzLBv3z4EBgZm+TfN6m+j3pe9vT26dOliuBeRT7k9F/Irp3MXyD6mgo6Xco+JE9H/u3btGi5cuIDSpUtj8+bNWr/61M1Smal/PeqqQhiaejDM27dvZ7mMep4hBs7csGEDhBAYPnw4xo4dqzU/q2NSGDk5OaFv377o27cvgDeXxw8fPhxbt27FsGHDpGRJ39t+eHl5Yfjw4Rg+fDgA4NSpU+jTpw9OnTqFmTNn4uuvvwbw5u907dq1LIc8yGq6lZUVAODly5c656empkrNbhlt374dSUlJ6Ny5M2bMmKE1P69/Uw8PDwBvKkRLly7VOwFQn6fZDfmgruoamzqWuLg4vHjxQmfVyZDvLyqcmNoS/T/1+D9lypTRWSpftWqVzvXUfYbWrl2bbXNWRuovvbS0tFzF2Lx5c5iZmeHcuXM6my4ePXok9blq2bJlrrati/qYeHp6as17/fo1Nm7cmO99yJWHh4eU3Jw7dy7f26tfvz6GDh2qtT1fX18AwOrVq3Wut2LFCp3TS5UqBSsrKzx79kzn+D579+7VeX5l9zcVQkhjjuVWmTJlUKtWLbx8+VI6B/Whfv179uyRYsto27ZteP78eZ5iyq1y5cpJTXFhYWFa84UQ0nRDvL+ocGLiRPT/3nnnHZibm+PixYtaVYXt27fjp59+0rneBx98gDp16uDhw4fo1q2bVr+R169fY/fu3RrTypUrBwDZ9qXSpXz58ujWrRuEEPj444819qVUKjF48GC8fv0ajRs31uoYnhfqDrTLly/XqGy8fv0aQ4cOxZ07d/K9D1M7e/Ys1q1bp3Ogxe3btwPQnWRkZfPmzVIn/oxSU1OlhCLj9gYMGAB7e3scP34c8+bN01gnIiICv//+u879WFpaonnz5gCASZMmaezv/PnzGDZsmM711H/Tv/76S6MilZ6ejq+++kqj43ZufffddwDeDOyqPnYZCSFw4sQJ7Nu3T5rWrFkzvPfee0hMTMSnn36qMSjlvXv3MGbMmDzHkxfq/X377bcaP06EEPjuu+9w7tw5ODs7Y9CgQQUaV3aqVKmCKlWq4OTJk6YO5e1goqv5iAwiL+M4ZXdptvrSbzMzM+Hr6yt69eolDfY4adIknZeFCyFEdHS0ePfdd6UB8gICAkSvXr1E8+bNNQbAVDt//rwwMzMTZmZmwt/fX4SGhooBAwZojP+SVbxPnz4VtWvXFgCEk5OT6NSpk+jatasoVaqUAHIeADM3xyc+Pl6aXrJkSdGpUyfRpUsXUbp0aeHg4CAdr+DgYI1t5Xc4gqzk9Dpy2u+yZcu04lVf7m5jYyOaNGkievbsKbp27Sr9Pa2srHQOeJgV9TFxcXERrVu3Fr179xYffPCBNIhh2bJlxb179zTWWbt2rTQAZs2aNaVzR6FQiM8//zzL4/LPP/9IA0u+8847omvXrqJRo0bC0tJSBAcH6/ybpqamirp16woAwt7eXrRr1050795deHp6CktLSzFu3Didx1Dfv+nPP/8sLCwsBABRuXJl0a5dO/HRRx+J1q1bS8dg3LhxGutcvnxZOn/LlCkjunfvLtq3by9sbW1Fw4YN8zUAZlafDbrOBSHeDDnQt29fAbwZALNVq1aiV69e0vlgY2Mjdu3apbU9fT5fsju/83Nuq7ebm+NDeceKE1EGP/30E5YsWYI6derg9OnT2LVrF2xtbfHnn3/i22+/zXI9T09P/Pvvv5gxYwaqV6+O48ePY9OmTYiJiYGvr69WX5JatWph48aNaNSoEU6cOIGwsDAsWbIEZ86cyTHGkiVL4tixY/j+++9RoUIF7Nu3Dzt27ICLiwsmTpyI06dP63Vljz6cnZ3x77//YujQoXB2dsbu3btx/PhxBAQE4MyZM/Dx8THIfkypYcOG+OGHH9CyZUs8fPgQ27Ztw759+2Bubo5PP/0UFy5c0DmEQ1ZCQkIwfvx4VKlSBVeuXMGGDRtw/PhxeHh4YPr06Th//rxUcVTr2bMnIiIiEBgYiJiYGGzduhUvX77E77//jjlz5mS5r/fffx+HDx9GQEAAHj9+jJ07d+LVq1f4+eefsWzZMp3rWFhYICIiAhMnTkTZsmVx8OBBREREoE6dOjh+/HiuXqsuI0aMwNmzZzF48GAoFAocPHgQW7Zswa1bt1CnTh3MmzcPI0aM0FinWrVq+PfffxESEoL09HRs2bIFV65cwfDhw3Hw4EGpabsgKBQKrFixAmvWrEHTpk1x+vRp/PXXX3j16hVCQkJw9uxZtG3btsDiIflRCGHgy2GIiMig1OMQ8eOayPRYcSIiIiLSExMnIiIiIj0xcSIiIiLSEwfAJCKSOfZtIpIPVpyIiIiI9MSKk4moVCo8ffoUAKT7fhEREVHBEkLg1atXAAAXF5ccbxfExMlEnj59CldXV1OHQURERP8vNjYWpUuXznYZNtURERER6YkVJxOxtbWV/h8bGws7OzsTRkNERPR2UiqVUgtQxu/mrDBxMpGMfZrs7OyYOBEREZmYPv2N2VRHREREpCcmTkRERER6YuJEREREpCf2cSogSqUy2+dEREQkf0ycCoi9vb2pQyAiIqJ8YlMdERERkZ5YcSogiYmJGs8zjhtBREREhQMTpwLCcZqIiIgKPzbVEREREemJiRPJ3r///osffvgB//33n6lDISKitxyb6kjW0tPT0aFDBzx+/Bi3b9/GokWLTB0SERG9xVhxIllTKpV4/PgxAODmzZsmjoaIiN52TJxI1tLS0nT+n4iIyBSYOJGspaen6/w/ERGRKTBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNYyJkusOBERkakxcSJZy5gsseJERESmxnGcCohSqcz2OenGihMREckJE6cCYm9vb+oQCiVWnIiISE7YVEeyxs7hREQkJ6w4FZDExESN50qlEq6uriaKpvDgcARERCQnTJwKiJ2dnalDKJRYcSIiIjlhUx3JGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnkjVWnIiISE6YOJGscQBMIiKSEyZOJGscAJOIiOSEiRPJGitOREQkJ0ycSNYyJksqlQpCCBNGQ0REbzsmTiRrmZvn2FxHRESmxMSJZC1z8xwTJyIiMiUmTiRrmRMl9nMiIiJTYuJEssaKExERyQkTJ5I19nEiIiI5YeJEssamOiIikhMmTiRrbKojIiI5sTB1AG8LpVKZ7XPSjRUnIiKSEyZOBcTe3t7UIRRKrDgREZGcsKmOZI0VJyIikhNWnApIYmKixnOlUglXV1cTRVN4sOJERERywsSpgNjZ2Zk6hEKJFSciIpITNtWRrLHiREREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGu9VR0REcsLEiWQtc4WJFSciIjIlJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ5HQEREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNY4HAEREckJEyeSNQ6ASUREcsLEiWSNFSciIpITJk4ka6w4ERGRnDBxIlljxYmIiOSEiRPJGitOREQkJ0ycSNZYcSIiIjlh4kSyxooTERHJCRMnPW3atAmtW7dGiRIloFAoEB0dbeqQ3gqsOBERkZwwcdKTUqlE8+bN8c0335g6lLcKRw4nIiI5sTB1AIVF3759AQCXLl0ycSRvF96rjoiI5ETWFadVq1bh448/Rr169WBtbQ2FQoGwsLBs1zl16hSCgoLg7OwMOzs7NGzYEOvXry+YgMng2FRHRERyIuuK06RJkxATEwMXFxe4u7sjJiYm2+XDw8MRGBiIYsWKoWfPnnBwcMDGjRvRo0cP3Lt3D6NHjy6gyMlQ2DmciIjkRNYVp8WLFyM6OhpPnjzBkCFDsl02LS0NgwYNgpmZGY4cOYJFixZh9uzZOH/+PN555x1MnDhRK/EaP348FApFtg8yLVaciIhITmRdcfL399d72UOHDuHWrVsIDQ2Fj4+PNN3JyQkTJ05ESEgIli9fjq+++kqaN3r0aISEhBgwYjI0VpyIiEhOZJ045UZERAQAICAgQGteYGAgAODw4cMa00uVKoVSpUoZJR6lUpmv+fQGK05ERCQnRSZxioqKAgB4e3trzXNzc4O9vb20TF48e/YMd+/exa1btwAAV65cwfPnz1G+fHmUKFFCa3l7e/s874v+hxUnIiKSE1n3ccqNhIQEAG+a5nRxdHSUlsmLbdu2oU6dOujatSsAoF27dqhTpw62bduW521SzlhxIiIiOSkyFSdjCwkJyVV/qMTExGznK5VKuLq65jOqoo8VJyIikpMikzipK01ZVZVevHiB4sWLF1g8dnZ2BbavoowVJyIikpMi01Sn7tukqx/T48ePkZiYqLP/U0FRKpVaD8oZb7lCRERyUmQSJ19fXwDAvn37tObt3btXYxlTsLe313iwmU4/vOUKERHJSZFJnFq1aoWKFStizZo1OHfunDQ9ISEB06dPh5WVFfr162e6AClPWHEiIiI5kXUfp8WLF+Po0aMAgIsXL0rT1GM2NW3aFAMHDgQAWFhYYPHixQgMDETz5s01brkSExODWbNmwcvLyxQvA4B2Z3F2Ds+ZEIJ9nIiISFbylDg9f/4ce/fuxcGDB3HmzBnExsYiPj4exYsXh6urK+rWrQs/Pz8EBgbC2dk5z8EdPXoUy5cv15gWGRmJyMhI6bk6cQKAli1b4ujRo5gyZQrWrVuH1NRU1KxZEzNmzECPHj3yHIchsLN47qlUKq1prDgREZEpKYQQQt+FL168iJ9//hlr167F69evkd2qCoUCxYoVw0cffYThw4ejVq1aBgm4qFAqldIgmYmJiUysdEhOTkaxYsU0pgUGBmLPnj0mioiIiIqa3H4f61Vx+u+//zBhwgQsX74cKpUKLi4uaNeuHRo3bozq1aujZMmS0gCTcXFxuHTpEo4dO4YjR45gyZIlWLZsGUJCQjB9+nSULl06/6+yEMp8FR2vqsuZrmY5VpyIiMiU9Ko4OTk54eXLl2jfvj0GDBiAdu3awcIi55wrLS0N27dvx9KlS7Fz5044OTkhPj7eIIEXNgqFIst5rDjp9uLFC62R4Fu0aIHw8HATRUREREVNbitOel1V16BBA5w6dQrbtm1Dx44d9UqagDcdtjt37ozt27fjxIkTqFevnl7rEQG6K07sHE5ERKakVwa0f//+fO+ofv36BtlOYcWr6nJPV7Mcm+qIiMiUZD0cQVHCprjcY8WJiIjkxigDYCYkJGR7xR2RPtg5nIiI5CZPidOlS5cwb9483LhxQ2N6eHg4KlSogBIlSqB06dIICwszRIz0ltKVJLHiREREppSnxGnevHkYNWoUbGxspGlxcXHo1KkTYmJiIIRAXFwcBg4ciLNnzxos2MKMN/nNPVaciIhIbvKUOEVGRqJ69erw8PCQpq1cuRIvX77Exx9/jOfPn2PFihVQqVT45ZdfDBZsYcab/OYeK05ERCQ3eUqcYmNjUb58eY1p+/fvh7m5Ob777js4OjqiT58+qFOnDo4fP26QQOntw4oTERHJTZ4SJ10DE544cQI+Pj4oWbKkNM3b2xsPHjzIX4RFRGJiosYjNjbW1CHJHitOREQkN3kajsDR0VEjIbp69SqePXuG3r17ay2b3YjZbxMOR5B7rDgREZHc5Kni5OPjg2PHjuHmzZsAgCVLlkChUMDX11djuTt37sDd3T3/UdJbiRUnIiKSmzwlTh9//DFSU1NRt25d1KlTBz/99BNKly6Ndu3aScu8fPkS586dQ40aNQwWLL1dWHEiIiK5yVPi1K1bN0ydOhVpaWk4f/48PD09sWHDBlhbW0vLrF+/HqmpqVpVqLcVhyPIPY4cTkREcqMQ+RjiOyUlBS9evICLi4vWvLt37yI+Ph6VKlWS7jr8Nsuur5c+d2N+Gx05ckQr8XZycsLz589NExARERU5SqVSylP0+T7O173qrKysdCZNAFC+fHmtIQuIcoMVJyIikhve5LeAJCYmajxXKpUcBDMH7BxORERyk+fEKS0tDRs2bMDBgwfx8OFDvH79WudyCoUCBw8ezHOARQWb4nKPncOJiEhu8pQ4PXnyBAEBAbhw4QJy6iLFcZwor1hxIiIiuclT4jR27FicP38elStXxieffAJvb284ODgYOjZ6y+lKklQqFYQQTMiJiMgk8pQ47dixA66urvjnn39QokQJQ8dEBCDrZrn09HRYWLB7HhERFbw8jeOUlJSEJk2aMGkio8qqWY79nIiIyFTy9LPd29sbSUlJho6lSMs84CUHwMxZdhUnIiIiU8hTxWnAgAGIiIjA/fv3DR1PkWVvb6/x4FAEOWPFiYiI5CZPidOwYcPQvn17+Pn5Ye/evVCpVIaOiyjLxIkVJyIiMpU897BduHAhfH19ERQUBAsLC7i7u8PMTDsPUygUuHXrVr6CLAo4AGbuZVVZYsWJiIhMJU+J071799CsWTPcu3cPQgikpqbi7t27OpflZeNvcADM3GPFiYiI5CZPidO4ceNw9+5dNG3aFKNGjYK3tzdv5EsGx4oTERHJTZ4SpwMHDsDT0xP79++HtbW1oWMiAsCKExERyU+ex3Fq0KABkyYyqoyVJUtLS53TiYiIClKeEqdq1arh2bNnho6FSEPGylLGJJ0VJyIiMpU8JU7Dhw/H4cOHcenSJUPHQyTJWFnKmDix4kRERKaSp8SpT58+GDNmDPz8/LBw4cIsr6gjyg9WnIiISG7y1Dnc3Nxc+v/QoUOzXVahULBCQHnCxImIiOQmT4mTEMIoyxZlvFdd7rGpjoiI5CZPiRNvsZJ7HOcq91hxIiIiuclTH6cjR44gMjLS0LEQachYWbKystI5nYiIqCDlqeLUokULtGjRAocOHTJ0PEUW71WXe6w4ERGR3OQpcSpevDjKlClj6FiKNN6rLvfYx4mIiOQmT011Pj4+iIqKMnQsRBpYcSIiIrnJU+I0YsQInDp1Cjt37jR0PEQSVpyIiEhu8tRUV6dOHQwbNgydO3dGSEgIunTpAi8vL9jY2Ohcvnz58vkKkt5OrDgREZHc5ClxqlChAoA3YzQtWbIES5YsyXJZDoBJecWKExERyU2eEicPDw8oFApDx0KkgRUnIiKSmzwlTtHR0QYOg0hbVokTK05ERGQqeeocTlQQsmqqY8WJiIhMhYkTyRYrTkREJDd6JU4PHz40yM4MtR16O7DiREREcqNX4uTt7Y3x48cjPj4+Tzt59uwZxo4dC29v7zytXxQolUqtB2UvY4LEe9UREZEc6JU4BQQEYObMmShXrhz69OmD/fv3Izk5Odt1kpOTsXfvXvTq1QvlypXDrFmzEBgYaJCgCyN7e3uNB+9TlzNWnIiISG70uqpu8+bNOHDgAD7//HOsWbMGa9euhaWlJXx8fFC1alWULFkSjo6OePHiBeLi4nDlyhWcP38eqampEEKgRo0amDNnDvz9/Y39eqgI4XAEREQkN3oPR+Dv74+LFy9i//79mD9/Pvbt24eTJ0/i5MmTAN4MdCmEkJa3trZGhw4dMGzYMCZMABITEzWeK5VKVp1ywAEwiYhIbnI9jlPr1q3RunVrJCcnIzIyEmfPnkVsbCwSEhLg7OyM0qVL47333kPjxo01vuzednZ2dqYOodBhxYmIiOQmTwNgAm++yPz8/ODn52fIeIgkrDgREZHccBwnkq2srqpjxYmIiEyFiRPJljpBMjc3h4XF/4qjrDgREZGpMHEi2VInSObm5jA3N5ems+JERESmwsSJZEudIFlYWLDiREREssDEiWSLFSciIpIbJk4kW6w4ERGR3DBxItlixYmIiOQmT4nTkSNHEBkZaehYiDSw4kRERHKTp8SpRYsWmDx5sqFjIdLAihMREclNnhKn4sWLo0yZMoaOhUgDx3EiIiK5yVPi5OPjg6ioKEPHQqQhY1MdK05ERCQHeUqcRowYgVOnTmHnzp2GjodIkrGpLmPFiYkTERGZSp5u8lunTh0MGzYMnTt3RkhICLp06QIvLy/Y2NjoXL58+fL5CpLeTllVnNhUR0REppKnxKlChQoAACEElixZgiVLlmS5rEKh4Bcd5QkrTkREJDd5Spw8PDygUCgMHUuRplQqs31O2lhxIiIiuclT4hQdHW3gMIo+e3t7U4dQ6LDiREREcsORw0mWhBCsOBERkezkqeJEuZeYmKjxXKlUwtXV1UTRyJ9KpZL+zwEwiYhILvJVcfr777/RvXt3lCtXDtbW1hgwYIA0b//+/Zg4cSIeP36c7yCLAjs7O60HZS1jcsQBMImISC7ynDh99913aNGiBf766y88fPgQqampEEJI852cnDBjxgxs2rTJIIHS2yVjcsQBMImISC7ylDjt3r0bX331FcqWLYv169cjNjZWa5kGDRqgVKlS2LFjR76DpLcPK05ERCRHeerj9PPPP8Pa2hq7d+9G9erVs1yudu3avDUL5UnGxIkVJyIikos8VZxOnTqFBg0aZJs0AUCpUqXYx4nyJGNVKXPncFaciIjIVPKUOCmVSri5ueW4XEJCgsbVUUT6ylxxMjMzkwZdZcWJiIhMJU+Jk6urK27evJnjctevX4eHh0dedkFvucwVJwBSPydWnIiIyFTylDg1bdoU586dQ2RkZJbL7NixAzdv3kTLli3zHBy9vTJXnID/JVCsOBERkankKXEaPXo0FAoFPvzwQ2zZskWrArBnzx4MHDgQlpaWGD58uEECpbcLK05ERCRHeUqc3nvvPcyePRtPnz5Fly5d4OzsDIVCgY0bN8LZ2Rnt2rXDf//9h9mzZ6NatWqGjpneApmHI8j4LytORERkKnkeAHPkyJHYtWsX6tevj6SkJAgh8PLlS7x48QI1a9bEtm3bMGzYMEPGSm+RzANgZvyXiRMREZlKvu5VFxgYiMDAQMTFxeHOnTtQqVTw8PCAu7u7oeKjt1R2FSc21RERkakY5Ca/JUuWRMmSJQ2xKSIArDgREZE85ampLiwsDPfv3zd0LEQSVpyIiEiO8lRx6t+/PxQKBby9veHv7w9/f3/4+fnB0dHR0PHRW0rXcASsOBERkanlKXEKCQnBoUOHcOPGDdy4cQO//fYbzMzMULduXSmRatKkCSwtLQ0dL70ldA1HwIoTERGZWp6a6pYuXYro6Ghcv34dCxYsQMeOHeHg4ICTJ09i+vTpaNWqFYoXL442bdpg9uzZho6Z3gKsOBERkRzleTgCAPD29sYnn3yCTZs2IS4uDidOnMC0adPQokULpKWlYd++fRg3bpyhYqW3CCtOREQkR/lKnDJKTU3Fy5cvpbGc1F9uQghD7YLeIro6h7PiREREppav4QjOnTuH/fv348CBAzh69Chev34NIQQcHR3Rrl07qb8TUW7pGo6AFSciIjK1PCVOPXv2xKFDhxAXFwchBCwtLdGwYUMpUWrQoIH0JUeUF7zlChERyVGeEqf169dDoVCgVq1amDJlCgICAmBra2vo2Ogtlt0AmEIIqFQqmJkZrKWZiIhIL3n65nFwcIAQAufPn0fv3r3x4YcfYvbs2Th//ryh46O3VHYVp8zziYiICkqeKk7Pnj3DyZMnceDAARw4cADh4eHYt28fFAoFXFxc0KpVK7Ru3RqtW7dGuXLlDB0zvQWyG44AeFOR4jhhRERU0PJUcTI3N0ejRo0wefJkHD58GPHx8dixYwdGjhwJNzc3rFu3DgMHDoSnpyeqVq1q6JhN4vvvv0e9evXg4OAAV1dXdO/eHdHR0aYOq8jKbjgCgBUnIiIyDYN0ErG1tUVQUBDmzJmDFStWYPTo0bC2toYQAjdu3DDELkzu8OHDGD58OE6cOIE9e/bg2bNnaNu2La/wMhJ9Kk5EREQFLV/DEQDA/fv3pSEJDh48iCdPngCAdLVdo0aN8h2kHOzZs0fj+R9//IGKFSviypUrqFWrlomiKrpYcSIiIjnKU8Vpy5YtGDZsGKpUqQJPT08MHDgQa9euxZMnT1CjRg189tln2LlzJ+Lj4xEREZHn4FatWoWPP/4Y9erVg7W1NRQKBcLCwrJd59SpUwgKCoKzszPs7OzQsGFDrF+/Ps8xZCUhIQEAUKJECYNvm7IfADPzfCIiooKSp4rThx9+KP3fw8NDGr+pVatWKF26tMGCmzRpEmJiYuDi4gJ3d3fExMRku3x4eDgCAwNRrFgx9OzZEw4ODti4cSN69OiBe/fuYfTo0QaJKz09HWPGjEFQUBA7vxtJdgNgZp5PRERUUPJUcerUqRMWLFiA69evIyYmBkuWLEGvXr0MmjQBwOLFixEdHY0nT55gyJAh2S6blpaGQYMGwczMDEeOHMGiRYukIRLeeecdTJw4USvxGj9+PBQKRbaPzIQQGDJkCO7evZtj9YvyjhUnIiKSozxVnDZt2mToOHTKze1aDh06hFu3biE0NBQ+Pj7SdCcnJ0ycOBEhISFYvnw5vvrqK2ne6NGjERISovc+hBAYOnQoDhw4gCNHjqBUqVJ6r0u5w4oTERHJUb47h8uFui9VQECA1rzAwEAAb66My6hUqVJ6Jz9CCHz66afYuXMnDh8+DA8Pj2yXVyqV+Zr/tmPFiYiI5ChfidPVq1fx888/Izw8HA8ePAAAlC1bFn5+fhgxYkSBjuEUFRUFAPD29taa5+bmBnt7e2mZvPj000+xdu1abN++HTY2Nnj8+DGAN53DraystJa3t7fP876IFSciIpKnPCdOYWFhGDJkCFJTUyGEkKZHRUUhKioKy5Ytw8KFCxEcHGyQQHOivsrNyclJ53xHR0dpmbz47bffAADNmjXTmB4eHo4WLVrkebukGytOREQkR3lKnE6fPo1BgwYhPT0d7du3x4ABA1CpUiUAwO3bt7FkyRJs374dgwYNQvXq1VGv3v+xd+fxMdz/H8BfGzlEEglCHCFxtc6KK+77rFJVd4tQqqqo0qKH0gM9SNXVyxFn3dQRNxGhiKtu4r5DiJBDrn3//vDb+e5kd5NNZLObeD0fj32wM5+Z+exkduc9789nPlMnWyttDfrBoTliY2PTnR8XFwcvL68XqVKeZmwATGaciIjI2rIUOP3888/QarWYN28eBgwYoJpXrVo1vPnmmwgKCsJ7772HadOm4e+//86WyqZHl2kylVV68uQJChUqZPF66Li4uOTYtvIiYwNgMuNERETWlqXhCPbt2wc/Pz+DoElf//79UatWLYSGhma5cpmh69tkrB/TvXv3EBsba7T/U06Ji4szeJFpxprqmHEiIiJry1LgFBUVZVbH70qVKiEqKiorm8i0Zs2aAQC2b99uMG/btm2qMtbg6uqqerGZLn3GOocz40RERNaWpcDJw8MDN27cyLDcjRs3THbWzm6tWrVCuXLlsGzZMpw4cUKZHhMTg8mTJ8PR0RH9+vXLkbrQi2PGiYiIbFGW+jjVrVsXW7duxe7du9GyZUujZXbv3o39+/ejQ4cOWa7c3LlzERYWBgA4deqUMk03ZlPjxo0xaNAgAM+zEXPnzkW7du3QtGlT1SNXrl+/jqlTp8LX1zfLdXlRaTuLs3N4+phxIiIiW5SlwGn48OEIDg5Gp06d8NFHHyEgIABly5YF8PyuuqCgIOX2/eHDh2e5cmFhYVi4cKFq2v79+7F//37lvS5wAoAWLVogLCwMEyZMwIoVK5CcnIzq1avjxx9/RM+ePbNcj+zAzuKZw4wTERHZoiwFTu3atcOXX36JSZMmYdq0aZg2bZpBGRHB+PHjjY7kba6goKBMPw/O398fW7ZsyfI2yTZkNAAmM05ERGQNWerjBADfffcdgoOD0aJFCzg5OUFEICJwdHREy5YtERwcjG+++SY765qr8a66zMloAExmnIiIyBpe6JEr7du3R/v27ZGamoqHDx8CAIoUKaLKDNBzfARL5hgbx4kZJyIisrZMBU6XLl3C2rVrce3aNTg5OcHPzw89evSAs7MzihUrZqk60kvI2Mjh7BxORETWZnbgNH36dIwZM8bghDV+/HgEBwejWrVq2V65vIR31WUOO4cTEZEtMitwCgsLw+jRoyEicHFxwauvvoonT57gypUruHXrFrp27Ypz587Bzi7LXabyPN5VlzkcjoCIiGyRWZHOrFmzICIICAjAvXv3cOTIEVy8eBHHjh1D+fLlcenSJWzdutXSdaWXCDNORERki8wKnP799194e3vjjz/+UGVOXnvtNfz6668QERw8eNBilaSXDzNORERki8xqqouMjESHDh3g6OhoMK9x48YAgPv372dvzfKYtMMPcDiC9DHjREREtsiswCkpKQkeHh5G5xUsWFApQ6ZxOILMYcaJiIhsEXtzk01ixomIiGyR2cMRXLp0CYsWLcrS/H79+mW+ZnkMhyPIHGMDYDLjRERE1mZ24JT24br6NBqNyfkajYaBEzgcQWYZGwCTGSciIrI2swKnMmXKQKPRWLouRIqMnlXHjBMREVmDWYHTtWvXLFwNIjVjncOZcSIiImtj53CyScw4ERGRLcrUQ34p6ziOU+boMkp2dnZKMzEzTkREZG0MnHIIx3HKHF1GST9YYsaJiIisjU11ZJN0GSX9YEk/iGLgRERE1sCMUw7hOE6Zk1HGiU11RERkDQyccgjHccocXWCkHzgx40RERNbGpjqySbrAyFRTHTNORERkDQycyCYZyzixczgREVkbAyeyScw4ERGRLWLgRDaJwxEQEZEtYufwHMIBMDMno+EImHEiIiJrYOCUQzgAZuYw40RERLaITXVkk5hxIiIiW8SMUw7hAJiZw4wTERHZIgZOOYQDYGZORgNgMuNERETWwKY6sknGhiNgxomIiKyNgRPZJGaciIjIFjFwIpuj1WqV/zPjREREtoSBE9kc/aCIGSciIrIlDJzI5ugHRcw4ERGRLWHgRDbHnIwTAyciIrIGDkeQQ/jIFfOZk3FiUx0REVkDA6ccwkeumM9UxsnOzs5oGSIiopzCpjqyOfrZJP3ASaPRKO+ZcSIiImtgximH8JEr5tPPJuk3zwHPA6nU1FRmnIiIyCoYOOUQPnLFfKYyTsDzQCopKYkZJyIisgo21ZHNySjjlLYMERFRTmHgRDYno4xT2jJEREQ5hYET2RxmnIiIyFYxcCKbY2o4Av33zDgREZE1MHAim2NqAEz998w4ERGRNTBwIpvDjBMREdkqBk5kc8zpHM6MExERWQMDJ7I55nQOZ8aJiIisgYET2RxmnIiIyFZx5PAcEhcXl+57+h9mnIiIyFYxcMohrq6u1q5CrsGMExER2So21ZHN4QCYRERkq5hxyiGxsbGq93FxcfDy8rJSbWwbH7lCRES2ioFTDnFxcbF2FXINczJOAKDVamFnx6QpERHlHJ51yOakNwCmfiDFrBMREeU0Bk5kc9JrqtN/z35ORESU0xg4kc1Jr6mOGSciIrImBk5kc5hxopSUFAwePBjdunVDTEyMtatDRKRg53CyOcw40dq1a/HXX38BAGrUqIHx48dbuUZERM8x40Q2hxkn2rNnj/L/LVu2WLEmRERqDJzI5jDjRHv37lX+f+jQITx69MiKtSEi+h8GTi8xrVaL2NhYiIi1q6KSmYyTiECr1eZY3cjy7t+/j3PnzinvtVotdu7cacUaERH9DwOnl9jAgQPh5uaG77//3tpVUTE345SUlISuXbvC2dkZK1asyLH6kWXt27fPYNrWrVutUBMiIkMMnF5S4eHhCAoKAgB8//33iIyMtG6F9KQ3AKb++z/++APr1q1DUlISvv322xyrH1lWaGiowbStW7faXGaUiF5ODJxeUoGBgcr/k5KS8Pvvv1uxNmrmNtVNnz5d+f/Zs2dx7do1S1eNcoCuf5NGo0HDhg0BAHfv3sWpU6esWS3Kg27evIlBgwZh4cKF1q5KtkhOTsawYcPQrl07zJs3DwkJCdauUp7EwOkldOPGDaxatUo1bc6cOUhMTMzS+o4cOYLLly9nR9UAZL1zeHBwcLbVwRJy412AycnJOZrpiY6OxsmTJwEAfn5+6NWrlzKPzXWUnZKSkvDmm29i3rx56N+/P8LDw1XzY2Ji8N1332HXrl1WqmHmzZ8/H7Nnz8b27dsxaNAgeHt7Y8yYMbh//761q5anMHB6Cc2YMUM5iRcoUADA8w65y5cvz/S6NmzYgLp166JatWq4cuVKttTP3IxT2ve2GjidPXsW/v7+KFiwIEaOHImoqChrV8kkEcHx48cxceJE+Pn5wdHREd27d8+x4CksLEzZVtOmTdG+fXtlXm4InLZu3YrOnTsjJCTE2lXJ81JSUhAfH28wPTU1FYGBgejTpw9u3rxpcvlJkybhxIkTyvuJEycq/xcR9O7dG19//TXatGmDefPmZWfVjXr69ClmzJiB4ODgLF1kJScn44cfflBNe/ToEX7++Wc0bNgQcXFx2VVVErKK2NhYASAAJDY2NtvWq9VqZeTIkTJ//nyj82NiYqRgwYICQJycnGTdunVKPWrWrClarTZT23vrrbeU5adNm5blesfHx8vDhw9FROSbb75R1rl582ZVuY8++kiZB0AmTpwoJUqUEADi7Ows8fHxWa5DdtNqtfLHH3+Is7Ozqs4FCxaUSZMmSVxc3Aut/8KFC7Jt2zZJSUkxmHf+/HnZsWOH2X/PlJQUWbp0qVSqVElVV91r5cqV6S6fkJAg0dHRWfkYKp9++qmyzbVr14pWq5Vy5coJAHFwcJAnT5688DYsJSYmRtzc3JS/8e3bt81edtmyZdK8eXOZPn26JCcnp1s2MTFRHj9+nOnvqi3SarUSHBws33//vVy/ft3s5eLj46Vhw4ai0WikT58+cv/+fRERefTokbz++uvKMfTGG28YXf7o0aOSL18+g+P84MGDIiKyZs0ag3m//fbbi3/gdLRv317ZVrly5WTq1Kny6NEjs5cPCgpSlm/UqJH07dtXHB0dlWljx461YO1zt8yejxk4WYmlAqeff/5ZWe+ECRMMflwDAwOV+e+//75otVqpW7euMm3v3r1mb+vZs2fi4uKiLNuhQweDMlqt1uiJPSUlRYKCgmTAgAHy2muvKT9irVq1kq5duyrr3Lp1q2q5ESNGKPN8fHwkPj5eBg4cqEzbsmWL2fW3pMePH6s+h7FXpUqVlB98Ha1WK+Hh4bJlyxbZt2+fHDt2TCIjIw3WHxERoez7Dh06yOPHj5XlAwMDxc7OTgDIwIED0z3BpqamyvLly6Vy5crp1rV8+fKSmJhodB179uyRokWLir29vXz77beSmpqa5f3m7++vbPPBgwciog6W//nnnyyvOz13796V119/Xdq0aSNHjhzJ0jp++eUX1T7r1q2bWcudPXtWdRKvVauWhIeHG5S7d++ejBo1SgnEnZycxMfHR5o0aSK7d+/OUp2t6cSJE9KiRQvlc+fPn1/Gjx9v1u+h/sUVAClSpIhMmzZNypcvb3DsXrx4UbXss2fPpGrVqsr82rVrK/9v3769xMbGSunSpY1+D2bOnGmRfbF7926j2/Pw8JATJ05kuHxKSoq88sorynL79+8XEZFz584pwZO9vb2cOXPmheu6YcMGadu2rSxatOiF15VZMTExsn//fvn999+N/i5mFQOnXMJSgdPHH3+s+uINGDBAkpKSROR5VsDHx0eZp/sSLV26VJnWsmVLmTZtmvTv3186d+6sXIEZs23bNtW2XF1dlW2JiBw/flzc3NykSpUqyklQRz+AS++1c+dO1XKTJ09W5q1atUpE1FeHw4cPz5b9+CISEhKkSZMmqs8xdOhQuXTpkgwePFh1kmzYsKEkJCSIyPOraP0Mnu6l0Whk6dKlqm306NFDVebVV1+VU6dOyYABAwyW//LLL43WMy4uzuj2GjZsKHPmzJFbt25Jy5YtlekzZswwWMfSpUtVV7UApG3btgYBoTmePHmi7JuqVasq0zdu3Kis+8MPP8z0ejOSlJQkjRs3VrZhb28vkydPNhrwm5KSkiJly5Y12JcbN27McNkOHToYLGdnZyfdu3eXcePGyYwZM+TTTz+VAgUKmPyeFC5cOFMZLn0PHjyQvn37yqeffipPnz5Vzdu5c6fUr19fevXqlW2/U5GRkfL++++LRqMx+llKliwp69evN7n89evXDbK4xvaf7v8jRoxQLf/5558r8/z8/CQ2NlZ8fX2Vafp/j7Zt28rYsWNV616yZEm27AcdrVYrDRo0UNZfo0YN1fZef/31DNexfPlypXzz5s1V88aPH6+al1Gm8tatWzJo0CApVKiQ9OvXT2JiYpR5ixYtUu1bSwRPWq1W5s+fL8OHD5dBgwbJu+++K2+88YbqbwRANmzYkG3bZOBko2JjY1WvyMhIiwROWq1Wpk2bpjrAmjVrJm+++abqh1f/y5iYmCglS5Y0+gNUpkwZVTCkb/jw4QblDxw4oMzv3r27Mv2LL75QpiclJUmpUqWUefny5ZPXXnvN4IsBQPbs2aPa5sOHD2XkyJEye/Zs5QcgJiZG7O3tBXie4s5sE8bDhw9l5syZsmXLlhdu/khNTVV97kKFCsm6detUZU6fPq00LwKQHj16SHR0tDRt2tTkiaBgwYJKU8bhw4fTPWkYe6W9Ur5//77Ur19fVaZRo0ayc+dO1T44cuSIMt/T01OV2ZoyZYrJ7ZUqVUpWrVqlBIXGxMfHy5AhQ6Rjx44yf/58Wb16tdEA6enTp0pw5ujoKOPGjVN+zJOTkyUkJER++eUXuXLlSrp/m5iYGOnfv7/07NlTdeWd9mJD92rcuLFcvXo13XXq6Dd5e3l5qb4/sbGxotVq5b///pMFCxaoLiK2bNmi2mfVq1fP8G+ZP39+ad68uVSrVk3c3d1V32n9v93ixYulV69e8u+//6Zbd/3jtWLFinL06FFJTU2VyZMnq06S77zzzgt9P5KTk+XXX39V1Vn3nX3//ffFwcFBmWZvby/nzp0zuh79i4YBAwYYXETUrFlTjh07pgRXbm5uyvESFhamfCYHBwc5efKkiIjMnTvXYD87OjrKxYsXRavVqoIPT09PpVuBzp07d+TQoUMZ7p/o6GgJDAxU/U7qXxhUrVpVUlJS5Pz581KmTBkBnl84pT0Ok5KSJDIyUrRaraSmpkq1atWUdaS92IyPj1cF9aYCv+joaPn8888NgtIKFSrI8ePHJSgoyCDYtbe3N9iezu3bt6V69epSuHBh6dGjhyxevFiioqLS3T8iIn/++adZv2mTJk3KcF3mYuBko9I7ALIzcNJZuXKlODk5mdxmSEiIqnx6J8GFCxcarF+r1Rq9wv7+++9F5PnJTv8L6OHhofRP0c9wdejQQemXlJiYKDNnzpSiRYsqPxg3b9406/Pqp/zPnz9v1jLx8fHy448/ioeHh7Js8+bN5dixY2Ytb8wnn3yirMvFxcVok4vI8z4W+s2cRYoUUS03btw4GT16tCpz1aZNG9FqtdK8eXNl2pgxY1Q/mroT699//y0zZsxQpmk0Gvniiy9k6dKlsmnTJqlQoYIyz83NTf755x+TP/rvvPOOUnbUqFESFBRkEHQNHjxYtm/frgoagOcBX0BAgOzatctgvYMHDzZ5zP3999+qsv369VPNL1q0qHTv3l0KFSqkOqGlbZbR179/f6Wsk5OTTJ06VRYvXqw6UQ4ePFgVLLi7u8vq1asz/Ls3a9ZMWWbz5s3SunVr1d9Nv2moRIkSEhoaKsnJyaom0mXLlklSUpL89NNPqmNDv84ff/yx3LlzR9luVFSUFC9eXCnzxx9/SEpKiioYdHZ2Nvi+6xhrInJwcFBlQPRf+lnHmzdvytixY2XOnDkZZucOHDhgEBS6ubnJTz/9JM+ePRMRkYsXL0rbtm2V+R9//LHBekJCQlTHgK5f3caNG6V58+YycuRIpe+g/vE1ffp0efz4sSrjrn/iTUpKUvrS6V5fffWVatv6AdrQoUOV6eHh4eLq6ioA5K+//jK5DxISEqRWrVqq9SclJclrr72mTFu7dq1S/vvvv1em62eN7969q1xkFihQQNVEV79+faPf482bNytlvLy85PLly8o8rVYrCxYsEE9PT5PfRycnJ1XQpN8XsmDBgkoAqq9Xr14G67Gzs5PGjRvLlClT5OTJkwZ1ffTokcl6uLm5SYMGDWTw4MEyc+ZMOX36tMl9nVkMnGyUqQPS3D9UVuzbt08KFy6sbKdYsWISEBAg27ZtMyibnJwskyZNkk8++UTmz5+v6mhYpUoVg34rZ8+eVeZXrFhR+X/Lli1FROTvv/82+JzTpk0TrVYrderUUaYZ+0F/8uSJBAUFmfyxN2bq1KnKOgMDA0XkeVYlPDzcoO5arVaWLl0q3t7eRv8eug6nv//+uwQHB8upU6ckIiJCzpw5IydOnJDw8HDZv3+/7NmzR7Zu3SrLli2T6dOnq/pa5cuXz6Bje1obN25UnaR1J//Dhw8rZaKjo1XZOf0gRtfv6MmTJ9KlSxcBnmct9IM1/WYJY6+SJUtm2IfiypUrBs1x+q/JkycrP4B3795VBbH6r5EjRyp/C/3g2dgrbbNTbGysjB07Nt16AM+zF/fu3TO6r9NbDngedIg8/96kzX5+9NFHJrNnx44dU8q9+uqrkpqaKhEREeleuOTLl0/eeOMN5X2DBg1UJ5G4uDg5ffq07NixQxYtWiR//fWX3Lp1y+j29U+KLi4uqs7R+tPDwsJUyyUnJ6uCbmPfB41GozoB2tvby969e+XXX39VggXg+QWHqabC8PBwyZ8/v2q9AwYMMPp3evjwoVLWw8NDdbNHcnKyKshIL0gRETl16pTqu9K7d2/lfZMmTQyCvfnz5yvzfX19DW7euHnzphLQajQaOXr0qFy9elV1sVCpUiWTFyD6vw/6x4vu/3Xq1FEte+fOHSWTXrx4cSXz/+6775o8rjZt2mRyf+g3y+fLl0/69u0rwcHBBpluR0dH+eSTTyQ8PFzV/0v3GjFihCQnJ0unTp2UaaVKlZIbN24o29IPcNN7ValSxWT2t0uXLnLy5EmJiIiQO3fuWPRmCAZONiqnmurSunHjhvz+++9y+PDhTHfa1e/3kbbPgX4n9GnTpilXck5OTpKQkGC074y3t7fs2rVLeZ+Vu/hM0Q/kqlSpIu3atVP6y/j7+ysdfh8+fKhqmgCeXwX17t1blYV50VdGP+o6M2fOVJYpU6aM0eYJ/eYc/deKFSuUMlqtVs6fP29wctdqtTJkyBCTP1rm3sk0atQog+WrV6+uukLWSU1NlS1btkhAQIByB6fu9e6778qpU6dUJ92JEyfKkCFDlMxf2j4a+q5cuaK68nd3d5eePXtKlSpVVCcg/b46Dx8+VGVl2rVrZ9DkMGDAANWx+PjxY4MmoEqVKsmUKVMM/kYBAQFKmTlz5ijT9TMGwPOmUP3vlP7r0KFDZv0dTDGWvcuXL58qw+Hm5qbajv6xV6dOHUlISJDPPvtMmVaoUCHlZosxY8Yo0031TfL09DS4WLhz544q8K9du3aGTYf62cWgoCBl+qxZs5TptWrVMqsPWqtWrQzq6e7ubvS4T05Olp49e0r58uUNgkydH3/8UVlP3bp1jd5UYaxfqH5TYP78+Y3e0bd9+3aD5fRvMFm9erUqQ+jq6ioVK1ZUgqu0TbVpXb9+3WSXDN2re/fuqmbBZ8+eybBhw5T5I0eOVLYRGxururGoUqVK8uDBA4MAd/bs2RISEiKjR49WBYq6V9GiReW///6TM2fOKPvF2dlZFYhZGgOnXMJSncOz06ZNm5Q61qtXT/Wl1G+auHDhgrz33nvK+/Xr1ytX215eXqor62LFiin/X7x4cbbVVavVGu0jpf9j379/f9WPOADp2LGjnDp1SkSeNxUGBgaqmu4y+7Kzs1OaK821YsUKGTduXLqde9NerdapUydTgfDJkydlxYoVEhgYKKNGjZIvv/wyU7c6P3r0SGrXri2urq4SEBAgBw4cMCvoTUhIkBkzZqgya/pZo4CAAFXZQ4cOKU036YmIiJCDBw8qV+E3b95UZUxat24toaGhkpiYqLpC79Chg2i1WgkJCVGamuvVq2d0GAvdcBJpsyXA8wxG3bp1pW7dukrfHA8PD9V3OTU1Vf7880/55Zdf5Nq1ayLyvBP5F198oVpX3759M/y8GXn69KmqqcnV1VW2bt0qCQkJ0qZNG2W6k5OT9O7dW/755x/Vca4fzISFhcmkSZNUwUVycrLRTGLfvn0NMlXvvvuuXLp0SRISElRNuo0aNTLrb3vgwAFlmfr164uIyNWrV1XNl6YCm7Q2bNhgUOfly5dncu/+T2JiotEhO/T7jw4ZMkS1zJEjR1TZxyVLlkhISIgqU2Wq0/b27dtVZfQDNV2GNDk5We7du2fW9/HRo0fyzTffqFoigOeZ2rR3MKf9DCEhIQbbiIyMVF1w1q5dW9Xtw1iAe+nSJfn1119VzdeFCxdWBWHffvtthp8lOzFwyiVyQ+Ck1WpVVw66W56jo6OVK4MKFSqIiMiSJUuUcvpt7sOGDZOwsDCDH5oSJUqYvL09q9J28vXx8VE1I+q/ChUqpNyVl1ZMTIxs3bpV/vzzT/nqq68kICBA+vTpIwMGDJDBgwfLRx99JKNGjZJx48bJ+PHjJTAwUBYvXizbtm1TTpDZ7fHjx6oTVG67/Xz9+vUGAUiVKlWy9dg/ffq0QdCrf0Lz8PBQNXfFx8fLv//+a/LmB52TJ09KvXr1Mgyax4wZY3ZdN2zYICVKlJBKlSqp+iy9iIMHD0qhQoWkQoUKqubXuLg4k82naYPX9ERGRioXJ1WqVJF9+/aJyPN+Vm+++aZqnfb29qq7w0qXLm20ac6YtL87x48fV93dOXjwYLP3SWpqqmqIAnM/a3p27Nih+qy6jIkusHN3d1cyv9HR0ap+VR999JGynjt37kiXLl3Ez89Pzp49a7L+afteAc+z6C8y7MfTp0/l559/lsaNG8vEiRNfaPy7q1evmsxk6YZFMCY6Otro98rX1zfHx+Nj4JRL5IbASeT5wHy6erZs2VLi4+NlxYoVyjRdB87bt28b/eKEhoaKiEjDhg1V07PzjgidmJgYGTp0qHz88ceyf/9+0Wq1kpiYKD/88IPqBNqqVSuT/UVs2dGjR6VVq1YyZcoUa1clS0JDQ5U7qgoUKJAtY8qktXfvXmUQyrSvF711+vLlyxIYGChNmjRRLhw0Go3Y2dlJ7dq1Mz0EQ2pqarb320hNTTXahBUbGytjxoxR3YQAPG++y0zg9uTJE9m/f7/BRY9Wq5XZs2cbrB943uyS2RsuZs+ercqG6P5fpkwZ1e3x5li7dq3Y2dmJv79/tg2gquv35ezsrDTN6TfZ6rJaffr0UabVr18/SxeLP/zwg2p/2tnZydGjR7Plc2SXM2fOGGSxzMmkxsTESKNGjVTLmXMzRnZj4JRL5JbAKTk5WfXD5ejoqNz1BkB27NihlE2bwi5VqpRyVfTPP/+ofkjNuS01O924cUM+//xzmT9//gtdqdGLOX/+vHz66admN7VkRWRkpAQFBUnfvn2VYR/69++fJ0baflHPnj2T5cuXS+vWraVMmTIms65ZFRMTIxMnTlQFrxmNOm9qPcbuLDTWD8gcz549y3BE9syub8GCBargf8+ePUo927dvL6tWrVLe6w8nklmRkZGqoRr0s1a25NChQ0rfRVdXV7MD8qdPnyp90Tp37myV7ykDp1witwROIiLz5s0zegXv6uqquoIaOnSoav7IkSOVeampqcot2pntA0SUVVqtNs88niQ3efDggcyaNUt1YZVZgwYNUv2eZKaJzhpSU1OVZjk7OzvVUBkvmu3Udf739vbOlkcbWUp4eLgMHDjQYPy9jOhubsmo2dxSMns+1ojk4KPPSREXFwdXV1cAQGxsLFxcXKxcI9NEBOvWrUNwcDBCQkJw+fJlAMAnn3yCwMBApdyaNWvQrVs35f2BAwfQoEED5X1SUhKioqJQokQJaDSanPsARJTrHD16FHXq1AEAlClTBqdOnULBggWtXKv0TZgwAd9++61qWteuXbFq1aoX+s1LSkrC9u3bUbduXXh5eb1oNSmNzJ6PGThZSW4KnNK6efMmoqKiUL16ddjb2yvTHz58iKJFi0JEUKZMGVy7do0BEhFl2ZQpU7Bz505MnToVNWvWtHZ1MnT58mVUqFBBee/l5YXTp0/D09PTirWijDBwyiVyc+CUnokTJ2LBggWYOnUqunfvbu3qEBHlqObNm2Pv3r0AgI0bN6Jjx45WrhFlhIFTLpFXAyciopfZpUuX8Pnnn6Nt27Z4//33rV0dMgMDp1yCgRMREZH1ZfZ8bJcTlSIiIiLKCxg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgRMRERGRmewzLkKWoD9ge1xcnBVrQkRE9PLSPweb8zAVBk5WEh8fr/zfy8vLijUhIiIi4Pm5Wff4FVPYVEdERERkJj7k10q0Wi2ioqIAAAUKFIBGo8nSeuLi4pSMVWRkJB8W/P+4X4zjfjGO+8U47hfjuF+My637RUSUViBPT0/Y2aWfU2JTnZXY2dmhWLFi2bpOFxeXXHOg5iTuF+O4X4zjfjGO+8U47hfjctt+yah5Th+b6oiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxMCJiIiIyEwMnIiIiIjMxAEwiYiIiMzEjBMRERGRmRg4EREREZmJgRMRERGRmRg4EREREZmJgZONCg8PR4cOHeDh4QEXFxfUr18fK1euzNQ6EhMT8e2336JixYrInz8/SpYsicGDB+P+/fsWqrXl3L59G9OnT0fbtm1RpkwZODo6onjx4ujatSsOHTpk9npCQkKg0WhMvoKCgiz3ISzE19fX5Odp3rx5pta1dOlS+Pv7w8XFBYUKFULHjh1x7Ngxy1TcgoKCgtL9O2s0GrRq1SrD9eTW42XJkiX44IMPUKdOHTg5OWVY1ydPnmDUqFHw8fGBk5MTfH198dlnnyE2NjbT2962bRuaNWsGNzc3FCxYEC1atMCuXbte4NNkH3P3S3JyMtasWYOAgABUrlwZrq6ucHNzQ7169fDbb78hNTU1U9vNzu+oJWTmeJk4cWK634lr165latsXL15Ejx494OnpCWdnZ9SoUQO//fYbbPm+NXtrV4AM7dmzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHZ7gOrVaLzp07Y9u2bahfvz66du2KiIgIzJ07F7t27cLBgwdRtGjRHPg02WPmzJn48ccfUb58ebRt2xZFixZFREQE1q9fj/Xr12PZsmXo2bOn2etr1qyZ0R8sPz+/7Kt0DnJ3d8fIkSMNpvv6+pq9jkmTJuGrr76Cj48PhgwZgqdPn2L58uVo2LAhdu3ahUaNGmVfhS3Mz88PEyZMMDpv9erVOHPmDNq1a2f2+nLb8fLVV1/h+vXr8PT0RIkSJXD9+nWTZePi4tCsWTOcOHECbdu2Re/evXH8+HFMnToVe/fuRWhoKPLnz2/WdpcsWYK+ffuiaNGi6N+/PwBgxYoVaNOmDVauXIlu3bplx8fLMnP3y+XLl9GtWze4urqiVatWePPNNxETE4ONGzdi6NChCA4OxoYNG6DRaMzednZ8Ry0lM8eLTkBAgNG6e3h4mL3ds2fPomHDhkhISECPHj1QsmRJbN68GUOHDsXZs2cxc+bMTHyKHCRkU5KTk6V8+fLi5OQkx48fV6Y/fvxYXnnlFXF0dJRr165luJ758+cLAOndu7dotVpl+m+//SYAZPDgwZaovsWsWbNGQkJCDKaHhoaKg4ODFCpUSJ49e5bhevbs2SMAZMKECRaopXX4+PiIj4/PC63j4sWLYm9vL6+88oo8fvxYmX78+HFxcnKSypUrS2pq6gvW1PoSExOlSJEiYm9vL/fu3cuwfG49Xnbs2KH8TkyZMkUAyIIFC4yW/frrrwWAjB07VjV97NixAkAmT55s1jYfPXokHh4e4unpKTdv3lSm37x5Uzw9PcXT01OePHmStQ+UTczdL7du3ZLZs2dLbGysanpsbKzUqVNHAMjKlSvN3m52fEctKTPHy4QJEwSA7Nmz54W327RpUwEgwcHByrTExERp0qSJAJADBw688DYsgU11Nmb37t24fPky3nnnHdXVrLu7O7744gskJSVh4cKFGa7nr7/+AgBMmTJFdVX0wQcfoFy5cli6dCkSEhKyvf6W8vbbb6NZs2YG05s0aYIWLVogOjoap06dskLN8oYFCxYgJSUFX375Jdzd3ZXpfn5+6N27N86dO4ewsDAr1jB7rF+/Hg8fPkTHjh3h5eVl7epYTOvWreHj45NhORHB3Llz4erqivHjx6vmjR8/Hq6urpg7d65Z21y1ahUeP36M4cOHw9vbW5nu7e2NYcOGISoqCuvWrcvcB8lm5u6XUqVKYejQoXBxcVFNd3FxwahRowAAe/futUgdrcHc/ZKdLl68iNDQULRo0QKvv/66Mt3R0RHfffcdgP+dx2wNm+psTEhICACgbdu2BvN0TQsZfWGfPXuGQ4cO4dVXXzX4Mmg0GrRp0wZ//PEHjhw5giZNmmRPxa3IwcEBAGBvb/7hHBERgenTpyMhIQHe3t5o2bIlSpUqZakqWlxiYiKCgoJw584dFCxYEHXr1kW9evXMXj6j4y4oKAh79+5F06ZNs6vKVqELAgYNGpSp5fLa8aITERGBO3fuoF27dkaDhEaNGmHbtm24efMmSpcune66MjqGJk6ciL1796Jfv37ZVn9ryMrvDfDi31FbExoaikOHDsHOzg4VK1ZE69at4erqavby6R0vjRs3houLi80GpwycbExERAQAoGLFigbzihcvDldXV6WMKZcvX4ZWqzW6Dv11R0RE5PrA6caNG9i5cydKlCiB6tWrm73csmXLsGzZMuW9vb09hg8fjp9//hn58uWzRFUt6t69exgwYIBqWt26dfH333+jfPnyGS4fEREBV1dXFC9e3GCe/vGSm12/fh27du2Ct7c32rdvn6ll89rxopPe741u+rZt2xAREZFh4JTeuvLKMQQA8+fPB2D8hJ+eF/2O2pq0fQg9PDzw66+/mh0Yp3e85MuXD2XLlsXZs2eRkpKS6SDV0thUZ2NiYmIAQNVcoq9gwYJKmRdZh3653Co5ORl9+/ZFYmIifvzxR7NOYEWLFsUPP/yA06dPIzY2FpGRkVi/fj0qVKiAX375BWPGjMmBmmevAQMGYNeuXYiMjERcXByOHz+Ovn37Ijw8HK1atcLTp08zXEdMTEyeP14WLFgArVaL/v37mx3s5MXjRV92/lakt668cgz9+eef2LJlC1q2bIkOHTqYvVx2fEdtRY0aNTB//nxcuXIFCQkJuHr1KmbOnAmNRoP+/ftjw4YNZq3HnGNPq9Xa5L6xrTCOyEy6E2BoaCjef/999O3b16zlqlatiqpVqyrvXVxc0LlzZ9SrVw+vvfYaZsyYgbFjx6JYsWKWqnq2S3vl5+fnh0WLFgEAFi9ejL/++kvpl/Gy0mq1WLBgATQaDd577z2zl8uLxwtlzaZNmzBs2DD4+PhgyZIlmVo2L31Hu3Tponrv6+uLYcOGoXLlymjTpg2++uorvPnmm1aqXc5gxsnG6KJvU1dmT548MRmhZ2Yd+uVyG61Wi/feew/Lli1Dnz598Pvvv7/wOosXL47OnTsjJSUlU+NC2bIPPvgAALB///4My7q7u+fZ4wUAdu7ciRs3bqBly5YoW7bsC68vrxwv2flbkd66cvsxFBwcjG7dusHLywu7d+9GiRIlsmW9mfmO2rpWrVqhfPnyOHXqlPL3To85x55Go4Gbm1u21jM7MHCyMen1Bbh37x5iY2NN9kfQKVeuHOzs7Ez2J8ioX4Mt02q1GDBgABYuXIjevXsjKCgIdnbZcxh7enoCeD6uTV6Qmc9TsWJFxMbG4t69ewbzcvPxopPVTuHpyQvHS0Z9jzLzt09vXbn5GNq8eTPefvtteHp6Ys+ePShXrly2rTsvHEP6dJ8nPj4+w7LpHS+pqam4evUqypYta3P9mwAGTjZHd8v99u3bDeZt27ZNVcYUZ2dn+Pv748KFCwYDmYkIduzYARcXF9SpUyebap0zdEHTokWL0LNnTyxevDhbO+bqMge2MCBddsjM58mO485WPXz4EP/88w8KFy5s0MzwIvLC8VKxYkWULFkS+/fvNzh5x8XFYf/+/ShbtmyGHcOBvHkMbd68GV27dkXhwoWxZ88eVKhQIVvXnxeOIZ24uDicOXMGLi4uSgCVnvSOl7CwMGVgVptk7YGkSC05OVnKlSuX7gCYV69eVabfuXNHzp07pxq0UCTvDYCZmpoqAQEBAkC6d+8uycnJ6ZZ/8OCBnDt3Th48eKCafuTIEaPlp0+fLgCkYsWKkpKSkm31trRz585JXFyc0enFixcXALJ3715l+uPHj+XcuXNy584dVfkLFy7k2QEwf/nlFwEgI0aMMFkmLx8v2T0AZlxcnJw7d06uX7+umv7o0SNxd3e36QEw9WW0X4KDg8XJyUmKFy8u58+fz3B9SUlJcu7cObl06ZJqema/o9aW3n558uSJXLhwwWB6fHy89O7dWwDIgAEDDOafO3dOzp07ZzA9owEw9+/f/2IfxkI0Ijb8QJiXlKlHrly/fh1Tp05VPXKlf//+WLhwIRYsWKA84gB4np3p0KGD8siVZs2a4dKlS1i7di18fX1x6NChXPXIlYkTJ+Kbb76Bq6srPv74Y6Pp27feeksZNFRXfsKECZg4caJSxtfXFw4ODqhTpw68vb0RFxeHgwcP4vjx4/Dw8MC2bdvg7++fQ5/qxU2cOBGBgYFo2rQpfHx84OLigosXLyI4OBjJycn4/PPPMXnyZKV8UFAQBgwYgICAAINnUek/cqVr167KI1eSkpJy3SNX9FWvXh2nT5/GyZMnTQ5ZkdeOl7lz5yoDlp46dQrHjh1Do0aNlIxJ48aNlWbLuLg4NGrUCP/99x/atm2LWrVq4dixY9i+fTvq1q2LvXv3wtnZWVl3SEgIWrRogWbNmilj8ejoP3JF9wikFStWICoqCitWrED37t1z4NObZu5+OX/+PPz8/JCYmIhevXrh1VdfNViXr6+v6jf32rVrKFu2LHx8fFTPa8vsd9QazN0v165dQ7ly5VC3bl1UrlwZxYsXR2RkJHbu3Ilbt26hevXq2LNnD4oUKaJav24Q5rThxpkzZ9CoUSMkJCSgZ8+eKFGiBDZv3owzZ85g2LBhfOQKZc6hQ4ekffv2UrBgQXF2dhZ/f39Zvny5QTldFsbY1cGzZ89k4sSJUr58eXF0dJTixYvLoEGDzHrUhK3Rfc70Xvr7QPdYgLSPyvjhhx+kRYsWUrJkSXFychJnZ2epVKmSjBw5UnWVnFuEhIRIjx49pGLFilKwYEGxt7eX4sWLS+fOnWXbtm0G5RcsWCAAJCAgwOj6lixZInXq1BFnZ2dxd3eXDh06yNGjRy38KSzn0KFDAkD8/f3TLZfXjpeMvi9p//6PHz+WkSNHSunSpcXBwUHKlCkjo0ePNpoh0j2GplmzZka3vWXLFmnSpIm4uLiIq6urNGvWTHbs2GGBT5l55u4X3WdM75X281+9elUAGDxaJbPfUWswd7/ExMTIRx99JHXr1pWiRYuKvb29uLm5ib+/v/z0008SHx9vdP269Rhz/vx56datmxQuXFicnJykevXqMnv2bFVLia1hxomIiIjITOwcTkRERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5EREREZmLgRERERGQmBk5ELzFfX19oNJp0X9OnT7d2NSmbHD9+HPny5cPw4cNV00NCQpS/d3quXbumlNN/HltmxcTEoEiRIqhXr57B88uIbJ3hk1KJ6KWj/0DPtKpUqZLDtSFLGT58OJydnTF+/Hir1sPd3R2ff/45PvvsMyxatAgBAQFWrQ9RZjBwIiIMGjRI9aR3yntWr16N/fv347PPPkOxYsWsXR0MGzYMP/30Ez7//HP06tULTk5O1q4SkVnYVEdE9BL45ZdfAAADBw60ck2ey58/P9555x3cvXsXK1assHZ1iMzGwImIzKLrD3Xt2jX8888/aNmyJQoXLgyNRoOQkBClXHR0NCZMmAA/Pz+4ubmhQIECqF69Or7//nvEx8cbXXdKSgqmT5+O6tWrI3/+/ChatCi6du2KU6dOISgoCBqNxiAjNnHiRGg0GkycONHoOnX9dpo3b250/p07dzBq1ChUrlwZBQoUgJubG+rWrYtZs2YhJSXFoHz//v2h0WgQFBSEq1evom/fvihevDicnJxQvnx5fPXVV0hMTDS5/44ePYqAgACULVsW+fPnR+HChVGjRg189tlnuH79OgBgwYIF0Gg0aNeuncn13LlzBw4ODnB2dsbDhw9NltN3/PhxHDhwAPXr18err75q1jKZoftbZPRKS/c3nT17drbXichS2FRHRJkybdo0zJo1C3Xq1EH79u1x584d5MuXDwBw9uxZtG/fHjdv3kSJEiXQuHFjODg44PDhwxg/fjzWrFmDkJAQuLu7K+vTarXo3r071q9fD0dHRzRv3hyFChXCoUOH4O/vj/feey/bP0NoaCjeeustREdHw9fXF23atEFiYiIOHz6M4cOHY+PGjdi0aRMcHBwMlj1x4gQ+/vhjFCpUCM2aNcOjR4+wf/9+TJo0CWfOnMG6desMlvn5558xbtw4aLVavPLKK+jcuTMSEhJw6dIlTJ06FVWrVkX//v3xzjvvYOzYsdixYwcuXryIV155xWBdf/zxB1JSUtC3b18UKVLErM+7fv16AEDr1q0zt6PM5OfnZ7Kf0oULF3Dw4EHY2Rlep/v5+aFo0aI4fPgw7t69ixIlSlikfkTZSojopeXj4yMAZMGCBWaXzZcvn/zzzz8G8+Pj46V8+fICQL766itJTExU5sXFxUnv3r0FgAwYMEC13KxZswSAeHl5ydmzZ5XpycnJ8uGHHwoAASABAQGq5SZMmCAAZMKECUbru2fPHgEgzZo1U02/e/euFClSRDQajcyZM0dSU1OVeVFRUdKyZUsBIN98841quYCAAKUuX375paSkpCjzTp06JS4uLgJADhw4oFrun3/+EQCSP39+WbFihUE9z5w5o/rcX375pQCQESNGGJRNSkqS4sWLCwA5evSo0c9tTOPGjQWAbN682eh83b7K6JRw9epVpdzVq1cz3O7169elRIkSAkBmzZpltMybb74pAGTx4sUZro/IFjBwInqJ6YIhUy/9oENX9r333jO6rt9++00ASMeOHY3Of/r0qRQrVkzs7e3l0aNHyvQKFSoIAPntt98MlklISFAChewKnMaOHSsAZNiwYUaXu3Xrljg4OEjRokVFq9Uq03WBU+3atVXTdYYMGSIA5Ntvv1VN9/PzEwAybdo0o9tL6/bt2+Lg4CDu7u4SGxurmvf3338LAGnQoIFZ69LRBXVXrlwxOl8/cDL3lVHgFB0dLVWqVBEA8tlnn5ks9/nnnwsA+eSTTzL1mYishU11RGRyOIJKlSoZTOvWrZvRdWzevBkA0LNnT6PzXV1dUadOHQQHByM8PBxt27bF7du3cenSJQBAnz59DJbJnz8/evTogRkzZpj9WTKSUT1LlSqFihUr4uzZs4iIiDBoLuvYsaPR/jqVK1cGANy+fVuZdu/ePZw4cQJ2dnZmd8ouWbIkunXrhr///huLFy/GkCFDlHm6vkDDhg0za10AEBcXh7i4OAAwq2kvvaEBYmNjsWbNmgzXkZSUhLfeegtnz55Fr1698OOPP5osq6tTZGRkhuslsgUMnIgoU8MR+Pr6Gp1+5coVAEDfvn3Rt2/fdNfx4MEDAMCtW7cAAJ6ennB1dTVatmzZsmbVy1y6ejZp0iTDsg8ePDAInMqUKWO0bMGCBQEAz549U6bduHEDAFCiRAlVv66MjBgxAn///Tdmz56tBE4nT55EWFgYvLy8TAavxsTExCj/d3Nzy7B8UFCQyXnXrl3LMHASEfTv3x979+5Fs2bNlM79puj2W3R0dIZ1I7IFDJyIKFOcnZ2NTtdqtQCA9u3bw8vLK911+Pj4ZHu9TNXH1PRu3brBxcUl3XUYy9AY6+Sc3erXrw9/f38cPnxYCUB02abBgwfD0dHR7HV5eHgo/3/69KkSqFjKuHHj8Pfff6NKlSpYv359huMz6QK7QoUKWbReRNmFgRMRZYvSpUvj/PnzGDhwoNkZkVKlSgEAoqKiEBsbazTrZOrRHrrg4enTp0bn627xN1bPiIgIjB07FnXq1DGrnlmly07dvXsXMTExmc469enTB7NmzUKNGjWwdOlS2Nvbq5ruzFGgQAG4uLggLi4ODx8+tGjgNGfOHPz0008oWbIktmzZograTNENqZBRsE1kKziOExFli9dffx0AsHLlSrOX8fb2Rrly5QAAy5YtM5ifmJiIVatWGV1WF3SdO3fO6HxdX6bsqGdWFS9eHDVq1IBWq8X8+fMztWyPHj1QokQJrF+/HpMmTUJcXBy6dOmCkiVLZroetWrVAvB8uAhL2bBhA0aMGAE3Nzds3rzZZJNmWqdPnwYA1K5d22J1I8pODJyIKFsMHjwYPj4+WLVqFcaOHWs0E3Tv3j389ddfqmkjR44E8HwQxfPnzyvTU1NT8emnn+LOnTtGt9eyZUvY2dlh27Zt2Lt3rzJdRDBjxgyTfXE+++wzeHh4IDAwENOmTUNSUpJBmatXr2LJkiUZfmZzTJgwAQDw5ZdfGq3T2bNnjQZ/Dg4O+PDDD5GSkoKpU6cCyFyncH0tWrQAAPz7779ZWj4jhw8fRu/evWFnZ4fVq1fDz8/P7GV1dWrZsqVF6kaU3Rg4EVG2cHFxwebNm+Hr64uffvoJZcqUQbNmzfDuu++iS5cuqFq1KkqWLGnwgNmPPvoInTp1wt27d1GjRg20b98evXv3RsWKFTF37lx8+OGHRrdXunRpDB8+HFqtFq1atUKLFi3QtWtXVKxYEZ9++inGjRtndDlvb2/8888/KFSoED799FOULl0arVq1Qp8+fdCpUydUqFAB5cqVw6xZs7Jlv3Tp0gWTJk3Cs2fP0K1bN1SuXBm9evVC586dUbVqVVStWhWHDh0yuuwHH3yg9BF67bXX0LRp0yzV4a233gIA7NixI0vLZ+Tzzz9HfHw8vL29sWzZMvTv39/oK63jx4/j4cOH8Pf35+CXlGuwjxMRZZuqVavi5MmT+P3337Fu3TqcPHkS//77Lzw9PeHt7Y1PP/0UXbp0US1jZ2eHtWvXYsaMGZg3bx5CQkLg6uqKxo0bY926dTh+/Dh+++03o9v75ZdfUKZMGcydOxcHDhyAq6srGjVqhJUrV+LJkyf44YcfjC7XtGlTnDlzBrNmzcLmzZsRHh6OxMREFCtWDGXKlEGfPn3QtWvXbNsvX3zxBVq2bIkZM2YgNDQUa9euhZubG0qXLo0xY8aYzLYUK1YMfn5+OHToED766KMsb79mzZpo2LAhDhw4gHPnzilDJ2SX1NRUAM8zdVevXjVZLu0de7r3L/LZiHKaRkTE2pUgIjIlKCgIAwYMQEBAQLq3yudFFy9eRKVKleDu7o7bt2+jQIECWV7X6tWr0b17d4waNQrTpk3LxlpmzbNnz1C6dGk4ODjg6tWrGd59R2Qr2FRHRGSjvv76a4gIPvzwwxcKmoDnwy80atQIf/zxh00MNjlz5kxERUVhypQpDJooV2HgRERkQzZs2ICBAweifv36WLFiBYoXL44xY8Zky7pnzpyJhIQEfPfdd9myvqyKiYnBDz/8AH9/f/Tr18+qdSHKLPZxIiKyIceOHcP8+fPh5uaG1q1bIzAw0KzxkMxRs2ZNpT+SNbm7uyvjNxHlNuzjRERERGQmNtURERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDgRERERmYmBExEREZGZGDhRnlejRg1oNBo4OTnh4cOH6ZZt3rw5NBoNQkJCcqZymRASEgKNRoPmzZtbuypE2Y7HN+UWDJwoTwsPD8fJkycBAElJSViyZImVa2RbfH19odFocO3aNWtXhYgoV2DgRHnavHnzAAClSpVSvSciIsoKBk6UZ8XHx+Pvv/8GACxevBiurq44deoUwsPDrVwzIiLKrRg4UZ61atUqPHnyBNWqVUOLFi3Qs2dPAOZnnfbu3Yu2bduicOHCKFCgAPz9/bF48WKjZRMTE/Hzzz+jdu3acHNzg6OjI4oXL466detizJgxePTokcEyt27dwvDhw1GxYkXkz58f7u7uaNSoEf744w+kpqaa/TnN6Rui0Wig0WiU90FBQdBoNLh+/ToAoGzZskoZY3287ty5g1GjRqFy5cooUKAA3NzcULduXcyaNQspKSlm1xUAJk6cCI1Gg4kTJ+LGjRsYOHAgSpcuDQcHB/Tv3x8A0L9/f2g0GgQFBeHChQvo2bMnihUrBhcXF9StWxf//POPsr5Dhw7hzTffRNGiReHs7IwGDRpg165dRrcdERGB9957D2XLloWTkxNcXV3h4+ODN954AwsWLMjU5wCAnTt3olOnTvDy8oKDgwMKFSqEihUrok+fPggNDTUon5CQgIkTJ6JixYpwcnJCiRIlEBAQgBs3bqj2iz79fWGM7m+p23c6ycnJWLJkCd59911UqlQJBQsWhLOzM1599VWMGDECd+7cMbo+/X5++/btQ6dOnVC0aFHY2dmp6pCQkIBp06ahfv368PDwQP78+fHqq69izJgx6fYlXLRoEerWrYsCBQqgcOHCaN++Pfbt22eyfHquXbsGjUYDX19fiAj+/PNP1K5dGy4uLnB3d0fbtm3x77//mlw+s99B/X396NEjjBw5EuXLl4eTk5Py/dP/O965cweDBg1CyZIl4ezsjGrVqql+f86fP4933nkHxYsXR/78+VGjRg2sWLEiS/uCco69tStAZCm6H6j33ntP+XfevHlYvnw5fvnlFzg7O5tcdt26dZg1axYqVaqEdu3a4c6dOwgLC0O/fv1w4sQJTJs2TSmr1WrxxhtvYNeuXShYsCCaNGkCDw8PPHjwABEREfj555/xzjvvoHDhwsoy4eHhaN++PR49eoQyZcrgrbfeQkxMDEJCQnDgwAGsW7cOGzZsgKOjo0X2TYUKFRAQEIDVq1cjLi4OXbt2haurqzK/ePHiyv9DQ0Px1ltvITo6Gr6+vmjTpg0SExNx+PBhDB8+HBs3bsSmTZvg4OCQqTpERESgZs2acHR0RKNGjSAi8PT0VJU5duwYhg0bBm9vb7Rq1QrXr1/Hv//+iy5dumDlypWwt7dHjx49UK1aNbRq1Qrnz5/HwYMH0b59e+zZsweNGzdW1nX69Gk0atQIT548wauvvoqOHTsiX758uHXrFkJDQ3H79m0MGDDA7PovXLhQKe/v748WLVogISEBt27dwvLly+Hp6YmmTZsq5ePj49GqVSscPHgQLi4uaNu2LZydnbFt2zZs3rwZb7zxRqb2X0YiIyPRt29fuLu7o3LlynjttdcQFxeHEydOYObMmVi+fDkOHDiAChUqGF1+1apV+P3331GpUiW0bt0ajx49gpOTE4DngXT79u1x6tQpFC5cGHXr1oWbmxuOHTuGn3/+GatWrUJISAh8fHxU6/z4448xY8YM2NnZoXHjxihZsiROnjyJ5s2bY/jw4S/0eQcMGIBly5ahSZMm6NixI06cOIEdO3YgNDQUe/fuRb169VTlX+Q7GBUVhTp16uDx48do0qQJateubVDuxo0byvQmTZrgwYMHCA0NxaBBg/D48WM0atQIbdu2RcmSJdGiRQvl2O7VqxcAKBd6ZIOEKA+6cOGCABAHBwe5f/++Mr1SpUoCQBYtWmR0uWbNmgkAASCTJ09WzQsJCRFnZ2cBIFu3blWm7927VwBIzZo15cmTJwbrDA8Pl6ioKOX9s2fPxMfHRwDIkCFDJCkpSZl3+fJl8fX1FQDyxRdfqNazZ88eASDNmjUza7o+3WdKS1ePq1evGl3u7t27UqRIEdFoNDJnzhxJTU1V5kVFRUnLli0FgHzzzTcmt53WhAkTlPr06dNHnj17ZlAmICBAKfP999+LVqtV5s2YMUMAiLe3txQqVMjgbzly5EgBIK1bt1ZNHzBggLK+tOLj42Xv3r1mfwYRkbJlywoA2bdvn8G8yMhIOXbsmGrap59+KgCkUqVKcvv2bWV6XFycdO7cWfm8EyZMUC2n2xcLFiwwWo8FCxYIAAkICFBNf/Lkifzzzz+SmJiomp6UlCSff/65AJAOHToYrE//OzB79myD+VqtVho1aiQAZODAgapjPjk5WUaPHi0ApEWLFqrlNm3aJADExcVFQkNDVfMmT56sbDO94zitq1evKsv5+PjIhQsXlHkpKSny3nvvCQBp27atarmsfgd1+xqAtGrVSmJiYgzqpH98DxkyRJKTk5V5GzZsEADi5uYmPj4+Bsf29OnTBYBUqFDB7H1AOY+BE+VJY8eOFQDStWtX1fSffvop3R9n3UmjZs2aRufrTgpt2rRRpq1cuVIAyIgRI8yq2+LFiwWAlCxZ0mjQsHr1auXHNSEhQZlujcBJtx+HDRtmdP6tW7fEwcFBihYtqjoBpEd3YilcuLA8fvzYaBldsODv72+w3uTkZClcuLAAkO7duxssGxUVJQDE0dFRdULs0KGDADAIaLKqQIEC4u7ublbZ+Ph4cXNzEwCyZcsWg/l3796V/PnzZ2vglJGSJUuKnZ2dQbCv+w60bNnS6HJbtmwRAOLn56cKCnRSU1OlWrVqAkBOnTqlTG/durUAkLFjxxpdr5+f3wsFThs2bDCYf/fuXQEgTk5OqmMhq99B3b52cHCQy5cvG62T7vguU6aMalmd1157zaxj+/r162bvB8pZ7ONEeU5KSgoWLlwI4H/NdDr9+vWDvb09QkNDcfnyZZPr6Nevn9HpAQEBAICwsDClD0StWrWQL18+zJ8/H7Nnz8bdu3fTrZ+u/1CvXr2Upg99b7/9NgoVKoSnT5/i6NGj6a7L0jZv3gzAdLNBqVKlULFiRaVZMjNat24Nd3f3dMu8/vrrqr5ZAGBvb4+yZcsCADp06GCwTJEiRVC4cGEkJSWp+tr4+/sDAD788ENs27YNz549y1R90/L390dMTAz69euHo0ePQqvVmix77NgxPH36FJ6enmjfvr3B/OLFi6Nt27YvVB9T/vvvPwQGBmL48OF477330L9/f/Tv3x8pKSnQarW4dOmS0eW6detmdLrumOjatSvs7Q17e9jZ2SlNlAcOHADw/DsZFhYGAOjTp4/R9Zr6zpnD3t7e5H4tVKgQEhMTVcfCi34Ha9asiXLlyqVbpxYtWiB//vwG0ytWrAjA9LHt6+sLACb7oJH1sY8T5TmbN2/GvXv3UKpUKbRr1041z8vLCx06dMCGDRswf/58TJo0yeg6dCdmU9MTEhLw8OFDFCtWDOXLl8cvv/yCzz77DMOGDcOwYcPg4+ODBg0aoGPHjujevbuq/8Pt27fT3YZGo0HZsmURHR2tlLWWK1euAACaNGmSYdkHDx7glVdeMXvduhNEesqUKWN0uq4/lqn5bm5uePTokSo4+uyzzxAWFoadO3eiffv2cHBwQI0aNdC0aVP06tULdevWVcqeP38eP/zwg8F6GzdujEGDBgEA5syZg44dO2Lx4sVYvHix0mG+ZcuW6Nu3r6put27dyvAzmzoesiouLg59+/bFunXr0i335MkTo9NN1VV3TIwfPx7jx49Pd90PHjwAADx8+FD5W2T03cqKEiVKmOxjV7BgQURHR6uOhRf9Dlr62AXwwoE9WQ4DJ8pzdJ3Cnz17hmbNmhnM1/0QBgUF4dtvv0W+fPmytB0RUf4/fPhw9OjRAxs2bEBYWBjCwsKwfPlyLF++HBMmTMC+fftQokSJLG3nRaWXCTF32W7dusHFxSXdskWKFMnUutPrnK9jZ5d+Ujyj+foKFCiAHTt2IDw8HFu3bsWBAwdw4MABHDlyBIGBgRg6dChmz54NALh3756StUxLFzhVrlwZFy5cwPbt27F7924cOHAA+/btw+7du/Htt99i3rx5JrMr2cnU3/fzzz/HunXrUKlSJfzwww+oW7cuPD09lSC+YcOG+Pfff1XHsT5Tfx/d9ho3bozy5cunW7eqVaua+zFeSGaOg+yQ08cu2RYGTpSn3L17F8HBwQCeX+Xu37/fZNk7d+5g69atRu9munr1qtFldCNs58+f3yBQ8PLywvvvv4/3338fwPOsxXvvvYd///0X48aNU07EusE4dVfuxui2ryubHt2J8OnTp0bn64YcyIrSpUsjIiICY8eORZ06dbK8HltSt25dJbuUkpKC9evXo1+/fpgzZw66deuGFi1aoHnz5iYDCn329vbo0KGD0mT45MkTBAYG4ptvvsEHH3yALl26wMXFRfk7pjdCu6l5Wf37rly5EgCwYsUKvPbaawbzM9u0qlO6dGkAQOfOnfHpp5+atUyRIkXg5OSExMREXLt2zWhAlZOj12f3d5BeLgx5KU8JCgpCamoq6tWrB3l+84PR15gxYwCYHtPJ1KNZFi1aBOD51bax/h36KlWqhLFjxwIATpw4oUzXjfeyYsUKo+n4devWITo6Gm5ubqhdu3a62wDUJ4GkpCSD+bo+KcboTsqmxmJ6/fXXAfzvJJzX2Nvbo1u3bkqTrv7fKSsKFiyIiRMnwsPDA/Hx8bh48SIAoHbt2nB1dUVUVBS2b99usFxkZKTR6cD//r7nzp0zmCci2LJli9HldGOHpR0SAAC2bduGqKgo8z5UGrpjYtWqVWYFl8Dz/dyoUSMAwNKlS42WMTVGmiVk93eQXi4MnChPmT9/PoD/deI2RdcRddOmTUo/DH1Hjx7FTz/9pJoWFhamNOV88sknyvTdu3cjODgYycnJqvIigk2bNgFQn7y6d++OMmXKKINK6gctV69exejRowE8b/4z1rk0LR8fH1SsWBGPHz/Gjz/+qJoXEhKCr7/+2uSy3t7eAIAzZ84Ynf/ZZ5/Bw8MDgYGBmDZtmtHA7OrVq7niGYBz5szBhQsXDKbfu3cPR44cAWA8yDAmPj4egYGBRo+dffv24fHjx8iXL5+yf52dnTF48GAAz48d/RsIEhIS8OGHHyIhIcHotlq3bg3geWBx9uxZZXpycjLGjh1rciT8ypUrAwBmzpypmn7hwgUMGTLErM9pTOfOnVG3bl0cPnwYAwYMMLoPoqOj8fvvv6uO7ZEjRyr10XUa1/npp59w7NixLNcps7L7O5gTdOPKvUgnesomVrmXj8gCQkJClFuPHz16lGH5WrVqCQCZOnWqMk13K/aIESPEzs5OqlatKr1795ZmzZqJnZ2dAJCPP/5YtZ5ffvlFAEjBggWlefPm8s4770iXLl2UW/3d3d3l+PHjqmUOHz6s3Hbs4+MjPXv2lA4dOii3pLdr185g/J30hh1Ys2aNaDQa5Tbx7t27S+3atUWj0cjXX39tcjiCWbNmCQBxdXWVt99+WwYOHCgDBw6U8+fPK2X27t0rnp6eAkCKFSsmLVu2lHfffVc6duwo5cuXFwBSr169DPe3ju527bS33evL6BZ83d9pz549RucbG2ahRo0aAkDKli0rnTp1knfffVfatm2rjM3VsmVLo7fXGxMdHS0AxM7OTmrUqCHdunWT3r17S4MGDZS/w9dff61aJjY2Vvz9/ZX93alTJ+nevbsUL15cihQpIv369TO5X3TjPDk7O0ubNm3kzTffFG9vbylYsKB8/PHHRocj0D8mqlevLr169ZKWLVuKg4ODtGzZUho2bGh0H2a0b0VEbt++rQwf4OLiIg0bNpRevXrJ22+/LX5+fpIvXz4BYHA7/kcffaTst+bNm0vv3r2latWqYmdnp3yOrAxH4OPjY7KMqSE3svIdNGfoh4yO76we27r1Zmb/kGUw40R5hq7ZrVOnTihUqFCG5XVXbsaa67p06YIdO3agePHiCA4OxuHDh1GrVi0EBQVh+vTpqrKdOnXCxIkTUbduXVy5cgVr165FSEgI3N3dMW7cOJw+fRp+fn6qZerWrYsTJ07go48+Qr58+bBu3Trs27cPNWvWxG+//YZNmzZlatTwt99+G5s2bUKjRo1w8eJFBAcHw8HBAcuXL8c333xjcrkPP/wQU6ZMgY+PD4KDgzFv3jzMmzdPlRFp2rQpzpw5g/Hjx8Pb2xvh4eFYtWoVTpw4AS8vL0yYMAF//fWX2XW1lkmTJuHDDz+Eh4cHDh48iFWrVuHs2bOoV68eFi5ciK1bt2bY/Krj6uqK33//HT179kRiYiJ27NiB9evX4/79+3j77bexa9cug/3u4uKCPXv2YPz48fDy8sK2bdsQGhqKVq1a4ciRI+neVbZixQp89dVXKFGiBEJCQnDw4EE0adIEx44dMzi2dN5++23s3bsXrVq1wt27d7Fhwwbcv38fEydOxJYtWzI90ru+kiVL4uDBg/j999/h7++PCxcuYPXq1cqQA0OGDMG2bdsMsjWzZs3C/PnzUbNmTRw8eBDBwcEoUaIEdu3ahbfeeivL9cmK7P4O0stDI2JmIzUREVnMxIkT8c0332DChAkGz6sjItvBjBMRERGRmRg4EREREZmJgRMRERGRmdjHiYiIiMhMzDgRERERmYmPXLESrVarjNxboEABg6dkExERkeWJCOLj4wEAnp6eGT5HkIGTlURFRcHLy8va1SAiIqL/FxkZiWLFiqVbhk11RERERGZixslKChQooPw/MjISLi4uVqwNERHRyykuLk5pAdI/N5vCwMlK9Ps0ubi4MHAiIiKyMnP6G7OpjoiIiMhMDJyIiIiIzMTAiYiIiMhM7OOUQ+Li4tJ9T0RERLaPgVMOcXV1tXYViIiI6AWxqY6IiIjITMw45ZDY2FjVe/1xI4iIiCh3YOCUQzhOExERUe7HpjoiIiIiMzFwIpt35MgR/PDDD7h//761q0JERC85NtWRTUtNTUWnTp1w7949XLlyBX/++ae1q0RERC8xZpzIpsXFxeHevXsAgEuXLlm5NkRE9LJj4EQ2LSUlxej/iYiIrIGBE9m01NRUo/8nIiKyBgZOZNOYcSIiIlvCwIlsGjNORERkSxg4kU3TD5aYcSIiImtj4EQ2TT9YYsaJiIisjeM45ZC4uLh035NxzDgREZEtYeCUQ1xdXa1dhVyJGSciIrIlbKojm8bO4UREZEuYccohsbGxqvdxcXHw8vKyUm1yDw5HQEREtoSBUw5xcXGxdhVyJWaciIjIlrCpjmwaM05ERGRLGDiRTWPGiYiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimcQBMIiKyJQycyKZxAEwiIrIlDJzIpjHjREREtoSBE9k0/WBJq9VCRKxYGyIietkxcCKblrZ5js11RERkTQycyKalbZ5j4ERERNbEwIlsWtpAif2ciIjImhg4kU1jxomIiGwJAyeyaezjREREtoSBE9k0NtUREZEtYeBENo1NdUREZEvsrV2Bl0VcXFy678k4ZpyIiMiWMHDKIa6urtauQq7EjBMREdkSNtWRTWPGiYiIbAkzTjkkNjZW9T4uLg5eXl5Wqk3uwYwTERHZEgZOOcTFxcXaVciVmHEiIiJbwqY6smnMOBERkS1h4EQ2jRknIiKyJQycyKYx40RERLaEgRPZNGaciIjIljBwIpvGZ9UREZEtYeBENi1thokZJyIisiYGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmkcjoCIiGwJAyeyaRyOgIiIbAkDJ7JpzDgREZEtYeBENo0ZJyIisiUMnMimMeNERES2hIET2TRmnIiIyJYwcCKbxuEIiIjIljBwIpvGATCJiMiWMHAim8aMExER2RIGTmTTmHEiIiJbwsCJbBozTkREZEsYOJFNY8aJiIhsCQMnsmnMOBERkS1h4EQ2jRknIiKyJQyczDRx4kRoNBrVq06dOtauVp7HjBMREdkSe2tXIDepUaMGtm7dqrx3cHCwYm1eDhw5nIiIbAkDp0ywt7dH8eLFrV2NlwqfVUdERLYkzzTVLVmyBB988AHq1KkDJycnaDQaBAUFpbtMeHg4OnToAA8PD7i4uKB+/fpYuXKlyfLnzp1DiRIlUKFCBQwYMAD37t3L5k9BabGpjoiIbEmeyTh99dVXuH79Ojw9PVGiRAlcv3493fJ79uxBu3btkD9/fvTq1Qtubm5Ys2YNevbsiZs3b2L06NGq8vXq1UNQUBAqVaqE27dv4+uvv0bLli1x/PhxODk5WfKjvdTYOZyIiGxJnsk4zZ07F9euXcODBw8wZMiQdMumpKTg/fffh52dHUJDQ/Hnn39i2rRp+O+///DKK6/giy++MAi8Xn/9dXTv3h3Vq1dH+/btsXnzZly9ehWbNm2y5Md66THjREREtiTPBE6tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOHCdNdRtGhR+Pr64urVqy9SbcoAM05ERGRL8kxTXWaEhIQAANq2bWswr127dgCAvXv3pruO6OhoXL9+Hb6+vkbnx8XFpbt8RvPpOWaciIjIlryUgVNERAQAoGLFigbzihcvDldXV6WMzmeffYZOnTqhTJkyuHXrFr744guUKlUKHTp0MLoNV1fX7K/4S4gZJyIisiUvZeAUExMD4HnTnDEFCxZUyujcvHkTvXr1QlRUFLy8vNCsWTMsXrwYBQoUsHh9X2bMOBERkS15KQOnrFi+fHmmysfGxqY7Py4uDl5eXi9SpZcCM05ERGRLXsrASZdpSptV0nny5AkKFSr0QttwcXF5oeXpOWaciIjIluSZu+oyQ9e3KW0/JgC4d+8eYmNjjfZ/ehFxcXEGL8oYH7lCRES25KUMnJo1awYA2L59u8G8bdu2qcpkF1dXV9WLzXTm4SNXiIjIlryUgVOrVq1Qrlw5LFu2DCdOnFCmx8TEYPLkyXB0dES/fv2sV0FSMONERES2JM/0cZo7dy7CwsIAAKdOnVKm6cZsaty4MQYNGgTg+cN6586di3bt2qFp06aqR65cv34dU6dONTk+U1al7SzOzuEZExH2cSIiIpuSo4FTbGwsIiMjER0djUKFCsHLyyvbxjsKCwszGO17//792L9/v/JeFzgBQIsWLRAWFoYJEyZgxYoVSE5ORvXq1fHjjz+iZ8+e2VInfewsnnlardZgGjNORERkTRoREUtuYNu2bVi/fj127dqFy5cvG8yvUKECWrZsibfeeksZtftlEBcXpwSNsbGxDKyMSExMRP78+VXT2rVrh61bt1qpRkRElNdk9nxskYxTamoqfvvtN8yYMQOXL1+Gfmzm6uqqDDAZFxeHiIgIRERE4M8//0SFChUwYsQIDBkyBPny5bNE1awm7V10vKsuY8aa5ZhxIiIia8r2zuFbt25FtWrVMGLECFy/fh1vvvkmZs2ahWPHjiExMRFPnjzBrVu38PTpUzx79gxHjhzBjBkz0LFjR1y7dg0jRoxA9erVlbvb8greVZd5xoIk9nEiIiJryvamOjs7O3h5eeGzzz5Dv3794OnpafayUVFRWLhwIX766SdERUXlqZOkRqMxOY9NdcZFR0ejcOHCqmlNmjRBaGiolWpERER5jdWb6r777jt88sknWXqGm6enJ0aPHo0PP/wQv/zyS3ZXzap4V13mGcs4samOiIisyeKdw8k4dg7P2L1791CiRAnVNH9/fxw6dMhKNSIiorwms+fjl3IATMod2DmciIhsjVUHwLx69SpOnjwJHx8f+Pn5WbMqZIPYOZyIiGyNxTNOGzZswNtvv43Dhw+rpv/888945ZVX8Pbbb6N27dp47733LF0Vq+JDfjOPGSciIrI1Fg+cFi1ahK1bt6Jy5crKtPPnz2PcuHEQEdSoUQMFChTAwoULsXHjRktXx2o4HEHmMeNERES2xuKB0/Hjx1GjRg24ubkp05YuXQoAmDNnDo4dO4bw8HDky5cPf/75p6WrQ7kIM05ERGRrLN7HKSoqCjVr1lRNCwkJgbOzM/r37w8AqFSpEho3bowzZ85YujpWw+EIMo8ZJyIisjUWD5yePXumenxKamoqjh07hvr168PR0VGZXrJkSRw8eNDS1bEaDjeQecw4ERGRrbF4U12xYsUQERGhvD948CASEhLQqFEjVbmEhAQGF6TCjBMREdkaiwdODRs2xH///Yfly5cjJiYGkydPhkajQevWrVXlzp07h5IlS1q6OpSLMONERES2xuJNdWPHjsX69evx7rvvAgBEBLVr10bTpk2VMjdv3sT58+fz9JAEaYcf4HAEGTMWODHjRERE1mTxwKlWrVoIDg7GpEmTcP/+ffj7+2PKlCmqMitXroS7uztatWpl6epYjW44dzIfn1VHRES2hs+qyyEajcbkPD6rzrg9e/agZcuWqmmurq54+vSplWpERER5TWafVWfVR668TDgcQeaxczgREdmaHA2cDh48iJCQENy6dQsiAm9vbzRv3hwNGjTIyWpYBTNKmcfO4UREZGtyJHC6fPky+vXrp4zTpGsd1DVf1atXD4sWLUKFChVyojqUSzDjREREtsbigdOdO3fQpEkT3Lt3DwUKFED79u1RtmxZAMC1a9ewdetWHDx4EE2bNkV4eDhKlSpl6SpRLmEsSNJqtRCRdPuMERERWYrFA6evv/4a9+7dQ9euXTFnzhwULVpUNT8qKgpDhw7F6tWrMWHCBMydO9fSVaJcwlSzXGpqKuzt2T2PiIhynsXvqitVqhQ0Gg2uXLmiesSKvqSkJJQrVw5arRZ37tyxZHVsRmZ78b+MVq5ciZ49expMT0hIQP78+a1QIyIiymsyez62+Mjhjx49QuPGjU0GTQDg6OiIxo0bIzo62tLVoVwkvYwTERGRNVi8vcPb29usUbLj4+PzdP8mjhyeeaYCJN5ZR0RE1mLxjFP37t0REhKC27dvmyxz+/Zt7N69G926dbN0dazG1dVV9eIYThkzFTgx40RERNZi8cBp/PjxqF69Olq2bIlNmzYZzN+8eTNatWqF1157DRMmTLB0dSgXMZVZYsaJiIisJdub6tI+IgMA7OzsEBERgc6dO8PDwwO+vr4Ang9H8PjxYwBAgwYN0LFjR+zatSu7q2QTOHJ45jHjREREtibbA6eQkBCT80QE0dHRRjuBHzhwIE+PzcO75jKPGSciIrI12R447dmzJ7tXSS8pZpyIiMjWZHvg1KxZs+xeJb2k9DNLDg4OSE5ONphORESUkyzeOZwoq/QzS05OTkanExER5SQGTmSz9DNL+oETM05ERGQtOfbAryNHjmD16tW4cOECnjx5AmNPetFoNHn2rjrKPGaciIjI1uRI4PTpp5/il19+UYIljUajCpx07/PyXXWUeQyciIjI1li8qW7VqlUIDAxEqVKl8Mcff6Bt27YAgG3btmHWrFlo0KABRATjxo3D7t27LV0dq4mLizN4UfrYVEdERLbG4hmnP//8E/ny5cOuXbtQsWJFHDhwAADQpk0btGnTBkOHDsX48ePx888/o0ePHpaujtXonrxM5mPGiYiIbI3FM07Hjx9HvXr1ULFiRZNlvvnmG5QoUQLff/+9patDuYh+ZsnR0dHodCIiopxk8YzT06dPUaZMGeW97gQYGxurZGHs7OxQr1497N2719LVsRo+ciXzmHEiIiJbY/GMU9GiRZXn0QGAp6cngOfPqdMXFxeHJ0+eWLo6VuPi4mLwovSxjxMREdkaiwdOvr6+uH79uvK+Zs2aEBEsW7ZMmXbv3j3s3bsXPj4+lq4O5SLMOBERka2xeODUqlUrnD9/Xskwvf766yhcuDB+/PFHdO/eHaNHj0a9evUQFxeHrl27Wro6lIsw40RERLbG4n2cevXqhTt37uDmzZvw9fWFi4sLFixYgF69emHNmjVKudq1a+Pzzz+3dHUoF2HGiYiIbI3FA6fKlSvjr7/+Uk3r1KkTIiIisHHjRjx69AiVK1dGp06dkC9fPktXh3IRZpyIiMjW5NgjV9IqWbIkPvjgA2ttnnIBZpyIiMjW8CG/ZLNMBU7MOBERkbVke+B0584dm1oP5V6mmuqYcSIiImvJ9sCpYsWKGDduHKKjo7O0/KNHjzBmzJh0RxqnlwMzTkREZGuyPXBq27YtfvrpJ3h7e6NPnz7YsWMHEhMT010mMTER27ZtQ+/eveHt7Y2pU6eiXbt22V01ymWYcSIiIluT7Z3D161bh507d+KTTz7BsmXL8Pfff8PBwQF+fn6oXLkyihQpgoIFC+LJkyd4+PAhzp49i//++w/JyckQEVSrVg2BgYFo3bp1dlfNquLi4tJ9T4b0AyQ+q46IiGyBRe6qa926NU6dOoUdO3Zg1qxZ2L59Ow4fPozDhw8DADQaDUREKe/k5IROnTph2LBheS5g0tE9l4/Mx4wTERHZGosOR9CmTRu0adMGiYmJ2L9/P44fP47IyEjExMTAw8MDxYoVQ61atdCwYUPViZEI4HAERERke3JkHCcnJye0bNkSLVu2zInN2aTY2FjV+7i4OHh5eVmpNrkDB8AkIiJbY7UBMF82Li4u1q5CrsOMExER2RoOgEk2ixknIiKyNQycyGaZuquOGSciIrIWBk5ks3QBUr58+WBv/79WZWaciIjIWhg4kc3SBUj58uVDvnz5lOnMOBERkbUwcCKbpQuQ7O3tmXEiIiKbwMCJbBYzTkREZGssHjiFhoZi//79lt4M5UHMOBERka2xeODUvHlzjB8/3tKboTyIGSciIrI1Fg+cChUqhJIlS1p6M5QHMeNERES2xuKBk5+fHyIiIiy9GcqDmHEiIiJbY/HAacSIEQgPD8fmzZstvSnKYziOExER2RqLP6uuZs2aGDZsGLp06YL+/fuja9eu8PX1hbOzs9HyZcqUsXSVKJfQb6pjxomIiGyBxQOnsmXLAgBEBPPmzcO8efNMltVoNMwmkEK/qU4/48TAiYiIrMXigVPp0qWh0WgsvRnKg0xlnBhcExGRtVg8cLp27ZqlN0F5FDNORERkayweONFzcXFx6b4nQ8w4ERGRrWHglENcXV2tXYVchxknIiKyNTn2rLp9+/ahR48e8Pb2hpOTEwYOHKjM27FjB7744gvcu3cvp6pDNk5EmHEiIiKbkyMZp++//x4TJkyAiCjT9P/v7u6OH3/8Ed7e3hg6dGhOVCnHxcbGqt7HxcXBy8vLSrWxfVqtVvk/B8AkIiJbYfGM05YtW/D111+jVKlSWLlyJSIjIw3K+Pv7o2jRoti0aZOlq2M1Li4uBi8yTT844gCYRERkKyyecfr111/h5OSELVu2oGrVqibL1ahRg49mIYV+cMQBMImIyFZYPOMUHh4Of3//dIMmAChatCj7OJGCGSciIrJFFg+c4uLiULx48QzLxcTEqPq10MtNP3BixomIiGyFxQMnLy8vXLp0KcNyFy5cQOnSpS1dHcol9LNKaTuHM+NERETWYvHAqXHjxjhx4gT2799vssymTZtw6dIltGjRwtLVoVwibcbJzs5OeXQPM05ERGQtFg+cRo8eDY1Gg7fffhvr1683yBZs3boVgwYNgoODA4YPH27p6lAukTbjBEDp58SMExERWYvFA6datWph2rRpiIqKQteuXeHh4QGNRoM1a9bAw8MDb7zxBu7fv49p06ahSpUqlq4O5RJpM07A/wIoZpyIiMhacmTk8I8//hjBwcGoW7cuEhISICJ4+vQpnjx5gurVq2PDhg0YNmxYTlSFcglmnIiIyBbl2LPq2rVrh3bt2uHhw4e4evUqtFotSpcujRIlSuRUFSgXSTscgf6/zDgREZG15PhDfosUKYIiRYrk9GYpl0k7AKb+vwyciIjIWizeVBcUFIRbt25ZejOUx6SXcWJTHRERWYvFM07vvfceNBoNKlasiNatW6N169Zo2bIlChYsaOlNUy7GjBMREdkiiwdO/fv3x+7du3Hx4kVcvHgRv/32G+zs7FC7dm0lkGrUqBEcHBwsXRXKRZhxIiIiW2Txprr58+fj2rVruHDhAmbPno3OnTvDzc0Nhw8fxuTJk9GqVSsUKlQI7du3x7Rp0yxdHcoljA1HwIwTERFZW44MRwAAFStWxIcffoi1a9fi4cOHOHToECZNmoTmzZsjJSUF27dvx9ixY3OqOmTjjA1HwIwTERFZW44FTvqSk5Px9OlTZSwn3YlQRKxRHbJBzDgREZEtyrHhCE6cOIEdO3Zg586dCAsLw7NnzyAiKFiwIN544w2lvxMRwIwTERHZJosHTr169cLu3bvx8OFDiAgcHBxQv359JVDy9/dXTohEOsY6hzPjRERE1mbxwGnlypXQaDR47bXXMGHCBLRt2xYFChSw9GYplzM2HAEzTkREZG0W7+Pk5uYGEcF///2Hd999F2+//TamTZuG//77z9KbplyMj1whIiJbZPGM06NHj3D48GHs3LkTO3fuxJ49e7B9+3ZoNBp4enqiVatWaNOmDdq0aQNvb29LV4dyifQGwBQRaLVa2NlZ5d4GIiJ6iVk8cMqXLx8aNGiABg0aYPz48YiPj0dISAh27tyJXbt2YcWKFVixYgUA4JVXXsG5c+csXSXKBdLLOOnmM3AiIqKcluNnngIFCqBDhw4IDAzEokWLMHr0aDg5OUFEcPHixZyuDtmo9IYjANjPiYiIrCNHA6dbt25hwYIFePfdd1G8eHHUqlUL06ZNw7Nnz+Dg4IAmTZrkZHWy7MMPP4RGo8GsWbOsXZU8K73hCAD2cyIiIuuweFPd+vXrlf5NERERAJ73UdFoNKhWrZoyLEGzZs1yxd12mzZtwr///ouSJUtauyp5GjNORERkiyweOL399tvK/0uXLq0ESq1atUKxYsUsvflsFRkZiQ8//BDBwcHo1KmTtauTpzHjREREtsjiTXVvvfUWZs+ejQsXLuD69euYN28eevfune1B05IlS/DBBx+gTp06cHJygkajQVBQULrLhIeHo0OHDvDw8ICLiwvq16+PlStXmiw/YMAAjBgxAtWrV8/WupOh9AbATDufiIgop1g847R27VpLbwIA8NVXX+H69evw9PREiRIlcP369XTL79mzB+3atUP+/PnRq1cvuLm5Yc2aNejZsydu3ryJ0aNHq8rPmjULcXFxBtPJMtIbADPtfCIiopySZ+7nnjt3Lq5du4YHDx5gyJAh6ZZNSUnB+++/Dzs7O4SGhuLPP/9UBuV85ZVX8MUXX6gCr/Pnz+O7777DwoULeQt8DmHGiYiIbFGORQHnzp3DkCFD8Oqrr8LV1RWurq549dVX8eGHH2bL2E2tW7eGj4+PWWV3796Ny5cv45133oGfn58y3d3dHV988QWSkpKwcOFCZfrBgwfx4MEDVKhQAfb29rC3t8f169fx8ccfq5an7MOMExER2SKLN9UBQFBQEIYMGYLk5GSIiDI9IiICERERWLBgAf744w8EBATkRHUQEhICAGjbtq3BvHbt2gEA9u7dq0x76623UKdOHYNy/fv3x4ABA4xuIy4uLt06ZDT/ZceMExER2SKLB05Hjx7F+++/j9TUVHTs2BEDBw5E+fLlAQBXrlzBvHnzsHHjRrz//vuoWrWqQYBiCbphESpWrGgwr3jx4nB1dVXKAICHhwc8PDxU5RwcHFCiRAlUqFDB6DZcXV2zr8IvIWaciIjIFlk8cPr555+h1Woxb948g+xMtWrV8OabbyIoKAjvvfcepk2bhr///tvSVUJMTAyA501zxhQsWFApQ9bBjBMREdkiiwdO+/btg5+fn8kmLQDo378/Zs2ahdDQUEtXJ9tcu3Yt3fmxsbHpzo+Li4OXl1c21ihvMTYAJjNORERkbRYPnKKiotCiRYsMy1WqVAmnTp2ydHUA/C/TZCqr9OTJExQqVOiFtuHi4vJCy7/sjA2AyYwTERFZm8XvqvPw8MCNGzcyLHfjxg2TTWfZTde3Sb8fk869e/cQGxtrtP/Ti4iLizN4kWnGmuqYcSIiImuzeOBUt25dHDhwALt37zZZZvfu3di/fz/q1atn6eoAAJo1awYA2L59u8G8bdu2qcpkF90QDLoXm+nSZ6xzODNORERkbRYPnIYPHw6tVotOnTphzJgxOHPmDOLj4xEfH4/Tp0/j008/VZ77Nnz4cEtXBwDQqlUrlCtXDsuWLcOJEyeU6TExMZg8eTIcHR3Rr1+/HKkLGceMExER2SKL93Fq164dvvzyS0yaNAnTpk3DtGnTDMqICMaPH290XCVzzZ07F2FhYQCg9JWaO3euMmZT48aNMWjQIADPMxdz585Fu3bt0LRpU9UjV65fv46pU6fC19c3y3UxJm1ncXYOTx8zTkREZItyZADM7777Do0aNcLUqVNx4MABPHv2DADg5OSExo0bY/To0Wjfvv0LbSMsLEw12jcA7N+/H/v371fe6wInAGjRogXCwsIwYcIErFixAsnJyahevTp+/PFH9OzZ84XqYgw7i2cOM05ERGSLciRwAoD27dujffv2SE1NxcOHDwEARYoUUZ0MX0RQUBCCgoIytYy/vz+2bNmSLdun7JXRAJjMOBERkTVYLHC6dOkS1q5di2vXrsHJyQl+fn7o0aMHnJ2dUaxYMUtt1malvYuOd9WlL6MBMJlxIiIia7BI4DR9+nSMGTPGICswfvx4BAcHo1q1apbYrE3jI1gyx9g4Tsw4ERGRtWX7XXVhYWEYPXo0UlJSUKBAAdSsWRPly5eHRqPBrVu30LVrV2i12uzeLOUxxkYOZ+dwIiKytmwPnGbNmgURQUBAAO7du4cjR47g4sWLOHbsGMqXL49Lly5h69at2b1ZmxcbG6t6RUZGWrtKNo2dw4mIyBZle+D077//wtvbG3/88YfqTrLXXnsNv/76K0QEBw8ezO7N2jwXFxeDF5nG4QiIiMgWZXvgFBkZiTp16sDR0dFgXuPGjQEA9+/fz+7NUh7DjBMREdmibA+ckpKS4OHhYXRewYIFlTJE6WHGiYiIbFGOjeP0suNwBJnDjBMREdkiiwROly5dwqJFi7I0P68+I47DEWQOM05ERGSLLBI4pX3UiT6NRmNyvkajybOBE2UOM05ERGSLsj1wKlOmDDQaTXavNtfjQ34zx9gAmMw4ERGRtWV74HTt2rXsXmWewOEHMsfYAJjMOBERkbVl+111RNkho2fVMeNERETWwMCJbJKxzuHMOBERkbUxcCKbxIwTERHZIo7jlEM4jlPm6DJKdnZ2ys0GzDgREZG1MXDKIRzHKXN0GSX9YIkZJyIisjY21ZFN0mWU9IMl/SCK0eFEvAAAONhJREFUgRMREVkDM045hOM4ZU5GGSc21RERkTUwcMohHMcpc3SBkX7gxIwTERFZG5vqyCbpAiNTTXXMOBERkTUwcCKbZCzjxM7hRERkbQycyCYx40RERLaIgRPZJA5HQEREtoidw3MIB8DMnIyGI2DGiYiIrIGBUw7hAJiZw4wTERHZIjbVkU1ixomIiGwRM045hANgZg4zTkREZIsYOOUQDoCZORkNgMmMExERWQOb6sgmGRuOgBknIiKyNgZOZJOYcSIiIlvEwIlsjlarVf7PjBMREdkSBk5kc/SDImaciIjIljBwIpujHxQx40RERLaEgRPZHHMyTgyciIjIGjgcQQ7hI1fMZ07GiU11RERkDQyccggfuWI+UxknOzs7o2WIiIhyCpvqyOboZ5P0AyeNRqO8Z8aJiIisgRmnHMJHrphPP5uk3zwHPA+kUlNTmXEiIiKrYOCUQ/jIFfOZyjgBzwOppKQkZpyIiMgq2FRHNiejjFPaMkRERDmFgRPZnIwyTmnLEBER5RQGTmRzmHEiIiJbxcCJbI6p4Qj03zPjRERE1sDAiWyOqQEw9d8z40RERNbAwIlsDjNORERkqxg4kc0xp3M4M05ERGQNDJzI5pjTOZwZJyIisgYGTmRzmHEiIiJbxZHDc0hcXFy67+l/mHEiIiJbxcAph7i6ulq7CrkGM05ERGSr2FRHNocDYBIRka1iximHxMbGqt7HxcXBy8vLSrWxbXzkChER2SoGTjnExcXF2lXINczJOAGAVquFnR2TpkRElHN41iGbk94AmPqBFLNORESU0xg4kc1Jr6lO/z37ORERUU5j4EQ2J72mOmaciIjImhg4kc1hxolSUlIwePBgdOvWDTExMdauDhGRgp3DyeYw40Rr167FX3/9BQCoUaMGxo8fb+UaERE9x4wT2RxmnGjPnj3K/7ds2WLFmhARqTFwIpvDjBPt3btX+f+hQ4fw6NEjK9aGiOh/GDi9xLRaLWJjYyEi1q6KSmYyTiICrVabY3Ujy7t//z7OnTunvNdqtdi5c6cVa0RE9D8MnF5iAwcOhJubG77//ntrV0XF3IxTUlISunbtCmdnZ6xYsSLH6keWtW/fPoNpW7dutUJNiIgMMXB6SYWHhyMoKAgA8P333yMyMtK6FdKT3gCY+u//+OMPrFu3DklJSfj2229zrH5kWaGhoQbTtm7danOZUSJ6OTFwekkFBgYq/09KSsLvv/9uxdqomdtUN336dOX/Z8+exbVr1yxdNcoBuv5NGo0GDRs2BADcvXsXp06dsma1KA+6efMmBg0ahIULF1q7KtkiOTkZw4YNQ7t27TBv3jwkJCRYu0p5EgOnl9CNGzewatUq1bQ5c+YgMTExS+s7cuQILl++nB1VA5D1zuHBwcHZVgdLyI13ASYnJ+dopic6OhonT54EAPj5+aFXr17KPDbXUXZKSkrCm2++iXnz5qF///4IDw9XzY+JicF3332HXbt2WamGmTd//nzMnj0b27dvx6BBg+Dt7Y0xY8bg/v371q5ansLA6SU0Y8YM5SReoEABAM875C5fvjzT69qwYQPq1q2LatWq4cqVK9lSP3MzTmnf22rgdPbsWfj7+6NgwYIYOXIkoqKirF0lk0QEx48fx8SJE+Hn5wdHR0d07949x4KnsLAwZVtNmzZF+/btlXm5IXDaunUrOnfujJCQEGtXJc9LSUlBfHy8wfTU1FQEBgaiT58+uHnzpsnlJ02ahBMnTijvJ06cqPxfRNC7d298/fXXaNOmDebNm5edVTfq6dOnmDFjBoKDg7N0kZWcnIwffvhBNe3Ro0f4+eef0bBhQ8TFxWVXVUnIKmJjYwWAAJDY2NhsW69Wq5WRI0fK/Pnzjc6PiYmRggULCgBxcnKSdevWKfWoWbOmaLXaTG3vrbfeUpafNm1alusdHx8vDx8+FBGRb775Rlnn5s2bVeU++ugjZR4AmThxopQoUUIAiLOzs8THx2e5DtlNq9XKH3/8Ic7Ozqo6FyxYUCZNmiRxcXEvtP4LFy7Itm3bJCUlxWDe+fPnZceOHWb/PVNSUmTp0qVSqVIlVV11r5UrV6a7fEJCgkRHR2flY6h8+umnyjbXrl0rWq1WypUrJwDEwcFBnjx58sLbsJSYmBhxc3NT/sa3b982e9lly5ZJ8+bNZfr06ZKcnJxu2cTERHn8+HGmv6u2SKvVSnBwsHz//fdy/fp1s5eLj4+Xhg0bikajkT59+sj9+/dFROTRo0fy+uuvK8fQG2+8YXT5o0ePSr58+QyO84MHD4qIyJo1awzm/fbbby/+gdPRvn17ZVvlypWTqVOnyqNHj8xePigoSFm+UaNG0rdvX3F0dFSmjR071oK1z90yez5m4GQllgqcfv75Z2W9EyZMMPhxDQwMVOa///77otVqpW7dusq0vXv3mr2tZ8+eiYuLi7Jshw4dDMpotVqjJ/aUlBQJCgqSAQMGyGuvvab8iLVq1Uq6du2qrHPr1q2q5UaMGKHM8/Hxkfj4eBk4cKAybcuWLWbX35IeP36s+hzGXpUqVVJ+8HW0Wq2Eh4fLli1bZN++fXLs2DGJjIw0WH9ERISy7zt06CCPHz9Wlg8MDBQ7OzsBIAMHDkz3BJuamirLly+XypUrp1vX8uXLS2JiotF17NmzR4oWLSr29vby7bffSmpqapb3m7+/v7LNBw8eiIg6WP7nn3+yvO703L17V15//XVp06aNHDlyJEvr+OWXX1T7rFu3bmYtd/bsWdVJvFatWhIeHm5Q7t69ezJq1CglEHdychIfHx9p0qSJ7N69O0t1tqYTJ05IixYtlM+dP39+GT9+vFm/h/oXVwCkSJEiMm3aNClfvrzBsXvx4kXVss+ePZOqVasq82vXrq38v3379hIbGyulS5c2+j2YOXOmRfbF7t27jW7Pw8NDTpw4keHyKSkp8sorryjL7d+/X0REzp07pwRP9vb2cubMmReu64YNG6Rt27ayaNGiF15XZsXExMj+/fvl999/N/q7mFUMnHIJSwVOH3/8seqLN2DAAElKShKR51kBHx8fZZ7uS7R06VJlWsuWLWXatGnSv39/6dy5s3IFZsy2bdtU23J1dVW2JSJy/PhxcXNzkypVqignQR39AC69186dO1XLTZ48WZm3atUqEVFfHQ4fPjxb9uOLSEhIkCZNmqg+x9ChQ+XSpUsyePBg1UmyYcOGkpCQICLPr6L1M3i6l0ajkaVLl6q20aNHD1WZV199VU6dOiUDBgwwWP7LL780Ws+4uDij22vYsKHMmTNHbt26JS1btlSmz5gxw2AdS5cuVV3VApC2bdsaBITmePLkibJvqlatqkzfuHGjsu4PP/ww0+vNSFJSkjRu3FjZhr29vUyePNlowG9KSkqKlC1b1mBfbty4McNlO3ToYLCcnZ2ddO/eXcaNGyczZsyQTz/9VAoUKGDye1K4cOFMZbj0PXjwQPr27SuffvqpPH36VDVv586dUr9+fenVq1e2/U5FRkbK+++/LxqNxuhnKVmypKxfv97k8tevXzfI4hrbf7r/jxgxQrX8559/rszz8/OT2NhY8fX1Vabp/z3atm0rY8eOVa17yZIl2bIfdLRarTRo0EBZf40aNVTbe/311zNcx/Lly5XyzZs3V80bP368al5Gmcpbt27JoEGDpFChQtKvXz+JiYlR5i1atEi1by0RPGm1Wpk/f74MHz5cBg0aJO+++6688cYbqr8RANmwYUO2bZOBk42KjY1VvSIjIy0SOGm1Wpk2bZrqAGvWrJm8+eabqh9e/S9jYmKilCxZ0ugPUJkyZVTBkL7hw4cblD9w4IAyv3v37sr0L774QpmelJQkpUqVUubly5dPXnvtNYMvBgDZs2ePapsPHz6UkSNHyuzZs5UfgJiYGLG3txfgeYo7s00YDx8+lJkzZ8qWLVteuPkjNTVV9bkLFSok69atU5U5ffq00rwIQHr06CHR0dHStGlTkyeCggULKk0Zhw8fTvekYeyV9kr5/v37Ur9+fVWZRo0ayc6dO1X74MiRI8p8T09PVWZrypQpJrdXqlQpWbVqlRIUGhMfHy9DhgyRjh07yvz582X16tVGA6SnT58qwZmjo6OMGzdO+TFPTk6WkJAQ+eWXX+TKlSvp/m1iYmKkf//+0rNnT9WVd9qLDd2rcePGcvXq1XTXqaPf5O3l5aX6/sTGxopWq5X//vtPFixYoLqI2LJli2qfVa9ePcO/Zf78+aV58+ZSrVo1cXd3V32n9f92ixcvll69esm///6bbt31j9eKFSvK0aNHJTU1VSZPnqw6Sb7zzjsv9P1ITk6WX3/9VVVn3Xf2/fffFwcHB2Wavb29nDt3zuh69C8aBgwYYHARUbNmTTl27JgSXLm5uSnHS1hYmPKZHBwc5OTJkyIiMnfuXIP97OjoKBcvXhStVqsKPjw9PZVuBTp37tyRQ4cOZbh/oqOjJTAwUPU7qX9hULVqVUlJSZHz589LmTJlBHh+4ZT2OExKSpLIyEjRarWSmpoq1apVU9aR9mIzPj5eFdSbCvyio6Pl888/NwhKK1SoIMePH5egoCCDYNfe3t5gezq3b9+W6tWrS+HChaVHjx6yePFiiYqKSnf/iIj8+eefZv2mTZo0KcN1mYuBk41K7wDIzsBJZ+XKleLk5GRymyEhIary6Z0EFy5caLB+rVZr9Ar7+++/F5HnJzv9L6CHh4fSP0U/w9WhQwelX1JiYqLMnDlTihYtqvxg3Lx506zPq5/yP3/+vFnLxMfHy48//igeHh7Kss2bN5djx46Ztbwxn3zyibIuFxcXo00uIs/7WOg3cxYpUkS13Lhx42T06NGqzFWbNm1Eq9VK8+bNlWljxoxR/WjqTqx///23zJgxQ5mm0Wjkiy++kKVLl8qmTZukQoUKyjw3Nzf5559/TP7ov/POO0rZUaNGSVBQkEHQNXjwYNm+fbsqaACeB3wBAQGya9cug/UOHjzY5DH3999/q8r269dPNb9o0aLSvXt3KVSokOqElrZZRl///v2Vsk5OTjJ16lRZvHix6kQ5ePBgVbDg7u4uq1evzvDv3qxZM2WZzZs3S+vWrVV/N/2moRIlSkhoaKgkJyermkiXLVsmSUlJ8tNPP6mODf06f/zxx3Lnzh1lu1FRUVK8eHGlzB9//CEpKSmqYNDZ2dng+65jrInIwcFBlQHRf+lnHW/evCljx46VOXPmZJidO3DggEFQ6ObmJj/99JM8e/ZMREQuXrwobdu2VeZ//PHHBusJCQlRHQO6fnUbN26U5s2by8iRI5W+g/rH1/Tp0+Xx48eqjLv+iTcpKUnpS6d7ffXVV6pt6wdoQ4cOVaaHh4eLq6urAJC//vrL5D5ISEiQWrVqqdaflJQkr732mjJt7dq1Svnvv/9ema6fNb57965ykVmgQAFVE139+vWNfo83b96slPHy8pLLly8r87RarSxYsEA8PT1Nfh+dnJxUQZN+X8iCBQsqAai+Xr16GazHzs5OGjduLFOmTJGTJ08a1PXRo0cm6+Hm5iYNGjSQwYMHy8yZM+X06dMm93VmMXCyUaYOSHP/UFmxb98+KVy4sLKdYsWKSUBAgGzbts2gbHJyskyaNEk++eQTmT9/vqqjYZUqVQz6rZw9e1aZX7FiReX/LVu2FBGRv//+2+BzTps2TbRardSpU0eZZuwH/cmTJxIUFGTyx96YqVOnKusMDAwUkedZlfDwcIO6a7VaWbp0qXh7exv9e+g6nP7+++8SHBwsp06dkoiICDlz5oycOHFCwsPDZf/+/bJnzx7ZunWrLFu2TKZPn67qa5UvXz6Dju1pbdy4UXWS1p38Dx8+rJSJjo5WZef0gxhdv6MnT55Ily5dBHietdAP1vSbJYy9SpYsmWEfiitXrhg0x+m/Jk+erPwA3r17VxXE6r9Gjhyp/C30g2djr7TNTrGxsTJ27Nh06wE8z17cu3fP6L5ObzngedAh8vx7kzb7+dFHH5nMnh07dkwp9+qrr0pqaqpERESke+GSL18+eeONN5T3DRo0UJ1E4uLi5PTp07Jjxw5ZtGiR/PXXX3Lr1i2j29c/Kbq4uKg6R+tPDwsLUy2XnJysCrqNfR80Go3qBGhvby979+6VX3/9VQkWgOcXHKaaCsPDwyV//vyq9Q4YMMDo3+nhw4dKWQ8PD9XNHsnJyaogI70gRUTk1KlTqu9K7969lfdNmjQxCPbmz5+vzPf19TW4eePmzZtKQKvRaOTo0aNy9epV1cVCpUqVTF6A6P8+6B8vuv/XqVNHteydO3eUTHrx4sWVzP+7775r8rjatGmTyf2h3yyfL18+6du3rwQHBxtkuh0dHeWTTz6R8PBwVf8v3WvEiBGSnJwsnTp1UqaVKlVKbty4oWxLP8BN71WlShWT2d8uXbrIyZMnJSIiQu7cuWPRmyEYONmonGqqS+vGjRvy+++/y+HDhzPdaVe/30faPgf6ndCnTZumXMk5OTlJQkKC0b4z3t7esmvXLuV9Vu7iM0U/kKtSpYq0a9dO6S/j7++vdPh9+PChqmkCeH4V1Lt3b1UW5kVfGf2o68ycOVNZpkyZMkabJ/Sbc/RfK1asUMpotVo5f/68wcldq9XKkCFDTP5omXsn06hRowyWr169uuoKWSc1NVW2bNkiAQEByh2cute7774rp06dUp10J06cKEOGDFEyf2n7aOi7cuWK6srf3d1devbsKVWqVFGdgPT76jx8+FCVlWnXrp1Bk8OAAQNUx+Ljx48NmoAqVaokU6ZMMfgbBQQEKGXmzJmjTNfPGADPm0L1v1P6r0OHDpn1dzDFWPYuX758qgyHm5ubajv6x16dOnUkISFBPvvsM2VaoUKFlJstxowZo0w31TfJ09PT4GLhzp07qsC/du3aGTYd6mcXg4KClOmzZs1SpteqVcusPmitWrUyqKe7u7vR4z45OVl69uwp5cuXNwgydX788UdlPXXr1jV6U4WxfqH6TYH58+c3ekff9u3bDZbTv8Fk9erVqgyhq6urVKxYUQmu0jbVpnX9+nWTXTJ0r+7du6uaBZ89eybDhg1T5o8cOVLZRmxsrOrGokqVKsmDBw8MAtzZs2dLSEiIjB49WhUo6l5FixaV//77T86cOaPsF2dnZ1UgZmkMnHIJS3UOz06bNm1S6livXj3Vl1K/aeLChQvy3nvvKe/Xr1+vXG17eXmprqyLFSum/H/x4sXZVletVmu0j5T+j33//v1VP+IApGPHjnLq1CkRed5UGBgYqGq6y+zLzs5Oaa4014oVK2TcuHHpdu5Ne7Vap06dTAXCJ0+elBUrVkhgYKCMGjVKvvzyy0zd6vzo0SOpXbu2uLq6SkBAgBw4cMCsoDchIUFmzJihyqzpZ40CAgJUZQ8dOqQ03aQnIiJCDh48qFyF37x5U5Uxad26tYSGhkpiYqLqCr1Dhw6i1WolJCREaWquV6+e0WEsdMNJpM2WAM8zGHXr1pW6desqfXM8PDxU3+XU1FT5888/5ZdffpFr166JyPNO5F988YVqXX379s3w82bk6dOnqqYmV1dX2bp1qyQkJEibNm2U6U5OTtK7d2/5559/VMe5fjATFhYmkyZNUgUXycnJRjOJffv2NchUvfvuu3Lp0iVJSEhQNek2atTIrL/tgQMHlGXq168vIiJXr15VNV+aCmzS2rBhg0Gdly9fnsm9+z+JiYlGh+zQ7z86ZMgQ1TJHjhxRZR+XLFkiISEhqkyVqU7b27dvV5XRD9R0GdLk5GS5d++eWd/HR48eyTfffKNqiQCeZ2rT3sGc9jOEhIQYbCMyMlJ1wVm7dm1Vtw9jAe6lS5fk119/VTVfFy5cWBWEffvttxl+luzEwCmXyA2Bk1arVV056G55jo6OVq4MKlSoICIiS5YsUcrpt7kPGzZMwsLCDH5oSpQoYfL29qxK28nXx8dH1Yyo/ypUqJByV15aMTExsnXrVvnzzz/lq6++koCAAOnTp48MGDBABg8eLB999JGMGjVKxo0bJ+PHj5fAwEBZvHixbNu2TTlBZrfHjx+rTlC57fbz9evXGwQgVapUydZj//Tp0wZBr/4JzcPDQ9XcFR8fL//++6/Jmx90Tp48KfXq1cswaB4zZozZdd2wYYOUKFFCKlWqpOqz9CIOHjwohQoVkgoVKqiaX+Pi4kw2n6YNXtMTGRmpXJxUqVJF9u3bJyLP+1m9+eabqnXa29ur7g4rXbq00aY5Y9L+7hw/flx1d+fgwYPN3iepqamqIQrM/azp2bFjh+qz6jImusDO3d1dyfxGR0er+lV99NFHynru3LkjXbp0ET8/Pzl79qzJ+qftewU8z6K/yLAfT58+lZ9//lkaN24sEydOfKHx765evWoyk6UbFsGY6Ohoo98rX1/fHB+Pj4FTLpEbAieR5wPz6erZsmVLiY+PlxUrVijTdB04b9++bfSLExoaKiIiDRs2VE3PzjsidGJiYmTo0KHy8ccfy/79+0Wr1UpiYqL88MMPqhNoq1atTPYXsWVHjx6VVq1ayZQpU6xdlSwJDQ1V7qgqUKBAtowpk9bevXuVQSjTvl701unLly9LYGCgNGnSRLlw0Gg0YmdnJ7Vr1870EAypqanZ3m8jNTXVaBNWbGysjBkzRnUTAvC8+S4zgduTJ09k//79Bhc9Wq1WZs+ebbB+4HmzS2ZvuJg9e7YqG6L7f5kyZVS3x5tj7dq1YmdnJ/7+/tk2gKqu35ezs7PSNKffZKvLavXp00eZVr9+/SxdLP7www+q/WlnZydHjx7Nls+RXc6cOWOQxTInkxoTEyONGjVSLWfOzRjZjYFTLpFbAqfk5GTVD5ejo6Ny1xsA2bFjh1I2bQq7VKlSylXRP//8o/ohNee21Ox048YN+fzzz2X+/PkvdKVGL+b8+fPy6aefmt3UkhWRkZESFBQkffv2VYZ96N+/f54YaftFPXv2TJYvXy6tW7eWMmXKmMy6ZlVMTIxMnDhRFbxmNOq8qfUYu7PQWD8gczx79izDEdkzu74FCxaogv89e/Yo9Wzfvr2sWrVKea8/nEhmRUZGqoZq0M9a2ZJDhw4pfRddXV3NDsifPn2q9EXr3LmzVb6nDJxyidwSOImIzJs3z+gVvKurq+oKaujQoar5I0eOVOalpqYqt2hntg8QUVZptdo883iS3OTBgwcya9Ys1YVVZg0aNEj1e5KZJjprSE1NVZrl7OzsVENlvGi2U9f539vbO1sebWQp4eHhMnDgQIPx9zKiu7klo2ZzS8ns+VgjkoOPPidFXFwcXF1dAQCxsbFwcXGxco1MExGsW7cOwcHBCAkJweXLlwEAn3zyCQIDA5Vya9asQbdu3ZT3Bw4cQIMGDZT3SUlJiIqKQokSJaDRaHLuAxBRrnP06FHUqVMHAFCmTBmcOnUKBQsWtHKt0jdhwgR8++23qmldu3bFqlWrXug3LykpCdu3b0fdunXh5eX1otWkNDJ7PmbgZCW5KXBK6+bNm4iKikL16tVhb2+vTH/48CGKFi0KEUGZMmVw7do1BkhElGVTpkzBzp07MXXqVNSsWdPa1cnQ5cuXUaFCBeW9l5cXTp8+DU9PTyvWijLCwCmXyM2BU3omTpyIBQsWYOrUqejevbu1q0NElKOaN2+OvXv3AgA2btyIjh07WrlGlBEGTrlEXg2ciIheZpcuXcLnn3+Otm3b4v3337d2dcgMDJxyCQZORERE1pfZ87FdTlSKiIiIKC9g4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZORERERGayz7gIWYL+gO1xcXFWrAkREdHLS/8cbM7DVBg4WUl8fLzyfy8vLyvWhIiIiIDn52bd41dMYVMdERERkZn4kF8r0Wq1iIqKAgAUKFAAGo0mS+uJi4tTMlaRkZF8WPD/434xjvvFOO4X47hfjON+MS637hcRUVqBPD09YWeXfk6JTXVWYmdnh2LFimXrOl1cXHLNgZqTuF+M434xjvvFOO4X47hfjMtt+yWj5jl9bKojIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMDJyIiIiIzMXAiIiIiMhMHwCQiIiIyEzNORERERGZi4ERERERkJgZORERERGZi4ERERERkJgZONio8PBwdOnSAh4cHXFxcUL9+faxcuTJT60hMTMS3336LihUrIn/+/ChZsiQGDx6M+/fvW6jWlnP79m1Mnz4dbdu2RZkyZeDo6IjixYuja9euOHTokNnrCQkJgUajMfkKCgqy3IewEF9fX5Ofp3nz5pla19KlS+Hv7w8XFxcUKlQIHTt2xLFjxyxTcQsKCgpK9++s0WjQqlWrDNeTW4+XJUuW4IMPPkCdOnXg5OSUYV2fPHmCUaNGwcfHB05OTvD19cVnn32G2NjYTG9727ZtaNasGdzc3FCwYEG0aNECu3bteoFPk33M3S/JyclYs2YNAgICULlyZbi6usLNzQ316tXDb7/9htTU1ExtNzu/o5aQmeNl4sSJ6X4nrl27lqltX7x4ET169ICnpyecnZ1Ro0YN/Pbbb7Dl+9bsrV0BMrRnzx60a9cO+fPnR69eveDm5oY1a9agZ8+euHnzJkaPHp3hOrRaLTp37oxt27ahfv366Nq1KyIiIjB37lzs2rULBw8eRNGiRXPg02SPmTNn4scff0T58uXRtm1bFC1aFBEREVi/fj3Wr1+PZcuWoWfPnmavr1mzZkZ/sPz8/LKv0jnI3d0dI0eONJju6+tr9jomTZqEr776Cj4+PhgyZAiePn2K5cuXo2HDhti1axcaNWqUfRW2MD8/P0yYMMHovNWrV+PMmTNo166d2evLbcfLV199hevXr8PT0xMlSpTA9evXTZaNi4tDs2bNcOLECbRt2xa9e/fG8ePHMXXqVOzduxehoaHInz+/WdtdsmQJ+vbti6JFi6J///4AgBUrVqBNmzZYuXIlunXrlh0fL8vM3S+XL19Gt27d4OrqilatWuHNN99ETEwMNm7ciKFDhyI4OBgbNmyARqMxe9vZ8R21lMwcLzoBAQFG6+7h4WH2ds+ePYuGDRsiISEBPXr0QMmSJbF582YMHToUZ8+excyZMzPxKXKQkE1JTk6W8uXLi5OTkxw/flyZ/vjxY3nllVfE0dFRrl27luF65s+fLwCkd+/eotVqlem//fabAJDBgwdbovoWs2bNGgkJCTGYHhoaKg4ODlKoUCF59uxZhuvZs2ePAJAJEyZYoJbW4ePjIz4+Pi+0josXL4q9vb288sor8vjxY2X68ePHxcnJSSpXriypqakvWFPrS0xMlCJFioi9vb3cu3cvw/K59XjZsWOH8jsxZcoUASALFiwwWvbrr78WADJ27FjV9LFjxwoAmTx5slnbfPTokXh4eIinp6fcvHlTmX7z5k3x9PQUT09PefLkSdY+UDYxd7/cunVLZs+eLbGxsarpsbGxUqdOHQEgK1euNHu72fEdtaTMHC8TJkwQALJnz54X3m7Tpk0FgAQHByvTEhMTpUmTJgJADhw48MLbsAQ21dmY3bt34/Lly3jnnXdUV7Pu7u744osvkJSUhIULF2a4nr/++gsAMGXKFNVV0QcffIBy5cph6dKlSEhIyPb6W8rbb7+NZs2aGUxv0qQJWrRogejoaJw6dcoKNcsbFixYgJSUFHz55Zdwd3dXpvv5+aF37944d+4cwsLCrFjD7LF+/Xo8fPgQHTt2hJeXl7WrYzGtW7eGj49PhuVEBHPnzoWrqyvGjx+vmjd+/Hi4urpi7ty5Zm1z1apVePz4MYYPHw5vb29lure3N4YNG4aoqCisW7cucx8km5m7X0qVKoWhQ4fCxcVFNd3FxQWjRo0CAOzdu9cidbQGc/dLdrp48SJCQ0PRokULvP7668p0R0dHfPfddwD+dx6zNWyqszEhISEAgLZt2xrM0zUtZPSFffbsGQ4dOoRXX33V4Mug0WjQps3/tXfvQU1deRzAvwEiYAIoCgbkjWlFhkJbiG5BqaiVddoiCz7oQgF12zqCtV0RqXah3XXXWl+LqLW1QtWFpbUKbtGh2hWcYgtW6aoQFGvAKuD4KkpAXjn7h5MMMa8bDRLw95nJjJ57zsnvXk7gx72Hc2Zgx44d+OmnnzB58mTTBD6A+Hw+AMDKivtwrq+vx+bNm9HR0QE3NzdERERg7Nix/RViv+vs7EReXh6amppgb2+PkJAQTJw4kXN7Q+MuLy8P5eXlmDJliqlCHhDKJGDRokVGtRtq40Wpvr4eTU1NmDlzptYkITQ0FKWlpfj111/h7u6uty9DYygrKwvl5eV4/fXXTRb/QHiY7zfAo39Gzc3x48dRWVkJCwsLiMViTJ8+HUKhkHN7feMlLCwMAoHAbJNTSpzMTH19PQBALBZrHBOJRBAKhao6uvzyyy9QKBRa++jbd319/aBPnC5fvoyjR4/CxcUFAQEBnNvl5+cjPz9f9X8rKyukpqbi448/hqWlZX+E2q9aWlqQnJysVhYSEoKCggL4+voabF9fXw+hUAiRSKRxrO94GcwaGxvx3Xffwc3NDZGRkUa1HWrjRUnf9xtleWlpKerr6w0mTvr6GipjCAB27doFQPsPfH0e9TNqbh6cQzhixAj885//5JwY6xsvlpaW8Pb2Rm1tLXp6eoxOUvsbPaozM62trQCg9rikL3t7e1WdR+mjb73Bqru7GwkJCejs7MRHH33E6QeYk5MT1q5di3PnzqGtrQ3Xrl1DUVERxo0bh02bNmHFihWPIXLTSk5OxnfffYdr165BLpejuroaCQkJOHnyJKZNm4a7d+8a7KO1tXXIj5fc3FwoFAokJSVxTnaG4njpy5TfK/T1NVTG0KefforDhw8jIiICs2bN4tzOFJ9RcxEYGIhdu3bh0qVL6OjogEwmw5YtW8Dj8ZCUlISDBw9y6ofL2FMoFGZ5bcwrjSOEI+UPwOPHj+NPf/oTEhISOLXz9/eHv7+/6v8CgQBRUVGYOHEinnnmGWRnZyM9PR3Ozs79FbrJPfibX1BQEHbv3g0A2LNnDz777DPVvIwnlUKhQG5uLng8HhYsWMC53VAcL+ThfPPNN0hJSYGnpyf27t1rVNuh9BmNjo5W+7+XlxdSUlLg5+eHGTNmYPXq1Xj11VcHKLrHg+44mRll9q3rN7M7d+7ozNCN6aNvvcFGoVBgwYIFyM/PR3x8PD755JNH7lMkEiEqKgo9PT1GrQtlzt58800AQEVFhcG6Dg4OQ3a8AMDRo0dx+fJlREREwNvb+5H7GyrjxZTfK/T1NdjH0KFDhxAbG4sxY8bgv//9L1xcXEzSrzGfUXM3bdo0+Pr64uzZs6qvtz5cxh6Px4OdnZ1J4zQFSpzMjL65AC0tLWhra9M5H0HJx8cHFhYWOucTGJrXYM4UCgWSk5PxxRdfIC4uDnl5ebCwMM0wHj16NID769oMBcacj1gsRltbG1paWjSODebxovSwk8L1GQrjxdDcI2O+9vr6GsxjqKSkBH/4wx8wevRoHDt2DD4+PibreyiMob6U59Pe3m6wrr7x0tvbC5lMBm9vb7Ob3wRQ4mR2lH9y/+2332ocKy0tVauji62tLSQSCc6fP6+xkBljDEeOHIFAIEBwcLCJon48lEnT7t27MW/ePOzZs8ekE3OVdw7MYUE6UzDmfEwx7szVzZs3UVxcDEdHR43HDI9iKIwXsVgMV1dXVFRUaPzwlsvlqKiogLe3t8GJ4cDQHEMlJSWIiYmBo6Mjjh07hnHjxpm0/6EwhpTkcjlqamogEAhUCZQ++sbL999/r1qY1SwN9EJSRF13dzfz8fHRuwCmTCZTlTc1NTGpVKq2aCFjQ28BzN7eXpaYmMgAsDlz5rDu7m699a9fv86kUim7fv26WvlPP/2ktf7mzZsZACYWi1lPT4/J4u5vUqmUyeVyreUikYgBYOXl5ary3377jUmlUtbU1KRW//z580N2AcxNmzYxAGzp0qU66wzl8WLqBTDlcjmTSqWssbFRrfzWrVvMwcHBrBfA7MvQdTl06BCztrZmIpGI1dXVGeyvq6uLSaVSdvHiRbVyYz+jA03fdblz5w47f/68Rnl7ezuLi4tjAFhycrLGcalUyqRSqUa5oQUwKyoqHu1k+gmPMTPeEOYJpWvLlcbGRqxfv15ty5WkpCR88cUXyM3NVW1xANy/OzNr1izVlivh4eG4ePEi9u/fDy8vL1RWVg6qLVeysrLwwQcfQCgU4u2339Z6+3b27NmqRUOV9TMzM5GVlaWq4+XlBT6fj+DgYLi5uUEul+PHH39EdXU1RowYgdLSUkgkksd0Vo8uKysLGzduxJQpU+Dp6QmBQIALFy7g0KFD6O7uRkZGBv7+97+r6ufl5SE5ORmJiYkae1H13XIlJiZGteVKV1fXoNtypa+AgACcO3cOZ86c0blkxVAbLzt37lQtWHr27FmcPn0aoaGhqjsmYWFhqseWcrkcoaGh+N///oeXXnoJzz33HE6fPo1vv/0WISEhKC8vh62trarvsrIyTJ06FeHh4aq1eJT6brmi3AKpsLAQN27cQGFhIebMmfMYzl43rtelrq4OQUFB6OzsxPz58/H0009r9OXl5aX2PbehoQHe3t7w9PRU26/N2M/oQOB6XRoaGuDj44OQkBD4+flBJBLh2rVrOHr0KK5cuYKAgAAcO3YMo0aNUutfuQjzg+lGTU0NQkND0dHRgXnz5sHFxQUlJSWoqalBSkoKbblCjFNZWckiIyOZvb09s7W1ZRKJhP373//WqKe8C6Ptt4N79+6xrKws5uvry4YNG8ZEIhFbtGgRp60mzI3yPPW9+l4D5bYAD26VsXbtWjZ16lTm6urKrK2tma2tLRs/fjxbtmyZ2m/Jg0VZWRmbO3cuE4vFzN7enllZWTGRSMSioqJYaWmpRv3c3FwGgCUmJmrtb+/evSw4OJjZ2toyBwcHNmvWLHbq1Kl+Pov+U1lZyQAwiUSit95QGy+GPi8Pfv1/++03tmzZMubu7s74fD7z8PBgf/7zn7XeIVJuQxMeHq71vQ8fPswmT57MBAIBEwqFLDw8nB05cqQfztJ4XK+L8hz1vR48f5lMxgBobK1i7Gd0IHC9Lq2trWzJkiUsJCSEOTk5MSsrK2ZnZ8ckEglbt24da29v19q/sh9t6urqWGxsLHN0dGTW1tYsICCAbd26Ve1JibmhO06EEEIIIRzR5HBCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIoQQQgjhiBInQgghhBCOKHEihBBCCOGIEidCCCGEEI4ocSKEEEII4YgSJ0IIIYQQjihxIuQJ5uXlBR6Pp/e1efPmgQ6TmEh1dTUsLS2RmpqqVl5WVqb6euvT0NCgqtd3PzZjtba2YtSoUZg4caLG/mWEmDvNnVIJIU+cvht6PmjChAmPORrSX1JTU2Fra4v3339/QONwcHBARkYG0tLSsHv3biQmJg5oPIQYgxInQggWLVqkttM7GXr27duHiooKpKWlwdnZeaDDQUpKCtatW4eMjAzMnz8f1tbWAx0SIZzQozpCCHkCbNq0CQCwcOHCAY7kPhsbG7z22mtobm5GYWHhQIdDCGeUOBFCOFHOh2poaEBxcTEiIiLg6OgIHo+HsrIyVb3bt28jMzMTQUFBsLOzw/DhwxEQEIC//e1vaG9v19p3T08PNm/ejICAANjY2MDJyQkxMTE4e/Ys8vLywOPxNO6IZWVlgcfjISsrS2ufynk7L774otbjTU1NePfdd+Hn54fhw4fDzs4OISEhyMnJQU9Pj0b9pKQk8Hg85OXlQSaTISEhASKRCNbW1vD19cXq1avR2dmp8/qdOnUKiYmJ8Pb2ho2NDRwdHREYGIi0tDQ0NjYCAHJzc8Hj8TBz5kyd/TQ1NYHP58PW1hY3b97UWa+v6upqnDhxApMmTcLTTz/NqY0xlF8LQ68HKb+mW7duNXlMhPQXelRHCDHKhg0bkJOTg+DgYERGRqKpqQmWlpYAgNraWkRGRuLXX3+Fi4sLwsLCwOfzUVVVhffffx9ff/01ysrK4ODgoOpPoVBgzpw5KCoqwrBhw/Diiy9i5MiRqKyshEQiwYIFC0x+DsePH8fs2bNx+/ZteHl5YcaMGejs7ERVVRVSU1Pxn//8B9988w34fL5G259//hlvv/02Ro4cifDwcNy6dQsVFRVYs2YNampqcODAAY02H3/8MVauXAmFQoGnnnoKUVFR6OjowMWLF7F+/Xr4+/sjKSkJr732GtLT03HkyBFcuHABTz31lEZfO3bsQE9PDxISEjBq1ChO51tUVAQAmD59unEXiqOgoCCd85TOnz+PH3/8ERYWmr+nBwUFwcnJCVVVVWhuboaLi0u/xEeISTFCyBPL09OTAWC5ubmc61paWrLi4mKN4+3t7czX15cBYKtXr2adnZ2qY3K5nMXFxTEALDk5Wa1dTk4OA8DGjBnDamtrVeXd3d1s8eLFDAADwBITE9XaZWZmMgAsMzNTa7zHjh1jAFh4eLhaeXNzMxs1ahTj8Xhs27ZtrLe3V3Xsxo0bLCIiggFgH3zwgVq7xMREVSyrVq1iPT09qmNnz55lAoGAAWAnTpxQa1dcXMwAMBsbG1ZYWKgRZ01Njdp5r1q1igFgS5cu1ajb1dXFRCIRA8BOnTql9by1CQsLYwBYSUmJ1uPKa2XoR4JMJlPVk8lkBt+3sbGRubi4MAAsJydHa51XX32VAWB79uwx2B8h5oASJ0KeYMpkSNerb9KhrLtgwQKtfW3fvp0BYC+//LLW43fv3mXOzs7MysqK3bp1S1U+btw4BoBt375do01HR4cqUTBV4pSens4AsJSUFK3trly5wvh8PnNycmIKhUJVrkycnn/+ebVypbfeeosBYB9++KFaeVBQEAPANmzYoPX9HnT16lXG5/OZg4MDa2trUztWUFDAALDf/e53nPpSUiZ1ly5d0nq8b+LE9WUocbp9+zabMGECA8DS0tJ01svIyGAA2DvvvGPUOREyUOhRHSFE53IE48eP1yiLjY3V2kdJSQkAYN68eVqPC4VCBAcH49ChQzh58iReeuklXL16FRcvXgQAxMfHa7SxsbHB3LlzkZ2dzflcDDEU59ixYyEWi1FbW4v6+nqNx2Uvv/yy1vk6fn5+AICrV6+qylpaWvDzzz/DwsKC86RsV1dXxMbGoqCgAHv27MFbb72lOqacC5SSksKpLwCQy+WQy+UAwOnRnr6lAdra2vD1118b7KOrqwuzZ89GbW0t5s+fj48++khnXWVM165dM9gvIeaAEidCiFHLEXh5eWktv3TpEgAgISEBCQkJevu4fv06AODKlSsAgNGjR0MoFGqt6+3tzSkurpRxTp482WDd69evayROHh4eWuva29sDAO7du6cqu3z5MgDAxcVFbV6XIUuXLkVBQQG2bt2qSpzOnDmD77//HmPGjNGZvGrT2tqq+rednZ3B+nl5eTqPNTQ0GEycGGNISkpCeXk5wsPDVZP7dVFet9u3bxuMjRBzQIkTIcQotra2WssVCgUAIDIyEmPGjNHbh6enp8nj0hWPrvLY2FgIBAK9fWi7Q6NtkrOpTZo0CRKJBFVVVaoERHm36Y033sCwYcM49zVixAjVv+/evatKVPrLypUrUVBQgAkTJqCoqMjg+kzKxG7kyJH9GhchpkKJEyHEJNzd3VFXV4eFCxdyviMyduxYAMCNGzfQ1tam9a6Trq09lMnD3bt3tR5X/om/tjjr6+uRnp6O4OBgTnE+LOXdqebmZrS2thp91yk+Ph45OTkIDAzEv/71L1hZWak9uuNi+PDhEAgEkMvluHnzZr8mTtu2bcO6devg6uqKw4cPqyVtuiiXVDCUbBNiLmgdJ0KISfz+978HAHz55Zec27i5ucHHxwcAkJ+fr3G8s7MTX331lda2yqRLKpVqPa6cy2SKOB+WSCRCYGAgFAoFdu3aZVTbuXPnwsXFBUVFRVizZg3kcjmio6Ph6upqdBzPPfccgPvLRfSXgwcPYunSpbCzs0NJSYnOR5oPOnfuHADg+eef77fYCDElSpwIISbxxhtvwNPTE1999RXS09O13glqaWnBZ599pla2bNkyAPcXUayrq1OV9/b2Yvny5WhqatL6fhEREbCwsEBpaSnKy8tV5YwxZGdn65yLk5aWhhEjRmDjxo3YsGEDurq6NOrIZDLs3bvX4DlzkZmZCQBYtWqV1phqa2u1Jn98Ph+LFy9GT08P1q9fD8C4SeF9TZ06FQDwww8/PFR7Q6qqqhAXFwcLCwvs27cPQUFBnNsqY4qIiOiX2AgxNUqcCCEmIRAIUFJSAi8vL6xbtw4eHh4IDw/HH//4R0RHR8Pf3x+urq4aG8wuWbIEr7zyCpqbmxEYGIjIyEjExcVBLBZj586dWLx4sdb3c3d3R2pqKhQKBaZNm4apU6ciJiYGYrEYy5cvx8qVK7W2c3NzQ3FxMUaOHInly5fD3d0d06ZNQ3x8PF555RWMGzcOPj4+yMnJMcl1iY6Oxpo1a3Dv3j3ExsbCz88P8+fPR1RUFPz9/eHv74/Kykqtbd98803VHKFnnnkGU6ZMeagYZs+eDQA4cuTIQ7U3JCMjA+3t7XBzc0N+fj6SkpK0vh5UXV2NmzdvQiKR0OKXZNCgOU6EEJPx9/fHmTNn8Mknn+DAgQM4c+YMfvjhB4wePRpubm5Yvnw5oqOj1dpYWFhg//79yM7Oxueff46ysjIIhUKEhYXhwIEDqK6uxvbt27W+36ZNm+Dh4YGdO3fixIkTEAqFCA0NxZdffok7d+5g7dq1WttNmTIFNTU1yMnJQUlJCU6ePInOzk44OzvDw8MD8fHxiImJMdl1ee+99xAREYHs7GwcP34c+/fvh52dHdzd3bFixQqdd1ucnZ0RFBSEyspKLFmy5KHf/9lnn8ULL7yAEydOQCqVqpZOMJXe3l4A9+/UyWQynfUe/Is95f8f5dwIedx4jDE20EEQQogueXl5SE5ORmJiot4/lR+KLly4gPHjx8PBwQFXr17F8OHDH7qvffv2Yc6cOXj33XexYcMGE0b5cO7duwd3d3fw+XzIZDKDf31HiLmgR3WEEGKm/vKXv4AxhsWLFz9S0gTcX34hNDQUO3bsMIvFJrds2YIbN27gH//4ByVNZFChxIkQQszIwYMHsXDhQkyaNAmFhYUQiURYsWKFSfresmULOjo68Ne//tUk/T2s1tZWrF27FhKJBK+//vqAxkKIsWiOEyGEmJHTp09j165dsLOzw/Tp07Fx40ZO6yFx8eyzz6rmIw0kBwcH1fpNhAw2NMeJEEIIIYQjelRHCCGEEMIRJU6EEEIIIRxR4kQIIYQQwhElToQQQgghHFHiRAghhBDCESVOhBBCCCEcUeJECCGEEMIRJU6EEEIIIRxR4kQIIYQQwtH/AdfmYgIM7O74AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Re-binning a power spectrum in frequency\n", + "Typically, rebinning is done on an averaged, normalized power spectrum.\n", + "## 1. We can linearly re-bin a power spectrum\n", + "(although this is not done much in practice)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "DF before: 0.125\n", + "DF after: 0.25\n" + ] + } + ], + "source": [ + "print(\"DF before:\", avg_ps.df)\n", + "# Both of the following ways are allowed syntax:\n", + "# lin_rb_ps = Powerspectrum.rebin(avg_ps, 0.25, method='mean')\n", + "lin_rb_ps = avg_ps.rebin(0.25, method='mean')\n", + "print(\"DF after:\", lin_rb_ps.df)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 2. And we can logarithmically/geometrically re-bin a power spectrum\n", + "In this re-binning, each bin size is 1+f times larger than the previous bin size, where `f` is user-specified and normally in the range 0.01-0.1. The default value is `f=0.01`." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "# Both of the following ways are allowed syntax:\n", + "# log_rb_ps, log_rb_freq, binning = Powerspectrum.rebin_log(avg_ps, f=0.02)\n", + "log_rb_ps = ps.rebin_log(f=0.02)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Like `rebin`, `rebin_log` returns a `Powerspectrum` or `AveragedPowerspectrum` object (depending on the input object):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "print(type(lin_rb_ps))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power spectra of normal-distributed light curves\n", + "\n", + "Starting with Stingray 0.3, we can also get Leahy-normalized power spectra of normally-distributed light curves.\n", + "Let us calculate such a light curve by subtracting the noise level and normalizing\n" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3gAAAIeCAYAAADptK29AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURfrHv7OJtOQMEg0ICCrBnFAQI4qYAAMm9MzCGbg7sycmTHjGUzGAEVFMiPAzoaeCBEEkg4ASJIcl7e78/mh7p6amqruqunqmZ/b9PA8PM7M9NdXdVdX1rTdULB6Px0EQBEEQBEEQBEFkPXmZrgBBEARBEARBEARhBxJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCAWZrkC2Ul5ejj/++AM1a9ZELBbLdHUIgiAIgiAIgsgQ8XgcW7duRbNmzZCXl1kbGgk8Q/744w+0aNEi09UgCIIgCIIgCCIirFixAnvttVdG60ACz5CaNWsCcG5irVq1MlwbgiAIgiAIgiAyxZYtW9CiRYsKjZBJSOAZ4rpl1qpViwQeQRAEQRAEQRCRCN2iJCsEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AMXgEQRAEQRCVkLKyMuzZsyfT1SCIrKCwsBD5+fmZroYSJPAIgiAIgiAqEfF4HKtXr8amTZsyXRWCyCrq1KmDJk2aRCKRihck8AiCIAiCICoRrrhr1KgRqlevHvnJKkFkmng8jpKSEqxduxYA0LRp0wzXyBsSeARBEARBEJWEsrKyCnFXv379TFeHILKGatWqAQDWrl2LRo0aRdpdk5KsEARBEARBVBLcmLvq1atnuCYEkX24/Sbqsask8AiCIAiCICoZ5JZJEPpkS78hgUcQBEEQBEHkPMuWLUMsFsPMmTOVvzNq1CjUqVMn7fVo3bo1Hn/88Yr3sVgM77//vvJvfPnll4jFYpRIp5JCAo8gCIIgCILIClasWIFLL70UzZo1Q1FREVq1aoUbbrgB69ev9/1uixYtsGrVKhxwwAHKv3feeedhwYIFQapshVWrVuHkk0+2WuZdd92Fgw46yGqZRDQggUcQBEEQBEFEniVLlqBbt25YuHAh3njjDSxatAjPPvssJk+ejMMPPxwbNmyQfnf37t3Iz89HkyZNUFCgnmOwWrVqaNSokY3qB6JJkyaoUqVKpqthhXg8jtLS0kxXI6chgUcQBEEQBEFEnmuuuQZFRUWYOHEijj32WLRs2RInn3wyJk2ahN9//x3//Oc/K45t3bo17r33Xlx00UWoVasWBg8eLHSNHD9+PPbdd19UrVoVPXr0wCuvvJLk2si7aLpWr9deew2tW7dG7dq1cf7552Pr1q0Vx0yYMAFHHXUU6tSpg/r16+O0007D4sWLA50776L53Xff4aCDDkLVqlXRrVs3vP/++0K3z59++gndunVD9erVccQRR2D+/PkV53X33Xdj1qxZiMViiMViGDVqlPT3X3rpJXTs2BFVqlRB06ZNce211wIQu5tu2rQJsVgMX375JYCEu+inn36Krl27okqVKnjppZcQi8Uwb968pN957LHHsPfee1e8nzNnDk4++WQUFxejcePGuPDCC7Fu3Tr9C1jJIIFHEARBEARBRJoNGzbgs88+w9VXX12Rrt6lSZMmGDhwIN566y3E4/GKzx955BEceOCBmDFjBm6//faUMpcuXYqzzz4bZ555JmbNmoUrr7wySSTKWLx4Md5//3189NFH+Oijj/DVV1/hgQceqPj79u3bMWTIEEybNg2TJ09GXl4e+vbti/Ly8gBXIMGWLVtw+umno1OnTpg+fTruvfde3HrrrcJj//nPf2LEiBGYNm0aCgoKcOmllwJwXE+HDh2Kjh07YtWqVVi1ahXOO+88YRnPPPMMrrnmGgwePBizZ8/G+PHjsc8++2jX+7bbbsMDDzyAX3/9FWeffTa6deuG0aNHJx0zevRoDBgwAIAjFI8//ngcfPDBmDZtGiZMmIA1a9bg3HPP1f7tygbtg0cQBEEQBFHJ6dYNWL06/b/bpAkwbZr/cQsXLkQ8Hkf79u2Ff2/fvj02btyIP//8s8Kl8vjjj8fQoUMrjlm2bFnSd5577jm0a9cODz/8MACgXbt2mDNnDv7973971qW8vByjRo1CzZo1AQAXXnghJk+eXPG9fv36JR3/0ksvoWHDhpg7d65W/J+MMWPGIBaL4YUXXkDVqlXRoUMH/P7777jiiitSjv33v/+NY489FoAjsE499VTs3LkT1apVQ3FxMQoKCtCkSRPP37vvvvswdOhQ3HDDDRWfde/eXbve99xzD3r16lXxfuDAgXjqqadw7733AgAWLFiAn376Ca+//joA4KmnnsLBBx+M+++/v+I7L730Elq0aIEFCxZgv/32065DZYEEHkEQBEEQRCVn9Wrg998zXQt/WAudH926dfP8+/z581OEyiGHHOJbbuvWrSvEHQA0bdoUa9eurXi/cOFC3HHHHfjhhx+wbt26Csvd8uXLrQi8+fPno3PnzqhatapvvTt37pxUT8DZqLtly5ZKv7V27Vr88ccfOOGEEwLU2IG/H+effz7+/ve/4/vvv8dhhx2G0aNHo0uXLth///0BALNmzcIXX3yB4uLilLIWL15MAs8DEngEQRAEQRCVHB8jTsZ/d5999kEsFsOvv/6Kvn37pvz9119/Rd26ddGwYcOKz2rUqGGrmkkUFhYmvY/FYknul6effjpatWqFF154Ac2aNUN5eTkOOOAA7N69O5T6eMHW1d3DTcdVlHeH5cnLc6K9WOEt2wScvx9NmjTB8ccfjzFjxuCwww7DmDFj8Le//a3i79u2bcPpp5+OBx98MKUsV6wSYkjgEQRBEARBVHJU3CQzSf369dGrVy88/fTTuOmmm5KEx+rVqzF69GhcdNFFWhtRt2vXDp988knSZ1OnTg1Uz/Xr12P+/Pl44YUXcPTRRwMApkyZEqhMnnbt2uH111/Hrl27KjJrmtS7qKgIZWVlnsfUrFkTrVu3xuTJk9GjR4+Uv7uCetWqVTj44IMBQGufwYEDB+KWW25B//79sWTJEpx//vkVf+vSpQvGjh2L1q1ba2U+JSjJCkEQBEEQBJEFPPXUU9i1axd69+6Nr7/+GitWrMCECRPQq1cvNG/e3Dd2jufKK6/EvHnzcOutt2LBggV4++23KzJJ6ghFlrp166J+/fp4/vnnsWjRIvzf//0fhgwZYlSWjAEDBqC8vByDBw/Gr7/+is8++wyPPPIIAL16t27dGkuXLsXMmTOxbt067Nq1S3jcXXfdhREjRuDJJ5/EwoULMX36dIwcORKAY+E77LDDKpKnfPXVV/jXv/6lXIezzjoLW7duxd/+9jf06NEDzZo1q/jbNddcgw0bNqB///6YOnUqFi9ejM8++wyXXHKJrzCt7JDAIwiCIAiCICLPvvvui2nTpqFt27Y499xzsffee2Pw4MHo0aMH/ve//6FevXpa5bVp0wbvvvsu3nvvPXTu3BnPPPNMRRZN0z3n8vLy8Oabb+Knn37CAQccgJtuuqkiiYstatWqhQ8//BAzZ87EQQcdhH/+85+44447ACApLs+Pfv364aSTTkKPHj3QsGFDvPHGG8LjLr74Yjz++ON4+umn0bFjR5x22mlYuHBhxd9feukllJaWomvXrrjxxhtx3333KdehZs2aOP300zFr1iwMHDgw6W/NmjXDt99+i7KyMpx44ono1KkTbrzxRtSpU6fCNZQQE4vrRKsSFWzZsgW1a9fG5s2bUatWrUxXhyAIgiAIwpedO3di6dKlaNOmjZYYqCz8+9//xrPPPosVK1ZkuipajB49Gpdccgk2b97sGzdHmOPVf6KkDcihlSAIgiAIgqiUPP300+jevTvq16+Pb7/9Fg8//HDFJt5R5tVXX0Xbtm3RvHlzzJo1C7feeivOPfdcEncEABJ4BEEQBEEQRCVl4cKFuO+++7Bhwwa0bNkSQ4cOxbBhwzJdLV9Wr16NO+64A6tXr0bTpk1xzjnnaMcgErkLuWgaEiUzLEEQBEEQhArkokkQ5mSLiyZFKBIEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAh8eWXXyIWi2HTpk0AgFGjRqFOnTqh/uagQYNw5plnSv/O1+Guu+7CQQcdpPUbxx13HG688Uaj+hHhQgKPIAiCIAiCiDyDBg1CLBbDAw88kPT5+++/j1gslqFa6XPeeedhwYIFma5GEn//+98xefJk6+XGYjG8//771sslvCGBRxAEQRAEQWQFVatWxYMPPoiNGzdaLXf37t1Wy/OiWrVqaNSoUdp+T4Xi4mLUr18/09WwRjrvZxQhgUcQBEEQBEFkBT179kSTJk0wfPhwz+PGjh2Ljh07okqVKmjdujVGjBiR9PfWrVvj3nvvxUUXXYRatWph8ODBFW6LH330Edq1a4fq1avj7LPPRklJCV555RW0bt0adevWxfXXX4+ysrKKsl577TV069YNNWvWRJMmTTBgwACsXbtWWjfePbJ169aIxWIp/1xWrFiBc889F3Xq1EG9evVwxhlnYNmyZRV/Lysrw5AhQ1CnTh3Ur18ft9xyC+LxuOIVdeBdNEtLS3H99ddXlHnrrbfi4osvTnH7LC8vxy233IJ69eqhSZMmuOuuu5LOCwD69u2LWCxW8V7EypUr0b9/f9SrVw81atRAt27d8MMPPwAQu5veeOONOO644yreH3fccbj22mtx4403okGDBujduzcGDBiA8847L+l7e/bsQYMGDfDqq69W1H/48OFo06YNqlWrhgMPPBDvvvuu0jWLMiTwCIIgCIIgiKwgPz8f999/P0aOHImVK1cKj/npp59w7rnn4vzzz8fs2bNx11134fbbb8eoUaOSjnvkkUdw4IEHYsaMGbj99tsBACUlJXjyySfx5ptvYsKECfjyyy/Rt29ffPLJJ/jkk0/w2muv4bnnnksSAXv27MG9996LWbNm4f3338eyZcswaNAg5XOaOnUqVq1ahVWrVmHlypU47LDDcPTRR1eU3bt3b9SsWRPffPMNvv32WxQXF+Okk06qsFKNGDECo0aNwksvvYQpU6Zgw4YNGDdunMZVTeXBBx/E6NGj8fLLL+Pbb7/Fli1bhK6Wr7zyCmrUqIEffvgBDz30EO655x58/vnnFecFAC+//DJWrVpV8Z5n27ZtOPbYY/H7779j/PjxmDVrFm655RaUl5dr1fmVV15BUVERvv32Wzz77LMYOHAgPvzwQ2zbtq3imM8++wwlJSXo27cvAGD48OF49dVX8eyzz+KXX37BTTfdhAsuuABfffWV1m9HjYJMV4AgCIIgCILIMN26AatXp/93mzQBpk3T+krfvn1x0EEH4c4778SLL76Y8vdHH30UJ5xwQoVo22+//TB37lw8/PDDScLr+OOPx9ChQyvef/PNN9izZw+eeeYZ7L333gCAs88+G6+99hrWrFmD4uJidOjQAT169MAXX3xRYR269NJLK8po27YtnnzySXTv3h3btm1DcXGx7/k0bNiw4vUNN9yQJIbeeustlJeX47///W+FVe/ll19GnTp18OWXX+LEE0/E448/jmHDhuGss84CADz77LP47LPPlK6ljJEjR2LYsGEVQuipp57CJ598knJc586dceeddwIA9t13Xzz11FOYPHkyevXqVXFederUQZMmTaS/NWbMGPz555+YOnUq6tWrBwDYZ599tOu877774qGHHqp4v/fee6NGjRoYN24cLrzwworf6tOnD2rWrIldu3bh/vvvx6RJk3D44YcDcO7flClT8Nxzz+HYY4/VrkNUiLzA2717N5599lm8/fbbmDt3LkpKStCgQQN06tQJgwYNSjG9AsCkSZPw6KOP4scff8T27dvRqlUr9OvXD8OGDVPqaARBEARBEJWK1auB33/PdC2UefDBB3H88cfj73//e8rffv31V5xxxhlJnx155JF4/PHHUVZWhvz8fABAt27dUr5bvXr1CnEHAI0bN0br1q2T5o+NGzdOcsH86aefcNddd2HWrFnYuHFjheVp+fLl6NChg/I5Pf/883jxxRfx3XffVYijWbNmYdGiRahZs2bSsTt37sTixYuxefNmrFq1CoceemjF3woKCtCtWzdtN02XzZs3Y82aNTjkkEMqPsvPz0fXrl1TrGqdO3dOet+0aVNP91QRM2fOxMEHH1wh7kzp2rVr0vuCggKce+65GD16NC688EJs374dH3zwAd58800AwKJFi1BSUoJevXolfW/37t04+OCDA9Ul00Ra4K1cuRK9e/fG3Llz0aBBAxx55JGoUaMGVqxYga+//ho1atRIEXiPPfYYhgwZglgshqOPPhqNGzfGN998g/vvvx9jx47FlClT0KBBgwydEUEQBEEQRATxsLBE8XePOeYY9O7dG8OGDdNyh2SpUaNGymeFhYVJ72OxmPAzV+hs374dvXv3Ru/evTF69Gg0bNgQy5cvR+/evbUSfXzxxRe47rrr8MYbbySJpm3btqFr164YPXp0yndYy1+m8Lo2qlSrVs3z73l5eSlidc+ePSnHie7nwIEDceyxx2Lt2rX4/PPPUa1aNZx00kkAUOG6+fHHH6N58+ZJ36tSpYrWOUSNyAq8HTt2oFevXpg3bx7uuusu/OMf/0hqRCUlJSkpZmfMmIGhQ4ciPz8fH374IU4++eSKY/v06YPJkyfjqquuyongSYIgCIIgCGtouklGgQceeAAHHXQQ2rVrl/R5+/bt8e233yZ99u2332K//farsN7ZYt68eVi/fj0eeOABtGjRAgAwTfNaLlq0CGeffTb+8Y9/VLhZunTp0gVvvfUWGjVqhFq1agm/37RpU/zwww845phjADgJUn766Sd06dLF4IyA2rVro3Hjxpg6dWpFmWVlZZg+fbr2XnmFhYVJCWlEdO7cGf/973+xYcMGoRWvYcOGmDNnTtJnM2fOTBGXIo444gi0aNECb731Fj799FOcc845Fd/r0KEDqlSpguXLl2e1O6aIyCZZGT58OObNm4fBgwfjzjvvTLmJ1atXT2lkw4cPRzwexyWXXFIh7txjX3zxReTl5WHs2LGYN29eOk6BIAiCIAiCCIlOnTph4MCBePLJJ5M+Hzp0KCZPnox7770XCxYswCuvvIKnnnpK6M4ZlJYtW6KoqAgjR47EkiVLMH78eNx7773K39+xYwdOP/10HHzwwRg8eDBWr15d8Q9wLFANGjTAGWecgW+++QZLly7Fl19+ieuvv74iycwNN9yABx54AO+//z7mzZuHq6++umJTdVOuu+46DB8+HB988AHmz5+PG264ARs3btTeb7B169aYPHkyVq9eLd3aon///mjSpAnOPPNMfPvtt1iyZAnGjh2L//3vfwCcWMlp06bh1VdfxcKFC3HnnXemCD4vBgwYgGeffRaff/45Bg4cWPF5zZo18fe//x033XQTXnnlFSxevBjTp0/HyJEj8corr2idZ9SIpMBzA1wB4Oabb1b6zu7du/Hxxx8DcG4kT6tWrXDkkUcCQODMQgRBEARBEETmueeee1JcArt06YK3334bb775Jg444ADccccduOeee4xdOb1o2LAhRo0ahXfeeQcdOnTAAw88gEceeUT5+2vWrMG8efMwefJkNGvWDE2bNq34BzhGiq+//hotW7bEWWedhfbt2+Oyyy7Dzp07Kyx6Q4cOxYUXXoiLL74Yhx9+OGrWrFmRHMWUW2+9Ff3798dFF12Eww8/HMXFxejduzeqVq2qVc6IESPw+eefo0WLFtK4tqKiIkycOBGNGjXCKaecgk6dOuGBBx6osLb27t0bt99+O2655RZ0794dW7duxUUXXaRch4EDB2Lu3Llo3rx5hRZwuffee3H77bdj+PDhaN++PU466SR8/PHHaNOmjdZ5Ro1Y3DQCM0R++OEHHHbYYWjWrBl+//13zJ49G++99x7++OMP1K1bF0cffTROPvlk5OUl9OmcOXPQqVMnAMCWLVtSglEBYMiQIXjsscdwzjnn4O233w5Uxy1btqB27drYvHmz1GROEARBEAQRJXbu3ImlS5eiTZs22pN1ovJSXl6O9u3b49xzz9WyUOYaXv0nStogkjF4P//8MwBgr732wm233YaHHnooKbjywQcfxMEHH4z3338fLVu2BAAsXboUgJOKVSTuAFT4RrvHyti+fbtvHVWOIQiCIAiCIIhs47fffsPEiRNx7LHHYteuXXjqqaewdOlSoZccET0i6aK5fv16AE7SlAcffBBXX3015s+fj82bN+Pzzz/HfvvthxkzZuDUU0+tyKKzdetWAOIMOi5uitstW7Z4/n5xcbHvv2bNmtk4VYIgCIIgCIKIFHl5eRg1ahS6d++OI488ErNnz8akSZPQvn37TFeNUCCSFjzXWrdnzx70798fTz31VMXfevbsic8//xzt2rXDnDlz8Oabb1ZsXkgQBEEQBEEQRDBatGiRkomUyB4iacFjXSyvvPLKlL+3bNkSp556KgBnU3P2O16uk+5+F35+sdu2bfP998cff+idFEEQBEEQBEEQRMhE0oLXtm1b4WvRMatWrQLgpGEFgE2bNmHr1q3COLwVK1YkHSvDy83TxW9PD4IgCIIgCIIgiHQTSQtely5dKvbZWLdunfAY93M3rq5du3aoXr06APkGk+7nphs/EgRBEARB5AIRTKJOEJEnW/pNJAVekyZNcNRRRwFIuGCy7NmzB1999RUA4JBDDgHg7KHhum2OGTMm5Tu//fYbvvvuOwAIvDcIQRAEQRBENlJYWAgAKCkpyXBNCCL7cPuN24+iSiT3wQOAyZMno2fPnqhbty4++eQTHHbYYQCA0tJSDBkyBCNHjkTNmjWxcOFCNG7cGAAwffp0dOvWDXl5efjoo49w0kknAXBuRp8+fTB58mT069cP7777buD6RWmvC4IgCIIgCFVWrVqFTZs2oVGjRqhevXqF1xRBEGLi8ThKSkqwdu1a1KlTp2IjepYoaYPICjwAuO+++3D77bejoKAAhxxyCJo0aYLp06dj2bJlqFatGt55550Kq53LY489hiFDhiAWi+HYY49Fo0aN8M0332DVqlVo164dpkyZggYNGgSuW5RuIkEQBEEQhCrxeByrV6/Gpk2bMl0Vgsgq6tSpgyZNmggXRaKkDSIt8ABg4sSJePzxx/HDDz9g69ataNKkCU444QTceuut2H///YXfmTRpEkaMGIEff/wR27dvR8uWLXH22Wdj2LBh0k3QdYnSTSQIgiAIgtClrKysYj9hgiC8KSwsRH5+vvTvUdIGkRd4USVKN5EgCIIgCIIgiMwRJW0QySQrBEEQBEEQBEEQhD4k8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQBEEQBEEQRI5AAo8gCIIgCIIgCCJHIIFHEARBEARBEASRI5DAIwiCIAiCIAiCyBFI4BEEQRAEQRAEQeQIJPAIgiAIgiAIgiByBBJ4BEEQBEEQBEEQOQIJPIIgCIIgCIIgiByBBB5BEARBEARBEESOQAKPIAiCIAiCIAgiRyCBRxAEQRAEQRAEkSOQwCMIgiAIgiAIgsgRSOARBEEQBEEQBEHkCCTwCIIgCIIgCIIgcgQSeARBEARBEARBEDkCCTyCIAiCIAiCIIgcgQQeQRAEQRAEQRBEjkACjyAIgiAIgiAIIkcggUcQBEEQBEEQBJEjkMAjCIIgCIIgCILIEUjgEQRBEARBEARB5Agk8AiCIAiCIAiCIHIEEngEQRAEQRAEQRA5Agk8giAIgiAIgiCIHIEEHkEQRADmzAE2b850LQgivSxcCKxdm+laZIb584F16zJdC4LIXrZtA6ZNA+LxTNckdyGBRxAEYchrrwGdOgHt2wO7d2e6NgSRHr78EthvP6B168ondCZMAPbfH2jbFti0KdO1IYjso7wcOO44oHt34K67Ml2b3IUEHkEQhCEXXeT8v2oV8Omnma0LQaSLM85w/t+xA3jwwczWJd2cfLLz/9atwPPPZ7YuBJGNzJ8P/PST8/qeezJbl1yGBB5BEIQFyNWEqCxs3Zp4XZkt19TnCUKfn3/OdA0qByTwCIIgLFBYmOkaEASRTqpWzXQNCCL7mD070zWoHJDAIwiCsEBBQaZrQBDpJxbLdA0yBwk8gtCHteA1bJi5euQ6JPAIgiAsQBY8orJArokOJPAIQp9ZsxKvW7XKXD1yHRJ4BEFUGh56CBg4EPj9d/tlkwWPqIyQBY8gCFU2bgSWL0+8p8Wi8KApCUEQlYJp04Bbb3Ver10LfP653fLzaLmMICoVVapkugYEkV3Mm5f8vqwsM/WoDNCUhCCISsGMGYnXkybZL59WIgmicpGfn+kaEER2sWtX8vvy8szUozJAAo8gCMICtBJJEJULWtQhCD14QUfPzfAggUcQRKUg7MkYrUQSlZHKHINHfZ4g9OD7DPWh8CCBRxAEYQFaiSSIygVNTglCD7LgpQ8SeARBVArCtjTQZI+ojFRmC16mXDTjceDXX2lyTGQfZMFLHyTwCIIgLECTLYLIbXhBl6nJ6dChQIcOwHnnZeb3CcIUsuClDxJ4BEEQFqCVSILIbXbvTn6fqT7/2GPO/2PHZub3CcIUsuClDxJ4BEEQBvCr+bQSSRC5zY4dye8piyZB6EEWvPRBAo8gCMKAPXuS39NKJFEZqUwxeCUlye+pzxOEHmTBSx8k8AiCIAzgN2yllUiCyG14C14UJqdkRSSyCbLgpQ8SeARBEAZEJR6HIDJJZbbgRUFc0bhDZBNkwUsfkRV4gwYNQiwW8/y3c+dO4Xd/+uknnHPOOWjcuDGqVq2KNm3a4LrrrsPatWvTfBYEQeQqZMEjiMrBCy8Al18OLFqU/HkmJqcU+0tkM2FZ8HbsAG68EbjjDhKNLgWZroAfRx55JPbZZx/h3/Lz81M+e/fdd9G/f3+Ulpaie/fuaNOmDaZNm4annnoK77zzDqZMmSItjyAIQhVe4NFDhSByj0WLgMGDndcvvZT8t0z0ed5zoLQUKCpKfz0IwoSwLHhvvw088YTz+vjjgeOOs1NuNhN5gXf55Zdj0KBBSsf+8ccfuPjii1FaWornnnsOg/8alcvKyjBo0CC8/vrrGDBgAH744QfEKpNfCUEQ1t2pyIJHELnPnDmJ1/wYkgkXTd5xqbQ0/XUgCFPCsuAtX554vXq1nTKznci6aJrw+OOPo6SkBD179qwQd4Bj6XvmmWdQu3ZtTJ06FRMnTsxgLQmCyAXIgkcQuR+Dl+cxS8pEn+cFHi0sEdlEWBa8bdsSr6lPOOSUwBs3bhwAYMCAASl/Ky4uRp8+fQAA7733XlrrRRBE5rE9EeVdpeihQhC5h9e4QRY8gtAjLAseK/CoTzhE3kXziy++wOzZs7F161bUr18fhxxyCE455RRUqVIl6bitW7di0V8R0N26dROW1a1bN7z22muYMWNG6PUmCCK3IQseQZAFL92QwCOyGbLgpY/IC7xXX3015bOmTZvipZdewkknnVTx2bJlyypet2zZUlhWixYtAABLly71/M3t27f71kvlGIIgcheKwSPSQXk58McfwF57ZbomlRMvARsFgUfjDpFNpMOCR33CIbIumgceeCCeeOIJzJkzB1u2bMGaNWswceJEHHHEEVi1ahX69OmDL7/8suL4rVu3VryuUaOGsMzi4mIAwJYtWzx/u7i42Pdfs2bNgp8kQRBpI+wkK2TBI8Lg5JOBFi2Axx7LdE0qJ14WPHLRJAg90mHBoz7hEFmBd9NNN+H6669Hx44dUbNmTTRq1Ai9evXClClTcMYZZ2DPnj248cYbM11NgiCyBMqiSWQb27YBbk6wIUMyW5fKStQteDSZJbIJvs/E43aezWTBSyWyAk9GLBbD3XffDQCYNWsWVqxYAQCoWbNmxTEy98ltf7WAWrVqef7Gtm3bfP/98ccfNk6HIIg0YXvQ55OskAWPsE0mLES6UAxeeiEXTSKbEfUZG/2ILHipRD4GT0T79u0rXq9cuRItWrRAq1atKj5bvnw5OnXqlPI9Vwy2bt3as3yZiydLGY2qBJFV2O6yZMEjwobaVLQhF02C0EMk5srKgPz8YOWydh0aNx2yzoIHAOvXr6947VruatWqhX322QcAMG3aNOH33M+7dOkScg0JgogatlfbKQaPCBuavGcer8liFCx41EaIbCIdFjwSeA5ZKfDefPNNAI6oa9euXcXnffv2BQCMGTMm5Tvbtm3Dhx9+CAA466yz0lBLgiCiBFnwiGwjG9pUri9sRE3g0bhDZDMyC15QyEUzlUgKvJkzZ2L8+PEo5e5SeXk5XnzxRfzjH/8AAFx//fUoLCys+PuNN96I6tWrY9KkSXjhhRcqPi8rK8PVV1+NTZs2oXv37jjxxBPTcyIEQUQGisEjsg2+zUYxJi/X273XZJFcNAlCjzAseOXl5KIpIpIxeMuWLUPfvn1Rt25ddOnSBY0bN8amTZswZ84cLF++HADQv39/3HnnnUnfa9asGUaNGoX+/ftj8ODBePHFF9G6dWtMnToVS5YsQePGjTFmzBjEcj0qnCCIFMJ20aSHCmEbvk3t2AFUr56ZusjI9XYfNQseCTwimwnDgldSYre8XCGSFrwDDzwQN954Izp27Ih58+bhvffew+TJkwEAZ599Nj7++GOMGTMGBQWp+vScc87BDz/8gLPOOgtLlizBuHHjUFZWhmuuuQazZs2qiNMjCKJyEbaLZq5bMoj0w7dZ1g0pKuR6u/caN6JgwaPJLJFNhGHB48dFWvRwiKQFr02bNngswK6uXbt2xdixYy3WiCCIbIdi8IhsQyTwGjXKTF1kVGaBRxY8gtAjDAseL/DoWewQSQseQRCEbSiLJpFt8JN3suClHxJ4BGEPsuClDxJ4BEFUCsJOskKrhoRtyEUz85CLJkHYgyx46YMEHkEQlYLKZMGLx4H584GlSzNdEyIIJPAyj5c1gCx43mzYkPvtg9AjDAsem0ETsCPw4nGA2XI7KyGBRxBEpaCyxODF48CJJwL77w+0bQtcf32ma0SYkg0CLyrtPizIRdOMd98FGjcGjjoqmtt7EJkhHRY8G32id28n3vnll4OXlSlI4BEEUSmoLFk0//wTmDQp8f7NNzNXFyIY2SDwotLuw4JcNM045xxnov2//wHTpmW6NkRUSEcMXtA+sXIl8PnnTr0uvTRYWZmEBB5BEJWCyrIP3tatye/37MlMPYjg8G2Kd0WKApVZ4JEFT40dOzJdAyIqZIMFL1e2yiaBRxBEpSDsJCtRmeiGEY9AZAbKopl5oi7wqH8T2UQ2WPDyckQZ5chpEARBeFNZYvAoo1juQC6amSdqLpr8uJMNFjyCcMmGLJq58swkgUcQRKWgsmTRJIGXO5DAyzyURZMg7JEN++DlyjOTBJ4lpk8HhgwBZs/OdE0SlJcDjz8OPPJINB8CZWVO3QYMAP75T2DTpkzXiMhlomrBW7MGGDYM+Pjj4HUCSOBlkvXrnbHsvffslBe2wPv6a+Dmm4Fly8zLyPX2FXUXzQcfBB57LPeFNpEbkAUvfRRkugK5Qteuzv9ffumIvSjw5pvATTc5r2vVAgYPzmx9eD75xJlcuBQXOxNdggiDqGbRvOyyhLhbuxZo2DBYvUjgZY7rrwfGjHFeL18OtGgRrLwwBV5pKXDssc7rTz8F5swxKyfXhUXUXDR5gbdggbO43KQJ0L9/+uujQq4krSCCk4598Gxb8MrLszMuLwurHD3WrUu8njEjc/Xg+e9/E6//85/M1UMGv2ocZBWZIPywPRG1leyAtdz98ot5fVx4ERCP0z5U6cIVdwAwdWrw8sIUeGxmwyDtrjILvChY8FxefDG99SAIE7LBgsfXsaQkWHmZggSeBWbNynQNxLCTuiiuoPHp26PoRkrkDvygH1T08IO+jcmejTJEIoCseNkJZdHMPFG34LlE2cKQ622EUCcbsmhmQ+yzChEeErKHbBB4URz8+TTztF8XESb8QyToQ4Df28mGiCKBR7CEuQ+erTaR65P3bLHgRfEZ70KLt4RLNuyDRwKPqGDmzEzXQEy2WfBI4BFhIvKrD0IYFjwbk26RCCCBl52EOdEggadG1LNouuTnp7ceOpDAI1xEVu+oW/BsLqylExJ4FsgGC55tSkqCd0oSeES6KClJHbSDPATKy4PH4MXj8k3JgzxQyIIXDWxMarNB4OV62wrLRbOkRP/78Xjls+DxY2G2xkMRDtlgwePrSBa8SsquXcDcucmfRWVFMywXzSlTnEx/XbsG60gUg0ekg4kTgQYNnKyyLEH6qWiSpVvemWcC9eqllnHBBUCdOuZJE0jgRQMbE9FsEHhRed6FRRgumlOmAI0b6z9DS0vlvxlFLx0X02f7m286Y2Tfvs77M88E6tYF3njDWtWINEMxeOmDBF5A1qxJHbyiYokKy0Xz+OOdycvMmcCHH5qXQzF4RDro3Ts1Xg4I9hAIWt7SpcD48al9YNs2YPRoZ0y5/HKzuokeRrk+CY8iYQg8m9YL0/bPt6Vcb1thCLyePZ1+OmMG8O676t/jt2ZhyUULXv/+zhj5/vvOFlQffOC8HzDAZu2IdJINWTRJ4BEAxA2Jn7RlirBcNFkhJprompQjek8QYRLkISCaaOtM9mQTdRsTeLLgRYMgY6NLmIuHppNuEngJTJ+xrFDbuFH9e17XOhcFHsuKFcHLIDKPbQve7t32vcFI4BEAxA0zKgKPrVtY7hs1aph/lwQekUmCPFSCWvBkE0Mbwdwk8KJBGBa80lJ7C3embcJ2sqKoE6Usml51yXWBt3Vr8DKIzGPbghdGUjESeASAaFvwWMISeEFEGX+dKAaPSCeZtODJjrVh9SGBFw1s3EvRfct0cpTKZsGLUhbNymzB27IleBlE5rFtwRM97yjJikOEh4TsIMoCL4wkK/zqcZBVarLgEZkkkzF4sgcauWhmL/z4FYYFT/Q7Nss2+V6uC7wobXRemS14JPByA9sWvDCed7liwSvIdAWyHVsCb8IEYNw4oFYt4G9/A9q2DV63MJKsbN6c/J5i8IiwiceBl15y4lauvNLefk9BJqZBLXhhumgGdVmJx4FXXnFcoq66CigsDF4nwLlm//kPsGAB0KmTM87ZKtsG27Y59WvfHujTR//7fJsIy4K3Zw9QrVo4ZavAt/NcXzwgF83g2BB4mzYFL4PIPOmw4NE+eA4k8AJiIwZv/XrgjDMS3/v1V+Cjj4LXLYzVxdWrk9+TBY8Im/HjExkla9QALr7YTrlRtODxD5J4XH9xJugDb/Jk4JJLnNd5ecA11+j9voxXXgFuuSXxvmlT4Jxz7JRtg7vvBh55xHm9YAGw77563+fbBFnwcoMoWfAqs4vm+vXByyAyTzoseJRkxSHCQ0J2YOMB/McfyaJw8eJgdXJhO5KtwZ8XeEFWqSkGj1Bh5MjEa3cCboMoxuDxAk93LNmzR5xKXedc2f337r1X7/e9WLQo+f2SJfbKtgHbtj79VP/7YVjwRGOiLYFHWTTVIAtecEjgES7ZaMEjgVdJseGiyZcRRgyfLRdNsuAR6YbtH7bcMwH7Lpo2smjyDxLd/iVzJdGpG3uNbbrf8eNalIWByRicLguerYUwsuCpQQIvODba7Lp1iddR3tSd8CYbLHiUZIUAYMdFk2+MtgReGDF4Ni14JPAIFdjB3+YkxraLps5kT/bbfCpw3f4lexBFUeBFOXbLZCxKZwyeDfiyVd0NK5sFz2uyaMNFU6cMr2sdJdHD19O2wKtVK3h5RGYgC176IIEXkChb8MLYB8+mBY8/TxJ4hAh2clBgMWrYtoumTnmyCQ8v8HT7VzYJvCgLgyhb8MISeKr3gyx4CaJkwYvSfRDt3xiUP/9MvK5ZM3h5RGagffDSBwm8gNiw4IUl8MIIAF+zJvm9TQtekIdAPE4CMVeJootmUAuerK3zDxKy4KUHG94E2WDBY79rOgmnLJoJbIgqncVXr7pEKYadr4v73ta+ucXF5uVkC9kwnzGpYzbsg0cCjwAQbQteGPvgRTEGb88e4JBDgObNgZkzzetDRJOwBF4uWvBsx+DZnDRG1YJ3/fVA7drJn0XZgmd6Tx55xHFtu+cecdmq5ZIFL0GUXDSjLvCuugqoUwcYPTp4+VGON7TBsGFOX2UTjEWNUaOccfPaa/W+l4374GXrNgk53k3CJ8oCj8WWi+aGDcnvoxCDN2oUMG2a48Jx5pnm9SGiSWWy4AWNwZOJCrLgiSkrcyZR/HWOigXPZhbNm28Gdu4E7rxTXLapBa8yCzwb564jzLLVgrdlC/Dcc04fueCC4OVHYewIkwcecPrq9ddnuiZyLrnEGeP+85/gWwRFzYLH14cEXiUlDIFXWmp/ZdCWwOMnF1GIwfv998Tr334zrw8RTciCF7zcKAq8KAgD2YM7yha8sGLwyIInJkoCL1steDt32i0/19tctqEzXoZpwXOfXbYteNna3kjgBSSMLJqAnYd4GElW+LpGIQYvWzsfoQY72EYlyUpYFjy+T+j2LxsCj73GNuN4+XOLwiq8TOBFxYIXRYFX2Sx4YWfR1Lmf2WrBsx1PFoWxg0gg2ntVRpgWPNfV3rbAy9b2RgIvIGEkWTEpQ0TULXiiCZ/JAzPXJxiVnSi6aIZlwVP5HS/YOhQViT/3w+Y1ZomiBU8WPG/Dgrdrl/2JBhDePnhkwRMTJQtetgo822En2TrhViGM5HhhE1Tg2bLguQLPdpKVbG1vJPACEoaLpkkZIsIQeDYteKJztJWVicgdouiiGZYFT+V3VMutUiXxOooCLwoPTZnAs2HBA4K7poVlwSsroyyaqkRJ4GWri6aOAFAhl5/5/LXLBsFHFrxoQgIvIJVd4Nm04Mk+8yNbO1+mWbsWeOghYPr05M83bgQefRT48cfM1Mtl1Srg4YeBRYsSn0VB4H38MfDJJ4n31arplxeWBS+bBF4UJmlhWvAA4P77g42RYQm8PXvMBN6iRU4CCJbycif2me+ruULYWTQrg4umbYG3cSPw+OPAd9/5H7t2LTBiBDBrlt062MJ9zv3yi/M+bOunKeXlwKuvAmPGpLb7TMXgTZsGfPut87qoKPEsjseDPV9yZRHLYkRL5aSyCbygMUJeZQFmD6koTBSzkVtuAV55Bahb19n+wnXpu+66RCrrrVszt+dQ//7AV18lf5ZpF81ly4DTTkv+rHp1px9EwYJnw0XT1ljBUxktePff77SPf/5TvzwgvPjs3bvNsmgedVTqXqjl5UCvXsDChc5Ede3a4PWLElGy4GWLwOPraSLwvK7ttm3ATTc5rzdscJ5hMi64APj8c+d1aWl4C1imnHOOI1JuuUW8n++OHcmLdZniww+Biy92Xtepk/y3TFjwdu8GTj458b64ODVBmOl2Grnihk4WvIBUNoEXRQteNrgwRJFXXnH+37gRmDs38Tm7T9GCBemtEwsv7oDMJ1mZNCn5fdWqiTrligUvLOGVTRY8E9dKmRj/17/0y3IJKwbP1ILHizvAuY8LFzqv//wzeN2iRtgWPHLRFKM6Ds2Y4f13V9wB0Ux371qgAOf+2pxj2eTeexOvhw9P/lsmYvA2bQLWrUu8P+us5PlBkOcYuWgSAMLLopktAm/HDvOHnK0YvGztfFHi55/Fn9t2rQlKpl00mzRJfl+9eqJOUbDgseWaWvDCmihmkwXPxDPBayJmOkaG5aK5e7d5DB5PFIR6mHhdFxvnTi6aamXI0OlbUV8M3rPHbp4Dm7ALhvwCWCYseOx39t4beP755PlBkP4g6mfZOM6RwAtIZc+iCZitdsfj9iYvYWwHkevw137mTPFxUfH/d8m0iybfPnfvTriBRMGCx9aBLHj+yASeyaq510Rs1Sr98gASeFGAXDT1SafA0yHqbVXkOh0VC17VqonXtgWeyTOHLefAA525n609XEXfjcKCpC4k8AJS2V00AbMVJtkkJWgMXtT866MK69oAyAPQyYKXDH89tm2LrgXPVOBVJguezGXLtgXPNMFDNgi8KNzHMMkWF80o3YeoCrwoiWARu3fbzXNgEy+BFzTJSlALnrvIyrpoBrnXtrdyyBQk8AIiE2c6A3+2CzyTFSbZ+ZEFT4943GySsXp18vuZM8XlZMqCJxtMoybwgGhZ8LLJRdPtt5l0m0qXBU9mIffDVgweP2ERCTzTCUzYVhG/9qHSfoK0sbAteOSiqVaGDfbsSbSF3buDb2MC2B2/RC6aZMHzL8d9BodpwYu69VcECbyAiBrCM88Ahx2mPnikQ+DZapyih5FNC15QgWeaNSkbWbIEaNtWr6258AJvwwbg999Tj8uUBU/2ULP5MDXpE6LrESULXja5aJaVARMmAI0aAZddFs5v+pGuGDxTC56tLJqi1Ou6WTRl7Zv/3OZE6KqrgAYNnAx+IqZOBZo3dzLbysaGCy902hifIEkV2wKPr2dlcNE0EVJhxOB17gzsuy9www1AzZpODPXll+vXzeW995z2ecMN5mWwiPplFC14fJ0yHYOXDoFHFrxKiKxh/vijE/SpQjoEno3GWV4uHkxNVphI4AVn4EAnbb9OW3PhBR4ALF6c+lmmLHgy1zmbg6xJWfz1OOqo6FrwouSiGY+LLXgnn+y4C7/0ktOW041NC57XJNbNMqmLLRdNvhwTF01ZGwprz6g1a4DnnnMWn/r0ER/Tq5cT3/jxx8Cnn6b+fdYs4PXXnTZ24olm9bDtohnENbYyZdEMQ+CtX+885558MuFp9eKLTiZpE/r1c9rnk08CW7aYlcEictGMigWvsDDxeuvW5L9FxYJny0WTBB4BwPum//GHWhnpyKIZZjA4xeBlhu+/T7xeuVLvu6J056Jrb8OFxQTZxFt3kPVq90EteFWrOhPQKFnwbLho8sfasJqWlaWWw/8OP2lIBzYteO61r1YNGDIEuPXWxP5cmzYZVS9SAk/2d77d2xIaKvdg8+bEa9GYxi4amLZj21k0+fLIRVOtjDCx8ZyzIcSibMFj56T8/JQseNHEaFep8vJyTJ06FZMnT8b06dOxZs0abNy4EXXr1kXjxo3RtWtXHH/88ejevTvyctyk4tUwVTeIzhYXTdmDKEoxeDne3KTUqKF3vMiCJ2qHmXq42BJ4XpOEoDF4b70FdOhgZsFTPTYTWTRFE1BWLJog6u/8mJSJ+Fmvjc5LS/X2XXSvcfXqwIgRzuuxYx3rgE2BZzLxDVPgmWyYroJu/xQJuA0bwq2HjUy8ZMETk84JtY1rZ2POFuUsml4iOGiSlTAseEHajy0Rmmm0BN7atWvx/PPP47nnnsMff5mn4oJRddy4cQCAZs2a4aqrrsIVV1yBRo0aWahu9PBqRFESeDYGy3RY8IKuTldWgVe9ut7xIoFnK0OqDWQTb91BNkyB5wqoqFrwbAm8XbvCEXh8naIk8ADn2tesqV6Wez7sKnKdOs7/mzY547HuOWaDBY+fvNsSGjbif8MWeCZWwSCCOFsteCbzmTBcNIP+lhc2npWifhkVC55Xf8yEBU807wtzH7ycteDt2rULDz30EB588EGUlJSgoKAAXbt2xRFHHIGOHTuifv36qFWrFjZv3oz169djzpw5+O677/Dzzz/j9ttvx/Dhw3Hbbbfh5ptvRhV21pEDZIvAC9NFk2LwMk9YFrxMrR7asuDZXn1n+6UreqIag2fLRXPXLj2hI0LFgpcJvAReSUlwgVe7tvN/ebnzW7rXMRsEnulxfthwmzONrWKxPYZURoEXZhnp3otQhi0XTV6wZoMFLyoxeOSimYySwGvXrh2WL1+OTp064dJLL8XAgQPRoEED3++tW7cOr732Gl5++WXccccdeOmll7BkyZLAlY4SXoOLqntPtgg82cQi0zF47HnaEHh//OFkxzr9dKBVq+Dl2eLTT4FvvwWaNQMuuij5bzquZAC5aJqUBUTfgheGi6YNS4qKBU+XqVOdJBqnnAJ88AFw3HFA+/Z6ZciS+QDm115kwQMcK56uwItSFs2wBN6nnzoJKg47zMmW2acP8PXX+olpRJacP/9MvNYdI11E7TQWM9+ihr9/OvczTBfNr78GPv/cyQp50UWJ+FET0inwwvRO0sGWBY+38kfFghemwAsag+eOuZRkJRmlIa9atWp455130K9fP63CGzRogJtuugk33XQT3nnnHdxxxx1GlXS55ZZb8PDDDwMA7r33XvzrX/8SHjdp0iQ8+uij+PHHH7F9+3a0atUK/fr1w7Bhw1CsalZTxOumqzYIWw9xnnS5aGY6Bs+2i+agQc6DbtQoYNq04OXZ4OefnYmsy6pVyX/XvW6qSVay3YKXDoGXaxa8MASeqH0GSa+/ZQtw+OHJ59W4sbPVh06iJT8Lng7udZMJvM2bgRYt9MrMhhg80+MA4Icfksc1ALjuOvXv+8GOc/XqmZUhugd5ec7nuWLBW7kS6NEjcT5z5zoJpExJp8BL5295YcuCx89hssGCF5UYPLLgJaM0Hf7ll1+0xR3POeecg19++cX4+9999x1GjBiBmE8Qw2OPPYZevXphwoQJ6NixI04//XRs3rwZ999/P7p164Z169YZ10GEjQE3Wyx4svMxcaWx6aLJ1suGwPv8c+f/n36yk/rYBnzX+fnn5Pe67UVkuYiSBc/WNgm23au8LHg6K/qqY4PufQ3DRdNW8gC/39GZZH3/fer316zR769+MXg6uPVhV5F5C54uue6ief/96seawHoquO6yuvDnc+ONCStLrgi8BQuSz2XOHPOygtZFt4yoCDxbFryoZtGMsgWPkqyIUZoO28qEaVpOSUkJBg0ahKZNm+KMM86QHjdjxgwMHToU+fn5+Pjjj/HVV1/h7bffxuLFi3HCCSdg/vz5uOqqq0yrLyTKAo8t17YFjzWEBhV47ETUZPLCfifoNgn8BJ0XUpmCH0D5iazudRO1zWyw4GU6yYpXDB6gXr+wJi8yF80g7qNhuWgGSa8vs8bo3NN43K4FT8VFU5dcF3g619jvvEWLK6wFzzQZh3udunRxLFuPPpro81Fy0RRtRaIK3z+DjvuV0UUzrG0SssGCF8UYPHLRzJJ98IYNG4aFCxfi+eefR22PZbjhw4cjHo/jkksuwcknn1zxefXq1fHiiy8iLy8PY8eOxbx586zVzYZPfFgCj/192zF4QQUee35sBkiTTsnWK+haBH8uM2cGK88W/ADKx9DpTBLice8BjB0kKQYvGS8LHmBf4MXj5uIs22LwdOoo6+c646ZoMsUSRgyeLiTwEujej3g8eZw0eaay/a+w0InxjMUS7S9KFjyVv8vgr03QcZ8seGaINjonC55/OeSiKcZoOrx8+XKMHz8eK7ndlX/55Rf06NEDdevWxcEHH4zPXV+3AHz55ZcYOXIkLrroIpzCO+sz7N69Gx9//DEAYMCAASl/b9WqFY488kgAiW0cbBBlgceWa9tF06YFjxV4QS14QVOtsxvnAk4ShyjAD6C//578Xqe9yNql215YYRA1C14UXTRZsREk7tb2sTazaAbFtgVPdqxOP/Cy3gF2LHjseqQtgZdLMXheSW54dO/Hli3JzyaTZ6ookQMQTRdN3bJYstmCFxWBRxY8NdK1Dx5Z8AwF3iOPPIK+fftiOzM6b9++HT179sRXX32FzZs3Y9asWejTpw8W6qbCYti2bRsuvfRSNG7cGI8//rjnsQsWLEDJXz2hW7duwmPcz2fMmOFZ1vbt25X+AZXXRZPNBhdU4LEp/k0EHnutglrw+ElYVC14W7cmv9e5brJ26X7OCgOy4CWTbgseoHdvszmLZtQEXhQseGFl0XQ3cvf7LZ2/6x4H6Ak8v/vBuyfyXg4mz1S2jbL3NYoumoA9gZdNFryouGhW5hi8oElWyIIXDkbT4a+//hr77rsv2rVrV/HZmDFjsGbNGpx55pmYOXMm7rnnHuzatQtPPfWUceX+/ve/Y+nSpXjmmWdQ1ydn79KlSwEAderUQU1JLuoWf6Uwc4+VUVxc7PuvWbNmAOwIPNFx2eSiaTIBZMuqVk38uUlZ+flO5su2bYEBA/QfwPwkbM4cs8F/5EigeXPgxRf1vyvCrz3YEHhuW2YFnsrq4axZwL77AmefbWfTWSA9Ak+1T7zwgnMv//Of7LLg2RJ4n37qbBdyww3qZfCoWPCCWBm9fkeGbQueXxZNctFMReca694P2wKPtQ6QBS9YPVSeE5XVgsf37yhY8OLx7LPgUZIVQ4G3atUqtG3bNumzCRMmIBaLYeTIkejcuTP+9a9/oV27dvi///s/o4pNnDgRzz33HM4//3yceeaZvsdv/cukUcNjx2d3i4QtFlMjZosFL2oumrIYvKACDwD69QOWLgXeeAP48ku9svhJ2M6dTgppXa6/3tlP7/LL9b8rwm8A1blufnsQsm1FZfXw9NOBRYuAsWOBCRPU6+GFrSQrNrYxGTzYuZfXXitOshK2BS/TLpqPPgosXw48+aR4/0QVomjB87Me2c6iybt/65TJkksCL0wLHrsHHmD2TGXPRWTBS7fAS6cFL8hiXWUUeCaWNv5+RtWCV1rq3faiGINHLpqGAm/jxo2ox6Ux+/7779GhQwc0b9684rNOnTqlxOmpsHnzZlx22WVo2LAhRo4caVLFQGzbts333x9//AEg2gKP/f1scdEMmmSlrMyZjLosWqRXlmiV3W+lPx34DaA2Y/DYtqKyerhiReK1iRgWYWubhLBcNPPyEhP5sC14mXbRZDEdl2xb8GwIPL+2rTOuyWK1wrDgZSoGL4y2HWYMHj9u796tL1qi5qKZLgtePB7MNdtGW8o2F00TS5uoX0YxBs9vLIyKBY9cNJNR2uicp0aNGviTWR5btmwZVq1ahdNPPz258IIClBr0nBtvvBErV67EW2+9hQYNGih9x3XL3O7xxNj214hfq1Ytz7K8rIAuZX/dba8BPpMCj9+Ty7aLJnuJMp1khb1W/LXUFWfZKvBsumiy11B39dDSjiqRctFkce8DK56iasELQ+CZYtuCZ8NF069t64xrMiFgS+BVqZJoe7lkwRMdu/fewOLFqZ/rjkWiMaS01MmGqYrsvua6iybgXO+qVc3K86uHynWrDBY8/n7u2RPNLJp+8w8TgZefnzj/MPbBIwueocDr0KEDpkyZgj///BMNGzbEmDFjEIvFcPTRRycdt2LFCjRu3Fi7/HHjxqGgoABPP/00nn766aS/uVscvPjii5g0aRKaNGmCN998E61btwYAbNq0CVu3bhXG4a34y9TgHmuDqFrwgqQgl5ENLpr8eeqsEANiN6pcE3jssQUFifvq/q9rwWOJmsCz4aLJIhJ4UY3Bs+WiaVoXlihm0bRpwZMJgeJip32UlwdLspKrAk+EbCckv/vFL7aKxpDdu+0IvFx30QSc6+2T+sC4HjYteF7HqVpYTa4bX7aJpU3FRTMbLHgmSVYKCsSLyrrlAGTBk2Ek8C6++GL873//Q7du3dClSxd88sknqFmzJvr06VNxzM6dOzF9+nQcf/zxRhUrLS3FV199Jf37smXLsGzZMrRq1QoA0K5dO1SvXh0lJSWYNm0aevTokfKdadOmAQC6dOliVCcRURV4/G/bjsGz6aJpU+Dx571hg15ZUbXg+bUHUxfNKlVShV1lseCZDNjudQ7bglevXqLtRslF06R/Avb3wbMh8Pzats6qtJelp3ZtYOPGYBa8qlWdtP+AnSyaoomkLYGneh9lk2+Zg43uWCRa3Nu9O9n7xI/K6qIJBLMcpdOC53VNwvCokJVtw4IX1Ri8MFw0CwsT3wvDgkdJVgxj8K644goMGjQIK1aswAcffICqVavipZdeSrKajR8/Hjt27MAxxxyjXf6mTZsQj8eF/y6++GIAwL333ot4PI5ly5YBAIqKinDqqacCcDJ68vz222/47rvvAAB9+/bVrpMMGxNIURnvvQf88INZnUS/nS0umiYDrZeLpk5SiClTgJdfTv1cV+CJrvX//gd88IH5oBOWiybrgjN3LjBmTPL93LVLr85z5gCjRwdPrZ+OJCtBXDRZ61gYFjzWMz1KLpqlpcCCBcBrr+mtLEfRRdOmBU+WjANIuGkGFXii39Itx2XcOIDPf5ZuC56sj4dtwVNlzx4nUZdLZcqiCTjX+7PPgEmT9MpauBB45RXvY9JlwVMd90yeyzJL25o1wKhRqUl+VH7300+Bjz5K/mz7duDHH/XrZ5MwBJ5IjM2aBbz9tlo/Za9dkCQrv/wCvP46sG6d81xbtCiYBS/IvN02RgIvFovhpZdewm+//YYff/wRv//+O84666ykY/bbbz+MGzcOF110kZWKqnDbbbchFovh5ZdfxgQmnV9JSQkuu+wylJWVoV+/fth///2t/aZXww66AnXUUckJLHTgf9u2i2ZRUWKSGyULXllZsvuoqsBbvBg4+mhncObRFXj8tV64EDjiCODMM4F33tEryyUsF0124vj668DAganH69zfRx4BLrjA+d+UeDy6Fjx3NTVsC56pwGPPKQwXzW3bnH5y0UXAv/6lXqbogc232XS7aIYVg1fA+cWwAs80yUdBQaKd2XDR3LAhdWxMt8CTCV6ZwPO7X3zfE40hOtfuhReAoUMT721Z8LLFRXPSJOCkk4BevdQFxp49zvjg99xNVwxeGC7zsrLd9nnGGcAllwD9++uXMXs28PXXqccdeijw++/6dbRFWBY89rN164CDDgLOO8/J2KxaDmDuorl9u9NeL7wQaNjQea4dc4z4fFTbkm7m9jAJ5FDVokULdOvWrWL7AZaDDjoIZ5xxhlEMnildunTBiBEjUFZWhlNOOQU9evTAeeedh3322QeTJ09Gu3bt8Oyzz1r9TfaBwafEDyrwSkuBl14yq1cYFjz2fAoLE+IgyjF4IsEmwkt46Qo8/r4/8UTi9YUX6pXlEpYFjxUqMkxiAHQm/zxbt8rPJ9MCz3X7CjsGjxV4Nu6tLQvelCnA2rXO68ceUy9TNIHk23Q2Z9GUufIBCYFXWhps83R3QmRD4ImIisCrXj31GgL+90slwZZO+7jmmuT3tmLwbLloip4lNgXe998nXs+YoVbOb7+pPXPTlUXT628HHaT/WywyC55rwZk82b8MnTHv11/Vj7VNWDF4LmVljoeTy803q5cDJPqmbpKVOXMc93mWVasSzzgW1Xs1Z47acenASODl5+fjsssu8z3uiiuuQAG/nBkyN910Ez7//HP07t0bP//8Mz744AMUFxdj2LBhmDp1qnJWTlXYScottzjuaS7p9CH3K9O2i2ZBQTCBF6YFj429ULXgNW0q/5tuohavB7hpdwhrmwSVLGmmMQCm+yh53TObSVaCTM6iasELW+CpTvR4VAReLmbRBIJl0mQFnjt25LrAKyxMfia4+N0v2wKPJ6wsmuXl6uWw53jppY5L2wUXyMtWRXRd2IRjqs8A1edbuix4st+ZMAG44Qb93/L6XRv74PGwXhim8c82SIcFT/fZbsOCJxuDRO1BtX6zZ6sdlw6MpptuPJzqsTYZNWoURo0a5XlMz5490bNnT6u/K4Nt2Pn5QPfuifeZFHhhu2iGJfCCxuDxq7wbNjj3yM9S5ZUcJKgFj79uJvhNTGzE4MkwzeL122+AScJarxXgdFvwZMNX2BY81k3NRPjEYuYB517HzpypXg6LqP3yn5kK2cMPd2JcZb8jI90WPMCZUDRrpl6ue56sBc+GO5nXb5n+Xfc42eSqqAioVs2x5LOk24LHE5aLJuDUXSVBFT+p7dwZqF/fu2wVRNfFTeoDqD8DVCf6mY7B69bNEXm6v+X1uyUl+u3L7zqccIITlwfY2RvZFJsCz+0z/PPJhsDTfebJFpNVsj6L2LoVWLrU/7h0YSnnnZiSkhIU6uQkzkJ4gWeyD4dXQ1y/3qxeldVFU4TI3O5VH56gAi8dFjzTGDwVF01TC96sWWbf87Lg6bbjoAJP9nvsymoYFjx22DQR72zMFmDPgvfLL4nX7dqplyk6B1sumuz4EUULHivWTS14BQXBXDRVnkVREXjZYMGz6aIp+0yEqJ3ZyBzoJ/BUnwGq1zddWTRlfysoCL5nmsiCFzRenyfo3MgW6bDg6fYlPwueyj3VEXgqfevnn/2PSSehCbxNmzZhypQpaOrl+5YDsA07L89s0PA6TicLpFeZNix4UXTRLCvzX0VViQnwGqB0B23+HNjrY7rekUkXTa/VW69rb2rtiZKLpqxvhm3BM518sBafMAQeiywZhogwXTRNx4+wsmjKkqwAwVw0K0sMXmGhY8HjybQFL6wsmrLPRPgJPFMLnqhN5bIFr7DQvsArKbEv8Nh+EHWBp2rNlsXgZcJFUzbXME2yYjrnCQtle0Lbtm2T3r/77rv4UpIuprS0FKtXr0ZZWRmuvPLKQBWMOuwDIz8/MfADdlagVJOE+JW5eTOw337Av/8NnHOOWZkyF023c7Pn7octgadyvIpItinwvHzzo2DBsxmD51WvMCx46XbRlB0TZgxeXl7yQoCJ8AliwQsj85xoYh0kmyB7LDsJiqIFL1ti8Gyl4Fc9jo3xYomKBS8WS560humiqXrN/NzSMh2DpyrwMp1FMwwL3qZNwAEH6JWRKxa8eNw5F5X5TZgxeLr3VDa/NhV4pnOesFCebrr7zQHONgnbtm3DNo+Zb1FREc4880zcf//9gSoYdXgXTXY134bAM7XgicpcuBA491zz5BcygRePO4MP67bmB3vdgsTgqTyw163Tqw/guJ/Nn++8Dirw2LKjIPBk2yTI8Fq99fqbe/10SZfAU5lkqAg82xa8GjWS20mUXDRNjgP09zXS+W1TF81MxeCpEo8nxupctOCxFiIWNwaPR9eCJ9voXJWqVZOFTVhJVgB7Lpo2BR4bAxllC56Jl0YYAg9IjRv1W/j2az+mY5ttVMbCXbv85zfsmBZlC56pi+aiRf7HpBPl6ebSvyIH4/E42rZti7PPPhsPP/yw8NiioiI0bNgw7Rk0MwFvwTPZaNFP4Olax3R+Wwf2IcTG4AHOAKAj8NiHb9264t/QrVOQY/gH0xtvAF26OK9tumhmY5IVr7K9Vnb5h50qNpOsmKbQdpH1o6AxeF6/zQu8dLpouiuxOr+lgsrkxIaLZtQteDKrlUqZuZZkRTauRMWC5yXwbMfgmVjwwhZ4LLlkwcvLMw+nUf1d9hivsIxscdFUua+7djnPLi9Y40IYMXiZTrKSSREuQnm62apVq4rXF198MY4++uikzyor7CQgjCQrrl93zZp69bIRc8fDW/BYK8bOnUCtWuplsQ9fdgIUhsBTuRZsx5w0CTj4YGeSUVKiv00Cf99tCDx3gOXdhlxMY/BUkqx4XWOvlV1dYeziDrr5+cGTBaXDRTMMC16mXDR1rq+pwJO14XS7aEbdgsePt7lmwZMdZyMGb/du8XXSFXgsUXDRZM8xbBdNFlULnur1teEy7KI7xrvXKx0Cb8+eYAIvW1w0ATURKFqgAMKx4OkkWWnbFjjpJODpp533omtt0+qcLoymmy+//LLtemQtNpKs+DWcNWv0BV4YDU3mognoJ1phRVMQgWfLMsDeR3fyXlxsFjgdpsCrV0+cWTVMF01TC15QgdewYeoKW7pdNFWSrNiOwbPhomlqwTMVWX6w/ZS3jLhQFk3vMoPE4EUxi6aXwAtqwZONPTrtgx+rK5uLJkuULXi6XhrpFnhe6Ai8qLhoVq0qHht1BV5eXmIRNxP74O3aldjkvEmT1HGbx+aiRLowyqK5YsUKvPrqq5jvEWQzb948vPrqq1i5cqVx5bIBtgObWvD8jjOJw/NqaKYDBVtPkYumDu4DuKgoWAyeyoMxiMADgrtosmUHzaLJ7nkEJFwFTV00VSx4Xu3Fa2V3zx79tlZennDRbNIk9e/pdtHMhAWvuDi4i6apBS8dAk9kndEtz4aLpp9VQif1dxhZNGUumiqZg73KkhEVgVdUJF540rHg2RB4/P1n72sQC142umhGOQZPdxHP7UfpctH0IltcNNn5HTuesaj0LV6Uuf3IlgVP556y22c1aeK/+J6NFjwjgTdy5EhccsklnpuYx+NxDBo0CE+7Ns8chU+yEiQGT7aC8MorwKhR5pMDHl2XQ8BJmDF+fOJ9UAue+wAuLjbf80v1eJWOyd5HVzS5/uRRyqLJW3KbN3f+D3ObBFMLHqDf1jZsSNTPhsBLh4sm22/Hjw/+4M+kiyZ7XL166sf6wVvwRFAWTe8yTdsEX5aMqAi8wkLxszDdFjz+/tuKwTNx0YzHgcmTgR9/TK0DWfD0/hYlC55OkhUTgVdSAowda56N3YXtC7LtcUwteO7ntvfB27zZOXdZkj3WcGJL4OWEBW/ixIlo37499t9/f+kx7du3R4cOHTBhwgTjymUDoiyabmOzJfD++1/gkkuAiy9Wr5fXb+sKlk2bnIQj7CaONgUee95hCLygFrwdO4JlIQzqoum6MLB1c3FFaKZcNP1WdnXbGvsgClvgBZlksElWWAvegw8CL7wQrF516kTDRfPAA9WP9UNF4Jlu5RCWBW/PHjNhzI/jtWolXPpsCTyT/UL9iJLAyxPMTEwteOyENIgFL5Mump98AvTsCcydm1ofsuDp/U6UBF7YFrybbgLOPhvo3Vv/uyyswLcp8MK04I0c6Zz76aeLv88KvMaN/V00g2TdzhTGLpr77LOP73H77LMPVqxYYfITWQk/4JoIvNtuc17XqpX6kJs2Tb0uXg1Nd9L9zjupA7wtF83iYudhaZpAwFYMHlsOL/AAPUuUVxZN0cTFD9666A5Y555rdt1sJlnxW9nVbWts5s1atYDRo5P/rjuhSoeLJv9guPpq7zLjcXmbzM93RGKmXDTZ44qLgVNP9f8tFWy7aKbDggeYTVj59pCXl0hAZSMGD8htgVdUJB4ndSbL7LjDWqJV20c8nnrv+Xh79zhdTFw0Tzst9bMwBJ5s8UXVgqd6fTOZRTObBF7QGLznn3f+nzUrWAzfkiWJ161bi49RGZNkFjwTgSdKOCTK5P799+Lv84vJ5KL5FyUlJagme0ozVKtWDVtNc6VnIfwqgonAu+8+4MsvgeXLgQULnAmua8nQEVE2LXiiThPEgldenhBMrogyFXhhuGiKBJ7ONeOvPftdk1U4vm5vvw383/85rrvsdVOdbOi6aJrG4AHB4hcLC4H+/YEffkg8VNh9dFQI6qKpkmRFV7TLJjennuq4QrdpkzkXTT6W7M03gcGD/Y/1g72vskWFdAq8eDzRdr22oFEd17wEHpBw09TZJoG/F0EseNmWZEV0T/zaMNuv2AU5E4EnEvbsVCbdLpoiwnDRlFlnomzB013ECyMG7+STxYnwohSDZ5r0LB4HZs50XjdtCrRoIT5O5Z7KLHi2kqyIkjPJIBdNCU2bNsVM9457MGvWLDRq1MjkJ7KOWCzxUAoi8PLzgWOPdQbavfcGBgxwsgkC5jEhPLodXTQhCyLwduxITNLTIfCCumgCehY8/vdYQWJD4FWtCvTo4fzPim/V9pauLJpAsPhFd6J3yCGJWEMgmLssi62Nzv1cO1TrdOCBTp8H7LhoBk3+kp/v9IETT/Q/1g/3HHjXUZZ0umju3p3ol17bu9gSeO7EmWLw/I+TuWj69VebFjzRfWcFnm0XTZNxKgwLXrVq4gXdKMfg6V67MCx4hx8udmm3acELKvBMci8AwMqViWyTBx0ULIbapgVPlHBIZncSlc0LPBtZNHPCgnf00UdjwYIFGDt2rPSY9957D/PmzcMxxxxjXLlsgm0cugKPnZSJcCeTO3eqWy/CFnhBXDTZgcYVUe5DRdeNIAyB59bF1ILnVScTNwmR+HQxWdW3mWQlbAuei4k1yu/YMLJoqiBrj2w5Nlw0Y7HkGAcV2ONEEyHRb6ngtvuiIvk4Z2rBMxF4bLvlBR5rPVId13hrG49rwdu1y1w0VqYYPBMLnorAU71uonvElmnbRdOrXosXiz8Pw4JXVCTfg1DlXCtrDF5Bgdj6GTTJiqn7uQhTCx5ryznwQLsCL10WPNF94GPwyIL3FzfccANisRguuugiPPHEE0lumFu3bsUTTzyBiy66CHl5ebj++uutVTbKBBF4rFuVCLdDlZfbGfR0O7ootT9vwdNJKc7+vpskJMwYvEy7aLKYrMKJ4gNdMi3wbFvw2N9i+4OpwAvLRZNd5bZlwQsq8OLxxEPP/T67QqpbN5sCz72vMuuMbnlBXTTZdssLPLbf23bRBNSteBSDl0ymLXhsmem04MmcpcKw4PHbFrGoPOOzIYtmGC6aBQXi7QOCWPDy85OfM5ly0WTbn5cFz8RFk30+yTZBVy0LkFvwbAi8SpNkpUuXLhg+fDh27NiBIUOGoF69emjZsiVatmyJevXqYciQISgpKcF9992HQw45xHadIwnbIN3XJi6aIkwsZTYteLJVMFMLHvv7UXHRZB/8bl3CEHiLFwP77ee4HP7jH2rliayLLiYCTyUeiiWdMXi8i6YLO+HTmVSlw0UzDAuezn197TXHtbNZs8Rn7lji/j9jBnDWWf4TMN5Fk68Li85+bKzAs+2iqSPwPvgA6NoV+M9/Ep9li8DLNQuerE5hWvBsuWiaWvBGjkxNHAV4X7NZs8SfhyXwZJNklTg81etr2h5FY62pBc9kSyvZ7+bniwVekBi8oHG3PCrP4p9+Ag49FLjzzsRnbPsLYsGbPh3o3j3xnrXg/fab0zfYv/mhY8ET1c1NslKnjnNO5KLJcPPNN+P9999H586dUVZWhpUrV2LlypUoKytD586d8d577+E2NyVkJUC0+p5JgWfTgicaWIK4aIoEXlRcNKtUSUwu2ImeTnIEvzotXAj88QcwfLjaJvZeLpqs4FO9dum04On6/Weji6ao33qJR1l7FHkBeB3vcvvtTpYzti2JJjHjxiULGxE6Lpr88V6491VmnQHMLXiFhYk6+vWBM890Jhr335/4LB0Cj3XfUh1L+DLZNqebtTiKAs/LRVO0LqxjwduyJfHalsA77rjEa7YNq4q8eByQOTR5jbELFog/t+WiyXoGeVnwbGadNbXgHX642nEu6XTRtG3BY7OLq5Tlh8q878gjnb0W77nHSfQHOIm/AKdt7LuvucA79thEmUCyBY/H1ILHzt9YvCx4bhLDXHTRNNx22aFPnz7o06cP1qxZg+V/3bmWLVuicePGViqXTdhw0UyXBS/IpNslKhY82y6arGBi8wOtXateJ52Hxdat4v3eRHUD7LtoBt0mIeoxeEEteLLv+1nwtm6VZ6Sz7aIpsgi539fdakXHRdM9XmVvR7efelnwTAVeQYHTb0tLzeJU+Ox3YQg8E1cr/hwbNEi81xmP+LJMj0mni+b55wNffOEkeJg3D1i2zOmv8XhiAscLK/YesCnQ99or8dpU4J15ZmILIyB5EllerjYh9Rq3vK6ZrM62LHhseywqkj8TVCx47LOqXj3ggAOAr79OPU53weHoox3Pl0MOAb79Vr0s0RifLS6apaVmC7gyVJ7F7P1bvx5o2TLxvdq1nTZn6qLJ/z5rweMxFXixmGOB5tsqfx+2bUvUx5UrtE2ChMaNG6N79+7o3r17pRR3QHYJPBsWvIIC8xXlKLposhY8F1Z4qVjadH5P51jbAo9/oPu5Q3g9WHI9Bk/FgidaMfSy0ui6aPq1EdF95100Xfwstjoumip1c1GJwTO1zLoCj/0dHdJhwTOJn+PLZMcjVsDolvX1187EjSeIO5lOOX7HuW3khReATz9Ndj1mRR1fH/Y9O16z52oi8G691bF+swsBJi7jXr/tdc38LP7pEni6Frxp04ALLhAfp7u4NnEi8N//iseibLbg+Xl62HTL1n0Wu9fHve+uZTdIkhWWvDz5OZkKPEDsYsz/Dr8HnspvVpoYPCKVMLNomiQzsemiKSrLtotmLgk8nXNQOdYryUpQF01+vzQR6bTgyWLwMuWiqZJkRWRB84qz0nXR9GsjovJELpqAv8VW10XTRODZtuCxyQhMVrltCDyR5ZPFZIsDXuCxa6c645GoLFE7iIoFj5/Ey7b74CdcIoFXpUpimyHATOCJJrQmLppe/djrb34LQkFjydhrUlQk3iYB0I/Bq1JFXpbu2CvzSOCPU/mddGbRDLpoEkTg8XNFXc8t9/q4990VTjYF3qpV8r/5IRN4Ihdjvm4igZeLLppKAu+xxx7D7oD24d27d+PRRx8NVEaUSUcWTSBaFrwwYvB00+Xa2ujcbd7sxMd0QhWmBc9GkhWbAi9MC162JFn588/Uv5sIPFMXTVn/BIJZ8MIQeF4WY1PLLGvBsyHw3My+gFnad1F/MumnXha8yiTw2OvJ9lkvC547gWvcOPlcbQk83kVTBRMRB8j7hS0LHi/wbFnwqlSRl6VrwZN5JADRyaIp2k8z6D54QVw0+bHLNIumqgVPV9x4ibiwLXj8Hngqv5mzLppDhw5Fu3bt8NxzzyVtiaDC5s2b8Z///Af77rsvbr75ZqNKZgOiyZnu3lPpSrLy6adOog9VbAm8JUuAKVO8LXiy35MhG/TYB4upBa9+/cQ90XGJirqLpixBhQxdCx5bXpRj8Gy5aIrioYIKPFWLjyyTpWxCJMuQJ/otmy6atmPwZC6ambLgkcCzdxy/iKVrwSstTSy6NGmiN0leuhT46qtkMZMOC14mXTRVBZ5uDJ6XwNOZLOfnJwS1qG/ZsOCZWF54gSc616ACz6YFz8SbZs+exHm6zw7ZPTWx4MkIIvBEFjz22u3ZAzz/fOK9zRi8rLTgjRs3Dnl5efjb3/6GJk2a4IILLsDLL7+MefPmIc6NbvF4HL/++iteeukl9O/fH82aNcP111+PwsJCjBs3LpSTiALZFIO3dq0T/KwqWlSyaPqt7v35J9ChgxMs/dpric+DCjzZsewqvI6IYicDeXmJzp9JF80wY/BULHi6MXjshDnTMXhhuWiy90F0DWxa8Excu0wteGG4aMbjiXLD2AcvCi6a2RSDJxN4Jq7AYRwX1IL3558J0aUj8DZscNLAH3ecE+/l4ifwbMTgBXHRDLI/Il+vdFnwdAWei66Lpuje2NomgR8rRQthQQVekHvLtzcTgcfe8zBi8GSEacG77Tbgs88S7225aLpJoKKEksA744wz8Ouvv+Khhx5CgwYNMGbMGFx++eXo2LEjioqK0KBBA7Rt2xYNGjRAYWEhDjjgAFxxxRV466230LBhQzz00EOYO3cu+vTpE/b5ZAyRwCsv13MDS5fAA5zOr6q3RR03Ly958PZzZXr55cQxc+YkPhcJPJ1J2rJl4s/ZVRy/axGPi100gYTAW7NG/UFu24IXdgxeEAue6KHPJiPIdAye1/VlU6nLkP0We93vuy/17zZj8ExW901j8EQWvKACj7fK2tgHz6aLJrsYBIRvwVMdH3jX7Fq1Es8CXQsef71Ek9GdO82297B9nGoMnkzg8e5Xqs+W0aMTe9393/8lPk+Hi6aXdUzUL2KxRB1M2haLzRg8ts3KrFqAnoumbKHPxdRFMxbT37NYVD+3jt27O/vbyo4R4XcdYrHE+afbgldWlnzP/WLwvO6DSPjk5QEXXSQ+PswYvO+/T7yuUsXZFxUQty2dfh416x2gkWSlqKgIf//737F06VKMHTsWF1xwAfbaay+UlZVhw4YNWLZsGTZs2IDy8nLstddeuPDCC/Hee+9hyZIlGDp0KIpko0aOIJuc6Zh1ZRMfk2yVKgOWn7uWi2hgicX0Yhtkbl7u5MokjTgAzJwp/pzt5H7XwktAuas7ZWVO2mAVsikGz2vCrVKuqD2yk4RM74PHnuu4cU572Wcf573KJFnFgtetGzB1KnDvvYnP0uWi6ZeFjL+3ooyfsrq541hQF01+AmnDgmfTRZMfB6PiosmvnsdiifEoqIum6J7G48mbefOw9+f994Fhw/yP80LVRVNmwZO5aLLWzcaN1RfBZOcehotmw4bAG28k3uuOF+w1CbpXmk0LHrtQGovZSbLiJ/BMXTTZ1zYEXlER8MMPwNlnJz7XseCddx4wYEDqMaZjmw0XTVsWPFHbycsDnnsOOPfc1L+FacFjr/ns2YntsEQLmWz79WuzURR42vvg5eXloW/fvujbty8AYP369VizZg02b96MOnXqoFGjRqhfv771ikYdr9V3rwkSa9ZNpwUPUBuwAfkgpWPB41fJXYK4aMbjwKxZ/r9nQ+ABzqSKzcgmozK5aIraYyzm3NcNGzKfZIXtB4ceCjRt6tzTRYucrQx27vR2W1SJwQMckcfep6DbJITloqmT1c2Wi6aqBc+Gi2ZZmfNPZYLgwt//sLNoqvZTdvXcnVw1bux4Laxb55Tj9Wxh4QWe7J5u2qS2f+OppyZvWiz7LS/SZcFjz1V3LAPsWfDY3+7bF2jbNvFeV+DJFoNsCDzZIpCOBc8dH21b8Gxm0XRf79plR+ABjgXvtNOAd9913usIvJ49xQs3phnGbQg8HQue1zUU/XZenlPW2WcDb7+d+jc/2GunE4PHuv7uu2/ic5nAc6+j37gWtQQrQMCNzgGgfv36lVLQ8ZhmwBNNqHhsJ1lx8XqosERV4C1bJnezY3/Pr2N6CSg+7qVTJ/96pTPJSqZdNEXtMS/PjsCzvQ+eWwZ/T1u1kn9fVeAByfsgpSuLpm2Blw4XzTCzaLq/JxJ4skmlDYEXRgweuwDnTq7Ytvvnn8l7xOnUz0vgyfoD3zaCWmJVXJX59yoxeLzAcy1Ju3d7j5EybwNRXzdZcOL7gep4IeoXYVrwZPdVJwbPT+DZtOCZumiyZdsSeHz5OgJPFhtrS+DpetOUlelZ8HQzt7vtTHTOKn3K1IInaleAuG1luwWP9sGzhEn8DOA/MQDCs+CpCjwVVxo/gSebUPDbJADqQoW13vGrvjouml4ukCZbJWRbFs0gLpqi++5a8IDMx+CJFlB0shGquGi6sJaPoDF4qi6afmUFEXi2XDT5jZRtZ9HMy1OLs5KVnw6BZxInJbLgmWbS5Osnuwcq7dbNahiWwOPRzaIpSoGu4uYmyoYLhOOiqSPw/Cx4QVLp898pLLSTRTMqFjyvJCvsa5sCL8j8z8v6r3tvdZOs8HVNhwVPVp6uwGPHM78YPNm2ZH6eF9lowSOBZ4lcFngqFjy/wUd0HWKxxKBhIlTY+Ds3UNbFVOD5uWiqkM6Nzm24aIZlwQOcVUMdl0qbMXhPPQV88knivXuerGhfvhy44AKgXz+xNVglyYpLWBa8IC6a/IQoEy6a/ATSZhZNV2yoTHJl14qfYLDW/6jE4IkseF7j0bRpQI8ewGOPAVdcAbz5ZnL9ZM8aFddir02n2eP8UD1O14LHx+ABagJPlpk0jCQrhYXJC0K6Lt02LHjjxztZrdlYQK8kKzoWPLeMyhSD56JzP3grlFccmF9Z8+cDxx/vxJj3758aU+on8Pixjhd4QWLwdAWeSvsIasHj25KfwMvGJCuBXTQJh6gJvHS4aLoDUmmpvwVPVEaNGomOafKQmj8/8fqgg5KzI9ly0XQDcAH5Ci+PbQseO8jatuAFicGLx8XtsUcPYO7cxDE7dshddHlUYvBUBtJdu4Drrkv+TOSiedttzv6MANCmDfDII8nfEd2fggLx5NZtz+XldmPwgrhoih7aXqTDRdNmFk23bioCz8SCp2K1AMIReH4WvBUr5N898kjnOnz5ZerfvBZ1VBYm0i3wgsTg6Qg8mWAOY5sEN5lJtWrO+JgJF80zznD+nzIluV4yi6RKX+CzUQex4LnnUplcNL1Ehl9ZI0cCX3zhvF68OPVa6Qq8srLkuZErnGRjh6mLpg0Lnk4MnsyCRy6ahBTTGDzRhIonqhY8IDGAmwg8VjyZPKRYn/IGDZL/ZiuLJrsaZBLjZuNYVljySV6CxuAFcdHcsycxGejWzUm80KuXs20AO0nWcdNUicFTGfxF7VHkoumKOwCYMCH1O6J+JJu0sJYkr/sq6ythZNHkV90z7aJpy4LHP6SDCDz+frIh5SpbabD1AcK14LVvn/js55/l3/UaC/xi8GREzYLn56JZXJwa4+117U0FnqmLJpCw4mXSRZPF1j54NmLw3Oc7uzgYRpIVvzJkhCHwvMYOv7LWrUt+v2BB8ntbFrxYzBGTBx4I3HRT8vEyomjBU3HR1BF45KKZw2SLBe+VVxLuJUFj8AB1gScqg51omzyk2N/kV210smiqbkOgWi/bLpqs6xB7zYDMumiybbFuXeCjj4CJE51Ji6nAsxWDJ7O8AanX0EXkTqQj8AC1fZVkfVg2hphsgux+X1fgiVw0vRYAMhWDx7vZ2HTRZBeLTMZIUX/SeSa4iCZXBx6Y+Ey2RYwfQWPwssWCx7pi+03kS0tTJ8guYbloAgm37nRvkyCrs5fA87PgifaTNbXglZUlxkn2WZINLpq2Y/BUt0ng52C//Zb83i9cQiTwRItMAHDttc74c9ppycfLyLQFj62bjosmWfAIAHYEns0sml7Z/9yNqL3cyFi8HhpuBzCx4LEPYJOHFDvg8Z26SpVEpw/iohnUBdLGse6EpUqV1BTmmXTRZNuiVxyTqQXPtsBz2wPb7lhEAk9UjpfAU5kwyPow+5BiXwdx0QxiwXOveV5esMm8agxelFw03XusKvDSZcGrUyeR5fLnn/XiW9n62bDgBRXqYVjwdu1KnAO7kONnBfnzT7klzpYFj3fRBBICb+tWefsPw0VTZpkOYsETnZ+pBY/1zvETeIC8H4g+j6qLpiwGT9WCx497fEiJGy4hQ+SiKVpkYlHd81mUwTNTFjwdF01KskIASJ8Fz09IicplKShQWzVkUXHR9FtdEpUhegD7/R6LyD/cpahIffBW3YYg0wLPTfnNEsRF001QYcOC5xXHpJOeOUyB51471jWYRdWCJ0scACSupVcdVQReLJY4/yAumkFi8GSr0jrlAeHsg2fTRZNvuwUFaq5zovoA4cbgAU68MeAsnLAuxqpEwUWT3f/VDx0LnszbwW+S7JWwxlYMnpcFD5CLLj8XzVgs0eZU25bsPnslWfGz4ImeozL3br9rxi4Kss8S3TbnJ44zLfD4TJBeY0d5ufd1U5kbej2LdSx4Lmx9o2zBM3XRzPYkKyTwLJFOF83ly/3dc7xct8IQeCYWPC8XzUWLEok6ZLi/WVCQ+iCpUkVtss2W436PxcRFU+dh4fcA2LMn4Tokci0M4qKp4oLnVa6qwPOz4O3Z4wT679wpj8HTnVD5uRXXq5f6uQ0LXhAXTX7y4p5/kCya/LUy9SiQTdRUHmq8i6btLJpuuS6ffuq0J15AqGQDBpLHSD8vh7lznU16f/op8VmYFjwg2U2T3SpGlSi4aOrca9UsmqtXA++/n3gfpsCz7aIJyK+9n4smoO7G5/dbpha8eBz44YfEe7cMPsOtC3/vSkudPus+K2QCT3dxSDQ+ifIluN/fswf45htvT6lFi5z4tnQnWfErT0XgeT2LVWPwWFQteFGMwSMXTU3i8TheeeUV3HTTTXj88cexXXdnxSzGxkbnKgJvyRKgQwfg4IOBjz9WK5eF3X9n5041l890xOCxg9jcuUC7dkDHjsmZMXnYgG6+c1apojbZBsLdhsAPv7r9+Wfitci1MIiLZlQE3t/+5qTr7ts33Bg8FpFYthGDF8RFU/bA8SrLLwZP9XjR32WLVjrlAenPovmvfznt6bHH/Osqqk9+fmKM3LJFPoGfMsUZo847D/j88+Tv89iKwQMSFjzALA7PK+5WJfsr67rrdZwXOgJPdR+8zZuBG25IvNeJwfMSeH4bnQdJsqIi8PysUGx5Nix4JjF4H38MnHhi4j1bhspG1v/4h9NnjzvOuZ66Ak/HvZWFbxdXXAEccwxw7rni43/9FdhvP2d+Mn16ajn8a5sxeIC3gFcRePzWCV7f5zc6Fwkn1XPNtAWPrVtYWTRzxkVzxIgRqFevHr5wc7L+Rd++fXHppZfiySefxNChQ3HkkUdih0rqpRzA1IInm1CxsAPkd98lzOy33iovV3bZ2dVpQC0Oj39oXH554nUYMXiPP57ovLKBFkgMdqLEDazoC5JkJdMumqJNe1mCuGi619zPRdMkBk9H4L34ovP/hAnhuWgedljyez4bKWBX4AV10QTsuGjyZMJFM4x98PiHdJcuqcd8841/+W67vfhi5//993fq546R8bjcdY4v3yVsC17r1onXqlu3sIgseO77TFjwvFye2boB3hY8HtECoszNbeNGcRn16onP08Y2CYC5BU82VoQp8LymcoMHJ7/3E3j8vXv4Yef/n35y5jdhumiy1ld2jhCPO0noAODDD8XlXXNNQtDPmZNaDhDMgte7dyJ+fcQIvfJUnv8bNsj/ZmLBs+GiKfIOycYsmjljwfv000+Rn5+PY445puKzL774AuPHj0fDhg1xww03oHPnzpg9ezZGjRplq66RJl0umixeD0bZAM4LPBU3TbZzPPdc8sq4O3iXl+tPRGUWPPY6eO31xFrwvARelJOs+JWpI/DCctEsKxOvUtsSeKK6AfYEXvXqzqa+LGwfEP2eqByXbHLR5LHtopmpGDzemnTuuY4V4Z57Esfw7UR0rdx2+9RTwFtvJfaRUhkjZROqIG5WLOzkiu1fOoH/IkSWAp1sjukWeKoxeDw6Md6yMYp1h2XJdhdN2cJutWpmFrxVq8T1AdQseCxeAk937PC7N2w/ULmPMoFkK8lKcbFjGRw3LrGPq00XTTZGlcckBs+Gi2YsljqWpCMGT3ej80oj8BYsWICOHTsin7lC7777LmKxGN544w08+uij+Prrr1GrVi2MHj3aWmWjTLqyaLJ06CAvV/awYF00vY5jYTvHwIHJAy47eHs9XHRi8EQdVISXwGOtekGSrIS9TUImLXhue/Oz4AHicwpD4LH3wpbAu+CCVIudqsAzTbKSLhdN2wJP5lEQRJSpxuAFcdHMywNOOcVZYZfVzcuCV1zsiES3jwUReLYteNWqia0OgL5bUCwmTqxkIvCCtAkVzxXR372yaPLYEHisOyyL7X3wAD0XzbAseFWrysc3mQXPbxHMzzOCPz9e4Pntgycqw+9zF92+JBO5tpKsAI4L6JlnJsqx6aLp5YocNIumqQWPf+3+th/pzqLpN97kjIvm+vXr0axZs6TPpkyZggYNGqBHjx4AgJo1a+LII4/E0qVLg9cyCwjTgldQIB7Y+JT5LF4WPJWHCovMbQtIHsi9BhjRdZC5aPLuMrJVJ1ULni2BlwkXTfbcRTF4Nlw0/SZYQPoEHhu2ayvJikjsiPqOqFxdC55NF80gMXi2XTR1f5+Fd9EMI4umi9eKspfA47Et8ILE4PETK93FDtF3vQSeTLDYtOCpLGy6mFrwRDF4svqlw4Ln56IpsqrJXErDisGrUkXfgjd/fupnOha89euT/7ZtW7hJVoIslqgIPNvzP5sWPB2Bp2LBs+GiyZfj4rdwYhKDF4+Ti6Yv5eXl2Mm0hu3bt2Pu3Lk48sgjk46rW7cuNng5/eYQYSZZicXEExGvzq7qoqkbgyfKVuniNcB4uUfx5fICT5YpzpaLpujBK3ofdRdNXQujqoumrGz2ftvaB48VeLYseKKBW2TBE51jOjc6N1mVT5eLpt+k3wt+/Agji6aL19jrNwaxRMGC504m+YmV3/PFS3C4dePr6J5vebm4v4omRl730W9yJkumJMI0Bk9nn9UgFrwwXTRl5xiWwKta1TsGT3RfRc9n9rnlF4PHL+Bu26a/D56pBY8tj792ovsqE3im+xJGXeClYx88/rVKefzfVS14IoupS1CBlzMWvJYtW2LGjBkV7ydOnIiysrIUgbdx40bUE+Ujz0Fk7ky9e3unslbp4IB4IuI1oQ/DRVO04THbAXQFnqwcviPJMsWxSVaCZNH0suC5e8UBmcmimUkXTXagDGLB00mm6x7Lt7VsEXhBXDRNLHiytsbvl+hi6qKpK/B27QIuuwwYNCh58ixKiMT+hupkWbYK67WibGrBky2CpctFk59Y+Qk8r3FAtqjDWrRlliS+DJnA448XoeOiqZpFk4ftp6YCr317/zrZyqJ5992JGFAX2Vgnew5v2QKcdBLw2mvedTEReIB47BI9n3/9NfHaz4LHiw4vC15YSVaAVBdUUTvxSl7nkimBp/L8d6/1jBnAyScDL7yQ+JvIRTMdWTQB8bn79W8TF00vzwHVLJqvvupcux9/TD42Zyx4J510EpYvX46rr74aH3zwAYYNG4ZYLIZTTz016biZM2eiZcuWVioadWQumvE4cMYZ8u+pPuh0LHjxuLcFr27dxHuVLGzu74hWWoNY8Fi8VnFF++GVlSU6lCwGT9VFkx3ERNfZrVsY++D5HcveH9EG3TYEnkpyn3S5aLrH8u0hUwIvnS6aNmPw3M9r1kz+PF0C7+OPgZdecrLSsWHYXhY8QO3exuPhu2iquLFnyoLn1xe8xmH3u+3aJT7r2tX/fEX9ibXSex3v93c22kPUNkwteCx+11+2CCWLR7OVZIUf02+7Lfm9qgs2e36ffQZcdJH3FkgmMXiAWODMm5f6GZu12M+CpyPwbCRZkQk8/jnl98xjsZVkRYTNGDzXWjpsmJO1+vrrE+fkZcHLzxfP0VRdNMOw4MmscV5JVrzmBSpJVnbvdrZ1mjAhOaGXSn0zgZHAGzZsGJo0aYJnn30WZ511FhYsWICBAwdi//33rzhm+vTp+OOPP3DEEUdYq2yU8doz6rff5N8LYsGTDR4lJfLGVlDgBPG6zJ4t/00X2Wo5oJ5khe/8EyYkv/cSeCIvX97qFsRFkxVRDRqk/t0dYDMRg8eep2hlKsxtEtg2JyqbfSDwD3FVgcffG/dYr9W1TFvwvCZAbj1lmUcB+YPYxEVT1n7c73z+ObD33v7H898Dku+prsBj+xQ7AfSKwVOpH+DtZsNeQxUXTZlYt51FUzfWx51MAPoWPK+Jnju5Pecc59+BBwJvvJE8tvgtdLi/f9RRwOmnO99t08b72nuVd8ABzkRz//2Bb79NPdYkBu+NN5Lf68Tg3XOPcz7spuledQoSg9e2bfIWA3w2Stl15C30oufnL7/I62JqwRO5KLLPgaOPdrYsueMO77qZWvDC2gfP/V0Wnee4aQye11jmoiIY4/FE+xJ5+rjtZfVq59ipU533O3cmtoHxisHjEz25qLpoiuodlgWvalXHGs7i3gcvg4rfuF1e7jzX3D7A7lHMlx0VFMLoU2nSpAmmT5+O559/HmvWrMEhhxyCCy+8MOmYX375BWeccQbOOussKxWNOiqbAotQDTbXcdH0crssLAT22ccZxHft8nYfdbFtwVuyxHmA8vWSITofFYGn6qLJxgCIBkfd+AYdF02/Y1n3WD/LgO0YPFsuml4Cj6+ze1/59mA7yUrYFjzA6dui306Hi6Z7LoceCixYoN4XZPGorMDLz0+MW7Ly2HNk+68NC57XmBmLJepny0UzExY8L9eoIALPrXNeHvD224nP/RaKRNe8oCB5+5HevYGJE+X1YuH75xNPyI/VzaL5wgvA+ecnf6bqolmtGnD77c4/L2y5aALO1kNffAEsXJg6VqoKF9Gi06xZjnVWhJfA82qfIgseey8nTPBekHAxteDZcNGU1U3FgieDrVcmXDTZPtuiReo1bdnSMTSsXQssX568aO4KFq8smrLM5qpiVvQ3P4GnY8Hj28UddwB9+wKdOzvvTV008/OdssvLne+yc0XRxvBRw0jgAUDjxo1xu8coeOGFF6aIvlxGlmTFjzAseF4Cr6DA+XfAAc6mogsWOOZzL3cb2wJPVI6XVUQUE8JvTh4kiyY7GIrcIDPpoun+pkwA61rwRMkSwnDRdFf84nE9gecSFRdN0xg897s2BJ6bSU80uVF54OflJe6FqcBjKSpKTPRUBB7/3aAWPD+39oKCZBdur7KzQeDpZtH0Godlf/MbR1Syq+pYLnSytepa8ET9U1XgeT0HWWy5aLq4IkbVisT/puj5IItdB+RxpVWrei/AiCx4fovUos/Y+ouSrGQii6apwCsokJdpQ+CpPOPZfl27tvOPvcetWjkCr7wcmDw5+bvuWONnwROh6qIp+ht7zURtztSC5yLq87oWvPx8558r8Ni5Ij+WRtGCZ+Sieemll+Kll17yPW7UqFG49NJLTX4i67BhwQtD4Mn8jN3sYPE4MGeOdx29BJ5JkhVROboWPHag87Pg+QkCt9M2aOBdt0y4aHpde0Bf4LGDoo6Lpq7Ay8tLTJaiKPBE2yTYzKLJ14FFNQZPZZNVFYEHqC92qFjw2HrpnqOfBU9X4MkeyqKyskngsRNpXQue1zggmzT5eQJkUuDpWvCCCDxWTHhhYsHzWjxxx8o9e5KPUxUuoueDl3eOyTYJgL8FT2YF4bEdgxeGiybfTlTi74DkfSYzYcGrUiXVE6lVq8Trzz5L/pstC57Xtfbby9G2BQ/wF3j8fZPF/7LzSC+BF0ULnpHAGzVqFKZMmeJ73LfffotXXnnF5CeyjrAFnmjQVRF4fBJTt9Gz6Z+9VvoAOzF4bF39gll5VFw0+TLZJCte2fni8cQKomifObcsILMuml7WFBcVgSe6DyoWPL8YPNFEOYjAM43Bmz3bsUibWPBE90I0wVLZ6Fz2XUDfgierm9dvyASel1CcMSO5bux5ihYGvH7fS+B5jXNBXTTZz2xtk2Aji6ZrRRXVS0RYLpoyct2CpxqDZyLwbFrw2LoA6sJFJvBE4rO8XNymq1Rx2ihfFttHRBY89nr6Jclh6+DCCzyTjc51kqywsO2CTwTClykbB7zGoPnz5fv4AmpJVtj7UVLieF7x95+fD/FzmRYtEq/5/AcyC96ePeFa8MKKwXMR9XkV936WSinwVCkrK0Oe13KtB6NHj8ZFF12EAw88EI0aNUJhYSFq166NQw45BMOHD8c2j1njpEmTcMopp6BBgwaoVq0a9t9/f/zzn//0/E5Q/ASeSpICW9sksIKofv3kv7l1Yzdw9RN4Nlw02fPUddHcssV/QPNy0eR/ny/bHdhE8XdsfTNhwfNz0XR9xNljVX8vzG0SALnbEYtNC95TTzk+9127JrcP0fnVqqVWl6AumiJMBJ5fMhUeXQte375OcoR33kl8JuuTQQReUZFdC57XpuJBXDSrVUucpw0LHqA3jnjtPxXERVOGbYHnd442LHiy/iVqt15WENZSoSrwwnLRBJLHS1XhIjrnzZuBZctSP9+2TVxnty/w/ZP1dhBZ8NiMtn6JOPjvAN4WvPz85PE2ky6aOgLPvb/btzv5BmT7z+kmWenfH+jWDbj44uRj+PkQO5cpKgKaNk28d5OquLhtnx83du5MXL+gMXhRtOB5PTvYct2yy8uT7yM/TuaMi6YqCxcuRG2RL5QCzzzzDF5//XWUlpaiS5cuOOecc9CtWzfMmTMH//jHP3DwwQfjjz/+SPneY489hl69emHChAno2LEjTj/9dGzevBn3338/unXrhnXr1gU9LSF+Ak+2f4qqBa9TJ+d/NkbMxILn1m2ffRKf8Zm7eNIRg+e32S0/KOkkWQHkg4XfPnNs3YLE4MkGyKAumkDi4a4r8Nwyw4jBAxKTFq998FQFnsqK+XXXOf/Pnw/873+Jz1UGcllddJOsBHHRlGXR9CqLvS+sN/zVVycf5yfwPv449TP29226aNqMwQvLRTMWSywC6FrwZIJFR+B5WfD82lgYAk9m2WVht9/5/Xfv37NhwbPlosmK6TBdNG0KPBULHgCsWJH6mWw8lvUFdjHMy4In69deMXjxOLBxY/Lf2I3Oi4uTBZkNF80LLhDXjb8ufDvx2nqKh70fO3YAjz/uXz+VGDy3b7Nbz7Cfu8fzAs9rtzKZBY89X1lsqqpnjZ8FLxMxeCrxouzzKqeTrNzDbfowc+bMlM9cSktL8csvv+C7775Dz549jSo2YsQI7Lvvvikbpa9fvx5nnnkmpkyZgqFDh+INJh/yjBkzMHToUOTn5+PDDz/EySefDAAoKSlBnz59MHnyZFx11VV49913jerkhV+Sle3bxZN81Syad94JdOgAdO8OHHyw8xCWTRTYCYnMRZN9CKq6CWZS4G3alDyB0EmyAsgflH4ZNN3ygWAumjVrih+OQV003b/t3GnuoimboAR10XQnLbt2Ob8rusey8w8ag8dmCVN1mbZtwQsag6diEWE/v/hi4NRTnUWgffcVl6Wzyihz0WQ/tx2DFxUXTcBpv+vXyyfEmbLgeWUK9aqXF34CjxUd/N6KLm7GOsBxDzzySPnvhWnB0xV4sngvL0wseF4xeLoumipJVgDx4oSs/akIPK8YPBXLrot7Xjt3pp4La8Hj70eQLJr33ONkemXdFXUseKYCD5CPh7oxeDK8LHhVqiT3TR5ZDB5rC2HnXiyxWCLLpK6Lpp/1MgwLnt+zg69H9erqLppRtOApC7y77roLsVgM8b9mgzNnzsRMH9++GjVq4A52QxQNDj30UOHn9evXx/33349jjjkGE92czH8xfPhwxONxXHLJJRXiDgCqV6+OF198EW3btsXYsWMxb968pD37bOBnwdu2DWjYMPVzVQte9eoJs3xRkbfAU7Hg6cRueQ3gJklW/JIQiOAHV5UkKyqTbR0L3p49jhgSuaGwiH6ruFjsi2/TgqcycRRNrFQEXhALHuBMklUzV7J1c9EVeOzEJp0CT6We7nWrVi15wmTiosl+XqUKINuVxkvgySaoYbho2rbgheWiCfi7GMv6m58lI2gMnvsbokyhQDgWPBURxMZ1+22/E6UYPBOBF2YMHrugENSCJxIlQQSeVxZN2X30iq8S9S0vgRfERfP88+ULX6K68GXqCDz+M9kzw5bA4+dDbAxelSpOkhU+s6aLzILHCjwvR7yCAuf3vdyJRXMMvzlhGDF4ui6aXgJv9+7k+WBWW/DuuOOOCoF3zz334KCDDsIZZ5whPLaoqAh77bUXevfujUaivPMBKfjrLlRhes3u3bvx8V9+RgMGDEj5TqtWrXDkkUfim2++wbhx4zBs2DCrdWIbi6ixySYJqgKPxc9l0KbAi8fVLXgqG53L/PS9LFRA6uDq56LJTyRVXDRlSVb4bIZ+ExKZwFM9lsUvBg8I7qIpE3i2YvAAp/3rCLygFjyvTLIyVF00gyRZKS9P/E6NGt4CT9dF06uNeIkL2fWUuWgGsVL6xeDZyJBqw0UTSHYxFm1TkSkLHuA9qQpD4LGiQ+au5YYRAOqJu4DMZ9FUOTeeqLloysYkkSiRlSkTIX4xeH4uml7WGdG8aOtWfQueiqXTTwSEacFTcS2VnZvf3Ajwt+DFYk7eha+/Tv2uzIK3fn3itejZ7eKORbqZTNnrKzr3dGfRBFLvU7VqyQKPvSaAc95uv8lqgXfXXXdVvHYF3p133hlGnTzZunVrRV369OlT8fmCBQtQ8ldL7datm/C73bp1wzfffIMZM2ZYrxfbMESrJGEIPBULHp9kxRVXqhtks/Wz4aIpm4T6rVLx19Qvi2Zenn0LHuBcK78Jiei+yGLwgrjHuugIPL9spix+Fjz2HqgIPBFRF3i2XTTZa+aVPIMvS8VF01Tgicpms4cB+jF4srHAhgUvnS6aLiUlqZPNMAWenwXP635myoJXs6YT271okZPNtqxMzeJi24Knm2QlXS6aNrNoqrpopsOCZ+Ki6WXBW78+cd42LXh+FpswBd7WreLv6iZZkeGXZAVwLOwigSez4KkKPNmCmovK5+mKwdPds7F69UTZ27al3kdW4GW1iyZLueqIZoGJEydizJgxKC8vx5o1a/C///0PW7duxUknnYQHH3yw4rilS5cCAOrUqYOakiCBFn85X7vHytjulRVCcgzbOUV5XGQTXNUsmiw6Ao+34Lm46ZD5fXd4/CaQYQq8goLE9dG14Lnfd7ERgwfIr/natcAttwD77Sd+KMsefl6DArsxtV8MHmCeRdMkBm/48OQNU0Wix6bAYwfw2bOB884DzjgDEBjrAZi5aJaWplpqbLloTpwIPP98cvYz3loQNIumqcBTsVLasuD5xeANHAh89ZU45uOnn5x2x7oCpsNFE3Ae7Pff74ztjzziTHplbdcv3bkNC57XHp82BN6HHwKvvgrcfDNwyCHqIujAAx2Bt2MHsHAhIIuEyPYYPB0XzV27gBtvBL75Rlwf/ndtJlmxLfC8smjqJFnxsuCxi66qAu+884Dly5OT0LG/I/tuWAKP/y3Zd01dNPkxxivJitsfWAs7i8yCx14PPwseoJfJFPB30QxqwXMzYJaXm2fRZC14fDIgwLnurtzIagteppg7d27KXnoDBgzAo48+mpShc+tf0rqGh49F8V+jxRY+JaPkOB3YBsampHVRieNQnYj6TejZya2X73RRkb/A83sQ68bg+WWYY9lrr0SaZ68YPFGSFUDN6rN2beK1zJtYZaPRIUNSM1ux8BPWWCxZwInw21rCJagFTzZBkVnwfvkF+Mc/kssR3Ve2K+oKPK8YPPc6v/22I/JEXV7Fgrf33sDixcmf7dmTPEHUzaIpEz+9ezv/jx2b+IyfuHu5aMquk+pE2abACzMGb/Zs4L77gBEjUv92yCFOW2WvYTpcNAHgpZcccQk47e2xx/STmejE4HltdO5Xlo0kK65zzLvvOvdeR+C592fOHDsCz0YWzTBj8PxcNF97DXj22eS68GEKQffB03HRjLoFj/0NfmyXxb/v2uX0SbePuugIPN46w7cTnW0S+Cmm7LsqAk/UJsvLkxcj+Ri8hg0TC+SuAOnQQVy+zILHoiLwZG1VZXGyWzfg55+T/+63cKLi3sq7suu6aLIxeCLYOW8ULXiBtkn4448/MHr0aDz00EO45557hP/uvffeQBW88cYbEY/HsXv3bixatAgjRozAp59+ig4dOuBrkb05Q7CNYMAA4Ljjkv8um+Cy1r4GDdR+y28l2G10VaoEFwa2LHhu45fVR/SA2muvxOuwLHjsw0SWHU5lou0l7gAnyPm664DmzYHPPkvUzWs1n/0tWwKPfxB4IRN4S5YkHycrRyU+08RFk0W2VsM+rGUTj3HjnD2KvOoTRhZNFz+Bx06sZC4+YblohiXw/GLwAODRR8Wfix74QV00vSzj7OSSFZWjRjn/6wopHQue3yJdmC6aIgcWVRHUunXitWAXowqy3YKn46L5ww/yurjIFsO8Elf4lQmIhYWsTJnAY8cpkyyaujF4LPz94AUee94//pj6fT8XSLbd888Svp3I+pXourFZnIFgFrwTTgCOOir1c/Y+8vOhwkJg2DAnr4C7fdDhhwPnngs0a5Y8xrpzIK/xLAwXTfb6PvxwsmcGENyCB6SOuboumqwFTwR73XPKgjdkyBA89dRTKPvrrOLcMpabkCUWi+H2228PVksAhYWF2HvvvTFkyBAceeSROPzww3HBBRdg/vz5qFatWoVbppd7pbvReS3RLseC47zYsmULmjVrVvGebQSFhcAXXwAvv5zYm0pWpEqSDx6/iYLbUf0mUyr7u+kIPJVydFw00yHw2ImobOKu4qLpR5UqziD2xBPOQ6qgwCnLSwSwv6XioqmS5ZO/boC+iyY/2Ktct7AEHjuoutlleWQTj06dHAveaacBn3wiro9ukhWdWEF+dZo/R3ZiL5sgZMJFM0wLngxZGw3qounVV9jJJTv5c7+TLoEnmlyF6aIpckVSFUGsa5goa7CLTmiCrgUvHTF4OhY8PqOoqH5RdtFkP/fKommyD56uwOP5808nLGLtWuc6888/PysP++zixTB/nWTXTeRC7bWnHIuKFapqVce9t7wc6NnTmVu69XHbkui5fs89wN13J65HLAa89ZZzjebMSRzvinavcckviyYQzEWzXj1g+nTgyiuBF15wPgsagwekjrlBsmiKyEmB9+ijj+Lxxx9HLBZD79690b59e1/RZJNDDz0UHTp0wC+//IJp06bh6KOPRuu/lg43bdqErVu3CuPwVvy162drdplRgJebp0sZdzdFjYCtgkx3qiT54PFLi88KPK/GmU4Lnp/AY/2lXZo3T7w2EXg6Keu9Jp4qLpp83Xnc68QmudmxQ13gqVjw3O94CRDeVx/Q3yaBrzO/WimqV1gCj32QFheL6+JlIYjFvOuZSQseO7HPJYHnZ8EDnPvIxg/ruEfpuGh61UUm8ERuUSrobLfC3m+RwAvTghdE4LGLlOyzjSfbLXiqMXilpY7bsawuot81cdEMU+Cx1zPTFjyeggJnX+DPPnOSgvz+e/LCsJ+FjG33pgJP5ELNIxu/VZKsuOTlyRebRQIPEI8xsVhynV3R7iXwwnDR5D939/d0UbXgqRgxgmTR9CqffQZE0UXTSOC9+OKLKCgowMSJE3Ec74uYJlwRtvavIKp27dqhevXqKCkpwbRp09CjR4+U70ybNg0A0KVLF+v1EXVOlSQTKkk+eFjLm2iioGrBU9k/za9D6Ao8r4e5u2G3i6oFr6jI39zuNxH1isVREXjVq3s/rPgJcxgumu53vASeyEVTd5sE1ZWqIAJPlBVVBNteatTQF3hA5gSeX5IVFYGnG4PHx24A6XfRVLHgzZoFsEO4TCz49Xv2XEXnaWLBy8uT70HnBV8vr+ugKvCibMGzJfB0s2jqPgvYc1PdJkHVRXPhwtS+oCPwVF00w4zB87Pg2Y7BY/ETePn5jmvfZ58572fN0hN47FjOu2jy1172rJJlyGYJ4qLJImvHooVbL0Rut5l00eTLAtQteF5zXH4hzCSLZjZb8Ixi8BYvXoyjjjoqY+Ju3bp1mPWX38N+++0HwNl779RTTwUAjBkzJuU7v/32G7777jsAQN++fa3XSdTIVASe+xCsUUN99ZDfl41HV+AFseCxg8mcOfKHh18MnuhvIgvepk3OKp3fRudAOAJv9uzkssrLgQUL/FfxeFHg1m3TJuAvw3IKJha82bO9B0ZTF810CzwTC57OBIPFq566SVb4FciNG+Wuanyb0RV4GzY4fcFFxYLn1osliAWPLysed/qDyGPBXaFVseDx+6jJxIJOvw/iosn2m/x8M1dtlYUiF/Z+i9yjvCZVQZOs8Isk8Xjy/fR6TtWvn6ib7J6Vlia7iNneB090TzPloinaD9BP4IW90bluDJ6fBS9IFk32XEUL3KoCz4W/3joCz89iF8SCt3Wr+LrrCjz2Pq9YkbA66sTWA+FY8Nws1PPnJ/cJFRdNF78M1oCTpXf3bj0L3urVjjtvkCyaInIyyUrNmjXRVJQq0hJz587F6NGjsVOwDLxgwQKcc8452LVrFw477DB0YnK/3nbbbYjFYnj55ZcxYcKEis9LSkpw2WWXoaysDP369cP+stReATC14LkPQVXrHeA/UciUi+Z33wHHHit+4Kns58b/rWHDxGebNzsdtGVL599XXyXXQfSbOi6aXoMiO/k57zzgzDMT7/v1A9q1c+rmBV++e17r1jkJWJjmWoFqDB573Y44ArjwQvmxNmLwVAeydAs8Wb0yZcH77TdnkeKv3VlS8NsHz0vg/fGHUy7r/qUq8FRcF00teLff7vQHUVIY93sqExlVgefnZmNL4LHk5ZmJKBOBV62ad1bIMFw0eYG3e7e6lSs/P5GNWLaw0bcv8PTTife2LXgiMpVkhY+/A/Ri8Gzsg8eP70FcNE0seKL+LrLgiXIQqAi8Aw9MvOfHDT8XSK+xPEgMnghRQjCVGDwW9j536eI8A/78U+6iKYO34LmeHSKKirwXwFlvggEDnMy5N96Y+LtNC94TTwD77usknXGvnaqLZosWjvjk6y37faCSWvCOPvroCgtaGKxduxYXXHABGjRogKOPPhr9+/dHv3790L17d7Rv3x5ffvkl2rdvj7feeivpe126dMGIESNQVlaGU045BT169MB5552HffbZB5MnT0a7du3wLJuv2CKiVVY/gbdrV8IdRjXBCuA/cU6nBY8fTP73P2+3EF2B58YxbtnipEHeutXp+PwebMXFiY54xhnO/2FY8ADg448TK2fvvy//HovMggc4D+CTT079jokFDwAEBuwKdAQeu8rnNZANHOhfr7AEHlsv2QPYpgWvbl3vxRj2tyZOdB6esnoFcdH8979TJ1umAk/FRfOppxKvr7lGXta//y2vg1s//jzdLSRY+AyMpi6abFsVnefRR4vLBeSTy1gsfQJPtnJu6qJ5ySXiz70EXkmJnghy+8eaNamTtM2bgY8+Sv7MdgyeCK9r77fnoAjVGDxVC55uFk3VbRLKylKt6SoC79ZbE6979EiUz6+5x+OJusjuY//+4noByecqshn4tbW8PGfC78J7w+gkWeEJYsG74YbUz0TzIhWRwiLaQP2++/QFXlFRYpGipMTfeue1EMZ6E7hT8iefTPxd5o7tZvdk8bPgucJx6lTHU4T/Dg97vXbtcjKLiuoi+6xqVW+Bxz4HoijwjGLw7rjjDhx22GH473//i8svv9x2ndCxY0f8+9//xjfffIN58+ZhxowZ2LNnD+rVq4cTTjgBZ511Fi655BJUEbTkm266CZ06dcKIESPw448/Yvv27WjZsiWGDRuGYcOGSTdBD0rnzqmf+e0Dxu7BlkkLnhtPIjpWJwbPhZ9gsKtDfjF4bLn77ZcYPHftklvJXBfNn38G/u//Eg+UsAQe4PyW1+SQRxaD54VJDJ5Laan4N3R89dn2K3NFaN7cEd5+9Qoag5dpC15BgfPQOvRQb5cctp6yxCAuOklW+LJ4V6lYTC0WATCz4F1yidNHGjUCunb1/q4Mt0z+Xl5wgbPyW1zsWMSB1IelbRfNoUOBc85JTuTCI7NUmVrwdOIz3fstE3heLpoigdeiBXDbbWqLMXwM3o4diedXfr7/BNJdrCwtdcQiu/0Pv9cVYH8fPBFe117XvY2vk5eLpmgdXDSWFxY6v71rl1zguXunAuoWPMARFqxQUhF4d9wBtG3rzGvcPdV2707tlypJQvbe23kuz5oF3HRT8vfYc2Vj51xUYiILCpzjtm9PnWfpJFnhCRKDd889zvzl1VcT22SIngfudVDNLCzbc499Jqm04VjMqff27U7/No2/Y+ski7tm78FFFzmZQGvVcvY15dGJwXN/T/W5B/hvrs4en5/v/1yNuoumkcDbsmULhgwZgiuvvBITJ07EaaedhpYtWyJPciWOOeYYrfIbNmyIf7A7KWvSs2dP9OzZ0/j7JjCeohX4WfBMMmgC3gIvHk98pmrBc8sRNXhdCx6Q2tFVN+xmf6tjR+dY96Gzc6f8QeqeR4cOyZt5+rloxuNqAk/0EJg5U7w3jQyZi6YXutsksGzZIp686iRZYR+u7D1lr+VNNzkTAL96BbXgqSRZsSHw+P7knmudOsDf/uZdDv9bssB6Fz+B57VNAj/x8WtPMrdF0XtAvCDhuv56ZVT1QmbBq1nTsbp7lStz9zN10bzmmtQ9EHlk1oP8/HAteKWlCRdXWXpy3Y3Ou3cHrr5arW48rAWvuNh7NR9I3SqBFXgii1amLXi61g9AzUVzzRrxwoRsLC8uThV47DlWqeKdnZaldu2EoNi8OVk8yfose+7VqwODByfey9qbarKcHj2cNugKPJEFTyTwVF1mXYHHWyt1YvB4gljwatVy+tuKFQmB52XBUxV4on4aj+snWQGcem/f7m/B89oiAfDvv2wbKSoSW3RdVGLwvL7Dw18vdislv2eHbEGSJeoumkYC77jjjqvY527s2LEYy+4CyxGLxVAaRWlrGdFKEzuBsynwvCakvChQFXi7d4tFjk6SFRd+BVnV1ZC9Hm7gNCvwVB5MLH4r5m5QMPs7IkR1njVLr0N7uWjKMHXRBJyHiUjgiSYzsgmKioumqkVWNiGWPVhMYvDCdNE0WWH1E3h+++DVrJlYtefL4sWhn8DTddH0Ks9LLPIUFyfGPlkMnnsuXuXadtFU6X+qMXiFhWpJV1QFHhur4+eiCaRmRRVZ8PwmfV5/Zy14KhNuPpNmx46J9yKLVqZj8EwEnoqLpiyKRda3atRwUv3LLHiFheoCr3HjhMDjxw7dGDwguMADxNeMPVc2qZqLqsArLnY8omQWvFhMvDARdgyeX6IsWwLPxArt1tsrjADwt+D51d3Glihe6Ag8dislv2eHrsCLoswxEnjHHHMMYn7LeJWItm3Fn+fnO52Ij2FwsWHB4yekqlYf/u8qE3BVgcc/hFSFCosbOM0KPC8XTRFemQP5euoKvJkz9Tq0icAL4qIpExc6kxn2msgsZSouwID/no08UUuyonK/ALsumnl5zurppk3BLXhBXTT5ern7Pvr1gTZtEolg3DL583QXErzKte2iaVPg1arlTMz9UBV4flskAKlimL1ftgUeb8Hzw2urBJsWPB0XTVWBp2r9UHHRFJ0rIO8z7rWVCbwqVcTJi4DUejdpkohRClPg6WSBFHnUsOfarFnqd3QEHl8e4O8CqSPwZM8qL5f9dAk8k0UKt94lJXZcNGWoLggD4Vvw2Hvl9+yQLUjWrZtwY89JC96XX35puRrZDbtCyVNc7HQgUdpw1u1IJ8mK18OK7ahFRd6Nzk/g/f47MGhQ4r2oc4p0vpfAU50ouxY8d7AqKwNWrhQfKxvQ/CwNQQTeTz8Bf/+7/Ds8qi6apaVO/EM8DrCezUEF3tq1wJ13Jic40MmiKXPRVBV4YcbgvfkmMGmSPLmEicCLx4H770+0uTAseH4CD3Aerq7A+/xzYPRoJ9Cc/67fOdoUeG55u3c749rNNzsPzrvuSj2udeuEwPOz4LHllpY69/P2252J8rx58nrwsOVv2+Zcr3r19BeabAs81Rg8FYHHlxW2wHOfXyYCb80ap2106pS8PYJLOix4XtfeROCpuGiyFrxGjRIx96K5AJC4ttu3J6yy7DmqZlIGku9BNljwatQQe5zoCjzX04dPQiQTAV5iSMXTAdC34LnjWtWqiTJVk6yIrrGpwLNlwZPdd3ePZtUFYf7vNix4fN3Y2HVTF82WLRMCz30OvPACEFL+xkAYCTwimeOPl//NdR0QrbylQ+B5dRK/Cfi//pWclUrV+mYag8fiJq1hHzq//SY+Vvbg85tQsYOibgweAPznP/Lv+JUhGxRfeAEYPtx5za4A68bg8Q/1q68GeE9q93syC7SKBS+oi2ZQC97vvwPXXiuvA2Am8CZOdNq/3+97/ZZstd2Fb3MygQc49/PEE53XY8c6iwAstl00VQXe3LnOPwDYZ5/U45o0cc5z587EhEJmwWPLLS11MtQ+/LB3PfxWYW++ObGowZ5TUAsee81q1fIvC1C34LGWXxWBxwsdE4Hnl6TDbTO6Au/334ErrgA+/FB+fKZj8Nw+X1ioPtFWcdH85Rfn/4ICJzHRp58670VbDQDJ13bHDkf0sH21bdtEdtn27ZO/K3LRdOGfBbr74AF2BJ6XBa+4WNzWdQUe4AhkN27Mz0Lm1S9s7IPHnpPrgfSf/6SOa0EseIB5DB7gnJdof0MXvxg8Wd3Lypw2YboIoLJfK/8dv7qxfc/PYCHzOGnVKrF4s2uXs/UCG68aJYy2SSASHH64d/C624lEvvMqsRYivFzfeIHnleHLbwI+alTye9ngwq/cm7povvaaE3d0/fWJ68E+dGQub5lw0dRFxUWztNSx0Liwe+MFteCJwmTdOt16q+MSyyedyKQFjz9fWfJb1w3JC1OBp1OGC3s9vPoekNrmRNfS7QdsH9q2LbXfp9NFky/P5Z13Uj+rVs2xdNesmUhS42fBc+vEb5UgQiSu2LqxFmu2rancz2rVxB4KIgueCmG6aLKI+pRf+8jLk18T1jVeZcK9336J17Nne4s7wG4WTdl4pOKiqWr54Osk6+fuZLJmzeT76GfBAxLCh723V1wBHHmkE6vG9zW+v7LWMH7ybmLBk2Vt1XHRFFk9WQueqK2LchuMHOn0ufvvT3zmt4+gDRdNEwseu+jlCv5XXkk9LhMummy9RXv0ufj1eVn/deuk46LpZcGT9RsvgccvsrLzGL+s8TILHpsxf9cuYMYM+e9nGiML3tdff611vG4WzWxiwgTvyZA7aIpWVU02WAW8Y/BsWvC8fpflzjudjutaPEwFnpsune2wXg8dl3S7aFar5r3iJYJvI6LrsGWLPEOdrRg8Fve61ajhDFLxePI1Y6+rTOCly4Inm+iqbOpsIvD43wuSxlrldwFvCx5PFAWeaKypUgW4917g7rsT5+dnwXPrxJ7ja685lqFevZK/K7o+KvdKZdEmFnPGZX6SEAWBp+py6KJyTYqKxG2B3c5H1YLnuiSqbJdr04InK8u2wFNx0WQ3AGeFiqrAa9w4+RyrVgWmTElNqgN4j5dez2OWsC14bsr58vLEebGuv3xbr1ZN3G6vvdZZVGevQToEnkkMXps2jsDfujXRF0SCMBNJVth6e8WLe50f4C3weCu033l6WfBMBJ6X67yo3vz8GUitc5cuide7dqlb/TOBkcBzs2iqUFmyaMpwB83S0tS9ydgGayrwwnTR5PEawNlBK0gMHt9ZVASeqYumqsDjy2/QIHVDVT/4QUJ0HTZtkg8WQV00RbAPAlGWsfz8hItF0CQrQWPwqlUTZysM2m4BcT15t5QwBB7/IBYNqTL3GL49+1kLw3DR5BHVwe1XbLtWteCx9axVSyx2RJ+p3APV+1Sjhj2BF1YMnoqLpgpFRWL3QdaCp7IvWSzmeAR8/rk8MRZLOix4KoJY1bWNr5Os77ECj23jKi6aIgueew6iZ4RomwQXVYHndR9Ukqyo9ClX4LmJlNy6FRc7YwWbxt6rrfHXQLbnsNtGMhWDl5fnWHy+/dYJMdm4UXxeQZ4vNix4XgLP6/wAed3dOtnKoilKVAh4C6x16+R/UxV4bD3q1Usek3NS4MmyaJaXl+O3337Dir9mv4cffjgKbfi3ZTFsZ9u1K7lRsQ1W5cHpoirwCgvNBV55udPZ2AHc61bK3PkAsxg8UbkiiorkVq+wXDRr1/YXeO6mtS4qAm/zZnsWPL8Mjm4d/aha1WmnmXbRjMWc684P2GFZ8FTulwjVBzWgJvBULXiy1U2XTFnwRP3KxIJXWCheSRYJYNWJpgqihTde4KkuzplY8GQC38s7IYjAE6FrwQOcJFmff652bDZa8FRi8GQWPBmqAk+ElwWPbw+yxQWvNXsVC57K2Jef73ynrEy8wF2nTqK96Sx68zF4Lulw0fSzcB10kCPwAODnn8VtQXU8UonBi4oFzx0jbWXRlAk8r3bn5Xoq+p4oc/nChYnPOndOvr67d/vvC5pJjASeXxbNn3/+GYMGDUKNGjXwySefmPxEzsALH9FKU9Wq5q5dboPctCmRoIA9zkvg8a6eGzc6jbd6dce0zXcwr87iJfBMtkkQlSvCayIaloumSrykn8ATXQcvC14YLpoqK9YigWcy6eCF3IYNTtmqAg9wrjsv8PyEjV8dAXF/4ttwOix4InJR4PHXkn3vJfBEK8kmLpqFheoPZdkkk223fivc7O+6pNtFUwXZPdeNwQMS29yoYDOLporAW7vWsaK59829l+ly0ZQhEngmi2mAmYtmUIGns7BSXi4OUbEh8HRcNG0kWfHr/2xfmDnTvotmeTkwdarzOi9PvSxbFjy/GDxbWTRNLHheqFrwFi1KfNapU6rRRrY3ZRQIxbjYuXNnvPfee5gyZQoe9kuDluN4CR+dvYVY+InCggVO4HXz5smZJnVcNKdOBZo2dVLAbtgg3nfKK6FFpgSe10PZloumicDzS6Ahc9HMRAyeF+w+hC5BLXgzZzp7HrVoAaxaJf6uTODxyAZ9Fr+Jh0iIelmhg/wWi4rADkPg8RNjWy6aomukYsETlcsLvIIC8UqyiYumzj0Sjc2lpcntWdX7Il1ZNEWLJn4uvIBdgeduc6OCqQVP9GxTEXhTpjiZ8Pi9rGwnWZG5aMoIy4KnKvBU+yWLroumey/LysQCj02mpbpwwn4f0BN4BQXy87YRgwck94WZM4O5aIqei2+9lairThtm6+21eO93fjZdNE0seGELPJYDDkgVeDKX6ygQmvdo69at0b17d7z66qth/URWoCLwdNwzgdSJwjXXOI1syxYnA6VLURFwxBGJ91demVwO24D//nensa5fDzzwQPIWDi6XXCKvk6rA05lc8eWKYDO28ei4aHoNjHxH90sbDACPPAKcdVbifatW8rq5ZDIGz6VBA+f/vfZy/vcTeCZJVgYNctrahg3yDFSiuCbRZNdvKwLA/+GpYsHz8uXX+S2WIBY8/qESJAbPxIInmmiIJkAqFjwWWQyeyIKXlycWHH73wLbAYzdoPvlktd/1WjBYtizxulEj8THpdNFks5mqjH2A97jMkw4LHv/5unXAY48lxy/pxODpWvDOOCPxOb/FiYvIu8dU4LHt1ut53KFD4rXXfr7ub8fjyeer66LJWvDYMczt2+x5qCxKuJgKPEA+DrPnFo/L+6yfEGX7wu+/iwVT0G0SRL/lh6rAC2rBs5VF00TgsVsdef2WC9s33PFg2LDEZ336pO45qptwL50YuWiq0rBhQ/z4449h/kTkCcOCx2+TwMZIsBaRoiJngvDFF85E+vLL5eWwbNqUbMHr3BkYMgQ46ih5ndIZg/fEE8DSpc7fLr1U/t2wXDT9JjnPPedkAz35ZODQQ4Fjj00d1GUumpm24P3vf04K7vPOc96LBF7QJCsqCWrYVMQuYVnwVASeSrIIld9iCSLwVM6bxbbAE01SVAWeiqWgrMw/Bq9OHXF/CduCt2dPqgVv2jRg0iTvRTAVC148nsi217y5ePNnIL0umuzihup+ra4brMok3WYMnso2CS7btjnXzq1jmDF4bds6GbfnzUt9DrsEcdHkz0/1efz00473zuGHez/X+PbmthVdF03WgieKG2PPQyc3n0zg+SVZcX9bNEln+6hXXfwsXGy/cuMPeWyFALzxhlo5fL28PECCZNEEMptF89ZbncXiW25J/ZuqBe/WW51xuHt3J0Mw226jbsELTeDt3r0bU6dORXUdO3sOIhtoy8uTUwTrwLuUyR5MbgM97jjnn+zvPHl5yQLvn/8Ezj3Xu07pdNHs1St1o1cRmXDRPPHExKaXDRqIBxa+bi5RiMHbZ5/kFStW4MXjzqQtqIumSjpt0ebrphY8PxcOFYHn5VLHki6Bp3LeLLYFnmhYF12jIBY8ftwoLExkdQXU3BdF6IxBKgKvqMjZyLprV/XflbWn5csTfdcrji2sLJp+sJuY+1FQoNZvbGbRVHHRdKlWzSw5BV8nFRdNAOjd2/knQ5QoRFVA8fdO9XncsKHjveOHrL2ZZNEEnHsn2pxbtBm6CkEseLJ2z14nr2zNOgKIt/67BE2yAjiLyirzIhdVgWeaRdMkyYptC15xMXDzzcBtt6WW55dkxb0+tWsn9xE+yUqULXjWXTS3b9+OadOmoV+/flixYgV69Ohh+yeyCtlAy6r+oDF4fgJPhuzv+fnJAk/loZ5Ogad6vfweFqbbJHitdKq6+YgGFy8Lnle5MmugHzoxeG5aa0B90sH+TUfg7b+/+p5wXjGm7m/5JdRQEXiq2HbRlLU1mwLPJAZP1YInKkc1mYPItZv9XZVNwL1+QwWR+zwv8FTHNBWBx+4b5xXHJvNOKC317xMybAs81euSjiya+fmp7a5aNbP9wwB9F00VbMbg2X4ey8YPkyyagNyCp+rGzCPbJiGIiyZ7nbwWKnTaLz+uiY7xwut++QlNnkxY8DIVgye6x34WPNm1zqYYPCMLXr5Ca4zH46hTpw7uu+8+k5/IGWQDrekm50D4Ao+34Km45bDnya8g247BU41ZzIQFT1XgieqzaZN81VLXgrdli1OWSXA5C99+CwvVLXixWGJfIx2BJ1uFVEluw6PS3mwKPNX2HYupPdSzyYInEniisr0mbl4xeECytcTUgmfbRVO1z6sIvJkzE69VLXjsdVLZF1KGynmoumgC9gSejRg8tz7s9bFlwRMJvPLyRFsNIvDCcNE0eR6rCLwgFjyRwFP1mgDCj8HTqQtPXl5i/78wBZ6us1zYFrwoZdEUueGaJFlxy3KJegyekQUvHo9L/xUUFKBVq1a4/PLLMX36dLRr1852nbMKmfAJIvD4GDyZOAliwWOTrJha8H76yUkA8/33ib/pWvBEg6/q9YqywBO5UW3aJHev0hV4gHfgtOpkRtR+dVwu3LrNnAnccIMTZK5iwROhmuCBxVTgmbq5qU6YqlRRS9WfTTF4opVMkVD2urZuPcvLxaup7Gey9hC2i+a6dcA//pF4r9rnVawTqhY8tqyrrwYmT3Zem7ZbwP88atTQe1aFacGbPBkYM0avLP5veXliN0EV2Enl1KnOPfjpJ+f9s88mu+anw4LH151dwLMREy9ru0GyaIqsp6YWPNN98Njf5lG14KnALlyJFmFsxOAFseB5PU9MLXhDhzoxnmHvg2dqwVN10eRhP//iC6e/RxUjC165qQ9IJSRsC55KDJ4MFRfNKlXEGQ152Dq453n44akDY1AXzcJCMzdI2xudy1Ctm2jiu2mT3HJkIvA2bQLq1hX/zUTguXXTWZFj6/bkk8Avv/gP8occIv48Gyx4qg9q1esv63uZdtEUreqKFhRE9fc6d/b6sSujIoGXDhdNlbHZpgVvzhzn/+rVgb33lpfFnuNPPwE9ezr3VSbwmjf3r5/feei4ZwLq11k38UJ5uXO+IryyCPJj6K5d5hY8dnHm5Zed/197DfjkE+Bvf0s+Nh0Cj7+GsZgzdpeURMtF08+Cx94/NsOnH34WPL8kKyJkMXhsHLAqBQVOGblowZO1y8WLnQX+M8/0P9YlLAueaGwT1aVDB2D6dOc1n/mc/Z5rkQX0YkXTTWjbJBAOMoHHdqig2ySEIfDcPYLq11ezNIjOUzSQBRV4OmLYlgUvjBg8kYAoKZFP0HS3SXDLA8wsNC6i+6rqNiT6ncmT5d8pLgaOPx447TTx38MSeKKJN39/3nvP3u8BiT77wAPONbrzTvFx+flikcQ/7D75RL1eKhY8v34qWtXl63TkkcBJJ6Ue16GDk266Rg3gww/l9WQFnui6mlrwoiDwZBNEN1trs2ZqyWhYdu5MHj86dnSSaBxwgDPR0qmfCB33TL/yTjrJ6QOXXuq/FQ4/6RMtJBQUOFu7jBypXp9du8xj8ESTym3bgHHjxHVTIYiLJgBcd51zDs8957wXZUAGwhN4QbJoun3o9tudBFtNmgBPPaVWN0B87eLxxP3Veb67yCx4uvM1QB5b7NK6tVo5UYzB82uX77+vfmymY/Bee80ZMzt0AG66Sa+8KGJkwSPUCcOCx7to2hZ4sVgiSYfqpNrL558laAyeTYHHPmB0LHheA14QF80dO+QTPxMLnjtBFt0PWxY8nS0IXEQuKvvv77hxetUrUwJv2zazuE8v3PO89VbnQeLVburUSZ3Usg/k9evl6fRF9QorBo9l4EDnYSlbHPrgA6cdiFzLXNh7IGr/snsStosmj4mLpmiSF48nNjn3a+uic9yxI7lvHXww8OKLiS0L/LBtwfO6zpde6kz8VMYhftLHbgTvsnSpUz8dK1cQC55sUimaKKfDggc4HhIPP5w4D/f/MGPwbGXRdOtapw6wcKFTrmk/Za+da2Xxure6Lpo1aojboBd+As8r3pYlExY8mwtmQSx4JtskuKi6aHboAKxc6T9mFhVFO/bOJZDAW79+PV544QV88cUX+P333wEAzZs3x/HHH4/LL78c9evXt1LJbCYdLpqyTmMq8EpKEp3JVODJUken04IXloumTiyEDJkFT+b9bCLwXAuebYEXxIIHiFfiior865QJF81YTO/Bqepqw/6mX5upU8dJny9DRXymI4smS/XqetlLXWQWPFH79/JA8CJTFjy/Badt2xL936+ti86R9wCoUkUvriydAq+wUH0M4id9ogzBRUX+95UfB3fvtuOiySIa21TbW7Vqib0DTQQekHwOMguezRi8IFk0ZdZTNymJDkVFTtllZYlrp/p8102yortIzX6HP28Xr3hbUTkiworB80PnekTdggeojZm6Aj9TGAu8iRMnon///ti0aRPizGx+7ty5mDRpEh5++GGMGTMGJ554opWKZiui2DTAbhZNmQ+wqcBjN3VWnVTz5ynL5pYLLpphCbwdO+TC2MRFMywLnkmSFRaZwPMjExa8qlXVrB86vwfoTSb9ksuo9Kl0W/BMJkH89/wEnuwa2lxxVhHPtlw0WeFiasEzFSxAemPwdJ4D/KRPJPBUxAVvAeAteKZJVrx+A9DLrFujhjM+mrho8rhjt1dW63S7aPpZ8EyJxZy5webN9gSeLAZPV3wC0bfgsWNt1arJC5x+6LTLqMfg5RpGp7hw4UKcddZZKCkpQefOnXHJJZdg778iwpcsWYJRo0Zh5syZOOusszBjxgzsu+++ViudTfAT5D17nP9tCjxZwL6pwGMzaKpOqvPznXq55yfbGySowNPxf+cfShs3OufjDlqmFjyTTVN5RC6aJSXyAdVvNVxEWBY80yQrfL38juPJlMCz/XuA3oTG67xVV7vTkUVT9ns66MTgyeqYDS6aYQg8kQVPB/48XIuIi80YPNNVf5kFT6UP8NfcVpIVliACD3Da27Zt+hudi1CJwTPJ3mgri6ZNgQckBN6CBU75NgUe+zoMgae6eGIzBk9WVrVqiWunMrbZdNEUWfB27Uq2zHp9R4aqi2auYZRk5YEHHkBJSQnuuusuzJw5EzfccANOO+00nHbaabj++usxffp03H333SgpKcGDDz5ou85ZBTuwbN7sBLzXrw989FHi86AxeFEQeEDyA0Xmn5zOGDy2Az/5pHPdzz8/8ZnqA4Cvc5gWPJMsmjK3Ti8Lnmo9RRbooC6aIiulSn2CBLd74eWiqSvwbGfRBLz7YNAVeMBeFk2TevHoxOBFxUVT1cLrF4PHChc/q63oHHkLno5FSnR8mzbJ7227aKpiy4LHYzvJCiCum0l7M3XRZHHHLt7Lx217BQVmbTeMLJq6bVUE21c7d052o7OZZEXHo8PFb5sE1TLDsuCxsNfKtsDT3Qfvzz+BFi2Apk2B+fPNygT0XDRzCSOBN3nyZLRr1w533HGH9Jjbb78d7dq1w6RJk4wrlwuwnWX8eGd1ac8eYMKExOdBY/BkiTn8OqdssFi7NvFaZ+8xVuDJLHi6q0xBBB7/W/E48Pbb4kQaXg8AtpxDDrEj8G67LfWzPXvM9sFr2FD8eTpi8ExcNEWobMURi+mvnua6BS9okgTReyBaFjzWSjlkSOLvvXub/bbOZNJvvCksdCYfKoTtollSYi5YgNTr0r178nudtPWAPYGnYsEzFXimViTZYtOGDamfBRF4Nlw0geTzdNuezj2w5aLpnl9JiZMcysWGBY/dYmHu3MTekICeBY8VYy5svzrmmMTrSy5Rq5uXBc8rW6OsHBFBYvBk5ai0EZsumvxizt13OyKPTTLGi2HbMXgqnHqq+XfTidEprl69Gv369fM9rkuXLhg7dqzJT+QM7MAis7QE3SbBtgWPHXhtW/B0V4GDCDyZS9HOnc41VBV4+fnAd985qeivvNKOi+agQc5DrkYN4M03kx9GuuVWqwZ89RUwaZIjlG6+2fk8HVk0TSx4Ijp1Ujtu+nTgnXecLIzunmFeqAzisVjCHS2owDNJsuKHDQseW69si8Fjz/HOO52MoQccAOyzj9lv64whfsd+8olZhtWwYvBY63hQgffgg87WA+vXO2Jadr116ugSxIInSnBg4jYXJMmKbLxytxdiMRF4u3enLt4G8X7ZuTPRZ90xzobA03XR7NQJ+P575/W0aYnPbQi8J54Avvkm0Y9++CHxNx2BV7euIypkFrzWrR0PrOnTna0pVJAJvHvuSV608iMdFjy2L6k8p3T2BNSNwRMlF2vcOLFPM5AZF82RI53n0GuvmZeRDowewzVq1MBa1swjYe3atahh4leVQ7ADi0yIheWi6TeA2457UrHg6cZxBBF49eo5Awo/AO3cCdSsmZjE5+X5DzyHH+78A5KT0PDoJFy44Qbn9fjxasd7ccwxzj92vzYvC57qwz2oBU/1d1SDzA880Pm3eLGawNPZQJYVeO7EL+oWvEy5aPqtFttw0XQFHvtZrVrAP//pXYbfPdcZQ7weX4MGyTfcFuHnoskKF9MsmuxkR3fSzE+UWrQAHnpIrwyWdMbg2bDg6Sy6NG0KNGgArFuX/LktF03AicOzKfBcbAo8XRdNdpyfOjXx2obAa9PGWeTs1s15byrw6tTxFniFhY4FR8eK414bVuA1buzs+6dDWPvgBTlGJwNnkCyaLo0a6Qs820lW2rRx9mmMusAzctE86KCD8PXXX2P27NnSY37++Wd89dVXOEg1/2uOwg4sog1ageglWWGxbcFr1Ei9PLZMF51rlZcnFpTuwy4MNzyTia3KyptquWxZXhY8mTWZJ10WPN1hQvWeybKS8rj13L3buTYqG+SKyEaBF1ULnnvvdPuUTQteUZFarIoKUc+iKXs+mZINMXhBkqyIxizReGMq8LZts+eiKRJ4pskxgrhoysZ5WxtHd+yYuE5LliQ+14nBc+viJfB0EcXgmcQdpsOCx7Zh2wIvSBZNF34OmQkXTUB/3p4JjATeFVdcgT179qBnz554+umnsY25w9u2bcNTTz2FXr16oaysDIMHD7ZW2WyEHVi2bhUfk6kYvLAE3q5dYgtevXr6Azk/oOleqzAEng0XTRaVlTedvZRcvCx4QQRe0CQrIv5KwquM6j1TdR9x2xkfBxmFJCtecbC5HIPnkkmB53V8EPGfjiyaumMRGz9mkrGWJ50xeCYumkGSrADqXgc6wowXeGFY8GzG4Om6aHbuLP7cRpIVwDnn9u3Fn8vQjcEzqavIRTOIUBSRDRY8kyyaPPycLlNZNPPyzBLupBMjgXf++efjwgsvxJ9//onrrrsOtWvXRqNGjdCoUSPUrl0bN9xwA/78809ceOGFOO+882zXOatgBxbZ3nC5YsFzO1F5uXg1WDf+DkjtQLoev6LfDNOCZzL4q2QkVB1IeAvet98mXEFZZIMnT7qSrOhO0MIUeKqxmSJUJ2HpjsFj6zVvHnDrrcCPPzrvReOHX7npyKJpWpbfg1t3DJEdH6Rt+GXRNHHR3LEjmGBhBV69enrfFZHOffBMJlpTpiTHP+leL9W44SAWPF0XSBZ+7C4pAe67D/jjD+ezTLho1qwpXsyzZcEDxMJbR+CxzwIXWxY8NnuoSTnZbsHTyaI5fLgzf+GxJfBsZNG02W7DwEjgAcArr7yCp59+Gm3atEE8Hse6deuwbt06xONxtG3bFs888wxGjRplsarZid8kID8/2MrLjh3REXjsuYqyienG34nQFcMqAk+3k9oWeDbjmdiytm8Hjjoq8UBnMbHguQ8m2y6aum67fL28UBV4rItmOgSeTpurW1f+NxOBN3asE1t16KHOe9E18jsPsuAF80bws+D5ZS8OYx88dnyWWVp0SGcMng10r1e7dmrH2XDRNMkgzAu8ESOSY74ykUUTELtp2pwoi8o3EXjxeOL62xJ4gDh5lCrpiMFjBZ5KHdks3n7jho4FDxDPIxs08P6OCFH7MrH689iyPIdFoFO86qqrsGjRIqxYsQLff/89vv/+e6xYsQILFy7ElVdeaauOWY3fBHHQIP3Vx9q1ExOA+fPDFXgm2yQA4mxiJhY8HhsCz50EuddNt5PadtG0aQ1hy+ITALBExYJXrVrynpCqpMuCpzvxCMNF88ADga5dxX9TbRte/Ya/Ruef72/lSkcMnmlZlcFFU2UfPN22e889zmStQQPgP//R+66IsGLw2GQ0sRhw2WVq5bz5pvfv6o7dhxwC9Ojhf5xO+2W3i9m8OdFOTPoTP3bzu1qZuskGcdEEgGbNUj+zKfB0y+f7kmjbHHaOFcRFE0hcP9sxeLptxJYF71//cuZZdesCr7/ufaxODJ4MfsHTJMlKfr4d90q+XeXlOVbyqGDBSAk0b94czZs3t1FUzuG61/HB13fcAVxxhZOGWpdYzFkp+eYbYMUKuTXGdB88FlOBJ1p5iYrA45OF6A6MXgNKGBY8nTLZsrwS3QYReLYseG+9BZx2mr5rCV8vHnfLA0D9PNPtoqkzocnPdzLOzZ+fGl+i+nsywcBmDgWcfutlMXRJRxZN07JsZtH0Oj4sF828PP86yix4bJ10J83NmztpyfPy7KxMhx2Dt88+Tqr6mjXVyjnvPOCUU4C2bcWLXyZZRydPBgYPBv77X/lxOs8Xtp9u3pwYv0wEHns+ojhs20lWVBe3RG3bpsATle/VV/nFFtG5sq7PtmLnbMfg6WIrBq9hQ+C335w5rp9o0smiKYN/lplY8GxdR/b69OsHvPyycx3+9S875QdF2YI3depUjB8/HgsXLvQ9dsGCBRg/fjymsRudVFJiMfHgsvfeZuLOhXVD+P138TF+ndNve4CqVfUmMVG04HklWTEVeLGY/DtRsuB5bedgy4IXRODVqWMm7vh6ef0tqjF4uhOaWAyoXz/1c9W2IRN4fJImVZfsdFrwouqiaduC51qm6tTxnyipbHRuMhZVrWrP7chWDB57LUpLEwKvTh11cedSs6a875mIjFgs1WWMx1TgbdqUaCcmCSF493q+Hply0RT1J5uubroCj19s8bPgZVLgBU0Movv7qvelqMjpP35l2rDgRVXg7d6tPx6FjdJprlu3DieccAJq1qyJmTNn+h5ft25dXH311SgpKcGSJUtQx0ZKriymSpXUbQNMV7hd/DJ4uZs3+1FUJJ8E6962bIvBC7I6mp9vln1QRFgxeF4WPFtZNP0GV6/rESTNsJ/A277deZ3uGDxVv37TyTePatuoVUvsScAKvIICdbcVv/qTwEtFNQZPZdwNw0XTNrYseG78mZu8yx27TKcVNgUeYLcvyASeDRdN/pmViSyaQGp/KiiwEw8lKx+IpsAzeQbYzNoYiznnwp+/rosmX6YXujF4InivMhOBZ0sos9eHHXujglK3ev3117Ft2zbcfffdaMhGVEpo2LAh7rnnHmzatAmv+znlVgJEg0vQFSu/fcOKitQGAz8Liw5+FjyTZBo8uhYfmcCLx4M9PNNpwdMps7AwMXh5Zbey4aKp4sfuVXfdbIayenn9TdeCV1aWvBijO4kH1NqTyWQyiMDLy0uO73HZvdtsXyy/+27TRVO3f2aLiybbzuJxPYEXRpIV29iMF3IncewGx7ko8NjJ66ZNwRYh+bHbpgXPzd5tw0XTdju1KfDcZ57NGDzR72QK/lzy8pLnBraTiOhk0ZRRp07ytcukBY8tV5YlP5MoCbxPPvkENWrUwMUXX6xc8IUXXoji4mJ8ZJJBIccIMjGTwW7oKULHtC7DtgUvyITeRbdjygQea8HKtMCzacGLxdSyadlw0VS5bl51D9OC56Ir8IDk/SqjJPBEK92m1gEX3oJni1yy4IWxTcLnnzvuPA884LwvKUncB5W4Z9E55qoFD0g863QS0ciQXRfTyWw6LHhBXTR37ky95qYxeKtXO3GMTZoACxbolxd1gceeR6tWzlwmKjF4tuHbbmFh8HP1woYFr06d5HJMkqyE4aKZtRa8OXPm4NBDD0Whxt0uLCzEIYccgtmzZxtXLlcIQ+BVrQq0aSP/u+rDystnWCfBilsnF5HA69BBrzyXww9PvNaN4xOd386dwTaQBeQP3DAseK1a2S0PAK66Sq0sdnLr7m0YZNLBEpbAYwWuLMMsD3vfggo8letiGu/D10dnHPETeDYf5lEWeLoLTaJ9u4BgLpqAs1AybJjzev36xOcqSW5EbSxqFjyv+6A7dogmcfvso1eGS5QteHySlZIS57XJOBSWBe/xx4GVK51n/HvviY/xgh/3bVuJdAVenz6J18OGpT5vJ06MTgyebUQCb+jQxPuBA+3+nq0YPF2BF5aL5rXXJl5HceMApS65YcMGNDHIkNG4cWNMmTJF+3u5RhgCD/CeIKsOmh07AosXi/+mu0LK1odN8NGvH3Dxxf7B6DLefBN44gmgd299F81YzMk2et55if3gbAi8sC14Z57pDEq1awM33RS8PJfBg52FgUsuUS+ruNhx91yzxvnMteCpDJJeAitIaK7XZCxXLXiAUx930gfYEXgmLpp+RCmLptt+2fc6DBrkxLOOGwfMmZP4XLdtyPpLPJ7oW4DaIpbMghc0yYpNZPfNzSytA3/tOnRQX6TikV2XqAm8desS2T5N4tfDEniy2G7VSTO/wGJ7IUK0gOPVV486CnjuOUe03nqrE7/9zDOJMYPfa9iWi2am+6eoDoWFwPXXOwtFdesCp55q9/dsZNGsWjW57aqMJWG5aF54oTN2l5cDF1xgp0ybKJ1mlSpVsN3NWqBBSUkJqmR6GTEChBGDJyvXhU+mIOOgg4Dx48V/CyLw2AHx6aeDxd+1bOls0mqKO4CffrrzPmoCTyRaL7oI6NtXvyxZeS7/+hfQooVeeU2aAIsWpQo8lesm80uvVi3Ygz3bXTRN+38QC57IIh81F03RBCDoPni1agUTeMXFzh5xjRsnr9iaJOBxk4WwbN6cHFtmKvCiZsGTtU2TtsFP/J54Qt/DxCXKFrxq1RKJLxYuTDzHbQg8fiw0FXhBjgHCd9EsKnLqwp6vX18dPDjxukYNYOTIxCLorl2566LJ16GoyLlWt98ezu/ZsOC5yWFcVJ7xYQm8vDzgllvslBUGSi6aTZo0wc8//6xd+M8//2xk+cs1wrLgeQ1a7ITBC69kLUEEHotKTFjYeD3sMu2iKbo+JsLCq7wg5bpdeNOm5GunMhjLBF7QxLqqLpqq2UJtCrywXDSB1PrYjMHLVRdNPrmMqbjmyzVpG6JzWbMmebxWmcxncxZNG+nhgzxTohyDF4sl+qmu6Ofhn3l80i3TGLwgxwDhC7xYLPU3dPsqW6dduyqXi2aY2IjBA/QFnmij88qA0uU84ogjsGzZMnz33XfKBX/77bdYunQpjjjiCOPK5QqZEHiqeG23QAJPTtgWvCD31suCF0TgAc5kVMdFUybwTFffXVQteKqw982NNTQtK2wXTRabMXi56qIpyh5qAl8PW21j9erctODJ2pNJ2+Anfqb7ZwLy62LaZm1vGSIaG4MKvG3bUjc7t23Bi0oWTdFvkMATk26BZyOLJiDeysKLsCx4UUdJ4A0cOBDxeByDBw/GZnc3Vg82bdqEwYMHIxaLoX///oErme1EWeC1bi3/mw2BV1gYjc4UZYGXLRY8wJmI6giCTFvwVMmmGDyWqMbgRcmCZ2vz2TAFnq0YPFbgZTrGJ6oWPNl1Md1jzLbAE/XToAKPTeLjomPFCNOCF0Y7DSrw+OyIlSkGLyzy8vz7mKoFj99yxg8SeB707NkTJ5xwAubOnYuuXbti/PjxiAuCvOLxOD744AN069YN8+bNw3HHHYcTTzzReqWzjXTF4LVvr1+GV4eyIfCCrLTaJF0umiZlia5RkFVNr2tuUj/WZUzXgifLCBimwGvaNPFaYdtOAMkPNtaCZ3If0umiGVTgsXtZRdVFM+g+eGEJPJN7qOKiqTKZl2XRzIYkKzZi8MKw4JmSDoEXNAbPTdbCwlv0vLAp8MJOsgIEtxLy+5tFPQZP9TnHw7dd22MG25ZtWoF1LXj8glAUrKfpQFEvA2+++Sb2228/LFmyBH379kWDBg3Qq1cvDBw4EAMHDkSvXr3QoEEDnHXWWViyZAn23ntvvPXWW2HWPWtIlwWvaVPgjDOc1w8/rF7Oyy+LP9d1oxMJvCi4ZwLJ12rXrnAseGeeabaqL7pGLVvql+NVHgD072+2Ss1b8HSSrNx2m/jhE6bAu/Za5/pVrQq8/75aeWx/XLUq8bpePf26hZlkhRcrmdwH7913nQdy1672HqBRtuDZiMFTcdFUSUglKmf37sTm6UVF5hYpW0TVgiea7F9xhXl5fueTKQse2+7ZMc2Fj8nzwubknC8rDIHHi0jde5BNLppVqgAffGD23TAseM8/74w9vXoB++6b+FylfYgMDq1bJ/Z9fued1HqqxOB17JhsADnnHP/v5ALKzb5+/fr48ccfce211+KNN97Axo0bMXnyZMT+eoq4Fr28vDwMGDAAI0eORJ2gs7gcISyBxw+MhYVOKu+1a/VW/AYNctLh3nuvkz3KhSx4cvjvTJoEHH+8Wd3cyZhrFG/e3HxLCUB8zWfPdgY5E2QumqoWvOXLnY2d2f2GwhR4tWo5WT+3bVPbUwxIftCtWJF4bTKxCtNFk190yaSLZr9+TnuoW9e5Tq64MCnL63tBBZ6tiVQ6YvDq1FErV3Z93Y3AMx1/B2RPDN7Spd6hCn5E1UWTHStWrkz9O7vdih82LXg86bDg6S52eAm8KLlofvMNcMAB5s/TMATeFVc4i90NGgDHHZf4XEWI8XOK555zspnm5QEbNybmRboWvIIC4OefgV9/deYHunsLZytaXbJWrVp49dVXcffdd+Ojjz7CtGnT8OdfG541bNgQXbt2xWmnnYa2bduGUtlsJV0umu7+QibuHA0bpq6K6g4aov1nomLBYwfsMFw0mzQxXzFnxR3gndlUBdE1b9vWvH4yC57qim3VqqlWiTAFXmGh809V3LnfcWEFnklfYq+Lm/Kcx3RSw1+3oNsk7NqVuJ8mD3f3gcu3uUwKPL5d2rJkheWiycbgqU7kZX1v40bzutkmWyx4QSd7UXXRrF49sV0A63buorPzVbYLPF28YvCiZMErKgr2LA3LRdP12mEXYlSEGL+Q07Jl4jqxi966Ag9w7kGnTmrH5gpGXbJNmza47rrrbNclZxENYGG4aAYtk+/cZMGTw3/HZtCuV2ZTFfhrHosFmxDxMXgmLn18Ww0q8LwmBSb3QtR36tQxm3ywv1+7tjj+xbSvBhF4omtuw+oGpLY5my6aQffBUw3c94M/J5NyReeyeHHCXU51Ii+7Jm6CoEzH3wHhxeBVqRLsnvLXJugCQNhZNGvUMBMs7pYLovEHsC/wdJK2sAtf6UiyogtvwYtqDJ7ttms7Nk133sG3Idl91E2yUlmx9OgjvEhXDF5QkcFPZnUn4SIxFxULXtgCz+a+KrYteMXFwR4ErPXNxIIH2Bd4sZhcfJncT9Ekw3QLT/b3ZSn6TSeo/HULGoPHTvKCjB9RsuDxZdiy4NlYxBGVsWBB4rVqm/OrSy5b8II+U7ItyUqQrYS9xlnbMXg658m2gagLPNaNHbBjgTYthyfqAk93gZ9/Lsruo4kFrzISSYG3Z88eTJ48GTfffDO6d++OOnXqoLCwEE2aNEGfPn3w8ccfe35/0qRJOOWUU9CgQQNUq1YN+++/P/75z39im86IZpF0CbygZbKDWlGRfoxJXl6qm2ZULHgFBYnBIwwXzShb8ESuszpUqZJINqKbZMWFb0tB98ETleli0g9E3zGdWLFtQ3aepg9m2xY8Ng4nyPjBt7lMCjx+khCWBS+MMoK6aLpEQeDJ2oDJ/WC/E/SZQgLPIZMumuw1U4nN0sW2BY8VEbaSstkQtlEXeEEteLK5i26SlcpKJAXeV199hZ49e+KRRx7BypUrcdRRR+Gss85Cw4YN8eGHH+K0007DlVdeKdyq4bHHHkOvXr0wYcIEdOzYEaeffjo2b96M+++/H926dcM6mb9CiKQzBi8I7KBWp47Z4MEPrEHFhS1iscT1iqIFr2vXxOu99w5WFi8qgj7sAKBZM+f/lSv1kqy42Lbgicp0MbkXNgVe8+bO//Xryy14KpkSRQQReKK6sAIvVyx4/Lh1+umJ19dco18n03qI8Lsubj8LWk4UBJ7segke275UJgsen8KgXTu977N4jbPXXqtejugc+PFE10XTJQwLjG2B504ba9QwmxfZdNE85JDE6yDJgYDUtmvb44oseJklkgIvLy8P/fr1w9dff41Vq1bho48+wltvvYXZs2fjzTffRH5+Pp5//nm89tprSd+bMWMGhg4divz8fHz88cf46quv8Pbbb2Px4sU44YQTMH/+fFx11VVpPx/RRNSGS1+YAs/UwsJ3SJPg8LCwKfD4+xf0fr78MnDZZU62yaBl8dkybQg8NziZjUXItMCTTdRMHsA2Bd6//+1kEnv99dRyu3VzMt2apu4PIvAKCoBPPkne+sGWi2aUYvB4TjgBeOIJYMgQ4P77zctJh8BTTQKQzQLPBJsWPNvbR9gWeIcfDjz4IHDKKcCllwJ33GFeN9E4e9RRwN//Dtxyi3o5onNo0cL/GBlhT9BNMtyysPd0/XonThYwz0RtU+C98w7wt785/9evb1aGC992bc/XKAYvs0RS4B1//PF49913cfTRR6f87bzzzsOgQYMAAK+++mrS34YPH454PI5LLrkEJ598csXn1atXx4svvoi8vDyMHTsW8+bNC7X+PLJsl7bLDToRYju76QSc75BB3EtsE6YFL+i179QJ+O9/gZ49g5UDAJ07J7+3IfBEbqOZTLIiKjMINmPw9t/f2QvopJNSH1jPP++kkDYlSAweAJx8cvK+l7lowRN9//rrgREj5BZVFWy4Yfudi2r8rd/iSpSTrJhgU+Cxi1Q2sC3wYjFHfH38MfDii8GyfIrG2bvucvbJ1fGuEZ3DXnslv9dZ8GPLs30/ALuL3VOnJl6bxsfbdNFs2RJ4+mng7LPNvu9VB9sCL6gFT/Z99nqSi6acSAo8Pw4++GAAwAomn/nu3bsrYvMGDBiQ8p1WrVrhyCOPBACMGzcuDbVMwE9EbT18w3bRNCEbBZ6JxSzMJCtBqV07+f7ZcLsQPdh0zjlohlYRNgWeqO/YeNjZtvQG2QfPhb0XuRiDxxOlGDyv69KwYW4lWZHV0WRxkxUBQccz2xNC2wLPJiJPHJMFPxWBp9PPwo7Bs7nYzdbPND4+zI3Og8C3XdvztaAWPNnzkmLw1MhKgbdw4UIAQNOmTSs+W7BgAUr+mq1069ZN+D338xkzZoRcw2RsC7GwyrUh8PhVwWwQeFFw0bTNPvskXrt7bAUhqAWPn9Rlg8Cz0XZtt5MgLpou7EM9G1w0ozARAsxix3i8rvFBB6mLn2wQeDbv265diddBLXi2XbqiLPBE42xYAk9HuIftohn0mufliduvTQteFMa1sAVeUAueDIrBUyODQ48Zq1evxqhRowAA/fr1q/h86dKlAIA6/9/efYdHVaV/AP8OIY0kJEAACSR0gkIEgQAKSFcEBBErgsDPdVdZLIhKs2BDFxQXEJfVRbDAojQFUeoCElCKsAqi9BZ6TaUleX9/vDvJJJkkU+5kJne+n+e5D2HKmXPLOfe895x7blQUIoq4wSX2f4PGrZ8tSoYD00s58hkrfwrw/OUePE8+B88IDRoA27bp39b7B9xxww26L22DRXeCFSOCM18domnL1wO8r77K+9usQzSNYp091h3FrYszkyuV1BDy5QDPlUDZNsBztwePAZ7z6dg737k6URTg+wEeoGWoYN5cfVC2r9ZrvtaD5+hFAgZ4jilTPXhZWVkYOHAgUlJSkJCQgL/85S+576X97wmvYcUMLA//X82Wmppa7O+Eh4eXuMQ4Ot0ZSi/Ac7dSs03PqElWfLEHLytLgzwrX5hF02i2VxrdOREXlSbg/XUui0M03R0uaEQgVVSD1Mghmq6upycmWTGKEcd7cevizL1WBRtCBfPmywGeK4wM8GybCJUquZcWUPJx4WsBniszWxdch/Bw90Zh2DafjNgHBbk6iZWtgvVk/fqup+upxyS4y9fuwXOU7eQy0dGe+Q0zKFMB3hNPPIE1a9agSpUqWLBgAYJ8oYQ4wFP34BU8ibt7Qm3TRu8DCQjIP7W4M8pCDx7g/tA0Tz4HzwjDhul0/eXKAdOnG5OmO7OmAcCf/6z/2lyXcYu9AM/VtO2VHXdnKAOM78Er2LB3twfPVq9ezqdlZdvodmcSKaOudFuPAyMnTb7xRp0FFdAJkVxRcP0GD9ZtVbky8Kc/OZfWvffqv6+8UrietT6qw5uMvAfPNsBzN3gdNkwbhQEBwJIl7qUFlLw+vhTghYXln0XXUfaeT+ZOgDd9utbfoaE6+ZHR7r5bAzKLBVi0yLU0Ch5ncXGu58dXe/AK5sHo9porF2H79dN/i5s9dvRoPY4DA4Evv3Qtb/7Ax5qlRXvmmWcwc+ZMVKpUCatWrUKjRo3yvW8dllnc0Enrg84rljCVmiMPRE9NTXW4F6+sDNGMiAAOHQLS0lzveSsY4PnClWQrIwM8X+/Bi4gA9u0DLlwwrrFXcN86u84zZgCjRgF16xqTH9v9ec89wOTJrj8XqGDZqVDBmAsxnr5X06gA7/33806srrC9UutOg9aohtA//qHHmrvPibJlsQA//gicOOF6Y6/g+nXvro9uiIhwvndg/nzg6FFdx2+/1XxZuXqvkJE81YPn7jmlYkXg8GH3znPO8Oa5oWAQdvPNrvWuG92DV6+eHq8irgWcJQkMBH77DTh7tvC9go4qeJy5Mxu1rwZ4Bc8Fpf2MSHsWLACOHCm+nVCpktZ96em+1Ynga8pEgDdy5EhMnToVUVFRWLlyZe4smrbq/O9MfunSJaSlpdm9D88662adEs76xQ3ztMp24oYMo3varDwROIaFufdwciOm5PcU2/1gG8MbEeAZNVOfkUJDjb2SX3DfujL9d8GH+LrD9vgPDHQvcPTELJ+A5wM8V9Kzd9K96Sb38mHbg+cLAZ7FYtyFBFvly7t3Jb/gugQFOf5w84LKlcsLYAs2cnw5wHPlHjzb+2yMaIS6e54rTnBw/oDUl3rwjJokxN0AD/DM0ExbwcGuB3fW79vyhwDPF9IvV86xutuTZdgsfLBZmt+LL76IyZMnIzIyEitXrixyhsz4+HhU+N9l5G3W2SUKsL7eokULz2S2CKX1mARfGyboazw5RNMfuNuDZzTb/enusV/wZFtWAjzbhqSj7NU/7l6Yse3Bc6fhYm/7mKleK7guRp0LCvZExccbk647PNWA9aVRIfYUHCDkSwGeUdP8GxHg+TpPB3i+cIeRJ55BaMsX1tGf+XSAN3r0aEyaNAmRkZFYtWoVEhMTi/xsUFAQev3vJpK5c+cWev/IkSPYtGkTAKCfO2ORXFBWhmgawYnJRUud7fYyugfPH/hygGfEw7BteSrAM7qn15Xy5okAz9d68HyVpwK8gkGFL2wzI+/Bs8UAz3EFJ0tztQevYD3mDwFewbJpxh68Cxc8m74vrKM/89kA76WXXsLf/vY3REVFlRjcWY0ePRoWiwWzZs3C8uXLc1/PzMzEY489huzsbPTv3x+NGzf2ZNYL8acA73+TmQJw/0RuNAZ47nF3iKbRjAzwCp7MXZ1FtiBP9+D5SoDna/fg+Sp7QzSNcO5c0b/hLf7ag1ew7vBmPVmwXDdt6lo6Bc/l4eHuz2bq6/xhiObFi55Nnz143uWTzdQlS5bgrbfeAgA0aNAA04uYBjA6Ohrvvvtu7v9btGiB9957D8899xx69uyJjh07olq1atiwYQNOnjyJ+Ph4zJgxo1TWwZY/BXh33gl8+KH+PWKEd/NSkO32sn1SBodoOqbgeHdvb4Oy2INnxDZ74IG859c5cN2rEE/34LmzL3y1IWQUT/Xg9esHzJmjf48bZ0ya7jLyHjxbvh7g+VIPnsWiowZycvT/Rt2zFB7uexdwjeYPQzS7dAH+/nf9++mnjU/f9tEvTZoYnz4VzycDvAs2/cbbtm0r8p662rVr5wvwAGDEiBFISEjAe++9hy1btiAjIwNxcXEYM2YMxowZU+RD0D2pYEXhqcckeLtHBdDpiV9+Wa8ov/66t3OTn20FnZKS9zd78Bzjaz14tse/P92DN326NiLj4/XRJs4qaz143j7OjOSpAO+ee4AXXgAyM3UKcV/gqf3GAM85y5frYz2efda4NK2B4urVwMyZwFNPGZe2r/B0gOcLE9L17p3XXpswwfj0o6OBL74AVqzQ36HS5ZOnziFDhmDIkCEuf79bt27o1q2bcRlyU7lyeiK33tBq1BXpgvfz+MKVbovF9wI7K9sK9dKlvL8Z4DmG9+A5zxMBXnQ08PHHrn+/4LpaLO4Pt+I9eI7x1BDNgABg4kRj0jJKUfvN3+7B83Y92b27Lkayngu6dtXFjAoeZ+70fvpqgFca7bVHHtGFSp/P3oNnNkY2RotipoaQJxgZ4Hn7pO0NZg7wSusxCb7wOA2LJf/2Cgtzv9HtyVk0zVSveaoHzxd5qn7w9QDPtiwA5hzK6AvBiad5epKVgscJkdF8oLnhH2wbo546qZupIeQJHKLpHl8boumvPXhGsK2DjGisGdWDZ7EU3kZmqtf8KcAritnvwTP75COAfwR4nhyiGRbmGxf7yNx4iJWS0ujB83aD29dxiKZ7fLkHz5/uwTOC0QGeUffg2fu+mcqap4Zo+hNfD/AKTn5mRgzwnGPvOYJEnsYAr5RwiKb32Vaqtg+I5hBNx5i5B6+0hmj6ynFju72M7sFzd18UPK7MVK+xB6/wPWrOMmomSE/xh8a7P6wjAzwq6xjglRIGeN5XVKXKHjzHFLxnwNvBSvv2mqdy5dy/0b9g2fHUc/B88X4cIxobwcFA5876t7sTOhQsWzfc4F56vsTfA7zy5fMeo+OMWbP03/r1gU6dDM2SIaxPcmrSBGjZ0rt5KQ3+EKAYeQ+evQfFE3maHzZTvaM07sHzx6DDGQzw3FPwngFvB3jVqgHHjulD6+Pi3EurtIZo+orr1/P+NqqxsWIFsHcvcNNN7qVje5zVrWtcsO0L/HmI5t69QESEawH7kCHAbbcBsbG+WfcOG6bPFKtTB9i40du58Txf70U1AnvwqKzzwarSnGwrC0/1tLl787rZGRng+WrDvTT5QkOrcmVd3OVvAZ71kS2AcY2NwEBjHmZ78WLe382auZ+eL/HnHryaNd2bObBRI+Py4gmNG+u/vlAvepo/BCienmSFyNM4RLOUlMYQzexsz6RrFuzBM5avBi+uKLgunhqi6Ss8EeB5QvPm3s6Bscx8f2FJ/GVd/WE9fbnOMErBAM+d2VHZg0fewACvlDDA876irpoxwHONmbZBwXvjjJoJz1cDPNshmr58NdlsAV7But+fpkr31bJgNAZ45lAwwHOnrDLAI2/wo9OLd5XGPXgM8IoXGmp/kgsO0SRPKQvHiS8/t8vsQzT9ib8Es/4Q4PnyRSGjGNlOY4BH3uAnVa73eaoHz7YBVL++cemaUbly9k9MrjS6fHE2xNJ2+bK3c+D7ykKA52v3gdne/1i7ttey4RH+HOD5C7PuY9s2jD8EeEY+b5EBHnkDA7xS4qkAb9Ei4L77gL//HWjQwLh0zcpexcoAzzVXrng7B8ZauhS4+25g3Trj0iwLAZ6vPTj666+BXr2AJUvMV878oXfH1qZNQJ8+wMKF3s5J6THrPt6wQffl3LnmDWJtMcCjss4Piqlv8NQQzXr1gPnzjUvP7IwK8Mh8PXi9e+tipLIQ4PlaD17HjrqYkb/VNbfeCnzzjbdzUbrMGuC1auVf+9LIIcUM8Mgb2INXSkpjkhUqmb2KtSw0wn2F7XFsth48TygLx5avBXhm5m8Bnj/iPjYH24mo3MUHnZM3MMArJQzwfAOHaLqHAZ5zGOCRLdb95ucvk8mYnZEBXsH2gj/cw0jex6qolDDA8w0couke2xkXzTZE0xMY4JEt1jXm568X/8zGyACvIPbgUWlggFdKGOD5BgZ47qlSJe/vshC8eFtZuJpfoYK3c+A/WNeYH+tFc/DkfmSAR6WhDDQ/zME6aUBAANC+vXfz4s8Y4Lnns8/034AA4K23vJuXssBXG3tffKH/Vq0K9O/v3bz4E189Hsg41asDzZvr36+/7tWskBseeSTvkS0LFhibNgM8Kg1s2paSli2Bfft06t3YWG/nxn8xwHPPLbcA+/drL3RcnLdz4/t8tUH/yCNAkya6D335QedmI+LtHJCnWSxAUhKwe7fOPEllU0QEsHcvcOoUkJBgbNoM8Kg0sGlbivicOu/jg87dV7++t3NQdvhqgAfk9TJQ6cnJ8XYOqDSEhQGJid7OBbmralVdjMYAj0oDh2iSXylYsVosZeM+KSqbfDnAo9LHAI+IGOBRaWDTlvxKwYqVwzPJkxjgkS0O0SQiBnhUGhjgkV9hgEeliQEe2WIPHhHx0TRUGhjgkV8xKsC76aa8v1u2dD0/ZG4M8MhW3bp5fzds6L18EBGRuTHAI79infbYytUAr1Ur4NVXgV69gK++cjtbZFK8v5NsxccDEyYAd90FLF3q7dwQUWlZsQLo0gWYP9/bOSF/YRHhXQGuSE1NRWRkJFJSUlCxYkVvZ4cc9NNPwK235v2/alXgzBnv5YfMbcUKoEePvP+ztiUiIjInX4oNeH2Z/EpkZP7/8x48IiIiIjITBnjkV4waoklERERE5IsY4JFfYYBHRERERGbGAI/8SkhI/imKGeARERERkZkwwCO/YrHk78VjgEeeZLF4OwdERETkbxjgkd9hgEdEREREZsUAj/yO7UyafE4ZEREREZkJm7fkd2x78C5f9lo2iIiIiIgMxwCP/I7tsyczMryXDyIiIiIiozHAI78TEZH3d3q69/JB5sdJVoiIiKi0McAjvxMenvc3AzzypNjYvL+rV/dePoiIiMh/MMAjv2Mb4GVney8fZH6NGwOvvAK0bw+sWuXt3BAREZE/YIBHficszNs5IH/y2mvAhg1AQoK3c0JERET+gAEe+R3bHjwiIiIiIjNhgEd+hwEeEREREZkVAzzyOwzwiIiIiMisGOCR32GAR0RERERmxQCP/E7XrkC1avr3pEnezQsRERERkZHKezsDRKUtNBTYuhXYvRvo3t3buSEiIiIiMg4DPPJLcXG6EBERERGZCYdoEhERERERmQQDPCIiIiIiIpPw2QBvz549mDZtGoYMGYKEhASUL18eFosFb775ZonfXb16NXr27Ino6GiEhoaicePGGDduHNLT00sh50RERERERN7hs/fg/eMf/8CUKVOc/t7777+P5557DhaLBR06dED16tWxYcMGTJgwAQsXLkRSUhKio6M9kGMiIiIiIiLv8tkevKZNm+L555/HnDlz8Pvvv2PQoEElfmfHjh0YOXIkAgICsGzZMqxfvx5fffUVDhw4gK5du2LPnj144oknSiH3REREREREpc9ne/D+9Kc/5ft/uXIlx6Jvv/02RARDhw7FXXfdlft6hQoVMHPmTNSrVw8LFy7EH3/8gcaNGxueZyIiIiIiIm/y2R48Z127dg3Lli0DAAwYMKDQ+7Vr10a7du0AAIsXLy7VvBEREREREZUG0wR4e/fuRWZmJgCgVatWdj9jfX3Hjh2lli8iIiIiIqLS4rNDNJ116NAhAEBUVBQiIiLsfiY2NjbfZ4uSkZFR4u858hkiIiIiIqLSZJoALy0tDQAQFhZW5GfCw8MBAKmpqcWmZf0cERERERFRWWKaIZpERERERET+zjQ9eNZhmcUNnbQ+6LxixYrFpuXIA9FTU1MRExPjRA6JiIiIiIg8yzQBXp06dQAAly5dQlpamt378I4dO5bvs0UpbpinVXZ2ttN5JCIiIiIi8iTTDNGMj49HhQoVAADbtm2z+xnr6y1atCi1fBEREREREZUW0wR4QUFB6NWrFwBg7ty5hd4/cuQINm3aBADo169fqeaNiIiIiIioNJgmwAOA0aNHw2KxYNasWVi+fHnu65mZmXjssceQnZ2N/v37o3Hjxl7MJRERERERkWdYRES8nQl7tm/fjmHDhuX+/8CBAzh37hxq1aqFmjVr5r6+ePFi1KhRI/f/77//Pp577jlYLBZ07NgR1apVw4YNG3Dy5EnEx8cjKSkJ0dHRbucvNTUVkZGRSElJKXHSFiIiIiIiMi9fig18dpKV1NRUbN68udDrycnJSE5Ozv3/1atX870/YsQIJCQk4L333sOWLVuQkZGBuLg4jBkzBmPGjCnyIehERERERERlnc/24Pk6X4rSiYiIiIjIe3wpNjDVPXhERERERET+jAEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSpg3w5s+fj06dOqFSpUoICwtDs2bNMHHiRFy/ft3bWSMiIiIiIvIIUwZ4zz77LB544AFs3LgRrVu3Ro8ePXD06FGMGjUKXbp0weXLl72dRSIiIiIiIsOZLsD7+uuvMWXKFISHh2Pz5s1YsWIFFi5ciH379iEhIQFJSUl4+eWXvZ1NIiIiIiIiw5kuwJswYQIAYPTo0WjRokXu69HR0fjwww8BAB988AFSUlK8kj8iIiIiIiJPMVWAd/z4cWzduhUAMGDAgELvt2/fHrGxsbh69Sq+++670s4eEXnbiRPA9u3GpXflCvDdd8D+/calSVQWrF5tbFnyZSLA1av6d2YmsGwZsHOn9/KTnQ0cOADk5HgvD0SuOnwYmDMH+OILLU9GuXIFuHbNuPTKOFMFeDt27AAAVK5cGXXr1rX7mVatWuX7rCGWLgUGDwYGDNCK/9gxwNkewg0bgPHjgUmTgKNHjcnXlSvASy8Bo0fnnZzclZEBfPIJ8PzzwIwZQHq662ldvAi88ALQqxfwl78Ahw65ntYffwDr1umJ2F0imjdfqyiys4FTp4DUVP2/iG6zixddS+/IEWDVKiApSY8VKxHg55/1t7wpPV3zcfEisGQJ8M03ru3fixeBt98Gpk4FmjYFWrYE3n3X9XwdP67bbcYMoEkTPX6bNwf27HEunZUrgbFjgR07gKFDNb3sbGD+fC1f69e7tr6bNwN/+pOuZ5s2wNy5zn1fROuxuXONqzcAPcZmzgRefRX49NO8dTt92rWGak6O1kci+Y9fZ4gAv/4KfPUVcOGC5m/hQtfWW0SD/Sef1Lr8+++BFSuAX34BXJ3cKztbj42oKD3OkpJcSwfQhtSSJcDZs3mvLVgAPPqo5tER16/r8TVxItC9ux5fP/2k+fz5ZyAry/l8XbuWt73T0/X/ly5pmleuaCBTXDk4dUqPg6KcOZN/nZ118SLQrh1QuTJQq5YuvXvruv/+u2tpXroEvPOOHmvOlvHVq7Uea9AAuOkm4K9/1fO8u3ML5OTotjRqdNP27UC/fsDf/qZpnzwJLFrkXNk6eRJ47TVd5337gMmTtc48cwbYuhU4d67kNHJygE2bgLQ03ZfJyZqHX3/Vxd0g+ehR9+pJEd1Wtsfw2bNaJ5086V7ejLZvn+Y1K0vzu3ix8+3VAwf0+B04EBg0SNvNrrbbLlzQevbjj7V+jIgA6tYFfvvNtfRsvf8+cMcdwBtvuN7G8jYxkalTpwoAad68eZGfefrppwWA3HfffUV+Jj09vcTlxIkTAkBSvv1WxGIR0UM0b4mKEvnuO5HDh0VycorP+Jo1IuXK5f9+XJzILbeI9Okj0revyAMPiMyeLbJ7t8iGDSIHDhSfZmamfs+aXo0aIt26ibz4osikSSKffiry++8i6enFpyMikpUl8t57Ir17F17PypVFXn5Z5NKlktNZuVLkww9Fli/X9GJjC6e1apVur927RdatE9m3r+jtd+WKyIIFIv/3f3n7oEcPkUceEalSRSQmRt8rKW/Z2SKbNun61a+v28qap2bNRMaOFVm6VD/niKwskRdeEKlZU+Ttt0Xmz9dtf9ttIu++KzJihMjw4bqujvjjD5HJk0WqVs3LV8OGIpUq6d/h4SKzZpV8nFmlp4v065d/21etKnLXXSK33irStKm+Vr68yKBBIufPF53WiRMio0aJVKumeUpM1G3Ytq3ISy+J/Ppryfm6dk1kyxaRjAzddpMni7RvLxIaWvh4mzSp+LSuXs3bT8eOicyYoXkrmA6g++XECZHVq/VYKyqff/ubSK1aIk8+KfLMM7pd7KUHiDz6qMhHH2n5K84nn9ivNwouvXqVXEb/+1+RkSNF/vpX+2UUELn7bpF//rP4Y/j6df337bfz1xu33SYSGSnStavI4MEiTZqI3HijlonipKWJJCfrdt25M++4si4TJmg5sFhEEhJETp4sPj1bZ86ING+u6YSE6L+33iqyeLHI999reba3P/fuFXnlFa1zv/hCy7e97VWlipbT334rPh979ujv7dghMnBg0fsxPFzrpi++cLycXrum28c2nYAAzdfMmbrfi5KRIfLNNyJHjoj8/LPIwoUiN92Ul06DBiJBQXn/j4zUc0Jxx9rZs/a3V1CQyM0359WXZ844tn4HDujxHRycl5ZtmbA9JyYkiKxfXziNzz7Tz9WuLfLLL1qOk5K0fD39tL5uTeP++3Ud7MnJEdm+XcvutGmaztSpekwVVz6ffNKxdbXauFHkqad0e1vTeOwxkW3b9HyclVX4O+fOibz6qshDD2l9XFReunfX/X74sNZ99tKyXd+dO0WWLdNtsny5SJ06eWl17ap1Z9euIrffrueX4uq0I0dE1q4VWbJEz7kFz+133JG3zv365S8DOTma3x9+EDl1Ku/13bvz58neEh2tnyvOkCHFp9Gkif6+iMjlyyKbN+t5xJ6sLC13e/ZoXfr443ntvdtu0zJ+991a1iZP1jaKtV4taj88/HBeXho1EqlePX95iInR9t/x47p/MzLsp3X1qpb5mTNFFi3SPK5YocfMO+/oOfbsWV2H06e1Liy4nr//LjJ+vJ4TrflbvVqP2Xbt7G+/4GCR118vvl7LydHjY/RorQsLptG4sW6vBx4QadVK2w0lSU8XqVvXfp5iYrStO3hw4fPU+fP6W6+9JjJ0qEjr1nqc3XyzSL16Is8+K/LVV/nTu/HGvO2ekpL/OLW1ebOkdO4sACQlJaXkdfAwi4iId0NM40yYMAHjxo1Du3btkFTElc5x48ZhwoQJuOOOO7BixQq7n7FYLA7/ZgqAiiV9qH594IkngGHDdFjHpk1ASIheAVm1Sq/ku+KRR4AhQ4BmzfRqw/XrQKdOmuY//uFYD1RgoF5xvvNOzUelSnpV5bffgB9/1KuyW7eWfAUjMBCoVw/o0AF48UW9urhmDbBxI1Czpl71/de/HFuvqCi9wml1ww1At276Gzt36nrVqQNs26ZD7krSrJnmKTUVuPVW/T8AnD8PTJig+bL2ipWkYUMgIAAICwPatweqVtWr4leu6FXFiAjN35EjjqUHaE9L27bAAw8A5cvrvsvJAXr00N6cpUsdSyc0VLd7w4ZA375A//66fXbu1HX99lu98rZ7tw6RcFTt2sBbbwE9e+rxkZoK3HefHh+O9OAmJOjV/pgYoGtX/e01a3Rda9XS7f/HH0B0tKa/b1/x6bVvr71lrVoBL7+s5WnjRl235cuBihWB2Fjgv/91fB0B4MEHtRctMlLzM3Wq9mI5emzYat1ar0x+843ul5tu0qv1CQl6rDhT5uvU0SuJ5cvrFetu3XR55hlgyxbtAXPUI4/o95KTtVeiWjXt2Rk6VPOXne14WuXL68iFlBRdx8cf19ELEydqOn/8ofskPFzLhCP1UUSE1pfvvKO9oi+/nHc1Nj1de09vukmvApdU9lu21O199KiWiyZNgFdecb6HokUL/e7OnXqlfsgQrZ+2btWeBWcNH64jNXbv1vWNi9O6+/Bh7UnbskX3z4YNJfc89ekD3Hyzrmvv3lo3LVoEPPecayNBoqOBe+7R7bt/vx4jCQmat4UL9Yp5ScqVA2rU0DLYqBFw9916pb9+fT0uli/XujI52bm8RURoecrO1vz85z/Av//tXBpBQXqlv21bPVcmJwN792oddOCAc2lZvfWW1td9+uj/V6/W/zdqBEyZoueCs2cdq0eqVtXt1bcvcNtt2qN2//1alpxVsaLWGy+8ACQm6rGblKR1yLvv6rndGVWqAB98oHnbs0frjZo1tc7829+0Keyohx4Cnn5a8zNzZv7RD4mJuv0czV9goLYZKlfW80t8vJ6f69bVHroRI0pOo2ZNoHNnPaZOnNB998orwO2363EsoueC557TY9cZFSpo+YyPB0aN0v+PHq3b79QpPXc5IyBAz/FRUVq31qmjx9aPP2r964zoaK2PRozQkRVTp+b1aFasqPW6o+eX/v313Hb2rNYZNWvqvmneHPjoI8fbMYC2+aZN03U8eVLPI6GhwA8/6DETFaXHR8HhneXL2x9FUKmSlqcHH9QeYVfKer162ma3bo82bbQ9GR2dV1//9htSAUQCSElJQcWKJUYHnuXtCNNIb731lgCQdu3aFfmZsWPHCgC54447ivwMAIeXFNsrjNOmFb5K7cxSt672PgUH61KwV89Xlrg47YkbNKjo3oziejlsl06dtEeyZ09j82iv98e6dOsm8v772tNk7/2ICO1BsvYQ+NLStq1IfLz+Xa1ayVeYi1sqVNBeH2tPoCNLvXp6ta24zzi670taYmP1qpptT4Onlxtu0KW4z4SEiAwYoFcjf/xRe2KNWueQED0+//zn/Ff5nV0GDtQrjUVddbUuUVHFv+9IL6MzS9Om+XtVjDpO3KkrY2Ly/g4P154e214lZ5eXX9Yr5s8/LzJunPa8FHdMObKN331X0yvus6GhzpVlX1wsFr2Cf+utxpT78uVFWrQQCQx0L50KFXSkwp//LPKf/+T13HhradRIexnbtcs7HxS3VK6c19Nd3BIfX3SviLeXsDDtCTQirSZNtJwX106wLlWquH/8uLrYjibyhaVmTZHOnY053732msh99xmTr//7Px21ceyYlg1nv1+5ctHb35FjxGZJwf9iAx/owYO3M2AkrwzRDAkRadNGhyhYZWaK/OUvGrzcemvJJ/Bq1XQYwcWL+v1r17T7/8oV7Qo+eVLk2281oHrkEU27pIMuMFAbed9/L9KypTZYRo8WmTNHl/HjdaiEoyfR6tW1gTFlinbvWx06pN3qjhaCjh11mNuUKfmHVmRnazd/lSoiFSvqsJCnn9Zhg7aVq8Wiw5Ss/+/USeTzzzUf48drUDZxom67LVs0WCspTyEhOqxi2rTCQxaOHdMhD9ZhfgEB2ggsaZ82aqRDZgIDtVG7dKlWaN266dCXgkOviluionS445YtmqecHB0uYB0SMX9+yQ31gkt8vA4rExE5elQbCo0b553cn3xSX+/cufh0atfWhs/x49rwWb5ch6ScPCnywQf5h4U5ulSrpulYXbmiQ2fuucf5tKpX1+FNe/bokJQDBzS9f/9bh7p16aLDykran82a6ZDpRx7RIVAF7dunJ5gFCxwLzGJjdUjc4MH6//vv12Pv2rW8NH/9VY9vR06mAwbo8KgnnxR58828YUEXLmi5uP12x7dZcLDI3/+ux9e1a1ov/fKLpnHPPboNhw4tOZ0KFfSCRJ06OgR4xAjdj6mpeRfCmjUTmT5dP1evnv3hO9YlICB/4NWggciuXbqely+L/Otfuq+ffbbk/Vm3rg5/X79e1/PcOR2eZx36fv681lGtWhWfTni47sMbb9T8vftu4WPDWmZnzXKuYRQRIdK/vw5tsjp8WM8Fo0Y5Vw5iYrRuXL1a0zh3TvMzcaLuj8WLdXhZcWkEBuqw/7179dhMS9M0Hn9c66ekJD2PtWxZ9LBo62LdDgkJeo775hvdd8nJeet68aLWK+fPl5ye9bxwzz1at06erLcEWIeXJydrvopLo1MnvfD3/vuaxiuvaJ178qRuL1u//eb4ubNiRb2YGBqq33nmGc1bSooOv584Ubfh3XdrmbGXRtWqWk5uv13r7u3b8+dn1y49Bq3lolcvPZcWl68aNfRCZrlyWh4+/VSP0+xs3a/Nm+uQ8xUrCg/pt7f07atl/O23dZvt26dp7dyp+6VdO/uNb4tFpEMHHapqOwS4RQu9UHLpkg77tQ4ffvddrWMff1zroSZNtI4prmz16qV5+/vf8w9dPXpU22/OlKXatfPql9hYrXevXNH8Wc8D//63nk+bNct/AamoZdgwka1bRfbv12Pj44/zhgSePattvtat9RgNCys6nVtv1eP3lVe07rjzTr3g9N57msadd+r69uql7ZOC26zgMR0erp/997+13rAO8T98WId9p6frcenIdgsO1vNU69aaZlqanvPWrxf58kttR5Z08djeMnhw/rJw5YrI3Lna3urTx/5xUbGitk+2bs0/LH32bK3nrLenXLqk5cJ6ATEmRvNfTHsr5eabxVcCPFMN0Vy6dCn69OmDKlWq4FwRN9/ee++9WLx4MZ5//nlMmjTJ5d9KTU1FZGSkY92wv/0GvP663jQbFKRd4TVr6pClxEQdMujEsFAAOrnG0qU6scjXX+vwtyFD9EbrcuX0xvmEBP2siL5eoULhdPbs0aEHZ89qN/ahQ9oFfcst2v3ctq12jUdFabpFEdGhTx9/rMMKz5/XG2k7dtT1jIrS4RMNGxa/XiKFt8WRIzqsp3p1HeoXFKTDJIKCdEhLcU6f1gkjjh/XIV5ffpl/+GSDBjpcrohJeXJdvKiTYbRurcMiNm/WYXLp6UCXLjqMq1MnXcfr13U4EaBDFkJC7Ke5a5cON6pbVyc7WLYMCA7WbV6lig7LiYgAHn5Yh4kU59w5HY6SmKjDvD75RPdtYKAOZczO1qES16/rEI9HHtHtZ2W73dPTdR2tr69dq8O+duzQYY+ZmXpMLFumw1qKc/UqMH26DntJT9ehEQ0b6n60WHTIV1ycHicnTuj2qls3f95sHT2q+69pU91mkybpsIlWrTT9oUN1iNns2brPnnlGh5qU5OhRHW64bp0O0UxM1GHLfftqPhs0KDkNqx07dAhUgwY6LOfRR3X7V6+ux0yLFjosOjRUh8McOaLbICDAfnrp6TosJS1Ny/D8+TosNT5ef8c6PLok27frkLYDB3QY7K5dWqYbNtThcy+8oOWlTRsd9lOSLVu0PNWvr/n6+GM9BseM0WO2WjUdKmXP5ct6zNaqlb+8Z2XpBDGffqr/79IF+PxzHbJjsej22r5dy0nTpkXXSV99Bfzzn8BddwH33qtDhI4f12F0995b9La25+BBrWurV9e6PClJj7HGjfW4q1JFP1dcWbdauVKHMqWn6z5r3lzzFRSkx339+lrv1q+vx0T58kWn9dFHuj9jY7VM/vqr/lunjk7S07evDgELC3OsDIjocZWcrOeOunV12FFmpq5706Z59ZojMjJ0+Ndnn2mZCg3V73/yiZavAwf0N4KDS05rxQotRzVqaN1Rtaoe/2lpeoyEhOg+jYwsOo0rV3SIp/XWiDNntCxah8N37+74ugE6hHXLFt2X27YB8+ZpmW/bVuums2e1Pvr4Y83b9et6LiyqTABaLtas0ePt8GHdNk2aaH0RF1d8frKy9Pxdv76Wi6tXtRwtWKBlPTJSz+tBQZruG29oGU1P1zwV1wYR0WNq8mQti92765DI3bt1O7zwguaxJFev6jDIffv0nB4crEPmbr457zOnTuk+iYkpOT1bKSlaNlNSdNmwQddtwAC9/aGouiInR7fRyZM6PDY6Wmd33LFDy1dGht6mYK3LBwzQzx48qPu6uDJqlZysdc+OHbqd77lHy8bVq9oWTEhwvA24c6fuhyZN9LdPn9Y6rXZt3Z/O2LVLh43u3at5ePll3Rdz5uj26tev+OPVKilJz98tW2p9MWuW1kOVKun56sABPVf37FlyWrNn63HbpImWm6go/TclRYfMdu2qvzVxov7WBx/osViU9HTdtvPm6XDYkBDgqaeAG2+0//lTp/S4rFQp77WMDM2DtX6/ckUnl8rK0nZWhQp6Hk1ORurttyOyZk2fGKJpqgAvOTkZsf9rCB88eNDuTJpxcXE4duwY5s6di4cfftjl33IqwLM6flwbY84WwpJYG37ONFr8lYhWkMuWaRA6cqQ2Glxx7Jgut97qfIBeVmVn6wk9Kkobfb7A3kUBV9M5e1ZP8MVdzHBWUpLeL/D44/YvsnjL/v3a6CvpIokzjNoXp09rQODtexg84cwZbeC2besfdbb1gpG1qWHWutL22M/K0ka9IxdKypKUFN2X/nDcAnoB8swZDe7cPW6vXtV7yJo2db3NQT7PpdjAQ0wV4AFA69atsXXrVrz55psYN25cvveSkpLQoUMHBAcH4/Tp04gs7mpfCXxpJxIRERERkff4UmxgqufgAcDYsWMBAO+88w622zyE9fz58xg2bBgAYPjw4W4Fd0RERERERL7IdD14APDMM89g6tSpCAwMRNeuXREWFoY1a9bg0qVLaNeuHVatWoXQ0FC3fsOXonQiIiIiIvIeX4oNTBngAcBXX32F6dOn47///S+uX7+O+vXrY+DAgRgxYgSCiprAwQm+tBOJiIiIiMh7fCk2MG2A52m+tBOJiIiIiMh7fCk2MN09eERERERERP6KAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJsEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQCPiIiIiIjIJBjgERERERERmUR5b2egrBIRAEBqaqqXc0JERERERN5kjQmsMYI3McBzQUZGBqKiogAAsbGx3s0MERERERH5hNOnTyMyMtKreWCA56bjx48jPDzc29nwOxkZGYiJiQEAnDhxAmFhYV7OkX/h9vc+7gPv4z7wPu4D7+M+8D7uA++z3Qc1atTwcm4Y4LktMjKSBckLAgICcv+uWLEi90Ep4/b3Pu4D7+M+8D7uA+/jPvA+7gPvs90H5cp5f4oT7+eAiIiIiIiIDMEAj4iIiIiIyCQY4BEREREREZkEAzwiIiIiIiKTYIBHRERERERkEgzwiIiIiIiITIIBHhERERERkUlYRES8nQkiIiIiIiJyH3vwiIiIiIiITIIBHhERERERkUkwwCMiIiIiIjIJBnhEREREREQmwQAPwPz589GpUydUqlQJYWFhaNasGSZOnIjr16+7lN7PP/+M+++/H9WrV0dISAjq1q2Lp556CmfOnDE452Xb9evXsWbNGrzwwgtITExEVFQUAgMDccMNN6BPjtehegAAF9pJREFUnz5YtmyZ02mOHz8eFoul2OWPP/7wwNqUXUOGDClxm125csXpdFkOHHP48OESt791+eGHHxxKk+XAvj179mDatGkYMmQIEhISUL58eVgsFrz55pslfnf16tXo2bMnoqOjERoaisaNG2PcuHFIT093OT/79+/HkCFDUKtWLQQHB6NWrVoYMmQIDh486HKavs7ZfZCTk4NNmzbhlVdeQfv27VGlShUEBgYiOjoa3bt3x5w5c+DKXHGzZ88usYwsX77c3dX1Sa6UA0/WKf5WDlzZ/o6eIz777DOH8+GvZcDdtmdZOReUd/mbJvHss89iypQpKF++PLp06YLw8HD85z//wahRo7B06VKsXLkSoaGhDqe3YMECPPzww8jKykJiYiLq1q2Lbdu24YMPPsD8+fORlJSEBg0aeHCNyo7169eje/fuAIAbbrgB7du3R1hYGHbv3o2lS5di6dKl+POf/4wZM2bAYrE4lXazZs3QvHlzu+9FRka6m3VTateuXZHHZkBAgFNpsRw4Ljw8HIMHDy7y/d27d2Pr1q2IiIhAy5YtnUqb5SC/f/zjH5gyZYrT33v//ffx3HPPwWKxoEOHDqhevTo2bNiACRMmYOHChUhKSkJ0dLRTaW7cuBF33HEHMjMz0aRJE7Rv3x67du3Cp59+igULFmD16tVo27at03n1dc7ug4MHD6Jdu3YAgMqVK6NVq1aoVKkSDh48iNWrV2P16tWYN28eFi5ciKCgIKfzU79+fbRv397uezVr1nQ6vbLA1XIAGF+n+GM5cGX7F3eOOHr0KNauXQuLxYKOHTs6nR9/KwPutD3L1LlA/NjixYsFgISHh8vPP/+c+/rZs2clISFBAMjIkSMdTu/48eNSoUIFASD//Oc/c1/PysqSgQMHCgBJTEyUnJwcQ9ejrFqzZo30799ffvjhh0LvzZs3TwICAgSAfPrppw6n+eqrrwoAefXVVw3MqbkNHjxYAMisWbMMSY/lwFh33XWXAJDHH3/c4e+wHNj38ccfy/PPPy9z5syR33//XQYNGiQA5I033ijyO9u3bxeLxSIBAQHy3Xff5b6ekZEhXbt2FQDSv39/p/KRkZEhMTExAkDGjBmT770xY8YIAImNjZXMzEznVrAMcHYf7N+/X7p06SLff/+9ZGVl5Xtv3bp1EhYWJgDktddecyofs2bNEgAyePBgV1elzHKlHHiiTvHXcuDK9i/Ok08+KQCke/fuTn3PX8uAq23PsnYu8OsALzExUQDIm2++Wei9DRs2CAAJDg6WS5cuOZTeCy+8IACkW7duhd5LS0uTyMhIASDLly93O+/+4LHHHhMA0rVrV4e/w4at84wO8FgOjJOcnCzlypUTAPLTTz85/D2WA8dYj/3iGlb333+/AJA//elPhd47fPhw7v75/fffHf7d6dOnCwBp1KiRZGdn53svOztbGjVqJABkxowZjq9MGeXIPijOG2+8IQCkfv36Tn3PXxu39jiyDzxRp7AcKHfKwOXLlyUqKkoAyLx585z6LsuAfUW1PcvaucBv78E7fvw4tm7dCgAYMGBAoffbt2+P2NhYXL16Fd99951DaS5evLjI9MLDw9GnTx8AwKJFi1zNtl+55ZZbAADHjh3zck7IGSwHxpk9ezZycnLQpEkTtGnTxtvZ8TvXrl3LvR/D3vFcu3bt3OGD1uPeEdbPPvTQQyhXLv9puFy5cnjwwQcBsIw4gueJsovlwH0LFy7EpUuXULlyZdxzzz3ezo4p2KtTyuK5wG/vwduxYwcAHdNft25du59p1aoVjh07hh07duDhhx8uNr20tDTs378/93tFpff555/n/jYVb9++fQCAGjVqOP3d7du3Y/To0bhw4QIiIyNxyy234O6770ZERITR2TSNtWvXYufOnUhLS0OVKlXQunVr9OzZE8HBwQ6nwXJgrNmzZwMAHnvsMZe+z3Lgnr179yIzMxNA8cfzhg0bnDqerZ8tLk3bz1HR3DlPADq5wUsvvYQzZ84gPDwcTZs2RZ8+fZy+j8ZfGFmnsBy475NPPgEADBw40KlztS2Wgfzs1Sll8VzgtwHeoUOHAABxcXFFfiY2NjbfZ4tz+PDh3L+LStOZ9PzdqVOnchu3/fv3d/r71htlbUVGRmLq1Kl49NFHjcii6dibfatGjRr45JNP0KNHD4fSYDkwzvr167F//34EBQVh0KBBLqXBcuAe6zEaFRVVZAPW2eM5LS0N58+fB1ByGTl79iwyMjIQFhbmVL79RWZmJqZOnQrAtfMEoBMcbNy4Md9rISEhGD9+PEaNGuV2Hs3GqDqF5cB9hw8fxtq1awG4fhEQYBmwVVTbsyyeC/x2iGZaWhoAFLuxwsPDAQCpqakOp1dcms6k58+ysrIwcOBApKSkICEhAX/5y18c/m79+vUxYcIE7NixAxcuXMCFCxeQlJSE3r17IyUlBYMHD8acOXM8mPuyp1mzZpgyZQp27dqF1NRUnD59GitXrsRtt92GkydPok+fPli3bp1DabEcGMd6ZdaVK6ksB8Yw+jxhm2Zx6VrTdCZdfzRs2DAcOnQIMTExGDt2rFPfveGGGzBu3Dhs3rwZZ8+eRWpqKrZu3YpHH30UV69exejRozFhwgQP5bzsMbpOYTlw36xZsyAiaNWqFW6++Wanv88ykF9xbc8yeS5w+q49k3jrrbcEgLRr167Iz4wdO1YAyB133FFiehs3bhQAAkCuX79u9zMrV64UABIUFORyvv2B9QbXKlWqyJ49ewxL96mnnhIAUrVqVbl69aph6ZpVTk6O9O3bVwBIs2bNHPoOy4ExUlJScmcitZ2tywgsB3lKmtxgzpw5AkBq1qxZZBofffRR7k3yjjh+/HhuGdm3b5/dz+zduzf3MydOnHAo3bLK1QkmXn/9dQEgISEhkpSUZGie3nvvvdxJ1k6dOmVo2r7I3YluXKlTWA7yuLL9s7OzJS4uTgDIhx9+aHie/K0MiBTf9iyL5wK/7cGzdrFmZGQU+RnrQwsrVqzocHrFpelMev7qmWeewcyZM1GpUiWsWrUKjRo1Mizt8ePHIyAgAGfPnsXmzZsNS9esLBYLXnvtNQDAL7/84tAkBiwHxpg3bx4yMzNRq1Yt3HnnnYamzXLgOKPPE7ZpFpeu7QNzWU4Kmzx5Ml555RUEBwdj8eLFuZMbGOWZZ55BdHQ0rl69ipUrVxqathm5UqewHLhn9erVOHr0KEJDQ+1O+uEufysDJbU9y+K5wG8DvDp16gAofuYt63vWzxandu3auX8fPXrU7fT80ciRIzF16lRERUVh5cqVuTMZGaVy5cqoVq0aACA5OdnQtM3qxhtvzP3bkW3GcmAM6/DMIUOGFJpZy10sB46zHqOXLl3KN5zGlrPHc0REBCpXrgyg5DISHR3N+44KmDZtGkaOHImgoCAsXLjQ4fuDnREQEICGDRsCYBlxhCt1CsuBe6zniP79+7v0gPmS+FMZcKTtWRbPBX4b4Fl34Pnz54u8IXLbtm0AgBYtWpSYXsWKFdGgQYN833MnPX/z4osvYvLkyYiMjMTKlSuLnFHIHdnZ2UhJSQEAziLoIOsNwIBj24zlwH27d+/G5s2bYbFYMHToUMPTZzlwXHx8PCpUqADA2OPZ+lmWEedMnz4dTz/9dG5w16tXL4/9lrXuYxkpmat1CsuBay5cuICvv/4agHuTq5TEH8qAo23Psngu8NsAr1atWkhMTAQAzJ07t9D7SUlJOHbsGIKDg9GzZ0+H0uzXr1+R6aWnp+fOPHXvvfe6mm1TGj16NCZNmoTIyEisWrUqd78YbcmSJcjMzITFYvFIAGlG8+bNA6CBW3x8vEPfYTlwz8yZMwEAnTt3Rr169QxPn+XAcUFBQblBhL3j+ciRI9i0aROAvOPeEdbPzps3Dzk5Ofney8nJwZdffgmAZcTWjBkzMHz48Nzgrnfv3h77re3bt2Pv3r0AgNatW3vsd8zC1TqF5cA1c+bMwdWrV1G/fn107NjRI7/hD2XAmbZnmTwXOHXHnsksXrxYAEh4eLj8/PPPua+fO3dOEhISBICMHDky33cWLVok8fHx0qVLl0LpHT9+PHdihI8++ij39aysLBk0aJAAkMTERMnJyfHcSpUx48aNEwASFRUlW7Zsceg706ZNk/j4eBk0aFC+148cOSKff/65XL58udB3Fi9eLJUrVxYAMnDgQEPybgY7duyQb775ptCEKNnZ2fKvf/1LQkJCBIC89NJL+d5nOfCMa9euSbVq1QSAzJkzp9jPshy4z5HJDX7++WexWCwSEBAg33//fe7rGRkZ0rVrVwEg/fv3L/S9zZs3S3x8vMTHxxd6LyMjQ2JiYgSAjB07Nt971sm9atWqJZmZmW6sXdngyD746KOPxGKxSFBQkCxdutThtIuqpzIyMuSDDz6Q1NTUQt9Zv3691KlTRwBI+/btHV+RMqykfeBOncJyUDJnJ1lp3ry5AJC33nqrxM+yDNjnStuzrJ0L/DrAExF5+umnBYAEBgZKjx49pH///hIVFZU7w2bBjTpr1iwBILVr17ab3ldffSUBAQECQNq0aSMPPvig1KtXTwBI9erVi5wpxx998803ubMDtWrVSgYPHmx3KRhkv/rqqwJAOnbsmO/1HTt25AbsHTp0kIceekj69u0rDRs2zP2dzp07S1paWimupW+zXuSoVKmSdO3aVQYMGCA9e/bMnZ0LgDz88MOFAkCWA89YtGhR7knHXmPKFsuB837++Wdp06ZN7hIdHZ17ArV9veBsZZMnTxYAYrFYpFOnTvLAAw9IjRo1BIDEx8fL2bNnC/3W2rVrc7e3PUlJSbkXQpo2bSoPPfSQNG3aVABIWFiY/Pjjjx7ZBt7m7D7YsWOHWCwWASCNGzcu8jwxePDgQr9VVD118eLF3BkC27ZtKw888IDce++9udsfgCQkJJh25kZX9oGrdQrLQWGu1kMiItu3bxcAEhAQIMePHy/xt1gGCnO17SlSts4Ffh/giYh8+eWXcvvtt0vFihUlNDRUmjZtKu+8847d6X5LatiKiGzbtk3uvfdeqVq1qgQFBUnt2rXlr3/9q99MNeso67YsaSm4rYtq2J47d05GjRolXbp0kbi4OAkLC5PAwECpUaOG9O7dW+bOnSvZ2dmlt4JlwMGDB+XZZ5+V9u3bS82aNSUkJESCg4MlLi5O7rvvPlm2bJnd77EceEbv3r0FgAwbNqzEz7IcOM/2RFvccujQoULfXbVqlfTo0UMqV64swcHB0rBhQxkzZozdK+AFf6so+/btk0cffVRiYmIkMDBQYmJi5NFHH5X9+/cbtco+x9l94Ojn7W3nouqpq1evyssvvyx33XWX1K1bVyIiIqR8+fJStWpV6datm/zzn/809SNEnN0H7tQpLAeFuVMPDR8+XABIz549HfotloHCXG17WpWVc4FFRARERERERERU5vntJCtERERERERmwwCPiIiIiIjIJBjgERERERERmQQDPCIiIiIiIpNggEdERERERGQSDPCIiIiIiIhMggEeERERERGRSTDAIyIiIiIiMgkGeERE5DMsFovTS6dOnQAAnTp1gsViwbp167y6DkaYMmUKLBYLFi5c6HIaKSkpqFKlCtq0aQMRMTB3RETky8p7OwNERERWgwcPLvTaqVOnsGLFiiLfb9y4scfzVZrOnj2L8ePHIzExEf3793c5ncjISIwZMwYvvPACPvvsM7vbjoiIzMcivKxHREQ+bN26dejcuTMAFNsTdfToUWRmZiIuLg4VKlQorewZbvjw4Zg+fTqWLVuGnj17upXWlStXEBcXh/Lly+PQoUMIDg42KJdEROSrOESTiIhMIS4uDo0bNy7Twd2lS5cwe/Zs1KxZEz169HA7vZCQEAwYMAAnT57El19+aUAOiYjI1zHAIyIiUyjqHrwhQ4bAYrFg9uzZ2LNnDx588EFUq1YNYWFhSExMxDfffJP72c2bN6NPnz6oWrUqQkNDceutt2LNmjVF/ubly5fx3nvvoW3btoiKikJISAji4+Px4osv4vz5806vw6xZs5CRkYFBgwahXLnCp+irV69i0qRJaNmyJSIiIhAUFIQbbrgBiYmJePHFF3HhwoVC3xkyZAgAYPr06U7nh4iIyh4GeERE5Be2b9+Oli1b4pdffkHXrl3RrFkzbNu2Df369cOCBQvw9ddfo0OHDkhOTkbXrl0RHx+Pn376CT169EBSUlKh9E6cOIE2bdrg+eefx759+5CYmIiePXvmBmGtWrXCkSNHnMrj119/DQDo1q1bofdycnLQq1cvvPjii9i/fz86dOiA++67DwkJCTh79iwmTZqEo0ePFvpe8+bNUbVqVWzZsgUnT550Kj9ERFQGCRERkQ9bu3atAJCSTlkdO3YUALJ27dp8rw8ePDj3+2+++abk5OTkvjd16lQBILVq1ZJKlSrJZ599lu+7zz77rACQbt265Xs9JydH2rVrJwDksccek9TU1Nz3rl+/LiNHjhQA0rlzZ4fXMzMzU4KCgqRcuXL50rNav369AJBbbrnF7vtbt26Vc+fO2U27T58+AkA+//xzh/NDRERlE3vwiIjIL7Ru3Rpjx46FxWLJfe3JJ59E5cqVkZycjG7dumHQoEH5vvPSSy8BAH744Qdcv3499/UVK1Zg48aNaN68OWbMmIGIiIjc98qXL4+JEyeiadOmWLt2LXbt2uVQ/n777Tdcu3YNtWrVypee1enTpwEAHTp0sPt+q1atUKVKFbtpN2nSBID2YhIRkbkxwCMiIr9w11135QvuAA3G6tatCwB2Z6ysUqUKKleujGvXruW7p27ZsmUAgP79+6N8+cJPHCpXrhxuv/12AMCmTZscyp81gCsqSGvRogUCAgLwySefYPr06U4Nt7Smaf0NIiIyLwZ4RETkF+Li4uy+Hh4eXuz71t6yK1eu5L528OBBAMDLL79c5APYP/zwQwD6XDtHpKSkAAAqVqxo9/369evj/fffx/Xr1zF8+HDExMSgTp06ePjhhzFnzhxcu3atyLStaV68eNGhvBARUdnFB50TEZFfsDcrpTPv28rJyQEAtG/fHvXr1y/2s9bhkSWJiooCAKSmphb5maeeegoPPPAAlixZgqSkJCQlJWHevHmYN28eXn31VWzYsAE1atQo9D1r8FipUiWH8kJERGUXAzwiIiInxcbGAgD69u2L559/3pA0q1WrBgAlPl6hevXqePzxx/H4448DAP744w/83//9H3788UeMHj0an376aaHvWNOsXr26IXklIiLfxSGaRERETrrrrrsAAPPnz4eIGJJmkyZNEBQUhOTkZKSlpTn8vcaNG2PUqFEAgP/+9792P2Od6KVly5Zu55OIiHwbAzwiIiIn9e3bF4mJidiyZQuGDh1q9z67ixcvYsaMGcjKynIozdDQULRt2xY5OTnYvHlzoff/85//4Lvvvss3mycAiAi+/fZbAEDt2rXtpv3jjz8CALp06eJQXoiIqOziEE0iIiInlStXDl9//TV69eqFTz/9FAsWLECzZs0QFxeHa9eu4eDBg9i5cyeys7MxZMgQuzNt2nPPPffghx9+wKpVqwo97PzXX3/FiBEjULFiRbRo0QIxMTG4fPkytm/fjiNHjiAyMhKvv/56oTR37NiB8+fPo3Xr1nbvzyMiInNhDx4REZELYmJi8NNPP2HGjBlo3bo19uzZgwULFiApKQkA8MQTT2DFihUICQlxOM2hQ4ciLCwMX3zxBbKzs/O9d/fdd2P8+PFITEzEwYMHsWjRIqxbtw6RkZEYPXo0du3ahebNmxdKc/bs2QCAv/71ry6vKxERlR0WMermASIiInLb8OHDMX36dCxZsgR33323W2lduXIFsbGxCAwMxKFDhxAcHGxQLomIyFexB4+IiMiHvPrqq4iKirI73NJZ06ZNw7lz5/D2228zuCMi8hPswSMiIvIxU6ZMwbPPPov58+fjvvvucymNlJQU1KtXDw0aNMBPP/0Ei8VicC6JiMgXMcAjIiIiIiIyCQ7RJCIiIiIiMgkGeERERERERCbBAI+IiIiIiMgkGOARERERERGZBAM8IiIiIiIik2CAR0REREREZBIM8IiIiIiIiEyCAR4REREREZFJMMAjIiIiIiIyCQZ4REREREREJvH/mxYVFivF7zcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "long_norm = (long_noisy - long_noisy.mean()) / long_noisy.max()\n", + "err = np.sqrt(long_noisy.mean()) / long_noisy.max()\n", + "\n", + "long_lc_gauss = Lightcurve(long_times, long_norm, err=np.zeros_like(long_norm) + err, dt=long_dt, skip_checks=True, err_dist='gauss')\n", + "\n", + "fig, ax = plt.subplots(1,1,figsize=(10, 6))\n", + "ax.plot(long_lc.time, long_lc.counts, lw=2, color='blue', label='Original light curve')\n", + "ax.plot(long_lc_gauss.time, long_lc_gauss.counts, lw=2, color='red', label='Normalized light curve')\n", + "ax.set_xlim(0,20)\n", + "ax.set_xlabel(\"Time (s)\", fontproperties=font_prop)\n", + "ax.set_ylabel(\"Counts (cts)\", fontproperties=font_prop)\n", + "ax.tick_params(axis='x', labelsize=16)\n", + "ax.tick_params(axis='y', labelsize=16)\n", + "ax.tick_params(which='major', width=1.5, length=7)\n", + "ax.tick_params(which='minor', width=1.5, length=4)\n", + "plt.legend()\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "200it [00:00, 46520.67it/s]\n", + "200it [00:00, 39276.19it/s]\n", + "200it [00:00, 43715.71it/s]\n" + ] + } + ], + "source": [ + "avg_ps_gauss_leahy = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8, norm='leahy')\n", + "avg_ps_gauss_frac = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='frac')\n", + "avg_ps_gauss_abs = AveragedPowerspectrum.from_lightcurve(long_lc_gauss, 8., norm='abs')" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAASmCAYAAAAzqZ8jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1hT1/8H8HfC3ojIcIED98AW98CN0lq1blsVq63Wqv22tba1tto9ftpph62tWK2ttnXWrQVUHLgXDhzgQBEBGWGT8/sj5pKQAAETEvD9ep77QO489+Ym95PPOfdcmRBCgIiIiIjKJDd3AYiIiIiqAwZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRFQh/v7+kMlkCA8PN3dRdPTu3RsymQyRkZHmLgoR1UAMmoiIiIgMwKCJiIiIyAAMmoiIiIgMwKCJiEwuJycHixcvRpcuXeDu7g57e3s0b94cc+fORUpKis78BQUFWLVqFZ555hm0aNECrq6ucHBwQPPmzTF79mwkJiaWu82TJ0/i6aefhqenJ+zs7NCqVSssXrwYQgit+YKDgyGTyfDHH3+Uuq7PP/8cMpkMo0ePNmh/w8PDIZPJEBYWBoVCgbfeegtNmzaFnZ0dfHx8MGnSJNy6davU5WNiYjB69GjUrVsXtra28PLywpAhQ7Br1y6984eFhUntzM6ePYsxY8bA19cXVlZWWLhwIQDt9l6HDh3CE088gdq1a8PFxQXBwcHYt2+ftL7t27ejX79+qFWrFpydnTFgwAAcP37coH0nqtEEEVEF+Pn5CQBi+fLlBs1/69Yt0bZtWwFAeHh4iP79+4vhw4dL6/H39xfx8fFay9y4cUMAEG5ubqJLly5i1KhRIjQ0VNStW1cAEHXq1BFxcXE62woODhYAxJtvvilsbW1Fy5YtxdixY0VwcLCwsrISAMTLL7+stcw///wjAIhu3brpLX9RUZHw9/cXAERUVJRB+7x8+XIBQAwbNky0a9dOuLu7iyFDhoihQ4cKLy8vAUD4+fmJ+/fv6yz7008/CblcLgCIDh06iHHjxolu3boJAAKAWLhwoc4ykyZNEgDE888/L+zs7IS/v78YPXq0GDJkiFi0aJHWsZkzZ46wtrYWHTp0EGPGjBGBgYECgLCzsxPR0dFiyZIlQi6Xi27duonRo0eLZs2aCQDC2dlZ7zEnepQwaCKiCqlI0KRUKkX37t0FADFlyhSRkZEhTSsoKBCvvfaaACD69OmjtVxGRobYuHGjyMvL0xqfn58v3nrrLQFAhIaG6mxPHRgAED/++KPWtD179giZTCasrKzEjRs3pPGFhYXSPh0/flxnnZs3bxYARLt27crdXzV10ARAhISEiPT0dGlaamqqFKh8/PHHWsudPn1aWFtbC5lMJn777TetaVu3bhW2trYCgNi5c6fWNHXQpA4Yi4qKSj02MplMrFy5Umvaq6++KgCI5s2bC2dnZ7F7926t4zNixAgBQEydOtXgY0BUEzFoIqIKqUjQtG3bNgFABAYGioKCAp3pRUVFok2bNgKAOHPmjMFlqFu3rpDL5VpBmBDFgcHTTz+td7lBgwYJADoByeeffy4FdiWFhIQIAGLp0qUGl08dNDk5OYnExESd6X/++acAIPr27as1fsqUKWWWf+bMmQKAGDBggNZ4ddDUrFkzUVhYqHdZ9bEZNWqUzrSUlBQp6Hr99dd1ph87dkwAEI0aNSp1n4keBWzTREQms2XLFgDAiBEjYG1trTNdLpejV69eAIADBw7oTD916hS++OILzJo1C8899xzCwsIQFhaGwsJCKJVKXL58We92hwwZond8y5YtAUCnPdHUqVPh6OiI1atXIy0tTRp/+fJl7Ny5E+7u7nj22WcN2GNtQUFB8PX1Nbgc6v6lwsLC9K5vypQpAIB9+/ahqKhIZ/qwYcNgZWVVZplCQ0N1xnl4eKB27dqlTg8ICAAAg9qSEdVkut9iRERGcvXqVQDAO++8g3feeafMeZOTk6X/FQoFJkyYgPXr15e5TEZGht7xDRs21Dve1dUVAJCbm6s1vlatWpgwYQKWLl2KX375BXPmzAEAfP/99xBCYPLkyXB0dCyzLMYohzqIatSokd7lmjRpIi2XkpICLy8vren+/v6VLpOzszNSUlL0TndxcQEA5OXllbt+opqMQRMRmYxSqQQA9OjRQ7rgl6Z169bS/2+99RbWr1+PFi1a4NNPP0XHjh3h6ekJW1tbAEC3bt1w8OBBnTvh1OTyiifRZ8+ejaVLl+KHH37Aq6++itzcXCxfvhwymQwvvfRShddX2XI8DAcHh3LnKa9MVV1mouqEQRMRmUyDBg0AAEOHDpWyN4ZYu3YtAGDNmjVo166dzvS4uDjjFFBDq1at0L9/f+zevRvbtm1DYmIi7t+/j8GDB5cb8BlLvXr1cOXKFVy9ehVt2rTRma7O3Nnb28PDw6NKykRExfiTgohMZvDgwQCAv/76q9SskD6pqakAAD8/P51pO3bswL1794xTwBJefvllAMCSJUvw3XffAQBmzpxpkm3p07t3bwAo9bl+v/76KwCgZ8+eetuIEZFpMWgiIpMZOnQoOnbsiJiYGEyePFmr3ZJaWloafvzxRxQWFkrj1A2lv/32W615L168iOnTp5usvKGhoWjatCm2b9+OU6dOoUmTJlLgVxVefvllWFtbY8OGDVi1apXWtJ07d2Lp0qUAUKGsnalNnDgRLVq0wJIlS8xdFCKTY9BERJXywQcfoEuXLqUOx48fh1wux4YNGxAYGIgVK1agUaNG6N69O8aNG4cRI0agQ4cOqFOnDl588UWtoGnBggWQyWR455130K5dO4wbNw79+vVD27Zt0bhxY3Tr1s0k+ySXy7UySzNmzIBMJjPJtvRp27YtvvvuO8hkMkyYMAGPP/44nnnmGfTo0QODBg1CXl4eFi5ciIEDB1ZZmcpz/fp1XLx40WTZPyJLwvwuEVXK1atXpTY2+qjvbKtbty4OHTqE8PBwrFmzBqdPn0ZMTAw8PDxQt25dTJ8+HU899RTs7e2lZZ9++mlERUXhvffew6lTp3DlyhU0btwYCxcuxJw5c0waNISEhAAAHB0d8dxzz5lsO6V54YUX0L59eyxatAj79+/H6dOn4ebmhtDQULz88ssYMGBAlZeJiFRkoiINDYiIarj58+fjo48+wgsvvCBVhxERAQyaiIgkt2/fRqtWrZCRkYGzZ89KbauIiABWzxER4c0338StW7ewe/du3L9/H9OnT2fAREQ6mGkiokeev78/rl+/Dh8fH4wZMwaffvop7OzszF0sIrIwDJqIiIiIDMAuB4iIiIgMwDZNVUypVEr9mTg6OlZpHzBERESkTQiB7OxsAICnp2eZz19k0FTF7t27B29vb3MXg4iIiEpISkqCl5dXqdNZPUdERERkAGaaqpijo6P0f1JSEpycnMxYGiIiokebQqGQaoA0r9H6MGiqYpptmJycnBg0ERERWYjy2hmzeo6IiIjIAAyaiIiIiAzAoImIiIjIAGzTZGIKhaLM10RERFQ9MGgyMWdnZ3MXgYiIiIyA1XNEREREBmCmycSysrK0Xmv2B0FERETVB4MmE2M/TERERDUDq+eIiIiIDMCgiSzWueXLETl4MO6dP2/uohAREbF6jixTQXY2vKZMQWshEHXzJoLPnDF3kYiI6BHHTBNZpMxbt1BHCACA0+3bZi4NERERgyayUEV5edL/cqXSjCUhIiJSYdBEFqkoP1/6n0ETERFZAgZNZJGYaSIiIkvDoIkskrKgQPpf9qBtExERkTkxaCKLpJlpsmKmiYiILACDJrJIzDQREZGlYT9NJqZQKMp8TfppBk1WDJqIiMgCMGgyMWdnZ3MXoVrSagjOoImIiCwAq+fIImllmtimiYiILAAzTSaWlZWl9VqhUMDb29tMpak+lJr9NDHTREREFoBBk4k5OTmZuwjVEts0ERGRpWH1HFkkrUyTGctBRESkxusRWSRRWCj9z0wTERFZAgZNZJHYpomIiCwNgyaySJptmtjwjoiILAGDJrJIQiNoYqaJiIgsAYMmskjMNBERkaVh0EQWSTPTZGXGchAREakxaCKLpHn3HDNNRERkCRg0kUUSrJ4jIiILw6CJLJJmpgkAlCVeExERVTUGTWSRSgZNhbm5ZioJERGRCoMmskia1XMAUKTR2SUREZE5MGgii8RMExERWRoGTWSRdNo0lcg8ERERVTUGTWSZmGkiIiILw7u5TUyhUJT5mvRjpomIiCwNgyYTc3Z2NncRqidmmoiIyMKweo4sEzNNRERkYZhpMrGsrCyt1wqFAt7e3mYqTTVSVKT9Mi/PTAUhIiJSYdBkYk5OTuYuQvXETBMREVkYVs+RZWKmiYiILAyDJrJMzDQREZGFYdBElqlEpknJx6gQEZGZMWgiy1QyaGKmiYiIzIxBE1kkGds0ERGRhWHQRJapRNBUsodwIiKiqsagiSxSyUwT2zQREZG5MWgiy6RUar9kmyYiIjIzBk1kkZhpIiIiS8OgiSxSyaCJbZqIiMjcGDSRRWKmiYiILA2DJrJIshJtmphpIiIic2PQRBapZNDEhuBERGRuDJrIIjHTREREloZBE1kkecmG4GzTREREZsagiSySTAit16JEEEVERFTVGDSRRWKmiYiILA2DJrJIJTNNJZ9FR0REVNUYNJFFkpdsCM6754iIyMwYNJFF0gmaePccERGZGYMmskg61XMMmoiIyMwYNJFFsiqZaWKbJiIiMjMGTWSRdDJNbNNERERmxqCpHJ988gmCgoLg4uICb29vjB49GvHx8eYuVo1nxbvniIjIwjBoKkdUVBRmzZqFw4cPY/v27UhNTcXgwYNRyDY2JiVnmyYiIrIw1uYugKXbvn271uuff/4ZjRs3RmxsLNq1a2emUtV8Jds0MdNERETmZvJMU2FhIc6ePYs9e/bg77//xp49e3D27FkUGekiuGrVKkybNg1BQUGws7ODTCZDeHh4mcscOXIEoaGhcHd3h5OTE7p06YK1a9catL309HQAgIeHx8MWncrATBMREVkak2SasrOzsXLlSmzYsAH79+9Hdna2zjyOjo7o0aMHhg8fjmeffRaOjo6V2tb8+fORkJAAT09P+Pr6IiEhocz5IyIiEBISAnt7e4wdOxYuLi74559/MGbMGNy4cQOvvfZaqcsWFRVhzpw5CA0NRf369StVXjIM2zQREZGlMWqm6f79+5gzZw7q1auHGTNmYMeOHcjOzoaPjw9at26Nrl27olWrVvD29oZCocCOHTvw4osvol69enj99ddx//79Cm9z2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eaUGXUIITJ8+HdevXy83k0UPT+fEZKaJiIjMzGhB048//oiAgAB88cUXsLW1xezZs/Hvv//i3r17uHXrFk6fPo39+/fjzJkzSExMxL1797Bp0ybMnDkTNjY2WLx4MQICArB06dIKbbd///7w8/MzaN7//vsPV65cwfjx4xEYGCiNd3Nzw7x585Cfn48VK1boLCeEwIwZM7B7927s2bMHderUqVAZqeJ0Mk0l2zgRERFVMaMFTTNmzEDdunXx999/49atW/jyyy8RGhqKWrVq6Z3fw8MDTz75JL7++mskJibir7/+gq+vL2bMmGGsIumIjIwEAAwcOFBnWkhICADV3XKahBB46aWXsGXLFvz3339o0KBBmdtQKBTlDlS+km2aZMw0ERGRmRmtTdPKlSsxfvx4yGSyihfC2hojRozA008/jdWrVxurSDri4uIAAAEBATrTfHx84OzsLM2j9tJLL+GPP/7A5s2b4eDggDt37gBQBX22trY663F2djZByR89OicmM01ERGRmRguannnmmYdeh0wmM8p6SqO+883NzU3vdFdXV2ketR9++AEA0LNnT63xERER6N27t/ELSQCYaSIiIsvDfprKIUq2rSlHVlZWmdMVCgW8vb0fpkiPhJInpoyZJiIiMjOT9dPUpUsX/P777yiwoGeGqTNMJbNJahkZGaVmoQzl5ORU7kDlsyrxWsYuB4iIyMxMFjTFxMRg4sSJaNCgAd555x3cunXLVJsymLotU8l2SwBw584dZGVl6W3v9DDYELxySgZNbNNERETmZrKg6c8//0SPHj1w9+5dfPzxx2jUqBFGjRqlc3daVQoODgYA7Ny5U2fajh07tOYxFmdnZ62BVXOGsSnxmtVzRERkbiYLmkaPHo2oqCicOXMGzz//POzs7PDPP/+gb9++aNeuHZYuXaq3p3BT6tevHxo3bozVq1fj5MmT0vj09HR8/PHHsLW1xcSJE6u0TKRLqafRt5zVc0REZGYyUdGWzpWUkZGB8PBwfP/997h06RJkMhlcXV0RFhaGGTNmVLpabNmyZdi/fz8A4MyZMzh+/Di6d++Opk2bAgB69OiBqVOnSvOX9hiVhIQELFq0qMzHqFRGyeo4zYbgWVlZbOOkR35WFmxdXLTGHapbF10soIqXiIhqFoVCIXUXVN51ucqCJk27d+/GkiVLsGnTJshkMshkMgwcOBCvvfYa+vXrV6F1hYWF6e3FW23SpEk6jz2JiYnBggULcODAARQUFKBt27Z49dVXMWbMmMrsToVU5M15VOWkpsKhdm2tcYd9fND59m0zlYiIiGoqiw6aFAoFfvvtN3z33XeIjY0FAFhZWaGoqAgymQyDBw/G77///tB3sVkqBk3ly0xMhEu9elrjYry80CkpyUwlIiKimqoi12WTtWkq6dKlS5g9ezbq1auHmTNnIjY2Fn379sWGDRtw//59/PTTT/D398e2bduMXkVmTrx7ruKUerqpYJsmIiIyN5NmmoQQ2LRpE7777jvs2bMHQgg4ODjgmWeewezZs9GmTRut+RUKBdq3b4/MzEwk1ZCsQlmPlWGmSb+UixdRu0ULrXHHPDzweEqKmUpEREQ1VUUyTSbrEfyzzz7Djz/+iOvXr0MIgQYNGmDGjBl4/vnn4eHhoXcZJycn9OjRAytXrjRVsaga0JtpYpcDRERkZiYLmt566y0AQPfu3fHyyy9j+PDhsLLS6bJQR5s2bdCrVy9TFavKlXysCh+jUr7C3FydcQyaiIjI3ExWPRcWFoaXX34ZHTp0MMXqqy02BC/frYMHUa9bN61xZ5yd0TYz00wlIiKimsoiqudK3uZPZKiivDydcbKq7xmDiIhIS5XdPUdkKH1tmqxYPUdERGZmskyT2uHDh7F7927cunULuXraqgCqO8x++eUXUxfFLPT1CE5l05dpkjPTREREZmayoCk/Px/jxo3Dhg0bAKi6HyhNTQ6a1PWkZDi9d88xaCIiIjMzWdD0wQcfYP369XBycsKECRPQsmVLuLq6mmpzVIMwaCIiIktksqDpjz/+gKOjIw4fPoxWrVqZajMWj10OVJwyP19nnBWDJiIiMjOTBU03b95EcHDwIx0wAWCXApXATBMREVkik909V6tWrVJ7/iYqCzNNRERkiUwWNPXv3x+HDx8uswE4kT7MNBERkSUyWdD0wQcfIDU1FQsXLjTVJqoFhUKhM1DZ9GWarBk0ERGRmRmtTdNvv/2mM27y5Mn48MMPsX37djzxxBNo2LAh5HL9cdrEiRONVRSLwi4HKk4UFuqMYy+sRERkbkZ79pxcLodMJtMZr169vmmaioqKjFEMi1PWfvPZc/od/fBDBL3zjta4dABuzDYREZGRmeXZcxMnTiw3MHoUscuBimOmiYiILJHRgiY+oFc/ZpIqTm+bJjOUg4iISBN/wJPF0ZdpsjJDOYiIiDQxaCKLo6/LAWaaiIjI3KrkWnThwgVcvHgRGRkZpfbbVFPvnqNKKKVNk7KwEHJrhk9ERGQeJr0CHTp0CC+88ALOnTtX6jxCCMhkMgZNJNGXaQKAovx8Bk1ERGQ2JrsCXbp0CQMGDIBCoUDXrl2RlJSEa9euYezYsYiLi8PJkydRVFSE4cOHw9XV1VTFMLuSnVmyc0sD6Mk0AaqgycbRsYoLQ0REpGKyoOmzzz6DQqHA999/j+nTp2Py5Mm4du0afv/9dwDAuXPnMHHiRMTFxeHgwYOmKobZsXPLitPXEBwACnNzq7gkRERExUzWEDwiIgJNmjTB9OnT9U5v3bo1/v33X1y5cgUfffSRqYpB1ZAoo3qOiIjIXEwWNN2+fRtt2rSRXltZqW4az9e48Pn6+iI4OBjr1q0zVTHMLisrS2tISkoyd5Esniild/iivLwqLgkREVExk1XPOTg4wFqj0a6LiwsAICkpCQ0aNJDGu7q64saNG6Yqhtmxc8tKYKaJiIgskMkyTfXq1cP169el102bNgUArfZLQggcP34ctWrVMlUxqBpipomIiCyRyYKmzp07IzY2Fjk5OQCAQYMGAQBeeeUVbNmyBWfOnMGLL76IK1euoGPHjqYqBlVHGpkmzfCptK4IiIiIqoLJgqbQ0FDk5ubi33//BQA0adIEL7zwAm7fvo2nnnoKgYGB+Omnn2Bra4sPP/zQVMWg6kgj06SZW2KmiYiIzMlkbZqefvppFJTIDHz33XcICAjAX3/9hdTUVLRs2RLz5s1D69atTVUMqo40uhzIl8ng+KAXeWaaiIjInKq0e2W5XI5XX30Vr776alVulqobjUxTvkwGPAiamGkiIiJz4gN7yfKUyDSpMdNERETmZPJMkxAC27Ztw4EDB5CcnIzOnTvjueeeAwAkJycjLS0NTZo0kfpxItLMNBXI5dJrZpqIiMicTBo0nTp1CmPGjEFcXJz0YN6CggIpaNq1axcmTJiADRs2YMiQIaYsitnw2XOVoJFpKpQXJ0OZaSIiInMyWfXczZs30b9/f1y6dAmDBw/G559/DvGgbYrasGHDYGNjg40bN5qqGGbn7OysNXh7e5u7SJZPqZT+1Qqa2LklERGZkcmCpo8//hgpKSn46quv8O+//2LOnDk68zg6OqJ9+/Y4cuSIqYpB1ZBMM9OkUW3LTBMREZmTyYKm7du3o0WLFpg9e3aZ8/n7++P27dumKobZ8dlzlaCZadJ4FA8zTUREZE4ma9OUmJiIoUOHljufTCZDRkaGqYphdnz2XMXJNBqCF2lkmoRGBoqIiKiqmSzT5OTkhOTk5HLnu3btGjw8PExVDKqONIMmGxvpf1bPERGROZksaGrbti2OHTuGe/fulTpPQkICTp06hccff9xUxaBqSKZRPadk9RwREVkIkwVNzz77LDIzMzF16lRkZ2frTM/Pz8eMGTNQUFCAZ5991lTFoGpIVkqmidVzRERkTiZr0zR58mT8/vvv2LRpE1q0aIFBgwYBUPXdNHv2bGzatAnXr19H//79MWbMGFMVg6ohzaBJaFbPMdNERERmZLJMk5WVFTZv3oxx48bh1q1bWLZsGQDgxIkTWLJkCa5fv44RI0Zg3bp1pioCVVNa1XO2ttL/zDQREZE5mbRHcGdnZ/z+++945513sHXrVly9ehVKpRINGjTA4MGDERgYaMrNUzWlGTQJzaCJDcGJiMiMTP7sOQBo0aIFWrRooXfatm3bkJycjIkTJ1ZFUagakGtUz4GZJiIishAmq54z1Pvvv4/JkyebuxhkQTQzTbCzk/5lpomIiMzJ7EETUUmlBk3MNBERkRlVSfXco0yhUJT5mnTJNYMme3vpX2aaiIjInBg0mZizs7O5i1DtaAZNMmaaiIjIQrB6jiyOTAjpf7mDg/Q/gyYiIjInZppMLCsrS+u1QqGAt7e3mUpTPWhlmjSCJjBoIiIiM2LQZGJOTk7mLkK1oxk0ydnlABERWQijBU3vv/9+pZa7efOmsYpANYT8QfVcIQCZxmNUmGkiIiJzMlrQtHDhQshksgovJ4So1HJUc2kFTdYapyiDJiIiMiOjBU29evVi8ENGoQ6aiqBdPQfNnsKJiIiqmNGCpsjISGOtih5xVg/aNDHTREREloRdDpDFUWealDIZM01ERGQxGDSRxWGbJiIiskRGC5oSExMtaj1UfVkx00RERBbIaEFTQEAA3nzzTaSlpVVq+dTUVMydOxcBAQHGKhJVU+qgqUgmg1yzywEGTUREZEZGC5oGDhyIzz//HPXr18ezzz6LXbt2IS8vr8xl8vLysGPHDowbNw7169fHokWLEBISYqwiUTWlPimV0L57TsagiYiIzMhod8+tX78eu3fvxiuvvILVq1fjjz/+gI2NDQIDA9GyZUvUrl0brq6uyMjIQEpKCmJjY3Hq1CkUFBRACIE2bdrgiy++QP/+/Y1VJKqmmGkiIiJLZNTHqPTv3x9nzpzBrl27sGTJEuzcuRMxMTGIiYkBAMhkMgiNh7Ha2dlhyJAhmDlzJoMlklg9+FuyTRMzTUREZE4mefbcgAEDMGDAAOTl5SE6OhonTpxAUlIS0tPT4e7uDi8vLzz22GPo1q0b7OzsTFEEqsa0GoIz00RERBbCpA/stbOzQ9++fdG3b19TboZqGHWmqUgu1840aTzIl4iIqKqxnyayOOpIvmSmidVzRERkTgyayOJotmmy0qi+ZdBERETmZNLqOQIUCkWZr0mbUCq1Mk1WrJ4jIiILwaDJxJydnc1dhGpFWVhYnGmSy7UzTQyaiIjIjFg9RxalKD9f+l8pl2u1aZKzeo6IiMyImSYTy8rK0nqtUCjg7e1tptJYvsLcXKgr5JhpIiIiS8KgycScnJzMXYRqRTPTJNimiYiILIjJquf27t2L6OhoU62eaqgijecVKq2stDJNcgZNRERkRiYLmnr37o133nnHVKunGqqsTBODJiIiMieTBU21atVC3bp1TbV6qqE0M01CLoe1vb30Wqbx3EIiIqKqZrKgKTAwEHFxcaZaPdVQWnfPWVkx00RERBbDZEHT7NmzceTIEWzZssVUm6AaqGSmiUETERFZCpPdPdehQwfMnDkTw4cPR1hYGEaMGAF/f384ODjonb9hw4amKgpVI8qCAul/IZdDJpejCKpHq8hZPUdERGZksqCpUaNGAAAhBH755Rf88ssvpc4rk8lQWFhoqqJQNaKVabJS9Q1eCAZNRERkfiYLmho0aACZTGaq1VMNpZVpehA0qfsBt2L1HBERmZHJgqb4+HhTrZpqsJJtmgBVpglgpomIiMyLz54jiyI0q2kfZJqUDzKWDJqIiMicGDSRRdFXPcdMExERWQKTB0379u3D6NGjUb9+fdjZ2WHKlCnStF27dmHevHm4c+eOqYtB1YRm9VzJTJMVgyYiIjIjkwZNH374IXr37o2///4biYmJKCgogNC48Lm5ueGzzz7DunXrTFkMqkY0q+d0GoIzaCIiIjMyWdC0bds2vPvuu6hXrx7Wrl2LpKQknXk6deqEOnXq4N9//zVVMaiaUWr0CK7ONBWp2zSZo0BEREQPmOzuua+//hp2dnbYtm0bWrduXep87du35+NWSKLZpqlk0MRMExERmZPJfrwfOXIEnTp1KjNgAoA6deqwTRNJtDJN1qqYXmrTZI4CERERPWCyoEmhUMDHx6fc+dLT06Fkp4X0QFldDjDTRERE5mSyoMnb2xuXL18ud76LFy+iQYMGpioGVTP62jQx00RERJbAZEFTjx49cPLkSURHR5c6z7///ovLly+jT58+pioGVTNamaYH1XNFD3oGN1kDPCIiIgOYLGh67bXXIJPJ8PTTT2PDhg06D+Tdvn07pk6dChsbG8yaNctUxaBqRl9DcGaaiIjIEpgsaHrsscewePFi3Lt3DyNGjIC7uztkMhn++ecfuLu744knnsDdu3exePFitGrVylTFoGpGK9NkYwOgOGiyBiDY/o2IiMzEpF3fvPzyy9i6dSs6duyInJwcCCGQmZmJjIwMtG3bFps2bcLMmTNNWQSqZoRGmyaZOtMkLz5NlSUylkRERFXF5M1EQkJCEBISgpSUFFy7dg1KpRINGjSAr6+vqTdN1ZAoKip+oc40aQRNhbm5sLK1repiERERVV0ny7Vr10ZQUBA6depUrQKmdevWYcCAAfDw8IBMJkN8fLy5i1Sj6cs0iQfVcwBQpHl3HRERURUyWdAUHh6Omzdvmmr1VUahUKBXr154//33zV2UR4NGpklWSqaJiIjIHExWPffcc89BJpMhICAA/fv3R//+/dG3b1+4urqaapMmMWHCBADA2bNnzVySR4NmQ3CZukdwzTZNmnfXERERVSGTZZrCwsLQoEEDXLp0Cd9//z1GjBiB2rVro0uXLpg/fz4iIyNRYIQL4KpVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl370GWhhyc0zgl1pkkw00RERBbAZJmmX3/9FQAQFxeH3bt3Y9euXYiMjERMTAxiYmLwySefwMHBAT169MCAAQPw2muvVWo78+fPR0JCAjw9PeHr64uEhIQy54+IiEBISAjs7e0xduxYuLi44J9//sGYMWNw48aNSpeDjESzeu5Bpkkw00RERBbA5A3BAwIC8OKLL2LdunVISUnB4cOH8dFHH6F3794oLCzEzp078cYbb1R6/cuWLUN8fDySk5Mxffr0MuctLCzE888/D7lcjr179+Knn37C4sWLcerUKTRr1gzz5s0rN+gi09KqnlO3abIq7tayKC+vystEREQEVOHdcwBQUFCAzMxMqa8mdS/h4iEexNq/f3/4+fkZNO9///2HK1euYPz48QgMDJTGu7m5Yd68ecjPz8eKFSsqXRYyAj1tmjQzTbx7joiIzMXk/TSdPHkSu3btwu7du7F//37k5uZCCAFXV1c88cQTUiPxqhAZGQkAGDhwoM60kJAQAEBUVNRDbUOhUDzU9EdeeUETM01ERGQmJguaxo4di//++w8pKSkQQsDGxgZdunSRgqROnTrByqpqnyYWFxcHQFVlWJKPjw+cnZ2ledRSU1Nx/fp1XLlyBQAQGxuL+/fvo2HDhvDw8NBZj7OzswlK/gjRaNMkf9CJpdA4T9imiYiIzMVkQdPatWshk8nQrl07LFiwAAMHDoSjo6OpNmeQ9PR0AKrqOH1cXV2ledQ2bdqEyZMnS6+feOIJAMDy5csRFhZmmoI+yvRlmtimiYiILIDJgiYXFxdkZmbi1KlTeOaZZ9CzZ08MGDAA/fv3R/v27U21WaMLCwurUHCUlZVV5nSFQgFvb++HLFUNpi/TxLvniIjIApgsaEpNTUVMTAx2796N3bt3IyIiAjt37oRMJoOnpyf69euHAQMGYMCAAahfv76piqFFnWEqmU1Sy8jIQK1atR5qG05OTg+1/CNPT6YJmtVzbAhORERmYrK756ysrNC1a1e88847iIqKQlpaGv7991+8/PLL8PHxwZo1azB16lT4+fmhZcuWpiqGFnVbppLtlgDgzp07yMrK0tve6WEoFAqdgcrANk1ERGShqqzLAUdHR4SGhuKLL77Ab7/9htdeew12dnYQQuDSpUtVUobg4GAAwM6dO3Wm7dixQ2seY3F2dtYaWDVXDs2g6UE/Tcw0ERGRJTB5lwMAcPPmTanbgT179iA5ORkApLvqunbtWhXFQL9+/dC4cWOsXr0as2fPlvpqSk9Px8cffwxbW1tMnDixSspC+smYaSIiIgtlsqBpw4YNUnsmdXWYEAIymQxt2rSRuh4IDg5+qLvqli1bhv379wMAzpw5I41T98nUo0cPTJ06FQBgbW2NZcuWISQkBL169dJ6jEpCQgIWLVoEf3//yu+0HiUbhrMheDn0ZZo0G4Iz00RERGZisqDp6aeflv5v0KCBFCT169cPXl5eRtvO/v37dXrxjo6ORnR0tPRaHTQBQJ8+fbB//34sWLAAa9asQUFBAdq2bYvPPvsMY8aMMVq51NgwvGL0ZZpgXXyaaj5mhYiIqCqZLGgaNmyY1MWAsRtXawoPD0d4eHiFlunUqRO2bdtmmgLRw1EqpX/ZpomIiCyJyYKmdevWmWrV1UrJu+V491zZNDNNVnZ2qn80Mk1s00REROZSJQ3BH2V8rErFyMrJNAkGTUREZCYm73Lg/PnzmD59Opo3by7ddt+8eXO8+OKLOH/+vKk3T9VMeZkmtmkiIiJzMWmmKTw8HNOnT0dBQQGEENL4uLg4xMXFYfny5Vi6dCkmTZpkymKYFe+eq5jyMk1s00REROZiskzTsWPH8PzzzyM/Px9PPPEE1q9fj9OnT+P06dPYsGEDhgwZgvz8fDz//PM4evSoqYphdk5OTjoDlU6ur8sB9V8w00REROZjskzT//3f/0GpVOKXX37B5MmTtaa1adMGTz31FMLDw/Hcc89h8eLF+OOPP0xVFKpGNDNN1vb2qnFs00RERBbAZJmmffv2ITAwUCdg0hQWFobHHnsMe/fuNVUxqJrRWz3HTBMREVkAkwVN9+7dM+hBvC1atMC9e/dMVQyz4wN7K4aZJiIislQmq55zd3fH9evXy53v+vXrcHNzM1UxzI5dDlSMXE+mSaaZadJo80RERFSVTJZp6tixIw4cOID//vuv1Hn+++8/REdHo3PnzqYqBlUzcn2ZJo0uB8BMExERmYnJgqZZs2ZBqVRiyJAhmDt3Ls6dO4fs7GxkZ2fj7NmzmDNnDoYMGSLNW1NlZWVpDUlJSeYukkXTDJqsHjx7TsY2TUREZAFMVj0XEhKCt99+Gx999BEWL16MxYsX68wjhMA777yDgQMHmqoYZscuBipGptGfl95ME4MmIiIyE5P2CP7BBx9g69at6NOnD+zs7CCEgBACtra26Nu3L7Zu3Yr33nvPlEWgakarTdODYImZJiIisgQmf/bcoEGDMGjQIBQVFSElJQUAULt2bVhp3BFFpCZ/kGkqAKAOlZhpIiIiS2D0oOny5ctYt24d4uPjYWdnh8DAQIwePRoODg7w8vIy9uaohlEHTUXQCJo0Mk3g3XNERGQmRg2avvrqK8ydOxdFJS5s77zzDrZu3Yo2bdoYc3PVQsl+mdhPU9msHlTPaeaT5JpBEzNNRERkJkYLmvbv34/XXnsNQgg4OTmhefPmyMjIwNWrV3Hz5k2MGDEC58+fh1xu0mZUFof9NFWMZqZJjZkmIiKyBEaLYJYsWQIhBCZNmoQ7d+7g6NGjuHTpEo4fP44mTZrg8uXL2L59u7E2RzWUOmhSymTF45hpIiIiC2C0oOngwYOoX78+li5dqnWbfbt27fD1119DCIFDhw4Za3PVBvtpqhh10KRVPfegvyYAzDQREZHZGK16LikpCaGhobDVvMA90KNHDwDA3bt3jbW5aoP9NFWMlZ5Mk9bdcwyaiIjITIyWacrPz4e7u7veaa6urtI8RGVRB01FmtVzGoG4jEETERGZyaPVKpssnrr3LqXGODkbghMRkQUwapcDly9fxm+//Vap6RMnTjRmUaiakjPTREREFsqoQVN0dDSio6P1TpPJZKVOl8lkDJoIQPEJWerdcwyaiIjITIwWNDVs2BAyjQsdqbBzy4qRMk0a/XlZ2dlJ/zPTRERE5mK0oCk+Pt5Yq6pR2LllxZSXaZIplSAiIjIHNgQni6JuCK7ZpomZJiIisgRGf2AvacvKytJ6rVAo4O3tbabSWD71CSmYaSIiIgvDoMnE2Lml4YRSWZxpYpsmIiKyMKyeI4uh1HiuHDNNRERkaRg0kcUozM2V/leWlmli0ERERGbCoIksRpHGY3a0giaNzi3lDJqIiMhMGDSRxdDMNInS7p5j0ERERGbCoIkshrKgoPh/Kyvpf2aaiIjIEjBoIotRWqbJ2t5e+p9BExERmQu7HDAxPkbFcIZkmmQPHrNCRERU1Rg0mRgfo2K4orw86X/BhuBERGRhWD1HFkPz7jnNoElubQ11qCRnpomIiMyEmSYT42NUDFdapgkACgHYgpkmIiIyHwZNJsbHqBhOs02T0GjTBADqh6cw00RERObC6jmyGFqZphJBk/oBK1YMmoiIyEwYNJHFKCvTxDZNRERkbgyayGIoNRqCo2Sbpgf9NlmxTRMREZkJgyayGAZlmqqwPERERJp4DSKLoRk0oWSbJnWmidVzRERkJgyayGJoVs/pZJoeBE1s00RERObCoIkshigsLH5RsssBZpqIiMjMGDSRxdBqCF5Kpkl7LBERUdVh0EQWQ6tNk7V2v6vMNBERkbmxR3ATUygUZb6mYsw0ERGRJWPQZGLOzs7mLkK1odWmqUSmSR008YQlIiJzYfUcWQxRRpcDzDQREZG58Ye7iWVlZWm9VigU8Pb2NlNpLJuyjExT0YMewm2qskBEREQaGDSZmJOTk7mLUG0IzTZNJYIm8SDTBKiCK7k1T10iIqparJ4ji6HZpklWsk2TxrPoCnNzq6xMREREagyayGKIMroc0AyaijQzUkRERFWEQRNZjLIyTZrVc8w0ERGROTBoIothaPWcVieYVOPErliBY7VrY+/48eYuChGRFgZNZDnKyjSxTdMjI//ll/F4aiq6//EHks+dM3dxiIgkDJrIYmhlmmy0OxdQavTbxExTzZWTmoqW6ekAVH1yXfz2W/MWiIhIA4Mmshxs0/TIu/jbb7DTeC3bvt1sZSEiKolB0yOoMDcXOamp5i6GDlFUJP1fMtMkSmSahFKp3Rkm1Qj3N27Uet3i+nXeLUlEFoNB0yNGcfcu4jw8YF27No4sXGju4mjTqHYrs01TdjYO+fmhwMYG0S+9VGXFI9NzO3lS63VtIXDh99/NUxgiohIYND1ijs6YgZY5ObAB4PHJJ5aVrSkj06TZpuna/PnoevMm7ADU/fnnqiodmVheRgZa3L+vMz555cqqLwwRkR4Mmh4hRfn58Neo/miSn4/jn35qxhKVoBHAyUsETdDINHU7dEj6v1FBARL27DF50cj0Lv7+Oxwe/H/C3V0aX/vIEbOUh2q2guxsRPbujcigIOTqCdaro0t//43jHh7YFxCAc8uXm7s4NRKDpkdIzNtvw69kZumrryq1LmVhIU4tWYKkEtUpD8XANk22JRaL//5745XBBKpjm5zC3Nwqz0Kmrl8v/Z81bBgu26mahLfKykJqXFyVloVqvujBg9E7Kgq9jx3DoZAQrWlCqUT0jBmIGjECeRkZZiphxSgLCyF79lk8lpaGnpcvo/Vzz+GcszOiZ8yAUCrNXbwag0HTI8T5xx+l/7Me/A1KScHlTZsqvK69I0ei/axZkD3+ODJu3jROAcvINGm2aQIAzU4HnKKijLN9I0u5eBEH69dHkZ0dDtWti6tbt5q7SGVKjYvD/uefx6G6dZHn4ID7tra4uGZNlW3f+fhx6f+Gzz6Lm23aAFB1PXBhyZIqK0dlRY0di4P16zPzWUVK+945+uGHONCwIY5//nmpy8b+9ht67N0rve4YE6PVJ9iBmTPR/YcfELxuHU43aVIlN84c/7//Q9TYsbh99Gillo95+20E5OVpjWutUKD7Dz8gqn9/YxSRAEBQlcrKyhIABACRlZVltPVm3r4tDnt5iQt//ql3+ukffxQCEAIQF+3tRcTQodLrqBYtKry9S3Z20vKH3nyz0uVWJCeL+/HxQgghIrp0kdZ54ssvteaLbNNGmiYAEdG7t7hhZSUEIHIBkZWUVOkymMLxRYtEolyuVeaCB8f69rFjD7Xu+wkJ4tCbb0rHTWfaW2+JjFu3DF7fla1bxX4/P1GgUVb1cMrFRSiLispc/u6ZM+XOU558hUJkPthmolwulEVF4thnn0nl2NekyUOt39RiV62SynrJzk7kZWYavGzEk0+Kox4eYv/06eUex5y0NJFx69ZDH29LcfbXX0VEnz6lfm+VJjIwUAhAnHZ2Fhf//lsIIURRQYGI6NVLeh/SZDK93ws5aWkiTuP7S/pOCQoSQghxPz5eJJX47B718BCK5OSH3+FSnPr+e1Gk8T1xoH59cfLbbw1+n5VFRSLWwaF4Xx57TJzXeJ0HiCtbtpis/NVdRa7LDJqqmCmCpoKcHBFTp44QgMgAxJEPPtCZ52DdusUXoClTRPqNGyL9wetsQKRcumTw9m7s36/1hRLZrp3OPEUFBaIwL09nfF5mpoiaMEHsa9xYXLKzE4UP1hFTp4446OsrrfPkt99qLRfZrp007YaVlchOSRFRrVoVB27z5hlcflMqzMsTEV27Sl+A+ob7gDj76686y97Yt0/ELFggTnz5pTi3YoVIiIjQ+dIsKigQp1xchADELSsrcW7FCmla7KpV4taDQDLB2lrcOXGizLJe3b5d7Pf3l96D0oaDr7+ud/nslBQR3bChEIA47+Agrm7fXvED9sCZZcuk7e338xNCCJGbni6yHoxLkstFUUFBpddflpPffivOOTqKvU2biuTY2EqtY1+jRtoX4AEDDFru6Mcfay13rFYtvcfx5oEDIqplS5H3YD4FIK5bW4vj7u6qY1fN3DxwQPU+P9ifIkDsDQgQSadOlbvs8UWLtI5ZPiAiunQRh728dM7dqLFjdZaP6NhRK8DN1jimSadOici2bfV+Do67u4vM27eNfiyURUXipKur3m3ua9LEoMApZuFCaZlYBwehLCoSyqIiEdGpk9a59bDBdmFenojo27fMH+imlHLpkjjx5ZcicuRIvdeXymLQZMFMETTdj48Xp52dtTIaeydOlKZf2bpVuojfkctFbnq6EEKIyA4dpGX2NmsmIgYMENENGojoBg1EYkxMqduLHDNG64MdZ2enNf3Y55+LvAdZipK/ziK6dy/zAq0eTi9dqr3cgAHStANz5gghhDj8zjsPlS0zNmVRkVYgp/6FGr9nj4jo318KUgUg7spk4npUlLRsRGio/i/Nxo21vuiiZ83Smp4NiP0zZojo//1PKEose8HeXtxPSNBb1v0zZojcEvPfk8lExOOPi1Pffy8OvfWWNP6qjY3IVyi0lr934YLWOacO2KNnzqzUsdPc/6hx46TxmhdCU3xJx+/ZI9JkMmkbSXK5iHnvvQqt4/axY1Iwox5yABG/e3eZyxXk5OjNeOQ+eN8juncXkaNGiajWrXXWrznclstF6uXLldr/tKtXxb4mTUTEY4+J9Bs3tKad/vFHcdLVVRz09RVpV69Wav0lZSUliYgePaRApeSQAYiIp54qdfmCnBytLLe+QfNHwGVbW61gWzOjkwuIS+vWaX0PxtSpIy2fBYjo2bPF/RKfZ2Nn+WLee0/rvbyrcT4KQFVLUAZlUZHWZ/Hg3LnSNEVysrhubS1NM+TzeXzxYnHKxUUkyeUiatw4aX8LcnK0At1kmUxc27nzofZdn5y0NBERGioi27YVewMCxH4/P3HUw0PcLpH9e5gfaSUxaLIgWVlZWkNSUpLRgyYhVL/6NbNJAhD7/f3FSVdXrWoXzV/ACRERpWZEYurUKXVb6qyW5qD5C1GdCRGAiBw1Shqfefu21hdQPlQZCnV2RHMomYlJvXxZRHboIKLGjpU+xFlJSSLnwfy3rKwq/GWWefu2iBo/XhyYM8coWQzNwC4fEBGhoVrrvXfhgjjh5qb1hZ56+bKqWqCMi0D0rFlCCFXmJUHjC9CQi8YJNzeRk5YmlUFZVCQiQkJ0g6WQEK1f0cqiIq2yar6P8bt3i2s2NqVuP6p583K/TE99/7046uEholq3FmeWLdMKji5v3izNpxmgX7WxEYfefFN6n1MuXRLRM2eKvZMmlVsdduHPP8WR2rVFRFCQVHWpSE4WF+zt9e5DZJs2BlfHaP4Q0PxiV/+yLyooEKe++07sf/FFrXVGjholzRtnZ6d1cSttSIcq4xFnZ6cVhEc3aKD13u2dPFlEN2wozoWHl1n2/f7+0jrira3FmWXLhLKoSEQ+/bTI11j/YS+vh/qMKIuKRPSsWTpV1vdkMhHZtq3W94IAxIFXX9W7nsgRI6R5zjk6iojgYK2AMkUmE8c++0zr3FVn3jNu3RLxGsc4YtAgIYQQSadO6fzgEIDqcyJUVYiagfX+6dO1ylSYlydOfvut3urykmLee09EPfOMVG1YVFCgVY124JVXRG56uojo3Vsat69xY531pF29Kq3j2OefS/NesrPTeZ80f1zekctL/SF18a+/RIynp+73T4MGIvXyZdU5VmJavLW1uHv2rN71nfjyS3FXJhM3rKxEZJs2Iua997S+i0pTWqav5KD+8WwMDJosiPqN0DcYM2gS4kHq9LHHSj3J7gM6v0hLBlqag75f9pqBitYH68EvmFuHDmmNv25tLQpycoQQ2l94+/38pA9QTlqaiHjqKZHy4IupADC4mkTzQ37xr78MWiZfoRBRY8dqtVuIdXDQaUdVEfumTtXa75JfrGqply+LK7a20nzJJX5VRjVvLiI6d1Z9UWpcCJJOnRKRw4dL4467u4uo5s113oe9TZuKi3//rbXeI7Vri6gJE0TMwoUiqmVLne2V1v7pXHi4NN9dmUyc+u47EdWqlcjQWP62XC5Off+9Vnk1j2nE4MHi3oULWuu9sX+/SC2x35rb0Qx+75w4oTPvSVdXcdLVVSs4POTjU2q6/n5CgripEZhft7YWJ778UitguGpjo/Nj4JKdnYjbsKHM9z07JUXce1C+fEBc27lTamsnAHGgXj2tbV+ysxNXtm4VqZcvS+e7AMSZn38WiuRkEdGli04GUOBBBqZbN63Pb+KRI1rHJnrWLFGQk6OV7cwExKnvv9db9lPffaeznfwHx1ffexPRp4+07L0LF0REz54i4sknpcx1aa5s3aoVxAio2thEPP64lMFKjo1VZYsfTD/h5qaznnsXLmgFL2d+/lkIIcTlzZvFgXr1xEFfXyl7e3DuXGm+GE9PIYTQOkdPOztrnS8lf7hctrXVCsQ1s0FJGoFHXmamOOrhIQRUQVxZgeW+KVN0zoPo//1P6/OiXj47JUXa15wS39ua36OJJTJT6h9YJR3y8Sn+jggI0Ape0q5eFVEtW5bZpCAL2u+dZvB51slJp+2YIjlZ63OguZ5DPj4iavx41bWihAtr1pTaXOCeTCaOu7uLyHbtRNSECeLmgQOlHuuKYtBkQaoyaFKLfPpprQ/AZVtbEfH443ovACmXLomIoCAR0a2biJ41S0T07Fn8AdT49ap2aN48rfVKH8RmzYQQqkatJU/26JkzRWFentYHTd14U9P9hASxd/LkUr/k9e6rxheI+pdhyqVL4lx4uN6L6OH588vMkhzy8RGRo0aJw/Pniwtr1oj43bvF5c2bxcW//hKxK1eK00uXihNffSWOfvyxiP7f/0TkqFEioksXrV/l6l+wpUmIiNBJwRcCImrCBK35NH/ZxXh6ShdnAYjYVatUGYFRo0Q+VIFmxNChUsBx9tdfpYbVpQ0RAwaUm51Tt1nSN1yys9P64to7ebLeX+y35XIpoM3LzBRnnJxKXeeBevV0ynDhzz9LvZBrDlGtWundn70BAWUulwmIuI0bVdWr48Zp7YPiwftS2nHaO3GiNO9+f38hhBAxCxaUub0MqLJQJZdTy7h1S1z8+29x9OOPxb4pU8TesDCdwFN6fzSqa9NkMnGkdm2d7aWjOMBQK8zL08pw6Mv2Cqh+3KgvYkWAiFm4UOybMkX7XHRwKDWzePPAAZ1zPaZOHb3zK4uKtL5T4jZu1JquGfCXd2NAYV6eVuYuIjhY63gkRERozZ8cG6v1eTm+eLHOOjXbXEa2by+URUU6Pxb0LSeEEOdXr9apkswAtDJvRz78UGsZdWN3AYjIYcOEEKrqZH0/WgVUgX9pPxxu7N+vFfjclstFxJNPin1Tpui8PzesrMS+adPEgTlzdDKAOQ/OgVuHDmmV/bCXl/TjWAih1SC/rCHG01MKnEtmtyO6dBGX1q0TCRER4t6FCya9+YFBkwWpquq5ks4sWyb2Tp6s8+VQnuyUFOlDVAjofLlp/ho88Mor0gc4wdpaCCHEOUdHnQ/GBXt7VWPiB6+PengYazdV+/dgvVdsbcVhLy8pgIl1cJDaRmXcuqUK7EqU7WDduloXj4cdItu2NejDfWbZMuninAPtdghq9y5c0PlC03eRvXv2rN5G30c//lhv4JSH0jNh+o5vyfY0mVAFKPqqI24fOyYinnxS5zy4D9UdkZrtRxKsrcXeiRO1vihLa3SuLCoSB+fO1Qp4L9vaiqgWLbQD1n79tJbTrJpIh/4sSsmqoCtbtuhU2x2rVUtETZigVQ2tLCrSal+j2ShfM+DNf3BR0dcWJwsos/2gIfQFtnkPzn/N469ZvqixY6Vp5x0cVFVC3btLP7buo/iu2IiBA6V5S8tGZABi37RpWuXKSkrS+mzFW1urAsoyRD79dPFnSeMGk3MrVkjbTgfKvclBCKFqG6WnrKWd+/umTlUFE8HBeqff2L9f+swWAnqzq/qq0lIvX9aqVs/QU6YTbm463xuXN2/W+m5TFhVpZdbjra2l74cCoNxjGzV+fJnfXRmAiHjiCa0s1PWoKOmznAPtwO7i339rBVX7GjcWRQUF4npUlHRdyAfEufBwcXDuXFVD/xLVs+rv6ZRLl0T07NnSuGs2NuVmMI2JQZMFM1WXA8ak+SUZ1by5NF5ZVCT9usgGhCI5WRx3dy++sGjUrcc6OGhdODU/LBVtaFsezeoufcO+Ro20slwCquotdbupwrw8sXfyZHFHzwe6IsN+f/8K3dFxbsUKEdmhg9bFrCTNagYBVePVG/v2GbyN5NhYEbNggYgaP15E9OwpItu2LbdhaUmRTz8t8h5cXKPGjdNpMFyaazt3amWV8krsR+zKldK8tw4dEle2bi13nXmZmeJceLhWI+v9L76odYwieveWqsA039O9EyeKooICETlsmPSrP6JbN73byU5JEVGtW+u8x0VQddlx1slJK7A66eqqtbwiOVlEhIaKqAkTpCxRVlKS7l12GlVelZV6+bLWr/77UGU8Sn4+cx6co4ffeUeravDUd99J6zqzbJmI6N9f6yYFZVGRVpZFPRyoX1/ns3fYy0tcWLNGFBUUqLKGGhd4Qxqrp129KgUm96HqSiQ3PV0r4IwIDTXouNyPj9f50VDyB0dFabZb1Dwn1GXOArSqu4sKCrSqfc84Oaka35c4D0r7TGq1K2zfXvo/US6XtnM/Pt7gu/piV67U2yTjQL16pQbveZmZImbBAr3fO8cXLdKqTo5s107rXIl4/HGt+YsKCkTsypUiok8frR+EF+3ttbKd5QWAxsagyYJVh6DpfkKC9AsiDxCJR44IIVQpZumkftBQPKJfP2mcZmo9YtAg1S/4Eh/OknezGENE585a27hlZaX3riQB1a+pvWFherNBiuRkcXzRIrF38mQR0bu36s4Nf3+xt2lTEdWihYhs00ZEPPaYiOjcWUT06CEiQkPFvilTRMzCheW2fXkYmneslPwSsnRZSUl6bxzQbFhuDPruPtSsjoipU0frPb979qxBd+MdmDNHb9sMnYuOgY1SlUVFImrsWJEmk4mTrq5G6/vnxFdfifsPPl+a1VpZSUk67YkqE0TcT0iQApd4a2sp45B5+7bY27Spzno1fzClQ7eqrSya1al7w8JERNeu0utYBwedOznLotmoOMHautRG0IbKTU8XV0tU70c89ZRWgL03LEyaP6JvX2l8skwmteNRFhWJqGeeUTWd6NGj1O1Fz5z5UOdbaeI2bhR7AwLEcXf3h/4Re3DuXL3tkO7I5WX+wLqyZYvOHXGa15aqxKDJglWHoEkIofVFFdW6tchXKLS+ANT9n2h2mqk5XI+KEoV5eTpfMCXb7RhDVlKSiGzbVkS2aydOfvutKCooEAU5OSLy6ae10sennZ1F/J49Rt++qd2Pjxf7/fzEfn//CnVaaSnyFQpVGxT1F379+kZvn1CyTxrNIU0me6gORZVFReLcihUiont3rYxH4YMfFQfq1dNqz2EIU/Q5VVRQoHe9mbdvi4igIK3skvoHREWOS3ZKijj1/fd674CKnjVLb7sodTuoijj766/S8jesrKQLch4Mv9lD7eaBA+K2XC6SZTK9faNVxtFPPpGqCtXV8Zo3Taizjmd//VW6c7kQUPUvVUG56ek6N4vEeHpaXOemJW+EEdCtrtUnfvdurRsl8mDcrgQMxaDJglWXoOnu2bNaDRczAK0ARN0AOF+h0KmjP+PkJK0nasIErV9a2SkpVbofSadOiYgePUTU2LEVvrCR8SiLikTUhAkiom9fk/asfGHNGhExeLA4Uru2UEBVDVhaO6lHTW56uoiePVsc9fAQN62sVHduGVFOWpqIHD5cq9rF0Ko0TSV7t5bW1b9/pcpVmJdn0K3uFXHym2/EwblzpSBVWVSkld2++NdfWj8YS2snZQjNzjgN6f/LXDTv7jXkSQJqN/btk9oqlmyTWFUYNFmw6hI0CSFUVUF6frlfsLfXmq9k9UvE0KHStNz0dClVH/XMM1W8B/Qoy8vMNGmARvpl3r4t9k6aJA7MmVPpjIjmjy11dZ+l/+jRrCLWDBzPODlVqEqxpOtRUVKfXBEDBxqxxMa3b9o0EdWihdSkw1C56eni2s6dZsugVeS6LBNCiMo+t44qTqFQwNnZGQCQlZUFJycnM5eodHkZGYh5+WXIIyLQ9MYNeD94Uvbe8ePR6/ffpfkihw5Fb42H/t6OiYFvx47S69z795F58ybqPHgAKxFRWbLu3IHS1xeuAPIA3NiwAU2HDjV3scqUdPIkanfoAGuNcdkAkrZvR6OQkIda99Vt25B+/jw6vPrqQ62H9KvIdZlBUxWrTkGTJqFUIn7XLhTl5qLJkCGQyeXStItr1qD52LEAgFOurmifnm6uYhJRDXFo7lw4LF2KnGnT0OXzz81dHIPEeHuj09270uuoMWMQ/OefZiwRGYJBkwWrrkFTWYRSiX2tW8P/8mWkffkl2s+cae4iERFVuUNz56LL//0fAOBo7dp4/O5drR+YZJkYNFmwmhg0ERGR6gdkVJ8+sLp9G602b0bt5s3NXSQyQEWuy9alTiEiIiKDyeRy9I6KMncxyISYNyQiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAHsEr2KaT61RKBRmLAkRERFpXovLe7Icg6Yqlp2dLf3v7e1txpIQERGRpuzsbOk5dPqweo6IiIjIADJRXi6KjEqpVOLevXsAAEdHR8hkskqtR6FQSJmqpKSkMp/K/CjhcSkdj41+PC768bjox+OiX3U+LkIIqRbI09MTcnnp+SRWz1UxuVwOLy8vo67TycmpWp2gVYXHpXQ8NvrxuOjH46Ifj4t+1fG4lFUlp4nVc0REREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYNBEREREZAAGTUREREQGYOeWRERERAZgpomIiIjIAAyaiIiIiAzAoImIiIjIAAyaiIiIiAzAoMnCHDlyBKGhoXB3d4eTkxO6dOmCtWvXVmgdeXl5eP/99xEQEAB7e3vUrVsXL7zwAu7evWuiUpvOrVu38NVXX2HgwIFo2LAhbG1t4ePjgxEjRuDw4cMGrycyMhIymazUITw83HQ7YUL+/v6l7lPv3r0rtK7ff/8dnTp1gpOTE2rVqoUnn3wSx48fN03BTSg8PLzM91omk6Ffv37lrqe6njOrVq3CtGnTEBQUBDs7u3LLmpGRgVdffRV+fn6ws7ODv78/Xn/9dWRlZVV42zt27EBwcDBcXFzg6uqKPn36YM+ePQ+xN8Zj6HEpKCjAP//8g0mTJqFly5ZwdnaGi4sLOnfujB9++AFFRUUV2q4xP6OmUpFzZuHChWV+LuLj4yu07UuXLmH06NHw9PSEg4MD2rdvjx9++AGWeo+atbkLQMUiIiIQEhICe3t7jB07Fi4uLvjnn38wZswY3LhxA6+99lq561AqlRg6dCh27NiBLl26YMSIEYiLi8OyZcuwZ88eHDp0CHXq1KmCvTGOb7/9Fp999hmaNGmCgQMHok6dOoiLi8OGDRuwYcMGrF69GmPGjDF4fcHBwXq/qAIDA41X6Crm5uaG//3vfzrj/f39DV7HRx99hPnz58PPzw/Tp09HZmYm/vzzT3Tr1g179uxB9+7djVdgEwsMDMSCBQv0Tvv7779x7tw5hISEGLy+6nbOzJ8/HwkJCfD09ISvry8SEhJKnVehUCA4OBgnT57EwIEDMW7cOJw4cQKLFi1CVFQU9u7dC3t7e4O2u2rVKkyYMAF16tRBWFgYAGDNmjUYMGAA1q5di5EjRxpj9yrN0ONy5coVjBw5Es7OzujXrx+eeuoppKenY/PmzZgxYwa2bt2KTZs2QSaTGbxtY3xGTaki54zapEmT9Jbf3d3d4O3GxsaiW7duyMnJwejRo1G3bl1s2bIFM2bMQGxsLL799tsK7EUVEWQRCgoKRJMmTYSdnZ04ceKENP7+/fuiWbNmwtbWVsTHx5e7nl9//VUAEOPGjRNKpVIa/8MPPwgA4oUXXjBF8U3mn3/+EZGRkTrj9+7dK2xsbEStWrVEbm5uueuJiIgQAMSCBQtMUErz8fPzE35+fg+1jkuXLglra2vRrFkzcf/+fWn8iRMnhJ2dnWjZsqUoKip6yJKaX15enqhdu7awtrYWd+7cKXf+6nrO7Nq1S/qu+OSTTwQAsXz5cr3zvvvuuwKAeOONN7TGv/HGGwKA+Pjjjw3aZmpqqnB3dxeenp7ixo0b0vgbN24IT09P4enpKTIyMiq3Q0Zi6HG5efOm+O6770RWVpbW+KysLBEUFCQAiLVr1xq8XWN8Rk2tIufMggULBAARERHx0Nvt1auXACC2bt0qjcvLyxM9e/YUAMSBAwceehvGxuo5C/Hff//hypUrGD9+vNYvWDc3N8ybNw/5+flYsWJFuev5+eefAQCffPKJ1i+hadOmoXHjxvj999+Rk5Nj9PKbytNPP43g4GCd8T179kSfPn2QlpaGM2fOmKFkNcfy5ctRWFiIt99+G25ubtL4wMBAjBs3DufPn8f+/fvNWELj2LBhA1JSUvDkk0/C29vb3MUxmf79+8PPz6/c+YQQWLZsGZydnfHOO+9oTXvnnXfg7OyMZcuWGbTNv/76C/fv38esWbNQv359aXz9+vUxc+ZM3Lt3D+vXr6/YjhiZocelXr16mDFjBpycnLTGOzk54dVXXwUAREVFmaSM5mLosTGmS5cuYe/evejTpw8GDx4sjbe1tcUHH3wAoPh6ZklYPWchIiMjAQADBw7UmaauSijvg5qbm4vDhw+jefPmOh8AmUyGAQMGYOnSpTh69Ch69uxpnIKbkY2NDQDA2trw0zguLg5fffUVcnJyUL9+ffTt2xf16tUzVRGrRF5eHsLDw5GYmAhXV1d07NgRnTt3Nnj58s698PBwREVFoVevXsYqslmoA4CpU6dWaLmaeM4Aqv1KTExESEiI3gChe/fu2LFjB27cuIEGDRqUua7yzqGFCxciKioKEydONFr5zaEy3znAw39GLdHevXtx+PBhyOVyBAQEoH///nB2djZ4+bLOmR49esDJyckig1MGTRYiLi4OABAQEKAzzcfHB87OztI8pbly5QqUSqXedWiuOy4urtoHTdevX8fu3bvh6+uLtm3bGrzc6tWrsXr1aum1tbU1Zs2ahf/7v/+DlZWVKYpqcnfu3MHkyZO1xnXs2BF//PEHmjRpUu7ycXFxcHZ2ho+Pj840zXOmOktISMCePXtQv359DBo0qELL1sRzBij7O0c9fseOHYiLiys3aCprXTXlHAKAX3/9FYD+C31ZHvYzaolKtht0d3fH119/bXBgXNY5Y2VlhUaNGiE2NhaFhYUVDlJNidVzFiI9PR0AtKpHNLm6ukrzPMw6NOerrgoKCjBhwgTk5eXhs88+M+jCVadOHXz66ac4e/YssrKykJSUhA0bNqBp06b48ssvMXfu3CooufFNnjwZe/bsQVJSEhQKBU6cOIEJEybgyJEj6NevHzIzM8tdR3p6eo0/Z5YvXw6lUomwsDCDA52aes6oGfP7oqx11ZRz6KeffsK2bdvQt29fhIaGGrycMT6jlqR9+/b49ddfcfXqVeTk5ODatWv49ttvIZPJEBYWhk2bNhm0HkPOP6VSaXHHx3LCNyIDqC98e/fuxfPPP48JEyYYtFzr1q3RunVr6bWTkxOGDh2Kzp07o127dvjmm2/wxhtvwMvLy1RFN4mSv/YCAwPx22+/AQBWrlyJn3/+WWqH8ahSKpVYvnw5ZDIZnnvuOYOXq6nnDFXcv//+i5kzZ8LPzw+rVq2q0LI17TM6fPhwrdf+/v6YOXMmWrZsiQEDBmD+/Pl46qmnzFQ602OmyUKoo+3Sfo1lZGSUGpFXZB2a81U3SqUSzz33HFavXo1nn30WP/7440Ov08fHB0OHDkVhYWGF+n2ydNOmTQMAREdHlzuvm5tbjT1nAGD37t24fv06+vbti0aNGj30+mrKOWPM74uy1lXdz6GtW7di5MiR8Pb2xn///QdfX1+jrLcin9HqoF+/fmjSpAnOnDkjvedlMeT8k8lkcHFxMWo5HxaDJgtRVr3/nTt3kJWVVWrbA7XGjRtDLpeX2nagvDYMlkypVGLy5MlYsWIFxo0bh/DwcMjlxjl9PT09Aaj6rKkpKrJPAQEByMrKwp07d3SmVedzRq2yDcDLUhPOmfLaGlXkvS9rXdX5HNqyZQuefvppeHp6IiIiAo0bNzbaumvCOVSSep+ys7PLnbesc6aoqAjXrl1Do0aNLKo9E8CgyWKob6vfuXOnzrQdO3ZozVMaBwcHdOrUCRcvXtTpnEwIgV27dsHJyQlBQUFGKnXVUAdMv/32G8aMGYOVK1catQGuOltgKR3NGUNF9skY556lSklJwcaNG+Hh4aFTrfAwasI5ExAQgLp16yI6Olrnwq1QKBAdHY1GjRqV2wgcqJnn0JYtWzBixAh4eHggIiICTZs2Ner6a8I5pEmhUODcuXNwcnKSgqeylHXO7N+/X+p41eKYu6MoUikoKBCNGzcus3PLa9euSeMTExPF+fPntTojFKLmdW5ZVFQkJk2aJACIUaNGiYKCgjLnT05OFufPnxfJycla448ePap3/q+++koAEAEBAaKwsNBo5a4K58+fFwqFQu94Hx8fAUBERUVJ4+/fvy/Onz8vEhMTtea/ePFije3c8ssvvxQAxOzZs0udpyafM8bu3FKhUIjz58+LhIQErfGpqanCzc3Noju31FTecdm6dauws7MTPj4+4sKFC+WuLz8/X5w/f15cvnxZa3xFP6OWoKxjk5GRIS5evKgzPjs7W4wbN04AEJMnT9aZfv78eXH+/Hmd8eV1bhkdHf1wO2MCMiEs9AEvj6DSHqOSkJCARYsWaT1GJSwsDCtWrMDy5culRxYAqqxMaGio9BiV4OBgXL58GevWrYO/vz8OHz5crR6jsnDhQrz33ntwdnbGyy+/rDdVO2zYMKlDUPX8CxYswMKFC6V5/P39YWNjg6CgINSvXx8KhQKHDh3CiRMn4O7ujh07dqBTp05VtFfGsXDhQnzxxRfo1asX/Pz84OTkhEuXLmHr1q0oKCjAW2+9hY8//liaPzw8HJMnT8akSZN0niul+RiVESNGSI9Ryc/Pr3aPUdHUtm1bnD17FqdPny61a4qads4sW7ZM6oz0zJkzOH78OLp37y5lSnr06CFVVSoUCnTv3h2nTp3CwIED8dhjj+H48ePYuXMnOnbsiKioKDg4OEjrjoyMRJ8+fRAcHCz1s6Om+RgV9aON1qxZg3v37mHNmjUYNWpUFex96Qw9LhcuXEBgYCDy8vIwduxYNG/eXGdd/v7+Wt+78fHxaNSoEfz8/LSevVbRz6i5GHps4uPj0bhxY3Ts2BEtW7aEj48PkpKSsHv3bty8eRNt27ZFREQEateurbV+dUfLJcONc+fOoXv37sjJycGYMWPg6+uLLVu24Ny5c5g5cyYfo0LlO3z4sBg0aJBwdXUVDg4OolOnTuLPP//UmU+dfdH3ayA3N1csXLhQNGnSRNja2gofHx8xdepUgx4dYWnU+1nWoHkM1F38l3z0xaeffir69Okj6tatK+zs7ISDg4No0aKF+N///qf1y7g6iYyMFKNHjxYBAQHC1dVVWFtbCx8fHzF06FCxY8cOnfmXL18uAIhJkybpXd+qVatEUFCQcHBwEG5ubiI0NFQcO3bMxHthOocPHxYARKdOncqcr6adM+V9Zkq+//fv3xf/+9//RIMGDYSNjY1o2LCheO211/RmhtSPlgkODta77W3btomePXsKJycn4ezsLIKDg8WuXbtMsJcVZ+hxUe9jWUPJ/b927ZoAoPO4lIp+Rs3F0GOTnp4uXnrpJdGxY0dRp04dYW1tLVxcXESnTp3E559/LrKzs/WuX70efS5cuCBGjhwpPDw8hJ2dnWjbtq347rvvtGpKLAkzTUREREQGYENwIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCIiIiIyAIMmIiIiIgMwaCJ6RPn7+0Mmk5U5fPXVV+YuJhnJiRMnYGVlhVmzZmmNj4yMlN7vssTHx0vzaT5fraLS09NRu3ZtdO7cWedZZESWTvfpp0T0SNF8MGdJrVq1quLSkKnMmjULDg4OeOedd8xaDjc3N7z11lt4/fXX8dtvv2HSpElmLQ9RRTBoInrETZ06VeuJ7VTz/P3334iOjsbrr78OLy8vcxcHM2fOxOeff4633noLY8eOhZ2dnbmLRGQQVs8REdVwX375JQBgypQpZi6Jir29PcaPH4/bt29jzZo15i4OkcEYNBFRudTtn+Lj47Fx40b07dsXHh4ekMlkiIyMlOZLS0vDggULEBgYCBcXFzg6OqJt27b48MMPkZ2drXfdhYWF+Oqrr9C2bVvY29ujTp06GDFiBM6cOYPw8HDIZDKdTNjChQshk8mwcOFCvetUt9Pp3bu33umJiYl49dVX0bJlSzg6OsLFxQUdO3bEkiVLUFhYqDN/WFgYZDIZwsPDce3aNUyYMAE+Pj6ws7NDkyZNMH/+fOTl5ZV6/I4dO4ZJkyahUaNGsLe3h4eHB9q3b4/XX38dCQkJAIDly5dDJpMhJCSk1PUkJibCxsYGDg4OSElJKXU+TSdOnMCBAwfQpUsXNG/e3KBlKkL9XpQ3lKR+T7/77jujl4nIVFg9R0QGW7x4MZYsWYKgoCAMGjQIiYmJsLKyAgDExsZi0KBBuHHjBnx9fdGjRw/Y2NggJiYG77zzDv755x9ERkbCzc1NWp9SqcSoUaOwYcMG2Nraonfv3qhVqxYOHz6MTp064bnnnjP6PuzduxfDhg1DWloa/P39MWDAAOTl5SEmJgazZs3C5s2b8e+//8LGxkZn2ZMnT+Lll19GrVq1EBwcjNTUVERHR+Ojjz7CuXPnsH79ep1l/u///g9vvvkmlEolmjVrhqFDhyInJweXL1/GokWL0Lp1a4SFhWH8+PF44403sGvXLly6dAnNmjXTWdfSpUtRWFiICRMmoHbt2gbt74YNGwAA/fv3r9iBMlBgYGCp7ZIuXryIQ4cOQS7X/X0eGBiIOnXqICYmBrdv34avr69JykdkVIKIHkl+fn4CgFi+fLnB81pZWYmNGzfqTM/OzhZNmjQRAMT8+fNFXl6eNE2hUIhx48YJAGLy5Mlayy1ZskQAEN7e3iI2NlYaX1BQIF588UUBQAAQkyZN0lpuwYIFAoBYsGCB3vJGREQIACI4OFhr/O3bt0Xt2rWFTCYT33//vSgqKpKm3bt3T/Tt21cAEO+9957WcpMmTZLK8vbbb4vCwkJp2pkzZ4STk5MAIA4cOKC13MaNGwUAYW9vL9asWaNTznPnzmnt99tvvy0AiNmzZ+vMm5+fL3x8fAQAcezYMb37rU+PHj0EALFlyxa909XHqrzLwbVr16T5rl27Vu52ExIShK+vrwAglixZoneep556SgAQK1euLHd9RJaAQRPRI0odCJU2aAYc6nmfe+45vev64YcfBADx5JNP6p2emZkpvLy8hLW1tUhNTZXGN23aVAAQP/zwg84yOTk5UpBgrKDpjTfeEADEzJkz9S538+ZNYWNjI+rUqSOUSqU0Xh00Pf7441rj1aZPny4AiPfff19rfGBgoAAgFi9erHd7Jd26dUvY2NgINzc3kZWVpTXtjz/+EABE165dDVqXmjqgu3r1qt7pmkGToUN5QVNaWppo1aqVACBef/31Uud76623BADxyiuvVGifiMyF1XNEj7jSuhxo0aKFzriRI0fqXceWLVsAAGPGjNE73dnZGUFBQdi6dSuOHDmCgQMH4tatW7h8+TIA4Nlnn9VZxt7eHqNHj8Y333xj8L6Up7xy1qtXDwEBAYiNjUVcXJxOFdmTTz6pt31Oy5YtAQC3bt2Sxt25cwcnT56EXC43uAF23bp1MXLkSPzxxx9YuXIlpk+fLk1Tt/2ZOXOmQesCAIVCAYVCAQAGVeeVdft/VlYW/vnnn3LXkZ+fj2HDhiE2NhZjx47FZ599Vuq86jIlJSWVu14iS8CgiegRV5EuB/z9/fWOv3r1KgBgwoQJmDBhQpnrSE5OBgDcvHkTAODp6QlnZ2e98zZq1MigchlKXc6ePXuWO29ycrJO0NSwYUO987q6ugIAcnNzpXHXr18HAPj6+mq14yrP7Nmz8ccff+C7776TgqbTp09j//798Pb2LjVw1Sc9PV3638XFpdz5w8PDS50WHx9fbtAkhEBYWBiioqIQHBwsNeQvjfq4paWllVs2IkvAoImIDObg4KB3vFKpBAAMGjQI3t7eZa7Dz8/P6OUqrTyljR85ciScnJzKXIe+zIy+Bs3G1qVLF3Tq1AkxMTFS8KHOMr3wwguwtbU1eF3u7u7S/5mZmVKQYipvvvkm/vjjD7Rq1QobNmwot/8ldVBXq1Ytk5aLyFgYNBHRQ2vQoAEuXLiAKVOmGJwJqVevHgDg3r17yMrK0pttKu1xHerAITMzU+909W38+soZFxeHN954A0FBQQaVs7LUWanbt28jPT29wtmmZ599FkuWLEH79u3x+++/w9raWqu6zhCOjo5wcnKCQqFASkqKSYOm77//Hp9//jnq1q2Lbdu2aQVspVF3m1BeoE1kKdhPExE9tMGDBwMA1q5da/Ay9evXR+PGjQEAq1ev1pmel5eHv/76S++y6oDr/Pnzeqer2y4Zo5yV5ePjg/bt20OpVOLXX3+t0LKjR4+Gr68vNmzYgI8++ggKhQLDhw9H3bp1K1yOxx57DICqSwhT2bRpE2bPng0XFxds2bKl1GrMks6ePQsAePzxx01WNiJjYtBERA/thRdegJ+fH/766y+88cYbejNAd+7cwc8//6w17n//+x8AVQeJFy5ckMYXFRVhzpw5SExM1Lu9vn37Qi6XY8eOHYiKipLGCyHwzTfflNr25vXXX4e7uzu++OILLF68GPn5+TrzXLt2DatWrSp3nw2xYMECAMDbb7+tt0yxsbF6Az8bGxu8+OKLKCwsxKJFiwBUrAG4pj59+gAADh48WKnlyxMTE4Nx48ZBLpfj77//RmBgoMHLqsvUt29fk5SNyNgYNBHRQ3NycsKWLVvg7++Pzz//HA0bNkRwcDCeeeYZDB8+HK1bt0bdunV1Hhb70ksvYciQIbh9+zbat2+PQYMGYdy4cQgICMCyZcvw4osv6t1egwYNMGvWLCiVSvTr1w99+vTBiBEjEBAQgDlz5uDNN9/Uu1z9+vWxceNG1KpVC3PmzEGDBg3Qr18/PPvssxgyZAiaNm2Kxo0bY8mSJUY5LsOHD8dHH32E3NxcjBw5Ei1btsTYsWMxdOhQtG7dGq1bt8bhw4f1Ljtt2jSpTVC7du3Qq1evSpVh2LBhAIBdu3ZVavnyvPXWW8jOzkb9+vWxevVqhIWF6R1KOnHiBFJSUtCpUyd2bEnVBts0EZFRtG7dGqdPn8aPP/6I9evX4/Tp0zh48CA8PT1Rv359zJkzB8OHD9daRi6XY926dfjmm2/wyy+/IDIyEs7OzujRowfWr1+PEydO4IcfftC7vS+//BINGzbEsmXLcODAATg7O6N79+5Yu3YtMjIy8Omnn+pdrlevXjh37hyWLFmCLVu24MiRI8jLy4OXlxcaNmyIZ599FiNGjDDacZk3bx769u2Lb775Bnv37sW6devg4uKCBg0aYO7cuaVmWby8vBAYGIjDhw/jpZdeqvT2O3TogG7duuHAgQM4f/681D2CsRQVFQFQZeiuXbtW6nwl78xTv36YfSOqajIhhDB3IYiI9AkPD8fkyZMxadKkMm+Hr4kuXbqEFi1awM3NDbdu3YKjo2Ol1/X3339j1KhRePXVV7F48WIjlrJycnNz0aBBA9jY2ODatWvl3mVHZClYPUdEZIHeffddCCHw4osvPlTABKi6WOjevTuWLl1qER1Jfvvtt7h37x4++eQTBkxUrTBoIiKyEJs2bcKUKVPQpUsXrFmzBj4+Ppg7d65R1v3tt98iJycHH3zwgVHWV1np6en49NNP0alTJ0ycONGsZSGqKLZpIiKyEMePH8evv/4KFxcX9O/fH1988YVB/R0ZokOHDlL7I3Nyc3OT+mciqm7YpomIiIjIAKyeIyIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoIiIiIjIAgyYiIiIiAzBoomrJ398fMpmszOGrr74ydzErRb1v8fHx5i5KhUVGRkImk6F3797mLgrVAL1794ZMJkNkZKS5i0IEALA2dwGIHkb37t3RtGlTvdNatWpVxaUpX1hYGFasWIHly5cjLCzM3MUhIqIKYNBE1drUqVNrXPCxZ88eFBQUoF69euYuChERaWDQRGRhmjRpYu4iEBGRHmzTRDWeZhuhjRs3om/fvvDw8NBqK5GcnIxvvvkGoaGhaNSoERwcHODq6oqgoCB89tlnyM3NLXX92dnZ+Oqrr9CjRw/UqlULdnZ28PPzw5AhQ7B69WoAQHx8PGQyGVasWAEAmDx5slb7q4ULF+otr75tffrpp3jsscfg4uICR0dHtG7dGvPnz0daWprO/Ort+vv7QwiBn376CY8//jicnJzg5uaGgQMH4uDBg3r3KyYmBnPnzkWnTp3g4+MDW1tbeHt7Y8iQIdi9e7eBR98w6uMAAMuXL0fXrl3h5uYmHQfN/VAqlfjmm2/Qrl07ODo6wtfXF9OnT0dqaioAIC8vDx988AFatGgBBwcH1K1bFy+//DIUCoXOdpVKJX766Sd0794d7u7usLGxgZeXF9q3b49Zs2ZVuF1Zeno65s+fj7Zt28LJyQl2dnaoW7cuunfvjnfffRcFBQU6yxw8eBCDBw+Gu7s7nJ2dERQUhF9//VXnuKhpHovSlHYOxcbGYsGCBejevTvq1asHW1tb1K5dG/3798fatWv1rkuznVp2djbeffddtGzZEo6OjjplOHbsGJ555hk0bNgQdnZ28PDwQEhICLZu3VpqWW/cuIHnnnsOvr6+sLe3R0BAAN5++23k5OSUukxZwsLCIJPJEB4ejmvXrmHChAnw8fGBnZ0dmjRpgvnz5yMvL6/U5f/880/069cPHh4e0mf5ueeew6VLl/TOb8j3i+b7uGrVKnTq1AnOzs6oU6cOxo0bh+vXrwMAhBBYsmQJAgMD4eTkBE9PT4SFheHu3buVOhZkAoKoGvLz8xMAxPLlyw2ed+bMmQKACAoKEuPGjRPBwcFi7969QgghVq5cKQCIevXqieDgYDF27FjRr18/4ezsLACIrl27itzcXJ11X79+XbRq1UoAEI6OjmLAgAFi7NixomfPnsLNzU34+fkJIYRITk4WkyZNEk2aNBEARPfu3cWkSZOkYf369TrlvXbtmta2UlJSRGBgoAAgXF1dxVNPPSVGjBghPD09BQDRqFEjnWWuXbsmAAg/Pz8xadIkYWNjI/r27StGjx4tmjVrJgAIOzs7cejQIZ1969evn5DL5aJt27YiNDRUjBo1Sjz22GMCgAAgvvrqK51lIiIiBAARHBxc7vuiSb3OmTNnCrlcLnr06CHGjRsnOnfuLOLj47X2Y9y4ccLBwUEMGjRIDBs2THh5eQkAokOHDiIrK0v06NFDOj5PPvmkcHNzEwDE4MGDdbY7efJkAUDY29uL/v37i3HjxomQkBAREBAgAGi9L+VRKBSiTZs2AoCoU6eOGDJkiBg7dqzo3bu38PHxEQBEWlqa1jJr164VVlZWAoBo06aNGDdunOjRo4eQyWTi1VdflY6LJs1jUZrSzqEpU6YIAKJFixYiJCREjBkzRnTt2lXI5XIBQLzyyis661K/p507dxYdO3YUTk5OYvDgwWLMmDGif//+0nxfffWVtJ7AwEAxcuRI0aNHD2FraysAiPfee09n3efPn5feP19fXzFq1CgRGhoqHBwcRNeuXUXXrl0FABEREVHu8VebNGmSACBefvll4erqKvz8/MTo0aNF//79hYODgwAghg0bprOcUqkUEydOFACEtbW16Nu3rxg7dqz0OXF0dBTbtm0r9ViX9f2ifh/ffPNNad0jR44UDRs2FABEgwYNRGpqqhg9erSwt7cXgwYNEsOHD5eOTbt27UReXp7Bx4BMh0ETVUuVCZqsrKzExo0b9c4TGxsrDh48qDM+NTVVDBw4UAAQn3/+uda0oqIiERQUJACIgQMHirt372pNz8nJEVu2bNEap/5CL6vcpV3wxowZI1287t27J43PzMwUgwcPFgBEt27dtJZRX2DVF9mLFy9K0woLC8Vzzz0nlb+krVu3isTERJ3xBw4cEK6ursLGxkbcvHlTa9rDBk2urq563wfN/WjSpImIj4+Xpt27d08Kctq2bSs6deqkdXyuXr0qatWqJQCI/fv3S+MTEhIEAFG/fn1x+/ZtnW3GxsaKhIQEg/dhxYoVUnCWn5+vNa2oqEhERkZqXfhu374tXFxcBADxxRdfaM2/e/duYW9vb/SgKTIyUly5ckVn/gsXLoj69esLAOLw4cNa09Tvqfrire9Ybd++XchkMuHp6SmioqK0pp0+fVpad2RkpNa0jh07CgBi9OjRIicnRxqfkJAg/cCobNAEQLz99tuisLBQmnbmzBnh5OQkAIgDBw5oLffDDz8IAMLT01OcOHFCGq9UKsWCBQsEAOHu7q7zOTfk+0Vdntq1a4uTJ09K47Ozs0WPHj2kc7fkuZ2cnCyaNm0qAIhVq1YZfAzIdBg0UbWk/qIqbdC8aKvnfe655yq1rYsXLwoAomPHjlrjN2zYIP1CzszMNGhdlQ2aEhIShFwuFzKZTJw6dUpnmZs3b0oX2ejoaGm8ZrCxadMmneVu374tZZtKXujL8tZbbwkA4rvvvtMa/7BB0/vvv693uuZ+lAxEhRDiiy++EACETCYTZ86c0Zk+a9YsnWxHTEyMACCeeuqpCpW1NJ9//rneAKg0H374oQAgunTponf6yy+/bPSgqSxLly4VAMTrr7+uNV4zaFJnTkrq3LmzACD+/vtvvdPXrl0rAIgRI0ZI4/bv3y8ACCcnJ60gV239+vUPFTQ9/vjjQqlU6kyfPn263nNNHaR98803OssolUrRrl07AUB89NFHWtMM+X5R70fJz4sQQqxbt67Mc3vx4sUCgJg8eXKp66eqw4bgVK2V1uVAixYtdMaNHDmyzHUVFRUhMjISBw4cwO3bt5GTkwOh+mEBALh48aLW/Nu3bwcAjB8/Hs7OzpXdBYPs3bsXSqUSjz32GNq1a6czvV69eggJCcHGjRsRERGBbt26aU23trbGoEGDdJbz8fFBrVq1kJaWhpSUFPj4+GhNT0lJwZYtW3D27FmkpaVJbXLi4uIA6B6Th1Xee2RtbY2BAwfqjA8ICAAANGzYEG3atCl1emJiojSuRYsWcHFxwdatW/HRRx9h/PjxaNSoUaXL3rFjRwDA559/jtq1a+PJJ5+Eh4dHqfOr27s888wzeqdPmjQJX3/9daXLU5qsrCxs27YNJ06cwL1795Cfnw8AuH37NoDS31MvLy/07NlTZ/y9e/cQExMDBwcHDBkyRO+y6n67Dhw4II1T7/+gQYNQu3ZtnWWGDh0KNzc3pKenG7xvmp588kmd9mAA0LJlSwDArVu3pHE3b97ElStXAKiOe0kymQyTJ0/GK6+8goiICMybN09nnvLOXQAIDQ3VGac+N8s7tzXPXTIfBk1UrVWky4GyGs7GxcVh+PDhOHfuXKnzZGRkaL1OSEgAoD9AMzb1F3xZF3X1XXeaFwM1X19f2NjY6F3O1dUVaWlpOo3df/75Z7zyyit6G1CrlTwmD6us9whQ7Ye1te7Xljpobdiwod7lXFxcAEBrH11cXLB8+XJMnjwZ8+fPx/z58+Hr64suXbpg0KBBOsHwp59+igsXLuise9GiRfD09ETv3r3xxhtv4P/+7/8wadIkyGQyBAQEoHv37hg6dCiGDBkCubz43pubN28CKP09fZgArjSbN2/G5MmTkZKSUuo8pb2npb03165dgxACOTk5sLOzK3P7ycnJ0v/l7b+6sfupU6fKXGdpSjsXXF1dAWifC+rPTO3ataXpJZX1+QLKP3dLK5P6HCvt3NZ37pL5MGiiR4aDg0Op00aOHIlz587hySefxNy5c9GqVSu4urrCxsYG+fn55V4MLJ3mxdoQx44dw7Rp02BlZYXPPvsMQ4YMQcOGDeHo6AiZTIaffvoJ06ZNk7JwxlLWewSUvx8V3c8RI0agf//+2LRpE/bt24fo6GisX78e69evx7vvvotdu3ahbdu2AFSZxaioKJ11LFy4EJ6engBUgdX06dOxefNm7N+/H9HR0Vi+fDmWL1+Ojh07IiIiAk5OThUqY2UolUqdcbdu3cKYMWOQk5ODuXPn4plnnoG/vz+cnZ0hl8uxc+dOhISElPqelvbeqLfl7OyMESNGGG8nHlJFz4WHVd65C5RdpqouL1UOgyZ65F24cAGnT5+Gl5cX1q9fr/NrT10VVZL6V6O+7IOxqTu6vHr1aqnzqKcZo1PMv/76C0IIzJo1C3PnztWZXtoxqY7c3NwwYcIETJgwAYDqFvhZs2Zh48aNmDlzphQoGfooD39/f8yaNQuzZs0CABw5cgTPPvssjhw5gs8//xzvvfceANX7dOHChVK7NShtvK2tLQAgMzNT7/SCggKpqk3T5s2bkZOTg+HDh+Ozzz7TmV7Z97RBgwYAVJmhX3/91eCLv/o8LatbB3U219TUZUlJSUFGRobebJMxP19UfTG0pUeeun+funXr6k2Pr1q1Su9y6jZCf/zxR5lVWJrUF7zCwsIKlbFXr16Qy+U4efKk3uqK27dvS22s+vTpU6F166M+Jn5+fjrTcnNz8c8//zz0NixVgwYNpMDm5MmTD72+jh07YsaMGTrrCw4OBgD8/vvvepf77bff9I6vU6cObG1tkZqaqrf/nh07dug9v8p6T4UQUp9iFVW3bl20a9cOmZmZ0jloCPX+b9++XSqbpk2bNuH+/fuVKlNF1a9fX6p+Cw8P15kuhJDGG+PzRdUXgyZ65DVr1gxWVlY4c+aMTjZh8+bN+PLLL/Uu99RTT6FDhw5ITEzEqFGjdNqJ5ObmYtu2bVrj6tevDwBltp3Sp2HDhhg1ahSEEJg2bZrWthQKBV544QXk5uaiW7duOo3AK0PdWHbFihVaGY3c3FzMmDED165de+htmNuJEyewZs0avZ0obt68GYD+AKM069evlxrsayooKJCCCc31TZkyBc7Ozjh48CC++eYbrWUiIyPx448/6t2OjY0NevXqBQCYP3++1vZOnTqFmTNn6l1O/Z7+/fffWpmooqIivPvuu1qNtCvqww8/BKDqtFV97DQJIXD48GHs3LlTGtezZ0889thjyMrKwksvvaTV4eSNGzcwZ86cSpenMtTb++CDD7R+mAgh8OGHH+LkyZNwd3fH888/X6XlKkuLFi3QokULxMTEmLsojw4z3bVH9FAq009TWbdfq2/vlsvlIjg4WIwbN07qyHH+/Pl6b/0WQoj4+HjRvHlzqfO7gQMHinHjxolevXppdW6pdurUKSGXy4VcLhf9+/cXkydPFlOmTNHq36W08t67d0+0b99eABBubm5i2LBhYuTIkaJOnToCKL9zy4ocn7S0NGl87dq1xbBhw8SIESOEl5eXcHFxkY7XpEmTtNb1sF0OlKa8/Shvu8uXL9cpr/qWdgcHB9G9e3cxduxYMXLkSOn9tLW11duZYWnUx8TT01MMGDBAPPPMM+Kpp56SOiisV6+euHHjhtYyf/zxh9S5Zdu2baVzRyaTiVdeeaXU43Lo0CGp08hmzZqJkSNHiq5duwobGxsxadIkve9pQUGBePzxxwUA4ezsLJ544gkxevRo4efnJ2xsbMQbb7yh9xga+p5+/fXXwtraWgAQTZs2FU888YQYP368GDBggHQM3njjDa1lzp07J52/devWFaNHjxZPPvmkcHR0FF26dHmozi1L+27Qdy4IoepWYMKECQJQdW7Zr18/MW7cOOl8cHBwEFu3btVZnyHfL2Wd3w9zbqvXW5HjQw+HmSYiAF9++SV++eUXdOjQAceOHcPWrVvh6OiIP//8Ex988EGpy/n5+eHo0aP47LPP0Lp1axw8eBDr1q1DQkICgoODddqOtGvXDv/88w+6du2Kw4cPIzw8HL/88guOHz9ebhlr166NAwcO4JNPPkGjRo2wc+dO/Pvvv/D09MS8efNw7Ngxg+7gMYS7uzuOHj2KGTNmwN3dHdu2bcPBgwcxcOBAHD9+HIGBgUbZjjl16dIFn376Kfr06YPExERs2rQJO3fuhJWVFV566SWcPn1abzcNpQkLC8Obb76JFi1aIDY2Fn/99RcOHjyIBg0a4OOPP8apU6ekTKPa2LFjERkZiZCQECQkJGDjxo3IzMzEjz/+iC+++KLUbXXu3BlRUVEYOHAg7ty5gy1btiA7Oxtff/01li9frncZa2trREZGYt68eahXrx727NmDyMhIdOjQAQcPHqzQvuoze/ZsnDhxAi+88AJkMhn27NmDDRs24MqVK+jQoQO++eYbzJ49W2uZVq1a4ejRowgLC0NRURE2bNiA2NhYzJo1C3v27JGqs6uCTCbDb7/9htWrV6NHjx44duwY/v77b2RnZyMsLAwnTpzA4MGDq6w8ZJlkQhj59hciIjIKdT9D/JomsgzMNBEREREZgEETERERkQEYNBEREREZgJ1bEhFZKLZlIrIszDQRERERGYCZpiqmVCpx7949AJCe40VERETmIYRAdnY2AMDT07PMRwExaKpi9+7dg7e3t7mLQURERCUkJSXBy8ur1OmsniMiIiIyADNNVczR0VH6PykpCU5OTmYsDRER0aNNoVBINUCa12h9GDRVMc02TE5OTgyaiIiILER57YxZPUdERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNRERERAZg0ERERERkAAZNZLkOHgQ++gi4e9fcJSEiIuJjVMhCKRRAaChw/z4QFweEh5u7RERE9Ihjpoks04kTqoAJAP77z6xFISIiAh7xoOnLL79E69at4ezsDHd3d/Tt2xeHDx+Wpq9btw4DBgyAh4cHZDIZ4uPjzVfYR83Ro8X/37gBJCWZryxERER4xIMmPz8/fPHFFzh16hQOHDiApk2bIiQkBCkpKQAAhUKBXr164f333zdzSR9BmkGTvtdERERVTCaEEOYuhKXIyMiAm5sbIiMjERwcLI0/e/Ys2rZti2vXrsHf3/+htqFQKODs7AwAyMrKgpOT00Otr8Zq2RK4cKH49cKFwIIFZisOERHVTBW5Llt0pmnVqlWYNm0agoKCYGdnB5lMhvByGgQfOXIEoaGhcHd3h5OTE7p06YK1a9eWu638/Hz89NNPqFWrFtq2bWukPaBKycgALl7UHsdMExERmZlF3z03f/58JCQkwNPTE76+vkhISChz/oiICISEhMDe3h5jx46Fi4sL/vnnH4wZMwY3btzAa6+9prPMvn37MHjwYOTk5MDHxwe7du2Ch4eHqXaJDHHiBFAyAXr0qGqcTGaeMhER0SPPojNNy5YtQ3x8PJKTkzF9+vQy5y0sLMTzzz8PuVyOvXv34qeffsLixYtx6tQpNGvWDPPmzdMbdAUFBeHkyZM4cOAABg8ejNGjR+PevXum2iUyhGZWSR0k3bkD3LplnvIQERHBwoOm/v37w8/Pz6B5//vvP1y5cgXjx49HYGCgNN7NzQ3z5s1Dfn4+VqxYobOcg4MDmjZtis6dO2PZsmWQy+VYvnx5pcusUCjKHagcmkHT4MH6xxMREVUxi66eq4jIyEgAwMCBA3WmhYSEAACioqLKXY8QAnl5eZUuh7oxGT0EdXBkbw9MnAhs3Vo8ftgwsxWLiIgebTUmaIqLiwMABAQE6Ezz8fGBs7OzNI/aG2+8gaeeegr169dHamoqvv/+e9y8eRMjRowAAKSmpuL69eu4cuUKACA2Nhb3799Hw4YN2e7JVNLSgMuXVf936AB07Vo8jZkmIiIyoxoTNKWnpwNQVcfp4+rqKs2jlpiYiLFjx+Lu3bvw8PBAx44dsW/fPrRs2RIAsGnTJkyePFma/4knngAALF++HGFhYXq3k5WVVWY5FQoFvL29DdqnR9Lx48X/BwUBDRoAdeoAycnAkSNsDE5ERGZTY4Kmyli5cmWZ08PCwkoNjkrDfpcekmY26fHHVQFSUBCwbRuQmgrExwONGpmteERE9Oiy6IbgFaHOMJXMJqmpO64kC6cZNAUFqf527Kh/OhERURWqMUGTui1TyXZLAHDnzh1kZWXpbe9EFkYdFDk6Ai1aqP5XB0+a04mIiKpYjQma1I892blzp860HTt2aM1DFurePVX1GwA89hhgZaX6//HHi+c5cqTKi0VmkJkJFBWZuxRERFpqTJumfv36oXHjxli9ejVmz54t9dWUnp6Ojz/+GLa2tpg4caJ5C2lKmzerAg43t+LB0REoKFANubmq6ZcuqYbMTKBJE6B5c9Xg5KS6SBUWAnZ2QOPGgJ8fYK3nFElJAQ4dAk6eVDXS7ttXtS6ZTNVQ+/Zt4MwZ1fYDAgBvb9W03FzVnXGXLwNZWaptqS+M9vbA1avF29DMLtWtqxoSE1VB04svAtevAwoFEBgIdO8OdOummqegAMjPV63XwQGwsSluOK5UqrarUADZ2UBOjmqQy1VldXBQDVZWqnHyEr8pNHspF6J4UCpV+5Kaqgr8UlJUj4LJzFRtLydHdUzV63d1BTw9VYObm2qe9HTg/n1V2QFVma2sVMe3bl3A11e1jYQE1ft4507xulxdVfNnZKgGhQJwcQFq11YNzs7a+5OZqdpeenpx+XJzVUN+fvExdHAAGjZUnQcNGqi2kZ8P5OWptqG5Djs71TZdXFTH0tZWNajHu7mp3mMhVNtPSlIdK7m8eN5r14CdO1XDxYuqZbp1A3r2VAXRzs7F75NSWXxuy+WAh0fxvpa8USA3V3VOJiWpjqmzs+p8l8lUNxjcvasqi7W1aprm4OKi+mtvrzqX9J0Tt2+rPlMXL6reex8foF491WBrqzpm+fmqMquPkbOz6ny5cUN1LqekqPbLyUm1j+ptyeWqbeTmFp+v6psh5HLVfF5eqvPD11c1Xv2+5OSojqGHB1Crluq90JSdrdr+zZuqz4t6n+3tVe9vZqZqsLVVbcPLS7We3FzVsgpF8fF0cVEtV/LYFxWp9jM1Vftzl51dPOTlqcrm6KgavLxUz550d9deV36+qoPbGzdUQ1KSqmxOTqpBiOLPQG6u6pzV/H5LTlZ9bu7cUb1niYmqvzIZ4O+v+s6rX191B+/Nm6pt5OWpylGrlmqoW1c1T926qmOflaV679LTVeNr14ZeRUWq+e7eVZXN2Vn1uXVwUJXn2jXV5/r+fdU+2durBj8/oHXr4vdWCNWxTExUrVP9XZWZCVy5ohri41Xz2dkVf/7q1VOVr1694s+ivb1qefX7oFAUvzc5OcXnhPp8zclRHZu0NNVx8fBQfYepv2fU30OA6rsqMVH1fhUWqo5VycHauvi7QX2dyckpPidzc4u/c5VKVXk0hwEDVNuvYhb9wN5ly5Zh//79AIAzZ87g+PHj6N69O5o2bQoA6NGjB6ZOnSrNX9pjVBISErBo0SK9j1GpaiZ7YO/TTwPr1xtnXWrW1qoPrbu76n8bG9UXT8nnwgGqL6hmzYCzZ1VfZpqcnVVfODdv6j4epTSrVgHPPFP8etgwYOPGiu+DlZXqi7ioSPVlQOajvmg/RD9o5bKxUV2IrK1VQ36+6kJkLHK5ar2agXhBgfHWb0rW1qr3wNZW9Tk05nEBVMdG/cPA3l510UtNVR2jyqhbV/Vj7P59VXBjSU9qkMlU55r6R45a3bpAu3aqHzvqAO3OHVXZH+ZS6+amCkwSE1XH1RJZWakCKRsb1T5X5H13cVEtl5pq+DLR0aofVUZQoeuysGCTJk0SAEodJk2apLPM4cOHxaBBg4Srq6twcHAQnTp1En/++WfVF74UWVlZUvmzsrKMt+K+fTVzH9V7sLMT4vp17f0LDzd/uThUzWBlJURQkBBeXuYvCwcOHCxz2LvXaJfPilyXLTrTVBOZLNO0b5+q6kadmk9PV/0i0UyH1qunygY1a6ZKpcbFqbJGly+rfjFZWakGhUKV5r18WfU3O7u4Gs3GRlVV0q2b6q62+Hjgv/+A/ftV2/PwUE0PDFRlFOLiVENamupXo3r7Hh6qbVlbqz4C6uqH/HxVdV/37tr7JwQQGalaT4MGqsHGBjh8WPWL4/BhVbnVVT1yeXGqWaHQrnpRV4GofxUrlcXz5uaqXqvTwWrqzIJm9YNMVlxNYmWlyqap09Xu7sVpbQcH1bFQbyM9vbgaLz1dNY+7u3YVlhCqDEZSUnFVgpWVKvPn56f6RZufX1wdIYRqeVdX1b5lZKjWn5Ki2qYQqn0SQrU9dRWuunzq7ICtbfH5kpVVXB2YmKjaT3XK38FBex15ecXVOdnZxVV8ubnF1YH376vK4O2tqoKpU0e7ys/FBejTRzW4uqrKevmy6ty+elW76kBdrWdjo0r/q/c1JUW1rsJCVRmsrVXVZXXrqv4KUVxFW1RUXA5Pz+JpWVnF+6IeNKstCwu1zwNfX9U53by5at/Uz0lMTFTtr/qcVH3oVevLyFAdu4YNVUOdOtrVXoWFxe8XoHpv1O+RlVXxtJyc4nPkzh1VudTvi7296rirq1QUiuJjrVSqjon6s2RrW7zvOTna1TJ5eapqpbt3Ve+hvX3xZ0hd5a1ZFa0ebG1V+6U+vurqVfVnT/2/rW3x50OhUFVXxsYC586pMg+2tqpjrK6mb9hQVWZ1lbVCoRqA4upqGxtVldfFi8CFC6r1+/io3h9v7+Iq77p1VefBtWuqc+zWLdV3U4MGquosR0fVPqelqc6txMTi6sG8vOLPu7Oz6lw9c0Y1r5q67N7equPg5aXad/V5pVCoxjVqpKoi9PQsfo+yslTfnepjkZlZXM1Wt65q3ervKXWTiiZNVH/VxzQ3V3UO3LqlyvTfvKnapvr7tqio+L10cir+LlA3U9B8bx0ciqspbW1V701Kiuq7TF0Fm5qqWne9esXH0N6++PNTcsjM1K7yUy/XoIHq/NP8zrW2Lr5GWVkBI0eq5jeCilyXGTRVMZMFTaYmhOoLSh0glJSXpzrx1e2XiIgehhCqC7y6/Vl1IIQqQMnIUAVptWpVn7I/wipyXa4xDcHJxNR1+KWxs1N9SRARGYNMpsrgVCcymSq7QjVWjelygIiIiMiUGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGYBBExEREZEBGDQRERERGeCRDpo++eQTBAUFwcXFBd7e3hg9ejTi4+Ol6QsXLoRMJtMagoKCzFdgIiIiMptHOmiKiorCrFmzcPjwYWzfvh2pqakYPHgwCgsLpXnat2+P27dvS8OOHTvMWGIiIiIyF2tzF8Cctm/frvX6559/RuPGjREbG4t27doBAKytreHj42OO4hEREZEFsehM06pVqzBt2jQEBQXBzs4OMpkM4eHhZS5z5MgRhIaGwt3dHU5OTujSpQvWrl1r0PbS09MBAB4eHtK48+fPw9fXF02bNsXkyZNx586dSu8PERERVV8WnWmaP38+EhIS4OnpCV9fXyQkJJQ5f0REBEJCQmBvb4+xY8fCxcUF//zzD8aMGYMbN27gtddeK3XZoqIizJkzB6Ghoahfvz4AoHPnzggPD0eLFi1w69YtvPvuu+jbty9OnDgBOzs7o+4rERERWTaZEEKYuxCl2b17NwICAuDn54dPP/0Ub731FpYvX46wsDCdeQsLC9GiRQvcvHkThw4dQmBgIABV9qhTp06Ij4/HpUuX4Ofnp7OsEAIvvPACoqKiEB0djTp16ugtT3JyMho2bIhVq1ZhxIgRldonhUIBZ2dnAEBWVhacnJwqtR4iIiJ6eBW5Llt09Vz//v31Bjn6/Pfff7hy5QrGjx8vBUwA4Obmhnnz5iE/Px8rVqzQWU4IgRkzZmD37t3Ys2dPqQETANSpUwf+/v64du1ahfeFiIiIqjeLrp6riMjISADAwIEDdaaFhIQAUN0tp0kIgZdeeglbtmxBVFQUGjRoUOY20tLSkJCQAH9//1LnUSgUZa6jvOlERERkmWpM0BQXFwcACAgI0Jnm4+MDZ2dnaR61l156CX/88Qc2b94MBwcHqZG3h4cHbG1t8frrr2PIkCFo2LAhbt68iXnz5qFevXoIDQ0ttRzqFB8RERHVLDUmaFLf+ebm5qZ3uqurqzSP2g8//AAA6Nmzp9b4iIgI9O7dGzdu3MDYsWNx7949eHt7Izg4GCtXroSjo6MJ9oCIiIgsWY0JmiqjvDbwf/75Z4XXmZWVVeZ0hUIBb2/vCq+XiIiIzKvGBE3qDFPJbJJaRkYGatWqZfJy8G44IiKimsmi756rCHVbppLtlgDgzp07yMrK0tveiYiIiMgQNSZoCg4OBgDs3LlTZ5r6eXHqeYiIiIgqqsYETf369UPjxo2xevVqnDx5Uhqfnp6Ojz/+GLa2tpg4caL5CkhERETVmkW3aVq2bBn2798PADhz5ow0Tt0nU48ePTB16lQAqgfrLlu2DCEhIejVq5fWY1QSEhKwaNGiMvtXIiIiIiqLRT9GJSwsTG8v3mqTJk3SeYBvTEwMFixYgAMHDqCgoABt27bFq6++ijFjxpi4tIbhY1SIiIgsR0WuyxYdNNVEDJqIiIgsR4159hwRERGRpWDQRERERGQABk1EREREBmDQRERERGQABk1EREREBmDQRERERGSASnVuef/+fezYsQN79uzB8ePHkZSUhLS0NNSqVQve3t54/PHH0bdvX4SEhMDd3d3IRSYiIiKqehXqp+nMmTP4+uuv8ccffyA3NxdlLSqTyWBvb4/x48dj1qxZaNeunVEKXN2xnyYiIiLLYfTOLe/evYu33noLK1asgFKphKenJ3r37o1u3bqhdevWqF27NlxdXZGeno6UlBScPXsWBw4cwN69e3Hv3j3I5XKEhYXh448/hpeXl/H2tBpi0ERERGQ5jB40ubm5ITMzE08++SSmTJmCJ554AtbW5dfsFRYWYvPmzfj111+xZcsWuLm5IS0trQK7UvMwaCIiIrIcRu8RvFOnTjhy5Ag2bdqEoUOHGhQwAaqH6A4fPhybN2/G4cOHERQUZNByRERERJaGz56rYsw0ERERWQ4+e46IiIjIyEwSNKWnp5d5Zx0RERFRdVOpoOns2bP45ptvcOnSJa3xERERaNSoETw8PODl5YXw8HBjlJGIiIjI7CrVpumFF17Ar7/+imvXrqFBgwYAgJSUFDRu3BiZmZnSfHK5HEeOHEGHDh2MV+Jqjm2aiIiILIfJ2zRFR0ejdevWUsAEACtXrkRmZiamTZuG+/fv47fffoNSqcS3335bmU0QERERWZRKBU1JSUlo2LCh1rhdu3bBysoKH374IVxdXfHss8+iQ4cOOHjwoFEKSkRERGROlQqaMjIy4ObmpjXu8OHDCAwMRO3ataVxAQEBuHXr1sOVkIiIiMgCVCpocnV11QqGzp8/j9TUVHTr1k1nXplMVvnSEREREVmISgVNgYGBOHDgAC5fvgwA+OWXXyCTyRAcHKw137Vr1+Dr6/vwpSQiIiIys0oFTdOmTUNBQQEef/xxdOjQAV9++SW8vLzwxBNPSPNkZmbi5MmTaNOmjdEKS0RERGQulQqaRo0ahYULF6KwsBCnTp2Cn58f/vrrL9jZ2UnzrF27FgUFBTrZJyIiIqLq6KGePZefn4+MjAx4enrqTLt+/TrS0tLQpEkTqf8DYj9NRERElqQi12Xrh9mQra2t3oAJABo2bKjTLQERERFRdcUH9hIREREZoNKZpsLCQvz111/Ys2cPEhMTkZubq3c+mUyGPXv2VLqARERERJagUkFTcnIyBg4ciNOnT6O8JlHsp4mIiIhqgkoFTXPnzsWpU6fQtGlTvPjiiwgICICLi4uxy2Zy69atww8//IBjx44hLS0N165dg7+/vzQ9IyMD8+bNw8aNG5GSkoKuXbviu+++Q4sWLcxXaCIiIjKLSgVN//77L7y9vXHo0CF4eHgYu0xVRqFQoFevXhg6dChmzZqlM33q1Km4dOkS1qxZA09PT3z99dcYMGAAzp8/zzsCiYiIHjGV6nLA2dkZgwYNwt9//22KMlW5s2fPom3btlqZppycHLi4uGDLli0ICQkBACiVSvj6+uLDDz/E888/X6ltscsBIiIiy1GR63Kl7p4LCAhATk5O5UpXAatWrcK0adMQFBQEOzs7yGQyhIeHl7nMkSNHEBoaCnd3dzg5OaFLly5Yu3ZthbddWFiIoqIiODg4SOPkcjlsbW0RHR1d4fURERFR9VapoGnKlCmIjIzEzZs3jV0eLfPnz8dPP/2EhIQEg55hFxERge7du2P//v0YPXo0pk+fjjt37mDMmDFYvHhxhbbt4uKCzp074/3338fdu3dRUFCARYsW4ebNm7h9+3Zld4mIiIiqqUoFTTNnzsSTTz6Jvn37YseOHVAqlcYuFwBg2bJliI+PR3JyMqZPn17mvIWFhXj++echl8uxd+9e/PTTT1i8eDFOnTqFZs2aYd68eUhISKjQ9letWoWcnBx4e3vDwcEB27dvx6BBgyCXs3srIiKiR02lr/5Lly6Fg4MDQkND4eDgAH9/fzRu3FhnaNKkSaUL179/f/j5+Rk073///YcrV65g/PjxCAwMlMa7ublh3rx5yM/Px4oVKyq0/aZNmyI6OhoZGRlITEzE7t27kZaWhkaNGlVoPURERFT9VeruuRs3bqBnz564ceMGhBAoKCjA9evX9c5bVf00RUZGAgAGDhyoM03dkDsqKqpS63ZxcYGLiwuuXr2Ko0ePYuHChaXOq1AoylxXedOJiIjIMlUqaHrjjTdw/fp19OjRA6+++ioCAgLMfgt+XFwcAFUj9ZJ8fHzg7OwszaOWmpqK69ev48qVKwCA2NhY3L9/Hw0bNsT/s3fncVFV///AX8O+b6IsouCCS6bihhooigvmUrmkaCpoWlpqn7SyTNP2LJcy0zRSXLK0XDI3XAGRVFxzS5EEFwRFkGXY4fz+8Df3yzgDDDDjDPh6Ph73oXPvufe+7507c9+cc+ZcJycn7Nu3D0ZGRmjevDkuX76Mt956C4MGDcKAAQPKjUPf54GIiIh0o1pJ08GDB+Hp6YkDBw7A3Nxc2zFVS2ZmJoBHzXHq2NnZSWUUdu7ciQkTJkivBw0aBABYu3YtQkNDkZGRgTlz5uDOnTto0KABxo4dW2EtExEREdVd1Uqa8vLy0Lt3b4NJmKorNDQUoaGh5S4fPXo0Ro8eXaVt5uTkVLhcLpfDxcWlStskIiIi/atW0vTMM88gPT1d27HUiKKG6fHaJIWsrCw4OjrqPA4OVklERFQ3VevXc9OnT0dUVBQuXryo7XiqTdGX6fF+SwCQkpKCnJwctf2diIiIiDRRraRp7NixeOeddxAYGIhVq1aV+8u5JykgIAAAsH//fpVlERERSmWIiIiIqqpazXPGxsbS/994440Ky8pkMhQXF1dnN1XSp08fNG3aFJs2bcKMGTOksZoyMzPxxRdfwMzMDOPHj9d5HERERFQ3VStpqsozfqvxPGBJWFgYYmJiAAAXLlyQ5inGZPL398ekSZMAACYmJggLC0NQUBB69uyJ4OBg2NraYuvWrUhKSsKiRYukh/ESERERVZVM1CSr0bHQ0NAKR/EOCQlReYDvyZMnMX/+fMTGxqKoqAht27bFzJkzMWrUKB1Hq5mqPE2ZiIiIdKsq9+VqJU3R0dEwNjaGn59f9aN8SjFpIiIiMhxVuS9XqyN4r169MG/evOpFR0RERFQLVStpcnR0hLu7u7ZjISIiIjJY1UqafHx81I6HRERERFRXVStpmjFjBuLi4rB7925tx0NERERkkKo15ECHDh0wbdo0DB06FKGhoRg+fDi8vLxgaWmptnzjxo1rFCQRERGRvlXr13OKwS2FEJDJZBXv4AkNbllb8NdzREREhqMq9+Vq1TQ1atSo0mSJiIiIqC6pVtKUmJio5TCIiIiIDFu1OoITERERPW2YNBERERFpQKOkKTk5WSs709Z2iIiIiJ40jZImb29vvP/++8jIyKjWTtLT0/Hee+/B29u7WusTERER6ZtGSVP//v3x9ddfw8PDA2PHjsWBAwdQUFBQ4ToFBQWIiIjA6NGj4eHhgUWLFiEoKEgrQRMRERE9aRqP03Tw4EG8/fbbuHTpEmQyGUxNTeHj44PWrVujXr16sLOzQ1ZWFh48eIDLly/j/PnzKCoqghACzz77LJYsWYK+ffvq+ngMHsdpIiIiMhxVuS9XeXDLAwcOYPny5di/f79SbZNMJkPZTZmbmyMoKAjTpk1jslQGkyYiIiLDodOkSaGgoADHjh3D2bNnkZqaiszMTDg4OKBBgwbo2LEjnnvuOZibm1fvCOowJk1ERESG44kkTVQ9TJqIiIgMR1XuyxyniYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgDTJqIiIiINMCkiYiIiEgD1UqaoqOjcezYMW3HQkRERGSwqpU09erVC/PmzdN2LEREREQGq1pJk6OjI9zd3bUdCxEREZHBqlbS5OPjg/j4eG3HQkRERGSwqpU0zZgxA3Fxcdi9e7e243mitm3bhn79+sHJyQkymQyJiYlKy5cuXYo2bdrAxsYGDg4OCAwMxIkTJ/QTLBEREemVSXVW6tChA6ZNm4ahQ4ciNDQUw4cPh5eXFywtLdWWb9y4cY2C1BW5XI6ePXvixRdfxPTp01WWe3p6YsmSJWjevDkKCgrw7bffIigoCAkJCahXr54eIiYiIiJ9kQkhRFVXMjY2BgAIISCTySregUyG4uLi6kX3hFy8eBFt27bFjRs34OXlVW65rKws2NvbIzIyEgEBAdXaV1WepkxERES6VZX7crVqmho1alRpsqQNGzduxNGjR3H69GlcuHABhYWFWLt2LUJDQ8tdJy4uDvPnz0dsbCyKiorQtm1bzJw5EyNHjqxRLIWFhVi9ejUcHR3Rtm3bGm2LiIiIap9qJU2P9/3Rlblz5yIpKQnOzs5wc3NDUlJSheWPHDmCoKAgWFhYIDg4GLa2tti6dStGjRqFW7duYdasWVWO4ejRo3j++eeRl5cHV1dXHDhwAE5OTtU9JCIiIqqlDHpE8LCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06VKnc+fOOHfuHGJjY/H8889j5MiRSEtLq+4hERERUS1l0ElT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX5RgsLS3RvHlzdO3aFWFhYTAyMsLatWurvB0iIiKq3WqUNB09ehQjR46Eh4cHzM3N8eqrr0rLDhw4gDlz5iAlJaXGQWoiMjISANC/f3+VZUFBQQCAqKioGu9HCIGCgoJyl8vl8konIiIiqn2q1acJAD777DPMnz8fZX98V/b/9vb2WLhwITw8PPDGG2/ULEoNKAbb9Pb2Vlnm6uoKGxsblQE509PTcfPmTSQkJAAALl++jIcPH6Jx48ZwcnLC7Nmz8cILL8DDwwPp6elYsWIFbt++jeHDh5cbh6IHPhEREdUt1app2rt3Lz766CM0bNgQW7ZsQWpqqkoZX19f1K9fH7t27apxkJrIzMwE8ChZU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dOwEAycnJCA4ORosWLTBw4ECkpqbi6NGjaN26tQ6PhIiIiAxRtWqavvvuO5ibm2Pv3r1o06ZNueXat29v0I9bCQ0NrXD4gg0bNlR5mzk5ORUul8vlcHFxqfJ2iYiISL+qlTTFxcXB19e3woQJAOrXr4/Y2NhqBVZVihqmx2uTFLKysuDo6KjzODhYJRERUd1UreY5uVwOV1fXSstlZmaitLS0OruoMkVfJnU1WykpKcjJyVHb34mIiIhIE9VKmlxcXHD9+vVKy129ehWNGjWqzi6qTPFYk/3796ssi4iIUCpDREREVFXVSpr8/f1x7tw5HDt2rNwyu3btwvXr19G7d+9qB1cVffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+/BOJhYiIiOqeavVpmjVrFjZv3oxhw4Zh1apVGDx4sNLyffv2YdKkSTA1NcX06dOrHVxYWBhiYmIAABcuXJDmKcZk8vf3x6RJkwAAJiYmCAsLQ1BQEHr27Kn0GJWkpCQsWrSowofxEhEREVVEJsoOrlQF3333HWbOnAng0ajZeXl5sLGxgUwmQ3Z2NoQQWLZsGaZNm1bt4EJDQyscxTskJATh4eFK806ePKn2gb2jRo2qdhzaVJWnKRMREZFuVeW+XO2kCXjUV2j+/PmIi4tTGtiyXbt2+Oyzz1RqoIhJExERkSF5YkmTwoMHD3Djxg2UlpaiUaNGcHNzq+km6ywmTURERIajKvflaj9Gpax69eqhXr162tgUERERkUGq1q/nwsPDcfv2bW3HQkRERGSwqtU8Z2RkBJlMBm9vb/Tt2xd9+/ZFYGAg7OzsdBFjncLmOSIiIsOh8z5NEydOxOHDh3Hz5s1HG5HJYGRkhE6dOklJlJ+fH0xNTat5CHUXkyYiIiLD8cQ6gsfHx+PgwYM4cOAAIiMj8fDhw0cblclgaWkJf39/9OvXD7NmzaruLuocJk1ERESG44n/eg4AhBA4deoUDh48iIMHD+LYsWMoLCyEkZERiouLtbGLOoFJExERkeGoyn25Wh3B1SkqKkJ2djays7ORlZUlJUpaysmIiIiI9KpGQw6cO3cOBw4cwMGDBxETE4P8/HwIIWBnZ4dBgwZJ/ZuIiIiIartqJU3BwcE4fPgwHjx4ACEETE1N0a1bNylJ8vX1hbGxsbZjJSIiItKbaiVNW7ZsgUwmQ7t27TB//nz0798fVlZW2o6NiIiIyGBUqyO4vb09srOzATx6WG+PHj3Qr18/9O3bF+3bt9d6kHUJO4ITEREZDp0/RiU9PR0nT56Ufil35MgR7N+/HzKZDM7OzujTpw/69euHfv36wcPDo3pHQURERGRAtDLkQG5uLiIjI3Hw4EEcOnQIFy9elJa1aNECV65cqeku6gzWNBERERkOvYzTpHD+/Hn88ssvWL58OfLz8yGTyVBSUqLNXdRqTJqIiIgMh86b58q6ffu2NOzAoUOHcP/+fQCQflXXvXv3mu6CiIiISO+qlTTt2LFD6s8UHx8P4FGSJJPJ8Oyzz0pDDwQEBPBXdURERFQnVCtpGjZsmPT/Ro0aSUlSnz590KBBA60FR0RERGQoqpU0vfTSS9IQA97e3tqOiYiIiMjgVCtp2rZtm7bjICIiIjJoWntgLxEREVFdVqOk6cqVK5gyZQpatmwJGxsb2NjYoGXLlpg6dSrHZiIiIqI6pdrjNIWHh2PKlCkoKiqCuk2YmZlh1apVCAkJqXGQdQnHaSIiIjIcVbkvV6um6fTp05g8eTIKCwsxaNAgbN++Hf/88w/++ecf7NixA0OGDEFhYSEmT56MU6dOVe8oiIiIiAxItWqagoOD8fvvvyMsLAwTJkxQWyY8PBwTJ07EqFGj8Ouvv9Y40LqCNU1ERESGQ+ePUWnYsCFcXV1x+vTpCst17twZd+/exZ07d6q6izqLSRMREZHh0HnzXFpaGlq3bl1puVatWiEtLa06uyAiIiIyKNVKmhwcHHDz5s1Ky928eRP29vbV2QURERGRQalW0tSlSxfExsbi8OHD5ZY5fPgwjh07hq5du1Y7OH3z8vKCTCZTmb755ht9h0ZERERPWLWSpunTp6O0tBRDhgzBe++9h0uXLiE3Nxe5ubm4ePEi3nnnHQwZMkQqW1vFxcXh7t270rRp0yYAys/eIyIioqdDtcdpmjdvHj7//HPIZDK1y4UQmDdvHj7++OMaBWhIXnnlFdy+fRtRUVHV3gY7ghMRERkOnXcEB4BPP/0Ue/bsQe/evWFubg4hBIQQMDMzQ2BgIPbs2aPzhGnjxo14/fXX0blzZ5ibm0MmkyE8PLzCdeLi4jBw4EA4ODjA2toa3bp1w5YtWyrdV2ZmJrZv317uEAtERERUt1Xrgb0KAwYMwIABA1BSUoIHDx4AAOrVqwdjY2OtBFeZuXPnIikpCc7OznBzc0NSUlKF5Y8cOYKgoCBYWFggODgYtra22Lp1K0aNGoVbt25h1qxZ5a7766+/wtjYGC+//LK2D4OIiIhqgSo1z12/fh3btm1DYmIizM3N4ePjg5EjR8LS0lKXMZbr4MGD8Pb2hqenJ7766it88MEHWLt2LUJDQ1XKFhcXo1WrVrh9+zaOHz8OHx8fAI9qkHx9fZGYmIhr167B09NT7b58fX3Rtm1b/PzzzzWKmc1zREREhkMnzXPffvstnnnmGXzwwQdYtWoVli1bhokTJ6Jly5a4ePFizaOuhr59+5ab5Dzu8OHDSEhIwJgxY6SECQDs7e0xZ84cFBYWYt26dWrXvXTpEuLi4tg0R0RE9BTTqHkuJiYGs2bNghAC1tbWaNmyJbKysvDff//h9u3bGD58OK5cuQIjo2p3kdK5yMhIAED//v1VlgUFBQFAuR2816xZA29vb/j7+1e6H7lcXqPlREREZJg0ynKWL18OIQRCQkKQkpKCU6dO4dq1azhz5gyaNWuG69evY9++fbqOtUbi4+MBAN7e3irLXF1dYWNjI5Upq7i4GBs3btS4lsnGxqbCycXFpWYHQkRERHqhUdL0999/w8PDA6tWrVJq62vXrh2+++47CCFw/PhxnQWpDZmZmQBQ7gjldnZ2Upmydu/ejbS0NIwfP16n8REREZFh06h5LjU1FQMHDoSZmZnKMkWT1b1797QbmYF48cUXUVJSonH5nJycCpfL5XLWNhEREdVCGiVNhYWFcHBwULvMzs5OKmPIFDVM6mqTACArKwuOjo413g9/DUdERFQ3GW7PbS1T9GVS128pJSUFOTk5avs7EREREQFVGNzy+vXrWL9+fbWWG0J/oICAAHz55ZfYv38/goODlZZFRERIZYiIiIjU0WhwSyMjo3KfMVfpDmQyFBcXV2vdqtBkcMuWLVvizp075Q5uefXqVXh5eek0Tg5uSUREZDiqcl/WqKapcePG1U6adCksLAwxMTEAgAsXLkjzFGMy+fv7Y9KkSQAAExMThIWFISgoCD179lR6jEpSUhIWLVqk84SJiIiIaq8qPUbF0ISGhpY7ijcAhISEqDzA9+TJk5g/fz5iY2NRVFSEtm3bYubMmRg1apSOo32ENU1ERESGoyr35VqdNNVGTJqIiIgMh06ePUdERET0NGPSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk1EREREGmDSRERERKQBJk2V2LZtG/r16wcnJyfIZDIkJibqOyQiIiLSAyZNlZDL5ejZsyc++eQTfYdCREREemSi7wAM3bhx4wAAFy9e1HMkREREpE+1vqZp48aNeP3119G5c2eYm5tDJpMhPDy8wnXi4uIwcOBAODg4wNraGt26dcOWLVueTMBERERUK9X6mqa5c+ciKSkJzs7OcHNzQ1JSUoXljxw5gqCgIFhYWCA4OBi2trbYunUrRo0ahVu3bmHWrFlPKHIiIiKqTWp9TVNYWBgSExNx//59TJkypcKyxcXFmDx5MoyMjBAdHY3Vq1dj8eLFOH/+PFq0aIE5c+ZUmnQRERHR06nWJ019+/aFp6enRmUPHz6MhIQEjBkzBj4+PtJ8e3t7zJkzB4WFhVi3bp2OIiUiIqLarNY3z1VFZGQkAKB///4qy4KCggAAUVFRNdqHXC6v0XIiIiIyTE9V0hQfHw8A8Pb2Vlnm6uoKGxsbqYxCeno6bt68iYSEBADA5cuX8fDhQzRu3BhOTk4q27GxsdFB5ERERKRvtb55rioyMzMBPGqOU8fOzk4qo7Bz50506NABI0aMAAAMGjQIHTp0wM6dO3UbLBERERmUp6qmqTpCQ0MRGhqqcfmcnJwKl8vlcri4uNQwKiIiInrSnqqkSVHD9HhtkkJWVhYcHR1rtA9ra+sarU9ERESG6alqnlP0ZXq83xIApKSkICcnR21/JyIiIqKnKmkKCAgAAOzfv19lWUREhFIZIiIiorKeqqSpT58+aNq0KTZt2oRz585J8zMzM/HFF1/AzMwM48eP11+AREREZLBqfZ+msLAwxMTEAAAuXLggzVOMyeTv749JkyYBAExMTBAWFoagoCD07NlT6TEqSUlJWLRoEby8vPRxGERERGTgZEIIoe8gaiI0NLTCUbxDQkJUHuB78uRJzJ8/H7GxsSgqKkLbtm0xc+ZMjBo1SsfRPvr1nGIsp5ycHHYcJyIi0qOq3JdrfdJU2zBpIiIiMhxVuS8/VX2aiIiIiKqLSRMZrDfffBNubm7YvXu3vkMhIiJi89yTxuY5zdy8eROenp4AAD8/P6mzPxERkTaxeY5qvVOnTkn/P3v2LIqLi/UYDREREZMmMlBlk6bc3FxcuXJFj9EQERExaSIDdfr0aaXXZZMoIiIifWDSRAZHCKGSJDFpIiIifWPSRAYnMTER6enpSvOYNBERkb4xaSKDoy5BOnfuHAoLC/UQDRER0SNMmsjglE2anJ2dAQCFhYW4ePGivkIiIiJi0kSGp2zSNGHCBLXziYiInjQmTWRQSktLpV/ONWzYEEOGDJGWMWkiIiJ9YtJEBiUhIQGZmZkAgM6dO6NDhw4wMnp0mcbFxekzNCIiesoxaSKDUrY2qXPnzrCxsUHr1q0BABcvXkReXp6+QiMioqcckyYyKGWTpk6dOgF4lDwBQHFxMf755x+9xEVERMSkiQyKuqSpS5cuapcTERE9SUyayGCUlJTgzJkzAIDGjRujQYMGAP6vpglgvyYiItIfE30HQE9WSUkJbt68iezsbDRt2hQ2Njb6Dkly7do15OTkAFBOlNq1awcTExMUFxfj1KlTKCwsxJ07d5CTk4OWLVvCzMxMXyGTluXl5SEmJgZxcXFo2LAh/P390bRpU8hkMn2HRnVQcXExhBAwNTXVdyhak5ubi9LSUpibm8PExISfHS1j0lRHTJs2DQcOHIC9vT3s7Oxgb28PKysrFBUVoaioCPn5+UhMTMT169eVRtZu2LAhWrZsCWtra5SUlKCkpARmZmZo2rQpmjdvjubNm8PBwQEmJiYwMTHB/fv38ffffyM2Nhbnzp1DgwYNEBgYiMDAQLRo0QIXL17E6dOnceHCBVhZWcHb2xve3t5wcnJCQkICrl69iuvXryMnJwfFxcUoKSkBAFhYWEAul0txlU2aLC0t8eyzz+LcuXO4dOkSLCwsIISQ1uvSpQuee+45uLu7o6ioCIWFhSgpKYGlpSWsrKxgZWWFkpIS5OTkICcnB3K5HLm5ucjLy0NeXh6MjIxgZWUFS0tLWFpawtjYGEZGRtKv9hQU+xRCKE2lpaUoLi5Geno60tLS8ODBA2RlZSE7Oxs5OTnIy8uDubm5tH07Ozs4OzvD2dkZ9vb2yMnJQWZmJh4+fCi9NzKZDCYmJqhfvz7c3d3h5uaG4uJiJCUlITExESkpKbCwsICdnR3s7Owgk8mQlZWFrKwsyOVy2NnZoV69eqhXrx5sbGyk4xFCIDs7G5mZmcjMzIRcLpfOQ35+PgoLC6VrxsLCAo0bN4anpycaNWoEmUyGwsJCFBQUQC6XS9vIycmBhYUFbG1tYWtrCysrK5iZmUmTra0t7O3t4eDgAAC4d+8eUlNTkZaWBiMjI6ncjRs3EB0djfz8fKXz7ubmho4dO8LGxkZ6n0pLS6U4jYyM4OTkJB2vpaUlTExMYGpqisLCQty9exfJyclITU2FsbExbGxsYG1tDZlMhvv37+PevXtIS0uDiYkJbGxslCZbW1vY2NjAwsICZmZmMDU1hYnJ/31tKv4IuXr1Kq5evYoHDx7A1dUVHh4eaNiwoRRDYWEhSktLpXNkY2OD9PR03Lp1Czdv3sSDBw9gaWkJa2trWFlZwdTUVOk9y8/PR35+PvLy8lBaWgojIyPIZDKYmZmhQYMGcHNzg5ubGwBI70t+fj7s7e3h6OgIR0dH2NjYwNzcHGZmZhBC4M6dO7h16xZu376NkpIS6XgVn0XFNWxubo4GDRqgQYMGcHR0RH5+PuRyOeRyuXQ+FcekuMYtLCyQn5+PtLQ03L9/H+np6dLnruyUl5eHgoICmJubS++ti4sLnnnmGTzzzDNo1qwZHj58iOTkZNy9exe3bt2SptTUVJiZmcHa2hrW1tYQQkifgfz8fDRq1AgtW7ZEy5YtYWtri9TUVKSkpCAlJQV3797F3bt3cf/+fchkMnh4eKBp06bw8PBARkYGbt++jVu3biE/Px8ODg7SOXR3d4eHhwcaNWoES0tLPHjwAA8ePEBmZiYaNWqEdu3aoW3btqhfv760r5SUFNy7d0+a8vPzpevA0tISKSkpuHHjBhITE/Hw4UOYm5vD3NwcFhYW8PT0RJs2bfDMM8/A2dkZycnJuHXrFpKTk1FSUgJjY2MYGxsjOzsbCQkJSEhIwP3796XrUyaTwdbWFg0bNoSHhwc8PDxgb28PCwsLWFhYwMjISHovFN8Fivel7DVhY2ODvLw8ZGRkICMjAwUFBXBycoKzs7P0uXNycoKTkxPMzMyk83fnzh0UFxfD1NRU7WRrawsHBwc4ODjA1NRU6ZrMy8uTvnNLS0ul+5NiWrVqFdq2bVuNu2UNCXqicnJyBAABQOTk5Ghtu4MGDZK2WxemiIgIpeN77bXX9B4TJ06cOHEyjOno0aNau39W5b7MmqY6wsLCAvb29sjKypKy88eZm5ujefPmaNGiBezs7BAfHy/9dVwdTk5OePjwIUpLS6u1vrGxMUxMTCCEUKr96tatG3r16qVUdtasWTh27BjS09PRqFEjNG7cGKampjhx4gT++++/au1fl0xMTKS/Ji0sLFBYWCj9FZednV3j7ZuZmZX7LD5LS8sqDc1gZmYm1Q4oalNMTU2Rk5OD5OTkcq8nBVNTUxQVFVUp/vJ4eHigf//+6NmzJ27duoWYmBjExsZq5ZzpmqmpKZydnXH//n0UFxdXaV0HBwepNqkiJiYmMDY2VqrhrM0UNV8FBQVVfrZkvXr1UFxcjNzcXOn6U9S+mpqaVnjtmpqawtXVFe7u7igpKcGNGzeUvgdNTU3RsGFDWFlZ4eHDh8jIyND5cCeWlpZwdnZWqs2t6ueqYcOGaNq0qXRO8/Pz8fDhQ9y5c6fODddS3ftOTclEZd+IpFVyuVzqR5STkwNra2utbr+0tFRqOsnLy1OqCq1Xrx6MjY1V1snIyEBRUZFU1SuXy3H9+nVcv34d//33H3Jzc1FcXCw12XTp0gXdu3dHkyZNkJmZiejoaBw+fBh37txBmzZt0LFjR/j4+CA/Px/x8fG4fv06MjIy0LRpU7Rs2RItWrSAo6OjStz5+fkoKCiAg4NDldrh7969i5MnT0Iul0s3fSMjI6kZITc3V6npRdEEomhKKC0tVaqWLi0tlaqDH49D8Vomk0mTkZERjI2N4ejoKFVXW1lZlRtvcXExMjIypGp9GxsbODg4SNXm4v83+xUVFSE1NVVqXjI2Noanpyc8PT1Rr149CCGQk5MjJcr29vZSU1xhYSHS09Px4MED5ObmSjdZIYTUXGZvbw9ra2u114RCYWGhVM1uZGQkNR1YWlpK2zA3N0dJSQnkcjmys7Olm1hhYSHy8/ORnZ2Nhw8fIjMzE6WlpXBxcUGDBg1Qv359pSY/GxsbNGvWTOWcl5SUIC0tTek9MjIykq7r4uJiqZkkPT0dBQUF0vVqYmIi3RxdXV2lc5aTk4OSkhIpDsX5lMvlyMnJkZpWs7OzkZ2dLTVbFhYWqiQqbm5uaNmyJTw9PWFiYoLS0lLcu3dPakJRND8CUNqmvb09GjdujIYNG8Lc3Fz6HCg+b4r3C4DUnPL4e1VcXIx79+7h7t27SElJgUwmU3pfMjMzpSaV3NxcKTkpLS2Fu7s7GjVqBA8PD5iZmUnnJS8vT6lZpqCgAPfu3cP9+/fx8OFDWFhYSJ+h0tJS6XgU6yomc3Nz1K9fXzq/iuZVxWfPyspK6XhKSkqQm5uLmzdv4vLly7h8+TISExPh5OQEd3d3aWrUqJHSOVNcpzKZTKlvUn5+Pq5fv45///0X+fn5cHV1haurK1xcXFCvXj2V5vesrCzcuXMHTk5OqF+/vsryvLw8qXns1q1bKCgokD7vNjY2uH79Oi5cuIALFy4gKytL2p+bm5t0zTdo0ACWlpbSOZPL5ahfvz6aNGmCBg0aKF37paWl0rm4dOkSsrKypGY2d3d36XOn6L/k5eUFS0tLtZ9jIYTU7CiXy6UEvaSkRHovy743im4KZT8LFhYWUjOlmZmZ9B2WlpYmfdcoPn9lmwMtLCykpvTHp+zsbKUmP3d3dzRu3BiNGjWCra0tgP/7zlXcnxSToolaG6pyX2bS9ITpOmkiIiIizVXlvswhB4iIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wKSJiIiISANMmoiIiIg0wGfPPWFlB2CXy+V6jISIiIjK3osre0gKk6YnLDc3V/q/i4uLHiMhIiKisnJzc6VHqqjD5jkiIiIiDfCBvU9YaWkp0tLSAABWVlbVfkqzXC6XaqpSU1P54N//j+elfDw36vG8qMfzoh7Pi3q1+bwIIaRWIGdnZxgZlV+fxOa5J8zIyAgNGjTQ6jatra1r1QX6pPC8lI/nRj2eF/V4XtTjeVGvNp6XiprkymLzHBEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGmDQRERERaYBJExEREZEGOLglERERkQZY00RERESkASZNRERERBpg0kRERESkASZNRERERBpg0mRg4uLiMHDgQDg4OMDa2hrdunXDli1bqrSNgoICfPLJJ/D29oaFhQXc3d3x2muv4d69ezqKWnfu3LmDb7/9Fv3790fjxo1hZmYGV1dXDB8+HCdOnNB4O5GRkZDJZOVO4eHhujsIHfLy8ir3mHr16lWlbf3yyy/w9fWFtbU1HB0dMXjwYJw5c0Y3getQeHh4he+1TCZDnz59Kt1Obb1mNm7ciNdffx2dO3eGubl5pbFmZWVh5syZ8PT0hLm5Oby8vPDuu+8iJyenyvuOiIhAQEAAbG1tYWdnh969e+PQoUM1OBrt0fS8FBUVYevWrQgJCUHr1q1hY2MDW1tbdO3aFStXrkRJSUmV9qvNz6iuVOWaWbBgQYWfi8TExCrt+9q1axg5ciScnZ1haWmJ9u3bY+XKlTDU36iZ6DsA+j9HjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrEq3UVpaihdffBERERHo1q0bhg8fjvj4eISFheHQoUM4fvw46tev/wSORju+//57LFy4EM2aNUP//v1Rv359xMfHY8eOHdixYwc2bdqEUaNGaby9gIAAtV9UPj4+2gv6CbO3t8f//vc/lfleXl4ab+Pzzz/H3Llz4enpiSlTpiA7Oxu//fYbnnvuORw6dAh+fn7aC1jHfHx8MH/+fLXL/vjjD1y6dAlBQUEab6+2XTNz585FUlISnJ2d4ebmhqSkpHLLyuVyBAQE4Ny5c+jfvz9Gjx6Ns2fPYtGiRYiKikJ0dDQsLCw02u/GjRsxbtw41K9fH6GhoQCAzZs3o1+/ftiyZQtGjBihjcOrNk3PS0JCAkaMGAEbGxv06dMHL7zwAjIzM/HXX3/hjTfewJ49e7Bz507IZDKN962Nz6guVeWaUQgJCVEbv4ODg8b7vXz5Mp577jnk5eVh5MiRcHd3x+7du/HGG2/g8uXL+P7776twFE+IIINQVFQkmjVrJszNzcXZs2el+Q8fPhQtWrQQZmZmIjExsdLtrFmzRgAQo0ePFqWlpdL8lStXCgDitdde00X4OrN161YRGRmpMj86OlqYmpoKR0dHkZ+fX+l2jhw5IgCI+fPn6yBK/fH09BSenp412sa1a9eEiYmJaNGihXj48KE0/+zZs8Lc3Fy0bt1alJSU1DBS/SsoKBD16tUTJiYmIiUlpdLytfWaOXDggPRd8eWXXwoAYu3atWrLfvTRRwKAmD17ttL82bNnCwDiiy++0Gif6enpwsHBQTg7O4tbt25J82/duiWcnZ2Fs7OzyMrKqt4BaYmm5+X27dvihx9+EDk5OUrzc3JyROfOnQUAsWXLFo33q43PqK5V5ZqZP3++ACCOHDlS4/327NlTABB79uyR5hUUFIgePXoIACI2NrbG+9A2Ns8ZiMOHDyMhIQFjxoxR+gvW3t4ec+bMQWFhIdatW1fpdn766ScAwJdffqn0l9Drr7+Opk2b4pdffkFeXp7W49eVYcOGISAgQGV+jx490Lt3b2RkZODChQt6iKzuWLt2LYqLi/Hhhx/C3t5emu/j44PRo0fjypUriImJ0WOE2rFjxw48ePAAgwcPhouLi77D0Zm+ffvC09Oz0nJCCISFhcHGxgbz5s1TWjZv3jzY2NggLCxMo33+/vvvePjwIaZPnw4PDw9pvoeHB6ZNm4a0tDRs3769ageiZZqel4YNG+KNN96AtbW10nxra2vMnDkTABAVFaWTGPVF03OjTdeuXUN0dDR69+6N559/XppvZmaGTz/9FMD/3c8MCZvnDERkZCQAoH///irLFE0JlX1Q8/PzceLECbRs2VLlAyCTydCvXz+sWrUKp06dQo8ePbQTuB6ZmpoCAExMNL+M4+Pj8e233yIvLw8eHh4IDAxEw4YNdRXiE1FQUIDw8HAkJyfDzs4OXbp0QdeuXTVev7JrLzw8HFFRUejZs6e2QtYLRQIwadKkKq1XF68Z4NFxJScnIygoSG2C4Ofnh4iICNy6dQuNGjWqcFuVXUMLFixAVFQUxo8fr7X49aE63zlAzT+jhig6OhonTpyAkZERvL290bdvX9jY2Gi8fkXXjL+/P6ytrQ0yOWXSZCDi4+MBAN7e3irLXF1dYWNjI5UpT0JCAkpLS9Vuo+y24+Pja33SdPPmTRw8eBBubm5o27atxutt2rQJmzZtkl6bmJhg+vTp+Oabb2BsbKyLUHUuJSUFEyZMUJrXpUsX/Prrr2jWrFml68fHx8PGxgaurq4qy8peM7VZUlISDh06BA8PDwwYMKBK69bFawao+DtHMT8iIgLx8fGVJk0VbauuXEMAsGbNGgDqb/QVqeln1BA93m/QwcEB3333ncaJcUXXjLGxMZo0aYLLly+juLi4ykmqLrF5zkBkZmYCgFLzSFl2dnZSmZpso2y52qqoqAjjxo1DQUEBFi5cqNGNq379+vjqq69w8eJF5OTkIDU1FTt27EDz5s2xdOlSvPfee08gcu2bMGECDh06hNTUVMjlcpw9exbjxo1DXFwc+vTpg+zs7Eq3kZmZWeevmbVr16K0tBShoaEaJzp19ZpR0Ob3RUXbqivX0OrVq7F3714EBgZi4MCBGq+njc+oIWnfvj3WrFmD//77D3l5ebhx4wa+//57yGQyhIaGYufOnRptR5Prr7S01ODOj+Gkb0QaUNz4oqOjMXnyZIwbN06j9dq0aYM2bdpIr62trfHiiy+ia9euaNeuHZYtW4bZs2ejQYMGugpdJx7/a8/Hxwfr168HAGzYsAE//fST1A/jaVVaWoq1a9dCJpNh4sSJGq9XV68Zqrpdu3Zh2rRp8PT0xMaNG6u0bl37jA4dOlTptZeXF6ZNm4bWrVujX79+mDt3Ll544QU9Rad7rGkyEIpsu7y/xrKyssrNyKuyjbLlapvS0lJMnDgRmzZtwtixY/Hjjz/WeJuurq548cUXUVxcXKVxnwzd66+/DgA4duxYpWXt7e3r7DUDAAcPHsTNmzcRGBiIJk2a1Hh7deWa0eb3RUXbqu3X0J49ezBixAi4uLjg8OHDcHNz08p2q/IZrQ369OmDZs2a4cKFC9J7XhFNrj+ZTAZbW1utxllTTJoMREXt/ikpKcjJySm374FC06ZNYWRkVG7fgcr6MBiy0tJSTJgwAevWrcPo0aMRHh4OIyPtXL7Ozs4AHo1ZU1dU5Zi8vb2Rk5ODlJQUlWW1+ZpRqG4H8IrUhWumsr5GVXnvK9pWbb6Gdu/ejWHDhsHZ2RlHjhxB06ZNtbbtunANPU5xTLm5uZWWreiaKSkpwY0bN9CkSROD6s8EMGkyGIqf1e/fv19lWUREhFKZ8lhaWsLX1xdXr15VGZxMCIEDBw7A2toanTt31lLUT4YiYVq/fj1GjRqFDRs2aLUDrqK2wFAGmtOGqhyTNq49Q/XgwQP8+eefcHJyUmlWqIm6cM14e3vD3d0dx44dU7lxy+VyHDt2DE2aNKm0EzhQN6+h3bt3Y/jw4XBycsKRI0fQvHlzrW6/LlxDZcnlcly6dAnW1tZS8lSRiq6ZmJgYaeBVg6PvgaLokaKiItG0adMKB7e8ceOGND85OVlcuXJFaTBCIere4JYlJSUiJCREABAvv/yyKCoqqrD8/fv3xZUrV8T9+/eV5p86dUpt+W+//VYAEN7e3qK4uFhrcT8JV65cEXK5XO18V1dXAUBERUVJ8x8+fCiuXLkikpOTlcpfvXq1zg5uuXTpUgFAzJgxo9wydfma0fbglnK5XFy5ckUkJSUpzU9PTxf29vYGPbhlWZWdlz179ghzc3Ph6uoq/v3330q3V1hYKK5cuSKuX7+uNL+qn1FDUNG5ycrKElevXlWZn5ubK0aPHi0AiAkTJqgsv3Llirhy5YrK/MoGtzx27FjNDkYHZEIY6ANenkLlPUYlKSkJixYtUnqMSmhoKNatW4e1a9dKjywAHtXKDBw4UHqMSkBAAK5fv45t27bBy8sLJ06cqFWPUVmwYAE+/vhj2NjY4K233lJbVfvSSy9JA4Iqys+fPx8LFiyQynh5ecHU1BSdO3eGh4cH5HI5jh8/jrNnz8LBwQERERHw9fV9QkelHQsWLMCSJUvQs2dPeHp6wtraGteuXcOePXtQVFSEDz74AF988YVUPjw8HBMmTEBISIjKc6XKPkZl+PDh0mNUCgsLa91jVMpq27YtLl68iH/++afcoSnq2jUTFhYmDUZ64cIFnDlzBn5+flJNib+/v9RUKZfL4efnh/Pnz6N///7o2LEjzpw5g/3796NLly6IioqCpaWltO3IyEj07t0bAQEB0jg7CmUfo6J4tNHmzZuRlpaGzZs34+WXX34CR18+Tc/Lv//+Cx8fHxQUFCA4OBgtW7ZU2ZaXl5fS925iYiKaNGkCT09PpWevVfUzqi+anpvExEQ0bdoUXbp0QevWreHq6orU1FQcPHgQt2/fRtu2bXHkyBHUq1dPafuKgZYfTzcuXboEPz8/5OXlYdSoUXBzc8Pu3btx6dIlTJs2jY9RocqdOHFCDBgwQNjZ2QlLS0vh6+srfvvtN5VyitoXdX8N5OfniwULFohmzZoJMzMz4erqKiZNmqTRoyMMjeI4K5rKngPFEP+PP/riq6++Er179xbu7u7C3NxcWFpailatWon//e9/Sn8Z1yaRkZFi5MiRwtvbW9jZ2QkTExPh6uoqXnzxRREREaFSfu3atQKACAkJUbu9jRs3is6dOwtLS0thb28vBg4cKE6fPq3jo9CdEydOCADC19e3wnJ17Zqp7DPz+Pv/8OFD8b///U80atRImJqaisaNG4tZs2aprRlSPFomICBA7b737t0revToIaytrYWNjY0ICAgQBw4c0MFRVp2m50VxjBVNjx//jRs3BACVx6VU9TOqL5qem8zMTPHmm2+KLl26iPr16wsTExNha2srfH19xddffy1yc3PVbl+xHXX+/fdfMWLECOHk5CTMzc1F27ZtxQ8//KDUUmJIWNNEREREpAF2BCciIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmIiIiIg0waSIiIiLSAJMmoqeUl5cXZDJZhdO3336r7zBJS86ePQtjY2NMnz5daX5kZKT0flckMTFRKlf2+WpVlZmZiXr16qFr164qzyIjMnSqTz8loqdK2QdzPu6ZZ555wtGQrkyfPh2WlpaYN2+eXuOwt7fHBx98gHfffRfr169HSEiIXuMhqgomTURPuUmTJik9sZ3qnj/++APHjh3Du+++iwYNGug7HEybNg1ff/01PvjgAwQHB8Pc3FzfIRFphM1zRER13NKlSwEAr776qp4jecTCwgJjxozB3bt3sXnzZn2HQ6QxJk1EVClF/6fExET8+eefCAwMhJOTE2QyGSIjI6VyGRkZmD9/Pnx8fGBrawsrKyu0bdsWn332GXJzc9Vuu7i4GN9++y3atm0LCwsL1K9fH8OHD8eFCxcQHh4OmUymUhO2YMECyGQyLFiwQO02Ff10evXqpXZ5cnIyZs6cidatW8PKygq2trbo0qULli9fjuLiYpXyoaGhkMlkCA8Px40bNzBu3Di4urrC3NwczZo1w9y5c1FQUFDu+Tt9+jRCQkLQpEkTWFhYwMnJCe3bt8e7776LpKQkAMDatWshk8kQFBRU7naSk5NhamoKS0tLPHjwoNxyZZ09exaxsbHo1q0bWrZsqdE6VaF4LyqbHqd4T3/44Qetx0SkK2yeIyKNLV68GMuXL0fnzp0xYMAAJCcnw9jYGABw+fJlDBgwALdu3YKbmxv8/f1hamqKkydPYt68edi6dSsiIyNhb28vba+0tBQvv/wyduzYATMzM/Tq1QuOjo44ceIEfH19MXHiRK0fQ3R0NF566SVkZGTAy8sL/fr1Q0FBAU6ePInp06fjr7/+wq5du2Bqaqqy7rlz5/DWW2/B0dERAQEBSE9Px7Fjx/D555/j0qVL2L59u8o633zzDd5//32UlpaiRYsWePHFF5GXl4fr169j0aJFaNOmDUJDQzFmzBjMnj0bBw4cwLVr19CiRQuVba1atQrFxcUYN24c6tWrp9Hx7tixAwDQt2/fqp0oDfn4+JTbL+nq1as4fvw4jIxU/z738fFB/fr1cfLkSdy9exdubm46iY9IqwQRPZU8PT0FALF27VqNyxobG4s///xTZXlubq5o1qyZACDmzp0rCgoKpGVyuVyMHj1aABATJkxQWm/58uUCgHBxcRGXL1+W5hcVFYmpU6cKAAKACAkJUVpv/vz5AoCYP3++2niPHDkiAIiAgACl+Xfv3hX16tUTMplMrFixQpSUlEjL0tLSRGBgoAAgPv74Y6X1QkJCpFg+/PBDUVxcLC27cOGCsLa2FgBEbGys0np//vmnACAsLCzE5s2bVeK8dOmS0nF/+OGHAoCYMWOGStnCwkLh6uoqAIjTp0+rPW51/P39BQCxe/dutcsV56qy28GNGzekcjdu3Kh0v0lJScLNzU0AEMuXL1db5oUXXhAAxIYNGyrdHpEhYNJE9JRSJELlTWUTDkXZiRMnqt3WypUrBQAxePBgtcuzs7NFgwYNhImJiUhPT5fmN2/eXAAQK1euVFknLy9PShK0lTTNnj1bABDTpk1Tu97t27eFqampqF+/vigtLZXmK5KmTp06Kc1XmDJligAgPvnkE6X5Pj4+AoBYvHix2v097s6dO8LU1FTY29uLnJwcpWW//vqrACC6d++u0bYUFAndf//9p3Z52aRJ06mypCkjI0M888wzAoB49913yy33wQcfCADi7bffrtIxEekLm+eInnLlDTnQqlUrlXkjRoxQu43du3cDAEaNGqV2uY2NDTp37ow9e/YgLi4O/fv3x507d3D9+nUAwNixY1XWsbCwwMiRI7Fs2TKNj6UylcXZsGFDeHt74/Lly4iPj1dpIhs8eLDa/jmtW7cGANy5c0eal5KSgnPnzsHIyEjjDtju7u4YMWIEfv31V2zYsAFTpkyRlin6/kybNk2jbQGAXC6HXC4HAI2a8yr6+X9OTg62bt1a6TYKCwvx0ksv4fLlywgODsbChQvLLauIKTU1tdLtEhkCJk1ET7mqDDng5eWldv5///0HABg3bhzGjRtX4Tbu378PALh9+zYAwNnZGTY2NmrLNmnSRKO4NKWIs0ePHpWWvX//vkrS1LhxY7Vl7ezsAAD5+fnSvJs3bwIA3NzclPpxVWbGjBn49ddf8cMPP0hJ0z///IOYmBi4uLiUm7iqk5mZKf3f1ta20vLh4eHlLktMTKw0aRJCIDQ0FFFRUQgICJA68pdHcd4yMjIqjY3IEDBpIiKNWVpaqp1fWloKABgwYABcXFwq3Ianp6fW4yovnvLmjxgxAtbW1hVuQ13NjLoOzdrWrVs3+Pr64uTJk1Lyoahleu2112BmZqbxthwcHKT/Z2dnS0mKrrz//vv49ddf8cwzz2DHjh2Vjr+kSOocHR11GheRtjBpIqIaa9SoEf7991+8+uqrGteENGzYEACQlpaGnJwctbVN5T2uQ5E4ZGdnq12u+Bm/ujjj4+Mxe/ZsdO7cWaM4q0tRK3X37l1kZmZWubZp7NixWL58Odq3b49ffvkFJiYmSs11mrCysoK1tTXkcjkePHig06RpxYoV+Prrr+Hu7o69e/cqJWzlUQybUFmiTWQoOE4TEdXY888/DwDYsmWLxut4eHigadOmAIBNmzapLC8oKMDvv/+udl1FwnXlyhW1yxV9l7QRZ3W5urqiffv2KC0txZo1a6q07siRI+Hm5oYdO3bg888/h1wux9ChQ+Hu7l7lODp27Ajg0ZAQurJz507MmDEDtra22L17d7nNmI+7ePEiAKBTp046i41Im5g0EVGNvfbaa/D09MTvv/+O2bNnq60BSklJwU8//aQ073//+x+ARwMk/vvvv9L8kpISvPPOO0hOTla7v8DAQBgZGSEiIgJRUVHSfCEEli1bVm7fm3fffRcODg5YsmQJFi9ejMLCQpUyN27cwMaNGys9Zk3Mnz8fAPDhhx+qjeny5ctqEz9TU1NMnToVxcXFWLRoEYCqdQAvq3fv3gCAv//+u1rrV+bkyZMYPXo0jIyM8Mcff8DHx0fjdRUxBQYG6iQ2Im1j0kRENWZtbY3du3fDy8sLX3/9NRo3boyAgAC88sorGDp0KNq0aQN3d3eVh8W++eabGDJkCO7evYv27dtjwIABGD16NLy9vREWFoapU6eq3V+jRo0wffp0lJaWok+fPujduzeGDx8Ob29vvPPOO3j//ffVrufh4YE///wTjo6OeOedd9CoUSP06dMHY8eOxZAhQ9C8eXM0bdoUy5cv18p5GTp0KD7//HPk5+djxIgRaN26NYKDg/Hiiy+iTZs2aNOmDU6cOKF23ddff13qE9SuXTv07NmzWjG89NJLAIADBw5Ua/3KfPDBB8jNzYWHhwc2bdqE0NBQtdPjzp49iwcPHsDX15cDW1KtwT5NRKQVbdq0wT///IMff/wR27dvxz///IO///4bzs7O8PDwwDvvvIOhQ4cqrWNkZIRt27Zh2bJl+PnnnxEZGQkbGxv4+/tj+/btOHv2LFauXKl2f0uXLkXjxo0RFhaG2NhY2NjYwM/PD1u2bEFWVha++uortev17NkTly5dwvLly7F7927ExcWhoKAADRo0QOPGjTF27FgMHz5ca+dlzpw5CAwMxLJlyxAdHY1t27bB1tYWjRo1wnvvvVduLUuDBg3g4+ODEydO4M0336z2/jt06IDnnnsOsbGxuHLlijQ8graUlJQAeFRDd+PGjXLLPf7LPMXrmhwb0ZMmE0IIfQdBRKROeHg4JkyYgJCQkAp/Dl8XXbt2Da1atYK9vT3u3LkDKyuram/rjz/+wMsvv4yZM2di8eLFWoyyevLz89GoUSOYmprixo0blf7KjshQsHmOiMgAffTRRxBCYOrUqTVKmIBHQyz4+flh1apVBjGQ5Pfff4+0tDR8+eWXTJioVmHSRERkIHbu3IlXX30V3bp1w+bNm+Hq6or33ntPK9v+/vvvkZeXh08//VQr26uuzMxMfPXVV/D19cX48eP1GgtRVbFPExGRgThz5gzWrFkDW1tb9O3bF0uWLNFovCNNdOjQQep/pE/29vbS+ExEtQ37NBERERFpgM1zRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNRERERBpg0kRERESkASZNVKe1b98eMpkM5ubmePDgQYVle/XqBZlMhsjIyCcTXBVERkZCJpOhV69e+g6FSOt4fVNtwaSJ6qy4uDj8888/AIDCwkJs3LhRzxEZFi8vL8hkMiQmJuo7FCKiWoFJE9VZP//8MwCgYcOGSq+JiIiqg0kT1Um5ubn49ddfAQAbNmyAjY0NLly4gLi4OD1HRkREtRWTJqqTfv/9d2RlZeHZZ59F7969MWrUKACa1zZFRUWhf//+cHJygpWVFXx9fbFhwwa1ZQsKCvDNN9+gU6dOsLW1hZmZGVxdXdGlSxe89957SE9PV1nn9u3bmD59Ory9vWFhYQF7e3v4+flh1apVKCkp0fg4NekLIpPJIJPJpNfh4eGQyWRISkoCADRp0kQqo65PV3JyMmbOnInWrVvDysoKtra26NKlC5YvX47i4mKNYwWABQsWQCaTYcGCBbh58yZeffVVNGrUCKampggNDQUAhIaGQiaTITw8HFevXsWoUaPQoEEDWFtbo0uXLvjzzz+l7Z04cQIvvPAC6tevD0tLS3Tv3h2HDh1Su+/4+HhMnDgRTZo0gbm5OWxsbODp6YlBgwZh7dq1VToOADh48CCGDBkCFxcXmJqawtHREd7e3hg7diyio6NVyufl5WHBggXw9vaGubk53NzcEBISgps3byqdl7LKngt1FO+l4twpFBUVYePGjXjllVfQqlUr2NnZwdLSEi1btsSMGTOQnJysdntl+/UdPXoUQ4YMQf369WFkZKQUQ15eHhYvXoxu3brBwcEBFhYWaNmyJd57770K+w6uX78eXbp0gZWVFZycnDBgwAAcPXq03PIVSUxMhEwmg5eXF4QQWL16NTp16gRra2vY29ujf//++Pvvv8tdv6qfwbLnOj09Hf/73//QrFkzmJubS5+/su9jcnIyJk2aBHd3d1haWuLZZ59V+v75999/MWbMGLi6usLCwgLt27fH5s2bq3Uu6Mkx0XcARLqg+HKaOHGi9O/PP/+M3377DUuXLoWlpWW5627fvh3Lly9Hq1atEBQUhOTkZMTExGD8+PE4d+4cFi9eLJUtLS3FoEGDcOjQIdjZ2aFHjx5wcHDA/fv3ER8fj2+++QZjxoyBk5OTtE5cXBwGDBiA9PR0NG7cGC+99BIyMzMRGRmJ2NhYbN++HTt37oSZmZlOzk3z5s0REhKCP/74A3K5HMOHD4eNjY203NXVVfp/dHQ0XnrpJWRkZMDLywv9+vVDQUEBTp48ienTp+Ovv/7Crl27YGpqWqUY4uPj0aFDB5iZmcHPzw9CCDg7OyuVOXPmDKZNmwYPDw/06dMHSUlJ+PvvvzF06FBs2bIFJiYmGDlyJJ599ln06dMH//77L44fP44BAwbgyJEj8Pf3l7Z18eJF+Pn5ISsrCy1btsTgwYNhbGyM27dvIzo6Gnfu3MGECRM0jn/dunVSeV9fX/Tu3Rt5eXm4ffs2fvvtNzg7O6Nnz55S+dzcXPTp0wfHjx+HtbU1+vfvD0tLS0RERGD37t0YNGhQlc5fZVJTUzFu3DjY29ujdevWaNeuHeRyOc6dO4fvv/8ev/32G2JjY9G8eXO16//+++/48ccf0apVK/Tt2xfp6ekwNzcH8CiJHjBgAC5cuAAnJyd06dIFtra2OHPmDL755hv8/vvviIyMhKenp9I233rrLSxbtgxGRkbw9/eHu7s7/vnnH/Tq1QvTp0+v0fFOmDABmzZtQo8ePTB48GCcO3cOBw4cQHR0NKKiotC1a1el8jX5DKalpaFz5854+PAhevTogU6dOqmUu3nzpjS/R48euH//PqKjozFp0iQ8fPgQfn5+6N+/P9zd3dG7d2/p2g4ODgYA6Y88MkCCqI65evWqACBMTU3FvXv3pPmtWrUSAMT69evVrhcQECAACADiiy++UFoWGRkpLC0tBQCxb98+aX5UVJQAIDp06CCysrJUthkXFyfS0tKk1/n5+cLT01MAEFOmTBGFhYXSsoSEBOHl5SUAiDlz5iht58iRIwKACAgI0Gh+WYpjepwijhs3bqhd7+7du6JevXpCJpOJFStWiJKSEmlZWlqaCAwMFADExx9/XO6+Hzd//nwpnrFjx4r8/HyVMiEhIVKZzz77TJSWlkrLli1bJgAIDw8P4ejoqPJe/u9//xMARN++fZXmT5gwQdre43Jzc0VUVJTGxyCEEE2aNBEAxNGjR1WWpaamijNnzijNe+eddwQA0apVK3Hnzh1pvlwuFy+++KJ0vPPnz1daT3Eu1q5dqzaOtWvXCgAiJCREaX5WVpb4888/RUFBgdL8wsJC8cEHHwgAYuDAgSrbK/sZ+OGHH1SWl5aWCj8/PwFAvPrqq0rXfFFRkZg1a5YAIHr37q203q5duwQAYW1tLaKjo5WWffHFF9I+K7qOH3fjxg1pPU9PT3H16lVpWXFxsZg4caIAIPr376+0XnU/g4pzDUD06dNHZGZmqsRU9vqeMmWKKCoqkpbt3LlTABC2trbC09NT5dr+9ttvBQDRvHlzjc8BPXlMmqjOmT17tgAghg8frjT/66+/rvCLWXHD6NChg9rlihtCv379pHlbtmwRAMSMGTM0im3Dhg0CgHB3d1ebMPzxxx/SF2teXp40Xx9Jk+I8Tps2Te3y27dvC1NTU1G/fn2lL/+KKG4qTk5O4uHDh2rLKBIFX19fle0WFRUJJycnAUC8/PLLKuumpaUJAMLMzEzpZjhw4EABQCWZqS4rKythb2+vUdnc3Fxha2srAIi9e/eqLL97966wsLDQatJUGXd3d2FkZKSS6Cs+A4GBgWrX27t3rwAgfHx8lBIChZKSEvHss88KAOLChQvS/L59+woAYvbs2Wq36+PjU6OkaefOnSrL7969KwAIc3NzpWuhup9Bxbk2NTUVCQkJamNSXN+NGzdWWlehXbt2Gl3bSUlJGp8HerLYp4nqlOLiYqxbtw7A/zXNKYwfPx4mJiaIjo5GQkJCudsYP3682vkhISEAgJiYGKnPQ8eOHWFsbIw1a9bghx9+wN27dyuMT9FfKDg4WGruKGvYsGFwdHREdnY2Tp8+XeG2dG337t0Aym8qaNiwIby9vaWmyKro27cv7O3tKyzz/PPPK/XFAgATExM0adIEADBw4ECVderVqwcnJycUFhYq9a3x9fUFAEydOhURERHIz8+vUryP8/X1RWZmJsaPH4/Tp0+jtLS03LJnzpxBdnY2nJ2dMWDAAJXlrq6u6N+/f43iKc/58+exZMkSTJ8+HRMnTkRoaChCQ0NRXFyM0tJSXL9+Xe16I0aMUDtfcU0MHz4cJiaqvTuMjIykZsnY2FgAjz6TMTExAICxY8eq3W55nzlNmJiYlHteHR0dUVBQoHQt1PQz2KFDBzRt2rTCmHr37g0LCwuV+d7e3gDKv7a9vLwAoNw+Z6R/7NNEdcru3buRkpKChg0bIigoSGmZi4sLBg4ciJ07d2LNmjX4/PPP1W5DcVMub35eXh4ePHiABg0aoFmzZli6dCneffddTJs2DdOmTYOnpye6d++OwYMH4+WXX1bq73Dnzp0K9yGTydCkSRNkZGRIZfXlv//+AwD06NGj0rL3799HixYtNN624uZQkcaNG6udr+h/Vd5yW1tbpKenKyVG7777LmJiYnDw4EEMGDAApqamaN++PXr27Ing4GB06dJFKvvvv//iq6++Utmuv78/Jk2aBABYsWIFBg8ejA0bNmDDhg1S5/jAwECMGzdOKbbbt29XeszlXQ/VJZfLMW7cOGzfvr3CcllZWWrnlxer4pqYN28e5s2bV+G279+/DwB48OCB9F5U9tmqDjc3t3L71NnZ2SEjI0PpWqjpZ1DX1y6AGif1pDtMmqhOUXQAz8/PR0BAgMpyxZdgeHg4PvnkExgbG1drP0II6f/Tp0/HyJEjsXPnTsTExCAmJga//fYbfvvtN8yfPx9Hjx6Fm5tbtfZTUxXVgGi67ogRI2BtbV1h2Xr16lVp2xV1xFcwMqq4Iryy5WVZWVnhwIEDiIuLw759+xAbG4vY2FicOnUKS5YswRtvvIEffvgBAJCSkiLVVj5OkTS1bt0aV69exf79+3H48GHExsbi6NGjOHz4MD755BP8/PPP5daqaFN57+8HH3yA7du3o1WrVvjqq6/QpUsXODs7Swn8c889h7///lvpOi6rvPdHsT9/f380a9aswtjatGmj6WHUSFWuA2140tcuGRYmTVRn3L17F3v27AHw6K/bY8eOlVs2OTkZ+/btU/urpRs3bqhdRzFytoWFhUqS4OLigsmTJ2Py5MkAHtVWTJw4EX///Tfef/996SasGGhT8Re7Oor9K8pWRHETzM7OVrtcMaxAdTRq1Ajx8fGYPXs2OnfuXO3tGJIuXbpItUrFxcXYsWMHxo8fjxUrVmDEiBHo3bs3evXqVW4yUZaJiQkGDhwoNRNmZWVhyZIl+Pjjj/H6669j6NChsLa2lt7HikZeL29Zdd/fLVu2AAA2b96Mdu3aqSyvanOqQqNGjQAAL774It555x2N1qlXrx7Mzc1RUFCAxMREtcnUkxyVXtufQXq6MN2lOiM8PBwlJSXo2rUrxKMfOaid3nvvPQDlj9lU3uNW1q9fD+DRX9nq+nOU1apVK8yePRsAcO7cOWm+YjyXzZs3q62C3759OzIyMmBra4tOnTpVuA9A+QZQWFioslzRB0UdxQ25vLGWnn/+eQD/dwOua0xMTDBixAipGbfs+1QddnZ2WLBgARwcHJCbm4tr164BADp16gQbGxukpaVh//79KuulpqaqnQ/83/t75coVlWVCCOzdu1fteoqxwR7/2T8AREREIC0tTbODeozimvj99981SiyBR+fZz88PAPDLL7+oLVPeGGi6oO3PID1dmDRRnbFmzRoA/9dhuzyKTqe7du2S+l2Udfr0aXz99ddK82JiYqTmm7fffluaf/jwYezZswdFRUVK5YUQ2LVrFwDlG9fLL7+Mxo0bSwNGlk1Ybty4gVmzZgF41OSnriPp4zw9PeHt7Y2HDx9i4cKFSssiIyPx0Ucflbuuh4cHAODSpUtql7/77rtwcHDAkiVLsHjxYrVJ2Y0bN2rFM/1WrFiBq1evqsxPSUnBqVOnAKhPMNTJzc3FkiVL1F47R48excOHD2FsbCydX0tLS7z22msAHl07ZX8skJeXh6lTpyIvL0/tvvr27QvgUVJx+fJlaX5RURFmz55d7gj3rVu3BgB8//33SvOvXr2KKVOmaHSc6rz44ovo0qULTp48iQkTJqg9BxkZGfjxxx+Vru3//e9/UjyKDuIKX3/9Nc6cOVPtmKpK25/BJ0ExblxNOsyTlujlN3tEWhYZGSn9vDg9Pb3S8h07dhQAxKJFi6R5ip9bz5gxQxgZGYk2bdqI0aNHi4CAAGFkZCQAiLfeektpO0uXLhUAhJ2dnejVq5cYM2aMGDp0qPRzfnt7e3H27FmldU6ePCn9tNjT01OMGjVKDBw4UPrZeVBQkMr4OhUNLbB161Yhk8mkn4K//PLLolOnTkImk4mPPvqo3CEHli9fLgAIGxsbMWzYMPHqq6+KV199Vfz7779SmaioKOHs7CwAiAYNGojAwEDxyiuviMGDB4tmzZoJAKJr166Vnm8FxU+yH/9pfVmV/cxe8T4dOXJE7XJ1Qym0b99eABBNmjQRQ4YMEa+88oro37+/NPZWYGCg2p/Qq5ORkSEACCMjI9G+fXsxYsQIMXr0aNG9e3fpffjoo4+U1snJyRG+vr7S+R4yZIh4+eWXhaurq6hXr54YP358uedFMY6TpaWl6Nevn3jhhReEh4eHsLOzE2+99ZbaIQfKXhNt27YVwcHBIjAwUJiamorAwEDx3HPPqT2HlZ1bIYS4c+eONESAtbW1eO6550RwcLAYNmyY8PHxEcbGxgKAyk/u33zzTem89erVS4wePVq0adNGGBkZScdRnSEHPD09yy1T3rAa1fkMajK8Q2XXd3WvbcV2q3J+SDdY00R1gqKpbciQIXB0dKy0vOIvNnVNdEOHDsWBAwfg6uqKPXv24OTJk+jYsSPCw8Px7bffKpUdMmQIFixYgC5duuC///7Dtm3bEBkZCXt7e7z//vu4ePEifHx8lNbp0qULzp07hzfffBPGxsbYvn07jh49ig4dOmDlypXYtWtXlUYDHzZsGHbt2gU/Pz9cu3YNe/bsgampKX777Td8/PHH5a43depUfPnll/D09MSePXvw888/4+eff1aqCenZsycuXbqEefPmwcPDA3Fxcfj9999x7tw5uLi4YP78+fjpp580jlVfPv/8c0ydOhUODg44fvw4fv/9d1y+fBldu3bFunXrsG/fvkqbXBVsbGzw448/YtSoUSgoKMCBAwewY8cO3Lt3D8OGDcOhQ4dUzru1tTWOHDmCefPmwcXFBREREYiOjkafPn1w6tSpCn89tnnzZsydOxdubm6IjIzE8ePH0aNHD5w5c0bl2lIYNmwYoqKi0KdPH9y9exc7d+7EvXv3sGDBAuzdu7fKI7iX5e7ujuPHj+PHH3+Er68vrl69ij/++EMaVmDKlCmIiIhQqaVZvnw51qxZgw4dOuD48ePYs2cP3NzccOjQIbz00kvVjqc6tP0ZpKeHTAgNG6aJiEgnFixYgI8//hjz589Xef4cERkO1jQRERERaYBJExEREZEGmDQRERERaYB9moiIiIg0wJomIiIiIg3wMSpPWGlpqTQar5WVlcqTromIiOjJEUIgNzcXAODs7FzhswGZNOmYXC5Xen3v3j00bdpUT9EQERFReVJTU9GgQYNylzNp0jEbGxt9h0BERERawKRJj1JTU2Ftba3vMIiIiJ5acrkcLi4uAB51m6kIkyYdS01NVXotl8ul5jlra2smTURERAaisn7GTJp0TJG9EhERUe3GIQeIiIiINMCaJh2rqHmOiIiIag8mTTrG5jkiIqK6gc1zRERERBpgTZOO5eTkKL0u+9NGIiIiqj2YNOkYhxQgIiKqG5g06djjj1F5/DURERHVDkyadIyPUSEiIqob2BGcDNaJEyewcOFC3L9/X9+hEBERsaZJ19gRvHoKCwsxePBgpKWl4ebNm/jhhx/0HRIRET3lmDTpGDuCV09GRgbS0tIAAFevXtVzNEREREyadI4dwasnLy9P7f+JiIj0hUmTjrEjePUwaSIiIkPDjuBkkJg0ERGRoWFNk46xI3j1MGkiIiJDw6RJx9gRvHry8/Ol/zNpIiIiQ8DmOTJIrGkiIiJDw6SJDBKTJiIiMjRMmsgglU2UiouLUVxcrMdoiIiI2KdJ5zhOU/U8XruUn5/P4RuIiEivmDTpGG/01fN40pSXl8dzSUREesXmOTJIZX89B7BfExER6R9rmnSM4zRVj7qaJiIiIn1i0qRjHKepepg0ERGRoWHzHBkkJk1ERGRomDSRQWLSREREhoZJUwUWLFgAmUymNHXu3FnfYT0VmDQREZGhYZ+mSrRv3x779u2TXpuamuoxmqcHfz1HRESGhklTJUxMTODq6qrvMJ466ga3JCIi0qda3Ty3ceNGvP766+jcuTPMzc0hk8kQHh5e4TpxcXEYOHAgHBwcYG1tjW7dumHLli3llr9y5Qrc3NzQvHlzTJgwASkpKVo+ClKHzXNERGRoanVN09y5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWLKXyXbt2RXh4OFq1aoU7d+7go48+QmBgIM6ePQtzc3NdHtpTj0kTEREZmlpd0xQWFobExETcv38fU6ZMqbBscXExJk+eDCMjI0RHR2P16tVYvHgxzp8/jxYtWmDOnDkqSdfzzz+Pl19+GW3btsWAAQOwe/du3LhxA7t27dLlYRGYNBERkeGp1UlT37594enpqVHZw4cPIyEhAWPGjIGPj480397eHnPmzEFhYSHWrVtX4Tbq168PLy8v3LhxoyZhkwbYEZyIiAxNrW6eq4rIyEgAQP/+/VWWBQUFAQCioqIq3EZGRgaSkpLg5eVVbhm5XF7hNipbTo+wpomIiAzNU5M0xcfHAwC8vb1Vlrm6usLGxkYqo/Duu+9iyJAhaNy4MW7fvo05c+agYcOGGDhwYLn7sbGx0W7gTykmTUREZGiemqQpMzMTwKPmOHXs7OykMgq3bt1CcHAw0tLS4OLigoCAAGzYsAFWVlY6j/dpx6SJiIgMzVOTNFXHb7/9VuV1cnJylF6z5qnqhBBMmoiIyOA8NUmToobp8dokhaysLDg6OtZ4P9bW1jXextOuqKgIpaWlSvM4uCUREelbrf71XFUo+jI93m8JAFJSUpCTk6O2vxM9eeoSJNY0ERGRvj01SVNAQAAAYP/+/SrLIiIilMqQfqlLkJg0ERGRvj01SVOfPn3QtGlTbNq0CefOnZPmZ2Zm4osvvoCZmRnGjx+v9f2mpqYqTf/995/W91HXMGkiIiJDVKv7NIWFhSEmJgYAcOHCBWmeYkwmf39/TJo0CcCjB++GhYUhKCgIPXv2VHqMSlJSEhYtWlTh+EvV5eLiovVt1nVMmoiIyBDV6qQpJiZGZRTvY8eO4dixY9JrRdIEAL1790ZMTAzmz5+PzZs3o6ioCG3btsXChQsxatSoJxY3VYxJExERGSKZEELoO4i67N69e0qv5XI5mjZtCuDR8AT8tZ2q2NhY+Pn5Kc1r1KgRbt68qaeIiIiorpLL5dLwQJXdl2t1TVNtwOa5qmNNExERGaKnpiM41R5MmoiIyBCxpknHHh8hXC6Xs/apEuoSJA5uSURE+saaJjI46pKmkpISFBUV6SEaIiKiR1jTpGN89lzVldcUl5eXB1NT0yccDRER0SOsaSKDU15THPs1ERGRPrGmScfYp6nqyiZH5ubmKCgoUJlPRET0pLGmiQxO2eTIyclJ7XwiIqInjTVNOsY+TVX3eNJ09+5dlflERERPGmuayOCwpomIiAwRa5p0jH2aqq5sR3BHR0fp/0yaiIhIn5g06RifLVd15dU0cYBLIiLSJzbPkcFh8xwRERki1jTpmFwur/A1qSqbHLF5joiIDAWTJh3jr+eqjjVNRERkiNg8RwanbHLk4OCgdj4REdGTxpomHeOv56pO0eHb3NwcVlZW0nwmTUREpE9MmnSMv56rOkVyZGlpCUtLS5X5RERE+sDmOTI4TJqIiMgQMWkig8OkiYiIDBGTJjI45SVNHNySiIj0iX2adIzjNFWdIjliTRMRERkSJk06xnGaqqaoqAglJSUAAAsLC1hYWEjLmDQREZE+sXmODErZxIg1TUREZEhY06RjHKepapg0ERGRoWLSpGMcp6lqHk+a2DxHRESGgs1zZFAeT5pkMpmUODFpIiIifWLSpKGpU6dCJpNh+fLl+g6lTis7rIAiWVI00TFpIiIifWLSpIFdu3bh77//hru7u75DqfMer2kq+y+TJiIi0icmTZVITU3F1KlTsWHDBpiamuo7nDqvoqSJg1sSEZE+1eqkaePGjXj99dfRuXNnmJubQyaTITw8vMJ14uLiMHDgQDg4OMDa2hrdunXDli1byi0/YcIEzJgxA23bttVy9KQOa5qIiMhQ1epfz82dOxdJSUlwdnaGm5sbkpKSKix/5MgRBAUFwcLCAsHBwbC1tcXWrVsxatQo3Lp1C7NmzVIqv3z5csjlcpX5pDvqkqayHcGFEJDJZHqJjYiInm61uqYpLCwMiYmJuH//PqZMmVJh2eLiYkyePBlGRkaIjo7G6tWrsXjxYpw/fx4tWrTAnDlzlJKuf//9F59++inWrVsHI6NafZpqlYpqmoQQKCws1EtcREREtTob6Nu3Lzw9PTUqe/jwYSQkJGDMmDHw8fGR5tvb22POnDkoLCzEunXrpPnHjx/H/fv30bx5c5iYmMDExARJSUl46623lNYn7aro13MAm+iIiEh/anXzXFVERkYCAPr376+yLCgoCAAQFRUlzXvppZfQuXNnlXKhoaGYMGFCufup7IG8fGBvxSqqaVIsd3BweNJhERERPT1JU3x8PADA29tbZZmrqytsbGykMgDg4OCgcnM2NTWFm5sbmjdvXu5++IDemtEkaSIiItKHWt08VxWZmZkAHjXHqWNnZyeVIf1h0kRERIbqidQ05eTkIDU1FRkZGXB0dISLi0utrJFJTEystMzjD+itjcepT0yaiIjIUOksaYqIiMCOHTtw6NAhJCQkqCxv3rw5AgMD8dJLL0l9inRJUcNUXm1SVlYWHB0da7wfPqC3ZirrCM4BLomISF+0mjSVlJRg5cqVWLZsGRISEiCEkJbZ2NhITWByuRzx8fGIj4/H6tWr0bx5c8yYMQNTpkyBsbGxNkOSKPoyxcfHo1OnTkrLUlJSkJOTA19fX63vNzU1Vem1XC5H06ZNtb6fuqKicZoeX05ERPQkaa1P0759+/Dss89ixowZSEpKwgsvvIDly5fjzJkzKCgoQFZWFm7fvo3s7Gzk5+fj1KlTWLZsGQYPHozExERp1O2IiAhthaQkICAAALB//36VZYp9Kspok4uLi9LEhKlibJ4jIiJDpbWkaeDAgXj48CEWLVqEO3fuYPv27XjjjTfg4+Oj8sw2MzMzdOzYEdOmTcOff/6JO3fu4Ouvv8aDBw8wcOBAbYWkpE+fPmjatCk2bdqEc+fOSfMzMzPxxRdfwMzMDOPHj9fJvklzTJqIiMhQaa157tNPP8Xbb78NKyurKq/r7OyMWbNmYerUqVi6dKnG64WFhSEmJgYAcOHCBWmeYkwmf39/TJo0CQBgYmKCsLAwBAUFoWfPnkqPUUlKSsKiRYvg5eVV5dhJu5g0ERGRodJa0vThhx/WeBtWVlZV2k5MTIzSKN4AcOzYMRw7dkx6rUiaAKB3796IiYnB/PnzsXnzZhQVFaFt27ZYuHAhRo0aVeP4qebKJkUcEZyIiAxJrR7cMjw8HOHh4VVax9fXF3v37tVNQGqwI3jV8DEqRERkqPSSNN24cQP//PMPPD096/xz3FxcXPQdQq2iSIrMzc2lByUzaSIiIkOgsxHBd+7ciWHDhuHkyZNK87/55hu0aNECw4YNQ6dOnTBx4kRdhUC1kCIpKpsoMWkiIiJDoLOkaf369di3bx9at24tzfv333/x/vvvQwiB9u3bw8rKCuvWrcNff/2lqzD0LicnR2l6vLmOlFWWNHFwSyIi0hedJU1nz55F+/btYWtrK8375ZdfAAArVqzAmTNnEBcXB2NjY6xevVpXYVAtoy5p4uCWRERkCHTWpyktLQ0dOnRQmhcZGQlLS0uEhoYCAFq1agV/f39cunRJV2HoHZ89VzWKmqSyiRKb54iIyBDorKYpPz9f6ZEoJSUlOHPmDLp27QozMzNpvru7O1JSUnQVBtUy7NNERESGSmc1TQ0aNEB8fLz0+vjx48jLy4Ofn59Suby8vDr9kNucnByl13K5nL+oK0dRURFKSkoAMGkiIiLDo7Oapueeew7nz5/Hb7/9Jj2qRCaToW/fvkrlrly5And3d12FQbWIutHAH/8/kyYiItIXndU0zZ49Gzt27MArr7wCABBCoFOnTujZs6dU5tatW/j333/r9LAD7NOkOSZNRERkyHRW09SxY0fs2bMHAQEBaN26NUJDQ7Fr1y6lMlu2bIG9vT369OmjqzCoFlH3CBXg0QOeZTKZShkiIqInSacjgvfp06fChGjWrFmYNWuWLkPQO/Zp0lzZMZjK1i7JZDJYWloiNzeXSRMREelNrX72XG1Qlzu5a1t5zXOK17m5uRzckoiI9OaJJE3Hjx9HZGQkbt++DSEEPDw80KtXL3Tv3v1J7J5qiYqSJkVzHWuaiIhIX3SaNCUkJGD8+PE4fvw4gEedwQFI/VO6du2K9evXo3nz5roMQ6/kcnmFr+n/VFbT9HgZIiKiJ0lnSVNycjJ69OiBlJQUWFlZYcCAAWjSpAkAIDExEfv27cPx48fRs2dPxMXFoWHDhroKRa/46znNldcRHGDSRERE+qezpOmjjz5CSkoKhg8fjhUrVqB+/fpKy9PS0vDGG2/gjz/+wPz58xEWFqarUKiWKK8jeNnX+fn5EEJItZVERERPis6GHNi7dy/c3d3xyy+/qCRMAODs7IyNGzfC3d0de/bs0VUYepeTk6M0paam6jskg6VJ8xwAdgav4+7evYv33nsPhw8f1ncoRERKdJY0paenw9/fX+k5c48zMzODv78/MjIydBWG3llbW6tMpJ6mSROb6Oqu4uJiDBo0CN988w0GDBiA06dP6zskIiKJzpImDw8PjTo95+bm1tn+TIaoqKgICxYswMiRI3Hx4kV9h6NE06QpOzsbS5cuRXBwMC5cuPDE4iPd+/7773H27FkAj67V0aNHq4x1RkSkLzpLml5++WVERkbizp075Za5c+cODh8+jBEjRugqDCojMzMTAwcOxMcff4zff/8d/v7+iIqKqvb2zp8/j7S0NK3Fp2nS1KdPH8ycORObN29GUFAQ7t+/r7UYtK2oqAj//fcfCgsL9R2KxgoKCpCQkIDs7Ownut+bN29i3rx5SvPi4+Px1ltvPdE4aqK4uFjfIRCA0tLSSstcvnwZwcHBePHFF3Ht2jWV5SdPnsS+fftq1Wd3+/btaN++Pfz8/DB58mQsXboU0dHR0i/XSQuEjuTm5oru3buLFi1aiL/++ktl+a5du0TLli1F9+7dRW5urq7CMDg5OTkCgAAgcnJytLbdv/76SwwfPlz8/vvvas/nrVu3RNu2baV9KyYzMzOxZcuWKu9v3rx5AoBwc3MTycnJKstLS0vLXffevXsiNjZW7Ny5U6xZs0asWrVKHD9+XMyePVuKa+/evUrrTJw4USV2xTRgwABRUlJS5WPQlVu3bolVq1aJoUOHCltbWwFAmJubi27duom33npL7NixQxQXF6usl5eXJ5KTk8X9+/fFw4cPRX5+vtrtX716VXz55Zdi3759oqCgQJpfWFgoIiIixOLFi0V0dHSF74EQQhQUFIjTp0+L1atXiylTpojnnntOuLm5CZlMJgAIExMTsWDBAlFUVFTuNq5evSrWrl0roqOjKyyniRdeeEF6T1966SVhY2Mjvd68eXONtl2RwsJCERMTI86fP1/pOSvP3bt3RY8ePYSFhYV4++23RXZ2tkbrFRcXi+XLl4uRI0eKhQsXiuPHj4vCwkKVckVFReKff/4R69evFz/99JPYuHGj2Lp1q1bOuz4UFRWJs2fPihUrVoiZM2eKVatWiQsXLmj0OS4pKRHff/+96Nq1qwgJCRFr1qwR//33n7hw4YL49NNPRadOnYRMJhOhoaFqP0Pp6elixowZwtjYWLq+7OzsxLZt24QQQqSlpYlx48ZJy5ydncXbb78tLly4oPXzoHDt2jURFBQkGjRoILp37y4mTZokli5dKu7cuaPR+iUlJdJ3srqpb9++IiEhQSux3rp1S5w9e1Yv111xcbFIS0sT165dK/f7sTqqcl/WWtLUu3dvlcnPz0/IZDJhZGQknJycRMeOHUXHjh2Fk5OTMDIyEkZGRsLPz08EBgZqKwyDk5OTozSlpqbqJGkaOXKktF0bGxvxyiuviNWrV4vPPvtMvPbaa8LNzU1a7uTkJHr16iW9lslkon///uK5554TrVq1En5+fuLAgQPl7mvXrl1KH8gXXnhB6Wbz119/iYYNG4p+/fqJ27dvS/NLS0vF559/LkxMTMr9cCumyMhIpX2++eabSsufeeYZ4eLiIr3++uuvq3S+SktLRUJCgvj999/F7t27RVpaWpXWV7e96OhoMXToUCnpqGhq0qSJ+P7770V6err4888/xciRI4WFhYVSGWNjYzFixAhx48YNaR8//vijsLS0lMrY29uLsWPHivHjxwsHBwel9Tt06CDCw8OVvlwKCwvFvn37RGhoqLCzs6s0TgDCz89PiqGgoEBcuHBBLFy4UHTo0EGpnKOjoxg9erT4+eefxdGjR8WdO3fKTUJu3LghlixZIlauXCkOHTok1qxZI23H1dVVZGRkiPDwcKXj/OSTT8T+/ftFRkaGSE1NFXFxcWLr1q1i586dIi8vr8L3Jzk5Wfz4449i/fr10o2ooKBA/PTTT8LLy0tp3+PHjxcbN24U9+/f1+i9v3r1qtI2AAgPDw+xY8cOUVRUJBISEsT+/fvFjh07lLaZkJAgevTooXK+ra2tRZs2bUSXLl1EQECA6Nq1q9J7/vjUpk0bERERIW23qKhIREREiFWrVomrV69WGHtUVJTo3r276NGjh/j000/FqVOnRG5urti7d6+YOnWqaNmypfDz8xN//PGHSkJTWlqqcZL58OFDsW/fPjFv3jwRGBgorK2t1R6LnZ2dGDNmjHjw4IHa7Vy/fl307NlTo+sWgOjTp4/IzMwUQjy69pcvXy7q1atXbvnx48eL+vXrl7t84MCBIikpSSkmuVwujhw5IrKysio8B6WlpeLEiRMq18Gvv/6q9AdC2cnBwUGcOHFCZTsXLlwQJ0+eFP/++6+4ceOG0h8c5U2WlpZi0aJFapOdwsJCcfz4cfHdd9+JV155RTRv3lzUr19fDB8+XKxZs0YkJSWJ3377TfTr10/6fvP09BRLliyRzu/jkpOTxaeffiref/99sWLFCrFr1y7xzz//iIyMjAqvmxMnTojBgweL9u3bizZt2oiWLVsKLy8vYW9vr3Q8586dq/B8V4VekiaZTFbtycjISFthGJyKLmJtJU3FxcUqX9rlTU2bNhVXr14VhYWFIjQ0tNxyxsbG4vvvv1e5uJOSkoSTk5NK+V9++UUIIcTff/+tdPN3d3cXp06dEkVFReK1117T+MsuLi5Oab8bNmwQAISRkZGYPXu2yMvLEwcOHFCqFfnzzz9FRESEWLFihfj888/Fnj17xMOHD4UQj75ozp07JxYuXCgGDhwonJ2dVfbp7e0txowZI6ZPny4++OAD8dlnn4mvvvpKfPHFF+Kzzz4Tn3zyiViwYIH46KOPxIcffijeffddMX36dDF58mTRuXNntcfh7OwsBg0aJLy9vTU+9scnCwsLMW/ePDF06NBqb8PKykrUr1+/0kTJxcVFdO3aVQwePFjlL3Fvb2+leZpMlpaWYuDAgeKXX34ROTk5Ijk5WbzxxhvC1NS03HUUtUqlpaVi9OjRGu2nQYMGYv78+SIlJUXpusnPzxcLFy5UuSk988wzwtPTs8JtymQy0a1bN/HJJ5+Iffv2iStXrqjU4h4/frzCm/Dj58vIyEj4+/uLt99+u9zEobrToEGDxJQpU1Su7V69eolff/1VKbHMyckR06dPL/e41c1v166d+Pnnn8X8+fNFr169hIWFhXBwcBAjR44U4eHhKude8X0wZMgQYWRkVKVjadeunUhNTVX6jlu2bJmwsrLSaP2y571Dhw5i3bp1Kp9BKysr8cknn4hRo0ap3Ya9vb146aWXhJmZmdJ8W1tbsXLlSpGcnCw+/PBD6fvQy8tLJaFSXMeHDh1SSpAV18HLL7+stG1114Stra2IiYkRQjxK0AMCAso9biMjI7Fo0SKRlZUlTpw4IVatWiUaN26sVMbJyUkEBgaKmTNnio8++kgEBgZqfF7VTba2tuJ///ufuHbtmnS8GzZsEI6OjuWuY2NjI5555hkxYcIEqVY8Pz9fvP/++xpfK0eOHCn/plhFekmaIiMjazTVVRW96dqsaSoqKhL79+8Xr776qkqNg2IKDAxU+iIqLS0VH330kTA3N5fKPP4X7euvvy41FxQWForu3btLy9q0aaP0QYyNjVX7V5qlpaXw9/dXmhcaGio++eQTsWLFCvH999+LkJAQ8cwzzwiZTCZ8fHxUmihKS0tFTEyMiI+PV5o/d+7cCs+xTCYT7dq1U6qV0vXk5uYm5s2bJ06ePKn01/mDBw/En3/+KYKCgtSu5+zsLIYMGSIGDRokgoKCKvyLd8KECeKVV15RSoJsbW3F6NGjxdKlS8tN4spOdnZ2Ijg4WCxZskRERUWp/MUYGxsrmjRpUuE2OnfuLBYsWCBGjhxZaUJmZWVVYY0JAPH8888rJeoPHz6s8Cbx+GRmZia6d+8uRowYIaZPny6aN2+u0Xr9+vUTgwYN0ujmYW9vLxwcHISDg4PSzbldu3YiJiam3Pe3vMnLy0ts3bpV/Pjjj2LMmDHC09NTWFtbKyUvzZs3l5rwfvrpJ7Fs2TKxcOFC0bVrV433Y2xsLLy9vcXgwYNF06ZNNVqnqslO8+bNRXBwsPjyyy9F7969yy3n4eEhRo4cKZYsWSL27t0rvvnmGzFs2DCl2oTWrVuLO3fuiKNHjwofHx+Vc7Z//34RHR0tPv30U9G/f38xYMAAsWzZ3I8xngAAT2VJREFUMpGUlCRiY2PV/nGnmEaPHi1u3bolfbd89913SjXgQ4cOlWokHzx4IJYtWybc3d2VtqEuufT29hZ3795V+gxpWjM2btw4kZ2dLTIzM8WJEyeUWgOsra3FW2+9pfRd/fjk6OioVOOokJWVJaZPn65RDbhiMjc3L/c+0qRJE9GnTx+1ywYMGCAGDRpUpWtGcd20atVKaZ6pqamwtrYW9vb2on79+qJFixaia9eu4vnnnxevvPJK7a9pIvWeVPNcWQUFBWLXrl3i+++/F1u3bhUnT55U+1egQlZWlrh3754oLCwUxcXF4v3331e6eJ2cnES7du2Uvri8vLxEenq6UrNg2Q9lr169hJ+fn8qHw9TUVKqVKi/2qvQrKSoqUtvEUdlUr149MXDgQPHRRx+Jt99+W3Tv3l3lL8qqTh06dBDr169X6mdUnvPnz4uQkBDRunVrMXr0aLFr1y6VRPHhw4di1qxZSl/mTk5OYseOHUrn69ChQ+LAgQNKzXClpaXi2LFjYty4ccLX11e0adNGNGnSRHh4eIiXX35ZbNu2rdImLSGEyMzMFCEhIcLMzExYWlqKDh06iNGjR4uFCxeqJLCFhYXiyJEjYunSpWL69Oli4MCBKjeasjeBOXPmiJUrV4q3335bDB48WIwaNUrphlP2WK5fvy42btwopk2bJvz9/cWAAQPE66+/Lj777DMxatSoSmvAZDKZeO2118TcuXNFt27dpGRgwIAB4u+//5b2lZ+fLw4fPizee+898eyzz2r83vfu3VupVvPXX38Vvr6+on379mLYsGHi3XffFTNnzhQtW7ZUWm/SpEnlNuuUlpaKvLy8Cvt8lpSUiI0bNwoPDw9pm5aWlmLkyJHik08+ES1atKgwbktLS7F06VKRkJAgVq5cKV544QXxzDPPiNDQULFt2zaRnZ0t9uzZI3x9fVXW9fT0LPfG+vjUsGFDMW3aNPHrr7+Kmzdvlns8V69eVToWdYnPG2+8oVGfscuXL4tGjRoprRsQECBOnjyptvyJEyfE1KlTlT5fZWVkZIhXX31VJR4TExPRoEED6XWbNm3EqVOn1NZgtWrVSsyYMUMpQbC0tBRr1qxR+d6Ty+Wif//+as+nl5eXeOONN8TYsWPFCy+8ICZPniyuX79e4fmIjY0VL7zwglJXDcXUqFEjMXbsWLFixQpx+vRp6V5w7Ngx8cEHH4iAgAAxbtw4cejQIekPwUuXLonJkydXmMiNHj1a7N27V4SFhYmPPvpIhISEiMDAQOHt7V3ueqampuLzzz9/on2mmDQZMF11BNe29evXl5tEmJqaSl889+7dU2kOeOaZZ0RGRobIz88XY8eOlebb2dmJw4cPaz3WlJQUMX78eDF8+HAxe/ZssXr1avHLL7+I6dOnCx8fHyGTyYS1tbUYPHiw+P7778XVq1fVJmb5+fni0qVL4sSJE+LQoUPizz//FNu3bxd//vmn+Ouvv8SuXbvE3r17RUREhDhw4ICIiooSJ06cEP/8849ITEysdifiyly5ckWMGzdOhISEKPURe5IKCgqq1dm+pKREREVFiddee004OjoKCwsLMXPmTHHv3j2txnfz5k3x3nvviYYNG6pcrz179hRnz55VKv/w4UON+rElJSWJn3/+WXzwwQdizJgxws/PT7Ro0UKaWrduLd55550qdUq9du2a+PHHH0VUVFRVD7Nccrlc/PTTT2Lz5s1KCUVpaak4cuSICA0NFT4+Pko1aX5+flKTSmVKS0vF3r17xbx588T69eulZqiioiIRExMj5syZI7p3767SL8/b21v8/PPPGv0hofDff/+p7W7Qvn17ER0dXaXzcuvWLTFgwADRo0cPsWvXLq18Rg8cOCBatmwp6tWrJ9577z1x69YtcfPmzQqbe1u2bCl++eUXpR+AXLt2Taxdu7bCDtp5eXli8ODB0naMjIzEzJkza3zvSElJEfv27RNbtmwRiYmJNdrW/fv3xcKFC5WOv0GDBlLH+vLI5XKxceNGERgYKK3XoUMH8c8//9Qonupg0mTAakvSJMSj/hr9+vUTjRs3lvqgyGQysXr1aqVyv/32m3RMLi4uUqdhIR592a5evVq8+uqr4tKlS0/4CB7Jzc2tlb8wqmuKioo0qt2qqfz8fJGYmCiOHTsmzpw5o7NktjYqKSkRN2/eFPHx8To5L4WFheLcuXNi7dq1Ys+ePWp/JaqJmzdvSn2QnJycxMqVK6u9LV1Q1wn++vXrKjWr9evXFytXrqzR909BQYF4//33xfDhw1U6hRuS4uJi8ddff4lvv/22yj+suXHjhjh48KDaX44+CVW5L8uE0O0ADqdOncIff/yBq1evIisrS+14ETKZDIcOHdJlGAZDLpdLD/HNycmpNSOECyHw4MEDyGQy1KtXT2XZwoULERMTgy+++ALt2rXTU5REVFfI5XIcPXoUXbt2haOjo77D0ciVK1cwaNAgJCcnY8aMGfjwww9hb2+v77CoElW5L+s0aXrnnXewdOlSKVGSyWRKSZPitUwmQ0lJia7CqLalS5ciLCwMSUlJMDExQceOHfHll1+ia9eu1d5mbU2aiIiockVFRRBCVPgIMTIsVbkv62xE8N9//x1LlixBw4YNsWrVKvTv3x8AEBERgeXLl6N79+4QQuD999832Adzenp6YsmSJTh//jxiY2PRvHlzBAUF4cGDB/oOjYiIDJCpqSkTpjpMZzVN/fr1Q2RkJC5fvgxvb29MmDAB69evV6pRmjdvHr755hscP34cPj4+ughDq7KysmBvb4/IyEgEBARUaxusaSIiIjIcBlHTdPbsWXTt2hXe3t7llvn444/h5uaGzz77rFr72LhxI15//XV07twZ5ubmkMlkCA8Pr3CduLg4DBw4EA4ODrC2tka3bt2wZcuWSvdVWFiI1atXw9HREW3btq1WvERERFR7mehqw9nZ2WjcuLH0WlFdmZOTI2V0RkZG6Nq1a7UfGjt37lwkJSXB2dkZbm5uSEpKqrD8kSNHEBQUBAsLCwQHB8PW1hZbt27FqFGjcOvWLcyaNUtlnaNHj+L5559HXl4eXF1dceDAATg5OVUrXiIiIqq9dFbTVL9+fTx8+FB67ezsDABITExUKieXy5GVlVWtfYSFhSExMRH379/HlClTKixbXFyMyZMnw8jICNHR0Vi9ejUWL16M8+fPo0WLFpgzZ47apKtz5844d+4cYmNj8fzzz2PkyJFIS0urVrxERERUe+ksafLy8lJKQjp06AAhBDZt2iTNS0lJQVRUFDw9Pau1j759+2q87uHDh5GQkIAxY8Yo9Z+yt7fHnDlzUFhYiHXr1qmsZ2lpiebNm6Nr164ICwuDkZER1q5dW614iYiIqPbSWfNcnz598NlnnyExMRFeXl54/vnn4eTkhIULFyI+Ph6NGzfGH3/8AblcjuHDh+sqDElkZCQASL/iKysoKAgANGomFEKgoKCg3OVyubzC9StbTkRERIZJZ0lTcHAwkpOTcevWLXh5ecHa2hpr165FcHAwtm7dKpXr1KkTPvjgA12FIYmPjwcAtR3TXV1dYWNjI5VRmD17Nl544QV4eHggPT0dK1aswO3btytM8hT9tYiIiKhu0VnS1Lp1a/z0009K84YMGYL4+Hj89ddfSE9PR+vWrTFkyBAYGxvrKgxJZmYmAJQ7OqudnZ1URiE5ORnBwcG4d+8enJyc0KVLFxw9ehStW7fWebxERERkWHSWNJXH3d0dr7/++pPebbVs2LChyuvk5OQovWbNExERUd3wxJMmfVHUMD1em6SQlZWllecbcbBKIiKiuklrv55LTk42qO08TtGX6fF+S8CjX/Hl5ORUOBAnERERPd20ljR5e3vj/fffR0ZGRrXWT09Px3vvvaezxEXx2JP9+/erLIuIiFAqQ0RERPQ4rSVN/fv3x9dffw0PDw+MHTsWBw4cqPCn+QBQUFCAiIgIjB49Gh4eHli0aJH0839t69OnD5o2bYpNmzbh3Llz0vzMzEx88cUXMDMzw/jx47W+39TUVKXpv//+0/o+iIiISPe0+sDegwcP4u2338alS5cgk8lgamoKHx8ftG7dGvXq1YOdnR2ysrLw4MEDXL58GefPn0dRURGEEHj22WexZMkS9O3bV+P9hYWFISYmBgBw4cIFnDlzBn5+fmjevDkAwN/fH5MmTZLKl/cYlaSkJCxatEjtY1RqSiaTlbuMD+wlIiLSr6o8sFerSZPCgQMHsHz5cuzfv1+ptkkmk6Hs7szNzREUFIRp06ZVKVlSCA0NVTuKt0JISIjKA3xPnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVXn/mmDSREREZLj0njQpFBQU4NixYzh79ixSU1ORmZkJBwcHNGjQAB07dsRzzz0Hc3NzXe3eINy7d0/ptVwuR9OmTQEwaSIiItI3g0maiDVNREREhqwqSZPOHthLREREVJc8NYNb6ktqaqrS67LNc0RERFR7MGnSMRcXF32HQERERFrA5jkiIiIiDbCmSccef4CvXC5n7RMREVEtxKRJx/jrOCIiorqBSZOOyeXyCl8TERFR7aCzpCk6OhrGxsbw8/PT1S5qBcXYD0RERFS76awjeK9evTBv3jxdbZ6IiIjoidJZTZOjoyPc3d11tflagx3BiYiI6gadJU0+Pj6Ij4/X1eZrDXYEJyIiqht01jw3Y8YMxMXFYffu3braRa0gl8tVJiIiIqp9dFbT1KFDB0ybNg1Dhw5FaGgohg8fDi8vL1haWqot37hxY12FolfsCE5ERFQ3yIQQQhcbNjY2BgAIISCTySoOQiZDcXGxLsLQu4qOvbKnKRMREZFuyeVyqYKjsvuyzmqaGjVqVGmy9DRgR3AiIqK6QWdJU2Jioq42XauwJomIiKhu4AN7iYiIiDTApImIiIhIAzpPmo4ePYqRI0fCw8MD5ubmePXVV6VlBw4cwJw5c5CSkqLrMIiIiIhqRKcP7P3ss88wf/58lP2BXtn/29vbY+HChfDw8MAbb7yhy1D0hg/sJSIiqht0VtO0d+9efPTRR2jYsCG2bNmC1NRUlTK+vr6oX78+du3apasw9M7GxkZp4i/niIiIaied1TR99913MDc3x969e9GmTZtyy7Vv356PWyEiIiKDp7Oapri4OPj6+laYMAFA/fr163SfppycHKVJXY0bERERGT6d1TTJ5XK4urpWWi4zMxOlpaW6CkPvOE4TERFR3aCzmiYXFxdcv3690nJXr15Fo0aNdBUGERERkVboLGny9/fHuXPncOzYsXLL7Nq1C9evX0fv3r11FQYRERGRVugsaZo1axZkMhmGDRuGHTt2qDyQd9++fZg0aRJMTU0xffp0XYVRY19++SU6d+4MW1tbuLi4YOTIkXxEDBER0VNIJsoOnKRl3333HWbOnAkAsLS0RF5eHmxsbCCTyZCdnQ0hBJYtW4Zp06bpKoQaGzBgAEaPHo0uXbqgoKAA7777Lu7cuYMLFy7AxKTqXcKq8jRlIiIi0q2q3Jd1mjQBQEREBObPn4+4uDilgS3btWuHzz77DIMHD9bl7rXuxo0baNq0Kc6fP4927dpVeX0mTURERIajKvdlnT9GJSgoCMePH8e9e/dw8uRJHD9+HHfu3MG5c+e0kjBt3LgRr7/+Ojp37gxzc3PIZDKEh4dXuE5cXBwGDhwIBwcHWFtbo1u3btiyZYtG+8vMzAQAODk51TR0IiIiqkV0+hiVsurVq4d69eppfbtz585FUlISnJ2d4ebmhqSkpArLHzlyBEFBQbCwsEBwcDBsbW2xdetWjBo1Crdu3cKsWbPKXbekpATvvPMOBg4cCA8PD20fChERERkwndU0hYeH4/bt27ravCQsLAyJiYm4f/8+pkyZUmHZ4uJiTJ48GUZGRoiOjsbq1auxePFinD9/Hi1atMCcOXPKTbqEEJgyZQpu3rxZaU0WERER1T06S5omTpwIT09PtGrVCtOmTcOOHTuQlZWl9f307dsXnp6eGpU9fPgwEhISMGbMGPj4+Ejz7e3tMWfOHBQWFmLdunUq6wkh8MYbb+DgwYM4dOgQ6tevr63wiYiIqJbQWfNcaGgoDh8+jGvXruHatWtYuXIljIyM0KlTJ/Tt2xd9+/aFn58fTE1NdRWCisjISABA//79VZYFBQUBAKKiopTmCyHw5ptvYvfu3YiKiqp0IE65XF6j5URERGSYdJY0rVmzBgAQHx+PgwcP4sCBA4iMjMTJkydx8uRJfPnll7C0tIS/vz/69etXYV8ibVE8GNjb21tlmaurK2xsbFQeHvzmm2/i119/xV9//QVLS0vpOXlOTk4wMzNT2Y6iBz4RERHVLTrvCO7t7Q1vb29MnToVQgicOnUKBw8exMGDB3Hs2DHs378fBw8efCJJk+KXb/b29mqX29nZSWUUVq5cCQDo0aOH0vwjR46gV69e2g+SiIiIDJLOhxwoq6ioCNnZ2cjOzkZWVpY0SriOh4qqESGE2qm8hCknJ0dpohr45BPAxweIidF3JERERLqvaTp37hwOHDiAgwcPIiYmBvn5+RBCwM7ODoMGDZL6Nz0Jihqmx2uTFLKysuDo6FijfXCwSi3Jzn6UNJWUAEuWAP7++o6IiIiecjpLmoKDg3H48GE8ePAAQgiYmpqiW7duUpLk6+sLY2NjXe1eLUVfpvj4eHTq1ElpWUpKCnJycuDr6/tEY6JyZGc/SpgAID1dv7EQERFBh81zW7ZswYMHD9CuXTts27YNGRkZiIqKwrx589C9e/cnnjABQEBAAABg//79KssiIiKUypCe5eX93//z8/UXBxER0f+ns6TJ1tYWQgicP38er7zyCoYNGyYNJKkvffr0QdOmTbFp0yacO3dOmp+ZmYkvvvgCZmZmGD9+vFb3mZqaqjT9999/Wt1+nVU2aSr7fyIiIj3RWfNceno6Tp48Kf1S7siRI9i/fz9kMhmcnZ3Rp08f9OvXD/369avRI0nCwsIQ8/87Cl+4cEGapxiTyd/fH5MmTQIAmJiYICwsDEFBQejZs6fSY1SSkpKwaNEieHl51ei4H+fi4qLV7T01mDQREZGBkYkn9NO13NxcREZGSqNqX7x4UVrWokULXLlypVrbDQ0NVTuKt0JISIjKY09OnjyJ+fPnIzY2FkVFRWjbti1mzpyJUaNGVSuGishksnKXVfY05adadDSgaCr18ABu3dJvPEREVCfJ5XJpjMXK7stPLGkq6/z58/jll1+wfPly5OfnQyaToUTR6beOuXfvntJruVyOpk2bAmDSVKGICGDAgEf/r1cPSEvTbzxERFQnVSVp0vmQAwBw+/ZtadiBQ4cO4f79+wAg/aque/fuTyIMvWDzXDWV7fzN5jkiIjIAOkuaduzYIfVnUjyaRAgBmUyGZ599Vhp6ICAgAFZWVroKg2qrx/s0CQFU0NRJRESkazpLmoYNGyb9v1GjRlKS1KdPHzRo0EBXuzU4j48KLpfLWfukibJJkxBAYSFgbq6/eIiI6Kmns6TppZdeQr9+/dC3b1+1D8glqtDjTXJ5eUyaiIhIr3SWNG3btk1Xm65VFJ3LqIoeT5o4wCUREenZE31gL5HGHk+S2BmciIj0TOdJ05UrVzBlyhS0bNkSNjY2sLGxQcuWLTF16tRqj81Um+Tk5ChNqamp+g6pdlDXPEdERKRHOh1yIDw8HFOmTEFRURHKDgcVHx+P+Ph4rF27FqtWrUJISIguw6DaiEkTEREZGJ0lTadPn8bkyZNRUlKCwYMH49VXX0WzZs0AAP/99x9+/vln/PXXX5g8eTLatGmDzp076yoUvWKfpmpi0kRERAZGZ0nTN998g9LSUvz888+YMGGC0rJnn30WL7zwAsLDwzFx4kQsXrwYv/76q65CodqISRMRERkYnfVpOnr0KHx8fFQSprJCQ0PRsWNHREdH6yoMvWOfpmpi0kRERAZGZ0lTWloaWrduXWm5Vq1aIa0OP1fM2tpaZSIN8NdzRERkYHSWNDk4OODmzZuVlrt58ybs7e11FQbVVqxpIiIiA6OzpKlLly6IjY3F4cOHyy1z+PBhHDt2DF27dtVVGHonl8tVJtIAB7ckIiIDo7Okafr06SgtLcWQIUPw3nvv4dKlS8jNzUVubi4uXryId955B0OGDJHK1lWKsakUE587pyHWNBERkYHR2a/ngoKC8OGHH+Lzzz/H4sWLsXjxYpUyQgjMmzcP/fv311UYVFsxaSIiIgOj0xHBP/30U+zZswe9e/eGubk5hBAQQsDMzAyBgYHYs2cPPv74Y12GoHf89Vw1sSM4EREZGJ2OCA4AAwYMwIABA1BSUoIHDx4AAOrVqwdjY2Nd79og8Ndy1cSaJiIiMjBaT5quX7+Obdu2ITExEebm5vDx8cHIkSNhaWmJBg0aaHt3VFcxaSIiIgOj1aTp22+/xXvvvYeSkhKl+fPmzcOePXvw7LPPanN3VJcxaSIiIgOjtT5NMTExmDVrFoqLi2FlZYUOHTqgWbNmkMlkuH37NoYPH47S0lJt7Y7qMiHYp4mIiAyO1pKm5cuXQwiBkJAQpKSk4NSpU7h27RrOnDmDZs2a4fr169i3b5+2dldrcJymalA3JhOTJiIi0jOtJU1///03PDw8sGrVKqXOz+3atcN3330HIQSOHz+urd3VGhynqRrUJU0c3JKIiPRMa0lTamoqOnfuDDMzM5Vl/v7+AIB79+5pa3dUl6mrVWJNExER6ZnWOoIXFhbCwcFB7TI7OzupzNMmJydH6bVcLmdtU2WYNBERkQHS+ThNTzuO01QNTJqIiMgAaTVpun79OtavX1+t5ePHj9dmKFSbMWkiIiIDJBNCCG1syMjICDKZrHpByGQoLi7WRhhat23bNqxcuRKnT59GRkYGbty4AS8vr2pvTy6Xw8bGBsCjpjvWRKkRHQ0EBCjPc3cH7tzRTzxERFRnVeW+rLWapsaNG1c7aTJkcrkcPXv2xIsvvojp06frO5ynA4ccICIiA6S1pCkxMVFbmzIo48aNAwBcvHhRz5E8Rdg8R0REBkhrQw7oy8aNG/H666+jc+fOMDc3h0wmQ3h4eIXrxMXFYeDAgXBwcIC1tTW6deuGLVu2PJmAqXLqEqT8/EcjhRMREelJrf/13Ny5c5GUlARnZ2e4ubkhKSmpwvJHjhxBUFAQLCwsEBwcDFtbW2zduhWjRo3CrVu3MGvWrCcUOZWrvFqlggLAwuLJxkJERPT/1fqaprCwMCQmJuL+/fuYMmVKhWWLi4sxefJkGBkZITo6GqtXr8bixYtx/vx5tGjRAnPmzKk06aInoLykiU10RESkR7U+aerbty88PT01Knv48GEkJCRgzJgx8PHxkebb29tjzpw5KCwsxLp163QUKWmsvEemMGkiIiI9qvXNc1URGRkJAOjfv7/KsqCgIABAVFRUjfZR2QN5+cBeDZRNjmxtgexs1flERERP2FOVNMXHxwMAvL29VZa5urrCxsZGKqOQnp6OmzdvIiEhAQBw+fJlPHz4EI0bN4aTk5PKdhRjPfy/9u48Lqqq/wP4Z5B9dUEFRUEU08jEQvTJBXHDzFITRX1UcMktt0wzTcMWS0vTXLKFR7EUwzSXRB9cEn3AXEpcUlQ0JFcSF5ABEZjv74/zm4Fhtjs6wwz4fb9e9wVz77nnnnvnLt8599xz2RMoHxzVrs1BE2OMMatQ5W/PGSM3NxeAuB2njbu7uyqN0o4dO9CmTRtEREQAAF555RW0adMGO3bsMG9hn2YVgyZt4xljjLFK9lTVND2O6OhoREdHS05f8QW9XPP0GDhoYowxZoWeqqBJWcNUsTZJKS8vD7Vq1XqiZfBrUUygfHBU/vvgoIkxxpgFPVW355RtmSq2WwKAW7duIT8/X2t7pyeRnZ2tNvz1118mzb9aKv/0HNc0McYYsxJPVdAU+v8vgd2zZ4/GtKSkJLU0plK/fn21wd/f36T5V0u6bs/p6oqAMcYYqwRPVdDUrVs3+Pv7Iz4+HidPnlSNz83NxSeffAJ7e3uMGDHCcgVkAt+eY4wxZoWqfJum2NhYpKSkAADOnDmjGqfsk6ljx44YM2YMAMDW1haxsbEIDw9H586d1V6jkpWVhcWLF8PPz88Sq8HK44bgjDHGrFCVD5pSUlI0evFOTU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGVlq5mR7K4MjGBnB31xzPGGOMWUCVD5ri4uIQFxdn1DwhISHYvXu3eQpUQXZ2ttpnuVzO7ZoMUbZdcnISgxIHTYwxxiyoygdN1q5+/fqWLkLVowyOHB05aGKMMWY1nqqG4KyKUAZHXNPEGGPMinBNk5lV7CFcLpdz7ZMhHDQxxhizQlzTxKwPB02MMcasENc0mRm/e85IRLobgnPnlowxxiyIa5qYdSkqKvufG4IzxhizIlzTZGbcpslI5QMjJycROGmbxhhjjFUyrmli1qVi0MQ1TYwxxqwE1zSZGbdpMlLFoMnOTvQMrlBw0MQYY8yiuKaJWZeKQZNMVlbbxEETY4wxC+KaJjPjNk1GKv+EnLI9k5MTIJdz0MQYY8yiOGgyMxcXF0sXoWqpWNNU/i8HTYwxxiyIb88x68JBE2OMMSvFNU1mJpfL9X5mFegLmrhzS8YYYxbEQZOZ8dNzRtIXNBUViafobLiClDHGWOXjqw+zLtqCpvIdXHJtE2OMMQvhmiYz46fnjKTr6TmlwkLA2blyy8QYY4yBgyaz46fnjKTv9lzF6Ywxxlgl4ttzzLpw0MQYY8xKcdDErAsHTYwxxqwUB03MunDQxBhjzEpxmyYz436ajCSlIThjjDFmARw0mRn302QkQzVN3OUAY4wxC+Hbc8y6GOqniWuaGGOMWQjXNJkZ99NkJG7TxBhjzEpx0GRm3E+TkThoYowxZqX49hyzLuWDIm4IzhhjzIpw0MSsi7Kht0wG2NuL/zloYowxZgU4aDLgyy+/hK+vLxwdHdGxY0ecOnXK0kWq3pRBkZOTCJyU/1eczhhjjFUyDpr0iI+Px6xZs/DRRx/hjz/+QLNmzRAeHo68vDxLF636Kh80KXHQxBhjzApw0KTH0qVLMX78eIwYMQKBgYGIjY1FSUkJ4uPjLV206ouDJsYYY1aqSgdN69evx7hx4xAcHAwHBwfIZDLExcXpnef48ePo3bs3atasCRcXF7Rv3x6bNm3SSPfo0SOkpaWhe/fuqnG2trbo0qULfvvtN1OvClMyFDRx55aMMcYspEp3OTB37lxkZWXB09MT3t7eyMrK0pv+wIEDCA8Ph6OjIwYPHgw3Nzds2bIFkZGRuHr1Kt5++21V2pycHJSWlmr0qVSvXj1cvnzZLOvDUBYUle/Qkju3ZIwxZgWqdE1TbGwsrly5gtu3b2P8+PF605aUlOCNN96AjY0NDh06hG+//RZLlizBqVOn0Lx5c8yZM8dg0MXMjIhvzzHGGLNaVTpo6t69O3x9fSWl/fXXX3H58mUMHToUQUFBqvEeHh6YM2cOHj16hHXr1qnGe3p6okaNGsjOzlbL559//oGXl5fO5cjlcoMD06GoqOx/DpoYY4xZmSodNBkjOTkZANCzZ0+NaeHh4QCAgwcPqsbZ29ujTZs22L9/v2pcSUkJkpOT8a9//UvnclxdXfUO/AoVPbT1Bl7xfw6aGGOMWUiVbtNkjIyMDABAQECAxjQvLy+4urqq0ii99dZbGD16NF588UW88MILWLx4MWxtbTF06NBKKfNTh4MmxhhjVuypCZpyc3MBiNtx2ri7u6vSKA0dOhS3b9/GnDlzkJ2djeDgYCQlJcHd3V3ncrS9oLfiZ39//8dZhepP2ytUAMDWVgwlJRw0McYYs5inJmh6XFOnTsXUqVMlp6/4gl5XV1dTF6n6Kt+dQPnaJeXnBw84aGKMMWYxT02bJmUNU8XaJKW8vDydtVCskui6PVf+MwdNjDHGLOSpCZqUbZkqtlsCgFu3biE/P19reydWifQFTcrbddy5JWOMMQt5aoKm0NBQAMCePXs0piUlJamlYRbCNU2MMcas2FMTNHXr1g3+/v6Ij4/HyZMnVeNzc3PxySefwN7eHiNGjLBcARkHTYwxxqxalW4IHhsbi5SUFADAmTNnVOOUfTJ17NgRY8aMASDeGxcbG4vw8HB07txZ7TUqWVlZWLx4Mfz8/CyxGkxJ19NzQFnQVFwMlJYCNWpUXrkYY4wxVPGgKSUlRa0XbwBITU1Famqq6rMyaAKAsLAwpKSkICYmBgkJCSguLkarVq2waNEiREZGmqWM2rog4A4udTD09JxSYSHATyVWX9u2AVOmAK+9BqxYAchkli4RY4wBqOJBU1xcHOLi4oyaJyQkBLt37zZPgaoKIkAut77AQ8rtOWU6V1fx2hUHh8opG6scN28CUVFAXh6wahXQogUwaZKlS8UYYwCeojZNlmJ1r1FJTweefRaoWxf4/HMRQFkLqUHTkSNASAjg5gYsX145ZWOVY9o0ETApzZgBnD5tseKwak4uB+7ds3QpTIcIOHcO+Ptv6zq3VyMcNFUXDx6IQZ+DB4GXXgLOnxe3wt55R1ykFArjl5eTA7z7LrB582MVVyupQdNrrwHHj4v2TW+9Bfx/Gzark5cnbjUtWABs2gRcuWK9JzIi4OpV4NAh4IcfgI8/BtauVX+Jsrnt3i22U3lFRcCQIVXjAYBLl4AtW4CCAuPmIxK93TPpiIDMTHEOqCgjA/jxR3GO0qWgAPjgA/Hj0csL+PJL9WPz7l1g+nRR67l7t2hHaW7Z2cCBA48f8MjlwODBQGAg4OsLuLuLH5cTJohtxUxCRmStZ/Hq4Z9//lH7XP41Kvn5+Ro9iD+2L78UQcwrrwCRkeKvs3PZ9Ph4YORI4NEjzXkHDgS+/hrIzxcnizp1gEaNdC+ruBgIDQV++0183rcP6NatbDoRkJIC+PsDDRuqz1tQAKxbJ2q8cnLEUFICPP+8ONnt2iXS7dkD9OhRNt+4ccC332ovj7c3cOqUOAFa2r17QFwcsGOH2AYVL4b16gFdu4o2O+Vf/PzgAZCYCNy4AdjZicHVFejVC/D0LEunUABffCECmzZtgNdfF9tJJgP27gV+/hn480+gbVuxjBYttJfz4UMgKQlITQX++AM4cQK4f18zXevWYt959lnNaRcuiIvTb7+J77pPHyAsTDPglaKgQJzsr1wRn7/9VtyeO3VKfJ44UXw2h//9D0hIEDWXPXsCHToA9vbG5bFlC/Dvf4sgr0kT4KuvxHdnyMWLwOjR4nsICgI6dxZDQIA4fp2dxXd14oT4nk6dEp+dnMRQt66Y/8UXH2vVAYhtbmeneayWlABnzojzQePGj59/RdnZYp/57TdRa3zpEtC8ufhB969/AZ06Afo6Gr54ERg1SmwzFxcxX5cuImjYtk3UtABAgwZiH3/uubJ5iYCffgJmzhTBSXmRkUBsLPDf/wJvvgmUP3c3bCgCqIkTNbfTkyIS5+933ikLAl1dxTE3bpxYV0MyM4F+/XTXyjo7ix9CU6YYfojm0SORT24u0K6dejOOW7eADRvEtnn1VXGsmKPN4b17YlklJSJgLSoS4+7eFcO9e8D48SY758vlctXbOwxel4mZFQCdQ35+vukW1L49kTj8xODiQhQWRhQYSOTurj7t5ZeJVq0iqlFDfXz5YexYoqIi7ct6+231tH5+RA8eiGkKBdGYMWK8gwPRhg1l82VnE7Vtq3uZ5Yf//U/3MmvUIJo7l6h7d/V1Ki2Vtq3u3SPas4fo44+JXn+daNgwohUriH7/nejRI6M3PRERXbhANHEikbOztPUDiF56iWj1aqIhQ4icnLSn8fAgWrZMlOvaNaKuXTXTuLgQublpnz88nGjdOqLt24n27RN/o6I09wl9g6Oj2F9+/51o/XqiOXOIgoK0p3VyEt/LxIlES5YQbdtGlJOjvq0KCogWLyYKCSEKDSV64w2ifv3K8ggLE/vRuXPq26VlS6KRI4m++oroyy+Jpk8nioggGjqUaNcu3d9/SQnRd9+JZb38sijXqVNEBw/q3p6vvCLWOTPT8He/YgWRTKaZz+DBRBs3Ei1YIModGSnKfvWqKOvy5bq/d2MGmYwoOpro+nWxn+zeLT536UL0wQdiedo8eCC+J2U+zz4rjrO4OKIRI4jq1CmbFhFBdPp02bw3bxL9/LNYllyuf/v884/Y/lFRRM2aGV4fDw+ivXs18yktJVq6VOyPUrdNzZpEhw6J+Q8fJurQQX16xXNg7dr683NzE8escl8rKRH7+NixYlvok5lJNG1a2X7w999Ed+8S9e2rf5nvvy+OB6VLl8Qx+NZbRDExRJ98ov5dubkR9e5N5O+vuV+2bUuUmCjOxUrZ2USbNxNNnSquIw4OZent7Yl69CBauFCUs+L2attW7OPFxerrqlCI805goLg+dO4szrOzZ4vtt3On2J8ePlSfr6CAaMYM/dcm5XDsmP7tbYT8/HySel2GyZbKtKqUoKmkhGjSJKJ69QzvaGPHlu3gO3fqv8iHhhLdvq2+rO3btad9800x/eOPNafNmyeCCn9/6Se7ixfVl5uWRuTjQ9SuXdnBcvMmUf36ZfMMHSouFp06ET33HNHw4UTffEN09izR/v1Es2bpvtgrBzs7Ik9PcaAHBhK1bk3UqpX4v2VLomeeIQoIEOvi4yPSurpqz6tpU/G9rF8vTny9eomTuLEXRUAsu/yJ0dSDt7cIFKZNE0Hahg1inU2Rt60tUZ8+4uS6ejVRgwa609rbE50/X/a9f/ON9OW0aCHyv3KlLOBPSSF64YUnK3/LluKC//77RGvWiABt924xVPwB0bixtDwbNlT/XLOm9sDLmMHFRfs+YmND9NprRN9/LwLfvDxxPPj5Gb+M7t2JmjdXH+fgIILzZcvEsam8EF69Ki7EhgJDbceEg4M4PymdPk3UsaN6mkaNNLejTCYCo9aty8Y5Oopjr+IywsNFYL51q/YfEX37EiUkiG1X8SIeGioCuIAA9e2ckKB5fs7MFD8MbG01l1Hx3DF4sDhWKp4rZ80S5+3PP9cfNAYEiHVSundPnJu1pW3QQL38TzL4+Ihzf3a2+HH3yivS5vPwIJowgej4caIjR8QxLHWZSUkGL41ScdBkRfLz89WG7OxsyV+O0YqLRW3CmDFEtWqVnXyaNhW/3r/7Tv0XC5HYWSMixC/uiAhxcSj/S6NJE3HyOnuW6MwZ9RPcjBnqQde0abp3cDu7sv8bNiT673+JMjLEQZ2TIz5/9BHRwIFEixZpX7+KZScSv0if9GJjysHFRQRK5U9c5T18SLR2rWZAUqeOOHnEx4sgKy5OBIDaltGwoagp27mTaNQoESx7eorvbscOolu3RG2Kvouiu7tIv3070Y0b2staUCDWRVcebduK5Vy4IC48o0cTeXk92fb76CPN73z1alErVX4fkjJ4ekpL16yZCIbWrxc1LI+7DrNnixqIuDjjAtxJk4jy80Wtwy+/EL37rjiGhw4VNXD9+okfHlu3itqJ/HzxYyYri+iLLx4/EFcOzs5i+9rYqI93dRWBQ/kfJlIGe3sRtGj7vuztRVAzc6ZYn5s3xfd87RrRTz+JQEaZ1s5O1FZMmqRZtqlTRQ2XQiHOI2vWiLS3bon8HjxQz6v80KKFOE7Kn08uXhQ/tABxPG3apD79xo2yGnR9g62tyJtInNcmT9YeLFUcatdWDxKJRBBaPk3FALHi8PLL4nyqTUqK9IAkIIDo3/8WP7AbNVKf5u0t9vPYWO0/QO3sNGu9H2f/tLcX+/+YMUTjxxNNmSJq1ZYtE9/zL7+IGkwTMSZo4jZNlcyoe6dPoqRE3JOuXdv4e85Hjoj749nZutMMGCDaBqxYAUydqjn9009FO4mZM8VhoPTcc6JhpY+PcWXS5/33gY8+Uh9Xo4buxpsvvCDaQbRrBwQHi/ZER46INhZnz4q2Xfn5YrxCAdjYlA01apT9b28vOuF0dBRtMPr3B954A6hZ03CZiUR7i+PHRVuW8HDt7WiOHxftEI4cEZ/79RPtLurUMbyM0lLRNuz8edFmSC4XbSZeegl4+WXNDkR1+e9/ge+/F21oWrQQQ+vW2tu5EIn2Dn/9BVy+DKSlifZC16+rp+vXD/jwQ9F2LiNDDM7OQN++uvfXwkKR38mTop1F48Zi/j//BJYuFQ866PL886LdSL16og3evn2ibdDw4aKhuW253leIRNuhxETRxu7IEf0PS8hk4inO8l0j5OQA69eLthhNm4qhtFTk+csvon1S48bAf/4DdO+uO28pcnJEo+bVq0UXHK++KtrnPPecKENsrGgrp01oqChD06bAnTuiXdylS6JNXJcuIr+CAtHGbOFCcU6wsxPTO3cW7Ut27xYPEeji5CSOi8hI0fZKXzchxcXiO0lI0D69aVNRXimvvHr0SLQH2rBBfK5fX+xzo0apf9/l0x89KvZtd3ftee7bJ9ZF2fYOEG0Ua9cueyjG3h6YPBlYs0b9yTx3d/HgSni4OC6V+0FoqGijqK0d6ddfi4bc5clk4pw7YIB42CQvT6xb58762ysVFQFbtwLHjolj6ORJcY5TfpedOwPt24t1USISx9fhw2J/7dGjbNsRiYdwli4Fdu5UP88DooH9N9+IB3fkcrGPZGWJv1evivPSzp2aD060bSvahWprR2kmxlyXOWgyM7lcrvFZ2e2AWYOmJ3X1qriApaVpTvP3Fw1TPTzExSQ0VDR6Vho7VhzsMploED10qDhowsLEQauvkefjIBIX9oKCsguUvb04IaWkiBOhu7s44Hv0sI4G48ZQKESAJZOJE25V6+xRoRBP5f34ozjBT5smnuoxtbQ00Wg9M1MECdeviwv2tGniQve4vcjn54s8s7LEcPt22bQaNUQAGhxsXJ7374tGzHZ2j1cmXXkqg/jySkqAX38VF8kLF8RQVARER4sLso3Eh6gfPhTbwddX/SETIvFj48ABEeT//ru4ILq7i0By6lTjjrnSUhHYfP992ThnZ2DuXBF0SA32AbHvrV8vzj/Dh5umb7r8fGDxYhGsjh4tHsgoLQVGjBD7X0XOzsDbb4uy16qlPu3hQxFE6jum16wBxowR2zkwUASN7do9+Xoo63Wkfv/6ZGaKc35srAikhw0TP1LKB2Da5OWJJ2bXrhU/nN56S/zQ1hbUmhEHTVZEpudgsOqgCRC/7H/8UZwAb94UFyJbW/H0VvlfARkZorakoEA8MfTLL+o7/c2b4omW0NBKPxgYYxZQWCiCgce9ICsU4mmy//xHPAm8cKFpa6fNobgYGDRIPMGnFBUluhx50ifu0tJE7e2rrxr/ZGdlKioSwbul+yM0EgdNVqRKB03GOHtW/JIdONC6D2rGWNVBVLVqVouKgHnzxA/MadOMr4FkFsFBkxWpsrfnGGOMsaeAMUET3ysxMw6KGGOMseqBgyYz01bTxBhjjLGqh4MmM3M1xdMajDHGGLM4fmEvY4wxxpgEXNNkZvn5+WqfyzcEZ4wxxljVwUGTmXFDcMYYY6x64NtzjDHGGGMScNDEGGOMMSYBB02MMcYYYxJwm6ZKVr4Ddu6ziTHGGLOs8tdiQy9J4aCpkhUUFKj+56foGGOMMetRUFCgt39Fvj3HGGOMMSYBv7C3kikUCuTk5AAAnJ2dIXvMN3iX7+8pOzubuzb4f7xddONtox1vF+14u2jH20W7qrxdiEh1F8jT0xM2Nrrrk/j2XCWzsbFBvXr1TJqni4tLldpBKwtvF91422jH20U73i7a8XbRripuF6mvPOPbc4wxxhhjEnDQxBhjjDEmAQdNjDHGGGMScNDEGGOMMSYBB02MMcYYYxJw0MQYY4wxJgEHTYwxxhhjEnDnlowxxhhjEnBNE2OMMcaYBBw0McYYY4xJwEETY4wxxpgEHDQxxhhjjEnAQZOVOX78OHr37o2aNWvCxcUF7du3x6ZNm4zKo6ioCB9++CECAgLg6OiIBg0aYOzYsfjnn3/MVGrzuX79OpYtW4aePXuicePGsLe3h5eXFwYMGICjR49Kzic5ORkymUznEBcXZ76VMCM/Pz+d69SlSxej8tqwYQNCQkLg4uKCWrVqoU+fPjhx4oR5Cm5GcXFxer9rmUyGbt26Gcynqu4z69evx7hx4xAcHAwHBweDZc3Ly8P06dPh6+sLBwcH+Pn5YebMmcjPzzd62UlJSQgNDYWbmxvc3d0RFhaG/fv3P8HamI7U7VJcXIwtW7YgKioKLVu2hKurK9zc3NCuXTusXr0apaWlRi3XlMeouRizz8yfP1/vcXHlyhWjln3x4kUMGjQInp6ecHJyQuvWrbF69WpY6zNqtpYuACtz4MABhIeHw9HREYMHD4abmxu2bNmCyMhIXL16FW+//bbBPBQKBfr27YukpCS0b98eAwYMQEZGBmJjY7F//34cOXIEdevWrYS1MY0VK1Zg0aJFaNq0KXr27Im6desiIyMD27Ztw7Zt2xAfH4/IyEjJ+YWGhmo9UQUFBZmu0JXMw8MD06ZN0xjv5+cnOY8FCxZg7ty58PX1xfjx4/HgwQP8+OOPeOmll7B//3506NDBdAU2s6CgIMTExGidtnnzZpw9exbh4eGS86tq+8zcuXORlZUFT09PeHt7IysrS2dauVyO0NBQnDx5Ej179sSQIUOQlpaGxYsX4+DBgzh06BAcHR0lLXf9+vUYPnw46tati+joaABAQkICevTogU2bNiEiIsIUq/fYpG6Xy5cvIyIiAq6urujWrRtee+015Obm4pdffsHEiROxa9cu7NixAzKZTPKyTXGMmpMx+4xSVFSU1vLXrFlT8nLPnTuHl156CYWFhRg0aBAaNGiAxMRETJw4EefOncOKFSuMWItKQswqFBcXU9OmTcnBwYHS0tJU4+/fv0/Nmzcne3t7unLlisF81qxZQwBoyJAhpFAoVONXr15NAGjs2LHmKL7ZbNmyhZKTkzXGHzp0iOzs7KhWrVr08OFDg/kcOHCAAFBMTIwZSmk5vr6+5Ovr+0R5XLx4kWxtbal58+Z0//591fi0tDRycHCgli1bUmlp6ROW1PKKioqoTp06ZGtrS7du3TKYvqruM3v37lWdKz799FMCQGvXrtWa9v333ycANGvWLLXxs2bNIgD0ySefSFrm3bt3qWbNmuTp6UlXr15Vjb969Sp5enqSp6cn5eXlPd4KmYjU7XLt2jVatWoV5efnq43Pz8+n4OBgAkCbNm2SvFxTHKPmZsw+ExMTQwDowIEDT7zczp07EwDatWuXalxRURF16tSJANDhw4efeBmmxrfnrMSvv/6Ky5cvY+jQoWq/YD08PDBnzhw8evQI69atM5jPd999BwD49NNP1X4JjRs3Dv7+/tiwYQMKCwtNXn5zef311xEaGqoxvlOnTggLC8O9e/dw5swZC5Ss+li7di1KSkrw3nvvwcPDQzU+KCgIQ4YMQXp6OlJSUixYQtPYtm0b7ty5gz59+qB+/fqWLo7ZdO/eHb6+vgbTERFiY2Ph6uqKefPmqU2bN28eXF1dERsbK2mZP/30E+7fv4/JkyfDx8dHNd7HxweTJk1CTk4Otm7datyKmJjU7dKwYUNMnDgRLi4uauNdXFwwffp0AMDBgwfNUkZLkbptTOnixYs4dOgQwsLC8PLLL6vG29vb46OPPgJQdj2zJnx7zkokJycDAHr27KkxTXkrwdCB+vDhQxw9ehTPPPOMxgEgk8nQo0cPfPPNN/j999/RqVMn0xTcguzs7AAAtrbSd+OMjAwsW7YMhYWF8PHxQdeuXdGwYUNzFbFSFBUVIS4uDjdu3IC7uzvatm2Ldu3aSZ7f0L4XFxeHgwcPonPnzqYqskUoA4AxY8YYNV913GcAsV43btxAeHi41gChQ4cOSEpKwtWrV9GoUSO9eRnah+bPn4+DBw9ixIgRJiu/JTzOOQd48mPUGh06dAhHjx6FjY0NAgIC0L17d7i6ukqeX98+07FjR7i4uFhlcMpBk5XIyMgAAAQEBGhM8/LygqurqyqNLpcvX4ZCodCaR/m8MzIyqnzQ9Pfff2Pfvn3w9vZGq1atJM8XHx+P+Ph41WdbW1tMnjwZn3/+OWrUqGGOoprdrVu3MHLkSLVxbdu2xcaNG9G0aVOD82dkZMDV1RVeXl4a08rvM1VZVlYW9u/fDx8fH/Tq1cuoeavjPgPoP+coxyclJSEjI8Ng0KQvr+qyDwHAmjVrAGi/0OvzpMeoNarYbrBmzZr48ssvJQfG+vaZGjVqoEmTJjh37hxKSkqMDlLNiW/PWYnc3FwAULs9Up67u7sqzZPkUT5dVVVcXIzhw4ejqKgIixYtknThqlu3LhYuXIg///wT+fn5yM7OxrZt29CsWTMsXboU77zzTiWU3PRGjhyJ/fv3Izs7G3K5HGlpaRg+fDiOHz+Obt264cGDBwbzyM3Nrfb7zNq1a6FQKBAdHS050Kmu+4ySKc8X+vKqLvvQt99+i927d6Nr167o3bu35PlMcYxak9atW2PNmjX466+/UFhYiMzMTKxYsQIymQzR0dHYsWOHpHyk7H8KhcLqto/1hG+MSaC88B06dAhvvPEGhg8fLmm+wMBABAYGqj67uLigb9++aNeuHZ5//nksX74cs2bNQr169cxVdLOo+GsvKCgI33//PQDghx9+wHfffadqh/G0UigUWLt2LWQyGUaNGiV5vuq6zzDj7dy5E5MmTYKvry/Wr19v1LzV7Rjt37+/2mc/Pz9MmjQJLVu2RI8ePTB37ly89tprFiqd+XFNk5VQRtu6fo3l5eXpjMiNyaN8uqpGoVBg1KhRiI+Px7Bhw/D1118/cZ5eXl7o27cvSkpKjOr3ydqNGzcOAJCammowrYeHR7XdZwBg3759+Pvvv9G1a1c0adLkifOrLvuMKc8X+vKq6vvQrl27EBERgfr16+PXX3+Ft7e3SfI15hitCrp164amTZvizJkzqu9cHyn7n0wmg5ubm0nL+aQ4aLIS+u7737p1C/n5+TrbHij5+/vDxsZGZ9sBQ20YrJlCocDIkSOxbt06DBkyBHFxcbCxMc3u6+npCUD0WVNdGLNOAQEByM/Px61btzSmVeV9RulxG4DrUx32GUNtjYz57vXlVZX3ocTERLz++uvw9PTEgQMH4O/vb7K8q8M+VJFynQoKCgym1bfPlJaWIjMzE02aNLGq9kwAB01WQ/lY/Z49ezSmJSUlqaXRxcnJCSEhIbhw4YJG52REhL1798LFxQXBwcEmKnXlUAZM33//PSIjI/HDDz+YtAGusrbAWjqaMwVj1skU+561unPnDrZv347atWtr3FZ4EtVhnwkICECDBg2QmpqqceGWy+VITU1FkyZNDDYCB6rnPpSYmIgBAwagdu3aOHDgAJo1a2bS/KvDPlSeXC7H2bNn4eLiogqe9NG3z6SkpKg6XrU6lu4oignFxcXk7++vt3PLzMxM1fgbN25Qenq6WmeERNWvc8vS0lKKiooiADRw4EAqLi7Wm/727duUnp5Ot2/fVhv/+++/a02/bNkyAkABAQFUUlJisnJXhvT0dJLL5VrHe3l5EQA6ePCgavz9+/cpPT2dbty4oZb+woUL1bZzy6VLlxIAmjJlis401XmfMXXnlnK5nNLT0ykrK0tt/N27d8nDw8OqO7csz9B22bVrFzk4OJCXlxedP3/eYH6PHj2i9PR0unTpktp4Y49Ra6Bv2+Tl5dGFCxc0xhcUFNCQIUMIAI0cOVJjenp6OqWnp2uMN9S5ZWpq6pOtjBnIiKz0BS9PIV2vUcnKysLixYvVXqMSHR2NdevWYe3atapXFgCiVqZ3796q16iEhobi0qVL+Pnnn+Hn54ejR49WqdeozJ8/Hx988AFcXV0xdepUrVW1/fr1U3UIqkwfExOD+fPnq9L4+fnBzs4OwcHB8PHxgVwux5EjR5CWloaaNWsiKSkJISEhlbRWpjF//nx88cUX6Ny5M3x9feHi4oKLFy9i165dKC4uxuzZs/HJJ5+o0sfFxWHkyJGIiorSeK9U+deoDBgwQPUalUePHlW516iU16pVK/z55584ffq0zq4pqts+Exsbq+qM9MyZMzhx4gQ6dOigqinp2LGj6lalXC5Hhw4dcOrUKfTs2RMvvPACTpw4gT179qBt27Y4ePAgnJycVHknJycjLCwMoaGhqn52lMq/RkX5aqOEhATk5OQgISEBAwcOrIS1103qdjl//jyCgoJQVFSEwYMH45lnntHIy8/PT+28e+XKFTRp0gS+vr5q714z9hi1FKnb5sqVK/D390fbtm3RsmVLeHl5ITs7G/v27cO1a9fQqlUrHDhwAHXq1FHLX9nRcsVw4+zZs+jQoQMKCwsRGRkJb29vJCYm4uzZs5g0aRK/RoUZdvToUerVqxe5u7uTk5MThYSE0I8//qiRTln7ou3XwMOHD2n+/PnUtGlTsre3Jy8vLxozZoykV0dYG+V66hvKbwNlF/8VX32xcOFCCgsLowYNGpCDgwM5OTlRixYtaNq0aWq/jKuS5ORkGjRoEAUEBJC7uzvZ2tqSl5cX9e3bl5KSkjTSr127lgBQVFSU1vzWr19PwcHB5OTkRB4eHtS7d2/6448/zLwW5nP06FECQCEhIXrTVbd9xtAxU/H7v3//Pk2bNo0aNWpEdnZ21LhxY3r77be11gwpXy0TGhqqddm7d++mTp06kYuLC7m6ulJoaCjt3bvXDGtpPKnbRbmO+oaK65+ZmUkANF6XYuwxailSt01ubi69+eab1LZtW6pbty7Z2tqSm5sbhYSE0GeffUYFBQVa81fmo8358+cpIiKCateuTQ4ODtSqVStatWqV2p0Sa8I1TYwxxhhjEnBDcMYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhijDHGGJOAgybGGGOMMQk4aGKMMcYYk4CDJsYYY4wxCThoYowxxhiTgIMmxhhjjDEJOGhi7Cnl5+cHmUymd1i2bJmli8lMJC0tDTVq1MDkyZPVxicnJ6u+b32uXLmiSlf+/WrGys3NRZ06ddCuXTuNd5ExZu00337KGHuqlH8xZ0XPPvtsJZeGmcvkyZPh5OSEefPmWbQcHh4emD17NmbOnInvv/8eUVFRFi0PY8bgoImxp9yYMWPU3tjOqp/NmzcjNTUVM2fORL169SxdHEyaNAmfffYZZs+ejcGDB8PBwcHSRWJMEr49xxhj1dzSpUsBAKNHj7ZwSQRHR0cMHToUN2/eREJCgqWLw5hkHDQxxgxStn+6cuUKtm/fjq5du6J27dqQyWRITk5Wpbt37x5iYmIQFBQENzc3ODs7o1WrVvj4449RUFCgNe+SkhIsW7YMrVq1gqOjI+rWrYsBAwbgzJkziIuLg0wm06gJmz9/PmQyGebPn681T2U7nS5dumidfuPGDUyfPh0tW7aEs7Mz3Nzc0LZtW6xcuRIlJSUa6aOjoyGTyRAXF4fMzEwMHz4cXl5ecHBwQNOmTTF37lwUFRXp3H5//PEHoqKi0KRJEzg6OqJ27dpo3bo1Zs6ciaysLADA2rVrIZPJEB4erjOfGzduwM7ODk5OTrhz547OdOWlpaXh8OHDaN++PZ555hlJ8xhD+V0YGipSfqerVq0yeZkYMxe+PccYk2zJkiVYuXIlgoOD0atXL9y4cQM1atQAAJw7dw69evXC1atX4e3tjY4dO8LOzg7Hjh3DvHnzsGXLFiQnJ8PDw0OVn0KhwMCBA7Ft2zbY29ujS5cuqFWrFo4ePYqQkBCMGjXK5Otw6NAh9OvXD/fu3YOfnx969OiBoqIiHDt2DJMnT8Yvv/yCnTt3ws7OTmPekydPYurUqahVqxZCQ0Nx9+5dpKamYsGCBTh79iy2bt2qMc/nn3+Od999FwqFAs2bN0ffvn1RWFiIS5cuYfHixQgMDER0dDSGDh2KWbNmYe/evbh48SKaN2+ukdc333yDkpISDB8+HHXq1JG0vtu2bQMAdO/e3bgNJVFQUJDOdkkXLlzAkSNHYGOj+fs8KCgIdevWxbFjx3Dz5k14e3ubpXyMmRQxxp5Kvr6+BIDWrl0rOW2NGjVo+/btGtMLCgqoadOmBIDmzp1LRUVFqmlyuZyGDBlCAGjkyJFq861cuZIAUP369encuXOq8cXFxTRhwgQCQAAoKipKbb6YmBgCQDExMVrLe+DAAQJAoaGhauNv3rxJderUIZlMRl999RWVlpaqpuXk5FDXrl0JAH3wwQdq80VFRanK8t5771FJSYlq2pkzZ8jFxYUA0OHDh9Xm2759OwEgR0dHSkhI0Cjn2bNn1db7vffeIwA0ZcoUjbSPHj0iLy8vAkB//PGH1vXWpmPHjgSAEhMTtU5XbitDl4PMzExVuszMTIPLzcrKIm9vbwJAK1eu1JrmtddeIwD0ww8/GMyPMWvAQRNjTyllIKRrKB9wKNOOGjVKa16rV68mANSnTx+t0x88eED16tUjW1tbunv3rmp8s2bNCACtXr1aY57CwkJVkGCqoGnWrFkEgCZNmqR1vmvXrpGdnR3VrVuXFAqFarwyaHrxxRfVxiuNHz+eANCHH36oNj4oKIgA0JIlS7Qur6Lr16+TnZ0deXh4UH5+vtq0jRs3EgD617/+JSkvJWVA99dff2mdXj5okjoYCpru3btHzz77LAGgmTNn6kw3e/ZsAkBvvfWWUevEmKXw7TnGnnK6uhxo0aKFxriIiAiteSQmJgIAIiMjtU53dXVFcHAwdu3ahePHj6Nnz564fv06Ll26BAAYNmyYxjyOjo4YNGgQli9fLnldDDFUzoYNGyIgIADnzp1DRkaGxi2yPn36aG2f07JlSwDA9evXVeNu3bqFkydPwsbGRnID7AYNGiAiIgIbN27EDz/8gPHjx6umKdv+TJo0SVJeACCXyyGXywFA0u08fY//5+fnY8uWLQbzePToEfr164dz585h8ODBWLRokc60yjJlZ2cbzJcxa8BBE2NPOWO6HPDz89M6/q+//gIADB8+HMOHD9ebx+3btwEA165dAwB4enrC1dVVa9omTZpIKpdUynJ26tTJYNrbt29rBE2NGzfWmtbd3R0A8PDhQ9W4v//+GwDg7e2t1o7LkClTpmDjxo1YtWqVKmg6ffo0UlJSUL9+fZ2Bqza5ubmq/93c3Aymj4uL0zntypUrBoMmIkJ0dDQOHjyI0NBQVUN+XZTb7d69ewbLxpg14KCJMSaZk5OT1vEKhQIA0KtXL9SvX19vHr6+viYvl67y6BofEREBFxcXvXloq5nR1qDZ1Nq3b4+QkBAcO3ZMFXwoa5nGjh0Le3t7yXnVrFlT9f+DBw9UQYq5vPvuu9i4cSOeffZZbNu2zWD/S8qgrlatWmYtF2OmwkETY+yJNWrUCOfPn8fo0aMl14Q0bNgQAJCTk4P8/HyttU26XtehDBwePHigdbryMX5t5czIyMCsWbMQHBwsqZyPS1krdfPmTeTm5hpd2zRs2DCsXLkSrVu3xoYNG2Bra6t2u04KZ2dnuLi4QC6X486dO2YNmr766it89tlnaNCgAXbv3q0WsOmi7DbBUKDNmLXgfpoYY0/s5ZdfBgBs2rRJ8jw+Pj7w9/cHAMTHx2tMLyoqwk8//aR1XmXAlZ6ernW6su2SKcr5uLy8vNC6dWsoFAqsWbPGqHkHDRoEb29vbNu2DQsWLIBcLkf//v3RoEEDo8vxwgsvABBdQpjLjh07MGXKFLi5uSExMVHnbcyK/vzzTwDAiy++aLayMWZKHDQxxp7Y2LFj4evri59++gmzZs3SWgN069YtfPfdd2rjpk2bBkB0kHj+/HnV+NLSUsyYMQM3btzQuryuXbvCxsYGSUlJOHjwoGo8EWH58uU6297MnDkTNWvWxBdffIElS5bg0aNHGmkyMzOxfv16g+ssRUxMDADgvffe01qmc+fOaQ387OzsMGHCBJSUlGDx4sUAjGsAXl5YWBgA4Lfffnus+Q05duwYhgwZAhsbG2zevBlBQUGS51WWqWvXrmYpG2OmxkETY+yJubi4IDExEX5+fvjss8/QuHFjhIaG4t///jf69++PwMBANGjQQONlsW+++SZeffVV3Lx5E61bt0avXr0wZMgQBAQEIDY2FhMmTNC6vEaNGmHy5MlQKBTo1q0bwsLCMGDAAAQEBGDGjBl49913tc7n4+OD7du3o1atWpgxYwYaNWqEbt26YdiwYXj11VfRrFkz+Pv7Y+XKlSbZLv3798eCBQvw8OFDREREoGXLlhg8eDD69u2LwMBABAYG4ujRo1rnHTdunKpN0PPPP4/OnTs/Vhn69esHANi7d+9jzW/I7NmzUVBQAB8fH8THxyM6OlrrUFFaWhru3LmDkJAQ7tiSVRncpokxZhKBgYE4ffo0vv76a2zduhWnT5/Gb7/9Bk9PT/j4+GDGjBno37+/2jw2Njb4+eefsXz5cvznP/9BcnIyXF1d0bFjR2zduhVpaWlYvXq11uUtXboUjRs3RmxsLA4fPgxXV1d06NABmzZtQl5eHhYuXKh1vs6dO+Ps2bNYuXIlEhMTcfz4cRQVFaFevXpo3Lgxhg0bhgEDBphsu8yZMwddu3bF8uXLcejQIfz8889wc3NDo0aN8M477+isZalXrx6CgoJw9OhRvPnmm4+9/DZt2uCll17C4cOHkZ6eruoewVRKS0sBiBq6zMxMnekqPpmn/Pwk68ZYZZMREVm6EIwxpk1cXBxGjhyJqKgovY/DV0cXL15EixYt4OHhgevXr8PZ2fmx89q8eTMGDhyI6dOnY8mSJSYs5eN5+PAhGjVqBDs7O2RmZhp8yo4xa8G35xhjzAq9//77ICJMmDDhiQImQHSx0KFDB3zzzTdW0ZHkihUrkJOTg08//ZQDJlalcNDEGGNWYseOHRg9ejTat2+PhIQEeHl54Z133jFJ3itWrEBhYSE++ugjk+T3uHJzc7Fw4UKEhIRgxIgRFi0LY8biNk2MMWYlTpw4gTVr1sDNzQ3du3fHF198Iam/IynatGmjan9kSR4eHqr+mRirarhNE2OMMcaYBHx7jjHGGGNMAg6aGGOMMcYk4KCJMcYYY0wCDpoYY4wxxiTgoIkxxhhjTAIOmhhjjDHGJOCgiTHGGGNMAg6aGGOMMcYk4KCJMcYYY0yC/wPWC9k+PSFAWQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, [ax1, ax2, ax3] = plt.subplots(3,1,figsize=(6,12))\n", + "ax1.plot(avg_ps_leahy.freq, avg_ps_leahy.power, lw=2, color='black')\n", + "ax1.plot(avg_ps_gauss_leahy.freq, avg_ps_gauss_leahy.power, lw=2, color='red', zorder=10)\n", + "ax1.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax1.set_ylabel(\"Power (Leahy)\", fontproperties=font_prop)\n", + "ax1.set_yscale('log')\n", + "ax1.tick_params(axis='x', labelsize=14)\n", + "ax1.tick_params(axis='y', labelsize=14)\n", + "ax1.tick_params(which='major', width=1.5, length=7)\n", + "ax1.tick_params(which='minor', width=1.5, length=4)\n", + "ax1.set_title(\"Leahy norm.\", fontproperties=font_prop)\n", + " \n", + "ax2.plot(avg_ps_frac.freq, avg_ps_frac.power, lw=2, color='black')\n", + "ax2.plot(avg_ps_gauss_frac.freq, avg_ps_gauss_frac.power, lw=2, color='red')\n", + "ax2.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax2.set_ylabel(\"Power (rms)\", fontproperties=font_prop)\n", + "ax2.tick_params(axis='x', labelsize=14)\n", + "ax2.tick_params(axis='y', labelsize=14)\n", + "ax2.set_yscale('log')\n", + "ax2.tick_params(which='major', width=1.5, length=7)\n", + "ax2.tick_params(which='minor', width=1.5, length=4)\n", + "ax2.set_title(\"Fractional rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "ax3.plot(avg_ps_abs.freq, avg_ps_abs.power, lw=2, color='black')\n", + "ax3.plot(avg_ps_gauss_abs.freq, avg_ps_gauss_abs.power, lw=2, color='red')\n", + "ax3.set_xlabel(\"Frequency (Hz)\", fontproperties=font_prop)\n", + "ax3.set_ylabel(\"Power (abs)\", fontproperties=font_prop)\n", + "ax3.tick_params(axis='x', labelsize=14)\n", + "ax3.tick_params(axis='y', labelsize=14)\n", + "ax3.set_yscale('log')\n", + "ax3.tick_params(which='major', width=1.5, length=7)\n", + "ax3.tick_params(which='minor', width=1.5, length=4)\n", + "ax3.set_title(\"Absolute rms-squared norm.\", fontproperties=font_prop)\n", + "\n", + "for axis in ['top', 'bottom', 'left', 'right']:\n", + " ax1.spines[axis].set_linewidth(1.5)\n", + " ax2.spines[axis].set_linewidth(1.5)\n", + " ax3.spines[axis].set_linewidth(1.5)\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected, the Leahy normalization, being normalized by the variance, yields *exactly* the same result in the Gaussian and the Poisson case, while the fractional rms (that depends on the mean count rate) and the absolute rms (that depend on the variance and the mean count rate) change." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Pulsar/Phase Dispersion Minimization.html b/notebooks/Pulsar/Phase Dispersion Minimization.html new file mode 100644 index 000000000..36b63a262 --- /dev/null +++ b/notebooks/Pulsar/Phase Dispersion Minimization.html @@ -0,0 +1,346 @@ + + + + + + + + Phase Dispersion Minimization in Stingray — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
# %load_ext autoreload
+# %autoreload 2
+# %matplotlib notebook
+
+import numpy as np
+from stingray.pulse.search import phase_dispersion_search
+import matplotlib.pyplot as plt
+import seaborn as sb
+import matplotlib as mpl
+mpl.rcParams['figure.figsize'] = (10, 6)
+
+
+
+
+

Phase Dispersion Minimization in Stingray

+

Phase dispersion minimization (PDM; Stellingwerf (1978)) is a method to search for strictly periodic signals in constant light curves (white noise only). Like Epoch Folding, it relies in folding a light curve at a given trial period, splitting the folded light curve into phase bins, and evaluating the resulting profile.

+

Epoch Folding evaluates how much the means in each phase bin deviate from the global sample mean, given the variance of the measurements. A periodic signal will generate a maximum in the Epoch Folding periodogram across many trial periods. In contrast, Phase Dispersion Minimization evaluates the variance in each phase bin and compares this to the global sample variance \(\hat{\sigma}\):

+

\begin{equation} +\theta_{\mathrm{PDM}} = \frac{1}{\hat{\sigma}} \frac{\sum_{ij}(x_{ij} - \bar{x}_j)^2}{N - M} \; +\end{equation}

+

for \(N\) measurements in the light curve split into \(M\) bins, and \(\bar{x}_j\) the mean of measurements in bin \(j\).

+

If a periodic signal is present in the data at a given trial period, the PDM statistic should have a minimum at that period.

+
+

Simulate a dataset

+

Let us simulate a simple data set: we create a sinusoidal light curve and add Poisson noise:

+
+
[2]:
+
+
+
def sinusoid(times, frequency, baseline, amplitude, phase):
+    return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))
+
+
+
+
+
[3]:
+
+
+
from stingray import Lightcurve
+
+period = 1.203501
+mean_countrate = 50
+pulsed_fraction = 0.2
+bin_time = 0.01
+obs_length = 300
+
+t = np.arange(0, obs_length, bin_time)
+
+# The continuous light curve
+counts = sinusoid(t, 1 / period, mean_countrate,
+                  0.5 * mean_countrate * pulsed_fraction, 0) * bin_time
+
+counts = np.random.poisson(counts)
+
+lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],
+                dt=bin_time)
+
+
+
+
+
+

Pulsation search with Phase Dispersion Minimization

+

Let us assume we have already an estimate of the true period, for example because we found a candidate in the power density spectrum with a period of ~1.2. We search around that period with the phase dispersion minimization.

+

The first thing we need to do is fold the light curve: for every data point, we convert the time of that bin to its corresponding phase. We then split the resulting phase-folded light curve into \(M\) phase bins, where \(M\) should strike a balance between generating enough bins to accurately represent the structure in the phase curve, but also few enough bins that the number of measurements in each bin is meaningful.

+

In regular epoch folding, we calculate the mean flux (or counts) within each bin as a useful statistic. Let’s do that first, because it gives us a nice visual representation. Note that when using a light curve (rather than event arrival times) in fold_events, you need to use set the weights keyword to the array of fluxes or counts:

+
+
[4]:
+
+
+
from stingray.pulse.pulsar import fold_events
+from stingray.pulse.search import plot_profile
+nbin = 16
+
+ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts)
+_ = plot_profile(ph, profile)
+
+ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts)
+_ = plot_profile(ph, profile)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_5_0.png +
+
+

As you can see, folding at the correct period (blue line) generates a profile that looks approximately sinusoidal, whereas folding at a different period (orange line) does not.

+

For Phase Dispersion Minimization, we are not interested in the mean in each phase bin, but rather the variance in each phase bin, which we’d like to minimize, not maximize. We can also calculate that using fold_profile, using mode="pdm" (the default is Epoch Folding, mode="ef"):

+
+
[5]:
+
+
+
ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts, mode="pdm")
+_ = plot_profile(ph, profile)
+
+ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts, mode="pdm")
+_ = plot_profile(ph, profile)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_7_0.png +
+
+

As you can see, this looks very different, and not quite as easily recognizeable. What you see here is the nominator of the second term in the PDM Equation written in the introduction.

+

We’d now like to try calculating this profile for a number of trial periods, and then calculate \(\theta_\mathrm{PDM}\). Our null hypothesis is that there is no variation in the data except for measurement noise (e.g. Poisson statistics as we have here, or Gaussian noise). This is implemenented in stingray.pulse.search.phase_dispersion_search.

+

For the frequency resolution of the periodogram, one usually chooses at least the same frequency resolution of the FFT, i. e., \(df_{\rm min}=1/(t_1 - t_0)\). In most cases, a certain degree of oversampling is used.

+

Let’s do that:

+
+
[6]:
+
+
+
# We will search for pulsations over a range of frequencies around the known pulsation period.
+df_min = 1/obs_length
+oversampling=15
+df = df_min / oversampling
+frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)
+
+freq, pdmstat = phase_dispersion_search(lc.time, lc.counts, frequencies, nbin=nbin)
+
+
+
+
+
[7]:
+
+
+
# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, pdmstat, label='PDM statistic')
+#plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')
+plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('PDM Statistics')
+_ = plt.legend()
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_10_0.png +
+
+

A dip is definitely there at the frequency we expect it to be.

+

Unlike the Epoch Folding statistic, which follows approximately a \(\chi^2\) distribution, the PDM statistic was shown to follow a beta-distribution (Schwarzenberg-Czerny, 1997).

+

We can use this beta-distribution to calculate the significance of a peak found in the PDM periodogram, or to set a detection threshold. In stingray, this is implemented in the stingray.stats module, using stingray.stats.phase_dispersion_detection_level and stingray.stats.phase_dispersion_probability:

+
+
[8]:
+
+
+
from stingray.stats import phase_dispersion_detection_level, phase_dispersion_probability
+
+# number of trials (the number of independent frequencies)
+# we searched over
+ntrial = int((frequencies[-1] - frequencies[0]) / df_min)
+
+# number of time bins in the light curve
+nsamples = len(lc.time)
+
+pdm_det_level = phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=ntrial)
+
+# ---- PLOTTING --------
+plt.figure()
+plt.axhline(pdm_det_level, label='PDM det. lev.', color='gray')
+
+plt.plot(freq, pdmstat, color='gray', label='PDM statistics', alpha=0.5)
+
+#for c in cand_freqs_ef:
+#    plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)
+#for c in cand_freqs_z:
+#    plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)
+
+plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')
+plt.xlim([frequencies[0], frequencies[-1]])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('PDM Statistics')
+plt.legend()
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.legend.Legend at 0x7f8680267130>
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Phase_Dispersion_Minimization_12_1.png +
+
+

Let’s also calculate the significance of the deepest dip:

+
+
[9]:
+
+
+
min_idx = np.argmin(pdmstat)
+
+pval = phase_dispersion_probability(pdmstat[min_idx], nsamples, nbin, ntrial=ntrial)
+
+print(f"The probability of the minimum at {freq[min_idx]} Hz is: p = {pval}")
+
+
+
+
+
+
+
+
+The probability of the minimum at 0.8313536003155265 Hz is: p = 4.221416326686607e-15
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Pulsar/Phase Dispersion Minimization.ipynb b/notebooks/Pulsar/Phase Dispersion Minimization.ipynb new file mode 100644 index 000000000..4f875520e --- /dev/null +++ b/notebooks/Pulsar/Phase Dispersion Minimization.ipynb @@ -0,0 +1,333 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import phase_dispersion_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Phase Dispersion Minimization in Stingray\n", + "\n", + "Phase dispersion minimization (PDM; Stellingwerf (1978)) is a method to search for strictly periodic signals in constant light curves (white noise only). Like Epoch Folding, it relies in folding a light curve at a given trial period, splitting the folded light curve into phase bins, and evaluating the resulting profile. \n", + "\n", + "Epoch Folding evaluates how much the means in each phase bin deviate from the global sample mean, given the variance of the measurements. A periodic signal will generate a maximum in the Epoch Folding periodogram across many trial periods. In contrast, Phase Dispersion Minimization evaluates the *variance* in each phase bin and compares this to the global sample variance $\\hat{\\sigma}$:\n", + "\n", + "\\begin{equation}\n", + "\\theta_{\\mathrm{PDM}} = \\frac{1}{\\hat{\\sigma}} \\frac{\\sum_{ij}(x_{ij} - \\bar{x}_j)^2}{N - M} \\;\n", + "\\end{equation}\n", + "\n", + "for $N$ measurements in the light curve split into $M$ bins, and $\\bar{x}_j$ the mean of measurements in bin $j$.\n", + "\n", + "If a periodic signal is present in the data at a given trial period, the PDM statistic should have a *minimum* at that period.\n", + "\n", + "## Simulate a dataset\n", + "\n", + "Let us simulate a simple data set: we create a sinusoidal light curve and add Poisson noise:\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 300\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "\n", + "counts = np.random.poisson(counts)\n", + "\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Pulsation search with Phase Dispersion Minimization\n", + "\n", + "Let us assume we have already an estimate of the true period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the phase dispersion minimization.\n", + "\n", + "The first thing we need to do is *fold* the light curve: for every data point, we convert the time of that bin to its corresponding phase. We then split the resulting phase-folded light curve into $M$ phase bins, where $M$ should strike a balance between generating enough bins to accurately represent the structure in the phase curve, but also few enough bins that the number of measurements in each bin is meaningful.\n", + "\n", + "In regular epoch folding, we calculate the mean flux (or counts) within each bin as a useful statistic. Let's do that first, because it gives us a nice visual representation. Note that when using a light curve (rather than event arrival times) in `fold_events`, you need to use set the `weights` keyword to the array of fluxes or counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCOklEQVR4nO3de3wU9b3/8feQbDYJhiUByUVDxApBLrVcPBC0IiWEi4C3ipZKuUlRKzQKWhGRYBUqVaAHvNT+UDgg4LGA1eoBQSXK4aIEsCKIUhGhEKNtSAiEJCTz+4PD1jUJkM18s7vZ1/Px2MeDnfnud74zLJ/hvXOzbNu2BQAAAABwVJNADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChoqqqSocPH1ZcXJwsywr0cAAAAAAEiG3bOnbsmFJSUtSkSe3Hrwhb5+nw4cNKTU0N9DAAAAAABImDBw/q4osvrnU+Yes8xcXFSTq9QZs1axbg0QAAAAAIlOLiYqWmpnozQm0IW+fpzKmDzZo1I2wBAAAAOOflRdwgAwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jN/1apV6t+/v1q2bCnLsrRz585qfZSVlWnChAlq2bKlmjZtqqFDh+rQoUM+bQoLCzVixAh5PB55PB6NGDFCR48eNbdiAAAAAMJeQMPW8ePHdcUVV2jBggW1zr/qqqv0u9/9rtY+srOztXr1aq1YsUIbN25USUmJBg8erMrKSm+b4cOHa+fOnVqzZo3WrFmjnTt3asSIEY6vDwAAAACcYdm2bQd6ENLpe9SvXr1aN9xwQ7V5X375pdq0aaMdO3boRz/6kXd6UVGRLrzwQi1ZskS33nqrJOnw4cNKTU3Vm2++qf79+2vPnj3q0KGDtmzZoh49ekiStmzZooyMDH366adKT08/r/EVFxfL4/GoqKiI52wBAAAAYex8s0FIX7OVl5eniooKZWVleaelpKSoU6dO2rRpkyRp8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvkI6bOXn5ysqKkrx8fE+0xMTE5Wfn+9t06pVq2qfbdWqlbdNTWbNmuW9xsvj8Sg1NdXZwQMAAABo1EI6bNXGtm1ZluV9/90/19bm+6ZMmaKioiLv6+DBg0bGCgAAAKBxCumwlZSUpPLychUWFvpMLygoUGJiorfN119/Xe2z33zzjbdNTdxut5o1a+bzAgAAAIDzFdJhq1u3bnK5XFq3bp132pEjR7Rr1y716tVLkpSRkaGioiJ98MEH3jZbt25VUVGRtw0AAAAAOC0ykAsvKSnRvn37vO/379+vnTt3KiEhQa1bt9a//vUvffXVVzp8+LAkae/evZJOH61KSkqSx+PR2LFjNWnSJLVo0UIJCQmaPHmyOnfurMzMTEnS5ZdfrgEDBmjcuHH64x//KEn65S9/qcGDB5/3nQgBAAAAoK4Ceuv3DRs2qE+fPtWmjxw5UosWLdKiRYs0evToavOnT5+unJwcSdLJkyd1//33a9myZSotLVXfvn31zDPP+NzQ4l//+pcmTpyo1157TZI0dOhQLViwQM2bNz/vsXLrdwAAAADS+WeDoHnOVrAjbAEAAACQzj8bBPQ0QiAQbNtWaUWlkb5jXBFnvcslAOD8mKzVEvUaQMMgbCGs2Latnz63WXkHCs/d2A/d0+L1yp0Z7MABoB5M12qJeg2gYYT03QiBuiqtqDS68952oNDoL7EAEA5M12qJeg2gYXBkC2Fr28OZio2KcKSvE+WV6v7Yekf6AgD8m5O1WqJeA2hYhC2ErdioCMVG8U8AAIIZtRpAKOM0QgAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMhADwCoiW3bKq2odLzfE+XO99lQy4hxRciyLCN9A4A/QrlWm1wO9RrAGYQtBB3btvXT5zYr70BhoIfil+6PrTfTb1q8Xrkzgx04gKAQ6rVaol4DMI/TCBF0Sisqje+8u6fFK8YV4Vh/Ma4IdU+Ld6y/mmw7UGjkF2QA8Eco1mqJeg2gYQX0yNZ7772n3//+98rLy9ORI0e0evVq3XDDDd75tm1rxowZev7551VYWKgePXro6aefVseOHb1trr32WuXm5vr0e+utt2rFihXe94WFhZo4caJee+01SdLQoUM1f/58NW/e3Oj6of62PZyp2Chnd7SS86d4WJalV+7MMHY6jalfXwHACaFSqyXqNYCGFdCwdfz4cV1xxRUaPXq0br755mrzZ8+erTlz5mjRokVq166dHnvsMfXr10979+5VXFyct924ceP06KOPet/HxMT49DN8+HAdOnRIa9askST98pe/1IgRI/T6668bWjM4JTYqQrFRoXG2q2VZITNWAHBSKNVqiXoNoOEEtNIMHDhQAwcOrHGebduaN2+epk6dqptuukmStHjxYiUmJmrZsmUaP368t21sbKySkpJq7GfPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venq6w2sFmMPF3AAQGkzUa2o1EHqC9med/fv3Kz8/X1lZWd5pbrdbvXv31qZNm3zC1ksvvaSlS5cqMTFRAwcO1PTp071HvjZv3iyPx+MNWpLUs2dPeTwebdq0qdawVVZWprKyMu/74uJip1cRqDMu5gaA0GCiXlOrgdATtDfIyM/PlyQlJib6TE9MTPTOk6Sf//znWr58uTZs2KBp06Zp5cqV3iNhZ/pp1apVtf5btWrl08/3zZo1Sx6Px/tKTU2t7yoBfuFibgAIDabrNbUaCD1Be2TrjO//emPbts+0cePGef/cqVMntW3bVt27d9f27dvVtWvXGvuoqZ/vmzJliu677z7v++LiYgIXAoKLuQEgNJiq19RqIHQFbdg6cw1Wfn6+kpOTvdMLCgqqHe36rq5du8rlcunzzz9X165dlZSUpK+//rpau2+++eas/bjdbrnd7nqsAeAcLuYGgNBAvQbwXUF7GmGbNm2UlJSkdevWeaeVl5crNzdXvXr1qvVzn3zyiSoqKrwBLSMjQ0VFRfrggw+8bbZu3aqioqKz9gMAAAAA9RHQn15KSkq0b98+7/v9+/dr586dSkhIUOvWrZWdna2ZM2eqbdu2atu2rWbOnKnY2FgNHz5ckvT3v/9dL730kgYNGqSWLVtq9+7dmjRpkrp06aKrrrpKknT55ZdrwIABGjdunP74xz9KOn3r98GDB3MnQgAAAADGBDRsbdu2TX369PG+P3ON1MiRI7Vo0SI98MADKi0t1d133+19qPFbb73lvdNgVFSU3n77bf3hD39QSUmJUlNTdd1112n69OmKiPj3wxVfeuklTZw40Xtnw6FDh2rBggUNuKYAAAAAwk1Aw9a1114r27ZrnW9ZlnJycpSTk1Pj/NTUVOXm5p5zOQkJCVq6dKm/wwQAAACAOgvaa7YAAAAAIJQRtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGBAZKAHAMNsW6o4Ya5/V6xkWeb6B4BwQb0GgEaHsNWY2bb0Qn/p4FZzy0jtKY1Zww4cAOqDeg0AjRKnETZmFSfM7rgl6eAWs7/EAkA4oF4DQKPEka1wMXmfFBXrXH/lJ6QnL3OuPwDAadRrAGg0CFvhIipWimoa6FEAAM6Feg0AjQanEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwAaDduWKk6Y698VK1mWuf4BIFxQrwE0EMIW4ATbll7oLx3cam4ZqT2lMWvYgQNAfVCvATQgTiMEnFBxwuyOW5IObjH7SywAhAPqNYAGxJEtwGmT90lRsc71V35CevIy5/oDAJxGvQZgGGELcFpUrBTVNNCjAACcC/UagGGcRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgICGrffee09DhgxRSkqKLMvSq6++6jPftm3l5OQoJSVFMTExuvbaa/XJJ5/4tCkrK9OECRPUsmVLNW3aVEOHDtWhQ4d82hQWFmrEiBHyeDzyeDwaMWKEjh49anjtAAAAAISzgIat48eP64orrtCCBQtqnD979mzNmTNHCxYs0IcffqikpCT169dPx44d87bJzs7W6tWrtWLFCm3cuFElJSUaPHiwKisrvW2GDx+unTt3as2aNVqzZo127typESNGGF8/AAAAAOErMpALHzhwoAYOHFjjPNu2NW/ePE2dOlU33XSTJGnx4sVKTEzUsmXLNH78eBUVFWnhwoVasmSJMjMzJUlLly5Vamqq1q9fr/79+2vPnj1as2aNtmzZoh49ekiS/vSnPykjI0N79+5Venp6w6wsAAAAgLAStNds7d+/X/n5+crKyvJOc7vd6t27tzZt2iRJysvLU0VFhU+blJQUderUydtm8+bN8ng83qAlST179pTH4/G2qUlZWZmKi4t9XgAAAABwvoI2bOXn50uSEhMTfaYnJiZ65+Xn5ysqKkrx8fFnbdOqVatq/bdq1crbpiazZs3yXuPl8XiUmppar/UBAAAAEF6CNmydYVmWz3vbtqtN+77vt6mp/bn6mTJlioqKiryvgwcP1nHkAAAAAMJZ0IatpKQkSap29KmgoMB7tCspKUnl5eUqLCw8a5uvv/66Wv/ffPNNtaNm3+V2u9WsWTOfFwAAAACcr6ANW23atFFSUpLWrVvnnVZeXq7c3Fz16tVLktStWze5XC6fNkeOHNGuXbu8bTIyMlRUVKQPPvjA22br1q0qKirytgEAAAAApwX0boQlJSXat2+f9/3+/fu1c+dOJSQkqHXr1srOztbMmTPVtm1btW3bVjNnzlRsbKyGDx8uSfJ4PBo7dqwmTZqkFi1aKCEhQZMnT1bnzp29dye8/PLLNWDAAI0bN05//OMfJUm//OUvNXjwYO5ECAAAAMCYgIatbdu2qU+fPt739913nyRp5MiRWrRokR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3s/MnTtXkZGRGjZsmEpLS9W3b18tWrRIERER3jYvvfSSJk6c6L1r4dChQ2t9thcAAAAAOCGgYevaa6+Vbdu1zrcsSzk5OcrJyam1TXR0tObPn6/58+fX2iYhIUFLly6tz1BxFifKT0k65WB/leduBACoMyfrNbUaAM4toGELocu2bZ25l2O3x9arVNEBHQ8AoGbUawAInKC9QQaCW2mF+V80u6fFK8YVce6GAIBama7X1GoAqB1HtlBv7z/QR7EXOH9r/BhXxDmfqQYAOH8m6jW1GgBqR9hCvcVGRSg2iq8SAAQ76jUANCxOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMiAz0ANAIVJyQyg18lVyxkmU53y8AhCsT9ZpaDQC1Imyh3mL/0N5Mx6k9pTFr2IkDgEOM1GtqNQDUitMI4R9XrD6samd2GQe3nP4VFgDgP9P1mloNALXiyBb8Y1m6pXy6YlSmvIczFRvl4Fep/IT05GXO9QcA4cxUvaZWA8A5EbZQD5ZKFS1FNZWcDFsAAIdRrwEgEDiNEAAAAAAM4OcthB/bdv76gnKuVwAAR5mo1RL1GkCDImwhvNi29EJ/6eDWQI8EAFAbajWARoLTCBFeKk6Y3Xmn9jz9zBkAgP9M12qJeg2gQXBkC+Fr8j4pyuEdLQ/3BABnmajVEvUaQIMgbCF8RcWevjMX0FBMXYMi8R9HNF7UajQ0k7Vaol6HGcJWqKlLAeAiYCB4mL4GJbWnNGYNO3DTuGkD0Lg1xPWC1OuwQtgKNRUnpJkpgR4FgLoyfQ3KwS2nl8ERAHO4aQPQ+DXE9YLU67BC2KqjUS98IFdM4P5xuKtO6r/q+Jk9rg6a9v92OvoLSpVte//8i4UfKKKJc31/dx1/sfADlTWJDom+TfnumMf9v/dUZjk35krbVoxOqlRux/8e4cvn77HVCsf+Ht32Sf2p4DZJofOdDlXuqpP6r6/N/icslOo1tbo6U/WaWt1wTNVqiXrd2FSUHj+vdoStEFNmufWLxFfPq61t2/r062P65liEdOyo0XGhYZwp0o6Klj6saqcn7HmS2IE3hDIr2rmdbJUz3aBunP5PGPW68XG8XlOrG5yjtVqiXocpwlaosazz3sFXVtn6pqzU6HAucEeKH9jMKrPc+tTVQe0rdhtbxpVNPpNbZTqlGGPLABoTp/8TRr1uHEzXa2o1EHoIW2Gia+vmamLgQswmlmRxgadZlqXpLZ6S2y5zvOvIqlK98M3PHO8XgP+o1yHMUL2mVgOhi7AVJppYFud4h7I6HNGsi8rvXMsBIDhQr0OcgXpNrQZCV5NADwAAAAAAGiPCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAv8LW9u3b9fHHH3vf/+Uvf9ENN9yghx56SOXl5Y4NDgAAAABClV9ha/z48frss88kSV988YVuu+02xcbG6pVXXtEDDzzg6AABAAAAIBT5FbY+++wz/ehHP5IkvfLKK7rmmmu0bNkyLVq0SCtXrnRyfAAAAAAQkvwKW7Ztq6qqSpK0fv16DRo0SJKUmpqqb7/91rnRAQAAAECI8itsde/eXY899piWLFmi3NxcXXfddZKk/fv3KzEx0dEBAgAAAEAoivTnQ3PnztXtt9+uV199VVOnTtVll10mSfrzn/+sXr16OTpAAMD5cdsnpSrn+y2z3JJlOd8xAIQp6nX48CtsXXHFFT53Izzj97//vSIj/eoSAFBPfyq4zUi/n7o6aHqLp9iBA4BDqNfhw6/TCC+99FL985//rDb95MmTateuXb0HBQA4P2WWW5+6OhhdRvuK3XLbZUaXAQCNHfU6PPl1GOrLL79UZWVltellZWU6dOhQvQf1XceOHdO0adO0evVqFRQUqEuXLvrDH/6gK6+8UpI0atQoLV682OczPXr00JYtW3zGNXnyZC1fvlylpaXq27evnnnmGV188cWOjhUAGpxlaXqLp4zsXN32SWO/vgJA2KFeh6U6ha3XXnvN++e1a9fK4/F431dWVurtt99WmzZtnBudpDvuuEO7du3SkiVLlJKSoqVLlyozM1O7d+/WRRddJEkaMGCAXnzxRe9noqKifPrIzs7W66+/rhUrVqhFixaaNGmSBg8erLy8PEVERDg6XgBocJalMiva+X4NXE8AAGGNeh126hS2brjhBkmSZVkaOXKkzzyXy6VLLrlETz31lGODKy0t1cqVK/WXv/xF11xzjSQpJydHr776qp599lk99thjkiS3262kpKQa+ygqKtLChQu1ZMkSZWZmSpKWLl2q1NRUrV+/Xv3793dsvAAAAABwRp2u2aqqqlJVVZVat26tgoIC7/uqqiqVlZVp7969Gjx4sGODO3XqlCorKxUd7fsLQExMjDZu3Oh9v2HDBrVq1Urt2rXTuHHjVFBQ4J2Xl5eniooKZWVleaelpKSoU6dO2rRpk2NjBQAAAIDv8uuarf379zs9jhrFxcUpIyNDv/3tb3X55ZcrMTFRy5cv19atW9W2bVtJ0sCBA3XLLbcoLS1N+/fv17Rp0/STn/xEeXl5crvdys/PV1RUlOLj4336TkxMVH5+fq3LLisrU1nZv8+pLS4uNrOSAAAAABolv+/T/vbbb+vtt9/2HuH6rhdeeKHeAztjyZIlGjNmjC666CJFRESoa9euGj58uLZv3y5JuvXWW71tO3XqpO7duystLU1vvPGGbrrpplr7tW1b1lluizlr1izNmDHDsfUAAAAAEF78uvX7jBkzlJWVpbffflvffvutCgsLfV5O+sEPfqDc3FyVlJTo4MGD+uCDD1RRUVHrjTiSk5OVlpamzz//XJKUlJSk8vLyauMqKChQYmJircudMmWKioqKvK+DBw86t1IAAAAAGj2/jmw999xzWrRokUaMGOH0eGrVtGlTNW3aVIWFhVq7dq1mz55dY7t//vOfOnjwoJKTkyVJ3bp1k8vl0rp16zRs2DBJ0pEjR7Rr165a+5BO33TD7XY7vyIAAAAAwoJfYau8vFy9evVyeiw1Wrt2rWzbVnp6uvbt26f7779f6enpGj16tEpKSpSTk6Obb75ZycnJ+vLLL/XQQw+pZcuWuvHGGyVJHo9HY8eO1aRJk9SiRQslJCRo8uTJ6ty5s/fuhAAAAADgNL9OI7zjjju0bNkyp8dSo6KiIv3qV79S+/bt9Ytf/EJXX3213nrrLblcLkVEROjjjz/W9ddfr3bt2mnkyJFq166dNm/erLi4OG8fc+fO1Q033KBhw4bpqquuUmxsrF5//XWesQUAAADAGL+ObJ08eVLPP/+81q9frx/+8IdyuVw+8+fMmePI4CRp2LBh3tP/vi8mJkZr1649Zx/R0dGaP3++5s+f79i4AAAAAOBs/Apbf/vb3/SjH/1IkrRr1y6feWe7wx8AAAAAhAu/wta7777r9DiAGrntk1LVudvVqT8AgKOo1QBQM7+fswU0hD8V3BboIQAAzoFaDQA18yts9enT56ynC77zzjt+Dwgos9z61NVB7St2G1vGp64OKrO4tT8A+ItaDQDn5lfYOnO91hkVFRXauXOndu3apZEjRzoxLoQzy9L0Fk/JbZcZW0SZ5Za4vhAA/EetBoBz8itszZ07t8bpOTk5KikpqdeAAEmSZanMig70KAAAZ0OtBoCz8us5W7W5/fbb9cILLzjZJQAAAACEJEfD1ubNmxUdzS9cAAAAAODXaYQ33XSTz3vbtnXkyBFt27ZN06ZNc2RgAAAAABDK/ApbHo/H532TJk2Unp6uRx99VFlZWY4MDAAAAABCmV9h68UXX3R6HAAAAADQqNTrocZ5eXnas2ePLMtShw4d1KVLF6fGBQAAAAAhza+wVVBQoNtuu00bNmxQ8+bNZdu2ioqK1KdPH61YsUIXXnih0+MEAAAAgJDi190IJ0yYoOLiYn3yySf617/+pcLCQu3atUvFxcWaOHGi02ME0ACqbFuVVc6+bNsO9GoBQKNiolZTrwFz/DqytWbNGq1fv16XX365d1qHDh309NNPc4MMIETtPHhUpTrpaJ8XuCPVITlOlmU52i8AhCsTtVqiXgOm+HVkq6qqSi6Xq9p0l8ulqqqqeg8KQMNw9EF7NSgpO6UqfiwFgHoxXasl6jVgil9Htn7yk5/o17/+tZYvX66UlBRJ0j/+8Q/de++96tu3r6MDBGDOd3/B7No6XmWWMw8lr7Jtbf/qqCN9AUC4M1WrJeo1YJpfYWvBggW6/vrrdckllyg1NVWWZemrr75S586dtXTpUqfHCKABRFiWIpo4dPoIB7gbHbd90sjfa5nlljhtCThvjtZqiXrdCJmo19Rq//kVtlJTU7V9+3atW7dOn376qWzbVocOHZSZmen0+AAAQeBPBbcZ6fdTVwdNb/EUO3EAcIiJek2t9l+dTgN+55131KFDBxUXF0uS+vXrpwkTJmjixIm68sor1bFjR73//vtGBgoAaFhlllufujoYXUb7it1y22VGlwEAjZ3pek2t9l+djmzNmzdP48aNU7NmzarN83g8Gj9+vObMmaMf//jHjg0QABAglqXpLZ4ysoN12yeNHS0DgLBjqF5Tq+uvTmHro48+0hNPPFHr/KysLD355JP1HhQAIEhYlqMX43txnQgAOMtEvaZW11udTiP8+uuva7zl+xmRkZH65ptv6j0oAAAAAAh1dQpbF110kT7++ONa5//tb39TcnJyvQcFAAAAAKGuTmFr0KBBeuSRR3TyZPUnl5eWlmr69OkaPHiwY4MDAAAAgFBVp2u2Hn74Ya1atUrt2rXTPffco/T0dFmWpT179ujpp59WZWWlpk6damqsAAAAABAy6hS2EhMTtWnTJt11112aMmWKbNuWdPrJ5v3799czzzyjxMREIwMFAAAAgFBS54cap6Wl6c0331RhYaH27dsn27bVtm1bxcfHmxgfADQs2zZ2q3MAgIMM1GtqNZxW57B1Rnx8vK688konxwKgEaqybSO3jm1inT6q7ijb1qP/nKT0it3O9ouzctsnjXxHyiy35PR3BGjEqNc4G2q1f/wOWwBwPrZ/ddRIvxe4I9UhOc7RHbjbLjO+4/7U1eH0jgVeph6Y+amrg6a3eKpR78QBJ1Gv/41aXR212j+ELQCOa2Kd3rmWlJ0ytoySslOqsqUIQ7V5XKsVRh7m29h/wTtfZZZbn7o6qL3B/yy1r9gtt11m5qHMQCNBva4Ztfo0anX9EbYAOM6yLHVIjlOV7XzfVbZt7NfX7yqzolXWpHEW/qBgWZre4ilj18eZ+gUWaGyo1zgranW9EbYAGGFZlplfMQ2cL44AsSwzv2TyHQHqhHqNs6JW10udHmoMAAAAADg/hC0AAAAAMIDTCAGYYeh5VZW2rRidVKm4SxQAOIJ6DRhD2ALgPNPPP4mWPqxqpyfseZK4WxQA+I16DRjFaYQAHNcQz6u6sslncsv5X2IBIJxQrwGzOLIFwCinn38SWVWqF775mWP9AQBOo14DziNsATDK6eefVNoGHgYDAKBeAwZwGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgFu/AwhZbvukIqosR/sDADiPeo1wRdgCELJ4WCYAhAbqNcIVpxECCCllcuvDqnZGl/Gpq4PKLLfRZQBAY0e9BjiyFXJs21bVeT6QvYont6MxsizdUj5dMSpT19bxirCcOy3ljDLLLRnoF41HpW2r8nyL8XmgXqNRol4DhK1QU2VL2w4UBnoYQIBZKlW0yqxoRTRhJ4uGYX8nEG3/qlClig7gaIBQQb1GeOM0wjBwgTtS1DcAqJ+qBlgG9RoAGheObIWYJpbUPS2+zp+xOMQOAI75UWpzVTSJcbxf6jUANC6ErRBjWZYi2A8DQEA1sSxOiQIAnJNl21yVez6Ki4vl8XhUVFSkZs2aBXo4gDPKj0szU07/+aHDUlTT4O5X0onyU+rwyFpJ0u5H+ys2it+M8D2Gvn8nSooU+2Tr03+e/JViL/A40i9wTgZrKvUaAWPye90AzjcbcM0WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADAj6sHXs2DFlZ2crLS1NMTEx6tWrlz788EPvfNu2lZOTo5SUFMXExOjaa6/VJ5984tNHWVmZJkyYoJYtW6pp06YaOnSoDh061NCrAgAAACCMBH3YuuOOO7Ru3TotWbJEH3/8sbKyspSZmal//OMfkqTZs2drzpw5WrBggT788EMlJSWpX79+OnbsmLeP7OxsrV69WitWrNDGjRtVUlKiwYMHq7KyMlCrBQAAAKCRC+qwVVpaqpUrV2r27Nm65pprdNlllyknJ0dt2rTRs88+K9u2NW/ePE2dOlU33XSTOnXqpMWLF+vEiRNatmyZJKmoqEgLFy7UU089pczMTHXp0kVLly7Vxx9/rPXr1wd4DQEAAAA0VkEdtk6dOqXKykpFR0f7TI+JidHGjRu1f/9+5efnKysryzvP7Xard+/e2rRpkyQpLy9PFRUVPm1SUlLUqVMnb5ualJWVqbi42OcFAAAAAOcrqMNWXFycMjIy9Nvf/laHDx9WZWWlli5dqq1bt+rIkSPKz8+XJCUmJvp8LjEx0TsvPz9fUVFRio+Pr7VNTWbNmiWPx+N9paamOrx2AAAAABqzoH+U95IlSzRmzBhddNFFioiIUNeuXTV8+HBt377d28ayLJ/P2LZdbdr3navNlClTdN9993nfFxcXE7gAIMScKD8l6ZRDfVUq1pGeAADfVddaHeOKOOf/9YNF0IetH/zgB8rNzdXx48dVXFys5ORk3XrrrWrTpo2SkpIknT56lZyc7P1MQUGB92hXUlKSysvLVVhY6HN0q6CgQL169ap1uW63W26329BaAQBMsW1bZ3bB3R5br1JFn7X9+YrRSe1xpisACHv1qdW7H+2v2KigjzGSgvw0wu9q2rSpkpOTVVhYqLVr1+r666/3Bq5169Z525WXlys3N9cbpLp16yaXy+XT5siRI9q1a9dZwxYAIDSVVpi/02yMK8L4MgCgMWuIWh0Mgj4Srl27VrZtKz09Xfv27dP999+v9PR0jR49WpZlKTs7WzNnzlTbtm3Vtm1bzZw5U7GxsRo+fLgkyePxaOzYsZo0aZJatGihhIQETZ48WZ07d1ZmZmaA1w4AYNL7D/RR7AXNnOms/Lj05Ok/hsrpKwAQCupaq0PpB6+gD1tFRUWaMmWKDh06pISEBN188816/PHH5XK5JEkPPPCASktLdffdd6uwsFA9evTQW2+9pbi4OG8fc+fOVWRkpIYNG6bS0lL17dtXixYtUkRE6PxFAQDqLjYqwsFTTYJ+lwkAIcnZWh1cgn6thg0bpmHDhtU637Is5eTkKCcnp9Y20dHRmj9/vubPn29ghAAAAABQXchcswUAAAAAoYSwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AAPDXifJKI/3GuCJkWZaRvgEgHFGvEa4IWwBCVvfH1pvpNy1er9yZwQ4cABxCvUa44jRCACElxhWh7mnxRpex7UChSivM/AoLAOGCeg1wZAtAiLEsS6/cmWFk53qivNLYr68AEG6o1wBhC0AIsixLsVGULwAIdtRrhDtOIwQAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGcC9OAAhxtm0bfahnjCtClmUZ6x8AwgX1OvwQtgAghNm2rZ8+t1l5BwqNLaN7WrxeuTODHTgA1AP1OjxxGiEAhLDSikqjO25J2nag0OgvsQAQDqjX4YkjWwBQgxPlZnZWJk/x2PZwpmKjIhzr70R5pbo/tt6x/gDABBP12vTpeNTr8EHYAoAamNppmTzFIzYqQrFRlHUA4cVEvTZ9Oh71OnxwGiEA/J8YV4S6p8UbXQaneABA/Zmu19RqOIVIDQD/x7IsvXJnhpEdLKd4AIBzTNVrajWcRtgCgO+wLItTOwAgBFCvEQo4jRAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwABu4QIAOKcT5WaeNxPjijD20FAACEcm6jW12n+ELQDAOZl67kz3tHi9cmcGO3EAcIiJek2t9h+nEQIAahTjilD3tHijy9h2oNDIQ6QBIJyYrtfUav9xZAsAUCPLsvTKnRlGdrAnyiuNHS0DgHBjql5Tq+uPsAUAqJVlWYqNYlcBAMGOeh2cOI0QAAAAAAwI6rB16tQpPfzww2rTpo1iYmJ06aWX6tFHH1VVVZW3zahRo2RZls+rZ8+ePv2UlZVpwoQJatmypZo2baqhQ4fq0KFDDb06AAAAAMJIUB9rfOKJJ/Tcc89p8eLF6tixo7Zt26bRo0fL4/Ho17/+tbfdgAED9OKLL3rfR0VF+fSTnZ2t119/XStWrFCLFi00adIkDR48WHl5eYqIiGiw9QEAAAAQPoI6bG3evFnXX3+9rrvuOknSJZdcouXLl2vbtm0+7dxut5KSkmrso6ioSAsXLtSSJUuUmZkpSVq6dKlSU1O1fv169e/f3+xKAAAAAAhLQX0a4dVXX623335bn332mSTpo48+0saNGzVo0CCfdhs2bFCrVq3Url07jRs3TgUFBd55eXl5qqioUFZWlndaSkqKOnXqpE2bNtW67LKyMhUXF/u8AAAAAOB8BfWRrd/85jcqKipS+/btFRERocrKSj3++OP62c9+5m0zcOBA3XLLLUpLS9P+/fs1bdo0/eQnP1FeXp7cbrfy8/MVFRWl+HjfZw8kJiYqPz+/1mXPmjVLM2bMMLZuAIDTTpQ7f6viWEd7BABQq/0T1GHr5Zdf1tKlS7Vs2TJ17NhRO3fuVHZ2tlJSUjRy5EhJ0q233upt36lTJ3Xv3l1paWl64403dNNNN9Xat23bZ30K9pQpU3Tfffd53xcXFys1NdWBtQIAfJfTz3CJ0UntiXa0SwAIe9Rq/wR12Lr//vv14IMP6rbbbpMkde7cWQcOHNCsWbO8Yev7kpOTlZaWps8//1ySlJSUpPLychUWFvoc3SooKFCvXr1qXbbb7Zbb7XZwbQAAZ8S4ItQ9LV7bDhQaXw4AwD/U6voL6rB14sQJNWnie1lZRESEz63fv++f//ynDh48qOTkZElSt27d5HK5tG7dOg0bNkySdOTIEe3atUuzZ882N3gAQK0sy9Ird2aotMLZ01IkSeXHpSf/vRwAgH+o1fUX1GFryJAhevzxx9W6dWt17NhRO3bs0Jw5czRmzBhJUklJiXJycnTzzTcrOTlZX375pR566CG1bNlSN954oyTJ4/Fo7NixmjRpklq0aKGEhARNnjxZnTt39t6dEADQ8CzLUmyUid1QUO/aACCkUKvrJ6jXcv78+Zo2bZruvvtuFRQUKCUlRePHj9cjjzwi6fRRro8//lj/9V//paNHjyo5OVl9+vTRyy+/rLi4OG8/c+fOVWRkpIYNG6bS0lL17dtXixYt4hlbAAAAAIwJ6rAVFxenefPmad68eTXOj4mJ0dq1a8/ZT3R0tObPn6/58+c7PEIAAAAAqFlQP2cLAAAAAEIVYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwIDLQAwCAcHOivDIo+wIA/JvT9ZV6HZ4IWwDQwLo/tj7QQwAAnAO1Gk7gNEIAaAAxrgh1T4s31n/3tHjFuCKM9Q8A4cB0rZao1+GGI1sA0AAsy9Ird2aotMLMaSQxrghZlmWkbwAIF6ZrtUS9DjeELQBoIJZlKTaKsgsAwYxaDSdxGiEAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHcagXAaeUngrMvAMC/OV1fqdeAUYQtAKc9eVmgRwAAOBdqNRBSOI0QCGeuWCm1p7n+U3ueXgYAwH+ma7VEvQYM4cgWEM4sSxqzRqowdBqJK/b0MgAA/jNdqyXqNWAIYQsId5YlRTUN9CgAAGdDrQZCUlCfRnjq1Ck9/PDDatOmjWJiYnTppZfq0UcfVVVVlbeNbdvKyclRSkqKYmJidO211+qTTz7x6aesrEwTJkxQy5Yt1bRpUw0dOlSHDh1q6NUBAAAAEEaCOmw98cQTeu6557RgwQLt2bNHs2fP1u9//3vNnz/f22b27NmaM2eOFixYoA8//FBJSUnq16+fjh075m2TnZ2t1atXa8WKFdq4caNKSko0ePBgVVZWBmK1AAAAAISBoD6NcPPmzbr++ut13XXXSZIuueQSLV++XNu2bZN0+qjWvHnzNHXqVN10002SpMWLFysxMVHLli3T+PHjVVRUpIULF2rJkiXKzMyUJC1dulSpqalav369+vfvH5iVAwAAANCoBfWRrauvvlpvv/22PvvsM0nSRx99pI0bN2rQoEGSpP379ys/P19ZWVnez7jdbvXu3VubNm2SJOXl5amiosKnTUpKijp16uRtU5OysjIVFxf7vAAAAADgfAX1ka3f/OY3KioqUvv27RUREaHKyko9/vjj+tnPfiZJys/PlyQlJib6fC4xMVEHDhzwtomKilJ8fHy1Nmc+X5NZs2ZpxowZTq4OAAAAgDAS1Ee2Xn75ZS1dulTLli3T9u3btXjxYj355JNavHixTzvre7cqtW272rTvO1ebKVOmqKioyPs6ePCg/ysCAAAAIOwE9ZGt+++/Xw8++KBuu+02SVLnzp114MABzZo1SyNHjlRSUpKk00evkpOTvZ8rKCjwHu1KSkpSeXm5CgsLfY5uFRQUqFevXrUu2+12y+12m1gtAAAAAGEgqI9snThxQk2a+A4xIiLCe+v3Nm3aKCkpSevWrfPOLy8vV25urjdIdevWTS6Xy6fNkSNHtGvXrrOGLQAAAACoj6A+sjVkyBA9/vjjat26tTp27KgdO3Zozpw5GjNmjKTTpw9mZ2dr5syZatu2rdq2bauZM2cqNjZWw4cPlyR5PB6NHTtWkyZNUosWLZSQkKDJkyerc+fO3rsTAgAAAIDTgjpszZ8/X9OmTdPdd9+tgoICpaSkaPz48XrkkUe8bR544AGVlpbq7rvvVmFhoXr06KG33npLcXFx3jZz585VZGSkhg0bptLSUvXt21eLFi1SREREIFYLAAAAQBiwbNu2Az2IUFBcXCyPx6OioiI1a9Ys0MMBANSm/Lg0M+X0nx86LEU1De5+ASAchXhNPd9sENTXbAEAAABAqArq0wgBAKiX8hPB2RcA4N/qWl9dsdI5HvMULAhbAIDG68nLAj0CAMC51LVWh9Bph5xGCABoXFyxUmpPc/2n9jy9DACA/0zX6iDBkS0AQONiWdKYNVKFodP+Quj0FQAIWvWp1SH0gxdhCwDQ+FhWyJxiAgBhKwxqNacRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGRgR5AqLBtW5JUXFwc4JEAAAAACKQzmeBMRqgNYes8HTt2TJKUmpoa4JEAAAAACAbHjh2Tx+Opdb5lnyuOQZJUVVWlw4cPKy4uTpZlOd5/cXGxUlNTdfDgQTVr1szx/vFvbOuGwXZuOGzrhsO2bjhs64bDtm44bOuGY3pb27atY8eOKSUlRU2a1H5lFke2zlOTJk108cUXG19Os2bN+MfXQNjWDYPt3HDY1g2Hbd1w2NYNh23dcNjWDcfktj7bEa0zuEEGAAAAABhA2AIAAAAAAwhbQcLtdmv69Olyu92BHkqjx7ZuGGznhsO2bjhs64bDtm44bOuGw7ZuOMGyrblBBgAAAAAYwJEtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYMuSZZ55RmzZtFB0drW7duun9998/a/vc3Fx169ZN0dHRuvTSS/Xcc89Va7Ny5Up16NBBbrdbHTp00OrVq00NP6TUZVuvWrVK/fr104UXXqhmzZopIyNDa9eu9WmzaNEiWZZV7XXy5EnTqxL06rKtN2zYUON2/PTTT33a8b2uWV229ahRo2rc1h07dvS24Xtd3XvvvachQ4YoJSVFlmXp1VdfPednqNX+qeu2plb7r67bmlrtv7pua2q1f2bNmqUrr7xScXFxatWqlW644Qbt3bv3nJ8LlnpN2DLg5ZdfVnZ2tqZOnaodO3boxz/+sQYOHKivvvqqxvb79+/XoEGD9OMf/1g7duzQQw89pIkTJ2rlypXeNps3b9att96qESNG6KOPPtKIESM0bNgwbd26taFWKyjVdVu/99576tevn958803l5eWpT58+GjJkiHbs2OHTrlmzZjpy5IjPKzo6uiFWKWjVdVufsXfvXp/t2LZtW+88vtc1q+u2/sMf/uCzjQ8ePKiEhATdcsstPu34Xvs6fvy4rrjiCi1YsOC82lOr/VfXbU2t9l9dt/UZ1Oq6q+u2plb7Jzc3V7/61a+0ZcsWrVu3TqdOnVJWVpaOHz9e62eCql7bcNx//Md/2HfeeafPtPbt29sPPvhgje0feOABu3379j7Txo8fb/fs2dP7ftiwYfaAAQN82vTv39++7bbbHBp1aKrrtq5Jhw4d7BkzZnjfv/jii7bH43FqiI1GXbf1u+++a0uyCwsLa+2T73XN6vu9Xr16tW1Zlv3ll196p/G9PjtJ9urVq8/ahlrtjPPZ1jWhVtfd+WxrarUz/PleU6v9U1BQYEuyc3Nza20TTPWaI1sOKy8vV15enrKysnymZ2VladOmTTV+ZvPmzdXa9+/fX9u2bVNFRcVZ29TWZzjwZ1t/X1VVlY4dO6aEhASf6SUlJUpLS9PFF1+swYMHV/s1NdzUZ1t36dJFycnJ6tu3r959912feXyvq3Pie71w4UJlZmYqLS3NZzrf6/qhVgcOtdo8anXDo1b7p6ioSJKq1YPvCqZ6Tdhy2LfffqvKykolJib6TE9MTFR+fn6Nn8nPz6+x/alTp/Ttt9+etU1tfYYDf7b19z311FM6fvy4hg0b5p3Wvn17LVq0SK+99pqWL1+u6OhoXXXVVfr8888dHX8o8WdbJycn6/nnn9fKlSu1atUqpaenq2/fvnrvvfe8bfheV1ff7/WRI0f0P//zP7rjjjt8pvO9rj9qdeBQq82hVgcGtdo/tm3rvvvu09VXX61OnTrV2i6Y6nWko73By7Isn/e2bVebdq72359e1z7Dhb/bZfny5crJydFf/vIXtWrVyju9Z8+e6tmzp/f9VVddpa5du2r+/Pn6z//8T+cGHoLqsq3T09OVnp7ufZ+RkaGDBw/qySef1DXXXONXn+HE3+2yaNEiNW/eXDfccIPPdL7XzqBWNzxqtVnU6sCgVvvnnnvu0d/+9jdt3LjxnG2DpV5zZMthLVu2VERERLVUXFBQUC09n5GUlFRj+8jISLVo0eKsbWrrMxz4s63PePnllzV27Fj993//tzIzM8/atkmTJrryyivD+lel+mzr7+rZs6fPduR7XV19trVt23rhhRc0YsQIRUVFnbUt3+u6o1Y3PGp1YFCrzaJW+2fChAl67bXX9O677+riiy8+a9tgqteELYdFRUWpW7duWrdunc/0devWqVevXjV+JiMjo1r7t956S927d5fL5Tprm9r6DAf+bGvp9K+ko0aN0rJly3Tdddedczm2bWvnzp1KTk6u95hDlb/b+vt27Njhsx35XldXn22dm5urffv2aezYsedcDt/ruqNWNyxqdeBQq82iVteNbdu65557tGrVKr3zzjtq06bNOT8TVPXa0dttwLZt216xYoXtcrnshQsX2rt377azs7Ptpk2beu828+CDD9ojRozwtv/iiy/s2NhY+95777V3795tL1y40Ha5XPaf//xnb5v//d//tSMiIuzf/e539p49e+zf/e53dmRkpL1ly5YGX79gUtdtvWzZMjsyMtJ++umn7SNHjnhfR48e9bbJycmx16xZY//973+3d+zYYY8ePdqOjIy0t27d2uDrF0zquq3nzp1rr1692v7ss8/sXbt22Q8++KAtyV65cqW3Dd/rmtV1W59x++232z169KixT77X1R07dszesWOHvWPHDluSPWfOHHvHjh32gQMHbNumVjuprtuaWu2/um5rarX/6rqtz6BW181dd91lezwee8OGDT714MSJE942wVyvCVuGPP3003ZaWpodFRVld+3a1ef2lCNHjrR79+7t037Dhg12ly5d7KioKPuSSy6xn3322Wp9vvLKK3Z6errtcrns9u3b+xTCcFaXbd27d29bUrXXyJEjvW2ys7Pt1q1b21FRUfaFF15oZ2Vl2Zs2bWrANQpeddnWTzzxhP2DH/zAjo6OtuPj4+2rr77afuONN6r1yfe6ZnWtIUePHrVjYmLs559/vsb++F5Xd+aW17XVA2q1c+q6ranV/qvrtqZW+8+fGkKtrruatrEk+8UXX/S2CeZ6bf3fSgAAAAAAHMQ1WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgCEtQ0bNsiyLB09ejTQQwEANDKELQBAozdq1ChZliXLsuRyuXTppZdq8uTJOn78eKCHBgBoxCIDPQAAABrCgAED9OKLL6qiokLvv/++7rjjDh0/fly33nproIcGAGikOLIFAAgLbrdbSUlJSk1N1fDhw/Xzn/9cr776qnd+Xl6eunfvrtjYWPXq1Ut79+71zvv73/+u66+/XomJibrgggt05ZVXav369T79P/PMM2rbtq2io6OVmJion/70p955tm1r9uzZuvTSSxUTE6MrrrhCf/7zn42vMwAgsAhbAICwFBMTo4qKCu/7qVOn6qmnntK2bdsUGRmpMWPGeOeVlJRo0KBBWr9+vXbs2KH+/ftryJAh+uqrryRJ27Zt08SJE/Xoo49q7969WrNmja655hrv5x9++GG9+OKLevbZZ/XJJ5/o3nvv1e23367c3NyGW2EAQIOzbNu2Az0IAABMGjVqlI4ePeo9kvXBBx9o0KBB6tu3r+666y716dNH69evV9++fSVJb775pq677jqVlpYqOjq6xj47duyou+66S/fcc49WrVql0aNH69ChQ4qLi/Npd/z4cbVs2VLvvPOOMjIyvNPvuOMOnThxQsuWLTOz0gCAgOOaLQBAWPjrX/+qCy64QKdOnVJFRYWuv/56zZ8/X7t375Yk/fCHP/S2TU5OliQVFBSodevWOn78uGbMmKG//vWvOnz4sE6dOqXS0lLvka1+/fopLS1Nl156qQYMGKABAwboxhtvVGxsrHbv3q2TJ0+qX79+PuMpLy9Xly5dGmjtAQCBQNgCAISFPn366Nlnn5XL5VJKSopcLpckecPWmfeSZFmWJKmqqkqSdP/992vt2rV68sknddlllykmJkY//elPVV5eLkmKi4vT9u3btWHDBr311lt65JFHlJOTow8//NDbxxtvvKGLLrrIZ0xut9vsSgMAAoqwBQAIC02bNtVll13m12fff/99jRo1SjfeeKOk09dwffnllz5tIiMjlZmZqczMTE2fPl3NmzfXO++8o379+sntduurr75S796967saAIAQQtgCAOAcLrvsMq1atUpDhgyRZVmaNm2a94iVdPoUxS+++ELXXHON4uPj9eabb6qqqkrp6emKi4vT5MmTde+996qqqkpXX321iouLtWnTJl1wwQUaOXJkANcMAGASYQsAgHOYO3euxowZo169eqlly5b6zW9+o+LiYu/85s2ba9WqVcrJydHJkyfVtm1bLV++XB07dpQk/fa3v1WrVq00a9YsffHFF2revLm6du2qhx56KFCrBABoANyNEAAAAAAM4DlbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADDg/wOZVCSCE2gOPQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 16\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, folding at the correct period (blue line) generates a profile that looks approximately sinusoidal, whereas folding at a different period (orange line) does not. \n", + "\n", + "For Phase Dispersion Minimization, we are not interested in the *mean* in each phase bin, but rather the *variance* in each phase bin, which we'd like to _minimize_, not maximize. We can also calculate that using `fold_profile`, using `mode=\"pdm\"` (the default is Epoch Folding, `mode=\"ef\"`):\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAIOCAYAAABOCBf1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABFgUlEQVR4nO3de3QU5f3H8c+QbDYJhjWBkosGxIIol1puPwhaEblfvVWk1BxARNSfUBS0IiLBKlSqgAXvBw3l6s8KVquCoIJSLkIAK4IgihgKMVZDQiAkIZnfH5StaxIgm3myu9n365w9J7vz7DPPDLvf5bPPzKxl27YtAAAAAICj6gV6AAAAAABQFxG2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAZEBnoAoaK8vFyHDh1SXFycLMsK9HAAAAAABIht2zp69KhSUlJUr94Z5q/sAFq3bp09cOBAOzk52ZZkr1ixwmf5a6+9Zvfu3dtu2LChLcnevn17hT66detmS/K53XzzzT5tfvjhB/uWW26xGzRoYDdo0MC+5ZZb7Ly8vGqNNTs7u8J6uHHjxo0bN27cuHHjFr637OzsM2aIgM5sHTt2TJdffrlGjhypG2+8sdLlV1xxhW666SaNHj26yn5Gjx6tRx55xHs/JibGZ/mwYcN08OBBrVy5UpJ0++23Kz09XW+++eY5jzUuLk6SlJ2drQYNGpzz8wAAAADULQUFBUpNTfVmhKoENGz169dP/fr1q3J5enq6JOnrr78+Yz+xsbFKSkqqdNnu3bu1cuVKbdq0SZ07d5Ykvfjii0pLS9OePXvUsmXLcxrr6UMHGzRoQNgCAAAAcNbTi+rEBTIWL16sRo0aqXXr1po4caKOHj3qXbZx40Z5PB5v0JKkLl26yOPxaMOGDVX2WVxcrIKCAp8bAAAAAJyrkL9Axm9/+1s1a9ZMSUlJ2rlzpyZNmqRPPvlEq1evliTl5OSocePGFZ7XuHFj5eTkVNnvjBkzNG3aNGPjBgAAAFC3hXzY+vG5XG3atFGLFi3UsWNHbdu2Te3bt5dU+fSebdtnnPabNGmS7r33Xu/908dlAgAAAMC5qBOHEf5Y+/bt5XK59MUXX0iSkpKS9O2331Zo99133ykxMbHKftxut/f8LM7TAgAAAFBddS5sffbZZyotLVVycrIkKS0tTfn5+fr444+9bTZv3qz8/Hx17do1UMMEAAAAUMcF9DDCwsJC7du3z3t///792rFjhxISEtSkSRP98MMP+uabb3To0CFJ0p49eySdmq1KSkrSl19+qcWLF6t///5q1KiRdu3apQkTJqhdu3a64oorJEmXXXaZ+vbtq9GjR+v555+XdOrS7wMHDjznKxECAAAAQHVZtm3bgVr52rVr1b179wqPDx8+XJmZmcrMzNTIkSMrLJ86daoyMjKUnZ2tW265RTt37lRhYaFSU1M1YMAATZ06VQkJCd72P/zwg8aNG6c33nhDkjR48GDNmzdP559//jmPtaCgQB6PR/n5+RxSCAAAAISxc80GAQ1boYSwBQAAAEA692xQ587ZAgAAAIBgQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMCAyEAPAKhttm2rqLTMSN8xrghZlmWkbwAIJyZrtUS9BlA7CFsIK7Zt69fPbVTWgTwj/XdsGq9X70jjAxwAasB0rZao1wBqB4cRIqwUlZYZ/fDeeiDP6DexABAOTNdqiXoNoHYws4WwtfWhnoqNinCkr+MlZer46BpH+gIA/JeTtVqiXgOoXYQthK3YqAjFRvEWAIBgRq0GEMo4jBAAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADAgoGHrww8/1KBBg5SSkiLLsvT666/7LF++fLn69OmjRo0aybIs7dixo0IfxcXFGjt2rBo1aqT69etr8ODBOnjwoE+bvLw8paeny+PxyOPxKD09XUeOHDG3YQAAAADCXkDD1rFjx3T55Zdr3rx5VS6/4oor9Mc//rHKPsaPH68VK1Zo2bJlWr9+vQoLCzVw4ECVlZV52wwbNkw7duzQypUrtXLlSu3YsUPp6emObw8AAAAAnBYZyJX369dP/fr1q3L56UD09ddfV7o8Pz9f8+fP18KFC9WzZ09J0qJFi5Samqo1a9aoT58+2r17t1auXKlNmzapc+fOkqQXX3xRaWlp2rNnj1q2bOnsRgEAAACAQvycraysLJWWlqp3797ex1JSUtSmTRtt2LBBkrRx40Z5PB5v0JKkLl26yOPxeNtUpri4WAUFBT43AAAAADhXIR22cnJyFBUVpfj4eJ/HExMTlZOT423TuHHjCs9t3Lixt01lZsyY4T3Hy+PxKDU11dnBAwAAAKjTAnoYoSm2bcuyLO/9H/9dVZufmjRpku69917v/YKCAgIXzsnxkrKzN/JDjCvijK9ZAED1UK8BmBbSYSspKUklJSXKy8vzmd3Kzc1V165dvW2+/fbbCs/97rvvlJiYWGXfbrdbbrfb+UGjzuv46Boz/TaN16t3pPEBDgAOoV4DMC2kDyPs0KGDXC6XVq9e7X3s8OHD2rlzpzdspaWlKT8/Xx9//LG3zebNm5Wfn+9tA9RUjCtCHZvGn71hDWw9kKeiUjPfwgJAuKBeA6hNAZ3ZKiws1L59+7z39+/frx07dighIUFNmjTRDz/8oG+++UaHDh2SJO3Zs0fSqdmqpKQkeTwejRo1ShMmTFDDhg2VkJCgiRMnqm3btt6rE1522WXq27evRo8ereeff16SdPvtt2vgwIFciRCOsSxLr96RZuTD9XhJmbFvXwEg3FCvAdSmgIatrVu3qnv37t77p8+RGj58uDIzM/XGG29o5MiR3uVDhw6VJE2dOlUZGRmSpNmzZysyMlJDhgxRUVGRevTooczMTEVERHift3jxYo0bN8571cLBgwdX+dtegL8sy1JsVEgfmQsAYYF6DaC2BLTSXH311bJtu8rlI0aM0IgRI87YR3R0tObOnau5c+dW2SYhIUGLFi3yd5gAAAAAUG0hfc4WAAAAAAQrwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABgQ0bH344YcaNGiQUlJSZFmWXn/9dZ/ltm0rIyNDKSkpiomJ0dVXX63PPvvMp83VV18ty7J8bkOHDvVpk5eXp/T0dHk8Hnk8HqWnp+vIkSOGtw4AAABAOAto2Dp27Jguv/xyzZs3r9LlM2fO1KxZszRv3jxt2bJFSUlJ6tWrl44ePerTbvTo0Tp8+LD39vzzz/ssHzZsmHbs2KGVK1dq5cqV2rFjh9LT041tFwAAAABEBnLl/fr1U79+/SpdZtu25syZo8mTJ+uGG26QJC1YsECJiYlasmSJxowZ420bGxurpKSkSvvZvXu3Vq5cqU2bNqlz586SpBdffFFpaWnas2ePWrZs6fBWAQAAAEAQn7O1f/9+5eTkqHfv3t7H3G63unXrpg0bNvi0Xbx4sRo1aqTWrVtr4sSJPjNfGzdulMfj8QYtSerSpYs8Hk+Ffn6suLhYBQUFPjcAAAAAOFcBndk6k5ycHElSYmKiz+OJiYk6cOCA9/5vf/tbNWvWTElJSdq5c6cmTZqkTz75RKtXr/b207hx4wr9N27c2LuOysyYMUPTpk1zYlMAAAAAhKGgDVunWZblc9+2bZ/HRo8e7f27TZs2atGihTp27Kht27apffv2lfZRWT8/NWnSJN17773e+wUFBUpNTfV7OwAAAACEl6A9jPD0OVg/nX3Kzc2tMNv1Y+3bt5fL5dIXX3zh7efbb7+t0O677747Yz9ut1sNGjTwuQEAAADAuQrasHX60MDThwNKUklJidatW6euXbtW+bzPPvtMpaWlSk5OliSlpaUpPz9fH3/8sbfN5s2blZ+ff8Z+AAAAAKAmAnoYYWFhofbt2+e9v3//fu3YsUMJCQlq0qSJxo8fr+nTp6tFixZq0aKFpk+frtjYWA0bNkyS9OWXX2rx4sXq37+/GjVqpF27dmnChAlq166drrjiCknSZZddpr59+2r06NHeS8LffvvtGjhwIFciBAAAAGBMQMPW1q1b1b17d+/90+dIDR8+XJmZmbr//vtVVFSku+66S3l5eercubPeffddxcXFSZKioqL03nvv6amnnlJhYaFSU1M1YMAATZ06VREREd5+Fy9erHHjxnmvbDh48OAqf9sLAAAAAJwQ0LB19dVXy7btKpdblqWMjAxlZGRUujw1NVXr1q0763oSEhK0aNEif4cJAAAAANUWtOdsAQAAAEAoI2wBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGSgBwCzbNtWUWmZsf5jXBGyLMtY/wAQLqjXAFD3ELbqMNu29evnNirrQJ6xdXRsGq9X70jjAxwAaoB6DQB1E4cR1mFFpWVGP7glaeuBPKPfxAJAOKBeA0DdxMxWmNj6UE/FRkU41t/xkjJ1fHSNY/0BAE6hXgNA3UHYChOxURGKjeKfGwCCHfUaAOoODiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMiAz0AoDK2bauotMzxfo+XON8nAIQrajUAnBlhC0HHtm39+rmNyjqQF+ihAACqQK0GgLML6GGEH374oQYNGqSUlBRZlqXXX3/dZ7lt28rIyFBKSopiYmJ09dVX67PPPvNpU1xcrLFjx6pRo0aqX7++Bg8erIMHD/q0ycvLU3p6ujwejzwej9LT03XkyBHDWwd/FZWWGf/w7tg0XjGuCKPrAIC6jFoNAGcX0JmtY8eO6fLLL9fIkSN14403Vlg+c+ZMzZo1S5mZmbrkkkv06KOPqlevXtqzZ4/i4uIkSePHj9ebb76pZcuWqWHDhpowYYIGDhyorKwsRUScKtDDhg3TwYMHtXLlSknS7bffrvT0dL355pu1t7EBYytGxVLJMTn6z11yUjE6oSK5neuzElsf6qnYKOc/aGNcEbIsy/F+AcB/oVuvqdUAULmAhq1+/fqpX79+lS6zbVtz5szR5MmTdcMNN0iSFixYoMTERC1ZskRjxoxRfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59tHv3bq1cuVKbNm1S586dJUkvvvii0tLStGfPHrVs2bJ2NjYQbFt/jZqmjvX2Sk8423WspN3R0pbySyS7j7Od/3g9URGKjeJoVwB1XIjXa2o1AFQuaK9GuH//fuXk5Kh3797ex9xut7p166YNGzZIkrKyslRaWurTJiUlRW3atPG22bhxozwejzdoSVKXLl3k8Xi8beqs0uOnPrgN6lRvr1R63Og6AKDOo14DQJ0UtF9D5eTkSJISExN9Hk9MTNSBAwe8baKiohQfH1+hzenn5+TkqHHjxhX6b9y4sbdNZYqLi1VcXOy9X1BQ4N+GBInjv/tcsfUbONffsQLFPnWpY/0BAE6hXgNA3RG0Yeu0nx6rbdv2WY/f/mmbytqfrZ8ZM2Zo2rRp1RxtEHPFSlH1neuv5KRzfQEA/ot6DQB1RtAeRpiUlCRJFWafcnNzvbNdSUlJKikpUV5e3hnbfPvttxX6/+677yrMmv3YpEmTlJ+f771lZ2fXaHsAAAAAhJegDVvNmjVTUlKSVq9e7X2spKRE69atU9euXSVJHTp0kMvl8mlz+PBh7dy509smLS1N+fn5+vjjj71tNm/erPz8fG+byrjdbjVo0MDnBgAAAADnKqCHERYWFmrfvn3e+/v379eOHTuUkJCgJk2aaPz48Zo+fbpatGihFi1aaPr06YqNjdWwYcMkSR6PR6NGjdKECRPUsGFDJSQkaOLEiWrbtq336oSXXXaZ+vbtq9GjR+v555+XdOrS7wMHDqzbVyIEAAAAEFABDVtbt25V9+7dvffvvfdeSdLw4cOVmZmp+++/X0VFRbrrrruUl5enzp0769133/X+xpYkzZ49W5GRkRoyZIiKiorUo0cPZWZmen9jS5IWL16scePGea9aOHjwYM2bN6+WthIAAABAOApo2Lr66qtl23aVyy3LUkZGhjIyMqpsEx0drblz52ru3LlVtklISNCiRYtqMlQACF62bfaS3q5YiR+WBYCao16HnaC/GiEA1BkmPmRtW3q5r5TzqbP9/lhqF+nWlXyAAwgPpgIR9TosEbZCTXUKAD9eCQQP25Ze6iNlbw70SKove9OpeuLk5chDlan/hFGvgeAQyrVaol4HIcJWqCk9Lk1POaemsYaHAqAaSo+b/fBOaiuNdPjbzJLj0hPNnesv1Bn8Txj1GggSpmu1RL0OM4StMLCl/BK1dvFRDgSNifukKIffkxynb14t/CeMeg0EERO1WqJehxnCVqhxxUoPHjqnpsdLTqrDo2tUJLd28aYGgkdULId4hDqH/xNGvQaCELUaDiBshRrLqsYb/6SKFG10OAAQlhz/Txj1GgDqonqBHgAAAAAA1EWELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYEBnoAQA4d8dLyoz0G+OKkGVZRvoGgHBkol5Tq4HQQ9gCQkjHR9eY6bdpvF69I40PcQBwiIl6Ta0GQo9fhxFu27ZNn376qff+3/72N1133XV68MEHVVJS4tjgAJz6JrNj03ij69h6IE9FpWZmzQAgXJiu19RqIPT4NbM1ZswYPfDAA2rbtq2++uorDR06VNdff71effVVHT9+XHPmzHF4mED4sixLr96RZuQD9nhJmbHZMgAIN6bqNbUaCF1+ha29e/fql7/8pSTp1Vdf1VVXXaUlS5boH//4h4YOHUrYAhxmWZZiozjqFwCCHfUawI/5dRihbdsqLy+XJK1Zs0b9+/eXJKWmpurf//63c6MDAAAAgBDlV9jq2LGjHn30US1cuFDr1q3TgAEDJEn79+9XYmKiowMEAAAAgFDkV9iaPXu2tm3bprvvvluTJ09W8+bNJUl//etf1bVrV0cHCAAAAAChyK+Dii+//HKfqxGe9qc//UmRkRynDAAAAAB+zWxdfPHF+v777ys8fuLECV1yySU1HhQAAAAAhDq/wtbXX3+tsrKKlzUtLi7WwYMHazwoAAAAAAh11Trm74033vD+vWrVKnk8Hu/9srIyvffee2rWrJlzowMAAACAEFWtsHXddddJOvUbEsOHD/dZ5nK5dNFFF+nJJ590bHDB6On39ym6/nmBHsY5KS0r9/497/19ckX4NZFZuZJjuuc/fz6/7ispqr5jXRsdN3ywr2tPZFmRxv7n77nv79PJiJiAjudchOKYTTK5P0KxXlM/ag/7uvaEat0L1XGHshPHCs+pXbXC1unf1mrWrJm2bNmiRo0aVX9kQF1l24osP2Gs+5P1oiXLMtY/UOt4zyBQeO0B5473S434denA/fv3Oz0OILTZtm7+9DalHP2nsVX8K+5y/V/bF+t0QUIY4T2DQOG1B5w73i815vd12t977z299957ys3N9c54nfbSSy/VeGBAKIksP2G0EEnSBUc/UWT5CQ4NQJ3AewaBwmsPOHe8X2rOr7A1bdo0PfLII+rYsaOSk5Nl1dEkWpktX/8gV0xxoIdxTsrKbe/fH+//QRH1nPt3iiwr8v699UCeTkY4N71sctySJNuW23b239Bt/3f7RzdepmIr2tG+X8wdKknasv8HFddzrm/j+xpe7h8dguH0v6MpJsf8475D5T1jcn+EYr0OxVothWa9plbXnlCs1ZK5cYdira4tpUXHzqmdX2HrueeeU2ZmptLT0/15OhA4tq1Hvp+glqW7jK2i2Ip2tmCUn70JEMp4z6CCWqjVEq89oDp4v/jHr8vZlJSUqGvXrk6PBTDObRcb/fD+3NVKxZbbWP8AEA5M12qJeg2gdvg1s3XbbbdpyZIlmjJlitPjAWqN09Phkk59cIfRYbUAYJqJWi1RrwHUDr/C1okTJ/TCCy9ozZo1+sUvfiGXy+WzfNasWY4MDjDJ8elwAIDjqNUAQplfYeuf//ynfvnLX0qSdu7c6bMsnC6WAQAAAABV8StsffDBB06PAwAAAADqFL8ukAEAAAAAODO/Zra6d+9+xsMF33//fb8HBAAAAAB1gV9h6/T5WqeVlpZqx44d2rlzp4YPH+7EuABUwm2fcPR3KcpsWzE6oSJx+WMAcJKT9ZpaDYQuv8LW7NmzK308IyNDhYWFNRoQgKqd/qV1R0VLW8ov0eP2HElc4AYAnOB4vaZWAyHJ0XO2brnlFr300ktOdgmEvWLLrc9drYyuo1O9vXKr2Og6AKCuM12vqdVA6PFrZqsqGzduVHQ0v4UBOMqyNLXhk3Lbzn/ARpYX6aXvfuN4vwAQlgzVa2o1ELr8Cls33HCDz33btnX48GFt3bpVU6ZMcWRgpx09elRTpkzRihUrlJubq3bt2umpp55Sp06dJEkjRozQggULfJ7TuXNnbdq0yXu/uLhYEydO1NKlS1VUVKQePXromWee0YUXXujoWAFjLEvFlvNfZJTZtuN9AkBYM1CvqdVA6PIrbHk8Hp/79erVU8uWLfXII4+od+/ejgzstNtuu007d+7UwoULlZKSokWLFqlnz57atWuXLrjgAklS37599fLLL3ufExUV5dPH+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sRERGOjhcAAAAAJD/D1o+DjUlFRUV67bXX9Le//U1XXXWVpFMX4Xj99df17LPP6tFHH5Ukud1uJSUlVdpHfn6+5s+fr4ULF6pnz56SpEWLFik1NVVr1qxRnz59amVbAAAAAISXGl0gIysrS4sWLdLixYu1fft2p8bkdfLkSZWVlVU4DywmJkbr16/33l+7dq0aN26sSy65RKNHj1Zubq7PGEtLS31m3FJSUtSmTRtt2LDB8TEDAAAAgOTnzFZubq6GDh2qtWvX6vzzz5dt28rPz1f37t21bNky/exnP3NkcHFxcUpLS9Mf/vAHXXbZZUpMTNTSpUu1efNmtWjRQpLUr18/3XTTTWratKn279+vKVOm6JprrlFWVpbcbrdycnIUFRWl+Ph4n74TExOVk5NT5bqLi4tVXPzfE1wLCgoc2SYAAAAA4cGvma2xY8eqoKBAn332mX744Qfl5eVp586dKigo0Lhx4xwd4MKFC2Xbti644AK53W79+c9/1rBhw7znWt18880aMGCA2rRpo0GDBumdd97R3r179dZbb52xX9u2ZVlV/07FjBkz5PF4vLfU1FRHtwsAAABA3eZX2Fq5cqWeffZZXXbZZd7HWrVqpaefflrvvPOOY4OTpJ///Odat26dCgsLlZ2drY8//lilpaVq1qxZpe2Tk5PVtGlTffHFF5KkpKQklZSUKC8vz6ddbm6uEhMTq1zvpEmTlJ+f771lZ2c7t1EAAAAA6jy/wlZ5eblcLleFx10ul8rLy2s8qMrUr19fycnJysvL06pVq3TttddW2u77779Xdna2kpOTJUkdOnSQy+XS6tWrvW0OHz6snTt3qmvXrlWuz+12q0GDBj43AAAAADhXfoWta665Rr/73e906NAh72P/+te/dM8996hHjx6ODU6SVq1apZUrV2r//v1avXq1unfvrpYtW2rkyJEqLCzUxIkTtXHjRn399ddau3atBg0apEaNGun666+XdOoy9aNGjdKECRP03nvvafv27brlllvUtm1b79UJAQAAAMBpfl0gY968ebr22mt10UUXKTU1VZZl6ZtvvlHbtm21aNEiRweYn5+vSZMm6eDBg0pISNCNN96oxx57TC6XSydPntSnn36qv/zlLzpy5IiSk5PVvXt3vfLKK4qLi/P2MXv2bEVGRmrIkCHeHzXOzMzkN7YAAAAAGONX2EpNTdW2bdu0evVqff7557JtW61atTIyUzRkyBANGTKk0mUxMTFatWrVWfuIjo7W3LlzNXfuXKeHBwAAAACVqtZhhO+//75atWrlvQx6r169NHbsWI0bN06dOnVS69at9dFHHxkZKAAAAACEkmqFrTlz5mj06NGVXizC4/FozJgxmjVrlmODAwAAAIBQVa2w9cknn6hv375VLu/du7eysrJqPCgAAAAACHXVClvffvttpZd8Py0yMlLfffddjQcFAAAAAKGuWhfIuOCCC/Tpp5+qefPmlS7/5z//6f19K4QPt31CEeWWY/2V2bZidEJFcjvWJwDA2XpNrQaAs6tW2Orfv78efvhh9evXT9HR0T7LioqKNHXqVA0cONDRASL4vfTdb5zvNFraUn6JHrfnSHIuyAFAOHO8XlOrAeCMqhW2HnroIS1fvlyXXHKJ7r77brVs2VKWZWn37t16+umnVVZWpsmTJ5saK4JIsdzaUn6JOtXba2wdnertlVvFOqkYY+sAgLrOdL2mVgNA1aoVthITE7VhwwbdeeedmjRpkmzbliRZlqU+ffromWeeUWJiopGBIshYlm4qmaoYFat9k3hFWM59oxlZXmRmtgwAwpGhek2tBoCzq/aPGjdt2lRvv/228vLytG/fPtm2rRYtWig+Pt7E+BDULBUpWsVWtCLqOXvOFgDASc7Xa2o1AJxdtcPWafHx8erUqZOTYwGAwLNtue1ix7t12ycc7xMAwpqBek2thtP8DlsA6pZy21ZZubPfVNezTh1mHDJsW498P0EtS3cFeiQAUCkTtVqiXgOmELYASJJ2ZB9RkZz9Ru88d6RaJceFzAe42y42/sH9uauVii0ulQ3APyZqtUS9/ilqNZxC2ALCWLV+1dwPhcUnVW5LEaHx2e1jdONlKraiz96wmoottxQi/5kBEBxM12qJev1T1Go4hbCFGiu3bancuf7qcdJ1rfnxN5jtm8Q79mFVbtva9s0R799Ovj5OM33IS7EVreJ6zoctIJCcfD9Sq2uPqVotUa8B0whbqLHTRdopMTohUTNrXYRlOXdVyR99WDv9+jgt1A55AYKBk+9HanVgOFqrJeo1YFhtzEyjDqpnnSqextdjfA0woTZeH6cPeQFwZrXxfqRWhy7qNWAWM1vwi2VZapUcZ6R4uu0TUu5/14PQY/L18eNDXgCcnan3I7W6bqBeA2YRtuA3y7KMnEgbUc6Hdl1g6vVh4nwCoK4z8X6kVtcd1GvAHGb+AQAAAMAAwhYAAAAAGMBhhACAs3LbJxw9JMhtO/+jrAAAZ+s1tbrmCFsAgLN6MXdooIcAADgH1OvgwmGEAIBKFVtufe5qZXQdn7taqdhyG10HANR1pus1tdp/zGwhqHHoEhBAlqWpDZ+U2y42topiyy1x2fCQR60GAsxwvaZW+4+whaDGVDgQYJalYis60KNAkKNWA0GAeh2UOIwQQYdDlwAg+FGrAeDsmNlC8OHQJQAOKbNtlZXbjvWFH6FWA3BIdWt1PevUj3GHAsIWghNT4QD8ZP8oFG37Jk9FcqaWxOiETndlE7xOoVYD8FNNanXHpvGKCI2sxWGEAIC6xcHrNAR0HQBQl4VLHWVmCwBQZ/0y9XyV1otxpC9XeZH0nSNdAQB+pLq1ul6IzGpJhC0Apti2kXM5ymxbMTqhInHSPM6unmUpwqFP5Xp2CH26A9VBvUaAOVmrgw1hC4DzbFuPfD9BLUt3mek/WtpSfoket+dIqpvFGQBqBfUaMIpztgA4zm0Xm/vg/o9O9fbKLXNXQQOAcEC9BsxiZguAUaMbL3P0amWR5UV66bvfONYfAOAU6jXgPMIWAKOKrWgV13Puw5vfOgIAM6jXgPM4jBAAAAAADGBmK8TYtq1z/YHtcr5RAgAjym1bZedajM+xPwBA3UPYCjHltrT1QF6ghwEAYW1H9hEV6USghwEACHIcRhgGznNHhtSPvwFAMKqND0zqNQDULcxshZh6ltSxaXy1n2NZfHoDQE38uI62bxLv6FXbTqNeA0DdQtgKMZZlKYLPYUCS5LZPKKLcuTeE2+awMJybCMtSBFNQwDmjXiNcEbYAhCx+vwUAQgP1GuGKc7YAhJRiubWl/BKj6/jc1UrFltvoOgCgrqNeA8xsAQg1lqWbSqYqRsVq3yReEQbObym23BLnzQBAzVCvAcIWgFBkqUjRKraiOW8GAIIa9RrhjbBVTZ0uSlB0/fMCPQzAEZFlRdK3p/7u1CxBJyNigrpfSSotK/f+1tz/NEuQK4KjofETJcek3FN/dmwaL0XVd6Rbk69r4ExMvvao1wgYQ7W6tpw45taKc2jHqx4AAAAADCBsAQAAAIABhC0AAAAAMCDoz9k6evSopkyZohUrVig3N1ft2rXTU089pU6dOkmSbNvWtGnT9MILLygvL0+dO3fW008/rdatW3v7KC4u1sSJE7V06VIVFRWpR48eeuaZZ3ThhRdWezz/e01zNWjQwLHtAwKq5Ji06dSfY69p7tzx0qb6lXS85KSeWfulJOnua5orNiroyxhq2fHCfGnLqb/HdLtYsed5nOnY4OsaOCOTrz3qNQLEWK2uJQUFBXrwHNoF/czWbbfdptWrV2vhwoX69NNP1bt3b/Xs2VP/+te/JEkzZ87UrFmzNG/ePG3ZskVJSUnq1auXjh496u1j/PjxWrFihZYtW6b169ersLBQAwcOVFlZWaA2CwAAAEAdF9Rhq6ioSK+99ppmzpypq666Ss2bN1dGRoaaNWumZ599VrZta86cOZo8ebJuuOEGtWnTRgsWLNDx48e1ZMkSSVJ+fr7mz5+vJ598Uj179lS7du20aNEiffrpp1qzZk2AtxAAAABAXRXUYevkyZMqKytTdHS0z+MxMTFav3699u/fr5ycHPXu3du7zO12q1u3btqwYYMkKSsrS6WlpT5tUlJS1KZNG2+byhQXF6ugoMDnBgAAAADnKqjDVlxcnNLS0vSHP/xBhw4dUllZmRYtWqTNmzfr8OHDysnJkSQlJib6PC8xMdG7LCcnR1FRUYqPj6+yTWVmzJghj8fjvaWmpjq8dQAAAADqsqAOW5K0cOFC2batCy64QG63W3/+8581bNgwRUREeNtYlu8vktu2XeGxnzpbm0mTJik/P997y87OrtmGAAAAAAgrQR+2fv7zn2vdunUqLCxUdna2Pv74Y5WWlqpZs2ZKSkqSpAozVLm5ud7ZrqSkJJWUlCgvL6/KNpVxu91q0KCBzw0AAAAAzlXQh63T6tevr+TkZOXl5WnVqlW69tprvYFr9erV3nYlJSVat26dunbtKknq0KGDXC6XT5vDhw9r586d3jYAAAAA4LSg/8GDVatWybZttWzZUvv27dN9992nli1bauTIkbIsS+PHj9f06dPVokULtWjRQtOnT1dsbKyGDRsmSfJ4PBo1apQmTJighg0bKiEhQRMnTlTbtm3Vs2fPAG8dAAAAgLoq6MNWfn6+Jk2apIMHDyohIUE33nijHnvsMblcLknS/fffr6KiIt11113eHzV+9913FRcX5+1j9uzZioyM1JAhQ7w/apyZmelz3hcAAAAAOCnow9aQIUM0ZMiQKpdblqWMjAxlZGRU2SY6Olpz587V3LlzDYwQAAAAACoKmXO2AAAAACCUELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGBAZ6AEAAGrGtm0VlZYZ6z/GFSHLsoz1DwDhgnodfghbABDCbNvWr5/bqKwDecbW0bFpvF69I40PcACoAep1eOIwQgAIYUWlZUY/uCVp64E8o9/EAkA4oF6HJ2a2AKCO2PpQT8VGRTjW3/GSMnV8dI1j/QEATqFehw/CFgDUEbFREYqNoqwDQLCjXocPDiMEAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAyIDPQAACCY2LatotIyY/3HuCJkWZax/gEgXJis19RqOIWwBQD/Ydu2fv3cRmUdyDO2jo5N4/XqHWl8iANADZiu19RqOIXDCAHgP4pKy4wGLUnaeiDP6MwZAIQD0/WaWg2nMLMFAJXY+lBPxUZFONbf8ZIydXx0jWP9AQBOcbJeU6vhNMIWAFQiNipCsVGUSAAIdtRrBLOgPozw5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvmxEjRsiyLJ9bly5dfPopLi7W2LFj1ahRI9WvX1+DBw/WwYMHa3tzAAAAAISRoP4a4PHHH9dzzz2nBQsWqHXr1tq6datGjhwpj8ej3/3ud952ffv21csvv+y9HxUV5dPP+PHj9eabb2rZsmVq2LChJkyYoIEDByorK0sREc4dJgQAAAAApwV12Nq4caOuvfZaDRgwQJJ00UUXaenSpdq6datPO7fbraSkpEr7yM/P1/z587Vw4UL17NlTkrRo0SKlpqZqzZo16tOnj9mNAAAAABCWgjpsXXnllXruuee0d+9eXXLJJfrkk0+0fv16zZkzx6fd2rVr1bhxY51//vnq1q2bHnvsMTVu3FiSlJWVpdLSUvXu3dvbPiUlRW3atNGGDRuqDFvFxcUqLi723i8oKHB+AwHUyPESZ68U5XR/AIBTqNcIV0Edtn7/+98rPz9fl156qSIiIlRWVqbHHntMv/nNb7xt+vXrp5tuuklNmzbV/v37NWXKFF1zzTXKysqS2+1WTk6OoqKiFB8f79N3YmKicnJyqlz3jBkzNG3aNGPbBqDmuGIUAIQG6jXCVVBfIOOVV17RokWLtGTJEm3btk0LFizQE088oQULFnjb3HzzzRowYIDatGmjQYMG6Z133tHevXv11ltvnbFv27bP+EN1kyZNUn5+vveWnZ3t2HYB8F+MK0Idm8afvWENdGwarxgX53MCQE1Qr4Egn9m677779MADD2jo0KGSpLZt2+rAgQOaMWOGhg8fXulzkpOT1bRpU33xxReSpKSkJJWUlCgvL89ndis3N1ddu3atct1ut1tut9vBrQHgBMuy9OodaUZ/bDLGFXHGL2MAAGdHvQaCPGwdP35c9er5Tr5FRET4XPr9p77//ntlZ2crOTlZktShQwe5XC6tXr1aQ4YMkSQdPnxYO3fu1MyZM80NHoAxlmXxmyoAEAKo1wh3Qf3qHzRokB577DE1adJErVu31vbt2zVr1izdeuutkqTCwkJlZGToxhtvVHJysr7++ms9+OCDatSoka6//npJksfj0ahRozRhwgQ1bNhQCQkJmjhxotq2beu9OiEAAAAAOC2ow9bcuXM1ZcoU3XXXXcrNzVVKSorGjBmjhx9+WNKpWa5PP/1Uf/nLX3TkyBElJyere/fueuWVVxQXF+ftZ/bs2YqMjNSQIUNUVFSkHj16KDMzk9/YAgAAAGBMUIetuLg4zZkzp8Kl3k+LiYnRqlWrztpPdHS05s6dq7lz5zo8QgAAAACoXFBfjRAAAAAAQhVhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAA4L6R40BAMHheEmZkX5jXBGyLMtI3wAQjkzUa2q1/whbAICz6vjoGjP9No3Xq3ek8SEOAA4xUa+p1f7jMEIAQKViXBHq2DTe6Dq2HshTUamZWTMACBem6zW12n/MbAEAKmVZll69I83IB+zxkjJjs2UAEG5M1Wtqdc0RtgAAVbIsS7FRfFQAQLCjXgcn/kUAAAHl9Mncx0vKFOtojwAAarV/CFsAgIBy+hCVGJ3Q7mhHuwSAsEet9g8XyAAA1LrauPjG6fUAAPxDra45ZrYAnFJyPDj7Qp1k8uIbKjkmPfHf9QB1itP1lXqNM6BW1xxhC8ApTzQP9AgQZsydzM1HG+owajVqGbW6ZjiMEAhnrlgptYu5/lO7nFoHAMB/pmu1RL0GDAmPSAmgcpYl3bpSKjV0GIkr9tQ6AAD+M12rJeo1YAhhCwh3liVF1Q/0KAAAZ0KtBkIShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAZGBHgAAhJvjJWVB2RcA4L+crq/U6/BE2AKAWtbx0TWBHgIA4Cyo1XAChxECQC2IcUWoY9N4Y/13bBqvGFeEsf4BIByYrtUS9TrcMLMFALXAsiy9ekeaikrNHEYS44qQZVlG+gaAcGG6VkvU63BD2AKAWmJZlmKjKLsAEMyo1XAShxECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1GHr5MmTeuihh9SsWTPFxMTo4osv1iOPPKLy8nJvG9u2lZGRoZSUFMXExOjqq6/WZ5995tNPcXGxxo4dq0aNGql+/foaPHiwDh48WNubAwAAACCMBHXYevzxx/Xcc89p3rx52r17t2bOnKk//elPmjt3rrfNzJkzNWvWLM2bN09btmxRUlKSevXqpaNHj3rbjB8/XitWrNCyZcu0fv16FRYWauDAgSorM/cbCgAAAADCW1D/iMDGjRt17bXXasCAAZKkiy66SEuXLtXWrVslnZrVmjNnjiZPnqwbbrhBkrRgwQIlJiZqyZIlGjNmjPLz8zV//nwtXLhQPXv2lCQtWrRIqampWrNmjfr06ROYjQMAAABQpwX1zNaVV16p9957T3v37pUkffLJJ1q/fr369+8vSdq/f79ycnLUu3dv73Pcbre6deumDRs2SJKysrJUWlrq0yYlJUVt2rTxtqlMcXGxCgoKfG4AAAAAcK6Cembr97//vfLz83XppZcqIiJCZWVleuyxx/Sb3/xGkpSTkyNJSkxM9HleYmKiDhw44G0TFRWl+Pj4Cm1OP78yM2bM0LRp05zcHAAAAABhJKhntl555RUtWrRIS5Ys0bZt27RgwQI98cQTWrBggU87y7J87tu2XeGxnzpbm0mTJik/P997y87O9n9DAAAAAISdoJ7Zuu+++/TAAw9o6NChkqS2bdvqwIEDmjFjhoYPH66kpCRJp2avkpOTvc/Lzc31znYlJSWppKREeXl5PrNbubm56tq1a5XrdrvdcrvdJjYLAAAAQBgI6pmt48ePq1493yFGRER4L/3erFkzJSUlafXq1d7lJSUlWrdunTdIdejQQS6Xy6fN4cOHtXPnzjOGLQAAAACoiaCe2Ro0aJAee+wxNWnSRK1bt9b27ds1a9Ys3XrrrZJOHT44fvx4TZ8+XS1atFCLFi00ffp0xcbGatiwYZIkj8ejUaNGacKECWrYsKESEhI0ceJEtW3b1nt1QgAAAABwWlCHrblz52rKlCm66667lJubq5SUFI0ZM0YPP/ywt83999+voqIi3XXXXcrLy1Pnzp317rvvKi4uzttm9uzZioyM1JAhQ1RUVKQePXooMzNTERERgdgsAAAAAGHAsm3bDvQgQkFBQYE8Ho/y8/PVoEGDQA8HAFCVkmPS9JRTfz94SIqqH9z9AkA4CvGaeq7ZIKjP2QIAAACAUEXYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMCAy0AMAAMCYkuPB2RcA4L+qW19dsZJlmRmLwwhbAIC664nmgR4BAOBsqlurHzwkRdU3MxaHcRghAKBuccVKqV3M9Z/a5dQ6AAD+M12rgwQzWwCAusWypFtXSqWGDvsLocNXACBo1aRWh9AXXoQtAEDdY1khc4gJAIStMKjVHEYIAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABkQGegChwrZtSVJBQUGARwIAAAAgkE5ngtMZoSqErXN09OhRSVJqamqARwIAAAAgGBw9elQej6fK5ZZ9tjgGSVJ5ebkOHTqkuLg4WZbleP8FBQVKTU1Vdna2GjRo4Hj/+C/2de1gP9ce9nXtYV/XHvZ17WFf1x72de0xva9t29bRo0eVkpKievWqPjOLma1zVK9ePV144YXG19OgQQPefLWEfV072M+1h31de9jXtYd9XXvY17WHfV17TO7rM81oncYFMgAAAADAAMIWAAAAABhA2AoSbrdbU6dOldvtDvRQ6jz2de1gP9ce9nXtYV/XHvZ17WFf1x72de0Jln3NBTIAAAAAwABmtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYcuQZ555Rs2aNVN0dLQ6dOigjz766Izt161bpw4dOig6OloXX3yxnnvuuQptXnvtNbVq1Uput1utWrXSihUrTA0/pFRnXy9fvly9evXSz372MzVo0EBpaWlatWqVT5vMzExZllXhduLECdObEvSqs6/Xrl1b6X78/PPPfdrxuq5cdfb1iBEjKt3XrVu39rbhdV3Rhx9+qEGDBiklJUWWZen1118/63Oo1f6p7r6mVvuvuvuaWu2/6u5rarV/ZsyYoU6dOikuLk6NGzfWddddpz179pz1ecFSrwlbBrzyyisaP368Jk+erO3bt+tXv/qV+vXrp2+++abS9vv371f//v31q1/9Stu3b9eDDz6ocePG6bXXXvO22bhxo26++Walp6frk08+UXp6uoYMGaLNmzfX1mYFperu6w8//FC9evXS22+/raysLHXv3l2DBg3S9u3bfdo1aNBAhw8f9rlFR0fXxiYFreru69P27Nnjsx9btGjhXcbrunLV3ddPPfWUzz7Ozs5WQkKCbrrpJp92vK59HTt2TJdffrnmzZt3Tu2p1f6r7r6mVvuvuvv6NGp19VV3X1Or/bNu3Tr97//+rzZt2qTVq1fr5MmT6t27t44dO1blc4KqXttw3P/8z//Yd9xxh89jl156qf3AAw9U2v7++++3L730Up/HxowZY3fp0sV7f8iQIXbfvn192vTp08ceOnSoQ6MOTdXd15Vp1aqVPW3aNO/9l19+2fZ4PE4Nsc6o7r7+4IMPbEl2Xl5elX3yuq5cTV/XK1assC3Lsr/++mvvY7yuz0ySvWLFijO2oVY741z2dWWo1dV3LvuaWu0Mf17X1Gr/5Obm2pLsdevWVdkmmOo1M1sOKykpUVZWlnr37u3zeO/evbVhw4ZKn7Nx48YK7fv06aOtW7eqtLT0jG2q6jMc+LOvf6q8vFxHjx5VQkKCz+OFhYVq2rSpLrzwQg0cOLDCt6nhpib7ul27dkpOTlaPHj30wQcf+CzjdV2RE6/r+fPnq2fPnmratKnP47yua4ZaHTjUavOo1bWPWu2f/Px8SapQD34smOo1Ycth//73v1VWVqbExESfxxMTE5WTk1Ppc3Jyciptf/LkSf373/8+Y5uq+gwH/uzrn3ryySd17NgxDRkyxPvYpZdeqszMTL3xxhtaunSpoqOjdcUVV+iLL75wdPyhxJ99nZycrBdeeEGvvfaali9frpYtW6pHjx768MMPvW14XVdU09f14cOH9c477+i2227zeZzXdc1RqwOHWm0OtTowqNX+sW1b9957r6688kq1adOmynbBVK8jHe0NXpZl+dy3bbvCY2dr/9PHq9tnuPB3vyxdulQZGRn629/+psaNG3sf79Kli7p06eK9f8UVV6h9+/aaO3eu/vznPzs38BBUnX3dsmVLtWzZ0ns/LS1N2dnZeuKJJ3TVVVf51Wc48Xe/ZGZm6vzzz9d1113n8ziva2dQq2sftdosanVgUKv9c/fdd+uf//yn1q9ff9a2wVKvmdlyWKNGjRQREVEhFefm5lZIz6clJSVV2j4yMlINGzY8Y5uq+gwH/uzr01555RWNGjVK//d//6eePXuesW29evXUqVOnsP5WqSb7+se6dOnisx95XVdUk31t27ZeeuklpaenKyoq6oxteV1XH7W69lGrA4NabRa12j9jx47VG2+8oQ8++EAXXnjhGdsGU70mbDksKipKHTp00OrVq30eX716tbp27Vrpc9LS0iq0f/fdd9WxY0e5XK4ztqmqz3Dgz76WTn1LOmLECC1ZskQDBgw463ps29aOHTuUnJxc4zGHKn/39U9t377dZz/yuq6oJvt63bp12rdvn0aNGnXW9fC6rj5qde2iVgcOtdosanX12Latu+++W8uXL9f777+vZs2anfU5QVWvHb3cBmzbtu1ly5bZLpfLnj9/vr1r1y57/Pjxdv369b1Xm3nggQfs9PR0b/uvvvrKjo2Nte+55x57165d9vz5822Xy2X/9a9/9bb5xz/+YUdERNh//OMf7d27d9t//OMf7cjISHvTpk21vn3BpLr7esmSJXZkZKT99NNP24cPH/bejhw54m2TkZFhr1y50v7yyy/t7du32yNHjrQjIyPtzZs31/r2BZPq7uvZs2fbK1assPfu3Wvv3LnTfuCBB2xJ9muvveZtw+u6ctXd16fdcsstdufOnSvtk9d1RUePHrW3b99ub9++3ZZkz5o1y96+fbt94MAB27ap1U6q7r6mVvuvuvuaWu2/6u7r06jV1XPnnXfaHo/HXrt2rU89OH78uLdNMNdrwpYhTz/9tN20aVM7KirKbt++vc/lKYcPH25369bNp/3atWvtdu3a2VFRUfZFF11kP/vssxX6fPXVV+2WLVvaLpfLvvTSS30KYTirzr7u1q2bLanCbfjw4d4248ePt5s0aWJHRUXZP/vZz+zevXvbGzZsqMUtCl7V2dePP/64/fOf/9yOjo624+Pj7SuvvNJ+6623KvTJ67py1a0hR44csWNiYuwXXnih0v54XVd0+pLXVdUDarVzqruvqdX+q+6+plb7z58aQq2uvsr2sST75Zdf9rYJ5npt/WcjAAAAAAAO4pwtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAMLa2rVrZVmWjhw5EuihAADqGMIWAKDOGzFihCzLkmVZcrlcuvjiizVx4kQdO3Ys0EMDANRhkYEeAAAAtaFv3756+eWXVVpaqo8++ki33Xabjh07pptvvjnQQwMA1FHMbAEAwoLb7VZSUpJSU1M1bNgw/fa3v9Xrr7/uXZ6VlaWOHTsqNjZWXbt21Z49e7zLvvzyS1177bVKTEzUeeedp06dOmnNmjU+/T/zzDNq0aKFoqOjlZiYqF//+tfeZbZta+bMmbr44osVExOjyy+/XH/961+NbzMAILAIWwCAsBQTE6PS0lLv/cmTJ+vJJ5/U1q1bFRkZqVtvvdW7rLCwUP3799eaNWu0fft29enTR4MGDdI333wjSdq6davGjRunRx55RHv27NHKlSt11VVXeZ//0EMP6eWXX9azzz6rzz77TPfcc49uueUWrVu3rvY2GABQ6yzbtu1ADwIAAJNGjBihI0eOeGeyPv74Y/Xv3189evTQnXfeqe7du2vNmjXq0aOHJOntt9/WgAEDVFRUpOjo6Er7bN26te68807dfffdWr58uUaOHKmDBw8qLi7Op92xY8fUqFEjvf/++0pLS/M+ftttt+n48eNasmSJmY0GAAQc52wBAMLC3//+d5133nk6efKkSktLde2112ru3LnatWuXJOkXv/iFt21ycrIkKTc3V02aNNGxY8c0bdo0/f3vf9ehQ4d08uRJFRUVeWe2evXqpaZNm+riiy9W37591bdvX11//fWKjY3Vrl27dOLECfXq1ctnPCUlJWrXrl0tbT0AIBAIWwCAsNC9e3c9++yzcrlcSklJkcvlkiRv2Dp9X5Isy5IklZeXS5Luu+8+rVq1Sk888YSaN2+umJgY/frXv1ZJSYkkKS4uTtu2bdPatWv17rvv6uGHH1ZGRoa2bNni7eOtt97SBRdc4DMmt9ttdqMBAAFF2AIAhIX69eurefPmfj33o48+0ogRI3T99ddLOnUO19dff+3TJjIyUj179lTPnj01depUnX/++Xr//ffVq1cvud1uffPNN+rWrVtNNwMAEEIIWwAAnEXz5s21fPlyDRo0SJZlacqUKd4ZK+nUIYpfffWVrrrqKsXHx+vtt99WeXm5WrZsqbi4OE2cOFH33HOPysvLdeWVV6qgoEAbNmzQeeedp+HDhwdwywAAJhG2AAA4i9mzZ+vWW29V165d1ahRI/3+979XQUGBd/n555+v5cuXKyMjQydOnFCLFi20dOlStW7dWpL0hz/8QY0bN9aMGTP01Vdf6fzzz1f79u314IMPBmqTAAC1gKsRAgAAAIAB/M4WAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAz4f8yKY8XX6ew7AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ph, profile, profile_err = fold_events(lc.time, 1/period, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(lc.time, 1/1.1, nbin=nbin, weights=lc.counts, mode=\"pdm\")\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, this looks very different, and not quite as easily recognizeable. What you see here is the nominator of the second term in the PDM Equation written in the introduction.\n", + "\n", + "We'd now like to try calculating this profile for a number of trial periods, and then calculate $\\theta_\\mathrm{PDM}$. Our null hypothesis is that there is no variation in the data except for measurement noise (e.g. Poisson statistics as we have here, or Gaussian noise). This is implemenented in `stingray.pulse.search.phase_dispersion_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used.\n", + "\n", + "Let's do that:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, pdmstat = phase_dispersion_search(lc.time, lc.counts, frequencies, nbin=nbin)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADr80lEQVR4nOydeXxU1fn/P3f2yZ6QnYQQdgQEBGRRRFxAUEtdsfZr3Vu1/bWUVlvcili1aqXUqrgVZXGhlaptXYAKKgiCICL7DoGQkH3P7Pf3x51z5tw7ezJJJuR5v168SGZuZu7M3DnnPOfzPJ9HkmVZBkEQBEEQBEEQBBEX6Lr6BAiCIAiCIAiCIAgfFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEERSkEQRBEARBEARBxBEUpBEEQRAEQRAEQcQRFKQRBEEQBEEQBEHEEYauPoGzGY/Hg9OnTyM5ORmSJHX16RAEQRAEQRAE0UXIsozGxkbk5+dDpwutlVGQ1oGcPn0ahYWFXX0aBEEQBEEQBEHECSdPnkRBQUHIY7o0SPvyyy/x7LPPYvv27SgrK8P777+PH/7whyH/5osvvsDcuXOxZ88e5Ofn44EHHsA999yjOmbVqlV45JFHcOTIEfTv3x9PPPEErrnmGtUxL730Ep599lmUlZVh2LBhWLRoESZPnszvv+2227B06VLV34wfPx5ff/11xK8vOTkZgPJBpKSkRPx3BEEQxFlCczPw/PPq2375SyAxsWvOhyAIgugyGhoaUFhYyGOEUHRpkNbc3IyRI0fi9ttvx3XXXRf2+GPHjmHmzJm4++67sWLFCnz11Ve47777kJWVxf9+8+bNmD17Nh5//HFcc801eP/993HjjTdi48aNGD9+PABg5cqVmDNnDl566SVccMEFeOWVVzBjxgzs3bsXffr04c93xRVX4I033uC/m0ymqF4fS3FMSUmhII0gCKInotcDZrP6tpQUCtIIgiB6MJGUQUmyLMudcC5hkSQprJL2u9/9Dv/+97+xb98+fts999yDnTt3YvPmzQCA2bNno6GhAZ988gk/5oorrkB6ejreeecdAIoidt5552Hx4sX8mKFDh+KHP/whnnrqKQCKklZXV4cPPvigza+poaEBqampqK+vpyCNIAiiJ9LcDDz7rPq2+++nII0gCKIHEk1s0K3cHTdv3oxp06apbps+fTq2bdsGp9MZ8phNmzYBABwOB7Zv3+53zLRp0/gxjM8//xzZ2dkYNGgQ7r77blRUVIQ8P7vdjoaGBtU/giAIgiAIgiCIaOhWQVp5eTlycnJUt+Xk5MDlcqGqqirkMeXl5QCAqqoquN3ukMcAwIwZM/DWW29h3bp1eO655/DNN9/gkksugd1uD3p+Tz31FFJTU/k/Mg0hCIIgCIIgCCJaup27ozaHk2VrircHOkZ7W7hjZs+ezX8ePnw4xo4di6KiInz00Ue49tprA57bvHnzMHfuXP47Kw4kCIIgCIIgCIKIlG4VpOXm5qrULgCoqKiAwWBAr169Qh7DlLPMzEzo9fqQxwQiLy8PRUVFOHToUNBjzGYzzNoCcYIgCIIgCIIgiCjoVumOEydOxNq1a1W3rVmzBmPHjoXRaAx5zKRJkwAoDo1jxozxO2bt2rX8mEBUV1fj5MmTyMvLi8VLIQiCIAiCIAiCCEiXKmlNTU04fPgw//3YsWP47rvvkJGRgT59+mDevHkoLS3FsmXLAChOji+88ALmzp2Lu+++G5s3b8bf//537toIAL/61a9w0UUX4emnn8asWbPw4Ycf4n//+x82btzIj5k7dy5uueUWjB07FhMnTsSrr76KkpIS3m+tqakJ8+fPx3XXXYe8vDwcP34cDz74IDIzM/36rREEQRAEQRAEQcSSLg3Stm3bhqlTp/LfWT3XrbfeijfffBNlZWUoKSnh9xcXF+Pjjz/Gr3/9a7z44ovIz8/H888/r+qxNmnSJLz77rt4+OGH8cgjj6B///5YuXIl75EGKPVm1dXVWLBgAcrKyjB8+HB8/PHHKCoqAgDo9Xrs2rULy5YtQ11dHfLy8jB16lSsXLkyouZzBEEQBEEQBEEQbSVu+qSdjVCfNIIgiB4O9UkjCIIgvJy1fdIIgiAIgiAIgiDOdihIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAiCiCMoSCMIgiAIgiAIgogjKEgjCIIgCIIgCIKIIyhIIwiCIAiCIAii27LzZB0abM6uPo2YQkEaQRAEQRAEQRDdku0najDrxa9w/z93dvWpxBQK0giCIAiCIAiC6JZsPVYLADhZ09rFZxJbKEgjugUffleKdfvPdPVpqPi2pBbbT9R09WkQBEEQBEH0WPaVNQAAbE53F59JbKEgjYh7Khpt+NW73+GON7dhy9Hqrj4dAMDRyibc+PJm/N/rW9HicHX16RAEQRAEQfRI9pdTkEYQXUJFg53//OuV36G+tesLQ59bcxAuj4xWpxun62xdfTrdHlmWIctyV58GQRAEQRDdCLvLjSOVzQCAVgrSCKLjOFnTgqv/thH//f40v622xcF/Pl1vw3NrDnTFqXG+P1WHj3aV8d8rGpQgzeX2dNUpdWs8HhnXLt6Ea17aBI+HAjWCIHoeHo+MMw204UcQ0XK4oglu79qBgjSC6EBWbDmBXaX1+MXbO2B3KV+22ha1crbndENXnBrnhXWHVb+XN9iwbv8ZDPvDaqzafqqLzqr7cqq2FTtK6vDdyTrUCAE5QRBET+HB93dh/JOf4fMDFV19KgTRrdhX1sh/tjk9Z9VmLwVpRFyRZDLwn/+7U1GrapuVhXuyWbmv2d61NWCHK5sAAL3TrACUIO3zA5Wwuzz4Ok5q5roTR6qa+M/ssyYIgugpbD5SjXe/OQkA+GRXeRefDUEonKxpgbMbZAjtL1Nv3Ntd8X/OkUJBGhFXOIUdkCVfHYMsyzzdsXe6EhQ1d7FRR4O3Jm5IbjIA4Ey9DSU1Lcp9XdBIsauD1vZy1JtLDvirpgRBEGczDpcHj3y4m/++5Zj/Rl9JdQueW3MA1U12v/uIsxO3R8bznx3CFwcru+T5P91dhsnPrMdL64/w2+JVodpf3qj6/WxKeaQgjYgrRGeePacbsO1ELeq8C/eC9AQAQLM9ui9gi8OFWS9+hcf+syfiv/nqcBVe+vywn5mFLMvcuGSQN0grb7DhJAvSWjs3YFqzpxzD56/Gss3Ho/o7t0fGx7vKUF7f9TUQRyp9SloNKWkEQfQgPt5VhsMVTchINEGSgOPVLX61aYs+O4i/rTvM1Tbi7Gf1nnIsXHsQv3zHV/rRmfzneyWTadORKgDAz9/+Fhf/+fO4dLNmzo4MCtIIooNodai/XFuP1XAlrYApaVEqRztP1mPnyTq88dVxrNkTWSrJ/H/vwTOfHsDOU/Xq83O64XQrgdvgHG+QVm/DyVqlgWJnK2mbjlRDloHtJ2qj+rsvDlbgvre+xaPCDm5XcVQI0uqoJo0giB7EqVplg+/yoTk4Jy8FAPzS5neerAMAlNadXY16AxGvak1n85E3SKpvdeKLA52rpsmyzNsdHa1qhs3pxie7ylBS06LKfIkHqprsqGpyQJIAq1EPwH8d2Z2hII2IK9gOiEEnAVACoFqupClBmt3licpJUQyc/vDvPWiKIMir86plFZodTaaiGXQSijMTAQD7yhvh8OZAd3aQdqJaGTDrokwTLK9X0mb2lXe8CcuRyqaQQaQ46JNxCEEQHc3rG45iyrPreYDUlTTYlPkoNcGI8cW9AABbjtXw+5vsLhytUsZI7XwULff/cyeueemrLlFmIuFoZRNGLVjT5Q7OXU2Lw4XP9p/hv3/43ekQR8eeI5VNqGpS5uLKRjt2ldaDxc6NtvhS0o5U+DwCUq1GAGdXrzQK0oi4ggVpfb0BUHmDjasrLEgDokt5bBD6qpXV2/Dql0fDn4eDOUuqgwYWDKVajchNtQAAD9CU5+rcAeyEN80y2t5xLGWhtLZVdf7R8smuMtzw8qaAO7zl9Tbc9sZWXPrcF7hu8SaVYsZotDlR0eirs4g22BQfh31mW45W4ydLtvIAliAIQuT9HaU4Ud0SdQZCR8Dmp2SzAeP7ZQAAVzEAYE9pPVjW/ZmGttekybKMD74rxY6SOuzSZIi0h+9O1mHh2oMxCfy2Ha9Fg82Fj4UWNz2R9fsrYXN6uFna//adQWMbN4BLqlvw5Mf7omrvsPlojer31bt9GUhtPY+Ogm1g9MtKgtXkVdIoSCOIjsHOgrReSpB2psHG65Syki0w6ZVLNhrzkAbNzs/3p+pCHi/LMv+Sa40sWDCUmmBEr0QTvIIfp9Hm7LR0DbdHxqkab5plmCDN45Hx1Cf7cOeb38Dp9vAg1yODm560hXe+OYlvjtfivzv9d/oe/2gvPhfSNE7V+gdy2tSJttSkNdqcuOBP6zDjr1+i0ebEA6u+x5cHK7F884moH4sgiLOfMm8tblftuD/64W7c/sZWuD0yVyZSrEac31cJ0o5UNmPbcWWhvKvUF1C1p4+azenhqfr7vEYLsZirFvxnD57/7BDW729/64CqZiUILalp6dF9Rz/apcynN0/ogwHZSbC7PPh0d/BSjfoWJ1bvKQ+44fr3jUfx6pdHo6pb16bbrt4rBmnxpaSxzd9+mYmwULojQXQsLDgqzlRMQsrrbVxdSU8wIsGsfAmjqUtjAUxRL+UxT3tVn093l+PF9Yd5E0SGw+3ht2mVNB6kWY0w6HXISjar7vfIQFMnFdaWN9jg8E5kdSGCNFmW8ciHu/HKF0fx2f4K7DndoCr+PV7VdsWp3vv+HDyjVsk8HhmbjygDfYJ3dyvQOR6tUv9dWyz4T9a0osHmwvHqFvzota9xoloJOr+P4W4xQRBnBzanm28G2ZzqRW17sgoipdHmxLLNJ7D+QCVOVDfzFPkUqwHpiSZcPDgLAHDz61vw0fdlqiCtqsne5uBFTMXfX9aA7SdqMeTRT/G3zw61+bV4PDLvUVVa134Tqmpvip3TLfM6756GLMtYv1/Z3LxyRB6uHJEHQKk/D8aza/bjZ8u344PvSv3uY1kuxyKc58V6tH7ejKaTNb7PIpJykc6Eva7+WYmwGpWQhtIdCaKDYDsgLN2xssnOB4X0BBMSvX3UohkoWGA1NFcpyi6tbYUsy3jgvZ14dvUBPK+ZpMRdGG3QIAZpAJCbYvF7vnCqVqwoqfYpYPWtTj8nSofLgyUbj+GHL23CW1tK+O1NNpfq/Tte3Yz6FicOV/inI4aDvR+HKtQWuIcqmlDT7IDVqMfEfr1Ux4owJa1XogmAf1AcCaKqurvUV2O3q7Q+6ILmb58dwkXPrG/XzjRBEN0P0dGWpegdrWzCL97+FoMf+QRvfnWsQ59ftAuva3UK6Y7KnPLizefhsqE5cLg8+PXK7/DV4Sp+vEcGqtvogCuOv/vLG/Gvb0/B4fLgb+sOt9mQpKSmhW+sVjS2fywVMykCpcf3BGxOD39P+2cloX92EoDQpjF7Tivz3skAWTHl3jnuRHVkGTNHKptR1eSA2aDDD0f39rs/7tIdKyndkSA6jVbvzmbvNCv0Oonn4uskJR0kyZuj3RKFnM12EIfkKW6MzQ43jlQ28TTI59cdUk2E4hdcm+7YoAnScgIGaW3baSqta8XP3/4WV/1tQ0Q1ZiU1vp0xt0dGs+Y9+eC7Uiz4717sPFnHjVgAoMnuVL1/x6ubce9b2zHtL1/gsCbYCgcP0s40qVJnWK+fsX3T0StJCcACBa/Mfn9MUTqAtvVJ0wbsGYkmJJkNaHW6ceBMIx7+YBcWrj2oOuZfO0pRUtOCrcfUufehsDndfoFwZ7N27xksXHOgy8+DILorZUKQZnN6UFbfihl/3YD/fl+mOOWW1HXo84uNd+taHKp0RwBINBvwyi1jcPHgLDjcHm7gwDIS2rqxJI6/+8saeKaDw+3BX/93MNifhUS0Pq9sR70co0roAxdvLoKdhZjlYjXqke+tfS+rDx6ksWyYQOUCrI7xRHVLRPPGjhKlTnNkQRrvBSvSGEdKmtPt4eUa/bISubsjKWkE0UGwL1eS2YBsIZUw1WqEXich0ZvuGI2SxoKmnBQLV2y+OuxLHZBl4KH3d/HfW6JR0lIDBGlt2Gn64mAlLnvuC3z0fRl2lzbweoRQaHfGtPb1bJK7bGg2vvr9JZgySEmjabK7Vemi247XYtORanhktRIVDlmWeaDb6nSrdvpYTvv44gykJZgCnh8AHKlQznFsXxaktUFJ876WgnQrLhuajaeuHYFzC1IBAC+uP4wVX5fg+c8O8WvL45FR6k2lqYqwOez2EzUY+uineGHd4ajPL5b88aO9eH7dYXznteQmCCI6xMWuzelGSXUL7EKaY0fUs9hdbny6uww2pxt7ywQlrcXJ54tki4HfrtdJePKaEXxTMj/VgoFeRaWt5iHivNTscHPDBQB4b/spVb/KSBFVQdEAClAW0NHC0h0B/1R4QFGKzqZ6I8aZBhueW3MAZfWtfP1hNeqh00nIS1MM08rrbQFrCOtbnHxzU2u85XJ7+BzXZHdFVPO901uzP7IwFf2yEv3uj6eatJKaFrg8MhJMeuSmWKgmjSA6Gvblshj1KpUq3bvQT/ROWlHVpLGcf4sRvb0OkRu9yhlbzB+vbuEyvirdMYS7I6BW0vpkKDVvbUl3/Pd3p1UK3ukAqQ1PfrwPYx5fy4OhE5rUBq36xhYj5xdnICfFwif8JptaSRMn2mjSXprsLlU938EzyuMoOe1KkDmhXy/+XrGUzL2nG9Bsd8Hh8vCFwcR+mfwYbY1g2PPwThqDcpLx+q3jMH1YLs4tSAMAfLzLV/DMJqgzjb5aPnFREIoVX5dAloHn1h7slLqVYLDP+HQM6j8IIl6IZId/3f4z2Hs6+pYhjTanKkDRKmna1KiOsKd/Z0sJ7lnxLZ74aB/2qZQ0J99EZEoaIz/NikeuGgoAmDwwC9neuaatSlqg7IzhvVNw0aAseGTgf3vPBPgrhW3Ha/DS54f9goT9ZWKQ5juvTYerMPwPq7Hi6+jMm6qbfYHeEY2SdriiEZOfWY/73toe1WN2B97aUoK/rTuMZZtP8LmZKac5yWboJKVOL9Cm4nHBxVi7XqlqckD8amnXDIFgtdwjC9NQmJHgZ47WFEdBGtuILs5MhCRJvj5pzrPHdIaCNCKuYBOm1bszwkhL8KaCmNoQpLX6CrPzU5Ug7WtvqsfIgjRketPxjle1qM4BCOHuqAnSEk16bkyidZOM6By9iwijXhkRtUXYtc0OvPnVcVQ3O7DxkFJUrM0/r9ecKwv08r07cSxIa3a4g7pjBgoOg6Gd9A94g7TDFU2obnbAYtTh3II0vvioa3Him+O1mPn8Bjzw3vc4UtkEl0dGssXAU1FlOfp2AkxVZQE8AIwqTPU7jk1wosskuy3cIjFPUEzXH2i/i1lbYRsI5cJCzeX2YNep+qiD256K2yP7fXcqGm34+VvfYt3+4AtVomPweGRcu3gTpv/ly6AbIEcrm3DHm9vw0+Xbonpsh8uDaX/5Epf8+Qs+tqmUNJfbLzWqI3bhD3s3o/698zQOCJtiZwTzpxRBSWPMHtcH/5t7Eeb/YBjPLGlrr7RAafiT+mdiqHfsLQ/xuI9+uAfPfHoAmzWuf2zMB9RK2sbDVbC7PPjiYORNmGVZVitpmiCNKZBfHa7usD5vdpcbmw5XtUkFbA/MgKu22cHnZmaSZtDr+DrjdL3/ZyQGaVqlTPuZloSpS7M53XwTYWRBGswGPQrSlXWNxWvKEU81adzZMUtRmakmjSA6GB6kGfWqVEI/JS3MRHroTCPe+OoYXG6PL0gTlDSWV903MxH9MpUvOEuvECfpuhaHavdQG6SxhtYDcpL5bW1R0tju1GBvDrg2//w/35/mk/lx70DL0h1Zmow2uGFqS543MGXvXaPNhZYgfeaiUdK0z3fI6/C4w1vTMbowHSaDDmmCknbAW8Pw5cFKvis+NDcFRr2OL1KiteFn7QSSvJMaoOwCamELAHGBXtVkR2WjHeOf/AyP/WdP0OcQlcdV209FdX7BkGUZ//r2VMTqgMcj87QscTf9lS+P4uoXNuLtLdRyIBL+vOYAJj+zHmv2+FTWhWsO4qNdZXjli/A9FInYsvt0PXaU1OHAmcagDnTM4fBUbWvYVPfjVc2Y96/vcabBhoNnGlFWb0NVkx1z3v0Obo+sNg5xevwcHm0dEABUNSpjT32rU7WAZPU0kuTbgNQyIDsZVpMvs6TN6Y7e8VpURib278U3QytCPO5p73wkBgQtDpfq97oWJw+eWHCgVf2avBkUgc/PBZcw11Y12VUKaKU3CHS4PdwoI9Y8+K/duPn1LXhtQ+eOA+yaaLL75uYEo+96YJuEZQHmZ7a5DPinO2rf/3DmIfvKGuB0y+iVaOJ9aVma7Uhvdko8uTty0xDvOoxq0giiA3F7ZD6AW7XpjoksSIvMgv+PH+3DY//Zi3X7K7iylWI1oneaVXVccWYCD7TYAkFckHtkdQ62Nkg7r08a/nrTKDx3w0iuGLWlJq3RrvzN4BzFgVKraImBwfEqxY2Rncvw/FTVuQHKe8kmSvaakyw+FZLt1uk1uQztUdJYumOlV51ig7yY7ljpDZQa7S7853ulFwwLTNMFh8dojDHYa0kSlLTcFAtffLDeeoGVNAe2n6hBRaMdXxwIvusrXm/rD1S0qZ+blu9O1mHuP3bi/vd2RnS8uLgTF5rsut14uAoej4y5K7/Db/+5k8xFgsDMYnZ7F/4na1rwnvf71dZm6kTbYXbjgDoIEDkoKDbh1ICXvziCd7aexEvrD/PPGAC2Hq/BS+sPq1KFbS43/16xzS4WtDndnpipBpVBal9ZkJZsNkCnzSvTkJOiKGln2uiiyMbrc/KVOUavkzCubwafZ7WqC5uLHS4P/16UCmPnoTNNkGXFmZeNsSyQYsEBSy2tb3HiiY/24rwFa/Hj178OeH6sR1qyxVePLqpplYJS920HNSFf9a0yDizZ2LEOn1rYmqPZ7uLGIQnCpiPLhgm0iapNdxTHfa3qeqIm8PeLwVIdzy1IhSQp1+PcaYNw9+Ri3DqpL4DY1KRtP1GLqX/+HJ/ubl/TcraxzmrnqCaNIDoQcffDatIjN9VnHJLO0h1ZXVWYII3lth+taubHplqNfLBj9O2ViOIsdZCm3YWpEfK8te6OkiRh1qjeGJCdhBQLU9ICn9vxqma8uP5wwAGkkStpyq6VuJA4eKYRO4WeX8erW/hgm5Vs5rtsYh+yykY73B4ZBp3Ee7klCaYrbFIY4E0TGJavbk8QCey9YGYshyua4PbI3CCEBV2qIE2YaFkqDEt1ZGrph9+VYvTja/HJrsgG8EDpjpIk4U/XjcCcywZixohcAD7raq2SxoK2ULtv4vXmdMv4bF/70+L2etNKygOksARCFaQJky8LIHedqsehiib8a0cp3tt+yq+QvzshyzKOVzXHPNCUZZm3mmAL55c+P8x38Ota2x98E9Ehpg+fCBKkHSj3mUiUhFloMkOMbSdqueLCFnFvbDrOVSEAsDvdfDxm4w/7/f9e34JJf1oXdfp1ICo130VWb8QCTm09WiCy26ukeQPOS4bk4NIh2bjv4v5IMhsEhc43puwvb8CI+avx7Or9qjoxMUhgzo5D81L4HMPGHDamVTXZ4XR7cPfybXhtwzE43B5sO1EbcA5kmQ69Ek388xJt+MX3cEcHOHCK88I4b1PxzoLNPc12N5+bRWWVrVvKwqQ72l2egPMEm6PDKWk7vYZUYibKsPxUPHTlOXydEYsgbcnGYzhW1Yzf/2tXm3qjMtjrYxvCPEgjJY0gYo/4xTIbdMhJFmvSlEGGW/AHSddjsIFO3IFNthj4lxlQ0j4K0kMraYC6GJcraQn+k2qKVTm3QEpai8OFnyzZimdXH8B720/63e9Ld1SCpfIGG+/x9dH3SrDC0g5OVDfzxcfA7CR+LuJigk2mOSkWrpaJAS4LOm6/oC8GZifhkavOAaCkkZbUtOCGlzeF7RfEnm9Y71SYDTrYXR6U1rbyOj5WR5iWEDhIY+tvZvPLAvEVX5egrsWJRz4Mnn4owoIUUUkDgIsHZ2POZYP4IqSqMXBNGnuvbCEMQdj7xTa7Y6GkMWfLQD3uAiEubMQFFTu30/U2fCQEtpE2L41H5v97Dy7+8+cq4xe3R8Y/vjnZJhc6Rk2zg1+3FQ121Lc48c9tPpWalLTOpabZwd3kAF8qtxZxHA+30GSBz76yBq6a/mLqAKRajahpdqg+Y9E4hI0/LGVvd2k9Gm0ubm/eHpiKbzYoS66x3iCApd0nW8IHaWw+bG9NWlayGX+/bRx+M22w8rgprNbNzsehb47V8JoylqoJqJW0Y940uwHZSchM9j0G4AskZVn5vNjnYDboIMuBx6Zq73vUK8mM4kw21/k+a1GN/LYk9kqauFnAPqfOQpXuyNwdTT4lLS+EDb/2+hTr6NnnwILOcN+d77izY5rffewaba+67BBqFetanHhu7YE2P1Y9N3JT1oesmTUFaQTRAbQK1rOSJCEnUE2ad+BqCmJ8oX0sVieVYNLDqNeplLSC9ASYDDqez3ysUtm5137B2U6PLMtcrUoNsPPpU9L8B7FnPj3AU1v2lftcENmkyHan+mUmwqCT4PbIfFeSTWizRuVDJylB5Lr9yoRybkGaSqlisME8P833HrIgpr7FyVNZrhiei7Vzp2BCv17I8O62vbbhKL45XovXNvgHaS63B3/4cDc++r6MP19GgpEHQpVNNv5+sc+MnV+Lwx1wkhmUo053ZIgtGELRHEBJE2G7iFxJq/VNVDanhysrkShp2d6FUjR9+oLBgg1XgB53gdCmO7JrR0zFFN3UgqkS8U6rw42lm5XX8e43vibsXx+txgOrvsejH+5u82OLtuMVjXYcq27m5jWAdyf6LEqViXe+PFipdp8LcM22OFx87ARCO9TZnG6+u+6RfcYW5xak4dIh2QGPZ9/7NEFJk2UZLd7b26scNAsL78dnDceUQVn4yYQi1TGBTEO0sGCqutnRJodZn8ux+rnYmOZwe/gCn22mldXZUNnkCwpFJY1lTGQmmfhYXdloU20CAr6emSkWA4b3VlLzA220VDX7lDT2fRTHPHGDr6zeFrJvWFtgc6r2eRmnvX1M2+IwGg425rQ4fOmOiaZA6Y7qAF2030/2zn+iMsU288YVK0FaVZNdNV8crmjCPcu3Y19ZA9wema81zslL8TtHdt002V3tynDYeqwGTXYXrx97a0uJykwnUjwemW9ysA1yFtjazqIxnII0Im6wOdU7SLkqC35loZ8QxILf5nTjgfd2YrXXDIBNioe8zZlZAJWeYOSDQ19vcNanVwIkSdnVrGyyo1UTALJBsNnh5g56AYO0IDVp3xyvwZubjvPfD1c0ocXhwmULv8DPlm+H3eX2OXxZjdwwhdWHsf/7ZibywZrVT51bkOoL0oQdNK2zI+AL0kSr5ARVSoXyvEy5K61r9Xst207UYunmE3jy432q+jzWsLqqycGVR/aZibvEWseugnQrvz8jQR2k9fcqh+EIlO4okplk9p6bHS63xy9lhOXhh2pWzZROltYTi506caESSUqVGDzYXR7+N82CqiwqfMeqQu+axiusVhHwGfMAPjWiPe0HjlT43vOKRhsvxB+YncQbvlPKY+fxuVe9GOftk3g8wDXLNtoYoWrSSgIEcAkmPYozE3H5OTl+99ldHj7vsPHK5vLA7vLw4LEtNcYi7Lq1GvW4YWwBlt5xPk+xZ0SS7pieYOLuv8Fq3EKhradmmAw6vpHF0hTZ41c3O1Tq2ZkGGw8QeTuaBDFIs/uZVXztbcfSNzORp9cHCtJqWLpjkpkrWWIwyoI0Nn9/e6IuwlcenlaHmzf3BgJbuC/bfAIffV+GZ1fvj9nzMth6pUlId7SKc7PX/EtrHMJSHbOTzXyuFzN/2GcxKCeJZ7SI35EF/92LT/eU460tJ1DX4rPr76XZMAV8Ne0euX2blP/zlgpcPTIPUwdnQZbVAXIwXlx/GI9+uBsf7ChFq8ONRruLny+7plm6Y0eY/3QVFKQRAalvdeK5NQe4yhAL3B4ZD76/Cx/sKFXdvvNkHdbtP6NydgSURTfbHWIqS7B0x01HqvCPbafwt3WHAPgWtKwInO20SJLEHR6LvZb5is2sctuxyma/BXhlox0vrj+MTd7eaia9jp+jCNtp0takPbtakfNHeVMIjlQ04dsTdThS2YzP9leojk8yG/hgy+x22e5l7zQr+vZSJncW1J1bkKpKJ2RonR3F944pdEa9BJOQ1sEmAjFdQrvDJdpYsxqCVKsRvRK9u7xNvnQitjOt10n8vdGmFg3J9e3YaZU0R4QDbSB3RxExgCyrt8HtkWEy6LihCnvfPLJSbxb4OZiSprzOljBKbjhaHe6Au9Ih/0ZzXTLFIFh9ZndV0t7e4lPPxACU/dyWhucMcXFY1eTgqmp+mpV/jyjlsfNgvbCuO68AgOIiqLVXZ2oYUxZCmR8ESk0cmpcCvU7CRYOy+HjHgh2b02ccwsYft0dWZUO0xa1XhAUXmckmbsaQrtmQSo5ASdPpJK56lbdBReJKWoCAkNeleTfwRKfH3aU+5cgj+wI5tpmRZjXy86potONMvTZIU4Kfvr0S0T9bmb+0PdAAXx15ZpLPiIRdC26PjBrv/RcNUnpqfi+kybaXbSdqVA3NAykxbOzYdKQ65mq7rybNZ+olKml5aSxTxa4KXFmQ1rdXIh+/AqU75qRYeMbK594N3sMVjfjSm3ZY1ejgG3xpCUYY9P6hgdWo56UTbVWXZVnGZ942J5cOzcH4fr0AALtK60L+3eGKRjy7+gCWbT6BOSu/wyMf7ubfS4tRB7NBz88RIOMQogfw752n8bd1h2O6a7TlaDXe3lKCOSu/4wPC4YomzHrxK9zx5jZej8D6cQDAZefkIDvZjKHexXww45CaZuUL29Dqgsvt4UEMQ9w9LGRBmrBLz2z4j1U1++0SvbnpGJ5dfQBzVn4HQJnk2GQrEkhJ23ykGluP1cCk1+G5G0cCUHYn2Q6y2yPztI0kswF6ncSDh9N1rXC6PXw3rHealfdiA4CMRBN6p1lV6Y7Prt6Pn7/9LR+8ewvpjuy98zXLVC8MtKYqgLrRNYCAqUQpViPvNVfdZBeUNN9CRFvDd/XIfADA6D5p/DbtwiXSlB6e7hjEwpopadVNdr4oL0izIjvFP50ymELG0iqyeJDWvkngWFWzKs0rWiUN8C2WtD3v2AK0O9ak7T3dgO+8xesA0GT3vS8sMG5Lw/PSulbUtzhVSq7bI/MFqPg9oiCt82AL/YE5yUg06SHLwMkadQBy0DsGXTxYSVc8XWcL2seK1dwMEFT44fm+uWPyAGWB3ydDGUdtLjdaHcpjieOPyiwqRkpaVpJvvNGmHKZEUJMGgI//rJ41GnjT7ADPxZ0jNUoaAHwvOGQCwKk65T2uE2qP2Vha0Wj3c4lkQWrfXgnoz5S0AJu/onGI2ciCNOWzqW62wyMrNcHneq3g26ImBkNbYxxoHmAmJnaXhweesYI9X6vTzbM2EoQgrVeiCSZvPZ+oVLJgOi/Nwq9ftuFnc7r5vJKTYsENY5SNkBVfn4DL7cEbXx3nj1PdbOfvgTajhSFJEt/oFcflaDhU0YSTNa0wGXSYPDAT53rTX78/VR/67zRq+tHKJv7axOvZ1yeNmlkTZznMZEH75bG73Kq+YdEgBk7vbC2By+3Bb/7psx9ng6BYMPuX2aOwed6lfJHPdpe0C1P2hW1xuHgtgYj4Rf7FJQNw07hCzBrVm98mmoewXS22m8d2o9jCPNUaOBgI1Cdt0f8OAgBuOr8Q/bOSeAD24U5fShdLP2ADIEs7PF3XivJ6Gzyyci6ZSWaupAE+m1z2vKdqW/DS50fw0fdlvDBXVNK0u7XiTh0Av/YEALC/TJ1/L+6S7vc2FxXTHSub7PyzSBcCMzFITrYY8LsrhuAvs0fizguL+e3pmkBOG2gHI1y6Izu3mmYHd/DqnW7l6p+IPcC1I8uyn5LW3p06bbqPthF5ILQLBzZZa1XlaecobpYnqltQ0WjD4//d69e8OV4RAzRAvRnDvn+yHJ26UdloxyV//hyXLvzcb9OBPZ+ipKkXOUTssLvcuH7xJty6ZKsqpbiu2TdWFHnHNq0CzDaDLhyYCYtRB7dHVqXgiTCV7bKhOTwLY1hvX2P7n17UD4UZVtwwthCAkmnBxvsUiwFs761GaKoczK03UriSJgRpBqEvJHvuSGCZB9rrOBwej8yDzUCp+izFns11Yv2XaNoC+MxD2DifZvWlO1Y02oI2xe6bmciDtKNVTX7riCrBOMSnpHlU55ORaOa10+1VOEXYOJPC2zCox1SX26NKExRNRmKBOJ+w9yFB41acrymDAKDaEGVKMAu2WABnMSrX2tUj85GeYERpXSte33gM//rWl9FU3exT0jICpDoy2BqioY1K2tq9iop2Qf9eSDAZ+HfzVG1rSDMuNl8WZlj5a9Q6bQPUJ43oQTA5mzUCBZQLf8ozn+Om1wL3OQmHqIws33wCj/1nL7d8BXyDjzaVUOzllRikJo1NGE12V8AFtJjiMaYoA3+67lxVeh0L0o5X+5S0PEGFEgk0yQG+QLDR7oLHI2NfWQO2eFW0ey/uD8BXZyVOgtqm1PmCksbek7w0C3Q6SaWksV0o5mxU2+Lk6gz7X1THtEFMgub33oLzJVtQBFPSAF/QIKY7HqtqBpt704QduTSr7+esZDMSzQZcM7qA55ADwOg+6UgyG3jahl3YDWuwOfH/3tmB5ZuPQ0swd0cGOzeXoJwUZiQgK9l/MtI2tmWvk72m9ihp9S0+F0dtkFbXBiXtTIOS+sKC2UE5yrX14/F9oNdJaHW68dt/fo+/bzyGJWGcOuMFbYDfZPMP0oDoUh6PVjbB7vKgqsnBU0zZ9c0WXvlpVv6ckXwWRHS8/20ptp2oxRcHK7m7qtPt4Qp1WoIJfTOVsU10eJRlmY9Bg3OTuQIWrJ8aG0v7ZSVy59pLBMOQ8f16YcMDl/D6NNE4xGrS87lHVNICudm9teUEfv72txGpbKw3ZJbGCEkcHyOpSQN8TrjM/j5Smhy++p1AqZU8jbLBBo9H5nM+AK5as/GVfYdUShp3nvSlO4qZKgBQ1CsRBelWmPQ62JweVSsEwGfs1CvJBJM3fc2hCdKyk81hW920BbbRxcYF7YbYydpWVSr8uv0VMW0PIj4fK0fQbqKyDVexplp0Uk7XpGuzuTonxQJJkmAx6nHT+X0AAH/6ZD9anW4hy8TBr3lt2YEIqx9vamOQxlrXXDpU+f6lWo38OgmVvsoyIMYWKQYookuvuB4L1SftSGUTdnSAK2hHQ0EageVfn8DlC79Q7baLkw+zez9V24LyBhu2Hqtp006FmPNd3mDDcsGJDvANPpYA9V6MJB6kqZ+f7arYnIEbkIbbqWQTaE2zg3/B81P9lSUgeJDGJj9ZVibFb44rBdPj+2XwAZYVTouw9z1JE6SV1tn4RMZUrr6ZopKWFvJ8lMfyd3dkaIM2MaCbPU5JjThQ3qiajMoD9OgRlTRWw5hkNqjq3cRzFNN+RHJTLfj+D9Pw5+uVtFAWfMiyjN+v+h7/2Xkaz64+oDofj+CMGExJMxl8u9ZsB3RQdpJqZ5sRqOCYTUg6SdnJBaJX0v7xzUmMXLCG271razIiSXfUKsTlDTbVZsXfbx2Ht+4aj0kDMvn1wmoOukvPNPY+sA2DRuH1iYY+0QRp2vqJZLOB9wVk5KdZ+GYHpTvGFo9HxqtfHuW/7zmtZGeISkiKxRBQSTtdb0Nlox16nYQhucn8mEAGIYC6RmfutMFYO3dKwO85m2PEvlIWo57fLjrkBVINXlh3GB99X4aFaw6Ge/k8wNAGaWLmQKTpjqyn5H7NuBwO9l6bDbqA8yurSatosKGu1RmwNvfcAmVTsLS2VVXLlyqkO1Y12Xkt9SiNjXvfXgkw6HU8GNeOgcyCPzOAcYj4HgZyM24vLDOHqUja9Q3L8unbKwEmvQ6nalvb1QpExOn2qN5vbpCiSd/nrRIE4686UUlL8Clpp+ta8cTH+wBA1Xbo/yYU8XT4S4dkY9kd5wNQ3kumvAUyDWEwdbotNWlVTXbs8G7KXzrUt3HCrqtdIVIej3hT98d6DYYabC4e1IsbHL50R9/n9/mBCtz48mZc+twXeOw/e6M+766GgjQCr284ikMVTdhwqIrfJk6gu7056eJO9um6wOkm1U12zHphI5Zs9N+5t2tqjLKSzXj5/8bgqnPzVI8ZyJSDwRbirU43XvniCK5bvAn1rU5VilJlo/8CLlQgA0BVdMu+4GLQIk44wR7LYtTzyaW+xYlvTyi7Nuf1SefHDAjgWMgWHGyXSqxJY6kl7Fz6ZCTAbNBBr5NwbiFT0tTnw3amEkx61X1mg4472AH+O3ViQHfj2EIY9RKa7C5VXzFtUTigTNJsIcQC7TRN6qI4kGoXKyI6ncQXEWyCfmtLCe+X1WBzqQIOMXAJpqQBvh1S9lrG9s0IOBkF2nwQ0ykTvOYkLc7IJylZlvHaBmWR+r7XNIcFs0wZjSQw0Bazn6m38XMzG3QozEjABd6aG1FxBdTpW/EMD9K817u4Yyu2KahtdqKqyY5Nh6vCLla1i7l+WYl+7R16i8Yh5O4YU9bsPaNqfcA2/ZhimWwxKIv3Xv5K2nbvGDosPwUJJgOKvEpaoH5PDm+fRsD/+tdiEYIAdl1ZjT4lrVoM0jTXj6g0Ldt8nM+PwagSgg+RVEFJi8Q4BAAGZidDJykL8Whqsnj9TpC5KzdVObfyBptf420GmwNL61r5e6LXSUg2G9Ar0QSDToJH9n1mIwt8aabJFgMPgFjK4/bjNfjuZB1kWYZLsP9n9VeAzziEvdasZHPIfqRtha1t2GajdhOOKTnD8lMxpkiZz2PVUFs751QGUdLYvFkljOVssyotwcgVsLL6Vly3eBN2nqxDWoIRcy8fzI/vnWbFuz+diBV3jsfrt47FkNxk3vvzsDfoDK2ktb0mbf3+Csiy8l0WyzBGsLq0IN8jWZZx1Dtfntcnnacks3VToHRHtoZze2Tcs2I7th6vgU5STGm6WyokBWk9nNK6Vj7hMfckQD0ABg7SAuedbz5ajZ2n6vH3AEEa+3Jcfk4O3rprPP736ym4Yngu3wFiC3yrKXiQJhbTPv/ZIWw/UYutx2pUC7GqAJNXuHQSseiWDdCi6cYtE4p4OllakMJa8XkabE586x3EzyuKNEhTBsCCdCv0Ogn1rU5s8TYBZYtWi1GP134yFq/eMoanmJgMOtX78qdrR+D8vhm4ZUKRyuBEkiSV2qQ1DslOtuAXUwfgl5cORFEvX/0ASzdye+SACwNRSWNoTUDEoC3QzraIb4JWgrSFa5XdajaZiDUSbBGv10kqwxkt4vklmvQYkpvMG7CKBEp3ZIFQstmABO8kEE26457TDTjknWS2l9SiwebkO7MsgI/IOMT7/WGNTcsbbHwHWBugalON2uOI2Jk08CBNWWQ3qZQ0dbrj/f/ciZtf38IXhUEfU7OYm9C/l8o0xmpUNjN4ulAzKWmx5M1NylzAamp4kKZpet8nw6uSCUradm82AlsYs0wCpsaJlNa1wiMrNTjheiyKalK997thMeq5YYVaSVNfD/WC0uSRgUc/3B1yoyCYkpYmzEmRpjtaTXpel8xqgiOBpQYG22Bkc8mZBntEQZrYL1SSJBj0Op5WymqLRhSk8jG7b69EPhexeeX5dYfxwxe/wm/+uRPvfHMSgGJ6lJZg8lPSmMoTTkk702DDvSu2hx0TtLCMhF5CuqP4mR6tUsbrflmJfPwNVUMVDdqAkM172nUQmzfFz4d9hxQlTXlftp2oRVm9DdnJZvznFxfy7w5jTFE6LhyYCUmSoNNJfK5mZi6hlDSW7dMWJe2zfUoWy2VD1a0wWEZQsHTHyiY7Gu0u6CRlXmPfG+bkKmZJiRu8bo+MZoeLz+lfPjAVr986LmSmVjxCQVoPR+wNUhWkWHoXD9J8twVX0pTHKK1rVU10gDD4GPW4YEAmNwNhg0uLsKMZDFENYjug1YJZBYCAk0y4dBJfkObkj1uQ4duNnTwoEzeMUYrNhwuF6P7PowwYx6qaefAlqnBikMYCK/ZeslSCBJMB53ldDzd6bf9FU4+LBmXxnG4Gm7iSzAaM7ZuBf9wzEfNmDvU7P3ExnxjAsv630wdj7uWDACjW1YDPPKSqyR7QVU+sSWNolbTUCJU0AKoJWrFeVq6jsX2VfPSDZ5pQ0WDDu1tL+AIq0aQP6LjJEAPD0X3SYfAasWixOd34+8ZjOP+J//F0FpWSZgrcAiIUq749xX92uDxYuOYg7C4PclMsfBexPgL1hn0/2CLtjJDuqE31LOqlDtKCLSjqW50xra2IBKfbg3X7zwTcCdemO7YIvQnF8aeuxcnbQ4RLO2KPefP4PtjwwFT8dtpgvigFFAVZkiSubJCSFjscLg/frJo7TdnRZ5t+9dzCXXnf2RhXJjRq3+6tIWELzckDFaX4m+O1ftc0W7SJAUEwxIUaCzisJj0shkBKmnpByjaqEkx6WIw6fFtSx8dp5dxq8PSn+/HO1hKcrmsNqqS1Jd0R8KU8RtMAOFgjawYzDqlutvMUe/F8jXqJzwen63wmD2KgectEdYPu3mkJfKwX0/Qn9Vds1yVJ2Xj717eleOQDpUH9zy7qD71O8tuoqxQcMtl71eJw+7l8Lt10HJ/sLsfizw+He0tUsLE10xugaNuxsNTMflmJXBGMWZAWRNnRjuk+Jc23vhGNQ9jmMRvOZ47IQ2FGaEUZ8G1gMrVQu8EqktzGIM3p9mDDISX1XhukDctPgU5SNggqApjOMCfTgvQEWIx6rvSx1OZAShqgzOVsE9ek16EgPfx7EY90aZD25Zdf4uqrr0Z+fj4kScIHH3wQ9m+++OILjBkzBhaLBf369cPLL7/sd8yqVatwzjnnwGw245xzzsH777/vd8xLL72E4uJiWCwWjBkzBhs2bFDdL8sy5s+fj/z8fFitVlx88cXYs2dPm19rvLLpiG9yqQ6ye3iqthV1LQ6VenAqWJAmPMbu0/XYfqIGC9ccgM3p5qkLZoP6stMqU6F2OrRqEHtOVZAWUEkLnU7CggqXR+ZBXnFmIu6fPhgLZg1DdrIFd00uxvrfXoxrR/cO+jhsR3Sdd9doYHaSahDJSDTxHeWLB2cBADelEFNepgxS7mMDrmjqEQj2HKP7pKmMVrQkhVDStPTLVNd/MKWT5bSzn61GPdITjBDXRdqBPpogTZygRbMZZpRy6EwjHnx/F37/r114y1vXGCrVEVAraSyvPVO4jZ17q9ONNXvKUdFo50XObKBPshj47makfdKcbg/+43XyZDuwy7zmJz8Ylc8n/EiUNKZEs1SuqiYHX0BqvxPMYMCXxuvwC8bWH6jAqAVr8NfPDkX0WmLFv787jTve3IY/e/sHimjTHQFfkCymO1Y123Gm0d+JLhBigXlhRgKMerXSwlKJ2YLzbKtJO17VjD+vPhCzRWU0HDzTCIfLg2SLAVcMz4UkKfWRlY121DarlbQcb8qd3aWkvjXbXdjnVYtYkFbUKxHD8lPg9shYu7dc9VwsUDonT11vGAi9TuLjGLs+rEY9/37XhjAOYddb7zQrbhqnGDEs/vwIAKX29KZXv8biz49g3r92YfqiL7kLq1bda0u6IwAMzlFe374ozEPCpTtmeBtly7LSBgNQpytmJpmRl2qBXifB6ZZxyJvNILZWuaB/JlfwWWpZrrfWra+QfjppQCY2PDAV3z06DS/9eAz/HG6ZUITfTFM2CM1BjEOyks2q90qbispSEKPt76pV0gB18MQCmH6ZSTxIqO7gIE27Wa1V0mRZVhmHaF0ZpwqGOaFgf8dqwEO5OyaZveZoUQZph840odnhRrLFvx440eyrRz1wxn/jQVQxAV+LAJYBlqIp6WC0Ot3CJmb3Us9EujRIa25uxsiRI/HCCy9EdPyxY8cwc+ZMTJ48GTt27MCDDz6IX/7yl1i1ahU/ZvPmzZg9ezZuueUW7Ny5E7fccgtuvPFGbNmyhR+zcuVKzJkzBw899BB27NiByZMnY8aMGSgp8TVRfeaZZ7Bw4UK88MIL+Oabb5Cbm4vLL78cjY3RWd/GM7Is42tBSasWghs2+LEBdM/phohq0sSUyd2lDbhu8WY8v+4wPtldxt36zJq0tPRE9cQRKt0R8M/Vrmqyo17Y7WTtA0TjinA7lUrRuI4/HqAMkj+fOgA/mdgXgBIgFmcmQhciCGLGIP/y1h6J9WiMV24Zi1duGYMJ3kaOjGThHKcMUg+wgXqYibAgSJvaoCVJmOC076OWHCGtDvD15WLNYdnzsnQXMTDT2umntSlIc6vyx0cU+HqqsPpJVogczDSEISp9zCFK3ClmxdU2p5tf5wfK1UpaktnA1c9gE6uWb47VoKrJgV6JJvx86gAAvqB81qj8gL25Hnp/F254eZNfU18WGIrXwqla1r5B/VlO6t8LT183gheGO92yyoQDAF7+/AhkGVj0v84N0pgzXaA+bkzFykr21aWw919MCzpY3sgVtqow9XaBUr3EdEcWEAZqCn82sHDtQbyw/jD+ue1kpz83a+FybkEqkswGvojfc7qeK1hsk85s0PONk7L6Vuw8VQe3R0Z+qkVVwzJjuNJigtWpAspc9smuMgDAdO/94WCBANu7EOeAajGrRLMgrRLqo+6+qB8MOgmbjlTjzje/wQOrvofbI+OiQVno2ysBjTYXV2RCKmkRpjsC4ZW0Q2ca/erkAtmVi+h0En+P2cbtgOwkPt5lJplh0Ot40MVSVsVxXaeT8OPxStCalawcz1oGjNBknxRmJCDVasQVw3Pxr3svwKLZo/DYD4ZxBVSrpFUJQZpBr+ObcuJn4/bI2OlNmSupaYmq9sjXXsfI5zb29w02J//M+2Ul8nRAlim0/OsT+EpQUqMlmAlVOCWt1enmQWx6okl1PVmNeowvzojo+XtprstILPijrUljzaqH56cGXD8N9GYYHTzjH1yzAJmlybIgmV0bKZprkH2HWx1uPueFWx/EM10apM2YMQN//OMfce2110Z0/Msvv4w+ffpg0aJFGDp0KO666y7ccccd+POf/8yPWbRoES6//HLMmzcPQ4YMwbx583DppZdi0aJF/JiFCxfizjvvxF133YWhQ4di0aJFKCwsxOLFiwEoA/6iRYvw0EMP4dprr8Xw4cOxdOlStLS04O23347pe9CVlNS0cCcmwDcxeTy+Bd0IQb1oERZ5wYM03+T2b6EXWLPdzb9ULKWE4aekGcIEaZovXFWTQ5UuViE0z2REMglq1Z9wwWIg7p8+WJXTfV5Rmt8xIwpSMX1Yrt/ziWrQsPwU1eMwFSYY04flIivZzE1YgqGqSQszcOVyxy/l/WQ7wvmpVn6f+L6K56v9TCNxd2SI6Y7MbdGol/iEv7esgV9LbKESbhBmiz+9TsIobyppqtWIif16YXSfNBR7m5nbnR6++8Zq35oDBGlOtxy0oa4Iq+cb1zcDFw3M4rcPyE7COXkpfCeaBQYej4yV35zEN8dr+UKIwRp0im0KmMqpff2SJGH2uD44tyCNn3NtswNfHKzkyl5/IfU2nBoVS5iFdyBlh/WLS7WaePovUzLF3oh7hf59gc7d7ZH5pkKgpqdZSWK6o7I4Zd/H7lK/FymsPidY/6qOhC3OWN3JsHxlPtlzuoHXgokLfW4zXmfD9uNe4yXNxtOMEcoYt+lIFb9edp6qx+l6GxJMep6FEA5tDavFqPNZ8AvXZpPdBZfwXRdVnd5pVt5v87P9SvbEvRf3x9Lbx+HFH5/HFfoks8FvPhFTwqNR0oZ6x8FDZ5r8AhGn24PrX96MG17ejCa7CztKanHBn9bhzU3HAYTerJzo3TRkC+WsZDNPg2TjJ8vo4EGaZpy/6fw+mDkiF7/wbkg9cvU5+Oc9E/1S3ERGFKTih6N7qxbvodwdAQSsSztQ3siDLY8cvE1DINjYkiC0YWDBEzMAU1Q8n2JV3ezAvrIGPPLBbty7YrvqGomGYEFaQpCatOpmh8poxaiXkGjSI8Vi5DWAFwzoFXHtlbYGLVSQltLGdEdWMnNuQeBSkcHezI9DAZQ0ls6uVdIY2o0H9vnZXe6w7Xm6A92qJm3z5s2YNm2a6rbp06dj27ZtcDqdIY/ZtGkTAMDhcGD79u1+x0ybNo0fc+zYMZSXl6uOMZvNmDJlCj8mEHa7HQ0NDap/8QyrR2M7MNVeFUzsqcL60jTZ1U2iw9WkAcA+YSFl0El8QvFT0vyCo9CXpXZBeqq2JaCFbb9M3yI0nLsj4D/hhKqNC0Z2igV/vmEk/z2UsqUdDMWJWqeTcJF3sZGZZA474N5xYTG+eegyDMhODnmcqLiEU9JytUqa9//cVAufrMX3VUwp1CppYjAXrqif7aI63B5e9Gs26FGcmahypwR8u2nhBmG2+Buen8KPlSQJb989Hv+6dxJ/L2wuN5+wD1U0qjYstAutSMxDmFpUnJWIwgwrV21+OCpf1YicLTZrWhxweRWioxqLajaZW016fu0EC9JE2LGVjXbcu2I7fvnuDtS1OFTXt5j23NEwBz5tkCa+16lWI1d92a6tuJg5I7SCCJTe/Ph/92LCU5/hm+M1AVUEUUljGyCBVM3uTkWDjQfF1Z3k8FnRYMOsF7/CP7456VPSvJt9LNVp7+kGQUnzfS5szClrsPFG49oxtH9WEgblJMHplnlLDaaiXTIkO+LFqVmzGWg16mFmFvyaQF00sNE2p/7VpQMxNC8FVwzLxX//34X43RVDIEkShuWn8nTIQNkDbL6xGvUw6iNfirFxxOH24Atviw1GaW0r6lsVh+Jjlc34eFcZSutauattqLT/qUPUwW1Wspm3oWHnX+Adv9jmmHZeTTIb8NKPx+AWb/ZJktmAcX0zQmafBMIszAF2l08RYe85N+gSgrQdJ9VmIYcCqDLBYDXGiWaDr9eWN13u0Q+VMhcWaLJ5rqbZwcffBpuLq3jREiwrQxukZSSaoJMU5bemxcGVvLQEEzcBYddUpKmO7HFD/S4iGodEU8u8y9ufNFg9/8AcZd2ibZwO+II0pqRlJEUWpLU6PBSkdTbl5eXIyVHvyOTk5MDlcqGqqirkMeXlSmpEVVUV3G53yGPY/6GOCcRTTz2F1NRU/q+wsLANr7LzYJanbPCpaXbA7ZH5wGcy6LgU3qhpEn26Tml6qSVY3UOr06ekaSdH7YI+XHCk/cJpF7MsHSAjyYTpw3IwqjAtrBIV6Dy0g2SkTB2SzdM3QgVNWnONZM0uJ6tZYztIsSApCiWN9c6pb3XC5nRz+/2cFAtPD1QHab6FiNbGlw38Sq+x4JMAAJj1vjQkpqJYjDqYDDpVAbpIuJzziwZl4XdXDMET14xQ3S5JEm/0CXjTHb0Tts3pwcnaFpU5h0mv4+kwkfRK40FapmJm8LsZQzB9WA7+b4JSZM9UhEbvbn2FEHwc1RhitHpt/61GPd/9PFmjLL6SQtQXsvd7b5mSsizLSiAiLg42Ha4O9ucxhwcNzeo6OWXiV35OtRr5tdrk/TyCBcWB3FzZzu3Ok3W8vlbb9JRtimjTHe0uT7ezaQ4GSwcGfJtwHc3qvWew82Qd/vDvPXwxz1KVmfnEgTONPBgWPxdWr1tW14qDFY2qvxEZXagEbqdqW5RUx93KvDxzROhMAhGtkiYah2j7hInmIVpVp0+vBHzyq8l4+ZYxfovQ+6cPxrRzcnDPlH5+z5/pTcHWzjvhkCQJ04cpKZ2f7lavR0T16ERNM45VqVsVaOcYkQsGZKrqjZlSCPjcH9nmHKtf0s5hsYKnOzrdqnGWbaYxRUdU0rSW+IcrmuByewKuU7SolDTvJrHN6cYTH+9DSU0LeqdZMW/mEABQ9SM7I6jTXx5s20ZX8CBNPabrdRLv01nZaBecHX2fwfRhOSjMsOKKYZGl/ALqeVvrFK0l2VuTtvFwFc5/8jMs9Sq0oXC6PXzDXpv2ymDO2YfONKnmhLoWB5/jWJ21VknTqsMWoSShUagn7650uzPXujaxD1RrNa49RntbrI4RmTdvHubOnct/b2hoiOtAjX1xLhiQiX9uPwWPrHwp2ISUYjHyHfpmuwtOve/L63B7UNVsV7mkAb4gTSf5am8AZcEbC+MQwD940taQsILeBKMeT94yNuRjiWgVvfZYtf4whLkII5SSBgBXn5uPBpsL5/eNLLc8EkTFRVvHpCXFYoDVqEer043yepugpJn5xCKmKmWGSHfMS7XgjguKkZlsgiHMrrGotLKifRbYD8pJwuGKJuh1ksppMly6o8mgw70X9w96v0XcfRPS6g6UN/JAMdligCRJSDDq0Wh3RWQewoI0ZsLyg5H5+MHIfH6/qDA22Fw4IzQq1boWBlLSTkagpLHr+nuhWWir063qu/ZVJylpNqeb15CxHlUsGBMNHEwGX90Je/+Dvd+B0h2ZElLZaFcZh4jMGpWPzUeqca7XfTXJbIBBJ8HlkVHX4kRuavctNmeIC9fOUtLKvEE4GyN6JZr4Yp+loJfUtPCNM3GsyPUqN0crm7n6MzBA2xIxTbi8wYaSmhYYdBLf2IoE7fhuMeiDZnGIRlqi02A4MhJNePUngeegYfkp+OlF/YKmgIVi5ohcLPnqGP637wzsLjcfH8X+cSeqW1SNwYHQG6DJFiPG9c3AJm+GTXayBbdO6otWpxs3jC0AoDb0AdTjfyzhxiFuX7Nxo17icwf7Loufyw6vE+j44gxsOVaDw5VNuP3Nb7C/vBHrfjMlZIDKNoASzQb+HtW3OrHS2xrgmevP5cEAq29usrv4+Asogct15xXgk91luGViUVhjLkagzT7WC1VLVrIZVU2K8Q4LQMTvz1PXnhvRc4qI6Y69Ek0h17hisFPZaMfSTcdx66S+IR9fNA8K1r+wODMRep2ERrsL5Q02nvmy0ztnFWcm8tep3QBODbLJrzYO6XahDqdbKWm5ubl+SlZFRQUMBgN69eoV8himimVmZkKv14c8JjdX2YUIdUwgzGYzUlJSVP/iFY9H5rucw3unCCmPDr4wTrEaVHUhrZoGvtpeaR6PzBdHIwXbeUCrpKkvuxSLQTUghasFY4s3rUsQgy3eo1XCxF1BneR/nrFGGxRqgzSdTsItE4p4vnYsSBaVtDCTiCRJyEnxNTllQVpOigWzRuVjUv9euHGcbxNC3JHT7nZJkoRHrz4H9108IOw5moQgji2wWeA2yJsWMa5vumrR3d50BrarXtfqUG0uHKpo8is+9jk8uvHO1hLc/NrXGPP4Wu7ayLA53Vw10vYtYxiFIvj6VicqVUqaJt3R6WthwXZUGyNwr2IB3S4hSGtxuHm9H6A4uJYEaBAca0o1adJik21tMCUWqTtcHj91g9Foc/kpX2yX+UyDTXC2U18jf/zhCHz2m4tV6a+iG+bZAFu4AuENVmKFNhV+REEqX/jlpyk9IB0uD59/xIV+vrc35eaj1ZBl5drVGhsAPiWlodXls4NPMEW8MAbUQZrJoFNMB4LUQ6uCtCB9z6JFp5Pw4MyhuOrc/PAHazivTzqyk81otLlUKriopB2vasYJbxAxb8YQTBmUFbZm+RIhTS4r2Yxz8lPw/I9Gc/c9rctwqJ6h7YEpaU63jGavki5+XimamrT6Fie3yb9hrDInrd9fgQ2HqlDZaA+YRifCFvNiTdqZBhvcHhmS5KvXU57bt17ZJ/Sq++5kHX702td46pP9eN9rHBYJgZS0YEGF2NC6jtvvty9QFjeLQ9nvA/5rlEhqKZmJzYjeqUEDQLNBzzdwRPOQnd5MANFpNENjNBc83dHtM/2KYlyIN7pVkDZx4kSsXbtWdduaNWswduxYGI3GkMdMmjQJAGAymTBmzBi/Y9auXcuPKS4uRm5uruoYh8OBL774gh/T3TlZ24IWh1tJIeuVyCfCqkY7d0wSlbQmu9sv3Ug7Gde1OvkC9+bzlVx8NoDYnG7B3VE9EUqSpJqow6U7sibEUweHzrsOl86nRRygrMbQfbdigcWoV73WzsibFgf/xAgGLpbyeKbBxtMdc1Ms6J+VhLfvnoBJ/TP5sWJNWnvSYHQ6ideescURWzz9eHwRrh6Zj9/PGIrCDN+Cob07ZWwBoFUbDpQ3+uW1s+D/aFUz5v1rFzYdqUZ1swMffV+m+lu2YEqxGEKmePpqodTpMyeqW1RqYatXSbKa9H7F3pHUpB2q8C0obJo0IkDp79TRsHo0hpiCpw3S2PvdaHOFTS0VUx49HpkvYE7X2VTObeE4m+rSXG6PSj2tabZHlPrVXpgZFUtNGyM43Br1Op4qzQyeVDVpQoo1oO4rKSIqKfUBatsiQdyEY+NwsA1CMd0xWN+zzkSnk3AFd7n0jTuikrb1eA0cLg+Megl3XliMpXecHzDgFbl0aA4kb0p6oJ5qWiVNq2LECvGzERV2/ry8Jk35XJgxyoDsJJ55Iq5XQqnILreHbyAnmgx8fcLqXpPNBlVNnST5GkCLBkZuj8w3oU5pxrlQBBrbgq2BmIFLZaMdNc2+RtbtQWxF0ysp9GP17ZWo2pywu8KbpbAxKFiqIyOQeQgP0oRNf/H16nWSX209+w7bnG6eKt+d0x27NEhramrCd999h++++w6AYtjx3XffcSv8efPm4Sc/+Qk//p577sGJEycwd+5c7Nu3D0uWLMHf//53/Pa3v+XH/OpXv8KaNWvw9NNPY//+/Xj66afxv//9D3PmzOHHzJ07F6+//jqWLFmCffv24de//jVKSkpwzz33AFC+hHPmzMGTTz6J999/H7t378Ztt92GhIQE3HzzzR3/xnQCbAdoUE4SDHodX/RVNTt4TVqKpni/WdPAV7vgYvb7yRYDrh9TgN2PTcct3tobsU+athYAUE+w4YK0uyf3w6NXnYO7L+oXchepPUqatZN2XsTFe6h0jFihdncM//6wQv4dJXVodrhh0ElB2wGINvfalIRoYZN0o1CTBig7iX/70WiMKkxDodCcst1KGm9iq06dO3imUWXBD/iujeMaC3lt2u0x3gA1KWTALzqVVQipew63h1vsA74dV0VJiz5IE9fnrQ43fzy2/ugM9chPSWsOrqT5xh4XWrwqvkFodCsiqkSNNhd/rYeFlNFIvl9MGYikuXi8c+BMI1qdbq6ee2Rf4+aOhG3eLbppNOZffQ7uuLBYdX8fTYNdcdzVji2BUh0BwTjC5gxrLx8MUZlhc06wFHe2WeRye3g6fXuVtPbCasm/PhZYSWMBW2F6QtgUc0ZxZiLeuG0cXr91bMAxS/v5dFS6o/gdZ5+vSkmz+MbM0rpWLP5CaV79q0sHone61S8LJlSPQLH/YoJZraQBgZ2h2XqJPa72Oo3GLZeNw+JaJlhmhGjDzxtZt3OuzRDn7TABX6LZgI2/m4r37pkIIDLzLGYAFMw0hDEwW91aQpZl/rejhCBNnPtSvCUIIqLxCzOdonTHNrJt2zaMHj0ao0ePBqAET6NHj8ajjz4KACgrK1P1LisuLsbHH3+Mzz//HKNGjcLjjz+O559/Htdddx0/ZtKkSXj33Xfxxhtv4Nxzz8Wbb76JlStXYvz48fyY2bNnY9GiRViwYAFGjRqFL7/8Eh9//DGKior4MQ888ADmzJmD++67D2PHjkVpaSnWrFmD5OTYpZ51JaxXEbM15/auTXY+ISVbDLxuqdnu5umOrJZAu+Biu1UsrznJbPAVcToEJS1ASok4OFjCBFdZyWbccWExUq3GkDuD0bozqpS0MA6TsaKtNsxtJdkSnZLGdrbX7lUaOw/KSQ66kGE7cswSuD2wSZqnOwa4ZgqE1Jv2Pp+2PxILXI5WNnNVRaukiQEU4G9LfFRTjxYMMUg7o7FJF+vSxJo07Y5nqPrCQBNvi9PN0yfZd1+7CdMR+G/s+AdpbFGUKKRas8VAgkmvWswwNbVKWBSJwSZ7/GSzIWSTdwZ77LNBSdvmtbAf1SeNjzPVAUxWYonY+mB47xTcdkGx3wJJW5eSavVdn6LrJhAiSBMW6YEMSCJB3CxkP/vXS6tdBGtaHJDlyAyQOhqmLpysaeWmX2KNFCNYHVAwLh6cHbC/J6AsgMXgtKPSHQ06ibcvCKyksT5pTvzpk/2wOT04vzgDV52bB71OQr8s9XVTE2IDitW6GnQSTHqdEKTZvc/lf11pP/u5lw9C/6xEXDBASYsUg7S6Fgd+84+dQXupsXFdVGaDbRJnCQ2tY5XumGb1WfdHck2bDXq+4RWuLruy0c7bNWj7wmphpQzbS2pR3+rEqdpWVDc7YNRLKvMgMSgNFEBbhHRHNqcld+MgrUvP/OKLLw5p4/nmm2/63TZlyhR8++23IR/3+uuvx/XXXx/ymPvuuw/33Xdf0PslScL8+fMxf/78kI/TXWGmIcwxhy36qpsc3A44xWLkHeab7C4YvM5PA7KTUFZvw4ZDlahosCHbu5BnCyLxi84UilZBSQtU65WmSTWMlF6JJhxmz2XUcct2IHzNlRaxqXaCsXOVNKNe6vAaOEAdmEWiNLJ0RxaQh0pZKM5MhMmgw8Ds0MpRJLAgzbeL6v/eFAo78kntVCHZwM6u4cKMBFQ3OdBkd/F6BqbssPeNvSeFGVacrGn1V9IEZ8dQiE2UmZLGruWjlc24RDEVC62kReDuKGJz+IxDMpPMqGi0R2SE0l60gW0oJY3Xw9pdKovsVKsRZxrssBh1GJSdjJM1rSob/kCKYKTNglnAUHsWBGms4fvE/r1wuq4VdS1OVDU5MDB4WXW7qWqyw+WRoddJfqZSjKIM9fdB3KhSGlqbeUohs+bWkiKkuwUzhgmHWH9mCZLumJtiQV2Lk5cAsMV3ryRzREF/R5JqNaI4MxHHqpqxq7Qe/TIT4XTLMOqVYIMpRKyeLFb0TrPy96GjlDRJUuZDm9PDP19x85Z9/hUNNt4H8NGrzuHzzvjiDOwra0CfjASU1LSoal+1sIV8gkkpcWDXAFfSAswtWhv4yYOyMGNEHtYfqMBXh6tVQdprG45i1benUFLTjAsGZGofio/rmUlmHKpQNuWCbTqKShpbp7U3UNbpJGQkmlDV5Ih444HNgeE29jYcUlpEDO+dElZ5HlOUDotRh6OVzZj+ly+5CdDQvBTVxnCyYPAU6DtvZc2snb6aNFLSiG4Ha7J7jneHgqWqVTf7lLQUq0GwwfYtlK4emY9UqxFHKpvxgxe+UllqA2r53Jcf7AlqwQ+od4OiCdLE3SfW04URfbpj5GperGAqR7LF2OE1cIA6NzuSgStX07pgRAgnsl5JZqz/7cV456cT2n6CXtg14kt39P881OmOsVHSWNCg9PdRdpOZYQVPd/SeC1OF+noXQdqmt2KPtFCIdVAV3oXB2CKlroIVwzvdPuOMBJN/kBYq3TPQxNvicPkWB8k+tzItXx2uwl1LtwXcoW8LbKxghjQh0x1ZTZrgpGk16fl3Jj/V6lu0qHau/QOsSBfwLEvgZG1sXm9X4XR78PVRJQ1u8oAsnnHQHhv+ZZuP46lP9oXcWGWfb26KJWgQIyo7SWaDX48wsV1KMCVNVFLaGqSJtdFsntIah7BNKmampe2R1tWwTbNdp+p86Y0ZCegjBGZ9o1TSwiGah0S6+dEWmIEUD9KETUz2We88VQ+PrGzWikZiv7tiCD6dMxk3j1dq40OlO7Kxhc2HbK5hRlkBlTRhrZBk9q2TWA9Qttnmcnvw3vZTAHxjuRaupAlBTLAN5syASlr71Uw2R0SaOsneq1anW1U3reXzA0qQFkmD+dxUC966awKKMxNR3mDDu15nzZEFaarjJEni5xk4SBNq0mzhjbXiHQrSeiDNdhcf0AdrlLSqJqEmzWJU2WCzupD+WUn48OcX8C/Te9uUQYgNhKKpgfiF4UFaAFVEHBzCuTuKiGlf2nz5aB4HUA92Ce2w34/uOdVOdh2Nqk9aFEoaI1zxb+80a8Cdx2jRpjsGCtJU6Y4xMg5hjaQTTQa/XU9tuiNzN+0rLIjElMdIlbRUwVGQKUIT+yupIaxXmuheaDHqVfV/QLiaNP/Po9Xps7ZmrROaNUHayZoW/Pj1LfjfvjPcijoSmuyuoAYVLLAd0TsNgG9jBwhUk+ZV8bXpjt7Xk5dm8S1awihpkS7gB3r79RyOohFuPLLzZB2a7C6kJxgxLD+FpyK31YZflmU88dE+vPLFURyu8L0320/U4tcrv+NBfJn3OxGqL6Wo7AT6XNjfplgMQXff2RjT0Orkqmd70h2DGYewzQRmUBErZ8dYwez7d56q5/VofXsloo9gqlQUZvyJFtbQWuvKHGtYEM3THQMoaQ7vmmJIXrJqk9Nq0mNIbgoPPqoDBGm7S+uxavsprgYlajbhmJobLt0xR0jRZddFTbMdbo+MLw9V8rTJmmafI6OIT0kT1h9hlLTKJju/7tub7gj4vpNFGZEF9OL5BcvAcHtkrqRdHMbkjTGmKB0f/3Iy7p8+mAe804b5S/8sSA601mCGcY02F2+n01nrq46AgrQeCKtHy0428x1W3yQuKmk+45BWYVciwaRH38xEbufLdmd5uqMw2LCJ0OZ084VmIJtjMeUlmv5kKiUtTb0wiKTmSkSl5nWWkuYd7DvD2VF8Hr0usvRKUUkz6KSYtgMIBdtFbeB90vzPtUBQ0mIVpDESzHoeKGmfg9ULsIau2clmPmmx861vcfLvQ98w6UaszuD7U/VcLZvQT1HSDpxphMvt4butkrc1RLom8AodpPkvKFsdLp7uyDY6moTUFYfLg1+8s4P/rk3lDEZpXSvGPL4Wv/nnTr/7nG4P351mi0txh9tnAKG8FpWKz4M0A1e881OtfNyqUgVp/ueqtd8PBnMTPFjRGFIxindYquOkAZnQ6SRfpkQba9KaHb5NtqOCYc5zaw7g/R2lmPzMethdbm4aEsxcCFAbhwRyZGRB2sCc5KDZBWyR7pF9RiVRK2kB0h21adWsJpd9r5lBTSQ90jqDc70qw65T9bwnWlGvBFUgHG78iRampHVUPRqDzQFMGQ/k7shgtfVatAYfDLdHxl1Lt+E3/9zJFWeWYsiuAfb1DzR2iJvD4hzZK9HMe8RWN9v9NrcCqWmBatKCKT/smLoWpy/lNAafwx9/OByv3DIGFwZIxwyE2MctmHnI96fqUNviRLLFgNGalkyhsJr0+PnUAdj4u0uw9aFLMXmgvwrHguRASi73V2h2+JQ0suAnuhPfnqgDAFUTzV7Che1rZm1QDRZs8cMueKY8sQGwOoCSJjrthFTS2lqTJgyWeantU9KUlMO2/W1b8aU7ds4g0icjAZcOycYtE4oiSq/MTjbz9ySUaUisYddIqHRHq0nprSJJvsVUW9E+fqLZgKG5KarAPVlTk8bISDKpjAwAX7pcZpI5bAB5frESkLHaioxEE84tUMwe6lqc2Hq8hu+2JnhbQ5gNelUxdKggP9Xqu64ZrU5fnzSfcYjyXsuyjD/8ew+3PwZ86V7h2FNaD7vLg52n6vzuK6+3wSMriy9WJC7ucNe1+vpdAUKfNJsv3THBpOcT/rjiDGR56560hfpaIl3A989KgiQpi6BAu+/dhY1ek4LJ3kUXz5Ro42uqFf5OdDVlJiEA8PQnB3C6XgmY8tKCfx+tJj3fJQ8UpA3wXhuhVHuLt+E54PuuxUJJ80t39C7A2QZCvClpw/JToJOU1DzWhFpR0pRAWK+T/Gzz28sArymHNhU+1rA5IFA2hVZBGRJk8zAjSJC29VgN3zBixhYsxVC7/gh0XYnrFTHbRK+T+KbY4YomfLavAoCvdcFRwQiqosGGykY7H9vFwN8apCY+zWrk7WkCuUK2lZwUC6YPy1W1GgiFJPnMwbQZGIyN3o2iyQMzI3YXFTEZdEHrWjNCpDtytbHR5nNmJiWN6E5sO6H0QxrjrXsBfIFVdZNDpaSZDXpVc2HAF8Cw3XyWXsQs+DOCBWnO4MYhbKDR6yQY9ZGnUIhpX9rJKNqaNL1O4l/6aJ0h28p5fdJh1EsY1zcj/MExQKeT8PfbxmH+D4ZFdLxRr+PvcbhUx1iirUcIFNgDwN9vG4e37hwfcuc+EiyaazLRpIdOJ3E1TVQe/YK0BJNf3x6W/iX2cgvGsPxU1WI1O9kMo16HaecoaR4f7yrzmYYIzy2mCIfKudfrJL8C/0abi6t2PEjzBkJ/33gM72wtgU4CrhzB1PLIFvds19sWYHeVpSRmp5i5AlYTQZ80UUlLNBlww9hC7Hx0Gm4cWygoaQ7sK2tAfYuzXemOFqOeL3DDNcCNRz7YUYrrF2/Ct94m1hcOZEFa+5Q08T0Vbd7FhfOSr45h3X71ojQYTN1Js/qrADeOLcDL/zcGv758UMjHYAt11pOqPRb8XEkLYBwCgBuHHKtSFtnarI2uItFs4OovCzZG90lDP28dbJ+MhIAtK9rDxP698Mx15+LJa4bH9HG18GyKAEGa9rMW3f9ExFp7kf9+f5r/fNT7mbIxVLtBG8qCH/DfIGQbEF8cqITLI6Mww8qbhDMV2uZ0Y/qiL3Hl8xt4IJGaYOTqVLDxXKeTMHmgWu2K9rqPFWzzMZiSxupThwZROdsDS0vvH6DeW3TA1PY47Y5QkNbDkGWZ79iP7euz2WWTeJPdxXcL2SSoHTDYIpXtJtV6myqyeoeMADVp9jDGIWz3PNom0mIet1jQLJ5nNLDX1Ja/bQsjClKxa/50/Gba4E55vraQm+oN0kKYhsQarbtjoGsGUJSPSRGmaIQikJIGABO9zbqTzL5+LNpJPD3RxFNi2AZHCQvS0sPn+Ot1Ei4QmoIzt9SZ3gDp091n+GQjnqf4PQvnZMrTQ7w7iuLOsmgcUtlox1Of7AcAPHTlObh+TAGAyHuoseNsAZqciv2s+A63UCOlteBnu5+NNidfCLD3ntXxsV3TY1XNmPHXDfjp8m1c8RfVjmgWMsysQqy96i788aN92HaiFrKspMyylGBWd1jVxpo0MYX0qJCyxT4z1maC1Tprsxq09PGaWQRqhmw26HHF8Nywnxn7zrG6pGibWYsbM6zliqikGfU+g4JGm1PVt0lrZtCVsPpOnaSkrZ1bkIbxxb0w57KBeHxW7AMpSZJw47hCDMju2NR3s6Yu2aoKqnV8M1cnBW96zkovbE4PV+Ndbg8+2V3OjynxXrNsDNXOBQFr0oKkOwK+cYep2YNzUnjQzJS0wxVNqG1R3HxZP80Ek56rU6EyeRbdNFq1CdIWlSoWsDVSIMMpQNh064CG5z+fOgD//X8X4rrzCvzuY+9/RYOdO5xSkEZ0G05Ut6CqyQGTXqdSRlIsBr4wruBBmrc2RCMVs8GSLbR8ShpLd/R3d2y0ObkpQyAlrTBDSVvLSYkujUTsk6YtVm9LyiKb6DtLSQOiq8HrCm6bVIzxxRmYMTy3056TBWVskA1kwR9L/II074Q9dXAWTAadasdOayqTkehT0rTpjpEoaQBUu6NsJ3ZS/0ykWAyoarLji4PKhC9uHrDdXKtRH7aAn6XkDPHuOLPvqiT5HqfZ7sKp2ha4PTLyUy2444K+fJEaysJahDVLbg2wu8rUiBSLkY8RzQ5frWq9xgBCtOBnQarWmjpTk3b23ck6fq6DBfv2aFzo2OLzUDczD/F4ZK5M/uNnE/HWXT6XVfY+tVVJqwuipLHA+3czhqiOD6c0XTIkGya9LmzvpFBoF8/tUtIM/otjq1HPvxsVjXYcONOI2hYnTAZdUOWmK/jJxCJM7NcLr94yFv83Qen1qtdJmHPZIK6kdkfYHFAfoA2LJPmyXvplJQWdQxNNvkwgtom86Ui1apOKm0UxJU3zWIHGDrVxSOAgjSmbQ3KTed82tsEhbgA12n2p3CyYCFVDlWo14uNfTcZ15xVg/tXnBD2uo/EpaWGCtA5Q+ox6HYb3Tg2YnsmUtEYheOzOFvzd98yJNrHNq6IN763uPSFJEqYMyuJNiwGhqawwYFiNev7F4EpaiwOyLPNgTWUcwqzUhS9MoNS13mlWvHXX+Khri7KSlX41OknZvWVFu3pvY8poYa+ps2rSugPXjyngikpnoQ3kA5nNxBJtEJjgnbAL0hOw7jdTVMXZWtUqI9GkcpsDlAazQGRKGgDVYooFaSaDDtOG5eK97afw/g7FQdUaQEmLZAJ64Ioh+N/eM8hLs2DrsRre3NVq1PO/b7a7+cSalqA0pOeF9xEqaWwx3+p0Q5ZllSrOXWOtBqRYfb1ualscyEm28DEiVaOkKUX43vPVvPfJZgMuGpSFigYbjlY1w+7yYPfpegBKDSXbzW6LknaoonulOzY5XGCmmucWpKoCdzGdvS2Ii9ozDUpPPbNBzz+zsUXpuPycHD5/hEt3nDkiD5efk+Nnvx8N2rqk9gRp3IJfGAcSTAb0yUhAfqoFp+tteGn9EQDA8PyUmKcQtoeRhWkxaXsSb2gdfv2CJ4sRVU2OkAGzJCk9wMobbKhpdqAwI4FfozkpZu68CAg1adp0xwAOgmJNWrB0R8ag3GSV0uz2yAHHFotRz50Jw60/Uq1GPHfjyJDHdDRsXRisV1q94BLemaRYDTDpddzYyxChSVq80n3PnGgT2731aGMD1ED9ZGKR6nf25RJNLRIC1MTYnB5UNNp5jYvKOMSkdkoCgqeuTeqfyXecIiXJbMCi2aPwl9mjYDXp+cCREGXaJIPtAPeKE/eunop2ERSsJi1WaHdixfSIgvQE1e/aCTTNauQbGv5KWmRBWkF6ArfqFyf5S721DCzoU6U7JjFn0PAB7KjCNPx2+mBeA8QW3Rajnu8gNzv8GwOL3/FA6pgWlvoMgKc3M1gqKOsJmC4EDo02Fx8jxLpQFmdUNipF/to0ZEmSsOyO8/HpnIvQ3zt2MLMZ0UwgGiWNmZp0t3RHpkSaDDq/67mXsLsstnOIFK1j5vGqFpWZTIrViHsv7q88l6Ash6I9ARp7zlC/h0NcuPFm1sL7xpobXzJU+Q7+x1vHNLpPOoiOh30+gepxAd/nHcw0hKE1D2G1ptOHqTNDtO6OjEDXslGvw5DcZCSbDTyVkaE1lRmck4zeaVaYDUrgcKq2JeDYYjVGpqTFC2zeEJU0t0fm7VdEb4PORJIk1WeQZDF0Sg/ajoKCtB7GtuOKkjamyH+iuaB/pl/eN6DeqU8QFoRiKsHeMkXaT7UaAxZkM4x6Kea9Va4emY+rzs1XnWtCG5sX/r9LBuLxWcNw7ejeMTs/Ino6X0nT1l0GnyTFQCHVaoRBr+MTUYPNCY9H5mYGkSppAPD/LhmA4b1TMF1IKz1P8z0NlO4YTSoHq70Rd6fZgkCWgTKvWx9L+1WlC0XQCJk5NALwCwYahXRH8fxrmh1chU8w+Vz7JEniixa24x2qVlTb+HiQGKRFsZvbP1tZdFU1OUI2wY03QqUXpVgMvIanLa9J65h5rKqZP1+CSQ+jXofz+qTjjdvH4e+3jeuURVGqYI1uMfoHpuFQKWncgt9fXbt0iGLgwzYRRkVhJ060Hf+NOvXnO6J3KiQJYW3jmbMpU+NZ/0ptqi1TsSKpSQOAVfdOwuf3X4xkzdgiBggGnYTizETovP8DSsrjoUBBmkmP/5tQhAn9MjBJ0/4lHmFzJGvdYne5cfnCL3D9y5sA+KevdyZiGnx3CHhDQUFaD8LmdPPBYXSfNL/7dToJN4/vw39nE62qAbJgDStJEl/M7fXmX/vVhWkGvGAqWqxgwVk4I4Vg5KRYcMvEvt06h/lsQDtBd3Tdnnb3NJQ6ZQ0QKLH6zfpWFyqb7HC4PEoKbhQucNeeV4D//r/JKtOFnBQL8oXvlPjczJUxmvYNzNqZLTgtRp1XMVB+1/acYulCgFolC0adoLi0aoI0Md0RULfwOOatc+qjUR7ZAqiCK2nBX6s2SCvOTOSBSTSmEgkmA2+U3p3UNPb+ap08AXhTV5XrpaoNdWl+Slp1c8CgcOrg7E4LYsTAuy0LQVGdZ+OLuDnENgQm9u+lmscCzZ1E7NFu1GnXEo/9YBi2PXQZRoa53nzjlwPNdhevuR9fnKFqTcJNO/xq0gKPOYlmQ8CMG9FKv19WIp/LmOK2u7SeG+yIJBgNuH5MAd796USVc2+8wpU0b8rz4YomHK1qxrcldWiyu/zS1zsT8TPozo2sAQrSehRst1qvk4I245x7+SBcNjQHD1zhcxsMlerFBkAWpGmt0I16He/rAQQ2DYkl7Fw70/iDiD3aesKOvm5Mep1qwg6tpPnuY5Opz4Lfye3381Kt7U7pAoBRwqJQDFYvGZKNK4bl4q4L+0X8WNrvr9Wb0sV2G0/XKcGQOLHytMQIlDTRBVKbHsmMQ1jgle01CSqta8URbzCkTR1i7q1sYRWq1YDo8GbQSUixGPDLSwbi2tG9URxlQ18WpJV5+351B8IV6rPFSrAaEkAxH3G5/Z05WZ80pgaISlpXWYCLaVRtOQe1auZTb9mGjVVw+7vAq9ZkJZtj3neMCIx2o047p+t0UkRlCRmJPiWNqWi9Ek3olWRWmZwFqkmzGHVRbyxnCzVqgwX7edZmZ+nm43B7ZL+/Y6Uh3QX2fjFzL9H19XhVs1/6emciqpndfcO9e10VRLtgO+HpCcag6SiJZgNev3Us7rt4AL9NDNK0iySupJUFVtIA9WTY0YtttvvZWRb6RMegrUHraCVNkiRVSmWoYEBVl+lVg8SatGidHcMxutCX8ig+d1qCCS/fMgaXefupRYL2e8EWPuz1MiVNXAD30ri4hiIiJc0bLLDarwPljbx/UH9NTSrbJWcTfqjNF9Y7B1DGJUmS8P8uHYiFs0dF3KSVwdTMsnobWh1u/OrdHfh4V1lUj9HZhAua2KLX7gocpHk8Mn7w4kbM+OsGv0CNffZMRTpe1cx7AnZ2zQmjvUqa+H23BkjRF11crzpXaYdx4YDMbl3f0p3wz6Zo29rBl1Zt50FaX+9mA2svAwR2d2yL6YUYIAwWxqQfjMyHQSfxNhjDe6fwmlud5L8xGe9o3R3FIO2It9WAVWg635lQkEZ0S1hdgehUFwniRW41qi94tkvFBr9wQVpHL7aTInRHIuIbk179+XW0Bb/2OUIN7GqHRWUSTxVq0qJ1dgyHqKS1VyHW/r2FB2nK62UNSMX0wPQInQFbHW6VWYjNqV7oN2oKyYfmKUHavrKGoEqaNrUs1OdS1CuRq/bRjnFamK12eb0Nnx+owIffncbLXxxp12N2NOGCNLZB5gjQww5QzG52lzbgUEUTyhtsqvtY8M1MM45Xt3S5kpaqUtKi/7wtAdIdAd93RNzQmDUqHyvuHI/5Vw9ry6kSbUCrYLV17MvwqmU1gpLGFGHRmTFQn7S2XNuJJj0/10FCG5BeSWZcPDib/35OXgrPPIq2P2w8wNJDmTLPmoIDvoCtq8YGMUhLpiCN6C4wG+30KJsLBnN3VB5LPTkGamJqFWT8jt5V4cYhFKR1a/yKxju4lhFQT86hio3Fa4stAEQLfpbuGKmzYziG56fy4KPdQZopcJDGNjcCLbwjVdK092uNQxo0xiHMOvtoVTMOeB3XtEraeRonvVCbL0a9ju+QRzvGacn1pmKW19t4Y/KWCNwtuxJtM3AtPiUtcJC2z5sNAfjSSxnssx2Wr3xmVU12XtvW2RbbDLFWqG01aYE3D7nTo3CtSZKECwdmdkhjXiIwfkpaG+d0Md3xuCZIE3ucMSWtvUGaJEkYV5yBZLPBz/jp+jE+Q7IB2Uko8jZ117YW6Q4k8NYtyrjO1DMAPDOiy4I0oQ1UqKyY7gAFaT0IVvytDazCkRgi3dEvSAtglCCmlWgdmmIN2w3r7o4+PR0/d8dOUdLEdMfIatK4kpbAgjRXzNMdrSY9hnhVp/ZO5togj6c7ah5XVZPGDT5CG4fUacwl/GrSWpkFv/JcuSkWpFqNcHtk/rfaFhx9MhJUjWPDbb4w85D2Kmm53s2m8gYbd+qMpAVBVxJeSVPeu2BK2t4yX++mCqF/lM3p5gFq/8wk/t1kgXWX1aS1O93RN6ZYA6Tk00Zf1xIrh1/m7ljT7ODBQyglTZXu2MZr+43bxuHrBy/l5k6MqUOyeZbCoJxkFHlrZa3drB4NEJQ0hwuyLOOYkO54zKuqBTNd6WhUFvzm7r2x0v2uDKLN1DUzJS26BUxSiHRHrQtRfkAlrfNq0pgrH6U7dm86290RCOzsFgiL0WcywmvSvIGHw+3BnlJFkSjOjK7nXyiuGJYLSfIpGW1F+z5qa9IYaUL6WEaSr6YjFFqbdr+aNJs6iJAkiac8Akpz2SRNcCxJEs4TUh7Dbb6w9CJtr6JoyfWmbZ9psOGUN+gOVssVL0RekxZeSasUHCBZAK3XSUixGnhK+36h7UpXkBpT4xD/n7ujunE24Wcc0sY5nfWdPF3Xynuk8SBNKM9gY4vYJqit17ZeJwXc6DMb9Hj+ptH4f5cMwOSBWSjyZlt0R6MzX02aG2ca7NxABAAP2LpOSfN9rpH0EY1nKEjrQbB0x7TE6L44Kgt+P3dH9WPlBqpJM3RekDahn2KXrO2BQnQv/NMdO36oYosAvU4K+XySJPFJlak8SWYDLwJvtLtgNepxTl77AiqRX1wyEDv/MA0XDcpq1+NoXxt7zdoFhTi5ZiREZsGvtWkX0x0dLg+vURMVkCGC+5k21ZEhNg8Ot1D7vwlF+OlF/XD35MgdLwPBApGKRju3y9bW2MUbkdekBQ42VUGaUJPGUh3TrIoZC0tpP8ZTmrommBFVjmhaLDBUKY4G/59JSetaYlWT1icjAeOLM+B0y1wR7tvLP0hj7XvE8T2lA+zbLxqUhd9MGwy9TuJjXlcFM+2BBbXNdheOCqmOgM/xsatMhTKTxXTH7r3ZQkFaD4LtiGZEq6SJNWl+7o6+x+qVaAqoeFhUSlrHTnyXDs3B7sem4+qR+R36PETHog2SOjpNFvAtzhJN4Yu42cDPgjRJklQT0nlFaTGvv4xV7Y/aYjqCIC1CC36xkTWgDtKYaQigHk/EQFZrGsIYHYWSlpVsxoMzh/Kd8raSmWSGXifB7ZF5ipS2xi7eaGiHktZgc/K0TkBdk8aCNJY1wQJY5iLeVXVaYq10Wxa5ep2E3mlWJJj0PCUO8H0/KEjrWmLl7ihJEh656hye/ZCfauGfsZjuKI4tbFzs6ODp4sFZ+PVlgzBv5tAOfZ6OgK0Fmx0uHKlqDnhMVwWfCSYDFxeSunmftO599kRU8Mk22po0YfBK0CyWxYAvkIoGAFaVi1bH7wvoo7TbJuKPrqlJU54jkp23uy4sxrcltRjeO5Xflmo18o2Q8/vGr5KbYNSjDsp5WjXGIQAgSeoFMG8G2xJlTZoQ1DDTkCSzQfX9HCKkOwZT0kYVpiE9wQirUd8p1wGgjCHZyWaU1fsUJZe3h5ghTq2yuZIWJGgKVZO2X6hHA9RBWh2vZVYeV1t33FXGIUa90oi9xeFu82LwX/dNgs3pVn3nLxuag72nGzC+OH6/wz0Bsz52Ke/De6fi+vMK8M/tp9Bf6KdYkJ6AVKsRiSa9xu1T+bmjlSCDXodfXTawQ5+jo2Drwha7mytpA7OTcKjCp6p1pUKYlWxGk93ll0Lf3ejeZ09EBWtIGm1qiNrdUVOTJgRpgZwdAW2fNNqdJMIj7qJKndRDhvdHimAH/WdT+vvdJi5Wzy/OiN2JxRiLqv7GG5gK3+sUi1HVV4wFaXUtDrg9ctBNEDa+MFodvmBA2yONMSgnGTpJUWW0piGMBJMBa+dOgV6SOtWmOifFogrSAMDm8iAp3oO0MOmOgZQ0lupoMepgc3pQ0eh73TXN6tYt2nG+KxdiGYkmtDhaVeYy0SC6+zFuHt8HN4/v095TI9qJ2CtTktqf8v7wlecgxWpUZdlYTXqs/fVFMOh1qrGFpzt2wzTEziJRUNKY5f644oy4CdIG5SThWFUzT23trsTnbEN0CGwnPNoJTdxl1KY7pgs1afkBnB0BjXNWJ+2EE90bs6aOsTMW51o7+mhhTlZGveTX3yueSAiY7hjcdppt6nhkXyAgYne5UdVkR53mPpvLjeomO9btP8NNQ7SLHotRj0uGZCMzyYxRBWlBzzkzyexnUtTRBOr5GK8pj7Isc7UybE2aO3iQNtFbyyu6OzJDGJY1oR3nu3Ih9uDMobh7cjFGCIo2cXYgbsxZDO3vI5aaYMQjV52DUYVpqtuzUyx+ayK25ok266gnwTb2bE4PDnkNWc7vq96c7Mqx4c83jMR//9+FGKn5vLsbpKT1IGrb3Mzat4DTqgxJZgOMeglOtxyhkkZBGhEeUUnrDGdH5XmY9XbbhkU2IY0sSOu0c24L4qZJoMBUq7Qb9TqkWo2ob3Wiptnht6B54L3v8cmucuSkKi5qGYkm1DQ70Opw49F/78FH35fhuvMKAKhVecZrPxkLl0eGMc4UqkAqS7wGaU12F9zeIrGwNWma12BzurHhUBUAYMqgLKw/UImqJjtXTdnmHjOcyk2JHyVt5og8zByR12XPT3Qc4oZuZ7s1/2LqAKzeU44LB2R26vN2J8QN+9PejINJA9Qpwl05NiRbjKpyhO5KfM2KRIfhdHvQ6N1pjVZJMxv0fFdLa8EvSRIP+oIpaZTuSESLdhe1M2DXZlvdoFhPnPH94jfVEVBbi1sDGIcEmliZjXVJjbpAXJZlrNtfAYfbg5M1ivEEU6BsTjdv7P3loUoAgeuXJEmKuwANCFxjG68Oj0zhNBl0QTcIgilpr284itK6VuSmWHDtmAJI3vRTluaorWXWjvOUEkZ0BCa9kJbdyZtel52Tg2dvGEmtfEJg0utgEFLfe6dZkZ1sUW3E0djQfuJvZiQ6BFb8LUlt291gDjmBurcXe3N+B2Yn+90HaHfu6ZIjwiPuonZWimyg1L9o+OlF/TDnsoG468L22b93NKKRT6A+aYEm1jFFig3+10drVLefqm3lmz8Mpqi3Ot28Fq3Sa0TRnSbt7pTuGK4eDRCVNF+QVlbfihfXHwEAzJs5BCkWI3olKgE5q0ur5f01jfw52HVjDhEUEkR76Io5gIgcSZJUmVVDvU69YgPv7thaIN6gK7+HwOoKUizGNrkf3jqxLyYPzFT1NWI8/6PRePenE3BOkEa7YmBGShoRCV2hpLGef2yRGi0F6QmYc9mgTq+dihYxnZP3SRNuSwswsU7sr6SxbDpSpbp9r9BbiyEqadoatkDpjvFKoHTHeG1oHUmQxsZeu6CkvbOlBK1ON8YUpeMHXkMFppoyh8fSOqaQKsG3JEnc4bE7Bd1E90KcA7pjs+eegJgmz9Z/YqYWBWntp/vMmES7YKkrbXXBCmUTm5tqCWq/D6jzyakmjYgEdU1a51wzs8f2gSwDs0b17pTn6yosAWrSwqU7MkOJPacbUN/i5Dbve0838L9hgQIbC1ocbm5mwegqu/a2ICppSWYDmuwulWNlPBGuRxoQWEljgdjUwVncmCE7xYy9ZUBlgx2yLKPEm7Ja1CuB/11eqgVHK5tpEUZ0GOIcQEFafJIgBmleJa0XBWkxhVbMPQRe/N0FjUdFJYTSFohIULs7ds4EnZpgxM+m9A+54XA2IC54AvVJC1iTlmJB/6xEyDLw9bFqfjtT0n56UT8UpFv5PwCoanJwMwsGc8DsDuSlWtEr0YTsZDP6ZioBSrdOd9T716Qx181kIXj2KWk2VDbaYXN6oNdJyE/zGYYwVY0WYURHYe4C8ygiOhKFDfhhXiWtlzfdMVR9LBE53WfGJNpFXRsbWccCi6nzF9xE90bcRaXAPraoLfj9G3gH28iZ2L8XjlQ246vDVeiflYiC9ASupI0pSsdPJhZBr5Pw9VEliKtosPk9RndS0kwGHVb/+iLoJAn3rNgOQGkrEI9ElO5o9Hd3ZPWEYvCcnaxsUlQ02nHCq6Llp1lU5i753o0MCtKIjqIrHH6J6GCp88lmA9+cy0xS1pg0NsQGCtJ6CDVdGKRZyYKfiBLaRe04rKpm1pEpaQAwqX8mVnxdgmWbT2DZ5hMY3SeN1ysNzUvhagz7vKo1za0BtWLTHWBF8Ow1xZu7oyzL+P5UPW+6HbWS5g3uks2CkpbiVdIa7DhR7U11zFA3hD3PayQzLEgdMkG0F3FDl1wW4xO2uTc0L4WnS7N0RwrSYgMFaT0E5u6Y3hXpjkZacBPRIRaNU2AfWwKlO1qMOui81uvBzCAm9uuFRJMezQ5FidlRUgdAsV4WJ+RQ9SPdKd1RxOK9BuMt3fE/35fhl+/s4L+HMvIwez8XsSbNp6T5/i4ryZfuyOrRCjN89WgAcPHgbGx98FJkJbfNZIcgwqFS0mgOiEuYK7BoGscMl9rqf0Co6Z4zJhE13Ea5C744pKQR0aLTSbxJOgX2scVq8jcOkSQJSWYDGmwupFkDjxHpiSb895eTUd/qxKEzjbj/ve8BwM/VVft5mfQ6rt50p3RHEZ+SFl9BWkm1um9d22vSfEuBPl6DkINnmngdmmgawsgO4H5JELFCXCuQkhafTB6YhfX7K3DF8Fx+29Qh2bj9gr6YPiw3xF8SkUJBWg9B25C0M7FQkEa0AZNeB6fbTb31YgyrSZMk9ffxZ1P6Y29ZAwbnBu53CADFmUra26jCNGw6Uo33d5Rigtf5kaFV0s4tSMW2E7UAupcFvwh7TXZXfKU7MlUzN8UCs1GHyQMzgx7La9KEurqGAErakNwU7ta5fn8FAKBPhn+QRhAdCVnwxz/XjynAdef15qmOgLLe+8PVw7rwrM4uuueMSURNbZemO4rujjTYEpFhNiqpdWQ2E1vY99Fq1Ksm159PHRDV4/z5hpG4ZWIRRvROVd2u3fUuzEhAXpoVJ2ta/NLmugtsoyDelLRWb5B2/ZgC/Hb64JDHciXNG2janG7+sxg863USJvXvhU92l/MgkII0orMRsylo3RC/iHMIEXsoSOshpCcoVtK9kjq/hoD6pBFtgS0qSUmLLUxJa+/utF4n4bw+6X63a9MdU61GzP9B995Zjdd0x2a7ooRFkg5m4UqaEpixejRJApJM6qXApAGZ+GR3Of+9T4B0R4LoaMwGPZxuFylpRI+FgrQewuu3ju2y57aQUx/RBljhuIWUtJjCbJM7qs5DG1SHMrPoLpjj1N2xxat0JUbwWZr0yjFMPWP1aElmA3Q69W74Bf19KazpCcZuW0tIdG9MBh1gB6y0UUf0UChIIzocUtKItsCuFeqTFlvOLUjFlSPyMLF/r/AHtwGT3ucUCZwdVszxmu7Y4lDUsARz+KncHERJCxSAFWcmIj/VgtP1NvTpleh3P0F0BmwOoM1doqdCqx+iw7EY9NziO6mbGgcQnY+JJugOwajX4cUfn4f/m1DUIY8vSZIqPemsCNK8am5rnAVprGYsISIlTfk+uT0yXG6Pr0dagDFZkiRMGqCYkFA9GtFVsDmA3B2JngqtmIkOR6eT8LcfnYcWh4vSZoiIoXTH7ovF6OundlYEaXGb7qioYYmmyJU0QLHhD9QjTeTOC4txqKIJPzq/MAZnShDRQ0oa0dOhII3oFC4/J6erT4HoZrCFZ2IEqVxEfCEuqlLOAvXcEsC+Ph5oaYOSBih1aawmLdjnMzQvBR/+/IIYnCVBtI2cFAsOnmlCXir15CN6Jt1/9iQI4qzkvqn90adXAqYMzurqUyGiRExPSu2Cth+xJl7dHVvsLEgLP5Ub9DrodRLcHhl2lweNPEjr/p8PcXby7PUjcfBMo1+bD4LoKXR5TdpLL72E4uJiWCwWjBkzBhs2bAh5/IsvvoihQ4fCarVi8ODBWLZsmep+p9OJBQsWoH///rBYLBg5ciQ+/fRT1TGNjY2YM2cOioqKYLVaMWnSJHzzzTeqY2677TZIkqT6N2HChNi8aIIgwjKpfyaevGYEkkhJ63acdTVp3DgkvtIdm7lxSGTpYGKvtIZW5W+7a4Nx4uwnN9WCiwZlUS8uosfSpaPzypUrMWfOHLz00ku44IIL8Morr2DGjBnYu3cv+vTp43f84sWLMW/ePLz22msYN24ctm7dirvvvhvp6em4+uqrAQAPP/wwVqxYgddeew1DhgzB6tWrcc0112DTpk0YPXo0AOCuu+7C7t27sXz5cuTn52PFihW47LLLsHfvXvTu3Zs/3xVXXIE33niD/24ymTr4HSEIguj+iDb8Z0WQZog/JU2WZd7MOpKaNECpS2t1umF3uX1K2lnw+RAEQZyNdKmStnDhQtx555246667MHToUCxatAiFhYVYvHhxwOOXL1+On/3sZ5g9ezb69euHm266CXfeeSeefvpp1TEPPvggZs6ciX79+uHee+/F9OnT8dxzzwEAWltbsWrVKjzzzDO46KKLMGDAAMyfPx/FxcV+z2s2m5Gbm8v/ZWRkdNybQRAEcZbA0gONeumsaERr8aZv2uKoJs3h9sDl7XMQrZJmd3nQYCMljSAIIp7psiDN4XBg+/btmDZtmur2adOmYdOmTQH/xm63w2JRF5BarVZs3boVTqcz5DEbN24EALhcLrjd7pDHMD7//HNkZ2dj0KBBuPvuu1FRURHyNdntdjQ0NKj+EQRB9DRYYJZqNZ4VqUo+JS1+0h1ZPRoAJEQYCIu90piSlkw1aQRBEHFJlwVpVVVVcLvdyMlRu/7l5OSgvLw84N9Mnz4dr7/+OrZv3w5ZlrFt2zYsWbIETqcTVVVV/JiFCxfi0KFD8Hg8WLt2LT788EOUlZUBAJKTkzFx4kQ8/vjjOH36NNxuN1asWIEtW7bwYwBgxowZeOutt7Bu3To899xz+Oabb3DJJZfAbrcHfU1PPfUUUlNT+b/CQrIuJgii58GMQ86WVLp4bGbN6tFMBh0M+sim8kA1aWQcQhAEEZ90uXGIdpdVluWgO6+PPPIIZsyYgQkTJsBoNGLWrFm47bbbAAB6vbIo+Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOmT17Nq688koMHz4cV199NT755BMcPHgQH330UdDXMm/ePNTX1/N/J0+ebOvbQhAE0W1hytPZUI8G+NI37XGkpPnq0SJPJzV7Pxe7YMFP6Y4EQRDxSZcFaZmZmdDr9X6qWUVFhZ+6xrBarViyZAlaWlpw/PhxlJSUoG/fvkhOTkZmZiYAICsrCx988AGam5tx4sQJ7N+/H0lJSSguLuaP079/f3zxxRdoamrCyZMnebqkeIyWvLw8FBUV4dChQ0GPMZvNSElJUf0jCILoaTAl7WwL0hxuD9zeOrCuptkRuf0+gzWId7jCN7MmCIIgupYuC9JMJhPGjBmDtWvXqm5fu3YtJk2aFPJvjUYjCgoKoNfr8e677+Kqq66CTqd+KRaLBb1794bL5cKqVaswa9Ysv8dJTExEXl4eamtrsXr16oDHMKqrq3Hy5Enk5eVF8SoJgiB6Hhbj2Rak+eaXeEl5bLF77fejUtJ8TblJSSMIgohvunR0njt3Lm655RaMHTsWEydOxKuvvoqSkhLcc889AJT0wdLSUt4L7eDBg9i6dSvGjx+P2tpaLFy4ELt378bSpUv5Y27ZsgWlpaUYNWoUSktLMX/+fHg8HjzwwAP8mNWrV0OWZQwePBiHDx/G/fffj8GDB+P2228HADQ1NWH+/Pm47rrrkJeXh+PHj+PBBx9EZmYmrrnmmk58hwiCILof+WmKMVNRRkIXn0lsYOmbgBKkJcZB774WpqRFcS5MSbM5PWiyU00aQRBEPNOlM83s2bNRXV2NBQsWoKysDMOHD8fHH3+MoqIiAEBZWRlKSkr48W63G8899xwOHDgAo9GIqVOnYtOmTejbty8/xmaz4eGHH8bRo0eRlJSEmTNnYvny5UhLS+PH1NfXY968eTh16hQyMjJw3XXX4YknnoDRqExWer0eu3btwrJly1BXV4e8vDxMnToVK1euRHJycqe8NwRBEN2V2eMKUZiegPH9zo62JTqdBJNeB4fbA5srPurSeCPrKFocsJq0mmY7ZG/WJilpBEEQ8UmXj8733Xcf7rvvvoD3vfnmm6rfhw4dih07doR8vClTpmDv3r0hj7nxxhtx4403Br3farVi9erVIR+DIAiCCIzZoMfUIdldfRoxxWz0Bmnxku7IjEMi7JEG+NIdq5ocABRlzXIW9LEjCII4G+lyd0eCIAiCiHdYMBNvQVpbjEOqGpVWMimkohEEQcQtFKQRBEEQRBh8vdLiI92xPcYhlU0sSKN6NIIgiHiFgjSCIAiCCIOV90qLDyWtPRb8LN2R6tEIgiDiFwrSCIIgCCIMPN3RFR9BWqvXOKQtNWmnalsAAJlJ5tifGEEQBBETKEgjCIIgiDAwG/54SXdsj5LGGlnnpFpif2IEQRBETKAgjSAIgiDCYOY1afGhpLU42lKTpj42L4WCNIIgiHiFgjSCIAiCCIPP3TE+lDSfu2PkQRpT0hikpBEEQcQvFKQRBEEQRBhYkNYaL0qanfVJizzd0awJ0vIoSCMIgohbyNqJIAiCIMJgMcRHuuP3p+rQZHeh2ZvuaG2HkpZL6Y4EQRBxCwVpBEEQBBEGSxxY8Hs8Mm5dshWNNhdvCZAYhXGItiYtl5Q0giCIuIWCNIIgCIIIA29m7eq6mrQzjTbUtjgBAI1taGYtKmmJJj2SqZk1QRBE3EI1aQRBEAQRBqZctTq6Tkk7WdPqd1t07o6+KZ9MQwiCIOIbCtIIgiAIIgxWb1phSxcGaSU1LX63RWMcIippZBpCEAQR31CQRhAEQRBhYIpVq9PVZedwMkCQ1mYljUxDCIIg4hoK0giCIAgiDMxFsSuVtJO1gYK0tlnwk5JGEAQR31CQRhAEQRBhSIiHIM2rpDETE7NBB71OivjvRXdHst8nCIKIbyhIIwiCIIgwMKv7eDAOuWxojnJOUdSjAeqatNxUa+xOjCAIgog5FKQRBEEQRBh86Y5dU5Nmc7pR3mADANwwthAAkJVkjuoxxHRHUtIIgiDiG+qTRhAEQRBh6Op0x9K6Vn4eFw3MxMv/dx76ZiZG9RgmlQV/dAEeQRAE0blQkEYQBEEQYejqII3Vo/XJSIAkSbhieF7Uj5FmNSHBpEeCyYDMRArSCIIg4hkK0giCIAgiDNYurkljQVpBekKbH8Nq0uPfv7gQZoMOuigMRwiCIIjOh4I0giAIgghDglFR0hxuD1xuDwz6zi3pPlmrpDsWZrTP8GNAdlIsTocgCILoYMg4hCAIgiDCYBWaRrc4O19NK6n2pTsSBEEQZz8UpBEEQRBEGMwGHViGYFekPNY0OwAAWclUS0YQBNEToCCNIAiCIMIgSRISvHVpXWEeYnMpz5kgKHoEQRDE2QsFaQRBEAQRAV3ZK42pdxYDBWkEQRA9AQrSCIIgCCICmIrVFemOTEmzkJJGEATRI6AgjSAIgiAiwGrsul5prQ4PAFLSCIIgegoUpBEEQRBEBHRlQ2u711HSSkoaQRBEj4CCNIIgCIKIAGYc0ursgpo0b5BmMdK0TRAE0ROg0Z4gCIIgIqCrlDSn2wOXRwZA6Y4EQRA9BQrSCIIgCCICuso4xCY0z6Z0R4IgiJ4BBWkEQRAEEQFWb7pjs72zgzQP/9lsoGmbIAiiJ0CjPUEQBEFEAE937OSaNJtQjyZJUqc+N0EQBNE1UJBGEARBEBHQ1emOFiOlOhIEQfQUKEgjCIIgiAiwdpFxCEt3tFKQRhAE0WOgII0gCIIgIiDB2DVKWispaQRBED0OCtIIgiAIIgJYn7QWR1fVpFGQRhAE0VOgII0gCIIgIqCr0h2pkTVBEETPg0Z8giAIgogAbhzi7BrjEKpJIwiC6DlQkEYQBEEQEdB1xiGU7kgQBNHT6PIg7aWXXkJxcTEsFgvGjBmDDRs2hDz+xRdfxNChQ2G1WjF48GAsW7ZMdb/T6cSCBQvQv39/WCwWjBw5Ep9++qnqmMbGRsyZMwdFRUWwWq2YNGkSvvnmG9Uxsixj/vz5yM/Ph9VqxcUXX4w9e/bE5kUTBEEQ3Q5Wk9b5FvyKuyOlOxIEQfQcunTEX7lyJebMmYOHHnoIO3bswOTJkzFjxgyUlJQEPH7x4sWYN28e5s+fjz179uCxxx7Dz3/+c/znP//hxzz88MN45ZVX8Le//Q179+7FPffcg2uuuQY7duzgx9x1111Yu3Ytli9fjl27dmHatGm47LLLUFpayo955plnsHDhQrzwwgv45ptvkJubi8svvxyNjY0d94YQBEEQcQtvZk3GIQRBEEQH06VB2sKFC3HnnXfirrvuwtChQ7Fo0SIUFhZi8eLFAY9fvnw5fvazn2H27Nno168fbrrpJtx55514+umnVcc8+OCDmDlzJvr164d7770X06dPx3PPPQcAaG1txapVq/DMM8/goosuwoABAzB//nwUFxfz55VlGYsWLcJDDz2Ea6+9FsOHD8fSpUvR0tKCt99+u+PfGIIgCCLuYDVhXWccQkEaQRBET6HLgjSHw4Ht27dj2rRpqtunTZuGTZs2Bfwbu90Oi8Wius1qtWLr1q1wOp0hj9m4cSMAwOVywe12hzzm2LFjKC8vV52b2WzGlClTgp4be+6GhgbVP4IgCOLsgClpdpcHbo/cac9LzawJgiB6Hl0WpFVVVcHtdiMnJ0d1e05ODsrLywP+zfTp0/H6669j+/btkGUZ27Ztw5IlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGQAgOTkZEydOxOOPP47Tp0/D7XZjxYoV2LJlCz+GPX805wYATz31FFJTU/m/wsLCtr05BEEQRNyRaDbwnzsz5dFGFvwEQRA9ji4f8SVJUv0uy7LfbYxHHnkEM2bMwIQJE2A0GjFr1izcdtttAAC9Xtlh/Otf/4qBAwdiyJAhMJlM+MUvfoHbb7+d3w8oKZGyLKN3794wm814/vnncfPNN6uOifbcAGDevHmor6/n/06ePBnx+0AQBEHEN2aDDmwK6EzzELLgJwiC6Hl0WZCWmZkJvV7vp0xVVFT4KVgMq9WKJUuWoKWlBcePH0dJSQn69u2L5ORkZGZmAgCysrLwwQcfoLm5GSdOnMD+/fuRlJSE4uJi/jj9+/fHF198gaamJpw8eZKnS7JjcnNzASCqcwOUlMiUlBTVP4IgCOLsQJIkJHRBXRrVpBEEQfQ8uixIM5lMGDNmDNauXau6fe3atZg0aVLIvzUajSgoKIBer8e7776Lq666Cjqd+qVYLBb07t0bLpcLq1atwqxZs/weJzExEXl5eaitrcXq1av5McXFxcjNzVWdm8PhwBdffBH23AiCIIizF6vXhr8zgzRydyQIguh5GMIf0nHMnTsXt9xyC8aOHYuJEyfi1VdfRUlJCe655x4ASvpgaWkp74V28OBBbN26FePHj0dtbS0WLlyI3bt3Y+nSpfwxt2zZgtLSUowaNQqlpaWYP38+PB4PHnjgAX7M6tWrIcsyBg8ejMOHD+P+++/H4MGDcfvttwNQdkvnzJmDJ598EgMHDsTAgQPx5JNPIiEhATfffHMnvkMEQRBEPMHMQ1qdnVeT1sr7pFGQRhAE0VPo0iBt9uzZqK6uxoIFC1BWVobhw4fj448/RlFREQCgrKxM1TPN7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Jj6+nrMmzcPp06dQkZGBq677jo88cQTMBqN/JgHHngAra2tuO+++1BbW4vx48djzZo1SE5O7vD3hSAIgohPfL3SqCaNIAiC6DgkWZY7z0e4h9HQ0IDU1FTU19dTfRpBEMRZwDUvfYUdJXV45ZYxmD4sN/wfNDcDzz6rvu3++4HExIifc9YLG7HzVD3+futYXDo0eF00QRAEEd9EExt0ubsjQRAEQXQXEnlNWmemO1JNGkEQRE+DgjSCIAiCiJBEsxIoNdk7M92RatIIgiB6GhSkEQRBEESEcCXN3hVKGk3ZBEEQPQUa8QmCIAgiQhLNSpDW3IlBGhmHEARB9DwoSCMIgiCICEnwpjs2U580giAIogOhII0gCIIgIiTJ1LlKmsvtgdOtmDCTkkYQBNFzoCCNIAiCICKEpzt2kpJmc3n4z6SkEQRB9BwoSCMIgiCICGHujp2lpLFURwAwG2jKJgiC6CnQiE8QBEEQEcKUtKZODtLMBh10OqlTnpMgCILoeihIIwiCIIgI6exm1tzZ0USpjgRBED0JCtIIgiAIIkJ8FvydVJPGGlkbKEgjCILoSVCQRhAEQRAR0tk1adTImiAIomdCoz5BEARBREhiJ1vwU480giCIngkFaQRBEAQRISzdscXphscjd/jztTooSCMIguiJRB2ktba2oqWlhf9+4sQJLFq0CGvWrInpiREEQRBEvMHSHWXZl4rYkbA+adTImiAIomcRdZA2a9YsLFu2DABQV1eH8ePH47nnnsOsWbOwePHimJ8gQRAEQcQLVqMektcJvzNSHm0OqkkjCILoiUQ96n/77beYPHkyAOC9995DTk4OTpw4gWXLluH555+P+QkSBEEQRLwgSZKvLs3RGUoaWfATBEH0RKIO0lpaWpCcnAwAWLNmDa699lrodDpMmDABJ06ciPkJEgRBEEQ80ZkOj9w4hCz4CYIgehRRB2kDBgzABx98gJMnT2L16tWYNm0aAKCiogIpKSkxP0GCIAiCiCd8vdI6PkhrdSg1aWaqSSMIguhRRB2kPfroo/jtb3+Lvn37Yvz48Zg4cSIARVUbPXp0zE+QIAiCIOIJX7pjJwRpXiUtgdIdCYIgehSGaP/g+uuvx4UXXoiysjKMHDmS337ppZfimmuuienJEQRBEES84Ut37ISaNG+QRu6OBEEQPYuog7T6+nqYTCY/1WzAgAEwGKJ+OIIgCILoVnRmQ+sWr1pHxiEEQRA9i6jTHW+66Sa8++67frf/4x//wE033RSTkyIIgiCIeIXVpDV1Rk2ak/qkEQRB9ESiDtK2bNmCqVOn+t1+8cUXY8uWLTE5KYIgCIKIV1i6Y0snWPC3OsiCnyAIoicSdZBmt9vhcvnvHjqdTrS2tsbkpAiCIAgiXunMdMdWpzfdkZQ0giCIHkXUQdq4cePw6quv+t3+8ssvY8yYMTE5KYIgCIKIV7gFf2e4O5KSRhAE0SOJ2unjiSeewGWXXYadO3fi0ksvBQB89tln+Oabb7BmzZqYnyBBEARBxBOd6e5INWkEQRA9k6iVtAsuuACbN29GYWEh/vGPf+A///kPBgwYgO+//x6TJ0/uiHMkCIIgiLihc5tZk7sjQRBET6RNnvmjRo3CW2+9FetzIQiCIIi4pyuaWZOSRhAE0bOIKEhraGhASkoK/zkU7DiCIAiCOBvxWfCTuyNBEATRMUQUpKWnp6OsrAzZ2dlIS0uDJEl+x8iyDEmS4HZ3/KRFEARBEF0Ft+DvFHdHZU5NoCCNIAiiRxFRkLZu3TpkZGQAANavX9+hJ0QQBEEQ8UxnWfA73R443TIASnckCILoaUQUpE2ZMoX/XFxcjMLCQj81TZZlnDx5MrZnRxAEQRBxhs+Cv2MzR2xO3+NbKEgjCILoUUTt7lhcXIzKykq/22tqalBcXByTkyIIgiCIeMVnwe+CLMsd9jysHk0nAWZD1NM1QRAE0Y2JetRntWdampqaYLFYYnJSBEEQBBGvMCXN5ZFhd3k67HlEZ8dA8y5BEARx9hKxBf/cuXMBAJIk4ZFHHkFCQgK/z+12Y8uWLRg1alTMT5AgCIIg4glWkwYoalpHpSK2kLMjQRBEjyXiIG3Hjh0AFCVt165dMJlM/D6TyYSRI0fit7/9bezPkCAIgiDiCL1Ogkmvg8Pt6RwljYI0giCIHkfEQRpzdbz99tvx17/+lfqhEQRBED0Ws1EJ0kRzj1hjc1Aja4IgiJ5K1DVpb7zxhipAa2howAcffID9+/fH9MQIgiAIIl4xG5TAqSOVtBYK0giCIHosUQdpN954I1544QUAQGtrK8aOHYsbb7wRI0aMwKpVq2J+ggRBEAQRbzC3RUp3JAiCIDqCqIO0L7/8EpMnTwYAvP/++5BlGXV1dXj++efxxz/+MeYnSBAEQRDxhsWoTJ8dme4oujsSBEEQPYuog7T6+npkZGQAAD799FNcd911SEhIwJVXXolDhw5FfQIvvfQSiouLYbFYMGbMGGzYsCHk8S+++CKGDh0Kq9WKwYMHY9myZar7nU4nFixYgP79+8NisWDkyJH49NNPVce4XC48/PDDKC4uhtVqRb9+/bBgwQJ4PL4d0dtuuw2SJKn+TZgwIerXRxAEQZx9dEa6Yyu5OxIEQfRYIjYOYRQWFmLz5s3IyMjAp59+infffRcAUFtbG3WftJUrV2LOnDl46aWXcMEFF+CVV17BjBkzsHfvXvTp08fv+MWLF2PevHl47bXXMG7cOGzduhV333030tPTcfXVVwMAHn74YaxYsQKvvfYahgwZgtWrV+Oaa67Bpk2bMHr0aADA008/jZdffhlLly7FsGHDsG3bNtx+++1ITU3Fr371K/58V1xxBd544w3+u+hoSRAEQfRczJ2qpEU9VRMEQRDdnKhH/jlz5uDHP/4xkpKSUFRUhIsvvhiAkgY5YsSIqB5r4cKFuPPOO3HXXXcBABYtWoTVq1dj8eLFeOqpp/yOX758OX72s59h9uzZAIB+/frh66+/xtNPP82DtOXLl+Ohhx7CzJkzAQD33nsvVq9ejeeeew4rVqwAAGzevBmzZs3ClVdeCQDo27cv3nnnHWzbtk31fGazGbm5uVG9JoIgCOLsx9KpSlrUSS8EQRBENyfqkf++++7D5s2bsWTJEmzcuBE6nfIQ/fr1i6omzeFwYPv27Zg2bZrq9mnTpmHTpk0B/8Zut/updVarFVu3boXT6Qx5zMaNG/nvF154IT777DMcPHgQALBz505s3LiRB3aMzz//HNnZ2Rg0aBDuvvtuVFRURPz6CIIgiLMXpqTZO0FJSzCRkkYQBNHTaNPIP3bsWIwdO1Z1G1OlIqWqqgputxs5OTmq23NyclBeXh7wb6ZPn47XX38dP/zhD3Heeedh+/btWLJkCZxOJ6qqqpCXl4fp06dj4cKFuOiii9C/f3989tln+PDDD+F2+ybS3/3ud6ivr8eQIUOg1+vhdrvxxBNP4Ec/+hE/ZsaMGbjhhhtQVFSEY8eO4ZFHHsEll1yC7du3w2w2Bzw/u90Ou93Of29oaIjqPSEIgiC6B0xJs3WCkmYh4xCCIIgeR0RB2ty5c/H4448jMTERc+fODXnswoULozoBSZJUv8uy7Hcb45FHHkF5eTkmTJgAWZaRk5OD2267Dc888wz0emUS++tf/4q7774bQ4YMgSRJ6N+/P26//XZVbdnKlSuxYsUKvP322xg2bBi+++47zJkzB/n5+bj11lsBgKdUAsDw4cMxduxYFBUV4aOPPsK1114b8PyeeuopPPbYY1G9foIgCKL70ZlKGrk7EgRB9DwiCtJ27NjB0wl37NgRkyfOzMyEXq/3U80qKir81DWG1WrFkiVL8Morr+DMmTPIy8vDq6++iuTkZGRmZgIAsrKy8MEHH8Bms6G6uhr5+fn4/e9/j+LiYv44999/P37/+9/jpptuAgCMGDECJ06cwFNPPcWDNC15eXkoKioK6WA5b948VRDb0NCAwsLCyN4QgiAIotvQKX3SHCzdkYI0giCInkZEQdr69esD/tweTCYTxowZg7Vr1+Kaa67ht69duxazZs0K+bdGoxEFBQUAgHfffRdXXXUVr41jWCwW9O7dG06nE6tWrcKNN97I72tpafE7Xq/Xqyz4tVRXV+PkyZPIy8sLeozZbA6aCkkQBEGcPbAURFLSCIIgiI4gauOQO+64A42NjX63Nzc344477ojqsebOnYvXX38dS5Yswb59+/DrX/8aJSUluOeeewAoytRPfvITfvzBgwexYsUKHDp0CFu3bsVNN92E3bt348knn+THbNmyBf/6179w9OhRbNiwAVdccQU8Hg8eeOABfszVV1+NJ554Ah999BGOHz+O999/HwsXLuTBYlNTE377299i8+bNOH78OD7//HNcffXVyMzMVAWUBEEQRM+kM5S0FocLAGAhJY0gCKLHEbVxyNKlS/GnP/0JycnJqttbW1uxbNkyLFmyJOLHmj17Nqqrq7FgwQKUlZVh+PDh+Pjjj1FUVAQAKCsrQ0lJCT/e7Xbjueeew4EDB2A0GjF16lRs2rQJffv25cfYbDY8/PDDOHr0KJKSkjBz5kwsX74caWlp/Ji//e1veOSRR3DfffehoqIC+fn5+NnPfoZHH30UgKKq7dq1C8uWLUNdXR3y8vIwdepUrFy50u91EwRBED0P1sy6Y/ukKQFgAilpBEEQPY6Ig7SGhgbIsgxZltHY2KiyuXe73fj444+RnZ0d9Qncd999uO+++wLe9+abb6p+Hzp0aNiauClTpmDv3r0hj0lOTsaiRYuwaNGigPdbrVasXr065GMQBEEQPReLseOVNBvvk0ZBGkEQRE8j4iAtLS0NkiRBkiQMGjTI735JksjZkCAIgugRmDuhmXWL05vuSEoaQRBEjyPiIG39+vWQZRmXXHIJVq1ahYyMDH6fyWRCUVER8vPzO+QkCYIgCCKeYEpah6Y7OrzpjqSkEQRB9DgiDtKmTJkCADh27BgKCwv93BEJgiAIoqfQGUqajdwdCYIgeixRG4cwU4+WlhaUlJTA4XCo7j/33HNjc2YEQRAEEafwZtaujlHSZFnm7o5Uk0YQBNHziDpIq6ysxO23345PPvkk4P1ud8elfhAEQRBEPOBzd+wYJc3h9sAjKz9TkEYQBNHziDpncc6cOaitrcXXX38Nq9WKTz/9FEuXLsXAgQPx73//uyPOkSAIgiDiio5W0mwOX/BH6Y4EQRA9j6iVtHXr1uHDDz/EuHHjoNPpUFRUhMsvvxwpKSl46qmncOWVV3bEeRIEQRBE3MCaWXeUksacHY16CUY91YATBEH0NKIe+Zubm3k/tIyMDFRWVgIARowYgW+//Ta2Z0cQBEEQcQizxe8oJa3V2yON7PcJgiB6JlEHaYMHD8aBAwcAAKNGjcIrr7yC0tJSvPzyy8jLy4v5CRIEQRBEvMGUNHsHKWmt5OxIEATRo4k63XHOnDkoKysDAPzhD3/A9OnT8dZbb8FkMuHNN9+M9fkRBEEQRNzBFK6O6pPGlDTqkUYQBNEziTpI+/GPf8x/Hj16NI4fP479+/ejT58+yMzMjOnJEQRBEEQ8wpW0DuqTxpQ0SnckCILomUSd7rhgwQK0tLTw3xMSEnDeeechMTERCxYsiOnJEQRBEEQ8IjazlmU55o/PlDSy3ycIguiZRB2kPfbYY2hqavK7vaWlBY899lhMToogCIIg4hmL0Td9doSaZvM+psVAQRpBEERPJOogTZZlSJLkd/vOnTuRkZERk5MiCIIgiHjGLARPHRKkkZJGEATRo4m4Ji09PR2SJEGSJAwaNEgVqLndbjQ1NeGee+7pkJMkCIIgiHjCqJcgSYAsA3anG7AaY/r4NherSaMeaQRBED2RiIO0RYsWQZZl3HHHHXjssceQmprK7zOZTOjbty8mTpzYISdJEARBEPGEJEmwGPRodbo7REmjPmkEQRA9m4iDtFtvvRUAUFxcjAsuuAAGQ9TGkARBEARx1mA26rxBWuxt+MndkSAIomcTcaTl8Xjg8XgwZcoUftuZM2fw8ssvo7m5GT/4wQ9w4YUXdshJEgRBEES8oZh6OGHrgIbW7DGpmTVBEETPJOIg7c4774TRaMSrr74KAGhsbMS4ceNgs9mQl5eHv/zlL/jwww8xc+bMDjtZgiAIgogXzEbWKy32Shprkk1BGkEQRM8k4orkr776Ctdffz3/fdmyZXC5XDh06BB27tyJuXPn4tlnn+2QkyQIgiCIeIM3tO4QJY2MQwiCIHoyEY/+paWlGDhwIP/9s88+w3XXXccNRG699Vbs2bMn9mdIEARBEHEIqxezUU0aQRAEEWMiDtIsFgtaW1v5719//TUmTJiguj9Qk2uCIAiCOBvpHCWNgjSCIIieSMRB2siRI7F8+XIAwIYNG3DmzBlccskl/P4jR44gPz8/9mdIEARBEHEIa2jdMUoaGYcQBEH0ZCI2DnnkkUcwc+ZM/OMf/0BZWRluu+025OXl8fvff/99XHDBBR1ykgRBEAQRb7B6sQ5R0qhPGkEQRI8m4iBt6tSp2L59O9auXYvc3FzccMMNqvtHjRqF888/P+YnSBAEQRDxCFPSOqKZNVPnrCYyDiEIguiJRNWR+pxzzsE555wT8L6f/vSnMTkhgiAIgugOMAt+Vj8WS1qZkmYgJY0gCKInQlt0BEEQBNEGOkNJs5goSCMIguiJUJBGEARBEG2Auzt2hHGIg4xDCIIgejIUpBEEQRBEG+B90jrAOMROFvwEQRA9GgrSCIIgCKINdKiS5g3SSEkjCILomVCQRhAEQRBtwGccElslzen2wOWRAfhs/gmCIIieRcTujv369YvouKNHj7b5ZAiCIAiiu2DpIOMQ0S2S0h0JgiB6JhEHacePH0dRURFuvvlmZGdnd+Q5EQRBEETcY+bNrGOb7shSHSXJl1JJEARB9CwiDtLeffddvPHGG1i4cCFmzJiBO+64AzNnzoRORxMIQRAE0fNgSpotxkqa3Zs+aTHoIUlSTB+bIAiC6B5EHGHdeOON+OSTT3D48GGMGTMGv/71r1FQUIDf//73OHToUEeeI0EQBEHEHR2tpFmpRxpBEESPJWoZrHfv3njooYdw6NAhvPPOO9iyZQuGDBmC2trajjg/giAIgohLOqqZNatJs1CqI0EQRI8l4nRHEZvNhvfeew9LlizBli1bcMMNNyAhISHW50YQBEEQcYuFuzvGWElzeIM0UtIIgiB6LFEFaVu2bMHf//53rFy5Ev3798cdd9yBVatWIT09vaPOjyAIgiDikg5T0ly+mjSCIAiiZxJxkDZs2DBUVFTg5ptvxoYNG3Duued25HkRBEEQRFyT4FW6mu2umD4uU9KoJo0gCKLnEnGQtm/fPiQmJmLZsmVYvnx50ONqampicmIEQRAEEc8kmZUpNNZBmt3lTXekRtYEQRA9loiDtDfeeKMjz4MgCIIguhWJLEhzuOHxyNDpYmOXz5U0amRNEATRY4k4SLv11ls78jwIgiAIolvBlDQAaHG6Vb+3B2bBb6YgjSAIoscSdS6FLMvYtm0b3nvvPaxatQrffvstZFlu8wm89NJLKC4uhsViwZgxY7Bhw4aQx7/44osYOnQorFYrBg8ejGXLlqnudzqdWLBgAfr37w+LxYKRI0fi008/VR3jcrnw8MMPo7i4GFarFf369cOCBQvg8fiKv2VZxvz585Gfnw+r1YqLL74Ye/bsafPrJAiCIM4uLEYdmHgWy5RHm7eZNSlpBEEQPZeotv3Wr1+PO++8EydOnOCBmSRJKC4uxpIlS3DRRRdF9eQrV67EnDlz8NJLL+GCCy7AK6+8ghkzZmDv3r3o06eP3/GLFy/GvHnz8Nprr2HcuHHYunUr7r77bqSnp+Pqq68GADz88MNYsWIFXnvtNQwZMgSrV6/GNddcg02bNmH06NEAgKeffhovv/wyli5dimHDhmHbtm24/fbbkZqail/96lcAgGeeeQYLFy7Em2++iUGDBuGPf/wjLr/8chw4cADJyclRvU6CIAji7EOSJCSaDWi0udBkdyEnRo/Lm1lTkEYQBNFjiVhJO3z4MK666ir07dsX//rXv7Bv3z7s3bsX//znP1FQUICZM2fi6NGjUT35woULceedd+Kuu+7C0KFDsWjRIhQWFmLx4sUBj1++fDl+9rOfYfbs2ejXrx9uuukm3HnnnXj66adVxzz44IOYOXMm+vXrh3vvvRfTp0/Hc889x4/ZvHkzZs2ahSuvvBJ9+/bF9ddfj2nTpmHbtm0AFBVt0aJFeOihh3Dttddi+PDhWLp0KVpaWvD2229H9RoJgiCIs5eOMA+xO8k4hCAIoqcT8QywaNEiTJgwAevWrcOsWbMwePBgDBkyBNdeey3Wr1+P8ePH4y9/+UvET+xwOLB9+3ZMmzZNdfu0adOwadOmgH9jt9thsVhUt1mtVmzduhVOpzPkMRs3buS/X3jhhfjss89w8OBBAMDOnTuxceNGzJw5EwBw7NgxlJeXq87NbDZjypQpQc+NPXdDQ4PqH0EQBHH2wsxDmmIYpJGSRhAEQUQcpH3++eeYM2dOwPskScKcOXOwfv36iJ+4qqoKbrcbOTnqBJGcnByUl5cH/Jvp06fj9ddfx/bt23lt3JIlS+B0OlFVVcWPWbhwIQ4dOgSPx4O1a9fiww8/RFlZGX+c3/3ud/jRj36EIUOGwGg0YvTo0ZgzZw5+9KMfAQB//mjODQCeeuoppKam8n+FhYURvx8EQRBE94M7PNrdMXtMGxmHEARB9HgiDtJKSkowYsSIoPcPHz4cJ06ciPoEJEltWSzLst9tjEceeQQzZszAhAkTYDQaMWvWLNx2220AAL1emcz++te/YuDAgRgyZAhMJhN+8Ytf4Pbbb+f3A0ot3IoVK/D222/j22+/xdKlS/HnP/8ZS5cubfO5AcC8efNQX1/P/508eTLi94EgCILofiSZY9/QupWMQwiCIHo8EQdpTU1NSEhICHp/QkICWlpaIn7izMxM6PX/v717D4uq2v84/hmG4SYo3hBUEvBelndLLZUy76bWUUrzhlaW/so6ZVqW5DHLCrMsOWmKZp20smMd8xJ60kwrlPIcTVNTESWIo3lJkduwf3/obBkBhRgE5P16nnke2bP2nrWnncsv37W+y5ovM5WWlpYvg+Xg7e2tRYsWKT09XYmJiUpKSlJISIj8/PxUq1YtSVLt2rW1cuVKnT17VocPH9bPP/8sX19fhYaGmtd56qmnNHnyZN1777268cYbNXz4cD3++ON66aWXJEmBgYGSVKy+SeenRFatWtXpBQC4dlXxKIXpjlmONWkEaQBQWRWruuPu3bsLne7nmG5YVB4eHmrbtq3i4uI0aNAg83hcXJwGDBhw2XNtNpvq168vSVq2bJn69esnNzfneNPLy0v16tVTdna2VqxYoSFDhpjvpaen52tvtVrNEvyhoaEKDAxUXFycWREyKytLmzZtcipSAgCo3EqlcEjOhTVpHhQOAYDKqlhB2h133FHgnmgWi+WKUwEL8sQTT2j48OFq166dOnbsqPnz5yspKUnjxo2TdH76YHJysrkX2r59+xQfH6+bb75ZJ06c0OzZs7Vr1y6naYrff/+9kpOT1apVKyUnJysqKkq5ubmaNGmS2aZ///568cUXdd111+mGG27Qjz/+qNmzZysyMtK8n4kTJ2rmzJlq3LixGjdurJkzZ8rHx0dDhw4t1j0CAK5dVUohSDMzae5k0gCgsipykHbo0CGXf3hERISOHz+u6dOnKyUlRS1atNDq1avVoEEDSVJKSoqSkpLM9na7XdHR0dq7d69sNpvCw8O1detWhYSEmG0yMjI0depUHTx4UL6+vurTp4+WLl0qf39/s83cuXP13HPP6ZFHHlFaWprq1q2rhx56SM8//7zZZtKkSTp37pweeeQRnThxQjfffLO+/PJL9kgDAJguVnd0YeGQC5k0Lw+CNACorCxGQakxuMTp06dVrVo1nTp1ivVpAHANeuvf+/Xal/sU0S5Ys/5yU/4GZ89Kr77qfOypp6QqVQq95h3RG3Xgf2e17MFbdEtYTRf3GABQVooTGxR5wnt6errGjx+vevXqKSAgQEOHDi32OjQAAK4ljjVpZ7JcN90x40J1RwqHAEDlVeQgbdq0aVq8eLH69u2re++9V3FxcXr44YdLs28AAJRrpbEmLYPNrAGg0ivymrRPP/1UCxcu1L333itJuv/++9W5c2fZ7XanPcgAAKgsSqO6oyNI87JR3REAKqsijwBHjhzRbbfdZv7coUMHubu769dffy2VjgEAUN65unCIYRg6RyYNACq9IgdpdrtdHh4eTsfc3d2Vk+O63x4CAFCRuHq6Y5Y9V7kXynl5EqQBQKVV5OmOhmFo1KhR8vT0NI9lZGRo3LhxqpKnStWnn37q2h4CAFBOuXq6Y2ZOrvlnpjsCQOVV5CBt5MiR+Y7df//9Lu0MAAAVSRXP89muM67KpOUJ0jysBGkAUFkVOUiLjY0tzX4AAFDhODJpmTm5yrHnyr2EgZUjk+ZhdZPFYilx/wAAFRO/pgMA4E9yrEmTpLMuKB7iyKR5ujM8A0BlxigAAMCfZLO6yeNCQPVHZnaJr+cI0jwI0gCgUmMUAACgBC4WDyl5Ji0z5/w1yKQBQOXGKAAAQAm4sngImTQAgESQBgBAiVTxcF0ZfoI0AIBEkAYAQIm4cq+0TLNwCBtZA0BlRpAGAEAJOCo8umK6YyaZNACACNIAACgR12bSKBwCACBIAwCgRMwgLct1+6SRSQOAyo1RAACAEnDldMcs+4UgzcrwDACVGaMAAAAl4HuhBL9LpjtmXygcYqNwCABUZgRpAACUAJk0AICrMQoAAFAC3h7ns16OLFhJOK7BmjQAqNwYBQAAKAGvC1MT07NckUmjuiMAgCANAIAS8bmQSTuX7brqjgRpAFC5MQoAAFAC3jZHkOaC6Y4EaQAAEaQBAFAiZpDmiumO7JMGABBBGgAAJeLtwumOmQRpAAARpAEAUCJmkJZV8umOF9eksU8aAFRmBGkAAJSAY7pjBpk0AICLMAoAAFAC3nlK8BuGUaJrZeZQgh8AQJAGAECJOKY75hpSlr1kUx4pHAIAkAjSAAAoEcdm1pKUUcJ1aeZ0RyvDMwBUZowCAACUgM3qJpvVIklKzy5ZGX6zcIiNwiEAUJkRpAEAUEIX90orWfEQx3RJMmkAULkxCgAAUEKu2ivNLBxiY3gGgMqMUQAAgBJyVRn+LNakAQBEkAYAQIl5mWX4XROkUYIfACo3RgEAAErIx8M1a9IyzSCNwiEAUJkRpAEAUEKuWpPGPmkAAIkgDQCAEnNFdUd7rqGcXEMS0x0BoLJjFAAAoIS8PdwllSyT5siiSWTSAKCyYxQAAKCEvC+UzCdIAwC4QpmPAvPmzVNoaKi8vLzUtm1bbd68+bLt3377bTVv3lze3t5q2rSp3nvvPaf3s7OzNX36dDVs2FBeXl5q2bKl1q5d69QmJCREFosl32v8+PFmm1GjRuV7/5ZbbnHdjQMArhlmCf4STHd07JHmZpHc3Swu6RcAoGJyL8sPX758uSZOnKh58+apc+fOeuedd9S7d2/t3r1b1113Xb72MTExmjJlihYsWKD27dsrPj5eDzzwgKpXr67+/ftLkqZOnar3339fCxYsULNmzbRu3ToNGjRIW7duVevWrSVJ27Ztk91+cSDdtWuX7rzzTg0ePNjp83r16qXY2FjzZw8Pj9L4GgAAFZyXR8lL8GfmKRpisRCkAUBlVqaZtNmzZ2vMmDEaO3asmjdvrjlz5ig4OFgxMTEFtl+6dKkeeughRUREKCwsTPfee6/GjBmjWbNmObV55pln1KdPH4WFhenhhx9Wz549FR0dbbapXbu2AgMDzdeqVavUsGFDde3a1enzPD09ndrVqFGjdL4IAECF5mMr+Zo0yu8DABzKLEjLyspSQkKCevTo4XS8R48e2rp1a4HnZGZmysvLy+mYt7e34uPjlZ2dfdk233zzTaH9eP/99xUZGZnvN5cbN25UQECAmjRpogceeEBpaWmXvafMzEydPn3a6QUAuPZ5e7huTRrr0QAAZTYSHDt2THa7XXXq1HE6XqdOHaWmphZ4Ts+ePfXuu+8qISFBhmFo+/btWrRokbKzs3Xs2DGzzezZs7V//37l5uYqLi5On332mVJSUgq85sqVK3Xy5EmNGjXK6Xjv3r31wQcf6N///reio6O1bds23X777crMzCz0nl566SVVq1bNfAUHBxfjGwEAVFSuKMGfZb8QpFkJ0gCgsivzkeDS7JVhGIXOxX/uuefUu3dv3XLLLbLZbBowYIAZXFmt5wfIN954Q40bN1azZs3k4eGhCRMmaPTo0eb7l1q4cKF69+6tunXrOh2PiIhQ37591aJFC/Xv319r1qzRvn379MUXXxR6L1OmTNGpU6fM15EjR4r6NQAAKjAvW8k3s868cK6nrcyHZgBAGSuzkaBWrVqyWq35smZpaWn5smsO3t7eWrRokdLT05WYmKikpCSFhITIz89PtWrVknR+vdnKlSt19uxZHT58WD///LN8fX0VGhqa73qHDx/W+vXrNXbs2Cv2NygoSA0aNND+/fsLbePp6amqVas6vQAA1z4fxz5pZNIAAC5QZiOBh4eH2rZtq7i4OKfjcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379r1if48fP64jR44oKCioCHcHAKhMHGvSMkqUSXMUDiFIA4DKrkxL8D/xxBMaPny42rVrp44dO2r+/PlKSkrSuHHjJJ2fPpicnGzuhbZv3z7Fx8fr5ptv1okTJzR79mzt2rVLS5YsMa/5/fffKzk5Wa1atVJycrKioqKUm5urSZMmOX12bm6uYmNjNXLkSLm7O38NZ86cUVRUlO655x4FBQUpMTFRzzzzjGrVqqVBgwaV8rcCAKhoHNMdS1KC35FJo7ojAKBMg7SIiAgdP35c06dPV0pKilq0aKHVq1erQYMGkqSUlBQlJSWZ7e12u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyMl+/rFardu7cqffee08nT55UUFCQwsPDtXz5cvn5+ZXKdwEAqLjM6Y5UdwQAuECZBmmS9Mgjj+iRRx4p8L3Fixc7/dy8eXP9+OOPl71e165dtXv37it+bo8ePWQYRoHveXt7a926dVe8BgAA0sXqjiWa7phzoXAIQRoAVHqMBAAAlJC3K6Y7kkkDAFzASAAAQAl55dnMurBZGleSSZAGALiAkQAAgBJyrEkzjIvBVnE5zmO6IwCAkQAAgBLyyhNY/dl1aUx3BAA4lHnhEAAAKjp3q5s8rG7KsucqPcsuf5+in3vsTKY+3/Gr/ncmUxIl+AEABGkAALiEt4dVWedyi12Gf+o/d2ntT6nmz2TSAACMBAAAuICjwuO5YlZ4jNvzm9PPHlaGZgCo7BgJAABwAW+PC0FaMTNpzQL9nH72tDE0A0Blx0gAAIALeP3JTFqDms4L2MikAQAYCQAAcAGfP5lJy7E776vmaaNwCABUdgRpAAC4gGNNWnFL8GfZnfdV8ySTBgCVHiMBAAAu4FiTdiYzp1jnZV2y+TXVHQEAjAQAALhANW+bJOnUuexinXdpkObmZnFZnwAAFRNBGgAALuD/Z4O0S6Y7pp3OcFmfAAAVE0EaAAAu4O9zIUhL/3OZtEYBvvL3sanvTUEu7xsAoGJxL+sOAABwLXBMdzz5J4O0mYNuVNsG1WVluiMAVHpk0gAAcIFqPh6Sij/dMfNCkObh7kaABgCQRJAGAIBLmJm0PxukUXofAHABIwIAAC7gKBxyutjVHc/vq0bpfQCAAyMCAAAu4CgccjI9q1jnOao7ehKkAQAuYEQAAMAFHNMdz2bZlX1JWf3LcRQOIUgDADgwIgAA4AJ+XjZZLtT9KGrxkBx7rnKN839muiMAwIERAQAAF7C6WeTneX5nm6KW4c+7kTVBGgDAgREBAAAX8S9mGX7HVEeJ6o4AgIsYEQAAcBFH8ZBT54pWPMQRpLlZJHeCNADABYwIAAC4iLlXWhGnO+bdyBoAAAdGBQAAXMQRpBV1uiMbWQMACsKoAACAixQ3k5ZlZtKspdYnAEDFQ5AGAICLXFyTVrzqjuyRBgDIi1EBAAAX8ff+c9UdCdIAAHkxKgAA4CIXpzsWr7ojhUMAAHkxKgAA4CLVij3d0S6JIA0A4IxRAQAAFzEzacWc7kh1RwBAXowKAAC4iKNwyOniluAnkwYAyINRAQAAF3EUDjmZni3DMK7YniANAFAQRgUAAFzEMd0xJ9fQ2Sz7Fdsz3REAUBBGBQAAXMTL5mZmxYpS4dEswW9jM2sAwEUEaQAAuIjFYpGfp7sk6WxmETJpdjJpAID8GBUAAHAhrwtZsYzsYkx3ZE0aACAPRgUAAFzIy3Z+aC1OkOZJkAYAyINRAQAAF3Jk0s4VJUizk0kDAORX5qPCvHnzFBoaKi8vL7Vt21abN2++bPu3335bzZs3l7e3t5o2bar33nvP6f3s7GxNnz5dDRs2lJeXl1q2bKm1a9c6tQkJCZHFYsn3Gj9+vNnGMAxFRUWpbt268vb2Vrdu3fTTTz+57sYBANckb3O6Y+4V21LdEQBQkDIdFZYvX66JEyfq2Wef1Y8//qjbbrtNvXv3VlJSUoHtY2JiNGXKFEVFRemnn37SCy+8oPHjx+tf//qX2Wbq1Kl65513NHfuXO3evVvjxo3ToEGD9OOPP5pttm3bppSUFPMVFxcnSRo8eLDZ5pVXXtHs2bP11ltvadu2bQoMDNSdd96pP/74o5S+DQDAtaA4a9Iyc863IZMGAMirTEeF2bNna8yYMRo7dqyaN2+uOXPmKDg4WDExMQW2X7p0qR566CFFREQoLCxM9957r8aMGaNZs2Y5tXnmmWfUp08fhYWF6eGHH1bPnj0VHR1ttqldu7YCAwPN16pVq9SwYUN17dpV0vks2pw5c/Tss8/q7rvvVosWLbRkyRKlp6frH//4R+l+KQCACq14QRrTHQEA+ZXZqJCVlaWEhAT16NHD6XiPHj20devWAs/JzMyUl5eX0zFvb2/Fx8crOzv7sm2++eabQvvx/vvvKzIyUhaLRZJ06NAhpaamOvXN09NTXbt2LbRvAABIFwuHFGlNGoVDAAAFKLNR4dixY7Lb7apTp47T8Tp16ig1NbXAc3r27Kl3331XCQkJMgxD27dv16JFi5Sdna1jx46ZbWbPnq39+/crNzdXcXFx+uyzz5SSklLgNVeuXKmTJ09q1KhR5jHH5xenb9L5APH06dNOLwBA5eL1Z9akEaQBAPIo81HBkb1yMAwj3zGH5557Tr1799Ytt9wim82mAQMGmMGV1Xp+UHzjjTfUuHFjNWvWTB4eHpowYYJGjx5tvn+phQsXqnfv3qpbt26J+iZJL730kqpVq2a+goODC20LALg2eRdnnzQ2swYAFKDMRoVatWrJarXmy0ylpaXly2A5eHt7a9GiRUpPT1diYqKSkpIUEhIiPz8/1apVS9L59WYrV67U2bNndfjwYf3888/y9fVVaGhovusdPnxY69ev19ixY52OBwYGSlKx+iZJU6ZM0alTp8zXkSNHrvxFAACuKX9mnzQyaQCAvMpsVPDw8FDbtm3NyooOcXFx6tSp02XPtdlsql+/vqxWq5YtW6Z+/frJzc35Vry8vFSvXj3l5ORoxYoVGjBgQL7rxMbGKiAgQH379nU6HhoaqsDAQKe+ZWVladOmTZftm6enp6pWrer0AgBULsXKpLEmDQBQAPey/PAnnnhCw4cPV7t27dSxY0fNnz9fSUlJGjdunKTzmank5GRzL7R9+/YpPj5eN998s06cOKHZs2dr165dWrJkiXnN77//XsnJyWrVqpWSk5MVFRWl3NxcTZo0yemzc3NzFRsbq5EjR8rd3flrsFgsmjhxombOnKnGjRurcePGmjlzpnx8fDR06NBS/lYAABWZJ5tZAwBKqEyDtIiICB0/flzTp09XSkqKWrRoodWrV6tBgwaSpJSUFKc90+x2u6Kjo7V3717ZbDaFh4dr69atCgkJMdtkZGRo6tSpOnjwoHx9fdWnTx8tXbpU/v7+Tp+9fv16JSUlKTIyssC+TZo0SefOndMjjzyiEydO6Oabb9aXX34pPz8/l38PAIBrR3EKh2RmO9akFbxuGgBQOVkMwzDKuhPXqtOnT6tatWo6deoUUx8BoJL4x/dJeuafO3Xn9XW04J7m0quvOjd46impShVJUvhrG3Xo2Fl99FBHdQitUQa9BQBcLcWJDZhfAQCAC/2ZwiGsSQMA5MWoAACACzkKh2QWZboj1R0BAAVgVAAAwIW8ilM4JOd8G4I0AEBejAoAALiQF5tZAwBKiFEBAAAXcqxJK1omjTVpAID8GBUAAHChopbgz7HnKvdCfWWmOwIA8mJUAADAhbyLON3RUTREIkgDADhjVAAAwIWKuiYtK2+Qxpo0AEAejAoAALiQI5OWk2so2174lEdH0RA3i+ROkAYAyINRAQAAF/K0XRxaL5dNu1g0xFrqfQIAVCwEaQAAuJCnu5sslvN/vlzxEDayBgAUhpEBAAAXslgs8rqQHcssQiaNIA0AcClGBgAAXMyxV9plpzuykTUAoBCMDAAAuJijeMi5nKKsSWMoBgA4Y2QAAMDFHGX4My+7Ju18AMd0RwDApRgZAABwMc8i7JXGmjQAQGEYGQAAcDFvc03aZfZJy2FNGgCgYIwMAAC4mGO6Y8Zl1qQ5SvDn3VcNAACJIA0AAJfzLsJ0x3MX3vO2uV+VPgEAKg6CNAAAXKwohUPOZV0I0jysV6VPAICKgyANAAAX8ypWJo2hGADgjJEBAAAXc2xmfe4yQVqGGaSRSQMAOCNIAwDAxczpjjlXnu7oxXRHAMAlCNIAAHCxohQOcVR+JJMGALgUQRoAAC7mZe6Tdpk1aVm5F9oSpAEAnBGkAQDgYhcLhxQ+3ZE1aQCAwhCkAQDgYkXZzPocQRoAoBAEaQAAuFhRMmkUDgEAFIYgDQAAFytK4RAyaQCAwhCkAQDgYo7CIZnskwYA+BPcy7oDkOx2u7Kzs8u6G8AV2Ww2Wa38gxK4kmJl0jz4fSkAwBlBWhkyDEOpqak6efJkWXcFKDJ/f38FBgbKYrGUdVeAcsvzQpD2vzNZ+vrg/3R93aqq5evp1MYRwFGCHwBwKYK0MuQI0AICAuTj48M/elGuGYah9PR0paWlSZKCgoLKuEdA+eXIpJ1Mz9YPSSd06ly2+res69TGUTiE6Y4AgEsRpJURu91uBmg1a9Ys6+4AReLt7S1JSktLU0BAAFMfgUIE1/BWzSoeyrFnSZLOZObka+Oo/EgmDQBwKSbClxHHGjQfH58y7glQPI5nlnWUQOH8vGzaOuV2LY5sL0k6e0mQlmPPVZb9fJBGJg0AcCmCtDLGFEdUNDyzQNF4ulsVWNVLkpSeZZdhGOZ7GTkX90/zZp80AMAlCNIAACglNXw9JEm5huG0sbVjPZokebozFAMAnDEyAEWwePFi+fv7l+gaISEhmjNnjkv6A6Bi8HS3ytP9fKYsPevilMe8e6SRnQYAXIogDcUyatQoWSwWWSwW2Ww2hYWF6cknn9TZs2clSYmJieb7FotFfn5+uuGGGzR+/Hjt37/f6VqLFy+WxWJR8+bN833ORx99JIvFopCQkD/dV4vFopUrVxb7vIKCqYiICO3bt69I5xcW0G3btk0PPvhgsfsDoGKr4ukI0i5mzy7ukcZURwBAfgRpKLZevXopJSVFBw8e1IwZMzRv3jw9+eSTTm3Wr1+vlJQU/ec//9HMmTO1Z88etWzZUhs2bHBqV6VKFaWlpenbb791Or5o0SJdd911pX4vReXt7a2AgIASXaN27doUigEqIR+P84WUz+bJpFF+HwBwOQRp5YhhGErPyrnqr7yL2YvC09NTgYGBCg4O1tChQzVs2LB8GauaNWsqMDBQYWFhGjBggNavX6+bb75ZY8aMkd1+8bfJ7u7uGjp0qBYtWmQeO3r0qDZu3KihQ4deth9ZWVmaMGGCgoKC5OXlpZCQEL300kuSZGbgBg0a5JSRO3DggAYMGKA6derI19dX7du31/r1681rduvWTYcPH9bjjz9uZgOl/Nmx//znPwoPD5efn5+qVq2qtm3bavv27dq4caNGjx6tU6dOmedHRUWZfcqboTt58qQefPBB1alTR15eXmrRooVWrVpVlP8EACqQKheyZemZF//uu7iRNcMwACA/9kkrR85l23X98+uu+ufunt7T/E3vn+Ht7X3Fcuxubm567LHHNGjQICUkJKhDhw7me2PGjFGXLl30xhtvyMfHR4sXL1avXr1Up06dy17zzTff1Oeff66PPvpI1113nY4cOaIjR45IOj+1MCAgQLGxserVq5e5n9eZM2fUp08fzZgxQ15eXlqyZIn69++vvXv36rrrrtOnn36qli1b6sEHH9QDDzxQ6GcPGzZMrVu3VkxMjKxWq3bs2CGbzaZOnTppzpw5ev7557V3715Jkq+vb77zc3Nz1bt3b/3xxx96//331bBhQ+3evZt9x4BrUIGZNDNI4/95AEB+Zf4rvHnz5ik0NFReXl5q27atNm/efNn2b7/9tpo3by5vb281bdpU7733ntP72dnZmj59uho2bCgvLy+1bNlSa9euzXed5ORk3X///apZs6Z8fHzUqlUrJSQkmO/nXXvleN1yyy2uuelrSHx8vP7xj3/ojjvuuGLbZs2aSTq/bi2vVq1aqWHDhvrkk09kGIYWL16syMjIK14vKSlJjRs31q233qoGDRro1ltv1X333Sfp/NRCSfL391dgYKD5c8uWLfXQQw/pxhtvVOPGjTVjxgyFhYXp888/lyTVqFFDVqtVfn5+CgwMVGBgYKGf3b17dzVr1kyNGzfW4MGD1bJlS3l4eKhatWqyWCzm+QUFaevXr1d8fLw+/fRT3XnnnQoLC1O/fv3Uu3fvK943gIrFp4A1aXkLhwAAcKkyzaQtX75cEydO1Lx589S5c2e988476t27t3bv3l3geqSYmBhNmTJFCxYsUPv27RUfH68HHnhA1atXV//+/SVJU6dO1fvvv68FCxaoWbNmWrdunQYNGqStW7eqdevWkqQTJ06oc+fOCg8P15o1axQQEKADBw7kK/bQq1cvxcbGmj97eHiU3peh84P17uk9S/UzCvvc4li1apV8fX2Vk5Oj7OxsDRgwQHPnzr3ieY5plQVVMouMjFRsbKyuu+46M9v11ltvXfZ6o0aN0p133qmmTZuqV69e6tevn3r06HHZc86ePasXXnhBq1at0q+//qqcnBydO3dOSUlJV+x/Xk888YTGjh2rpUuXqnv37ho8eLAaNmxY5PN37Nih+vXrq0mTJsX6XAAVTxVHJi0zfyaNwiEAgIKUaZA2e/ZsjRkzRmPHjpUkzZkzR+vWrVNMTIy5tiivpUuX6qGHHlJERIQkKSwsTN99951mzZplBmlLly7Vs88+qz59+kiSHn74Ya1bt07R0dF6//33JUmzZs1ScHCwUwBWUBVBx9qrq8VisZRo2uHVEh4erpiYGNlsNtWtW1c2m61I5+3Zs0eSFBoamu+9YcOGadKkSYqKitKIESPk7n7l76FNmzY6dOiQ1qxZo/Xr12vIkCHq3r27Pvnkk0LPeeqpp7Ru3Tq99tpratSokby9vfWXv/xFWVlZRboHh6ioKA0dOlRffPGF1qxZo2nTpmnZsmUaNGhQkc739vYu1ucBqLgKyqSdyzq/ZxrTHQEABSmz6Y5ZWVlKSEjIl/no0aOHtm7dWuA5mZmZ8vLycjrm7e2t+Ph4c01UYW2++eYb8+fPP/9c7dq10+DBgxUQEKDWrVtrwYIF+T5v48aNCggIUJMmTfTAAw8oLS3tsveUmZmp06dPO72uRVWqVFGjRo3UoEGDIgdoubm5evPNNxUaGmpmNPOqUaOG7rrrLm3atKlIUx0dqlatqoiICC1YsEDLly/XihUr9Pvvv0uSbDabU5ESSdq8ebNGjRqlQYMG6cYbb1RgYGC+6ZceHh75zitIkyZN9Pjjj+vLL7/U3XffbQb9RTn/pptu0tGjR4tc1h9AxeXIpBVYgp8gDQBQgDIL0o4dOya73Z6vOESdOnWUmppa4Dk9e/bUu+++q4SEBBmGoe3bt2vRokXKzs7WsWPHzDazZ8/W/v37lZubq7i4OH322WdKSUkxr3Pw4EHFxMSocePGWrduncaNG6dHH33UaX1b79699cEHH+jf//63oqOjtW3bNt1+++3KzMws9J5eeuklVatWzXwFBweX5Cuq0I4fP67U1FQdPHhQn3/+ubp37674+HgtXLiw0OIYixcv1rFjx8y1a1fy+uuva9myZfr555+1b98+ffzxxwoMDDSnrYaEhGjDhg1KTU3ViRMnJEmNGjXSp59+qh07dug///mPhg4dqtzcXKfrhoSE6Ouvv1ZycrL5XOV17tw5TZgwQRs3btThw4e1ZcsWbdu2zdzvLSQkRGfOnNGGDRt07Ngxpaen57tG165d1aVLF91zzz2Ki4szM4IFrZ8EULH5XJjSeC4rR7kXpn2zJg0AcDllXjjk0vVJhmEUuGZJkp577jn17t1bt9xyi2w2mwYMGKBRo0ZJkvkP/zfeeEONGzdWs2bN5OHhoQkTJmj06NFOgUFubq7atGmjmTNnqnXr1nrooYf0wAMPKCYmxmwTERGhvn37qkWLFurfv7/WrFmjffv26Ysvvij0XqZMmaJTp06ZL0elwcqoe/fuCgoK0o033qjJkyerefPm+u9//6vw8PBCz/H29lbNmjWL/Bm+vr6aNWuW2rVrp/bt2ysxMVGrV6+Wm9v5xzo6OlpxcXEKDg42s3evv/66qlevrk6dOql///7q2bOn2rRp43Td6dOnKzExUQ0bNjQLjuRltVp1/PhxjRgxQk2aNNGQIUPUu3dvvfDCC5KkTp06ady4cYqIiFDt2rX1yiuvFNj/FStWqH379rrvvvt0/fXXa9KkSUXK4AGoWLw9rLJIMiTt++0Pvbc18eI+aaxJAwAUwGIUd5MsF8nKypKPj48+/vhjp3U8jz32mHbs2KFNmzYVem52drZ+++03BQUFaf78+Xr66ad18uRJ8x/nkpSRkaHjx4+rbt26mjx5slatWqWffvpJktSgQQPdeeedevfdd832MTExmjFjhpKTkwv93MaNG2vs2LF6+umni3SPp0+fVrVq1XTq1ClVrVrV6b2MjAwdOnTIrGwJVBQ8u0AxnD0rvfqq5n99UOkXSvC/0+EetWgSpG2JJzSua0NN7l202QMAgIrtcrHBpcosk+bh4aG2bdsqLi7O6XhcXJw6dep02XNtNpvq168vq9WqZcuWqV+/fk4BmiR5eXmpXr16ysnJ0YoVKzRgwADzvc6dO5t7WDns27dPDRo0KPQzjx8/riNHjigoKKiotwgAgKSLUx4d9qT8IYnNrAEABSvTUoJPPPGEhg8frnbt2qljx46aP3++kpKSNG7cOEnnpw8mJyeba8X27dun+Ph43XzzzTpx4oRmz56tXbt2acmSJeY1v//+eyUnJ6tVq1ZKTk5WVFSUcnNzNWnSJLPN448/rk6dOmnmzJkaMmSI4uPjNX/+fM2fP1/S+Q2Po6KidM899ygoKEiJiYl65plnVKtWrSJX7wMAwKGKp7uOnbm4pvnMhXL8rEkDABSkTIO0iIgIHT9+XNOnT1dKSopatGih1atXmxmtlJQUp/2r7Ha7oqOjtXfvXtlsNoWHh2vr1q1O5fMzMjI0depUHTx4UL6+vurTp4+WLl3qtAda+/bt9c9//lNTpkzR9OnTFRoaqjlz5mjYsGGSzq852rlzp9577z2dPHlSQUFBCg8P1/Lly+Xn53dVvhsAwLWjuo9Nh49LHu7OmTPWpAEAClJma9IqA9ak4VrEswsUw4U1aeey7DpyIl1ZObka7Herznmc/3/nlb/cpCHtKm8lYACoTCrEmjQAACoLbw+rmtTxUzVv570lme4IACgIQRoAAFdJVYI0AEAREKQBAHCV+Hq6yy3PVqCsSQMAFIQgDQCAq8TqZlFgtYtrOb3IpAEACkCQBgDAVVTX39v8M/ukAQAKwugA5DF//nwFBwfLzc1Nc+bMKevuALgG1at2MUhjTRoAoCAEaSi21NRU/d///Z/CwsLk6emp4OBg9e/fXxs2bCjrrhVo8eLFTvvkFeb06dOaMGGCnn76aSUnJ+vBBx8s/c4BqHTqVr843ZE1aQCAgpTpZtbIwzCk9PSy+3wfH8liuWKzxMREde7cWf7+/nrllVd00003KTs7W+vWrdP48eP1888//6mPz87Ols1mK/Lx0pCUlKTs7Gz17dtXQUFBBba5mv0BcG2q5+9j/plMGgCgIARp5UV6uvTqq2X3+U89JVWpcsVmjzzyiCwWi+Lj41UlT/sbbrhBkZGR5s9JSUn6v//7P23YsEFubm7q1auX5s6dqzp16kiSoqKitHLlSj366KOaMWOGEhMTZbfb5ebmppiYGK1Zs0br16/Xk08+qRdeeEH/+te/FBUVpZ9++kl169bVyJEj9eyzz8rd/fwjfPLkSU2aNEmfffaZTp06pUaNGunll1+Wr6+vRo8eLUmyXAhCp02bpqioKKf7Wrx4sdkuLCxMknTo0CEtXry4wH6ePn1aTz31lFauXKmMjAy1a9dOr7/+ulq2bGle8+WXX9brr7+u9PR0DRkyRLVr19batWu1Y8cOSVK3bt3UqlUrp2mVAwcOlL+/vxYvXixJysrK0tSpU/XBBx/o5MmTatGihWbNmqVu3bqZ/Z44caKWL1+uiRMn6siRI7r11lsVGxvrFGguWrRI0dHR+uWXX1SjRg3dc889euuttxQZGam0tDStWrXKbJuTk6P69etr5syZTv9NAbhGPX8KhwAALo/pjiiy33//XWvXrtX48eOdAjQHx5RCwzA0cOBA/f7779q0aZPi4uJ04MABRUREOLX/5Zdf9NFHH2nFihVm4CKdD6IGDBignTt3KjIyUuvWrdP999+vRx99VLt379Y777yjxYsX68UXX5Qk5ebmqnfv3tq6davef/997d69Wy+//LKsVqs6deqkOXPmqGrVqkpJSVFKSoqefPLJfH2PiIjQ+vXrJUnx8fFKSUlRcHBwof3s27evUlNTtXr1aiUkJKhNmza644479Pvvv0uSPvroI02bNk0vvviitm/frqCgIM2bN6/Y3/no0aO1ZcsWLVu2TP/97381ePBg9erVS/v37zfbpKen67XXXtPSpUv19ddfKykpyekeY2JiNH78eD344IPauXOnPv/8czVq1EiSNHbsWK1du1YpKSlm+9WrV+vMmTMaMmRIsfsL4MocmTR3N4s83RmGAQD5kUlDkf3yyy8yDEPNmjW7bLv169frv//9rw4dOmQGOkuXLtUNN9ygbdu2qX379pLOZ4mWLl2q2rVrO50/dOhQpwzO8OHDNXnyZI0cOVLS+UzX3/72N02aNEnTpk3T+vXrFR8frz179qhJkyZmG4dq1arJYrEoMDCw0D57e3urZs2akqTatWs7tb20n//+97+1c+dOpaWlydPTU5L02muvaeXKlfrkk0/04IMPas6cOYqMjNTYsWMlSTNmzND69euVkZFx2e8urwMHDujDDz/U0aNHVbduXUnSk08+qbVr1yo2NlYzZ86UdH4K5t///nc1bNhQkjRhwgRNnz7dvM6MGTP017/+VY899ph5zPHfoFOnTmratKmWLl2qSZMmSZJiY2M1ePBg+fr6FrmvAIqufg1vPdglTDWqeJgZfgAA8iJIQ5EZhiFJV/xHxZ49exQcHGwGaJJ0/fXXy9/fX3v27DEDhAYNGuQL0CSpXbt2Tj8nJCRo27ZtZuZMkux2uzIyMpSenq4dO3aofv36ZoDmapf2MyEhQWfOnDGDOodz587pwIEDks5/B+PGjXN6v2PHjvrqq6+K/Lk//PCDDMPId1+ZmZlOn+3j42MGaJIUFBSktLQ0SVJaWpp+/fVX3XHHHYV+ztixYzV//nxNmjRJaWlp+uKLL8ptERjgWmCxWPRMn+Zl3Q0AQDlGkFZe+PicXxdWlp9/BY0bN5bFYtGePXs0cODAQtsZhlFgIHfp8YKmTBZ0PDc3Vy+88ILuvvvufG29vLzk7e2d77grFdSfoKAgbdy4MV/bolSRdHBzczMDX4fs7Gynz7FarUpISJDV6rxuJW+W69JCJhaLxbxuUb6bESNGaPLkyfr222/17bffKiQkRLfddluR7wMAAACuRZBWXlgsRSrcUZZq1Kihnj176u2339ajjz6aL3g5efKk/P39df311yspKUlHjhwxs2m7d+/WqVOn1Lx58X973KZNG+3du9dcR3Wpm266SUePHtW+ffsKzKZ5eHjIbrcX+3Mv15/U1FS5u7srJCSkwDbNmzfXd999pxEjRpjHvvvuO6c2tWvXdloLZrfbtWvXLoWHh0uSWrduLbvdrrS0tD8dNPn5+SkkJEQbNmwwr3upmjVrauDAgYqNjdW3335rFlABAABA2WDFMopl3rx5stvt6tChg1asWKH9+/drz549evPNN9WxY0dJUvfu3XXTTTdp2LBh+uGHHxQfH68RI0aoa9eu+aYyFsXzzz+v9957z6zuuGfPHi1fvlxTp06VJHXt2lVdunTRPffco7i4OB06dEhr1qzR2rVrJUkhISE6c+aMNmzYoGPHjim9hFsddO/eXR07dtTAgQO1bt06JSYmauvWrZo6daq2b98uSXrssce0aNEiLVq0SPv27dO0adP0008/OV3n9ttv1xdffKEvvvhCP//8sx555BGdPHnSfL9JkyYaNmyYRowYoU8//VSHDh3Stm3bNGvWLK1evbrI/Y2KilJ0dLTefPNN7d+/Xz/88IPmzp3r1Gbs2LFasmSJ9uzZY679AwAAQNkgSEOxhIaG6ocfflB4eLj++te/qkWLFrrzzju1YcMGxcTESDo/3W7lypWqXr26unTpou7duyssLEzLly//U5/Zs2dPrVq1SnFxcWrfvr1uueUWzZ49Ww0aNDDbrFixQu3bt9d9992n66+/XpMmTTKzZ506ddK4ceMUERGh2rVr65VXXinRd2CxWLR69Wp16dJFkZGRatKkie69914lJiaaWwxERETo+eef19NPP622bdvq8OHDevjhh52uExkZqZEjR5oBbGhoaL5sV2xsrEaMGKG//vWvatq0qe666y59//33Tuv9rmTkyJGaM2eO5s2bpxtuuEH9+vVzqg4pnQ88g4KC1LNnT7NICQAAAMqGxbh0UQxc5vTp06pWrZpOnTqlqlWrOr2XkZGhQ4cOKTQ0VF5eXoVcAdcSx95webcbKC/S09NVt25dLVq0qMC1f3nx7ALFcPZs/j0wi7gvJQDg2nK52OBSrEkDKrHc3FylpqYqOjpa1apV01133VXWXQIAAKj0CNKASiwpKUmhoaGqX7++Fi9eLHd3/koAAAAoa/yLDLhKoqKiFBUVVdbdcBISEpJvGwAAAACULQqHAAAAAEA5QpBWxshioKLhmQUAAChdBGllxGazSVKJ9+wCrjbHM+t4hgEAAOBarEkrI1arVf7+/kpLS5Mk+fj4yGKxlHGvgMIZhqH09HSlpaXJ399fVqu1rLsEAABwTSJIK0OBgYGSZAZqQEXg7+9vPrsAAABwPYK0MmSxWBQUFKSAgABlZ2eXdXeAK7LZbGTQAAAAShlBWjlgtVr5hy8AAAAASRQOAQAAAIByhSANAAAAAMoRgjQAAAAAKEdYk1aKHJv+nj59uox7AgAoE2fPSpmZzsdOn5bs9rLpDwCgzDhiAkeMcDkWoyit8KccPXpUwcHBZd0NAAAAAOXEkSNHVL9+/cu2IUgrRbm5ufr111/l5+fHRtUoltOnTys4OFhHjhxR1apVy7o7qER49lBWePZQVnj2cLUYhqE//vhDdevWlZvb5VedMd2xFLm5uV0xSgYup2rVqgwYKBM8eygrPHsoKzx7uBqqVatWpHYUDgEAAACAcoQgDQAAAADKEYI0oBzy9PTUtGnT5OnpWdZdQSXDs4eywrOHssKzh/KIwiEAAAAAUI6QSQMAAACAcoQgDQAAAADKEYI0AAAAAChHCNIAAAAAoBwhSAOugnnz5ik0NFReXl5q27atNm/efNn2H3zwgVq2bCkfHx8FBQVp9OjROn78uFObFStW6Prrr5enp6euv/56/fOf/yzNW0AF5epnb8GCBbrttttUvXp1Va9eXd27d1d8fHxp3wYqoNL4e89h2bJlslgsGjhwYCn0HBVdaTx7J0+e1Pjx4xUUFCQvLy81b95cq1evLs3bQGVnAChVy5YtM2w2m7FgwQJj9+7dxmOPPWZUqVLFOHz4cIHtN2/ebLi5uRlvvPGGcfDgQWPz5s3GDTfcYAwcONBss3XrVsNqtRozZ8409uzZY8ycOdNwd3c3vvvuu6t1W6gASuPZGzp0qPH2228bP/74o7Fnzx5j9OjRRrVq1YyjR49erdtCBVAaz55DYmKiUa9ePeO2224zBgwYUMp3goqmNJ69zMxMo127dkafPn2Mb775xkhMTDQ2b95s7Nix42rdFiohgjSglHXo0MEYN26c07FmzZoZkydPLrD9q6++aoSFhTkde/PNN4369eubPw8ZMsTo1auXU5uePXsa9957r4t6jWtBaTx7l8rJyTH8/PyMJUuWlLzDuGaU1rOXk5NjdO7c2Xj33XeNkSNHEqQhn9J49mJiYoywsDAjKyvL9R0GCsF0R6AUZWVlKSEhQT169HA63qNHD23durXAczp16qSjR49q9erVMgxDv/32mz755BP17dvXbPPtt9/mu2bPnj0LvSYqn9J69i6Vnp6u7Oxs1ahRw6X9R8VVms/e9OnTVbt2bY0ZM6bU+o+Kq7Sevc8//1wdO3bU+PHjVadOHbVo0UIzZ86U3W4v1ftB5UaQBpSiY8eOyW63q06dOk7H69Spo9TU1ALP6dSpkz744ANFRETIw8NDgYGB8vf319y5c802qampxbomKp/SevYuNXnyZNWrV0/du3d3af9RcZXWs7dlyxYtXLhQCxYsKNX+o+IqrWfv4MGD+uSTT2S327V69WpNnTpV0dHRevHFF0v1flC5EaQBV4HFYnH62TCMfMccdu/erUcffVTPP/+8EhIStHbtWh06dEjjxo3709dE5VUaz57DK6+8og8//FCffvqpvLy8XN53VGyufPb++OMP3X///VqwYIFq1apV6n1Hxebqv/dyc3MVEBCg+fPnq23btrr33nv17LPPKiYmplTvA5Wbe1l3ALiW1apVS1arNd9v8NLS0vL9ps/hpZdeUufOnfXUU09Jkm666SZVqVJFt912m2bMmKGgoCAFBgYW65qofErr2XN47bXXNHPmTK1fv1433XRT6d0IKpzSePZ+++03JSYmqn///uY5ubm5kiR3d3ft3btXDRs2LKU7QkVRWn/vBQUFyWazyWq1muc1b95cqampysrKkoeHR+ndFCotMmlAKfLw8FDbtm0VFxfndDwuLk6dOnUq8Jz09HS5uTn/r+kYGAzDkCR17Ngx3zW//PLLQq+Jyqe0nj1JevXVV/W3v/1Na9euVbt27Vzcc1R0pfHsNWvWTDt37tSOHTvM11133aXw8HDt2LFDwcHBpXMzqFBK6++9zp0765dffjF/MSBJ+/btU1BQEAEaSk+ZlCsBKhFHOeCFCxcau3fvNiZOnGhUqVLFSExMNAzDMCZPnmwMHz7cbB8bG2u4u7sb8+bNMw4cOGB88803Rrt27YwOHTqYbbZs2WJYrVbj5ZdfNvbs2WO8/PLLlOBHPqXx7M2aNcvw8PAwPvnkEyMlJcV8/fHHH1f9/lB+lcazdymqO6IgpfHsJSUlGb6+vsaECROMvXv3GqtWrTICAgKMGTNmXPX7Q+VBkAZcBW+//bbRoEEDw8PDw2jTpo2xadMm872RI0caXbt2dWr/5ptvGtdff73h7e1tBAUFGcOGDcu3D9XHH39sNG3a1LDZbEazZs2MFStWXI1bQQXj6mevQYMGhqR8r2nTpl2lO0JFURp/7+VFkIbClMazt3XrVuPmm282PD09jbCwMOPFF180cnJyrsbtoJKyGEaeOSwAAAAAgDLFmjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAAAAAMoRgjQAAAAAKEcI0gAAAACgHCFIAwAAAIByhCANAIBrRFZWlho1aqQtW7a49LqrVq1S69atlZub69LrAgAKRpAGACiXRo0aJYvFku/1yy+/lHXXyq358+erQYMG6ty5s3nMYrFo5cqV+dqOGjVKAwcOLNJ1+/XrJ4vFon/84x8u6ikA4HII0gAA5VavXr2UkpLi9AoNDc3XLisrqwx6V/7MnTtXY8eOLZVrjx49WnPnzi2VawMAnBGkAQDKLU9PTwUGBjq9rFarunXrpgkTJuiJJ55QrVq1dOedd0qSdu/erT59+sjX11d16tTR8OHDdezYMfN6Z8+e1YgRI+Tr66ugoCBFR0erW7dumjhxotmmoMyTv7+/Fi9ebP6cnJysiIgIVa9eXTVr1tSAAQOUmJhovu/IUr322msKCgpSzZo1NX78eGVnZ5ttMjMzNWnSJAUHB8vT01ONGzfWwoULZRiGGjVqpNdee82pD7t27ZKbm5sOHDhQ4Hf1ww8/6JdfflHfvn2L+S1LiYmJBWYtu3XrZra56667FB8fr4MHDxb7+gCA4iFIAwBUSEuWLJG7u7u2bNmid955RykpKeratatatWql7du3a+3atfrtt980ZMgQ85ynnnpKX331lf75z3/qyy+/1MaNG5WQkFCsz01PT1d4eLh8fX319ddf65tvvpGvr6969erllNH76quvdODAAX311VdasmSJFi9e7BTojRgxQsuWLdObb76pPXv26O9//7t8fX1lsVgUGRmp2NhYp89dtGiRbrvtNjVs2LDAfn399ddq0qSJqlatWqz7kaTg4GCnbOWPP/6omjVrqkuXLmabBg0aKCAgQJs3by729QEAxeNe1h0AAKAwq1atkq+vr/lz79699fHHH0uSGjVqpFdeecV87/nnn1ebNm00c+ZM89iiRYsUHBysffv2qW7dulq4cKHee+89M/O2ZMkS1a9fv1h9WrZsmdzc3PTuu+/KYrFIkmJjY+Xv76+NGzeqR48ekqTq1avrrbfektVqVbNmzdS3b19t2LBBDzzwgPbt26ePPvpIcXFx6t69uyQpLCzM/IzRo0fr+eefV3x8vDp06KDs7Gy9//77evXVVwvtV2JiourWrVvge/fdd5+sVqvTsczMTDPrZrVaFRgYKEnKyMjQwIED1bFjR0VFRTmdU69ePaeMIQCgdBCkAQDKrfDwcMXExJg/V6lSxfxzu3btnNomJCToq6++cgrqHA4cOKBz584pKytLHTt2NI/XqFFDTZs2LVafEhIS9Msvv8jPz8/peEZGhtNUxBtuuMEpMAoKCtLOnTslSTt27JDValXXrl0L/IygoCD17dtXixYtUocOHbRq1SplZGRo8ODBhfbr3Llz8vLyKvC9119/3QwGHZ5++mnZ7fZ8bceMGaM//vhDcXFxcnNznnDj7e2t9PT0QvsAAHANgjQAQLlVpUoVNWrUqND38srNzVX//v01a9asfG2DgoK0f//+In2mxWKRYRhOx/KuJcvNzVXbtm31wQcf5Du3du3a5p9tNlu+6zpK2Ht7e1+xH2PHjtXw4cP1+uuvKzY2VhEREfLx8Sm0fa1atcwg8FKBgYH5vkc/Pz+dPHnS6diMGTO0du1axcfH5wtCJen33393ukcAQOkgSAMAXBPatGmjFStWKCQkRO7u+Ye3Ro0ayWaz6bvvvtN1110nSTpx4oT27dvnlNGqXbu2UlJSzJ/379/vlD1q06aNli9froCAgD+1/kuSbrzxRuXm5mrTpk35MlwOffr0UZUqVRQTE6M1a9bo66+/vuw1W7durZiYGBmGYU7DLI4VK1Zo+vTpWrNmTYHr3hyZwtatWxf72gCA4qFwCADgmjB+/Hj9/vvvuu+++8wqhF9++aUiIyNlt9vl6+urMWPG6KmnntKGDRu0a9cujRo1Kt+Uvttvv11vvfWWfvjhB23fvl3jxo1zyooNGzZMtWrV0oABA7R582YdOnRImzZt0mOPPaajR48Wqa8hISEaOXKkIiMjtXLlSh06dEgbN27URx99ZLaxWq0aNWqUpkyZokaNGjlN0yxIeHi4zp49q59++qkY39p5u3bt0ogRI/T000/rhhtuUGpqqlJTU/X777+bbb777jt5enpesR8AgJIjSAMAXBPq1q2rLVu2yG63q2fPnmrRooUee+wxVatWzQzEXn31VXXp0kV33XWXunfvrltvvVVt27Z1uk50dLSCg4PVpUsXDR06VE8++aTTNEMfHx99/fXXuu6663T33XerefPmioyM1Llz54qVWYuJidFf/vIXPfLII2rWrJkeeOABnT171qnNmDFjlJWVpcjIyCter2bNmrr77rsLnIZ5Jdu3b1d6erpmzJihoKAg83X33XebbT788EMNGzbsslMuAQCuYTEunXgPAEAl0q1bN7Vq1Upz5swp667ks2XLFnXr1k1Hjx5VnTp1rth+586d6t69e4GFTUrif//7n5o1a6bt27cXuJk4AMC1yKQBAFDOZGZm6pdfftFzzz2nIUOGFClAk86vdXvllVdcXib/0KFDmjdvHgEaAFwlFA4BAKCc+fDDDzVmzBi1atVKS5cuLda5I0eOdHl/OnTooA4dOrj8ugCAgjHdEQAAAADKEaY7AgAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA5QpAGAAAAAOUIQRoAAAAAlCMEaQAAAABQjhCkAQAAAEA58v/IU4x99KRSKgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, pdmstat, label='PDM statistic')\n", + "#plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A dip is definitely there at the frequency we expect it to be. \n", + "\n", + "Unlike the Epoch Folding statistic, which follows approximately a $\\chi^2$ distribution, the PDM statistic was shown to follow a beta-distribution (Schwarzenberg-Czerny, 1997). \n", + "\n", + "We can use this beta-distribution to calculate the significance of a peak found in the PDM periodogram, or to set a detection threshold. In stingray, this is implemented in the `stingray.stats` module, using `stingray.stats.phase_dispersion_detection_level` and `stingray.stats.phase_dispersion_probability`:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2kAAAINCAYAAACkmjdeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADTVklEQVR4nOzde3hU1b0//vfMZJLJ/UIgFy4hIFdBQLAI1CptRUE9eGnF6rHev1rt85XyrbZUOIfSVo71wFGr4BUUaI/0KUc9PbUqttYjgtxEucnNhCSEhJAQEnKfy/79kd/arL1n75k9t8wkeb+eh0cz2ZnZc9trfdbns9ayKYqigIiIiIiIiBKCPd4nQERERERERBcwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBMIgjYiIiIiIKIEwSCMiIiIiIkogDNKIiIiIiIgSCIM0IiIiIiKiBJIU7xPoy3w+H06dOoXMzEzYbLZ4nw4REREREcWJoig4f/48iouLYbcHzpUxSIuhU6dOYejQofE+DSIiIiIiShBVVVUYMmRIwGPiGqT97//+L55++mns2bMHNTU1eOutt3DjjTcG/JuPP/4YixYtwsGDB1FcXIzHH38cDz30kOaYzZs3Y+nSpfj6668xcuRI/OY3v8FNN92kOWb16tV4+umnUVNTg4svvhjPPPMMrrjiCvX3d999N9544w3N30yfPh2fffaZ5eeXmZkJoPuNyMrKsvx3RETUR7S2As89p73t//5fID09PudDRERx09zcjKFDh6oxQiBxDdJaW1sxadIk3HPPPbjllluCHl9eXo558+bhgQcewMaNG/Hpp5/i4YcfxsCBA9W/3759OxYsWIBf/epXuOmmm/DWW2/h1ltvxdatWzF9+nQAwKZNm7Bw4UKsXr0as2bNwksvvYS5c+fi0KFDGDZsmPp41157LdatW6f+nJycHNLzEyWOWVlZDNKIiPojhwNISdHelpXFII2IqB+zMg3KpiiK0gPnEpTNZguaSfvZz36G//7v/8ZXX32l3vbQQw/hyy+/xPbt2wEACxYsQHNzM/7617+qx1x77bXIzc3Ff/7nfwLozohdeumlWLNmjXrMuHHjcOONN2LFihUAujNp586dw9tvvx32c2pubkZ2djaampoYpBER9UetrcDTT2tve+wxBmlERP1QKLFBr1rdcfv27ZgzZ47mtmuuuQa7d++G2+0OeMy2bdsAAF1dXdizZ4/fMXPmzFGPEf7xj39g0KBBGD16NB544AHU1dUFPL/Ozk40Nzdr/hEREREREYWiVwVptbW1KCgo0NxWUFAAj8eD+vr6gMfU1tYCAOrr6+H1egMeAwBz587F73//e/z973/HypUrsWvXLnz7299GZ2en6fmtWLEC2dnZ6j8uGkJERERERKHqdas76ms4RbWmfLvRMfrbgh2zYMEC9f8nTJiAadOmoaSkBH/5y19w8803G57b4sWLsWjRIvVnMTmQiIiIiIjIql4VpBUWFmqyXQBQV1eHpKQkDBgwIOAxInOWn58Ph8MR8BgjRUVFKCkpwbFjx0yPSUlJQYp+gjgREREREVEIelW544wZM7BlyxbNbR988AGmTZsGp9MZ8JiZM2cC6F6hcerUqX7HbNmyRT3GSENDA6qqqlBUVBSNp0JERERERGQorpm0lpYWHD9+XP25vLwcX3zxBfLy8jBs2DAsXrwY1dXVWL9+PYDulRyff/55LFq0CA888AC2b9+O1157TV21EQAeffRRfOtb38JTTz2F+fPn45133sGHH36IrVu3qscsWrQId955J6ZNm4YZM2bg5ZdfRmVlpbrfWktLC5YtW4ZbbrkFRUVFOHHiBH7xi18gPz/fb781IiIiIiKiaIprkLZ7927Mnj1b/VnM57rrrrvw+uuvo6amBpWVlervS0tL8e677+InP/kJXnjhBRQXF+O5557T7LE2c+ZMvPnmm1iyZAmWLl2KkSNHYtOmTeoeaUD3fLOGhgYsX74cNTU1mDBhAt59912UlJQAABwOB/bv34/169fj3LlzKCoqwuzZs7Fp0yZLm88RERERERGFK2H2SeuLuE8aEVE/x33SiIjo/9dn90kjIiIiIiLq6xikERERERERJRAGaURERERERAmEQRoREREREVECYZBGRERERESUQBikERERERERJRAGaURERERERAmEQRoREREREVGE3G43zp8/j2hsQ80gjYiIiIiIKEKHDx/Gnj170NLSEvF9MUgjIiIiIiKKgKIoOHfuHACgvb094vtjkEaWdXZ2orKyEl1dXfE+FVMdHR2oq6uLSpqZiIiIiMiKtrY2eL1eAFD/GwkGaWTZyZMnUVZWhv3798Pn88X7dPx4vV588cUXOHToEJqamuJ9OkRERETUT8gljtHoJzNII8s6OjoAAOfPn8exY8fifDb+qqqq1HNsbW2N89n0D8xYEhEREXX3jwVm0igmOjo6sGfPHpw+fVpzu9vtVv+/pqYGDQ0NPX1qpjo6OlBZWan+3NnZCaA7iGAgERtnz57F1q1b/T4nRETUMzweDzweT7xPg4jAII16QENDg5otky/+IkhLSUkBgKisXBMtFRUV8Pl8sNlsAC5k/Q4dOoTt27ezEYuB+vp6eL1enD17Nt6nQkTU77jdbuzevRs7duxgG0cUZ4qisNyRYk9E/x6PBzU1NertYsGQtLQ09feJQpQ35ufnA+jOpCmKgvr6enR1dbH8MQbEa5rIC8kQEfVVx48fR0dHB9xuNxobG+N9OkRR0dHRkZDrHgTT3t6uyZ4xk0YxIX+wqqqq4PP5oCiKGpSlpqb6HRdvIsuXmZkJoDtI6+joUEsd4xlQKoqSUK9VNCiKogZpchksERHFXn19vabU3ChIUxQFlZWVDOAoIJ/Ph/LycnXp+HhqamrCZ599pln3oLdMWZFLHQEGaRQj8ghGV1cXampq4PF41C+Ky+UCEF7goygK9u3bhwMHDoQ0UtLV1YWysjLTfSfEuWRkZADoDtLa2trU38czkDhw4AC2bdsWVsZJURScOXNGnWOXKLq6utTXnEEaEVHPKisrA3BhYNIoEGtqakJZWRmOHDnSo+dGvUtNTQ0qKirw1VdfxT0gqqurA3Dh83zu3Dls3bpVU9WVqESQZrd3h1YM0igmxAcrKSkJQPeXRHTEk5KS4HQ6NceForOzE2fPnkV9fb1moY9gampqUFlZiZMnT/r9TlEU9fzS09Nhs9mgKIpmGf54ZdIURUFjYyO8Xm9YJZeNjY04ePAgjh49GoOzC5/8XLq6uuJ+YSci6i8URVEHLMeOHQubzYb29na/QUzRBory//6Ii4cFV1tbC+BC/yyexON3dHTA6/XizJkzvWbuu5iPlpWVBYBz0ihGRPAl5p51dHSoWSCn06kGb+EEPnLWpaKiAs3NzZb+TjyWUUZJPg+n04nk5GQA2pHFeAVpnZ2d6hc1nHMQz1efRo8lEViKxVeMyFnKvljOSURUWVmJHTt2JFwlg5iCAHRXtohOoT6bJtpXRVGiMne4oqIiIV8PMz6fD7t27cK+ffvifSoJq62tTdO/iGfGSj/Q0NbWpgY+ibQGghkxeC2+j8ykUUyID1Z6ejqA7kBBBFdOpxMOh0NzXCjkL5qiKJYzROKxjErrxG0OhwN2u10tx5QvPPEqyYu05FK8XnJ5YSROnDgRsNT01KlT+Oyzz/Dll1/iwIEDpvejzwpG0gHwer3qc/P5fDhy5AgqKirCvj8iomiora1Fe3u7piojEYi2xGazwW63Izc3F4A2SFMURTMIGo3Aqq6uDu3t7THZfifYlIZwtLe3o62tDY2NjSzLNyGyaKK/19DQEHFA39DQgIqKipAzmPpBhtbWVrWvkehBWldXl9/aCAzSKCZEB15k0rq6utQLfLQyaWLxkZaWFkspYfFhN7p4iPMQZZhiiwCjY3paqEFaR0cH9u3bh6qqKgDaL7l8X+E6efIk6uvrDTOYLS0tOHr0qPpeB2os9UFauA2goijqEtIdHR04deoUampqUF5envAXZSLquxRFUasJEmGluaqqKnz++edwu93qtTEpKQk2m00N0s6ePatmHsSqj0I0gjTxuPIAaLRKCaurq1FZWRnSNIhg5P5CNNrPvkZRFHXxmZKSEmRlZUFRFDVwM+N2u1FfX2/6vTh69CjKy8tDrgASJY1iK6WzZ8+qn7lE7w+Iz5fL5VL7oix3pJgQgUFKSoo6AVJc+JOTk6OSSUtLS1PvR6zCWFZWZjpCZyWTJoJHkUkzOqanyYFOsHNoa2vD3r17cfbsWXXuXTSDNJ/Pp77+RnvciQukPApkdJGRV3YUr3m4r6/X60V7ezvcbjcOHz6syaBZLYUlIoo2j8ejXv/010FFUXo0cFMUBVVVVWhubkZTU5PfwGRWVhbS0tLg9Xrx+eef4/Tp037Xz0Dl61aJ67xoPw4cOIDPPvssKvctOvTRuC9BDtK4DY+/8+fPo7OzEw6HA/n5+SgsLASAoPO/ysrKcODAAXWRD5nP51MHBEJ5zcU0CwAYNGgQAGj6g4kepInnmp6eHlEfWY9BGvkRHyyHw6FmpcQFVJ9JC3UUTW5cRDDV3t6Os2fPorKyEgcOHDBcBlbeu03fOMqlmEDiZtLMzuHs2bM4dOgQ9uzZo17c5Ocr35eiKDh//nxYHQT5vgIFaQUFBQHPubOzE16vFzabTa29Drc8Qr6IyQvUAAhYYtTS0oLt27f3ihWfiKj3kYMFcZ3yer2oqqrC9u3b8dlnn/XYXNyuri71Gut2u/0GJm02G6ZMmYLc3Fz4fD4cPnwYp06d0txHpJk0edCupaUFHR0dqK+vR2dnp7rSZLhEuxaN85QxSAtMfI7S0tJgt9vVksdggbJ4r4yqbeT3L5TS1ebmZni9XiQlJal9EPn7FU5/syfJQRpXd6SYMgrSRLAhz0kLZ9UkOaASJY8dHR3q/SuKgoMHD/pdJOQPuz5r0xPljl6vFydOnMCOHTtQX19v+e+CZdK6urqwb98+1NXVwev1ajYK1y/I0draitraWuzZsyesOVvy4+uDNK/XqwZFeXl5ATNk4r1KTU1VF2kJN5Nm9L4MGDAAANQR44MHD/p1OBoaGtDZ2YkzZ86E9HiJuMjJmTNncOLEiYRugIj6G7kNEsHJ/v378fXXX6tBUzSzPoHo51fL5Y6C0+nEJZdcgkGDBmlWNxYDaZEGP/r55KIkH+ieqxbJvD15Pk80FjiR71dgkOZP7usBF6qQAq0GqiiK2gcwavflz1ko1T/i85OTk6NupaR/3EQoOzYjnqtcJcYgjWJCfBEcDof6pRVfWLncEQg9+JEbFzmTJl9A3W43jh8/rvm7QEGaPpMmlzuKQDCScse2tjbs3LkTJ06cQHt7u2YDUT35wub1ejWNuNE5iCDO6XRiypQpmDp1qubv9eWO4rHDaRDl96q1tVVzwTt37hwURYHL5UJqaqr6Whqdswjw0tPTIw7S5NLa4uJiDB06FCNGjADQPbJWXV2NM2fO+M1TEK9bqB2PI0eOYPv27QnVYB87dgwnTpxIqHMi6u+MMmn672gsO41dXV2or6/XZJkAbZAmrtOCzWbD6NGjNW2gKB2LZpAGXFgFUPQHjh07FvZAkzxo6PF4/Dq34b7OVuakdXR0JHTnP9qqq6vVgWZ9kJacnAy73Q5FUUw/L/KK1UYBdaRBWnZ2tqZiS5bIJY9G5Y7R2P6BQRr5McqkCU6nEzabLeyRArlMwyiTNnjwYAD+85Hki6hZkCa+1PI5i1HESFLlZ8+eRWdnpzqZ1Wz0tKKiAp9++qn6ZdUfZxTIiGPS09ORnZ0Nu92uPo7H49FclDo6OtRS0HBGcOXHl/fZAS6sqpSbmwubzeYXpLW1tanvtWhQMzMz1ePCHf2UOxujR4/GyJEjkZaWhqSkJPh8PjVjqB/ZE+ce6uOK7Fx1dXVY5xsL4jXoqVF5ot7Eakfn7NmzYW9VYtQpNcqkiWuguEbHMisv5v3U1NT4BWn6Nk+WlJSEcePGwWazIS0tLWqZNH37JV6TcePGwW63o6WlJWB5m6IoqKysNJzOoH/f5HM9efIktm7dGtbApNw+yNk6+XE/++wzHDt2LOT77o06Oztx7NgxHD58GMCFtkf052w2m9p/MmuPgi2Gpi93tPLdlVcizc7Ohs1mU0svxXnJ55to5M+WnEkDIr9GMEgjP+JDJS9nL4hOebgrPJrNSRNf/IEDBwLwv6DKH3R9x1yfSUtKSlJrgsUiGJGUuYn7F42dUUPk8XhQWVkJj8ejTnYVz0l8YQMFaeK1sNls6murz6TJF7twNifVP748einmo+Xl5QGAJkg7f/48du7cqV7YRYOakZERtXJH+aImz3UTHQFFUTSfNfEeuN1uzTFWH+/06dMJccGXSziMOom9ZT+iRCcGJfSfkTNnzuDAgQMJ8VkgY4cPH8a2bdsCDsiIVXH37dsX1mCcmGd24sQJzX0KYl8y8V0V171YBmlisM8oSDMqd5RlZ2dj+vTpmDJlitrpjnRDa6PvSFJSEgYMGKApkzPT1NSEsrIyw2139OX38v00NDTA5/P5Lc9uhf4zo8+EisDvzJkzPVJu3tbWFtdrumin9dMp5PZX7pcZCRakyd8beYXUQMTiYXa7XS11FFM/kpOT1c9wol6n5ZUdHQ6HGlQCDNIoyuRNMs0yaeJ3gLUP4NmzZ9VVgOQRQHExaGtrU798mZmZfvPg9I8TbE6aGEEEugOrSEdhxN+Ji4c+wwV0d/rFOYrzFv8NlM0TF0I5GBavrVz2IX/pAeORX6vPQxANo9vtVs81JycHwIXX0uPxqB2EhoYGuN1u9ZwzMjIizqSJ56fvbGRnZ/sdKx7D4/FoHk8sB/zpp58GnaMmXgOv12u4MlUkRIYulIBV/lzry6t27dqFPXv2cK5aFJw8eRI7duzQLDTT1dWFw4cPo76+PqR5ptRzurq6cPr0abjdbsMMjCBG4eUsU7D7PXLkiHrdEwNrJ06cUK8h+u+jXM0RzSW2A50j0D0oJj8nK0EacGEp8OTkZLX9iGS+l5wpEETlRbDsi/w7o8ES0caItk9u28T/6+/byhwl8XzF+Znt7+nxeGJebt7e3o7du3dj//79MX2cQOT2Rh4Elj9Hoi8SjUya/ngzIljOzMxUB9hFfysjIyOibZ96glzqCCCiajM9BmmkIV/0jII0MYIYypfm0KFDOHToEDo7Ow0zaeKCLUYhRCMgLyZiZU6afKEZN24cxo8fj6ysLE3AEQ7xdykpKep96UeL5IUtxHmLYEYEaUbnoM+kyc9DDgbl1L+4iIW66ae86TdwIUgTDZXT6fTLlLrdbvWi6/P51OeZkpKC5OTkgHPXrDDKpAEXgjS73a5+5sR56huPzs5ONDQ0wOPxBOzIyQMQQPfG3dEMgE6ePIljx46FtM+P/LmWG7euri54vV50dXWhpaUFXq8XX375pWakn6wTnws5I1FRURFwaw+KPzl4DtTZkzMxVjqF1dXVqKmpQVlZGXw+n+ZzcfjwYb+Mh8/n03xXxXVPXvUxmlk1RVH8AioRaAWak2bEahAVjDyQKtoHUXlhlkmTr7ni+egHGOV9WMV+b+Jn+Vh5z7qTJ09i+/bt+PTTT02fk8/nU7/X4n71nw35PAK1HdFw5swZ+Hy+uO7Xpl8tMVAmzWqQpm9DxWsq7tNKP0WejyYUFhaipKQEI0eOjHqQ5vP5sG/fPhw8eDAqfQB9kAZceP6RDuQwSCMNOXNjs9n8MjwiQLA6SiDvzSVvrpmUlASHw6F2wIELI3Tigy4++PoPebByR3EfYsJ0sL28RJBldpE2WuxEvoA1NTVpRuHEUvniYiZPJNWfQ6AgTW74Rdmmy+VSs12hNrjiscXft7S0QFEUw9dPDr7k11vM5RLnI5c71tXVYdu2bSHtbxYok1ZaWopx48ZpNlUH/C/68iprgT6P8gXeyhyKUIWzhHSgTJrQ3NyMhoYGNDY2oqqqqs9l1vQL7MSC+H6K96atrU0zsMIgLTHJQVqg72qoQZr4PJw7d05dRCkpKQnZ2dnwer2oqKjQXC/kTJrdbtd0wBRFwa5du7B79+6ofTeNOr9isC/YnDQjcsljJOcEdLcNw4YNQ25urjo9wej+vV4vduzYgS+//NLvd/L3Xbx3qampatsvjpUDCXHbkSNHcPz4cXUgy6zdFudrs9nUNk+fLevpIA3wHyzsSXJfyixIk9cKMKL/fumvneI1Fa95KJk0OUhzOBwoLS1Fenp61IO0c+fO4ezZszhz5oy6J20kxHOW+3HRWoafQRppyPPRRMpWfEHkTrzVL41+dUJxkRD3JS4IwIUgTZ9J03/Ig5U76gXLpFVVVeHo0aM4dOiQ4cXTbEVKQay4KPb2EOV4ovGRywL1i3eIL7f8OshBpXi9iouLkZ6ejuHDh2sCxXPnzmHXrl2WAiPxPMTFUzT2ciZNkM9XP+opnpN8nNiMvKurK+hGmEbnpO9s2Gw2lJSUYODAgX6ZNKMgTdwWaNRKztqJ1zCayz2LDkAoHX75fOXXWf6sNjc3q/MxRHatr1AUBQcOHMCOHTv83tdz586Zbm4fCjkIFK+dPthlkJZ4PB6PZh6S1UyalYEXcYzH41FLYDMzMzFs2DAA8CuFljNpDodDM0jpdrvR0dGB9vb2qHUixbVArm4QWSuPxxOXIE2+Vg8bNgyTJk3yW6xLv7JfZ2cnzp07B5/Pp7luye+ReF/lOc7iWH3Zo6IoajAl2kyzMkVxH8nJyX59Cv0xQHegEKvgqaOjQ5Otjdc2MPpyR6NKlkCZNHmqgQhC9GsHBMte6sntt1x1JIt2kCZ/v8vLyyPObhoNdLPckWIiUPpbznpZ/QDKv5cbUv2+HMCFDJo+kxYoSJMbT7MgLVAmrbm5GeXl5QC0G4bKF+tgmTTxBZcnUNfV1amjs/KS9vJFRjQ6NpvN8LWVG6j09HRcdtllKCws1ASKVVVVaG1tNd3UuaGhAUePHtWUfohSRfEYgTJp+vlfgsik2e129fWVy1GsMit3lAUL0jo7O/02ATciZ+2iuY+JuB/x/MOdkyZP7Jdvb2pq0nRW+9JS/SIAVRRFc30QwduBAwciDqDk10t8TsRtoiPBIC3xnD17FoqiqN9VUaGgJ1+3xXGByFUOAFBbWwugu4OYm5uLpKQkv8eRqxrsdrtmlFxfQhYN8lyqiy66CHl5eSguLlZ/L641Vsodxf0A0cmkGQWGRuWU+syZ2SbH4n7lBSKM5qH5fD7N/RQVFQGwFqSJc9a3TfI5yXOzo00/59WojXS73Th06FBYC6RYFUq5o7zUviBen5SUFMOBTrnU0WyhNUVRcPz4cXWfPfH+yf0kvWgGaT6fT30/XC4XfD5fxKt7GiUKWO5IMSHvkSaIC6fVTNrp06dx9OhRv7lkohMmlvEHAmfSxBw2fUdav2gEoJ2oqWeWSfN6vX7Zs9bWVrS3t2Pbtm0oKyvT/J1ZkCYv/iHOXQRNYjlZo0yaXOooLwwiXltxwZM7BeJ48bhGc21kZWVlOHXqFM6ePatpZOXAR24k9eegz6QJ8maT+gtrKBcls3JHmVmQJj4758+fV99DK5m0WARp+n3+rNI/vlzmI3R0dBgOCvQFcqmJ/FqIMulwFsjR0783Pp9P/QyJwQYGaYlHdKSKiopgs9lMs8j6lQGDfT86Ojo013xxzRCLFogSPkDb0ZLbRvn2QPOlwyU+8ykpKSgoKMAll1yiyaoJ8cikGXWkjeak6YM0+b0z2j/U6XT6naf+fEUA43Q61dI4syBN/K3Y+wswD1LEdSBWJY/6Ba2M2p3Tp0+jrq7Ob4/YaDJbOETuOzmdTvX1MlsEJC0tzbBPI39uRfvc2dmpedy6ujqcPHkSZWVlmukWcv9DL5pB2rlz5+DxeNTN34Huz5WV++7s7MSRI0dQXl6OhoYG9TrCTFo/4vF4UF5eHrPR8vLycnUEQ1AUBadPn9bshRUsSAv0ASwvL8epU6fQ3NxsGKQZrSQEXAjOxIpUgHZ/LkGUl5SXl6sX+6SkJL8VEAWzTFpVVRU6OjrgcrnUEfXW1lbU19fD7XarpVZy515fry2XcaSmpvqVVYjRJKNzMJqPJh+rn4AryMGJvMmqPkCRl7+VS3Hk11cO0owyafLvxWuUnJysuaBGEqRZyaTpG27RwRaNtFzqaWVOWqyDtFAaErMgLdB59ZUgrb29XdN50c8BEiLt+Opfr7a2NvU+GaQlLvGdysvL06wErCfaFXE9CLY5sbgPeeALuHCtFnOZgQtVHfpyx57KpOk7rpEGaZHM/bSSSZNL6PRBmVm5o1GQ1tXVBZ/P5xckiFL6tLQ0zfw1o++v/BqK90vec0/83uFwYMCAAQD892eNBo/Ho865CrS/nvi8t7a2xuwabxakyu+pvBaB/vMiB2lG2+/IQZr8forrvNgrT/y/PN2ip4I0cS4DBw5EWlqa2p+y8t6LBYcqKiqwf/9+VFdXawJN+XXknLQ+qq6uDhUVFWoWJ5o6OztRUVGBr7/+2m+Vs6+++gpHjhzRlHQIAwYMgN1uVzvpQOAvjbwXh37kBtA2NOILoh8llIMd/d40Ho8Hx44dQ0VFhZqmDlT2YXSuXV1darA6YsQIzaic+LJ2dXVpsoH6TJocBIm5e/LyxMCFhl8edTp+/DgOHTqk2VtDpi931Acw+uOB7guePrCXOxBiHxJxLnKQFmhOmnjNbDabOudOZAcF/cU1lpk0r9ervi7iPZPfV6tz0mIZpOmX6w5E//ji82T0vRLflb4SpOk3FI9mkCa+D0bfC/H9lr+vDNISjzzCbjanCLgQpIl2KtjeTOI+8vLy1OuOy+VSrzM5OTnq9U88rr7c0SyTFu05aWZb4OjPIxj59Qt33lWgTJo8d90oC9bS0qK5Jppl0uQqG3lBKEFk0tLS0pCUlGS4XY8gd/7l10m/L6U+6xNt8qrK4nyN2gf5OhWrLUGsZNIA83lp8sCy0fY74vfieQ4ePBjAhTnADQ0Nmucp9z96Ikjz+XyaIA240Eezslm6PtHQ2tpquOorwExanyU+sM3NzYZ18ZGQ/16MZjQ2NqrLend0dBh+aQcMGIArrrhC7aTLv9efk9xomS1LLHfIs7KyMGTIEIwaNUpzjDwvTdxHSkqKegEXWS6j7JyeUbnjiRMn4PV6kZmZiYEDB6qP19LSon5Z5aWOxWOIi5eYICuXOsr7swHaTZnFObS2tuLkyZOoq6tTV5cLlknTPzc5EyTTl/3IF1g502ZW7mgUpAmi7Gb8+PG46KKLNL+LRibNapAmZ07l5W6FeM1J0wcCVjv9wcod5ddFNHhi4KKsrMxSw5KoxLmLz79ZkBbOQin19fXYtWsXjhw5or434j2XH1cePOlrq2b2FjU1Nfj00081n2X9qrOBgjQx4JiRkRHwOEFcs9PT09WBHpFRBbqv28OHD0dqaqqaVQu0cEgsyh2tZNKsZtGA7qDGbrfD6/WGvaJtsMVK9B17OeARAyPyYhPi+y6/z/J2AfJcY7ndFc8H8J+/LjPKpAEX2if595Fu0xOIlcFB/WBSrII0K6s7AuZBmj6glm8D/Fc5LC4uhsPhQGtrK2pra/22kDHrf+hFK0iTSx3FAmqij2YlkyYP8ADalVb101I4J62Pki9c8hekpqYGW7dujejLK18Yzpw5g5qaGnz11VfqbfJqgvovrb6U0OxLI39hjTZ9lv9W3O9FF12kKTEBtCN/cuc62AqORvSlhm63W50zNnLkSNhsNnWOVUtLi2FZhvgCyvt2yXOFxEicHKTJS++L85NXPhSvjVmQFui9kOfyiQuGfl6afiRT/K289YHZnDT9BUdsiDpo0CC/0V2RYRUXPf1F6dSpU9i/f7/hZyGUhUPkDUdTU1P9zsPosY0eKxpBmn5j8nCDNP356rcSGDBggLqwjBgk6erqQmVlJSorK2OSce8p+s1xo5lJE5/32tpavyWh5SBNvhYl6kapfZnH48HXX38Nt9utrpILdL//4vslZzz1wZfH41Gv0XKQFigQkUu2Bg8ejOTkZHURCmHw4MGYPn26JpMmX4/FtdFKJs3r9WL//v2aLR+CsZJJCyVIk9s4s/nLgVhZoCvQfDJ5mX39XqP6Trp8P+IYeWl2IPQgTWwpJJ6LfH4pKSlBt+mJhFmZrP5c9duuxCKrZ2V1R8BakBas3BHo/oyKBW+OHDmClpYWOBwO9bPY05k0OYsmPg/ytIlAA3Uej0d9PUSfp6uryzTDHKiPEcrAI4O0OHG73di7d6/fxrfyB16O7MXysJGs/KPvEB45cgRdXV1qh1+eXxWsjMLsA6hfjtXoA2plRSrxJXe73ZqLXDhBmn6UTLyWaWlpasfN5XL5zVEALjT2RvPoxLLL8m1Op1M9Vm5YxG1GFwGzckezn/WPJzrv+sbXaN8tMVoZrNxR/7NRQCQMGjQI3/rWt1BYWAhA+zmrr6/H0aNH0dDQYDjAYKXcUZ5vKO4jPT3d8D23Mict0nLH5uZmfPrpp2qprVxXL39urRCPL56fPpOWnp6OyZMnY/LkyZqGUZTqxqIh7yniOYrrTzSDNH1jnpKSonbs5JIdeXVSljz2vJMnT6rvlXz9kkvEHA6HaZAm2khRrmilJFj8LjU1FXl5eZg5c6Y60KUnrhOKoqjnKZcZWpmTdvbsWXWVXatznqKdSQMuZAvDCdL0FSVG9EGaUUdUfo/a29sN9+mUVx4W9xFpkAZAE1jL5ynmT+mfZ7QYVXDo+2Li/NPS0tTnGotsmlmFgr6PYbbQjFEmTUwLqaioUPuncp9myJAh6mufmZmJyZMnq++b2SCxXjSCNEVR1NdUXhxIDKZ7vd6Aa0GI64Zcfh1oz0KjgLyxsRH79u3Dzp07LZ83g7Q4OXPmDJqamgLOyzBaECFYqUJ5eTn27t1r2Pk0yswMHjwYl156qfqBEh0Yo4BFJn9pTp06hT179qirMcrPJVi5oxn5AmAWpA0ZMsTv+EDnKr5MYgUnEaAB3Z1ko/I58cWUz1lePES/+Ic8Yik3LPrzy8/P97s//fma/Sw/XnZ2tpqu1y8eYtSBF/clN4RmI0Hyz4EuoIA28ybOobW1VZOp1ZdjyvP9Ag0KyEGluMjm5ubCbreHVGoZrUyaqK8/ffo0fD6femF3uVyGpXuBiMfXz4mQG/bs7Gy/lU/F73vrnmlyp1c8d7POrniO58+ftzwfTx9wpaen+w00yAMdRn9DseV2uzWLWMnzlvQdd3nFX/lzor+WByt3lLcU0c8fNiK3g3LgaLZwiNFnSL4OHzlyJGj5k6IofoM+QqAFm4KRq0VCJV87zRbokhcnkbM0+mPkQU59xhS48L0Uq+fJ0waA7vdEHCNPU2htbdVsoRMsSDNaoj+U+cRWWRkcFG1Ienq6uohJLFaalB9X/lzq21/9isqAtgRZLhF1u904duwYysvLoSgKCgoKNH2rlJQUTJ48GRMnTsSll16KzMxMS4PEMrm/GW5Z+rlz5+B2uzWljkB3/0IMYAQaRJHfI6OF1cwyafLn6dChQ+rWIlYxSIsTUfYmRiEEs0ya+HIFW53p1KlTfvsqCeLDkpaWhqlTp+Ib3/gGRo0apRkVkRfCCES+2Jw8eRLnz5/XLPMufhduJk2+AMgdefHlTkpKQmlpqXoewTIxwIWLpbj46Ufn5GXlBREUGy1q0tzc7FfuCACjRo3C6NGjNaM1+uc8ZswYDBgwAIMGDQq6YpfRe1FcXIwBAwaom1s7HA74fD5N58Tos6IvKZGXow43kyboG0Ex7088H33nQP5sBAvcxfsu7ltcZI0WLTG7AEZjTlpXV5caKHq9XjQ3N6sj0/LFO9RMmuhs6BcO0b/3+o6lvtyqt5Bfn2Bz0sRo5d69e/HFF19YauDE/YvvdG5urt9nWF60SH9OFHunTp2C1+tVvzfyXnn6jo/cRskDlWZBmn6hCkEeDbcyWGgWpMkdMP3ApJ7c0W1tbUVFRUXAxxTHy1u3CNHKpIXa0bWyeba8DL+86JW+bF7OpBm9pqLdFO+tHNgB3d9bESjKpdK7du3C9u3bcerUKZw6dcpvwbFAmbRgZc/Nzc04cOBAWJULVsod5RJc8VxjWXoJaFe31AfeRpk0OYCVqzo6OzvVvQZHjx6NsWPH+t1fVlaWWroPQFMqGUq5o6IoYQfRYgPr/Px8v/MzWilaTw7SxLl6vV7TIFPfx5D3qp08ebLl82aQFgc+n08NouQRZUB7gZAbGnG7fo8X/f2KD4HRh01enSozM1PT4Qs1SJOzU+ICI48qiHOONJMmFugQ5y2+HHl5eXA4HOpcAnnid7D7Eh0BeTQFgCaTpt+IUT5nURpz9uxZv3JHcT/FxcWaC4H8Bc7MzITT6cTEiRMxfvx4vwuGlXLHtLQ0TJw4ERkZGZqRIDkQMmpQ9CUlQlJSkl/2NJRMGmA+Uilq0ltaWqAoCs6fP4/6+npN+VCwzK38+PJ8NPFf/cTw2tpabNu2TfM9iEYmraamRvP9O3v2rDqXRmyEC4QepMmdDXlwQ/9dMRr9N8umxXuOldfrRUNDg+FrLL8XRqVG+iCtvb1dLce28rzEMaWlpZg+fTqGDBnCTFqCEW3g4MGD/SbvG41O6+fJeDwedYBEXMszMjKQkpKifvb05M6wFTabTbPYBRD6ZtbiOiyeY1VVld+85/LyclRWVqKxsVGzv5e+bYgkSJMXDwl1Kf5AKzsKcsde7njLbaMccMlBmn4xMXkAVQRR4hj5vXM4HOp7L1b2PHr0qFqKPnToUPVab9Y+iQXJAl27y8vLUV9fH9K8QsHK4KBZlibajCptjPoXchAizlX+/MtVTSJ4c7lc6p6GwYj7F9d1IPBnSz7HcNo1s1JHwcoKj3JJqhzYGlVbAf7ljvJ7blS1ZSauQdr//u//4oYbblA7tG+//XbQv/n4448xdepUuFwujBgxAi+++KLfMZs3b8b48eORkpKC8ePH46233vI7ZvXq1SgtLYXL5cLUqVPxySefaH6vKAqWLVuG4uJipKam4qqrrsLBgwfDfq4y/f5h8pdR/gDKI4tyNG725TXKwp05c0Yd5TBbiAK48AUJ9MWVybX68vMwy6TJH2ArmTS5rEI+p+LiYhQUFKC0tBRA98If06dPN51ToH9sMXHUaOEJEeikpaWpI/BGX0DREZCzGEbL4svk56wPDgOdr9HPRozKfERDLGcIxX3JI5f68zN63HAyafImsTabTZ14u2/fPhw4cED9jFpZRlp+fHkrCHGxlzOZooPW1dVluA9XuHPSFEVRF5wR51BTU4OWlhZ1i4JwM2nyMtFyCar+vRfvZUpKimZPIb3a2lps3bpVPd94qK6uxv79+/32ZQS0I/PieQcK0uROpZXOi3z/YuSdQVr3Z6usrCyi/bKiQQzWAN0dJP18KStBmpjoL5cZi8WNAGgWIhFE4BZoUE9PfD7NMmnByh3lwaqsrCz4fD41m9bY2Ig9e/ao2+58+eWXOHr0KADjgbFAK/AGY7fb1c5hqPPSrGTSjFZl1GfB5ExaR0eHaanYsGHD/O5X/FcfYE+cOBHf+MY3cMUVV2D48OHq7SUlJRgxYoT6s9w+KYqiCYblc9AHAT6fT22rwtm/1qjdkYMleWVHOUsTiyBN/qwG6g/K12XxOhllt2VGGSoz8mrXQPDtJOQgOpwgTQwI2O12w/6XuB60t7eb9glE3yo9PV0zBUPcHiyTFsqgtCyuQVpraysmTZqE559/3tLx5eXlmDdvHq644grs3bsXv/jFL/B//+//xebNm9Vjtm/fjgULFuDOO+/El19+iTvvvBO33norduzYoR6zadMmLFy4EE888QT27t2LK664AnPnztUs4vHb3/4Wq1atwvPPP49du3ahsLAQV199dViTbvXkFf4AaOqo9WU64uIgf3DMGlj5S33+/Hl0dnbi4MGDOHz4sGblRqMPiPjAiaAr2IfI6AulH+WWM2nyyIGVoEMu9ZCze2lpaRg3bpx6odevdGh2X+LCfvz4cQD+pY7itvHjx2P8+PGaUSL9OdtsNs2cMv0+LEbsdrt6AQsWpFnJpOnJpSaAtiZffjyz7JhRgx9pJk1+7cTrX11drX7GxaiVlc+D/Pjy85GDNPnxxedQzixGmklrampCR0cHkpKSMGbMGAAXGq6BAweaLktcW1uLHTt2GDbwckOp3w9O3C7Lzs7GmDFjMHHiRMPVtQRxnRIDNPEgXnujebRyg2/U+Bpl0gQrJUdGI//6z7t+5dX+EKRVVVWhsrISJ0+ejOt5iK1VHA4H0tPTw8qkGc0tBqAupNTQ0OBX2SGCNP1qwoHoM2mBluAPlElLSUlRBxdPnTqFr776Cvv27YPH40FmZqbapojvjdHAWCSZNACGFRcyMcClLymzmkmz2Wzw+XyaUkX5eejnpJmViuXl5althjhe9Ink+WnAhX6B2DrhkksuwYQJE1BaWqoJGuT2Qd5yQ55CAfhfB1paWtT3OJz5fGZbNwhinqXoy8irGYtB+fLy8qhcn4zaO7P+hT5Y1C/woS/HNcpQmZEzdeLnYAFeJEGauK5kZmaa9n/FORm9xx6PR/0ei76seO5mmTR9QG5lkTQjcQ3S5s6di1//+te4+eabLR3/4osvYtiwYXjmmWcwbtw43H///bj33nvx7//+7+oxzzzzDK6++mosXrwYY8eOxeLFi/Gd73wHzzzzjHrMqlWrcN999+H+++/HuHHj8Mwzz2Do0KFYs2YNgO4O7jPPPIMnnngCN998MyZMmIA33ngDbW1t+MMf/hDx8zYL0uT5NGKkXnTsrARp+iyWvCeF+MIDxgGY2SiAGaPRgECZNKPSymD0cxCsbtxpRNRJ6+c06Q0aNAgZGRmG5YAyOUgLlkUDLozwpqenBw3SxDL5QiiZJnllLTHp2mwBk1CCtEgyafKSu3K5iLgYWnl+ZkGa2JA2Pz/fsOMkSizF7UD4QZr4Lubk5MDlcmlG40XZrdFo7OnTp9He3h5wdUt9kGaWSbPZbCgqKtJ8RkVQV1VV5beEf3Nzc9zKHsW5GI0Iy50+o/kG+vdFHhwzG2Hu7OyEoiiaEnL94Ir4HMvf2f4UpInOc7xXBRUDNFlZWZpybTHibRSkyfNogQvlkvrraUZGBtLT06EoiiaTfubMGfh8PqSnpxvOPzZjFKSFUu4ol9Xl5OQgJydHXXhILLQwZcoUTJgwQdPRDZZJCydI0w/+6lVVVWH//v1qEF9TU4PPPvtMDW4DPaacpRBZTH25Y3JyshrMyZVC+vbHZrNh9OjRyMnJUVcNHjVqFKZMmRKwagbobhPk9lk+P0BbjeR0OtXbzTJpcgmcvJesVXK7YzQnTXwnxUCjXEUkFtepqKhAeXl5SI8b6FxkZu2v2WqdRtnc5ORkv+A5kECrlpqJRpAW6BwDLawj2n55/qJ+kNRqJq1XBWmh2r59O+bMmaO57ZprrsHu3bvVF8rsmG3btgHo/qDt2bPH75g5c+aox5SXl6O2tlZzTEpKCq688kr1GCOdnZ1obm7W/NPr6upSPwTyXgvAhTfRZrP5TaaXv1xmKzzqOy9yqZPcmEQjSAP8P2yB5qSFmkmTz8nKCoDBZGVlYfTo0erPwQKlYIt5ZGdnq7cFy+QJ48aNw2WXXRbya2vl9dKPMov/pqSkaM5Pvi/5QhmoQxCsFEEwC9Lsdrt6AZRHaK1sRC7Iq3npA7ZZs2ahsLDQMJMmT0yONJMm16QDF+Ymulwu9fNk1OEXjZxRJs1o5dKurq6ApSiC3EjU1tbi66+/VgdmxP1Gum1HJMR1yiioMip3BIyvd4A2SDMKMM6fP4/t27fjyJEjmtde/z02Ko/tL0Gax+NRv3PxWBW0ra0Nu3fvxpkzZ9S2UQwgOZ1O9T05f/58wEyayDyYzS0GLmTT5CBNBA4FBQWWy7IA/86WfD3UzynXrw4or3IosgUXXXQR0tLSMHDgQFx66aUYN26ceu0aNWqUej00GhiTB0dDLXcELvQ5zp07Z/o9kv9bW1uLjo4O9RoS7DFFkCleA6NyR7n6RTyO0f3m5ORg8uTJ6vVWrHQbynsnMwrS5NfYLJOmX2Ux1JLHQOWO7e3tanWPeO3kDFVXV5d6Ha2vrw97ZUMhGpk0oyAtlFJH8Xfy8VYqdSJZ4VEeFDIj+ihG769cjioEWtQH8J+TZmVPWCO9Kkirra1VL75CQUEBPB6POkptdowo+6mvr4fX6w14jPhvoGOMrFixAtnZ2eq/oUOH+h0jGqf09HTNXhGAtuOi/0DKF34r5Y56Pp8vqpk0o2MCZdJcLhdyc3ORk5MTciYtlHMKpKioCGPGjMHo0aNDmkMGGE8KFUvlWp2EHgr58ULNpMn19vogLZxMmhj5DMas3FGUNOmFkv7Pzc3FqFGjMG7cOL/fiXMzK0ESC/DIgY/RPKhg5Jp0oHuOSV5eHkaNGqWeg76hl9+LYEGavsZdvj8jckMu7ls8rny9MFpAIdY8Ho9m83g9ucE3mm+g70zIHUqj65zcuQy0XHh/zqTJGYF4BGmnT59GS0sLjhw5onZ85U6TXIoXrNyxtbUViqLA6XQaBjMicBMd3I6ODvUxQyl1BPzbS/2KhfrPjXxNkedTi2tORkYGvvGNb+Diiy/26zQmJydj3LhxyMnJMTxPeS5MOEFaamqqGhiL1e5k4tojXjf9VgbBrtX6DJYcpMlZK3FboCAt2owG8YzmZevXBRDfG/F7UZ1hdZVBs3JHn8+HgwcPwuPxICsrCyUlJerfyAGSXJEQTrmlYLbysdV974y+k/n5+XA6neriYFbpSyVDCdJOnjyJbdu2WR589Hg8avsYbiZN9NvlDHywaqs+Ue4YDn2jKz508u1Gx+hvi9YxssWLF6OpqUn9ZzRhXlyU9HtFANoSILkTqe+wBAvSjDI78ghfoIVDBCsTG/Ujfl6vV9OZks89KSkJkyZNwuTJky2PuOi/BJEGaUB3oGblghLsCwh0L1oyYsQIDB48OOLz0gs3SBNz0eT92+QsTShBmugoyJOxA9FPzDbKpIlzkll5fjabDYMHDw5YpiQ/vj5I02/GKl9ArY7K6TNpKSkpuOSSS9RgHfDv8MsBY1tbm99jyaPz8opX4rZA3xWjhtxoJalQ92WJBv1CH/rH189x0QfNgYLnQJm5zs7OgIscDBw4EMnJyQHfs75KzgjEI0iTV2XUr3gIaBc/ChSkud1uTafJ6DtitjdmVlaWpfJ0mdEcYbl91L+WRnv8WZlzIwwYMACTJ082rdAYOXIkhgwZEtLiJzIx+KxfWMXn82mCM7nsVJx7sGAqOTnZb2XGrKwsFBcXaxbxEM/NbPuXWJDbB6O+kFEmra2tDR6PB3a7XQ2aW1tbcfz4cWzdutXSvo1m5Y5NTU1oaWlBUlISxo8fr/lMydckuU/V0NCAtrY2VFZWhlx2aRZUhjsnDehePXPWrFkhlQ/r7x8IrdxRZNr104bMiD63y+UKOG1DDtL07ZUI1M3m9xv9HK1yx9CLmuOosLDQL5NVV1eHpKQktdE1O0ZcmMTclUDHiBro2tpada6J/hgj+kmyRuQgTbyJwTJp+i+jWbmj+PsBAwb4TQyXg7RAC4cIoWTScnNzUVdXB5/P57evRrgpXiD6mbRIHtvoi5WcnKxZhSqajBqPQMR8G7GylpxJA7pXumpsbNR0ioJdJO12O8aPH2/5nPXL4MuL0Ih9Vbq6ujBkyBC1xMPq87NCvijqt7KQRzP1c/68Xi/OnTuH2tpaNDc3IzMzExMmTNB0quQscaDMqTwaK2fRgO4OSXt7u+bvjTJpRts+BHosuSE3CtLECGy4nbpw6K9Rbrdb83nTB1JJSUmaVS3F+Yu5KzKjMi1xf3IAYPSZLigo8LuG95cgTc6kicGDnrym6gcX09PTNZ9xo/2z9HOwkpKSNAuAmC1lrV8eXNyf1dJ0mb69FIMnDofDL2sPGJc6W5nTa9XAgQNDWqTB6O+PHTumbgAtXkP5OytvE5SSkoIRI0bg9OnTmsENM/n5+epnTQSn8lQDwH+grqeDNCFYJk3eU1VcP+Wtd5qamoJW0hhN1/B6L+yvlZGR4fd6iGulvAIm0N0HPXXqFLq6uuB0OjX902Dka6rD4QjaN9OvHmxl0+lQBJtuoadvD60GqVbmowEX5gSKwQrxvsolp2b9J6PzkwNyuSy6T5c7zpgxA1u2bNHc9sEHH2DatGnqB8fsmJkzZwLofmGnTp3qd8yWLVvUY0pLS1FYWKg5pqurCx9//LF6TLhEKlU/8R/QRtriDTdqBDo7Ow1HReQvfXZ2NpKTk9ULsJxdiFa5ozj/rKws00ZInmwdqkQP0mIp1EwaoC1PkDNpADBkyBBMnDjRb2NRo/8Pl1kJkDj/iy66CMXFxSguLg7r+Vl9fKPVufQXSPlcvV4vDh06hPr6enR1daGhocEvkyNGTEVm0oz8vPSjoIC25FFRFMM5aVb3KpQ3E9Vn0sT1QZyPfl5FrOk75Ppsg74TblbuaJT1CJRJA0Kb6yifg7y4Ul/j9Xr9Vibu6Wya+EyIzo9+hd1gmTTgwjVOfJ7NRvD1mxNbWULejNlqu0ZlkOLxBCsb9fY0p9OpBltyNk2fFRKBcFpaGgoKCnDJJZdY6qAPHDhQDQTMnrc+WI5XJs0sewVAXYwJ6B6INgpmrXyHzOakBVoxU7xu4jsrzrOtrU19TLPBejNyW2Ol/ZXbF8B8gYxwhZpJE/MRxWcn2kGazWZT32O55FEMOOgHlaxm0gDt+92ryh1bWlrwxRdf4IsvvgDQvWDHF198oS6Fv3jxYvzwhz9Uj3/ooYdQUVGBRYsW4auvvsLatWvx2muv4ac//al6zKOPPooPPvgATz31FA4fPoynnnoKH374IRYuXKges2jRIrz66qtYu3YtvvrqK/zkJz9BZWUlHnroIQDdb9bChQvx5JNP4q233sKBAwdw9913Iy0tDbfffnvYz1fe5DFQkKZfllrcnpKSon5ZjUaT5QZh8uTJmD59utrJCZZJCycgKi0txUUXXYTCwkLTi7EYBY9GkBbK3hKR0tdM94YgTZ6zIS4ygUaOQ71IBiNnnuSOirh90KBBGD16NOx2u+liJpHQZ6aF9vZ29fsiHkvOpnV0dPh9N8yCtGCjpmJ1LnEfwYI0+dytlNjK5MybfgVL/aqqPZ0lMsqkGf2sD9L05y8HafLCEfrsmnz/4jW2+pnWd+j7IrGnmDxHqCeDNLnKYsKECRg1apRfGbXRZ1X/HRDnLt5/s0yafp5jJB1Ms2BMf12WyzGFWGTSokFk4uR5PWZBWqjZR5fLhYkTJ/oNCuqPkfV0kGaU3dKXO544cQIdHR1ISUlBcXGx4bXfynfIbFXhQAMH4touAgyXy+UXZIS6QqvR3DjxsxE5kyZvDxWvTNrAgQPxzW9+U13rwcq1Wp5TaGX1SaN5aeLv9YNK8jkbrXauD9LCnZMW13LH3bt3Y/bs2erPixYtAgDcddddeP3111FTU6PZu6y0tBTvvvsufvKTn+CFF15AcXExnnvuOdxyyy3qMTNnzsSbb76JJUuWYOnSpRg5ciQ2bdqE6dOnq8csWLAADQ0NWL58OWpqajBhwgS8++67mombjz/+ONrb2/Hwww+jsbER06dPxwcffBBRyZAYFUlPT4fD4VC/BGIPM6MVz/STXB0OB9ra2tDe3u538dTXv8u182Z12IKYZG91nzSg++I9ZMgQ9TEFUVImf4l6WyZNPH4kI7CRCLXcEbhwUW1ubjac86EXiyBNlAvIn1mjuRipqanq9yFar634zIrvgfgedXZ2Gu7JJsqVREAh5oKKEhP5+2W0upMZUZIVLJMmjwSGE6QZvWf6Scrynjs9KVgmTT+KbCWTlpWVhY6ODrV0RH7+8v2bLettRgzIiDk4iZT1iBbRGc/OzlYzrz0ZpInvgRigMerwiu+AOC/93C9A+3mQR76NyN/DaAZp4mf97SkpKWhtbU34TBpwYW6NKAUX/QrgQomxeB7hLIwVbJn8eGfSBLNyx/Pnz6tZtNGjR6vXp7S0NE0wG0qQ5nA4NNfnQJk0fVbP5XKhqKgI5eXlyMzMxOnTp/0e+/Tp02hqasJFF11k2H+TK6lCyaSJaq5oB2mhLhwCaLOAVjJpTU1N8Hg8SEpKstR3F0FaY2Mj3G43nE6naZBmtMqlTO4PRTL1J65B2lVXXRVwQvvrr7/ud9uVV16Jzz//POD9fu9738P3vve9gMc8/PDDePjhh01/b7PZsGzZMixbtizg/YRCLnUEtIGR2+02LHcEtCtEOZ1OtLW1oaamBtnZ2ZqlgI0mdupXEwKMAzDRUZEbyFDIjymeV6RBWiwWDgn18c02Kow1OeNjdcK56MCIEdCMjIygS7gnJydDUZSodSLERUl8Fs2CfbmRjtb7qs+kORzd+7N1dnaqk4yNGicRUMirj4WbSRP3IwI9OVhubm42DNLEHJdQP+9GDYM+E6XfNLSniMBXdLrNyh3lOWmAf5Amf07S0tLUYKqzs1Pz/I2yF6F8Z8X9dnV1WQrEexvx+R8wYIC6EnJPBmly+XWg61laWlrAuS9ykCZvYG9EfA/lapRwOphm5Y7628UgmdHqjomWSRPz5zs7O3H+/Hnk5OSo17jc3FzNogyxWL1YH5DHK0iTPz9yJk2sWTBw4EDNPDzxOg0YMMBvs3Qj+sFxeXsaK5k0ISUlRZ2L2NjYiNOnT2sGAN1uN44cOQKfz4cBAwYYzh00y6SZXSdFQOTxeDT7w0WrrxDuILF+QY5AxLXO6hYBubm5sNlsOH/+PHbu3Ilhw4ap/fZAmTSz8zcK0npVuWN/Iy8aAmiX05U3sBXLUosPoxykiYmiZ86cweeff67ZD0qQPzBGm26aNWxGf2eV/gMrXwSCrVJnJhEyaeJxw92bJVziixzKY4uOgGgIrNRgT5s2DZdddlnUSkn1QY6VIC2WmTT9pvBGjZMcUJgtIhFKJs1oQQ8xstze3u6X7RLnrc8cBHtd9CW5wIVOgbxPEWCeSauursahQ4eiOhdLURS1Uy4+g3JAIA8YGa3uKJ+/vtxRXyIuHs+osxRKwy9ep1DnefQGcvlzXl6e4WsYrrKyMr9FqszOATCeYyiTA4JgQVqwFeXkTnckFRFmmTR9yZjRtSNRM2nAhe9mU1MTFEVRgzR9Bz8WQRpw4b00ypjGglFfyCiT5vV61TJD/ZYCI0eOxLRp09QKomDfIX21hFG5Y6A5aYL8udcvjQ90L3Inrplm+7jJwaLV6RTiPMT1Q7/oViQiDdKCVYcoiqIGaVYWvAG6P+uTJk1CWloa3G43vv76a78ycUHOSAYKdIHIyh0ZpPUgfZAGaCdn6hsSfWYgKSkJAwcOxKRJk+B0OtHa2qpu1imPSMmdevlDEiiTJv5W/E2oQYn+CxeNhSH0QWNPB0r6UqyeJF6zUB5bP1prpQZbZNOiRb94h9l731OZNH3ZTbBMmj6jI/5f3KfVTBoAv0yaw+FQV3gEjFf9MsqCB2L03smdxECZtNOnT+PYsWOoq6sLeWGRQBuKijljNptNvdbpN7kHtA2+2Wq2+iDNqIMiX9tkoXx3Am1k2tuJrEh2dra6yioQeZDW2dmJyspKHD9+XPOe+Xw+HD58WLMoRTyCNLl8LZJSLbMBR7kdlTu+4vOt368y0YjMQHNzM9xut/oeyh1au90es3MXbUBPZNEA4zlpZoNiRn014EJ1RrDvUGNjo7onr3gced6SPLBkdJ0yWzAH8C9DVBQF1dXV6u/NtgUIdeEQ+XHlEvJo9cPE+5+amhrSfVotd2xtbUVHRwfsdnvQ8ltZTk4Opk2bhlGjRqmDsmarqRptbSSTA8p+sQR/b6ZfNEQwy6QB3W9mV1eXJpMGdKdkBwwYgNraWr/lUc1KpoLtkyY/bjijWvpyR/0IUjjE5G+Px9PjWTTgwnOKR5CmD9St0HeArARp0ZZImTSHw4G0tDSkpqYaLmsvXls5kyYCD/1eOUB3g2XlXOUFPeROWnp6Opqbm9Hc3Iz09HTTIE10aK0+lj6wMArS9KOO58+fx5EjR9SfQ+mwd3Z2YseOHRgwYAAuvvhiv9/LHXKjzozcOdFvAi4HaWJbCcHs/szOPZTOX6CNTHs7Uf4sOirRCtLkv29ra1M7tGI7i9raWnV7HKtBmnxdMHr/5M9DsKy2USYt0jlpZgsuyJk0uWRXtLmJnEmTy7BTU1ORkpKiztdNS0uL2eCovMl1T9Dv4wlo30O5vyF+Z7Zoinxd9fl8fisb79u3DwAwceJEzePIjycPDprdvyB/b8Rca7EvbVtbm2YOsNlAU6gLh8jnEepiTFa4XC5MmjQp5O+G1UyayKLl5uaG3H+02+0YPHgwiouL1e0OjCQnJ6O9vd20rU5JSUFbW5tme5mQzyWkoylsYvKhfp6QUZCmT6HqgzT938n/1X/g5RR/KJm0UMUikybfbzyCtHhm0rKzs5GVlRXSPijyZplJSUlh7QkUKatBmhjRN5qLFS45awxceN/kUTSjz6X83THKpIkgzerrKUos6+vrNSuzivOoq6vTnGckmTSjxkM8H7kcQx40aW9vx/79+zXZp1BWf2xpaYHP5/Nb0l2+f6D79QoUpBmtnqovRUpOTobL5VKzaPq9ewKdeygdCtHhb21t7fGNv2PJ6/Wqi4aIDIl+ae1w6YM0o9u/+uordaErIPJMmnzdCLYQgPh7eTXQSDNp+qyafLt+dUB5bmQ82q9gMjIyYLfb4Xa71WuSyGqI9yFWpY7Ahe9cT2UZg63uCGjbB7ON0sVx4nf668/p06ehKAoURVEHfcTjyJnYQAMH+lJ2/WskVxTU1NQAuPD91l/DxEB/qAuHyI8jrvXRHmyQtzawSm7nA12rxeCUvmQ1FGKgMFifOVAQB3S/B71ydcf+RDSU8o7lgPZNNJtMbxSk6evfjRYNkf8m2D5p8t9GI0iTvzyRBDmRBI6REvty6CeM9gSn04lLL700pL+x2WxwuVxoa2tDVlZWj5eHAtbLHW02GyZNmhTV1fTMlsDNy8tTy0ECjSDKC4fIDa8cdFiRk5MDh8OheQ2SkpJQUFCAEydOoLGxUdNoGn2vAeuZNPlv5ayBUQlWZ2cnvvzyS3WBjMzMTE1G3gp5HyEjcvbQKEgzWsTBKJMmOkKXXXaZuoCOHGC0tLQgJSVFswKaPKIcynVHZAzEtgnBgolE5/F4cPz4cTQ1NcHn86mZXCB6mTSjbLN4bPn/Dx8+rL4vwb5DYmERRVFMO6+TJk2Cx+MJet3QzzkVq62FSv6bQFk1/XdN3lsxEdntdmRmZqKpqUnt6Iu2Li0tDefPn4/pIjr5+fkYPXq0OqgVa8HKHYELi80A/qWOMnmhta6uLk0QJRYdAWC48JjdbtdcO82uU/Lq0vogTSxq1tXVpSYASkpKcPbsWfh8PnR0dCA1NRWKomD37t3w+XzqgK/VhUOA7razsrIyooV3ok0+X6/Xa3r+Vt7HSKWnp6O+vt50MEMOpuUkTCirLTOT1kPEnI9AQZr+iyC+SEYdXvF34ndmqyRZXd3R6HFDEatMWiQlmJHKyMjAN7/5TYwYMaLHHztc4qIQj1JHwHomDei+wOm/D5EwGxXNycnRZBjNjpczaZEEaXa7XdPxEO9Jamqq2gk6ffp0VOakie+Hy+VSz13OpOlXwiorK1Mb8EsuuSSsfdTEsWaLjcjXMXkwSV9KKr8XRkGaXCIk3j/xWjY0NGD37t3Yv3+/en/61f5C6VDY7Xb1tegLJY8NDQ2ora1VP7vFxcXqoI3cdkSSNTQL0sTt+fn5sNvtaG5uVj+TwQIWebNas/cvPT3d0sCZ+HtxbuHOpwm33FG0+fEY5LNKbieKi4vVPahKSkowdOjQkCo5QmW321FcXNxjFR9G8/ODZdICMRrsaGlp0Vw/jBasMhocDHT/ycnJhts9ABeWmLfZbMjIyNBsCC/+K/qWclbPav8sJycH48ePV783iRCkydlIs2BH3kIiludcUlKCqVOnoqCgwPD34j2Ur48sd0xAnZ2damNpFqTJpUNmK8YYjbhbLXcMtk8acKETGk75gTzKrS/viEaQFq9ykUQsUwmkuLgY2dnZpheNWLOaSYvlYwtyJ1+UgsgjXkaNpb6jBVwI0kIp/ZEn38vfJ/G+WAnSrGSCxH2npaUZLpwi7kN8/8VzGTFiBFJSUvyuI1bImTSjTr48Yiiej9xoGpX5yPMMzEqRAGjuD+ieTyNGTJOTkzWvdagZ/L60eIh4P3NzczFjxgzNHqDidTdbFTPUxwCMg7T09HR1FTzAv3NoRgR3kQY3+gGXcDtrVssd5QEJt9ttur9SIikqKkJOTg7GjBmD0aNHq88pLS0NI0eOTMi5dOGyUu4of0aCZWCMgjQ5iwZc+F4E+gwFq2wy6o+J28SiQOnp6bDb7Zqybfm/wIU+Zihz0gBg0KBBuOSSSzBgwICYBu2hCLZ4iNw2xXK6ishGmw3+iPdJ3oMw1IQDyx17gLhYZ2Zm+n1gRGmUvNmn0ag/ELjcMZSFQ8w+JLm5uZgwYULYWZiUlBQ19R/pHmlCvIO03kbspRIvoWTSok3/GZF/Hjt2LEaMGBFwVUmjhUPk1RhDGfE1C9IGDhyIY8eOobW1VV3mWX6NQs2kDRw4EG1tbRg4cCCOHz+uOXd9Y2y0yl04pW/ysT6fz+885UyZmP8gVsh0Op1Byx0DTbBOT09Heno6kpKS1I2DxfVVzFcSE7lDzZpkZGTg9OnTfSKTJl5DsRCEzG63a/aFC7cjrs+kiRU95fe3oKAA1dXV8Hq9QfdIE0aMGIHhw4dHfO3QB2XhBmlWyx1FSWlra6vmc5TIQVpaWhomT54c79PoEVbKHeUFu4INyumrmQCoq22LfdSM5iGZlbeb3b9R9ln8TgxQiQEmfZAmX8vk66o4H6urZufm5vZYWaoVYjqBWZAm79Maz76jfjXicNolZtJ6gFmpI9D9JZVHJ4xGl41+1pesBAvS5AuJWeNns9mQn58fdqM9atQojBgxQg08zZ5HKMQFqi+N6PVl8QzSzBpcwHilLiuZNDloCGVuSXJysjoSK3eSnU6n2tiJic2RzElzOBwYMWIEMjMzDTNp8jL3RnvzGHU0gpGPNSp51Adh+kAw0MIh+vM3er6XXXYZpkyZonZM5CBNvNbhdMhFB6cvBGnBskfRmJcmfw7kwQw5SHc6nWoJXSiZ6GhcN/Tfn3BH1K1m0oALS3VXVFQAMA6SKT6sVBWJ70ugRUP0x8rXNdEZ11eymH1uAn0mxfXNaNBc/5kSx+rLHY2qAuTBu946+G22wqN4XxNlDp1ZfzwUzKT1gKamJjgcDtP5N0OGDEF1dTUURTGcpyEYdeZEGZHZfixGCyHEquOclZWlXlCiNSetoKAAiqJEtEIP9Rx9kNaTjUCgQY1gx4sRN7lESu54imWpQzF8+HCUlZVh0KBBmttzcnJw9uzZqJQ7Gj0feRRR3C4CNH3jJXc0RCYkGPla4vV6/RpC/Sq1Zll//WR6sWBEoCBNlpGRgXPnzmk2xhbXv3A65KKj097eDq/X22s7MIC1IK21tTVqQRrQ3TEUm8DKj11SUgKXyxXV+adWxCKTFmhOGtAdpJ04cUJ9DRI5i9bfWCl3FANrVvbV0g90yFu16AckzD43gT6TBQUFyMnJCVjuKBhl0uTVJWV2ux0ZGRkYMGBA3OauR8qo3LGsrAwnT57E1KlTI9q8Ppr0QVo458MgrQd0dHQEnOzscrkwaNAgnD59OuBIur5TI8qI2tvbTUf79QsHhLvCVaiilUlzOBwYPHhwNE6JeoD+s5UomTQj+uBI7JMjeL3esEodhQEDBmjKHgX9dSCShUNkRvvEAf77LQL+WS4x2GOlI6sP0sx+L15Ls86M3JERr73b7VZLeII9f/3Kc8nJyZqALVRiY/euri60trb22g4MEHwkORqZNHkxkI6ODvV91T+2zWZDYWFh2I8TLv33Pxpz0oKVPqalpSEtLU19LRikJQ79AKJ8m5Cfn4+ZM2da+qzov0Mia5Wenu7XDwun3FGs1hzosQURpIktFMQWKUbbbIiFmMQebr2Rvl8LdJea+nw+NDc3q+9rvDNpcmk5EF6QxnLHHpKUlBTwDSotLUV2djaKi4s1fyMzS82LCaFOp9PvmHh1mqOVSaPexWzxjp4QSSZNnvsoZ59D3SPNiszMTNPR+aSkJHVltVAbGH0mTV/SIm/oLTJmcs2+1ZLHUMsdxahvR0cHvF6vGoTpR5tFx0OM/gZr0PRBmtPpxMCBA5Gbmxv2wI54n+Wl/HujYJ0Co/0AjSiKYrqKpz5bJDqpiTKKrV+UoScyaTabTTMnuKezh2ROzqQJZosTWako0JeKy4NPgRZPs1ruaOWxAe3KvjabTf3Mff31137H6s+lt9KXO8oDqkYrpceTnPUM57VnkNZDgs2pcrlcmDJliqY0KlinU3wAxQIERqMuwYK2WIlWJo16l0TKpIUSpOm3kACgZqmB6AZpdrtdk6XRn2dpaSlGjhwZ8v2K+9EvECQacBF46DsGoWRVfD6fpmOvz6TJ8z3E44hR3vPnz6sdebHIh0x09sPNpIlyx0mTJhlmMK3QT/SuqqrC8ePHe90G18HKHfWfFTOHDh3C9u3b/QJ4uWRMdArb2to0tydCBynUOZ5GQgnSgO7V8MRWAom6R1p/ZNQ2RbKXqH5OmpxJA7T9sXDKHQOx2+3q9VO/VYAY6JcXrAu0YFZvpC93lFeXNdpzOJ4imcIAMEjrMeF8GYNl0vTL9ydSkMZMWv8UzyBN/zkLpdzRqDPndrtjEqQB2jKoaL1GZoM64r8i+NFfi0JZPESfedEHaeI+5AVLxDyPlpYWv46MTJ91sBJky+9LNIICcQ3t6OiAz+dT5zkYlQ0lsmAjyUZZBT2fz4f6+nq43W7NFjHAhY6pzWZTBxza2to0n49E6CDJ5xDrJfiF9PR0TJkyBZdccklEQQBFV7TbJv3ibfoybrPtQPSVE5E+vj5IGzBggCYwSE9P73NBmj6TZhakJcJAUSTbwgAM0npMLII0/WadRkFavMrPmEnrn+JZ7thbMmmANkiL1mtkFqTpM2lmCypYyaTpAzl9kCYvGiI6qGlpabDb7fB6vaivrwdgHKQFmqtnRnRQ9PMJwyVn0jo6OtQMmtlSz4lIzmaZvSZWgjSx+AAAvyBV7gSJdkcuOQpnqelYkD/r4XbYbDabpjxYCNTGZWVl9dgmzWRNtNsm+fPU3t6ufkdEkBbLTBpwYVBLXzVgt9s1K4bLm1yL3/d2+jlp8iqWLHeksISzhHywckf9fRoFafqFQljuSLEU73JHuWMYaSZNXpAnFkGaONdYB2lWM2lWgjT9MfpOvn5lR6D7GiSCKXnzVb2UlJSQR3zF/TidzqgEBXImTQQcQPCywEQiB9KRBGly9swsSEtOTobDcWEjZzGfMBE6R0B0MmmA/3cJMA/YKDHprw+Rvmc2m029doptlpKTk/3m4uofKxpz0gBg5MiR+OY3v2m46bYcpKWnp2uCtL7wWdWXO+qDNJY7UsgizaQZ1U/r79Os/t3sAhFLcrlTX7gokDXxzKTJjy+PfpsJlklrbGwEEN7y+8E4HA7k5eXB4Qi+aWoo9ynTz0nTzxUTQil3DJZJM2scRUdCZGaMgjQg9AyjCP6itY+inEmTg7TelEmTR5HNvgORBmkiWBffFdH2iL9JhM4REJ05aYB2OwuBA5G9SywGrMX1oqamBoB2MSSzIC1ambRA1QMulwvjxo3DyJEj+0W5oxykdXZ29qlyx8S4kvYD4XxYxOpUPp/P8Iulv0+zTTPjkUkDuvcaaW5ujlonlBJfPDNpwIU9wRwOR9AgzWzlN3EhFaOjYvPpaJswYQK8Xm/UOrTByh2Fnih31D+GfrTXLEjLyclBbW2t5vwDGTBgAEpKSqL2Holgw+12axr+3phJC/S5CjVI03829J0gl8uF8+fP9/lMmtVyR0pMoj8FROc9Ky4uxpEjR9TvinxdkwfNYzEnLRh5Q21xXvLgeW8mZ9LkFYOB7muaGFRKhOtQJNvqAAzSeky4Hxaxx5HRl9lKuSMQv8Zk/PjxAPzLDKjvineQps8eBSIaLK/Xa5hJE2IVpEVrHpVglsU0m8sqRJJJs1LuCGiDtJSUFNPnLWfSrL6HpaWlQY+zSiyd7fV61SAd6F2ZNCujyMGCNJ/P5zc6HegxRNsjr96ZCMR5RDpHzuVyob29XZORYLlj7xPt96ywsBC1tbXqSopWMmnR2BYiVMnJyRgzZkzEK1omCnlOmliTwel0qvNxxaBSImT0mUnrJcItxwlUMqgf/Tf7AMSj3BFgcNYfxbvcMdQS22HDhqGlpUUzAqr/HsUqSIu2YOWOQiwzaWZZHLF4iM/nM82iAd2d4fT0dLS3t5tWBsSay+VCa2trr52TZmXSfLAgraWlRbPtQKA5acCFIE38TSJ0joAL5xFpZ/jiiy9GR0eH3wIM+fn5cLvdUSu3pdiKdlWRzWbD6NGjsXv3biiKorm2paSkIDk5GYqixCWTpifPU+vt5HJHecVgfZl6IgwWibJz/efAqsS4kvYDkWTSAPNNF4VA+7HEq9yR+p/elEkDgJKSEr/b5O9qenp6r+mABVs4RIhknzR5o2xRaiIzCxDE4iHByp9tNhumTJkCr9cbtwY2JSVFk0UCemcmLZJyR1G+lZmZifPnz8PtdsPn86l/ZzYnTUiEzhFw4bMd6fkkJSX5LXUOdJcsU+8Ri+xneno6xo8fj5aWFr+tVaZNm2b6uHa7nRnYMMnljuJanZaWBkVRNEFaIgwW2Ww2pKeno7W1Nax9E+P/DPqJWARp8n0GevPjlUmj/ifeQVo0FquRL+y9JYsGhD8nTXRkvV6vpiMuE8GXCABEtsnn80FRFJw9exaZmZmm5Y5A9xyJlpYWDBw4MODzCFQV0BOMrqW9KZMWjXJHEaTl5eWp73NnZ6da7mdW7igkQucI6P7+FhcXB/3MUf8QqxLVgQMHGn7GjAb4xOMmykBGbySXO8qZNLnSw+FwJEx/95JLLoHb7Q6rOiQxrqT9QKQbaRpdUGw2G5xOJ9xut+VMGkduKJbiXe5otApbqOTval8I0oLNSROLrCiKgq6uLr9ricfjwY4dO/wGhVpbW+H1enH27Fns378f+fn5pitIAsDgwYMxePDg8J9gDzFqSHtTJi3SckePx6NulZCZmYmUlBR1Hyh9kCY6ofrXLFE6oA6HA6NHj473aVCCSISqoszMTBQXF/vtC0nWyUGanPWXN7VOlGsQ0H2dDLciJzHCzD4uKSkp7AtCoEwaYD6SKWMmjXpKomTSIhnJFxdTm83WqxrScOek2Ww2tZMtN3JCU1MT3G432tra1N+L4+WVtZqamhJqE9Fw9ZVMWrjljmVlZejq6kJqairy8vIMy2H15Y767Gdvfv+p70qEAWsxj01efZFCI19r3G63Wk4f6Z5kiYg99h4QSYMVLEgTI5tG9fICgzTqKfLny8peZbF6/EgaYLES1sUXX9yrLvRWVnfU7xUk5OTkALiwN5xMXopdEIGMz+dTgwIRyAG9u4Hs7Zm0SModz507h1OnTgGAuhqcvHec+BvxepiV3Pfm95/6rkQI0ihy+lUq09PTYbfbA67S3Fuxx94DIvmwDBo0CJmZmRg0aJDh78eMGYNJkyYFHPFPhBQ/9Q/6z1pPB2niuxbpYh9FRUXIz8+Pxin1GP0eOEZZRbMNjvPy8gBALXOTBQrSvF6vZh5AoDlpvYUcbIjPU2/KpEVS7lhZWQmg+/MvAnd9kCYm5jscDs37bPS6ESUS9oX6DvnaI7Z46YtBWu9tSXuRSD4sWVlZmDp1qunvrdS6ctNN6inxbgSHDh2K5OTkPrXccCjsdrua5RDBmMie+Xw+02uRmHvX2tqKjo4OzZLq+pX+7Ha7ej9er1cNCmS9uYGUM2kZGRlobGzslZk0q+WOiqKonxURiMmLIJgFaWlpaZqAn0EaJTpm0voOh8OhXuuMgrTePFAo41BCD4h3g8VyR+op8W4EU1JSMGzYsLh/5+JFLnGUO9DB9otyOp3IysoCoC157OrqQldXF2w2G8aMGYOkpCRkZWWpjyOXO8p6cwNps9mQmZkJu92uvia9JZOmKEpI5Y6A9rkZZUL1QZooaZU3dga0QRo7wJSI4t0+UfTI7x8zaRSReH9Y4p3doP6Dn7X4MlvR0cqyz3l5eWhubkZDQwNyc3Nht9vVLFpaWhoyMjIwffp0OBwONZuiL3cEzOe99SaTJk2Cx+PBuXPnAPSeOWkiMwaEFqTJm8Pq/zZQJk0mgjSzklqieGP71HeIgSS73a5uIi5ft+Ld744WBmk9IN4fFmbSqKfInTOOVPa8YBtYB8pw5eXl4cSJE6ivr0d9fT0cDoc6V01klMS1TFxHjModk5KSen0nXaxWGGw/sUQi9jMDggfKYr6ooijq38gLgsifE3l1R0VRTDNpIvsYaBEronji1I++Q7x/GRkZ6rVOlOK73e5eXc0h6xvPIsElUpDGCxPFkjz/iQMCPU98v81Wegx0LRJ7YomMidfrxZkzZ9TfGd2fUbljvK930STvx5PI2trasGvXLjU4tpLNEvMXRZAmB9tGQZoopTTLpKWkpGDGjBlsYyhhsdyx7xDvn75tSklJgdvtjnjxsETBIK0HxLvTwhQ/9SQGafETLJMW6Fpks9lw6aWXor29HS6XC3v37lUDNrMgDbjQuRcLi/SVEUwg8H5iiUTsVWel1FEwC9L08xntdjtSU1PR3t6OxsZGdY80fSbN6uMSxQv7Qn1HXl4eGhsbNYscAcCIESNw9uxZdXXa3q7vtKYJLN4NF8sdqSdFY68yCo9ZkFZcXAyPxxN0W4GUlBR1DtKECROwd+9eOBwOteZfMLqO5Obm9rkgrbdk0sT5JScnw+FwmG7ZItMHoIGW7s/NzUV7eztOnjypPk5fep+pf2Amre8oKipCYWGhX8VAXl6eWqbfF/Aq2wPiHaRx9Ih6klnJHcWe2WsfTsOVmZmJyy67zHB+k1zWKh530KBBOH36tN/IZm/WWzJpIsDKyMjAJZdcYulvzII0o+BrwIABOHXqlLqQjFEWjSjRsS/Ut/T2uc9WMEjrAfEO0jgnjXoSM2nxE+3XPlBn3OFwqB18p9OJjIwMzJgxIyqPmyh6WyYtlPddH6QF2l8tJydHE5Tr56MR9QbMpFFvw6GEHhDvERuWO1JPkldaop4lOtg90QGR3994D0TFin7T50QVjSAtULmjw+HQzPFgJo16IwZp1NuwF9UPMMVPPYlBWvwMGjQIeXl5KCwsjPljyZ2cvjo/STxHRVF6RZAWyvsQSrkj0F3yKDCTRr2R+MzbbLZ+USpHvV/fbFlJQ963iKNHFGssd4yftLQ0y3OSIiW/v309kwYgoVcsjXW5IwDNnEZm0qg3YttEvQ2DtH7A4XBg3LhxQTc4JYoGZtL6h/5Q7ihG3BVFgdfrTdiMobx8vlWhZtJSU1MxePBguN1uZtKoV2KQRr1NYrY4FHVWlmQmigazZeCpb+kP5Y5iYEveTywRxXpOmjBq1KhwT5Eo7sT2IuK/RImub7asRBQ3Q4YMgcPh6FNLsZO//lDuCHQ/T6/Xm9ArPEYzSOurATdRWloaJk2axHJd6jXiXo+0evVqlJaWwuVyYerUqfjkk08CHv/CCy9g3LhxSE1NxZgxY7B+/XrN791uN5YvX46RI0fC5XJh0qRJeO+99zTHnD9/HgsXLkRJSQlSU1Mxc+ZM7Nq1S3PM3XffrZa6iH+XX355dJ40UR+WlZWFMWPGIDk5Od6nQjHUH8odgd6xV1o0Fg4JNieNqC/Izc2Fy+WK92kQWRLXq/GmTZuwcOFCrF69GrNmzcJLL72EuXPn4tChQxg2bJjf8WvWrMHixYvxyiuv4LLLLsPOnTvxwAMPIDc3FzfccAMAYMmSJdi4cSNeeeUVjB07Fu+//z5uuukmbNu2DVOmTAEA3H///Thw4AA2bNiA4uJibNy4Ed/97ndx6NAhDB48WH28a6+9FuvWrVN/ZqeTiKhbfyh3BHrHXmk9MSeNiIh6VlwzaatWrcJ9992H+++/H+PGjcMzzzyDoUOHYs2aNYbHb9iwAQ8++CAWLFiAESNG4LbbbsN9992Hp556SnPML37xC8ybNw8jRozAj370I1xzzTVYuXIlAKC9vR2bN2/Gb3/7W3zrW9/CRRddhGXLlqG0tNTvcVNSUlBYWKj+k1e3IiLqz/pLuWNvyqTFek4aERH1nLgFaV1dXdizZw/mzJmjuX3OnDnYtm2b4d90dnb6palTU1Oxc+dOtVTD7JitW7cC6G6IvF5vwGOEf/zjHxg0aBBGjx6NBx54AHV1dQGfU2dnJ5qbmzX/iIj6ImbSEkckQZpYFCWckkkiIoqduAVp9fX18Hq9KCgo0NxeUFCA2tpaw7+55ppr8Oqrr2LPnj1QFAW7d+/G2rVr4Xa7UV9frx6zatUqHDt2DD6fD1u2bME777yDmpoaAEBmZiZmzJiBX/3qVzh16hS8Xi82btyIHTt2qMcAwNy5c/H73/8ef//737Fy5Urs2rUL3/72t9HZ2Wn6nFasWIHs7Gz139ChQyN9mYiIEhLnpCUGsT0AEFqAJQI6n8+nZtFCvQ8iIoqduC8cot/1XVEU053gly5dirlz5+Lyyy+H0+nE/PnzcffddwO40OA8++yzGDVqFMaOHYvk5GT8+Mc/xj333KMZYdywYQMURcHgwYORkpKC5557DrfffrvmmAULFuC6667DhAkTcMMNN+Cvf/0rjh49ir/85S+mz2Xx4sVoampS/1VVVYX7shARJTRm0hKDoihQFAVA+OWO8pw2s/aXiIh6VtyCtPz8fDgcDr+sWV1dnV92TUhNTcXatWvR1taGEydOoLKyEsOHD0dmZiby8/MBAAMHDsTbb7+N1tZWVFRU4PDhw8jIyEBpaal6PyNHjsTHH3+MlpYWVFVVqeWS8jF6RUVFKCkpwbFjx0yPSUlJQVZWluYfEVFfJAKCpKSkPt2xT/RMmpwFizRI68sZUSKi3iZuQVpycjKmTp2KLVu2aG7fsmULZs6cGfBvnU6nuhfTm2++ieuvv15TegMALpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvGx4jNDQ0oKqqCkVFRSE8SyKivklcc/t6xz7RM2nivOx2e0jBslGQ1pczokREvU1cr8iLFi3CnXfeiWnTpmHGjBl4+eWXUVlZiYceeghAd/lgdXW1uhfa0aNHsXPnTkyfPh2NjY1YtWoVDhw4gDfeeEO9zx07dqC6uhqTJ09GdXU1li1bBp/Ph8cff1w95v3334eiKBgzZgyOHz+Oxx57DGPGjME999wDAGhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abburBV4iIKDGJxZf6+sawiZ5JC2fREED7vLhHGhFR4onrFXnBggVoaGjA8uXLUVNTgwkTJuDdd99FSUkJAKCmpgaVlZXq8V6vFytXrsSRI0fgdDoxe/ZsbNu2DcOHD1eP6ejowJIlS1BWVoaMjAzMmzcPGzZsQE5OjnpMU1MTFi9ejJMnTyIvLw+33HILfvOb36gjwg6HA/v378f69etx7tw5FBUVYfbs2di0aRMyMzN75LUhIkpkmZmZmDRpEtLT0+N9KjHVWzJpoQZYzKQRESU2myJmHFPUNTc3Izs7G01NTZyfRkTUC1VUVKC8vBxFRUUYM2ZM6HfQ2go8/bT2tsceA6IU3J49exb79u1DRkYGpk2bFtbfDRw4MLLnSEREloQSG8R9dUciIqJEleiZNHllxlAwk0ZElNgYpBEREZngnDQiIooHBmlEREQmEj2TFo0gjZk0IqLEwyCNiIjIRG/JpEWycEhnZyeA7r0+iYgoMTBIIyIiMtEfMmkM0oiIEg+DNCIiIhOJnkmLxsIhXV1dAC7sfUdERPHHII2IiMhEX8+kyT9zThoRUeJgkEZERGQi0TNpkc5JE1wuF2w2W9TOi4iIIsNhMyIiIhOJmklrbGxEUlJS2Jk0fUDG+WhERImFQRoREZEJOZOmKEpCZJs6Ozuxb98+OBwOdR5ZOEGa3W5XM4Scj0ZElFhY7khERGRCDn4SpeSxtbUViqLA4/GgpaUFQOhBmv5vGKQRESUWBmlEREQm5LlbiVLy2N7e7ndbOEGa/NxY7khElFgYpBEREZkQZYFAYgdp4azMKAdpzKQRESUWBmlEREQBJNriIcykERH1fQzSiIiIAhBZKgZpRETUUxikERERBZBImTRFUdQgLSMjQ709kiAtOTnZb980IiKKL16ViYiIAkikIK2jowOKosBut6OgoABAd7AVztYAIjDjfDQiosTDII2IiCiARArSRBbN5XIhNzcXQPiliiJIY6kjEVHi4WbWREREASRikJaamoqMjAxMmDAh4iCNmTQiosTDII2IiCiARAzS0tLSAAD5+flh35cIzuS5bURElBgYpBEREQWQiEFaampqxPc1fPhwDBgwANnZ2RHfFxERRReDNCIiogASKUhra2sDEJ0gzeFwICcnJ+L7ISKi6OPCIURERAEkSpCmKAo6OjoARCdIIyKixMUgjYiIKIBECdLcbjcURQHAFRmJiPo6BmlEREQBJEqQ5vP5AIS/LxoREfUeDNKIiIgCSJQgTTy+WDqfiIj6Ll7piYiIAki0IE2cDxER9V0M0oiIiAJIlCBNlDsySCMi6vsYpBEREQWQKEEayx2JiPoPXumJiIgCSJQgjZk0IqL+g0EaERFRACIo8ng86hL48cBMGhFR/8ErPRERUQBy5kpks+KBmTQiov6DQRoREVEAclAUz5JHru5IRNR/MEgjIiIKwGazqSWGiRCksdyRiKjv45WeiIgoiERYPITljkRE/QeDNCIioiASIUhjJo2IqP/glZ6IiCiIRAjSmEkjIuo/GKQREREFkQhBGhcOISLqPxikERERBZGUlAQgMYI0ljsSEfV9vNITEREFkQiZNJY7EhH1HwzSiIiIgkiEII2ZNCKi/iPuV/rVq1ejtLQULpcLU6dOxSeffBLw+BdeeAHjxo1DamoqxowZg/Xr12t+73a7sXz5cowcORIulwuTJk3Ce++9pznm/PnzWLhwIUpKSpCamoqZM2di165dmmMURcGyZctQXFyM1NRUXHXVVTh48GB0njQREfUqiRCkMZNGRNR/xDVI27RpExYuXIgnnngCe/fuxRVXXIG5c+eisrLS8Pg1a9Zg8eLFWLZsGQ4ePIhf/vKXeOSRR/DnP/9ZPWbJkiV46aWX8Lvf/Q6HDh3CQw89hJtuugl79+5Vj7n//vuxZcsWbNiwAfv378ecOXPw3e9+F9XV1eoxv/3tb7Fq1So8//zz2LVrFwoLC3H11Vfj/PnzsXtBiIgoISVCkMaFQ4iI+g+boihKvB58+vTpuPTSS7FmzRr1tnHjxuHGG2/EihUr/I6fOXMmZs2ahaefflq9beHChdi9eze2bt0KACguLsYTTzyBRx55RD3mxhtvREZGBjZu3Ij29nZkZmbinXfewXXXXaceM3nyZFx//fX49a9/DUVRUFxcjIULF+JnP/sZAKCzsxMFBQV46qmn8OCDD1p6fs3NzcjOzkZTUxOysrJCe3GIiChhVFRUoLy8HEVFRRgzZoz1P2xtBaQ2CwDw2GNAenrI57Bt2zZ0dXVh6tSpyMzMDPnviYgovkKJDeKWSevq6sKePXswZ84cze1z5szBtm3bDP+ms7MTLpdLc1tqaip27twJt9sd8BgRxHk8Hni93oDHlJeXo7a2VnNuKSkpuPLKK03PTTx2c3Oz5h8REfV+iZBJY7kjEVH/Ebcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTAwDIzMzEjBkz8Ktf/QqnTp2C1+vFxo0bsWPHDvUY8fihnBsArFixAtnZ2eq/oUOHhvfiEBFRQkmEII0LhxAR9R9xv9LbbDbNz4qi+N0mLF26FHPnzsXll18Op9OJ+fPn4+677wZwoQF99tlnMWrUKIwdOxbJycn48Y9/jHvuuUcz8rhhwwYoioLBgwcjJSUFzz33HG6//Xa/0clQzg0AFi9ejKamJvVfVVWV5deBiIgSV7yDNJ/PBzE7gZk0IqK+L25BWn5+PhwOh19mqq6uzi+DJaSmpmLt2rVoa2vDiRMnUFlZieHDhyMzMxP5+fkAgIEDB+Ltt99Ga2srKioqcPjwYWRkZKC0tFS9n5EjR+Ljjz9GS0sLqqqq1HJJcUxhYSEAhHRuQHdJZFZWluYfERH1fokQpOnPhYiI+q64BWnJycmYOnUqtmzZorl9y5YtmDlzZsC/dTqdGDJkCBwOB958801cf/31fuUfLpcLgwcPhsfjwebNmzF//ny/+0lPT0dRUREaGxvx/vvvq8eUlpaisLBQc25dXV34+OOPg54bERH1PfEO0uTHDVTRQUREfUNSPB980aJFuPPOOzFt2jTMmDEDL7/8MiorK/HQQw8B6C4frK6uVvdCO3r0KHbu3Inp06ejsbERq1atwoEDB/DGG2+o97ljxw5UV1dj8uTJqK6uxrJly+Dz+fD444+rx7z//vtQFAVjxozB8ePH8dhjj2HMmDG45557AHQ3gAsXLsSTTz6JUaNGYdSoUXjyySeRlpaG22+/vQdfISIiSgTxDtLkRUMYpBER9X1xDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTnqMU1NTVi8eDFOnjyJvLw83HLLLfjNb34Dp9OpHvP444+jvb0dDz/8MBobGzF9+nR88MEHXPaYiKgfineQxkVDiIj6l7juk9bXcZ80IqK+obOzE9u3bwcAXHnlldazWVHaJ625uRmff/45XC4XLr/88pD+loiIEkOv2CeNiIiot5AX65AX8egpIpPGRUOIiPoHBmlERERByMFRPEoeWe5IRNS/8GpPREQUhM1mUwM1j8fT448vLxxCRER9H4M0IiIiC5KSutfaYiaNiIhijVd7IiIiC5hJIyKinsIgjYiIyIJEyKQxSCMi6h8YpBEREVkQz0wayx2JiPoXXu2JiIgsiGcmjeWORET9C4M0IiIiC0SAxIVDiIgo1ni1JyIiskBk0rhwCBERxRqDNCIiIgsSIZPGII2IqH9gkEZERGRBPDNpLHckIupfeLUnIiKyIJ6ZNJY7EhH1LwzSiIiILOAS/ERE1FNCvtq3t7ejra1N/bmiogLPPPMMPvjgg6ieGBERUSLhEvxERNRTQg7S5s+fj/Xr1wMAzp07h+nTp2PlypWYP38+1qxZE/UTJCIiSgSJkEljkEZE1D+EHKR9/vnnuOKKKwAAf/rTn1BQUICKigqsX78ezz33XNRPkIiIKBHEM5PGckciov4l5Kt9W1sbMjMzAQAffPABbr75Ztjtdlx++eWoqKiI+gkSERElgnhm0ljuSETUv4QcpF100UV4++23UVVVhffffx9z5swBANTV1SErKyvqJ0hERJQIRCbN5/NBUZQee1xFUZhJIyLqZ0K+2v/Lv/wLfvrTn2L48OGYPn06ZsyYAaA7qzZlypSonyAREVEikLNYPVnyKLJo+nMgIqK+KynUP/je976Hb37zm6ipqcGkSZPU27/zne/gpptuiurJERERJQq73Q673Q6fzwePx6Nm1mKNQRoRUf8TcgvT1NSE5ORkv6zZRRdd1GMNFhERUTw4HA74fL4ezaTJpY42m63HHpeIiOIn5HLH2267DW+++abf7X/84x9x2223ReWkiIiIEpEYjOzJxUO4/D4RUf8TcpC2Y8cOzJ492+/2q666Cjt27IjKSRERESUiESjFI5PGII2IqP8IOUjr7Ow0HEF0u91ob2+PykkRERElonhm0riyIxFR/xHyFf+yyy7Dyy+/7Hf7iy++iKlTp0blpIiIiBIRM2lERNQTQl7p4ze/+Q2++93v4ssvv8R3vvMdAMDf/vY37Nq1Cx988EHUT5CIiChRxGNDa25kTUTU/4ScSZs1axa2b9+OoUOH4o9//CP+/Oc/46KLLsK+fftwxRVXxOIciYiIEoIod2QmjYiIYimsNfMnT56M3//+99E+lz6rq6sLXV1d8T4NIiKKkKIo8Hq96OjosHZd7+qCQxfQebu6AKfT8mN2dHTA6/VCURS2JUREvVgo13BLQVpzczOysrLU/w9EHEcXrFy5Ei6XK96nQUREPczZ1YWZn36quW2bzwd3cnKczoiIiOKlo6PD8rGWgrTc3FzU1NRg0KBByMnJMdxMU1EU2Gy2Hi0BISIiIiIi6mssBWl///vfkZeXBwD46KOPYnpCfdH/+3//jxlGIqI+4PTp0zh69Chyc3MxYcKE4H/Q2gqHbun8mYsWAenplh/z66+/xqlTpzB06FAMHz48xDMmIqJE0dzcjH/7t3+zdKylIO3KK69U/7+0tBRDhw71y6YpioKqqqoQTrP/SE5ORjJLW4iIej2XywWHwwGbzWbtuu52A7oFPxzJyUAIbYLNZoPD4UBKSgrbEiKiXiyUa3jIqzuWlpbizJkzfrefPXsWpaWlod4dERFRrxGPzay5BD8RUf8TcpAm5p7ptbS0cHEMIiLq07iZNRER9QTLS/AvWrQIQHfZxdKlS5GWlqb+zuv1YseOHZg8eXLUT5CIiChRxCOTxiCNiKj/sRyk7d27F0B3Jm3//v2amsrk5GRMmjQJP/3pT6N/hkRERAnC/v8vAiJKEHsCgzQiov7HcpAmVnW855578Oyzz3K1QiIi6ndEoOTz+UzL/6NNBGl2e8gzFIiIqJcK+Yq/bt06TYDW3NyMt99+G4cPH47qiRERESUaOVDqqWwaM2lERP1PyEHarbfeiueffx4A0N7ejmnTpuHWW2/FxIkTsXnz5qifIBERUaKIR5DG1R2JiPqfkIO0//3f/8UVV1wBAHjrrbegKArOnTuH5557Dr/+9a+jfoJERESJwmazqSWOPbXCIzNpRET9T8hBWlNTE/Ly8gAA7733Hm655RakpaXhuuuuw7Fjx0I+gdWrV6O0tBQulwtTp07FJ598EvD4F154AePGjUNqairGjBmD9evXa37vdruxfPlyjBw5Ei6XC5MmTcJ7772nOcbj8WDJkiUoLS1FamoqRowYgeXLl2tGRe+++261MRb/Lr/88pCfHxER9S3yvLRYUxSFmTQion7I8sIhwtChQ7F9+3bk5eXhvffew5tvvgkAaGxsDHmftE2bNmHhwoVYvXo1Zs2ahZdeeglz587FoUOHMGzYML/j16xZg8WLF+OVV17BZZddhp07d+KBBx5Abm4ubrjhBgDAkiVLsHHjRrzyyisYO3Ys3n//fdx0003Ytm0bpkyZAgB46qmn8OKLL+KNN97AxRdfjN27d+Oee+5BdnY2Hn30UfXxrr32Wqxbt079OZRdwomIqG/qyRUe5WwdgzQiov4j5CBt4cKFuOOOO5CRkYGSkhJcddVVALrLICdOnBjSfa1atQr33Xcf7r//fgDAM888g/fffx9r1qzBihUr/I7fsGEDHnzwQSxYsAAAMGLECHz22Wd46qmn1CBtw4YNeOKJJzBv3jwAwI9+9CO8//77WLlyJTZu3AgA2L59O+bPn4/rrrsOADB8+HD853/+J3bv3q15vJSUFBQWFob0nIiIqG8TQVpPlDvKj9ETK0kSEVFiCLnc8eGHH8b27duxdu1abN26VW2sRowYEdKctK6uLuzZswdz5szR3D5nzhxs27bN8G86Ozv9snWpqanYuXMn3G53wGO2bt2q/vzNb34Tf/vb33D06FEAwJdffomtW7eqgZ3wj3/8A4MGDcLo0aPxwAMPoK6uzvLzIyKivqknyx3l+WgM0oiI+o+QM2kAMG3aNEybNk1zm8hKWVVfXw+v14uCggLN7QUFBaitrTX8m2uuuQavvvoqbrzxRlx66aXYs2cP1q5dC7fbjfr6ehQVFeGaa67BqlWr8K1vfQsjR47E3/72N7zzzjua0cif/exnaGpqwtixY+FwOOD1evGb3/wGP/jBD9Rj5s6di+9///soKSlBeXk5li5dim9/+9vYs2cPUlJSDM+vs7MTnZ2d6s/Nzc0hvSZERJT44lHuyFJHIqL+xVKQtmjRIvzqV79Ceno6Fi1aFPDYVatWhXQC+pHBQJuDLl26FLW1tbj88suhKAoKCgpw991347e//a3agD377LN44IEHMHbsWNhsNowcORL33HOPZm7Zpk2bsHHjRvzhD3/AxRdfjC+++AILFy5EcXEx7rrrLgBQSyoBYMKECZg2bRpKSkrwl7/8BTfffLPh+a1YsQK//OUvQ3r+RETUu/RkkMZFQ4iI+idLQdrevXvVcsK9e/dG5YHz8/PhcDj8smZ1dXV+2TUhNTUVa9euxUsvvYTTp0+jqKgIL7/8MjIzM5Gfnw8AGDhwIN5++210dHSgoaEBxcXF+PnPf47S0lL1fh577DH8/Oc/x2233QYAmDhxIioqKrBixQo1SNMrKipCSUlJwBUsFy9erAlim5ubMXToUGsvCBER9QoiYOrJOWkM0oiI+hdLQdpHH31k+P+RSE5OxtSpU7FlyxbcdNNN6u1btmzB/PnzA/6t0+nEkCFDAABvvvkmrr/+es0GowDgcrkwePBguN1ubN68Gbfeeqv6u7a2Nr/jHQ5HwFHRhoYGVFVVoaioyPSYlJQU01JIIiLqG1juSEREsRbywiH33nsvzp8/73d7a2sr7r333pDua9GiRXj11Vexdu1afPXVV/jJT36CyspKPPTQQwC6M1M//OEP1eOPHj2KjRs34tixY9i5cyduu+02HDhwAE8++aR6zI4dO/Bf//VfKCsrwyeffIJrr70WPp8Pjz/+uHrMDTfcgN/85jf4y1/+ghMnTuCtt97CqlWr1GCxpaUFP/3pT7F9+3acOHEC//jHP3DDDTcgPz9fE1ASEVH/wyCNiIhiLeSFQ9544w3827/9GzIzMzW3t7e3Y/369Vi7dq3l+1qwYAEaGhqwfPly1NTUYMKECXj33XdRUlICAKipqUFlZaV6vNfrxcqVK3HkyBE4nU7Mnj0b27Ztw/Dhw9VjOjo6sGTJEpSVlSEjIwPz5s3Dhg0bkJOTox7zu9/9DkuXLsXDDz+Muro6FBcX48EHH8S//Mu/AOhuDPfv34/169fj3LlzKCoqwuzZs7Fp0ya/501ERP1LPJbg11d/EBFR32ZTFEWxcmBzczMURUFubi6OHTuGgQMHqr/zer3485//jJ///Oc4depUzE62t2lubkZ2djaampqQlZUV79MhIqIoOHbsGKqrq1FSUqKZ72yotRV4+mntbY89BqSnW3qsyspKlJWVoaCgAOPGjQvzjImIKBGEEhtYzqTl5OTAZrPBZrNh9OjRfr+32Wxc2ZCIiPo8ru5IRESxZjlI++ijj6AoCr797W9j8+bNyMvLU3+XnJyMkpISFBcXx+QkiYiIEkU8yh0ZpBER9S+Wg7Qrr7wSAFBeXo6hQ4eyPp6IiPolETBx4RAiIoqVkBcOEYt6tLW1obKyEl1dXZrfX3LJJdE5MyIiogTE1R2JiCjWQg7Szpw5g3vuuQd//etfDX/fE+UfRERE8cLVHYmIKNZCvuovXLgQjY2N+Oyzz5Camor33nsPb7zxBkaNGoX//u//jsU5EhERJQyWOxIRUayFnEn7+9//jnfeeQeXXXYZ7HY7SkpKcPXVVyMrKwsrVqzAddddF4vzJCIiSggsdyQiolgLOZPW2tqKQYMGAQDy8vJw5swZAMDEiRPx+eefR/fsiIiIEgyX4CciolgLOUgbM2YMjhw5AgCYPHkyXnrpJVRXV+PFF19EUVFR1E+QiIgokYiAiUvwExFRrIRc7rhw4ULU1NQAAP71X/8V11xzDX7/+98jOTkZr7/+erTPj4iIKKGw3JGIiGIt5CDtjjvuUP9/ypQpOHHiBA4fPoxhw4YhPz8/qidHRESUaOIRpHF1RyKi/iXkq/7y5cvR1tam/pyWloZLL70U6enpWL58eVRPjoiIKNH01BL8iqIwk0ZE1E+FHKT98pe/REtLi9/tbW1t+OUvfxmVkyIiIkpUPbUEv6Iofo9JRET9Q8hBmqIosNlsfrd/+eWXyMvLi8pJERERJSqRSVMURRNIRZucqWO5IxFR/2J5Tlpubi5sNhtsNhtGjx6tCdS8Xi9aWlrw0EMPxeQkiYiIEoUcMHm9XiQlhTy92xKRqbPZbAzSiIj6GcstyzPPPANFUXDvvffil7/8JbKzs9XfJScnY/jw4ZgxY0ZMTpKIiChRyAFTLEseOR+NiKj/shyk3XXXXQCA0tJSzJo1K2Yjh0RERIlMZLZ8Pl+PBGnMohER9T+WIy3RGF155ZXqbadPn8aLL76I1tZW/NM//RO++c1vxuQkiYiIEokI0mK5wqMIAJlJIyLqfywHaffddx+cTidefvllAMD58+dx2WWXoaOjA0VFRfiP//gPvPPOO5g3b17MTpaIiCgROBwOeDweljsSEVFMWK6h+PTTT/G9731P/Xn9+vXweDw4duwYvvzySyxatAhPP/10TE6SiIgokfTEhtYsdyQi6r8sX/mrq6sxatQo9ee//e1vuOWWW9QFRO666y4cPHgw+mdIRESUYHoiSGO5IxFR/2U5SHO5XGhvb1d//uyzz3D55Zdrfm+0yTUREVFfI4K0WM5JYyaNiKj/snzlnzRpEjZs2AAA+OSTT3D69Gl8+9vfVn//9ddfo7i4OPpnSERElGBEdouZNCIiigXLC4csXboU8+bNwx//+EfU1NTg7rvvRlFRkfr7t956C7NmzYrJSRIRESWSnpyTxiCNiKj/sRykzZ49G3v27MGWLVtQWFiI73//+5rfT548Gd/4xjeifoJERESJhuWOREQUSyHtSD1+/HiMHz/e8Hf/5//8n6icEBERUaJjuSMREcUSh+eIiIhCxHJHIiKKJQZpREREIWK5IxERxRKv/ERERCFiuSMREcUSgzQiIqIQsdyRiIhiiUEaERFRiHqi3FEEgCx3JCLqfyyv7jhixAhLx5WVlYV9MkRERL0BM2lERBRLloO0EydOoKSkBLfffjsGDRoUy3MiIiJKaD0xJ40LhxAR9V+Wg7Q333wT69atw6pVqzB37lzce++9mDdvHhsPIiLqd3oik8aFQ4iI+i/LEdatt96Kv/71rzh+/DimTp2Kn/zkJxgyZAh+/vOf49ixY7E8RyIiooTSk0vwM0gjIup/Qk6DDR48GE888QSOHTuG//zP/8SOHTswduxYNDY2xuL8iIiIEg7LHYmIKJYslzvKOjo68Kc//Qlr167Fjh078P3vfx9paWnRPjciIqKEFOtyR0VRoCgKAGbSiIj6o5CCtB07duC1117Dpk2bMHLkSNx7773YvHkzcnNzY3V+RERECSfW5Y7y/TJIIyLqfywHaRdffDHq6upw++2345NPPsEll1wSy/MiIiJKWElJ3c1nTwRpNpstJo9BRESJy3KQ9tVXXyE9PR3r16/Hhg0bTI87e/ZsVE6MiIgoUYnsltfrhaIoUQ+k5JUdGaQREfU/loO0devWxfI8iIiIeg2RSVMUBT6fL+oliVw0hIiof7McpN11112xPA8iIqJeQw6ePB5P1IM07pFGRNS/hTxEpygKdu/ejT/96U/YvHkzPv/8c3UFqnCsXr0apaWlcLlcmDp1Kj755JOAx7/wwgsYN24cUlNTMWbMGKxfv17ze7fbjeXLl2PkyJFwuVyYNGkS3nvvPc0xHo8HS5YsQWlpKVJTUzFixAgsX75cs0qXoihYtmwZiouLkZqaiquuugoHDx4M+3kSEVHfYbPZYjovjXukERH1byGt7vjRRx/hvvvuQ0VFhRqY2Ww2lJaWYu3atfjWt74V0oNv2rQJCxcuxOrVqzFr1iy89NJLmDt3Lg4dOoRhw4b5Hb9mzRosXrwYr7zyCi677DLs3LkTDzzwAHJzc3HDDTcAAJYsWYKNGzfilVdewdixY/H+++/jpptuwrZt2zBlyhQAwFNPPYUXX3wRb7zxBi6++GLs3r0b99xzD7Kzs/Hoo48CAH77299i1apVeP311zF69Gj8+te/xtVXX40jR44gMzMzpOdJRER9j8PhgMfjgcfjifp9s9yRiKh/sykW02DHjx/HpEmTMH36dDz66KMYO3YsFEXBoUOH8Nxzz2H37t3Yt28fRowYYfnBp0+fjksvvRRr1qxRbxs3bhxuvPFGrFixwu/4mTNnYtasWXj66afV2xYuXIjdu3dj69atAIDi4mI88cQTeOSRR9RjbrzxRmRkZGDjxo0AgOuvvx4FBQV47bXX1GNuueUWpKWlYcOGDVAUBcXFxVi4cCF+9rOfAQA6OztRUFCAp556Cg8++KCl59fc3Izs7Gw0NTUhKyvL8utCRESJb9euXWhtbcWkSZPMt6JpbQWkNgsA8NhjQHp6wPuuq6vDoUOHkJOTg8mTJ0fnhImIKK5CiQ0sD9E988wzuPzyy/H3v/8d8+fPx5gxYzB27FjcfPPN+OijjzB9+nT8x3/8h+WT7Orqwp49ezBnzhzN7XPmzMG2bdsM/6azsxMul0tzW2pqKnbu3Am32x3wGBHEAcA3v/lN/O1vf8PRo0cBAF9++SW2bt2KefPmAQDKy8tRW1urObeUlBRceeWVpucmHru5uVnzj4iI+iZR7hjLTBrLHYmI+ifLQdo//vEPLFy40PB3NpsNCxcuxEcffWT5gevr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj171Llxa9euhdvtRn19vXrMqlWrcOzYMfh8PmzZsgXvvPMOampq1Pv52c9+hh/84AcYO3YsnE4npkyZgoULF+IHP/gBAKiPH8q5AcCKFSuQnZ2t/hs6dKjl14OIiHoXEUCx3JGIiKLN8tW/srISEydONP39hAkTUFFREfIJ6Pd/CbTfzNKlSzF37lxcfvnlcDqdmD9/Pu6++24AFxrLZ599FqNGjcLYsWORnJyMH//4x7jnnns0o5GbNm3Cxo0b8Yc//AGff/453njjDfz7v/873njjjbDPDQAWL16MpqYm9V9VVZXl14GIiHqXWC4cwtUdiYj6N8tBWktLC9LS0kx/n5aWhra2NssPnJ+fD4fD4ZeZqqur88tgCampqVi7di3a2tpw4sQJVFZWYvjw4cjMzER+fj4AYODAgXj77bfR2tqKiooKHD58GBkZGSgtLVXv57HHHsPPf/5z3HbbbZg4cSLuvPNO/OQnP1HnwRUWFgJASOcGdJdEZmVlaf4REVHfxEwaERHFSkirOx46dMi03E+UG1qVnJyMqVOnYsuWLbjpppvU27ds2YL58+cH/Fun04khQ4YAAN58801cf/31fg2Zy+XC4MGD4Xa7sXnzZtx6663q79ra2vyOdzgc6shlaWkpCgsLsWXLFnVFyK6uLnz88cd46qmnQnqeRETUNzGTRkREsRJSkPad73zHcE80m80WtBTQyKJFi3DnnXdi2rRpmDFjBl5++WVUVlbioYceAtBdPlhdXa3uhXb06FHs3LkT06dPR2NjI1atWoUDBw5oyhR37NiB6upqTJ48GdXV1Vi2bBl8Ph8ef/xx9ZgbbrgBv/nNbzBs2DBcfPHF2Lt3L1atWoV7771XfT4LFy7Ek08+iVGjRmHUqFF48sknkZaWhttvvz2k50hERH0TFw4hIqJYsRyklZeXR/3BFyxYgIaGBixfvhw1NTWYMGEC3n33XZSUlAAAampqUFlZqR7v9XqxcuVKHDlyBE6nE7Nnz8a2bdswfPhw9ZiOjg4sWbIEZWVlyMjIwLx587Bhwwbk5OSox/zud7/D0qVL8fDDD6Ourg7FxcV48MEH8S//8i/qMY8//jja29vx8MMPo7GxEdOnT8cHH3zAPdKIiAgAyx2JiCh2LO+TRqHjPmlERH1XbW0tDh8+jLy8PFxyySXGB4W5T9rBgwdx5swZjBo1CoMHD47SGRMRUTzFZJ+0trY2PPLIIxg8eDAGDRqE22+/PeR5aERERH1FT2TSWO5IRNQ/WQ7S/vVf/xWvv/46rrvuOtx2223YsmULfvSjH8Xy3IiIiBJWLBcOYbkjEVH/ZnlO2n/913/htddew2233QYA+Od//mfMmjULXq+XI31ERNTvxDKTxtUdiYj6N8tDdFVVVbjiiivUn7/xjW8gKSkJp06dismJERERJTJm0oiIKFYsX/29Xi+Sk5M1tyUlJcVkBJGIiCjRyUvwR3sNLmbSiIj6N8vljoqi4O6770ZKSop6W0dHBx566CGkS6tU/dd//Vd0z5CIiCgByQGU1+tVg7ZoYCaNiKh/s9yi3HXXXX63/fM//3NUT4aIiKi3sNvtsNlsUBQl6kGayKQxSCMi6p8styjr1q2L5XkQERH1KjabDQ6HAx6PBx6PR1NpEimWOxIR9W8coiMiIgpTLBYPURRFnePGTBoRUf/Eqz8REVGY5MVDokVk0QAGaURE/RWv/kRERGGKxV5pDNKIiIhXfyIiojDFotxRBGk2mw02my1q90tERL0HgzQiIqIwxTKTxiwaEVH/xRaAiIgoTLHMpDFIIyLqv9gCEBERhYmZNCIiigW2AERERGGK5eqODNKIiPovtgBERERhYrkjERHFAlsAIiKiMLHckYiIYoEtABERUZiYSSMiolhgC0BERBQmZtKIiCgW2AIQERGFSQRpzKQREVE0sQUgIiIKkwjSRGAVDQzSiIiILQAREVGYmEkjIqJYYAtAREQUJjmTpihKVO6TQRoREbEFICIiCpMcSEUrm8YgjYiI2AIQERGFiUEaERHFAlsAIiKiMNlstqjPS2OQRkREbAGIiIgiEO0VHhmkERERWwAiIqIIMJNGRETRxhaAiIgoAgzSiIgo2tgCEBERRUAEUwzSiIgoWtgCEBERRSDamTRxPwzSiIj6L7YAREREEWC5IxERRRtbACIioghwdUciIoo2tgBEREQRYCaNiIiijS0AERFRBGIVpIn7JSKi/odBGhERUQS4uiMREUUbWwAiIqIIsNyRiIiijS0AERFRBLhwCBERRRtbACIioghEM5OmKAqDNCIiYpBGREQUiWgHaQKDNCKi/ivuLcDq1atRWloKl8uFqVOn4pNPPgl4/AsvvIBx48YhNTUVY8aMwfr16zW/d7vdWL58OUaOHAmXy4VJkybhvffe0xwzfPhw2Gw2v3+PPPKIeszdd9/t9/vLL788ek+ciIj6hGgGaXLJJIM0IqL+KymeD75p0yYsXLgQq1evxqxZs/DSSy9h7ty5OHToEIYNG+Z3/Jo1a7B48WK88soruOyyy7Bz50488MADyM3NxQ033AAAWLJkCTZu3IhXXnkFY8eOxfvvv4+bbroJ27Ztw5QpUwAAu3bt0jSmBw4cwNVXX43vf//7mse79tprsW7dOvXn5OTkWLwMRETUi0VzdUc5SLPZbBHfHxER9U5xHaZbtWoV7rvvPtx///0YN24cnnnmGQwdOhRr1qwxPH7Dhg148MEHsWDBAowYMQK33XYb7rvvPjz11FOaY37xi19g3rx5GDFiBH70ox/hmmuuwcqVK9VjBg4ciMLCQvXf//zP/2DkyJG48sorNY+XkpKiOS4vLy82LwQREfVascik2e12BmlERP1Y3IK0rq4u7NmzB3PmzNHcPmfOHGzbts3wbzo7O+FyuTS3paamYufOnXC73QGP2bp1q+l5bNy4Effee69fg/iPf/wDgwYNwujRo/HAAw+grq4u4HPq7OxEc3Oz5h8REfVt0VzdkYuGEBEREMcgrb6+Hl6vFwUFBZrbCwoKUFtba/g311xzDV599VXs2bMHiqJg9+7dWLt2LdxuN+rr69VjVq1ahWPHjsHn82HLli145513UFNTY3ifb7/9Ns6dO4e7775bc/vcuXPx+9//Hn//+9+xcuVK7Nq1C9/+9rfR2dlp+pxWrFiB7Oxs9d/QoUNDeEWIiKg3kjNp8sIf4WCQRkREQAIsHKLPXimKYlrisXTpUsydOxeXX345nE4n5s+frwZXopF89tlnMWrUKIwdOxbJycn48Y9/jHvuuUf9vd5rr72GuXPnori4WHP7ggULcN1112HChAm44YYb8Ne//hVHjx7FX/7yF9PnsnjxYjQ1Nan/qqqqrL4MRETUS4n2RVEUBmlERBQVcWsF8vPz4XA4/LJmdXV1ftk1ITU1FWvXrkVbWxtOnDiByspKDB8+HJmZmcjPzwfQPd/s7bffRmtrKyoqKnD48GFkZGSgtLTU7/4qKirw4Ycf4v777w96vkVFRSgpKcGxY8dMj0lJSUFWVpbmHxER9W1yQBXpvDQGaUREBMQxSEtOTsbUqVOxZcsWze1btmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9BcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXdd0PNtaGhAVVUVioqKLDw7IiLqL+RFPhikERFRNMR1Cf5FixbhzjvvxLRp0zBjxgy8/PLLqKysxEMPPQSgu3ywurpa3Qvt6NGj2LlzJ6ZPn47GxkasWrUKBw4cwBtvvKHe544dO1BdXY3Jkyejuroay5Ytg8/nw+OPP655bJ/Ph3Xr1uGuu+5CUpL2ZWhpacGyZctwyy23oKioCCdOnMAvfvEL5Ofn46abborxq0JERL2Nw+GAx+NhkEZERFER1yBtwYIFaGhowPLly1FTU4MJEybg3XffRUlJCQCgpqYGlZWV6vFerxcrV67EkSNH4HQ6MXv2bGzbtg3Dhw9Xj+no6MCSJUtQVlaGjIwMzJs3Dxs2bEBOTo7msT/88ENUVlbi3nvv9Tsvh8OB/fv3Y/369Th37hyKioowe/ZsbNq0CZmZmTF5LYiIqPcSQVqkKzwySCMiIgCwKZHOciZTzc3NyM7ORlNTE+enERH1YTt37kRbWxsmT56sHRRsbQWeflp78GOPAenphvdTW1uLw4cPIy8vD5dccknsTpiIiHpcKLEBh+qIiIgiFK0NrZlJIyIigEEaERFRxBikERFRNLEVICIiipAIqhikERFRNLAVICIiihAzaUREFE1xXd2RiIioLxBBWrirO7a2tuLcuXNqkMcgjYiof2OQRkREFKFIM2nHjx9HY2MjUlJSADBIIyLq79gKEBERRSjSIM3tdgMAOjs7ATBIIyLq79gKEBERRSjSIE1fJskgjYiof2MrQEREFKFIV3dkkEZERDK2AkRERBGKdOEQBmlERCRjK0BERBQhljsSEVE0sRUgIiKKkAjSPB5PWH+vD9LE/RERUf/EII2IiChCTqcTQHhBmqIozKQREZEGWwEiIqIIiSBNLKUfCkVR/G5jkEZE1L+xFSAiIoqQnEkzCroCkbNoBQUFcDqdSE9Pj+r5ERFR75IU7xMgIiLq7ZKSLjSnbrcbycnJlv9WDtLGjh0LALDZbNE7OSIi6nWYSSMiIoqQzWZTA7VQSx5FkGaz2dR/RETUvzFIIyIiioJw56WJII3z0IiISGCLQEREFAXhrvDIII2IiPTYIhAREUVBuJk0sdAIgzQiIhLYIhAREUUByx2JiCha2CIQERFFQaQLhzBIIyIigS0CERFRFDCTRkRE0cIWgYiIKAoYpBERUbSwRSAiIooCru5IRETRwhaBiIgoCphJIyKiaGGLQEREFAUM0oiIKFrYIhAREUWBvLqj2PvMCgZpRESkxxaBiIgoCkQmDQhtXhqDNCIi0mOLQEREFAV2ux0OhwNAaCWPDNKIiEiPLQIREVGUhLPCI4M0IiLSY4tAREQUJeEsHsIgjYiI9NgiEBERRQmDNCIiiga2CERERFHCII2IiKKBLQIREVGUyMvwW8UgjYiI9NgiEBERRQkzaUREFA1sEYiIiKIkkiDNZrPF5JyIiKj3YZBGREQUJaLc0ev1Wv4bZtKIiEiPLQIREVGUiM2sGaQREVEk2CIQERFFiQi0ROBlBYM0IiLSY4tAREQUJcykERFRNMS9RVi9ejVKS0vhcrkwdepUfPLJJwGPf+GFFzBu3DikpqZizJgxWL9+veb3brcby5cvx8iRI+FyuTBp0iS89957mmOGDx8Om83m9++RRx5Rj1EUBcuWLUNxcTFSU1Nx1VVX4eDBg9F74kRE1OeIQItBGhERRSKuLcKmTZuwcOFCPPHEE9i7dy+uuOIKzJ07F5WVlYbHr1mzBosXL8ayZctw8OBB/PKXv8QjjzyCP//5z+oxS5YswUsvvYTf/e53OHToEB566CHcdNNN2Lt3r3rMrl27UFNTo/7bsmULAOD73/++esxvf/tbrFq1Cs8//zx27dqFwsJCXH311Th//nyMXg0iIurtRCaN5Y5ERBQJm6IoSrwefPr06bj00kuxZs0a9bZx48bhxhtvxIoVK/yOnzlzJmbNmoWnn35avW3hwoXYvXs3tm7dCgAoLi7GE088ocmK3XjjjcjIyMDGjRsNz2PhwoX4n//5Hxw7dgw2mw2KoqC4uBgLFy7Ez372MwBAZ2cnCgoK8NRTT+HBBx+09Pyam5uRnZ2NpqYmZGVlWfobIiLqvTo7O7F9+3bYbDZceeWVQGsrILVZAIDHHgPS09Uft27dCo/Hg2984xtIS0vr4TMmIqKeEkpsELdhu66uLuzZswdz5szR3D5nzhxs27bN8G86Ozvhcrk0t6WmpmLnzp3qnjRmx4ggzug8Nm7ciHvvvVfdo6a8vBy1tbWac0tJScGVV15pem5EREQiG6YoCqyOgTKTRkREenFrEerr6+H1elFQUKC5vaCgALW1tYZ/c8011+DVV1/Fnj17oCgKdu/ejbVr18LtdqO+vl49ZtWqVTh27Bh8Ph+2bNmCd955BzU1NYb3+fbbb+PcuXO4++671dvE44dybkB3gNjc3Kz5R0RE/YcodwSszUtTFIVBGhER+Yl7iyCyV4KiKH63CUuXLsXcuXNx+eWXw+l0Yv78+WpwJRrGZ599FqNGjcLYsWORnJyMH//4x7jnnns0Dafstddew9y5c1FcXBzRuQHAihUrkJ2drf4bOnSo6bFERNT3yG2ElXlpcraNQRoREQlxaxHy8/PhcDj8MlN1dXV+GSwhNTUVa9euRVtbG06cOIHKykoMHz4cmZmZyM/PBwAMHDgQb7/9NlpbW1FRUYHDhw8jIyMDpaWlfvdXUVGBDz/8EPfff7/m9sLCQgAI6dwAYPHixWhqalL/VVVVBX8hiIioz7DZbCEtwy8HcgzSiIhIiFuLkJycjKlTp6orKwpbtmzBzJkzA/6t0+nEkCFD4HA48Oabb+L666/3a9xcLhcGDx4Mj8eDzZs3Y/78+X73s27dOgwaNAjXXXed5vbS0lIUFhZqzq2rqwsff/xxwHNLSUlBVlaW5h8REfUvoSzDLwdpgSo1iIiof0mK54MvWrQId955J6ZNm4YZM2bg5ZdfRmVlJR566CEA3Zmp6upqdS+0o0ePYufOnZg+fToaGxuxatUqHDhwAG+88YZ6nzt27EB1dTUmT56M6upqLFu2DD6fD48//rjmsX0+H9atW4e77roLSUnal8Fms2HhwoV48sknMWrUKIwaNQpPPvkk0tLScPvtt8f4VSEiot7M4XDA7XZ3B2AmpfaCPB+NQRoREQlxDdIWLFiAhoYGLF++HDU1NZgwYQLeffddlJSUAABqamo0e6Z5vV6sXLkSR44cgdPpxOzZs7Ft2zYMHz5cPaajowNLlixBWVkZMjIyMG/ePGzYsAE5OTmax/7www9RWVmJe++91/DcHn/8cbS3t+Phhx9GY2Mjpk+fjg8++ACZmZlRfx2IiKjv0JQ7hhCkERERCXHdJ62v4z5pRET9z549e3D+/HlMnDgRA1yugPuktbS0YPfu3UhOTg5a6k9ERL1br9gnjYiIqC8KZ+EQZtKIiEjGVoGIiCiKwlk4hEEaERHJ2CoQERFFkcikWdknjUEaEREZYatAREQURSx3JCKiSLFVICIiiiIRcDGTRkRE4WKrQEREFEXMpBERUaTYKhAREUURFw4hIqJIsVUgIiKKIi4cQkREkWKrQEREFEUsdyQiokglxfsEqLshd7vd8T4NoqCcTqfaASUiY1w4hIiIIsUgLY4URUFtbS3OnTsX71MhsiwnJweFhYWw2WzxPhWihBROJo3fJyIikjFIiyMRoA0aNAhpaWlspCmhKYqCtrY21NXVAQCKiorifEZEiYmZNCIiihSDtDjxer1qgDZgwIB4nw6RJampqQCAuro6DBo0iKWPRAY4J42IiCLFViFOxBy0tLS0OJ8JUWjEZ5bzKImMcQl+IiKKFFuFOGOJI/U2/MwSBcYl+ImIKFJsFYiIiKIolHJHRVEAMEgjIiIttgrUp5w4cQI2mw1ffPFFzB9r2bJlmDx5cswfh4h6F3nhEBGEmWEmjYiIjLBVoJDcfffdsNlssNlscDqdGDFiBH7605+itbUVwIUgSfzLzMzExRdfjEceeQTHjh3T3Nfrr78Om82GcePG+T3OH//4R9hsNgwfPjzmz+mqq67CwoULY/44RNQ/iEyaoihBgzSRbWOQRkREMrYKFLJrr70WNTU1KCsrw69//WusXr0aP/3pTzXHfPjhh6ipqcGXX36JJ598El999RUmTZqEv/3tb5rj0tPTUVdXh+3bt2tuX7t2LYYNGxbz50JEFG1ywBWs5FH8niulEhGRjEFaAlEUBV1dXT3+L9hIr15KSgoKCwsxdOhQ3H777bjjjjvw9ttva44ZMGAACgsLMWLECMyfPx8ffvghpk+fjvvuu0/TaUlKSsLtt9+OtWvXqredPHkS//jHP3D77bcHPZedO3diypQpcLlcmDZtGvbu3et3zKFDhzBv3jxkZGSgoKAAd955J+rr6wF0ZwY//vhjPPvss2r278SJEyG9HrJ169Zh3LhxcLlcGDt2LFavXq3+bsaMGfj5z3+uOf7MmTNwOp346KOPwn5MIkosdrtdXWAn2OIh4vcM0oiISMZ90hKI2+3GihUrevxxFy9ejOTk5LD/PjU1Nehy7Ha7HY8++ihuuukm7NmzB9/4xjfU391333341re+hWeffRZpaWl4/fXXce2116KgoCDgfba2tuL666/Ht7/9bWzcuBHl5eV49NFHNcfU1NTgyiuvxAMPPIBVq1ahvb0dP/vZz3Drrbfi73//O5599lkcPXoUEyZMwPLlywEAAwcODOt1eOWVV/Cv//qveP755zFlyhTs3bsXDzzwANLT03HXXXfhjjvuwNNPP40VK1aoHbhNmzahoKAAV155ZViPSUSJyeFwwOPxMJNGRERhYSaNIrJz50784Q9/wHe+852gx44dOxYA/DJVkydPxsiRI/GnP/0JiqLg9ddfx7333hv0/n7/+9/D6/Vi7dq1uPjii3H99dfjscce0xyzZs0aXHrppXjyyScxduxYTJkyBWvXrsVHH32Eo0ePIjs7G8nJyUhLS0NhYSEKCwvD7iz96le/wsqVK3HzzTejtLQUN998M37yk5/gpZdeAgAsWLAAp06dwtatW9W/+cMf/oDbb7+d81GI+hh58ZBAOCeNiIiMMJOWQJxOJxYvXhyXxw3F//zP/yAjIwMejwdutxvz58/H7373u6B/J8oqjfbZuvfee7Fu3ToMGzYMLS0tmDdvHp5//vmA9yfmuckbgs+YMUNzzJ49e/DRRx8hIyPD7++//vprjB49Ouh5W3HmzBlUVVXhvvvuwwMPPKDe7vF4kJ2dDaA7Q3f11Vfj97//Pa644gqUl5dj+/btWLNmTVTOgYgSh9Vl+FnuSERERhikJRCbzRZR2WFPmT17NtasWQOn04ni4mLLQd5XX30FACgtLfX73R133IHHH38cy5Ytww9/+EMkJQX/aFqZS+fz+XDDDTfgqaee8vtdUVGRhbO2RnS0XnnlFUyfPl3zO7nzdccdd+DRRx/F7373O/zhD3/AxRdfjEmTJkXtPIgoMYjMWKAgTVEUljsSEZEhBmkUsvT0dFx00UUh/Y3P58Nzzz2H0tJSTJkyxe/3eXl5+Kd/+if88Y9/xIsvvmjpPsePH48NGzagvb0dqampAIDPPvtMc8yll16KzZs3Y/jw4aaBX3JysqVNZwMpKCjA4MGDUVZWhjvuuMP0uBtvvBEPPvgg3nvvPfzhD3/AnXfeGdHjElFiEkFXoHJH+XcsdyQiIhlbBYqJhoYG1NbWoqysDP/93/+N7373u9i5cydee+010xHj119/HfX19erctWDEXK777rsPhw4dwrvvvot///d/1xzzyCOP4OzZs/jBD36AnTt3oqysDB988AHuvfdeNTAbPnw4duzYgRMnTqC+vl7tOI0dOxZvvfWW5ee8bNkyrFixQl2MZP/+/Vi3bh1WrVqlHpOeno758+dj6dKl+OqrrzQrWP7whz+MS7krEUWflXJH+XfMpBERkYxBGsXEd7/7XRQVFWHixIn4+c9/jnHjxmHfvn2YPXu26d+kpqZiwIABlh8jIyMDf/7zn3Ho0CFMmTIFTzzxhF9ZY3FxMT799FN4vV5cc801mDBhAh599FFkZ2erI9c//elP4XA4MH78eAwcOBCVlZUAgCNHjqCpqcny+dx///149dVX8frrr2PixIm48sor8frrr/uVd95xxx348ssvccUVV2j2gqusrERNTY3lxyOixCWuL4HKssWAkLxkPxEREQDYlFA3ySLLmpubkZ2djaamJmRlZWl+19HRgfLycpSWlsLlcsXpDIlCx88uUXCHDh1CXV0dRhUXY/Af/qD95WOPAenpaG1txa5du+B0OjFr1qz4nCgREfWYQLGBHjNpREREUWZlCX4uv09ERGbYMhAREUWZlTlpXH6fiIjMMEgjIiKKMitL8HP5fSIiMsMgjYiIKMpE4HX+/HmcPXsWbrfb7xiWOxIRkRm2DET/X3t3Hldzvv8B/HU67YuypE6kRSj7kowiNRNlzXLJviTGDBczY5s7Lo1JY4sGU3cYlTGuZYRxQ6SxLxPRDGqUFDI1/SwJaVGf3x9u3+uoKDp18Ho+Hucxzvf7+X6/n8+7M+ec9/ksXyKialaapOXm5iI3N7fclWLZk0ZERBVhkkZERFTNjI2NIZPJXjg3jXPSiIioIpq1XQEiIqK3TZ06deDq6op7GRnIBfDkyZMyZdiTRkREFWFPGhERkQrIZDJoa2sDKL8njXPSiIioIvxkICIiUhEdHR0AT4c2CiGU9nG4IxERVYRJGlElREREwMTE5LXOYW1tjeDg4GqpDxG9GTQ1/zer4PneNA53JCKiijBJoyoZP348ZDIZZDIZtLS0YGtri1mzZuHRo0cAgPT0dGm/TCaDkZERWrVqhalTpyIlJUXpXBEREZDJZHBwcChzne3bt0Mmk8Ha2vqV6yqTybB79+4qH1deMuXj44Pk5ORKHV9RQnf27FlMnjy5yvUhojeXTCaTErXn56UxSSMiooowSaMq8/LyQmZmJq5du4aAgACEhIRg1qxZSmUOHTqEzMxM/PbbbwgMDERSUhLatWuH2NhYpXIGBgbIzs7G6dOnlbaHhYWhSZMmKm9LZenp6aFhw4avdQ5TU1Po6+tXU42I6E1R0QqPnJNGREQV4SeDGhFCoLi4uMYfz8+TeBkdHR2Ym5vD0tISI0eOxKhRo8r0WNWvXx/m5uawtbWFt7c3Dh06hC5dumDixIlKX1Q0NTUxcuRIhIWFSdsyMjJw5MgRjBw58oX1KCwsxLRp06BQKKCrqwtra2t8/fXXACD1wA0aNEipRy41NRXe3t4wMzODoaEhOnfujEOHDknndHNzw/Xr1/HJJ59IvYFA2d6x3377De7u7jAyMkKdOnXQqVMnnDt3DkeOHMGECRNw//596Xh/f3+pTs/20OXk5GDy5MkwMzODrq4uWrdujaioKADA9evX0b9/f9StWxcGBgZo1aoV9u3b99K/DRGpn4qSNM5JIyKiinAJfjVSUlKC48eP1/h1u3fv/lpfEvT09FBUVPTCMhoaGpgxYwYGDRqE+Ph4ODk5SfsmTpwIV1dXfPPNN9DX10dERAS8vLxgZmb2wnOuXr0ae/bswfbt29GkSRPcvHkTN2/eBPB0aGHDhg0RHh4OLy8vqX0PHz5Enz59EBAQAF1dXWzcuBH9+/fHlStX0KRJE+zcuRPt2rXD5MmTMWnSpAqvPWrUKHTo0AGhoaGQy+VISEiAlpYWnJ2dERwcjAULFuDKlSsAAENDwzLHl5SUoHfv3njw4AF+/PFHNG3aFImJiVI9p06disLCQhw7dgwGBgZITEws9zxEpP443JGIiKqq1nvSQkJCYGNjA11dXXTq1OmlScq3334LBwcH6OnpoUWLFvjhhx+U9hcVFWHRokVo2rQpdHV10a5dO0RHR5c5z61btzB69GjUr18f+vr6aN++PeLj46X9z869Kn2899571dPot0hcXBz+/e9/44MPPnhpWXt7ewBP5609q3379mjatCl27NgBIQQiIiLg6+v70vPduHEDzZo1Q7du3WBlZYVu3bphxIgRAJ4OLQQAExMTmJubS8/btWuHDz/8EG3atEGzZs0QEBAAW1tb7NmzBwBQr149yOVyGBkZwdzcHObm5hVe28PDA/b29mjWrBmGDh2Kdu3aQVtbW7qJbenx5SVXhw4dQlxcHHbu3ImePXvC1tYW/fr1Q+/evaXzu7i4oE2bNtI+V1fXl8aEiNQPhzsSEVFV1WpP2rZt2zBz5kyEhITAxcUF3333HXr37o3ExMRy5yOFhobi888/x/r169G5c2fExcVh0qRJqFu3Lvr37w8AmD9/Pn788UesX78e9vb2OHDgAAYNGoRTp06hQ4cOAIB79+7BxcUF7u7u2L9/Pxo2bIjU1NQyiz14eXkhPDxcel56vxtV0dDQQPfu3VV6jYquWxVRUVEwNDTEkydPUFRUBG9vb6xZs+alx5UOqywdQvgsX19fhIeHo0mTJlJv19q1a194vvHjx6Nnz55o0aIFvLy80K9fP/Tq1euFxzx69AhffvkloqKi8Oeff+LJkyd4/Pgxbty48dL6P+vTTz+Fn58fNm3aBA8PDwwdOhRNmzat9PEJCQlo3LgxmjdvXu7+6dOn46OPPsLBgwfh4eGBIUOGoG3btlWqIxGph5claexJIyKi59Xqz3crV67ExIkT4efnBwcHBwQHB8PS0hKhoaHllt+0aRM+/PBD+Pj4wNbWFsOHD8fEiROxdOlSpTL/+Mc/0KdPH9ja2uKjjz6Cp6cngoKCpDJLly6FpaUlwsPD4eTkBGtra3zwwQdlvmSXzr0qfdSrV081gfgvmUwGuVxe44/ykqYXcXd3R0JCAq5cuYL8/Hzs3LmzUotqJCUlAQBsbGzK7Bs1ahTOnDkDf39/jB07VmnZ6op07NgRaWlp+Oqrr/D48WMMGzYMf/vb3154zOzZsxEZGYnFixfj+PHjSEhIQJs2bVBYWPjS6z3L398fly9fRt++ffHLL7+gZcuW2LVrV6WP19PTe+F+Pz8/XLt2DWPGjMHFixfh6OhYqUSYiNQP56QREVFV1VqSVlhYiPj4+DI9H7169cKpU6fKPaagoAC6urpK2/T09BAXFyfNiaqozIkTJ6Tne/bsgaOjI4YOHYqGDRuiQ4cOWL9+fZnrHTlyBA0bNkTz5s0xadIkZGdnv7BNBQUFyM3NVXq8jQwMDGBnZwcrKytoaWlV6piSkhKsXr0aNjY2Uo/ms+rVq4cBAwbg6NGjlRrqWKpOnTrw8fHB+vXrsW3bNkRGRuLu3bsAAC0trTJfio4fP47x48dj0KBBaNOmDczNzcsMv9TW1i5zXHmaN2+OTz75BAcPHsTgwYOlXtfKHN+2bVtkZGS8cFl/S0tLTJkyBTt37sRnn31W7muUiNQf56QREVFV1VqSdvv2bRQXF5dZHMLMzAxZWVnlHuPp6Ynvv/8e8fHxEELg3LlzCAsLQ1FREW7fvi2VWblyJVJSUlBSUoKYmBj8/PPPyMzMlM5z7do1hIaGolmzZjhw4ACmTJmC6dOnK81v6927NzZv3oxffvkFQUFBOHv2LN5//30UFBRU2Kavv/4axsbG0sPS0vJ1QvRGu3PnDrKysnDt2jXs2bMHHh4eiIuLw4YNGyr8QhIREYHbt29Lc9deZtWqVdi6dSv++OMPJCcn46effoK5ubk0bNXa2hqxsbHIysrCvXv3AAB2dnbYuXMnEhIS8Ntvv2HkyJHSr9mlrK2tcezYMdy6dUt6XT3r8ePHmDZtGo4cOYLr16/j5MmTOHv2rHS/N2trazx8+BCxsbG4ffs28vLyypyjR48ecHV1xZAhQxATE4O0tDTs379fmj85c+ZMHDhwAGlpaTh//jx++eWXcu8nR0Tqr/Q9Twih9H7DOWlERFSRWv9keH6onRCiwuF3//znP9G7d2+899570NLSgre3N8aPHw/gfx+C33zzDZo1awZ7e3toa2tj2rRpmDBhglJiUFJSgo4dOyIwMBAdOnTAhx9+iEmTJikNs/Tx8UHfvn3RunVr9O/fH/v370dycjL27t1bYVs+//xz3L9/X3qUrjT4LvLw8IBCoUCbNm0wb948ODg44Pfff4e7u3uFx+jp6aF+/fqVvoahoSGWLl0KR0dHdO7cGenp6di3b5/0hScoKAgxMTGwtLSUeu9WrVqFunXrwtnZGf3794enpyc6duyodN5FixYhPT0dTZs2lRYceZZcLsedO3cwduxYNG/eHMOGDUPv3r3x5ZdfAgCcnZ0xZcoU+Pj4wNTUFMuWLSu3/pGRkejcuTNGjBiBli1bYs6cOdKXtuLiYkydOhUODg7w8vJCixYtEBISUunYEJH60NDQkD7XCgoKcP36dRQWFkrzdNmTRkREz5OJqt4kq5oUFhZCX18fP/30EwYNGiRtnzFjBhISEnD06NEKjy0qKsJff/0FhUKBdevWYe7cucjJyVH6NTI/Px937tyBhYUF5s2bh6ioKFy+fBkAYGVlhZ49e+L777+XyoeGhiIgIAC3bt2q8LrNmjWDn58f5s6dW6k25ubmwtjYGPfv30edOnWU9uXn5yMtLU1a2ZLoTcHXLlEVPHoELF+OjIwMPHnyBDKZDNeHDUOj5s2lH/JcXV3Zm0ZE9A54UW7wvFr7VNDW1kanTp0QExOjtD0mJgbOzs4vPFZLSwuNGzeGXC7H1q1b0a9fvzIfcLq6umjUqBGePHmCyMhIeHt7S/tcXFyke1iVSk5OhpWVVYXXvHPnDm7evAmFQlHZJhIREQH437y00t9FHz58KO2r6uJNRET09qvVJfg//fRTjBkzBo6OjujatSvWrVuHGzduYMqUKQCeDh+8deuWNFcsOTkZcXFx6NKlC+7du4eVK1fi0qVL2Lhxo3TOX3/9Fbdu3UL79u1x69Yt+Pv7o6SkBHPmzJHKfPLJJ3B2dkZgYCCGDRuGuLg4rFu3DuvWrQPw9MPT398fQ4YMgUKhQHp6Ov7xj3+gQYMGSr1+RERElfH8kMbSJO1VVtglIqK3X60maT4+Prhz5w4WLVqEzMxMtG7dGvv27ZN6tDIzM5XuX1VcXIygoCBcuXIFWlpacHd3x6lTp2BtbS2Vyc/Px/z583Ht2jUYGhqiT58+2LRpk9I90Dp37oxdu3bh888/x6JFi2BjY4Pg4GCMGjUKwNMPzYsXL+KHH35ATk4OFAoF3N3dsW3bNhgZGdVIbIiI6O1RuhJu6X9LVyTmfDQiIipPrc1JexdwThq9jfjaJaqC/85JKykpwePHj6Gjo4NTLi4o+e+9EvX09NClS5dariQREdWEqsxJq9WeNCIioneBhoYGDAwMADydn1b4zHYiIqLn8dOBiIioBun9txcN4HBHIiIqH5M0IiKiGvTsMGEmaUREVB4maURERDXo2Z40DnckIqLy8NOBiIioBrEnjYiIXoZJGtEz1q1bB0tLS2hoaCA4OLi2q0NEbyEmaURE9DJM0qjKsrKy8Pe//x22trbQ0dGBpaUl+vfvj9jY2NquWrkiIiKU7pNXkdzcXEybNg1z587FrVu3MHnyZNVXjojeOVw4hIiIXoZL8KsLIYC8vNq7vr4+IJO9tFh6ejpcXFxgYmKCZcuWoW3btigqKsKBAwcwdepU/PHHH690+aKiIukmr5XZrgo3btxAUVER+vbtC4VCUW6ZmqwPEb2dtLW1oaGhgZKSEs5JIyKicjFJUxd5ecDy5bV3/dmzgf/ew+dFPv74Y8hkMsTFxUn3/AGAVq1awdfXV3p+48YN/P3vf0dsbCw0NDTg5eWFNWvWwMzMDADg7++P3bt3Y/r06QgICEB6ejqKi4uhoaGB0NBQ7N+/H4cOHcKsWbPw5Zdf4j//+Q/8/f1x+fJlWFhYYNy4cfjiiy+gqfn0JZyTk4M5c+bg559/xv3792FnZ4clS5bA0NAQEyZMAADI/puELly4EP7+/krtioiIkMrZ2toCANLS0hAREVFuPXNzczF79mzs3r0b+fn5cHR0xKpVq9CuXTvpnEuWLMGqVauQl5eHYcOGwdTUFNHR0UhISAAAuLm5oX379krDKgcOHAgTExNEREQAAAoLCzF//nxs3rwZOTk5aN26NZYuXQo3Nzep3jNnzsS2bdswc+ZM3Lx5E926dUN4eLhSohkWFoagoCBcvXoV9erVw5AhQ7B27Vr4+voiOzsbUVFRUtknT56gcePGCAwMVPqbElH1kMlk0NXVRV5eHnvSiIioXPwJjyrt7t27iI6OxtSpU5UStFKlQwqFEBg4cCDu3r2Lo0ePIiYmBqmpqfDx8VEqf/XqVWzfvh2RkZFS4gI8TaK8vb1x8eJF+Pr64sCBAxg9ejSmT5+OxMREfPfdd4iIiMDixYsBACUlJejduzdOnTqFH3/8EYmJiViyZAnkcjmcnZ0RHByMOnXqIDMzE5mZmZg1a1aZuvv4+ODQoUMAgLi4OGRmZsLS0rLCevbt2xdZWVnYt28f4uPj0bFjR3zwwQe4e/cuAGD79u1YuHAhFi9ejHPnzkGhUCAkJKTKMZ8wYQJOnjyJrVu34vfff8fQoUPh5eWFlJQUqUxeXh5WrFiBTZs24dixY7hx44ZSG0NDQzF16lRMnjwZFy9exJ49e2BnZwcA8PPzQ3R0NDIzM6Xy+/btw8OHDzFs2LAq15eIKqd0yCOTNCIiKg970qjSrl69CiEE7O3tX1ju0KFD+P3335GWliYlOps2bUKrVq1w9uxZdO7cGcDTXqJNmzbB1NRU6fiRI0cq9eCMGTMG8+bNw7hx4wA87en66quvMGfOHCxcuBCHDh1CXFwckpKS0Lx5c6lMKWNjY8hkMpibm1dYZz09PdSvXx8AYGpqqlT2+Xr+8ssvuHjxIrKzs6GjowMAWLFiBXbv3o0dO3Zg8uTJCA4Ohq+vL/z8/AAAAQEBOHToEPLz818Yu2elpqZiy5YtyMjIgIWFBQBg1qxZiI6ORnh4OAIDAwE8HYL5r3/9C02bNgUATJs2DYsWLZLOExAQgM8++wwzZsyQtpX+DZydndGiRQts2rQJc+bMAQCEh4dj6NChMDQ0rHRdiahqShcoev79j4iICGCSRlUghADwv2GDFUlKSoKlpaWUoAFAy5YtYWJigqSkJClBsLKyKvcLiqOjo9Lz+Ph4nD17Vuo5A4Di4mLk5+cjLy8PCQkJaNy4sZSgVbfn6xkfH4+HDx9KSV2px48fIzU1FcDTGEyZMkVpf9euXXH48OFKX/f8+fMQQpRpV0FBgdK19fX1pQQNABQKBbKzswEA2dnZ+PPPP/HBBx9UeB0/Pz+sW7cOc+bMQXZ2Nvbu3au2i8AQvS1MTEwqtaARERG9m5ikqQt9/afzwmrz+i/RrFkzyGQyJCUlYeDAgRWWE0KUm8g9v728IZPlbS8pKcGXX36JwYMHlymrq6urtFKaKpRXH4VCgSNHjpQpW5UvXRoaGlLiW6qoqEjpOnK5HPHx8WWGRD3by/X8QiYymUw6b2ViM3bsWMybNw+nT5/G6dOnYW1tje7du1e6HURERERUvZikqQuZrFILd9SmevXqwdPTE99++y2mT59eJnnJycmBiYkJWrZsiRs3buDmzZtSb1piYiLu378PBweHKl+3Y8eOuHLlijSP6nlt27ZFRkYGkpOTy+1N09bWRnFxcZWv+6L6ZGVlQVNTE9bW1uWWcXBwwJkzZzB27Fhp25kzZ5TKmJqaKs0FKy4uxqVLl+Du7g4A6NChA4qLi5Gdnf3KSZORkRGsra0RGxsrnfd59evXx8CBAxEeHo7Tp09LC6gQERERUe3gwiFUJSEhISguLoaTkxMiIyORkpKCpKQkrF69Gl27dgUAeHh4oG3bthg1ahTOnz+PuLg4jB07Fj169CgzlLEyFixYgB9++EFa3TEpKQnbtm3D/PnzAQA9evSAq6srhgwZgpiYGKSlpWH//v2Ijo4GAFhbW+Phw4eIjY3F7du3kfeatzrw8PBA165dMXDgQBw4cADp6ek4deoU5s+fj3PnzgEAZsyYgbCwMISFhSE5ORkLFy7E5cuXlc7z/vvvY+/evdi7dy/++OMPfPzxx8jJyZH2N2/eHKNGjcLYsWOxc+dOpKWl4ezZs1i6dCn27dtX6fr6+/sjKCgIq1evRkpKCs6fP481a9YolfHz88PGjRuRlJQkzf0jIiIiotrBJI2qxMbGBufPn4e7uzs+++wztG7dGj179kRsbCxCQ0MBPB1ut3v3btStWxeurq7w8PCAra0ttm3b9krX9PT0RFRUFGJiYtC5c2e89957WLlyJaysrKQykZGR6Ny5M0aMGIGWLVtizpw5Uu+Zs7MzpkyZAh8fH5iammLZsmWvFQOZTIZ9+/bB1dUVvr6+aN68OYYPH4709HTpFgM+Pj5YsGAB5s6di06dOuH69ev46KOPlM7j6+uLcePGSQmsjY1Nmd6u8PBwjB07Fp999hlatGiBAQMG4Ndff1Wa7/cy48aNQ3BwMEJCQtCqVSv069dPaXVI4GniqVAo4OnpKS1SQkRERES1QyaenxRD1SY3NxfGxsa4f/8+6tSpo7QvPz8faWlpsLGxga6ubi3VkGpS6b3hnr3dgLrIy8uDhYUFwsLCyp379yy+domq4NGjsvfArOR9KYmI6O3yotzgeZyTRvQOKykpQVZWFoKCgmBsbIwBAwbUdpWIiIiI3nlM0ojeYTdu3ICNjQ0aN26MiIgIaGryLYGIiIiotvEbGVEN8ff3h7+/f21XQ4m1tXWZ2wAQERERUe3iwiFERERERERqhElaLWMvBr1p+JolIiIiUi0mabVES0sLAF77nl1ENa30NVv6GiYiIiKi6sU5abVELpfDxMQE2dnZAAB9fX3IZLJarhVRxYQQyMvLQ3Z2NkxMTCCXy2u7SkRERERvJSZptcjc3BwApESN6E1gYmIivXaJiIiIqPoxSatFMpkMCoUCDRs2RFFRUW1Xh+iltLS02INGREREpGJM0tSAXC7nF18iIiIiIgLAhUOIiIiIiIjUCpM0IiIiIiIiNcIkjYiIiIiISI1wTpoKld70Nzc3t5ZrQkREteLRI6CgQHlbbi5QXFw79SEiolpTmhOU5ggvIhOVKUWvJCMjA5aWlrVdDSIiIiIiUhM3b95E48aNX1iGSZoKlZSU4M8//4SRkVGN36g6NzcXlpaWuHnzJurUqVOj137bMbaqxfiqDmOrWoyv6jC2qsPYqhbjqzpvYmyFEHjw4AEsLCygofHiWWcc7qhCGhoaL82SVa1OnTpvzAv3TcPYqhbjqzqMrWoxvqrD2KoOY6tajK/qvGmxNTY2rlQ5LhxCRERERESkRpikERERERERqREmaW8pHR0dLFy4EDo6OrVdlbcOY6tajK/qMLaqxfiqDmOrOoytajG+qvO2x5YLhxAREREREakR9qQRERERERGpESZpREREREREaoRJGhERERERkRphkkZERERERKRGmKS9IUJCQmBjYwNdXV106tQJx48fr7Ds+PHjIZPJyjxatWollSkqKsKiRYvQtGlT6Orqol27doiOjq6JpqilqsQXADZv3ox27dpBX18fCoUCEyZMwJ07d5TKREZGomXLltDR0UHLli2xa9cuVTZBbVV3bC9fvowhQ4bA2toaMpkMwcHBKm6Beqvu+K5fvx7du3dH3bp1UbduXXh4eCAuLk7VzVBL1R3bnTt3wtHRESYmJjAwMED79u2xadMmVTdDLaniPbfU1q1bIZPJMHDgQBXU/M1Q3fGNiIgo93tFfn6+qpuidlTx2s3JycHUqVOhUCigq6sLBwcH7Nu3T5XNUFvVHV83N7dyX7t9+/ZVdVNenyC1t3XrVqGlpSXWr18vEhMTxYwZM4SBgYG4fv16ueVzcnJEZmam9Lh586aoV6+eWLhwoVRmzpw5wsLCQuzdu1ekpqaKkJAQoaurK86fP19DrVIfVY3v8ePHhYaGhvjmm2/EtWvXxPHjx0WrVq3EwIEDpTKnTp0ScrlcBAYGiqSkJBEYGCg0NTXFmTNnaqpZakEVsY2LixOzZs0SW7ZsEebm5mLVqlU11Br1o4r4jhw5Unz77bfiwoULIikpSUyYMEEYGxuLjIyMmmqWWlBFbA8fPix27twpEhMTxdWrV0VwcLCQy+UiOjq6ppqlFlQR21Lp6emiUaNGonv37sLb21vFLVFPqohveHi4qFOnjtJ3i8zMzJpqktpQRWwLCgqEo6Oj6NOnjzhx4oRIT08Xx48fFwkJCTXVLLWhivjeuXNH6TV76dIlIZfLRXh4eA216tUxSXsDODk5iSlTpihts7e3F/PmzavU8bt27RIymUykp6dL2xQKhVi7dq1SOW9vbzFq1KjXr/AbpqrxXb58ubC1tVXatnr1atG4cWPp+bBhw4SXl5dSGU9PTzF8+PBqqvWbQRWxfZaVldU7naSpOr5CCPHkyRNhZGQkNm7c+PoVfoPURGyFEKJDhw5i/vz5r1fZN4yqYvvkyRPh4uIivv/+ezFu3Lh3NklTRXzDw8OFsbFxtdf1TaOK2IaGhgpbW1tRWFhY/RV+w9TE++6qVauEkZGRePjw4etXWMU43FHNFRYWIj4+Hr169VLa3qtXL5w6dapS59iwYQM8PDxgZWUlbSsoKICurq5SOT09PZw4ceL1K/0GeZX4Ojs7IyMjA/v27YMQAn/99Rd27Nih1HV++vTpMuf09PSs9N/sbaCq2NJTNRXfvLw8FBUVoV69etVaf3VWE7EVQiA2NhZXrlyBq6trtbdBXakytosWLYKpqSkmTpyosvqrO1XG9+HDh7CyskLjxo3Rr18/XLhwQWXtUEeqiu2ePXvQtWtXTJ06FWZmZmjdujUCAwNRXFys0vaom5r6TNuwYQOGDx8OAwODaq2/KjBJU3O3b99GcXExzMzMlLabmZkhKyvrpcdnZmZi//798PPzU9ru6emJlStXIiUlBSUlJYiJicHPP/+MzMzMaq2/unuV+Do7O2Pz5s3w8fGBtrY2zM3NYWJigjVr1khlsrKyXvlv9rZQVWzpqZqK77x589CoUSN4eHhUa/3VmSpje//+fRgaGkJbWxt9+/bFmjVr0LNnT5W1Rd2oKrYnT57Ehg0bsH79epXWX92pKr729vaIiIjAnj17sGXLFujq6sLFxQUpKSkqbY86UVVsr127hh07dqC4uBj79u3D/PnzERQUhMWLF6u0PeqmJj7T4uLicOnSpTLfidUVk7Q3hEwmU3ouhCizrTwREREwMTEpM4H6m2++QbNmzWBvbw9tbW1MmzYNEyZMgFwur85qvzGqEt/ExERMnz4dCxYsQHx8PKKjo5GWloYpU6a88jnfZqqILf2PKuO7bNkybNmyBTt37izT8/4uUEVsjYyMkJCQgLNnz2Lx4sX49NNPceTIEVU1QW1VZ2wfPHiA0aNHY/369WjQoIHK6/4mqO7X7nvvvYfRo0ejXbt26N69O7Zv347mzZu/kz+gVXdsS0pK0LBhQ6xbtw6dOnXC8OHD8cUXXyA0NFSl7VBXqvxM27BhA1q3bg0nJ6dqr7cqaNZ2BejFGjRoALlcXuZXhOzs7DK/NjxPCIGwsDCMGTMG2traSvtMTU2xe/du5Ofn486dO7CwsMC8efNgY2NT7W1QZ68S36+//houLi6YPXs2AKBt27YwMDBA9+7dERAQAIVCAXNz81f6m71NVBVbekrV8V2xYgUCAwNx6NAhtG3bVnUNUUOqjK2Ghgbs7OwAAO3bt0dSUhK+/vpruLm5qa5BakQVsf3rr7+Qnp6O/v37S8eUlJQAADQ1NXHlyhU0bdpURS1SLzX1vquhoYHOnTu/Uz1pqoqtQqGAlpaW0o/kDg4OyMrKQmFhYZnvb28rVb928/LysHXrVixatEh1jahm7ElTc9ra2ujUqRNiYmKUtsfExMDZ2fmFxx49ehRXr1594fh8XV1dNGrUCE+ePEFkZCS8vb2rpd5vileJb15eHjQ0lP/XKX1zFUIAALp27VrmnAcPHnzp3+xtoqrY0lOqjO/y5cvx1VdfITo6Go6OjtVcc/VXk69dIQQKCgpes8ZvDlXE1t7eHhcvXkRCQoL0GDBgANzd3ZGQkABLS0vVNEYN1dRrVwiBhISEd+qHM1XF1sXFBVevXpV+WACA5ORkKBSKdyZBA1T/2t2+fTsKCgowevToaqy1itXE6iT0ekqXJN2wYYNITEwUM2fOFAYGBtJqjfPmzRNjxowpc9zo0aNFly5dyj3nmTNnRGRkpEhNTRXHjh0T77//vrCxsRH37t1TZVPUUlXjGx4eLjQ1NUVISIhITU0VJ06cEI6OjsLJyUkqc/LkSSGXy8WSJUtEUlKSWLJkyTu9BH91xragoEBcuHBBXLhwQSgUCjFr1ixx4cIFkZKSUuPtq22qiO/SpUuFtra22LFjh9KyxQ8ePKjx9tUmVcQ2MDBQHDx4UKSmpoqkpCQRFBQkNDU1xfr162u8fbVJFbF93ru8uqMq4uvv7y+io6NFamqquHDhgpgwYYLQ1NQUv/76a423rzapIrY3btwQhoaGYtq0aeLKlSsiKipKNGzYUAQEBNR4+2qbKt8bunXrJnx8fGqsLdWBSdob4ttvvxVWVlZCW1tbdOzYURw9elTaN27cONGjRw+l8jk5OUJPT0+sW7eu3PMdOXJEODg4CB0dHVG/fn0xZswYcevWLVU2Qa1VNb6rV68WLVu2FHp6ekKhUIhRo0aVuY/UTz/9JFq0aCG0tLSEvb29iIyMrImmqJ3qjm1aWpoAUObx/HneFdUdXysrq3Lj++x9Ft8V1R3bL774QtjZ2QldXV1Rt25d0bVrV7F169aaao5aUcV77rPe5SRNiOqP78yZM0WTJk2Etra2MDU1Fb169RKnTp2qqeaoFVW8dk+dOiW6dOkidHR0hK2trVi8eLF48uRJTTRH7agivleuXBEAxMGDB2uiCdVGJgTHEBEREREREakLzkkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiIiIiEiNMEkjIiIiIiJSI0zSiIiIiIiI1AiTNCIiIiIiIjXCJI2IiOgtUVhYCDs7O5w8ebJazxsVFYUOHTqgpKSkWs9LRETlY5JGRERqafz48ZDJZGUeV69ere2qqa1169bBysoKLi4u0jaZTIbdu3eXKTt+/HgMHDiwUuft168fZDIZ/v3vf1dTTYmI6EWYpBERkdry8vJCZmam0sPGxqZMucLCwlqonfpZs2YN/Pz8VHLuCRMmYM2aNSo5NxERKWOSRkREaktHRwfm5uZKD7lcDjc3N0ybNg2ffvopGjRogJ49ewIAEhMT0adPHxgaGsLMzAxjxozB7du3pfM9evQIY8eOhaGhIRQKBYKCguDm5oaZM2dKZcrreTIxMUFERIT0/NatW/Dx8UHdunVRv359eHt7Iz09Xdpf2ku1YsUKKBQK1K9fH1OnTkVRUZFUpqCgAHPmzIGlpSV0dHTQrFkzbNiwAUII2NnZYcWKFUp1uHTpEjQ0NJCamlpurM6fP4+rV6+ib9++VYwykJ6eXm6vpZubm1RmwIABiIuLw7Vr16p8fiIiqhomaURE9EbauHEjNDU1cfLkSXz33XfIzMxEjx490L59e5w7dw7R0dH466+/MGzYMOmY2bNn4/Dhw9i1axcOHjyII0eOID4+vkrXzcvLg7u7OwwNDXHs2DGcOHEChoaG8PLyUurRO3z4MFJTU3H48GFs3LgRERERSone2LFjsXXrVqxevRpJSUn417/+BUNDQ8hkMvj6+iI8PFzpumFhYejevTuaNm1abr2OHTuG5s2bo06dOlVqDwBYWloq9VZeuHAB9evXh6urq1TGysoKDRs2xPHjx6t8fiIiqhrN2q4AERFRRaKiomBoaCg97927N3766ScAgJ2dHZYtWybtW7BgATp27IjAwEBpW1hYGCwtLZGcnAwLCwts2LABP/zwg9TztnHjRjRu3LhKddq6dSs0NDTw/fffQyaTAQDCw8NhYmKCI0eOoFevXgCAunXrYu3atZDL5bC3t0ffvn0RGxuLSZMmITk5Gdu3b0dMTAw8PDwAALa2ttI1JkyYgAULFiAuLg5OTk4oKirCjz/+iOXLl1dYr/T0dFhYWJS7b8SIEZDL5UrbCgoKpF43uVwOc3NzAEB+fj4GDhyIrl27wt/fX+mYRo0aKfUYEhGRajBJIyIiteXu7o7Q0FDpuYGBgfRvR0dHpbLx8fE4fPiwUlJXKjU1FY8fP0ZhYSG6du0qba9Xrx5atGhRpTrFx8fj6tWrMDIyUtqen5+vNBSxVatWSomRQqHAxYsXAQAJCQmQy+Xo0aNHuddQKBTo27cvwsLC4OTkhKioKOTn52Po0KEV1uvx48fQ1dUtd9+qVaukZLDU3LlzUVxcXKbsxIkT8eDBA8TExEBDQ3nAjZ6eHvLy8iqsAxERVQ8maUREpLYMDAxgZ2dX4b5nlZSUoH///li6dGmZsgqFAikpKZW6pkwmgxBCaduzc8lKSkrQqVMnbN68ucyxpqam0r+1tLTKnLd0CXs9Pb2X1sPPzw9jxozBqlWrEB4eDh8fH+jr61dYvkGDBlIS+Dxzc/MycTQyMkJOTo7StoCAAERHRyMuLq5MEgoAd+/eVWojERGpBpM0IiJ6K3Ts2BGRkZGwtraGpmbZjzc7OztoaWnhzJkzaNKkCQDg3r17SE5OVurRMjU1RWZmpvQ8JSVFqfeoY8eO2LZtGxo2bPhK878AoE2bNigpKcHRo0fL9HCV6tOnDwwMDBAaGor9+/fj2LFjLzxnhw4dEBoaCiGENAyzKiIjI7Fo0SLs37+/3HlvpT2FHTp0qPK5iYioarhwCBERvRWmTp2Ku3fvYsSIEdIqhAcPHoSvry+Ki4thaGiIiRMnYvbs2YiNjcWlS5cwfvz4MkP63n//faxduxbnz5/HuXPnMGXKFKVesVGjRqFBgwbw9vbG8ePHkZaWhqNHj2LGjBnIyMioVF2tra0xbtw4+Pr6Yvfu3UhLS8ORI0ewfft2qYxcLsf48ePx+eefw87OTmmYZnnc3d3x6NEjXL58uQpRe+rSpUsYO3Ys5s6di1atWiErKwtZWVm4e/euVObMmTPQ0dF5aT2IiOj1MUkjIqK3goWFBU6ePIni4mJ4enqidevWmDFjBoyNjaVEbPny5XB1dcWAAQPg4eGBbt26oVOnTkrnCQoKgqWlJVxdXTFy5EjMmjVLaZihvr4+jh07hiZNmmDw4MFwcHCAr68vHj9+XKWetdDQUPztb3/Dxx9/DHt7e0yaNAmPHj1SKjNx4kQUFhbC19f3peerX78+Bg8eXO4wzJc5d+4c8vLyEBAQAIVCIT0GDx4sldmyZQtGjRr1wiGXRERUPWTi+YH3RERE7xA3Nze0b98ewcHBtV2VMk6ePAk3NzdkZGTAzMzspeUvXrwIDw+Pchc2eR3/93//B3t7e5w7d67cm4kTEVH1Yk8aERGRmikoKMDVq1fxz3/+E8OGDatUggY8neu2bNmyal8mPy0tDSEhIUzQiIhqCBcOISIiUjNbtmzBxIkT0b59e2zatKlKx44bN67a6+Pk5AQnJ6dqPy8REZWPwx2JiIiIiIjUCIc7EhERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqREmaURERERERGqESRoREREREZEaYZJGRERERESkRpikERERERERqZH/B5kQnyGaY1xiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.stats import phase_dispersion_detection_level, phase_dispersion_probability\n", + "\n", + "# number of trials (the number of independent frequencies)\n", + "# we searched over\n", + "ntrial = int((frequencies[-1] - frequencies[0]) / df_min)\n", + "\n", + "# number of time bins in the light curve\n", + "nsamples = len(lc.time)\n", + "\n", + "pdm_det_level = phase_dispersion_detection_level(nsamples, nbin, epsilon=0.01, ntrial=ntrial)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(pdm_det_level, label='PDM det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, pdmstat, color='gray', label='PDM statistics', alpha=0.5)\n", + "\n", + "#for c in cand_freqs_ef:\n", + "# plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "#for c in cand_freqs_z:\n", + "# plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('PDM Statistics')\n", + "plt.legend()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's also calculate the significance of the deepest dip:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The probability of the minimum at 0.8313536003155265 Hz is: p = 4.221416326686607e-15\n" + ] + } + ], + "source": [ + "min_idx = np.argmin(pdmstat)\n", + "\n", + "pval = phase_dispersion_probability(pdmstat[min_idx], nsamples, nbin, ntrial=ntrial)\n", + "\n", + "print(f\"The probability of the minimum at {freq[min_idx]} Hz is: p = {pval}\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.11" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.html b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.html new file mode 100644 index 000000000..f4ddb9e1c --- /dev/null +++ b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.html @@ -0,0 +1,821 @@ + + + + + + + + Simulate a dataset — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
# %load_ext autoreload
+# %autoreload 2
+# %matplotlib notebook
+
+import numpy as np
+from stingray.pulse.search import epoch_folding_search, z_n_search
+import matplotlib.pyplot as plt
+import seaborn as sb
+import matplotlib as mpl
+mpl.rcParams['figure.figsize'] = (10, 6)
+
+
+
+
+

Simulate a dataset

+

Let us simulate a pulsar: we create a sinusoidal light curve and use Stingray’s event simulator (in Eventlist.simulate_times) to simulate an event list with that light curve.

+
+
[2]:
+
+
+
def sinusoid(times, frequency, baseline, amplitude, phase):
+    return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))
+
+
+
+
+
[3]:
+
+
+
from stingray import Lightcurve
+
+period = 1.203501
+mean_countrate = 50
+pulsed_fraction = 0.2
+bin_time = 0.01
+obs_length = 3000
+
+t = np.arange(0, obs_length, bin_time)
+
+# The continuous light curve
+counts = sinusoid(t, 1 / period, mean_countrate,
+                  0.5 * mean_countrate * pulsed_fraction, 0) * bin_time
+lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],
+                dt=bin_time)
+
+
+
+
+
[4]:
+
+
+
from stingray.events import EventList
+
+# use the light curve above to simulate an event list for this pulsar.
+events = EventList()
+events.simulate_times(lc)
+
+
+
+
+
+

Pulsation search with epoch folding.

+

Let us assume we have already an estimate of the pulse period, for example because we found a candidate in the power density spectrum with a period of ~1.2. We search around that period with the epoch folding.

+

Epoch folding consists of cutting the light curve at every pulse period and summing up all the intervals obtained in this way. We get an average pulse profile. In this example, where the pulse was plotted twice for visual clarity. If the candidate pulse frequency was even slightly incorrect, we would have obtained a much shallower pulse profile, or no pulse profile at all.

+
+
[5]:
+
+
+
from stingray.pulse.pulsar import fold_events
+from stingray.pulse.search import plot_profile
+nbin = 32
+
+ph, profile, profile_err = fold_events(events.time, 1/period, nbin=nbin)
+_ = plot_profile(ph, profile)
+
+ph, profile, profile_err = fold_events(events.time, 1/1.1, nbin=nbin)
+_ = plot_profile(ph, profile)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_6_0.png +
+
+

Therefore, typically we try a number of frequencies around the candidate we found with the power spectrum or other means, and search for the frequency that gives the “best” pulsed profile. How do we evaluate this best frequency? We use the chi squared statistics.

+

We use a flat pulsed profile (no pulsation) as model, and we calculate the chi square of the actual pulsed profile with respect to this flat model:

+
+\[S = \sum_i\frac{(P_i - \overline{P})^2}{\sigma^2}\]
+

If there is no pulsation, the chi squared will assume a random value distributed around the number of degrees of freedom \(n - 1\) (where \(n\) is the number of bins in the profile) with a well defined statistical distribution (\(\chi^2_{n - 1}\)). If there is pulsation, the value will be much larger. Stingray has a function that does this: stingray.pulse.search.epoch_folding_search.

+

For the frequency resolution of the periodogram, one usually chooses at least the same frequency resolution of the FFT, i. e., \(df_{\rm min}=1/(t_1 - t_0)\). In most cases, a certain degree of oversampling is used.

+
+
[6]:
+
+
+
# We will search for pulsations over a range of frequencies around the known pulsation period.
+df_min = 1/obs_length
+oversampling=15
+df = df_min / oversampling
+frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)
+
+freq, efstat = epoch_folding_search(events.time, frequencies, nbin=nbin)
+
+# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, efstat, label='EF statistics')
+plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')
+plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('EF Statistics')
+_ = plt.legend()
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_8_0.png +
+
+

A peak is definitely there. Far from the peak, the periodogram follows approximately a :math:`chi^2` distribution with :math:`n - 1` degrees of freedom, where \(n\) is the number of bins in the pulse profile used to calculate the statistics. In fact, its mean is \(n-1\) as shown in the figure.

+

But close to the correct frequency, as described in Leahy et al. 1983, 1987 the peak in the epoch folding periodogram has the shape of a sinc squared function (whose secondary lobes are in this case barely visible above noise).

+
+ +
+

Thresholding

+

When can a peak in the EF or \(Z_n^2\) periodogram be considered a pulsation?

+

Since both the EF and \(Z_n^2\) of noise follow precise statistical distributions (\(\chi^2_{\rm nbin}\) in one case, \(\chi^2_n\) in the other), we can use the inverse survival functions of these statistical distributions to find the peaks that are not expected by noise.

+

In Stingray, the thresholds are defined in stingray.stats.fold_detection_level and stingray.stats.z2_n_detection_level respectively.

+

The ntrial parameter should be set to an estimate of the statistically independent frequencies in the periodogram. A good estimate can be

+
+\[N_{\rm trial} \sim (f_{\rm max} - f_{\rm min}) / df_{\rm min} =(f_{\rm max} - f_{\rm min}) (t_1 - t_0)\]
+

, where \(f_{\rm min}\) and \(f_{\rm max}\) are the maximum and minimum frequencies of the periodogram, \(df_{\rm min}\) was defined above and \(t_0\) ans \(t_1\) the start and end of the observation.

+

Moreover, the stingray.pulse.search.search_best_peaks helps finding the best value for nearby candidates.

+
+
[8]:
+
+
+
from stingray.pulse.search import search_best_peaks
+from stingray.stats import fold_detection_level, z2_n_detection_level
+
+ntrial = (frequencies[-1] - frequencies[0]) / df_min
+z_detlev = z2_n_detection_level(n=1, epsilon=0.001, ntrial=len(freq))
+ef_detlev = fold_detection_level(nbin, epsilon=0.001, ntrial=len(freq))
+
+cand_freqs_ef, cand_stat_ef = search_best_peaks(freq, efstat, ef_detlev)
+cand_freqs_z, cand_stat_z = search_best_peaks(freq, zstat, z_detlev)
+
+# ---- PLOTTING --------
+plt.figure()
+plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.')
+plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray')
+
+plt.plot(freq, (zstat - nharm), label='$Z^2_1$ statistics')
+plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)
+
+for c in cand_freqs_ef:
+    plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)
+for c in cand_freqs_z:
+    plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)
+
+plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')
+plt.xlim([frequencies[0], frequencies[-1]])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Statistics - d.o.f.')
+plt.legend()
+
+plt.figure(figsize=(15, 5))
+plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')
+plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)
+
+plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')
+plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.', zorder=10)
+plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray', zorder=10)
+
+for c in cand_freqs_ef:
+    plt.axvline(c, ls='-.', label='EF Candidate', color='gray', zorder=10)
+for c in cand_freqs_z:
+    plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)
+
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Statistics - d.o.f. (Zoom)')
+
+plt.ylim([-15, ef_detlev - nbin + 3])
+_ = plt.xlim([frequencies[0], frequencies[-1]])
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_0.png +
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_13_1.png +
+
+

Note that the side lobes of the sinc squared-like shape are producing spurious candidates here. For now, we do not have a method to eliminate these fairly obvious patterns, but it will be implemented in future releases

+
+
+

Fit peak with Sinc-squared and Gaussian functions

+
+
As we saw earlier, if the pulse frequency is stable during the observation, the peak shape is a Sinc squared function. Therefore we fit it to the peak with the function stingray.pulse.modeling.fit_sinc.
+
We have two possibilities:
+
+
    +
  • if obs_length is the length of the observation. If it is defined, it fixes width to \(1/(\pi*obs length)\), as expected from epoch folding periodograms. The other two free parameters are amplitude and mean.

  • +
  • if it is not defined, the width parameter can be used.

  • +
+

On the other hand, if the pulse frequency varies slightly, the peak oscillate and the integrated profile is a bell-shaped function. We can fit it with a Gaussian function (stingray.pulse.modeling.fit_gaussian) with the standard parameters: amplitude, mean, stddev.

+

We also provide the user with the constrains fixed, tied, bounds, in order to fix, link and/or constrain parameters.

+
+
[19]:
+
+
+
from stingray.pulse.modeling import fit_sinc
+
+fs=fit_sinc(freq, efstat-(nbin-1),amp=max(efstat-(nbin-1)), mean=cand_freqs_ef[0],
+            obs_length=obs_length)
+
+
+
+
+
[10]:
+
+
+
# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, efstat-(nbin-1), label='EF statistics')
+plt.plot(freq, fs(freq), label='Best fit')
+plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')
+plt.axvline(fs.mean[0], label='Fit frequency')
+
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('EF Statistics')
+plt.legend()
+
+plt.figure(figsize=(15, 5))
+plt.plot(freq, efstat-(nbin-1)-fs(freq))
+plt.xlabel('Frequency (Hz)')
+_ = plt.ylabel('Residuals')
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_0.png +
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_17_1.png +
+
+

On the other hand, if we want to fit with a Gaussian:

+
+
[11]:
+
+
+
from stingray.pulse.modeling import fit_gaussian
+
+fg=fit_gaussian(freq, efstat-(nbin-1),amplitude=max(efstat-(nbin-1)),
+                mean=cand_freqs_ef[0], stddev=1/(np.pi*obs_length))
+
+
+
+
+
[12]:
+
+
+
# ---- PLOTTING --------
+plt.figure()
+plt.plot(freq, efstat-(nbin-1), label='EF statistics')
+plt.plot(freq, fg(freq), label='Best fit')
+plt.axvline(1/period, alpha=0.5, color='r', label='Correct frequency')
+plt.axvline(fg.mean[0], alpha=0.5, label='Fit frequency')
+
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('EF Statistics')
+plt.legend()
+
+plt.figure(figsize=(15, 5))
+plt.plot(freq, efstat-(nbin-1)-fg(freq))
+plt.xlabel('Frequency (Hz)')
+_ = plt.ylabel('Residuals')
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_0.png +
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_20_1.png +
+
+
+
+

Phaseogram

+

Let us now calculate the phaseogram and plot it with the pulse profile. We do that with the functions phaseogram, plot_profile and plot_phaseogram from stingray.pulse.search

+
+
[13]:
+
+
+
from stingray.pulse.search import phaseogram, plot_phaseogram, plot_profile
+from matplotlib.gridspec import GridSpec
+
+# Calculate the phaseogram
+phaseogr, phases, times, additional_info = \
+            phaseogram(events.time, cand_freqs_ef[0], return_plot=True, nph=nbin, nt=32)
+
+# ---- PLOTTING --------
+
+# Plot on a grid
+plt.figure(figsize=(15, 15))
+gs = GridSpec(2, 1, height_ratios=(1, 3))
+ax0 = plt.subplot(gs[0])
+ax1 = plt.subplot(gs[1], sharex=ax0)
+
+mean_phases = (phases[:-1] + phases[1:]) / 2
+plot_profile(mean_phases, np.sum(phaseogr, axis=1), ax=ax0)
+# Note that we can pass arguments to plt.pcolormesh, in this case vmin
+_ = plot_phaseogram(phaseogr, phases, times, ax=ax1, vmin=np.median(phaseogr))
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_22_0.png +
+
+
+

Examples of interactive phaseograms

+
+

First: shift the rows of the phaseogram interactively

+
+
[14]:
+
+
+
def shift_phaseogram(phaseogr, tseg, delay_fun):
+    """Shift the phaseogram rows according to an input delay function.
+
+    Parameters
+    ----------
+    phaseogr : 2-d array
+        The phaseogram, as returned by ``phaseogram``
+    freq : float
+        The pulse frequency
+    tseg : float
+        The integration time for each row of the phaseogram
+    delay_fun : function
+        Function that gives the delay (in seconds) for each row of the
+        phaseogram
+
+    Returns
+    -------
+    phaseogram_new : 2-d array
+        The shifted phaseogram
+
+    """
+    # Assume that the phaseogram is repeated twice in phase
+    nbin = phaseogr.shape[0] / 2
+    ntimes = phaseogr.shape[1]
+
+    times = np.arange(0, tseg * ntimes, tseg)
+    phase_delays = delay_fun(times)  # This gives the delay in units of time!
+
+    delayed_bins = np.array(np.rint(phase_delays * nbin), dtype=int)
+    phaseogram_new = np.copy(phaseogr)
+    for i in range(ntimes):
+        phaseogram_new[:, i] = np.roll(phaseogram_new[:, i],
+                                       delayed_bins[i])
+
+    return phaseogram_new
+
+
+def interactive_phaseogram(phas, binx, biny, df=0, dfdot=0):
+    import matplotlib.pyplot as plt
+    from matplotlib.widgets import Slider, Button, RadioButtons
+
+    fig, ax = plt.subplots()
+    plt.subplots_adjust(left=0.25, bottom=0.30)
+    tseg = np.median(np.diff(biny))
+    tobs = tseg * phas.shape[0]
+    delta_df_start = 2 / tobs
+    df_order_of_mag = int(np.log10(delta_df_start))
+    delta_df = delta_df_start / 10 ** df_order_of_mag
+
+    delta_dfdot_start = 8 / tobs ** 2
+    dfdot_order_of_mag = int(np.log10(delta_dfdot_start))
+    delta_dfdot = delta_dfdot_start / 10 ** dfdot_order_of_mag
+
+    pcolor = plt.pcolormesh(binx, biny, phas.T, cmap='magma')
+    l,  = plt.plot(np.ones_like(biny), biny, zorder=10, lw=2, color='w')
+    plt.xlabel('Phase')
+    plt.ylabel('Times')
+    plt.colorbar()
+
+    axcolor = 'lightgoldenrodyellow'
+    axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)
+    axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)
+    axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)
+
+    sfreq = Slider(axfreq, 'Delta freq x$10^{}$'.format(df_order_of_mag),
+                   -delta_df, delta_df, valinit=df)
+    sfdot = Slider(axfdot, 'Delta fdot x$10^{}$'.format(dfdot_order_of_mag),
+                   -delta_dfdot, delta_dfdot, valinit=dfdot)
+    spepoch = Slider(axpepoch, 'Delta pepoch',
+                     0, biny[-1] - biny[0], valinit=0)
+
+    def update(val):
+        fdot = sfdot.val * 10 ** dfdot_order_of_mag
+        freq = sfreq.val * 10 ** df_order_of_mag
+        pepoch = spepoch.val
+        delay_fun = lambda times: (times - pepoch) * freq + \
+                                   0.5 * (times - pepoch) ** 2 * fdot
+        new_phaseogram = shift_phaseogram(phas, tseg, delay_fun)
+        pcolor.set_array(new_phaseogram.T.ravel())
+        l.set_xdata(1 + delay_fun(biny - biny[0]))
+        fig.canvas.draw_idle()
+
+    resetax = plt.axes([0.8, 0.020, 0.1, 0.04])
+    button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
+
+    def reset(event):
+        sfreq.reset()
+        sfdot.reset()
+        spepoch.reset()
+        pcolor.set_array(phas.T.ravel())
+        l.set_xdata(1)
+
+    button.on_clicked(reset)
+
+    sfreq.on_changed(update)
+    sfdot.on_changed(update)
+    spepoch.on_changed(update)
+
+    spepoch._dummy_reset_button_ref = button
+
+    plt.show()
+    return
+
+
+
+
+
[15]:
+
+
+
# f0 = 0.0001
+# fdot = 0
+# delay_fun = lambda times: times * f0 + 0.5 * times ** 2 * fdot
+
+# new_phaseogr = shift_phaseogram(phaseogr, times[1] - times[0], delay_fun)
+# _ = plot_phaseogram(new_phaseogr, phases, times, vmin=np.median(phaseogr))
+
+
+
+
+
[16]:
+
+
+
interactive_phaseogram(phaseogr, phases, times, df=0, dfdot=0)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_26_0.png +
+
+
+
+

Second: overplot a line with a pulse frequency solution, then update the full phaseogram

+

This interactive phaseogram is implemented in HENDRICS, in the script HENphaseogram

+
+
[17]:
+
+
+
class InteractivePhaseogram(object):
+    def __init__(self, ev_times, freq, nph=128, nt=128, fdot=0, fddot=0):
+        import matplotlib.pyplot as plt
+        from matplotlib.widgets import Slider, Button, RadioButtons
+
+        self.df=0
+        self.dfdot=0
+
+        self.freq = freq
+        self.fdot = fdot
+        self.nt = nt
+        self.nph = nph
+        self.ev_times = ev_times
+
+        self.phaseogr, phases, times, additional_info = \
+                phaseogram(ev_times, freq, return_plot=True, nph=nph, nt=nt,
+                           fdot=fdot, fddot=fddot, plot=False)
+        self.phases, self.times = phases, times
+        self.fig, ax = plt.subplots()
+        plt.subplots_adjust(left=0.25, bottom=0.30)
+        tseg = np.median(np.diff(times))
+        tobs = tseg * nt
+        delta_df_start = 2 / tobs
+        self.df_order_of_mag = int(np.log10(delta_df_start))
+        delta_df = delta_df_start / 10 ** self.df_order_of_mag
+
+        delta_dfdot_start = 2 / tobs ** 2
+        self.dfdot_order_of_mag = int(np.log10(delta_dfdot_start))
+        delta_dfdot = delta_dfdot_start / 10 ** self.dfdot_order_of_mag
+
+        self.pcolor = plt.pcolormesh(phases, times, self.phaseogr.T, cmap='magma')
+        self.l1,  = plt.plot(np.zeros_like(times) + 0.5, times, zorder=10, lw=2, color='w')
+        self.l2,  = plt.plot(np.ones_like(times), times, zorder=10, lw=2, color='w')
+        self.l3,  = plt.plot(np.ones_like(times) + 0.5, times, zorder=10, lw=2, color='w')
+
+        plt.xlabel('Phase')
+        plt.ylabel('Time')
+        plt.colorbar()
+
+        axcolor = 'lightgoldenrodyellow'
+        self.axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)
+        self.axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)
+        self.axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)
+
+        self.sfreq = Slider(self.axfreq, 'Delta freq x$10^{}$'.format(self.df_order_of_mag),
+                       -delta_df, delta_df, valinit=self.df)
+        self.sfdot = Slider(self.axfdot, 'Delta fdot x$10^{}$'.format(self.dfdot_order_of_mag),
+                       -delta_dfdot, delta_dfdot, valinit=self.dfdot)
+        self.spepoch = Slider(self.axpepoch, 'Delta pepoch',
+                         0, times[-1] - times[0], valinit=0)
+
+        self.sfreq.on_changed(self.update)
+        self.sfdot.on_changed(self.update)
+        self.spepoch.on_changed(self.update)
+
+        self.resetax = plt.axes([0.8, 0.020, 0.1, 0.04])
+        self.button = Button(self.resetax, 'Reset', color=axcolor, hovercolor='0.975')
+
+        self.recalcax = plt.axes([0.6, 0.020, 0.1, 0.04])
+        self.button_recalc = Button(self.recalcax, 'Recalculate', color=axcolor, hovercolor='0.975')
+
+        self.button.on_clicked(self.reset)
+        self.button_recalc.on_clicked(self.recalculate)
+
+        plt.show()
+
+    def update(self, val):
+        fdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag
+        freq = self.sfreq.val * 10 ** self.df_order_of_mag
+        pepoch = self.spepoch.val + self.times[0]
+        delay_fun = lambda times: (times - pepoch) * freq + \
+                                   0.5 * (times - pepoch) ** 2 * fdot
+        self.l1.set_xdata(0.5 + delay_fun(self.times - self.times[0]))
+        self.l2.set_xdata(1 + delay_fun(self.times - self.times[0]))
+        self.l3.set_xdata(1.5 + delay_fun(self.times - self.times[0]))
+
+        self.fig.canvas.draw_idle()
+
+    def recalculate(self, event):
+        dfdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag
+        dfreq = self.sfreq.val * 10 ** self.df_order_of_mag
+        pepoch = self.spepoch.val + self.times[0]
+
+        self.fdot = self.fdot - dfdot
+        self.freq = self.freq - dfreq
+
+        self.phaseogr, _, _, _ = \
+                phaseogram(self.ev_times, self.freq, fdot=self.fdot, plot=False,
+                           nph=self.nph, nt=self.nt, pepoch=pepoch)
+
+        self.l1.set_xdata(0.5)
+        self.l2.set_xdata(1)
+        self.l3.set_xdata(1.5)
+
+        self.sfreq.reset()
+        self.sfdot.reset()
+        self.spepoch.reset()
+
+        self.pcolor.set_array(self.phaseogr.T.ravel())
+
+        self.fig.canvas.draw()
+
+    def reset(self, event):
+        self.sfreq.reset()
+        self.sfdot.reset()
+        self.spepoch.reset()
+        self.pcolor.set_array(self.phaseogr.T.ravel())
+        self.l1.set_xdata(0.5)
+        self.l2.set_xdata(1)
+        self.l3.set_xdata(1.5)
+
+    def get_values(self):
+        return self.freq, self.fdot
+
+
+
+
+
[18]:
+
+
+
times_delayed = events.time + 0.5 * (events.time - events.time[0]) ** 2 * 3e-8 / cand_freqs_ef[0]
+ip = InteractivePhaseogram(times_delayed, cand_freqs_ef[0], nt=32)
+
+
+
+
+
+
+
+../../_images/notebooks_Pulsar_Pulsar_search_with_epoch_folding_and_Z_squared_29_0.png +
+
+

An evolved implementation of this interactive phaseogram is implemented in HENDRICS (command line tool HENphaseogram)

+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb new file mode 100644 index 000000000..9f8ed18fa --- /dev/null +++ b/notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb @@ -0,0 +1,910 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "# %load_ext autoreload\n", + "# %autoreload 2\n", + "# %matplotlib notebook\n", + "\n", + "import numpy as np\n", + "from stingray.pulse.search import epoch_folding_search, z_n_search\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sb\n", + "import matplotlib as mpl\n", + "mpl.rcParams['figure.figsize'] = (10, 6)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulate a dataset\n", + "\n", + "Let us simulate a pulsar: we create a sinusoidal light curve and use Stingray's event simulator (in `Eventlist.simulate_times`) to simulate an event list with that light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def sinusoid(times, frequency, baseline, amplitude, phase):\n", + " return baseline + amplitude * np.sin(2 * np.pi * (frequency * times + phase))" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray import Lightcurve\n", + "\n", + "period = 1.203501\n", + "mean_countrate = 50\n", + "pulsed_fraction = 0.2\n", + "bin_time = 0.01\n", + "obs_length = 3000\n", + "\n", + "t = np.arange(0, obs_length, bin_time)\n", + "\n", + "# The continuous light curve\n", + "counts = sinusoid(t, 1 / period, mean_countrate, \n", + " 0.5 * mean_countrate * pulsed_fraction, 0) * bin_time\n", + "lc = Lightcurve(t, counts, gti=[[-bin_time / 2, obs_length + bin_time / 2]],\n", + " dt=bin_time)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.events import EventList\n", + "\n", + "# use the light curve above to simulate an event list for this pulsar.\n", + "events = EventList()\n", + "events.simulate_times(lc)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Pulsation search with epoch folding.\n", + "\n", + "Let us assume we have already an estimate of the pulse period, for example because we found a candidate in the power density spectrum with a period of ~1.2.\n", + "We search around that period with the epoch folding.\n", + "\n", + "Epoch folding consists of cutting the light curve at every pulse period and summing up all the intervals obtained in this way. We get an average pulse profile. In this example, where the pulse was plotted twice for visual clarity. If the candidate pulse frequency was even slightly incorrect, we would have obtained a much shallower pulse profile, or no pulse profile at all." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1sAAAINCAYAAADInGVbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABHlElEQVR4nO3de3wU9b3/8feQbG4ISwgmISVEPGq4eilRCMd6OYmAgqitpRSboiKKVRELVvFS0cMp1iNiBRWlKFXUtFSweDkRUgH1xz1ACxXRVkWohKgNGyEhWZL5/UFZXXPb3ex3r6/n45HHg+x8Z/OdYfLZvGe+8x3Ltm1bAAAAAICg6hTuDgAAAABALCJsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgQGK4OxAtmpqa9Nlnn6lLly6yLCvc3QEAAAAQJrZt66uvvlJOTo46dWr9+hVhy0efffaZcnNzw90NAAAAABFi79696tWrV6vLCVs+6tKli6RjO7Rr165h7g0AAACAcKmpqVFubq4nI7SGsOWj40MHu3btStgCAAAA0O7tRUyQAQAAAAAGELYAAAAAwICwhq2ZM2fKsiyvr+zsbEmS2+3WHXfcoUGDBqlz587KycnRT3/6U3322Wde71FfX69bbrlFPXr0UOfOnTVmzBjt27fPq011dbVKSkrkdDrldDpVUlKigwcPhmozAQAAAMShsF/ZGjBggPbv3+/52rFjhySptrZWW7du1b333qutW7dq2bJl+uCDDzRmzBiv9adOnarly5ertLRU7777rg4dOqTRo0ersbHR02b8+PHavn27ysrKVFZWpu3bt6ukpCSk2wkAAAAgvoR9gozExETP1axvcjqdWrVqlddr8+bN0znnnKNPP/1UvXv3lsvl0qJFi/T888+ruLhYkrRkyRLl5uaqvLxcI0aM0K5du1RWVqYNGzZoyJAhkqSFCxeqsLBQu3fvVn5+vvmNBAAAABB3wn5l68MPP1ROTo769OmjcePG6aOPPmq1rcvlkmVZ6tatmySpoqJCbrdbw4cP97TJycnRwIEDtW7dOknS+vXr5XQ6PUFLkoYOHSqn0+lp05L6+nrV1NR4fQEAAACAr8IatoYMGaLnnntOb775phYuXKjKykoNGzZMX375ZbO2R44c0Z133qnx48d7pl6vrKxUUlKS0tPTvdpmZWWpsrLS0yYzM7PZ+2VmZnratGT27Nmee7ycTicPNAYAAADgl7CGrYsvvlg/+MEPNGjQIBUXF+v111+XJP3ud7/zaud2uzVu3Dg1NTXpiSeeaPd9bdv2mvO+pfnvv93m22bMmCGXy+X52rt3r6+bBQAAAADhH0b4TZ07d9agQYP04Ycfel5zu90aO3asPv74Y61atcrrgcLZ2dlqaGhQdXW11/tUVVUpKyvL0+bAgQPNftbnn3/uadOS5ORkzwOMeZAxAAAAAH9FVNiqr6/Xrl271LNnT0lfB60PP/xQ5eXlysjI8Go/ePBgORwOr4k09u/fr507d2rYsGGSpMLCQrlcLm3atMnTZuPGjXK5XJ42AAAAABBsYZ2NcPr06br00kvVu3dvVVVVadasWaqpqdGECRN09OhRXXnlldq6datee+01NTY2eu6x6t69u5KSkuR0OjVx4kRNmzZNGRkZ6t69u6ZPn+4ZlihJ/fr108iRIzVp0iQ99dRTkqTrr79eo0ePZiZCAAAAAMaENWzt27dPP/7xj/XFF1/oxBNP1NChQ7Vhwwbl5eXpk08+0YoVKyRJZ555ptd6q1ev1gUXXCBJmjt3rhITEzV27FjV1dWpqKhIixcvVkJCgqf9Cy+8oClTpnhmLRwzZozmz58fkm0EAAAAEJ8s27btcHciGtTU1MjpdMrlcnH/FgAAABDHfM0GEXXPFgAAAADECsIWAAAAABhA2AIAAAAAA8I6QQYQbWzbVp270ef2qY6ENh+eDQDoGOoygEhG2AJ8ZNu2rlywXhV7qttv/G8FeelaOrmQD3YAMIC6DCDSMYwQ8FGdu9GvD3RJ2rKn2q8zrgAA31GXAUQ6rmwBAdhyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMoBIRNgCApCWlKC0JH59ACBSUJcBRCKGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYAAPpAAMq21o9KldqiNBlmUZ7g0AgLoMIFQIW4BhBbPKfWuXl66lkwv5YAcAw6jLAEKFYYSAAamOBBXkpfu1zpY91apz+3a2FQDgH+oygHDgyhZggGVZWjq50KcP6dqGRp/PsgIAAkNdBhAOhC3AEMuylJbErxgARArqMoBQYxghAAAAABjA6R3EJNu2/Rpnz4xTAGAWdRlAPCJsIebYtq0rF6xXxZ5qn9dhxikAMIe6DCBeMYwQMafO3ejXB7rEjFMAYBJ1GUC84soWYtqWe4qVlpTQ6nJmnAKA0KIuA4gnhC3EtLSkBGaeAoAIQl0GEE8YRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAgMRwdwDwlW3bqnM3ttuutqH9NgCAjvG1JkvUZQDxi7CFqGDbtq5csF4Ve6rD3RUAiHvUZADwDcMIERXq3I1+f6gX5KUr1ZFgqEcAEL8CqckSdRlA/OHKFqLOlnuKlZbU/od1qiNBlmWFoEcAEL98rckSdRlA/CFsIeqkJSUoLYlDFwAiATUZAFrHMEIAAAAAMICwBQAAAAAGELYAAAAAwAAGWSOo/HnuisTN0oFiPwPwFfXCPH/3scR+BuIFYQtBE8hzVwry0rV0ciEfOH5gPwPwFfXCvECfOcZ+BuIDwwgRNIE8d2XLnmq/zwbGO/YzAF9RL8wL9Jlj7GcgPnBlC0a099yV2oZGFcwqD2GPYhP7GYCvqBfm+fLMMfYzEF8IWzCC566EBvsZgK+oF+axjwF8G8MIAQAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMYMochF1tQ/vPGfGlDQAgONqrudRkAPANYQthx/NGACCyUJcBIDgYRoiwSHUkqCAv3e/1CvLSlepo+4GRAAD/BVKXqckA0DaubCEsLMvS0smFqnP7NxQl1ZEgy7IM9Sr8GFIJIFwCqcuxXpMlhlQC6BjCFsLGsiylJXEIfhNDdwCEE3W5OeoygI5gGCEQZgypBIDIwpBKAMHC6SsgzBhSCQCRhSGVAIKFsAVEAIbuAEBkoS4DCAaGEQIAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABgQ1rA1c+ZMWZbl9ZWdne1Zbtu2Zs6cqZycHKWmpuqCCy7Q3/72N6/3qK+v1y233KIePXqoc+fOGjNmjPbt2+fVprq6WiUlJXI6nXI6nSopKdHBgwdDsYkAAAAA4lTYr2wNGDBA+/fv93zt2LHDs+yhhx7SI488ovnz52vz5s3Kzs7WRRddpK+++srTZurUqVq+fLlKS0v17rvv6tChQxo9erQaGxs9bcaPH6/t27errKxMZWVl2r59u0pKSkK6nQAAAADiS2LYO5CY6HU16zjbtvXoo4/q7rvv1ve//31J0u9+9ztlZWXpxRdf1A033CCXy6VFixbp+eefV3FxsSRpyZIlys3NVXl5uUaMGKFdu3aprKxMGzZs0JAhQyRJCxcuVGFhoXbv3q38/PzQbSwAAACAuBH2K1sffvihcnJy1KdPH40bN04fffSRJOnjjz9WZWWlhg8f7mmbnJys888/X+vWrZMkVVRUyO12e7XJycnRwIEDPW3Wr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAAAAB8FdawNWTIED333HN68803tXDhQlVWVmrYsGH68ssvVVlZKUnKysryWicrK8uzrLKyUklJSUpPT2+zTWZmZrOfnZmZ6WnTktmzZ3vu8XI6ncrNze3QtgIAAACIL2ENWxdffLF+8IMfaNCgQSouLtbrr78u6dhwweMsy/Jax7btZq9927fbtNS+vfeZMWOGXC6X52vv3r0+bRMAAAAASBEwjPCbOnfurEGDBunDDz/03Mf17atPVVVVnqtd2dnZamhoUHV1dZttDhw40Oxnff75582umn1TcnKyunbt6vUFAAAAAL6KqLBVX1+vXbt2qWfPnurTp4+ys7O1atUqz/KGhgatXbtWw4YNkyQNHjxYDofDq83+/fu1c+dOT5vCwkK5XC5t2rTJ02bjxo1yuVyeNgAAAAAQbGGdjXD69Om69NJL1bt3b1VVVWnWrFmqqanRhAkTZFmWpk6dql/96lc69dRTdeqpp+pXv/qV0tLSNH78eEmS0+nUxIkTNW3aNGVkZKh79+6aPn26Z1iiJPXr108jR47UpEmT9NRTT0mSrr/+eo0ePZqZCAEAAAAYE9awtW/fPv34xz/WF198oRNPPFFDhw7Vhg0blJeXJ0n6xS9+obq6Ov3sZz9TdXW1hgwZopUrV6pLly6e95g7d64SExM1duxY1dXVqaioSIsXL1ZCQoKnzQsvvKApU6Z4Zi0cM2aM5s+fH9qNBQAAABBXwhq2SktL21xuWZZmzpypmTNnttomJSVF8+bN07x581pt0717dy1ZsiTQbiJO1DY0dmg5ACC4qMsAol3YH2oMRIqCWeXh7gIA4BuoywCiXURNkAGEWqojQQV56e03/IaCvHSlOhLabwgA8Bt1GUAs4coW4pplWVo6uVB1bt+HoqQ6Etp91hsAIDDUZQCxhLCFuGdZltKS+FUAgEhBXQYQKxhGCAAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGJAY7g4g8tm2rTp3Y7vtahvabwMA6DjqMgBEB8IW2mTbtq5csF4Ve6rD3RUAgKjLABBNGEaINtW5G/3+QC/IS1eqI8FQjwAgvlGXASB6cGULPttyT7HSktr/sE51JMiyrBD0CADiG3UZACIbYQs+S0tKUFoShwwARArqMgBENoYRAgAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMSAx3B+An25bcta0vd6RJlhW6/gBAPGmvBn8bNRkA4hphK8rYDYdlzf5Oq8sbew1RfcnrPn24pzoSZPFHAL7Btm3VuRt9bs8xhLhi27KfGSFr70afV/GnJkv8TqE56jIQ3QhbUabO3ai0NpYn7NuowfetUJ1S2n2vgrx0LZ1cSFGGpGMf6FcuWK+KPdU+r8MxhHhiNxz2K2hJ/tVkid8peKMuA9GPsBVtHGnqd+SZZi+nqV4VKTf69VZb9lQfC29JHAY4FuT9+UCXOIYQX755smvwkSdVq+RW2wZSkyV+p+CNugxEP34To0xqUqIqHris+YKGw9LDx/5ZcU+xlNS51feobWhUwaxyz7/b0t5yxKYt9xQrLSmh1eXfPIaAePTmL0Yq7YSurTfwoyZL1GW0j7oMRCfCVpSxLKuVs1Vfv5aWlCj5eEaLwoyWpCUlcFYUaEP7vyOB1WSJuoyWUZeB6MTU73Eo1ZGggrx0v9YpyEtXqqP1M2oAgMBRlwEgNnGKJA5ZlqWlkwuZ3QgAIgR1GQBiE2ErTrU+HBEAEA7UZQCIPQwjBAAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAHciQvAONu2/ZplTWKmNQAwyd+6TE0GAkPYAmCUbdu6csF6Veyp9mu9grx0LZ1cyIc7AARZIHWZmgwEJmKGEc6ePVuWZWnq1Kme1w4dOqSbb75ZvXr1Umpqqvr166cnn3zSa736+nrdcsst6tGjhzp37qwxY8Zo3759Xm2qq6tVUlIip9Mpp9OpkpISHTx4MARbBaDO3eh30JKkLXuq/b4aBgBoXyB1mZoMBCYirmxt3rxZTz/9tE4//XSv12+77TatXr1aS5Ys0UknnaSVK1fqZz/7mXJycnTZZZdJkqZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoISFBkjR+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oUCc23JPsdKSEtpsU9vQqIJZ5SHqEQDEt/bqMjUZ6JiwX9k6dOiQrrrqKi1cuFDp6eley9avX68JEyboggsu0EknnaTrr79eZ5xxhrZs2SJJcrlcWrRokebMmaPi4mKdddZZWrJkiXbs2KHy8mOFYdeuXSorK9Nvf/tbFRYWqrCwUAsXLtRrr72m3bt3h3x7gXiWlpSgtKTEdr7aDmMAgOBpvy5Tk4GOCHvYuummmzRq1CgVFxc3W3buuedqxYoV+uc//ynbtrV69Wp98MEHGjFihCSpoqJCbrdbw4cP96yTk5OjgQMHat26dZKOBTan06khQ4Z42gwdOlROp9PTpiX19fWqqanx+gKiWW1Do2objrbxxfAQAAgl6jIQ+8I6jLC0tFRbt27V5s2bW1z+2GOPadKkSerVq5cSExPVqVMn/fa3v9W5554rSaqsrFRSUlKzK2JZWVmqrKz0tMnMzGz23pmZmZ42LZk9e7buv//+QDcNiDgMAwGAyEJdBmJf2K5s7d27V7feequWLFmilJSUFts89thj2rBhg1asWKGKigrNmTNHP/vZzzxDBFtj27bXbDktzZzz7TbfNmPGDLlcLs/X3r17fdwyIHKkOhJUkJfefsNvKMhLV6qDYSMAYAJ1GYgvYbuyVVFRoaqqKg0ePNjzWmNjo95++23Nnz9fLpdLd911l5YvX65Ro0ZJkk4//XRt375dDz/8sIqLi5Wdna2GhgZVV1d7Xd2qqqrSsGHDJEnZ2dk6cOBAs5//+eefKysrq9X+JScnKzk5OVibC4SFZVlaOrmQZ6kAQISgLgPxJWxhq6ioSDt27PB67ZprrlHfvn11xx13qLGxUW63W506eV98S0hIUFNTkyRp8ODBcjgcWrVqlcaOHStJ2r9/v3bu3KmHHnpIklRYWCiXy6VNmzbpnHPOkSRt3LhRLpfLE8iAWGZZltKSImLiUQCAqMtAPAnbb3qXLl00cOBAr9c6d+6sjIwMz+vnn3++br/9dqWmpiovL09r167Vc889p0ceeUSS5HQ6NXHiRE2bNk0ZGRnq3r27pk+frkGDBnkm3OjXr59GjhypSZMm6amnnpJ0bOr30aNHKz8/P4RbjJhg25K71vf2jjSJs5EAYA51GUAEi+jTKqWlpZoxY4auuuoq/etf/1JeXp7+53/+R5MnT/a0mTt3rhITEzV27FjV1dWpqKhIixcv9jxjS5JeeOEFTZkyxTNr4ZgxYzR//vyQbw+inG1Lz4yQ9m70fZ3codK1ZXywA4AJ1GUAES6iwtaaNWu8vs/Oztazzz7b5jopKSmaN2+e5s2b12qb7t27a8mSJcHoIuKZu9a/D3RJ2rvh2HpJnc30CQDiGXUZQISLqLAFRI3pf5eS0lpf3lArPXxK6PrTFobYAIgH1GUAEYiwBQQiKS06zooyxAbxij9m4w91GYhscVqXCVtALIuHITZxWrzRBv6YRSSjLjdHXY59cVyXCVtAvIimITa+iuPijTbEwx+ziA3U5WOoy7EvjusyYQuIF9EyxMYfcVy84aNY/GMWsYO6fAx1Ob7EWV0mbAGIDXFWvOGjWPxjFogW1GW0JM7qMmErFjX4OE6aMdKIJXFWvBFFfK3JEnUZsYW6DBC2YpKvZ4kYI414xQkJhJI/Z+6py4hX1GXEKMJWrHCkHfuQ3rvB93UYI414xQkJmBZITZaoy4hf1GXEKMJWrLCsY8XHl6lWGSONIKptaOzQ8pDhhARCyZ+aLFGXEVTUZSByELZiiWVRfI7jGR8hUzCrPNxd8A0nJBBq1GRv1OWQoS4DkYOwhdjDMz6MS3UkqCAvXVv2VPu8TkFeulIdCQZ75QP++AXCg7psHHUZiEyELT9d/cwmOVKjuygkNx3Rc//+908XbVJ9p5Sw9ifYkpuO6LkD/j/j46cL1rS5L/zZb5Gyj032uZN17IPaV50sadzT7Q8VaWyyPf/+6aJNSujU+h9apvZzpPz/ITCmjvvExjq98O9/T3quQkcTUoPSX3/7EY2oy4H1IxLqsj81WaIuo2XR+LvaHnfdYZ/aEbYQ0yZllqreauMX2j6ihVXjQtij2GFZlhI44QzAT9Rlc6jLQOQhbCGm1VspbZ8RaQpdXwAA1GUA8YWwBQBom20r2a73uXm9lcx9NgBgEnU5ahC2AACts2098OU05bvf83mV9x39dV/GHD7YAcAE6nJU6RTuDgAAIleyXe/XB7ok9XW/59cZVwCA76jL0YUrWwAAnzCxAQBEFupy5CNsAUCsMDyGn4kNAMBP1OW4R9gCgFjAGH4AiCzUZSjAe7a2bt2qHTt2eL7/05/+pMsvv1x33XWXGhoagtY5AIBvGMMPAJGFugwpwCtbN9xwg+68804NGjRIH330kcaNG6crrrhCS5cuVW1trR599NEgdxMA4CvG8ANAZKEux6+Armx98MEHOvPMMyVJS5cu1XnnnacXX3xRixcv1ssvvxzM/gEA/HR8DH+rX2184AMAgo+6HL8CClu2baup6dgdd+Xl5brkkkskSbm5ufriiy+C1zsAAAAAiFIBha2CggLNmjVLzz//vNauXatRo0ZJkj7++GNlZWUFtYMAAAAAEI0CCltz587V1q1bdfPNN+vuu+/WKaecIkn64x//qGHDhgW1gwAAAAAQjQKaIOOMM87wmo3wuP/93/9VYiKzyQMAAABAQFe2Tj75ZH355ZfNXj9y5IhOO+20DncKACJFsn1EyU3tf8m2w91VAIgL1GVEk4AuQ33yySdqbGxs9np9fb327dvX4U4BQKTwdSrejxP/Q/dlPCyp/QdR1lvJPLASAAJEXUY08StsrVixwvPvN998U06n0/N9Y2Oj/vznP6tPnz7B6x0AhEG9laz3Hf3V14+HUfY5+g89d+AKn9q+7+iv+zLm8MEOAD6iLiNa+RW2Lr/8ckmSZVmaMGGC1zKHw6GTTjpJc+bMCVrnAMQI21ayXe9T00bbVqqOqE7JhjvVBsvSfRlzfOyzrfu/nK4+R//h89v3db+nZLue56oACB8f63JE1GSJuoyo5VfYOv5srT59+mjz5s3q0aOHkU4BiCG2rQe+nKZ8P85GKkXa3HSafm0/Kl+GfxhhWT5/6N7ZY75PfwAk20d8Hv4CAMb4W5cjoSZL1GVEpYDu2fr444+D3Q8AMSrZrvcvaP3b2Z0+ULLqdVSpBnoVZL7+AdBkvisA0J5A6nJU1WSJuoyIEfA87X/+85/15z//WVVVVZ4rXsc988wzHe4YgNgzKbO03Q+/xKY6PfP5j0PUIwCIb+3VZWoy0DEBha37779fDzzwgAoKCtSzZ09Z3EwIhJaPY+2T7SMBvX2yfcSns33+zt5Ub6WovlPbYauRqXoBRBs/7kuNtrpMTQY6JqCwtWDBAi1evFglJSXB7g+A9gRyD5SffB2/zuxNAOJeCGqyRF0GolVAYauhoUHDhg0Ldl+AsGrvrGGgZyODLZCx9u87+h8729mGQKbVNT17U7J9RAlNrf/BECn/JwDMiIa6HOh9qdFYl9urycfbAPhaQGHruuuu04svvqh777032P0BwiYaZyPy5R4oycdhJX5Mqxuq2Zu4TwBeDA+fReSJtrrsa02WorMuU5PRDHW5XQGFrSNHjujpp59WeXm5Tj/9dDkcDq/ljzzySFA6B5gWyFlDX85Ghoov90D5JQJmb6pXsjY3naazO33g8zqR9H8CQ0I0VAvhF811Oeg1WQp7XQ6kJkuR838Cg6jLPgkobP31r3/VmWeeKUnauXOn1zImy0BU8eshicf4e/Mx/GRZ+mHDfUpVvb7bO10JPuxr/k9in6nhs4hA1OXIEkBNlvg/iQfUZd8EFLZWr14d7H4A4ePHQxIRKpbqlKJ6K0UJnfiwhregDp9FZKIuRxhqMtpGXW5dwM/ZAgAgHIwM1QIABIy63LqAwtaFF17Y5nDBt956K+AOAQAAAEAsCChsHb9f6zi3263t27dr586dmjBhQjD6BQAAAABRLaCwNXfu3BZfnzlzpg4dOtShDgEAEA7tPdMpMY6nLgaAcGitLkfTvV9BvWfrJz/5ic455xw9/PDDwXxbAACMi7ZnOgFArGutLv8065WomUSnUzDfbP369UpJiY4NBwDg+DOd/LG56TTVK76mLgaAUAmkLkeygK5sff/73/f63rZt7d+/X1u2bNG9994blI4BsaK9oUnHRdMlccSO9o7P5ACHzvl63EthPvb9eKZTo21r66fVqlOyCvhdjWrUZUSycNflsB/3PtTlaHpWV0Bhy+l0en3fqVMn5efn64EHHtDw4cOD0jEgVvg6NOl9R3/dlzGHD3aElKmhc/68b9iPfR+f6dTYZKtOjN6IBdRlRLJw1+WIOO5j6Fl7AYWtZ599Ntj9AGLK8Uvgff14snpf93tKtutjprggcgVyfL7v6N/umcRA3lfi2EdoUJcRySKpLnPcB1eHJsioqKjQrl27ZFmW+vfvr7POOitY/QKimx9Dk5LtI9yYj9Dy4/g8zqdhJX6+L8c+Qoq6jEgWAXWZ496MgMJWVVWVxo0bpzVr1qhbt26ybVsul0sXXnihSktLdeKJJwa7n0D08fUSuI/3tQBBZWqIhj/vy7GPUKMuI5KFuy5z3BsR0GyEt9xyi2pqavS3v/1N//rXv1RdXa2dO3eqpqZGU6ZMCXYfAQAAACDqBHRlq6ysTOXl5erXr5/ntf79++vxxx9nggwAAAAAUIBXtpqamuRwOJq97nA41NTENUgAAAAACChs/dd//ZduvfVWffbZZ57X/vnPf+q2225TUVFR0DoHAAAAANEqoGGE8+fP12WXXaaTTjpJubm5sixLn376qQYNGqQlS5YEu48AIpiphy8CAAJDXQYiR0BhKzc3V1u3btWqVav0/vvvy7Zt9e/fX8XFxcHuH4AIxzSxABBZqMtA5PBrGOFbb72l/v37q6amRpJ00UUX6ZZbbtGUKVN09tlna8CAAXrnnXeMdBRA5Dj+kER/+PLwRQBAYKjLQGTy68rWo48+qkmTJqlr167NljmdTt1www165JFH9L3vfS9oHQQQgUw9fBEAEBjqMhCR/Apbf/nLX/TrX/+61eXDhw/Xww8/3OFOAYgCph6+CAAIDHUZiDh+ha0DBw60OOW7580SE/X55593uFMAgH+zbZ/OVHPDOwCEgI81WaIu4xi/wtZ3vvMd7dixQ6ecckqLy//617+qZ8+eQekYIogfhUViWEJHtDeDlKcN4oNt64Evpynf/V64e4JIQ10OGWb2gwc1GQHwK2xdcskl+uUvf6mLL75YKSnel6nr6up03333afTo0UHtIMIsgMLyvqO/7suYwwd7AJhBCt+UbNf7/aHODe9xgLocUtRlHBdITZaoy/HOr7B1zz33aNmyZTrttNN08803Kz8/X5ZladeuXXr88cfV2Niou+++21RfEQaBFJa+7veUbNczbtxHx2eQ6ssf1WjDpMxSn36nuIIR+6jL5gVSl6nJ8cXXmixRl+OdX2ErKytL69at04033qgZM2bItm1JkmVZGjFihJ544gllZWUZ6SjCr73Ckmwf4QxgIAKYQUqieMebeitF9Z34QxneqMuGMLMf2kFNhq/8fqhxXl6e3njjDVVXV+vvf/+7bNvWqaeeqvT0dBP9QwRpt7C0c68R2sAMUgACQF02iLoMIAj8DlvHpaen6+yzzw5mXwAAAAAgZgQctgDAtCbb9unMfCfr2HBmIBC2bavJbr9dk+1DIyCG+VqTJeoyOqa9uhxNxxdhC0DE2vrpQZ/anZCcqP49u0RN4UXksG1b7+3/Sofqj4a7K0DE87UmS9RlBM6XulyQl66EKDm0LNvmVJ0vampq5HQ65XK51LVr13B3p2MaDku/yjn277s+k5I6h76tSZHSDwTEtm39cMF6bdlT7dd67z0wQmlJEX7+yN9jM9aP5QioL7UNR9X/l2/6tU5BXrqWTi4M7h+R1GVEqEBrshSDdTnWj+MI+YzypS5HwrHlazaI8N8AAPHGsiwtnVyoOndju21rGxpVMKs8BL1CPNhyT7HSkhLabZfqSOBsPeKGPzVZoi4juFqry6mO9mt1pCBsxbuG2o4tBwywLCvsZ6wQf9KSEiLjuKMuI8JQkxEuEVOXOyC6e4+Oe/iUcPcAAAgY30RdBhBuvtTceKrLHRAxYWv27Nm66667dOutt+rRRx/1vL5r1y7dcccdWrt2rZqamjRgwAD94Q9/UO/evSVJ9fX1mj59ul566SXV1dWpqKhITzzxhHr16uV5j+rqak2ZMkUrVqyQJI0ZM0bz5s1Tt27dQrmJkcORJuUOlfZu8H2d3KHH1gMAE+I9YFCXAUSSeK/JQRQRYWvz5s16+umndfrpp3u9/o9//EPnnnuuJk6cqPvvv19Op1O7du1SSsrXDxmcOnWqXn31VZWWliojI0PTpk3T6NGjVVFRoYSEY+M5x48fr3379qmsrEySdP3116ukpESvvvpq6DYykliWdG2Z5PbjjIQj7dh6ABAsBIyvUZcBhFsgNVmK3bocJGEPW4cOHdJVV12lhQsXatasWV7L7r77bl1yySV66KGHPK+dfPLJnn+7XC4tWrRIzz//vIqLiyVJS5YsUW5ursrLyzVixAjt2rVLZWVl2rBhg4YMGSJJWrhwoQoLC7V7927l5+eHYCsjkGXF3iw6AKILAcMbdRlAOAVSk6XYrstB0CncHbjppps0atQoT1g6rqmpSa+//rpOO+00jRgxQpmZmRoyZIheeeUVT5uKigq53W4NHz7c81pOTo4GDhyodevWSZLWr18vp9PpCVqSNHToUDmdTk+bltTX16umpsbrCwAQZMcDhq9ffKADgDn+1mTqcrvCGrZKS0u1detWzZ49u9myqqoqHTp0SA8++KBGjhyplStX6oorrtD3v/99rV27VpJUWVmppKQkpaene62blZWlyspKT5vMzMxm75+Zmelp05LZs2fL6XR6vnJzczuyqQAAAADiTNiGEe7du1e33nqrVq5c6XUP1nFNTU2SpMsuu0y33XabJOnMM8/UunXrtGDBAp1//vmtvrdt217PQGnpeSjfbvNtM2bM0M9//nPP9zU1NQQuAAAAAD4LW9iqqKhQVVWVBg8e7HmtsbFRb7/9tubPn6/Dhw8rMTFR/fv391qvX79+evfddyVJ2dnZamhoUHV1tdfVraqqKg0bNszT5sCBA81+/ueff66srKxW+5ecnKzk5OQObSOCzLZ9G0fMVKQAYJ6vNVmiLgOIW2ELW0VFRdqxY4fXa9dcc4369u2rO+64Q8nJyTr77LO1e/durzYffPCB8vLyJEmDBw+Ww+HQqlWrNHbsWEnS/v37tXPnTs+kGoWFhXK5XNq0aZPOOeccSdLGjRvlcrk8gQxRwLalZ0ZIezeGuycAAGoyAPgkbGGrS5cuGjhwoNdrnTt3VkZGhuf122+/XT/60Y903nnn6cILL1RZWZleffVVrVmzRpLkdDo1ceJETZs2TRkZGerevbumT5+uQYMGeSbc6Nevn0aOHKlJkybpqaeeknRs6vfRo0fH70yE0chd6/+HOlORAoAZgdRkiboMIO6Efer3tlxxxRVasGCBZs+erSlTpig/P18vv/yyzj33XE+buXPnKjExUWPHjvU81Hjx4sWeZ2xJ0gsvvKApU6Z4Zi0cM2aM5s+fH/LtQZBM/7uU5MOHNVORAjHFtm3VuRt9bp/qSGjz3lwEia81WaIuAzGGuty+iApbx69YfdO1116ra6+9ttV1UlJSNG/ePM2bN6/VNt27d9eSJUuC0UVEgqQ0nkUDxBnbtnXlgvWq2FPt8zoFeelaOrkw7j7YQ46aDMQl6rJvwv6cLQAA2lPnbvTrA12Stuyp9uuMKwDAd9Rl30TUlS0AANqz5Z5ipSUltLq8tqFRBbPKQ9gjAIhv1OXWEbYAAFElLSlBaUl8fAFApKAut45hhAAAAABgAGELAAAAAAzgeh/Cx7aPPavFFw0+tgOihS/HNMc9Qs3XusyxiVjU3nHNcY8AELYQHrYtPTMisIdiArHg4VPC3QPAG3UZ8Y66DAMYRojwcNcG9oGeO/TYQzGBaORIO3YM+4vjHqEQSF3m2ES0C6Quc9zDD1zZQvhN//uxh2L6wpEmxdGD8BBjLEu6tsz34bPHcdwj1HytyxybiHaB1GWOe/iBsIXwS0qTkjqHuxdAaFgWxzsiH3UZ8YS6DIMYRggAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMSw90BAABMqW1o7NByAEBwxVtdJmwBAGJWwazycHcBAPAN8VaXCVswo6G2Y8sBIECpjgQV5KVry55qn9cpyEtXqiPBYK8iAHUZQJjEc10mbMGMh08Jdw8AxCnLsrR0cqHq3L4PRUl1JMiyLIO9igDUZQBhEs91mbCF4HGkSblDpb0bfF8nd+ix9QAgiCzLUloSH3HUZQCRIl7rcvxtMcyxLOnaMsntx1AUR9qx9QAAwUddBoCwImwhuCxLSuoc7l4AAI6jLgNA2PCcLQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAxLD3QEAQOywbVt17ka/1kl1JMiyLEM9AoD45m9dpiYHF2ELABAUtm3rygXrVbGn2q/1CvLStXRyIR/uABBkgdRlanJwMYwQABAUde5Gv4OWJG3ZU+331TAAQPsCqcvU5ODiyhYAIOi23FOstKSENtvUNjSqYFZ5iHoEAPGtvbpMTTaDsAUACLq0pASlJfERAwCRgrocHgwjBAAAAAADCFsAAAAAYABhCwAAAAAMiJiwNXv2bFmWpalTp7a4/IYbbpBlWXr00Ue9Xq+vr9ctt9yiHj16qHPnzhozZoz27dvn1aa6ulolJSVyOp1yOp0qKSnRwYMHzWwIAAAAAChCwtbmzZv19NNP6/TTT29x+SuvvKKNGzcqJyen2bKpU6dq+fLlKi0t1bvvvqtDhw5p9OjRamz8esrK8ePHa/v27SorK1NZWZm2b9+ukpISY9sDAAAAAGEPW4cOHdJVV12lhQsXKj09vdnyf/7zn7r55pv1wgsvyOFweC1zuVxatGiR5syZo+LiYp111llasmSJduzYofLyY1NX7tq1S2VlZfrtb3+rwsJCFRYWauHChXrttde0e/fukGwjAAAAgPgT9rB10003adSoUSouLm62rKmpSSUlJbr99ts1YMCAZssrKirkdrs1fPhwz2s5OTkaOHCg1q1bJ0lav369nE6nhgwZ4mkzdOhQOZ1OTxsAAAAACLawTrZfWlqqrVu3avPmzS0u//Wvf63ExERNmTKlxeWVlZVKSkpqdkUsKytLlZWVnjaZmZnN1s3MzPS0aUl9fb3q6+s939fU1LS7PQAAAABwXNjC1t69e3Xrrbdq5cqVSklJaba8oqJCv/nNb7R161ZZluXXe9u27bVOS+t/u823zZ49W/fff79fPxcAAAAAjgvbMMKKigpVVVVp8ODBSkxMVGJiotauXavHHntMiYmJWrNmjaqqqtS7d2/P8j179mjatGk66aSTJEnZ2dlqaGhQdXW113tXVVUpKyvL0+bAgQPNfv7nn3/uadOSGTNmyOVyeb727t0bvI0HAAAAEPPCdmWrqKhIO3bs8HrtmmuuUd++fXXHHXeoZ8+eGjFihNfyESNGqKSkRNdcc40kafDgwXI4HFq1apXGjh0rSdq/f7927typhx56SJJUWFgol8ulTZs26ZxzzpEkbdy4US6XS8OGDWu1f8nJyUpOTg7a9gIAAACIL2ELW126dNHAgQO9XuvcubMyMjI8r2dkZHgtdzgcys7OVn5+viTJ6XRq4sSJmjZtmjIyMtS9e3dNnz5dgwYN8ky40a9fP40cOVKTJk3SU089JUm6/vrrNXr0aM/7AIgPtm2rzt3YfsN/S3Uk+D2MGQDgO+oyYl1YJ8gIhrlz5yoxMVFjx45VXV2dioqKtHjxYiUkJHjavPDCC5oyZYpn1sIxY8Zo/vz54eoygDCwbVtXLlivij3V7Tf+t4K8dC2dXMgHOwAYQF1GPIiosLVmzZo2l3/yySfNXktJSdG8efM0b968Vtfr3r27lixZ0sHeAYhmde5Gvz7QJWnLnmrVuRuVlhRRpRIAYgJ1GfGAIxVA3NlyT7HSkhJaXV7b0KiCWeUh7BEAxDfqMmIVYQtA3ElLSuCsKABEEOoyYlXYpn4HAAAAgFjGKQQAMaG2oe3ZrNpbDgAILuoyQNgCECMYyw8AkYW6DDCMEEAUS3UkqCAv3a91CvLSlepo/SZsAEDgqMuAN65sAYhalmVp6eRCHogJABGCugx4I2wBiGqWZRmdwcrXewr4YwEAjqEuA18jbAFAG3y956AgL11LJxfywQ4AhlGXEU24ZwsAviWQew627Kn2a9gMAMB31GVEK65sAcC3+HPPQW1DY8zPuGXbts/7IlBMEQ2gLdRlb6brsi/rUZd9Q9gCgBaYvucgWti2rSsXrFfFnmqjPyfW/zAC0HHU5WNCUZepycHDMEIAQKvq3I1+f6D7Oo0zU0QDgP9M1eVAarKv7x3POD0AAPDJlnuKlZbkW4jy5YZ0pogGgI4JZl0OpCb7+t7xjLAFAPBJWlJC0IfwMCwIAAIX7LpMTQ4+hhECAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGELYAAAAAwADCFgAAAAAYQNgCAAAAAAMIWwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABieHuAAAgOGzbVp270ef2qY4EWZZlsEcAEN+oyyBsAUAMsG1bVy5Yr4o91T6vU5CXrqWTC/lgBwADqMuQGEYIADGhzt3o1we6JG3ZU+3XGVcAgO+oy5Ai6MrW7Nmzddddd+nWW2/Vo48+KrfbrXvuuUdvvPGGPvroIzmdThUXF+vBBx9UTk6OZ736+npNnz5dL730kurq6lRUVKQnnnhCvXr18rSprq7WlClTtGLFCknSmDFjNG/ePHXr1i3UmwkAfvF1CEptw9dtttxTrLSkhDbbFswqD0r/ACCe+DMskLoMKULC1ubNm/X000/r9NNP97xWW1urrVu36t5779UZZ5yh6upqTZ06VWPGjNGWLVs87aZOnapXX31VpaWlysjI0LRp0zR69GhVVFQoIeHYQT1+/Hjt27dPZWVlkqTrr79eJSUlevXVV0O7oQBi2jc/WIPBtqUfLliv9/bX+LVeWlKC0pIiorwDQFgFsy4HWpMl6nI8C/v/+qFDh3TVVVdp4cKFmjVrlud1p9OpVatWebWdN2+ezjnnHH366afq3bu3XC6XFi1apOeff17FxcWSpCVLlig3N1fl5eUaMWKEdu3apbKyMm3YsEFDhgyRJC1cuFCFhYXavXu38vPzQ7exAGJaJJyVLMhLV6qj9bOnABBPqMsIt7CHrZtuukmjRo1ScXGxV9hqicvlkmVZnuF/FRUVcrvdGj58uKdNTk6OBg4cqHXr1mnEiBFav369nE6nJ2hJ0tChQ+V0OrVu3TrCFoAOSXUkqCAvXVv8HJfvj/49u/77hmnf+sON1QDimem67E9NPt4f6nL8CmvYKi0t1datW7V58+Z22x45ckR33nmnxo8fr65du0qSKisrlZSUpPT0dK+2WVlZqqys9LTJzMxs9n6ZmZmeNi2pr69XfX295/uaGv8vGQOIfZZlaenkQqM3NPNBDQC+M12XqcnwR9jC1t69e3Xrrbdq5cqVSklJabOt2+3WuHHj1NTUpCeeeKLd97Zt2+uXoKVfiG+3+bbZs2fr/vvvb/dnAYBlWVE7Fr+9+xmCfR8aAIQCdRmRImxHYUVFhaqqqjR48GDPa42NjXr77bc1f/581dfXKyEhQW63W2PHjtXHH3+st956y3NVS5Kys7PV0NCg6upqr6tbVVVVGjZsmKfNgQMHmv38zz//XFlZWa32b8aMGfr5z3/u+b6mpka5ubkd2mYAiDSRcD8DAOBr1OXYErbnbBUVFWnHjh3avn2756ugoEBXXXWVtm/f7hW0PvzwQ5WXlysjI8PrPQYPHiyHw+E1kcb+/fu1c+dOT9gqLCyUy+XSpk2bPG02btwol8vladOS5ORkde3a1esLAGLB8fsZ/MEN3gBgDnU5dlm2bdvh7sRxF1xwgc4880w9+uijOnr0qH7wgx9o69ateu2117yuQnXv3l1JSUmSpBtvvFGvvfaaFi9erO7du2v69On68ssvvaZ+v/jii/XZZ5/pqaeeknRs6ve8vDy/pn6vqamR0+mUy+UieAGIev48K0biHgUAMI26HF18zQYRO5h13759nocQn3nmmV7LVq9erQsuuECSNHfuXCUmJmrs2LGehxovXrzYE7Qk6YUXXtCUKVM8sxaOGTNG8+fPD8l2AEAkiub7GQAgFlGXY1NEXdmKZFzZAgAAACD5ng3Cds8WAAAAAMQywhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAYQtgAAAADAAMIWAAAAABhA2AIAAAAAAwhbAAAAAGAAYQsAAAAADCBsAQAAAIABhC0AAAAAMICwBQAAAAAGJIa7A9HCtm1JUk1NTZh7AgAAACCcjmeC4xmhNYQtH3311VeSpNzc3DD3BAAAAEAk+Oqrr+R0OltdbtntxTFIkpqamvTZZ5+pS5cusiwrJD+zpqZGubm52rt3r7p27RqSnxmP2M/msY9Dg/1sHvs4NNjP5rGPQ4P9bF649rFt2/rqq6+Uk5OjTp1avzOLK1s+6tSpk3r16hWWn921a1d+QUOA/Wwe+zg02M/msY9Dg/1sHvs4NNjP5oVjH7d1Res4JsgAAAAAAAMIWwAAAABgAGErgiUnJ+u+++5TcnJyuLsS09jP5rGPQ4P9bB77ODTYz+axj0OD/WxepO9jJsgAAAAAAAO4sgUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsh9sQTT6hPnz5KSUnR4MGD9c4777TZfu3atRo8eLBSUlJ08skna8GCBc3avPzyy+rfv7+Sk5PVv39/LV++3FT3o4I/+3jZsmW66KKLdOKJJ6pr164qLCzUm2++6dVm8eLFsiyr2deRI0dMb0pE82c/r1mzpsV9+P7773u141j25s8+vvrqq1vcxwMGDPC04Vj29vbbb+vSSy9VTk6OLMvSK6+80u461GT/+bufqcv+83cfU5MD4+9+pi77b/bs2Tr77LPVpUsXZWZm6vLLL9fu3bvbXS+SazNhK4R+//vfa+rUqbr77ru1bds2fe9739PFF1+sTz/9tMX2H3/8sS655BJ973vf07Zt23TXXXdpypQpevnllz1t1q9frx/96EcqKSnRX/7yF5WUlGjs2LHauHFjqDYrovi7j99++21ddNFFeuONN1RRUaELL7xQl156qbZt2+bVrmvXrtq/f7/XV0pKSig2KSL5u5+P2717t9c+PPXUUz3LOJa9+buPf/Ob33jt271796p79+764Q9/6NWOY/lrhw8f1hlnnKH58+f71J6aHBh/9zN12X/+7uPjqMn+8Xc/U5f9t3btWt10003asGGDVq1apaNHj2r48OE6fPhwq+tEfG22ETLnnHOOPXnyZK/X+vbta995550ttv/FL35h9+3b1+u1G264wR46dKjn+7Fjx9ojR470ajNixAh73LhxQep1dPF3H7ekf//+9v333+/5/tlnn7WdTmewuhgT/N3Pq1evtiXZ1dXVrb4nx7K3jh7Ly5cvty3Lsj/55BPPaxzLrZNkL1++vM021OSO82U/t4S67Dtf9jE1ueMCOZapy/6rqqqyJdlr165ttU2k12aubIVIQ0ODKioqNHz4cK/Xhw8frnXr1rW4zvr165u1HzFihLZs2SK3291mm9beM5YFso+/rampSV999ZW6d+/u9fqhQ4eUl5enXr16afTo0c3OsMaTjuzns846Sz179lRRUZFWr17ttYxj+WvBOJYXLVqk4uJi5eXleb3OsRw4anJ4UJfNoSaHFnXZfy6XS5Ka/f5/U6TXZsJWiHzxxRdqbGxUVlaW1+tZWVmqrKxscZ3KysoW2x89elRffPFFm21ae89YFsg+/rY5c+bo8OHDGjt2rOe1vn37avHixVqxYoVeeuklpaSk6D//8z/14YcfBrX/0SKQ/dyzZ089/fTTevnll7Vs2TLl5+erqKhIb7/9tqcNx/LXOnos79+/X//3f/+n6667zut1juWOoSaHB3U5+KjJoUdd9p9t2/r5z3+uc889VwMHDmy1XaTX5kTjPwFeLMvy+t627Wavtdf+26/7+56xLtD98dJLL2nmzJn605/+pMzMTM/rQ4cO1dChQz3f/+d//qe++93vat68eXrssceC1/Eo489+zs/PV35+vuf7wsJC7d27Vw8//LDOO++8gN4zHgS6PxYvXqxu3brp8ssv93qdY7njqMmhRV02g5ocetRl/918883661//qnfffbfdtpFcm7myFSI9evRQQkJCswRdVVXVLGkfl52d3WL7xMREZWRktNmmtfeMZYHs4+N+//vfa+LEifrDH/6g4uLiNtt26tRJZ599dtyederIfv6moUOHeu1DjuWvdWQf27atZ555RiUlJUpKSmqzbbwfy/6iJocWdTm0qMnmUJf9d8stt2jFihVavXq1evXq1WbbSK/NhK0QSUpK0uDBg7Vq1Sqv11etWqVhw4a1uE5hYWGz9itXrlRBQYEcDkebbVp7z1gWyD6Wjp05vfrqq/Xiiy9q1KhR7f4c27a1fft29ezZs8N9jkaB7udv27Ztm9c+5Fj+Wkf28dq1a/X3v/9dEydObPfnxPux7C9qcuhQl0OPmmwOddl3tm3r5ptv1rJly/TWW2+pT58+7a4T8bXZ+BQc8CgtLbUdDoe9aNEi+7333rOnTp1qd+7c2TMrzZ133mmXlJR42n/00Ud2Wlqafdttt9nvvfeevWjRItvhcNh//OMfPW3+3//7f3ZCQoL94IMP2rt27bIffPBBOzEx0d6wYUPIty8S+LuPX3zxRTsxMdF+/PHH7f3793u+Dh486Gkzc+ZMu6yszP7HP/5hb9u2zb7mmmvsxMREe+PGjSHfvkjh736eO3euvXz5cvuDDz6wd+7cad955522JPvll1/2tOFY9ubvPj7uJz/5iT1kyJAW35Nj2dtXX31lb9u2zd62bZstyX7kkUfsbdu22Xv27LFtm5ocLP7uZ+qy//zdx9TkwPi7n4+jLvvuxhtvtJ1Op71mzRqv3//a2lpPm2irzYStEHv88cftvLw8Oykpyf7ud7/rNZXlhAkT7PPPP9+r/Zo1a+yzzjrLTkpKsk866ST7ySefbPaeS5cutfPz822Hw2H37dvXq1jGI3/28fnnn29LavY1YcIET5upU6favXv3tpOSkuwTTzzRHj58uL1u3boQblFk8mc///rXv7b/4z/+w05JSbHT09Ptc88913799debvSfHsjd/68XBgwft1NRU++mnn27x/TiWvR2f/rq1339qcnD4u5+py/7zdx9TkwMTSM2gLvunpf0ryX722Wc9baKtNlu2/e87yAAAAAAAQcM9WwAAAABgAGELAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgDEtTVr1siyLB08eDDcXQEAxBjCFgAg5l199dWyLEuWZcnhcOjkk0/W9OnTdfjw4XB3DQAQwxLD3QEAAEJh5MiRevbZZ+V2u/XOO+/ouuuu0+HDh/WjH/0o3F0DAMQormwBAOJCcnKysrOzlZubq/Hjx+uqq67SK6+84lleUVGhgoICpaWladiwYdq9e7dn2T/+8Q9ddtllysrK0gknnKCzzz5b5eXlXu//xBNP6NRTT1VKSoqysrJ05ZVXepbZtq2HHnpIJ598slJTU3XGGWfoj3/8o/FtBgCEF2ELABCXUlNT5Xa7Pd/ffffdmjNnjrZs2aLExERde+21nmWHDh3SJZdcovLycm3btk0jRozQpZdeqk8//VSStGXLFk2ZMkUPPPCAdu/erbKyMp133nme9e+55x49++yzevLJJ/W3v/1Nt912m37yk59o7dq1odtgAEDIWbZt2+HuBAAAJl199dU6ePCg50rWpk2bdMkll6ioqEg33nijLrzwQpWXl6uoqEiS9MYbb2jUqFGqq6tTSkpKi+85YMAA3Xjjjbr55pu1bNkyXXPNNdq3b5+6dOni1e7w4cPq0aOH3nrrLRUWFnpev+6661RbW6sXX3zRzEYDAMKOe7YAAHHhtdde0wknnKCjR4/K7Xbrsssu07x58/Tee+9Jkk4//XRP2549e0qSqqqq1Lt3bx0+fFj333+/XnvtNX322Wc6evSo6urqPFe2LrroIuXl5enkk0/WyJEjNXLkSF1xxRVKS0vTe++9pyNHjuiiiy7y6k9DQ4POOuusEG09ACAcCFsAgLhw4YUX6sknn5TD4VBOTo4cDockecLW8e8lybIsSVJTU5Mk6fbbb9ebb76phx9+WKeccopSU1N15ZVXqqGhQZLUpUsXbd26VWvWrNHKlSv1y1/+UjNnztTmzZs97/H666/rO9/5jlefkpOTzW40ACCsCFsAgLjQuXNnnXLKKQGt+8477+jqq6/WFVdcIenYPVyffPKJV5vExEQVFxeruLhY9913n7p166a33npLF110kZKTk/Xpp5/q/PPP7+hmAACiCGELAIB2nHLKKVq2bJkuvfRSWZale++913PFSjo2RPGjjz7Seeedp/T0dL3xxhtqampSfn6+unTpounTp+u2225TU1OTzj33XNXU1GjdunU64YQTNGHChDBuGQDAJMIWAADtmDt3rq699loNGzZMPXr00B133KGamhrP8m7dumnZsmWaOXOmjhw5olNPPVUvvfSSBgwYIEn67//+b2VmZmr27Nn66KOP1K1bN333u9/VXXfdFa5NAgCEALMRAgAAAIABPGcLAAAAAAwgbAEAAACAAYQtAAAAADCAsAUAAAAABhC2AAAAAMAAwhYAAAAAGEDYAgAAAAADCFsAAAAAYABhCwAAAAAMIGwBAAAAgAGELQAAAAAwgLAFAAAAAAb8f4lIUwygpTlNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.pulsar import fold_events\n", + "from stingray.pulse.search import plot_profile\n", + "nbin = 32\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/period, nbin=nbin)\n", + "_ = plot_profile(ph, profile)\n", + "\n", + "ph, profile, profile_err = fold_events(events.time, 1/1.1, nbin=nbin)\n", + "_ = plot_profile(ph, profile)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Therefore, typically we try a number of frequencies around the candidate we found with the power spectrum or other means, and search for the frequency that gives the \"best\" pulsed profile. \n", + "How do we evaluate this best frequency?\n", + "We use the chi squared statistics. \n", + "\n", + "We use a flat pulsed profile (no pulsation) as model, and we calculate the chi square of the actual pulsed profile with respect to this flat model:\n", + "\n", + "$$\n", + "S = \\sum_i\\frac{(P_i - \\overline{P})^2}{\\sigma^2}\n", + "$$\n", + "\n", + "If there is no pulsation, the chi squared will assume a random value distributed around the number of degrees of freedom $n - 1$ (where $n$ is the number of bins in the profile) with a well defined statistical distribution ($\\chi^2_{n - 1}$). If there is pulsation, the value will be much larger.\n", + "Stingray has a function that does this: `stingray.pulse.search.epoch_folding_search`.\n", + "\n", + "For the frequency resolution of the periodogram, one usually chooses _at least_ the same frequency resolution of the FFT, i. e., $df_{\\rm min}=1/(t_1 - t_0)$. In most cases, a certain degree of oversampling is used." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgRUlEQVR4nOzdd3xT9foH8E92mu49oJQCZU8BWSp7CSIXFefFvVAUgQuX6+9qXaBcBQQUr14FLig48Sqo7CFLoMgolF2gQEspbdORNPP8/kjOaUNbSNu0aZvP+/XK60WSk5NvQ5tznvM83+crEwRBABEREREREblN7u0BEBERERERNTQMpIiIiIiIiKqIgRQREREREVEVMZAiIiIiIiKqIgZSREREREREVcRAioiIiIiIqIoYSBEREREREVURAykiIiIiIqIqUnp7APWB3W7H5cuXERgYCJlM5u3hEBERERGRlwiCgMLCQsTFxUEurzzvxEAKwOXLlxEfH+/tYRARERERUT2RkZGBpk2bVvo8AykAgYGBABwfVlBQkJdHQ0REdaq4GFiwwPWxl14C/P29Mx4iIvKqgoICxMfHSzFCZRhIAVI5X1BQEAMpIiJfo1AAGo3rY0FBDKSIiHzczab8sNkEERERERFRFTGQIiIiIiIiqiIGUkRERERERFXEOVJEREREVCOCIMBqtcJms3l7KEQ3pVAooFQqa7zsEQMpIiIiIqo2s9mMzMxMGAwGbw+FyG06nQ6xsbFQq9XV3gcDKSIiIiKqFrvdjvT0dCgUCsTFxUGtVtf4Kj9RbRIEAWazGVevXkV6ejqSkpJuuOjujTCQIiIiIqJqMZvNsNvtiI+Ph06n8/ZwiNzi5+cHlUqF8+fPw2w2Q6vVVms/bDZBRERERDVS3Sv6RN7iid9Z/tYTERERERFVEQMpIiIiIiKiKmIgRURERETUgDRv3hzz58+v9uuXLl2KkJAQj43HVzGQIiIiIiKf8thjj0Emk5W7jRgxQtqmefPm5Z5v2rRptd4vOTkZXbt2rfLrKgt49u3bh2eeecatfVQUdN1///04efJklcdDrti1j4iIiIh8zogRI7BkyRKXxzQajcv9N998E08//bR0X6FQ1MnYbiYyMrJGr/fz84Ofn5+HRuO7mJEiIiIiIo8RBAEGs7XOb4IgVGmcGo0GMTExLrfQ0FCXbQIDA12ev1EAs3XrVtx6663w9/dHSEgI+vXrh/Pnz2Pp0qV44403cOjQISmztXTpUgDA3Llz0alTJ/j7+yM+Ph4TJ05EUVGRtL/HH38cer1eel1ycjKA8lmm5ORkNGvWDBqNBnFxcXjppZcAAAMGDMD58+fxyiuvSPsAKs50/fTTT+jRowe0Wi0iIiIwbtw46bmPP/4YSUlJ0Gq1iI6Oxr333lulz7qxYkaKiIiIiDzGaLGh/Wvr6vx9j705HDq1d05trVYrxo4di6effhorV66E2WzG3r17IZPJcP/99yM1NRW//fYbNm7cCAAIDg4G4GjBvWDBAjRv3hzp6emYOHEipk+fjo8//hh9+/bF/Pnz8dprr+HEiRMAgICAgHLv/d1332HevHlYtWoVOnTogKysLBw6dAgA8MMPP6BLly545plnXDJr11u7di3GjRuHV199FcuXL4fZbMbatWsBAPv378dLL72E5cuXo2/fvsjNzcXvv//u0c+voWIgRUREREQ+Z82aNeUCkxkzZuCf//yny/3/+7//k+7PmjVLyvaUVVBQAL1ej9GjR6Nly5YAgHbt2knPBwQEQKlUIiYmxuV1kydPlv6dmJiIt956C88//zw+/vhjqNVqBAcHQyaTlXtdWRcuXEBMTAyGDBkClUqFZs2a4dZbbwUAhIWFQaFQSJm1yrzzzjt44IEH8MYbb0iPdenSRdq/v78/Ro8ejcDAQCQkJKBbt26V7suXMJAiIiKfJggCMvONCA9QQ6OsH/MfiBoyP5UCx94c7pX3rYqBAwdi8eLFLo+FhYW53P/b3/6Gxx57TLofERFR4b7CwsLw2GOPYfjw4Rg6dCiGDBmC8ePHIzY29oZj2LJlC2bNmoVjx46hoKAAVqsVJSUlKC4uhr+/v1s/x3333Yf58+ejRYsWGDFiBO68807cddddUCrdP80/ePBgpRmroUOHIiEhQdr/iBEj8Je//AU6nc7t/TdWnCNFREQ+beOxbHyzPwPLdp3H6ewibw+HqMGTyWTQqZV1fhPn/7jL398frVq1crldH0hFRES4PH+jluFLlizB7t270bdvX3z99ddo3bo19uzZU+n258+fx5133omOHTvi+++/R0pKCj766CMAgMVicfvniI+Px4kTJ/DRRx/Bz88PEydOxB133FGlfdyo8URgYCAOHDiAlStXIjY2Fq+99hq6dOmC/Px8t/ffWDGQIiIin5aWVQAAMJitWHP4MtJzir08IiJqqLp164aZM2di165d6NixI7766isAgFqths1mc9l2//79sFqt+OCDD9C7d2+0bt0aly9fdtmmotdVxM/PD2PGjMGCBQuwdetW7N69G0eOHHF7H507d8amTZsqfV6pVGLIkCGYM2cODh8+jHPnzmHz5s03HVdjx9I+IiLyaVn6EkQBUMhksAkCzl4tQqK3B0VEtc5kMiErK8vlMaVSWWn53o2kp6fj008/xZgxYxAXF4cTJ07g5MmTmDBhAgBIzSQOHjyIpk2bIjAwEC1btoTVasXChQtx1113YefOnfjkk09c9tu8eXMUFRVh06ZN6NKlC3Q6XbmSuqVLl8Jms6FXr17Q6XRYvnw5/Pz8kJCQIO1j+/bteOCBB6DRaCr8+V5//XUMHjwYLVu2xAMPPACr1Ypff/0V06dPx5o1a3D27FnccccdCA0NxS+//AK73Y42bdpU+XNqbJiRIiIin5apNwIAmoU7Tk6yC03eHA4R1ZHffvsNsbGxLrfbbrutWvvS6XQ4fvw47rnnHrRu3RrPPPMMXnzxRTz77LMAgHvuuQcjRozAwIEDERkZiZUrV6Jr166YO3cu3nvvPXTs2BFffvklZs+e7bLfvn374rnnnsP999+PyMhIzJkzp9x7h4SE4LPPPkO/fv2kzNLPP/+M8PBwAI61sM6dO4eWLVtW2r59wIAB+Pbbb/HTTz+ha9euGDRoEP744w9p/z/88AMGDRqEdu3a4ZNPPsHKlSvRoUOHan1WjYlMqGrT/UaooKAAwcHB0Ov1CAoK8vZwiIioDo145xeM+HUFhrSLxsa0K1DIZXhuzSdQBQV6e2hE9V5JSQnS09ORmJgIrVbr7eEQue1Gv7vuxgbMSBERkc+y2wVk6h0ZqKahflAr5LDZBZy5yqYTRER0YwykiIjIZ10rNsNstQMAArUqRAZqAADHLhd4c1hERNQAMJAiIiKfdTnfMT8qQKOEQi5DVJCjvCMtk4EUERHdGAMpIiLyWWIgFah1NLGNYkaKiIjcxECKiIh81iUpkFIBAKKDHIFUWmYhbHaf78VEREQ3wECKiIh81uX8EgClGakQnRoqhRxGi40L8xIR0Q0xkCIiIp91+bqMlFwmQ5Dz31n6Eq+Ni4iI6j8GUkRE5LMu613nSAGATq0AAFwr5sK8RERUOQZSRETks65vNgEAfs5AKqfI7JUxERFRw8BAioiIfFKJxSYFS2I5H1AmI1XEjBQRVU1JSQkee+wxdOrUCUqlEmPHjvX2kKgWMZAiIiKfJM6B8lMpoFGWHg5LAylmpIioamw2G/z8/PDSSy9hyJAh3h4O1TLlzTchIiJqfApKLACAEJ0SMkEmPe6ndhwaOUeKqGauXr1a7dcGBATAz8+vwudycnIgCK7LE0RGRlZp/wMGDEDnzp2h1Wrxn//8B2q1Gs899xySk5OrO2QAgL+/PxYvXgwA2LlzJ/Lz82u0P6rfGEgREZFPKjJZAQA6tRIoEzPpVJwjReQJUVFR1X7tokWL8MILL1T4XLt27ZCTk+Py2PWBlTuWLVuGKVOm4I8//sDu3bvx2GOPoV+/fhg6dGi1xky+h6V9RETkkwwmG4DSUj6RH7v2EfmEzp074/XXX0dSUhImTJiAHj16YNOmTd4eFjUgDKSIiMgnFZsdGSl/jWtxBudIEfmGzp07u9yPjY1FdnZ2hdv+/vvvCAgIkG5ffvllXQyR6jmvBlLNmzeHTCYrdxNTuYIgIDk5GXFxcfDz88OAAQNw9OhRl32YTCZMmjQJERER8Pf3x5gxY3Dx4kVv/DhERNSAFDszUuKcKJHOed9gtsHgDLaIqPFRqVQu92UyGex2e4Xb9ujRAwcPHpRuY8aMqYshUj3n1TlS+/btg81mk+6npqZi6NChuO+++wAAc+bMwdy5c7F06VK0bt0ab7/9NoYOHYoTJ04gMDAQADB58mT8/PPPWLVqFcLDwzF16lSMHj0aKSkpUCgUFb4vERGRGCQFXFfap1LIoFHKYYQjK6UL43RiouqoLLvjjoCAgEqfS0tLq9acqJrw8/NDq1at6vQ9qf7z6tHh+g4r7777Llq2bIn+/ftDEATMnz8fr776KsaNGwfAMSkwOjoaX331FZ599lno9Xp8/vnnWL58udRicsWKFYiPj8fGjRsxfPjwOv+ZiIioYZAyUhrXQEomkyE8QI18A3Ct2Iz4MJ03hkfU4FW1k567IiIiamW/nnLs2DGYzWbk5uaisLAQBw8eBAB07drVq+Miz6s3l9nMZjNWrFiBKVOmQCaT4ezZs8jKysKwYcOkbTQaDfr3749du3bh2WefRUpKCiwWi8s2cXFx6NixI3bt2lVpIGUymWAylU4iLigoqL0fjIiI6iVpjpS6fPVCmL8aZwxmLspLRFV255134vz589L9bt26AaheZ0Gq3+pNIPXjjz8iPz8fjz32GAAgKysLABAdHe2yXXR0tPTLmZWVBbVajdDQ0HLbiK+vyOzZs/HGG294cPRERNTQFJdtf36dMH81cNXMhhNEjdTWrVvLPfbjjz96ZN/nzp3zyH6o/qs3Xfs+//xzjBw5EnFxcS6Py2Qyl/uCIJR77Ho322bmzJnQ6/XSLSMjo/oDJyKiBslgdpT2+VcQSIX7awAAOWyBTkRElagXgdT58+exceNGPPXUU9JjMTExAFAus5SdnS1lqWJiYmA2m5GXl1fpNhXRaDQICgpyuRERkW8RF+S9fo4UAIQFOLp5MSNFRESVqReB1JIlSxAVFYVRo0ZJjyUmJiImJgYbNmyQHjObzdi2bRv69u0LAOjevTtUKpXLNpmZmUhNTZW2ISIiqojUtU9TQUZK58hIcY4UERFVxutzpOx2O5YsWYJHH30USmXpcGQyGSZPnoxZs2YhKSkJSUlJmDVrFnQ6HR566CEAQHBwMJ588klMnToV4eHhCAsLw7Rp09CpUyepix8REVFFpK59qooyUmoAjq59REREFfF6ILVx40ZcuHABTzzxRLnnpk+fDqPRiIkTJyIvLw+9evXC+vXrpTWkAGDevHlQKpUYP348jEYjBg8ejKVLl3INKSIiuiGx2URlXfsAIIelfUREVAmvB1LDhg2rtB2kTCZDcnIykpOTK329VqvFwoULsXDhwloaIRERNUZSs4kKSvvEQIqlfUREVJl6MUeKiIioronrSOkqykjpHIFUbrGZa78QEVGFGEgREZFPutE6UsE6R9c+q11AsTNzRUREVBYDKSIi8jlmqx0WmyPTpKugtM9PpYBa4ThE6o2WOh0bERE1DAykiIjI54itz4GKS/tkMpmUlco3sOEEETUsn376KeLj4yGXyzF//nxvD6fRYiBFREQ+R1yMV62UQ6Wo+FAY7OcIpJiRImqcsrKyMGnSJLRo0QIajQbx8fG46667sGnTJm8PrUJLly5FSEjITbcrKCjAiy++iBkzZuDSpUt45plnan9wPsrrXfuIiIjqmtixr6LFeEUhYiBlYCBF1NicO3cO/fr1Q0hICObMmYPOnTvDYrFg3bp1eOGFF3D8+PFq7ddisUClUrn9eG24cOECLBYLRo0ahdjY2Aq3qcvxNGbMSBERkc8pMlXesU8kZqTymZEicp8gAMXF3ru52WVz4sSJkMlk2Lt3L+699160bt0aHTp0wJQpU7Bnzx5puwsXLuDuu+9GQEAAgoKCMH78eFy5ckV6Pjk5GV27dsUXX3whZbYEQYBMJsMnn3yCu+++G/7+/nj77bcBAD///DO6d+8OrVaLFi1a4I033oDVWlpqnJ+fj2eeeQbR0dHQarXo2LEj1qxZg61bt+Lxxx+HXq+HTCaTlgi63tKlS9GpUycAQIsWLSCTyXDu3LlKx6nX6/HMM88gKioKQUFBGDRoEA4dOuSyz3fffRfR0dEIDAzEk08+ib///e/o2rWr9PyAAQMwefJkl9eMHTsWjz32mHTfbDZj+vTpaNKkCfz9/dGrVy9s3brVZdwhISFYt24d2rVrh4CAAIwYMQKZmZku+/3iiy/QoUMHaDQaxMbG4sUXXwQAPPHEExg9erTLtlarFTExMfjiiy/KfU6ewowUERH5HIPJuYZUBR37ROIcKZb2EVWBwQD861/ee/+//Q3w97/hJrm5ufjtt9/wzjvvwL+CbcXyOUEQMHbsWPj7+2Pbtm2wWq2YOHEi7r//fpcg4PTp0/jmm2/w/fffQ6EovTjz+uuvY/bs2Zg3bx4UCgXWrVuHRx55BAsWLMDtt9+OM2fOSGV3r7/+Oux2O0aOHInCwkKsWLECLVu2xLFjx6BQKNC3b1/Mnz8fr732Gk6cOAEACAgIKDf2+++/H/Hx8RgyZAj27t2L+Ph4REZGVjrOUaNGISwsDL/88guCg4Px73//G4MHD8bJkycRFhaGb775Bq+//jo++ugj3H777Vi+fDkWLFiAFi1auP9/AuDxxx/HuXPnsGrVKsTFxWH16tUYMWIEjhw5gqSkJACAwWDA+++/j+XLl0Mul+ORRx7BtGnT8OWXXwIAFi9ejClTpuDdd9/FyJEjodfrsXPnTgDAU089hTvuuAOZmZlSFu6XX35BUVERxo8fX6WxVgUDKSIi8jniGlL+msozUiF+jrWk8lnaR9SonD59GoIgoG3btjfcbuPGjTh8+DDS09MRHx8PAFi+fDk6dOiAffv2oWfPngAc2Zbly5dLAYvooYcewhNPPCHd/+tf/4q///3vePTRRwE4MkZvvfUWpk+fjtdffx0bN27E3r17kZaWhtatW0vbiIKDgyGTyRATE1PpmP38/BAeHg4AiIyMdNn2+nFu3rwZR44cQXZ2NjQaDQDg/fffx48//ojvvvsOzzzzDObPn48nnngCTz31FADg7bffxsaNG1FSUnLDz66sM2fOYOXKlbh48SLi4uIAANOmTcNvv/2GJUuWYNasWQAc5YaffPIJWrZsCQB48cUX8eabb0r7efvttzF16lS8/PLL0mPi/0Hfvn3Rpk0bLF++HNOnTwcALFmyBPfdd1+FAaenMJAiIiKfI64h5X+DOVJsNkHUOImLbMtkshtul5aWhvj4eCmIAoD27dsjJCQEaWlp0kl8QkJCuSAKAHr06OFyPyUlBfv27cM777wjPWaz2VBSUgKDwYCDBw+iadOmUhDladePMyUlBUVFRVLgJTIajThz5gwAx2fw3HPPuTzfp08fbNmyxe33PXDgAARBKPdzmUwml/fW6XRSEAUAsbGxyM7OBgBkZ2fj8uXLGDx4cKXv89RTT+HTTz/F9OnTkZ2djbVr19Z64xAGUkRE5HPERXZvNEcqRCrtY/tzosYkKSkJMpkMaWlpGDt2bKXbiXOdbvZ4ReWBFT1ut9vxxhtvYNy4ceW21Wq18PPzc/MnqJ6KxhMbG+tSpihypzugSC6XS8GpyGIpvQBlt9uhUCiQkpLiUvoIuJYnXt/8QiaTSft157OZMGEC/v73v2P37t3YvXs3mjdvjttvv93tn6M6GEgREZHPMbiRkQrhHCmiqtPpHPOUvPn+NxEWFobhw4fjo48+wksvvVQuwMjPz0dISAjat2+PCxcuICMjQ8pKHTt2DHq9Hu3atavy0G655RacOHECrVq1qvD5zp074+LFizh58mSFWSm1Wg2bzVbl973ReLKysqBUKtG8efMKt2nXrh327NmDCRMmSI+VbcYBOEoIyzaFsNlsSE1NxcCBAwEA3bp1g81mQ3Z2drUDm8DAQDRv3hybNm2S9nu98PBwjB07FkuWLMHu3bvx+OOPV+u9qoKBFBER+RyptO8GzSaCxK59nCNF5D6Z7KbNHuqDjz/+GH379sWtt96KN998E507d4bVasWGDRuwePFipKWlYciQIejcuTMefvhhzJ8/X2o20b9//3Jle+547bXXMHr0aMTHx+O+++6DXC7H4cOHceTIEbz99tvo378/7rjjDtxzzz2YO3cuWrVqhePHj0Mmk2HEiBFo3rw5ioqKsGnTJnTp0gU6nQ46NwLHygwZMgR9+vTB2LFj8d5776FNmza4fPkyfvnlF4wdOxY9evTAyy+/jEcffRQ9evTAbbfdhi+//BJHjx51mbs1aNAgTJkyBWvXrkXLli0xb9485OfnS8+3bt0aDz/8MCZMmIAPPvgA3bp1Q05ODjZv3oxOnTrhzjvvdGu8ycnJeO655xAVFSU15di5cycmTZokbfPUU09h9OjRsNls0ly02sT250RE5HPE0r4bZqQ4R4qo0UpMTMSBAwcwcOBATJ06FR07dsTQoUOxadMmLF68GICjtOzHH39EaGgo7rjjDgwZMgQtWrTA119/Xa33HD58ONasWYMNGzagZ8+e6N27N+bOnYuEhARpm++//x49e/bEgw8+iPbt22P69OlSFqpv37547rnncP/99yMyMhJz5syp0Wcgk8nwyy+/4I477sATTzyB1q1b44EHHsC5c+cQHR0NwNEF8LXXXsOMGTPQvXt3nD9/Hs8//7zLfp544gk8+uijmDBhAvr374/ExMRyWaMlS5ZgwoQJmDp1Ktq0aYMxY8bgjz/+cJl/djOPPvoo5s+fj48//hgdOnTA6NGjcerUKZdthgwZgtjYWAwfPlxqbFGbZML1RY0+qKCgAMHBwdDr9QgKCvL2cIiIqJbN/OEwVu7NwNShrTGpd1z5ds1/+xvOGgQM+mAbAjVKHHljuHcGSlTPlZSUID09HYmJidBqtd4eDtWB5ORk/Pjjjzh48KC3h1KOwWBAXFwcvvjiiwrnopV1o99dd2MDlvYREZHPKXKuI6W74RwpR/vzQpMVVpsdSgWLOIiI6iO73Y6srCx88MEHCA4OxpgxY+rkfRlIERGRzxGbTQTcYB2pIG3pIbKgxIowf3Wtj4uIiKruwoULSExMRNOmTbF06VIolXUT4vDyGhER+RxxQV7dDZpNKBVyBDozVvkGtkAnIgIcpX31rayvefPmEAQBGRkZN1xrytMYSBERkc8pNonNJirPSAFAMFugExFRJRhIERGRzxEzUjdqfw4AwWILdAZSRER0HQZSRETkcwymm7c/B0oX5S1gIEV0Q2wCTQ2NJ35nGUgREZHPERfk1alvXNoX4udoMMFFeYkqplI5LjYYDAYvj4SoasTfWfF3uDrYtY+IiHyKIAhSaV+ARgnAVum2QWJpHwMpogopFAqEhIQgOzsbAKDT6SCTybw8KqLKCYIAg8GA7OxshISEQKG48QW1G2EgRUREPsVktcPurOjQaZSAtfJAKoTNJohuKiYmBgCkYIqoIQgJCZF+d6uLgRQREfmUImdZHwDoVArAWvm2pc0m2P6cqDIymQyxsbGIioqCxcKLDlT/qVSqGmWiRAykiIjIp4iNJnRqBeTyG5cghTgDKT1L+4huSqFQeOTklKihYLMJIiLyKe4sxisK0CpdXkNERCRiIEVERD5F7Nh3s8V4AcBP5djGaLHX6piIiKjhYSBFREQ+pdjsXEPKjYyU1hlIlZgrb0hBRES+iYEUERH5lKpkpKRA6gad/YiIyDcxkCIiIp9SuhjvzTNSUmkfM1JERHQdBlJERORTDM6gyLEY741pVY7DpNHCQIqIiFwxkCIiIp9SJGWk3Gg24dymhIEUERFdh4EUERH5FINZnCPlfmmfxSbAamPnPiIiKsVAioiIfEqxc0HeqjSbAIASKwMpIiIqxUCKiIh8SlWaTWiUpYdJNpwgIqKyGEgREZFPqUqzCZlMJpX3cZ4UERGVxUCKiIh8SrHZ/WYTABtOEBFRxRhIERGRTyldkPfmGSkA0CrZAp2IiMpjIEVERD6ltNmEm4GUlJFiswkiIirFQIqIiHyK1P7c3dI+5xwpZqSIiKgsBlJERORTipwZKXe69gGlLdDZtY+IiMpiIEVERD5FzEi507UPALv2ERFRhRhIERGRz7DbBan9uc6NBXmB0owUAykiIiqLgRQREfkMQ5lgyN/t0j527SMiovIYSBERkc8wOFufy2WlAdLNsNkEERFVxOuB1KVLl/DII48gPDwcOp0OXbt2RUpKivS8IAhITk5GXFwc/Pz8MGDAABw9etRlHyaTCZMmTUJERAT8/f0xZswYXLx4sa5/FCIiqueKnWV9/molZDKZW6/xY/tzIiKqgFcDqby8PPTr1w8qlQq//vorjh07hg8++AAhISHSNnPmzMHcuXOxaNEi7Nu3DzExMRg6dCgKCwulbSZPnozVq1dj1apV2LFjB4qKijB69GjYbLx6SEREpcTFeN2dHwVwjhQREVXMvQLxWvLee+8hPj4eS5YskR5r3ry59G9BEDB//ny8+uqrGDduHABg2bJliI6OxldffYVnn30Wer0en3/+OZYvX44hQ4YAAFasWIH4+Hhs3LgRw4cPr9OfiYiI6i8xkHJ3MV6A7c+JiKhiXs1I/fTTT+jRowfuu+8+REVFoVu3bvjss8+k59PT05GVlYVhw4ZJj2k0GvTv3x+7du0CAKSkpMBisbhsExcXh44dO0rbEBERAZA69rnbaALgHCkiIqqYVwOps2fPYvHixUhKSsK6devw3HPP4aWXXsJ///tfAEBWVhYAIDo62uV10dHR0nNZWVlQq9UIDQ2tdJvrmUwmFBQUuNyIiKjxKxJL+9RVKe1zHCpZ2kdERGV5tbTPbrejR48emDVrFgCgW7duOHr0KBYvXowJEyZI210/IVgQhJtOEr7RNrNnz8Ybb7xRw9ETEVFDU9XFeAEuyEtERBXzakYqNjYW7du3d3msXbt2uHDhAgAgJiYGAMpllrKzs6UsVUxMDMxmM/Ly8ird5nozZ86EXq+XbhkZGR75eYiIqH4rMomL8VYhkFKztI+IiMrzaiDVr18/nDhxwuWxkydPIiEhAQCQmJiImJgYbNiwQXrebDZj27Zt6Nu3LwCge/fuUKlULttkZmYiNTVV2uZ6Go0GQUFBLjciImr8xHWk/KtU2sf250REVJ5XS/teeeUV9O3bF7NmzcL48eOxd+9efPrpp/j0008BOEr6Jk+ejFmzZiEpKQlJSUmYNWsWdDodHnroIQBAcHAwnnzySUydOhXh4eEICwvDtGnT0KlTJ6mLHxEREVBmHSl27SMiohryaiDVs2dPrF69GjNnzsSbb76JxMREzJ8/Hw8//LC0zfTp02E0GjFx4kTk5eWhV69eWL9+PQIDA6Vt5s2bB6VSifHjx8NoNGLw4MFYunQpFAr3rzgSEVHjV1yNjBTnSBERUUW8GkgBwOjRozF69OhKn5fJZEhOTkZycnKl22i1WixcuBALFy6shRESEVFjUWwWF+Rl+3MiIqoZr86RIiIiqksGk7iOFNufExFRzTCQIiIin2FwBkO6KizIq2VGioiIKsBAioiIfEaJs2GEX1XmSKlLu/YJglAr4yIiooaHgRQREfkMMaskzntyh7bMtiYrW6ATEZEDAykiIvIZ4jwnbVUCKWXpoZIt0ImISMRAioiIfIaUkapCaZ9SIYdaIXd5PREREQMpIiLyGSXVKO0DAA079xER0XUYSBERkc8QS/OqGkhxLSkiIroeAykiIvIJgiBIgZC4NpS7Sjv3MZAiIiIHBlJEROQTzDY77M7u5doqzJECymSkzOzaR0REDgykiIjIJ5SUCYKqPkeKGSkiInLFQIqIiHyCWNanlMugUlSxtE/Frn1EROSKgRQREfmE6izGK2KzCSIiuh4DKSIi8glix76qzo8CShfwNTGQIiIiJwZSRETkE5iRIiIiT2IgRUREPqG6i/ECpVksg5mBFBEROTCQIiIin1CT0j5mpIiI6HoMpIiIyCeUlvZV/dCnU4vrSDGQIiIiBwZSRETkE2o0R4qlfUREdB0GUkRE5BOkOVLVKO3TqZiRIiIiVwykiIjIJ0hzpKqRkdKplQAAg9nq0TEREVHDxUCKiIh8Akv7iIjIkxhIERGRT6hJICU1m2DXPiIicmIgRUREPqHEXP05UsxIERHR9RhIERGRTxCzSTWZI8VmE0REJGIgRUREPsFosQOoWWkfm00QEZGIgRQREfkEY01K+1Qs7SMiIlcMpIiIyCeUeKDZhMlqh90ueHRcRETUMDGQIiIin+CJOVJl90NERL6NgRQREfmEmpT2aZSlh0uW9xEREcBAioiIfERNSvvkcpn0OnbuIyIigIEUERH5iJosyAuU6dxnYec+IiJiIEVERD5CCqTU1Tv0cVFeIiIqi4EUERH5BLEkrzrNJoDSjBRL+4iICGAgRUREPsBuF2CyVn9BXgDwc3buY0aKiIgABlJEROQDSqylwU91uvYBgE5alJdzpIiIiIEUERH5gLLleFolS/uIiKjmGEgREVGjJzaa0CjlkMtl1doHm00QEVFZDKSIiKjRk9aQqmZZH1AmI2VhIEVERAykiIjIBxjNNWs0AQA6qdkE50gREREDKSIi8gE1XYwXKM1miUEZERH5NgZSRETU6ImBVHXXkAJKu/YZLcxIERERAykiIvIBYqe9msyRYrMJIiIqi4EUERE1eiUeLO1jIEVERAADKSIi8gEeKe3jOlJERFQGAykiImr0PFLap2LXPiIiKsVAioiIGr3Srn3VP+zpWNpHRERleDWQSk5Ohkwmc7nFxMRIzwuCgOTkZMTFxcHPzw8DBgzA0aNHXfZhMpkwadIkREREwN/fH2PGjMHFixfr+kchIqJ6zBNzpLggLxERleX1jFSHDh2QmZkp3Y4cOSI9N2fOHMydOxeLFi3Cvn37EBMTg6FDh6KwsFDaZvLkyVi9ejVWrVqFHTt2oKioCKNHj4bNxgMdERE5iKV9WnbtIyIiD1F6fQBKpUsWSiQIAubPn49XX30V48aNAwAsW7YM0dHR+Oqrr/Dss89Cr9fj888/x/LlyzFkyBAAwIoVKxAfH4+NGzdi+PDhdfqzEBFR/eSJBXl1aschk80miIgIqAcZqVOnTiEuLg6JiYl44IEHcPbsWQBAeno6srKyMGzYMGlbjUaD/v37Y9euXQCAlJQUWCwWl23i4uLQsWNHaZuKmEwmFBQUuNyIiKjx8kwgJWakrBAEwSPjIiKihsurgVSvXr3w3//+F+vWrcNnn32GrKws9O3bF9euXUNWVhYAIDo62uU10dHR0nNZWVlQq9UIDQ2tdJuKzJ49G8HBwdItPj7ewz8ZERHVJ9IcKQ+U9tkFwGS1e2RcRETUcHk1kBo5ciTuuecedOrUCUOGDMHatWsBOEr4RDKZzOU1giCUe+x6N9tm5syZ0Ov10i0jI6MGPwUREdV30hypmmSkyryW5X1EROT10r6y/P390alTJ5w6dUqaN3V9Zik7O1vKUsXExMBsNiMvL6/SbSqi0WgQFBTkciMiosarxOLIINWktE+pkEOtcBw2DezcR0Tk8+pVIGUymZCWlobY2FgkJiYiJiYGGzZskJ43m83Ytm0b+vbtCwDo3r07VCqVyzaZmZlITU2VtiEiIvLEHCmgtLyPGSkiIvJq175p06bhrrvuQrNmzZCdnY23334bBQUFePTRRyGTyTB58mTMmjULSUlJSEpKwqxZs6DT6fDQQw8BAIKDg/Hkk09i6tSpCA8PR1hYGKZNmyaVChIREQGemSMFOBpO6I0WBlJEROTdQOrixYt48MEHkZOTg8jISPTu3Rt79uxBQkICAGD69OkwGo2YOHEi8vLy0KtXL6xfvx6BgYHSPubNmwelUonx48fDaDRi8ODBWLp0KRSKmh0siYio8RAzUjWZIwWUZrQMZmuNx0RERA2bVwOpVatW3fB5mUyG5ORkJCcnV7qNVqvFwoULsXDhQg+PjoiIGgsxg1TT0j4xECth1z4iIp9Xr+ZIERER1Qajh0r7NCrHYdPEZhNERD6PgRQRETV6JR5qNqFVMiNFREQODKSIiKhRs9jssNgEADUPpJiRIiIiEQMpIiJq1ErKBD1iIFRdGqXj9cxIERERAykiImrUxPlRMllpIFRdYrMJZqSIiIiBFBERNWolZkf2yE+lgEwmq9G+xEDMxIwUEZHPYyBFRESNmtFDjSYAZqSIiKgUAykiImrUPLUYL8CMFBERlWIgRUREjZq0GG8N15ACyizIy4wUEZHPYyBFRESNmqfWkAKYkSIiolIMpIiIqFGrjTlSzEgREREDKSIiatTE0j6tB0r7mJEiIiIRAykiImrUSjNSNT/kaZTMSBERkQMDKSIiatQ8OkdKxYwUERE5MJAiIqJGzZNd+8SMFAMpIiJiIEVERI2aJ9eR0jozUiztIyIiBlJERNSoebJrHzNSREQkYiBFRESNmifnSDEjRUREIgZSRETUqHGOFBER1QYGUkRE1KhxjhQREdUGBlJERNSoGS2O7JFn2p8zI0VERA4MpIiIqFEr8Whpn+OwabbaYbcLNd4fERE1XAykiIioUfNk176y5YFmG7NSRES+jIEUERE1ap6cIyVmpADAZGEgRUTky6ocSC1btgxr166V7k+fPh0hISHo27cvzp8/79HBERER1ZQnu/apFHIo5DIAQImVDSeIiHxZlQOpWbNmwc/PDwCwe/duLFq0CHPmzEFERAReeeUVjw+QiIioJjy5jhRQmpViRoqIyLcpq/qCjIwMtGrVCgDw448/4t5778UzzzyDfv36YcCAAZ4eHxERUY14co4U4CgRNJhtzEgREfm4KmekAgICcO3aNQDA+vXrMWTIEACAVquF0Wj07OiIiIhqQBCE0jlSas9MC2ZGioiIgGpkpIYOHYqnnnoK3bp1w8mTJzFq1CgAwNGjR9G8eXNPj4+IiKjaTFY7BGeXck+X9jEjRUTk26p8ee6jjz5Cnz59cPXqVXz//fcIDw8HAKSkpODBBx/0+ACJiIiqS5wfBXima1/Z/TAjRUTk26qckQoJCcGiRYvKPf7GG294ZEBERESeIpb1qRQyqBQeLu1jRoqIyKdV+aiyZMkSfPvtt+Ue//bbb7Fs2TKPDIqIiMgTxNbnnspGAYDGua8SZqSIiHxalQOpd999FxEREeUej4qKwqxZszwyKCIiIk/wdMc+gBkpIiJyqHIgdf78eSQmJpZ7PCEhARcuXPDIoIiIiDxBnCPlyYyUlhkpIiJCNQKpqKgoHD58uNzjhw4dkhpPEBER1QdiQwityjPzowBmpIiIyKHKR5YHHngAL730ErZs2QKbzQabzYbNmzfj5ZdfxgMPPFAbYyQiIqoWsUU5M1JERORpVe7a9/bbb+P8+fMYPHgwlErHy+12OyZMmMA5UkREVK+IwY6YRfIEZqSIiAioRiClVqvx9ddf46233sKhQ4fg5+eHTp06ISEhoTbGR0REVG2mWshIaZTMSBERUTUCKVHr1q3RunVrT46FiIjIo0ozUp4s7WNGioiI3AykpkyZgrfeegv+/v6YMmXKDbedO3euRwZGRERUU2LXPo1Hm004gjKTlRkpIiJf5lYg9eeff8JisUj/JiIiagjEYEdbCxkpMUgjIiLf5FYgtWXLlgr/TUREVJ+VriNVG80mmJEiIvJlVT6yPPHEEygsLCz3eHFxMZ544gmPDIqIiMgTameOlLO0jxkpIiKfVuVAatmyZTAajeUeNxqN+O9//+uRQREREXlCrWSkVMxIERFRFbr2FRQUQBAECIKAwsJCaLVa6TmbzYZffvkFUVFRtTJIIiKi6pDmSHlyQV6p/TkzUkREvsztQCokJAQymQwymazCtucymQxvvPGGRwdHRERUEyZmpIiIqJa4HUht2bIFgiBg0KBB+P777xEWFiY9p1arkZCQgLi4uFoZJBERUXWUONd68uQcKQ0zUkREhCrMkerfvz8GDBiA9PR0jB07Fv3795duffr0qXEQNXv2bMhkMkyePFl6TBAEJCcnIy4uDn5+fhgwYACOHj3q8jqTyYRJkyYhIiIC/v7+GDNmDC5evFijsRARUeNgsoilfZ7LSGmZkSIiIlSj2URaWhp27twp3f/oo4/QtWtXPPTQQ8jLy6vWIPbt24dPP/0UnTt3dnl8zpw5mDt3LhYtWoR9+/YhJiYGQ4cOdekaOHnyZKxevRqrVq3Cjh07UFRUhNGjR8Nm45VCIiJfJ2akPDlHSlqQ18JAiojIl1U5kPrb3/6GgoICAMCRI0cwZcoU3HnnnTh79iymTJlS5QEUFRXh4YcfxmeffYbQ0FDpcUEQMH/+fLz66qsYN24cOnbsiGXLlsFgMOCrr74CAOj1enz++ef44IMPMGTIEHTr1g0rVqzAkSNHsHHjxiqPhYiIGpfS9ueez0iJQRoREfmmKh9Z0tPT0b59ewDA999/j7vuuguzZs3Cxx9/jF9//bXKA3jhhRcwatQoDBkypNz7ZGVlYdiwYdJjGo0G/fv3x65duwAAKSkpsFgsLtvExcWhY8eO0jYVMZlMKCgocLkREVHjYxLnSDEjRUREHlblQEqtVsNgMAAANm7cKAUxYWFhVQ5IVq1ahQMHDmD27NnlnsvKygIAREdHuzweHR0tPZeVlQW1Wu2Sybp+m4rMnj0bwcHB0i0+Pr5K4yYiooZBzEhpPdlsokxGShAEj+2XiIgalioHUrfddhumTJmCt956C3v37sWoUaMAACdPnkTTpk3d3k9GRgZefvllrFixwmVNquvJZDKX+4IglHvsejfbZubMmdDr9dItIyPD7XETEVHDIXbW03i02YQjKBMENpwgIvJlVT6yLFq0CEqlEt999x0WL16MJk2aAAB+/fVXjBgxwu39pKSkIDs7G927d4dSqYRSqcS2bduwYMECKJVKKRN1fWYpOztbei4mJgZms7lck4uy21REo9EgKCjI5UZERI1PbWSkdGXKBI1mzpMiIvJVbq8jJWrWrBnWrFlT7vF58+ZVaT+DBw/GkSNHXB57/PHH0bZtW8yYMQMtWrRATEwMNmzYgG7dugEAzGYztm3bhvfeew8A0L17d6hUKmzYsAHjx48HAGRmZiI1NRVz5syp6o9GRESNjMnq+QV5lQo51Ao5zDY7DBYbQm/+EiIiaoTcCqQKCgqkrM3N5kG5m90JDAxEx44dXR7z9/dHeHi49PjkyZMxa9YsJCUlISkpCbNmzYJOp8NDDz0EAAgODsaTTz6JqVOnIjw8HGFhYZg2bRo6depUrnkFERH5ntJ1pDyXkQIAnUYBs8EOo9nq0f0SEVHD4VYgFRoaiszMTERFRSEkJKTC+UfivCRPrt80ffp0GI1GTJw4EXl5eejVqxfWr1+PwMBAaZt58+ZBqVRi/PjxMBqNGDx4MJYuXQqFwrMHTSIialhsdgFmm+fbnwOO8r58WFBsYmkfEZGvciuQ2rx5M8LCwgAAW7ZsqbXBbN261eW+TCZDcnIykpOTK32NVqvFwoULsXDhwlobFxERNTzmMo0gPJ2R8lM79mfgHCkiIp/lViDVv39/6d+JiYmIj4+vsJseu98REVF9IXbsA2ohI6V2HD6NFpb2ERH5qiofWRITE3H16tVyj+fm5iIxMdEjgyIiIqqpEmejCaVcBqXC04EUM1JERL6uykeWytZoKioquuF6UERERHWpthpNAGUCKc6RIiLyWW63P58yZQoAx7ylf/7zn9DpdNJzNpsNf/zxB7p27erxARIREVVHSS20PheJpX0Gdu0jIvJZbgdSf/75JwBHRurIkSNQq9XSc2q1Gl26dMG0adM8P0IiIqJqEBfj1XhwMV6RlJGyMCNFROSr3A6kxG59jz/+OD788EO314siIiLyBrHZhKZWMlIs7SMi8nVuB1KiJUuW1MY4iIiIPMrkbH+urYWMlJ9U2sdAiojIV1U5kAKAffv24dtvv8WFCxdgNptdnvvhhx88MjAiIqKaEDNStTNHyhGcsf05EZHvqvLRZdWqVejXrx+OHTuG1atXw2Kx4NixY9i8eTOCg4NrY4xERERVJpX21eYcKWakiIh8VpUDqVmzZmHevHlYs2YN1Go1PvzwQ6SlpWH8+PFo1qxZbYyRiIioyqTSvlrs2lfMOVJERD6rykeXM2fOYNSoUQAAjUaD4uJiyGQyvPLKK/j00089PkAiIqLqMEmlfbWXkWJpHxGR76pyIBUWFobCwkIAQJMmTZCamgoAyM/Ph8Fg8OzoiIiIqqm0/Xktdu1jaR8Rkc+qcrOJ22+/HRs2bECnTp0wfvx4vPzyy9i8eTM2bNiAwYMH18YYiYiIqsxkrc2MlOPwaWQgRUTks6ocSC1atAglJSUAgJkzZ0KlUmHHjh0YN24c/vnPf3p8gERERNUhZqRqI5Dyc2akis0s7SMi8lVVDqTCwsKkf8vlckyfPh3Tp0/36KCIiIhqqrRrXy22P2dGiojIZ1X56KJQKJCdnV3u8WvXrkGh8PxVPyIiouoocZb2aWohI+XPBXmJiHxelQMpQRAqfNxkMkGtVtd4QERERJ5gstRe+3O/Ms0m7PaKj4tERNS4uV3at2DBAgCATCbDf/7zHwQEBEjP2Ww2bN++HW3btvX8CImIiKqhRFxHqhYX5HW8j01qPkFERL7D7W/+efPmAXBkpD755BOXMj61Wo3mzZvjk08+8fwIiYiIqkGaI1UbGaky5YIGMwMpIiJf5PY3f3p6OgBg4MCB+OGHHxAaGlprgyIiIqopUy1mpORyGfxUChgtNjacICLyUVW+hLZlyxaX+1arFSUlJS6lfkRERN4mZqRqo/054CjvM1psbIFOROSj3K53+OWXX7B8+XKXx9555x0EBAQgJCQEw4YNQ15enscHSEREVB2mWmx/Drg2nCAiIt/j9tHl/fffR0FBgXR/165deO211/DPf/4T33zzDTIyMvDWW2/VyiCJiIiqSirtq6WMlNgCnaV9RES+ye1AKjU1FX379pXuf/fddxg6dCheffVVjBs3Dh988AF+/vnnWhkkERFRVZWW9tVuRqrYxNI+IiJf5PbRpbCwEOHh4dL9HTt2YNCgQdL9Dh064PLly54dHRERUTWVONeR0tRCswmgtAW60cKMFBGRL3I7kIqLi0NaWhoAoKioCIcOHUK/fv2k569duwadTuf5ERIREVVDibV2M1I6zpEiIvJpbh9d7r33XkyePBnLly/H008/jZiYGPTu3Vt6fv/+/WjTpk2tDJKIiKiqTJbanSMlrh3FQIqIyDe53f789ddfx+XLl/HSSy8hJiYGK1ascFmUd+XKlbjrrrtqZZBERERVIQhCmYxU7Zb2GThHiojIJ7kdSOl0unLtz8u6fn0pIiIibymx2CEIjn+LTSE8TWp/zjlSREQ+qXYKx4mIiLzIUGaRXD+2PyciolrAQIqIiBodcd6SRimHQi6rlfdg+3MiIt/GQIqIiBodsSW5rpbK+srum6V9RES+iYEUERE1OmJGSuysVxukdaRY2kdE5JMYSBERUaMjzpGqrUYTQNn25yztIyLyRW4HUs2aNcO1a9ek+4sWLUJBQUGtDIqIiKgmjObaL+0Tm1gwI0VE5JvcDqQuXrwIm630YPGPf/wDOTk5tTIoIiKimhBL+2qrYx9Quj5ViXPhXyIi8i3VLu0TxAU6iIiI6pk6yUipHYdQceFfIiLyLZwjRUREjY44b6k2m01olGJGioEUEZEvqtIR5j//+Q8CAgIAAFarFUuXLkVERITLNi+99JLnRkdERFQNYkvy2mw2wdI+IiLf5nYg1axZM3z22WfS/ZiYGCxfvtxlG5lMxkCKiIi8ri5K+7QqR1GHkRkpIiKf5HYgde7cuVocBhERkedIzSbqICNlttphtwuQy2W19l5ERFT/cI4UERE1OtKCvKramyOlLdMR0GRleR8Rka9xO5C68847odfrpfvvvPMO8vPzpfvXrl1D+/btPTo4IiKi6jBKzSZqMSOlLD2EsuEEEZHvcTuQWrduHUwmk3T/vffeQ25urnTfarXixIkTnh0dERFRNdRFaZ9SIYdK4SjnYwt0IiLf43Ygdf26UVxHioiI6iuxAURtZqQAQKtk5z4iIl/FOVJERNToiF37/FS1G0hpnPsX34+IiHyH24GUTCaDTCYr91hNLF68GJ07d0ZQUBCCgoLQp08f/Prrr9LzgiAgOTkZcXFx8PPzw4ABA3D06FGXfZhMJkyaNAkRERHw9/fHmDFjcPHixRqNi4iIGra6KO0DSlugs7SPiMj3uN3OSBAEPPbYY9BoNACAkpISPPfcc/D39wcAl/lT7mratCneffddtGrVCgCwbNky3H333fjzzz/RoUMHzJkzB3PnzsXSpUvRunVrvP322xg6dChOnDiBwMBAAMDkyZPx888/Y9WqVQgPD8fUqVMxevRopKSkQKGo3QMoERHVT6WlfbXXtQ8ouygvAykiIl/j9hHm0Ucfdbn/yCOPlNtmwoQJVXrzu+66y+X+O++8g8WLF2PPnj1o37495s+fj1dffRXjxo0D4Ai0oqOj8dVXX+HZZ5+FXq/H559/juXLl2PIkCEAgBUrViA+Ph4bN27E8OHDqzQeIiJqHAx10LUPKC0dNHGOFBGRz3E7kFqyZEltjgM2mw3ffvstiouL0adPH6SnpyMrKwvDhg2TttFoNOjfvz927dqFZ599FikpKbBYLC7bxMXFoWPHjti1axcDKSIiH1XnpX3MSBER+ZzarXlww5EjR9CnTx+UlJQgICAAq1evRvv27bFr1y4AQHR0tMv20dHROH/+PAAgKysLarUaoaGh5bbJysqq9D1NJpNLKWJBQYGnfhwiIqoHxOYPtd61T2w2wUCKiMjneL1rX5s2bXDw4EHs2bMHzz//PB599FEcO3ZMev76hhaCINy0ycXNtpk9ezaCg4OlW3x8fM1+CCIiqjfMVjusdscSHTpV7V4v1LD9ORGRz/J6IKVWq9GqVSv06NEDs2fPRpcuXfDhhx8iJiYGAMpllrKzs6UsVUxMDMxmM/Ly8irdpiIzZ86EXq+XbhkZGR7+qYiIyFvKtiJnaR8REdUWrwdS1xMEASaTCYmJiYiJicGGDRuk58xmM7Zt24a+ffsCALp37w6VSuWyTWZmJlJTU6VtKqLRaKSW6+KNiIgaB4PF0WhCKZdBrazdw5zUtY/tz4mIfI5X50j94x//wMiRIxEfH4/CwkKsWrUKW7duxW+//QaZTIbJkydj1qxZSEpKQlJSEmbNmgWdToeHHnoIABAcHIwnn3wSU6dORXh4OMLCwjBt2jR06tRJ6uJHRES+pa4aTQClXftY2kdE5Hu8GkhduXIFf/3rX5GZmYng4GB07twZv/32G4YOHQoAmD59OoxGIyZOnIi8vDz06tUL69evl9aQAoB58+ZBqVRi/PjxMBqNGDx4MJYuXco1pIiIfFRdNZoASkv7TCztIyLyOV4NpD7//PMbPi+TyZCcnIzk5ORKt9FqtVi4cCEWLlzo4dEREVFDZDDXzWK8ALv2ERH5sno3R4qIiKgmxMV4xbK72iTNkWIgRUTkcxhIERFRo1KXpX0apdi1j3OkiIh8DQMpIiJqVOqy2QQzUkREvouBFBERNSoGS91lpKSufVZmpIiIfA0DKSIialSMzjlSddlsghkpIiLfw0CKiIgaFbG0T1snzSbEOVIMpIiIfA0DKSIialSMdVjax4wUEZHvYiBFRESNijcW5GXXPiIi38NAioiIGpW67NqnUTIjRUTkqxhIERFRoyJlpOpgjpQYrDGQIiLyPQykiIioUTF4o2sf258TEfkcBlJERNSoFJucGSlNHcyRUjoOo2arHTa7UOvvR0RE9QcDKSIialQKTY6MVKBWVevvVbbFusnK8j4iIl/CQIqIiBqVwhILACBQW3elfQA79xER+RoGUkRE1KgUljgyUkF1EEgp5DKoFDIAbDhBRORrGEgREVGjIQgCipylfQGa2i/tA7goLxGRr2IgRUREjYbRYpOaPtRFaR9QNpBiaR8RkS9hIEVERI2GWNYnlwG6OliQFwC0Kseh1MiMFBGRT2EgRUREjYYYSAVolJDJZHXynlqlI2AzMZAiIvIpDKSIiKjRKO3YVzfzo4Cyi/IykCIi8iUMpIiIqNEQM1J1NT8KKC3t4xwpIiLfwkCKiIgajdLW517ISLG0j4jIpzCQIiKiRqPI5CjtC6jTjBS79hER+SIGUkRE1Gh4p7TPEUixax8RkW9hIEVERI1GgTcCKaU4R4qBFBGRL2EgRUREjUaRFEjV/Rwptj8nIvItDKSIiKjRENufB2jqLiMlLvxrMDOQIiLyJQykiIio0Sjt2ld3gZQYtBWZrHX2nkRE5H0MpIiIqNEQg5m6LO0TOwQWMpAiIvIpDKSIiKjR8EZpnxi0ifOziIjINzCQIiKiRsMb7c/FoE0M4oiIyDcwkCIiokaj0AulfWLQxjlSRES+hYEUERE1GmJWqC4zUlIgxdI+IiKfwkCKiIgaBYvNjhKLHYC3SvsYSBER+RIGUkRE1CiUDWTqstmE2LWvyGyF3S7U2fsSEZF3MZAiIqJGQSyt06kVUCrq7vAW5JyPJQiAwcJFeYmIfAUDKSIiahQKvDA/CgA0SjmUchkAdu4jIvIlDKSIiKhREEv76rKsDwBkMllpeR/nSRER+QwGUkRE1CgUeaH1uUjMghUwkCIi8hkMpIiIqFHwRutzUYDGEbxxLSkiIt/BQIqIiBoFsbQvyBsZKQ1L+4iIfA0DKSIiahTEbFBdz5ECSrNgbDZBROQ7GEgREVGjYDA7259rFHX+3lKzCZb2ERH5DAZSRETUKBjMjjWc/FR1H0iVZqQYSBER+QoGUkRE1CiUOBfD1am9kJFyNptgIEVE5DsYSBERUaNgdGaktF7MSBWZOEeKiMhXMJAiIqJGwejMSPl5ISMVyDlSREQ+x6uB1OzZs9GzZ08EBgYiKioKY8eOxYkTJ1y2EQQBycnJiIuLg5+fHwYMGICjR4+6bGMymTBp0iRERETA398fY8aMwcWLF+vyRyEiIi/z5hwpsVMgS/uIiHyHVwOpbdu24YUXXsCePXuwYcMGWK1WDBs2DMXFxdI2c+bMwdy5c7Fo0SLs27cPMTExGDp0KAoLC6VtJk+ejNWrV2PVqlXYsWMHioqKMHr0aNhsNm/8WERE5AXenSPFQIqIyNfU/WIbZfz2228u95csWYKoqCikpKTgjjvugCAImD9/Pl599VWMGzcOALBs2TJER0fjq6++wrPPPgu9Xo/PP/8cy5cvx5AhQwAAK1asQHx8PDZu3Ijhw4fX+c9FRER1Tyzt884cKUezCZb2ERH5jno1R0qv1wMAwsLCAADp6enIysrCsGHDpG00Gg369++PXbt2AQBSUlJgsVhctomLi0PHjh2lba5nMplQUFDgciMioobNWC/an7PZBBGRr6g3gZQgCJgyZQpuu+02dOzYEQCQlZUFAIiOjnbZNjo6WnouKysLarUaoaGhlW5zvdmzZyM4OFi6xcfHe/rHISKiOiYFUl4s7StiaR8Rkc+oN4HUiy++iMOHD2PlypXlnpPJZC73BUEo99j1brTNzJkzodfrpVtGRkb1B05ERPWC0YtzpMSMVLHZBptdqPP3JyKiulcvAqlJkybhp59+wpYtW9C0aVPp8ZiYGAAol1nKzs6WslQxMTEwm83Iy8urdJvraTQaBAUFudyIiKhh8+YcqQBt6ZRjzpMiIvINXg2kBEHAiy++iB9++AGbN29GYmKiy/OJiYmIiYnBhg0bpMfMZjO2bduGvn37AgC6d+8OlUrlsk1mZiZSU1OlbYiIqHGz2wWUWOwAvDNHSqNUQK1wHFIZSBER+Qavdu174YUX8NVXX+F///sfAgMDpcxTcHAw/Pz8IJPJMHnyZMyaNQtJSUlISkrCrFmzoNPp8NBDD0nbPvnkk5g6dSrCw8MRFhaGadOmoVOnTlIXPyIiatxKrKXLXXhjjhTgKO+7Vmx2Npzw88oYiIio7ng1kFq8eDEAYMCAAS6PL1myBI899hgAYPr06TAajZg4cSLy8vLQq1cvrF+/HoGBgdL28+bNg1KpxPjx42E0GjF48GAsXboUCoV3DqZERFS3xEYTAKBVeue7P8AZSLHhBBGRb/BqICUIN5+QK5PJkJycjOTk5Eq30Wq1WLhwIRYuXOjB0RERUUNROj9KDrn8xs2IaktpC3QGUkREvqBeNJsgIiKqiRKL99aQEunUjkDKUCY7RkREjRcDKSIiavAMXlyMVyS2XS82MyNFROQLGEgREVGDJ86R0nqp0QRQGkgZmZEiIvIJDKSIiKjB8+ZivCKW9hER+RYGUkRE1ODVjzlSjvc2sLSPiMgnMJAiIqIGr7Rrn/cCKT8pkGJGiojIFzCQIiKiBq8+NJvwZ2kfEZFPYSBFREQNntjgwbtzpFjaR0TkSxhIERFRgyfNkWKzCSIiqiMMpIiIqMGrD3OkmJEiIvItDKSIiKjBqw9zpNhsgojItzCQIiKiBq+kHqwjJTab4IK8RES+gYEUERE1eGLwUh/anxeztI+IyCcwkCIiogbPWC+aTTjemxkpIiLfwECKiIgavPowR4rrSBER+RYGUkRE1OBJ7c/rQWmfwWyD3S54bRxERFQ3GEgREVGDVx9K+/w1pe9dYmVWioiosWMgRUREDZ6xHpT2aZWl783yPiKixo+BFBERNXhSIOXFjJRcLpMCOYOJgRQRUWPHQIqIiBo8Yz2YIwWUlvcZLGyBTkTU2DGQIiKiBq8+zJEq+/7FzEgRETV6DKSIiKhBs9sFlFjsALyfkdKpHC3QuZYUEVHjx0CKiIgatLId8rydkdKJpX1mlvYRETV2DKSIiKhBK5v9Kds5zxt0ZdaSIiKixo2BFBERNWji/CitSg65XObVsejUjtI+BlJERI0fAykiImrQSupJxz6gbEaKpX1ERI0dAykiImrQjOb60WgCYGkfEZEvYSBFREQNmpj90Xq50QTA0j4iIl/CQIqIiBo0vdECAAjSqrw8ktKMlJGlfUREjR4DKSIiatDyDY5AKsxf7eWRlFmQlxkpIqJGj4EUERE1aLkGMwAgROf9jJS/mgvyEhH5CgZSRETUoOUVOwKpMF19ykixtI+IqLFjIEVERA1anjMjFVoPSvv82WyCiMhnMJAiIqIGLbfYMUcqtB5kpEqbTTCQIiJq7BhIERFRgyZmpML8vT9HiqV9RES+g4EUERE1aFJpXz3ISLHZBBGR72AgRUREDZrYbKI+zJESM1KcI0VE1PgxkCIiogbLZheQb6w/c6T8NWIgxdI+IqLGjoEUERE1WHqjBYLg+Hd9WEdKp3KU9llsAiw2u5dHQ0REtYmBFBERNVji/KhArRIqhfcPaTpnRgoACkuYlSIiasy8f9QhIiKqJmkx3nowPwoAVAo5gv0cmbHcYpOXR0NERLWJgRQRETVYucX1p2OfKNwZ1OUUmb08EiIiqk0MpIiIqMHKN4iNJrw/P0oUHuAIpMQgj4iIGicGUkRE1GDlGupP63NRuL8GAHCtiKV9RESNGQMpIiJqsKQ5UvWptC+ApX1ERL6AgRQRETVYefUxIxXgzEix2QQRUaPGQIqIiBqs3OL6sxivKMKZkbrGjBQRUaPm1UBq+/btuOuuuxAXFweZTIYff/zR5XlBEJCcnIy4uDj4+flhwIABOHr0qMs2JpMJkyZNQkREBPz9/TFmzBhcvHixDn8KIiLyFjEjFeZfj5pNSHOkGEgRETVmXg2kiouL0aVLFyxatKjC5+fMmYO5c+di0aJF2LdvH2JiYjB06FAUFhZK20yePBmrV6/GqlWrsGPHDhQVFWH06NGw2Wx19WMQEZGXiIFUSD3KSElzpFjaR0TUqCm9+eYjR47EyJEjK3xOEATMnz8fr776KsaNGwcAWLZsGaKjo/HVV1/h2WefhV6vx+eff47ly5djyJAhAIAVK1YgPj4eGzduxPDhw+vsZyEiorpX3xbkBVjaR0TkK+rtHKn09HRkZWVh2LBh0mMajQb9+/fHrl27AAApKSmwWCwu28TFxaFjx47SNhUxmUwoKChwuRERUcNiswvINzrmSIXUp3WknKV9eqMFZqvdy6MhIqLaUm8DqaysLABAdHS0y+PR0dHSc1lZWVCr1QgNDa10m4rMnj0bwcHB0i0+Pt7DoyciotqWU2SCIAAKuUwKXuqDYD8VFHIZgNLSQyIianzqbSAlkslkLvcFQSj32PVuts3MmTOh1+ulW0ZGhkfGSkREdedKQQkAIDJAIwUu9YFcLpNKDXO4KC8RUaNVbwOpmJgYACiXWcrOzpayVDExMTCbzcjLy6t0m4poNBoEBQW53IiIqGHJ0jsCqeig+pONEoX7c54UEVFjV28DqcTERMTExGDDhg3SY2azGdu2bUPfvn0BAN27d4dKpXLZJjMzE6mpqdI2RETUOIkZqeggrZdHUl4EF+UlImr0vNq1r6ioCKdPn5bup6en4+DBgwgLC0OzZs0wefJkzJo1C0lJSUhKSsKsWbOg0+nw0EMPAQCCg4Px5JNPYurUqQgPD0dYWBimTZuGTp06SV38iIio/vv1SCaC/VTo2yrC7ddkOQOpmOD6F0iFs3MfEVGj59VAav/+/Rg4cKB0f8qUKQCARx99FEuXLsX06dNhNBoxceJE5OXloVevXli/fj0CAwOl18ybNw9KpRLjx4+H0WjE4MGDsXTpUigUijr/eYiIqOp2ns7B818eQKBGicPJw246D1aUpXdke+pjRkpsfpHDQIqIqNHyaiA1YMAACIJQ6fMymQzJyclITk6udButVouFCxdi4cKFtTBCIiKqTTa7gLfWHAMAFJqs0Bstbi+um11Yf0v7SjNSLO0jImqs6u0cKSIiavy+3Z+B41mF0v2qZHDEZhMx9TCQkhblLWZGioiosWIgRUREXrH5+BUk/3zU5bGqtAsvnSNVH7v2iaV9zEgRETVWDKSIiKjObUq7gqf/m4ISix0D2kSiW7MQAO4HHgazFYUlVgD1s7RPbIBxOb/EyyMhIqLawkCKiIjq3L+3nYXNLmBMlzh8NqEHYp2Bh7td7sSyPn+1AoFaVa2Ns7riQ3UAHIGh0Wzz8miIiKg2MJAiIqI6pTdYkHLBsZD634a3gUohr3Ip3JWC+tuxDwCC/JQI1Dj6OV3KN3h5NEREVBsYSBERUZ3aduoqbHYBSVEBiA9zZG7EBWzdD6Tqb8c+wNF1tqnzZ8vINXp5NEREVBsYSBERUZ3acjwbADCobZT0WESgo8udu1376vNivKKmoX4AgIt5zEgRETVGDKSIiKjO2OwCtp5wBFIDywRSVS3tE+dI1deMFFA6TyojjxkpIqLGiIEUERHVmT8v5CHPYEGgVonuCaHS45FSRqqqpX31r/W5KD7MkZHKyGVGioioMWIgRUREdcJktUnrRg1pFw2VovQQJM6RcrdrnxhI1cfFeEVNnRmpi8xIERE1SgykiIioTry/7gRSLxUgVKfC30e2dXku3BlIGcw2GMzWm+5LnEsVGdgAMlKcI0VE1CgxkCIiolr37f4MfPZ7OgDgX/d2KTe3yV+tgFblOCTlFN48KyWWAIqZrPpIzEjlGywoLLF4eTRERORpDKSIiKhW/ZaahRnfHwYAPNu/BYa0jy63jUwmK22BXnzjeVIGsxUG5yK3EfU4IxWgUSJU51gsuLrlff/dfQ59Zm/CwYx8D46MiIg8gYEUERHVGpPVhr//cBh2Abi/Rzz+PqJtpduK5X05hTcOpMSMlVYlh79a4bnB1gIxK1WdhhOHL+bjzZ+PIVNfgg/Wn/D00IiIqIYYSBERUa3Zcvwq8g0WRAdp8M5fOkImk1W6bWSAe2tJXS1T1nej/dUH4jypqmak8g1mTP76IKx2AQDw+6kcnMgq9Pj4iIio+hhI+bjUS3rM3XASJRabt4dCRHUk32BGkenmDR084X8HLwEA7u7aBErFjQ854lpS127SAr0hzI8SiWtJncp2Pwj6Ykc6bp+zBWevFiM6SIPbkyIAAJ/9fhaX841YtPkURi/8Hd+lXKyVMRMRkXsYSPm4N38+hgWbTuG31CxvD4WI6oDeYMGQudsx9qOdEAShVt+roMSCTccdi+/e3TXupttHuLmWVEMKpG5zBkG/HMly64LVoYx8vLnmGApLrGgbE4jPJvTA5CFJAIDvUi6i77ub8f76k0i9VIB5G07W+v8hERFVjoGUD7Pa7Dh8KR8AcP4a2/NSzekNFhy+mO/tYdANbEi7gpwiE05nFyFTX1Lu+Z8PXcavRzI98l6/HcmC2WpHUlQA2scG3XT70mYTNy7tE+dIiYv41md9W0agSYgf9EYL1h+7ctPtt5xwBJ6D2kbhl5duR+emIbilWSgGtImUtunUJBh+KgUu5RuReqmg1sZOREQ3xkDKh53KLkKJxQ4AuJTPQIpqRhAEPLlsH8Ys2oktziwE1T+/pZYGSSevuJabnc4uwqSVf+LFlX9Cb6h5u26x9GxstyZuzWWKDXbMJzp4IR82e+WZloaUkVLIZbine1MAjhbwN7P95FUAwND20ZDLHZ+ZTCbDksd6IvWN4Tg76078POk2KbBad5TVBERE3sJAyoeVzRxUtzUv+Y7z14rxztpjSM8prvD5HadzsP98HgDg0+1n63JojYrRbMP5axV/xjVVZLJi+6kc6f7p7CKX579xnujb7AKOZRZg37lcDPjXFuw8nYOqOnWlEHvP5ToCiVuauvWaAW0iEapT4VK+EetvECA0pEAKAO5zBlI7Tufg4g0W59UbLFKb8ztaR7o8J5PJEKBRSsHVsA6OFvLrj2UhLbMA/zt4CUbzzUsHbXYB9hsEqaL953Ix84fDdTaXjogarm/2Z+CjLafd+m5pbBhI+bBDF/XSvy/l1zyQyikyYeo3h/D7qas13hfVP4s2n8Znv6dj7Ec7setM+RPrj7aclv69++w1HM9iyVF1TP/+MAa8v1X6jC9cM6DAQ4u5bj6eDbPVLt0/daU0kDJb7fi+TPOCY5kFWL77PM5dM2DVvptnUq63cq/jNYPaRiEmWHuTrR20KgUe6Z0AAPh8R3ql2zW0QCo+TIceCaEQBGDP2dxKt9t5Jgd2AWgZ6Y8mIX433OegNtFQymU4eaUIoxb8jpdXHUSfdzdh5d4Llb7mwjUDur6xHtO+PXTTMf9r3Qms3JuB79zIonmT2WrH/w5euum8OiKqHZfzjZjx/WH8a90JLN52xtvDqXMMpHxY2YxUZn5Jja8kvLM2Dd8fuIgP1p+s4ch8w6a0Kxg+bztSL+lvvnE9cNgZeOuNFkz4fK90op9vMGPJznTsOZsLlUKGWxPDAABLd57z1lAbrCKTFetSsyAIwIo953EoIx+D527F8ytSPLJ/sawvMcIfgGsnuY1pV3CtzNyktMwCpDgzjMcuV+13tMRiw/cHHEHZQ7c2q9Jr/9o7ASqFDPvP51W6CK3YHj0ioP7PkRK1jAwA4DjpqIxY1nd9NqoiwToV+rQMBwDYBcdnkW+w4B+rjyC3kjlmPx++jEKTFT/8eQl70ysP6ABH6TfgCKjrs1m/pOHlVQcx57fj3h4KVdPhi/l4Z+0xtzKq9YndLtywBBlwzEX3dEOYBZtOYeYPh2/63p50o/f64cBFiD/i++tPYOsJ3yrtZyDlo0osNhzPLD2JMtvs0tos1fHnhTys/tPR5vhEVqFPpnerasnOczhxpRD/+b3+l8EZzFbppPu2VhGw2gW8+NWfmLv+BHrN2oQ3fj4GALi3ezz+NrwNAGD1n5eQb7hx0wBy9fvJqzDbHBmjjceyMfvXNFhsAvam58Jqs9/k1Tdmswv43VnW93z/lgAcJ8viQV4s62sbE+gYy6mrUqb6bE4xDGb3S7zWH7sCvdGCJiF+bgUFZUUFaTG6s6PDn9g6/Xrigr0RgQ0jIwUAcc4MU2WBlN0uYFsVAikA+Med7TCmSxyWPXEr/vjHELSKCoAgAH+cvVbh9mKgBgBzfjte6QnetSKTFIylZVbetv3klUJpzN5w9LIe/919DgAqDbrrK0EQkHeTpiq+4v31J/HZ7+n48o/z3h6K2y7nGzH2453onLwOf/v2UIUVGPkGM4bN3447F+zwSNUP4Dh3m7fxJFbuzZAudNW2N38+hlve2oDNx8s3yxEEAd86KxlaRPpDEIAnlu5D8k9Hyy1jkXI+F+cqmRrQkDGQ8lHHswphtQsI91dLJSTVmSd19LIeH6w/4VIqYrTYcCGXzStuxGYXpAP/puPZMJptmPnDEST/dLTCFslLdqZj2a5zdTvIMtIyC2AXgMhADT6b0AMd4oKQW2zGgs2nYbLa0To6ANOGtcbrd7VHj4RQtI0JhMlqx/8OXvbamBuiDWmlByqzzS6VgVlsAs7X8G/q5JVCFJZY4a9W4K4ucVDIZSgsseJKgQkWmx1/ON9r2jBHIHyloPQgKAio0mKwB5wH+OEdYqCQV33B3MHtogBUXAZXYrGh0Dlvp6GU9gFAbIijvLGyE6p953KRqS9BgEaJPi3C3dpnu9ggLHiwG/q3joRCLkM/Z4ZqdwWBVJHJKp14iRm/zZU0hTlVZu7ciSuFFQbxJRYbHvx0Dx79Yi/SvJC1stsF/PPHVIjX7M5cLYbJ2nAyGh9uOoVub23wuav3FbngnBN6syxpfZGWWYC7P9qJwxf1KDbb8G3KRTz6xd5yFyYWbzuDs1eLkZZZgPGf7PZIEJGRa5CyP9tO1v7vjiAI+OHPi9AbLXjmvylYc9j1mL43PRfnrxngr1bg++f64q4ucbALwNJd59B79iZMXuVoXLT/XC7uWbwb936yu0oX5RoCBlI+Sizr69Q0WAqkqnrFxG4X8NSy/Vi4+TTOXC2GTq1AszDH4pOcH3Njp7OLpEnchSVWTP/+MFbuvYClu85hwhd7XebEnL1ahDd+PobXfzqKDC8FqEecZX2dmwTDT63Av//aHdFBGgT7qfD+fV2wbvIdeHFQErQqBWQyGe7vGQ8AWLUvA5fyjZj1S1qjvBLlSTa7IHU7HNY+utzzp664H8hUZN85x0nKLQmh8FMrkBBeulBsWmYBjBYbgrRKDGwbhUCtstzrq1LiddRZCtixyc1bnlektzOQSMssKHfVXpwLo1bIEVTBOOsr8Xu2opbzAPCjM/s2smMMtCpFtd6jT0vHmlW7zpQPpHafuQarXUBCuA6P90sEAHz1h2M+ld5owcJNp3Dbe5vx5s/HXAIps9WOsznF0BstLhd5fk3NlEpBt3ghGDiWWYADF/Lhp1IgQKOEzS5IzVMEQcBHW07jp0OuJ30HLuTh632VzyEDHJmGrEr+jzylxGLDEmfp88a0m7fEb8zsdgGXnZ/3vnO5DaKa5fX/HcXVQhPaRDvWeZPLHBeeylb1XCkokcrbIwLUuJRvxJtrjtX4vcs2e9p+0lFhcOpKocvc1+pIyyxwlui5fv5nc4qR7+zgarULmPLNIeQWm5FdUIIZ3x3GpJV/AgBGd45DqL8aCx/shhVP9kKX+BBYbAJ+PHgZ/1h9BP9adwKA4/tbnD/bWDCQqmdMVhuOXtbX+iKLhzKcJ8ZNQ9AkVMxIVe0k/cglPTL1JdCpFZg+og2+ebYPejnnxxyv5Or1+WvF+L8fj3gtIKgvDlxwTcn/7Dzgy2SOKzwTPt8rXbXZUGbtmcquIAOO13mqfABwHOxn/nAYc9efwBHnWjUdmwQDAJqG6rB12kDse3UI7u3etFxr67Fdm0CtkCMtswBjP9qJT7efxfvrT1RrHGarvcZBRH0nCAI2pl1BnsGCYD8V3hrbESqF4zMVS+3KNoa4GaPZhuHztuOpZfulx/adc/zO9Wzu+BtNigqQ9rvf+Vz3hFAo5DK0K7PmkxgAHLvsXiBltwtSOVj7uOoFUhEBGml8f6S7BgVl50e501K9vihb2nf993uJxYY1hx3z1/5yS5Nqv0fvFmGQyRwXarILXIMB8er1HUmRuNfZRfD3UznIKTLhLx/vxAcbTuJinhH/3X0Of15XMrT+aBZue28zJny+V3rsyz2lAcnvJ6ve1bGmzjmzGB3igqSAXSxXP3AhD/9adwJ/+/aQdIKZbzDj0S/2Ysb3RyotiSqx2DBqwe8Y8eH2Wm1esTHNUfoKAEfd/Luq764UVC/4zCk2Sf9HeQaLSxBfH124ZsDec7mQyYAlj/fE0PbRaB7umHN6Mqt07As2nYLJakf3hFD859GeABy/lzU9tyu75ueRS3q8++txDJ23vUZzBG12AU8s3Ycp3xwqdxFGrC64pVkI2sUGwWy1Y/3RLMzbeBJf789AdqEJWpUcE/omSK+5LSkC/3uhH1Y+3RsKuQxrj2TijzLZxk+3n2lQ2eObYSBVj5itdnROXo9RC3a4lNXUBjEj1aVpMJo6A6lLVSzt2+S8kta/dSQmDmiFjk2C0TbW9YB2vSU7z2HFngs37MjlC8Qvpy5Ng6XHIgI0+O65PgjRqXAwIx+TvvoTVpvd5YplZYHUr0cyMf7fu/HiVwc8Mj67XcCUbw5i5d4MLNh8Gr86mxR0alI6Xj+1AmplxV8hof5qDO8YAwC46pzP8vupnGpNjp238SSGztsuzZfJLTZ7rItdfXCtyISRH/6OZ5c7GkoMahuF6CAt/vNoTyx++Bbc3dVxYl2VE4w/M/Jw4kohNqZdwakrhRAEAfucBzIxkGodHSjtVzyx7OF8ruziuQ/1cjSLcDcjlZFnQJHJCrVCLjVYqA6xkcL15X0NcX4UAMQ6OxcazDbpJFq05Xg2CkusiA3Woneie2V9FQnRqaX/u+vL+8Sr13e0jkTr6EC0igqA2WbHpK/+xNmrxQj3VyM6SAOrXZCCOjHjt3DzaRSWWLH3XC7OXC3CiaxC7D+fBzGO3X8+t1rlOhabvdoT5jNyHcerpqF+aBvjPO44KyF2nnb87CarXcqOfvb7WRSWOMZ4qJL5VGevFiPPYEG+weLShdTTvt1f2h0zLbPgpp/BrtM5Uka5vhEEAf9YfQS9Zm3CrF/SKt3OarMju7B8sHU53/WxvekVz+9zZxxzN5zEF7V8biHOBb+tVYR0cUT8Lj3hvOB3/loxvnZ2Op0+vA3axQZCKZch32DBZX0Jtp28in+tOw5LNea9nrtuaYxPnF3yvjtwsVr7A4Dtp65KmfId1y118afzb6VH8zCM7hzreK+Ui/jJWbY/e1wn7Ht1CDrEBeN6fVqG44UBLaX7f+2dgJggLa4UmPB9SsXzXxsiBlL1iFopl8ptjmVWv5NbYYkFzy1PwYo9FU/cLDJZcfqq46Ssc9OQapf2bUhznNQPaVdahtTOefW8stI+MS3tjZr6+kTMSD0/oKV0svLCwJbonhCGzx/tAY1Sjk3Hs8tdPd199lq5ExaD2Yq3nCUDqZf0NW5KoDdaMO27Q/jlSOk6PgZnN6VOTct/WVbmYecJeESABoEaJfRGCw6V6RTpLrHc7buUi7haaMLA97dizMIdFc4l85a1hzOxu4JyKnf8dOgyjmcVQq2UY0SHGLwypDUAxwWKkZ1ipczM9Yvn3kjZBgG/pmbhYp4RWQUlUClk6BofAqD04L/tRLZ0tbBHQiiA0kAqIkCN4c71io5nFrp10itmrlrHBEClqP4hRizvu/5zbWitz0ValQLh/o4ug9efPIqTte/u2kRaJ6q6+joD0F2nSz+3cznFuJBrgEohkwLUOzs5TorEgGviwFa4y9nkQ2x4MrKjYxtTmbKhdUezsHzPOQCOEtT4MD9YbII0x85dZ64WYeD7WzHyw+3VCqbECor4MB3axYrHHcfvfdnlGVLO5yGnyCSV0gGotFNq2ZPUL/dccKnSsNrsuO+TXbh70Y5qn7ACQJa+RFoiRK2Qo8Rix9mrlV8kuVZkwqNL9mLC53tRXAtrehnM1ht+/uk5xbhjzhbM21BxN97Pfj8rlYh+uv1shYtOC4KAZ5enoPesTS7dgoHyF3D/qGSe1Dtrj+HBT/egsJKLaMcyC7Bg0ym8ueaYRxYTr4g4XwgAxpXJHLd2nveccJ73zN1wEla7gP6tI9GrRTg0SgVaOb/HUy/pMf27Q/hoyxkpKKsK8Xc09rolJfINlmqt9we4LhR+/Ty1shkp8Ttj//k8FJttaB6uwwM94xGoVVW67xcHJaFHQihigrR4eUgSnrzNUVb80yEGUlRLxBOYsmU0NruAE1mFbqeE/3fwMn47moX/+zEV/y7T0/+bfRlYufcCUi/pIQhAXLAWkYEaqbTvZhkpg9mK3GIzBEHApXwj0jILIJcBA9tGSdu0cX6hnM81VPilLzahOHHF/Z+nvisocUykdMeRi3psSruCM1cdX4Y9m4fhX/d1wfMDWuLhXo7UePeEMHz4QFcAwPcHLsIuOMpX4sP8YLbapautoo+3nJFqzC02oUaLK+85ew2DP9iKHw44vuTeHdcJMUGOL+yoQA2ig9xbDwhwnAh//UxvrH3pNtze2jF3Y9uJm3f4strsmP1LGr7ZlwGD2SoFELvPXMOSnenQGy04d80gXfGrbXa7cMPgNOV8Hl746gAeX7q3Wpmy9UcdGcfpw9vgk792RzPnxRSRGPCczSl2O0gu+/3xy5FM6Wp2R+ccN8BxASQuWIvL+hLkFJmgUsjQxRlkDW0fjW7NQvBc/5ZIjAiAViWH0WIrdzW0wvd2XiTpEOt+0F0RsUz4xJVCZOpLf6dLA6mG0/pcVFHnvrNXi6RM8/ge7i1cfCP9Wjn+1racyJbmm2x3nrh3TwhFgMZx4WaU86QIAEJ1Kjx4azwGlfkuB4C7usRJ/xbju+/2X8Q3+xwnk4/1TcRtrSJd3sMdp7MLcf+/9+BinhEnrxRVqZGJKMP5PRcfqkMbZ0YqLbMQRrMNB87nS9sduJCHz7afhcFsg875u59aSTv/svNPzDY7Fmw6Jd3ffuoq9p3Lw6GL+govagiCewsd/3zoMuwC0LN5KDo7L0zdqLzvYEY+LDYBRoutWheibuTXI5no+fZG3P/v3ZUej38+dBkXcg34cNOpch1mj17WY/avjpKyW53Z7FdXp+LP60rXvz9wCZuOZ8MuOALxsi7lO84JxMBgb3puubGcv1aMz35Px+6z11yyeWWVvXBwpEyg/O9tZ3Dv4l0eCa4OXMjD+WsG6NQKDO8QIz3eRspIFSEts0Camyd2sAUgZWz+d/CSVHG0+kD5YOJqoQl7zl6r9P/jXI7j85rQpzkAQKdWYIizOY+YSa6K3GKzy/SBwxfzpTb0RabS42+3ZqFIjPB3Kfse3zP+puXVaqUc3zzbB7v+PggRARoMaOP4vnD8Xtfsom99wUCqnhH/2Mp+sU779hCGz99e4aKYW05kY9SC312u2pa9KjH71+NYsOkUvt53AdO/P4yZPxyRrh6J2YWyGanK/njzis3oM3szbnlrA7q8sR4PfLobgOPAHOZfekITHqBBZKAGglD+CrrNLkhX+PINFqnkqzrm/HYcL3x1oMbZF094dXUq7v1kt7RGT2UOX8zH3R/twJPOeSvNw3UID9BgeIcYzBjR1qVMbkTHWDzXvzQlPrR9NAa1cXxZlm1BWlhiwWfOg5tW5Xj92RxHqdY/Vh/BztM5bgesRSYrXvn6IHKKzGgZ6Y+vnuqFB25thtfvag+ZzJEhqapeLcIRHaSVXuvOydaPBy/j39vP4tUfj2DP2WtSVy6rXcC/t5ceyD/eevqGWamMXANe+19qjebjWWx23PvJLvR9dzMuXDOgxGLDdykXXX63v9jpKCUpsdjx65GqHcjyDWbsdQY5QytoMAE4Spe0KjnMVrvb3TDLZnyPZxVi0WZHmZJY1gc4SjNn3tlOut+xSbDU5CDUX43VE/vhqdtbQCGXSaVT7mSSxSCuuvOjROEBGulEc/y/d0vvLQYdzZ1rYTUkcc7OfZfLBIZLnd04B7eNQosalEKK+rQMR6BGiexCk5T5rmh9qtbRAdJV8if6JUKnVqJH8zAp0GoS4odbEkKk8r2XBicBcAT0ZpsdtyaGoXeLMNyR5LxI4mYbdLtdwMQvD7jMQfozo+ptnMVjSdNQP7SODoBM5giy1x3NgtlmlwK/vel50rHz1VGO3/fT2UUVrlkkNsQZ6DzZ++HAJSnoLTtB/ugl178DQRBw3ye7MeD9rZVmTETrjzkCidGd49DB+Tdyo7UEy5Yh/nkh3+U5QRDwytcH8cKXB6qc1fv3tjN4/ssDKDbbpDXbikxWbDx2xWX+Stm28m+vTcN/fj8rHVMcxxfH79WqZ3pjWPtomG12PLs8RZozdbXQJFVMAOUzHmJ2dmTHWKiVcmQXmqSmIaKyF82W7zlfYcBatiRNDDhLLDZ8uOkU9p/Pw1YPdLgTy2OHtIuGTl3a6KZNjDjf1PFdKwjAqM6x0pxiANL/9a+ppYHknvRr5ZZDmPz1n3jg0z0Vduk1WW3Sd8d9PZri/fu6YPmTvfDU7S0AOIJUsftvRb8Pv5+66vL/BzjWgLLYBHRsEoTYYC0sNkH63jiUkQ+74PguEC+ijurkCCAVchnuvcW9Cz9yuUzKtLeMDECwnwolFrt0nltYYsHQudvw5NJ9bu2vvmk4LY/qQE5ODkymqp/cBwQEwM+v4lXoc3LcP5EFgFiNGTaDHgdPmVFc3BZbzuil9O/HW0/jvu5NoVTIkZubiwKDCVOW7UROkRnPfJaFlU/3RkSABtsPn4GtxIqh7aKxIe0K/vU/11/OH/caINfo0LlpCIDSq6QGsw1H0i8jQCXDTwcvY3C7KMQEO57bdOwKcq85vkTyDECe87uwb5MoXL3qLFNQqxEcHIy2MYG4WmhCWmYhujVzlArp9Xqcy85HSWG+NI49x9LRp2UEbHYBn24/i27NQtC7RTjOZhdh19kcPNCzGZQKOVQqFUJCQqTXnb1ahI+3OjJt4zuHo3206xV80Yo956BVKTC2axMoKygxUigUCAsLq+CVQHFxMQyGm5+0llhs+HXfCdisdny/Kw3do5WQyWTILFHh0SV7MXVYazzcKwGCIOCtNcdgNZughRlGix2DbgmTPruKPNotFAdPKpFyPg+3NVXjUr4NywBsOJaNt8cKUMhl2HbyKkxWOxJCVGgRLMfGtGwcOnUBG45dwZFLBVi+5QjaxARibNc43NYqArHBfhWWDoWHh2P+hpPI1JegWZgOaybdDj+1AmazGT1ilFj9eEeEB2huON6KhIaGQqlUSidwhzLykVdsRqBGjry88idPNruA+Wv2w2YwwAbg/f/tg81QJjsLQKuUIzQkBFcKTFi19wIec3YgAwC73Y5r1xxX8178734cuJCPtPSL+Pjh7m6NNygoCBpNacnY5zvSccB58vL0p5sQoFVib7pj3H1ahuPBnvFYu/eEdND6alsqBjUv/11Q2XfElhPZMBflo1VkAHR2A65erfh3Lt7PiuP6Quw7fg6BKA24dDod/P1dAwqz1Y7T2UWwGQvRPEyLc9cMOHVBjxCdCiNa+rn8H/aKVaJLuAwHMvLRPixEek6r1SIwMFDark10IA5m5OPklSLk5+fDYqn8ZPHgqQuwGUyI1ZjL/b6I3xEV0ev1MJtdO/S9OrAJXv76Ks5d1GPc3F8xc2Q77Dt+Hiq5HAMSSn8fr/+OKKuwsBAlJTeZCF9cDF2xa7bNcPUqFCZTjb8jygqCETaDHifPXwb6NIfeYJGusIslL0ajEUVF1Z9wHxkZicHtovDjwcv4NTULnZuGYNeZaxCsFnQMk7n8n/xjUBPsPJWDse0Cpcd7xiiwMe0amsYqUazPwwMdg3H+mgHP3J6IbSevSifzk4ckQSaToUezIMhLCnHqvB47jpyVqhIqs/1kNtLSLyFArcDwjjFYfUyPPy/kSxl5kdVqrfA7AnAEY+cuZsFms0NnL0axXkCcxoILuQYs/OUAbIZCjOjeEhtPXJMCtqahfnigZzPMXXcC2Tk52HX0rHQMFJ04dxE2gx6DmjdDXq4MKefzsWBtCib0ScCGA6dgswuQq3VIvazHeMSXvu6KY86YzaDHqu2pGNut4hPMa0Um/JF2DoIA3BIlh6XICptBj5QT52EcnFjhd8TBi3rYDI5Aa+eRsxjfsfTv51BGPr7b6QhSbo9XY3C78hdjKvqOSL2kx7u/HYfNWIioABWyC034YsMhXMg14EBGPronhGDu+K4I0CixLy0dNqMVvVuEYc/ZXLzx7R5sP3wGCx7pJZUQ90wIhVwuw9z7u2Lcxztx/HwWHl+8EUseuxXzN55E7rUcxAZpkVlQgpTjhci43EK6aHPq/GXYDHqEK0vQI0qBHemF+DU1C0nOLI/VZpdKX+2mYpy+oMfPe4+jr7NDJeD4ztuVehY2ZwnqnqPpGN8xGNtPZqMw33GycvD0JWm+6fXc+o4AcODEedgMerQIiJb+XhQKBRLCQ6BWyGEw27DWeTHthQGtXL4j4pzndiKZzLGsxPKth/FEP0cgVGC0YGdqOmx2AW99/wf6tIxw+XsSW5/r5DbYDXr0b6YB4CjNDJUbkZNrxoqtjovqPaMVuLVFOM7lFCEuxHGO9OynW1FosqFbsxB0TwhDvsEszQV8uFcCdp7IxP8yr2DTgVNoHSxg859nYDPo0ba5Vvp5ByRo8aXGjDuSIiEzFeLq1dKLiuHh4ZDLy59rmc1m6PWlP3uHUOD3a3psOXgKTbTNsWrvBRw/dwnHzwGHb4tGbLDr34F4HnG9G31HuCM4OBhqdfnKBvE8orDQzUy5QIJerxcAVPu2aNGiSvcdERFR7f2+9LeZQtc31gkJM9ZItzWHLguCIAjt27ev9n4Duo0SEmasEX4/eVUa54Of7hYSZqwRYtrcUu393nvvvYIgCMJ7v6YJCTPWCK98/ae0/3vvvbfa++3fv7/LZzr7lzTp8xg87pFq77d9+/aV/r+9/vrr1d5vRESE8Pr/UoWEGWuEIR9sFQRBENYeviwkzFgjRI14vka/ax1f+01ImLFG2Jd+TRAEQZj01QEhYcYa4cG/z63Rfn8/fEZoMXOtkDBjjbDl+BXpc9iyZUuN9puamirta+jcrULCjDXCDwcyhNTU1Brtd+ailULCjDVC2//7VUi9lC+9R3Z2do32+3TyAmHnacffxYVrxUKb//tFSJixRmj1j7U12m9l3xHPr9gvyP2Cqr3fv7/6f4IgCMK1IpPw1R/nhbfXHBV2n8kREmasETSRzaq934kTJ7qM87PtZ4SEGWuE51fsF/r371/t/YrfERXx5HdEWRMnTrzp63WA8Pp1Nx1q7ztCGxgiCIIg/HdXupAwY40wfN42wW63C4IgCIsWLarR75ogCMJvqZlCwow1Qt/Zm4Sdp64KCTPWCC3u/78a7Tc7O1v6Pbjvk13SeGv6HRH7xEfCwPe3CIIgCKmX8oVn/rtPGPj+FuHr9TtrtN/kT74Rxiz8XTpWLN56WhAEQbh//m812m/E3X8Xxn280+V3YfHW00LCjDU12u/ChQul/VmsNiEjt1iw2+1ClzfW1eg7YtSjkwSL1SZcyjMIs39JE3acuircu3inkDBjjRDWpEW19zvmwceE4fO2CQkz1ggbjmZJYz+XUyToEjpVe7+6Nv2E4fO2Sftb5/xdvuXN9ULbPkOrvd+YNrfU6Duispv4HSF+Fgkz1gj3OH8/avIdIfcLEobP2ybYbHZpnBuOZgkJM9YI7e+dXKPftSU7zgqCIAiv/XhESJixRhg6d6tgsdqEl2Z9XKP9ZmdnV/j5evI8oqyankds2bKlwv1efx6h1+sr/d0RBEFgaV89tv5oFvIMFrSPDcLzzs4nn24/A0EQYLEJNd5/2cYBb97dASqFDHmGmq+0LtboV6Ws7EbOXi2WVq+32Oz4LqW0RjqvhnXPnhhfRcTU+KnsIlzON+J95xoK/VpVvTyuLHGh0t9Ss2C22qX1W8S5LdU165djsNkF3NkpBgPaRN38BdUgTlz/oYK68Koa3DYKtydFwGix4ell+z3Wqnj1n5fx0sqDsNsFzNtwEiUWO3olhmGxmxmtqiix2NyaM3Yjf17Ix5bj2eg9exNm/nAEn/2eLq3roVFWby2iiohXh09WoQU7VU6sutnvnMh9Z6dYj7Zy7986Ejq1ApfyjdKyA2XnNlTXo32b4717OuHjh2/x6HjPXi3G5zvSMWrBDqw7egVnrxZj5vdHarTPrs2CcYuzeYpaKcf4Ho4Mkic+h2OXXTvteWJR3fScYhSZrM71vLbgtve24K01acg3WFCTT3rH6Rw8vnQfxn60E59sO4OH//MH9p3Lg59KUaPOl5fzjVIJXtky3oRwf0QFuj+X9noymaMc+ezVItjtgtSV7p7uTZFYg3Jeg7MMPFNvrLCss6bKZo7+2iehxvsTP4fTZRqRiHNUw/1r1mjnWGYBTmcXYrmzIVnyXR2gVMjROqrmpcW+iIFUPSa2o/zb8DZ48rZEqJVyHLqox47TOeUWqayqpChHnaqoVVQgni8zJ6cmuieEQqOU40qBCWeuFuF/By8hq5prTABAdmEJXvvfUSzdmY5fjmS6nDTn1uBzOJ1dhFav/oqnlu2TOhYWlljw9ppj0pyC6io7x+399SdwNqcYARolbmtV/dbGgGPuFAD8djQLe85eQ2GJFREBGmkdi+o6cqkA/moFXhvdoUb7uZF7nPXUO07nlFsbqKoUCjkWPXgLWkT447K+BP/5Pd0TQwTgmGeRelkvtZ2fNrwNhlQyf6kmdp+5hmKzDfIanJAeOJ+Hqc61csTufuLcQ00lremro3W0Y9/ncophbQALZtZ34hwPcf5J1xpeCLmeVqWQmgCJpameCCBUCjnu79nMox0Tmzjnjb291lGiNrxDNPq0CIexhl05g/3UGOFsCPDQrc2kubw3Kz28GbXC0XglPcdxgltYYpHWYauJFX+cx5APtuGDDSel46U4/1JRg+6XCrkMv5/KQXahCXHBWiidpd0TB7SU/l0dZ646vguC/VTlOsjFBFc/kBKDhF9Ts/BdykUcuJAPf7UCT/RLhL+m+rNRTBYb/jh7DXfM2YI7/rUF645mVbv1fkXEpkARAWqM6Bhzk61vTukskTuYkY/953LRZ/YmLHZOaQj3r7xLnjuOZRZg7eEs2AVgQJtI9HVe/I5sYEtK1BecI1XPtYoKQP/WkZDLZXi4VzMs2XkOyT8drdE6On1bhuGD+7uWe3ziwFZYEKzF+Ro2Q9OqFOjRPBQ7T1/D/I2nsOZwJq5WsgBiVST/XDphdUi7KGxMy5ZW3K4OQXDMydmYlo1dZ7ahX6sIHM8qQEauEfkXqj9eq01w+YIWMzB3dYmFJrNma5P0bx0JrUqOi3lGac2Ooe2jILfV/POdOqxNjQ6AN9MsXIdbE8OwNz0Xyf87WuP9BetUeHlIEl5edRBbjmfj7yPbYlOZ7kPVER2oQREc6+YUlFgRolPhFuc8v5rYfSYHL1z32HrnWNVKOarb1NhssyO32Iz2sUFY/UJfzPz+CH5wzqn0ZCAVE6RFoEaJQpO13ORoqjq7IOBqoUlaXLPLdXN1PGHK0NZQyWWw2ATEBmvRsgbzrmpTu9hgXM1xfB+3jQnERw/dAqtdQPcjqah6DzJXvVqEY///DUGornQeRIcaNkFpGqrFFQCplwrQKioQO0/nwGoXkBjhj4oXHHGP1SYgq8AxR/WVoUn4Ysc5qfucUi5DdS8Z3nNLU6SF+aFNdBDm3t8F+cUWpGUVYGi7aHxSg/GKVTHtY4PKZSdr8t0TE+z4fD/ZWtpxePKQ1h45Nr3323FYbI6/vWeXp0Auc2TQ4ktq3lZ+TJc4/HIkE0/dnuiRagCFM8g9lJGP30/lSBfWAUcjnpo4mVUEtcKRRS3b5KghLXBen8iE2qptakAKCgoQHByMM2fOuEywdpcnm00AjsYOf/v+MGRKDd57oCcevNWxHk9usRn952xBockKm7EQtzQNwn8e6ym9zmy14621R+GvVmLGiLaV/lFcP5G8LHEi+c+HLuP1n46iXUwgRneOxb/Wn0S/luFY+NAtlY677ETyj7eexpzfTkjP2U3FEGyOL6t/3dsZ//djKkxWO14a3AoLNp1G83AdgrRKHL5UgGZhOgRqFDjqnMgqkyswpGsLbD6eDaVchgFtIvHePZ3R773NMBQVQbBZEKhR4J2/dMJLqw5K7xmqU2HDK/0rbK6QX2xGscUOpS4IyT8dlUpsAEeHmuLiIlzTO048ZDJgfPemOJVdJF3dvaVZCK4UlOBSfgluTQzFG2M6YOSHOyCTAeNuaYof0woRH+YnLRoJAD9M7It2kdoaTyR/bnkKfivTQnbFk73Qs1kgCgoKMHTeNlwrchxylzzWA13iKw4CBEHA5rRs/O/gJew9l4dbWsdj5TN9yjXluH6SaFVdP0n0m/0ZmP7dYQh2G+wljs/h0792x8dbTuPgRT0e6dUMU4Y5WsbuTb+GiV8ewJP9EvH8wFYu+xUnieYbzLjlrQ2wC8CPL/TD/f/eCUOBHvd2b4KZI9tBJpPhwrVi/GXxLgiCo4WzGOP6qxUoNtvQLEyHqcOS0Do6CLsuFGPWutID+F1d4rDwwW4A4FajjQ83ncKyXefQu0UYPn64O9JzinDP4t2QqbTY+9qd0smA3S6g1+xNuFpowodjW0pr/1TF5uNX8LfVJ+Cn02HNpNuQFB2ITL0RA9/fihKLHSsndECryOplKiv6jvjLxzvx54V8aO1GFJeUntYF+ylRUGKF+DUXpFVi45T+FTZ4qWqzCXd5pNnERx+5PGR44QUogoI82mzCbhfQ993NMNvsmDG2J95ffxItIvyxedoAaRtPNJuoiMlkQkFB9dfvu9lE8nM5RZjyzSFoVAq0jg5Aj4QwvP7TUYToVNj4Sn/8ePAS3l6bhhYR/vj2uT7S8WntcT2S1zqOFd882we3OtveP/b5bmw6lI4ZI9ogt8iMz3ako3/rSMy7vyve/Okofjx0Gc/d0RLP9G9R4XhvNJF82ZYjWPnHBaRlFaJ5uA4/TOyHz7afxeJtZ3BXl1i8MaZjpZ/DvG0Z+Gp/Jp6+PRGvjmqP6d8dwjf7L+Lxfs3xRPdwvLTyT+l4opLLsfLpXigoseBkdhGahenQuWmwS8c3wHHsXrE/C4GB/niiXyK0KgX2pudi/L8d3XGTh8YjUKvA5K8PIVCjwOtjOuCjLWdw/loxljx+Kzo1CcaTS/fiz4zS7+pX72yHe7o3hU6ng06nq/B8IDc3FzZbxZm/+ZtO4r+7HKHhzy/2Q5PQ0qZOf/l4Jy7kWyDX6PBEv0S8dld7l9fm5+cjJf0qnlq2H7cmhmGR87zBbhcwZtEOXNaX4L7uTXF7UgReWnUQraMDseqZ3gAAgxV4aNkRqUqkdXQA1r50O1QKOfR6Pf44fQVPLtsPtUIOs80OpVyGefd3QY/mYdAoFfg+5SLecV5kjA3SYtHD3TDntxPYe14PudaRWR/QJhK7zlyD2dmcYkirQMy+29HR8VxOEeZvPI0Hbm2KGd8dRqHJ9fN5ol9zvDgoSbpfk6ZVBUZHtzqLs6z+lyNZuCU+BP95rCc2pl3BzF/Oo31sEDL1RuQZLJjQJwE6tRLP3dYUlpLKL2iJfx8AMKFPAlYfuIhCkw0D20RiX3oujMrSEr6t0wZIHVDF74hzOUV4/aejGNY+Bg/3dr9M0d1mEwCwKe0KPvs9HZ2bBmFs16ZoHxeECZ//gdTLBXjz7g4Y3bl06QVvNpto2bIl9Ho9goIqvwDDjFQZERERN/ywqrvPqhrQNRB+GzIQplPjL91Ku8yE+avx/MCWmPPbCSj8AjHl7p7lDpqfPFWzEiTxZGR0r0C8ufEiThYAOy9ZoNAFo2/HFpUepK93W6sIzEFpICXXlJ7QdWudgM6t9DhwIR9LUnKh0AXj9s7NMLhtFJ7/8gCm3NUJJ68U4rje0eo6IVyHzx/tgaOXC9AsXIcg5+JvbaIDccji+CLs3TYKY/u0w5IDuTh80fEHe0fnWERHVzzfp+yP8c2zffBnRh7+vJAPm13Ag72aobDEijm/HUdciB8eurUZ4sN0uJxvxKgFv6PEYsf8x26H0WzDnHXH8Xz/lujYIhx9OyTij/Rc/JjmCAAf7dMcH248hUKTFS0j/dEtPgQymazSoNtdLw5qhWvFJrSNCcKozrHSwqWRkZFok9AEf6TnQq2Q47ZOLaXOSBV5ICoKD/Tv6OhEJav4apRarXb7/9wdd3aKxZs/H0ORCUhsGosLuQak5go4li+DQheMiSNvQWSY44A9KjISRzq3RIBaWekipSE6NbonhGLfuTy88OUBmKzALW0S8K9HSoPCyMhIjOieI2WA2kYF4FR2EUoAKJTAjL90wxjnejnawEKXQGpAmXbR7nwOzw7zx5eH8rAvywa94IcLBhMUOkfgsOVENkZ2jMG3+y8iKkiDq4UmBGiUGNEjqVpXMMdHREChC0F8qJ80hyk22A/Ln+yFjFwD+rSv+ZpEZSVFBeDPC/kokftBofPDp3/tjpNXCjGqcxzeWnNMaks+rFsTxMZU/XuosgCrpgIDA29+gUynA67rbOYfGVnuMZfn/f3LdUNzx4ierbH2cCY+2uL4Pbt+fqOfn1+NvyMqotFoPPq3LBK/IyIjI/H766UdNC02Oz7YnolCsw05Ng3WnTFAoQvGQ/3bIiqq9Ht5pCYQS/ZkYHiHGCmIAoCOTcOw9VQuLhpVSM8zQ6ELxp7LFsj8gnDNroVCF4y2iU2q/DPJ5XI8PrgLxvRqi+5vb8TFEkAbGIIcmwYKXTA6tIi/4T67JpTgq/2Z0kK/4ppBw9rHID4uHN+9MgJf7EjH0l3n8MLAVujVwXEhdOhNxjXjLte/mVsTw/D07YnYcfoa7u7dFiE6FRS6EHSND0HzCH+M7dMOVwtNaOoMcCaOvAXPrTggvf7uPm0RGXzj36PKAgAAeHFkANacKEZssBZdkpq5HB/u6NxSWkalomUOQkJCMLhbCH5v3gRh/mqXwPGDCXfgkc//wA9phThTpIBCF4zEplEun/m2vw3A3nO52H8uD3d3jZMW9g4ODsagroEIX3sO+QYLFHDMnRrbpzSQe7B/CNLygY5xwfhrnwRoVQp0Pm3E/iuOMkmtSo7FD3eHWinH4Yv5uGfxLmw8XYiJRiVuaRaK6WvSsfOSGbt/PAu7IgARESr4a5TS+ow92zV3+3fuZt8RkQD6d2mJLSeuYt0ZIxS6YIzr1x6RkZG4QxUA/HJeWpcvQKPEP0e3L13kPLDy+UyDb0nCz6cc86n+OrAT4mKi8f76E3hqaFeUbD4tLbnRJMQPCWXWLRS/IyIjI/FLu8QK910dFZ1HPBAZiQfucL1g0b9LK6Tln0FaHvC4G5+xUqmsle80uVyOyMhIlw6+NxyHx0dANRYTrMWaSbchUKssdyL8RL9E7D5zDZEBGmn9jtoQFahFh7ggHL1cIK003q1ZiNuv7xAXjGA/FfRGCx68NR7fpVyUSgGahenw95Ht8PB/9sDgnPTZu0U4BreLxsm3RwJwXG0X1wwa2dExEbvsmgyAo+b/kDNo6tE8FDKZDC8ObIVnlqcAcARz7pDLZeieEIbuCaUHlSCtCh8+0M1lu7gQP6x75Q5YbIK09tbSx2+Vnn9rbEeMWvC79HPemhiGAW2j8POhy3jw1mYeS5t3bBKMb5/rW+FzLSID8Ed6Ljo0CbphEFWWogZ18lUVoFFi1TO9UWC04FhmAd5em4blu8/DZheQEK5DfJhrK/ugG6yYLhrYNgr7zuVJVzBfHNiqXDbkqdtbSIHUP0e3x5Kd6dhy4iraxgRidJmFSVtGBiAmSCvNUejfpmpf0vFhOgxuG42NaVfww4GL0BtLS083H8/G9pNXXdYRGdAmstplIDKZDPd2Lx8s9Wwe5rJelKeIcwAAR6nf0PbRGOacg/JY3+ZSIDWkghbMVOr+HvFYezhTmgPUpWntBJDeplLI0atFODYfz8bHW8/gwIV8KOQy/OUW1xbU0UFabPvbwHKvF0vwDmbkS5PsrXYBP/55SVpP7frvi6oID9CgSYgfLuUbkXqpQFqM92bzTfu0DIdSLsOBC/l4ctl+lFjs6NI0GL1bOP7mFHIZnr6jBZ6+o+JMWVW8Oso10zO2zIVVjVIhBVEAMLR9DJqG+uFinhHtYoPKtZCuqthgP2ye2h8alaLcsat3i3ApkGoXW/lFirLjE92WFIFH+yRg2e7z0hpZ139fKRVy9G0Z4dLivOxzA1pH4seDjgD2uesyksF+5Y/d4jpPgKM8XlyUvFuzUNzbvSm+2X8R76xNw/+NaoctzgZAYuXCwDZR0KgUWLlX/Hk9e7F9ZKdY6T2nDWuNCc5GFXHBWkQEaKQ54X1bhpcGUTdxR+tIhPur0SoqAG2iA9EmOhBP9EuEn1qBzcezpUCqb8vwelXO17tFGD7ZdqbcOmL1HQOpeqrsSUtZWpUCy5/sVSdjmDykNT5YfwJ5BjMSwvyrdHKmkMvw6p3tsPNMDmbe2Q5XC83YmHYFkYEa+KkVuDUxDO+M7YTp3x+GTAb0SnTdd4/mYVDIZbDZBYwqc6JbVtkvNHFV9SHtonFr8zCkZRVgUFvPd5+7UTei1tGBePaOlli05TT8VAq0iw3CG2M6YESHGI9MPnXHgDaRWLn3QqWfWX0gBsQa5wLCBc76dHcD3+sNahsllZG2jg7A4Ar+33s2D8XzA1rCYrXj9qQI5yK3J/DCwFYu2S6ZTIbbkyLwbcpFdG4aXK1J9Xd1icXGtCvYlJbtEqRuP3kV5usWkBYDkYYgqcx30qB2US4H4NuTItCvVTiuFJikleupYv1aRUgn8EDNO27WZ7e1isDm49lYe9gx22l4h2i3O7qJmY7jWa5rufxr3QmYrI6SrhbVLF0VdW4ajEv5Ruw4fVWqZOjU5MaBbXyYzjGfeNMpKRCYNCjJ6yekCrkMLw1OwvTvDmN8D89koyubi9O7RRjUSjm0Srm0qHNV/H1kOwhwzKUa0TGmyvNQ7+7aBD8evIy7usShVdTNp2OUPZ8a1t71O/eVoa3x06HLSDmfhwc/2wPA8XsqBth3dYmD0WLDyr0X4KdS1Lix0/XGdm2Ci7kGdG8e5rLovUwmQ9f4YGxMc1ygur21+9+rYf5q7Pz7IMhlMun3Ugweywa+t9Xixfjq6N0iHJun9q9Rd0ZvYCBFlRraPtplImJVje8Zj/E9HS1nx/doio1pV9CxTBnA+J7x0sm0uGq2KEirwgf3dUGewYyOTSq+AiQeaNVKudTKXS6XYflTt8JmF8rVodeFFwe1Qr7RjI5xwVAp5AjzV2NU57oLaoZ3iMH+/xuCcP/ydb/1TYe4YKgUMimDV91Aqk10oDQf7bn+LSssA5TJZJgxoq10v0VkABY/UnFL87/2ScDus9fw9O3Vu6I8oHUUFHIZTlwphHhuJTZqAICBbSLxSO8EXMg1uGTD6rukMidMQ9q5BqsymQxfPtW7rofUICnkMtzTvSkWbDoFlUJWYWlUY1H2RG1Iuyi8d09nt18bH6pz+bvpkRCKw5f0MDnntSSP6VDj7oGdmgbj19Qs/HeXIyueFBWAZuE3z3K9OLAV1h/NwvGsQrSLDZKWpfC28T3iMaRdNEJ1NevqdjNRgVqseqY31Ap5tTLqfmoF3ry78nloNzOwbRQ2vHKHW/9XgCOQ8lcrYBdQ7v8qNtgPnzzSHRO/PCBVyEwb1gbxYTqcuVqEDnHBKLHYMKJDDLo2C/F4BYdaKZfmBV+vS9MQKZDqn1S1C1SVVaS0jy29UNCnGnNza5NWpUCLyIbXgp2BFNWJYR1i8OVTvcpdvapspXHAtYyhIt2bheLxfs3ROjrQ5cvck+vnVJVWpcDbYzt57f0BeLQ1cW3SqhRo7yzPlMlQYRmHO2QyGRY/3B2pl/Qucwqrq3PTEOyYMajarw/WqdAjIRR/pOdCEBxlcAPaRGLVPkc7zOf6t0SvFvXrAOaO2GAteiSEoqDEUu3/K3J46NZmWLX3Am5rFeHV76va1jo6EDNGtIVKIcMT/RIrnetYEblchnaxQVIZ0sC2UUiKDsCqfRl4fXR7PFKFSfCV6dwkBACkYM3dZQ7USjkWPdQNH6w/ief6t/R6NqqssDq6iOaJbqY1kVRJ1U5F/r+9+w+qus73OP46HBQUEAkUQRAxSkrbVIi7uIpYRCWbOU6bo+YvsF1TbzjOmja21pjlJLq5atBmSmyaWEntvU4xMi4o2jQoSqvhZiBusmGt2aorCgqf+0eXsx5B5fDrwOn5mPnOeD7n8/38OPP2wJvP9/v5enm4a/tvYiX9eF/t9eIH91X2r3+upR8eVdydAba2hwT/mHR4drPqjWlt/yzBW2m4Z/D2Pl7NThpv5e7gXpo4vL/69PJo1fO+8B/s2qf/7Np3q505ALStF//nC7396UndG+KrP88f5ezhtJk395brlY//Jkl6ZGg/TfmvAZq2qUj3DfTTe7+J7VS/eDnKGNOlx9+kixeltDT7skWLbrrZRGu55OfYxhq+HyRp+69/ruiBt+mH6to2+2PRueorunf5LtvrHU+PVFSYcxME4Fr/+/k3iuzn41DiiLbR3NyAB/ICcJonokM10L+nZrfwMrrO6oFrNlwYPqC3Rt/RRzueHqm3pt/X5X957urj7yz4HG+t4bLHblaL7g398bKqtlxx9+3ZTQP//y/9Ad7d2/zByEBrPXpvMElUJ8elfQCc5u7gXipoYseurm5QgJci+/nob6cvKHbQj5fB8ZduwDGjIgLk7eGuMYP7NHsXUkfdE9JbJ7+v1v2RfTt0B1MAroFECgDamMVi0aaZ96nybLVtIxQAjgnu3UMHn0+QezsmOPPG3i5jjP77moesAkBzkUgBQDvo37uH7XljAFqmvVaiGkT266UNU0a0ax8AXJfL3COVnp6u8PBweXp6KioqSoWFhc4eEgAAAAAX5RKJ1Pbt27VgwQItXbpUhw8f1ujRo/XII4/o66+/dvbQAAAAALggl0ikfv/73yslJUWzZ8/WXXfdpbVr1yo0NFQZGRnOHhoAAAAAF9TlE6na2loVFxcrMTHRrjwxMVGffvppk+fU1NTo/PnzdgcAAAAANFeXT6TOnDmjuro6BQbaP5E8MDBQp0+fbvKclStXytfX13aEhoZ2xFABAAAAuIgun0g1uP7hhjd7avxzzz2nc+fO2Y5Tp051xBABAAAAuIguv/15QECArFZro9Wn7777rtEqVQMPDw95eLTd09EBAAAA/LR0+RWp7t27KyoqSnl5eXbleXl5GjlypJNGBQAAAMCVdfkVKUlauHChpk2bpujoaMXGxurNN9/U119/rTlz5jh7aAAAAABckEskUpMmTdL333+v5cuXq6qqSkOHDtXHH3+ssLAwZw8NAAAAgAtyiURKkubOnau5c+c6exgAAAAAfgK6/D1SAAAAANDRSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA5ymedItYYxRpJ0/vx5J48EANDhLl6Uamrsy86fl+rqnDMeAIBTNeQEDTnCjVjMrWr8BFRWVio0NNTZwwAAAADQSZw6dUohISE3fJ9ESlJ9fb2++eYb+fj4yGKxOHs4+Ak4f/68QkNDderUKfXq1cvZw8FPBHEHZyH24AzEHVrKGKMLFy4oODhYbm43vhOKS/skubm53TTbBNpLr169+HJHhyPu4CzEHpyBuENL+Pr63rIOm00AAAAAgINIpAAAAADAQSRSgBN4eHjohRdekIeHh7OHgp8Q4g7OQuzBGYg7tDc2mwAAAAAAB7EiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFJAC6Snpys8PFyenp6KiopSYWHhTetv3bpV9957r3r27KmgoCDNmjVL33//ve39jRs3avTo0fLz85Ofn58SEhJUVFRk18bVq1f1/PPPKzw8XD169NCgQYO0fPly1dfXt8sc0fm0ddzl5OQoOjpavXv3lpeXl4YNG6Z33nmn1f3C9Tgj9lauXKn77rtPPj4+6tu3ryZMmKAvv/yyXeaHzslZ33kNVq5cKYvFogULFrTVlOBqDACHZGdnm27dupmNGzea0tJSk5qaary8vMzf//73JusXFhYaNzc384c//MGcOHHCFBYWmiFDhpgJEybY6kyZMsW8/vrr5vDhw+bYsWNm1qxZxtfX11RWVtrqrFixwvj7+5udO3eaiooK8/777xtvb2+zdu3adp8znK894i4/P9/k5OSY0tJSU1ZWZtauXWusVqvJzc1tcb9wPc6KvYceeshkZmaao0ePmpKSEpOUlGQGDBhg/v3vf7f7nOF8zoq7BkVFRWbgwIHmZz/7mUlNTW2vaaKLI5ECHBQTE2PmzJljVxYZGWmWLFnSZP20tDQzaNAgu7J169aZkJCQG/Zx9epV4+PjY7KysmxlSUlJJjk52a7exIkTzZNPPunoFNAFdUTcGWPM8OHDzfPPP9/ifuF6nBV71/vuu++MJLNnz55mjhxdmTPj7sKFC+aOO+4weXl5ZsyYMSRSuCEu7QMcUFtbq+LiYiUmJtqVJyYm6tNPP23ynJEjR6qyslIff/yxjDH69ttv9cEHHygpKemG/VRXV+vKlSu67bbbbGWjRo3S7t27dfz4cUnS559/rn379mncuHFtMDN0Zh0Rd8YY7d69W19++aXi4uJa3C9ci7Nirynnzp2TJLvvRbgmZ8fdvHnzlJSUpISEhLaZEFyWu7MHAHQlZ86cUV1dnQIDA+3KAwMDdfr06SbPGTlypLZu3apJkybp8uXLunr1qsaPH6/169ffsJ8lS5aof//+dl/iixcv1rlz5xQZGSmr1aq6ujq9/PLLmjx5cttMDp1We8bduXPn1L9/f9XU1MhqtSo9PV0PPvhgi/uFa3FW7F3PGKOFCxdq1KhRGjp0aNtMDp2WM+MuOztbhw4d0oEDB9p+YnA5rEgBLWCxWOxeG2MalTUoLS3VM888o2XLlqm4uFi5ubmqqKjQnDlzmqy/atUqbdu2TTk5OfL09LSVb9++XVu2bNG7776rQ4cOKSsrS6tXr1ZWVlbbTQydWnvEnY+Pj0pKSnTgwAG9/PLLWrhwoQoKClrcL1yTs2Kvwfz58/XXv/5V27Zta5P5oGvo6Lg7deqUUlNTtWXLFrufv8ANOeWCQqCLqqmpMVar1eTk5NiVP/PMMyYuLq7Jc5588knz+OOP25UVFhYaSeabb76xK09LSzO+vr7mwIEDjdoJCQkxGzZssCt76aWXzODBg1syFXQh7R1310pJSTGJiYkt7heuxVmxd6358+ebkJAQc+LEiRbMAF2Rs+Luww8/NJKM1Wq1HZKMxWIxVqvVXL16tZUzg6thRQpwQPfu3RUVFaW8vDy78ry8PI0cObLJc6qrq+XmZv9fzWq1Svrxr2sN0tLS9NJLLyk3N1fR0dHNboftz11fe8bd9YwxqqmpaXG/cC3Oir2G1/Pnz1dOTo7+8pe/KDw8vKXTQBfjrLh74IEHdOTIEZWUlNiO6OhoTZ06VSUlJbb2ABvn5XBA19SwJeumTZtMaWmpWbBggfHy8jInT540xhizZMkSM23aNFv9zMxM4+7ubtLT0015ebnZt2+fiY6ONjExMbY6r776qunevbv54IMPTFVVle24cOGCrc6MGTNM//79bduf5+TkmICAAPPss8923OThNO0Rd6+88orZtWuXKS8vN8eOHTNr1qwx7u7uZuPGjc3uF67PWbH39NNPG19fX1NQUGD3vVhdXd1xk4fTOCvurseufbgZEimgBV5//XUTFhZmunfvbkaMGGG3He+MGTPMmDFj7OqvW7fO3H333aZHjx4mKCjITJ061e4ZUWFhYUZSo+OFF16w1Tl//rxJTU01AwYMMJ6enmbQoEFm6dKlpqampr2ni06ireNu6dKlJiIiwnh6eho/Pz8TGxtrsrOzHeoXPw3OiL2mvhMlmczMzPacKjoRZ33nXYtECjdjMeYm650AAAAAgEa4RwoAAAAAHEQiBQAAAAAOIpECAAAAAAeRSAEAAACAg0ikAAAAAMBBJFIAAAAA4CASKQAAAABwEIkUAAAdrLa2VhEREdq/f3+btrtz504NHz5c9fX1bdouAKAxEikAQKvMnDlTFoul0VFWVubsoXVab775psLCwvSLX/zCVmaxWPTRRx81qjtz5kxNmDChWe3+8pe/lMVi0bvvvttGIwUA3AiJFACg1R5++GFVVVXZHeHh4Y3q1dbWOmF0nc/69es1e/bsdml71qxZWr9+fbu0DQD4DxIpAECreXh4qF+/fnaH1WpVfHy85s+fr4ULFyogIEAPPvigJKm0tFTjxo2Tt7e3AgMDNW3aNJ05c8bW3sWLFzV9+nR5e3srKChIa9asUXx8vBYsWGCr09QKTu/evfX222/bXv/jH//QpEmT5OfnJ39/fz322GM6efKk7f2G1Z7Vq1crKChI/v7+mjdvnq5cuWKrU1NTo2effVahoaHy8PDQHXfcoU2bNskYo4iICK1evdpuDEePHpWbm5vKy8ub/KwOHTqksrIyJSUlOfgpSydPnmxy9S8+Pt5WZ/z48SoqKtKJEyccbh8A0HwkUgCAdpWVlSV3d3ft379ff/zjH1VVVaUxY8Zo2LBhOnjwoHJzc/Xtt9/qiSeesJ2zaNEi5efn68MPP9SuXbtUUFCg4uJih/qtrq7W2LFj5e3trb1792rfvn3y9vbWww8/bLcylp+fr/LycuXn5ysrK0tvv/22XTI2ffp0ZWdna926dTp27JjeeOMNeXt7y2KxKDk5WZmZmXb9bt68WaNHj9btt9/e5Lj27t2rO++8U7169XJoPpIUGhpqt+p3+PBh+fv7Ky4uzlYnLCxMffv2VWFhocPtAwCaz93ZAwAAdH07d+6Ut7e37fUjjzyi999/X5IUERGhVatW2d5btmyZRowYoVdeecVWtnnzZoWGhur48eMKDg7Wpk2b9Kc//cm2gpWVlaWQkBCHxpSdnS03Nze99dZbslgskqTMzEz17t1bBQUFSkxMlCT5+flpw4YNslqtioyMVFJSknbv3q2nnnpKx48f13vvvae8vDwlJCRIkgYNGmTrY9asWVq2bJmKiooUExOjK1euaMuWLUpLS7vhuE6ePKng4OAm35s8ebKsVqtdWU1NjW31ymq1ql+/fpKky5cva8KECYqNjdWLL75od07//v3tVt4AAG2PRAoA0Gpjx45VRkaG7bWXl5ft39HR0XZ1i4uLlZ+fb5d4NSgvL9elS5dUW1ur2NhYW/ltt92mwYMHOzSm4uJilZWVycfHx6788uXLdpfdDRkyxC55CQoK0pEjRyRJJSUlslqtGjNmTJN9BAUFKSkpSZs3b1ZMTIx27typy5cv61e/+tUNx3Xp0iV5eno2+d5rr71mS9gaLF68WHV1dY3qpqSk6MKFC8rLy5Obm/0FJj169FB1dfUNxwAAaD0SKQBAq3l5eSkiIuKG712rvr5ejz76qF599dVGdYOCgvTVV181q0+LxSJjjF3Ztfc21dfXKyoqSlu3bm10bp8+fWz/7tatW6N2G7YP79Gjxy3HMXv2bE2bNk2vvfaaMjMzNWnSJPXs2fOG9QMCAmyJ2vX69evX6HP08fHRv/71L7uyFStWKDc3V0VFRY0SRUk6e/as3RwBAG2PRAoA0KFGjBihHTt2aODAgXJ3b/xjKCIiQt26ddNnn32mAQMGSJJ++OEHHT9+3G5lqE+fPqqqqrK9/uqrr+xWYUaMGKHt27erb9++LbofSZLuuece1dfXa8+ePY1WihqMGzdOXl5eysjI0CeffKK9e/fetM3hw4crIyNDxhjbJYeO2LFjh5YvX65PPvmkyfuwGlbchg8f7nDbAIDmY7MJAECHmjdvns6ePavJkyfbdpfbtWuXkpOTVVdXJ29vb6WkpGjRokXavXu3jh49qpkzZza6fO3+++/Xhg0bdOjQIR08eFBz5syxW12aOnWqAgIC9Nhjj6mwsFAVFRXas2ePUlNTVVlZ2ayxDhw4UDNmzFBycrI++ugjVVRUqKCgQO+9956tjtVq1cyZM/Xcc88pIiLC7pLEpowdO1YXL17UF1984cCn9qOjR49q+vTpWrx4sYYMGaLTp0/r9OnTOnv2rK3OZ599Jg8Pj1uOAwDQOiRSAIAOFRwcrP3796uurk4PPfSQhg4dqtTUVPn6+tqSpbS0NMXFxWn8+PFKSEjQqFGjFBUVZdfOmjVrFBoaqri4OE2ZMkW//e1v7S6p69mzp/bu3asBAwZo4sSJuuuuu5ScnKxLly45tEKVkZGhxx9/XHPnzlVkZKSeeuopXbx40a5OSkqKamtrlZycfMv2/P39NXHixCYvObyVgwcPqrq6WitWrFBQUJDtmDhxoq3Otm3bNHXq1JteXggAaD2Luf4CcwAAOqH4+HgNGzZMa9eudfZQGtm/f7/i4+NVWVmpwMDAW9Y/cuSIEhISmtwMozX++c9/KjIyUgcPHmzygcgAgLbDihQAAC1UU1OjsrIy/e53v9MTTzzRrCRK+vHeq1WrVrX5FuUVFRVKT08niQKADsBmEwAAtNC2bduUkpKiYcOG6Z133nHo3BkzZrT5eGJiYhQTE9Pm7QIAGuPSPgAAAABwEJf2AQAAAICDSKQAAAAAwEEkUgAAAADgIBIpAAAAAHAQiRQAAAAAOIhECgAAAAAcRCIFAAAAAA4ikQIAAAAAB5FIAQAAAICD/g/+OXq14vok5QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "df_min = 1/obs_length\n", + "oversampling=15\n", + "df = df_min / oversampling\n", + "frequencies = np.arange(1/period - 200 * df, 1/period + 200 * df, df)\n", + "\n", + "freq, efstat = epoch_folding_search(events.time, frequencies, nbin=nbin)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat, label='EF statistics')\n", + "plt.axhline(nbin - 1, ls='--', lw=3, color='k', label='n - 1')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "_ = plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A peak is definitely there. \n", + "Far from the peak, the periodogram follows approximately a **$\\chi^2$ distribution with $n - 1$ degrees of freedom**, where $n$ is the number of bins in the pulse profile used to calculate the statistics. In fact, its mean is $n-1$ as shown in the figure. \n", + "\n", + "But close to the correct frequency, as described in Leahy et al. 1983, 1987 the peak in the epoch folding periodogram has the shape of a **sinc squared function** (whose secondary lobes are in this case barely visible above noise)." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Z-squared search\n", + "The epoch folding statistics has no information on the actual shape of the profile. \n", + "\n", + "A better method is the **$Z^2$ statistics** (Buccheri et al. 1983), which is conceptually similar to the Epoch folding but has high values when the signal is well described by a small number of **sinusoidal harmonics**. \n", + "\n", + "$Z^2_n = \\dfrac{2}{N} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^N \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^N \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Where $N$ is the number of photons, $n$ is the number of harmonics, $\\phi_j$ are the phases corresponding to the event arrival times $t_j$ ($\\phi_j = \\nu t_j$, where $\\nu$ is the pulse frequency).\n", + "\n", + "The $Z_n^2$ statistics defined in this way, far from the pulsed profile, follows a $\\chi^2_n$ distribution, where $n$ is the number of harmonics this time.\n", + "\n", + "Stingray implements the $Z$ search in `stingray.pulse.search.z_n_search`.\n", + "The standard $Z^2$ search calculates the phase of each photon and calculates the sinusoidal functions above for each photon. This is very computationally expensive if the number of photons is high. Therefore, in Stingray, the search is performed by binning the pulse profile first and using the phases of the folded profile in the formula above, multiplying the squared sinusoids of the phases of the pulse profile by a weight corresponding to the number of photons at each phase.\n", + "\n", + "$Z^2_n = \\dfrac{2}{\\sum_j{w_j}} \\sum_{k=1}^n \\left[{\\left(\\sum_{j=1}^m w_j \\cos k \\phi_j\\right)}^2 + {\\left(\\sum_{j=1}^m w_j \\sin k \\phi_j\\right)}^2\\right]$\n", + "\n", + "Since the sinusoids are only executed on a small number of bins, while the epoch folding procedure just consists of a very fast histogram-like operation, the speedup of this new formula is obvious. Care must be put into the choice of the number of bins, in order to maintain a good approximation even when the number of harmonics is high. As a rule of thumb, use _a number of bins at least 10 times larger than the number of harmonics_." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADDqUlEQVR4nOzdeXwU9f0/8NfsfWSzuS8JJEBAbiggigcoh6hIrf7E1rbi0apfTwoWtX5rg7XQ0gpUrFr9qlisxVbFesuh4oECgtw3JJw5yLn3zu7M/P7Y3YGQBLLJJptkX8/HI48H2Z2d+SyEzL7m/f58RlAURQERERERERG1mCbeAyAiIiIiIupqGKSIiIiIiIiixCBFREREREQUJQYpIiIiIiKiKDFIERERERERRYlBioiIiIiIKEoMUkRERERERFFikCIiIiIiIoqSLt4D6AxkWcaJEydgs9kgCEK8h0NERERERHGiKAqcTify8vKg0TRfd2KQAnDixAnk5+fHexhERERERNRJHD16FD169Gj2eQYpADabDUDoLys5OTnOoyEiog7ldgNPP93wsQceAKzW+IyHiIjiyuFwID8/X80IzWGQAtR2vuTkZAYpIqJEo9UCRmPDx5KTGaSIiBLcuab8cLEJIiIiIiKiKDFIERERERERRYlBioiIiIiIKEqcI0VEREREbaIoCoLBICRJivdQiM5Jq9VCp9O1+bZHDFJERERE1GqiKKKsrAwejyfeQyFqMYvFgtzcXBgMhlbvg0GKiIiIiFpFlmWUlJRAq9UiLy8PBoOhzVf5idqToigQRREnT55ESUkJioqKznrT3bNhkCIiIiKiVhFFEbIsIz8/HxaLJd7DIWoRs9kMvV6Pw4cPQxRFmEymVu2Hi00QERERUZu09oo+UbzE4meWP/VERERERERRYpAiIiIiIiKKEoMUERERERFRlBikiIiIiIi6kPHjx2PmzJlx30eiY5AiIiIiooTz4YcfQhCEZr+mT58e0+O1Nrg09bq3334bv//979t03Gj2QU3j8udERERElHAuv/xylJWVNXhMkiTcdttt+P777/Hb3/42TiM7t7S0tE6xj0THihQRERERJRyz2YycnBz1KzMzEw899BC+//57fPrppxgyZEhU+3vzzTcxZMgQmM1mpKenY+LEiXC73QCAW2+9FWvXrsVf//pXteJVWlqKjz/+GJdccglSUlKQnp6OqVOn4uDBg+o+m3vdmVWm5o7d3OuBhpUqWZbxpz/9CX379oXRaETPnj3xhz/8oUXvLZGxIkVEREREMaMoCrwBqcOPa9ZrIQhCq14rSRJ+9rOfYdWqVa0KUWVlZfjJT36CBQsW4Ec/+hGcTie+/PJLKIoCAPjrX/+Kffv2YfDgwXjiiScAAJmZmdi0aRNmzZqFIUOGwO124/HHH8ePfvQjbNmyBRqNptnXtfTYLXk9ADz66KN48cUXsWjRIlxyySUoKyvDnj17WvTeEhmDFBERJTRZliH6fDAaja3+EEZEp3gDEgY+/kmHH3fXE1fCYoj+o60kSfj5z3+OVatWYc2aNRg6dCgA4OjRo/j5z3+OyspK6HQ6/Pa3v8WNN97Y5D7KysoQDAZx/fXXo1evXgDQIIzZ7XYYDAZYLBbk5OSoj99www0N9vPSSy8hKysLu3btwuDBg5t9XTTHPtfrnU4n/vrXv+KZZ57BjBkzAAB9+vTBJZdc0qL9JzK29hERUUI7evQoysvLcfz4cXg8nngPh4g6UCRErVy5EmvWrMGwYcPU53Q6HRYvXoxdu3Zh9erV+NWvftVsO9uwYcMwYcIEDBkyBDfeeCNefPFF1NbWnvP4Bw8exM0334zevXsjOTkZhYWFAIAjR460+D209tgRu3fvht/vx4QJE9pl/90ZK1JERJTQXC4XrACCwSAqKyuRlZUFS7wHRdSFmfVa7HriyrgcNxqREPXJJ580ClEAkJubi9zcXABAVlYW0tLSUFNTA6vV2mhfWq0Wq1atwrp167By5UosWbIEjz32GNavX6+Go6Zce+21yM/Px4svvoi8vDzIsozBgwdDFMUWv4/WHjvCbDa36/67s7hWpAoKCppcbvLee+8FEOqxLS4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHYvH2yEioi7I5/MBCF19BsCqFFEbCYIAi0HX4V/RtOZKkoRbbrkFn3zyCVavXo3hw4efdfvvvvsOsiwjPz//rO/74osvxty5c/H999/DYDBgxYoV6vMGgwGSdGruWHV1NXbv3o3//d//xYQJEzBgwIAmKz1nvi7aY5/r9UVFRTCbzVizZk2r31uiimtFauPGjQ3+YXfs2IFJkyap/acLFizAwoULsXTpUvTr1w9PPvkkJk2ahL1798JmswEAZs6ciffeew/Lly9Heno6Zs+ejalTp2LTpk3QaqO7MkFERIlFURQ1SNlsNtTW1sLv98d5VETUnmRZxi233IJ33nkHb775JnJzc1FeXt5gm8zMTPVzZHV1NW655Rb83//9X7P7XL9+PdasWYPJkycjKysL69evx8mTJzFgwAB1m4KCAqxfvx6lpaVISkpCWloa0tPT8cILLyA3NxdHjhzBI4880mjfTb0ummM39XqN5lQtxWQy4eGHH8acOXNgMBhw8cUX4+TJk9i5cyfuuOOOFr23hKV0Ig8++KDSp08fRZZlRZZlJScnR/njH/+oPu/z+RS73a48//zziqIoSl1dnaLX65Xly5er2xw/flzRaDTKxx9/3OLj1tfXKwCU+vr62L0ZIiLq9ERRVNZ++KFSMmOGIv7mN0rJjBlKyYwZSqCuLt5DI+oSvF6vsmvXLsXr9cZ7KC327bffKgDO+lVbW6soSuiz56WXXqr84x//OOs+d+3apVx55ZVKZmamYjQalX79+ilLlixpsM3evXuVCy+8UDGbzQoApaSkRFm1apUyYMAAxWg0KkOHDlU+//xzBYCyYsWKs75u3LhxyoMPPtiiYzf1ekVRGuxDkiTlySefVHr16qXo9XqlZ8+eyrx581r83rqis/3stjQbCIrSOdYuFEUReXl5mDVrFn7zm9/g0KFD6NOnDzZv3owRI0ao2/3whz9ESkoKXn31VXz66aeYMGECampqkJqaqm4zbNgwXHfddZg7d26Tx/L7/Q2uODocDuTn56O+vh7Jycnt9yaJiKhTcTqd+P6rr1D45pvIyM7Djn2HkG7VIfUPf0Bqjx7xHh5Rp+fz+VBSUoLCwkKYTKZ4DyemFEXBzTffjP79+6O4uDjew6EYO9vPrsPhgN1uP2c26DSr9r3zzjuoq6vDrbfeCgBqiTU7O7vBdtnZ2epz5eXlMBgMDULUmds0Zf78+bDb7erX2fpdiYio+/J6vQBC86NW7arAzgoPKh0+uFyuOI+MiOLt66+/xhtvvIF33nkHw4cPx/Dhw7F9+/Z4D4s6kU6zat9LL72Eq666Cnl5eQ0eP3PioKIo55xMeK5tHn30UcyaNUv9PlKRIiKixBKZHxVUBJRUOWERtHD6gnA4HHEeGRHF2yWXXAJZluM9DOrEOkVF6vDhw1i9ejV+8YtfqI9Fbhp2ZmWpsrJSrVLl5ORAFMVGK5ycvk1TjEYjkpOTG3wREVHiiQSpY3V+KABERQuXPwin04lO0vlORESdVKcIUq+88gqysrJwzTXXqI8VFhYiJycHq1atUh8TRRFr167F2LFjAQAjR46EXq9vsE1ZWRl27NihbkNERNQcr9cLRVFwsDoUqALQwBeU4XB7uXofERGdVdxb+2RZxiuvvIIZM2ao9/AAQi19M2fOxLx581BUVISioiLMmzcPFosFN998MwDAbrfjjjvuwOzZs5Geno60tDQ89NBDGDJkCCZOnBivt0RERF2Ez+fDsVovHH4ZBp0eRp0WQb8WlU4/HA5Ht5s8T0REsRP3ILV69WocOXIEt99+e6Pn5syZA6/Xi3vuuQe1tbUYM2YMVq5cqd5DCgAWLVoEnU6H6dOnw+v1YsKECVi6dCnvIUVERGelhO8hVVLlhh0CBmbbIEoyyiucqHP6WJEiIqKzinuQmjx5crN96IIgoLi4+KxLTppMJixZsgRLlixppxESEVF3JIoiFEVBvTeAJGiQnWyCGJRxokJApcMPURTjPUQiIurE4h6kiIiI4iGy9HmtCJwHwGbSQafVQIaASieDFBERnR2DFBERJSSfzwdFUVDlCXVFJJv1SDLqIEOAyx9EVb07ziMkIqLOrFOs2kdERNTRfD4ffAEZ7mDovoM2ow56rQbJZiMAoKSyPp7DIyKiTo5BioiIElIwGITDF0AQGlgMobY+ALBbQkGq1umJ5/CIiKiTY5AiIqKEFAwG4fAGIENAsvlUp7vZqAcAuL1+yLIcr+ERETWroKAAixcvbvXrly5dipSUlJiNJ1ExSBERUUKSJAlOXxCSIiDZpFcfNxv1UCDAG5AQCATiOEIiai+33norBEFo9DVlyhR1m4KCgkbP9+jRo1XHKy4uxvDhw6N+XXOBZ+PGjbjzzjtbtI+mQtdNN92Effv2RT0eaoiLTRARUUKSJAkOXwAyNLCZTp0OLQYtgtDAI0rw+/0wGo1xHCURtZcpU6bglVdeafDYmf/fn3jiCfzyl79Uv+8s9ynNzMxs0+vNZjPMZnOMRpO4WJEiIqKEFGrtC4Zb+05VpCwGLYKKFh4xyCXQiboxo9GInJycBl+pqakNtrHZbA2eP1uA+fzzz3HBBRfAarUiJSUFF198MQ4fPoylS5di7ty52Lp1q1rZWrp0KQBg4cKFGDJkCKxWK/Lz83HPPffA5XKp+7vttttQX1+vvi5yb9Uzq0zFxcXo2bMnjEYj8vLy8MADDwAAxo8fj8OHD+NXv/qVug+g6UrXu+++i1GjRsFkMiEjIwPXX3+9+tyzzz6LoqIimEwmZGdn4//9v//Xmr/ybocVKSIiSkih1r4AJOgbtvYZdAhCA68oMUgRtYKiKHGZX6jRaNSg0NGCwSCuu+46/PKXv8S//vUviKKIDRs2QBAE3HTTTdixYwc+/vhjrF69GgBgt9vVMT/99NMoKChASUkJ7rnnHsyZMwfPPvssxo4di8WLF+Pxxx/H3r17AQBJSUmNjv3mm29i0aJFWL58OQYNGoTy8nJs3boVAPD2229j2LBhuPPOOxtU1s70wQcf4Prrr8djjz2GZcuWQRRFfPDBBwCA7777Dg888ACWLVuGsWPHoqamBl9++WVM//66KgYpIiJKSJFV+2TFgOTTW/v0WgQUDTwBBimi1pBlOS4ftC+99NKoWu/ef//9RsHk4Ycfxm9/+9sG3//v//6v+v28efPUas/pHA4H6uvrMXXqVPTp0wcAMGDAAPX5pKQk6HQ65OTkNHjdzJkz1T8XFhbi97//Pf7nf/4Hzz77LAwGA+x2OwRBaPS60x05cgQ5OTmYOHEi9Ho9evbsiQsuuAAAkJaWBq1Wq1bWmvOHP/wBP/7xjzF37lz1sWHDhqn7t1qtmDp1Kmw2G3r16oURI0Y0u69EwiBFREQJyeMPwB+UIUGArUFFSougXwMxGIDb64vjCImoPV1++eV47rnnGjyWlpbW4Ptf//rXuPXWW9XvMzIymtxXWloabr31Vlx55ZWYNGkSJk6ciOnTpyM3N/esY/jss88wb9487Nq1Cw6HA8FgED6fD263G1artUXv48Ybb8TixYvRu3dvTJkyBVdffTWuvfZa6HQt/5i/ZcuWZitWkyZNQq9evdT9T5kyBT/60Y9gsVhavP/uikGKiIgSjqIoqHOHQpLNbIBBd2rKsFGngRLQAgigmveSIoqaRqPBpZdeGpfjRsNqtaJv375n3SYjI+Oc20S88soreOCBB/Dxxx/jjTfewP/+7/9i1apVuPDCC5vc/vDhw7j66qtx99134/e//z3S0tLw1Vdf4Y477ohqxdD8/Hzs3bsXq1atwurVq3HPPffgz3/+M9auXQu9Xn/uHQBnXXjCZrNh8+bN+Pzzz7Fy5Uo8/vjjKC4uxsaNGxN+CXUuNkFERAlHlmXUe0Jte9kpDa+qCoKApPCHijoGKaKoCYIArVbb4V/xmh91uhEjRuDRRx/FunXrMHjwYLz++usAAIPBAEmSGmz73XffIRgM4qmnnsKFF16Ifv364cSJEw22aep1TTGbzZg2bRqefvppfP755/jmm2+wffv2Fu9j6NChWLNmTbPP63Q6TJw4EQsWLMC2bdtQWlqKTz/99Jzj6u5YkSIiooQTWvo8CADIS7EC7obPJ1mM8DkBh5utfUTdld/vR3l5eYPHdDpds+17Z1NSUoIXXngB06ZNQ15eHvbu3Yt9+/bhlltuAQB1MYktW7agR48esNls6NOnD4LBIJYsWYJrr70WX3/9NZ5//vkG+y0oKIDL5cKaNWswbNgwWCyWRi11S5cuhSRJGDNmDCwWC5YtWwaz2YxevXqp+/jiiy/w4x//GEajscn397vf/Q4TJkxAnz598OMf/xjBYBAfffQR5syZg/fffx+HDh3CZZddhtTUVHz44YeQZRn9+/eP+u+pu2FFioiIEk4wGITLF4QEDXJSTI2eT04KfVBxuL1QFKWjh0dEHeDjjz9Gbm5ug69LLrmkVfuyWCzYs2cPbrjhBvTr1w933nkn7rvvPtx1110AgBtuuAFTpkzB5ZdfjszMTPzrX//C8OHDsXDhQvzpT3/C4MGD8c9//hPz589vsN+xY8fi7rvvxk033YTMzEwsWLCg0bFTUlLw4osv4uKLL1YrS++99x7S09MBhO6FVVpaij59+jS7fPv48ePxn//8B++++y6GDx+OK664AuvXr1f3//bbb+OKK67AgAED8Pzzz+Nf//oXBg0a1Kq/q+5EUHiGgMPhgN1uR319PZKTk+M9HCIiamdOpxN/WvYhvj/hwrSxo3HXhrcbPP9IwSTsObATl/TNwMyfTYtq0jZRIvH5fCgpKUFhYSFMpsYXJYg6q7P97LY0G7AiRURECUeSJHhECbKiQYrF0Oj5NJsREjTwcgl0IiJqBoMUERElnGAwCF9AggQBaU0FKasRQUUDD2/KS0REzWCQIiKihCNJErzhIJVqbbw8cJrVgCC08DJIERFRMxikiIgo4QSDQXgDEmRokGppHKTSrQYEoYFHDEZ1PxciIkocDFJERJRwxEC4tU8RkGo1Nno+LcmAoKKBV5QQDAbjMEIiIursGKSIiCjh1IXvDyULAuzmpipSxlBFiotNEBFRMxikiIgo4dR7/AAAs8EArUZo9Hya1QAJAiRZgcPDm/ISEVFjDFJERJRw6t2hIJVkbrxiHwCY9FoY9KHn6lwMUkRE1BiDFBERJRyHNxSkbM0EKQCwWUJzp+rd3g4ZExERdS0MUkRElHBc3tC8J5u58UITETZL6E73DjcrUkTUtbzwwgvIz8+HRqPB4sWL4z2cbotBioiIEo4rXJGyW5oPUvZwkHL7uNgEUXdUXl6O+++/H71794bRaER+fj6uvfZarFmzJt5Da9LSpUuRkpJyzu0cDgfuu+8+PPzwwzh+/DjuvPPO9h9cgtLFewBEREQdLRKOks8SpJKtJpwE4PGLkGUZGg2vPRJ1F6Wlpbj44ouRkpKCBQsWYOjQoQgEAvjkk09w7733Ys+ePa3abyAQgF7feCXQ5h5vD0eOHEEgEMA111yD3NzcJrfpyPF0ZzwrEBFRwvH4QzfZTU0yNbtNitUEQIAvwHtJEbWYogBud/y+FKVFw7znnnsgCAI2bNiA//f//h/69euHQYMGYdasWfj222/V7Y4cOYIf/vCHSEpKQnJyMqZPn46Kigr1+eLiYgwfPhwvv/yyWtlSFAWCIOD555/HD3/4Q1itVjz55JMAgPfeew8jR46EyWRC7969MXfu3Aa/X+rq6nDnnXciOzsbJpMJgwcPxvvvv4/PP/8ct912G+rr6yEIAgRBQHFxcaP3tXTpUgwZMgQA0Lt3bwiCgNLS0mbHWV9fjzvvvBNZWVlITk7GFVdcga1btzbY5x//+EdkZ2fDZrPhjjvuwCOPPILhw4erz48fPx4zZ85s8JrrrrsOt956q/q9KIqYM2cOzjvvPFitVowZMwaff/55g3GnpKTgk08+wYABA5CUlIQpU6agrKyswX5ffvllDBo0CEajEbm5ubjvvvsAALfffjumTp3aYNtgMIicnBy8/PLLjf6eYoUVKSIiSjjeFgSptCQjJAjwiRICgQAMhuYXpiCiMI8H+POf43f8X/8asFrPuklNTQ0+/vhj/OEPf4C1iW0j7XOKouC6666D1WrF2rVrEQwGcc899+Cmm25qEAIOHDiAf//733jrrbeg1WrVx3/3u99h/vz5WLRoEbRaLT755BP87Gc/w9NPP41LL70UBw8eVNvufve730GWZVx11VVwOp147bXX0KdPH+zatQtarRZjx47F4sWL8fjjj2Pv3r0AgKSkpEZjv+mmm5Cfn4+JEydiw4YNyM/PR2ZmZrPjvOaaa5CWloYPP/wQdrsdf//73zFhwgTs27cPaWlp+Pe//43f/e53+Nvf/oZLL70Uy5Ytw9NPP43evXu3/N8EwG233YbS0lIsX74ceXl5WLFiBaZMmYLt27ejqKgIAODxePCXv/wFy5Ytg0ajwc9+9jM89NBD+Oc//wkAeO655zBr1iz88Y9/xFVXXYX6+np8/fXXAIBf/OIXuOyyy1BWVqZW4T788EO4XC5Mnz49qrFGg0GKiIgSiqIo8ImhIJWWZG52u1SLAUFFA29ARiAQ6KjhEVE7O3DgABRFwfnnn3/W7VavXo1t27ahpKQE+fn5AIBly5Zh0KBB2LhxI0aPHg0gVG1ZtmyZGlgibr75Ztx+++3q9z//+c/xyCOPYMaMGQBCFaPf//73mDNnDn73u99h9erV2LBhA3bv3o1+/fqp20TY7XYIgoCcnJxmx2w2m5Geng4AyMzMbLDtmeP89NNPsX37dlRWVsJoDLU5/+Uvf8E777yDN998E3feeScWL16M22+/Hb/4xS8AAE8++SRWr14Nn6/li/AcPHgQ//rXv3Ds2DHk5eUBAB566CF8/PHHeOWVVzBv3jwAoXbD559/Hn369AEA3HfffXjiiSfU/Tz55JOYPXs2HnzwQfWxyL/B2LFj0b9/fyxbtgxz5swBALzyyiu48cYbmwycscIgRURECUWWZfjEUCtNhq35ilSqRY8gNPAFJAYpom5ECbf/CULjm3Gfbvfu3cjPz1dDFAAMHDgQKSkp2L17t/ohvlevXo1CFACMGjWqwfebNm3Cxo0b8Yc//EF9TJIk+Hw+eDwebNmyBT169FBDVKydOc5NmzbB5XKpwSvC6/Xi4MGDAEJ/B3fffXeD5y+66CJ89tlnLT7u5s2boShKo/fl9/sbHNtisaghCgByc3NRWVkJAKisrMSJEycwYcKEZo/zi1/8Ai+88ALmzJmDyspKfPDBB+2+cAiDFBERJZRAIABvQAIgIO1sc6QsBkjQwMs5UkTdSlFREQRBwO7du3Hdddc1u11krtO5Hm+qPbCpx2VZxty5c3H99dc32tZkMsFsbr5CHgtNjSc3N7dBm2JES1YHjNBoNGo4jTj94pMsy9Bqtdi0aVOD1kegYXvimYtfCIKg7rclfze33HILHnnkEXzzzTf45ptvUFBQgEsvvbTF76M1GKSIiCihuHwigrICCRqkJxmBoL/J7VKtegQVDXyBACtSRC1lsYTmKcXz+OeQlpaGK6+8En/729/wwAMPNAoYdXV1SElJwcCBA3HkyBEcPXpUrUrt2rUL9fX1GDBgQNRD+8EPfoC9e/eib9++TT4/dOhQHDt2DPv27WuyKmUwGCBJUtTHPdt4ysvLodPpUFBQ0OQ2AwYMwLfffotbbrlFfez0xTiAUAvh6YtCSJKEHTt24PLLLwcAjBgxApIkobKystXBxmazoaCgAGvWrFH3e6b09HRcd911eOWVV/DNN9/gtttua9WxosEgRURECaXaEertFzRaWAxaoJliU6rFEGrtC0rw+3kvKaIWEYRzLvbQGTz77LMYO3YsLrjgAjzxxBMYOnQogsEgVq1aheeeew67d+/GxIkTMXToUPz0pz/F4sWL1cUmxo0b16htryUef/xxTJ06Ffn5+bjxxhuh0Wiwbds2bN++HU8++STGjRuHyy67DDfccAMWLlyIvn37Ys+ePRAEAVOmTEFBQQFcLhfWrFmDYcOGwWKxwNKC4NiciRMn4qKLLsJ1112HP/3pT+jfvz9OnDiBDz/8ENdddx1GjRqFBx98EDNmzMCoUaNwySWX4J///Cd27tzZYO7WFVdcgVmzZuGDDz5Anz59sGjRItTV1anP9+vXDz/96U9xyy234KmnnsKIESNQVVWFTz/9FEOGDMHVV1/dovEWFxfj7rvvRlZWlroox9dff437779f3eYXv/gFpk6dCkmS1Llo7YnLnxMRUUKpcXsBACaD/qxzJFIsekjQQFEAp6fpqhURdU2FhYXYvHkzLr/8csyePRuDBw/GpEmTsGbNGjz33HMAQq1l77zzDlJTU3HZZZdh4sSJ6N27N954441WHfPKK6/E+++/j1WrVmH06NG48MILsXDhQvTq1Uvd5q233sLo0aPxk5/8BAMHDsScOXPUKtTYsWNx991346abbkJmZiYWLFjQpr8DQRDw4Ycf4rLLLsPtt9+Ofv364cc//jFKS0uRnZ0NILQK4OOPP46HH34YI0eOxOHDh/E///M/DfZz++23Y8aMGbjlllswbtw4FBYWNqoavfLKK7jlllswe/Zs9O/fH9OmTcP69esbzD87lxkzZmDx4sV49tlnMWjQIEydOhX79+9vsM3EiRORm5uLK6+8Ul3Yoj0JyplNjQnI4XDAbrejvr4eycnJ8R4OERG1ow827sWL/12LFLsdS399U+jeM2cu1xxeQvmSx99ChlyNB67+Aa4YG/0VaKLuzufzoaSkBIWFhTCZmp9zSN1HcXEx3nnnHWzZsiXeQ2nE4/EgLy8PL7/8cpNz0U53tp/dlmYDtvYREVFCqXOFWvssRv05tgQsJiPgARyeli/1S0REHUuWZZSXl+Opp56C3W7HtGnTOuS4DFJERJRQ6sNtembTuW+wm2QxQPYALi9b+4iIOqsjR46gsLAQPXr0wNKlS6HTdUzEYZAiIqKE4vaFVuAzG85dkUq2mFAHwMU5UkREAEKtfcXFxfEeRgMFBQWNlmDvCFxsgoiIEoovvAKfuQWtfcnW0L1LPH5/XE7SRETUeTFIERFRQvGJoYqUqQUVqVSrKfwa3pSX6Gx4oYG6mlj8zDJIERFRQvGJoUBkMZ57jlSK1QgJGngDEm/KS9QEvT50QcLj8cR5JETRifzMRn6GW4NzpIiIKKH4w4GoJUEq1aKHpGjgY5AiapJWq0VKSgoqKysBABaL5az3ZyOKN0VR4PF4UFlZiZSUFGi12lbvi0GKiIgSij8Qrki1YNW+VKsBEgT4ArJ6U0wiaignJwcA1DBF1BWkpKSoP7utxSBFREQJRQzPkbKaWjBHymKAHG7tY5AiapogCMjNzUVWVhYrt9Ql6PX6NlWiIuIepI4fP46HH34YH330EbxeL/r164eXXnoJI0eOBBAqv82dOxcvvPACamtrMWbMGPztb3/DoEGD1H34/X489NBD+Ne//gWv14sJEybg2WefRY8ePeL1toiIqJMKhBeNSDK3pLXPABkCfIEggxTROWi12ph8OCXqKuK62ERtbS0uvvhi6PV6fPTRR9i1axeeeuoppKSkqNssWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTedIjIqJGIqvv2VoQpFIsesgQWJEiIqJG4lqR+tOf/oT8/Hy88sor6mMFBQXqnxVFweLFi/HYY4/h+uuvBwC8+uqryM7Oxuuvv4677roL9fX1eOmll7Bs2TJMnDgRAPDaa68hPz8fq1evxpVXXtmh74mIiDq3YDAUiGxm4zm3TbUaICsCJFmBx8+WJSIiOiWuFal3330Xo0aNwo033oisrCyMGDECL774ovp8SUkJysvLMXnyZPUxo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrchIiICgEBQgiyHglRyC4KU1aCFRhM6VdZ7/O06NiIi6lriGqQOHTqE5557DkVFRfjkk09w991344EHHsA//vEPAEB5eTkAIDs7u8HrsrOz1efKy8thMBiQmpra7DZn8vv9cDgcDb6IiKj7c3hE9c82y7mDlCAIsBhDi1LUn/ZaIiKiuLb2ybKMUaNGYd68eQCAESNGYOfOnXjuuedwyy23qNudeT8CRVHOeY+Cs20zf/58zJ07t42jJyKirsbhDVWVNIIGJkPLToEWkx4BP+DyMkgREdEpca1I5ebmYuDAgQ0eGzBgAI4cOQLg1H0JzqwsVVZWqlWqnJwciKKI2traZrc506OPPor6+nr16+jRozF5P0RE1Lk5w0FKp9O2+KahJn0ocHlEzpEiIqJT4hqkLr74Yuzdu7fBY/v27UOvXr0AAIWFhcjJycGqVavU50VRxNq1azF27FgAwMiRI6HX6xtsU1ZWhh07dqjbnMloNCI5ObnBFxERdX/OcFVJp295Q4bREGrt83GxCSIiOk1cW/t+9atfYezYsZg3bx6mT5+ODRs24IUXXsALL7wAINTSN3PmTMybNw9FRUUoKirCvHnzYLFYcPPNNwMA7HY77rjjDsyePRvp6elIS0vDQw89hCFDhqir+BEREQGA2xeqSOm1LT/9mSJBihUpIiI6TVyD1OjRo7FixQo8+uijeOKJJ1BYWIjFixfjpz/9qbrNnDlz4PV6cc8996g35F25ciVsNpu6zaJFi6DT6TB9+nT1hrxLly7lTeGIiKgBd7giZYiiImUOz6XyBYLtMiYiIuqa4hqkAGDq1KmYOnVqs88LgoDi4mIUFxc3u43JZMKSJUuwZMmSdhghERF1F65WBCmLMbStX2SQIiKiU+I6R4qIiKgjefyhIBWZ99QSZqMBAOBnRYqIiE7DIEVERAnDG64qmfQtD1KR+0gxSBER0ekYpIiIKGGoFSljy4OUNbytGJDaZUxERNQ1MUgREVHCiCxhbm7hzXgBwGoKtfYFgqxIERHRKQxSRESUMCJLmEfmPbVEkilUkQoEg1AUpV3GRUREXQ+DFBERJQx/OEhZomntM0cqUjKDFBERqRikiIgoYYjhBSMi4aglbOFtRUmGJHGeFBERhTBIERFRwvCH5zlZo2ztUyAgEGSQIiKiUxikiIgoYQQjFSlTy4OU1aCDDAGiLEOW5fYaGhERdTEMUkRElDAiK+/ZzMYWvybJGApSQUlR51gRERExSBERUcIIhu8FlRTFHCmrUQdZEQAALh+DFBERhTBIERFRQpBlGUE5VJFKtrS8ImXQaSBoQqdLl09sl7EREVHXwyBFREQJweUTEVm93G5teZACAL0udANft5dBioiIQhikiIgoIdR7/OE/CbBGcR8pANDrtAAAt5+tfUREFMIgRURECcEZDlJarQ6CIET1WoM+VJHyMEgREVEYgxQRESWEyPwmXbi6FA1jOEi5OUeKiIjCGKSIiCghOD2hEKQPh6JosCJFRERnYpAiIqKE4PaFWvv0+ujmRwGnKlJe3keKiIjCGKSIiCghRNryjProW/tMhlD48onBmI6JiIi6LgYpIiJKCF5/KAQZWlGRMhtCFSkfK1JERBTGIEVERAkh0pZnbMViE2YjK1JERNQQgxQRESWESDWpdRWpSJBiRYqIiEIYpIiIKCH4w9UkkyH6VfvMxtBrxIAU0zEREVHXxSBFREQJwRcIt/a1Yvlzi9EAAPAH2dpHREQhDFJERJQQItWkyAp80bCaQq8JBBikiIgohEGKiIgSghhofWufNbzYhBhkax8REYUwSBERUUIQw215kRX4opFkNgJgRYqIiE5hkCIiooQQqUiZ29DaF5RYkSIiohAGKSIiSgjBcFuexRR9kLKZDOo+FEWJ6biIiKhrYpAiIqKEEGhDa5/NHA5SsowA50kREREYpIiIKEFE2vKs4aXMo5FsMap/dnjFmI2JiIi6LgYpIiJKCEFJBnBqvlM0jHotNELolOlikCIiIjBIERFRAlAUBVIwUpGKPkgBgFanBQA4vf6YjYuIiLouBikiIur2xKAEWQlVpJLM0bf2AYBeGwpSLn8gZuMiIqKui0GKiIi6vdPb8ZJMrQtSkYqU18cgRUREDFJERJQA3OHwIwgamAy6Vu1Drwu9ziNyjhQRETFIERFRAnD5QvOatNrWn/Z04dY+L1v7iIgIDFJERJQA3P7QPaQiYag1DPpwRYpBioiIwCBFREQJwOMLtePpdK1r6wNOBSlfOJQREVFiY5AiIqJuL1JF0ulaX5HSR4KUyIoUERExSBERUQKIzGvStyFIGcNBys8gRUREYJAiIqIE4BEjQar1rX3G8Gp//gBb+4iIiEGKiIgSQKQiFakqtYZJrwfAIEVERCEMUkRE1O35xFD4aVNrX7giFWCQIiIiMEgREVECiCwQYWzlzXgBwGQIVaREBikiIgKDFBERJYBIO54x3J7XGuZIkAoySBEREYMUERElgEhFytSGOVIWYyhIBRikiIgIcQ5SxcXFEAShwVdOTo76vKIoKC4uRl5eHsxmM8aPH4+dO3c22Iff78f999+PjIwMWK1WTJs2DceOHevot0JERJ2YGJAAAKY2tPaZw0EqGJRiMiYiIura4l6RGjRoEMrKytSv7du3q88tWLAACxcuxDPPPIONGzciJycHkyZNgtPpVLeZOXMmVqxYgeXLl+Orr76Cy+XC1KlTIUk80RERUUhkXpPR0PrWPqvJAAAI8vxCREQAWn9pLlYD0OkaVKEiFEXB4sWL8dhjj+H6668HALz66qvIzs7G66+/jrvuugv19fV46aWXsGzZMkycOBEA8NprryE/Px+rV6/GlVde2aHvhYiIOid/uB3P3JYgZQwHKVakiIgInaAitX//fuTl5aGwsBA//vGPcejQIQBASUkJysvLMXnyZHVbo9GIcePGYd26dQCATZs2IRAINNgmLy8PgwcPVrdpit/vh8PhaPBFRETdVzBckbKY2jBHyhwKYZIkQVGUmIyLiIi6rrgGqTFjxuAf//gHPvnkE7z44osoLy/H2LFjUV1djfLycgBAdnZ2g9dkZ2erz5WXl8NgMCA1NbXZbZoyf/582O129Ss/Pz/G74yIiDoTMVxFMoerSq2RFGntk2XIshyTcRERUdcV1yB11VVX4YYbbsCQIUMwceJEfPDBBwBCLXwRgiA0eI2iKI0eO9O5tnn00UdRX1+vfh09erQN74KIiDq7yLzZyMp7rWE16gEIkGRFXQWQiIgSV9xb+05ntVoxZMgQ7N+/X503dWZlqbKyUq1S5eTkQBRF1NbWNrtNU4xGI5KTkxt8ERFR9xVZstzShjlSFqMOMkIX6dw+MSbjIiKirqtTBSm/34/du3cjNzcXhYWFyMnJwapVq9TnRVHE2rVrMXbsWADAyJEjodfrG2xTVlaGHTt2qNsQERFJ4da+JHPrW/sMWg0UgUGKiIhC4rpq30MPPYRrr70WPXv2RGVlJZ588kk4HA7MmDEDgiBg5syZmDdvHoqKilBUVIR58+bBYrHg5ptvBgDY7XbccccdmD17NtLT05GWloaHHnpIbRUkIiJSFAXB8JymyBLmrSEIAnQaLRRJgsvH1j4iokQX1yB17Ngx/OQnP0FVVRUyMzNx4YUX4ttvv0WvXr0AAHPmzIHX68U999yD2tpajBkzBitXroTNZlP3sWjRIuh0OkyfPh1erxcTJkzA0qVLodVq4/W2iIioE/EHJUCJBKnWt/YBgFanRVACPKxIERElvLgGqeXLl5/1eUEQUFxcjOLi4ma3MZlMWLJkCZYsWRLj0RERUXfg9JwKPbY2VKSA0L0Pg37A42dFiogo0XWqOVJERESx5vKHgpRWo4Fe17ZuBb0udP2RQYqIiBikiIioW4u04Wm1mnPePuNcIkHMyyBFRJTwGKSIiKhbc4cXhtDFYO6sQR+qSPlEzpEiIkp0DFJERNStRYJULBYhirT2+cRgm/dFRERdG4MUERF1a55w9Uivb/v6SqcqUmztIyJKdAxSRETUrXn9oeqRPgYVKaMhFKT8rEgRESU8BikiIurWIivsRdry2sKoD92Hyh9gkCIiSnQMUkRE1K1FVtgzxKC1zxSuSIkMUkRECY9BioiIurXIfCaDvu2tfSZDqCIlBjhHiogo0TFIERFRtxZpwzPGoCJlNoaDVFBq876IiKhrY5AiIqJuLbLYRGR+U1tYwkEqwNY+IqKExyBFRETdmhgMteFFVtxrC7PRAAAIsCJFRJTwGKSIiKhbiyxVbopBkLKE50hJEoMUEVGiY5AiIqJuLTKfKbJQRFtYTKF9BKUgFEVp8/6IiKjrYpAiIqJuLbLCnjmmQUpmkCIiSnAMUkRE1K1FKlJmY9tb+5JM4TlSksz2PiKiBMcgRURE3VowHKQs4YUi2sJq0EOBgICkMEgRESU4BikiIurWAmpFqu2tfWaDFjIEBGUZwSCXQCciSmQMUkRE1K1FAo81BkHKEg5SigJ4/AxSRESJjEGKiIi6tWC4Bc9qikFFSq+FrAgAAI9fbPP+iIio62KQIiKibktRFEiSDACwmoxt3p9GI0CrDZ063f5Am/dHRERdF4MUERF1W15RggahZcqTYlCRAgCdLrT6n5etfURECY1BioiIui2nTwTUINX2VfsAQK/VAgC8IitSRESJjEGKiIi6LbcvNI9JpxWg02ljss/IfrjYBBFRYmOQIiKibsvtC1WNdFodBEGIyT4N4SDlE7nYBBFRImOQIiKibitSkYosEBELel2ktY835CUiSmQMUkRE1G1FVtbTaWPT1gecqkhxjhQRUWJjkCIiom7LEwlS4ZX2YsGoD63+5xc5R4qIKJExSBERUbcVCVKGGC00AQAGfXiOVICtfUREiYxBioiIui1vOEjpY1mRMoT2JbK1j4goocUsSE2cOBG9e/eO1e6IiIjaLDKPyaCPZWtfaF/+ICtSRESJrEVnlm3btmHw4MHQaJrPXT/60Y9QVVUVs4ERERG1lU9t7Yt9kBIDnCNFRJTIWnRmGTFiBMrKypCVlYXevXtj48aNSE9Pb7DNvffe2y4DJCIiai1fOOwYDbGbI2U2MEgREVELW/tSUlJQUlICACgtLYUsy+06KCIioliIrKxnjGFrn8kQWrVPZGsfEVFCa9GZ5YYbbsC4ceOQm5sLQRAwatQoaJu5J8ehQ4diOkAiIqLW8gdCrX3GcPiJBbUixSBFRJTQWhSkXnjhBVx//fU4cOAAHnjgAfzyl7+EzWZr77ERERG1SaQiZTLEriJlDoeyYJCtfUREiazFZ5YpU6YAADZt2oQHH3yQQYqIiDq9SNUopkHKGNpXgBUpIqKEFvWZ5ZVXXmmPcRAREcWcGG7tMxsMMdunxRiuSEkMUkREiSxm95F69tln8cQTT8Rqd0RERG0WqRqZY1iRskaCVJALLxERJbKYBam33noLS5cujdXuiIiI2iwQCAcpUwwXm4gEKZkVKSKiRBazS3Rr1qyJ1a6IiIhiIhBuv7MYY9faF6lISZIERVEgCELM9k1ERF1HmypSiqJAUZRYjYWIiCimIivrRcJPLFjD1S1JVnhTXiKiBNaqIPWPf/wDQ4YMgdlshtlsxtChQ7Fs2bJYj42IiKhNgmpFKvZBCgDc/kDM9ktERF1L1K19CxcuxG9/+1vcd999uPjii6EoCr7++mvcfffdqKqqwq9+9av2GCcREVFUJFmBLMvQAkgyx661z6TXQRAEKIoCty+ANN4NhIgoIUUdpJYsWYLnnnsOt9xyi/rYD3/4QwwaNAjFxcUMUkRE1Cl4xCA0CLWfJ5liF6QEQYBWo0VQCrIiRUSUwKJu7SsrK8PYsWMbPT527FiUlZXFZFBERERt5fYFIECBIMS2tQ8AdDpN+BhiTPdLRERdR9RBqm/fvvj3v//d6PE33ngDRUVFMRkUERFRW7nCIUev0UCr1cZ037rw/jx+LjZBRJSoog5Sc+fOxeOPP44pU6bg97//PZ588klMmTIFc+fObdMNeefPnw9BEDBz5kz1MUVRUFxcjLy8PJjNZowfPx47d+5s8Dq/34/7778fGRkZsFqtmDZtGo4dO9bqcRARUffg9oXa7nQ6LTSamN02MbzPUGe8h619REQJK+ozyw033ID169cjIyMD77zzDt5++21kZGRgw4YN+NGPftSqQWzcuBEvvPAChg4d2uDxBQsWYOHChXjmmWewceNG5OTkYNKkSXA6neo2M2fOxIoVK7B8+XJ89dVXcLlcmDp1KiSJN0okIkpkkbY7nTa2IQoA9LpQRcrLihQRUcJq1Q15R44ciddeey0mA3C5XPjpT3+KF198EU8++aT6uKIoWLx4MR577DFcf/31AIBXX30V2dnZeP3113HXXXehvr4eL730EpYtW4aJEycCAF577TXk5+dj9erVuPLKK2MyRiIi6noi1aJYt/UBgD68T1+AFSkiokQV+8t0Ubr33ntxzTXXqEEooqSkBOXl5Zg8ebL6mNFoxLhx47Bu3ToAwKZNmxAIBBpsk5eXh8GDB6vbNMXv98PhcDT4IiKi7iUSpHS6dghSkYqUyIoUEVGiilmQmjhxInr37h3Va5YvX47Nmzdj/vz5jZ4rLy8HAGRnZzd4PDs7W32uvLwcBoMBqampzW7TlPnz58Nut6tf+fn5UY2biIg6P58YClJ6XauaL87KoI+09rEiRUSUqGJ2dvnRj36EqqqqFm9/9OhRPPjgg1i5ciVMJlOz2wmC0OB7RVEaPXamc23z6KOPYtasWer3DoeDYYqIqJuJVIv07dDaZ9CHTp9+VqSIiBJWzILUvffeG9X2mzZtQmVlJUaOHKk+JkkSvvjiCzzzzDPYu3cvgFDVKTc3V92msrJSrVLl5ORAFEXU1tY2qEpVVlY2ea+rCKPRCKPRGNV4iYioa/GFQ057tPYZwlUuX5BBiogoUcVtjtSECROwfft2bNmyRf0aNWoUfvrTn2LLli3o3bs3cnJysGrVKvU1oihi7dq1akgaOXIk9Hp9g23KysqwY8eOswYpIiLq/iJBytAOrX1GVqSIiBJei84ukVXzWuLtt99u0XY2mw2DBw9u8JjVakV6err6+MyZMzFv3jwUFRWhqKgI8+bNg8Viwc033wwAsNvtuOOOOzB79mykp6cjLS0NDz30EIYMGdJo8QoiIkos/kA4SOljX5GKBClfgEGKiChRtShI2e129c+KomDFihWw2+0YNWoUgFCbXl1dXVSBqyXmzJkDr9eLe+65B7W1tRgzZgxWrlwJm82mbrNo0SLodDpMnz4dXq8XEyZMwNKlS9tluVsiIuo6TgWp2FekTIbQOUZkkCIiSlgtOru88sor6p8ffvhhTJ8+Hc8//7waViRJwj333IPk5OQ2Debzzz9v8L0gCCguLkZxcXGzrzGZTFiyZAmWLFnSpmMTEVH3ogapdpgjZTKETp9igDd/JyJKVFHPkXr55Zfx0EMPNaj4aLVazJo1Cy+//HJMB0dERNRakWqRsR0qUka9PnQMLjZBRJSwog5SwWAQu3fvbvT47t27IctyTAZFRETUVpGKlNEQ+yBljlSkgqxIERElqqjPLrfddhtuv/12HDhwABdeeCEA4Ntvv8Uf//hH3HbbbTEfIBERUWsEwiHH1A4VKbMxVJEKsrWPiChhRX12+ctf/oKcnBwsWrQIZWVlAIDc3FzMmTMHs2fPjvkAiYiIWiPSdtcuFSljuCIlsbWPiChRRX120Wg0mDNnDubMmQOHwwEAbV5kgoiIKNaC4YqUOTyfKZYsBn2DYxARUeJp02U6BigiIuqs1Na+dqhIWSKtfRKDFBFRoop6sQkiIqKuIBKkIvOZYkmdIyXJUBQl5vsnIqLOj0GKiIi6JUmKBKnYV6SSwkFKAwW+AFesJSJKRAxSRETULUXa7syGdpgjFQ5SAhR4RC44QUSUiNoUpI4dO8Z7RxERUaejKIpakbK0Q2ufTqeFTiNAAwVeLoFORJSQ2hSkBg4ciNLS0hgNhYiIKDb8wVMX+aztEKS0Wi30Wk2oIuVnRYqIKBG1KUhxgi0REXVGvoAEDULnqPZYbEKj0UCvDZ1C3b5AzPdPRESdH+dIERFRt+MRg9BAgVYjwKiP/WITGo0GunCQcvnEmO+fiIg6vzYFqd/85jdIS0uL1ViIiIhiItRup0CnEaDVamO+f0EQoAvv1+NnkCIiSkRtukz36KOPxmocREREMRNpt9NpNNBo2qf5QqeLBCm29hERJSK29hERUbfjFUPhRq/TQBCEdjkGgxQRUWJjkCIiom4nEm40Gm27BSm9LtTU4WWQIiJKSAxSRETU7USClE7Xfqc5vZ5BiogokTFIERFRt+MVQ/d20rfDQhMRhnBFyicySBERJaKog9THH3+Mr776Sv3+b3/7G4YPH46bb74ZtbW1MR0cERFRa0SqRHpd+wWpyLLqfgYpIqKEFHWQ+vWvfw2HwwEA2L59O2bPno2rr74ahw4dwqxZs2I+QCIiomj5AqGKlE4X+3tIRRjCQSpyLCIiSixRn2FKSkowcOBAAMBbb72FqVOnYt68edi8eTOuvvrqmA+QiIgoWr4OaO0zGvQAAL/IIEVElIiirkgZDAZ4PB4AwOrVqzF58mQAQFpamlqpIiIiiqdIu51B335ByhQOUmKArX1ERIko6orUJZdcglmzZuHiiy/Ghg0b8MYbbwAA9u3bhx49esR8gERERNFSK1Lt2NpnMoTnSAWkdjsGERF1XlFXpJ555hnodDq8+eabeO6553DeeecBAD766CNMmTIl5gMkIiKKViTcRBaEaA/mcEUqEGRFiogoEUV9hunZsyfef//9Ro8vWrQoJgMiIiJqK38wVJFqz9Y+szEcpFiRIiJKSFFXpD788EN88sknjR5fuXIlPvroo5gMioiIqC3E8Ep67VmRshgNAIBgkItNEBEloqiD1COPPAJJanz1TZZlPPLIIzEZFBERUVtEgpShPVv7whWpYBPnRCIi6v6iDlL79+9Xlz8/3fnnn48DBw7EZFBERERtIYbb7cyGdqxImRikiIgSWdRBym6349ChQ40eP3DgAKxWa0wGRURE1BaBcLgxtWOQsoZb+6QggxQRUSKKOkhNmzYNM2fOxMGDB9XHDhw4gNmzZ2PatGkxHRwREVFrBMLzlkx6fbsdw2YOBSlFkRCU5HY7DhERdU5RB6k///nPsFqtOP/881FYWIjCwkIMGDAA6enp+Mtf/tIeYyQiIopKIFwlMrZnRSocpDRQ4Ba54AQRUaKJ+gxjt9uxbt06rFq1Clu3boXZbMbQoUNx2WWXtcf4iIiIohYMBymLsf0qUmaDHhpBgKwocHlF2MPBioiIEkOrLtUJgoDJkydj8uTJsR4PERFRmwUlCToAZmP7VaQ0Gg10Gg1ESYLLJ7bbcYiIqHNq0Rnm6aefxp133gmTyYSnn376rNs+8MADMRkYERFRayiKogYpi6H9KlKCIECr0wKSBDeDFBFRwmlRkFq0aBF++tOfwmQyYdGiRc1uJwgCgxQREcWVKMkQFAUQTt3rqb1otVoAgIdBiogo4bQoSJWUlDT5ZyIios7GK0rQCAqA9p0jBZwWpPyBdj0OERF1PlGv2vfEE0/A4/E0etzr9eKJJ56IyaCIiIhayxuQoIECrUaAUd9+c6QAQK8L7Z9Biogo8UQdpObOnQuXy9XocY/Hg7lz58ZkUERERK3lFSUIUKDTCGrFqL1EgpSXQYqIKOFEHaQURYEgCI0e37p1K9LS0mIyKCIiotbyiEFooECn0UCjifo0FxW9PhTUGKSIiBJPi3seUlNTIQgCBEFAv379GoQpSZLgcrlw9913t8sgiYiIWsodDjV6rdDuQcoQbh30igxSRESJpsVBavHixVAUBbfffjvmzp0Lu92uPmcwGFBQUICLLrqoXQZJRETUUm5fJEhp2r21LzIHy8+KFBFRwmlxkJoxYwYAoLCwEBdffDF0uvadwEtERNQaapDSaZtsRY8lgz60KqAvEGzX4xARUecTdc+DzWbD7t271e//+9//4rrrrsNvfvMbiCLvo0FERPEVae3T6dq3GgUApnBFSgywIkVElGiiDlJ33XUX9u3bBwA4dOgQbrrpJlgsFvznP//BnDlzYj5AIiKiaEQWftB3QJAyGkIVKT8rUkRECSfqILVv3z4MHz4cAPCf//wH48aNw+uvv46lS5firbfeivX4iIiIohK5p5OhA1rQTeEgJQakdj8WERF1Lq1a/lyWZQDA6tWrcfXVVwMA8vPzUVVVFdW+nnvuOQwdOhTJyclITk7GRRddhI8++qjBsYqLi5GXlwez2Yzx48dj586dDfbh9/tx//33IyMjA1arFdOmTcOxY8eifVtERNRNeH2hNnNDO9+MFwDMxtAxAkG29hERJZqog9SoUaPw5JNPYtmyZVi7di2uueYaAEBJSQmys7Oj2lePHj3wxz/+Ed999x2+++47XHHFFfjhD3+ohqUFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6j5mzpyJFStWYPny5fjqq6/gcrkwdepUSBKvDhIRJSKPGGqzi9zjqT1FKlIBtvYRESWcqIPU4sWLsXnzZtx333147LHH0LdvXwDAm2++ibFjx0a1r2uvvRZXX301+vXrh379+uEPf/gDkpKS8O2330JRFCxevBiPPfYYrr/+egwePBivvvoqPB4PXn/9dQBAfX09XnrpJTz11FOYOHEiRowYgddeew3bt2/H6tWro31rRETUDfjC93QyhlfUa08WkwEAEAjy4h0RUaKJuu9h6NCh2L59e6PH//znP7fpfh2SJOE///kP3G43LrroIpSUlKC8vByTJ09WtzEajRg3bhzWrVuHu+66C5s2bUIgEGiwTV5eHgYPHox169bhyiuvbPV4iIioazoVpNq/tc9iDIW1IIMUEVHCidlZxmQytep127dvx0UXXQSfz4ekpCSsWLECAwcOxLp16wCgUbtgdnY2Dh8+DAAoLy+HwWBAampqo23Ky8ubPabf74ff71e/dzgcrRo7ERF1Pr5wa5/Z2HEVqaDE1j4iokTToiCVlpaGffv2ISMjA6mpqWe9wWFNTU1UA+jfvz+2bNmCuro6vPXWW5gxYwbWrl2rPn/msRRFOecNFs+1zfz58zF37tyoxklERF2DGF74ITJ/qT0lmULHkCSpRecnIiLqPloUpBYtWgSbzab+OZYnCoPBoM6zGjVqFDZu3Ii//vWvePjhhwGEqk65ubnq9pWVlWqVKicnB6Ioora2tkFVqrKy8qzztR599FHMmjVL/d7hcCA/Pz9m74mIiOLHH65IdUSQshqNAICgJDNIERElmBYFqRkzZqh/vvXWW9trLABC1SS/34/CwkLk5ORg1apVGDFiBABAFEWsXbsWf/rTnwAAI0eOhF6vx6pVqzB9+nQAQFlZGXbs2IEFCxY0ewyj0Qhj+ORHRETdS2QFPUtHBKlwRSooy5AkCRpN1Gs4ERFRFxX1HCmtVouysjJkZWU1eLy6uhpZWVlRLTv+m9/8BldddRXy8/PhdDqxfPlyfP755/j4448hCAJmzpyJefPmoaioCEVFRZg3bx4sFgtuvvlmAIDdbscdd9yB2bNnIz09HWlpaXjooYcwZMgQTJw4Mdq3RkRE3YAYDlImY0csNqGDAgFQFHj8Adg7YKVAIiLqHKI+yyiK0uTjfr8fBoMhqn1VVFTg5z//OcrKymC32zF06FB8/PHHmDRpEgBgzpw58Hq9uOeee1BbW4sxY8Zg5cqVapshEGo11Ol0mD59OrxeLyZMmIClS5e2aQVBIiLqugKSBC0Aqym6c1JrWAw6yBCghQK3LwB7UrsfkoiIOokWB6mnn34aQGjxh//7v/9DUtKps4UkSfjiiy9w/vnnR3Xwl1566azPC4KA4uJiFBcXN7uNyWTCkiVLsGTJkqiOTURE3VMgEIQWgMXU/tUhrUYItfPJMtx+sd2PR0REnUeLg9SiRYsAhCpSzz//fIOKj8FgQEFBAZ5//vnYj5CIiKiFJFmBLMuAACQZ278iBQA6rRaSHITHF+iQ4xERUefQ4iBVUlICALj88svx9ttvN7p3ExERUbx5xCC0CLWgd0RrHwDodVpIAcDtZ5AiIkokUc+R+uyzz9pjHERERG3mESVoBBkaQeiQG/ICoYoUAHgYpIiIEkqrljQ6duwY3n33XRw5cgSi2LAnfOHChTEZGBERUbTc/iA0UKDXCtDp2n/VPiBUkQIAr8ggRUSUSKI+y6xZswbTpk1DYWEh9u7di8GDB6O0tBSKouAHP/hBe4yRiIioRU4FKW2Hrd4aCWxef7BDjkdERJ1D1HcOfPTRRzF79mzs2LEDJpMJb731Fo4ePYpx48bhxhtvbI8xEhERtYjbH4QABXqtpsOClIEVKSKihBR1kNq9ezdmzJgBIHQVzuv1IikpCU888QT+9Kc/xXyARERELeXy+QEAeq3QcUFKHzqOX2RFiogokUQdpKxWK/z+0IkqLy8PBw8eVJ+rqqqK3ciIiIii5PaGqkI6nQ6CIHTIMQ260KIWPlakiIgSStRzpC688EJ8/fXXGDhwIK655hrMnj0b27dvx9tvv40LL7ywPcZIRETUIpGb4kYWgOgIxnBFyhdgRYqIKJFEHaQWLlwIl8sFACguLobL5cIbb7yBvn37qjftJSIiigdveAlyfQet2AcARkPoWGztIyJKLFGfaXr37q3+2WKx4Nlnn43pgIiIiFrLo1akOjBI6cNBihUpIqKEEvUcqd69e6O6urrR43V1dQ1CFhERUUeLLEEeqRJ1BFP4WGJA6rBjEhFR/EUdpEpLSyFJjU8Wfr8fx48fj8mgiIiIWiPS2mfowIqUyRBabEIMsiJFRJRIWnymeffdd9U/f/LJJ7Db7er3kiRhzZo1KCgoiOngiIiIouELhIJUR1akzGqQYkWKiCiRtPhMc9111wEABEFQ7yMVodfrUVBQgKeeeiqmgyMiIoqGL7zgg1Gv77BjmsOhLciKFBFRQmlxkJJlGQBQWFiIjRs3IiMjo90GRURE1Br+8L2czMYObO0zhkJbgBUpIqKEEvWZpqSkpD3GQURE1GaRlfOMho6rSFkYpIiIElKLF5tYv349PvroowaP/eMf/0BhYSGysrJw5513wu/3x3yARERELSWGg5SlQ4OUAQCaXIiJiIi6rxYHqeLiYmzbtk39fvv27bjjjjswceJEPPLII3jvvfcwf/78dhkkERFRS0SClNnYkUEqPEeKQYqIKKG0OEht2bIFEyZMUL9fvnw5xowZgxdffBGzZs3C008/jX//+9/tMkgiIqKWiCz4YDF1XJBKMoUrUmztIyJKKC0OUrW1tcjOzla/X7t2LaZMmaJ+P3r0aBw9ejS2oyMiIopCZAlySwdWpKzh0CYrMudJERElkBYHqezsbHWhCVEUsXnzZlx00UXq806nE/oOXG6WiIjoTJGKlDVcJeoI1tOqX67wDYGJiKj7a3GQmjJlCh555BF8+eWXePTRR2GxWHDppZeqz2/btg19+vRpl0ESERGdS0CSoYRv1ZFkNHbYcU16HTSCAABw+8QOOy4REcVXi5c/f/LJJ3H99ddj3LhxSEpKwquvvgqD4dQVv5dffhmTJ09ul0ESERGdi0eUoIECoGGVqL1pNBpoNVrIUhBuHytSRESJosVBKjMzE19++SXq6+uRlJQErVbb4Pn//Oc/SEpKivkAiYiIWsIjBqERZGg1gnqT3I6i1WkQkAAPgxQRUcKI+oa8dru9ycfT0tLaPBgiIqLWcvslaKFAr9U0utjX3nTh43lEtvYRESWKFs+RIiIi6szcPhECFOg1QtyClNsf7NDjEhFR/DBIERFRtxBZMS8uFSld6HhertpHRJQwGKSIiKhbiKyYp9NpodF07OnNoAt1yjNIERElDgYpIiLqFlzeUJDS6zq2GnX6Mb0iW/uIiBIFgxQREXULXrUi1fE3hzfoWZEiIko0DFJERNQtuP3hipQ+6gVp28ygD1Wk/KxIERElDAYpIiLqFiIVKYM+DhWpcBXMF2CQIiJKFAxSRETULXjDFSmjoeMrUsZIRYpBiogoYTBIERFRt+ATQ/OT4lGRioQ3BikiosTBIEVERN2CPxykTAZDhx/bqGeQIiJKNAxSRETULUQqUmZjx1ekzOGKVIBBiogoYTBIERFRtxAJMWZTx1ekTIZQeBODDFJERImCQYqIiLoFMRCqSFmMHR+kIlUwMSB1+LGJiCg+GKSIiKhbiFSkrHGoSEVa+4JBBikiokTBIEVERN1CMBiuSMUjSIWrYAGJrX1ERImCQYqIiLoFSQpVg2xmY4cf22piRYqIKNEwSBERUZenKAqC4YUerHEIUpbwkusBBikiooTBIEVERF1eMBhEUJIBxKciZTOHgpQky5BkpcOPT0REHY9BioiIujyPX4SsKFAgIMnc8feRsoWPqYEMl5/zpIiIEgGDFBERdXkurwgAkKCBNbyCXkeymIzQagRooMARHgsREXVvDFJERNTlOb3+0B80Gui0HX9q0+l0MIaP6/T4O/z4RETU8eIapObPn4/Ro0fDZrMhKysL1113Hfbu3dtgG0VRUFxcjLy8PJjNZowfPx47d+5ssI3f78f999+PjIwMWK1WTJs2DceOHevIt0JERHHkDgcpnbbjq1EAIAgCdPrQsesZpIiIEkJcg9TatWtx77334ttvv8WqVasQDAYxefJkuN1udZsFCxZg4cKFeOaZZ7Bx40bk5ORg0qRJcDqd6jYzZ87EihUrsHz5cnz11VdwuVyYOnWquhQuERF1b+5wO51O1/HzoyJ0ulCQYkWKiCgxxOfSXdjHH3/c4PtXXnkFWVlZ2LRpEy677DIoioLFixfjsccew/XXXw8AePXVV5GdnY3XX38dd911F+rr6/HSSy9h2bJlmDhxIgDgtddeQ35+PlavXo0rr7yyw98XERF1LLc/XJHSaeM2BoM+FOJcXgYpIqJE0KnmSNXX1wMA0tLSAAAlJSUoLy/H5MmT1W2MRiPGjRuHdevWAQA2bdqEQCDQYJu8vDwMHjxY3eZMfr8fDoejwRcREXVdHl8AAKA3xK8iZQi39jFIERElhk4TpBRFwaxZs3DJJZdg8ODBAIDy8nIAQHZ2doNts7Oz1efKy8thMBiQmpra7DZnmj9/Pux2u/qVn58f67dDREQdyOMPtfYZ9fELUsZwiHP5GKSIiBJBpwlS9913H7Zt24Z//etfjZ4TBKHB94qiNHrsTGfb5tFHH0V9fb36dfTo0dYPnIiI4s4XDlKGThCkPD4uf05ElAg6RZC6//778e677+Kzzz5Djx491MdzcnIAoFFlqbKyUq1S5eTkQBRF1NbWNrvNmYxGI5KTkxt8ERFR1+Xzh1r7jHFs7TMbDQAAb7jNkIiIure4BilFUXDffffh7bffxqefforCwsIGzxcWFiInJwerVq1SHxNFEWvXrsXYsWMBACNHjoRer2+wTVlZGXbs2KFuQ0RE3ZtfDIUXszF+QcoSPrZXZEWKiCgRxHXVvnvvvRevv/46/vvf/8Jms6mVJ7vdDrPZDEEQMHPmTMybNw9FRUUoKirCvHnzYLFYcPPNN6vb3nHHHZg9ezbS09ORlpaGhx56CEOGDFFX8SMiou7NHwgFKZPBELcxRCpSPpEVKSKiRBDXIPXcc88BAMaPH9/g8VdeeQW33norAGDOnDnwer245557UFtbizFjxmDlypWw2Wzq9osWLYJOp8P06dPh9XoxYcIELF26FFpt/JbBJSKijiOGw4sljhUpq9kI4FR1jIiIure4BilFUc65jSAIKC4uRnFxcbPbmEwmLFmyBEuWLInh6IiIqKsIBIMAALMpfhUpqykUpEQGKSKihNApFpsgIiJqLUVR1CBljWOQsplDxxYDwbiNgYiIOg6DFBERdWmSJCEQlAGcqgrFQ1K4tY9BiogoMTBIERFRlxYMBhGQZCgQYDXFb45UsiUUpIISgxQRUSJgkCIioi5NlmUEJBkyBFgM8VtkyG4NBSkpGIQsy3EbBxERdQwGKSIi6tIkSUJAUiBDgNUYvzWU7BYTAEBWFLi8vJcUEVF3xyBFRERdWihIyZAVTVwrUkkmPRQIAIB6jy9u4yAioo7BIEVERF1aJEhJEGAxxK8iJQgCtLrQ8R0ef9zGQUREHYNBioiIurRgMAgxPEfKGseKFADow0HKySBFRNTtMUgREVGX5gsEoSgILTYRxzlSAKDXh1YNdHoZpIiIujsGKSIi6tLc4YUdZAgw6+NbkTLoQ0HOxSBFRNTtMUgREVGX5vKFgpReq4VWI8R1LIZwRcrt46p9RETdHYMUERF1aS5fAABgjONCExEmI4MUEVGiYJAiIqIuLRJaTAZ9nEdyagweBikiom6PQYqIiLo0jz8IoHMEKbPRCADw+hmkiIi6OwYpIiLq0jzh0GLuBK19FlMozPn8gTiPhIiI2huDFBERdWnecGgxG+NfkbIaDQAAv8ggRUTU3TFIERFRl+YNhxZLOMTEk9Ucau3zBRikiIi6OwYpIiLq0nxiaI6UpRNUpJLMoTAXYJAiIur2GKSIiKhL84UrUlZTZwpSUpxHQkRE7Y1BioiIujR/IFSRspri39qXHG7tE4OsSBERdXcMUkRE1KWJ4dY+mzn+FSmbJRSkAkEJsizHeTRERNSeGKSIiKhLE4ORIGWM80gAezhI+YMyJIntfURE3RmDFBERdVmKokAMt/YlmeIfpFIsBigQIMkKPD7elJeIqDtjkCIioi5LlmWIwVALXbIl/q19VoMOMgQAQJ3HH+fREBFRe2KQIiKiLkuWZYhSKEhF2uriSaMRoNPpAAAOBikiom6NQYqIiLqsYDAIMShDgYBkc/xX7QMAoz4SpNjaR0TUnTFIERFRl+X2BSArCiQISDLq4j0cAIAhEqS8rEgREXVnDFJERNRlRcKKAg0sBm2cRxNiNITmarm8rEgREXVnDFJERNRlOcNhRa/TQhCEOI8mxGQIVaRcrEgREXVrDFJERNRlOcJBKtJO1xmYwxUpN5c/JyLq1hikiIioy3KHg5SxMwYpfyDOIyEiovbEIEVERF2WqxMGKYsptHogb8hLRNS9MUgREVGX5faHg5ShMwWpUEXKy4oUEVG3xiBFRERdltsXCiumcDtdZ2A1hipSXpFBioioO2OQIiKiLssTrvqYO1GQspmNAACfGIzzSIiIqD0xSBERUZcVaZ8zGztPkEoyhypSPlakiIi6NQYpIiLqsiLtc5bOFKTCi02IAVakiIi6MwYpIiLqsnydMEglW0OtfQxSRETdG4MUERF1WZF5SNZwFagzsFtCYwkEg5BlJc6jISKi9sIgRUREXZYvEKpIWU2dpyJlt5gAAAIUuLngBBFRt8UgRUREXZYYDipJnagiZTUZoNUI0EJBvZcLThARdVcMUkRE1GWJAQkAYDMZ4zySU7RaLYxaDQAF9R5/vIdDRETthEGKiIi6rEAwVJGyWTpPRUqj0cCg1wIA6t0MUkRE3RWDFBERdUmSrCAghStSnShICYIAg14HAHCwIkVE1G0xSBERUZfk9AWggQwAsJs7T2sfABh0oSDl9IpxHgkREbUXBikiIuqS6jwiNFBg0Gpg7kT3kQIAoyFckfKyIkVE1F0xSBERUZdU7fQCAEx6LXThClBnYdSHgp3bx4oUEVF3Fdcg9cUXX+Daa69FXl4eBEHAO++80+B5RVFQXFyMvLw8mM1mjB8/Hjt37mywjd/vx/3334+MjAxYrVZMmzYNx44d68B3QURE8VATDlJ6vR4aTee6LmgyhIKU08MgRUTUXcX1zON2uzFs2DA888wzTT6/YMECLFy4EM888ww2btyInJwcTJo0CU6nU91m5syZWLFiBZYvX46vvvoKLpcLU6dOhRSegExERN1TrcsDADAaOldbHwC11dDtZ5AiIuqu4toLcdVVV+Gqq65q8jlFUbB48WI89thjuP766wEAr776KrKzs/H666/jrrvuQn19PV566SUsW7YMEydOBAC89tpryM/Px+rVq3HllVd22HshIqKO5XD7AAAmY+dZsS/CEglSPt6Ql4iou+pcvRCnKSkpQXl5OSZPnqw+ZjQaMW7cOKxbtw4AsGnTJgQCgQbb5OXlYfDgweo2TfH7/XA4HA2+iIioa4kEKXMnuhlvhMUUCndeP4MUEVF31WmDVHl5OQAgOzu7wePZ2dnqc+Xl5TAYDEhNTW12m6bMnz8fdrtd/crPz4/x6ImIqL05PaEgZTGZ4jySxqzhipRXZGsfEVF31WmDVIQgCA2+VxSl0WNnOtc2jz76KOrr69Wvo0ePxmSsRETUcdzeUJCyWTpfRSrJHK5IsbWPiKjb6rRBKicnBwAaVZYqKyvVKlVOTg5EUURtbW2z2zTFaDQiOTm5wRcREXUt3vBCDjZL56tIpYTDHRebICLqvjptkCosLEROTg5WrVqlPiaKItauXYuxY8cCAEaOHAm9Xt9gm7KyMuzYsUPdhoiIuidv+B5NdmsnDFJJoTH5xCCCkhzn0RARUXuI66p9LpcLBw4cUL8vKSnBli1bkJaWhp49e2LmzJmYN28eioqKUFRUhHnz5sFiseDmm28GANjtdtxxxx2YPXs20tPTkZaWhoceeghDhgxRV/EjIqLuyR+ef2RPMsd5JI2lWE0QBECjyKj1BJBp63zth0RE1DZxDVLfffcdLr/8cvX7WbNmAQBmzJiBpUuXYs6cOfB6vbjnnntQW1uLMWPGYOXKlbDZbOprFi1aBJ1Oh+nTp8Pr9WLChAlYunQptFpth78fIiLqOGI4SKUmWeI8ksYMeh1MOi1cooIat8ggRUTUDcU1SI0fPx6KojT7vCAIKC4uRnFxcbPbmEwmLFmyBEuWLGmHERIRUWckyzICgdBCDunJna8ipdVqYdZroRMVVLv9AGznfA0REXUtnXaOFBERUXPq3T7IigJAQEZyJ6xIGQwwG7TQCRJq3Vy5j4ioO2KQIiKiLqfK4QEAKIIWFkNcmyuaZDAYYNZroYWMaqc33sMhIqJ2wCBFRERdTq0zFKT0Bv057y0YDzqdDqZwwKsOj5WIiLoXBikiIupy6tyhKo/BoI/zSJomCAKs5tAS6HUMUkRE3RKDFBERdTn1Lh8AwGTovKvhWcyhsUVCHxERdS8MUkRE1OU4PKFwYjEZ4jyS5iVbQ6sJOty+OI+EiIjaA4MUERF1OU63HwBgMZniPJLm2cNByu1lkCIi6o4YpIiIqMtx+ULhJMnSeVv7UpNCQcrj9cd5JERE1B4YpIiIqMvx+kLhJNnSeStSaeH7W/lE/1lvPk9ERF0TgxQREXU5Xp8IAEi2dt4glZFsBQAIsgSHLxjn0RARUawxSBERUZfjF0NBKjIPqTOyWc0waDXQQ0atW4z3cIiIKMYYpIiIqEuRJAmiGAAApIWrPp2RwWCASa+FXpBQ5eI8KSKi7oZBioiIuhSfzwdfQIIEDdKSOm9rn8FggMWghQAF1U7eS4qIqLthkCIioi7F5/PBF5QhKlqkWPTxHk6zNBoNTIbQ+Krq3XEeDRERxRqDFBERdSm1Tg8CkowAtMhI6rzLnwOAyRQaXy0rUkRE3Q6DFBERdThJknDs2DH4/dHPHaqocwIANFo9rEZdrIcWU1ZzqPWwzuWJ80iIiCjWGKSIiKjD7du3DwcOHEBpaWnUr62qC7XJJXXiFfsiksL3uap3syJFRNTdMEgREVGHqq2tRUVFBYDQfKdo1ThDQcpmtcR0XO0hsjy7yxP9+yQios6NQYqIiDqMLMvYt2+f+n1rWvvqnaE2uVRb5w9SqbZQkHIySBERdTudu7mciIi6DVEUsXPnTni9Xmg0GsiyDFGM7ka1iqLA5Qm1yaUnJ7XHMGMqO8UGAHB62NpHRNTdsCJFRETtThRFbNq0CfX19dBqtRgwYAAAIBgMQpblFu8nEAjA7QsAEJCV2nlvxhvRIyMZACD6/fAFpDiPhoiIYolBioiI2pU/KOHD9buwcvsxlLkkjBw5EhkZGdBoQqegaKpSfr8fbjGIADTITu78i01kpdqg12pgECScqGNVioioO2FrHxERtZsDlS7c/OK3SPEcg0UQ8f5hQJdTjRtH5cNgMMDn88Hv98NkMrVof36/H25/EAFFiyxby14TT0ajEUkmPWrdfhyprEPvzM7fjkhERC3DihQREbULMShj5hvfo87pRoZRRl6KGbWSEb9+cxv+teEIDAZDaLsoKlI+nw9uUYIILbKSO/fNeAFAEARYLaHK2fGq+jiPhoiIYolBioiI2sVf1+zDjuMO9DAHcfOYnvjlhMG49ZK+AID5H+5GEFoA0QUpp9sDX0CCqGiRZev8QQoAbEmhuVwVtc44j4SIiGKJQYqIiGJuX4UTz31+EAAw4wdpSDLqkJmZiUevHoCirCQ4fEF8vr8GQHRB6mT4ZryKVg+7WR/7gbeDNFuona+6nkGKiKg7YZAiIqKYe+GLQ5AV4Mrz09DLJgAAMjIyoNUImDWpHwDgg50n4RWlqO4lVe0I34zXbIIgCLEfeDvITA0Fqdrw2ImIqHtgkCIiopiqcPjw3y3HIUDB1fmhpc3tdru6oMSUwTkYlJcMVwDYfKQ2qopUnTMURlK6wM14I3LT7AAAl8cT55EQEVEsMUgREVFMLV1XioCkYHyuDLs2AK1Wi379+qnPC4KAu8b1QQBaHKx0tThIKYoCh8cHAEhL7jpBqkdWCgDA6/FCUZRW7+dItQe/++8OPLj8e6zZXQFJbv2+iIio7bj8ORERxYzbH8Rr3x5GtsaJS3JDLW3nn38+rNaGN88d3z8TsqBFjUdERa2rRfsOBAJw+0M3481M7jrLiBdk2aFAQECSUOVwIdNui3ofC1fuxd8+P6iGp/9uOYHzc2z4990XIdnUNeaKERF1N6xIERFRzHywrQxWsQYDrF70zrSid+/eyMzMbLRdskmPIfnpAID95XUtqtSIogiPX0IQGmQld/57SEVYjXpo9KGl3o9URL8E+sqd5Xj60wOQZRlX9wjgtv4KUkwa7Cl34n9X7GhTlYuIiFqPQYqIiGLmzW/3I0fjxKDz7OjTpw969uzZ7LbjBuQCEFBa5W5Re9+pm/FqkNlFlj6PsJrD95Kqji5IVbn8ePTt7QCAXwyzYPrgFIwrTMKfr+4JrUbAu1tPYMX3x2M+XiIiOjcGKSIiion9FU6cKCuDRhBwyZDeZw1RADBhQDaC0OBorQf17nMvxCCKItxiEIEucjPe0yXbwveSqnFE9brH/7sD1W4/fpAJjMk+9bglUIcHL+8DAPjtOztwuJorAhIRdTQGqTgrKytDTU1NvIdBRN1MIBCAJEkdeszl6w8jVeNFYYYV5/fudc7t+2YlwWo2QZIVrN9fec7tRVGE0xdEUNEguwu19gFAWnhOV3VdyytSO47X47PtR9BfV4Wf9NNBp9EgPz8fJpMJgUAA0/qZcGHPZJgD9Zi79APs2buvvYZPRERNYJCKI7fbjb1792LXrl3scSeimPH7/Vi/fj22bNnSYccUgzLWbDkALWQMK8hESkrKOV8jCALOz0sFAHxzoOKc25+sd8EbkBAQtOid0XUWmwCA7MwMAEB9XT28Xm+LXvP06n0o1NZiRI4R2XYzevTogd69T1X6SktKcHNvH/oYnaiprcNbX25r8b6JiKjtGKTiqK6uDgAQDAYRCATiOxhKaIqioL6+vsMrGNQ+KisrEQwG4XQ6m5x7JEkSDh8+DLc7du1gq3dXQO+vR5JRh0uGFrX4ZrnDeoUCxqaSk5DPsZz3kZOhtrg0mxVmg7ZtA+5gvbJT4VBMqPeIOHHixDm333XCgS93H4dRE8SYPhm48MIL0bdvXwiCgJycHHUVxGSTHlcNL4Bf0WPT4Vps23+4vd8KERGFMUjFkcNxqleeVxEpnsrKyvD9999j9+7d8R4KxUBFxanqTlNh6ciRIygpKcHBgwdjdsz/fHsAVsGPgXl2nJeX2+LXDS3IhFGngeR1YcuxurNue6LaCQDIT49++fB4659tQ5VsRZXbj7KysnNetHj28wNI1vjQL8uGvj1yYDAY1Oc0Gg1GjRqFSy65BOPGjcOt103Eefk9ICsKVqzj/2Eioo7CIBVH9fWneuUZpKi9HD9+HMePH2+2fVSSJJSWlgIAqqqq4HK17J4+FD2v19vuVT+3293g3/DMf09ZltWKiMPhUKuR69evb/V8zWO1HhwqDVVCLh7cG0ZjyxeC6JGXi4KMJCQJfnyyueSs21bUhd5LYZa9VeOMp96ZVng1JrgCGlQ7vaisbH5OmMsfxMpdFbALPozslYqMjIxG2wiCAJ1Op1b+7p0yAgoE7D1+EttLylBVVYX6+voWt41H015+7NgxHDlypMXbExG1N5/Ph3379sW006IlGKTiRBRF+Hw+9fvT/9xWFRUV2Lt3L2RZjtk+qWvy+XzYv38/9u/fj23btjXZQnrs2LEG7V/8gNQ+nE4nNmzYgO3bt6uPeTyemAer06tRQOOK1ImycvXfOxgMwufz4fjx4/B6vS1qOWvKfzaUIEXwIj/VghED+kT1WpPJhMF9QwtTbN2zv9ntFEVBjSO0sl/f3NRWjTOe9FoN+mTaUK1YUO3ynzW0rtldASUYwHlWICvZhPT09HPuf0RBBgrysqEowD8+WIsdO3bg+++/x8aNGxtctGvK0aNH8cUXX6CqquqcxwkEAjhw4AAOHToU0/NWR5AkCeXl5QgGg/EeChHF2KFDh3DixAls3bq1Q383MUjFyZkntlhVpFwuF/bs2YOysjJUV1fHZJ+JzOFwYMOGDV12ZcXT20dra2uxefPmBh+iKysrcfToUQBAfn4+gND8Go/n3EtRU3QqKiqgKArq6urgdDpRUVGBDRs2xLS9TlEUtdKRlZUFAKh3OHG0xoN1B6ow643vcdffV2HJpwfw0peH8P2RWjidTnW+ptPpjPqYkqxgzaa9EKBgRN9cJCcnR72PK8cMgkYQ4HPVY1tJeZPbBAIBVLv9AID+eSlRH6MzGJCbDJ+iQ5XLf9YT/fvbypAs+NAvOwnJyckN2vrO5ifjBgMADlQ44A4o0Gg08Hg82Lt3b7OvURQFJ06cgKIo2L9//zmD/enBvDU/L/GiKAp2796NPXv24PBhziNLBH6/H/v37+9ygb8piqK0qGrcXguXybKMXbt2qZ8XOtq53r/f78fJkycBhAoV27dv77C1Bxik4iTyAVev1wOITUVKURTs27dP/WFji1bbHT9+HB6Pp8ueeCM/Z+np6TCZTPB6vdixYwdKS0uxbt067Nq1C8FgEFarFb1791avfMfrl2V3dXrAAUJVwEOHDgE4tehMLLjdbvh8Pmg0GvTq1QtHazxY/PF2XLbgU9z8f+vxyZZS6GU/ggpwxKvH2n0n8Y9Pt6rh2u/3t+jGuKf7dHcF4KmFSa/FpFEDWzXurNRk5GSHbpK0ZnPTH/pPVDvhC0iQoEHf7OjDWmfQP8cGv6JDlUts9ne+wxfA2r0nYdf4UJRta1E1KuKCAQXIzslDmWTDVn8mLrzwQgChymdzx/N4POqFPL/ff86K9OnnlbMFKUVRcPLkyU7zIfbkyZNqxe1cFbquIBgMsuvkHCJt7ZHftV1VTU0NvvnmG3zzzTfYv39/sxc6q6qq8OWXX2LPnj0x/9mor69HZWUlDh061OEV3UAggG+++QZbtmxp9vxUVlYGRVFgtVphMBjgdruxYcMGHDt2rNF4fT4famtrYzY+Bqk4ifwij1w1bktFyufz4fDhw9i1a1eDCkRXulrYGUWqB0Do38vn86GmpgZbt25t9j9hZWUlSkpKOs1y9qf/nA0dOhQ6nQ4OhwOlpaWQZRlmsxn5+fkYOnQoBEFQq1IVFRVcSTKGHA4HRFFU57NUVFTA7w9VV2LZ3hf5uUxJScGa/XV4+/syeMUgknQyeqSacU0/G24anY9HrhuNH47pDwD4akcJ1h86Vb2O9vfG6+v2QwcJg89LwXm52ed+QTMuHFQAANh64HiTz+8rqwMAJFstMOm71op9Eefn2CBCiyqXH4FAoMkPJKt3VUCRRBQkKUi3GpCZmdni/Ws0Gtx4xWiUy8lY/t1xBKFRK4TNVdUjnQuRqtfRo0fPGn5aGqTKy8uxc+fOTrGAjSiK2L//VNuoy+XqNL+jW0MUxQ6/vUFXFAkctbW1Xfbf+8iRI9i2bRtEUYQoijh+/Dh27NjRaDtJkrBv3z7Isozy8nJs27YtpoEn8nepKEpMQ0hL1NTUQBRF1NfXY/PmzY3a1U+f99uzZ08MGTIEFotFbUNet24ddu/ejUAgAFmWsWXLFmzdurVFrcwtwSAVB7Isqyeg7PBVWFEUW/1hau/evSgpKVHLmpF9Op3OLvvLozPw+Xzqh10AOHHiBHbv3o3a2lps27at0XwSSZLUtpHO0FYpy7L6oSc5ORkmkxkZPfviSK0PJTUi6ozZyO07GH369FEXB7Db7UhKSlJ/Gbvdbhw8eLDB3wNF7/R2u8iy1aeL1eTYSPAvdQIPvrEFLlmHoqwkfPg/o/HVw1fgJ8PTkWs3o/C8bNw1cRAuLQp9SP/mUDV2HA+F7miCVGmVG1sPlUMQgIv694BG0/pTyjUji6ARNKhzurDtcOOFGA5VhN5bRrKl1ceIt/NzkiFDgyqPhKAkNxlYVnx/HOkaD4qykpCamgqLJbr3e/n5WeiZZoHDF8Q7359AWloagOaDVOTDREFBAVJSUiDLMo4fD4XZyO+BDz/7Gn/7zyf4+2d7sWrrYZRUueH2B9VzTDAYbHD+UhRFrWrX19dHXeWMtciFIavVCq1WC1mWG1zVdzgcTbY11tXVoays7Jz793g8HXrh6cSJEwgEAnA4HPzdfBaR/1+BQKDDFyCIBZfLpVbTcnNzMXhwqHW3qZ+3I0eOQBRFGAwGaLVa1NXVxXS+8+n/XyK/M2J5EbCurq7ZYHN614bP51PvvRoMBrF//35s2rQJoihCr9cjMzMTNpsNo0ePRr9+/WCxWCDLMioqKrBnz54GF4oOHToUk8/IujbvgaIWOfno9XrYbDbodDp10ndTH7LORhRF9epAz549YbfbkZKSgsrKSgQCAYii2OQKWoqi4PDhwzCZTMjJyYnJ++puzmz/iPxS0mg0kGUZ+/btQyAQQK9eoYny1dXVajm9qqqqyZW2Tt+3wWCA2WyO6Zgj/66BQACZmZnwBYI4Wifiv//dg8/2nUSdJwANZMgQABwCcAjD81PQI9UMQRBwQUEqLszJhsvlwtGjR3H48GH1Q1K/fv1aPS6fzwetVqu2siYSn8+nXuSw2FOxpzqInfsPw2A0IiMlCXaNCKfTFfXcoj179qC+vh4jRoyAwWBQK6j13gDmrT0CRRHwg945uLK3AaIvdMKLVKxTUlJgMpkwujAd/qCEDSU1eHuXA1ajFmlpjnMc+ZTXvj0MiyCiIM2KXrktb0FrSnqyGT1z0lFadhIfbtyPob2yGjx/pCr0/zE3restfR6RnWxEikUPn1+LGneovS8p6dSNhQ+edOHL/ScxSOfBwNwM5OXlRX0MrUbALRf1wpMf7MbfvziISXcMBxC6Ki/LcoOwK4pig/ZfvV6Puro6VFZWonfv3tiweQs++u4Ath2vg6IAR6V69NDWQ4ACQQB6pFhQpctCRrASJpMJI0eOhCAIqKmpafDBq7q6Grm5LV8SP9YiY8nMzERtbS3q6+vhdDrV8+3+/fvhdDphMpnUqrzf78e2bdsgyzKsVmuz/z99Ph82btwIk8mEUaNGQatt32rp6VffgdDniZaukinJCk7UeZFrN0Gn7dzX0SVJgizLrT5nKIrSoNOntra2wf+1riAS4jMyMtC/f6iDwGQywefzwe12qzc993q96oWLoqIi9aJuLNvGz/z/XF5ejj179iAjI0MNeK0VCATU/2ujR49u9Dk48j769++P/fv3qyvTVlVVqRd9gNBn4MjvN0EQkJeXh9zcXNTV1WH79u2orq5WL3ILggCPx4OKioo2fwZmkIqDyInLbrdDEASYzWY4nU54vd6og1QkwdtsNvTu3Vt93GKxwO12N/tL1uPxoLS0FBqNBllZWW26ktxdRf7z5ubmory8XL1yMXDgQLhcLpSWlqKkpASCIKBnz54N5sBUVVU1+tBy+nM7duyA1WrF6NGjYzZeRVGwZ89e7Dp4GEdqPDhQI6Ks2oFa2YQSKRTwdBoBvdJtsJv18Adl7CpzYMvROmw5Gnqv7209AaMO+HFPH8YU2GExhH5FVFdXQ1GUFt9k9XSiKGLjxo0wGAy44IILIAgC/H4/dDpdu3/oiCdZlrFt2zZsO3gC247V4YRTxDcfu6AAyBAkuBQJaZoyZGlceP67WkwZOwL3XdEXRt25/04kSVIXr6isrESPHj3gdDrh8Yt4b3sFKrwpGNbDjv+Z1Aulhw7C7XarS2EbjUaYTCYIggCbzYaLektw+2X896gOn+ysQE5qEoa04N+63hPAG98dRa4QwND8zFYtMnGmCwf0QmnZSWzce7TRz9uxqlClrEcXvIdUhCAI6J9tQ8URbZPzpP6xrhTJgh/9M8zIsFvOejHmbH58QU/835clOFztwUvry3Fpsl6tYEQ+fAGn2vpsNhuMRiPS09Oh0+ngdHux8K0vsWHHPviCClyKEYPStTjfrEVQtKLGG8Qxp4yjtR688N5XGJRtwhXnZ8PhcMBut+PYsWMAoF4kbEuQikwyb8s5KvKB2mw2IxgMor6+Xq3Wi6KoVmHr6urUIFVSUqJeGHM4HM3+fEduIRD5MFtQUNDqcbZEdXV1gwqfw+E4689JpcOHCocH2/YfwdLNtdh/0oNUix6XFmUizWpAqsWAHw7PQ0FGdJ892pPX68WWLVsQCAQwbNgw2O3N3+5AFEXodLpGPx9nVklra2vVf9vWUBQFhw4dgtlsbtUFjmhFVpgEgPPOO099PCkpCT6fD06nU/2/fPDgQciyjNTU0K0SIj/vLpcLsiyrK7IWFBS0OpieHqSCwaC6gE1VVRX8fn9Ut7w4U1lZmfp/rba2tsHnYL/fr76fzMxM1NTU4OTJkygrK1MvUBYWFobCkFaHTYdrEJBCn9Xc/iA8ogSNIEDSpcHoqYBRp0VycjIyMjJw6NAhlJSUtPkzMIPUaWLRflBZWYnKykr06dOnyWqDPyihqiZUQYr8YjaZTHA6na2alBv5QTqzj95ms6mpvalfspH/FJEWh652paYjRCpSGRkZEEUR1dXVSElJQXp6OjIyMiAIAkpKSnDo0CH1KiwQqlgFg0HU1dWpbTURgUAA+/btAxBq55IkKSZh4lB5Hf727tc4fPwEglLDUrXdnow7B/fGhPOz8INeqdCfdiWy0unDZ3sq4fZL8IhBvL+tDHvKnVhZKmLPiVKMH1yAQVkG+P1+uFwu2GzRf4itq6uDJEnwer2oq6uDTqfD5s2bYbfbMWzYsFaFs/YmiiLKy8uRl5cHna51vya3HjiKv6/chnKHH27FgArZBgUCCtItuLB3T0iygrKycvirPVACfiz59AA+2lGOP90wFCN7nX15b7fbrQb7iooK9OjRA8crTuKd74/jYL2ANKsRz/5sJGyaAEoB9e8dAFJTU9W/c5vNhvr6elx3QV9sl1zwVlTjvc1HcemFXiRZz95S9uzaA3D5AshP0aBXuqVVPxtnmjC8N95euxlerwvflVRjdO/Q765Khw9HqxywC8CAHmnn2EvnNiA3GUcPa3HS2XDlPocvgDc3HUO2xo3hPTOQk5PT6pN7klGH3183GL/8x3d48csS/OCabBgQQE1NTYMgFbkQF1nQQqPRQDDb8a8vNqHWEzofmuxZ+NXVI4GTp1aXtNls8AtGfLZ5DzYdrsX+ShdO1Png1tlw5egBapdE//79sXPnziarYS3h9/uxfft2+P1+jB49usWrF57p9CAV+X8TCU+ntzzW1dVBURS4XC71QyzQcPXTM53+AfPIkSPIycmByWRSH6utrcWOHTvQt2/fmFTlIlfgI5WJ5sbm9AXw+/d34d/fHUOuxoFsjRMeOQmAHbWeAN7deqqqtXjNPlzSNwPD81MwtEcKLu+f2aqKlSzLEAThrL/TKyoqUFJSgr59+zb52cTv92Pr1q1qy+L27dsxYsSIJi8yR9rs09PTG1VFIv+3BEFQq/XN/QyWlpaipqYGgwcPbvZnrL6+HkePHoUgCMjOzm73i4CVlZWQJAlms7nB/9mkpKQG93usra1FVVUVBEFA37591YvzkYsYbrcbhw4dUv9PFhUVRT2WYDCo/nukp6erF1YjKioq0LNnz1a9z8iqoRE1NTXo0aOH+n3kc1hSUhJ0Oh1ycnJw8uRJnDhxAl5RwsEaPzb5PTj+7W6s3l0Bh6+5eWEKCnV1OD8F6D9wCC5Ns0Cn18Pv9zf5WS0a3SZIPfvss/jzn/+MsrIyDBo0CIsXL8all14a1T7ODB0ejwdGo7FF/2G8ooQjNW7s3LITLo8Xn20vRbUhFwfrgqhxi7BILnj8fuyu12GgtgLpZg10+wX0ynEhQ6mDxuPAftcROHe5ISuAQaeByx9EnUeEVqOBQSugxhNAvcuDbLsF56VZUV3vgef4LsiSAudBA3pkOlGQbkFBhhUpCF11aG6+w+m//F0uV7cOUl6vF4qitGiuQWQi5eltAXa7HWazGQaDAb169VJPEr169YIsyzh8+LC6hHXkl17kasmZ/zkPHjzYILC73e5WX8mvdvnx1YEqfL3tAPYfOABFlgAIqNSkY3C6BuenAIWZVlw+9oIGv4hPl2Uz4abRp34B3nt5X6w7WI15H+zC7vKT2PCdF9N6eTCx0IyqqqoWf1g+cuQIFEVBz549G7RIRk4Obn8ARw6dwPdVAspFA47VemHQaWA363Feihn5aRb0SregZ5oFVmPsfk35AhLe23oC6w5WY/ORWgQlBWaDFvmpZvTLsWHywBz8oGcK9u7di+rqavh8vqhbGhVFwfvbyvDM21/DLPlQr0nGZSMH49pheSjKssFuOXVF0OXqgw0bNuJQtQ/P79HhQKUL/+/5dbh1bAF+fWV/tSJ4ptP/XzudTpRV1+Gp975HVb0PiiED/7j9ApyXYoaimGC329UVlwA0+FnIzc1FbW0tCgt64plCC+57uhQn6r14YsUmzL/5Emg1TX8gKqv3YunXpTAhgEv6psGg1zf48NhaGal29MlJwe7jNfjnl7sxunfod/j728qgg4Rcuwk9M7vezXhPN7JXKt7/Roe9FU44XKd+D/9741HIoheFdhk90yxtvuo9aWA2rhmSiw+2l+HZb8pxz3AzTp48icLCQgiCAEmS1A9XkfPe1qN1eOTDw0j3i0gy6nDZ+TmYMW0ijEYDNm4sV+eZJCUl4Ty7HaIjA32zkvDRzpOoc3ux9NPt2HigHBfnm9G313nIyMiAwWCAKIpRf1hxu93Ytm2b+gGutrZWnf8bDUmS1H2YzWb1fB5ZcOL0ICVJElwuF/btPwB/UEKKLQler7dFQUoQBMiyjEOHDmHgwFOrV5aWlqrVhaaCVOQDaUsuKEUuRgGhD8Tbt29XpwpEXq8oCj7ZWYHfv78Lx+tC57Bcs4wUnQEX97DjlzdMwu4yJzYfqYVHDGLnCQc+33sSX+6vwpf7Q8G6MMOK+y7vix+NOA+aZn4HnPkejhw5gtLSUuTm5p71d+bx48fh8/mwc+dODB48uNGqlLt374bP54PZbIZer4fD4cC2bdvwgx/8oEHVIxAIYPfu3VAUBdXV1QgGgw0uekXO3zabDT6fT21jPfNc6Pf7cfjwYXVeX58+Td8HL1K9VRSlQTXI7/dj586dyMnJiWmlKhIucnNzG/xsRD6rRX5+Dxw4AADIy8tTw2ak26C2tha1tbXqz0x5eTl69+7d6DNt5O+nuc8ikb9LvV6P3NxcVFdXQ6fTISsnF5t37sfOb3fh2MY6HDjpgkGnQZJRB0UBBAHItZvRK92CIefZMfg8e6OFgiLn2eYCb2TsdrsdvoCEbZUBbD3uRFW9B3srnDgSSEKFfGpVxowkA1IsoVb3JKMOJr0WCkIX40qqgZIq4KMvjmHxF8dwvtmJoakKDnlNmHLRMOSltG6qRbcIUm+88QZmzpyJZ599FhdffDH+/ve/46qrrsKuXbuiSsmnfziJ9H+mpaVh6NChjbatqqrCN1t3Y4fTjLWlHuyvdEEvizhfd6q9S0I5Dkup0EFGT20t9ADSkAIdJNR5ZWw76IRy0IV0wY18bR0cSh0OSc2vhpIqeNBLWwsHgN3QQlIEGIUgPIoB+ypqgf2nXmsVRFyYXI/8jFqsq7EgO9mELJsRfbKSkJ1satA77HQ629wjWlZWhoqKCgwaNKhTzYORJAmbNm2Coii48MILzzm2o0ePNlgqNTKHTafTqT3KpysoKIDP51NvgpqVlQW73Y6ysjJUVVWhX79+6i9Bt9utXuU0Go3w+/3weDywWq04dOgQjEYjcnNzmxyjyx9EjUvE4Ro3vjpQha/2V2HnCQfMENFPVwUBCvIyU/HzyWNwQf98BAMivvvuO/U9tJQgCLi4bwbeu/9SvPRVCRZ8sgdfHHHjWFkF+h12444fZaJv1tlDd21trfp3mJ6ergYpRVGwaU8pNh+uwcGTTigK4FfKsUfKgoKmT9aCAFzQw4KL87S4aswQFOVFfyNWWVawq8yBz/dWYvm6/UjxlcGtGHBECu0rVfDieKUOn+014O9rD2FIlhFj7XXomWYFhHL06dOnxVcf95Q78OT7u/H1gUoM0XlwXooZT908AX3yml55zWKxQKvVoG+mGR9M/AEWrCrBW5uP4ZWvS7FqVwX+eP1QXFLU+Krt6b+r3P4g5rz0CRwOB0w6DZ762VgMPi8UNgRBQP/+/bFx40b1A9vpHyTObC+9+ZJ+eOOLbfhy1zH8+s2t+PP/G9ZkmPrLJ/vgD8q47DwzCtKNsNlsMaksCoKAy4f1xu7jNSjZvwdb9vbAsH4FeP/7w7AIAfTPyYz5vMKONmVwDp62WeHx1OGbfWX4wfChqHT68Nc1+5GjdWF4z1RkZ2fH5H0WTxuEDaU12FblxcpdlbhmSDacTieSk5PVKpHJZILVasXKneV4YPn38AWAvmlJuGFYFgb37wujMXSFPiMjo0GQinygy0424clbJ+PlD77G5tIq7D1Sjv1HNRgVzELvIhnp6enq78OWBilFUbBjx44GCynU1dW1KkhFKhOR3+ORNrCTDi9e/XIf9u3cCbdPhCcI6CDhhY1V8DtrEZSBOksPDDfXwG7SYZsvFSMKMjEgNxlJp13cifyd9OrVC6WlpaisrETPnj2RlJQEp9Op/v5zOp1NVkRKS0tx9OjRc7awAacWrUlNTUVaWho0Gg0kSYLH44HFYsFXB6rwzKcHsL4kFA57plmw4IYh8B/bqf7/t+iAi/qk46I+pwLM+h37sX7nIZwQMvDJnmqUVLkx+z9bsXRdKX47dSAuKGz+302SJOzYsUMN5WVlZejZsyeMRiOqq6tht9vVc5okSaitc6Da5YNblLB/zbco6N0b/Xv3RI7dDA1OrZQ7ZMgQ6PV6fP/99/B4PNi2bRtGjBgBnU6n3uolclFSURTU19c3CGWRf3ez2Qyz2YyKigq1q+R0x48fV/9uTpw4gV69ejXZhXB64K6vr1f3c/z4cTgcDgSDwZgFqdPbTQOGZKw7WIWgpKDWI+J4tQPOw9UQhBq8d8AHZ8URGPR6ZHkzkVJRgiSjFkXZNlgtVqC2FseOHVPfnyRJOHnyZIPPe4qiYOvWrfB6vRgwYECT/8ciFwssFgsM1mScUFKwdp8Laz/eg344AQ0UnJRrYBCCqJRtcCuNq3omBJCh9SElOxfDe6ZheH4qhvWww3Ui1Abco0cPlJeXN2pBPl5ZjT1lDvy3VINVrx2Cyx/EeRonMjUuKBCQmZWDyQUZSLUaMLZPOi4oSGs2/B+t8eDL/VX4Yt9JfH2wChU+LfZV1mJLxR48sbYafbOScGnfNPTVVqEoOxn9i/q26N+rWwSphQsX4o477sAvfvELAMDixYvxySef4LnnnsP8+fNbvJ9IqdTtdqvtVzU1Naivr4fZasPG0hpsPlyLrYer4Ti2J7TSHjQoCWZAgh49TQHYtDpIegsykozINAYxxaqD1aiDolhg0GqQZjNBltLghQGB1AIcqHShsroaSpUfOr0BY/N7QKfRQHRWw2xNRqrdBlkJtQQaHcehCxjh8AXg8gVhMWhhNepgz+4BvT0TR6o9KK12o7TKg0MnHah2B1DtPonXDu5EEKc+CA45z47RtnrYdQHk2c2wn7acrSzLKC0tRXp6Oux2OyRJwrFjx5Cdnd3sFedgMIgDBw6o/0nP9sukvLwckiQhNze3Q+Zl1dTUqEuAVldXq79AAoEAvv/+eyQnJ+P8888HELrqUlpaCuBUb39kefrmRD6o+v1+NZAajUbodDoEAgHU1dUhNTX0gT1yEozc0+n48eNwu90NVsk6eKgEgskGt9aKco+Ag9U+fFtSg0MnG684JEDBBale9E1LweA+PfHD8aPVv1Ot0YgLLrgAiqK0qgVBoxHwy8t646I+6Xjyve3wHqvD7qOVuGbRGlw+sAf+Z3wfDMtPafS6SB95RFlZGQ6dqMaO43XYd9ILX/jE51EMyLZqUGDWYkxOMvLz8yHJMmrcARyr9eBojQdHajyo84hwnCjBp2VBvP3dYRgyemLywBxMHpSNIefZm/3w7g9K2H6sHh9sL8N7W8tQ5fJDgIL+2pNINQkYm2vGgD7Z0Moi6us1oROUO4BPj8lwVNVgfY0X60tqYNBqsHyPiAsH98H4/lnNziOodPrw9Jr9eH39EcgKkKkTcVFhCsYNPA+9c5ufv6DRaNT5jFpJxFPTh2Ha8Dz85u3tOFbrxc9eWo9L+mbgl5f1xmVFGer7dTgc8IoSttcA3+89DG9AQpJBh1snDsMPejc8EVosFhQUFKCkpARms/mslaNLB+bDUXMS/95eh7c3H4ckK3jqxmEN2nxeXVeKtzaHTn43Dc+AIEW/UMbZXD56CN75rhQnKquw4rONEMUAKsuOI0sLjCzq0eWr53qtBjdd1BvvrzmOb/eX486ghCfe24WAz4t+qQoG5SW3uk3mTJk2I57/2Uj8+IVvsLE8CJuxCnnnlSM5OVlt60tJTcOSTw9g0ep9UBRgXL+s/9/enUfHUZ154/9WVe/7KqmlVmu1ZFmWbMvGYAM2BA8EzDZMBiYQNpPkEOCN+TGTEELekMlCTkIyyRACM0mI44EESIhh8hI2D2NjY2K8L7KErNXa91ar963u7492FWpLsiVZcsvm+ZyjY6tV6q571V11n7s8F0/esBrR4GjamhKn0ynvp6fX66HX65GVlQWO45CXk4V/WrMYC5zN+LBpCPuHePxqVyfe/XgYD1+eC5PI5CnvZ7oeiSJD04lOdA2OICryUJhz4Os9AQhDmKAv64ykTkNBqcLbtb3YWteH9sYOJCJBeMU+WPkwkuDRLxrg4oMAUg1wr6hD+6gIbTAGDRfE6+21GGWpz45Vp4TDoIZOyaOC74bHqoU6VwU/p0XziW78v+PbETPmwRLrgyLiB8elOoX+NnIYCo0OPMdB4DloFDz0I81w6AV0dHRMOZCS6t1oNKK7fwib36/H6w1BHO9L3cvVCh5fXlOM+9eWIBEJ4mDHJ9OwfD5f2lKAZDKJmLcX1dlqXJ2jx7duWoL/+lsbntvWjKNdPtz6n39DjceCu1cX4u8WZY8bJW9tbYXX6wXP81Cr1fJ6nEQigfbOTviiwKg2B3UDcRzv6AXvPYEYExBkKli4MHCkC6NMgzbRhiITjxUGH9wOE7J9CZRla1FdXS2nvD527Biqq6vh8/kwMDAAjuNgMpng8/ng9XonDKQ0Gg0Uai3qmtvReLARWxrjGA7FMBiIYcgfhsHXimgshiTj4DQo8Up9GC1hLeJJES6LFiaNAkjEYQm0waRVwKRRwid2Q2vNhl2vkv8mUga7s5nyF0+KqOsexZHmDrQ1DqDZm8D2t0+99zNUKbwQICKJYQgQ0S2a0N/RlnaUXYjgUnsYxQ49nCYNss16KLhUopKxgVQwGJQ/Iw0NDdDr9WnX2KTIcKx9AIdOeNEU8ON/Xu1FLPnJHlVJnRFFxiQuMqpgNxig1hmhyCoGB4Z4NIKeoIiWgSCGTzRAjIXQ2cPjxe4AXtzdDgsXRrl6BDaDBrFmJazJEWiTAWzrPICYzoG6zmFw/am2eG0CSEBAjkmDpW4bXIk+LC0rxPpLp748IN+mw+0Xe3D7xR4kkiL2tfRj245dODEcQsuwiKb+AEYG+uAWRsBzHJip+8xPCoBj53l+7FgsBp1Ohz/96U/4+7//e/nxjRs34tChQ3j//ffP+BzSAtl33nkHn/nMZ/C3PXvRM+SDL5yANxhFX1SBd3s08EdTDXIP74WND0HgORTa9ajId+CaNasw0N6I0dFRlJWVIScnB01NTfLwrMPhSJtX6na7UVqainYTiQQ++ugjxONxuN1ueYdmo9GI5cuXA0g1UHft2oVEIoHq6moolUpEIhEkk8kJF8r5QnG8+s776B70wqvKQm9Mjd7RCFoHg2AMWKzogQKpD4PDqEXx4uXIMmmgT/qRGO6CxaDDZZeuwmB3O7q6uuB0OlFZWTmu7hhjaGnrwMfHjyOeFKGzOGDOKUBfbw/CoSA8BUWwGjUwaZTgklEcPXgAPJfqJfLku2EymWA0Gs8YVIkiQzQhIhxPwhuKYTQcTwWY8SQ6vWEMBKIIx5KIiyKEkzcpnuMQG+pA3O9FUhSRUBnA2zwwaBRAyIfoUAcUPIes0ipYDFrE+tsQDY5CZzAjt7gcjIkQBAU4DuA5LnUzROqGCHDguVQgdXJCBTgw8LwAjgN6TrRisL8XapMNakc+fKEYepuPIRwOIap3IRiJQRzphp9pEEwwKKJ+hOIMiWT6/N4keAyKevSKBmiUSjiMKlxUaMOaBU54lH6MDvZCqVRi5cqVczoS+N/v7cKO2hPY2cejX0yNcK0ssuGayhysLrGj2KmHWiFgcHAQ+w4eRr8/io7hEFoGQxgKRBBjCviYBm5VCAuyjLjxipVwW9Q4fvw4OI5DdXW1HHCOdbC+CTv21aJ5IIBObxgNCTuCLDW9w2XWYG2ZE4UOPWx6FRJJhvbhEPafGMbhzhEYkwEkwWOEaaFXCVjrElFpjmOx23ZyGmSKlA6ZMYZIPInm/gDah0Oo9XJQxkZTI77JVMNjiduMdRXZSDKGQCSBQDSBj3v9ONyZymoGANdV5eC2Eg4sMgqPx5OWBGYi9fX16OvrQ2FhYWoT3Y4OtJ7owP/28HjxkBdJkUGFBKrtPK5aaEe2KxeH9+/BsW4fjkSzUK4YgFOvwJc+uxKXLK2Y8KYiZfoymUynDXp8Ph8OHjyIluEontyXREJkWF/lwqOfXQibQYXXDnbhif+uhciAr11TjpUGL4LBIBYvXjzjxAgT2dU4gH/e9D9wKwLIMWvR4Q2j0KbFv264ftJpqmclGASeeir9sa99DZhm8p+p8oej+PKPX0Q4nkTIWorjA2F4hBE8dLEdlSX5E15rz8Yre9vxgy17USwMweMw4fPXX4WB5qNoH/Tjf/q0ONSfSqX8+ZX5+O5Ni9PWUUoYY/J6pZqamnENRum9o1AoEDQX4dv/rx59o1EADJfoh1GRpUHNkiqUFuRBreCREBnCsST6Tt6XPmodxrFuH4YDUSzg+qDiEugWTRgS9ahS9ILjGHzGYpj1auSqYshRhGA36VBRUQGP04RskwY6pQCRMQwFY+j0hvFx7yjqGlsx1N2OJr+AprgFAJDL++BSBJFr1iLPqoXT6UR2bh76muvB8xzsehUuWrkCHaMMh2uPYaC/D90JAz4aVGDA/8komQoJLFL0gYHD4YQLaiRQoRgAwNAtmuHiR1MNSghQIomOpAVD7JP3lIGLolRIBbQqhYCguQilLisqXCZUuEwoyzYg26gBz3MIBoPYu3cvkiKgyluID1tHcKSuASFvHwaSenSKFuhUAm5dkY8vXl4Eu4aDRqMZN8siLy8vbZ2MNPsGSN3PLr74Ymg0GgwGovjZlh043NiFkMgjwNTwCyZ8ZmEWrsjjUem2IsdmxpEjh8EYQ+GCCvSMhHHg8BH0+mPo94UwFIwhKTKI4NCStEPPxeDiR5FQGSGa8mDnA+D8/QhG42iLm8FzDHm8Dz6mRWvSBqXAwa5Xo9SqwBKdFzlGFRZXVSERGEZgZBh5eXmwWq04duwYtDodckoq0dQfQPNAAG3H6zA87MWxkAGdERUWK3ohQERT0oHAyXuIjQvBI3gRYwJ6RRM8ghcJCDiWyE6bJSHNGkqAhwIikuBxNJEDsyKJGp0XJq0SOqUAZXYxjCYTjBoljBoFDGoFonERwVgq6YGU/CAUSyAYSyIUPflvLAGER+EPBHAipkc2H4CLH4VX1KETNhTadVApBFi0SuSYNdAFOoFoAFqVAmadGkJOOTp9UQQiCXhDMdR1j8IXDGOx4pN1fm1JG5YaA8g1a5BfvhhleU4UOw1go/1ob091kCSSIuKcEmbPQtT1+LG7ZQgftQ7DHu+HhQujSzRjQDSg2KnH+ioXrqtywW3gcPToUajVavj9/tSslksvRWdnJ9ra2lBSUgKHw4Hdu3fDH0lglNOjLWHB4fYhxHsbATGBXtGIXtEk/z2ke24u70MWH4DZbEZl1RJcVZGFZfnWKU03naqPPvoI4XAYBaULUTcs4m+7P0J7/whGI3F0hBU48G/3wefznfa+ed4HUt3d3cjLy8OuXbuwevVq+fEnn3wSmzdvljOLjBWNRtOmDIyOpnre/vGxZ9Av2GBhfiQgoCVhw4KT06Yakw5o9SZc6tGgEAPIMWux5uIadLS1IBKJwGQyyfOoL7nkErnXt7+/H5FIBG63G42NjXI6y8rKyrReISmT26mk5woEAti3bx8EQcBll102pQi8paUF7e3tyM7ORkVFRep1AlG8d6wbHx/eh5FgDCeGwxCZiPpENqJQoFAYTvUSATiRtKJA4YNBxYNxPJo5NxQsBqvowyAzIsCUCMUSKOP6oOZSAUCYKXE86USVogc8GEaZBi1JGwAOTi6APOGT9TIcByh4HhwvICLoERL0iEANTuABxhBLMkTiIiLxJKKJyXfp5iFCiSSiJ9eFGbkINFwCg6IOixV9EE4GjCI4HE3kgIGXg2EAaE9akQCPYmEIDBw+Tjjl55opPRfFAmEQSfCoTeRAgzjKFQMQwaE2kQMtF8cCYRAxlgq8lEiiKemAyDhkqSIo1DPYtYBVq4LLokFJjhXVlRXy1Bip0QJg1huxE+nu7sbx48cRSHDYPmzG64e6kBRFsJNb0fEcYNMq4E72AskoBkQDHHwQHBgEnkNRfi6uWVkJfqgVep1Wzt5XV1eHgYEBCIKApUuXpk1DjMVi2LNnDxKJBLRaLbyjAXQFgP1BM7YfH0Q4lgAPhuQp2+FxYMjnR+BWR5Fv12PdFZdhZYEFB/fvk+srGAyitbUVarUaVVVVUKlU6OzsREdHKluc3W5HWVk5/rJ1O04MBnA4YsPf2kNIiJNfLpd5LHj0swuxwmPGhx9+CFEUsWLFijOOoHR1daGxsREcx8Fms8lz8dVqNXJLF+N37+7FseMtci9gkKmg52KIQwCXXYb7LnbhsmIrnI6zSz8OpDp1PvjgAwBA2FqCr/7xqJwBSeA5JEURHBj+aWUBnriuDLt37wYArF69esaJACbCGMPNz3yA4Z522PlUj+z1y0tx381Xzk1yknMcSAHAU//1F+w63ouGhBNhqHBfWQKXF5tRVVU1bt3IbHj9YCd+99q7gJiAV9TByofk65NFp8ITN1TipqW5Z1W/AwMD0Gq1MBgMGI3E8ey2ZvxxXweU4SG4+FEEmBpNSQcABhfvh50P4kTSCj/7ZJRUakwplEp49QWwG7TQ+Fox6g/gRNKKLD4ALffJHjpRpkBz0o7YJBNs3PwIHHwQfaIRCks2rl3swmUlVmTzAQwPDiAajaKqqgo2mw0ffPABkslk2pR+6dpntVqxZMkSjEbi6BwOYyQUQ//gII7V1qJlJIkmloWkyLBY70exPgEFzyOaECEqNYBKj+ToAJjWDNGUiyRjSIpAZLALQ/09GI2kyiM1KAHAwQWg4+IY5ozQaPVwsBGYkiMYiKvQmky9PyxcGIXCMBwWIy6/5CJcvyQPQe8Aent7EQqFkJWVhWQyiaGhIbmNotfrsXTpUvh8PthsNhw5cgQjIyPyGpXc3FyUlZUhEolg9+7dCEYTONLpw8e9o+gM8eDBoOdSMwukTsZhUYvWhBUAwyKhH6qT7YEhUQ+rGig2ATl2M/IdJpiFGJYtrpAz0UnZbzUmG3p8ERxv60RTWIcP+ziEYp90eEmN6jBTQsMloBI4tHE5iIg8ylg3RIg4Gs+RZ99UCKl2iRQ4lapGscAYh92Zjaz8Yli1ApJ9TVAiieKSYlidOdi5628IhSMoKV8Ii9WBbl84Ffz0tsLv88LLWxAY7oU/FMO+oBVWLgQn/8mMns6kBYNMDxUSiEOYdMr6qXiIWKzoBQ+GfmU2qq0iclRxFJWU4MbVVbDq06+tzc3NcrrzsZ3yEsYYWgaD+O93tuNE/wgGQ0l8GLCjQPDCwoXRLxrQLaZGP8sUA7AqEhjgLNDFR6A4JdgEgCXqQRRbFViwcBE+s7QE5dkTT+WWgpLKyko0NjbK+1q5XC55NFun02HlypVoaGhAZ1c3AkkBQlYJQjERvmAYQy1HITJA48iHNtwPj1WDS1Ysm5NrIgAcP34c3d3dcLvdMJvNOHYsNQ12NJLACW8EG++48YyB1AUxtQ8Yv1DzdKmaf/jDH+Jf//Vfxz0ejCdg4VPzUoMqGxbmZqFUrYGdC+Hu/Czc+JnVOHjwAAIBK3Jzc5GXkwWLUY8DBw7IQZTBYEibOjN2alh+fj56enrAcdy4IXyHI5WlSVpDIy3QHRoaQl5enjzP2mQyTflGZ7fb0d7ejuHhYTDGMDg4CMYYrq2wIzvshEqlQpJT4GBzN2rUWRiMqyH2+hCOqhCMJZEPH8BEBKInU8Am/HAJfghcBA4E4UvYYeSSUPMJiOCgETjoFAwVagEupgbHAdaECE0iiMaoASakgtce0QQGwMDFoGNxKJJx8PERGDACPTgwpEZ+RpkG3qTp5A2SwcxFYOXDCCtNUGiMEDjAzIVQpArCqAQUNjsUGh3EgRYwkUNSycDHTRAUSigEHjxL4DJbDoKcFhiIgU+qkRBFFHMahGMJiGENfLwRRUobGANExsBOvpdS/57yfzCczNgpPy4ydvI4FbQIQK9gMBvUMAs8TEkTVEYL1uQUwagC4t0fQ63goVLw0KgUWLFyFcx6NWw6FXg+tXB5aGgITU1N8p4mWVlZyM7OlheYZmdnz3kQJb1Oc3MzDEjim+s8uKlQxN6P23EkYsb+rjD80TiM0X6AiyIBAUpzNsqsYZQYRRQ69KhatPDk+9gKtVotj0BWVFTIUyCbm5uxdOlSAKkRlPr6eiQSCRgMBlRXV+Ojjz5CiTKJ61fn46e3LsXr//s3tHYPoF/lwkhcgC7mg1WIIN+sRLYuCxadEhzHYaFDgZHhVHAipYe12+2wWCzQ6XTySF5xcbGcEcjlckGlUqGy2A2noR/rs7PhzC/GXw51o7bLB61KgEGjgFGtQLZJg8sXOJFjTn3u+/r6IIoitFrtlLYzcLlccjIIKYgSBAHRaBTermaszeNxSXYx6gbjONEzCJExqBUqXLKoCLdcdcmsBhYKhULOBnaJx4Bn/6EMf9xxBHv7gaAo4BJzEEtz9fjSuiJ5apjZbJ7VIApIXc9/cftyvH4wC+HeVmgQwd+vXTYvMzzO1JWVecg1KWF2FcFgMkHsTXX6zeY0ybFuXuaGIVqDN3cfw1AwhmCUg8Vqw/9ZXIa7VhXAYZh5+mLJ2M5Bk0aJb1y7EP/f3y3A1qNd2L17N7q8IbBkHOpkEGYuAgXPw6Fj0GbnYHmBFTUeC4bb6sElHShbUCpPLWxsdOB4ywn4IkmEolqEEoAXRngH++APhqCOjOBQ1A6cbLjyHJBj0qA024hypQCH0oSa6kVYUVGc9h5ipSVIJBLyNcDpdKKvr0/eGxD4ZI3p6OhoKjmQXo9FuanjO9RhWCIO3DxmxkYkEkFtbS14nofRaEReXh5CoRBqa2tPNiJT2eUYY/jooyAiEQ2MFhtOdPUgEOcwairC8RPd8PcMwBeOw8rC8IfVUHIxxCBiRNTCYVDj8gUOXFpsgdF/AmqeQS0M4OMjfWkbtfb398vl9Xg8qK2tRTAYxP79++V9K6U1XuXl5fj444/R29uLgoICOSNwjsOK6kXlaG1tRc9ICMf7/Gjo5zAcSkKFBKKMQ0fiZPBnUMNlzUWRKoA8pwVXXXYxckxqfPTRRydTkYsAFGntH6vVmkrIEfYjT6+ErdiOL1dXw2S2oN8fxYA/isOdI9j5cS/ivQ1QR+OIJhi8CRUGkhwABr+ggI6LwaaIw+awoNSphzsahU2vxKpLVqEw24xEOIDDhw9DEASsXl2MlpYWdMVUUKvVuGhRSWr93NJSdHZ2IssgYtECh7xP0YhDALPbsWLFCjQ1NWFkZATfKynFsYZmDI0GEWIKBAJBJNRmhDkNooPtCIsCRpQ28GojdGoF9CoFdGoBOpUAnUoBvUqQH2dhH0a6U49XlhbIKe6XLSuFWT/+2ip1znEcl5bhTsJxHEqcBlyzrAgDAwPIyspCXuEC7DjagtraWgxHRNTGjegYGoWOxRBNAO0JFdy8Gk5lFKVGHrYsJ6r1PhSYlbCo9OA44OKLF5527abNZkNXVxdaW1vl9WuxWCxtY2BpM+G+vj4IPIe1NdVpswwaXOzkgEMIMBtgNBrPKqPemVgsFnR3d2NwcFBeB5eVlQVuYAClbGqbbJ/3gZTD4YAgCGmpSoHUBWSyhamPPfYYHnnkEfl7eURquRtWswlWox6Xrb4EPM8jEolgz549EMUEPv64HoFAAIIgyHtF6PV6LFq0CEePHgWA00bNOp0OVVVVYIxN2PAoLS2FQqGAyWRCNBpFc3MzBgcHkZeXJy/AnM60FpPJJK/V6erqkhvf0vx7nU4HrVaL6mgIHk+qQX7gwCgEQUAymURCFBGOJRFJAKKYhM2Zg5HBPnmKG89zUAo8VIINhZ58DA4OIBaLwWazYXhYC51OJy9SXLRoEY7V1SGZFFFdswIqtQaxRGq0adjrRX9/P/y+EcRjMTCkghEFz0GpVMBiNkOl4BEc9UEhpKbs5eTkwO/3IxjkAUgXFRFqdRwR69iF/Sbk5qZ6Wbu6upCTY0RhYSF27/5kB21pg13AiosvvnjWFrNLvUYGgwHRaBTxuC5tJPLDDz/ZD8RsNqMkO70BxfM8nE6nfKPp7OyU0+sDqRGLmaQynQlBEJCTk4Ouri7U1dUhmUigxmPBLYUeFBQU4HB9I5pbWqFUCKipWQZ3lh39/f2oq6uTyzf237FlXLhwIXbv3o2RkRF5TxApZTLP8ygrK4NKpYLH40FraytOnDiBUqUSLk0SrmIb7HYDCgoKcODAAeDkSCLP8zCbzfB6vXJWIOCTht5EnRlA6jMxthGVn58v13lRURE2XFYEINXzPjIygpKSknHTUk9dx3AmPM+joqICZrMZXV1dyM/PB8/zqK+v/2QjwtJiXLOuEHV1dfLzFxWd3ejBZKR9SgKBAEzxIdyx1IbPJZKIizz0ylRHTndnhzyqf+rWC7PFY9fhq+vKIYoLEI/Hz2qfkvlIp9Uiz6JFSa4eGo0Sx/o46PX6OZ2ie/myCrgtGnkth8fjmVI207OhVgi4fpkHhcpROfgGLPIIiCAIuPTSZeB5Hl6vF6MsDkGpSMtwZzaboVcrTmbwVKO6uho2mw3RaBS7d+8GYwzVNRcBvAK9vd3IsVths1oAALt370YkEsGCXPu4zwvHcWn1XVZWhpKSkrTHDAaDfE/cu3cvLBaLvG2DdH8b22Eibcw7lpS8IBQKydnlAoEAIpEIeJ7HksWLEAn6YYvHYbEEsVQlIFFUCLVag4ERvzwjQ6NW4dLVq2DVq+WyhEJZOHr0aFqKd4/Hg0AgICdS4HkeNptNvidL10MpiLLZbMjOzkZPT4+c5lvqHM7Ozobb7YbVakV9fT1K85z4l0WLwCuUaOvqg1KdutdbdMpUhjTG0NfXB6vVKn9m8/Ly5Ma0QqFIqy+pnZJIJOT1zEajEQqBR65Fi1yLFkvyLbhrVSGOH7ehu7sb8aSILE8JDBY7lDyPvq4T6O/pgifPharFlSdH01LTzBZ7Un93prbInUT79++X/3bl5eXy38fpdKKzsxNDQ0Pw+/1ps4RMJhP0ej3MZjNGRkZworUFOgWDKcuEBQsWoL6+Xl6m4Msem7wrBJVKhYqKigmnrwNAXZ0X/dbU53BgYECuh8lmM0hr2G0222nXvEpLRTweDww6JdZftAC2xCDi8Tgeq16McDiCw8c04FU6lFRUIRkYQk97K+x2O/Lz83H48GH5uQRBOGNmVimQkupWqUztXycNbEjt0c7OToiiCJVKNe4+vGDBAkQiETl5ydhMyXNBalNLnwlBELBgwQK542QqzvtASqVSYfny5di6dWvaGqmtW7fipptumvB31Gr1hDdlp1EDvVaJ0uJCuXGk0WhQWFiIlpYWuYcmPz8/LRCy2+0oLy+fNL3pWKcLtBQKhTxEGwqF0NzcjJGREXkDQWB8Q/R0pKlC/f39chAFQN4sUafTwWAwoKenB36/X57zbrVa5ZSiFr0ShYWFqfTe0RE4jakMXYIgYGRkRL5AFxUVIhIJY3h4WI7q3W43QqEQOjs70dDQAA6AQa+D05I+LOyx64FSNxhjiEajYIwhkUh8svdBLIh4DFArBfkiJgXOPM+joKAAfr8fg4ODiEQiUKlUyM7Oloe+pT2furq6MDQ0JF+cjEYjYrGY3CC02WyzmhFMOgcpiYlSqUzrWdHr9XIgdboAWXpfZGdno6urC16vF/F4HAsXLpzxHkczkZubi66uLvkiD0De5NU/1Ae7QY3y8nK4slLvcSmpBs/zpx2Z0Wg0MBgMCAQCctAzNDQEnudRVVUl99Dn5eWho6MDoVAI9fX18u8PDQ3JFzyHwwGXyyUHr1IgJW32N93RO6PRCKvVCq/Xi46ODixYsACMMXnagtFoTFu4G4/H03q1porjOOTl5cnTXRhj6OzshN/vh81mk4O70tJSOYHKXI1cSPuU9PX1IRwOg+M4qBUC1Eg10sLhcNrm03MVSEmkRewXGula4/P55GvQdK7vM6FWq+XkOudaQUFBKqmKIECn0yE/Px9Hjx5NS40uJd3JyclJu7aNvT5mZ2fL11G1Wg29Xo9AIIBkNASe59HfeQIj/T245JJLAKRnbzsTnufHdYxwHIfKykp0dXVheHgYIyMjCAaDMBgM8nXnTMGoSqWSG/F+vx9Wq1UOKm02m3yNb2hokDtPjEYjli1bBp/Ph1AoBK1WC6PROC7Q1ul0qKmpQVtbG3Q6nZzISZrSF4lE5Aa+1WqVM8WWlZWhsbERgUAAeXl54DgOBQUFOHLkCLq7u+VrpvT5NhgMWLFiRdq9u7wwD6fiTnZ0jpWfn4+uri4kk0mYzelJgjiOg9VqldtXGo1m0s6E/Px89PX1QavVoqokX/5bWZR5CA73YWhwAAMDA/J7R9p4XHqd/Px8NDY2yg19l8uVdk82mUzybCApiLJarSgpKYFer0/rgBNFEYIgoLS0VB61lFKSS88tzU6IxWJoaGjARRddJLez+vv75e0IpJkIAOT7q16vnzRxhUKhwLJlyyb82Vhmsxk1NTXy91LnbHd3N7q7u1M5BlQKFBbmojDbCL8O6O1ow+joJ50eVqtVDiDPFNBYLJ90kACpGSfHjh2Tp8tyHIfBwUG5DSo9NhbP86isrER9fT0UCsWcTemTqFQquN1ueaprdnY2VCrVyQGB4TM/AS6AQAoAHnnkEdx5551YsWIFVq1ahV/96ldob2/H/fffP63n4bjU4sxTLwJSWsZQKASlUjnhUKrL5ZqVzfYkOp1O7j1qa2tDLBYDz/PTbjxJgdRY0gVSujADqZTV0k3BarXCaDRiZGQEHo8HDodD3icJSJU1JycHgUAg7cNuNBrT3nhWqxVOpxM9PT3yDuN2+/heQYlU/5Lq6moEAgH4/X5Eo1E4nU4YDAZ5hMBmsyErK0vuzTpw4ABCoRDKy8vlD2g8HpcDQ6kRKJXFarUikUjICUHG7h4+G/R6PdxuN4LBoFwXYy+Mer1e7nWZykij0WjEwoULp7XvyGzS6/WwWCxyJkKv14vR0VF4vV4kk0moVKq0z44gCLjooovOuEEjkLpZBwIB9PT0pE01GduDp1Ao4Ha70dbWhng8Dp7nYbFYMDw8jEgkIvckSY1ulUol3xSBmU9By8/Ph9frRU9PDwoLCxGPx+XnlFLJer1eRCIROWmFlNVspqTGmzTNUKo/lUqFJUuWpO1jMtvG7lMCpD6zbrcbo6OjyM3NRV1dnfw5N5vNF2SQcy5kZWXhxIkTGBoakutwrgOpTDIajbj44ovTHpNSow8NDUGv18sNylMzv6pUKmRlZSEUCo1bD2I0GuX7hHRvi8ViGBwclN/LPM+f1fRTm80Gm82Gw4cPy9c9vV6flhb6TKT9jEZGRmAwGOSgUepwyc7OhslkQlNTk5yKWgp+JhvJkCiVynGzEwRBwMKFC9HQ0CDf2woLC2EwGOB0OqFQKFBTU4NoNCoHmdK9X0q9bTKZ0j7fM73nKJVK5Ofno62tbcKOl7GB1Om269BqU+trTw14TaZU5teOjg40NDTIf/dTR1Dy8vLgdDrh9XoRjUbH3fM5joPT6URXV5fcuVFaWpp2LbdarXC73eB5Hm63GyqVSh5Zldo5ZrMZ5eXlKCsrQywWw4EDBxCJRNDe3o6ioiI5sEomkxgeHkYymYRarYbBYJA/A7OxwflEsrOz5alsUpml96A0+ppIJOTO6tzc3Cl3lgmCAIvFAq/XC61WC6vVKs8kycvLkzu8x7YHJ6JQKFBVVXW2RZ2yU68pAKY1nfCCCKRuu+02DA0N4bvf/S56enqwePFivPnmm2lTdKZi6dKlsNvt43qkeJ5HeXk5GhoaJt1jYC44HA60t7fL0ftUstudauybobi4OO0CodPpYDQakZubK/dOSL+j1WrTNjSWghDpQjNRUDf2g6/RaOSLs3QBPfV8zkRK73rqBSUrK2tcb790U5CyOErlHftcCxcuxMGDB9P20+E4Dt3d3dBqtbM+D1faaXwy0nlKKVyn87yZUlFRAZ/PB4fDgQ8//BCJREJeRDpRkDzVVLBOpxOtra3ydBKj0TjhiI40KiWl0He73dizZ4+8+e+pN32bzSbfEGa6lsxqtcojZn19fWllkjogjhw5krbT+2yM0mg0mrT005KJPhOz6dQA0Ol0wmKxyIGbx+OZ0agbSTe2Y0IaNbmQA6mJjA2kpE4Ii8UyYSfE2E1uxzIajfKsirGbnUsLyIHU/Ws2rpvS/lvSnkXS6MFURrvsdjsGBgbkUfVEIgG9Xp92rdBqtbPagLRYLGnBq7ShqoTn+bRzl0alpNGY2RxtLigomHQblbH33jNd2ybruCkqKoLP58Po6Ohpl0JIM1YmIwVSQCroOPW9ONF9neM4GAwGeeaQdF3kOA5qtRqlpaU4duwYOjo64HQ65W1gAMj/Op1O6HS6OQ+kTCaT3J5Tq9WoqKgY1xaROkele+h0SJu8u91ucBwHj8cDt9s9ri0gjUTOV9PpqLwgAikAeOCBB/DAAw+c1XMYDIZJP6RmsxkrV648q+efrtzcXHnaB2NsRiMmKpUKxcXFCIfDcLvdSCaTcsNXuoAuWJBagzAwMACNRjPhhc5qtSIcDsNut0867D72gz/2TSgNx0s3ybkibbY4GbPZDI/Hg/b2dvmCIfV86HS6cx6gWK1W8DwPu91+VntPnEtqtVq+SVgsFgwODsrBz9kMwY8dgQVSN8WJ/h5KpRLl5eUYGBhAYWGh3BMbCAQmDDrsdvtZB1LSVJWmpib09/en9T6Looja2tq0IAo4vwMMjUYj965K78+xzGYzHA4H/H7/nE/ru9CNXf862ZTzC5nVagXHcYhEInJG24lmfJyO1Anl8/nkESkA8hQ8YPK1JtMlBbqjo6NyZ4LUi38m2dnZ6O/vx/DwsDz6UlxcnNGOsYnY7XaYTCaEQqFZ/XxzHDdpwDl2evdM2wjSlLCWlhZoNBrY7fYZBSNmsxlarRbRaFReCz8VUiAldTaP5XA45FkcBw8elN+nZWVlaG9vRyQSkaeUSeYqkJJmOwwNDSE3N3dce04KpIDU53O6bZOsrCx5uqr0emNnLUnMZvM5XZowXUqlckrTJ4ELKJC6EGk0min/IU9n7OaOLpcL7e3taQsHOY5DRUUFjEbjpPNgpQV/EzVWJWq1Wp5KNbanQRAEeW71udiE93QKCwuRTCah1WrlD/Fcz8GdjFarxerVqzNeJzNlNpvTpgecbe+StOGn2Ww+7XOdOiJ5ug2gbTabfGM8m/VvTqcTTU1NqY1wTy7qlm780vfV1dWIRCJQKBRzvoB/Lo3tXR17Qxz788WLF2fo7C4sDocDarUa0Wh0WhlZLxRjpwJJiWWm2+Gh0+nGJAxKjfRptVoMDqYW1ev1+jPu5TZVUtAWDoflUYupBhvSrIh9+/YhFovJyQLmG47jsHTpUoiieE4bupWVlQiHw2e19lMaYTkbHMehpqYGyWTyjMkVxpKSBdlstnHTSDmOw6JFi1BbWyuPWlksFrhcLmRlZSEajcojXx6PB9FodE5nHRgMhkk7F8aOis+083Gy941SqZRHw+bje/9UU+2AoUDqU0aj0aCmpmbcHGOe59MCrlNNNUNcaWkpvF7vuJvLfBlx4Xn+nGW6m4r53CNzJmN7Di0Wy1n/jT0eDxQKxZSz3U2FIAiz0hmhVqthNpvh8/nk9MIlJSVyViOr1Xpe3BimKisrC6Ojo7O+bpCk4zgORUVFaGhoGLc299OiuLgYPT09yMvLm9G6Qp7nU/tWnRwZt1gsyMrKwuDgIEwmE6qqqmYtE6KUcS4YDMprCKcz+qxSqbB48WJ5rcx8DZwnSrox1862s2s2KZXKab9nnE4nFi9ePOn0XKVSiSVLlshJtEpLS+VMdmPbAbMV9M+UyWQCz/PyfoqzraCgAH19fRfU9e78bcWRGZvLno6J1i+RC9PYtMCzccEVBOG0I56Z5nQ65d5Eo9EIi8Ui965NZwrI+SAvL0/eNoDMrZycHGRnZ39q63o21vxJm80CqUDKbDZj9erVUCqVs16vJpMpbcrgdBv/JpOJRnQvQBzHnXEEh+f5066bng8UCgWqq6vBGJuTqcY5OTkXVBAFAOfnnCJCSMZJmwEaDIZPRfA89iYpTYFdunQpVqxYcUEmCfi0Nuwzger67Ey0PlelUs1JvY6devZpuO6RTx+LxTKvE0HMNzQiRQiZsaKiIhQVFWX6NM4JjUYjZ1kbu4/Npy1BACHzjdVqlTezn8sNjYH0NSSUbIUQQoEUIYRM0aJFixAIBC6o9VCEnO9UKhVWrVp1Tkb2tFotCgoKIAjCvFnTQwjJHAqkCCFkiqQdzwkh88u5SmgkJQghhBCA1kgRQgghhBBCyLRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIEUIIYQQQggh06TI9AnMB4wxAMDo6GiGz4QQQsg5FwwC0Wj6Y6OjQDKZmfMhhBCSUVJMIMUIk+HYmY74FOjs7ER+fn6mT4MQQgghhBAyT3R0dMDtdk/6cwqkAIiiiO7ubhiNRnAcl+nTmZbR0VHk5+ejo6MDJpMp06dzQaG6nTtUt3OH6nbuUN3OLarfuUN1O3eobudOJuuWMQa/34/c3Fzw/OQroWhqHwCe508bbZ4PTCYTfYDnCNXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3cyVbdms/mMx1CyCUIIIYQQQgiZJgqkCCGEEEIIIWSaKJA6z6nVajzxxBNQq9WZPpULDtXt3KG6nTtUt3OH6nZuUf3OHarbuUN1O3fOh7qlZBOEEEIIIYQQMk00IkUIIYQQQggh00SBFCGEEEIIIYRMEwVShBBCCCGEEDJNFEgRQgghhBBCyDRRIJVhzz77LIqKiqDRaLB8+XLs3LnztMf//ve/x5IlS6DT6eByuXDvvfdiaGhI/vmvf/1rXH755bBarbBarVi3bh327NmT9hyFhYXgOG7c14MPPjgnZcyUTNRtIpHAt771LRQVFUGr1aK4uBjf/e53IYrinJQxUzJRt36/Hw8//DAKCgqg1WqxevVq7N27d07Kl0mzXbdbtmzBihUrYLFYoNfrsXTpUrzwwgtn/brno0zU7Y4dO3DDDTcgNzcXHMfh9ddfn4uiZVwm6vaHP/whLrroIhiNRmRlZeHmm29GQ0PDnJQv0zJRv8899xyqq6vlzVBXrVqFt956a07Kl0mZuuZKfvjDH4LjODz88MOzVaR5IxN1+53vfGdc+zYnJ2dOygcAYCRjXn75ZaZUKtmvf/1rVldXxzZu3Mj0ej07ceLEhMfv3LmT8TzP/v3f/521tLSwnTt3ssrKSnbzzTfLx9x+++3sl7/8JTt48CCrr69n9957LzObzayzs1M+pr+/n/X09MhfW7duZQDYtm3b5rrI50ym6vb73/8+s9vt7I033mCtra3sT3/6EzMYDOznP//5nJf5XMlU3d56661s0aJF7P3332eNjY3siSeeYCaTKe2Y891c1O22bdvYli1bWF1dHWtqamI///nPmSAI7O23357x656PMlW3b775Jnv88cfZn//8ZwaAvfbaa3Nd1HMuU3V7zTXXsE2bNrHa2lp26NAhtn79eubxeFggEJjzMp9Lmarfv/zlL+yvf/0ra2hoYA0NDeyb3/wmUyqVrLa2ds7LfK5kqm4le/bsYYWFhay6uppt3LhxroqZEZmq2yeeeIJVVlamtXP7+/vnrJwUSGXQypUr2f3335/22MKFC9k3vvGNCY9/6qmnWHFxcdpjTz/9NHO73ZO+RiKRYEajkW3evHnSYzZu3MhKSkqYKIrTOPv5LVN1u379erZhw4a042655Rb2hS98YbpFmLcyUbehUIgJgsDeeOONtOOWLFnCHn/88ZkUY146F3XLGGPLli1j3/rWt2b8uuejTNXtWBdqIDUf6paxVCchAPb+++9P8czPD/OlfhljzGq1st/85jdTOOvzQybr1u/3swULFrCtW7eytWvXXnCBVKbq9oknnmBLliyZ2UnPAE3ty5BYLIb9+/fj6quvTnv86quvxocffjjh76xevRqdnZ148803wRhDX18fXn31Vaxfv37S1wmFQojH47DZbJOex4svvogNGzaA47iZF2geyWTdXnbZZXjvvfdw/PhxAMDhw4fxwQcf4LrrrpuFkmVepuo2kUggmUxCo9GkHafVavHBBx+cZanmh3NRt4wxvPfee2hoaMCaNWtm/Lrnm0zV7afBfKpbn88HAJPe785H86V+k8kkXn75ZQSDQaxatersCjVPZLpuH3zwQaxfvx7r1q2bnQLNI5mu28bGRuTm5qKoqAj/9E//hJaWltkp2CQnQjKgq6uLAWC7du1Ke/wHP/gBKysrm/T3pKliCoWCAWA33ngji8Vikx7/wAMPsJKSEhYOhyf8+SuvvMIEQWBdXV0zK8g8lMm6FUWRfeMb32AcxzGFQsE4jmNPPvnk2Rdqnshk3a5atYqtXbuWdXV1sUQiwV544QXGcdxpX/d8Mpd1OzIywvR6PVMoFEytVrPnn3/+rF/3fJKpuj0VLsARqflSt6IoshtuuIFddtllZ1egeSbT9XvkyBGm1+uZIAjMbDazv/71r7NTsHkgk3X70ksvscWLF8v3uAttRCqTdfvmm2+yV199lR05ckQe7cvOzmaDg4OzV8AxaEQqw04dBWKMTToyVFdXh69+9av49re/jf379+Ptt99Ga2sr7r///gmP//GPf4yXXnoJW7ZsGdeTL3n++edx7bXXIjc39+wKMg9lom5feeUVvPjii/jDH/6AAwcOYPPmzfjJT36CzZs3z17B5oFM1O0LL7wAxhjy8vKgVqvx9NNP4/bbb4cgCLNXsHlgLurWaDTi0KFD2Lt3L37wgx/gkUcewfbt22f8uuerTNXtp0Gm6/ahhx7CkSNH8NJLL81KeeabTNVveXk5Dh06hN27d+MrX/kK7r77btTV1c1q2TLtXNdtR0cHNm7ciBdffHHSttmFIhPv22uvvRb/8A//gKqqKqxbtw5//etfAWDu2mFzEp6RM4pGo0wQBLZly5a0x7/61a+yNWvWTPg7X/jCF9jnPve5tMd27tzJALDu7u60x5966ilmNpvZ3r17Jz2HtrY2xvM8e/3112dYivkpk3XrdrvZM888k/bY9773PVZeXj6Tosw78+F9GwgE5N+79dZb2XXXXTeTosw7c123Y913333s6quvnvHrnm8yVbenwgU4IjUf6vahhx5ibrebtbS0zKAE89t8qN+xrrrqKvblL395imc/v2Wqbl977TUGgAmCIH8BYBzHMUEQWCKROMuSZd58e9+uW7du3Hqt2UIjUhmiUqmwfPlybN26Ne3xrVu3YvXq1RP+TigUAs+n/8mk3njGmPzYU089he9973t4++23sWLFiknPYdOmTcjKyjrtWpXzUSbrdrLnuVDSn8+H961er4fL5YLX68U777yDm266aabFmVfmsm5PxRhDNBqd8euebzJVt58GmaxbxhgeeughbNmyBf/7v/+LoqKimRZj3ppv790L6f2dqbq96qqrcPToURw6dEj+WrFiBe644w4cOnTogphlMZ/et9FoFPX19XC5XFM9/emZk/CMTImUGvL5559ndXV17OGHH2Z6vZ61tbUxxhj7xje+we688075+E2bNjGFQsGeffZZ1tzczD744AO2YsUKtnLlSvmYH/3oR0ylUrFXX301LfWj3+9Pe+1kMsk8Hg979NFHz01hz7FM1e3dd9/N8vLy5PTnW7ZsYQ6Hg339618/d4WfY5mq27fffpu99dZbrKWlhb377rtsyZIlbOXKladda3W+mYu6ffLJJ9m7777LmpubWX19PfvpT3/KFAoF+/Wvfz3l170QZKpu/X4/O3jwIDt48CADwP7t3/6NHTx48IJMLX+u6/YrX/kKM5vNbPv27WnXjVAodO4Kfw5kqn4fe+wxtmPHDtba2sqOHDnCvvnNbzKe59m777577go/xzJVt6e60NZIMZa5uv3nf/5ntn37dtbS0sJ2797Nrr/+emY0GufsfkaBVIb98pe/ZAUFBUylUrGampq0tK133303W7t2bdrxTz/9NFu0aBHTarXM5XKxO+64I20fnYKCAgZg3NcTTzyR9jzvvPMOA8AaGhrmsngZlYm6HR0dZRs3bmQej4dpNBpWXFzMHn/8cRaNRue6uOdUJur2lVdeYcXFxUylUrGcnBz24IMPspGRkbku6jk323X7+OOPs9LSUqbRaJjVamWrVq1iL7/88rRe90KRibrdtm3bhO/tu+++ey6Les5lom4nqlcAbNOmTXNZ1IzIRP1u2LBBfk2n08muuuqqCyqIkmTqmjvWhRhIMZaZur3tttuYy+ViSqWS5ebmsltuuYUdO3ZszsrIMXaa8TJCCCGEEEIIIePQGilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIIYQQQqaJAilCCCGEEEIImSYKpAghhBBCCCFkmiiQIoQQQgghhJBpokCKEEIIOcdisRhKS0uxa9euWX3eN954A8uWLYMoirP6vIQQQsajQIoQQshZueeee8Bx3LivpqamTJ/avPWrX/0KBQUFuPTSS+XHOI7D66+/Pu7Ye+65BzfffPOUnvf6668Hx3H4wx/+MEtnSgghZDIUSBFCCDlrn/3sZ9HT05P2VVRUNO64WCyWgbObf37xi1/gi1/84pw897333otf/OIXc/LchBBCPkGBFCGEkLOmVquRk5OT9iUIAq644go89NBDeOSRR+BwOPB3f/d3AIC6ujpcd911MBgMyM7Oxp133onBwUH5+YLBIO666y4YDAa4XC789Kc/xRVXXIGHH35YPmaiERyLxYLf/e538vddXV247bbbYLVaYbfbcdNNN6GtrU3+uTTa85Of/AQulwt2ux0PPvgg4vG4fEw0GsXXv/515OfnQ61WY8GCBXj++efBGENpaSl+8pOfpJ1DbW0teJ5Hc3PzhHV14MABNDU1Yf369dOsZaCtrW3C0b8rrrhCPubGG2/Enj170NLSMu3nJ4QQMnUUSBFCCJlTmzdvhkKhwK5du/Cf//mf6Onpwdq1a7F06VLs27cPb7/9Nvr6+nDrrbfKv/O1r30N27Ztw2uvvYZ3330X27dvx/79+6f1uqFQCFdeeSUMBgN27NiBDz74AAaDAZ/97GfTRsa2bduG5uZmbNu2DZs3b8bvfve7tGDsrrvuwssvv4ynn34a9fX1+I//+A8YDAZwHIcNGzZg06ZNaa/729/+FpdffjlKSkomPK8dO3agrKwMJpNpWuUBgPz8/LRRv4MHD8Jut2PNmjXyMQUFBcjKysLOnTun/fyEEEKmTpHpEyCEEHL+e+ONN2AwGOTvr732WvzpT38CAJSWluLHP/6x/LNvf/vbqKmpwZNPPik/9tvf/hb5+fk4fvw4cnNz8fzzz+O//uu/5BGszZs3w+12T+ucXn75ZfA8j9/85jfgOA4AsGnTJlgsFmzfvh1XX301AMBqteKZZ56BIAhYuHAh1q9fj/feew9f+tKXcPz4cfzxj3/E1q1bsW7dOgBAcXGx/Br33nsvvv3tb2PPnj1YuXIl4vE4XnzxRTz11FOTnldbWxtyc3Mn/NnnP/95CIKQ9lg0GpVHrwRBQE5ODgAgEong5ptvxqpVq/Cd73wn7Xfy8vLSRt4IIYTMPgqkCCGEnLUrr7wSzz33nPy9Xq+X/79ixYq0Y/fv349t27alBV6S5uZmhMNhxGIxrFq1Sn7cZrOhvLx8Wue0f/9+NDU1wWg0pj0eiUTSpt1VVlamBS8ulwtHjx4FABw6dAiCIGDt2rUTvobL5cL69evx29/+FitXrsQbb7yBSCSCf/zHf5z0vMLhMDQazYQ/+9nPfiYHbJJHH30UyWRy3LH33Xcf/H4/tm7dCp5Pn2Ci1WoRCoUmPQdCCCFnjwIpQgghZ02v16O0tHTSn40liiJuuOEG/OhHPxp3rMvlQmNj45Rek+M4MMbSHhu7tkkURSxfvhy///3vx/2u0+mU/69UKsc9r5Q+XKvVnvE8vvjFL+LOO+/Ez372M2zatAm33XYbdDrdpMc7HA45UDtVTk7OuHo0Go0YGRlJe+z73/8+3n77bezZs2dcoAgAw8PDaWUkhBAy+yiQIoQQck7V1NTgz3/+MwoLC6FQjL8NlZaWQqlUYvfu3fB4PAAAr9eL48ePp40MOZ1O9PT0yN83NjamjcLU1NTglVdeQVZW1ozWIwFAVVUVRFHE+++/P26kSHLddddBr9fjueeew1tvvYUdO3ac9jmXLVuG5557DowxecrhdPz5z3/Gd7/7Xbz11lsTrsOSRtyWLVs27ecmhBAydZRsghBCyDn14IMPYnh4GJ///Ofl7HLvvvsuNmzYgGQyCYPBgPvuuw9f+9rX8N5776G2thb33HPPuOlrn/nMZ/DMM8/gwIED2LdvH+6///600aU77rgDDocDN910E3bu3InW1la8//772LhxIzo7O6d0roWFhbj77ruxYcMGvP7662htbcX27dvxxz/+UT5GEATcc889eOyxx1BaWpo2JXEiV155JYLBII4dOzaNWkupra3FXXfdhUcffRSVlZXo7e1Fb28vhoeH5WN2794NtVp9xvMghBBydiiQIoQQck7l5uZi165dSCaTuOaaa7B48WJs3LgRZrNZDpaeeuoprFmzBjfeeCPWrVuHyy67DMuXL097np/+9KfIz8/HmjVrcPvtt+Nf/uVf0qbU6XQ67NixAx6PB7fccgsqKiqwYcMGhMPhaY1QPffcc/jc5z6HBx54AAsXLsSXvvQlBIPBtGPuu+8+xGIxbNiw4YzPZ7fbccstt0w45fBM9u3bh1AohO9///twuVzy1y233CIf89JLL+GOO+447fRCQgghZ49jp04wJ4QQQuahK664AkuXLsXPf/7zTJ/KOLt27cIVV1yBzs5OZGdnn/H4o0ePYt26dRMmwzgbAwMDWLhwIfbt2zfhhsiEEEJmD41IEUIIITMUjUbR1NSE//t//y9uvfXWKQVRQGrt1Y9//ONZT1He2tqKZ599loIoQgg5ByjZBCGEEDJDL730Eu677z4sXboUL7zwwrR+9+67757181m5ciVWrlw5689LCCFkPJraRwghhBBCCCHTRFP7CCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSaKJAihBBCCCGEkGmiQIoQQgghhBBCpokCKUIIIYQQQgiZJgqkCCGEEEIIIWSa/n+Tg6GQYMqD2QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHFCAYAAADPBC+gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d7gkV30m/FZ17r45zNzJQRoJSaOEJIQCWSTbAgMOYLyA8a4NayzCencdP+O0rO39vF6Dl8/GCYwxeNckmxyMckBhokaa0eQ7c2duDt19O1XV90fVqT5dXeFUru573ueZZ253VzhVdeqE97zv7ycoiqKAg4ODg4ODg4ODg4ODg4ODg4ODwzPEuAvAwcHBwcHBwcHBwcHBwcHBwcHR6+AkGwcHBwcHBwcHBwcHBwcHBwcHh09wko2Dg4ODg4ODg4ODg4ODg4ODg8MnOMnGwcHBwcHBwcHBwcHBwcHBwcHhE5xk4+Dg4ODg4ODg4ODg4ODg4ODg8AlOsnFwcHBwcHBwcHBwcHBwcHBwcPgEJ9k4ODg4ODg4ODg4ODg4ODg4ODh8gpNsHBwcHBwcHBwcHBwcHBwcHBwcPsFJNg4ODg4ODg4ODg4ODg4ODg4ODp/gJBsHBwcHBwcHBwcHBwcHBwcHB4dP9BTJ9sADD+Dee+/F1q1bIQgCvvzlL3f8/p73vAeCIHT8e+lLXxpPYTk4ODg4ODg4ODg4ODg4ODg4Ngx6imSrVCq48cYb8YlPfMJymze84Q2YmZnR/33961+PsIQcHBwcHBwcHBwcHBwcHBwcHBsR6bgL4AZvfOMb8cY3vtF2m1wuh6mpqYhKxMHBwcHBwcHBwcHBwcHBwcHB0WMkGwt+8IMfYNOmTRgZGcErXvEK/MEf/AE2bdpkuX29Xke9Xtc/y7KMxcVFjI+PQxCEKIrMwcHBwcHBwcHBwcHBwcHBwZFAKIqCtbU1bN26FaJobwjtK5LtjW98I37yJ38Su3btwunTp/Fbv/VbePWrX42nnnoKuVzOdJ+Pfexj+J3f+Z2IS8rBwcHBwcHBwcHBwcHBwcHB0Ss4f/48tm/fbruNoCiKElF5AoUgCPjSl76EH//xH7fcZmZmBrt27cLnP/95vPWtbzXdxqhkW1lZwc6dO3H+/HkMDQ0FXexAMT09jdOnT2PTpk24+uqrMTs7i+effx4jIyO4/vrrQz//6dOnMT09ja1bt2L79u144oknIAgC7r777tDPzREvjh07hvn5ef3zLbfcgmKxGGOJkoUzZ87g/Pnz2LJlC6688sqO306ePImLFy8yv6eSJOGRRx4BANx5551IpVKhlJkjuTh8+DCWl5dx1VVXYWxsDI899ljH7+Pj41hYWMCePXscO/0goSgKHnroIQDA7bffjmw2ix88P4vf/scHcdNwA+97w0245ppr9O3r9XpXP0Hq92cfO4sT1Tzed8swbrhyB5rNJpaXl3H11VfbqtHd4Jbf/SauEmbwrpfuwhvueVXoavX3/vHnsV5bx4d+6h7cfvUO222fOXkJf/S5b6CQzeJv/us7Qy0XEyoV4M/+rPO7++4DSqV4yqPhs4+dwX//xvO4dzfwI1cWmer8Pz5xFn/wtefwo7tF/NiVeWzbtg179+4NtFy/+s+H8K+HZvCfXrcPP3eXeuxTp07hwoULzOcjfcP27duxZ88eXLx4ESdPnsTExETHe+QE0l6k02m0Wi39eCw4e/Yszp07BwC49dZbUSgUmM+bVFy4cAGnTp3C5OQktmzZgkOHDiGfz+O2226Lu2iJBhnHDA0N4cYbb4y7OByMWFxcxNGjRwEAxWIRt9xyS8wlSiZIW0eP0y9fvozjx49jdHQU+/fvt93/qaeeQrVaxf79+/Hss89CluXY2kzSVwCAKIq46667Ii+DVzzxxBOo1+soFouoVqvYvXs3duywHi8tLS3hyJEjjnX72WefxcLCAvbu3Ytt27Z1/HbgwAGsra0BAO6++25XY8HV1VXs2LEDy8vLGB4ett22r5RsRmzZsgW7du3CiRMnLLfJ5XKmKrehoaHEk2wDAwMolUoYHBzE0NAQ1tfXUSqVMDAwEEnZi8UiSqUSRkZGMDw8jJI2+E76fePwj1KphPX1df3zwMAABgYGYixRsmB8N2mMjY1hZWUFExMTTO+Koij6uzUwMIBMJhNKmTmSi1KphGazieHhYYyMjOj1gWB4eBi1Wi2ytp9AlmW9LMPDw8hkMmiIq0jlShgayqJUKnWUp1aroVQqQRRF/XtyjMGBEtJSFqlsHoODg2g2m2g2m4FdkywrUNJ5ZNIFDA6qxwybZMsXS2gpQDZfdLyGQqmMTK6AbD6XjD40lQKMY6OhodhJtoHBIYi5IrJ5xbKNNSKVK0HMFVEqpVAq5TE8PBz4PR4aGoKYW9Hq/pD+3fLyctd7YAXSb5DxZ6VSQalUQrHoXH+Mx2k2m8hms2g0Gkz3iKBUKunv9ODgYF8sni0tLaFUKmF4eFgfq+ZyCXnPEgxSF1jrL0cy0Gw29XfYbduxkZDL5VAqlTA6OqrfIzKPZqnzhUIBgiBgZGQEIyMjqNfrKBQKsdzv1dVV/ZkLgtBTz7xYLCKdTmN0dBSCICCfz9uWn9Rvp35tamoKtVrN9H4Ui0XIsgxA7eecbJ9mYBk/9jXJtrCwoKtJ+hFEhEgeNPk/KnGiJEkAgFQq1VHZFEXh8ez6HMY6Rn9uNpsQRXFDK66M7yaNqakpNBqNrpUVK9DHIJ0Cx8YCee6CIHQNBgRBiK29pd97Uq6lSgMKgEKme9Bi9l6Qv3PpFEQoqLekjmsKqj9rSO13JyWKkdwzck+aLef3VrJpMzjaELX7I2vVgqV+NCV1m5RWJb0MqJ2QTavHrFPPmpyHtQ4b3w/Sh5KxFivIcdyeH+jsY3rU6NIFs7Fqv1xbmODjjd4EXbd5PbdGo9EAAGSzWf07N+0DeT9SqRQymQzq9TqazWYIJXWG8Zn30jyclJ08B6d7SI+H7UCEH+Vyues3uk+VZTmUMQHQYyRbuVzGCy+8oH8+ffo0Dhw4gLGxMYyNjeGjH/0o3va2t2HLli04c+YMfv3Xfx0TExN4y1veEmOpw0NSSDbRMGHppZebwxuMdYw0eq1WC4899hgKhQJuvfXWOIqWCNiRbLlcDvv27XN1PFEUIcsyHzBtUNCTZkJAke/inDjS5yNlWKqqA9d8JmVJxpu+F2kRAlSSIiySjZw1nQpnQGVEShS0czuTJLJM7k2oRep5kHsquSLZ1P4prd3bMAbUOY1ka1Akm9s6TPpRUj7yv1uyw/iecZLNfKzKYQ/y/PulHmwUcJKNDYTM8Uqy0e0KcZjERbIZ0UvzcLckm3ERyQpE2VepVLqINLqfkyQJ6XQ4dFhPkWxPPvkkXvWqV+mfP/KRjwAA3v3ud+OTn/wkDh8+jM985jNYXl7Gli1b8KpXvQpf+MIXMDg4GFeRQ4XdhCUK0Cw+Dd6o9z+sJs/1eh2SJKFcLvdUIx8Wgrp+QrLxleWNCbMFFSPxRm8Xdbnosi1VG1AgIJ8RmUg2Qqjl0iJESGiERbK1ZAhQj5WJiGRzpWQjBMsGbzOdkNLrBfs+LY1kI489jH7JTMnmtg4nTcnWL/0NV7J5A3n+/F71LvizswZRspmFYPGiZAPiI9ns3EVJh1clmxPJls/nkUqlIEkSqtVqR0gjo5ItLPQUyfbKV77StuJ861vfirA08SMpSjajXZSj/2GlZKMbKxITxgmNRoNpu15C0AS4V0UDR3/ATOFiNtCIk2QjWKo0NbuoOyVbNp2CgBbqzXBINkJ+pMTo7LUp7dm0JBaSjdtFWSCK7u2iDU32FqaSLasRYmYkG2u7bXw//Lb7XMmmgp4Mc5KNHZxk601wJRsb7OyiTqCdJUlQsnGSrRuCIGBgYAArKysol8sdJFtUi0nRLOdyhIK4lWx2dlGO/oZVg06vDrB0NpcvX8YjjzyCixcvBlvAmMFJNo4gYTX5Jn/HHZONJsUWKbuoEVaxNARBQC4jQoSCRlgx2TQlWxwkW5PJLqr+L4CTbHYgajTZRb0gdtFUmHbRTLdd1K2SLGi7qBclWz9O0LmSzRs4ydb74M/OHLIs6+0CrWRjbR/oNjkJSjYjemmuEBbJBrTjslUqlY7zGe2iYYGTbD2MOJVsjUZDzy6ZyWQ4ybbBwKpkcwJp+MwCU/YyOMnGESSM5BQ9uEhCTDa6ni9rdtFC1lrJZpa8IZsWIQiKHpPNuI9fEPIjFWGiiJTG6jRbzoM4SWEL5rvR4S3xQWdMtlDsoiliF20/a792Ua/vNbeLdoIm2Qj4ONUZnGTrTdDPq1/e4aBBVGyCIHTE42Jtc2liRhCE2Em2flKytVot23rLmvgAME9+YDw2V7JxmMJqIh/Fy/XCCy+g1WphYGCgKzVuL73cHN4QlJKtXwdxQZNsbm1HHP0F46SZrldJiMlGl2dRs4uyxmQjn0NPfNBSEx/Eo2Rjie9CnnGoRep5pHS7qBslm3ZvI1ay+SXZ4lCy9aNdlCvZvIEnPuh98GdnDjrpgVm2c1YlG2lTOMnmDXQ5aUVhq9Vy3IelHy8WiwCgi4KAbuUaJ9k4TGG16hk2FhYWMDs7CwC4+uqr9QkRH7xsHASlZCPH6TfyKCwlG3+3NibslGxxkmzGcimKgmXNLuomJptKsqUgQkHdYBcNCg1Jit4uqqmbWgxKNkIacR2bPUjiAy9KtjDtokTJ1pC8k2xGG4xfJZuXes5JNg6Cfl0E7Xf0o+U7aNglPQDYlWykrY6bZDOiV+ZU9H2mY9uR52MGN3ZRolK0S3TASTYOU8RhF5UkCSdOnAAAbN++3TRzK2/U+x/kGRP7hZmSza6RJOjXQRy3i3IECePKnZFkM24XV7nW6i20ZEW1i7om2UQIUNBoyaEQh3VNyZYWo6Ox0iTxAcN7yxMfsMGY+IAFhGQTBfYVcLfQs4s2k5P4gNtFVdCLATy0CTv6dXzW7zCSbPz5dYNWotFwk/iA3j9ukq0flGysikA3JJtZhm6jko3HZOMwRRyJD86dO4darYZ8Po89e/Z0/MYnBxsHxsm1XyVbr3QIrOAkG0eQYI3JFjWM9Xy5or7z+bSIdKp7eOFEsqlKtj7KLuoiJpscQ3/eiyBKNuLAdaVk06pkGPc4l1YH87SSzS3JZbdw6iV5Ac8u2okwFLL9DE6ycfQrrIgatzHZzJRscbwvnGQzByHZ6GywXMnGwYQ4lGwrKysAgJ07d1quAPTKy83hHVZKNrckmxk51w/gJBtHUKAn2FZKtqTEZFvSrKJDhYxpeZztoiHHZBOizi6qto8thphsRMkmchLAFiQmm5t6QWKykRFLKDHZiJLNR+IDq+yibo5Bb8tjsqmg2x2uZGMHJ9l6E71KuEQJu0zngLuYbAB7PLGo0CtzBT8kG8s4juYpCDHKSTYOJsShZCPnNPOxc5Jt48A4GSCf3SY+4Eo2NnCSjQMwj7+ZJJJtUSfZsqblsXsvchnVLtqUZEiyEl7igwjVLETN12KwI7TtoqEWqedB7KJEMOZGyRamXZSQbGEkPgDctf2cZLMGJ9nY0a/js40GPm7shlXwfK9KNlEU9b/jINl6lVg1lpOFZHOT+IAeH5Pnwu2iHEyIQ8lmJ9PkJNvGQVBKNp74gA08u+jGBf3Mk65kW/ahZMumRJ0EqTblUEg2IFq7KCHZmpLzeyvzmGxM0BMfgJ0AaJNs6ucw7nHWhmTzGpPNLyHk1y7aL/2NVbvDx6r26Jfnv9HQq4RLlPBrFzWL6RZngrJefeZGlTFt77SCG7so0B2XjSvZOJgQB8lmRx5wkm3jwEiyeVWy9asdISwlW7/dJw5nGOX0QPISH5Byra6rK4UD+bRpeexINlEUkNNimK03pOBJNknWsouK0ZFsZGWbiWRjt0BsZJDqznBLdegEq36MEBMftLpJcbd2UXpM52WBhSvZOmHWhhq/5+hGv47PNhr48+uGE1HjVskGJGsOnIQysMCKxwiSZDNmGDUq1zjJxmGKOOyiXMnGAVgP4unGqtFoONaFfrUjcLsoR1Cgn3nSEx+U6yrJVsqmTbd3ioOST6v/VxrBT/QbVHbRRNpFSZvKOTZb6Eo2rVqw1A9CfIlimHZRLfFBAHZRvxM3TrKZgyc+cAdOsvUmelXVFCXsFvxYYKZki3MObDxnr8wVrEIk2N1DrmTjiARJU7IZt+HoX7Ao2RRFcfS688QHbOAk28aFWdDupMRkM5JmhGQr5uztolYWDUKyrTdaIWQXVduiSO2imrpJYnhvZZ74gAkk8YHsol6oxJeCFLpJ6qBgpmTzG5MN8Nb2e+1/FKUzi2m/9Dc88YE30CQbv1e9A06yOSPo7KI0kkCy9coz96NkY+3fjCQbj8nGwYQ4lWx2dlGO/geLkg1wtoxyJRsbOMm2cWHW5iYtJhspT7lGlGydsRqN21utHhM1UIWKyRYUVCVbtNlFM7pd1Pm5SDH0570IQrKRW8qqZBOgIJXqJqmDQhCJD8ze9SjtosZz9Fu/TMBdF87g96Z/wJ9lN8KIyZakdiUJZWCBsc9j6bPcJD4AuJKNwyPiVLJxu+jGhpWSzS3J1u9KtqDASbaNC7M2N6kx2SrELuohJhvQJioq9RBispHsohH6MUn7yBKTjVwmJ9nsoSvZZPZ60WjJENG2moapZGtIclc9d5v4wOz99vIeuN23V9UQTohjrNzr2CiEaz+iX9/jIOEUusJPTLY40G920TASH1hlF+UkG4cprCYsPPEBR9iwWik3Nl5cycazi3L4g5OSLUkx2dYIyZbLMm1PoJNsGU0RF0Lig7qW+ECMUsmmxWSTXCQ+4DHZ7EHstG5jsglQkA5RyUZINnI+wDvJFbRddKMr2eIYK/c6+rUubETwcWM3nNRQvaZk61Vi1csCSFAx2TKZTMf3YYCTbD0Mq8oZJnjiAw76+Vop2UhdYFWy9VudCcsu2m/3icMZLEq2uO2iRiVbMefNLkqIikoY2UU14iOOxAeSzJD4QOZ2URYY7aIsqLck1S6qxeQK0y4KqGo2IFi7qNUxms0mzp07h3q9rn8XlF20XyfnfKzqDE6y9S56lXCJEk52USfw7KLBwIuSjdx71mdllV2UfM+VbBymSFrigyQ1MBzhgX6+Vkq2XC4HQM0wynKsfhvM85hsHEHBrC4lJfGBsWwk8cGgS7sogR6TrR584gPaLhqZkk27HonB2kgC+fPEB/YwJj5gqR/0sw/DKgoA2RSlZGu6J9nM+lX6b6u2f3p6GqdOncKFCxe6jsVjsqngdlH36Ne6sBHBn103WGKysaipkqpk65W5glXbbFX+Wq2GWq0GACiVSkzncFKycZKNwxRBT+RZwJVsHCxKtnw+D4Ar2TjJxuEXZm1uUpVsenbRrLeYbETJtlaXA7+megyJD4iSreUiuyhXstnDrV1UURTUWzJE7dmHRbIJgtARl418B7C12/R1uFGyVSoVAO14M2bH2egkmxH8HXMGV0P1Lvizc4ZTTDYnJE3J1qvP3Lgg5LQwtLCwAAAYHh7WSTInWGUX5SQbhy2iXp2zGgTabcfRfzAj2ayUbKwx2fqVPOIkG4df2MVpAjpXUmMn2bTsogP5jGl5HGOy6YkPwlGyAdAtg1HATUw2nl2UDW4THzQ1X6kQMskGALlUZ4ZR+lmyxvgx7ufU9lerVcvfuV1UBVeyucdGIVw3Aviz64ZVTDbWNjvpSrZeeeZulWyEZBsfH2c+h5WSzWgjDQOcZOthRK1koyu9nZKNo79hZmvxqmTjiQ/YwEm2jQunxAe0ki1qGMtW1hMfpE23dybZ1MHQWqPVtY9fxGEXTadJTDZ2JRu3i9qDZAglMdmc6ke9pSkOhPDj8RElm35OF5l/reyidpMORVGwvr7esb/VcVjQj8SK2eIwJ9mc0Y91YaOgVwmXKMESk83uviVNyWZEr8wVrGKymd3DVquFpaUlAMDExATzOYzZRbldlIMJSVOyJamB4QgPVjHZFEXRGytWJRttF+2nesNJNo6gYLbimsSYbJKsoNpQB56DOXMlm5NFgyjZyrUQEh9IMgAl0sQHWWKnZ4jSr8dk4+lFbUFeA4mxXuiqsiiUbGnvSjar3+0mHevr613kGreLOoOPVZ3Bxxq9i16NzxUlWDJU9qKSrdfaNiuSzazOLi0tQVEUFAoFFAoF5nNwuyiHJ1hN5DnJxhEm6HpHN4h0Q0WUbKyJD4x/9zqCJtncxPbh6C+4UbLFRbKJoogKpT4rebWLZrSYbI1W4ERYoyVDEJKrZGtnFw21SD2PduID9bNTnSfx0TJiZ58VBrI+SDb6PWe1ixIVG/271SIYC/rRLmo3bu2nMUfQ2CiE60YAf3bdCCMmG0GcJJvbNj9uuBEL0VZRN2M4oy3UqGTjdlEOU1hVzrBgNQgk4CTbxgBd7+hnTg/KWJRsRvVaP9WbsJRs/XSPONhgpmRLGskmCAIqmlU0kxJ0RY+xTE5xUMh+ayEo2eotKfLEBxmyguoi8D23i9pDt4syxmQjmT5J3Qrz2RO7c92EZHMirJzeDbP3gMRjs/qdZxc1h909lWUZhw8f7sjWuhHBLYe9C/7snNFvMdkIes31wqpkUxTFUzw2gE3JFtYz4yRbDyMuu6jVIDUJDQxH+LBSstErO9lsFoDamFk19v0saY/CLrq2toa1tbVAjs+RXDgp2ZKS+IAkPSjl0pZqIdaYbORY9D5+QcdkiwoZNzHZOMnGBGKnVRS2MANEyZZLdQ7iw4CZko11XGT1bthNmmiSzUzJxu2i7mOyra6uYmFhAdPT09EUMKHox7qwUcGfXTf82kWTFpOt35RsxvZndXUVzWYT6XQaw8PDrs7hlPiALkfQ4CRbD8NuIh9GhWFplMI6N0dy4KRkE0UR6XRa/81KzdbPg7iwSTZZlnHgwAEcOHCgr8hJjm44KdmslMVRoINk05RsA7m05Wqw03tBSApJAdZb3aSBHxB1UZRKtqyuZHO+Bp5dlA1EyaZAAEvNIEq2bIQkG0l8ALBPvJzsS6xKtiDtov3QJ9uRbHbb98O1+0E/1oWNAq5kc4Zd4gOnNpue75gp2eJAv5BsVuUnKraxsTHXfbgx8YFRyQaEJ/LgJFsPI2q7KFeycQBsSjZBEPRVAiuSrZ8HAmGTbM1mE5Ik2SoFOfoDZnWJHpC4UcuEWTY/JBv5nBYFpEQBCgQ9iUJgSjZJjtwums1oiQ9Y7KI8uygT6MQQMpOSTa1H2XT4JFtOJ9naz9utks1YPlYlmxk55LZd6Gd1OQ27+8JCslUqFRw+fLivleScZOsf8GfXDatFDRpW941+N5KiZCNIil2U1YLJqmRbWVkBoJJsbkFINlImMyVbWHHZOMnWwwh6Iu8EJyUbX4HfGHBSspEGjVhGWZVscXcKQSIKks14Lo7+hFm7S94x8n8SSLYKRbKZbWPcngY9wMqlRCgAKvWASTbKLhpdTDbtvWW4Bs3VyBMfOIDYfRWollEn6DHZNMFBmM/eaBelz+fVLmo16Wg2mx39gNEu6ibpgvEYpF3ph77FrV3UzHZrxOzsLBYWFnD58uUgi5oocJKtd7FRyHI/sFrUAJz7CPp+JiUmW5KUbLIs44knnsCBAwcct2VVshmTFbiBkUyj+7mwScm08yYcSYWdkk1RlMAHk1zJxgF0rgBZKdmAdmNolWGUK9nYYZxoEdkz/R1Hf8KsLhWLRUxOTmJwcNB02zjKtqbFURvIe1eyASpREYqSrSUjhYjtoul24gOnPllRCJnKWTY7pDrqlnP9qJPsohHYRe2UbE7ttJWywmrSQavYAKDelPAn334eDz0/g7fvqmFqpOi6ntOTD0mS+qpPpuFXyWaM7dOP6OfxWb+DPztn2IlGnOay5P03hurgJJuKRqOBWq2GWq3muK0VySYbxkys4arMQJ6Toigd81FRFJFKpSDLMifZOLrhRLKFfT4jOMm2McCqZCMk20ZTspmtnPsF3bEoisKVbBsIZpNvQRBw3XXXdXyOA3TZiJKtZLCL0mAh2XKaxbJcb6GI4Op3vSWjBAXpGEg2QVHjsqVT1ueVuF2UCfQYm8kuqhFeWTGKmGypjnPS5wvaLrq+vg5AfXeev7SK7504j8fLY8iihQfqq/jp23d7TnyQTqfRaDT6ok+264/9kmz93PdyJVv/gD+7bvgh2czisbHsFwWSYBelz+28uMgW9sovyZZKpdBqtTrmTqIo6sfjdlGOLiTVLsob9P4GPRmgG3Rj/XAi2fp1tS1skk2W5Q4lW7/cNw5z2NkaCOK2i4qiqMdkG/QRkw1Q1UAKBJRDsIsCQEoQI4zJpj4zQVDQlOyvQ9bvTejF6ml0JD5gsYtqzz0jhh+7NpvyH5ONNfEBUbKdWm7h64dnsLrexLaRAjIpAdPL67i4vN6xL8t71M92UVbFCfnObpLKYintdXCSrXfRr2ProEC3h2b9AauSzSxpgt1+YSJJSjYjyWYHKyWb8Th+SDag3acRJRuJZxw2KclJth6FXZwJ4+9Bn5Mr2TY2rJRspOPxqmTrl3rjRLI1WjK+dmgG3zg8g0dOzuPUXNnxmHYkWz+oDTiswRKgN26STRAErFFKNqsyOWVQBAjJBlQawa4sqokPoo7JpinZtPPbgZBsXMlmj46YbGBXskViF80EH5PNahJASLYXFtX+9bqtQ/juR16BH7t+CwDg0VOLvuyiLGXuVdjdFxYCzY+SjZXwjBv9Oj7biODPrhP0/bDrD3pJydYvJBvdNpuRbF7HbmYkG/09t4tydCAMtYwTWJlk3qD3N+hGka4LhPgh3zklPrAKbNnrcHo3P/mDk/if3z3e8d3/+Mkb8RO3bLc8Jh1TQJZlbhfdQOgFJVtQiQ8AEpMNWKtLQD6Ya5JkBZKsQBCjzS5KEh8IUNB0Itm4XZQJgiCAhK1jU7Jp2UW11ydMki2v2UVrrTZB7DYmG6s6gpBsC3X1970TRRSyKbzrjl34zaPP4IW5Cp6/1M5+6WTbocsQ9sQjSnhVstm1O36UbAcPHkSj0cCtt94aal30C06y9S64ks0eVtlBCXpRyUZgtijTarU6nEdhIyiSzWyB1q+SjcydyGeuZOMwBVeyccQFMyUb0E2ycbto97tSb0n4+8fOAACu2TKEzUM5AMD9x+ccj0t3BtwuunHgZgUvTpKtXOsk2cz6AyvCsFPJlgIg6PbTIK6JKIuIki0qpFIp/XyOJBsDmcqhgtxTNzHZtFB/od7fYlY9yTqlwnQbk41FyaYoih6T7VJF3W9Qe+92jRexb1JNiPKXD57uOr4d6JhsrPskHWbXwEKyWf0O+FOyLS8vo1qtWiaESgr64dlzqODPshN0W2pnF3Xa36hkI0iSkq3ZbOLRRx/FoUOHIiuLG5LNOL6l55Vmx/Haf5M+zahk4zHZOEzhpJYJ4yVnjcnG0d9wUrIZ7aJWg8mNkPjAiG8cvoT5cgNTQ3l89QN34Y9+4kYAwNELK47HpTsebhfdOHCjZIsaHSSbFkNtIN9JslltbwViF12rBReTjbbvRalkEwQBKUGACAXNlhPJov7PlWzOEAWBOSYbefbpCGKyFTSSrdpot89BxWSj2/n19XUoigJRFDG9RmIhti2et+4ehQLga4dnsFxtdBy/Wq1icXHRtAz9bBd1q2Sz+h3wrmSjtw9rUhcUuJKtd9GvLpGgQBM7/R6TrVarQZIklMvOYWmCLgvgXPfM+j3jNRAHD/2bWxjtouRz2KptTrL1KJyUbGGekyvZNjZYlWxk5YAmhMyOY/W5V2FHgH/60TMAgHfevhOZlIj9W4cAAKfmK1irmSv+COiOh9tFNw5YiKkk2EXLdbVO2sVkY7GLqtlFg1WyEcugKCgQhehISXUhQj2XY0w2mdyb0IvV89DjsinO9cOY+CAKJVu10W0XZV3Rt8ouSu9PVGypbA6rGhk9QJFsm4by2D1egqwAp+YqHfsfPXoUhw4d0o9hVoZ+Itnc2kVZVBhBEGRJJz44yda76NexdVBwWrj0m100ThiVz3FkQvZjFwW6r4E1hp4djHZRo5KNk2wcHbCquGFOtpxsS5xk2xgwNoqkkbJSslmRbP06iLMiEg5NL+OZc8vIpkS84/adAIDxgRy2DucBAM9eXLU9LreLbkywrOAlgWSraEq2wUBINi0mG4Ii2dpqJqvV6zBAlGwCFDRa9hNziQz8EzBQTzpIhlEZznVDt4tGEJPNzC4aRuKDWq2mnkdOQYaAXFrUEzuQ4+wcL0EBMF+udxyPrOSbhXHox5hsduBKNmv06/hsIyEJQfCTCFZXVj8o2chcIcq23C/JZryPTjH0WGClZON2UQ5TWKmJojin14aJoz9gFajS2PEQJZssy6YNWL9K2q0mS59+5CwA4Edv2IKJgZz+/XXbhgEARzySbP1y3zjMEbeSbW1tDSsr5nZmeuGFKM+IXZTANcmmBY9fqwUYk03qzDAZKclGYrI5kGzt/pWTbE4QRUHNLsqkZFPve1obtoRrF1XrfsXELurFNkN/NiNoVmsSFKhxEBWlMz7d1HABgIDZcqddlJTDrDxcyRYdyZb0fpuTbL0LK8KFQ4XfJH69lF2UVrJFVa6glWxOMfRYYJVdlCvZOEzhZkAW9jmjODdHcsCqZKM7IDM1W78O4szek4VyHf9y6CIA4F137OrY/npCsjnEZaM7A24X3TiIM/GBoig4ePAgDh48aEuUi6Kok2ylrPuYbPTnvLY/sZ8GQrLpaibRsmxhQBRFPRNmw2Gl1G+K+o2Etl2UPfFBOgolW8Z74gMnuyjdX5K/l6otAAIG8xn9HOQ8WzSF9GK5AUluf29HEJklPuj1/sWs/HbvGAvJFoQFK+lKNm457H3wOZk5WF1ZVkiiko3Ayi4KRFcuLyQbfS+NC1NOMfRYQOaj5H7wmGwctmBRNwQNv+w/R3/ASslmjMkmCIJtXLZ+VbIR0O/mlw9cRKMl44btw7h552jHdvu3qXHZ3JBs3C66ceCkIAbC6wcURUGr1XJUo9LZRQfz/uyieY2oWA0h8UGcSrZa04Fk0y6T20WdQRIfyAxVox6DXdRLTDYvSrbF9RZktDP6yrKsbzdSzGK4kIGkKFio1HXCzMyCYywDvUDWL/1LkDHZuJKNI8ngSjZ7+HVl9aKSDYiuzWFZqDD+bpf4wG/SA6C9cGQ8B1eycZgiyUo2jv6Gk5KNbgjt4rL16yDO7D351pFLAIAfv2lb1/b7t6pKtpNz5Y6sdEaQ+2rM1pr0wTqHP7AonMJq950mhfogSAHWNRLJb+KDvB6TzfpdcIs47aKENGu27N9TmRAcvB91RErrYtwo2VIRJD4ohECy2SnZFitNKBB0izZ9PwRBwLVbhqBAwNyaSrI5qRrMJo+93i8HbReliUw/JFvSlWz9Oj7bSAibQOhVbKSYbHGQbGZ9lRXs2mfjYoafvttIiPKYbBy2cCK8wnjJ/TZMHP0BJyUb3Zi5UbL1S70x3p/5ch0/PLsIAHjddZu7tt80lMfkYA6yAhybsY7LRo5nJNn65b5xmMOtki3I+uA04STfrVMqrVIuZboNYE0Y0p9JXKtaU9Ztbn6vqd7stAxGSrJpjBArySbwmGyOSAlqTDYmJZtGsKaE8NX/Ra3u0u8Da0w2q/GV2f7k74UqUY9220UFQcC1W4fU5AcayeY0+elHks0Mfkk2u99ZkXTiox/j820UcCWbPfzOZZOoZCPoVbto2Eo247Mix+J2UQ5TsCgCojqn8dy8Qe9vWCnZCOjPhGSzy2Rm9blXYbw/3332MhRFjb22fbRouk87Lps1yWalZOPvW3/DbayusEg2OyXbukZiZVOinrjAjZKNRj6jqXLQDlrvFyQeWjoGAitNyHGHa5FlMjEKvUg9D5IcQoEzAdsmWMNXsrXtou1FJdaJrpOSzexdnK80AAgYKmQ7vifHUZVs0JVsTpMfY0w2lnInHUEr2fxMWntRycaJmt4Fn5OZg3VMxZVs3hBW4oMwSDZuF+UwhVXFDfMl50o2DsBayUawEZVsCwsLegZG4/351lHVKvp6ExUbwf6tznHZuF10Y8Ktki2Mcxv/Nn5HSDY6s6hd4gOrwan6m6DFmBL0eFp+24Z24oNo7aIAdCUbM8nG7aKOUK2fAliqBbEKk14pCrtorSnrzzMMuyiZOM2V1cUrOyUbIGCuXIcsy8xKNvoe9Xr/Ynffo1ayOS1aJAmkrFzJ1nvgSjZ7OI2pnMYHSVSysZBsvaJkM97HMEg2bhflsAWLIiDqc3KSbWPAjZLNTUy2pA86rdBsNnHkyBEcOXIEQOf9Was18fALCwCA1183ZXmM6zQl22EGkq1er3d8z9+3/gZLWx+FXdROyVZpkHhs7YGM15hsgiCglEtBQdti6dsuSjJMRhyTDWiTZk3JwS4ITrKxIiWoBJvMYCWua9ZNEsctXLtou/4TyyjruMjJSm18F+stCZWGus9wMaN/T79jV0wOQBRUsvri8jqzkk0Uxb6boHtJfGDW5m00JRsn2XoPnGSzR1gx2QiSahftdSWbn76bK9k4XMFpshLGSx4WyZb0wQZHJ5xIto2mZKvXVStOs9nsmuT84Pk5NCQZeydKuHLTgOUxiF30xGzZMgsht4tuTLCs4sUVk42UbV0j2QZyma4yeSPZ0lAg6CqkoJRsUcdkA9rPrelkfSUTI06yOUK3i7pRsglk3/CGvfl0u+8jyQ/cKtmsFq2M5M9arQUZAoYLGeQy3YkPACCbFjExmAMAHL+8Zksg0XZSURT7ZtHUTilht73xb4KNFpMtzPeFI1z0yzscNPoxJpsZsaooSk9mFzXGIQ0juyh5djwmG4cp4lCysVZ0Nw3M6uoqHnroIZw5c8ZP0TgihJNdlDUmW7+QbDSBaCTZvkmsovunbN/VLcN5jJWykGQFH/r8Abztk4/gbZ98BAvltmqN20U3JuJUstGwV7JpdlFD0gNjeZhJNi2AfDMokk3qjMsVZb+ZIiSbg5JNkqPv03sVJPGBojjXDUKwioKz7dovRFFAQcuOu24g2bxkWaM/G5VsZY1k2zKcN92GfDc1lAcAHL+0ZksQ0Z9pkq0f+5e4Eh9wJRtHFOBKNns4KaP8ZheNA1aLNHHbRb30e8Z6yxIyxQlcycbhCklWsrlBuVyGoihYW1vzVTaO6ODGLmqnZOsXuyh9bZIk6fenJSv4wXOzAOytooB6L/drarZvHr2Ep84u4amzS/j2s5c7tgH6h5zkYIPdgNBpkugXrHbRapMo2axjshnjRdGwsos2Wp2DLK8wBr+PlmTT7KJOMdmUzu05rEGUbDJL4oNWdEo2gEp+0Gx1nM+rXdSoTADUfmat3oICdYGGnigY37Gp4QIA4MSsvZKN/txPdlGWmD9m21v9HpRdNOnjHU6y9T7CJhB6FU6kTS8q2QiM8TR70S4ahpItrphsaedNOJKIOEi2MBIfGJlqjuTDOBmwS3xgF5OtX8giK5Lt7GIVlYaEqaE8btAINDv859ddjc2DOWwZzuPIxVV8/7lZPH+pTT4nMf4DR/gwGxCu1pp408cfwpWbBvCpd90ae+KDSl0j2fL2dlHjb2afBaGd+KCpDXyCU7KZnz9M6Eq2FtuKrshJNkeo8dUYEx/oSjb1c9jPvpBNAZXg7KJ0eWVZRiqV0pRsTcgQsWWkAEFY149hSbJdtleyGTOTJmHCGATs2h8vSrWg7KJJVrLR9ahfyNaNBP7s7OHXldUL2UXJd3Er2byQbMZ6GwTJZiUG4XZRDlPEYRdlVbJ5eZF5J9A7CFrJ1uurbVYk28XlGgDgtj1jTBPn67cP449/8kZ85HVX40eu3wIAeO7Sqv47S6wejv6DmcLlgeNzOLNQxXePzeIHx+c6fo9FyabHZLNOfGBmZTP7LIoiSpoiriEFcy3tmGyi6fnDBMku2nSYVPPsouxo20VZlGwSAAUpdE9CwgBRshntol4mG0D3pAmgYrIpArZSdlFayUawZUQl2S6v1rBSaYcfsFKyEYKt3+yiXpTATko2t+gVJRtdTq5k6130C1EeNFgFI077J0nJZkWyGcPZRIGwEh/46bsFQeh4XkYlGyfZODrAlWwcccHYmBtVKPRnlphsvT6Io6+NJtlmVtUJzYumBl0fk+zz3KU1S4VDNpsF0Lv3jYMNZs//kZML+t//67snoChK6CSbrZKtYW0XdUuyCYKAoh6TLZj+Ic7EB4TYaznEZFN4dlFmiKJKsskM1aLRkiGgbcMNm2QraHXXqGRzGsQ7ZRelt5FlGeU6iclWMLWUkv3ymRSGCxkIUHByrq2MtlKyGWPV9Hr/ErRddCPEZKOvsdfHZxsRXMlmj7BjskV9v63GVnHZRZ3aULNt7drnoJKw0CSbsZ8Lqz3mJFuPol+UbJxk6z3YKdnogMkAm5Kt1wdxVkq2GU3Jds0W9yTblZsGIArAcrWJ2TWVrDN2MMSK26v3jcMZkiSZDjAepUi2A+eX8eCJ+ViVbIRkK+W6I1AYB0qAcxIHoogLOvFBHPHOUlowMK5kCw5psV3XnZVsMgQokakYSyQmW8NdTDY7u6jx3ZYkCWu1FhSGxAeCIGgkGzC7uq7/bqVkMy6e9WP/EldMNhpJVrIZ4/MB/VkP+hWcZLOHVVtL4NQ+GAUCLPtFBUEQTGN0Ar1nFzUq2fz23XSGUTMlWxj3h5NsPYo4lWxOFZ036P0NY92j64Ox0yGNmizLXYNKY0fldtD5/PPP49ChQ7HXN7Psoi1Z1smxF00NuT5mPpPC7okSAFXNBlgr2ZI8WOfwB5IQJpvN6qTqzMo6Ts9XIArAT926HQDwv753Qt8nKiUbPdgs2yjZzPZ3TnygHqcekJKtriVmSEcUl4tGOyab/TXI+sCfk2xOUIlIASy1oqGRbFEp2YK2iwLdE4EOJdtIwXSiQPfP5H1aXGvbRc3eZ/pcSZgwBgE7pYQZwozJ1mtKNnrC3uv1YCOCPztz+HFl0e9tEpVsdDmMDqI47KJeFNxG9bcTKcoKMyUb/R0n2Th0OKnKwqgsfth/p2PyTqB34KRko0GvHBjVbH6UbIqiYGZmBouLi2g0Gi5KHzzMlGxLlSZaCjCUT2PLcN7TcYll9HktLpvxXed20f4HIdmGhob0509UbNdvH8GvvO5q5NIinjq7hLOL65bH8QonJRtBtc5uFzVayultyd/kOMTmGbSSLQ6SreWkZOMkGzNSul3UXskmyQpasgJR28es7gUNK7uoUx22W8Skj6EoCmpNCU1JNlWyWZFsAhQsVmpd5zN+NpJsvb6IY3bfk2AXTfJ9pcf6/UK2biQY24Ak17U44CfxgZnKkyAJ7wrdxxnnXL2mZAvTLmpUstHnCRI9RbI98MADuPfee7F161YIgoAvf/nLHb8rioKPfvSj2Lp1KwqFAl75ylfi6NGj8RQ2ZDgp2aI8ZxDn5h1478BOyWbW6VjFZfOjZAsqw1cQMIvJNqcpBq7ZMuT5vbh6s6qAs1KyRWUXlSQJ9XrdeUOOwLG6qhKsQ0NtNSSJx3bH3nFsGsrjHS/ZCQB4TPs+KiUb/Q6u6dlF2Ug2I6xisjUCU7LFGJONJD5wyC5K4otxu6gzUrpd1H47QtISJVvYKjYAKGY0JVszmOyi9HdEEb5WUydPw8Uc8pmUbeIDQRB0C+typb0gZfU+91tMNoKgYrIFZRftBSWbWdINjt5Bv73DQYE1JpsZ6HhsUTrJ7GB0CZDnbiVsCBt+STYjORxmTDb6vGG0yT1FslUqFdx44434xCc+Yfr7H/3RH+FP/uRP8IlPfAI//OEPMTU1hde+9rW6GqCfEKddlCvZNjbslGxGuyhgHZfNWJ/c1IE40lJbwUzJNl+uQ4FKsnnF1bqSLV676KFDh/DYY4/FrhjciDCSbIqi6Eq2O68YBwD8/N17AABnF6uoNlqhvQ9Wdm8AWKur74BdTDY3JFtJi8kWFMlGCI9MKgYlW4pNyaaTLJxkc4QotEk2u7phJNmieO4FQ0w2VjUJy/tBAlmv1ZoABEwNqSppsz6UXgQbyKUhAFiuOmcX3Uh20biVbEm9t3Rd6Jd6sJFgJOz5s+uEH1eWVWZRs+NHhSTbRZOqZKP7Oa8hi1jQUyTbG9/4Rvz+7/8+3vrWt3b9pigK/vRP/xS/8Ru/gbe+9a3Yv38/Pv3pT6NareJzn/tcDKUNF06qsjjOyUm2jQE3SjbAmmQzKtm8kmxxw4xkWyjXAQieMosSkH1PzJbRkuSOe5tOpyMbQK2vr6sWpVrNeWOOwFCv13UF4eCgWhfOLVZxYXkdmZSAW3ePAgB2jBWxf9sQZACn5iqhKdnsSLaKpmQbZLSLGhG2XbSmx2SLnmQjAfebjCRLHMkZeg3ELupUL+ot9bmnBEAUwo/HBrRjshG7KGs7baeuoI8hyzLWtHhsW0cLHfs42UVpks1JybYRrGZRK9mMx07quDdMku2LT0/jS89MB3KsXoOiKDh8+DCOHz8eyfk4QWqOIGKyme2bhPudBLuoUxtqti1L4oOgSDajCtF4viDRUySbHU6fPo1Lly7hda97nf5dLpfDK17xCjzyyCOW+9Xrdayurnb86wX0i5KNgHcCvQO3SjZia3Qi2dw0cElXss2VG1AU4EU+lGw7x4ooZFJotGScWah2kWxRdeicCI8HpC8aGBjQ3xGiYrt5x6huqQSA1107BUUBTs2VAy2D3WCJ/lzWlGxmdlHj9mxKNvU4tcBINrL6HJ+STZKcAgBHv3DWqyCJD2QHJVtdqz+5tNBhowkTfhMfsNhFV9ebkAFsHy12/W5FsgHAarXRpQ4g6Fe7qFslm5vEB1bbsCKpBCZN+AbZHq1Um/iV/3MQH/mng5gvb7wQFLVaDQsLC7h48WKo7xVXstmD1S7qVskWV99tZRftJSUb3e8Z73/Q2UWNfSz5vOHtona4dOkSAGDz5s0d32/evFn/zQwf+9jHMDw8rP/bsWNHqOUMCv2mZOPoHQSlZPOT+CApJJsxa6okSViqNFSrkCDgqs0Dno8tiu39n7+01nFvM5lMZEoDq0kZR7iwjcemWUUJXn/dFAABZxerKNc6B1Z+wKJkEwRBzy5aygajZCPHaThk5GRFTVM0ZWJIfJDR7aIOSjZwJRsrUiLUxAewVwORhBe5CMlVr4kPWN4PRVEgSZJKsikCdowVu343O08pm4IAleitWxDX/W4XpWFXD+zaPKB7IuZnvJskRT4NeuIbZD04s1DRiHHgwLll38frNRgXZMMCJ9ns0W9KNiu7aBJisnkJkxC2ks1IkHIlmwuYrZ7bdai/9mu/hpWVFf3f+fPnwy5iIIhTyeY0UOV20f6GnZLNjmTrx8QHZitFZxdUNdHkYL5DbeQFV1MZRun3Lkq7KH9H44FZPLZHDPHYCK7aPIDRUhaSrOCxUwuBlYFFyaagrRQb9Jj4gAYdk60uBaNkI6qiVCyJD9RrcSLZSJPGY7I5gzXxAUl4kUt3qrPChNEuyroYwmIXJYs6K+tNKBCw04ZkoxfB0ikRQ/kUBEFBRVOdbpTsogRhxGSz2sYKVsRm0hCWXfTcYlX/+5nzS76P12ugSQ8jARIGOMlmDjvVsNl2NFiUbBvZLmpc6PGyuGTse1iflxPMMorS33OSzQZTU1MA0KVam52d7VK30cjlchgaGur41wtwmrCE8TI5VXRuF90YsFOyeUl80Msx2YzXJEkSzsyrA8ntWrwcP7h6qp1hNG67aFInBP0IWZb1hD2kT3rs1CLmy3UUsynctHOkY3tBEHRr8oPHZwMrB4uSrUm9ikElPiAx2eot2VKd4wZEvZOOQclGYrI5k2yKtj0n2ZwgCp0x2azqB1GyZbWmM1K7aLPVcU4/dlG6rZdlGas1NSYbIdnMVuKN/fNYKQMRim7t3mhKtqBINj9KNqdjJQVRkGwHzi/7Pl6vISqSzVjn+ditE6xKNjMkWclmFD7EYRd1uwhhp2Qzzj24ki1G7NmzB1NTU/jOd76jf9doNHD//ffjzjvvjLFk4cBJyRblOf2cm6tkeg9ulWysMdl60S5qRrKdXVSVbNu0eDl+QJIfPH85frsof0ejQ6VSgSzLSKfTKBRUsvYzj54BALzl5m3IpbvJbJLJ9uGT83rCAL9gUbLplry0qFsjge7+wE6pYxWTTVaAluyfZDMmPogSaU1FJTm8py3t93Sqb4ZloUFVsgkMSjb1uecy3X1VWChk1HeTJAMJwi5KTwJWKnXUmhJkCNgxxpb4AADGSlkIUPRybZSYbGaIKybbhleyLbRJtoPnVyDJ/Ve37BCXkg3oz/fYK8KOyZZUu2hUSjY352RRsoWR+IAGj8mmoVwu48CBAzhw4AAANdnBgQMHcO7cOQiCgA996EP4b//tv+FLX/oSjhw5gve85z0oFov4mZ/5mXgLHgLitIsGqWTjE/jeQ1hKtl5MfGBGsp3TlGwkXo4fEJLt3GJVV+MA0dlF6UlbUicE/QjaKioIAmZW1vHtZy8DAN51x27TfXaOlVDMplGpS3j8dDCWUTslG/nclNRtBgwqNj8x2QhRoUBAoyX7ruMqyabEZBdlU7KRCWeGk2yOSJFBOLOSLToFIwkR4DbxAQsJLcsyLi6r/Uspl9HP5ZT4AADGilmIACoNeyWbcb9eH5sFrWQLkmRLupKNtp4FUQ/OLlb0v8v1Fk4GnKgn6YhaycZJNnP0W0w24/nJ/0TJFqWiMclKttHRUQwMDOjOR4Iw7aL+AgZFjCeffBKvetWr9M8f+chHAADvfve78Xd/93f4L//lv2B9fR3/8T/+RywtLeH222/Ht7/9bQwODsZV5NDAGt8myPOxKtm4XbS/4VbJ5hSTzQtZlJTBqfGaGq0WLixXMQFgx1jJ9/HHB3KYGMhhvlzHqfn2KnCUdlEC/o5GB0Kykb7rHx8/B0lW8JI9Y3qcPiNEUcAVkyUcPqfg20cv42X7JgMtk9UKZVMjh+jMooB3kk0URYiigFI2BUUCmpJ/km2dKNlSnVa4KEBIMzslm0TUegIn2Vggippd1GE7EpMtG2FMtgKJyabZRd0q2eyyiyqKopNsYwM5/Xe7c5DfRouqXXSjxWSzu+9mbZpbu6ifsiT13tJ1MchxxvnFdQDAYC6NtXoLz5xbwlWb+29+ZgWuZEsG/IQ+SrKSzTgnI3UsnU6j2WwmjmSz4hXCSnyQzWZx6623dn3P7aIaXvnKV+oPhf73d3/3dwDUh/TRj34UMzMzqNVquP/++7F///54Cx0Solay0ccLQ8nG0TvgSrY2yDXlcuqEZ3alCklWkE2LmKAmQX6wa1xVxF1YqenfRWUXtVMycYQHOh5boyXjc0+oCXnedccuy30EQc02KAB4dmY1kHLYPX/yW13LAFqySPJhJNnsVoDpv4lltOGTZFMUBbWmDAExxWRjSHzQpH5LcZLNESkLAteIWGOyuUx8wGoXvaSRbOMDef13s7GXsX8eLWY0u6i5ks34fvabXZRVyUYjaCWbEUlZLDQiDLtooyXj4opKsr1hv6ok2Whx2eKKyUZ/x8FO2vSKks3KLkquk4TsiaJcVos3TrBrn1mTLnoFt4tydCEOJRtBkEo2bhftPbhVsoURky0p2UWNJNuFxSoEKNg0kAtsskwSKFxcruvfRWkXNfubI1zQ9eobR2YwX65j02AOr79uynIfOmHAJYqQ9QO7508+1zQb81AhOLsooNpPFQhotvzFZCM2awEK0qk4SDb1XHZKtgZFsmVSPPGBE4iSzSmkE4lNmInwuRuzi7K0005OAfpduqwRFRODbZKNzS5KlGxsMdnitj4FBTu7qBEsBJqfxAe9omQLg2SbXqpCUdT34zXXqMnonjm37OuYvQZuF00GWGOy2e1rJiggSIpdlIAIHZKoZCOwU7I5KQ/9givZOLoQtZKNrnxe2H8n8A6gd2CnZLOzi4aVXTRRJNtSBQKAzcP5wCZ020Y0ko0iTqKyi3IlWzygJzmffewsAOAdL9npaCUcyKchQMHsWi2QesGiZKtplrzhQqbjd2P9d0uyFXNqu+BXyUYsg6qSLQ67qHodkmR9Dc2WqrQD2mXksIb6GrQTH1jVj3pL7SdITLYo7aLrTQmKojC1005OAXoScHlVI9mG2tmr7RIfEIwUMxAE99lF+7Hdt3omLJ+dtrGDcdteULIR+O1PSGbRnWNFvFjLjn388ppeHzcCoraL0m1AFO/x7OwsTp48mfj5XL/FZLMTPgDxKtm8kGxhJT6wQpgx2fhorkcRp13UClzJtjFg16Db2UUlSepamaD3MRvAWiEpg1MjyXZ5ZR0CFEwNBUiyaUq26eWafsw47KL8HY0ObQJLwg/PLAEAfvq2Hbb7CIKgWzabkoLFSiOwcgA2JFvLnmTzqmQrZTUlm0PCACeQeGwpUdCyUkZMsunZRa3bLJI8QhQEiCJXsjmB2S6qK9nUz9HYRdNamVQC2i3J5qRkm9dItsnBNslmpmQz7jtS0JRsjZZpX9uv2UXtlGxuSTZ63BHE/UnKOMaIMBIfEJJtx1gRm4by2DZSgKwAh6aXfR23lxCHXTRK4ufUqVM4f/48KpWK88YxwWlBA+jdmGzGchAQki0KotXNIoSTks1oF+VKNo7IELVd1KzTNcJPWXp9ILeRYJWFDLBXsgHtgQXdmNGdlReSLc66QxIf5HI5NCUZC+U6RCiYClDJtn1Ui8m2tI5CoQBRFJHP5yO3i/ajoiGpIPf63JI6oR4tZrB1pGC3CwRBJZHGiur7dnm1brs9C1jsousOSjYWks1sP9UuCt/ZRWsayVbIxDPcyaQ1JZuNt5EQiSnRun/laEO3izpsR6zC2VSESrZMuz+rNlpMiyFOJJseyFqSsFBW3+upETYlG/l/uKiqXCVZQb0lbzi7KA2vJJvZuKUf7aK0PSswkm1BJdl2aVnXb9LUbBspLlvUSjYgWrKcjMuTWq8BNleWXyUbDUVRcODAAZw4ccJTed2gX+yiUSvZOMnG0YW4lGx2lZwr2TYG3CrZBEHosoyaKdkA9kYuKSQbrWSbXatDVhSMFlIYyKUDmywTu+iF5XXceOONuO2222Kxi/J3NBrQE+WzWja2PRPOmWpJfRjXEm5cXvUfl41FyUYCvBtJNuN2rpVsASU+qGmWwXy6TR5EG5ONECROMdkUcBEbG1iVbIRk0x59JM89JQrIaSesNiSmdpp+t+zej4VyHbIsIyUKHTHZWBIfpAUBJY1oLtdbzHbRfmn3WZRsThNEMu5IpVK+xrvG4yUNZjHZ/OIssYtqiZxu3jECYGPFZet3JVsvzOec2loafpRs+vhofR3Ly8uYmZnxXGYn9JtdlCaG6XsZFskW5jvCSbYeR1STBRYVgt9BR5IbZo42jA2ek5IN6I7LZiXZ7lW7aCaTweVV1Z63Zywf6ESeJD4o11tYlwQUCurnqO2iSV6d7CfQ9/zMgkqy7Z0cYN5/vJQFAFwKmGSzmpA6KdmM+7OTbCkt8YFfJZtaPkKyRY1synmVtCmpMdm4ko0Nqu23HZPNCoRkIyLGKJRsAJVhtCkxJz4ArAlgcozLK+sQoWAon9Gz1tK/2yU+kGVZt5NX6t2W0X6NyWbX7nhVsgWl8ErqvQ0j8cF5KiYbANysKdn+7blZ/MaXDuPC8rqv4/cC4lCyRUmymYWDSRpYSLaglWxWxwoKSbKLuskuatU20/eWnuuFNTbiJBtHF6JWsrHINftt5ZPDHG6VbECbZCP2Stpy6oVkS1p20XQ6jRnNnrd9RFUYBNUh5DMpTAyoxMn0UnsgyrOL9ic6STZ1YuJKyaaRbEEo2WhYKtmaJLuovV3ULqOXdUw2/0o2orQrZKNPegC07aKKolhaRpstBRDaCi0Oe5DYeuRuWtUPPSZbhIkPgHZcNqOSzaqcTouYpNxzazWVZCtkOvpaFruoJEkoaclESIZRO5KtX2KymcGvXdQr+dTLSjY/9UBRFJxbVON0EZLtph2jeOP+KbRkBf/w+Dm88o//DX9x/0mfJU8uFEXpeN5cyRYPzKzQRtiNEViUbPR5aOIxrPti1eYTxEmysS4u0aA/0+8JV7JxRAanQVlYdlHWCQrr+fkkvvdg16C7VbIZibpetYum02lML2sk27BKcgQ5mactowRmHXrQ4Eq26EHf51PzKsm2NyaSza59Jp+rTXO7qFEJ49SHGNuTUi4NRVFVXkHYRXPpeEk2UYBlEoeGpmTjSQ/YQEg2mzB3ANokWzrihBdEyUbHZLMDa7a7+bUaREHBcD7dsS1L4gOVZFP7YZLRkW5r+tUuatbusI6bjX0ebRe12oelLFbHTwqCTnzw2NOHsEO6BFFQ9EROKVHAJ3/2Fnz+F16KO/aOoykp+NSDp/wXPqEwkmpREaxRvcc0iZTkNsOvYIRVyWZ2L8J+363somT+FSXRavWZhtXCK1eyccQOFgY4SLhpmABOsvUz7JRsrCSb3wF9Ekg2WZb1ciyvS1hab0EQgE2DKtkQ5LtIkh/QSjb6+GF13vz9jB70fT41XwbAZhdtk2xq/bu0Ek1MtmrD3C5qTIvulmQbyKUBCGi2/K0A15vdMdmiRCZF2kRFi73WDT3xQcTx4noVotBJslnVj7pGsEaZXRSg7KKUkg2wbqfdKNkETclGXwu7kk3N2Futd4dt6He7KI24lGxGJFXJZqb28XOdZy9cQkFoYsdQBrl0pwLopXvH8al33woAmC83sFJtej5PkmEk2Vqt7riIQcFMyRble5zksaKdop7Ars67VbJFMYZOol3UbZgEGvRnmtTkJBtHZIjaLsqiZPP7AiS5YeZow07JZmUXJY28lZLN7UAgCYNTetB0ZKYMCQLGilmkEHw9Jqu/F0zsogBXsvUTyH2utWSs1SQIArBLCxZtB/IOjelKtmiyi1YtEh+QtoC8q/TEzQzGtqCYSwVjF42ZZMtqk0oBQLNlT7JxJRsbjHZRKxAlm5ZcNDKSraAr2SSmdpqVgF5YU7NXD9uQbMbvCAjJJkNAudGdBdA4+ew3u6iZks1JWWZl7wwq8UFS+9SgycTlqhqvdvto3vT3gVwaU0Pqbye1haV+A+16ANT7GfbiKB2OJez3OCkhXJwQtZLNrI0NGk7uoijbciMJ6YVkA6iM2tp7E2bfzUk2ji64tW/6hRv2H+BKtn6Gse6lUim9IXeKyWZUsnkd0CdByUYPmg5Or0CBgKmhfCjvZtsuWtW/i9ouyt/PaEDu85K2or91uIB8xvy9MsNoUSW7osguKisK1lvmSjbyThtJNndKtgDsolrMuLjsoqIoqgkNoKApmV9HU8suyhMfsEEn2RzsSfWYY7IZlWxW5XSa+JHvF8ptki3lMvGBJEkYyKVUko0hJttGsItGrWQzLjQkYbHQDKGRbCPWi0VXbFJDIpyc7W+SLZfL6fc0iuQHUdpFzf5OGpwW+8y2pWGnZDPbN267KJmfRXF++hx+STa63wLc9d2KouD7z13GP/3wPJ69uGoZpsN4rjDqbTrwI3JEgriUbGHaRTl6A2Z20RtuuEH/2wzGxAfG+uSm3tKWGNZ9wkAnybYMCQI2D7dXaoO1i6okW5x20aSuuvcbOkk2AXsnneOxAd0x2RYqDTRaMrI+smo6KdnqTRnka2PiAyslm9N7ocdky6rWtkbL30S0RpRsmXhINkEQIAqCqmSzisnW0rKLcoKNCW27qP390pVs2isQ1bMvWMRk86Nka0oyKvUmsgCTXdT4m24XVQSs1a2VbP1mF7WDW5LNr5KNIJVKQZblxN7bIEk2RVGwsq6O+6yUbABwxeQAHn5hASfnKp7Ok3TQ48V0Oo1ms4lWq4VcLhfoeYxqVk6ydcJt6CMaiqIkMiabnV2UbqviINlYsoua3UtRFCFJkmslW70l4de+eBhffPqC/l0uLeJ9r7gCH37tVab7hHl/uJKtRxG1ks2tXdRLI5vkhplDhZUdZWRkBCMjI5b7sSrZWBo54+pvXPWGEIapVBoHzi9DVkTd8gAErGQb7U58AIRv6emVgVM/gbwDi5qSjSXpAUArwFLIaqzC7Jo/NZvx+Rs/11sSFAgoZVNU7DEVfmOyqfGj/NtF41ayCYKgK9msYrI1JDLYjLJkvQtS1RTYK9nI/U6DXb0QBIqa8pQkBXEaxDu9G6IoYmW9CQEKilkB+Uyq41pYlWylrGYXrbcsF6v6Lbto2Eo2L2Uh46GkK9mCIGkURcHqOlFlW5NspJ87OdffSjZCstHfhQlOsnXCT0w2+rOVks24bxT3xc4uSivZwiwDQdB2UdJGWj2vZy+u4vNPnMNDJ+ZxbGYV7/zU4/ji0xeQEgXctnsUg7k06i0Zf/XgKbQsxl9cycbRhaiVbCzsPw1uF+1PWJFsTrCKyeZFyZaUgSm5lkvlBtZqLWzKpjA+0F6VDMMuulxtolxv6Va6sAdQdqtw09PTSKVS2LJlSyjn3qgg93yh0gSQZUp6AHTWt01DOUwvrePyak1PmuGnLASyLHeQZ7WmDAXdVlHAvZLNSLiXcur+zVYwMdly6e4BaBRgUbI19dhh3C7KAreJD4iYM47EB4BaB8xUZgROEz9RFLGqkWyjhbT+HYFdTDaaZCtqdtGWopLPPLtoJ1hjsvm1i7KoPOKEmcLEaz04NbuG+bIaH9SOZLtik9rPneIkmykURUG1WkWxWLTtI+JSsm2EmGz03MMutizd1kcRk40+t7FsRpKNHsOFAWMbF6ZdVJYV/Lu/fhwLlUbH94P5NP78Z16Ml181CUlWcNPvfhtrtRaenVnFDdtHuo4T5oISXzftUcRlF+VKto0NryQbaXCtlGxu5LpJUbKRazk4vQYAuGHHqB4rCAh2Mj+Yz+hExgUTy2jU2UVbrRZeeOEFHD9+nL+3AYM8S5VkA/a4VLIpiqIrKoNIfkDDWB9qGolhtIoC/mOykUyIfpVsxuyiUUMURaQEkvjA/DqakmYX5YkPmNCOyWa/HbGLktsaXeIDdRJNkoI4DeKdwnEIgoBqQ4IAYFAjn+mJkpld1IxkS4siippllKjZjPv1G8lmBr9KNr+JD4wLEElDUHbRbxyewVs/+QjqLRnDhQz2TtrEZNMWk84uVB1jKPUi/JJs58+fxw9/+ENcunTJ1Xmjsgr2imDCqa0FnBOjCIJg21abnY/eP2jY2UXT6bTvubkbRJn44MxCBQuVBtKigCsmS8imRVy7ZQhf+o934eVXTarlEAXcumsUAPDE6UXTcnAlG0cXoraLsirZnFZsjeiVhplDhVeSzWiP8GNNSRLJpigKnjy3CqCIl14xAaC9Chv0u7ltpICV9SYuLFdx9dRgxzmiVrLRz1GSJP35cviHoqgJBcjqHCvJRu9PYgNeWgnOLgp0r1bXmzJkCIEq2dq2V9Xk15T8ZWGr6Uq25NpFeeIDdyAkG7mb1ko2ohDsJDfCRpHKLgo4t9MsdtH1pgQBCgqZzj6T/tvOLkowkMtiod5EtdHS3yv6/YoyJlsU41gnu6iiKMykW1DkU9KVbEFc518/dBq/96/PIgUZ2yYK+JHrt+hhDMwwNZRHMZtCtSHh3GJVJ936BX5JtmpVTXq1vr5uu11cSrZemcu5cWXZKVmtYGcXjSO7KL0gEGYZjMePQsl25OIqAGD/tmF8+Zfu6mjLady2Zwz/9vwcnjyzhH//su5yhPmOcCWbBZLcSADJVLKx/G51XOPfHMmEX5LNaBc1dgq9ZhedWalhttJEKZvCi3eNd/weOMlG4rJRSra4YrJFKYHfaJBlGavrTbRkIJsWdauwE+j6tnmQKNmCJdmslGwjRWuSjUz8nSxx4+PjyOfzKJVUUpEo2WTFmpxiQRJisomiQ+IDEpONE2xMEPX+wn47PfFBxEq2tl1U7e+c+jend0MQBKw3JKQsSDYzJZvxN4LBYgYygEpdMrU0RRWTTVEUHDhwAE899VTkYz+r++xEsvlNfGBmF3XaP45xsd/YcwDw1w+eAgD8u9t34q0v3q4l3bC+FlFsJ/npxwyjfkk242KVFYy/RxVbsVfmcn5isrFkFjXuG6WN1souSpOtvUKysSjZjl5YAQDs3zZkeRwAeMnuMQDAD88smpaHk2wcXYhLycZKsiW5keXwjiDsovSE2zigZ+kAnOKmRIVms4njl9cgQcRrr92MQq6TaAj63dQzjC7HYxe1ItY4yRYsFEXBUrUJBQL2jJcgMloIO+yiw2pswKBJNjMlm+KgZCP7OfVZ+/btw+23365PQEjweKBNVnjBehKUbIKqZLOMyUbZRbmSzRm6ks1ELUCDKNnIQDc6u6i5ks0p8YFV+YiSTRRkFLT3glXJZsRQPgsFgqmSjZ6MhT2WkyQJKysrKJfLoQaAt1Oy0b8D3ePcoJVsRpKNPqYZ1tfX8dhjj2F6epr5HEHAKvEB67XKsoLZNTVUwXvv3k3Zu+33J+q1fswwGhXJRoPHZOuGn+yivapkA6IjW71kF/WuZNNItq3DtmW6fvswsmkRC5UGTs13ty2cZIsBSW4kgPiUbCx2UTfn75XVDw4VXsldMqggA7UglWxx1ZtGs4UTl8uQFBH33ri1a3UrDLsoAEybxGSLU8mWFGVhv0CWZSxXG1DQXtlnAV0XNmsx2S6FrGRTs4uaJz6g+wpJkpjaDvo3URR0YqzW8F7HiF00G2PiA3WSaUOyEcUVj8nGhJRrJRvb+CUo6Eq2pruYbHZKtpquZOsm2cxIIyu76FAxCwWdSjZaoWU8ZlgTQ5Kdmy5zGHC6t2Z9nNXz8qtkI6Dvs13/ubKygnq9joWFBdfn8AP6PnhpLxerDbRkBYIAjFEqZ3aSLflKNrfPPQ4lG7eLdoNlLhukki1Kks1YBqCbZIsqNl/Y2UUVRcGRC227qB1y6RRu0hIe/NAkLhsn2WJAkhsJIHolm1u7KCfZ+hNe6x3dKbVara7VJDcD+qSQbCcuLaPSaCGfy+Bl+yZDJ9m2x2wX5Uq2aKAq2RpQ4D4eG9mfkGyzPhMf+FGyqTbJ9kCJdaGGRk4LIO9HyVbTiJZcKh4lmyiKanZRoU36GEHIN24XZYPoMiabgGhJtkKmM/GBX7toR0y2bKqL/DCLuWNPspkr2czUcWH1LVGRbGawUrI5kWxBKdlEUWSa9JLforw/9CKosZ6xloMoqMdLuY6Fg34h2WZmZvDwww9jZWWFeR+aZDMmAmOBFyUb4I1A8DKm65W5XBDZRb2SbHHZRc3KFRbMiEgvi0tOdtHppXWsrDeRSQnYt9k5fuNte0YBAE+c4SRbIpDkRgKIXsnmJvGB1/Mn/Z5zeCfZBEHosozSx/GT+CAuHDyrri7fuW8TsmkxApJNzcx1wcQuGqeSjZNswUJVsjUhQ3BFstH1bYpSsvmpG05KtlrTWskGmMcecvNeENUOUaN5ga5ki4lkI0o2NfGB+bNoSAoEqOQRt4s6I6MFWXMK1VdvSQCU2GKyuU184GQXBYB8JtW1Hf3Z2B4b69NIMQcFAiqNdj9sZskJu2+JU8nmpGoLS8lGb2tUapghDpLNGJ/PC8lGrKKbBnOuSIYrNrVjsiV5PrC0tIRWq4Xl5WXmfXpFybaysoKHHnrItUW510g2PzHZ3BB0UYyV7dTLUSvZgiLZnOyiRzWr6FWbB5FLOyc0uo2Ky2Z1Lk6yRYgkNxJAfHZR1gkAV7L1J/woKOkMo1ZKNi8kWxz1RlEUHLu4DAB4zXVbAXSvboVlF51bq+vEQRJisiWF9OwXKIqC5WoTCuDbLlptSFire1eBOSrZWqqSbciBZGO1ixqRy3Ta7rxAzy6aic8uqic+sFWyKboNksMeZFDdkrvVAjQaLRmilrUViINk60x84BSTzc4uSt4BomQz/k7gpGQbKeV0u6hRyRaXXTTqhRonJZtVPKGgsovSi45JU7IFQbLNaQrqTUPuSLbd4yUIArBaa+nZtZMIch1uSLKgSDa374rb93htbU1d6HNBIBqPn+S5XBDZRXvRLhp2e04QlZJNt4o6xGMjuGXXKEQBOL+4jksrnWFUwrw3nGSzQJSNRLPZdH2+qO2iYSnZOMnWW2BNgGEGemBhpWTrlcQH8+UGao0mBAG4fe8kgO53I+h3c6SY0SdvM1onEVd20SgGDhsVkiSpKhMIOlnGArrtLWRTGMqr79usz7hsNIzPnRBYVko2M7uom/cir9nu6kHEZBNjVLIJcEx8AAApMfry9SJyWobNlg0JQUhgIQaSzSrxgVe7aFNWdKtxIZMyXdAxrvxbkWyjpZxuFzWqLaK0i9IEQ9RKNrPfge77YDXJpu+TFyWb0UpvhbhJNrpeuSkHsYtuHsy7GuPnMyns0BT7Sc4w6pZkUxRFf85RKdm8uEQAdBHvrOiVuZyTahiwbiu8EHRRjpXt7KJxJT6wO6cfJZue9EDLLOqEwXwG12xRtzWq2biSrY9RLpfxyCOP4MSJE672S6qSjU8Q+ht+yF3aLmq12t4rSrbpxQpSkFHKplHMZwGEr2QTBAGbBtWskfPlesc5oiDZeEy2aFCutyDJChRFwMRAjnk/Y13Qkx+seI/Lxqpkc7KLeiXZCFlRa/qIydZUyxx34gMBcCTZeEw2NpCEGC0L+y0ANLXfRLSztkb17It6LEF3iQ+sJm8r69pqvqAmAzHbzrgab0WyjZVykBU1Xl1NU9rZ2UXtyu0HcdtFzfpOJ7soPYH0axdNqpLNri66tou6VLIBbfV2kjOMkuug67AdaDLNC8lGk3Ru7KKA+zFiv5NsUcdki0Lhl3S7qBcFt7G8xoWNIxdUku06h6QHNKwso2ESkJxks0BUjUS1WoWiKFhdXXW1H1eyccSBoOyixoGcG7luEuyJ5+fV93Ugn0EmoxIMYZNsADCpkWxza50kWxQydCvCLQnPo5+wXFGfbS6TQj7jHGvCCPKcpob9Zxh1JtkkKEqYMdnUNiOImGwkjlfU0BMfoB2I34hGS43JluIx2ZjQtouqn83GDg2pnfQgLQqRqdiATruooijMMdmsnv1yVZ2M5zOpDhUUDeM5rEi2gXwGKS0+4aLW1tjZRe3K7QdxJj4AzMeqRruoVfsXhF2URclmpoYJG2ahPNxe6+ya2ue4jckG9EbyA7dKNrIdIWfdkmxeiBovC9j0ufqdZIsqJttGs4uakfR+lGwE9PFm1+qYLzcgCsA1U2xKNqBNsj11dsn0XJxkixBRNRKkwrOuiBAkXcnGSbb+RBAkm5mSzU/igzjqzcUFjWQrFfVriINki9ouarY6x5VswWK5qsaiGcybE1dWMNY3omS7HCDJRn+WZKJkcybZPNtFdSWbd5KNxLKKK7uoIAhIiwIAxTm7qBht2XoVRMlmpQwEgLr23ElMtjhINqIYc1IROE38ltfV8WEx06lKoMF6fel0GsMFVX1tJNmslGxhtPFxKtnMfqf/DjvxQS/EZPOjZLusxWSbdGkXBdok23OX3AkPooRXko2Mgcn/iqK4Xlh2axeNimTrp5hsQSjZCDaqXZTOoOyFZLMLv0NUbFduGtDdDiy4cYeqenv+0lrHmJKTbDEgqkbCbWNt3I9l4BAEWGNx+amsSW6YOVQ42VrsYJZd1E/ig6g6DTNcXloDAIwMFPXvIiHZBsyVbFGQbPRnTrKFhxVCslkQV1botouqdSVIko1+1tW6Okm2S3xAqzW8xHMkSjY1S6Q31JNgF9VUdHWLfr4pyaqSjavYmJDXYrI1bRIfECVbNtWpHIoCxC4KqJZRJxWBU7+6UG0CEJDPqr+bTfKsFlzNFAFDGsm2rAWXN5s8eo07xookKtmcYrKZKdncgD5e0mOyGe21bspBxiebPdhFb9+rqk0ePbnQFaA8KfBLstHvGcsx3JBsRnAlWyfczGGCVrLFaReNSsnmRu3rhmSjP7tNekCwbaSA8VIWLVnBsZk2ic9JthgQNclGT0Lc7Gc1sAoarA0TV7L1N4Kyi1op2dys6pHjxYH5FdXKMD48oH9njPnTb3ZR+jzcLhoeCMlmRVxZwdj2TmlKthkfExU7JVul3rawZVLm/UJQMdnqHpVskqzoZEsmRiVbSmvfrK5Dzy7K7aJMIHbRpk1MNkKu5tPWxFRYSIkCstp5q03J14o+AD3bcMGFks2eZMtox7VWspmVL0jErWQzu9d2dlFadeRVyUafu5eUbG6uVVGUtl10yJuS7SV7xiArwBd+eN5V2aOCX5LNrWU0CCUb6xix30k2N0SZEX5jssVhFyX1LA4lm1O7YbfwamcXJUkP3MRjI8e8fru6z2FNDUefi3brBAVOslkgarso4M4ymlS7qHF7L+fgSC6Csov6UbIZ48fEUW+W16oAgE0jnSSbVUyboKCTbOXo7aL05ygl8EnCzMwMLl26FOo5VtaJki3raj/jO7RluAAAvtQA9ko2dXIwkLMmu/3GZCtqx/ZKstEKuGwqPiVbWrOBEuLHiAYJ0s8JNiboiQ9kxXJg3FaydVtoogCxjK43Wo4TXSeV52KlARmCLcnmRsk2UiJKNrUfsUp8EOYiTtzZRe1ispmp+Oh74DUmG10WN0q2KGF2D9y0mUvVpk5+Tw64V7IBwM+8ZCcA4As/PAdJTt68gCbZWK7JSLLRf7sl2dzWCa/Ch34n2fopJpvx3GZKtqgTH7DEcvSiZHvwxBx+8PwsAODG7e5INgC4YfsIAODg+W6SLQxwks0CUSvZAHeWUT9khxdEkfiAI/nwU+/M7KJeVtuMSrY46tBaRSXZtox1Bt0MeyJnpWSLimQzW+XcKCSbJEk4fvw4nn/++VCvmSjZhovuSDYCnWQbIUq2dc9lMU64OpRsDXVRqGQTO853TDafiQ9IdkcAyIgx2kW1czcs+vhGS+KJD1yAKNkURY17ZgZCaOa0dY/ISbYMSX7ArmSzKuNipaEq2TTijsUuavW9KIoYLqj9CCH0zRIf0OUJY9E2iXZRO5KNJjr8kmxAcrOL+lWyERXbWCmLbFr0RDK8Yf8URooZXFyp4f7js8xljwpu521BkmxulWxu32Eeky2YmGxRkmzGZ55OpyGKov4//VuYY1d6wYtuI71kFzXrt545t4Rf/Pun0JQU/OgNW3DLrlHXZbxhG1GyLZueiyvZIkIcJBurko2uyElTsrmdIPTK6geHiqDtoqQD8JL4IC6Sbb0hoVFXSa4dk50rKWEr2SYsYrJFJUM3W+XcKHZRQhQpihLqNa9pQc6HPSrZCLZqSrb5csNXTDPAfBW0rWSzJtlotYYTkWAGogZqeCx/rUXisYkgtycWJVvKyS6q2dT4iIwJOS0mmwKgRakkaTS0dzSXjkfJVsh2k2xeJhsAsFhtQIGgZxv2axcdKWkkW7WTZLM6RtB9rCzLkU3K3YyVze6Dsc8jk8eg7KL9FpNtVkt6sElbEPQyxs9nUnjbi7cDAD73+DmmfaJEL5BsBDwmWydYxiFBKtmiaOeMx02lUrjppptw0003eSZb/ZbDTUw2lv5semkdP/d3P0S1IeFl+ybwP3/qJk9juRs09dsLs2U95Akn2WJAkkk2Gr2uZKOR5IaZQ0XQdlHjRMANyRZljB0aF5aryAgSsikRk5Rd1FimMO2i8+U6ZFmJ3C66kZVsUV3zak2d+I4Uc672M75DI8WMbqvzahklxzKzZlcbGsmWd7aLelWy6XZRrySbRmrlKUVFHEoxZ5JN618FrmRjAanXgBp3z6z9qxOCVds0eruoWnfpxAdW7bSThWmp0oCiCDpx59cuOqbZRVc0Qt/MLkrvG3T/YhzrRjXxo2GnZKP7cTOSzWp/1rLQdlG7vsRMDRM27OyiLOUgiXYmfZBsAPAOzTL6/edmcXHZuxo7DCSZZCPwMrYGOsd4XlWaSZ7LuY3JRl9LUpVsxnMDwNDQEAYG2vOTKOyiRku9n1ikxu/+9/2nsFxt4sYdI/j/fvYWPeapW2waymNqKA9ZAY5eXO06V9D3h5NsFoiqkfASk40uW1KVbF7soklumDlUBGUXtVKy9YJd9PzcCgQoGMhnkMt1EiFhk2zjmgKhJStYXm9GbhfdyEq2qJQX5ZqmZCv6S3wgCAK2jqhqNq/JD4wTLvoe1DQr5kDeWnHnOyabRlQ0fNpFC9lUvCSbaK/Ia7Rk3S7K4QxBIIkFBLQs/KI6ydZDSjZHu6gHJZvZdqNaP7LmYBcNSykdJclGYHU/3NpFjdn6vJJsfatk0zOL5rv2cXMdV24awO1aAoR/ejJZCRCSTLL5WcAGvI9zemUu5zbLuZPS1Ygk2EVZyhUG6OsLOibbidkKAOB33nQdSjZxgFlA1GyHppe7zs+VbH0Gt421cZ+oSDbWhomTbP2NoOyiXgcCiqJ0TQiirjcXFtTVj4Fioes+hE2yZdMiRjXyZW6tHrldlCvZuv8OGmsayUYmwm5BP7Mtw/7ishmVHR12UU3JZpcF1beSjZBsLW/3myjg8plUrP1LWgu+b6XII9lFeeIDduTSIhQAkmSR+EBXssVDshV1kq3la7IBdCc+YInJZqdka5NsTciyYjl5DEspHYeSjWWsbEeyBalko4+TtJhsfpVsJJSFH7sowZtu2goAeOrskqv9woZbB1IcSjYCPySbm3FOr8zlws4uShAHyWaHKJVshGALimSrNSUsVNX37IrJku9ytkm2lY7y2pXVKzjJZoEk20XtSLaw4LTSarU9R38hKLuokbRlJYsUpT2hikvJNrO4BgAYGih2/RY2yQZ0Jj+IK7soJ9nCueZaU9IthaMe7aI0SIbRi8vBKNno+lDTSLbBEBMfFAjJJnm73zUt+H0+HbOSTQvUb6XIa8dk43ZRVpDkB45Ktpiyi5a0usuiZLNbxFQUBUtaTDY3dlGr72mSTVZURbTV5DGsiYeRWIhjvGh1r8lvxmsPQslGn7tflWzELhoEyXbFpGp3O7dYdbVf2IhTycYyRgbcj63Nju9mnNMriQ9Y5rJWyqakxmQzntvutyhINtaFCFa76HK1CUURMDmYsx1vsoJkGCVKNpayegUn2SzQqyQbt4tyhIkg7KJ+Eh/Qg424YrLNL5cBAGND3SsqXtPeu4FOspVrkdtFzQb93C4aHBYrDQhQkBIFDNooxMxgVheCUrKZkQTrhGSzKadZ4gM37wWxBTSakqd7rsdky4T/Xtoho8Vks1LkNSVuF3ULXclmEZON3Gvy6KMm2Qa0uluusyvZzMq4Vm+hKSme7aJmJFsuk0Ihk4IABXNrdcfEB71sF3WjZDMqMejv4ojJ1otKtqDsogCwa1xdyJxeWtfjViYB9DNLml3UCLcLsV6VV70yl2NxZfVaTDaWsVWUiQ9YM5qyKtnIItPeCf8qNgC4XsswemahihVNIcdJtogRVSPhtrEG4mnAwkp80CsNM4eKIJRsQLuuu7WL0gGao+g0zLC4psYGMCY9ACJSslEZRqO2i3IlW/ffQWK+XIcABYVMyjUpYEqyjagTnTASHxACy45ko22mbmOhAG2STVYUXZnkBuvNbrtoPDHZ1GfZtCCkyQSSK9nYoWYYFdCyeBd1ki0uJRtFsvnJLrpUUeOmZdIpPYGG38QHgiCgmG2TbFaJD/rJLmqEk13USslmvEde7aJJVbKZ1UV3JJumZBvyr2TbPJhHNi1CkpVEJT+IU8nmdA+tlGzcLqrCT+IDL1bTjWgXDVrJtlRtQAawNwCrKACMlrLYOaYS+IcvtC2jdmX1Ck6yxQw/SjZ6tY0gKUo2P+fgSC78TFRpYqzRaOjf0f87dQBmA92o681qWbUuTI0Odf3W73ZRHpOt++8gsVBuQIAazykIkm1rwHZRs8QHQyHaRUu5tJpxEwpW191n39btojGTbJk0UbJZJz4AwGOyuUAunbJVspH4d1nR2R4UBkjW3XKt5bgYYkdAL2okG4lPCJgrKViVbKmU2raUcmkIUEkRp8QHvUyyEbiJyWZmFzXeI792UTdKNq/n8QI7IoGF4Lm8SmKy+VeyiaKgT4bPLgRvGV1YWEC5XHa9n9t5G4/JlhywCkYIaEWaVTtJI+l20TDL4NahxKpkW642NSVbt7DBK/S4bBeWO8rASbaIkFS76EK5ju8cnYGiKLYvVNDl50o2DsAfyQZ0Zhilj+NWyZZKpWKZLMuygmpVXVHdPmlNsoVZNppki9ouajZw2Ih20bBItjlNyVbMpj3XITMlm1e7KIG5ko0kPnDOLuqVZBNFETmNoFr2RLK17aKxKtm0+9C0tIsqgGYT5ko2NpB6YRWTjRCX6ZgSHwyaKNm82EUJyVbKtclsr0o2Qh4JgoBSNr2h7aJm57Yj2YwLfH7toixKtjjGx36UbKvrLf29mwwgJhsA7CIkW8Bx2Wq1Gg4fPoyjR4+63teNkk1RFFObYb8p2XohJpuiKLZtLYFZW0FfXy9mF+1pJZuW+GdPQHZRALhRi8v2w9OLTGX1Ck6yWSAOuygLyfaBzz2Dj/zTQRy+sOJYMYOEWyUbJ9n6E34nqvRKHsDu3SegV5KiWJkxYq5cg6i0IAjA9onhrt8jJdnKPLtolIhiELlQbkCEPyUbjS1DqpJtqdrUCSc3sFOykQQNdtlF/cZkEwQB+UwKAtTVTLeoJcQu6qRka0oyBAFIcYKNGYRks1aydcZkizqGJ1GyrdX82UV1ki3vjmQz+55WGBRzKYhA39tFrcAak804WY4ju6jb8/iBGeHKeq3EKjpcyCCf6V6Y8XINO7W4bOcWKq73tcP6urrwRFwVbuCWZCOg76lxwdkOvUCy9cJcji6X27ks/QySSrLZIey5An1s1rrHomRTFDU5jwIhMLsoALzy6kkAwMMvLGC11gxtPpl23qQT9XodTzzxBM6cOYNqtYrJyUncfPPN2LNnT6AFixtxKNlarZatQu3Q9DIePbWAHBQcml7BzbvGu7YJq6KwxtOJg/jgiA5Bk2zkOG4TH8RFsp2bX4MABaVcBgPFQtfvkZBsA6o6iWcXjRaRxmTLuldqmr0PQ4U0itkUqg0JMys11yuBxomlPuCUFTQkCSkAwwxKNrNjsUAl2UQIgoTlqvvJECHZCnGTbETJZqJakWVFVWOJQMRiq55GLqPaRVuSvZItE5OSjSQ+qLhIfGAak02r9wMOSjYrFZrZNmpMNk3JVq5DHorWLkrb58i4NyxY3Vuz+0O3UcY2z0ql4QUsSjZadUOXI2zYKdmc0LaKtjNjB6ZkC9guSsg1L2XySrLR9zFquyjLmIW2RLLuY1aupM7/WNVogHrf6HeQfv/d2DKjHCuzKNnCfDZBKtnIMcr1FpqSDFEUsENrC4LAvs2DuHLTAF6YLeP7x2YxFRIJyUyyPfLII/j4xz+OL3/5y2g0GhgZGUGhUMDi4iLq9Tr27t2LX/iFX8D73vc+DA4OBlrIOBAHyUZkxUYiguBTD54GAAhQJ2MzWocWBdxOkLiSrT8RlF2UwO2qsJnsPsp6Mz2nBsksFfKm96Df7aJWSja7xYF+QTQx2dp20SBisgmCgC3DeZycq2Bmed0zyUYnMADQER9tqMhGshnLyQJBEJBPpyCg6dEumqyYbGZ20SZZwAJPfOAGqpJNcIzJlo4ru2iePfGBXTiOBRMlG8t7ZWYXpZVspZya+GB2pQZ5yt4uGpaSLZvNRkayGeE1JlsY2UXN+s+4Fq+CULKRpAfGfTyRbONqn3UuYLsoIdm8jF+CJNlIUiC79okm2ZzqhbGfc0OuWI33WNALczm3JBvQrWRzUkTbKdnCHqfHbRe1Uvt6UXCT75Y0B8OO0ZKepT0ovHH/FD7+/RfwjSMzeO9VMdpF3/zmN+MnfuInsG3bNnzrW9/C2toaFhYWMD09jWq1ihMnTuA3f/M38b3vfQ9XXXUVvvOd7wRayH6G8YFaWUYvLK/j64dnAAD7t6mxoJ45t9y1XS8p2axUMhzJhZcMgTSclGxuEh/EMRm9tLgKABgsma+oBLHK7QRCsi1Vm3o8oqizi/oZjCUJK+tNfOfZy6jU3a0mh6dkayc+CCImGwBsHdGSH3jIMGqlZFtZb0KEgmxKRDZtHwSYRWFjt39O8/ut+LCL5qiYbHGA3KOmJHf3+ZQSi9tF2dGOydZ9TwE6Jpt7BWUQoGOy+VKyaSQbncWXRclGYEaytWOyAfPldrtgpWQLKyZbNqsS9FG8m1YkZBwkG30co2KNwHjPk6BkcybZ1IX/zVrSA+M+3kg2zS66WA30HtBzLa/P0Hgcp+3pe0q/a05xbY2/uymvnzlZ0DHZZFnGwYMHcfr0aebjBgmz95t1H69xyel7sVHsokEq2ZYqDdUquim4pAcEb9g/BQD4wfNzaMrmcxu/YFKyve51r8P/+T//R+8Qjdi7dy/27t2Ld7/73Th69CguXrwYaCHjQFQdmrHCW62K/O1DpyHJCu66chz/8a6t+ON/eAHPzqxiZb2JYZuYOEHAbGBgBT/kAifZko8kKdnisIvOLq8BAEYHzUm2KJRsI4UM0qKAlqxgtaa2F3Eq2cjnqGMeBYHf/soRfPnARUwM5PDB11yJt79kp+VqWRTxcebLdaQExRPJZvU+TA2pE55LHpIfWCnZiKosl3Ymu0VR7Lh3bq9LjcmmYHndg120RdtFO5OtRAlSp0QoqLdkPV4RQKvbFIhcycYMkl3UMvGBpJFs2ue4lGz+Y7Kp79pgPgNA/dtr4oOOmGzZFARBwUK5BqBgetwwLEayLOv9eBQkm5Nd1GwSHBbJRp+b7i/NlExxkWx+lGyXV1XCdjJAJdv20SJEAag2JMyV63rWUr+gY7E5KcloGK/BKcyP1TUTS7Isy2i1WshkrOdxxnkhy/m8xGQzG9exguU5V6tVLC0toVwuxxJiyo1IwKuSjcBKyRam6yNpdlE/2UXJd8tVlWQLMukBwbVbhrBrvIizC1WcmK1gz3Aq8PvD1Kr80i/9kiXBZsR1112H1772tb4KlQREvWpEQFZFFEXBkQsreGG2jJmVdXz+h+cBAP/+ZXuxf+swxktZNCXgy89c6Ng/DOLBaiXGDFzJ1t/wS7JZKdlYV1nMUmhHWW8WVtTgu5Mj5qsqUZBsoihgYoCo2aIl2YwTDoJezDDakmR877lZACq59VtfOYrX/+kDuuXFiGhisqlKtkJAiQ8AYEuASjZy3UsV1daazziTgVbqGBYIgoCcpgLzkvhgvZEMu2iOItXqBstoUyODRAAiJ9iYkcuIgGKT+ECzChPOPGqSrZQlSjbnoMp2KonFiqoOGnSR+MDq7w4lW06Nyba23kBLkk3VHWGMJ2nlDyEW4hj7xW0Xpe+1WX/Sy0q2TQEq2bJpEVuG1T7sXIBx2YwkGyvMroE1Q6zx/WKJy6YoSmRKtrBJNisnRFRgVaMB3c/Kq5LNzz1lBcvYJkolGyvBy6RkqzahANg7GbySTRAEXc125OKqbVm9wteoo1wuY3V1teNfvyBuku1//+AkfuzjD+GeP7kfd3zs+yjXW9i3aQCvvErNiHH9tmEoAP7xiXOmZfVafifZutsGxu+5OZKFsEi2Xkl8sFJWB3mbR4dMfy+VSshmsxgZGQm1HG3LaDuuSBiwUjJFMXAIGwenl7FWa2G4kMHvvvk6jJeyODVXwd89fMZ0+7BJNllWsKiRV6VsOjAl29ZhdcIzs+xOyUYfhzx/8h0hvFgSNPgl2fIZUVOyebCLakq2fLpblRElUqIIQSBKts4JE1FcpWIK0N+ryKdTUCBYKtnWNatwJiaSbVBTstWaMogj2IuSjcSkGaISjJipKcyUR1bbiKKIXFpERhQgAqjUJds4b0G2d2SMm8lkIpn4OY1ZzMgBOhxFWHZR2kpvdv1xLUL7ismmKdmCTHwAtC2jQSY/CJJkY0leYFb/yHjYjqRjqRtmvyVRyUaOF9dcz7hoaAevSjY7u6jZ5yDAckzjHOvi8jp+/M8fxl/cfzKwMgVpF23HZGtADknJBgA/sn8LAOD5S2tomYTz8AvXo47Tp0/jR3/0R1EqlTA8PIzR0VGMjo5iZGQEo6OjgRYuTkRNspFK2Ww2sVCu43//2wsA1Ng8BB+8Zx8EQc148qItQ0inRDx3aQ1Pnl3St/Ezgfj20Ut40W99E3/z0GnTMqrqulV8/7nLlvfHj5KNI/lw00mZIQy7aFRotGQsr6mDvG0T5iRbOp3GHXfcgWuuuSbUshCSbTFAJVu1WsX09LRpJitj/Bhj59iLJNsDx+cBAHdfOYF33bEbv//j+wEA//TktK4uohE2ybZUbUBWoCvEgkh8ALSVbDMelGwEZko2QCU6wifZUhDgLSZbXSNa4layiaKItHYPicKKgMRkywjtbTmcQWL1SZK5kq3aiDfxQSnXXlAiCTi8TDYWtZhsQ0XvSjbjYhb5briQhggFK7WmbZy3IMdqhJCgSbYwx4JuxqphK9mM5ybHMiNZelHJdnFZ7WNIHFDjPl77TZ1kCzD5Aa2o9EomESWmkxINsCfZ7PY3qxssJBuBmzGaH5KNJZxGUpRsXuyiXpRs9FjZWIYwwGIXJef/3OPncOD8Mj72jefw375+LJBnYpwvsCq4rZRsLVnGaq0JRRGwdzIcku2G7cPYNlJAvaXgzEKwcR8BF9lFCd75zncCAP7mb/4Gmzdv7tv4IVGvGmWzWdRqNbRaLfz5v51EpSHh+m3D+Mov3YV6S0a9JWGk2I5fkc+kcMP2ERw+BfzF/adw2+4xAN47/oVyHb/6xcOot2R8/Psn8DO379TjxsyvreP+52fxwlwFD35L7eT+8G3X46dv29l1HG4X7W+ErWRzyvQUp5LtwRNzkKUmhrJpXL11zHK7KNrESc0uulhpYmcpmHtw+vRpzM3NIZvNYtOmTQA6lWzNZlPPhEWQTqfRbDb151JrSvhvXz+GW3aN4s03bfNdpjDxwIk5AMDLr5oAANxz7WZMDOQwX67je8cu4w3aChdB2DHZSBbBYkb0lWWyi2QjSjaXJJu9kk0taz7DFpONwIs6j/RDKz6yixay8ZJsgiCoz1SLyUZDJXSV2GyNvYpcWoQCQLKYtKw3iJItHoVgJiUinxFRa8qoaGVxyi5qrJtNSdbr/XAhh4UV66Dddu8ZWZw1xsoZzqchripYXTcn2cK0i0ZFshFYWWFphB2TzdgG2SnZei0mW0uScUlTsm2zINm8XsPOMS3D6ELF0/5GKIrSoWTzqkbMZDJoNpu2yQ+CItno2KYs5U2yki0uuBkD+FWy0fvSSIpd9FtHL+m/ferB0yjXW3jp3nE8fXYJ5xar+M+vfxGu3WouJrCCVRvpRcEtiiJWqk0oCpBJp/Q5T9AQBAGvu24zHnzsPM4uVOIn2Q4dOoSnnnoKV199daAFSRqiXjUiJNvMUhmffUyNv/Zf3nA1RFFAIZtCWuie4N29bxKfO72M7x67jOOX13DV5kHm8x65sIJNQzk9dsLv/Muz+orpUrWJrxy4gJ++bScURcGHPv8M6heXoUCdKEiygk/82wt424u3I20RJNzL/eMkW/IRNMnmNhsnPeAwlilsfPXABYhQcNXmAWQzrpvOQNFWsjWAUjAdNxko0gM+KyUbARlkkvN/9rGz+Myj6r9yvYV33r7Ld7nCwEq1iYPnlwEAL9unWvAzKRE/det2/O8fnMTnnjhvS7KFMVCaX6sDUHT1cmAx2TSSbWW9iWqjhWKWre7Sz9k4GVzRSTZnxR09KPVGsml20Wrd1b5A2zKYS6egyHEr2QSIArrtoi0ZIhRuF3UJEquvZRGTrdrUFFMxkpcDuQxqzTqqTXObPdDZphrLSGzZggAMFrJYMNmGgKVeG/tbVckmY3U9XrtoFEo2K5ItSiWbcVtjGAYavaZkm12rQ5IVZFJCeHbRgJRsJFkBgRcySRAE5phqZHsjyPNnIdnIgqaiKLbltSJyk0Cyxa1k8zJ/8atkszpekGA5Jl0PTs2VcWK2jLQo4Fff+CL8wdeP4R+fOI9/fOK8vv3yehNffP+dru5V0HZREiphfDAX6rjt1l1jeOAxAbNr9cCfj+tRx2233Ybz5887b9jjiLpDI7LjLz91Dg1Jxp1XjOPuK1WFxfT0NB5++GHMz8937LNpKI/XX6sG7fuL+08BYOsMP/f4OfzYxx/CK/7oB/jE90/ga4dm8NWDFyEKwI/ftBUA8LcPn4GiKPj64Us4cG4Z6ZSAN920HU/+xj0YL2VxfnEdXz3YnUWWK9n6G35JNivrGH08u449LrvoekPCd49dhgAFV00Nxp5Js02ytROl+IVZvDVayUZ+o38n30uShKYkd1jNf+NLR/D5J875LlcYeOTkPGQFuHLTQIe15e2aOvfBE3M4bxjQh06yVdSkB4Rk80JIAd11YTCfwaBmXSN2HhaYkWzkuyWKZHOCb5KNJD7wpGQjdlExViVbOp1GShSQgtylZGtIKskmCpxkc4Oc5gOVrGKyaeqxOBWCJC7buoNdlMBYN8l7NlLI6AuaVn2PlV2U/mxUsg3lM0hBwWqEdlFCsqXTaU9EVVCwI9nCjsnWa0o2ljJc1GJ+Tg3nIYrmah7vSjaVZAsq8QGtYgPiI9ncKNm8ujeSqGSLe67nRslG4CUmm5kbIAl20W8dvQwAuOOKcfz7l+3Fn739ZkwMZHHj9mG8587dyGdEPHNuGfcfn3N1fq/ZRa1U1GSRaWIgmIzCVrhu6xAUqAnQmq1gk7i5HnX81V/9Ff7wD/8Qn/70p/HUU0/h0KFDHf/6BXHYRRfKdTx5WiXS/usbXqS/MCShRLlc7iibIAh43yuvAAB85cAFXDAJbH1heb3j+8dPLeD/+coRAOoq///49nH80ueeBgD8h5fvxe+8aT8KmRSeu7SGHxyfw8e+cQwCFNy6awwv2jKE0VIW//5lewEAf/5vL0A2DHC9rBBYfeZIHoJUspnFiqHPYQY6u2iUA/TvHruMWqOJ4UIGU0P5xJBs82V1sBgkyWY16SCf6Y6U7rj/9dBFXFypYWIgh/fcuRsA8GtfOoyvHOjMgJwEEKvoy/ZNdHy/c7yIl+2bgKIAn/9hJ0EYhZJNgKIrzYKKyQYAW0aIZZQ9+YHdAFG3izIkaKDfFS/XRIi8cq2FlkmsPDvUEhKTLZvNIi0KyEDqjsnWkiFoSjYrKyBHN3IZUU98YFbnVZJNQVqwHsiHjQGN3K7YKNno74zPnrgLRovZromLEU52UaA7+/VQIYMUVEuqnZItLLtoGCSeEaxKNnpSTL+HxsUn4/33UvYkk2xelWxknkFbRY37+FWyLVQaKNedkww4ISiSLaiYbHaJD2hyh+V9MZ7Pj/AhrJhsrOUJGn7son6VbGGSbG7sooqi6FbR112ninTuvXErnvzN1+IrH7gbH33TdfhZzYHyP797wtVzCjK7KADMafObicGC6e9BYedYEfl0CpKs4GxAlnQC16OOubk5nDx5Ej/3cz+H2267DTfddBNuvvlm/X8OdyCVLJvN4tD0ClKQ8bprN+PGHSP6NqQBN06CBUHATTtGcMfecbRkBX/14KmOSn1+sYrX/cn9eNkffh8f+acDeOTkPN7/D0+jJSv4sRu24H+9/SZsHlIn63smSvjwPVdhuJjBT9yyHQBw3+eewfTSOjYN5nDLrlH92D/70p0Yyqdxcq6Cb1K+blImuoxe7gVHchE0yWb2t109iCsm278cvIgUFFy1eTCWpAtGEJKNxPEKouMm95ZVySaKYoeSjahpf+6u3fjte6/Fe+7cDUUBfv9rx7oscnFCURQ96cHLNasojXe8RFWzGRMghB+TjZBswSrZAGBq2H3yAzsl29q6Wu8KWWey2W9MNqJYEqBgteZugqXHZKNItjiQzWaREgWkBbnrXWhKCkQAKUGIhQjqVRC7qGRpF5UgAEiLnQRTlNBJtrr6zM0sRGbvGcESIdlKWdMFKRpulGxtu2gGKUHG6nqrb2OyWR3b7txh20WNzyNJiQ+8xmQjJNvWEEi2wXwGYyU1JnUQk2BjDLWNomRz2i/KmGy9RrJ5UbLR12tHqPsFy70k519db+DA+SUAwOuu3Wy67S++4grkMyIOnl/GD1yo2YK0i56aK+O5y6qw6Kop9lBYXiCKAraNqkT+ydm1YI/tdof3vve9uPnmm/Hoo4/i1KlTOH36dMf//YKoV40gpvHcpVWkIeNdd+zu2MaOZAOgq9k+/8R5zK3V9W0+9o1jqDQkyArwxacv4Gc+9TgWKw1cv20Yf/wTN+LNN23D9/7TK/HHP3EDPvcfbtcVA++5Sz3/mrZi9IFX7UUm1VatDOYz+Lm79gAAPv79FzrulZ9VE47kI0i7qHEQxxL/xayjC7seraw38YPn5yBAwdUJsIoCwMQAUbIFbxf1omR78swCnru0hmI2hZ+9fRcEQcCv/8g1mBrKY26tjq8c6LaWx4VT8xVcWF5HNiXi9r3dCSzuuWYzxktZzK3V8TSVuTl8JZtqFy1kUr4UTWZ1YStJfuDTLqor2XSSzTm+mx+7qHruNtFGFHSsSJaSTUTaxC7alNpKNk6ysYMkPmhZvIvVhgQBCjIpewVYmCAZRkniA8Bewd9tF1Xb99FiW/Vl1f/YXZ8ZySYIgm4XrTRakEy6EJY+2S2izi5KYPXeG0k0sm2YJBuB3cQ7LqeHnZLNDhdDVLIBwVpGg7aLsiQ+MIObmGysJJuVko0FUcVkiwtxKdnosXKY94BFyXZyrgwBwM07R7B5yNyGOTmY03mIP/3OceYyG+cLfki2P/zmc5AUVQB0xaZwSTYA2DGuJlc5NVcO9LiuRx1nz57FH/7hH+L222/H7t27sWvXro5/ceKjH/2o3jmSf1NTU56OFXWH9uT5VdRbMkYLIu64YrxjGyeS7eX7JnDjjhGsNyX85leOQJIVnJ6v4OuHL0EUgD/96ZvwiqtUxcbkYA5/+a5bdAXCQC6Nn7x1B7YMtzvGKyYH9O1v3DGC116zueN8gKpWKWVTODazih8832a6/ZBscTfAHM4IS8lGf2ZRstExU8LGt45eQkOSsW+yiImBXCJINhJYuNyQUG9JoZNsZko2QRD077/89DQANabZcFG1UGTTIn5OI+w/9cCpLmt5XHhQW5m7dfeoaRKAbFrUlcTHL7dXtcIm2RYqdYhQUMw5WzDNYLcPGUxdXnNPshknnIqiYFWb/LMkUfAbkw1QSTIB7uOyJSUmWyaTQUoUkBEk65hsYjxqq14FHZPN2P5JsqInlCAkWxzPncRkq9StFRx2dlESk220mNXrRhAx2cjf+YyIYlr9bWm9W00VZky2pCU+MC4qhEGyGc+dxMQHnpVsS+GSbEEmPzCSbF7ViElUshl/o8/rNG7hSjbrffzEZBMolXpcdlFy/lOzZQhQ8Prr7LmRX3j5XhQyKRycXmFWswWVXfSHZxb1uHF3XzkRyQIZIfFjJ9le/epX4+DBg4EWIkhcd911mJmZ0f8dPnzY03Gi7tC+eUy1L103NQABhgGjwcZltlLxZ2+/CUP5NI5eXMX9z8/iG0dmAADvvH0Xfvzmbfj0e1+C73z45fjmB1/WQahZ4aNvug5vffE2/MlP3Qigk50GgJFiFu98qUqq/sUDJ7v293L/OMkWPOr1um28B9ZjLC4uAghPyUZ/tuuE4ojJ9q+H1HfpnhepxHMS1CalXBrjpSwUCFipNgPpuO0SH9gp2S6v1nDkwjJSooD33r2745jvuH0nBnJpnJgtuw6iGhYOTa8AAF66d9xym32bBwAAxy+3O9ywSba5spb4gCFjpxns3odNWlgAonRmgdkAEQAaLQkVTeUcGcmWTgFQsFJlJ9kURUGt1baLei1DECAx2dKQUWt0TqiakgxRULhd1CVy2jNtmUiwqto9VpVsQqSLMjSIXXSNUrJZkSdmz562i46OjmLHjh3Ys2eP6bnckmyEPN88qC6KLJq8W/1gF7WC8R4ZFYVGgtFqAukGVnZRFpItKtgp2eyeE0mqE4ZdFAB2ESVbCCRbmHZRAjuSjTUmmxtlqdk7H6ZdlIUUDqoueIVXmy3ArmSjz0UvSLM+u3q9jlOnTqFW8+Y6sIIoiqg1JZxfWocAOJJsEwM5vP0lOwCoTjgWBGEXVRQFf/C1YwCAm3aOYXwgFw3JpinZzsxXAhUEuC75vffeiw9/+MP46Ec/in/+53/GV7/61Y5/cSOdTmNqakr/NznZHXOHBVEq2cq1Fh4+tQwAuGbrUFeD7aRkA4Bd4yX86dtvAiDg0IUVXF6pYSifxodfe5W+zb7NgxgfaKfWtsOeiRL+5KduwhWTA5bEynvu3I20KOCxU4s4NL3csQ1XssWPRqOBxx57zDPRTHDixAkcOnQI8/Pzvkk2Wv3kRclm1SiHBVlW8NQZlWC8Y+8ogOSoTXZPlKCgre7xcx8URdEHc05KNqME/vFTixCh4M03bsV2La4BwVA+g3doHfVfPpCMcAJntJguV0wOWG5zlSZPt1KyhVHnZpbXIUDBYN6fks2sbJNauz/rgmSjj0uXZ1mLHScIbHZRPzHZCHIZUVOysdtFm5KiZ57MJcAumhIFCFBQa3SSGdwu6g2qXVQwVbLpmUWFeO/rgKZkK1OxBK3GPWb1kthFR4oZpFIpXHHFFRgeHjY9F0viA6OSDQAmimoZFyrWJFsYdtGosot6UbIlwS7aS0o2RVFCjclGH3fGJMGbWwQVky2oxAdR2UWjUrJZlbGXlGzGbaKyi87MzODcuXO4cMF9wjCn6zo5V4asKNi3qYg9EyXH4735pm0AgO8du6z3qXYwJj5gzS5Kl/sbRy7hwPllFLMpvFpz0UXRf08N55FOCai3JJwOMPmB65K/733vw/T0NH73d38XP/mTP4kf//Ef1/+95S1vCaxgXnHixAls3boVe/bswdvf/nbHOHH1eh2rq6sd/wB3clw/UBQFxy6tQlIEbBktYbSY7egA6MmvHckGAK9+0Wa8V4uVJgD48Guv0oOF+oHxxSHYOlLAm27cCgD4C20C7WfQxEm2YFGr1aAoCqpVfyt/ZEXl8uXLgUxUycDCC8lGd3RRTJZPzVdQaUjIZ0TsGFGJiqSQbLvGi1DQTnPtl2QjcKNkO79cw6n5MkRBwS+9+krTY//cXXuQFgU8emoBhzUVWZw4q8V0IfYTM1y1WSXZTsy2lWz0anPQKoN6S8Ksll10MJ/xNagwV7KpdtH5AJRsS5U6REFBLp1CKuVczqDsogD0us6CGpVgIG67qCiKSGntXq3eSRQ2W4pmF+Ukmxu0Y7KZKdnUZ1/KiF31N0roiQ8aLUtCxWp8BbRjEI4Wncdxdko2AjPiZLyovlskvqfZ9kGOzaJOXmR1bCsSzUhOhGkXTWLiAy9KttVaS8/6GZZdlJBsF13EFbUCUbJ5yfiYdLuoEWaEsRXIfSDl8kOyOW3TKySbWyWbX7soed52cf6MYLkuQRBw5KK6aHzvDVuZjnvj9mFsGymg2pDwg+dnHbcPQsn29cOqc+jdd+7GUCHbcbwwkU6lMDmQgwAFRy4EN09xXXISk8fsn19bml/cfvvt+MxnPoNvfetb+NSnPoVLly7hzjvvxMLCguU+H/vYxzA8PKz/27Fjh+05Ll68iEceeQRra/4zUJAJ67GLq1AA3LBTtS/RDS79txPJBgA/f/ce3Lh9BDdsH8bPanbOIMoJmFf0//DyvQCAbxyewfnFqievu9VnDn8wi7HlBeS9XlhY0OtjECSbF7soXfejGKCTxva6rcOAQdUVN3aPq0q2lar/DKNWK4xGJZuRZCMJDW7fPWqpDNs6UsC9Ghn/v753wnMZg8BaralnZLUj2a7cNABBABYrDcyXVWIqTLvoJS3rZz6jxknyo2QDut8Jko12bq3O/L4Y3zVy/KVqAykoyKdFfSXfDn4THwiCgHxahADFHcmmxWMTBCCbipdkA4BUWr1X9Xon0dmQZAjg2UXdwi676Lr27IlNOK77SmKylesty/7K1i6qk2zO75mbxAf03yMFtYyzlW6VaNB9rLH/iNIuyqpkMyPZjKoUs/1ZYDxHkmOyuSHZSNKDsVK2K+N08CSbfyUbIdlyObVfjCLxgVm/4zbxAQvpbXY+VoLHzLnAil5QshHEQbKxqoLJPiwWZOM+djg5V8b0cg2iIODe69li1QuCgB+7YQsA4F818oulHH5ItsPanOvuKydM1ZhhQRAEbBrMQwBw9OJqYMftqxHdG9/4RrztbW/D9ddfj3vuuQdf+9rXAACf/vSnLff5tV/7NaysrOj/zp8/D8C6UiwsLKDZbGJlxR/TWWtK+NdDF/AvBy9isdpALpPCDTvUTHd0g+2WZEulRLzqRZvw5pu26gF//cJupfWaLUN42b4JyArw1w+d9mUX5QgWZjYIL6BjdRFy2U+j59UuGscAnTT4128b7ogHlwToSrYA7KJWKi1jp0knPri81sCjp5cAAD96vXkqcIJfetUVSIkCvnvsMh45Oe+5nH5BVGwTA1kM5q0nroVsCjs06+vxy2sddQ8Ivs4Rq83UUK7LnskKu30mBtQVwYYkMxNVVpPOpXIdacjIZ1KRkWw5LfHBiovEB/VmOx6bIAixk2zpDCHZDEo2PfEBJ9ncIJdR75VZdlGiZCtkusmlKKHHZKtZK9ns6mU7u6g/JZsZyUa+G86p311ejYZkI4iqD7e6v1Ykm9kEkX5m/W4XNSN9na7VKumBcR9/JJuqxl6rt7Bac5cAx1geQrLl8+oxg1CyuSESCGjFmFUZglB+RqFkcxuTLQ5EqWSj93GjZCO/uxEtsVzX/31qGgoE7BovYnyA3eH2I9erJNv3j83qsU6t4FfJtlxt6GP0/VuH9eNE0X8LgqAvRseqZAOA+++/H/feey+uvPJK7Nu3D29605vw4IMPBlaooFAqlXD99dfjxAlr9UQul8PQ0FDHP8C6Uhitm14wt1bHa/7f+/HBf3wGp+ZV7+97796LwaLa4Psh2fwMWmq1Go4cOdJFINqttALAL778CgDAF354Xk9V7+X8cTfA/QZj5+AVZo19XEo2s/OHSrJp9sb924aZswtFhd1aoM4gSDYvSrbvHpuFrAjYt2kAU4P2sR6v3DSId96+EwDw+/96TI+VFTXaVlHneBRXackPTlwud93boJVsxAIzpSUo8JP4AOiuC7l0CiOaGmauzGYZNfYzpEzL6w2kBYmZZPMbk00QBMouyh6TbV3PLNquu17LEAQyGY3obJqTbFzJ5g75TAoKBLRsYrIVM9EN0s2g20UpJZsbu6iuZGMI++GWZCN/DxGSzcRKHnRGPCNZFaWSzQosSragSDYC4/NIEsnmScm2QuKx5bt+C4pkK2bTuqJzxodllCbEglKyGeuI1fZGkP0Ba1LFb0w2gP099kqysRJqcSvZvIwBglCyuYnJ5kXJZjy3EZKs4ItPT0MBcO2WIVf1/Ybtw9g+WsB6U8K/PWefvMyKZDM7n1HpB7RFDbvHixguZkz7rbCgKtnadtGg6qfrkn/2s5/FPffcg2KxiPvuuw8f+MAHUCgU8JrXvAaf+9znAilUUKjX6zh27Bi2bNkS2DGNSQi84ItPT+PC8jomSlnctnsM/+6lu/Dh115tGkTTLcnmB3Nzc5ifn8exY8dMG0Or89115Th2jxex3pRwbMY5pp3xuFafOfwhaLsojSBINrdKNqsBeliQZQVHL6qN/g3bk0qyCSjXJTQl65VQFjiRbEYlW60p4elzy5Ah4rY9Y0zn/tA9V2Ewn8azM6v456emPZfVD9SkBwp2jTiTQ/s2t5Mf+AkIzAJigSFkZdB2UYBKfrDqjmQzHn+l2kAaMgoelGxeycN8RrOLulCyEbtoPt05uI2NZMuq96rZMJJsCoSYA/T3InLaczWzi5IVd/Ls4ybZyvWW5STLahFTkhVduTni0i5qrOOTk5MoFAr6IjK9TSmrvdc1WY+rZdwmqLEZ3W5GFfKBVclmF5NNlmU0WjIePbWI09rCeBB2UTvyw8v4uFqt4sKFC577J6PSkMBRyWaR9MC4Dz2x9oItw/4to0TEkE6nO0gyVtDPkCa+rEgRu2OTY9jt3wtKNlaSLSjC1Su8KNkIoorJRvbxomSzwgMn5nB5tY58Jo29kwOu2gdBEPCjmmX0a4cv2m7rNW4l2e6QJmq4fvtIx3GiItnGB3LIiGqMyekl/7Z0wAPJ9gd/8Af4oz/6I3zhC1/Afffdhw9+8IP4whe+gP/+3/87fu/3fi+QQnnFr/zKr+D+++/H6dOn8fjjj+MnfuInsLq6ine/+92ujxWmku1rmrf5A6+6AnddOYHxgZylv59+0YzZ/4JWspFrqtVqmJmZ6freqqILgoBbd6tW12Mza8zn5yRbuKBXaL3eW3pfekIdhF3UWJ+cYhbQ1xDFAJ0kPShkUrhiciBxJNtwMYORYkZPfhCUko0mZ82UbIqiYLHSgKSondKmwTzTgGCslMV9r94HAPjjbz+PSt39Sp1fnF2oYEKoYNP6OVy+fNl2W1rJFhXJtmnQu5KNhlld2KSp5ObKbCoAqwkhIdnymWhisgFAXou/5cYuWtPsokYlW1wgSjZj/J5Gi9hF4yODehGEZAPUe0ijHZMtZrsolV3UrV10db0JUmVHCu6UbEbs2rULt99+O7LZ9nFIeXLpFPKZFGQIOL/YmSQp6D6W9BNkkSzsPtyJ4DDb1opke/LMIh49tYhf/eLhrv1Zy2/cLujEB6dOncKJEyewuLjIVB67c5rVJ0uSjdEu6heExLvgg2QjVtFMJsNMfNCg64nVvM1qezN4IdlY4xYTcCVb5zmjsIvS6ka6rQuTZLO6rv/7pLqoff32EaREwfW9/7Hr1ZjK33/O3jJqXKiwU+8Z53NA2zl0w7bhjv2j6L9FUURKFLBtVG1jiMCCoNFoYGlpyfW9c13yU6dO4d577+36/k1vehNOnz7t9nCBYnp6Gu94xztw9dVX461vfSuy2Swee+wx7Nq1y/WxnEg2r0kezi1UcWh6BaIA3HPtJv17QWing/ZjF/UD+prPnj3LROoR3LJrFABw7BI7yWZ3fg7/CKJDo+v55s3tuFthKNmc5NRRr4IfvrAMALh26xBSopA4kg2gkh+sN3zdB/o5mx3HqGRbqjagANg2VtS/Z8G77tyFXeNFzK3V8dnHznour1ecWaiiILQwUsygXC7bbrtvk6Zkm13rau+DrnNk0jA5qE6C/SrZzOBVyWacdK6sN5ASZOQijMmWJzHZPCQ+SIpdNKcRHC3DZKwpyRC4XdQ1cukUyFvYlDrbHz0mWzpmko3EZLNJfGBlF13UrKKDuTSyaefyu7Vl09sM5zO2JFvQdlFjXNYoxn5OSjajopD+vdmS8OzMKmQAT5xe7Ery5XZRmewbdOIDMndwk5nQ6hxulGxkkYiFZPPzrLdpdlQ/SjZCsmWzWd8kG8CWIZTe3gin/YOwi4atZDMjZ5OsZGNBECQb3aa4JTqDsouuVJv4zrPqgvKLd40xlcGI/duGsHOsiFpTxjcOX7Lczo2SzZRkIzGwt6skW6FQ6Pg/TJAy7NbmNE+dXer4/bnnnsPBgwcd5w1GuB557NixA9/73ve6vv/e977nmJkzbHz+85/HxYsX0Wg0cOHCBfzzP/8zrr32Wk/HCkvJ9q+a3PKOK8YxVuxMTxsEyeZn0ELvQ+4hfV67gduLd6ok23OX1iCb2Deczue1zBzWCKJDo8mFqal2RpogSDYrJZtVWY0riMbvg8bhadX6fL22qpJMkq2oK9mCsoua2YyNMdmWKk3IELBjbKBrfzvk0im8+47dAIBHT1lnfQ4LZxcqECFjpJB1HMRcuWkAogAsV5uYXesc1AetZNNJtgHvKcud3olNQ+oEZc4k9hLLcUmZVl3aRYOJySZCAFzZRdsx2ZJhF83lNJKtZZ34IEltS9KRSQkgj7JhIMEJyUaefVz3dcAku6gVeWJ850n8wZGS8zsG2MdkMwN9vqFCGgqA8waLDGscIVZ4tRN5hdlEzvjZSLKZKdkeOzWPcr0FBep3X37mgq8xCItd1AvJZrwWt7C6X6x2UaICsTom4K/vDCLDaNQkm1O/Q/Znicnm9X30o2RzO5ezK2PQ4ya3iFrJRp/PbUw2SZJcK2TNruvp80toSDL2TJSwTUvm5aW9+qlbtwMA/uqh045zNC8k23y5jgvL6xAE4LqtaliDvXv34iUveQnGx8ddldcLSFlftEVdXH/wRGeCNpIV3pgd3gmuR/L/6T/9J9x33314//vfj7//+7/HZz/7Wbzvfe/DBz/4QfzKr/yK28MlFlaVwi/J9rVDqg3zx27Y2vViBKlk80OykWCg586dQ7PZ7HpxzLBv0wAGc2msN2XMV7zF/OEIFvT99Vpf6ZXnUqmEgYEBddKb7w5wywpSz40TH6eBgNUAPSwcoTKLAskk2XbpSrbg7KJmA3VzJZuAnVoCATfKXqJ6PXB+OdI2oNpo4fJqHSlBwUgx41jmfCaFndqq1snLax2/sQ4+WaAoij5pICSb37ptVjZdycZIsllNOlfXG5FnF1XVaAqWqw3IjEkzjEo2P2UIAnmtX5UMk7GmpPDEBx4gCALS2v1qGu2iJCZbKl4l22BOfT8UBSBFtFpcNNbLpQp7ZlHj/m6VbEMFVck2vRSNki0qks0OrCSbLMv41wPqgvNQXn0WX3zmgutFTCeFuBF+SDa/4z3jQqZdfWq0ZL1PcYrJZvbZbPulpSVTNZ5Osq14T3xAjpvNZj3Vb5Z5m932RkSpZGO1KtIJGdzUOyeHSVKUbG7GAEGTbKzPAGAfV9vdy6PaPObG7cOeSGWCd96+C4VMCsdmVvHQC/Ndv5MFeMAbyUZUbHsnShjMZ/Tvi8Wi67J6gU6ybR6EIKiCocur7XbGa4xz1yOP97///fj85z+Pw4cP40Mf+hA++MEP4siRI/jCF76AX/zFX3R7uMTC7EbSFZ61kl64cEFXhJ2er+DoxVWkRAGvv26qSyFG4mUEoWTzAnLcyclJlEoltFotTE9PMynZRFHATTtHAAAzKzXfSrowIcsypqenUalUIjlfXAjSLko6+BtuuAG33nqrL5Jt06ZN2L17d5eN242SjWV7P5BkBUcudkqXk0iy7Z4oQlH8x2Qza9vslGzL1QZkCNg54U7JBgDXbBlCNi1iudrEmYWq8w4B4ZxmhSplReQzKSY5Pkl+cHJWJdncDj5ZsFRtotaUIQjAuKZa8apks3sn9JhsHkk2Uqa19SbSAntMNjpJiVeSLZdWlWyyApQd0sgT1LWYbIWE2EXzmpJNbnW+qw1JhgC1D+UkmztktFh9RpKNKNlyMdtF8xk1zgsA1CVzAsRqfEUyi44wkmxuFaOdSrYMZEXA+cWNo2QzbmOV+KBSa+HBE2pWvbfesgOFTAqn5yt6kG7jeVgQlpKN7OM38YGT6o/G5dUaFEWNkThukgXXLcm2srKCgwcP4vjx412/BalkCyImG9CetzUa5pmv/ZBstLDDT+ID1vfYaOemv7MDK8kWd0w2AreLEDRhxtqX0KQTfV9Y1YSA+7BUZtd15ILqyNm/bdjXosloKYufvk11K/7lA6e6fjdblLc7XxfJRuKxaUkPogYp60AupQsrHjjezqYaGckGAG95y1vw0EMPYWFhAQsLC3jooYfw5je/2cuhEosgSDZJknDixAmcOHECkiTha4dUq+idV4xjrJS1XBGhG2u64SUvOgvJ5ofkEkURu3fvBqDGuSOkn1Pj8uKdo1Ag4NIyG8nmtvMNCktLS3jhhRdw8uTJSM4XF4JYNaIDFQPqgKJUKvkqVzqdxu7du7tWKJw6AKuVpDDqzen5MqpU0gOg+14kAUTJpip8grGLOinZWpKE5fUmFAB7JlUSys1gIJsWsV+Tgz9zbslzmd3izLxKsk1qRBZLmUnyg9NzahwGevAZVL0jQaMnB3JIi97JKBr2SjZviQ/I/+VaEykozEo2oDsGk1ukUyIKGZJ4gc0yWmslKyZbIa8p2SS5YyGNJD7g2UXdI5PSlGyGmGzEKpyNWckmCIIel63e6m5X6c/GMhKSbYwhsyg5l9uyEQzlzZVsfpQPZjD2oVGSbEZYKdmMZXvizAIkScLEQA57Jgfwhv1q2IwvPdPOtOd2vGsk2ewSH/hR3biF1RjL7jlNU0kPzMrqdpxP7Fi1Wnc/tVWLyXZppQaJUdFshJld1E39M/YjxPljZSNz6nfsEh/Q8z0/SjavdlGWfeht+knJRl8HfQ/8xmRjUXISuFWymZJsmljguq3DvhdNfv7uPRAF1Up5bGa14ze6rCwxN43tm55ZVCO4ogZd1pfvmwTQaRmNlGQDgKeeegqf/exn8Q//8A945plnvB4msQiCZKMbzVarhX/VraJbOs5hjMnWarUsgx/SNqWgJwv0cScmJlAqlSBJEi5dusR0vhfvGoUCYGZlPdFKNnJPvQSW7CXQ9zMIu2jYcOoArCb9dvt4BWnwr9OSHgAJVbKNl6BAwFq9hRqjwscMTjHZ6Gczt6oOcFOpFLaNlrr2Z8HNO9uW0ahwdkFVrk4U2+2sE67SlGxnNJLN7eCTBSSezdaRArMlwQp2bXRQSrZqrQZoJBt9P+zgx+JN9hkqqOdaZiTZ1omaKSEx2fKZNFoQ0ZKVDpKtKckQBG4X9YKMRqI1jCQbickWM8kGtJMfkDJaKZS6lWxqHWFVsrm1i9L3ZLigZqk+v1i1XFwJAklMfEBAytCUFHz0q0fxNw+fwam5Mh45OQ8BCq7bOgRRFPGWm7cBAP7l8IxO9Hgl2ewSH9DkittzeL2fXpRsF6n+y+6YVp+ttje7J5sG80iJAlqy4jq2KEHQMdnCVLIZiQuvSiTW94wef7i5N72iZIuLZPNqF2Wdo1rdy+VqQyfBr9XaL1IGRVGwsLDgKknKjrEi3ni9yl98yqBmI3WVrgMs2UXJtiTR3A3bE0CyXaWSbA+9MK+HJ/GqEnY98pidncWrX/1q3HbbbbjvvvvwgQ98ALfccgte85rXYG5uzvkAPYIgSDZ6m3Pza3ju0hrSmlWUPodRyQa0LaNGJtuJZAtCyUZeEqJmY5343bRjBIAanLpcc35x41KyeWWkew1B20XDhlPdjTImG4kPsJ9aVUkiyTZazCCrKXUuLHu3Xtop2egBgqIomNHOMzVU0O1abmOU3axZy585t+y5zG5BrKljRbXMLKuEJMPo2YUyFEVxbaNgAZ2ZzS8RZPcOTQ6oKoDVWkuPV2YHM5KtKclQJHXgN1DIMZMXfpRsOsmmBZFfXjefzBhR0+yiSVGy5TIiWkoKLVnpmJDRiQ84yeYOTnbRuJVsAByVbFaKJZL4wE1MNje2bHqbwXwaMgRUGhLW6q2ubXo1JpsZsWX8bOzv/vXwDP7ukTP46sEZfPXgRUwvVpFNAS+aUiepd105gU2DOdfhDsyukcUu6oZk82sX9aJks8ssarYPK9Fjdg0pUcCUlsDngkfLqF+SzSrMj1+SzWw8Qis/nQgsu/O5VbJ5Jdno0BBOSrY44IdkqzUlnJqvwOkS6GPHbRc9elFVm+0aL2K4kOm4poWFBRw+fBgnTpxwdY5ffPleAMBXD17EJSo2otn8iKUuiKKIy6s1XF6tQxRUMjAO0GW9eecIBnJpLFYauhIwMiXbL//yL2N1dRVHjx7F4uIilpaWcOTIEayuruK+++5ze7jEwuxG0qwyS+WntzmqsbTXbBnSVybNYkAYg2jGpWQDoKvZCJzON1zIYJcWCP3covPgI26Srd8RhDQ7SoukU6fOomRTFAUnT57E5cuXfZXloKawoldVkkiyCYKA8ZKqUJpmeOesQLdVZiQbfa8vaSTbttFCR71w814RQv7YzCoT4RMEiJJtpGAfaJjG3skSRAGo1Fso11uuB58saCsB8oEp2cze96FCGtm0elwWFYDxGIIgoNaUkIGElCiglGeb/APBkGyDOXdKtmpTfb7FTMp2sh0VcukUWhAhGUi2RosnPvCKrIVdVCfZYo7JBrQzjNZa5godo6OBYLGikWyM2UUB877RCvT5MikRJS3Y9GVq4hRVTLY4xmTGtlKWZU25tggAePlVkxgpZAAouOdFm1DIqtkdU6Kgq9l+eGapQ7Hi9twsJJubZ2CnAmOBFyXbhYCVbE5E4TYfcdkURelIfBCEko3VLmoFFiWbG+Wn2W9cydZ5TrcWbFmW8c0jl/DlAzP41IPd8choONlFw0x8YLwukrxt/9ZhvRykDCsr6m9W5LAVbtg+ghfvHEFLVvDtZy/p35u5nlhINkFox2Pbt2kQxSybOyJo0H1RJiXijivUjKYPHJ/reJahk2zf/OY38clPfhLXXHON/t21116LP//zP8c3vvENt4frKXiJyUbw/MwygHZqWsB8cGVMfuCWZAtKyUb+p4PTswxUr982AgA4v5jcpAIbUcnWC3ZRt0o2GmSf9fV1nD9/HsePH/f8fGtNSVey3bprTD9+Ekk2ABgf1FZ2l4JRshnfD8Ew+Z9b1Ui2saJnZde2kQImB3PIKXV8++EnTeOvBI2zmupguNBWsjnVkXwmhf3bhiFCwbnFqqvYGqy4EKCSjcBqoO0mw6iZkq3WlJERZOTSKb2vYkEgSjZiF11nI9nWamrfOZjPJKKtz6VFNJVUF8nWlGQIPCabJ1jHZFOffVa7nclQsnmzi7Iq2QB312k83+Yhlby4vNpuG+i2Loh3KMlKtsVKHd999jIUqLGH/usbr8F77tqD//6W6/FLr9zbUe6fv3sPCpkULqzU8MJs2RUBRqMflGykX90+Gr5dFGjHZZtZcU+ySZKkHzeMxAd212bV99nFZDOOOd2MPfwo2dzYG437sSrZ4iTZWEBfx8HzizizUIEM4C8eOIVK3XqB1skuylr/Af920SOaku26bUMdZZNlGeVymak8NMhzfp3mxvvesVn9N69KNkEQ9LAx18dkFSXlANrlIpbRB07M+yKHXY88ZFk2DXacyWT6SiFkdiP9kGwvXNYquwnJRjeGxuQHXkk2q2uwg9lxSaZRgI1cIPa68z2gZEvCxCtMBKlkizImmxclGwEpryRJrldoCJ45t4ympGDzUA47xgod5waSR7JNaMTJxRDtovS9ntfSWm8bHXAlg6chCAJu3jGCCaGCE2cvhh5qoNaUcHFlHQIUDGvKErJC6YRXXDUJEQrOLlRdr/Cy4GIIMdms3ne3cdnoY9JKtgJjZlECcj1+yI6hnHq+lSrbe72qkXGD+XQylGwZEU2IaMmyiV0UEMVkJVXpBViRbImyi+pKNvNxR1B2UfoYbpVsgiBg87Da111arXV8byynH8RJshlhnAz/2XePo9qUsGW4gP/8+qv13/MZsWtBfNNQHv9Bs009/MI8Gi12+z19bnribby/Xkg2r2oL4/5ulGyn59UF9b2T5gmxglaytTOMul+YI/MpQRA8xzizItkURbFMXkBvb0RYSjb6fKzvmRfllfGc/aJko7f5ay3+mAIBi5UG/v6xs477WZFsYSjZzMoMAEctlGyKoqBSqXSdzw6nTp3CQw89hHK5jNe8aBMA4NFTC6hqsaDtSDa7mJOCIODJs6p6+JZdo0xlCQNGEvQVWvKDp88uYaXaHi+HTrK9+tWvxgc/+EFcvNjOrHPhwgV8+MMfxmte8xq3h0ssgiDZ6G1Ozaok27Vbh7t+NyPZms2maaMdpV2U/H3ttddi27Zt2LRpk+MxCBM9s7yOy6v2nWBcJJvfgUivIEiSLYpJCquSzckuSkA6Ebd44rTa4L9kz7h+DrPMOUnBxCAh2byntTdr24wDJ3IvFsrqeXaMq9lh7TKk2eGmnSMQBQWXV2qu93WL6aUqFAUYzKVQyLSfH8tK4SuumoQgqEo2CKKngbkdLmiTha0BxmSzAlGyzTFkGDVTsq03JWQEyVVmUSComGzqMVjtom0lW0JINgu7qK5k43ZR18ho9uemgeQgiQ/Iqx7nfSU255qDkq07uyhJfOCezHY7iUylUtisxbqix210mYIYL0WdXZTA7n4oioJnZ1bx5JlFpEQB77lrD/KZzkyOZosfv/DyvShm01heb+KLT533VBY7Jbgfki0qJVul3tJJ2b0TA7ZlsvpsVQYrpfkWjWTzEpPNeE+DULKJYnvBycwyGjXJZoYkxmTrFZJNT34iAHddqRIvn3rglE4uWe1nbDdYx430726VbPR1rdWaOKUR4ETcQ55prVbTxyCsdX91dRWyLKNSqeDKTQPYPlpAoyXj4RcWAJjPFVnqgqS0E6Ddtjs+ks1Y1p3jRewaL6IlK3j8ZHeWUVa4Hnl84hOfwNraGnbv3o0rrrgCV155Jfbs2YO1tTV8/OMfd3u4xMKsUtAV3o2SrVJvYaWiBvW7Zstg1znoF4O2i9KEGvk+aiUbAJRKJezbt49pUrVrfADjpSxasox/99ePY6nirDqIaqBFsFGUbL1mF2VVsplNJMxItmrVm7Lrh2c0ko1q8I0BaJOESc0uenHJO8nmpGQj/zdaMqp1dfK3c0wdVNtlSLPDzTtGIULBzMp66CroM/NqXdg9lu94fizk3k07RjCQFVFrSji/tB6okq3WlDBfVgfm2yglm1+SLQglm9nzrzUlpCDHQrINuLaLEiVbZznjI9nMEx80JC0mmygkjsBPOnLEaiV11neiZMtojzoJdtH1pvnintm4S1EUfew0WgpfySaKIjZrbcPlCJRsUWUXZRkrK4qCB0+ok+hdY0VsGy12/W5GhA7k0rh7X3vSveaQ7MtOYQRYk2xuLIJ+7aJOJISxDETFNl7KYtiCDDYe041dzmzbbZpd1Muioh/7pbFMZvM2M/cEK8lml/ggKCVb2CRb0pVsBG5Itq88cwECFFy9eRCvvmYzdo4VsVBp4LMWarYg7aJuY7LRODazBgDYOpzHuLa4Ssq2trZmu68Z6HmzIAi6mu37z13uKCs9hmHJLnp5tYZaU8ZoMYMrJs2J+ihgVm9frrXvj7zQJtlCV7Lt2LEDTz/9NL72ta/hQx/6EO677z58/etfx1NPPYXt27e7PVxiEYSSjWw/u1ZHSlCwd3KgI6ifWcdN20VpUo98H7WSzS1SKRFvumkbBnNpHL9cxnv+9gmULfzrxuvnJFuwCFLJlqSYbGb1MyiSrSXJePrcEgDgtj1j+vdJjccGAJOaAmGhXOuyTbHCKSYboL6ny9UGRMgoZlIY1mxMXkmnG7YPIyUoWKu3sLDmnSBkwRkt6cHO0XzH93QbqyiKaTrzdErEDVpMiyMX1wJtr0h2pmI2hZFixrRPcAOnd4hkGPUTkw1QLVRRk2yDml3UrZJtKCFKtnwmhaaZkq0lQxR4dlEvyGTU+9UwTEbWtWQq6STEZMsTks2cADHr18r1FlqyWmfHQrKLsijZ3NicWGAkjoJWyrkBff0PnZiHAAU7x4pd99BKyQYAN+8cxWgxi6VqA//4xDnb85ldn9X9pSforEo2+veolGynHKyi9D6s/abT4vBWH4kPjGqbIJRsQDAkm5lqiXxn7D9dq2lc3nu3JJuXmGxxgGWO+2/PzeLG3/k2/us/H8LXD83gybOLEKHgtt1jSKdS+MCrrwQA/OUDp7BiMhZJil2UJD24blvbPUfKQLt8WJ+JcY71Kp1km+1oI83sombnIZ/PL6rv8a27x2IVMJiSbFpctkdPtcPZhE6yEbz2ta/FL//yL+O+++7DPffcA0VRcO6cfSfTS2Ah2VgbrLm1GlKQO+Kx0eewsouSBjadTne8oFEr2dxiuJDBO16yA6PFDA5Or+D9n33KtsHlSrZwECTJlqTsonaWGL8k29GLq6g2JAwXMrhqU1t1mmSSbbiQRVoUoCgKZjzEKQHMLUxmSqbFagMiFIyWsl0DVbcDglIujalBdXBKYlaGBaJOvGpT52SALvPx48fx8MMP6wFhaRCS7fDF1UAnnXRmNkEQAmuDw1SyAXCtZJuamsLY2BhTyAErELvoqs/EB3Er2QCgWmvff24X9Q6SXdSoZNPtoqL6rONst3Ulm0VMNjNinRDJubSIQpa97G7qT7eSTSXZLq12tg1B2uOtYrIB4YzHWMbKjZaEJ84sQgCwc7xkamW1Ip/SKRE37xyBAOAbRy6BBcaymPWf9L3wQrJ5vZdW98uSZJtT+8o9E87x2IIm2ZaqTf09Z4WVks1IcK6srFha9czukV2GUac+nXYCGK83KCUby5jFqNjsRyWb07NYqzXxq188hJX1Ji4s13B8dg0CgJfvG8f4QA6iKOItN2/DzrEi5ssNvP5PH8C/PT/bcQwzdSp9X6Kyix65qJJs+6kQVU5zJpZyke1funcchUwKl1frOHpx1TYmm9l5yOezWvz2OK2igPm79dK9Y0iLAi4srusxUkMj2VKpFD74wQ9aVpDZ2Vns2bPH1cmTDCeSDXB+Wcj2c2t1iFC6SDazFUx6RYTsb0WyebkGlu39TELIvuOlLD7z3tuRz4h48MQ8vv3sZct9op5YbBSSrdfsol6UbMZ9/JJsJB7bbbtHIYrdtsIkkmyiKGIon4EgqLHHvMDYtpmRbKIoYqnSjhNE3luvdlEA2KEpy87MdxNbQUGSFTx6Uo0b8eIdnW0wPYhZXVWJvuXl5a5jXKfZ/F+Yq1gqUryAJtnoY/pVslnBf3ZRbyTb0NAQbrjhBj2JjhvodtEssYuyJT5o20XTgfRtfpFLq4kPAKBWa2eiUxMf8OyiXpDR2h5awasoih4vJwlKtkGiZGvYx2Sj6+aSh6QH9DHcKtlokm3WEEs3SOVuEkm2M/NlNFoyJkoZjBYzrpRsgiDgiskBCIKaMMkuDrFVWczIDPpvVpItyPGelZLNiHbSA+d4bF7scmbXMZTP6HEOL7rMMGoVk40e7ywvL+OZZ57BiRMnbMsXtJINME90Z1VeK1gpJp32o+/1Ro3J9v9++zgur9axa7yI//z6q3HnFRN47TWb8P5XXAFAi7+XEvG/3/li7Jko4dJqDT/3tz/Er3/pMGTZmlR0cz+9KNnM7uXRC+p4dv+29pjXrB/0qmTLZ1K468oJAKr6zy4mm9l5yDt3llKyxQmzejuYz+DFu0YhaInPjL+zgHnkoSgK/vZv/xave93rsLi4aLlNP8MryTa7VkcKSgejDISvZHMLv/GAjPtev30YP3+3Srz+j289D0nufsnofaJWsvU7glSyJTEmm9lv9HUaLdcseOIMIdk6G/wkk2yCIGCokIEABdMe47KZWZjMlEx0xjs/lguCqSF1cHrRIznIgqMXV7Baa2Ewl8a+yWLHb3SbTqyiZgkzRosZjJeykBQBJ+fcZWWyA7G8kDgzfskgp7bUi5KNPjYh2QqZVMfkIEzoJJuLxAeSrKCiqRySQrKlUyIUMQVAQEuW9frWbKlKNpEr2VwjSxIfUCRbvSWDDDVSonWfERVKGiFQ1d4dqxV9um4uavHY3CQ9ANwlPqDvSSqVwtRQ20pOj9XCtIuGTbLZgZz7xKy6wHP91uEOxQkryVbKpbF/q7oIY7eYbHV9ZotURsLDbn+z4wcdk81ayaaRbBEq2QDvllErJRt9rvV19ZhWi7TGe/T3j53FR7/2PFbWm7YkmxUEoR2L02qO6SVRiFslG/2bW5t4rynZzHB4egWfefQMAOD33rwfL941hpfsGcPP3L4TY0W1DSf3ZP+2YXz9vpfh5+/eA0EAPvf4OXz/OVXRZqVk8/Ieu52/kHPXmhJe0FSm+03sojRY2wozccprrlGdCd+jSDYrJZvZ4tJStYlyXUIuLXbxI1HDqt6+4qpJiCTxmcnvTmAeeQiCgO985zuYn5/HrbfeiiNHjlgWsh9gdiOtVhmsIEkSak0JK+tNpAQZ11rYRc1isvWqXdRYUX/h5VdguJDBidkyvvTMBdvzRU2y9TspHESHlvSYbMa6atzXjZpNlhU8SUi2PeYkWxInwYIgYCifhgDgvEeyisUuKopih8LCqGTzkiF0shQ+yUayH92+dxww1A/SxipKO5OzGckmyzJ2jZegQMBzl8r6d35BJglbh4NVslm9Q5NaJtr5ct105ZWGuZLNW0w2P9BJtlybZHNqz8q1dl9N20XjHqOQDKN08gNCEHElm3tk0+rzbFEkG20h035OROKDqkNMNjO76JiLpAeAPyXbxEAWoqAS1AuVesdvZuX2AqvsokB8SraTs2QyOtjxPW3vcmqXSYDsbx91toy6UbI5KYNoBEGyuYnJpiiKbhe1iskWFsm2xWPyA7v6R85FtjGLzwp0ztv+7flZ/D9fOYKDFyv4/nOznuyigHVcNuOY16td1K2SzS3JxhKTjR5TOpUlLFg9i3pLwm98+TBkBbj3xq14+VWTjiR7IZvCb/3YtXjXS3cBAL6pvftOJFuYSjZy7qMXVyDJCiYHc9ikjfnMrtt4PpZz0Nu/6mqVZDs4vYxlrc9wYxe9uLwOBWpyMbJgFhes7Lwv3zcJAQrOL1UhyYrrttWVkm3Pnj149NFHcdttt+GOO+7AF7/4RVcn63W4VbLJsqwrBsaLaYwYpP92suNWq6U38m5INj8Ig2QbLmTw/leqUtv/+Z3jqLe6G42oEx+YNRb9iCAGXUmOyQbY20UBdyTbC3NlLFWbyGe6V1WSrGQTRTESJRsgYEmb/I2Wsh3ki9kxWDBeUoma1fWGrpILGo9o6bfvunLcMuYJPZGqVqtd9UiWZeweL0FWgGcvrXUMvPyA2EW3jaokW9hKtgnNLtqSFZ0wZT2mKIp6QHm3dlE/IOcvaXbRhiTrZJ8VVjWraD4jIpsWE9PWq3HZREiyrJNsLUkLbi0mk8RPMjJpYhdtP1+iGMumRJ1UT4JdtNqwj8kWpF2UBcaYbOmUqLcPl1faZAFrLCEW2IWfiOMdrdRbuKxZDskiuJuYbGSbl+1TbVOPnlwwDYZOjkPvQ8BKsjkhiEVVN0q2ubU6Kg0JogDsHAuOZGMhGbZpSjYSNJ0VVjHO6POSbcxUafR2l1dr+OA/PgNFAVpI4exCBQfPzpvuYzyXEaQ8ViSbFyUbDdaYbGTbsJRsccNYvx84PocPf+EAbv297+LQ9AoG82n81o9d07GN3fsPAG+8fgsA4LvHLqvxVannTM+fWNpRIxHp1S564PwKAJW8MlM0Au04gn5ItqnhPF40NQhFAZ6fUc9pJNnsSFeVZBO6nENxwKqc120dwmghjUZLxszKenhKNoJCoYAvfOEL+PVf/3X89E//NH77t3/b7SF6AmY30otdlJBs24ZzXb+bKXPS6bT+mciWU6mUJ5ItCUo2AHj3HbuxeSiHC8vr+Nzj7eQYXMkWLoJYNerlmGyAO5KNxGN78c7RrlWVJJNsbbsocH4xvJhsC5UGmpKMTErESKEdk80ryaYoCjKiGmNFgILnLq057+QS9ZakJz2468qJruskg1p61brVanUNsGVZxtaRPFKpFFbWW1iuNgNSsqkxfIKKyUZg9Q5lUqKujnGKy2Z8/p120XRkJBtBISMipcVJXHFIfkAnPQCC6duCQC6tZhhtSe1MtpKuZGOfUHOoaCc+aL/X61o8tnxGDOx98oMBLStutdEm9GmYk2zt2Jdu4MYuSm9D+jWzDKNhx2QLc/znpGQ7v1SFAODaLUN6nC+3dlFAtftftXkALVnB9583t4xaXZ9Z4gMWZZDd8aNQspGwCTvGipYqFDOSzU3gd6ttSaKFUy5juRrHs2ZkEr3wZkZyKIqCpiTjf3z7OFZrLdy8cwQ/e6cqJPju0Qso15pd25NzWcFKyWZcWI5CyeZlXGck6MzOZdXuxQFBEPDE6UW862+ewJeeuYC1egubh3L4k5+6CZsGOzPQO5Fst+0ew3gpi+VqE0+cXmSyi1pdu/F7FrsovQ8594HzywBUko0GXf7BwUHTc1rBqh68RHP9nNCSlxnnSE4kGwDcGnPSA8C6nKIo4JadIwCAcwvdC/BO8Dzy+LVf+zV85StfwZ/92Z/hLW95C9bWgp8gxYmgSbatQ90rklbKHDJ5IQRBVDHZgpyI0PevkE3hg6+5CgDw1w+d7tqWJz4IB71mFw06JhvATrKtVJv49CNnAHTHYwN6gGTLh69kO7+kTrw2DeYgUtY2r3ZRcs6JgRxEKDg2s+qp7HZ4+uwyak0Zk4M57Ns00FVGK2uI0TIqyzLSKRFXbh6EDAEXPaxoGaEoSlvJNhKsks0OxD7gFJfNTMlY05TIA4VsIP0EC+jzDBfUvtGZZGsnPQASRLJlRMiaXZQMoAnJlk6lYi9fr4FM7luU9ZmQWcVMKhkkm1YHyxaJD8wWj5Yq4Sc+MCrZAFAZRrtJtjBistFljYNkO6cFs37ZvgnTRQVyDBby6fXXTQEAvnXEOi6bWVnM7i8LaWFEECSbGyUbIbis4rEZj8d6HSwk2xVaogUSE44VZuM4K5INMLeMKoqaSOns4jomBnL45DtvwQdfdw2GCxlUak382fee69oe8GcXNZJsri1rLmKy+SHZnJRLdp+jAF3OJ06rYURu3DGC//u+O/Dor74Gr712s74tq5ItJQr6ft88csmRZKPLYVU+ArdjanLugxrJduP2EdPfATUZFV1GJ1jNsch86dSsOn5nIegBYKFcw/J6EwoEvHhX/CSb3WLSizWS7exiiCSbWQPxIz/yI3j88cfx/PPP45577nF14qTD7EZ6iclGJjKbB7tXJK0aX0KyESWbW7uoH2WJ3XFZYOXBfvNNWyEKwPTSur5KaqZki6Lh3SgkWxCDrijtok6DMLsVOgJjZ2gWX8uIWlPCf/jMkzgxW8bmoRx+5vadXdskmWRT7aJqTLbLazVTS7YTWGKyndMIvKnhvH5e+n+3dYxsPzmYDY1k062iV4xDEAT9OZJrMlOyAeYkGwBct20ECgRcWqn5nnQuVBpotGQIQntyG3ZMNqAdl82tkm29JYMcdqCYt9otcHgj2TqVbGbHigO5tAhJESDJCiRJ0lQRap0k1kcOdmTTxGbVHZOtmO2eSMcBEpOtISloyd3Z4c0Wj3S7qMuYbF6VbG2STWsbKJItDLtoVCSbE84tViEICu7eN9FFdtKTLieSDYBOsv3g+GxHXEACq/G1XeIDNyRbEIuqbpRsp+fsM4vS2wetyCMx4E7PVxxji9IIgmRrSjKenVmFogAfe+v1mBrOo5jL4NXXqLbBzz18Cicut0Unbki2IBIf2I2TwyLZWJSXSVCy0ffm4LRqb7z3hi24dfcYRNGcWKb3s+pHXr9fI9iPXoIsK13320iyWd1Ts3Ambt4XQE2aQ4L0X799uOO3IJRsxu2Jku3SShX1lsSsZDt6Qb3/W0YKGMpH64owg927dfN2lZCcXathzWHsaYSrmGxmuOqqq/D444/j+uuvd3XipMNOycaq3FhvNLGoDZYmSt2VyGwFE2iTbLWaOtBxS7J5VZaESbKVcmm8aEqtqE+fXer4nSvZwgF9fX4HXUlQsrEM0Mn/pZI6CKvV7MkQSVbwoc8fwBNnFjGYS+PT732JTniYnTuJJJsgCChkUsinBShK24LICkVRTAd3xvbgjLbqvyUgko2cc2IgB1EIxy768AsqyXanlmqcnJOOfQl0D6aNCkiy33VbR6BADbjsd9J5QSMtNw3mdEVOUEo2u/ed1O8Zh6DRxrIQC1suLaKQczf59wP6moZYSba6+vtQ0pRs6RQkSsnWkhWIUMuWSWDbknTo2UWpd5HEZCtmzWPRRA1CsikAmq3uWI5mdZMkPhh1aRf1qmQj/dqUjZItiPGS2aJdXEq280vrKNdbSItqTCA7ax4L+XTd1iFsGymg1pTxnWPdajar60tS4gN3SjaVZNsTg5Jt+2gRmZSAekvGxRV29b5Z/XNLsh29sIxaU8JIKYtXXT2pf3/tjnHsnRiAoLTwW1850jUm9aNkMyN+rWD2G8t+G03Jdlgj2W4wqL0IWJVsAHDnFeMYzKUxu1bHM+eX9X3NYrIBzm4dGm7m8Sp5uAxAJaLJoqTxmkRRRLFYtD2vsVxWSrbNQ3nsHi9CUBRcXK5ZkmzGaz6ikWxX2JD0UcKufRopZjAxkIOiAM/OLLs6LvPIQ5ZlbNq0yfS3wcFB/Mu//AtOn+62AvYqzBoEUkkICebU+Jy4tApZUTBcyKBIxQcxnsPY+JIJIPk9apLNz4DUriO5WZNcPn1uyXKfKJVsUZ0vLrBc5/r6Oo4ePWpp905SdlG7em/sAHK5HFKpFBRF0RWhZvi7R87gm0cvIZsS8ZfvulUngo1IspKNDGwmNNXDtMtMnfT9JoM9o5KtUm9hZkWdeE0NFzoGU37topODql30+UtrHVkC/WKt1tRXK++yINnIZzK4JddkpWS7YccIZAhYqDRcr2gZcdFgFaXPE1ZMNgDYPa4Ork4v2Ks8je8bIW9HCtlI47HR7QIZNDolyWgr2ZJGsomQ0VayNSUZokD6+eS1LUlHlgQMN8kuWsp0EzlxICUKKGZTUCCg0epWspnaRSNIfGCuZCMx2cLJLpokJduT2mLvtpE88plUVxvhlmQTBAFve/E2AMD/+u7xrr7Mqg0KimRjIaecYLXwb0qyOWQWpbenlTxBXEdKFLBrXIvL5sIyarZYakeymSU/IDbDl++bRDrVrg/ZbBavuHoSpTTw2KlFfPXgRQBsfU8YiQ/M3m8WJZuR0OunmGzknEuVBi6t1iAKamB7M7gh2XLpFF59jcqPfOto2zJqVPi5meMYiTqnayL7HTi3DAC4yYQ8zOfV9n1oaKjjHXBD4Jtte9vuMYhQw5+wK9nUcl652fz+Rw27ZyPLMnZp4+bnZtyJAQJd3tu5U7VZ9QNxYbwGuqKTCZojyaYFAtwzXoIgCI5BLQmME5h+ULIBakB5AHhaawTMrj9qkq2fwbKyOTs7i7m5OczMzHT9Rte1KJQAQSrZ6JUau7hs3zqipt3+z6+/GndcMW65XZJJNnI/JgYJyeYuLht9v61ItkPTK5AhYDCXxkAu7XoAZwZyT4cLGeRSapKCMw7Ejxs8cXoRkqxg93hRJ7LIOUlmJaOSjcSpqFQqpu/P2EAem4fVY5H23StIPLatFMkWhZJtt6Y8ODPPRrIRXNQyDo4UM5EnPSDlGXFrF80lLPFBRoQE4f9n773j5DjK9PGne/LmpF3tanelVZYsybYkW84BG2MMGEwOd6QDzoCPYO5M+h1gc0c+DHyPeBw5nAFzJBvOARsnybayZGVpFVabc57Yvz96qrempqq7uqdnpkfa5/PRR7Mz3VXV3dVVbz31vO+LRCqlJ9hIpEBaNO8uah/BQHpxyonJFkm7i9rJ0JgvlIf8SEFBNJkULjYz3EXTMdnsJj4g76XM+8lTsjVVixMfuEmysRnogMIr2Xak7dDFdWXcY+2SbADwrmuWoqYsgOMDU7h/Zxe3TSKSjZf4wKmSjZ6/7cDK3iO/xxIpnEnbGWZKFCdKNllFHokFR8g+GfDsOJYQMVOyjc3EDTe369c0ZfwWDAZRHQngDRt118F/e+AgxmfjUs/BS4kPOoem8eKv/g2PHxnI+N4MTpRsxQBpw5F+vc8sb6xAeVppzMIOyQYAN6fdxf+SXlMA9olL+j6KiFfROQREyXZRWtRCo7y8HJs2bcIFF1xgS9xiRbJd2lEHVdHQPTKTdY945PrYdBynh/RnsHJhpWndhQL9vHkE8eJ0BuXDvWO2+rLUynnNmjX4xS9+IUxpTHD06FG8973vxRe/+EXpBngVIpJNURRjQDQbfDRNw4m0X/7i9GTAy+BHyqRhRrLRPtolR7KlgxvuOzuWsaNbaCWb1YBxrkBGyUaO4fVl+rtCKtlkJiD2HN4xViTbVDRhqCpvuqCJewyBl0k2cg/q0y7pdjOM8p4zS+bvPjOKlJYdj43+7FTJpigKGiqCUAAcsLlLZAaiYqMTWYiUbDTJpih67DZ6vqONrJVNulGQK8lGlGFuKtlkxu4laQUAcf8VgX3fzqaVjNUFJtl4SrZxC5Jt3KuJD/w+JDXVULLFkinDXZRWRcxDDiGS+CBDyaYvSsr8mQubYqIy5DfcRUWLz0wlm95/62zGZGtvb8eKFSvQ1GQ+n7H1sTHZ+s6RmGyi917TNDzfqc/9bbWZmZ1zIdmqwgHccf1yAMC9Dx81sjGbtSUf7qIyx/Mgq2Q7PTyNZEpDedBnJNIxa5NTd1Ezm4LEgjthsVlEwywmG2mXGcn24L4eJFIaGspDWeQi2bh7yZoGLG0ox8BEFPc+fERq7nEzJhsPMkS5pmnoGpnGD585haP9k/jFc10Zfd8MpRaT7UifTvCIXEXZc2TssmtXLUDIr+L08DSG0+O36PlZCQlonsGuXS1KekBQWVmJQCAg5b7K+5333LZ01EOFhr6JWSSYonj94fmTwwB0pXZteeHi+5rB7P1MpVJoqQnD71MwPhPH0X75dYqU9fHNb34T9957L5qamvCGN7wBX/7yl/Hzn/8c999/P77//e/jzjvvxKWXXoqLL74Y1dXVeN/73ifdAK+C7UiETfb5fFID1tH+SUzMxuBXFWMSt/K3JyALQIJzRcm2pL4MdeVBxBJ64FCCYsVkA85tkk2GTCTf8/oyTSwXYnFq5U5gR8kmQ7I92zmEREpDW13EcD0QoSRItrTqwa6SjRc3glWy7To9Ag0Kl2TjBW62Uy8wl2H0kIvJDw5062XR7gBWSrZgMIhIRB+vaZdRWoGxMu1SfLxffgedh+4iK9mGp2KWijC6TNKviuUuCjhPfOAdkk3NiMkWT2pQoMGnKp4cW7yOUIDYOlRMNqJkC2TGFiomKsJ+aJqCaCJbycbagbPxJGbS5EyNTXfRYDCIRYsWGQs0M/A2SkhMtpHpuJFAx62YbPScUmx30eMDUxia0u1zEmPUDSUbAPzdZYuxqCaC3vFZI2M5ewwNs8QHTskp3t8yECnZWLueqMc6FpSbjqm5kmymSrYF9t1Fc43J9r87z0KBhtXNlVn3yAjzk0zg7ldeAAD48TMnMTSpK8BlSDY3sos6VbK9cHYUf9jdDZKzo3ssit7xuZjGyZSGY/0T3DKcKNmKSrL1E5KtWngsj4Qym0vKgn6jPLKB6lTJpqqq9Dqevo9dI7MYmY4j6FOxutlcIeamkq21NoyqkL55uL870y7m9YfnTg5DhYbW2ogn5mfA/H6kUin4fSpaa8qgYC7Wswykru5FL3oRnn/+eTzwwANYuHAhfvGLX+COO+7AW97yFnzmM5/B0aNH8da3vhVdXV34whe+YLjclDroG006Okt4ifDXg33pTlSGcChTNcGWb6Vk8/l8QoUJD8Uk2XjlESiKgovbagDoyQ+KpWQ7H0k2q0Gddx9EQTvzBSdKNvY3HskmyjD61FE9tsZV6XhdZvAyyUbGo/q06uGMzZhsNIHEI/MBYNeZ0TTJFsmok/5s16injyckm5sZRklZa1vmDCmekk3TNMOYDgQCRtIMHsmmqirWNOvlnRycRDyHGHI8d1G3lGxm41pFyG9kGDVzGWXfty4Sk80DSrZRKyXbDF/JVmwYMdmS6ZhsCV3J5lMVzxibpQSS+IDnLhpKK9m8MGZXRwLQAMzGrbOLkqQHPlUxEnfkA/Q8Su5RdSRg3NP+dFw2t9xF6fOLrWTbemIIGoDm6gh8amb9vAytoizrvLaHAz58+MUrAQDffOwYjg/wF50EvPtLt8Wpks3J87JSshF0GkkPzIOWOyHZZOxWYM5dtNOGks1uTDaaZDszPK2TAwqwamGlUBwRi8Vw9YoF2NJRh5Q2pywys6HzEZONhtU7fKx/Ep/63T7Ekiksb6zAS9ctRAoKDvdOGOf82wMHcONXn8B/P9WZdb5Mf/WCko3Ue7jXWslm110UAC5Oh0TqHstMPsaSbFaiB6fuorvO6OrcNS1VCFmEn3BKfIuObU3bsTvOjGXVw573bKdOsi2q8SbJJtqwaK8vgwINzxwfli7X1tVdccUV+PrXv45du3ZhZGQEs7Oz6Orqwh//+EfccccdqKmpsVNcSYFeZMsYHY8f7gOgYUlDeVYmOwLRrlGpK9nMyBLiMrrzdHFINlb+7JXFVz4gc51mJBvPIMknclGyEdB9qqJCNwCnpqa4fZHsRlxZ4iQbuQe1DpVsItcUci9HZxIYmIhCURXDNcQNd1H6eJL84KBL7qKj0zGDxKJ39FglGxkPaJKNVUCyRlZbXTlCfhXxZNJ2EFQavMQHbm10WI1rHRILFLots/EkeseLE5Mtg2Qrs6tk86C7KBRKyZYm2ZR5ks0JuIkP0iqwiN87Srb68iA0KJiJJ4SLTdI3Byb096yuPJjX/sobwxVFMdRsxGXULXdRerwvtpJt24khAApaayPcDTr6f/o3GZINAG67eBFWL6zE+GwCt3z9SXz3b8eRoDwDaFi5i7JtEMENkk1WyXYsrQRaapJZlC4vP0o23b47OzpjJDuxgpm7KI9ko0NG/HqHHmNv2YJyVIYDWc+R2BTRqP7+3rK+GcBcjCwZks1K5SpzD+0q2WbjSdzxi52YjsbRUh3BP163HK+/pA0agCN9E4gnkjg5OIWfbj0FAPjqw0cy3MnZOr2uZJuYTWB0Jo6AT8EaE7WXI5ItLSI5y9jgskq2XN1F93bpG8sXmSj0eO2yO7awSCaTaEl77G0/Ncqtg1zbZDSB/WfHoEDDohJSsgG6N56CuaQ5MvDG1XkUPCUbTbKJOv/4bBy7T+lMZ0d9eVb8H7Z8KyVbKZFs9Pm8F5MMQrvSQWfJ8YUytLww0BcKVhJf+nszd9FCk2xOYrLxDOVwOAy/3w9N07JcRvvHZ3G4bwKKAlyx7Bwh2SL6pDwwEc2IBWMFnmKRHmdODur3rrW2DAFf9sLVqbsoq2RToKF3fNYI+p0LiDt6e10ZqsJz4ym5VnqMTSaTpko2+t1RVRV+vw/N1RGo0LD9lPyOFo3ZeBJD6evkxWTL1V3UCh319ki2M8PTSGkKQn4VkYCvaIkP5N1FiZLNY+6iATUrJpsCDeo8yeYI/JhshGTLXNgUE3XlIWhQMB1LCg140jfJApaQXfkC/S7Q94jEZetNt8Mtd1HeZg7djkIp2TRNw7NpJVtrbVmWDcQj2QhkSTafquCH77gE16xcgGgihc//+RA+fN9uJDhzpFuJD9xQCsko2TRNw6FefXPJjKSg25APJVtdedBIDCKrZrMi2dhNeGIXjM3E8cOndQXXZR11xjXRoJVsmqbhJelA+CcHJzEVTZjOPSLblyV3nL6LZrb1Z/90AId6J1BbFsDLNjQjEgzgquUNqIoEMR1L4ljfOO595IihFp6OJfHFPx/ittPsObsR0zFXaJqGvvFZaNDViGZqr1yUbH0T0QwvB1l3X5rktqtkUxTFNOkBD7IbKFaCjWQyiUU1EWhQsP30CA71znmksP1h56kRJFMaFlQEUBkOeGJ+BuRIttqyIGoifsTZwHMm8MbVeRT0jbYTk+3po4NIpVJ6UL+KkKW/vRnJpqqq8Y+cY7VgcKoscWshYjYRXNhWA1XRd5+Gp7JjFeSb9PKKZLkQkDFWzJRsIheJfIGnoqJhNyYbrWabmMhUHD19XFexXdBSJRVcutD3wg5ImyJBHyrSmZLsqNno+0q/u+RedqYzfi5rnHMNccNdNCNjs19FW62+qDxITdBOQeKxrW3ODF1Au/3T4zIZm1mSjTW6yaKnpSYMBcAOGztaNIiKrTzoQ1UkO6NrPt1FASrDqEk2V/pd6hycQgp6PDZFUYruLiqrZKvynJJNdxcl2UXjSQ2qMu8u6hTBAHEXzY7JFvIQyVZfEYQGnQAU2SCknYTcImRXvsDbKAGARkPJlh93UVmiyg3w3vtj/ZMYnIwhFFDRVD2naDZTshHYaXtzdQQ/fscl+PJrN6A86MP+s2M4MzwtVLKdGpwy1NdOSLZCKdniiSSOpJO6rV5oHhrILsnGzrdW12BkGB2Ui4/Ks+NoooFdMxGS7QdPdWJiNoGVTRVYl47xKiLZSDkLq8O4uL0GCvQ+54RkY59Hrko2tvwH9vbg58+ehqIAH3jRMpSnM8cHfCpuWKOThI8f7scf9nQDAD5323oAwG93nTWShrF1el3J1jcehQZFKukBOUeWZFtYHUZzdRgpjZ88xo67qKySjZyTTGnYn858K3ttTsYW0VqxvjyIhsoIZuMpvPpbz+Av+3sAZF/zc536xvTK9HrCC/MzIEcQK4qCFY3mLvIsvHF1HoWVkk00ATx2uB8qNCypL4fP5xO+LKIJze/3Gw+bnHuuKNnKQ36sSk/MR3onpM6JRqPo7e11ZSfECwN9oVCq7qKi9pj1Tx7JBuiZdIBsko3EY5NxFdU0rSSUbJqmBxIFgC4bcdno58wjOkn2ruWNcwY1/Qycjjfs+7x6oT55PXvCmTqMxgEjHttcm9nnSNodj8czFG6RSASKMpdhlG6nklYcNVdHoEDDDiq2pB3Q8dh4/TlXJZtVmzoadJdY2Zhsp4amoUEx3DWLnvhg2l7iA15ZxYDuLqor2VKpFGLxBBRgPvGBQxAlQiqlLzIAYCauP/uwl0i28iBSUDATF5NspG/2GyRbcZRsrLtoKZNsPGw9oc/9F7fXws/ZVOLFZCMQjR+itiuKgtdtbsPLN7QA0De/2DJ8Ph9Gp2P42iOHcfO9T2DPmVGh6s8MbpJsZkq2k4NTiCZSiAR8aK8rky7PDkFEYEmykQyjEskP6LWTSMnG2jCJRAIjk1H8IB2H7EM3rjR+4z1Hsl4jLqMvXacTVccHnJFsTmKy8Z4hj9w5MzyNj92/FwDw3muXGeQhOfbm9Xqf7RmdhqYBL9vQjDdvacfrNrUCAD71+/34xbOn8ZX/O4wH93YjmdI8H5NN0zT0T+jj2oZF5i6VTpRsAHBRWw0ABT1jYpJNxlvHrl3dOx5FNJFCQ0XQ0o2bbZcdlaxoragoCt5y2RJctbwB07Ekbv/ZTnz1ocNZ5z3bqY+/yxfoY4cX5mcCmb67fIHcvSXwztV5EDySze/3m7pHpVIaHjs8oJNsDWWmsk+zCY0sYgpFsvF28pzCSoK6MS1lJWlw6QmYh87OThw6dAgDAwM5tcusTbIYHBzEoUOHPCF9NoMsmci6StAoNLFkpWi0G5MNgKFkm5yczDjmqWN6X7p6+QLLdtH3xosLYfp9IyTbmRyVbGSc0TQNp4f1spY3uatkY4+/ND0uPH4k9/ecp2RjFWlkbJ2Z0a+PGDaqqhoZRqenp7MWPKqqYmF1GH4F6BmbtR0DD6DisdVmu4qSupzArpLtxOCU5dgA6GpGDYrhniOTvdAtiJRsZtc45y7qTSUbIYSisQRUaFAVbxmbpYKg4e6jIZZ24SBKtqCXSLYK3V2UuLLyVOakb/YWiGQTKdmIgs7tmGxWJFs+bCree78tTbJt6ajPaJuVko1HeMmOt1uW1kFBdqwmUu7JoWlAS2EimsDf//ezODEwkVWnnYUw728ZyJAJh/v0uXXVwkqoqvl4mivJZrWGIbFFTwxYK9lEdhxNQPFs3v9+8igmogmsXliJmy9YaDqXEDUbUcC95IKFUKCha2QG4zNitz83STaz8olNF0ukcMcvd2EimsCmxbW488Urs0jmC9tqUB0JGNmvP5JO5vEvN69CRciP/WfH8Yn/3Yf/fOwY/ri3G/vOjnleyZZKzbmLWqm96Odrh2S7uL0GGoA+imRj3X1lYrLZdRc9PaxvrF+2tF7azpF1P5ZRsgFARSSIH73jEvzDVR0AgG/89Rh++MwpRBN6mITZeBJ70okRlqY3er20ppIh2ToaymAx7GWg+NaHh+FEybbj9AgGJqKoDKlYVBsxVbKZxd8pNMlGI59KNgDYmPZb39s1Ck3TLCdgMmHRQUgBYHR0FGfOnLE1WOe6m3Lq1Cn09vZieDh3tU0+IWtwke/NBs5CLVLoenjtNZPBWynZJicnjd+OD0yibzyKoF/F5iW1lu2i3yMvTQgE9ETZWqtPXHaUbLyYbMQYG59NIJpIIehT0VI9t2tNPyva7dLO+8SOT5sX6zuLe7tGjbT3ThBNJI3AzLSSjX2O5FnOzurGEK0gpoMY8+KiBHwqWtPurc+ftD8WnE1n6mzhJD0Ach+DLUm2dEy2idkEhgUx8DKVbFOIQ0VzcwuWLFlSULKK7pOE5EukNINMYZFMaZhK/+Y5ki2gQoOCRPrxzMbj89lFcwCJyQbo7z0wR7KFfd4h2erKdXdR0jaeMoC0k7hp5jsmG43MmGx6vb1j+YvJRqMQ7qL030QpffnyRoMUmZ6eNrUveO2mf7dq+6XpOF79E1HEkpnHqqqKM8PTUKEhEvBhfDaBL//lEA73TuD08Awmo8mMTXA712oXZhv/5LsjkvHY2PJk7pVdonDZAvkMo2T+Zzf1eUo2n0+POzoTS+KX24iKbQVUVTGdS9i14eL6crRUh5HSNDyTJnd54K0pecIHGULaqh9rmoavPHQYe86MojoSwDfedDH8PjXr/fT5fFjbXAUVGl6/uc1QDTZWhvG5V6/HhW01eNHqRly7coGu6j85jERKjqjg/V4IDEzMGvbsiiZztz+nSraL22uhQd+Atfv86LnArrsoIdkuX1ZvdngG3FKy0WsIv0/Fv758Lf7jdRci6Fexv3sc9z1/Bt9+7Bhu+I+/IZZMoakqhLq0LeeF+ZlApu+G/CouaDFXQdLwztV5EPSNlo3J9sBe3Q/56uX18KdVbHaVbMDcjgg5l1enHZJN0zQcPXoUPT09ltea60LEyih70epGlAV9ODM8Y0yOZi87S6AQHD16FMePH89QKVkh14GenE8W5l6FXSWbmXKsGMSSrJKNPZ59pyIRnehOpVJG8oP/e6EPAHDJklqEA9bX5sR1o5Dgu4vaV7KxY5umaRia1ONXLF1QDr8/e/cXmCPZaGPETr0EtWUBrGmugqYBTx4dlC6HxdG+SSRSOiHTXD23UGXJRNJu8i7TLpBmJBu530vq9XtNYkzYAS+zqMzYbgXZ88IBH1rS98YsLhspU09+oWDDBauxZMkSR23LFZqmL0IDafJEFJdtcnZunvVc4oP0OxTX9L6ku4vOJz5wioDfB1VRoACIppVsRC0W9BDJ1lBBsotmK9nYvkkUZE3V+XcXbWhoQGVlpTHeAXMkW/+EuzHZRJt2hXAXJXV0jcxgaCqGgE/B+tZqI/7m5OQkd9PbLZKttbYMTZUhpDQNp5jxVtP0TTEVGv77bZtxUVsNpqMJ/Hl/Dz7623245RtP4ht/PYrPPXAAV37hr7j9pzvw060ncXxgMqPefCvZDJItrWRbw8Q75SHfJBvtLmr1DHibieRvUhdLsh3sGUc0Fsea5irctHZh1jWx4F0jccN8ysSm4cXC5Snbc1WyAcBjh/rwvSdOAAC+9NoNhg3C20y8ZEkdXn1xC+6+dW1Gebde2ILfv/9K/ODtl+C7f78J1WE/JqIJPH64X1rJVgxsT2+IXrKk3kjiJYJTkm1dSzVURcFULIGJaCKjLDsx2WSVbICe+Kc7vXF7+VL7JJvVeyarZKPXiq/Z1Ipf/ePlqIoEMDwVwx/3nMXZ0RlEAj7cfu0yW/e0UJAh2TRNwzfeeJF0ma5d3Y033oilS5e6VZwnYFfJlkppeHCfTmJds0Lv6GaMNLuDSUOkZKPLsEOyTU1N4ezZs+js7LS81nwr2WrLg3jr5UugYG5XUYZkY+83GXzsKPZyJdnI8STmgldhl2TziruomUHvRMmmKJnJD6ZjCSO+xqsuWiTVLi/HYwNYd9G0km3Yfkw2npJtaCoGDcDKpkquiyh7noxBQMC+t8lkEteu1N13/5aDy6gRj625KqOvsM+R/E/cRWVJNvL/4vS9zoVka6mZW0jzFiR2YccIJy6jnYP8vkLKiCc1dI/p7V1cby8ehRugr0lRFMNldFQQl2087Soa8qsI+jON2uKTbCRQv/53bF7JljN8ad+NaJy4i+pjkJdINqJkiydTiCdT3ODuWSRbnhMfAMC6deuwcePGjPeCLLrPjswgkUy57i7KzqOFULKROvZ26a5KqxdWIeT3GbYBSXID8EMhsJ/Ztstg/SKdbDnOxA871K/HOCsLqtiytB4/fueluHZlPZqqwqgI6/1G0/SM1GdHZ/CXF3rxr79/ATf8x99w+ef/ijvv243/3dWVkWEXcDcmG/0dUbJZJT1gy3PiLmp1DYvrddetiWgCAxbqd5EdJyLZgsEgukam4UcKr754keEaa5dkI2r650+OYCrKt494Xhx0GaztIXMPeXZyNJHEx36zBwDw9iuWGBlQ6XrpulRVweL6cvhN/OPCAR9etEq32361owvpSAieU7KNTsew58woAOBNW9otj3dKskWCPjRV62MoUQOzJJuMu6gdJVv32CwSmoamqpDhQi0Dt5RsorH9orYa3PWS1VjVVIkXr23E99+6Gbs+9WK848qOkibZFthQmUtd3d69ey0Hu9tuuw1ve9vbpCsuNdAx2XiEFwBsPzWC/okoKsN+XNiqD6xOlWwikk2GDOORbKRuK5mqWbmykDHK3n11B0J+FX0Ts0baYbYd7HeiXS47g/X5omST3RE0U7IVI6Om2aAvE5ONtxtNJz/42bZTGJqKob2uDLddfG6QbPTYsCQd50BmZ5eAfs6skm14MgYNClY2VQh39WmDwA7Jxuuj16WNtSeODCCVcmaEWWUWJc/RTMkWDoeN39j3gPzfWhOGouhxzUgwXVkYiQ+qs5VsubxvTkg2UfIDUkbf+Cw0DagM+VEvkYnXbbDveJVFhlFe0gPPkGzpbJjxlN4OomSbJ9mcQVGU9AJQM9xF55Rs+jFeuK8VIT+Cfp8Rl40376qqitl4EiNp8rhQ7qLsO7GoJoJIwIdYMoVTw9N5dxd1q3wZ7E3bmhtadXcfNpM0kB8lGwCsb+WTbNtP6m1aUlcGn6pvIrzpkja86dJ2/OQftuCxj1yPd129FO+/fhnue89l+OebVuLypfUI+lX0js/it7vO4sP37cHDB3ozys2Hki2aSBrEwaqFztxFzdplV8kW8vuMjUWr5AciIoC2eehjfD4/usdm4UfScPdlr4kF7xoXVARRFQ4gltKEoSV4JBtP2c5ugsqC3P9j/ZMYmY5hSX0ZPn7L6oxjRJuJbFt4uGxpHSIBH86ORvHM8SGjjTSKrWz7+bOnkUilsKAihM1L6qxPSMMuyQbASAjCutzbcReVDfukaVp6U13B5TbisdHtsnoWsipR3hqppjyEl65vxh3XL8eNa5sM76FSJtnsQOrqLr74YgwO6lLXpUuXYmgo27f8/e9/Pz796U/bqtzrsKtke2Cvnub4prULkY656zgmW11dHXw+H2pr9ZhRdnbReIkZikGymXXG+ooQblzTCAD4313djpRsxSDZzlUlm1fcRd1WsgFzJNvw6Lghk7/j+uXwW8jFCbxOstH3oKOhHD5VwUQ0YQTQtoK5kk3v5ysYJRs7Rjgh2egYKeTvTYtrURnyY2gqhn3pdOR2wcssStfHkmzkXbarZAv6FWM3//nOEen2pVIaetLSfjrxgZtEkMy41lFvHs+GlNE9pt+fxQ1lRSGp2He8xpJk07+vCs8lZ/CCqwow5y4aSzcnFotDVebdRXOBT1WgKJS7aNx77qKKoqC+XHcZnY4lubaLoigYSLtoBv2qodgsNFRVwfJGXeF1tG/CNXdR3qLq1NCU4ZZaSCUbIdnoxEhWJJusckmEdek4PqeHpzEbn1sLbDupzx0k/ACQea8iIT8q0hscW5bW444XrcAv33MZ9n76Jvz8XVvwsg3NAIBnT2S6Izq5n1Zz0OBkDICGRTURqf6Zb3dRAFiajstG4rCKILLjaOKDPmZgOoHZeBIVAeACJks5fR6vLPYaCemy9Tg/LhuPhOTZZTLzr6h9iqLgSO8EVGh4zcZWYy4iEIXFoH8Twa8qRsD/X+3o4pKAxVSyRRNJ/OiZkwA0bFxcKzUn8AgxaZItbVvZVbI5dRftGpmBBuCKZQ1S7SOQHb+cuIta1eFlks1sHMoLyVZTU2O4GZ48eTLnybZUYIdkS6Y0PLhf30l62YaFGcc7UbLV19fjqquuQmOjTkQ5Idl4SjYrssWsXFnIsuMvuWAhAj4Vxwemsnb3aPB2dsy+N0OuuynkeK8r2dwg2YpBLtlVshGw10EfQwzpZw51YXAyira6CG7bKKdiA0qHZEulUgj5fYZc/HDarcMKNJlK3/9kMoVhyl3UbFc/FyUbOTeVSiHgU3Hlct1QePywfZdRTdNwsJtPsrGkMfs86YyZMjHZUqkUtqR3uO0kPxiciiKWTEFVMjMIFlrJ1tEgSbKlVXdLiuAqSoO0hyzuxi2VbNkkW9GVbP5MJVs8kYQKzCvZHGJOyZad+CCQftReua/EZXQmPqdkY9UqZGNkYVW4qH2VBAU/2jeZN5JtZCqGl/+/p/CV/zuCWeqeuAm6zFRKw/6zhGSrAQCUlekbB4lEwkiwlS8l28KqEMqDfsRTGnadHgWguzbvThN/7bX8uUBURzjgw5XLG/DRl+iKpCO9ExnkXT6UbIMTUSgAVkuo2Og258tdFJhzWz2Y3lwTQeSZQa9XaFvv6KA+761qLMvYkDWbS3hrH03T0FoXgQbg6ePWcdlIG6w8N2TWcjRm4imcHpmGAuAVF7Zk/c6KPqzCt7B1bmitQVnQj1NDMzjcO+EpJdsf9/SkExL6s2xZEejNXwLZuYR4CfRNzCKWSGWRbKJrd+IuOjUbN+YNO0kPSD1m7WHbJTrWzOtJVEcxPKWsIKNkszuuSl3da17zGlx77bXo6OiAoijYvHkzli5dyv13LoG+0XTiA55SbPvJYf0lDvtx1fIFmdk2HMRkA+R30VhYkWxmBIYbhp3si1sV9mP9ompoAHacGhGewyOC6OvIRclmF6SuWCzmabLZrruoWUy2Qg6CTpVsZseUlZUhpSl4vnMIISTw/uuWWwY9peF1ko2duFdSCyQZ0MYcff/7J2aRSGnw+1S015WZxqexs+tGQO4rUZCRdhCX0ceP9EuXRdA1MoOJaAJBn4plCzKzR4mUbAQ8JRu9+OLFRbkk7XbwrI24bCRAbVNVOKMfukEE2TnXcBcd4rsWk+/Opndji0WysfNJtZWSLZpWskU86C5KlGzpqTmeSLuLzivZHMOnphMfxFNIpjRD0UZy2nhl3K6vCKWVbAlh3KVCxmMzw4pGnUQ50j8p5eYnA5Y0+PmzpzAxm8B0PImzIzN5XXQrioLOoSlMRBMIB1SsSCv1VFVFJBLJOpb3OVeSDUA6MZFixPF8rnMYsSRQFQ6gKuw3VTGJ6mivL8OqpkpompaxYZKPmGyDk2mSTSKzKNtmJ0o2mXjLRGV2QJJkk43JdrBPj1W6oiGzf5itlXjXqGka2mrLoGkKXugex+g0P5s3a/vy6pEh2XjHAsDhvkloGrCupcKY+2nw1qN2SLZwwIc3bVmsk4nHBhGNZz67YinZNE3D95/UPVg2La5NK5+dkWyy9sOCyjBqy4JIpjQc6B6zrWSj3UWtbOrdZ0aQ0jRUhYNoSysmZSE7tlsp2cy8nkpJySYiQa2u3wx+60OA733ve3j1q1+NY8eO4QMf+ADe/e53Gy5Y5zJESjZex3wgnfDgJRcsRNCv5qxkY0F2FXh++ixokk3TNGOnjq5XhpxwCjtG2dIF5dBOjqN3XOwywCOCnMo33YrJBugqF9ZA8wrcULIVw11URslm111UURQcGIxhOpZAR7UPr97YaqtNXifZ2PdtZVMlHtzXi8N9cko2mkylF39nR3Qjc1FtWZZh4qaSjZBbpB3Xpkm23WdGMTIVQ62NOGA7T+tk/cqFFVlEqijxAQFNsvn9fvh8PiSTSSMxAi/T8+YlNQCAQ73jGJuOo7rM2oXm7AhJesA33gulZGuv04NGT8eSGJiIopGJAZWlZLMRUNdNiEi20Rn+YoWnZGPLKhZITDZCsiXSiQ9U1VvGZqlAUZS0yiSBaCJluIoCQECVd7EqBOrLgxjUIIzJBsy5FzUVKB6bCHMbNRPChYdd0PNMNJHEj7eeSv+ioGtkOq9KNkVRjHhsF7RUZyiTKioqjMzjpH0EbpNsi2oj0Hon8GznEIAVePrYIFLQx2JFUZBKpTLmYVkF2IvXNuF3fzuDEwOTRtbPvCjZJqMAglJJD+g206ooGZKN3AOZayCK9UM9E0imNCMRiqhsGZJNVVXs7Z5EFYCOev68aIdkKw/5saShHAcG49h2Yhg3r1uYda6IZBP1x1QqxbVJRe17oUe3B29a25R1jqg+OyQbALx+cxse2N2FiekRPH6oD5s38ttVSBXbC93jONQ7gXBAxYWLqqXPY58lTXjLnHtRWw0eO9yPXV1jSGmAT5GPyUYr2VKpFHfNTrAjbfM6sc94/TUej2NgYAALFizI2gBnjyWQcRdlyyjG+tIKMko23u9mkCLZAODmm28GAOzYsQMf/OAHz1uSze/3c0mfRw/qqotb1i/M+I2Oyca+LHbVY+zkKwLdaclATLPxZkRWIZVsmqahvlzfsR2ZjiOWSEmTbE6ZZbdisgHeJtlkr9OMZCsGuSSa1NkdfwIZki2Z0vDoMX2X81Xr6oyMg7LwOslGG6+apmFVkz42H5Uk2XiTXSqVMsiVttryjHrYz0BuMdnYiby5OoKVTRU40jeJ504OZ2TAssLf0i6mxOWUV5+Mkg3Q1WzT09MGycYLCLygIoSlDeU4MTiF7aeGccMavgFLYy6zaObY4aaSTWZcC/pVLKqN4MzwDDoHp4QkW9fILAAFS+rt7ZK6BfZ+WCrZCMkW8qKSTe870fTwFqOUbF4dX7wOP1GyJZJGZlHyPVD8Z05AYrLNxJNZC2lCppD4ZIVKeiDCyvQccmJgysgW6JaSzefz4fe7uzEwEYWiABqAM3lWsgFz8djWMwttkvyAIF9KNk3TY5lBm8DzJ4fxrh9vx/6zY9CgGAoUM4LFimT7/d+AU0PTSKRS8Kuqo/tpPk4qGJyMQQGwxqaSza67qN/vN7xFzAgGQFdYRwI+zMSTODk0laVgJ7CjZBuaSqB/KonagILmyky7QIZk461VLllSiwOD/dh6fFCKZOMpy+wo2WicGZ7G6eEZhFUYsbBZuEGyhYN+vOOqJfifh3rw18P9eOv4rGFX0OUTAUghQNbm16xYgKB/yrI/iWBnE0xRFKxtqcIzxwcxMh3HXw/148VrmyyJZrpv0f00mUxm2asEO9MxHe1kFSXgtefs2bM4efIk4vE4Fi9enPW7U5JNVIaXNhdFbZUVrfBg++p++MMfnhcEGyBWsrEDz8BEFGdHZ6AowKUd9VnHsy8LW75sJzMLPC46jtTHKtlYuLkIsZOxJBL0oaYsAA3A0FTU80o2+ngvx2WzYuLZ48zcRb2gZLNScJqRbA+90IuT4ymEAz6sq/fZfuZejB1AgzXEVxCSrX8SMhk6Ra4pPYRkS5MrhVKyAcCF6Zg5+20kP0imNDx+RCfZrl+VbUjaUbIBcxlGWZKN3U0mmceek3QZJZlFF+VByUYg28c7GvQFyQlBXLZEMoW+yXTiA6+4i5bpysaxGX5fG08nPvBmTDa9z0WJki2RTCvZ5t1FnUBRFEO5Ek2kjMyikYAPOn1T/GdOUFcRNLKLihbSXlGy0RlGe9JeBm6RbIqiGO5b7756KTToCqkxgRtdLshUsulzyYVtxSPZ6sqDaK6JIJ7U8MjBvnQsJQWL0wtkXr+QqWP9omrUlvkRS6ZwZngmoyxZ0ItJ3rWOzcQRT6YQ9CvSoQPskmxsnFar4wHdXZy4r77QLXYZtYrJRpNshwemkNBUNFWGoSXlPZDMCIXNS/S14dOC5AdsGCKRks3qPvLa98e93dCgYFFNRJghPBeSjX63X7S6Cc3VYcQTKXzlocNZ7XJLGSuLRw/1AQBuWNNoyw5gj7FLsgV8KtYtqoYGBf/91ImMMkT3k76P9LsvsqtHp2M43Kv3+Y4F7inZAD0kEtsu9lgCszUS73nT5XnJ7uHdD7PQRTJw7eq+9a1v4Z577nGrOE+AJiDoXTg2QCWRoS9fUIGKUGb8NRLniJzDI7vsKNkIzM6hWXAeySYb78op7Ero2+vKQXbJvEyysYy2lzOMyjLvNDnFHuOlmGxWSjb2OPr7/3ryBMa0MC5sr0MiNmtkSpZFqSjZAP2+LakvQ9CnYjqWNAgdM7BjFSmHkGyL07vsZvddNkgrr16eJJ1kf7OTYXRv1yiGp2KoDPuxaXGtsD47SjYgm2RjSU2DZJNMfkCuiWTwo8sCCheTDQCWphd3Jway4/dpmoaxmTg0TSesGirk3XbzAYNkk1Wyhb2rZEs3EYlEAqqizSc+yAFG4oN4ykh6UBb0eeaZEzSUh4zsoqJNIRLAuqm6uCQbnWH0xKDuSukWybbv7DiO9E2iIuTHHS9ajpYa/Vpf6JYf62UxZztqRvnrF9VkHEMSIxHki2Qjx3/spWtw33suw2desRZvvKQNn7ttPSrCwXQ77cdk049TjDmTjOVOSDa6nSxISJelDWXSmdndINmkXEbTLrIHJEg2GSXbgZ5JJKCipTaCRCLB9fjg3SMzAmnTkjooip4FtZ+T+V3GXZSuV7bPaZqGP+zuhgZg1cIqS4InFyUbsSGvXrEAgIZf7+gyEnCx5ReCZOsfnzXIdRLrF3BGstmZR8ixF7XVQFEUbDsxjBe6x2zFZAOs7eqnjg1Cg66Sro7Yt8/MlJd2PMfsKtlkwl4VA54m2e6//3786Ec/cqs4T4DcSLqD0yQbISb2GGnBa4zjRKoJuiwn7qIEVueYkWz5VrJZ+Z2zdbbXlelKtkk+acXu7rFl2zEmcpF9ssd6mWRj+5YVyWZWhpeVbFbuojtODWPn6VH4fX7cfOlaAMDp06dtPXevk2ysssrvU4209kckXEZ5Bn0imUT/hG4ILq6vyKon30q2dWmXnn1dY9LP6rG0q+g1KxZwE1tYKdlY0o2QbKxxSC8YUqkULmqrAaBnN0taKAdn40ljU+aSJZlEoN35gAe7BvgyspDmZHfWNA0j03FoULC0obxoxlCWko2QbALli5ezi4bT0fhn0109mUxCgQZVmSfZnIAo2ebcRdNKNg+SbHXlQaQAobsoAGPx3VRZ3MQHAIzkACSYfq6L4kQiiRMDk/jJtjMAgDdc0oaqcABrmvWx/oCNDRW76J2IYjaeQkXIb2wsEIRCoYy5IF8x2cgxoYAPW5bW4+1XduALr9mAN29pz9q4583JVtiwSCeajg3q8e3skmxW6hJCAIvcMXmwS7KR39jQFVZYK5H8QGTP0nM5uf8v9E4iCRWLaiLQNC0jcRx7Hq8sHilRUxY0kjRsPZGtZpNJfCCqgwY77v1+dzcO9eqxFVc0VgjPc4NkI8+5pSaCDYuqoGnAf6TVbOyzLQTJ9tdDuqvohW01aKyc27gohJIN0Df6SPzC/36q03JtzD47q+QHT6Q9N9rrndlnZqSSHVGL2VrRrA4741shYNZWdp0lC9esukcffRQnTpxwqzhPgCXZWFUaoN/sPWdGAWTK0NlOx1uE5kvJRtdbTJLNahAlv7fVl6dJNu8r2WiUgrsoLxMuDTOy0osx2Whjjfc724+/94Q+Jt128SJcsKIDqqpiYmICo6Oj0m0qBZKNnbxXLdTdJ2SSH9Bj1dxiL4pkKoWATzViargZk41eBPCUbGuaq+BTFQxNxdAzJveePX5YN6joHUsaTpVsBLzxN5VKYXE6JsxsPIWTQ3y3S4K9XWOIJzUsqAyhnckEZeaqIwvbJFt6wXlcoGQbSRNZTuJ9uAX2fbdSso3PeNldNK1kSwKp9OJNBeaVbA6hKAr8qgpAzyo6G/eukq2echdl5ys1HUOLEBkLi6xkA2CEHTg+kLuS7S/7e/Cp3+/DH/Z04/TIDCrDfrzjyiUAgNVEhdSTPyXb6SH9GtYtqoKqZpMWtMuoHSUbW49MW3gwUzHRY7pZGSsaKxD0q5iIptAzNmubxLAikE6l3VAJUWSnTLtKNlZVbwU3lGyapiGZTGIymsDZ0SigKGhLh1MgLnS5kGyKouDKZXqs2GeOyZNsdpVs9Pf9E7P49B9eAADcsKYJ4YBPylVR1CYReM/5hjWNUBXgoQN92HNm1NVwGLJ4JB2P7YbVjZbPjoUbJBsAXLpUdxP+094ekLw8VkQnOd9MyaZpGp44MggFGhY7jJdr5sppZ41tV8nm1RA8soRgwZRsVoP+uQIzBUQyOadMuNCGko2+d27HZOPVJ+su6kantysH1gNqKxia9HZMtlJSssnuGpnJgIsxEFop2awk3PRkf7BnHA8d0OMxvOvqDgSDQTQ3NwPQ1WyyKIaizy7Yd26lkfwgmzxhwTNse8f0RUldeRA+X3YsslxJNvo95CnZwgGfoaSQcRntn5hzC7hWkmSjn6ff78/qS2YkG218+lQFK9Ok5kGTnXQAeD7tUnrJktqs+vKpZJucnMS+ffswOZnZH4iS7czIDGKJ7LFxdDoGDXOx24oB9ppqyqzcRQnJlu0uWmyQ7KJJKEimNEPJNk+yOQdRss3GaSWbP2Mu8ALqy0PQAEzHExl2IKC3cXw2gdm4/g4WOyYbMKdkOzowp2Rz8h5tPT6EO36xC0OTswj5Vbzq4lY8+IGr0VqrLwzXNFdBUfSEMEQ97TZODuvzGW2j06BdRvPpLsqWSWAWj0u2//oUXWWW1BQ8cWQAiYR86Aa6Tt5GZpyK9ba+ACSbQil7ZUJQrF5YBVUBBiejwj4kG5Ota3gaKShYs7AKlRH9PSTxqWRJNt76RFEUXL5MJ1yeODpgbAjw2kGfJyLZZMjHT/7vfozNxLFuURWuX92UdQ003IrJRtq3oCKE2y5uBQB85aHDWdeT7zl5Np7E08f00DB0PDbSTrtwSrK11pahpTqMWCKF/Wn7UNZdlOcBR3C0fxK947MI+VS01kRcU7KxG0Bse3nPzWytyOuvxSBcZWDV1oKRbD/5yU+wfv16RCIRRCIRbNiwAT/96U+dFOVpsEo20uHpgeT00BRGpuMI+OaCb9LnsL7VvEXo+a5ka68rBxRgOp7E8FQ2ccUj2czIITPkshtbSko22fgHovtIK428pGSz2tUj/0/Hknj/z3dC04CbL1ho7Mq3tbVBURSMjIxgYkIu+6bXlWxA9n0jJBuJh2EGeqwi97NndBYKNNSXB43v3FSy0UYDnX2ZBokxI5P8gGQVXb+oOsMtgFcnj2RjVWyAHMlG+tva9Nh/qMf8fm9Pk2ybF9dl/ebmRgf7vvf29mJoaAh9fX0Z3zdWhlAe9CGZ0nB6OFOFp5NscWia4iiorlsQuovOxMFL7EHcRas8qGQLpgnrlKYimdKQSibm3UVzgK5k059pNJEysouWBXyuvk9ugCjZEkkNM+l20ovTvrSKrToSMNyKiwkjw+jQtPGe2V0Ynxmexvt+vgOJlIaNbdV419VL8e5rlxvZNAGgMhJEQ3kICoBtJzLjWqZSKZw4ccKW8pwGae/JtMvr+tZq7nFEyWa2ieeWuyhvDKLnb9r2Ygkvs3o0TcOVyxsQ9PvROz6LRw/2CY+1274D3eOIJvXkUW21kazfZcq04y5qV8kWCfoMtbVIzSYbk+34wCRSUHD96gWGXeCWkm1LRz3qy4PoGZvFvz9wUNgO+n+nSraHD/bj4QN9CPgUfPm1FyLgN/dq4Y2XuSjZNE3Dh25cgYBPwZNHB3E4TTAVyl106/EhzMSTaK4OY21zVUGVbOx5ZON3x6kRAO64ixJX0QvbauD3OXO7lHUXtVpvO43J5pW5mcATSravfvWreO9734tbbrkFv/rVr3Dffffh5ptvxu233457773XbnGeBrmRpIPz4jbs69JfmrXNVUbmMMBayeYk8F8uJBsvqymNfJBssoRWKOAzMt6cFMQGYssrhpKN505pJwZVIcFTspk9d95ntoxCQNR3RP2TR7JpmoYvPXQEJwan0Fwdxudevd44PhwOo7FRzzzZ09Mj1abSJNn0nfljA5OWccJoMpWU0zc+AwX6wpDc43wo2VRVFbo0rydx2SRItsfTJNv1q/np6QH+ZglpN49kI9lFCcyMTxJ341CvWUwYDdvTRtYlS8QkmxtKNhZkkcDuiCqKgqXpGDvH+rNJtpG0ko2NY1QMsCRbSgMmY9n9zcuJD/w+FX5VQRIKEikNyXTmunklm3P4fHMk24yHEx+UBX1p11Y9KxyQubAlJNtCD6jYAKC1NoJwQEU0oRmqUTublJPRBN714+0YmY5j/aJqvGFzKwI+lUsatNWVQYGGrcczkxINDw/j9OnTjkPRaJre9tPDM1AU4FLOuAvMkWwiQoP3G/27HZKNB5Zko7+XJdlSKT3m3M0bFgEA/rC7C2fSCj4ZmC189XlLQUt1GHZeJ6dKNiuSTdO0LE+StS26vSCKyybaNKbrmYnF0Tk0haSm4KXrmm2TbLxNbfoeRII+/MfrLwQA/HTbKTy4ryfrXCuSTUYJlkil8PVHjgAA/ulFK9JqUfG6jCZ2c018QD/ntroyvPGSdgDAA/u6oWlawZRsj6RJ5hetboSiKLbrc8tdVFEUXLNCJ9meOzUKQJ5kM3MX/VuaZNu8uEa6XaJ28tbTbsVkM3NJ9dqayhMk2//7f/8P3/72t/HFL34Rt956K175ylfiS1/6Er71rW/hG9/4ht3iPA2Rkg2Y6zgvnB0FkJn0ALCOyeZEukrXb4dkS6VSwheGoJhKNkVR0FSl7451DvJjA7HlFdNdVFEUY/L1qpqNN4hZkWz0vaEH9UIu/kQTsNXOB91H9pwZxV8P9cOvKvjPN29EHZOyvLa2FsBc1kgrlALJxk6WbbVlCAdUxBIpnLKIE8abRHpGp3WSrTyUVyUbTbKxhoRs8oN4MoUnjqZJNoGrKF0+/RzJZx7J5vP5MuK2iWKyAbrLEwAcNFGyHemfwMRsAmVBH9ZQqmcCN3b3RGMvWSTwxv5laZXaCWbsnYnNud8t8UBMNnJN4YAPwXRss7HpbJfROXdR7ynZAD0uWxIKkknNUAj5FO/t6pYCFIUkPtAQpdxFwx4k2RRFQUWa+B1JK/bpNvamY082VhU/6QEAkAyjGoChKZ0UtEOyfe7BgzjcN4EFlSF8762bkOZCuURWa1od9cSRQUONCABTU/rcRdz1nIAk/7mso96IL8qiqqoKFRUVaGhoyGobgRnJZgdm5EwymcwYu+2QbOS3K5YvwKKaCOLJFD75u/3SNq7Z+7L95DA0AM3pRACycEqy0e6ivD7X1dWFrVu3oru72/jOKi6bjJLtWO8YEkkNzbVluKClCsGgbjuyJBvPpZZ8Tx/Hu9brVjXi9muXAQA++pu9hn0mItmsNpZZaJqGY/2TGJqKo7k6jPdetyyjfKt1gF2Sjd6Q5z3nO160HOGAilODkzg+MFkQkq1rZBr/94JOst24JttNNt9KNnbcuGJ5A3yqgtPDM+mM7fxrZ5+5yDaejSfxXOdc6BFee+20Mxclm6Zp54ySzYwQpMdiO/Og7Svs6enBFVdckfX9FVdcIa0MKRWwJBtvwUUyIm1gZOgyMdnYsqzgVMnGLnzzrWSTHUTp31tqdCOLyPrpY6yYdTsd3g2STVVVw5XMq3HZeNJvO0o2nrFTCDhVshEc6hnDk8cGASj4xC1rsGlxbVYd5NnJGu6lQLKx75yqKljRqBM5R0zistETJNk9no4l0pl+NSysDnOVbOx9p10+Zd5HnnqO3cVf01wFv0Tygx2nRjAxm0BdeTBrs4MG7zmaKdmATJdRM+OTJJo4OzojjBX2/EldxbaxvRZ+TvZTN5Vs7LtO5gDejihRsrEZRonrfn1FCBUhf9Z5hQLvfoiSHyRTGqbSRAtNspmVVWiEAj6koCKRShkqU5/f54m2lSKIu+iR3gkjEybtLuql+1oezsyMS8+z/RP6++YVJRsArGysBKBgeNoeyZZKafhzEhYhJwAAzs5JREFUWqXzpdduQHN1xNT9rbW2DBUhH86OzuBdP95uxKsiG2GE5LALTdNwpHcCGhS84sIW4XGqqmLz5s1Ys2ZN1ve8z3TbST0ybaHP4dXDzp9OSDa/34cb1jQhoOouZawLrggiUkfTNGPuaskzyUbbrWZJuwj5evLkSWNOu8Aiw6gVyQYAh9NK9BvWNmdspvNINh7MSDb6nI/ctBKbFtdiIprAx+7fl9GOXN1FAX1jEgDeeEm7kWndjDBj+xz72Ypko9vGtq+pKoz3XL0UCoCnjg4ihfyOx08dHcQr/t9TGJyMoqU6bMTBKxbJpigKqiMBbGyvgQYFp4ampF12Rc/62c5hRBMpNFeHjQRaTuY5M+WlrJLNyuuplEg2q7Y6IYhtX+Hy5cvxq1/9Kuv7++67DytWrLBbnKdhpWRLpTRjUL6orcb4jV4simKyOVGylQrJZldSqSgKmtMk2ylOXCACN9xFeQME/Xl8fFxKylsqJJtVKnQRyVYsYsmuko3ua3891IffbO9CMqXhxWubjOxlLMjupOyzKyWSjX7Gc8kPxOoq3q559+gsVADNVWGEA3OLf7MFB31vZNRsPCUbPVkD6eQH6Wswcxl9LJ1V9NqVC+BTxeOXmZKNzTRKYEWykfZWRwJYlB7DDgmMfCMe25Js4hdw1/Cwp2TTSTY2w6hOtOrp4YsJ3nxSkybZxhmSbXJ2ru950V0U0JVsGhSkoMwp2TxmbJYKFEVBWVB/d7d2DuGn204B8Ka7KABDyTbGcRclSjYvJD0gWJ4OOzA0le0uZ4YXuscxMh1HRciPq5br6jBRcGxFURD0q/inFy1HedCHZ44P4faf7UA0kTRINuKRYRddIzMYmIzCpyp46bqFts8vlLsoTSiJ4rFZlUFvXNWVBw03sr/slxM/8DZmAeDU0DQGJ6PwqSqaKu2pLJ0q2azcRcl3sVjMULMRNXnn4FSGGpLArP8BQCKZwsn0HPiSC/QEWcQucEqy8X4DgIBPxb2vvwgAsK1zCGMz8azrFT0Pq/vYPz6Ls6MzUFUVb7ikTeo8UfgiN0g2APjHa5ehKuzD6Ewcjx8ZNG1/LvjxMyfx1h88a7io/+r2y7PiW8rOB26SbIBun+ok27S0u6jomZF4bMQNlddeO+3MRclm5fV0LpFsBXEXvfvuu/GpT30KN998Mz772c/i3/7t33DzzTfj7rvvxj333GO3OE+D3EheTDafz4fh6RhiiQTKgz5DDQBkdk6rmGx2Xgy3SLZCuYvaCZZJlGynh6ZAB7N2m2QzU7J1d3dj586d6OrqMj1XURQjXpPX3UXtKNl47qKFHgSdKtl2nBzG7T/diaSWwsrGSnz6FRcI+zIhThKJBFfZw6J0STZ9TDpsQrKxY5WqqugenUmnBdffSZ6SjWf4mQVpFdVLK9nY9gDA+kW64WyW/ODxQ9bx2AB+n3ZLyQbAcAE9JEg2sT2tBuDFYwOKqWRLu4sOTGWcR5RsTtPDuwXeNREl2yhDso2nXUVDftVwKQWczbf5QijdLk1RkSTqEw+PLV7HmuYqXL+6EZd31Bsk+7LGCk+SbIT4JQpMuo0kJltTtXdItpVpNXT/hD0l25PH9DH5sqX1hpJGFIeHPJ+lDeX44TsuRSTgw+OHB/DR3+zF9PRcTDEnarZn0tkF17ZUoZYJGyEDN0k2Xpls2TTJRqtZ7KjAyJy2rkV/dv/3Qh94CWJYiMZIEke0ta4Mfp+aVyWbrLsoXcaZM2eQTCaxoDKExsoQNI0ftsEqJtup4WnEkilUhvy4eHF9xrEs8WVFsrHH885pry9DR0M5NA3YcWrYNSXbztP687pmRQMWUmOJDGnJErt2STYREVEe8uOmtNvmH/b0YCaWtNWPZHCkbwL3/OkAUhrwuk2t+OW7LsHCyrl3Ptf5IHeSrREpDTgzMo1Ekn8/2XfQkmRbuSCn+8hbb/FINrP1NrEpRV5PZnXMk2wcvOY1r8Gzzz6LhoYG/O53v8Nvf/tbNDQ04LnnnsNtt91mtzhPw0rJ1jc2CxUa1rdWZygoeJ1OpGSz08nONSUb/fuCqjB8qoJoPIWzozPcY2ilixmzbgYzko0om2jDjndsKSnZrPzIRfexWIEp7SjZEskUnj85jF9vP4OvPnwYsWQKaxZW4iXrFiIYELu3+Xw+47qsXEY1zTzegFfAe8ZkZ3dP16jwPHYHU1eyzUBRNLTXyZNsgL24bLyMpvT3BCT5wd4uPsl2dnQGh/smoCq6USmCpvGz5UYi+jWWlfGJJDr5gVlMNmAu+cFBjpLt7OgMzo7OwKcqGapnGm7GZKOhaZqpkq2joRyKoi/8SewlABhJf15cZCUbAY9kY91FeUkP6HO9YNSRBEkpTTHcRedJNmdQFD0m24WtNfj5u7dg+ydvxG/fdwXedGm7N0k2osCczo7J5rXEB4CeuQ4ABiZjmI3Lq8meTKtVrlk5NybLkAaXdtTh+2/bDFUB/ri7Cz0jc+pauySbpmnYelxfjG5Zyt/YsEI+lGx2STbZeljvhaUN5SgP+tA7Pou9EsmDRGMkUWB3pIUE+STZ6DbQcepExwGZara5OK6jWeeI7DjStmP9el9b3lQFn8DF0q6SzcpjiSTieLbTPsnGexenYwnsT9tKr93cato2GqK63FKyAcBFbdVYUBHCZCyFp48NukqyaZqGz/7pAJIpDTetbcIXX7Me+/fswnPPPSf97Fi4pWQj513QUoXasiBiiRTODPPjJLPvIO9edo/O4Gj/JFQFhkqY11477eStA2WVbFZrRd6arlgiDit4gmQDgE2bNuFnP/sZduzYgZ07d+JnP/sZLr74YidFeRqWJNv4LBQAFzJxgHgdSBSTrRBKNnaSyjfJZtdvWVEU+FUVdWVBAFqGEoQtw2oAsIIZyUZ+E5EE9ADodSUb/TxFz4MmLdnfi+0uaqVkiyVSeN13t+L//fWYTl4oCt6ypR23XtisB8I26ceKoki7jIpiVXgNvPu2cXEtVAU4MzyD7lF+kgeW7IomUuifiEIB0F6bGetBURSUl5cjEAgY94+GHZKNnphpFVyWki09tu4/y09+8Ngh3VV0Y3stasrESgV6DKT79NKlS3HxxRdnBbwmoJVsvMQ3dJuM5AccJdu240MAdEOrXBDfLF9KNvp58IzlcMCHRTURVCqzeG7vIePcEUPJVpF1TiFhpmTLJtn0v6uYeGxeIlxCgfTiESpSxsLYu2OLl0E/T03TUFsexMb2WgQoxY0XnjlBVUQfT0g/pZULfeP6+9bkkcQHALCgMoSlDeVIafrmi4ytNR1LYEda/UQvAmWVOVcub8BL1zUjhLlyAPsk24GecfSMzcKvKtjY7h2SjQeaUDJT3cqowAzvGQW4Lq3u/r8Xei3bJ6r3+TTJtswlks2MsLHrLlpdrZNqRM1GYmPvTSdLokUNZmSABgUn0q6iq9JZSkk76PqsxhTWLrAi2Qj5++yJ4SxS0YmS7Y97uhFLJlETCWBLR6ZNI6MMdBL/jbdRyz9HwzUrFyAFBfu7x/Dzbae4iYuc4PHDA3jy6CACPgWffJkeV3F2dhaxWCxL2FJoko18VlUFly3X3TtPDPDjJLNt5N3LJ9NJvi5sq0F1WSCneY5nx1op2VhYrRWtiCsvQZZksxO6wFtX6FHwBmcNuu+/Ci1LmWAWYJu88PPuotkTcH1FEIqSGdNIxJrnSrLxXm6WVDVrr9eVbPqOqIanjg3ioQN9+O3OLrz6m0/hS385ZClVBorvLmqlZPvxMyex6/QoIgE/Lu2ow3+8/kL8+23rjZCqVv1Y9vmJyBmvgTdZVoT8xs4uMZRZsPf1QM8EUpqGypAP1RF9zKLv5caNG7Fly5aclWxsvaJd69ULK43kB8cHsnf/Hk/HYyOuoslkEocPH8bQ0FDGcaK4ET6fD9XV1cL+YsdddHXaXfRI74ShUAKA5zqH8Zk/vABAX0CK4KaSjW4X/TxEY9uyBRVoU8dwovMkxsb0BcpI2gAuZmZRgP8uV5dZKdkySTYvGXXEXXRn17jRXr/fu2NLqcKbJFtmLMG58VrBwKT3Eh8Aunu7BgVnR2ekFhfPdg4jlkxhUU0EHemxgyY5ZBby77lmKUJKAod7JwxCUjZzNcEf9ujqpo6GckSCzhK3eMFdVLYeVsmWSqVw8wV6HLr/298r7VlC1ztMzbtLG/KvZLPrLtrc3IxwOIxYLIahoSFDebm7axT79u3D1q1bEYvFLONGnR6ZQTSRQnnQn7Gp5KaSjYdLO3SSbf/ZMUSTmQIC0RrRbNP8x8+cAqAr+lQmPm2+lWxWLo6pVAptdWV49zXL4FMVHO4dxy3feBJ7zowKy+Yhnkzhqw8fwau++TR+9HQnxqbj+LcHDgAA3nFlBxbXl3PXh8Um2QDgiuW6G/Lx/gkpsQvvXj5BVMLpeGy5KALdULJZrRXPRZLNDly7whtvvBFLly51qzhPgO1sdIfY3TWOiWgCtWW+rFhAPFKumEq2UnAXVRQFTVVhKAB+9MxJw3VChmSzwyqzz4Y3eIiMOV5Mtmg06qrsWRaapuH5k8N4+EAfYons6+8bm8FvdnThB0+fwq4zYzg9PI3OwSl86/HjeOePt2N8Vk8jPT4bx+HeCUQTSe7A4kUlW//4LL7+6FEAwN9dvhhXLGtAbXrRLduPZTOMitwavQbRfdvSMeeOwAP7nHef0V0NWmsjxjH0dft8PmGSAPK9kzh3IiVbOODDNSt1Y+I//3o047fZeBJPH9PJtOtX6WPwyMgIenp6cOrUKWF9dp6jHZJtSX05wgEVM/EkTg3pC5PHD/fjrT94FhPRBC7tqMP7rlsmrMuNMZjNhsZ+Fo2VS+uCCCoJDE/pO7/9E1EkkikoCtBW5w2SjadkG2V2wiei+t8id1EvvMP15Xqf2nlmDJNRfa4JCd6peZiDVbLR8NIzJ6hOq20nZjMTH3SPzSKZ0lAR8qO+wjtKNgC4pKMOKehuSjK21lNH9UXg1SsauO+ujPvbhW012NhShpSmYdfpUQD2lGyplIY/7tZJNpIAyAkK5S7KS3yQK8mmaRquW7UAQZ+KE4NThjukCDxShygJlzdWGK7O+STZaKLPLLsobbcQNdvs7KzhVXRiYAp9g8NIJpOYmJiwJNmO9uvz9bIF5Rn2Dbv555Rko6+fRmttGRbVRJBIaTjSN5VxbXaVbA8d6MOBnnEEfQouaMneOJRRBjpRsrHkrOgc8vctGxbhDZvbUFsexNnRGbzhe1vx6ME+Yfk0Tg1N4bXf2YpvPHoUu8+M4jN/PIBL/v0RHB+YQn15EHe8aHlW3bKEJw9W77/d865d2aRvGk9GsYtDLlrFZEumhRMADLuYV6fddoqUbLx7JyLZnCjZvCZc4M1FPHWtnb7kGsl222234W1ve5tbxeWEb33rW+jo6EA4HMamTZvw5JNPOiqHVTbRN/jhg7qC4hUbmrOyl8go2UTyXDOcayQbfbyiKFi/qBpL6sswNBXDB365C4lkKmtCyFXJxjNE2N+s3EWJu6GiKNA0zZKocRvPnhjCG763Da/7zla8+yfbce2XH8MPn+7EycEpbD0+hB881Yn/73/3oXtsBuGAD5cva8CL1zbh4y9dhUjAhyeODOBV//k0Xv2tp/GDpzrx5/09+P2ubkTj2YqXQg+CMkq2L/z5ECajCVzUVoNrmYlGth/LuouWQjw2QGxAXdqh75w9e2Io6xz6eHL+zvTEv6g6bHtMyIeSDQDufPFKAMDv93TjUO+cyvW5zmHMxJNoqgoZSQdEscecPkcRycabjH2qglXpBd3+7nF892/H8e6fbMdsPIUXrW7ET955aRb5Q8ON3T3Sr+kFqYySra1Cv57RaX3X/3j/JAAN1eFARgKBYsCMZGOziw6nsyBWRfhKNi8QLp96xVrcdfMqXLOyCcsXVGD9omoj3tE83IMnSbaI/n5OMu6iR9MEyCVLak0zJBcDWzp0JVvfeBTTUeuxnbgzXU1lvjMjOURz/s1r5lQ+s/GkLZJtW+cQusdmURZU0zEnnd3TQruLplIpjI/rcxwdD1Sm/ezCNZVKoTIcwJVp9YyVyyhvTfLMcX1Bf8mSOkeqPfodlFmgyrqLsrY4oM95deVBtNVFoCCFnlE9tvLs7GxWeIrMOjUc7tPfv6WNFVxxhF0lm504YGQjdH/3OPdcmfclldJw78NHAACbFtciEsy2c8w8jNwg2WSUbKSOxqow3nN1B65duQCz8RTe89Md+NXzZ0zruH9HF275uq58qwr78b7rlmFJfRliac+cD794JarS9hWPJMl1PnBDyVZTHsKKpkoo0PCLbaeyzrMiLPd0jWJsJo6qsB8Xpl2jc7kuXp+wo2qjfzvX3UVlNwpYuHaF73//+/HpT3/areIc47777sOHPvQhfPKTn8SuXbtw9dVX46UvfSlOnz5tuyyRku3xwwPoGplF0KfipjXZGe3MYrI59Q9ny/Oyu6gs28vu8vh9Ku588QqUB314tnMYX3/0qJSSzU6HZ5+lE5KNqJqIEUSMokLgM394AW/43jY81zmMoE9FQ0UQPWOzuPuPB3DdVx7Hm/5rG+750wHMxJNorg7jc6/egBvWNOGClmrcdvEi/Pr2y7GwKowTg1PY1zUKRdHJge6xGXzt4SNCYrlQsFKydQ5O4be7zkJRgLtvvSDjOZJ/gPvuol4n2UQG1CVLagEAxwemMDiZfa30c06mNOxOB81tqQ7llWSTVbIBuuvDy9Y3Q9OAr/zfYeP7v6bjsV2/qtFoo4hkc7pz5vP5UF5eDp/PlxGHTjTGkeQHd/1mDz7/50OIJzXcemELvvv3m7I2Y1i4qWSLxWJGeTJKtgVh/fvhqRhSqRQ6B/VFR01Z0DMkBY9kY91FSaiB5Qxp5WRTK19oqYngfdctx1su78DLL2zBDWuaEJh3F3WEUlOykbiRk2klOWnjkfQi/7Kl9UVrmwittRFURoJIaRoOdI+aHts7NosjfZNQFBjkDsB3AyQQLVw6agJoqAhhIuHD3q4xWyTb/+48CwC4rKMO/hziHRZKyUbbPf39+ry2YMEcSenUXRQAXpJ2Gf2LJMlGt++ZtFL8quV8VaIVnCrZZN1FFUXJmPMAYENrDfxIoXdM94aZmZkxteN2d41ifDaJkF9FW20ZN/ZqvtxFgTmX0T1nM0k2O8TXg/t7cKh3ApUhPzYvruW20Wxdlou7qEh9xdbFzsEhv4rvv20zXrOxFcmUhrvu34tvP348q/zx2Tg++D+78ZFf78FULIlLl9Thzx+6BnfdvBp//ch1+O+3bcaXXrsBb7603bReAjvzgVMlm6gMIiYBgAf2dWfZL1aEJckqetWKBmNcc6LQY9vGI5Xoz6K5FZBXsonUYV6CWYy6giY+8DK++tWv4h/+4R/wrne9C2vWrMHXvvY1tLW14dvf/jb3+Gg0ivHx8Yx/BCKS7dt/O44UFKxbVI1IIPsWminZkkndLa+YMdkKpWSTjclGn7OwKozPvXo9AOA/HzuG5zqHuOeYDaJmkHEXlYnJBswZQX19clLnXLGvaww/euYkFAV4y5Z2/O2u6/DUR1+Ef3vVOiyuL0PQr+/aXrW8Aa/ftAiv29SGpupIxvNYt6gav7/jSvzDVR341MvX4F1XLcUrNrRAUYA/7+/Bj585aRwLeEvJNjYdx0+36WT5Gza34cK2GuHxbpFsXpU1sxAZUDVlQaxeqKurnue4jNLXd6RvAhOzSQR8KhoqQrbHKDeUbKIx486bVsKnKnjkYD92nBrGiYFJPJJ2MaDd9clCzK6k3QwkDh3PjYRtL1HUzcZTqAr78aXXbsDX33gRAhILPTcMD7LgAObuBZv4gDdeVvv0Y8dnE5iNxQ2SrbYsUHSSgveO1whisu1LZ9G7IG3IEnhJyUbA60/zcI6SINnKdZItmUxhKpa2BTUNh9Puapcv8x7JpiiKobTcb5KpGoDhyrRhUXVGIhqzsY33fmuahpmZGWxeXIspLYBdp0cwPi2XZGomlsSf9+uE0hXLGjLqsAs3STZemWzZExMTmJqagqIorpFsN65tgqoA+8+O4+QgP6shfTxpS//ELA736Ul8Ll9WXxCSTVbJRh/Hhki4KE2ykZAzNMnGe4YPvdAHDQqW1JfDpyo5kWyixAdm/Y+QbAd6JjK8d2RJtmRKw9ce0UNp/MPVHcLNPJn7ybYzFyUbex5P4BDwqfjK6zbgvekwGl/8yyF8/ZG5sCBPHBnAS7/2JP6wpxs+VcFHXrwSv3zPZVhUE0mXpeCGNU14/ea2jBh0vHWdk/nADXdRtozm6jAaKkKIxpP4351dGedZuYsSku2aFZkePGw9sjAjlejPItEDYG1bWxFXXoKV6s7JGCgVCOTVr361dIG//e1vpY91G7FYDDt27MDHPvaxjO9vuukmPPPMM9xzPv/5z+Puu+/m/saSbD6fDztPj+C5zmG0+1VsbK+1jBdAQBvUhGgDzm2STbYjsoPyKy9ahGeODeG+7Wfw//56FHesy85MlKuSzYxkI3Ex2AGAHQCbmppw+vRpDA0NIR6PZyxw84Ev/uUQAOBVFy3Cv9+23vj+7y5bjL+7bDE0TTPadujQIfT29nJl+k1VYfzry9ciGo1i69YulIf8uGr5AnQeSuKzDxxEY1UYq8u9lV30UM847nv+NPqiIbRU1+NfXrIq43daFQDIu4vKxmQrFZKNNx5t6ajDod4JPNs5jJeub874jZ5Atp8aQQpAc3UYqqoY115IJZtZYP7XbmzFfdvP4E3/9awRhzDoUzOSCeSDZPP5fFnnie73i1Y34btPnMDF7TX4zCsuQKONIOZujMFk0RGPxxGPxxEMBrMUIKlUKuN6UqkUEJ9F0K8ilkjh59tOYteg3oaa8uIr2Xj1N6TjVnWNTBvj3mw8abjdrWdINi8p2Qh4bknzsAezvulFki0SDCDgU6FowNBkFKlUCgMTUUzHkqgM+bE2naHYa1i6oALHzgD7z44Kj9E0Db/errt8XbUiM8GL2aKKtwiLx+NIJpNYubAStWeAmfFePLK/Gxs3rLNs68MH+zAZTaC1NoIVjeXo7h7LG8lG4JaSjWSrr6ury1gzWNnUtP3D2rYNFSFcs3IBHj88gJ9sPYVPvWKtVPu2pjNir22uQl15EIMukWzke959yNVdFNDj+QUUPsnGG2cfOtALH/Q+zh6Tq5KN/Z6HjoZyNFSEMDMVRe/4LCoryjPqFBFf5Pc/7DmLY/2TqI4E8M6rOrDr2R7T88yUbLJ2Dg12buWRbGb9U1EUfPTm1agM+/GlvxzGvY8cwdhMHKeHp/BIOixTW10EX3/jxdjYXitsB+962Daw7bOCGyQbu24narbHRzX8/NnTeNsVS7KeDc9ddGw6jt3pcC50PLZc5jkr5aUdJdv5lPjASkBEQ+oKq6urjX9VVVV49NFHsX37duP3HTt24NFHHzUCUBYLg4ODSCaTaGpqyvi+qakJvb18qfTHP/5xjI2NGf/OnJnzC+cp2b6TlrNesXwBKsJ+7s3mDej0JJNIJBwZ/U5JNvYl8Kq7KP3dP79kFcIBFQfOjuHU0LRxTr5INk3TsP/sKB492IfBySiXKGDvUXl5OSoqKqBpGgYGBqTb4ARPHR3EU8f0FNUkRhUL3uRmxr7Tf29sr8GNaxYgmdLwvp/vxK+eOwVN0wo+CNKD2IHucfxu11l8/sGD+Mwf9mM6nkRbXRn+9/1XGsGhRbtmdpRsZv3nXCDZjLhsHCUbPTY81zkMQEFLepfQ7piQTyUbAHzwxhUIpYmggE/Blcvr8fU3XoSK0NxihM3eTOD2cxRNtu31Zdj68RvwrbdsskWw0WXlOgaz7jNW4QKmpqaQSqXQUq0/9wf2nDWMuVoPuIvyxq/VC6sQDqgYmY4bAb0PpbO61pcH0Vydee/nlWznPkpByaaqKsqCPijQcKhXzzDXNTIDDQouydG1MZ9Y0aiTf4d6xhEXZCe/f+dZPNs5jHBAxRsvac/4za6SbXpat/nKIhH8/ZUrAABPHu7F8JR1/FuiDrnt4kU5P3s3lWxmx7DzUmNjZhgaGZKNLYsmNt5xZQcA4FfbzxjZWlmwz+jptCqRdvu1ug5Ru3gkm9XxZnFaeUo2Mt+tW1SFgJLCZDSByWgCs7Ozwvn/WP8kTgxMQVVVLGkoyzrGLXdRs36oKAq2LK1DSlNwdmQma41jpWT73hOdAPSMvFXhgPDemtlYovvjlpKNPl80173vuuX45C1rAAA/eLoTjxzsh19V8M4rO/DgB66WJtjY+nKJyea2ko28B6ubKxEJqDjaP4nt6eQivDbS9//p44NIaXoSEmKj0+c4gZl4xex7O0o2nq1crHBEVrAi2ZwkPpBSsv3whz80Pn/0ox/F61//enznO9/JIHLe9773oarKG7tw7Esk2jUB9MU2HdyaPQ+Yu8mnh2fwcNpF6daLFiE22mc6YLGkmN/vN3boCqVk07S5wPyBQEBIKri5CHFDQr+gMoS/27IYv3jqMJ7tHMLi+jIoisJ96e2wyjzJ8jPHBvGVhw5j5OxxVCuzODk4hcu2TKN1QTDjXB4x2tTUhMnJSfT19aGlpUW6HXagaZqhYnvLlsVoqyuTOgfING7MBkpFUfChG5ajqnYMP3i6Ew/s7UbPAmD9bDlOxStQHvSja2Qap4amcWZ4GqeGp3F6eBpBn4qrVzTg+tWNuGp5A8pDUkOKEKqqkyj/9cQJPNB91vh+oZrE0sZyvP3Fa9BUlR0Q2KmSTdM0Q/HDQ6mQbGY7LJd06MbJod5xjE3HUV02p7gkxyc14LFD/dAAtDP9ywtKNkCPZfXb912B3rFZbFlan0GuEeRDycaDk8nWCm6prYLBIKanp41xn1WyJZPJDNUtCZHwsg3NONo3iYPjfvz1bAplfh8aK0OeISnoex1MK8mfOT6EZzuHsaKp0nAVXbcoO7Oa15VsXmpXqUFRlLyr892CoihY3liBrpPT+O7fjuNLNzXpakwouNyD8dgImmsiCAd8iM8m8UL3OC5qq8n4fXgqhn9/4AAA4IM3rMyyUcwWVTx7cWZmBgAQiURwQ3szHnoqhK7xBL79+DF88mV8JRYADExE8UQ6u+mrLl6E5Eh3Rh124SbJxiuTV7aqqmhoyFQCWtVDz/s0eU9Uy9esaMCyBeU4PjCF3+zoMkg3GvT7ommakbn7iuWZLrf5JNmcKNlod1FN01AW9GNpXQjxUaBvbBYVIb/Rn9j5nySDWN5YiZDfl3UM3QbaxrQi2ewSO1s66vDo3tM4OTSFK5lMpqI4aZqm4WDPOA72jCPoU/F3WxZz28L+zbv3ViRbrjHZeCQbrx3vvmYp/D4Fn3vwIK5Y1oB/ffkaLG+0nx3YS0o2tj5VVRHy+3DLuoW4b1cffrbtFC5ZUsdtI/3MSHgUnqsorx477RQp2ay+B6xD6vDWBaWuZLMzBtq+wh/84Af453/+5yxXhzvvvBM/+MEP7BbnKhoaGuDz+bJUa/39/VnqNhmwJNsvnz8DTQNevLYJbfW6tJi3KBQNWHRny3dMNvpYmmQD+B3ETYNUVlJppmQDgPdcuxQhv4KesVmcHp7OKNOJko0nWX5wXzfe/P1nsfP0KIKqgvKgHxPRBD5x/24kknxSir5HZMdxbGzMmMjdwGw8iQf39eAnW0/i0394AfvOjqE86DNSVFtBhn1n/1YVBZ96xVp89fUXIuTT02V/94lOvOOHz+P1392KO3+1B19/9Ch+u+ssdpwawcBEFGdHZ/A/z5/BP/50BzZ+9mHc/tMd+MOebuFuqRUmZhP47c4uHOkbR9Cv4pIltXjzlnb84zVL8fILW1AWynTJdUqy8XZAeSgVks3McGmsDGNpQzk0DXj+ZKaajfSTg72TmIwmsKimDC01+SfZnCjZAOCClmrcsKaJS7ABhSfZ7BD8VnBrDGbdZ6yUbIRkCwX8WNtShTuuX4atH7sB/3D1UstkDYWAyLAhsWyIQnN/FyHZsjf7vEi4zCvZ3AXdP+zMBYWEqurkcEBVsPP0KPafHUX3qK5k82LSAwK/34eW6jAURePG9vz3Bw5iZDqO1Qsr8a6rswkcx0q2sjKEQkFcsawBPiWFH289hZ4xsZ31xz3dSKY0XNhajWULKnLeBJEl2WRgNgbRZdfX19tWFPGUbEAmAfL2NLH242dOIpUSb7SrqorTw9M4OzqDgE/BpWkCQPZaeW10QrKZJUPikWypVMqY55c36Eqf3rTL6NTUlFEujYcO6MTFeoo0Fm1+2CHZ7BI7N65pgt/nQ8/YLI73TxjXw2szXcfvdusb0devXoDqsoDpuOdEySazmWh2jewaWqbMd1zZgQP33Iwfv/NSRwQbW7aIKLILN9xF6d9ev7kVAPCnvT04w6xvWZKtf3wWf9itbxjcsn5hRnm52Dbss5BVstGwsq2JnUPCMNHlec3u4Y2zNNnthGSzLTtJJBI4ePAgVq3KjIl08OBBVxccThAMBrFp0yY8/PDDuO2224zvH374Ybzyla90XG4qlcLkbAIP7u8D4Mft1y6Dqma+FOzxQHanozOMOtlZt0uyqaqKVCplLLLoyYhFPkg2q47ImxDo7xorw3jVRYuwa3c/nj0xjPa6Mu5gYIdkIyCB3v9nzwSAarzp0nbc0tKE/sEh/M/zZ7Dz1DC+/H+H8fG0fJk+n75HoVAItbW1GBkZQX9/PxYvztxNcoKZWBJv/v427Do9mvH9u69ZasQisoIVgWn296s3tqJ8aiW2vtCJZqUWJ2fDmErHOGmvK0N7fRna68qwuK4cw9MxPHaoH3891I/Tw9P4ywu9+MsLvVAVYNXCKmxeXIvXbGrN2Pk+2jeB7z/ZiYqwHxvba3FBSxVGpmM4PTyN7z+yF77xWZQHI/ifd1xmSMSPHz+OM2fOCPunXZIN0J9dPB5HNBpFRUUF95hSI9lEY/CWpXU4MTiFbSeGcOPauQ0Hcvzzp0YB6Gomn28wY/OgEEo2M9cQOxCRbG5P6vkg2dxqI0se85RsNAjJVl1djZGRESSTeqY1n6pkLY6KAVH9hGR7rnMImqZhf7dOsrHx2ABvGnXzSjZ3wFOyeZVkUxQF5SE/tnTU4tAR4IdPdUJJpBAJ+rC2xRueIDwoioJFtREo/TF852/HURXx47Wb2jA6HcMvnzuN+3d2QVGAz796PTfJi5nawUrJFggEsLi+DO01IewfTOIr/3cE//H6C7PKmY4l8F9PngCg2zC8OuyCjo3EK8POosvsGPr9Z11FZeoR9Xf6+9dsXIQv/+UQTg5N47HD/bhhTRO3DEVRDBXbxW21hneCzLWeOHEC3d3d2LRpEyKRiG0lG328bOIDn89nrHXi8Tj8fj+W1IVwEDDisk1O6iEF6P53amgKe9JhES5srUV0cjTrGPq5EDUbfS9YOEl8AOgq/Tduacf253rwxJF+/F1KsyTZkskUfr9LJ15uu3iRafn0eWZKNivXVB7YtSx51rRNLqtkI5BJFGUGnhLJS0o2AFjVVIGrVzTgyaOD+N4TJ/DZV63j3ksAeGBvNxIpH65btQCb06Q3QS7koZWSzY2YbPT7lEwmjXeV/c0LyIeSzTbJ9o53vAPvfOc7cezYMVx22WUAgG3btuELX/gC3vGOd9gtznXceeed+Pu//3ts3rwZl19+Ob73ve/h9OnTuP32222XRW5kMpnErjMjiCWDuHRJHTYtrkVPjz5429kVYDOMAvlTspH66fYVSslm15XKjAh686Wt2Ld3N7rHZnCgexwXXJD90svWQ9+L44PT+L8XeqGgDG+/Ygk+/Yq12LNnD5IVIbx4bROO7I7iu0+cgKIo+OANKxAJzt1L9h41NTVhZGQEfX19aG9vz+keJpIp/NMvd2HX6VFUhv24clkDqiMBLKqN4D3XLJUuh26rSFkoGlABoLk6hOtWN2L16tVYuDBz54TFtSsX4NOvWIsDPeN4YG8P/ry/F52DU4aU/efPnsKHb1yJ912/HI8d6scH/2cXpmL6O/Lf6Mwoq0KJ4qIyP950xZKMGAxWBgd7zTIIhUKYnJw0zTB6rpBsV69YgF8+dwa/292Nf7l5leEakUwmEUuksLtrDEAVXrGhBWMnMzP6yt5PehPBCuzzNNu1loWmacKYbG7H5JJV69qB20o2mZhssVjMWNCSzQJ6MeEFiOaGje21CPgU9I1Hcax/EkfSmfDWcUi2eSXbuQuz3Wf6dy+APOerl9fj58dGMTwVQ70KrG6uhk/1TjtZqKqKtc3VaO0dx46RGD56/z58+/Hj6B6dRSyt+H/b5UtwsSBukl0lGxmTysrK4Pf7oSgKrlrRgIeG4rh/ZxduvagF167MdJv6zt9OoGdsFq21EbzhkraMMp32AXKenaDesmXSILa5z+dDXV1d1u9W9bALQbKQpcf6sqAfb7q0Hd994gR++PTJLJKNLoPEY7uCiscmc639/f1IJBKYmJjIItloyFyHnRjSwWAQs7OziMfjiEQiaKvS58Ce8Rg0TTOUkbQd9/kH9RAs165cgJryEPp0Hi4rljaBzLrNqZINAG6/djnev/N5DE1G8ZvtZ9BqYfMe6BlD7/gsqsJ+XLeqMaM+Xp25KNnM7BzeNbIkG289kk8bw8vuovT1v++65Xjy6CDu234G/3TD8qw2KoqC3rFZ7D4zCkWpx10vWS1Vp9122lWy8Ug2s+yiPp/PSMIYCAQ8uekJ8O16Hslmx+63TbJ95StfwcKFC3Hvvfeip0fPYtLc3Iy77roLH/nIR+wW5zre8IY3YGhoCPfccw96enqwbt06PPjgg44URqQjzcQS2Hd2DCkswO3X6USH2aJQxOzylB75JtloFQMdh4pFMZVsZjtcdeVBXNRei+0nh/HwwT5EK07iw7cucKRkI4vHo/2T+PXhQZSnNFzUVo1/ffnajN3wlU2VeNPmenzn+RF852/H8cc93fjgDSswNtSL7lMD8HXFsaBtmRHYvKGhAYqiYHp6GrOzs4hEImbNML0f//r7F/DIwT6E/Cp++PZLsnYt7JQF2HMXFbH3MlAUBRe0VOOClmrcdfNq9I3PYvvJETy4rwcP7OvBfzx8BA/s68HhvgloGnDpkjqsXFiBXadHcaRvAg0VIbTVlmFZjYrLqyvRUMGPh2c2YdntwyQWo4y7qNcmAxZWg/+L1zZhYVUYveOz+OOeHrx2U6txfOfgFGYTwOL6MqxbVIWtp8VEphnYTQSz8/KhZKONYNIf2LHIbSWbm4aiW4YH6y5K/idjHN1HJiZ0YqqsrMw4z+kmUL4gmk/CAR8ubK3B9lMj+MnWU4gnNdSUBbCoJnv8dZtkdQPzJFv+4HWSrSrsx2s2tmLrTt318oKWbGLYS1BVFZGgD/9+2zo81efD1x89ipPphFQbWqvxli3teO2mNuH5dkg2TdMylGyKosczbq6O4C2bm/Cj53vwsfv34qEPX4PKsE5OdY3oMe4A4JO3rHHNzd1Nks1sTI1EIli9ejXC4bC02s+sbB7JBgBvvWIJvv9UJ546Nogdp4axaXFdVhkA8MxxkvRgLjacVRsSiYSRHZXM46ySjSVfWMiSbGx/CgQCmJ2dNWy5+jIf/KqCkbgPp4ansaRez9hJ7u3W40OGx8UnblkDjHUbZbMkGyEIZJRsVsogM9RWhHFpRz2ePDqAex8+hM9dGYLKqYv8/dRRPdnayzY0S/V3Mxsxl8QHvLlVdB9ooiKfMBNhFJtko/v1ZUvrcHF7DXadHsUPnjqJy8uy7+XTxwahQMNtFy3iqp1zsdXYPsEj2cz4AvocMyECTbLR53jN7vGEkk1VVdx111246667DDcTryQ8IHjf+96H973vfTmXQyaD5zuHEEuksLyxCtendwyc7ArQSg/yOd8kG328bIyDXCHL9soYwpqm4cpl9dA0DTtOjeDn206iNx7Ca9qTGcfI4G+H+/CrZ0+jfzKG8VQlOqpDeM/VS40dZLqcN1/Sio2rl+LuPx7A2dEZ3HX/XjSqE2hRxzGciuI3J57AZ1+5Dq+4sAV+vx/l5eWYnJzE5OSkI5Lt7OgM/v2BA3hwXy8UBfj6Gy92TLDR12K2cyRDsjntD01VYbxsQzNetqEZL9rRhX/9/X4c6tUX9H9/2WJ86hVruZLw8fFx7Ny5U6iyM+sndokUQiqcD0q2gE/FW69YjC/95TD++6lOvGajnnktlUrhSN8ENCh4xYaWjP5CYJdkA2DsWImQDyUb6xZJw23SyMsx2Wh3UVrdFwwGEY1GM4hMeg7nJZ/wEkHBG+cv7ajD9lMj+M0OPaPgek7SA/pcLxl18+6i7qCUlGx0W9973TI8t2sPAGBda00RW2UNY5xWgHddvRS3XbwIjx7qx5qFVVjfak0Q2iHZotEoUqkUFEVBOKxvZAYCASQSCfzjNYvx1+NjOD08jc89eAiff/V6ALoqKZrQF603r5tT3ntJyWZ1jJXHgFkZPAUMkD0/LaqJ4HWbWvE/z5/Bvz1wEL997xVZxx4bmMLIdBxlQX0Tg8DqWkncM4BPspH/zUg2+njRHMvbUGU3llLJBFYvrMKjXSn8ZX8v3nhJG2rKglBVFcmUhnv+pCfpeMuWxVi1sBJHJ+aeL0/NlSvJJtP/VFXFhW3V2HNmFPsmZrH1+ASuXFbPVbIlkils7xwGUIFXXTTnKiqjZOPdexFRIrOWEynZ6N9ESjarzVin8JKSzcwFV1EUvP+65XjXT7bjZ9tO4eKrAggF5gjm7adGcGZkGn41jA+/eCW3rlw2eq1IYR5Rzx4ns0by+/2IxWIlT7I52VzP6Qqrqqo8R7C5CU3T8PjhPmw/pe82vv+GFVmTrp2YbDx30XzFZGPr9/v9ph2kGEo2+ngzIkhRFFy9YgGuX90In6LhV9u78MiBueQWVgvdZErDvz9wAHf8fCcGJqMI+Hx43eY2vHZTG4L+zMCmxjnJJG66YCEevvMa3HH9clzQUoVLFtdiY3st2urLMTodxz/9chfe/4udmJiNGzG9aENDBrPxJL72yBHc8B+P48F9+s7aZ1+5LsNQdIJc3UXdHARfs6kVf/qnq/DKi1rw5dduwGdftU4Yc8HMsOK1h6eCtKtkO5dINrN37s2XtiMS8OFgzzi2ntBdQidmojg5NIUUVLz8wuaMsghk7yc9CVm5jIqUbG6SbLz+7JZB50Q2bgW3lWyxWCxjriH9nadko0k2mcVEIWGmdCZx2Wbien/iuYoC80q28w35dEXKBfQ4t6ShHG+7YgmuWbHAcYDvQoG1z+orQnj95jasb61GNBrFyZMnHSvC2bJJOaHQXGZjsnHgRwpffM0GAMAvnzuNt/7gObz9h8/hgX09UBXg06+4wHS8sAs7JJsde9dpO2QUYPT/vOPvfPFKlAV92HV6FH/a22N8r2kaZuNJ/OdjuiLwxWubMuxjqzmaxD2jjxGRf3aUbGbqdrZ/kI2lWCyG61YtQNvCeszGk/jD7m7MxpPw+Xy47/kzONgzjqqw3yAu6Odr5jIpS7Kx90jmmSuKgoDPhyuXN0CFLu544exYVt9TVRXHBiYxE09iUU3EyEwJmPf3XNxFzcrl2eZeUrLlEpONhtM52kzJBgAvWt2IVU2VmIzG8WznkHFO/8QsvvLQEQDAFcvqszI2W9UjA/b5WinZeP1BlmQD4HmSjXd9uSrZvHWFHsPgZBT/fN8uaJq+Q/6yDXM7Bk4GLLqjOXnh7ZJs9PEkrgVgTrK50ell2V4ZtRV9fy9srcEHb9Czaz59dADHByYt65mYjePdP9mO/3qyEwo0XNxWg9uvW47Xb9YJNtHuN3mGZUE//vklq/DAB67GP9+0EtesXID/72Vr8cEbVsCnKnhgbw9e+c2nMRrT208bGlbX/uC+HtzwH3/D1x45itl4Cpd21OGP/3QV/u6yxVJlWJUPmLPvZqSb28qPpQsq8PU3XozXbRa7lABiI0y0SOYZuXZJtnMpu6gZ6VNTFjTcRP/7yU4kkin89UAvkikNLbXlWNWkL/ScKtkA+eQHIiVbLu6ibJ357M9eVrLRu/qEeFRVNWOTh4D8HgwGM56BV0k2FpuX1IEOZcVLesAzEr0Aet7zUrtKDWZKNp4yt5hg27qpvQYbF9d6qo08mI13Z8+excmTJ3H27Fnh+XaUbLw5l5Ao8Xgcly+rx1sv122kJ44M4PHDutvcm7e0Y00zf9M/VyWbFakiAzfcumSVbGbPq7EqjH+8ZhkA4It/OYTZ9AZFIpnCn/f3om8ihra6CO6+9YKM8+hnwANt+5op2UTXwdpwomug/6bdRUnbyPzl96m49y2XozLkx/B0DD/fdgr/8JOd+MT/7gMAfOjGlagrD2aUA+RGsrG2tt1nrqoqVi2sxDuuaAcAPHKoD4+l+zegJw371mPH8dALfVCg4daLWqAKYjma2coscnEXdapksyo3F3hJySZ6DnNjooIP3rgCCjTsPD2C508OI5HScMfPd2FoKo768iBuXJOdDIXAzXHFSslmRrKZ3R/W9vRqGB4rJZsTks22u+j5gtlYEt9+7BjGZ1Q01YZx3apG7gvHWxSKOhDtLupkZz0XJZvP5zNVXxRDycaTNvOUbDSuWt6Ad05H8OyzvXjohV686dJ2NIXmMm5ORRP425EB7O0aw/GBSeztGkXfeBQhv4p/f/kFqJ89i1AoYPoyAXySgBwb8Pvw4Rcvx/WrG/Hen+3AiYEpfOA3B/HWVQqWpXxYm9KEE5+maXjq2CC++dgxbDuhKyRbqsP4+C1r8PINza4Z2zIEptnfxdppcKpkc0KynU/uogTvuHIJfrrtFB491I9rvvQYyia7UaEAL1q70HJBIQMiC7ciywqhZBMtut2Al2Oy0VmkSYycQCDAdcklz4FWOnuZZGPdSypCfqxbVI29XWMAgHWc2Fb09XrheggURY81FY/HPT++lALy+b67BXacc5v8zxfMxmcyf5qN+WZxe+yQbMQu+9eXr8WWjnpMxRJIpTQE/SpuWd+cVXau/UBWyUbqMqvHDbcuq7JlSDYAePc1HfjFc6fQNTKDzz94EJcvq8cz20/h1NAUAr5afPfvNqOmLDMurhXJJusuSn/PuwbSflEICd66gVZvk/b5fD4sqq/EbZuX4JfbTmAimsBIMg4giGtWLsDfXz63me22ki0Xki2ZTOJ913Rg8sxhHOgZxwfv24OOv55Az9gMRqfjaFIn0KxqWL+oCrdfu8zy3vCug0UuiQ/sxmQTtddN8OaCYpFsPCUi28Zb1jfjzhtX4NHHe/D0sUE89V/PYk/XOBaG/HjZhhYEffkdV2SUbKK1pF0lm6aJM+cWG/MkWwHxw62dGPfXozpSi1s2NCMYyLxVxVCykd0dEq/CCsV2F5VdMNshglKpFD5+y2r80+Hd6B2dxO92nUVLfSUeGTqAk4NTePLYIGKJzHobK0P4r7duxpIqBbt2nRVKlum6zEg2cu5FbTX44z9dhff/fCe2dw7gkYO9eORgH/7l8Qmsa63Fdasacd2qBSgP+nFqaBqHesfxP8+fwbF+fccv5Ffxj9cuw3uvXYZI0N1FlkxGFDNlW7EGQbtKNoJclGzxeBypVIp7rTJBPb0A2Xdu6YIK3LC6EY8e6kf32Cw2lqnY0lqPN17KNzjtKkFklGz0s3JTyWZGsrntLuhlJZvP5zMCzZKsavT4zyPZyDnkdy+RFFY735cuqcPerjFURwJoq8uOh+lVJRswl5zIa+0qJZjN5V7ovzRyXYQXC2bzC1GCmy083FSyAXqM0ZdtyCbV3IZdks1OmU7aIaqDvb9W9kBZ0I+P3LQKd/1mL3689RR+vPUUOnzDqFaAO160ghtg3Yxk0zTNFslmFmaHXAdLbvHOJd/RbSP9kXzXsbAWb7ykDSPTcaxZswYXLGtDdSSQ8Rzoz2ZEk5Ud4QbJBuj378Y1TZiNJ7G7N4WDPePpcoBLO+pxVVMNLly5BNURcdxbq7bRyLeSTaQsLgTJxm5o2EE+lGwi2/H2a5dh6vQL2HZiCHu6xgAo+MQta1A10y3V9lzGFdE9Yvu8FQklAo/7sDqnGPAcydbV1YWWlhbP3Sg3oGlAa20Et9+yAamB40JVWiFjspHjnZJsMrtIxVCymQ26vJc+4FNx64XN+NkzJzA6E8dg1yj2n+w0jllSX4arVjRgRWMlljdW4KK2GpSH/BgZGQEgflnskmwA0FARws/etQXffOwY9u2cwOjkNLR4FNtODGPbiWF84c+HssopD+ox4f7hqg5LP3un4MnuS03JRhtWVko2+hjZPkyIh1QqhWg0yk1YUWpKNpnB/1OvWIvKsB9bltajLXEWiVgUoeDcrrWZgWAFGZKNJtLcVLKxdfJcBtzqz3Y3EmTg5jsXDAYxMzNjkGy0ko2+/+Se0SSb15RsNHj9+4Y1Tfj+U524anmD5eaJ166noqIip4zU85hDKSrZvBgrkAez+cUINi+hdrFDsrHhTui6ZJFrP6ipqUFlZaUwKYEdwsBNty6rsmXsgddsbMULZ8dwsHcCmqahamYWGxZU4rrVTdzjzUi22dnZjHnFSUw2ljyjnz/PFqQX/bwQCeS7cDiM+ooQ6itCWNVcnaXQA/KjZHOy8UvqSiQSUFUFL79wEa6/fiUqQn4014SxqCaC0YFeHD9+3FINKCrbTBhi5SliNr+axWTjERX5hNvuonY3m81saDNByZZ0jNkDx334pxctxzWrFmD3bnOSLZdxxU5MNitxipndyvPio7/3CqxINiceLDmRbGvXrsXu3buxdOnSXIrxJN5++RKsW7MSixZVY+eAWPJpZ8DKVclGl5kLyZZvd1G6I4oGZhZmCiUapO3lQRVv3rIYxwcmEUspuLJxKarCAdy4pgkrGsu5g6IVI21FsokM4oBPxYduXIm9jbMYHBxCZEErjkwE8Njhfmw9PgRNA9rqIlhSX46rVjTgtZtajdTz+YLV7oPV38Uy/lmjle2zZhOW3T6sKAqCwaCR+v1cINlkSJ/F9eX42hsvBgA8/fQZAOJMh/kg2Xg70Wbu97IohruoF5VsgL4gmpmZMdQFPCWbpmkZ7qL0u+TmdeUKq4Xs5cvq8eAHrkYrR8UGiOPBeAFr165FPB43VLXzsI9SVbLxFL1ehdl4R8bdQirZZJGrUiYYDGLTpk3C352QbE4gq2Rj51Pe85qcnISmaaisrMTdr1xnfL9nzx6MjIwI+yLtsssq/9lYxLm4i5Jxmi6fro/3btOJD1glG23Xiew4t0k20k674xBNRgB6aJpXXNiSccyY5Aafla1M/27lLkrOkx1rvaRkc4Nkszs+O1GyEfHM5csa8OG3XoWQ34exsbGMtvPg5rjCa5PVWlLmvtLrAq+G7wD4/baoSrZ8vSBeQFnIn3WDaYiIJPocdsDKNSYbXa8Tkq3Q7qJW4A28Mko2cs8rwn5c2FYDVVVxzTVrjON3794NALjooosy2iI7WAD8xb6VQVxRUYHh4WHUhzS8bf0SvO2KJUgk9YHTJ4jRli/wdh+s3EW9pGRj22N1750YNIDuMjo7OyuMy3Yukmw0aJKFoFBKNrpvmimDZSHjLupWf3Y7JpvbC26yi08r2Vgik91RpJ81eX5eMIJk2sBzbyLwKuEC6M96nmDLDU4N/2KAnd+82k4WZrFSZdxFZbOLiuxnpyQbW0c+4QUlG7m/Zs9r9+7dSKVSuPLKKzPusVX7aBshkUgYcwwwF4+NeAaISDazeVPk8speB28up5VspD+S7+yQbLyNGDuxSkUkmyxoJRv9N68Ou+s4M2WglbuoqD5ALiabyP7KF4fAU7KxbbMDu+fQx5upA2nQ73DI7zM91o02suXz+qtIyWZXkEF78RVa1WgHInIYcE6yeXv7rMiQIdkA8QstUrLl6i4K5KZkKyTJZrZoliHZeEaCGVmUTCYxNjaGsbExofuYm+6iNCoqKgBk7ur5fWrBCTYgs62y7qK0wqVYO+xWhpWbSjZgLi4bj2QzMz68BjOVqgj0LlUxlGy8Ot1UsvHGZa8q2eh30Y020oGgAf25sEQm/YzImEjqJs/Ba0aQE6O8WBsG8ygevEpesfNbqbiLiuYX2paVcRc1S3xAl8kem6uSLV/314kqJ58kG6sY4z0vsslPkuIQWI2TiqJkKMZoEJu3srIyoyw7Sjb2XaBtV9ouMFOyaZqGmZmZjO9okk10bXRsWPb52IlVmiuJLkOyyYgleBDZ1vQ5Zko20fvtdSWbqC/KoJBKNpn7yIMb5D0px66STdZu5SnZvGiPseMmGyey4CTbJz7xCdTV1eVShKdhpkoTDT70ZHC+uovmYnjIEEFmJBv9W64km6gtontUXl4OQN/Vy9fkIUIikcgwQHNxFzUjivMNUd8RkX684+30YbMMo16OHcDCCelDj1XFUrIRuKFkY+u0u9tmB26TbG5L6MkCg/6bXbCwrqL0osZrSjYnxg2BVwmXebiDc0HJ5sUFBw3Rwp62OczeTRl3UVKGmyRbISA7NuViE1rVIXIXZY+n53yWZJN5Z0TPgSjZqqqqMuqxQ7Lx3gXePMvrS6o6l42UtIW0NRwOG8dZKdl4vxfSXZSdo3nnyfQ3GSUbAS9GLg+yKkpeG0UqxUKQbDyiTxb5INmsBCVOSTYnsFJeWinZZNeKpUay8TaOaDvUjt2f01V+/OMfR01NTS5FeBpmSjberj+Q+aKw55ABTNM0x4sYpySbz+crmLuoaDCXqVOGZDNrP/2byH3MyiWRfOax+mx7aZSVlUFV9RTcrAGTT2iahu3bt+P555/P2rVx4i7KsveFhGggE/XPXJVsxADjkWxmhLnXwLqvy4AOei8yCgqtZOO9d7KQicmWD3dRNwxFt4lt2pUH4CvZeItZNjmC10iKXJRsXruWeeQPXiXZ2PnNq+1kIdpUoBVNbpNs9LF0PDA7Y0Ah7q9s2W4oTmSJDtHzom0a1uaRGSd5JFsikTDUY7mQbLw+wtt8E91HNkQC+TsQCKCsrAyBQCBrXiTIF8nG+94M+XQXFdnWvPAdVudY1WmmZBO1z03w+kuxSDaRF5xoPWZGVsrWKQt2Lcxb8/JUiHaVbHSoLLPQAcWGGTlMczoFU7Kd6zAj2ejvrHZZCOgBnExSxVCy5Ztk45Vr9ZuV2oqebM2UeLko2cwMEvpYMzl9WZmeLZQNBJtPEOl/LBZDPB7PIpzsuosWOzAlr71Wux9OSTYzd1GahCiVRRAgPwHIBLu1e91s4F4ezIxp+ne7KEbiA8AdNZvb7xy7mKCVbKy7KI9k85KSDcht57tU1ELzcIZSUrIBme0tFQJYtNAulJKNjQcmi0KSbLJjUz5JNpYUYJ8Xfe9Ym0dmnOSRbEQ5FgwGjU1L4kbshGTjERQyJBtpGzmW/K0oCjZt2oQtW7YIlVpkg5y4u9KwQ7LRvzkh0XMl2azAO9cqJIoVseAkJlshlWxecxe1Ej04VbLlMq6QcnhrQt7YbZdkKxUlG9vX3ei33rtKD8GKZOPtslgFeGVTkRcjJlsh3EXtyCrp40Xt4pFsVi+9DMnGq0t0vsw9InHZiOFRCNBkILvTa+ZHbqVkM3su+YQdw4q3c+g2yebFyYCFE9KH9G96AQPkX8nGM+roepyQVqnUXLBlQjDxNj+8SrK5TQSx7qK0ko3nLkog465SDOTSjlIhMuaRG0qFZOMt2r0+x8i4i8rEZJMh2URKZ9Z29gpkF175VLKJFoOFULIRW7eiokIY9kGGZOO9C3aEDOzGEv23z+fLsnNohMNhXHnllVi9enXWb05JNicbv3ZINifrON79tCLZ7BK8vHPskK1uwEzJ5gS5jM/ss7ASPTgl2XJtG0/JxvZhEXnKlsWCR7J5MQRPPshhb8/sRYbbSjZgrmM5VbI1NjaivLxcyk23WNlF6XJkGXhZJZvICOOpsESB0GV9y3Mh2QqpZKMNJzoQMWBOeLJGFXsvimX4m6kMRTHZnKoCCMkWi8Wy+l6pJD0AnJFU+VSy2V1wKYqSRQLZAf2u0kGQCdzu03Y3Eqzg9vgro2QzcxedV7LNo1RgtmHmlf5LI5dFeLFQKHdRerOEnZeckGxeUrK5QSjYVbKJbBrAPSUbsXXLy8szNml4KhcZJZsVyWalZBP9bQWRx4Jdko0XSqIUlGyi5y569wl4/cZLSjYR0SeDfCjZRPfTaUw2UT1220oLWESiFrYO3hqeBzJ2a5pm2reLDVG/zYUc9t5Vegi0dN0uySZamLOGgt0XY+HChbjkkksyMuaIUEx3USuJMfu9qG1WLz1bnoySjUfq0efR8T9E54tAkh8Ui2SjdwoAva1WOydsPy62nNeJks3pgiUYDEJRFGialpUxq9RINrsTQD6UbDJtsCL3nJBWZDylyaR8K1tyaS8Lt985M5KN3P9SchclyIVk89q1zMNdlJqS7eTJk559z1iIxjo33EWBzHlDND94NfmB3Xk3H0o2EclmpmQTZRe1q2Qj8djKy8szNsPpukSLVF52Wrp+O0KGXEk2EewqT/OtZMtFLOEVJRt7rtvwEslmJgygIUNW8pDrXMcjhcmaQDYmm1XddN8i66xSItmsFMJmsH2Vf/nLX/DUU08Zf3/zm9/ERRddhDe/+c0YGRmxW5ynkQ8lG915gfwaV8VyF6XLkWXgZQceEbPOk6/aickmQ7LZUbKRGGmFgKySzereigaWQsOOko2AniDstFtRFIOQYI3OUiLZAPukTz6UbDKTkOhZsiSQHRCjXzTO5WO8dZNkc3v8pRPdAOaJD2iSNRc1YT6Ry853scezeeQXpaZkI/1wYGAAmqbB5/MJA7J7BaJxPZ8km4hEKXUlWz5INqfuonbV3rxnQOymcDicYUtYkWzJZBLbtm3D7t27hfXzbALRfaTfIdpzJ1cU012Ud16+lGxWJJvIzvFiTDae7ce2TQaFVLJZkZWyghW7oOuQVbLZJdkUZS5UVqmQbDz+pyBKtn/5l3/B+Pg4AGDfvn34yEc+gltuuQUnTpzAnXfeabc4z0OGZGNJDtHxQLZqJJ8djdSlKEpBs4vS5VhJjNk6RUQQ/dLTk7EZyWaWXVSGZLOb+ICcS9Rso6OjwuPchCgmGyHYRM+CvbdmO4qFRCFjsgHiDKNejh3Ag13SJx9KNisFKyA26mRcTUWglWy8idAJAWsFLyvZFEUxxjFVVY1/dF285yBj5BcDuRjlXiZc5uEeSkXJtnjxYtTV1aGtrQ1r1qzBpZdeahovygvgqR2ATHdRpzHZ2PLdVLJ5kWTLpQ6rsu0o2VKpVMZGshMlm6ZpBskWCoUy7E26bB7JNj09jXg8jrGxMaGgwam7qJukNc8F1i7JZrcuGffqQinZZL2S7CjZ8j0ue0nJJlqzsPfTjKy0W6cd8PqrrJLNzlqR9K9SINkI2PdQZn3DwvbM3tnZibVr1wIA7r//frz85S/H5z73OezcuRO33HKL3eI8DR6zS4O3KJSNyUaQz8EmEAhg6dKlBsGWy+BsF7ISY6vjeS+9rCKtGEo2AKitrcXU1BRGR0fR2NhoeqxdJJNJxONxgxgi39Gf2YFP1l3Uq0o2M5VaLruGBKLkB6WmZLMrZea5CwLuKNmcqBpyUbKRawkEAkb5+V50e1nJBugLjWg0aqj7WJWambvouZj4wItG3TxyR6kp2RYuXIiFCxcWuxm2wIbmIPfVrpJN9Dx4SrZ5d1H5OkQkG3s8O7dGo9GsGKZ2lGx0LFtCsqmqimQyaUmy0b/H43FuH7GzxqKJNbdcRdk2sIoWHmg7zKmSTfQ3XZbZOk6mbQRWm8myfc9LMdl4pGwuc4Kb7qJWSjaR/U2Pu7zzciXZZGKysba1nc1rv9+PaDRaMiRb0ZRswWAQ09PTAIBHHnkEN910EwCgrq7OULidKxDtrhDwFoWyMdkI8m0Etre3Y9GiRRl1FcJd1A7jSzPkonbR5bnhLsqWL0OyybL2JClFPtynX3jhBWzbts2IgwGIlWxWAwNPJUh/X6xBkJ2ERKpHGvMkm/1dFp67IOCOks2MeCqGki0fRIuXlWzA3KKDVrSRuujFLM9ddF7JNo9SgZlydf6ZuwP6Poq8BczeTSubwsxliUBkl5nBi0q2fJBsIsUFOzex947YPLL2E5lT4vE4NE0zzg+FQkadZhs19HXQfYeUR7dddB3FUrLJkmY8O6xQJJtVfby2ySrZrLySnCjZyPexWAz79u3D4OCg8JrsgGf7eV3JZnYfecdbfW+3rU6UbHbuaSm5iwL8+O9O7FDbSrarrroKd955J6688ko899xzuO+++wAAR44cQWtrq93iPA0rks2Jkq2Q7qIszBbhbrsI2lGy8V5e9jgrH3EeIeMkuyit+HCqZKupqYGiKJiZmcHs7GyG6ixXTExMAACmp6eN5Bdm7qL0/1Y7J15VstHtnleyieHUXdRMXZsPJZvITVWkZCPP1qw/0jHZyGcZwzwXeF3JRhYd5D7TbuEixQj7DLxGUjgxKIvt/j6PwmOeZHMXoo1JmeyiZkp0AjM1BUGpK9lyWQzbVbKJbD52biWunnS5Mko28pzoeGwEZhs1IpItFotJu4sWWslWjJhsor/pspyIJZy4i8oSvGYkm+iZkd9HRkYwNDSERCKBhoYGbj124JaSLR8km5OYbPTvMnXaAU/Awltvn28km5mSzQ5sX+V//ud/wu/34ze/+Q2+/e1vGyqpP//5z7j55pttN8DLcKJks4rJVkh3URa8wZ/AbaPUbCKwahsNu4EYZZRsPOUc/RsZDEQkm9Xg4Pf7UVlZCcDduGypVMowTOi2idxFrfzIvUqy2VGy8SYhpyTb+Zr4wIz4d0qymbWBJsR49bLn7t+/H9u2bTN1I7XKLpoPoqVUlWykPh7ZyW4ceYWkkF3IplIp9PX1cRf/XjTq5pE75pVs+QdtM9ExHXljLAuzTTK6fCDTrhHZynbGWy8p2djj3axDFCLEimSjlWwy7VPVudie8Xg8Ix4bfQxgTbLJuIvaUbLR81gxlWxukmy883JRdfPO9YKSjZTNbnQ7BW8uyOV+2bUdSDKbYDAoPY5ZxWSTJdjtgqci5inZeBstduxEUiax1b24rpIl2ezMQbaVbO3t7fjTn/6U9f29995rtyjPIxclm1fcRUV1aZrGfYFLScmmKErWgpo+30lMNppkEyU+kLlHNTU1GB8fx8jIiGvxV+gJiEfsAuZKNpl7S//vNSUbjxx1Q8kmSnxQaiQbOwFEo1Hs3bsXLS0txmYIjXwo2USxe3j1ypJso6OjSCaTmJmZMbL3isrkuYvK7tLbhdeVbCQBS1lZWVbZyWSS27+LuQlkBtl29Pf349ChQ2hubsaqVasAeI8wnEd+ME+y5Rck1hZ5n0SJpVjQ46PoeZDveRkprc41QyH7gaySLR8kG7sQtorJFolEMDMzY9g8MkQoaUcgEEA0Gs0g2ewq2egNY8Add1FVVeH3+5FIJEpWyWYWH5f9jtcXclGyybhy88B7blZKNpHIgWS8zfV9NSPZ7JRdVVWFnp4eVFVV2apfURRccskl3PpkRQ8sZNbSTsDrr3aVbLIx2Wh4cdOTXCO5F7Ljqhlsk2wPPvggfD4fXvKSl2R8/9BDDyGZTOKlL32p3SI9C9qlxoxk48Vkk3UXLaQRyGOi2b/dao9VZ5T9nn3pgcxJwUzJRgxCdmKRJdmcxmQD9OQHp0+fxujoqCuTBiBHsvESH4jYdyslW7EWKCIlm1l7ciHZyC4scVlgFaqlQrKx9210dBRTU1Po7+/nkmz5VLIB1iQbawiLYrKx5C8PtDqO7e+yu/R24XUlW2NjI8rLyzNINp/PZ4wRPJJVZie9GJDdvSeLvnkl2/kDXh+dJ9ncBzuu0u8Y4A7JRo9JZhtqXoJsu3JptyzRIatkKysryyDZ7MyRNMlGzueRbHZistEJFHgkm+waKxgMIpFIeELJJns8ry7R33RZhVKy2e17vHOsNv7p/2OxWIYy0gl4whe2bTJYuHAhFixY4GgNICJ67bqL0qSPGXJVstGEmkjJxtZhp3/LEMheAH2/3YjJZvsqP/axj3HddlKpFD72sY/ZLc7TsFKyueEuWsiOZiY9LbSSjT1WVm0FyJNsQCZRxhsseIy8lbuozD2qqqqCoiiIRqOYmZlBKpVCT08PpqamLM8VgSbZRO6ivMQHVjsndKwmwLtKNjODgz7ebh+m1U/0wqFUSTZyH0j7Re9gvpVsIvLJjpKNNi5kSDaekk1mkecEXleyKYqCiooKoTLALPGB1yA7n5D3N9/x+ObhPcwr2fILdn6hx1zA2p2Mt0gj4JFsomPsLHAK0Q/stisfSjbZjVUy5hOVM6tkk7H56Nh4ucRkY91Fec/KjpIN0DeWwuGwbeWRGbwak81tJZtTd1EyDjhRsvFsNDdcRt1SsgHu20Si5ycSNzghOe2AHtfN1ttmSjaZuktByQZk3u+ikGxHjx7F2rVrs75fvXo1jh07Zrc4T8OKZHMj8UEhjUC6LhkW3Y26ZP34RfXyXnoyOZuRZeyxdFuslGxWiQ9kBgefz4fq6moAQHd3N3bu3InDhw/j0KFDlueKwCOAeJ+tdo0I2OthlT9ei8nG6yO5GDR0GbzkB1aEudfA3jfSf0UTQiGUbDzYIdl4xiAPZjHZ6HZ41V20UOpRWmVQSu6iBFbGDS/pRbE3DeaRX8wr2QoDdrwj9giZO60IICs3RCB/JFs+IdvHcumTsgttdmPVTMkGzLnn2WkbIdlisRiXZDOLyUbPzTKJD+yusZYsWYLLLrssZyUUDbskG4+0sFuX6G+6bjOSTQS3lWxERADAiEPNO0d033g2mhskG4+U9cqcYKVkE3kT0PdoaGgIR44cyeiTTsEjlWjb3Gy97SQmG4FX7bGik2zV1dU4ceJE1vfHjh0zdkfOJZjFWDOTMns1Jpss4eJGXbx62PqsjuftgvKUbCKXMickmxtKNkB3GQWArq4uTE5OAoAxITmBrJJNNgguO4CUspItF5IN4GcYLVUlG7lfxVCymRH55Dsrck9EspkR9rIx2dxEPpRs+X7n6Dbznr9XSTZZ46ZQmWXn4T3MK9nyC3a8I+8acc0TkQrFJNnYc/MB2XblMg/ZVbNYxWQjJBuJjeZEyTYzM2OUR5NaTtxF3Uh8kC/Q1+M1JZuoP9hRslmtWc3snJGREQA6wUa7R3pJyWYn7EwhYLXWlVGynTx5Et3d3RgYGMg6Lpf28PqCjJLtXInJBsiRbHZsfttXeeutt+JDH/oQjh8/bnx37NgxfOQjH8Gtt95qtzhPIx9KtmIvYuy+4E4hGyDQSm3FC7poR8lGT+S8Z2NGsomyZ8neo5qaGuMzIdwSiUQWeScL2Zhs7MBn9czpPmnV5wuBQsdkA+Z2YukMo6VGsrETgBnJxou/wJbDfpaF2btP9323SDa6z/NisvHGEDdQiko20mZ6XKSfg9djsllhXsl2/mFeyVYYsHYEedesVEMyYxvPtrOqXwaF6Ad2SbZc2iKrFhTNTbSKnJCjRM0m2zZCppCN40AgwN2oseMuahWTrZgkGy8ERqFINjPvDVIHDav6eCRBLko2QrKR9Y3oHJF3De86aBvcKXgbLl6ZE6xEDzIkGzl2bGws5+ui+4SsqMXJPT2XSLa8Ktm+/OUvo7y8HKtXr0ZHRwc6OjqwZs0a1NfX4ytf+Yrd4jwNWZLNTky2Ync03iBLdxi3BiC7O28y5B9Phi5SYRHwlGy8xTaPZKOfP6/NVqiqqsLSpUuxevVqbNiwwSjX6U6NbHZRUXwOGfUiTb4UazKyI0nmKafOdyUbuW9m7qJ0nzGLE+nkXpq9+2aBrc3ihbDf06Bjgvh8PqG7qNtjbSkq2cizpl3Pee45BMU2SAl4xl1/f39WjMt5Jdv5B954M//M3YfIXZQOMi9SL9Pn88Au6NxWsuUTdtvl9pxKf8/afOw4SN9f2uYZHh4GYE2YAtkkG+0qCpi7i8oo2axItkJvmtD18K6JBe/eu6lk44kEZMHbAHVKsmmaZpBsdXV13HOLpWTzsruoSA1lR8lGPpPEem60h17vitbb5xPJRq+F2c0LO7CdXbS6uhrPPPMMHn74YezZsweRSAQbNmzANddcY7tyr8OKZDNzF/ViTDZAbxer0MonyWYVk83qe3rxyd5vN2OysYOLoijGbpvP58soV/ZFUxQF7e3txt+hUAiJRALRaNSRa7WMuyj9m9WuZqkp2cx2t+njzneSTUbJRr9DZrunTpVsdJZbGqLMorz2m32mvyPhC8gzzMUQsINSVrKRBTJLdpYKyTY1NYUDBw6goqICmzdvNn4zU7J55VrmkX94ZUF1LkHkLkoTM7y5RmYDgVWynWuJD3K1sa3OYa+TR6bQY6Lf70coFMLExARmZmbQ1dUFAGhpabFsC5vogiXZZJRsNMFGjuW5l3pByUbXw2uj6Hg3lGyyNi/7t6g+s41Mu+6iU1NTiMViUFU1K9GErJKNt27Ld+KDYkPk6SEaJ82UbNPT01l2by7tYdfbdOzeXGOysf3Lq+sqGSWbHdgm2UhFN910E2666SYnp5cM2E7Hwsxd1GxXwOfzSQ3W+YAZK+5me2QNolyUbGYvPYHIXZSdCOl6yDMirp2hUMiVexQOhzE1NSWUQ8fjcfT19aGpqSmLhNA0TSrxASmHbic7KbP3jN0ZK5SqRgSWoJUdyN1Wslm9y16DHZJNlHyALgfIn5LNrF6Reo2nUt2/fz9GR0ehKAqWLVuWUb/d/mMX54KSzWp30WskBblPZIyjY1zSm0e8RZlXd07nkRvmlWyFATuuypJsbsVkM6vDjWOdwi7Jlo86ZNxF6XlVVVWDHOvq6kIsFkMoFEJTU5NlW1jblFW/ycRkI/OPqqqGzUlsL68p2cjaI5VKSa3beKRFoUg2K/D6kZX3lajvERVbTU2NJTFUTCWb12KyWYke7CjZgLn75fS6RKQSa4/z+p0d26rUlGy08jfvJNs3vvENvOc970E4HMY3vvEN02M/8IEP2G6EVyFLstlRspHzipW5UCQjZ3/PFWZxmejveUSQ6DgnJBut+KKfJVsf2x6/35+xu+ZE+s2CR+TQOHPmDE6fPo14PI6Ojo6M3+iYFex1uU2yeUXJJjOQ09eWS7vZZ8O6VpQC2Heb9BEeCSTjlsN+dtoOGjIkm4hYo/u5pmnYu3cvxsfH4fP5sG7dOiMuiGiXtBTcRQulZCNjhNXuYrENUgLRMyU7rT6fj7uhQn/2yrXMI//wyoLqXAI7L/PcRfNJsjlRsrHn5gN22+X2xhX9PatkI3GWFEXJmPMVJTujemtrq9QcyZJsTtxFSd8JBALGBrIsyVaMd5uQbDJ151vJRiNXJRt9TXaVbKJ4bHT9Vt4EIiUbvU5xAhEhxWtDoSF6l+3EZHNz80DUX2XW23b6d6mQbPQ8R1ziSaKYvJFs9957L97ylrcgHA7j3nvvFR6nKMo5R7IRmLmL8haCZh3I7/cbk0yhX3ge+VUMJZto4CMvOns+UZgB5tlFyfGEJKPjUolINh6ZymYYdeMeEaNGpGQj3/N+Z4k5npJNUXQXVzpGFf0/oN8ntg/QO3U8P/RCw44Sibe74uT5EEORpJKnn3epkGxeUbKZEexm9Zopg9nP0WgU4+PjUBQFF110UUb6eBFJ62UlW6HeOVbJVmoSfgK2L5SVlQlJtnkl27mNeSVbYcASN+R9Ixmd6Q06GjIkN0uyWW2oyaIQ/cCukq0QJBtvY5XdWKMVaH6/H83NzVJtsSLZZLKV80g2dnMY8BbJRqNQJJvI5iXvm4hkk2kbYB6bV3QOoD+P0dFRAHIkmx0lG6DP6Wy/kgV7X/JtB9oFq3Q0Ez0A4vvPIlclG7v2Y989eg1OYOee0mGYyN9eBLmWmZkZxGIxKIqCioqKjN/sQIpk6+zs5H4+n2BXyWa2WKEXmIV+4fPNirP1WC1ArZRsvECMMrHVgsEgEokEN0YP+yx5k2E+SDYyaYiUbOR72i2U/S0cDmN2dtZwjaLbHgwGEY1GLZVs7Gd68KQN5WJNRrkq2RwNhH6/QTRGo9GM99erkwEL9r7JxGTLp5KNVy/pm06UbLzNDL/fn0Gw8erPF4FVyko2kbsobcAXoj2yEO2gAvq1lJWVZYybtAFb7PFsHoXBPMmWX9DjHe2aHQgEjPg9vDFfZlGVbyVbPmGXZMtHHWYBull7gEeytbS0cOdkHtwg2djYrHQCG6+5i/LqskuyyYKdf81cOEWktln7RBux9PpKVBZd1/j4OFKpFILBIDe+tJXiSUTWEORKstHwmrsojwAnn9nf6b+t1uy5kmzs2o+nqhTZ1jJ1K4qeVJAVgXgN5FrGxsYAABUVFcaYxiMarWD7Ku+55x5MT09nfT8zM4N77rnHbnElAdEAxO7skc/0bzzQk1CxSDbRzlC+lGzJZBLbt2/H8ePHs+qk/6d/Y4/jTXQiQoa4MPBc5tjr5JFsbPBWN+6RlbuoDMlGZKtkQKQJXlK+Gclm9dzpgbYUlGw0cllMK0qm+wTrWlEKYA0os+yihYjJ5ra7qKyhzdY/r2SbA0uy8RazxZyfRLAi2YDsYNrs8/eqUTeP3MDro15ZUJ1LoN9Bevyg50jeXGPHXZTgXEt8wDvezTrY62S9F4BsAjMSiRg2dGtrq3RbVFXNeD6imGxs29nPgG4HsKSdV91FaciQbLLupWZ12Y2TZlWfiCQxE4XwPBNoV1FeXW4o2ZxCRPR7ZU7gvZv0ZzskW662Ol0GfY9oJRtdvsgOk7WtSkG8wJJsoqQesrB9lXfffbfhp0pjenoad999t93iSgKizkB3GHZnwMpdlKDQL7yZu6ibbWHrmZqawuTkJPr6+izPFQ0mdph1K5KNrc9KyeaGGoJWsvEmR2K4ypBswFw8ItIuYqzwdgqsnjttGBSbZCuGkg2AkGQrFbCkf7GUbDLuorLZRUVJEMzaz9afLyVTKSrZWJfcUiHZCHhGORkbrUg2r13LPNzFvJItv6DHO9pVFDAngbxAsuUTbOwiq3bkg2Rj5zjWpgOy58xgMIj169fjwgsvzIirJwPy3H0+n63kOey1BwKBLFuAPsYrSjY7sUp5pIXbJJuZjSVTtqhP8MDre4QDqK6uljpHJKrgbZoBuZFsPHvMSySbjKCEdzx9LLlG0f130h7a1pZVstm9p/RY4XWSjYRtKjjJRssbaezZswd1dXV2iysJWA10wFxmM5kJgHQ0N5VjsjBjxd1sC0/JRv/thpLN7KUnRgPrLkrO4RFtdDvYxagb94i0iTZSCRKJhFFXPB4XTjqhUChDZUdPkjKp063uLbubUQywhoBsTLZcyRRCgk5NTZUkycbuoIoMGMBcUZYryWa2IHAr8YGMks3pbpssSlnJRmAWGw8ovkFKkIuSrdibBvPIL+aVbIWBDMlmFpOtGCSbqHw3QdzlJiYmhMfkSvbJKtl4yhaWUKHH/Lq6OkcLdfLcw+Gw5bOzItlYgk+0Oex0Ye8GnLqLyhxvVle+lGx2SDazzU+Ri7GVko1tL/ndyttHBl5XsvEIcEBsp5rZPnQ8PKfXxWuLXSXbuUiyEeRKssk54WNOFqooClauXJlRUTKZxOTkJG6//XZblZcKzAY6EsfJTrB02r+30DB7ufNBsrGDuYi0EtVt5qZpR8nGDmAsqccSNOQ4lhzMZWBQVRXBYNDIpEQbF+ykQlKqs7+HQiH4/X5DxUbaRe8omqVOLyV3UVmSRFEU7jO0i5qaGvT29mJ0dBQ1NTWmdXoRtEHKy6pLwyz2Ta4SdDPyyS13UTPFMNvX82VclbKSTfQ34I4Lgttg20Hfc1l3Ua9cyzzyg3klW35Bj6tsZlEzZY3MvMyz7UTHOFGy5bMfkEXYxMSEUIRAIx9KNt51krUJu9HtxsYhee68uFl2STbe5jnvcyqVgs/nKymSLVclmxVZ5lTJZqdPmCmpZEhA3n0Q2fiRSATRaNR1JRu7Pi822DULIK9kyxfJRm9i2/UcO1dJtkAgkDXG5Y1k+9rXvgZN0/DOd74Td999d8buRzAYxJIlS3D55ZfbqrxUYBVfjcTGMguuT4NWshUahXIXFb2MMoE6nSjZ2PJp1ZjIBZIMdLxJIB9KNkA3SmKxGGZnZzMCttsh2eiEGzTJxk6UVu6i9ABJ38dik2x2lGw0cn1GhFibmJgwjVnlVdD3jZ4wgWwFstlOpFeVbLzPMoqHUnAXLZaSrVTcRc0MTSt30WKPZ/PIL+aVbIUBbUOQmExkAWI25stsUOZbyZZPlJeXQ1EUJBIJzM7OIhKJZB2Ta3+0unbeHOfENVAWtJKNhR13Ub/fz02+wyuLkGzFGM8LSbLJxK1yqmQT9QmZd9OOyy7vHtDHizbNIpEIRkdHDVc9J6DXRLRIwktzAkuAA/Ix2ehzysrKEAqFEI1GpROX8NoCIGvNYNbnnXqJkDbSa3evgW5XZWWl1AaQGaSfytve9jYAQEdHB6688krHD7QUYXZT6Q7K+jSLQHe0QoM3OOdj8BHtmIhILRr0CyxLsrEvPd0/4/G4bZLNKdFjBZEcmkeyEWiaJnQXJeDFxuAZN1YEphuKsFxRLCVbOBxGJBLBzMwMhoeHAZQuycbGh2FJtnwq2XhGGYFMdlFCHiuKIiTZzIxDduxxQ4XKw7mgZCsVd1ECljgF5pVs5zsKZdOc7yDj3dTUlEGyNTc3AzAf870Qky2f/UBVVVRUVGBiYgITExOmJJtTyCrZeBur+SDZamtr0d/fn6GkIbCrZDOL6UY2gGn7rlSUbDSJ4lTJ5pRks2qbHSUbb4PeipwTkWxWSjY6brVTsB46ojYUEzzbUWSnijaNyW/r16/HzMwMd9yRAatkI+vqfLqLennDk74W1lWU/V0Gtq+0srISBw8eNP7+/e9/j1e96lX4xCc+wQ3YXqoQ7aawoBVPtLpChmQrxsvOM4YKqWQj37GTgdkLTH7nvfTsBEAbdHTyAjJo85JO0O0h5YncRd0i2didGvbdoReMdIy2YDCY4RbKi8lGYBafA/Cuuyg7AVnde/bacnlGRM1WiiQbfR94SjYa+VSymbkOyWY15Y0bTpVs+TLKz1UlmxcNILO5QTYmmxeM63kUBvMkm/sg4wIh2Orq6lBRUQHAnARyi2QjkCWsCql4I4ux8fFx0+Ny7Y9WJBtv7s4HydbU1ISrrroKDQ0NWb+5GZON/ruYyuRiuYtakVgynkG8su30Cd67bWZ/seewpBCvTFrJBuhzulO7iu4fuRKe+YKdjSGrdXFFRQUWLFiQc1tEIZMIzEQtsveU9Bcv2pgEdNuKQrL94z/+I44cOQIAOHHiBN7whjegrKwMv/71r3HXXXfZLc6zsEuy0e6iVh2omDHZCu0uyg7m9HeiOnmDiayPOE2WEUl7IpHA6OgogMyXxmwyFLmL5jo4iHZqzJRs5LdgMAhVVTOUbPQkKSO7Fz133mRUrIFQNAFbtcdNks1M6eVV0M/YimQzuz66P+SiZOPtspplFzXL1kx/R3+WiclWCu6ihTIA2ftVKko2th103yLjICHZ2Odf7PFsHvnFvJKtMGDvZXt7u/E515hsMuS/EyUbe26+QEJ/iJIf5Nofza6dt0kMIGOTmf7fLZvGjAASqeHZ6/f7/abZRel6SkXJRr8LuZBstB3GwkrJJnue08QHdtxFybzME5+w67ZQKGQc41S0I/LQ8dKcYHZPZUk2s/5hBzwlG/0/fRxbn9OYbF62xYquZDty5AguuugiAMCvf/1rXHvttfjFL36BH/3oR7j//vvtFlcSkB2AZPzbgfPDXdRMySbaVbBi7HmTrxkhQ+5zPB7H2NgYgDkSha2PbU++JnYrd1FicPBINnIurWSjd5RkdhB5z50mMEtZyebGM2LdH0qRZBO5i9KQzQ6Vi5KNJZ9owsxKQceL4Uifb2YclqK7aKHUVjKJD7xMsvHmE0AfI0mfJ+PkvJLt/MI8yZZf0ONnZWVlRlzmQijZ6GNkiLZCuojRJJuICMsFZu0XXSdraxYyY7qIZGP7QCAQgM/nM1VvlRrJxltXOKlLJkyR3fJFqsB8Jj6YmZkBoKvUrJRsiqLknGGUF2vaaySb1XrM7Fi37RmWZMunkq2USLaysjLLdYoMbF8pvQh/5JFHcMsttwAA2traMDg4aLc4zyKfSrbKykpUVFSgsbHRhZbaA09mnI9FiCgmG/mONzmYqRXY3TFSh9lLT16Q2dlZTE5OAsgk2XjtEZFsbt0jomRj3UXJhELcL8xINrrPmSnZStVd1K6SzU2SLRgMoqyszPi7VEm2XJRsQG4km2jBRerkqVLJeaL3TvTZTMlWKHdRp8Y0jUKprey6i3rBIAXMN2AAGOM7kE2yzSvZzm2YqeG90n/PBdDvT3t7O3cTj7fhIPP+idRLZsd4CWVlZUZQ/qmpqazf861kY48D5sZBYktabay5CdFGDU/JpihKhppNRLKR9p8v7qKyddDIh5KNfbdpTwkZm5ysdegkGaK1nqqqwpA6sqDL8irJxtugtesu6tZ1sO+XjJLN6QZ2KZFsPBUb/bssbF/p5s2b8W//9m/46U9/ir/97W942cteBgDo7OxEU1OT3eI8C1mSje6gMrsCgN7RNm/ejI6ODhdaag+FdhcVKdnY43jn2CHZePEayMRNyN+ysrKM+A+8nVHyHU1k8X53Ctrw4QXvJjuiNMlGPrMkWz7cRWmSrViTkVMlm+hvu6DVbKVEstHvQi4x2QA5Q0+mHTTM4rGx9VqRbGbGoWhMyBfJxrbNCYqlZCsVd1ECkZKNLGwDgYAnlA/zKDzmlWz5BRkrIpFIViyu813JpiiKpctoLu2Qub9A5j0uppJNhmQjBBuQGT5CRLgWczw38xJhwbN/nJBsMu9Lrko2J4kP6DrtKtlE7aftn1yTH/CUbLT3lBdgpmSTJdncIqpYJZuo/7mhZKuurkZFRYWnuaKqqiooiiKMc2f3vtve0vja176Gt7zlLfjd736HT37yk1i+fDkA4De/+Q2uuOIKu8V5FnaVbHTig1JgaQtFsoliK8m4izoJxEifQ4xCnqsoW5+oLrfVEGQRmEqlEI1GEYlEkEqljLgFPJLNzF2UIBd3UZrApMssFSUbi1zbXVNTg7NnzwIoLZJN1l2U3onMh5JN5MpgllmUPTcfSrZ8uYuS9uTSV7ykZPMiySarZOORbKUwL8/DOeaVbIVBfX09lixZgoaGBiER4gbJxttQZY+xS7IVApWVlRgdHcXExISRddWttsgq2Wh40V2U/kwTa6LNb7qs8y3xgROSTXZDOpfEB7QdJpP4wEzJxrPRSL8l5Jxd0GXxvA28MCfwlGyyMdny5S7KlstrR65tCQaD2Lx5c+6NziNaWlqwcOFCSwJZFrZJtg0bNmDfvn1Z33/5y18uqQWpFeySbLTrnpeNed4uSz4GH9boYuszcxcVseS8ic4s/hJZzJPv6BgibH1W7qJu3SNF0WMOzMzMGCQbMYJUVTVcFWmSjUxSPCUbgVvuol4g2YqtZKPJ2FIa0+h3wUzJZhUbjS4rFyWbyF00F5JN0zQoimIrJlu+VGLkvaFJeqcolAFY6u6iBPNKtnmwmFey5ReqqmLJkiXc32SUVjLEBGC9cBfVY4ZC9AMzJVsh3EVpOw6YI668qmSjSTbymd44J/DCeG5nTsyV2Mmnko3eoJdds5rZZFY2uRMlG3HT6+npQWNjY1acZCuIPHS8NCeYrcesYrK5fR1sW/KpZCsV2FFdW5aVa2MIwuEwN2NcqUKWZKMHoFLYMS+Wu2gu2UV5C372O95gzfZHMyWbiGRz210UyN5hpJVqxDBKJBIGqUAWkISAYydKwFrJxiMjvUqy2VWyuU2yBQIBIzZeIeKXuAVZJRv5TaQYIL/R/zttBw2zzKKic9kyZPpEoZRsvPY6RaHmjnMl8QH5n/QlshFBMjADc6RsoVSC8ygO5pVsxQdv0UhgV8nmFslWSHdRYC6Gz+TkpHA+yAfJJrq/tJ0po153E7LuogTE7uXdH9F4XiySzWoeKaSSTWQfieoLhUIIhULQNA3j4+OOlGw0MWeHZKOVbHR72Tm6vr4eCxcuBAAcOHDAdmw2+n3g3ScvzAl21uH5tmdFpJ6ZerMQtrVXkReSra6uzohrVVtbi7q6OuG/cwVOlGyyMdmKCd5knY8XhR3ceIoU+jj2M90u3kvPI9noa6KVbIC+i0KMDrY+3kKMdgOm/3djgGaTHxDVWjAYzIhTEYvFEIvFDDc7QrKJEh+wkx5v902kIGRJNnZXtJDI1ahyo93Lly9HS0tLSY1p9PM2I9lkAiAXW8lG2sgq8tjvZWKy5dMod4tkK4aSzefzcesrJZKNNdxZJVuhF9rzKDzMbJr5Z14YmLmLytiXsvY2W6aXEAqFEAgEoGlaRiIWoHBKNrY9wJydaJXsyE3komQTlcWO58VyF7V6hm6RbGbniN43mfeCePSMjY05SnxghzSnY0+L3EXZOVpRFKxYsQIVFRWIx+N44YUXbNlX9D2fdxe1hkg5arXepv/3wj0tFOxeq5RM49577zWk0Pfee+95cUPtKtnsZBctJsxkqoVSsokmAqsX2OqlZwPA0ot5XlZRGSVbPjLUmSnZFEVBMBhENBpFLBYzDCOSvQrIdBcl7SULZp/Pl6FUYq+VvR7yG0tuFPMdZ+sutJIN0PsLr894GfR1E2KWgKdkkzGsciHZ3E58wPue1ycK5S7Ka69TFGruIO+6WQw5L28Ssc80HA5nuGcFAgGjn9HqcuD8MgTPd5yPxn8x4URpxTsfMFeyKYqStTAXodAEu6IoqKiowMjICKanpzOy0+VKCrIqEvpv0fxGQogkEgnMzMwYbfByTDYZJRuvrHyjGCRbLu6iZvXV1NSgv79fmmQT2VN2iLlQKCS8hzzi1OfzYd26ddixYwcmJibQ3d2N1tZWYX00eIkPvEay2RG75JvYEq2feM8r34RfKcCujS5Fsr3tbW8zPr/97W+3VcG5ALPBhN5lKYWYbIVyFzWLySab+MAOycabgOlJ3IwwsSLZ3B6gCck2PT0NIDuxAU2ykWPKy8uN82l3UVZ5R4wqtq1mz4OejMi5xezDdN2ivkIjHyRbKYK+b2Ykm4ySrbGxEZqmCdNYy7TDiZJNpCAlkAnYyxpWpeAuWkgDkJBsVvH4CtUeGdhRstF9p1jKh3kUDvNKtuKjECQbDbskW6HAzl8sclWyAdkkm9n8FgqFkEgkDDuSbmM+Yddd1EzJxgvJIzo2X3BCsrHzj926ZD2oaMiMe7SSjTwDJ4kP7MStouOxsWWKNsLC4TCam5tx+vRpW0kQ6PfBqyQbz24slruoEyWbVZvPZdi9VttPyefzob+/P+v7oaEhT++A54LzxV20UEo2WZKNZcntKNkURcmYxNmkB+y5bHvoZyhD9NgBIfzGxsYQj8e5JBugS61JPDYSI4xuWyKRyCIb6HabuYvyJNpAdhrnYoA1IIuhZCtF0M+RTpwB8JVsZmRXe3s7LrnkEkdxNkULrlyzi/K+N4vJRtrgdXdRmT7uJnhjBe93wDvvkkjdyoYAoN1F6TmZV8Y8zl2cj8Z/MSFSL9PfmT0LWZLNSsFjVXa+IWqfW+6idstmN3RVVS3oHMO2S6Rkq6iogM/nMzymaIiUbIWEHZItVxdFGeKLl/xMFmVlZfD7/UilUoadKKNkc+IuSsBuhvHWXrzzrEhrHuh7zhuXvDAn8NZjdkm2fCnZeCSbSMmWzw1sr8Lufbcd1Vs0yEWj0Yw0zKUOngqIB94ui5c7HG/QySfJxipP2Lp554gGE95kLZrQFEVBJBJBMBhEJBLhBt3kGS48Qo9+tm7co7KyMlRUVGBychIDAwMZMdno/2mSTaRkY0k2msDg3S9Zd1GvkGy0QlT23nthEi0WVFXNiL9CwFOy5WszQEQ8uekuatZPRSRtMUi2ZDJp6z4XSskGlCbJxs4NJNEBuf+imGxenpPnkRvmlWzFh5sx2WRINhkUow9YkWy5lssry2x+Y0m2QgkA7LqLhkIhXHHFFZZKNh6BUggU0l20oaEBra2taGpqEh6Ti5JNURRUV1djaGgoqzzR8XT5MmsEKyUbXZ7ZMxVdpxnodbhbngZuQxSOCLAm2dy2Z0XuqfMx2fjIG8n2jW98w6jg+9//foayJplM4oknnsDq1attVe5lyJJsvCD0XjboC+UuKhoYyHdmdYpYclklG72IvOyyy4TXxTuXJvQURTEmFbcXa42NjZicnER/f79QyRaNRk2VbACydqJEJBv73L2uZCP3Ph6Pc+8Be7zZ3+cTRNduV8nmRhtE7qJOsov6fL4MZZKZapjuu8V0Fx0dHcWePXvQ0dGB9vZ2YRmFdoEhdZSyuyg91geDQSOJjIhk88p1zCN/mCfZigczhZld5UsusaiKDav2udEfRQSeyF0UKDzJZlfJxp5DwwtCBjsbT7w+YFfJtnz5cstjAHvkEw07JJtIcOC2u6gZwWrnOnmkHX2+F+YEEVkFyMdkK6S7qEjJdj7GZMsbyXbvvfcC0G/ud77znYyXMhgMYsmSJfjOd75jq3IvgyzyATklW6klPsi3QcqSOnaUbKJ2yZJsTgw23j0gSQTysVhrbGzEiRMnMDo6apTJkmyjo6PQNA0+ny/DLYp3TU7dRdn76AWSjdSfTCYxNjYGQJebs65hBPMk2xzY50Zi9NHvXL6VbDy1LGBfyUa/d36/P2Mjw46SrVjuopOTk9A0DePj46ZlODXGnaIU3UUJeDuoZiRbKczJ88gNZht1Xuu/5ypEYz79nZtKNhmSzYtKNqdtMVOyybiLkphWXiLZZDf5vLBpUkglmwxyUbIB2TGqZd9Nep1lR3Eqche1arMTd1Fe4gOvuYvmomTLt7vovJLNHHkj2To7OwEA119/PX7729+itrbWXssKgCVLluDUqVMZ3330ox/FF77wBdtlyZJs9CBQSjHZCuUuSiYaehBJpVLcQIpWL7DVS2+X4beaDPM5uYfDYVRVVWF8fDzD9Yn+nxhG5eXlWfeJTnAAOHcXZe+tF7KL0vWPjIwA4MfUY48V/X0+ge37JNsi+/7xjnW7DSIlmx2SjcDv9yMajWYlIjFLfMCWU2iSjbdLyUOhDcBzyV1UUZQM8n1eyXb+Yl7JVjyYkUvFJtkKCSuSLddyeTC7v2RsLPTaxImSTQSeTVAKJFs+5x9RTDbZflZRUZERZsEJyeZ1JZvIXdQLcwK7HjNrX77VY7ko2fLpJeJV2L1W2/5Cjz32mN1TCop77rkH7373u42/RS5mVpBVQ/ESH3i5wxXaXZSOqUXXx6szF5LNiWpBlmSjn62b96ipqclQudCLQza2Ia8PE5Ud21aRkk3kLsoOnl5SsgG6mg8wJ9lYeGESLRZ4SjYg833Pt6EqWmjkSrLxvhf1U2JAFtNdVJZk47k35BM8Qp6Gl91FCVh3UUC/Lp/PN69kO88wr2QrPkQbK7Iq3VxItomJCZw6dQpLly5FWVmZadmFQj7cRcnGvxMlG0GxY7LRdrsTkq1Yi3qnSjbZc+zCKlaZVX2qqqKqqgqjo6Pw+XyW7ybpe/R6zg5pztoasmq/c13JxluPFVrJJhOTja1rXskmD0dBebq6uvCHP/wBp0+fzspi99WvftVJka6hsrISCxculD4+Go0aMbEAGKSHLMlGTwBeISjMwJsA8q1k4wUv59VlxdiLJmtyjt3rsFLB0QN8Pib3BQsW4OjRowAyjSGWZKOTHhAQZQ9pJ7kWKyVbqZBspD0kI+W8kk0OrHFjRqrn6xnzDBuaqJYh2dhNC/pdpA1L0TXwxp9iKdmsDMRC785bKdkURcnY5fYCzMYvMl6SRdu8ku38QqFsmnmIIaPgypeSrbe3F4ODgygvL0dHR0dW3YXsA1b34Xwh2URKNp/Ph5UrV0JRFOm2eGE8t0OyFUI9JYrJZuf+VFdXGySbFei+Z1fJFolEhO3Jt5KNZ4t6ASJ3UZl1sdv2u4ySbd5ddA55J9keffRR3Hrrrejo6MDhw4exbt06nDx5EpqmYePGjXaLcx1f/OIX8dnPfhZtbW143eteh3/5l38xzXr6+c9/HnfffXfW97KTfqkp2XiDTj5eFHpxzw6QqVTKuG9OlWzsd7KDPw/FcBcFdDKttrYWIyMjpiSbSMlm9Zl3b63cRb0i/6XrDwQC3B1qgnmSbQ4sSVyMBSiP2CMqNivjWqRCEn0vuga6v5eKkq1Q71xFRQUGBgZMVd6hUAgzMzPSaoNCgSUuVVU1xk4eyXY+BuY931Aom2YeYogWs7JJXXIh2XguV8WCDNnodtlmdi9R9xIbPF/Jjnj1ErDvYEtLi62yvKBMduoumi84ybrJoqamBqdOnZKa48mmm2xYJPoesfHY6N/zoWTjqcJ46rZiwkpQ4vTYXNpCIOMuSnA+2ld5J9k+/vGP4yMf+QjuueceVFZW4v7770djYyPe8pa34Oabb7ZbnKv44Ac/iI0bN6K2thbPPfccPv7xj6OzsxPf//73hed8/OMfx5133mn8PT4+jra2NttKNppM8nJMtkK7iwL83RazOkWMvWxMtlyUbIUk2QCgtbUVIyMjGYFIWcOIp2QTEWu0EeXEXZR3bjFAt6eqqsr2Mz1f4QWSjVcn7SpqVi8vxiVLssmMs7mMC3ZQikq29vZ2tLS0mBrX69evRywWEyYbKTTMNmBqamoQiUTQ2NgIwBvuRfMoHHjv4DzJVlhYEUBWi1tZe9tsPmPHWS8p2djf3SzbSgUTCoUKnl3UzZADpaZkMyNK3IJVTDaZ+mpqarB8+XJUVlZaHsvzDLCjZDP73YokBuyRifSYw84NXpkP3FCy5Ytk460JrZRs55N9lXeS7eDBg/jlL3+pn+z3Y2ZmBhUVFbjnnnvwyle+Eu9973vtFmmKz3zmM1ylGY3nn38emzdvxoc//GHjuw0bNqC2thavfe1r8cUvfhH19fXcc0OhkOVCQiYmGzDn2ublDleoRTddFjsRiBadbP1mSjbeS+80JhuvLrqcfMVkA4D6+npcffXVWW0OBoOYmZlBOBzm7j7S39lRssmSbMWejOj7wWZCYiFroJ8PoK+fJrR4O//5VrLR77lMPDb2XB7JJqsY5ilci0WyeU3JpijW8XDKyspM1aOFhmg3V1VVhMNhbNmyxTiWR9QWezybR/7A20CaJ9kKC1FMNlmbTFbJRmCHZCsknBBhuZZtNcYVg2RzM3mOF5TJhCTWNM1TJFsuSjZFUdDa2ip9LOCMZMtFyeaWu2gu9ykfsENW5ZvYEgksCElJh3din9v5OM/ave+2Sbby8nIjFlRLSwuOHz+OCy64AAAwODhotzhL3HHHHXjjG99oesySJUu431922WUAgGPHjglJNhHs7KyRwbeUSLZ87/pakWy8Ou0QQWYkm1tKtnzHZGProUFINp6KjT1HpGTj3VvRzonXlGx0/VZJD3jXeb7CjpIt3zHZREo2M4hiXLqhZPOqu+g8EWQNqw0YGvNKtvMLZu/g/DtVGDglgNjzAXk3NAKrcbYYSjYW+XQXtRrjaBFBqZNsxRzPVVVFMpn0BMlGJ7RKpVJZJLfb9YnsMhFklWxWpB3pR8SOk7kus8QHXpkPvKRkY+87u86m+5doDPLKfS0E8q5ku+yyy/D0009j7dq1eNnLXoaPfOQj2LdvH377298apJabaGhoQENDg6Nzd+3aBQBobm62fa4dko0MvqTjzbuLZt4zN0k20UvvZAK2IuiKKVMncdlEJJtIySbrLspeL3vPir0opdtllSF4nmSbA339dF8ohruoW0o24j7Nfi9j5OX73XXDXXSeCLKGSMkmS7Kd7+PCuQzRggWYf+6FAm/MB+THNrskW6m5i+ZTyWZVNh3j91wh2YrxXpMQLlZ1m6mR3GwLQTKZFCpJ3YITJRsRn7ihZAP065SJKUiPOV51F7Vjz9g5Npe2EJh5jPH6gZttKQXknWT76le/isnJSQC6K+fk5CTuu+8+LF++HPfee6/d4lzD1q1bsW3bNlx//fWorq7G888/jw9/+MO49dZb0d7ebrs8WZINmBt8ZY8vJsyMlHy9KKIMOFZt4w0mLCmUTyUbLVUu9OTe3NyMWCwmzJTrNPGBrLtosfswqb+qqspWW86nwZ4HVsnGW3jmuy/zDD6i8s3VXVRWyVaK7qLne9+VAeumwBsbRH1oHucmRCpt+rd55BeFche1Q7IVAyIijP3dzbJl3EUJSj0mWzHHc3bNIQL7ez7GIFpwkEgkssI/5FPJJpP4AADa2toQi8W4SjYCK9KO/k72/abtqVJTsnnBXZS3Buatt+lx6Hyyr/JOsi1dutT4XFZWhm9961t2i8gLQqEQ7rvvPtx9992IRqNYvHgx3v3ud+Ouu+5yVJ4ddYzXVEBm4O045stdlOxkuKVkA7Il27Rxl4uSzcpdtNCDdF1dHerq6oS/i4i1UCgEv9+flaFUtBDxKslG2mPlKkofy34+H8GSbDyiJ999mbcYkE0KI0Oy2VGyecFdVDbxQbHfOS/DjpuCF2L4zKNwmFeyFR9WBJDV2MZTT8jWU0pKtnyW7SV30XyRbMXckPISyQbMbaLSIoZ83R+7SjYgkyswK8/KVZKIWGTjqtHt8yrJZrUe4x2bL3dRs7Ufuz6kjz1f59mCkGzPP/98Voyz0dFRbNy4ESdOnLBbpCvYuHEjtm3b5lp5NIljdVPZicvLi6VCuYuS8uyQbGx7eMaDGbPuNPGBaCHulVgQPJglPrj00kuFxK9ooDbzyy8GFixYgJmZGTQ1NVkeO0+yzYF+jn6/3zBMeO97vvoyj3iS3f20ItloY0tG8VBMd1Heov//b+/ew6SozvyBf7t7LgwzzDAyDDPcZIBEBRW5hF2MCq4sXoiXh42XaBQF9THKIz7mokZXTRTdiGxcNZpdg0A0EW/ok6AiPCwIumtUhEWDj4qAtxVdg3Jnruf3h79qTtdUdVd116lzqur7eR4fmZ6erqru06dOvfW+5zhhJlth8nsjv9de736b0m9T8Bhk06/YLCv73wP+M9msbSR14YNCry0H2byU2wVBDo6oyGRjkO2bz7K9vT2USf3ltudlTjavrwcUPkdbiRVejzNKmWwmlovmy2STyZ+HKe9rGPy2e9897rZt2xwbe2trKz799FO/L2csq9F4ufNjf47Jc7LlG6SoSDG20pllXlPp85VwOp3wij0OE8tFC3HLZAPQLYsNKJxybFomW3Nzs+e5FBlkO8h+sZLvzn+YmWx+Mxrsq4j6zWSLUrkoA0GFuZUp5MtkAw7OBZj0fiHO3G4gUXicKiTkn8MoF1VRoumXWyAsyH2JQrko0L3qpJTXAfTf7PYaZLOeo3qc5bTCqKptBl2y6zWTDfjmONvb2z2Xi8rfB3k8mW8bYXO7MeQnky3IclG5vXqZk03ed1Pe07Aoy2T705/+lP33iy++mFPG1dnZiZUrV7qu8hlFbhk+TkzLAsrHaTCkOsXYutCx7myVWi4q/1/+nd87LIU6eqfVRU35bN0y2dwU6tRNC7IVy5TPRxd7uWiYQXWLUx/jN8jmZU62uJSLmta3mMgpY1l+3Om5gHmDawpevnMbP/dwuM3J5rXvDSLIFoVyUZWZbG7vcXl5efYiOswgm5VpVep5N2qZbNZzVWeYWZ+lPYlBBafzbyltyU8Fkj1QVoj8fTA1k81P4MzLdXEQ++OncgxI7s1hZUG2s846K7uB6dOn5/yuvLwcQ4YMwbx583xt3GR+gmxyZ+OlvFSnsMtFgYOdY3l5ebcgm9Pz83Um9s+llAsq+Xn5Anq6T+5O7G2uEPuJqlC5aJQ6TmayHWQvF9WRySbvgxDfLLvuNQAuB7blv3GaH9HrxZiuclFmsgXP/nm6BdnsWdR8b+PLT1YAqeEWAPLat5WVlSGdTmcDQn624/VmRhgKBcKCeG27Qu09lUqhqakJe/bsQc+ePUveD6+GDRuGnTt3olevXiW9jtx2gihVLHU/vGayOf07SFHOZLN4zWSztu31Na3Xc8uw1a2UTDYV16Ju7ZWZbN0pC7JZb2hLSwtef/11NDQ0+NuziComyGYy+8WnyrRmeyablX3lVu7jpTOx3usgIuuFLsSdykVN+XzzlYvme75bkC3KmWwMsh3kJZNNdVu2B69TqVRJc7JlMpmiM9l0zskmB9ms98EJgwKFOd35zvd+WUE2ZrLFn/1Cit+n8AURZBs7dqzn7JioZbLZfx/ka3t5jw877LCit1ushoaGQK4TnYJspmeyhTEmta6nwp6TLehy0UKv5xRMzMetAkLerm5+AmdhZbJZ/GaymfKehkVZkM2ydetWv38SSX4y2ewXtiZzugBWfffDHmQrpVx04MCBqKioQH19fbffFZvJ5nbhFqdyUfvdoDgF2WSmfD66mJbJ1tXVlQ142H+X72+FyJ1g1y34Vuh15IGZrnJR699u7zcz2Qpzyjr2MicfM9niT+4zVGeukjO3jBE/F2LV1dWet+MnyBamQplsKoJscW/v8nHpnGPTGm+YEmQLM5NN/n4HvfBBoX3ON8Zyki+TzZTviFsmm59y0SDHNPJr5ctkk5n2nobF7/F6/pT+8pe/4IUXXsh57Pe//z1aWlrQ2NiIyy+/HK2trb42HgVxy2Szl3LJ/w96390y2dzKRb3sV9++fTFy5Mjsa8kdaSlzstkfk1/HxCBb0JlsUZpX0I6ZbAfZg8RObTysOdnk7foNsgG5ARI5aOY3k81pv4LiJ8jmxrS+xUSFso7tTJ3wmIJnD+rz+xS+Uudk88rpMy1Ulm9CJluQ5aJumWxxbe+pVPcJ7Fku6jwnm6rAsvz9jkomm3xtaN+ubn6yr/1kvZW6P0Du51BVVQUA6NGjR/Z59n03PeYRNL/H6/nZt956KzZu3Jj9+a233sLMmTMxefJkXH/99fjzn/+MO++809fGTVZsJpvpDc7pAjisOdnkIJvT/ti373W/Sg2yue2PyXOylZLJ5nQhEuVMNgbZDjKtXNT63gQVZPM7J5spmWz57sKa1reYyG+5CjPZksN+45BBtvCVWi5aynZYLlr6RPSms/fnLBfNH3xSmckW9MIHXjPZSln4wL5d3ew3JfJdu4ZdLir/e8iQIRg7diz69u3b7fdJvYGpLJNtw4YNOOmkk7I/L168GH/3d3+Hhx56CNdeey3uvfdePPHEE742bjI/QTa/WUU6OV0AhxVkKy8vz26v2HLRfNvxe7HqFGRzCpiaOCebfEfBT5ANcL7bzyBbPJhQLirvh5dBhExu13KAxGnhAy9BFtXzlQSZyRal75wuzGQjO/uYhkG28DmNpeSfdQTZdCiUyaYyyBbn84cJmWwVFRU5/8/HrfwuSE5zsqme+ifom5Z+Mtm8fr/l60BTK3TsUxy0t7cDOHiNLAujXNQtky2dTqNXr14sF5X4PV7Pc7J99dVX6NevX/bnl156Caecckr25+985zv4+OOPfW3cZMUGMEw/0VkXsfLFiuqO2eKUyWbfN3l/VGeyWdwy2Uyeky2VSqGiogKtra2eT/rW526t8Gq9jvx/+flRZMrno4ufTDaV75VbiruX/jSdTqOzszM78LBnslnfcy+ZbPlKB4IQRJAtqYMVP5jJRm6siym3LG1Sj5lsyNmWjnLROPdx9qwtHd/tAQMGoKqqCn369Cn4XN2ZbEELujIgyEy2Xbt2YdeuXRgwYED2Gsf6O1Mz2ewVZW1tbQCcA7hhZLL5qcYrNqklLpRlsvXr1y+76EFbWxvefPNNTJgwIfv73bt3O0Zhoyqu5aJAOF9ap9fzu/CB1y9xsemrfspFTRy4H3HEETj88MOz9fKFyCflQnOyRaEdW9zuwiSRPUjsNDAP4+RoDz75uRBwCpA4lYt6mZNN9Z1v+x1JmddyUWayFWYflNofs2MmW7LI53ITz9Vx5zYnW9DnmnxBNrd/mxBks/8+yNfWmd0VFhPKRcvKytDY2OjpRmEY+5dvTjZV13LytoJqy6Vmsr3//vvYvHkzdu3alX1NaxumBtns84j6CbKpnpPNb+VYnPsdJ8qCbKeccgquv/56rF27FjfccAN69uyJ448/Pvv7jRs3YtiwYb42brKePXvm/D+fKGWyAd2/JGEF2QqVi1r8Bv+KTSV3K3Fwel0To/a9e/dGU1OT5+fnC7KZejLyguWiB1lt1gqw5bsoUdlXuQ0MigmyZTKZnIs4+fFC21cdZLEPlmTMZAuO06DcS5CNAcxkMP2GWNwVyuBSmckm97u6S0Z1louaPlVNKUwoF/UjbplsTmOyINoyUPi7Ueg4rYoHK1AljzVNbSdBZLKFUS6a77lJHbf6fd89l4vefvvtmDZtGiZOnIiamhosWrQop0E8/PDDmDJliq+Nm6xv374YMGAAKisrCz7XXqJlOqscS1cmm1PWh/x8v51JsV/6QiVl8h0Uax9M7bS98BNki9JxMsh2kBxkA5wDyWGWi1rb9TM4tmfB2QdLchmp19cIK8gm9//MZAuOU3mJl8/f/vcUT04ZpfzMw2P/fqrKdiiUySb3wSZlsrFctDQmZLL5EcaYNMw52YKuDPCTyVaoXNT6+46Ojm79v6nJA9a+WcdvjWl1lYuWkslmynsaFr/H6znI1rdvX6xduxY7d+5ETU1Nt2DSk08+iZqaGl8bN53fMjwgGie6sMpF3eZkA5y/oPbtq56TrVBnIQ/c49ChOAXZ3IKHUWjHTqL8+QTByha1bg7oLhctZk42+3PsQbZiMtlUtWf7YEnmNZONQQHvvAZRGGRLFmay6SV/33QH2XTSkckWleyuUkQtMzmMhQ+cMryCCOY6CXqOU6ebZoUy2dy+29bj7e3tOcdvcpANQM640cpk87LwgepyUWay5acsyGapq6tzfPyQQw7x+1KxEdUgW9jlonKQzemuhP2Ohd8gm98TsNcgm599MRkz2eKvpqYGI0aMQHV1NQD3gLr8OxXsg6hiykXln1Opg5Obe/meh1Uuau2HXFJu8VsuGqXvXNj83Pl2+h3f23hjkE0vp/IvQF3f5iXIZlImm/33pUhyuajF9O92mOWi8jxpqrap6qZlEJls1uNWJpv8dyYH2azxbFtbW3a/dZWL+gkKq7qBEhXKg2zUXdQWPrDfFdIRZHMKbFm/t04afoNsbj8X+jsvQTa/r20iBtmSobGxMftvt++6/DsVnC56vW7TLUBiDUq8vFZY5aLWtgoF2byUi7LtunO6iGcmG1kYZNOrUJAtqM+iUCabqQsfsFy0NFHrz8MMslnjeSszSsU2VWWyAYX7iHyZbHImnD3IZt2Ydduubta+tLa2Avjm+jffNad1rCrLRb18rmHewDaR3+ONb68cIvkOUhTuJoVVLmp/PXkC83xBNuvL63d1UUuxmWxOHXKcMiLyBdmAcFLcVYvqfqtiQiab32Xf8wXZZCaUi8qvzUw2dZjJRvnI53IG2cLndNEMqFv4QJa0clH76ybh/BG1/jyMIJtT0oIq1jF4marDz+sBhcc/+RY+kI+7o6Mj52fTy0Wt47WCbE5ZbED3fVZZLuonyMZyUW/M7qkiImqZbGGVi7qVfQHOHWaxmWyl3q3I11mYfCfEr0JBNj91+SZhJps7+6DfPggJY7vy96uYIJvVbv0MtMMuFwXyB9mYyRYMzslGTpjJppd8QauyXDTfTSN5e/LvTMhks/8+qNeWjzcKN/iLFbX+PIwxqfye+J1ix6+gSwT9ZLK5ja+A3OtIeU42qz+KQpDtwIEDALwF2VRnsvl5zaQG2fy2/ehcSRssanOy6SgXledVAvyVi3qdiFHelp/9y9dZ2AcuUe5Q/ATZonScUd3vMOjKZJO/534HZl4z2bwE2cK4y89MNvX8DMqB6GU+UGnkMQ2DbHqYFmTTIYxMNrcgW5z7uKj152HsXyqVyjsvW5CCfv/l70GhaoNiMtncMrNMOifYy0WdFj2Qnwd4X13dL7cxdr79SWqQjZlsGrBcNP92gO5f4ijMySbvr9/XNpHXclGnCUNNxiCbu3zf9bAz2YIMshVqo2HPySZvy+I1yMagQGF+ykucfsf3Nt6YyaZfviBQUJ9FVDPZVM3JJmdqx7m9R60/D2tMag9AhTX1T5ABHq+ZbF6CbPYAlMntpJhyURMy2cK8gW0iBtk0YLlo/u0AB08GXstF/XQmKjPZonZyz8drJlsU2rCbKH8+KoQVUHfbbpCZbH5uZoRZJlBquWhSByt+MJON8mGQTT/7eApQNyebW5DN1IUP7L8P6rWTsLIoEL1xeFhBNvs81kEEc534mQ/XCz83zfItfFAok83kclFrX/yUi6o6v/m59mMmG4NsoZPLIKMwmA+rXNQp+Oglkw1wDwQ5KTWTLd/fRS2Amo8cZHN6/6MaZGMmmzv7wDysE6Pcx/hdfMBtQO3nu6jyzqsdM9nU81Ne4vQ7vrfxxiCbfvZxJcByUYvqctGojdn8itpNE12ZbKq2GfR4ys9NM7lfsX+/5eP2kslm0jnB2sf29nYA3oNs9r8PQimZbCa9p2FgkE2TKAXZdJSL2icvd/qCptPp7O+d7kp42Y68DT/757Yd+Y5N1DsTr5lsUTtOBtncuX3XVfdTTuWiXu9+2ue4dAqyFXqtMIMszGQLVzGZbOwX4k0e+DPIpkcYQSCWizLIBpj/3Q47yOZ3ih2/VAbZCo1J5bGefRxl/75bASu3hAGT2o19X9yCbPJzVS1cVkwmWxiLipkolfJXmh/vnjlEVkcQhbRtHeWiXmvk7SWjXv6m2LtcfjPZot6Z+JmTLaqi/hkFTVe5aFALH3j5txPTykWZyVYaP+UlTr+Lcp9GhTGTTT+nC0HVQbZCF91hC7tc1G+WeFRFrT8P67oh36IAQVLx/nsdo8lBDftx2r//VpDNbf9MOifY99Ft4QNAfZCtlIUPTP8uqsAgmwa1tbXIZDLo2bOn7l0pSE6/VbkaV75MNqfnAM5BNlUX1F7uziQpyMZy0fjRVS7qlMlWTJDNbeVmv3OyhV0uKver1s9ukpp274ef8hLA7DvYFDz7mAbgZx62fJlWQX8WfspFdbSDsMtFo3BzvxRR68/DGpO6zclmeiabk3yBMbfFD+w/t7W1Zf/G+r+p1wfFZLLJx6sik43lot74Oeaywk8hL0aMGIGurq5InOzkk7V8wg76y5JvTja3bRaTyRbUCaBQuWjUgk92TkE2pyBi1I7TKRuPvqErk00+EZcyJ5uXgFu+7bv9HCS3TDZZvt+FVcIbZaUG2fjexhsz2fRzmpMtqQsfWNsvlNlWzGuzXNT873bY5aJhZ7IFcZ2bSqU8X39mMpmcuaQt9p/tQTbgm303sbTR/p76KRf1W7JYSDHlogyyeRPvnjlEqVQqEgE2IPdLojLI5iWTzS6IIFuxmWwsF41muaipd6pM4HZRovozdpqs1mv/6KVE1PQ52fzMyZPkwYof9ru5XPiALAyy6ed0rlFVLmoxdeEDwLnPZ7locaJ20yTsIFvU5mTz+5pumWxeykVNPQ/I+1hWVpb3+FUHtvxkslmSPG5lkI3yciqtAMIJshUKbDHIpk5cFz6QRXnfVdCdyVZquWhQc7KFXS5a6I6rjJls/ngZ3NmDsHxv441BNv3sF4Ly2DJpCx/I2w9qX1guepDp3+2w9s+eyaZqHsIwgmxezuf5VhcFnDPZTL0JL+9Lviw2+bmqMvKKmZMtyeNWP8ecvHeHQisXLSZLSg6yFbO6qJ80Wi+dfFxXF3V6b+NQLhr1zyho9hNiWHefVC984HdONmayRZ/9Ip6ZbGRxys7nZx4ue7mo3B/qDLKFya3NBbEv+W7mRG3M5hcz2ZzZ52RTtc0wFj7I95puZbFu5aJuyREmnRPkffQaZFP1ffeTYBHm2NpUgwcP9vxcs3sqUiKsclGni2I/c7J53S8/GS75tl0ok830E3shcmDC6Y4Iy0Xjx4RMtqDmZPPzXYxSuWiS7wj64adkImoXZVQaZrLp53ZDR/5d0Nvw0s+akMkWxL44BRqSWi5q+nc7rAoYuU10dnbiwIEDAAoHbfyyH0NQc7J55TbvrVu5qNN1jd9tqibvS76VReXnqrohW1dXh0wmg/r6+oLPZZANaGpq8vxcLnyQQG4rcYWRyea1XNTqLOW/9bMdv/vn9LP99aLemcjHYgUxmckWb24XJao/Y3lQ4LddxaFc1OtcQVwN0btSMtko3tzGNBSefDd0wgqyxblc1D7/FsByUVOFNSaV28SePXsghEBFRQV69OgR6HZU37RKp9OeykW9ZrJFoVy0mEw2VeWidXV1OO6445jJpgBHognkVC6q4osiv6bfhQ/kIJvfctFi9s/tb+MUZEulUt0GanEIssmi/hkFTVcmWykLH8jP8/JvJ1EpF1Uxb1Fc+Rlo2vtt9gvxxkw2/exBcBWlTX6CbDoUCrKVwinQwHJRM4UdZOvs7MTOnTsBALW1tUoTJoDgy0W9VivZg2zWz9b74HQT2dQgm7wvustF7fvj53mmfxd147uTQGHNX+KlFNEtDdm6I+Fl34rNZLNz+ts4zckGdJ9A1Eu2oelMPYmawK2EJ8xy0SQufOAnk83CtuuN30w2DgLjj0E2/dzmZNMVZNPVDuz7GNS+sFz0INO/22GNSeU52awgW11dXeDbUR1kK/R6bgsfWD9XVlZ6em2T2k0pc7LpPA5msvkT756ZHIVVWuE0J1sx5aKmZLLFYSBjzwCKQyYbg2zudJWL6l74ICpzsqmYHDyu/Aw0TR1Ykxph3Tgkd243dHQH2cLmFGSz/64YTpPcJ7FcNArnSR3lort27QKgJsimeuGDQu9RoXJRe5AtrplsqspF/WCQzR/OyZZAOspFvU6qX2qQjXOy5RfHIJssDp9RkOzfdR0LH5iQyWZqkE3XhWAU+QmyWSWiQohI92fkDTPZ9Asza9ppcQX5caf9Cku+TLZSsFz0G1H4Xoe98IF1vZROp1FTUxP4dtwqjoJ6Ta8LWdm/79Z3wR6kMjWwJpOP2e/CBzq/7wyy+RPvnpkc6SgX9bu6qJ8BWrEnNC+dRVzLRS1On5H1GURFFE6outjfj7DLReVMNq8DsyAy2aJSLioPmth28/P7mUa1/J38Y5BNP/uFoIqsaftnmsRyUbmNm3DRHYaoBdnC2kf7OKhXr15K2oLqOfGCzmRzuyYwqe1EtVzULu59T6midTVNgdBRLup1TjZ7gMfLF5iZbN7lC7INGDAAqVTK1/LEJjD1JGoC+f0I8wLUaeGDMDPZTC4X7ezsxNdff436+noGBHzwewc1nU6js7OTg8AE4Oqi+pk2J5suqspF5bFbZ2cnysrKEjknWxSONawxqf16qba2Vtm2ZGHPyea28IH1fbcHqdzai0nnhGLKRU0IsjGTzR/zeysKnI5yUbc52ezsJw0v+xVWkC0KJ/dC7EE2+ZiqqqowbNiwbneFTMcgmzv5/ZC/76rbclDlolFYXdQ+AALyB9k+/PBDvPXWW9i+fXtiMhFUYCYbWZjJpp+pc7LFJZNNzna2VodPypxsqVQqUv15WGNSa1oEi4r52Jy2o2tOtmIWPjD1+sB6D8vKyjxPf2JCUJ1BNn84sk8gHeWiXjPZ7GVTfoNsLBfNL18mWxzE7XhKJX/fwszykC96/Q4M3AZzpczJFka5aL45eOTBYWtrKwBgz549DAj4UEwmm/x/ii8G2fSz32xQkXVRTJAtbPmCbKWyl80l6SZNlPrzMINs8pheZSabn+k6vAgik836uayszPX1TA2yWftSKItNfi4z2aLH/N6KAhdWaYVTJluhIFsqlcrJZjMpky0OnUkcg2xB32GLKzmrTPXn7pTJ5nVgJt+1DmpONpMy2aznHThwwIhBU1T4DZxGKfOBShPWjUNy5xYACyOTzelGh/1vwqKqXBToHmQzIbMlLFHqz8O8brDaRFVVlaeATbGs47BntZX6evZ/OymUyZbJZFyvG029hrM+q6qqqoLPNTnIloS+pxScky2BwioXdbpA9rKdsrKy7Go5KjPZ8r2OxdQOulhxD7LF4XiCZA2IdK0uKi984OdknMlk0NXVVVImm3Xc8v6o4DeTzbowOnDgQGjlu3HATDZy4zQHJM8F4dI5J5t1vohzuSjwzdi4tbW1WyZb3MtFgWgF2cIck1qfvapSUYvK82mh1yy08EE6nUZ5eXnOKqsWU68PevfujZEjR6JXr14Fn2svFzUpyGbSe2oiBtkSSEe5qNdMNgC+M9mKnTfNS0ReHrzE4WKNQbbkcQqyqW7LpSx8ID+32Ew2ADlBNpXH66U8iJlswfMaZON7G3/y99uEC5EksveDYQfZ2tvbjV34gOWipYvSTZMwx6TW9ZLqRQ+s4wjq/ffzHjktLgXkZnK6XTeaen2QSqXQt29fz88FzPi+M8jmj/m9FQVOR7monxOk3Fn6XV3Uz3GwXDQexySL2/EEIazMVbdtFlPS4tRfZDKZ7JyNXoNsTv8Omt/VReU5i9ra2nJeg9yxXJTcyG2BgWs97BeCYQfZ5G3KvzMhk83+u2KxXDQa3+swAzuDBw9GY2MjGhsblW5HZZCt1Ey2fOWiUWgvhZhcLhqH91clZrIlkPWlaG1txYEDB3IeC5LVMVoXx07bCSKTzU9nnW/bTtuKW2cdxyBb3D6joMmD/rBO0k4Tkfv5blZWVmL//v05q0alUimMGDECXV1d3VYhdtuHMC5CvGQuyBd/8r/37duX8xrkjuWi5EZuC8xk08OtXFTF5+AWZFORPeaXynJRt0y2JJWLRqE/D7PvaWhoQENDg/LtWO97UG2tmEw2Ochmr8xwS86IQ6KESeWidlH4PurEIFsC1dbWoqKiAm1tbdi8eTMANV/aiooKHHbYYSgvL88+pqJcVGUmWyr1zSTsXV1dRnVsxWKQLXmcMtlUnxitbXZ0dGQf8zM4O+KII7Bv3z7U1NTkPO5nMBl2Jpv1/splqnKprkUOsu3fvz/nNcgdM9nIjXyeNvFCJAncsszCXPjAqVzUhEw2FeWiYZ7PTRCl/jyOY1ITMtmc5ra1/l6+zoxCuagfLBeNrvj3zNRNWVkZxowZg549eypPqW9ubs65MPZbLqoyky3f68jc5pOLojgG2WRxO54g6CwXtQ+EvKqsrER9fX0g+2D/d9Dk1/Zy8Se/J8xk846ZbJSPyXf7k8AeXFJZLmqxZ3LJmdNxLhft6Ogo+twaVVEKssUhe8ou6POpn/GZPbgM5I6p8mWyxTHIxnLR6Ih/z0yOevTogdGjR2dXpJHvAqikOpPNb7molw44Sif3QuIYZIvDSVQlHUE2p++5rosdp/1RtR1rEJSvjImZbMFgJhvJ7CVF/NzDZb8Q1DEnm/yYLmGVi9qDDHEXpZsmcRyTBp3JJvN6Lgecg/ipVMr1ujEOAU97n8IgW3SwXDTBysvLMWrUKHzxxRfo3bt3KNv08gUtZXVRv194e2lXvtePQ2fCIFvyyCfosO6E+S3tUyGswZXTANBrkI0BAe/8vkdRuiij0tnnBON3Klxuc7KFHWTr6upCOp02KpMtqH2xxsZykM0KMsRdlMbhcRyT6pyTTd5mZ2dndmoAeb+itrqoHyaMpy0m7UsUMMiWcOl0Gk1NTaFur5BSVhdVWS4a1Q5aJp+s4nA8QDxOoirpnJPNomNiZlPLRZ3mDeJApTD75+m1XJR9QjJ4yZInddzKRYP8HOznsnyZbHFf+MCE+ZnCFKWbJnEck+qck80631ur1ZeXl3db1CoJ5aJuP4fJpH2JAvN7K4oVkxY+sD/fraOP0sm9EHkwGofjsWOH350J5aI62lpY5aLy69vLRe3ZHfZFEJz2lZz5/TyrqqoAfDM1AsUfg2x6uWWZqZyTTd6GvVzV7W9UcwqyBRUQk4NsYaycbZIo3TSJQ2DHTmWQzct7ZF/8wD4fYxIWPnD7OUwm7UsUMJONQqWiXLSUi+kkz8kWh+MB4nESVYnlouEdb75yUesurJOkXCiVwu/3vLm5GbW1taiurla5W2QIBtn0CnNONqD7TaN0Op2T4RXHclGnTDYdWeI6RGkcHod5wOx0Lnwgb9caQ+UrF5X3MQ5jKxPG0xYG2fyJfuujSFG9umgpmWxuf1tRUdFtv6Iqjid/BtnyYyZbeEE2t0w26zE5y8LqV8LYv7jxOo1ATU0N39uE4OBfrzDnZLO2I5/P3DLZwpYvk43losWLUkVJHMekQWeyyby8pj2TLV+5KDPZ1DFpX6Ig+lEDihSTVhe1/63btlpaWtC7d280NDT4em0TpdPp7KShcekcM5kMMplMYiYA9suEOdl0B9nCKhfNVyolB9nS6TR69OiBtra2UPYvDuIwWCZ1mMmml9ucbGFmssnbNSWTTQ62BVUu2tHRkbhy0cbGRuzevRv9+vXTvSsFxbHv0bnwgbxdeyab9TjnZAuffHODnDHIRqGyvpT5BkClrC6qIshWVVWVnd8nDjKZTOyCbGPGjGGQzYWOTDb768d54QP59QutemcPsu3atSuU/YuDMIOmFD0MsullzyTr6OgAoK7vdwuymbbwgZxZx3LR4tXU1GDUqFG6d8OTOAR27FTOyeblNe1BdHsQP5PJZK8tmcmmThzezzBFZqQ6Z84cHHvssejZsyd69+7t+JyPPvoIp59+Oqqrq9HQ0ICrr746mylA5ij0xZSDJX5XF1VRLho3cVot1VJdXR2rQGiQdMzJBuifFyPM0uhCCx9Yj9mDbE77Ss6S2FeTdwyy6WUPLlljb7ksPqhtWNvJl8nm9DdhCCOTLYnlolESx3NV7969kclkUFdXF8jrBZXJJs/VZ42p5EUQ4jBFjgmVIZY4tm2VIpPJ1tbWhrPPPhsTJkzA/Pnzu/2+s7MTU6dORd++ffHyyy/jb3/7G6ZPnw4hBO677z4Ne0xurHJFwPlLmkqlUFZWhvb2diPKReMmjkE2cqcjk82+Dd3lomFnssn9m3V31SmTLaz9i4Mk9tXkHYNsesmZZEII5UE2a1vW46aWiwaZyWZVeSRxddGoidu0LE1NTejXr19gx1NsJpvV7p3a/1FHHYX29nZUVlY6bieqnwUz2aIrMkG2X/ziFwCAhQsXOv5++fLl2LRpEz7++GP0798fADBv3jxcfPHFmDNnDmpra8PaVSrA6+IHxQTZSvnSJ6XDYJAtWXTMyWZtQ+eFgHXcYcwbke8Cz3of5NVF0+m060CQCuOFJdkxyKaXfJ6x+jsg2CCbtR3rXGa/mQHoD7JZ7JlsQZyH5NLQ9vb2bo+ROeTxR1yoOhY/mWz2clG5/ffs2TPva0f1szA1yMZxWGGxeYf++7//G0ceeWQ2wAYAJ598MlpbW7Fu3TrXv2ttbcWuXbty/iO1vHR6fgJBQWWyJaXDYJAtWUzIZNNxIRDmamRuJULyhZV8UZjJZFgu6lMcBsukjkkXIkkkB7msLDZrQSIV2yk0J5sVhAp7Vfh854JSye+ldXw8d5gpjkG2IPm99rJKQK1277VcmuWiweI4zJ/Y9M7bt2/vtupMfX09KioqsH37dte/u/POO1FXV5f9b9CgQap3NfG8dHrWwEh1JlsSOwwG2ZJF15xsugPYYQ5y82VRyL9juWjxdLcnMhsz2fSSg1wqSkUthYJs9oUX5PmZwuBWLhpEn5VKpbLjN65MbbampibU1dVxrmAXfq+97EE2r1UScTgPmHQDKYnXzKXQ2jvfeuut2YsQt//eeOMNz6/n9IHbVxqxu+GGG7Bz587sfx9//HFRx0LeeS0XBbx9iVWvLho3DLIlixzkCbtc1OnfYQkzyOa2sp09w0K+4MpkMtmBIy+UCktiX03eMcimlxxc0h1kE0JkL8Z1BdksQWePW+M3louabfjw4Rg9ejTP7S6KzWSz+havq+vGYdzAIFt0aZ2TbdasWTjvvPPyPmfIkCGeXqupqQl/+ctfch776quv0N7e3i3DTVZZWZkzNw6p5+Xi1wqy+T1BMchWGINsyWKfkBpIViabieWi1j716NHD89yTdBAvXMiOQTa95H7OCgCFFWSTV6Tv6urKZrEB+stFg84etwfZ2BdSFPm99rL6Er/lonG4xjO1XJR9T2Fag2wNDQ1oaGgI5LUmTJiAOXPm4LPPPkNzczOAbxZDqKysxNixYwPZBgVDXnLZTX19Pb744gtPC1ZYF7KFshbd/tbp33FmDdLYQSaDrnJRuX3pnJMtzGO1l4um0+mc39lLHOrr67Fnzx7U1NQo38eoS2JfTd4xyKaX05xsKrLIvGSyWUE2FXPC+dk/+f9B7QfLRSkOSs1k81ouGsc52Uw5DlP2w2SRWV30o48+wo4dO/DRRx+hs7MTGzZsAPBNSm5NTQ2mTJmCESNG4MILL8TcuXOxY8cO/OQnP8Fll13GlUUN46VD7devHxobGz1/ia0gGzPZCmMmW7K4XZSEtV0g/uWifjPZrO9gS0sLBg8eHHq2RRQlsa8m7xhk08uUOdl0lora9w8IPpPNOlcwk43iopg52Vguqkcc3s8wRWZkf/PNN2PRokXZn0ePHg0AWLVqFSZNmoRMJoPnnnsOV155Jb773e+iqqoK559/Pu6++25du0wuvGaY+PkCDxw4EPv27cuZTNyLJHYYDLIli1t5TVjbDWt7btsP81j9LHxg/Z4BNm90tycym0kXIkkkv98qg2yWfJlsulYWtfbF2j/5/0Fnsrn9TBQFfs/nVl/S0dHhOJbysp2onhNMLReN6vsZpsiM7hcuXIiFCxfmfc7gwYOxdOnScHaIiqYiw2To0KElv0ZSOgwG2ZJFVyab7oUPdJSL+ln4gPzh4I7yYSabXvL73draCkBtJhvg3M/K5aJxzGSzB9V4LqEo8ns+lwPm7e3tnsdSLBcNFm92+sN3iEJn0hcziR1GfX09evXqlXdBEIoPe5aV/FgY2wVYLmo9xiBbMPj+kR2DbHo5BdnCnJNNPs8lKZONfSFFkd/xYSqVyikZ9TonWxzOA6YG2eLw3qoWmUw2io8wM0wKSWKHUVVVxcVAEkRXkE33wgdhlou6LXxgv/jzOjCk7pLYV5N3cchYiDL5/Q97dVG3clETMtmCzh5nuSjFQTHn84qKCrS3t+dksnFOtnDF4f0ME4NsFLowM0wKYYdBcWe1ayvAAyRjTrYwg/n5LqycykV5YeSf7vZEZmOQzTyqg2xyKabcz5pYLspMNiJnXtuwvMKo1+9VWVlZ5Oe+5Zxs0RXdVkeRZdKggJ0ExR3LRcPL2vO78AF5x8Ed5cMgm15WX2f1fZlMRsnNBC+ZbNYNJZPKRTknG9FBxZzPiykXLS8vx9FHHx3pG5umZrKx7ymMQTYKnYnlovLFMFGcmFAuqjOTLYzBld9MNg5O/GOQjfJh+9BPDrKpyiLzEmQzMZON5aJEBxUTrLEyY/2UiwLfzEMdZSYF2WSm7IfJONKn0Jn0xTSpdJVIBXuQLawAj/yd0nEh0KdPHzQ2NmLAgAHKt2V/j7nwgVp8/8iOmWz6yZ+BilJRwNvCByYF2YJe+MCence+kKKolEw2P+WiccBy0ehiJhuFztRMNqI4ss/JFlZb151WXlFRgREjRoSyLTlbTf4/Fz4IDgd3lA+DbPrJ73uYQbZ0Op3TB5u0uqjqTDaeSyiKihkfykG2oIPXJjMpk43jMH/i3zrJOCYF2Swm7QtRkOxZVmG1dd3lomFiuah6uoO2ZDYG2fTTFWSLwuqiqhY+YLkoRZ2f1UUB4MCBA9nHkjAWMDXIloT3vlR8hyh0Jn0xrQ7DpH0iClJSM9nC5HfhA14Y+cc7qJQPg2z6ye+76gCXW5Cts7Mze64zKcjGTDaig4q59rK+z62trdnHktD+TQ2y8TxbWPxbJxnHpBJNk/aFSAVdc7Ixk42ZbEFKUtCW/GOQTb8w52QDnG9mtLW1ZX9vUrmoqkw2tnWKomKuvawgmzXnYjqdTkT7twe2GGSLDo5UKXQmlYsyyEZxp6tcVL5TGffvFxc+CFfc2xP5x8G/fmGWi3Z1dTnezLCCbGVlZVraQZiZbEk4t1I8FZPJZu9TkjKOMuncZtK+REEyWigZxaSOkUE2ijsTgmxx53XhAwbZisfBHeXDTDb9wp6TTX7M3gfrKBW19kXeD5WZbJx2gKKqmGsve2ZqUtq/SWMfVhT4w3eIQmdSYMukfSFSQdecbNYJOAkn4nyZbPLFH1cXLR4Hd5QPg2z6yZ+BqiCXva+1HrP3CTpKRa19AcLLZCOKomJuwqZSqZx+JSnt39SxD8+zhZnzaVFisFyUKDy65mRjJlv3TDbr8aTcgQ2SSXdzyTxsH/qFXS4qP2Y/z5iWyRZUm0yn04m6gUXx5vd7IfcrSWn/Jp3bTNqXKEhGCyWjWJ2krkGQjEE2ijtdKxNZA6AkBJS8LHxgTdYLJGdwGCRT7+aSGeTvGs/nesg3VlT1+25BNvtnbkqQzfp/kH2W9d4m4dxK8VRsoDjpmWwmnNt43eydnnxqSrTa2loceeSRqKmp0b0rWewsKK50BdmSmMmWb+EDq1RUfj4Vh/01OUmn0+jq6mL70MR63ysqKpR9BlErF1UxF2omk0F7ezvPIxRZtbW16NOnDxoaGnz9nRxkS0qQ2bQbjKlUCkIII/bFdAyyUehSqZTvjlWVJAUCKJkYZFMvXyab9Tsrk80p64IKM22gSebhHXa9rO+lyiwyp4V8TC4XVZnJxn6QoiqTyeCoo47y/XcsF9V/buN51rtktFAiF+wsKO7sbTusgYk1GKqsrAxlezp5WfiAix6UxrSBJpmH5aJ6yZlsqtkzxEzNZAt64QOA5aKUXCwX1X9u43Wzd8xko0RjZ0FxZx+IhNXWDznkEIwcORK1tbWhbE8n+8IH9iwL4GAmGy+MimPaQJPMwyCbXmEE2Zwy2YDu5zlTMtlULDjETDZKKpaL6v/O87rZOwbZKNHYWVDc6SwX7du3byjb0s3PwgcmDJKiju8hOWGQTS+dQTbTFz4Isk1aWXrsBylpWC6q/9yWpKlgSsV3iBKNQTaKO13lokniZeEDFRkNSWLaQJPMwyCbXlVVVQCA6upqZdvIF2STP3dTykVVZrIlJZOHyMJyUf3nNl43e8dMNko0dhYUd7oy2ZJEvrCyLq6sxxnkDIZpJRNkHgbZ9BoyZAgaGxu1BNmAbz5/a+7LOGeysVyUkiqJQTbArBU9ed3snf5Pi0gjq8PWNSAjUo1BNvXkTDZ7kM0+KDJhkBRFpt3NJfNw8K9XOp1GTU2N0ve/UJDNYkqQzWk/S1VXV4d0Oo26urrAXpMoCuRy0SRlcpp4bjNpX0zFTDZKtL59+0IIgfr6et27QqQEg2zquWWypdPpbu93kgaGQWImGxXCTLb4yxdkky9EdfWzbplsQfZZjY2NaGhoYD9IiSOXgSep/ZsUZOOcbN4xyEaJlk6n0dTUpHs3iJRhuaJ6LBcNlwkDTTKP9d3idyy+vGSylZWVae8jVGayAWzjlEypVArl5eVob29P1HfApCAbb2Z5l5wWSkSUQMxkU08e7FkXVQDLRYPEclEqhIP/+PMSZNM5/UcYmWxESWaVjCapKsCk7LFBgwahb9++LFf3gJlsREQxxiCbevJ7ak287fQ7wIxBUhSxXJQKYZAt/rxmsuki74+c2cw2SRSMyspK7N27V+v3PGwmZbI1NTWxAsyj5LRQIqIEYpBNPadMNqtUlJlswWAmGxVi0oUIqWX1s3J/alImm8VpP4moeEOHDkVdXR369Omje1dCw3NbNDHIRkQUY8ykCpeVyeY2KOL7XxyTyiXITMxkiz8vCx+YEmRjJhtR8GpqalBTU6N7N0LF8U808dMiIooxZrKpJy9wYL/44+qiwbDetySViJA/PXv2BABUVVVp3hNSJWrlosxkI6JSMZMtmjhaJSKKMQbZwpFOp9HZ2dktk43losGorKzEEUcckZ30mMiuf//+qK+vZ5AtxqKy8AHATDYiCgaDbNHEIBsRUYyxXDEcXjPZ+P4Xr1+/frp3gQyWSqWy2WwUT/luGlkB+B49eoS6TzJ5f7q6uhhkI6KSsVw0mhhkIyKKMWayhcMa/DCTjYhIjXzns5aWFtTX16OhoSHs3XLcH+uGC8B+n4iKx0y2aGKQjYgoxhhkCwcz2YiI1CqUydbY2Bj2LnWTSqVy5mOzHiMiKgaDbNHE0T4RUYwxyBYOK3jGhQ+IiNSIwvnM2icrqxngzRUiKh7LRaOJnxYRUYwxkyoc9gsrZrIREQUrSkE2OZONiKhYzGSLJo72iYhiLAoXJXGQr1zUaQU8IiLyJwrnM/sNl3Q6beR+ElE0MMgWTRztExHFnHxi5klaDbeFD+Tf2f9NRETFM/F85nbDhYioGAyyRRNH+0REMccgm3r5LqyYyUZEVLoolN/bzwUm7iMRRYfVh7AviRauLkpEFHMM8qiXL5NN/jcXPiAiKk4Uy0VN3Eciio7+/ftDCIFDDjlE966QDwyyERHFHDPZ1MuXycZyUSKi0kUpyMZyUSIKQp8+fdCnTx/du0E+cbRPRBRzcmCHA3418mUvMJOQiKh0UQqyyQsfEBFRsrDnJyKKOWayqWddSDGTjYhIjSgF2ZjJRkSUXBztExHFHDOp1GMmGxGRWlEMsrHPJyJKHvb8REQxx0w29fJlsnHhAyKi0kUpyMaFD4iIkotBNiKimGOQTT0vCx+kUim+/0RERYpSkI2ZbEREycWen4go5liuqJ71vuYrF+V7T0RUvCgF2ZjJRkSUXBzxExHFHDPZ1MuXycYgGxFR8Ew8nzGTjYiI2PMTEcUcg2zq5ctesC6yeLFFRFQ8ZrIREVEUcMRPRBRzDLKpZwXQhBAAmMlGRBQ0+/nLxD41X1YzERElg3lnJyIiChTnZFMvX4aF9Z5zZVEiouJFKZON5aJERMnFnp+IKOaYyaae/UJK/pmZbEREpYtSkI3lokREycURPxFRzDHIpl6+iz8G2YiIShelIBsz2YiIkisyPf+cOXNw7LHHomfPnujdu7fjc1KpVLf/fvvb34a7o0REhmGQTT0v5aK82CIiKl4Ug2wm7iMREalVpnsHvGpra8PZZ5+NCRMmYP78+a7PW7BgAU455ZTsz3V1dWHsHhGRsRhkU88eQGMmGxFRsKIUZLPKRdnvExElT2SCbL/4xS8AAAsXLsz7vN69e6OpqSmEPSIiigZr0G9l+FLwuPABEZFaUQqyMZONiCi5IhNk82rWrFm49NJL0dLSgpkzZ+Lyyy/PexeptbUVra2t2Z937twJANi1a5fyfSUiCsPevXuxd+9epNNp9m2KWO+xZc+ePdn3es+ePdi7dy/27dvH95+iYe9eQBobAQB27QL+f3YOkQ4dHR3d+tnKykqNe9RdvnMBERFFl9WXCyEKPjdWQbbbbrsNJ510EqqqqrBy5Ur8+Mc/xpdffombbrrJ9W/uvPPObJacbNCgQSp3lYiIiCg6/uVfdO8BERERkVa7d+8uOCVZSngJxSly6623Oga4ZK+//jrGjRuX/XnhwoW45ppr8PXXXxd8/Xnz5uGXv/xlNjvNiT2TraurCzt27ECfPn2Y4i3ZtWsXBg0ahI8//hi1tbW6d4c0YTsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLUtCCGwe/du9O/fv+B8m1oz2WbNmoXzzjsv73OGDBlS9Ov//d//PXbt2oXPP/8c/fr1c3xOZWVlt1Rzt9VLCaitrY3Ul4HUYDsgC9sCWdgWyMK2QBa2BQLYDuggtgWyRLEteF1UU2uQraGhAQ0NDcpef/369ejRoweDZkREREREREREpFRk5mT76KOPsGPHDnz00Ufo7OzEhg0bAADDhw9HTU0N/vznP2P79u2YMGECqqqqsGrVKtx44424/PLLjZsUlYiIiIiIiIiI4iUyQbabb74ZixYtyv48evRoAMCqVaswadIklJeX44EHHsC1116Lrq4uDB06FL/85S9x1VVX6drlWKmsrMQtt9zCgGXCsR2QhW2BLGwLZGFbIAvbAgFsB3QQ2wJZktAWtC58QEREREREREREFAf5l0UgIiIiIiIiIiKighhkIyIiIiIiIiIiKhGDbERERERERERERCVikI2IiIiIiIiIiKhEDLIlxAMPPICWlhb06NEDY8eOxdq1a/M+/w9/+ANGjRqFnj17orm5GZdccgn+9re/ZX//0EMP4fjjj0d9fT3q6+sxefJkvPbaazmvMWTIEKRSqW7/ccVXfXS0g46ODtx0001oaWlBVVVVduXfrq4uJcdI3uhoC7t378Y111yDQw89FFVVVTj22GPx+uuvKzk+8i7otrBkyRKMGzcOvXv3RnV1NY455hg88sgjJW+X1NPRFtasWYPTTz8d/fv3RyqVwrPPPqvi0MgnHW3hzjvvxHe+8x306tULjY2NOOuss/Duu+8qOT7yRkc7ePDBB3H00UejtrYWtbW1mDBhAl544QUlx0fe6RorWO68806kUilcc801QR0SFUlHW7j11lu7xRSampqUHF8gBMXe4sWLRXl5uXjooYfEpk2bxOzZs0V1dbX48MMPHZ+/du1akU6nxb/927+JLVu2iLVr14qRI0eKs846K/uc888/X/zmN78R69evF++884645JJLRF1dnfjkk0+yz/niiy/EZ599lv1vxYoVAoBYtWqV6kMmB7rawe233y769Okjli5dKrZu3SqefPJJUVNTI+655x7lx0zOdLWFc845R4wYMUK89NJL4v333xe33HKLqK2tzXkOhUtFW1i1apVYsmSJ2LRpk9i8ebO45557RCaTEcuWLSt6u6Serrbw/PPPixtvvFE8/fTTAoB45plnVB8qFaCrLZx88sliwYIF4u233xYbNmwQU6dOFYMHDxZ79uxRfszUna528Kc//Uk899xz4t133xXvvvuu+PnPfy7Ky8vF22+/rfyYyZmutmB57bXXxJAhQ8TRRx8tZs+ereowyQNdbeGWW24RI0eOzIktfPHFF8qPt1gMsiXA+PHjxRVXXJHz2OGHHy6uv/56x+fPnTtXDB06NOexe++9VwwcONB1Gx0dHaJXr15i0aJFrs+ZPXu2GDZsmOjq6vKx9xQUXe1g6tSpYsaMGTnPmzZtmvjhD3/o9xAoIDrawr59+0QmkxFLly7Ned6oUaPEjTfeWMxhUADCaAtCCDF69Ghx0003Fb1dUk9XW5AxyGYGE9qCEN/crAUgXnrpJY97TkEypR0IIUR9fb343e9+52GvSQWdbWH37t3iW9/6llixYoWYOHEig2ya6WoLt9xyixg1alRxO60By0Vjrq2tDevWrcOUKVNyHp8yZQr+67/+y/Fvjj32WHzyySd4/vnnIYTA559/jqeeegpTp0513c6+ffvQ3t6OQw45xHU/Hn30UcyYMQOpVKr4A6Ki6GwHxx13HFauXIn33nsPAPA///M/ePnll3HaaacFcGTkl6620NHRgc7OTvTo0SPneVVVVXj55ZdLPCoqRhhtQQiBlStX4t1338UJJ5xQ9HZJLV1tgcxjUlvYuXMnALiOLUkdU9pBZ2cnFi9ejL1792LChAmlHRQVRXdbuOqqqzB16lRMnjw5mAOiouluC++//z769++PlpYWnHfeediyZUswB6aChsAehejTTz8VAMQrr7yS8/icOXPEt7/9bde/s0r6ysrKBABxxhlniLa2NtfnX3nllWLYsGFi//79jr9//PHHRSaTEZ9++mlxB0Il0dkOurq6xPXXXy9SqZQoKysTqVRK3HHHHaUfFBVFZ1uYMGGCmDhxovj0009FR0eHeOSRR0Qqlcq7XVJHZVv4+uuvRXV1tSgrKxOVlZVi/vz5JW+X1NHVFuzATDbtTGkLXV1d4vTTTxfHHXdcaQdERdHdDjZu3Ciqq6tFJpMRdXV14rnnngvmwMg3nW3hscceE0ceeWR2LMlMNr10toXnn39ePPXUU2Ljxo3ZrMZ+/fqJL7/8MrgDDBAz2RLCnj0mhHDNKNu0aROuvvpq3HzzzVi3bh2WLVuGrVu34oorrnB8/l133YXHHnsMS5Ys6ZalYpk/fz5OPfVU9O/fv7QDoZLoaAePP/44Hn30Ufzxj3/Em2++iUWLFuHuu+/GokWLgjsw8k1HW3jkkUcghMCAAQNQWVmJe++9F+effz4ymUxwB0a+qWgLvXr1woYNG/D6669jzpw5uPbaa7F69eqit0vh0NUWyDy628KsWbOwceNGPPbYY4EcDxVHVzs47LDDsGHDBrz66qv40Y9+hOnTp2PTpk2BHhv5E3Zb+PjjjzF79mw8+uijrteXpIeOfuHUU0/FP/3TP+Goo47C5MmT8dxzzwGAudeTmoJ7FJLW1laRyWTEkiVLch6/+uqrxQknnOD4Nz/84Q/F97///ZzH1q5dKwCI//3f/815fO7cuaKurk68/vrrrvuwbds2kU6nxbPPPlvkUVCpdLaDgQMHivvvvz/nsdtuu00cdthhxRwKlciEPmHPnj3ZvzvnnHPEaaedVsyhUIlUtwXZzJkzxZQpU4reLqmlqy3YgZls2pnQFmbNmiUGDhwotmzZUsQRUBBMaAeyk046SVx++eUe956CpKstPPPMMwKAyGQy2f8AiFQqJTKZjOjo6CjxyMgv0/qFyZMnd5sfzhTMZIu5iooKjB07FitWrMh5fMWKFTj22GMd/2bfvn1Ip3ObhpVpIoTIPjZ37lzcdtttWLZsGcaNG+e6DwsWLEBjY2Pe+ZtILZ3twO11urq6ijoWKo0JfUJ1dTWam5vx1Vdf4cUXX8SZZ55Z7OFQCVS2BTshBFpbW4veLqmlqy2QeXS2BSEEZs2ahSVLluA///M/0dLSUuxhUIlM6xPYb+ijqy2cdNJJeOutt7Bhw4bsf+PGjcMFF1yADRs2sApCA5P6hdbWVrzzzjtobm72uvvhCj2sR6GzltqdP3++2LRpk7jmmmtEdXW12LZtmxBCiOuvv15ceOGF2ecvWLBAlJWViQceeEB88MEH4uWXXxbjxo0T48ePzz7nV7/6laioqBBPPfVUzlK6u3fvztl2Z2enGDx4sLjuuuvCOVhypasdTJ8+XQwYMEAsXbpUbN26VSxZskQ0NDSIn/3sZ+EdPOXQ1RaWLVsmXnjhBbFlyxaxfPlyMWrUKDF+/Pi8c7uRWirawh133CGWL18uPvjgA/HOO++IefPmibKyMvHQQw953i6FT1db2L17t1i/fr1Yv369ACD+9V//Vaxfv158+OGH4R085dDVFn70ox+Juro6sXr16pzzyL59+8I7eMrS1Q5uuOEGsWbNGrF161axceNG8fOf/1yk02mxfPny8A6ecuhqC3ack00/XW3hxz/+sVi9erXYsmWLePXVV8X3vvc90atXL2PHjQyyJcRvfvMbceihh4qKigoxZsyYnOXQp0+fLiZOnJjz/HvvvVeMGDFCVFVViebmZnHBBReITz75JPv7Qw89VADo9t8tt9yS8zovvviiACDeffddlYdHHuloB7t27RKzZ88WgwcPFj169BBDhw4VN954o2htbVV9uJSHjrbw+OOPi6FDh4qKigrR1NQkrrrqKvH111+rPlQqIOi2cOONN4rhw4eLHj16iPr6ejFhwgSxePFiX9slPXS0hVWrVjn2HdOnT1d5qFSAjrbg1A4AiAULFqg8VMpDRzuYMWNGdpt9+/YVJ510EgNsBtA1VpAxyGYGHW3h3HPPFc3NzaK8vFz0799fTJs2Tfz1r39VepylSAmRJ0+PiIiIiIiIiIiICuKcbERERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIqEYNsRERERKRVW1sbhg8fjldeeSXQ1126dClGjx6Nrq6uQF+XiIiIyAmDbEREREQBuvjii5FKpbr9t3nzZt27Zqz/+I//wKGHHorvfve72cdSqRSeffbZbs+9+OKLcdZZZ3l63e9973tIpVL44x//GNCeEhEREbljkI2IiIgoYKeccgo+++yznP9aWlq6Pa+trU3D3pnnvvvuw6WXXqrktS+55BLcd999Sl6biIiISMYgGxEREVHAKisr0dTUlPNfJpPBpEmTMGvWLFx77bVoaGjAP/7jPwIANm3ahNNOOw01NTXo168fLrzwQnz55ZfZ19u7dy8uuugi1NTUoLm5GfPmzcOkSZNwzTXXZJ/jlPnVu3dvLFy4MPvzp59+inPPPRf19fXo06cPzjzzTGzbti37eytL7O6770ZzczP69OmDq666Cu3t7dnntLa24mc/+xkGDRqEyspKfOtb38L8+fMhhMDw4cNx99135+zD22+/jXQ6jQ8++MDxvXrzzTexefNmTJ061ee7DGzbts0xa3DSpEnZ55xxxhl47bXXsGXLFt+vT0REROQHg2xEREREIVq0aBHKysrwyiuv4N///d/x2WefYeLEiTjmmGPwxhtvYNmyZfj8889xzjnnZP/mpz/9KVatWoVnnnkGy5cvx+rVq7Fu3Tpf2923bx9OPPFE1NTUYM2aNXj55ZdRU1ODU045JSejbtWqVfjggw+watUqLFq0CAsXLswJ1F100UVYvHgx7r33Xrzzzjv47W9/i5qaGqRSKcyYMQMLFizI2e7DDz+M448/HsOGDXPcrzVr1uDb3/42amtrfR0PAAwaNCgnW3D9+vXo06cPTjjhhOxzDj30UDQ2NmLt2rW+X5+IiIjIjzLdO0BEREQUN0uXLkVNTU3251NPPRVPPvkkAGD48OG46667sr+7+eabMWbMGNxxxx3Zxx5++GEMGjQI7733Hvr374/58+fj97//fTbzbdGiRRg4cKCvfVq8eDHS6TR+97vfIZVKAQAWLFiA3r17Y/Xq1ZgyZQoAoL6+Hvfffz8ymQwOP/xwTJ06FStXrsRll12G9957D0888QRWrFiByZMnAwCGDh2a3cYll1yCm2++Ga+99hrGjx+P9vZ2PProo5g7d67rfm3btg39+/d3/N0PfvADZDKZnMdaW1uzWW+ZTAZNTU0AgAMHDuCss87ChAkTcOutt+b8zYABA3Iy9oiIiIhUYJCNiIiIKGAnnngiHnzwwezP1dXV2X+PGzcu57nr1q3DqlWrcoJylg8++AD79+9HW1sbJkyYkH38kEMOwWGHHeZrn9atW4fNmzejV69eOY8fOHAgp5Rz5MiROYGt5uZmvPXWWwCADRs2IJPJYOLEiY7baG5uxtSpU/Hwww9j/PjxWLp0KQ4cOICzzz7bdb/279+PHj16OP7u17/+dTaYZ7nuuuvQ2dnZ7bkzZ87E7t27sWLFCqTTucUaVVVV2Ldvn+s+EBEREQWBQTYiIiKigFVXV2P48OGuv5N1dXXh9NNPx69+9atuz21ubsb777/vaZupVApCiJzH5LnUurq6MHbsWPzhD3/o9rd9+/bN/ru8vLzb63Z1dQH4JlhVyKWXXooLL7wQv/71r7FgwQKce+656Nmzp+vzGxoaskE8u6ampm7vY69evfD111/nPHb77bdj2bJleO2117oFEQFgx44dOcdIREREpAKDbEREREQajRkzBk8//TSGDBmCsrLuQ7Phw4ejvLwcr776KgYPHgwA+Oqrr/Dee+/lZJT17dsXn332Wfbn999/Pyd7a8yYMXj88cfR2NhY1PxnAHDUUUehq6sLL730UrcMM8tpp52G6upqPPjgg3jhhRewZs2avK85evRoPPjggxBCZMtY/Xj66afxy1/+Ei+88ILjvG9Wpt7o0aN9vzYRERGRH1z4gIiIiEijq666Cjt27MAPfvCD7CqYy5cvx4wZM9DZ2YmamhrMnDkTP/3pT7Fy5Uq8/fbbuPjii7uVRP7DP/wD7r//frz55pt44403cMUVV+RkpV1wwQVoaGjAmWeeibVr12Lr1q146aWXMHv2bHzyySee9nXIkCGYPn06ZsyYgWeffRZbt27F6tWr8cQTT2Sfk8lkcPHFF+OGG27A8OHDc8pcnZx44onYu3cv/vrXv/p4177x9ttv46KLLsJ1112HkSNHYvv27di+fTt27NiRfc6rr76KysrKgvtBREREVCoG2YiIiIg06t+/P1555RV0dnbi5JNPxpFHHonZs2ejrq4uG0ibO3cuTjjhBJxxxhmYPHkyjjvuOIwdOzbndebNm4dBgwbhhBNOwPnnn4+f/OQnOWWaPXv2xJo1azB48GBMmzYNRxxxBGbMmIH9+/f7ymx78MEH8f3vfx9XXnklDj/8cFx22WXYu3dvznNmzpyJtrY2zJgxo+Dr9enTB9OmTXMsYy3kjTfewL59+3D77bejubk5+9+0adOyz3nsscdwwQUX5C1ZJSIiIgpCStgn7yAiIiIi402aNAnHHHMM7rnnHt270s0rr7yCSZMm4ZNPPkG/fv0KPv+tt97C5MmTHRdmKMX//d//4fDDD8cbb7yBlpaWwF6XiIiIyAkz2YiIiIgoEK2trdi8eTP++Z//Geecc46nABvwzVxvd911F7Zt2xbo/mzduhUPPPAAA2xEREQUCi58QERERESBeOyxxzBz5kwcc8wxeOSRR3z97fTp0wPfn/Hjx2P8+PGBvy4RERGRE5aLEhERERERERERlYjlokRERERERERERCVikI2IiIiIiIiIiKhEDLIRERERERERERGViEE2IiIiIiIiIiKiEjHIRkREREREREREVCIG2YiIiIiIiIiIiErEIBsREREREREREVGJGGQjIiIiIiIiIiIq0f8Dz052/mBNPmoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# We will search for pulsations over a range of frequencies around the known pulsation period.\n", + "nharm = 1\n", + "freq, zstat = z_n_search(events.time, frequencies, nbin=nbin, nharm=nharm)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, 15])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])\n" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Thresholding\n", + "\n", + "When can a peak in the EF or $Z_n^2$ periodogram be considered a pulsation?\n", + "\n", + "Since both the EF and $Z_n^2$ of noise follow precise statistical distributions ($\\chi^2_{\\rm nbin}$ in one case, $\\chi^2_n$ in the other), we can use the inverse survival functions of these statistical distributions to find the peaks that are not expected by noise.\n", + "\n", + "In Stingray, the thresholds are defined in `stingray.stats.fold_detection_level` and `stingray.stats.z2_n_detection_level` respectively.\n", + "\n", + "The `ntrial` parameter should be set to an estimate of the statistically independent frequencies in the periodogram. A good estimate can be \n", + "\n", + "$$N_{\\rm trial} \\sim (f_{\\rm max} - f_{\\rm min}) / df_{\\rm min} =(f_{\\rm max} - f_{\\rm min}) (t_1 - t_0)$$,\n", + "where $f_{\\rm min}$ and $f_{\\rm max}$ are the maximum and minimum frequencies of the periodogram, $df_{\\rm min}$ was defined above and $t_0$ ans $t_1$ the start and end of the observation.\n", + "\n", + "Moreover, the `stingray.pulse.search.search_best_peaks` helps finding the best value for nearby candidates." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wUdfrA8c9sTyMhISQBAgQpEiBURRAFpIqIYME7hdDOcuhFuiKCNEHxqFIsh4AooqLwO8vRguChggjYAEGBiCUcIiWkbf/9sdmRTd0N2d2QPO/Xa1+vnZnvzDw7Isuzz7coTqfTiRBCCCGEEEIIr2mCHYAQQgghhBBCXG0kkRJCCCGEEEIIH0kiJYQQQgghhBA+kkRKCCGEEEIIIXwkiZQQQgghhBBC+EgSKSGEEEIIIYTwkSRSQgghhBBCCOEjSaSEEEIIIYQQwke6YAdQGTgcDn777TciIiJQFCXY4QghhBBCCCGCxOl0cunSJerUqYNGU3LdSRIp4LfffiMxMTHYYQghhBBCCCEqiZ9//pl69eqVeFwSKSAiIgJwPawaNWoEORohhKh6rHYH7x48DcBdbeMBPLb12uD0NLfaHby79xT2nTsB0AJ3cRr9Y/+AsLCgxFSSws8wWM9MCCGquqysLBITE9UcoSSSSIHana9GjRqSSAkhhB/kWmzM2XocgCFdGgN4bIcagvN1lGuxMWfnz8A16r4hxguE1qhR6RKpws8wWM9MCCGqi7KG/MjfwkIIIQJOoyj0axWvvg9qHM1jsX1/lK3O6KDFIYQQ4uojiZQQQoiAM+m1LL+/fbDDcMVxdwty520m2SyJlBBCCO9JB2shhBBCCCGE8JFUpIQQQgghxBVxOp3YbDbsdnuwQxGiTFqtFp1Od8XLHkkiJYQQIuByLTaSp20B4PDMPkGdbCJ51k4g+N0MhbhaWSwWMjMzyc3NDXYoQngtNDSUhIQEDAZDua8hiZQQQgghhCgXh8PByZMn0Wq11KlTB4PBcMW/8gvhT06nE4vFwu+//87Jkydp0qRJqYvulkYSKSGEEH5n0Gp4dXgH9b3F7ghyREWt0P2AUXFioPLFBkWfoRCVgcViweFwkJiYSGhoaLDDEcIrISEh6PV6fvrpJywWCyaTqVzXkURKCCGE3+m0Gm65Nk7droyJVFdtFqFK5YvLrfAzFKIyKe8v+kIES0X8mZU/9UIIIYQQQgjhI6lICSGE8Dur3cGmg78CMLBt3SBHU7yN9hgMOBioPYc+2MEUo/Az1Ev3PiGECCpJpIQQQvid1e5g4oZvALgtJSHI0RRviq0hALdpz1faROryZyiJlBBCBJf8LSyEEEIIIUQxfv75Z7p160ZycjIpKSm88847wQ5JVCJSkRJCCCGEEKIYOp2ORYsW0aZNG86cOUO7du3o168fYWFhwQ5NVAJSkRJCCCGEEKIYCQkJtGnTBoDatWsTHR3NuXPnfLpGt27dGDNmTMUHF+R7CUmkhBBCCCFENfTRRx+hKEqJr8GDB3u0//LLL9U1s/xNEqKrg3TtE0IIIYQQ1U737t3JzMz02Ge32xkxYgQHDx5k6tSp6v4//viD1NRU/vWvfwU6TFGJSUVKCCGEEEJUOyEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrUCwGw2M2jQICZPnkznzp1LvWZOTg6pqamEh4eTkJDA/Pnzi7RxOp3MmzePRo0aERISQuvWrdmwYYN6fPjw4ezatYvFixer1bGMjIxyfcbS7vXSSy9Rt25dHA7PhcgHDBjAsGHDynW/6kYqUkIIIfzOoNWw7L526nugyHaw4pp+c23s//d/aLVaaoSHYcBR9olBUNwzFEJUDLvdzpAhQ9i2bZtHEuV0Ohk+fDi33HILQ4cOLfM6EydO5OOPP2bjxo3Ex8fz5JNPsn//fnWcFcBTTz3Fe++9x4oVK2jSpAmffPIJQ4YMITY2lq5du7J48WKOHTtGy5YtmTlzJgCxsbHl+lyl3euee+4hLS2Njz/+mB49egBw/vx5tmzZwvvvv1+u+1U3kkgJIYTwO51WU2T9qMqwnpROq+G6Wk7CzL+4duSCpXbtSvnlWNwzFKIycjqd5FntAb9viF6Loig+n2e32xk6dCjbtm0jPT2dlJQU9dinn37KW2+9RUpKCps2bQJg7dq1aqJ1uezsbFauXMlrr71Gr169AFizZg316tVT2+Tk5LBgwQJ27NhBp06dAGjUqBG7d+/mpZdeomvXrkRGRmIwGAgNDSU+Pt7nz+PtvdatW0ffvn1Zt26dmki98847REdHq9uidEH9rmjYsCE//fRTkf2jR49m2bJlOJ1OZsyYwcsvv8z58+fp2LEjy5Yto0WLFmpbs9nMhAkTePPNN8nLy6NHjx4sX77c4w+tEEIIUZL8/HzCcE1zbLPZyM3NJTTYQQlxFcuz2kmetiXg9z08sw+hBt/+aetOorZu3Up6ejqtW7f2ON6lS5ciXd9Kcvz4cSwWi5q0AERHR9OsWbM/Yzx8mPz8fDXRcrNYLLRt29an2Mvizb3uv/9+HnzwQZYvX47RaOSNN97gL3/5C1qttkJjqaqCmkjt27cPu/3PXyy+++47evXqxT333APAvHnzWLBgAatXr6Zp06bMnj2bXr16cfToUSIiIgAYM2YM77//PuvXrycmJobx48fTv39/9u/fL38IhBCikrDZHWw59D8A+rSIA/DY1gWpq5rVZmfXqVwijfUICw8nPzub7uYz1ApKNKUr/AyD9cyEqCrcSdSWLVuKTaIABg0axM6dO+nRo4fHOKbiOJ3OMu/pTso+/PBD6tat63HMaDT6EH3ZvLnX7bffjsPh4MMPP+S6667jv//9LwsWLKjQOKqyoCZShft7Pvvss1xzzTV07doVp9PJokWLmDJlCnfeeSfgKo/GxcWxbt06HnroIS5evMjKlStZu3YtPXv2BOD1118nMTGR7du306dPn4B/JiGEEEVZ7A4eWXcAcP1qDHhsByspyDVbWPKdHWoW/IJcEzr+7z1sNlul695X+BlKIiUqqxC9Vv3/PND39Zbdbic1NZUtW7awfft2jzFMl0tLS2PkyJGsWbOmzGs2btwYvV7Pnj17qF+/PuAac3Ts2DG6du0KQHJyMkajkVOnTqn7imMwGDyKDeXhzb1CQkK48847eeONN/jxxx9p2rQp7du3v6L7VieV5nvCYrHw+uuvM27cOBRF4cSJE5w+fZrevXurbYxGI127duWzzz7joYceYv/+/VitVo82derUoWXLlnz22WclJlJmsxmz2axuZ2Vl+e+DCSGEKEKjKHRMilbfB4vFbObaSND//jvfGlw/7jmcTi5dukTNyMigxSXE1UxRFJ+72AWSw+EgNTWVTZs2sWHDBhISEjh9+rRHm9jYWLRaLd27d2fnzp1eXTc8PJxRo0YxceJEYmJiiIuLY8qUKWg0f/7oERERwYQJExg7diwOh4MuXbqQlZXFZ599Rnh4uDpbXsOGDdm7dy8ZGRmEh4cTHR3N8uXL2bhxI+np6V7F4+297r//fm6//XYOHTrEkCFDilxn6dKlPt23Oqk0f8o3bdrEhQsXGD58OID6BzouLs6jXVxcnDqu6vTp0xgMBmrWrFmkTeH/IS43d+5cZsyYUYHRCyGE8IVJr+WthzqV3dDPnDYLT7bRUG/TF9xiuA2A37PM1MjOpmYZ5wohrk779u1j3bp1APTr16/YNufPnycqKsrnaz///PNkZ2czYMAAIiIiGD9+PBcvXvRoM2vWLGrXrs3cuXM5ceIEUVFRtGvXjieffFJtM2HCBIYNG0ZycjJ5eXmcPHmSs2fPcvz4cZ/i8eZet9xyC9HR0Rw9epT77ruvyDXKc9/qotIkUitXruTWW2+lTp06HvsLz77idDrLnJGlrDaTJ09m3Lhx6nZWVlZAVqkWQghRueTn5wNgc/75nZFttklPBSGqsI4dO3o1nqk8wsPDWbt2LWvXrlX3TZw40aONoiikpaWRlpZW4nWaNm3K559/7rFv+vTpTJ8+vdT7F66eeXMvrVbLb7/9VuJxb+5bXVWKDtY//fQT27dv529/+5u6zz3dY+HK0pkzZ9QqVXx8PBaLhfPnz5fYpjhGo5EaNWp4vIQQQlQ/7kTq14t/dvfONtu4dOmS3/6hJYQQomqoFInUqlWrqF27Nrfddpu6Lykpifj4eLZt26bus1gs7Nq1S11Vun379uj1eo82mZmZfPfdd2WuPC2EECJ4ci022s3aRrtZ28i12IIWx/lLOTzymYPR9W5V95ltDrJy8jzG0gohhBCFBb1rn8PhYNWqVQwbNgyd7s9wFEVhzJgxzJkzhyZNmtCkSRPmzJlDaGio2n8zMjKSUaNGMX78eGJiYoiOjmbChAm0atVKncVPCCFE5XQuxxLsEMjPN3PJCuhN6j6bU8uZS2aysrIwmUwlnyyEqPL69OnDgQMHyMnJoV69emzcuJHrrrsu2GGJSiLoidT27ds5deoUI0eOLHJs0qRJ5OXlMXr0aHVB3q1bt6prSAEsXLgQnU7H4MGD1QV5V69eLWtICSFEJaLXanj+7hT1vdXu3QKX/uR0OjEXdO0DGHr2GxS7HafTye+X8itdRarwMxRC+N+WLYFfWFhcPYKeSPXu3bvEfuiKopQ5wM1kMvHCCy/wwgsv+ClCIYQQV0qv1XBPhz8n9akMiZTFYvH4/rlDOYsGGwedcCbLjMUS/IrZ5Qo/QyGEEMEV9ERKCCGECIa8vDyP7XCTjgitDgcKZy5VvkRKCCFE5SKJlBBCCL+z2R188sPvANzcJDbI0bjk5+d7VKS+DYklUq/BxkmyzTbOXswJYnRFFX6GOuneJ4QQQSV/CwshhPA7i93ByNVfMnL1l1gqQbc+cCVS+bY/Y5moac6D9maEhoUAcPLMxZJODYrK+AyFEKI6k0RKCCFEtWSz2biUby2yv0aIEYDzl3IDHZIQQoiriCRSQgghqiWbzUZWXtE1rEKMegBy8sw4HFL5EUIIUTxJpIQQQlRLdrudbHPRRMpk1ONEIc9qx2otWrESQgghQBIpIYQQ1ZTdbiermK59oXoNNjTkWuyVbi0pIYQQlYckUkIIIaolm83GpeK69hm02Jxaci02mQJdCCFEiSSREkIIUS25uvYVrUiFGHTY0JBnsUsiJYQQokSyjpQQQgi/02s1zLyjhfoeKLIdaO5Z+8Jsefxd+Y0wow4tUEOvwerUkGutXIlUcc9QCFG5DR8+nAsXLrBp0ya/30tRFDZu3MjAgQP9fi/hIn8TCyGE8Du9VkNqp4akdmqIXqspsh0MuWYrVrsDvcPGg8azjNCdIVV3hhoG1xgpi81BTl5+UGIrTmV4ZkJUFcOHD0dRlCKvvn37qm0aNmxY5Hi9evX8GtfOnTtRFIULFy749T6iYkhFSgghRLXjdDq5kONKkiJCDBh0fyYmRp0Gp1ULWPlD1pISosrq27cvq1at8thnNBo9tmfOnMkDDzygbmu12oDEJq4O8pOWEEIIv7M7nHx+/A8+P/4HdoezyHagORwOLuZacDohJCyET20RfGqP4HN7BA4UwkNCALhQiRKpYD8zIaoao9FIfHy8x6tmzZoebSIiIjyOx8bGlng9u93OuHHjiIqKIiYmhkmTJuF0ev6/6nQ6mTdvHo0aNSIkJITWrVuzYcMGADIyMujevTsANWvWRFEUhg8fXu7P9+uvv3LvvfdSs2ZNYmJiuOOOO8jIyABgy5YtmEymIpWvtLQ0unbtWu57VjeSSAkhhPA7s83OX1/Zw19f2YPZZi+yHWiuqc9tOFA4luXgftu13G+9lr9ar8WMhvBQ16/SWTmVp2tfsJ+ZEN5yOp1YLJaAvwonLYE2f/58Xn31VVauXMnu3bs5d+4cGzdu9Gjz1FNPsWrVKlasWMGhQ4cYO3YsQ4YMYdeuXSQmJvLuu+8CcPToUTIzM1m8eHG5YsnNzaV79+6Eh4fzySefsHv3bsLDw+nbty8Wi4WePXsSFRWl3g9cfy++/fbb3H///eV/CNWMdO0TQggRcAoKTWqHq+8DzWazkV2QSNU0aYnOz+Y4IerxGuGh5F+CrJw8nE4nihL4GIW4WlmtVubOnRvw+06ePBmDweB1+w8++IDw8HCPfY8//jhTp0712H7qqafU7Tlz5pCWllbs9RYtWsTkyZO56667AHjxxRfZsmWLejwnJ4cFCxawY8cOOnXqBECjRo3YvXs3L730El27diU6OhqA2rVrExUV5fVnKWz9+vVoNBr+9a9/qX9/rVq1iqioKHbu3Env3r259957WbduHaNGjQIgPT2d8+fPc88995T7vtWNJFJCCCECLsSgZdu44HUfsdvt5FvtoCg8fH0dhu7dRLK5vXo8OiyEM7gmpLDb7eh08nUpRFXTvXt3VqxY4bHPnci4TZw40aN7Xa1atYq91sWLF8nMzFQTJACdTkeHDh3UStnhw4fJz8+nV69eHudaLBbatm17JR+liP379/Pjjz8SERHhsT8/P5/jx48DcP/999OpUyd+++036tSpwxtvvEG/fv2KdG8UJZNvBiGEENWO3W4n12LH4dQQFVr0F+zoCCN2NOQVTIEuiZQQ3tPr9UyePDko9/VFWFgYjRs3LrVNrVq1ymzjLYfDAcCHH35I3bp1PY4VnuSiIu7Vvn173njjjSLH3OO8rr/+eq655hrWr1/P3//+dzZu3Fhk8g1ROvlmEEIIUe3YbDbyrXbsKEQXl0iFGbE5NeQWLMobGhoahCiFuDopiuJTF7uqIDIykoSEBPbs2cPNN98MuP6e2b9/P+3atQMgOTkZo9HIqVOnSpzQwf3c7PYrGwfZrl073nrrLWrXrk2NGjVKbHfffffxxhtvUK9ePTQaDbfddtsV3be6kckmhBBCBFyexU6vBbvotWAXeZbgTDaRZ7VjdSrMSD/B7eZkj+PRYQZsaMmzVK5FeYUQFcdsNnP69GmP19mzZ8t9vccee4xnn32WjRs38v333zN69GiPWfEiIiKYMGECY8eOZc2aNRw/fpyDBw+ybNky1qxZA0CDBg1QFIUPPviA33//nezsbACWLl1Kjx49vI7l/vvvp1atWtxxxx3897//5eTJk+zatYvHHnuMX375xaPdgQMHeOaZZ7j77rsxmUwAfPHFF1x77bX8+uuv5X4e1YEkUkIIIQLOiZMfzmTzw5lsnAR+pi2bzUae1Y4DDb9cNHtMNAEQE2bAhoZciw2r1Rrw+IQQ/rd582YSEhI8Xl26dCn39caPH09qairDhw+nU6dOREREMGjQII82s2bNYtq0acydO5fmzZvTp08f3n//fZKSkgCoW7cuM2bM4IknniAuLo5HH30UgLNnz6pjm7wRGhrKJ598Qv369bnzzjtp3rw5I0eOJC8vz6NC1aRJE6677jq++eYbj9n6cnNzOXr0qPz9VwbFGey5IiuBrKwsIiMjuXjxYqnlTyGEEOVjsTlY9elJAEbcmITN4SB5mms2q8Mz+xBqCGxP85MZPzH2X1s4aw/lF6drYPV47S8YFCcjtP/j6P1/Y/TqnTQMMTM7tQcNGjQIaHzFKfwML19EWIhgyc/P5+TJkyQlJanVDCGuBqX92fU2N5AxUkIIIfzOoNPwUNdr1G2bxRHEaOBCwfpQDkXBXRAbpfsfoYorrpgwo6siZa08XfsKP0MhhBDBJT9nCSGEqHYu5poBCClhQHx0mAE7CnaHk6zcyrMorxBCiMpDKlJCCCH8zu5w8t2vFwFoWTcyyNHAxRxXIhUWYoCCPOlbRygmxUlLJQeTXotBbwA7XMiuHIlU4Weo1cgiwUIIEUySSAkhhPA7s83OHcs+BVxjooItK8+VSEWY9Lj79t1rbQ7AYeN+QoGIUCNcgos5eUGK0lPhZxjocWVCCCE8Sdc+IYQQ1U52nmvcU3hIyYtgRoS6Bh9n5VSOipQQQojKRRIpIYQQ1U52QUUqMrTkRCqyIJHKya8ck00IIYSoXCSREkIIUe24k6OIUipSNcJciVSu2YLDEdxZBoUQQlQ+kkgJIYSodnLNrkUmo8JLTqSiwkyAQr7Vjs1mC1BkQgghrhaSSAkhhKh28goSqZphJS8gGh1uxI5CvsWO1WoNVGhCCCGuEpJICSGEqFacTif5loJEKrzkRKpmqAGbU0Oe1SGJlBBCiCJk7lQhhBB+p9NoeKxHE/U9UGQ7UBwOB/kWV1e92jVCeOzmBth3fwaKghYnuoLp0GuG6rGhId9aOSpSxT1DIYQQwSOJlBBCCL8z6DSM7dXUY1/h7UCxWq3kWe2AQlxkKGO7JsEXG4q0iwo1YEdDXiUZI1XcMxRC+NfPP//M0KFDOXPmDDqdjqlTp3LPPfcEOyxRSUgiJYQQolrJzrdgczixoyEm3Ag2c7HtaobpsTk15FutlaIiJYQIPJ1Ox6JFi2jTpg1nzpyhXbt29OvXj7CwsGCHJioB6RsghBDC7xwOJ8f+d4lj/7uEw+Essh1If2S5FthVNFpMOg3HzuTwvd3E93YTxxwm3OHUDDW4uvbZ7JjNwV9LKpjPTIjqKiEhgTZt2gBQu3ZtoqOjOXfuXHCDKtCtWzfGjBkTtPOFVKSEEEIEQL7NTu+FnwBweGYfAI/tUEPgvo7O5eQBYDLoMdsd9H5pH9BKPX7YuJ9QICpUjx0NTidcyi2+ahVIhZ9hIJ+ZEFXRRx99xG233Vbi8XvuuYe3335b3f7yyy9xOBwkJiaW637dunWjTZs2LFq0qELOe++999Dr9eW+hi/ni+LJ38JCCCGCIjrMEJT7nst2VaRCja5/QESH6nHm5nIez39QGHVa9Do9OOBCQfIlhKg6unfvTmZmpsc+u93OiBEjOHjwIFOnTlX3//HHH6SmpvKvf/0r0GGWKDo6OqjnC+naJ4QQIghCDToOTO3Fgam9Al5ZuXBZIhVq0HFg/I18avym2LahJteCvVm5+QGLTwgRGCEhIcTHx6uv2NhYJkyYwMGDB9mxYwetWrkq1WazmUGDBjF58mQ6d+5c6jU3bNhAq1atCAkJISYmhp49e5KTk8Pw4cPZtWsXixcvRlEUFEUhIyMDgM2bN9OlSxeioqKIiYmhf//+HD9+HKDU8wp3zfP13oXPdzgcPPfcczRu3Bij0Uj9+vV55plnyrx+dSYVKSGEENXKxYJueiGmsiti4aEGHLmQnRf8rn1CXC2cTmfBzJiBFaLXoihKuc612+0MGTKEbdu2eSRRTqeT4cOHc8sttzB06NBSr5GZmclf//pX5s2bx6BBg7h06RL//e9/cTqdLF68mGPHjtGyZUtmzpwJQGxsLAA5OTmMGzeOVq1akZOTw7Rp0xg0aBBfffVVqedVxL0vN3nyZF555RUWLlxIly5dyMzM5Pvvvy/z+tWZJFJCCCGqlZx81wx8IYayxwbUCDVxAciuBGOkhLha5FntJE/bEvD7lnfsoN1uZ+jQoWzbto309HRSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblMjMzsdls3HnnnTRo0ADAo53BYCA0NJT4+HiP8+666y6P7ZUrV1K7dm0OHz5My5YtSzyvIu7tdunSJRYvXszSpUsZNmwYANdccw1dunTx6vrVlSRSQgghAi7famfYq18AsGbk9Zj02sDdu2AGvhCj3hXHawexm5sU27ZGWAgXgFyzGafTWe5fu4UQlZM7idq6dSvp6em0bt3a43iXLl1wOBxeXat169b06NGDVq1a0adPH3r37s3dd99NzZo1Sz3v+PHjTJ06lT179nD27Fn1fqdOnaJly5Z+vbfbkSNHMJvN9OjRwy/Xr6okkRJCCBFwDqeTvSfPqe8DKd/iqkiZDHpXHD9dBGoU27ZmmIlTQL7FtSivzHAlRNlC9Fp1ds5A39cX7iRqy5YtxSZRAIMGDWLnzp306NGDDRuKLtx9Oa1Wy7Zt2/jss8/YunUrL7zwAlOmTGHv3r0kJSWVeN7tt99OYmIir7zyCnXq1MHhcNCyZUssFu+XXSjvvd1CQkL8ev2qSiabEEII4Xc6jYYHb27Egzc3QqcJ7ldPvsUGQKjRc4zUCO1pHtRmouPPxC4qzIgdDXlWe9AX5a1Mz1CI0iiKQqhBF/CXLxVju91OamoqW7ZsYfv27epaUYWlpaXx2muv+fTZb7zxRmbMmMHBgwcxGAxs3LgRcHWvs9s9x4798ccfHDlyhKeeeooePXrQvHlzzp8/79GmuPMq4t6Xa9KkCSEhIaSnp5fr+tWVVKSEEEL4nUGn4cl+zdVtm8W7rjL+YC5IiAonUhN1vxKqeMZVM1SP3akhvxIkUoWfoRCifBwOB6mpqWzatIkNGzaQkJDA6dOnPdrExsai1Wrp3r07O3fu9Oq6e/fuJT09nd69e1O7dm327t3L77//TvPmrv9vGzZsyN69e8nIyCA8PJzo6Ghq1qxJTEwML7/8MgkJCZw6dYonnnjC47rFnacp9GNKee59OZPJxOOPP86kSZMwGAzceOON/P777xw6dIhRo0aVef3qShIpIYQQ1YrZWlCR8mLWvpphBuwo5FsdXv0iLISo/Pbt28e6desA6NevX7Ftzp8/T1RUlE/XrVGjBp988gmLFi0iKyuLBg0aMH/+fG699VYAJkyYwLBhw0hOTiYvL4+TJ0/SsGFD1q9fT1paGi1btqRZs2YsWbKEbt26qdct6bwrvXdhU6dORafTMW3aNH777TcSEhJ4+OGHvbp+dSWJlBBCCL9zOJz8esG1qG3dqNL74vubpWCMVJjJc7zTr04DJqeDuopF7fdeM9SAo6BrX7ATqcLPUKORiS+EKI+OHTv6Zdru5s2bs3nz5hKPN23alM8//7zI/p49e3L48GGPfZfHV9J5l1fKynPvwpU2jUbDlClTmDJlSpHzy7p+dRX0Tta//vorQ4YMISYmhtDQUNq0acP+/fvV406nk+nTp1OnTh1CQkLo1q0bhw4d8riG2WzmH//4B7Vq1SIsLIwBAwbwyy+/BPqjCCGEKEG+zc5N8z7mpnkfk28LbkJitbkqUuEhnhWpXpZW3GRpTf5lX42uREohvxIkUpXpGQohhAhyInX+/HluvPFG9Ho9//nPfzh8+DDz58/3KKXOmzePBQsWsHTpUvbt20d8fDy9evXi0qVLapsxY8awceNG1q9fz+7du8nOzqZ///5B/9ITQghR+dgKEqmIkLK79kWF6nGgVIqKlBBCiMolqF37nnvuORITE1m1apW67/I+n06nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPAF5//XUSExPZvn07ffoEfvpNIYQQlZetoJoTEWIss23NMAMOp4Ld4STXHNzJJoQQgdenTx8OHDhATk4O9erVY+PGjVx33XXBDktUEkGtSP373/+mQ4cO3HPPPdSuXZu2bdvyyiuvqMdPnjzJ6dOn6d27t7rPaDTStWtXPvvsMwD279+P1Wr1aFOnTh1atmypthFCCCEArDY7DocrkarhRSIVZtCqs2NdzDX7NTYhROWzZcsWfv/9d3Jzc/nll18kiRIegppInThxghUrVtCkSRO2bNnCww8/7DFfv3sqyri4OI/z4uLi1GOnT5/GYDAUWVn58jaFmc1msrKyPF5CCCGqvqzcPxe4jAgtO5FSFIVQo2tSiou53i+OKYQQouoLatc+h8NBhw4dmDNnDgBt27bl0KFDrFixgtTUVLVd4QXWnE5nmYuuldZm7ty5zJgx4wqjF0IIcbXJynNVlTSKBpNBR5617HFPoSY9VjNk50kiJYQQ4k9BrUglJCSQnJzssa958+acOnUKgPj4eIAilaUzZ86oVar4+HgsFkuRVaAvb1PY5MmTuXjxovr6+eefK+TzCCGEqNwuFSRSOp22zB/k3Ex612+OuRYZIyWEEOJPQa1I3XjjjRw9etRj37Fjx2jQoAEASUlJxMfHs23bNtq2bQuAxWJh165dPPfccwC0b98evV7Ptm3bGDx4MACZmZl89913zJs3r9j7Go1GjMayu3QIIYSoGFqNwtAbGqjvgSLbgXCpoKqkK0iOtBqFoR3qYD9wEFDQKk60eK4vYzTouQTkB3myieKeoRBCiOAJaiI1duxYOnfuzJw5cxg8eDBffPEFL7/8Mi+//DLg6tI3ZswY5syZQ5MmTWjSpAlz5swhNDSU++67D4DIyEhGjRrF+PHjiYmJITo6mgkTJtCqVSt1Fj8hhBDBZdRpmTWwpce+wtuBkJPvqkjptbo/47q1KXz3fyWeYzK4xkjlB7kiVdwzFEIIETxBTaSuu+46Nm7cyOTJk5k5cyZJSUksWrSI+++/X20zadIk8vLyGD16NOfPn6djx45s3bqViIgItc3ChQvR6XQMHjyYvLw8evTowerVq9FqtcH4WEIIISqpnIKKlEHv/ddfiMHVNt9q80tMQgghrk5BTaQA+vfvT//+/Us8rigK06dPZ/r06SW2MZlMvPDCC7zwwgt+iFAIIcSVcjqdnMtxJTHRYa6FcC/f9na80pXKLpRIueNyOlzbigLR2Lg8mlCj65jZEtxEqvAzDNQzE0IIUbygJ1JCCCGqvjyrnfaztwNweKZrofTLt0MNgfk6yjW7EhFjQXe9PKud9gs+A9qqbQ4b9xN62TkhRlfiZw5yRarwMwzUMxNCCFG8oM7aJ4QQQgRSXkFVyaTXe32Oex2pYCdSQgghKhf5OUsIIUTAhRp0ZDx7W8Dvq1akCpKjUIOOjKndyJ03n2Rz+2LPCStoa/FizSkhhBDVh1SkhBBCVBvuKcxDfOgWF2Zyde2z2qQiJYSoHBo2bMiiRYvKff7q1auJioqqsHiqK0mkhBBCVBvuKczd4568EW5yVaSsNhtOp7OM1kKIq8Hw4cNRFKXIq2/fvmqbhg0bFjler169ct1v+vTptGnTxufzSkp49u3bx4MPPujVNYpLuu69916OHTvmczzCk3TtE0IIEXD5Vjvj3v4KgAWD22DSB2a5CnNBIuUe95RvtTNuwyFslqQSzwkLcVekHDidTpktT4gqom/fvqxatcpjn9Fo9NieOXMmDzzwgLpdWZbWiY2NvaLzQ0JCCAkJqaBoqi+pSAkhhAg4h9PJR9+e5qNvT+MIYJXHUjBhhDs5cjidfHTkd7Y6o0s8J6KgrcXuwG6XcVJClMXpdGK32wP+8rVibDQaiY+P93jVrFnTo01ERITH8dISmJ07d3L99dcTFhZGVFQUN954Iz/99BOrV69mxowZfP3112pla/Xq1QAsWLCAVq1aERYWRmJiIqNHjyY7O1u93ogRI7h48aJ6nns5oMJVpunTp1O/fn2MRiN16tQhLS0NgG7duvHTTz8xduxY9RpQfKXr3//+Nx06dMBkMlGrVi3uvPNO9djy5ctp0qQJJpOJuLg47r77bp+edVUlFSkhhBB+p9Uo3NWunvre7ghOFzlzwTinsGK69g3UnEULaPGMLdykx4mC1eZKpPQ+zPhXkQo/QyEqK4fDwX//+9+A3/emm24KWsXIZrMxcOBAHnjgAd58800sFgtffPEFiqJw77338t1337F582a2b3ctYRAZGQmARqNhyZIlNGzYkJMnTzJ69GgmTZrE8uXL6dy5M4sWLWLatGkcPXoUgPDw8CL33rBhAwsXLmT9+vW0aNGC06dP8/XXXwPw3nvv0bp1ax588EGPylphH374IXfeeSdTpkxh7dq1WCwWPvzwQwC+/PJL0tLSWLt2LZ07d+bcuXNB+e9bGUkiJYQQwu+MOi3zB7dWt3ODtLitzV2RMhVNpObofyJUcRTZH2bQ4UDB4nDgcBQ9HiiFn6EQ4sp88MEHRRKTxx9/nKlTp3psP/XUU+r2nDlz1GrP5bKysrh48SL9+/fnmmuuAaB58+bq8fDwcHQ6HfHx8R7njRkzRn2flJTErFmz+Pvf/87y5csxGAxERkaiKEqR8y536tQp4uPj6dmzJ3q9nvr163P99dcDEB0djVarVStrJXnmmWf4y1/+wowZM9R9rVu3Vq8fFhZG//79iYiIoEGDBrRt27akS1UrkkgJIYSoNtwz70WEGMto+adwoyuRstkdmC1WQkPLPkeI6kyj0XDTTTcF5b6+6N69OytWrPDYFx3t2c134sSJDB8+XN2uVatWsdeKjo5m+PDh9OnTh169etGzZ08GDx5MQkJCqTF8/PHHzJkzh8OHD5OVlYXNZiM/P5+cnBzCwsK8+hz33HMPixYtolGjRvTt25d+/fpx++23o9N5/8/8r776qsSKVa9evWjQoIF6/b59+zJo0CBC5S9DGSMlhBDC/5xOJ7kWG7mW4M58ZytYCyo8pGhFKtepIdepoXB4YUYdDqerK112vtXvMZaksjxDIcqiKAparTbgL18nggkLC6Nx48Yer8KJVK1atTyOlzZl+KpVq/j888/p3Lkzb731Fk2bNmXPnj0ltv/pp5/o168fLVu25N1332X//v0sW7YMAKvV+79rEhMTOXr0KMuWLSMkJITRo0dz8803+3SN0iaeiIiI4MCBA7z55pskJCQwbdo0WrduzYULF7y+flUliZQQQgi/y7PaSZ62heRpW8gL0sK2DocDm8NVkaoRWrQi1cHSlmRze/IKfTUadBqUgl+6s/Mt/g+0BJXhGQohSte2bVsmT57MZ599RsuWLVm3bh0ABoOhyGQ1X375JTabjfnz53PDDTfQtGlTfvvtN482xZ1XnJCQEAYMGMCSJUvYuXMnn3/+Od9++63X10hJSSE9Pb3E4zqdjp49ezJv3jy++eYbMjIy2LFjR5lxVXXStU8IIUS1kJ1vUatNkWHed+0D0Ot0YLWQkxe8REoIUbHMZjOnT5/22KfT6UrsvleakydP8vLLLzNgwADq1KnD0aNHOXbsGKmpqQDqZBJfffUV9erVIyIigmuuuQabzcYLL7zA7bffzqeffsqLL77ocd2GDRuSnZ1Neno6rVu3JjQ0tEiXutWrV2O32+nYsSOhoaGsXbuWkJAQGjRooF7jk08+4S9/+QtGo7HYz/f000/To0cPrrnmGv7yl79gs9n4z3/+w6RJk/jggw84ceIEN998MzVr1uSjjz7C4XDQrFkzn59TVSMVKSGEENXCxVxzwTuFMKNvM+/pda6ZwHLMwevaJ4SoWJs3byYhIcHj1aVLl3JdKzQ0lO+//5677rqLpk2b8uCDD/Loo4/y0EMPAXDXXXfRt29funfvTmxsLG+++SZt2rRhwYIFPPfcc7Rs2ZI33niDuXPnely3c+fOPPzww9x7773ExsYyb968IveOiorilVde4cYbb1QrS++//z4xMTGAay2sjIwMrrnmmhKnb+/WrRvvvPMO//73v2nTpg233HILe/fuVa//3nvvccstt9C8eXNefPFF3nzzTVq0aFGuZ1WVKE7paE1WVhaRkZFcvHiRGjVqBDscIYSocnItNpKnbQHg8Mw+AB7boQb/d5A4fOoMT768Ca1Wz7szRhSJS21n3E/opPFw2UDv++a9Q27WeR66vQu3dkz2e6zFKfwMA/HMhChLfn4+J0+eJCkpCZPJFOxwhPBaaX92vc0NpCIlhBCiWnCPb9LpfF9nxqh3JS05QRwjJYQQonKRREoIIUS1cCnXlQTp9b5XcgwF5+RK1z4hhBAFJJESQghRLeTku8ZI6fW+jY+CPytSeRZJpIQQQrhIB2shhBB+p1EU+rWKV98DRbb9zd0tz6j/s2ufRlHo1zwW+/dHQQEtoKHo0GGTwZV85VtsAYm1OMU9QyGEEMEjiZQQQgi/M+m1LL+/vce+wtv+lmd2JUGGyypSJr2W5Xe3gOc/KvXckIKJHfKDWJEq7hkKIYQIHunaJ4QQolpwd8szlmOyiRBj8CtSQgghKhdJpIQQQlQL7mqSoRxjpELUrn0yRkoIIYSLdO0TQgjhd5VhHSlzQTXJdNm9ci02kmftBK5T9x027ie00LkhRtc5Fqvdv0GWQtaREkKIykUqUkIIIaqFfGtB175yTH8eajQAYLZJ1z4hROU0ffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBFwIXot+5/qyf6nehKi933MUnm4q0nuGfjUOMZ1Zrfh61LPDTO5zrFaJZESoioYPnw4iqIUefXt21dt07BhwyLH69WrV+p1s7KymDJlCtdeey0mk4n4+Hh69uzJe++9h9NZdEZQf1q8eDGrV6+u0Gvu3LkTRVG4cOFChV73aiX9AoQQQgScoijEhBsDek+LtWjXPkVRiAkzkKuUniCFFUw2YbEFr2ufEKJi9e3bl1WrVnnsMxo9/16aOXMmDzzwgLqt1Zb8w8+FCxfo0qULFy9eZPbs2Vx33XXodDp27drFpEmTuOWWW4iKiqrQz1CayMjIgN2rupKKlBBCiGrBUtAtzz0Dny/CQ1z/uJKKlBBVh9FoJD4+3uNVs2ZNjzYREREex2NjY0u83pNPPklGRgZ79+5l2LBhJCcn07RpUx544AG++uorwsPDAXj99dfp0KGDeu377ruPM2fOqNdxV33S09Pp0KEDoaGhdO7cmaNHj3rc79lnnyUuLo6IiAhGjRpFfn6+x/HCXftycnJITU0lPDychIQE5s+fX+QzlBZbRkYG3bt3B6BmzZooisLw4cMBcDqdzJs3j0aNGhESEkLr1q3ZsGFDGf8Frn6SSAkhhAg4s83O1E3fMXXTd5gDVOVxV6RCLuvaZ7bZmfqfY8y0lt5dx921z2aXipQQ3sq12Hx+2ewO9Xyb3UGuxUZ+oUleijsv2BwOB+vXr+f++++nTp06RY6Hh4ej0xVMWmOxMGvWLL7++ms2bdrEyZMn1YTkclOmTGH+/Pl8+eWX6HQ6Ro4cqR57++23efrpp3nmmWf48ssvSUhIYPny5aXGOHHiRD7++GM2btzI1q1b2blzJ/v37/doU1psiYmJvPvuuwAcPXqUzMxMFi9eDMBTTz3FqlWrWLFiBYcOHWLs2LEMGTKEXbt2ef0Mr0bStU8IIUTA2R1O1u75CYDJ/a4NyD1tBQlbqOnPRMrucLL2y9+AuFLPjTAZ1Gs4nU4URfFbnEJUFe5ZJn2x7L523JaSAMCWQ//jkXUH6JgUzVsPdVLbdHnuY87lWDzOy3j2Np/v9cEHH6hVIrfHH3+cqVOnemw/9dRT6vacOXNIS0srcq2zZ89y/vx5rr227L/PLk+IGjVqxJIlS7j++uvJzs72iOeZZ56ha9euADzxxBPcdttt5OfnYzKZWLRoESNHjuRvf/sbALNnz2b79u1FqlJu2dnZrFy5ktdee41evXoBsGbNmiJjvsqKLTo6GoDatWur3RRzcnJYsGABO3bsoFOnTuq5u3fv5qWXXlI/Q1UkiZQQQgi/0ygK3ZvFqu8dAR50DWAto2vfzZqLaHGioWhsESEFiZTDgdVmx1COmf+uVOFnKIS4Mt27d2fFihUe+9yJgtvEiRM9qkW1atUq9lruiSS8+ZHl4MGDTJ8+na+++opz587hcLiqcKdOnSI5OVltl5KSor5PSHAll2fOnKF+/focOXKEhx9+2OO6nTp14uOPPy72nsePH8disaiJDrg+a7NmzcoV2+UOHz5Mfn6+mqC5WSwW2rZtW+qzuNpJIiWEEMLvTHotq0Zcr24HoyuOu1teWMFU5oW9qP+RUMVR7LEaoX8OQM/Ks1ArCIlU4WcoRGXnXjPOFwbtn6NO+rSI4/DMPkV+ONj9ePcrjg0gLCyMxo0bl9qmVq1aZbYBiI2NpWbNmhw5cqTUdjk5OfTu3ZvevXvz+uuvExsby6lTp+jTpw8Wi2eVTX/Z4uHuBM2d2PjKmxkDfYntcu6YPvzwQ+rWretxrPDkHVWNjJESQghRLbjHXoSZfJ9swqjXolFcX5nZeSX/g0II8adQg87nl+6yREqn1RBq0GEqtERCcecFm0aj4d577+WNN97gt99+K3I8JycHm83G999/z9mzZ3n22We56aabuPbaaz0mmvBW8+bN2bNnj8e+wtuXa9y4MXq93qPN+fPnOXbsmLrtTWwGg+uHKPtl40WTk5MxGo2cOnWKxo0be7wSExN9/mxXk+D/yRNCCCH8zOl0Yre5K1K+J1IAWp0Wh9XBpTxzRYYmhAgSs9nM6dOnPfbpdLoSu++VZc6cOezcuZOOHTvyzDPP0KFDB/R6Pf/973+ZO3cu+/bto379+hgMBl544QUefvhhvvvuO2bNmuXzvR577DGGDRtGhw4d6NKlC2+88QaHDh2iUaNGxbYPDw9n1KhRTJw4kZiYGOLi4pgyZQoazZ+JqzexNWjQAEVR+OCDD+jXrx8hISFEREQwYcIExo4di8PhoEuXLmRlZfHZZ58RHh7OsGHDfP58VwupSAkhhPC7XIuN5lM303zq5qB067PY7DicropUeEjxXfvam9vQPL8duc7ivxr1BevHZJut/gmyDMF+hkJUNZs3byYhIcHj1aVLl3Jfr2bNmuzZs4chQ4Ywe/Zs2rZty0033cSbb77J888/T2RkJLGxsaxevZp33nmH5ORknn32Wf75z3/6fK97772XadOm8fjjj9O+fXt++ukn/v73v5d6zvPPP8/NN9/MgAED6NmzJ126dKF9+/bqcW9iq1u3LjNmzOCJJ54gLi6ORx99FIBZs2Yxbdo05s6dS/PmzenTpw/vv/8+SUlJPn+2q4niDPQyy5VQVlYWkZGRXLx4kRo1agQ7HCGEqHJyLTZ1Bi/3uInLt/3dNeePrFxGzXsdgPXTRqqL8l4el9th435CJ42HsDCP/UOffYNL2Tmk3dOLW1oH/h8HhZ9hZejOJER+fj4nT54kKSkJk8kU7HCE8Fppf3a9zQ2kIiWEEKLKy8l3VZEURaMmUb7S69zJl4yREkIIIYmUEEKIaiA73zWuSast/9eerqBrX16QuvYJIYSoXCSREkIIUeXlmF1jitzJUHm4147KlURKCCEEkkgJIYSoBnLzXd3xdLryjytyJ1L5ZpnoQQghhCRSQgghqgF3FUmnK39FSu9OpCxSkRJCCCHrSAkhhAgAjaLQMSlafQ8U2fYn97gmfaFESqModGwQieOnn0FR0OBEQ/GT2RoLEilzkBKp4p6hEEKI4JFESgghhN+Z9FreeqiTx77C2/6Ua3EnUp5feya9lrdS28Lz28u8hrFgtj+zNThd+4p7hkIIIYJHuvYJIYSo8twVKXdVqTxMej0QvERKCCFE5SKJlBBCiCov3+JKfgp37fOFuyJllURKCCEEkkgJIYQIgFyLjXazttFu1jZyLbYi2/7mniDCWGgx3lyLjXbzP6Vtfhva5rehXX4bcp3FfzWaDK6KlCVIiVSgn5kQ4uoyffp02rRpo24PHz6cgQMHlnpOt27dGDNmjF/jqsokkRJCCBEQ53IsnMuxlLjtT+7ueMaC7nkeceVaOY+e8+g5R9HjbiHuRMoWvCQmkM9MiKps+PDhKIpS5NW3b1+1TcOGDYscr1evXqnXzcrKYsqUKVx77bWYTCbi4+Pp2bMn7733Hk5n8RPZ+MvixYtZvXp1hV5z586dKIrChQsXKvS6VyuZbEIIIUTAmXRato69WX3vb+6KlKnQGCmTTsvWh64j79VV3GFtWeo1Qo2uRMoaxERKCFFx+vbty6pVqzz2GY1Gj+2ZM2fywAMPqNvaUhb1vnDhAl26dOHixYvMnj2b6667Dp1Ox65du5g0aRK33HILUVFRFfoZShMZGRmwe1VXQa1ITZ8+vUimHx8frx53Op1Mnz6dOnXqEBISQrdu3Th06JDHNcxmM//4xz+oVasWYWFhDBgwgF9++SXQH0UIIYQPNBqFpnERNI2LQKPx/1TeFqsdAFOhrn0ajULT2mE00ZjLvEZIQSJls9krPkAhRMAZjUbi4+M9XjVr1vRoExER4XE8Nja2xOs9+eSTZGRksHfvXoYNG0ZycjJNmzblgQce4KuvviI8PByA119/nQ4dOqjXvu+++zhz5ox6HXfVJz09nQ4dOhAaGkrnzp05evSox/2effZZ4uLiiIiIYNSoUeTn53scL9y1Lycnh9TUVMLDw0lISGD+/PlFPkNpsWVkZNC9e3cAatasiaIoDB8+HHD9m33evHk0atSIkJAQWrduzYYNG8r4L3D1C3rXvhYtWpCZmam+vv32W/XYvHnzWLBgAUuXLmXfvn3Ex8fTq1cvLl26pLYZM2YMGzduZP369ezevZvs7Gz69++P3S5fdEIIIVzc45qMhpK77pUlzGQAwCbfL0J4xT0e0peXze5Qz7fZHeRabORb7WVeN9gcDgfr16/n/vvvp06dOkWOh4eHoytYfsFisTBr1iy+/vprNm3axMmTJ9WE5HJTpkxh/vz5fPnll+h0OkaOHKkee/vtt3n66ad55pln+PLLL0lISGD58uWlxjhx4kQ+/vhjNm7cyNatW9m5cyf79+/3aFNabImJibz77rsAHD16lMzMTBYvXgzAU089xapVq1ixYgWHDh1i7NixDBkyhF27dnn9DK9GQe/ap9PpPKpQbk6nk0WLFjFlyhTuvPNOANasWUNcXBzr1q3joYce4uLFi6xcuZK1a9fSs2dPwJVJJyYmsn37dvr06RPQzyKEEMI7FpuDZR//CMAj3Rtj0Pn3dz1zQXe8kEKJlMXmYNmuk1itCWVeI8xYkEhJRUoIryRP2+LzOcvua8dtKa7/H7cc+h+PrDtAx6RojzXUujz3cZGxghnP3ubzvT744AO1SuT2+OOPM3XqVI/tp556St2eM2cOaWlpRa519uxZzp8/z7XXXlvmfS9PiBo1asSSJUu4/vrryc7O9ojnmWeeoWvXrgA88cQT3HbbbeTn52MymVi0aBEjR47kb3/7GwCzZ89m+/btRapSbtnZ2axcuZLXXnuNXr16Aa5/Vxce81VWbNHRrkXBa9eurXZTzMnJYcGCBezYsYNOnTqp5+7evZuXXnpJ/QxVUdATqR9++IE6depgNBrp2LEjc+bMoVGjRpw8eZLTp0/Tu3dvta3RaKRr16589tlnPPTQQ+zfvx+r1erRpk6dOrRs2ZLPPvusxETKbDZjNv/ZjSMrK8t/H1AIIUQRNoeDxek/APBQ10YY/NxBwlZQkQo1eX7t2RwOFn/yE1D0F+TCQkNcSZjdbsfpdKIo/u+SKITwn+7du7NixQqPfe5EwW3ixIke1aJatWoVey33RBLe/L1w8OBBpk+fzldffcW5c+dwOFxVuFOnTpGcnKy2S0lJUd8nJLiSyzNnzlC/fn2OHDnCww8/7HHdTp068fHHHxd7z+PHj2OxWNREB1yftVmzZuWK7XKHDx8mPz9fTdDcLBYLbdu2LfVZXO2Cmkh17NiR1157jaZNm/K///2P2bNn07lzZw4dOsTp06cBiIuL8zgnLi6On376CYDTp09jMBiK9GeNi4tTzy/O3LlzmTFjRgV/GiGEECXRKAop9SLV944Az15lKagihRRUlYrTUslBA2goPrZwd9c+hwOHw1HqoHN/KPwMhajsDs/0vWeQQfvnjyp9WsRxeGafIn/edz/e/YpjAwgLC6Nx48altqlVq1aZbQBiY2OpWbMmR44cKbVdTk4OvXv3pnfv3rz++uvExsZy6tQp+vTpg8XiWWXTXzbLqDtBcyc2vvJmxkBfYrucO6YPP/yQunXrehwrPHlHVRPUROrWW29V37dq1YpOnTpxzTXXsGbNGm644QagaGbvza+AZbWZPHky48aNU7ezsrJITEwsz0cQQgjhBZNey78f7aJuB3pMg3vcrHvmveK8bfieUKXkf6SEGfWAgt3hJN9iJSwksIlU4WcoRGUXariyf2bqtBp02qLV6iu9rj9oNBruvfde1q5dy9NPP11knFROTg5Go5Hvv/+es2fP8uyzz6r/9vzyyy99vl/z5s3Zs2cPqamp6r49e/aU2L5x48bo9Xr27NlD/fr1ATh//jzHjh1Tu955E5vB4PpB6fK5CJKTkzEajZw6dapKd+MrTtAnm7hcWFgYrVq14ocfflDHTRWuLJ05c0atUsXHx2OxWDh//nyJbYpjNBqpUaOGx0sIIUTV5Z6yPPQKJpsINepw4PqRLidf1nIS4mpnNps5ffq0x+vs2bPlvt6cOXNITExUe1wdPnyYH374gVdffZU2bdqQnZ1N/fr1MRgMvPDCC5w4cYJ///vfzJo1y+d7PfbYY7z66qu8+uqrHDt2jKeffrrIzNaXCw8PZ9SoUUycOJH09HS+++47hg8fjkbzZyrgTWwNGjRAURQ++OADfv/9d7Kzs4mIiGDChAmMHTuWNWvWcPz4cQ4ePMiyZctYs2aNz5/talKpEimz2cyRI0dISEggKSmJ+Ph4tm3bph63WCzs2rWLzp07A9C+fXv0er1Hm8zMTL777ju1jRBCCGEv6NoXHlJy176yGLQanIokUkJUFZs3byYhIcHj1aVL+au+NWvWZM+ePQwZMoTZs2fTtm1bbrrpJt58802ef/55IiMjiY2NZfXq1bzzzjskJyfz7LPP8s9//tPne917771MmzaNxx9/nPbt2/PTTz/x97//vdRznn/+eW6++WYGDBhAz5496dKlC+3bt1ePexNb3bp1mTFjBk888QRxcXE8+uijAMyaNYtp06Yxd+5cmjdvTp8+fXj//fdJSkry+bNdTRRnoJdZvsyECRO4/fbbqV+/PmfOnGH27Nns2rWLb7/9lgYNGvDcc88xd+5cVq1aRZMmTZgzZw47d+7k6NGjREREAPD3v/+dDz74gNWrVxMdHc2ECRP4448/2L9/v9f917OysoiMjOTixYtSnRJCCD/Is9jpucA1De72cV1x4lRn9Do8s49fu+o4nU4GTVsJTgdLHruX+rF/LlKZa7GpcdTBjAJsN35HyKTxEBZW5FqDnl6N025h1qjbaZVU9kx/FanwMwwxBLZroRDFyc/P5+TJkyQlJWEymYIdjhBeK+3Prre5QVA7mf7yyy/89a9/5ezZs8TGxnLDDTewZ88eGjRoAMCkSZPIy8tj9OjRnD9/no4dO7J161Y1iQJYuHAhOp2OwYMHk5eXR48ePVi9enXABwELIYQomRMnv17IU98HktlmB6dr7FOYqeSufb/hGhRdWnRanRabHXKDUJEK5jMUQghRVFATqfXr15d6XFEUpk+fzvTp00tsYzKZeOGFF3jhhRcqODohhBBVwaXcP5OeCFP5u/aBa+1DmxlyzdYrDUsIIcRVrlKNkRJCCCEqWrbZlUhpNRr0uivrraDXuX5/lERKCCGEJFJCCCGqNHc3PK1Wc8WL6LoTsTxJpIQQotqTREoIIUSVlpPvSnp0FTB21qB3VaTyS1mcUgghRPUgiZQQQogqzZ1IVcQkRO6uffkBXlBYCCFE5VP5loYWQghR5SgoNKkdrr4Himz7S25B9UivL/qVp6DQpFYojrN/gOL6dbG0aP6sSAW+a19xz1AIIUTwSCIlhBDC70IMWraN6+qxr/C2v+SZXdUjfTEVqRCDlm1/vx6ef96raxkL1rsyB6EiVdwzFEIIETzStU8IIUSV5p5hz90t70oY9a51qMxW6donhBDVnSRSQgghqjT3DHuGYrr2+cpUUJGySCIlhBDVnnTtE0II4Xd5FjsDlu4G4N+PdgHw2A4xXPlEECVxj2cy6IveI89iZ8CKL3Dkt1THSP3bcJiQEq5lMrgqUhZr4MdIFX6G/nxmQgghyiaJlBBCCL9z4uSHM9nqe6DItr+4u+EZi6lIOXHyw9lcIAR3GKVFE2IsSKRs9gqOsmzFPUMhhH/9/PPPDB06lDNnzqDT6Zg6dSr33HNPsMMSlYQkUkIIIQLOqNPy5gM3qO/9yT3ZhHt8U5E4hrYm/823GWFrVua1QgsSKat07ROiWtDpdCxatIg2bdpw5swZ2rVrR79+/QgLCwt2aKISkDFSQgghAk6rUeh0TQydrolBq/HvVN4Wm6sbnnvGvSJxNKxJR222V9cKMRoAsAahIiWECLyEhATatGkDQO3atYmOjubcuXPBDaoU3bp1Y8yYMSVue3OO8J4kUkIIIao091TlpmISKV+FFoyRstslkRLiavfRRx+hKEqJr8GDB3u0//LLL3E4HCQmJpZ63dOnT/OPf/yDRo0aYTQaSUxM5Pbbbyc9Pd2fH6dY7733HrNmzarQa0ri9Sfp2ieEECLgrHYHb35xCoC/Xl8fvdZ/v+u5xzO5J4ooEse+X7HYYr26VqjJdQ2b3YbT6URRZGFcIa5W3bt3JzMz02Of3W5nxIgRHDx4kKlTp6r7//jjD1JTU/nXv/5V6jUzMjK48cYbiYqKYt68eaSkpGC1WtmyZQuPPPII33//vV8+S0mio6MDer/qRipSQgghAs5qdzDt/w4x7f8OYbU7/Hov9wx7ISUkUtM2/8Bse32vrvVnIuXA6ZQJH4S4moWEhBAfH6++YmNjmTBhAgcPHmTHjh20atUKALPZzKBBg5g8eTKdO3cu9ZqjR49GURS++OIL7r77bpo2bUqLFi0YN24ce/bsUdtt3ryZLl26EBUVRUxMDP379+f48ePq8W7dupGWlsakSZOIjo4mPj6e6dOne9wrJyeH1NRUwsPDSUhIYP78+UXiKVw98uac0mIbPnw4u3btYvHixWrlLiMjAwCn08m8efNo1KgRISEhtG7dmg0bNpT6vK52kkgJIYTwOwWFulEh1I0KQSGwVRx3RSrEWHonjDqYqYu51OjCTQVjpOyOgHfvC+YzFKKqs9vtDBkyhG3btpGenq4mUU6nk+HDh3PLLbcwdOjQUq9x7tw5Nm/ezCOPPFLsZBRRUVHq+5ycHMaNG8e+fftIT09Ho9EwaNAgHI4/f1has2YNYWFh7N27l3nz5jFz5ky2bdumHp84cSIff/wxGzduZOvWrezcuZP9+/eXGqM355QW2+LFi+nUqRMPPPAAmZmZZGZmql0dn3rqKVatWsWKFSs4dOgQY8eOZciQIezatavUmK5m0rVPCCGE34UYtHz6xC3qdq4lcLPe2QoSqdCCiSJKst34HaFK6dWxMIMeJwpWuxO73Y6+mJkA/aXwMxSisivt/3ONomC6bG23K20begVjIO12O0OHDlWTqJSUFPXYp59+yltvvUVKSgqbNm0CYO3atWqidbkff/wRp9PJtddeW+Y977rrLo/tlStXUrt2bQ4fPkzLli0BSElJ4emnnwagSZMmLF26lPT0dHr16kV2djYrV67ktddeo1evXoAr8apXr16J9/T2nLJiMxgMhIaGEh8fr7bJyclhwYIF7Nixg06dOgHQqFEjdu/ezUsvvUTXrl3LfCZXI0mkhBBCVGlWtSJ15UlPiEGLAwWbw4HNJlOgC1Ga5GlbSjzWvVksq0Zcr263n7WdPGvxVd6OSdG89VAndbvLcx9zLsfi0Sbj2dvKFaM7idq6dSvp6em0bt3a43iXLl08qkSlcXf39Wbs5PHjx5k6dSp79uzh7Nmz6j1OnTrlkUhdLiEhgTNnzqjnWywWNWkB13ioZs1KXsbB23O8ia2ww4cPk5+fryZobhaLhbZt25b6LK5mkkgJIYSo0twJT1gFJFKhBYmU0wm5Zhvh4Vd8SSFEkLiTqC1bthSbRAEMGjSInTt30qNHjzLH+zRp0gRFUThy5AgDBw4ste3tt99OYmIir7zyCnXq1MHhcNCyZUsslj8TxMIVb0VR1KSmPGM0vT3Hm9gKc8f14YcfUrduXY9jRqPR51ivFpJICSGE8Lt8q53BL30OwNuX/bIcCLaCsUxhptITqcGWa9EAbxuOYCqhTYhei8OpgAK55pL/UeEPhZ/h5V2dhKiMDs/sU+IxTaGqzf6pPb1uu/vx7lcWGK4kKjU1lS1btrB9+3Z1rajC0tLSGDlyJGvWrCnzmtHR0fTp04dly5aRlpZWZJzUhQsXiIqK4o8//uDIkSO89NJL3HTTTa7PtHu3T/E3btwYvV7Pnj17qF/fNVnO+fPnOXbsWInd6Lw5x5vYDAZDkTGiycnJGI1GTp06VWW78RVHEikhhBB+53A6+eaXi+r7QHE6ndjtDjRAmKn0X0W/c7r+0eMoZSIHjUZBq9WAA3LM1ooMtUzBeoZClJcv45b81bY4DoeD1NRUNm3axIYNG0hISOD06dMebWJjY9FqtXTv3p2dO3d6fe3ly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs2aNYmJieHll18mISGBU6dO8cQTT/j0GcLDwxk1ahQTJ04kJiaGuLg4pkyZgkZT8jxy3pzjTWwNGzZk7969ZGRkEB4eTnR0NBEREUyYMIGxY8ficDjo0qULWVlZfPbZZ4SHhzNs2DCfPt/VQhIpIYQQVVaexY4GV9IRXkZFyls6nQ4sFvLMMkZKiKvRvn37WLduHQD9+vUrts358+c9ZtnzVlJSEgcOHOCZZ55h/PjxZGZmEhsbS/v27VmxYgUAGo2G9evXk5aWRsuWLWnWrBlLliyhW7duPt3r+eefJzs7mwEDBhAREcH48eO5ePHiFZ3jTWwTJkxg2LBhJCcnk5eXx8mTJ2nYsCGzZs2idu3azJ07lxMnThAVFUW7du148sknffpcVxNJpIQQQlRZl/ItoCZSpc/a5y29VosVyLMEtiIlhKgYHTt29Os6cAkJCSxdupSlS5eW2KZnz54cPnzYY9/lMRVXBXPPGugWHh7O2rVrWbt2rbpv4sSJHm0KX8ebc8qKrWnTpnz++edF4lMUhbS0NNLS0oocq6pkHSkhhBBVVk6+axyTTqug01XMmCL3dXKlIiWEENWaJFJCCCGqrJx8V9VIp9V5NSWxNwwFiVR+KTNYCSGEqPqka58QQogqy12R0mor7ndDfUEilWcpfs0bIUTV0adPHw4cOEBOTg716tVj48aNXHfddcEOS1QSkkgJIYQIiOgwQ6nb/uCeWU+nLblbX3SoHmduLkAp8/X9yaAmUoEfIxWIZyaE+NOWLSUvKiyEJFJCCCH8LtSg48BUzxXvC2/7Q647kdIV/3UXatBxYPyN8PzzXl/TWLBIptkS2DFSxT1DIYQQwSNjpIQQQlRZ7kTKUEETTQAYChbCzbdK1z4hhKjOJJESQghRZeUVJFL6EipS5WEsWAzUItOfCyFEtVZh3yw9e/bkxIkTnDhxoqIuKYQQoorIt9oZ9uoXAKwZeT2Ax7ZJX3EVo8u5xzEZ9MV/3eVb7Qx77SCO/GagKGhwssZwDFMp1zQWXMtsC2xFqvAz9NczE0II4R2vEqlvvvmGli1botGUXMAaNGgQZ8+erbDAhBBCVB0Op5O9J8+p74Ei2/6Qr3btK/7rzuF0sveni0AN97q9OMqYcsKdSFmsgR0jVdwzFEIIETxeJVJt27YlMzOT2rVr06hRI/bt20dMTIxHm0ceecQvAQohhKh6DFoNy+5rp773l/yCZMdoKL56Y9BqWHZXMub/e59xtmu8umaIITiJlBBCiMrFq2+vqKgoTp48CUBGRgYOh8OvQQkhhKjadFoNt6UkcFtKAjo/JlLumfWMJXTt02k13JZcm77aC15f02RwzdpnCXDXPiGEEJWLVxWpu+66i65du5KQkICiKHTo0AFtCWtyyBgpIYQQlYXZ6uraZyxIfiqCWpGSREoIIao1rxKpl19+mTvvvJMff/yRtLQ0HnjgASIiIvwdmxBCiCrKZnew5dD/AOjTIs5vVSl3RcpkKP7rzmZ3sOXwGcz2KK+vGVKQlNls0rVPCCGqM69n7evbty8A+/fv57HHHpNESgghRLlZ7A4eWXcAgMMz+/gtkXJXjUpKpCx2B4+8exjwbnwUQIjRdS2rVKSEEKJa83n681WrVvkjDiGEEFVcSBCm67YUdO0LMRjKbBuCd4lRqLGgImUPfCIVjGcohBCieBW2jtTy5cs5e/Ys06ZNq6hLCiGEqCJCDTqOzOqrbudaAtMtzl01CimhInW5/cavCFXKnkwpzJ1I2QI78VLhZyiEECK4Kqwvxbvvvsvq1asr6nJCCCHEFbNaCxIpUwVONuFOpBzStU+Iqu7nn3+mW7duJCcnk5KSwjvvvBPskEQlUmEVqfT09Iq6lBBCCFEhrAXd70KNZXft85a7ImW323E6nShK6Qv4CiGuXjqdjkWLFtGmTRvOnDlDu3bt6NevH2FhYcEOTVQCV1SRcjqdOGV1dSGEEGXIt9oZseoLRqz6gnxr4Co57pn13MlPaR62NmaEpQn5ztITo7CC6pbd4QzoorzBeoZCVGcJCQm0adMGgNq1axMdHc25c+eCG1QpunXrxpgxY0rc9uYc4b1yJVKvvfYarVq1IiQkhJCQEFJSUli7dm1FxyaEEKKKcDidfHz0dz4++juOAP4AZ1MrUmUnUp84IvnYEYUD7xIpgByz9coC9EGwnqEQVdVHH32EoiglvgYPHuzR/ssvv8ThcJCYmFjqdU+fPs0//vEPGjVqhNFoJDExkdtvvz0ovbfee+89Zs2aVaHXlMTrTz537VuwYAFTp07l0Ucf5cYbb8TpdPLpp5/y8MMPc/bsWcaOHeuPOIUQQgif2B1OHA4HWiA8pOK69pn0OhRFwel0kpNvJVpWAxHiqtS9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOUJDo6OqD3q258rki98MILrFixgueee44BAwZwxx13MG/ePJYvX86SJUv8EaMQQgjhs1yLDQ2uyk24qeISKUVR0Gpc05AHsiIlhKhYISEhxMfHq6/Y2FgmTJjAwYMH2bFjB61atQLAbDYzaNAgJk+eTOfOnUu95ujRo1EUhS+++IK7776bpk2b0qJFC8aNG8eePXvUdps3b6ZLly5ERUURExND//79OX78uHq8W7dupKWlMWnSJKKjo4mPj2f69Oke98rJySE1NZXw8HASEhKYP39+kXgKV4+8Oae02IYPH86uXbtYvHixWrnLyMgAXEN+5s2bR6NGjQgJCaF169Zs2LCh1Od1tfM5kcrMzCz2D1Hnzp2LZPVCCCFEsOTkW1Fwoijede3zhU6nKbiHpUKvK0RVkmuxlfgqPM7vStteKbvdzpAhQ9i2bRvp6elqEuV0Ohk+fDi33HILQ4cOLfUa586dY/PmzTzyyCPFTkYRFRWlvs/JyWHcuHHs27eP9PR0NBoNgwYNwuH4c1mFNWvWEBYWxt69e5k3bx4zZ85k27Zt6vGJEyfy8ccfs3HjRrZu3crOnTvZv39/qTF6c05psS1evJhOnTrxwAMPkJmZSWZmptrV8amnnmLVqlWsWLGCQ4cOMXbsWIYMGcKuXbtKjelq5nPXvsaNG/P222/z5JNPeux/6623aNKkSYUFJoQQQlyJ7IIkR6/RoNVW7EK2uoLr5ZoDN9mEEFeb5GlbSjzWvVksq0Zcr263n7WdvBImUemYFM1bD3VSt7s89zHncjx/xMh49rZyx2m32xk6dKiaRKWkpKjHPv30U9566y1SUlLYtGkTAGvXrlUTrcv9+OOPOJ1Orr322jLvedddd3lsr1y5ktq1a3P48GFatmwJQEpKCk8//TQATZo0YenSpaSnp9OrVy+ys7NZuXIlr732Gr169QJciVe9evVKvKe355QVm8FgIDQ0lPj4eLVNTk4OCxYsYMeOHXTq5Ppv1ahRI3bv3s1LL71E165dy3wmVyOfK1IzZsxg2rRp9O3bl1mzZjF79mz69u3LjBkzmDlzZrkDmTt3LoqieJQfnU4n06dPp06dOoSEhNCtWzcOHTrkcZ7ZbOYf//gHtWrVIiwsjAEDBvDLL7+UOw4hhBBVQ06+q9udTqdFo6mwZRMLrun6HTJXuvYJcVVzJ1Fbt24lPT2d1q1bexzv0qULDoeDr776Sn0Vl0QB6kzW3iyJcPz4ce677z4aNWpEjRo1SEpKAuDUqVNqm8sTOnDNIHjmzBn1fIvFoiYt4BoP1axZs1Lv6c053sRW2OHDh8nPz6dXr16Eh4err9dee82jy2JV43NF6q677mLv3r0sXLiQTZs24XQ6SU5O5osvvqBt27blCmLfvn28/PLLRf7AzJs3jwULFrB69WqaNm3K7Nmz6dWrF0ePHiUiwjW6d8yYMbz//vusX7+emJgYxo8fT//+/dm/f3+F/wIphBDi6uHudqfTVmwSBaDXub5f8qQiJUSJDs/sU+IxTaFkY//Unl633f149ysLrIA7idqyZUuxSRTAoEGD2LlzJz169ChzvE+TJk1QFIUjR44wcODAUtvefvvtJCYm8sorr1CnTh0cDgctW7bEYvmz0qbXe3ZJVhRF7fpXnuWHvD3Hm9gKc8f14YcfUrduXY9jRqPR51ivFuVakLd9+/a8/vrrFRJAdnY2999/P6+88gqzZ89W9zudThYtWsSUKVO48847AVf5MS4ujnXr1vHQQw9x8eJFVq5cydq1a+nZ0/U/4Ouvv05iYiLbt2+nT5+S/wcWQggROKEGXZGuN1fSFccb7mpRaT+qhRp0ZEztBs8/79O19QXXzLcGriJV3DMUojILNXj/z0x/tS2J3W4nNTWVLVu2sH37dnWtqMLS0tIYOXIka9asKfOa0dHR9OnTh2XLlpGWllZknNSFCxeIiorijz/+4MiRI7z00kvcdNNNAOzevdun+Bs3boxer2fPnj3Ur18fgPPnz3Ps2LESu9F5c443sRkMBux2z26YycnJGI1GTp06VWW78RWn4n+m89EjjzzCbbfdpiZCbidPnuT06dP07t1b3Wc0GunatSufffYZAPv378dqtXq0qVOnDi1btlTbFMdsNpOVleXxEkIIUbW4EymdruJ7J6gVqQoY5C6ECCyHw0FqaiqbNm3i9ddfJyEhgdOnT3u83IlC9+7d1V5Q3li+fDl2u53rr7+ed999lx9++IEjR46wZMkStUtdzZo1iYmJ4eWXX+bHH39kx44djBs3zqfPEB4ezqhRo5g4cSLp6el89913DB8+vNRuzN6c401sDRs2ZO/evWRkZHD27FkcDgcRERFMmDCBsWPHsmbNGo4fP87BgwdZtmyZV0no1erKU/oCPXv25MSJE5w4ccLrc9avX8+BAwfYt29fkWOnT58GIC4uzmN/XFwcP/30k9rGYDBQs2bNIm3c5xdn7ty5zJgxw+s4hRBCXH3yLa5ESq+rsK86lUHv7tonY6SEuNrs27ePdevWAdCvX79i25w/f95jlj1vJSUlceDAAZ555hnGjx9PZmYmsbGxtG/fnhUrVgCg0WhYv349aWlptGzZkmbNmrFkyRK6devm072ef/55srOzGTBgABEREYwfP56LFy9e0TnexDZhwgSGDRtGcnIyeXl5nDx5koYNGzJr1ixq167N3LlzOXHiBFFRUbRr167IBHVVSYV9uwwaNIizZ8963f7nn3/mscceY+vWrZhMphLbFR6w53Q6yxzEV1abyZMne2TXWVlZZa5SLYQQovzyrXbGvf0VAAsGtwHw2DbpK75q5K4W6Uvp2pdvtTNuwyHs5mtAAS2wQH+Ckr+VXAx619enOYAVqcLP0B/PTIjqoGPHjuUaY+SthIQEli5dytKlS0ts07NnTw4fPuyx7/KYdu7cWeQc96yBbuHh4axdu5a1a9eq+yZOnOjRpvB1vDmnrNiaNm3K559/XiQ+RVFIS0sjLS2tyLGqqsISqUceecSn9vv37+fMmTO0b99e3We32/nkk09YunQpR48eBVxVp4SEBLXNmTNn1CpVfHw8FouF8+fPe1Slzpw5U+qCaUajsUoPfBNCiMrG4XTy0beungL/vMf1hVx4u6LlFyQ5pXXtczidfHTkdyCagrV7+Scny7y2oaDKlW8LXCJV3DMUQggRPEEbI9WjRw++/fZbj+kkO3TowP33389XX31Fo0aNiI+P91h4zGKxsGvXLjVJat++PXq93qNNZmYm3333XZkrTwshhAgevVbDzDtaMPOOFuj9MKse/JlIGUrp2qfXapjZtwlPaUue1rc4xiBUpIQQQlQuXlWk3LPmeeO9997zql1ERIS64JhbWFgYMTEx6v4xY8YwZ84cmjRpQpMmTZgzZw6hoaHcd999AERGRjJq1CjGjx9PTEwM0dHRTJgwgVatWhWZvEIIIUTloddqSO3U0K/3MFsLEqlSusDptRpSr6tL7se/M9te3+truxOpfKskUkJUZX369OHAgQPk5ORQr149Nm7cyHXXXRfssEQl4VUiFRkZqb53Op1s3LiRyMhIOnToALi66V24cMGnhMsbkyZNIi8vj9GjR3P+/Hk6duzI1q1bPWZPWbhwITqdjsGDB5OXl0ePHj1YvXq1rCElhBDV3J+JVMVPNmEyuL5jLJJICVGlbdmyJdghiErMq2+XVatWqe8ff/xxBg8ezIsvvqgmK3a7ndGjR1OjRo0rCqbwgDhFUZg+fTrTp08v8RyTycQLL7zACy+8cEX3FkIIETh2h5MvTp4D4PqkaLSa0icRKg81kSpljJTd4eSLjPPk28N9urapYB0bi9VeRkshhBBVlc8/07366qvs3r3bo+Kj1WoZN24cnTt35nkfFzUUQghR/Zhtdv76yh4ADs/sUyELbBbmrhYZS6lImW12/rr2a6CZT9c26vWuewRwsgkhhBCVi88jfG02G0eOHCmy/8iRIzgcjgoJSgghhLhS7oqU0Q9JWoi7ImWTipQQQlRXPn+7jBgxgpEjR/Ljjz9yww03ALBnzx6effZZRowYUeEBCiGEuPqF6LUcntlHfZ8XgC5x1oIkx+TlGKkvDQcJVRyEUPaPgiFGV0XKFsCufYWfoRBCiODyOZH65z//SXx8PAsXLiQzMxNwLTw2adIkxo8fX+EBCiGEuPopiuKX7nulcXe787YiFao4CFW861kRYiyoSNkD17UvGM9QCCFEyXz+G1mj0TBp0iQmTZpEVlYWwBVPMiGEEEJUNFtBRSqkYDxTRQo16D3uIYQQovq5op+2JIESQgjhDbPNzpPvfQfAnDtbltG6Yqhd+7ys4jxpbYAWmKPPwFhG21B31z574BKpws/QWMpshEIIIfzPP8vJCyGEEJexO5y8e+AX3j3wC3aHMyD3dCdS7vFMZdnkqMW7jlrYKXsqdnWMlN2B0xmYzxOMZyiEEKJkkkgJIYSokux2dyJV8eOKwgsSKQ1O8q0yY60QQlRHkkgJIYSoktzd7kIMfhgjVZBIKTjJtchaUkIIUR1dUSL1yy+/yNpRQgghKh2n06lWpEK97NrnC51Oi06joMEZkKnchRBCVD5XlEglJyeTkZFRQaEIIYQQFcNs+/NHvjA/JFJarRa9VuOqSJmlIiVEVfXzzz/TrVs3kpOTSUlJ4Z133gl2SKISuaKO44EaYCuEEEL4It9qR4PrO8rbySZ8odFo0Gs15Fnt5ORbK/z6QojKQafTsWjRItq0acOZM2do164d/fr1IywsLNihiUpAxkgJIYSocnItNjQ40WoUjPqKn2xCo9Gg07q+QrPzLRV+fSFE5ZCQkECbNm0AqF27NtHR0Zw7dy64QZWiW7dujBkzpsRtb84R3ruib5cnn3yS6OjoiopFCCFEFRWi17L/qZ7qe6DIdkVydbdzotNo0GpLvn6IXsv+cZ1xLl0GgKJACGWP/VUUBV3BdXPNgUmkinuGQojy++ijj7jttttKPH7PPffw9ttvq9tffvklDoeDxMTEUq97+vRpnnnmGT788EN+/fVXateuTZs2bRgzZgw9evSosPi98d5776Gv4EXJu3XrRps2bVi0aFGFXvdqdEWJ1OTJkysqDiGEEFWYoijEhHsuc1t4uyK5u9vpNBo0mpI7XyiKQkyYATS+j3PS6dyJVGC69hX3DIUQ5de9e3cyMzM99tntdkaMGMHBgweZOnWquv+PP/4gNTWVf/3rX6VeMyMjgxtvvJGoqCjmzZtHSkoKVquVLVu28Mgjj/D999/75bOURAoe/iVd+4QQQlQ5eRZXcqPXaVCUshfYLY9AJ1JCiIoVEhJCfHy8+oqNjWXChAkcPHiQHTt20KpVKwDMZjODBg1i8uTJdO7cudRrjh49GkVR+OKLL7j77rtp2rQpLVq0YNy4cezZs0dtt3nzZrp06UJUVBQxMTH079+f48ePq8e7detGWloakyZNIjo6mvj4eKZPn+5xr5ycHFJTUwkPDychIYH58+cXiadwtz1vzikttuHDh7Nr1y4WL16MoigoiqJOPOd0Opk3bx6NGjUiJCSE1q1bs2HDhlKf19VOEikhhBB+Z7bZmbrpO6Zu+g6zzV5ku6K5kxuNRltqImW22Zn6n2M8aanPk5YGTLXWx+z0LvHS61ydOvIClEj5+5kJUZ3Z7XaGDBnCtm3bSE9PV5Mop9PJ8OHDueWWWxg6dGip1zh37hybN2/mkUceKXYyiqioKPV9Tk4O48aNY9++faSnp6PRaBg0aJDHskJr1qwhLCyMvXv3Mm/ePGbOnMm2bdvU4xMnTuTjjz9m48aNbN26lZ07d7J///5SY/TmnNJiW7x4MZ06deKBBx4gMzOTzMxMtavjU089xapVq1ixYgWHDh1i7NixDBkyhF27dpUa09Ws4kfgCiGEEIXYHU7W7vkJgMn9rgUosl2R3ImUTlf674V2h5O1X/4GxKn7Jut+8eoeen1gE6ninqEQlVlpi1VrFAXTZWP9rrRtqKH8/6S12+0MHTpUTaJSUlLUY59++ilvvfUWKSkpbNq0CYC1a9eqidblfvzxR5xOJ9deW/b/n3fddZfH9sqVK6lduzaHDx+mZcuWAKSkpPD0008D0KRJE5YuXUp6ejq9evUiOzublStX8tprr9GrVy/AlXjVq1evxHt6e05ZsRkMBkJDQ4mPj1fb5OTksGDBAnbs2EGnTp0AaNSoEbt37+all16ia9euZT6Tq5EkUkIIIQJOp9HwWI8m6vuKllfwDy19KRNNqHHc3ADr7s9Z7qjj0z0MBRWpfIt07ROiOMnTtpR4rHuzWFaNuF7dbj9re4mLW3dMiuathzqp212e+5hzOZ6TvGQ8W/KkEaVxJ1Fbt24lPT2d1q1bexzv0qWLR5WoNO5lgbzpTnz8+HGmTp3Knj17OHv2rHqPU6dOeSRSl0tISODMmTPq+RaLRU1awDUeqlmzZqXe05tzvImtsMOHD5Ofn68maG4Wi4W2bduW+iyuZj4nUps3byY8PJwuXboAsGzZMl555RWSk5NZtmwZNWvWrPAghRBCVC0GnYaxvZr67fruKpFeV3oiZdBpGNs1idy977Hc7Fsi5Z5W3SyJlBBXJXcStWXLlmKTKIBBgwaxc+dOevToUeZ4nyZNmqAoCkeOHGHgwIGltr399ttJTEzklVdeoU6dOjgcDlq2bInF8meCWHi2PUVR1KSmPGu5enuON7EV5o7rww8/pG7duh7HjMaqO0mOz4nUxIkTee655wD49ttvGT9+POPGjWPHjh2MGzeOVatWVXiQQgghhC/yra6KlE7nv44XhoJEyn0vIYSnwzP7lHhMU6hqs39qT6/b7n68+5UFhiuJSk1NZcuWLWzfvl1dK6qwtLQ0Ro4cyZo1a8q8ZnR0NH369GHZsmWkpaUVGSd14cIFoqKi+OOPPzhy5AgvvfQSN910k+sz7d7tU/yNGzdGr9ezZ88e6tevD8D58+c5duxYid3ovDnHm9gMBgN2u2f1MDk5GaPRyKlTp6psN77i+PwNc/LkSZKTkwF499136d+/P3PmzOHAgQP069evwgMUQghR9TgcTn78PRuAxrHhaDQVO7Nevpdd+xwOJz+eySHP4fsvpkaD69dicyljO4SoznwZt+SvtsVxOBykpqayadMmNmzYQEJCAqdPn/ZoExsbi1arpXv37uzcudPray9fvpzOnTtz/fXXM3PmTFJSUrDZbGzbto0VK1Zw5MgRatasSUxMDC+//DIJCQmcOnWKJ554wqfPEB4ezqhRo5g4cSIxMTHExcUxZcqUUpd78OYcb2Jr2LAhe/fuJSMjg/DwcKKjo4mIiGDChAmMHTsWh8NBly5dyMrK4rPPPiM8PJxhw4b59PmuFj7/STQYDOTm5gKwfft2UlNTAVcWnpWVVbHRCSGEqJLybXZ6L/wEcP1qfaX/MCrM3d3OUMbCtfk2O71f2gcU3++/NKaCRMpila59QlxN9u3bx7p16wBKLAKcP3/eY5Y9byUlJXHgwAGeeeYZxo8fT2ZmJrGxsbRv354VK1YAoNFoWL9+PWlpabRs2ZJmzZqxZMkSunXr5tO9nn/+ebKzsxkwYAARERGMHz+eixcvXtE53sQ2YcIEhg0bRnJyMnl5eZw8eZKGDRsya9Ysateuzdy5czlx4gRRUVG0a9eOJ5980qfPdTXx+ZurS5cujBs3jhtvvJEvvviCt956C4Bjx46VOlOIEEIIEShqRcqPXftMBcmfuYQB8kKIyqljx47lGmPkrYSEBJYuXcrSpUtLbNOzZ08OHz7sse/ymIqrgrlnDXQLDw9n7dq1rF27Vt03ceJEjzaFr+PNOWXF1rRpUz7//PMi8SmKQlpaGmlpaUWOVVU+f8MsXbqU0aNHs2HDBlasWKEOKPvPf/5D3759KzxAIYQQVz+TTst/J3VX3+f7eR0kd3LjnhDCG9sM32LCgQnvZugKKahIWW2BqUgVfoZCCCGCy+dEqn79+nzwwQdF9i9cuLBCAhJCCFH1aDQKidGhAbuf2eaqSJXVte9ydRULoYp3SRRAiLEgkQpQRSrQz1AIIUTpfE6kPvroI7RaLX36eM7EsnXrVux2O7feemuFBSeEEEKUh6VgJj1fKlK+CjUaALDZZLIJIaqqPn36cODAAXJycqhXrx4bN27kuuuuC3ZYopLweRXEJ554osiUh+CaAcXXGUeEEEJUDxabgzkfHWHOR0ew2Lyv+pT7flZ3Rcr7ROp5W13mWOthcXo3g6C7ImUr5jvRHwL9DIUQsGXLFn7//Xdyc3P55ZdfJIkSHnxOpH744Qd1+vPLXXvttfz4448VEpQQQoiqxeZw8PInJ3j5kxPYHIFIpFzJTYgPswGussfzsj0BG94lUqGmwCZSgX6GQgghSudzIhUZGcmJEyeK7P/xxx+LLDwmhBBCBIO1ILkxVfC06pcLK+jaZ/fzxBlCCCEqJ58TqQEDBjBmzBiOHz+u7vvxxx8ZP348AwYMqNDghBBCiPKwFoxbMun1frtHRIgrkXI67djsUiESQojqxudE6vnnnycsLIxrr72WpKQkkpKSaN68OTExMfzzn//0R4xCCCGET6wFVSKjPytSBYmUBic5FplwQgghqhufv2EiIyP57LPP2LZtG19//TUhISGkpKRw8803+yM+IYQQwme2gkQq1Oi/ilSIQY9GUXA4nWTnWYgsSKyEEEJUD+X6qU5RFHr37k3v3r0rOh4hhBDiitnsdnRAiNF/FSmNRoNOo8Fit5Odb/HbfYQQQlROXn3DLFmyhAcffBCTycSSJUtKbZuWllYhgQkhhBDl4XQ61UQq1OC/ipSiKGh1WrDbyZFESgghqh2vEqmFCxdy//33YzKZWLhwYYntFEWRREoIIUQRJp2WrWNvVt8DRbYrisXuQHE6QflzradS43roOhyvvgqARgET3k8codW6Ys8NQCJV3DMUQggRPF4lUidPniz2vRBCCOENjUahaVyEx77C2xUlz2JHoziBssdIaTQKTWuHgTa/XPdSEymztVzn+6K4ZyiEECJ4fJ61b+bMmeTm5hbZn5eXx8yZMyskKCGEEKK88qx2NDjRahSMev+NkQLQ61zXD0QiJYQQonLxOZGaMWMG2dnZRfbn5uYyY8aMCglKCCFE1WKxOVi47RgLtx3DYnMU2a5IeRY7Ck50GkWtGJUa166T/NNSh39a67LQWgeLU/H6Xu5EKi8AiZQ/n5kQomp5+eWXSUxMRKPRsGjRomCHU2X5nEg5nU4UpeiXzNdff010dHSFBCWEEKJqsTkcLE7/gcXpP2BzOIpsV6Rciw0NTnQaDRpN6V9zNoeDxZ/8xFJHXZba67DYXhcbPiRSeleiFohEyp/PTIjq6PTp0/zjH/+gUaNGGI1GEhMTuf3220lPTw92aMVavXo1UVFRZbbLysri0Ucf5fHHH+fXX3/lwQcf9H9w1ZTXfR5q1qyJoigoikLTpk09kim73U52djYPP/ywX4IUQghRtWg1CkNvaKC+r0g5BUmNXquUmUhpNQpDO9TBeuAg6x1xPt/LUNB1MM8iXfuEuJpkZGRw4403EhUVxbx580hJScFqtbJlyxYeeeQRvv/++3Jd12q1otcXHZtZ0n5/OHXqFFarldtuu42EhIRi2wQynqrM64rUokWLWLBgAU6nkxkzZrBw4UL19eKLL7J7926WLVvmz1iFEEJUEUadllkDWzJrYEuMFTwDXU6+O5HSlNm1z6jTMuvWpkzT/1Kue7nHYJlljJQQLk4n5OQE7+V0ehXm6NGjURSFL774grvvvpumTZvSokULxo0bx549e9R2p06d4o477iA8PJwaNWowePBg/ve//6nHp0+fTps2bXj11VfVypa799aLL77IHXfcQVhYGLNnzwbg/fffp3379phMJho1asSMGTOw2Wzq9S5cuMCDDz5IXFwcJpOJli1b8sEHH7Bz505GjBjBxYsX1cLG9OnTi3yu1atX06pVKwAaNWqEoihkZGSUGOfFixd58MEHqV27NjVq1OCWW27h66+/9rjms88+S1xcHBEREYwaNYonnniCNm3aqMe7devGmDFjPM4ZOHAgw4cPV7ctFguTJk2ibt26hIWF0bFjR3bu3OkRd1RUFFu2bKF58+aEh4fTt29fMjMzPa776quv0qJFC4xGIwkJCTz66KMAjBw5kv79+3u0tdlsxMfH82rBrKz+4HVFatiwYQAkJSVx4403otP5dwCvEEIIUR5qIqXTFtsVvSIZCn7RzbfaymgpRDWRmwvPPx+8+0+cCGFhpTY5d+4cmzdv5plnniGsmLbu7nNOp5OBAwcSFhbGrl27sNlsjB49mnvvvdcjCfjxxx95++23effddz1+vHn66aeZO3cuCxcuRKvVsmXLFoYMGcKSJUu46aabOH78uNrt7umnn8bhcHDrrbdy6dIlXn/9da655hoOHz6MVqulc+fOLFq0iGnTpnH06FEAwsPDi8R+7733kpiYSM+ePfniiy9ITEwkNja2xDhvu+02oqOj+eijj4iMjOSll16iR48eHDt2jOjoaN5++22efvppli1bxk033cTatWtZsmQJjRo18v6/CTBixAgyMjJYv349derUYePGjfTt25dvv/2WJk2aAK75Fv75z3+ydu1aNBoNQ4YMYcKECbzxxhsArFixgnHjxvHss89y6623cvHiRT799FMA/va3v3HzzTeTmZmpVuE++ugjsrOzGTx4sE+x+sLnbCgiIoIjR46o2e7//d//sWrVKpKTk5k+fToGg6HCgxRCCFG1OJ1OzuW41l6KDjNUaMLj7tqn86LS5Y4jz1m+HwdNBRUpi1UqUkJcLX788UecTifXXnttqe22b9/ON998w8mTJ0lMTARg7dq1tGjRgn379nHdddcBrmrL2rVr1YTF7b777mPkyJHq9tChQ3niiSfU4kSjRo2YNWsWkyZN4umnn2b79u188cUXHDlyhKZNm6pt3CIjI1EUhfj4+BJjDgkJISYmBoDY2FiPtoXj3LFjB99++y1nzpzBaDQC8M9//pNNmzaxYcMGHnzwQRYtWsTIkSP529/+BsDs2bPZvn07+fneLxlx/Phx3nzzTX755Rfq1KkDwIQJE9i8eTOrVq1izpw5gKu74Ysvvsg111wDwKOPPuoxI/js2bMZP348jz32mLrP/d+gc+fONGvWjLVr1zJp0iQAVq1axT333FNswllRfJ5s4qGHHuLYsWMAnDhxgnvvvZfQ0FDeeecdNXAhhBCiNHlWO+1nb6f97O3kWe0Ve23znxUpr+JY8BldLK3LdS+jwVWRMktFSoirhrOg+19ZP+AcOXKExMRENYkCSE5OJioqiiNHjqj7GjRoUCSJAujQoYPH9v79+5k5cybh4eHq64EHHiAzM5Pc3Fy++uor6tWrpyZRFa1wnPv37yc7O5uYmBiPmE6ePMnx48cB1zPo1KmTx3UKb5flwIEDOJ1OmjZt6nGfXbt2qfcBCA0NVZMogISEBM6cOQPAmTNn+O233+jRo0eJ9/nb3/7GqlWr1PYffvihRyLrDz7/BHfs2DG1X+Q777xD165dWbduHZ9++il/+ctfZIpFIYQQQeVe08kQgC7opoJEylLByaAQwn+aNGmCoigcOXKEgQMHltiupJmqC+8vrntgcfsdDgczZszgzjvvLNLWZDIREhLi5Scon+LiSUhI8Oim6ObN7IBuGo1GTU7drJdV6R0OB1qtlv379xcZt3p5tajw5BeKoqjX9ebZpKam8sQTT/D555/z+eef07BhQ2666SavP0d5+Pwt43Q6cRRMu7p9+3Z1YFdiYiJnz5716VorVqxgxYoVZGRkANCiRQumTZvGrbfeqt5rxowZvPzyy5w/f56OHTuybNkyWrRooV7DbDYzYcIE3nzzTfLy8ujRowfLly+nXr16vn40IYQQfmLUafm/R25U35tt/ks88vJdXQYNPi7G+5b+CCbFiRHvpxYPMbruYbX5v2tf4WcoRKUUGuoapxTM+5chOjqaPn36sGzZMtLS0ookGBcuXCAqKork5GROnTrFzz//rFalDh8+zMWLF2nevLnPobVr146jR4/SuHHjYo+npKTwyy+/cOzYsWKrUgaDAbu94v7ubNeuHadPn0an09GwYcNi2zRv3pw9e/aQmpqq7rt8Mg5wdSG8fFIIu93Od999R/fu3QFo27YtdrudM2fOlDuxiYiIoGHDhqSnp6vXLSwmJoaBAweyatUqPv/8c0aMGFGue/nC50SqQ4cOzJ49m549e7Jr1y5WrFgBwMmTJ4mL823q2Hr16vHss8+qf6DWrFnDHXfcwcGDB2nRogXz5s1jwYIFrF69mqZNmzJ79mx69erF0aNHiYiIAGDMmDG8//77rF+/npiYGMaPH0///v2LzXqFEEIEh1aj0DoxKiD3yrW4utm513jyVitNLqGKb+szuStS1gB07QvkMxSi3BSlzMkeKoPly5fTuXNnrr/+embOnElKSgo2m41t27axYsUKjhw5Qs+ePUlJSeH+++9n0aJF6mQTXbt2LdJtzxvTpk2jf//+JCYmcs8996DRaPjmm2/49ttvmT17Nl27duXmm2/mrrvuYsGCBTRu3Jjvv/8eRVHo27cvDRs2JDs7m/T0dFq3bk1oaCihXiSOJenZsyedOnVi4MCBPPfcczRr1ozffvuNjz76iIEDB9KhQwcee+wxhg0bRocOHejSpQtvvPEGhw4d8hi7dcsttzBu3Dg+/PBDrrnmGhYuXMiFCxfU402bNuX+++8nNTWV+fPn07ZtW86ePcuOHTto1aoV/fr18yre6dOn8/DDD1O7dm11Uo5PP/2Uf/zjH2qbv/3tb/Tv3x+73a6ORfMnn8dILVq0iAMHDvDoo48yZcoUNQnasGEDnTt39ulat99+O/369aNp06Y0bdqUZ555hvDwcPbs2YPT6WTRokVMmTKFO++8k5YtW7JmzRpyc3NZt24dABcvXmTlypXMnz+fnj170rZtW15//XW+/fZbtm/f7utHE0IIUQXkF6zpZAzAGimhJtcES1Y/VtiEEBUvKSmJAwcO0L17d8aPH0/Lli3p1asX6enpapFAURQ2bdpEzZo1ufnmm+nZsyeNGjXirbfeKtc9+/TpwwcffMC2bdu47rrruOGGG1iwYAENGjRQ27z77rtcd911/PWvfyU5OZlJkyapVajOnTvz8MMPc++99xIbG8u8efOu6BkoisJHH33EzTffzMiRI2natCl/+ctfyMjIUIsj9957L9OmTePxxx+nffv2/PTTT/z973/3uM7IkSMZNmwYqampdO3alaSkpCJVo1WrVpGamsr48eNp1qwZAwYMYO/evR7jz8oybNgwFi1axPLly2nRogX9+/fnhx9+8GjTs2dPEhIS6NOnjzqxhT8pzsKdGsspPz8frVZb7sW97HY777zzDsOGDePgwYOYTCauueYaDhw4QNu2bdV2d9xxB1FRUaxZs4YdO3bQo0cPzp07R82aNdU2rVu3ZuDAgcyYMcOre2dlZREZGcnFixepUaNGueIXQghRMovNwapPTwIw4sYkbA4HydO2AHB4Zh9CDRU3nmncqh2cOP4jt7RpTNrdt5TaNtdiU+MYr/0Fg+JkhPZ/GCZN8OpX9fRvMnjh7a1EhYex+on7KyT+khR+hgadz7+FClHh8vPzOXnyJElJSZhMpmCHIwJg+vTpbNq0ia+++irYoRSRm5tLnTp1ePXVV4sdi3a50v7sepsbVNg3V3n/5/n222/p1KkT+fn5hIeHs3HjRpKTk/nss88AinQXjIuL46effgLg9OnTGAwGjyTK3eb06dMl3tNsNmM2m9XtrKyscsUuhBDCOzaHg7n/+R6AoZ0alNH6yuQXdO0LMfr2w958u2ts7VDtGbxdyMNdkbLZ/d+1r/AzNPjeqUQIIaokh8PB6dOnmT9/PpGRkQwYMCAg9/UqkYqOjubYsWPUqlWLmjVrljpd5Llz53wKoFmzZnz11VdcuHCBd999l2HDhrFr1y71eOF7lTSDii9t5s6d63W1SgghxNXFUjDxg3v8kj+Fm1z3sNvtXn0/CSGEqHinTp0iKSmJevXqsXr1anQBmLUVvEykFi5cqE7usHDhwgr9ojAYDOo4qw4dOrBv3z4WL17M448/DriqTu4VisE1L7y7ShUfH4/FYuH8+fMeVakzZ86UOl5r8uTJjBs3Tt3OysryqY+mEEKIystcUJEKRCIVVrCIpc3ukERKCFEtTJ8+nenTpwc7DA8NGzYsMgV7IHiVSF0+68Xw4cP9FQvgqiaZzWaSkpKIj49n27Zt6hgpi8XCrl27eO655wBo3749er2ebdu2MXjwYAAyMzP57rvvSh2AZzQa1RWchRBCVC3uGfRCA5FIFVSkbA4HdrsdjUa62wkhRHXhc91Lq9WSmZlJ7dq1Pfb/8ccf1K5d26f57Z988kluvfVWEhMTuXTpEuvXr2fnzp1s3rwZRVEYM2YMc+bMoUmTJjRp0oQ5c+YQGhrKfffdB0BkZCSjRo1i/PjxxMTEEB0dzYQJE2jVqhU9e/b09aMJIYSoAiwFiZTJ6P+uHaFGHU4UcDrJNVuJDMBMgUIIISqHci3IWxyz2YzB4O3wXJf//e9/DB06lMzMTCIjI0lJSWHz5s306tULgEmTJpGXl8fo0aPVBXm3bt2qdjMEV1dDnU7H4MGD1QV5V69eLWtICSFENWW129ECYSbfvpPKI9Sgw4GCFic5+VYiw/1+SyEqJYfDtzXYhAi2ivgz63UitWTJEsA1+cO//vUvwsP//Law2+188sknXHvttT7dfOXKlaUeVxSlzH6YJpOJF154gRdeeMGnewshhKiarFYbWiDU5P/qkFajuLrzORzkmC1+v58QlY3BYECj0fDbb78RGxuLwWCQsYKiUnM6nVgsFn7//Xc0Go3PhaDLeZ1ILVy4UL35iy++6FHxMRgMNGzYkBdffLHcgQghhKi6jDotbz5wg/oeKLJdEewOp+tXRgXCjWV/ORp1Wt4c2hrHm2+B4lql3ohvv1LqtFrsDhu5+dZyRu2d4p6hEMGm0WhISkoiMzOT3377LdjhCOG10NBQ6tevf0VjW71OpE6edC0C2L17d957770iazcJIYQQJdFqFDpdE+Oxr/B2Rci12NDi6oLuTdc+rUahU8OaoLtU7nvqdVrsVsgx+zeRKu4ZClEZGAwG6tevj81m82msvBDBotVq0el0V1w99XmM1Mcff3xFNxRCCCH8JddiR6M40CiKzwvylpeuoIdGrp8TKSEqM0VR0Ov16GXCFVGNlGtKo19++YV///vfnDp1CovFs0/4ggULKiQwIYQQVYfV7uDNL04B8Nfr6wN4bOu1FTNteI7ZhgYneq3i1YKMVruDN/f9it1aGxTQAn/V/o4v/xTUF3Szy7P4N5Eq/Awr6pkJIYQoH58TqfT0dAYMGEBSUhJHjx6lZcuWZGRk4HQ6adeunT9iFEIIcZWz2h1M+79DANzdvh6Ax3bFJ1Jar2ZvtdodTNv8A9BA3Xe39qxPiZQ7Ycsz23yM1jeFn6EkUkIIEVw+/y08efJkxo8fz3fffYfJZOLdd9/l559/pmvXrtxzzz3+iFEIIUQVo1EU+rWKp1+reDQVOMNXjtmGghO9VuNVIqVRFPo1j6W3cq7c9zQEqCIlhBCicvE5kTpy5AjDhg0DXL/C5eXlER4ezsyZM3nuuecqPEAhhBBVj0mvZfn97Vl+f3tM+oqbgS473wyAXqt4lUiZ9FqW392CRYaT5b6noSB+s8W/FSkhhBCVi8+JVFhYGGaz64uqTp06HD9+XD129uzZiotMCCGE8FFOnqsqVBGzMXnLoHN1BMyXipQQQlQrPo+RuuGGG/j0009JTk7mtttuY/z48Xz77be899573HDDDf6IUQghhPCKe1FcfQDXWTIWVKTyrVKREkKI6sTnRGrBggVkZ2cDMH36dLKzs3nrrbdo3LixumivEEIIUZpci43kaVsAODyzD6GGck0iW0RewRTkei9m7FPjmLUTaF/uexoLYpeufUIIUb34/M3VqFEj9X1oaCjLly+v0ICEEEKI8spVK1IVk5h5w6gvSKSkIiWEENVKuRKpffv2ERPjubr6hQsXaNeuHSdOnKiw4IQQQlQNBq2GV4d3UN9b7A6/3Mc9BbmxHBWuFbofMCpODPgWm6ngXhar3ed7+qLwMxRCCBFcPn/TZGRkYLcX/bIwm838+uuvFRKUEEKIqkWn1XDLtXHqtv8SKVfXPkM5KlJdtVmEKr7HZTK4Jpuw2PxbkSr8DIUQQgSX1980//73v9X3W7ZsITIyUt222+2kp6fTsGHDCg1OCCGE8EW+1ZVIlaciVV4haiLl34qUEEKIysXrb5qBAwcCoCiKuo6Um16vp2HDhsyfP79CgxNCCFE1WO0ONh109VoY2Lau3+6TXzDhg1Gv9/ncjfYYDDgYqD2HL2eHFCRtNj9XpAo/Q7107xNCiKDyOpFyOFzdHZKSkti3bx+1atXyW1BCCCGqFqvdwcQN3wBwW0qC3+5jLljLKcToe0Vqiq0hALdpz/uUSJmMrtZWP1ekCj9DSaSEECK4fP6mOXmy/Ku/CyGEEP7knjnPaPC9IlVeoQFKpIQQQlQuXv+ctXfvXv7zn/947HvttddISkqidu3aPPjgg5jN5goPUAghhPCWpSCRCg1oImUAKHYiJiGEEFWX14nU9OnT+eabb9Ttb7/9llGjRtGzZ0+eeOIJ3n//febOneuXIIUQQghvuBOpEGMgE6mCMVKSSAkhRLXidSL11Vdf0aNHD3V7/fr1dOzYkVdeeYVx48axZMkS3n77bb8EKYQQQnjDPeFDqClwiVS4qaAiJV37hBCiWvE6kTp//jxxcX+uX7Fr1y769u2rbl933XX8/PPPFRudEEII4QP3FOShAaxIhRUkbQ6nQ8ZJCSFENeJ1IhUXF6dONGGxWDhw4ACdOnVSj1+6dAl9OaabFUIIISqKuyIVVlAlCoSwy6pf2QULAgshhKj6vJ61r2/fvjzxxBM899xzbNq0idDQUG666Sb1+DfffMM111zjlyCFEEJc3QxaDcvua6e+B4psXymr3YHT4QAFwo1G7+O6Kxn7/7kWndcqYMDh031Neh0aRcHhdJKTb6FmmMnn2L1R3DMUQggRPF4nUrNnz+bOO++ka9euhIeHs2bNGgyGP3/xe/XVV+ndu7dfghRCCHF102k1RdaPquj1pHItdjQ4Ac8qUZlxJdeGD8+X+74ajQatRovDbiMn338VqeKeoRBCiODxOpGKjY3lv//9LxcvXiQ8PBytVutx/J133iE8PLzCAxRCCCG8kWuxoVEcaDWKukhuoGh1Gqx2yPVjIiWEEKJy8XlB3sjIyGL3R0dHX3EwQgghqiab3cGWQ/8DoE8L18RFl2/rKqCrWo7ZjhYneq2myI99pcZ1+Ax2W03A1bWvj+a8z1+OuoL75VosPp7pvcLPsCKemRBCiPLzOZESQgghfGWxO3hk3QEADs/sA+CxXSGJVL4FBSd6jeJ1ImWxO3jk3cNAY3XfYeP+cidSOWabj2d6r/AzlERKCCGCSxIpIYQQAadRFDomRavvK4J7xjxfKlIaRaFjg0jsP/3Ml9Qo9711Otf98mTWPiGEqDYkkRJCCBFwJr2Wtx7qVHZDH+Tku7rV6XRaNBrvqjUmvZa3UtuSO28Hyeb25b63Qef6OpVESgghqg/pFyCEEKJKyM5zJVJ6nXfVqIrkvmeexX9d+4QQQlQukkgJIYSoEvLUilTgF4c36KUiJYQQ1Y107RNCCBFwuRYbXZ77GIDdj3cn1HDlX0c55oKKlN77a+VabHSZ/ylOc8oV3dugd1WkzFKREkKIakMSKSGEEEFxLqdipwp3V6QMet8qUudyrcCVVbEMBVWwfKskUkIIUV1IIiWEEMLv9FoNz9+dor632h0Vfo+8goqUsZzVrWd0GRhwoMfp87lGd0XKj4lU4WcohBAiuCSREkII4Xd6rYZ7OiSq2/5IpPItrvFJvlak3AZp/yBUKV9c7uTN34nU5c9QCCFEcMlPWkIIIaoEc0EiZTIYAn5vo97/iZQQQojKRSpSQggh/M5md/DJD78DcHOTWL/cw12RCjGWryK1y14Do+LkZs1Fn78cQwoqUlY/JlKFn6FOuvcJIURQSSIlhBDC7yx2ByNXfwnA4Zl9/HIPdxITYipfRervtiYAHDbu9/nL0WRwJW8Wm/8SqcLPUBIpIYQILvlbWAghRJVgsboqUqHGwHftc1fBLFZ7wO8thBAiOCSREkIIUSW4K1Jh5axIXQl31z6bTRIpIYSoLiSREkIIUSXYbAUVqWAkUgVVMKtdJpsQQojq4v/bu/P4SMo68eOfqr670+l07nsymcx9nzDcLJeIIsvuD1ddRWHdVdGFH67Xuqv81MVdEGUVZV0XEWUFL0RFBUbkhuGY+57MJJnJfafvu+r3R6eL9CSZyTmdGb7v12tek+5UVz/1pLuqvs/xfSSQEkIIcVZIpdK9QW6H7bS/t8suPVJCCPF2I4GUEEKIM56u6ySHEz24chBIOYdTrickkBJCiLcNCaSEEEKc8ZLJJMnhRX5z0SPldqQDqZSmkdL00/7+QgghTj9Jfy6EEGLWWUwqX3nPcuNnYNTj6QjH4mi6jo5CnmPi60hZTCpfecdCUlv+BAqYAAuTD4Tcw++pohGMJfFMogwTNVYdCiGEyB0JpIQQQsw6i0nlQ5vrsp478fF0BCNxAFKouKwTv7RZTCof2lgFz/VM6/2ddhsmVQFNxx+Jz1ogNZN1JoQQYnqkSUsIIcQZLxCJpX9Q1ZwsVGs2m7ENv28gHDvt7y+EEOL0y2kg9fWvf52NGzfidrspLS3luuuu49ChQ1nb6LrOHXfcQWVlJQ6Hg0suuYR9+/ZlbROLxfjUpz5FcXExLpeLa6+9lra2ttN5KEIIIU4ipem8erSfV4/2k9L0UY+nKzQcSJlNkxtokdJ0Xm0Z5OWkm5dTbl5NuUlNoTiKomC2pN/bN0uB1EzXmRBCiOnJaSD1/PPPc8stt7B161a2bNlCMpnkyiuvJBQKGdvcddddfPOb3+S+++7jjTfeoLy8nCuuuIJAIGBsc9ttt/HrX/+aRx99lJdeeolgMMi73vUuIxWuEEKI3IolU7zvB1t53w+2EkumRj2ertDw0D6zeXJD6mLJFO/7yS4+kFzCBxJLeF9iCbEpXhrN5nQgNVs9UjNdZ0IIIaYnp3OknnzyyazHDz74IKWlpWzbto2LLroIXde59957+eIXv8j1118PwEMPPURZWRk//elP+Yd/+Ad8Ph8PPPAAP/nJT7j88ssBePjhh6mpqeFPf/oTV1111Wk/LiGEECenoLCwNM/4ebpCseEeKbNp8uUodqL19XMUx7TKYLWkg7hgRIb2CSHE28GcmiPl8/kAKCwsBKC5uZmuri6uvPJKYxubzcbFF1/MK6+8AsC2bdtIJBJZ21RWVrJixQpjmxPFYjH8fn/WPyGEEKePw2piy+0Xs+X2i3FYJxf8jCUcTQBgsU6uR8phNbHl45v4nW3/tMtgHR7aJ4GUEEK8PcyZQErXdW6//XYuuOACVqxYAUBXVxcAZWVlWduWlZUZv+vq6sJqteL1esfd5kRf//rX8Xg8xr+ampqZPhwhhBCnUTiWHtpns8x8tryJsg0HccGoBFJCCPF2MGcCqU9+8pPs3r2bRx55ZNTvFCV72Ieu66OeO9HJtvnCF76Az+cz/rW2tk694EIIIXIuOhxIWedAIBWOxnNWBiGEEKfPnAikPvWpT/Hb3/6WZ599lurqauP58vJygFE9Sz09PUYvVXl5OfF4nMHBwXG3OZHNZiM/Pz/rnxBCiNMnEk9xxTef54pvPk8kPv3ECdFYemifbZJD+yLxFFfc/zrvji2bdhkcNmt6n8PDDIUQQpzdchpI6brOJz/5SR577DH+/Oc/M3/+/Kzfz58/n/LycrZs2WI8F4/Hef755znvvPMAWL9+PRaLJWubzs5O9u7da2wjhBBibtHRaewJ0tgTRGf6qbxj8XTw4rBNLpDS0WnsC0870QSAc/i9I3HpkRJCiLeDnGbtu+WWW/jpT3/Kb37zG9xut9Hz5PF4cDgcKIrCbbfdxp133snChQtZuHAhd955J06nk/e///3GtjfffDOf/vSnKSoqorCwkH/6p39i5cqVRhY/IYQQuWVWVb5w9RLj56Smzej+Y4l0IGW3Wqe8j0+b2rAqOuYpBnaZHqlofHZ6pE6sQyGEELmV00Dq/vvvB+CSSy7Jev7BBx/kwx/+MACf/exniUQifOITn2BwcJBzzjmHp59+GrfbbWz/rW99C7PZzA033EAkEuGyyy7jRz/6ESbT9DNBCSGEmD6rWeUfLl5gPE7GZzaQig8HL85J9kiNdLO5G6cy9XK5HDbgrd6xmXZiHQohhMitnAZSun7qVj9FUbjjjju44447xt3Gbrfzne98h+985zszWDohhBBnikQyCYDDPvUeqely2dOBVHyWAikhhBBzS04DKSGEEG8PKU1nb3t6rcAVVZ4Z3beu60Yg5ZpGILVHc2JXdFYoIaYynsHtSL93PJGcchlO5sQ6NKnTX8hYCCHE1EkgJYQQYtbFkine892XAdj/latmdN+pVIpEMj0kL9MrNBXvTSwFYL9tG84pvD5veGjfbAVSJ9ah0yqXcCGEyCWZrSqEEOKMlkwmSaQ0dBRc9tytI5XvTAdSydTsBFJCCCHmFgmkhBBCnNE0TSOR0tBQcFpzl2TI40oHUqlkEm2GsxIKIYSYeySQEkIIcUZLpVIkUjoaCi5b7oa7eZx2ADRdJxiRtaSEEOJsJ4GUEEKIM1o6kNLQdDWnPVJ5dgs66QQQvnA0Z+UQQghxekggJYQQ4oyWCaRSKDlNwKAoCiZz+v394VjOyiGEEOL0kEBKCCHEGS2ZTBIfniPlymGPFIBlOJAKSCAlhBBnPcmdKoQQYtaZVZVbL1to/AyMejxV0UQSXSedbGKSc6TMqsqtF80j9dIroCiY0DFz6sXix2OxWIhFIwQiMx9IjVWHQgghckcCKSGEELPOalb5v1csynruxMdTFRpO7KCh4LBMrkfKalb5vxfPh9d/OSNlsVrSl9XgLARSY9WhEEKI3JEmLSGEEGe0YDQdSFlMJkyqktOyWC3pdaxCUcnaJ4QQZzvpkRJCCDHrNE3nSG8QgIaSPICsx+o0AqBgNAGAbQqJJjRN50hPCC2VTl2uKtCgRKfcymi3zV4gdWIdTqfOhBBCTJ8EUkIIIWZdNJniym+9AMD+r1wFkPV4Otn2MkGL3WqZWrm+/waw0nhuv20bzimWJVOG8CwEUifWYS4zFAohhJBASgghRI4Uuqwzsp9wLAlMLZACKHRa0MNhBpna60dy2GwARGIytE8IIc52EkgJIYQ47ZxWM9v/9YoZ2Vd4OGhxTKGHxmk1s/3T5xO+6x6WxdZPuyxOezoYi8YS096XEEKIuU2STQghhDijRYaDFodt+j1K0+WypXvZYnEJpIQQ4mwngZQQQogzWmQ4aHHaZmao4HS4HOmhfdGEBFJCCHG2k6F9QgghTrtoIsWNP3wdgIdu2oR9kus/Ze0rnp4j5ZxCj1Q0keLGH+8gFVs45fcfKc+RDuYSEkgJIcRZTwIpIYQQp52m67zWPGD8PB3R4R4pl33ygZSm67x2zAfkT6sMGW8FUqkZ2Z8QQoi5SwIpIYQQs86sqvz9RfXGz0lNm7F9xxLpHimXfXpD+z5i6sKCjpmpB3b5w0P74smZ75E6sQ6FEELklgRSQgghZp3VrPLP71xqPE7GZy6Qig8P7XM7ppds4jPmdpzK9MrldqYDqUQyhaZpqDMY8JxYh0IIIXJLmrSEEEKc0eLJTCBly3FJwDMcSMWSGqmUDO8TQoizmQRSQgghZp2m6bQOhGkdCKNp05sTNZKu68SHh/bl2acXSLXrVlo1K9MpXoHTio5CStMJR2d2Ud7ZqkMhhBBTI4GUEEKIWRdNprjwrme58K5niSZnrqdG0zTiyfRwvHzn9Ib2XRFfyYXx1USncWl0Wc1oKAAMhWPTKs+JZqsOhRBCTI0EUkIIIc5YmqYRT6UDqcywulxSVQWzOT392D/DgZQQQoi5RQIpIYQQZ6xkMkk8qaGjkO/I/YK8ADZLJpCa2aF9Qggh5hYJpIQQQpyxQtEEmq6TQiHPNjcS0VozgVREeqSEEOJsJoGUEEKIM1YmWNFRcVpNOS5Nms2anqsVjEiPlBBCnM0kkBJCCHHGCgwHKxazCUVRclyaNLs13SMVlB4pIYQ4q0kgJYQQ4ozlHw6kMsPp5gLHcI9UaIbTnwshhJhb5s6VRwghxFnLpCp88Nx5xs/AqMdTERoOpGxTDKRMqsIHN1SS2r4DUDApOiamt0aTEUjFEtPaz4nGqkMhhBC5I4GUEEKIWWczm/jqdSuynjvx8VQEpxlI2cwmvnr1Itj7m2mXJcNpT2cPnOkFeceqQyGEELkjQ/uEEEKcsUKx4UDKOnfaBZ32dI9UZIZ7pIQQQswtc+fKI4QQ4qyl6zoDoXTQU+hK99iMfDzVRBGhaDpYsQ8Pp5tquXQtfTlUFCgkyXQGzrls6eOLxGc2kDqxDudKcg0hhHi7kkBKCCHErIskUqz/2p8A2P+VqwCyHjun2KMUHu71cUwxkIokUqz/5ivAWuO5/bZtOKe0tzS3wwZANJ6cxl5GO7EOp1pnQgghZoYM7RNCCHHGygyfc9imFkjNhjxHukcqOsM9UkIIIeYWac4SQghx2jmtZlr+/Zpp7yczfM45xUDKaTXT8q+XEL7rHpbF1k+7PAB5w8km4omZ7ZESQggxt0iPlBBCiDNWdJqB1GzId6WH9kkgJYQQZzcJpIQQQpyxMvOQXMO9QHOBx5kuSyKZRNOmtyaVEEKIuUuG9gkhhDjtookUt/98JwDfvGENdotpivtJ90i57FPrkYomUtz+y30k4/On9PqxeJx2ABR0QvEk7imWTQghxNwmPVJCCCFOO03X+cOeLv6wpwtNn3qvTXy4Rypvij1Smq7zhwO9PK0XTrkMJ3LZrZhUBRM6vogknBBCiLOV9EgJIYSYdSZV4a/WVRs/p2ZoyFs8kQLAbbdNe1/XqX2YABPTK5vJZMJmUglrKXzhGNXe6SRTH7HfE+pQCCFEbkkgJYQQYtbZzCbuuWG18Tg8Q2ssJZLp/bid058jdaflGE5Fm/Z+VFXFajERTqTwhWLT3l/GiXUohBAit2RonxBCiDNSStNJpIZ7pGYgkJopiqJgtaTbKf3hmQukhBBCzC3SIyWEEGLW6bpOZHgYnmOKiSVOFIgmUEn3IHkc0x/aF9bTbYsONKY7cM5qTl9eA5H4NPf0lhPrUFFkeJ8QQuSSBFJCCCFmXSSRYtmXngJg/1eumpF9DoXjqOhYTSqOGVhHakN8LQD7bduY7qwmm3W4Ryoycz1SJ9ah0yqXcCGEyCUZ2ieEEOKM1B+IAGC3mDCb51ZQYbOkA7tQdOZ6pIQQQswtOQ2kXnjhBd797ndTWVmJoig8/vjjWb/XdZ077riDyspKHA4Hl1xyCfv27cvaJhaL8alPfYri4mJcLhfXXnstbW1tp/EohBBC5MLAcCBlsVhQ1bnVLmi3pgOpQFgCKSGEOFvl9MoTCoVYvXo1991335i/v+uuu/jmN7/JfffdxxtvvEF5eTlXXHEFgUDA2Oa2227j17/+NY8++igvvfQSwWCQd73rXaSGJyALIYQ4Ow0GwwDYrHNvwdvMUMNQTAIpIYQ4W+V0LMTVV1/N1VdfPebvdF3n3nvv5Ytf/CLXX389AA899BBlZWX89Kc/5R/+4R/w+Xw88MAD/OQnP+Hyyy8H4OGHH6ampoY//elPXHXVzIzDF0IIMff4Q1EA7La5k7Evw5kJpKKyIK8QQpyt5tZYiBGam5vp6uriyiuvNJ6z2WxcfPHFvPLKKwBs27aNRCKRtU1lZSUrVqwwthlLLBbD7/dn/RNCCHFmyQRSjhlYjHemOe3p4C4Sk0BKCCHOVnM2kOrq6gKgrKws6/mysjLjd11dXVitVrxe77jbjOXrX/86Ho/H+FdTUzPDpRdCCDHbAuF0IOW023NcktFcwz1SkbgM7RNCiLPV3EpzNIYT18nQdf2Ua2ecapsvfOEL3H777cZjv98vwZQQQswiVVF458py42dg1OPJCkXSgZTbOfUeKVVReOfSElIHD4ECJkBFn/L+MvIcwz1SMzi0b6w6FEIIkTtzNpAqL09fLLq6uqioqDCe7+npMXqpysvLicfjDA4OZvVK9fT0cN555427b5vNhs0294aCCCHE2cpuMfG9D6zPeu7Ex5MVGU7k4HZOvUfKbjHxvb9eDnf/YVplOVHBcHA3k8kmxqpDIYQQuTNnh/bNnz+f8vJytmzZYjwXj8d5/vnnjSBp/fr1WCyWrG06OzvZu3fvSQMpIYQQZ77I8BpNHtfcG9pXkJcuUzSeJJnSclwaIYQQsyGnPVLBYJAjR44Yj5ubm9m5cyeFhYXU1tZy2223ceedd7Jw4UIWLlzInXfeidPp5P3vfz8AHo+Hm2++mU9/+tMUFRVRWFjIP/3TP7Fy5Uoji58QQoizU2x4/pEnz5HjkoxW4LKjKKDqGoPhBCVuGQUhhBBnm5wGUm+++SaXXnqp8Tgzb+nGG2/kRz/6EZ/97GeJRCJ84hOfYHBwkHPOOYenn34at9ttvOZb3/oWZrOZG264gUgkwmWXXcaPfvQjTCbTaT8eIYQQYwvHkyz70lMA7P9KemmKkY+d1slfjuLDgZQ3zzm9cn31OWCj8dx+2zamvsc0q8WM3WwiGNcZCMVnJJA6sQ6nUmdCCCFmTk7Pwpdccgm6Pv6kXkVRuOOOO7jjjjvG3cZut/Od73yH73znO7NQQiGEEHORpmkkEulEDkX5c69HymQy4bCYMMd1+kMxwH3K1wghhDizSHOWEEKI085hMbHtXy43fp4sXyiKpuuAQnH+1PuPHBYT224/j8h993NBfPWU93Miq9WKw2rCHI4xGJK1pIQQ4mwkgZQQQojTTlEUivKmPtytzx8GQFdM0xripigKRS4rYSU55X2MxWq14rCYMKHRH4jM6L6FEELMDXM2a58QQggxnsFAOpCyWC2nXFswF8xmM/bhAK9/uKxCCCHOLtIjJYQQ4rSLJVN87YkDAPzLu5ZiM09ueN9QKN3LY7Vapl+OPx4mkaie1n5OpCgKLkc6BfqQBFJCCHFWkkBKCCHEaZfSdH6y9RgAX3jnkkm/3heMAmC3Ti8bXkrT+cmbHUDZtPYzFqcjXbZM0CeEEOLsIoGUEEKIWacqCpcuLjF+1k6SsXUi/OF0cOK0W6ddtoyLVB8mdFSmV7aMfFc6m6A/FJ2R/Z1Yh0IIIXJLAikhhBCzzm4x8eBHNhmPw/HpJXcIhGIAOO32ae1npP+yHMGpaDO2P89wIBWKzEwgdWIdCiGEyC1JNiGEEOKME4ymg5M85/QXup0t3rx0IBWOxHJcEiGEELNBAikhhBBnnEg0HZzkO2euR2qmFQ6vbxWNx066+LwQQogzkwRSQgghZl04nmTpvz7J0n99ctrD+gAi0TgA+a6ZC6TWx9awNLqOsD4zl8bifBcAipbCH53+Mc90HQohhJgemSMlhBDitIgkUjO2r1g8HUhl5iHNhAiTS8F+Km6XA6tJJZ7UGAzF8Timl6odZrYOhRBCTI/0SAkhhDijpFIp4vEEAIXDvT5zkdVqxW4xYVFS9AVlnpQQQpxtJJASQghxRolGo0QTKVKoFObN3TlSVqsVp9WEgk5/QNaSEkKIs40EUkIIIc4o0WiUaFIjrpsocE5/uNxsUVUVuzVdvj5fKMelEUIIMdMkkBJCCHFGGQyESaQ0Epgozpu76c8B7PZ0+QalR0oIIc46EkgJIYQ47VKpqSdN6B4KAKCaLLhscztnksuRHno4FAznuCRCCCFm2ty+AgkhhDgrqIrCOfMLjZ8PHznCYq+KzWZFVZRJ7atvKD1MLm8GMvapisI58zxox1pBUVDRUZm5NZ/yhte58oWm3yN1Yh0KIYTILQmkhBBCzDq7xcTP/mEzAIODgwz19/KFcxx4vV7slsmlHR8IpAMpt8s5M+X60Fq4+0/T3tdYMunZg+HotPc1sg6FEELkngztE0IIcdpomsbhw4eNx7HY5NOC+wLpYXJe9/QDqdnmdacDqcAMBFJCCCHmFumREkIIcVrE43H27dtHJBJBVVU0TSM+vLDuROm6TjCcHiZXlJ83G8WcUWUFbgACYUk2IYQQZxsJpEaIx+OTvqgLIYQ4taFghMvufRld17nnYicNC+fznv/ZDcALq0Lk2SeWxjwejxOIxAGFIrd92ufscDzFpfe8BNE1ACjA8+Yd2OJxsEw/tXqZJ90jFY/F8Icikx7GOKqs33wRgGdvvxCnder7EkIIMb6JXlskkBrhnnvuwW6fu4s7CiHEmSilK3SlXAQSSwB48aWXePGllwgm1gHwzW9+E4uiTXh/HclCEjh57fkt9L88MK2yJXSVweg64K2g6ZVXXmGbniRhtU5r3wC6DirlWJUUd9x1Lx516oHfW2WFb3zjG5OqMyGEEBMXjU5sOLbMkRJCCDFrhjQ7v4iupClVZDx3NFmIGY3rbHu5zrYXM5MLCBKYSOgmnEpi2uUzo/HX6g6+vOfH097XWBQl/R4KOmF9+oGZEEKIuUPRdX3m8ryeofx+Px6Ph97eXvLz83NdHCGEOCvEkxrv/cHrNHYOstbRz2uRMuN3X712KYvNfQQCAZYuXUpxcfGE9tne3s4XfvwMXXEb3/34NSwsnYF5UqEQsXvuZWVyEwB7zK9j+/Rt4HJNf9/Abd/7NR19Pq6/7Fz+5vwlU95POJ5izdf+DMDOf/kLGdonhBCzxO/3U1JSgs/nO2lsIEP7RrBarVhnYCiHEEII+M9nD7KvM0C9I8kNG2t47YW3hrXd/XQj/3NtOSZTGF3XJ3zujcYTRBMacd1EVWHezJyzEwmSJhMk0w9NJlN6vzN0PfC48+jo89HnC0+rvMlMAQGr1YLVKpdwIYSYDRM9V8tZWAghxIw73B3g/ueOAnDjukLyrADpQGpBiYujvSHueqGLKpfCLdUTT4HeO7wYr26y4HFMPxlEPKnx3eebSSQqpr2v8RS6071m/b7ArL2HEEKI00/mSAkhhJhx//1CE5oOVy0pZJ5byfrdp/6iAYA3u5L85miCcGTiayz1+4cX43XYURTlFFufWlLT+M8XjvE9rXLa+xpPiTcdSA0Ol10IIcTZQXqkhBBCzKhuf5Tf7GxHQeedNelEEh6Ph1XV6R6kq5aXs7S8iQNd6R6aeGLimeyGAulgpGAWFuNdoYRQAZWZnTpcUegBIBgOT2s/qqKwqtpj/CyEECK3JJASQggxo370SguJlM6lFRoeUwKTycTKZYv57ca3kjfcdOF8PvOL9DpS8fjEsu/puo4/nO69Ksyf+UDq59aDOGchpXh1aQEAkXAEXden3JPW44+xtqaAoUiCl4/0ccniUkyqBFRCCJErEkgJIYSYMaFYkoe3HqNMDXBBRXpI25IlS3CdkAHvwoVvZenrGQpOaN+JRIJQLAEolOTPQLa+06Su1IOOQiKVos8fpMTjnvQ+vvn0Ib773FFSWrq37Dc7O1hS7ubnH9tM/gQXMxZCCDGzZI6UEEKIGfP73Z244gMsdUWoL3FRX19PSUnJqO1G3vwf7fYxkZU44vE44ViKJCql+WfO4ukumwXVks4AdbzbN+nXP72vi2//+QiapvHO6gQfWaxTYFc52BXgX369d0J1J4QQYuZJICWEEGLG/HJrI+VqgOVVHhYsWEBtbS0AkXiK8//9z5z/738mEk9lveZYf4h4/NTzpGKxGKFYkoSuUuK2zXjZL4+t4PzoKiL6zF8aXQ4HAO39kwuk+oIxvvDYHgA+vNLBa31WfntM5WtXVmNSFX67q4Nf72if8fIKIYQ4NQmkhBBCzIjG7gAdnZ2oisIFK+uNIApAR6d9KEL7UAT9hGQObYMRfKFTJ2KIx+OE4kkSmCjNn/lAqgMb7dhmONVEWr47PbSxe8A/qdd96Td76Q/FWFcCG0qgP6rTH9VxJHzceukCAP718b0c65eMgEIIcbpJIJVjnZ2dDAwM5LoYQoizTCKRIJVKnXrDGfToa8fwqhHmF7tYUj9vwq9LaTqvNfaccrt4PE4gmiSpq5SdQUP7AAqH53T1D028R2pvu49n9xxnsbmP9y0yY1bfumQnEwmuXWTn3Np8HAkf/+9Hv+fgocMzXm4hhBDjk2QTI4TjSczx5Kk3nCGhUIi9+w9gNpvZdO7mGVkTRQgh4rEYO7Zvw263s3rtutPznkmNZ3Y0UoDG8tpirM48wiPOp+P9nPHS4S4uW7vgpO/R3ucjkkiRUEyU59vH3M9kjbWPREpLP2+ZueuB11sIwNDgEAO+APbhoX4n860th5hvGmRFmYPCPBsFxWVAU7qMmkbjkaPcMC/Bz3oCDAxq/OKFXXyivALHBPYthBBifBO9vii6zFLF7/fj8Xioue3nqLaZT6k7nmIlRLVpCIC9yXKSmE7bewuRTcelJIjoZjTpqD7jlapBKtV0z8dY5xYFjVI1xJBmJ8bMZXxbaOrDpcTo1PLp1iaemW6lqYMe3X3K18w3DeBRIrSlCujTXSfddjpueeVRfrjhOiLWme31qjf1k69E6dHy6NA8p9zeQYLF5h50FPYly7L+jgvVHlxqOm18VLegADYlMem6F0IIMZoWC9N67w34fD7y8/PH3U7umHLIpbw1udqmnL6eMCFOVKSEWWjqZd5wYC/ObF4lYvxsH+PcUq4GqVD9VJkmN1/nZOwkcCkxdBT6tck3SLmV2Cm3MZMeqpg4Qy9dfVo6+CtSwyicer2qfDW9ZpZft40Khhu1EnYnK9iZrORgqpRuLT10cOTfXgghxOySHine6pHq7O0/adQ507a98TrRaPpCuXDRYkrLyk7be4u3j86ODkCnvKJyzOGjqVSKbW++QWI4a9rqtevIyztz1ug5k0QjESxWKybT7PU+h8MhdmzbZjyum19PVXW18VjTNN58/TUSiYQxrDjg99N4+DD1DQ14vd5Jv2f7UIS/+8/f4FXC3HL1Os7fuGZ0ueJJNnztGQDe/JfLAIzHf1nhp7k3wPp16/j0u0a/NuPfHvwt+1r72LB+HbdfM/52kzGyXBm7zG9g+fT/BdfM9XolUhrrv7aFRXRz8+Yq1q1aRll5xZjbhmJJzv+PZ6nTu/nwxjI2r1tBWXnFqDp0Wt8anb/reD///qPfoio6X/jQNVTmmTFbLLjd7gkNG5/MQsEd7e1oukZ1dc2EthdCiNkWi0Zpa22lvLJy1LqFU+H3+6koKTplj5TMkRrBaTVnXZhmUzweJ5WIYzENt6ymEjP23t3d3QwNDbFw4UJU9cxsuRUzIxqN0tqSnlMR9A2xbNkyLJbsoVzHjrVDKml8Fvu6Oihdtuy0l/VsFwgE2LNzOx6PhzVr1gAQDoex2WwzGlh1tfW/dV4BUvFo1rmlrb0DPfP31jVULclAbzepRIzB3m6qykav+XQqT+w4ToESocbr5JyVi8Y8lykoLCxNB+gua/ozmHm8osFLc+9e9h0+itO6Ycz30HWdoUA6s9/SqqIZO18qKCwsdqL19YOSHqZhNak4rGaY4etBQ4mb/p4AvkiCcMCPs3bsQGTL/m70ZIKqfKgscFBVXobVah5Vhw7rW5+bzQ1l1FWWcayji1889SLXrCgHwOl0snjxYjye8YcStra20tTUxPLlyykuLh53O0gnMWk71gxAbWUFdvuZk/QjlUrR29tLcXExZrPc/ghxNmk5cpz+3h4CvkHWrVs37XNTcoLnfzmT5IjPl525KRKZmeEYwWCQgwcPous6hYWFYy6EKSbO7/dz8OBBGhoaKCwszHVxJs3vf2vo1uDgINu3b2ft2rVYrVaSySQDAwO0trYCUFNTQ2trKz09PdTV1eF0nr75gm8H3d3d6WBgaIhAIEA4HObAgQNUVlayaNGiGXkPXdfp6UlnvystLaWnpwefP0DrQJjWgTC/3NbKoX27selxXFYT6+Z5WbYswNDQEJAO9iYrpek8s+0QZnTWNlSM23LnsJrYcvvFWc9lHvcM+vn91n1Egz52N3exan75qNcnEgn6Q+nhf4srCyZdzvE4rCa2fHwT3H33jO1zPEsr8vlzdw99wZgxGmEsT+zuJF+Jsqgsj/z8fKxW61tlPaEOR3rfxSv490e6ONLtJ7S4DLfNRDgc5tChQ2zatGnM1+i6TkdHB7qu09jYiNfrPWlgHwq9lWY9EAicMYGUruscOHCAvr4+ampqWLDg5IlNxJkvFotx/PhxampqzpjP6Xgyg8dO1Ws8mZ7lydA0jYMHD+J2u6mpOf090ac6/lgsRm9vL5DuqNizZw9r1qwZ1XA8G6S7IkcyN7iZP/LJLqoTpes6hw8fNj5wwWBw2vt8u2tvbyccDnPs2LFcF2VKMp+zoqIi7HY7kUiEvXv30tLSwiuvvML+/ftJJpO4XC7q6+spKioCMIIrMTNGBjgAbW1tNDWlewozQcxMCIVCRKNRVFVl3rx5tA6EuffJPVx01595//+8xlM7W7BoMZI6HI9YeP5wLz/+8y5jMdxYLDahhXFH+vOBbggPYreYuGLD1HoyS735lA8PbX5m+6Ext+noDxBNpEih0lB2+oZgz6TF5W5iupm+YHzcc74/muD5Q7141CgLy9zGd3IiNi2to6y8ks6Um12xEs4991wg3fM53vuFw2GjIS9z43kyI68rJwu8dV2nt7d3Rq5tM6G3t5e+vj5gdEPmmSiZTKJpp55n93bW3t5Oe3u7ca49Uw0MDPDqq6/y6quv0tjYSDg89pp7fX19vPjiixw8eHDGPxs+n4+enh6amppIJk/vnP5EIsGrr77Kzp07x70+dXZ2ous6LpcLq9VKKBTi9ddfp62tbVR5o9Eog4ODM1Y+CaRyJHMiLy0tBabXIxWNRjl27Bj79+/P6oGYSuuyeEum9wDSf69oNMrAwAC7du0a90vY09NDc3Mzc2Xq4cjP2apVqzCbzfj9flpaWtA0DYfDQU1NDatWrUJRFKOlqbu7m0Qikcuin1X8fj/xeNxoTevu7iYWS/euhMPhGVvvKfO5LCgo4JnGIR7b0UkkniTPrFHtdXDNIjfv3VjD56/byHvOWQzAS3ubea2p39jHZM8bP32lETMpVlQVUFUx9Xme5y6vA2DXkfYxf3+4cwiAfJcTu+XMzHC6pNxNHBN9wRiJRGLMG5I/7e9GT8Wpy9MpclknNapAVVX+z19spEvL59E320miGj2E461X2N+f/ttner1aW1tPGvxMNJDq6upi3759HDhwYMLlny3xeJzGxkbjcTAYnDPn6KmIx+O89tpr7Ny5M9dFmdMyAcfg4OAZ+/c+fvw4u3fvJh6PE4/HaW9vZ+/evaO2S6VSHD58GE3T6OrqYvfu3TMa8GTqUtf1GQ1CJmJgYIB4PI7P52P79u1ZveKQ7i3r6OgAoLa2lpUrV+J0OkkkEhw5coRXXnmFAwcOkEgk0DSNnTt3smvXLqNhZbokkMoBTdOMC1DZcCtsPB6f8s3UoUOHaG5uNro1M/sMBAJn7MljLohGo8bNLkBHRwcHDhxgcHCQ3bt3G1/cjFQqxcGDBzl27Jhxc5JLmqYZNz35+fnY7Q6Kaxs4PhileSDOkK2MioYVLFiwAJvNBoDH4yEvL884GYdCIY4ePZpVD2LyRg63G2sS7IkXhqnKBP4tAbj1ZzsJamYWlubxh49v5KXP/QXvW1NEhcfB/Koy/uHy5Vy4MH2T/mpTP3vb00H3ZAKplr4Qu5q6UBTYvLj6pHMyI/EUV3zzea745vNE4qlRj69ZvxBVURkKBNl9bPTivE3d6WMrzp/ZIaeReIor7n+dy6IruCy2gitiK4jos3NpXFKej4ZKXzhFMqWNGbD8ekc7RWqYhaV5eL3erCG2J9bZWC5dUkptoRN/NMnjOzqMIcnjBVKZm4m6ujoKCgrQNI329nQwmzkP/OHZl/nuL57i+88eYsuuYzT3hQjFksY1JplMZl2/dF03erV9Pt+kezlnWqZhyOVyYTKZ0DQtq1Xf7/fT2Ng46ho8NDREZ2fnKfcfDodPa8NTR0cHiUQCv98v5+aTyHy/EonEjJ1jT6dgMGj0plVUVLBixQpg7M/b8ePHicfjWIeTGQ0NDZ2yd3kyRn5fMueMmWwEHBoaGjewGTlqIxqNsn//fuO809jYyLZt24jH41gsFkpKSnC73WzcuJFFixbhdDrRNI3u7m4OHjyY1VDU1NQ0I/fIMkcqBzIXH8twRiWz2UwymSQajU4600g8HjdaB2pra/F4PBQUFNDT00MikSAejxs3ySPpus6xY8ew2+2Ul4+ejyBGD//InJRUVUXTNA4fPkwikWDevHlAumU3053e19d30knbPp8Pq9U64wtnZv6uiUSCkpISookkrUNxfvObgzx7uJehcAIVDQ2F9MKeTaypKaDa60BRFDbVeTm3vIxgMEhrayvHjh0zbpKmM48nGo1iMplOy3jluSYajRqNHE6Pl4P9SfY1HsNqs1FckIdHjRMIBCedMfTgwYP4fD5jzlumB9UXSXDn88fRdYV19eVcVW8lHk1f8DI91gUFBdjtdjbOLyKWTPF68wCP7ffjspkoLJx4SvSHtx7DqcSpK3Qxr+LkQ9B0dBp7gsbPQNbjonwHteVFtHT28oc3Glk1rzTr9cf70t/HisKZXSNJR6exLww4GC4Ws9X8VJZvo8BpIRozMRBKD+8bmSHzaG+QFxt7WW4Os6yimMrKytFlPaEOT2RSFT60eR5f+/0Bvv/CUa64eQ2QbpXXNC0r2I3H41nDfy0WC0NDQ/T09FBfX8/r23fyxzePsLt9CF2H1pSPapMPBR1FgeoCJ33mUoqTPdjtdtavX4+iKAwMDGTdePX391NRMXaGwtMhU5aSkhIGBwfx+XwEAgHjetvY2GjM98r0ysdiMXbv3o2mabhcrnG/n9FolDfeeAO73c6GDRtmNSMnZLe+Q/p+Yqxr/FhSmk7HUIQKjx2zaW63o6dSKTRNm/I1Q9f1rJE+g4ODZ1w22kwQX1xczOLF6REEdrudaDRKKBSioKAASI9oyjRcLFy40GjUnclh4yd+n7u6ujh48CDFxcVGgDdViUTC+K5t3Lhx1H1w5jgWL15MY2MjoVCIYDBIX1+f0egD6XvgzPlNURQqKyupqKhgaGiIPXv20N/fbzRyK4pCOBymu7t72vfAEkjlQObC5fF4UBQFh8NBIBAgEolMOpDKRPBut5v6+nrjeafTSSgUGvckGw6HaWlpQVVVSktLJbvfGDJf3oqKCrq6uoyWi2XLlhEMBmlpaaG5uRlFUaitrc2aA9PX1zfqpmXk7/bu3YvL5WLjxo0zVl5d1zl48BD7jx7j+ECYIwNxOvv9DGp2mlPpAM+sKswrcuNxWIglNfZ3+tnZOsTO1vSx/m5XBzYz/E1tlHPqPEZmtP7+/ilPYo3H47zxxhtYrVY2bdqEoijEYjHMZvOs33TkkqZp7N69m91HO9jdNkRHIM6rTwbRgWIlRVBPUah2UqoG+a83B3nHeWv55F80YDOfuk5SqZSRvKKnp4fq6up0AotYnN/t6aY7UsDqag8fv2IeLU1HCYVC+Hw+dF3HZrNht9tRFAW3283m+hShmMZvWs08ta+bcm8eKyfwt/aFE/zszVYqlASrakomHQjazCYe+ei5xs8A5y6dR0tnL28cah31eWvrS/eUVRfNbCBlM5t45IOriT7ycz6SXDyj+z6RoigsLnPTfdw05jypH7/SQr4SY3Gxg2KP85QZ9MbzN5tq+Z8XmznWH+aB17q4MN9i9GBkbr7grWF9brcbm81GUVERZrOZQCjCN3/1Iq/vPUw0qRPUbSwvMrHEYSIZdzEQSdIW0GgdDPPfv3uJ5WV2/mJJmbGUSFtbG4DRSDidQErXdXRdn9Y1KnND7XA4SCaT+Hw+o7c+Ho8bvbBDQ0NGINXc3Gw0jPn9/nE/336/37hpb21tpa6ubsrlnIj+/v6sHj6/33/Sz0mPP0q3P8zuxuP8aPsgjb1hvE4LFy4sodBlxeu08p41ldQVz94C15MViUTYuXMniUSC1atXnzTjZDwex2w2j/p8nNhLOjg4OK0kCbqu09TUhMPhGNXAMRtSqRRdXV0AVFVVGc/n5eURjUYJBALGd/no0aNomobX66W4uNj4vAeDQTRNIxKJ0NHRQV1d3ZQD05GBVDKZ5NCh9FzWvr4+YrHYhIP5sXR2dhrftcHBwaz74FgsZhxPSUkJAwMD9Pb20tnZaTRQzp8/Px0MmcxsOzZAIpW+VwvFkoTjKVRFIWUuxBbuxmY2kZ+fT3FxMU1NTTQ3N0/7HlgCqRFmYvhBT08PPT09LFiwYMzehlgyRd9Augcpc2K22+0EAoEpTcrNfJBOHEfvdruNqH2sk2zmS5EZ4nCmtdScDpkeqeLiYuLxOP39/RQUFFBUVERxcTGKotDc3ExTU5PRCgvpHqtkMsnQ0NCoTH+JRILDhw8D6eFcqVRqRoKJpq4hvvvblznW3kEyld1S7fHk8/cr6rlsSSnr5nmzUmP3BKI8e7CHUCxFOJ7kid2dHOwK8HRLnIMdLVyyoo7lpVZisRjBYBC3e/I3sUNDQ6RSKSKRCENDQ5jNZrZvT6cBX7169axkGJqueDxOV1cXlZWVU06TvOtIK99/ejdd/hgh3Uq35kZHoa7Iybn1taQ0nc7OLmL9YfREjO/8+Qh/3NvFf/zVKtbPO/laTqFQyAjsu7u7qa6upr27l8d3tHPUp1DosvG9v12PW03QAka9A3i9XqPO3W43Pp+P6zY1sCcVJNLdz++2t3LhuRHyXCcfQve9548QjCaoKVCZV+Sc9GfDpCpsXpDdi3XZmnoee347kUiQN5v72VifPnf1+KO09vnxKLC0emazZ5pUhc11XsKmIJyGOdRLK/JpPWaiN5Cduc8fTfDLbW2UqSHW1BZTXl4+5Yt7ns3MV69bwUd//CY/eLGZddeUYSXBwMBAViCVaYjLJLRQVRXF4eGRF7YxGE5fD+2eUv7vO9dD71HjdW63m5hi49ntB9l2bJDGniAdQ1FCZjdXbVxqjJJYvHgx+/btG7M3bCJisRh79uwhFouxceNGYx7XZI0MpDLfm0zwNHLI49DQELquEwwGjZtYyM5+eqKRN5jHjx+nvLw8K0Pc4OAge/fupaGhYUZ65TIt8JmeifHKFogm+OoT+/n5m21UqH7K1ABhLQ/wMBhO8Ntdb/Vq3fvMYS5oKGZNTQGrqgu4dHHJlHqsNE1DUZSTntO7u7tpbm6moaFhzHuTWCzGrl27jCGLe/bsYe3atWM2MmeG2RcVFY3qFcl8txRFMXrrx/sMtrS0MDAwwIoVK8b9jPl8PlpbW1EUhbKysllvBOzp6SGVSuFwOLK+s3l5efT19RkNAYODg/T19aEoCg0NDUbjfKYRIxQK0dTUZHwnFy5cOOmyJJNJ4+9RVFRkNKxmdHd3U1tbO6XjzGQNzRgYGKB6xLqHmfuwvLw8zGYz5eXl9Pb20tHRQSSe4uhAjG2xMO1bD/CnA934o+OdxHXmm4dYUgCLl63kwkInZouFWCw25r3aZJw1gdT3vvc97r77bjo7O1m+fDn33nsvF1544aT2cWLQMZk1XiLxFMcHQuzbuY9gOMKze1rot1ZwdCjJQCiOMxUkHItxwGdmmambIoeKuVFhXnmQYn0INeynMXicwP4Qmg5Ws0owlmQoHMekqlhNCgPhBL5gmDKPk6pCF/2+MOH2/WgpncBRK9UlAeqKnNQVuygg3eow3nyHkSf/YDB4VgdSkUgEXdcnlM47M5Fy5LAAj8eDw+HAarUyb9484yIxb948NE3j2LFjHD2avsnInPQyrSUnfjmPHj2aFbCHQqEpLwLdH4zx0pE+Xt59hMYjR9C1FKDQoxaxokhlSQHML3Fx6Xmbsk7EI5W67bx341snwFsubeCVo/3c+fv9HOjq5fU3I1w7L8zl8x309fVN+Gb5+PHj6LpObW1t1hDJzMUhFEtwvKmDHX0KXXErbYMRrGYVj8NCVYGDmkIn84qc1BY6cdlm7jQVTaT43a4OXjnaz/bjgyRTOg6riRqvg0Xlbq5cVs662gIOHTpEf38/0Wh00kMadV3nid2d3PfYyzhSUXxqPhetX8G7V1eysNSNx/lWi2AwuIDXX3+Dpv4o/3XQzJGeIH/9X6/w4fPq+MxVi8ddK2nk9zoQCNDZP8Q9v9tBny+Kbi3mxzdtoqrAga7b8Xg8RsYlIOuzUFFRweDgIPPrarlvvpNPfruFDl+Er/x6G19//wWY1LFviDp9EX70cgt2ElzQUIjVYpmR9MLFXg8Lygs40D7A/754gI316XP4E7s7MZOiwmOntmT81ukzwfp5Xp541cyh7gD+4Fvn4Z+/0YoWjzDfo1Fb6Jx2q/cVy8q4ZmUFv9/Tyfde7eITaxz09vYyf/58FEUhlUoZN1eZ696u1iE+/4djFMXi5NnMXLSknBuvvRybzcobb3QZ80zy8vKo8niI+4tpKM3jj/t6GQpF+NGf9/DGkS7Or3HQMK+K4uJirFYr8Xh80jcroVCI3bt3Gzdwg4ODxvzfyUilUsY+HA6HcT3PJJwYGUilUimCwSCHG48QS6YocOcRiUQmFEgpioKmaTQ1NbFsxDp8LS0tRu/CWIHURNNaA0ZjFKRviPfs2WNMFci8Xtd1ntrXzVef2E/7UPoaVuHQKDBbOb/aw0f/6goOdAbYfnyQcDzJvg4/zx3q5cXGPl5sTAfW84tdfPLSBv5ybRXqOOeAE4/h+PHjtLS0UFFRcdJzZnt7O9FolH379rFixYpRWSkPHDhANBrF4XBgsVjw+/3s3r2bdevWZfV6JBIJDhw4gK7r9Pf3k0wmsxq9Mtdvt9tNNBo1hrGeeC2MxWIcO3bMmNc3Xlr8TO+trutZvUGxWIx9+/ZRXl4+oz1VmeCioqIi67ORuVfLfH6PHDkCQOWIRWgzow0GBwcZHBw0PjNdXV3U19ePuqfN1M949yKZurRYLFRUVNDf34/ZbKa0vILt+xrZt3U/bW8McaQ3iNWskmczo+ugKFDhcTCvyMnKKg8rqjyjEgVlrrPjBbyZsns8HqKJFLt7EuxqD9DnC3OoO8DxRB7d2ltZGYvzrBQ400Pd82xm7BYTOunGuOZ+aO6DP77Qxr0vtLHEEWCVV6cpYucdm1dTWTC1qRZnRSD1s5/9jNtuu43vfe97nH/++Xz/+9/n6quvZv/+/ZOKkkfenGTGfxYWFrJq1apR2/b19fHqrgPsDTh4viVMY08QixZnifmt4V0pujiW8mJGo9Y0iAUopAAzKYYiGruPBtCPBilSQtSYhvDrQzSlxs+G4lXCzDMN4gcOYCKlK9iUJGHdyuHuQWh867UuJc65+T5qigd5ZcBJWb6dUreNBaV5lOXbs8YOBwKBaY8R7ezspLu7m+XLl8+peTCpVIpt27ah6zrnnnvuKcuWWZgyIzOHzWw2G2OUR6qrqyMajdLd3Q2kkwl4PB46Ozvp6+tj0aJFxkkwFAoZrZw2m41YLEY4HMblctHU1ITNZqOiomLMMgZjSQaCcY4NhHjpSB8vNfaxr8OPgziLzH0o6FSWePngleewaXENyUScN9980ziGiVIUhfMbivndpy7kgZeaueupg7xwPERbZzeLjoW4+S9LaCg9edA9ODho1GFRUZERSOm6zraDLWw/NsDR3gC6DjG9i4OpUnTGvlgrCmyqdnJ+pYmrz1nJwsqT99SMRdN09nf6ee5QD4++0khBtJOQbuV4Kr0vrxKhvcfMs4esfP/5JlaW2jjPM0RtoQuULhYsWDDh1seDXX6+9sQBXj7Sw0pzmKoCB/e8/zIWVI6dec3pdGIyqTSUOPj95eu4a0szv9rexoMvt7Blfzf/fv0qLlg4utV25LkqFEvy2Qeewu/3Yzer3PO357GiKh1sKIrC4sWLeeONN4wbtpE3EicOL33/BYv42Qu7eXF/G5/55S7u/uvVYwZT33jqMLGkxkVVDuqKbLjd7kn3LCZSGo+8np53+L5NtVhMKoqicOnqeg60D9DceJCdh6pZvaiOJ3Ycw6kkWFxeMuPzChMpjUfeaCeePD1r7r1jRTnfdrsIh4d49XAn69asoicQ5T+faaTcFGRNrZeysrIZOc47rl3O6y0D7O6L8PT+Hq5ZWUYgECA/P9/oJbLb7bhcLp7e18U/PrqDaAIaCvP4q9WlrFjcgM2WbqEvLi7OCqQyN3Rl+Xa+9uEr+eHvX2Z7Sx+HjnfR2KqyIVlK/UKNoqIi43w40UBK13X27t2blUhhaGhoSoFUpmcicx7PDAPr9Ud46MXDHN63j1A0TjgJZlL89xt9xAKDJDUYclazxjGAx25md9TL2roSllbkkzeicSdTJ/PmzaOlpYWenh5qa2vJy8sjEAgY579AIDBmj0hLSwutra2nHMIGbyWt8Xq9FBYWoqoqqVSKcDiM0+nkpSN93PfnI7zWnA4Oawud3PVXK4m17TO+/04zbF5QlNUb/NreRl7b10SHUsxTB/tp7gvx6V/s4kevtPCv71rGpvnj/91SqRR79+41gvLOzk5qa2ux2Wz09/fj8XiMa1oqlWJwyE9/MEoonqLxma3U1dezuL6Wco8Dlbcy5a5cuRKLxcKOHTsIh8Ps3r2btWvXYjabjaVeMo2Suq7j8/mygrLM393hcOBwOOju7jZGlYzU3t5u1E1HRwfz5s0bcxTCyIDb5/MZ+2lvb8fv95NMJmcskBo53DRhzeeVo30kUzqD4Tjt/X4Cx/pRlAF+dyRKoPs4VouF0kgJBd3N5NlMLCxz43K6YHCQtrY24/gyC1KPvN/TdZ1du3YRiURYunTpmN+xTGOB0+nE6sqnQy/g+cNBnn/yIIvoQEWnVxvAqiTp0dyE9NG9enYSFJuiFJRVsKa2kDU1XlZXewh2pIcBV1dX09XVNWoIcntPPwc7/fymRWXLw00EY0mq1AAlahAdhZLScq6sK8brsnLegiI21RWOG/y3DoR5sbGPFw738vLRPrqjJg73DLKz+yBfeb6fhtI8LmwopMHUx8KyfBYvbJjQ3+usCKS++c1vcvPNN/N3f/d3ANx777089dRT3H///Xz961+f8H4yXaWhUMgYfjUwMIDP58PhcvNGywDbjw2y61g//raD6Ux7qDQni0lhodaewG0yk7I4Kc6zUWJL8g6XGZfNjK47sZpUCt12tFQhEawkvHUc6QnS09+P3hfDbLFyXk01ZlUlHujH4crH63Gj6ekhgTZ/O+aEDX80QTCaxGk14bKZ8ZRVY/GUcLw/TEt/iJa+ME29fvpDCfpDvTx8dB9J3roRXFnlYaPbh8ecoNLjwDMina2mabS0tFBUVITH4yGVStHW1kZZWdm4Lc7JZJIjR44YX9KTnUy6urpIpVJUVFSclnlZAwMDRgrQ/v5+4wSSSCTYsWMH+fn5LFmyBEi3urS0tABvje3PpKcfT+ZGNRaLGQGpzWbDbDaTSCQYGhrC603fsGcugpk1ndrb2wmFQllZso42NaPY3YRMLrrCCkf7o2xtHqCpd3TGIQWdTd4IDYUFrFhQy3su2WjUqclmY9OmTei6PqUhCKqq8NGL6tm8oIiv/W4PkbYhDrT2cM23nuHSZdV8/JIFrK4pGPW6zDjyjM7OTpo6+tnbPsTh3gjR4QtfWLdS5lKpc5g4pzyfmpoaUprGQChB22B68djjA2GGwnH8Hc38uTPJY28ew1pcy5XLyrlyeRkrqzzjL86XTLGnzcfv93Tyu12d9AVjKOgsNvXitSucV+Fg6YIyTFocn09NX6BCCf7cpuHvG+C1gQivNQ9gNak8ejDOuSsWcMni0nHnEfQEonz7mUZ++tpxNB1KzHE2zy/g4mVV1FeMP39BVVVjPqMpFeeeG1Zz7ZpK/vmxPbQNRvjbB17jgoZiPnpRPRctLDaO1+/3E4mn2DMAOw4dI5JIkWc18+HLV7OuPvtC6HQ6qauro7m5GYfDcdKeowuX1eAf6OXne4Z4bHs7KU3nnv+zOmuYz0OvtPCr7emL33vXFKOkJp8oA9IBzJd+sw+Av15fbQw5vXTjSh5/s4WOnj5+/ewbxOMJejrbKTXB+oXVM957nkhpfOnJRmBqQ1Mmy2JSee/mep54pp2tjV38fTLFV363n0Q0wiKvzvLK/CkPkzlRidvGf/3tev7mv1/lja4kblsflVVd5OfnG8P6CryFfOfPR/jWnw6j63DxolLufPd5xEL+rDklJSUlxnp6LpcLl8tFaWkpiqJQVV7K31y0goUlR3nlSD/b+lX+++U2nj44wG0XVpKv6caQ91OdjzRN58ixNtr7hohpKmZPOb6uY2DqZ4y2rFPKNBqaLFae3NvFlv3dHG9sJRkNMah141UjpFDp0fKoUENA+gZ8UHNy3K/hCMWxKyEeP74Xv57+7nidForzbDgtKkvVDmq9DmyVVgKKg6PHOvjd4eeIu6soiHdjjgZQlHSj0KtDuzDbnaiKgklVsJtVXENHKXaZaG1tnXAglal3t9tNR08/Dz1/gMcPhTjcnb6W28wqf39RPR+7eAHJaIgdrW8Nw/L5fFlTAVKpFPHBLlaV2biy3MW/vGc1P361hfufPcqedh83fP9V1tUWcON5dVyxrGxUL3lzczODg4OoqorNZjPm4ySTSY63teGLgd9Rzv7eBIdbu1AHjxHXTYR0KwVKBHa349fttGiFzM9X2ZDno7o4nzJfkkVlDlatWmWkvN63bx+rVq3C5/PR29uLoijk5+fj8/kYHBwcM5Cy2+2YbQ72Hz1O445GHmtMMBCO0xeM0x+IkOdrJhaPk9IVSvIs/OxAhKaIg0RKo6LAQb7dDMkEBcEW8h1m8u0WfFoHDm8ZRS6r8TfJZLCbzpC/REpjf4ef3UdbaWns5ehgkueePPHar7PSPIgJjRQDmNDo0PLpaW3J2qrIFOX8ogj1xS5K8u2UeVyYlXSikpGBVCgUMr4jhw4dwuVyZZ1jU5rOvuO97Dw2yJFggD/9sot46q01qlJON/PdKTa6rRTl5WFzujGX1qOgk4hF6QxpNPWGGDh2CC0epq1T5eGOIA9vPU6BEmGxbYjCPDvxoxa8qSEcqSDPtm0n7ixmf9sASk/6XnxvEpKYKM+3s6a6kIpkN2sW1XHN+ROfHlBT6OT959Ty/nNqSaY03mzq4dkXXubYQJimAY0jPUGGerupNg2hKgp6fsepd8pZEEjF43G2bdvG5z//+aznr7zySl555ZVJ7SsQCJBMJtm+azddvjC+SJLBUIzfHXyOpzvtBGLpG/JadZBCNY5JVVhQ5OQ9NU6uumgzvccb8fv9LFq0iPLyco4cOWJ0zxYXF781rtRsZnF1JQ0N6YtlMpnktddUEokE1dWu4RWawe3WWb8+PZ5V13VefrmPZNLEqlWrsFgsRKNRUqnUmBPlfOEEv3zqeTr6Bqm3euiK2+jyR2nuC7Gn3Ydu7sRM+stQvL+H+g4bpfl2XKkAyYF2CvKcXHD+Zvo6jtPe3k4wGGT58uWj6kzXdY61duAPx0ikNPa2dNEatdHd1UkkHKJ23ny8bjv5dgtKKsaevftRFWg5dpzammry8/Nxu92nDKo0TSeW1IgkUgyG4/gjiXSAmUjRNhihNxgjEk+R0DRMwxcpVVGI97eSCAyS0jSeaQ6jFtaSZzdD2EesvxWzqlDao1KQ5yDe00IsFMCZ56GyajFmXaMtbqa9qR9VUdIXQ9IXRFBQlXQgpQBK0Tw8RTpHB+IoSpyoKY++/i4GdzZiK67BF47TdfQAkUiYWJeFULQPbaiDwI5+QkkdcyxAOKGTTGWP702hEtFcKORht1godlvZWFfIRQtLqLUE8Pd1YbFY2LRp3ag6nImewRVVHh792AX85hmFF/Yeo6M7wpP7unhyXxeb5hdy1fJyzltQRH2JC5vZRH9/P70DQ/QEYrQOhGnaepz+YJS4bsan26m2JllY6ubaSzZRXWDj8OHDKIrOquUFRsA50o4DR3jhzSRHe4OogxEO9fRzX3eQ+549QoXHzsWLSqgrdlHospJM6RwfCLPt2AC72oZwp4KkUBnSHbisJi6u0FjuKWRFdeHwMMgQmMBb4qZW01il61xan+Joj4njA2b2DioQ99N0vI0nm2Pwu/2srvZw+dIyUrpOMJokGEtysCvArrZ0VjOAd64s570LFPSon/KyslOe5PPy8oz5jEVFRcy3R7jzfBt/7nTw8M5BXjrSx+tHulhVpHLZkiLKKirZtaOFfR0+dsdKWWzWKXFZ+eg7NnHumqVjvl9NTQ0mk+mUAU9eXh6Lyty832LlzjdT/GZnes7d596xhMI8K7/e0c7/+106+PnMVYsptQ8SCk2s11NBoWp46ISCMm7WOYvFwgeuvpBPP/gnzB0++p9+nSI1Qo3XwcolE2shnKpKYunv86y+C7z33HqeeeEVApEY1/zn8xzujVBrCnHZ0lLKxkmRD6PrcCLWz/PytetW8G+PvcGO1n76/7Cd96leeo91cLwvwL3b4+zsSadSft+mGr7ynhXpoLYkuxfC5XJRWFhILBYzeiBHDmErKyujoqOD955Tx7s88/nS7w7Q0h/mtscbOdc1wNJSO4PmwzTMq8JmVklqOpF4iu7h69JrzQPs6/AxEIyxUOnGqiTp0PLp16KsNHeh7OngK6+G8bhsVFrjlJvDFOU7Wbp0KbUl+ZTl23FaTGi6Tn8oTttghINdfvY3NtPfcZwjARNHEuk5xZWqQoVZYZVXocpbRElJCWWVVXQfPYCqKhS5rGzctIFWv86uvfvo7emmOunitT4zvYEYg+EEg+EEVpIoZh8HOv3ctXs7NpIsNfcBOh1aiArVn76hxISFFK1NjfTrb/1t85QYDaZ0QGs1txDa0kNDhZelFfksrchnUVkeZW47qqoQCoXS82o1OOJX+PGug+zef5zwYDe9KRdtWgFOq4kbNtTwdxfOp8iuYLeaaO3Ozj47NDSUFUj19vYaSRm6u7upq6vjE5c0cMOGGr712AvsamxnqL2ff/t5G5835fMXS0q5pEplebWX8kKP0eNRU7+IzqEIe4/s5k8Ht9HjC9MfipPSdDSO0pQqwqXEqVBBsTpx5lfhVoMogR5MsRg+LYw/oHMoFOD1riT37HoRi0mhyGWjwWtmtXOI8oEwmrOQZHAAXdeprKzE6/Xi8/noHxjA0h/iSE+Qo71BWg4fYmBgkH3PDdAWtbLC3IUJjSOpMEE9PUSwUAlTa4oS1010afkkfYMkfa0cSJahoxgZMtOjhnwkUTGjkdrXw61P9+Mxp1jnHCTfYcFpMfHn3m248/Nx2y247WbybGZiCY1QPJ30IJP8IBxPEoqnCMeG/48nIeInEAxyLO6iTA1SofoZ1JyY1PS8WqvZRIHDQrnHjjMIxII4rGY8Thum8sW0+WIEo0kGw3H2d/jxhVIcH+jn+EC6N6klVcgad5BKj53XBqwsqiqhviQP3d9rfBbiiSQvvr4DT+0S9ncG2NrUz2vNAxQleihQIrRrHuJaHvUlLq5ZWcE7V1ZQnaewZ88ebDYbgUAgPaplQxVtbW20tHRx+coFFBfPZ+vWIIFoEr/ioiVZwK7j/SS6uoklNXYMmOjqGxr+e/gI6xEOpyJUqj5K1fSwvr9fuYjLlpaytsY7oeGmp2I2qZy7sBxloJpIJMLnGpawf0Dj1a2vcbzHgj+aoLWr99Q7AhT9DF9oqKOjg6qqKl5++WXOO+884/k777yThx56yMgsMlIsFssaMuD3p1ve/s8X7qPHVEiBHiCJiaZkIQuHh001popxuPI5v9ZOHb2UexxcdM46WluaiEaj5OfnG+Oozz33XKPVt6enh2g0SnV1NY2NjUY6y+XLl2edzDKZ3E6U2VcwGOTNN9/EZDJxwQUXTCgCb2pq4vjx45SVlbF06dL0+wRjPLOvg4O73mQoFOfYQARN1ziQLCOGmTrTQLqVCDiW8jLP7CPPqqIrKkeVasx6HK/mo093E9QthONJFind2JR0ABDRLRxOlbDS3ImKjl+305QqBBRKlCBVprdO6ooCZlVFUU1ETS7CJhdRbCgmFXSdeEonmtCIJlLEkuOv0q2iYSFFbHhemFuJYleS9GlOVpi7MQ0HjBoKe5Ll6KjDwXD6BHM85SWJSr2pHx2Fg8kSY19T5VJiLDT1kUJlb7IcOwkWm3vRUNibLMehJFho6iOum1AUsJDiSKoYTVcotUapc+kUOcDrsFJRYGdBuZdVy5caQ2N8Ph87duwAYMWKFVPO7jVRHR0dHD58mGBS4bkBD4/vbCelaejDS9GpChQ6zFSnuiAVo1fLo1gNoaBjUhXm11Ry1ablqP3NuJwOI3vf/v376e3txWQysWbNmqwb8ng8zuuvv04ymcThcDDoD9IehG0hD88d7iMST6KikzphOTwFnRp1iGpbjJoiF5dfcgGb5hWwY9ubRn2FQiGam5ux2WysXLkSq9VKW1sbra3pbHFFRUUsWrSY3255jmN9QXZFC3n1eJikNv7pcm1tAZ97xxI21Hp45ZVX0DSNDRs2nLIHpb29ncbGRhRFobCw0BiLb7PZqGxYwY+efoN9h5uMVsCQbsWlxElgQilbxM3nVHBBvZeS4pOnH5+IZDLJSy+9BEDEu4B//PkeIwOSSVVIaRoKOn+zaR5ffucitm7dCsB555036UQA4XiSZV96CoD9X7kqq6Vb13Wuu+8lBjqPU6SmW2Tftb6Bm6+7dMaTk2SVw7YNpzJ8rvnMZ2CSWVQn4+4f/5aXD3dxKFlCBCs3L0pyYb2HlStXjpo3MhMe39HGj379NGhJBjUnXjVsnJ8KnFa+/O7lvGdN5bTqt7e3F4fDQV5eHv5ogu89e5Sfv9mKJdJPheonqNs4kioGdCrUAEVqiGMpLwH9rV7S9M3UIGaLhUHXPIryHNh9zfgDQY6lvJSqQRzKW2voxHQzR1NFxMdpF65WhyhWQ3RrbswFZVy9ooILFngpU4MM9PUSi8VYuXIlhYWFvPTSS6RSqawh/Zlzn9frZfXq1fijCdoGIgyF4/T09bFv716ahlIc0UtJaTorXAHqXUnMqkosqaFZ7GB1kfL3ojs8aPmVpHSdlAbRvnb6ezrxR9PH06W56dLSjR3FShCnkmBAcWN3uCjWh8hPDdGbsNKcSn8+CpQIdaYBigvcXHjuRt61uorQYC9dXV2Ew2FKS0tJpVL09/cb9ygul4s1a9bg8/koLCxk9+7dDA0NGXNUKisrWbRoEdFolK1btxKKJdnd5uNgl5+2sIqKjktJjyxQFFAVhQHNQXPSC+gsM/VgHb4f6NdceG1Qnw/lRR5qivPxmOKsXbHUyESXyX5rzy+k0xflcEsbRyJOXulWCI9YKy19Ux0koluwK0msJoUWpZyoprJI70BDY0+i3Bh9s9SUvi85kiomqNtosPpZ6E5QVFJGaU09XoeJVPcRLKSoX1CPt6ScF19+lXAkyoLFSyjwFtPhi6SDn65mAr5BBtUCggNdBMJx3gx58SphStS3RvS0pQro011YSZLANO6Q9ROpaKwwd6Gi02MpY5VXo9yaYP6CBVx73kq8ruxz69GjR41059XV1TQ0ZDcw6bpOU1+I3zz1HMd6hugLp3glWMQ80yAFSoQeLY8OLd37ucjci9ecpFcpwJkYwoxm1FnGalsf9V4zC5cs4y/WLGBx2dhDuV977TUikQjLly+nsbHRWNeqoqLC6M12Op1s2rSJQ4cO0dbeQTBlwlS6gHBcwxeK0N+0B00He3ENjkgPtV47525YOyvnRIDDhw/T0dFBdXU1Ho+HffvSw2D90STHBqPc+oFr8fl8J22EPON7pDJO/KOeLFXz17/+df7f//t/o54PJZIUqOlxqSFrIUsqS2mw2SlSwtxYU8q1f3EeO3ZsJxj0UllZSVV5KQVuF9u3bzeCqLy8vKyhMyOHhtXU1NDZ2YmiKKO68IuL01maMnNoMhN0+/v7qaqqMsZZ5+fnT/hCV1RUxPHjxxkYSLfe9PX1oes6Vy8toixSgtVqJaWY2XG0g3W2UvoSNrQuH5GYlVA8RQ0+0DWCseEUsMkAFaYAJiVKMSF8ySLcSgqbmkRDwW5ScJp1ltpMVOg2FAW8SQ17MkRjLI980sFrp5aPDuQpcZx6AnMqgZoYIo8hXCjopFuE/bqdwVT+8AVSx6NE8aoRIpZ8zHY3JgU8Spj51hBuC5gLizDbnWi9TeiaQsqioybyMZktmE0qqp7kgsJyQooDeuOoKRtJTaNesROJJ9Eidnyqm/mWQnQdND3dZq4b/5/wMzrDGTuN5zVdH97OioMgLrOOJ8+Gx6SSn8rH6i7govL5uK2Q6DiIzaxiNavYrWY2bNqMx2Wj0GlFVdMTl/v7+zly5IixpklpaSllZWXGBNOysrJZD6Iy73P06FHySPHPl9fynjqNNw4eZ3fUw7b2CIFYAnesB5QYSUxYPGUs8kZY4NaoK3axctmS4c+xF5vNZvSeLV261BgCefToUdasWQOkh5geOHCAZDJJXl4eq1at4rXXXmOBJcW7zqvhnhvW8PifX6W5o5ceawVDCRPOuA+vKUqNx0KZs5QCpwVFUVhSbGZoIB2cZNLDFhUVUVBQgNPpNHru6uvrjYxAFRUVWK1WltdXU5LXwzVlZZTU1PPbnR3sbffhsJrIs5tx28yU5du5cGEJ5Z709767uxtN03A4HBNazqCiosJIBpEJokwmE7FYjMH2o1xcpXJuWT37+xIc6+xD03VsZivnLpvP9ZedO6OBhdlsNrKBnVubx/f+ahE/f2E3b/RASDNxrifEmkoXH718vjE0zOPxTDmb2ngUReE771/P4ztKiXQ1YyfKX168dk5meJyqS5dXUZlvwVMxn7z8fLSudKPfVJPPnMp1a6vJi63jD1v30R+KE4opFHgL+dSKRXxo8zyK86aevjhjZONgvt3C569ewv+9YiFb9rSzdetW2gfD6KkEtlQIjxLFrKoUO3UcZeWsn+dlXW0BAy0HUFLFLFrYYAwtbGws5nDTMXzRFOGYg3ASBnEz2NdNIBTGFh1iZ6yITF+iqkB5vp2GMjeLLSaKLfmsW7WMDUvrsz5DesMCksmkcQ4oKSmhu7vbWBsQ3upt9fv96eRALhfLKtPbt9oiFESLua6kxBixEY1G2bt3L6qq4na7qaqqIhwOs3fv3uGbyHR2OV3Xee21ENGoHXdBIcfaOwkmFPz58zl8rINAZy++SAKvHiEQsWFR4sTRGNIcFOfZuHBhMefXF+AOHMOm6thMvRzc3Z21UGtPT49xvLW1tezdu5dQKMS2bduMdSszc7wWL17MwYMH6erqYt68eUZG4PJiL6uWLaa5uZnOoTCHuwMc6lEYCKewkiSmK7Qmh4O/PBsV3krmW4NUlRRw2QXnUJ5v47XXXhvu9dIAc9b9j9frTSfkiASoclkorC/i71etIt9TQE8gRm8gxq62IV482EWi6xC2WIJYUmcwaaU3pQA6AZMZpxKn0JygsLiAhhIX1bEYhS4Lm8/dTF2Zh2QkyK5duzCZTJx3Xj1NTU20x63YbDY2LluQnj+3poG2tjZK8zSWLSw21ikaKjahFxWxYcMGjhw5wtDQEF9d0MC+Q0fp94cI62aCwRBJm4eIYifWd5yIZmLIUohqc+O0mXFZzThtJpxWE06rGZfVZDyvR3wMdaSfX94wz0hxv3ZtAx7X6HNrpnFOUZSsDHcZiqKwoCSPq9bOp7e3l9LSUqrqFvLCnib27t3LQFRjb8JNa78fpx4nloTjSSvVqo0SS4wGt0phaQmrXD7meSwUWF0oCpxzzpKTzt0sLCykvb2d5uZmY/5aPB7PWhg4s5hwd3c3JlXh4nWrsuatHarQhzscwuDJw+12Tyuj3qkUFBTQ0dFBX1+fMQ+utLQUpbeXBn1ii2yf8YFUcXExJpMpK1UppE8g401M/cIXvsDtt99uPDZ6pNZX4/Xk43W7uOC8c1FVlWg0yuuvv46mJTl48ADBYBCTyWSsFeFyuVi2bBl79uwBOGnU7HQ6WblyJbquj3nj0dDQgNlsJj8/n1gsxtGjR+nr66OqqsqYgDle9rWx5OfnG3N12tvbjZvvzPh7p9OJw+FgVSxMbW36hnz7dj8mk4lUKkVS04jEU0SToGkpCkvKGerrNoa4qaqCxaRiNRVSV1tDX18v8XicwsJCBgYcOJ1OY5LismXL2Ld/P6mUxqp1G7Da7MST6d6mgcFBenp6CPiGSMTj6KSDEbOqYLGYKfB4sJpVQn4fZlN6yF55eTmBQIBQSAUyJxUNmy1B1Dty0ng+lZXpVtb29nbKy93U1dWxdetbK2hnFtgFL+ecc86MTWbPtBrl5eURi8VIJJxZPZGvvPLWeiAej4cFZdk3UKqqUlJSYlxo2trajPT6kO6xmEoq06kwmUyUl5fT3t7O/v37SSWTrKst4Pq6WubNm8euA40cbWrGYjaxbt1aqkuL6OnpYf/+/cbxjfx/5DEuWbKErVu3MjQ0ZKwJkkmZrKoqixYtwmq1UltbS3NzM8eOHaPBYqHCnqKivpCiojzmzZvH9u3bYbgnUVVVPB4Pg4ODRlYgeOtGb6zGDEh/J0beRNXU1Bh1Pn/+fG66YD6QbnkfGhpiwYIFo4ZUnjiP4VRUVWXp0qV4PB7a29upqalBVVUOHDjw1kKEDfVcdXkd+/fvN/Y/f/70eg/Gk1mnJBgMkp/o5wNrCvnrZIqEpuKypBtyOtpajV79E5demCm1RU7+8fLFaNpCEonEtNYpmYucDgdVBQ4WVLqw2y3s61ZwuVyzmqznwrVLqS6wG3M5amtrJ5TNdDpsZhPvWltLncVvBN9QYPSAmEwmzj9/LaqqMjg4iF9PYLKYszLceTweXDbzcAZPG6tWrTKGGW7duhVd11m1biOoZrq6Oigv8lLoLQBg69atRKNRFlYWjfq+KIqSVd+LFi1iwYIFWc/l5eUZ18Q33niDgoICY9mGzPVtZINJZmHekTLJC8LhsJFdLhgMEo1GUVWV1SuWEQ0FKEwkKCgIscZqIjm/DpvNTu9QwBiRYbdZOf+8zXhdNuNYwuFS9uzZk5Xivba2lmAwaCRSUFWVwsJC45qcOR9mgqjCwkLKysro7Ow00nxnGofLysqorq7G6/Vy4MABGqpK+Kdly1DNFlrau7HY0tf6AqclnSFN1+nu7sbr9Rrf2aqqKuNm2mw2Z9VX5j4lmUwa85ndbjdmk0plgYPKAgerawr40OY6Dh8upKOjg0RKo7R2AXkFRVhUle72Y/R0tlNbVcHKFcuHe9PSw8xW1Kb/7rqtwGgk2rZtm/G3W7x4sfH3KSkpoa2tjf7+fgKBQNYoofz8fFwuFx6Ph6GhIY41N+E06+SX5rNw4UIOHDhgTFPwlY1M3hXGarWydOnSMYevA+zfP0iPN/097O3tNephvNEMmTnshYWFJ53zWl1dTSwWSyc/cVq4ZuNCCpN9JBIJvrBqBZFIlF377KhWJwuWriQV7KfzeDNFRUXU1NSwa9cuY18mk+mUmVkzgVSmbi2W9Pp1mY6NzP1oW1sbmqZhtVpHXYcXLlxINBo1kpeMzJQ8GzL31JnvhMlkYuHChUbDyUSc8YGU1Wpl/fr1bNmyhb/8y780nt+yZQvvec97xnyNzWYb86Jc4rbjclhoqK8zbo7sdjt1dXU0NTUZLTQ1NTVZgVBRURGLFy8eN73pSCcLtMxms9FFGw6HOXr0KENDQ8YCgjD6RvRkMkOFenp6jCAKMBZLdDqd5OXl0dnZSSAQMCZJer1eI6VogctCXV1dOr13bIgSdzpDl8lkYmhoyDhBz59fRzQaYWBgwIjqq6urCYfDtLW1cejQIRQgz+WkpCC7W7i2yAUN1ei6TiwWQ9d1ksnkW2sfxEMk4mCzmIyTWCZwVlWVefPmEQgE6OvrIxqNYrVaKSsrM7q+M2s+tbe309/fb5yc3G438XjcuCEsLCyc0YxgmTJkkphYLJaslhWXy2UEUicLkDOfi7KyMtrb2xkcHCSRSLBkyZIpr3E0FZWVlbS3txsnecBY5DXQ301Rno3FixdTUZr+jGeSaqiqetKeGbvdTl5eHsFg0Ah6+vv7UVWVlStXGi30VVVVtLa2Eg6HOXDggPH6/v5+44RXXFxMRUWFEbxmAqnMYn+T7b1zu914vV4GBwdpbW1l4cKF6LpuDFtwu91ZE3cTiURWq9ZEKYpCVVWVMdxF13Xa2toIBAIUFhYawV1DQ4ORQGW2ei4y65R0d3cTiURQFAWb2YSN9E1aJBLJWnx6ooFUNJHihu+/CsDP/2HzhMuTmcR+OtwQX4IK/Nx6gOkncz+5zLnG5/MZ56BTnd9PrMMTUwmfis1mM5LrnG7z5s1LJ1UxmXA6ndTU1LBnz56s1OiZpDvl5eVZ57aR58eysjLjPGqz2XC5XASDQVKxMKqq0tN2jKGeTs49N73Y88jsbaeiquqohhFFUVi+fDnt7e0MDAwwNDREKBQy5jYCpwxGrVarcRMfCATwer1GUFlYWGic4w8dOmQ0nrjdbtauXYvP5yMcDuNwOHC73aMCbafTybp162hpacHpdBqJnDJD+qLRqHGD7/V6jUyxixYtorGxkWAwSFVVFYqiMG/ePHbv3k1HR4dxzsx8v/Py8tiwYUPWtXtxXRUnUoYbOkeqqamhvb2dVCqFx5OdJEhRFLxer3F/Zbfbx21MqKmpobu7G4fDwcoFNcbfqsBSRWigm/6+Xnp7e43PTmbh8cz71NTU0NjYaNzoV1RUZF2T8/PzjdFAmSDK6/WyYMECXC5XVgOcpmmYTCYaGhqMXstMSvLMvjOjE+LxOIcOHWLjxo3GfVZPT4+xHEFmJAJgXF9dLte4iSvMZjNr164d83cjeTwe1q1bZzzONM52dHTQ0dFBPB7HaTVTV1dJXZmbgBO6Wlvw+99q9PB6vUYAeaqApqDgrQYSSI842bdvnzFcVlEU+vr6jHvQzHMjqarK8uXLOXDgAGazedaG9GVYrVaqq6uNoa5lZWVYrdbhDoGBU++AsyCQArj99tv54Ac/yIYNG9i8eTP//d//zfHjx/nYxz42qf0oioLdbh91EsikZQyHw1gsljG7UisqKmZksb0Mp9NptB61tLQQj8dRVXXSN0+ZQGqkzAkyc2KGdMrqzEXB6/XidrsZGhqitraW4uJiY50kSB9reXk5wWAw68vudruzPnher5eSkhI6OzuNyaxFRaNbBTMy9Z+xatUqgsEggUCAWCxGSUkJeXl5Rg9BYWEhpaWlRmvW9u3bCYfDLF682PiCJhIJIzDM3ARmjsXr9ZJMJo2EICNXD58JLpeL6upqQqGQURcjT4wul8todZlIT6Pb7WbJkiWTWndkJrlcLgoKCoxMhIODg/j9fgYHB0mlUlit1qzvjslkYuPGjadcoBHSF+tgMEhnZ2fWUJORLXhms5nq6mpaWlpIJBKoqkpBQQEDAwNEo1GjJSlz0221Wo2LIkx9CFpNTQ2Dg4N0dnZSV1dHIpEw9plJJTs4OEg0GkXTNHRdN7KaTVXm5i0zzDBTf1arldWrV2etYzLTRq5TAunvbHV1NX6/n8rKSvbv3298zz0ez4SDHE3X2d3mM36ei/YOJwLQZj3dRDrQPnbsGP39/UYdniqQOhPqcDxut5tzzjkn67lMavT+/n5cLpdxQ3li5ler1UppaSnhcHjUfBC3221cJzLXtng8Tl9fn/FZVlV1WsNPCwsLKSwsZNeuXcZ5z+VyZaWFPpXMekZDQ0Pk5eUZQWOmwaWsrIz8/HyOHDlipKLOBD/j9WRkWCyWUaMTTCYTS5Ys4dChQ8a1ra6ujry8PEpKSjCbzaxbt45YLGYEmZlrfyb1dn5+ftb3e6rXHIvFQk1NDS0tLWM2vIwMpE6WuMbhSM+vPTHgzc9PZ35tbW3l0KFDxt/9xB6UqqoqSkpKGBwcJBaLjbrmK4pCSUkJ7e3tRuNGQ0ND1rnc6/VSXV2NqqpUV1djtVqNntXMfY7H42Hx4sUsWrSIeDzO9u3biUajHD9+nPnz5xuBVSqVYmBggFQqhc1mIy8vz/gOTHaB84kqKyszhrJljjnzGcz0viaTSaOxurKycsKNZSaTiYKCAgYHB3E4HHi9XmMkSVVVldHgPfJ+cCxms5mVK1dO91An7MRzCjCp4YRnRSD13ve+l/7+fr7yla/Q2dnJihUr+MMf/pA1RGci1qxZQ1FR0agWKVVVWbx4MYcOHRp3jYHZUFxczPHjx43ofSLZ7U408sNQX1+fdYJwOp243W4qKyuN1onMaxwOR9aCxpkgJHOiGSuoG/nFt9vtxsk5cwI9sTynkknveuIJpbS0dFRrf+aiEI/HjYtafX191r6WLFnCjh07stbTURSFjo4OHA7HjI/Dzaw0Pp5MOTMpXCez31xZunQpPp+P4uJiXnnlFZLJpDGJdKwgeaKpYEtKSmhubjaGk7jd7jF7dDK9UpkU+tXV1bz++uvG4r8nXvQLCwuNC8JU55J5vV6jx6y7uzvrmDINELt3785a6X0mhrvZ7fas9NMZY30nZtKJAWBJSQkFBQVG4FZbWzulXjeRbWTDRKbXZDIjDs4GIwOpTCNEQUHBmI0QIzMEjuR2u41RFSMXO89MIIf09WsmzpuZ9bcyaxZleg8m0ttVVFREb2+v0aueTCZxuVxZ5wqHwzGjN5AFBQVZwWtmQdUMVVWzyp7plcr0xszksN158+aNu4zKyGvvqc5t4zXczJ8/H5/Ph9/vP+lUiMyIlfFkAilIBx0nfhbHuq4rikJeXp4xcihzXlQUBZvNRkNDA/v27aO1tZWSkhJjGRjA+L+kpASn0znrgVR+fr5xP2ez2Vi6dOmoe5FM42jmGjoZmUXeq6urURSF2tpaqqurR90LZHoi56rJNFSeFYEUwCc+8Qk+8YlPTGsfeXl5435JPR4PmzZtmtb+J6uystIY9qHr+pR6TKxWK/X19UQiEaqrq0mlUsaNb+YEunBheg5Cb28vdrt9zBOd1+slEolQVFQ0brf7yC/+yA9hpjs+c5GcLZnFFsfj8Xiora3l+PHjxgkj0/LhdDpPe4Di9XpRVZWioqJprT1xOtlsNuMiUVBQQF9fnxH8TKcLfmQPLKQvimP9PSwWC4sXL6a3t5e6ujqjJTYYDI4ZdBQVFU07kMoMVTly5Ag9PT1Zrc+aprF3796sIArO7ADDbrcbrauZz+dIHo+H4uJiAoHArM2PersYOf91vCHnZzOv14uiKESjUSOj7VgjPk4m0wjl8/mMHinAGIIH4881maxMoOv3+43GhEwr/qmUlZXR09PDwMCA0ftSX1+f04axsRQVFZGfn084HJ7R77eiKOMGnCOHd0/1HiEzJKypqQm73U5RUdGUghGPx4PD4SAWixlz4SciE0hlGptHKi4uNkZx7Nixw/icLlq0iOPHjxONRo0hZRmzFUhlRjv09/dTWVk56n4uE0hB+vs52XuT0tJSY7hq5v1GjlrK8Hg8p3VqwmRZLJYJDZ+EsyiQOhvZ7fYJ/yFPZuTijhUVFRw/fjxr4qCiKCxduhS32z3uONjMhL+xblYzbDabMZRqZEuDyWQyxlafjkV4T6auro5UKoXD4TC+xLM9Bnc8DoeD8847L+d1MlUejydreMB0W5cyC356PJ6T7uvEHsmTLQBdWFhoXBinM/+tpKSEI0eOpBfCHZ7UnbnwZx6vWrWKaDSK2Wye9Qn8s2lk6+rIC+LI369YsSJHpTu7FBcXY7PZiMVik8rIerYYORQok1hmsg0eTqdzRMKgdE+fw+Ggry89qd7lcmWNTpiOTNAWiUSMXouJBhuZURFvvvkm8XjcSBYw1yiKwpo1a9A07bTe6C5fvpxIJDKtuZ+ZHpbpUBSFdevWkUqlTplcYaRMsqDCwsJRw0gza67t3bvX6LUqKCigoqKC0tJSYrGY0fNVW1trrNU2W/Ly8sZtXBjZKz7VxsfxPjcWi8XoDZuLn/0TTbQBRgKptxm73c66detGjTFWVTUr4DrRRDPENTQ0MDg4OOriMld6XFRVPW2Z7iZiLrfInMrIlsOCgoJp/41ra2sxm80TznY3ESaTaUYaI2w2Gx6PB5/PZ6QXXrBggZHVyOv1nhEXhokqLS3F7/fP+LxBkU1RFObPn8+hQ4dGzc19u6ivr6ezs5OqqqopzStUVTW9btVwz3hBQQGlpaX09fWRn5/PypUrZywTYibjXGYBbZhc77PVamXFihXGXJm5GjiPlXRjtk23sWsmWSyWSX9mSkpKWLFixbjDcy0WC6tXrzaSaDU0NBiZ7EbeB8xU0D9V+fn5qKpqrKc40+bNm0d3d/dZdb47c+/ixJTNZkvHWPOXxNlpZFrgmTjhmkymk/Z45lpJSYnRmuh2uykoKDBa1yYzBORMUFVVZSwbIGZXeXk5ZWVlb9u6nok5f5nFZiEdSHk8Hs477zwsFsuM12t+fn7WkMHJ3vzn5+dLj+5ZSFGUU/bgqKp60nnTc4HZbGbVqlXouj4rQ43Ly8vPqiAKJJASQkxRZjHA/v7+t0XwXFxcbCwjkBkCu2bNGhKJxIzNwZhLZuPGvvCExSVPfJwrhU4L+vD8vFyEM5Op67lSZ3PJWPNzZ3qR6Iz8/HxjPtfb4bwn3n5mcy772UgCKSHElM2fP5/58+fnuhinhd1uN7KsjVzH5u2WIGCqnFYz2//1iqznTnycC06rme2fPh/uvjvXRTmlsepQpIfWZhazn80FjSF7DokkWxFCSCAlhBATtGzZMoLB4Fk1H0qIM53VamXz5s2nZXikw+Fg3rx5mEymOTOnRwiROxJICSHEBGVWPBdCzC2nK6FRJkGIEEKABFJCCCFOg2gixY0/fB2Ah25Kr8k38rHdkpvMntFEiht/vAMtuhgUBRWdh6yHmXji49PnxDrMVZ0JIYRIk0BKCCHErNN0ndeaB4yfgVGPc1auYz4gH4aLoeUk5cSpjVWHQgghckcCKSGEEKed1aTy3fevM37OaTn+ahmx3/yO25MLclYOIYQQZx4JpIQQQpx2ZpPKNasqcl2MdDmWlRJ+Yojbk7kujRBCiDNJ7poBhRBCCCGEEOIMJT1SQgghTrtkSuOpfd0AXLW8DHOOhvclUxpP7e8hlirIyfsLIYQ4c0kgJYQQ4rSLpzRu+el2APZ/5aqcBVLxlMYtv9oPyPwoIYQQkyOBlBBCiNPCMcfTdTtI5boIpzTX61AIId5OJJASQggx65xWMwe++g7jcTg+9zI7bLPtxKlouS7GuE6sQyGEELklySaEEEIIIYQQYpIkkBJCCCGEEEKISZKhfUIIIWZdNJHi4w9vA+D+v12f49KM7WOJBkzo3G85gj3XhRnDiXVol/lSQgiRUxJICSGEmHWarvPsoV7j57noBc0DgIaS45KM7UyoQyGEeDuRoX1CCCGEEEIIMUkSSAkhhBBCCCHEJEkgJYQQQgghhBCTJIGUEEIIIYQQQkySBFJCCCGEEEIIMUmStQ/Qh7Mf+f3+HJdECCHOTuF4yvjZ7w9k/c7vD5C05iaV98hyZfhjMZJ+P6RG/y6XTqzDXNWZEEKc7TIxgX6KDKmKfqot3gba2tqoqanJdTGEEEIIIYQQc0RrayvV1dXj/l4CKUDTNDo6OnC73SjK3Fw/ZDx+v5+amhpaW1vJz8/PdXHOKlK3s0fqdvZI3c4eqdvZJfU7e6RuZ4/U7ezJZd3quk4gEKCyshJVHX8mlAztA1RVPWm0eSbIz8+XL/AskbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ0+u6tbj8ZxyG0k2IYQQQgghhBCTJIGUEEIIIYQQQkySBFJnOJvNxpe//GVsNluui3LWkbqdPVK3s0fqdvZI3c4uqd/ZI3U7e6RuZ8+ZULeSbEIIIYQQQgghJkl6pIQQQgghhBBikiSQEkIIIYQQQohJkkBKCCGEEEIIISZJAikhhBBCCCGEmCQJpHLse9/7HvPnz8dut7N+/XpefPHFk27/v//7v6xevRqn00lFRQUf+chH6O/vN37/gx/8gAsvvBCv14vX6+Xyyy/n9ddfz9pHXV0diqKM+nfLLbfMyjHmSi7qNplM8i//8i/Mnz8fh8NBfX09X/nKV9A0bVaOMVdyUbeBQIDbbruNefPm4XA4OO+883jjjTdm5fhyaabr9rHHHmPDhg0UFBTgcrlYs2YNP/nJT6b9vmeiXNTtCy+8wLvf/W4qKytRFIXHH398Ng4t53JRt1//+tfZuHEjbreb0tJSrrvuOg4dOjQrx5druajf+++/n1WrVhmLoW7evJk//vGPs3J8uZSrc27G17/+dRRF4bbbbpupQ5ozclG3d9xxx6j72/Ly8lk5PgB0kTOPPvqobrFY9B/84Af6/v379VtvvVV3uVz6sWPHxtz+xRdf1FVV1f/zP/9Tb2pq0l988UV9+fLl+nXXXWds8/73v1//7ne/q+/YsUM/cOCA/pGPfET3eDx6W1ubsU1PT4/e2dlp/NuyZYsO6M8+++xsH/Jpk6u6/drXvqYXFRXpTzzxhN7c3Kz/4he/0PPy8vR777131o/5dMlV3d5www36smXL9Oeff15vbGzUv/zlL+v5+flZ25zpZqNun332Wf2xxx7T9+/frx85ckS/9957dZPJpD/55JNTft8zUa7q9g9/+IP+xS9+Uf/Vr36lA/qvf/3r2T7U0y5XdXvVVVfpDz74oL537159586d+jXXXKPX1tbqwWBw1o/5dMpV/f72t7/Vf//73+uHDh3SDx06pP/zP/+zbrFY9L179876MZ8uuarbjNdff12vq6vTV61apd96662zdZg5kau6/fKXv6wvX7486z63p6dn1o5TAqkc2rRpk/6xj30s67klS5bon//858fc/u6779br6+uznvv2t7+tV1dXj/seyWRSd7vd+kMPPTTuNrfeequ+YMECXdO0SZR+bstV3V5zzTX6TTfdlLXd9ddfr//t3/7tZA9hzspF3YbDYd1kMulPPPFE1narV6/Wv/jFL07lMOak01G3uq7ra9eu1f/lX/5lyu97JspV3Y50tgZSc6FudT3dSAjozz///ARLfmaYK/Wr67ru9Xr1//mf/5lAqc8MuazbQCCgL1y4UN+yZYt+8cUXn3WBVK7q9stf/rK+evXqqRV6CmRoX47E43G2bdvGlVdemfX8lVdeySuvvDLma8477zza2tr4wx/+gK7rdHd388tf/pJrrrlm3PcJh8MkEgkKCwvHLcfDDz/MTTfdhKIoUz+gOSSXdXvBBRfwzDPPcPjwYQB27drFSy+9xDvf+c4ZOLLcy1XdJpNJUqkUdrs9azuHw8FLL700zaOaG05H3eq6zjPPPMOhQ4e46KKLpvy+Z5pc1e3bwVyqW5/PBzDu9e5MNFfqN5VK8eijjxIKhdi8efP0DmqOyHXd3nLLLVxzzTVcfvnlM3NAc0iu67axsZHKykrmz5/P3/zN39DU1DQzBzZOQUQOtLe364D+8ssvZz3/b//2b/qiRYvGfV1mqJjZbNYB/dprr9Xj8fi423/iE5/QFyxYoEcikTF//7Of/Uw3mUx6e3v71A5kDspl3Wqapn/+85/XFUXRzWazriiKfuedd07/oOaIXNbt5s2b9Ysvvlhvb2/Xk8mk/pOf/ERXFOWk73smmc26HRoa0l0ul242m3WbzaY/8MAD037fM0mu6vZEnIU9UnOlbjVN09/97nfrF1xwwfQOaI7Jdf3u3r1bd7lcuslk0j0ej/773/9+Zg5sDshl3T7yyCP6ihUrjGvc2dYjlcu6/cMf/qD/8pe/1Hfv3m309pWVlel9fX0zd4AjSI9Ujp3YC6Tr+rg9Q/v37+cf//Ef+dKXvsS2bdt48sknaW5u5mMf+9iY299111088sgjPPbYY6Na8jMeeOABrr76aiorK6d3IHNQLur2Zz/7GQ8//DA//elP2b59Ow899BDf+MY3eOihh2buwOaAXNTtT37yE3Rdp6qqCpvNxre//W3e//73YzKZZu7A5oDZqFu3283OnTt54403+Ld/+zduv/12nnvuuSm/75kqV3X7dpDruv3kJz/J7t27eeSRR2bkeOaaXNXv4sWL2blzJ1u3buXjH/84N954I/v375/RY8u10123ra2t3HrrrTz88MPj3pudLXLxub366qv5q7/6K1auXMnll1/O73//e4DZuw+blfBMnFIsFtNNJpP+2GOPZT3/j//4j/pFF1005mv+9m//Vv/rv/7rrOdefPFFHdA7Ojqynr/77rt1j8ejv/HGG+OWoaWlRVdVVX/88ceneBRzUy7rtrq6Wr/vvvuynvvqV7+qL168eCqHMufMhc9tMBg0XnfDDTfo73znO6dyKHPObNftSDfffLN+5ZVXTvl9zzS5qtsTcRb2SM2Fuv3kJz+pV1dX601NTVM4grltLtTvSJdddpn+93//9xMs/dyWq7r99a9/rQO6yWQy/gG6oii6yWTSk8nkNI8s9+ba5/byyy8fNV9rpkiPVI5YrVbWr1/Pli1bsp7fsmUL55133pivCYfDqGr2nyzTGq/ruvHc3XffzVe/+lWefPJJNmzYMG4ZHnzwQUpLS086V+VMlMu6HW8/Z0v687nwuXW5XFRUVDA4OMhTTz3Fe97znqkezpwym3V7Il3XicViU37fM02u6vbtIJd1q+s6n/zkJ3nsscf485//zPz586d6GHPWXPvsnk2f71zV7WWXXcaePXvYuXOn8W/Dhg184AMfYOfOnWfFKIu59LmNxWIcOHCAioqKiRZ/cmYlPBMTkkkN+cADD+j79+/Xb7vtNt3lcuktLS26ruv65z//ef2DH/ygsf2D75mioAAACtBJREFUDz6om81m/Xvf+55+9OhR/aWXXtI3bNigb9q0ydjmP/7jP3Sr1ar/8pe/zEr9GAgEst47lUrptbW1+uc+97nTc7CnWa7q9sYbb9SrqqqM9OePPfaYXlxcrH/2s589fQc/y3JVt08++aT+xz/+UW9qatKffvppffXq1fqmTZtOOtfqTDMbdXvnnXfqTz/9tH706FH9wIED+j333KObzWb9Bz/4wYTf92yQq7oNBAL6jh079B07duiA/s1vflPfsWPHWZla/nTX7cc//nHd4/Hozz33XNZ5IxwOn76DPw1yVb9f+MIX9BdeeEFvbm7Wd+/erf/zP/+zrqqq/vTTT5++g59luarbE51tc6R0PXd1++lPf1p/7rnn9KamJn3r1q36u971Lt3tds/a9UwCqRz77ne/q8+bN0+3Wq36unXrstK23njjjfrFF1+ctf23v/1tfdmyZbrD4dArKir0D3zgA1nr6MybN08HRv378pe/nLWfp556Sgf0Q4cOzebh5VQu6tbv9+u33nqrXltbq9vtdr2+vl7/4he/qMdisdk+3NMqF3X7s5/9TK+vr9etVqteXl6u33LLLfrQ0NBsH+ppN9N1+8UvflFvaGjQ7Xa77vV69c2bN+uPPvropN73bJGLun322WfH/GzfeOONs3mop10u6nasegX0Bx98cDYPNSdyUb833XST8Z4lJSX6ZZdddlYFURm5OueOdDYGUrqem7p973vfq1dUVOgWi0WvrKzUr7/+en3fvn2zdoyKrp+kv0wIIYQQQgghxCgyR0oIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghTrN4PE5DQwMvv/zyjO73iSeeYO3atWiaNqP7FUIIMZoEUkIIIablwx/+MIqijPp35MiRXBdtzvrv//5v5s2bx/nnn288pygKjz/++KhtP/zhD3PddddNaL/vete7UBSFn/70pzNUUiGEEOORQEoIIcS0veMd76CzszPr3/z580dtF4/Hc1C6uec73/kOf/d3fzcr+/7IRz7Cd77znVnZtxBCiLdIICWEEGLabDYb5eXlWf9MJhOXXHIJn/zkJ7n99tspLi7miiuuAGD//v28853vJC8vj7KyMj74wQ/S19dn7C8UCvGhD32IvLw8KioquOeee7jkkku47bbbjG3G6sEpKCjgRz/6kfG4vb2d9773vXi9XoqKinjPe95DS0uL8ftMb883vvENKioqKCoq4pZbbiGRSBjbxGIxPvvZz1JTU4PNZmPhwoU88MAD6LpOQ0MD3/jGN7LKsHfvXlRV5ejRo2PW1fbt2zly5AjXXHPNJGsZWlpaxuz9u+SSS4xtrr32Wl5//XWampomvX8hhBATJ4GUEEKIWfXQQw9hNpt5+eWX+f73v09nZycXX3wxa9as4c033+TJJ5+ku7ubG264wXjNZz7zGZ599ll+/etf8/TTT/Pcc8+xbdu2Sb1vOBzm0ksvJS8vjxdeeIGXXnqJvLw83vGOd2T1jD377LMcPXqUZ599loceeogf/ehHWcHYhz70IR599FG+/e1vc+DAAf7rv/6LvLw8FEXhpptu4sEHH8x63x/+8IdceOGFLFiwYMxyvfDCCyxatIj8/PxJHQ9ATU1NVq/fjh07KCoq4qKLLjK2mTdvHqWlpbz44ouT3r8QQoiJM+e6AEIIIc58TzzxBHl5ecbjq6++ml/84hcANDQ0cNdddxm/+9KXvsS6deu48847jed++MMfUlNTw+HDh6msrOSBBx7gxz/+sdGD9dBDD1FdXT2pMj366KOoqsr//M//oCgKAA8++CAFBQU899xzXHnllQB4vV7uu+8+TCYTS5Ys4ZprruGZZ57hox/9KIcPH+bnP/85W7Zs4fLLLwegvr7eeI+PfOQjfOlLX+L1119n06ZNJBIJHn74Ye6+++5xy9XS0kJlZeWYv3vf+96HyWTKei4Wixm9VyaTifLycgCi0SjXXXcdmzdv5o477sh6TVVVVVbPmxBCiJkngZQQQohpu/TSS7n//vuNxy6Xy/h5w4YNWdtu27aNZ599Nivwyjh69CiRSIR4PM7mzZuN5wsLC1m8ePGkyrRt2zaOHDmC2+3Oej4ajWYNu1u+fHlW8FJRUcGePXsA2LlzJyaTiYsvvnjM96ioqOCaa67hhz/8IZs2beKJJ54gGo3yf/7P/xm3XJFIBLvdPubvvvWtbxkBW8bnPvc5UqnUqG1vvvlmAoEAW7ZsQVWzB5g4HA7C4fC4ZRBCCDF9EkgJIYSYNpfLRUNDw7i/G0nTNN797nfzH//xH6O2raiooLGxcULvqSgKuq5nPTdybpOmaaxfv57//d//HfXakpIS42eLxTJqv5n04Q6H45Tl+Lu/+zs++MEP8q1vfYsHH3yQ9773vTidznG3Ly4uNgK1E5WXl4+qR7fbzdDQUNZzX/va13jyySd5/fXXRwWKAAMDA1nHKIQQYuZJICWEEOK0WrduHb/61a+oq6vDbB59GWpoaMBisbB161Zqa2sBGBwc5PDhw1k9QyUlJXR2dhqPGxsbs3ph1q1bx89+9jNKS0unNB8JYOXKlWiaxvPPPz+qpyjjne98Jy6Xi/vvv58//vGPvPDCCyfd59q1a7n//vvRdd0YcjgZv/rVr/jKV77CH//4xzHnYWV63NauXTvpfQshhJg4STYhhBDitLrlllsYGBjgfe97n5Fd7umnn+amm24ilUqRl5fHzTffzGc+8xmeeeYZ9u7dy4c//OFRw9f+4i/+gvvuu4/t27fz5ptv8rGPfSyrd+kDH/gAxcXFvOc97+HFF1+kubmZ559/nltvvZW2trYJlbWuro4bb7yRm266iccff5zm5maee+45fv7znxvbmEwmPvzhD/OFL3yBhoaGrCGJY7n00ksJhULs27dvErWWtnfvXj70oQ/xuc99juXLl9PV1UVXVxcDAwPGNlu3bsVms52yHEIIIaZHAikhhBCnVWVlJS+//DKpVIqrrrqKFStWcOutt+LxeIxg6e677+aiiy7i2muv5fLLL+eCCy5g/fr1Wfu55557qKmp4aKLLuL9738///RP/5Q1pM7pdPLCCy9QW1vL9ddfz9KlS7npppuIRCKT6qG6//77+eu//ms+8YlPsGTJEj760Y8SCoWytrn55puJx+PcdNNNp9xfUVER119//ZhDDk/lzTffJBwO87WvfY2Kigrj3/XXX29s88gjj/CBD3zgpMMLhRBCTJ+inzjAXAghhJiDLrnkEtasWcO9996b66KM8vLLL3PJJZfQ1tZGWVnZKbffs2cPl19++ZjJMKajt7eXJUuW8Oabb465ILIQQoiZIz1SQgghxBTFYjGOHDnCv/7rv3LDDTdMKIiC9Nyru+66a8ZTlDc3N/O9731PgighhDgNJNmEEEIIMUWPPPIIN998M2vWrOEnP/nJpF574403znh5Nm3axKZNm2Z8v0IIIUaToX1CCCGEEEIIMUkytE8IIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJkkCKSGEEEIIIYSYJAmkhBBCCCGEEGKSJJASQgghhBBCiEmSQEoIIYQQQgghJun/Axictv5U3X1UAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwkdX0//lcdXX3MvefsBbsLy7EggoAIiKACUYyiaGLEBNBvIgpGECMRTeJiFKIYBEXJTxOBaFA8ozFBWEhEcQWWBRbYi4U92d3Z2dmdo6fvqvr8/qj+1FT39N3V18zr+XjwYHamj+qr6lPvfh+KEEKAiIiIiIiIiIiIaqa2egOIiIiIiIiIiIg6HYNsREREREREREREdWKQjYiIiIiIiIiIqE4MshEREREREREREdWJQTYiIiIiIiIiIqI6MchGRERERERERERUJwbZiIiIiIiIiIiI6sQgGxERERERERERUZ30Vm9Au7FtG/v370dPTw8URWn15hARERERERERUYsIIRCNRrF48WKoaulcNQbZ8uzfvx/Lli1r9WYQERFRmwsEAvjc5z4HAPjSl76ETCbT4i2qz0x7PERERER+2rt3L5YuXVryMgyy5enp6QHgPHm9vb0t3hoiIiJqNVsIrHtuK0ZGRnDKsUuxcsUKAEAmk8Fdd90FANi4cSOWLFniy/3996O/w/fXvYzR4GL8+sY/8uU2K+F9PPtu+BRGEAQALEIK6nWfALq6mrYtAPC3d/8Ye0YmcdkfvQl/8vpjGn5/thA4MJ4CACzqC0JlRQMREREBmJiYwLJly9x4USkMsuWRJaK9vb0MshERERHiaRPXPDgCAPjt2Qvd9UE6nXYv09XV5du6IRiOIBAMIxjx7zYr4X08gWAYb0+dDgDYHNyASG9v04Ns4XAXAkELRrA5z0M8beLttz4OANj8hT9CxOAymYiIiKZU0lKMgw+IiIiISrBt2/25q6u74GWEEL7dn5W9P6VMz4+ZTvY8sSyrxVtCREREVJnZvXojIiIiKiOZTLk/h0LBgpfxM8gmg3qaOrvLFWW5pukJchIRERG1MwbZiIiIiEowTdP9uViZgL9BNue2yk2vmunk4zct/55bIiIiokbqmNXbmjVroChKzn+Dg4Pu34UQWLNmDRYvXoxwOIwLLrgAmzZtauEWExER0UxgV1Cu2IhMNn3WB9mymWwWM9mIiIioM3TU6u2kk07CgQMH3P9eeOEF929f+cpXcPvtt+Ouu+7C+vXrMTg4iIsuugjRaLSFW0xERESdrpKeYP72ZHNuq5LmujPZVCYbe7IRERFRZ+ioIJuu6xgcHHT/mz9/PgBnYXvHHXfgc5/7HC677DKcfPLJuO+++xCPx3H//fe3eKuJiIiok1l2c4M8djZgp2kdtUzznarIwQfMZCMiIqLO0FGzybdv347FixcjGAzirLPOwi233IKVK1di586dGBoawsUXX+xeNhgM4vzzz8e6detw9dVXF73NVCqFVGqqofHExAQCgQAymUzOKHsiIiKandKpJN68VEMoFIJtmkjDCfqYpoljjjkG8Xgcpmn6sm4QQsA0M1BhQ1VEU9cipmnida97HZDJABtfwOXaQQCAjex2BAJN2xYAznMAG2Ym3ZTnwTZtXP76pdmfp15nIiIimt0ymUzFl1WEn/UNDfTggw8iHo/juOOOw8GDB/HFL34RW7duxaZNm7Bt2zace+652LdvHxYvXuxe5yMf+Qh2796Nhx56qOjtrlmzBjfffPO03xEREREREREREa1Zswbj4+Po7e0tebmOqUN4+9vfjve+9714zWtegwsvvBD//d//DQC477773Mvk9y4RQpTtZ3LTTTdhfHzc/W/v3r3+bzwREREREREREc1oHVUu6tXV1YXXvOY12L59O9797ncDAIaGhrBo0SL3MsPDw1i4cGHJ2wkGgwgGgzm/+9KXvoQDBw6gp6fH9+0mIiKizvLKK69g2659WLR4MU494Rj3CzwhBLZs2YKhoSEsX74cK1eurPu+TNPEff/5ENZuPojw0pNwz4fPqvs2KyWEQCKRAGIxhL79HYxll4kDMKFcfx3Q1dW0bQGAr/5wLZ5+aS9OOWk1PvveNzT8/oQQGI075SADkcCsHzxBREREjmg0WnHFY8cG2VKpFLZs2YLzzjsPK1aswODgINauXYvTTjsNAJBOp/HYY4/hy1/+ctW3nclkEAgEYBiG35tNREREHSZtAdc/lgKwE5u/cBwihrN8SqfT+MUvfgEAWLFihS/rBkVRAEWDDRWq3ty1SDqdxp133gkAuA4q3pBy1lSbgxsQMQygyesiXQ/AhgpTKE15HuJpE2/48iMAgM1f+CP3dSYiIqLZLVBFX9qOWT38zd/8Dd75znfiqKOOwvDwML74xS9iYmICV155JRRFwfXXX49bbrkFq1atwqpVq3DLLbcgEong8ssvb/WmExERUQezrPLTRf1qcSuEcKeL6urszqTSso/ftjmAgIiIiDpDxwTZXn31VXzgAx/AyMgI5s+fjze84Q144okncPTRRwMAbrzxRiQSCVxzzTUYHR3FWWedhYcffpgln0RERFQXyy4cZDMMA1dccQV2794NTdN8uS8hBIQABBRoWnNb5xqGgc9//vNALIb4V/65qfddiJp9Tk27I2Z0EREREXVOkO2HP/xhyb8rioI1a9ZwMigRERH56tXDsaJ/8/Zn84M3k02b5ZlsuuoEGZnJRkRERJ2iY6aLEhEREbXCY9sOuj+PJzI5f2tEkE0IwIbiBplmKzUbZLQYZCMiIqIO0TGZbERERETNtmskhq37xwAsAADsOBTDor4wAGcS6G9+8xtMTk5i/vz5vtyfbdsty2QzTRM///nPAdPEHzX1ngvTskFGy2KQjYiIiDrD7P6KlIiIiKiE/++3r0DBVJbaK8OT7s+2bWPXrl0YGRnxraTRKRfN9mRrcpDNtm1s3rwZm196Ce0Q1pI96VguSkRERJ2CmWxEREREBRycSOKnG/ZhFWwsNpIYShvYMVK4P5vfPdkEWtuTTYfAe9URAICG1gwekEG2ZpWLaqqC975uqfszERERUbUYZCMiIiIq4F9/twNpy8LR84J4+yIdd7wgmhJkEwIQAtBbGOgxFIF/Nna27P6B5g8+COoa/vlPX9uU+yIiIqKZiUE2IiIiojzJjIX7n9wDBQJnLh9AUNdgw8T2g9GCl/c/k6355aLtZqpctDWZdERERETVYk82IiIiojz7xhKIpS30GCqOnhNBVygAGwoOjCcRTWamXd7fTDYBtDjIJgQQFyriQoVPD61q7uCDJgXZhBCIp03E06ZvrycRERHNLgyyEREREeU5OJ4EAAz2GsjYCq77TQqAE/Ta7hl+4LepwQet7QuWgIrVqdOxOnU6Ei1aLk6Vi1pNub9ExsLqf3gIq//hISQyzblPIiIimlkYZCMiIiLKMzThBNkWdhvT/vbywelBtkYMPmhlT7Z2oOssFyUiIqLOwiAbERERUR4ZZFvQHZj2t5cK9GXzffABFLdccrbSVA0Ag2xERETUOWb36o2IiIioAFkuOq9AkK1QuWgjMtm0Wb5K0zUnk88WzZkuSkRERFSvWb58IyIiIppOZrLNixQIsjUwk822bWayZTV78AERERFRvWb36o2IiIiogIMTKQDAnIg+7W/7C0wY9TuTDWBPtoDulIsKZrIRERFRh2CQjYiIiCjPwWwm20A4N8g2PzsI4eW8ktHG9GSb3UE2PVsvK5jJRkRERB1i+tezRERERLOYZQsMR51MtoGwhkNjwBuP7kJvbw9GY2kcmjyC7cOTeM3iHhx77LEYGxvz7b5ze7I1N8imqipWr14NmCYCW1/CJeoR5/doTZBLlos2qyebqii45DWD7s9ERERE1WKQjYiIiMjj8GQKli2gKkC3oWJcU/D5C5dg1apVWPPLTfjDjiPYfjAKXV+GSy65BBs3boTqU/+0qSCb0vRyUV3X8Sd/8idALAZsuw3fMl5p6v3nc8tFm5TJFgpo+NYHT2/KfREREdHMxHJRIiIiIg859GB+TxDIZlFpmhPwWbWwG8DUhFElm/Hkf7lo8zPZ2o0sF7V9em6JiIiIGo1BNiIiIiKPoXEnyLawNwTLsgBMBdlWzOsCAOw5EgfQmCCbnQ20zfYgW8DtycbBB0RERNQZWC5KRERE5CGHHsggW8oUOP/uFwG8iF9cey4AYCyeQTqdxh133AEAeOtb3+rLfTtBNgAtGHyQTqdx6623AgCuEypOTTmlk5uDGxBp6pY4tCZnssXTJlb/w0MAgM1f+CNEDC6TiYiIqDrMZCMiIiLykOWig55MNqk/EgAAjMXTsDy9wvwtF3UGHzS7J1u7CWSzB0WTBh8QERER1Ytf0RERERF5DI07k0UH+0KwrGjO32SQzRZAwgQ++tGP+jr4wLZt2AIQUNzpms0SCATwN3/zN0A8Dtx1d1Pvu+D26Nly0WzgUeHETyIiImpzzGQjIiIi8sgvF/UKaCp6Qs53lKOJDLq6umAYhm/37c1k05q8SlMUBV1dXeiKRNAO4Sw9m8mmAGjSgFEiIiKiujDIRkRERORRqlwUAOZ0OUG10Vi6QYMPWpPJ1m7k4AMFAhmLJaNERETU/lguSkRERORxMDtddLAviOFD04NsAxEDuw/HMTKRwCMbf4fh4WEcf/zxvty3O10Uze/JZpomHnroIcA0cV5T77mwgD6VyWYxlY2IiIg6AINsRERERFmxlIloygTglIvuN81plxmQww9iKWx77jkAwKpVq3y5f6dcVGayNTfIZts2nn76aQDAuW1QMKp7MtlMi0E2IiIian8MshERERFlyX5sXYaG7qAO27ahKMD5q+ZBVRWoioIBWS6ayLjX87dc1LktrYWN/jUIvFkdAwCoaE2Ay/Bkspl248tFVUXBm4+f7/5MREREVC0G2YiIiIiyZD+2hX1T/dgMTcF3rzoDWrYR/5zIVE82ye8gmwCgaa0L9AQVgXuM7S27fwBQVRWqosAWAmYTerKFAhru+dDrG34/RERENHPN7o66RERERB4Hiww9UD1DCNxMtnhukM2PQJt38EGze7K1G0VRIBPK0ub03nhERERE7YZBNiIiIqKsofEUAKcfmwyy6bruThEFpqaLjnmCbH6RwToBNL0nW7tRVdUtmW1GJhsRERFRvRhkIyIiIsqSmWzeIFtGqDjx73+NE//+14inTQzIctF4Jue6fmeytbInW1yoODH5OpyYfB3iojXLxWZnssXTZs7rTERERFQt9mQjIiIiyhoal+WiQTfIpmkaEpmpIM+crsYF2WzbdieM6i3syQYACWgtvX9FUbJlunbTMtm8rzMRERFRtZjJRkRERJQlBx8MegYfaFrucmlOVwDA9HJRPzPZAAWaymWawnJRIiIi6iBcvRERERFlFSoXlVNFpf5suehEsjHlorIn22wffABMBdkyFjPMiIiIqP0xyEZEREQEJ8B1KDp98MG0IFs4kL389Ov7sQ2yJ5vawp5s7UJVnKUqg2xERETUCRhkIyIiIgIwmTJhOrWamNNlTAXZ1Nwgm66p6MsG2rz8C7JlM9la3JOtHSjZbD6L5aJERETUARhkIyIiIgIwlh1kYOgqQgENpulMmMzPZAOmhh94+RtkU6CxXNQtF02bDLIRERFR++N0USIiIiIA4wknyCbLQWUmm65rOGvFHABwSzgHIgHsgYKeeYugmQkAPvZkA1rSk01RFBx99NGAZUHb8yrOUiYAACrqf1y1UrPDH6wmlIuqijLtdSYiIiKqBoNsRERERJgKsvXlBdkiwQAeuPrsnMvO6TJgQcWiM9+GpandsCzL10w2oPmBnkAggKuuugqIxYDbbsMDwW1Nvf9CmjldNBTQpr3ORERERNVguSgRERERPJlskdwgW6Fy0YHshNHReNoNBPnBmS7qDD5gT7apTDbTal02HREREVGlGGQjIiIiwlRPtvxMNl2fnvg/kO3JNhqbCrL5kclm27Y7+IA92aay+ZpRLkpERERUL5aLEhEREcFbLuoE0GRgJ20Dr/vHtQCAx//2zYgYOgYiBnRYSD/7CzymCpx11lk+Bdk8mWxqc78LTafTuPPOOwEh8FdCxVtSpwAAHg8+j0hTt2SKmg00ZppQLhpPm3jjl/8PwNTrTERERFQNrh6IiIiIAIwl0gCmZ7JpqoYjsXTOZed0OZdRrTQy2SQrP4JslnCCSQKA1oLm+/F4PPuTgiMINP3+87mDD+zmTBfNf52JiIiIqsEgGxERERGAiSKDD4r1ZDOhYkv/G/CXJ2lQVdWfTDa395gCrck92QKBAD72sY8BiQQC372vqfddjKo4QbaMyXJRIiIian8MshERERGh+OADtUCQbU6XAUDBgbSBnp4IEomEP5ls2YwtWwB6k3uyKYqCBQsWALEY4uUv3hSyXLRZmWxERERE9eDgAyIiIiIUH3xQMJMtO/jgiM+DD6aCSQoHH8BbLsrpokRERNT+mMlGREREBM/gg0j5INuciAEVNo4xd+Oll0awePEin4Jszm20oiebZVn43e9+B6TTOL2p91ycDLKZLBclIiKiDsAgGxERERFyM9ls24adzSrTtOmJ/73hAHRF4LTAAbzyCrBo0aC/mWzKVKlks1iWhcceewwAcCraI4tOY7koERERdZCOLRe99dZboSgKrr/+evd3QgisWbMGixcvRjgcxgUXXIBNmza1biOJiIioY8jBB/3hgJvFBgABXccpS/twytI+qNnsMk1V0BvKnb7py+ADGdhTW7tEUyFwihLDKUoMKlpXqikHHzQjyKYqyrTXmYiIiKgaHZnJtn79enz729/GKaeckvP7r3zlK7j99ttx77334rjjjsMXv/hFXHTRRdi2bRt6enpatLVERETU7kzLRjRlAnAy2dLpNABA13VEggH88uNvnHad/i4DiE39289MtmZnseULKQK/DG5u6TYAU8HGZvRkCwW0gq8zERERUaU6LpNtcnISH/zgB/Gd73wHAwMD7u+FELjjjjvwuc99DpdddhlOPvlk3HfffYjH47j//vtbuMVERETU7iaSpvtzXziAZDIJAAiFQkWvMxAxcv7tTyabcxsyg2u2UzUn2GhaLBclIiKi9tdxK7hrr70W73jHO3DhhRfm/H7nzp0YGhrCxRdf7P4uGAzi/PPPx7p164reXiqVwsTERM5/RERENLuMxZ3Mte6gDl1T3SBbMBgsep2BiL/lokIIN2Or1Zls7WIqk42DD4iIiKj9dVS56A9/+EM888wzWL9+/bS/DQ0NAQAWLlyY8/uFCxdi9+7dRW/z1ltvxc033+zvhhIREVFHcSeLhp3AWSqVAuBksiXSFi683RkI8MgN5yNsONNG/c5kE0K4t9HqnmwJoeLNqZMBAI8EX0S4Rdshh040o1y02OtMREREVKmOyWTbu3cvrrvuOnz/+98vWbqh5DWqFUJM+53XTTfdhPHxcfe/vXv3+rbNRERE1Bnyg2zeclEBgX1jCewbS0B4hgD0NyDIJmNJrS4XFQD2IYh9CLZw7MFUsNFuwuCDYq8zERERUaU6JpNtw4YNGB4exumnn+7+zrIs/Pa3v8Vdd92Fbdu2AXAy2hYtWuReZnh4eFp2m1cwGCxZCkJEREQznwyy9Udyg2wly0W7Ajjo+be/mWwsFwXgTvm02JONiIiIOkDHZLK99a1vxQsvvIDnnnvO/e+MM87ABz/4QTz33HNYuXIlBgcHsXbtWvc66XQajz32GM4555wWbjkRERG1u1LlosX0hwNF/1aLnEy2FpeLtgtNc0o2rSZkshERERHVq2My2Xp6enDyySfn/K6rqwtz5851f3/99dfjlltuwapVq7Bq1SrccsstiEQiuPzyy1uxyURERNQhxuJTmWy2becE2cwi1+kO5i6j/CkXdW5D15jJBgC67MlmsXyTiIiI2l/HBNkqceONNyKRSOCaa67B6OgozjrrLDz88MPo6elp9aYRERFRG5OZbL3hANJpZ9KooigIBAIwM4UnW+Y3xvenXBQAlJYPPmgXcsqqLThdlIiIiNpfRwfZfvOb3+T8W1EUrFmzBmvWrGnJ9hAREVFnkplsfeFAztCDUsOTwgF/M9kAwBZOy332ZHPITDa7CdNFiYiIiOrV0UE2IiIiIj+4gw/CRk6QDQAUKFi1oNv9WYoENYzaIYRUp1+YX+WirQqyKYqC+fPnA7YN9dARrFISzu+bviVTNDXbk60J5aLFXmciIiKiSjHIRkRERLPeeMIpEe0LB9x+bHKyaNjQsPaG86ddpycSwn+mTsbxoQm8TdN8CrIBAkpLerIFAgFcc801QCwG3HYb1gZfbPo25JPPgy0aP/ig2OtMREREVCk2/CAiIqJZz81kiwSmZbIV02U431WmTP8y2eRtaCXKVGcTzS0X5XRRIiIian8MshEREdGsJ4Ns3p5sMpOtGDn4wLQByxY+ZrKxJ5ukq+zJRkRERJ2D5aJEREQ063kHHxzIlovKTLZE2sK77nocAPDLj7/RDa4FFBvvDr6IAGwk0/N9zGRT3OBSM2UyGXznO98BbBt/LlS8N70aAPBLYzPCTd8ah645z3UzMtmKvc5ERERElWKQjYiIiGa1ZMZySz57wzp25pWLCghsH550f5Z0VcGA6lw2Y9kdn8kmhMChQ4cAADYUbBdOaK2VOWRuuWgTerIVe52JiIiIKsUgGxEREc1qslRUUxWEtamsqXLlorqu47dYjVB6HCcLxbdMNiGUlgTZdF3HlVdeCSQS0H/446bffyG6KjPZGPQiIiKi9scgGxEREc1qMsjWG9LdyaKGYUAtU7KpqirixhzEUybMGdCTTVVVLF++HIjFEG/6vRema+zJRkRERJ2Dgw+IiIhoVpP92PojRsWTRSXZt8u/clHZk42DDwBA15znoRnlokRERET1YiYbERERzWpuJls44GaylSsVBQDLsrDcPoBJdQxps9u3IFurMtksy8KGDRuAdBonNv3eC5OZbPU+t5VImZb7czPuj4iIiGYeBtmIiIhoVhuLpwEA/eFAVZlslmXh6PhLQABIm4t86snWunJRy7Lw4IMPAgCOQ3tk0jVzuugTrxx2f37+1XGcfcy8ht8nERERzSwsFyUiIqJZTWay9RUJsilQsKQ/jCX9YShFgk+mj+WiAq0ZfOClAFiCFJYg1dJwm5wuKprQk+1/tx5yf/7PZ/c1/P6IiIho5mEmGxEREc1qEwnZk61wuWjY0PD7z7yl5G2YVv1BIJnJBqDlPdnCio3fh55v6TYAgNGkclHbFnjspakg2/+8OISbLz0ZoYDW0PslIiKimYWZbERERDSrjZXJZKtExvJruqjsycYlGuApF23w4IMX9o1jOJpCl6FhSX8Y0aSJhzYNNfQ+iYiIaObhCo6IiIhmNXfwQVBFJuP8XH2Qza9yUWTLReu6qRkjoDcnk+2RLQcBAOcfPx/vPX0pAOAnG15t6H0SERHRzMNyUSIiIprVxuJOYK1LswETMAwDuj61REpmLPzp//cHAMCPrj67YAmhX5ls8jZancmWFArel3ZmjP7I2ILqQo7+kZlswnaeG0VpTBnt2s1OkO2FV8ex41AMAPD4yyPYP5bA4v5wQ+6TiIiIZh5+T0pERESzmsxkCysmACASieT83RYCz786judfHYddJJBm2v5msrW6J5sNBc+LLjwvumC3cPRBIJvSZ4v6g5jF7D0Sx9ahKBQAe0cT2DoUxRlHD0AI4OccgEBERERVYJCNiIiIZjUZZAtlg2zhcPWZS6bvPdlaG2RrFwFd9mRrXJDt0Wyp6OuOHnB/957TlgAAfvnc/obcJxEREc1MDLIRERHRrCani2oiDWB6Jlsl0j70ZAMAIcAgm4fuZrIBtt2Y4QePbBkGALzl+AXu785cPgcAsOtwrOH94IiIiGjmYJCNiIiIZrVo0slgUywn2FZLkM30bfCBANqgXLRd6A0uF81YNp7ceRgAcP4J893fz+81AAAp03Z79hERERGVwyAbERERzVrJjIW0ZQMQgJkCUFuQzc/BB0Iwk00K6CoElIYF2YajKWQsgYCmYPmcqdc9qGuY2+UE2g6MJ32/XyIiIpqZGGQjIiKiWUtmsQUVC7oCqKqKUKj6WZr+ZbK1x+CDdqGrKgScMlrTtHy//YMTTgBtQU8Iat5zPtgXyrkMERERUTl6+YsQERERzUzRpFMKOMcQUBQF4XAYijI9wDUnm9WUzwiGEE1mkPEpyCZvIz/g0yyRSMSJaMWSmIPWl0nqmgIBBYBAxvK/J9vBbJbawt4ggNzXeVFfCJv2TzCTjYiIiCrGIBsRERHNWjKTrd9wgluFSkUjho5n/v6iab83DAPvuuKj+MA3HsFr1HEfM9nQkkw2wzDw6U9/GojFgNtuwzOh55q+Dfl0VQbZgIzlfybbUDZLbbAvNO11XtjrZLINjSd8v18iIiKamVguSkRERLOWDLL1BYoH2UrpMpzvKzO2f4MPBBRoKpdogNObTj6rDclkm3D68C3omV4ivChbLjrEclEiIiKqEFdwRERENGvJctFu3QnghMPhqq4fMTQIwMdy0dZlsrWjgKpCCOe5aGRPNtl/zWuwz3kvsFyUiIiIKsVyUSIiIpq1ZCZbl+b8v1AmWzJj4crvPgUAuO/Dr0cooAEAMpkM/usnP8CbjMPYb/UgY9aXaSUz2YDW9GTLZDL4j//4D8Cy8F6h4C/TxwEA7jNeQvWjIPyhqgqyMbaGZLINZQNog72haa/zoFsuyiAbERERVYZBNiIiIpq1JpIZaLARUouXi9pC4MmdR9yfJSEEXt27BwtU4IDVjVSdmVZTmWytmS4qhMDu3bsBABYUPCl6AQA2WptVpyoqIACzAT3ZDkaz00V7g7BsO+d1HmS5KBEREVWJ5aJEREQ0a0WTJoIwEdRVGIYBXa/8+0dd1/G+970PT5pHw4aCtA9BNqcnm9OLrNnk43nfO9/ZVt/CymmvZp2ZgoUc9GSyxeNTAw6EJ8gWTZqYTJm+3zcRERHNPAyyERER0awVTZoIKiYMXat66IGqqjjppJMwqs8FoCDtU7moM/ig+UE2+XhOOv74tlogqjLIZvsbZIsmM4ilncDowt4QUsmpjLVMxkR3UEdP0Ak3smSUiIiIKtFOaygiIiKipoomMwgpJgxdrTrIJoWMAAD4kskmq1FbEWRrV0p20qrf5aJysmhPUEdXUEcqnXL/ZppO5prMZjvIklEiIiKqQDtVAxARERE1lcxkC+rhqoNstm1jy5YtWKyMIgbhS082WS7aip5s8vEglcLRTb/34mS5aL2DJfLJwNnCbCAtlUq7f8tknKmzg30hbB+e5IRRIiIiqgiDbERERDRrRVMZhLI92aoNspmmiZ/85Cc4DsBGLETGlyAbWlYuKh8PAFzX4mEHXqqqwgZg+Txd1A2y9QYBIKdc1JRBNnfCaAJERERE5TDIRkRERLNWNGkioFgwdBXBYLDo5cIBrext+dWTDWiPctEw/J/mWQtVVWADyPjck23IDbJlM9nSKRjZl9m0nHLRRZwwSkRERFVgkI2IiIhmrWgig14IBHWt6GTRiKFjyz++rext1VvOKHuytapc1Cui2NgSeqal2yC5gw/qzBTMJyeLyiAbzDS+fVEXAECH81oO9oUBcPABERERVYaDD4iIiGjWmkymoUDA0FVoWvlstVLSdTbmz50uyiWapLqDD/wuF3UGHQz2hiCEQCo1Nfhgqiebk93InmxERERUiaoz2VKpFJ566ins2rUL8Xgc8+fPx2mnnYYVK1Y0YvuIiIiIGiaWcoIpwUD9QTbfMtlE6zPZ2okMslmW8PV2veWimUwGQkzdvhtk63Uy2ThdlIiIiCpRcZBt3bp1+MY3voH//M//RDqdRn9/P8LhMI4cOYJUKoWVK1fiIx/5CD760Y+ip6enkdtMREREVLeUacEyTUAHIqGgO8UyXzJj4WPf3wAAuPvPT0eoSH+2TJ2ZVlM92RSoLQ6ypYSCqzPHAgDuDryMUAu3Rb4upu1zuahn8EEymUTaErjrOSeb7eaLnEmjsifbyGQaKdNCUK8vEEtEREQzW0W1CJdeeine9773YcmSJXjooYcQjUZx+PBhvPrqq4jH49i+fTv+7u/+Do8++iiOO+44rF27ttHbTURERFSXaNKEBid7KRIMFL2cLQT+b9sh/N+2Q+5ggkIypp2TDVWLdunJZkHB/9n9+D+7H3aLJ41qbiabf+Witi0wHM2Wi/aFkEqlIATw/CELzx+ykEo7mWz9kQAM3bn/4YlU0dsjIiIiAirMZLv44ovx4x//GIZhFPz7ypUrsXLlSlx55ZXYtGkT9u/f7+tGEhEREfktmjShKTYMXYURKB5kq1TGcoJsxTLiysntycZyUUlm9dWbKeg1EkvBsgUUBZjXHcTBA4dz/p7JONNFFUXBor4Qdh+OY2giiWVzIr5tAxEREc08FQXZrr322opv8KSTTsJJJ51U8wYRERERNUM0mYEGgaBWfz82YCrIVqupIFvrM9naiezJZtv+BdlkVtq87iACmopkMrfnmmma7s+DvU6QjcMPiIiIqJyqBx94TU5OTlvw9Pb21rVBRERERM3glIs6mWy6XteSCACQsYQPQTbn51b3ZGsnMqvP9DHINpQNmA32Oj3XvJNFAcDMDj4AnHJS5zoJ3+6fiIiIZqaq58Pv3LkT73jHO9DV1YW+vj4MDAxgYGAA/f39GBgYaMQ2EhEREfkumsxAU2wEdc2XIJtp15/JJrLlosxkm6KqTpahnz3ZhjxDDwBMy2SzbRuW5QxamAqysScbERERlVb1ivKDH/wgAOC73/0uFi5cWHPfESIiIqJWmsgOPvAvk82P6aLO4AP2ZJsinws/g2zDbpCtcCYbAGQyGWia5ma7DU0wk42IiIhKq3pF+fzzz2PDhg04/vjjG7E9RERERE0hy0WDuh892RRkzPrLReX1dbXqYoMZS/Zk87VcdGKqXNS2baTT6WmXkX3ZFmUz2diTjYiIiMqpOsh25plnYu/evQyyERERUUeLJjNQK8hkixg6dv3TO6b93jAMfP7zn8eG3aN45js/QcaHclEbyE4XrflmaiYfD2Ix4LbbsCu0vvkbUYDMZPNz8MFQdvDBwt6Qm8UWNjTsvPUSrF+/HvF4HJlsX7bBvjAA4CCDbERERFRG1Uu4f/3Xf8WXv/xl3HfffdiwYQOef/75nP8a5e6778Ypp5yC3t5e9Pb24uyzz8aDDz7o/l0IgTVr1mDx4sUIh8O44IILsGnTpoZtDxEREXW2aNKEptQ/+KArqEHAn+miIjtdVGMmm0tze7LV/tzmc8tF+6aCbMFgEIqiIBAIAMBUkC1bLnowmoJl+7cNRERENPNUvaI8dOgQXnnlFXzoQx9yf6coCoQQUBTFbRLrt6VLl+Kf/umfcOyxxwIA7rvvPlx66aV49tlncdJJJ+ErX/kKbr/9dtx777047rjj8MUvfhEXXXQRtm3bhp6enoZsExEREXWuaDIDDaLuwQeRgA4Bxbfpohx8kMvtyWb7t8Y8mA2yLegJIpmMAwBCISeYJoNsslx0fk8QmqrAsgVGJlNuHzciIiKifFWvKD/84Q/jtNNOww9+8IOmDj545zvfmfPvL33pS7j77rvxxBNPYPXq1bjjjjvwuc99DpdddhkAJwi3cOFC3H///bj66qubso1ERETUObw92UoF2ZIZCzf86DkAwO1/eipCASezyjRN/PznP0cqY0GBQMYSdTXnd4JsTpCuFYMP5OOBaeISoeDTmZUAgNsDO9DKsJKWrZ21fCoXtWyBsYSTpTa3y0BidBQAoGgBXPMfGzAxEcUVxwk3k01TFSzoCeLAeBJD40kG2YiIiKioqoNsu3fvxi9/+Us3o6wVLMvCj3/8Y8RiMZx99tnYuXMnhoaGcPHFF7uXCQaDOP/887Fu3ToG2YiIiGiaqGe6aKnBB7YQ+J8XhgAAX/2TqUw127axefPm7L8WAQASGRPdNW6PDLK1arqo9/FcBAX/Y88BAHwVO5u+LV5y8IFfpZoTiQxkwmF/xMDYkFMuqhtB/M8LzmP9i1URN8gGOL3bDowncWA8idcu82UziIiIaAaqOsj2lre8BRs3bmxJkO2FF17A2WefjWQyie7ubvz85z/H6tWrsW7dOgDAwoULcy6/cOFC7N69u+RtplKpnLHtExMT/m84ERERtZ1oyunJVi6TrRhN0/D2t78dQgBP/9fzAGzE02bN2+P0ZAOEUFoSZJOPB+k0tLX/2/T7L0b2p/Nr8MFo3Jkk2mVoMHQVyaRTOhoKBXMuJ8tFAWfC6HN7gaHxhC/bQERERDNT1SvKd77znfjkJz+JF154Aa95zWvcvhXSu971Lt82Lt/xxx+P5557DmNjY/jpT3+KK6+8Eo899pj79/zSVdknrpRbb70VN998c0O2l4iIiNpXNJFGTwXTRYvRNA2vf/3rnZ//exNg20ima+8bJsshBQCtSe04vNzHE4sh3kZBNl3zO8jmZKgNdBkAMDX4wMgNsnkz2Qb7nBJROZWUiIiIqJCqV5Qf/ehHAQBf+MIXpv2tkYMPAGe0vMygO+OMM7B+/Xrceeed+Nu//VsAwNDQEBYtWuRefnh4eFp2W76bbroJN9xwg/vviYkJLFvGOgAiIqKZbjKZQa8Pgw8AIKCryKSBWB2ZbKZneqahc7qoNNWTzZ9y0bFsJttAxAmyyUy2YCi311pOkC3bh42ZbERERFRK1StKv75F9IMQAqlUCitWrMDg4CDWrl2L0047DQCQTqfx2GOP4ctf/nLJ2wgGgwgGgyUvQ0RERDNPPOUEW4IBze37VQ3btrFnzx4AgK4qyABIpOoJsslMNgUBrflBNvfxJBKY1/R7L05rUCZbfySAWCwGy7KgKAqCQSPncoUy2Q6MJ33ZBiIiIpqZ6vvatok++9nP4u1vfzuWLVuGaDSKH/7wh/jNb36DX//611AUBddffz1uueUWrFq1CqtWrcItt9yCSCSCyy+/vNWbTkRERG0mY9nIZExAByJBo6Zp6aZp4r777gMAGMGVSABI1JXJNlUuGtBaM11UPp7r0Pz7L0b3uSebN5NtZGTE+XlgYNrwi9yebGEAwMEJBtmIiIiouJqCbI899hi++tWvYsuWLVAUBSeeeCI+/elP47zzzvN7+1wHDx7EX/zFX+DAgQPo6+vDKaecgl//+te46KKLAAA33ngjEokErrnmGoyOjuKss87Cww8/jJ6enoZtExEREXWmaNKErjjlh5FQoMylyzOyAZpEpva2GWY2iBTQ1JqCfjOVli3l9aslyagbZAu4Qbb58+dPu1wmk3H7+8py0QPjyYp6/hIREdHsVHWQ7fvf/z4+9KEP4bLLLsMnPvEJCCGwbt06vPWtb8W9997bsMyxf/u3fyv5d0VRsGbNGqxZs6Yh909EREQzRzSZgQobAU2FESgdZAsHNGz+wh+5PxcSyPZQqyeTzcpmsgX0wvfRTGHY2Bzc4P7cSoFskE34FmRzykD7DCAajQIA5s6di0D2dbZtG+v/8HsATjZbIBDAgl6ntUjKtDEWz7hDE4iIiIi8qg6yfelLX8JXvvIVfPKTn3R/d9111+H222/HP/7jP7I8k4iIiNpeNGlCg0CwgsmiiqIgYpS+jAyM1VUums1k09XWZ0kpChBpcXBNkq+PbVuwbbum/nlesly0S8QBAH19fTAMJ2gmX2dd12FZlhtkCwU0zO0ycDiWxo79h/DaFQvrHpZBREREM0/Vq5QdO3bgne9857Tfv+td78LOnTt92SgiIiKiRppIZqDBhqGr03px1UIOKkika8+2mspk42RRLyeYpcAWIqdPWq1GY04mWyATA1C4VFQG0LzDDxb2hjCgxPH8xuewY8eOureDiIiIZp6qV3HLli3Do48+Ou33jz76KJYtW+bLRhERERE1UjRpQlPsijLZUqaFT/1oIz71o41ImYWDaEY2yJbK1BYEEkJMZbL5EPSrV1oo+FR6BT6VXoGUaG1mXUBTYUGBLeBPkC2ehg4LmpkAAMyb58xS9b7OUKcH2Rb1hTBXjWMyaSKRSNS9HURERDTzVJ3n/qlPfQqf+MQn8Nxzz+Gcc86Boih4/PHHce+99+LOO+9sxDZSBRKJBFKpFPr7+1u9KURERG1PlosaulY2yGbZAj995lUAwD+++6SClwkGZLloHZlstjOIwWiDTDYTCn5qO8Gnf8Tulm6LpqmwhArb9ieTbSyeQZ+SRCjQi56eHoRCzlAD7+v8p8csBpAb1BvsUnFYSWEyZfqyHURERDTzVB1k+9jHPobBwUH88z//M370ox8BAE488UQ88MADuPTSS33fQKrMpk2bMDk5iTe84Q3uYpGIiIgKi2bLRSvJZKuELPFM1jhdVAjhBtkCbZDJ1k4CquJ7JtsSNYlQYMDNYsuna9Mz2eZqTvbaZCrj26RTIiIimllqWlW+5z3vwXve8x6/t4XqkEqlAADpdJpBNiIiojK8gw/86MlmyMEHdZSL2kIG2VqfydZONFWBBdWXnmyJtIWUaaNLTyMUUDFnzpyCl9OzE2dlkE0IgS7L6eE2mWQmGxERERVW81e3GzZswJYtW6AoClavXo3TTjvNz+2iKtnZPi4iu0AnIiKi4qLJDFTFGXzgRyZbMBtk8yWTrQ3KRduJrjlBNuFDkG00O1lUV5w+enKqaL5AXpAtGo0irDqv7WTKZCYbERERFVT1qnJ4eBh/9md/ht/85jfo7++HEALj4+N485vfjB/+8IcFJzRRYwkh3MWeDLYRERE1k23bOHjwIAYGBjoio9rtyab5E2QzstlwqRp7sjlBNudnZrLl0lUVlvCnXHQ0noYCgXBAhaIoRbMY5XtC3t/Q0BC6QxqiIoRgKg3LsiCEgKK0digEERERtZeqV3F//dd/jYmJCWzatAlHjhzB6OgoXnzxRUxMTOATn/hEI7aRyvBmrzGTjYiIWmFkZATbtm3Dzp07W70pFXGCbP71ZAsa9ZeLTg0+YE82L93HctGxeAZqNsgGAKpaeCkcCEz1ZMtkMhgeHkZ3MIARO4KUaSNt2sxmIyIiommqXlX++te/xiOPPIITTzzR/d3q1avxzW9+ExdffLGvG0eV8WavMchGRESt4O0N2gkmkpmKp4tWIpQNjKXqKRcVAgJKW0wXbSeaO/ig/iDbkVgaKmyEAhoURSkeZNOdctHx8XGsW7cOQgh0R0KwjW4Ia9QtGfXjvUNEREQzR9UrA9u23T4VXoFAgKWKLcIgGxERtZrM6umU41A0aUJT7IoGH4QDGjb83YXuz1IgEMDf/M3fAADWPvkCACBRR5DNdjPZWhNkcx9PPI7wXd/EhuCzAIAwWru+C2gqTKH6Ui46Fk9nM9m0aa+793UO2E7QWK6xurq6cOyxx2LhE8/DPqKwLxsREREVVHWQ7S1veQuuu+46/OAHP8DixYsBAPv27cMnP/lJvPWtb/V9A6k8b5CNgU4iImoFGfzolONQNJFGN0RFgw8URcHc7mDB33d1dQEAwobzBWR9PdmcTLZW9WTzPh4owFy0xwRNd7qoLdxBBLUajTsZjKECQTbv6yyEgeXLl8O2bSxYsADd3d0AgEV9IRw+rHDCKBERERVU9SrurrvuQjQaxfLly3HMMcfg2GOPxYoVKxCNRvGNb3yjEdtIZXi/Se2UDAIiIppZOm0Az2QyAwXCv55s2R5fSbPeclFn6iVNCWgqLKiwfJouqiqFg2xeiqJg+fLlWLlypRtgA4DB3hBsqMxkIyIiooKqXlUuW7YMzzzzDNauXYutW7dCCIHVq1fjwgsvbMT2UQVYLkpERK3WaUG2eMrpHRcK6EX7ckkp08IXf7UFAPB3f3wigtn+a6Zp4qGHHgIAzFm4xLlsprapk1OZbECgReWi7uMxTVwgFPyTuQwA8Hf6XkzP42seQ1dhQYFl+zf4IBSYXiZc7HX2GuwL4TkomExlGGQjIiKiaWr+6vaiiy7CRRdd5P5bCIG9e/fiqKOO8mXDqHIsFyUiolaTwY9O+LInY9lIZ0xAB8LBQNmAmGULfO+J3QCAmy45wf29bdt4+umnAQB/fKkTkLKFQMp0GutXY2q6qNKyTDbv4zkXCr5nLQQA3KS/2pLtkQxNhSVUX4Jso25PNn1akK3Y6+y1UGayJS2WixIREdE0Fa/iNE3DddddVzSIMzw8jBUrVvi2YVQ5ZrIREVGrdVIm22TShK44x8tI2Kj5djRNw/nnn4/zzz8fIcP53lKBQLyGvmzeTLZWDT5wH8/ZZ6O6EGFjyUw2Oxtkq2et4/Rks8uWixYzr9uABQXJjMVMNiIiIpqm4lWcEAL33HMPLr74Yhw5cqToZaj5GGQjIqJW66TBB9GkCQ02ApqKYIGJ6ZXSNA0XXHABLrjgAhiBAHRNgQIglqo+w0kIAVsICNG6nmzu4zn33DYMsjk92ZwprLW/x+R00ZBRW5BtIGLAFgoSDLIRERFRARWv4hRFwdq1azEyMoIzzjgDL774YsHLUPMxyEZERK3WSZlsE0mnL5eh+TP0AHDWQEa2t1s9mWxo4XTRdmXoKmwoMLNvrXrKNEdjzuCDcIGebJWY02XAgopEhuWiRERENF1VmWwrVqzAH/7wB5x55pk4++yz8bOf/ayR20YV8n6T2gknN0RENPN0Uk82mclW72RRIQSGh4cxPDwMwBlYoEAglq4tk63V5aLu4xkZQTu9ik5mn4K07WxjrcEt07IxkTSzgw9qzGTrMmBDQcq0kGGQjYiIiPJUvYoLh8N44IEH8NnPfhbvf//78fnPf74R20VVYCYbERG1khAiJ5Ot3Y9F0WQGmmLD0GvLZpIymQzuvvtu3H333bAsCwFNhQIgnqqnJ5uCgNaaygD38dx7LzIt2YLCZPmsKVTYovZMtvGE86g02AjptQXZ+sMBWFAgBDART9e0HURERDRz1fxV6U033YRf/OIX+PrXv473vOc9iEajfm4XVYFBNiIiaiWR7ZXl/Xc7czLZRN2ZbF6K4gTHas1kA5zJpK3MZGtX8vmwUN+E0dG4E2SLGCpUVakpyKZrKsKG08dvPJ6saTuIiIho5qp4ZVmo39oll1yCJ598Eu9+97tx4YUX+rphVDlvkI3lokRE1Gz5QY/2D7JlsuWiWkVBtpCu4Xc3vtn9uRBFUdyMq3gd5aKA0rLBB14h2PidsdH9uZWmgmxKXUG2sWzmWW/QeQ3zg2yVvM4A0B02gCgwmWAmGxEREeWqOMhWbMF83HHH4cknn8Tll1+OvXv3+rZhraQEgoinLeg1fhPdbLGUiZTpvD7xtFXT4p6IiKhWiUTaPQ4BwGQyjUAdUzsb7UgsDUUIqKqKjFArOm7O7TYAAElzqhQ07bleyhJQFBVCCIzGMlUfi+MpEylLwBJORlsrjuXex5OEgrmKmf1ZBdIWEGjd+kJV4LxWpo1oIoWeGp6foXEn8ywcUJEyBdL29IBoodc5XyRoIDmh4PBkkmsuIiKiWaCaoVaK8PHr5j179uCoo47y6+ZaYmJiAqfc8rtWbwYRERG1OR0W/iL8LADge4nTYKL2/m7tYKY9HiIiIiK/7P7yH2N8fBy9vb0lL+drPYIMsLV7mQgRERERFceVHBEREVH1KioXPfHEE/H3f//3eN/73gfDMIpebvv27bj99ttx9NFH4zOf+YxvG9lse25/L/bvP4De3p5Wb0pFtr+0HUNDQwCAhQsX4rjjj2vxFhER0WxyeOQwNm/e7P779DPOQCQSLnmdDRueQTwWwwknnoD58+c3ehNzfPJHz2HH5hdw0XH9+ODb3oiBOQMlLx9Pmzjji48CAJ7+u7ciYjjLp3Q6jTv/2cn8+p+PnILvr12P3+1O4Pw3vA43vu2Eqrbp0KFD+ML31mLnhMCNH7gYbzq+uc8JkPt4Hjc24uz06wAATxvPIvLJTwBdkaZvk3Tel/8PWvwwrjurHycfezRWHbeq6tu4fe1L+Nff7cSfH2PivBW9OOWUU9DX3+f+vdjrnO8rv3oeGzZswGnL5+IzV76rtgdEREREHWNiIopFX67sshUF2b75zW/ib//2b3Httdfi4osvxhlnnIHFixcjFAphdHQUmzdvxuOPP47Nmzfj4x//OK655pp6tr/lRCaFiKEVXVy1G0MDgrozmCKoKx2z3URU2MTEBI4cOYKjjjoKqtr6BuhE5UQ9xyEACFVwLNJhIagrCGrNP24l0jYCio1uQ0NPJFjV/UcM3b287hkI0BsJIRJQEVBspC1R9WMK6SoUIaAoQHco0JJjuffxhJWpXLaIYiNiaEAL1xehgIYUFGgKoCt2Tc9PLOX0T+s1FAR1Bd1ho+jteF/nfPN6w9AUATOTQTigFRwORkRERDOHaVTeQqOiFcpb3vIWrF+/HuvWrcMDDzyA+++/H7t27UIikcC8efNw2mmn4YorrsCf//mfo7+/v9btphp5J4qyVJeo8+3YsQNjY2Po7u7GvHnzWr05RGXlT3usZNK1vE4rpmJHkxnoioChq74NaAgEAjA0FTpsxFM1ThcVAgKqO02Tphi6ijhUWKL26aKjsQwAJwgMTJ8uWqm53SEAQDJtwrbtmm+HiIiIZp6qvgY855xzcM455zRqW6hG3hOUVpysEJG/UqkUAKd0i6gTWFbuxKVyxyLbtt3rtCTIlsigGzaCugpd9yc7S9M0BDQVmmIjVsUEKkkIAct2vigLaMyMymdoKiyosOw6gmzxNABRd5BtoDsEQEEiY8GyLAbZiIiIyMWvSmcA78kNM9mIOl8m42Rb1HoiSdRs+UG2csci7+VbEWSLJ51Atp9BtkAggICuQIONeCpT9fVlkE1AYSZbAYZef5BtPJGBgqnS5toz2YKwoCCRtrifJiIiohxcxc0ALBclmjls23ZP2mSwjajdVVsu6n1vtyTIlnKyRMNBw7d+Wrquw8gGbRKp6rNQp8pFnawtymXoKkyhwLJFzfvGaNKEChtB3Xmdas5kixiwPZlsRERERBJXcTMAy0WJZg5vsIIZEtQpqi0X9b63m33cMi0b6bRz/13h4hPTq6UoCoKG098tWWOQzbYFhAAz2QoIaEpOJlstXyrG0iY0CBi6AlVVaw6wzukyYAsVKdNGKs0vQ4iIiGgKx1DOAMxkI5o5vBkazGSjTlFtJlsrg2yTKROa4txnVyhY0XVCuoaHP/km92cpEAjgYx/7mPtzKOgE7WoJvMhMNkBBoEWZbO7jSSTQ89178LDxAgAghNZ/gWfoGiwobt86y7KqLvWNpZwgW0BTC2axFXud8/WFA7CyAbrRWBLz5la1GURERDSDMcg2AzDIRjRzMMhGnajanmytDLJFkyZ02NC1qcyzclRVwXELe6b9XlEULFiwwP13JOQE2dI1BNls2872ZGtdJpv7eGIxQAGOU5It2Y5CDE2FgAIbznvLNM2qgmwp00LGEgjAmSpbKMhW7HXOp6kKgoEAkEljbLJ9niMiIiJqPdYjzAAcfEA0c3gnirJclDqFfK/K8rt2zmSLJp1spqCm+Tb0QHKDbDUEyE3LOX6LFmaytbOgrgJQYGeXrtXuH2MpZ62kKsUz2aoRCToB2tEYg2xEREQ0xbfV5YUXXogdO3Zgx44dft0kVYg92YhmDmayUSeSX/YEAgGk0+k2D7JloCk2jComi6ZNG9/8v5cBANe++Vg308yyLPzud78DAJx33nlu+amwTWQsu6pgWdrzhVmrBh+4jyedxllCwb+YiwAA1+oH4F/3utq4z3nNQTbn8hFdgaooBYNsxV7nQiIhA6lJYDyWqmo7iIiIaGaraHX5/PPP4+STT4aqFl9svOc978HIyIhvG0aVY7ko0czhDazJ5t5+TT8kapTOCrKZ0GAjqKsIBCorFzVtG3c+uh0AcPX5K2FgKsj22GOPAQDOOeccdIWdIJsGgXjaQl+48mBZxnSeh1aWi3ofz6lQcKe1BABwtT7U8iBbQMtmSdYYZJvMBtm6DOf6hYJsxV7nQrqCBkYBjMcZZCMiIqIpFQXZTjvtNBw4cAALFizAypUrsX79esydm9vl9dprr23IBlJpQoicwBqDbESdzRtks20btm3XXdZE1Ggy4CGDVuWORfnv82aKpjLQs0G2estFVVXFGWec4f4cDhrQVAW6bSOeNtEXriyIBwCZbKBSURRoamsC6+7jMU2oz2xsyTYUIwOPJpznptZMti7DuX69+9Xu7GTaaKL6SbJEREQ0c1W0uuzv78fOnTuxYMEC7Nq1iyWJbST/teBrQ9TZ8ktETdNkkI3amhAiJ5MN6ICebIqAodffk03XdbzjHe9w/x0IBBDQVOiW7fYAq5TMZNO01mWuuo8nFkO83YJs2f2gJerLZIvoxTPZqtGTDbJNJpjJRkRERFMqWl2+973vxfnnn49FixZBURScccYZRRcn7MnWXPknJ8xkI+ps+UG2TCaDYDDYoq0hKs87fKdjgmywYegB3wcfBAIBBFQFGmwk0lUG2axskK1Ea47ZzM1kE7VmsjmvRyTgTyZbb8TZL08mmclGREREUypaXX7729/GZZddhpdffhmf+MQn8Fd/9Vfo6Sk/4pwaz3tyAzDIRtTpCgXZiNqZ5SlzlEGreoJsW7duRTwex6mnnlqyF2ytJpKZbJBNq7gnWzFCCMTjcQBAJBKBrusI6Co02IilqwsCmdkgWysni7qPJ/uY2kn9QTbn8mHduX69762+bJAtxiAbEREReVT8Fe7b3vY2AMCGDRtw3XXXMcjWJpjJRjSzyKCaqqqwbbvqE0miZpPvUU3T3MBFuWNRqSDb8PAwbNtGMplEJBLxeWtlJpvwpSdbJpPBV7/6VQDATTfdhEAgAENToSsZxKsMssmebK3MZPM+nuvQXgNXgtkgW8auLcgmy0XDPmWy9XWFAADxFL8IISIioilVr+TuueceBtjaCHuyEc0cQgg3yBYOhwEwk43an8xk03XdDbLVmskmhHD/3ajjmdOTzYbhQ5Atn9uTDdX3ZJOZbHoLM9namZwumqkzky2k+xNkG+h2MtkSbRhkGx8fx7Zt23j8ICKiGSl/+GO78W11+a1vfQsjIyP4h3/4B79ukiogT0IURWn7NxvRbGLbNnbs2IG5c+diYGCg4uvIz3QkEkEsFmMmG7U9GWTTNA2K4gQwSgXIhBBFg2zFfvZTNJGGVuV00aCu4RfXnuv+XIyu6whoChSIqssI02Z79WQLwsYvjM3uz61mZIOP6WyQLb9dRjmT2czCkFY8yFbp6wwAc7KZbMk2DLLt3bsXIyMj6Ovrw+DgYKs3h4iIyFebNm1CPB7H6aef3pYD4nxbyf30pz/Fvffe69fNUYXkSYh8czHQRtQexsbG8Oqrr2L79u0VX8dbKiqHHTATgdqdDJhVmslmWVbOccp7WW/gpFFBNtmovpogm6YqeO2yfrx2WT80tXgZpaZpCGSDM9VOnTTt9spk0xTgtWoMr1VjaOHAU5eRfV4zlvPeqfb9ITPZgtmXvNCivNLXGQDm9DjZxqZlugHSdiE/R9UGIomIiNqdEAIjIyOIx+OIxWKt3pyCfFvJPfroo5ws2gLeMh2JQTai1pOBh3g8XvGJjgyoBQIBtyE7M9mo3Xkz2SrpyZb/nm52Jls86QS/QkbA98EKiqK4n115P5UyzfYKsrUbOfhABtmqXevI8t1gNrZWd7loVwiKAqgQGI2nEI/HsW3bNiSTybpu1w+NLrkmIiJqFe95VTsccwupq1xULnBkeQg1n1xAMchG1F68JzeTk5Po6+sre51CQTZmslG7qzaTrVCQTQgBRVGaFGRLwwAQCRkVXydt2rjn9zsBAB86d4Ub8CnEyH52qy0XlZlsgTYpF00LBfdYCwEAH9IOovJnqzHkc56uMcgmBx8Y2ae3UJCtmtc5ENAR0jUkMhaOTKZxeGyfO7TjxBNPrGrb/MYgGxERzVTedWS7BtlqWsn9+7//O17zmtcgHA4jHA7jlFNOwfe+9z2/ty3HrbfeijPPPBM9PT1YsGAB3v3ud2Pbtm05lxFCYM2aNVi8eDHC4TAuuOACbNq0qaHb1Wr55aIAg2xE7SA/yFYJb5BNBs4ZZCPA2a+/8MIL2LJlS6s3ZZpqe7LJxZEMJANTx61mlIvKRvWRULDi65i2jVsf3IpbH9zqBsOKCRrO40pWG2STgw/09vji0oSCW81luNVcBrMNJo0acvBBzZls5YNs1bzOmqYhHHBuY2QijtHRUQDAoUOHWp6BzCAbERHNVDMyyHb77bfjYx/7GC655BL86Ec/wgMPPIC3ve1t+OhHP4qvfe1rjdhGAMBjjz2Ga6+9Fk888QTWrl0L0zRx8cUX59ThfuUrX8Htt9+Ou+66C+vXr8fg4CAuuugiRKPRhm1XqzHIRtSevCc3le6D0mnnpJzlopQvnU7j8OHDOHjwYNv1WZLv0WrLRWXfQaBwUKARAQLLFkilnSBbVxWZbNUIGs7tJtLVBdkyMsimtl8D33ZQbyZbLO18bgIlgmzVUBQFoaCznx4+POp+IWLbNoaHh2u+3VQqVfd+Xz43DLIREdFM0wlBtqrLRb/xjW/g7rvvxhVXXOH+7tJLL8VJJ52ENWvW4JOf/KSvGyj9+te/zvn3PffcgwULFmDDhg1405veBCEE7rjjDnzuc5/DZZddBgC47777sHDhQtx///24+uqrG7JdrVYoyMZFFVHrMZON/OQNrFmW1VaTlLy9QaspF/VmssnLNzqTbTJlQstOyuwOV57JVg0ZeElVGWSzZJCNPdkKMrLv+Yxd3+AD3acgG+D09QOAQyMjmNs3Nel9aGgIixcvrvr2TNPEk08+iXA4jDPPPLPm7WImGxERzVTeIFsikWjhlhRX9UruwIEDOOecc6b9/pxzzsGBAwd82ahKjI+PAwDmzJkDANi5cyeGhoZw8cUXu5cJBoM4//zzsW7duqK3k0qlMDExkfNfJ5ELKFVVK8ogIKLm8J7cxGKxik52ig0+4GeavMGndstuLDT4oNT73fs+zy8vbXQmWzSZga7Y0FQF4WBjMtnC2Qy9VKq6APlUuSiDbIW4mWxmPeWiAoFs5asfQbZwNqA6MeaUii5duhSKomBiYgLxeLzq20smk7Btu+JjRjEMshER0UyVn8nWjudJVa/kjj32WPzoRz+a9vsHHngAq1at8mWjyhFC4IYbbsAb3/hGnHzyyQCAoaEhAMDChQtzLrtw4UL3b4Xceuut6Ovrc/9btmxZ4za8AeTJjaqq7slKO77RiGYbb1BECFHRiOlCmWy2bfNEido6yOYdfFBNTzZv5luh8rZGHMuiSSeTLairOQOD/CQHKqSrzEJtt8EH7WaqXNR5nmoZfKBAIJDt7eZHkC2SDdQmspNkFy5c6H75W2rtWYz3/V9PFjODbERENFN518FCCLfdTjupeoV588034/3vfz9++9vf4txzz4WiKHj88cfx6KOPFgy+NcLHP/5xPP/883j88cen/S1/0qmcWFbMTTfdhBtuuMH998TEREcF2ryZbJWc3DTKrl27MDk5iZNOOonTZokw/XMYjUbR09NT8jreIJtsIi+EQCaTaavyQGo+74Ki3YJshTLZKunJJoNslmU1rVzUCbIJBHWt4UG2aoMkbiYbP+sFGdky2lQNPdmEEIilnNdeButUH4KZXaHskIuMjUAggK6uLgwODuLw4cMYGhrCihUrqloTed//mUwmp29hNdiTjYiIZqr8dXAymaz5eNkoVa8w3vve9+LJJ5/EvHnz8J//+Z/42c9+hnnz5uGpp57Ce97znkZsY46//uu/xi9/+Uv83//9H5YuXer+fnBwEMD0bw6Hh4enZbd5BYNB9Pb25vzXSbw92VpVLiqEwJ49ezAyMlJTeQTRTCQ/m/IEq5K+bPlldBx+QFKnZLJV25Mt//LNKBfVFBuGrub0hPNTV7bXm2lWF2SzssGjAMtFCzKyU1fl4INq3h/JjA1bACoEApqaMwm3HrLkOGVa6O/vh6IomDt3LgKBANLptDtxtFLez3k938wzk42IiGaqQkG2dlPT17inn346vv/97/u9LSUJIfDXf/3X+PnPf47f/OY3WLFiRc7fV6xYgcHBQaxduxannXYaAGeB8thjj+HLX/5yU7e1mQplsjU7yObNQuCCjsghPwvd3d2IRqMVTRj1BtkAJ2iRTqc5/IDaOshWbU+2UkG5xgfZTOiwq85kC+oafvBXb3B/lnRdx5VXXun+DEwNVDDN6qbAynLRVg4+cB9PIoGuHz6AHwS2AgCCaP2xXQ4+SJvVl4tOZoceaIpTLlosM7jY61yMnFCbMm0MDAwAcNZj/f39OHToEOLxuFs+Won8TLZaCCGYyUZERDNW/jq4HYcfNKZWogGuvfZa3H///fjFL36Bnp4eN2Otr68P4XAYiqLg+uuvxy233IJVq1Zh1apVuOWWWxCJRHD55Ze3eOsbpx3KRb3ftnJBR+SQn4W+vj5Eo1G3kXWxEiVZFgpMBdmYyUZSOwfZ5PZ4s4NqDbI1vlw045QMatX1ZNNUBWcfM3fa71VVxfLly3N+1xMOAQCsqjPZsj3ZWhhkcx9PLAYowNla+S8HmmWqJ1v15aJysmi34ayVigXZir3OxXTLIFtmKsgGTAVcve/nSviRydboQHUn27JlC+LxOE477TRfyoWJiKj55DrSMAyk0+mZk8lWyIUXXogdO3Zgx44dft1kjrvvvhsAcMEFF+T8/p577sFVV10FALjxxhuRSCRwzTXXYHR0FGeddRYefvjhsn2QOlk7DD5gkI1oOvlZ6OrqgqZpsCwL8Xgc3d3dBS/vDZx4M9mA+hpg08xQqiebZVk5x4Bmk8eh/EEGxXqitjKTbaIJgw96upxMNtuyYFk2tAqDZjKTzWhhkK2dySCbaedma1VCZrJ1ZUeL+hVg6Q47QbZJU0EoFHJ/L2+/FUE27/PCQVhThBA4ePAgAKe0KBKJtHiLiIioFnId2d3djSNHjszsINt73vMejIyM+HVz01SyUFAUBWvWrMGaNWsath3txpvJ1qqebAyyEU3n/Wz29PRgbGwMk5OTRYNsMpDmDTwwk42kYplsyWQSTz31FBYsWIATTjih6dvlnX6b3+eqWJCt0Hu9qYMPFBuGrlXVky1j2fjBU3sAAB94/VFutpllWdiwYQMAp5WGpmnoi4Sz1xKIpdLojYQK3eQ0biZbC3uyuY8nncYpQsGPrPkAgA9oh9CYDnaVk0E2AcCyBRSleCA3nzeTDSg+WbTY61xMf7cTqDmUCeRsh7z9at/DfpSLMpOtMK5ViYhmhlkVZLv22mv9uimqQqGTGwbZiFrPG2Tr7u7G2NgYotGoO6QlX36pKMBMNppSLMgWjUZh2zYmJiZasVk526Xres7xp1h5dEt7siXS0OAMPqgmky1j2fiHX2wCALzv9KU5QbYHH3wQAHDqqadC0zREgjoEFCgQGI+lKg+yuT3ZWjdd1Pt4joOCfzCPBgC8TxtpfZBNk0E2BaYtoGvlJ8hLsbTznosEygfZCr3Oxaw4agl2WwOYMIPIWLZ7eXn7LBdtH1yrEhHNDHIdKasVU6lUxeuBZumYnmxUGHuyEbWn/CAbAMRisaKXLxRkkz8zyEbFgmzyvdGqfW+hlgVSoW36zdaD+M8Ne7F6cS/ObVGQDYBv5aKqqmL16tXuz4CTVa9qAQgrjWg8AaCvotsybSdAabQwk819PKYJdev2lm1HIQEt+0UinEw2oPIvFSdTzvs0ki0XLRZkq1Z/Vwijwslmm0hkMLfbKRVuZbkog2yFpVIp92eW0RIRdS65Do5EIlBVFbZtI5lMIhwOl7lm81S0wrzssssqvsGf/exnNW8MVY/lotQqQ0NDSCaT05p+k8MbfJA7/VLpzKWCbCwXpXJBtladNHqz0gAnwKQoSsGeWUIIfPFXL6J7LIZdh+N45Mh6fPjkAEJoXrloLOF8BkOG7ktfLl3X8Sd/8ifTfq/pGkwLmIxXHiiRjzfQwkw29/HEYohv/eeWbUchiqLA0FRkLAFbVBdkk+Wi5TLZqqWpCnqCOqIpExNJ0w2y+ZHJVs90UYlrsilcqxIRdT4hRM7aMxgMIpFItF2QraIVZl9fn/tfb28vHn30UTz99NPu3zds2IBHH30UfX2VfVtL/imUycYgGzXDyy+/jF27drVlHXw78H42ZUPsVCpV9DPCclEqpdjgg3bJZPMGLfKz06TnXx3H3pEoNFWBoqp4avcobnvoJRyJpZqWyRZLOsercNDw/ba9dN35HE9WsX90e7IFOPigGENXa8pkk0G2sM+ZbADQG3Ze6/HE1H7aj55s6XS6pvUcM9kK82ay8Xkhoplk9+7dePnll1u9GU2R36akkkSGVqgok+2ee+5xf/7bv/1b/Omf/in+5V/+JeebumuuuQa9vb2N2UoqqlCpDstFqdG83yJkMpmcqWrk8PZLNAzDTWdOpVIFv2mRnyNmslEhxTLZ5M+t2vfK+88PslmWNW2bfv7sPmgQOHZ+N95y8lLc+TwQPTiGPYfjOL1ZmWypNDQAkVCDg2zZz24sUXkmmwwcGS3MZGt3hq4CKQVWNvZU6XtEThcN6f4H2XpCzlJ6okCQrZ5MNiEELMuquqyZQbbCuFal2UIef6sZ7kOdbdeuXRBCYNmyZQgGg63enIaS605FUXISGToyyOb13e9+F48//njOAkXTNNxwww0455xzcNttt/m6gVRau2Wysc/F7OB9nas9iZgt8j+boVAI8Xi8aDozM9molHbtyeYNJkuFvvDJWDb+a+N+6IqNExb1Ym5PGG86rhu/OrgHo/FM0zLZEsk0ugF0hf1ZhKbTadx6660AgJtuugmG4QTvjOznOJ5MFb1uPqsNerJ5H891aJ8GwpIcfpB9qqrPZGtAkK2vQCabHz3ZAOf1qDfI1m7NoFuFQTaaLZ599lkkEgmcffbZvvQepfbmbc8xG87JvKWi8vwKaL8gW9UrOdM0sWXLlmm/37JlCw9aLeA9wWlFTzYhBBcus5B3Jz4bdui18AbZALgHgUQiMe2ypmni8OHDAJwmnpI3k40B7NktP8NLvr+8Pdla8R4pVS7q3Z7fvnQIh2NpzI1oOHpOBLquY+X8LthQMBpPNy/IlnKer+5QY7/pNQw95/4qIaeLBnRmshUTyAbJrCqDbHLwQVBrXLnoRNLfclGgtuEHhXohEstFafaIxWKwLCvnPU8zl3d/NhvOyfJ7AZc6v2qlqsPbH/rQh/DhD38YL7/8Mt7whjcAAJ544gn80z/9Ez70oQ/5voFUWqsz2fIzbLhwmR28rzNLGacTQkwLspXqGbBv3z6YpolIJIK5c+e6v5cHEBlU8fPEkDpL/sLJsiyoqpqzD25Fxkr++9z7s3c/8bNn9wEALlg1F6rqlMAdM9ANAQWjsakgWyPLRTOWjYyZAVSgJ1JdkM3QVHz3qjPcn8sJBZzPbjJdQ5BNa4+sIwM2vht4yf25HbiZbNnNqTaTLag5ly+2L632dQYKZ7LVWy4qh4fUksWc/7mxbduXIR+djl8I02wh94t8n88Os626SJ53ykSEju7J5vXVr34Vg4OD+NrXvoYDBw4AABYtWoQbb7wRn/rUp3zfQCou/0S+FT3Z8r9l5Q59dpht35pUy3vAK5fJZpom9u7dCwA4+uijc4IkmqblnGwxyDY7yd5MXqZpIhAI5JyEt+JkulAmW/6xaCKZwdrNBwEAbzp2LjA5jEAggKXZTLZoykQ8Nb3s1e/jSTRpQoPz2ewOV9eTTddUvOWEhRVfPphd/CXSlX8JYbvlou3xOdcV4C3aeKs3I4d8buQ7o9L3SDwtg2ylM9mqfZ0BoDeUzWRLTL3W9ZaLhkIhJBKJmjLZCgXZZjtWXdBsMdsCLjT7zsmKZbKl02mYptk2JdJVr8ZVVcWNN96Iffv2YWxsDGNjY9i3bx9uvPFGngA2mfdDpapqS8pFGWSbnVguWlr+ZxMo/k2LN4ttwYIFOX9TFIXDDyjnM+Z9P9i2nfO+aMX+t1wmmxAC//rbHUibNo5d0I1l/U5wS9d19EcMdGcDFEPjiZzby//ZD+OJDHTYMHQVQaOxgw/CQWeRl6omyCacx9suQbZ2JPvVWVVmssnBB0b2bdronmzeTLZq1mTeIBtQWz9OBtmm41qVZgvv/obv89lhtgVW84NsgUDAPccaGxtr1WZNU9dX3r29vZwo2kL5J/KtKBflwmV2Yrload6DnPxcFmrMaVkWXn31VQDTs9gkDj8gbwmZbKxvmua0z1679WTbPxbHB//1SXz9f52x8pe//ij38vJ9vWTA6UE4NBbPuT3A/+PJRCIDDTaCmlr1N50Zy8aPn96LHz+9Fxmr/HbJctFUFZ9buw0GH3hlhIIfm3PxY3MuMqI9SliD2RJO+S6pvFzUuYaRfZsWC7JV+zoDQG84O120QE+2arbRW50gTxj86MnGdRmm9aZinzqaqWZbVlMrmaaJeDze6s2Yda95fpANAObMmQMAOHLkSEu2qZD2WMlRTeSHSo6wZbkoNQsz2UorVMbtzUyQB4j9+/cjk8kgHA5Py2KT5EGEwczZyxvI8r4f2qEnZrFMtuFoElf/+9NY98phhAIq/u4dJ+Kqc5ZPWxwt7u8CABwcT0wb3uD3MIeJZAaqIhAMaDUF2T79k+fx6Z88X1HwJRJygqGpTOWfWzldtF0GH2Sg4NPmSnzaXIlMm0wancpkc56ranuy6UrpnmzVvs7AVCbbRIFMNqDyY6T38+stf6kWM9mm41qVZgtmslUnHo/jiSeewL59+6q+7gsvvICnnnqq5YG2Ts5km5iYwJNPPomRkZGKr1MoyDYwMAAAGB0d9XcD68AgWwfLP7lpZbmot0E7zXzMZCvNO/VX0nXdLfWT2WxyoujSpUuLNqxnkI3ka9+OQbZiPdm27J9AKmPhNUv68Ovr3oS/PG8lVFWZdvmlc5xMtoMTiYKLQz8f00TChAqBoK42vHddV7YMttIgmxDCHXwQbJMgWzuSQyFqLReVQTY/e7ZM9WSb+jwqiuLu0ys96fFejuWi/mKQjWaLTg64tMLw8DCSySR27txZ9fMVi8UAOIGiVurkTLYjR44gkUhgaGio4usUCrL19/dDURQkEom2mTLKIFsHyw+ytbJcVC4IuXCZHTp5h94MhbJ7gNzhB5ZluQdm+Q1MIQyyUSdmsh2OpaFC4C/ecDSWz+sqevmj5jp/OzSRLLj9vgbZkhkozQqyBasPsmWTs9iTrQQ3ky37XFX6/nAy2URDgmx9kek92YCpQHKl2+j9nMuycJaL+iO/XJTPCc1UDLJVJxqNAnDWVHKgYyW8PXFlsK1VOvk1l9s7OTlZ8XUKBdl0XXdbmLVLNltdq8xXX32VB6oWkm/MVgbZ5MIlGAwC4MJltmC5aGnFgmze4QcTExOwbRvBYND9fSEMspG3j1mpIFs79WQ7PJmGAoFVC7tLXl4G2Q5PpmCaU8e0RrQ/mEhksplsWhMy2bJBkqoy2ZzXLxhgkK0YGYCUQbZK3vO2LRBLW9Ag3Ey4hmSyJXNfa+/wg0oUCrIxk80fMlhZbeCTqNM0cnjQTOQN7uzbt6/idZR339zqIFsnJz7IbU8mkxVve6EgG9B+fdnqWmWuXr0au3bt8mlTqFrFMtla0ZNNZuiwmezswHLR0irJZJMTcGSKczGcLkqdlskWT9uIpU0oisCqhT0lL794oAuqosC0LOzPDj/wTsv2O5NNBRAMND6TrSckB1RUuGi0bNhCDj5gkK0YIzv4wKyiJ1s8kw3ewoahqTnvLz94p4t6t0feRy1BtvwpwtVgkG06+YUwqy5opuvkrKZmS6fT7r5B13UkEgm3jUsl15VaHWTr5Nfcuy+u9HksFmTz9mVrh318XasMBlRaq516snHhMrt08rcmzVBJJptMZ+7v7y95W8xko3YOshXKZDsw7vQcXNBtoDuoF7y8/GwEAzr6wwGoENh1KOreVkOCbAkzWy7a+Ey27nA2E6nCIFvaczlmshWXXy5ayXpHDj0IKAKaqhQdelArOV3UsgXi6anXsZ5MNl3X3S9fqi0Zzf/MVLsmnIlre65Vabbg4IPKyVLRSCSCxYsXA3Cq9CrhXX+lUqmWrtE7+ZzMu731Btl6enoQCARgWZb72rYSe7J1sPzm6s0uF7Usy/1wcOEyu7BctLRymWyxWMw9AJTqxwYwyEa5gw/k/r5dgmyF3uv7J5xvhpcNhIpeXj4OVVUx0GVAgcDukUn3dw3LZFOa05OtJ5INsllWRcdkb5BNljTSdEFdZrI5/67k/SGHHvQEnTJkP0tFASAc0NzXbLzAhNFaerIpilJzyWg9Pdksy8L69euxdevWqu6z3ckgm/yii2tVmqk6Oaup2WSpaHd3NxYvXgxFUTA2NlZRf7D8Lz9amc3Wya+5n5lsiqK451SlSkaFEBgbG2v4c1XXSuOzn/2sW/9KzdfqclG5g1FV1V0McuEyO7BctLT8bB1JLvC9pSsy8FYMg2xUrCdb/sl0u/Rk2zfmZLItHZjea7BQBnZ/JABVSWD34UkcsyD3c+N3TzYFoqZyUUNT8c3LX+f+LOm6jve9733uz1Jv2OlTmjad5siy/K+YlBtkU1o6XdR9PKkUIr/4Jb4ZeBkAYKA9ju1T00UrLxeVmWzdhvO6lQqyFXudS1EUBb2hAA7H0phIZrAYzvu+nkw2wGkVkEql6s5kq+YzFIvFEI/Haxq40K6EEMxko1mDPdkqJ7/s7unpQSgUwvz58zE8PIyhoSEce+yxJa+b/+VHLBZDX19fw7a1lE7OZKs2yCaEKBpkA5zEheHhYRw5cgQrVqwoeBuHDh3C5s2bsWTJEqxatarGLS+vriDbTTfd5Nd2UA1aXS4qFy2GYTQk64DaV/4OXQhRsq/YbFMsky0YDEJRFPczWi6LDWCQjYqXi7ZD76VC7/W9o8749CV90wPI+YEEVVUxJ5vJtvdwDFig5QTs/M1kM2sefKBrKt5xyqJpv1dVFSeddNK03/eEAgAU2EIglsygv0yQLZNNzVIVpaX7UvfxxGKAArxDa48pXZKRl8lWyXpHZrJ1BcoPPSj2OpfTF3aCbOPxqROvenqyAag5k62e/YI8zsyk47pcqyqKwiFdVTJN082spM7QyVlNzebNZJP/Hx4ermi9zUw2f3i3t5IMQu/lCx3LZfJXNBpFPB5HJBKZdpl4PJ7z/0ZhuWgHa/V0UQbZZi/vTk4IMSN7uNSjWJDNu8gHyvdjA6YOIrVMmaOZoVxPNvm7dujJJoRwg2yL84Jstm27+wrvl0MDEQMqBPYdibm/a0i5aDyd7cnW+HLRrqAOG84xOZoonxWUcier8mS2FEOWS4tqMtmc57aSIFutesLTJ4zWUy4KTA29aWYmmzy5nEnHdZk57l2rzpTH1kjj4+N4/PHHOeCuw3RywKWZMpkMkkkn676nxxnQVM26Q+6XZRCnlUG2mZLJlslkyh7v5DGq2ACjYDCIuXPnAgD2799f8DbkfTT6vIpBtg5WrFyUQTZqtPzXmVlWufL7TnnJklGguiAbn+PZy9uTrVCQrZXZGfnHoZHJNCZSFhQFGOwNFrwskNtLdCDiZLIdnkwiY9mNG3yQzD5fNQTZTMvGfz9/AP/9/AGYVm45zqZNm7Bp06acbVUUBYHsY4wmywdJMmbhEvNmcx/Ptm1IC+C/rQH8tzUAs01iErVkssWqyGQr9jqX0xtybrNQT7Z6M9mqDbLV05PNe9LRaSdrxXCtWhtZStcODcSpchx8UBmZNRUOh91jQjX7B7mvlBUpk5OTLQved3JgNf+5LhesLFUqKskhFkNDQwWfD/naMchGRRUbfNDsnmyGYTT9vqm18l/nTtupN1qxTDZgqidMJBLJyWorxpulxM/X7FQok807eEa+j5q9wBNCTAsMbD8YhRAK+kIB6Hlv//wgFOB8RsKGhnBAg6bYGI2lG5bJNimDbIHqy0XTlo1r738G197/DNKe4ItpmvjJT36Cn/zkJ9MC4Xq2t9pkRZlscp/R2kw29/H8138hDhXXZo7FtZljkW6T5aIbZMuOF61m8EF2CGjJ6aLFXudy+mQmW6J9ykWrzaQDcr/MmSnHdblWDQaDDLJVQb4X+Fx1lk7OamomGTyWpaJAdefRcr8ivyw3TbNlvSw7+TWX2yuPd34E2ebMmYNQKATTNDE8PDzt795Mtkaum9tj1UQ1aceebDOpxICKy9+Je0tMtm/fjn379rVis9pGqSBbb28vAGDevHkV3Zb3QMJsttmp0OADSVEUt6ys2SdD3n29fK9vOxiFDQVzu4NFg/HeHj/yev2RADQIjCUyDQmypU0bqYzz+Qnqqm89hhRFwdFHH42jjz562m0aAee1qqRcVPZk05TWLsvcx7N0KdqxcNXIDj7I1JDJFtYaVy7amw2y+ZnJVm+5aC1l5DMxyFaoXJSBo/IYZOtMzGSrjMxkk6WiQG2ZbKFQyK1QaVXJaH4mWyedh8vnWr4OfgTZFEVxs9kKlYzK167RyQtVr+Z+/etf4/HHH3f//c1vfhOnnnoqLr/8coyOtleD3JmuHctFvdtFM1exk+dEIoF9+/bh5Zdfruh9YNs2Dh8+PGMW81KpINvg4CBOO+00LF++vKLbUhTFPelikG128p585/ehCAQCLTtx9H5u5Ta8dHASAgrmdBlFe0N5t18et/rCAWiwMZ7INKRcNJp0JosCQMjQfQuyBQIBXHXVVbjqqqumTRANZINssVT5TKS0LBfVWhvach/Pn/0ZSo9qaI2pctHqp4tmKzobEmRzM9mS04NstfZkq7VclEG2XMxkqw2DbJ2pk0sHm6lQJlul+wfvxOJAIODeRquCbO0wBKtW8j0qExD8CLIBwKJFi6CqKqLRKCYmJnL+5j2mNjL7sOog26c//Wl3Y1944QV86lOfwiWXXIIdO3bghhtu8H0Dqbhigw+a8eGKxWLuDio/yNZJEXSqTbEgm9xZCSEqmtqyf/9+vPDCC9i7d6//G9lCpYJsiqKgr6+vqnI1efLOINvslH/y7V1c6LreshNHeX+KorjbsP1gFALA3G5j2rEg/5jlvW5f2IAOGxMNymRzJos6WWx6iXJBPwWzr1Osop5s7ZHJ1u5qCrKls2XV2Ze9IZlsIVkuOn3wQbWZbPK9X2s/Tvmc1FIu6i1N7aQTtVKYyVYbBtk6EzPZyjNNE4mEM6CpUJCt3HHFmy1mGAa6uroAtEcmG9BZwdVCmWylnv9Kg2yBQADz588HkJvNZtt2zjG1kX3Zql5p7Ny5E6tXrwYA/PSnP8Uf//Ef45ZbbsEzzzyDSy65xPcNpOJaUS4qhMD+/fvxyiuvwLZtGIaBvr6+nKwA7tRnvmLlot5vBGKxWM7BqxA52UcugmeKQsGEenD4wezmHXwAOO8H77eorZqYV2iy6LaDUahQMLdrerlosYEgTpAtAE2xMRZ3MtnkbfsWZEtkspNFq+/HVqug4TzOeCWZbO5z2Y5Fmu1DThfN2JX3ZJOZbEHNuU4jM9nGfezJ5u2/WA1msuXi4IPaMMjWmTq5P1ezyFLRYDDoZgwDlWeyyX2KzLpvdZCtU/tke1tMdXd3Q1EUWJaFZDKZMyTOq9IgG+BUDh08eDCn0jI/qNZWQTbDMNwMlUceeQRXXHEFAKfJXH46HjVWK8pF9+zZg507dwJwXvPjjz/ezbJRVZXN2WcJ7yLeNE13h+7dWU1OTmLhwoUlb0fuLGda8KhUJlstGGSb3bw92bz/B1pbLpr/Pj84kUI0aaJfUzHQFaioXFT+uy/bk228YZlsGagQMGqYLFpKOp3GnXfeCQC47rrrchbsweyxsaIgW7ZcVPOpjLVW7uMRAn/V0i0pTGayZbLnEJWsd+TgAyP7spcafFCr3uxUBT/LRb1tAoQQFZc4M8iWSz6m/C8kqnlOZyMG2TpTfiYb3+fTySCZHEQmVRtkk8d7b5CtFc93PROlW8l7jNE0DV1dXZicnEQsFvMlyBaJRAA4r5d8Xdo6yPbGN74RN9xwA84991w89dRTeOCBBwAAL730EpYuXer7BlJxrZgueuTIEQDAsmXLsHLlypwdCYNss4d8jQ3DyAmy5WeylSOvN1MW8xKDbOQXIcS0fX1+kK1V053zgwLbDjotBJb0h6FnjwelLi+pqor+cAA6bERTJiyh+B9kS5hQFIGgz0E2AEVL40OG8zolUpWXizYry66UqcfTfidmU0G26nuyBdTGZ7JN1DH4oNTn3LbtioOD9UwX9Z5wzJTjsnyPKIoyreqiEQHXmYJBts5UKODC93muYoGaStdScj8pk0zC4TAURYFt20ilUtOCd43WqZls3u2WGYEyyFZsOFw1QTbDMKAoittDLxgMTuvB1lZBtrvuugvXXHMNfvKTn+Duu+/GkiVLAAAPPvgg3va2t/m+gVRcKzLZ5Ad3YGBgWqSeafizh3wf5PcKy89kq/R2OuWAUKliZXG1YpBt9sr/pg9o30y2nYecz/zRc7sA2EW/XS2UyRYxNAQ1AWEDh+MZzAs3JpOt1nLRgKbitved4v5cibAhM9nKf24zMpOtwttuhgAEbtN3uD+3g4A7XbTyIFs0mc1kyy5ZSi3Oa3mdAW9PNv/KRb3vU9M0Kz6eyOeEmWwO734nf0gXgw/FMcjWmQoFXPg+z1UsUFNrJpscUOZNOmimTu3J5t03K4riPp+lznWqCbLJ20ylUkilUggGg+2dyXbUUUfhV7/61bTff+1rX/Nlg6hyrejJlt8byItBttnDm8kGoGC5aDqdRjqdzimfyjfTg2x+Z7I18mBA7Ul+NrzDBYplsrW6J9v+cafH4mB/BMBkVZlsiqJgTljD4ZiFgxMpLMiWX/jbkw0IBmrLZAtoKv7kjGVVXScUdF6nZLr85zZjZUv81PbJHgsoAn+iH271ZuQI5mWyVfL+mMhOljWyAbpyQbZqX2egcE+2estFFUWZ1pKhErWWiwohcu5nphyXi2WycUhXcUKInCAbSw47R6eWDjZTuSBbuX2DXIvX0s+tETo1k62WYT/VBNkAp++eDLIBze3JVvVK83/+53/w0EMPTfv9ww8/jAcffNCXjaLKFJsu2oxMNgbZZrdiQbb8NNxKRzF3ygGhUiwXJb8U+mKjXTPZ9o0507oG+yIFt6dUJhsA9IWd/cnBaKphPdkaUS5aTCSbyZZMV5LJJrNf2yeTrR3JwQfVTBcdT2SgwnYDdI3pyea81rG0BdPKzWSuNZPN+3Oxfb8QAqOjozn3UWu5aP59zJTjcn6QjWvV8vJfewYkO0enZjU1U36fW6naTDZZzVPNdRuhU1/z/GNVJcfMWoJswNSAPfnayderrYJsn/nMZwo+eNu28ZnPfMaXjaLKFCsXbeQHvNiOqVn3T60nv9UEipeLyvdHuZJRZrJVhkG22avQPrdde7LtzwbZFvWHCm5PqUw2AOiLOPuT/ePpxvRkq6Nc1LRs/O/Wg/jfrQfdIEo54WA2yFbBIi4tAzNt0JNNMgXwv1Yf/tfqg9km59iyJ1u6ip5sEwkTGgSCAc2dBldMLa8zAPSGpj6TE8ncwHglx7dCvReB8hNG9+zZg40bN2Lfvn3u72rNZMs/2Zgpx+ViVR9cqxY3UwOuswEz2cqrpFy01LGFmWz+yN83lzvXiUajbvKGDJ6Vkx9kk6+dHIrQVkG27du3Y/Xq1dN+f8IJJ+Dll1/2ZaOoMvkLskaXixZbBEpcuMwO3te3WCbbwMAAgPKZbAyyVYZBttmrUGCqbTPZRmWQzVm8VNOTDZgquds33n6ZbGnLxofvfRofvvdpNyBWTlfQ2T+mqslka6MgWxoqPpw5Dh/OHId09cvFhqh28EHatJHIWNCymWzlsthqeZ0BQNdUdBnObcu+bJWesAGFey96fy607xdC4MCBAwCARCLh/s7dpiqDbDMxsCKniAJTXwRzrVpe/nuBz1Xn6NSASzOVC7IBpY8thTLZahk045dOzWTLr8gr9cWUbdvYunUrhBCYP3++GyQrp1gmW1sG2fr6+rBjx45pv3/55ZfdEbbUHM0efFBsEShx4TI7eF9fbyabbdvugUsG2arJZJtJ5Qh+B9nyMwZp9ihVQgbkBtla2ZMtZVoYjjqLmCX9hctFy2ayhWUmW7IBmWxOX65ae7LVoivbDD+dKf+5NWXGIstFS5KDD1IVlotOJLPZ1aoTYG3EZFEpvy+b931e7n3s7b3o7X1VKpMtGo0imUzm/N17P/WWi860tVylQbbx8XH3hGy2munvhZmsUwMuzVRuuihQ+j2fP/gAaI9MNrn9nfKaF5uoXehcZ9euXYjFYggEAli1alXFPSKLZbLJmFVbBdne9a534frrr8crr7zi/u7ll1/Gpz71KbzrXe/ydeOotGaXi8o3vbenhVerTvSoubzfPHhPALw7xf7+fgBAPB4v+n6wbTvnvTqTFnH5387Uq9CBZ/fu3di9e7cvt0/tq1N6sh0cdxYwQV3F3B6nXNSbRZJ/eS/57/5skGLvWMr349lE0oSq1F4uWouubI+5SoJsU4MPGGQrxc1kM0VOdn0xMuDVY6juIIFGkX3ZZGDP+z4rd9LjDUAXCrIVOuk4dOiQ+3OhSZDyupWuyWZiuaj3+aikXDQej+PZZ5/F5s2bS97uTF/nMsjWuVguWl4lmWylnrd2KxfNnyjdKfvu/DVhsUy2iYkJ7NmzBwBw3HHHlRyol69YJps3yNao/XnVq7nbbrsNXV1dOOGEE7BixQqsWLECJ554IubOnYuvfvWrjdhGKqLY4AOgMQuAUkMPvNvBHfrM5v3mwbtD9KZPh8NhaJoG27YRj8cL3k7+TnQmZWk1ulw0nU5j586d2LlzZ8ccTKk2pXqyybHx7dCTTQ49WNIfLrpQLRZ8lv/uDQegKEA8bWM0GxzxfbpoEwcfdMtMNrP8ZzTjNsvnBL9SgtljjoACW5Rf68ggW29w+mRev/XmZbJ5v5CsJsjmVeykQwiB4eHhnOtbtsDwRGLadWd7uahUSSabzAyU/y9kdHQUf/jDHzAyMuLnprYVBtk6FzPZyiuVyVauKsxbtdMugw/kfcrtafVrvnv3buzfv7/s5SqdLrpr1y4AwIIFCzB//vyqtiUUcr70TaVSEEJM68kGNC6brerVRl9fH9atW4e1a9di48aNCIfDOOWUU/CmN72pEdtHRXi/wc3/dk7+3e9x26WGHnjvnwfjmc37vvP2i5E7KdmIvaurCxMTE4jFYgVLyfMPAq0+KPil0GezXt4DjxAiJ3BpWVZDpuVReyh08h0Oh6EoCiKRSEun5Xnf5/uPOCf3i/OCbIUy2YqVi2qqgp5gAHZGwdB4Ouc69WrFdNGekPNtayb7uS11TM5kA3GayiBbKTKTTQCwbFG+XFQG2YwmBNmyQdWJxNQJgvyyqdJy0fzPRrGTjomJCaRSKZiWjc0HJrBr0xE88othJJNJXHFsBuetml/1fkHeh2EYSKfTM+KYXG2QrVDZbb7Dhw8jnU7jyJEjmDdvnp+b2zYYZOtcxaZ605RCFQKSqqqwLKvo8ybPdfIzo5nJ5kilUti5cydUVcWiRYtKrntKTRf1rplkFtrg4GDV2yOz3oQQSCaT7nNjGAZ0XXfPX6vJjqtUTasNRVFw8cUX4+KLL/Z7e6hC3oUDM9momYqVi+b3KOju7sbExAQmJyexYMGCordT7N+dyvvZK/RZORRN4XtP7EY8ZSIYUNEXDuDPXn+Ue4JWiLfsJz87cKY8b1RYof2uYRg444wz3G8t26Enm5wsurg/VLSvSblyUcDpa2VPKjgwkcQg/MxkMzGQnTDZtEy2bLmoAoFkxkbYKB4Ml5Ms2ZOttKkgm1JRkE1mlXUbueUojdAb1nPuU95fJpPxPZNNZrE9uz+O328bRkromLCCCELg6V1HkLaAs86aynCt5ItXeeIZDAZnTJDN26tIPv5Smb/yd6Ueu1zr1LJvikajsCzLbanRrhhk61zMZCtNCFEyaaRckM1btePdp7ZrJlsjkm5KkUHISo47xaaLynOd/ME/3szBSimKgmAwiFQqhWg06t6fpmkIBAI5SSJ+qyjI9vWvfx0f+chHEAqF8PWvf73kZT/xiU/4smFUWqHmtvknNn4vJhlkI6BwuagQwv2mQe4EZfZasQmjM7E0BSjcA0Y6EkvjA995Ai8P5w6E2DeawM2Xnlz0NlXV6SckhIBpmu4kOWDmPG9UWLH9rjc7tB0y2abKRaey6/IzeMoNPgCyQTYo2DeWwmC3P49JTpicqzY3k607ZEBRAFUIRFOZ0kE2mz3ZKqGpCjRVgRCAVUFPtomkc5zpNpz1USMz2QYiTlB1NJ52f1dqWppXNZls3lLRF0edx3Xq0l7c8o5z8Pyug/jPtcN4Zu84PvvzF/HHCwVUVXFPdkzThGmabgmNlzzRCAaDbjCo0+VPFgUqz2QrdoLoPYms1vPPPw/TNHHOOefUdMLYLAyydS72ZCvN+94udDwo136j0NADoD0z2SzLwvr169Hb24vVq1c3ZVu8z69lWSXXW/nlovl9TPODbLUev2WQTQ7jkwHSQCCARCLR2iDb1772NXzwgx9EKBTC1772taKXUxSFQbYm8X6I87+dAxqT0VAqvRZgkG22KFQuCsAN/MgDT7kg20zNZCv02QSccrUrvvskXh6exGBvCJeethiHJ9P4yYZX8eMNr+KGi493p9Plk2npmUwGmUyGmWyzSLn9LtD4oTfFFOrJtrg/VHSbKspkiwQgAOwbT+J0n4JsUdmIHgJGjUG2gKbiC5ee5P4saZqGt7/97e7PXpqmwdBU2KZALGUBPcVvP2Nmv4nWW1v67T6edBqhtY/iC7ozXMV5VdpDQFMgzMoy2WS5aFegsiBbsde5EvN7nAbLh6JTkykb0ZNtbGzMOSlQNWw4aOJYBTh7xQBOO2oAxw7oSOwfxK82jeDnGw9g+ckmTlnaD9u2oaoqnn/+eUSjUZx99tnTThK9mWyVbHMnKBVkK/TeqSQDpNZMNm8/oFQqxSAbNQQz2UqT721VLbwWKHcu622NU831GqlYJtvk5CSSyWRDJ2jm8+47yj0X+eWi8lxHfhlkGAZs2y7brqoceUyTmWzy2Cefr5YG2Xbu3FnwZ2od78mKN8gms11YLkqN4v3mQTZetyzLDbLJnZZsKplMJt0FfqHbKfbvTlXos5lIW/h/967Hi/smMLfLwPf/8iwcu6AbQgi8uG8cW4eieGD9HnzkTccUvV0ZZDNNk0G2WaSSxUUj971bt26FZVlYvXr1tBPOnJ5snsEH8neyr4ZUSSZbf5ezGHp1LAks8ecxyWymSECFWmQ6djkBTcUVZy+f9ntN0/D617++4HVkkC1lmogmSi/iTNt5nrQWZ7K5jycWAx55BFfow+Wv1GSGpkKY1fVki1QRZCv0OldiQTbINhydappf6fCBajLZ5InCETOApKWgu0tHT1B1S2xOGOxFwtbw4vMCG/eO4TVL+tz7j8ViEEIgkUjMiiBbocB+JZls8udC+4paM9m871UZqGtXDLJ1Lm/gwrKsGfE59lOl/cWLHVs6KZNNVhjl9zhrpPxMtlIK7Z81TYNpmjnZeFK9QTZvJhsw9Ro2KshW9WruC1/4QsFpgYlEAl/4whd82Sgqr9iUtkZmNJTbMbUqm4Kaq1ijSjmNy/sNgXyveMsbpdkQZJO+8KvNWL9rFD0hHf/+/16PYxd0A3A+Mx8+dwUA4L51u92+TIXI5zKTyeRMPpspzxsVVu7LDaBxPdls28bQ0BAOHTpUcBHiPQ7tH3Pek4s9QTZ5G97b8/4tf/sBYE6Xkwm354hze348JjfQki3XbFa5qKZpCGR7iEUTpU+q5eAD9mQrz9C1qnuyhbMfn0aWiy7ocd673ky2astF89+bha4vP4vbR5KwoGDpgDMIxVueffryuQgHdIzEMtg3lnD/VujEJf925QmJqKAct91VWy5aaH+Vf3u1Btm8l29mZkktGGTrXPkBF752ucqVHlaaydZOQbZimWwyyOb9XaNVk8lW6LiX/8WSfL41Tas5SCiPafmvXaMz2apezd18881uJNArHo/j5ptv9mWjqLxyJyvMZKNGKdaoUgZ+5E5LURSEw84Jd6HA/EzqyZZOp93Hk3/QeHjTEH7w1B4oCnD3B0/HSYv7cq77rlMXY06XgX1jCTy06WDR+5DPczQaLZgdRDNTtUE2P/f9hfqpFfr7ZNrpeQYAg32hnG2qtifbnG7n+iOxNNKm7fZGqsdEMjebqZYgm2UL/OGVw/jDK4dh2bkTU3ft2oVdu3ZNO/YpigIjW/4ZTaRQituTrcVBNvfx7NmDjAD+YPXgD1YPrPapFkVQVyufLpp97UMVZrIVe50rMd/NZPOvXLRQJps8Idg8FIOAgmVzIu5l5HswYuh492lLYEPB83vHYdt2zm3kH3+9v/P2a+v09Zx38IFUTSZbPjnhu9j1S+nETLZKMzGpfbTTpMl2VG+QzTv4oJrrNVK5TDbv7xrNG7CqNJPNe9zL/2Kp3n5swFSQTZKvXdsF2YqlG27cuBFz5szxZaOovEJvTGBqIdFJQbZ0Ot30qXhUu/wgUv77wXvgkSWjlWSyFVr0dwLTNPHkk09iw4YNAHKDkMPRJD7zsxcAAH913kq8cdW8adcPBTT8+VlHAQC++3unHD9j2UibuZ8j+bzKUiGJC6iZrZqebIC/CzzvbRX6fMr33qFJZ9E5vyeIUCB3EE+1mWyRoI7ekA4bittLre4gW8LZ9rAxvblupVKmhQ985wl84DtPIGVOfeZM08R9992H++67b9pzpCiK22NtMln6pNqUPdlaHGRzH8+PfoQYVHwgcwI+kDkBqeqXiw3jTBhVKhp8IDPZgtnNLzcQqtjrXAlZLjoWz7jXrbdctFgmW8aysXU4DkDBUXN73MvIz4qqqrji7KMhoODlQ5M4OJ4oe/LjneAmP7+dfnzxPh9SpUG2Qn/3PoezIZNNZnwwyNY5mMlW2mzNZGvWOVa95aL5Xyw1IsjWdplsAwMDmDNnDhRFwXHHHYc5c+a4//X19eGiiy7Cn/7pnzZkI2m6YicrjQyyVTr4oJr7Hh8fx7p167Bjx476N5Caoli5qOQ98MhMtplcLhqLxdyedN6x36qq4tM/fh5HYmmcuKgXn7r4uKK38edvOBoBTcGG3aM4+fMPYdXnHsSpX3gY24amAmryADMxMZFz3U593qgyxcr0hyeSSKSnp9o3KshWKpPtYNQJIMlSUe82Fcq6LBVk0zQNi/vDEFAQTZnTtqMWbiabXnuQrRhFUTB//nzMnz+/4BeQhsxALRNks9okk819PHPnovHdW2pjaCpsUWlPtmyfMS33xLMR+iMBBDTnWRvJBp79nC4qH2smk8GB8SSSloJFfSHMzZap5h9/TlzUi6UDEdhC4Gcb9pYMsnlLSQOBQMXb3e5qnS5a7O/eDLTZkMnGIFvnyV+jd/pn2G/lgjaVThdt50w2WQHg3c+0IshWy5dLMymTreItvuOOOyCEwIc//GHcfPPN6OubKnkyDAPLly/H2Wef3ZCNpOnKBdka2ZPNz0w2OXmy2ARKaj/5J8r5Oz7vgadUuehMCbJ5A4ipVMp9/289OInHXkogqKu4889ORbDE1MAFvSG87/Rl+MFTezCZDSzE0xbuXbcTt152CoDiqf+d+rxRZQrtd7cOTeA931yHrqCGez/0epy0uNf9W6PKRUtlsskg25L+qTKz/OOBt5S1VLmoqqoY7Ath69AEJpM+BdlkX66A/0G2QCCAa665pujfjYDzuY0nyw0+kNNFWxtkcx9PLIb4V/65pdtSTEBXgCp7sgXUxgfZFEXB/O4g9o8nMTyRxJL+cMUnusWqE+S/5edHURRkMhm8OhqHCRVvWDkXup5GOp2eFmQDgDNXzsN/bYjil8+9isvPXOzebv7n2ftvXdenNZ/uVNWWi5b7YsGvTLZ2DrIJIRhk62DMZCut0oSRckG2dsxk8x7fLMtqeU+2dslky3+t8jPZGrU/rniLr7zySgDAihUrcO655zZ0oVLMb3/7W9x2223YsGEDDhw4gJ///Od497vf7f5dCIGbb74Z3/72tzE6OoqzzjoL3/zmN3HSSSc1fVsbrVxGQCPLRWtNsS1EXpYHgc6Rv1P0Hqjk+GWpknLRQCCATCZT9QFAZpD19vaWv3ADeQOI6XTafX6e2DkKIISrzl2O4xb2lL2dL1x6Ej541lGIGBp2HY7hw/c+jV8+tx9/947V6Arq0z53wWAQqVSq40+CqDhvHyXvyfYX/mszEhkLiYyF9/9/f8C3rzgDqqrmND736/6lUplsQxPZTLa+6Zlshfbx5TLZFvUFACiYTPtzfHD7cum192SrVTAbZIuVC7Jlh57oLZ4u2gkMTYWNyjLZxhMZKBAIapX1ZKvX/N4Q9o8n3eEH9fZk8/7bNE0YhoFMJoN9owmYogdnr5wLTR12byM/qHTS4n787ws6Xoml8PTOQ5BHomLtGmRz6ZmSBeN3uaj3ZKza58b7Xm3nclHv42KQrfOwJ1tplZaLFjq2eAeftEsmm/cLzFJBtnbMZCs2XRSYnsmW/3xXQ1VVGIYxLQuxbcpFpZ6eHmzZssX99y9+8Qu8+93vxmc/+9mGfzMTi8Xw2te+FnfddVfBv3/lK1/B7bffjrvuugvr16/H4OAgLrroomk9jGaCVpSLNiKTrdYGstQ6pcpFvb1cgKlMNu9gAEn+W6bxVrMQEELgueeew7PPPtvyXm7eAKIMso0nMth20BkQ88HXH13R7QQ0FScv6cPK+d148/ELsHJeF2JpC796fj+A6QuCnp6pPjyNZNt2W58QzGQHDx6EEAKGYbifk4c3H8S6Vw7D0FWccfQAYmkLV93zFLYPO++3ZvVk804ePDDhLOSWDEwF2fKPRd73aakgm6qqWJQdnhBNWtO2oxayZDDUgHLRcoLZiabxVJmebFZ79GTrBG5PNrt0TzbbFogmM9Bgu5nE5Xqy1Wt+d+7wg3p7suUHvIQQSKTSGJpIwspmsuX/HZh6jxsBDUfPjUABsPnVMfd2ix2P5UlHpcHBdleoXLRUxUe5wQezIZNNvhdUVWU2VAdikK20enqyecv22yWTzXu+r6qqezxIJpMtGZJWTSZboeNeIzLZgNyS0fxMNm+7BD9VvZq7+uqr8dJLLwEAduzYgfe///2IRCL48Y9/jBtvvNH3DfR6+9vfji9+8Yu47LLLpv1NCIE77rgDn/vc53DZZZfh5JNPxn333Yd4PI7777+/odvVCjOlXJSZbJ2nVLlo/jcNuq67O7P8bDZ5O/Lv1ezgTNNEJpPJKWtolULloi/uG4eAgvNWzcNRcyNV36aiKHj/mcsAAD94ai+A1gXZXnjhBfzhD39o65OCmUgIgd27dwMAjjrqKCiKgpRp4Zb/cb7k+qvzVuA//uosXPKaQWQsgV89P4TRWLphQbZCPZykfeNOQKFQT7b8fbyqqtN6lxULsk341JNtNO68dxuRyZbJZPCtb30L3/rWtwoGo4PZfWI8VTpQ7fZka3G5qPt47rkH7RpaN3Stoumik2kTtgA0CAR1J2BQqG+enxb0Fg6y1ZrJBuSedGQyGRwYS8KygQW9ESybk1uSmr82dD5PYagQ2D40Nu3+JPnelfc1UzLZ6pku2siebHL90o68J7V+Bw6e3HEYT+084sttdaL9+/fj0KFDDb2P/NJBnl/lqifI5t1PFvuysJVBNu+XMvltejpl8EEjerIBuUE2ea4qM7eBxmSzVb2ae+mll3DqqacCAH784x/j/PPPx/333497770XP/3pT/3evort3LkTQ0NDuPjii93fBYNBnH/++Vi3bl3R66VSKUxMTOT81wmK9e9oZLlovXXshcjtbNfFBk1Xqlw0/5sdoHhftnqCbPUsdP0khJhWLprOmNi0fwI2FHwwOzW0Fpe9bil0VcFze8ewdWgi5wBjGEZNz1stJicnYdt2wZJfapyDBw8imUwiEAhg0aJFAIB7f78Luw/HMb8niGsuOBZBXcM3PvA6nHvsXKRtgYc2DSFd5UTEUkplsnnfd/vGkgCAJSWCbKWCCNPLRZ3bmfApk+1IzNlfRBrQk00IgUOHDuHQoUMFj2Nhw/ncJtKlF7im5Vw30OBMq3Lcx3P4MNr1qGxoKkR2umiptYPsxRfSnYESjc5iA6YmjPpVLur9nWVZyGQy2H0kBgsK3nDsvGmZbvlBJUVRsKg/BAUCu4YnYNvTM0uB6ScyMyXIVqpctNB7p9A0ZC/viZgo8/4rd9vt+tw2Ksg2MpnCX/zbU/jAd57ArpHZ14c5mUzipZdewpYtWxp6zsNMttLKtT4qlaxSbOgB0LogW34rjmJBtlZkslWawd3onmwAEAqF3NuR96coSkNLRqteaXpLRB555BFccsklAIBly5ZhZGTE362rwtDQEABg4cKFOb9fuHCh+7dCbr31VvT19bn/LVu2rKHb6ReWi1KrlCsXzVesL5t8P9VSLurtM9DKAK23B5v89xM7RhBPm+gJGXjriQtLXLu0+T1BXLTauf4D6/dO63XXrJOg/CAJNZ4QAnv27AHgHFs1TcOm/eP4+qPbAQA3/tHx6ApmT4ZVBV/9k9fC0DUMTSTx3cf9m9RcSSabgIJDk9Oni+YvVIsds/J/JwcfAMBYwp9MNhlkCwVqz2TTVRU3vf0E3PT2E6rqmxYKOvvERJlMtnYsF9UhcJO+Fzfpe6G3UcjN0JWcTLZixwA59KA/VHhITyG1vs7SfDfI5gSe6y0XBaZnsu0aicEUKt58/IKc6xTLZJvbZaDbUGFaJkZiKfe2vPLLRSvd7nZXz3TRcuWixW6j3LZI7Zod3qgg2/9tHUbasmHZAv/y2Ct1316nkWtg27aRTCYbdj/5A4Y6/TPsNz8y2QolFLRDJhuAlmayCSHK7kO9CiUM5Z/b5GdZ10qea+afp8rXsi2CbGeccQa++MUv4nvf+x4ee+wxvOMd7wDgZJLlB7haIb8UQE5jKuamm27C+Pi4+9/evXsbvYm+aGWQrdaxx4WwXLTzlCoXrSaTLX96VTUHgHbJZMt/TKlUCo9scoL6566aX/cJsywZ/dkz+2CJqf1YK4JsrS7LnU0OHTqEeDwOXdexePFi7Dg0iSu/+xRiaQtnrZiD975uac7lF/WF8cevXQIA+N66XXhmz6gv21EqyCb/Hcs4lwkFVAxEphYv+dki1WWyOUG2pCmQMi2fgmzC7clWS8mgoau4+vxjcPX5x2R7glUmbDjPSTJdegGXymYghozWZrJ5GYrA1foQrtaHYChtFGSTmWx26Ux42YuvN1h5kK3W11la0OO8d/0sF/Xext6RKA7H0rAVDW86bn7O3739grxBNkVRcPzCbuiwcWA8WXB7ZmomW6G1sl/losUuU25bpHbtddqoINujW4bdn3/6zKvYNza7suO9XzQ3MshWqFyU1UJT6hl80M6ZbHJfL/fd+YkNzVjD599HLYMPGp3J5i0bBRo7/KDqFcQdd9yBZ555Bh//+Mfxuc99DsceeywA4Cc/+QnOOecc3zewUoODgwAwLWtteHi4ZPAvGAyit7c3579OUGy6aKN6snkzGJnJNruVKhctdOCRQTY/M9naJcgmH5N8DvYfieLFfWNQFOD8bJZBPc5bNR+L+kIYT2Swfs+4+/tmBdm8i7NOP9nqJK+++ioAYOnSpRiezOAv/u0pjEymsXpRb3aS6PQg0WuXDeCEwR4IYeNra1/yZTtKlYvKv0VTzvtiSX+4ZLZINZlsXUEdvSEdNoDJpFnXZ1wIgdF4GgqAcAPKRcuJBGWQrfgCN23asLKZbF1G7RO0ZgtDV91MNqB4kE1msvUalQfZ6pVfLlrJftr77X+5TLYnXnECFcvm9aAvnJt1ViyTDQCOX9gNDTaGxgoH2WZqT7ZqMtm869xCfwfqy2TLv+xsymRLmRZ+t93pRbZ0IIyMJfDtWZbN5l0DN7L9RqFJk81aJ3dCMK+eTDb5mW3HTDa5j8sPstVyjlWrUm1F8nn3t83oyTZ37lwsX74cK1euzPl9WwXZTjnlFLzwwgsYHx/H5z//eff3t912G+677z5fN64aK1aswODgINauXev+Lp1O47HHHmtp8K9Rip2wNKonm/eDUi7IVkuPCgbZOkd+sLXU4AMgt1zU24Ovnp5s7VIuKg9ifX19AIDfbxuCAoEVc7uxoDdc6qoV0VQFbznBCdat2zHm/j4cDjctyCZ1+slWJ5EZkvPmzcP/u+9p7BtLYOW8Lvz7/3u9e2KdT1VVnLF8DhQIbNg96pYf1qOSTLbRbLbQ0oHcAR/FerJVEmQDnNJTAQXRVH1BtmjKRMYSUCAQDmhFt6EcyxbYuHcMG/eOucGdSsggWzpTPMgWS039LdJGmWyWADbaXdhod8Fqo3MnJ8hWQSZb0lk0d1eRyVbr6yzN9wTZbFtU1JPNW/JaLpPt6VecQMXJy+a4f/f2XsrvySbv/7iF3dAVGwfGnWNWsXLR2Rxky/93/mMXQvhaLjqbMtme3HEEsbSFBT1BfPm9pwAAfrh+L4ajjcvoajfNDrJ59yXN+Bxv27YNTz31VFvvM7zD0ppVLppOp5uyTs9PfJDvA3kO1opMtlKP2/s8NWO6qKqqWL58+bRkqrYKshUTCoUKnmD7aXJyEs899xyee+45AE6J6nPPPYc9e/ZAURRcf/31uOWWW/Dzn/8cL774Iq666ipEIhFcfvnlDd2uViiWVdaoclH5JlcUpegJCjPZZof8k+VKBx/IfjJA7kmFvE7+t8iltEsmmwyG9Pf3I5rMYOuBMeiwceaKAd+abJ+3yikJ+t3LI+5z1dXV1fQgG8tFm0e+ppuGJrHlwAQihobv/eVZmNcdLHodt/dSUEM8bWHLgWjd2+E9jhTLZDscc36/cn5Xzt+L9WSrpFwUAAb7QrCh1J3JdiTbL67LUKFrtWeypUwLl37z97j0m793Szsr0SUz2UoE2SZTJhQAuqZA19snyJaCikvTq3FpejVS/i0X62Zo2emiZQYnycEH3cb0Y1Uxtb7OkvyMmrbAWCJTUV+kcl9iypOLWDKFrQecUvDTl8+bdp1SmWzHzItAg42xRAbxtFm0XDS/J1s7nzBXoppy0VITlIHck7BaJjfO5ky2R7ccBAC85YQFOOeYuXjdUf1ImTb+6cGt2DkS64gMqHo1O8imqmrFg1f8MDIygkQigVisfYdaeKszaqnKqrZc1DRNPPnkk3j22Wfr2/ASimWySV1dztqsFZlspfYb+QMbJO+xxxsUbVSMSe7LGxFkqygsOGfOHLz00kuYN28eBgYGSvYzOXLkiG8bl+/pp5/Gm9/8ZvffN9xwAwDgyiuvxL333osbb7wRiUQC11xzDUZHR3HWWWfh4YcfRk9PT8O2qVXK9WTzO/BQbuiBd1tqWXTIoEstvXKouaodfKCqKkKhEJLJJBKJBAzDyNkRewNzlmVVdALcLkE2uVDq7u7GM3vGYdkCqxeEsagv7FtJ2tnHzIWqAK8cimHeUasxN6y5zyfATLaZxrsIfHizk7Vy4YkLcyZ3FqIoChRFwUmLerBvZwpP7z6C1yztq3tbpGKZbCOTGQAGVs7LDbLlZzaXKhctlGWyqC+M3VAQrTPIdjg79GButl+cfJ6apSvk7N/SGbPoMc4JsgkYmspjYAWcXmmKOymzXJCtS3ee02aUixq6ijldBo7E0hiOJrFioHypjveLq0KvvzzGvrB3FLAs9EYCOHp+77S/W5bl/pwfZDNUgfldARyOpXFgPIljDD3n/chy0eL7OMl7gq2qKkyzun1TJw8+qOd9MDExgXWbdgMA3nriQiiKgr9+yyp86N71+Nkz+/CzZ/ZhIBLAxy44Bh950zH1P4A2JIRoWpDNm82qaRps227KOlm+R9o5acJ77lHsfLbUeXQlmWze89lUKgXLshCLxRp2jluqhQ/Qvpls8m/5azLvFxjePqONOn43ckBIRVv8ta99zQ1Ufe1rX2vZIvCCCy4o+W2HoihYs2YN1qxZ07yNapFWlYuWepMX2sGU491OBtk6Q/57r9zgA8DJZksmk4jH4+jr68sJ2spv22zbGWlfybcV3sVpq74B9S6akkLDhlejUAGct9I5+fEryNYXDuDUZf14Zs8Ynj2QxPvPPApAbkq4bdsN6TNVzZQg8od8noUQePBF59v/d5yyqOz15Ou/erAHD+9M4endo/jQuSvq2pZKerINT6YBGFgxrzvn795m7EDpL2rkIksI4QmyhWALBbE6y0VHs0G2OdkgWzP7sQFAd7a8V4FAImMhYkw/hsZSJhTFaehP5Rmas04ws7v+Yu8P2ZMtEmhekA0A5ncHnSDbRArHznNOcErtp8t9iSm3e+OeI9AUGyvmdeUcayvJZEun01jUF8bhWAYHxpI4Zn43TNN0j7f5JTnNzIBppHqCbMUy2QKBQE1VGLN18MH//mEDuuL7EdEX4Y3HOhmYFxw/H1+49CT84rn9eGHfOEbjGfzzwy/h8rOORnewOZ/TZsqfRJ9MJht2zuN9z2uahkwm0/DPsbcSpROCbLquF33u681kk9fVNC1nPSd/57dymWytCLLJ9VwlmWz52+v9t2wNVKqKrl6N7KVX0Z7syiuvdH++6qqrfN8Iql65wQeNCrJVkskGoOKdiXc7GxUoIH+Vmi5aLEAWiUQwOjrqBqXy30/y27ZKFgJCiJyebK06oMtFkqqq+I/1B5CwVKzsC2FxT+5Jih/OWzUfz+wZw2+3j0wLsgGN++ywXLT55PN8cDKD/RMZdBkazs9OESxFvv4nLOoBMIKndx2pexFfLpPNtgUOZYNYK/LKRWUQQC5KS2Wyyd97M3EW9YUggLp7sh3Jbl9/RAdQWaasn8JGAIoCqEJgMmUWDLJFUyYAAUNnJlsl5NRP2XaweE8257MUzj7lzQqyLegNYtvBKA5FU9PWRbUE2TRNgxACm/c57QiWz+vKOdYWCrLl92RLpVJY1BfCc/sncWBiKgs6P8g2G8pFi2WqlPu3t+m5DJDVkskmT0A7KZOt1n2wEALbD4wCEDh7eR/C2Z6TiqLgirOX44qzlyNt2vijO36LnSMxrN08hPectrT0jXYgbxN6md2UyWSKfjFdK28rFm+5aKPXyZ1S9VBJf69KpouWymQDpgfZ5H03IshWKpNN1/WWDD4wDMN9nxdTqiJPPneyYqdUUNTrSCyNXz63D7/YuB+TSRPzuoOY1xPEZactwZtPKDyMrpHHuqpXHJqm4cCBA1iwIHdjDx8+jAULFrT1h2smaedyUXn/lexMyk1yovZSqEGzpmk45phjoChK0QOX7Msme5gVCrJV+m2b90RCblMryEVTRtHx70/sxlyh4szlA9NObvzwpuPm4c5Ht+P3L4/AsgU0VXFLi+QQiUacQJZaOO3fvx+appWc3kzVk8/zSwdjAAxcuHohQoHy+1L5fjt2XgS6quDgRAqvjiawbE6kzDWLy3/9vUE727YxkcwgYykI6ioW9YZyrpsfZCt3DJFBNm+5qNOTLeNLuehAuDVBNl3XYWgqVFtgMmliQYHuFbFsTzaWi1bGDbKV6ckmM9lCTQ6yyeEHw9kgW7n9dCWZbCOTaUQTKXRpAssGwmWDbAUz2fpDMIWK/eNpWLaYdgIo7yv/NjuZn+Wi3ky2Wkrj5GWDwSCSyeSMz2RLmzYe23YQm/dPAADOO3ZewcsZuop3vnYxvv7odvzXxgMzOsjW1dUFRVFy2qdUwjRNHDlyBHPnzq04UCODFUDjP8fe22/nc7lqqrIKBd3l9QslFHgz8vMHPgHOaygDXn4qlclmGMa0HmeNXGPIfYc3mFxMqWFYhYJs+YQQ+OsfPIvHth1Cd0hHd1DHrsMxZDxTmrYPTwIA/nfLQfz2xjdjboG+xo0MRFe92iy2mEmlUr5H5Km4ckG2Rg0+KLVz99ZVV/pmzc9ko/ZWrFHlsmXLsHRp8YWRDLLJHWb++ym/tKyU/G9/W/W+icfjsG2BH2w4iGjSxOK5PTjGk83j58n8a5f2oyeoYyyewYv7xt3fN3oBVSzIlslk8NJLL2Hr1q383PpMLoQ2DzmLg0teU75UFJja9wc0BSctcXqxbdg9Wte2lDoJtSwLo/EMbChYMa8Lqpq7cKslkw3IHXwgoGCy3nLRuDfI1vxyUU3TnCAbbMRShT+nk9mMK2ayVUaW1cq1dNkgm+r8vdHDuaSpIJtzvCu3ny51siGvf2A8ARUCRw8EoWtqwSCbt39NoSDbQMSAYQSQsoCRyZR7vPWePOYH2Rq5f5+YmMDY2FjDbh8oHWTLf99UWi5qGEZdg77kifZMzmT79z/swplfegRXf+9pjMbT0FQF5x4zp+jl3/XaxQCA3750yC3xn0lkkC0UCiEUCuX8rhJ79uzB5s2bsX///pKX875O3hK7Rq/TOiXIVk0mW7FM1lIJBcWmqnvv22+lMtmCwWDOtjY62OrNZPNuWyGlhmHJbZZVS4We7w27R/Gr5w8gmjJxYDyJ7cOTyFgCr1nSh5vfdRL+4y/Pwp1/dipOGOxBLG3hW795peB2tEUm29e//nUAzpvrX//1X9HdPdV/xbIs/Pa3v8UJJ5zg+wa2SrtPuin25mx0T7Zy36DIbIRKd7LMZOss3p1QNSer3kWF/EYfqO1bc2+pKNC6900ikcC6HYexaTiDLiOMT1x0DJJHhty/+3kyr2sqzjl2Lh7adBC/234Ir13WD8B53kxz+qQ4vxQrF/VOic1kMg35dm62siwLB8aTGE2YFZeKArmLuzOPHsDGvWN4evcRvPu0JTVvS/5nyzTNnKa0Y/G0G2TLJxdZmUwm5yS+2DGku7sbmUzGDcgvyk4XTZk2JpO1n3Qdzk4X7WtRkE1VVRi6E2SLpgpnrriDDxhkq4iRncBqZt+exY4BcvBBQG1s4+R8C3qc492hqHOsKtffrJJMtsOTaeiwsKDb+VxVm8kmMxiWzunGK0OjGJpIuvfr3bc3K5PNtm1s3LgRQgice+65DSmjkvcDFJ4umt8/uNrBB4UuU8m2yOOlHJxQbJ+USCSwceNGLFu2DEuW1L4fr1axIFulWTC2LfDVh7ZhImliUbeB0+YPYPXiXsztKh7kPnZBN1Yv6sXmAxN48MUhXH7WUf48mAaptkWHDKiFw2EIITA2NlZVkE1WgZQLzHrP/VRVbVomW6ecy9UTZPMG2Uv1c7Msy32+mxFkK5XJFgwGc/pee9dwjSCfo0pKVEt98SofQ6lMtu/+ficA4N2nLsaH37gCEwkTC3uDWLUwt1xgIGLgiu8+he/9YTc+/MYV04aItbwnG+AMPACcF/Nf/uVfpqUjLl++HP/yL//i+wa2SqcE2Zrdk63ch5OZbDOb931XzcmgDLJZlpUTFJL7Efm+qmQhkL/IaNVndcMrQ3h61xGkRT++/L5TsHyBiq0NCrIBTl+2hzYdxG+3j+Djb1kFoPEnQsUGH+QH3Bhk849pmtg+PAkLKi6qsFQUyD1xPGP5AP718Z14eldjM9nG4hkIoGCQLRAIuKUTMtDm3c58J510Uk6PqK6g7vTvMYEjk6mC16nEkZhz3b5QfUE2XVVx3VtXuT9Lmqbh/PPPd3/Op2kaApoKVbGKZ7Jly0UDbVAu6j6edBrB3/8B12n7AAA62mdNFMgOPrDKTBd1MtkEAkrlmWzFXudqLPCUiwLls8Iq6ck2MpmCodiY123klIF5r+f9AqtY24Kj5/dg+9A4Do5PBdm8ZZD5J2qNOrbE4/GcIF+jgmylMtmA3NYm8vXRdb3g5FC/MtnkSXq5L6nGxsaQTCZx6NChpgXZhBBFm8NXGmTbMRLDRNJEKKDioevPwzNPPwWg/HvpXacuxuYDE/jlxn1tHWTbt28fXn75ZZxyyikYGBio6Dr5QTZgKoBQCfnlcrnn0Lsv9GayVfo5zmQy2L17NwYHB3OSacqZSZlsxc5jSw09kEplsjX6y/BimWzydzLI1kiFMtmK7TdKZXCXy2R7dTSOX7/onG999IJjcMJgL4o5b9U8nL1yLv6w4zDufOQlfOV9r835e1tksu3c6UQM3/zmN+NnP/tZxTuWTtWsnYQQAuPj4+jq6qqqlKEde7J5t6eWTLZ2D2xS+ZKvYjRNg2EYSKfTSCaT095P1ezk2qFcNGPZ+OlTOwAAf/y6o/HHpyzG6GhuQMPvk4bzVjn9TJ7ZPYrJlInuoN6yctFCWW3kD8uysOPQJGxoFZeKArn73tOPdspyth2MYjyRQV+4tjK5UkE227YxGk/DhlYwyKYoitv8Np1Oly2J8zZpluZ2h5AZAw5PVn4yku9I3Hl/9oV0IFV7kM3QVXzyouOm/V7TNFxwwQVFr6dpGoK6ChUCk0Uy2dyebG2QyeY+nlgMWLcOnwyULk9qBTl9MGWWDrJNJDNOhqBW+XTRYq9zNWS56EhekK3WTDYZZAME5nYHc4Jh+deT++P8TDbpmIV9eOiFfRiaSLr78UInj40+tsRiMffnRh7DqwmyefstFQqyFcpkq6Unm6o65b7pdBrpdLpokK2W4Qr18r7e+Z+XSrO3ntnjrIVOWdoPTan8i/R3vnYx/unBrXhy5xEMjScx2BcqeflWGRsbgxDi/2fvvOPjuMr1/53ZqlXvsmRbcu8l7nHi9B5CElJIAiGUJECol3YD3Hvpl8uF5PKjBEJCSAIBQiBAeiXVsR333m1ZktV7WW2f3x+zszo7O7s7u1pJa/Dz+eQTS9qdOTNz5pz3POd5n5fu7m5Ta2GxEr1IsqWiZNPbLiQ6lwaRjDfbh9rb22lqasLn8zF//nzT7TtVKtGPpvCBSLIn++54posmU7KBer3jUWVW9GTTEM+jPVG6aDIl2283nCCkwFkzSxMSbKDely9fNof33fcOf97axJ3nTGemYI6bVZ5sr7322j89wQbjN6n19fWxY8cODh48mNL34i1YsiFdNJXzn1aynVpItlBOBE3N5vF44nqynSpKtq31Xfh9PnJsFr505WIgduLNtJKttjSXmqIcAiGFXU29wPh6sokBwmmSbezQM+ihb9hPUJFYM6PU9PfEDZbyfAd1pS4UBbY3pK9mM0oX1aAp2UJITC+PJdlg5J3wer0JA6p4KAmb1GZCyVbgNCYdxhqyLKtKNhQGEyjZQDld+MAkCl0qGeT2q/fTaA7wBoJ4/CGshHCEycuxUkvpEU/JFm+cTvZudAz58QZCyJJESa49ZkNWJKiTkWyzJxURUiR63D76h71R3zEi2TQlQqYhkmxjufCLV13UaENab2qeqPBBOp514mJYTKePB9Ezb7ygnVPrU+J4ZLYd2xt6AThjalFKaYQ1RTmsqC1GUeCZXdlH7mvQrsMsSSaSGzk5ORFLBLPfFyvRJntXtLalq0jV+mOqfoGnmpLNTBG/TCjZ4sXQmYRZJdtYtkGDEcmWbN5LpGQzuuduX4A/vNsAwEfWTjPVrmVTi7lkfiUhBf7v5cNRf0sn9d8s0krMbWpq4qmnnqKhoSHmRbz33nsz0rCJxngNEhpL29/fn9L3srHwgdie0+mi/5xIZ6Gswel00t/fH6VkO1U92dbvPQEo1JQVku9SA6axJtkAlkwp5GTvMLua+lg7o2xcSTZR9i1O1Nlq3nyq4kibWtiiLD+HAqd5BZp+7F1eW0J9l5st9T2cN8e4dHkyJFKyeXwB+j1+QoqLaWXGaSVi8YN0VLCleTm0AT1D6ZNsPUPqoiHfYWUwxfOLCIUUjnSoxShmludFCj0oikJHRwcA5eXlMSSZpmSTUOhzG78rg95g1ijZItczPEypAkcVdXNkpuRJfVd2jFCUo/Yrt0/tU0bxTv+wOkbZJAWHVY5Rf8VDvOecCjQl26A3gNsXGLWS7XC7SkiVuOxYZMlwkaelA8UrfKChrMBFcZ4TxT3MkZZ+5kw3VmiIbRmL6tUTqWQDY/9gPckWb5GdbrqoXskmHtMIE0myac9bSzkMhUIpkGzqxs6yqcVx1fDx8N6l1Ww50cMv3zjKJfOrmFqafnXssUKqJJu2ztP8sbQNZ7/fb8ojy+fzRfqxWSWb/v03++y0558qGXOqkWyjKXxwqirZ9O0ZC+j9HBONG8mqi4oQn9eT207S7wlQW+rigrnmY9svXjKHl/a18dyeFuo7h6gLZ2CMZZGflGOmV199lTlz5nDfffdxzz338Nprr/Gb3/yGhx56iB07dmS8gROF8RoktE7m8/lSUoTEIztO5XTRbB6YT0NFuumiEK1ky0S6qDZ5TES/2Xtc3WWdUzuSzieaBMPYkGyLJxcBsLOxFxhfTzbxZ3Gs+ldSsh08eDBl1XGqOB4uOT41DnEVD3oV8co6VXH+7vHutNuSSMnW1q8aMbucdopdxmSgSLKZnUNElIUN5HvTJNm8gWBYJQZ5DvW86b6XnkCQS/7vTS75vzfxBKIr7f7iF7/gF7/4heG7YLFYcIR99frcxtcxGElrnHiSLXI9Dz/MADKX+BZxiW8R2UOxQVG4vw371Uq8RnOAVlm0wCElrAanR7znnAryHFZyws+8Y8CbVEWQ7N042D5ECIlSg6IHGuLFgvr+brVaqStXU2UOhwl9I7WA2A/HYn7RjNxh4kg2/bm1f4skm0huiCTcaDzZTgUlm/i+pHKtg94Ah9oGADhjSmpKNoDrl09m/qQCOgd9fOihTXSNQsU8VtD6gVbIKxnEVFFQ763Wx8wQdeLGsllPttEq2VKN606VtVwmCh+k68k2EUo2bZzRrne8lGzieigdBbf++VitVpp63PzH33bz7af3AXDbmXUpbYLNqcrn/DnlKAo8+PaxyO/1xV0yiZSjpq9+9at88YtfZM+ePTidTv7yl7/Q2NjIueeeyw033JDRxk0kxmuQEM8jBh2JoFVEguwrfHBayfbPjUykiw4PD2eEZNOON97pokPeAO2dXQCsnjtizisGzjBWJFshALua1MXReCrZwHiX81+FZPP7/bS0tNDS0jKmgUp9p7pAmVaen+ST0dCPvWumq6mmOxp7Gfal1z/0QZDYz9r71MVBdZErLjE0WiVbeYH6jvcNp6eW7B5Sv2eVJXKsxqRDJuByuXC5jBUXkiSpBRyAviFjb7mhLFKyQfh6cnKSf3CCoJFs/hD4g4qxks0T9uJzqM87Fc/b0UKSJCoKRlJGk6kIkpJsrQOEkCkNp0+bIdniKdlsNhszKlQPm2MdagaF0eJRTK/N9PwSDAajyIXxThcVfzZSWonzuPZ3Le7QCNt/FSUbpBbX72rsJaSoqZ8VBc6UFU4uu5WHP7KSmqIc6rvcfPThzbh9Y0sMpAoxFVCfWWEEPckm/ttM8QOxj6RKsk2Eku1U92QTxSri3HKqKNlsNht2u52cnJzIODMe6aKias1qtSZViCWKCfXz2Uv7Ozjvh6/zu40N+IIh1s0q46ZVU1Ju453nzADgiS1NEQJfPFemx9qUo839+/dz2223AepNHB4eJi8vj29/+9v84Ac/yGjjJhLjrWSDaPl8Iohty1ZPttNKtn9OjDZdFBJ7spmZALSgRjveePeb9YdasCp+8p025tVWRf1trEm2RTWFSBKc7B2OUkiMF8kmVoPT8K9EsmkYy0ClsUtVsk2vSGzmqodexVxb6qKqwIkvGErbl007ltavxevu6FcXB5OL46fzjFbJVpGvLkTipVkmg0ayFefa425MjRZ2u50vf/nLfPnLXzYMviVJwmlXA9141zGgVRfNApItcj2f+hTxlxITixybBbtFBiQ8gaBhvKMp2SaCZAMoDxNi7f2jV7IdaBkgqEiUpaBkS0SyzapSN2vqw2mx8RQaYzW/6DeUJ0LJZsaTTfy7vgJrppRs2Uqyif0plWvVih4sqy2O+Y7ZflRR4OTRj62iyGVjZ1Mf//vC2KrHU0Wq4ohEJFuqSrZkz2C0nmza89enUifDqZIuakYwIo6Z4tySrYUP9GSVLMusWrWKFStWRPrBeKSLitcnkmzpbC6JzycUUnjg7RMEQgpnTi/lj3eu4bcfW43LnrqFwZrpJSyeXIg3EOLRDSeA2EI4mUTK0WZubm7kha+urubo0aORv3V2dmauZROMiSDZzCrZxO+Mt5LttCfbvzZGky4q7tyl68kWDAYjn5koku3d/erAPKWyLGZRIpp9jgXJlu+0MaNcTSPc1dSbFSTbv4onW7zCD5lEv8dP16AadM+qTI1k04+9kiSxZrpaZXTjsa602qNPnxL7WeeA2s7JpfHTWrX3IV0lW0W4ulz/KEm20lz7qMau0SLHod6/gTiKvKHThQ9SgiRJFLpsKIDHb0yy9YdJtjy7+rwz7SmWDJVhFWZbv2dUSjZfIMTRjkGCyJTlm1eyJUoXnVVVgCxJDAx7ae3zxF08jpVXjX5DeSLTRcW+Iz4H7fN6iwTtHmVKyZZt6aJGJEQq1xopejClKOY7qVzHjPI8fnj9EgCe2dVCKDT+Ba7iQXyPzZBkmSTZzCrZ9CR7qiSb/t/JcKqQbKmkiwKGSrZ000XHKk43GuNEkgvGR8km3lszGxFmlWyNPW56hoOU5Nr57cdWRbI00oEkSdx5znQAHt1Qz7AvGNXWTD+jlKPNNWvWsH79egCuvPJKvvjFL/K9732Pj370o6xZsyajjZtIZKuSzeMPcqClL2JAbmZ3LhMYq8IH4ucmokrkaaSG0aSLih5qWmCh9SezuyzaJCcGqePdbw6caAVgwbRJMX8bayUbwBLNl62pb9w92f7V00U1jFWgsvdkPxYUCpw2ivKcKX3XaNGoBSMbj6Xny6Yn2cTr1qT2U0uNK4tCdHXRdJRsVYXqQsQXCNLnTr2fRZRsrokl2VxhJdugJ17hg0BWpYueCijKsaEg4fUbGytHSDbbSArNeKK6SH1/T/YOj2pH/1jnIIGQgt1mJd+hzpOpKNn0/clms5HrtFOaa8eCwo7G3riLx7GaX/Sxbraki4pKfT3BqL9HoyXZzCjZtDlnLLyC4sGoL5q9VkVR2B72izVSsqW6Ljl3djn5Diudg152hCuqZwqKonDo0CFOnjyZ8nfF60iXZBPtU5IhFSVbPE+2VNNFIbXY7p+VZNOuRVGUU0bJZoTxVLKZFU8karf4fA63qZtMly2swmoZffx22YIqppa46HH7+ePmhqg2TLiS7d5772X16tUAfPOb3+Tiiy/m8ccfp7a2ll//+tcZbdxEYrwnNEiuZOse8nHtfe9wwy/eYcPRLsOOeaqli55Wsp1aGE26qCzLEaJNCxpS9WTTvqdVaRLbNB7oHPDQ19cLwNr5dTF/1yZfIwI8U1gyRfNlyw4l22mSLXPY29yHjEJFviNl5Y3R+zBaXzZ9uqjYz3rC/mK1CQo0jNaTLddpJ99hRUbhaOdgao1nhGQryRs7ks3v9/Pwww/z8MMPx30Xcp2aks3474Oaki0LSLbI9fzxj2Tzm12URMmmpYvm2tS/jTfJVlOkLqhP9gwnNZ1OFF8daFE9GisLXVGeO3roxwujdFFZlpFlGavVSlWhExmFnU29/5Lpook82SwWS8zf9fdorAsfKIoS1V/Ga00ymnTRE11uuod82K0y8ycVxHwn1X5kt8qcO6ccgFf2taX03WTo7++nubmZ+vr6lL+bSrpoKBSKPGMx02GslWyjTRfV/zsZTgXrH0VRTKWLivG7di2BQCByb7Ot8EG8MU7EeBQ+0JNsydRhiea9SL8NV/sOIvGeRbHChnRgtcjcEVaz3fPSIU50DY3ZXJdytDl9+nQWL14MqOa49913H7t27eLJJ5+ktrY2o42bSEyEks3r9cZ9AbqHfHzgwU3sb+lHRuHd+m52NPXHfG6iCx+kqqQ7TbKdWhjtQlXbvdOQKskmGo+OVV9PhDf3NmAhRHFeDnWTYiXLWhCVDglpFmKF0bGSOGswS7KdqirU5t5hHnr7OO8c7UxKQonXPFb3e8/JPiwolOc7Uu5DRmPvaH3Z4inZet0+PGEzajMkm1gBMpWxQ5ZlinPtSJLC0fb0SbbSMfRkUxSFEydOcOLEibjvQa5TvQ+DnliTbF8ghC8QQpLIinTRyPU0NZHNb3Vhjh0FCU/AWOXT71H7p8sa7UkzXqgJexWOVsl2oFUl2SYJ3ofperJpaTwWi4XKAicWQuxs6EmaLjpWSrbxsHzQe1RpSESyaWSk+Dtt7MuUkk0sfGDUf/XqtfFek6RDsm1vVOeYhdUF2K2xsUk613Dx/EoAXtmfWZJtYEB9r9KJX1JRsomfFe+pRrJ5vd6k90VUOyZTNer7eyr9NBQKRT2vdJVs8cYLRVE4evQora2tpo+bSYgxXKqCEe0ZiEVPjKBXDor3fSKVbOOdLiqeM510Ue0YjT1uPP4gRblOVk0ryVhbb145hZV1xQx6A3z2D9tRGJsswJSjjunTp7N582ZKS6MXmL29vSxbtoxjx45lrHETifGa0PTncbvdFBQU0DHg5S/bmggEQ+TYrfx5axP7W/opy3Nw2ewy9uxq54W9bcza08plC0fM18ciXVRcIGVSySZWSTX7ndOYWIwmXRTUoLqvry/yc6qebCLJNhFKtq2HmgCoq640XAzr/VrGAvMm5WOzSPS4/XQMqUHQRFYXBTUYSyShz0YEgiFuf2QL+1rUzQqbRWLVtBJ+eP0SqotiKyuOh5JtT3M/DilERYEzZZLN6H2QJIkzZ5Ty1+0n2Xisi7Uzy1I6Zjwl29GOQWQU8hxW8nMccb+vqWZSCW713y9x2Tne7eFoh7nCQCKi00VHN3ZZZTni5WFN8Rh5To2kDOLxB3HaRu6B6seGmi6aBSSbCCsKd1paIv/OJiRVsoXTi3PCt9qskm00z1lERMnWOzol28FWdXyaUpoPGCvOjL5r5MkmVpqrLHAiSwp7T/YQmpWDHK6aaXTMTM4vwWAwUlExPz8/yqN1LBCPXE+mZNMvELXxX6/SSFfJJtpdBIPBmHuv7yvjTbKl48m27UQvAMumFkd+N1qF03mzK7DIEofaBjnRNURtAnuCVKCRbIDh/Y8HPcnl8XgIhUJx5xX9fKzBZrMhyzKhkFqhNCdBNWdRyaatm+LNE/r+nso7rO9zmfZkc7vdNDY2YrfbqaqqMvzMWEK7HpFEjwf9Wjqe2lePZJ5siZ5dukhFyaa1R1EUNhzroq401zDeTQeZTBfVvnu4Ta2sfdmiSRlJFdVgtcj8+KYzuPzHb7KzqY/X8hXOqs3L+FyUMslWX19v2Aiv15tWbnu2YiKUbKDu8DUNwu2PbKa5L7q0c1megz/euYZSm597u+rZ0uTmc3/czgMfWsE5s1VJdbrposGQwq/ePMZD64/z4bV1fOr8mSNt8vg41jFIj9vPS937sVlk7jp/ZsTYV0Qq59d/5jTJlv0YTboojI2Sbbz6Tb/Hz4GGZgCWzqwx/Exubi6yLONyxa+4OFo4rBbmTSpgV1Mfh9qHKCMzi6Cenh5aWlqYOXNmhFQRn7dWdEKfxgIjJJuiKLxztIuqQmekQEO24pENJ9jX0k+ew0qew0prv4f1R7q47aF3+fMn1lLoig6mxppkc/sCHO0YZJFldOmi+nF1zfSSMMmWmi+buAmiL3xwpG0ACYWSXHvSYNVut0fdr1SVbEW5diQUjnaMQsmWZycUGkr5/CLsVpmvXTEvre/mOu3IkoSMQt+wP4pkGwyTbHYZZFkaU4I+Vdglha/Zmia6GYYoyrGhKBIev3EVvO5wsQxn+DUyS7KN5jmLqClWFy7dQz584eaNRsk2tSwPvKpSKBnJJvYh/cIe1EVQaa6dHAt4vD46BmRqSvJi+t5YkGyais1ms42Lki2VdFFxvhtrJZt2Di2dMNtItnSUbJvr1TnmjDgkWzr9qNBlY1VdCRuOdfHK/nY+dva0lI9hBJFkCwQCKZFsGiRJQlEUPB5P3JhPfOZiH5QkiZycHIaGhhgeHo5LsgUCgZj7lojU0/f3VPqpUVxnFmZINrFy6UTAjB+bBn08Ja49zHxPI2ONfI0zbV2QjpLt/jeP8T/PH0CW4JL5VXxwTS25Dgtt/V78wRAXzK0g15FaDBovXTRef0hWXTQYUjjaMUQQiSsXVafUFjOoKcrhB9ct5pOPbeP1Q51MzZdZOFFKtqeeeiry7xdffJHCwsLIz8FgkFdffZW6urqMNm4iMd4Tmsvlwu128/b+k3zj9U7cviDTy3JZNa2EYbebHH8fH770DGZW5NHV1cX5cyoYCHazv0lVY9z3gWVcNL/SVArd9oYefrO+nhybhbNmlVFb4uLbz+xj6wk1gPvhi2q57E+dP5MTXUPc9egmbF3NKEjsDKgDzD8OtvO7j62O2VVKVZqc6OfTyD6MR7poop0eI0+28UhVVBSFr/xpJ37PMEVOG+vmTzX8nMPhYM2aNWOemrRkchG7mvo40DrE2SWZCVoaGxvp7u6muLiYSZNU7wPtuHa7neHh4SiiDdTr9Xq9kZSL/35uPw+8dRyAC+dWcMc501k9rSSr1DkArX0e7n1JHee+fuU8blo5hcPtg3zo1+9yuH2QO367hUc/uiqKDBnr6qL7W/pRFIUCh0yuw5oRJRuM+LJtb+xh2Bckx27uuOJx9Omih9tUdU1Jrj1pO+12e8S3Rr/QSAZNySYDR9sHkn5ej64oJdtA5JjjDYvFgsMqIwcVet3+qA0qteiBgtM6MQb9pyoKc1Qlm9dvnD7VMaDOFbnh2zne6aIFTpW8H/QG6BhU+6HRuCEuxPTvUp/bT0uf5n2YT/vJnghBo0cikk0jc0SFgSxL1JbkcKA1xImuIeoqi2OOORZ2BNpYoG1IQfalixop2VJdQBpBT4DYbLbI/KknWSaKZEvXk61z0BshhLWq1vrvpHsNF82vVEm2fW0ZIdkCgUCUl1q63mMulytCkpkh2fRwOp0MDQ1FlJ1G0GJeq9Uaib0SKe/0/X28lGxmnvNEVMsVkYpIIJ4nY6okm35uCgaDGZ/jU1Wy7TnZxz3h+DekwAt7W3lhb3QK77xJBTz8kZWGYpp4yLSSrbFbTRV12nMymioq4vJFk7h51RTe3drJhqNdXHLWBCnZrrnmGkB9iLfddlvU32w2G3V1ddxzzz0ZbdxEYrxJtvz8fLYfa+NPuxtwB0s5e2YZP//AMgpzbOzfv5+2Ng85gUGgNLyLIfGBNXV49qsvyCd+t5Uf37SUtZPVF0JRFNoHPPz3s/tp7fewbGoxi2oKeXpXM8/tHnmZHt/SGPl3nsPKxfMr+ev2k/zwxYM09Qzz7K5mvJ5hluVYmFyaz9mzZvDsrhbqu9xc/8sNPPrRVcwLG5xC6umiIk6TbNmP0aaL6gNJvaRdO0e8AGKi0kUffOs4L+9rYakdrlg0icL8+Eq18UibXDxZ3eTY1zqYMZJNu7diYCV6cg0PDxMIBCJ/lyQJp9OJ1+vF5/Pxraf38fA79eG/wasH2nn1QDvvXVLNPTcuwZZBqfdo8Z1n9zHkC3LG1CLev2IKkiQxuzKfhz+6kht+sYF3j3fzxT/t5Ge3nBEJXMZaybbnZH+k6AGkrhaNp+ycWuJiUqGTlj4P2xp6OMtkyqh4HH266LEw4VWa50hKmolmz6mOG6onmw1QaOx24w+GUupHPYInW2hodBsEoZDCyV7Vf6emKAdZNk8WOp1OnDYLTm+AXnd0NcFBbwArIewWKeKXlS0IKdCoqM++RvKlbuI7hlDTRaW46aIqyaaQk6KSbTTPWYQkSdQU5XCwbYC2AT9WjMfpeJ5NAAfb1PesutBJoctBe4LriEeyaT+HQqGodFFQPRvtrX7qOz1cbDBvjaWSTSTZsiFdVCQ7xXSyZOmiqbRdv6gUSTY9JlrJlmq66DtHuwB1cV6aNzLmm/HqSoaL5lXwnWf28W59N31uf4zKPFUMDkarotNJi9QyFoaGhnC73TEWShqSkWyQ2NdNjHm1Kt2J7uNoCh+MdbqomKo4FmmTyZCKSCCeJ1sq6aLiPbHZbPj9/jGJHc1cl/Y+e3x+/uvxHfiDCpcuqOQLF8/hkQ31vLCnlRybhYoCBw1dbva39PO++97hkY+uZGZFvql2pFv4wKjdHYM+1h9Tx5SFk4uxpDkPm8HnL5rNB7btpLlvmIMt/VRWVmbs2KZjplBILZM+depU2tvbIz9r+eQHDx7kPe95T8YaNtEY7wmt2Q0v7WvFQYD3r5jCbz6yksIc9WXWBmCxnDeA3WblZ7ecwdVLqwmEFD79++1879n9DHoCHO8c5D0/eZu/7Whm47Fu7nv9KJ98bBvP7W5FkuD65ZO5Y9005k0qQJbgrJmlvPD5dfzf+5fybxfNBuAP7zbQ7wmwpCafD6yu5boVU/nypXN54hNrmTdJ9Y17//0b2BEu2Q2jU7Kdqubp2YxM3VO9iWcm0kU1E2aIHmQTBQMTkS666VgX//PCAawEOWd2OZNL8yZ8IbxkShGgkmyhUKwkPR1o44tRsCSSLOJEarPZUBSFn76yn4ffqUeS4PvvW8Q/vngeH1g9FZtF4qmdzXz2D9vxB7ODRH/rcAfP7mpBluC71yyMWkTPrSrg/g8tx2aReHZ3C68f7Ij8bayVbHtOqpVFy/PVdyQdQgpi3wdJkiJqtk3hoMUMxOPoPaWOdaiL/7J8Z9JAWSSd0yEO8xxWbBaZYCjEia7Eldz0yGR1UU8gyLr/fY11//sankBq71t+fj5Om4xL8tGrqzA66A1gIYTdKkeNidkADzLrfEtY51uCJ6soNih02VVPtkAsyaYoCh0DXmQUcsJqVLNKttE8Zz20lNGWAbUfajGzCHG81ffNQ2GSbXZVfqT9Zki2eKotcfEjSRJ1Zbk4pAAt/cP4Q7H9LplxdToQSbaxOL4eZtNF9WTnWKSLGinZwDgtT/+78UqxSzdddP3hTgDOnhlNNmVCyVZbmsvsyjyCIYXXD7WndQwRYqoopKfYslgspiqEJpp3tO+bUbI5HA5T74ueVBYzPpKtBzKVLpqMVBHbOZ7IBMmWipJNJJH02QCJ4PV6U7o/ZpRsWt9582AbR9sHKM938P33LWZOVT7/fe0itv3nxay/+wL+etdZ/O1TZzG9LJeTvcNc94sN7G3ui3tcEekWPtDHhdsberjqp2/T0q9aa6ybkznSywiVBU6W1qpKuad3NCb5dGpIOWo6fvw4ZWWpmSefijAziGUCwWCQfo+fbzx3jGBIYW65k+9cPT9qtz4eySbLMlaLzL03LuXDa+uQJHhhXxuPbKjnkfXHaR/wMqsij+9cs5Ablk9mTmU+ly6o5PnPreNHNyzh61fO5/nPrePQdy/nsdvXMDlcveqzF87ksxfOwmaR+OCaqfz0piXkOUfSl8rzVW+4FbXF9HsC3Prgpkiq6WklW/YgEAiwadMmDh48OKrjHDlyhPXr19PT0zPqharD4YjZYQN1ctAbcxpBlGyPR7poMKRw95O7CYYUrpxfxuKawihlzkRhRnkeJbl2Bn0hTvYOR6VwpgNFURKSbKInl7jYkGQrL+xp5aU9LUgS/O91i7l51VSmleXyvWsXcf+ty7FbZJ7f08qnHtuGLzDx7/gj75wA4ENn1rGgujDm72tnlPHBNWql7D9vHfGjGmsl247GXiyEIn5sqZItid6HZbVqKth2YUMkGaLmmfC7qSgKgx4frWGlT3l+csNcMShNhziUJCmcMpqaL1sopNATVo2VuEZPso0G+fn5OK0WnFKA3sHoCqODngBWKYTdIp9OFU0BRTmaki02XbR/OIAvGMJKiFy7JW6K5VhDK37Q0j+iXtTPb+JCTP/OH9ZItsp88vPzsVgslJQYp80kU7LByDiuKSYLnDZqC60oChzqjCUKxkvJNhHpovpNOj3JlqzwQToEoZGSTTy2iFMpXVRRFN4+opJseqV0Jkg2gAvnqQvt1w5knmRLhUwSn6GWImqGZDOaz7VNZ7Mkmxn1ZDwlW7LvQeaUbPEIPaMsifFEKjFAJgofGKWfJ7unra2tbNiwISWPe7OebIfbBtjR2ItMiB/dsISSXGPCcEqJiz9/ci1nTC2ib9jPXY9tY8CT/B3JRLrom4c6eP+vNtI+4KU0z8lNK6dQUzL2/s4XzlMLcaw/0kH7QPz3MVWYjjY3bdrE888/H/W7Rx99lGnTplFRUcGdd94ZVQHlVEe8AaCpqYn169fHDNKpotft461DHWyt7+Lv20/SOhSkJN/FZQur8HpGBuxgMBh5ufX57JFUO1nim+9dwFOfOpvFk4vwB0OEQgpXLanmb586i1vX1PLDG5bw4r+dw/23rmBuVUFUW8SKHZqE9wsXz2bPty7lu9cswhKeG8TBujDHxiMfXcXqaSUMeAN86Neb2FzffdqTLYugeT10dZlXrxihp6eHYDDIvn37IsFAugtVSZIiJJV+0WMmoBcDwPEI0F/Z38bxziEKnFY+fd40JEnKiiqaFlnionkVhJAixMNo7oOosDDakdSuWUwXDSHxk9ePcbBtAIcc4sfvX8oNK6ZEHfeCuZXc/6Hl2K0yL+1r47aH3qVrcOLmCbcvwFuHVXXaTaumxP3c9csnA/DyvrZIet9Ykmzt/R4Otw9ikRRqinPSIgT0XiAizggrH3c29hIKmSNjxR1xsT2HW/qxSUFcNgsFucn9OkarZJMkieJcGxKkRLL1DfvRLrU4d2JJNofDgcOhFnDo7oveFR7SKdlOwxy06qJeg8IHHYPqPFXkVDciJ4q81JRszb2euAvkRObPh9rU/j6rIg+Xy8XZZ5/N9OnTDc9llN6n/1m8D9r5FlSqbdzdElu9N9Mkm6IoEUWIWdIgE+eE+PdE+7ue7NSPp+OtZDuV0kUbut2c7B2OVOgWYeR5lw7Whcm7d452jXpjVVu/paIu0iD2E02JJvq76RGv/wGmlHCpKtn0pJ5I3ie7Tj2RlK6SLV4bzaSUjiUSEZ566Pu8/v038z2xrySrMK1B24To7+9P2kYNZpRsu0/28/xelaD+8JqpnBsulhgPJbl2fvPhldQU5XCiy83dT+5O+t6lWoFZny6q+Tr7AiEunFvBnefNoshlH5e4aEZFPpMKnYRCIR7b2JCx45qONr/5zW+ya9euyM+7d+/mYx/7GBdddBF33303Tz/9NN///vcz1rCJRrzO1NnZSSAQoLe3N+1jb2/o4ewfvMaHHtrE6wfb6RryUZLr5NZ1s7Fb5chLBtGDr15poh+0F00u5P5bV/DeJdVct6yGn9y0NKXqIH19faxfv54jR46gKAoOazTzrg8Ccx1WfvORlaydUcqQL8iHH3o3YjR9Wsk28dD6yWgDWC0o9vv9kb45GlWAtnuXKsmmKEqkj4hKn7FUsj341jEAPrCmFitqu7JByQZw6YIqlWRrHzSsYpQKxGDKTLpoSFH49foGtjUOYLPIfOa8aVy91Lji6vlzKnjwQyvItVvYcKyLq376NruaetNu62jw5qFOfIEgs4pkZlfE3x1bUF3IvEkF+IIhnt7VEuOvkelFoeZnM7cyF6fNktb7JQZY+ndiTlU+DqtMvyfA8a7YxbQRRFJK9Ao73NaHUwpQkmsnNzc30SGA0SnZtO8Uu8IVRtvNtR1Gih4UONV004kk2SRJwulS+1tff/QGXcSTzXpayZYKinLsqpItEEsqt4eLHpTnqvHPRJGXmpLtZO9w3EVWIpLtcPuIkg3MpQNBfEJJvA/av6cXq+/ntqaBGAI+0ySbqLi22WxZlS6qj6vFaw8Gg/iDIfae7KNzKGD4fTOIp2QzWninQ7J5PB7a2trSjoniFeFIRoZqKrYzphbjske/a5lSsi2rLcZulWkf8KZVaVpDIBCIrKuKiooivzMLo3RRzSst0ecTebKJm5d6GPkQp6JkA0xliWjt0LfLDMTYXEM2k2yppItq91NPICX7nrhxbbFYTJNs2j1KpG7UI9l1NfcOc/ujW/CFYFppLp+9YIap4xa57Pz0ljOwyhLP7mrhsU2JyadUlGxin9E+99bhTg60DuCyW7j3xqXkOu1RxxtLWCwWlk4pRkbhsU0n8I7SKkKD6Whzx44dXHjhhZGf//jHP7J69WoeeOABvvCFL/CTn/yEP/3pTxlpVDYg3gCg7SqkwvCL6HX7+PTvtzPoDVBTYGdGeR4r6kr40yfXUlNWBETviogvWjwlmwiLxcL08jzmVuWlnG7U29tLIBCgqamJvXv3xpA0RkGgy27l17etZMmUIoZ8QZ7Y2hzVxkQ4TbKNLcTnl27QFQqFIn1d7G+jWahqE7h+4EwW0Iu/Hw8l247GXjbX92CzSHx4bV3k3c8GJRuoaRkuu5U+b4j2gfhBnhkYqbTESVCfLnqyZ5hDHW6sNhvXnlHDrLLEaYPnzC6P+Dw093m4/pcbeDvs4TKeeGlvKxXyIOtKBmlpaUn4WU3N9uetTaNKozADbZGyYqqavjoaJRvEvhM2i8zCGvXYO02mjMYopsNtOt7eTw5+SvLGh2STJImS3DDJlsLiKuLHFk6JmEiSDSAvXyXZ9Kbbg94AltPpoilDMz/3B0N4/dFjn1ZZtMyl9tmJVrKd7BmOO7/Fi6+6h3x0hquSzkywIaAhkSdbVVUVBQUFEVJB/HxlvkpCdw4F2NcSrZ7INMkmxhLjMYeLaWtmSTbtmsW/e7w+ntvVwov723n/AxvpGfKl5HUltkdsS6aVbEeOHGH//v10d3ebao8eogo6lXTRd46om0RnGxTVMZNGaAZOm4UVYdsDbVMqHWjjr8PhiKR7pkOyaT5bWhwbT42WbL2m9YF43x+tJ5t2Hkh+ndrfNfLQ7DrXqD1GvzuV0kUzqWQTSbZkY6n291QyAxMp2byBIB97ZAsdA15K83O4bFEVSsj8eL5sajFfuWwOAN9+Zh+b6+OPLakUPhDHAe1zD4RFDe9fOYVC18gmzHiQbLIsM7Mij1KXjc5BH3/dFp2u29DQwLvvvhshvU0f1+wHe3p6oiouvPHGG1x22WWRn1euXEljY2YN4yYSRgOAoigpk2wejyfyHUVR+NITOznZO0xtqYu/3nUmVy2p5pzZFdSV5UUWLMmUbIkGitGoe8Rr7uzsZOfOnfh8PkP5uIgcu4V/D7+EL+xtZcDjz/p0UY/H809P6mVi10jrc5IkMXv27MjvR7NQ1SbwVJVsYlVLUQI/Vs9RU7FdtbiaygJnVJpLNsBps3DenPKImi3TSjZxDNGnix5uGyCIzLo5VVQX5ZgaD2dV5vO3T5/FBXMr8AVCfPfZfeNqfusPhnj1QDs5+JlRnhdDduhx9dJqrLLEzsZeDjb3Rv0tkySboii8EybZltaoqfzpBBXiO2l0X5eGU0Z3pEmyaW063jEQVrI5UibZ0iUPi3NHPNnM9plsI9kK89Vn6xnSkWweVclmO61kSwn5DiugzgFD3ujxRyPZSnISFwsYa0wOK9la+z1IsvFCN575s1b0oKYox1RGQiIl2+TJk1m2bJlhuqhVlplS7CKAzBuHOqK+l2mSLRMpl6nAaCGn/1nvyaYn2YLBIPe8sJ/jXUMEkWnsHubTf9iGKPozu6msJ0AyTbJpMUq61j36jUwNiZ5TKKSw/qjmxxZbYVP/nWR9KRQKUV9fb2jJs3aGevz1R9LfoNOOm5+fb1pdpG8fjCi8k6V8Jpt3khU/MCLZxlrJprUpEAiYmm+N+o3RuU5FJZueZEtFyWZEsplVsnm9XtP3KNF1Pb2zhf0t/ZTk2rl17TQcVkvK4/ntZ0/nonlq3H7bQ+8aFtASU+rN+FbqC/7sa+7nrcOdWGSJj541DYDKykpyc3PjVu7NJCwWCxZZ4pL5FQD874sHoyrBt7W14Xa7U0rjhRRItsrKSo4fPw6oA/m2bds488wzI38fGBj4pwoQ47HwehPEZMfYunUrW7ZsIRQK8eBbx3llfzt2q8zPb1mGyxZd/UVbsIiLP3Hg1ga8eEEZZIZkKyoqwmq10t/fz/bt2yPtSbRAOnN6KaumleANwpb6HtNBR6KfxwoDAwNs3LiRQ4cOjcv5JgqZSG8Ty1ZXVVVRV1dHSUkJBQUFSb4ZH6WlpTgcjpgCKmaVbPpdkrHoN009bp7f0wrA7etUD5xsU7IBXDK/ipCi+rJlmmQT32FRyebx+jjSPkgQmYsWVsd8PxEKnDbuvXEJeQ4rB1oHeHX/6E2MzWLz8W76hv0UOSUmFTmTyvHL8hycN0edcJ/eocrktfsgpgKMFvVdbpr7PNgtMnOrVMVKuumiiYjnJaMk2bQ2NXYN4pT8lJpMF7VarTGVzlKBLMsU5diwSDDgCdBh0tNvhGRTSfGJJtlKitUx0+f1RL2rQ75wuqjltCdbKpBlKUI+DXqMSbbinPHbCTdCWZ4Du0UmpMCgL9bzUvxZ/86PFD0wZ/qciGQzgnhP6spcBBQLrx9sN/xMpjYV9J5PY1FYQYQYG6SSLvragXY2Hu+hpW+Yl/e28Oct9QCcP3cSLruF9Ue6+J8XRgpKpRrvjpWSTV8JNVWIfVG8X4lItn0t/fS6/eQ5rCyeXBTz91Q307u7u6mvr+fo0aMxf1sbVsptPNZN0KS3qB6jJdn0acV5eer7GW/xnWze0TI7jEi6dDwMjXzHzL5n+nRR8XeJIN6TRH3lVK0uKhJm40WyAaZVU/GUbIqi8NDbKm9zx7rplBdEKzeHh4dNjSuyLPHTm5dx9swy3L4gH/7NZjbo1KR6KwBI3O/EfirLckTUcMWiSUwpUdtZUVHBypUrI4rTsYT23M6dXcrsyjy6h3z8QBjjjQrDmTqu2Q9edtll3H333bz11lt89atfxeVysW7dusjfd+3axYwZ5vJ8TwUYdTxxd8jMwOPz+fD7/fj9fo619vCDFw4A8F/vmc/CmsKY4EobrL1eb+SBigtBzS/BjJItnQWg1p7CwkKWLVuG0+lkeHiY9vb2qHYaQZIkPn/hLBRgT3Mffe7kg8NEKdk0pWAis9J/BmSSZNOIpbq6OhYvXjyqhWpeXh5nnnkmVVVVUb9PJmmPl86hT0Ho7OwcdWGS36yvJxhSOGtmKfOrw4vjLFOyAZw/twIkma4hHyc60/cpESdzIy8/kWTbd7IHtz+Iy2Fj7SxV3ez3+00HTUUuO7eeqVbv/OlrR8bU9FrES/vaAJhfmYMsSaY8LyIFEPY0EwwpKQefZqClii6rLcIqxabqpIJE479W/GB/Sz8ef/J7bqRkCwRDdPf2I6NQlu+M7Hgna5M2fqSrZLNaZGqK1Htv1peteyisZsodIUa146UDiyxx65pabl1Ti0WOXoCuWLGCFStWJDx2SUEufix4/IGo8WnAE04XzRIlW+R6li7FhsKtljZutbRhYfwXRcmQ61Tv16A3+l3USLZCR6zhfzLEe87pQJYlqsP9ts9jTIDEJdna1fFc82NLfq7U7BzE89WV5uJHZltDb9S9NJtmZhZ6km2slWzicc2QbF2DXn755nE+8vBmfvTSYR7f3MiftzZiQWHtjFIuXDCJe29cCsBv3jnBlhM9hn5UydqiVwcbkWz6ezXeJJuIRM9Jm7/WTC/BZontd6nG+dp1GxEMi2sKyXNY6Rv2s685NUWJhkwp2bR7pG04p0uyJVKyafdAkiTTHoZG6aJmr1P7u91uT+ndF+9JojZOdLpooiIUeoixVCAQYF9zP09uP8melsRxdiZJNrO+bPH62Kbj3exr6cdpk7l51ZSoZ9rV1cWmTZs4cuSIqXPk2C08eNsK1s0qY9gf5CMPv8uB1pE+r/VVsQ8kVsCOtLmlb5indqpWU3esm2aqPZmG1mZJUfjuNYsA+MO7DWw9oabH6u26zMJ0tPnd734Xi8XCueeeywMPPMADDzwQpeh46KGHuOSSS1I6eTYjGclmRrkhThJ/3HiMQEidqD+weioQO6FZrdbIIk5Tj+l3N/x+f8JBOx2fCA3iQOlyuVi2bBn5+SMBXrIF0pkzSlk8uZhgSOGNg21JzzdRnmz6tNt/VowFyTaWSCZp1xfgMDJ693g87Nmzh507d6b9fFv7PPxu4wlgRMUmpopnk5KtMMdGXYX6jr5l4p2LByNPNqPACWDrcZV0Xz2zHJdTJRxFqbgZfOzsaThtMiebmnjs7y/R09OTdtvNQFEUXtrbCijMKh0JapONkRfMraAsz07fkJcdjT1RgW6mFp5aquhZM8pM75bGQ6KgZnJxDqW5dvxBJcZ7yQhGSrYet58cyYfDKlNWlG/a91N7Z9JVsgHUlqjPzawvW0ufGqBWFjgNU7VShcNq4TvXLOQ71yyMFAUC9VldeeWVXHnllQmfW1GODbdix+MPRZFsQ94AVpSsIdki13PRReRKCt+xNfAdWwMOKQtJNod6v4b0Sraw2jHfHq0YMoN4zzldaL5sPcPGhYjiERtauugskySbWJzEzHspnq8gx0ZlYS7BkMKOht7I78U5ORPKk1Srz40WZpVsiqLw+43H+f27DRzrGibXbmHupALyHVZsElyxoIKVdSXYbDYuW1jFv12kWme8cbiLl/e14fYmXw8kU7Lp769IeGjtTIbRkmzxipwlIk5eO6DGA2tnxPqxiW2K93O8NhitsawWmdXh6qXvHE09ZVQsepCJdFEYIdkGBgaSkglG0NZ8RoSKGHOKFW9TTRdNVclmtVoTEsB6iGOYWSXbqZQu+st/HOSlfa0c7xrmlgc28drB+BkY8Ug2s3GjeI/Mpn3HU7L9Zr2qYnvfsslRVTqDwWDE3ku0p0qEzs5Ojhzcz303L+HsmWV4/CG+/MQuAkH1nhqtFc2kDsuyzP1vqPzImuklhmrY8YD43FZNK+GG8Ab71/+6B69vhHcZMyVbeXk5b731Fj09PfT09HDttddG/f2JJ57gG9/4Rkonz2YYDQDiIJgKyeYPhnhxl9qhb183LUZtIE5ompptcFD1ntHOKZZgjlddVPxcOtAPQHa7naVLl0byoUXCzQiSJPGxMCmx+Xg3tz30Lu8ej2+SOFFKtnQZ6VMNpxrJZjZdVL9LAiPPUmuvtlOTDv7fq4fwBkKsqC3mvHCZa9GbIptINoCFk1Uz4PVH0k+9TJQuqqUASJJEMKRwoEl9p8+dUxUxsNYfIxnK8hzcsqqWfNnLpmOd9PX1pd12M9jb3E9zn4c8m8SUYjWoFVMx4sFulfn3y+ZikUJsPNZNnyeY0RSqYEhhQ9jfYu3MsrgLbrNIlEItSdJIyqiwkI4HIyVb95CPXMlHaa4jMleZwWiUbNqcNjVFkq2xR11MTSl2GapIxhuFOTbcig1vIBhFsg16A1hOp4umhTyner/iebLlhUm2ibyvWoXRnmF1vDCtZGvTlGzm3zOjuTEe9JVGV4TJiy0nug0/kwnFcTwl21ini4qp9BrERdXze1r53QZVvb6guoiXv3Au9960jI+tm87/XreQj6+rRZKkyP347IUz+eZV85EkiX0t/dz56Ga6kqSxi+lRepLNqDr4RJBs8TZ54hEn7f0e3g0boV+yoBIjpBrna22P5wd2pubLlkbxA22+t1qtUUULUold9Osvl8uF1WolFAoZEhZmlWxG6aKiHxskJjs1JPJkS9YvRBI8UeVbPYxItlPVk23YF+S53S1sbeilqcfNI+uPc/8bhwEozHUy7A9yxyNbeGJLo2H/NCLZZFkedyVbY7c7kr3xkbV1wEj/6e/vp7e3N+Z8idDU1ERnZyfugT7uvXEJBU4ru0/28cBbIzZiYFzoKlG66IA3yGObVFHDZy6YZaotYwH9+vOrV8yjyGXjQOsAj6w/FvncmJFsGgoLCw0D5ZKSkqxbfI4GZpRsyXb2tM/vb+nH7/NSW+rivNkVkb8bBVciyeb1elEUJcpcM5mSTRxYUx3EjMg7i8XCokWLOOussygpKUl6jJXTSlk2tRiLrPDGoQ5uvH8DH/7Nu/S5YycxfRWj0yRbZnGqkmzJ0kW1ycqor4vPVEtzTgVHOwb505YmAO6+fG7kHNq7bLPZJmyRHg+LwyTbodb+iA9VqtCTbGIKjEawWSwWGnvcBPw+XDYLy+rUnetEvjKJcOc503HKCid7h9nTGJ+MzwQ0ZeI504uxCiktYhBTX1/Phg0bYtLIr18+mUVVufiDIf6w5WRGSbZ9zSN+NksmF8ZVEphFMmWIVvxgZ1Nv0mMZKdm6h3xYCFFi0o9NQ7yKwmagnX9KkUaymdt5bexWn+OUksyQbIqi0DXopWvQGzX3K4rC0NAQQ0NDCWOCIpc9TLKF6BVSiwa9QaxZlC4auR63m5ACXYqVLsXKBFjoJEV+OF3UrUsXbQ+TbOFM4ZTua7znnC5qilQ/mc4htY1mlGxdg166hsxXFtWQCskmns9ms0UqN249MaIqFj2WMjHexfNkG03VyUQwk/Xh8Qf4zjP7kCWFFbUl3HXBLKqLcqLGUn3BBkmS+PBZ07hpVS1Om4U9Tb184U87E15DPK8s7Tzi/CmSbhrBkixeFX1Cxytd9Pk9rSgKnDG1iMnFsb5JRh7SZtVURsQjqFXVQd3I9wVSi+H12QhGc3kwGOTo0aNJ0z9F1WiilNFUlGz6/qMn2cbSk01vXJ+Oki2ZJ9tEp4smexb7mvu56mdvc9dj2/jJP47y561NvLyvFQsK584u5zMXzuXaM2oIhBS+/OddnP2D1/jPv+2Jqrg52uqi4n0xS7IZEauPvFOPosC6WWURNbTWhs7OERWo2ecgrpsrCpz811ULAPi/Vw5xpH0woZLNaHzXzvv6oU78QYV1s8oi7/ZEQN9vS3LtfO3yeQD84rVDDHjSy4DLrtViFiEZyRZvAhDh8/lQFIWdjb3YCfKhM+uQBY+PZCSbtrPhdDqjqvsZKeA0JKswlwiJjms2SLVYLJwzu5yPr5vOLaunYrfIvH6wg2vvW099Z/Ti6DTJNrY41Ui2dNJF9YU+xGfa1dWVcrB570uHCIYULppXwYq6EVJZH+xkE0rznZTnOZBReOtwR/IvGEAfSOl34UC974fbBpBQmFmZh9Oh9gmtb6RKslUVOlk+RZ38/7GvOa12m8Hupj4e36IqiW9aEe0DKAYxra2teL1eTp6MLt0tSRIfWjMFiyyxrWmAfa3qOJYJ9YVWlW3N9BKsFnnUSrZknpypVBg1VrJpPmepkWxTpkxh+vTpVFdXm/6OBu38k4s1T7bkSrZgSOGkpmQryTFUkaSKYX+Q5d99heXffYVhwdPO7/fzox/9iB/96EcJ34ECpxW3os6jvf2DkbFp0KMSl9lCskWu57776EdmufcMlnvPYDgLw0WNZBvyjdx3fzAU2WwI1z1I6b7Ge87pQksX7RhS22hGyXYorGKbUpKDy26emDbagEr2WVDvz/Jadb7b3tAbZSqfyU2FeEo2GJt4LF4alfi7f+xvo6XPQ2WenTXTSyLPQYxL41UWnFGRz/XLJ+O0SrxxqINHN5xI2hb9At9ok0q812aVbOLfM50uGo84eXZXCwBXLppkeDxxDWLWW06cV43G0zmV+ZTk2hn2B00X8dGgj2e15ykSlB0dHTQ2NhoWXhDbL8syxzoGufPRLXzl74fZ39KfFsnmcDiQJCnKkkRDPFJ6LDzZxPs+GiWb2YqS2VL4IBhSaOx28+Bbx7jmvvUcaR+kLM/BrMp8il12qgrsfO2yWZwxtRinw8Y9Nyzh0+fPVO1Oeof57cYT3PDLDbwQLpQmHlt8n9JRsplNF9Vf14DHz+Ob1Zj3o2ePeJwZbXKajWP1GS7XLavhvDnl+AIhvvLnnQyHY2lxjSSOI0abSx0DXrY3qe/MVy6da6odYwUjIvr65ZNZUVuMz+/njYMdMX83g+yLmrIERgOAvsMne1l8Ph+NPcN0DfnIsyncsGJy1N8TkWxutzuiqMjJyYnaVTCrZEuXZBuNUifiU+C08N/XLuLvnz6L6kInxzqHuOa+9VGMv57UO02yZRb63bl0kM3pohC/Qpj2O3HHJhm21Hfz7O4WJAm+dOmcqL+N531IFRaLhdrSXGRCkYkgVeiDWaMCK0EkjoQJjlkVI34mWjBmthKSiDNq1B3gPY3dtA+Y27VLBYqi8M2n96IocM3SamaVRRv1ayRbMBiM/Lu9vT1mbCjPtbKitoSAIvPXHS34g6GMLDrXa35s4R28sfRkA1gS9rs40eWmJ4nqMZ6SDVIn2RwOB1OnTk2LRNLOX1OoBm/NfcNJCze09XvwBUNYZYlJhTkZmdtGC6tFxuV04FOsUb5sw94AEsrpdNE0kBdRso30h67BsAGzLGEL+8hN5H3VCh+0DxpXJzOa1w63hyuLVpjzY9MwGiXbnKp88h1WBr2BKEPrTJJsekVY1GJ3DFJGE5FssizTPeTjnSPqnPmhNVOxWuSYexgKhWK85MRjlOU5uOtc1Sblv5/bH6kKq0e8MSgRyZaMtBAh3r/xSBdt7fOwOZxafOViY5JN/LxIaCWC2HYjkk2WpUjK6BuHUstWiEeyiefV1nmaZY8ewWAQbyDI7zY1csn/vclL+9o46YYX97by6Bv7GdKpapPNPZIkxfVl078vZhVp2nE1mPmedi7N+y0VJZu4losXg+gLhEy0kq1jwMu1961n3n++wLr/fY3vPrsfXyDEhXMreOnfzuG71y7mtrV1fO+ahZw9Q92AUDNZJL506Ry2/+clPPThFVw8X02TvvvJXbT2eaKes3bvzJJsevFOukq2xzY1MOANMKM8l3NnlUc+J475qVZ21pNskiTx39cuIs9hZVtDL+sPqSSjuEZKlFkXCoXYcLSTkCJx5eJJLJpcaKodYwWjfivLEt+9diEOWeFIxyDHOgZPk2yZQjIlGyQffHw+HzvDOy0rp+RR4IxeYBilZzocDqxWq5qyEPaUysnJidpVGM900VShN5OdN6mAv336LJZMKaLX7ecTv92K2zciB4eRiW68djb+VUi2U1XJZjZdFGKVO/pn2taWvBhAfecQX3piJ+//1UYArj2jhrlVBVGfyWYlm0qyuZBRePNwB6E0StvrxzIjxeyWE714AyGKXXZqinNiSLZUlWzBYJDSXCuTCp3ISpAnwmm6mcTfdzSz9UQPLruFuy+fF0MEakGMmCLq9/vp7o5OXw0EAqysK6a80EXPcJBdTb2jXnR6A8HIpoOeZBsLTzaAQpeN6WUqObYjScqofp5RJJmecNp/eaFr3N4F7R3Pc1gozLGhKFDflThlVEsVrSnOwSJLY0qy2e12vvGNb/CNb3wj6ThZ5LIxjA2PPxjpcx6v2ieddlvazz2TiFzPl75E9m0pRCM/J0yy+UbeRc2PrSzXRjAYvUidCEwOp4u2DvgNMyCMlWypFT3QkC7JZrfbscgSS6cWAdEpo5ks9KJX5ohm7mMRjyWLlV8/2I4SUrhwbgVLJqtzvv4eBoPBGLJDg/aZa5ZO4tzZ5XgDIT73xx14A7HxVjzCz2j+FEk9s/cnkySbGSXbc7tbUBRYUVvMpELjKtN6dZT+d0ZIRrIBXBImNp7d1ZLSukEfz4o+e3qSLRgMGiqJfP4gT+1o5pndrQRCCufPKeeD6+YiSbC/qZNrfvoG+4XCQmbmHo1k0/uy6RWUZvpCup5sYh/Xqpkm+44GM4UP9MeZaJLtgbeOsb2hF19QVZHPrszj21cv4MHbVlCSa49aWxiR7Dl2CxfMreTntyxjUU0hvW4/X3xiR5StghHJJqom47VPg2YZlQj6ok4ef5Bfv636pH3i3BlR2XNi+ydNUolxs2tDo3VzdVEOd50/A4BntjcSCIViSLZ4ZN6uxh6OdQ6BJPHFi2ebasNYIl4751YVcN0Z6r16/WAHHl9qY+tpki0OjFh4bcA1a/R9uLWXY52q8mNpdV7My2I0oUmSFFGzaRX3nE5n1K5CMjIs3UVvonRRszBKV63Id/L4nWuoLXXRNeSL+CPpzzdWvhx6iIPFREiWxwtmSDa3282uXbviGs+fKko27Tlqn9FUNj09PQkVVk/tbObCe9/gz1ubCIYULphbwX9cOT/mc9muZKsuysFllegc9JmqHClCUZTIWKEFFnolm8cf5PVDKiG0oq4YWQhO0x1vtM8vqinCKgX5/aaGqDSl0WLIG+D7z+8H4FPnz6Sq0BlDlmokm96wuLW1NaatVovMB86cRhCJLfU9DLrNSfnjYduJXjz+EOX5DmaFfZfG2pMNiCyktaqm8aBfHBzrdBNSFBxWmUmlhaMqspMKxDllWpggPJ7El60hTLJNLVEJjmxQsgEU5djxKRa8AVU56Q0EI0SQy5l9Y0u2oyBHvWfDgnqkY1B9pyvyRwiRiVSyVRU6kSTwBhXcvmDMYjNRuuisFPzYxGOkWvhAG8NXhFNGt9T3xHwukySbeO6xJNkSKdnePtpNQ7cbmwW+cdWCmOcgKsgSKdm08/zw+sUUu2zsa+nn1gffjfFHTaZkE++vSK6kQ7Klu6maSrros7vDqaJxVGzi5zOtyLtwXiUOq0x9l5u9zebjHaM4Tt+/xXhxcDDWmuBPm09wsncYp83KIx9dxW8+sop/v2IBN6+dRZ7DSltXL9f8fD2PbToR420bD5rndjwlm9ZGM+qjdD3ZIlVdQ/DX7U24/UrU7xPByJMtWVXZiSTZ3P4Qv9/UAMDPbjmD/d++jJf+7Vw+dGZd5L6J73a8dHFQi2P9+Kal5NgsrD/Sxa/XH4/xWRT7PyQXEog/J7v/+qrFf97aRMeAl+pCJ1cvrYn6rEjW1tTURL5vhsiLJ2T4yNppVBY4GHR72N3UF7NGMuoPiqLw8NtqOvbqGWVML09tnhsLJBpnb1xWTYHTRr/Hz7O7Tsb8PeFxM9K6f0Lob7SYpqmRYIkWld5AkL9vPYGiwPxJBRS7bDG7IvFILe34WsdPRckGIxNIqulbmViIxFPSOW0WPnX+TAB+9eYxhn0jJeHF6x+PgVcctP7VSbb29na6u7tjSAXtO9r3sqHwgVEAqB8Ytf/n5uZGzGjjFUDodfv4xt/3EAypppt/+9RZPPThlZTkxl5rtivZLLLEvEnquPHGodRSRsX7rV2f+OxlWebxzY30eoMUOG3MrSrAYrFE3vV0Pdm08Wl2ZR55NomTve6U0z8S4XcbT9DWrxac+VjYl0J7jlrf0H7WSLaioiJA9fMTx0/t2q5YPJmyghyG/UFe2JPaZKtHJFV0RmkUuQlj58kGcNE8VQWgmlYnN+rW3rH1x9SF97Sy3JRSRUcL8R3XVHjHOpMo2cJ+bJoZd9aQbC4bPix4/CE8Hg9D4aIHALnO7Btbsh1adoBb8GRr71ff6QrXyMJ0Ip+73SpTme8kiEy/xx938SluNmoph7NTVLJpihgz85Q+XRTUDRSIVrKZVSCZgV7JBmNbYTQeyeYPhvh/rx4BYFVdMVNLXTGb12aUbCJxVFHg5OcfWEa+w8q79d1c/fO3o1JHU1GypUOy6e1B0omlzaaLNvcOs/VED5IEV8TxYxM/n8wQX4QZJVuew8r5c9Qics+EfeHMQJvTxfcjnpINYkm2329qYP2RDtVS5LK5nDt7JBVv8bRJ3LJ6KmdNzcEbCPH1v+7hs3/cgT98XDNKtmQkm5l3JV1PtpPdg7xxsIMfvnyEf3t8J9945gD+4AjBHAopHO80Lu5jRsmWTSTbC3vaGPQGmF2Zx5WLJmGRjdPJte/Ee/81zCjP47+uUjfnf/jiQQbC9gUiySaqupKRbBaLJXKuZL5sUSm4Ctz/pkpe3XHOdOzW6D5XVFREeXk5s2bNilrTJRt7E1WFzbFb+PxFs7FKQd493o1Pib6XRuT6Pw60c6i1D6tF4j1LpyQ893hBn4UnwiopnDtHfddf29/KkXZjSwDD42auif9c0N9osSqNmUXlfa8doXdwGJfdwnlzK6OOoSHegkoj2TTolWxmjDSNzpcMmUwXhdiX8dozaphSkkPnoI/HNp2I/F2c0MebZPtnThk1Q7Jp12806GsBiSzLaS/6U0GyYD5Ruqi+8IEsy1RUqEFYW1ubYWBwz0uH6HH7mVOZz28+vDJiCm+EbFeyAcyvCpNsKfqyGZVtF4P0EBL3v3GUkCKxvK4YiywZqiBSJfUj57XIzJ9UgJUQj21sSOkY8RAMKfwuXBb8rvNm4LRZotpYWKj6P2gVvTSSrby8nPz8fBRFiSJntfcjx+ng+hW1ALy0pzlScSgdaEUP1goVlcbakw3gvDnlOG0yTT3DCVUA4rukKApvHlaVjDPK8yaOZCsPk2xJlGyN46hkCwQCPPHEEzzxxBNJd50Lc2z4FAsefzBMsgWwEsJmkbHbJ77oAQjX89RTjF67NLYocIWVbL6ROUNLFy0PlxbNhmISU0pyCCoSfW5/UiVb56CPHrcfSUqtsihAbW0tS5YsobKyMuln9emiAEumFCFLcLJ3mJY+lajOlJJNnFPEZzKWnrzx3vvHNp6gvsuNy25hVV1RpH1ie0TSM5mSTTvP2hllPHnXWqaWuGjsHuaqn73Nx3+7hT9tbqQ7rLBMxZMtXSWb0c9mkCxdVFO9PBdWsa2sK6GywBn3eEYkWybSRQHes0Ql957d3Wx6s1xfXRQSk2yiwv2dI51846k9yCicOb2M1dOjKyEWFhbislu5c001X79iHlZZ4umdzTwfvleZSBdNpfCBWSXbsC/ID188wEce2sD2xh7cAZAlONI5zCv72vD7/fS5/XzgwU2c/6PX+cTvttKvi3vMKBb148dEFT4IhhT+ukMttHXHuulxFflmPBlF3LRyCmfPLMMfVNgQ3pDUv09mLXFkWY5LvOoh3sfn9rTS2D1MSa6dm1ZONbymBQsWMGnSpJT8MBORbADXnVFNucvKsD/IY+9GFzHT971gSOF/XziIhRBLpxRTXhBblXgikEjsEwgEmFGex4zyPFAUvvP0ftPHPU2yJYARyeZwOJLmqh9qG+D+1w8hoXDenArKikcWdCLMkmyikk0k2eIRH+mSbJlIFxU9NvQvrs0i86nzVDXb/W8ew+uP3eExm6ueLkKhUNIB458FZki2yMBn8HeRWBqP1LBMFj6wWCxUVFQgyzIDAwMxVZ/2nOzjsTAJ862rF2C1JB4Ks13JBjCnQiUgtjb0xARBiSCqC8RnoN3TLSd6aO7zkJ/jYMEkVQFmRLKlq2QDWFhTiJUQ/zjYHiFIRoM3DrXT2D1MYY6N9y4ZkczrlWxaAKX5Y+Xm5lJVpVYg1dSd4phhtVo5b14VJS47Hp+f36yvT6t9/R4/u5rUFO2zDEi2sfJkA3DZrZEdeK0ilhHEBdL+lgEaez1YZYm6cVayieq8aWXq3KjZMMSDli46pSQn8l0YG5ItFAqxb98+9u3bl3Q+KXJpJFsIr9fLgCegVha1ZEdlURCu59Ahsn121JRsHr+YLhqugJsTvbCZSMypyieERMegN6mSTauYOL0slxx7auOAxWKhuLg47XTRPIeVeeExXksZzRTJJloSJJrDMwkjwqHP7efHrx4mhMSa6aXYZCkqHcoo5dZoQzhe22dV5vO3T53FmuklePwhXtzbxlf+sotbf72JXrcvrpJty7EOXj/YTiikRCln0iXZ0nleydJFtfNolQuvWpK4WrRIGqSTLpooprhgbgU5NguN3cORuTQZEqWL+v2qZ6JRuujTO5v58G824w8qLKkpYGVdccw90mKKwcEBbl83jXtuXALAy3tbOdkznPCdjCfcSEfJlihdVN8nXt7XxkX3vsHPXzuKEgoxuSiHT54/iz/eeSaSZOFg2wDP7Wzi2vvWs+GY6hH+4t423vvTt9lzso8Bj5/WPg+DwyNWStmuZDvYOkD7oI/KAkdMOqWIVJRsoN7vz100C1D9bsUNWO1YZoUEFovF9Dpeu48K8Ms3jgHwkbV1SecOcRxORV1q9NlQMMDaGaUoSPz0jeNc/4t3eGzTCfrc/pj+8NTOkxxsG6DALrGitjhr4p5EpKP2Xp47pxyHRV1jmT5uZpr3zwmxM4mL7ERVV/zBEF/58y4IBplelsv8mmJcLpWpNUuyuVyuqFQsUTqa7emikJgsed+yydQU5dAx4OWlveoCL5n5bWNjI2+//XaMb5hYEdAsRmu+2dHRwf79+8cktSGT0BssJ1OyGd2H8VZviQO+UXuMAsB4hQ9kWcZut0d29JuaRkz1QyGFbzy1l5AC711SzZrppQnbJQZe2axkK8qxMr08l2BIYf1h81VVjUg2bZxRFIUX96mKrisWV0fIyEyQbOLnS3LtrKkrRFHgf54/kNJxjPDoBpVAvWH55EiwIT5Hp9MZCWKGhoYi40hubi4VFRVIksTg4CBDQ0NR7bRardhtNlZPL8WCwgNvHaPXnXpV1U3HugmGFKaV5VJTNEIEjXajw+yC7PKFqgrg+T3xU23Ed+nFva0EkaktzcVmkSdMyRbxZEuWLjoGSjaLLHHdsslct2yyYXqJGRTl2PFhwesP4vP5GPB4sUqq8XK2BJsirChcJ3dyndyJheyzVigMK9l8/hCBoPqMNSVbcY76rFO9r5l4znrMn1RIEJnOAS+BQCCKBNdnEGwJF0NZWVeSkXPHg1G6KKhG9jCSMpopkk1vrK5hvNNFf/qPw/S6/cyoyGNhtboBLm6kJPK1M0OygTqf/eGONTz96bP5/EWzqC11Mejx886RrpjjWq1WjnYM8tBbR/jwbzZzyY/f5JW9qkrar0imLAAgMyRbMiUbwNb6Lg63D5Jjs3D10sQkW6rpovrYL1FM4bJbuWCemq2g+cMla4t2T+Ip2fRrpuHhYR544zCf+cN2fMEQly+s4vrlNVFrlkh7XC4sFgvBYJChoSGuXlrDdcsmAwov7GlhyBu/f8cTbmRKySaSO4qi0Njt5vZHNnPHo1s42TtMTVEOX7l4Jtctn8ySqaWsmlbCZy6aA8DGox0c6xyiutDJj9+/lJqiHOq73Lznp2+z6Jsvseb7r/LFP+1gf0t/1pNswWCIbSd6UJD48NppMemUIsT3LpEnm4iVdSWsnlZCICQZFo9JNpaK8V+qSrb9LQMcaB0g32HlQ2fWJfyOvl2jVbL5fD5mVuSxcHIJsiSx5UQPX//rHlZ+7xV+t6mRI+2D7Grs4cltTfzoxUMAXDqvHKfNkjVxTyIeQnteBU4bF8wpj/luIpwm2RJAvNFaRxeVbEYTwD0vHWJHYy9FDonz51bgcDhiTLY1xEvPlOWRRYz2oo02XTQUCrF7927q6+vjXqtRLn86SDQR2K1ypBrJHzY1sL+lP2oCNlJg9Pb2EgqFYtVIe/awadOmlIi20ZJsDQ0NtLW1xfX5yhYkm+D0v0+mZBsPiBOYUXtSKXyg/V4z9+zo6IikBv74lUORipNfu2Je0naJgVc2k2zBYJDzZqtBZyq+bNr1GSnZWvo8NPf5cNktXLxwJKAWJ0ZxvEnlfdIHtB8/uxaLLPHs7hZe2Ze8Kmw8nOgailz/B9fUxpxPq5ylja1aFWe73Y7NZsNms0W82Xp6emIWh1arldmVedQUOhjwBLjv9aMpt1HzY1s7Y4TgNarElirMkmwXzKvAZpE42jEU5RskQk+y+bEwu7qEwsLCcX0PxHdcI9l63X56hozJTY8/SHuYaJmSQU82h9XCPTcu4Z4bl+CwpkeCFubYCCLjCarjVd+AGwsKdoucFYorPeySwj3249xjP45Dyj6STVOySSj0e9T3VCPZCp3pkWyZeM56zK8uUJVsA94o1RTEzmtbwouz5WGya6wgxl2iQnt5mNzTKh9nqrqokR+bePzxSBdtH/BENmDuvmIBzrAPYldXV0zsoCdSrFZrjAot0XgrSRKLJhfy+Ytmc/+ty5ElONQ+QEN3dEpgSJJ581AHFkJqml77IA+9dZRfv32cO367jQvvfYtfvnGUe148wFU/fZsPPLiRT/5uK3f/ZRc/efUwT25rYm9zX0ZJNv1YJEkjZN/j76qWDlctmRR5/+JBJA3MkKnxSKZ4eE/YD85MlVFx/hevTyQ+RDGF3W5nb3Mf//f8HgA+vLaOn92yDBnjdZIkSZECBtq5vnX1AsrzbAx4A/z4H0fitk2vpoNYBT2YI0WM1nHiO/bL149w0b1v8Mr+dmwWiU+eN4OXv3AOSycXRFUVveXMacybVICFEEtqCvjbp87imjNqeOYzZ3Ph3IrIsWUJQqEgL+5t5dndrXGf80RXF1UUhWd3naRzyIvTZuGW1bHplCLEuMNMuqiGz1wwCwWJPSf7GPJGCwPMpoumqmTzBUK8eUSNYz9z4UwKXebmPLMbHGZINkmSeN/KOjZ89UK+dsVc5lbl4wuG2Hmyn2d2NfPFx7fzhT/t5GTvMJUFDtZOLwKyQ2muwUzfXVVXlFJBotMkWwIYKdmcTmdcku21g+388g11wfXli2aQ77Rht9sjizmznmwwkjKqDdpG50xGsomL2IGBAbq6uqIUPfGudbT+W8kmgptWTuWapdWElBAv7m3l+T2tCYOVeL5hQ0OqCafexyARRusLoH2/t7c3pe+NN8z6c+jTLEWMN8mWKNVY/F2iymR6JVBeXh7FxepipaGxkf/42x5+Eg527r58LlWF8f1ENIx32myqEN83zZzzlf3tEWVHMoiLH3HHMxgMsq+5HwW4ctEkcp2xu7+g3hftOaRCeOtJtilFdu5YNx2A//z7Hga96S3qfrdRLThz7uxy6spGFFeiH4skSZFxubtbXUyK6iyNZOvt7Y0JsLTF1sVzVYLs4XfqOdlrfgwCeCfsx2aUKirLctr9zKzqocBp4+zwuZ+PkzKqHaO138uB1gFkWeaGy89j6dKlabUtXYjveI7dQnX4nY2XMtrUo6rY8h1WisLB5limi6YCNfiVGAqq7egfGlY92axS1uzonkqwWi04rDKgRBSlGsFaYI9V3U4U5lTmgyTh9oeiKozq0xQ9/iC7w6lvK8ZYySZJEnPnzmX27NlRc/yaaSVIEuxt7qex253xdFGxnzf3DtPjHqn2nmnoVT2PvFOPLxhi2dQizp9byaRJKknT0tKScBNP327935O1fW5VAZeEVVfP7I4mhB7f2kLfsJ9ip8yGr17I16+Yx6R8G7IkEVBkAoq6cdA75GX3yT7WH+ni+T2t/HFzI/e+fIgv/GknV/7kbZ7aHh3bZ1LJpl2rxx/kpX3qfHHzqsQkBUSPu2bI1HhpWvFw/twKXHYLJ3uH2dbQm/Cz8eI4UUUmfsbuyOGdI13kSH4+df4MvnHVfCyylFBtrl/75DmsvH/5ZGRJ4h8HO3ntgPHmvNi3tOcmPj99uqgoitAjkSfbzsZe7nlxP95AiDOnl/L859bx75fNxWW3xqi17HY7l8yv5P0rJvOHO1dTEfbeK8618+sPr2TXNy/hwHcu48j3ruDcmWos9Ms3j/PE1pMxGwniPdEwniSboij859/3sPVEN5IEX7l8HoU5iefbVNNFNZw1s5SaEheBkMK2cFphOiRbKkq2LfXdDHqD1Ja6uG1tXdI2ajCrZEuWLiq+N5UFTu48ZwYvfP4cnv/cOi6YV0WB00Zlvp21M0q5edUU7r91BYTUc2ZT3BNvjIoah5QQ37t2oeljnibZEiBeuqiRtLelb5gv/mknAB86s5aVtWp+vkiy6V+WRIN1RUUFdrud8nJ10WwUKCZLFxVJPe3cycgWMC53ngqSvbgWWeLeG5dy+QI1le/37zbybtj/w+gF1o6jrwo6UvXG/GA92t0UrS09PT1ZXZnULMmWTUo2SDwJJUoXNSp8oGHy5MkEgiHuf34bf9hUjyTBd65eYFpSnc1+bBD9vq2dUUpprp3OQa9pNVs8T7Zhn59D7QOEkLh++WTD3V+I3sFNhWTTk1d+v5/PXTiLqSUuWvo8/OjFg6aPpWHYF+RPW9TFxofOrI36m74/a+Oy5sempfXDCMnW19cXszjU2ltb7GTN9BJ8gRD/9/Ih021s7/dwqG0QSYIzhVTleH44qcCMJ5uGkZTRxCTbhmMqCblmegklec5xJ5r1xOG0JMUPRvzYXDHfHQ3JpigKbl8Aty+Q9thfFA7sB/1quwaG3FikEHZL9qRNiFAUcCsybkUmG6c7WZZx2ixIEvQOqyoQTcmWb1fvcar3NRPPWY8cu4VpZXkEkWgf8BrOuxaLhT0n+/AFQ5Tm2qkrHXtD6IqKCqqro1P+KgqcEQL+L9uaMlZdVD/ev36wnfN+9Drff+EAvW7fmKeLDnkD/DasYrvzHDWbQvPf7OnpiaoEqEH8d6IY3Ewc+cE1U7DKEkc6hnh1v0q2NPW4eXC92qYLZpdSke/gjnOm8x9XzOEzF8zkL3et4+nPrOPWNbV8eO1UfvPhlfy/m5bynasX8G8Xzeb9K6awMlwR9vF3T0T6PmTWk0271n0t/QQCQeZNKkhYKEpDqumi+jYnI9mcNguXLlCf4eObExdNMqosCvGVbG+fGGTIF2BynsxnL5xlai4x2iSeVOjgjKlFKMB3nt2H32DzUyQh9SSbWMldLMYRb2wy8mSTJIm2AR9vHlbT/r986Rx+f8dqZlaMVC828n+TZZnqohxkJbbNBU4bTpsFWZa4anEVa6aXEkLi9+828sKeVoZ90c9uokg2RVHtYX63sQEZhYvnVXHl4vhebBq0ZymqC81s2EiSxMXz1T65s7GXph53TDGVTJJszb1utjX0oABfvXxeSurreKSSvm+ZUbJB7Fpx3qQCrl8xlY+ePY37P3gGv79jDd9/32KWTilKibgcLyRLF9X+Nj9sM2DqmJlp2j8nkpFs4gTwlT/vonvIx4LqAr52xbyoTie+LEZeHEYTWklJCWvXrqWsrCzyGXFQN/IE0CAq2bTzaWovox0G8VpHo6LQYEaCKssS7185hTPDA/PbR7oIhozbZkSyiTs5qQRnoyXZtM/7fL6UFHTjjVNRyQbxCVrRY85s4QMNrvxC/r6ni6PtfVRZh/n5Lcu41STBBtldWRSiJ26bReaaM9QA4s9bjVWresQj2bYc78IXCFGen8OqaSUJFxwayZbKO6HdV01B5vP5yLFb+O9rFwHwyIZ69rfEr35phF+9eYy+YT+Ti3M4b05F1N/0ZKk+2BaVbPn5+ciyrFbWCntBiko2UO/Rv182F1AXowdazbX1naOqrH9BdQHFubFl1DNBspkZ1y6eX4lFltjf0k+9gceZdoy3w2kI2mJmvKG/pumR4gfGJFtjOB1LK3ogfnc0JNuwP8j8/3qR+f/1IsP+9AiBorCHWH+YZBtyq0o2u1XKCsWVHsPIzPcuZ753OcNZGC5KkoTDKiOh0Of2M+QLRp6Ny6be41TvayaesxHmVxcSVCQ6B41JNlmWo1JFJ1I1/b5l6hzy5LaTY5Iu+vrBdu787VZ8gRDeALx9uHPM00X/uLmRfk+AaWW5XDxf3eDNycmJKN21eDKekm20JFuJy87SqcUoSNz95C4+9vBm7nh0K0MBmFycw6yK3KhYV5IkcnPsVBbmUJrnoLrQyflzK7h6aQ23nlnH5y6axQ+uX8yfPn4mF82riKTsBeJkfphBourWsiyzp6kPCYVbVk811T9FdXYq6aIiwZEMHwin/f19R3NcCwEwriwKxiSbH5k/71I3Ka9aUBJFXMSz+QFj0iIUCrFqWgmFOQ6OdQxF0pX10Ht9G/mAmakIaaRk6xz08tcdrYQUhUvmlXPXeTNinp+eBBdTR5P1pVAoxJrppXz+4rlIsszBtgF+/PIhGrpGilhpx9BvjI81/r6jmUc3nECS4IqFVcyvLjAVB+j7YKI1tx4LaoqYVppLIKTwtx3Npv0tjdJFfT5fwvHl568eJhBSmFqSy6ULkleVFmG03uro6OCtt96io2NkaHrNcQAAmU9JREFUkz4ZyZZIiGA0RqaagjteMLofiqLE5R7MIPuipixCpGqHoiQsfLCtoYe3Dndis0j87JZlOG2WqIW51vFCoVDUpJHqoireYKuHaCyrtUNkw836XaULsxLUUCjEiroSCnNsDHiDHO8cMp0uKv57PEk28Vw9PeYrjIw3TnWSLdFzMpMuGklf9Ae587dbeadVwWaR+eTyfFZWpTaoZ7uSTbsfGoF+/fLJALyyv43uBEGnhniFDzaEUxrPn1sZUxFOPzHGK0Fv5rwauaX9fPasMq5YVIWiwANvHTN9vENtA/zstcMAfPnSOTGm5fGUbBpEkk2WZQoL1d0qLdjQK9kAFlXnc/lCta33vGROzfbMLrXE+VkzyqJ+n2iBYxapLPqKc+0RJd1zBgUQQqEQg94Ae1tVzzZtYTre0KvzIsUPkijZtKIHkD3polr6aq9XvRb3sCdMsmVn4YNshyRJqpIN6B32RZQ8uXYLtvCjzkRMkwnMn1RACJmOcPEDiM5mkCQpUtFzrIseJMOlC6rItVto6Hazp0VNyx4tyeb1+ege8vHGke4IwbZ2RinIMkc6VGPsTCOyEasoPPT2cQBuXzctam7QUkY1iGNEptJFtbasqC0m32mjc9DHqwfaw57EFi6YV4UkSYYES7JzSJLE99+3mEKnhc5BL5vCyuNUlYFGFVZFNPYM0+324bLJSQseaBCPl0q6qDY36wshGGF5bTHzJhXgDYR4Ymtj3M/Fi2eNCh88t7eTTo9MWZ6D2aW2SD8S71Eikk1PSjisFu46fyYAP37lEF2DsT5bekIrHsmWzBJC78nWMeDlk7/bSq8nSInLzt2XzTYkSI3Ol6jInwjtet+3fAr/e/1SXHYLbX3DvPfnb7MpXJVU+4x2neOhZGsf8PCNp/YC8LkLZjGvSt2gS4Vk06Av2JLsu1cunsTUEhfeIHzk4S1sa+hJqbqoWFk4ni/b+iOdvLy/FUmCSxdOSnljxoj41jzQRUukdJVs2rXojyHOJdkU9xiNtVqxEBGpjK2nSbYE0G60KBcVlWyaOfgvw8bXVy+tiSwAxE6nVToEY7LLbBAodsZEg4QkSTEpo+LiN5mSbbQwa2SrKAoWWeLcORUoSOxt7jOtZEuWIx4PoyHZ9Ax2Nvuy6Xfbkg3qRgrHiUwXTUQS6hWdYJwu2jno5fZHtvDW4U7c1nw+cN4iphTnsHfvXlpbjVPkjHCqKNlA7d/zJhWwsKYAf1Dh7ztOJv2+EcnW3j/M4bZ+JAkuDEvf46WLQupKNnEnS1Syafh4OJ3n6Z3NtPUnT0ENhhT+/S+78AcVLpxbwXuXxC4C9GRpIpINRlJGte9p468Y6AYCAb54iVqF65X9bZGqlvGwvaGHV/a3I0tw48op0deQgY2OeAG43+/n5MmTMcHyexarC8yndxqTbEfaBggpEsumFjGpMCfmM+MBfeCjpYvGqzDaKKSLasgaki2cLtrjVd8Bj8eDRQphs5wm2dLBCMmm0Ov2R0i28nxH1jxzDfOrCwiGix/olWwWiwVFGfHwWV43tkUPksFlt3JF2FT+md1qEZp0SbbGbjef/+N2Pv27LTy6oZ4H1zfgC4S4bEEVj3x0FefMVi1RfrfhOMFQZtUtWh/Y2djHyd5hSnPt4YqPIygrK4t698YqXTQUCuG0Wfj6lfO5/9blfP99i/jypXP49W0rmFSsLv71BIs4JydSUJTnO7h5pXpdm+p72dnUa0oFJkJ8vkZzkGasfsn8iqQFDzQYpYuaUbI5nSO2BMmuQ5KkiDXE7zY2EIrTh8yQbF6vl36Pn6d2d+DFytmzygkFg5EYQLz/8VJq9deo3YNrlk1hQXUBA54A3312f4xnrhklW7xziBCVbM/sauaS/3uDzfU9WK0Wrlw8CUec8MLofGaVbOI4tmRqMbesqmVqsZNet59bf/0uf9t+ctxJNkVR+Ppf99A37GdhTQGfPG965G9m5gQ9YZXK5qcsy1gtMlctqWZKSS6D3gC3P7IFt199NsmUbFqMmaj4gccf5D/+tgcJWFJTRE1x6vYCRmt1I0/AVDzZ9DDqr2JqfrbMz5CYEBTbmUrfzZ6ry0JoN1KsLKqvTHOwuZeX96tByCfOHXmJ46kmxME61SDQrJJNa6t4PnHxazQ4jwXJlozt1SaDi+ZXEUKivmuI9v7YRXq2KNn058lmXzatrVr/M+PFp5fIZlO6qJE/BRiniwZDCk9ub+b8H73O20c6cdktPPyRVVx93qqIB8uBAwei5NCJkO1KNnFM0u7TDctVAueJLclTRrUJz263R46z+VgnMmp1xsowuWImXdSsJ1sgMOJ3pHmhicH0kilFrKorwR9UeOSd+qTHe+SderY39JLnsPLdaxca7ujpPVlEkk1UKGvQSDYN8SqSzazI4+yZZSgK/DGJL8yPXlJ95q5fPpkZ5dEVisbSk62xsZHDhw9z8mQ06XrZwiqs4ZTRI+3RVUZDoRCH2wdRkCIL7omA/h2fEU4XPd41ZLgob8hikq0gTLJ5Qha8gRA+rwcLIRzW7Kwumu2QZRmnVVaVbG4/7QPq+JOVJNukAoLI9A77GBxW5xRxcXqsc4juIR8Oq8zCFDxfxgrXhRXRz+/rwB8MmVIViej3+PnOM/u48J43+NuOZoJB1c5gZlUhn71wFj+95QxsFpnrlk/FYZU50TXEX3QWB16vl82bN3PihHGKXTIoioI/GOLZsO/kbWvrcNqix1dZliNxgT4lLJPpotqYXJzr4NIFVdy8aiqfOn8m582piLKgEdOTRCWbeAwjLKrOZ2F1IT7FwmsH2vnxSwci74MZGKV2athc382htiFkSYqQeWaQauEDcQ5MpKIKBoP09PREjnX10mrynVYaut1xvWiTkWx+vx+Px8vLe9sYCkqsnFbKgqkqATw4OBjT9lTSRQFsVgvfuGoBAH/dfpL3/PRt3j3eHfmc3oYoHsmW7D6GQiFCisL3ntvPp3+/nR63n/mTCvjUBbMpzXPEXQuMRsmmVyzmOa187Kw6rlhUhS8Y4vOP7+DpHU0oijJuJNvfdzTz8r42bBaJH92wBKscu25IBCMlm1lo37VZZG5ZU8ecyny6h3z8ZoMaH5pJFwUS+rLd/8YxjncOUZZr48yZpWnNc0brLe3fRll3kL6SzYjIy7aNRaPxXExrNcttRB0zg+37p4N2o/WLbDFX/TdvH0FR4KJ5lVEmkvFINqMCBJlWsonn9flUQ1lRJTLW6aJmywJr93dKSS7TynJRFHh5b6zCKJNKNv1kkczw0agdWupcIBCITL7ZBj3JFs+Lz2hwhWgSJBsKH8RLpROVO96A6iP22MYT/OS1owx4AiysKeDxO89k9fRSJElizpw5kfSQ5uZmU23KdiUbxN63q5dWY7eoRsV7m/sSflevZAsEQ2w82oGMopZw15m2iufTICrZzBDP2j21Wq2G1ZABPrZuGgCPbWrA7Yu/k9rY7eaH4SIJd18+N67iSu/JIiqMxaIHGjRfNg3i+Ku/31o5+Mc3NxkaG4Mq7V9/pAubReKzF86K+ftYpotq45Q+WCty2SNKEr2abWDYR3PfMCGFCSXZ9Oq8muIcbBYJXyBEs66qq6IoNPWEPdmKs49kc9os5Ngs+LDg9Yciff60ki09SJKEI6xke/NQO8/vVuOHinxnQu+kiUB5voM8px1FgaPtqn+jGHdtqVcX3EsmF2G3TnybV9WVMLk4h35vkKMdqaWMKorCHY9s4ddvH8cXDHH2zDI+c940PnneDH76gZV84eLZ2CzqNRblOlg1rRQZhf/42x7u/suuyPlaWloYGhoyPVfrEQqFeHV/G619XsrzHTHFcDRMmjQJWZYj85iGTKaLJhqDRIJFVKzpSbZkqZYXzqvgiqVTscgS+5p7ufzHbxn6bcb7PsSuARRF4YcvHiSExILqAiaZqMiuP2aqhQ+sVquh97WGEydOsHPnTnbv3k0gEMBlt0Y2Fh/dUG94bDNKtvWHWmjscWO12vj++xaRl6du6AwNDUVdDxgXiNMvwsUCBZIksWpaCffcsIQil40DrQPceP8GfvDCAcBcuiiYU7K9fqCdZ3a1YpHVWONvnzqLqWX5UccVIRLoYj83o2TT+yVr7ZMlhZ/dvIyPh8UnL+1p5tldLQQx/86kir5hP49tOsGNv9zA5x/fAcBnL5jF3KqCpASpHvrPpKpk0+C02/jv96k+w8/tbaepxx33furTtePFxsc7h/j560cA+NR5M3BYLSmniortNFJuxROyGK2ZU00XzUY/NkisZBPH4n95ku2+++5j2rRpOJ1Oli9fzltvvZXWceKRbKDe8EFvgJd2q8oAUYoaDI6UaNerJrRFTqovPKRGsolKNv3CKtuUbJIksXq66k/00r6WKLm3GHCMtZKtq6uLt99+m/Z24zLb4gCoqVyyNWVUT7KJvxMRT8kmkiDjuUiJ13eMAkBFUegc9HO4bYDHNtVz9g9e46kdTXS7fRTm2Pn++xbx90+dzaLJI6oASZKoqVFNnfv7+00RQtmuZINY0qfIZY94aCVSs4VCoSgZv8ViYWdTH26Pn2KXlVmVeZHnb5RGoEFT+YZCoZiAwAgisSeqLcX+eNG8SmpLXfQN+2MUDhoUReFrf93NsD/Iqmkl3LJqatxzGj1HbVzWp4pCtC8bGO/wavfu4vmVlOc76Bz08vK+NsN2akTgB1bXMtlA2j+WhQ+0CqpGz+aqJeGU0V3NUe/D/pZ+FAUWTC6iumhiUkUhVp1nkSVqS41TRnvcfga96jswuTizhQ8yhSKXjQAy3qCCL6C2y2k37/dyGiOQJCmiDtze2Muzu1WiWFSyZYsnG0BNSbgyblg1Gk2yZUeqqAZZlnjfssmAxJ5mlfQyG2v9ZdtJNh3vxmW38MhHV/G721czKd+GLGxQj5xHZumUIhZV5+MLhvjj5kYuuvcNvvbX3bS2qbGY1+s1TfCJeHFvKwdaB5BkmZ/fsixSeEQPl8vF8uXLWbJkSdTvzaaLmrkvWn80es9FQklvtC5+PhnJJkkSly6ezM2rplJTYKdryMfnH98Rd+NHRDwl9VuHO3n3eDcWWWbVtJKULVbAfLqouNGUiGTT1jQ9PT3s2LEDn8/HrWEC9fVDHZzoiiUWk5Fs7f0e1h9W+9tXrljAjPK8SFygzZ96D0U99NdotM67bvlkXvviedwcjlV+8fpRdjf1mU4XTaZke/NQB7tO9iFJEj+9+Qy+cPFs7FY54bosXqqwGSWb2A6RZAuFQsiyxFcvn8f/XrcYuwxHOgb5nxcP0zHgzXgW0Ob6bi669w2+/tc9vFvfTaHs4b1z8vjEeTOi2ilJkqm5NlMkm8ViYXltMR9YPZUQMq/ub8fjM76f+hgwnhH/f/5tD75AiHWzyjhnVqlhe80gkZLNrKglmSAjkTos2zYWjdoaL3Xf9DEz2L6swOOPP87nP/95vv71r7N9+3bWrVvH5ZdfTkND4jQeIyQi2Ww2G5uPd6OEgqysK2Z57YhRrTaYixLpeEq2eIO1EcSXPFngKDLgE0WyJeuI4jmX1ZVgt8q09Q6zIWyUqT+GaEA4FiRbb28vwWCQrq4u/deiziOSbNla/CAQCBAMKRzpcLOvZYDtDT3c949D/ONAW8QLQq9uMyLZxlu9Fa/wgT4APNI+wBU/eZsv/2UXz+5u4dmdzXQMeCl0Wjl7ZhlPfupsbl41Ncb8HlRCxWq1EgwGkyoRQ6FQVDpltsJIAfj+sOfXHzc30NpnnDYiBvQWiwVPUGFLfTeyFOKC2WVYheBYDJSNFkramGPGl03sX+IYKJJAFlniY2erarZfv30cj0Glv79sO8lbhztxWGX+532LkCTo7OyMGfNCoVDk3ojPMT9f3d0VyTQRYspoIiWbzSJz4wo1jeb3m6LnmsZuN996eh87GnvJsVm46/wZhufKRLqokSdbMBiM3A+jYPmieZU4rDL9nW28+NbmyDhwoEVVQF4yf2KqimowCnymh71Pj3VEv79aqmhlgSMqLSyTSu3RojDHBkgc7fYy4FGfh9ORvWNLNkOSJOZNyueieZV8ZG0t588pZ2VdMdcvn5xVxKqGKaWqMuZERyzJplWgW5klJBvADcsnY5UljncP09gdX4Ehos/t5/vP7QfgsxfO4tywUjaeesFisWCRJT59/gz+/IkzuWheJYoCf9l0lCc3HY2khGtEh1nsbOzlt2GrgeuWT2bVtMTFJHJzc2M20jJd+EB/TP2x/X5/FLmiEQJmzqP1JYfDQVmegw+vnUq+08qOxl5++urhpO2Lt5GpWRysnVlGvtOWUrydauEDIyWbUZ8T2zA4OMi2bduoKbBx7uxyFAUefOs43d3dNDU1RdRkersIDRaLhaACz+9pJRhSmFFRwE2r64DYFM5kY4r+GuOJKYpz1U3ga8IFJP7nhf0xMUUyks3oOTy6oZ63NKLw8nlRCvRElS3Fd1NcjyYz6tf/LZ5i8caVU7j97DryHFYa+3w8tukEP331ED9/7Qgne835+GrwBoK8drCdB986xhuHOuge8vHIO/Xc/KuNdAx4qSt1cfdlc/jeeUVcNx0kJfpZmJ0PMpEuCiPP6yuXzaXQ5aDH7eOtQ7EbsRD7Dhrdy6d2NvP2kU7sVpnvXrMw8vt0NukSpXKaTRcVPYvNFgPJVpItmeouHSVbdmn1MoB7772Xj33sY9x+++0A/PjHP+bFF1/kF7/4Bd///vdTOpbWmfSEg6IovLS/k51NvVgpilSN0SB+Xuv42sBuRLKZRTrpol6vN2bRmyhddKKUbDl2G3Mq8zneCHc8uoXPXTiLj5w1DcXAm8tms4268IHVaiUQCBh6J8QjCcRnppV97+vrC+/YjE8g7/EH2XC0iy0nutl6oochb5BFkwtZOqWIqgInQ94A/R4/W3YfoqHhBE0+F8WyGysh9u+T8FJPWZ6D9y6pRkKh52gTbl+QGRV5zFvgpyB8noki2ZIVPrBarfxt+0m+9tfduH1BplhlKvIdzKsoZ80Z8ynsOwpKiEJXfNWZJEkUFBTQ3d1NX19fhGgxgnYfJIMd+GyCUQC1blYZK2qL2XKihx+/coj/uW5xzPfEyU6SJP64+STD/iBlLieLJxfg83ojfVuSJGbNmoXf7zfsFzk5OXg8HlO+bPrz2u12vF4vfr8/yivt+uWTufflQ9R3ufnAg5v41a3LKc1Tn23HgJfvPLMPgM9fNJvp5Xn09PSwZ88eiouLo1QJWiAgy9HeVzNmzKCqqiqSFqKHWZIN4KaVU7nv9aO8faSTLfXd1He5eWFPC68eaEfbtP3EuTOoyDdOt8kEEWS08yyOZ0YkW77TxgUzi2k+0sSWQw2sXDCDoD2X5h51UXvxwolLFQXjQDNe8YNGg8qikCG/O0niikVVkX+L7Zs/f35UWxOhNE99d1451EO+pI4vLmf2qGQj1xMIYDtwiCtkNY1RJvv8RyVJwirLLKwp5Oyz50W92xsa0iPZ4j3nTKC2LJ93gcauaGVYY4+HY51DyBIsm5o9JNuUEhc3r5rK5s1trD/SyZXnJTfT/9FLB+ka8jGzIo+PnqVukugV0yLE93tFXQkP1pXw0t5WvvWHNzjUPkBwt8Lli6oYGhqioKAAM+gcVCsqKqEQMyvzuDzNMSyZki0VZUOiRX60L5gn5nyyLCf1xBNJNoA8m8T3rl3EZ/+wnZ+9doRzZpezIkHVWiO7ghf3trKrqY8cm4VLFk7CO9CTUrxtpGTLlCcbwLRp02hpacHj8dDe3s7Hz53OG4c6+NOWBtYVdmOXQuTm5pKbmxtZbxjFca8f7qLH7SPPYeWqM6bGbCZqbUi2TtKvfcRrNSJBvnjJHJ7b3cr6I13sWlhAHsmVbEb3UVEU/u/lQ/zkH0dYZIXV00q5cUV0YSUzSrZUCD0NerP+eEREVb6Nm1dN5fkGheaGQdr6hvnhiwe556WDXDy/kg+dWcfaGaWG98ntC/DGwQ5e2NvKP/a3M+A1JvuvWlLND65bhE1SWL++KeJvaLVaUybZRlv4QIN2DwtzbHzl8vk8/LcmNh7p4JldzbxncXSBrngkm/b7vmE/33lG3cD4zPkzqS3NpaWlP6XrEpFMyaYoCpIkJSTZkq0VE6WkZtuaKpmSTbvWVFSY/1Qkm8/nY+vWrdx9991Rv7/kkkt45513DL/j9XqjKnf09/dH/q033LfZ1FLO33t2Py/tbadEho+cOZXz51TEtAOiO10iJZtZpFv4IBUlWyZ2+s2SbPoJeM30Uuq9Ht5qDfL95w/wxNYmfnjN3KjvGJFs6SjZ7HZ7DMmmHSceSSBOJrm5udhsNvx+P42NjdTWGnt9ZBLHOga5/ZEtHNMtLHef7ItRz9TIfZTLIfJz7EwrsOCSQ8woruT144N0Dnp5aP1xLIRYZFWP1drv4YUHNvCJS5Zw9dKaCVey6Z+p3x+godvN3/f389cTaurgWTNL+fLaWfS2N1NdXc2sWdW88cbhqOPEQ2FhYYRkmzw5vpGvEWGejTAifSRJ4qtXzOW6X2zgT1sa+djZ05hVGU0oimRXr9vHwxsaqAPWzihGY4bEe6n52RkhJyeHnp6elJVs2vm9Xm9MOqPLbuW+DyzjE7/dytYTPVxz33q+8Z4F9A77eXJbU6Ry1B1h/7aBAVUhoq/GFO85yrKckGTNz8+PEPJ6uwCIvt9TSlycO7uc1w92cP0vN0QdZ92sMm5dUxtJ4TVCJjzZNLJwcHAwQv6LCpB4qbxnV0s8cUThUOsAHb2DvNvWDyhUFTiZXBybSjueMFLnRZRsurHwxbCn55yq6GeaCQLTabNw3weWx/zearVyww03mD7OZy+YRY7NCn0BrB61j8+smnijew2R6xkagoM/5D770YluUlwkMoVPd+Mw3nPOBKaHfXube9SiHZo6/y87mgEb154xOW5K40ThMxfO5MPbttHa7+H1A228b218omZHYy+/26QWKfj21Qsi3nIiUWLGY+qSBVV0rKngyXf7OdgxTGBHMxVVNQnnHw2+QIi7freN5j4Py4sdXLygMO1N0LEofJAoXdTtdkcyKbSNXLPn0VuEBAIB3rukmtcOtPPX7Sf5/OM7+NunzqIsz5jQ14+RHn+Q7z6rLuhvXzeN4lyF1oHUNrXHKl1U+1xeXh5VVVXU19czODjImXNqWDK5kH1NXWw52s7amWV0dnZGjmWktnl5XxtbTvTjkFTVdlH+yAZNPCVbvHlEf42ietHouU8pcXHrmbX8+u3j/PqdBj57hiOGZNMTEfoY2RcIcfeTu3hym2pddOb0EtZMK46b7mikZEtGsiVSsOrvifZ/TUGoXXcwGCTXYeW/rp7P1h0yx3t8FPYVsfFYNy/ubePFvW3MrMjjQ2fW8r5lk+kc8LL+aCdvHurgjUMdePwj/a4i38GSKUUcaR/keOcQVlni7svn8rGzpyFJUtQaTk94pjIWaOQ2jF7JBnDlkhq2byliZ1MvX3x8ByW5dtbOKItpazwl2w9fPEDnoJfp5bncGfa6SzSumG2nEQGmZTpZLJaYdFXxuSZbKxptRGSrJ1ui+5Fu4YPsusJRorOzk2AwSGVl9EKmsrKS1tZYQ32A73//+3zrW98y/JvWKbQOIcsW/uvve/ntxhNUyzLnz6ng8gXlMd9LRLIFg0H8fn9aAWC6hQ/MKNkymVphVlIpDg6SJJHrsPKt985na7eN/3n+AEfaB7n9kXf5/BJLpFKckSljOko2u92O2+0mFArRN+xnW0MPm7Y10dPVwcyKPFaFdz9E6P0Ypk+fzsGDBzl+/Dh5eXmUlpaabkeqeOdIJ598bBt9w37K8hycP6ec5bXFFOTY2NnYy/bGXvqH/eQ5rOQ5rUy32ZmRV8zapfPo7OhgaGiIJUvm8v38Ql4/2M4r+9vIs0HRgPqMttT3UD/g4ct/3sV/P7efq6ZZmJXrxZIfpL3fg80iM+BRVXL9Hr/672E/VovE5GIXU4pdVOQ7kA3SM1OB1WpFURQOt/bxcvNhuoe8dLv9HKuvxzbUQXfIhSQV85kLZvG5C2fR1NhAL7Hl7ZP1Yy09sK+vL2rC0ONU8GOD+AHU8toSLl1QyYt72/jBCwd58LYVUX+PGK/bbPzsH0fo9wYpK3IwuyJPGPfMjQnaGGeGZNOn4CYKqNfOKOPJu87iow9vpqHbze2Pbon8zSJL/OC6xVjDJtp67xQN6T5HWZZZvHgxPp8vajyPF3x+9KxpvH5QrW62sKaAC+ZU8N6lNcysMFbKicgIEeR0RkjBoaEh8vPzo0g2TVEinsPr9VJlHcZmken3+Lnt1xvoVHJZZCHKk2+ioPdkA5gdJou31PfQPuChIt/Jyd5hng9XEbxlVfSmRyYIzExh9fRSVk8v5cSJco4fPw5kl5LtVIWeZMtGT7YppXlYLRKBQIA3D3VQ5whypH2QQ+1DOG0lfPnSORPdxBhU5Ds5Z04lG/ef4JH1R3nv6jmR8VaDoig8sbWJbz61F0WB9y6pjlo86pXLIowWYcPDw9TkSVy9tIYHtg9xoruHHzy9gx9MmmLoZyniW0/v5d36bvIdVj534VRCg10ZIdnGo/CB5vHrcrmYPn3E5znZeUTrD22O0wjcb129gC0numnsHuaDD27iD3esoTg3dkGsV/s+8OYxmnqGqSpw8snzZtBUf8z0tWoQ1znxyBejNpgl2SwWS9TGkiRJfPK8Gfz7Y63sbOplRV0JXV1dkdhcTwS093v497/sohSJtbXFTC11xdgCie1KN100Uf/79Pkz+dOWRg51DLG/xcdyV/RaJxEpHQopfOYP23hxbxsWWeI7Vy+kxnPc8P4mIgjipe+lomTTE0Pa9VsslqjiCDabjRy7hSWTC7jr/WdyuG2ARzec4C/bmjjSPsh//X0v33p6X0zl8MnFOVy+sIrLFlZxxpTiyFqj3+NHliTyHCP3yUiZNVqSbbRKNu0Y584px+0LsLs5wMcf3cofP76GBeFq0vE82UKhENsbengsLKb43jWLcFij+9polGxif9WTYVqRPxHacwXzJNuplC4ajxA8nS4ahn5wSbSI/upXv8oXvvCFyM/9/f1MmaLKbEWSLaQo3PvqUR7f1Y0kwR3nzmSaw204ARh1OovFgt1uj3ikjZeSTVtsgboAE88tYqLTRcXz3rBiCpfMr+LO325hT30rf9vRyqULqphdmZ80XzzZ+USSrd/j51dvHOVPh/YTDClMs3RRKHk42DbAP7re5mvvPSPKNF//zCZNmsTAwADNzc3s27eP5cuXG1YpTBXBkMIzu5p5aW8bbl8AbyDEu8e7CYQUlk0t4v5bV1CePxIIGFX+27t3Lx0dHdgFs8ZgMIjdKnPJgiouWVDF8PAwmzapPjDzJxVw0JPHb7b30zno5fX97eyS3TRv6ac9ZM7P0G6RqSnOYXJxDlNKVOJtSkkOZ0wtpkYwTu8e8vHW4Q4cVgsVBQ7Kch14AkEGPH52HWnjnc0N1A/A4WB35DtVsodau8y50yu46aLVkUlJXIDrvSESIT8/H0mSIu+jvqqYhlOhsigk3qX88qVzeWW/Sqy+e7w7yptGe48OdQzz4NsnAYmzZpYhSVJCDxkjiBVGk0Ek9yB6U8AIMyvy+NunzuJrT+5mf2u/2seKXbx3SXWkL4BxFTDxuOmQpUYpSvHu9zmzy3np386hMMdGZYH5KmzisUbryZafn09PTw+Dg4Pk5+dH7okGn88X1d8bGhqwyLB2RinbTvTQMRwCRcFqkZhdmZ81JJsY+CydUsSSKUXsbOzlJ68e5rvXLOLRd+oJhhTWzihlfnX0M8smTzYNYlp0NpB/pyK0DTqxih9Ekw4T3X9F2G02Zpbn0dvi4+O/28q3zivl7SOdBHFy5zkzqEqhcuN44uKF1ew80sSRniG+88w+3rdsMgtrCukf9rO/pZ/HNjVEik6snlbCt967IOr7idKDjN7vjg51o2LJjBp+NL+Un/zpJXoHBrnm5+/wyw8uM0x7VBSFX7xxlMc2NSBJ8P9uXkqV3EfzYHoqDzBf+CBTSjbtmAsWLDCM9+OdR5zvtDlOewcKnDYe/ehqbrx/AwdaB7j1oU08dvuasDdk7DGsVivNvcOR6oVfu3IeLrvV1LW63W56enqorq6OFEKCaEN87RhGY7E4BybyZBM/p42jQ0NDhEIhLp5fxf1FVrwDIXaf7GN5rUx3txpLinGcLxDii0/spHvIx4LSXM6cEUvEifO8GGOmmi6aaAwqzrVz13kz+fELu3n1QBuSxcLq1eYKH/zkH4d5cW8bdovM/bcu57w55bzxhkqGxiPZjO5nsqIQZtNF9ddqpITSnqv2PsyqzOc71yzky5fN4cmtTTy64QTHOoewWSTOmFrM2hmlXDSvkgXVBYbvToEzdkwxSm9Ml2TTkAmSTZIkbFYrly6ootFmZeOJAT744CYe/ehqFk0ujHsvD7b08e31TSgKvG9ZTaSvwuiUbPr+qn/OWl/R/96IZIsXW4vWVRoXk60kW7LU1nQKH/xTRXZlZWVYLJYY1Vp7e3uMuk2Dw+GI2zkihQ98Pl7a28rfm3KQJRv33LiE1ZUyhw4dMk2ygRpUa4v6dHZZxQ6Z7Hua0ahoep2bmxuXZBuLdNFUCh/oJ/BCl41HPrqKL/1uPU1HO3h+Twv7m/vptldy1erCtNJFQ6EQw74ALX3DvNrgZ9+ReloDuQRDhdSVulhdGCJH8bC7uZe9jV1c9bO3mVuVz7pZZSybWkx3RysdTT04e6Goxs3UUhczZ85kaGiIvr4+9uzZw4oVK9IO6r2BIC/tbeP/vXqYI+2xhvzXLK3mf65bHGXoHQ/iojJZxU4Aq0Xm6iXVfPyyFbxztItnX99Ec5sPR8CO5FMzB3NsFvKdVgpybOr/nTZ8gRBNvW6aez34giGOdw7F+CQBLJlSxEVzK9h1so/XDrQTCBnntOdLHmZYvNgtdq5aWE1tiYsil408byel0iAzptUxXSBVxH4jVg9K9gwsFgv5+fn09/fT19cXl2Q71ZVsoBJUN66Ywh/ebeAzf9jG43eeSV043c7vV5WJv97UBuTxwTW1zCztTYmw1KDdw1Q82cwo2TSU5Nr55a3x07gURYmotmLTjTM7qSe637N1KblmkSkiKC9P9aYbGBhg0qRJMYbhfr8/8qy8Xi8tLeri+KIzZnLG1C6KSkqxFU/i2N7tFORMfJq00eJOkiS+evlcbvrVRv7wbiM3rZzK799VNwO0YhkiMkFgun0B5v/XiwDs+/aluOxqH/D5fBG/169+9aumCXmRZMumYFO8ns8pMku96ju3z7GV0W8hZR4ayab3KNKQ6nwc7zlnAhaLhYvmVeKhlyNNIe77x2FKZT8FrgI+fs705AeYIOTnOFhZV8Lxgx4e2XCCRzacwG6VI9VxAayyxL9dPJtPnDsjpuBQovHXaGGjkWzl5eVUVFRw06op/H1HMwd6h7nx/g3ccc50/u2i2ZFYaNAb4N//vCtC9H3pkjlcMLeSAwfUTcR0xzBxsWvUjzKlZBPHjNmzZ8dUuzZLskmSFDGv1zaVLRYL08py+f3tq7npVxvZc7KfD/16Ew/ctiLKH1Scf/77uf14/CFW1ZVw1eJJptqgKAp79uzB7XbjdDopLS01jPG1cxmNxSLRZ8aTzWKx4HA4YtTbV8wt4tnN7Wxr6GFaWS62NtVoXrvPrX0e7npsK9saenFYZT5y9nRkr2o1YaRk09qRjKjR3yOzxM5Hz65jR30HbUfaeXF3M52uvZxfbJxSpx1r09EOfvyKutb97rULOX9uRUIPuESEWbw4Nx0lm7jxEQwGsdlsMf0TYvtRgdPGh8+axofOrON41xCTCp1pj72ZVLJpSDddVH8+i8WC1RLk3usX8ck/7WNnYy83P7CRhz680lAVuPtkH0/t76MnUMriyYX855Xzo443ms0k/dhrRLLpBQziOWGk78SLexwOR6Q/+Hw+HA5H1nqyJVOy/cuni9rtdpYvX87LL7/MtddeG/n9yy+/zNVXX53y8UKhEO8e7+K37xynY8ADch4/u3kZVyyaFAkCUiXZ+vv78Xg8MXJQM0hFyaaZiWuqEkmSyM3Npaura8zTRUejZBM7t9Nm4b+unMd9T7ayo6mX411DvPn0br7/2kk+NjfEnBJb1G5ZPLT3e/jbjpM8va0BS+dRFCRaQ/lMkhXmV+Xxk6vPZHltCdu2baO/v59ltUW83iLz5CEPB1oHONA6ABynQh6gWu6nOzTE/2wcYnZlHpfMr+LyBVOxuQ9E/DTKy2NTiI0QDCnsa+5n/dFO1h/pZHN9d8R3oMBp5ba1dUwpceGwylQWOFk9rcR0sGiGZNPft2AwiNUic87scvKHaujry2PBggWUlZURDCkxKSIiAsEQLX0eGnvcNHUP09jjprHbzfEuN7uaetnZqP6nYW5VPk6bhY4BL11D3jCBZ6PS6WRNocyyaRWcf84Zkc8fPOinpcUd876Ifk2p9uHCwsIIyVZVZVxBcTQKqPFEItIH4CuXzmFLfTeH2we5+YGNPH7nmUwtdTHs8fH87hb6vDYW1RTyn++Zz7bN76ZFsmmkgVYhLdHOXzwlWyKSLRm8Xm9UQKX3A4HMKZmS3e90kKmURs1jbmBgAEVRInOAthAR73FTU5OqdigooLKykq6uLpRggOlluXQ4jatFjTeMPNkA1kwv5YK5FfzjQDsfeuhdBjxqu/UeqZCdSrZ4i7nTSA1aSo9IrKUzfo0HrFYrVovM+1dUY63MYfN2lQS6ZVUduY7sDcetVitnTC2iqNzJhk4bG491MeBRx766YgeLS+G2C5ewfJpx7JPIg0e/sPF4PBFvzbKyMqxWK2WF6kZRYauTv+zp4f43jvHq/nZW1pUgSbDxWBfHOlRvpv+4ch63ra0DElf0NAOtbfqqixoypWTLzc1l0qRJ5OTkGMYiZkk2zcrEarVG5mFtnJlVmc/vbl/NzQ9sZGdTH+/96Xruv3U5S6YUAeGsF2+AB9+u55kDXmQJvvHe+ZH2JmtDX19fZENH22gTYzItzk9UwMFMuqi46NeeS15eHr29vRH19twyO286rDQM2/ndxhMsqC5gYU0hbruXg9tP8t1n99E56CPfaeUnN59BjdRLc3Msyabdy0AgEOXhHG8eSUfJBuCwWvj5B1fyw0dOsul4Fw+vP0Z9UQ+rpxWzSo4+14A3xOG2Af64T90Yve3M2kiRg0SbC+ko2cys5YzuiSzL4XTWUNT3RUWjPkYb+a7EjPLk9hqJMBYkWypxmXgv9H3FarXi8/lw2SQeu301tz+ymY3HuvnQQxu5a46f+ZPysVgsnOwd5ocvHKT+SBuK4uA9iyfxw+uXkGOPPl4mlWz6vqERy/GsGCB5to8kSTidToaHhxkeHsbhcCScDyYSiQofnE4XDeMLX/gCt956KytWrODMM8/kV7/6FQ0NDXziE59I6Th7m/t4pfkwTx31s8jqwWGV+ekNK7h4gbqrk0jKnIhkAzWdSlMSjFV1UVAnC22Bpe32QPZUFzVXeUjhvLkVLJlaxN7mfoZaZA4PeHlqWxtTCqysnl5CkUchr6WfQW+A+s4hTnS5aev30Dvsp2vQy86mPoIhBSd+5lqh0OVkbk0FC/ILWDlvGvNqS6LOne+08Ymza/jaDVNZf7SLtw51cKhtgHIJioMhesjnZKvEobZBDrUd4WevHWF1WYBFRX52dexk6sx5VOQ7mFLiYlKhE4ss4fYF6R32c6htgL0n+9jV1Mem4930DUcHEGV5Dj64ZiofPXuaoQzaLNIl2TToS3pbLYkHcKtFVlNES1wwI/pv7QMeXtzbxvrDndSWubhu2eS4ap+hoSE2b96MXqwXT4lilC5q9p0qLCyksbGRvr6+uJ9JtkuTLUhG+hTn2vn9HWu46VcbONoxxI33b2BqiYv+lqM4gx7s9lzu+8AyHFZLzP0zez+1wNjv9zM8PJywoEA8JVu8dFEz0KdFBoPBmDEv0yRbKpNtMmSqjdp9HxoaYnh4OFIAQUsjFe+x5gFUU1MTlbKbTal2enN7MZj898vm8vrBdrqH1Gv6yFl1Mb6QosppLII6m83Gl770pci/zULc4c2mYDNyPW43/OwXE92cpND6g7gQSEXVPJ6I+FKFQvzvdYv5udTFYF8PFy6Y2Aq+yaDFAWunF/PRK+YSDCmc6BqiosBJW9MJGhsbKZWGgMQkm5l0US1mdblckTEpNzcXr9fLFy+o49IzpvO1v+7mSPtglOK/qsDJzz+wjOW1IwUDRrMAFdsW7/0U449EtjTi9Rn1R0mSmDMnvh9fKiSb1l6NZBMxb1IBT35yLXf+ditH2ge54f4N3LJqKjl2C+62E+w71sgJfz6Qx2cumBVlxaA9u3hK9ebm5si/tTnGKP1N8wXVQx/DxSPZxHugXa9Isvn9foJ+H+9bPpnnW3NpP7aP3Sf72H2yj5PBPjqUk5F78csPLqO2NJdjx0b6kVHKpLY5ZVbJlg6xY7VaOHt2BWV5dpr2S3QNenhudwuPN2ygotDFoDdA16CX0EA7VfIA3lAuq6aV8B/vGVE2iWNgKkq2eJvJ6SjZtH+LJJsYvyeazzMFo0yndGIasW2ZSBcVfw4GgxQ5rDz8kVXc9dg2XjvQxj8OtLHxWCfPdxTxzJ42HEE3M6xw6bwKvnTzGYb3KpOebEZKtqiMp/C7kArJBkRINm3syNZ0UaP+fjpdVIf3v//9dHV18e1vf5uWlhYWLlzIc889l3L1xzcOdTBgC2GT8llUU8jZsysjBBtEl9zWIxnJ5vF4In9LZUGlkVHaoikZxAEzJycn4YCZyXTRdAofxAsitGMUu+ycPbOMG8+bwpstEi+80kbbgIendjYTwMKe18WUKG2iGRmQlk0t4ur5xZT78igtzKempoYjR45EnU9sr8fjoTTPwXuXVPPeJWqZ5aNHj9LY2MiUKVO4Z9JUXj/UztM7W3jjUDvbOsHb2wN0s3/rEN7wq6WlTehNPDXkO1SicO2MMs6aWcbsyryMTDqppovqf47nB5EOKvKd3LqmllvXJH8H4+22xVP5GKWLmp1sNK8tt1v1VjQa8P9ZlGwA5fkO/nDHGm761UaOdQ7R2u9hjsWP027hq1cujhQX0XtIpNIfc3JykpJsoVAoRi6eCSWbPi1yPEi2TCrZMpHSCOo8owW5muI6JyfH8B5rJLLL5Yry2MhWkk3v5TOnKp/rlk3mia1NFObYuG55bKVgcVwbCyWbphJP53sOhwOPx5NVwaZ4Pe4kn80GJCLZsqH/ihDnN1mWWDezhN5eGZs1exSWRtCPdxZZYnpYbXIkrDpLtEGSCslmlLqWm5tLd3c3Q0NDXLJgFivqSvjr9pMMeQMoCrjsFt63rIZSXeVMkWxNB9p1x1tAmvEZ05CJKoCpkGxgPD/VluTwxJ2r+PJf9vLK/jYefqcegGmWbgqlEDMrC/jltWtYNrU46ntagQH9Zhaoz16ba7SfxfZq7ddM1I2uQ7+Y16ClrOlV6eJxxeIHg4MqYTappIBfXbGGv7wU4rXd9XQP+ahw5FLlKmRlnVpkRFMFif1SH+vZbDY8Ho+pgnXiIjwdX0ibzcasynyeOGsuj7+0nu0NvezocnO0a8TntlKWKM21s3BSGV+4YTk2SzRppSEVT7Z4m8ni2iEeIWYUW+n7q155qMHsWjZVZFO6qJGSDUaeg9Nm4f5bl/Pw20d5660O+j3+cLVpiZVTinjvlFymTSqNO26MpZJNJNn0KkQN+g1zI+Tk5NDT0xPZ9NW+n01xDxiPs0bpov/SJBvAXXfdxV133TWqY9SVuiivLueK1QtwtxyJ8k+BaA8hcfDR8o4httOJnkVaEJsqq65JTc18T1/d1AzJlkklWzw5sNE5k5FsGiQlxMfOnkn18HE2HO2kqWcYf0iiDAdOm0xdiYtpUjtFLjuV0+dS5LKzoLqQaWW5dHZ2smdPe5TsUzyf+G+j3TpxsCl02bh6aQ1XL62h1+3jud2tHNy/h+GBPsqwcMybS1PPML5gtGdJbamLhTWFLKguYEVdCYtrChOmYaaL0SrZMkmypQLtfFqAoids46WLmjGl1cNut+NyuXC73fT39xtWh/1nUbJpqChw8sePr+EPmxqpKXJi7ThEgVNmzfyayGeMgiWzyMnJiaTEx4M2aYn+HGOlZNP/O1tJNn0KzGigFT/o7e2lLexFI6pCxAWQ9m+n0xm1iEm1suxYItlC9iuXzaXH7eeqJZMMPVy0Z5RtqiaAadOm0d3dTVFR0UQ35ZSFUTpxtpJsoh9ROurriUK8BbqiKBFSI9GmaiKSTb+QN4qftXhZG+NLcu2G3ot6jDZdtKSkhNra2riV41Mh2TLpnaSHvh8lel5bt24lGAzyi1tW8tcdLRxoHUBBgS6ozglx1blnUFUVTbDByDPwer0xm5Ktra1RBI+eZBM9psTfi9Daqq0H9ESbdj59aiwYk2za71bMmUqpXf3O0qVLDcda8Vz6WE9c65lNF9WUjak+80g8RIA100tZMb2MW4pmqimxDgsFThsFoQGaG45TXl5Oia5KrBlPNv26LNGaVbyeeP3bKO6OR7IZFcAYC2SaZBP7Wirf074rwmg9ZrPI3Lp6CtODdRzpGGJysJorF03izCk57NixI+F9ytS4YuS9JhLL8Ug2M3OYmMUnxv/ZNu/pn42+Ku7pdNEM4opF1dTW1jCpLIfdLbHBgfizfgLQJhv9d0QlW7rBlc1mM02ypaJkG4t0UUgceIgMfDzfHf3PGrPuslu4cN5IMYtzzz03UrVk/fr1AKxZWhVFjhrlVsfzcRkeHo4hCOM9syKXnVtWT6VrZi67d+/GarWydu1aQKJjUCVpCpw2nDZ5zEzEjx8/TigUYsaMGTFtTVXJJu40jDfJJt7bYDAYeU7J0kXFNqfyThUWFuJ2u+nt7Y0JpEXFVbYr2RLtUupRke/kcxfNCr8rR4Ho6xsNySZOpvEg+rFp74Oosko3hUCvZEs1EEgFmSbZjFJgRgONZNPuSW5ubuRZakGORiCLCxpNKa2RpNlAUuh3vvUoz3fw4G0r4n5/rImMQCDAiy+qRvmXXnppSmNmZWVl3KJME4XI9QQCrJvoxphAork8G/qvCLEP6lUC2Yx4453X6438LtFC0Ex1UYi/4NeqthupqBIhE+mi06bFJ/NEk/dkhEE2KNn8fn9kThgY6OfGlVMif9u6VfXCizd+Wa1WHA4HXq+XoaGhCFmlKEqkeE5ZWRmdnZ1xlWyJFqn6GE+W5YgiWyT1jN4Zl8sV8QHTFHWakr6srIzjx48D8TdLxc0+/ZghWgOZTRfV2pmOkg1G4qc8p4OLltZEfaalxRs5vh6JSGV9bC32Ea2d8dJFte8kItmM4ka9Qkojq4wqQmcSiUi2dMiyVBVXqSjZxHZaZImFk4v5+FnLACLelIlInUwo2bTjGCnZ9M8Oogt7mNnIEAVGeiuibIJ+nBXvR7pKtuyKQLIMoVAorkGfNgFAdPqNqADQv1zaABYKhSKDaKrBldYOM99LR8mWyXTReOfSn1NUGOgHXX2wLL70IrTviX/TL7rFQC+Zkk189vHaokdJSUmkckpHRweyLFFZ4KSywEmOPbWdkFQQDAY5cUL1RdHKJI9GyaYfWMYT4u6Gka+Cvj2jKXwAKskGGPqyiSTEqbIISmQqrId2faLXgHgsSH080CbTRCSbkbxcC2Li+bUkg6IokQWYUVrJWJFs6bZXD7GvZ4IY0HbxNbhcrhiPG41I07zBtGI54t+yhaRItshMhEwpBOMhFAqxZcsWtmzZMmY78+OJyPXs2MGpcDWJ0kWzbdwWVfvBYPCUJ9k01RCkr2TTK1vipYtqx0nFUmC06aJmYHZsyoTiZLQkm3ZvYcSPU3+MROOkXlGoHWd4eBiLxcLkyWq6vs/nM1RyJVqkGp3fyJctHqmjta2/vx8YmQNdLhfl5eUUFxfHrSKvbQ5qZK4I0Roo2RpAluVRxaTaucRiRXokuoeJCBdx7BH7hUaIiuIDDeLaLN77bTTWxvP6Ejfz4l1DJiC2VSSExHObQTJPxmTfA3NKNvHnRPfRCJnwZNPOn8iTzUjJZnZz2EjJlm2pohD7bLS2agSjGY9CPbIjgs5SiESLUYcwKn6QKD9ZluVI4KBNUqkGV+LEkQzpeLJlYlFlpjOKuxiJ0kX1OywiySY+E+084vnikWxG6aJiQKC1XU8UJAvcJUmiulr1bzt58qThZ8YCYuDk8XhiBr5kJJt+d8Jo52I8YdTeeIsRkZxNR72g7cYODAzEBKSiH1u27bjooU+tMAONSNGnwo9Gyaa9p4nSPvWVRbVzGm1amIVWWVSSpEggPZYkm/huZELNZpQCMxro/fCM0kW1cUN8/tlOsqWz852pZy9LEufPKef8OeXIWT4eZAoWFM6Xezlf7kVmbFQHo0WmPdnG+jlr/XD//v2Rd/FUIdn0MUSqJJvRYlXMZAgGg4ZKNovFEhmnUlGzjTZd1AzMEgbZoGQzQ7Il6otGvmytra2AqsrV5l7R11Nsv/46urq6IqSYkUWJEckWL6tBv7Gk/SxJEgsWLGDJkiVx731eXh6LFi1i3rx5MX9LJV1U/NtolGza/Gv0viQivZKRykaxdTLf4WRFnlLxZDOTNpwJZCpdVLuPmSTZEinZ9N81c59GM67oSVT9uyUSy0brZu1vyaw4tHHB7/dHbe5nG+Ip2bS2nk4XzTCSkWxGxQ+SsbQ5OTl4vd60g6uZM2cyZcqUmIWxEfQkmzZwj3W6qHYcI2bcCGYKH9jt9ggLLnZ8zRTVSN6pJ8kSkWzieV0uFwMDA3g8nojSSWxLomdWVVVFfX09/f39dHV1xfXySBeackbsX3qSTdytE1VY8XZOtBRkvZJtoireGSnZxipd1Ol04nQ68Xg89Pf3U1JSEvnbqeLHBiPEtjZRmmnzWJBsZqpuxtuIsNlskUVWvB3neNAI9ZycnJi0EvHfmVrMan5ymrJitOnEmVZbaZsq2nFzcnIi74eRkk1DtpNso1GyjfbZO20WfvORVaM6xqkGh6TwG/vhiW5GQmTak22sn7PD4cDv90fU0+Lma7ZCXBiK6fxmSbZEMYUW/2mkRDx/qNzcXDweT1SqYjKMNl3UDMwuvDKhOEmVZNO3SYwVBwYGolIAzRTe0SvZFEWhu7sbgIqKisjcqyhK1LmM0kU9Hg+7d+/GZrOxdu1aw/MbCRnijeciyWaz2VKK2yRJihuri23QX4cRxGscbbpoJpVs2vH0VWeTxbnJBBNmyCH9szUaszNZaTRT1UUzkS6qP18qSjbxPsa7P6MVyGgWIeJ63el0MjQ0FJMuqj+n2djKarVGKpNqKbDZVFFdg/huiemz+gzC0+miGYLoyWT0kumVAZCcZEu0oDUDSZJMEWygBnNlZWVUVVVF5ROPdbqoeJxkEmMwV/jASMlmdE3pKtnE72mBhJ6kMzOgOByOiGT+6NGjGd+p2bdvHxs2bIgylhf7n97vL5HcW2ubnpSYaJJNHyCKef/6ey+qGNKdbLSAXb+ze6pUFtWQqk/YWJBsZuTURko28We9ki0QCEQF7EbQgv7c3NyUlJCjgdECIF2MBQmoLTo0qwC9792ppGSL59lpBpmq2noa2QkjJVumNw0ziblz5zJ9+nRmz57NwoULWbVqVVYuOEToCxJpMEOyGS1W9BDjsUQkG6SmZMumdNFsU7IpihIhes0W3hGfgVb0wu/3Y7FYKCgoQJblGDWWGIOKi1St72jVyI3ObyRkiNdOkWTLy8vL2DNPJV0Uoq8x3XRRra8kItmM3rdkys1ESrbRkmxmlGzx0kXdbjcbNmygoaHB8BypIlNKtrFIF02mZIsXf8d790e7kSD210jF03BMmCxdNJV5Vts415Sr2axkA2O7sNPpohlGIk82MF4UpkqyjWUQKEkSCxcuZO7cuUB0B9Gn3WQyXVQ8V7KBQWtnOumiIllm5CeWCskmXr9o0ijC7IBSW1uLzWbD7XZnNG00GAzS1dVFKBSKDFQQq2TTD9bJdk60yTVbSLZExKmRNyJEe2OlupjWSLaenp6o359KSjaIJSeDwSAHDx6M7DTrMdYkW7zUPo281qvV4pFsO3fuZNOmTQnTSLV3XTNA1toA0QuITBItmSx+MBZEkJYyqlkL6H3vjLyP9BtH2UJSmF3IDg4OsnHjxkhVVRgbgvU0sgdGqcSZjmcyiby8PKZOnUp1dTVlZWWmN00nEqLXlDZWBQKBqBgp0YZqItIARt5NUVGv39zS5otkGy4ixiNd1Ky6Ids82WBkY9Gst5LL5UKSpMjGlxYzFRUVRdqYaKNGvA6RLB0cHDSdLhpvPNcIQIhNHR0NjNJFzZBso1GyaUiULpqukg2i+4VRHCDCrGDCKG7Ux/D6dFGtvX19ffh8Ppqbmw3PkSqMSLZ0xoJ0STaNkJJlOea7yex7jDzZxL/rMdq5TmyPqGSD+Omi2r1MJbbSxm+NXM92kk1Mn9Wni6ZiW5J9EUgWIVm6qJGSLZ5KQ8NolWyjQaIXNtM7v6ko2RJVF9UTQeJOp1G1D/F8mk+TBpEwTcTIx6uQmIo0dvr06QCcOHECr9dLd3c3R48ejVFLpYL+/v7Iy/3/23vzKLuqMv3/OXeseUjNqaQqCQlkIiEJhA4iQ5tGJYosRFQQA0G6FViGZTshCraKLg20NqJ0N0JIgwKKyM8VBMkXE6aWjgTSGINAyEASk0DIUMOt4da9+/dHep/ss2ufc8+594z3vp+1WFRunbpn2mefvZ/9vO9r5WSTJ+yFOvWwOtn4cYj3Rh48qMJFi3WyiQM9IPpOtoMHD2Lfvn2mq4NmIlsphQ/49laVo8TQThHVgJqvlufzectiClZONvFYvBDZiskhJ+OFENTZ2Ynq6mp0dXXp382fjWw2q7z/sqAcFpHC7uDmnXfewfDwMN5++239M7dCcTOjY5j1jScw6xtPIDPqTlXZsJNhMcwaXohZwwuRYeFoCzJuFz6oxPtcCFVBItHFBphPAsV3qtn94M8375PEHJ3yNk7crH6Gi9oV2cLgZGtubgZwXGSzW3gnFosZKr1ykY1/H3D8HcLf1yqRLZfLGRbB3RDZEomEPqaQc5KWgqq6qFW/Ukq4qPyOcupkKyUnWzFONrEasEocMgsXNZt/DQ8PjzM3FINbTra2tjbU19ejvb3d0f5jsRjmzp2LuXPnmoaL2nGymc2Nc7mc/ny5UUGZf6fKySbeOzNzip33LP9OfrxhFNlkw49ZuCg52VyiGJHNTk42ET9FNlmlFfE7XFTsGOw42cQXgJgU1MrJBhiFMjtOtng8bupkc3KNOjs7UVdXh7GxMfzxj3/EK6+8gt27d+Ovf/1rwb81QxToxBXJUp1sYRPZ5OO1cvmIE6xihWKel00MnwCi62Tj14u3XzOnlSonF+COkw0wH5Tx/doR2URHnJmYxRgzONmsnJBhDxd185mrq6vD6aefjra2Nv0z8Z1l5WTjhKXghxMnG2Avh08xDGVzGMraH2CVA0OIYwjhdQG6XfgAqMz7XAj5/cKfNe4aMnMvi+MJs/6E3yc+XjMrHAY4E9n8cDQ6DRcNg5Oto6MDwPG8bOL7p1CfL1bx5OMlMZetlZNNFF/MnGzF5mQDjuWs7u7uRmtrq+U5OKFYJ1sxC79OnWzy81aMk63QYrKZKAQcK1wxODhoSE8hHyNQuPCB+N2lGBE4bolszc3NWLRoUVGi7YQJEwzPBccsX6JZu1Y9+3/961+xceNGHDp0yDUnmxgNJLYFUUQtdF+tkMf7YU2RIGoKciSj3fybhu9z+fjKijDmZCsFs6qfpeSzMqNQY5RXXMycCuLLnx+7KLJZOdkAY8ionZxsopNtZGRk3OoBYO+eaZqGGTNm6P9OpVLQNA3Dw8OWjhwrRAFIFABlwc2uyCYLmLwdWLV5P5Bf6lYChMrJVswzpcrLFnUnG28XqoG5uELlZrioKJirBmX8mVLllrSq1iz/zMnlcti3bx/GxsagaZpBZFM9226KRmF3sqng1ziTySgHVGF3somLIlu2bBkXjs8nbnaq0RHlgdlKPxCe9lsOyJNDLrLx4lBm7mU7i3b82XRbZKtUJ5tKGBHzcDY2NhoWFnk/amfiy0W2ffv2IZ/PI51OGybQsshmFkYoO9mc5mRT9ectLS2YMWOGq889PwbRdBFkuKhVtEAxOdmKLXyQy+Wwbds2ABhXjM9pTjbxu8MksnmBEycboJ5L85yI27dvLznvpHh/+TGlUimlu7iUnGxm4/2wocpRx4/VbmoAERqBWFAoJ1sxIpvYeAH/B/6qDlNsMH6Fi8ovA7NBhPgQ83ugEtmcONmSyeS41SBRoEkmk+MEPXHVyO49a2xsxKJFi7Bw4UIsWbIEDQ0NAMxfIkeOHMHGjRuVv5fzsJmFi4phdaqKKKrVfrGtih1t0OGiZvkcRMQXSykTK5XIVi5ONtULgZ8br/ojUorIJv696tkX87HJgwLVgNpMcAOAHTt24I9//CNef/11AMdCRGKx8dV0vRKw3HSy+SUE8bYs5sUQ9xlWkU0WUvr6+nDw4EHs2LFD79PEHFFeOdmI8BG1nGxRRX6/cEFbVYFdxM54Qp7QqRa2oiyyiW0zKCebGO6YTqf1Mc9f//pXXWTr7e0teCzcscTHnc3NzYbra8fJlslk9MU2/l1cdFOFiwbZn8fjcf04+bgpyHBRq4gkp042MdzTbDHZzHm1e/duDA8PI51Oj2s3Zk41ft3k97mXIpsq73aQuOFk4z8PDAzo1TrdzMnG58GAOnLMDSdbWEU28fk1m0s7+j73Dq38EN0xVk42J4UPNE0zdGZhE9ncDhcVv7uvr09/SckvAzMLtCh+ySKbKJaZTaj5i1uuniR2SHKooeiy4fsSr5eTzqy+vh4NDQ3QNM00wT5n7969yGQyyuSf/f39hmspXkf+M7+WfPArr2rK56EKEQiDyOYkXFS8F3y7UkQ2HrYgvnCiKrLxdqGa+JjlYwPME6/axUpkM8vHBlgXkpF/Hh4exq5duzA2NoaqqipMmzYNJ598snL/Xg3KvXCyef3M8WvMB2by/Q+ryCYLKWLydd6mxPAjXkEV8O/aEsHgdk42Qo34fhHD/err6w3jBxknIlu5houWupBdrMgmzmH4eICPm/mYh4ssJ510kp6/0wqxwABgzMcGjJ8XqXKy8fdPTU2NnuONL/yIz6xTJ5sXaJpmKBoEBB8uapbD2mlONlF4deJkGxoa0nP9nnDCCQXdV07CRUuJ9gGM8zlx32ER2cTraacitmourepn3czJJi6+W4WLOnnPptNpwzGGVWTj53L06FEcPXoUmqbpfVxRfberR1emiGGWIqpY/UIiG2CcYPr9wFuJbGKSRbf3MzQ0hJdeeglbtmwx7FN2sgFQdjyiyMb/VhUuyjsJHkPPO2uxE5dFNlWoIb9H/O/Fa1TsPROTzaps3jwclA9ARPjqDv8OHu4nTib5Ocsim9nKl3gPVJbhoJ1sTsJFgePPXjGDLzkvm7hiGZXJuRMnm5XIJp6vl042GSfhouLq6+mnn46enp5xlu4oOdn8DhflExp59Vp0DPN/hwGr8BLu8BVFNtGdTE628saLnGzEeMQwp6GhIeTzecTjcVRVVVmG0TgR2cRwJbNtwupks1psEdumn4UPgPGLbrzPb2pq0o9l1qxZtgQ2/vdiX2omssnHLv7Mj6m2tlZ3xqkq0KoW3oII/zeraq+ilHBRea5p9syYpeOxGy7Kr6FYRM5JiOmuXbuQz+fR3NxsyPkq/02hcFF5IYxTiptNlRbHi5RIxSLeU5UYaMfJptrWbSebKsKlFCebnCImrPMqfo67d+8GALS3t+vzlWLm/zQCsYFZMtBkMql/zsUOO/mseEMrRbApFlWH6UX+EpXIJv7fzMkGqG2x8uQPUBc+4P/nglMmkzHcF279Fu+nmPCRfx8fiPCXkBsTtYaGBsRiMYM1njM8PKzva2hoaNzEnQtwLS0t+nUYGRkxVLPlHQH/btGaXei+h0lkK1YkKcXJBhxP3rt79+6CZc3DiCiycTce4FxkK/XFbWaHB44//3z1WvV3ZsKaSnzjuQ5F5D7Bq0G5m042v8NFeZtQ3X9xkhT0gJRjR2STqx3y+0IiW3mjcnWEZUJVTojvFz4JrqurMx1fcJzkZONESWTjaUAOHDhgWv1YPGYvRDZVOJ58T+QxTVVVFebNm4eFCxfqhRDsoGma7marq6sbd6+sRDb5PtfU1BgS5gNqkU1cCA+iP5fnc1b9iipPsJN+SNyX2TNjJmrbDRfl19BO3mEzJxsAdHV1KfclRybZrS7K5zBuimz8s7C8E0Qnop0waHk8KwqGPT09+nal5mQT0w4lEgmlq7IUkQ0wjjfD7mTj90a8xuLv7UIjEBtYhX7y342OjhomW3ZEtiAG/VZONjePR+4Y+AM8NjamXFWQRS/AaPtVKet2nGzc7SXn1pMrmsrXQLyv4nmUco1isZiev0R+iYhFDQCjm010uTU1NRlCWcWBk1wiWRX2Z3bfVckegxbZxJAw8XMR8T6Weo96enoQi8Vw5MgRPWQ3KqGigHESJObsE583jpcimxvhoqqKoionm6qfJSebOfL1Ug2uwyiyWeVwUTnZAHv9hxNimobTp07A6VMnICa8rzRNQ29vL3p7e0NTjbUU9POZNAlxMJyu9eF0rQ8xqAWEoFE52UpZODS7z5UOf7+8++67esJz7mIqVWST75NbOdn8mFh3dHQgmUxieHgYb7/9tnIbUfzww8kGmKePEK9tc3OzLhI6gf+NqnqiPGayGk+oRDazdBXyoomf41P5vWn1LlE52Zzccycim9OcbPLY2k7eYdW+xEVOFaq5lfhdZuGiLS0tANTRPnYRnwUxjD0sIhugXog2m4dbLTBOmjQJdXV1iMViyrG8Hfj38zE176OcONnsXlM+7he/K2yIx9XW1jYuPN7pcYfTrxcCxAtpJZilUimMjo5idHRU/5tCZbDDKrJ56WQTVXIxFp1fJ/5gixVz5DwWViKbPKFOpVJIp9MYGRnB0NCQLprIZab5S0DuLGSbultuv6amJhw+fBiHDx9Gd3e3/rkssvX19ekDWF55KZFIoLa2Ful0GgMDAxgZGdGvXyqVsqwSWei+h8nJZlb4wOx45FWhYu9RVVUVJk+ejF27duGdd94BEF0nm1hxFjh2r8XrYifBNOBuTjbGmL5fK5GNi+uJRKJg6KhqkEc52cyRr1fUnGyq8JLBwUGMjY3pIht/j7g9KatKxvHQPy0Z93kymcQVV1xR0neHCf18BgeBVavwUPq1oA/JErltAKUtHJrd50qHPz/8OWtvb9dX+c3C14DiRDY3nGylhmjaJR6Po7u7Gzt37sTu3bvR3t4+bn+ljrGtzl0u3MVJJpMYGRnB8PAw6uvrXXXn9/b2oqamRumA4/MfVeiifP61tbWWeci4kSGbzWJsbAzpdDr0TrZSwkUBoxHA7BzN2kMhUa8UJ5tqLGYnnJW73sR5htmi2YQJE7B371693arGiYUQ3/difuUwiWzxeBzZbNZWuKhZ6C03GCxYsAC5XK5oQ4DsZOPPr9vhosDx8WZYXWyA8VxUhWDIyeYSTkQ2AAa3VKEGxBPFqkKmvMbvcFE5Vx3fn+plYJZUkX+fnXBR0bXAr++BAwdw4MABAMCUKVOU+zNzsrkdcmSWl010qgFGJxt3vTU2No4ryqBysnEKiWziOYVJZHMqkshtoJR23NPTY3hZlYOTDRg/GOPtRiWyiIM7N51sw8PDYIwhFouZintyzpZSnGxeh5fwfcsJbIuBnGzWmK18c9555x2MjY1B0zSDixmgcNFyh3Ky+YM4Hujo6MCsWbP06+tnuKi4EGtFqSGaTuju7kYsFsPAwICysFWpYatWIpt4zcXryN1mfGzppsiWTCYxceJE0+gCs3eIuL2maaiurkYqlTJsb1ZhM8jwfyc52dwKF7UyaxRystnNyVaMk01cwDKb64rX4NChQwCMOQDNxJpUKqW/v4sNGTWb14TpnaCq/ms3J5vs1IvH4yXNU2SRTZ4Di9uZzdHtPotcNI2CyNbS0jLOZSv+3i7Bt7aQIj6IVoMDVbhooQZfXV2N008/HXPnznXhSJ2hWnH0IlzUysnGQ0bF4xF/VllRVcq6KlxUXMXgIht3sXV0dOgdOGBcTSnkZHPrGtXX1yMejxucF2KOtkmTJgEwF9kAuCayqZxsYhGPoEU2u5Nk+aVZyj2Kx+OYNm2a/u9ycbLJ4ip/Hs0s5nKCWieYDQDFogeqwaP4jPPnThbZ5DDSMDjZgNJDRv3KySYPbqLmZFOFTADAvn37ABwLP5Kr25HIVt6QyOYPTU1NSKfT6O7uxsyZMw19uJvhoqqoBXkbO242sT143Q646ARAr7oo4qWTTbzm4vfz8aIXIlshzN4h4s/V1dX6v/m4XJWnWk7LELSTrVAubbecbHaeF6fhouL4amxsTB8HWs1ZZfebONYxE0vEedm7774L4HgoqHj8crXweDyuGxG2bduGXbt2KfsUK8TvEo8jTO+EQqYHkVLdY3aPRXSyif/nuJGTraWlBd3d3Zg6dWrpB+4REydOREdHB6ZPn678vdP2E3xrCylOnWyiyGZHpRUrMvlJGMJFRZHNyskmC1/iQ89VfPFlI+dwk6u4yg+2lZPNq4mapmn64IevePJBUG1trf6C4UUNRkZG9JUg/pLigySx8AEPjxVRiWxivjuVyCaKM0FNSsWXuippqoxZ4vti6ejo0FeB5Xj8MCNeN7kEujg4t1M51Q0nmyw8WeVj48jitiiyic93GHKyiY6/UkNG/Zo4iINpMaeo2TZhGJAC5uElXCTkedlqa2sNEwlV314smdExLPz2Oiz89jpkRo+37dHRUaxatQqrVq0yvOeiin4+P/kJjrAYFg6fgoXDpyDDwtEWZFSFD0pxNZvd50qnuroaS5YswYwZM8a9c+XxhYhTkU1VzEbexqnI5keuxEmTJkHTNBw5cmRchXg/nGxiDirguMjW399vWHjzW2Qzy7EmRvJwx4h8DoBRGDILjfUa8T1ZqE8pVWQTnWyF9uG08EF1dTWqq6uRz+exZ88eW21CHk/xsY5VXi0xz5dYtE3+vVz5M5FIYNKkSWhoaEAul8OOHTuwcePGcUWNrChXJ5tX41lZ8OTfK4dty3nMxWOxe01jsRhmzJihzOUYFurr6zFr1izTeQo52VxC7KS8ENmCwq9wUbljkKsEqjq8QlZU8aHnP4svG/GcRCcbcMzOL7s2xM7Fyskmi3elwoW0/fv3I5fL6S+hxsZGxONxXdjp6+vD/v37wRhDQ0OD/rmZk00Ow7NyssmhuLLIViivoJfwY+Ev30I5leR2W2o71jQN8+bNw/z58/Xw3Sgg3m85Cbx4v8WiB2b3mLexYgbkdpxsZsir1rJ4JX9eyMnm9rNb6HiLxa+cbKKgnk6nlfdfvOdhGJAC5jnZeF/KqaurM9wTs1CqYjk0OIpDg+OFtEwmM65idJTJZDLI/N/zeghJHEJ4xzRu52QDzO8zocbNcFEzV41YNMCOyOZnuChw7J2pSvchHkupTjZVESOzd0dVVZX+Hj906JC+XVicbOICJhfZVG3Ey/7cLuJxFbqHboaLFjoeeXxUKCebpmm62WD37t36mMxJuKidea6c9qO2ttYw/xKvkXxPk8kkFixYgNmzZ+t5tffv32+6L5lCIlsYihM5cbJ5nf5E/h7etsT7K5tagqz0GzROz5UKH5hQjJON/xw1kS3IcNFinWyyyCbmEuOdAa+6Eo/HlQkMrZxsciiYm0JkR0cH3nrrLQwODmLbtm36Kg1feayvr8fg4CD6+/v1XHI8FAE4PkgaHR3Vj5t/xl9K4rmIP8urIfycVCJbUIjHnc1m9cmrXZHNjXacSCTGTeDDDs9pls/nxznZxPttVVmUM3PmTAwODhrCq+1SSGSzykUpDx5l8SqbzaKqqsqWkw0wDuK8GAhYFT/IZDLYunUrent70dbWZvodfq/Op1IpDA0Nmd7/MDrZzN4NjY2NOHDggP55bW2t3p+KiYXFfH9uk0wm8bnPfU7/Oero5zM0hOQ9a4I+nIJQuGjwuBkuajXhj8VihgmzFYXyU3kBP0enDqNCyC4+8d9W77empibs379fr3oqpljxEjsimzgO4FVORbcTRw5xBAqHbLqNLDhYUap7io+5rMZeYjSLiJ0239bWhrq6Or2gmvh9KkSRx04+NtX+5fsqiuWqe6ppGtrb2zEyMoI333zTkUNcFJ3lcFTVsQWB7GTj1xYwNw0U6x4rhJmop5pvl5qTrRygcFGXsJuTrZjCB0Gishl7GS4qd8yA+ctHXqW0Er74NRYdc/KKXiqVwqJFi7Bo0SLLHB+qnGxiXhBRzHKjM0mlUpg9ezaAY7mE+KqnKLIBx3LJDQ8PI5FIGCbpPJxCvK68HYoTZztONp7vLkwim3g8u3fv1gVsfn1U24uE4SUaFPy+8Rc2f05U4aJWA6tUKoXm5uaiJgVmEy6n4aLic8nbNXeWWjnZ5AmIly4xKyfboUOHMDAwoAvlZoh/68dghR+z2f2PgsjGr1kymTQkpzVzsnl5XfmEQFVVMIro59PaiiicDYlswWOVI8qpyGb1XlKFTeZyORw8eNB1YasYzML43HKyqb7bqo/jYyaeF8uvHLN2Ch+ITrZEIoGFCxcqF8P97s9VOAkXlVPY2PkbkcbGRpx55pmWeasKiWxWbV7TNEPeYcCekw04dk525rny/ZFFNtXcS9U/iCYWu6icbOL8MwzvBCvTQ1A52TiqnGxy+hhystkn+NYWUuw62cTCB1buirDgV7io7DATB8CFnGxySJDdcFFV7i7Zpixi5WQDjBN+tzuT5uZmw0s0nU7rL04usvEXQ0dHh2G/mqYZBktibqViRDbx/2EQ2YDjx8uLVkyZMsX02nvhZIsqch4F3h5U+Yq8usdyoly+f+6gsyuy8fYvngdfzZZFRBE5V2NQTjbVAEqFH24rEVVfISKGiodhQAqY52SLx+N6/sREIoFUKqV0PlRyn1DuuJ2TjXCO2cKK6NAoNVwUUItsu3fvxpYtW/SxgrhvwF+RzSx3WqmCnypUi2NHZOP7D4PIxv+zGgeIiP25X2kVZIrNyVasm7JQuhZ+H+Uq8nbbWXNzsx7aLCa0V8EX4oFjczenTrZkMqm/o+XfF0rnUarIxvcTNpFN5WQD1A5NeQHDbfeY2fxJ5d702lUXBcjJ5hJOc7Jls9nIimxehovm8/lxHaSYk63UcFErJ1shrJxsgLciGwD09PToKzxieeu6ujrDdenq6hr3t+IEWUwUbFdkk89HXoENWmQTHVnV1dXo7Ow03Va8VmLelkpEvG/pdNpR7ge3UO2TDwbjcety4+Lggw+MEomEUnyzGhyKxxBUTjazSpgyfq8GTpgwAbFYzDQcWtM0NDQ0IB6PW4YU+4nVCio/j8bGRsOCg1/Oh1wuhw0bNmDDhg0F73UU0M/n+ecRhbMxE/UBElf9wkxks+vSdRIuCqid2WaCg58TQDMhzA1nZTEiW3V1teF6BiGyiccVi8WwYMECLFiwwPaz6fU43A5OcrKpngW32yB/L8tONrvCMnez8Xd9IcRzciqyTZgwwTTaxMwcwZEL0NnByskWlvlBofmYaltysoUDysnmEk6cbDx0j+cciqrI5uaLQPwuOT/U2NjYOJFM/LnUwgd2H4JinGxuXiNN0zB79mzs378fra2thuOqq6tDf38/GhoaDOFQHHHyKw6cinWymXW0QSEez5QpUwqutKl+rkTE+1ZVVWUaXgP4K7KJRQ+sBjkqMS2ZTBo+t7OYEY/Hx4Wc+u1ksyuy+e226u7uxsSJEy3vw/z585HL5QLvBzhmLudEIoH6+nrMmzdPDz/y2/mQy+Xw9NNPAwDOOOOMyA84xfM5JQIBo7IrgDEWiMBSyZiFSYrPn1V/U4rIxvchL3QEES5qFjbrhquuGJGNV7N/5513AATvZAOgHM9aEYZwUZ63OJfLFdy3qs9xux/i95GPceT3o539NTQ04PTTT7c1X43H4/r1dyqyqfLs2Q0XldOH2DkvcTzF7xX/LCzvA/mdZdWu/Q4X5f/maXvEcaB4LOJ7NupjHieQyOYSdnOy8ZVzMW9X1EQ2LwQk8bvkFcZiCx+oHno5LBWIjpONf193d/e4z1tbW9Hf34+enh7l34mDJZXIJtuOzVZOwiqy8f3X1dWhvb3dcluznB+ViOxkkwVrwHuLdyGRzQrxmRPzbqnEN7sVsYJysjkNF/Wz7Raa7PkVumoXeXAnXzOxJLxXk7KYpmHepEb950ogBoZ52qD+cxgxC70BiuvjKvE+l0ohJ1uh8YT4fDrNySbnaZQ/D1O4qN9ONuBYlESYRDanqBZNghjnJZNJ5HI52042jhfuKe7iz+fzGBkZ0cdVToVlu071RCKBkZER2yKbpmmora3F6Oio4d3MUc29VPdUNLFks1lb7dfKyRaWMY0TJ5vXIpt8TeTc56KwrLpvbh5LFHAc+u3RcUQeUXwodFFTqZQhJDJqIpsXoRWiIKaqdKhyzxVysgHHOgAzZd2pI6SQk020KvsdftLT04OJEyeatiU5XJRTXV2N7u5uQwgpYO5kk8NFOUGLbE1NTTh69ChOOOEEW9Z3TlheokEhO9m4wB10uCjvH62EMcAokKicbGNjY7adbPwY/HCyuREuGvQzF2ZUfTWgvqdihT/eVty491XJOH573Zklf0+UqNIYfpveGvRhWGLmCgCKex9U4n0uFTMHl12RzUsnW5jCRf12sgEwFIzyS2SLx+NIJBIYGxsr+fqHwckGjE9RYwYX1bxsfzwv89DQkEFk80pYVpkZCs1zFy5caPhbEVV1UbPtuIlldHS07EQ2J042O4JcMVjltJbNLOK2YlXYMITg+gU52VyCNyY7gpk4KBArI4YRv8JF+b5yuZw+0edipJmTzSq5NYevqMgPP3B8Ih8lJ5sZYm4hFWZONk3TMGPGjHHby2FtYQ8X7e3txeTJk221SXKyHUd2svFnQrXy74fIxhiDpmm2Ky+L7bRQTrYwOdlKCRetxLwWTlENygH1Oysej+uTHDEXIFGemDnZxITdhLeU6mQTBQw7YWh2nGxhqi4apJOttrZWH3vX1NQUvX+n1NTUoK+vr+S8nmLORf6eDcrJZmffPIrE64iBqqoqDA0NGSKFvGrzTnOyiX+jwm64KHB83mi3+IH4ffznsIlsch7RIHOyiYYY8djEn1UCs3hNK+k9SyKbSzgR2cRtuL01rIgPLJ8Ae/Uy4PsSqwpykc3KySbn3RG3qa2txeDgoD5YEH/n1LVgNyfb6Oho6CbCZjnZzJCr9JgVPuAELbIB9tsj5WQ7juxky2QyAILJycb3lUgkbA/MzBxrovjmxMkmCvpBOdl4/2LWNqkCZmHEd4PYflXvWk3T9DYXlmrJhHeIzyBjzLNFQ8KcUkW2VCqFGTNmFBw/O3GyhSlcNKjCB8Cx858/fz5GR0d9LWQzd+5cg8uqWMS2w/vzIEU2O/dQFC286of4uF8sfuCVe64Ykc0Ks/e5CquFTBVRdrJZ5fPzstiA2F5Vc2AxTxsnSME7SChc1CV4Y7IzOBcdFWEOFQXUE2CvnC28MYr5mI4ePWo7J5vquE466ST09vbqSa75qpEYGuTUycYdN+JngPeFD0pBFNYKheCJ2/PQ17A72ZxA4aLHkZ1sQRQ+EO+BU5FNPH6xkIxTJxs/BnH100uRTTUAlEN0zdomhYsWxsnKN3CszWSzWVedbEOjOSz912MFAf7fF85Gdar8B5dDLIZzR+YCAP5fegtKmy57g9gOzBbwnFCJ97lUzBxcTvLkqnLTyhTjZAtDuKgbDiOz77ZzjWtra/Uxs1+kUilbY9NC8EWTsbGxQJ3JTkU2ThAim1dONjmNR7E4SfMjGwRk8vm8IV+bSmST9xs0opON55sTPxfxQ2Qzy0Hf1taG/v5+vYK7ON+uVJGNnGwuUWy4aNhFNm7t5CsIosjm1eoH/37uPhNzsjkpfMC/Ux4sxOPxovLv8O8VJ8gqFT+bzYauiko8HtdzbtlZKZQTpYa98IETKFz0OGYim5852UT7uWzXL9Q/xmLHq3iZiWxOnGx8W68s7aLzjjuDObKwaXa8YXPJhhG7iZI5/Dlwc1LGwLD3yJD+cyXAAOxFWv85jPAiHXzCVuqCWCXe51Ip1clml0Iim9gHB1ld1E8nmxuiR9hJJpOBi2xtbW04cuQIWltbC27rR3SFSmTzOiebuK9Snmmn4aKAucj2l7/8Be+++y4WL16Mmpoag2gnX/uwiGz8enLndX9/PwB15V2znGxunov4PIk/t7e3jys8RyKbs/MNR4sLIbyxNzQ0FNxWFNncWLnxGnlA5HW4KIeLQYXCRa2cbCpk14pTJ5u4Aiq+nOTy0XaOxU9OPvlkzJ8/31YIgKZphpdV2AsfOIGcbMcRcygkEgmlw8APV6bcxziZCPBt+IBaFNny+bwhx2Oh/buZ+F4Fv95i2ANHdc1VkMhWGDEnm53rxdsLXdvKQAwZpXBR/5HzcHL8ENlUC0jiNkGIbHJ/76WTzc6iU9Th7SfI8P+mpiacdtppaGpqKritH042Pu5X5WTzai7HFz75on2xOHmfFxLZBgYGAAB9fX3jwk/D6mSTI8q4yFZfXz9uW7/CRTl2i9Twvj0s19QvKFzUJVpbWzF58uSyc7IBxx4occXXaycbR0y6KlYmkbd3WkVFjrsv1skm5/gRJ/ZhFNmchgCk02kMDw8rnWzyvY+SyEY52Y5TW1uLWCymVxSTX9BiziIv23IikdBzGTLGbFek4tsMDw/rA0YuFnIHLh9oO3GyeZl/TnTRiM+N2eRPhnKyFUbM4WLnesn9F13b8ob3N6LIRvfcP8T3bj6fH5dzyA8nG9+fuPAhH5vXkJPNG6K2aFJu4aKyM7zUtuYkXNQqJ5sYajk0NDSu8nhYRTYx2mN4eFi/rionm9eFDwBncyjVvLmSoHBRF7HbkciFD8KOLGZ5NSiVvy+dTusTZVUiSv7S4Ksldh03xQpEhRR5cQJttq8oIb6U5XsuhtwA0WjHHAoXPU46ncaSJUvGVQOSn3XA22sl9jFiDkanhWT4v8VS7pwwONmA4xP8bDZrcJU6dbJFSdj2G6fhonIbomtb3qgKkET5XR01ZGeGXyKb7CAW73+YwkW9crI5XcCKKlFbNPEzXJQbJuLxuOc52dwW2YDCfYSVk000QGQyGUNfEGaRDThe/fTIkSMAjkV6qa6ruMDo1SI5/65EIlGw7ZDIRuGivhNFJxvgfbio/KKJx+N6R8o7TPGB5uGkXGSz25nIvy/FySbCJ/bFfHcYUYWLqgYDPLllVKBwUSNihTazVTDAv3BR8fmys095sMWfQflzq4mbnyKbmJdNhMJF3UPlZLO6/1GblBGlIYpsYStSVAmIYwaV6OWlyCYi9sFBhIuaFYDwyskmunuiMPcolqiNw/1wsonpQLibzeucbG4twovXpJBYYyWyiZ8NDQ2NqzweZpGNH9vhw4cBqENFgfEuYS/DRe18Z6WLbE7bUHhaXIQRJ7VReNGZOdm8DBdNpVJ6lSBAXVKZi2w8zMzuYLnYfGLyoFC1H/F+Rk18khGdbKqO2slqRpggJ5s5VvkcvLzHspMNKM4ZDBx/nsXPeX9SaP9+FCwxqzBK4aLuId5rO9crapMyojREoZtysgWDSmDyWmQzK7QAhCtc1CsnmxgqGqUxm1Oi1p/7IbIBx8f03GHmdU42ThAim1iATv5b4JiTTR4bhFlk433i0aNHAdgT2bxKhyDO/QpR6TnZKFw0AMRQpiiLbF6Gi8puFL5vOQeaWKrbaeED1X6tkAclqr8T72fYX+yFEEU2VTlyJx1tmCAnmzlmlYm8bssqJ1sxIpuYYNdJWH6x7tZiICeb9zgZlAPeTMo0aJjRXqf/rH+uaWhra9N/jjr6+eTziL1zCDO0Y87yMJ+Z6GSTXbxOMbvPhDXxeBzZbNZXJ5ssZoU1XNRrJ1sU5h2lEDVnsl95gquqqpDJZHQnm9fhopxS25umaXrqIN6ezfoIcV/ZbNYQOSaKbPl8Xo+CEtPgiIRpfiAvSpiJbNzcIVb0FP/eDfh1ISdbYZyabaI1mw4xnZ2dePfdd00flDAhToDz+bwvqx+8Y5Q7UvllUF1djf7+/nHWX7v7Ue3DDDsdcDmJbKLtWlXwIKoiGxU+MMcsXNTr6yTm5HE6ERDbn/iz7GSzoljhvRhU+aB4/gwO5WQrDfE9YWdw5yS02C7VqTjWfeHscZ8nk0lcc801JX9/WNDPZ3AQWLUK69Jbgj6kgojPoNkEyy5m95mwRl68BYJ1sgVZXZSPq/m+/XCylTPkZFMjFz/wS2Rz43nmIpvZPsTtkskkstksRkdHTUU2AHqVTv5dokDF/x0W5GuoKnrAkUU2LlK6RTFOtkoV2QBnzzTNSF1i2rRpOO200yIxUZJFNo4fIlsh+y5PHC6KbE4LH9g9DzsTcfHlHnUBx6rwgfhzFNqwCIWLmmMVLuolbjnZ7PxstX+zf7uJqvqV1eRPhpxshRFXD4NyshHhhXKyBY+qyE4hl0qx+3DiZAsiXBRQV0At5VhUImaliGxRc7IFJbJ5nZON40Z7c7IQapaXTRbZBgYGxn2XX/fCKeJx1dTUWPaRqrGPFyKbEydbJY9bnZxzeFoc4Rt+iWzi95klL1c52YBj8fV28ymJv3eST6xSnWz5fF5/KZeDk43CRc0xqy4adZGtkJPNT5FN5WSTJ39mTjYxkX/U+xev4c85b09U+IDgiM8g5WQLBlkEEvtDt56/qISLAuOrgJZ6LPydx8duwHHRodxFtqhVixbbgZftT8zJxiOAABiqnLuBWTGqUpCvkVV/bVdk40428XjDKrKJx1goAs5r9xh30dmJxPMzSiSsTJ482fa24e6pCE8QB0Piqq+Xqx9m4aLyA8tFtsHBQdNtrPbjSGG20VmIk/modybxeFzPeccHauXmZAvTSzQMmIWL+imy8QlGMeGiUXCyqQof2BXZxO2i9tz5TSwWG1et1gzZgezGu21oNIcL7ngOAPDb685EderY/rPZLO666y4AwNVXXx35Ca9+Pvk8PsVi+OjobADAb1NbUR3wsZmhEtmKfebN7jNhjZnI5mYhpWLCRf12ssm5ptw6Ftm1BFSuky3s4zy/hB0upo2MjGDnzp0AgPb2dtdFNq+dbIWcWWLxAxH+71QqhdHRUeWCZVhFNvG4rEJFxW29EtlaWlrwnve8x1G4qNm/K4Guri7b29KovgJROdm8eFCKzckGOBPZxN87mahWmpMNODZQGxsbU4ZSlIPIVg73yE3kHDF+iWxigRO+z1KdbGK7DJOTTVX4QJ78mYls4ueVOFhxgpPVXNnd7AYMDG+8PaD/rH/OGN555x3956gjnk8eGt5gx97JYT4zN51sZveZsEZe0HE7HxsQficbcHwxQCWylXIsosjG871Visgmj8PDlFtLhV8Lv7xNDA0NIZPJAACmTJni+n78ENms4Pszc7I1Njbq7yz5+8IqspXiZPPiPOzeUzsFA4njRGs2TbiCSmTz4kFRVRctlJONi2yiGFDoheqlk62ccrIBx17KZgJmQ0MD9u3bh4aGhiAOrWgoXNQcOXwlCCcb72OKrS6q+jzKTra3334bb7zxBubOnWvoF8M+cQgaJ2EKYrJkPwTl5cuX6z9HHf18hoaQePBXQR+OLShcNHisnGxu4cTJFiaRzY38cFxQyefzGBsb0/s3oPxFNrPwv7Did0423r46OjpQU1Pj+n7kc3CjvYnPZaE+olC4aENDQ+RENvG47Ips/PyDfAYoXNQZ0R8REo4xCxf1aj+AfSdbKpUyVIOxc1xuOdkKiWzl0JnIDiDxnLq6utDe3h658yQnmzni9RBFNr+qi+ZyOX3iY3dgxgUnxlikcrKJEz4rke3gwYPIZrPYu3evntuB2m1hnK6gJhIJX0S2WCzmiXsgKPTzGRxEJuiDsYkodFPhg2AIQmSzcrIFJbbKeVDFYym1uigX1kZGRgwiW6H3YdTRNE1PdRKFd6Vfwo6YAkbTNM/eQ5qmIR6PO45KsMLJuN1MZOP/rqurM8wboyCy8X6xpqam4PmHqaIniWzOCE+LI3zDr3BRO4UP5P1qmmbIJ2DnAXbLyVYp4aIi5dBhkpPNHLHUd1BONqer7XxALf+NEyebnEjXy/Pl32238AG/HocPH/ZkIlquyM92oWtm5p4myg/eFvzs4wgjsrjkp5ONT8LD4mQD1IUPSh2fyHnZKsXJBhxvR1F4rv3ME8znSx0dHXokkBeI6WTceKbcENlEkVk89yiIbM3NzZgwYQJ6e3sLbut1TjYnUE42Z9DIvgLhD2hfXx927Nhh+MxN+EuRh+6In3FUnXV1dbWeX8DOA1xs/p1KdLLJIls5nBMVPrCGh694HR4uIgpPxUwE0uk0stmsYYU+kUggnU4jn8+Pa8cqzFY23UblZLPKycavRzabxdGjRz0/vnLB6YKAX5OyXC6HTZs2AQAWLVoU+Xupn8/oKGYFfTA2Ed/7fCJG7wJ/CdLJlk6nDYnPxd+FQWRz61jS6TQGBgb0vGyVJLIlk0kMDw9Hon/1U9iZNGkSDhw4gKlTp3q6H35ObrU1JxFIfJ9iSg6xMnsymURNTY2eCsfs+ofpnZBMJjFv3jxb25KTLbqQyFaBNDQ0oKGhAX19fXrJYy86n3Q6jalTpyKVSumDC7siG8fOA1ysY0Xet+oaiDb1MHXQxSKHFZTDOVG4qDXc5h+Ek01ceXQy2ZoxYwaOHDmCxsZG/TNN03DqqacCsC++q6pNuQ3/bl5RThb3xLB8wDhQ5HlEqN0Wxungzmxhx21yuRwef/xxAMApp5wS+Xspns+JiEaeQDGcibt8yuHdFiWCLHwgOtl4UQC33GNOka8D4I2TrZh8p1EmSk42P0W2zs5OdHZ2eroPwFuRzYmTTS76wY9JnDea5fCL6juBRLboQiJbBZJIJLBgwQL09/dj3759OHjwIFpaWjzZl2yFLVT4AHAushXrZOMhZYXcLslkMjK5IAohO4DKIdk6hYtaI05M/BbZ+OQikUg4ujeNjY0GgY3jZIBXbBi5U8TvzuVyhj4llUphaGjIVGRTrbwSapyGKbg9KdOgobupWv+5EtAAdGNE/znMJBIJQw7IYt8FlXif3SDIwgfiuCaXyyGRSIQqXNSttCyiyCZWGqyE94dfiyZuEFb3VCmoUniUgvhc2l0wA6BHOPD2z8NXoxYu6gR+3LxPI5EtOoS/t/o/brnlFjz22GPYvHkzUqkUjhw5Mm6bt956C9deey3+8Ic/oLq6GpdeeiluvfXWsk8KWgyapumOtpNOOsm3/Tp1sjktfOD0gbdTZIFPlMuhMxEHo+VS0ZCcbNaIuXL8LnzACWKl3S+RTRTrc7kcksmkIUHw0NCQ7rDI5/Pj8rUB0Zg4BI08KC/Ud9XV1QGAa9XWqlNxPP/Vv3flu6JCtZbH81WvBH0YtkgkErqLDSj+ma/E++wGfopsjDG9P+X74H3w2NgYEolEqMJF3VrcUolsleBiA6KVY7MchB2ZIMNFxaIfo6OjBpGNH4/4ni9XkY0TJpEtqtfULyIzsh8dHcXHPvYxLFmyBHffffe43+dyOSxbtgxtbW147rnn8O6772L58uVgjOHHP/5xAEdMqChU+ADwz8km799sX7W1tTh69KgnpbH9JplM6qEU5dI58vsmJ7snjiGGr/jtZOOUs8jGv1+8vnIYE/+MTzx5gZehoSFfjq8ccCqmd3Z2orGx0dNk0ER4kPsYehf4iyyyiU4TtxDvqVwtm/fBvI8NKlxUFtkYYySyuQBP8G8nH2vQlIOwIxNkuCjfbzabNeS0BY6PscrZySZfHxLZokNkRLZ/+Zd/AQDce++9yt8/+eST2Lp1K3bv3o2JEycCAG677TZcccUVuOWWW9DQ0ODXoRIWxGIxg3tMtcqYTqcdCUGlTKbt2LqnT5+OyZMnl8VkTdM0pFIpjIyMlM3EPpFI4MQTTywbZ57bBBEuGovFDHlxKkFky2az+gRPlStHrrQ6YcIE7N2715fjKwecrHwDx/q6clgYIexhZwGP8A65uigvXiVWi3drHwAMruB4PI5EImHog4MOF+XXQUwV4IXIVimROt3d3aipqUFTU1PQh1KQckxhwp9jt+ZBTkW2VCqFTCaj5/mVReZkMqkLceIzUQ4iW1idbDTnKkxkRLZC/PGPf8TcuXN1gQ0A3v/+92NkZASbNm3Cueeeq/y7kZERQ4hBX1+f58da6SQSCcsKYLFYDOl02nYlIaeTL7O/NdtXLBYrC4GNw0W2qL5wVIjPPWFEHPT7VV0UgD7pAYIV2fxwOMoVRmWHBQ/VFd0dzc3NushG4aKFCTosfDibwyX/8UcAwC//aQmqkuUvjA4zDRePHqsx+svUq3BPLnEft0S2SrzPbiA62UZHR/VxNQ/bdgNN0/TFG9nJxu8/F9lKzc1XLGZ549x4D3HxIJfL6S7oSnGyxWIxz3JHu41YiKVcxtm9vb1obGxEc3OzK9/ndN7G2z7vV+SxpaZpmDNnDoaHhw3CPols7hL0OCxqlM3Ifv/+/ejo6DB81tzcjFQqhf3795v+3fe+9z3dJUf4g50Hs7q62rbI5rWTrdxIp9Po7++nDrJCCCJclO8jDCKbHwKWHColipkqkS2ZTKKpqUmfMNKzWBgniZK9IM8YXtlzVP+5EshDwyusVv85zLglslXifXYD8T3Dq9bX1NS43v/GYjF9wUh2sgHHK4xyEcpvN6tcXVR855bq+kgkEnq1+4GBAQCVI7JFjYaGBgwMDLjq5AySeDzuqsjpVKyprT32HuLFolRjS5XLsRzmeGEK0SSRzRmBtrhvfvOb+sqU2X8vvvii7e9TvcB4uV8zbrjhBhw9elT/b/fu3UWdC2EfPhji91gF71DtDCBKmXxVYofBQw6i+sIhnBFEuKi8jyAmAvy8/TxXWWQTK7/JIlsikdArqNJEqTCV2FcT9pHFHGoj/iL2c1xkq6+vd30/4vtM7GdFkW1kZAS5XG5c1UE/kJ1s3FHnVnvk4zcS2cLNvHnz8Hd/93fkUjfB6byNO2J5u+fRUIXafzk42cKaky2q19NPAn36r7vuOnziE5+w3GbKlCm2vquzsxP/8z//Y/js8OHDyGaz4xxuIul0OhKJNMsJ/tKxekB7enpQVVVlee84fCA1PDzs+F5WYofBbdeVcr6VThDVRYHSCpK4uf8gRDY5XJR/Jq++nnjiiTh48CBaW1s9P8aoQyIbYQXlZAsWlZPNzVBRjtmikSiy8XxwNTU1gVcXdXthK51OY3BwUA+bI5EtnPCQUUKN03BRbrzIZDLI5/O2oyTKQWSjcNHoEqjI1tra6trkYsmSJbjllluwb98+dHV1AThWDCGdTmPRokWu7INwB9HJZkYqlcKkSZNsf+f8+fMxNjbmeMARdAhSEPDVZUoKXhmIIg9PBl0JTrYgRTY5XJT/TlV2vqenx/PjKwdKyb1JlD9ym6CEzP4iPp9Hjx4Ltw3KycZDyoIY4/ghsomQyEZEEadiTTqd1kOlBwcHixLZovpOIJEtukRmpPrWW2/h0KFDeOutt5DL5bB582YAxyo/1tXV4bzzzsPs2bNx+eWXY9WqVTh06BC++MUv4uqrr6bKoiHDjpPNKcXmPahEJ1tzczMWL15cVsUcCHN4u+aDEoBENq/2JVcXLeRkI+xTiQsihH1EkY1XNyb8Qxw/8X7Qa5HNrPAB/zxIkU12Nbu1MEAiG1EOOBVrNE1DXV0djhw5goGBAdtjqVQqBU3TkEwmI/tOIJEtukRGZLvpppuwZs0a/d8LFiwAAKxfvx7nnHMO4vE4HnvsMVxzzTV4z3veg+rqalx66aW49dZbgzpkwgSx6l/Q8A6jkgblmqaRi62CkEU2P6ptAsGLbHwy4kc6gELVRflnfPJJEyPn0OCOsEIUMah9+I9YURE4JnB5cR9UTjY5XJTna+IhZn7it5ONp/8giChRjDO9GJEtkUhgwYIFkX4nUE626BIZke3ee+/Fvffea7lNT08P1q5d688BEUXjhZOtWESRjSDKEf5C5oMSv17QQYtsra2tmDNnjl5cwEvsFD4YGxsjJ1sJhEFkm1CrntCW26JFTU0NwBgwOIwJyBb+gxAgO9lKwew+E9aIIpsXLjbAnpNNzMnmN3J1Ua8KH3DoXUJEEdHUYLe/5jke+/r69OfLjsgc9Wg2crJFl8iIbET5YCcnm1/4WYGQIIKAt3G+ul8pIpumaWhra/NlX8XmZCPsE/TgriaVwEvf+Idxn6dSKXzpS1/y/Xi8Qj+fwUFg1Sq8VLU56EOyhVsim9l9JgojPpd+iGwqJ9vQ0JAubFVCTjbKT0lEEXHuZXcuyEU2XlglFotVhEFCPEdN0wKdOwc9Dosa5d86idARRpGtEjpqojKRw0X9auv8OU8kEqF41r3EyskmhpLye0ATI+eIbYiuHyHjppONKA5x0uVFZVHg+L0dGxvTC/mI/SyvulldXR1IOzAT2bzIyRblPFNEZcOfEyfPhVwtuFLavyxskcgWHWgkQvhOGMNFqbMgyhU5Kb/fTrZKcG3J11iVky2bzeqfV8I1cRsa3BFWiJMPah/BID6jXjvZeF8LGJ1snKBCuL12sonuaHqPEFGlmLlXLBYz5FmslPYvXqOg322iky4Mc/iwQ8vBhO80Nzejvb3dt1AuK8jJRpQ7QeVzqKSJgJ1wUe6wAMiJVQxBi2zD2RyW37MRALBmxWJUJY+Lpz//+c8BAJdddlnk27t+PrkcPso0fGb0RADAmtTrKK6Gtz9omoZEIoFsNlvS+9zsPhOF4c+lV0UPALXIxu+9SNAim1wEx63roWka0uk0MplM5PsaonKpr69HbW0t2tvbHf1dXV0dBgYGAFTG2BIIfuwjE4vFkMvlQnEsYYdG+oTvxONxzJ49O+jDAEBONqL8CUpkq6+vh6ZpaGpq8mV/QSJXF1UVPhgeHgZQOSEObhP0QDPPGP5nxyH9Zw5jDLt27dJ/jjri+eSg4X/YsaTReYS/zbohspndZ6Iw/Ln0ysUGqNMfqES2ICqL8uMBvCt8AIBENiLyJJNJnHbaaY7/TgxDr5T2H7aKniSy2YdENqKiIScbUe4EVf67rq4OZ555ZkW8iEUnG2NMGS7KnWyVMjB0m6BFNjMSiQQuvvhi/eeoo5/PyAgS/1+0qrWHKRVFJcLzhXlZ0Vl2svG+gIttXOgO2snmVbgocPw626msSBDlRCWGi4qLsmEY+5A5xT7RHxESRAnwwYpcsYkgyoUgy39XyktYFtnEz+VrUCkDQ7cJa+GDWCyGOXPmBH0YrqGfz+AgMoimyFYp/U7YmDp1KpqbmzFhwgTP9mFWyEcMFwaCE9l42/Oq8AEANDQ0YP/+/Z4VlyCIsFKJTjZN0xCPx0PjHiORzT7hGakSRAC0tbVh3rx5aGhoCPpQCMITZJGNXB7uI06s+KQKMDrZOJUyMHSbsDrZiPBATrZgSSQSaG1t9XQfZk42vv9sNot0Oh2YEO+Hk62rqwsTJkygxWGi4kgmk0in0xgZGakoJ2eYQjRTqRSGhoao/7EBiWxERaNpmqerrgQRNEE62SoF8ZqOjo7qP/MVSBES2YojbHlJOPl8Hq+++ioAYNasWaE6tmLQz2dkBL1BH4xDSGQrf2SRTbzX/P4H5WIDjh8PYwyMMU9ysmmahqqqMJchIQjvaG5uxv79+wPLuxgEYXKPzZo1C4ODg+SktQGJbARBEGVMUDnZKgkxHxAPV4rH40qRLUyhjlGCX7dUKhWqwhFjY2N4+OGHAQA33HBD5FfXxfNZGYFiByJceKAV9vJFDheVnWxAcEUPAKPol8vlPHGyEUQlc+KJJ2LKlCkVJTSHSWSrqqqqqGtfCjTaJwiCKGPIyeYPPFSJO9n4dZdFNXKyFUc6ncbMmTMDFVCqk5X37FQjV3ijkDBp0iTU1NSU7E6vxPscFeRwTPH9xid+XlY3LYR4PPl8Xj9Oeu8ShDvEYrGKE3nCJLIR9iGRjSAIoowhkc0f4vE4stnsuITcFC7qHp2dnYHtuyaVwKvf/kBg+w+CGi2PV6teCvowbBOPx9HW1lbSd1TifY4SVjlGp02bhpaWFrS0tPh9WDqapo1zNQPkYCYIonj4OJLG79GCElcQBEGUMSSy+QO/rrKTjU+6OCSyEQRBFIfV+yyZTKK1tTXwcHL5XSC/AwiCIJxATrZoQiIbQRBEGaNpWmiTxpcTfPAj5wqS87KRyEYQBFEcUaiWrcobRyIbQRDFQk62aEL+ZYIgiDInFotRbhiPMXOy8d/xKnMkskWT4WwOn7t/EwDgzk8tQlUF5O0aYRr+KTsdAHBnchsqIQtOJd7nKBEFZzY/Rv4uCOMxEgQRHXp6epBKpdDa2hr0oRAOIJGNIAiizBFFHhrwe4PsZJNFNg6JbNEkzxjWv/aO/nMlkIOG9fkmAEA+YpVGi6US73OUiKKTjfKxEQRRCo2NjWhsbAz6MAiHhO/tRBAEQbiKmeBDuAefSMnhovLPNOEiCIIojig52VTvAoIgCKIyIJGNIAiizCGRzXsKhYsCxwQ2ys1DEARRHFFyslG4KEEQROUSvrcTQRAE4SpmrirCPfh15WG5KpGNQkUJgiCKJwoim1kRHIIgCKJyCN/biSAIgnAVqi7qPfJESiVskshGEARRPBQuShAEQUQBmm0RBEGUORQu6j3ydRWvOc/DRiIbQRBE8UTBySaHi1IeToIgiMqDen4J9n/VpPr6+gI+EoIgCHcYGhrC4OAgYrEY+vv7gz6csiSTyWBwcFD/9+DgoP4e4b+rq6ujd0tEyYzm9J/7+voxljKGhAFAf39/5IVU8XwGRkb0n/tGRjDW1wfkcqo/KxvM7jMRDrLZrKGfzWQyoetT5XdBGI+RIAiCcA7vy5mN6uMas7NVBbFnzx5Mnjw56MMgCIIgCIIgCIIgCIIgQsLu3bsxadIky21IZJPI5/P429/+hvr6eqoCJ9DX14fJkydj9+7daGhoCPpwiICgdkBwqC0QHGoLBIfaAsGhtkAA1A6I41BbIDhRbQuMMfT392PixIkF0xVQuKhELBYrqExWMg0NDZF6GAhvoHZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4UWwLjY2NtrYLX8ZQgiAIgiAIgiAIgiAIgogYJLIRBEEQBEEQBEEQBEEQRImQyEbYIp1O4+abb0Y6nQ76UIgAoXZAcKgtEBxqCwSH2gLBobZAANQOiONQWyA4ldAWqPABQRAEQRAEQRAEQRAEQZQIOdkIgiAIgiAIgiAIgiAIokRIZCMIgiAIgiAIgiAIgiCIEiGRjSAIgiAIgiAIgiAIgiBKhEQ2giAIgiAIgiAIgiAIgigREtkqhJ/+9KeYOnUqqqqqsGjRIjz77LOW2//85z/H/PnzUVNTg66uLlx55ZV499139d/fddddeO9734vm5mY0Nzdj6dKl2Lhxo+E7pkyZAk3Txv137bXXenKORGGCaAdjY2P4+te/jqlTp6K6uhrTpk3Dt771LeTzeU/OkbBHEG2hv78f119/PXp7e1FdXY0zzjgDf/rTnzw5P8I+breFRx55BKeeeiqamppQW1uLU045Bffdd1/J+yW8J4i28Mwzz+DDH/4wJk6cCE3T8Oijj3pxaoRDgmgL3/ve93Daaaehvr4e7e3tuPDCC/Haa695cn6EPYJoB3feeSfmzZuHhoYGNDQ0YMmSJXj88cc9OT/CPkGNFTjf+973oGkarr/+erdOiSiSINrCN7/5zXGaQmdnpyfn5wqMKHsefPBBlkwm2V133cW2bt3KVq5cyWpra9muXbuU2z/77LMsFouxf/u3f2Pbt29nzz77LJszZw678MIL9W0uvfRS9pOf/IS9/PLL7NVXX2VXXnkla2xsZHv27NG3efvtt9m+ffv0/9atW8cAsPXr13t9yoSCoNrBd77zHdbS0sLWrl3LduzYwX71q1+xuro69qMf/cjzcybUBNUWLrnkEjZ79mz29NNPszfeeIPdfPPNrKGhwbAN4S9etIX169ezRx55hG3dupVt27aN/ehHP2LxeJw98cQTRe+X8J6g2sLvfvc7duONN7Jf//rXDAD7zW9+4/WpEgUIqi28//3vZ6tXr2ZbtmxhmzdvZsuWLWM9PT1sYGDA83MmxhNUO/jtb3/LHnvsMfbaa6+x1157jX3ta19jyWSSbdmyxfNzJtQE1RY4GzduZFOmTGHz5s1jK1eu9Oo0CRsE1RZuvvlmNmfOHIO28Pbbb3t+vsVCIlsFsHjxYvbZz37W8NnMmTPZV7/6VeX2q1atYtOmTTN8dvvtt7NJkyaZ7mNsbIzV19ezNWvWmG6zcuVKdsIJJ7B8Pu/g6Am3CKodLFu2jK1YscKw3UUXXcQ+9alPOT0FwiWCaAuZTIbF43G2du1aw3bz589nN954YzGnQbiAH22BMcYWLFjAvv71rxe9X8J7gmoLIiSyhYMwtAXGji3WAmBPP/20zSMn3CQs7YAxxpqbm9nPfvYzG0dNeEGQbaG/v5/NmDGDrVu3jp199tkksgVMUG3h5ptvZvPnzy/uoAOAwkXLnNHRUWzatAnnnXee4fPzzjsP//3f/638mzPOOAN79uzB7373OzDGcODAATz88MNYtmyZ6X4ymQyy2SwmTJhgehz3338/VqxYAU3Tij8hoiiCbAdnnnkmnnrqKbz++usAgP/93//Fc889h/PPP9+FMyOcElRbGBsbQy6XQ1VVlWG76upqPPfccyWeFVEMfrQFxhieeuopvPbaazjrrLOK3i/hLUG1BSJ8hKktHD16FABMx5aEd4SlHeRyOTz44IMYHBzEkiVLSjspoiiCbgvXXnstli1bhqVLl7pzQkTRBN0W3njjDUycOBFTp07FJz7xCWzfvt2dE/OCAIQ9wkf27t3LALDnn3/e8Pktt9zCTjzxRNO/4yF9iUSCAWAXXHABGx0dNd3+mmuuYSeccAIbGhpS/v6hhx5i8Xic7d27t7gTIUoiyHaQz+fZV7/6VaZpGkskEkzTNPbd73639JMiiiLItrBkyRJ29tlns71797KxsTF23333MU3TLPdLeIeXbeHIkSOstraWJRIJlk6n2d13313yfgnvCKotyICcbIETlraQz+fZhz/8YXbmmWeWdkJEUQTdDl555RVWW1vL4vE4a2xsZI899pg7J0Y4Jsi28MADD7C5c+fqY0lysgVLkG3hd7/7HXv44YfZK6+8orsaOzo62MGDB907QRchJ1uFILvHGGOmjrKtW7fi85//PG666SZs2rQJTzzxBHbs2IHPfvazyu1/8IMf4IEHHsAjjzwyzqXCufvuu/HBD34QEydOLO1EiJIIoh089NBDuP/++/GLX/wCL730EtasWYNbb70Va9asce/ECMcE0Rbuu+8+MMbQ3d2NdDqN22+/HZdeeini8bh7J0Y4xou2UF9fj82bN+NPf/oTbrnlFnzhC1/Ahg0bit4v4Q9BtQUifATdFq677jq88soreOCBB1w5H6I4gmoHJ510EjZv3owXXngBn/vc57B8+XJs3brV1XMjnOF3W9i9ezdWrlyJ+++/33R+SQRDEP3CBz/4QXz0ox/FySefjKVLl+Kxxx4DgPDOJwMS9wifGBkZYfF4nD3yyCOGzz//+c+zs846S/k3n/rUp9jFF19s+OzZZ59lANjf/vY3w+erVq1ijY2N7E9/+pPpMezcuZPFYjH26KOPFnkWRKkE2Q4mTZrE7rjjDsNn3/72t9lJJ51UzKkQJRKGPmFgYED/u0suuYSdf/75xZwKUSJetwWRq666ip133nlF75fwlqDaggzIyRY4YWgL1113HZs0aRLbvn17EWdAuEEY2oHI+973PvaP//iPNo+ecJOg2sJvfvMbBoDF43H9PwBM0zQWj8fZ2NhYiWdGOCVs/cLSpUvH5YcLC+RkK3NSqRQWLVqEdevWGT5ft24dzjjjDOXfZDIZxGLGpsGdJowx/bNVq1bh29/+Np544gmceuqppsewevVqtLe3W+ZvIrwlyHZg9j35fL6ocyFKIwx9Qm1tLbq6unD48GH8/ve/x0c+8pFiT4coAS/bggxjDCMjI0Xvl/CWoNoCET6CbAuMMVx33XV45JFH8Ic//AFTp04t9jSIEglbn0D9RnAE1Rbe97734c9//jM2b96s/3fqqafisssuw+bNmykKIgDC1C+MjIzg1VdfRVdXl93D9xffZT3Cd3ip3bvvvptt3bqVXX/99ay2tpbt3LmTMcbYV7/6VXb55Zfr269evZolEgn205/+lL355pvsueeeY6eeeipbvHixvs33v/99lkql2MMPP2wopdvf32/Ydy6XYz09PewrX/mKPydLmBJUO1i+fDnr7u5ma9euZTt27GCPPPIIa21tZV/+8pf9O3nCQFBt4YknnmCPP/442759O3vyySfZ/Pnz2eLFiy1zuxHe4kVb+O53v8uefPJJ9uabb7JXX32V3XbbbSyRSLC77rrL9n4J/wmqLfT397OXX36ZvfzyywwA+9d//Vf28ssvs127dvl38oSBoNrC5z73OdbY2Mg2bNhgeI9kMhn/Tp7QCaod3HDDDeyZZ55hO3bsYK+88gr72te+xmKxGHvyySf9O3nCQFBtQYZysgVPUG3hn//5n9mGDRvY9u3b2QsvvMA+9KEPsfr6+tCOG0lkqxB+8pOfsN7eXpZKpdjChQsN5dCXL1/Ozj77bMP2t99+O5s9ezarrq5mXV1d7LLLLmN79uzRf9/b28sAjPvv5ptvNnzP73//ewaAvfbaa16eHmGTINpBX18fW7lyJevp6WFVVVVs2rRp7MYbb2QjIyNeny5hQRBt4aGHHmLTpk1jqVSKdXZ2smuvvZYdOXLE61MlCuB2W7jxxhvZ9OnTWVVVFWtubmZLlixhDz74oKP9EsEQRFtYv369su9Yvny5l6dKFCCItqBqBwDY6tWrvTxVwoIg2sGKFSv0fba1tbH3ve99JLCFgKDGCiIksoWDINrCxz/+cdbV1cWSySSbOHEiu+iii9hf/vIXT8+zFDTGLHx6BEEQBEEQBEEQBEEQBEEUhHKyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEARBEARBEARRIiSyEQRBEARBEARBEARBEESJkMhGEARBEARBEARBEARBECVCIhtBEARBEARBEARBEARBlAiJbARBEARBEESgjI6OYvr06Xj++edd/d61a9diwYIFyOfzrn4vQRAEQRCEChLZCIIgCIIgXOSKK66Apmnj/tu2bVvQhxZa/vM//xO9vb14z3veo3+maRoeffTRcdteccUVuPDCC21974c+9CFomoZf/OIXLh0pQRAEQRCEOSSyEQRBEARBuMwHPvAB7Nu3z/Df1KlTx203OjoawNGFjx//+Mf4zGc+48l3X3nllfjxj3/syXcTBEEQBEGIkMhGEARBEAThMul0Gp2dnYb/4vE4zjnnHFx33XX4whe+gNbWVvzDP/wDAGDr1q04//zzUVdXh46ODlx++eU4ePCg/n2Dg4P49Kc/jbq6OnR1deG2227DOeecg+uvv17fRuX8ampqwr333qv/e+/evfj4xz+O5uZmtLS04CMf+Qh27typ/567xG699VZ0dXWhpaUF1157LbLZrL7NyMgIvvzlL2Py5MlIp9OYMWMG7r77bjDGMH36dNx6662GY9iyZQtisRjefPNN5bV66aWXsG3bNixbtszhVQZ27typdA2ec845+jYXXHABNm7ciO3btzv+foIgCIIgCCeQyEYQBEEQBOEja9asQSKRwPPPP4//+I//wL59+3D22WfjlFNOwYsvvognnngCBw4cwCWXXKL/zZe+9CWsX78ev/nNb/Dkk09iw4YN2LRpk6P9ZjIZnHvuuairq8MzzzyD5557DnV1dfjABz5gcNStX78eb775JtavX481a9bg3nvvNQh1n/70p/Hggw/i9ttvx6uvvop///d/R11dHTRNw4oVK7B69WrDfu+55x68973vxQknnKA8rmeeeQYnnngiGhoaHJ0PAEyePNngFnz55ZfR0tKCs846S9+mt7cX7e3tePbZZx1/P0EQBEEQhBMSQR8AQRAEQRBEubF27VrU1dXp//7gBz+IX/3qVwCA6dOn4wc/+IH+u5tuugkLFy7Ed7/7Xf2ze+65B5MnT8brr7+OiRMn4u6778Z//dd/6c63NWvWYNKkSY6O6cEHH0QsFsPPfvYzaJoGAFi9ejWampqwYcMGnHfeeQCA5uZm3HHHHYjH45g5cyaWLVuGp556CldffTVef/11/PKXv8S6deuwdOlSAMC0adP0fVx55ZW46aabsHHjRixevBjZbBb3338/Vq1aZXpcO3fuxMSJE5W/++QnP4l4PG74bGRkRHe9xeNxdHZ2AgCGh4dx4YUXYsmSJfjmN79p+Jvu7m6DY48gCIIgCMILSGQjCIIgCIJwmXPPPRd33nmn/u/a2lr951NPPdWw7aZNm7B+/XqDKMd58803MTQ0hNHRUSxZskT/fMKECTjppJMcHdOmTZuwbds21NfXGz4fHh42hHLOmTPHIGx1dXXhz3/+MwBg8+bNiMfjOPvss5X76OrqwrJly3DPPfdg8eLFWLt2LYaHh/Gxj33M9LiGhoZQVVWl/N0Pf/hDXczjfOUrX0Eulxu37VVXXYX+/n6sW7cOsZgxWKO6uhqZTMb0GAiCIAiCINyARDaCIAiCIAiXqa2txfTp001/J5LP5/HhD38Y3//+98dt29XVhTfeeMPWPjVNA2PM8JmYSy2fz2PRokX4+c9/Pu5v29ra9J+TyeS4783n8wCOiVWF+MxnPoPLL78cP/zhD7F69Wp8/OMfR01Njen2ra2tuogn09nZOe461tfX48iRI4bPvvOd7+CJJ57Axo0bx4mIAHDo0CHDORIEQRAEQXgBiWwEQRAEQRABsnDhQvz617/GlClTkEiMH5pNnz4dyWQSL7zwAnp6egAAhw8fxuuvv25wlLW1tWHfvn36v9944w2De2vhwoV46KGH0N7eXlT+MwA4+eSTkc/n8fTTT49zmHHOP/981NbW4s4778Tjjz+OZ555xvI7FyxYgDvvvBOMMT2M1Qm//vWv8a1vfQuPP/64Mu8bd+otWLDA8XcTBEEQBEE4gQofEARBEARBBMi1116LQ4cO4ZOf/KReBfPJJ5/EihUrkMvlUFdXh6uuugpf+tKX8NRTT2HLli244oorxoVE/v3f/z3uuOMOvPTSS3jxxRfx2c9+1uBKu+yyy9Da2oqPfOQjePbZZ7Fjxw48/fTTWLlyJfbs2WPrWKdMmYLly5djxYoVePTRR7Fjxw5s2LABv/zlL/Vt4vE4rrjiCtxwww2YPn26IcxVxbnnnovBwUH85S9/cXDVjrFlyxZ8+tOfxle+8hXMmTMH+/fvx/79+3Ho0CF9mxdeeAHpdLrgcRAEQRAEQZQKiWwEQRAEQRABMnHiRDz//PPI5XJ4//vfj7lz52LlypVobGzUhbRVq1bhrLPOwgUXXIClS5fizDPPxKJFiwzfc9ttt2Hy5Mk466yzcOmll+KLX/yiIUyzpqYGzzzzDHp6enDRRRdh1qxZWLFiBYaGhhw52+68805cfPHFuOaaazBz5kxcffXVGBwcNGxz1VVXYXR0FCtWrCj4fS0tLbjooouUYayFePHFF5HJZPCd73wHXV1d+n8XXXSRvs0DDzyAyy67zDJklSAIgiAIwg00JifvIAiCIAiCIELPOeecg1NOOQU/+tGPgj6UcTz//PM455xzsGfPHnR0dBTc/s9//jOWLl2qLMxQCu+88w5mzpyJF198EVOnTnXtewmCIAiCIFSQk40gCIIgCIJwhZGREWzbtg3f+MY3cMkll9gS2IBjud5+8IMfYOfOna4ez44dO/DTn/6UBDaCIAiCIHyBCh8QBEEQBEEQrvDAAw/gqquuwimnnIL77rvP0d8uX77c9eNZvHgxFi9e7Pr3EgRBEARBqKBwUYIgCIIgCIIgCIIgCIIoEQoXJQiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgSIZGNIAiCIAiCIAiCIAiCIEqERDaCIAiCIAiCIAiCIAiCKBES2QiCIAiCIAiCIAiCIAiiREhkIwiCIAiCIAiCIAiCIIgS+f8Bv9KnmU9JJM4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import search_best_peaks\n", + "from stingray.stats import fold_detection_level, z2_n_detection_level\n", + "\n", + "ntrial = (frequencies[-1] - frequencies[0]) / df_min\n", + "z_detlev = z2_n_detection_level(n=1, epsilon=0.001, ntrial=len(freq))\n", + "ef_detlev = fold_detection_level(nbin, epsilon=0.001, ntrial=len(freq))\n", + "\n", + "cand_freqs_ef, cand_stat_ef = search_best_peaks(freq, efstat, ef_detlev)\n", + "cand_freqs_z, cand_stat_z = search_best_peaks(freq, zstat, z_detlev)\n", + "\n", + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.')\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray')\n", + "\n", + "plt.plot(freq, (zstat - nharm), label='$Z^2_1$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + " \n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.xlim([frequencies[0], frequencies[-1]])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f.')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, (zstat - nharm), label='$Z_2$ statistics')\n", + "plt.plot(freq, efstat - nbin + 1, color='gray', label='EF statistics', alpha=0.5)\n", + "\n", + "plt.axvline(1/period, color='r', lw=3, alpha=0.5, label='Correct frequency')\n", + "plt.axhline(z_detlev - nharm, label='$Z^2_1$ det. lev.', zorder=10)\n", + "plt.axhline(ef_detlev - nbin + 1, label='EF det. lev.', color='gray', zorder=10)\n", + "\n", + "for c in cand_freqs_ef:\n", + " plt.axvline(c, ls='-.', label='EF Candidate', color='gray', zorder=10)\n", + "for c in cand_freqs_z:\n", + " plt.axvline(c, ls='--', label='$Z^2_1$ Candidate', zorder=10)\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Statistics - d.o.f. (Zoom)')\n", + "\n", + "plt.ylim([-15, ef_detlev - nbin + 3])\n", + "_ = plt.xlim([frequencies[0], frequencies[-1]])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the side lobes of the sinc squared-like shape are producing spurious candidates here. For now, we do not have a method to eliminate these fairly obvious patterns, but it will be implemented in future releases" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Fit peak with Sinc-squared and Gaussian functions\n", + "\n", + "As we saw earlier, if the pulse frequency is stable during the observation, the peak shape is a **Sinc squared function**. Therefore we fit it to the peak with the function `stingray.pulse.modeling.fit_sinc`. \n", + "We have two possibilities:\n", + "\n", + "+ if `obs_length` is the length of the observation. If it is defined, it fixes width to $1/(\\pi*obs length)$, as expected from epoch folding periodograms. The other two free parameters are `amplitude` and `mean`.\n", + "+ if it is not defined, the `width` parameter can be used.\n", + "\n", + "On the other hand, if the pulse frequency varies slightly, the peak oscillate and the integrated profile is a bell-shaped function. We can fit it with a **Gaussian function** (`stingray.pulse.modeling.fit_gaussian`) with the standard parameters: `amplitude`, `mean`, `stddev`.\n", + "\n", + "We also provide the user with the constrains `fixed`, `tied`, `bounds`, in order to fix, link and/or constrain parameters.\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_sinc\n", + "\n", + "fs=fit_sinc(freq, efstat-(nbin-1),amp=max(efstat-(nbin-1)), mean=cand_freqs_ef[0], \n", + " obs_length=obs_length)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC/sElEQVR4nOzdeXhTddrG8e/pkqQ7lKWlUhYVVAQVUVFcAGVTURlnBh2dUUcddVwZdXAc39G6weiMgOLuKDio4O64C6jgAgqi7Pu+tZSldE2TNDnvH+fk0ACFFrrn/lxXL9vkJDlBaHLneX7PzzBN00RERERERESqLaahT0BERERERKSpUZASERERERGpIQUpERERERGRGlKQEhERERERqSEFKRERERERkRpSkBIREREREakhBSkREREREZEaUpASERERERGpobiGPoHGIBQKsXXrVlJSUjAMo6FPR0REREREGohpmhQXF5OVlUVMTNV1JwUpYOvWrWRnZzf0aYiIiIiISCOxadMm2rdvX+X1ClJASkoKYP1hpaamNvDZiIhIfSorKOK0cbMBmOP+hUTDhNtvh6SkBj4zERFpCEVFRWRnZzsZoSoKUuC086WmpipIiYhEmbggxLgTAUh1e0g0QpCaqiAlIhLlDrbkR8MmREREREREakhBSkREREREpIYUpERERERERGpIa6RERERE5LCYpklFRQXBYLChT0XkoGJjY4mLizvsbY8UpERERETkkPn9fnJzcykrK2voUxGptsTERNq1a4fL5Trk+1CQEhEREZFDEgqFWLduHbGxsWRlZeFyuQ77U36RumSaJn6/n+3bt7Nu3Tq6dOlywE13D0RBSkREREQOid/vJxQKkZ2dTWJiYkOfjki1JCQkEB8fz4YNG/D7/Xg8nkO6Hw2bEBEREZHDcqif6Is0lNr4O6u/9SIiIiIiIjWkICUiIiIiIlJDClIiIiIiIk1Ip06dGDdu3CHffuLEibRo0aLWzidaKUiJiIiISFS55pprMAxjn68hQ4Y4x3Tq1Gmf69u3b39Ij5eTk8NJJ51U49tVFXjmzp3LDTfcUK372F/ouuyyy1i5cmWNz0ciaWqfiIiIiESdIUOGMGHChIjL3G53xM8PPfQQf/rTn5yfY2Nj6+XcDqZNmzaHdfuEhAQSEhJq6WyilypSIiIiIlJrTNOkzF9R71+madboPN1uN5mZmRFfLVu2jDgmJSUl4voDBZgZM2Zw2mmnkZSURIsWLTjzzDPZsGEDEydO5MEHH2TBggVOZWvixIkAjBkzhh49epCUlER2djY333wzJSUlzv398Y9/pLCw0LldTk4OsG+VKScnhw4dOuB2u8nKyuL2228HoF+/fmzYsIG//OUvzn3A/itdH374Iaeccgoej4fWrVtz6aWXOtc9++yzdOnSBY/HQ0ZGBr/5zW9q9GfdXKkiJSIiIiK1xhsI0u3+L+r9cZc+NJhEV8O8ta2oqGDYsGH86U9/YvLkyfj9fubMmYNhGFx22WUsXryYzz//nOnTpwOQlpYGWCO4n3rqKTp16sS6deu4+eabGTlyJM8++yx9+vRh3Lhx3H///axYsQKA5OTkfR77nXfeYezYsUyZMoXjjz+evLw8FixYAMB7773HiSeeyA033BBRWdvbJ598wqWXXsp9993HpEmT8Pv9fPLJJwD89NNP3H777UyaNIk+ffqwa9cuvv3221r982uqFKREREREJOp8/PHH+wSTe+65h3/84x8RP//f//2f8/OoUaOcak9lRUVFFBYWMnToUI466igAjjvuOOf65ORk4uLiyMzMjLjdiBEjnO87d+7Mww8/zJ///GeeffZZXC4XaWlpGIaxz+0q27hxI5mZmQwYMID4+Hg6dOjAaaedBkB6ejqxsbFOZa0qjz76KJdffjkPPvigc9mJJ57o3H9SUhJDhw4lJSWFjh070rNnzyrvK5ooSImISFSraTuQiBxYQnwsSx8a3CCPWxP9+/fnueeei7gsPT094ue//vWvXHPNNc7PrVu33u99paenc8011zB48GAGDhzIgAEDGD58OO3atTvgOXz99deMGjWKpUuXUlRUREVFBeXl5ZSWlpKUlFSt5/Hb3/6WcePGceSRRzJkyBAuuOACLrroIuLiqv82f/78+VVWrAYOHEjHjh2d+x8yZAi/+tWvSExMrPb9N1daIyUiIlHt6+Xbne/XbC9pwDMRaR4MwyDRFVfvX+H1P9WVlJTE0UcfHfG1d5Bq3bp1xPUHGhk+YcIEZs+eTZ8+fXjzzTfp2rUrP/zwQ5XHb9iwgQsuuIDu3bvz7rvvMm/ePJ555hkAAoFAtZ9HdnY2K1as4JlnniEhIYGbb76Zc845p0b3caDBEykpKfz8889MnjyZdu3acf/993PiiSeye/fuat9/c6UgJSIiUW3FtiLn+88X57JuR2kDno2INGU9e/bk3nvvZdasWXTv3p033ngDAJfLRTAYjDj2p59+oqKigieeeILTTz+drl27snXr1ohj9ne7/UlISODiiy/mqaeeYsaMGcyePZtFixZV+z5OOOEEvvzyyyqvj4uLY8CAATz++OMsXLiQ9evX89VXXx30vJq7Bg1S+5vPbxgGt9xyC2C1W+Tk5JCVlUVCQgL9+vVjyZIlEffh8/m47bbbaN26NUlJSVx88cVs3ry5IZ6OiIg0QduKfBE/r1VVSiQq+Hw+8vLyIr527NhxSPe1bt067r33XmbPns2GDRuYOnUqK1eudNZJhYdJzJ8/nx07duDz+TjqqKOoqKhg/PjxrF27lkmTJvH8889H3G+nTp0oKSnhyy+/ZMeOHZSVle3z2BMnTuTll19m8eLFzv0kJCTQsWNH5z6++eYbtmzZUuXze+CBB5g8eTIPPPAAy5YtY9GiRTz++OOAtZbsqaeeYv78+WzYsIH//ve/hEIhjjnmmEP6s2pOGjRIzZ07l9zcXOdr2rRpgNXrCfD4448zZswYnn76aebOnUtmZiYDBw6kuLjYuY8RI0bw/vvvM2XKFL777jtKSkoYOnRotdK7iIhIXqE34uf8Yl8VR4pIc/L555/Trl27iK+zzjrrkO4rMTGR5cuX8+tf/5quXbtyww03cOutt3LjjTcC8Otf/5ohQ4bQv39/2rRpw+TJkznppJMYM2YMjz32GN27d+f1119n9OjREffbp08fbrrpJi677DLatGnjhJvKWrRowUsvvcSZZ57pVJY++ugjWrVqBVh7Ya1fv56jjjqqyvHt/fr14+233+bDDz/kpJNO4txzz+XHH3907v+9997j3HPP5bjjjuP5559n8uTJHH/88Yf0Z9WcGGYjWmU7YsQIPv74Y1atWgVAVlYWI0aM4J577gGsTw4yMjJ47LHHuPHGGyksLKRNmzZMmjSJyy67DICtW7eSnZ3Np59+yuDB1VvoWFRURFpaGoWFhaSmptbNkxMRkUZp0COfsNIuQt0yawoeQtz08fPEp6Y07ImJNAHl5eWsW7eOzp074/F4Gvp0RKrtQH93q5sNGs0aKb/fz2uvvca1116LYRisW7eOvLw8Bg0a5Bzjdrvp27cvs2bNAmDevHkEAoGIY7KysujevbtzzP74fD6KiooivkREJPqEQiZ5RX7n5/jYGIIhU0MnRETkoBpNkPrggw/YvXu3M2IyLy8PgIyMjIjjMjIynOvy8vJwuVz77EJd+Zj9GT16NGlpac5XdnZ2LT4TERFpKnaW+vFXhJyf2yS7AVi6VR+wiYjIgTWaIPXyyy9z/vnnk5WVFXH53qMsTdM86HjLgx1z7733UlhY6Hxt2rTp0E9cRESarK27I9dHtUm12juW5SpIiYjIgTWKILVhwwamT5/O9ddf71wW3n1578pSfn6+U6XKzMzE7/dTUFBQ5TH743a7SU1NjfgSEZHos0+QSnYBqkiJiMjBNYogNWHCBNq2bcuFF17oXNa5c2cyMzOdSX5graOaOXMmffr0AaBXr17Ex8dHHJObm8vixYudY0RERKqyZa8g1TbVau1blltMMNRoZjGJiEgjFNfQJxAKhZgwYQJXX301cXF7TscwDEaMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx4MGDCgoZ6SiIg0EVt3l+PBRzlWS19agov42Bi8gSDrdpRydNvkBj5DERFprBo8SE2fPp2NGzdy7bXX7nPdyJEj8Xq93HzzzRQUFNC7d2+mTp1KSsqekbRjx44lLi6O4cOH4/V6Oe+885g4cSKxsbH1+TRERKQJ2rrbyxWxX/EsvwIgxjBI9cQDkFdYriAlIiJVavAgNWjQIKraysowDHJycsjJyany9h6Ph/HjxzN+/Pg6OkMREWmuthZ6uSZ2gROkCHhJdFkfxO0s1ca8IiJStUaxRkpERKQh+Aq20p0Ney7YtY4EO0jtKPFXcSsRkdqVk5NDRkYGhmHwwQcfcM011zBs2LCGPi05CAUpERGJSuWBICeWzyHGqNQVsXPVnopUiSpSIs3VNddcg2EYzlerVq0YMmQICxcurLXHyMnJ4aSTTjroccuWLePBBx/khRdeIDc3l/PPP58nn3ySiRMnOsf069ePESNG1Nq5Se1QkBIRkaiUV1jOgJifIy8s2ECStUSKnapIiTRrQ4YMITc3l9zcXL788kvi4uIYOnRovZ/HmjVrALjkkkvIzMzE7XaTlpZGixYt6v1cpGYUpEREJCoVlxRzdsyiyAtDftpUWPsXao2USPPmdrvJzMwkMzOTk046iXvuuYdNmzaxfft255gtW7Zw2WWX0bJlS1q1asUll1zC+vXrnetnzJjBaaedRlJSEi1atODMM89kw4YNTJw4kQcffJAFCxY4Va/KFaawnJwcLrroIgBiYmIwDAMgorXvmmuuYebMmTz55JPOfVU+B2k4DT5sQkREpCGE8peRYPjZarSCSt19KRU7Aa2REjlkpgmBsvp/3PhEsINITZWUlPD6669z9NFH06pVKwDKysro378/Z599Nt988w1xcXE88sgjTgtgTEwMw4YN409/+hOTJ0/G7/czZ84cDMPgsssuY/HixXz++edMnz4dsLbt2dvdd99Np06d+OMf/0hubu5+z+3JJ59k5cqVdO/enYceegiANm3aHNLzlNqlICUiIlHJLLIrT7GtIbTnck/IegOoipTIIQqUwais+n/cv28FV1K1D//4449JTra2OCgtLaVdu3Z8/PHHxMRYDVtTpkwhJiaG//znP06laMKECbRo0YIZM2ZwyimnUFhYyNChQznqqKMAOO6445z7T05OJi4ujszMzCrPITk52Wnhq+q4tLQ0XC4XiYmJB7wvqX9q7RMRkahkFG8FoDiuZcTlrgo7SKkiJdKs9e/fn/nz5zN//nx+/PFHBg0axPnnn8+GDdYkz3nz5rF69WpSUlJITk4mOTmZ9PR0ysvLWbNmDenp6VxzzTUMHjyYiy66iCeffLLKqpI0T6pIiYhIVIotsSpSJXGRLTKxFSUAlPmDlPkrSHTppVKkRuITrepQQzxuDSQlJXH00Uc7P/fq1Yu0tDReeuklHnnkEUKhEL169eL111/f57bh1roJEyZw++238/nnn/Pmm2/yf//3f0ybNo3TTz/98J6LNAl6dRARkagUX7YNAK+7FRTvudzwl+COi8GLVZVKTNdLpUiNGEaNWuwaC8MwiImJwev1AnDyySfz5ptv0rZtW1JTU6u8Xc+ePenZsyf33nsvZ5xxBm+88Qann346LpeLYDBYK+dWm/cltUetfSIiEpXc3nwAvJ7IipThL6Vtkr2XVKna+0SaK5/PR15eHnl5eSxbtozbbruNkpISZ4relVdeSevWrbnkkkv49ttvWbduHTNnzuSOO+5g8+bNrFu3jnvvvZfZs2ezYcMGpk6dysqVK511Up06dWLdunXMnz+fHTt24PMd+rrLTp068eOPP7J+/Xp27NhBKBQ6+I2kzilIiYhIVEr0WUGqwtO60qUxgEmnhPA6KQ2cEGmuPv/8c9q1a0e7du3o3bs3c+fO5e2336Zfv34AJCYm8s0339ChQwcuvfRSjjvuOK699lq8Xi+pqakkJiayfPlyfv3rX9O1a1duuOEGbr31Vm688UYAfv3rXzNkyBD69+9PmzZtmDx58iGf6913301sbCzdunWjTZs2bNy4sTb+COQwqV9BRESiUrLf2ismmNh2z4XuJPB66ewuBlI0cEKkmZo4ceJ+93XaW2ZmJq+++up+r0tNTeX999+v8rZut5t33nnnoI8xbNgwTNOMuGzvc+vatSuzZ88+6H1J/VJFSkREok+gnMRgEQChpErjhOOtUcjt463rdmgEuoiIVEFBSkREok+xNaK43IwnNrHSInK3tUC+XcxuQCPQRUSkagpSIiISfYqt0ed5ZjpJnvg9l7tTAGhDAaA1UiIiUjUFKRERiT72ZrzbaElCfOyey+OtilTL0E5AU/tERKRqClIiIhJ97IrUNrMlia5KQcquSKUErCC1Q619IiJSBQUpERGJPkV2RcpsSVJEkLKGTSSUW6PR1donIiJVUZASEZHo46yRaklC5SDlsoKUy2uNRt9V6t9nLLGIiAgoSImISDSyp/ZtM9NJdFXaUtEOUjH+YhIopyJkUuoPNsQZiohII6cgJSIiUccsCgepliRUDlKxLohxAdA+thCAQm+g3s9PREQaPwUpERGJPqXWGqjtpEUOmzAMcFmT+zp6SgHYXaaBEyLStLz44otkZ2cTExPDuHHjGvp0mi0FKRERiS7BCgx/CQDe2BTiY/d6KYz3AJDhsgZNqCIl0jzl5eVx2223ceSRR+J2u8nOzuaiiy7iyy+/bOhT26+JEyfSokWLgx5XVFTErbfeyj333MOWLVu44YYb6v7kolTcwQ8RERFpRsoLnW9DrrR9r49zA5AR7wWgsExBSqS5Wb9+PWeeeSYtWrTg8ccf54QTTiAQCPDFF19wyy23sHz58kO630AgQHx8fLUvrwsbN24kEAhw4YUX0q5du/0eU5/n05ypIiUiItGlfDcAxWYCbrdr3+vjrIpU6zgrSO1WRUqk+kwTSksb7quaUzZvvvlmDMNgzpw5/OY3v6Fr164cf/zx3Hnnnfzwww/OcRs3buSSSy4hOTmZ1NRUhg8fzrZt25zrc3JyOOmkk3jllVecypZpmhiGwfPPP88ll1xCUlISjzzyCAAfffQRvXr1wuPxcOSRR/Lggw9SUVHh3N/u3bu54YYbyMjIwOPx0L17dz7++GNmzJjBH//4RwoLCzEMA8MwyMnJ2ed5TZw4kR49egBw5JFHYhgG69evr/I8CwsLueGGG2jbti2pqamce+65LFiwIOI+//nPf5KRkUFKSgrXXXcdf/vb3zjppJOc6/v168eIESMibjNs2DCuueYa52e/38/IkSM54ogjSEpKonfv3syYMSPivFu0aMEXX3zBcccdR3JyMkOGDCE3Nzfifl955RWOP/543G437dq149ZbbwXg2muvZejQoRHHVlRUkJmZySuvvLLPn1NtUUVKRESiix2kikgkybWfl0E7SKXHlgFq7ROpkbIy+Ne/Gu7x//pXSEo64CG7du3i888/59FHHyVpP8eG2+dM02TYsGEkJSUxc+ZMKioquPnmm7nssssiQsDq1at56623ePfdd4mN3bPm8oEHHmD06NGMHTuW2NhYvvjiC37/+9/z1FNPcfbZZ7NmzRqn7e6BBx4gFApx/vnnU1xczGuvvcZRRx3F0qVLiY2NpU+fPowbN47777+fFStWAJCcnLzPuV922WVkZ2czYMAA5syZQ3Z2Nm3atKnyPC+88ELS09P59NNPSUtL44UXXuC8885j5cqVpKen89Zbb/HAAw/wzDPPcPbZZzNp0iSeeuopjjzyyOr/PwH++Mc/sn79eqZMmUJWVhbvv/8+Q4YMYdGiRXTp0gWAsrIy/v3vfzNp0iRiYmL4/e9/z913383rr78OwHPPPcedd97JP//5T84//3wKCwv5/vvvAbj++us555xzyM3Ndapwn376KSUlJQwfPrxG51oTClIiIhJdvLsBKDKTSHLH7nu9HaRaGFaQ2q3WPpFmZfXq1ZimybHHHnvA46ZPn87ChQtZt24d2dnZAEyaNInjjz+euXPncuqppwJWtWXSpElOYAm74ooruPbaa52f//CHP/C3v/2Nq6++GrAqRg8//DAjR47kgQceYPr06cyZM4dly5bRtWtX55iwtLQ0DMMgMzOzynNOSEigVatWALRp0ybi2L3P86uvvmLRokXk5+fjdlstzf/+97/54IMPeOedd7jhhhsYN24c1157Lddffz0AjzzyCNOnT6e8vPyAf3aVrVmzhsmTJ7N582aysrIAuPvuu/n888+ZMGECo0aNAqx2w+eff56jjjoKgFtvvZWHHnrIuZ9HHnmEu+66izvuuMO5LPz/oE+fPhxzzDFMmjSJkSNHAjBhwgR++9vf7jdw1hYFKRERiS52RaqQJJLcVVekUrGm9qkiJdK8hDfZNgzjgMctW7aM7OxsJ0QBdOvWjRYtWrBs2TLnTXzHjh33CVEAp5xySsTP8+bNY+7cuTz66KPOZcFgkPLycsrKypg/fz7t27d3QlRt2/s8582bR0lJiRO8wrxeL2vWrAGsP4Obbrop4vozzjiDr7/+utqP+/PPP2Oa5j7Py+fzRTx2YmKiE6IA2rVrR36+NWE1Pz+frVu3ct5551X5ONdffz0vvvgiI0eOJD8/n08++aTOB4coSImISHSxh00UmYmRo8/D7Kl9yaY12a/Qq/HnIs1Jly5dMAyDZcuWMWzYsCqPC691Otjl+2sP3N/loVCIBx98kEsvvXSfYz0eDwkJCdV8Bodmf+fTrl27iDbFsOpMBwyLiYlxwmlYILDnA6hQKERsbCzz5s2LaH2EyPbEvYdfGIbh3G91/myuuuoq/va3vzF79mxmz55Np06dOPvss6v9PA6FgpSIiEQXu7Wv0DxwRSoxFA5SqkiJVFtiorVOqSEf/yDS09MZPHgwzzzzDLfffvs+AWP37t20aNGCbt26sXHjRjZt2uRUpZYuXUphYSHHHXdcjU/t5JNPZsWKFRx99NH7vf6EE05g8+bNrFy5cr9VKZfLRTAYrPHjHuh88vLyiIuLo1OnTvs95rjjjuOHH37gqquuci6rPIwDrBbCykMhgsEgixcvpn///gD07NmTYDBIfn7+IQeblJQUOnXqxJdffunc795atWrFsGHDmDBhArNnz+aPf/zjIT1WTShIiYhIdKnc2neAYROeimJAa6REasQwDjrsoTF49tln6dOnD6eddhoPPfQQJ5xwAhUVFUybNo3nnnuOZcuWMWDAAE444QSuvPJKxo0b5wyb6Nu37z5te9Vx//33M3ToULKzs/ntb39LTEwMCxcuZNGiRTzyyCP07duXc845h1//+teMGTOGo48+muXLl2MYBkOGDKFTp06UlJTw5ZdfcuKJJ5KYmEhiNYJjVQYMGMAZZ5zBsGHDeOyxxzjmmGPYunUrn376KcOGDeOUU07hjjvu4Oqrr+aUU07hrLPO4vXXX2fJkiURa7fOPfdc7rzzTj755BOOOuooxo4dy+7du53ru3btypVXXslVV13FE088Qc+ePdmxYwdfffUVPXr04IILLqjW+ebk5HDTTTfRtm1bZyjH999/z2233eYcc/311zN06FCCwaCzFq0uafy5iIhEl4NWpKxF166KIus4VaREmp3OnTvz888/079/f+666y66d+/OwIED+fLLL3nuuecAq7Xsgw8+oGXLlpxzzjkMGDCAI488kjfffPOQHnPw4MF8/PHHTJs2jVNPPZXTTz+dMWPG0LFjR+eYd999l1NPPZXf/e53dOvWjZEjRzpVqD59+nDTTTdx2WWX0aZNGx5//PHD+jMwDINPP/2Uc845h2uvvZauXbty+eWXs379ejIyMgBrCuD999/PPffcQ69evdiwYQN//vOfI+7n2muv5eqrr+aqq66ib9++dO7ceZ+q0YQJE7jqqqu46667OOaYY7j44ov58ccfI9afHczVV1/NuHHjePbZZzn++OMZOnQoq1atijhmwIABtGvXjsGDBzuDLeqSYe7d1BiFioqKSEtLo7CwkNTU1IY+HRERqUtvXQ1LP+CBwNW0Pvc2rjs5g26PfQvAUvc8Er07IG4ioaRkjix+iRR3HIseHNzAJy3SOJWXl7Nu3To6d+6Mx+Np6NORepCTk8MHH3zA/PnzG/pU9lFWVkZWVhavvPLKfteiVXagv7vVzQZq7RMRkegSbu0zk+iwv4pUfAKYEBMoJY4Kin1QEQwRF6smDhGRxigUCpGXl8cTTzxBWloaF198cb08roKUiIhEl3BrH0kk728fqVg3VFjfplLGLlIpKq8gPclVf+coIiLVtnHjRjp37kz79u2ZOHEicXH1E3H08ZqIiEQXuyJljT/fz4ttTAy4rJG8WW5r08ndZRqBLiICVmtfY2vr69SpE6ZpsmnTpgPuNVXbFKRERCS62PtIWRvy7qciBeBpAUA7j886VgMnRERkLwpSIiISPUKhPUHKrGL8OYAnDYDMeLsipSAlIiJ7UZASEZHo4S8GMwRAEVWMPwdIsIJUW5cVpIoUpEREZC8KUiIiEj3sapTPjMeHi0RXFa19bitItY4Nr5FSkBIRkUgKUiIiEj0qTewDSK6qImW39rWMLQMUpEREZF8KUiIiEj0qTewDSDxIa19LoxTQsAkREdmXgpSIiESPvSpSifFVtfa1ACAVK0jt9mr8uUi06NevHyNGjKjx7fLy8hg4cCBJSUm0aNGi1s9LGh8FKRERiR6VJvYlumKJiTH2f5wnFYAks8Q6Xq19Is3KNddcg2EY+3ytXr2a9957j4cfftg5tlOnTowbN+6g9zl27Fhyc3OZP38+K1eurMOzl8aifrb9FRERaQzs1r5Ckva/GW+YvUYqIVgMQKm/oq7PTETq2ZAhQ5gwYULEZW3atCE2topK9UGsWbOGXr160aVLlyqPCQQCxMfHH9L9S+OjipSIiEQPu7WvyEysejNecDbkdVdYQcobCNXxiYlIfXO73WRmZkZ8xcbGRrT29evXjw0bNvCXv/zFqVrtT6dOnXj33Xf573//i2EYXHPNNQAYhsHzzz/PJZdcQlJSEo888ggAH330Eb169cLj8XDkkUfy4IMPUlGx5wObVatWcc455+DxeOjWrRvTpk3DMAw++OADAGbMmIFhGOzevdu5zfz58zEMg/Xr1zuXzZo1i3POOYeEhASys7O5/fbbKS0tjTjvUaNGce2115KSkkKHDh148cUXI57b5s2bufzyy0lPTycpKYlTTjmFH3/8kfXr1xMTE8NPP/0Ucfz48ePp2LEjpmnW5H9Hk9TgQWrLli38/ve/p1WrViQmJnLSSScxb94853rTNMnJySErK4uEhAT69evHkiVLIu7D5/Nx22230bp1a5KSkrj44ovZvHlzfT8VERFp7CpVpKrcjBecYRPxAStIlfuDdX1mIs2GaZqU+Svq/asu3ri/9957tG/fnoceeojc3Fxyc3P3e9zcuXMZMmQIw4cPJzc3lyeffNK57oEHHuCSSy5h0aJFXHvttXzxxRf8/ve/5/bbb2fp0qW88MILTJw4kUcffRSAUCjEpZdeSmxsLD/88APPP/8899xzT43PfdGiRQwePJhLL72UhQsX8uabb/Ldd99x6623Rhz3xBNPcMopp/DLL79w88038+c//5nly5cDUFJSQt++fdm6dSsffvghCxYsYOTIkYRCITp16sSAAQP2qepNmDDBaZ1s7hq0ta+goIAzzzyT/v3789lnn9G2bVvWrFkTsUDv8ccfZ8yYMUycOJGuXbvyyCOPMHDgQFasWEFKSgoAI0aM4KOPPmLKlCm0atWKu+66i6FDhzJv3rxDLs+KiEgzVGmN1AErUm5rjVS83zq+vEJBSqS6vIEg3e7/ot4fd+lDgw/csruXjz/+mOTkZOfn888/n7fffjvimPT0dGJjY0lJSSEzM7PK+2rTpg1ut5uEhIR9jrviiiu49tprnZ//8Ic/8Le//Y2rr74agCOPPJKHH36YkSNH8sADDzB9+nSWLVvG+vXrad++PQCjRo3i/PPPr/ZzA/jXv/7FFVdc4VTXunTpwlNPPUXfvn157rnn8Hg8AFxwwQXcfPPNANxzzz2MHTuWGTNmcOyxx/LGG2+wfft25s6dS3p6OgBHH3208xjXX389N910E2PGjMHtdrNgwQLmz5/Pe++9V6NzbaoaNEg99thjZGdnRyTZTp06Od+bpsm4ceO47777uPTSSwF49dVXycjI4I033uDGG2+ksLCQl19+mUmTJjFgwAAAXnvtNbKzs5k+fTqDBw+u1+ckIiKNmB2kikms1hqp2EAxYOJVRUqk2enfvz/PPfec83NSUlKdPM4pp5wS8fO8efOYO3euU4ECCAaDlJeXU1ZWxrJly+jQoYMTogDOOOOMGj/uvHnzWL16Na+//rpzmWmahEIh1q1bx3HHHQfACSec4FxvGAaZmZnk5+cDVrtgz549nRC1t2HDhnHrrbfy/vvvc/nll/PKK6/Qv3//iPfzzVmDBqkPP/yQwYMH89vf/paZM2dyxBFHcPPNN/OnP/0JgHXr1pGXl8egQYOc27jdbvr27cusWbO48cYbmTdvHoFAIOKYrKwsunfvzqxZsxSkRERkD7+1NqDUTKh6M14Al/WGyjBDePDjDWhxuEh1JcTHsvSh+n//lVDVdgZVSEpKiqiu1JW9A1ooFOLBBx90igSVeTye/bYo7t0mFxNjrc6pfGwgEDldNBQKceONN3L77bfvc38dOnRwvt97+IVhGIRC1rrQhISE/T6nMJfLxR/+8AcmTJjApZdeyhtvvFGtCYfNRYMGqbVr1/Lcc89x55138ve//505c+Zw++2343a7ueqqq8jLywMgIyMj4nYZGRls2LABsGb2u1wuWrZsuc8x4dvvzefz4fP5nJ+Liopq82mJiEhj5bOn8OGhjesAb7riE51vkymnMOCp6zMTaTYMw6hRi11j53K5CAZrryp98skns2LFiipDXLdu3di4cSNbt24lKysLgNmzZ0cc06ZNGwByc3Od98Dz58/f53GWLFlyWGHxhBNO4D//+Q+7du2qsip1/fXX0717d5599lkCgcB+A2Jz1aDDJkKhECeffDKjRo2iZ8+e3HjjjfzpT3+KKLPCvincNM2DLmA70DGjR48mLS3N+crOzj68JyIiIk2D39oXqsT0kHSgilRMDListRNJhpdA0KQiqMl9ItGoU6dOfPPNN2zZsoUdO3Yc9v3df//9/Pe//yUnJ4clS5awbNky3nzzTf7v//4PgAEDBnDMMcdw1VVXsWDBAr799lvuu+++iPs4+uijyc7OJicnh5UrV/LJJ5/wxBNPRBxzzz33MHv2bG655Rbmz5/PqlWr+PDDD7ntttuqfa6/+93vyMzMZNiwYXz//fesXbuWd999NyLYHXfccZx++uncc889/O53vztoFas5adAg1a5dO7p16xZx2XHHHcfGjRsBnMV6e1eW8vPznSpVZmYmfr+fgoKCKo/Z27333kthYaHztWnTplp5PiIi0sj5rCBVSsKBh03AniBFOQDlFQpSItHooYceYv369Rx11FFOJehwDB48mI8//php06Zx6qmncvrppzNmzBg6duwIWG1777//Pj6fj9NOO43rr78+Yj0VWO14kydPZvny5Zx44ok89thjzmj1sBNOOIGZM2eyatUqzj77bHr27Mk//vEP2rVrV+1zdblcTJ06lbZt23LBBRfQo0cP/vnPf+4zzO26667D7/dHDNWIBg1adz3zzDNZsWJFxGUrV650/iJ17tyZzMxMpk2bRs+ePQHw+/3MnDmTxx57DIBevXoRHx/PtGnTGD58OGCVORcvXszjjz++38d1u9243e66eloiItJY+cNBynPw1iN3MpTsCVJef/DA66pEpMmYOHFildfNmDEj4ufTTz+dBQsWHPQ+w3s8VVbVSPbBgwcfcB1/165d+fbbbw/4eGeeeSYLFy484OOdeuqpTJ06tcr7qLznVNjeLYIdO3bknXfeOeC55Obm0r17d0499dQDHtfcNOgrwl/+8hf69OnDqFGjGD58OHPmzOHFF190NgIzDIMRI0YwatQounTpQpcuXRg1ahSJiYlcccUVAKSlpXHddddx11130apVK9LT07n77rvp0aOHM8VPRESEUBACZQCUmp6DhyK7IpUe54cAlAc0uU9EpLKSkhKWLVvG+PHjefjhhxv6dOpdgwapU089lffff597772Xhx56iM6dOzNu3DiuvPJK55iRI0fi9Xq5+eabKSgooHfv3kydOtXZQwpg7NixxMXFMXz4cLxeL+eddx4TJ07UHlIiIrKHPbEPoIQEEg80bAKcINUyzqcgJSKyH7feeiuTJ09m2LBhUdfWBw0cpACGDh3K0KFDq7zeMAxycnLIycmp8hiPx8P48eMZP358HZyhiIg0C3ZbX5AYfMQfeNgEWK19QFqs3dqnICUiDaiqNsGGNHHixAO2STZ3DTpsQkREpN7YgybKjATAOHiQcoWDlLVdRnlAwyZERGQPBSkREYkOfmsPqTKs0bxJB2vtsytSKTFWkFJFSkREKlOQEhGR6BAefW5am+sedGqfXZFKMewg5VeQEqlKY2w7EzmQ2vg7qyAlIiLRodJmvEC1p/YlG/Y+UqpIiewjPj4egLKysgY+E5GaCf+dDf8dPhQNPmxCRESkXthT+4pC1j6CiQfbkNdu7UvGCyhIiexPbGwsLVq0ID8/H4DExEQMw2jgsxKpmmmalJWVkZ+fT4sWLQ5ryreClIiIRAeftUaq1FkjVb2KVKIdpLRGSmT/MjMzAZwwJdIUtGjRwvm7e6gUpEREJDqEW/vwEGOAJ/4g3e1ua79CBSmRAzMMg3bt2tG2bVsCgUBDn47IQcXHx9fKfrMKUiIiEh2cYRMJJLniDt5+ZFekPGZ4jZTGn4scSGxsbK28ORVpKjRsQkREooNdkSrDc/D1UeCskfKErAXJWiMlIiKVKUiJiEh0qDS176Cb8QK4kgBwh+zWPo0/FxGRShSkREQkOoRb+/AcfNAEgMtaI+UKWhUprZESEZHKFKRERCQ6OMMmEkh0Vb+1Lz5YBphq7RMRkQgKUiIiEh2cYROeg2/GC86wiRhCJOBTkBIRkQgKUiIiEh38e/aRSqxOkIpPBKzJfkn41NonIiIRFKRERCQ6OBUpN0nVae2LiXEGTiQZXo0/FxGRCApSIiISHfylgFWRqtbUPnDa+5Ip19Q+ERGJoCAlIiLRwRk24aleRQqcgRNJeLVGSkREIihIiYhI8xcKQsAaY15qVnONFDgVqSSjXGukREQkgoKUiIg0f3Y1CsL7SFW3ImXtJZWsipSIiOxFQUpERJo/e9BEBbH4iCexOhvygjNsItHQ1D4REYmkICUiIs2fXZEqNxIAg4TqVqScYRPW1D7TNOvoBEVEpKlRkBIRkebPDlJeIwGAhPiaDpsoB8BXoRHoIiJiUZASEZHmL7yHFB4APNUNUs6wCS+ARqCLiIhDQUpERJo/f3gzXrsiVcNhE6mGD0DrpERExKEgJSIizZ9vzx5SUIPWPrsilRprtfZpcp+IiIQpSImISPPnLwagKOQGahKkrKl9yapIiYjIXhSkRESk+fOXAlBsBylPfDVf/uzWvhRDFSkREYmkICUiIs2fvwyAMtMOUtVdIxWfCFj7SAF4/ZraJyIiFgUpERFp/gJWRaqsxmukrCCVgBWkVJESEZEwBSkREWn+7IqUFzdxMQbxsdV8+Yu31kgl2PtIaY2UiIiEKUiJiEjzF9jT2lftahQ4FSmPqWETIiISSUFKRESaP3+4tc9d/fVR4KyRcptWRcqnICUiIjYFKRERaf4Ce1r7alaRslr73GY5BiFVpERExKEgJSIizZ//EFv77IoUgAc/ZX4FKRERsShIiYhI8xc4vNY+gER8qkiJiIhDQUpERJq/8NQ+00NCdTfjBYiJgbgEABIMH15VpERExKYgJSIizV94al9N10iBM7kvEZ9a+0RExKEgJSIizV+lqX0JNWntA2cvqURUkRIRkT0UpEREpPkLT+0z3XgOsSKVYPgo81fU9pmJiEgTpSAlIiLNW7ACgn7gEFv74sOtfeVq7RMREYeClIiING/2xD44hH2kwNlLSlP7RESkMgUpERFp3uyJfSFi8BF/CGukKrf2KUiJiIhFQUpERJo3e32UP8YDGIe8RkrDJkREpDIFKRERad7siX0+wwNwCGuk9rT2adiEiIiEKUiJiEjzZleknCBV09Y+l1r7RERkXwpSIiLSvNkVKe8hV6T2tPb5KkKEQmatnp6IiDRNClIiItK8hfeQwg1wCGukrNa+BMqt+9HkPhERoYGDVE5ODoZhRHxlZmY615umSU5ODllZWSQkJNCvXz+WLFkScR8+n4/bbruN1q1bk5SUxMUXX8zmzZvr+6mIiEhj5d+zGS8cQmtfuCJl+ADU3iciIkAjqEgdf/zx5ObmOl+LFi1yrnv88ccZM2YMTz/9NHPnziUzM5OBAwdSXFzsHDNixAjef/99pkyZwnfffUdJSQlDhw4lGNQLnYiI4OwjVRoOUoc4tS85xtrUV5P7REQEIK7BTyAuLqIKFWaaJuPGjeO+++7j0ksvBeDVV18lIyODN954gxtvvJHCwkJefvllJk2axIABAwB47bXXyM7OZvr06QwePLhen4uIiDRCdkWq1HQBhz61L9mwglRZQJP7RESkEVSkVq1aRVZWFp07d+byyy9n7dq1AKxbt468vDwGDRrkHOt2u+nbty+zZs0CYN68eQQCgYhjsrKy6N69u3PM/vh8PoqKiiK+RESkmbLXSJWE7CDlquFLn12RSopRa5+IiOzRoEGqd+/e/Pe//+WLL77gpZdeIi8vjz59+rBz507y8vIAyMjIiLhNRkaGc11eXh4ul4uWLVtWecz+jB49mrS0NOcrOzu7lp+ZiIg0GvbUvmI7SNV42ESlqX2g1j4REbE0aJA6//zz+fWvf02PHj0YMGAAn3zyCWC18IUZhhFxG9M097lsbwc75t5776WwsND52rRp02E8CxERadTsilRx6FDXSO3ZkBdUkRIREUuDt/ZVlpSURI8ePVi1apWzbmrvylJ+fr5TpcrMzMTv91NQUFDlMfvjdrtJTU2N+BIRkWaqlqb2eZwgpTVSIiLSyIKUz+dj2bJltGvXjs6dO5OZmcm0adOc6/1+PzNnzqRPnz4A9OrVi/j4+IhjcnNzWbx4sXOMiIhEOXtqX1l4H6m4Q6tIeUx7HylVpEREhAae2nf33Xdz0UUX0aFDB/Lz83nkkUcoKiri6quvxjAMRowYwahRo+jSpQtdunRh1KhRJCYmcsUVVwCQlpbGddddx1133UWrVq1IT0/n7rvvdloFRUREwhWpMty442KIiTlwe/g+7IqU2ywHTLX2iYgI0MBBavPmzfzud79jx44dtGnThtNPP50ffviBjh07AjBy5Ei8Xi8333wzBQUF9O7dm6lTp5KSkuLcx9ixY4mLi2P48OF4vV7OO+88Jk6cSGxsDT9xFBGR5imwp7UvwX0Irw321L4YQrgJ4A0oSImISAMHqSlTphzwesMwyMnJIScnp8pjPB4P48ePZ/z48bV8diIi0iz497T21XjQBDj7SAEk4NMaKRERARrZGikREZFaFwi39nkOLUjFxkGsNTo9ER9ef6g2z05ERJooBSkREWneKk3tq/EeUmH2OqkEw4c3oIqUiIgoSImISHNXaWpfjUefh1XaS0rDJkREBBSkRESkuas0te+QWvvAqUgpSImISJiClIiINF+hEFR4gcNs7XOFW/vKtY+UiIgAClIiItKc2YMm4DBb++Irt/ZpjZSIiChIiYhIc1YpSJXjIiH+EF/27IpUoqHWPhERsShIiYhI82XvIRWI8WASc9hrpBLwaUNeEREBFKRERKQ5sytS/pgEADya2iciIrVEQUpERJqvgDVowhfjATj8qX2GT8MmREQEUJASEZHmzG7t8xmHG6SsipYbP2X+CkzTrJXTExGRpktBSkREmq9wRQoXwGFM7duzj1TIBF9FqFZOT0REmi4FKRERab7sNVLluAEOfx8pfABq7xMREQUpERFpxuyKlNcOUoe7Riopxg9AmSb3iYhEPQUpERFpvuyKlNe0W/sOc41UUkzAuj9VpEREop6ClIiINF92kCo17YrUYa6RSjLU2iciIhYFKRERab7s1r4yuyJ1yGuknPHndmufv+Lwz01ERJo0BSkREWm+7IpUSSgeOPzWvgQ7SJVrap+ISNRTkBIRkebLrkg5QeowW/s89tQ+n4ZNiIhEPQUpERFpvuyKVHGwdipSHtMKUqpIiYiIgpSIiDRf/nBr32GOP3clAeA2ywFVpEREREFKRESas732kXLHH+LLnl2RcqsiJSIiNgUpERFpvirtI2UY4I47vCAVS5A4KlSREhERBSkREWnG7IpUOS4S4mMxDOPQ7sceNgGQiA+fKlIiIlFPQUpERJqvSq19h7w+CiDWBYZ1ew9+VaRERERBSkREmrFAKWC19h3yZrwAhuFUpRIMVaRERERBSkREmjOnIuU59D2kwsKb8uKnXBUpEZGopyAlIiLNV3jYhL1G6rA4QUoVKRERUZASEZHmLFyRMg9zjRQ4e0klGD5VpEREREFKRESaqWAFBP2AVZHy1FprnypSIiKiICUiIs1Vhdf51prad5gveeFhE1ojJSIiKEiJiEhz5bfWR5kY+IivvTVSmtonIiIoSImISHNlD5oIxHgAoxam9oUrUgpSIiKiICUiIs2VPWjCClIc3j5SoNY+ERGJoCAlIiLNkxOk3ABq7RMRkVqlICUiIs2T3drnM2o3SHlUkRIRERSkRESkuXKClNXad9hrpOx9pBK1RkpERFCQEhGR5soOUuVYFanDXyO1Zx8pVaRERERBSkREmid7jZSX2mrts4dNGH5VpEREREFKRESaqXBFynQBtdDa56yR8uGvCBEKmYd3fyIi0qQpSImISPNkV6TKwkGqlipSifgA8AdVlRIRiWYKUiIi0jz5rYpUiVlba6T2tPYB+AIKUiIi0azGQerVV1/lk08+cX4eOXIkLVq0oE+fPmzYsKFWT05EROSQ2a19paF4oPZa+xLsilR5hQZOiIhEsxoHqVGjRpGQYL2YzJ49m6effprHH3+c1q1b85e//KXWT1BEROSQ2K19JaFabu1TRUpERIC4mt5g06ZNHH300QB88MEH/OY3v+GGG27gzDPPpF+/frV9fiIiIofGrkiVBO2K1OEGKVe4tU8VKREROYSKVHJyMjt37gRg6tSpDBgwAACPx4PX663dsxMRETlUdkWqyG7t87gOc1lweI0UqkiJiMghVKQGDhzI9ddfT8+ePVm5ciUXXnghAEuWLKFTp061fX4iIiKHxq5IeWttat+e8eegipSISLSr8cdzzzzzDGeccQbbt2/n3XffpVWrVgDMmzeP3/3ud4d8IqNHj8YwDEaMGOFcZpomOTk5ZGVlkZCQQL9+/ViyZEnE7Xw+H7fddhutW7cmKSmJiy++mM2bNx/yeYiISDNhB6myWpvaZwWpOILEUaGKlIhIlKtxRapFixY8/fTT+1z+4IMPHvJJzJ07lxdffJETTjgh4vLHH3+cMWPGMHHiRLp27cojjzzCwIEDWbFiBSkpKQCMGDGCjz76iClTptCqVSvuuusuhg4dyrx584iNPcwXTRERabrs1r5y3MTHGsTHHm5rX5LzbSI+fKpIiYhEtRq/qkyYMIG33357n8vffvttXn311RqfQElJCVdeeSUvvfQSLVu2dC43TZNx48Zx3333cemll9K9e3deffVVysrKeOONNwAoLCzk5Zdf5oknnmDAgAH07NmT1157jUWLFjF9+vQan4uIiDQj4dY+XIdfjQKIjQfDuh8PfspVkRIRiWo1DlL//Oc/ad269T6Xt23bllGjRtX4BG655RYuvPBCZ2hF2Lp168jLy2PQoEHOZW63m759+zJr1izAaicMBAIRx2RlZdG9e3fnmP3x+XwUFRVFfImISDNjV6S8pvvw10cBGEalTXlVkRIRiXY1bu3bsGEDnTt33ufyjh07snHjxhrd15QpU/j555+ZO3fuPtfl5eUBkJGREXF5RkaGs/FvXl4eLpcropIVPiZ8+/0ZPXr0YbUiiohIExAOUrVVkQJrnZS/mARVpEREol6NK1Jt27Zl4cKF+1y+YMECZ/BEdWzatIk77riD1157DY/HU+VxhmFE/Gya5j6X7e1gx9x7770UFhY6X5s2bar2eYuISBPhLwXAixtP/GGujwqz95JKpFwVKRGRKFfjV5bLL7+c22+/na+//ppgMEgwGOSrr77ijjvu4PLLL6/2/cybN4/8/Hx69epFXFwccXFxzJw5k6eeeoq4uDinErV3ZSk/P9+5LjMzE7/fT0FBQZXH7I/b7SY1NTXiS0REmpnwsAmzNitSVpDyGKpIiYhEuxoHqUceeYTevXtz3nnnkZCQQEJCAoMGDeLcc8+t0Rqp8847j0WLFjF//nzn65RTTuHKK69k/vz5HHnkkWRmZjJt2jTnNn6/n5kzZ9KnTx8AevXqRXx8fMQxubm5LF682DlGRESiUCgIQWu/pzLcuONqqSJlj0BP0NQ+EZGoV+M1Ui6XizfffJOHH36YBQsWkJCQQI8ePejYsWON7iclJYXu3btHXJaUlESrVq2cy0eMGMGoUaPo0qULXbp0YdSoUSQmJnLFFVcAkJaWxnXXXcddd91Fq1atSE9P5+6776ZHjx77DK8QEZEoYlejINzaV7sVKa2REhGRGgepsK5du9K1a9faPJd9jBw5Eq/Xy80330xBQQG9e/dm6tSpzh5SAGPHjiUuLo7hw4fj9Xo577zzmDhxovaQEhGJZvboc4ByXLjjajlIaWqfiEjUq1aQuvPOO3n44YdJSkrizjvvPOCxY8aMOeSTmTFjRsTPhmGQk5NDTk5OlbfxeDyMHz+e8ePHH/LjiohIM2MHqUCMBzBw19awiYjWPlWkRESiWbWC1C+//EIgEHC+FxERadTs1r6KWGsqrKe2K1L42R5QRUpEJJpVK0h9/fXX+/1eRESkUYqoSFF748/DFSlDFSkRkWhX41eWa6+9luLi4n0uLy0t5dprr62VkxIRETksfitI+Q0rSNXeGqlKrX2qSImIRLUaB6lXX30Vr9e7z+Ver5f//ve/tXJSIiIih8Vu7fPXdkXKlQRYrX2qSImIRLdqT+0rKirCNE1M06S4uBiPx+NcFwwG+fTTT2nbtm2dnKSIiEiN2K19PsMNUIvjz/dUpMpVkRIRiWrVDlItWrTAMAwMw9jv2HPDMHjwwQdr9eREREQOiR2kygkHqdpaIxUef66KlIhItKt2kPr6668xTZNzzz2Xd999l/T0dOc6l8tFx44dycrKqpOTFBERqZG9glRdrJFSRUpEJLpVO0j17dsXgHXr1tGhQwcMw6izkxIRETks9hqpOqtIaR8pEZGoV+NXlmXLlvH99987Pz/zzDOcdNJJXHHFFRQUFNTqyYmIiBwSO0iV4QJqc41Upda+gIKUiEg0q3GQ+utf/0pRUREAixYt4s477+SCCy5g7dq13HnnnbV+giIiIjXmLwWgzAy39tXuPlIefJRXqLVPRCSaVbu1L2zdunV069YNgHfffZeLLrqIUaNG8fPPP3PBBRfU+gmKiIjUmF2RKjWtipS7litSifhUkRIRiXI1/ojO5XJRVmYt4p0+fTqDBg0CID093alUiYiINCh72ERpKB4AT20Nm3Dtae0rrwhimmbt3K+IiDQ5Na5InXXWWdx5552ceeaZzJkzhzfffBOAlStX0r59+1o/QRERkRqzK1IloXBFqnaHTXjwYZrgqwjV3vorERFpUmr8yvL0008TFxfHO++8w3PPPccRRxwBwGeffcaQIUNq/QRFRERqzK5IFQftYRO1Pv7cD4DXr3VSIiLRqsYVqQ4dOvDxxx/vc/nYsWNr5YREREQOmx2kSsKtfbVWkbKCVLwRJJ4KygJBWtbOPYuISBNTrSBVVFREamqq8/2BhI8TERFpMHZrX3FFOEjVVkUqyfk2AR9ef0Xt3K+IiDQ51QpSLVu2JDc3l7Zt29KiRYv9bsZrmiaGYRAMqs1BREQamF2RKgqvkaqt8eex8WDEghnEg59Sn17zRESiVbWC1FdffUV6ejoAX3/9dZ2ekIiIyGHzW0HKa9byhryGYQ2c8BeTYPgo0xopEZGoVa0g1bdvX+f7zp07k52dvU9VyjRNNm3aVLtnJyIicijs1j4vtbwhL1jrpPzFJOLDG1Brn4hItKrxK0vnzp3Zvn37Ppfv2rWLzp0718pJiYiIHBa7ta8cF3ExBnGxtRikwntJoYqUiEg0q/ErS3gt1N5KSkrweDy1clIiIiKHxa5IlZme2t/nKbyXlOGnTGukRESiVrXHn995550AGIbBP/7xDxITE53rgsEgP/74IyeddFKtn6CIiEiNhIIQ9AHgxVV7o8/DnL2kfJRpap+ISNSqdpD65ZdfAKsitWjRIlwul3Ody+XixBNP5O677679MxQREakJu60PrDVSrWtrM94wuyKViI+ygCpSIiLRqtpBKjyt749//CNPPvmk9osSEZHGyW7rMzHwEY+71itSau0TEZEaBKmwCRMm1MV5iIiI1A5/KQChuATAwFPrFanKrX0KUiIi0arGQQpg7ty5vP3222zcuBG/3x9x3XvvvVcrJyYiInJI7IpURaw1AKn210iFp/b5KdL4cxGRqFXjV5cpU6Zw5plnsnTpUt5//30CgQBLly7lq6++Ii0trS7OUUREpPrsIBWMsYKUu44qUonakFdEJKrVOEiNGjWKsWPH8vHHH+NyuXjyySdZtmwZw4cPp0OHDnVxjiIiItVnD5sIxFqBp9YrUvY+Uh58lGqNlIhI1Krxq8uaNWu48MILAXC73ZSWlmIYBn/5y1948cUXa/0ERUREaiQcpGLCrX11M7UvAT9etfaJiEStGgep9PR0iouLATjiiCNYvHgxALt376asrOxANxUREal7TpByA+COq8t9pFSREhGJVjUeNnH22Wczbdo0evTowfDhw7njjjv46quvmDZtGuedd15dnKOIiEj12Wuk/EYdV6QMH14FKRGRqFXjIPX0009TXl4OwL333kt8fDzfffcdl156Kf/4xz9q/QRFRERqxK5I+eo6SOGn1K/WPhGRaFXjIJWenu58HxMTw8iRIxk5cmStnpSIiMgh81tBqtxwAXXb2qeKlIhI9Krxq0tsbCz5+fn7XL5z505iY2v5Uz8REZGaslv7yrHXSNVZa59fa6RERKJYjYOUaZr7vdzn8+FyuQ77hERERA6L3doXDlK1vyFv5LCJUGj/r4siItK8Vbu176mnngLAMAz+85//kJyc7FwXDAb55ptvOPbYY2v/DEVERGrCrkiVhYNUbW/I60oCrCAFUF4RJNFV4055ERFp4qr9m3/s2LGAVZF6/vnnI9r4XC4XnTp14vnnn6/9MxQREamJQCkAZSF7jVRdVaQMv/U4fgUpEZFoVO3f/OvWrQOgf//+vPfee7Rs2bLOTkpEROSQhStSphWkar0i5UztsypSGjghIhKdavwR2tdffx3xc0VFBeXl5RGtfiIiIg3GDlIl4SBV68MmIitSGoEuIhKdqt3v8OmnnzJp0qSIyx599FGSk5Np0aIFgwYNoqCgoNZPUEREpEbsYROlwboaf25VpOIIEk+FJveJiESpar+6/Pvf/6aoqMj5edasWdx///384x//4K233mLTpk08/PDDdXKSIiIi1WbvI1USigfqbkNe0F5SIiLRrNpBavHixfTp08f5+Z133mHgwIHcd999XHrppTzxxBN89NFHdXKSIiIi1Wa39hUHw0GqlitSsfFgWOHMg59Sn1r7RESiUbVfXYqLi2nVqpXz83fffce5557r/Hz88cezdevW2j07ERGRmrJb+4qc1r5arkgZRqVNeX14A6pIiYhEo2oHqaysLJYtWwZASUkJCxYs4Mwzz3Su37lzJ4mJiVXdXEREpH7YQaqwripSAC7r9S7R3pRXRESiT7VfXX7zm98wYsQIJk2axJ/+9CcyMzM5/fTTnet/+uknjjnmmDo5SRERkWoLV6Qq6miNFOyZ3KcgJSIStao9/vyBBx5g69at3H777WRmZvLaa69FbMo7efJkLrroojo5SRERkWqz10gVVlgvcXUTpKyKlMfwU6Y1UiIiUanaFanExEQmTZpEQUEBy5Yt4+yzz464/uuvv+aee+6p0YM/99xznHDCCaSmppKamsoZZ5zBZ5995lxvmiY5OTlkZWWRkJBAv379WLJkScR9+Hw+brvtNlq3bk1SUhIXX3wxmzdvrtF5iIhIMxGsgKC9v5PpBiDBVccVKa2REhGJSnXQOF597du355///Cc//fQTP/30E+eeey6XXHKJE5Yef/xxxowZw9NPP83cuXPJzMxk4MCBFBcXO/cxYsQI3n//faZMmcJ3331HSUkJQ4cOJRjUC5uISNSx2/oAyrGGTSTUYUUqUePPRUSiVoMGqYsuuogLLriArl270rVrV2eD3x9++AHTNBk3bpwzXr179+68+uqrlJWV8cYbbwBQWFjIyy+/zBNPPMGAAQPo2bMnr732GosWLWL69OkN+dRERKQh2G19JgY+4nHHxRAbY9T+41Rq7dP4cxGR6NSgQaqyYDDIlClTKC0t5YwzzmDdunXk5eUxaNAg5xi3203fvn2ZNWsWAPPmzSMQCEQck5WVRffu3Z1jREQkitgVKTM+ETBIrIu2PlBrn4iIVH/YRF1ZtGgRZ5xxBuXl5SQnJ/P+++/TrVs3JwhlZGREHJ+RkcGGDRsAyMvLw+Vy0bJly32OycvLq/IxfT4fPp/P+bmoqKi2no6IiDQkuyIVjLWCTqKrjl7mwvtI4Vdrn4hIlGrwitQxxxzD/Pnz+eGHH/jzn//M1VdfzdKlS53rDSOyJcM0zX0u29vBjhk9ejRpaWnOV3Z29uE9CRERaRzsilQw1gPU0aAJ2LOPlOGjzK/WPhGRaFTtINWhQwd27tzp/Pz000/XSiXH5XJx9NFHc8oppzB69GhOPPFEnnzySTIzMwH2qSzl5+c7VarMzEz8fj8FBQVVHrM/9957L4WFhc7Xpk2bDvt5iIhII2AHqQo7SNV1a59HwyZERKJWtYPU5s2bIybh/f3vf2fHjh21fkKmaeLz+ejcuTOZmZlMmzbNuc7v9zNz5kz69OkDQK9evYiPj484Jjc3l8WLFzvH7I/b7XZGroe/RESkGbBb+wJ2a1+dTOyDiNa+8kCobh5DREQatUNuHjdN87Af/O9//zvnn38+2dnZFBcXM2XKFGbMmMHnn3+OYRiMGDGCUaNG0aVLF7p06cKoUaNITEzkiiuuACAtLY3rrruOu+66i1atWpGens7dd99Njx49GDBgwGGfn4iINDF2RSpgWHtI1cewifIKVaRERKJRgw6b2LZtG3/4wx/Izc0lLS2NE044gc8//5yBAwcCMHLkSLxeLzfffDMFBQX07t2bqVOnkpKS4tzH2LFjiYuLY/jw4Xi9Xs477zwmTpxIbGwdvXiKiEjj5beClN8JUnU1bCIJgATDR7mm9omIRKUavcL85z//ITk5GYCKigomTpxI69atI465/fbbq31/L7/88gGvNwyDnJwccnJyqjzG4/Ewfvx4xo8fX+3HFRGRZsquSJXH1PGwCacipdY+EZFoVe0g1aFDB1566SXn58zMTCZNmhRxjGEYNQpSIiIitcpeI+Wj/lr7vKpIiYhEpWoHqfXr19fhaYiIiNQCO0h57SBVdxUpe9iE4ccfCBEKmcTEHHhrDhERaV4afB8pERGRWhMoBcBrugBIjK+jNVKu8NQ+a3N3X4Xa+0REok21g9QFF1xAYWGh8/Ojjz7K7t27nZ937txJt27davXkREREasSuSJWZdd3aFxmkNHBCRCT6VDtIffHFF/h8Pufnxx57jF27djk/V1RUsGLFito9OxERkZqwh02U2hWpOh82YfgBNAJdRCQKVTtI7b1vVG3sIyUiIlKr7PHnpaF4oD4rUmrtExGJNlojJSIizYfd2lcStCtS8XVdkfIBJl6/KlIiItGm2kHKMAwMw9jnMhERkUbDbu0rCtV1a59VkYojRDxBtfaJiEShao8zMk2Ta665BrfbWsBbXl7OTTfdRFKStbt75fVTIiIiDcKuSBUHw619dTS1zw5SYLX3adiEiEj0qfYrzNVXXx3x8+9///t9jrnqqqsO/4xEREQOlV2RKqywXt7qbI1UbDwYsWAG8eDHpzVSIiJRp9pBasKECXV5HiIiIofPDlIFFVZFqs5a+wzDqkr5i0k0ylWREhGJQho2ISIizYfd2lcYqOOKFFTalNePV0FKRCTqKEiJiEjzYVekSuxhE4nxdbRGCvZM7sOn8eciIlFIQUpERJoPex8pb11vyAvOwAmP4Vdrn4hIFFKQEhGR5iEYgFAAgDLcxMUYuOLq8GXOrkgl4tP4cxGRKKQgJSIizYO9PgqgHHfdVqPAqUiptU9EJDopSImISPNgBynTiMFPXN0OmoCI1j6fWvtERKKOgpSIiDQPgVIAQrEJgFF3m/GGVRo2oal9IiLRR0FKRESaB7siFYyzA058/VSkEvFp2ISISBRSkBIRkebBDlIVMR6gjveQgj37SBl+rZESEYlCClIiItI82HtIBWKtIFX3wyasypdHFSkRkaikICUiIs2DvYdUoL4qUs7UPj/lFapIiYhEGwUpERFpHuyKlN8IB6n6GTaRaKgiJSISjRSkRESkebDXSPkMNwCeOh82kWQ9jlr7RESikoKUiIg0D3ZFqtwOUnXf2hcef+5XkBIRiUIKUiIi0jyEgxT1HaR8mtonIhKFFKRERKR5sIdNeE0rSNX51D6X1dqXaJSrIiUiEoUUpEREpHkIlAJQGq5IaUNeERGpQwpSIiLSPPjtIBUKt/bV8dQ+V7L1OIZP489FRKKQgpSIiDQPdmtfUThIueu6tS9ckSrHXxEiGDLr9vFERKRRUZASEZHmwV8CQGEwHoAUT3zdPl54jRQ+AHwVau8TEYkmClIiItI82FP7CgLhIFU/rX0eI0AsQU3uExGJMgpSIiLSPNhrpMJBKrWug5Q9bAI0cEJEJBopSImISPNgr5HaaQepZHcdt/bFucGw1mElKEiJiEQdBSkREWke7DVSJfawiTpv7TMMZ51UklGu1j4RkSijICUiIs2D3dpXhocYAxLrekNeiBg44VVFSkQkqihIiYhI82APmyjFTbI7DsMw6v4x4/eMQPcpSImIRBUFKRERafpM06lIeU1P3Y8+D6vc2qfx5yIiUUVBSkREmr6AF7A2xC3FXffro8LsEejWsAmtkRIRiSYKUiIi0vTZ1SgTg3JcpNZbRcpq7bOGTagiJSISTRSkRESk6bMn9lXEejCJIbneKlJWa58qUiIi0UdBSkREmj570EQg1qoQ1VtrX7y9RopyTe0TEYkyClIiItL02a19/hgPUI9BKlyRMrQhr4hItFGQEhGRps8OUuVGAkD9T+3T+HMRkaijICUiIk1fOEjhBiDZXb8VqUTKKfMrSImIRBMFKRERafrsIFWG1dqXWs+tfYmGjxJfRf08poiINAoKUiIi0vQFrCBVaobXSNVTa1+8Pf4cH8UKUiIiUaVBg9To0aM59dRTSUlJoW3btgwbNowVK1ZEHGOaJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr86mIiEhDsitSJaYLqM/WvvCGvOWUlCtIiYhEkwYNUjNnzuSWW27hhx9+YNq0aVRUVDBo0CBKS0udYx5//HHGjBnD008/zdy5c8nMzGTgwIEUFxc7x4wYMYL333+fKVOm8N1331FSUsLQoUMJBtWvLiISFfzW+PPioLVGqv6m9oU35PVRXB6on8cUEZFGoZ5eafbv888/j/h5woQJtG3blnnz5nHOOedgmibjxo3jvvvu49JLLwXg1VdfJSMjgzfeeIMbb7yRwsJCXn75ZSZNmsSAAQMAeO2118jOzmb69OkMHjy43p+XiIjUM3tD3qKQVZGq76l9iZRrjZSISJRpVGukCgsLAUhPTwdg3bp15OXlMWjQIOcYt9tN3759mTVrFgDz5s0jEAhEHJOVlUX37t2dY/bm8/koKiqK+BIRkSbMbu3bXWEFqPqrSFmtfYn41NonIhJlGk2QMk2TO++8k7POOovu3bsDkJeXB0BGRkbEsRkZGc51eXl5uFwuWrZsWeUxexs9ejRpaWnOV3Z2dm0/HRERqU8Bq7WvsL5b++xhE4lGOcUKUiIiUaXRBKlbb72VhQsXMnny5H2uMwwj4mfTNPe5bG8HOubee++lsLDQ+dq0adOhn7iIiDQ8u7XP22D7SPko8VcQCpn187giItLgGkWQuu222/jwww/5+uuvad++vXN5ZmYmwD6Vpfz8fKdKlZmZid/vp6CgoMpj9uZ2u0lNTY34EhGRJsweNlFqekh0xRIXW08vb3aQSjD8GGaIsoCGHImIRIsGDVKmaXLrrbfy3nvv8dVXX9G5c+eI6zt37kxmZibTpk1zLvP7/cycOZM+ffoA0KtXL+Lj4yOOyc3NZfHixc4xIiLSzDkb8rrrr60PnCAFkIAm94mIRJMGndp3yy238MYbb/C///2PlJQUp/KUlpZGQkIChmEwYsQIRo0aRZcuXejSpQujRo0iMTGRK664wjn2uuuu46677qJVq1akp6dz991306NHD2eKn4iINHNOkPLUX1sfQJwHMADTmtxXXgFp9ffwIiLScBo0SD333HMA9OvXL+LyCRMmcM011wAwcuRIvF4vN998MwUFBfTu3ZupU6eSkpLiHD927Fji4uIYPnw4Xq+X8847j4kTJxIbG1tfT0VERBpSwApSpaan/kafAxiGNbnPX0ySUU6RBk6IiESNBg1SpnnwRbmGYZCTk0NOTk6Vx3g8HsaPH8/48eNr8exERKTJsCtSXty0rs/WPrDa+/zF1sAJ7SUlIhI1GsWwCRERkcMSHjaBh9T6rEgBuOwR6OHWPhERiQoKUiIi0rSZ5p7x56a7ftdIwZ4R6IaGTYiIRBMFKRERadoqygGrVbwUD4nuel4fG19pLym19omIRA0FKRERadrs9VEAXlwkxNdzkLIrUkmUU6zWPhGRqKEgJSIiTZvd1uc3PJjEkOhqmCCVYPgUpEREooiClIiING32oAlfTAIAngasSJX4tEZKRCRaKEiJiEjTZrf2lRseABIaqCKVaGiNlIhINFGQEhGRpi08sS8cpBqsIuVVa5+ISBRRkBIRkabNDlJlWK199b9GKgXQsAkRkWijICUiIk2brxiAEhpojZTbClIphletfSIiUURBSkREmjY7SBWbDdTa504Gwq19GjYhIhItFKRERKRpCwepUAMNm7ArUsmGlxK19omIRA0FKRERadrsIFVkB6l6XyMVDlKUU+oPEgyZ9fv4IiLSIBSkRESkabOHTRTaQar+95EKBykvgNZJiYhECQUpERFp2uyKVEGwodZIhVv7ygEFKRGRaKEgJSIiTZvPqkiV0lBrpKxhE8mGVZHSwAkRkeigICUiIk2brwiAEtMefx7XMBWpeCpwEdDACRGRKKEgJSIiTZu9RqqYBDzxMcTEGPX7+K5k59tkvNqUV0QkSihIiYhI02avkSo1E+p/fRRATCzEJwGQZHgp8wfr/xxERKTeKUiJiEjTZgepEhooSIGzTioFL6V+VaRERKKBgpSIiDRt9rCJEjx46nvQRJi9TiqJcryqSImIRAUFKRERabpCQQiUAtawiXrfjDfMtWdyn1r7RESig4KUiIg0XfagCYDSBm3t27Mpb5la+0REooKClIiINF32+qhgTDx+4vE0dJBSRUpEJGooSImISNNlr48KxFpT8xq6IpVEuYKUiEiUUJASEZGmy65I+e0g1WBrpOwglWKotU9EJFooSImISNPlt4KUL1yRauBhE0motU9EJFooSImISNNlV6R8MQkADb9GSsMmRESihoKUiIg0XXaQKjMSgYZfI6VhEyIi0UNBSkREmi572ITXsCpSDb1GKlkb8oqIRA0FKRERabrsilQpVkWqwVr7Km3IW6rWPhGRqKAgJSIiTZc/HKQ8QAMOm3DGn3tVkRIRiRIKUiIi0nTZFali02rta+g1UilaIyUiEjUUpEREpOmy10gVm3ZFqpFsyBsKmQ1zHiIiUm8UpEREpOmyK1KFoQZu7QuvkcILmJRXqColItLcKUiJiEjTFQ5SQTfQ8BWpeCOIm4Da+0REooCClIiINF32sImCisZRkQJ7U16fgpSISHOnICUiIk2XXZHa1dAVqZgYJ0wlGeWUBTQCXUSkuVOQEhGRpsseNrGrwgU0YEUK9kzuw0upKlIiIs2egpSIiDRd4YpURQNP7YM9FSntJSUiEhUUpEREpGkKVkCFF4ASs4HXSEGlvaTKKPOrtU9EpLlTkBIRkaapvND5tphEADxxDRikPGkApFKmqX0iIlFAQUpERJqm8t0AhFzJBInFEx9DTIzRcOeT0AKANKNUQUpEJAooSImISNPk3Q1A0GVVghp0fRSApwUAaZSqtU9EJAooSImISNNUXgBARWMJUqpIiYhEFQUpERFpmuyKVCA+FQBPQw6agD0VKQUpEZGooCAlIiJNk71GyhtnTctL9cQ34MngVKRSKcWr1j4RkWavQYPUN998w0UXXURWVhaGYfDBBx9EXG+aJjk5OWRlZZGQkEC/fv1YsmRJxDE+n4/bbruN1q1bk5SUxMUXX8zmzZvr8VmIiEiDsCtSpYa1f1N6kqsBT4aIilSpKlIiIs1egwap0tJSTjzxRJ5++un9Xv/4448zZswYnn76aebOnUtmZiYDBw6kuLjYOWbEiBG8//77TJkyhe+++46SkhKGDh1KMKgXMRGRZs2uSBXZQapFYgNXpOzx52mUakNeEZEoENeQD37++edz/vnn7/c60zQZN24c9913H5deeikAr776KhkZGbzxxhvceOONFBYW8vLLLzNp0iQGDBgAwGuvvUZ2djbTp09n8ODB9fZcRESkntkVqULT2kMqPbGBK1KVhk2UqrVPRKTZa7RrpNatW0deXh6DBg1yLnO73fTt25dZs2YBMG/ePAKBQMQxWVlZdO/e3Tlmf3w+H0VFRRFfIiLSxNgVqV1BK0i1bCStfdqQV0QkOjTaIJWXlwdARkZGxOUZGRnOdXl5ebhcLlq2bFnlMfszevRo0tLSnK/s7OxaPnsREalzdkVqe4UdpBpJRSrR8BHwlTfsuYiISJ1rtEEqzDAid6k3TXOfy/Z2sGPuvfdeCgsLna9NmzbVyrmKiEg9sitS+QE3AOlJDbxGyp2GifXaE+MrbNhzERGROtdog1RmZibAPpWl/Px8p0qVmZmJ3++noKCgymP2x+12k5qaGvElIiJNjNcKK7l+D9AIKlIxMYRc1ij2eL+ClIhIc9dog1Tnzp3JzMxk2rRpzmV+v5+ZM2fSp08fAHr16kV8fHzEMbm5uSxevNg5RkREmim7IrXFawWoBl8jBYTsdVLxAa29FRFp7hp0al9JSQmrV692fl63bh3z588nPT2dDh06MGLECEaNGkWXLl3o0qULo0aNIjExkSuuuAKAtLQ0rrvuOu666y5atWpFeno6d999Nz169HCm+ImISDMUCoLPCiuby63WvgavSIE1cKJoI+4KBSkRkeauQYPUTz/9RP/+/Z2f77zzTgCuvvpqJk6cyMiRI/F6vdx8880UFBTQu3dvpk6dSkpKinObsWPHEhcXx/Dhw/F6vZx33nlMnDiR2NjYen8+IiJST8r3tM7tNpOARrCPFGDYAyeSQiUEgiHiYxtt44eIiBymBg1S/fr1wzTNKq83DIOcnBxycnKqPMbj8TB+/HjGjx9fB2coIiKNkt3WF4pLpII4UjxxjSK0xCRaU2TTjFKKyytIbwTthiIiUjca/lVHRESkpuzR5xWuNIBGE1hiEqzzSaOUXaW+Bj4bERGpSwpSIiLS9NgVKV+81erdKNZHgbMpb5pRyo4Sf8Oei4iI1CkFKRERaXrsipQ31tq+omUjWB8FOJvyWhUpBSkRkeZMQUpERJoeuyJVGpMMNI7R50BERWpniVr7RESaMwUpERFpeuyKVDHWxL70xtLaF65IqbVPRKTZU5ASEZGmx65IhUefN7aKVCql7NSwCRGRZk1BSkREmh67IrUrmAA0omETdkUq1ShjpypSIiLNmoKUiIg0PXZFaocdpNKTGsmwifAaKUoVpEREmjkFKRERaXrsilR+wApSLRpNRcrakDfZKKegpLSBT0ZEROqSgpSIiDQ93l0A5Po8QOPZkBdPGiYGAMGSnQ18MiIiUpcUpEREpOkp2Q7Aep81bKJFY9lHKiYWM7EVAG7fTvwVoQY+IRERqSsKUiIi0rSEQlBqBantoTRiYwxaJbkb+KT2MJLbAtDaKKSgTOukRESaKwUpERFpWrwFYAYB2EkabZLdxMYYDXxSexhJbQBoTSE7tCmviEizpSAlIiJNS2k+AIH4NALEkZHaeKpRAFSqSGlyn4hI86UgJSIiTUuJFaTKXOkAZKR6GvJs9pVkBalWRpE25RURacYUpEREpMF9tiiXWat3VO9ge31UYaw1ajwzrZEFqWSrta+NKlIiIs2agpSIiDSo71fv4M+v/8yNk+ZhmubBb2BXpHaRBjTeipS1RkpBSkSkuVKQEhGRBhMMmTz88VIAin0VFHoDB7+RvUYqP5QKNMIgFbFGSq19IiLNlYKUiIg0mLd/2sTyvGLn52pVcOw9pLYEUgDIbGxBKjy1zyhkZ6kqUiIizZWClIiINIivlm8j56MlEZdVa1y4XZEKb8abmdY4p/a1ooidxd4GPhkREakrClIiIlLvvly2jT/9dx7lgRD9jmlDzw4tgOoGKasitdmfDDTC1r7E1gDEGSFKdldzgIaIiDQ5ClIiIlLvXpi5lmDI5OITs3jpqlNoZ0/eq9aUO7u1b4eZRpIrlhRPfF2eas3FuQh5WgAQU7Ydrz/YsOcjIiJ1QkFKRETqVWFZgHkbCwD46+BjiI+NoVWS1Z530IqUaTqtfTvMtMZXjbIZlQZObNld1sBnIyIidUFBSkRE6tXMVdsJhky6tE0mOz0RgNbJ1QxS5YUQtKpWO2jEQcoegd6GQjbt0jopEZHmSEFKRETq1dfLrYrSuce2dS5rneICqjG1z14f5YtNxoer8W3GG5a8Z3Lf5gJVpEREmiMFKRERqTfBkMmMFVaQ6l8pSFW7tc/ejLckriXQCAdNhCXtae3bVKCKlIhIc6QgJSIi9eaXjQUUlAVI8cTRq2NL5/I2TkXqIEHKXh9VYLQAICO1kY0+DwtXpChk0y5VpEREmiMFKRERqRe+iqCzb9SA4zKIj93zEhReI3XQqX32xL7tZirQCDfjDbMrUq2MIjarIiUi0iwpSImISL349xcrWLyliJaJ8fzt/GMjrmtlB6kyf5Ayf0XVd2JXpPKCVpBqk9JYK1L2sAljN5u0RkpEpFlSkBIRkTr39k+beOnbdQD86zcn7rO2KckViyfeeknaUXyAqtTujQCs87cA9lSyGp209gC0N7azuyxAcXmggU9IRERqm4KUiIjUqc8X53HPuwsBuPGczgw4Jn2fYwzD2DMCvfQA66R2WWFsdYW9BqmxVqRadgIg3SghhbJDa+8LBfnvrLWcMfpL5m/aXaunJyIih09BSkRE6oyvIsjf3ltIZ7Ywq8X9/G1OH3ikLXx4GwQjqzTh9r4dxQcIUgVWkNpgZuCJjyHJFVtn535Y3CmQZIW9Dsa2mg+c+OU1gqM7ctXUnnxYfg3fffBCHZykiIgcDgUpERGpM18v386R3iW8536QrPLVGJhghuDn/8Lk34F/T8Bok3yQvaR8xc4+UhvNDFonuzEMo86fwyFr2RmAjsa2mlWkvhsL/7uF2EAxAG2MIm7dOYr8qWPr4ixFROQQKUhFucVbChkzbSXlgWBDn4qI1JPdZX5KfAcY6FCLvvppES+7/k0aJXBEL7j9F7h8MsQlwOpp8PWjzrHhvaR2VjUCvWA9AH5XC4pJbLzro8LSw0Eqn1X5xdW7zZqvYXoOAM9VXMTg+Ff4InkYAG1n5bDz5//x9FerGDr+W96Zt7kOTlpERKpLQSrKPfTRUp76chWfL85r6FMRkXpQWBZgwJhvGPbM95imWaePVVQeoN/af9PSKMHbqhtc/RGkHwnHXgC/nWgd9OMLsHMNAK0PtpeUvT6qKMEa5NDog5RdkepgbOPTRXkH/8AqFMT78d8A+G/FQP7X+gb+dfV5tP7NGF6pGAKA/38jeGHqfBZvKWLstJV1/v9QRESqpiAVxSqCIRZu2Q3Ahp0azyuHr7AswMLNuxv6NOQApi3bxo4SH6vzS8gtLN/n+o8WbOWzRbm18lgLp73BBTE/ECQGz6+fBVfSniuPGQJHD4BQAKY/AFBp2EQVrX32+qidriOAPZv4Nlp2RaqrazuF3gBTl2478PG/vEZCwXJ2m0nM7fxnPr39bE5o34KTO6bzQ+dbWBfKoJ2xi8fT3iUhPpYtu70s3lJUD09ERET2R0Eqiq3KL6E8EAJgy24FKTk8pmly3atzufjp7/l6eX5Dn45U4fPFe0LSym2R7War80u4bfIv3Dr5FwrLDnNcdzDAUfP/CcD87D9gZPXc95hBj4ARA8s+gi3zaJeWYB2/cTfB0H4qLXZFKjcmE2g6Faku8TsAawR8lYIBmDEagKcqLqVPjy7ExFjrvwzD4IVrzybjDy8BcL7vc67oZP2/+2KJuglERBqKglQUq1w5OKTRvBJVNuws5dFPlrJuR+l+r/9u9Q5+2lAAwIvfrK3PU2tWvP4gG3bu/8/4cJX4Kvhm1Q7n59X5JRHXv2W/0Q+GTJbmFjF3/S76/etrvl+9g5ra9u0E2gW3stNMpf3FD+z/oLbHQY/fWt//+AL9jmlDy8R4tuz2MnV/AcGuSG00rc1uG3+Q6gRAim8bLgJ8t3oHm6vanHf5J1Ccy3YzjUnBgZzTtU3E1YZhkNilL3QbBphcH3gNgKlL81iWW8T/5m/B6z/4WtdgyCS0v5C6l5/W7+Le9xbW21o6EWm63vppE898vbpav1uaGwWpKLZgc6Hz/Zbdhx+kdpT4uOutBXy7avth35c0Pk9/tZqXvl3HsGe+Z9aafd9YP/P1auf72Wt3sjxPLUeHYuS7C+n37xnOn/HGnWUU1dJmrl8tz8dfEXJ+XrVtT5DyV4R4t9LwgqW5RUyavYH1O8uYMvcAlZT9qfDhnvUEANNbXUlGm1ZVH9v7Ruu/i9/DU76D35/eEYCXv1u377F77yHV2INUcluIT8LAZPARfkwTfli7a//HzpsAwJRgfzq0SeOIFgn7P+7c/wMjlnZ5MzgtdiUrt5Vw4VPfcseU+Zzxzy+ZPGdjlaezcWcZJz04lbvfXnDQU//XFyuYPGcT7xyoitYI+CtC/G/+lqrX1YlIndq628s97y7kX1+s4LmZaxr6dOqdglQUq1yRyt1dftifJDz6yTLe/XkzT0xdeZhnFh2+XLaNwWO/YfGWwoMf3AgstIN3oTfAVS/Pcd7o7y7zM+H7dfywdhfxsQandbY2W534/fqGOtUmq8RXwReL8zBNeO2HDSzYtJvzxszgz6/Nq5X7D7f1dW5trVWqPElu+rJt7Ky0NmlZbhHz7Arj0q01+zsamPsqLfx55JktyTz35gMffEQvaH+qtVZq3kT+cHpH4mMNftpQELkJbTAAhVbQW1beGoDWyY18jZRhOFWpnsm7AetNxz52roG1MwhhMKWi/z7VqAitu0DP3wPwUPI7gEnItP4sdpcF+Pv7i9hVxRqzjxZupdhXwXu/bGHOuioCnW2VXa1cmtu4PxAZ9eky7pgyn8c/X97QpyKHaOHm3Tz6ydJqVVQbk1DI3H8LciUVwVCtD4R56stV3PvewoM+dm060GO99/Nmwk/x31NXMGNFdLX2K0hFqfJAkOW5e95E+YMhth/GJ3q/bCzg/V+2ALAirzgqy7s1NeH79azYVsx/vm38bXBl/grnTfdZR7emImRy6xu/MGbqCnqP+pIHP1oKwG96ZfPXwccA8P4vW9hdVsXQANmvb1duxx+0KkbTl+Yz+rNlBIImc9btoiIYOsitDywYMvnWbuv7c9+jAOvNcvhFPtzWd2xminUuq7Y7leq1O0op81ezxSvgJTjzcQBei/8tZ3XLPvhtTrOrUj+9QtvEGIaekAXA/+Zv2XPM7o1gBiHOw4rSRABapzTyihQ4Ayc6x1pvLvYbpOxq1OyYnmyhzYGDFEDfeyDOw7G+xdxz1GZevfY0fvz7AI5um4xpwo9rd+73Zt+s3NMt8Pjny6t8g7ezxOeEsWW5VY9tX7mtmJkrG64DYcnWQv47ez1AZOhuAkzTpKCqoSpR5t9TV/LSt+t4/ccNDX0q1bZ1t5dhz37PCTlf8Ne3F+y3A2N3mZ9B477hgqe+q5WuH7Deu42dvpLJczY5H3TVtYc+WsrJD0/jq+X7DssxTZO37U6GI9skYZpw7cS55Hy4ZJ9tLOZt2MX6KpYGNGUKUlFqeV4xFSGTVkkup4XkUNZJLdlayBNTV0S0ingDQTbu0vCKAwmGTOeF/8vl+Xj9Qe59bxE5Hy7Z74jkCd+v49VZ6+v3JCtZlltEyIQ2KW5euuoUjs9KZVepn6e+Wo2vIkTXjGTuHtSVBy7qxikdW3JsZgq+ihD/m7+1wc65KZq2bM8LlT8YctrAAkGTDYf5b2rltmKKyytIcsVy0YlZxMYYFJdXsK3IRyAY4kf7se4eZAXhbUV7XgRN0/qApFrmvoynfDubzdb4elxJbEw1NsztdgkkZ0BJHiz7kPOOs9ZARbTB2SPSQy06UuSzQmWjb+0DJ0i1D1mhcJ83VBU++OV1ACaU9yfZHccZRx6gFRIg7Qg47QYA/lzxGn2PbkVsjMGZR1m3m72fIFXiq3DeeIUrfl9VMRRmVaW1cyu2Fe83xJcHgvzuxR+4+pU5LGuAqlUoZPKPDxYT/sxuzfZSfBVNp6Lx5Jer6PnwtKj79H5/NtprQg9WJW0sluUWcckz37NwcyGl/iBvz9vM1a/M2eeDiedmrmHt9lKW5RYx/PnZtRIiNu0qc6o/M1fW/d8d0zR575fNFHoD3PDfeXy8MPI1fc66XWzYWUaSK5Z3b+rDRSdmETJh4qz1nD76S0ZMsQYX/bR+F79+bja/eX529T+UayIUpKJUuK2vR/s9vfg1/cQkFDK5/tWfGP/VatZsLyXRFUuHdOuTYq2PObDV+SXOIu7i8gpGvruQyXM2MnHWeq56ZU7Empi120t48KOlPPDhEjY1UEBdZLf1nXBEGgmuWF74Qy8yUt2kJcTz79+eyBcjzuHWc7vgiY/FMAwuO9WqQkyZu4ktu72M+nRZs/wkqjYFQ6Yz7XBQt4x9rl+1rZpBpgpz11tvUk7u2JIEVywdW1n/VlflF7MstwhvIEiqJ47+x7YlxRO3z+2r1eLlK4bvxgDwZMWlHJfdunonF+eCU661vv/xBU63g8Sy3KI9n9pvnAWAt3UPAFyxMaTu5zwbHXtaYbvCXwD2HTm/9EPw7mJ3fFu+Dp3E+d0z8cTHHvx+z/oLuNNg2yJY8h4AZxxl/XnPWrNvkJq9ZicVIZOOrRL545lWuHvjR2s9VaE3wPgvV3HWY1/x0EdLI4KUvyLE2h2lFHoDER/yfLY412kF/boBwsDS3CJ+3ribhPhYkt1xBEOmMzzFNE2e+Xo1Hy6IfNP388YC3pxb9RoysCoNefvZFqA2lQeCTLBbn6cvO8hI/GYuFDLZav95z12/q0l0szzwvyVsL/ZxTEYKL111CjGG9cFT5a6ebUXlTnt762QXW3Z7eejjpYf92JWHPX2z0uowWLWtOGLt66FYlltkt+hF/vmv3VHKbnuCa0XI5M63FrCr1E9+UTn3vLOQ2yZbv9eGnpBFyyQX43/Xk9eu682J2S0IBE0+mL+Vv7+/iH99sQKw1tJPntO4113WlIJUI+OrCLJka2Gdb7K4YJP9xrh9C45oGa5I1exN+qItheQWlpPoimXkkGN468Yz6G2vj1lexafXG3aW8n8fLGqwQNBY/LwxsiT/kf2CbxjWJzxXvTzH+dRmWqW9Z6r6BBms29VW+wBYL/b3vreQMVNXsMjeq6b7EWkAtG+ZyIy7+zP3vgH8pld7DCOy6jDspCNwxcawLLeIYc98z4vfrOXfU1cc0nn4K0KHHSIaO9M0mb5sGwVlAdIS4nl4WHfiY60/03CrXeXBEAfj9QcZPPYbrn/1J+eyueutv3OndrL+jfZP28YjcS/T7X8XctyE45jh+guvJowldvVUumUmO7cLf9CydGs1gtR346BsJ+vNdrwXPJtuWanVPmd6/RFi4mHzHFoXLqFLW+scflxnh4J13wKwo+0ZgPXmZO+/d41Sp7MBSC5YRguK2brbG/n7/adXAHg90I8gsfzq5COqd7+J6XDmbdb3Xz0MFX5OPzIdw7A+qMkvigwD4U+vz+nSht/0sjY0/nbVDgrWzeebMVcyYOav+LTsCq756RJ6fH8bg2PmYmC9OZu6JI+zHvuKq16e49zf6z/sCSTfrqz5VMfDtd6uYhyflUr3I6y/Z+F29Z83FvCvL1bw17cXOG8wd5f5ufqVOdzz7qIqW6LKA0EufOpbhjz5TZ0Or5i+bBuFXuvN6ZLq/LtqArYVHVr43FHqc/4fFZQFIkJ8Y7RxZxlz1u/CMGDCH09lYLcMOrWy1pyuzNtz7k99uQpfRYheHVvyn6tPBay/l4f73q7ynp+LthTyz8+WM3DsN4e1RjAYMrl24lzufGvBPh/C/Gz/Wzm5QwuOa5eKvyLE1CV5jJ2+kjd/2kR+sQ9PfAxX9eno3OasLq353y1nMvlPpxMbY/DJolx+rFRtfPGbNU2qenwwClKNiL8ixAk5U7nwqe8i2mrqQrgidWL7NNrbQWpLDVv7vrQ/SevbtQ039zua7kekcWy7yBe0vU34fj2v/bBx/xO5okj4l9OJ7dOcy1onu3nnpjNokRjP/E27ue2NX6gIhiI+sawqSH22KJfhL8zm1jd+rpXzC4VM7nxrPpPnbOKpr1bzmT2koMcRe843wRWLK27/v0JaJrkY3N3a62d7sfV3+dtVOw5pcezY6SsZOPYbZ73MrlJ/rU2xawx2lvg4/8lvuXGSNVDi3GPbkpHq4T9Xn8pzV57MJSdZb6xr8gbjl00FrNhWzPRl21i1rRjTNJlrv5Cd2aYc3ricf2y+gd/HfUmrkhXEB8voFLONnt7Z8MZwniy8nW7GegCu6N0BqEZFavcmmP00AKMDlxMbG89RbZIPfJvKUjLg+F9Z3895kTPsNrUf1u6C8iLYan3yuTGlF9BE1keBNbmvzXEAnB6zjDJ/0HkTTf5y2DiLkBHLf8vPoV2ah9M7H6Str7Lef4aktlCwHn75Ly0SXXSzfwfv3d4X/vT6nK5t6JqRQs82Jv+KeYqWr/blosAXHBeziVTDSwcjn5OKZ/KCayxfeu6ht7GM8V+tpri8gjnrd7Fmewkr8or5aUMB4Rz704Zdh9SuEwiGDnnB/KZd1utV+5YJHJtpv+7YnRDfr7aeu68ixBJ7UMpL366luNw6xwVVrKdau72UgrIAu8sCEVNIa9vbP+2Zjrkst+igfwazVu9wKsqNjWma/P39RfQe9SWjPl1W5XEVwRD5xfuGra27Iy+bs27/6/uqcx5jpq3klTp+bxFeC37W0a3Jsj9k6pphfdi1wv7Ab8POUt60J52OHHwMx7VLIS7GYHdZgK2F5cxcuZ1/fbGcwCGse12/19YYz9tT8t75efMh3R/AN6u2O5Xy7/ba6uIX+9/KKZ3SGXpCO+ux5m3mQ7ttf/SlPZh73wCOz0pjb2cc1Ypb+h3l/PyH0zuSmephW5GPd+dt2ef4pkpBqhFxxcU47TZLcw99kltxeYCbJs3jtR/2v3CzxFfB6u3Wm7IT2rc45Na+acusN/UDjtvThnSc/el5Va194bJ0Q/TUNybhitSf+x3ltCfd0v8oenVM5+WrT8EdF8OXy/P3+fR09tqd+7xhKfNX8LDdMrB4S+FhDyUo9Aa4+50FfLpozz4+ZfY0pR7t9/1lWZUr7TfgrZPdpLjjKPQGWFBpUmR1hdvd3pm3me3FPvr/ewYXj/9uv2vJGsonC3OZvZ92qur4cMFWlucV44qLYcjxmfxlQFfA+oDi/B7tnMrM3pvnHkjlAQGfLc5jc4GXvCIvv4n7jpM/uQBWfoZJDB8FT+dvcSP5bew4LvP9g63d/gTuNDK9q/nA9Q/uSPyCwd2s9UrLc4sP/IZv+gNQUc7O1qfyRegUumYmEx9bw5eY3jdZ/138LudY8yasP9eNs61BEy07s8W0gkaTWB8V1vkcAPq7rU+NnTePPzwDwPyE09lGOpecdISzCW+1uJOh70jr+5mPg6+YPnYAnbV6z9/H9TtK2birjPhYwwqoG2YxyTeCS2JnETQNPg2extQTn+T549/gd/77eLbiYgrNRI5kC5Ndj/BXXsWN1cb3xZI8Jv2wHrBaULPTEwgETWeNXXWt2V5C/3/P4PwnvzmkMBXuoMhOT+S4duHXHevvfeXtGeZtKGBHic9ppQOqnJRa+U3q6z9sjOjSqAiG+O3zs7jk6e8O+Q0rQF5hubNFiCs2hvJAiLXbq/6QZGeJj6snzOGql+dQWgd7epX5Kw74579uRynnPP41Y6ftfxrvS9+udVpEX/xm7X43nTZNkxsnzeP0UV9GTAuGfT/A/bGKdVKPfrKU3734A8VVfIi2NLeIp75cxUMfLz38zcSrEF4vBHBppcpxV/t9zwr7fc+YaSupCJn07dqG3ke2wh0Xy9H27/HFWwoZ+c4Cnvl6jRPKaiL8d7Rdmifi8t1lgUPa7w8iNwrfe51a5YrUBT2sIPXThgJK/UE6tUrk8lOzSfHEV3nft57bhVM6tiQz1cMdA7pw3VlWW/GHCxSkGp1nn32Wzp074/F46NWrF99++21Dn9IhCX+aWLmNJhgyWZFXXO2S8P/mb+XzJXn83weLeaHSTP+35m5i8pyNLN5SiGlCVpqHNilup7XvYBWpMn8Fu0r9mKbJlt1eluUWEWNA/2PbOsccY/9C2bCrbL+/9MNDKFZsq/7zaeyKyq2FlNWxaHMhXy7bxprt1i/DUzul86/fnsif+x3Flb2t0nivjuk8eflJALz782ZCptW+kp2egL8i5HzaGvbs12ucHvNA0DyszZV/WLuT856YwXs/W7/k/nlpDzJTrV/YbVPcZKR6DnTzCKcf2Yo3bzidT24/i7O7Wms3Zq44+ISvimCI0Z8u4625myjzVzgBYvaanUz4fh2F3gDrd5Y5n/jVtVDIPGA4nbehgFve+Jk/TpxzSJWyqUusiuM9A4/k+bO9dFj6PLx3I7w+HF4fzumLc7g29jPcOxZTUc12iMq/Pz5dlMuCFat5Ln4c/457FsNXBEf0wnfD94xOHMmUkpOYW9qWn2O6kf6rx+D2n/EffQEuI8hfQq9y5Hd3kRZfgTcQ3OfTUMeid2Dxu4DBp1m3AQbHt6t+6Ha072WNQw/66bP7I8D6XVGy/Evr+s7nOC1XjX70eWWdrfa+M2KWAPbkvsLNMH8yAI8WDABg+Cnta37fJ19tjVgv2QafjuTMo61/a1+vyHfWm3xjv3Hv1bElyQtfhVcvItm/nTWhdvzK/xD3xf+Vsy78PSf07M3s0PE8XnE5Z/meIu/oy4gxTK6P+4yPXffRw1jLOz9t5q251pvJa/p05qyj20Q8RpXCz/eTuyn57+Vse/ZCRpY8zrCd/2Hr7LfAW7MJZJvs33PZLRM5xq5ILcstxusP8vOG3c5xP28s4KVv1lLmD5LostaeLa5inH/l9Sf+YIinvlzl/PzNqu3MXV/Ags2F+/1QwzSrt9HxRwu2EjLh1E4tOcH+YOpA7X3zN+0mEDTxBoKH9EHUgXy2KJdTH5nOZS/MrvL1+KMFW9m4q4wnv1y1z4TZJVsLGf2Z9eHAaXbL8H3vL+aXvVrX3/15C18uzydkWkG8si27rfcE4WAwZ92ufc5lw85SXvp2HbPX7oyo5lVW+YODRZWC8gsz1/Cb52bVSrj6eWMBG3aWkeiKZfDxmc7lxzgVqRKW5RY5a/PCE2wBp2Lzv/lbnI6j93/eN0xsL/bxw9qdVf7/WL/D+vO66oxOACS6YhlgD+f5eGFujZ/TrlJ/xPKBhZt3O2PoS3x7Xn97dmhJ59ZJHNduT7v28FOzD9pe7YqL4a0bz2DW386ldbKbfsdYvy+sv9eH96FvY9EsgtSbb77JiBEjuO+++/jll184++yzOf/889m48cCLShuj8D+2yr9Y7357AYPHfbPfTTG/XpHPhU99G/FpeOVPJUZ/tpynvlzFm3M3MvLdhdz73iLn06NwdaFyRaqqf7wFpX7OGP0VJz88jRMfnMrlL84GrBfm9KQ9b2haJbtpk+LGNPf9BD0YMp1P+HaXBZyWr0Px+OfLueWNnw+7+lIb7nt/Mb95frazR09VFm7ezSXPfMd19rqVTq0SaZXsZvDxmdwz5NiINrkh3dtxU989JfGB3TI49xjrl2XlEaTF5QFesl/cPPHW7dfuKGHehgL+/v4ivl+9o9qBtcRXwV/enM+OEj9HtUnijet7c/lpHXjgom4YhlUhqaneR7YiI9Xj3Pagb7aAD+Zv5YVv1nLfB4v4Ye1OZypXRcjkhW/2vJA/O2P1AatSm3aVcf//Fh/WerxAMMTvn53OtaNfYvuPbxGY+yo/v/tvcr+ZACunws41TPzOagEqD4T4bFHNXsh2l3gxNnzHqLj/cM3swTDxQvjyQVg4BVZ9Aau+IHnpG9wfP4n/xd2LOf5k+ObfUHTgaYiVK77Z+V/TZ+pQzo+dS9CItTZ0vXYqnqxu3HvBcc5x3Y9Is4YcJLXGdeUbcP6/wIglZtFbvON+mAx27b+SvGstfDTC+v6cu5lRZJWSarQ+qjK7KpW48FV6HmGtPdj6yzTrus7nOO2tney9sJqEjmcCBh2Cm2jDbrYWeuH7pyAUYF1yT+aZx3DesW05siatkGFxLrjkWTBiYMEbnFk6jRR3HPnFPqfy/c3K7cRTwf/xEnxyJ4QqMI+/lDvSnmSheRTXntmZRFccp3RKJ9ltVchTW7QidfizXBv4K/lmC7rEbOF91/1cvPtVQkE/p3VO5/Qj0zmni/0hyf7GoPvLYMEUmHABjD0ePrgJ5r5E8trP6GPO5+LY2dwc9yHZ026Af3WByb+zQrn/4INpwq8l7Vsm0DUjGcOwFrJ/sSSPuGAZvWOWc3HMLLLXTME/ZwIXx8xi3Ble2rCb1fkl+92zKDwQp7/9Zu+9n7c44+orL5BfsiXy34Fpmvz2+dn0+/eMKismYVOXWkFi6AlZHG//GznQXoKV2xB/2bg74jrTNPnLm/O55fWfa1zVe2HmGv78+s+U+oPOnm0lvgqmL90WsX6l8lj5Rz5Zxn++Xeu8plivL1a76JQbTmdQtwz8wRA3TprnrJnaXuxzOiZg34pHuDp7fvd2uOJiyC/2OUNDwip/aDbphw37DayVW9LCgbM8EOTJL1fx04YCZtTChLtwe+yA4zJIdO0ZdHOMvaZ01bZinv5qNaYJF57QzllTDDj/rz9bvCdI/rBu5z7bIYx48xcuf/GH/U7p9VUErd8dwG9Pac+/f3sik67rzfVnHwlYITU8/Xd/fx++XbU94v8fWHtABYIm3Y9IpV2ah0DQdH5vLNi0m5BpvUcMf4h6YQ8rQMbGGPzm5Op98BMTYziV9qPaJJOWEE95IOS8zy0uDzBwzEyumzi3WvfX2DSBkUcHN2bMGK677jquv/56AMaNG8cXX3zBc889x+jRoxv47Gom/OYjvB7h44VbnfLvszNW89te7Ymz22VKfRXc885C8ot93PLGz3x6+9m0SXE7iwUv7NGOTxblMmavknz405IT2rcAcPp8y/zW2PKWSS7e/mkz53fPdK77Ye1Op6+/qLyCIrvXvPKnMmHHZqawvdjHstxienZo6VyeW+glENzzD3h5XjFtUz0EQyZPfrmK0zqlc1aX1qyy9ya5pk8n57lWtnZ7Cc/OsCptf+zTiVPsT8L29p9v15LgiuWyU7L3ez+1oTwQZJr9wvjZ4jyGdLdK34s2F3L1hDncNagrV/buiGmaPPzxUkKm9QlSmT/IxSdmHfC+7x7UleV5Rfy4dheXnHQEG3eV8ersDUxbms8jw0xiYwxmrtyOryJkf1KUwqeL8li7vZRPFq3ml427eePHjRyflcplpxzBuZ2TyPL4rV9oRgwYsRDvAXcqGAbjpq0kt7CcDumJfHzb2STYn96e36Md3/y1P20OtCYlFALvLijOhdIdUFFuf/kg1sVAl5s3jZUUbU6iYNcxtGzZCvbzSVYwZPLsDCuYBIIm47/as04hjgqOMHdwTHw+x7i206JsK5tfmcjRLQzrjZcZhISWkNgKMyGdTxb4WZGfwuPbujH+T+fv9/H2EfDCtiWw5WfY+jPFq37gtdL1xBgmfGYdcvJeN/mXGc9Vrs4sCB3F1u9PgqN/By06VP14wQprAt3SD3Ev/IA34u03oOVAYmvodBa0O8Fa+2KGoDiPud9PpZt/EUmF663BAl8/CkcPhJP/AF0GW2+mbf6KEKvzSzjW2EhO4jucHvwJTFhFB5Iue4msY093jh16Qjsmzd7AnPW7nI2UAevce98AbY+Ft66mi3cVH7vv44clJdDjpj3PLXchTLkC/MXQoQ/0/RtLHpsJHEaQ6jYMvrgPinN58YyfGFtcQVe/FaA/Lz2anzduwRUb4wxMaBIS0yGzB+Qt5I64d/FvSYLlrwLwcOEFAE7LyyHpdCb0/RvMGEX8JyO4t91f+Pv6E/lscR4ntG9B/ppfmOJ6ke5bVwEGnPcPjLPu5JHNhXy9PJ8/nWO9EXPFxXBO19Z8uiiPo9smk+iK48gzLuWRbaczNnkSccs+YETce1wUM5tA139gmKfR5+jWuGJjWLu9lKVbi+jWLsVaz/bLJCsU+cKhw4AjerEh+QT+szhEKC6RPkfEUbhxEeclrSXDtwFWfGp9xSVAl4HWWPyug8GdEvF0Q6E9lffsFi4Sdy3jltTvOaJ0KSd+vI5F7g3EGvZrTfizNhfwIwzyQJ7ZEt9rp5BwdG/IOtmarJiY7lRcf3Vye7yBID+s3cXL363jxnOOdAK8Gz/5a36GxJ+sDxFKd1C0M49bt64hjgoKJ7QlJaMtuJIhNQtadISWHaFFB3bQgp/sVqmB3TL4bpX1O/ZAFakFm3bRht20NXYTWLYOMjpAqALMEOt2eslfsIXdZjLfzjXpd3I3iE846F+XxVsK+ac9nCAz1UNeUTlT5mxi3Y5S5qzfxemdW/Li77qRYpaQt2ElbTA55cgMZqwt4pFPljJ3/S6evbKX00J8aseWxMQYjLnsJC599ntWbivhptfm8e5NfXhh5hoKvQGOaJHAlt1eFmwqpDwQdCZThv8/dm6TxFlHt+ar5fl8tjiPLnaVpyIYcvYpAqtq+O3qHREf7PkrQhEBLRw+v1+9w2lLr/b2DQcQ/iDpxOwWEZd3bJWEKzaGMn+QT+wP027pd3TEMeEgFc4whmF9/8H8LdxsH1voDThbPoz6bDlnHNXa6fKBPaPPk91xtEpyOb8DgyGTtilu8ot9TJ5jfVA+qFsGfY5uzdrtJbRvaS0ZueX1nykqr6Bnhxb06pjO7jK/sxbwyt4d+XHtTj6Yv5Uf1+7kzKNbO3+mPTvseb6/6ZXN2/M2c96xGbStQYdKWEyMwSkdW/Ll8nx+Wr+Lk7Jb8N7PW1iVX8Kq/BK27PY6H+43FYbZxPur/H4/iYmJvP322/zqV79yLr/jjjuYP38+M2fOPOh9FBUVkZaWRmFhIamph/jiX0u8Ux/h1W+WESSGK844isk/baXYbxD4//buOz6KOn/8+Gu2Z1M2vfcCgdATSuhdEAuHHhwioqB3qNzh8T3bT0899fRsp2e9syGnHNjQO/FAkA4WepMeCBBISCM92WyZ3x+bLFmSCAmBAPd+Ph77CLs72ZlZJjPz/nzen/cHLQ403JweQ1q4GRw21h/IY8uRfPQ40OIg2k9H71g/vt19ApNOZXzXUI4WlLHnRDEKKt5mLwqqVGpVLTZ0jOwSQ1SQH2j1fLotjyPFVuJDLVidGg4V1tA1woebe4aBw8ba/XlsP1pA13Az3SO9Ka+sxGmrJc5fj8ZpA0ctOFw/s4pqOFBUS1iAH70Sw0FrAJ2RE+UOFu0swF63/sGdIumXHMae3DK+2JyNxaBy98BYPv7xMBVVVQxP9iU5QAe2uptyWzXYa8gpKuNkWS0OVUt8iC9Bfmb2F1QTHmghxN8COiPFVg2f7SzEih5/X196JIYTGehHkJdSd4NfCw6r66e92tVyaqt71FaBrdK1PhTQ6FwPbf1Po+tipfcir1rDikPlVGNA1XkxY3gXNAYzS3bnsu1IPhE+Wu7oG8GRk/l8v+84vhoro1J80Tuq0drr1lVbUbfeulZYncn10HuhGn1xGnzRellwGHxZsKOEIoeJCf06EhPoyxfbTrD7ZCmDE3wwOyrIOn6CzgFOKkqL8KUSf6UKXyrxperMjcXZNDrsRn+OVBk5rfqQGBNDcEgYmPzBy9+1LfWcdlcKTnUxVJ2Gynwoz3M9nC1IndB5gW84+Ea4igz4RoA5iL2nqvj39hMogEWpIEw5TTinSTaVEFCbh05pXQ+kQ+eFNjARghIhMBG8Al375bBCdQmUHseZvxfy96JRG7dUF6gWctQQilVfHIoOL2oIppR4JQ8vpYlJNb1DXClqYV1c36HqhKpiKNgHOZug6kwPcqlq5ljoCLqOmeGq8KZt3L71+4+3s3RbFq92O8rwqm/Q5vxw5k2DL7WxgzioRpFrNZLmW0XRTyvposkGwKZqWaC9ngF3vkhSZONexfyyGj7edJypmXH4m5tIlzudTfF7NxNYUZfmFJXhCvbKTsK+xa5jNzAJpn1FsS6EXk+5eo92PTH6Z3Pnf9b6V1xjrgBVo0dx2vjQPpI/2l0l0m9Od7XGtpWq02V0fs6VDr7HuAWz4oT77wfvNuz12vdf1IW3oKBiR4cOO6cC0umbO4fUcD+WzB50YVUInQ74bDrs+RKAdY4uZBlSuT6iBMvxlegUJ6rBF+Wmd6HjmGY/5vusIu7652aeuCGtUbC68rO36LbrGYKVuht/n3DoMJovsg0cPlXCyIhqutt2QmmD7An/WOg5FXrcApZoJv79ezZmF/ObIYn0TQhk+gebSQzxZuXUMAq+/xfqrs8ItTfocdUaITrDFYj6hILOi4qy03y1bhMpmhOkG3NQbI17natM4WQ5QsitMaCgkhakEEkhzpLjaGjiPOIfx6rSMA7bghiX2Y1yh46Pf8wmQGelt38FztNHiVYKiKTI1bDSCnaNkaP2QEqMEaR378Epgpj7/XGMeg33jUhBsZZDZT7OinzspafQVxfgKM9D19T2NsfkT6kumIPVvlQZQ/ALCqNbfAQVTj0/5lSTHGRg44EcikrK6BqsoVOAk12HjmJRKrFQiV/dT4PSdG+/XdVQgRdGnwBO1BgotBlJio4kJDgETBZKVC/e3VhIpV1hcq9QVu7OwWGr5oZOFnYcOo7WXklmtBF/rRWs5eQXFmF0VuKjteNUtFTbFZwaHf6+fmDwptRh4KdCBzatGX9/f/YUOggKDGB0jyQweIPOi2MFJXzywyGMig0jNgIMDn7ZLZgdR06SX1yCGSvhZidJ/lrX+UrRuO5LNDrXz7p7FAzeoDe7ftb9e2e+jTKbwoDEAN5afZCyqlom944iLsDkvifBXsPyHdlYa6owUkuol0r3cJPrell3/2BXdKw5VIIdLbXoiAkN5KdTVsxmM+MzElH0Jg4U2fh42yn3+SHKV8vt/aLROO3gqOVYfglr9uYQZlYY3TGg7r7L9cgpsXKosBo0WipskBRmweJtZnVWKfGhAcSG+vOf3YXUomNQaiTpieH896dCNmcXEeGrYXq/aPbkFLN23wliLHrGdQ7miy1Hsdba6J/oT0KA0bU/9Q9FcTXGKhrQaM80zipK3fOz39O4n285Vsr6w6dJCvFlXFown248TGVVNQbsDEjwI75TBvSf1aq/sbZ0vrHBFR9InTx5kqioKDZs2ED//v3drz/zzDPMmzeP/fsbl1y2Wq1YrWfSysrKyoiJibksAimeT4KqS19KVvxvsKlanCjoFCcaVBTa+M/fO8TVq1IXaKI1uE70NWWUlhSh1JTgp7Q+1a5G1aMGJmIMTWHJSRO7inXovHz5zahu+JqMUH0ataqQbzbuxlyZQ4I2n0g1v/kgsgnF+BGQ3JdlJZF8fDIEXXQ6E4emc+c/N+Nj1DFvem9CfU386as9rNibS4KSx2uDHJz8aT2h5T/RRXsUbRPBmAevAOwdrmXWthhW1nbi03uHNmrlbOj99Ud4cvEejDoNiSE+WPP2MVG7hqle3+Fta7rIhR0t2s7Xsyry16R1S2/R+LazrdtznK3/eoy7dV9hwDNgVpOGU3bd21gCQliyK5e752913Rj/39BWrw9VhVXPwNrnAaiOH8mA7DsprnHdUC6ZPcgjV/9CXZJACvhp0V9I21mXJZEwhAd19/PxrjLmjOrA70akXPgKnE5Y8xys+Uujt3b6DqLbjDddgU0r2RxO/vPjPsaWfYJ5+/tQ03RKmqo1stE0gAX2ITz225kE+riOva3HTjPhze/QaxXWPzgcvVbjDrz/eF3nuhQwlTTlKDcYNjHNsg1TWfa5N8zoR21Yd360JvBpXhj7tCksmDOe11cdYu6GbAw6DT88PIJAbwOvLtnGurUrmRZXxHXBeXByOxRnnXMVDZWq3vhFd0YJTgafMD7aVcH2Ii02VYu3YuWBYdH4a6rIO55FWW4WcdoCjFV5rgaVVnCqCoVYyFf9SYwIocap4Gc2suNoEWZnOQFKBQFUYFTatsiCAw02VYtBsaNp62uFEM1JGgFTF7X3Vpx3IHVVpPYBjVryVFVttnXv2Wef5U9/+tOl2KyW6/sbvtlygBPF5ehwoMPOsJRAArwUVuw+gaqq9EkK5VipnQMF1QT7+TCqaxRHimtZsrcQOzrsqobhnSPpGR9ypjdFUcBh46ecQpZsP0a4t4Zbe0e4e5Fw2tl9vJD9uSXocGBQnNhUhf4dwgnw8ebTbXnUODWMT4/H39e7rhVHf6Y1R6t3zQGj1WOz1fLMf3agcdZy96BoCkvKMWCnsLScn44XYTGo2GprCTErDE8JYM2BfAprwKbqsFH/0GIwmenbIYrPdhRhRc+YHvGYzN68uyEHBRUtTpKCjJh1kJVfihEbYWa4s18E3+w4Sl5xKRlRZrTOGsrKK6ioqsKq6qhVddSix6k1UO3UEhEUyLBu8Vh8/ahWTCzeW4pda2JCnxSMei07jxby7tqDlFdVc9eAWMorKli+MxsfTS3+OjtqbRX+ejuKvZreUSY6BmpZsjsPK3pqVS2xIf7sKrBj13rx65HdMHr5uNI+DHUtX/q61i+Dq/vd1QNX7Wrtspa7Sj9bS6GmjKycPDb8dJhQYy09Yyx8l1WEUadlTPdYCu1ezNtWShlmSlVvOsRGMWtcbzBZwGTBrvdl1aEy/t+XP1FYYUWnUZg5MAp/tYLP1u8kUl/JS9fHEkA51JS4empqSlzHSD1F4+qpMge4enW8Q1zpK77hrlQ0XRM9GnVKi6oY/MIqvBQr798Uw9tff0e/EBu/6WmGijy27s3iUH45Rr2Ga9LC+XR3GcdtfpwikGemjabUFEOu05/0eFdVsoFVNl56cwOHCyuxFyfx0NhUAN5bd5inS/ZiNmj55K5Mxry1lhDHKd4Y40+QNYdl678nydfJgHhvcithV6GTw7X+bKsIZKczkVwC+c/Qgdz/7o+UOe18em0/escHsmT2IAK9De6A5J3b0vl2bz6nK2vpnBHN/vDruOuTHSRYtHx7SwDak1tcN2g1Za7vzcvf1XMT0Q2i0ll38DRLf9xEmJ/Ro6x8Uyb3iWX9oUJW7stnb24ZOk0Uf7FP5s3aKXTVZpNm3UGauRS1poRTagCH1CiC03/BgxP6M7x1ZyIPyVHBTLXfzGfO4XxzfS2bNnyL3i+UroPGc+8GE+uf38i/7urH8rpS/fXj+VpNUWD4IxDeBU5uw2vw/Tx3yJUuNKxjaJsGUZeSNeM3PLwlnzhTNTOn/I0fXt4AQI+fCaJbRKOBYQ9Dl5v47JO5kLebg84ovnOmMePGCXTzP885qpqh12q4qX9n4AkY+TBkrYQTW3CU5PDvnac4bvcnscdQ5p6IZGuuq6c2c28+k3q7grd/1o37uLFHlPvvKD7ITHZRFU9/7RpHc01aOGXVwTx7OJ43yn7Fj7+OwSt/B+TvdfWE26o5Uq7hP1kOCO7A7CkTICgFg0bDIKCP3YHT6ZqeYUxaOHM3ZHNLn1j3WN4OMRH8VU2luNKbvlMyXSnL1SUc2fUdH/x7KcmGYqZ2t4CtivwqJz/kVFNrjsA/KoUhvdMZ9v5Rcmw+fHvjEJJDfSmvsfHEquXYnSpJId5kFVQSRgcmpccwau0aymvsKAoMTLBw4uhBwtQC/jo6gAjnKSjP5fusQo4XV6PTgF3nzVGrD0X4UahaOKUGcEoNIDo6FkWrY8vR0/id0lFWYyfMz8ipGisBZj39k4P5eudJJnezMKO7F4/P/5YYXSk3JWvYeSgbvdOKWbHir7dTbtNSrerpFBtGz+RoMPmz+lgt/9pZRmBwKE//aiCL9lbyxPKTVGEEFO4YEM/j41LBVs03Ww/y/H82EWaworeVE2aw8tx18Sg1pa40zpoyKsuKWLknt+4aqKNDVDAZHWLZmmdj0Z4yokJDuPuaHlQrXkz6YDcVePGf+0biY1C4/+MtbD9ayF2ZEYQYbHy4dg+Bulr+ODoOi7aWD1bvprqyjGtSfInwcrA/J59jZQ4q7FoykiLYkVfDyUqVrnHhrM2uxKE1UWrXU42ROdd2509LD+Nr1PHrATH0ivJGq9bdA9lqXJko9dkptZUcyS1gy6ET6LAT4mcmt6wWk17Hdd2jXD0tOi9XerzOxHdHK/nmQCk6oxcPXd8DvdHsuvdy2l3XUKedf244xL4TxfSONvOLrsF8ufkwOYUlZMZ6kx5l5uttR7BZq+kXb+FgQQ15FQ56JYbhazax8uBpapw6Sm0aeiaEMbhTlKu3Vld3D6aq4LRTXFHFK8v2YlSc6BUHGqcNg2LDgAMDNvTYCfNWiPHTkZV3miBfLzJTwkGjQ9UaWHGgmMPFtdjRYkNLv6RQ+iaFnrmXrO9tAlfDgOpw/XQ6GjxXz3re8H0ndoedhT9k41RVfMxe5Fe5MqbyK514m83M7DXigs5Tl9oVH0gFBwej1WrJy/OsBJOfn09YWFiTv/Pwww8zZ84c9/P6HqnLwpAH2G3d7x4bkhzqw6+mDkajUdjs9RNzN2STVOTN8eJqah1OPvllJkpCIIlA4Vc/uUu8TrhmKDQxGLuzqrI7/rirqMVZN2/JNgefLdlHargvK7KK+M+Ok8wKTWZ0WhgP/bgBi5eeaeNHnXOsiR44sOMHNhwq4lRxBIt35qJRoFdsAJvtp7k1I5aPfjiGsUrDd2OHM23Lt01/UAV0z7eww+Fq9Zy/pf6NCEZ2CmXp3ny8SrQoClQ5HPib9ZSU2yisiOOT0zlU2x0sGX+m5bqowsqnW3JYsiuXnSdKUeuLCuaBuVjLgORg9uWVcbzYH4APCyDIR8u6g1rAdZP+449aHM4QrI44cAA20GsVHhyRytNf76Wn6s8DGan8dluD1Ku6+gOTe8VgHNTtZ7+7c4msdfDMnmXUVDpJLfFln62cyT1juHZ8N7xqbLyxeZl72f/XORVizhSs0AGju3iTkRDEH7/czde7cnl9bX3ueSwTR3cmoPcFjNM4h9ggM30SAtl4pJipiwqwO5NZm6Mw9c7RrD9YyK9XuP6D507tjaljKFvs2/hy+0mSQ33w7jAEb6DhqDKLWc/skSnMXridVfvyeWhsKkt25fLnurlM5ozqQJcoCzf1TuCf32t48XAIPqYkvqpNgSKY/4u+/HbBNoorXTd8Bp2G6EAvKKzktZWHKKux42/W06tunN/ZN++KojCq85lzzLVdI3hq8R6OlNpYWRnPqMy+ALyx6hBmg5Y7Bnh+t8vqKiWN6hx2zpLXXgYt79yWwcvLD7BiXz5/uiGNx/69m3155WwgltMRXfi/e/vz8Oe7WFQ3pvK5mLYbQxTuZ8LXqOO4NZBXTifydmE4FILxWA1We5V7P+sHzY/s3PS5t8U63+h6AKM6e/P9Q8OxmFuZLngZiPL3YoFjBNpqhZuqVffkmt3rxqu2mZAO9Jz4CK+tOIjNodLXYnKXLm4zOiN0HAsdx6IFtii7mP/jMdgMcCbddf2hIib1jqWsxuYeaH9rvzOTd/aKDSC7yDX2IzXclzdu6YXdqTLwuVUUVljZY4ugQ2oH5hZlM2lYDGF+Jr5eeZCX9x/g5qhoCOnosVlGndb9776JQWx+dCQBDVJW6yvlZRVU0u/ZFTw8NpU7ByWy29iDeQ6VjNAApo53ZbeEAjectduhEU5yjpWw+0QZyaG+bDhUiN2pkhDszb3DkpnzyQ7+sTaLb37Ko7zGTpC3gaLKWtYdLgVCMUYkEz5koPs62qPWwT/mb2H1/gKohdhAM78flcL767Pd1efGxgRi0GnYcvS0e3xyfeW3sV0jmNw7lq935vLp7nJ05gA2OLsyMimU3rf1RnO0mPs+3k7HMD/+Oqk7JZU29uaV0b1TGNSddwb2dVKQfIKhHUPR+RoZF2TnqXUroG5dPWMDXDfQRh96pnUi698nyapL6smMDELJ6EdD3sDiDzfzTV1F0hU3D4EQH7zzyvlo11q8CrVMSxxJzulqdqrV+Jl0+IS5zo+9emn4NHsXT23RAUbKnb14ZGQnLANd4/jySvbx9zVZ7DdGcqrEyvf5rh75YB8DS24ezOZv9vPx5uMoh1338xO6RfH9oUIKyq0U7fRnq10Pdli+DDSKjbggb+bdMYzYuqlnGnp5wTb+Y6tLM63r+B+eFMp1N/ZutGxMcRWbP9rCnYMS0Pds+tzbyVLMv5fsY+r4LhDhh8Mrhxc/3UFKhQ/v9svg3nWr0WkUtt86mvUrDvKPtYeZEhBLWY2dryrPpLu+1KM7NDNGNBBY9eNK9zxrWo2Co25sulaj4HCqGCo0dLH4sdVWwp+HdCGzrmKwAvSpsfHMGxs4XFDpmmh34gjwbr6BtDV0wBfHvnNN7VLmmgZgwZR+PPGP73GUq1wfNZwLa/K5tK74qn0Gg4H09HSWL1/u8fry5cs9Uv0aMhqN+Pn5eTwuJ50b3LDNGJjgvsn67fAUfI06sgoqqXU46RMf6DFA/OGxnZjQK4rbMuOIb+KkAK6bv0m9Yz2qydQz6bU8cUMav+oT6x7IueZAgXsegZ6x/uedw19fgre+HKdTxT3IdmByCCa9Bqv9zCDSpBBvetUNaEwI9nZPVLsjx3UhGV5XYl2nURjZKZTnbuqGSa+h2uagqtaBn0nHyxN7ADDv+6NU2xwEeRvcZUnBVVFw5pAk/j1rIFsfHcXqPwxl8W8HkhEXQFWtg+V7TnG82DXQMcjbwJ7cMtYdLERRYFpmHH0TAqmqdWC1O+mTEEhMoGtAZJ+EQMbVTVS3/XgJX+10nfDq36/3y4wLD9a9DFqGdqib16du8Oy4rq7wwtek9ygIkR4X0PgDgEBvA6/f0pO3pvRiWMcQjDoNfRICuS0zrsnl21L9mAt7XUUhh1NlZ04pb9dV47tzYALD6nozJvaOQaPAtV0aFzSpN6RDCBrFVSJ7+/ESfv/JdlQVbu0X6x68P31AAooCq/YX8PXOMxej33y4heLKWhKCvXn/9gzW3j+MqXXfQX052EEpIWjPc14fk157puX9+2zANVfOC9/s509f7SGv9MzEk06n6p5oeVTn5vevIa1G4Q/XdGTJ7EH0SQjk96Nc800ZdRr+9qseGHVa7h/T0V29sVsb3pwrikJymKsy1fwG89NZ7U78zXoUxTXh8ukqGxYvPRnNHHsXKtTP5HGjfKUJ8TFi1GlwOFU+3uQaFJ4Y7H1RgsOkEB9e+VVP3pjSi0ev69zs5NltZcbABJJCvEmL9OPm9GheqhvDtuFQIU6nytc7c7HanaSE+nhMRN5wIPuTN3ZBp9Vg0ms9SoO/s/Ywf11+gEe/3A2cmYw3JqDp61xDwT5Gj7/hSH8v/jqxO12jLDicqntwfn3FvnNVg6y/dtZP9FtfhGJoxxCu7RpBZmIQVbUO9uSWYdBqWPjrfnw2M5Onxnfhoxl9+fzuTI/rqJdBy9tTM/jd8GQeGNORZb8fzC96RvPH6zq7l+ke40+/RFdPvJ9Jxz+mppMc6oNGgYkZMXSNttA7PgC7U+XDur/P4amuxoz0uEDW3j+Md6dl4GfSExtk5pq0cI/GG51Wwy8zYtzXD2+jzj0RN0DPBj2moX4mEkPOfEfN9Q7/ZkgSOo3CkA4h7om5U0J9iA7wotrm4Nn/7nNPuRLV4P9xbJdwovy9KLfaKbfa6RDmw+0D4t3vj6gr9b1kdx7fHy5Cp1H44I7ebHhoOCG+RneKtFpXbe7e4cnu+4CtdVUPh3YMwaDT4FRdxSv+svTMRMKHCyq4c95m1h0sYPX+xpX+6ucsO1tMoJmvfzeIXzQTRIFrupPP7+7v/s5Gdg5Dr1U4mF/BK9+6xqD2ig3Ax6hz78e2YyWsr6t2e1tmHDOHJHFd959vFOmfGOz+94yBCe65Kkd2CsXXqKPW4XR/FwOSgj1+18+k593bMugZ68/916QS0MZBVL27BiXSKcKPW/vF8vnd/UmPC3BnZvx4uOl09cvVFd8jBTBnzhymTp1KRkYGmZmZvP322xw7doyZM2e296a1Ss/YAAw6DYFmA7/oeSYuD/Q2cPewJJ5f6hr3de9wz6owBp2Gv9YFExeqft6fXSdK3XNv9Io9/5ujgcnBPE/j8WngCpQ6R/ix9ViJe56OvolBjEgN5e75W5k1LJkDp8rdQVRckJn3pmXw08kyYoPM+NUNYO8Y5uteJiM+kKEdQ+gWbWFn3WuZSUHNtvQHeBvcJ4hPfpPJtuOn2XasBIdTZXLfWMpr7Dy/dB+R/l7c0ieWmEAzJ0uqGffqOmpsTp67qRvVtQ6e/2Yfdw9JIsLiRd+EQH48UuwuLz8tM56/fXuQcqudpBBvj4vRhZg1PJmiSiup4X6M6xbhvsCC66asoNyKQatpcqbxeoqiMLZrBGO7RuBwqmiUxumxF8O1XSN48qs9VFjtxAaaOVZcxbqDBe7Z06f1j3cv2z8pmO2Pj8bH0Pxpyt9sID0ugE3Zp7l3/lZqbE66x/jzxPVp7v2JD/ZmVKcwlu05hVN1XcwP5ldQUTfP2e9HdXDfdAxK8byoDG1hyfcpfWP5x9os1h0s5FB+hUfp4FX78xnbJZxPN+cQ6mekoNyKj1FHv8Smq06ey+jOYbz4y+7EBHi5K1xFWLz4cEZfjhdXtXn6W0qoD9uOlVBZVwXr7anpHDhVzrhukTy1eI/7hnJ4auhFq5J5pdNoFEZ2DuPrnbm8sco1LufnxsZdSRJDfFjRYFyczeHksX/vpriylr15Ze5JP29Oj/Y414xOC+fd9Ue4Ji3co2Gwc4QfK/fls+dkmXt+p1X78imssHK8Qenz1pjQK5ohHUJIf/pbDhdWUl5j40hdxb6EcwVSdefV+ol+66vgju4cjkmv5aM7+/L++iN88F029w5Ldv9tNlddFlzX7jmjPXvW+iQEctegBNYfKmJYx1D8zXpemdSDHjH+xAd7M7RjCAXlVndFthkDE9iUfWb+pmGpZ85drTm3394/noUbjxNhMTX6nvslBnG4bi7E5qpz9ooNYPX9Qz2mR9FoFP4yoRu3vvcjH/5wlJ11PW5R/mfGb/qbDay5fygbs4vZnH2aG3tEekzs3TPG35V9Ujcv1PieUQxtkEo8rlsEPx4pokukhamZcZj0WjqE+brLo5v0Gt6ako5Bp2FnTgk3vfUd/92Vx9Zjp+kVG8BTi/ewan8BK/e5rhcBZj3eRp27umBbnlctXnoGJgezan+BuzpzfaNs/XmhvoKzj1HHH6/rfF6TnGcmBfFx3d/bhF5RWLz0vLhsP1P6xnG60sbGunkvo/y9iGui0T0xxIcv7hlwwfv3c8Z0CWfMWY2k/RKD2H68hB8OFzHhPEurXw6uikBq0qRJFBUV8eSTT5Kbm0uXLl3473//S1zcxW9hvxjCLSYW/3Ygviadu0RovekDEvg+q4gQH6N7/o6LIdTXRFqkHz+dLHPPNN6w5fBc0iItWLz0lFbbmNwnhs+25LhLn8cGmnlobCemvPuDuzRpv8QgRnQK48DTYwHXXEn1cwaN7RKBoiiNetE6Rfg1CKQCUBSFWcOS+fWHrhSxgcnn9/1oNArpcYGkx5250PmZ9PztVz09lov09+Kb3w/G5lDd5Tk/uKOP+/2nxndh3Kvr3PvZJyGQoamhfLXjJJP7xLZZoNIlysKnM5vubU0M8eHHI8WkRfk1Onaac749Lm3Bx6hj4a/7UVZtY09uGU9/vZcPvz+Kw6kSF2QmJtDzpO53HlXfhqWGsin7NCfq5uOYNSy50Y38nYMS3al0f7yuM3M3HGHV/gJSw325rkHKU1KIj7scMMCQji0LpGICzYxIDePbvadYtDXHPWUAuFqu1x4o8JhHZGjHkFb3sCiK0mQJ8N7xgfT+mZu21urQoHc33M/EqM5hjK6b/uD2/vHuQGpkpzZK67tKTcqI4euduVTXzYHWsHfmaqLXauibGMTKffm8uTqLrcdK0GoUftHLM2knzM/EmvuHNfr9+nLR24+XuMuS250qX2474Z7Y/ezzRUsE+RjdJbl3nzgTrMUH/XwglZkUhE6jsPVYCTPmbXY13kRb3A0iWo3CXYMT3SXlL8Qj4zp7PB/foGHVqNO6gyhw9WxHB3iRc7qaThF+RFgurIR0hMWLlf83BKNe2+ja1S8xyN1g2FwPDeCxffUGpgQzLTOOed8fdZcpP/t8pdNq6J8UTP+kxtdwnVbD0A4hfLndFcDOHOL5PVu8Gl+76+d5AlcWQ/3UHj1jA7g5PZpPNufw56/38ui4TqyqmzS+fhqmYR1DMeq17p7Ltm6gGts1wr3OP4zu4M4MibSYCPYxuicg758UdF5BFLjm9QryNpAc6kPHMF86hvkyfUACXgYtK/fluwOp/klBl6QB9Xz1Swzk72uyGs0jdrm7KgIpgHvuuYd77rmnvTejzTS8aWnIpNfy4Yy+l2Qb7hvZgZeW7ed0VS1xgd4tujnTahQeubYTG7IKefjaThSU1/Lt3lOE+BrxMmjpkxDIn8d35YHPd7qmrEnw/OyM+EB3Pu+4ZnL7G57Q6mdVH9kpjD7xgezNK3OnA7alUN/mK591CPPlN4OTeH3VIbz0WjpF+PGnG9IYk9a45eViGdoxhAUbjzX7nV0O6gNiY10KWn3O//kGvmcbnhrq7qXtEObDiCb+33vHB3D30CRsdieDUoKJDvDCpN/PvcOSPXotFUVhUEown27JoVu0hWCfn5k7qxnXd4/g272nWLE33yNIXXuggNqzJpAe3cQ8bJerlAbnpOGdQj0uwINSghmQHMSpMqt75nrRtAHJwe4beLh6eqSaUj8v0Nd1Kd7XpIX97Dm0ofqejn1nzf/zwjf7sdqd6DSKR4pZa3SLtnCipJr1hwrcmQznKvwSE2jmnmHJvLrioDsQ+O3wlHa/IdVqFH43IoUHPtvJxIy2ac0Paub81y/RNWbLpNOQHNrySaQfGtsJFVda8pgu4S3KdgFXsZIvt5/k+u6RJIc2H8jVa3g/NfqsVOrfj+rAf3acZMvR00x+xzW2+Zq0MHeAfX33SKptDhZsPIaXXnvOQLulxveIIqe4ivT4QI+5sRRFoUeMhW/3uhqoBrUgOyLQ28CGh4ajURT3cVkfPDYMfAdexMb41uiXGMTK/xtyzl7hy81VE0iJtjeqc5jHYPqWmtg7hom9XeOCJmZE8+3eU3RpkAYwsXeM+2b67NLMfiY9L/2yO6eraukS1XQLUP2F1qDT0LWuVVejUfjwzj44nKrHzOOXyqzhyZRU19Il0oJeqyHQ2+Duqr8UrkkLZ/OjIwm6SHnNbSkt0oJeq7h78FobSHUM8yUm0IvjxdXMHJLUZDqnoig8OCbV/TwxxIe3bk1v8vOmZsbx/eEi7hrUuhbloR1C0WoU9p8qd9dl8TXqKK9LJRzWMYRb+8VxrLjKozfscpfS4IZpZCfPYFVRFObf2e/sXxFN0GoUbkqP5tUVB9FrldZPXHwFaHijVj+29XzFBJg9/m4y4gLYeaIUq93VGPHEDWmtauhoqGu0hSW78/jnd65e8ZRQnyaLDpxt1rBklv2Ux768cjpF+LnH7bS3iRkxjOwURsBFLsgS6mti4a/7YdBqWtWj7mXQ8uSNXVq9/mGpoSz//eDz+r8CVyDlbdDiVGn0fxVh8eLvt6Zzz/yt7gyZP4zuSEygmayCCtIiLdTYHIxJC6dHrH+bZ3A0ldZZr3u0vzuQGpLSsgaq5jJSOkecaSjITApqcpn2YtJrSQxpeWDe3iSQEpfE6LRw5t/Zt1Hr1Y09mq/N0jCNoSnpsQHcMSCeDmG+Hifz9hyMbtJreXp813ZbP3DBNxeXikmvpXNdeqai0GQax/lQFIW3pqSz+0Spx5jC1uoW7c/6B1tfNNxidhVb+PFIMarqSoMb2jGEhZtcOeszhyTRN/HyuoCdjwiLiYy4AMpqbK3+vxIut/SJZeHGYwxMDr6ii2ecS4cwXx4ck4peqzB9QMI5q1M2pNEodIrwc6chDUsNJSXMh4WbjvP4dZ09Kv+1VrcofwB3sHa+1SYNOg2v39KTl5YdYOaQpHbvjWoo8BI1orW0F6mtpTSTtdMUb6OOj3+TCdDkpONDO4ay8Nf9eOSL3QzuEOz+7Ppxxia9lr9Pbbrh7WKqHzOYFOJ93kHjuXSO9GNCzyhC/Izn3Tssfp4EUuKSGdDKHofmaDQKj1+f1qafKS6tnrEB7MgppVuU5YIql3WJsjRZibK9jOgU6jG2cFy3CBZuOk7v+ACPAfVXEkVR+Ozu/j87R584P+EWEz/+vxH/E9/j3UOTzr1QMzpHngmkMuICmDkkif8b3bHNGovOTuNryfi+5FDfZnu1xeXnXNeHbtH+fPXbgZdoa85P38QgXpvck9Tw8w8az0WrUfjrpB5t9nniKih/LoS4ck3MiCE+yMydrUyju1yNaHBD1jPWn0EpIXx+d3/eva33FX/zfKVv/+VCvsdzq0971GsVuse40qrassfdYta7pwoJ9jG03cTIQrSR67tHtqj3TVx60iMlhGg3nSP9WN1Exa4rXWKwN6nhvuzLKyezbk6P5ub1EkI0bWByMD5GHUM6hpx3FdKW6hrtT3ZRFcNTQy9pBVMhxNVBAikhhGhjiqLw3u29ySmuchdCEUK0TKS/F5sfHYnuIgY49w5LQlVVfjs85aKtQwhx9ZJASgghLoIofy/3fGNCiNa5WD1R9VLD/Xj9ll4XdR1CiKuXjJESQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkjX3htwOVBVFYCysrJ23hIhhBCXWlVZGU5rFQBl1GBXVCgrA4ejnbdMCCFEe6iPCepjhOYo6rmW+B+Qk5NDTExMe2+GEEIIIYQQ4jJx/PhxoqOjm31fAinA6XRy8uRJfH19URSlvTdH/A8oKysjJiaG48eP4+fn196bI/5HyHEn2osce6I9yHEnWktVVcrLy4mMjESjaX4klKT2ARqN5mejTSEuFj8/Pzm5i0tOjjvRXuTYE+1BjjvRGhaL5ZzLSLEJIYQQQgghhGghCaSEEEIIIYQQooUkkBKiHRiNRh5//HGMRmN7b4r4HyLHnWgvcuyJ9iDHnbjYpNiEEEIIIYQQQrSQ9EgJIYQQQgghRAtJICWEEEIIIYQQLSSBlBBCCCGEEEK0kARSQgghhBBCCNFCEkgJ0QpvvvkmCQkJmEwm0tPTWbdu3c8uP3/+fLp3747ZbCYiIoI77riDoqIi9/vvvPMOgwYNIiAggICAAEaOHMnGjRs9PsNut/Poo4+SkJCAl5cXiYmJPPnkkzidzouyj+Ly09bH3aJFi8jIyMDf3x9vb2969OjBhx9+eMHrFVef9jj2nn32WXr37o2vry+hoaGMHz+e/fv3X5T9E5en9jrn1Xv22WdRFIX77ruvrXZJXG1UIUSLLFy4UNXr9eo777yj7tmzR509e7bq7e2tHj16tMnl161bp2o0GvVvf/ubevjwYXXdunVqWlqaOn78ePcyt9xyi/rGG2+o27ZtU/fu3avecccdqsViUXNyctzLPP3002pQUJC6ePFi9ciRI+qnn36q+vj4qK+88spF32fR/i7Gcbdq1Sp10aJF6p49e9RDhw6pr7zyiqrVatWlS5e2er3i6tNex94111yjzp07V929e7e6fft2ddy4cWpsbKxaUVFx0fdZtL/2Ou7qbdy4UY2Pj1e7deumzp49+2LtprjCSSAlRAv16dNHnTlzpsdrqamp6kMPPdTk8i+88IKamJjo8dqrr76qRkdHN7sOu92u+vr6qvPmzXO/Nm7cOHX69Okey02YMEG99dZbW7oL4gp0KY47VVXVnj17qo8++mir1yuuPu117J0tPz9fBdQ1a9ac55aLK1l7Hnfl5eVqSkqKunz5cnXIkCESSIlmSWqfEC1QW1vLli1bGD16tMfro0eP5rvvvmvyd/r3709OTg7//e9/UVWVU6dO8dlnnzFu3Lhm11NVVYXNZiMwMND92sCBA1mxYgUHDhwAYMeOHaxfv55rr722DfZMXM4uxXGnqiorVqxg//79DB48uNXrFVeX9jr2mlJaWgrgcV4UV6f2Pu7uvfdexo0bx8iRI9tmh8RVS9feGyDElaSwsBCHw0FYWJjH62FhYeTl5TX5O/3792f+/PlMmjSJmpoa7HY7N9xwA6+99lqz63nooYeIioryOIk/+OCDlJaWkpqailarxeFw8Oc//5nJkye3zc6Jy9bFPO5KS0uJiorCarWi1Wp58803GTVqVKvXK64u7XXsnU1VVebMmcPAgQPp0qVL2+ycuGy153G3cOFCtm7dyqZNm9p+x8RVR3qkhGgFRVE8nquq2ui1env27OF3v/sdjz32GFu2bGHp0qUcOXKEmTNnNrn8888/z4IFC1i0aBEmk8n9+scff8xHH33Ev/71L7Zu3cq8efN48cUXmTdvXtvtmLisXYzjztfXl+3bt7Np0yb+/Oc/M2fOHFavXt3q9YqrU3sde/VmzZrFzp07WbBgQZvsj7gyXOrj7vjx48yePZuPPvrI4/orRLPaJaFQiCuU1WpVtVqtumjRIo/Xf/e736mDBw9u8nduvfVW9eabb/Z4bd26dSqgnjx50uP1F154QbVYLOqmTZsafU50dLT6+uuve7z21FNPqR07dmzNrogryMU+7hqaMWOGOnr06FavV1xd2uvYa2jWrFlqdHS0evjw4VbsgbgStddx98UXX6iAqtVq3Q9AVRRF1Wq1qt1uv8A9E1cb6ZESogUMBgPp6eksX77c4/Xly5fTv3//Jn+nqqoKjcbzT02r1QKu1rV6L7zwAk899RRLly4lIyPjvD9Hyp9f/S7mcXc2VVWxWq2tXq+4urTXsVf/fNasWSxatIiVK1eSkJDQ2t0QV5j2Ou5GjBjBrl272L59u/uRkZHBlClT2L59u/vzhHBrvxhOiCtTfUnW9957T92zZ4963333qd7e3mp2draqqqr60EMPqVOnTnUvP3fuXFWn06lvvvmmmpWVpa5fv17NyMhQ+/Tp417mueeeUw0Gg/rZZ5+pubm57kd5ebl7mWnTpqlRUVHu8ueLFi1Sg4OD1QceeODS7bxoNxfjuHvmmWfUZcuWqVlZWerevXvVl156SdXpdOo777xz3usVV7/2Ovbuvvtu1WKxqKtXr/Y4L1ZVVV26nRftpr2Ou7NJ1T7xcySQEqIV3njjDTUuLk41GAxqr169PMrxTps2TR0yZIjH8q+++qrauXNn1cvLS42IiFCnTJniMUdUXFycCjR6PP744+5lysrK1NmzZ6uxsbGqyWRSExMT1UceeUS1Wq0Xe3fFZaKtj7tHHnlETU5OVk0mkxoQEKBmZmaqCxcubNF6xf+G9jj2mjonAurcuXMv5q6Ky0h7nfMakkBK/BxFVX+mv1MIIYQQQgghRCMyRkoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghhBBCiBaSQEoIIYQQQgghWkgCKSGEEEIIIYRoIQmkhBBCCCGEEKKFJJASQgghLrHa2lqSk5PZsGFDm37u4sWL6dmzJ06ns00/VwghRGMSSAkhhLggt99+O4qiNHocOnSovTftsvX2228TFxfHgAED3K8pisKXX37ZaNnbb7+d8ePHn9fnXnfddSiKwr/+9a822lIhhBDNkUBKCCHEBRszZgy5ubkej4SEhEbL1dbWtsPWXX5ee+017rzzzovy2XfccQevvfbaRflsIYQQZ0ggJYQQ4oIZjUbCw8M9HlqtlqFDhzJr1izmzJlDcHAwo0aNAmDPnj1ce+21+Pj4EBYWxtSpUyksLHR/XmVlJbfddhs+Pj5ERETw0ksvMXToUO677z73Mk314Pj7+/PBBx+4n584cYJJkyYREBBAUFAQN954I9nZ2e7363t7XnzxRSIiIggKCuLee+/FZrO5l7FarTzwwAPExMRgNBpJSUnhvffeQ1VVkpOTefHFFz22Yffu3Wg0GrKyspr8rrZu3cqhQ4cYN25cC79lyM7ObrL3b+jQoe5lbrjhBjZu3Mjhw4db/PlCCCHOnwRSQgghLqp58+ah0+nYsGED//jHP8jNzWXIkCH06NGDzZs3s3TpUk6dOsXEiRPdv3P//fezatUqvvjiC5YtW8bq1avZsmVLi9ZbVVXFsGHD8PHxYe3ataxfvx4fHx/GjBnj0TO2atUqsrKyWLVqFfPmzeODDz7wCMZuu+02Fi5cyKuvvsrevXv5+9//jo+PD4qiMH36dObOneux3vfff59BgwaRlJTU5HatXbuWDh064Ofn16L9AYiJifHo9du2bRtBQUEMHjzYvUxcXByhoaGsW7euxZ8vhBDi/OnaewOEEEJc+RYvXoyPj4/7+dixY/n0008BSE5O5vnnn3e/99hjj9GrVy+eeeYZ92vvv/8+MTExHDhwgMjISN577z3++c9/unuw5s2bR3R0dIu2aeHChWg0Gt59910URQFg7ty5+Pv7s3r1akaPHg1AQEAAr7/+OlqtltTUVMaNG8eKFSu46667OHDgAJ988gnLly9n5MiRACQmJrrXcccdd/DYY4+xceNG+vTpg81m46OPPuKFF15odruys7OJjIxs8r3Jkyej1Wo9XrNare7eK61WS3h4OAA1NTWMHz+ezMxMnnjiCY/fiYqK8uh5E0II0fYkkBJCCHHBhg0bxltvveV+7u3t7f53RkaGx7Jbtmxh1apVHoFXvaysLKqrq6mtrSUzM9P9emBgIB07dmzRNm3ZsoVDhw7h6+vr8XpNTY1H2l1aWppH8BIREcGuXbsA2L59O1qtliFDhjS5joiICMaNG8f7779Pnz59WLx4MTU1Nfzyl79sdruqq6sxmUxNvvfyyy+7A7Z6Dz74IA6Ho9GyM2bMoLy8nOXLl6PReCaYeHl5UVVV1ew2CCGEuHASSAkhhLhg3t7eJCcnN/teQ06nk+uvv57nnnuu0bIREREcPHjwvNapKAqqqnq81nBsk9PpJD09nfnz5zf63ZCQEPe/9Xp9o8+tLx/u5eV1zu248847mTp1Ki+//DJz585l0qRJmM3mZpcPDg52B2pnCw8Pb/Q9+vr6UlJS4vHa008/zdKlS9m4cWOjQBGguLjYYx+FEEK0PQmkhBBCXFK9evXi888/Jz4+Hp2u8WUoOTkZvV7PDz/8QGxsLACnT5/mwIEDHj1DISEh5Obmup8fPHjQoxemV69efPzxx4SGhrZqPBJA165dcTqdrFmzplFPUb1rr70Wb29v3nrrLZYsWcLatWt/9jN79uzJW2+9haqq7pTDlvj888958sknWbJkSZPjsOp73Hr27NnizxZCCHH+pNiEEEKIS+ree++luLiYyZMnu6vLLVu2jOnTp+NwOPDx8WHGjBncf//9rFixgt27d3P77bc3Sl8bPnw4r7/+Olu3bmXz5s3MnDnTo3dpypQpBAcHc+ONN7Ju3TqOHDnCmjVrmD17Njk5Oee1rfHx8UybNo3p06fz5ZdfcuTIEVavXs0nn3ziXkar1XL77bfz8MMPk5yc7JGS2JRhw4ZRWVnJTz/91IJvzWX37t3cdtttPPjgg6SlpZGXl0deXh7FxcXuZX744QeMRuM5t0MIIcSFkUBKCCHEJRUZGcmGDRtwOBxcc801dOnShdmzZ2OxWNzB0gsvvMDgwYO54YYbGDlyJAMHDiQ9Pd3jc1566SViYmIYPHgwt9xyC3/4wx88UurMZjNr164lNjaWCRMm0KlTJ6ZPn051dXWLeqjeeustbr75Zu655x5SU1O56667qKys9FhmxowZ1NbWMn369HN+XlBQEBMmTGgy5fBcNm/eTFVVFU8//TQRERHux4QJE9zLLFiwgClTpvxseqEQQogLp6hnJ5gLIYQQl6GhQ4fSo0cPXnnllfbelEY2bNjA0KFDycnJISws7JzL79q1i5EjRzZZDONCFBQUkJqayubNm5ucEFkIIUTbkR4pIYQQopWsViuHDh3ij3/8IxMnTjyvIApcY6+ef/75Ni9RfuTIEd58800JooQQ4hKQYhNCCCFEKy1YsIAZM2bQo0cPPvzwwxb97rRp09p8e/r06UOfPn3a/HOFEEI0Jql9QgghhBBCCNFCktonhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC0kgZQQQgghhBBCtJAEUkIIIYQQQgjRQhJICSGEEEIIIUQLSSAlhBBCCCGEEC30/wHG+7bFMIkjUwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyDUlEQVR4nOydeZxcVZn+n1t7V/W+dyedpLMHsrElbLLI4gajMrihM4I66oiOgKMj48xvcGaEcWcUcVxRQRRFUFT2PUAgIZB9TzpJJ+l976qu/f7+uPc999StW1t3VVd15/1+PvnQdFdX3a66955znvO8z6uoqqqCYRiGYRiGYRiGYRiGYZhJYyv2ATAMwzAMwzAMwzAMwzDMTIdFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKOIp9AKVGPB7HyZMnUVFRAUVRin04DMMwDMMwDMMwDMMwTJFQVRVjY2NobW2FzZbeq8Yim4mTJ0+ira2t2IfBMAzDMAzDMAzDMAzDlAidnZ2YO3du2sewyGaioqICgPbmVVZWFvloGIZhGIZhGIZhGIZhmGIxOjqKtrY2oRelg0U2E1QiWllZySIbwzAMwzAMwzAMwzAMk1WkGDc+YBiGYRiGYRiGYRiGYZgpwiIbwzAMwzAMwzAMwzAMw0wRFtkYhmEYhmEYhmEYhmEYZoqwyMYwDMMwDMMwDMMwDMMwU4RFNoZhGIZhGIZhGIZhGIaZIiyyMQzDMAzDMAzDMAzDMMwUYZGNYRiGYRiGYRiGYRiGYaYIi2wMwzAMwzAMwzAMwzAMM0VYZGMYhmEYhmEYhmEYhmGYKcIiG8MwDMMwDMMwDMMwDMNMERbZGIZhGIZhGIZhGIZhGGaKsMjGMAzDMAzDMAzDMAzDMFOERTaGYRiGYRiGYRiGYRiGmSIssjEMwzAMwzA5EY7G8Y/3bcEvXzlS7ENhGIZhGIYpGVhkYxiGYRiGYXJi2/FhPLazG9975kCxD4VhGIZhGKZkYJGNYRiGYRiGyYkhfxgAMOAPYyIcK/LRMAzDMAzDlAYssjEMwzAMwzA5MTwREV+fGJ4o4pEwDMMwDMOUDiyyMQzDMAzDMDkxEjBEtuNDgSIeCcMwDMMwTOnAIhvDMAzDMAyTE8MTYfE1O9kYhmEYhmE0WGRjGIZhGIZhcmI4wcnGIhvDMAzDMAzAIhvDMAzDMAyTIwmZbCyyMQzDMAzDAGCRjWEYhmEYhskROZONy0UZhmEYhmE0WGRjGIZhGIZhckLOZDM3PojH1ek+HIZhGIZhmJKARTaGYRiGYRgmJ+RMtt6xEELRGADgk796HZd++3lMhGPFOjSGYRiGYZiiwSIbwzAMwzAMkxNyuaiqAl3DQQz5w3hydw+ODgRwqG+8iEfHMAzDMAxTHFhkYxiGYRiGYbImEotjLBQFANT6XAC0XLY3O4fEYwb9YcvfZRiGYRiGmc2wyMYwDMMwDMNkzajUWfS0lkoAWi7blqOGyDYUYJGNYRiGYZhTDxbZGIZhGIZhmKwZ1kW2So8D8+q8AIATQxN44+iweAw72RiGYRiGORWZUSLbiRMn8JGPfAR1dXXwer1Yu3YttmzZIn6uqipuu+02tLa2oqysDJdccgl27dpVxCNmGIZhGIaZXVDTg2qvC3OqywAARwcD2No5LB4zxCIbwzAMwzCnIDNGZBsaGsIFF1wAp9OJxx57DLt378a3v/1tVFdXi8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGyseAfOMAzDMAwzixjWS0GrvU7MrdFEthf292EiYnQUHeRyUYZhGIZhTkEcxT6AbPn617+OtrY23HPPPeJ7CxYsEF+rqoo777wTX/nKV3DNNdcAAH75y1+iqakJ999/Pz71qU9N9yEzDMMwDMPMOsjJVlVmiGzDUrdRABjyR5J+j2EYhmEYZrYzY5xsjzzyCM4++2y8733vQ2NjI8444wz85Cc/ET/v6OhAd3c3rrzySvE9t9uNiy++GK+88koxDplhGIZhGGbWQZls1V4X5tZ4E362sMEHgDPZGIZhGIY5NZkxItvhw4fxwx/+EEuWLMETTzyBT3/60/inf/on/OpXvwIAdHd3AwCampoSfq+pqUn8zIpQKITR0dGEfwzDMAzDMIw1I1QuWuZEQ7kbLrsxnbxihTYP4+6iDMMwDMOciswYkS0ej+PMM8/E7bffjjPOOAOf+tSn8A//8A/44Q9/mPA4RVES/l9V1aTvydxxxx2oqqoS/9ra2gpy/AzDMAzDMLMBw8nmhM2moKXaAwBQFODS5Y0AWGRjGIZhGObUZMaIbC0tLTjttNMSvrdixQocO3YMANDc3AwASa613t7eJHebzK233oqRkRHxr7OzM89HzjAMwzAMM3uQM9kAiFy2ZU0VaKvVykeH/BGoqlqcA2QYhmEYhikSM0Zku+CCC7Bv376E7+3fvx/z588HALS3t6O5uRlPPfWU+Hk4HMYLL7yA888/P+Xzut1uVFZWJvxjGIZhGIZhrJEz2QBgbrUmrJ0xrwa1+vfCsTj84Zj1EzAMwzAMw8xSZkx30Ztvvhnnn38+br/9drz//e/Hpk2b8OMf/xg//vGPAWhlojfddBNuv/12LFmyBEuWLMHtt98Or9eL6667rshHzzAMwzAMMzuQM9kA4IYLF2B4IoxPX7wQZS47PE4bgpE4hvxhlLtnzFSTYRiGYRhmysyYmc8555yDhx9+GLfeeiv+8z//E+3t7bjzzjvx4Q9/WDzmS1/6EiYmJvCZz3wGQ0NDWL9+PZ588klUVFQU8cgZhmEYhmFmD3ImGwAsb67Ej/7ubPHzWq8LJ0eCGPSHRfkowzAMwzDMqcCMEdkA4KqrrsJVV12V8ueKouC2227DbbfdNn0HxTAMwzAMcwpBmWwkspmp8ekiGzc/YBiGYRjmFGPGZLIxDMMwDMMwxSUWVzEapMYHLsvH1Pq07w/5WWRjGIZhGObUgkU2hmEYhmEYJivGghFQ01DqLmqmRm9+MMgiG8MwDMMwpxgssjEMwzAMwzBZQaWiPpcdLof1NFI42bhclGEYhmGYUwwW2RiGYRiGYZisMJoeWJeKaj/THG6D/si0HBPDMAzDMEypwCIbwzAMwzAMkxXDujstVakoYDjZhtnJxjAMwzDMKQaLbAzDMAzDMExWjEyk7ywKcCYbwzAMwzCnLiyyMQzDMAzDMFlBmWzpRDZzJtvLB/tx/T2b0DkYKPwBMgzDMAzDFBEW2RiGYRiGYZisIJGtqix1JpvhZNMe+8PnD+H5fX14bGdX4Q+QYRiGYRimiLDIxjAMwzAMw2TF8ITmTsvWyRaNxfHmsSHtdwPcCIFhGIZhmNkNi2wMwzAMwzBMVoxQuWiaxgckwMXiKl4/OgR/OKb97gSLbAzDMAzDzG5YZGMYhmEYhmGyYjiLxgcepx0+lx0A8PTuHvH90WC0sAfHMAzDMAxTZFhkYxiGYRiGYbJiWG9mkC6TDQBq9JLRZ/b2iu+xk41hGIZhmNkOi2wMwzAMwzBMVmTTXRQwmh909PvF91hkYxiGYRhmtsMiG8MwDMMwDJMVvWMhAEBDhTvt48jJJjPKIhvDMAzDMLMcFtkYhmEYhmGYjIyHohgPablqTZWetI+tlZxuboc23WSRjWEYhmGY2Q6LbAzDMAzDMExGekaDAIBytwPlbkfax8pOtvMW1QHQykVVVS3cATIMwzAMwxQZFtkYhmEYhmGYjPSMaCJbU2X6UlEAqPUaIttblzcCAKJxFYFwrDAHxzAMwzAMUwKwyMYwDMMwDMNkpGeMRLb0paJAopPtgsX1cNgUAMBokEtGGYZhGIaZvbDIxjAMwzAMw2Ske0RretCchchWq4tsNV4nFtb7UFWmZbRxh1GGYRiGYWYzLLIxDMMwDMMwGaFMtsYsRLaz5tdgTnUZPrx+PhRFMUS2AItsDMMwDMPMXtKn1jIMwzAMwzAMDJGtOYtMtqZKD17+8lvF/1foIttoMFqYg2MYhmEYhikB2MnGMAzDMAzDZIREtmwy2cxwuSjDMAzDMKcCLLIxDMMwDMMwGekZ1TLZmqpYZGMYhmEYhrGCRTaGYRiGYRgmLfG4it4cuouaqfRoCSUssjEMwzAMM5thkY1hGIZhGIZJy2AgjEhMBQA0VmTOZDNDTrZRFtkYhmEYhpnFsMjGMAzDMAzDpIXy2OrLXXDac58+ssjGMAzDMMypAItsDMMwDMMwTFqm0vQAACo5k41hGIZhmFMAFtkYhmEYhmGYtIimB5MU2YSTLcgiG8MwDMMwsxcW2RiGYRiGYZi0dI9MzcnG3UUZhmEYhjkVYJGNYRiGYRiGSYvRWTT3pgcAi2wMwzAMw5wasMjGMAzDMAzDpIWcbM2TzWTzUOODaN6OiWEYhmEYptRgkY1hGIZhGIZJS74y2SYiMYSj8bwdF8MwDMMwTCnBIhvDMAzDMEyeUFUVm48MzrqyyKl2F63wOKAo2tez7b1hGIZhGIYhWGRjGIZhGIbJE68eHsT7/m8jvvLwjmIfSt4IR+MY8IcBTD6TzWZTUO52AGCRjWEYhmGY2QuLbAzDMAzDMHniQO8YAOD40ESRjyR/UNMDl92GWp9r0s9DJaOjQRbZGIZhGIaZncxYke2OO+6Aoii46aabxPdUVcVtt92G1tZWlJWV4ZJLLsGuXbuKd5AMwzAMw5xS9I9p2WUT4ViRjyR/UB5bY6UbCtV8TgLuMMowDMMwzGxnRopsmzdvxo9//GOsXr064fvf+MY38J3vfAd33XUXNm/ejObmZlxxxRUYGxsr0pEyDMMwDHMq0TeuCVL+8OzpojnVPDbC6DDKIhvDMAzDMLOTGSeyjY+P48Mf/jB+8pOfoKamRnxfVVXceeed+MpXvoJrrrkGK1euxC9/+UsEAgHcf//9RTxihmEYhmFOFfrGtOyy2eVk00S25imKbKJclEU2hmEYhmFmKTNOZLvxxhvxrne9C5dffnnC9zs6OtDd3Y0rr7xSfM/tduPiiy/GK6+8kvL5QqEQRkdHE/4xDMMwDMNMhn7dyRaYRSJbr14C21AxuaYHBJeLMgzDMAwz25lRIttvf/tbvPHGG7jjjjuSftbd3Q0AaGpqSvh+U1OT+JkVd9xxB6qqqsS/tra2/B40wzAMwzCnDH2UyRaJIR5Xi3w0+WFwXHPn1ZdPvukBAFR5DZFtJBDBlx7chlcO9U/5+BiGYRiGYUqFGSOydXZ24vOf/zzuu+8+eDypyxXMgbyqqqYN6b311lsxMjIi/nV2dubtmBmGYRiGOXVQVVU42QAgGJ0dbrYBv/Y31fqm5mSr9DgAAKMTUfzs5Q787vXj+OHzh6Z8fAzDMAzDMKWCo9gHkC1btmxBb28vzjrrLPG9WCyGF198EXfddRf27dsHQHO0tbS0iMf09vYmudtk3G433O6pTRoZhmEYhmHGQ1GEonHx/4FwDF7XjJlqpWTArznZ6qbqZJPKRV/tGADA+WwMwzAMw8wuZoyT7bLLLsOOHTuwdetW8e/ss8/Ghz/8YWzduhULFy5Ec3MznnrqKfE74XAYL7zwAs4///wiHjnDMAzDMKcCVCpKzJbmBwN6uWidb2oiW6Uusr3WMYCjAwEAmjDJMAzDMAwzW5gx26sVFRVYuXJlwvd8Ph/q6urE92+66SbcfvvtWLJkCZYsWYLbb78dXq8X1113XTEOmWEYhmGYU4h+XYwiZkvzg0HhZJtiuagusg0FDPeaPzQ73iOGYRiGYRhgBols2fClL30JExMT+MxnPoOhoSGsX78eTz75JCoqKop9aAzDMAzDzHLkPDYACIRnvksrGIkJt1ntFJ1sVC4q42cnG8MwDMMws4gZLbI9//zzCf+vKApuu+023HbbbUU5HoZhGIZhTl1mY7koudicdkU0LpgsssjmdtgQisYxHo5mbFLFMAzDMAwzU5gxmWwMwzAMwzCljNnJ5p8FIhvlsdX6XFMWwio9hsh21epWAICqzp6yWoZhGIZhGBbZGIZhGIZh8sBsLBcd8Gt/U61v6p3Yq8qcIJ3uQ+vaxNdcMsowDMMwzGxhRpeLMgzDMAzDlAqzuVy0vnxqeWwA4HLYcOs7lmNkIoKz5teg3OXAWCiK8VAUjVN+doZhGIZhmOLDIhvDMAzDMEwe6NNLKz1OG4KR+Kwog5TLRfPBJy9aJL72uTWRjTuMMgzDMAwzW+ByUYZhGIZhmDzQrzvZ5tV6AQATkZkvHg3oTra6PJSLmvG57QAgupcyDMMwDMPMdFhkYxiGYRiGmSKqqqJvPFFkmxWZbPrfVJeHclEz5W6toIJFNoZhGIZhZgsssjEMwzAMw0yRsVAU4WgcANAmRLaZ72QbFE62AohsHk1k48YHDMMwDMPMFlhkYxiGYRiGmSLU9KDc7RCC1GxofNDvz28mm4zPxU42hmEYhmFmFyyyMQzDMAzDTBHKY2uocKNMF49mh5ONykXzn8lG5aLsZGMYhmEYZrbAIhvDMAzDMMwU6de7cNaXu+B1aYH+s0Fko+6ihSgX9XEmG8MwDMMwswwW2RiGYRiGYaZI31gQAFBf7pZEtpktHk2EY0IoLETjAxbZGIZhGIaZbbDIxjAMwzAMM0XIydZQ4UaZc3Y42Qb0UlGX3SZKO/NJBTc+YBiGYRhmlsEiG8MwDMMwzBTpH9cEKc3JpolHM73xgegsWu6Coih5f36f7vjzh2b2+8QwDMMwDEOwyMYwDMMwDDNF+hIaH+hOtsjMdmhRHlshOosCXC7KMAzDMMzsg0U2hmEYhmGYKZLoZNNEtpnuZBvwF1ZkK2eRjWEYhmGYWQaLbAzDMAzDMFNkNnYXHZCEw0JATjbOZGMYhmEYZraQ/xRbhmEYhmGYU4h4XBXlovXlbrid2h7mRCQGVVULkmc2HQwW2snmYScbwzAMwzCzC3ayMQzDMAzDTIGesSDCsTgcNgUtVR749MYHqgoEI/EiH93kGZAaHxSCcnayMQzDMAwzy2CRjWEYhmEYZgp09PsBAG21XjjsNpQ57eJngfDMFZCoXLSuwI0PuLsowzAMwzCzBRbZmJLhpQP96BkNFvswGIZhGCYnjg4EAADz67wAAJtNgUcvGZ3JuWxULlrnK0wmW7nu+AvH4ghFZ+77xDAMwzAMQ7DIxpQE248P4yM/ew1f+N22Yh8KwzAMw+TEkQHNybagzie+59UFpInIzBWPqJlDbYHKRX1uw/HHbjaGYRiGYWYDLLIxJQGV2pwcnijykTAMwzBMbhzRxzBysgEQJaMzOW+MnGz1BXKyOew24fibye8TwzAMwzAMwSIbUxIM6RN5/wzOrmEYhmFOTahcdEG97GTTRLaJGVouGghHhQuvUE42wGh+wB1GGYZhGIaZDbDIxpQEg4EIACDA5SIMwzDMDEJV1RTloprINlMz2Qb0UlGXwwafy57h0ZPHxx1GGYZhGIaZRbDIxpQEspNNVdUiHw3DMAzDZEfPaAjBSBx2m4I51WXi+2Ukss3QTDZy582tKYOiKAV7HZ+eXTfGIhvDMAzDMLMAFtmYkmAwoIlscRUIReNFPhqGYRiGyQ5ysc2pLoPLYUyrROODGRqD0KH/Xe2SO68QlLOTjWEYhmGYWQSLbExJQE42gCfaDMMwzMzhKJWK1ieKUWUzvFyUmjmY/658U+5hkY1hGIZhmNkDi2xMSTAoiWwzdUHCMAzDnHocoaYHUmdRAPA6WWTLBp9ofDAz3yeGYRiGYRgZFtmYkmAowCIbwzAMM/MgMWq+qaySxKOZ2l10+spFNTFyPMhONoZhGIZhZj4ssjFFR1VVDPkj4v/9MzS/hmEYhjn1SOVkm8nlotFYHJ2D+t9V783w6KlBjQ947GcYhmEYZjbAIhtTdALhGMIxo9lBgEtGGIZhmBmAqqopM9moXHQiMvPEo5PDQURiKlwOG1qryjL/whQwykVn3vvEMAzDMAxjhkU2pujIeWwA72YzzHShqiqe2dOD3tFgsQ+FYWYkfWMhBMIx2BRgbk2iGEVONv8M3DiiUtH5tV7YbEpBX6uCGx8wDMMwDDOLYJGNKTpyHhsABFhkY5hp4dm9vfj4L1/Hv/1xZ7EPhWFmJFQq2lpdBrfDnvAzr14GORPLRaer6QFgONlYZGMYhmEYZjbAIhtTdJKcbDNw159hZiKbjgwCALZ2Dhf3QBhmhnKESkUtmgN4XTO3XLRDF9nap1FkG+PGBwzDMAzDzAJmjMh2xx134JxzzkFFRQUaGxvxnve8B/v27Ut4jKqquO2229Da2oqysjJccskl2LVrV5GOmMkWdrIxTHHYfXIUANA7FsJoMJLh0QzDmDEcX8nNAWZy44N04mG+oe6iHBXBMAzDMMxsYMaIbC+88AJuvPFGvPrqq3jqqacQjUZx5ZVXwu/3i8d84xvfwHe+8x3cdddd2Lx5M5qbm3HFFVdgbGysiEfOZGLQn7i4Zycbw+TO60cGcdX3N2DL0cGsHq+qqhDZAOBg73ihDo1hZi3HhyYAAG01ySKbcLLNRJEtjXiYb0R3UR77GYZhGKag/OLlDjy5q7vYhzHrmTEi2+OPP47rr78ep59+OtasWYN77rkHx44dw5YtWwBoC8Y777wTX/nKV3DNNddg5cqV+OUvf4lAIID777+/yEfPpGPIz042hpkqf9x6AjtPjOL2R/dm9fie0RAGpGuPRTaGyZ0BfwgA0FDhTvqZd4Y62SKxODp18XA6ykXLPdxdlGEYhmEKzYGeMdz259343G/e5PV2gZkxIpuZkZERAEBtbS0AoKOjA93d3bjyyivFY9xuNy6++GK88sorRTlGJjsG9XJRh97BzD/DFiQMUwoM6Y7QLUeHsPPESMbH7zqZ+JhDLLIxTM70j2njV315sshW5pyZjQ+OD00gFlfhcdrQVOEp+OuVc+MDhmEYhik4h/q0uX4oGseGA/1FPprZzYwU2VRVxS233IILL7wQK1euBAB0d2u2x6ampoTHNjU1iZ9ZEQqFMDo6mvCPmV7IydZSrU3mZ2JpDcMUG7mByL0bj2Z8PJWKkrjNTjaGyR1ystWVu5J+ZpSLzizxSJSK1vlg0+8PhYQaHwTCMcTiasFfj2EYhmFORTr6A+LrZ/b0FPFIZj8zUmT77Gc/i+3bt+M3v/lN0s8UJXFCqKpq0vdk7rjjDlRVVYl/bW1teT9eJj0kDsypLgMwvbvZW44OoWtkYtpej2EKhdxA5E/bTmDY1FDEzC5dZLt4aQMA4GAfi2wMkwuxuCrGrwYLJ5tXD/QPRGJQ1ZkjHnX0T1/TA8BwsgHc/IBhGIZhCsXRASPL/tm9vYjzxlbBmHEi2+c+9zk88sgjeO655zB37lzx/ebmZgBIcq319vYmudtkbr31VoyMjIh/nZ2dhTlwJiUkDszVg6Onq7TmQM8Yrv2/V/Dpe7dMy+sxTCGh66jc7UAwEsfvXz+e9vG7urRy0XefMQcA0DkYQDDCLlKGyZahQBg0P63xWTnZNPFIVbXSjJmC6Cw6DXlsAOB22Iy4CC4ZZRiGYZiCQJtoANA/HsbW48PFO5hZzowR2VRVxWc/+1k89NBDePbZZ9He3p7w8/b2djQ3N+Opp54S3wuHw3jhhRdw/vnnp3xet9uNysrKhH/M9ELdRefW6E62adrJ3nh4AKoKHB0MZH4ww5QwqqpiKKBdR9efvwAAcN9rR1PuUI1MRNA5qDk4L17SgEqPA3E1cfBlGCY9A+OasF3jdcJpT55OlTnt4uuZJB7RfaB9GjqLAloFgo9z2RiGYRimoBwd0Na882q18Z1LRgvHjBHZbrzxRtx33324//77UVFRge7ubnR3d2NiQlsoKoqCm266Cbfffjsefvhh7Ny5E9dffz28Xi+uu+66Ih89kwpVVUVZm3CyhabHTbP12DAATXBguywzkwmEYwjrTpmPnr8AFR4Hjg4E8MaxIcvH7+nSSkXnVJehyuvE4sZyAJzLxkwfP3nxMK794SsYDUaKfSiTpn+c8tiSS0UBwG5T4HZo06yZ1Pygd1T7u1r1CIfpgEpGx1OM/9s6h/HjFw8hGps5jkAm/+w4PsJCLMMwBWcmRTxky0Q4hu7RIADghgsWAACe3t1bxCOa3cwYke2HP/whRkZGcMkll6ClpUX8e+CBB8RjvvSlL+Gmm27CZz7zGZx99tk4ceIEnnzySVRUVBTxyJl0jIWiiOoCl8hkmyYn25udwwC0Up4xnrTNWPyhKJ7b1ytEplMRKhV1OWyoL3eJnLUX9vdZPp7y2E5v1Zy7LLIx083PXurA60eHsOWotRA8EyCRrd6i6QEhmh/MoFJsup/UeFP/XfnGp+fXjQetx+JbfrcVtz+6F691DE7bMTGlxcsH+3H1XS/hX/6wvdiHwjDMLOaBzcew+qtPYvOR2TXeHB3UXOpVZU6894w5sNsU7OsZQydXdBWEGSOyqapq+e/6668Xj1EUBbfddhu6uroQDAbxwgsviO6jTGlCnUW9Ljtq9Uyb6djxH/KHE0rjRgIz101xqvP9Zw/ihns244HXT908xSG95LrG64SiKLhkWSOAdCKblsd2emsVAElk4+YHzDQwHoqK3dSxFKLKTKBfLxdN5WQDjFy2meJkU1UVwxPa/aSqzDltr+sTTrbk8+FIvx+H+rTxesCfvqELM3t5cpeWucyxBkwpMx6KcnXMDOfF/f0YC0axIcUceqZidA73otrrwlnzawAAT+zqTvdrzCSZMSIbMzuhzmw1XpfY8Z+OUgBz0OPIBItsM5XDujC0r3u0yEdSPMzOk4uW1AMAth8fEW4bIh5XseO4JrKdZnay9bDIxhSew5KYOzbJctFbHtiK9//fxqKWDw7o15ZVZ1GiTB/XAjOka+ZExCg9t2rmUCjqfNp7+JftJ5PKdJ7bZ5SzcKngqctLB/sBYEaXmDOzm+6RIM7+76fwud+8WexDKRlC0Rhe2N83o6pNqLqJNgNnC0f0PDZqanTV6hYAwF3PHUTv2Oz6W0sBFtmYokLiQK3PJXayQ9E4YgXeBXpTz2Mjhid4d3ymQs6GE0MTRT6S4mEW2RorPTitRRPQNhwwduK2dQ7jvXe/jAO947ApwKo5mpNtSaNWUt/R7+fMI6bgHEoQ2XIXTWJxFQ9vPYFNRwaL2riGGh/UpRGjRLnoDHGyDeuubqddgc9lz/Do/PHpixfCYVPwl+1d+NXGowk/e26fcQ8rJZFtU8cg/vfpAwWfrzBA18iEcDNy5QFTqhzoHUMwEp91ZYZT4euP7cNHf74Jn7z3dUSynF9GY3H85MXD2N8zVuCjs2ZcF/K7R0MZHllcekaDeOf/bsBvNx3L6vHkZJtfp4lsH1o3D6e1VGI4EMF//GlXwY7zVIVFNqaoUGfRGp/hZAMKv+v/pikQnp1sMxdyQ54cPnV3YajsulZa7F+8TM9l0xeov3zlCN5z98vYdnwE5W4H7rhmFZqrPAC0PESP04ZwLI7OU1isZKaHQ71GuddknGyjExGQ2WmwiOWDmRofAEaHUasyyFKEBPuqMhcURZm21z17QS1ufecKAMB//3W3aNoSCEfx6uEB8bhSeR9D0Rg+8+st+O7T+/HigdlVUlSKvHSgX3w9xuV4TIni1xu3DPjDLL5DGyN//Zq2afL8vj78y4Pbs7p2/7qjC197dA/+8b4tRWlAQONMz0hpryue2dOL3V2j+J/H9yKYRe7rkYHEzuFOuw3ffN9qOGwKHtvZjb9u70r5u/5QVDQqZLKDRTamqAhxwOuE22GD3aZN6guZXxOPq9imNz2gZgvDvDM6Y6GF7onhiVnZDSgbBgMkVhsZSpfozQ9ePNCP7ceH8d9/3Q1VBd69thXPfuFifOCceeKxNpuChfXc/ICZHmQnW6qg+3QMSRO9gfHi7TT36+NXusYHlXqu2b89vBNff3xvUvl2qUFjYY13+vLYiI9dsADvWtWCSEzFjb9+A8OBMF45OJBQZlQqTrbHd3aLTL6jOWSE9YwG8dMNh6d1Y6+j349//v22hOtupvHyQUNkU9WZneWYT1RV5TKvEoIMArG4mjBOnarc83IHQtE45lSXwW5T8NCbJ/D1x/dm/D2qNjrU5y9Ksxual5R6uSjNf4YDkaxy1Y70a85/crIBWjbzZy5ZBAD4f3/aieND1tUB1/3kVVz6redZaMsBFtmYojJIZW4+bdd8OnLZDvf7MRqMwuO0YX17LQB2ss1UQtGYmGyPh6IYPUUn3sMW3QDPnF+DcrcDg/4wbrhnMyIxFW8/vRl3fmAtGis9Sc+xSM9lOzyDF2KMNT947iDefueLRXV9yeRSLhoIR/H3P9+EX208Ir43LN2vixmE3z+W2cn2j5cswtKmcoyFovjh84dw9fdfKmmHA4ls1UUQ2RRFwdevXY2F9T50jQTxL3/Yjmf1PDZ9/w3jodIou73vVaOk9cRw9u7fHzx3EP/91z0Jv19ofrXxCB7cchz3bpy+18wnqqripYMDCd/jXDaN/33mANZ97Rk8s6en2IfCINEgUOobKoVmLBgRpf//ftVp+PrfrgYA/OjFwxm7We44MSK+/vVr2ZVC5hPKZBuZiGTlECsW8vznNxlKRifCMSEatksiGwDc+NbFWN5cgQF/GB/88atJY1rvaBDbjo9gKBDBVt2kwmSGRTamqBhONk0c8E1DJzYqFV09pxp1ugOBRbaZiVk0OFVz2eQGIoTTbsMFi+sAaANxU6Ubd1yzKmUJWLsehEp2cmb28NvNx7C3eyzBDVIsorG42E0FkFEYf/ngAF7c34efvdQhvifvpA6OF0dkU1UVA/7MjQ/OnFeDxz9/EX7y92fDYVPQNRIs6d1xcl9Ue6ev6YFMuduB733oDDjtCp7Y1YPf612jz1+kNXMpBSfb3u5RbD5iRE4cz2HcIafwdDqGj+ph1ydzEANLiX09Y+gfD6HMaXSh5zmbxmuHNZePLEowxUOOuukbO7VFtl+/dgxjwSgWN5bjytOacO1Zc8U8sytNGWY0Fseuk8b5/PjOrmkVLFVVTRhnuku4ZFQW2V49PJh2k/zooDa3r/Q4kjbR3A47fnHDOiyo8+L40AQ++OONCeOFfH/Z212cnLyZCItsTFER4oA+cfK6C+9kIxX+jHnVqNJLeThId2YyYFpg5+IoIDYeGsB//GnnjOn+Z4VofOBLHDgvWdYovv72+9am7RZIGQ2H+1hkm01EY3F06XmFx4rYJIA4PjSBsBR+nCmTjXa8ZTFNLu8vlpPNH44hGNH+jro05aKAVo59xWlNaNXjCUp5M4DEi2KUixIr51ThX96+HAAQialwO2y4fIV2LysFkY1caPQe5TLudOqlONO5mXFUf62eEhZ300F5bOvaa0WTERbZNOiz5ciT0sAvOW1PZZEtGImJjbFPX7wINt2KTPEJo2mu30N9fgQjcfhcdqyZW4VITMXvXz9e+IPWmYjEIJvNS3lTjMpF3Q5Nznlgc2fKx9LmZnu9z3KzvbnKg9988lzMr/Oic3ACn/+t0SF354lR8fWertGk32WsYZGNKSpyd1GgcE620WAE33piH67+/ku4X7fUrm2rRpW+W8/dRWcm5gU27byMBCK4/p5NeOiNzAPzt57ch19uPIqn9/QW5BingyFqIGJyn1y1ugVvXd6I/7j6NFy4pD7tc7TrmWzsZJtd9IyFENVnjEelz1ZVVRwfCkx7jqE5FypTuSi5hMZCUYSi2rgwVAIiG01uy5x20Rk7E5QBmirzpBQgd3mxnGzExy5ox0V6ruT5i+pESW6xGx+MBSN4+I0TAIAbL10MIHsnWzQWFw16yF1WaOJxVTSzSeceKWXIgfuWJfViYzTdIv1UIRiJoUsXADgnqTSYiHC5KKA5n/rGQqgvd+Hda1vF9ys92liZTiTffnwYAHD6nCp85Nz5AID7Nx2dtmYn5pzYUt6cIKPKB89pAwA8uOV4QoapDM3/5ptKRWVaqsrwq4+tAwBsPjIk5gMJTrYudrJlC4tsTFExl7mVUSZbnl1F9248irueO4gdJ0agqprAdqE0YeNd0ZmJOfScHAV/3dGF5/f14T8e2ZXR+UAL3lJe+GZiyCKTDQAqPE78/PpzcMMF7RmfgzIaekZDJeEWYfKD7Jo6Ii3sf7OpExd+/TncO43ZUIAhsrXqnW3HQhmcbNJ1SW6NkRJofECh95lcbDJza0rfyTZUxEw2GZtNwfc+uBY3Xb4E/+/q01GuC5n5nhvkymM7uuEPx7CwwYf3na0tbAb94ayc0F0jQZHHN+gPT8u8o2csKBZdfeMhRGLWC7BShkpzz1tUx3M2CW2TRPt6iJ1sJYE8dzqVnWxH9GYwy5sr4bQbUkM21+9OXdBZNacKV61uRaXHgc7BCbxyaCDl7+STMdP8t5TLRWkecu1ZbWiscGPAH8aL+627XdMG+oL61CIboIlwS/SM5tc6tPdcLt891DcuNjyZ9LDIxhSVIVNXRJ8usgXyHG5MN/xrz5qL1/71MvzxxgtQ4XGiWr/hs9V+ZpKqXHSnPiCMBaN4+M0TKX8/EoujV58IUUndTMTsCJ0MVV6n+H12s80eZPH4mCSyvXxIc4dMt/X/UK92bq2dVw0geycbYFzvcuODYjVzIJdCfZo8NjNzSGQr4WysEd3VXV1WXCcboLnpbrp8KdrrfcIt6C9y4wNabFyxoglVZU7hzMhGODWXax+bBjeb/BqqOvMW/uFoXLgX51Z7RbkZi2xIyLZkJ1tpMBHmclHAcOou0GNICFEumiYmglxTq+dWocxlF1UYB3qnx0FldrKVarloXOpg21TpxvmLtAzmgxa5bIf6xrFBL7tfUOdN+rmZ8/Tn2nhoAP3jIXSNBKEoWmZqNK5Oa6boTIZFNqZoxOOqmBhQ4wNvgXarqUzi/EV1aJI6K3LpwcyGSsXmmLKOdknW5l9tPJKyJK5nNCh2grtGSnfhm44JKRsqXeZaNtDg29HPIttsQRapukeDolPWgR5twjrdi1Vysq1tqwagiWyprk9VVXFcEiZIUJNdG/1FanxAgl99Tk427frKJSh/uhEbX0V2spnx6XmtxS4XpQUMdWOek8NnahbZKIg6F1RVTVjIZ+Ko6TVLdcGYCtkh6HXb2ckmIW+GsZOtNJDXLsUam0oB4ZoylSZmun6jsTh26xt/K+dUATAqNKbrHDePMcUoF/3DluP45hN708Z5jExEhDO6xueS5hfyxoqK+187hqu+9xKOD02g1ufCW5Y0ZHz98xZqItsrhwaEs7C93oeVcyoBAHu4ZDQrWGRjisZoMCLCJatFd1HdyZbnTDbK6qLgaYJKYoZ5wjYjoVKxVfpgfHJ4ApFYHHv07jcOm4L9PePYeNjaZi5n1JycoU422sly2hVx/UwWkcvGItusweyw6RwMIByNiwYXxRPZagAAsbgqRGIzoxPRhNIN6uYpuzaGAuFpy2qRmZSTrbr0nWzDRe4umgpRLlpkkY2cmIsatHsllQBnEzfQaRbZJuFku+OxvVjz1Sextzs7B6r5NXtKuPTJClrwuhw2OO22rJww+SQUjeG2R3bhmT090/J6uSCfP0PsZCsJAuxkA2Ccm+b8L8PYYH0fP9g3jmAkjnK3Q0SYkMg2XW5Ns7t+ustF43EV//6nnfjBc4eSMmxlaD5UVeaE025DW602FnUOGvOLZ/b04l8f3oGJSAwXLK7DX//pQjRUZJ6znKuLbAd6x/H8Pq38dNWcKixv1kS2vdz8ICtYZGOKBrkSKtwOuPTOKF7R+CB/E2lVVcWiprUqUWSjG34gHEsZFsmULuRkW92miWy9YyHsPjmKcDSOCrcD79fDQH/5yhHL35dbVJ+coU42OdfQqmNQLixs0CY1h1lkmzUcH05cZB8ZCKCj3y+aIUynyDboD4vd6JVzKqE3HEvZYbTTJFzQuS6X98fi6rQtuGVI4J9sJlsxhMFsGC6RTDYzVC4aCMeK9t6NBSPCCbbYLLJlIZySk43mHZPZzNh8ZBDhWBxbjw1n9XizkDfTmh+QaEEiq+GEmR6xdVPHIH7xyhHc9udd0/J6uSC7FMeCUURnYN7ebCNBZDtFGx+oqio52Uzlop70TrbtxzXX1OmtlaIjqTBDTJOTjTZyKvQogJ5R7XMMR+P4/jMHEvLJCkH3aFCcR/TaVphzYa2cbJSpdvWaVtz7sfVoMa2BU1Hjc2FFiyao/e51rWPpytYqrGipAADsyXKT51SHRTamaIiwdqnEjUpC8pm7MugPIxSNQ1GApqpEBb/C4wTpEtkuNntGg0m7w0xxoIXu4oZyeJza7eyp3dqO82mtlbj+/AXie1ZOA9m9NhyI5FSGU0we3HIc//z7bQhFY2LiYW56MBnI2k+Lv76xEG767ZvYcnRwys/NFAcqY6Pdy6MDfuzrMaz+qXaUC8FhfVd2TnUZvC6HWDiPpshlM1+z1OnK3A26GGU5/aJcNHsnW3OVBzYFCMfiJdl5TlVV4erOx/0kn5RLHVyL1fyA3J/15W5U6Qs/o2NsZpGNunxeuFjLGJqMk41cFoNZujpI2KPjLOVOeVaQk43mhtl0J8wn9DqdgxNFy39MxVFTdipXZBQf2Wk76A/PyEYjU2XQH8ZYMApFAdpqE0W2TBE9O6U8NqJalItOz/VH95zFeiRAz2gQ8biKB7ccx7ef2o/bH91T0NeXN1/SuSHpflTnI5HNGIuozJSiX9a11wrRMluoZJQEv5VzqoTwtqdrbNo7089EWGRjisagn5oeGJP5QjjZaOe2odwNtyOxnM5uU1Dhzn7Spqoq3n3Xy3jn9zaIbCOmeIiFboVbLCKe3N0NQBsQljZV4PxFdYirwO9fP570++YctpngZgtGYviPP+3Eg1uO45k9vWKxRc1DpkK73nWIBub/e+EQ/rj1JH74/OEpPzcz/cTjqnBrUijuscEA9ncbItt0Otmo9IEckxX6rnZKJ9tg4vVIztVhfexw6JPGYix++4WTLXuRzWm3oVnPBO0swVy2sVBUZLyUmpPN7bDBrn/exWp+QOfv4kajBCqXnD3anHuLHuQ9mQYzdK0MZiksk8i2rr0WwAx0sumftc+V6GSbrhxdOQR9x4nCOlhyIRKLi3OONoq5gVfxMUfdlJowOx1QF/OWSg88zsQ1V2UZbayld7JRHhtg5INO1/lNIlt7vQ+KAkTjKgb8YbyiN4vq6CtspcfhLEU24ab3aXOQlqoyKAoQisbF2oieq91UtpsN1PyAOH1OJZY2VcCmaOf1qVwOnS0ssjFFg1wJtdJknjKl/Hl0FFGpaEu1tU2WdklGJjIPhoFwDN2jQYwFo+hNY+Nlpgd5J4fy9vb3aAshCui89qy5AIBHtp1M2nkx57Bl22H0ub29WH/703ghRavsQvLywX5xfbx+ZEjkVOTFyaZ3ghoKRDDkD+Ov27sAzNymEKc6vWMhRGIq7DZFLLKPDgQSnWzBSN7K73rHgvj0vVuw4YD1dUGiGTkmqRwjVYdRcrLRRgg5AyinbZ5eijJQBFcYCX65ND4ADFGmFHPZSLz0OG1Ji6NioyhG5mSxmh9QRzXKYwMSS4DTMR6KivGKuuX1joVy3lDMxck2FoyI1zxngXb9z7TGB4aTrUgim3Sube8cnpbXzIYTQxOIxVV4nDa06fcU7jCaHf3jIfQW6Dowi2ynohBBDktzHhuQvvFBJBYX3c5Xz60W36c1mtnBXijoHlvjdQmnes9oEK91aBUdXaPBgsYLJTjZ0sxtzOWiLocNLWITL4BoLC42dtobchfZ1rXXikiPBXVeVHqc8DjtYjN+Tzc3P8gEi2yznHs3HsH7f7QRv9l0rNiHksSgRbkodRcN5HESTU6OOdUey5/n0q1KtoJzd6viEghHMaG7CevK3WKxQ6xs1XbCrjy9GR6nDR39/qSdaBKPnHZtJDmZ5cL3gc2d6BkN4bm9vVP6GybD4zu7xddbjg4amWxT7CwKaE5Sctr84Y3jYkFWqODXUDSGHcdHSjafaqZDIlVLlQcL9aYWRwf8orMoAKgqEpoLTIUnd/Xg8V3d+MmGDsufk4umuUo7xyqFk8369cntRbvaA/6wuO8qirE7O1BEJ1su5aIAMCdLUaYY0CKm1EpFielufvDnbSfxkZ++JhbkhpMtWWTrHw+ldbfTYqfG68TcGq+Yd5g7jqYjGouLRfxQFuc8PXetzyWOebpDvKcKfdZeXWCtzDBfy7T47RsL5VTmJN+btpeQk43y2ObX+sTYzx1GMxOMxPCu723AO/53Q0GyPEk0pw2kU1FkIycbbdrKpBPJD/SMI6TnKc+XykyFk80/XcK69jo+tzEf3nhoQHyWqpr9WmEydEgiW386J5ufnGzGeC07q08MTyASU+GWxLdcqCpz4nR9HSU7C5eLklHOZcsEi2yznONDE9jUMYhDvak7lBQLw8kml4vm38lGCztz0wMil1DNcRbZSoYBfRfH7bDB57InfL4epw0LdbdBuduBy1c0AQD++ObJhOeggZIGkmzKRVVVxetHhwCkFgcKRTQWx1NSl7NdJ0fF31Cbp4UxTYx+/KJRIjrgDyMUzX+J1nee3I+r73oJf9nRlffnZgy31NyaMsyvMyZftECjMqN8uUJI8O1OcR11j+quYl1kKxdONuvXJ5FwTVu1eH66T1d6nGis1ASugWnOZIvE4uI4chXZculGOd3QIp0WQqWGb5pFth+/eBgvHezHfa8eBWDtZKsqcwrxL13JKAlelFFEgeBH+rM/D8ZNeU+ZOKYvdufVesU11z0anFFZOiRaJDc+iCT9HVuODmHlbU/gh88fsnyuv2w/iXO+9jR+siH7+IMEJ9vx4VwOvaCQW2henRfV+nvCHUYzs/HQAHpGQxjwh/HsnvxuksbjqhDBabwtZPODrZ3D+NlLHSW3SZnOyUYba/5wLCmvjvLYVs6pSsgPIyfbWCg6LRl3VCJe4XagSRen/rTtRMJjzE2Z8klHlk42UckjzUHk+QU9z4I6X855bMTfrGkFALGGAoDTWrjDaLawyDbLoXDeUgxEtXLg+AqQyZapXDTTzqiMnAXDIltxkZ0kiqIIhwigDQJ2aVB5z9o5AIA/bz8pMocmwjGxqDxrfg2A7MpFjw4ExGunEgcKxWsdgxgORFDrc6Gxwo1oXBUlq/nKUGrXHU+9ph20QpRHU9liobs1narQon9OtRfNlR64HDZE4ypUVXO3NOiTs3zdy2iRl8otY3aypSsXVVVVlJeu0UOQh/xhUdZf7XWiVh87Bv3T6xagscumQCxws4WyI0uyXDSPpeeFgES26SgXjcdV4Vx7YlcPIrG4aFQgO9kURTFKRtN8pp0mkY0WoObw+nTI10k25aIk7M2r9QpBOhyNz6jsrnHKZDOJbNG4KpzsxKuHBxCOxkV2kpkX9mljJeU+ZYMs6PaMhkqmcQSJswvqvFJmFYtsmZA3KR/N8+ZeUNqIpOu7kE62rzy8A//1l91i07dUEE62umQnG435QPLm3vYTwwCAVVLTA0C75s0N6k4OT+Bjv9iMFwsQ2ULjS7nHgWa9Wd7OE4mCkjkvNl9EY/EEd3O684fKRWsTnGxG8wMS2ai8czJ8/MJ2bPjSpXj32lbxvSX6+HeowNl0swEW2WY5NFkuxcGXFmS1vmQnWyCPwcaZykVpkcROtpkFLXTp/GmVRFTZ2gwAFy1tQLXXib6xEDYe0lpaU6moz2XH8matLXU2TjZ5QjPd2UBUKnrlaU0iY4dafNfmoVwUANoli3+lx4FWXRApRGA2fYbmbDwmP5Bbam5NGWw2BfOkEoylTeV5zzcid/JoMJrUqVdVVSG+UQmGENksrqNBf1gsoul6HgqEhWut2utCrR74O93loiSy1/rcOe8Q5xKUP93QGFhqTQ8IUS46Dd1FT45MCFfKvp4xvLCvD9G4Cq/LLlxhhNFhNLW7oVMSvADJyZZDh1FZZBvKonRKlBTWeeF22MUYMZOaH9CGK+XxeV120fDEPAejst5UztY93dpCORfHl/nelItAV0hkt5DRfZHnpOlQVRXPSCLb8/v78jqHo014RYHIySukyEb3lFLLWaRzc4GFuOOw21J2Fd+hC1mrTPN3u00RDjhayz66owvP7u3Fz16yjqaYCkJkk8pFCRKYCuVkOz40gajkTMyq8YGUCzu31phfCCfbFEQ2m01BW60XimLMc8jdV4od0ksNFtlmObkISNONcLJJu+a+AkyiyZ3UkqJclDPZZiYDptDPObLI1po4SLscNrxzVQsA4E9bNds3LTRaqsuEQJfN4mPL0UHx9XSWi8bjKp7YpYlsb1vZLNx3RL7cJ+RkA4C3nd4snBeFaH5An2FXCbp6ZgMk5NDuppxzsqypIqd7XzbIizzzxH8sFBWiheFkS91dlPLYmird4vFxFcJNVF3mFE0HprtclFwkTZW5lYoCiZlspVa2R+JDdck62ajxQeG7ix40RWzc/fxBAFqpqLzgABLdA6kQ5aI1U3GyGdfJeCiasYTf7J6jBWOpuLGywdz4QFGUlNUHdM8ZsHC2RmNx0RQpG4FSvL4+xrsd2nJpR4mUjJKAuqDOV9Kb6aXEzhOj6BkNweuyY16tF+FoPOtc3V9tPIIP//TVtNULJAiXOe1orNDGhkIJEcFITIhU2eQzThfDASPSQd7Uk7Gad8hND8wiG2Bs/NAcg+5hudw/s0V2sjVJIpvLbhPlk505ZGnmQof+91AMxWAgjGiKEtlB0XzJolx00CgXXTgFkc2K+gojpqPU5jClBotss5zpLBcNR+M55TbRzdLSyZanTLZILI6eMT2TLWV30RxEtjCLbKVCvwj91G74zVUeUSJ6Wmtl0uPfrQ+Oj+/sRigaEw7HliqPcCacHM688N18xHCyTWe56JudQ+gdC6HC7cD5i+pw9gKTyFYAJ9u7VrcYWT4FdLLNJGfFTILC9UnYkTNSljYbIlu+AqDlRZ75fKH/rypzwqvHAqQrFyVXUFuNF067DZX6Yw/3awvlmoRy0eldZFCJyrkL6zI8Mhm6niYisZJzntDiqKZEnWzTmclGIhs1xXnj2DAAYJFFlzbRMTaNyEai8TxRLqr99+gknWxAZrGInpvE9eYCupILhd8ksgFyeHri+0Gu7kF/8uLvcL9fNEXIxclGC24ab7dlcLLFpiEfKxZXRd7e/DovanyT30y/d+MRXHP3yyUl1BSKp3UX21uW1OOq1dqm62M7M5eMxuMqvvvUfrx8cEBUQlhB6xavy4EGXYjIxsmmqipufWg7vvj7bVmLFnJ8x3SPf+kgZ25TpVuM82asRPL9PWMIR+Oo8DjEvVFGuDX1v5Wu9eNDE3nPaZMz2Zol1/LatmosadKdbIUS2fQSzDPnVcOmaE0WrD7faCxuuYamTZzjwxM4rD/XZDqLpoMaLYRj8SQ3IpMIi2yznOna4QqEo7jw68/i/T96NesQTqPcz5jQ00QqEI7lRSHvHglCVTUnU10KESIXNweXi5YO5F4hN4vTbsNNly3Bh9a1iWBOmXMW1KKp0o2xUBQbDw2IEsXWKsPJFgjHkibuMsOBcILDYTqdbPe8fAQA8NYVjXA77FjRUokyp138PF8L4/l1Pixs8GF5cwUuWFyP5qrsXX65MBGOiXLA7tFgwuKEd8emTjyu4rguJBvuGblctCKnPMpskEUjs1vGXCoKZHCyDSa68Cjc91CvNnGs9rqEwG7lXCkUqmrkIF68tCHn3/dILodSa34wLJxspSmyTWd3Ucpj+9sz50I2rsl5bMScDM0stHxBcpUlCt4nRyay3pwcCyVeJ+kW19FYXGTEzatLFNlKrbwsHdQEi8pFgdQ5ulQuGompSYs/uROelQiXClpwn7+oHgCw48RIyt/9wXMHsearTxY8Y7R7NIhwLA6nXUFLlUcqF819nv/r147hjWPDeCWNeDRbIJHt8hVNorLhub19GTOg9/eOibGtP41rWpQ2u+3CXZRN44P+8TB+s6kTv99yPOusTjIPAKXV8CJd0wOCNszkmApqerBqTlWSUxiQOozqv0P3sGhczXunz4RMNmm+sn5hrdhQ6SxQ3MMR/f1b1Fgu5jzmfGTAyORUlMQqluYqD2yKZnqhc2lBms9iMnicdlToYzGXjKaHRbZZjtw5s5AL10O9fvSOhbCtcxivdmQerKOxuJggVVt0F43FVYQytGLPBlESWOVJmZ1TVaa9fq7lovnKMWImh9FZxzh/PnfZEtxxzWrLz9pmU3CZ3iHnqd09ovyxpdoDj9PIq0mXy7ZFz2OjAcYqS6oQvHFsCH/Z3gVFAT510SIAmqi4Vu+6COTPyea02/D0zRfjkc9eCKfdVjAnmyyMxOIqevVJ48HeMZz5X0/hB88dzOvrnWr0+0MIR+OwKcbiep4ssjUWoFxUWvSbF/LdpqYHgDHZTutk0104dH2Sk62qzCmu/UF/eNo6rO3vGUf3aBAepw3r2msn9RxyyWgpMWwxJpcS09n4gDZTzltUhzOk+6zcWZTIVC7aNxZCSL8WaUOnvtwFr8sOVc3+PDBfJ4YTeAK3/G4rdkguq5PD2saFy2FDU4V2zYly0VniZJPvW/G4mrAYHTAt/nZLIlsoGk9qmpAKOtfOWVALp13BoD+c8nN+fGc3xkNRvH6ksEH0JGTMrfHCYbdJjQ9yv49TnuV0N4/JB/5QFO++6yX8z2N7Mz62a2QCu06OQlGAty5vxOmtlWirLcNEJCYaYqRCdq+lExUok63MaRdOtv4snGxyN0lzmXoq5E2s6c4kTYfckCMVVtcvZR1alYoCyYaRXunvzyXXMhvoPlvudqBJmq+sb68T85FBf7ggmz2iWUGdTzSmshJqhUnF60po8qbN2Y2qrQq3QxgR8kldkaI6Zhosss1yqnUBKRpXxY5gIZBv+H/YciLNIzXk8lW5O5tsL85HySjtcLSmyGMDjBt+Nm4/OQtmeIJvLsVEDh/PlitO00S2p/f0iF0eWvS0iFKa1AseKhW9cIm2q51rifRkUFUV//2X3QCAa8+cm1AKSyUsDpsihL98YLMpcOkZNKLEKM/uB7MLg5yFz+/rw1AgIrLzmMlBC8HmSg+cdu2zPL2lEk67ojU98Drz6mSLxOIJorNZlJU3PIh05aKdpjw5mmSTk6DG6xTfi6vT10H7+X1ahs95C+vgkZykuVCqzQ/IrZFrx9TpYrqcbKqq4oC+2F3cWI63nd4sfmblZCOnaO9YCEEL8Yby2Fqry8S1qCiKlJGWncCRJLLpc5YHXz+Oh944gf978ZD4GWX7zK/1ik0ner1838sLiZXIRuK8fN8a8IcTAsPNwsOerrGE/8+2xI5EtlqfC8v0Bkk7TiQ71eRutIXOQD6R4t6Yq6NJVVWxMVJsoSaud0rPJbpgy9EhbDs+gp9sOJwkqpp5eo923z5zXg3q9I7071ypudke1RtKpeLVw9mJbLRm8bmNctHRYNTyniBzZFIim3EcpVTqm5WTzSKmQjjZ5lqLbLROG9INI/LffyyPuWzanF4zeJS7HahwO7BuQS0WNfhw9oIaVJU5xf2nEM0PhMjW4Esr1A5YdBYl6L5Az2PlDJwq5NRkJ1t6WGSb5ZS57CKwtZA3Ytm6/NjOroyTYBK0qsqccNiN09BuU+Bxav+fj4m0WUixwshky/x640EuFy0VzI0PsuG8hXXwuuzoGQ1hU4fWwIAEWNr9OZGm0yU1PbhkmVEmVuiS0Ud3dOONY8Moc9rxz29blvAzan5Q43MVZCAF8ud+eGTbSXz3qf3CUWue1JO4SZPMw33+gguYs5FXDvXjB88dxE83HAZgCDoA0FjpwWOfvwj3/8O5AFJnG00G88IyqVx0VBf9EkS21OWiciYbgKRy/2qvCy6HkdU2XU6MqZSKEtSkJdvSoOmCxuV8uWLzDZUM+gvc+GDAr4V3K4rmXHv7ymYoiua0n2eZF+QUgvExi6wec9MDgkK1e8eyu7eaBQia09HzH5IW6B264LNQyuOha29mOdkM4YKw6opsvt+YHRZyuSiQnRCmqqoQ2So8DqyaUw3AEARkukeDQmQp9AYsbVjQ3EUOhc+lYmV0IiqEyWLnet39/EF89Oeb8J0n92f9O3TMsbiKR3ekz1Z7TRfKLpXmbm9bqYnnz+/rFXl9ZuJxFa91GM2u0ots2rniddlR6XHApa9tMgkRHZJIdKAnO5FNvmek+uxGJiIFyw5LBZU7pitRNDvZwtG4EMEzO9kiGAtFE5yo+XSyyetOn9sBRVHwu0+fh6duvlhsqpGbjSIt8kUwEkso8RS5fhbnT79FZ1FCnvPlu1SUMJxsLLKlg0W2U4Bcgv0ni7yrEAjH8LjFztATu7qx+6Q20Rn0Jwc2EuRmy4eTjRburdWelI8xbviZczq4u+jUSdUpJ1eo3LA+Byebx2kXi2ParWrRz405+n9TdboMRWMi9PicBbViwTdeQJEtEovj649rpRCfunhhQqcjALhgcT2uPWsuPn/ZkoIdAzmPeseCk/7sYnEVX/7DdvzvMweEQ2Rw3Oxk0953cgNE46rI35pNBMLRvGeIEEP+MP7+Z5vwzSf24dEd2j14oSn0dnFjudiFtHKETBazEzhluah0DpMzyUqopmBnKteoLTeLbNp9m3JLpqNswR+KYvMRbcF18bLGST8P5XLJZUKlwExpfFDoclES+ufWlMHjtGN+nQ8/v/4c/Pz6c+B2JLsXFUUReYfHLBZ8tBgzd9uj7rTZdvs0jzW0uCZH5JEBvyibFo4IqVt0cxZu7VKDmk2Vu4333arczCxUynEE/eMh9I2FoChGLmU2olIwEhdZoeVuB5brTrb9FkKI7EAaKbCTTY66AIzy7nAOZbBA4ntUzLKvkUAEP3pR2xTankP3Vnmj7pFtJ9M+lj7vNukaXDu3GvXlLowFo2LT1cze7rEEQbZ/LF0mGzU+sENRFMOJlOG9lZ1sB3rH0jzSQG58kMrB+Pc/34RLv/V8QmlloaGSbXkzzYxZJN/fM4ZwLI5KjyNlR1KjuUc46e/J1GH0SL9fbI5lgsYWj9MmXMcAEiJoaLMk3wJm52AAqmqUeIpcP6tMNhGXk7z+SXCy5bmzKGFkDpaOi7IUYZHtFCCdlfzxnd1467eeF+LXZKGdUVr4/OGN4wk/33J0EJ+6dws+8+stAIwbhNVknnLZ/BnCSM0cHwokdZkR4fZZONkiMTXjBGVc7i5aYp3hZgLfemIf1nz1SRzoyW4iYWY4EEZHvx+qqlpmsmUDlYwSwslWnT7g/0DPOMLROGq8TrTX+yQXTuEWfNuPj+DYYABVZU588qKFST932m341vvW4CPnzi/YMdSVu+GwKYir2YX4WnFkwC8moORQSlUueqjPmDDt65nafakUuf6ezbjoG88VxMV0uH8c0biKCo8DN1ywALdcsRQ3X7E05ePzmclm7pRpdst0WWSyiXJRk2gSjMTEZJcmc1ZONvn701HutPHQACIxFfPrvFOavFJjll0nU4eoTzexuCqcUpRTWmpMV7koCSZLGivE9y5d1pi2mywtDo+mc7LVJs5DaNOkeyS3clHa4KF7KJUtBSNxkSl6WF+4L6xPdrKNBqOYKGB8SD4hJ5scJVJp4WQzv4fyJg652NrrfMJFmk1pJTWaIBfj0ibtfLAal2hzKNvnngonhhOdbD6XXXTBzaVjsTwGT2fzGDM/2XBYnNu5uJJk9/LmI0Npx1Qa46qkUnibTcFly40IESs26g442pBKNwcSjQ/0c7U+yw6jHQki23hWY4IszA/5kx2MsbiKXSdGEI2rec8sS8dIFhs1RuMD7f3aIZWKpqrIMMpFw0nl9Zn+vs8/sBUf/fkmUYmSDtH0wJ36+Ok+nu9yUbpnL6j3JYi0VuePqOTJVC5aIJHN2NxkJ1s6WGQ7BTAyx5IH359uOIzD/X48/ObxpJ+ZmQjHUk7MqFz0789bAEAbmOROW+RsOzIQwGgwIiYhVk42GqACOZSEPLu3Bxd+/Tlc/I3ncM/LHeI4T2ZRLlrmNCYomUoI5Mn9WCg6bWHbs4Vn9/bCH44l2O9z4SM/ew2Xfut5fPXPuxGJae+91TmUjkuXNYqg0GqvE2X6goUcW6lcRuQWmF+nDYBGnlThxNY3j2kZcOcsqEnZDr3Q2G2KWAxOtsOoLOKTmEaiCGW/dY1MYNAfTpj47+2anBhbqkRjcbx5bAjRuIptncN5f35azJ/eWon/uPp0/NNlS5LcjzJWZVeThT43w/kYSrg/krMtIZRXF6rN2YZ0bjjtipiQm69zmsTXTqPI9vx+LddnKqWiALCipRJ2m4L+8bBl57BiMDoRAa3TSrW76HQ72azy11Ixr1ZbzFjlA3WamngQjVSKn2W5KI018/QSoMFAGNFYPOG+TJsUcrYPUeF2iE3MmeJm84tFb/rGB0nlotL9gMafFS2VYtM5GycbOQfLXVrZGGWydQ5OJAm9spOt0PmQ5LYnJ5uiKGLTIZtsYUJ+D4pVLjroD+OelzsS/j/bTR/zMf85jZuN5vZVprxJ2nR9anePpbhFTQ/erpeWpmtkIARh3XXZoG8ApxPZ4nFVlFgCmpCezZggn+/hWDwpc7tnNChKgaerSZucy5queU6VqbqKyq9XpigVBRLLRckVv0ByD8fSrMUO6pv6z+i5fOmQy8NTUahyUcN9rN2zDSekhcimC8x1FpU88jhTKJGNzm2rY4vE4vj1a0envVS5FMmLyBaLxbB161YMDRW2ow4zOapNrY+JQDiKrfpCb1+GHIBQNIa33fki3vW9DZbZBbSzcOa8apy3sA6qCjz0hhZcrqoqntpt7BId7B2XnGwW5aLu3J1su05ok6iTI0F89c+7ccHXn8X3nzkgAmJb01iXFUXJusOoPLFS1cLncaUbOGYiNDHItjxGpn88hJ365/yLV44A0CbeuYaP1/hcOFvPMpMbYrRmcLLRLinthNMgPFrAc+DNY8MAgDPm1RTsNbKheYodRuU8HHoO2oVeobt6ukaCONyXeB/a2z27RLbOoQkhDpv/1rw8f4qytFRYBRBPFlrcLWmqgKJo5b600A1GYmKRY1UuCiTeS2l3tM7nFjvb5pwwauozHTuq+3vG8MXfb8MDmzsBTF1k8zjtWKx3qbTKdyoGtPFV7nYklMmUEiSy5epyzxVyJS226CSaClEuarGwoMVGqnLRbMu56BqZrz/PkD+MrpFgwjzhcN94QraPvMhSFEWMc6WWB2hFLG5UF5A4CEibA9J9i8pF6Wfy4o/GnxUtFaLsLBvHF4km5ZLQTwvfA6aAetnJVvhy0eQKjcl0GE1wshWp7OtHLx6CPxzDyjmVwrWcqfyPoGMmZ/AjW1OLbCMpOidfsLgeHqcNJ4YnkppjxOIqNnVoItvVa1oBaJvrqRoZGOeqdr40VFBjk9TXd89YEMFIHHabIu4P2eSymYU4c+a2fH1PV7SNLOZVphGpKj2J1y/9vSuaK1P+jiyy0abE2rZqOO0KwrF4UjwFMR6KCgHypYP9Gf+G8WCyqG+GRCwykqiqmpX7MBKLY+OhgZTnz359vksRHw1pykVF4wPLTDbjvrCg4E625PvGozu68JWHd+Jrf91TkNeeSUxqJnXTTTfhZz/7GQBNYLv44otx5plnoq2tDc8//3w+j4/JA+LmZLoJbz4yJHY69mdYzO48MYpjgwEc7vcLd40MDSJNlR68/5y5AIDfbDqGSCyOQ33jCXbegz3jYkBI52TLpZyBFnNnz69BW20ZBv1hfPup/WJXpSWNkw0Aqsq018w0QRk3uesKOXg9/OZxrLrtCTy3L/Puy0wgGImJz2kyjigSnOp8LjEATrY1Ne1KynlVhsg2YelQJIfbHH0AK9cnCrKrYvvx4Zx2kjPxhn6tnVkiIttknWyyyEblTDTBX6l3Sz05PCEWKrRQ2jfLRLaOfmPyLJfF5otjKRbzqZAdIVMtW6RFq5wlQuMCCatlTjsqy4zJq92mWOayWTU1kcsibIohctP3C+XEeHxnF6787ov4/ZbjiMRUXLa8EW9ZMjWRDQBOn6Od97RxUGxEZ9ESdbEBcrloYUsdadG3KCcnm3W5aCgaEwtAs5OtaZLdReVcMXOH2sN9fhyjbB+PI6mciI7TSgwsNQKSmGrV+GAkoVxUe49JcJHvBySerGipRC3Fp2Rxv6ByUXnBvYxKRrsTr9uDUn5oIctFR4MRMeeQNwmrJ9FhVHb7DQXC016Z4Q9F8atXjgIAbrliKdrrtXMz26xK+ow/cu58OGwKdneN4qBFplkkFhfvmblzcpnLjgsXa/dzc8nonq5RjAajqHA7cN7CuoyNDGgTngRhEjvSCdr0t7bVlGFFi3ZuZcplC4Sj4l5AYpbZyX1iaPpFNjJyVHgcCQ3tzJiv34N9mZ3DRnOPsMija6kuE/loR1OcM7LAuePESMbrfszCOWtGzmTrGpnA2+/cgA/++NWMc6jfbjqGD/3kVfzfC4csf07z/TVt1QCAhorUTkj6vOst1tBzqsvwoXVt+ORFC5Ocm/kiXXdRcg4XovvqTGNSItuDDz6INWvWAAD+/Oc/o6OjA3v37sVNN92Er3zlK3k9QGbqVKVwspENGtBKedLtvsnC2oYDibsBoWhMDHZNlR68c1UL6std6BoJ4sldPXhyd+LAdaB3TLSet+piNplMNrrhvGNVC577wiX43w+uFZOh1ipP2hsmYExQcnGyZfP4qfDkrh4EwjG8Kn1OMxk5qDWdIypVuD4NQJetaMRfPnch3rmqGZ+5dPGkjuXvzp2Pr713Jb78juXie00VbthtCiIx1TJ3w+yKNJeL7u8Zw9/c9TLe/YOX81LO1DUyga6RIOw2BWvaUtvop4MWkR00OffDbklk6zKVi1I3qf7xsFgMXamXcHSPBvMqWhabw5KwVggnm5H9lJvIlk0eZSboc6r1uoRbja5zEmdbqjxJmStWZdd0bsihvvKGTFWZUwQRG12uCnOe/PzlIwCACxfX46HPnI+fXX+OKHGeCitbtfN+58nScLKNTKR2l5cKPt3lXshy0bFgRIhiuZWL6u6GwYkEZ9mJoQmoqjavMQteonPzaDArkZuukflULuoPJ8RyAFouI91bFurZPlbHORNENhJTHTYFbumaIydMYrmoNmafpm/a0P0gFI2JzZsVLZVizjmYxbgiXC2SK0fksnUnOtfkxebIRKRgghWNn3LUBWA42SabyRZXM5e57jwxkjFfLBfePDaMiUgMc6rLcOmyRtEJ8Uh/ducmHf+iBh8u0t3F9248mvS4BIeVhehA8w2zyEbNEM5eUAOH3SY2dVM1MpAbHwCGyGa+RmXob22v94kMSLNL0gzNpcucdjHWp3Oy5cOpng3DWW7UyCKbHBFibtIkQ88ZisZFeW1zpUdsOKTKZZOzYVUVeCXDeoqueV+aNSN9rv5wDB/68avY1zOG1zoGM64Hd+vzWysReWA8JP6GM9u0TfWGciND0+x+E25/i8YHiqLgjmtW41/fuSLt8UyFdPMuKp3P571ipjKpmWJ/fz+amzUnyKOPPor3ve99WLp0KT7+8Y9jx44deT1AZupQWY3ZpbXxUKJYtj/N7skbCSJbYpcWupBcdhtqvE64HXZct14LYv/FKx14WhfZTtcnP/tlJ5vFhJ5yetJ18TFjlBe54LDb8O61c/DY59+C3/zDubj3E+sz/r7cYTQdJLJRplchRTa6Eedi/y9l5AyYVNbuf//jTpz5X09ZinBvHDVcXQvqfbj7w2fh/We3TepYHHYbPrx+fkKra4fdJvKkrCZF5MCao/9OpSfRgbNfz304OhDA1/66e1LHJfPG0WEAwPLmiqLlsRGiXDRLx4XMwHgowanRZXKyLWwoh8epDUVk51/dVi3CZXMtGQ1FY3jojeMFz22aDIcSRDZ/3kPvU5WlpcLrssORp3uZiADwuUQZHF3n3aPaZ26VD1fhsXKyGfdzQs4ekUt+jEy2/E/ohgNhbNHvO3dcsyqvjlLKn9lVKuWi/pnjZAtH40lNjvIFXaMNFe6cXACt1WVw2LTSJdk9IYTvGm+S4EWlh6FoXISAp8PsZBsKhNGpb/7QpuLhPr8I0LbK42mTxMB8sbVzGN96Yl/ePxPaaKVujYSRJWm8Z1QuSk42uh909PsRjauo9DjQUuUxGoFlk8lm4WoxOowa49Ih3aFM96u4mtzMxUw4Gp+UEEfzEDnbEkhdsZIOs/s3Xcl9R78fV33/JXziV69n/fyZoHvr2QtqoCiKKG2Ty0VfPtiPvd3Wbl9jM8aFj1/YDgD49WvHkjawZIeV3ZYcrH/p8kYoitZoqjsh31B7ntP1DZFMjQwC4nzVzhcSY9Jld5G7fUG9D0uaNFH/YIZyUaNyyC3GP/NnKc9hp8vJRuun6gyNc+TGJSTIzKkuSzvPLXc7xFyFKq+aKt1iw+HoYAonmynv8qWD6buMjoeMcyUVHqcdjfq5IIt7mbL0qBrGak1HlTqLGnzCGFNZ5hDuSbNTkf4/10zqfEFONqvyabpu+sdDsy7yKFcmJbI1NTVh9+7diMViePzxx3H55ZcDAAKBAOz23PKRmMJjZDUYF+loMCI6utCkIV1pFi34AWC7yXJLC+jGSiM/5yPr58FhU7D5yBDe0G8en754EQA9k4060FjcIFbpZTRbTGWpA+OhlJM4q06TNpuC8xbVYVEWuSrVWXbZo0kX7UBbPf6+V49m1UgiHfG4aohsGYQ/GVVVsfPESEKIeKkgC2upnGzP7+/FaDCaIOoCmrtt+3HtfD1zfuFKJylvzVyCA0hONj1s2Chz084BeUfnN5s68exe625V2VIqpaKAMaGfjJON3GllTgrc1lwb1P2t1ucSZS804VrU4MOyJu0+sLcrt3K6n73UgVt+tw3ffWp/zsdaaORy0bFQdNLdWq0IRoyytGxFNkVRxIR3qhNxudywSXLoAEbnvxaLbEyjS6+Fk00aH8pcdiHGykKQnNWSb57f14dYXMWypoqs3YHZQo6bkyPBkujQRW4HK6dHqSC7CwrVYZQWcLnksQHaxhstqo9KCy8SwazOH4/TLs7lTM0P4nFVdDen6zsSU0Up/sXLNCdP10gQu/Rynfb65L8h3042VVXx+d++ibueOyg2VPOFVdMDwBDZJiIxIbiSu4iuq0G/Vv54SC/jXNxYDkVRxJwzG8eXlci2VJ8vy5s/NG6taKkULqZ0DuxAOIqLvvEcrvvpqxmPwYxo5mW6lxrlotnfB1Mt3K3YpTtudxwfTpkplSuv690eKSOXnGwdush2qG8cH/nZa/jgj19Nes1ILC7GrFqfGxcsrsdblzciGlfxP4/tTXhsJodVQ4Uba+ZWA9BEPaJD6vYIpC+RAwwnGzluaRO3ezSYskKjQ3KykXN2f+9Y2g04EnMaKz1CZDGXCctz2GwE/HyQq5MtrmoRK0Dm0ny5ucdJff3QWOkRzQ+OpnA/0tyDPrsNB/rTvrcUCZSp+onu55Ueh3ju3gyb0EJks5hrWc33U3UYHQtGxIYL/Xy6qfRYC4DBSEyMLXG1eA1VSoVJiWw33HAD3v/+92PlypVQFAVXXHEFAOC1117D8uXLM/w2M91YNT7Y3DGIuKp1Z7lkWSOAxJ05mZPDE+ge1crWFtR5oarAy5ILTs5jIxr1slFi9dwqvGVJPQDNxnxC32Wp9SXfjNe11wEAthwZFAPTlqODWH/7MymDFPvHp6bq08073SQjEosjpDd9IDHGvDAd9Ifxb3/ciS/+fntCptyvNh7BtT98JevSt+7RoHitXBaPrxwawFXffwkf/8XreXfJTBVZWBsPRS27cpJ70RwUu7d7DBORGCo8jpwXP7lAkyKzyCbnyc2t1h5TYcpko4UyCQFfenDHlAYYMejOr570c+SL5iptIJ9MJhstAs9fpF3XoWgcPaMhsdNf53Mldf9d3FhuiP8p7kupIMfjq4cLX2a94UAfNh/JvlMulYuSKeNwHnPZTgxrZWk+lz2n+6CVK2Qy0L2txqJclMTZZkuRLdnJ1p+iFILcbHKuTrU3PyKhFVQ+dNmKxrw/d7nbgYX64m3nyeLnslG5cFmOjWSmE6fdJkp18+FU3do5jFt+tzVB5KTree286pyfj7p+HpNcFZncpU0V1k1lgpEY/vXhHbjtkV0ANFcXDekNFW7xOe04bnTmow3VF/drbg2r8qt8i2xvHBsWouJkMztTQZ+x17TgrfA4xD10ZCIiRAenXRGbqlT+SK6Khfr3c8lksxTZdLdR/3hInDf0GosafOLelG7edrB3HN2jQbx6eDAhdy4bqFzUPGZabaZnYtDk/k03XyE3VlzNLpg/E7G4iq36BjxtnC7QM9mO6OLWSwf6oarae/nojq6E3ydRyaYY48Gt71gOu03Bk7t7Esb/bBxWFFshl2qauz2KctEUjiUShcuceuODcjdcDhticTXltUGljwvqfFjUUA5F0f7edGsRec2VqltuMRof0OtkcgC7HTYh0JCbMZt5vVm8a6r0CCfbkRTNMui9eteqZjjtCo4PTSRsgpixKhG34gPntGF5cwXuueEcMVdN1+BCVVUhso1YXKM03z/LZCKwck/u16+/psrc3Nb5RFEUYWqRr4ejAwHI5rVTvWR0UiLbbbfdhp/+9Kf45Cc/iZdffhlut3YS2O12fPnLX87rAU6Gu+++G+3t7fB4PDjrrLOwYcOGYh9SUbFq7U116ectqseyZu3mlsrJRhf/ipYKXL5Cyy7YsN9KZEtcEF1/wQLx9eUrmlDtdUktiVPnvyxrrkCFxwF/OCaynB7cchzRuCoyEmTicVUMuPUW9enZ0Kgfe1+anQh555xap5sHL5ooR+NqwiT25y914PWjQxnzAAi5Zj+XAZI61b10sF90dy0VzJMM86IiEI6KhZ65nJTOwbVt1SKLqRDMqbF2stGExecygtvN3UX79UnODRe0Y0ljOfrHQ/jH+7ZYduPNRCgaEx1zz2grvpOtWXea9YwGcy5xIZFtTVu1uD53d2nnqd2moKrMmeBwqvA40FDuxnI9BNjc8Svz62mP39s9llPzlFzpGpnA9fdsxt/97LWsFvxjQWMxSLuV+RTZ5Dw2c1laOvLnZNMXMl4nmkR5cXImm5lsGx8AxiaKPG6kikOYKuFoHC/oYsXlemZPvjldX9iVQofRUES7T9EmQamSz+YHX39sLx564wR++lKH+B6JbOsW1Ob8fPP0End57D82QNeldfMlmnvIC7SxYAR///NNuP+1Y/jFK0fQOxoU14fTruWT0bVA19jcmjIhJNFjrctFjQ3CfHTB/OObxjwj3yXbgRA5gxIXvDapYcrIRES8d40VHrgcNrHwHBgPSQKY9t5Qd9HBQDjjRqTVgtvrcgihkha7h3qN4PYqmm+nuZ/Kc6F0C34rRLlotdnJZp29nA5yk9OmSDpHrRxividF+WYu7O8Zw1goCp/LLkqdyck2FNDOTVko+63e2ZkYkNYQNCdc0lSBD56jRYh87a97xOdrdBZNLUiIUk09NmciHBOfE22GGOuX7JxsNpuCuWmqI2JxVdwf2ut98DjtWXUYFU62Crelk00WdIDpz2TLJPzIDnqa22eTf1lj+vwayt2idP7oQMDyeqYy8vZ6n5h3mSOPZMYtmp1Y8f6z2/D4TRfhrPm1onRULhc9NhDAn7edFMc0OmF0OTW7TaOxOLZ1WlfqNJQnNz8gQwzlQxYLkcsm3fcPmvIE81mtMROZ9Gzq2muvxc0334y5c+eK7330ox/Fu9/97rwc2GR54IEHRAOGN998E295y1vwjne8A8eOHSvqcRWTaovW3huFyFYnLtT9PdYWZSoVPXNejQgX3XCgTzxWlItWJA76Z7RV40K9PfZVqzVX2xLTjdTKcWG3KThHn+Bu6hhEPK7i6T29+msl7xSMTERE3fdkQ5tJIExXU08LaZfDJhwV5oWpfEMhoSwcjYuSkVSDs5nDksiWy+JRPv6vPbonq93a6cIsqpmFNLnc0my7lvPYCkmqblByZ1ESMIwyN11k09/71uoy3HXdmahwO/BaxyC+/ND2nF2Fu06OIhyLo9bnEpOIYtJY4YaiaOVJ6XZYrSCh/LSWSlFqSx0Va7xagL3c/VfbzVUSsm+yFfZGAhHx2cXiqihxKQQbDvQjFlcRjMSzcrPR/aC+3ChNyWfzg1zz2AirTn2Tge5TtT5XQqC7/F/rTLbE6wgwJm3m7sE0XlRJk236eiISy1sZE6CJLWPBKOrLXVirf175hqIRCnmeZktQjxhwO0rXyQbkr/lBMBITkRTk/OodC+LIQACKMrlYgvm1lCkll4umvy7pWqGxe9AfxnU/eS1hQ/HE8IS4Pio8TiiKkjR3mltTJsQAwkpk87qM8qapdn8LR+P48/aT4v/z3XyEMtnK3cnnpHDgBiPoNW30Gou/sNjIWKS7+miOGI7GhSiSCjrHKkwLbnnODBg5fosayiUnW+r3ojtBZMtto0U42UyZbLl2F1VVYywngSnd2N4pCcf56PpNDqYz5tWITpQ+t0MIWR0D/gSRbVPHYMJ4OZgik+rmK5bC5bBhx4kRkZdFY1O6UngSecjJRs6oaq9TlBgb5aKZGh8Y58ucNM0PTg5PIByLw2W3CWcirZGsuqQSsrGhxiKTbcAfRjBibO6OTrOTLZtczyp9s5rWj9mIbHIWa53PBZfDhrk1XtgUbfy3ck3RtdZU6RHVVObmfTLims/gZJNpEOtH47r+8kPb8bnfvImXD2rnsLkRhZxVlq5Sx0rYpetvWZFFNnE9SPnpSSLbKe5ky/os+t73vpf1k/7TP/3TpA4mH3znO9/Bxz/+cXziE58AANx555144okn8MMf/hB33HFH0Y6rmIid/okIVFXFcCAiFr7nLaxDhccBm6Kp631jITSaFkJyrfi69lq4HDacHAniUJ8fixvLxQ3fXAqkKAp++tGzMRGOiYFgSWO5cHPZFKNLlJl17bV4dm8vNnUM4qz5NeJCHfCHEYrGEhYCNDGo9Dgm3fWNSjbS2X39Uq1+qoVpX4JtVhukjw0GxA01lc3cTIfkcMklk00W2Qb9Ydzx2B5849o1Wf9+ISFRzaZoJQdmZ5s8iJgFuTdMZQWFwth1TJwQGXlsxsSWdrrGKZNNaqm9rLkCP/jwmbjhF5vx0BsnMKe6DDdfvjRrF54hKlbn5EoqFE67DQ3lbvSOhdA9Esw6ByIUjRl5Na2VaK70YDtGhHOHJshyvgw5DhbU+eBy2BAIx3B8aALzshAbzTvsWzuHcfYkHCnZ8JI0UXvlYD8uXZa+pJBEtoX1PlHGdThF2/nJQDviuYps1MAjV5Ftx/ER/Hn7SXzurYvhcznE4q7G64JNP2eTu4smu3kqLbqLksNCbnYAGJM6uWFOhdsh7imjExF48lTuSKWily5rLJh7VnQYPVH8ctGZ4mTzucjJNjWRbcvRIeEy3nVyFH1jIbx+RLvvLmuqmFQZDt2jEpxsGTr+mvML/+exPdhxYgR1Phe8bjs6BydwcjgoBCRa/Ml5tm6Hdn9eKC3QmirdKTvkzastQ/94CMcGA6IBx2R4YX9fwiZgtpuI2UJzLqtA9KoyJ44PTWBkIpKwkAa0BfjhPj/6ZSebvoj3uuxwOWwIR+MY9IfTdhFMVTq2vLkCT+/pwd7uMYSiMTHXW9xYLpxy6TZH5blPqq6IqX+XGh8kzrdzzaYMhGMikmRJYwU2HOhPWy4qO7GsGhGoqoqndvcgHItjYX052ut9Cd1Pw9E4fvnKEVy6vBGLG8uFyGae07XX+dA3FsKTu7oxFIigzGnH2QtqsOFAPx54vRO3vkPrmJgq+L2+3I25NWU43OdH90gQ7fU+IysszTVNnT2PDQYQjMSMPLY6Q6im8Sdz4wPj76YIkk4LJxu9xrw6r2jIsLixAk/v6U3bYVTetHLYtPu1/NmdML1WIcpF43EVt/xuK+bUlOGLb9NiokhYztT4AEgWPLMS2aTfoWvd5bBhTk0ZOgcn0NHvT1q/GpnhHjFvpXxnK2gzI5OTTYbWj70WJZ27To7gwiX1CY3fVFWb75Bo+GaaSp0Gi3NOONmai+xk0+dn/ZKT7VAfi2wyWZ9F3/3ud7N6nKIoRRPZwuEwtmzZklSyeuWVV+KVV16x/J1QKIRQyDgJRkeLP9nNN7SrEIurGAtF8WandkEvavCJm86Ceh8O9/mxr2cs4SYVjMTELvsZ86rhcdqxvr0WGw70Y8OBvgSRzVwuCmjBvvKiZ7GkvFdLNm8z5GTbfGQQi3Yn3nx7R0MJE9Z0rYyzpbEys8hGOxw+t13swph3iOQbCu2EyaWf2Vpn5YD0YCSOYCQGj9OO/vEQPvCjjXjP2jn43GVLkn6PdnQ/et58/HLjUfzu9ePwuhz4zKWLkpyG0w1NhJc1V2JP12iSkCbvDsoh0LQYALRBqJDQhOjE0ARUVRUCl3CySSKbubsonYeUoXDR0gb817tX4l8f3oHvP3sQT+3uwRfftgxvXd6YUTijTkNnlEDTA6KlyoPesRBODE9g1dzsFmYHe8dFZ7fWKo8QKSmYW4hsspOtUZvUOuw2LGksx66To9jdNZKdyGZqkvBm53BWx5kr8biaEJAsl4Hf9ewBPLqjG9963xoRwg0YboeFDYbIZp6QTIVMi/lUVEmdvrLlYO84PvzTVzEajKKxwo33ndUmcjiqvU5xzx8NRjEajIj7XjaZbKqqitJrc7no3503H4FwFO85Y474nk0vOR4KRDA8EUmaZE8GVVXxjO6eLlSpKGB0rTs2GMBIIJLg0JtuyAXoKXEnm1EuOjWR7RVTd/UNB/rE4mtd++SEeXPe2UjACKhuq0klsiWWi5J4/633r8HDb5xA5+AETgwHxMKdrpda6VyZqzus5Qw2KxebfJxvHBueci4bNXhqr/eho9+f0uEzWVI1PgAkB24ggh593mWIbNp7uuvkKALhGBw2RXw2iqKg1utC92gQw4EI2tJ81GNizmdyskku6wM944irmtivdaTNLHbJC+5cnGyqqorQ91SZbNk62UiUcTtswsGfyokYi6sJG497usYS5kcA8PrRIXzy3i3i/10OG+65/hxcsFhzD/385Q78z2N7cc/LHXj85ouMzqImkW1+nRebjgzi91u0c+vsBTX4u3PnY8OBfvxhy3F84YplcDlsGBTz/mRBp7HCjcN9fuEsysZhVV/uQrXXieGAluMnb4oZj8myXFQSheemcbLJeWwEXcMdaTbgjHJRY6xLENn0+Wqtz4VBf7ggTrbD/X78cetJ2BTg5suXwmG3iVLlbMYxeROj1ufKKkdW3liQ15vza33oHJxA59AE1kuPV1VVnAPNVR5RUTLoDyedv4RVDmMmzHFDwUhMnCO0yXzSVB0zHDBENmEisJjvWzU+IJFteZFFtvoKymRLdrItbizHwd7xBHffqUjWW5YdHR1Z/Tt8+HAhjzct/f39iMViaGpKnBQ3NTWhu7vb8nfuuOMOVFVViX9tbW3TcajTiiZ0aR/1SCCCfd3aRXBaq7FQJtup2Qa+6+QIIjEVdT6XmKSQ5ZbyaoTIloWIs1TarTDX18usmlMFj9OGoUAE97+WWOprLjMUnUWn0MqYbpKjwWjKHCea8PlcDjGIpHOy0SApC2bZqvrm3U16nVcODeBQnx//98Ihy9IoGnzfsaoFn9Bbmv/ilSO46BvP4a5nDxStGUI0Fhc3WxLKzE42OQ+kR/oZubqWNJYXPOSzucoDm6KF88sLhuPDyU62pHLR8eTz8Lr183Db1aehwu3A3u4xfPyXr+Orf96d8ThKqbMoIVql57Ao2K2Laae1VkJRFLH7TpNAWgy1SvkycjfgM/Tw8ZcOprb3y5DIRhN3ClaeLLG4annN7O0ew4A/DLfunN3dNYohfxjDgTC+9+xB7O4axYd/+qr4+wGjNHRhg0+UBHQOBvLWCZh2ygtdLjowHsINv9gksgi3HR8RCzuvyw63w45Kj0MEs3/wR69C1RehVvdocR3pWSjjoahwGJmdbGvbqvHDj5yVJCRW57nD6KuHB3FsMACXwybGu0JQ5XWKjKxdXcUtGRUiWwk3PgAMwWOq5aIkjNMi+IX9RhOTcybpfqVrbzgQwchERIhYDRXuBFePjLHBF8LJ4QmcHNGaTK1bUCvGm5PDQZGrVOHWrpda6dqg62FRgsiW2hmSj+YHIxMREePxMX2ukW8nm7yxaYY6Pv5m0zExXyCRrVYXXjbrJbfz6rxw2o3ljiixyyBIpRL5aL68tXMY7/nBywA0p5zWATGz2JXgZEvRFdGKAX8Y4WgcipJcek/3QDk+JR3yvNkqW0mmZzSISEyFw6ZAUbTfNW8YU4ZYhduBSo8D4Wgc39E7fEdjcdy78SgArTPkLQ9sw7FBrSzb3GCEPleaK5+7sA6XLm9EQ4Ub/eNhPKM7jFOViwKG+ETPIUS2NA4rRVGwVHezHewdF2XGsljdoIsKVpvl8bhqlIu6ZSdb6kw2o7GCMZ7NFdd86k7uvcKdJWeyGWMfOdlOa9E2+fzhGCIpuptOFjq+uGrMfbNxDBJyFdMiiwYtVsgiqXz+pxIyB/1hRGLatdBQ7hbziXAsnnL8GJ+Ek43ONzIHyKWhtJF6YjhxvSPfH4wmZ6lFti593ds/HkL/eBiKkp37r5DU6+8n3TficRWH9fXuuQu1MfRUd7KVdl3AJDGr06kUawC49dZbMTIyIv51dnZaPm6mI1vJD5DVVLpAzRkTBOWxnTGvRryH1I1046EBBCMxccNvsnApmFkiOdnS7Vy4HDYhMIxMRGC3KWJik+SASjPYZkuF21gUplLe/VKtfspyUWnwpVyWRCdb5l3GSCwuJr9kIafXoXJTfzgmcvVkekUAsBtfedcK/PoT67G2rRrBSBzfenI/vv/swYyvXwj6xkOIq4DDpmClnkNkdg3KeSD+cEwMgtv0Ft/TITi5HDYxeMsDNk0oaDAHZAdOBMGIcbxmR+X1F7Rjw79cik9dvBAA8MuNR9JmmnSNTKBLX2itaZt8KU++oclmuh1WM1QWukKf7JmdTHTNymWE8sThrcu1e81ze/uyEoipDP7957RBUbTJzmQH+XA0jmvufhnv+N8NossxQS628xfVYWlTOVRV62b6hzdOCIFoKBDBdZLQZkyoy9FQ4Ua524G4apR5TgVVVUVmTiGdbKFoDP/wq9fROTghnDU7jg8nlIoC2hhMn/XurlF4XXZ8/drVls5ls5ON3BRelz2lMJHqb8ils14qqKsjAFx71lzLUrV8Qjle5nFtugnOkHLRfDjZxoIR4Vr7wpVLAQDP7+sTIv1kRTaf28g7OzYQMNyl0rhhhsab3tEgXj9qNJnyuR0iz+nE8IThsCAnmy/RyQYA82p9Ys5gzmeToXtE5xREtmf39iAcjWNpUzku0oXofGeyUfmdz+Ia/Mwli+Bx2vBaxyCe2KVtopO7pV4fV+gzXmTKORKurwz5oqnymRY2+FDudiAWVxGNq1jU4MM/XbY44bnTbVpMNpON8tioa6UMCRCqmuiUI1RVxeM7u4VTkkSqGp9LiA+pPj86T+bUlKFd32wzz2Fo8/tv1rbi6Vsuhstuw5ajQ9h8ZBBP7+nFieEJlLu1rrBUir+sqSIpMsbswDxvUR2cdhuu0d3Lz+3ThF2jXDS5gsUcRE/jQqZN2sV6Nt2BnnHhMmuXBKCGcu1aHQtGkza5g9JmmVwuSteauYQTMNZbcpk35dN2jQQt5zzjoag4L5sqPVJ5cliIqyTyyE4nOfM0H8jnMM3lDcdg5rWY/FlkKxbJmduNliJb4ntMpaL15Vp+W5nLMJwM+a2vT7/pPpsN4nwbDUFV1YTjONg7ntSIAjAalPSPh8Ra0apS57QWbQ2w68QIRiYi4pyZV+st+NwkE8LJpq97TwxPIBiJw2lXRJdUFtkmyfHjx3H33Xfjy1/+Mm655ZaEf8Wivr4edrs9ybXW29ub5G4j3G43KisrE/7NRuiGNhQIY78eqCkLXsv0m/E+U0ebrXq51Znzq8X3ljSWY051GULROJ7Z0yss9Vah1mZqfS7hZsjUpEAu2Vi3oFZY9M2LEZHfM4VyUUVRpLIN65vCuFQ6IBZ1pry0Pkmg6xoJYiIcS+ggaM5ks9px7NQz3MqcdjE5px0ieaf4yd2J57k/ZHSvaaz0QFEUXLC4Hg9/5nz827u0HIvvPLUfv37tqOXfV0jkzJRWaRIhY94Fp9+h92/ZNFmjrZofnLAoF6VB2B82AldddpsoI5Wp9rpw6ztW4J2rmqGqwLee3Jfy9UnYXt5cUfRBVIYmv7nkiG3Qxaj1+rVsLnEhkc3nduBD69rwttObxCQeAM5bWA+3w4YTwxPY15M+bDkai4scjHULaoVbbNskS0Yf2XYS246PYG/3GE6adiHp77pgcT3OX6QtMF8+1I/79WvrS29fhjVt1RgOaF0Ce0eDRvlJgy+htOtQHjqMDgUi4v40N82C3opU3UUP9Y3jXx/ekTBJemp3D944NoxKjwP3fnwdAM11S5PEGmnhT+fLqjlV+MvnLsQ7V7VYvj452cgZR7uiVmVAqZhMZ71U3Pn0AXT0+9FU6caX37F8ys+XCcP5Mj3h1KkQjQ9K3smmHZ8/x87Bw4GwWOhs6hhELK5iQZ0XV61uRbnbgZGJCOKq1n3Tqqw5W+QOo5maHgCJjQ9e1510Z8/X7pdzdIfviSG58UFyJhvFHLgcNtEoh8rurY9x6k42ErAuXNwghMWJSEwIY/lgPEV3UUD7m2+8RBO26FwQ5aLlhmMFsBDZLMLiLV9fuFoSxRmn3YafX38OvvbelXjhi5fgmS9cgrcu19YYRrdj6+dWVTVhDntyJJh1wxajs2jyPd5pt+GcBdrCVu74CmgbB196cDs+fd8WfPyXmxEIRxMyzehem+r9IJd0W41XdP3ea+r63S1lxTVWevC3Z2mi2P89fwi/eEXr3vv3583Hxy5oF79zloVzR2705HXZsUrPDFytN5+hMT5dBUuDED209znbMsYlovnBmLQpZlxHlWUOuHRHpLlJBOUHKkpiyT2Nx10jEwluslhcFU57WVwht38gHMPoRPK1RH+Tz2VHudsh1lGUSQoYYtP8Om9CF958clIScklgHZY6jGdCFtnM12cqEjPZkp285k0DueswQYJyKhfr2BTKRSf0zXZ5g340GEX/eDhJZKPOzuQAXVDntRSB59V5saSxHNG4ihf292F/d2l0FgWQJM6Ta29BnU9snHN30UnwzDPPYNmyZbj77rvx7W9/G8899xzuuece/PznP8fWrVvzfIjZ43K5cNZZZ+Gpp55K+P5TTz2F888/v0hHVRrIFnaqmV7alOxkO2Dq5Ed5bKvnVIvvKYqCS5ZpXUZ/u1kr5aQbfjbQrkUm59k6aTf5itOaxOCT1JWSFmVTcLIBmXPZ/BYi24hpYWRW7Y8NBhKdbGMhsTv17N4eLPnKo3hQz54g5MHdKIPSbmKyEPXU7p4EkY527cyfhaIo+MRbFuJzb9UmpP/+x50iS6WQPLLtJB56Q3sdQ2RzG5+jabfVnOdCkwnxfmRpKZ8qc0wt12NxY1KcWC5qvMckMtSVu9Lmrd1yxTLYFO2zo0wSM6VYKgoYk80jWYpsx4cCONznh92m4Hw9l8Uc1iwLKXdcsxo/+ruzE9xOZS67yHR5dm9v2tc73O9HOBqHz2XHvFqvmLhunYTIFo+r+NELh8T/y+7WUDSGTR2ai/QtSxpw/qI6AMAftpzAoT4/ypx2/N2583Hvx9dhWVMF+sdDuP6ezUnZQAuFaDn1XDZaLDdXenIu95O79Ml88/F9uP+1YwnvAwXDX3PmXJw1v1aUOlK3Lnnj5L/esxL/+8G1+MM/np+wU2+GriNqINKfoulBOqpT3I9zZcfxEfxkgxZ58bX3rErZmCef0Hs2kgcX3lSYzeWiqqri2v/biIu/+Rye3t0jSkXPW1QPp90mrmFg8i42gsrqNx7uFy6ldO7S+nIXFAWIxrXgeMAQH+ZUa793cmRCNAahc1Ke78h5b//vqtPwiQvb8ZYlDSlfk/ItTwxNJLl0s4VEluUtFfBKDhE5n4fY2jmMezceyaqMUYbmXN4UjtZ/uGhhgoApykVNc8GFprlDrTe9EEakW3Cva6/Fh9fPF583UZVB8B/whxGOaSWfPv3vytZR2EWxFSlE4A+eMw8A8MDrnWIe3zMaxAd+/KrIOAtF49jTNYpBad5cJ0oOw5afkZH3WYZlTZoRwdxkqMtUsvvJixZBUYBn9vbi1cODsNsUfOTc+fji25aJz4M2qGTkfLKzF9SKMl/qgErOoIEUuZ2AIXr0JpWLZhLZtHXQlqPDQsSTj0dRFPF65rm+aHrgtCfMYRrK3XA7bFqzL2mzbn/PGPzhGHwue4Jg4nHaxfl70sKR2GvKH3TabWIMJeFIbArXlIlN33znssl/S+9oEPG4mvX7DGiCJZGtk012yDVn5WRLzgunjcBBi9JoVVWTHMPZ4HU5RAfi3rFQ0nEc6htPynWme4+cGZeKt67QKjqe3dMjjDDF7iwKJGcUkrawqKHcMkvuVGRSItutt96KL3zhC9i5cyc8Hg/+8Ic/oLOzExdffDHe97735fsYc+KWW27BT3/6U/z85z/Hnj17cPPNN+PYsWP49Kc/XdTjKjY0kd9xfATBSFzf8TQGjwV1XtHJjwZUfyiKo/rXK1oSL2jqpEdZSdm42AgqHcsUUH3GvBqUOe2wKZrIRq+RLLKlHmxzwdzlywztlpa7HML9MRaKJoiSdEOhG+7OEyMJHWfCsbjYnXpmTy/iKvDTDYk5hrKoZHZoyEJU/3gYWzsNoUbs2qR4X2+5Yik+tG4e4ipw8wPb8O0n9yUcez4ZGA/hpt++iVt+tw2dg4GE7oItldogMxSIJOzgDpidbPrAbRVAW0jk5geA9plGYirsNiXhPHc77KJko0NfTGU6Bxc3luN9Z2m5j994fK9lOQB1GjrDlFVSbCgrpXcslNUCl4SXM9qqxcKwqdIDWYPMpsT7UlEyml5ko1Kv5S2VsNkUkfViFtlODE/gu0/tT5sf9OzexO5e8jW85egQgpE4GircWNpUjvUL60QLeQD4mzWtqPA4Uelx4gcfPhNel12Usc6rNbKBSHg6nAcnG92zc81jA6wz2WJxFRsPa0LEJt1dAyRnh9Dmy4YDWj6nPAmeU12Gd6+dk7HjM50b5OSiXdH6nJxs1EF7akLVHY/tQSyu4uo1rQVteCBTMk42KhedZIfu6WIy5aJdI0Ec7B1HJKbiM79+A3/aehIAhLh28TJDkFo3RZHtbN1NdN+rx/DbzVr8SDqRzWG3icUKjZMkslFW5XAggu4RfW5BTjbpWpPdq5csa8S/XXVaQgaZmaYKD1x2G6JxNclRng2qqgqR5bQWLW/TqtMcYJSY//ufduGelztyeh0SLlJt4HqcdvzH1acB0LqW02LaPA6ndLJlENkmk89ULUrXra9n2rCrL3eLjcOjWUYGpGp6QLxzVQsqPA50Dk7g5UP9CEVjuOGezdjWOYyqMqdwam0/PpJQbknvR1y1Fh6P6+PL3LROtsQO0u31PrxjZbP4+ZWnNaG1ugwepx2//eS5uOu6MxJ+TvjcDlF+R7lOgCZ2OWwKxkNRdI0Es8pkEyIbZYVlqJ4hIY/mBlYdeoWwkCSyaeN/man6QFEUUfYtO5youdWatmpR4k3QZqRV2S/N8+UO7yKXTX9PTuivM6fam9KpPlXMTraxUFQ0PzJ3DrViUuWiklM+MZPNK45D3jSgqiRZwKLy4kGLctFAOAaakle4c9tgayBhdzRZZNvXPSbWrdQMi8Z7ka+XJtP88hXaXOS5fX1iLjldlT3pqJccsLG4KqoyFjcaIptVafWpxKRmU3v27MFHP/pRAIDD4cDExATKy8vxn//5n/j617+e1wPMlQ984AO488478Z//+Z9Yu3YtXnzxRTz66KOYP39+UY+r2NBEnoJ9FzWUJ9zYHXabCMmkDKy93WNQVa3e3FyKef7iOrjsNnFDykVk+8dLFuELVyzF352b/jMpc9nxq4+vwy9uWIe2Wq/YuehJEZg/lUw2AGgy5TiYoXIN2cmmtWLWvh+MxETJ01n6RJvyI+rLXWJHieyzZMHf2z0mdgAAoxxvYb0vyaFh/luf2NUjfo+OWx58ZRRFwX+/ZyU+dZGWDfb9Zw/iup++in/+/Tbc/MBW/GnrCcvfy0QoGsMPnjuYUJa35eiQGHCf3dsrBpjmKg8qyxxi11sWNGlxLZftdo0GEYpqNf5zUkws8415QkS7gs2VnqTJEImpHfrgUp9FyfLnL18Cl0PLknl+X1/Cz0LRGHae0AbRUnOyVZU5xaBKbjbKArMSC1/UG6PIjgqn3SZakgPZXbOUy7bl6FDaDB2afNCGADnZth0fThCTf/j8QfzvMwfSLvj+T3JvAYarEjDy2C5cXA9F0TpbUkkLoDW7IBY3luP2964S/y+XnuSzw+hk89gAa5Ft98lR8f87T4xgPKQ1hKF8uTN1AXOl/nfTvSddM5tUtNf7YNPDtHtGg5LDInsnW5XFwnbjoQHL3Mp07NVLMegeOR3Qwi/broCFIhSlTLbZ52STx6ZwLC4W0efpIttF0j3q7CmKbB88Zx6+8s4VqPA4xPwoVWdRQnZayF2YNbFe+3v39Yzq36NMNmuRLRtsNkX8zmRy2XpGQxgOaFm5tECmrtpm8eGv27vE5uN3ntqfNtDdjBzRkYrLVjThq39zOu64ZpUoPTffO8zB6kYmW2rhIRqLi42TXFwtJFilcskZG44esdF9xCKX7a/bu0SmKUHvndkRTpS57Hivnl32202d+M6T+7G7axS1Phce+ewFuHpNKwBts92IWXHBabeJe6hVyahc9ryiWVsnHOwdTxA0SGSTBY1PX7xIfP3R8xeIrxsrPLhqdatlRiegjfk+lx3vWGlEDLgcNjF+7u8Zk8pF02SyjWq5ZqJcNIP401jhTqhQsOrQS3Mg8yadyA+0aNJBIpAsvqSrWCCh0hyWf6hvXDit5feZBPcBfxhjwYhYh8ypKROCFznVx4IRPLu3J2dXqZnETLaQcMqVOe1ZjSG0uVbmtKO1Krv7l9y4olG6Z1JGYcy0adBtUS5KXZllJ9sTu7px17MHxDlltyk5Z5MaOYBBSeTU/q5XDvUjrgJOu3G/pPkVOdnkMcDMGW3VqPY6MTIREWNZKYhstZI4PxQI4xA52Rp9qHA7RGOwU9nNNimRzefzIRTS3rTW1lYcOmQsSPr7s+sCV0g+85nP4MiRIwiFQtiyZQsuuuiiYh9S0aG24jv1RZJcKkqsmastmChrY49YtCbn1HldDqyXdpnS3SDMNFV68LnLlqQUg2TOWVCLi5ZqE+DmqsTdXsJwPkw+k42OC0hcUMsYnaa0DnqiY6sUYAlok4HV+uKTOrC21/vEJJRuOPKu1qM7usTXR6zKRSeoXFT777VnzQWgDQ4kcPQKa3RqwdNuU3DrO1fgW+9bA5fdhlcPD+LBLcfx8Jsn8IXfbcsp1J74v+cP45tP7MMXH9wmvieXQj6zt1fa5fToXSaTc9mo7JfE3p7RoBCv5tV64UizM59PzJlssvXeDE3IqCwoG2GgtboMN+gTzq/+eVdCd8ldJ0cRjsVR63MlZJOUCuZctge3HMdbvvEcfvRiohszGosLl+tFSxNLQuQ8mWzerznVZVjeXIG4Crx4oC/l4/boO+t0v1rWVAGP04axYDQhR4524HdJnT8D4Sg+/9s38el7t+DWh3bg9aNDcNltYqddFt4pM++8hUaJ2Xl62cvprZVYPTexWcV7zpiDD63ThDe5exRNtqj8ZSpQ84TJONlosiuLbK8cMsbxuKpdz9uPDyMaV9FU6RaTR/Pfmk3gsZkyl128FzuOjxjlolPIZAuEo7jhF5vwkZ+9lvWifiIcE5PsTKJIPqEFf746o06W0AwrF83FybZNn9Nce9ZcXK6X3qxoqRRzhrZaL774tmX43FsXZ93pLhV2m4J/uGghnv/nS3D9+QvwrlUtltlTMnJn9rNMIh8JbpTdQ/lgc2rKUOFxoK22bFIbjG0WuWyqquIHzx3E1/66O+09ieaGC+t94nyhZgNyVpWqqvi5vpnh1islvvrnXVkfI7mDrIQLmY+evwAfOMfY3JDvHfXlrqT7Um0WmWxy5l+m15epljYtrCoFKCajudKDBfoYb3aybT8+jBvvfwMf+NFG0ZUaMOZLqZxsgFEy+sSubvxYF2T+55pVmF/nwyqa458YSXKC1Vl8fkTnoJ7JVuvF3Joy+Fx2hGNxMV8cD0VFaa0s/qyeW42vvHMFbrliqchlzYbb37sKW/79iiSRi5xm+7rHxKZEOifbaFDLniNBKVNWmKIowu0HWHfoNZfIEZTJVmZx/2yzcLIZrvDqpMeTg7VLGrt+93on3vW9Ddh5YhSVHgdukLLtZCcbzVerypwodyc3afv+swfxsV+8jv95bE/yG5ADXabGB6KzaJYbbSQwr55blVJsNVNfrs2LFzb4RGdLQN800K+JTuk9tloTWTnZbn1oB7715H78w69eBwC9QUd2x0QI96TkZKNYJYonaKkqSypVp7llOiebw24T1WOAJtYtqJvaOJUPHHabmL8cGwyIvPfFDRVQFMXIRmSRLTfOPfdcvPyy1rb6Xe96F77whS/ga1/7Gj72sY/h3HPPzesBMvmBLgQabKxCEylYdLvuZEsnsgFGl1EgNyfbZGnWhZnesWDC5CWdbTwXGk2ND0aDEXz055vwu9e1kg+/aVfVPHiReNZQ7haldeRyW1hfLhw8feMhxOOJHWj+ut0Q2WjisqDel+DQUFVVuOD+9sy5cDlsODoQEGVtfeJmnVm4uPasufjTZy/AF9+2DP/y9uU4a34NonEV33xib9Jjo7E4frrhsKUrpH88hB+/qIns+3uM3AFZZHv10IBw69B5Qq5EEt9icVV8jqe3ahPBntEgOvS8KqsdxUIhZ7LJXYGsnHS0c07lotmWuH3usiVoqnTjyEAAP5EEqjeO0u5mdc6D/HRAAzsJwdTVTRasAM09NhaMotrrFPcVQs6TyVZIoZLRZ/akLhk1369kdy653FRVFdeL3B3tiV3d+NPWk3h8Vzd+s0nLmbzmzDlJTi3AEF0XSOfkxy9sx3vWtuJr711l+bl97T0r8ccbL8A/vMVwSC2sL4fDpmAsGBVlQJNFlIvW5e72pHtMMBIXgu/L+rVOO5GbOwbxhl7ecqbUaXpla6LIVjsJJxtgOOJ2nBhJCOTOFprYk+O3aySIYCSOWFzFw6YQ8FRQaY7XZU/Iiyk0NSXiZDMy2Uq9XFRvfBDKvgSF5jRnz6/BXdedif+4+jR8+31rEh5z46WL8YUrl+XtvltX7sZtf3M6fvDhMzOWTMsRD2ebBDkad8hpSBs7XpcDz3zhYvzls2+Z1DFbNT/4zaZOfPOJffjJho60JYxUKirPDUl8kGMfXj86hJ0nRuF22PCLG9bBblPwxK4ePL27B9kgnGw5NgCq8bpELMFCC6Ekm2uOXtvlsMHtyF5ko0y2uGrd0VEu+UzlZKO5lj8cw433v4lgJIaDveM4oDf/SeVkA7RytNVzqxCNq1BV4EPr2nDl6dpmETmuD/WNi8+d7rP034HxMF452I/1tz+Nx3Z0IRiJCUdQW00ZbDZFNCHbo4+hNI+rcDuSSmv/4aKF+KfLluR0jtpsiqXYT5lpm48MCpeolXu6sswhrjmqEnE7bFltINBrAEB7ffJmS6qsKUMQtm7SARhOtuFAWMREnNGWLMCbm4P1jAZx60M7EIzEccHiOjxx80UJzRJqpfJnijmh+4Z5E43mSfe8fCShgiYXRoORBCdxz2hQGAEyuQWJ01or8ftPn4fvX3dG1q/rsNvwxE0X4bHPvyVJmJtjkcvWI/LO5OqJRCdbIBwVaw9ysudSHk7QuqtzKCDmixfrBhG6D7RWe8T9gcpFjZif9Os2qugAtHtapjFluqD7/sd/sRnDgQiqypxi05Rz2SYpsn3nO9/B+vXrAQC33XYbrrjiCjzwwAOYP38+fvazn+X1AJn8YN5dWGJRA7+mzVjoRGNxadFqbUu9VMoxyZSvlg8aK9xQFCASU0WWRixufJ23TDb9xvzUrh68sL8P//e8JiKZSxfIujxiykurr3AnLMABLV+tQSqn6B8PIRyNw6ZouxL7esZwoGcMgXBUDKwL6xMz2cZCUYT1ifb8Oi8u0EtdXtBLDo1OOtk5+la0VOLGSxfjHy9ZhNvfuwo2BXh0R7fYYSPuffUo/vuve/Cpe19PKtH5/jMHEnZ8X9zfh1A0hu16mUOFx4FwLC5EGJocNovMCe2YhwJhxFWtMxNlfnSPBoUDaTpFNprgBMIxDAUiSZMWGVrwUMlNtudguduBf32n1vH1rucOit+nnI4zSqxUlKAMmY5+P2JxFZs6tPJzc57eC/uN7pvJeSPa+6gomTsME5fpE4wX9vdZugN6x4LoGwtp549ko1+uLwL36veyvvGQuF67RoJClCH37rkLa3H9+Qvw/rPn4gtXLkvaiYvHVSHG0G4zoE0m7vzgGZYt2AFt0bC2rTphYuRy2ERWEB3fZJlKJluFxyEWpKMT2j1ms/65Uunrpo5By/KWKq9TuDGAxI6HuUCLv10nR8S5lIszWXT00yf6cinLH7Ycz8op2GVy204X1SXiZAvqY0sugkIxIMEl23LReFzFDv36Xj23Gh6nHTdc0C6ycUoBOcTb7HozO6jlcrbGCk/GjompMItsO0+M4DbJZZbOfbBHanpA1IkyOkO4opL8954xB+ctqsMnLtTcN+m6a8uYNzazxW5TxNhi1WW11peFyEbdXHN8bbfDLho1WGVEymWVtGllFjQ3HzHmYHu6RvHJe7fgvT94GaPBKBbUeVNufBMf1u/b7fU+/PtVp4nv15drLmRVhdhsIgeb0WE0hDufOYCe0RDueGyvcF95XUYg//LmxHHVqlS0EJA54DV9fKr2Oi0rHBRFEfNgEiazdVgtacrWyZb42YrGBxZNOkRp9lDiPK+93mc5ZtI8mTZ4d50cQSyuYlGDD/d+bL2YQxFWTja6b4jGRnoWNP08Glfx33/dnfTa2dBlKmOl8nH59bLhnAW1aR1cVnicdssxyqokl3IsE8pFTU42OnddDpu4FipyKA8naP1IGcBelz0peqC1ukzcl4ZFuWhmJxsAXLS0AQ59Lr20BEpFCbpvDAUiqC934efXn4My/Rqga/BU7jA6KZFt4cKFWL16NQDA6/Xi7rvvxvbt2/HQQw+d8tlnpYrZLm/lZFtYX45ytwPBSBz7esaEqn9aigG9vd4nStrmVBdeZHPabaK8jG6Mw4GwtKM1RSebyHHQbgg7dKGocyiAWFyF3xTCm9bJZrLyttf7xODcNx4Sg21LVZnIrPrz9i785MUO/W9xotrrSnBoUNZJudsBj9MuFrvk0jF3HcqFZc0VIpD/jkf3iEXpkD+MO58+AECz3v9Wd/kAWonkr1/T/v+CxZrg9+KBPuw8MYJwNI46nwt/e+bchNdpNolsJAxSyW+N1yXErN7RkNRpNbtg1HzgcdqFuHJiaEJMdKxKNOhciMS09ysXYeBv1rTi3IW1CEbi+Mofd8IfipZsZ1FioVQuuqdrVGR/DJgmnBSEf9GS5O5hNIGsLnMmCXCpWD23GoqiXWtWYdUv6qLeiuZKeCXXAy1GaMPgYE/izu1e3ZFBi/D3n92G2/7mdHzj2jVoqHAbkwT92ur3a00wtJDtqd/zRIi05KqTGRgPZcxOicTiQvibTCabzaaI83jQH8bWzmFMRGKoL3fhI3pu5tbOYbyu53may1tWSU7FyZSLAobItuPEiDiXctk0qTIJVbLIdrjfL1x46Uh3nRcSdrLlRq6NDw73+zEWisLjtFnGZJQCFLfhddkTNgmA5POxIk8db+le8cyeXtzyu6248f43xCYekFwOJ2NV5WAuozs+FMDjOzWnM5W2Udn8sSxz4AKh1O6gTNCC2dz0AJCajfgjKQX48VBk0q+drvkB3atbqoxy0eNDAfHeq6qKLUe1e+3Nly+Fomibl2OhKNYtqMWD/3h+RkfW+85qw/c/dAZ++8lzE8ZDAAn5oYCxMULiw5ajQ2Lz7NhgAPe8fASAVkJPmw/L9Otovz6e0t9UaJGNBDByBqVzO9PYTceYrfizOKFc1CKTLYVwQJvN6UQ2EoAyNbcyO9lofnB6q3VpJY0h/eNhPLZDu+ZIRCdX9shEJKEyAwCe39eXsaGUFfR501x9ZCIi5vLZipn5hjqdU5OOSCwuImgSGx8kOtnIpTm3pgy///R5uGhpA66X8gOzhZxolFs7t0Yr45fP0daqMmlNp5eLUuODDE62qjKn6HxtHiOKyfxa7Ro5raUSf/rshQmbROxkm6TIxsw85JbKbofNcjFmsyliAP7r9i4EwrGEsFEziqLgG3+7Gp+8aCEuWzE9ndjI9kuLKCotqvY603bTygZy442HohgPRUXobCSmuVfGTRM+c9eePqnxQI3XCCwGNHFCvuHQYNtWW4Z3rdLCXe969gC++/R+AMZkVHZomLOKTp+jl8KdTBTZsnWymbn5iqXwOG3YfGQIv9p4FKqq4s6n92NkIiIWXj97qQORWByqquJ/HtuLaFzFxUsb8M9XLgOgdZR89bA2QTtrfg0uW2FYnBXF2K0xd08i90qdz5XQ5ZXKTKfTyQYYk6LfbD4muixauYTMCx5zg5B0KIqC/3r3SjhsCl7c34dLvvU8ukaCsNsU4SotNUjs7Ogbx6uHjfLhASlEdiRghLNSnqJMiy7I51IO6HJIHfhMu6gARPmRuSPkiuZEEeuAqTxiX88YYnFVOC3NGWN0vvbp7taTw0aQ7lTvN4ARXrvPQmQ70DOGc772dELWoRUnhycQVzVxpGGSuZS0sPjvv+4WAul5i+qxUN8cCMfiGApE4LLbRDk3sVpatE2m8QGgLdYVRdsR78gh35AwN4gxd6B+cMvxjM8hO9mmE5p0B8KxhHzG6URVVUlkK3EnW44iG5WKrmytmrZcz1yha+ripQ1Jx2h2UFdOwmVhxTkLajCnugwTkRgeeuMEjg4EMKe6TGRNphLZgpGYyAmjEHxAdrJpv/fItpOIq1oHV7rPkaATCMcSOs5FY/Gkz1NVjY3NXDLRCHrNMy3y8GjsCcfiCU58mbFJdBYlqtII58L1VelBQ4UbZU474qrhMDrU58dQIAK3wyaahNkUzZ123yfWZ7WRZ7MpuHpNq+VG0CrTGFdnymT7sx5dQq4Zik+Q1wzkpNnfk1guWuh7J3UYJerSzCFovn1Az4mSQ/PTQeeNy26znPOlanwwQeeqRWmz3P1yIhxLiF6wgt7H7hEtGofmB6nC7kk4+uv2Lmw8PIAyp12sIaqkxgcD/jCCkTgUBbjhggUAgC8+uB23PrQD9248kjajUIbGyqVN5SKDjo4x2/c535idbH1jIaiqdh7XSpt/JCabyzWbKjxY2FCOX31sHT64bh5yhc63qL4pSsezWBL5W6vLDAF+IgK/vtYEstu0/X9Xn4br1s/DR9aXjpnpC29bim+/bw0e/MfzksaqhvLE+fOpyKRmHDabDXa7PeU/pvSQHQaLG8tTOkhW64v73+uLkmVNFWknpusX1uFf37kiLwvObGiu1C7ibpMDaqp5bIA2maIJVffIRELO1LGBgNT4IIWTbdxora0oiigZVRRgXp3XKBcdD4nywLk1Xlx+WhNcdptYKP/PNavwxbdpopXs0DCXUZ3Won1WB/vGEYzERMhnph2RVDRXefDJi7RuUP/xyC7c8IvNuE93qv3ww2ehvtyNrpEg/rztJL779AE8trMbNgX4l7cvx+q5WvebsWAU9716FIAmsq1rr4VP39mr87lFuVyTKZONdgXryl36+6cNVhS4u3CKYdS5QgPk/a8dQyAcwwWL6xLayRNmW3m6SZ8VS5oqcM8N52BerVeItMubK5J2n0uF+XVeKIrmaiSXAmC08Aa0vJ64qgnI5rIGQGsYsKSxHNeYXI6ZaE3R1j4YiYmGCFeYxH5aDHSNBDEcCIsJN03U93aP4VDfOCYiMXhd9iTHJF2zA/4worG45HbKz2JieRqRbceJEcRVI6cvFXKp6GTLHO+4ZhXKnHZsONAvOquev6gOiqIkBFafPqcySYRZmSCyTe4+7HM7hOOEHB3Z5hsCxvg2FooiEouL+wrtqv5l20kEIzEEwtE0Xf/IYTK9TrZKjxM0HI8UqWQ0ElNFN2hPiZeL0j131CLvygoS/M3ZkKXEqrlVeO6fL8F33r826WeFcrLVlbvxwhcvwW8/eS4+dkE7Llhchx/93VmivDKV++BAzzjiqiaoN5k6/AHGnGyX3iX7EilWpNLjEHNP2eV1wy8249w7nklY5AcjcXFO5prJBgDfvHYNnrr5Iksho8xpF3mTqTpWU+ZfLp1FCdpskJvJAJpwKDcvUBRFVINQLhu52Nbo8QKffesS7Prq2/G1967KSw6TvJFktykis4tEUhrH//2q0+CwKeIzIKcQoK0LAK3KIxCOGt3jCxwbY970T+9k046FGoZkW1bdUlWGr//tKvzvB9davt+i8+fQRMKmCJ0vXgtBuL5cczSpKvDeu18WTrZUIltTpQeKondC9ofE/CCVg4nG3bDe7fVr710pNs6MctGImL80VrhxyxVLMae6DP3jIfxm0zH8+5924Z9/n35Dj6CGDC3VZeIesC/Hstx8M9fUXEKOz5HdfyRI0nqKSkqn6sI0l3vS8cjl6nIm28hERFw3Xpc9KzF/RUslbn/vqklHBBSCxgoP/vasuZZrFnayTVJke/jhh/HQQw+Jfw888AC+/OUvo6WlBT/+8Y/zfYxMHpAdBsssSkWJNfpElC6KVHlsxYKcbKLMUHfQ1OfgekgHCVQbDw2I9u0AcCQbkU1ysgFGSPzcmjK4HXaj8YHkZJtbU4aqMic+f/kSXLi4Ho989kJ8cN08sViWHRr9QmTTBtSmSjdqfS7E4iq2Hx8Ri46p5ON9/rIl+OLblsFhU/D8vj7E4iquPK0Jly5vFDtftz2yC997Rish/erfnI7TWithtym4cLFWGkiTyLMX1MDtsItyWHmXU+zUmcTS+nJ3QlkwoA1Ak3XnTRZ5R+bas+binuvXWYrNZpEtm465Zt6ypAFP3nwRbrp8CarKnKJzbCnikdqtvy6JP3HV6JZE12aqtux15W48dcvFuPHSxTm9drPpnCE2Hh5AIBxDU6UbK+cklrZXepxisrO3e0yUjrxFL2Pd2zUqSkVXtlYlbT7U+Vyw2xSoqlaKke+SwmW6E+RQ33hCqRZgNHTpGgmmzRSbSh4bsby5Et98nxYBQaXPF+gdU89ZYCwErBYFK+dUwuWwaZkmU8jFTFXGlA2yu2d0IiLuQe9Z24o51WUYC0Xxnh+8jLVffQpn/tdTlqImuRStshcLic2miLFkqEgiW1BaLLpLvFzU7DjPBHUWLVV3MNFe7xNZNjLm83Eyok8qHHYbzl1Yh/939Wn49SfOxco5VcJ9kMrJRk0PljdXJoj65OKm6oJdJ7X3nTYDAc29TXNRWVDbfGQQY8GocB0CRuaeoliX4GWizGXHkhRzXUVRhEDz3af2Y1PHYFLWJ5WL5prJBqTOWRwKREQDC5prilw2PRrjdT2PTW6AYXVeTJZVpk0REiBkwaq+3IXr1s/DO/UqCyCx43JduRv15ZpodLB3XMpkK/y9U85Mq00z72+sSDwfq3PICvvAOfPwDulvl1lQ50Wdz4VQNC6yXAE5ky35fFEUBd/9wFrU+lzY2z0Gf1jb1EvlTHPabUaQ/mBANChI7WQzPrsPnN2WsIFJIurohJEv3FpdhgqPE4/+01vw/Q+dIcojra4DK4RQXOURG+a5ipn5huZ5XaNBhKNx0cCuySSe0TkzGtQ25HosOpBOBrO5ge7bcrn6nOoy4fSjaycfr12qsMg2SZHt3e9+d8K/a6+9Fl/72tfwjW98A4888ki+j5HJA5XSAJNq4gEkl0tlClidbminjG7y+eosSjTpuxFPm7oYHh30S40PtAlPukw2ACJvg7pbyTccymSjicuNly7GfZ9Yn5SVJzs0SFwgJ5uiKCIv7/l92vF6nLZJTQoJu03BjZcuxh9vvADLmytQX+7GV96lBfR/5Nz58LnsQsy75Yql+LvzFojflUsDXQ6bcLhctUabrMjZfiJ3bSyk29gTXXpyN6D2et+0d9p82+lNmF/nxRfftgzfvHZ1yh1ks8g2WSePx2nHTZcvxdb/d0VCa/ZSRN5J9rns4j2gyazocpvniQPtIJ80lYuKUtEVTZbniZzLRpOaq1a3AtDyWmhhZy6jATQBhETt3rFg3oWY1ioPKjwOROOqKI0m6P0MReNpQ/GPSa7YqXDV6lZ8+mLNyTqv1iucC+va68RjzKHsgOas+cX15+BnHz17Sg5M2RGXa/m/w24T5+GwlA/TUlWGvz1zDgBNZA3HNHeMubkLIDnZpiFf1Eyxc9modE9RjI6ypUq52yE+azl7z4pwNC4yS9eUsJMtHY0Vbjjt2n3NpkA4wwtFfYV2LqZaGKXqOm8EYIcxEojgiB7mb24wIYK/9XM9EI4iGNGEJ8pgBaSmBy5HQcZ/upc99OYJvP9HG/G537yZ8HNRLjoJUbOqzPp6pntMfblLhLfP1ztYbtIzL2nz6uwF1i6nqVLtdYkNGdl5L29s/u2Zc+G02/DxC425iDlihrpw7usem9ZSe7n7Z7rKAbPokUsgfzoURcF6varh1UNGZEYgTSYboJWCP3HTRbhcd9ufv6gubSYtzXdeOjCAaFxFhduRct6xpKkCtT4XzphXja+++/SEn8nOKdEUQX+eKq8TV69pxb+9awXKnHaMh6I43J+542iXJKqSQESmhGKVizaUu+F22KCq2nUml4HKVJU5RaOn4UBEKt+e2kZ+hdshSmcBYz62SMr4a6kug8thE/dwasoxmc35mQCLbHnOZFu/fj2efvrpfD4lkyc8Tru4AaQL/51TXZYwcJWayCbndQFIyimb+vMbTjYA4j070u+3cLLpZSuiXDTRyfaOVS1Y3FgunEly6ZmxME6/WJcdGod6tQmonMlBE9jn9Q6jjRX56Yy3ck4VHr/pImy89a2izXxVmRMf0yddH7ugHZ97a6IT6WJJZFs9p0pMIq9a3Yrffeo8/Ksu1gHaTuj8Oi9UVQvaFWHn+rknD4zTnccGaN09X/jipbjx0sVp30+5dKeqzDnlco7pFhMng/x5nL2gVuy4kvNBNODI88TByCkxykVVVcXTe6zz2AjKZXv54AAG/WEoCnDF6U1w2hWMh6J4UhfpzE4qgsoAekdDeXeyKYqSsmR0UGom0ZVGTOjMg5ON+OLbluF/rlmFH1x3pjgXlzdXYG5NGbwuuwjeNXP+4nrhWJ0s8vs/mU0T2T0iypeqPPjkxYvw6YsX4barT8PbTtfOEStxhgTU6S4XBeRjL47IFopQZ1HbjLgHyZlF6djXPYZwNI6qMqcoy5tp2GyKcPGWuwsjOMkYDZqsz8W9emdRc5VDjdcFm6I5NF4+pDWiaanyJF3LJLJRAxu5ac4RWWRL060xH9z5gbX41cfW4eo12obLSwf7E35u7iafC6mcbFZdON+1qgWK3tn9kW0nhdB41jzre20+oA0l+bOR59DvP0drgrWmrRrvXNWMOp8LZ5pC+slVdaB3POF+W2jkjehsykWJfJYxnqvnFlKXU8AQ2dKVNjdUuPGTvz8Lf7zxAnznA2vTvgYJYc/pG+jLmitSXvtVZU5svPWtePDTyU0xhJMtGBUVNOaOxQ67TYy/b1o0CRr0h/GZX2/BK/p1fZI6rFd5kj7zYpWLKoqS0GCC5oXm7sJ2myJcjYP+cN7OXUVREoRdOpbTWyrhsGnHRmtHMk/s65ndTja5u2g2Hd5nI3kT2SYmJvD9738fc+eWbqnTqc7atmqUux1Y21ad8jGKoiS42eRg21Kg2TS5pg4xuQTOp4NudpRtQMH9+/UcEsCYdFGXoUN941BV1XDw6N9f0VKJp2+5WEziaEIQk7LGMnUDlB0aB3Wni5xVdLoustFufdMUd2PMmN0kN1++FC9+8VL8v6tPSxrwmyo9QjA4y7QLu669NmknkRbsmzoGhUBDn6Ns8V5YBJEtW2QnWy4ZUjMZWWQ7d2Gd+MzIVdozxWzAVDSLTDZjYb3zxCh6RkPwuuwisNvMcn2j4IX92mR1bk0ZKj1OYeOn57NysgFS1+GxUEJnuHyxzNScgRiQyqm6RxNz6GTyUS5K2G0KPrhuXsJ7YbMp+P2nz8NfPndhQXdcT2utFDvMkyn/px30/vGQuJ80V3lQ7nbgy+9YjusvaBela72mIN7RYEQsqvOVt5cLhpOtOOWilC1U6k0PCCpLM+czmtmmu1RXz62aEeJhKmjBna88tnSI7FgL94GqqqJc1LwBa7cZJZgv7tc2/aw609f4Ekuj5fvc4QQnm56JNgVnfjocdhsuWtqAr/6N5vwZmYggEjNK9sd1J9tkKgNSZbKdHEkW8lfPrcbf6V2cKRNraVN5QcvuztDXALKwsLSpAu9c1YxPXrQwocTtrg+didf/7fKkOTaJXduPD4uxv9CZbNrrGseWbnPdPFZVTbLKwAoS2V4/OihiHmgTPlNpr6IoWNtWLcSvVNAcg+5hqUpFCbfDbumMkytuyMk212KTkMrpt0kl28TvXu/Eozu68R9/2qXlCtKGVHVZUpRLLmW5+YbcY0/t7sGGA/3afOac5CYGdJ8a9IfzVi4KJDadI5GtsdKDB//xfNz38fXiZ/SZ7NfnfNMdhzNd0PUZialpqzFmM5MavWpqahImLKqqYmxsDF6vF/fdd1/eDo7JL7/6+DpMRGIZb+5r2qrx3L4+zKkuK6mARSB5B9vsgJoq5hK3q1a34C/bu8TuopwPcv6iethtCvZ2j2F316goeUjV/clpt6HW5xITEqddyerGTg0Fjg5YONlMk1jz7l2+sdkUzEvjCLjx0sX44fOH8IGz2zI+17r2Wjy45Tg2dQyKsF2RNyc72aa56UEuyAuAfAm9pY78eZy7sFaUW9K1KFqS5/lcNLe1B4Cn9N3Ki5Y0pBQISPilrDEqN1neXCGErXK3A+111ucZiYW9Y0GcGDZCq/MF5bLt6x5N+P6g1LE1nZPtmF6Wle66nCrT4e4qdzvQXu/D4T7/pJzJtIN+oGcMqqrdX2tNCyvahKC8FoIWDVVlzqI0HakWJXRFymTTx65Sb3pAtJga5wDAPS934OWD/fjyO5ZjcWMFDvaO43/17NAzUgSMzxRahchW+HNTZMfq7gN5rt83FsJwIAKbYnQklqkvd6N/PCxEttNbLUQ2EpT1eZB8n6Pwf8AQLayC5PMJlY+pqlbeSeMWOekmI/KJrvAmZ2p3ik2af37bMjyxq1vcl86aXzgXGwB8cN08TIRjYgMY0ETSuz98VtJjbSlKGpc1a5//Fr281e2wTYuLab7eYTQaV9N2oDZv8uVT/FnSWC7m8tuPD+PsBbWiXHIynXCtaNGveTIApWp6kIlKveImFldFeaLV/GVtWw2ADmzrHEn62V59E/9A7zhePTwo/tYWKZONKOaakSIu7tWbr71jZbOlkaHW58KhPj/6x0Oi8iIfLky6d5Q57QkuS7OxhTYaqDQ33+aIUsHtsKPa68RwIIK+8VBOObuzhUmN2N/97ncTBl6bzYaGhgasX78eNTUzezIzm3HabVnl3Fy+ogl3PXsQV6QovyomdEMfC0XhD0XFLmi+y0UB7UZ58dJGMQEDEvNBan0urG+vxSuHBnDfq1oXzgq3I+1OVkO5W4hsrdVlaTMZiOoyFzoxIUSCemnXo73eB7fDJsJ0i13bf/Wa1oSJWzqoa+H248NikVlnmcmWury52MjOglPFybasqQJ2m4IKjwMr51SJa4+6NfWMFcjJJi2safFHi7lUpaKANikvc9rFxHCJvjhc3lIJbD0JQFsMplpMNOgTp+NDE8Ihlc9w/OUpnGxyMHiqsriRQERkJLZNMZOtFFg1p2rSIhvtDu/R38emSk/SZ9qUoszwZAEcirlQ7HJRymTzlHjTA4IWRCelz/H7zx7EoD+MDQf68ZlLFuPeV4+ifzyE5c0V+JjetGemQvebTBuk+YA28cLROMZC0YTXJDf9vFqv5aYGXbf0uZjz2ACjoQnllfVL5aLUsdHtsAuRazKdRXPBblNQ49UEk0G/IbJNKZPNa93IpMuiXBTQPtfbrj4d//jrNwAkNpspBOVuBz532ZIpPQdlO9O8tKUqP1ElmXA5tGYdm48Mpo2+qfO5YVMgKlDylckGQHTdfmxnN149PICzF9QaonCeztdW0zmyfJLRPWVOO5x2BZGYiqO6691cLgoYTrY9XaMIRmIJ17c8N6Hu4zVeJzxOu0W5aPHmweRko037T1600PJxJIAd6BlDLK7CphibC1OB1l9zasrSXgskwtO1U2hzRDFpKHdrIttYKClz/FRgUneD66+/Ps+HwZQSK+dUYcu/X1HwgN3JUOFxwueywx+OoXs0KBb2+Wp8IN/sTmutRJlL66ZINmvzLtXbTm/GK4cG8Mc3TwDILHLVV7iwTzPfZMxjI8y7g7KTzWG3YXlzheigNpNq++fVetFY4UbvWEiU2pJQJTsKUzmMSoHKhHLR2bkbZaa1ugz3XH+OCKen3eR+anxQICeb3NZ+wB9GrdclcszOMOXFyNhtCpY2V2Bb5zAAw4Ehl1+YG77IkJWfHHtlTnted+xp4tE1EsRIICIWaHIZVSonG5WKNlS489qBrlhcc+ZcbO4YxBWnNef8u/SZ0DlhVbpEDllzuWhXARyKuVAjFuXFEtkok21mnEPmfMaRQESI0qFoHN99ej8Azel93yfWF3Xhlw8W6u7h6dhEK3PZUe52YDwURf9YKEFkO9SnOc3kckIZ8xh4emvyfVWc68LJZpzzcVXLmFzcWJGUgVtIyJUk52COT+H1ya1nLhcVZXYWYv7bVzbjuvXzsLljEJcua8z5NaebSo8TLVWelMJhIfn59efAH4qmdcbYbQrqyt1ibplvl925C+t0kW0Qn31r5sYHudJiGosmK1Aoita9un88LMwCVpuEc6rLUF/uQv94GLu7RkUn8XA0LhpGAcAL+sYmudutGgsUC3lNta69FqtTNLuh9eJuPV+yvtwNRw6NllJB669Mm7Bmt99sLRcFtDHrQO/4Kdv8IOvRY/v27Vk/6erVqyd1MEzpUMwbZSaaqjw43OfH7pOjYiGaL4FDdrJREOi8Wq8ksiVeMlee3oT/eGSXcMnUZ7hZyrsl2TpPzJ+F2TF1WmuVENlm0s1aURSsa6/FX7Z3ie/R5zhft3g3V3pKrmRZRnaypStdmG3InWTrJSdbIBzFmL44ybcF3uWwoV6fNHePBOEPRTERicHlsGFBBiF2hSSy0Q68XH6xKk3nQbqmDugTzZbq/O7YV5U5MadaE/L39YxhXXut5iLRnRRAaidbPvPYSoGLlzbglVsvm9Tv0u4wlfY3WSz66JzsHw8jEosLZzdlexUjjw0wdv+Llck2U51stMCnMsOGCjduvGQR/ufxvVjWVIFf3LBuVpSovHNVC0YCEVy6fHrEl/pyF8ZDUfSNhbBQEtQO6ffARRalokDiGFjhdlhuJJrzB2WRDQAO9/l1kU0XLaZJZAOMZgyAkck2qXJRC2eqqqrYr5frWY1XiqLg9veuyvm1isnSpgpDZJvGDV6XwwaXI/N13VghiWx57npJuWxbjg7hUJ/R/KEQTrbWKs+U1mSVHqdwjFZ6HJbZjoqiYM3cajyztxfbOoeFyHaob1x0NwUg5nc0VsoVCw6bUlRzhrym+uRbrF1sgHG9U6fkfAnEV57ehMd2duFD69LH5ZhLl80xRbOJq9e04sx5NZbxAqcCWd8N1q5dC0VRRIeIdIuMWCw29SNjmBTMqS7D4T5/Qsv1QjjZVuoi2/w6LzYe1rqNmidcLVVlWNtWja36Aj7TTnODRTBmJuTB1e2wJR2DXJKR7xK9QrNeEtk8TpvYBVzYUI47P7A2Y2OIYiOXkuSrZHmmQSW+A+NhkcdW5rQXxIHQUuVB31gIXSNBnBimjLXyjGXXckg3DfbNlR7MqS5D71gwqXOaDE2A0u0CT5VlzRWayNY9inXttUmOJjng/QfPHUQgHMU/X7kMnUOzS2SbCrSwpVKRFouJa63PJUpnesdC4rMsZmdRwBAeilYuqjc+cM+Qxgf0OdHClkS29jofrr+gHR84Zx7cDlvKEvCZhtthx/UXtE/b6zVUuHFkIJBQygloC24AWJzKyVYhdaZvrbRcJxgiG5WLJjoc6LM0nGyFPyfrpCB0QjjZJlEuWi2FzcfiKuw2Rau88IdhtylJTSNmKsuaK4SzqblI9850NFa4sUv/Ot+btXIu2zvu3IBwLI76cnfGBgXZUl/uFmPVVJ+zUlpDzEmzub+2zRDZCHKGL2+pwII6H36/5TgAQ5jyOI3crWqvs6gNZpY1V2BBnRfNVR68Nc2GBN2DyDyRrwqgRQ3leOSzF2Z8XI3JWT3T1m258KF1yY0nTiWy3rbs6OjA4cOH0dHRgYceegjt7e24++678eabb+LNN9/E3XffjUWLFuEPf/hDIY+XYXDjpYtx9vwauBza6dtc6Um6aU2WMpddCGEUVjlf2nW0Eg7evtIobcpU1y877rIVkGSbe325O2kQk5sfzLTa/nPajYDfOl/i3/aeM+bgrPmlnfHoc9lB67hTpVzUDC1QBhI6NSWfp/mAdsu7RibE5C+bCSh1y5xf5xXXsKIouPfj6/D7T58vsjysMLtDWwuwmFikl4N19Gui2cC4WWTTcuj6x0P45hP78IPnDuHVw4PCyVbqYvR08P/bu/f4qOo7/+PvmUlmcr+QQEggEDAqICoYikVQwCKIeGHtesMiiLIPqqy4rnhZrfrogmwFfnXFaq2rlEqrttVt+8BKod4AV6WgWBSVgiAgiQjkRi6T2/n9MTknM7kRMmduyev5eMzjkUzOnPkO4UzOfM7n0vpKf3tXpx0Oh/Ueaf5flaTDZZHNZMvsoIdTuFiDD2IkyGb+bsuq61VT12hlLxZk+46DRLerxwTYIsH8W/Ztq7Lqlky29jOH/acCtzf0QGrbk631ZErzd3kiTD3Z/Nfk/75bGUQmW1aKRymeODUZLUGKT7/2Zc2c3i8lZo6zk/EvYYxUP8vOmO/1Dkf3psR2xul0WH2F6xqbdN6gDP3h9gtsu7jodDqs97nu9mMzBQTZOvkbd27zZ54dfkE2c5rwsP5pmjl6gHW//wUp89iNdAVUQrxLb909Sb+59budvv+3viAezixMKTDgmxjvsv3/JqJHl3+zgwcPtr6+5ppr9MQTT+iyyy6z7jvnnHOUn5+vH/3oR5o5c6atiwT8fXdoln7/wwvkbWjUFyWV6p+W0KUBAl315A2jVVJRa2W8DPab2te6XFTy9WX7r9c/lxSaTDb/NPf2musPz02V2+VUo2EoN0IfErvrjH6pSk+MV3lNfUwODnA4HErxxKmitiEm128HM5PNf1JTqIK9/hNGzamaXZm6dd6gTK245tw2KetDO8jI8Nc6eBqKvl0tGVW+YI/5wXNgZqIOldaouq5Rld4GfXq4ZQLpmv/bbzUHJ5OtbcPljq5O56R59HVZjY74BdmKrcEHkcnGyIh0JptZLhoXG+WiaQlxSnK7VN3cm3W/FWSL3v6dsSQ7paWs2lTlbbAGGnTUk83/w2vryeemlp5svoCyGdgqKsjUa36T3KvDWC7aXiab2U8trRuBA5fTodGDMrT5H0e1/UCpRuSl6ZPDvpYe7Q2DiFVn+gXZwtmTravMDKH0xPiQBN2vHZOvv+0/ruu+k687p5zRpcFyp6IgK1kHj9doZDu9DU9FekCQreO/cWZv2v3HqlVWXaeMJLc+L27JZPvu0Cz1bS7B9d9Pv7QEfV5SGRW9Lx0Oh052fbd1Uka4/+/6l4v2C9EFaUSHbr0j7Ny5U0OGtE1dHzJkiHbt2hX0ooCu8MS5dM7ADNvr2c8fmqWrRrVcsfH/ANveVaoh2cnWycbJroj4B9m63JOtVSZba0nuOD1zU5F+Nuu8sEwfs5PT6dB3CnxXA2M1E2zimf2Ul55gW5lArDGDi5W1DTpU6gtWhCr9vb/fdMgvmvvbdLUh8D8XDWwzSr0r3HFO64OhpJAEss0SDrN8wewNNCAj0TpBLimv1afNH9QkacOuEu382vc9Qba2ja07yqww/w9901zabBiG1VcoFFmKXdHSw6neaskRTuZ06ljJsHE4HH592Wq0rzngHs1DcmKJeZ7iX8r5ZfPQg+wUd4cfpv3/hrc39EBqae1xwtuguoYmK7A1pjlr3Qyymdk0dvf27GxN5loqa+utctHulpKZPa227z8uSfqkOZMt2IBJNCnsl2IFNMKdDdQVZhZ66x5Ydpk8rJ+2PXiJFk8bZnuATZIeunyEHrp8hKad1fH09K7wH9DV3mRRU0aSW0OaL1SYx9/nfplsLqdDS2eO1JXn5ukSv4nuOSH+d7Zb6/7J4R4Y5//+2XpwBHqWbr0rDB8+XEuWLFFtbcuVYK/XqyVLlmj48OG2LQ6IBoGZbO1/CFn2/bM194ICXXZ2bqf7MjN8PM1N3LvC/w9XR4+ZfGa/gLLVWDLxjGxJsZuF8MT1o7T53ovbbSbbG6QlxCuu+SqxeUIWqkw2M3Cy/1iV9WFsWP/QZwb4v55Q9GRrk8nW/OE2K8Vtvebi8lork83h8E3iK2suLyTI1vYEv6MTZ/N3afbzOl5VZwWZctIjE+g3r6w3NBnWh/twirXBB5L/hFEy2ezWUi7aEmTb863vokZn2b+5Vp8mZ4eNrtMS4q0WC2XVdTpW5XsOszXENxVe/W3/ce38ulxul1PTR3Z+TmWHPlbLA2/zGnzvDakJcd0u/xtT0BxkO1AqSdYFErPXb0+Q6HbpqnPzdGZOalReZDSzzmP1Au7pOamaN2FI0JMvAzPZOj9XMEtgX/3wax2vqrMuRpm/36ln9dcTN4wOqOoxL3hE85Ayf5nJrVpLhDnI5n/Rtm8P7seGUygX9ffzn/9cV1xxhfLz83XuuedKkj7++GM5HA6tW7fO1gUCkZaaEK+sZLeOVdW1Wy4q+a5amlcuO3N6vxTdMDZfp/VN6XL6uv9VD//Gwj3F9WMHaWBmUkB/tljicDjk6sXZ3k6nQ32S3TpS6bWmNYUq+8As5/v7oXI1NhlKT4wPS6ZDvzSPlTkXynLRY1V1qqlrtDIq+iS7VV3XqM9LKlVSXqNdzUG2H5w/WC+8/5UkX6ZdLE0VDpXWJ/gdl4sG9mQzs9iyUzzyxEUmkyvR7ZInzilvQ5PKquvDHrD3WkG22Mhkk6T+ab5j5rPiCqu0z/+CGLqvvUy2vUd8gczOpsT1S0vQY98/R32S3VbP3NacTocyknwN4w+V1Vj9AIf2TVFmUrxKq+ut9htTz8qxbahVZ8zMFrOE1XxPCKbP2Kj8DDkd0sHjNfqsuMLaZ08qF5Wkx68fLcMworLk7aIz+mrR907XxDP7nnzjHsy/5PlkfUdnjxusl/52UK/tLNaFp/sugA/qk9RpsPmqUXna/lWprhvT+VTNaNE6k61/mC+u+Z+rcO7Ws3UryDZ27Fjt27dPa9eu1eeffy7DMHTddddp1qxZSk7mSiJ6nkFZSTpWVaeUIJvwOp0OLbv6nFN6jH8ZVOs/Dj1BvMupyZ1MAkL0y0rx6EilV3ubS4pCVS5qfugxJ0iemZMalpN7/zLvUDR4Tkv0ZUyc8Dbo67IaHbOCbB7rtf7jmxNW9t6/fq9Qb35+RF+X1Sg/M5Em7wq8Wp+d0vGHfDMoa07CNbMHO2sIHQ6ZSW6VVNSqtLou7IMsamOsXFRqOQ7f/9JXjpeT5lFSGJrk9wZmCwD/nmzmZNGO+rGZrv3OyT9oZyTF63hVnfY0D1LwxDmV7HZpSHaySg+UaftXvuyvcE2mMzNbzPddMyAWzMTM1IR4ndk/TZ8VV+hX7/kuiAzNTg7J1O1Ii8YAm+Q7t/y3S86I9DIiLiCT7SS9oM/KS9f4wiy9u+eYFew+Wd/bwn6p+s387wa/0DBJdLuUEO+0AvzhLhf1/32E+7kRXt1+t09KStK//Mu/2LkWIGqdlZemjw6UnfQPVCgElIty1QNRyGwcbQaEQtVnovUJSbhKVMwSw6xkd0gCEQ6HQ3kZCdr9zQkdLquxMtmykt1yNX+AefOLI5J8wYV+qQm6adxgLXv9c53eL/rKdCLBE+eymuF3duJqloaUtMpki9TQA1NGUnxzkC38E0ZjbfCB1FKiZJbhFdCPzTb+5aJmlpIZEOssk62r+iS59aWqrGmlWcluORwOFWQn68MDZZJ82TPjhmYF/VxdYWWyVdepqclQifmeEOQH4KLBGfqsuEJ/+OhrSdJZPahUFLHDDOq445wBE4A7Mv/CoXp3zzEr6BzsdNNolJXsG4CU7HaFPXPc/1yFTLaerctBtj/96U+aPn264uPj9ac//anTba+88sqgFwZEk8XThmnymf100RnhTztPa5WhAUSb1iPRQ5XJ5m7uZWiWMZ0RtiCb7/WEolTUNCAjUbu/OdEqk82txOagntl4/KzmcqNbJgxRWmK8JhRmh2xNsSYjMV7VdY2dZhv2a1Uu+vdDviDN0L6RDdJkRnDCqBlk88RgJltzXN9q2I3gmZm7dY1NqqhtULLbpf3HfO8/p9lwnJgtMMzsuD7Nfz+G+v0Or/tOftgydM1MtsYmQxW19X6ZbMEF2cYM7qO17x9QTfPxdVYPKxVFbDBLrrua9T7xjL46MyfVapExPAr77QUrMzleX5fVKCdCU3Ezk9yqrqshk62H63KQbebMmSopKVG/fv00c+bMDrdzOBxqbGy0Y21A1EhPjNf3hgc34ae7EuJdVilZqBrKA8FoXcZs98Rff3kZCVaQ7WRlDHYZPShDDoesSbihYGbJfl0amMnWkBg4bXJE83S6OJczbOVUsSI9ya3D5bWdnria5aKVtQ2qrmvQ+18ekyR9N0xZMx0xP+iXRSSTzVc244mhTLbWmYcMPbBPQrxLqZ44VXob9G2lV8edDtU3GkqMd9kygbdP8//1PVYmm++YNH+HLqdD1xQNDPp5usoT1/J6j1XVqaTcV0IebGsAc5iDqSdNFkXsGDM4Uz+cdFqXM0MdDoduvXCIFv/+75J6ZiabeVErUlNxb71wiDb/42ib9wj0LF0OsjU1NbX7NYDQe3DGcO0/Vm3LVWTAbv6ZbAnxTqWGsO9M/7QE/V2+7KMzcsIVZMvUhw9eEtAf0W55fhNGrcEHKS3loqaRZEN0yCyt7+zEOTUhXslul6rqGrX9q1J9XVajOKcj4ie76Ym+Y6g0gplssdiTzVTA0ANb9U31qNLboKMnvKqs9U28Hdo32ZbsMvMD7oHj1ZJa2g1MKMzWsP6punhYv5BeqGlPnxS3Kr0NKq2qsy2TbWBmovql+vqVSmSyITLiXE7de+mwU3rMlaPytPaDA3K7HD1yern5nhOpINvN44fo5vFDIvLcCB/bPgmVlZUpIyPDrt0B8HM9GSuIYv5lzDlpCSFthGx+uM5NTwhoIBtqmSGecmdOGD1YWm0FWvzLRU309enYmf1T9d6XxzRyYOf/RjlpCfryaJX+8NFhSdI5A9M7nBwdLplJEcxki8HBBxlJ8dZEVolMNrtlp3j05dEqHT3h1aFSX2bXyYYedJX5XmqW+poXaTKS3Fp/50W2PMcprynJra+OVetYVZ1VSh5sn0aHwxe8f/2TEg3ISAz53xDALp44l/54+/hILyNkzMqBwfTyRAh1qzbgJz/5iV5++WXr+2uuuUZ9+vTRgAED9PHHH9u2OABA9PMvFw11I1cz4ytcQw/CZWDzSd9nxZUymj98Zia5lZoQb02ky0iKV16EeojEggdmDNdf77pIk07SO9PsGfiXT0skSeNOi2ypqNSS3RPZTLbYKRd1OBwB2WyD+/BhyU7Zqb7/j99WerVtv2/apx1DD6SWgLKpTxRMTTczWw6X1VjDR4LNZJNa3lvOoywMiBq3Thiqpf80UnPHF0R6KejBunVG9cwzzyg/3zeme+PGjfrrX/+q9evXa/r06Vq8eLGtCwQARDf/ctFQl/lcOSpP00f21w8nnhbS5wk3M3h4wusrzUpPjFe8y/cn2vywd1ZeWkizBGNdvMupwn6pJ/03MktEzH/rSPdjk2SVIkdiuqiZDZYQFzuZbFLLcZGbnqBEd2ytPdr1bZ4w+qv3vtJfP/tGDodsG/xkBpRNWVGQ4WU2h991uEKSlOR2KS0h+OzWG8YO0qP/dLYenDE86H0BsEdmsls3nj84rNUQ6H269RekuLjYCrKtW7dO1157raZOnaqCggKdf/75ti4QABDdslPCl8mWm56op39QFNLniIR+qQmKczrU0FxD5f/BMzc9QXuOnKBxtk38ByPEuyLfj02K7HRRbwz2ZJNayvkKKPmxnfmevu+ob6rofZcO06j8DFv23bpssvV06kgwJ5x+2hxk659uT9uDeJdTs86n3QcA9DbdymTLzMzUwYMHJUnr16/XlClTJEmGYTBZFAB6maxWPdlw6lxOR0B5Uh+/D6KTzuynhHinLhkRmQnHPY1/tuW5AzOU5I5sPzapZboo5aJdZ5ZYn9aPIJvd+vpdLPmn0QP0LxcNtW3frTPZ+kRBJpt5UeMfRyolBT9ZFADQu3XrzPLqq6/WrFmzdPrpp+vYsWOaPn26JGnHjh0qLCy0dYEAgOiW5I5TYrxLNfWNIc9k68kGZCRaTcb9P3jeMmGI5owbrDhXbAVBopX/RLFoKBWVfE3fpQgNPqiPvcEHkjT7u4NV32joRjKFbDeyecDKqPwMLbv6bFvL1Fv3ZPPPhI4UM/BX3+jLJO6fFtzQAwBA79atINtPf/pTFRQU6ODBg3rssceUkuJrhlpcXKzbbrvN1gUCAKJfdqpbB4/XRGwkek8wIDNR2uf7unUJFQE2++SktXyoj4ahB5KU0dwbprK2QQ2NTWH9fdc2xGYmW7+0BN03fVikl9EjjRyQrs33TFb/9ASrN6Rd0hPj5XDIGvASFZlsrd5vyWQDAASjW0G2+Ph43X333W3uv/POO4NdDwAgBt35vTP07t6jGlPQJ9JLiVkDMlqyJ6Lhg2dPNTAzSQ6H5HY5dd6gyPdjkxTQgLmspj6s2T1muagnxgYfILTy+ySFZL9xLqfSEuJVXlMvT5xTSVEwtKL1hFM7JosCAHqvbl+eeuGFFzRhwgTl5eXpq6++kiQ9/vjj+uMf/2jb4gAAseH7RQP1/64dJXdcbGXDRJPAIFvkS6h6qv7pCXr8ulF69qYxUTOV0hd48F33DOfwA8MwrHJRT4xlsiF2mRcRslM8UTExufWEUzLZAADB6NYZ1dNPP6277rpL06dPV1lZmTXsICMjQ48//rid6wMAoFfI8wuytf7QB3tdNWqALjqjb6SXEcCculgaxr5s3oYm6+tY68mG2JXR3JctWjJ2W088JZMNABCMbgXZVq1apWeffVYPPPCAXK6Wk7IxY8Zo586dti0OAIDeYkAm5aK9mTn8oLQqfJls3nq/IBvlogiTPs3/11v3QouUZLcrIAub3qIAgGB0K8i2b98+jR49us39Ho9HVVVVQS+qtf379+uWW27RkCFDlJiYqNNOO00PP/yw6uoCT0QPHDigK664QsnJycrOztYdd9zRZhsAAKIRPdl6N3PqYjgnjHqbhx44HVK8K/Jle+gdzIBytLzPORwOK3vY7XJGzboAALGpW4MPhgwZoh07dmjw4MEB97/++usaPny4LQvz9/nnn6upqUnPPPOMCgsL9cknn2j+/PmqqqrSihUrJEmNjY2aMWOG+vbtqy1btujYsWOaM2eODMPQqlWrbF8TAAB2Soh36ewB6frqWJUKspMjvRyEmTlhtKwmfBcHzX5sCfGuqOiNhd4hL8OXKeZ/YSHS+iS7VVxeq/7pCRwLAICgdCvItnjxYt1+++2qra2VYRjaunWrXnzxRT366KN67rnn7F6jLr30Ul166aXW90OHDtUXX3yhp59+2gqybdiwQbt27dLBgweVl5cnSVq5cqXmzp2rpUuXKi0tzfZ1AQBgp9//cJxq65uU4unWn2fEMKtcNIyZbLXNmWz0Y0M4zb2gQOmJ8fqn0QMivRSLmb1GPzYAQLC6dRZ/8803q6GhQffcc4+qq6s1a9YsDRgwQKtWrdKFF15o9xrbVV5erj59+ljfv/feexo5cqQVYJOkadOmyev1avv27Zo8eXK7+/F6vfJ6vdb3FRUVoVs0AACd8MS55KE3Vq+U2RxkC+d00dr65iAbU4ERRlkpHt164dBILyOAGWRjsigAIFjdPquaP3++vvrqKx05ckQlJSXaunWrPvroIxUWFtq5vnbt3btXq1at0oIFC6z7SkpKlJOTE7BdZmam3G63SkpKOtzXsmXLlJ6ebt3y8/NDtm4AAID2ZCb7ykVLq8KYyeZXLgr0ZuZ058F9kiK8EgBArDulIFtZWZluvPFG9e3bV3l5eXriiSfUp08f/exnP1NhYaHef/99Pf/8813e3yOPPCKHw9Hpbdu2bQGPOXz4sC699FJdc801uvXWWwN+1l4PBcMwOu2tcP/996u8vNy6HTx4sMvrBwAAsENLuWj4M9k8BNnQy80bP0T/cdkwzR0/JNJLAQDEuFMqF/2P//gPbdq0SXPmzNH69ev1b//2b1q/fr1qa2v15z//WRMnTjylJ1+4cKGuv/76TrcpKCiwvj58+LAmT56scePG6Re/+EXAdv3799cHH3wQcF9paanq6+vbZLj583g88ng8p7RuAAAAO0ViuqhVLhpPuSh6t76pHv3LRadFehkAgB7glIJsr732mlavXq0pU6botttuU2Fhoc444ww9/vjj3Xry7OxsZWdnd2nbr7/+WpMnT1ZRUZFWr14tpzPwhHDcuHFaunSpiouLlZubK8k3DMHj8aioqKhb6wMAAAgHqydbOKeLNjSXi9IHEAAAwBanFGQ7fPiwRowYIck34TMhIaFNyWYoHD58WJMmTdKgQYO0YsUKffvtt9bP+vfvL0maOnWqRowYodmzZ2v58uU6fvy47r77bs2fP5/JogAAIKqlJzb3ZKuuP2mrC7u0lIuSyQYAAGCHUwqyNTU1KT4+3vre5XIpOTnZ9kW1tmHDBu3Zs0d79uzRwIEDA35mGIa1ltdee0233Xabxo8fr8TERM2aNUsrVqwI+foAAACCkdk83bCuoUk19Y1KcndrAPwp8ZLJBgAAYKtTOoMzDENz5861epjV1tZqwYIFbQJtr776qn0rlDR37lzNnTv3pNsNGjRI69ats/W5AQAAQi3Z7VK8y6H6RkOl1fXhCbLRkw0AAMBWp3QGN2fOnIDvf/CDH9i6GAAAgN7I4XAoI8mtbyu9Kq2q04CMxJA/Z8vgAzLZAAAA7HBKQbbVq1eHah0AAAC9WmZSvL6t9IZtwmhtfXO5KEE2AAAAW1AfAAAAEAUymieMllaHZ8Iogw8AAADsxVkVAABAFMhonjBaVhOmTLaG5nJRBh8AAADYgiAbAABAFMhszmQrqwpXJhvlogAAAHYiyAYAABAFMpJ9mWylYevJxnRRAAAAO3FWBQAAEAWsTLaw9WQjkw0AAMBOBNkAAACiQGaSmckWniCbt7knmyeO00EAAAA7cFYFAAAQBVqmi4anXNRLJhsAAICtCLIBAABEAbNctDzc00XpyQYAAGALzqoAAACiQEaYy0WtwQdxZLIBAADYgSAbAABAFDCDbOU19WpsMkL+fObgAw/logAAALYgyAYAABAFMhJ95aKGIVWEoWTUymSjXBQAAMAWnFUBAABEAXecUymeOEnhKRltCbKRyQYAAGAHgmwAAABRoqUvWxgy2RqYLgoAAGAngmwAAABRwpwwWhbiTLamJkN1ZpAtjtNBAAAAO3BWBQAAECXMTLayEGey1TU2WV+TyQYAAGAPgmwAAABRIqM5ky3UPdmq6xqtrwmyAQAA2IMgGwAAQJTIbM5k2/5VqTbu+kZffnsiJM9T3jy9NNUTJ5fTEZLnAAAA6G3iIr0AAAAA+GSneCRJr39Sotc/KZHDIb199yQNzkq29XnMIFtaYryt+wUAAOjNCLIBAABEiWvGDNT+o1U6UunVRwdKVVXXqL3fnrA9yGYOVkgnyAYAAGAbykUBAACiRG56ov7fdaO09tbzNXpQpqSWrDM7mfs0By0AAAAgeATZAAAAopCZZRaKSaNmkI1MNgAAAPsQZAMAAIhC6c1ZZiHJZKsmkw0AAMBuBNkAAACikJllFoogWxmDDwAAAGxHkA0AACAKZZhBthCWi2Ykum3fNwAAQG9FkA0AACAKhTSTrZqebAAAAHYjyAYAABCFzH5pZSEIslUwXRQAAMB2BNkAAACiUFpIe7LVSSKTDQAAwE4E2QAAAKKQ2S+tLIQ92QiyAQAA2IcgGwAAQBRKby7lrKipl2EYtu6bnmwAAAD2I8gGAAAQhczponWNTaqpb7Rtv7X1jfI2NElqCeQBAAAgeATZAAAAolCS26U4p0OSvX3ZzH25nA6leuJs2y8AAEBvR5ANAAAgCjkcDqucMxRBtrSEODkcDtv2CwAA0NvFXJDN6/Vq1KhRcjgc2rFjR8DPDhw4oCuuuELJycnKzs7WHXfcobq6usgsFAAAIEhmOaedww/MIFtGktu2fQIAAECKuRqBe+65R3l5efr4448D7m9sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVodUCAAB0Xygy2cyAXRpDDwAAAGwVU5lsr7/+ujZs2KAVK1a0+dmGDRu0a9curV27VqNHj9aUKVO0cuVKPfvss6qoqIjAagEAAIJjDj8oD0UmG0E2AAAAW8VMkO2bb77R/Pnz9cILLygpKanNz9977z2NHDlSeXl51n3Tpk2T1+vV9u3bO9yv1+tVRUVFwA0AACAahCaTrS5g3wAAALBHTATZDMPQ3LlztWDBAo0ZM6bdbUpKSpSTkxNwX2Zmptxut0pKSjrc97Jly5Senm7d8vPzbV07AABAd5l908pq7OsxW2H1ZCPIBgAAYKeIBtkeeeQRORyOTm/btm3TqlWrVFFRofvvv7/T/bU3IcswjE4nZ91///0qLy+3bgcPHgz6dQEAANghLRSZbM37IpMNAADAXhEdfLBw4UJdf/31nW5TUFCgJUuW6P3335fH4wn42ZgxY3TjjTdqzZo16t+/vz744IOAn5eWlqq+vr5Nhps/j8fTZr8AAADRwOybForpogTZAAAA7BXRIFt2drays7NPut0TTzyhJUuWWN8fPnxY06ZN08svv6zzzz9fkjRu3DgtXbpUxcXFys3NleQbhuDxeFRUVBSaFwAAABBCoZwuSpANAADAXhENsnXVoEGDAr5PSUmRJJ122mkaOHCgJGnq1KkaMWKEZs+ereXLl+v48eO6++67NX/+fKWlpYV9zQAAAMEy+6bZGWQjkw0AACA0YmLwQVe4XC699tprSkhI0Pjx43Xttddq5syZWrFiRaSXBgAA0C2hyGQrtwYfuG3bJwAAAGIkk621goICGYbR5v5BgwZp3bp1EVgRAACA/UIZZCOTDQAAwF49JpMNAACgp0n3Kxdtamp7gfFUGYbhl8lGkA0AAMBOBNkAAACilJltZhhSpbch6P2d8DaosTlYRyYbAACAvQiyAQAARClPnEuJ8S5JUnl18CWj5mRRT5xTCc37BQAAgD0IsgEAAEQxO/uy0Y8NAAAgdAiyAQAARDGzd1pZTV3Q+6IfGwAAQOgQZAMAAIhiaWSyAQAAxASCbAAAAFEsozkgVmZDTzaCbAAAAKFDkA0AACCK2dmTzQzUpSe6g94XAAAAAhFkAwAAiGJm/zTKRQEAAKIbQTYAAIAoZmWy2VIu6huewOADAAAA+xFkAwAAiGJ2louSyQYAABA6BNkAAACiWHqSr39aWXMWWjBKq3xBNjLZAAAA7EeQDQAAIIq1ZLI1BL2v0mqzXJTBBwAAAHYjyAYAABDFMqyebMFnspnTRTPJZAMAALAdQTYAAIAoltYcZKuotS+TLZNMNgAAANsRZAMAAIhiZrnoCW+DGhqbur2f2vpGeRt8j6cnGwAAgP0IsgEAAESx1IQ46+vKILLZzCy2OKdDKZ64k2wNAACAU0WQDQAAIIrFu5xKdrskSeU19d3eT8tkUbccDoctawMAAEALgmwAAABRrqUvW/eDbGVWPzZKRQEAAEKBIBsAAECUM/uyBZXJVm1mshFkAwAACAWCbAAAAFEuLaE5k60m+J5sGUwWBQAACAmCbAAAAFEuzYZMNspFAQAAQosgGwAAQJRLS/RNAw2mJ5tZLppJJhsAAEBIEGQDAACIcvb0ZKNcFAAAIJQIsgEAAES5lp5swZSLmplslIsCAACEAkE2AACAKEcmGwAAQPQjyAYAABDlzMEHFbXdny5KJhsAAEBoEWQDAACIcnZmsmUmk8kGAAAQCgTZAAAAolxagm+6aGU3g2yNTYYVoMsgkw0AACAkCLIBAABEufSk4DLZKmrqZRi+rzMSyWQDAAAIBYJsAAAAUc6aLlpbL8OMlp0Cs1Q0xRMndxynfwAAAKHAWRYAAECUM3uy1TcaqqlvPOXHl1ZTKgoAABBqBNkAAACiXJLbJZfTIUmqqDn1CaPlNc1DD5IoFQUAAAgVgmwAAABRzuFwtJkwuvwvn2vO81vV0Nh00seXVpHJBgAAEGoE2QAAAGKAOWG0orZeTU2Gnt28T+/s/la7vzlx0seaPdnIZAMAAAidmAqyvfbaazr//POVmJio7OxsXX311QE/P3DggK644golJycrOztbd9xxh+rq6iK0WgAAAPtYmWzV9TpS6VVdgy+D7YT35OWjZfRkAwAACLm4SC+gq1555RXNnz9fjz76qC6++GIZhqGdO3daP29sbNSMGTPUt29fbdmyRceOHdOcOXNkGIZWrVoVwZUDAAAELy2xZcLowdJq6/4T3vqTPtbMZMsgkw0AACBkYiLI1tDQoEWLFmn58uW65ZZbrPvPPPNM6+sNGzZo165dOnjwoPLy8iRJK1eu1Ny5c7V06VKlpaWFfd0AAAB2SfPvyXa8JchWWdv1TLZMMtkAAABCJibKRT/88EN9/fXXcjqdGj16tHJzczV9+nR9+umn1jbvvfeeRo4caQXYJGnatGnyer3avn17h/v2er2qqKgIuAEAAESbtISWINuB4/6ZbCcPstGTDQAAIPRiIsj25ZdfSpIeeeQRPfjgg1q3bp0yMzM1ceJEHT9+XJJUUlKinJycgMdlZmbK7XarpKSkw30vW7ZM6enp1i0/Pz90LwQAAKCbzJ5sFTUNOni8xrr/RBcy2UrpyQYAABByEQ2yPfLII3I4HJ3etm3bpqYmX2PfBx54QN///vdVVFSk1atXy+Fw6He/+521P4fD0eY5DMNo937T/fffr/Lycut28OBB+18oAABAkNISfV0+ymta92TrSrkomWwAAAChFtGebAsXLtT111/f6TYFBQWqrKyUJI0YMcK63+PxaOjQoTpw4IAkqX///vrggw8CHltaWqr6+vo2GW7+PB6PPB5Pd18CAABAWKT7DT44RLkoAABA1IlokC07O1vZ2dkn3a6oqEgej0dffPGFJkyYIEmqr6/X/v37NXjwYEnSuHHjtHTpUhUXFys3N1eSbxiCx+NRUVFR6F4EAABAGJg92Y6e8Kq4ota6/2TlorX1jaqt91UFZCRTLgoAABAqMTFdNC0tTQsWLNDDDz+s/Px8DR48WMuXL5ckXXPNNZKkqVOnasSIEZo9e7aWL1+u48eP6+6779b8+fOZLAoAAGKemcn2RUmlDKPl/pNlsplZbHFOh1I9MXHqBwAAEJNi5kxr+fLliouL0+zZs1VTU6Pzzz9fb775pjIzMyVJLpdLr732mm677TaNHz9eiYmJmjVrllasWBHhlQMAAAQvrTnIVl3XGHD/SYNsVS1DDzrrUwsAAIDgxEyQLT4+XitWrOg0aDZo0CCtW7cujKsCAAAIDzOTzRTndKihyVDlScpFzaEHGfRjAwAACKmIThcFAABA16QlBF4bLeyXIqkr5aK+TLbMJPqxAQAAhBJBNgAAgBiQ1iqTbXiur+fsyQYfFJfXSJJy0hJCszAAAABIIsgGAAAQE+JdTiW5Xdb3w3NTJZ08k+3A8WpJUn6fpNAtDgAAAATZAAAAYoV/XzYrk83boKYmo6OH6KAZZMskyAYAABBKBNkAAABiRFpC2yCbJFXVdZzNdrDUVy6a3ycxdAsDAAAAQTYAAIBYYWayZSbFKyvZrTinQ5JU5W1sd3vDMHSolEw2AACAcCDIBgAAECPSEn0TRvP7JMnhcCileeLoCW99u9t/e8Kr2vomORxSXgaZbAAAAKFEkA0AACBGmBNGzay0FI8vyFbZwYTRg8d9paK5aQlyx3HaBwAAEEqcbQEAAMSInLQESdJpfZMltQTZOpowapWKMlkUAAAg5OIivQAAAAB0zbzxQ5SV7Nb3zxsoSUo1y0U7zGQjyAYAABAuBNkAAABiRN9Uj269cKj1vVUu2kEmm1kuytADAACA0KNcFAAAIEalJPh6tHWUyXbAymRj6AEAAECoEWQDAACIUSfryXaQnmwAAABhQ5ANAAAgRqV4XJLaD7I1NDapuLxWEuWiAAAA4UCQDQAAIEaleHzlopXtlIsWl9eqscmQO86pfqmecC8NAACg1yHIBgAAEKNSmqeLVrWTyWZOFh2YkSin0xHWdQEAAPRGBNkAAABiVGonPdnoxwYAABBeBNkAAABilJnJ1t500YPHayQxWRQAACBcCLIBAADEKHO6aGVnmWwMPQAAAAgLgmwAAAAxyspk89a3+ZnZk41yUQAAgPAgyAYAABCjrJ5s7ZWLljaXi5LJBgAAEBYE2QAAAGJUSyZbgwzDsO6va2jSt5VeSdKATHqyAQAAhANBNgAAgBiV3JzJVt9oyNvQZN1/vKpOkhTndCgjMT4iawMAAOhtCLIBAADEqGR3nPX1Cb/hB0dP+LLY+iS75XQ6wr4uAACA3oggGwAAQIxyOR1KdrskBfZlM4Ns2SmeiKwLAACgNyLIBgAAEMP8+7KZjp7wlYtmpbgjsiYAAIDeiCAbAABADEvxtBdk82Wy9SWTDQAAIGwIsgEAAMSwlATfYAP/ctFjZrloKkE2AACAcCHIBgAAEMNS281kay4XTaZcFAAAIFwIsgEAAMQws1y0sp1yUQYfAAAAhA9BNgAAgBhmDT6oZfABAABAJBFkAwAAiGEtgw/qrfuOkckGAAAQdgTZAAAAYpgVZGvOZGtqMnSsypfJRpANAAAgfAiyAQAAxDCzXNTsyVZeU6/GJkMS5aIAAADhFDNBtt27d+uqq65Sdna20tLSNH78eL311lsB2xw4cEBXXHGFkpOTlZ2drTvuuEN1dXURWjEAAEDotc5kM4ceZCTFK94VM6d6AAAAMS9mzrxmzJihhoYGvfnmm9q+fbtGjRqlyy+/XCUlJZKkxsZGzZgxQ1VVVdqyZYteeuklvfLKK/r3f//3CK8cAAAgdFKbM9mq6nxBtm+bg2xZyWSxAQAAhFNMBNmOHj2qPXv26L777tM555yj008/Xf/1X/+l6upqffrpp5KkDRs2aNeuXVq7dq1Gjx6tKVOmaOXKlXr22WdVUVER4VcAAAAQGmYmW0WNL8h27AT92AAAACIhJoJsWVlZGj58uH71q1+pqqpKDQ0NeuaZZ5STk6OioiJJ0nvvvaeRI0cqLy/Pety0adPk9Xq1ffv2SC0dAAAgpAZkJkqS9h+tkmEYVrkoQTYAAIDwiov0ArrC4XBo48aNuuqqq5Samiqn06mcnBytX79eGRkZkqSSkhLl5OQEPC4zM1Nut9sqKW2P1+uV1+u1vifrDQAAxJLT+qbI7XKq0tugQ6U1fplslIsCAACEU0Qz2R555BE5HI5Ob9u2bZNhGLrtttvUr18/bd68WVu3btVVV12lyy+/XMXFxdb+HA5Hm+cwDKPd+03Lli1Tenq6dcvPzw/JawUAAAiFeJdThf1SJEm7iiusTLYsMtkAAADCKqKZbAsXLtT111/f6TYFBQV68803tW7dOpWWliotLU2S9NRTT2njxo1as2aN7rvvPvXv318ffPBBwGNLS0tVX1/fJsPN3/3336+77rrL+r6iooJAGwAAiCnDc9O0q7hCuw5X6Cg92QAAACIiokG27OxsZWdnn3S76upqSZLTGZh453Q61dTUJEkaN26cli5dquLiYuXm5kryDUPweDxW37b2eDweeTychAIAgNg1PDdVkvSZXyYb5aIAAADhFRODD8aNG6fMzEzNmTNHH3/8sXbv3q3Fixdr3759mjFjhiRp6tSpGjFihGbPnq2PPvpIb7zxhu6++27Nnz/fyn4DAADoiUbk+s51PiuhXBQAACBSYiLIlp2drfXr1+vEiRO6+OKLNWbMGG3ZskV//OMfde6550qSXC6XXnvtNSUkJGj8+PG69tprNXPmTK1YsSLCqwcAAAit4c1BtoPHa/RNRa0kqS9BNgAAgLCKiemikjRmzBj95S9/6XSbQYMGad26dWFaEQAAQHTITHarf1qCSipqVd9oSJKyKBcFAAAIq5jIZAMAAEDnzL5skpQY71KyJ2aupQIAAPQIBNkAAAB6ALNkVJKyU8liAwAACDeCbAAAAD2Af5AtK5l+bAAAAOFGkA0AAKAHCMhkY+gBAABA2BFkAwAA6AGGZCcrId53apfN0AMAAICwI8gGAADQA7icDp2Z4xt+QCYbAABA+BFkAwAA6CHGnZYtSRrmN2kUAAAA4cFsdwAAgB7i36eeoe+fN0CF/VIivRQAAIBehyAbAABADxHvcur0HLLYAAAAIoFyUQAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA0AAAAAAAAIEkE2AAAAAAAAIEgE2QAAAAAAAIAgEWQDAAAAAAAAgkSQDQAAAAAAAAgSQTYAAAAAAAAgSATZAAAAAAAAgCARZAMAAAAAAACCRJANAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIMVFegHRxjAMSVJFRUWEVwIAAAAAAIBIMuNDZryoMwTZWqmsrJQk5efnR3glAAAAAAAAiAaVlZVKT0/vdBuH0ZVQXC/S1NSkw4cPKzU1VQ6HI9LLAdCBiooK5efn6+DBg0pLS4v0cgB0AcctEHs4boHYwjEL2M8wDFVWViovL09OZ+dd18hka8XpdGrgwIGRXgaALkpLS+MEAogxHLdA7OG4BWILxyxgr5NlsJkYfAAAAAAAAAAEiSAbAAAAAAAAECSCbABiksfj0cMPPyyPxxPppQDoIo5bIPZw3AKxhWMWiCwGHwAAAAAAAABBIpMNAAAAAAAACBJBNgAAAAAAACBIBNkAAAAAAACAIBFkAwAAAAAAAIJEkA1ARDz11FMaMmSIEhISVFRUpM2bN3e6/a9//Wude+65SkpKUm5urm6++WYdO3bM+vmzzz6rCy+8UJmZmcrMzNSUKVO0devWgH00NDTowQcf1JAhQ5SYmKihQ4fqxz/+sZqamkLyGoGexu7j9tVXX9WYMWOUkZGh5ORkjRo1Si+88ELQzwugRSSO22XLluk73/mOUlNT1a9fP82cOVNffPFFSF4f0NNE6m+tadmyZXI4HLrzzjvteklA72IAQJi99NJLRnx8vPHss88au3btMhYtWmQkJycbX331Vbvbb9682XA6ncZ///d/G19++aWxefNm46yzzjJmzpxpbTNr1izjZz/7mfHRRx8Zn332mXHzzTcb6enpxqFDh6xtlixZYmRlZRnr1q0z9u3bZ/zud78zUlJSjMcffzzkrxmIdaE4bt966y3j1VdfNXbt2mXs2bPHePzxxw2Xy2WsX7++288LoEWkjttp06YZq1evNj755BNjx44dxowZM4xBgwYZJ06cCPlrBmJZpI5Z09atW42CggLjnHPOMRYtWhSqlwn0aATZAITd2LFjjQULFgTcN2zYMOO+++5rd/vly5cbQ4cODbjviSeeMAYOHNjhczQ0NBipqanGmjVrrPtmzJhhzJs3L2C7q6++2vjBD35wqi8B6HXCcdwahmGMHj3aePDBB7v9vABaROq4be3IkSOGJOOdd97p4sqB3imSx2xlZaVx+umnGxs3bjQmTpxIkA3oJspFAYRVXV2dtm/frqlTpwbcP3XqVP3f//1fu4+54IILdOjQIf35z3+WYRj65ptv9Pvf/14zZszo8Hmqq6tVX1+vPn36WPdNmDBBb7zxhnbv3i1J+vjjj7VlyxZddtllNrwyoOcKx3FrGIbeeOMNffHFF7rooou6/bwAfCJ13LanvLxckgL+JgMIFOlj9vbbb9eMGTM0ZcoUe14Q0EvFRXoBAHqXo0ePqrGxUTk5OQH35+TkqKSkpN3HXHDBBfr1r3+t6667TrW1tWpoaNCVV16pVatWdfg89913nwYMGBBwonDvvfeqvLxcw4YNk8vlUmNjo5YuXaobbrjBnhcH9FChPG7Ly8s1YMAAeb1euVwuPfXUU7rkkku6/bwAfCJ13LZmGIbuuusuTZgwQSNHjrTnxQE9UCSP2Zdeekkffvih/va3v9n/woBehkw2ABHhcDgCvjcMo819pl27dumOO+7QQw89pO3bt2v9+vXat2+fFixY0O72jz32mF588UW9+uqrSkhIsO5/+eWXtXbtWv3mN7/Rhx9+qDVr1mjFihVas2aNfS8M6MFCcdympqZqx44d+tvf/qalS5fqrrvu0ttvv93t5wUQKFLHrWnhwoX6+9//rhdffNGW1wP0dOE+Zg8ePKhFixZp7dq1AefNALqHTDYAYZWdnS2Xy9XmityRI0faXLkzLVu2TOPHj9fixYslSeecc46Sk5N14YUXasmSJcrNzbW2XbFihR599FH99a9/1TnnnBOwn8WLF+u+++7T9ddfL0k6++yz9dVXX2nZsmWaM2eOnS8T6FFCedw6nU4VFhZKkkaNGqXPPvtMy5Yt06RJk7r1vAB8InXc+vvXf/1X/elPf9KmTZs0cOBAm18h0LNE6pjdvn27jhw5oqKiImu/jY2N2rRpk5588kkr+w1A15DJBiCs3G63ioqKtHHjxoD7N27cqAsuuKDdx1RXV8vpDHy7Mv/YG4Zh3bd8+XL953/+p9avX68xY8Z0eT9NTU3dei1AbxHK47Y1wzDk9Xq7/bwAfCJ13JrfL1y4UK+++qrefPNNDRkypLsvA+g1InXMfu9739POnTu1Y8cO6zZmzBjdeOON2rFjBwE24FSFdcwCABgt48mfe+45Y9euXcadd95pJCcnG/v37zcMwzDuu+8+Y/bs2db2q1evNuLi4oynnnrK2Lt3r7FlyxZjzJgxxtixY61tfvKTnxhut9v4/e9/bxQXF1u3yspKa5s5c+YYAwYMMNatW2fs27fPePXVV43s7GzjnnvuCd+LB2JUKI7bRx991NiwYYOxd+9e47PPPjNWrlxpxMXFGc8++2yXnxdAxyJ13P7whz800tPTjbfffjvgb3J1dXX4XjwQgyJ1zLbGdFGg+wiyAYiIn/3sZ8bgwYMNt9ttnHfeecY777xj/WzOnDnGxIkTA7Z/4oknjBEjRhiJiYlGbm6uceONNxqHDh2yfj548GBDUpvbww8/bG1TUVFhLFq0yBg0aJCRkJBgDB061HjggQcMr9cb6pcL9Ah2H7cPPPCAUVhYaCQkJBiZmZnGuHHjjJdeeumUnhdA5yJx3Lb391iSsXr16lC+VKBHiNTfWn8E2YDucxhGJ3mkAAAAAAAAAE6KnmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAECSCbAAAAAAAAECQCLIBAAAAAAAAQSLIBgAAAAAAAASJIBsAAAAiqq6uToWFhXr33Xdt3e+6des0evRoNTU12bpfAACA9hBkAwAAsNHcuXPlcDja3Pbs2RPppUWtX/ziFxo8eLDGjx9v3edwOPSHP/yhzbZz587VzJkzu7Tfyy+/XA6HQ7/5zW9sWikAAEDHCLIBAADY7NJLL1VxcXHAbciQIW22q6uri8Dqos+qVat06623hmTfN998s1atWhWSfQMAAPgjyAYAAGAzj8ej/v37B9xcLpcmTZqkhQsX6q677lJ2drYuueQSSdKuXbt02WWXKSUlRTk5OZo9e7aOHj1q7a+qqko33XSTUlJSlJubq5UrV2rSpEm68847rW3ay/zKyMjQL3/5S+v7r7/+Wtddd50yMzOVlZWlq666Svv377d+bmaJrVixQrm5ucrKytLtt9+u+vp6axuv16t77rlH+fn58ng8Ov300/Xcc8/JMAwVFhZqxYoVAWv45JNP5HQ6tXfv3nb/rT788EPt2bNHM2bMOMV/ZWn//v3tZg1OmjTJ2ubKK6/U1q1b9eWXX57y/gEAAE4FQTYAAIAwWrNmjeLi4vTuu+/qmWeeUXFxsSZOnKhRo0Zp27ZtWr9+vb755htde+211mMWL16st956S//7v/+rDRs26O2339b27dtP6Xmrq6s1efJkpaSkaNOmTdqyZYtSUlJ06aWXBmTUvfXWW9q7d6/eeustrVmzRr/85S8DAnU33XSTXnrpJT3xxBP67LPP9POf/1wpKSlyOByaN2+eVq9eHfC8zz//vC688EKddtpp7a5r06ZNOuOMM5SWlnZKr0eS8vPzA7IFP/roI2VlZemiiy6ythk8eLD69eunzZs3n/L+AQAATkVcpBcAAADQ06xbt04pKSnW99OnT9fvfvc7SVJhYaEee+wx62cPPfSQzjvvPD366KPWfc8//7zy8/O1e/du5eXl6bnnntOvfvUrK/NtzZo1Gjhw4Cmt6aWXXpLT6dT//M//yOFwSJJWr16tjIwMvf3225o6daokKTMzU08++aRcLpeGDRumGTNm6I033tD8+fO1e/du/fa3v9XGjRs1ZcoUSdLQoUOt57j55pv10EMPaevWrRo7dqzq6+u1du1aLV++vMN17d+/X3l5ee3+7IYbbpDL5Qq4z+v1WllvLpdL/fv3lyTV1tZq5syZGjdunB555JGAxwwYMCAgYw8AACAUCLIBAADYbPLkyXr66aet75OTk62vx4wZE7Dt9u3b9dZbbwUE5Ux79+5VTU2N6urqNG7cOOv+Pn366MwzzzylNW3fvl179uxRampqwP21tbUBpZxnnXVWQGArNzdXO3fulCTt2LFDLpdLEydObPc5cnNzNWPGDD3//PMaO3as1q1bp9raWl1zzTUdrqumpkYJCQnt/uynP/2pFcwz3XvvvWpsbGyz7S233KLKykpt3LhRTmdgsUZiYqKqq6s7XAMAAIAdCLIBAADYLDk5WYWFhR3+zF9TU5OuuOIK/eQnP2mzbW5urv7xj3906TkdDocMwwi4z7+XWlNTk4qKivTrX/+6zWP79u1rfR0fH99mv01NTZJ8waqTufXWWzV79mz99Kc/1erVq3XdddcpKSmpw+2zs7OtIF5r/fv3b/PvmJqaqrKysoD7lixZovXr12vr1q1tgoiSdPz48YDXCAAAEAoE2QAAACLovPPO0yuvvKKCggLFxbU9NSssLFR8fLzef/99DRo0SJJUWlqq3bt3B2SU9e3bV8XFxdb3//jHPwKyt8477zy9/PLL6tevX7f6n0nS2WefraamJr3zzjttMsxMl112mZKTk/X000/r9ddf16ZNmzrd5+jRo/X000/LMAyrjPVUvPLKK/rxj3+s119/vd2+b2am3ujRo0953wAAAKeCwQcAAAARdPvtt+v48eO64YYbrCmYGzZs0Lx589TY2KiUlBTdcsstWrx4sd544w198sknmjt3bpuSyIsvvlhPPvmkPvzwQ23btk0LFiwIyEq78cYblZ2drauuukqbN2/Wvn379M4772jRokU6dOhQl9ZaUFCgOXPmaN68efrDH/6gffv26e2339Zvf/tbaxuXy6W5c+fq/vvvV2FhYUCZa3smT56sqqoqffrpp6fwr+bzySef6KabbtK9996rs846SyUlJSopKdHx48etbd5//315PJ6TrgMAACBYBNkAAAAiKC8vT++++64aGxs1bdo0jRw5UosWLVJ6eroVSFu+fLkuuugiXXnllZoyZYomTJigoqKigP2sXLlS+fn5uuiiizRr1izdfffdAWWaSUlJ2rRpkwYNGqSrr75aw4cP17x581RTU3NKmW1PP/20/vmf/1m33Xabhg0bpvnz56uqqipgm1tuuUV1dXWaN2/eSfeXlZWlq6++ut0y1pPZtm2bqqurtWTJEuXm5lq3q6++2trmxRdf1I033thpySoAAIAdHEbr5h0AAACIepMmTdKoUaP0+OOPR3opbbz77ruaNGmSDh06pJycnJNuv3PnTk2ZMqXdwQzB+PbbbzVs2DBt27ZNQ4YMsW2/AAAA7SGTDQAAALbwer3as2ePfvSjH+naa6/tUoBN8vV6e+yxx7R//35b17Nv3z499dRTBNgAAEBYMPgAAAAAtnjxxRd1yy23aNSoUXrhhRdO6bFz5syxfT1jx47V2LFjbd8vAABAeygXBQAAAAAAAIJEuSgAAAAAAAAQJIJsAAAAAAAAQJAIsgEAAAAAAABBIsgGAAAAAAAABIkgGwAAAAAAABAkgmwAAAAAAABAkAiyAQAAAAAAAEEiyAYAAAAAAAAEiSAbAAAAAAAAEKT/D6cEChxA6XkvAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fs(freq), label='Best fit')\n", + "plt.axvline(1/period, lw=3, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fs.mean[0], label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fs(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "On the other hand, if we want to fit with a Gaussian:" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.pulse.modeling import fit_gaussian\n", + "\n", + "fg=fit_gaussian(freq, efstat-(nbin-1),amplitude=max(efstat-(nbin-1)), \n", + " mean=cand_freqs_ef[0], stddev=1/(np.pi*obs_length))" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAINCAYAAAA0iU6RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3sElEQVR4nOzdeXhU5d3/8feZmcxMNhLCFiJhUcGFRRFXbAUVFBWVYotLW7Vq1bqVqg/Wx1ZjW7Hyq4qCS7UKilV8qmLdBVxQRGWTfRXCnhCWkHX2Ob8/zsyQEAJJSDJJ5vO6rlwwMyfn3MOSmc987/t7G6ZpmoiIiIiIiEid2eI9ABERERERkdZGQUpERERERKSeFKRERERERETqSUFKRERERESknhSkRERERERE6klBSkREREREpJ4UpEREREREROpJQUpERERERKSeHPEeQEsQDofZsWMH6enpGIYR7+GIiIiIiEicmKZJWVkZOTk52Gy1150UpIAdO3aQm5sb72GIiIiIiEgLsXXrVrp161br4wpSQHp6OmD9YbVr1y7OoxERkebmr/Ty4j/eAOC3916NM8Ud5xGJiEi8lJaWkpubG8sItVGQgth0vnbt2ilIiYgkIL/DiduVDFivBQpSIiJyuCU/ajYhIiIiIiJSTwpSIiIiIiIi9aQgJSIiIiIiUk9aIyUiIiIiR8Q0TYLBIKFQKN5DETksu92Ow+E44m2PFKREREREpMH8fj8FBQVUVlbGeygidZaSkkLXrl1xOp0NPoeClIiIiIg0SDgcJj8/H7vdTk5ODk6n84g/5RdpSqZp4vf72bVrF/n5+fTu3fuQm+4eioKUiIiIiDSI3+8nHA6Tm5tLSkpKvIcjUifJyckkJSWxefNm/H4/bnfDtrxQswkREREROSIN/URfJF4a49+s/tWLiIiIiIjUk4KUiIiIiIhIPSlIiYiIiIi0Ij179mTixIkN/v6pU6eSmZnZaONJVApSIiIiIpJQrr/+egzDqPE1YsSI2DE9e/as8Xi3bt0adL28vDxOPvnken9fbYFnwYIF3HzzzXU6x8FC15VXXsm6devqPR6pTl37RERERCThjBgxgilTplS7z+VyVbv9l7/8hd/+9rex23a7vVnGdjidOnU6ou9PTk4mOTm5kUaTuFSREhEREZFGY5omlf5gs3+ZplmvcbpcLrKzs6t9tW/fvtox6enp1R4/VID58ssvOf3000lNTSUzM5Ozzz6bzZs3M3XqVB5++GGWLl0aq2xNnToVgCeeeIL+/fuTmppKbm4ut912G+Xl5bHz/eY3v6GkpCT2fXl5eUDNKlNeXh7du3fH5XKRk5PDXXfdBcDQoUPZvHkzf/jDH2LngINXut577z1OPfVU3G43HTt2ZPTo0bHHnn32WXr37o3b7aZLly78/Oc/r9efdVulipSIiIiINBpPIMSJD37a7Ndd9ZcLSXHG561tMBhk1KhR/Pa3v+WNN97A7/czf/58DMPgyiuvZMWKFXzyySfMnj0bgIyMDMBqwf3000/Ts2dP8vPzue222xg3bhzPPvssgwcPZuLEiTz44IOsXbsWgLS0tBrXfuutt3jyySeZPn06ffv2pbCwkKVLlwLwzjvvcNJJJ3HzzTdXq6wd6MMPP2T06NE88MADTJs2Db/fz4cffgjAwoULueuuu5g2bRqDBw9m7969fP31143659daKUiJiIiISML54IMPagST++67jz//+c/Vbv/pT3+K3R4/fnys2lNVaWkpJSUljBw5kmOOOQaAE044IfZ4WloaDoeD7Ozsat83duzY2O979erFX//6V373u9/x7LPP4nQ6ycjIwDCMGt9X1ZYtW8jOzmbYsGEkJSXRvXt3Tj/9dACysrKw2+2xylptHnnkEa666ioefvjh2H0nnXRS7PypqamMHDmS9PR0evTowcCBA2s9VyJRkBIREQEwTQiUW7+KSIMlJ9lZ9ZcL43Ld+jj33HN57rnnqt2XlZVV7fb//M//cP3118dud+zY8aDnysrK4vrrr+fCCy9k+PDhDBs2jDFjxtC1a9dDjuGLL75g/PjxrFq1itLSUoLBIF6vl4qKClJTU+v0PH7xi18wceJEjj76aEaMGMHFF1/MpZdeisNR97f5S5YsqbViNXz4cHr06BE7/4gRI/jZz35GSkpKnc/fVmmNlIiICEDxRihYCqvejfdIRFo1wzBIcTqa/Su6/qeuUlNTOfbYY6t9HRikOnbsWO3xQ7UMnzJlCt9++y2DBw/mzTffpE+fPnz33Xe1Hr9582Yuvvhi+vXrx9tvv82iRYt45plnAAgEAnV+Hrm5uaxdu5ZnnnmG5ORkbrvtNs4555x6neNQjSfS09NZvHgxb7zxBl27duXBBx/kpJNOYt++fXU+f1ulICUiIhL0QHmR9ftN38R3LCLSag0cOJD777+fefPm0a9fP15//XUAnE4noVCo2rELFy4kGAzy+OOPc+aZZ9KnTx927NhR7ZiDfd/BJCcnc9lll/H000/z5Zdf8u2337J8+fI6n2PAgAF89tlntT7ucDgYNmwYEyZMYNmyZWzatInPP//8sONq6zS1T0REZP1nYEbeaOxeE9+xiEiz8Pl8FBYWVrvP4XDUOn3vUPLz83nhhRe47LLLyMnJYe3ataxbt45rr70WINZMYsmSJXTr1o309HSOOeYYgsEgkyZN4tJLL+Wbb77h+eefr3benj17Ul5ezmeffcZJJ51ESkpKjSl1U6dOJRQKccYZZ5CSksK0adNITk6mR48esXN89dVXXHXVVbhcroM+v4ceeojzzz+fY445hquuuopgMMjHH3/MuHHj+OCDD9i4cSPnnHMO7du356OPPiIcDnPcccfV+8+prVFFSkREZNWM/b/fuQbC4fiNRUSaxSeffELXrl2rff3kJz9p0LlSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954g5NPPpknnniCxx57jH79+vHvf/+bRx99tNp5Bw8ezK233sqVV15Jp06dmDBhQo1rZ2Zm8uKLL3L22WfHKkvvv/8+HTp0AKy9sDZt2sQxxxxTa/v2oUOH8p///If33nuPk08+mfPOO4/vv/8+dv533nmH8847jxNOOIHnn3+eN954g759+zboz6otMcz6Nt1vg0pLS8nIyKCkpIR27drFezgiItKcvCX4xx/HMxsvAOD2nu/jvHsxZPWK88BEWj6v10t+fj69evXC7XbHezgidXaof7t1zQaqSImISGJbPwvCPkhKBmekS9bOlfEdk4iItHgKUiIiktj2bbZ+dbWDJAUpERGpGzWbEBGRhGZGuvWZtiQMe5J1Z5GClIiIHJoqUiIiktB27tgCwI6yIOWmM3KngpSIiByagpSIiCS0QMlOADwhO2v3Rrr17d0I/so4jkpERFq6uAapnj17YhhGja/bb78dANM0ycvLIycnh+TkZIYOHcrKldU/JfT5fNx555107NiR1NRULrvsMrZt2xaPpyMiIq2Q07cbgKDhIICDClsmmGHYsz6+AxMRkRYtrkFqwYIFFBQUxL5mzZoFwC9+8QsAJkyYwBNPPMHkyZNZsGAB2dnZDB8+nLKystg5xo4dy4wZM5g+fTpz586lvLyckSNH1mkXaBERkRT/XgBcLqv97W4yrAcqdsdrSCIi0grENUh16tSJ7Ozs2NcHH3zAMcccw5AhQzBNk4kTJ/LAAw8wevRo+vXrxyuvvEJlZSWvv/46ACUlJbz00ks8/vjjDBs2jIEDB/Laa6+xfPlyZs+eHc+nJiIirUHQT7ppfTiXnpoCQFEw2XrMUxyvUYmISCvQYtZI+f1+XnvtNW644QYMwyA/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIiknjCkY59AdNOeoobu81gr5lmPVi5N44jE5FEkpeXR5cuXTAMg3fffZfrr7+eUaNGxXtYchgtJki9++677Nu3j+uvvx6AwsJCALp06VLtuC5dusQeKywsxOl00r59+1qPOZhHH32UjIyM2Fdubm4jPhMREWkt9u3aDsBe2uG020lzOiiJBimPgpRIW3X99ddXW5/foUMHRowYwbJlyxrtGnl5eZx88smHPW716tU8/PDD/POf/6SgoICLLrqIp556iqlTp8aOGTp0KGPHjm20sUnjaDFB6qWXXuKiiy4iJyen2v2GYVS7bZpmjfsOdLhj7r//fkpKSmJfW7dubfjARUSk1dpbZAWpEiMDw4BUl4N9RDblVUVKpE0bMWJEbJ3+Z599hsPhYOTIkc0+jg0bNgBw+eWXk52djcvlIiMjg8zMzGYfi9RPiwhSmzdvZvbs2dx0002x+7KzswFqVJaKiopiVars7Gz8fj/FxcW1HnMwLpeLdu3aVfsSEZHEU7HHClKepCzAClLFqCIlkghcLldsnf7JJ5/Mfffdx9atW9m1a1fsmO3bt3PllVfSvn17OnTowOWXX86mTZtij3/55ZecfvrppKamkpmZydlnn83mzZuZOnUqDz/8MEuXLo1VvapWmKLy8vK49NJLAbDZbLFCQNWpfddffz1z5szhqaeeip2r6hgkflpEkJoyZQqdO3fmkksuid3Xq1cvsrOzY538wFpHNWfOHAYPHgzAoEGDSEpKqnZMQUEBK1asiB0jIiJSG+8+68O6QHIHAFJddkoiQSqsipRIw5gm+Cua/8s0Gzzk8vJy/v3vf3PsscfSoYP186CyspJzzz2XtLQ0vvrqK+bOnUtaWhojRozA7/cTDAYZNWoUQ4YMYdmyZXz77bfcfPPNGIbBlVdeyT333EPfvn1jVa8rr7yyxnXvvfdepkyZAhA77kBPPfUUZ511Fr/97W9jx2hZSsvgiPcAwuEwU6ZM4brrrsPh2D8cwzAYO3Ys48ePp3fv3vTu3Zvx48eTkpLCNddcA0BGRgY33ngj99xzDx06dCArK4t7772X/v37M2zYsHg9JRERaSXCZdZmvGZqJygBt8OO17Dan/tKd5Ecz8GJtFaBShifc/jjGtv/7gBnap0P/+CDD0hLsz44qaiooGvXrnzwwQfYbFadYfr06dhsNv71r3/FKkVTpkwhMzOTL7/8klNPPZWSkhJGjhzJMcccA8AJJ5wQO39aWhoOhyM2y+pg0tLSYlP4ajsuIyMDp9NJSkrKIc8lzS/uQWr27Nls2bKFG264ocZj48aNw+PxcNttt1FcXMwZZ5zBzJkzSU9Pjx3z5JNP4nA4GDNmDB6Ph/PPP5+pU6dit9ub82mIiEgrZKu09oqyp3eO3edM6wBetEZKpI0799xzee655wDYu3cvzz77LBdddBHz58+nR48eLFq0iB9//LHa+04Ar9fLhg0buOCCC7j++uu58MILGT58OMOGDWPMmDF07do1Hk9H4iDuQeqCCy7ArKUUaxgGeXl55OXl1fr9brebSZMmMWnSpCYaoYiItFUu3x4AkjP3r6u1p2aBFxy+fXEalUgrl5RiVYficd16SE1N5dhjj43dHjRoEBkZGbz44ov87W9/IxwOM2jQIP7973/X+N5OnToBVoXqrrvu4pNPPuHNN9/kT3/6E7NmzeLMM888sucirULcg5SIiEi8pAetIJXe8SjAWpvgTO8AeyApWA6hANiT4jhCkVbIMOo1xa6lMAwDm82Gx+MB4JRTTuHNN9+kc+fOh2xMNnDgQAYOHMj999/PWWedxeuvv86ZZ56J0+kkFAo1ytga81zSeFpEswkREZHmVuYNkGWWAJDV6ajY/clpWYTNyBYanuKDfauItAE+n4/CwkIKCwtZvXo1d955J+Xl5bEuer/85S/p2LEjl19+OV9//TX5+fnMmTOH3//+92zbto38/Hzuv/9+vv32WzZv3szMmTNZt25dbJ1Uz549yc/PZ8mSJezevRufz9fgsfbs2ZPvv/+eTZs2sXv3bsLhcKP8GciRUZASEZGEtLO4jPZGOQAp7fdP7evQLpkS7SUl0uZ98skndO3ala5du3LGGWewYMEC/vOf/zB06FAAUlJS+Oqrr+jevTujR4/mhBNO4IYbbsDj8dCuXTtSUlJYs2YNV1xxBX369OHmm2/mjjvu4JZbbgHgiiuuYMSIEZx77rl06tSJN954o8Fjvffee7Hb7Zx44ol06tSJLVu2NMYfgRwhw6xtgVICKS0tJSMjg5KSEu0pJSKSIJavXk3/N88kiI3wvdt55tHXAOh68Xmc/uklHG0rhN98DD20nYZIbbxeL/n5+fTq1Qu32x3v4YjU2aH+7dY1G6giJSIiCSlYZnXsKzXagW3/y2HHVCf7opvyqiIlIiK1UJASEZGE5K+w1kd5bNUXxXdIdVFsRtodexSkRETk4BSkREQkIYW8VpDyHRCkstL2V6RMVaRERKQWClIiIpKQQpVWkPI7agapYtMKUr7S3c0+LhERaR0UpEREJCGFvWUABBxp1e532e1UOjIA8JUpSImIyMEpSImISEIy/KUABJPSajwWcmVav5bvac4hiYhIK6IgJSIiiclnVaRCzvQaD4WTswCtkRIRkdopSImISEKy+63NeM2DVKRskSBl9ypIiYjIwSlIiYhIQrIHrYoU7poVqaR2Haxf/fuacUQiItKaKEiJiEhCSgpUAGBz19y13pXe0fo1WNqsYxIRaQwvvPACubm52Gw2Jk6cGO/htFkKUiIikpCcoWiQyqjxWHpGewAcZhCC/mYdl4g0j8LCQu68806OPvpoXC4Xubm5XHrppXz22WfxHtpBTZ06lczMzMMeV1payh133MF9993H9u3bufnmm5t+cAnKEe8BiIiIxIMrEqTsyTUrUpntMvff8JeDI6uZRiUizWHTpk2cffbZZGZmMmHCBAYMGEAgEODTTz/l9ttvZ82aNQ06byAQICkpqc73N4UtW7YQCAS45JJL6Nq160GPac7xtGWqSImISEJyh60glZRasyKV1S4Vj+m0bkS6+4lI23HbbbdhGAbz58/n5z//OX369KFv377cfffdfPfdd7HjtmzZwuWXX05aWhrt2rVjzJgx7Ny5M/Z4Xl4eJ598Mi+//HKssmWaJoZh8Pzzz3P55ZeTmprK3/72NwDef/99Bg0ahNvt5uijj+bhhx8mGAzGzrdv3z5uvvlmunTpgtvtpl+/fnzwwQd8+eWX/OY3v6GkpATDMDAMg7y8vBrPa+rUqfTv3x+Ao48+GsMw2LRpU63jLCkp4eabb6Zz5860a9eO8847j6VLl1Y759///ne6dOlCeno6N954I3/84x85+eSTY48PHTqUsWPHVvueUaNGcf3118du+/1+xo0bx1FHHUVqaipnnHEGX375ZbVxZ2Zm8umnn3LCCSeQlpbGiBEjKCgoqHbel19+mb59++JyuejatSt33HEHADfccAMjR46sdmwwGCQ7O5uXX365xp9TY1GQEhGRhJRiVgLgTMms8VjHNCcVuK0bke5+IlJHpgl+f/N/mWadhrd3714++eQTbr/9dlJTU2s8Hp0+Z5omo0aNYu/evcyZM4dZs2axYcMGrrzyymrH//jjj/zf//0fb7/9NkuWLInd/9BDD3H55ZezfPlybrjhBj799FN+9atfcdddd7Fq1Sr++c9/MnXqVB555BEAwuEwF110EfPmzeO1115j1apV/P3vf8dutzN48GAmTpxIu3btKCgooKCggHvvvbfG2K+88kpmz54NwPz58ykoKCA3N7fWcV5yySUUFhby0UcfsWjRIk455RTOP/989u61Opb+3//9Hw899BCPPPIICxcupGvXrjz77LN1+nOu6je/+Q3ffPMN06dPZ9myZfziF79gxIgRrF+/PnZMZWUl//jHP5g2bRpfffUVW7ZsqfYcn3vuOW6//XZuvvlmli9fznvvvcexxx4LwE033cQnn3xSLXh99NFHlJeXM2bMmHqPt640tU9ERBJSqlkJBrhTM2s8lpXqpMR009EoJVBZiibAiNRDIADjxzf/df/3f8HpPOxhP/74I6Zpcvzxxx/yuNmzZ7Ns2TLy8/NjYWTatGn07duXBQsWcNpppwFWtWXatGl06tSp2vdfc8013HDDDbHbv/71r/njH//IddddB1gVo7/+9a+MGzeOhx56iNmzZzN//nxWr15Nnz59YsdEZWRkYBgG2dnZtY45OTmZDh2srqOdOnWqduyB4/z8889Zvnw5RUVFuFwuAP7xj3/w7rvv8tZbb3HzzTczceJEbrjhBm666SYA/va3vzF79my8Xu8h/+yq2rBhA2+88Qbbtm0jJycHgHvvvZdPPvmEKVOmMD7ybyUQCPD8889zzDHHAHDHHXfwl7/8JXaev/3tb9xzzz38/ve/j90X/TsYPHgwxx13HNOmTWPcuHEATJkyhV/84hekpdXc4qKxKEiJiEjCCQf8JBtWEwl3+kGaTbiT2EEyABXl+8hszsGJSJMyI5UrwzAOedzq1avJzc2NhSiAE088kczMTFavXh17E9+jR48aIQrg1FNPrXZ70aJFLFiwIFaBAgiFQni9XiorK1myZAndunWLhajGduA4Fy1aRHl5eSx4RXk8HjZs2ABYfwa33nprtcfPOussvvjiizpfd/HixZimWeN5+Xy+atdOSUmJhSiArl27UlRUBEBRURE7duzg/PPPr/U6N910Ey+88ALjxo2jqKiIDz/8sMkbhyhIiYhIwqko30d096jU9PYQrv643WbgtVlBylNeoiAlUh9JSVZ1KB7XrYPevXtjGAarV69m1KhRtR4XXet0uPsPNj3wYPeHw2EefvhhRo8eXeNYt9tNcnJyncbfUAcbT9euXautVYqqS3fAKJvNFgunUYFAoNp17HY7ixYtwm63VzuuarXowOYXhmHEzluXP5trr72WP/7xj3z77bd8++239OzZk5/+9Kd1fh4NoSAlIiIJxxsJUh7TidvlIuDx1TjGb0+BEPgqtJeUSL0YRp2m2MVLVlYWF154Ic888wx33XVXjYCxb98+MjMzOfHEE9myZQtbt26NVaVWrVpFSUkJJ5xwQr2ve8opp7B27drYup4DDRgwgG3btrFu3bqDVqWcTiehUKje1z3UeAoLC3E4HPTs2fOgx5xwwgl89913XHvttbH7qjbjAGsKYdW1SaFQiBUrVnDuuecCMHDgQEKhEEVFRQ0ONunp6fTs2ZPPPvssdt4DdejQgVGjRjFlyhS+/fZbfvOb3zToWvWhZhMiIpJwvOX7AKgwkmud3hOwW2+ufBUlzTUsEWkmzz77LKFQiNNPP523336b9evXs3r1ap5++mnOOussAIYNG8aAAQP45S9/yeLFi5k/fz7XXnstQ4YMqTFtry4efPBBXn31VfLy8li5ciWrV6/mzTff5E9/+hMAQ4YM4ZxzzuGKK65g1qxZ5Ofn8/HHH/PJJ58A0LNnT8rLy/nss8/YvXs3lZWVR/RnMGzYMM466yxGjRrFp59+yqZNm5g3bx5/+tOfWLhwIQC///3vefnll3n55ZdZt24dDz30ECtXrqx2nvPOO48PP/yQDz/8kDVr1nDbbbexb9++2ON9+vThl7/8Jddeey3vvPMO+fn5LFiwgMcee4yPPvqozuPNy8vj8ccf5+mnn2b9+vUsXryYSZMmVTvmpptu4pVXXmH16tWxtWhNSUFKREQSjr9iHwCVRkqtx4STrMcCHrU/F2lrevXqxeLFizn33HO555576NevH8OHD+ezzz7jueeeA6ypZe+++y7t27fnnHPOYdiwYRx99NG8+eabDbrmhRdeyAcffMCsWbM47bTTOPPMM3niiSfo0aNH7Ji3336b0047jauvvpoTTzyRcePGxapQgwcP5tZbb+XKK6+kU6dOTJgw4Yj+DAzD4KOPPuKcc87hhhtuoE+fPlx11VVs2rSJLl26AFYXwAcffJD77ruPQYMGsXnzZn73u99VO88NN9zAddddFwuZvXr1qlE1mjJlCtdeey333HMPxx13HJdddhnff/99tfVnh3PdddcxceJEnn32Wfr27cvIkSOrdf0DKxx27dqVCy+8MNbYoikZ5oGTGhNQaWkpGRkZlJSU0K5dzY0ZRUSkbVk95z+c8MVNrLUdw3EPLsZf6eWZR14F4PYHrsWZ4uaLp27g3OK3WdrzBk66/sk4j1ikZfJ6veTn59OrVy/cbne8hyPNIC8vj3fffbdaq/eWorKykpycHF5++eWDrkWr6lD/duuaDbRGSkREEk7QY6178tprb4trOK3HTK8qUiIiLVk4HKawsJDHH3+cjIwMLrvssma5roKUiIgknJDHWvfktx+82xaAzW319TO1Ia+ISIu2ZcsWevXqRbdu3Zg6dSoOR/NEHAUpERFJONEqU8BRe5CyR4KU4a9oljGJiLQGeXl55OXlxXsY1fTs2bNGC/bmoGYTIiKSeHzW1L6go/apfUnJ1rx4e1AVKRERqUlBSkREEo/PqkiFnLUHKVeqFaSSgkfWYlhERNomBSkREUk49oAVpExneq3HuFMzAHCGFKRERKQmBSkREUk49oA1Xc901d7WNiXdClJuU0FKRERqUpASEZGE44gEKZu79iCVmt4egBTTQzic8FsuiojIARSkREQk4TiDVic+4xBBKq1dJgApeCnzBptjWCIi0oooSImISMJxhawg5UiuPUg5k631U04jxL5ybcorkiiGDh3K2LFj6/19hYWFDB8+nNTUVDIzMxt9XNLyKEiJiEjCcYetIJWUUnuQokpHv7KSfU08IhFpTtdffz2GYdT4+vHHH3nnnXf461//Gju2Z8+eTJw48bDnfPLJJykoKGDJkiWsW7euCUcvLYU25BURkYTjNj0AJKVk1H6Q3YEXF258VJTta56BiUizGTFiBFOmTKl2X6dOnbDb7Q0634YNGxg0aBC9e/eu9ZhAIEBSUlKDzi8tjypSIiKSWEwTF34AklNq30cKwGdLBqBSQUqkzXG5XGRnZ1f7stvt1ab2DR06lM2bN/OHP/whVrU6mJ49e/L222/z6quvYhgG119/PQCGYfD8889z+eWXk5qayt/+9jcA3n//fQYNGoTb7eboo4/m4YcfJhjcvxZz/fr1nHPOObjdbk488URmzZqFYRi8++67AHz55ZcYhsG+ffti37NkyRIMw2DTpk2x++bNm8c555xDcnIyubm53HXXXVRUVFQb9/jx47nhhhtIT0+ne/fuvPDCC9We27Zt27jqqqvIysoiNTWVU089le+//55NmzZhs9lYuHBhteMnTZpEjx49MM2236RHQUpERBJLyI+dMADuwwUpewoA3oqSJh+WSFthmib+YLjZv5rijfs777xDt27d+Mtf/kJBQQEFBQUHPW7BggWMGDGCMWPGUFBQwFNPPRV77KGHHuLyyy9n+fLl3HDDDXz66af86le/4q677mLVqlX885//ZOrUqTzyyCMAhMNhRo8ejd1u57vvvuP555/nvvvuq/fYly9fzoUXXsjo0aNZtmwZb775JnPnzuWOO+6odtzjjz/Oqaeeyg8//MBtt93G7373O9asWQNAeXk5Q4YMYceOHbz33nssXbqUcePGEQ6H6dmzJ8OGDatR1ZsyZUps6mRbp6l9IiKSUEx/JdGX95TU2jfkBQjaUyAAvko1mxCpq0DI5Jkvfmz2695+7rE4HXV/8/7BBx+Qlrb/w5SLLrqI//znP9WOycrKwm63k56eTnZ2dq3n6tSpEy6Xi+Tk5BrHXXPNNdxwww2x27/+9a/54x//yHXXXQfA0UcfzV//+lfGjRvHQw89xOzZs1m9ejWbNm2iW7duAIwfP56LLrqozs8N4P/9v//HNddcE6uu9e7dm6effpohQ4bw3HPP4Xa7Abj44ou57bbbALjvvvt48skn+fLLLzn++ON5/fXX2bVrFwsWLCArKwuAY489NnaNm266iVtvvZUnnngCl8vF0qVLWbJkCe+88069xtpaKUiJiEhC8XnKcQMB005qSvIhjw0lpYIXApWlzTM4EWk25557Ls8991zsdmpqapNc59RTT612e9GiRSxYsCBWgQIIhUJ4vV4qKytZvXo13bt3j4UogLPOOqve1120aBE//vgj//73v2P3maZJOBwmPz+fE044AYABAwbEHjcMg+zsbIqKigBruuDAgQNjIepAo0aN4o477mDGjBlcddVVvPzyy5x77rn07Nmz3uNtjRSkREQkoVRWWkHKg5O0pEMvKjeTrE+rg14FKZG6SrIb3H7usYc/sAmuWx+pqanVqitN5cCAFg6Hefjhhxk9enSNY91u90GnKB44Tc5ms1bnVD02EAjUuM4tt9zCXXfdVeN83bt3j/3+wOYXhmEQDlvTn5OTD/1hk9Pp5Ne//jVTpkxh9OjRvP7663XqcNhWKEiJiEhC8VZY0/R8uGhnO8wbL5cVpExveVMPS6TNMAyjXlPsWjqn00koFGq0851yyimsXbu21hB34oknsmXLFnbs2EFOTg4A3377bbVjOnXqBEBBQQHt27cHrOrRgddZuXLlEYXFAQMG8K9//Yu9e/fWWpW66aab6NevH88++yyBQOCgAbGtUrMJERFJKD6P1bHKZ7gOf3BkLymbX0FKJFH17NmTr776iu3bt7N79+4jPt+DDz7Iq6++Sl5eHitXrmT16tW8+eab/OlPfwJg2LBhHHfccVx77bUsXbqUr7/+mgceeKDaOY499lhyc3PJy8tj3bp1fPjhhzz++OPVjrnvvvv49ttvuf3221myZAnr16/nvffe484776zzWK+++mqys7MZNWoU33zzDRs3buTtt9+uFuxOOOEEzjzzTO677z6uvvrqw1ax2hIFKRERSSg+jxWK/HUJUi6rGUVSqLIphyQiLdhf/vIXNm3axDHHHBOrBB2JCy+8kA8++IBZs2Zx2mmnceaZZ/LEE0/Qo0cPwJq2N2PGDHw+H6effjo33XRTtfVUYE3He+ONN1izZg0nnXQSjz32WKy1etSAAQOYM2cO69ev56c//SkDBw7kz3/+M127dq3zWJ1OJzNnzqRz585cfPHF9O/fn7///e819tq68cYb8fv91ZpqJIK4T+3bvn079913Hx9//DEej4c+ffrw0ksvMWjQIMCa+/nwww/zwgsvUFxczBlnnMEzzzxD3759Y+fw+Xzce++9vPHGG3g8Hs4//3yeffbZaov0REREAAKRaXoBm/uwxxpOa22DgpRI2zJ16tRaH/vyyy+r3T7zzDNZunTpYc8Z3eOpqtpasl944YVceOGFtZ6rT58+fP3114e83tlnn82yZcsOeb3TTjuNmTNn1nqOqntORR04RbBHjx689dZbhxxLQUEB/fr147TTTjvkcW1NXCtSxcXFnH322SQlJfHxxx+zatUqHn/8cTIzM2PHTJgwgSeeeILJkyezYMECsrOzGT58OGVl+1vRjh07lhkzZjB9+nTmzp1LeXk5I0eObNT5rCIi0jYEvFYoCtgPH6Rsbqsi5VSQEhGpoby8nAULFjBp0qSDNrVo6+JakXrsscfIzc2ttpFX1XaJpmkyceJEHnjggdjCtVdeeYUuXbrw+uuvc8stt1BSUsJLL73EtGnTGDZsGACvvfYaubm5zJ49+5BpX0REEk/QZ62RCtUjSLnCClIiIge64447eOONNxg1alTCTeuDOFek3nvvPU499VR+8Ytf0LlzZwYOHMiLL74Yezw/P5/CwkIuuOCC2H0ul4shQ4Ywb948wOqRHwgEqh2Tk5NDv379YseIiIhEhWJB6vALoh3J7QBwK0iJSJyZpsmoUaPiPYxqpk6dis/n480336yxbioRxDVIbdy4keeee47evXvz6aefcuutt3LXXXfx6quvAlBYWAhAly5dqn1fly5dYo8VFhbidDpjrR8PdsyBfD4fpaWl1b5ERCQxhH1WKDIdhw9SSW6ra5/T9DXpmEREpPWJ69S+cDjMqaeeyvjx4wEYOHAgK1eu5LnnnuPaa6+NHXfgJmSmada470CHOubRRx/l4YcfPsLRi4hIa2QGPNavdQpSVrMJNz4CoTBJdjW7FRERS1xfEbp27cqJJ55Y7b4TTjiBLVu2AJCdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZgD3X///ZSUlMS+tm7d2ijPR0REWj7TH5mml1SHIJVsVaSS8eEJqIGRSG1q604n0lI1xr/ZuAaps88+m7Vr11a7b926dbE++r169SI7O5tZs2bFHvf7/cyZM4fBgwcDMGjQIJKSkqodU1BQwIoVK2LHHMjlctGuXbtqXyIikhiMSEXKcKYc9tgkt3VMsuHH61eQEjlQUlISAJWVWkcorUv032z033BDxHVq3x/+8AcGDx7M+PHjGTNmDPPnz+eFF17ghRdeAKwpfWPHjmX8+PH07t2b3r17M378eFJSUrjmmmsAyMjI4MYbb+See+6hQ4cOZGVlce+999K/f/9YFz8REZEoI2gFKVsdgpThtCpSKXjZp4qUSA12u53MzEyKiooASElJOezyC5F4Mk2TyspKioqKyMzMPKImGXENUqeddhozZszg/vvv5y9/+Qu9evVi4sSJ/PKXv4wdM27cODweD7fddltsQ96ZM2eSnp4eO+bJJ5/E4XAwZsyY2Ia8U6dOTcjuISIicmi2UCRIuQ4fpKLT/9z48QbCTTkskVYruhQjGqZEWoPMzMzYv92GimuQAhg5ciQjR46s9XHDMMjLyyMvL6/WY9xuN5MmTWLSpElNMEIREWlL7EGv9asz9fAHJ1lhy2UE8fh8QPqhjxdJQIZh0LVrVzp37kwgEIj3cEQOKykpqVEKLnEPUiIiIs3JEbaCVLQj3yEl7a9a+SvLgY5NNCqR1s9ut2s2kCQU9XEVEZGEsj9I1WFqn8NFGGu9R8Bb3pTDEhGRVkZBSkREEoozEqSckdbmh2QY+Aw3AAFvRVMOS0REWhkFKRERSShO0weAK6UOQQrwGy5AFSkREalOQUpERBKGPxjGjRWk3HWpSAF+m9W5L+RTRUpERPZTkBIRkYRR6Q+SjB8Adx0rUkGbVZEKK0iJiEgVClIiIpIwKvwhkiMVqTp17QOC9mhFqrLJxiUiIq2PgpSIiCSMCq8ftxHZ5yapDl372B+kTL8qUiIisp+ClIiIJIzKiioNI5KS6/Q9YUfkuICnCUYkIiKtlYKUiIgkDG9llSDlqG+Q0tQ+ERHZT0FKREQSRjRI+XCCrW4vgWZkCqChipSIiFShICUiIgkjuheUP9KJry7MyBRAW1AVKRER2U9BSkREEobfYzWMCBjuun9TpCJlC6oiJSIi+ylIiYhIwghE9oIK2usepIxIkLKHFKRERGQ/BSkREUkYQa8VpEL1CFI2l7XflCPkbZIxiYhI66QgJSIiCSO6qW7IXreOfQA2l1WRcqgiJSIiVShIiYhIwgj7rSAVdtS9ImWPVKSSwqpIiYjIfgpSIiKSMKJBKtrSvC4ckSDlVJASEZEqFKRERCRh2KKb6ibVfWpfkjsNAJfpa4ohiYhIK6UgJSIiCcOItjCvR0UqyW1VpFx4MU2zKYYlIiKtkIKUiIgkDFukYYRRnyCVnA5AMj4CIQUpERGxKEiJiEjCsAetdU7RTnx14Uq2KlLJ+PAEQk0yLhERaX0UpEREJGE4Ig0jbM56NJtwR4OUH6+ClIiIRChIiYhIwohuqmuvR5AynFaQSjF8eHyBJhmXiIi0PgpSIiKSMKJ7QdkjVaa6fdP+0OX1VDb2kEREpJVSkBIRkYThjLQwT3LVJ0jtb5Xu95Q19pBERKSVUpASEZGE4A+GcRMJUvWpSNns+HACEPBUNMXQRESkFVKQEhGRhOAJhPYHqeR6BCnAZ7gACPjKG31cIiLSOilIiYhIQvAGQiTjB8BRj/bnAH7DDUDQq4qUiIhYFKRERCQhePwhkiMVKSOpfhUpv01BSkREqlOQEhGRhOAJhEg2rIpU1QYSdRGIBKmQX0FKREQsClIiIpIQrDVSDQtSIbsVpEyfgpSIiFgUpEREJCF4fMHY1L6qe0PVRdBuBa+QT/tIiYiIRUFKREQSgtfrxWGErRv1rEiFHdbxZkAVKRERsShIiYhIQvBXbRRRz4pUOHq839OIIxIRkdZMQUpERBJCILK+KYQN7En1+l4zUpEyApraJyIiFgUpERFJCKFIRcpvc4Nh1O+bo1MBg95GHpWIiLRWClIiIpIQgpGKVCCyuW59GJGpfbagKlIiImJRkBIRkYQQjHTcC9pd9f5emysapFSREhERi4KUiIgkBNMfDVL169gHYHda32MPK0iJiIhFQUpERBJCOBKkwvb6T+2zu1KtX0MKUiIiYlGQEhGRhBCtSIUaUJFyRIJUkoKUiIhEKEiJiEhiCFh7QJmO+lekktzWGqkk09eoQxIRkdZLQUpERBKCEem4Z9ZzM16AJLdVkXIqSImISISClIiIJAQjUpGK7QlVD87kNABcpo9Q2GzMYYmISCulICUiIgnBFl3f1IAg5Uq2KlLJ+Kn0BxtzWCIi0krFNUjl5eVhGEa1r+zs7NjjpmmSl5dHTk4OycnJDB06lJUrV1Y7h8/n484776Rjx46kpqZy2WWXsW3btuZ+KiIi0sLZglZFynDWf2qfMzK1z2348PhDjTouERFpneJekerbty8FBQWxr+XLl8cemzBhAk888QSTJ09mwYIFZGdnM3z4cMrKymLHjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSC52IiOzniFSkbA0IUtHwZVWk9PoiIiLgiPsAHI5qVago0zSZOHEiDzzwAKNHjwbglVdeoUuXLrz++uvccsstlJSU8NJLLzFt2jSGDRsGwGuvvUZubi6zZ8/mwgsvbNbnIiIiLZcjspmu3ZnagG+2pgO68VPhCzTmsEREpJWKe0Vq/fr15OTk0KtXL6666io2btwIQH5+PoWFhVxwwQWxY10uF0OGDGHevHkALFq0iEAgUO2YnJwc+vXrFzvmYHw+H6WlpdW+RESkbUuKBil3/StS0XVVDiOM16u9pEREJM5B6owzzuDVV1/l008/5cUXX6SwsJDBgwezZ88eCgsLAejSpUu17+nSpUvsscLCQpxOJ+3bt6/1mIN59NFHycjIiH3l5uY28jMTEZGWJilstS6Pbq5bv2/eH768norGGpKIiLRicQ1SF110EVdccQX9+/dn2LBhfPjhh4A1hS/KMIxq32OaZo37DnS4Y+6//35KSkpiX1u3bj2CZyEiIi1dIBTGFdkDKronVL3YkwhFXjL9nvLGHJqIiLRScZ/aV1Vqair9+/dn/fr1sXVTB1aWioqKYlWq7Oxs/H4/xcXFtR5zMC6Xi3bt2lX7EhGRtssbCJFsHEGQMgz8hguAgE8VKRERaWFByufzsXr1arp27UqvXr3Izs5m1qxZscf9fj9z5sxh8ODBAAwaNIikpKRqxxQUFLBixYrYMSIiIp5AiGT8QAODFBCwRYKUV0FKRETi3LXv3nvv5dJLL6V79+4UFRXxt7/9jdLSUq677joMw2Ds2LGMHz+e3r1707t3b8aPH09KSgrXXHMNABkZGdx4443cc889dOjQgaysLO69997YVEEREREArz9MMlZFykhqQLMJIGBzQwiC3srGHJqIiLRScQ1S27Zt4+qrr2b37t106tSJM888k++++44ePXoAMG7cODweD7fddhvFxcWcccYZzJw5k/T09Ng5nnzySRwOB2PGjMHj8XD++eczdepU7HZ7vJ6WiIi0MJWBIOmGVZGKduCrr6DNbf2qICUiIsQ5SE2fPv2QjxuGQV5eHnl5ebUe43a7mTRpEpMmTWrk0YmISFvh8YfoHKlI0cCKVMhuBbCQX1P7RESkha2REhERaQpV10jhbFiQCjusNVJhv6exhiUiIq2YgpSIiLR5Xn+A5NjUvgYGqUhFygxoap+IiChIiYhIAvB7qoSfBq6RMqPfp4qUiIigICUiIgnAX7VluaNhQSoWwIKqSImIiIKUiIgkgKC3HAC/4QRbw176jEiQMgLeRhuXiIi0XgpSIiLS5gV9VkUqEGlh3hBGpEmFLaSpfSIioiAlIiIJIOSzws+RBClbpEmFLaggJSIiClIiIpIAQpGKVOhIgpTLClKOkKb2iYiIgpSIiCSAaMvyoL3hQcrhSrV+DStIiYiIgpSIiCQAM9KyPNzQjn2AI1qRCvsaZUwiItK6KUiJiEibF61IhR0Nr0g5k62KlMv0EQqbjTIuERFpvRSkRESk7YtUpMwjqEglua0glWz4qfQHG2VYIiLSeilIiYhImxfrtBfpvNcQ0SDlxkelP9QYwxIRkVZMQUpERNo8I7r3U1LDK1LRDXndBBSkREREQUpERNo+e6QiFd1Ut0Ei1axkfJraJyIiClIiItL22SN7P9mOKEhZFalkw49HFSkRkYSnICUiIm2eo1GClPW9bnx4AgpSIiKJTkFKRETavOgmuvbIproNO4nVOj0ZP75AuDGGJSIirZiClIiItHlJkSDlcB/51L4kI4TP722MYYmISCumICUiIm1aKGziMn0AOI6kIlWldXrQ6znSYYmISCunICUiIm2aNxAiGT8ATveRTO1zEcYAIOivaIyhiYhIK6YgJSIibVqlP0SyYVWkko4kSBkGAcMFQMhb2RhDExGRVkxBSkRE2jRvIIQ7UpE6on2kgIAtEqQCClIiIolOQUpERNo0TyBEMlZFquo6p4YI2qzOfWGfgpSISKJTkBIRkTbN4w+RbFgVqWjnvYYK2q0gZaoiJSKS8BSkRESkTfMEQrgbqyJljwQxv7r2iYgkOgUpERFp0zxVuvYdaUUqbLfWSKGKlIhIwlOQEhGRNs3r9ZJkhKwbRxykIt8f1Ia8IiKJTkFKRETaNL+nyp5PRzi1z4wEMSOgqX0iIolOQUpERNq0oNcKUmFsYHce0bnCDitI2YIKUiIiiU5BSkRE2rSgzwpSfpsLDOPIThapSNlCClIiIolOQUpERNq0UGTPp0BkD6gjEqtIaY2UiEiiU5ASEZE2LRSpSAUbIUgZTitI2cMKUiIiiU5BSkRE2rSQ36pIheyNEaSsZhWOkIKUiEiiU5ASEZE2zYwFqSNrfQ5giwSpJFWkREQSnoKUiIi0bZFW5WHHkVek7NGKVNh3xOcSEZHWrd5B6pVXXuHDDz+M3R43bhyZmZkMHjyYzZs3N+rgREREjljAqkiZjiOvSEWDlFNBSkQk4dU7SI0fP57kZOvF6Ntvv2Xy5MlMmDCBjh078oc//KHRBygiInIkjMieT9HNdI+E3Z0KgNNUkBIRSXSO+n7D1q1bOfbYYwF49913+fnPf87NN9/M2WefzdChQxt7fCIiIkfEiEztIynliM+VFAlSbnyEwiZ22xHuSyUiIq1WvStSaWlp7NmzB4CZM2cybNgwANxuNx6PNigUEZGWJbp5rtEIFSmHywpjbnz4g+EjPp+IiLRe9a5IDR8+nJtuuomBAweybt06LrnkEgBWrlxJz549G3t8IiIiR8QeaVVuOFOP+FxJ7miQ8uMNhEh22o/4nCIi0jrVuyL1zDPPcNZZZ7Fr1y7efvttOnToAMCiRYu4+uqrG32AIiIiRyK655PNdeRT+xwuK4wlG368wdARn09ERFqvelekMjMzmTx5co37H3744UYZkIiISGOKBil7I1SkouuskvFRHNDUPhGRRFbvitSUKVP4z3/+U+P+//znP7zyyiuNMigREZHG4gxba6TsjVCRIrLOyo0qUiIiia7eQervf/87HTt2rHF/586dGT9+fKMMSkREpDGEw2asVXm0494RiexF5TKCeH2BIz+fiIi0WvUOUps3b6ZXr1417u/Rowdbtmxp8EAeffRRDMNg7NixsftM0yQvL4+cnBySk5MZOnQoK1eurPZ9Pp+PO++8k44dO5Kamspll13Gtm3bGjwOERFpO7zBEG78ACQlN8bUvv2d/wLeiiM/n4iItFr1DlKdO3dm2bJlNe5funRprPFEfS1YsIAXXniBAQMGVLt/woQJPPHEE0yePJkFCxaQnZ3N8OHDKSsrix0zduxYZsyYwfTp05k7dy7l5eWMHDmSUEhTLkREEp3HHyLZiFSkXI1RkXLHfhvwVR75+UREpNWqd5C66qqruOuuu/jiiy8IhUKEQiE+//xzfv/733PVVVfVewDl5eX88pe/5MUXX6R9+/ax+03TZOLEiTzwwAOMHj2afv368corr1BZWcnrr78OQElJCS+99BKPP/44w4YNY+DAgbz22mssX76c2bNn13ssIiLStngCIZIjFSlbYzSbsNnw4QIg6C0/8vOJiEirVe8g9be//Y0zzjiD888/n+TkZJKTk7ngggs477zzGrRG6vbbb+eSSy6JbewblZ+fT2FhIRdccEHsPpfLxZAhQ5g3bx5gtVwPBALVjsnJyaFfv36xY0REJHF5AyGSsSpSNMKGvAB+wwlAUBUpEZGEVu/2506nkzfffJO//vWvLF26lOTkZPr370+PHj3qffHp06ezePFiFixYUOOxwsJCALp06VLt/i5durB58+bYMU6ns1olK3pM9PsPxufz4fP5YrdLS0vrPXYREWn5PP4wWYZVkWq0IGVzQ6iMkIKUiEhCq3eQiurTpw99+vRp8IW3bt3K73//e2bOnInb7a71OMMwqt02TbPGfQc63DGPPvqo9r0SEUkAnmoVqUZofw4EbC4IQdivICUiksjqFKTuvvtu/vrXv5Kamsrdd999yGOfeOKJOl140aJFFBUVMWjQoNh9oVCIr776ismTJ7N27VrAqjp17do1dkxRUVGsSpWdnY3f76e4uLhaVaqoqIjBgwfXeu3777+/2vMoLS0lNze3TuMWEZHWw1tljVRjVaSCNuvDPwUpEZHEVqcg9cMPPxAIBGK/bwznn38+y5cvr3bfb37zG44//njuu+8+jj76aLKzs5k1axYDBw4EwO/3M2fOHB577DEABg0aRFJSErNmzWLMmDEAFBQUsGLFCiZMmFDrtV0uFy6Xq1Geh4iItFxef4Dk2NS+xqlIBe1WkDIDClIiIomsTkHqiy++OOjvj0R6ejr9+vWrdl9qaiodOnSI3T927FjGjx9P79696d27N+PHjyclJYVrrrkGgIyMDG688UbuueceOnToQFZWFvfeey/9+/ev0bxCREQST8Dn2X+jkSpSoUhFyvR7DnOkiIi0ZfXu2nfDDTdU28cpqqKightuuKFRBhU1btw4xo4dy2233capp57K9u3bmTlzJunp6bFjnnzySUaNGsWYMWM4++yzSUlJ4f3338dutzfqWEREpPUJ+qpsmttYQSq6l1RAQUpEJJHVO0i98soreDw1Xzw8Hg+vvvrqEQ3myy+/ZOLEibHbhmGQl5dHQUEBXq+XOXPm1Khiud1uJk2axJ49e6isrOT999/XeicREQH2tygPGElga5wP2ML2SCBTkBIRSWh17tpXWlqKaZqYpklZWVm1TnuhUIiPPvqIzp07N8kgRUREGiIcqUj5DTdJjXROM1LZMoJaIyUiksjqHKQyMzMxDAPDMA7a9twwDLUUFxGRFiUcqUhFO+01BjPSbMIW9DbaOUVEpPWpc5D64osvME2T8847j7fffpusrKzYY06nkx49epCTk9MkgxQREWmIaIvygL3xglR0rZWClIhIYqtzkBoyZAgA+fn5dO/e/bCb4oqIiMSbGQlSoUYMUtGpfbaQ1kiJiCSyejebWL16Nd98803s9jPPPMPJJ5/MNddcQ3FxcaMOTkRE5EhE93pqzCBlOK39qBwhVaRERBJZvYPU//zP/1BaWgrA8uXLufvuu7n44ovZuHEjd999d6MPUEREpMEinfVC9sZpfQ5gRDb2dYQVpEREElmdp/ZF5efnc+KJJwLw9ttvc+mllzJ+/HgWL17MxRdf3OgDFBERaSgjaAUp09F4QcrutM7lCPsa7ZwiItL61Lsi5XQ6qay0pkrMnj2bCy64AICsrKxYpUpERKQliAWpRtqMF8DuSgUgSRUpEZGEVu+K1E9+8hPuvvtuzj77bObPn8+bb74JwLp16+jWrVujD1BERKShbE1QkbJF1kg5VZESEUlo9a5ITZ48GYfDwVtvvcVzzz3HUUcdBcDHH3/MiBEjGn2AIiIiDWWPtihvxIqUw21VpJymgpSISCKrd0Wqe/fufPDBBzXuf/LJJxtlQCIiIo3FHrYqUtFOe43B4bLO5VKQEhFJaHUKUqWlpbRr1y72+0OJHiciIhJv0Rbl0U57jSEpUpFyoSAlIpLI6hSk2rdvT0FBAZ07dyYzM/Ogm/GapolhGIRCoUYfpIiISENEg5TN1XhT+5zJVpBy4ycQCpNkr/cseRERaQPqFKQ+//xzsrKyAPjiiy+adEAiIiKNJcmMBClnaqOd05WcBkAyPir9ITKSFaRERBJRnYLUkCFDYr/v1asXubm5NapSpmmydevWxh2diIjIEYh21ou2LG+Uc0am9rmNAPt8ATKSkxrt3CIi0nrU+2O0Xr16sWvXrhr37927l169ejXKoERERBpDNEhFG0Q0BqNKB8DKyopGO6+IiLQu9Q5S0bVQByovL8ftdjfKoERERI6UaZqxhhDRBhGNokqQ8nnKG++8IiLSqtS5/fndd98NgGEY/PnPfyYlZf+ne6FQiO+//56TTz650QcoIiLSEL5gGHckSDkaM0jZ7PhJwkkAb0VZ451XRERalToHqR9++AGwPuFbvnw5Tqcz9pjT6eSkk07i3nvvbfwRioiINIA3ECIZP7B/XVNj8RkunGYAv09T+0REElWdg1S0W99vfvMbnnrqKe0XJSIiLZo3ECbZiK6RatwgFTBcYJbj91Q26nlFRKT1qHOQipoyZUpTjENERKRReQMhsiIVKRpxQ14Av80FYQh4tUZKRCRR1TtIASxYsID//Oc/bNmyBb/fX+2xd955p1EGJiIiciSqrpGq2iCiMQRtVnOloE8VKRGRRFXvrn3Tp0/n7LPPZtWqVcyYMYNAIMCqVav4/PPPycjIaIoxioiI1JvX58VphKwbjR2k7Nb5QgpSIiIJq95Bavz48Tz55JN88MEHOJ1OnnrqKVavXs2YMWPo3r17U4xRRESk3gKeKo0gGnlqX9jusn5VswkRkYRV7yC1YcMGLrnkEgBcLhcVFRUYhsEf/vAHXnjhhUYfoIiISEP4I9WiEDZwuBr13GFHpCIV8DTqeUVEpPWod5DKysqirMzaN+Ooo45ixYoVAOzbt4/KSk1xEBGRliHotapFfsMFB9lI/kiYkSCFX697IiKJqt7NJn76058ya9Ys+vfvz5gxY/j973/P559/zqxZszj//PObYowiIiL1FvTtD1KNu0IKzMiaK1MVKRGRhFXvIDV58mS8Xi8A999/P0lJScydO5fRo0fz5z//udEHKCIi0hDhyNQ+v+Fu/JNH1lwZClIiIgmr3kEqKysr9nubzca4ceMYN25cow5KRETkSIV81h5PAXvjro8CsCVZ4cwIKkiJiCSqeq+RstvtFBUV1bh/z5492O32RhmUiIjIkTL9VsiJ7vnUmAynVZGyBb2Nfm4REWkd6h2kTNM86P0+nw+n03nEAxIREWkMZqQRRNDe+EHK7kq1fg0pSImIJKo6T+17+umnATAMg3/961+kpaXFHguFQnz11Vccf/zxjT9CERGRBjADkfbn9sZuNQF2l1WRcoQ1tU9EJFHVOUg9+eSTgFWRev7556tN43M6nfTs2ZPnn3++8UcoIiLSEJFGEKEmqEglRYOUKlIiIgmrzkEqPz8fgHPPPZd33nmH9u3bN9mgREREjlikIhXb86kRJbmtqX1Jpq/Rzy0iIq1Dvbv2ffHFF9VuB4NBvF5vtal+IiIi8WZEGkGEmyBIOSNBymn6CIVN7LbG3fBXRERavjo3m/joo4+YNm1atfseeeQR0tLSyMzM5IILLqC4uLjRBygiItIQtmhr8qQmCFLJ1oeHyfjxBEKNfn4REWn56hyk/vGPf1BaWhq7PW/ePB588EH+/Oc/83//939s3bqVv/71r00ySBERkfqyh6JBKqXRz+1MtipSyfio9Acb/fwiItLy1TlIrVixgsGDB8duv/XWWwwfPpwHHniA0aNH8/jjj/P+++83ySBFRETqK9aavAkqUkbknC4jQKVPFSkRkURU5yBVVlZGhw4dYrfnzp3LeeedF7vdt29fduzY0bijExERaSBHpCJlczZ+RSpa5bIqUgpSIiKJqM5BKicnh9WrVwNQXl7O0qVLOfvss2OP79mzh5SUJnixEhERaQBHyOqo1zRByqpIJePX1D4RkQRV5yD185//nLFjxzJt2jR++9vfkp2dzZlnnhl7fOHChRx33HFNMkgREZH6SgpbU/uasiKVYvio9ClIiYgkojq3P3/ooYfYsWMHd911F9nZ2bz22mvVNuV94403uPTSS5tkkCIiIvWVZEaClCu18U/u2L/Jr9db0fjnFxGRFq/OQSolJaVG+/OqDtxfSkREJJ6cYWtqn8PVdFP7AHweBSkRkURU56l9IiIirYmLSJByN0FFyp5EMPJZpF8VKRGRhKQgJSIibZLLtIJUUlMEKSBgs6b3BRWkREQSkoKUiIi0OcFQGHekIuVKTmuSawRsLutXTe0TEUlIcQ1Szz33HAMGDKBdu3a0a9eOs846i48//jj2uGma5OXlkZOTQ3JyMkOHDmXlypXVzuHz+bjzzjvp2LEjqampXHbZZWzbtq25n4qIiLQglYEQyfgBcCc3TUUqZLcqUiG/p0nOLyIiLVtcg1S3bt34+9//zsKFC1m4cCHnnXcel19+eSwsTZgwgSeeeILJkyezYMECsrOzGT58OGVlZbFzjB07lhkzZjB9+nTmzp1LeXk5I0eOJBTSBokiIonK4wuQYlgVKWcTVaSiQSroU0VKRCQR1TlIde/enT179sRuT548mdLS0iO6+KWXXsrFF19Mnz596NOnD4888ghpaWl89913mKbJxIkTeeCBBxg9ejT9+vXjlVdeobKyktdffx2AkpISXnrpJR5//HGGDRvGwIEDee2111i+fDmzZ88+orGJiEjr5ancH24MZ9NUpMIOq3Of6a9skvOLiEjLVucgtW3btmpVnv/93/9l9+7djTaQUCjE9OnTqaio4KyzziI/P5/CwkIuuOCC2DEul4shQ4Ywb948ABYtWkQgEKh2TE5ODv369YsdczA+n4/S0tJqXyIi0nZ4K6v8XE9qgvbnVAlSAQUpEZFE1OCpfaZpNsoAli9fTlpaGi6Xi1tvvZUZM2Zw4oknUlhYCECXLl2qHd+lS5fYY4WFhTidTtq3b1/rMQfz6KOPkpGREfvKzc1tlOciIiItg7+yHAAvTrA10Sz2yKa8ptZIiYgkpLh37TvuuONYsmQJ3333Hb/73e+47rrrWLVqVexxwzCqHW+aZo37DnS4Y+6//35KSkpiX1u3bj2yJyEiIi2K32MFKZ/hbrqLRDflDXqb7hoiItJiOepz8L/+9S/S0qxFu8FgkKlTp9KxY8dqx9x11131GoDT6eTYY48F4NRTT2XBggU89dRT3HfffYBVderatWvs+KKioliVKjs7G7/fT3FxcbWqVFFREYMHD671mi6XC5fLVa9xiohI6xFoliBlTRm0B1WREhFJRHUOUt27d+fFF1+M3c7OzmbatGnVjjEMo95B6kCmaeLz+ejVqxfZ2dnMmjWLgQMHAuD3+5kzZw6PPfYYAIMGDSIpKYlZs2YxZswYAAoKClixYgUTJkw4onGIiEjrFfRa3V39tuQmu4bhtM5tCylIiYgkojoHqU2bNjX6xf/3f/+Xiy66iNzcXMrKypg+fTpffvkln3zyCYZhMHbsWMaPH0/v3r3p3bs348ePJyUlhWuuuQaAjIwMbrzxRu655x46dOhAVlYW9957L/3792fYsGGNPl4REWkdoi3JA/amq0jZIhUpR0hT+0REElG9pvY1tp07d/LrX/+agoICMjIyGDBgAJ988gnDhw8HYNy4cXg8Hm677TaKi4s544wzmDlzJunp6bFzPPnkkzgcDsaMGYPH4+H8889n6tSp2O32eD0tERGJs3AkSAXtTVeRsjkjQSrsa7JriIhIy1XnZhMXX3wxJSUlsduPPPII+/bti93es2cPJ554Yr0u/tJLL7Fp0yZ8Ph9FRUXMnj07FqLAmiqYl5dHQUEBXq+XOXPm0K9fv2rncLvdTJo0iT179lBZWcn777+vLnwiIgnOjASpkL1pWp8D2FzRIKWKlIhIIqpzkPr000/x+fZ/6vbYY4+xd+/e2O1gMMjatWsbd3QiIiINYAYiQcrRdBUpRyRIOcPeRtsSREREWo86B6kDXyT0oiEiIi2W39ok12yizXgBHO5UANz48YfCTXYdERFpmeK+j5SIiEhjMwLNEKQiFSk3frwBBSkRkURT5yBlGEaNTW4PtzGuiIhIPBhBK0jRpEHKqkglGz58gVCTXUdERFqmOnftM02T66+/PraRrdfr5dZbbyU11Xohqbp+SkREJJ6im+QaztQmu0b03Mn48ChIiYgknDoHqeuuu67a7V/96lc1jrn22muPfEQiIiJHKBakXE0XpKLVrhR8mtonIpKA6hykpkyZ0pTjEBERaTRJIStIOZoySEUqUimGjyJVpEREEo6aTYiISJuTFLaClN2d1nQXiQSpVLya2icikoAUpEREpM1xRjbJjbYob5qL7F8j5fUHm+46IiLSIilIiYhIm+M0rSCV1JQVqcgaqSQjpIZLIiIJSEFKRETaHHckSDlT0pvuIlU6Aga9ZU13HRERaZEUpEREpE0JhsIkY1WIXE1ZkbInESAJgJC3vOmuIyIiLZKClIiItCmVgdD+IJXahBUpwGdLBiCkipSISMJRkBIRkTbF4wuSQmRqX3ITVqQAvz0SpHyVTXodERFpeRSkRESkTfF4KrEbJgCGswm79gHBSEXK9Glqn4hIolGQEhGRNsVbWWWaXVLTBqlApCJFoKJJryMiIi2PgpSIiLQp/kiQ8uMAu6NJrxVypEQuqiAlIpJoFKRERKRN8XmsaXY+w93k14oGKcOvNVIiIolGQUpERNqUgMeqSDVHkAo7rKl9tqAqUiIiiUZBSkRE2pSg1wo1flvTBykz0szCCKgiJSKSaBSkRESkTQn6rCAViHTUa1KRZhb2kIKUiEiiUZASEZE2JRwJUkF7MwSpSEXKEfQ0/bVERKRFUZASEZE2JRakHM0RpKxmE0mqSImIJBwFKRERaVPMSCvycLQ1eROyudIASAp7m/xaIiLSsihIiYhImxJt/BBuhopUNEg5VZESEUk4ClIiItK2RPZ0MiONIJqS3W1dw2mqIiUikmgUpEREpE2J7ulkOJt+al+S26pIuRWkREQSjoKUiIi0KbZoB72kpg9SDnc6AMmmuvaJiCQaBSkREWlT7JEgZY+sX2pKSclWkHLjIxQ2m/x6IiLScihIiYhImxLdHNeR3PRBypViBalUvHgDoSa/noiItBwKUiIi0qY4QtZ6JWczBKnoNZLx4VGQEhFJKApSIiLSprjCVkUqWi1qStH25y4jiNerhhMiIolEQUpERNqMcNjEHbbWSLlSM5r+gs79VS+/p7zpryciIi2GgpSIiLQZFf4gqVhBKjmtGYKUw0kQOwD+yrKmv56IiLQYClIiItJmlHmDpBrWFDtXSjMEKcCDG4CAV0FKRCSRKEiJiEibUeYNkkZkrVIztD8H8BpWkApqap+ISEJRkBIRkTajvLISlxGwbjibJ0j5bMkABH0VzXI9ERFpGRSkRESkzagsK9l/w9X0XfsA/DarIhXW1D4RkYSiICUiIm2Gp2IfAH6SwJ7ULNf0RypSIVWkREQSioKUiIi0Gb6KUutXW0qzXTNot4IUfq2REhFJJApSIiLSZgQqrSDltzdnkLKuZform+2aIiISfwpSIiLSZgQ81jqlgCO12a4ZdEQrUpraJyKSSBSkRESkzYg2fAg5mq8iFYqENiOgICUikkgUpEREpM0I+6wgFU5qntbnACRFgpTWSImIJBQFKRERaTt8kTDjbL6pfbitNus2BSkRkYSiICUiIm1GrCrUTHtIAdjc7QBwBBWkREQSSVyD1KOPPsppp51Geno6nTt3ZtSoUaxdu7baMaZpkpeXR05ODsnJyQwdOpSVK1dWO8bn83HnnXfSsWNHUlNTueyyy9i2bVtzPhUREWkBbJF1SjZ38wUpe3I0SGmNlIhIIolrkJozZw6333473333HbNmzSIYDHLBBRdQUbH/xWjChAk88cQTTJ48mQULFpCdnc3w4cMpK9u/g/zYsWOZMWMG06dPZ+7cuZSXlzNy5EhCoVA8npaIiMRJNMzYmzFIJUWClCukICUikkgc8bz4J598Uu32lClT6Ny5M4sWLeKcc87BNE0mTpzIAw88wOjRowF45ZVX6NKlC6+//jq33HILJSUlvPTSS0ybNo1hw4YB8Nprr5Gbm8vs2bO58MILm/15iYhIfCRFwkxSSrtmu6YzNQMAV0j7SImIJJIWtUaqpKQEgKysLADy8/MpLCzkggsuiB3jcrkYMmQI8+bNA2DRokUEAoFqx+Tk5NCvX7/YMQfy+XyUlpZW+xIRkdbNNM1YmHE2Y5BypWYCkGwqSImIJJIWE6RM0+Tuu+/mJz/5Cf369QOgsLAQgC5dulQ7tkuXLrHHCgsLcTqdtG/fvtZjDvToo4+SkZER+8rNzW3spyMiIs2swh8iBS8ArkiVqDkkp2cCkGJ6mu2aIiISfy0mSN1xxx0sW7aMN954o8ZjhmFUu22aZo37DnSoY+6//35KSkpiX1u3bm34wEVEpEUo9QRINawglZTcfGukUtKt0JaGB68/2GzXFRGR+GoRQerOO+/kvffe44svvqBbt26x+7OzswFqVJaKiopiVars7Gz8fj/FxcW1HnMgl8tFu3btqn2JiEjrVuYNkhqpSBnN2P48Nc2aEWEzTMrKSprtuiIiEl9xDVKmaXLHHXfwzjvv8Pnnn9OrV69qj/fq1Yvs7GxmzZoVu8/v9zNnzhwGDx4MwKBBg0hKSqp2TEFBAStWrIgdIyIibV+ZN0CaEZle50xrtuvaXKmETGsGhKdcQUpEJFHEtWvf7bffzuuvv85///tf0tPTY5WnjIwMkpOTMQyDsWPHMn78eHr37k3v3r0ZP348KSkpXHPNNbFjb7zxRu655x46dOhAVlYW9957L/3794918RMRkbavzBvkmEhFqjmDFIZBhZFCOyrwlBUf/ngREWkT4hqknnvuOQCGDh1a7f4pU6Zw/fXXAzBu3Dg8Hg+33XYbxcXFnHHGGcycOZP09P3TNp588kkcDgdjxozB4/Fw/vnnM3XqVOx2e3M9FRERibNSb4BUIhUpVzMGKcBjpNDOrMCripSISMKIa5AyTfOwxxiGQV5eHnl5ebUe43a7mTRpEpMmTWrE0YmISGtSUVmJ04hsxN6cFSnAZ0uBEPgqFKRERBJFi2g2ISIicqR8VatBzR2k7KkABDwKUiIiiUJBSkRE2oSg19pc3W+4wN68Ey4CDitIhTza4F1EJFEoSImISJtgessBCNhTmv3awSSrAhb2KkiJiCQKBSkREWkTwv5IkIpUh5r12pEgZSpIiYgkDAUpERFpEwyfFaSCcQhSZmRNlhEJcyIi0vYpSImISJsQDTGhpOYPUrjTq41BRETaPgUpERFpE2wBK8REp9k167XdGQA4AgpSIiKJQkFKRETaBHugAtg/za5Zrx2pSCUFK5r92iIiEh8KUiIi0iY4oiHG2fxT+5JS2lm/hhSkREQShYKUiIi0Cc5gZFpdZJpds1471bqmO1zZ7NcWEZH4UJASEZE2wR22gpQRhyDlSs0EIFlBSkQkYShIiYhIm5AcCVL2lMzmv3aaFd5SqSQUNpv9+iIi0vwUpEREpE1IjWOQSklvb40BL+W+YLNfX0REmp+ClIiItHrhsEmqaTV6SEpt3+zXj07tSzF8lHu8zX59ERFpfgpSIiLS6nmDIdphrU9ypjV/kKJKy/WKsuLmv76IiDQ7BSkREWn1PP4Q6UYkSMVhah8OJz6SAPCW7Wv+64uISLNTkBIRkVav0heMVaRs8QhSgMdIAcBbXhqX64uISPNSkBIRkVbP563AZUSaPMSh/TmA12YFqYCnJC7XFxGR5qUgJSIirZ6/wlqXFMJWbb1Sc/LZU60xVCpIiYgkAgUpERFp9fzl+wCoIBUMIy5j8NrTATA9++JyfRERaV4KUiIi0uqFIuGlwpYatzH4HVaQwrsvbmMQEZHmoyAlIiKtXrhyHwAeW3ym9QEEnNbaLJtPU/tERBKBgpSIiLR64UhFymOPZ5BqB4DdryAlIpIIFKRERKT181rhxRedXhcHYVcmAE4FKRGRhKAgJSIirZ4RCVL+eAYpdyYASQHtIyUikggUpEREpNWz+azwEnDGL0gRCVIuBSkRkYSgICUiIq2ePRJeQknt4jYGW2p7AFJCZXEbg4iINB8FKRERafWS/FZ4CbviGKSSI0EqrCAlIpIIFKRERKTVSwpGKlKujLiNwZFmBanUcHncxiAiIs1HQUpERFo9V9AKL4Y7fkHKldYBgGS8EPTHbRwiItI8FKRERKTVc0fWJcU1SKVmEjYN64Z3X9zGISIizUNBSkREWr3kUKQilZwZtzGkJLsoI9m6EdkgWERE2i4FKRERad1Mk5TIuiR7SmbchpGSZKfETAUgWLk3buMQEZHmoSAlIiKtW9BLEkEAklIz4zaMFJedEqwg5S/bE7dxiIhI81CQEhGR1s1bAkDINHClxK/9udNuo4Q0APzlxXEbh4iINA8FKRERad0iQaqMFNxOR9yGYRgGFTYrSAUrNLVPRKStU5ASEZHWLRKkSs0UUuIYpAAqbekAhBSkRETaPAUpERFp3TzWNLoSUklOssd1KF67FaTCHk3tExFp6xSkRESkVQuW7wJgr9mOZGecg1RSZI2WpySu4xARkaanICUiIq1aoLQIgD20i3tFyp9kbQhs04a8IiJtnoKUiIi0auHy3QAU044kuxHXsQQiFSm7b19cxyEiIk1PQUpERFq1cIUVpMpt7TCM+AapkCsTAIdfU/tERNo6BSkREWndKqzNb8sdmfEdBxByWVP7kgKlcR6JiIg0NQUpERFp1QyPVZGqbAFBynBbY3ApSImItHkKUiIi0qrZPdaeTT5n+ziPBEixxuAw/RDwxHkwIiLSlOIapL766isuvfRScnJyMAyDd999t9rjpmmSl5dHTk4OycnJDB06lJUrV1Y7xufzceedd9KxY0dSU1O57LLL2LZtWzM+CxERiSeHN7L5bUqH+A4EcLjb4TcjnQMja7dERKRtimuQqqio4KSTTmLy5MkHfXzChAk88cQTTJ48mQULFpCdnc3w4cMpKyuLHTN27FhmzJjB9OnTmTt3LuXl5YwcOZJQKNRcT0NEROIl6CMpWA6ALa1TnAcDKe4k9mCtk6KiKL6DERGRJuWI58UvuugiLrroooM+ZpomEydO5IEHHmD06NEAvPLKK3Tp0oXXX3+dW265hZKSEl566SWmTZvGsGHDAHjttdfIzc1l9uzZXHjhhc32XEREJA4qrWpU0LSRnJ4V58FAitPObrMdXY29ENkoWERE2qYWu0YqPz+fwsJCLrjggth9LpeLIUOGMG/ePAAWLVpEIBCodkxOTg79+vWLHXMwPp+P0tLSal8iItIKVUb3kEojM9Ud58FEg1S0IqUgJSLSlrXYIFVYWAhAly5dqt3fpUuX2GOFhYU4nU7at29f6zEH8+ijj5KRkRH7ys3NbeTRi4hIs4isQ9prtiMr1RnnwUCq01ElSGlqn4hIW9Zig1TUgZsrmqZ52A0XD3fM/fffT0lJSexr69atjTJWERFpZpXWHlLFpNO+BQSpFKed3dE1UpraJyLSprXYIJWdnQ1Qo7JUVFQUq1JlZ2fj9/spLi6u9ZiDcblctGvXrtqXiIi0QpEgtcdMJyulBQQpl4PdZuQ1RRUpEZE2rcUGqV69epGdnc2sWbNi9/n9fubMmcPgwYMBGDRoEElJSdWOKSgoYMWKFbFjRESkDasyta99alKcB6M1UiIiiSSuXfvKy8v58ccfY7fz8/NZsmQJWVlZdO/enbFjxzJ+/Hh69+5N7969GT9+PCkpKVxzzTUAZGRkcOONN3LPPffQoUMHsrKyuPfee+nfv3+si5+IiLRdZuUeDGAv6S1ijZSm9omIJI64BqmFCxdy7rnnxm7ffffdAFx33XVMnTqVcePG4fF4uO222yguLuaMM85g5syZpKenx77nySefxOFwMGbMGDweD+effz5Tp07Fbrc3+/MREZHmFSzbRRKRilQLmNpXtdmEWVHEoVf0iohIaxbXIDV06FBM06z1ccMwyMvLIy8vr9Zj3G43kyZNYtKkSU0wQhERaclC5VaQqrBn4E6K/wdoKS47e6JT+yr3QigI9ri+1IqISBNpsWukREREDsessJpNBN3x34wXwOWw43NmEjINDMxYMwwREWl7FKRERKTVsnusoBJO6RDnkeyXlZ7MXiJT0NW5T0SkzVKQEhGR1ikcxuHfB4AtpWN8x1JFh1Tn/s595QpSIiJtlYKUiIi0ThW7sJkhQqaBvV3neI8mpmOaiz2xvaR2x3cwIiLSZBSkRESkdSrdDsAuMslITYnzYPbrkOba3wJdU/tERNosBSkREWmdSncAUGhmkdUCNuON6pimqX0iIolAQUpERFqnSJAqMLNo3wI2443qmObaH6QqtCmviEhbpSAlIiKtU2RqX6GZRVYL2Iw3qkOas8rUPgUpEZG2SkFKRERap9ZQkSrfGd/BiIhIk1GQEhGR1im2RqoDWS0qSDkpMCMbBJdsi+9gRESkyShIiYhIq2RGpvbtMLPITGk5zSY6pLrYbkb2tfIUg68svgMSEZEmoSAlIiKtj2nGKlJFRkc6pLriPKD9MpKT8NpS2WemWnfs2xrfAYmISJNQkBIRkdanci9GyAeAmdYFu82I84D2s9kMslKd+6tSJQpSIiJtkYKUiIi0PqXW2qNdZgYdMtLjPJiaOqa52GZ2sm7s2xLfwYiISJNQkBIRkdanSse+rhnuOA+mpg5pVSpSClIiIm2SgpSIiMSVaZr8c84G3llcjw53VfaQ6tKu5QWpjmkuTe0TEWnjHPEegIiIJLb3lxXw6MdrcDpsjDr5KGx1We9UpSKV3QIrUh3TnGzR1D4RkTZNFSkREYkbjz/E3z9aDYA/GKa40l+3b6yyh1TLnNrnYltsap8qUiIibZGClIiIxM1zX/7IjhJv7Pbu8joGqchGtwWtYWpfRREEPPEdkIiINDoFKRERaXamaTLps/U8/fmPADgi0/l2lfnq9v178wHYanYiuwUGqQ5pTvaRRiXJ1h0l9Vj/JSIirYKClIiINLuX5ubz+Kx1ANw65BhO65kFwO7yOgQpXzlGpP35BjOnRa6ROiozGTDYgTr3iYi0VQpSIiLS7P5vobVu6J7hffjjRcfTKd0F1DFI7bGqWLvNdpCShTvJ3mTjbKhu7a1K1JZQB+sOde4TEWlzFKRERKRZbd1bybqd5dhtBtee1ROw1hQB7KpLkNq9HohUo1rgtD6AFKdDm/KKiLRxClIiItKsPlu9E4BTe7QnIyUJgI7pTgB2l9Wh2cRua0rghnDXFtloIio3K5nNZmfrRiT8iYhI26EgJSIizeqzNUUAnH9C59h90YpUnab2RYOUmdMiW59H5bZPYa3Z3bqxc2V8ByMiIo1OQUpERJpNuS/I9xv3AnDe8V1i93eqT5CKrJHaYOa0+IrU2nCudWPvRvBXxndAIiLSqBSkRESk2XywdAf+UJgeHVI4plNq7P46V6TCoViQ2thCO/ZFdc9KYRcZlNoyABN2rYn3kEREpBEpSImISLPYtLuCv36wCoArT8vFMIzYY9E1UnvK/YTDZu0nKdkKQS8BHGwzO9GlnatJx3wkctunAAYbjMj0vqJVcR2PiIg0LgUpERFpcpX+IHe8sZgKf4jTe2Vx80+PrvZ4h1QrEAXDJvs8gdpPFGnasJkcwtjolNZyK1K5WSkALAscZd2xU0FKRKQtUZASEZEm5QuGuGXaIlZsLyUzJYmnrjoZh736y4/TYSMj2ergd8jpfZFGE+vCXQFi+0+1RF0z3NhtBitDkXVSO1fU+xzlviCfrd556CqdiIjEhYKUiIg0qfveWsbX63eT4rTz0nWn0jUj+aDHxTblLTtEkCpYCsC6sFXl6ZDmbNzBNiKH3UZOpnt/w4l6Tu0LhsJc//J8bnxlIS/NzW+CEYqIyJFQkBIRkSazrbiSd5fswDDgxWtPZVCPrFqP7RgJRYfclHfLdwAsCvehfUoSSfaW/TKW2z6FdWY3TAyo2AXlu+r8vc98sYGFm4sB+NfcjfiD4aYapoiINEDLfgWSZqEXZxFpKv9dsgOAM3t14OxjOx7y2P2d+2rZlLesEPZtxjRs/BA+NnZ8S5bbPgUPbkrc0XVSh5/eV+EL8swXP/L059Z6MHeSjZ2lPt5bav1Zevwh5qzbRUnlIdaSiYhIk3PEewASXxM+WcPL3+Qz47azOaFru3gPR0SamGmavPDVRjJTkrjytO5Nfq13Fm8D4GenHHXY4w/bAj1SjSpN7025J6VFr4+K6t0lDYBVHM1gtsHW7+GYc2s9vtQb4NJJc9m8x9pz6opTunFM51QmfLKWpz9bz6LNe/lkRSHFlQEuOLELL1x7arM8DxERqUkVqQT3/rIdeANhvt+4J95DEZFmsHx7CY9+vIb731lOpT9Y4/FAKIxpNk5jg+XbS9iwqwKXw8ZF/bIPe/xh10ht/R6A7eknAbSKitSlJ+VgM+C9sj7WHRu/POTxX6wpYvOeSjqmOXnyypOY8PMB/PKMHqQ67WzZW8kb87dSHKlEfbG2iJJDdTgUEZEmpSCVwPaU+9i61wPAtmJPnEcjbcEb87dw7cvzD7+pqsTNh8sLAAibsKGootpj3kCIi576moue+ppQI3SJe2fxdgAu6JtNujvpsMdH10jtKKnl51GkIrXe1Rdo2R37orq0c3Pe8Z35JmyNmW0LwFdW6/Fz1lprqH4+KJefDeyG3WaQkZzEc78axG/O7smd5x3L878aRO/OaQRCJp+v2dkcT0NERA5CQSqBLdtWEvu9gpQcjmmaFJV6a318d7mPh99fyVfrdvHiVxubcWRSV6Zp8lEkSAGs21n9Df3HKwr4saicNYVl5O8up9If5N/fb6bUW/+qh8cfik3r+/mgbnX6nlO6twfg2w172BKZ2hbjr4h17FtmOx5oHRUpgCtP685Wswvb6AzhIGyed9DjwmGTOeusIDX0uE7VHjunTyceurQv91xwHCP6ZccqfJ+sKGySMXv8IX4sKm+Sc4tI21LiCbAnQT9AVZBKYEu27ov9ftu+ytoPrIcV20soa8CbLmn5Xpqbz+njP+PuN5fgDYRqPP7i1xvxBqzGJa/P30KFr+a0MTm895fu4LevLmRvRS0NF47Aiu2lsSo0wLqi6kHq9e+3xH6/ckcpkz//kQdmrOCZz3+s97XeX7aDUm+Q7lkp/PQwTSaiendJ55w+nQib8PI3B7T73jofzBC0O4p13kygdVSkAM49rhOd0118FYxUpTbOOehxK3eUsqfCT5rLwaAe7Q95zgsjQWrOul38+qXvOe2R2Tz2yZpDftgRDIX5x6drmbt+92HH/MhHqxj2xBy++fHwx8ZbY01FFZH68wfDjJz0NedM+ILVBaXxHk6zU5BKYEu37Yv9vjEqUv+3cCsjJ83lwf+uPOJzJYLd5T6mfbf5oKGkJfp8TREA7/ywnatf/K5alWJvhZ9p324GINVpp8wb5K1F2+IyztbMNE0e+XA1s1btZOo3+ZR6A9z86kKmHhgqGig6rc8ZaRm+fuf+isP6nWUs2FQcu71yRynfRtZOLt5STH39+zvr38M1Z3THZjPq/H03//RowPp5sq+ySphc+Y716zHnsbvC+rfXsQXvIVWVw27jtF5ZfBPub91RyzqpL9da/8fOPrbDYdu6n9i1Hd2zUvAGwny9fje7ynw89+UGxvzzW4Khg3di/XB5AZO/+JHfvbaI4sME9Xk/Wn/3X9chdMXT1+t3cfJfZvHv7zfHeyjSQN5AiPzdFYc/UABrJsEPDfiZ3FQ+X7OTrXs9VPitjder/dxOAApSCco0TZZWqUjtqwxQfgQVhBJPgL9/vAaA79S4ok4mfLKGP7+7gue+3BDvoRxWOGyyfLs1FdTlsPHDln2Mnb6ELXsqufv/lnDOhC+o9Ifom9OOcSOsaVdTvskn3AjrbBLJ8u0lFEYqCm8v3s6/vtrIzFU7eeqz9Y3yqfvMVdY0sKtOtzaIrTq17435WwGr1TbA4s3FrIj8na/aUVqvv8vl20pYuq0Ep93GL+o4rS/q7GM7cHx2OpX+0P4wHvDCyv9avx8whl2RZhStpSIFcFRmMvPCJ1r7SRWthOKab/yj0/qG9Ol82PMZhsGvz+wBWBWviVeeTLrLwaY9lSzbXnLQ74muvyrzBZn8Re1VRm8gxKY91hvbVYf4hDnelaAKX5D73lpGiSfAf3/YEdexSMM9+tFqzv3Hl3WqlLYUpmny7+838/D7K1m0ee9B/y+Ypsnzczbw6rebGu3/Sjhs8st/fc+V//yObcWNM5PocOZt2M34j1bXut3Cmwu2xn6/ZW8l1748P/bakQgUpBLU1r0eiisDOO020l1WF/ztDahKhcMm+bsrePSj1bGpSAUl3oT7RKIhvtu4F9hfJViwaW+1cFvV1r2VbN3bPD80D2bTngrKvEFcDhvTbz4Tl8PG52uKGPqPL3hn8XbKfUFyMtz8bVQ/fnFqN9Ld1hu6bza0nhfGlmDWqv2NA7bv8/BsJGQXVwZq31upjorKvGzcVYFhwI0/6QVYlejoFMxPVlj/Dm8dcgwACzcXEwhZL/4V/hCb6/Hv77NIA4ThJ3ahQz3XMRmGwS9OtYJerBqyfib4SqDdUYS6n83eikiQaiVrpAByMtwU0441yadYdyyaWu3xghIPiyKfMg85YH1UbW76aS+WPDicl68/jVEDj4rt0zXvINPxqq6/Apj27eZaf6Zs3FVBNDev2lF7kPrtqws569HPDlvdaipPfbaeHSXWBw+rC0vjHuzqY37+Xm56ZSEFtTVWSSDRSvgnKwsOc2TL4A2EuOc/S3lgxgqmfLOJK577lt++uqjGcR+vKOTvH6/hwf+u5I9vL2+UBj47y7zsKvPhD4X5Ym3dN/c+En9+dwUvfLWRK1/4lqKy6lOHC0u8sZ8rz/7yFNJcDpZtK+GyyXO5ZdpCvl5vPban3MfwJ+Zw+78Xt6r/p3WhIJWgotP6TshpR4+OKQAN+nTjt68u5Nx/fMn0BdU/zT7Up5hivandEnkT82NROf9dsp0x//yWUc9+U2MaV6k3wMhJc7ls8twjqhoeiWg16sScdgzs3p4JPx8AWJ3fTu+Vxdu/O4u5953HwO7tSXE6+NlAa8+gN+ZvwTRNVmwvIVDLdCPZLxqkuma4AQhWeeFdv7P2Tm91sSDferNyfHY7enRIjTVq+LGonO37POwo8eKwGVx3Vk/sB5mKt3JH3T9hXBl58324dT61GXxMB2vMm/ZaG4Yve9N6oN8V7K0MEjbBMCArtXVM7QM4qr31c3aGY4R1x+JXIbh/cfaMH7ZjRv4/HZWZXKdzGoZBZooTw7D+vs4+1vpz++bHmrMCVuwoYU+Fn1SnnTN6ZeEPhfnX1/ubwuTvruDxmdb6qfVV1s7tLvfVePMEsHTrPmavLqKgxMtnkWm/zamgxMNLc62flYYBZd5gtSnqPxaVUVhSfdzeQKhFLIg3TZMH/7uC2at38u/vthz+G9q47fusv7foh4st3SMfruadxdux2wyGnWBVjz9bs7PadhKBUJj/9+na2O03F26tdruhqk6BnLO28f7f+YKhgzYV2lvhZ8Mu65prCsu45sXvCYTChMMm8zbs5q8frIq9D7i4f1dm3X0Ol56UQ9iET1fu5NcvzWfad5t55osNrC8q58PlBczb0LZmLSlIJaho5eOkbhmxF+36rpMqrPICekynVO4bcTzn9LY+SV1dcPA3fb5giHkbduMLto51QU1l8eZ91W7/z1vLME0wTch7fxUTZ6+LPfbFGmuvmOLKAHPX1/4JVFNMo1u4aS9rC8tiHR4HHJUBwOUnH8ULvx7Es788hem/PZNBPbKqrYO5KrLR68yVO7nt34sZOWkukz5b3+jja0u27KlkTWEZdpvBY1cMiN2f6rQDNTvsHYppmkz6bH21dWoLNllvUs7olQVAn8hGset2lrEw8ljfozJon+qkd+e02Pc5HdbLxMpDVCYOtDISvPvmNGyT7+O6pJOV6qTSH2LNmpVWRQpgwJWx1vpZKU4ch1lH1JLkZFrh+N2KAdDuKKjcDaus6YqmafJ25O/q56fUbypkVYMjFalFW4prrL2MTus7+9iO3DrUqjp+uLyQUNjkL++v4vzHv2TS5z9y1/Qfavz8Xry5mDteX1xtGvK07/ZPTfxqXfN8Ml7V6oJSQmGT47qkc1yXdMB6owfWh4KXPD2Xq1/8LvbpdzhscvWL33H2Y5/H3rgfKBw2+e2rC7nplYW1rjNrDMu3l8TGuqIeH1C0ReW+YGwvtB+LymPTdluqCl+QtyPdSJ+5ZiD/uu40OqY5Mc3qa07fXLCV/N0VdEh18ueRJwL7q/5HomqQmrdhD99t3MOIiV/x4bIjO/dtry3m9Edms3lP9bVq0bVYXTPcZKYk8WNROfM27OHlb/K55sXvYzNqrjotN3JcMpOuHsinY8+JTet+5MNVvFbl58XTbey9QOt5FUoA/mCYm19dyE8nfN7kne+iFamTumXSrX3DKlKzVlufnp/SPZPP7hnK74Yew/FdrTdOtXVu+dfX1n++l+duatjA24jo4v32KdbeOv5gGLvN4PrBPQGYOHt9rDI1s8p0r9mrD/4J1IZd5Zzx6Gfc/86yRhvj9Plb+Pnz33LZ5LmxRhMDumXGHr+gbzYX9+960EYCJ+a046TcTIJhk48j7Zk/WN6wH/QfLivg/Me/POQUo9YsGAozcfY6fvWStdns6T2z+Gnvjlx9ei4X9cvmV5F1MGt31r0V9aqCUh6ftY773l4Wm3b1fb4Vlk7rGQ1S1pvP9UXlzI8+Fqkgndh1fwC67KQcoO5BqrjCH5tudWIDg5TNZnDW0VZ1xTXnLxDyQ4+zIbtfLEi1ltbnUdEPrIoqQwQGXmfdOW8ShIIs21Zl4+L+h9+4uDZHd0wlu50bfzDMwiqNQwC+jLVV78zZx3QkIzmJ3eU+Jn2+npe/ySdsgt1msLfCz7s/WPt/Rf9rP/rxGj5YVsDjM9dSUhmguMLP+0v3r0n6ev2uRpm2VB/R7pM9OqTE/r1GX3fmrNuFLxgmf3cFmyJt9N9ftoMftuzDGwjzbS2fiG8r9jBr1U5mr94Ze7PcFKquKVmxveSwU50qfMGDbp7dUsxcWcjPnv2m2tTRujpwSUH0Z1FDLN5S3OSvEx+vKKTSH6JnhxQu7Gv9X43+LF0bCceV/iBPRcLCXef3ZnRkhsamPZWUegPsKvNV65pcH5uqBKlKf4gbpi5gTWEZE2eva/CUufU7y/hsTRHeQLja9HLY/17lJ8d2ZOSAroDVWTb6Qcp5x3fmH784iVEnH1Xt+47LTuexKwZw9rEd8AbC+ENh+h+VgdNu4/v8vW1qLb2CVAvidNhYtq2ErXs9tVZ06sI0Tf5v4dZapwIFQ+HYVK2TcjPp1r5hFanof7jhJ+5/4T+xq/UDpbYgFV2AuGhz6yjhN5VFm60fTrefe2xsGtWYU3PJu6wvdw/vA8DDH6ziv0u282WVaTNfrCmq8YbFNE3+/O4KdpX5+HBZQaPMP/5g2Q7+d8ZygNgbEoAB3TLqfI6rI59QGYb1hmzjrooGrfN65dtNbNhVwUtz8/EFQ9w4dQH3vbWsRc2zLipt+LrAmat2MnH2erbsrcSdZOM3Z/fEMAweHT2A5341KBZG6jO1Lxp6QmGTmasKKakMsKbQuu+0XlZY6h2pSC3YtDdWrTo1ErKi13Q5bIyJrFeq6xuU6LV7dEip0ya8tTnzmA4MMtZy3K6ZgAEjHgVolY0mADKSk0iJVBd3HD0GXO2gcBnMezpWObywjhsX18YwDAZHp/dVWZ+4r9If+2R5yHGdcDpsjIi8CZw423rDd80Z3bmkv/VGKdrwJLrmanMkjATDJrNX7+StRdvwBcMcn51OustBcWWg3ovLvYEQD8xYzqMfrW7Qc43+LMnNSuGEA4JU1ZbtCzftJRAK88Ss/VX+2sa6cff+DyuenLUej796Ve+5LzcccWXd4w/x3pL9IXR3uZ+dpbVXYbyBEBc8+RWXTprbpFWy2lT4guS9t5Lva3nju2DTXu54/Qd+2LKP3722qNbX/qnf5DPqmW9qtOfffsDWK7W9wf5iTREvzc2v9ed+YYmXq/75HVe/+J01HbiJvLXICsE/H9QtNqX2uOzqFdGX5+azq8xH96wUrj69O+1TnbEPUlbtKOXW1xYx6plvGhQm8ndbf16uyEyBysi/0fVF5axt4PTvqsH+wOmV0fcqg3q055L+1odqM37YzuY9laS7HEy+ZiA/H9TtoB+o2mwGE35+EukuB4YBf7m8L7841apSRbv8tgUKUi1MdCpMfdYjHGjWqp2Me2sZo575JvYGCWDjrnLW7yxj3c5yvIEw6S4HR3dMrVKRqnuQKvMG+DbyQj38xC6x+6MvaOt3lh/0h37008HoD5xEEwiFqfAFY0H2/BO68KszunNs5zR+f35vAO4871iuPasHpglj31xChT9E53QX6W4Heyr8NT7Jem/pjtic41Jv8IiaEhSVefntqwu54/UfCJvW3220VXaK087RndIOc4b9Rp/SjZt+0ovJV58Se4P+ZR3ndM9dv5s1haVW6I9MK5y9eicfLivgszVFvLlwa4M+/WwK2/d5OO/xOfzs2XkNeqMT3VD1ilO6sehPw7mgb/WKRO/O1ov0up1ldQ6PVUPPh8sLWbh5L6ZpVSw6p1tTzIYe1xlnpAPjuki167SeVsj6ae9OOGwGw07oQv+jMrAZkbUyh9ijKCr6s6uh0/qifto1zISkFwAInvwr6HoSQJWKVOtZHwVWyIm+mdriT4OLHgPA/GI8KxfPBYi9yTgSP4mEny+rLESf++Nuwib07pwWG8MlkU+XwapE/W7IMZx/QvVugQd+ygzw7pLtvBhZW3X94J6x4Faf6X2V/iA3TF3Av7/fwj+/2tig9blbI9+T2z65WpAKhc1qazAWbS7mPwu3xcIg7F/zeaCq06YKS71Mmbd/veqqHaU89skaHp+1ruZm0fUwc1UhZb4guVnJsSm0hwqhy7aVsH2fhw27Khr8Rrk2W/dWcsPUBdVC5oHeWbyNqfM2ce3L82NTgKOKyrzc/OpC/KEwKU47lf4QN72yMPZ/dP9z2MdfPljFkq37+O+S6t0VoxWp5CTrQ4bv82uGi1JvgNv+vZi/frCq2gyNqr5evwt/KEyJJ1AtzH2/cQ9Pf7a+Uaa+b91byXcb92IY8LMqU3CPjwSptTtL2Vvh5/k51v+Pey7oE5sa3e8o69/oF2uLYuGkaoCp6lBLH6LdNKPrkAF6drDew723pP6dK33BEO9EKtAA8/P3xD6sDYTCLN1q/dsc1KM9p/fKolO6K/b45QNzSHE6Dnn+ozKTmXH72bx161kM7N6eUZFxf5+/p0V9GHok2kyQevbZZ+nVqxdut5tBgwbx9ddfx3tIDbI/SO3/QTDt202c+rfZBy15b95TwfiPVlfr/BPt5FLhD3Hdy/OZ9+Nulm7dx0VPfc2lk+fGWiAPyM3AZjOqVKRqf3HwBUP8Zsp8Lnrqa3732iL++PZyAiGTozumcmyV9RS57VNIddrxh8JsPGBfCNM02RL5IbCt2HNE0xc/X7Ozxewb8tTs9Rz3p48P+4lsUamXwX//nJMenok/GCYr1UnPDik8fHk/Zt89hOxIgwHDMHhw5ImcdXQHoj9nLujbhSF9rPVnn63e/0ISDIV59KM11a6zYVc5RWVePli2o9Z2pQcTDpvc9tpiZq3aicNm8Nuf9uK5X57CLUOsfX0Gds88aBOC2jgdNv408kQuGdCVc4+z3qDVpcvQ/Py9/Oql7/nVv+azuqAMT2StR4knwN8+3P/p9ZOzD90S3BsI8fHygiNej/ePT9dy5xs/xKbWbCuurPaJ59Rv8in3BcnfXVHvPXf8wTBfRCqO15yRS6qr5ovS0Z1SsRlWSC6q4/qBqkFq3o+7YxvtRqf1gfUCd+s5R1e7TrTD3nHZ6cy97zz+8YuTSK4SoOsyvS96TN+culcvaygvoseH13CMrYAdZhb3F4+KNVpZGgnW2Rl1a8jQkuREQsyOfR446WrocxFGOMC/jL8yusOWWAg6EkOP64zdZrC6oDQ2DSgaqoZW6QY4+JgOsanFPxt4FLlZKQzt0zn2fzwzJYlz+uw/Prqo/uv1uykq83FUZjI/O+Wo2DH1+WDjD28uqRZ2Fm/ZV+/nuSUyta97hxROiMyE2Ly3kgWb9rKvys+9BZv2xppq/PIMa+3mqh2lB52KGP3zir4xffGrjbH/92/M398U4mDrmp6YuZb73lp22A9TPl5uvf5eftJR9I9U+GsLdgBLtu6forl4c829g/5vwdYGvRZ+t3FPbNr2pM/Xx17/o+uVohZGrukLhrnxlYXV9i+avaqI4soAvTun8dk9Q+jZIYXt+zz87rVFsZ+7/mCYcW8ti3WBPDAoRT/AvbCv9YHsup3lNZqb/PeH7bHXgVfmbTro85lbpQoZXboQDpv8fvoSnpi1ji8aoTHDpyutv7vBx3So1hDmuGzrfdvawjL+OWcD5b4gfXPacemAnNgx/SI/D6s2F/lkRWGNBlJ/enc5p/xl1kGrVaGwGQvxN/20F5f078r/XHgc91xwHGBNX31v6Y7Yh3MHKijxsKzK/qFgffC+t8JPl3Yu0l0OSr3BWBBdE3n9bed2cEynNOw2g4v77f+gL7oW+nCO7ZzGoB7Wa8+Abhk4HTZ2l/tjH1wEQ2Hy3lvJi19tPNRpWqw2EaTefPNNxo4dywMPPMAPP/zAT3/6Uy666CK2bGl93XD6RhbzR9+MrNhewsPvr2J3uY8Jn1R/wxwOm9z5xg+88NVGbnplId5ACNM0Y58M5mYlU+kPcd2U+fxm6gJ8wTDeQDjWUjm63uWoSJAqrgxQ4gnE9piqulh5fv5evli7i9UFpXy8ojC2wLBqNQqsUm5t66T2VPipqDJVouri+a/X74otAC71Bg45f7i4ws+try3mgRkrDrkAf9WOUn4satrKVzhsMu27TfiCYf6zcP+nS0VlXm6dtqjadIgJn65lV5kv1ontJ8d2jE0NOJDDbmPSNQNj3dtGDshh2AnWn3XVOczzN+2lsNRL+5SkWKezDbvKeWDGCu54/QcG//0z8t5bWacK5/QFW1m4uZhUp50P7voJD1xyIg67jbvO782jo/vzt1H96/mns1/0Ddy8DbsPuwFxdCHq7nJf7JPvqL0VfmyG1R1y6dZ9h3xxfOi/K/ndvxfzl/dXNXjcM1cWMvmLH3l/6Q7+9O4K/t+na/jJY1/wk8c+Z9Jn6ykq9TJ9/v6/97fqua7i2417KPMF6ZTuYmDuwTvcuZPs9OyYCtSt4UQ4bMa6ZmYkJxEMm3y2pgjDgMtPzql27O+GHht7Q3Baj6xqj2VnuEmOTEXb/4nr4a+/4kgqUp598N3zMPlUjKJVeN2duDb4J/6z1scvnv+WdTvLYm8Somu3WpNokNq+zwuGgX/kJFYax5JllPP/PH/G+PQBKD2y/ZCyUp2xnwUfLi+o1va86v5UDruNey44jkE92vOHyHTijJQkTo2sk+vTOZ1O6S5Oys2kQ6qTR37WPxYwwKqcuxz22Ac8i7cUs7OOFctPV+7EZhBbB3ewgHAopmmyLTq1r30KHdJcdE53YZrEQtMp3TMB2LCrgo27K0h3OfjjRceT6rTjCYTYsKvmmsPoh3+3DDmGnh1SKK4M8Mb8rVT6g7F1Y1Az+BSWeHn68x95c+FWvjpEQyCPPxT7uxjRLzv25vpQP5+jFQHYH2qiNu+pYNzby3hgxopat844mKJSLze9spDiygCGYTU5+r+F23j4/ZWc/JeZ/P3jNbEKTnSNTOd0FyWeAL94/tvYn/Gqgv0zK7pmJPOv604j3e1gwaZiHnx3JWA1JVlTWBarzHyfv7daiN0Wed3vd1RGbOr4zJX7X+Os/Zr2v5ebt2FPbC1S1WOqTudcEgnmS7fti01TrW3KYX1E35ed2atDtfv7dEnDMKxpmtG1Q38Y1qfadLe+kYpU1eDkCYT4qMraYX8wzDuLt1PhDzF2+pIa2wrs2OfBHwrjtNvo1TGNZ355Crefeyznn9CZ5CQ7W/d6uOuNH7j1tUWxqdxRpmnyq399z8+enRf7tx8IhXkqMrV3zKm5nBZpRBQNcQsjSzBO6dE+9lyuGNQNu83g9F5Z9Duq/h+WuRx2To6894zOmJq9eidT523i0Y9X1wjyrcGha3KtxBNPPMGNN97ITTfdBMDEiRP59NNPee6553j00UfjPLr6OTlpCwOMDdiLDMrznTz31nJONCvBAP8WWLXQF1tY+9mqnbD9RwYYQAG8+MYORg/qRoeSFWQ7bEwZfSrPzymwfsBUwonJDsq8QQgBBpyTkgTbKmgHXNx+O9v3eXjrv5WYWIsJRw7I4bc/tT6x3r5iCycbW+h3VAZn9MqioMSDNxDm18cWw7aF1Z7DhRlbCRmFFK2ugI77P/HeVVjKycb+TSB3rQ6BrSsrC0p5YsZycrOSeeqqgTz14SoWb97Hg5eeeNA3l18t3U7f0CYwYPty6OHpwKcrCji9Z4dYVWdXmY+81xcTDIe5sG82lw7IIbud+6DzeA+qjiXnH4vK6F6xgu4G7Fq1BXNgOQYGn83fQtGqbby39wfO+Fl/1heVkr94OYMM+J8Lj8NuMzghuwK2fFfruTsCH41KYtu+AP0d6ylPC3KGYx2hXWG2LQ3SLTOF1d9t5FSjkHO7dybNtQe/sQPfhhK8G3ZxqhGEAKz4diUrvoXMFCe57ZO5sG82Zx5d9YXApLjSz8yPl3CaEeL603pyvG8FRD7kTAKu7gJUbIO6bD5/kD+74zEZkbaBvRV+Vn8XqjU0rN1Zhn/DCk6P/DUVLV/NGQYc3TmVjUXWxQd2z6Bb+xTeX1rA2+9s4JSf9Sczufq6km3FlWxevIwzDNi4cDUFR++0Qulh/l5XF5bRMc1JpzSX9eZpxjLOtFkvZjuWrGIHcKYNqIB5ny1m4Zc2+oXCpKckUeYNULpqNeWr95HmrtuP1vXf53OWbSfnd++CbdNXtR53adp65u8ppmx1OWFbF95evI19niC/GdwTh83AxGTzHg87S73kZiXTP7AMZxJc1jeHtxdvx24Y/G7oMQy2rYAq2TQZeOmcCt5etI1f9TCglvbDw5zbKLZtw9xQAN1q/4DKEwiRs2chXW1wciAJNtSy3scMg7/cCk7efVZ42LnS+v8QjryQZvfHfcXLPFbZiVumLWR1QSk/f24eobDJT3t3bHAji3iKVv93RN48fpof4H88D/Bc8vOcG/4evnvG+sruDzmnQPuekJIFrnRwpkNSsrXoEAMMW83fR27/Kncv+37cyLofdpKftYPs8tX0dNo43dUFtu//+/tVLvwq1w0Vq2P/t2/otY/KTRu5vHMAti/mP5e6CISSSC1bxXU9i3ln73ay27n5edds2L6bbsCVObtYVVDG3Dlhrjil5nTAqj6cuZb+xm7O6dOR03s6KM/fSNmGItjui7yxLLQ29TyrBx1qaW9f7g3S078ODMj1doHtNi7uUMCi8n3sXLOR/gZc37MXncsKrNAKXHp8V9L3LOfSTjtZuaOUrSvs9AlWn8roLFpKf8PHAFsq95/kZfIXG/n6y21kFufQ078JIj+XKvL3wvb9MziWrtxJf8P6jzX/mxLOSz/+oONesnEPxwbX07mdi75swHCX0t/YSHDrNthuP+j3eDcvpL9hVaLL87fD9v0/w75dsJX+hvX3+emsUk660KpMrCwo5bPVO+mY6qJftwwGHJWBP2Q1IDm+azqvfbOJXv5d9OmSxkX9s3nqsx/5fu5mKv0h+gHffLWRiUVLuH5wTzKLV9LeBv/6+alMmbuLuT/u5r8fbeAnqf+/vTuPi6rc/wD+OefMPgPDMizDvgoqKAJq4IriSql5UzNztzK1NNtvZbd9sW67duuW2aZtVvdnZZK5ZZkr7ksiKgqKys7ArM/vj5k5MgLKIDho3/frxesFZ86cjWfOme+zfJ8uqDt+FMlcNTKUUuCUAXEAPhoswdMrD2P/9qM4EleOrb8fQjJXh7t6xeCTzcdhMFpRsFuJOEcrt6JkF5K5anRiUvhGGvHRqWM4sO08EJ4EwP5MkJ7ZjTQJh86hWuw8UY7cX2qQkBUnXodj52ugrzkIveP/YzheBJyyIe/PY0jm7AGw4VglcMr9itXDZ6pRbbQgNcIH5hM7kcwZ0FMhd9mWCsAgbRGKK+oAs70SaoD3KeDUheA7hTeJZQSwB/o7TpQjb/M5jNXbKykPnCpHrPkvezmrAhZ9fhqPDe8ovudcYTmSuaMI0yogFO902f+cRHslkzMwPrDNBkmYFk9+vw9j0sOQFKqF6twedAJwNI9DbKcg/JB3Coqzx9BLKcGdsQHINZ3BWe4Yig+UgcWUI29zHpK5GtykswGndgAAunDAhgk+8FEJ4jJ33RhwGrXHT6L4QDUQcg4b1+1FMmcPyg9uX4+eiVGALu7SG2lHOHaNd1I0mUxQqVT46quvcPPNN4vL586di7y8PKxfv77Be4xGI4zGC11kKisrER4ejoqKCnh7e/bhzBbGgatpH2M/CCHkqtMlAD3vBNKmArz9y+WWglKMf3+zWJP98bQeLt3OWoPJUId3nvsYADD7sUmQqRStun0A+HbnSdz3xS5kxPhj2Z034NEVu7FsSyHu7BONfyYUARteBU783ur7JYSQa0bsQGDiCk8fBSorK6HVai8bG1zzLVLnzp2D1WpFUJBrF7OgoCCcPt14P9EXXngBTz311NU4PLdx3iE4W8e7jOvwVckgk/Bit4lALwVqzVZU1Zkh4XkEectRVWdxmUzNWyGFt0Iq1qA5VdVZUG4wQ+A5cV4Tp/M1JhiMrt2ugrQKSAUOp8prwWz2v2WXmbvFxoCT5QaA2buy2BgDwKHWZJ8vguc52GwMcqmAIG8FTlfUwegYc+KsTQEAqYSHr0qKkkojOM6epYvjOJypN8miQiqA5+yZaxg4KKQ8grwVOFdtRI3RCpVcgM3GYLTYXBojBJ6DRODAGKCUCdAqpeABMNizFAGAWiEFB8BsZThXbYTJYkOQtxwWG8PZKiMEngPPcTBbbeA4Dowx+Kll8FZKcfy8QRy/46OS2TO6cRzCfVWQuDHO6GJVRgvOVhkhkwjQeclxqqwWPAdE+qthtFhRVH7h2qhkgtg10MYYTFYGg9GC8lozGAMkPAd/jQwcgNOOrFFhvioxG9AVaaTLYp3ZipNlteA4e3eckiojlFIB/o6kAeUGM85V2//XYb4qnCwz2OfWAodonRomqw1Giw0+Svv/xWS1obDMAJvNnnjAV2XfTo3JIl6HYK0cpyvs5xbhpwLP27tVqWUSBHjJYbTYUFlnhtlic+lyEaVT42RZLSxWG/Q+SmjkElTWmiEROKgdg2ttjKG0xgSLDQj0lqPcYE9rK5fyiPRTX/zRa6DWbMWJUgN4nkNsgBo8uEavG2DvQ36i1ACT1bXeSypw4DgOJovN5bMD2Lv16VtpHJHJakP+2WpwHIcOQV44V22EXCLAWylBSaURVXX2wfNljtTYWpUUIZfbt9wLUGgBhQ+gCQACOgJh6UBAQoNVe0T74cEhCXjxp4PoqPdGn/grH0vkCc5rUuQY07rT0QUpNdIPiOsExGUD1SXAsY3A2UNA2TGgrgIwVgOmKsBcB8Ax4RyYvWWvwe9256qNqKs3ls9HKYWmkTF4rcHGGIor6sAA+KtlqDVZYXB04fVTycRsheW1JlQbrVBIeOg0cjAwnK6og5XZxxnYYL8vgQEWxiDhOQR5y8Fd9GmqNVtxvsYEucAhwOvCc4yBwez4jMgEHgaTBaUGs7g/AOIymcDZnymObZutNpypMoIHoPdRgAOHGpMFZQYzBM4+5tNHKcPpSvt5BnvLIeF5MMe52wAIHGBl9mutkgkocXTl5jlAJZPAYLTABiBAI4NcYr8mZ6vqYLQySDhAEHjxWQjYH98MgJTnAM7+LJLyHMw2BrnEvi7nOFej1QaNXAKNXMDpSiM42BM4GOp1pXZuD7DPT+e8Z1bUmlFltEDggCBvBarqLKiqdz+sv26N0YKyWrN4rvWvl5PJYkNJvYQTzvdX1ZlRUWeBUsrDXy0HYwynHM9zvVYBgeNQUlUHk5XBRymFhOdwrsYEDvbnv1TgxPKiU8sgl/CoNllQY7TCYmPQKiUuv1fUWsRz5mDvnniu2giJwMNHKYX0Mt9l6sxWnHN0r3Mm0xA4e4vTxWWystaMSqMFPOyv843cy52fSef5n60ywmi1iZ9N57n7qaSoNlrE32USHuUGM6w2BrONwUsugVbZeGu/yWpDiaMcg4M4Nq3+/14u8FDIeFTUWlw+BwwMJVVG8TMEABqZAB9V6yb2qX+/UEh41Fls4B3HKhU4BKlbt5KsrV3zgZTTxWNNGGNNjj959NFHMX/+fPFvZ4tUu3DXBrz3w368v9GeLSjAS47f7s+CVCLghc924Ic9xegR4ocDxZWoMlqwaEIqhifrobExzPt4mzjfz8o7ezfaf1VisuK9Hw8gM9YfIcl61xerjbjvk+3oqPfGqfJa/HqwBA+lJSC7YxAGv7YBSqmAPfMGA5e5+fAA7nlnE3YVluOujjH4YGMB5BIeN8T4Y83BEoxMCcH3eUXw4iTYPHMgej+1Whw35MIEDIwIxJpz9nOSW3lIeA41Jiu6hGmx+2QFtIIUPAeUmcyQ8BwsJoYHeyfg/Y1HUW4y45vpGUiL9IPZasOWglIs23ICvx4sgaGuXsBoACJ4FXK66JF3ohx/FNv7Bw9LCkaQtwJfbC0UB7oGGeUwWxlKTRf6LnMccFffWLy7Ph99InW4f3ACRr2z6cI1t3Cw2BiGJQVj8e1pl7x2l2OpMWHQc7/AamLoGxaADWfOIqeLHu/clgpDtREDn/1FXHde33jMy+4g/k8Ujp9TJytw/1d59kxt9YY0TO8dLU4c2BbkjGH26xtx6EwVfCqlKDeYIZPw2PvAEOwrqsCYd/+Axcbw1IjOmJwZhec/2oo1B0sQ6qPEpnsHQAJ7FwYnGYDf/ziGJ77fh1SND1bM6oW8wnKMf28zas1WTMqIxNMjk/CI43MzWh8KL4UES4uOg6sFVk/tixkfb8PxeklWfFT245oQHoHPik5AIeWRd89gcFIBF3+aeNi7XzpxNSaMeGENjDU2fD0xQ8xU+NOeYiikArISXbsRvfbjAby34ShGpoTgjVu7XfLaSQD4G8yY+8VO/H7kPJ64qRMWrT1i70oCIMhbjh/u7YN7Pt+JPxz9258aar+OrUGwMYxasApGiw2PdE7Eiz/Zx2tG+atwzHH9RgWEYEtBKYpMdfjvrekIuWj85JW6q28MEoO9kBDs1eS9vb1zjkctLq9DVZ1ZHPPWzTGeBwCgCQSS/nHF+zqcfw5Pfr8PZqsNwVoF3r09DWjlL0ROPIAXPt+BlbuLgYvyodzaJRwv/qML6sxW9Ht+DSqMZnx0W3f0TwgEB+CpT7ZjlWMQf7C3Ar/c3w9VdWYM+/cGVNVasHJGbyQEeyF3/xn0TwiASibBx+vz8cJPBxt8djjY7wtOSsZw5PBZpEb6Ao608kUl1cj+t72nSqAgx1MjOmNYsh6/7juNuz7Zji5hWvxvTm8AgBoAM1qglglimbvzzY3YV1SJd4ekYmiSHr/9dRYTP9iCQC857uoXi2dW7kewXIEkf2/8UlJyoYLDca8N9lZg0/0DxEm6TOW1mPTBnzh61t63UiHlMaFnJFbtPS2OGx6bHgaZhMen9RIVOK9zThc9bkkLw9QlW6GBBHf1jMGruYfRM9oPX9yVgdytJ/DYt3sR6qvEB5O7I/9sNfaeqsCdfWPEawKDGe/nHsI/0sKgD/OBsaoOA15cC5MjccZLNyZjnCOxQMm5GmS9sk48jG4RPvh2Vi+X/7kMwH3v/o6tjrnMvpmWibRIXxw5UYabF/0OLS/F9nuzUVhWi6xX1kElE7DvviEAx+G7Dfl4/seDCFUqARtwyliLqb2i8ORNnQEA73y3B59uPoEJKRGoqrPgf475zCQ8h9x7+uG13MP4364iqJmAGpMV2R2D8GfBeVTVWZAdE4RfztnHX0nrOET6qxGjU+PFf3SBXyPdSJ9asUdMMiIx25/jveL88dmMGxqse/xkBW5etAmz+sdi/uCGlUEAsCnvFB7+ZjfeHZOG/gmB+GFTAf71f/uRGuSD/0xMR4/n7M/vbQ9m461f/sInm49jevdoGEwWLKs3FvfZYUni/IIXk9gYRj73C87XNJ29Vy0TkB7mh/WHz+Kx4R1xhyPpEAfAVGrAiLd/Q5nBDJ4D1s/Ngo+fqslttQQP4I43NtrH8jrK8Vvju+GeZfbuijuGDIJf029vd675ZBM6nQ6CIDRofSopKWnQSuUkl8vh7e3t8tOe1M92NSUzSqy5emhoAqQChy0FpaiqsyA+UCPOBcLzHP49tis6h3ijZ7Sfy4Sa9SllAp4ZlYRhFwdRAPw1cnx9dyaeGZWELEdygHWHzooDgbuEaSG5TBDl1MeRfeo/64/CYmOoMVmxxhHkDUgMhFTgUGW03wQtNoYQrULM/qfTyBEbYB9c73xPfKAGRosNNSYrIvxUeHVMV0h4DhW1ZpQZzFBKBTw7yt6n+o01f6HcYIZGLhETakgFHr3idHj7tlTsXDAIy+64AYsnpOLlW7og2FuBE6UGLF6Xjz+OnodSKkAqcPhp72l89Psx1JqtyIjxR0yAGmcqjSitMSEmQA1vxziYrmE+uMUxg/efR0vFrHrOjFjOIHFs9ysP1n3VMnGAtjOpyPAk+//STy2Dj+pCLVV6ZOO3ouQwLf7vnt64d2A8QhwtVhF+KnH+qrbCcZyY3tmZVctksWFfUQVe++UvWGwMOcl6TMqwPyCcaVIv1YUr2/FlfWdhOY6fr8GMpVtRa7aib4cAMSh0Zh38364ifOFICMIYMGXJVhw/b4C/WoYHhyTg8xk9xTGBzodnr1gdFNLGxy5czFctE1PSLnFklioqr8Wsz3fgjo+3ucwzxRgTM0ANrjcP26VoVVJ8NLUHdv9rMCbeEIl7BtjT5XMc8O+xKdBp5HhyRCdxElVnut3WIPCc+Pn878YLKaGPnTeILazf7ypCUUUdlFIBvdugxYjjOPRPCGy1VjZPCPJWQOA5mKw2/G9XEWwMCNEqEOTd+t0IM2N1yJ3fD+sezMLyOzNavVb5YlN7RUPCc5BJeCSHajE7KxaAPcsfYwy5+8+gotYMvVaBPvEXPtNpkRfGSz5+Y0do5BLotUoxo92+ogos/f0YZn22A09+b09gcKJeoolLcZYZ73pzc8UGqDGzXyy8FRKUVBnx5q/2cbvODGLRjsQuThq5xCVwdyaI2HvKPpjfWXnZPyEAt6SGIcJPhdOVdeLk6Z9M64lnRiXhtp4ReGx4R3x+R0+X7KehPkp8PTMTgzsFYWRKCHLv64cnbuyER4dfGGeVEu4rZtyU8BzmD+og3utvSQtD/w4BiA/UoNpowZu/2pMHOJMTjesegS2PZSP3vn6IC9RgSOdg3D84wWW+Mq1KiqdGJonPy0AvBUbXG+uWGnHhfxTlrxJ7OgBNJ5W5s6/9/58Y7CUm/kgK1cJHJUVFrRnvrs8XU5+H+ijFa3xT1xAopDxOldfiVHktgrzlLs+mgY7zWrm7GP+32x5EPTIsEWvu74donRop4fZ91ZiskEt43OmogAHsSQ0A+//YbGU4UlKN1fvP4N+5h8Ttn60y4rkf9uPwmSr8erBehlzHc7yp71bJYVocfGaomLilMSNTQnHwmWHo78hiOyxZD46zZ61csqnAcY28odPIxfPYeaIM6x1ZN3vH6TAgMVCcGLcxPM8hI/bCGOjR3ULFXiYZMf6QS3jUmKzY6EiK0uuiTKHhfiosvj0NXnIJbusZgfBWDqKcxqSHQcJz6B7lizduTcFNXUPQwTG3YVNzlrVX13yLlEwmQ1paGnJzc13GSOXm5mLkyJEePLKWSwn3AccBapkEt/e8UOsQ6a/G5Iwo/Pc3+wduzoA4l+QJPioZVt7Tu1Vqa+0f9H3YfrxMHMhf/4F3Ob3jdXh77ZFGX4sN0CA+0Av7iyvx6mr7/BU3xPqjR5QfHlmxB9N6R+FMRR3yHTV0gV5y/G9Ob6zaV4zYAA2SQuxp2+MCNeJ8VN0i7MHMu+vzxbmqbojxb7TpXi4RXG40w5KC8cPuYuw6WQ6LlWF2VhxKDSYs+H4vQrRK3NYzAv06BOBAcRVGLdoEs9WGV8d0RWWdBY9/twcz+kQjNkCNxGAvHDxdhXcc5z05Mwrvrs9HndkGvVaBvvGt01x9R98YHCiuRIcgLwzvosdQRzpSjuMQG6DB9uNl4DkgpX4tdyPXYP6gDrgvOx7Hzxvgq5Y1mnq7td3cLRQvrToIs5WJrT9/HD0v3jjnZce7PFDD/VTiXCuN0WuV6BzijX1Flbj70x04V21CtE6NxRNSxf99lzAf9Iz2w58FpbDYGAK95CipMoq1vfcOjBdbbrwUUiz8+ZDYHaL/Ra1IlzM5MwrLtxZi1d7TKCqvxbbjZWCObkrrDp3F0KRg/HqwBP5qGY6fN0Am4V1SUjeHM7Abmx6GwjIDYnRq8WGYGOyNV8Z0Rf7ZapcvP62hQ5AX9hVVinPE/HN4IvYVVWJc93D8e/VhMaNY3w7NDz7/bqQCj95xOqw/fBav/Gz/8napz+m1JC3SF3ufGgKpwEPgOdSarHh/QwFOldfi6LkafLntwkSm9QOJgR0DsXD1IfTvECBOCAzYv3T/nn8ee09V4rgjcPq/3UV44qZOKHR8AQ/3cz+o5jgOjwxLxMSMSPR68VccPlOFWpMVBWcbD6QulhSmxRfbCpFXWI6qOjNW7LAnFMjuGAStSoof7u2N5388gGVbCjGzXyx6x+suW7Hgp5bhvUnpLstykvX4vlMR/sg/j/4JAdBp5PgrqxqZcf7IjNVhbHo4Dp2pErMmzugTjYcd05IAcJkTrLHWlsuZ0Sca3+w46ajYvHAP5jgOGTH+4txDnfSNZ24b1CkIn07vidhAtXhPlwo8nsjphPu/2oXXf/lLPHZnSy1gv6eveyALq/efxvbjZZh4Q6RL0JcR4w+VTBCzu2V3DMTMfrHi6yNSQvDzvtOI1qkxNzseeq0SCcFeYuuYhOfw3exeKK0xYduxUjz4tX2c4pTMKMQFeuG5H/bju7wifP7nCdSYrFDLBChlEvG+d6kkN82taHYK8lage5QfthSUitmUnRVrzlbqnYXlYMw+Ae9/J6c3697aK05nbx0GMOGGCHtPjD+OY1z3cBhMFuw6WQEbs3eJdwaZ9d0Q44+8Jwe7Nd2Ju6b2isaUzCiX76sZMf44fKYafxw932hlf3t1zQdSADB//nxMnDgR6enpyMjIwHvvvYcTJ05g5syZnj60FonSqfHh5O7QaeTQqlz7wd4zIB5rHF/EbuzSMP1va3V5CfdTITZAjfyzNeIEeO58MUuN8BX7FGd3DMKag2fE7vuR/ircMyAOd3+2Q7w5ZcT4Y0x6OPp0CECIVoFVe09jqWPm6+HJeihlAm7u5jpZZacQbzGQ6hHtB4nAY86AeDzw1S4AQO841xSlTfFSSHFrjwjc2uPCnAhRUGPlPX0a7G/F3ZkwWqzo5rgWGx8aIL7+zKgkjHn3D/FLeO84HfacrMCagyUYkx7eajelfh0CsP2JQY2+FhugxvbjZeio927WeAiO48TU2leDv0aORRPScLbKiDKDCQt/PoSPNtnTxwd7K1zmJAMg1spdysDEQOwrqhRTfs/JimsQFN7ZNwZ/OuZhe/KmzvhwUwG2Hy9DmK8S4+v93zuHeMNfLRO7RQxwM5DqqPfGDTF+2Hy0FF9vP4nSet0r1hwswR/55/HFtkJxKFSfOF2LA1iJwOPhoQ2zg41ODWtk7SvXIejCA9dXJcW0XtHiF4fy3mYxkGpuC9vf1fge4Vh/+CzKHK2yTWWwvBbV/5KnlAlIj/LF7/nnsWRTgTjPz5g015b5mAAN8hYMglwiuDy/nC0du09VIL/Enq65zmzDyl3FLqnPWypEq4BOYx8zs7+4oskWqYv1dKSI/u3IOcxbnoeKWjNiA9RiS4mXQooXRnfBghs7i9MHtATHcXj39jTYGBMrhR4YcqHLWLBWIWapBeytHQt/PoRz1SbE6NRuTZ7emLhAL/xvTm9o5JIG2W5viK0XSF0isGgsgBydGoo1B8/gxz2nxR4nF7fyBGsVmJQRhUkZUQ3er5AK6BOvw8+OFOmzslyzu+k0cnxxV4bLMuc8TwCQGaeDVimFVilFtE6N1fvPIHf/GTz3wwE8ltNJ7CronKqlX0IAFFJBDJibChxbKidZL84RektamNiDIlqnhlYpFQPGnjH+za6gsneBFRDmq0S3cF90DfPB+J4RSAz2xp8FpeJcfJmxuiYzGbdlEOV08ffVjFh/LP3jeKNzprZn13zXPgAYN24cXn/9dTz99NNISUnBhg0b8OOPPyIysvE+pNeCrMRAsWtDfVqVFGsf6I+v785s84J+V99YcUBjhJ8KPWOa32tVJuExOysO3aN88cLoZHGiST+1DF4KKYYl6/HA4AtN4M503M4m/p710nMPb6Jmov7Nt4fj4TYqxd48LJfw4oOtNSWFasWJ5S7WPcoPt99g/1IuE3gkhWrxrxGd8c/hiZjVP7bR97S2no75Ldri3FvLoE5BuK1nhFjj5pxktk980/NqXUr9cw3zVWJESsMKhqyEQIxMCUFOsr0Fb8GNndA1TIsXR3cR5zcB7N0inA//hCAvl0kXm2u0I+DP3X/GZfLKXw+cwTeOeaaclQpDOl87QYez2wUADEgMcql9HdwpCB319i4p2e247LUHAxKDoNNcaCG4XlqkGuPswvfp5hNgzP4Zj/BvGPyoZJIGzzNnF/ddheUuiWBe/vkgjp6rAcfhioIFjuOQEm7fx+9HziPPMVHp5eY/6xDkJXY/dgYC9wyIb3D8VxJEOQk8d9mECE4KqYC7HN3pRqZcOgV9c3XUezfatatXnE6cz6+xFo1L4TgOz41KxsDEQAxPDsYbt6ZcsjtcY5yVyH3idc2q4E2oVwk09KJ77qPDEiHhOaw9dBZj3v0dNgbcEOOHCMd5D0vSi71JZBIeMQGtW/F4S1oY/pEahpf+kYyFt3QRh3JwHIeu9SoS+7mRpVSvVSJ3fj98eVcGeJ6DROCR6Agm65fv1pgAvDVlxunw0dTu+ObuTE8filuuixYpAJg1axZmzZrl6cO4roztHo6x3cNhsdrAc1zz52BymJ0Vh9mO2qJb0sKw8a9zLjfd2VlxkEl4CDzf4Gbtp5bh8ZyOOF9jEieIvJizJkwqcGKtrkTg8dXMTFTVmRF2BbWVLfXw0EScrTKiS5gPFFIB4X4qsa/41TA6NRQJjgH57V3XMB8IPCemtG7puJrkUK3YXW9mv9hGv3jwPOcyKL1ruA++dwwov9j4HhH4ed/pFidqyEoMBMfZJ+10frlSSHmxhrNntB9GpoSisMwgjgO7FtRvkRrUybWlTiLw+HZWJmyMQSW7bh4rbUIm4fGPtDD8Z/1RCDwnjrm5HvWJ1+GlVfbfUyN88OrYrs1+b7RODaVUEBP9JIV642BxlTi+8r7sDi4tMi3RJcwHvxwowYebCmCy2BDlr3LpxtaUh4cmYt2hszhRau9ae1M7mRx6Rp9o9IrTuVR6tIVQHyXem5gOpUxoUTdeX7UMH0zp3uL939hFDx+V1CXQuJSEYC/IJPYMi4MuSoITE6DBwjFd8OBXu8VW4n8O74gwXxXyCsuQlRCIaqMFaZG+SI3waXZg21xquaTJz0VKuI84FrpfB/eej01VAtYPpHq1s+yn3gqpOH7sWkJPPHJZ7vb7bcyIriHgOA5d6mUS5DjukkHGjD4xTb4G2FuAbu4Wig5BXi61f85me0/wUkjxn4npl1+xjXAc16LZxj1BLZcgMdhLnC2+pbVjziBpZ2EZbm2FhB43xPjj4DPDWvz+AC85uoXbJ1u02hh0Gjn6dtCJXUNmZ8W1+hxIV0OojxKJwV6oMVlckgU40bio5ru9ZySWbylEz2i/Vmm5aK86h3jjzr4xEHgO87Ljxdr25hB4Dh31XtjhSBE/uFMw4gI0+C6vCHMHxuPegfFXfHzOL+LOL9CDOgU1q1VcLZfg7du64bkfDmBudsPWKE/hOO6qTVSd3cpZOd3BcVyj96CmaJVSfDSlO+CYRuViN3cLQ6CXAg99vRtZiQFi0o0BiRe6a3qilaR7lL2COMxX2awAvzmSQrXISghAoJeiRT0uSEPX/IS8raG5k24RQlrXgu/34uM/jiMp1LvBmLRr2eJ1+XhplT1F+OBOQRjXPRzTl25DlzAtvp/d65pN32222mC1sesyaLoaE/LWV2uyOlrkr82ycDU47w8A8PkdPZEa4YviirrLjmNqrrIaE7o9kyv+/eVdGWI3cfL34/w63F7uz4wxfL7lBJJDtWJwR66e5sYG18UYKULItWlMWjiCvRWY1iva04fSqup3fUuN9MXAjkH4ZHoPfDile7t5SLeEVOCvyyDKE5QygYKoy3B2Q5LwHFLC7d2lWyuIAuxdzCIdY7b81DK3MtOS6w/Hce3q/sxxHCb0jKQgqp2jrn2EEI9JDtNi8z8HevowWl1sgAYJQV44dKYKmY5U++50RSGEAL3jA6CWCejbIaDNxt51DfPB8fMGDEwMpMCWEOI2CqQIIaSVcRyHD6ako7C0lmoTCWmhUB8ltjyW3eoD/OublRULG2OtMuaKEPL3Q4EUIYS0gTBflUcyRxJyPWnricITg73x9m2pbboPQsj1i8ZIEUIIIYQQQoibKJAihBBCCCGEEDdRIEUIIYQQQgghbqJAihBCCCGEEELcRIEUIYQQQgghhLiJAilCCCGEEEIIcRMFUoQQQgghhBDiJgqkCCGEEEIIIcRNFEgRQgghhBBCiJsokCKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3STx9AO0BYwwAUFlZ6eEjIYQQ4gkmQx3qjLUA7M8CmcXk4SMihBDiKc6YwBkjNIVjl1vjb+DkyZMIDw/39GEQQgghhBBC2onCwkKEhYU1+ToFUgBsNhuKiorg5eUFjuM8fTjkb6CyshLh4eEoLCyEt7e3pw+H/E1QuSOeQmWPeAKVO9JSjDFUVVUhJCQEPN/0SCjq2geA5/lLRpuEtBVvb2+6uZOrjsod8RQqe8QTqNyRltBqtZddh5JNEEIIIYQQQoibKJAihBBCCCGEEDdRIEWIB8jlcjz55JOQy+WePhTyN0LljngKlT3iCVTuSFujZBOEEEIIIYQQ4iZqkSKEEEIIIYQQN1EgRQghhBBCCCFuokCKEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUJaYNGiRYiOjoZCoUBaWho2btx4yfU/++wzdO3aFSqVCnq9HlOnTsX58+fF199//3306dMHvr6+8PX1RXZ2NrZs2eKyDYvFgscffxzR0dFQKpWIiYnB008/DZvN1ibnSNqf1i53K1asQHp6Onx8fKBWq5GSkoJPPvnkivdLrj+eKHsvvPACunfvDi8vLwQGBmLUqFE4dOhQm5wfaZ88dc9zeuGFF8BxHObNm9dap0SuN4wQ4pbly5czqVTK3n//fbZ//342d+5cplar2fHjxxtdf+PGjYznefbGG2+wo0ePso0bN7LOnTuzUaNGievcdttt7J133mE7d+5kBw4cYFOnTmVarZadPHlSXOfZZ59l/v7+bOXKlaygoIB99dVXTKPRsNdff73Nz5l4XluUu7Vr17IVK1aw/fv3syNHjrDXX3+dCYLAVq1a1eL9kuuPp8rekCFD2JIlS9jevXtZXl4ey8nJYREREay6urrNz5l4nqfKndOWLVtYVFQU69KlC5s7d25bnSa5xlEgRYibevTowWbOnOmyLDExkT3yyCONrr9w4UIWExPjsuzNN99kYWFhTe7DYrEwLy8vtnTpUnFZTk4OmzZtmst6o0ePZrfffru7p0CuQVej3DHGWLdu3djjjz/e4v2S64+nyt7FSkpKGAC2fv36Zh45uZZ5stxVVVWx+Ph4lpuby/r160eBFGkSde0jxA0mkwnbt2/H4MGDXZYPHjwYv//+e6PvyczMxMmTJ/Hjjz+CMYYzZ87g66+/Rk5OTpP7MRgMMJvN8PPzE5f17t0ba9asweHDhwEAu3btwm+//Ybhw4e3wpmR9uxqlDvGGNasWYNDhw6hb9++Ld4vub54quw1pqKiAgBc7ovk+uTpcjd79mzk5OQgOzu7dU6IXLcknj4AQq4l586dg9VqRVBQkMvyoKAgnD59utH3ZGZm4rPPPsO4ceNQV1cHi8WCESNG4K233mpyP4888ghCQ0NdbuIPP/wwKioqkJiYCEEQYLVa8dxzz2H8+PGtc3Kk3WrLcldRUYHQ0FAYjUYIgoBFixZh0KBBLd4vub54quxdjDGG+fPno3fv3khKSmqdkyPtlifL3fLly7Fjxw5s3bq19U+MXHeoRYqQFuA4zuVvxliDZU779+/HvffeiwULFmD79u1YtWoVCgoKMHPmzEbXf/nll7Fs2TKsWLECCoVCXP7FF1/g008/xeeff44dO3Zg6dKleOWVV7B06dLWOzHSrrVFufPy8kJeXh62bt2K5557DvPnz8e6detavF9yffJU2XOaM2cOdu/ejWXLlrXK+ZBrw9Uud4WFhZg7dy4+/fRTl+cvIU3ySIdCQq5RRqORCYLAVqxY4bL83nvvZX379m30Pbfffju75ZZbXJZt3LiRAWBFRUUuyxcuXMi0Wi3bunVrg+2EhYWxt99+22XZM888wxISElpyKuQa0tblrr7p06ezwYMHt3i/5PriqbJX35w5c1hYWBg7evRoC86AXIs8Ve6+/fZbBoAJgiD+AGAcxzFBEJjFYrnCMyPXG2qRIsQNMpkMaWlpyM3NdVmem5uLzMzMRt9jMBjA864fNUEQANhr15wWLlyIZ555BqtWrUJ6enqzt0Ppz69/bVnuLsYYg9FobPF+yfXFU2XP+fecOXOwYsUK/Prrr4iOjm7paZBrjKfK3cCBA7Fnzx7k5eWJP+np6ZgwYQLy8vLE7REi8lwMR8i1yZmS9YMPPmD79+9n8+bNY2q1mh07dowxxtgjjzzCJk6cKK6/ZMkSJpFI2KJFi1h+fj777bffWHp6OuvRo4e4zksvvcRkMhn7+uuvWXFxsfhTVVUlrjN58mQWGhoqpj9fsWIF0+l07KGHHrp6J088pi3K3fPPP89Wr17N8vPz2YEDB9irr77KJBIJe//995u9X3L981TZu/vuu5lWq2Xr1q1zuS8aDIard/LEYzxV7i5GWfvIpVAgRUgLvPPOOywyMpLJZDKWmprqko538uTJrF+/fi7rv/nmm6xTp05MqVQyvV7PJkyY4DJHVGRkJAPQ4OfJJ58U16msrGRz585lERERTKFQsJiYGPbYY48xo9HY1qdL2onWLnePPfYYi4uLYwqFgvn6+rKMjAy2fPlyt/ZL/h48UfYauycCYEuWLGnLUyXtiKfuefVRIEUuhWPsEu2dhBBCCCGEEEIaoDFShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3ESBFCGEEEIIIYS4iQIpQggh5CozmUyIi4vDpk2bWnW7K1euRLdu3WCz2Vp1u4QQQhqiQIoQQsgVmTJlCjiOa/Bz5MgRTx9au/Xee+8hMjISvXr1EpdxHIfvvvuuwbpTpkzBqFGjmrXdG2+8ERzH4fPPP2+lIyWEENIUCqQIIYRcsaFDh6K4uNjlJzo6usF6JpPJA0fX/rz11luYMWNGm2x76tSpeOutt9pk24QQQi6gQIoQQsgVk8vlCA4OdvkRBAH9+/fHnDlzMH/+fOh0OgwaNAgAsH//fgwfPhwajQZBQUGYOHEizp07J26vpqYGkyZNgkajgV6vx6uvvor+/ftj3rx54jqNteD4+Pjgo48+Ev8+deoUxo0bB19fX/j7+2PkyJE4duyY+LqzteeVV16BXq+Hv78/Zs+eDbPZLK5jNBrx0EMPITw8HHK5HPHx8fjggw/AGENcXBxeeeUVl2PYu3cveJ5Hfn5+o9dqx44dOHLkCHJycty8ysCxY8cabf3r37+/uM6IESOwZcsWHD161O3tE0IIaT4KpAghhLSppUuXQiKRYNOmTfjPf/6D4uJi9OvXDykpKdi2bRtWrVqFM2fOYOzYseJ7HnzwQaxduxbffvstVq9ejXXr1mH79u1u7ddgMCArKwsajQYbNmzAb7/9Bo1Gg6FDh7q0jK1duxb5+flYu3Ytli5dio8++sglGJs0aRKWL1+ON998EwcOHMC7774LjUYDjuMwbdo0LFmyxGW/H374Ifr06YPY2NhGj2vDhg3o0KEDvL293TofAAgPD3dp9du5cyf8/f3Rt29fcZ3IyEgEBgZi48aNbm+fEEJI80k8fQCEEEKufStXroRGoxH/HjZsGL766isAQFxcHF5++WXxtQULFiA1NRXPP/+8uOzDDz9EeHg4Dh8+jJCQEHzwwQf4+OOPxRaspUuXIiwszK1jWr58OXiex3//+19wHAcAWLJkCXx8fLBu3ToMHjwYAODr64u3334bgiAgMTEROTk5WLNmDe644w4cPnwYX375JXJzc5GdnQ0AiImJEfcxdepULFiwAFu2bEGPHj1gNpvx6aefYuHChU0e17FjxxASEtLoa+PHj4cgCC7LjEaj2HolCAKCg4MBAHV1dRg1ahQyMjLwr3/9y+U9oaGhLi1vhBBCWh8FUoQQQq5YVlYWFi9eLP6tVqvF39PT013W3b59O9auXesSeDnl5+ejtrYWJpMJGRkZ4nI/Pz8kJCS4dUzbt2/HkSNH4OXl5bK8rq7Opdtd586dXYIXvV6PPXv2AADy8vIgCAL69evX6D70ej1ycnLw4YcfokePHli5ciXq6uowZsyYJo+rtrYWCoWi0ddee+01MWBzevjhh2G1WhusO336dFRVVSE3Nxc879rBRKlUwmAwNHkMhBBCrhwFUoQQQq6YWq1GXFxck6/VZ7PZcNNNN+Gll15qsK5er8dff/3VrH1yHAfGmMuy+mObbDYb0tLS8NlnnzV4b0BAgPi7VCptsF1n+nClUnnZ45gxYwYmTpyI1157DUuWLMG4ceOgUqmaXF+n04mB2sWCg4MbXEcvLy+Ul5e7LHv22WexatUqbNmypUGgCAClpaUu50gIIaT1USBFCCHkqkpNTcU333yDqKgoSCQNH0NxcXGQSqXYvHkzIiIiAABlZWU4fPiwS8tQQEAAiouLxb//+usvl1aY1NRUfPHFFwgMDGzReCQASE5Ohs1mw/r16xu0FDkNHz4carUaixcvxk8//YQNGzZccpvdunXD4sWLwRgTuxy645tvvsHTTz+Nn376qdFxWM4Wt27durm9bUIIIc1HySYIIYRcVbNnz0ZpaSnGjx8vZpdbvXo1pk2bBqvVCo1Gg+nTp+PBBx/EmjVrsHfvXkyZMqVB97UBAwbg7bffxo4dO7Bt2zbMnDnTpXVpwoQJ0Ol0GDlyJDZu3IiCggKsX78ec+fOxcmTJ5t1rFFRUZg8eTKmTZuG7777DgUFBVi3bh2+/PJLcR1BEDBlyhQ8+uijiIuLc+mS2JisrCzU1NRg3759blw1u71792LSpEl4+OGH0blzZ5w+fRqnT59GaWmpuM7mzZshl8svexyEEEKuDAVShBBCrqqQkBBs2rQJVqsVQ4YMQVJSEubOnQutVisGSwsXLkTfvn0xYsQIZGdno3fv3khLS3PZzquvvorw8HD07dsXt912Gx544AGXLnUqlQobNmxAREQERo8ejY4dO2LatGmora11q4Vq8eLFuOWWWzBr1iwkJibijjvuQE1Njcs606dPh8lkwrRp0y67PX9/f4wePbrRLoeXs23bNhgMBjz77LPQ6/Xiz+jRo8V1li1bhgkTJlyyeyEhhJArx7GLO5gTQggh7VD//v2RkpKC119/3dOH0sCmTZvQv39/nDx5EkFBQZddf8+ePcjOzm40GcaVOHv2LBITE7Ft27ZGJ0QmhBDSeqhFihBCCGkho9GII0eO4IknnsDYsWObFUQB9rFXL7/8cqunKC8oKMCiRYsoiCKEkKuAkk0QQgghLbRs2TJMnz4dKSkp+OSTT9x67+TJk1v9eHr06IEePXq0+nYJIYQ0RF37CCGEEEIIIcRN1LWPEEIIIYQQQtxEgRQhhBBCCCGEuIkCKUIIIYQQQghxEwVShBBCCCGEEOImCqQIIYQQQgghxE0USBFCCCGEEEKImyiQIoQQQgghhBA3USBFCCGEEEIIIW6iQIoQQgghhBBC3PT/dolDrKOWAtoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABNkAAAHACAYAAACfyb4TAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5gkV33u/3YOk2c2zCatVtIqS6AAAgkQYCSQARtzAf8MXGMbMFzAtowvsmXse2UuCAO2kIk2JhiDMcJEYUAggoRyXmmVdlfaHGZnJ/d0DvX7o+qcOlVd1V3dXR1m+v08jx5JM9091d1Vp855z/t+vwFN0zQQQgghhBBCCCGEEEKaJtjtAyCEEEIIIYQQQgghZKVDkY0QQgghhBBCCCGEkBahyEYIIYQQQgghhBBCSItQZCOEEEIIIYQQQgghpEUoshFCCCGEEEIIIYQQ0iIU2QghhBBCCCGEEEIIaRGKbIQQQgghhBBCCCGEtAhFNkIIIYQQQgghhBBCWiTc7QPoNSqVCo4ePYqhoSEEAoFuHw4hhBBCCCGEEEII6RKapiGVSmHjxo0IBmt71Siy2Th69Ci2bNnS7cMghBBCCCGEEEIIIT3CoUOHsHnz5pqPochmY2hoCID+4Q0PD3f5aAghhBBCCCGEEEJIt1haWsKWLVukXlQLimw2RER0eHiYIhshhBBCCCGEEEII8VRSjI0PCCGEEEIIIYQQQghpEYpshBBCCCGEEEIIIYS0CEU2QgghhBBCCCGEEEJaZEWJbEeOHMFb3/pWTExMIJlM4rnPfS4eeugh+XtN03Dddddh48aNSCQSeOlLX4onnniii0dMCCGEEEIIIYQQQvqBFSOyzc/P47LLLkMkEsFPfvITPPnkk/jHf/xHjI6Oysd8/OMfxw033IDPfOYzeOCBBzA5OYkrrrgCqVSqewdOCCGEEEIIIYQQQlY9AU3TtG4fhBf+6q/+CnfddRfuuOMOx99rmoaNGzfi6quvxl/+5V8CAPL5PNavX4+PfexjeNe73uXp7ywtLWFkZASLi4vsLkoIIYQQQgghhBDSxzSiE60YJ9vNN9+Miy++GG984xuxbt06XHDBBfjXf/1X+ft9+/ZhamoKV155pfxZLBbD5Zdfjrvvvtv1dfP5PJaWliz/EEIIIYQQQgghhBDSCCtGZNu7dy8+//nPY/v27fjpT3+Kd7/73fjTP/1T/Pu//zsAYGpqCgCwfv16y/PWr18vf+fERz/6UYyMjMh/tmzZ0r43QQghhBBCCCGEEEJWJStGZKtUKrjwwgtx/fXX44ILLsC73vUuvPOd78TnP/95y+MCgYDl/zVNq/qZyrXXXovFxUX5z6FDh9py/IQQQgghhBBCCCFk9bJiRLYNGzbg7LPPtvzsrLPOwsGDBwEAk5OTAFDlWpuenq5yt6nEYjEMDw9b/iGEEEIIIYQQQgghpBFWjMh22WWXYdeuXZaf7d69G1u3bgUAbNu2DZOTk7j11lvl7wuFAm6//XZceumlHT1WQgghhBBCCCGEENJfhLt9AF758z//c1x66aW4/vrr8aY3vQn3338/vvCFL+ALX/gCAD0mevXVV+P666/H9u3bsX37dlx//fVIJpN485vf3OWjJ4QQQgghhBBCCCGrmRUjsj3vec/D9773PVx77bX40Ic+hG3btuHGG2/EW97yFvmYa665BtlsFu95z3swPz+PSy65BD/72c8wNDTUxSMnhBBCCCGEEEIIIaudgKZpWrcPopdYWlrCyMgIFhcXWZ+NEEIIIQ0xny7gz7+1A2+6eAt+87wN3T4cQgghhBDSIo3oRCvGyUYIIYQQ0uv87Mkp3LbrBPLFCkU2QgghhJA+Y8U0PiCEEEII6XUOzmUAAIVypctHQgghhBBCOg1FNkIIIYQQnzgwq4tsJYpshBBCCCF9B0U2QgghhBCfOGQ42UoVlrwlhBBCCOk3KLIRQgghhPiEiIuWyhTZCCGEEEL6DYpshBBCCCE+sJQrYj5TBAAUK4yLEkIIIYT0GxTZCCGEEEJ84KBRjw2gk40QQgghpB+hyEYIIYQQ4gMiKgoAZdZkI4QQQgjpOyiyEUIIIYT4gCqyFdldlBBCCCGk76DIRgghhBDiA6rIxu6ihBBCCCH9B0U2QgghhBAfUGuy0clGCCGEENJ/UGQjhBBCCPEB1mQjhBBCCOlvKLIRQgghhLRIqVzBkYWs8v8U2QghhBBC+g2KbIQQQgghLXJ0IWdxrxUrjIsSQgghhPQbFNkIIYQQQlpEREUnBqIAAE0DKoyMEkIIIYT0FRTZCCGEEEJaRIhsp6wdkD+jm40QQgghpL+gyEYIIYQQ0iIH5tIAgFPWDMqfsS4bIYQQQkh/QZGNEEIIIaRFDjk42SiyEUIIIYT0FxTZCCGEEEJaxIyLKk42xkUJIYQQQvoKimyEEEIIIS2gaRoOzOoi28kTSQQD+s9LbHxACCGEENJXUGQjhBBCCGmBXcdTSOVKSERCOGkiiXBIn14Vy3SyEUIIIYT0ExTZCCGEEEJa4K5nZgEAz9s2jlg4hIhhZWNNNkIIIYSQ/oIiGyGEEEJIC9z1zAwA4EWnTQCAdLIxLkoIIYQQ0l9QZCOEEEIIaZJiuYL79upOtstOWwMACAsnGxsfEEIIIYT0FRTZCCGEEEKa5NFDC0gXyhgfiOKsyWEAQDjEuCghhBBCSD9CkY0QQgghpEnuNKKiLzx1AkHDwRYOMi5KCCGEENKPUGQjhBBCCGmSu42mB5edukb+LCKdbIyLEkIIIYT0ExTZCCGEEEKaIJ0v4eGD8wCAF51mimwhw9FWZFyUEEIIIaSvoMhGCCGEENIE9++fQ6miYct4AidNJOXPI7K7KJ1shBBCCCH9BEU2QgghhJAmuOfZ6qgooDQ+YE02QgghhJC+giIbIYQQQkgTHJnPAgDOnByy/Fw2PmBclBBCCCGkr6DIRgghhBDSBIvZIgBgJBmx/DwcZOMDQgghhJB+hCIbIYQQQkgTLOV0kW04bhPZjLhokXFRQgghhJC+giIbIYQQQkgTLBlOtuGEVWQTjQ/KbHxACCGEENJXUGQjhBBCCGmCpVwJQLWTLWTERYusyUYIIYQQ0ldQZCOEEEIIaRBN08yabAl7TTY2PiCEEEII6UcoshFCCCGENEimUEbZqLk2nAhbfhcxarIxLkoIIYQQ0l9QZCOEEEIIaRDR9CAcDCARCVl+FzZqsjEuSgghhBDSX1BkI4QQQghpkKWsUY8tEUEgELD8LmzUZCvRyUYIIYQQ0ldQZCOEEEIIaRC3emyAKbLRyUYIIYQQ0l9QZCOEEEIIaZAlQ2QbjoerfifioqJmGyGEEEII6Q8oshFCCCGENIioyTbs4GQTjQ9KZcZFCSGEEEL6CYpshBBCCCENIp1sDiJbSMRF6WQjhBBCCOkrKLIRQgghhDTIomh8EHdysjEuSgghhBDSj1BkI4QQQghpEDMu6lCTTTY+YFyUEEIIIaSfoMhGCCGEENIgZuMD9+6iJXYXJYQQQgjpKyiyEUIIIYQ0iHCyjTjUZBPdRUsVOtkIIYQQQvoJimyEEEIIIQ2yWKPxQThEJxshhBBCSD9CkY0QQgghpEGWZOOD6ppskaBwslFkI4QQQgjpJyiyEUIIIYQ0SK24aIiNDwghhBBC+hKKbIQQQgghDbJUIy4aYVyUEEIIIaQvochGCCGEENIAlYqGVF7ERWs1PqDIRgghhBDST1BkI4QQQghpgFS+BM3Qz4YT1TXZwkZclN1FCSGEEEL6C4pshBBCCCENIKKi8UgQsXCo6vfsLkoIIYQQ0p9QZCOEEEIIaYBFUY/NISoKAGHZXZRONkIIIYSQfoIiGyGEEEJIA4jOok5NDwA2PiCEEEII6VcoshFCCCGENMBSVm96MOIisoUMJ1uRjQ8IIYQQQvoKimyEEEIIIQ0gnWzx6qYHgFqTjXFRQgghhJB+giIbIYQQQkgDiMYHrnFRw8lWppONEEIIIaSvoMhGCCGEENIAS/UaHxhOtiKdbIQQQgghfQVFNkIIIYSQBljK1a7JFg4acVE62QghhBBC+gqKbIQQQgghDWDGRd1qsunTK3YXJYQQQgjpLyiyEUIIIYQ0wGK9uKh0sjEuSgghhBDST1BkI4QQQghpANld1K3xAZ1shBBCCCF9CUU2QgghhJAGWMrWrskWCrLxASGEEEJIP0KRjRBCCCGkAaSTzSUuGjG6i5bZ+IAQQgghpK+gyEYIIYQQ0gCLHhsfFCmyEUIIIYT0FRTZCCGEEEI8UixXkCmUAbjHRWXjA8ZFCSGEEEL6CopshBBCCCEeSeVK8r8HYy5ONkNkq2hAhW42QgghhJC+YcWKbB/96EcRCARw9dVXy59pmobrrrsOGzduRCKRwEtf+lI88cQT3TtIQgghhKwqloyo6GAsLGOhdtSflyiyEUIIIYT0DStSZHvggQfwhS98Aeeff77l5x//+Mdxww034DOf+QweeOABTE5O4oorrkAqlerSkRJCCCFkNSHrscWdXWyA2fgAAEoVRkYJIYQQQvqFFSeyLS8v4y1veQv+9V//FWNjY/LnmqbhxhtvxAc/+EG8/vWvx7nnnouvfvWryGQy+MY3vtHFIyaEEELIamEuXQAAjCSjro8JBU2RrVimk40QQgghpF9YcSLbe9/7Xrz61a/GK17xCsvP9+3bh6mpKVx55ZXyZ7FYDJdffjnuvvtu19fL5/NYWlqy/EMIIYQQ4sSzJ5YBACdPJF0fEwkqcVE2PyCEEEII6Rvcsw49yDe/+U08/PDDeOCBB6p+NzU1BQBYv3695efr16/HgQMHXF/zox/9KP7u7/7O3wMlhBBCyKrk2RNpAMCpawddHxMMBhAM6I0PyqzJRgghhBDSN6wYJ9uhQ4fwZ3/2Z/j617+OeDzu+rhAIGD5f03Tqn6mcu2112JxcVH+c+jQId+OmRBCCCGrC+FkO22du8gGmM0PihTZCCGEEEL6hhXjZHvooYcwPT2Niy66SP6sXC7j17/+NT7zmc9g165dAHRH24YNG+Rjpqenq9xtKrFYDLFYrH0HTgghhJBVw15DZKvlZAOAcDCAAhgXJYQQQgjpJ1aMk+03fuM3sHPnTuzYsUP+c/HFF+Mtb3kLduzYgVNOOQWTk5O49dZb5XMKhQJuv/12XHrppV08ckIIIYSsBhYyBcws640PTlk7UPOxYaP5QYlONkIIIYSQvmHFONmGhoZw7rnnWn42MDCAiYkJ+fOrr74a119/PbZv347t27fj+uuvRzKZxJvf/OZuHDIhhBBCVhEiKrpxJI6BWO0pVMSIi5bYXZQQQgghpG9YMSKbF6655hpks1m85z3vwfz8PC655BL87Gc/w9DQULcPjRBCCCErnGenjaYHdeqxAUA4pDvZioyLEkIIIYT0DStaZLvtttss/x8IBHDdddfhuuuu68rxEEIIIWT18ozHemwAEA4aTjbGRQkhhBBC+oYVU5ONEEIIIaSbPDttiGwNONnKFTrZCCGEEEL6BYpshBBCCCEeeFY62Wo3PQDMxgdF1mQjhBBCCOkbKLIRQgghhNQhVyzj4FwGAHBaI3FRimyEEEIIIX0DRTZCCCGEkDocmM2gogFD8TDWDsXqPl42PmBclBBCCCGkb6DIRgghhBBSh2eVpgeBQKDu48MhfYpVppONEEIIIaRvoMhGCCGEEFIH2fTAQ1QUACJGTbYSnWyEEEIIIX0DRTZCCCGEkDo8YzjZTvPQWRQAQmx8QAghhBDSd1BkI4QQQgipQyOdRQEgIuKiFYpshBBCCCH9AkU2QgghhJAalMoV7DnemJNNNj4oMy5KCCGEENIvUGQjhBBCCKnBnull5EsVDMXCOHnCm5MtHNSnWCU62QghhBBC+gaKbIQQQgghNdh5eBEAcM6mYQSD9TuLAkBYND6gk40QQgghpG+gyEYIIYQQUoOdR3SR7fzNo56fI+KidLIRQgghhPQPFNkIIYQQQmrwmCGynbdpxPNzROODEruLEkIIIYT0DRTZCCGEEEJcKJQqeOrYEgDg/M3eRbaQERctVhgXJYQQQgjpFyiyEUIIIYS4sPt4CoVSBcPxME4aT3p+XkTERelkI4QQQgjpGyiyEUIIIYS4IOqxnbd5BIGAt6YHALuLEkIIIYT0IxTZCCGEEEJceOywqMc22tDzZOMDdhclhBBCCOkbKLIRQgghhLjwuOws6r0eGwCEg+wu2sscX8rhWw8cQq5Y7vahEEIIIWQVEe72ARBCCCGE9CL5UhlPT+lNDxrpLAoAYXYX7Wk+fssufOfhwwCANz1vS5ePhhBCCCGrBTrZCCGEEEIc2DWVQrGsYSwZweaxREPPjUgnG+OivYgQT/fPprt8JIQQQghZTVBkI4QQQghxQNRjO3dTY00PANPJVqSTrefQNA0HZjMAgBOpfJePhhBCCCGrCYpshBBCCCEOPDO9DAA4e8Nww88NBdn4oFeZWS5gOV8CAExTZCOEEEKIj1BkI4QQQghxYD5TAACsHYo1/NyI0V20zMYHPYcaEaXIRgghhBA/ochGCCGEEOLAXFoX2UaT0YafGw4acVGKbD3H/hlTZDuRynXxSAghhBCy2qDIRgghhBDigHCyjQ9EGn5uOMS4aK+iOtlm0wV+R4QQQgjxDYpshBBCCCEOzKeLAICxVpxsbHzQc+yfycj/1jS9RhshhBBCiB9QZCOEEEIIcUA42ZoS2WRNNrqkeg3VyQawwyghhBBC/IMiGyGEEEKIjVyxjEyhDAAYG2hcZBOND0qsydZTaJoma7INxsIAgGnWZSOEEEKIT1BkI4QQQgixsZDRo6KhYADD8XDDzw/JuCidbL3EzHIB6UIZwQBwwUmjANhhlBBCCCH+QZGNEEIIIcSG6Cw6lowgEAg0/PxIUMRF6WTrJURUdONoApvHEgCA6SWKbIQQQgjxB4pshBBCCCE2WqnHBgDhEBsf9CL7jKjoyRMDWDsYA8C4KCGEEEL8gyIbIYQQQoiN1kU2UZONcdFe4oDhZDt5TRJrh+MA2PiAEEIIIf5BkY0QQgghxMa8iIsORJp6ftiIi5boZOsp9s9kAOhOtnVDwslGkY0QQggh/tB4JV9CCCGEkFXOvNH4YLyJzqIAEDYaH7C7aG8h4qLb1gzI75ZONkIIIYT4BUU2QgghhBAbovHBaJNx0YiIi7K7aM+gaZqMi26dGEAiGgKgi2yapjXV4IIQQgghRIUiGyGEEEKIDVGTbbxJkS1kxEXZ+KB3OLGcR7pQRjAAnDSehAb9uymUK1jIFDHWpGuREEIIIUTAmmyEEEIIITZEXLRZ4SVidBctMy7aM+w7obvYNo0lEA0HEQuHMJrUa+6dWGZklBBCCCGtQ5GNEEIIIcSGbHyQbLLxAbuL9hx3PjMDADhnw4j8mWx+sESRjRBCCCGtQ5GNEEIIIcTGnOwu2lrjA8ZFe4cf7zwGAHjVuZPyZ+uG4gCA6VTO8tjbd5/A1d98BMv5UucOkBBCCCErHopshBBCCCE2FlqsyRYOsvFBL7HneArPnkgjGgri5Wetkz+XTjalw2iuWMb7b9qB7+84ip89MdXxYyWEEELIyoUiG+kJcsUy/vd/PYqfGLvMhBBCSLfIFctIF8oAgLFmRTYZF6WTrRf48U5dLHvx9jUYjpsR4LUOcdH/evAQZg0no6jNRwghhBDiBYpspCe4f98cvv3QYXz2tme6fSiEEEL6nAVDWAkFAxiKN9eIXTQ+oMjWG/zk8eqoKKCIbEZctFSu4At37JW/XzQcjYQQQgghXqDIRnqCVE6veZI1nAOEEEJWN5rWu+LTvCGsjCYiCBqxz0YRcdFyRevp99oP7JtJ4+mpFMLBAK44e73ld+uG9ZpsJ4y46I92HsOhuaz8/WKWTjZCCCGEeIciG+kJMgVdZCuwdg0hhKx6rv/xU7j073+J2eXe7Og432LTA8BsfACw+UG3ES62S09bg1Fb/FfUZDuRykPTNPzz7XstP6fIRgghhJBGoMhGeoKM4WArlCiyEULIaudnT0zh2GIOO48sdvtQHBF1uJptegCYNdkA3c1Gusctj+v12K6yRUUBU0w7vJDF73zubjx1bAnJaAjvfPEpAIAFimyEEEIIaQCKbKQnECIbd/sJIWT1I4SLXLE3N1bmRFw0GanzSHdUka1Y6c332S/smkoBAC49daLqd6ImW6FUwY5DCwgEgA+88gycNJEEQCcbIYQQQhqjuWq+hPhMVsRF6WQjhJBVTaWiSeEiX+rNOpwiLjreQlw0osRFS9xA6hqFUgV5Y24xmqj+PofiEbzjRdvw5LElXHn2evzmeRuwbjiOe/fOAqDIRgghhJDGoMhGeoI046KEENIXpHIliD4AuWKPimyZ1muyBYMBBAKApgElOtm6Rjpfkv896NIp9m9ec3bVz4SLcTFDkY0QQggh3mFclPQEsiZbucIubIQQsopZyBbkf/dqXFQ2PmghLgqYbjY62bqH6F6ejIYQaqBT7EjCENmyRc5LCCGEEOIZimykJxBxUYB12QghZDWzoDiDetXJNmcc41gLjQ8Asy4bRbbukcrr3+VgrLHwhhDZShVNbgQSQgghhNSDIhvpCdLKBLZQ7k1nAyGEkNZRuzX2qpNtIdN6TTYA0jnFxgfdY9lwsrlFRd1IREKIhvRpMjuMEkIIIcQrFNlIT5BVRTbWZSOEkFWLWkg+16OND+bSortoayJbxBBpyhU62brFslGTbahBJ1sgEMBwgnXZCCGEENIYFNlIT5CxxEUpshFCyGplMaPWZOtNkc2P7qIAEBZONt7XuoYU2eKN19cTzQ/UOoKEEEIIIbWgyEZ6ggydbIQQ0hdYa7L13nifL5VlCYNxn5xsrMnWPZZEXLRBJxtg1mVbYlyUEEIIIR6hyEZ6AlVky1NkI4SQVYta3ypfx8lWKldw3c1P4NYnj7f7sCRCBAwGgKEG63jZETXZSqzJ1jWarckGWDuMEkIIIYR4gSIb6QlUkY2xGkIIWb1YnGx1arLdt28O/3b3fvzjz3a1+7Akaj22oCGSNQu7i3af5Sa7iwLAqCGyLbAmGyGEEEI8QpGN9ARqTTbGRQnpDHPpAv7o3x7AT3Ye6/ahkD5iMavWZKs93k+ncgCAVK5U83F+IkS2iRbrsQFAJGjERdn4oGsIJ1szrsRhOtkIIYQQ0iCt5SAI8QFN05BVIkMFOtkI6Qg/f+o4fvn0NJayRVx13oZuHw7pE6w12Wo72WaXC54e5yczy3kAwMRg6yKbcLLRod09Uj7UZKPIRgghhBCv0MlGuk6uWIGmbPIX6WQjpCMcX9RdQicMUYGQTqAKFtl6IpvhKlNLCrQbIexNDMZafi3RXbRMJ1vXSPnSXZQiGyGEEEK8QZGNdJ10wRoDynPHn5COcNyI4p1IUWQjnUMVLOrFRecMwStbLEPTOiNUzab162GND3HRsNFdtMiabF3Dj8YH7C5KCCGEEK9QZCNdJ2tzKLAmGyGdYWpRFxMyhTLS+c7VvCL9i6ZpWMx47y4qBC+gc52n2+FkY3fR7rEsnGyMixJCCCGkA1BkI13HHgOiyEZIZxBF5QG62UhnyBbLlrqbdWuypc0mCfYNmXYxY4hsa/wQ2dhdtOsIka0ZJ5uMi7K7KCGEEEI8QpGNdB17XJQFognpDMeXTJFthnXZSAewixW5OpsqwlUGAJkONT8Q7jlfGh+wu2jXSeX0c46NDwghhBDSCSiyka7DuCghnadUrljca3SykU5QJbLV7S5qnpedc7IZNdl8ENliYX2aVa/BA2kforvoUBNOtmFRky1XRIVCKSGEEEI8QJGNdB17LagCnWyEtJ3ZdAHqmpEdRkknWMjqzrRhQ/DI1WhokCuWkVaEtXqCnF/ImmwDrcdFRdxwMVOo80jSDgqliqzlNxRrvLuocLJpminWEUIIIYTUwheRrVwuY8eOHZifn/fj5UifYd/hp5ONkPajRkUBOtlIZxBdGidH4gCAiubeeVOtxwZY7xVz6QKOLGR9P75MoSTrhPoRFx0zOpTOs6ZXV1A38QZioYafHwuHkIjoz2NklBBCCCFeaEpku/rqq/GlL30JgC6wXX755bjwwguxZcsW3HbbbX4eH+kDqhof0MlGSNuZWqTIRjqPiIuuH47Ln+VKzg61uWWryKbeK17/ubtwxQ23y6L2fiFcbNFwsKkaXnbGkkJko5OtG4jzIxEJIRxqbl+ZddkIIYQQ0ghNzTi+/e1v4znPeQ4A4Ic//CH27duHp59+GldffTU++MEP+nqAZPVTFRelk42QtnPcJqqx8QHpBAuGULF2MIaA3njTNQY6k7aek6ImW7miYf9sBplC2XdxWLjn1gxEERAH2AJjRlx0Pk2RrRssiaYHTdRjE8gOo9nuf4f37p3F337/8ap5EyGEEOKFE6k87yEdoCmRbWZmBpOTkwCAH//4x3jjG9+I008/HW9/+9uxc+dOXw+QrH7Y+ICQ1rlt1zQu/egv8OvdJzw9ftqIi24wYnt0spFOIJxso8ko4mE9hpcvOo/5diebEOPUjtR+N0MQjRYmBluvxwbo7xNgXLRbLIumBy24Eod7yMn26V/uwdfuPYDbdnkb5wkhhBDBYqaIl3z8V3jjP9/T7UNZ9TQlsq1fvx5PPvkkyuUybrnlFrziFa8AAGQyGYRCjde8IP1NxuZiKDIuSkjD/OrpaRxdzOE/7z/o6fEiLnrOxhEAFNlIZ1g03ECjyQjiEX0K4uZkm7U72YzHZfLlqp/5hWx64EM9NsCMiy4wLtoVRFy0mc6iglFDZFvIFJHOl/DpX+zBobmML8fXKEI0XM53X/AjhBCystg7s4xssYwnjy31xMbRaqYpke0P//AP8aY3vQnnnnsuAoEArrjiCgDAfffdhzPPPNPXAxR89KMfxfOe9zwMDQ1h3bp1eN3rXoddu3ZZHqNpGq677jps3LgRiUQCL33pS/HEE0+05XiIf2QYFyWkZUS9qnv3zqJScS4kryLiouduGgYAzCwXXLs8kpXN7HIeDx2Y6/ZhAFCdbBHEjYLyORcnm73xgTjH2+lkExFVPzqLAsD4gBEXpZOtKwiRrZW4qFqT7fO3PYt/vHU3/vSbj3RlvBTXit/nPSGEkNXPnDKvemY61cUjWf00JbJdd911+OIXv4g//uM/xl133YVYTJ+MhkIh/NVf/ZWvByi4/fbb8d73vhf33nsvbr31VpRKJVx55ZVIp9PyMR//+Mdxww034DOf+QweeOABTE5O4oorrkAqxZOolxELJ9HBi40PCGkc4QidzxSx63j9MU/ERYWTrVCuYCnLGg2rkatv2oH/8fl78MTRxW4fihTZRhKKyObS+GDWLS6qbMy0y8m2xicnm4iLLuWKKPHe1nFShvOrlSYWqsh286NHAQCPHFzAXc/MNvV6sy3UvxTXStZFmCaEEELcUDcvdx9f7uKRrH6annW84Q1vqPrZ2972tpYOpha33HKL5f+/8pWvYN26dXjooYfwkpe8BJqm4cYbb8QHP/hBvP71rwcAfPWrX8X69evxjW98A+9617vadmykNYQ4MJqMILtYRqFENw0hjaI6G+55dhZnbRiu+fgpQ2Q7aTyJ4XgYS7kSTiznMGIU+Sarh30z+mbU3hNpKap2CxFPGE1GEQvXiYsaYkQiEkK2WJbneLqtcVFRk80nkc0QaDRNf+9+1Xoj3jBFtubHNdH44M49MzioxET/6Re7cdlpEw01yPjynfvwof9+Ep/+vQvw2udsbPhYxLXi93lPCCFk9aM2YdpDka2teBbZPvWpT3l+0T/90z9t6mAaYXFR35EfHx8HAOzbtw9TU1O48sor5WNisRguv/xy3H333a4iWz6fRz5v7iouLS218aiJEyIuOpqM4thijk42Qpogo0To7tk7iz960TbXx+aKZekoWj8cw9qhGJZyJUyn8jht3VDbj5V0liVD2JrrgQ6XUmRL1I+LiuPdPJbAnullKSyoTrac340PjL/pV1w0HApiKB5GKlfCfIYiW6cRtctaqckmnGxPHtPnh5dsG8cjBxfwwP553Lt3Di88dcLza+08os9dHzow36TIVjH+TZGNEEJIY6jzwD2Mi7YVz7OOT37yk54eFwgE2i6yaZqG97///XjRi16Ec889FwAwNTUFQG/KoLJ+/XocOHDA9bU++tGP4u/+7u/ad7CkLiIuOpLQT8eCS3TIb4rlCt7/rUdxybZxvPUFWzvyNwlpF6qT7b69syhXNISCzg4L0eQgFg5iJBHB2qEYnj2RZvODVUiloiFliFK9ILKJBgBq4wM3V87MslVkc6rJporLfjDjc+MDQG9+kMqV2PygC8juoi2IbKK7qOAPLzsZp6+fxdfuPYBP/3JPQyJbKqeLfkcXsk0di3SysSYbIYSQBrHGRSmytRPPs459+/a18zga4n3vex8ee+wx3HnnnVW/s9v2NU2raeW/9tpr8f73v1/+/9LSErZs2eLfwZK6iAXWaEJf1BTLnYmLPrB/Dj989CgePjBPkY2seDLKomspV8JTx5Zw7ibnaKCIiq4fjiMQCGDtUBwAO4yuRlK5EkR99m6LbIVSBWm5qaI62ZwFA9PJlrQ8Tj3X/a5NJeKia3x0nI0NRHFwLsPmB11ACMyt1GQTdfUAYCAawkvPWIfzNo/imw8cxN3PzuLJo0s4e2PteL5gyRD9jhndnRtB0zTkjcZQjIsSQghpFHUeeHwpj8VsUbq1ib801figm/zJn/wJbr75ZvzqV7/C5s2b5c8nJycBmI42wfT0dJW7TSUWi2F4eNjyD+ksIvozZnRh61R30cPz+k4yJ6tkNSCEByEO3POse1Hu41JkixnP0ReRM8t02qw21Bbtc112UoljCQSAoXgE8bAusuUdxuBMoSTH5k1jCQBQarK1p/FBpaLJCai/TjbRYZTXV6eRNdl8iIsCwBVnr0c8EsKm0QTOMzYx1DptXo/n2GLjTra8MjfqRyfbYqaId33tQfz0ian6DyaEEFKFvWs7O4y2j6ZnHYcPH8bNN9+MgwcPolCwfmE33HBDywdmR9M0/Mmf/Am+973v4bbbbsO2bdZ6Q9u2bcPk5CRuvfVWXHDBBQCAQqGA22+/HR/72Md8Px7iH2KyKCIZnRLZjgiRrQ8nq2T1IcSGl5+5Ft968DDu2TuLd77kFMfHHl/S3Trrh3UH29ohXWyjk231sZRTRDZFRF3MFvHjncdw1bmTFqdOO1nM6n9/OB5BKBiQcVGnmmyiy2csHJTCsVmTTXGy+RgXXcoVUarotj+/arIBelwUsBYcJp1h2cfuogDwmvPNOmpDcf3ny3nv56CojzizXECuWJZuTi+ojs9+3Bz82ZNT+OkTxzGfKeKV50x2+3AIIWTFMZfW5/miVuzu48u4aOt4l49qddLUrOMXv/gFfuu3fgvbtm3Drl27cO6552L//v3QNA0XXnih38cIAHjve9+Lb3zjG/jBD36AoaEh6VgbGRlBIpFAIBDA1Vdfjeuvvx7bt2/H9u3bcf311yOZTOLNb35zW46J+EPGFhfNd6jxwZEF08lWL1ZMSK8jalO9/Mz1+NaDh3H/vjmUyhWEQ9WG5eNKXBQA1hoixollimyrDdXJpjqpvnr3ftxw624cW8ji/Vee0ZFjEc02RLfGWnFRsdu6ZjCGZFR/nNgQUeuw+Sk2CCfncDyMaNg/o/+odLIxLtpphADWSk22yeE4JgaiiEdCePHpa+TPhTtuOef9e00pj51azOHkNQOen6uK0f24OXjIcAz243snhBA/EJutzz95HL94epp12dpIU7PIa6+9Fn/xF3+Bxx9/HPF4HN/5zndw6NAhXH755XjjG9/o9zECAD7/+c9jcXERL33pS7Fhwwb5z0033SQfc8011+Dqq6/Ge97zHlx88cU4cuQIfvazn2FoiN3yepmM4UoQkZpix+KiZsQj36G/SdpDp9yPvUqloskF2EVbxzAUD2M5X8Iul5unPS5KJ9vqRRXZ1JjA/tk0AGCmg+4qtbMooIhsDs1uRG208YEoEsbjhKCmOoeyBf+u/Zk21GMDgHHDycbGB53HFNmarzmTiIZwy9Uvwc3vuwyxsOk8GzLccV6dbJWKZnns0QYjo/3uZDvEEh+EENI0uWJZ1sV9wSl6w549x5e7eUirmqZEtqeeegpve9vbAADhcBjZbBaDg4P40Ic+1LZopqZpjv/8wR/8gXxMIBDAddddh2PHjiGXy+H222+X3UdJb1IqV1AwnGsiklHosJMN4M7oSuab9x/Euf/3p7h994luH0rXUBcdg7Ewztqg15Z026GyO9mEqECRbfWxpDrZ0gVoRheEaSMy7NZ0oB0IJ9uIITrFasVFldpocZvIZm184F9cdLYNnUUBYHTAiItSZOs4KR/iooC+ETFhE1/Fa6Y8imzpQgkVpa/TsYXGmh+oYnQnr9te4SCdbISQDjC7nMf3Hzmy6sZZMQcJBwO4cOsYAGAPa7K1jaZEtoGBAeTz+gR948aNePbZZ+XvZmZm/Dky0hdklAFsJNm5mmzlimaZ4HJndOVy3745FMoV3L/PvdD/akeIDoEAEI8EccZ63b27a8p5h8pek22d4WSbS+dRrnSmuy/pDKqTrVTRZHdDIbTmfe7OWYsF41jEhkqiVlzUELzGB6JI2OKilsYHPi64Z41aJX7WYwPUxgeMi3YaEc9sVWRzQtZky3kT2VK2xzXa/MASF+3DOYuIi662hS9ZXTx8cB7Tqca7B5Pe4dO/fAZX37QD33/kSLcPxVfEvGpsIIrT1w8CMDuMEv9pSmR7wQtegLvuugsA8OpXvxp/8Rd/gY985CP4oz/6I7zgBS/w9QDJ6kZERUPBAIZiRly0A06240s5WeAa6M8J62pBLLj7+SYhalQlIiEEAgGcPqmLbE5OtlSuKBd3QmQbH4giEAAqmrW9N1n52K8LUXx/OtV5J5sQPIaNWlZmTbbqMV8U57XUZBOND9pck81vJ9sY46JdoVCqyFIQrdRkc0PWZPPoZLOLbEcXG3SyqXHRPnNz5YplOWZxvkZ6lWeml/H6z92N933jkW4fCmkBkeo4utB4F+heRnZPH4hiKB7BhhF9DbCHddnaQlMi2w033IBLLrkEAHDdddfhiiuuwE033YStW7fiS1/6kq8HSFY3QhxIRkKy0HQnnGyH560DJ3dGVy7CxbWY9S82ttIQn4EQI05fp+9Q7ZqqvnF+4qe7kCtWsHUiiZPGkwCAcCiICSPSxsjo6sIuss2m9a6G4udO9dDahRDEhasoboz5zjXZFCdbxO5kU+Oi/t0vRB04eyywVUTjg7l0/24EdAPV8TjQDiebiIt6dLIt2RokNLqA6+eabGoNXdGsipBeY8oQzg/PZeo8kvQyeWNOsuRxbF8pCJFt3JjvbzdSL3umWZetHTQ16zjllFPkfyeTSXzuc5/z7YBIfyHFgVhnRbYjC9YbIEW2lYtwtfSzS0RcRyJWd7px4zyykMVyviRFjQf3z+Fr9x4AAFz/O+chFDQ76q4ZjGFmucAOo6sM+yRxPl2Q9dgAZxdZu1g2xDEheAgnW75Gd1HR1REwF9eW7qIF/2uyrfHZySYmtAuZAjtZdxDhMItHgog4dFluFbO7qFcnm1Vka7gmWx93Fz00ZwqSmqY3qxLjAiG9QqGsX5de6zSS3kQ4oO0bIysdMa8aM+Ykp68bxK93n8Bjhxfxe8/v5pGtTvyfdRDSAKYDJ4xISF945DsQFz08Z91B9rNDHekswq2w1MdxUbHgSkb0Rd/YQFTWWRM28FyxjL/8zmPQNOBNF2/GZaetsbwGO4yuTuxOtrl0AceVejGd3GAQ16pdZHNufCBcZWZNNvFYq5NtJdRk0ye0JVt3ydVMLziNhMOslc6itWi08YE4HjE2N9pdNK84PksVrSOlNXqFQ/PWjdFO1pIkxCuFkj7upfOlnhgDVzJTizmUujTGCZHNq0t5pTAn5zj6nOTFp68FANzy+LG+up90iqZEtmAwiFAo5PoPIV6RcdGo6WQrlittvzkdscU0+i16sZoQC+6FPhbZZE02RYw4w1aX7Ut37sOzJ9JYOxTDB3/z7KrXEDddcRMmqwMhsomaVHOZgmx6AHR27DPjovp5GpfdRauPYU7GRWMyLgrox2upyebjBsmc3OX1V5SJR0LyvS70QfOD99+0A6+68Y6uO8SFc2yoDVFRQK3J5u07Fa5S4TRO5UoNia72z7Of5i0HZ60iWz+9d7JyKBhCRUXjOSr4xVPHcfGHf45bHp/y/Jwdhxbwgo/+Atd+d2cbj8wdU2Tr7fv1/pk0XvLxX+HLd+7z9HhRskK46y87dQJrBqOYzxTx690n2nac/UpTItv3vvc9fPe735X/3HTTTfirv/orbNiwAV/4whf8PkayiskqtaRihkCrabA0JWgHFNlWD0Jg6ufGB+L8TSoi2+lKh1FN0/BfDx4CAPzlq86UnXxVxg33jojMkdWBcHhuWzMAwHCyKXHRTjpClm1OtphwsjnUZBPuoOF4GKFgQG7CZItlW3dR/3aaxf1oIOq/KCPcbPN9EGv/yeNT2HU8hWdPmHVe9hxP4aM/fko23ugE4nwbbEPTA8AU77zGRcW1uGEkLpt/HGugLpvd8Znro8io3cnGORvpRdRyN/3iWq7HN+47iJnlPP7m+497/kx2HJwHAPzi6emuOAJFCYulHq/1fP++ORycy+Dr9x3w9Hi7ky0cCuK1z9kIAPj+jqPtOcg+pqmZx2//9m9X/ewNb3gDzjnnHNx00014+9vf3vKBkf4gLWtJhREJm3VqCqVKW2qoCETjg2Q0hEyh3FeT1dVGWjY+KKJS0RAM9l+9I3vjAwA4Y73pZHvi6BL2z2YQCwdx1bmTjq8hOirOsrvoqkIV2R47vIjZ5QLUK6SjcdGCLS4ado6LappW1SQhEQmhUKpgKVtEsWztDO1XnTOxcFcdoX4xmozi2GJu1XfvLZYr8nNcVFx7n7/tWXz3kSPYNJbA77/w5I4cy7LtHPIbtbuol3NQja9uHE1gaSqFo4s5WXy6Hv3sZDtUVeKjf947WTmokbt0vgx4u7RXLaVyBfftmwMAzCzn8dlfPYO/fNWZdZ93zGggMZcuYP9sRm4SdgohlqY8upS7hbjH7T2Rxly6IB1qbpiND8ySGK977iZ85a79uPXJKUsNZ9I6vqoYl1xyCX7+85/7+ZJklSNcCAPREKKKqNbObHilokkn22lGF8Z+mqyuJorlirwZalr/FpvNKGK14HQjLrrreAo/3nkMAPCyM9a5dtkz46KrWwToJzRNkw7Pkyf0Sep8poDplNr4oJNxUf1vye6iLnHRXLECYWZOKiIboE/UVSqaGdFpFSmytaGg+rgRQV3tcVHV1TWvvFdxzi128P0LUattIpvxusWyJuNFtY/HjG5vGIkDaKzDqF2M7pd5i6ZpOGR0axQ6Zr+8d7KysDjZVlk9r2Z4/OgSlvMl2WTrS3fsk9dyLY4umiUtHj4w37bjc2Ol1GRTm0A9crD+5zRr6y4KAOdvHsEpawaQK1bwsye8R3pJfXwT2bLZLD796U9j8+bNfr0k6QPUrojhUBDChNTODqMzy3kUShUEA+bCkxO2lUnGtpvdyQVcLyHE6qQiDmw3BOQTqTy+/dBhAMCrz9/g+hripjvL7qKrhkyhLKP3Yid4Nm2tyZbrQDdngYyLRu2ND6zXsVpzTZzTwqUpRLaw4lj1w9VSqWhSxGiXkw1Y/XFRNQ60kDXfq3jfnbzXtrvxwUA0LEUfLzEoUZNtOBHBhtEEgAbjorZYtdfz/omji/ifX7oPOw8vev5bvcRitig30LaMJQGwIzzpTVSDAOOiwD3PzgIAXn7mOrzotDUolCv46E+eqvs8dVx8yIN45DeqyNbLDSzSyj3gIQ9i5JyDyBYIBPDbz90EAPjeI0dcn3toLoPHj6zMe0i3aEpkGxsbw/j4uPxnbGwMQ0ND+PKXv4xPfOITfh8jWcWkbTE3ERH1sivcLIeNwXtyOC6LgXPCtjLJ2Oox9WtdNlWsFgzEwtg8pi/kplN5xMJBvPzMda6vMTFo1GSjk23VIK6HcDCATca5MG8T2cod7FJoj4C6dReVXUijIRn/Fo8VNQOHExHZkdoP4UYVMNrhZBsz6iDOr/KNgCWlULTq2hP/3UmRTTQkGGpTTbZgMIDBqPe6bKqTbaNwsimOjXo0Gxf9zkNHcMeeGXzn4cOe/1YvIaKia4diGDMWh4yLkl5EXbukKbLhnr26yPbCUybwN685C8EA8OOdU3XdbMe67mTTx5dyRavazO8lMso5Vk9kK5Ur8j5sj5W+7gK9Lttdz8xgyuWe9JYv3off+dxdVWkC4k5TM49PfvKTltoTwWAQa9euxSWXXIKxsTHfDo6sfsy4qH4qRsNB5EuVti76RD22zWNJuZiik21lYp/EqM6JfsKpJhug12UT53utqCjAuOhqRAgeI4mInFTNpa012QB98d7OGpiA7hQT5+lAne6iwgGQVM7XhHSy6ednMhpCsVxBsVzyZcGtvkZ7RDb9819Y5U42NV6jbnpIJ1sHFyxC+BLnWzsYjIeRypc8xYrEY4bjYYSDhpNtsYW4qMfPUiyKlnq8U54bB40F+ZaxhKUBCgHufmYG//Lrvfh/v30uTppIdvtw+h462UyK5Qoe3K/XY3vhqRM4c3IYG0YSOLKQxVy6gC3jzudruaJhStkI3HU8hVSu2DZHshOqWJrKlWrOnbuJ6mR79PACimX3eubqBt+YrfnZ1okBPH/bOO7fN4dP/3IPPvI751l+nymU5Di8fyaNNYMxkPo0ddb8wR/8gc+HQfoVuwMnFg4iBf9q7DhxxBAdNo0l5N9l44OViajxJOhXJ1vWRWQ7fXIIv3h6GkDtqCgAjBuNDzKFMrKFclsic6SziPj0SCIiRVSniX+uWMFQvL3HokZA7Y0PShUNpXIFYWNyaK/dBlTXZBuMhVEoVZDKlXzZaRavEQsH29I8RcRFV7uIrTq6hKCYL5Xl59tJcUTcD0YS7VuciXPUS4Fs0YRkOB7BSEI/H44teHey5Zt0ss0aHeV6vb6QG6Kz6EnjSfmdMn2g8x/3HcTtu0/glieO4Y9fcmq3D6fvYXdRk8cOLyBTKGN8ICobcYmNtVpj14lUHuWKhlAwgMnhOI4sZLHj0AJevH1tR45b0zTL97iUK2JypM0TpCZRjQa5YgVPHl3Cc7aMOj5WbHSNJiNyrqXyF1ecjt/9wr345gOH8PYXbcMpawfl71RnoSqAktp4Ftkee+wxzy96/vnnN3UwpP+wO3BE84N21mQ7bEzYNo0mZASJu6Irk7QtLqrGk3719DTO3jiM9cO9eXP0k4zsimgd0sXEpl5UFACGYmFEQ0EUyhXMpvPYHOWu+EpHLEiHEhEMxyMIBQMoGzXaBqIhlCp6wfZOLFiFcBYKBhAz3ChxxTGWK1UwKES2QrUDKWGryZaMhpArOtd0a4ZcGzuLAv3T+EAVm8R7VWtldjJ60xGRLd5IXNSsETec0J93dDHruTtuszXZZlIF4++vzHNPRMu2jCeRn14GQJFNIMZD+4Yj6Q50spnc/YweFX3BKeNVZR9qXb9HDXfv+qEYLj55DEd2ZPHwgc6JbPZyRb08bqZt94CHDsy7imyi1IZbB9JLTpnAb5y5Dr94ehr/+LPd+OxbLpS/UyOkx5cYF/WKZ5Htuc99LgKBgCwAWGtCUC5zsCfeEDW1koY4EAm3X2QTnUU3jyXkAJUtdq74N/GPjIuT7e5nZvCH//YAXrx9Db729ktqvsaB2TTu3zeH11+4WXZAWmnIxgc2geClZ6zFc7aM4oqzakdFAX1MHx+IYmoph7l0AZvHKLKtdESh9ZFEBMFgAGPJiIxbrh+OYzZdQL5UkfVH2smyUmdNzB+E2Abok27hCkrbGiQAppNNTBQHYmFf3VHiNZJtiIoC/dP4QHVLLRjjsRpT6aQ40kknm5cFtVqTTTgjcsUK5jNF14WPij0u6vWzXPlONn3OtmUsKZMI3BjVEc5Yio69QYE12SRqPTZBwqUOq4pw924YTeCirWP4wY6jHW1+YE9SLfXwuClqsp27aRiPH1nCQwfn8UfY5vhYMVZM1LjXfOBVZ+CXu6bxo53H8M5DC3iuIdipXbCP08nmGc9FWPbt24e9e/di3759+O53v4tt27bhc5/7HB555BE88sgj+NznPodTTz0V3/nOd9p5vGSV4epka0NcNJUr4h9+ugt3G91uNo0lzJpsjIuuSOxONrGo2nU8BQC4b+9c3cnndTc/gQ98+zHcsedEew6yA7jVZBtNRvGD916G9718u6fXMTuMrm4hoF+wiwzqQn7dcEypidb+TQZ70wNALxwvaiyp16kU2WrERQeiYek682P8FtdQvE1ONrMmW+/uivtByiEuqgqL3XCyDbdRZBNNFeqJbKVyRW7qDSciiIVDsi6O147O4hpppOFHuaLJxdWKFdkUJ1tcXvPcGAXMhXMvF2fvJwp0sgHQSwSIQvwvPNUU2bw42USdyg0jcVx4kl7n/ZGD86hUOtPlM2+bDy31cBkacU95ieHyq9UkYs7YbBFzESfOnBzG6y/YDAD45K275c+PWZxsFNm84tnJtnXrVvnfb3zjG/GpT30Kv/mbvyl/dv7552PLli3427/9W7zuda/z9SDJ6qVKZGuTk23n4UX8wVful50Tn79tHBdtHZMLNu4CrkzsE0sRSxLW5kK5gp1HFvG8k8ddX0PcPNw66qwEZG3DFl04E0ZdNnYYXR2YIpt+q1cnV+uH4/Lc74QrxEk4A4B4OIhCqWIR+pbz5arHCkFNCMDJWAiJnH9xf/Ea7Wh6AKjdRVf3tWUV2YrGv8333MkNrcWs6eRsF7ImWx0BS11wC2FuNBnFfKboueOsOEdHk1GcSOU9CU0LmQLE2rSXY0+1OKqkD9isyqRS0eR4QpGtNyiUTCHIS4R8tbLn+DLypQrGB6I4Vant5SkuajjZNo4mcObkEBKREFK5Ep45sYzTjRIo7cTu7O/lzQmRBnvhqRP4l1/vxbHFHI4uZLFxNFH1WDGvF/N8N97x4m34zsOH8dCBeVnKwFKTbQWvlTpNU+3Edu7ciW3bqu2I27Ztw5NPPtnyQZH+wRTZjLhom2qy3fLEMcymC9g8lsC//M+LcNMfvwDJaFixLnOCshJx6y6q3hAeMLobuSGEiJXaeQ1QGx+01gHJ7DDKmgurAbXQOmCdXK0fjsvGA50Y/5bdRDaHMTgjXW/VNdmEU2AwFpabM34INzkXN6hfiLhoplD2NZ5748934x1ffRAlF/d3paJ1zAEAWIWchWwRmqZ1JS6qaZo8/9srsumvXc+1IhZq8UhQznPEcXntOCuEaCHYehGaZhRXcipXkiVfVgoVo24koF+bnLOZLGSLUkDl59EbqE42e9KinxAGhsnhuKW8lJfGB6qTLRwK4vzNIwB0s0QnsNdk6+W1gVgDrRmM4awNugC549CC42OF67VeaYJtawYQCOj3NCHMqV2wp1NcH3ilKZHtrLPOwoc//GHkcuZCNp/P48Mf/jDOOuss3w6OrH7staSEk61Y9nciKHbUX3/hZrzynEk56LPxwcpGFPsdMhbuQjBTd1oe3F+7loN4zkruTJop6tdRq0Xbxwf0ttyMi64O7CKD6mRbN9ThuGihOi4KmGOwKjwt22p1AtUOs2Q07Ov4LeOibXKyDSjXpp9urn+7ez9+/tRxPD2Vcvz97/3rvXjljb/uSN09wCo2CYdiN+Ki2WJZLnhHa8RjWmXIY+ODJVmPzRT8Rg2xbMHjvSevONkAb8KKGkUtVbSOXOt+oooW0XDQ14j4SkftVJzpY0GnlyiWqh3Z/YgY8+2CjpeabEeN+fuGEd2NtWZQn5d2yolrj4v2spNNrIEGomGcNK7XUT7hIoKZIlus5mvGIyFsND77/TNpANY11dRibsVt1nSLpmwP//zP/4zXvva12LJlC57znOcAAB599FEEAgH893//t68HSFY3Ik8uJk6iEHbB5+YZagFwFUYPVjZiYrlxNIFdx1NSTD2q7Lo8uH8OlYomuxupFMsVuehbyvbujbQeWZ9cOIyLri7sNdkmLDXZ4p6iG35hRkCt56iT0FerJptgQHG1+CHctDsuGg4FZffeTKGMUZ/6igjXt1MMNVcs4759upN3z/FlnLtpxJ8/WgP7gmQhW7DUoevUvVac+6FgwCJw+o0Q2eotAMX9ZThuntNC9F50iYv+9IkpaJqGV527AYB5nQonmxdhZcY2lqdyxbZ10G0HdpGNG6MmqsjGz6M3sNRk62EHVLsRG7VjNpHNy/V7zIiHbxzVm8NIYb1DGwT2muC9GrMvVzSzYVMshJFE7bqvQnyr1fhAcPKaJI4sZLFvJo2LTx63ND7IFstI5UsyIUHcacrJ9vznPx/79u3DRz7yEZx//vk477zzcP3112Pfvn14/vOf7/cxklWMEAdEF7lom+Kibl3GxOCd467oikS4YzYYN+OlbBGViiYLcwYCusC6Z3rZ8fmqe62XLeH1cGt80ChmXJQi22rAXvhdnfCuH4p1VGRzrcnmcAxid1aNi9obEgwocVE/jl+8RrviooB5v/HTzSXulU7XrDq+7T7u7HTzG/uCZCFT7EpNNvWer8aV/MZrd9GUg5NNxkWz1d/dsyeW8a6vPYQ/+c9H5LWTK4m4qH4de1l0zthcDb3cKc8JdS4YDQUZF1VQyzrQ2dcbFNW4KJ1sGE86r7nyLtdvoVTBCcN9K5xsZoO6zoxd9mPr1Q14VagcjIWlM9ppw+07Dx2WG25qjTw3Tp4YAAAcmM0gnS/J+4ZIm02z+YEnmi7gk0wm8cd//Md+HgvpMzRNkzuxYmHTrppscrEZt57ydLKtbDLGJEYU+VzMFjGbLqBY1hAIAM87eRz375vDA/vncMZkdcFUtWtQL3cQqoWmmbtZrcdFq51sovApWXnU6i66fjhuush8Hm+dcOouCqgiW20nW9LuZIuFlE6D/sVF2+nySUZDWMwWfVsQVyoaSkZRJqfda/Vnu487bzT4TZWTzVbYv1CuoFSuIBxqao/XM8Id1s56bAAwGPfW+ED8fkiZg5iLourv7st37gOgl86YSxcwEAtLYUnERb2cR7O2+pq96spwQ8wFo6EgAoEAElH3mk75Uhk37ziKF29fi8mReEePsxvMpjsfwya1yVvior0pznSCubQ+ztijifFw7Zpsx5dy0DT9ehebvrL2aofWafaabL06ZoratcGAngIbNe519tI3dz0zg7/8zmMAgHdffirO21zf0b5tjS6y7ZtNyxrXQ7EwJkfi2DO9jKnFPE5b1/4mFCsdzyLbzTffjKuuugqRSAQ333xzzcf+1m/9VssHRlY/+VJFFm1N2LuL+lyTLeXiZGP0YGUjnGybDJEtXSjj0HwGALB2MIYXnjKB+/fN4cH9c3jrC7ZWPd/qZFuZE6JcsQJRHqHlxgeDoiabvjB79NAC3vql+3DNq87E/3T4/EhvI9yZTiLbumHTyea2q+wnjTQ+ENf1QLS6u6hgIGY2rsn42F20XTXZANXJ5s9YU6yYiwGn3WvVQbanY042Y8fbiMYuZgtVhf1zpQoG2y2y2Vyc7cKrk01ci+rxyEWRTWSbSxfwnYcPW56raVpVXNRbTTZ7XHRl3eekyGbMDWs1a/nJzil84NuP4X9cuBn/+KbnVP1+KVfEdx46jFeftwHrhle+CDe3zLhor1GgyAYAmJf1v6zjb6yOE1UIOpMjcVniJe5jWQgvVItsnf8eT6TyWMoVa7rO5JwqGkYgEJAOZ/V+e3A2g3d/7SGUKhpe+5yNuOaVZ3j6+8LJtn8mLZseTI7Epch2nE42T3hekb3uda/D1NQU1q1bh9e97nWujwsEAij7XE+LrE7UAVOIA1Jka5eTzUVkyxUrrnW7SO8i7Pjrh+MIBABNA3YZBcA3jMTxvJPHAQAPuDQ/UEW2ldr4QF2wt1pPyh4X/fHOY0jlSrh91zRFthWI3ckmCggPx8N644AOdhd1dbKFhZtOaXwg67fVqsmmxEX9qMnW5u6i6mv7IQoC1vvkfL246HRn46KbxhLYN5PGvM3JBuhjlv088Bu3EhF+IxsfeOwuOmxxshmLIltc9D/uPWBxdi5lSyiWNbkpKWLfjXYXVY9jpSDqI0mRrYarRSzQp1POC8Bv3n8Q1//4aRyay+L/vPbsdhxuR1GdbIyL9gbWuGipb5MAYg5pr8lmpoec13hqZ1FB551strhoF5xsb/nivdg/k8G9f/0brt1AZZkYo6zGiEMjnVueOIZUvoTzNo3gH954vuc17slrFJFtwWhEMZrAWmMOOUWRzROetxIrlQrWrVsn/9vtHwpsxCtCHIiFgwgZF3474qKaplU5OgSqO8K+e0F6H+F4GYqHZYfRp48tAdB3XZ570ihCwQCOLGQthTsFi6sgLiputOp11Cyi8UGmUEa2UMbjR/WW6b1ak4K4ky+V5UJdFKg9c3IIf3TZNvzNq/UFZke7i8ouWPbGB9WRz4x0vYWqHidIKo0P/Jh8i7/frsYHAJCMhC1/q1XULtxOkUN1sn1oLtv2DoSapkmxafOY7i6212QDgFyh/edbp0S2wZj++vW6izrWZBOLIuW7y5fK+Oo9BwBAjudLuaJFhB5rIC46Y7iSxa2hV6NPbqhxUUCtz1T93pfz+ntzc7zsm9Fd7vYIbS3ypTKu/e5O/PSJKe8H3SG60bWX1EZdu5QqWt+uK+ZkTTbnxgduG3tHDUFHlIAB0PGOwgVZ+1Ifn8XGRKWi4eZHj0ohsF2UKxr2TC+jUK44rlsE6bzV8e/kjBabLJdsG0cs7H1us2U8gWBATwftPKKvAzYMxzE5ootsrMnmDd/8+gsLC369FOkTnIq1i+6ixbJ/N6ZssSwXI1Vx0bB5CbCQ7sojo7SvFq6Ap6WTLYHBWBhnbxgGADx4oNrNtrQKGh9kfSzYPhgLy8XMzHIejx/RBcuV+tn0M0IYDQRMt00gEMD/ee3ZeNPztgCoP+H1E/e4qH6+qYsR++QRcI6L+hn372xc1C+RrXZc1B5D3NPmumyZQlm6rTaP6e1TFzKFqnpxmWL7RfslKbK11zEna7I14WQz4z3m53PzjqOYWc5jcjiOS0+dAKALhuIaDQTMeYz42dNTS3jNp+/AL58+XvV3haC0yRA9V5qTLW+LiyYcajgKhNCZdvkupozFcSPX34P75/Gf9x/EJ366y/tBdwh7d1FN87fMCmkc+9qlXyOjMi46aHOyRcXGnltctNrJ1una2WLMEc5/MWb+/Knj+NP/fATX3fxEW//+QqYgS8DUOn/EOCbmVGINpM4FRLkAUQrGK7FwSAqd9+ydBaA3mFtvxOzpZPNGUyLbxz72Mdx0003y/9/4xjdifHwcmzZtwqOPPurbwZHVjSmymZNOsyabfyKb2NEOBQNVQkQ4FJSiAmtarDyEk01vX60vPITIJgofP3fLKADgcWM3RkV1suWKlSqb+ErA6TpqlkAgIK3pjx1elJ/PSluYEfPcHoqFXSMCsj6KT+f93hPLePk/3IZvPXCo6nf1Gx+ocVGHxgeO3UX13/shWplidftEGRl78clRZomLOtVks8UQ291hVHxvoWBALpIOz2dlcwaxaOmEI0Gc/6MJ56iNXwgBu1Cqff9YcnCyCeeB6vT7+VO6UPaWS06SY/FStoi8ISrFwsGq+NRPdk7h8SNL+O7DR6r+rlhkbVuj1/ZZsU42IbLViI6J+1Ta5foScdJGNhXEuHVkPttzIpa93l4nHMmkNvYUTj2H62qkUtGU7qI2J1udEhVHlWiiwM/7vBdEjVpxv1rOl1CuaHJtcaSGu8wPVPG81vmTtjUOFI10FrNFVIx7rthkmXCJnNZCND94ZlrfnNswYopsx5e8u4H7maZEtn/5l3/Bli36Tvitt96Kn//857jllltw1VVX4QMf+ICvB0hWL/bOogAQCemLQT/josLRMZKIONZGEE4KimwrD7mTEw1bbjCAuRN2zkbdyfbE0doiG7ByYpGapskFnbiO/OqKKCKjt++elj+jk23lIeNySfe4nBz7fIrv3f3sLPbOpPHDx45W/c5r4wNN05A2ruvBmjXZQnV3xRtBxkWj7SvI77eTTd2Mmk/X7i4KAHum2+tkMyORYRm12T+bBqCfa+JnnRDZFjoUF1XdliIS7USt7qLpQlnOeaYMIejMDcMy5r2UK8lzPB4JVRUCP2FEQu33s0yhJB+zbSIpX2slIWuyeYiLCjeh2/cgRLZGrj/haskWyz1Xt3XOVoeRc9juY2/a1o9OtsVsUTqaR+0iW9TdiQqYTraNqpPNx/u8F6STbch0fy3nSvJe5nSv9RO11qLbhgGgJHmMeZK411U0cywUY8TEYOMim2h+INgwklBENjrZvNDUbPLYsWNSZPvv//5vvOlNb8KVV16Ja665Bg888ICvB0hWL2KAUEW2aEj/73Y42dwm243m/ffPpNvuCCDeSCu1m+xNLTaM6Dth52zU21U/fmSpaifaLqqtFDHp/d96FBd/+Oc4vpTzvWC7cE/cvvuE/NlyviR3xsjKQMTlhuM1RLawv042MQl2WozKjqFujQ+MSXe+VEHZONdq1WSzxEV9dLIlIu1zsiV87pJWNy5qfA+nrdNdTO2+bwkBZzAWxoixuNo/oy9MxpLRjhaw7lRNtlAwIOsM1nKJLUmRzTyeoXgEYt9PHK9wCKwfjmHYiLouZYvy+oiHQ1VurhOpvHycinA6xcJBTI6szLhoVXdRxX1rv5/XiotmCiX5GTcjsgGmy6YX0DStSmRrd81FUp+CcS8V5nG36PJqRtRjG4qF5XUrEHMOt3uAEMLF/B0w78md7i46GAvJjcilXBEHZ/WajvYao36jXte1xmsh4Ir7ajxi1qkVpSLEPcCteUItthobM4INI3FMGiLbdCrPNYEHmhLZxsbGcOiQHge55ZZb8IpXvAKAPuiz8QHxSsYhntOO7qKys2jcefGUaKAukaZpeMM/343XffYudnPqMqVyRd4MB6LhqsWUcLKdPjmIcDCAxWyxyuZd7WTrfZGtXNFwy+NTSOVKePjAvJx4+FWwXdjKVTu4pgHLnMCvKNyavaiIxXreJ9FDnIt2BxVgukvscdGYbfxVFyXJGjXZEsqE0pe4qHSytb+7qF8ik3qfzBTKVfcwMb6JLsvtrsm2rAhJIgopXIkjiYivNfTq4dZRvB3Iumw1FkQph3lIKBiQIvhitoByRZOutPXDccXJZjY+iEeC8rwvGIK0ENns9zPR9GDNYEw66FZLXFTTqptVpYzGB/lSBSXbRq1wCAKNxbXVCHC7C543wnK+JDejRS1jzkm7j6j/LBxc/ehkc6vHBpjXr9N6K1csS4Fp42i86jmdbnwQC4fkpshSroj9hsimOo/bgepkq12Trbp27ajsMFowXkvERRuryQaYcVHBhtEE1gxGEQzo65CZBhrI9CtNiWyvf/3r8eY3vxlXXHEFZmdncdVVVwEAduzYgdNOO83XAySrl6xDXLQdIttSncl2IxP/fKmCmeUCMoVyVb0b0lnSyg03GQvJRZ1g3bB+U4mFQ9i+fggA8MTRJctjqkQ2j7v8mUIJP31iqiuT2n0zaXmuHprP+O5kcyuQutIcEP2OmKzWEtn87i4qzkunnd5lh46h+jEIZ4p+DEKMS0RClm65qoicjIYQDAakCOdLXLTor1jtRELWlvHnWrIX2baLm+L/n3fyGAC9lkw7F31qJHLMFhNSnWydcCR0yskGmMJxrc/WyckGmB3sFjJFzKbzKFc0BAP6Zoc49iWl8YHqVgD0c99NZBMuhjWDUUVkW1njeKFsds8GajerUusXpW3n2DFFZGvIyaaMjUcXe8fJJiJr8UhQbowxLtp9hPAprut+FNnE3MN+DwDUOUf1uSqu0UQkZBm3O+mABkxhPRYOyk2R40s5uWkBVNc79ZM5pdZiLSekGOPUdID43OYzRWQKJTm3ayouqohsQ7EwBmNhhENBWatumnXZ6tKUyPbJT34S73vf+3D22Wfj1ltvxeCgHkU4duwY3vOe9/h6gGT1IhdTlrio/zXZ6k22G4kcqTun3DXsLmKhGg4GEA0FLd/vmsGopV21WZettsjmtebKl+7Yh3d97SH82937mzn0llBryx2ayyq1Df2Juam28nAwIBdn7XD5HZrL4J9vf3bFuSt6nVyxLM/N7UZU0Il6RYgbRYyJS7mSjHwCuhhUkBEM5+6i4hjcareFggG5CSN+52fXMb/Faif8FpkKJWtcwx4ZFQuBrRMDWGfUl9nTxsiorMkWM2tkCsYGIjVdDH6z1EmRzRDOahWpVuvVqYwoHUaPL5rOs3AoKDcGl7LmYikWCUnBCdDPJbUmmxrhEYvCicGYdMUJt9dKQTrZjJps4VBQ1u61X/eqoGEXslWRrZHxQp3zHWtzwfNGUB0q8Q6K16uBYrlStUHhB+WKJu97Yh5Vq07jakU2PXCIKNbqDiyurw2jcUv97Fp1GNtBvmQ6RMWmyONHrGsHJ7e+X8wpDrFamyIZh41L6WTLFCzlApqZ12wZS8rY8wbFWSg7jPbQpkOv0tSqLBKJ4H//7/9d9fOrr7661eMhPvP4kUXsmU5h+7ohnLtppNuHY0FMdAYc4qJ+3gBFbMrNyZawOSlqoYp/7OTUXdJKTb9AIGBZ1E0qRVMBXWT79kPAk7bmB0JUWz8cw/GlvGchSXQZ6kbxzycVofDQfEbe/HxrfKBMjLavH0K+WEYqV2qLA+Kzv3oG33zgEAaiIfzPF57s++v3K5/+5R4cmM1g/XAM73zJKa6PU+sb+YEqnixlixiTCw3z3KmuyWYVXsTieDBWfT4nIiEUShVZAyseNZvWaJrm2NjGK1nFKdQukj7HXuy1S+dtNZrEQmA0GcHp64cwncpjz/FlXHDSmC9/344QOYbi4aqGG6PJqHQFtVsM0DTNU+MPvxiq42TLl8py4Wafh4xK54H53Yn7lyUuKs7PcBDBYACJSAjZYhnTqZycl1SMWL94nogdTQysYCebLS4K6NdosVyquo7U92Z3gEwpUc9Grj9rXLR3FpXCLTQ+EIUGXdihk60+5YqG1376ThTKFdzyZy+pqhnWCuq6xYyLrixR2w9mazrZ3DfGhFN0o1KPDbB2FK5UNNdu6X6RVzY0xHj92GHr2qGdIttMujEnm7rBLj7zxWxRfg9rBmNNzY2i4SA2jSVwaC4ra3oCusi288gijqd6ZzzsVZoeXb72ta/hRS96ETZu3IgDBw4AAG688Ub84Ac/8O3gSOt89+Ej+PObHsWPdh7r9qFU4dQVUcZFu9D4IOdh4qUeFyc03SVjK6Sufr8bbDdp0fzA7mQTotqWMdF5zduN89C8Xpsh75M40Qjqezg019646Hmbhttay0dMAtgO3D92TaXwL7fvBQD83W+dWxVPU4m1KS4KmN0dAVN8iIaDiIRshZAjoi5cxfJYJ2em2BAR17x4jFN9poaPvQM12fx03gFA0fae55WJf7miSdFhNBHB9vX+Nz9Yzpdw5Sdvx4d++CQApfFBPIyhWNgS9x1LRmSXuHY7ErLFsqyN1Mm4aMplQaSKP3Ynp9oVWyxa1g0ZIpul8YFVBBbn6aG5jOX1FpVzQHWyiXFgpYlseQeRzek6KpQqljHA7iBSo56liuY5LWFtfNBLTjZTZEsaheGZrqjPgdk0np5KYe+JNPZM++vqVc+VcSmy9d93ImuyDVSPvWL8Kle0KjOFdLLZNskt8fgOzLnFvD4aCsr57+NHrCKbU6Mhv1DjorXixumaTraidMQ10/RAIDqMqt1e1xuleI730KZDr9KUyPb5z38e73//+3HVVVdhYWFBNjsYHR3FjTfe6OfxkRbp1KS2GdIO3UXFAqzVBZOK2figtpPNU0025TF+FQsnzZGual9t3kjsN+mzNug12Y4t5uQOcLmiyUXR5jFdlLN3G3VDLGzyHXYzappmiYsens8q15H/cdFzN41YCr/6jRBKvcZ0SW00TcMHv7cTpYqGK85ej1edO1nz8dLJ5nPjA8Bal82t6YF+DIbQVyrXfay4Vwj3s1qfqZV7XKlckRsoybY62fztkmZfpMwpn7nqyh1O6E42ANg97V/zg6ePLWH38WV868FD0DRNiURGEAgELALXWDLaUJOhVhDjSVjp/NlOROMDt7hoSum6GrK5MISTTY+L6osWsYgxmyIUpdNeXC/iszwwaxPZlO/duSZbsaorZy8jrsuoIs47xY7ti9FqJ5t1Qeh1vFDv8b3qZGNc1DtPHTOFtV1T/opsFifbQP0I+WplzqgXOO5QbF+MX0D1mksI4RtGbU425Z7cibWsjItGzJpsU7bUSjs7jM55bHzg5GQT66CFTBEzLXQWFQiDwmlK2RHRYZSb4/VpSmT79Kc/jX/913/FBz/4QYRC5sl/8cUXY+fOnb4dHGmdTmfZGyHrULRRTKR8jYsawkndmmweJv50svUOchfHmGCq3689LjoUj+Bkox21EKnUReiWce9OtuV8STpGOrGrpjK1lMN8pohQMIBgQJ8MHDQEP9+cbDaRTbgp2uGAEIsCimz+MJ3K48ED8wgFA/i73zqn7uPNqKY/422ujpPN3vQAqBb6nHZn7Y9NGr8Lh4LyntHKeKw+tyPdRdsUF11QJufi8x+MhREJBWWnsIOzaV/+NmB+bsv5EmaWC0p3UX3MUJvRjCQiSuOHzohsI4lISxFir4j36xYNE+KjU4dzEStbyBbkokXUvBlWOrSK60JcA2KxesDuZMtWO9nU7qLFsubrJma7cYqLmvNa833YxYxajQ8A7+OF6lafWsxZat51kzmLk62zheFXMk9PLSn/7a/IptYPFAJ5rbhfq3z2V8/gqn+6w+Je7QXMmmzVa65oKAgxJNs3W0T33o22+XswGJB1KMW9o1Su4Fe7ptsydywoNdns5gwx32hnXNRzd9F8dWkNtSabGCOaaXogeO/LTsVn33wh3nLJVvkzWZOtC+VyVhpNiWz79u3DBRdcUPXzWCyGdNq/CRxpHTGp7cWbb8ahm1s7u4u6x0W9u/3UXc1e/Ez7ibSt4L9ak83uZAOqI6NCUEtGQ3Knx8sN+/C8uajptJPtCaP46mlrB2UkVsS//BLZ1g3HEI8EMRAN4azJYQzFzA53fpMxXEsLFNl8QUxux5IRbLTtBjshFup+uXLVMVSd+JuCeA0nm3EtyevawckmBDB1Yybhg4tDjOWBACxF5f3GPFZ/Fl72+6TqZBM77eK+d5KxkXB4PmtpStEKqji7fzZtdheNVY/JqpOt3fdOce51IioKmO/XbSNCbPQ5RbfVeI+Ii5pONvM8Fx1EE/Xiog5OtonBKAaiYbm4bYcruV241WQDbDUgbe+puvFBtubv3VAFyUK5YlkAdxOLyCbF+8bHlUpF66tNrqeOLTn+tx8Ic0AkZDpol30a6534zkOH8dSxJTxyaL5tf6MZatVkCwQCpqO5YI+LOjvZAHN+K675W56Ywh9+5QH8/U+e9u/ADczGB6GqRjVnGU3U5tskslUqmiWK2mhNNumMzhYxK8oFtOBkG4pH8OrzN1g2H9cM6a831yNjYS/T1Gxy27Zt2LFjR9XPf/KTn+Css85q9ZiIj3RqUtsMGVl7R+0u6r/IJuOiCec4XSMRFtU5wMYH3SUjnZAOTrbh6pv02bYOo6rbYSThXUg6NGdO1jvtCBDHfs7GYRlxFU42vxw4yWgY//GOF+Ab73wBEtFQe51sRcZF/USIC25NXuz43fjAUpPNYaLoHBe1Ck/ysbVqsinnuh8RRDHZT0RCbXU++e1kE3XHBOruuhCuhYizfjiOaCiIUkXzrbaU+n3vO5GWnSuFmDSqLLLGBiK+v383FrKNXQetUj8u6txZFLCJbDYnWzgUlOf6tCGyyZpsxr8P2kQ29RwQHSjXDMYQDAbM2nErKMJW08lWIy6q/n+2UJafS6Mdfu33eLtY1y3mlKYWcXldNT4f+avvPoaLP3wr9p7wL0bey6hx0bY52cJBuRHUzrioqIHZa0ml+XTtmKLbvOOoi5MNMK95cd2Kce+Aj85sgXCvqt1FBRdsGQXQvrjoUq5o2QSrdf6YdalVJ5uIixbMxjeD1bHdVhCbpe10aa4WmhLZPvCBD+C9730vbrrpJmiahvvvvx8f+chHcO211+Kaa67x+xhJC/RyTTYxWKqOhXY0PhA7nH7ERelk6x3StgLpyWhIumKEAKVyjhTZ9LioKrKZXdzq3zRUJ1u7awvZEcd+9sZhGXEV+OVkA4CLto7hOcZkYqiBz6ZRhJPNLm4uZAorqm5Qr7BQx7VrR0xci2UNJR/G3HqND+ydRQFTUJhNF5AvlWWhaKfHCiFZ3blVO481ixB7E22sxwYoC3yfxo2CbZGi7oDb3VyhYACbx/Vx0e5+ahZ1/Ns3m64ZFx3tpJOtweugVQYNt2+9xgeOIltCjYsKJ5u5yBRC4bTxO9GsRMxbjsxbRR/x3ssVrSouNLwCmx+IuWDMoSabRWSzvaeMUnBexJoGoiGsG4pVPbcWdpfv0YXeiEjNOsRFxTjWCI8dXkSxrPkuOPUiS7kijigbDCdSeen28UK9qLAQZCNKwfx2ChEinm6PRnebeiKbUxmj5bzZwd7JyWa/5sVj2+GmUputqOaMwVgYp6zVyy60Ky5qd8p6aXxgcbIlTSfbXJ3voVkG6nTTJiZNVcr+wz/8Q5RKJVxzzTXIZDJ485vfjE2bNuHTn/40XvziF/t9jKQFEpHej4smHeKi9q5prVBvwh1voG5doczGB72C3ckWCATw4dedh+NLuSoBCjDjovtm0sgUSorDMSIXMqkV42QbqeqeJq51vxGTxXZEjEQ0UN0VfOzwAl732bvw+y88Gdd5qCtGTBoVF+LK2JsrVTAYai0qmbU0PqiOizo52SYGoohHgsgVKzi2kJO7s4MONdnE5Fx9nXikMWdKreOOt1lk87smmXCyDcXDSOVKcnEDmOeCGtk8aTyJvSfSODCXwaU+/H1VZNs/k7YU+AeAEXtc1Oe4rBv1SkT4TT0nmxg7nZx14jOaXsrLRZFFZItHcGwxJ+Oioo6iuBZKFbOL6mK2KL/3+UwBQhMQnQ7b1Sl6IVPAnullXLx1zHcnaC0nW63GB+r/C/fZ5Egc0XBj44V9w7eeC1TTtI7UARSdAycGzeuqmc108Tn0gyvlacPFtnEkjkg4iAOzGeyaSuHS0+o7ff7ffz+JH+w4gh//6YuxbrjaaQWYcVGLk61Nn2uxXJFpmmZiwu2iUKrIzQY3ccfsam6er6Kz6FA87DhPsJ/jYqxtR5dPYaaIhUMYUk6Nk8aT0inWru6i4h6QiISQLZaxnC+5jimy+ZuDyLaYKWI2arpd/UR8P/0wZrRK0zPqd77znThw4ACmp6cxNTWF+++/H4888ghOO+00P4+PtEgrN9924xgX9dnJVixX5CSiXnfRnAfBRI2x9uJn2k8IgUa9wbzhos1478ucx6C1QzFMDEShacCz02mrk83YrfISWzzUJSfbQqYgd2F1J5t1t89PJ5tKu9wP5YomJ4lLuZJ0rj16aAEVDXjwwJyvf68faFRcUOuP+XEuq5s56rWUtgniKoFAAJvHzHphYlHiVJNN1FrcMGoucvyIIIrjbtc1JBAbSoVSxZe6aOI+KUQZtU7MgnSymRPsrcbmgz1i2CwWJ9tMWrpdZVzU+NuBgNH4QDrZ2rs50Wkn21CdBfVSTSebIbIZIlokFMCYIk6Ke5NwucnmH7ZzdbvR/W0xqy+sRNODsWQEYUM8N0U2f8fyD3z7Mbzxn+/B/fv8H7OdRDaxSFevebtwqAq5stbTSAIJh+fWQiy4hQOuVlz0K3ftw/M+8gtZJ7WdzMnOgTFfRLaV2pn07mdmPDtzRdODMzcM48xJvdvyUx4dfD967Bhmlgt47PCi62PUxgeNimylcqUhN7kq6PeSk02IT8FA/TWXOl8QnUU3jjjXkk3aDCPiep9P+98tWbpnI0HLmH3ymqQcm9vmZDOu661Go7aK5lyaqFzR5GdhiYtKZ7RSk83vuKgQ2QrlnmkE06s0JLItLCzgLW95C9auXYuNGzfiU5/6FMbHx/HZz34Wp512Gu699158+ctfbtexkiboZE22xUyxoYWaU1w0YkwG/XIIqTE0t/osjUxQ1OPqRXdgP5GusRh3Y/t6fSGy+3jKuSZbrv4N+/B8d5xsTxouti3jCYwkIm2Ni6pIJ5vPddPU66dc0eRkVNjlpxbZHrxRGhUXgsGAXLz6IrIVXES2GnFRwIx3H57P1Hzse152Gv75rRfif1y4Wf7Mj5ps4rjb2VnU/vp+uLnEok4IAPOW7qL6f6tONjFmHJz1R2RTa0DpjQ+stcfE3x6ORxAKBuT7z3Wwu2gnkE4217iotVadir04+LqhuMW1IN5DWrot9evVfq6Ke5t471OL1dHTIblh4t9YXq5ouOfZWQDWe6Nf5MumcCFwmtfao7rLDnHRyZG4jFZlPUYrRX2mk43uvEcX3eOitzw+hZnlPB7Y394NolyxLM+H8aQaF21GZNM/h5UY/XpmOoU3f/E+vPvrD3l6vGh0cNaGIZw5qZcPedpD84NcsSzPoXSNcVs4i6PhoBTevbh9KhUNr/3MXbjqn+7wvPmiCuW9JJDOKU0PgkFnR6fZuMS8fwgnm7qBZnmOrZaieP+FcsV3kVGklGLhoGXduHViQI7X4v7qN+Lz2zSakI1qUg5dq9WxT50riXtuuaLhmHHOtsvJBvhX+mK10pDI9td//df49a9/jbe97W0YHx/Hn//5n+M1r3kN7rjjDvz4xz/GAw88gN/7vd9r17GSJuhUoeF0voSXfOJXeN1n7/K8q5ApODjZjIlU0Scnm5hwDsXCCLkM+I0s0lRRhY0PuktGWqW9L4y3r9N3L/dML5tx0bhZk61Y1mp+r5qm4bCya5r3qWC8Fx41dlDP3qBPDreMWUW2dgkE7ViYAdUig9gZFDt5s+m8rw1Q+oFmxIW4FNla+6wrFc0yPnptfACoIltWRiCc4qIjiQhede4GS6zTl7hosTNx0Vg4CHEb8uOeXLQ52VL5kvyZqMk2alskAP452dSJfq5Ykd+/XWQT/5Zx0SZqRzWCU1S2nZgNBZzHSNFd1MnZYd/8m7QV/bY/R5yj9nP11LVWke24IiwJ2uFke2Z6WQo07YgBm0626mYnTjXZxMLU4mRTCqo32o1YnNPbjGvnWI24qFggt3u+LdxC4WAAw4lw0062SkVTnGwrT2QT9fGePLbkScwSTQ/OnDSdbF5q0anjZa1rR5STaTQuOpcp4KljS9gzvSxj4fVQhZdMDwmkYqNnrIawI65fdf4sxOsNrk4255ps6t/0C7fuolvHk/KeMp/x30EHWGPgg7LBQPV1Lb7zoK0jejxi1qYWh+d3TbZ4xJzH9NK514s0JLL96Ec/wle+8hX8wz/8A26++WZomobTTz8dv/zlL3H55Ze36xhJCzRS1L8VjixksZgt4umpVM2dPhVxc1eLTYvBwq/FtYhp1Ooy1lDjAzrZegaxo9iMk+2Z6ZRc+Iwk9K53QoStVXtsMVu07Jh3Umj90c6jAIAXnbYGgO5eUXf3kw7dGP2gXd1FM7aJg1gcioWKpgHTqd4oMu0nz0wv4xdPHW/LazclsvngBAOqO4VZGx+4NzMAoMRFM+Z17fF8TvrQ+EAsTtsdFw0EAvJ9+eE+EILamsGoFBfEAtypCcZJhpPNr45sbueMEJ22Ge4f8W+z4HVn4qKd6i4qPuPFrPPCq1Z30VAwgGHl5+uHrdEe+3uQTjZl3hQKBuRnLN77MblorRbZ/Gxi8/DBefnf7YitOdZkc3BEivvTGiMapS5MRVx0ciTR8MazmPMJJ9uxGvNb4cJut7NIbESNDUQRCARkrcdGRTZ1zHZayPc6QhjUNDMK6kalomGXIaidtWEYZxqblbuPp+q6xw4ozt9aYl6hpL9OJBSU7tZiWau7GasW75/x2IhBjYv2kptoLlO/2H7cIbItxGunzqKAmjjS37c6T/e7+YEpslU72URNtkKp0pY1oNnQJFaz1qdsJhUNV9VrG1VKRMQjQd/nNYFAQJbpWYkO2E7SkMh29OhRnH322QCAU045BfF4HO94xzvacmDEHzpVk03dwX300ELdx5cV18OAQ1y0osGXbndeJtuNfEYFi5Otd25s/YhsfNCEk2338WWlfpV+kxILnVp12UQcRtzTOuVke2Y6hcePLCEcDODV528EoEf9NildVNtdk83vxgf22IX4PtRJpnBjrCbe942H8favPohnppd9f+1mxIW4w65yM9gXlosOjQ/qx0WzdV1vdnyJixarN3zaRaNOmlqI+1E8EpJCj3CEujU+AHSRZdGHmjJOn3kiEpI1wM7fPIrv/K8X4oY3PReA6qzvjJOtU3FR8RkXy5rjwqtWd1H9+eaiaN2Q3clmfY698QGgx4GEc0R8/06dStvhSn5EEdna4WpwEtmc4mZisSdESlUMUQXHxkU2/XHb1ujXzvGlnOPctFzRpMDd7g1Y2TXW+M4TTcZFVWFtJTrZ1OMXTaHcODCXQbZYRiwcxMkTSZw0nkQiEkK+VMH+OpsO6qZETZFNiTartYLrCZjqnMezk00V2XpI6JAdLZO1RLbqe7a8Rh06iwLqOk3/jNX3P+dzEwJxzUfDQQxGw3LsOWXtAAaiIURC+gKgHXXZhIA+MRCV8yWnuKjZ+M2hzqdyz58YiLWlEYusy7YCxflO0pDIVqlUEImYX14oFMLAwIDvB0X8QxZabrCoZqOoO6M7PIhs6g3dqfEB4E/zg0VFSHEj3kBNInUhSpGtu9RbuDshnGyH5jNyESK6uwlholbtMVFgV4gCuWKlLZZxO99/RHexXX76WssO4WZFZGtXXFSIbLlixdf4pn2Rs2BzsgGrry6bpmnYN6NP2A/P+xPZU2nOyeZPXNTp+xTXRrpGx1AAlsYH6TquNzt+bCRlHVzV7cJ03vlQk61sOifEokZcPyKuqzY+SERDWGvUbzsw17qbTdwDw0opBruQdNHWcTlmqTG/do6bnRbZEpGQdBU7LbzEIslN/FYXRettnQurnWyGyKaM92uHYhY3HVDbyeanK/mRgwvyv9viZPNak814T5PG56fOMdWabPEGBSnR+GDzWBKRUAAVzWxSoTKfKch4Vrs3te0u1WSTtQ7V41yJi2X1O36yjsgmaq+dMTmEcCiIUDCA0435oOg66oYlLlpD0Coa86NIWH99cZ66dR0WqHOeE16dbMpx9GRNtppOtuoGOEcX6zjZ5HWrv291o8DPuGilosnaerFwEMFgAJ94w/n4yO+ci/XDer3MdnYYlSLlQFTp4ln9/Zo1qZ3LaggmBv2NigpEswU62WrTUL5I0zT8wR/8AWIxfZKWy+Xw7ne/u0po++53v+vfEZKWUCdiuVIFg6GGdFXPpBoU2cTNPWDLk6siW7GkAS2OD0tK3S03Eg3EjQqMi/YMppPN+zC2ZjCG8YEo5tIF7Dyi1zgTNyS1+YEborPoaWsHcWhOnxQUyhXEwu1bnGuahu/vOAIAeN0Fmyy/U5sfJNskEAwqi+ZUruhbpyL7gsweFwVqd3JbiaTyJeng9TviAHQ5Lqq4wbLFsmxmMRSPWKINTgix+HgqJ89jN0HOjh/OMOlka3NcFFAWCz7GRaPhoBRqhLjmVpfspPEkTqTyODiXwfmbR1v6++JzO3XtIHYZHRUHXdxagPn5VrT2jpuLmc6KbIFAACPJCE6k8ljIFLHR5sYwa7LVd7JVxUVtcxfRWVOtyaaKbKlcCeWK1pHGB4vZIvYojtx21mSLOcRFLTXZDCFTvF8x5uSKZTnWbmwhLhqPhLB+OI7D81kcW8xWfcfCgQK03xVmH+ebrXWouslrFfTvBLliGV+/9wCuOm8DNrm4meyoc4h6TjbRRVTUYtP/exiPHl7E01NLePX5G1yf6zkuahOEB+NhZIvlukKEeu54jYuq13AviWzzUiSqseayzTk0TTM7ALt896qQrGma5TP1cy6lmjtixnH+9nOt8+7RhDnW+42Miw6aIttyLSebw5xKvef7XY9NMNhAY49+piHF5W1vexvWrVuHkZERjIyM4K1vfSs2btwo/1/8Q3qHWDjoWAjWb9Sdmp2HF+u65tQBQrWyhoMBM4pXbv3G4WXR2Xzjg965sfUjyzV2cmpx2jp991J8l+LckLHIrPt1IuKi4jWA9tdle+jAPA7PZzEQDeEVZ623/E40P4iGgjKi5TehYEBGcv10QNgjY4vZIsoVzWL9X21xUTUK0g6RbakZkS1cHb1qBrHgHUtGpDtOTELrRUAnBqKIR4LQNHPh5LUmmx8dtDvpZGtHXDQSCsrJtCjIvOAiNG2Vddlad1KKc+bMDebC1amDpkAVhtrl9tE0reNONsBsMOHUda5Wd1H1uYDpxBK4OtlUkW0wZnmvS9midG+phcSHfXayPXZ4wfL/7XBDOdZkc5izVTvZ9N+Je0g8EsRwIqzURGysu2gsHMRG47MUBfdVZtPm2J5t85xgySagm7UOG/v81THIXiO103zpzn348I+ewj/9fLfn56gxyV1TqZoN0/ae0MXg09crIpsxbj3VgJOt1jlunqv6IkYKEXXOtVlFWJtJeZsXpCxONufX1xtbdFYEmTPuO+MD7puxpnte/ywXs0V5/97g4mRTGxylC2WoZfT8dJTllWtXFfZVZIfRNohssvHBgCqyOTjZHBoH2o8PaJ/IJsbRbovzvU5DTravfOUr7ToO0iYCAd2ynCmUkWtjsWF1VyVbLGPP9DLOMgqLOiEuTLtzIBAIIBIKolDyJ5q25KFGUSOND6xONnY+7CbNONkAYPu6Qdy/b07+vxTZEqIodP246LY1gwgGdEeGPglv32Lue4/oLrZXnbuh6nrZMq5P+tvtwBlORJAulH0V2eyT1YVMEQtK5AYAppZWV1xUFdn8jho0Ky7Eo943GWohFnjxaAijWhRTxRwWs0VsAepGQAOBADaPJS116jzHRf2sydYBJ5ufHb+lky1kRljm0gWkC2WUjFWI3ckm3K+HfOgwKj63szcM4wc79Ei7m1sL0MXASCgga5eNtnwE1WSU995Rkc34nO217jRNk+Omm6Ne/Y7WVYlszjXZkra4aCQUxEA0hHShjOOpnFwATg63Ly4qoqKhYADlNi3oC+VqkS3uICqZNdmsTjbhDFozGJPzYcCbyK1pZu3gWCSIDaP6azs5rFU3UqdrDjY7pmR6yMl2x54TAPQmal5RnWyFcgXP1Fh3iI0edS1whiG47Zl2F9lK5YqltEPNuKjNySYjdXWut9kmGh9YarK5fO9v/+oDeOjAPO645uWyLEq7ESJRLSeb3T0vROvxgahrh2+1wZHdiTuX9k/sEqJ6MGAtg6Bidhj1fw6nxkVlh1qH86dWuRz1u17jU/LEDmuyeaM91gfSU/ix018P+6TNKTKq1mDJSoGkekCNGTcokYtvBSGY1HSyRU0nR6VOlyFL44Mesmj3I7ImQYMLY3UnEzAnXWIBVKsg+CHDybZlPCGjTvk2iq2FUgU/2nkMAPC6CzZW/V446ibatFslMLvSNT+Z+erd+/HX39sprzF7TZzFbNEy2QSA4x47Fa8UrE42f3dBs8WyHDMbc7IZu8otNj5QmweY0UX9PS57qJ+o1hcEvDc0MZ1hzS8SpZOtI3FR/7qLqi6fcVn4viAjo9FQsMqdt3XCPydb3vjOT1k7aEak6oijfsZlnRACRCQUaHu3WBVR+27BVtMzWzRFP9fGB8r1Wi8uKlwgcZvIph+D/ljRRTERCVlEOr/joqLpwQVbRgG0pz6PPMdDqshmdCdU46LGHHT9iOlk0zQNJwxnkFhsJhvYVCiWNbnpEwuHpIA37bD5ozqT2x3fs8eh1cYHjdQ6VI+zm7GvbKGMhw8sALCKlfWwj/m16rI5Nbc53YiOHpzLuN4/ji3mLGuRWp9TXnEWA1CcSN7jol4bHyx7ENkePDCPpVwJ+3zqJu0FMa8Z9dD4QHwnQrR2c7EBVremfb3pZ022vHJPdWsYYC/N4BepfEmeaxMDMXm/cDrnam1cqt1F2xcXDbkeGzGhyNYHmDbb9l0MYtIWMpR/e4fRxWwRL/nEr/CX337MOBaxqKkeIMSOpR9OtkbiooA1DuqEpfFBhzpLkmpK5Ypjd1ovbFeinoC5iKlXk03TNLmjuWUsKWvjtLPD6N6ZZSxkihiKh3HpqWuqfn/m5DA+8Ybz8Yk3PqdtxwCYn1GzizNN0/DxW57GN+47iGeM2Ia9I9ZStlg1wT62tLpqslmcbD7HRcVYFw42Ji44uUKaQY1cDivROU3TPHUMVUW2eMR7/NncRGr+fpFxWIC1i6QPoqBAuHwiIbMm21y6aN73kpGqhYLoMHrQRyfbQDSEkwzxzk1IErS747l6z29HVzU37MKyQCwIQzWuyxFjQZqMhqquEfvcxSkuKjqSitcRItuGkbjlM/DTyaZpGh4x5nmXnabfm9ohLuVrxEVrNT4QHexVJxvQWFxbvbfHwkGsM8TM4w5CiBr5a3e9XreabJpWfw6rYnWydW8+++CBOTmWNVJGQQgNQoCtVZdN3B/U62bNYAwTA1FoGly7fds3I2qJCkWb69KryDbXhJNtuU5ctFwxHbSdLG0jHYM17gP27sBHF6uj7XYStZxsfsZFZQ1I97nAWNIszeAnc8b8NxkNIREN1WwuIL5zp81Ia3fRdjU+8HZu9zsU2foA1WbbLoSFWuxo2p1s9++bw6G5LG55YgqAOUA4TTrFLpA/cVFhEa8/4AP1PyNLXJROtobRNK2mU6we2UIZ06mcxQU10GhNtvWmyBYLB+X3b3YXdb5pzCwXkCtWEAgAG0cTvtWyqsXBWRFPHZACtp03XrwFF20da9sxAIqTrUa9ulqk8iU5iZd1uoz/F6+9kC0oBar1hdLxpXxHurd2CrVzmN9t55sVF+JSLPanJlsiGjLrU2WKyJcq0slT61oVHUaBxiLgpmjT/GQvV+i8yOZnXDQSCip1YgpyjB112FwSYtixxWzL91gx9sUiIZw8oTfAqlWTDTBrubRrPrLooUREO3CrySYWhIOxsLszwniu6F6nUu1kc6jJJp1s+mcrRDZ7p1LTydb6wmj/bAYLmSKi4SAuPlm//7TD1VAwhK6oQ+MDcd3mS2Up0gghTByP2LhZO2TtcOtNZLPWZ1onnWxONdnUuGi7u4vqf2vY5mRr9G+rUS/7plcnueuZWfnfc+mC53u+WEect1mvBf7E0UXXx+Zc3Moi2bD7uIvIZnRhFo6gWteOvX6g1+LwM0o9P78aHywpjtpONmkTf8st9glUi+THjIjwxtH6TrZMoYylBp1sqVzRVUS1o9ZgdGO0TTXZZpWoKAAMxvTr20nIqlW7Vr3vt6u7KBsfeIMiWx9Qa+d4ZjmP/3rwUMuTAnHjedF2fUdz9/GU5eLbNaXvMC1mi8iXyvKm4CSySSdbneYJXvDiZAsFA/Jv1rsZ5S012SiyNcrf/fBJXPjhW2tOhmrx+1++D5f9/S/xfaNOWTgYsMRIvLB2MCZ3etTzYrhOJFJ0a1s7GEM0HOyIk024TbYoAkQ3EIuzZuOi6qJEXJNCFBHFpPW4qD7BFHVVCqWK77uF3aSdjQ+a7ajoV3dRp7joYrZouQ/UEs9UJ1sj7lSziHLz94uOdhf1cdNLXdQJke3IQlZeM07nwtrBGOKRICpaY/WPnFC/cyH0n7J2oNZTfHNOutGNpgeAe022RQ8bfaIA+3mbqhuHDcXDUHU3cb4nasRFn1acbPbXAvS5VavXu0grnLtxWMaT2uFks3dsBJQ6jMb5r0bnhhMRy4Lc7mSTIm8DIpuIjq03PudpRydbB+Oixjklvu9wKCg/H3sZhlqon0G6UK5bLqVd3P3sjPzvUkXzvJknRMLnnTwOAHjy2JKrQOc2xp9ubLruPu5cl01sdJ5tzElq1a6z12QblJuTtecw6lxgPlOs2cBBYK/JZv/uFpW/me/gWiVXQ/wR2BsfiCYtkzXiouL1ckUzLirO/3q10d799Ydw5Sdvl80vaqHWYHRjrE1xUXEeTEiRzb2mX0aW4HBysqlx0fbUZDMbH3AdXAuKbH1ArcL+N/58Nz7w7cfwXw8daulviF2VU9YOYsNIHBUN2HnEFFLEpA/QHUGeRLYGdtmPLWbxv77+EL71wCHLTdbrhFvUJao38VKPqZ21uFYrOw4toFzR6rZbd6JS0bDj0AKKZQ3/5wdPANDPn0YjQYFAQEZGLSJbwhQGnBC7x2IxG+9ATbbDsgZcd0U2sylEc7tWU4vmokR8vuLmLCZWi0pcdP1IHGuMHbipHq7LNrWY81xDBehMXLRRB49vIpviFBhVXFViB3lyOI6gixsTsDnZGhHZwq0ff6YLTjY/FuKifks0FMT5m0cQDQfx9FQKX71nP4DqpgeAPv75FRnNSddCEO988Tb85M9ejN973kk1n5NwqKflJ90S2UYU96aK7Cwacz+eczaO4M6/fBn+wSH2HwwGLBFScb47OdmE2CXE0/W2Retg1BTsWnWzib9xytpB2eG7PU42Ed9yb3wgaz5GQ3o3bCVm5RYX9XL+CXFC/O1aTjZVKPHy2o8dXsCBJmtlmd1FzcV0MzFsu2DUjY3jxUxRrhUiIf3kVJ1dtRBOtudsHkE0FEQqV5JzpurHOo/xoi7brilnkU3ERc/ZaIhs+ZKrkGd3sonr0W1OCejCnH3M8FKXzn792svXLHbZyVbrXmpvViTmRWtrFOlPRA0RuWDGRUV90flMsaZA/Ox0GhXNuVa4HTGfrxUXbVfjA7NphCGyiZpsDsJuTSdbR+Kitcf81ZRAaQWKbH1ArXiKaF29f6a1ybYY8IfiYTzXiIyqddnUG9hMKq/ERasHCBkXbcDJdsvjU/jJ41O45juP4Q//7QHZtl04b9y6egnM5gfenWyFcgXlLu38rVTE91FvZ8+J6VS+qhlGo/XYBNuNiIDVyVbbraXWOQKgONnaGBc1FsEndVlka7Vg9nFHJ5t+rYmIwELGdLKtGYjKqNNUj9ZlyxRKuOKTt+O3PnOn53HA3l3UT+dAs+KCbHzQolicUybXquDwkFEc/cKtozWfb3GyNeAoi0lXS/MLiVwHnWyNOGnqocZFN44mcPUrtgOA7J48knCeYAtB82iLTjb1cwuHgjhrw3BNIRXw9/07sdQtkU0Iy1VxUXNuVIvNY0lLJFJF3JuioaD8fNcO6Y7sU9YMyOvF3kHQ7mQLBgMYjIq6bK05hIXQtG4oJkVA0WzAL0rlCsQQ6RQXzRqF/sVnLBalA/J4TJFNxKaaiYuKBbeIoqYL5aoIlyoM1Tu359IF/I/P3423fPG+usfghNNYn2jCIWp/bL0OoyUf0iV27tk7C00DTl07gI2j+j3Aq8tbCA0jyQi2G440t5REzkX8OUPGRV1ENmMOdrYhshXLmuucr2DMT8UaRtZprDHfFZttgYApBHuJjNrPv6pu7crfbGdJE5Vi2SwNUUtks9dkE6LimqEaIlvELDMgrncxL1brzzkhxrq9J+qL2iKZUishIzcRm1jH1MKMi+qfw4Acq927iw46Otm6Gxd9ZjqF533kF/jSnfva8rdXEhTZ+oBa3UX3zeiDzok6g7qmabj2u4/h//zgccffmy3qTZHtwQP64ipfKsu/A+gLTb+dbKqd9rZdJ3DFDbfjuw8f9jzhtu+suGE/pnYWFH3k4Dze9uX7scfl5r8SETGAZnbRjyzok53J4Theec56AKarrFHExErtvFOvJpt9YhsLWy3v7aBXRLbhFmv5TCkim7gmxc1ZFLtN5UqYSZk1KUQBa9UF10vsPZFGKlfCscUcjrjsnttRx9mK1lq3VjvNimwxn5xsYkyPq91Fs0XZNe7Ck2rXDZwYiMoYSSPiecI2YW8GcW/sRDdKtRNgq9idE3/84lMskUMnJxtgjnutRJZL5Yrc9IjX2PW3U8tZ7wcLTcamW2XU1ckm4qLNH494rhphikdC+NVfvBQ//JMXSTe3/T3ba7Kpr1XLXeOF40aHzXVDMXndlCqaL2U+BOprOTU+AHQhTIpsxrgho0z5srmAt3UX9VLDMW9z0Q3EwvJv2N1s1u6i7m4nQBe3i2UNh+eznqKBKqVyRQos6vfdTO1lu6iWybs/dz5dwAs++gu8/1s7Gjja+oio6GWnrZGum1mPdcmESDgQDePcjfq498jBharHaZrmGhcVG67HFnNV92NN03DQcBuKuCjg7t6xj8du7lYVKawko1LErbceA6pFcrtgumgR2TrjZFPPvXjUXV6wu+eFqFjbyaZ2F9Xf25rBmNxgcKtxW65oUox91kNctOApLmqtyZYr+hO1FmOVEMYGa3UXreFkmxyO4xVnrcPrL9xUM7bbCrUaH9z1zCxmlvP4xVPH2/K3VxIU2foAtx2uxWxRTgyc7O8q06k8/vP+Q/j3ew44xqPEhTYUj+D52/T6CA/sn0OlomHvibTc3QD0G0i2hsgWM3YQGpl8iAHnFWetw3M2j2ApV8L7v/Wo3AWtN8H1OvG3199qpw37pgcO4fbdJ/DDR4+27W90Gulka0JcEDGAk8aT+NTvXYAP/uZZ+H+vO6ep43jdBZvwB5eejPe9/DT5sxEZiazjZDPOJXHOiIm4pmn44h178bDh3GmVSkXDoR4R2YY81hZxw6kmmxBlVLfFfmNCOz4Yk1GnqTpjk51SuYJHDs770jilFoeUqN0zJ+oL4eWKVrV48LMuW7MOnritvlGzqEKVjMlkivJ6uLBOc45AICAdVrW6kNqx13dpBlUgbDeNLPLrYXYX1UWWcCiIj7/hfISDzqKLQIhsrUSW1fOlEQegn3FZJ7pek802Ror7ST0nWy1EvVD7+Tk2ELUI0vb3bHeyAeZ332rR7umU4WQbjlsWcrWEmkZRx3DVWWJpVqW4yoTjWiy80/mSFCzsIlumWN91Z4+LAsC6YaPD6JI5ltsjfxWtdhJD3axqNHKmlmxQOziaXVO9jyv2a7BWp8Anji5hZrmAXz097fn1vXDXM7rIdumpa6SDZ9azk82sS3XpaRMAgNt3n6h6XLGsSbe5/RoaSUTkdWLf0J5NF5AulBEI6A1jkvK8cj7H1W7PgDfHkyqsCCfXTJ0SFJqmVTvZbN97N+Kioh5bMFDbCRZXSgZUKpr8vmu5rlQRWXUHj9XZMFINGN6cbNXxdDujSk22hUwBr7zx13j1p+/05OKtNU85tqivccQGc63utLVqsgUCAXzxbc/DDW96bt3jaRbpZHMYb8Q8l51HKbL1BW41KPbb3GW1ODxvLijtuwG6Xd/soHXuphEkIiEsZIrYM71cVetgJpWXF2bCQWVvxskmJhZnbxjGd/7XpfjfV54uFx5RpYOkG17rWdht4u3sIiV2d9pdRLdT5Ipl+Z0252TTb0CbxhKIhUN450tOwUVbx5s6lpFEBNf91jk4f/Oo/JmMi2ad6zvUc7I9dGAeH/7RU3j7vz3gy3lxYjmPfKmCUDCADTW6LnUCsUD008kmrtnhREQuivYaY9KagSg2GBON4w3WZPvPBw7hdz53N/7l9mebOlavqPWsvHSumksXUNH0WMgmIxbjZ02PpuOiPohU6vPVxgdPHlvCXLqAaCgoa9rUQkRGG+kYLMXuFpxsXoo1+0XC15psVucEoDcN+eCrz8JYMoIXG42I7Iid+FY63KpjXK0FiR3VNZ4rlnHDrbubboTjRNdEtoSzeJXyWLKiFsNyY6f252x/z5MOTjZxbbYq8Ivi/+uHYwgFA/LY6kUOG0HMF4IBXUAW2JtVLeetQqYQHucyBXnPWmuryaZp9Us95EvV19c62fzAvC+pkT9BrTmAupE3n25M7BTF1gdjYctn0kxc1C6I1hqTxL1qPlP0bQNrPl3As4bw8cJTJmQd1jkPNckA8/iT0TBesn0tAgG9/rMQKwTq2sdpY1+42XZNWe/joh7bxhF9zinOq1Te+Tsr2muyyWYo7u9nVqnDJc7Rek62fMl0EQvR3P7dqX+zU3FRtR5brVrJZnmeChayRSmATtQo0i+eU1ZEuaF4uO6GkXqt7ZtN1y3tYY+IOyG+14oGfOKnu3BgNoOnji3VbQLw8yeP49z/+1N860HnGujCSCDmQbVEtlpOtk5QS3A+YVy/FNkosvUFbjdfNcLp1C1JRS0mal9QqgP+UDyMSCgoO43dv2/W0vQA0G8gGWnzrh7IhDjWyI1cXOgDxsTjfS/fjh+890W47LQJ/P4LttZ9fq1IrYp9d7KdnSXFjWS1dDFVb3bNOKKO2G5AfiMWMhUNSDncHOzdG2M2J5v4vuYzRXy7xUYigCnibBiJy53RbiGjtE3XZDPHF/EaGSXqIT5Tcc2PD0alk+1Yg062J42mGk8ea7y5RiMccBHZvnHfQfz+l++vqqsiNjImBswd67kGF1i1aFZc8BqVr4fa+EAcg5hknbtpuOakVSCu7UYmjkJka6VGppdizX4h3psfIpuMJ9nGhz+8bBse/tsrcIFLRHd8wCjc3IqTTWl60EjzGdVxc/OOo/jUL/bgk7fubvo47HSt8YGx8MoWy5Z5gVpKo+nXFiJbnWtIfc/hYAATDvEruShtQWDVNE3OGdcN6eP0gI/ntcBJ5BLEFZHNHhcVIr24h0ZCAdm8J2FzwdXCjI6Zz1kvmx+Y4/us0hVQzF9rfQ7q/GfWY5F/gdv53UzXYntkvZZAqnZS9FIzzAvi+5kcjmMkGZHnpupk+9YDh3Dnnpmq5xZKFTkfH4jqjiZRqua2XVY3m/iew8GA41zqDJcOo6IxhUgSmHWoajvZRBpHRsg9OdliWDOkv39RNsMNcb4HAqZ4bHcwdiMumlHmALVQmxWJc2kkEXGtSQlYr1uRjBiKR+puGKkbw4VSpW5pDzF219o4ioVDUmT6xv0H5c+duoCq3L9/DqWKhof2O6ddTJHNer4tOzTbyBTcnWydYKBGTTbxndb7PPoBimx9gNvNVxXZlvOlmjZzVWSzO9nEojkQMCdalxiR0Xv3zWHXlL7YPc3o6HgiVTsuKp1sDcRFZSMFJTpx9sZh/Mc7XoC/ec3ZdZ/vdaFpd0tkC+3bIRI331Ujsim1zlqJiwoXkN/EIyF5HjiJgPWcbOrN5ot37mu5KUavREUBc4HYrJOtVlw0EQ1VxbknBmLShdGok03sYh9rc1fSQw4im6ZpuPHnu/Hr3Sfw+dusTjo1tjQu3ST+1Ztr3snmT5fcrBRdQlXHcFGdqKjg9RduxgUnjeK1z9no+e+q7p5mFhOFkrdizX5RqxFRoxRthbZVaglf5sKkeZE3p3zfjWC6xit47MgCgOa7FjvRLZFtKBaG6PmgLnDFvWSoFSdb3FqiwA21Bt+6Id1hZkd+9y0IrEvZkhSgRGfTdnQYFXNAp+iZtUaTTWQz5qEHjIZeEwMxeT2EQ0H5evXqIjpFx4STTW3mI+Zq4wNRT6VH1PO9USebq8jWQEMHQcb2XdWsyaaMFfU25b1id+7YRbZnppdxzXcew//6+kNV5WPU8VOcCy87Yx0A4LZd1khrvU2U012aH4g5hN1Z5HaOy0Y0YSOur0TI3Wp2zSkC7VqPjQ/E5tVgNCxFlionWxdrsnlNDqki25o6BfojoaAUsMX558XJZq9d9+xM7dSBmAfVEvwAU0BVta9lF4ejQGzUO40N6XxJngubxPlmzLs1rfr7Tcu4aHecbLWuBcZFTSiy9QFuUUhVZAOsO3N2ajnZlpUJjuh8Jeqy3b9vTsZFX3SaHl2ZWc5Lq6tzXNRwJjTiZKvhjPNC3OPCxy78tdLRrh5iwO3UDbLdqMJaq3HRdlGrUK2YtIiFjHDmiIm4ahU/MJvBT5+YaulYeqXpAaA2Pmh8UV6paJZJ+aItLjoQqxZlxpIRTDZZk+3Ygv54e2TEb+xxUU3TcHQxJ9/rf9x3wFKDTbapH4opdUT8d7I1WmBdxkVbHMukaKrERQX1mh6oj/veey7zLMoBVndPM2OlOuHtRHdR6eQq+leTrd6CwI7TwuT4Ug5/8p+P4MH9c55eQ0SQGhUmVdf4E4br1M/6id3qLhoMBuTfXMxU3+taqsmWEDXZvMdFJx3qsQH+ONlEVHI4HpYL6oFobZdPM5iF5KvPsYR0kjvUZDMWgMJtLBxC8rke6yI6uVqkky2lOtmESznmSURX76ONRrbdRLZmxHsxZxHiRS2BVD1f6tVw9oooQyNELFE3T9w3xYZ+Kl/CUzZnunDdRUNBOf699Iy1AIA798xYxhTxmcRdxvczJp1FNrMzrdHt0RC0nJIOgOK8DOmPExFyTXOf86rnjtfuoimlzqPpjK5Rk61DJWdyhdpipkDcs0sVTYrVa2o0PZDPM173eJNONqB+XTbpRqzjGh5Vmq6J86/eukZ8J04im1hjD8fNZEciEpIbN/ZrU6a3uhQXlU62QnXThxlj0yFTKLdsNljpUGTrA9y6mYki44Jau1NqTTb7ICUnkYqi/pwto4iGgziRyuOosRt0mSGy6U42Y4HtcNMTk9FGJoFiAGo2ny4G/WwdN4e9EG67bl65ojlx7NQNst2o7jA3J9u//novfvuzdzl2eTrSZicboLZcrz737CKGWPCIibg4B8VN8V9+vddTIVQ3hIizpQdENrF4WcrV7prmxGy6YGl8IhyNssNwJGwRZUaTEYRDQblIXMwWG7oGhLg2nco33LnNK6WyNXawlNMLbD+iNL3IFSuWFuaqyDbhw0LXTtNOtnDjizMnZE22aAiDsbDFRVOv6UErBJX6TM00bxDHHQoG5GKznfjlZNM0TS4kG42TjzmIbD989Ch++OhRyzlbi2YjtmYtlxKePqYvauvVxmoEeR24dFZtJ06Fzk2Rrf1ONi8iW71C4V4Q8X+1e6n8XttQk80puiUdY4WKWRM4LrqLGnFRY45rX8B7bb7hVJ9pbS0n22DUUxxcdfU3Gtl2E5HFhnUjyQcxDxe1sGrHRdvpZNPnOPauxwdnzXXH/fus4r+ZXjG/m3M3jmDNYBTpQhkPHjAfX2+sEimbmeWCZWNMdZkBDTjZlHrQYo3jNKcUfxPQzx2vIps0NsTDruey+n212tTIK167dKudRw/N6eeAF5EtKR1w+vvRnWy1Sx/Y6+ftrdNhVDjZanUXBcxz9cqz1+OUNQMA6ju3pMjmMDaINbY63w8EAkodQPO1S+VKRzuiO6E2p7JrC+r56+f9YCVCka0PkFFI5cLWNA37DLFMLHBrNT9QF5RHFrKWm4zTJDIeCcn6CIBec0GNi9bK7m8xbrhqHKse6RqdVryQiJr1PWohdjnEBKddUU51Arxq4qK56nPGzk0PHsKjhxaq3BTzmaL8HDa2UWSTTgRPcVHrDV9EL646dwNi4SAePbSA+/Z5c4U40UtxUSF8lytaw+ejWIwElChVpaKZIpvNySYmtEMxcwLp1c2WzpfkeaZp9Ru6NMuxxRxKFQ3RUBBbxvXz8ZnpZTxycAEA5KTr3+85IF0tzk42P0U2/X03KrKJekOtOtmyisgWCARknGLTaMKyGG8HcVt0uxFUB14jtcWaJRnxp3aVKlzX6uTmxLghBqXyJbkwnDI2w2Y9Fh0Xn3WsQZFNiCNPHluS50zBJ0e4pmldi4uqf1Nd4IoNI+FGa4YzN+hOm1PXDtZ83FA8IsfZyWHn+6T47huNKaqYnUXNhbFYDDbS3bIetZyaahmUZdtGr+qyAKoX8J4bXclzvNrJpt5bxDi+xnNcVHGyNXgP8DMuKj4fIRzWeq56nP6JbFYnm+guKeKiqlv8QVsdKycnTzAYwOWni8ioWZctV0eQSEbDcp61+7gpwoj3PO5RZCs41BCUwrtLNF89d8T3UG/esqSkh6TIZnOQ9nJcNBoKynFKnAP14qJAtUg6bOku6vz5irWG2POzlzuy46UmGwC89QVb8eLta/C3rznbc2MwL042e81pp3NOXB+hYEA6+TpNPBJ0dNllCiXLONLvddkosvUBTjXZZtMFpPIlBALARUaUR+2WpKJpmozqCXeCGjVNubSoF3XZAN2OLW4g6UJZTuSdnGdbJ/Sb3YEGRDa5YG/SyVariKNA0zS5sykmOE43rwOzaRxdaC2qZhHZGlyMaZrWkoOqXSzZdvedjlF8/vablRB51wzGGq4B1Ahe4qIjbk4243vaMp7EGy/eDAD4+5887VqLox69FBdNRkPy2ld34b0gRDYhnmeLZcsiQ218AJi76oFAQNZlm/JYX80eEW1XZFQIoJvHEzh9nb4AfnZ6WTrZ3vuy03Dm5BCW8yX82937AZg12dYOxpSFrj8im6ZppsOhQQeP2V20xZpstqiIOI52utgEYkxoKi7qsVizX6j341bGadWl2WhcdDgRkRNk4aYUC2ev8TXTHdLY3xaLQrXshF9OtkyhLMXHbohs0gmtfIZ+ONkuPXUN7rjmZfjbOvVlQ8GAFJomR5ydIWOG86OVzrL2pgdA7W5zzeLW2AOwxo7NuKioyWa9lqtENpd0hx3PNdlkh0g1Lup+n1TnQs2KbPZIvunyacTJZhXZas1/1XPar80ru5NN3Pvn0gVUKpplDfDA/jnLeCkcMnbhTERG1bpsYn1Qa+54ylp9Y+zgnLm2UR2KgLlOcHMsOZ2vck7p0vxgVomkCqFpPlOs6cJX49HJmPOmzVI3RDaP99JAICAd9I042ezlhYbiEXMuVScuKuru1YuLeukuCgCvOncSX3v7JdgynpRjez1ByYuTTVwLAtn8QHltUdppzWBUlmjqNIFAQCkRoAiAtk26fq/LRpGtD3Da4RIi2caRhLSnuu1OnVjOI1+qIBgAnrN5BIB1guxWc+T5ish25uQQBqIhuaATzhSnnSUhKqhOtkpFww92HHEVr1rttOKl5lSposkil24iW65Yxqs/dSd++7N3WcSVXzx1HNd+9zHPN7vZJp1sz0yncM7//Sk+88tnPD+nU6jCSllxMqmIwdpeCPvIgn4utLMeG6C0XLdNiMoVTZ7nbk426aaMhvCnL9+OgWgIOw4t4AePHmn4OHLFsozk9EJcNBAIKLt1jTkgxPs41ZjEAub1HwjoIo9a32JC2dEUkSevorW92UG7mh+oAqhw6D55LIXHjRpTF20dw/tefhoA4Kv37EepXMEJYxPD4mTzKS6aK1aqXLZeaUWgsh8DYN5vxA7rhSeNtvS6XjDfQ+NiTSc7iwLmPU/TWhM21ZpDjcZcQ8GAvOaEo0lssnkVfptufODweL9qsomFbCQU6Nj3qTLq4IRectmEbJQt40nHRgZ2hLg9OeLiZKtTKNwLYpEnBCdA7S7qf1zUSUSWLufFrNn4IG51sgnsLhmvkW2nBfc6Y+MnXTDFPbNDZNRTFFXdRGy0ZIDYALTX3lS79npB0zQpVImC+7Vrspnn9AmXDflG0DTNtfFBuaJhKVe0rAFm0wXL5r5wbiVt3/VLtq9FMKA70sSY5mWMF+fyjCISuMVF3cSUooPz0kl4V5lV3HJjyai8xmuJr2o8Ohlx/t674WTLNXAvFefr4QVRN9GDyGbb0BmMhR1LH6iI8fd8Y+06ncrXnMOKTfNGNq4GHSKdjsfSjJMtXi3sTitzyW5imlPM93PCFnVutlnaaoEiWx+QcNjhEjerbWsG5IXq1vhAXPyTw3GcMTkMwGq5FQPLoG2n9sKTxuQN44zJIQQCgapBwVFkM5xsM8sFObD87Mnj+LNv7sCHfvik4zG2WgRysM4OFWDdbZdxUdtEamY5j+V8CSdSectN7oZbd+M/7z+Ee56d9XQ8al2IRkS2e/fOIVMo44t37vO1mLQf2B1QTnXXhBvMfhOUN6A2RkUB97iouitY7WSzNj4YiIWxbjiO97xMF1k+9pNdDS88xPsdjIUx1oXaQk4MK3XZGkEIahtGE3KhKcSvpBHRUxcMYqINmLvLe2zNVtwQTQ/c/t8vDjiIbLc8fgyFUgVjyQi2TiTxqnMmMT4QxVy6gPv2zVniovbaM60iztdQMNBw8xe/uouKc1zcb37/hVvxotPW4Lca6BTaLKYbrwUnW4dEGVWUakWQEKJqIABP4oudMdnh1upkm88UPLlvG1lQqTi5HPxysolo9kgi2pHorx17NKxS0eScYrgFJ1sjnLNhBMEAcN6mEcffq86PZl3WTos8s7uofwv6fA2R7cXbdcfSl+/cL4WKwZibyGaPi3qLbDtFxwZjYTnGigYAs4oYk1ghcdF8qSI3jdWUiRuWxgc+ONnm0gVki2UEAsCGUV24jIaDco4wncpXxUkfUMqIpF3qOo8kIxgfEA0UjOZhHhxW4hwR92lN09zjoi7jtnNc1L0ESb5kdsYVriTxt2q5BYXINxwPOzrZiuWK5bvsVMmZRjasRIkHMUfzVpPNvK5DwQCS0ZA5l6rjZNs4mpB/o5abrVYdSDekEFZjblyuaHKt7Oxks7o65Ws7rE1PODiJu4EwtajHNmM7b/3sNr0SocjWByQd4qKqyCZ2cNziokeUi18sKK1ONued2oFYGK88Zz0GY2G88NQJAOaOmXls1aLYcDwib0xiJ+vRwwsAnONfap2oZotAesnUq6KVEAXsBUXVCabqRhODolvBfzvWuKj3BYg4/sVsEXc9O+P5eZ3A/t7tn3W+VJGdaKrioh3oLAqoiyTrDVtMkAaiIVlkXHYXLVobH4gbz9tftA2bxxKYWsrhn2/f29BxHFKaHnRjseiEuEa8nsMCsRCZHI7LhYGYWInFjlNNNgA40xD1n56ydhZz42hVXLRzTjax03/BSWMIBAIIh4K48uz1AICfPH5MmRjFzI5YPotsI4lIw+eLmOwWypWWOkHZJ9i//dxN+Po7LpGd2dpJS3HRYv0FmJ+EggE5gW+lLluxrH9Xen2bxscIe5fJE8YmW0Xzdo0LF14vOdnM66A7HdfMaJj+mS4XSlLIaNXJ5pVPv/kC3Hvtb2DbmgHH34t7nNfv2Ylph8YHba3J5hAX/d3nbcGGkTimlnJyPjrk6mSzzTtl04Q63UVdiqCL9y1c2tLxNBjzVO9N/dwbdRTW6y7qdQxUF7/CPe723RXLFcuczG1DvhGEqLB+KG5xCorv6omjiyiW9bqnrzlf36h5QKnLVqtEzJDN/eNF/LHXQ1vOl+T5J2KsZlzU+TMuGGNyxBIXda/JNqfU1hIivBT7ajQ/EO9LrcmmCn92Qa/VUhBeEWsVty6uKuIxIt4/4aEmm3qvGYyFEQiYNckWs0XH+UtKqV8nNm33zrhv2jpFxOsxJM8L83N/9sQyvvXgIbmRoW7UO4meh2yCssCpJtt0qtpJ3A1q1YsTMC5KVj1xhx2u/YbIdvKaAWl/d9s5ETfDTWMJGfmyONlqtKj/p//vAjzwwVdgw4i1Rbcg6RLv3GpE5A4Y3YV2T6Usf0tFHbDskyuvSLuvB5EtHAxIIcU+kVIHWXED1TRNLmS8WmdVy3ojC0f17//osWOen9cJlmq4wwDYmmlYf9eJzqKAu5PNaWIbs3U0tHe4jUdC+OvfPAsA8M+3PYuv33vAcw0mU8Rp7/tthHqxBzeEk239cExOJKcMMUxcR6OqyKaMEWdO6nU0dhnXfz2EeCcEhKml9tZkO2k8iVPXWYuRX6A0fHnVuZMAgJ/snJIOwLWDcXl8qVzJlw6orRR7Vyeu+SYL0FcqmhkX7UK3q7gtut0InY6LAs4bX41Sq16VF1ShN1soW6Iu9omyE16LXNtxOj8KPnUB7mbTA0AdI/XjEPf7aCjY1lqiKpFQUM7pnIiGg3JR2KzILxsfOMRFa7mhGqVWXDQeCeFPXr7d8jNRG6mqJtuQS1zUc0026+uttW1Mz8i6Wt7ioqqrfzZdaKg2o6uTzWPHVIFZpyxo1pRyEY/sAtHMcr5pF6TALR4n7o2iidDmsQQuOUUvPWNxssn5VvV1JR02OZvIVuPeZBfZxLWRiITk88y4qLM4XXCIGtrHBBVZ823ArK0ljsPuCFJZUuo8DjiIuvb5a6udrL3SmJPNdk010F0UMNeb4vPVNGe3oFhLDMcjsnFMLSebKax7H6+d3GZ/+/3Hcc23H8M9e/X00mINkS2VK8rzw349OHUX7bm4qCLw2s9bNj4gqx6n7qLCyXaKxcnmJrKZCrtwbeybSaNkTIzVQcxOJBS03Niq4qIuA9kWW122p41FttPOq+jqqDoEGmXIQ002NasvP9OSXWQz/1/cpJdyJek68Krqz6WtcVGvkzBVxPvpE1NNL5rbgV1gtP+/6gJ0c7LZb0B+49b4QNwg1VijGbPTj1tMWtXW1ledO4lXn78BhXIFf/P9x/HebzzsOBGw00tNDwTjsihxczXZ1qtONhEXdXCyqXHR0w2R7dhiTkbBanHMEPREHbCjbYqLyu9nIonheATrlS57F5xkFvq/9NQ1GIqHpWgRDQUxnNAbPdgLz7eC0/npFXXxr4pUT08t4ZpvPyqvvVqocb9u1MKKN+jiUMnaYq6dIOkxrlYLIc5GmrznqbW57C52L+4asyZbc40PAFOkKVc0OZ9ohaUui2z2TZqUD51F28GYzcXYKNJJoYh5ZpfD6jnO7HIejx9ZbPjv1BLZAOCNF2+W3Z0B895rdzfZN3fjHgUpt06Dwsk2vZS3RP70uKj+t90EPE3TLPPMfKnSkNjudo57iamqiPc+EDXjr07fHWBurOnuId191Go9UXsUVDBhE9lOmkjiwpPGEAjom+7CGS+P32Gj3l4jK+OhJMBam4Ns1hYVBcxYoFskWnUXC0Zt7laVWVvNN8CsHzhTo8uz6mRLOIjb9vlrp9YB8l7aQE02gafGBxFVZNM/10goiOG4+6aBagJxMonY8dpdVGVQpjzM60fMccV5rs77CyVrakDMsUaTkaoGOU5usRM94mQT46wlLmpzYNLJtgr53Oc+h23btiEej+Oiiy7CHXfc0e1D6iriQhA330pFw/5Zxck2ZHb0cXJVqALHxpEEEpEQimUNh4ydKHXAr4cqskVDQYRdduHNDqNppHJFeQxO9aDS0jYeajpa10hcNBY2d6Vzdieb8nwx4Kv11bzm09WbRbmiyZt3PdS/n8qVcOee3omM2gVS+/+ruyHdi4v64WQzJwKBQACf/v8uwN+8+ixEQgH8eOcUrv3uY3WPoydFNlnDqbGoyHHpZHMS2YxOlBYnmznhHI5HpHvRS2T0mHGeCKHLa1fSRljMmruOomOq2HwIBIDzt5i1kKLhIK44a738/7VDMQQCAcfC860eE9CcuBAKBuSiQBWpPvurZ/GtBw/jvx48VPc11IVdpxw7KnF5LfZ+d1H1b7VUk61FJ5s4/+YyhaoNNi8Op2YdgOr5cYHSFMMPN1uvOdmEY6mVzqLtQDZeaWLsWc6XpGhhcbLFnJ1smqbh9798P177mTsbFtqcnEEqkVAQf/Ybp8v/F4tddS4aDJiuTYEZF228uygAS4kVMX6HjchfIhqs+drpQhlifS02WhpxFLp3Fw3X/Lt2xNiTjIVkXS83F6IohbBmMCpr+tmTL3PpAl732bvwt99/3NPC2q0Glbj/P3VMv9+fNJ7ESCIiS0eIyKjZXbR63TEY0z8bMSfLNeNkU5pZCOp2F63R+MBpk1DMpdS/IcQ+u1ihopboMZ1s5jEJIVY4VjvuZPMSF1U2ZwaiIU/PSTg42YDq0gcq5mcVMeOitZxszdRkc2iIIYRpIZZWuQuVOdPhOXcTgWN3UaW+bzcZjAlx3nwvM4yLWlh1IttNN92Eq6++Gh/84AfxyCOP4MUvfjGuuuoqHDx4sNuH1jXEJLhU0VAoVXA8lUOuWEEoGMDmsQTGklGEjbu908Au46KjSQSDATlQiToYteKidtTdCreoKGCKCwfnsth93Nx1KJQqVW4Fs6tj87vF9hoOTqhFeOMuu4bWuKjVdg40FxdV/87xpRxe/PFf4p9+vsfxeUKEFDs7vRQZFTd+UXDbLpiqAqQaJU3nS3LR0u646GjCrO+gsuCweLM72WQhXpvYHAwG8I4Xn4Kv/tHzAQA/f3K6rtgqHJybe0lka8LJli+V5fm/fjguHR2itqIQ2dQFg6h/Ijhrg+5me9pDZFSIdxcaItt0KueLQ0ZFfDdrBqPyuz7NiCFsXzdY5egVkVHA2kHLXni+FVoVF2IOjQMePbQAwL2zq+rIEAu2aDjYVBH+Vmmlu2hGOLLCnRPZvHY3rEVBOtma+7zHB/RzZT5dqKqx5MXhlG+yJpu6KFZdn6023gC6L7LJ+ktZUR7Cn86ifiM2TJrpMCqcRIOxsOVel3QRju9+dhZPHF2CpgF3PdPYpp84x2M1hOTXPXcjXnP+BvzuxVvk2KvOLccHolVjkpdIJ+AeHVNrsok585gR+UvW6bIq5jaRUEAWLve60aIWtK+OizZW51HWNIuEzcWyyzGL8WA0GVWistYx4/59s9hxaAFfu/cArvqnX+P+fXNVr6Pi7mTTX1/U6hJrgYu36mPFIwd1kS0jm51Vjz9DtkL0WRmNrS+y6SJyqarpAWCKCk7rhHJFk+4kp5psTmOq7EqrzHnsDRicWFbWXEJ4Ut11Yhxcb3Rnt9eO9osv37kPP3z0qPz/bAP3BHVzxktnUcAqsg0rY6rYNJh1cP+p69PJYf1cq+USbKbxgRm31v9WpaLJ70CMDws1IrzyWhitnu+b3UWVDp5SZOt24wMHJ5txbBuMc48i2yrjhhtuwNvf/na84x3vwFlnnYUbb7wRW7Zswec///luH1rXiEfNrzlbLGP/jFFUfSyBSCiIYDAgB3b7ZFtvs229GYpcu7DcqvUB6mHpRlVjID5pXBfyDs6msfu4dXFtF6rkZKGGaFcPceyZQtl1Ua7W50i4LOqWHRofqPVtmnGy6X9Hf92HD8zj0FwW33JxlwiR73cu2AQAuPXJ4x1r310PcZ4IN1pVTTblpqN+x8LFNhwPt90R4BYXdYpoxGzdReWkz8XR+cJTJrB1IolCuYI7ajgMNU2z1PzqFcSivBEnm5gMRENBjCUj8vObsjnZhuIRJCIhhIIBS/QS0DsTA/VFtlSuKG/o520eQTgYQEVrrRPa//3B43j/t3ZY4tpqUwrBpaetAQD8huJaE7zk9LXyfap1R/zsMNpqwXd73c6FTEG6Kd2aR1x38xM477qf4f59c013mvSLVrqLNrJJ5BeNRrucKBrjTqTVmmyZYlVc1IuQ3qwDUD1Hzt80IgWQ1eRkW7TVZOtUZ1GvjNXpyFcLEf+3R5UGotWLQQD4yl375X8/fHAejVAvLgoA4VAQn3nzhfjYG86XP1OdbE4xtIQt3eGGW3Rs3bDpZJuzRf7qdflcUpw14h4w6/Geqm7+2edC9WKqdqTzPhaSwqDb/FS4csYHojIiLMRWgVpn7tBcFr/7hXtwn1GPCgD2nljGZX//S3zxDr0JlJuTTRW1AHMOJNItU7a4aNJhvmWPi3px3Q7GwvI+MpMqOMdFbQ45FTUF5FiTzaFMiNPfqOXKEqTUmmyx6u9dnCeTxnelp2H8FdqmFnP40H8/ib/8jpnMyCqponqowvWE7Tt3I+kQFwXMe5l9TQFY7+8DdcRkwL0OYy3som4qV5JuVVcnm0Vkc3eymUKW/nxN03q68YEQFcX16tVYslpZVSJboVDAQw89hCuvvNLy8yuvvBJ3332343Py+TyWlpYs/6w2oiHTXZArlmV8SzQjANRJQ7UFPFesWNps2zuMNrJbq4pstSbnJxkX6OH5LJ48av1OqmKGPjjZ1EmZW70FtSabq5PNIS6qLqK912Sz3mDFhEI8/8hC1rF+nPj95WesxeRwHKl8CZ/55TMNFdZtF+IGKNxobt8jYK2NJ0TeTWPtF5xGjAlRtli21LFwimiIiXfeqJnn1lJeEAgE8Btn6iLMz5867noMc+kC0gW9tX27nXuNIJxsjcQbxVizbliPSYrFrxBUxTUbCgbw+bdeiE//3gUyxiY4w2OHUSEGjSQiGIyFpdug2Q6jx5dy+Oo9B/Ddh49YOn0dMMSnrYrI9spzJvGLv7gc77/i9KrXiUdCeNmZ6wBYx7+xZPMLXTut1qLaYkzunjQiOo8dNmNdTpHbO/fM4Kv3HAAA3PPsrOwq1mx351ZppbtoN4QZr06aWjjV/2kEa002+32//qJf3PsarYMaj+iCezwSxDmbRuTx++lka6Y2oR+I+ktLuRLKFU0RVHrNyWZ+943iVnQ7KaNDqtiSwS+eNu91Dx9caGgu4kVkcyIWDsoopqPIFqkd6RS4x0X1e8vB2Qw+8dNdAMxNFzGvdRuLUkrawIugoiLO76F4uMqd56WrqYq4fpPRkNm0wmXuK0T30WREbhTZxwxxrr/irHW4/PS10DTgB4rL6XuPHMGRhSz+6Rd7kCmUXIUFe5fJrRP6hrsU94y/m6kx3xqwRezU9+pGIBAwI6PLOTPKqQhAAzWcbGpdUktNthpxUVFKZo1aIkMZQ9yw1GSLCCebGlU0nGxKzcRWNnScEGJKplCW53ojm20WJ5vHDuRucVG3unfliiY/q6F4xLxGimXXxh1N1WSzObrU4xDfsV0AVL8Pt86igBn5FdfmUrYkx8Vux0WdGh8I4fhk47r1aixZrawqkW1mZgblchnr11vdBOvXr8fU1JTjcz760Y9iZGRE/rNly5ZOHGpHCQQClt01WTRRcYyss3VLEogb4bqhmFT2hci2xxDZxI3MU002ZTCt1Ql0cjiOaCiIUkXDbbunLb+rKpgvazM0v8CLhoNyUHVra6/aiIU1vyq6WqgW2dSabF5EtlyxLB8Xt00G1QFLfP4q6s75e19+GgDgM796Bn9/y9NdFdpyxbKchIidy+rGB8412TrVWRTQb2hi7qruPIkJkmNctFRBrliRO1e1zutXnK2LLb96etqx3Thg1mObHI53pb6VG2OGk83rrjtguh7Ejqp98atOml56xjr85nkbql7jLMPJtnsqVbOjmYg1Cpu6+LeIpjaKKLwMWHfp3erlnbp20NVV9P4rTscrzlqP//mCrfJnqsjRKq0KRZeeqjvx7nlWdx7sPOIusmULZfz193bK/z+ykOlKh06VlSeytV4rp1CuXa+qHmOKk1KI4WYB6fpCupc6R04EAgF8610vxHf+16UYSUSkI1i8n1ZYkJsh3pwRfqOeQ0vZYldckl5opfHBCYemB4C5YaIKx1+79wA0DXj+yeMIBwM4kcrjaAObHnlR46pBITkQCMjjWTNYfS7Ui3TKv+/iahFz56OLOew8soiJgSiueeUZxmvXcbIpQnCjtfFqjVVqx1S3uV6uWJbzDrFoT0ZNh09W+b2KcLKNJaPyvdvjjOJ9bRxN4C2XnAQAFifbvcZ/p3IlfP3eA8gWy5bNe4G9XIRobCFrlRl/16zFXH1tDcWtDhvpuq1zf1qrRDVNl5l5PGKNky9Vqpxh6v9HQqYAOioj5MWq70XMj1SRSXy3Tq4sgdiEHoybkW2n7qJ6DVj9Z34nWtR1UsomZnqZt6o12ZqJi6pj6ohLB1d1vaXXr9Ofo2nu9VvlNd9AQ59BWdO7WHUcQoysWZPNWONscUiuiHNOPP/Esnmv7vb6QIw5wr1cLFfkez95zYDxO4psqw578XtN01wL4l977bVYXFyU/xw6VL/I80pEOq8KZXMnUhnYRbbbHhd1snSfvt5wsh1PGXV5vEci1JtJrRueqBcH6NZzwLxx2W8+9WJ6XqlXl81Sky3svKhTxSFRH2C2QSebEOciIXNnTQzIaqRyt0N8Tgqe8TD+5wu24m9fczYA4F9u34sP/+ipun+7XYjPJRAwxY+quKjy2SwXSlJQEZPyTbbJWDsIBgNSCFJ3Hms2PlBEUaD2ef28k8dlt8kdh5yjMwcd4oi9wISsyeZ9YSYEGrGjal8ceLlmT14zgGgoiHShXLPTpXCsSZHNEGWbbX6ww6hJBliv2yMuMZdanLp2EF9828U4e+Ow/NlYW+KizYpsEwCAu5+dgaZpsh4boEduVGfpjb/YLc9RQHfVNjK5bget1GTrRkfKhA9OtkKpuv5PI0g3U6YgF8yiuLgX8aUVYXX7+iGcs1FvECKdbD7UDep2XDQcCkrnwUK2aIkG9hLjLTQ+cIsqCaFGbDRmCiV88369FvIfv+QUnLVBP7cePuA9Mtqsk00/HiGyOcVFG+wualtwqw6h8YEo/uOdl2D7en0zyGtcdDgekS4prxstbk0PAPM9lSuaY/R6MVPEK264Ha/+1B2oVDSz8UE0ZLkPOzme5qXIFnHdkF9S1gHP3zaOQAB49kQaJ1J55IplPHrI3Lj5/G3PAgDWD8WrBEw1Orl2KCZFNHvaRjgma3UXXbaJbPE6GwJq8wN7DFj/W2rixTqXVxvRqOtN8V2priqBcDCpcz1Rt9ZNZNM01Z0VlkJHulCSIp56nsi1SsHfuKh6fGJ+0EgJgaacbC5xUVXIVBGfUzSkp4/U57smlorie2wgLqqcb5qmWY5DrAPtTkbnuGj1nFKcG/tn0npUdMl5k6MbiOtMXIvivarr92XGRVcPa9asQSgUqnKtTU9PV7nbBLFYDMPDw5Z/ViPmLlepppPthK3xwZGFahvr1okBREIBpAtlHJwzXQxedmsT0ZAckOo5z0RkFNDFmbONSVo7nGyAOWi7ZcjVm2hc2TW0HItyE3WKi3qxzoqBanwgiqRRZ0OIeeqxqQ0hBGqtBgB4+4u24SO/cy4CAeBLd+6TRWM7jZhYDsbC0mVQ/T2an6Wm6UIbYDoBO2WNFtZzi5PNIYakOtnUCWuwRuH3SCiIl52hu9l+/tS042Nkza8OxGMbQUx+F7JFVxeeHTUuClQ72bxcs5FQULpnRccxJ6TIZohrppOtWZHNvFZUkUlMoOy1YxplogU3iZ1WxYULt44hGg7i+FIee2fSlrgoYAqVz55Yxhfv2AdAXzgDuugoOpt1skOnSis12bohspmND5qfgBabdPkIhMibKZTlmHOm0WTEi/DbbOMDO/balq3Qje/SjumqKPRuTTbR+MBh7Pm3u/bhoz9+ytUNNS27RdviosIdZixef7xzCku5EraMJ/CyM9fhQqOTrOoQrkcrIpuIr044LOCTdSKdAtn4wPb3B2NhPGfzCNYNxfD1t18ixWmgflzU7DgbbrhkQK3zWxUQMg4CwhfueBaH57N4eiqFmXTerGkWDVvitU5zVNFddDQZlVFZ+4a8OUfS53hnGKLj/fvm8PDBeRTKFYwmIwgFA/L1nOJxqvNQdYvbGxPUcrI1U5NN/RuqyKbe5yMhM/FiF8zEeKy62AB9fBTPUR1OlYpmOpiUuZ4YK5Zy1c43QB+vxfRrKBaR53JFM8dQdT4g741NdN6uheruF+NcI3FR9b6x1sFt6kTSLS6qjLkq9lJGwaCZ6nJzkctmK0042Sqa/v2oxzGXKaBUrjg42fTPbClXlL/b5HA9bFszgHAwgFS+hKOLObOzqEdhsp3YGx8I1974QNRcT9PJtnqIRqO46KKLcOutt1p+fuutt+LSSy/t0lH1BubAUnFs/yt3iVycbGpULxIK4pQ1+qJXLWQ76DESIazBTgVLVdQb7MkTA/J47bXIMrb6Ts0yaCswaUfGRSO1Gh9YRTZN0ywdb7yo+rOyFkTMFPMc4qL2hhD5UlneINTo7lsu2Yr/ceFmAMDHb9nVldiojEjEI/KGV6smG2DeuOccbPvtxKn5gVN3UTFxKlU0OeHw4sx6xdlGXbYnneuyucURu42YyGha9WTGjX0zeqt08V7si02vwviZRmR0V43mB8cMl9tGQ1ybHG4+LlquaNipCE2qIJzKWiduzSIXWD462ZqtRRWPhHCR0enxBzuOYmoph2DAXAQJofLevbMoVzRcsm0cv/9CPfp6dCEnd4W7FhcVu/VNCDXdqOPlj5NNdBdtbho3rNR1EnUGRZORdjvZVIRIWFgFTjbAWuh8yaexwm/GXGqyLeWK+NB/P4l/+fVeV9ew2fjAOS5aKFdQKFVkLd1Xnj2JUDAgO8k+4uLgdqIVkW1QOtmqF/Berz+54Hb4+999z2W44y9fZnEnA/XjoinFySabCTl0O9Q0rao8woJD2QpBJBSUwqd9bngilceX79wv///IfFYR2UKWeK2TyOYYF112jouKY7tk2zgA4L59s7hvr95p9CXb1+I3jPqkgLPINqaIWmrd0yGlMcGJVN6syebgZDNrsunH5FX8kZ09l/PmZrft/HFLvNQ6V2VdNkVomU7lUShVEAoGLJFZ8fkVy5qjM1vMRcLBAOKRoEVkFN/polETbCQRqSsqNUutuGijIpuTEF7vORYnm0tc1Cmub3fc2sk3UWtUNO0C9PNCPQ5N00Xq6sYH+ncrkhGjyYhjyaVoOIhT1urRy91TKUeTTLcYtNVkm1k2489OTRH6kVUlsgHA+9//fnzxi1/El7/8ZTz11FP48z//cxw8eBDvfve7u31oXUV1XsmLVJkkif8+YbOAy3pYtpvhaUZk9CHD+h+PBD3HVoQCX6u7KGAVGc5YP2TZ4VFRuyS1wpDM1deJi4aClvitinrjLZQrWM6XXOOidz8zg+d95Oe45fFjlteQNvXBqFmgt1gtsu2q0XXVPlhf/YrtiIaCuGfvLO58xr2zpZ+UymbdChklSETk91irJhtgTtpmlqt3FNvJSLLaeu7YXVSJOQhh1K3pgcrlp69FOBjAnullHJhNV/1exKNPmuidpgeAPokX79+r++oZowOxcKLZFwdOu9BOCIdNrQ6jQgiaNBq6bBxt3sm2Zzpl63arnAs5f0SZRote18IPcUFERv/9nv0A9O9MdJIWTra9J/Tz9ZyNI5gcjiMUDKBQrkhhuHtOthVWk81wKGda6S4qnWzuztlaBAIBKbaIfRchZjst+u2Iz7qRHX8nxDjaqpNN07TeENmM6NJipndrssm4qG3seejAvHTJ2BeFAhETtMdF1flXtlCWUTiRSLjAcLI9cWTJ0lSoFq24NZ9/8jjikSAu3DpW9bt6kU6B6WSrHtdCwYDjz0WXT/e4qJgLhV27vM6nC3jeR36O937jYcvP653fFxnv9UFbJPezv3rGkro4spCtahwghCmn4xZz0rEBJS66lLds2KoxWAC45BT9fnLf3jnct0+vx/aCUybwe88/ST7HKR6nzjPUGKWlMUEqb6kpZ8esyaY/Roo/nuOiBce4KKAUe7eLbNLJ5iCyiTijIr6I62PDSNzynGTUFGycrkFhAhiMhxEIBIzzUH+++E6tTrbm7421UI9NxkXl51z/eo03ERdVv2tLTTaHjXH1uFRBrp7A3kx30UAgYLonc6Wq45hZzsvPSzhGxWcl5n+1PgPR/GvX8ZTr+NsNzGtBfy9irbZmMFq3/FK/sOpEtt/93d/FjTfeiA996EN47nOfi1//+tf48Y9/jK1bt9Z/8iomKScVJceaGmadBevu1NSStc6R4PR1+mT84QMLABqrOSJuZHXjosoN9vTJIVcRzG8nm3tc1FxUJFxuXHan2ny6aOnUJjL7AHDb7hM4kcrje48csTxHjYvKXaiitbsoYLW0q397QLlJCzaPJfFmoxjtJ37afjdbpaLh1Z+6E6/85K9RLFcUJ1vYdLLZa7LZbnp2J5u961S7qBUXVQtqqztd4kbpRTQaSeg1SwDgVgc3W6862QBzcTbrYRFeKFVwYFZ/L+4im7eJjJcOo8KxJp1shth2bKFxkW2HLdKkjgmqYNwKYw18lvXwQ1x4oSGyiQnieZtGqyK3ew3R9JS1AwiHgtItKMTU7jU+aC4uqmma/D67Exf1QWRr0skGQDppAD3mJBzqqXyprrPMNydb2B8nW7pgFm3vnbhod7uduiHGnsVsESWlftf9++bkf7vNg6ZdnBSRUFB+l2mH7pEnjScxPhBFoVzBE0fdx3GVWk6yevzNa87Gjv9zpdwoUJGNR+rFRZvoNFgviqq6+t26vD50YB4zywX85PEp2V0dqO+6vWirPq9Q694dWcjiG/fptfHEnOKw4mRLGJ+FEEmdnWz63x1LRi11gtX5qHDzi2MTc5xdx1NynXDJKeN4yelr5T1aNDWwI4StrRPWOZCMqqpOthpxUXF88r16bHxwSCmDY9/cFX9v2RbJreVkk2OC0nXSrSxIIBCQDWicmrAtObqzrAKpo8jmg1PYchwWkc36OTfc+MDj3F79/oYtcVFzPFNxdLLVaHpSKldQMu4hjY456jln73I6u1ywNKMAzLHHy0bMGYapZddUyjGJ1i3MxgfVTjZ7h99+ZdWJbADwnve8B/v370c+n8dDDz2El7zkJd0+pK4j1PvFbLHqYlf/+0Qqb7Goi2jAeluRRdH8QCx6G9mpFQu3kTodwETrbkDfYZetrV0K5rfe+KB2TTa5wxEKui7q7BbkmbRVCKtoZsRUWPAfP2KdcM7KHbRYVX0P++ursQC1VbUT73v5aUhGQ3js8CJ+8rhzt12/mFrKYdfxFPbOpHFgNm1x/4gFUD0nm1igONXGaCfi+BaN76dkOBLV3wF6fQexwy6EEi8ddgHgledMAkDV91AoVaRY1GuND4DG3FcHZtMoVzQMxsJKd1Hr5+PVySbqu+ybSVsWhQJN06pqsomJ/HQq5/icWtjrBi0pNUfEZHq4RXeKmFjOLhdaEr3VY2pFXDh/86hF9HzOlhFMGp/h1JJ+Tor4r4gvCIfzs9PdFtma263vljAzUGdDxwviftRs4wPAjA0C+gJ2JBGRO+31IuE5n2qyiUWpV3eTG2JeE1Xuz91AbNJ884FD2GPUTe01J5s4Rk2zLkzriWy5Yln+fK0tLgqYrqh0voTDNhEhEAg0XJetlbgo4H5umpHO5rqL1iKhvLbTuK4uqkUU0X4/3a843G9R5ghenWwPHZyX8/jP/uoZFMoVXHrqBF77HL17tx4XtcYtZVy0UEK2UMbX7j2AxUzRUsh9LBlFMhqW8xx1U97uZFszGJOba4VyBWsGYzhlzQBCwQA+9obz8foLNuHV5290fB8vO3MdRv//9t48TJKqzvo/kXtlZu1bV+8rNNA0TTc0O3QLsjXb4IKC7DI/FBXHVwRHBV8H5VXQcUTAZRQZF3BjHIcRBkR2RaTZZe2mG2h632rPPX5/RNwbNyIjs7IyIyszq87neXykq7IyIzMjbtx77vl+TzQo3XACIYJtG0hY5a5uwQeOtMdEiQ35xTpovblpFPL78uZ04rmd4oHas9lJm4vTqthmaqG1jvq68bDiznI4M9WyYjEWel0uqo4bAwmjT6/4DEqZB9iCD8pKF1WDD9x7srkJkjIowqVvoRoYMt4xp1k5L5whBzuHkvK7FHNh0Y/V+j4L3yP26bXapbhVotWK/OADIbKF5O9S2VzF9/ZGZlKKbCQfMaCJ3ZNQwGe7UYubSyanyxt+OpuTZXBOkU0kKckGnONwsl189Dx8fNUCGfNdCHWXa5/eEpxsnpWLjtWTzWdzmKkTKTFgil2Qt3eNIJ21T7QGk/aY53f3jtp2MoXzrTMekpNE8R7F7pm4kasi24AS6+1GVzyMjx49DwDwpd+9JJvSV0omm8P3Hllv62Glpg+u2z5k7XIqPdlG01lb7LnTVjyYyCCZsXZLnbb9aqH21AGsGzWQL6yIUikhBJZasixEtrVv7bGlX27eO4qcbuzy1UNjUydiUb6rhD5i60zhZUF3TKZthQN+2wK4VCebcDHmdPfF38BoRl4jYhLTGQ8j4NOQ0/P7x4yFSBYViwQxJohrTNMqd86K8oBUNmdrIjxexGTX79NKFnndCAV8OHRuh/z30pltmN5q9WRLZXJ4x3SnCHfITFPQFGWktSoXLdQjcyxqJcxY6Y7jOy9VxH2l3OAD9TgAYw7g82klN2MfT5PrYoQ9crKJhU1LU7BgmvxEMN28Jl7dOiibPtdbiE3ApfQ/kc7ihU175WPcetPuUpLP3TYZxKbJlv6EfO9qqxHZl63EAKZkhSJbIazNy1xe3zO31x9PSbR4brURvYq64Wgl/KZtxyEc4IC7yCbKD50cML0FkaAPe0fSeHPnEBLpLP77uc0AjE1WUZ65ac9IXrmlKj58/9H1+NLvXsKN97+KgURGbkSIuZFaMuo8NnUjTfRlA4DD53fI6/KYRd341jnLCt6vvnTa/lj7xffaekEDlntS/Xzc7sPOtMfxBh8IN1NHLJQ3lhTqNSXH4xJ7som2IG5uvlaXagpBsT5jI8kMEumsPO9ao0F5PgqhY89wCr979l3b3Lsc1HnxkPm6glLmAWJtE1ISmcfCLrLlBx8Mp7K2+4hbuajlYs2fc6l/W66TbTCRlmOqOHW2D1rjodi4FD3ZxPqmWDiOCFZZt2NIrhfqwckmy0VTWeRyulIuGrZd24WSXKcCFNmmCGJwEjen7njYdvMI+n3yohWOkB2DSei6MaHqcLjO5nZGbZP7UgdJwAhR+NzJi/OEOyfRUACfes9CfOTw2VjQHZMDZV5PNpnsWKmTrXgNua0nmzKRUkU08bfChfTGdkMEiympqmLAUXe11PIJW7pogeAD0WxXbQQ/VILt+OOrF2LxtGbsGk7hU3c+O26Hjxt3P/Mu/t+9r+La378kf/a2Mgl6Y9uQMrEM2AZfVTARIokodR1MpKV45fdpE5bQ5pzgiP+PhwMIOBa0YodbHGepbspprRG56/y/f7cm0W8ru/+1XCgWQiZimu93z3AKtzy0zjVcQIpsPfZyHVXcL1UYD/p98lpwK6EQO/9d8ZAc6/w+TY4xm5WS0Ydf247jv/kw1r61O+95AOMaft28bo9e2AXAOk9lMlw4UDRFthQiQb+8VncMlS949yul2JWeM6IvW8CnYfG0ZsvJ1p/A27sNZ2Is5JeLLLGAFjvAlbqayiVcYrnoQ69ux2d//bwcpy1hpvLPbjwI0bgUsboQMs2uAgFCbTIuvlPZJ2qMYxOfdcXpotLJVqHIJkv6a1ua+ZHD5uALp+6Hfz51Mb7+vgPxX1ccVdeu5N3Dxuf27Nt7bXMZt82MPYqr3O16EeO5mJd0xUO2edmyWW0AkJdeXAjLHeTtuKJu7hRKXcxkc1JcGm8TdPncLuORWi4qytyyOd12X1OdbGvf3iM3RMdysgX9Phw0s834u7f24OHXtmMwmcH01ggOn9cpRat3947KOaX4LKQrJZXB3zYa98Yn1u2S7qCmoF9e692yvYxxXOlsTs7f1GNTnWhOV9pYOFueAJaTTfSy1TS4bo6IeVhON8QgIZqNJf44+2K5VU84ExUFqay5Ae4qsomebEq5qFkG7DY2FOo/bbyuKRwpc80mWQKZleeXTwPioYAMBRLf960Pr8Onf/kcvvfw+rznHg/OclG19DpSgvNTXCddcfexxA21j7cqnDVHglLQ6ncpYy3VySbuQX6fljfXHwvpnkxm5Aa9uN5EBQCgONlkuai1vijEzPYmREN+pDI5vGk+Vz30ZFOPeSSdleWinfEw/D7NKiedwiWjFNmmCGJAE4t4NxV8unIDBiBv7D3NkbwFZcBvJZ4A1SuH+MyJ++L6sw40+xSIG4/DyZYUPdmqG3xgRTv7bTcRMVimszk5SItUJFEu0hEP5dnM1br9F9+1Jp27lIarzt5vQmRbbu4Iq062wRJsx5GgH7ectxyxkB9/3bAb1/7+7/jWA6/jgh8/he8/Ut5NV4hEr28dlK4+m5Ntx5BtYhnw++R3pd6oxXvrNc/NgURGCo7t0VDFokapOJuoiomR28RWTPDEdzaec/CUJaJk1Aq+qOd+bIDSR8x8vz998i3c+L+v4YePbsh7rCi5cPbEaXHZVSwFef27uL5e3mKI1Pv12ZPe1DJ4wT0vbMH6HcO490X3kukXNu2FrhvlpgscTjaveyyJRcOOwfLFFi+bvZ+wfy/CAR+OWdSFSNBv68m2focoFY3LSbHTaVDzctExyhK+9odX8Ju1m/DQq9sBeBdiMV6kwFFBP75i5Uml0q4IUsIlIkvCh90d3YBxr5ML14pFNuPvK3ayjRYepyeS1mgQlx07H/947AKcc+hsHGQKS/WG+O6FmKqWigLu86BdYyR9i/FcBNQ4G9uLTY9CoQpOrGby3t771fnbWA3QgfGViwb9Pnm8bs+t9vQMBSwXjypqC5EtFvJD1605llsAkxMZfrBxD/7LdLGdvmw6fD5Nboq8u2dU2Zw23ltUKWF/4R1jPrph57AUTFXBqadFBKUl5d8I1Pnn4aqTTfnvcnE62WIh980RIzEVtmMExh6rIkG/zaHp1ge4kJMtlTHGQ7fyfbfG/LInm2u5qOhbnH8Nivcet/UZsxIz1fmAz6dJQ4BYQ4g55n+/sDnvuceDM/hgVPZj85U0V1/YE0fAp2GZWUJeCm3RINYs7cPZB8+wnWfqJny/sq5yc7IJkVQtn/3rm7vw66ffscJ8KkgzVstFxdx3/XbrehbHIspFhcOtUAUSYLSmEdVjgnooF40EfbK9xHAyYws+AJS2GC6u6KkCRbYpgtjBEQOsmwo+o024PhwiW4Go4IWKQ2Uieo4UapgvdpSiFZRKAVaPg4I92dJWqWbQr8mdNqcABqhONlNki4XzdsDUG+5Lmy2RzZ4u6h58sHxOGwBjx1gIW6XYjgFj4P/a2QcCAH7x17fxnQffwKOv78DX73tV1tSXynAyg8fMtNLhVFb28HvLWS7qaBYv/l/9rMWkT7hnBhOZgglP1cTZRLVYs2FxM5blouMQjUTJ6FMbdsvPvdjEqx7odLhcxATcrezNmSwqUBcIpZaLAsrE02V392XTCbq/Q2QT45xaLir6yDhDXgDjGhLi27LZbXLCLZ1sidKusVIRO+c7x3ndqfSPeCeyLeiO49HPrcYt5y0HYF2L/aNp6bad12VtrjgX0eP5Pr1ELJrVctFHXt+BR1/fIf+9dyQlx2Px3dcqjbLLFCkGk5my+5V4EXzg7MkGQLrWi5Wyqg6dStNFvQo+qIdk0UbC2V/zqY1GAqQQfdzGWXFOqIEZKtLJts0YK2Y6UunHG/hRaU+2Qvh82pi9qlSRbbyvXyy91Fr4G59zu+N7SGVyeNcsyz/vcCOw7d4Xt2JL/6isMil2jh8y1xDZnli3Ew+amwlnHjQDgLUpMpzKynm+mLMIoebFd/vlwh8A7jMFPtUh2uPYvBoo4PbvaYngcyfvi0+sXpg3DygHsWkmXGCF7jdq2qM4Rr9PK0msVQ0Ibk62eNje7F2QKpKE62xBksxkZaicWyl5a4GebGvf2o0fPPomAOAo02UP2K+rvY5xUDrZzHujGCdf3zYkqw3KQR0fBhOZcbcPmNURxVNfOAHf+dDBJb+mpmm45dzl+NY5y/J+Jz/jEftxAfY2L02KICn4zK+ex1W/eQG3P7ERQHkim1oJJb4Dcc6/udP4nFubrPLd8QQfAFb4AWCMR87+xrVA0zQlCCRjCz4AlLJtOtnIZMd503cTzkT/HUtkMy6YaQXKOvdRlPXx9GQrFzdhBgCcUeTlMmZPNiXpStO0PJeZOK5wwKfsuJllbLGQLX1GbSYLAH9XnWzCchsLy12o0ZTR+00IeUtntMHv0zCQyMjvqRTbseDMZTNwxeoFmN8Vw1nLpmNuZxQ5Hfjfv+enXfaPpPHB7/0F//bHN/J+98jrO2yLI5E+qDrZ1u8Ykjd28RlLwVT5rIV9u888D9Vy0YkKPQDy+2dYfVDcRDbj+xFlNOPpiTWrI4oDZ7QipwP3mymjYvJY70428b0It5ozGTaX0+XuXXGRrRwnm4vIZjrZRBm1QDrZlP6D283/FqUugCEWf+xna7H8Kw/gp0++BcBwizrdrQOO87hSupqNz7MikW2MxLnx0tsSkd9LcyQoz+m/rDfEdNXBPMOxiI7USmQT5aLmeZhIZ/GP//E0LvnJ3+Qia62SuLejxiJbS1MAAXOTZqyyzEJ44fLpKFouWnj3WSwQNK28BYlK2OPgA4pspSF77w2nkMrk5PVx7D7dANwXRlYri+JONuHgd24WiTlTKpsrqVVFtUQ2YOyEUXE+qhuq431uZ7morut5KZzOst139owgpxvz2fNNke2vG3bh1H97DP2jaSNAQBmDnYgqh81mH81FPXHs12fM1SNBv1wA7zHFCCHQiE3gP6/fZXu+P5pzE1WQF88hNq/UlgVOPr5qIT570r6elOOLjQBR1lysPYdY4ItjbAr6SzqGsUS2QuWi6Uzh8n3x2YkNsc17E9B145jckjUtV5Y1Bu8YTOLjP38GmZyO05b24QMrZsrfRWVoRTZv080Z0qaKUPcpVRTjxVmWWU7adEcsNO6yzEK4hUu4p4va18K6rktDyU/+vBFAeeNNszI/FdUvYu4rHF4tStqrED1LCT4A7OttZ7unWiKuh3f3jMq5jBgfhDvPGdg3laDINkVw9iLojucLZ6JcVPQvEjsthXqn7aMo65U03C4VN2EGsBb4lfZkizt6sg0lM/joHU/j7mc2Achvwit3Qh3Jn82RgHT8iF62HYrINpzMIJHO2cSpjbtGMJBII5HOyvfT4XCyJdI5+XztsSDmmvHmr5klo6XYjlWuOmkx/vTZVfj2hw7GOYcaIRT/82K+hfy/X9iMpzbuxm2PrMubNN7/d3vJ3XqzX8A7isiWSOfwqimCiMlDi0xydSkXNc+3gUTGKk8pMeLbCyxrv/HaxUo0nOWipQYfCE450HCz/eFFY7JT7+WiqpMtl9NlWYszpW1z/yhG01kE/ZosnRa0lOlkk7u7jus/m9Pxinl+HTDd6WQzy1oUEWuHi5PtsTd24t6XtiKVzWFuZxSXH7cAH1o5W06cxJjgdXmhJ062KosLws0mEgHnK+W/opxUUC/loruHU0hmjJJG4WZ7WhHZxOddSvlVNdA0zSq9LrNkVNw/KkoXVRaRYtwVLqViCcJJkSwaKG3hWgw62WpDh9Jf86XN/Uikc2iPBnGwWb7l2pNtpLizXCxgxVzJ6WRT56GFxC0VdWPTa4q5zQDrHB9Pqah87pD7cyczOfmehCDlDEERG7NzOmOY1RHF0pnGRtyekTQOnNGK337siKLiUls0ZNvYOnPZdNs1WshdKL47cX+cbzqWhXtbdbI52zBMVNm9s81NsfmDmAeLYyy1d6Samut2nhcsFy3mZBNzSrOUUfbe7WhyHT9bHHMdXddx5V3PYttAEgt74vj6+5ba/s5ysmXyNt2cZgB1k9KZbl8qyUzW5hq3lYvWaKOtVfS9c5SxAnYTiNW/TiTGW60PBOVc8+K82DKQkOs0Z6uU1qZgnpu31AokEX4AFK4uqwXCvfyVe15GNqdj395m9JrHFw/bN6mnIhTZpgjOxY/bRSpcCZtKLBddZHOyTZzINpTM2JKYRHxwpemiztKwR1/fgT++sk3as/NFNsdgqexItDuCIjqUSGOjMaZxsw34NGnhf3nzgC29qzkcsN0g1Z2zWCiART3G57/etHyXajt2Y82BRrT7X9bvyisZ/eMr28xjyOEZZaGayuRkOcJyc2K+fvuQzYEm3psQNITF2Sr9NY45o/Sz65PlomkraXUinWxK8EEupxddvImbsRqOMB5OWWJ87n9evwtr39ojAyNmd9anyKYuzDb3j8qJlrOJrChDmNsZy9upVD/H8YgyLU35u7uAsSgZSWURCfowr8s+qel2pKAZicnGublDSUYT7t0T9+/FQ59dhWtOWYx4OGBLjDL+v0rlonXSk80NcT2Kieh8pVw0EvTbFj61EtnE66azel4T8YdeM8aotRsLO9kmKlRFxVl6PV68KBdVA43E96g6nAohXQseLKi8Dj6Y6P56jYp0LI6k8L/mYvvQuR2uG2ACcU445zcCZ8sOZymcUQVg/HdJIluVgg8A63x3bhQKZLJoGdeXJeDZF5dqU3pRZmVdb8bvNuw05gBzu4zP7vzD5yDo13DRkXPxm48dgTmdhV1sgkPMvmwAcIZZKipwuo+FYOf87i4xk+gFdiebcGCLjUi7O69adMZCUDWpYiKbeF9iQ6XUDT3VWebm2IwXcrLJ8ThfNGt1lDK+owRcuSFFNvNz3bRnFH9evwtBv4bvfWRFnshqc7LJABjjfUQcIps6f/r75gFbSFmpOEWTcp1sXtLm2BwXxwUUcLKZc1Y1MV48rpKebJvM77Yp6Mf0NvsmZGtTUDFOmD3ZRAXSGOu2faZZc9vueP2IbOJ9izn/185eIgXgQtfKVIIi2xQh38nm1pPNXi66fYxy0TkdVsLoRCxSxGvoOjBkTl5yOR0jaY+cbGG7a0V8DmqvDMASVqyblz2KORYO5DVM7VJ7siUysql0WzSEJTOMHYqX3u3HG9usJrOaptnq98XOWTTkh8+nSeehcByWajt2Y3anVbp4nzLpHE5m8Od1VvmA6L8GGCUMg4kMuuJhvH/FLADAmzuH5S5dZywk08QE0snm2KlTRZpel55sE1kuKo4tZ55nUsRwSa1zJluN9xyc1xXDGQdNRzan4+M/Xyt3jZ27zfWC+B52Dafw5g4rMcm5mBA3XLc+LOLzFedxqbQ4hFmBKBXdd1pLXlmPsyeb6hgbTGbkcYt01Fkd9lRXyz1rLxf1qh+GWOjVtZPNMf6rPdkA+7naFKrNlEJ1KSTSVskMYLgUR1NZPLdpr/xZrZ1sgJowWt5370Xwgb2Zedh2XMWcbGJjyYsFVcgzkc24RulkKw0hsP7hxS34vrmRePx+PUVT1mW5aAFnubNlh7Nc1NZmI1XbctGPrVoAAPjhY2/KNhcqoly0nAW3EHSczv8BZY4m7n3COermZAOADxwyCy9/5WR8+YwDSnbYHG4mea6Y0563YTfTGVbjcLIJVu3bjcXTrI101fVa0MlW5XVAwO+zbbgWm2+JebBYx5Q6VpVbLlpsPG5TXFa6rhdNFgWsuY64twvDw/S2Jtc5la0nmwzqMp6jKWStU9LZnKyUEf1r7y2jZNS50TlQRk82r3G2eQFUkU2pnpApuvZ0z+ZwANeftQRAeZUkQiTbZPZTbIsG89JqW9VyUfn6pa3buuNhGVZTX04267jPO2w2VsyxAk7UMIipCkW2KUIpTjYh2uwYTNoacxYqFw34fTJ9byJ2jyNBv7yBiYEpkcnC7PtfsZNN7cmm67osm90zbPzb6WRz2rDFTTceDuTtgHXEQvL5hxUnW1s0iCXTWwEAT765G1/6r5cAAKv37bG9xmgqaxPxAGBaq/Ea4gZcqu24EGuWGq6q/3nBuuk+9sYOaYMHgMffsEQ2kXj13v175Y1//fYhuTM2qyMqzw+BWAA5k2JFqW3Qr8lJ1GAiLSf1E+lkiwT9UjzrH0mX5GQTlNMX8Kv/sARzO6Oyt15XPFyxYFwtxKQzmcnJRvhAvpNtfYHQA8CaQI63Sb5TmBWI43CWigL5TrbtA3ZBQ/xbNJR2lj+KyVkqk0Myk5Wv7VUPykYoF1U/k2ktkbxddDVhtClYm/NWXQgn0llbAnX/aBo/e/ItWzlirXuyAUbPTaD8clHRl6iSctHu5jBam4LoaQ7L4xGOlWLHJVPYKgw9ACyXkldONrfemSQfIZok0jn4NOD/vHcffGDFLLlYdCvxGSuISL1vaRrynBzGY0wnSXrshVc1RbYT9+/Fqn27kc7quO73f5cBUgLpZCtDNChULupWVjnbFNOeNxM9N5rzp3mKY2281/gZB03H1993IL7t0iA+r1w0aO/JBhhurhltTThMSQRtdykX3T2cNJzDHm8+FUMt5yw25xfzbbHBVmoZo2pAcE0XlfP4/FJgwP1cFWNSKpNDIp0bM+DKOdcRc0O3wDrAalOiBpHNNc8fcW8cTWdtAtQ5hxob4394cUveuT8W4vsWm5qDibQ8171wN5eDW0+2AUfICGCd72LNoYaynblsBu698hh864PLxv36ogegqJRoi4YQCfpt4pmtXNRhzhirAknTNOxrit71kCwqEGN+d3MYnzt5se13cWXNO1WhyDZFyBPZXC7S9mhQigtb+xNSvOktopp/7qR9cc4hs3DMoq6Cj/EScRMfdDigNK3yHRQxyKWzhqAm3C0pc/cn5djZdIpswzaRLb9cNKakEgmnRVtTEEtmGCLbH1/Zhnd2j2JmexP+ec1+xmsokzX1+QFL/NxqCgSl2o4LIUpGn3xzl1z0P/CyUWp1minAvbS5H3uGU0ikszIk4cQDerHAbMS7uX8Ur5tNj2d3RPNEFiGuOZNihxUB0SpXUZ1sE7tz09ZkJYzuLZLe6FxkFuuVUojmSBDfPXe5FJBnd9Sniw0wFkhiErn2rd3y54WcbM6eFID1OY5XSCwUfFAoWRSwNhN2DiWRy+l5iaLi30Jkm+7Y5VcnSIOJjFUW41XwgTmJ3+GSdFoq1e/JZn0mbg23Z9icbLWZYPt8mjwvE5lc3k77rQ+vAwAcNNMYa3eZPQVrKbJ1VFgumvKgXDQS9OO+Tx+Dez55tFwwOVMn3fCyNEiMoezJNrEs6olD04yF+y8uOxyfPH4RfD5NbiC4imwjxZ3lqujR2xxxdV45nRzFSHpwjhdC0zR8+fQDEPL78NgbO+WmoXzttBflog6RzaU8/fjFxobq397ajZ1DSWzcKZxs5beM8Pk0nHPobFcRRx2vQwGfbOeg3o8PmtkGTdNwmOmIA+zloh1Ro2wzpxvj10SW3atOs1KcbOLe2lTihsDY6aLFy0XdBNFoyDIIvLylH+/sNp3zBSoWrE1ou5Otp4DhQQhHL2zqx7Nv74Xfp+GMZdMBqE42S2RrjgRwypJp0DTg+U39OOnbj+LOp97Oc14WQjyPcLknMzl5bpfa+85r2hw92XI53VXAEmPUiMNJJsa9/fpaXKtWxsK57hKinyrU2tJFU6JctPQ2P6ctnY7mSABHLewc87ETxdELOxEN+XHDPxyYd+9VWyRNVSiyTRFU14imue/QaJpVgrhu+5C8+As52QBg9eIefP39S8sSF8rBSnAxjs1KFg1U3IDZeA7jvwcTGWzut9IH95iNtAFrwhd2BB9I228kgJZIwJb61hkL2cpR98q+CUEcMMMSB/w+Df/2oWXyJqsKeWLnRdwkxPcibsCV9GQDYGuy+6un30E2p+NPrxpC2nmHzcE+vXHoOvDE+p2486m3sWMwib7WCI5a0IWOWAitTUHoOvDoG0aj8TmdUSx0iCziRuRMihUW9lgoYEt0rEW5KKCGHxR3skWcTrYy3ZRLZrTi2tP3BwAcquwe1xuaZjkN1UbyznTRYuWirUq56HgQAvuAY/FXKFkUsNxCmZyR5qsmigJWwugWszR8msPJ5vdptuat1Qs+SI17N1nQr4wl1UB1srmJbDNtTrbaTLABICJENmUxIcZqkaR34gFG0Eg2p2PPSKqmfbzEdVTL4APASHNWF29qT7ZC56RokeDFgkosPlMlpE0WY6CG32UjMrcrhkevWo2HPrtKlhcCxVPWx7ofq/PAQi0PmkoU2XRd96Qkuhhzu2L4/46bDwD4twfX2X5XzXJR1fE1va0JB85oha4bjeg37RE92cbuvVYOM9os4U113qtzl4PMNh8rlbmIen9RyzZ3DCYnLPgAsLu5ilUOiPm2JbKNv1y0WPCB8/oo5rrUNE2GXF392xdlSXCh3rsy5Mlc52wz5ym9BRxMogRShKC9Z3GPNFKIOarqZGttCqKnJYJrT9sfsZAfr28bwufvfhH/fPeLrs/vRJzHqotdbFiOd17nFW2y750xRg2nMrLKSRV/ozL4wFEuWuHGqbPcUxyPWjLaGlV7smWh66oQOPa185HD5+CF6060lWTWmouOmocXrjsRJ+zfm/c7GSbIclEy2VGt0h3RUMGJuRg0RZJcNOQvq8dXtWhxTACFk82Lgd3n0xAPWc8verIBxq5+ytEIVx0s1WOJhQ3BT93564yHERdOtkRGcUeF0NMckQvZT75noW0AjSivMZS0hCjA2kXaNpCErusl1/YXQ8SC3/i/r+HLv/879oyk0doUxKFz23H0wm4AwP1/34ZbHlpnHu8ihAI+aJomF+DPvm2IL7M6opjfHZPCZXM4IN0SzqTYYSW8Qu0JI6z+bqJwNRE7WVv6R2WCppuI4XSyVVLm+ZHD5+DJzx+Pz520eOwH1xBxXqu2/FQmJ3dydw+npKjhJsqsnNeBJTNa8H4lgr4U3Jxs2wcT2DGYhE8D9puWL7KFAj65INw+mHAtF83mdGwzJ4jTW/MXhuqi0+vgAzGhT2VzeeLh7uEUzrrlCfz0LxuLPke1hSJVeJzflS+azlSaN9dUZFMW7+IceY9Zdi84fH6nPB92DqVcF70TRac5+d5VYfCBupnjBWpJeKHm9F723xFjaLJEF0UhxIZbrRZ5jcisjmjeBmmz4tRRRdZMNifH/IIim3L/K1QKZ5VLFf++RTk0UB0nm+D0gwzHz9b+UdvPk44evOOhybGQF7ilHQJG6SoA3P7EBuR047oqVBpYKaqTTZ2vqOeBENm64mEsm9UGTcsf+9VWB147vIthc7IVmeuK+bbodVfq3GxGWxMCPg3NkYDrfV7M1XcOpWwO/nSRdFEAuO70A9DdHMa67UPyvlM4+MCaH+dyugxpKlRV5Bzzzjlklvxv4ZxKpnN5G3IXHzUPf/nn43H5cUZ/wueVvqXFEPfX9phV/jheMdNrnD3ZxFwt6NdsQrksV3c4ySo9d53XtDgeVah19mQbTWeRNQOlSl23VWomqQbOcDOBTOJNUWQjkxx14HPGYKsIke0ZUyiZ1hKpq4u62WGjlk42j4RAobzvGUnZ+iTtdnGy5QcfWA00AftEtDMWsurTU/aebADwrQ8uwxfX7IdPrF5oO54mpaGps1xULH5HzR5E49kRKcR5h83BRw6fDV0HfvrkWwCMXbGA3ydLgn///GbsHEphdkcUHzjEEkpEaaAIfp3TEUUk6JdNRFURwJlgppaLqscvboAT7WQTVu+b7n8N2waSmNYSwfLZ7XmPczo5KhWkp7VG8pr31xuFBE+xoBC7tH2tEdeJbVs0hHs+eQw+esz8cb1uq6NPCWCVis7rihUsVRQ9VnYMJl3LRXcMGkKb36e5jo2qs9Iq9/FmvFF7djj7sj21YReee2cv7vrbO0WfYyJ7so1VLhqpUfABYF2LyYy1Yz+/O4alZoloKODDkhktthLd+igXLa9UWCzqynHaFEMtCS9UyipENmfwSzl45WTz0l03lRH335xudyiLjRNNK5IuqozBhUrhIi6llLc+vA7/+B9Py3MasJ8PXp/jKtEC/dOkk62Mc7xwuaj7Js1JSwyXkwgTmtMZrdq8Ox4OyHmn+n3FbOWirfK/b7/oUNz/6WPzXFdq+IG4J0/EOFqyk828R4v5aKnjQls0hDsuWYn/uGSlazBTWzQk+9Nt3Gklc47VP7AjFsLX33eg7d+F1i3OkDfhZCvU8F797rqbw1i1b7f8d0SpuOl3aX3SEgniQ2Z/ts17EyU56tXyYDE/EnOrWo2/rU32zV+1DFS9lpxOtoFRd+F7vDidcOJ4upTztUXpyZZI56TDy6dNzs0htQpkqkKRbYqgXsDFRDZRLvr8O3sB1FeKCWBf8ALWJNCrAUo8/7rtQ1DvNXYnm/FahYIPxI1TiBHRkB+RoF/eCAcTGewV6aLmze6IBZ346DHz83YEmhQhb9jx/JGgX94st/YnSm6gWQyfT8O/nLkE5x8+R/7shP2MXdbD5nfYXBOfPmGRzRHpXICLSZkoGVWPy+rJZg8+iIUCCAV8tkl1sUl9tRCfq2g4e+MH3EuinZP/yXijdKJ+F23RoFwki/NT7NK2efydOWPtAbVUtNX1bwB7+MEOc7IqhN/tAwlsNh0Mvc1hV4GzWRGEq1EWI0SfnQ4BcNgRMV+IagtFrU1BtEeD0DTIxrsqYuc/4NPQHK5dqZ46Vqrf0yrTzXbQzFaEA37pwNgxlKht8IFMF61tuagTtSS8kMg2KkU2L5xsltOiErwU/qYykaAPAaWhuUD06GtrChbcCLKXi5buZPvRYxtw/8vbbGE6ao++apWLGsdjHHMyk5OuEqCynmyFy0XdAwIW9cQxVxGxnAnOXiNKeVUn2JzOKBZ0x3DKkmm2e3d7LIRFvfnjfrfiZJvIsvvSe7LZj2U8yddHLezCwS6bqgJRyiuqHAAgVUIQzXsW9+LDKw1Bq9h3HAn65Xk3MJqW89BC5aLqBuP7ls+0rSNEuWjCUS6qom7YqxUKhVBFVTE/EiJbzYIPHOWihcpApaieHH9PtGI4N9iFENvlcLKJeUoqm5Ntg+Lhytsd1SOF+hdOJeqnDpBUFdXJViyZRIhsQrwq1o+tFjhLxqTw5FEaoxgUXts6ZPv5nuF0frloyCmyZW3PIZr1i8WUmrQinWxjOLTUAVm8Z3Ui29sSRv9oGht2DssJYqU3C03T8JUzD0BnPIQ3tg/h+P2MRWo0FMDy2e3464bdWNQTx5nLZtj+Ti0nCAV8ckKwsCeOB1/dbneyiZ5spvtPlsKaFv/mSBBJ09lTbFJfLdTS0PMPn4NjFnW7Ps45AZ+o3oS1RHUVzu+K4c2dw0iN5KSrVOzONXv8WTibAQOWk80tWVQgdr53DFlOtiUzWvD27hFsH0zK4JC+NnfnhVXanCnoRKiE7uYwNu4awU5Hby7xeaqiopNEOivHpWoJRZqm4QcXHIJdQyn0uZTTxsIBfOfDByOdzdVsgg1Y4koibZWLtjYFcc4hs7Bpzwg+vHI2AGuRtmn3aNU/u2JIIavcnmwepIsWoj0awpb+RBEnW331ZFPTv+lkqwxN0xCPBLB3JG2M5eb+hegd2F5kzqJuMs0sEODjnDcBVmNs1dUprs2AT3N1FHmFeswjqYyVKJ2tpFzUXpImcAs+AIzP/MQDpuEHj74JAJjTWV2RbUZbE156d0A2zAeM6+aPnzmu5MV+l+pkm8Dgg54S00Wdjei9LGOc1xXDs2/vxYadishWYhLul07bH70tERy3j/ucUtDSFJRu67GCD9T1zweV6hLAahWUyKgim/0ajgSNzaedQ0m8u3e06DUO2PtfyhRXcwOzZuWistIhg2xOLyieiSTWEbMnmlc92aIhPzQN0pwhe7IporAafABY6fZepdXXG+zJRpFtyhAp2clmH8Sn1ZnIludkMydn0TIbzuc/vzHYvW42EBXsGUnJ8oG84ANTkBxKWLsSgLWIEmJbsxp8MGJ3shVCHZB3mJPcuJrg1RLB69uGsH6HIQr6fZonNzlN0/DpE/bJ+/nFR83Du3tH8X/PPCBP+FrYY00MZ7U3yYnx0pltAOwN0lscTrYRh1jaEgnI8rmJLhUFrGtkbmcUnz+1cI80dUHn92lVLWupF2wiW3cc2waS2DuSls4rryYtTsTu/0gqi3Q2h6DfJwMW9nXZaReoTjYxqTlgeiv+8OJWbB9MyN6LztADgRgT9o6kpPvCyx5eam8blWGlMW8up7suNMWkWQ1oqAaHzi3eaPdUM5m4loQVJ5taztIeC+FbH1wmHyc+bzFm+jTvNmnGgwjlGExmkMxkx72YT1cxeVGIjs6UVoGn6aLm8Yv7azkkFdcTRbbKaTZFNrVPpBBc3ZrBC9RNpkL9ppzloulsTgoUu4ftfT6B6vZjA4zzTyyOR1NZOd5XI120mGvmpAN6pcg2t4Jk0VIQ4QdOkWo8bhrZhmEoOaG9LUt3stnfm5fiz3zThSbKe4Gxe7IJoqGA69zaSUskYLS4GEgqIXTua7d9psWxcm4HFvc1Y74jbEwGH6RySi/o/HXHjLYIdg4lsXnvKJbMKFwZAMDWg09cL8KRXSuRTX1PA6NW1YHTXS/u9bpuzBW86rOracYcTDyfEDLFfV4cozre7BgyhEmv58r1guzJRicbmezYnWxj92STj60zkU2WjMmebPYwgEoRyvtrDpFt93DpwQfiOYQYISalYkIzlMyUnAioDshiEa5OZIUIut4UG6ptOz55yTScbPYPcTK7Iwa/T0M2p8tyPPE3P7zgEKyYY9nvxQ1oMJFGOptfCqvedNSb1ETx/hWzsHckjfevmFl0IudsqDoZLd9O7CJbTJaWD5cRST4eVBFpYDSNznhYOtP62gqPU2JSvm0wIa8hMYlUnWzTC4psxuu+u8dqjO2loNWl9IxTEcKz0Rsp47rb2a/0iJsK514xIkr5vlgEuC0mxPmw3lwgtTQFq+qUKURLUwABn4ZMTsfuYXeXYDGqVS4K5G9mOUl6WJopxlC1PHC8qKWmU2Gjo9oYC9NRW7mocJkV2/QSC9WgX7P1clSJKn1mAWAkaQlRNidb1r6pWS00TUMsFMBQMmMTxZybquNh7HLR/HHp4Fnt6Gk27mlu5ZleIlK/i224j0VXswiQmWgnm9KTrZiTLa9c1Lt7tmu5qBiPPTpfxTkiNhKbgoVD6MIBP351+RGuv7OCDwqXiwJGFdPzm/ptgW+FkOWiUcvJJhxckRq52QN+H5rDAQwmM9g7mi44D1XXwsOpjBSIvXCTNSsim5Uuai8X1TTDCDGSyspN33oKF/QS2ZONIhuZ7AT9PgT9GtJZvWifNaebo16dbAOyJ5u3iWIt0vqclP8eMNNAncEHag8gwBpIhFC0fHY7NA1SXFLLRa3+JsVdWuqALAQCdUAW39cbishWK0IBH2Z3RLFh57Ct3MHv0/BeR7xzVzyEcMCHZCaHzXtHrd565qRJnYTWwsnWEQvhcyePnfIZVm7Yk/VG6aTTVi4al31dRhxONme5RqUE/D7Ew8ZiaCBhiE7CXVGsBF4sJF7fOohMToemAfv3GeWle0fS2LjLaF5cSOSQItteQ4yLhfwF05TKoZCTbUhZfIr366SWPcXqjUhAafAsy1nyz0Gnk61Wn52maeiIhbB9MFmwFLcYpTonysHqQ+g+OfbSyRaSTrbyRbaEKYj4fVpVRMephizzSapOtuLJooAxH/k/790HPS3hgmOkc3NySCmpVPsTyvnWBHyfTSG/i8hWgZOtQJhCfxExyufT8L3zV+CVLQNYPrtt3K85Hs5ePgM+DVi9uGfsBxegO27cc9/dMyo/q9YxNo29IBYOIBoy5sTFnWxOccW780j0U7OVi4ryYo/OV3FfElU1vS3hsjbSbMEHRTb3Raugzeamo5OhZAYxcyNZPY+dIVC1TBhvjQYNkW0kZTnZHNeaz6z2GU1nMZrKelp5EY8EgH7jv0XvYnFfb20KynuTFNkGRbno5Fw7qPcRXden5EYwZyNTCLHTL2zeboQD9ujwQvbkWtHs6Mk2Int5eduTTXCA2VB9x1ASGbPnmSjrUZ0TAPLSP49e1IXnrzsRV5iJoeLnOd0S8cZysgHWTUv8jfpehdNQLBhrPViLHdKxyh00TZNut7d2jVifXSjfydZRIM2yHnCLBp/sqP06FnTHZMKXdLJ5kHJbCKvMOI0dpigV9GuyyawbQoAT10hHNISueEgu7l8wY+sLOS/Egkjs8Hrd3Fl1BKio/XwGCpTtuaWFTVXU8biY+ChEV7EAruVnJwSLcsIPqlkuKsTJQqEb4p4X9qRc1Ow7WonIJpx1dLF5QouLk7EUJxsAfPL4RTjn0NkFfy8cRcLJppYS7VGug4kqFwXUhFHrWKTIVsY5XqhcVDhXCjnIls9ux3mHzan6YjQS9ONDK2dX1HNZvIe3dxubVJpmzd+qzX59LfBpwKyOwvPMPAeTh/OzueYm8u7hlLwHi/E4GPDmuxPzDrGBXm5VkTgXMzkdu8xruJCTDQDedXGyPbVhNw76v/fjWw+8DsDZk83hGKyhyCbDD0bTeHGToXa5rUWEA3I4lfG08kL9LMSxzO6M4trT9sfX37dU/i7iWNPFJ2lPNlGqq+v5Y+FUgTOSKcSBM1rRHA64JsSpTFdKRusv+MCZLircY972ZBOIhurbB6zdHaeTbdSRLqoKdeqOZVPQD1GVJEKsStn5EwNysXJRMYDVWmT7zHv3wWXHzMM/HDxzzMfOMW9+b+8eyUtmVfsoFOsBU2vU/j9TIfQAsL4Pn2ZMIJyR6NUqFwXs5eKyGXBzpOiiRCwGxDXX3WzsCIvNBqvk1N1JJK5nMfn0uiTGSru0Cy3DyqSkoMg2galu9Y4Yj4eSGTkmuy0muhyifS1FNhGKo5bJlUpSlot6vyBXE3XdGDXd21462SoT2Rh64CVu378QgjsqbN+Q32Yjv+8bMLEim5soJkqiy0sXNe4ZarloLqdju9kcvlD/z0ZCjKPivtocDkxY2f2PLzwUD3zmuLz2NirODXMvx4ZYOCANCBvMklHLeelRVY250SHKRYu1+SmG+r6FyFuoJxsAbHER2Z5+azeyOR0PvLwNgFVJ1NoUzHcMjiPF1WtEZdDuoRT+vH4XAOCoRV15jxOC63AyW9DxVg7qZ6F+xpccPc/WZkeI+mI8mKxVMJGgT655p2pftsn5zRJX7rhkJRLp7JiDyYy2Jjxn9lkqVlpaC6STLWF3shWzjY/v+R1OthmGyLZVEdnEpEsskITDRYpsBcQFTdMQU2r2/T6tpARGK43LuIk3u4hsgloP1vv1teALa/Yv6bFiF/Lt3SNWbz2ZLqo42epYZFMn4LVonl4L5nfHceL+vZjXHUM44Ld2BWUkumg4W0WRbTQjX28st61zDBM7wj0tYduu7Vg92YqVIFaCLBct0JNNfW0nLBe1EGUx25XP0e1e53SRTEQfoUKIfpO7ykgYraqTzRFM40SIB164Q8JelIvKHnEU2bxAzCPUVDjR4qLSTa8mR2DUsFIWrzo6U1Ush3YiNsiqWS66eySFtJkIXKyapFFoj4ZkD15gYjd6WqPBMTeonZueXjus5nXFsG0giQ07h7BsVpvlZPNo00Pc04fkPKc8YVY9f4WoU8zJtnlvfrnoNrOEdN32IZtTvCUSdOl5Vrt5sDgn/rx+F/pH02gOB7DUJcQhprhpreADj8pFYcxFit2LmqTIZrUlmoyIMIiBRAaDyQzKL05vXCbnN0tcMfqyjT1hEAmj7dFgWfHl1UQscPOcbB5ZwZ0i1f59xgAtBC5NMyLlAWCx2ddp3fYhDCczcue1mGXe1hjTbII5Fs7JgTp56G21T9YaKQp6jhDZdrk42ZT3Ud8im+pkq69rpVr4fRp+cMEh8t9OJ9tQVctFLZFdXG9jTT6bwwHZ/w+wdoTVneGAT0NngYWP8314/b7EcewcStr6Vgyr5aIFemNRZLMQk1rhOm4OB/ISkAGjXFiEyQC1dQFWVi5qvIFqiBAtYzjZEh4GH3jhZLNK+1ic4QXO3reAJQS3V3g/FvcL6WRLFXeyTUSQhQxjSLuUi5YxB3ZzxgnntdqqoJHx+TR0mj0lgdpuVrgRCvgQCvjkeeTVRrxgXlcMT765GxvMAB2vnZfOz7Pc1j2apiES9CGRzsl7RjGRbdtgQqa3C4TJIJPT8dw7exVhNZBfLlrDtilt5vu6/+WtAIDD5ne49oYUxziUzHg6XxUby2P12s4rF52kTjbA+FwHEhnbhs1UovFHeuI5YrCtt1JRIH/yPyIb5nvlZAsq/x2wpWQCIu3TWLhNb42gORJAJqfjebOvE1BcbFEFslKbxDpvWurzd8bCtoWk183mq4kIR3hr94jshRJz6clWi3TRUlEXmVOlXNRJXOlvAVS7XNTqySYWLWONU5qm2dxLQtRS/663JeIqyAD578PrXUfhZEtmcrZG4yPjKBelyGb1TpKLvgKfScDvs7lxalouGrPKW8ZDNqfLhU4t0kUTVQg+SGVzyInas3Eie8TV2aZgo+IWfCEEsEqdbBFH/7N6KhdVXXUiXbQc4dYtXbTU+1Ujod5X6/EepLrpvS5jlOEHZnCS185i5/2rkvPG6apyW3t0xgzxV9chE9cF2wYsd/hfzDLMoN8IECiW3jnRiD5oYtw6ckF+qShgrTN2DSflfdST4AMhso2xthOfUTXnyvWCdEVP0XJRimwkj4NnG2mYS2fm22xrjRiMEukcUpmcnKB5VaqnDnbTW5vQFPLbhBTVNaBpGvabZrjZnt64B4AhuhRLHlRFsLYSJyXOm5a66+H3aTZHTiMN1qJc9J3dI3JyaznZGqVc1PpuvN4pbRSkky1p78lWjd051cm2bYwm0io9LiKb+rNCoQeAi8jm8WKiKeSXTtyditiiLj4LNaAfoMgmEeO0WCAU+5664vWxOBTuyfE62cSCDqhW8IG9LYOTUU+DD6zjT2XLc7N56awj1jxFbGbqui7LRSu9H0dlTzbju1bHucGEVRGQqmI5dN4xCSebrSdb+U46NUhBNy2zW/uN+5WzxUcjo957vW6j4AXqfNvrUvJ5XUbI14adRs+0lMdpuM77UinznEKoawhfgYAKTdNkj7vNjr5s25R2OUJka4kYlTh1JbI5HGRHu/RjA6zrU5TB+n2aJ8Fl4nwbS2RzvtZkDT4ALFMIRTZCTJbNasMT17wHX/uHA2t9KHmoC/fBRFpxsnkVfGA9f58sm7UGbueiYnGfESLx9Ft7zOMrPliqx98WLW2yWqxcFLDvcFWjD1a1mNneBE0zBl/RG0vcfFRHYWcdp4vanGxTJF3USX5PtiqWi5oTz/7RtOwvUsoOr83JJnqyNVt/Vyj0AMgv26hGWUyXeXw7lH5idicby0XHIhKwB8S0Fln01YsDwyoXHV/wgSpG1cLJJsQIL51sQPl92RLm30XoZPME4dYVC6PBZEaWmlUqsskes6InmyN1Toh5SY9Fi2JEi/ZkG/85JRbbOd0quZVBPZNIZFM3K+qtXBSwz7e978lmbBJv2DGM/pG0LKf2SszLLxf1xsnW2hQsGFAhWgVt7rdENiOww7o/PfuOsdYRczHncUZqGHygOvS6m8NY1BN3fZxYZ4gy2OZIwJNEXzGXaB9jbVfMODHZEAIiy0UJUZjR1lTUkVUrAn6fFDMGEhnPnWzqYCfKZtUB0znhW2w62Z6VIlvxG6xNZCvVyebc9cgT2VQnW/1NdAoRCfrlrq7sZ2e+N3VXdKwbVi1RRdepWi4qnGxWuahIa6qGk81qyC6SskrpVaIKasLB1q38XaHQAyD/fVTjfcnwgyFrMluKk40im4UYJ0XFYbFFn21xWEMHhpUuOj4nm9q/rBrpotIxOlaqrQf3G/WeWqwvWyKdxcadwwV/B9DJ5hVOkVWUM0dD/opFBPH3I+n8clHAuhYmslw06jgmQCkXLTNdVIwxb5vlhEJkm7xOtvq7B8Vs5aLeimyzOqLwaYZI/E+/eg6DyQzmdcWwT2+zJ8/vvC95KbIVYnprfvjBTqWkErB6gYrvu76cbNZ7O3JBZ0HhTIjqW805pFdzulOW9GHN0j5cfNS8oo+LOM7FyRp8AABXnbgvfvmPh+O4fbtrfSg1gTMS0nCIwX0wkZYLey+svoBdpBILb3Xn1jnhEk62wTGSRQWxMpxs6g3S79PyjkGdtDXajoiz5534fMTirSUSqOsmwbZ00SkSfOBEvO+RVBapTE46AKqxs92qlLFtK9fJ1iycbNbPphUR2ZzXVDUWE12m2CJENl3XC/Zku++lrfj985sBUGRTcQosxT6TenGylduTLa0kL3qxA+9ELDqGU1nbAku8tihrLrcZt4qmaXKMF8KGG//0y+ew6qaH8drWwbzfJZku6inCkS82TEQ5sxetG6zSTOMcdpYR5Yts1f9OZXln0sXJVqZwO7fTmNts3GUIw8I1M6218mumXqh3J5ta2RH1OPUyHPBjRrshSv3p1e3QNOAb719aleCDWMhf0dxevTcWFdlMY4Gaui42M7viIZuAJoQh58Z+LcdgdU11VIF+bIBVdWKFJHlz7k5rjeCWc5dj5byOoo/Lc7JNYpHtwJmtOGx+p22smErU7+qVkAI0K26WEUcvL6+eGwD6zF0dNU3LeQN17lqN5aizl4uOvydbLOTPW1T1KgJBI/VkA9xENuO9Lp7WjDVL+/Dx1QtrcVglE6GTzXKyJTO2NMJqiI5C4NoxmMTeEeO1epvHFtlUQa3bJfhAXOtuBPw+m4hflXJR6WQzF5jZHDKKuCHEtEQ6i0/d+Sw+deezWLd9yHIUUWTLKxUs3pOtXoIPjO99MJkpKjA5SWdE6IH3AhtgXzg5yzxESXPQr3nmMg6XkDAqxLU3dwzl/U4IIhTZvKHZUS7qVegBYM1nRs0NUlXYAixBL5WduHLRJkdCNqD2ZCvvnBLBTsJ9uU06ryenk61YeX6tsPVkq0IZo+jLBgAXHjEXh84tLq6MB/W+VGmJsU0cK3K/c+vJJnqc9rU2Yb8+a73T6uJkC/q1qrQvKBV1TXVUgX5sgHW9q+WiE4nTFNJIFUhkfFBkIw2HWOT+5c2d0snmVT+scMAnFy5WuWjQ9nuVeNieQDrWYF2WyKZMDtx2s2xOtgYT2eZ0Wp+dplmTgYDfh1vOXY7Lj1tQq0MrCZuTbYoGH8SUBYpYlEVD/qqUm4trf7250A4HfCWV+4nFQHM4IMtGOqIhBHziWi8+iVWv62qUF0qHnimaOReeoq/P9oGkXHz+13Pv0smmkJeg1gBOtpamgDwHx1Mymsoa50ewSi7fUMAn3Q/OUmXZW6o5UrC3z3gJKwmjhRDn+kgqX4y00kU5pfUCuZFpjjt7zHOz3QuRTTjZ0lnouo6hlF3E3VOLclF5TN6UiwJWz66NjnLRSSWyxeu7XFTMl31adcTa+WbC6OyOKD538r6ePrc65+ipIPQAsN8bi1XQTHcT2ZTz9oDpVhie+L6DfuteUetNjjmdUSzqieOE/XqkYOiGWC+KjdqJFrmcn1OjVSCR0uE3SxoO4dy65aH18mdRjwYpTdMwtzOGjbuGsdBsmmkLPnDZ1Vw8rRlv7zYmUmO5mVQRrNTFnZpa6fb86qStHi37xZht7vYChlhTjdKnahL0++D3acjmdM9KlhsNEToynMpUPZJcCFwJ02XQ0xIu6ZzZd1oz/D4N+01vkT/z+TSctrQPr24dHLOPSnMkKJ0I1Qx0ECLbsGPhKX4uSmQB4DdrN0kHT2uJgv1kxlnWVazPSb2ki2qaho5YCNsHk9g1lCrqqFRJmU62arp8miNBJNJJF5Gt9F6IpSLuq8I95ETXdUVky2+gLMaDWi/yJguifMoo/896Wi6q9k5MZXMYMTdmwgEfkpmc5WTLlJ/uOV6sNFBvgg8Axcm2axjJTFaK6JOrJ5t1PtTj3FOIF03B/AoQL7jgiDnYNZzC5cfN9zxdXvSfHk5lKxZm7eWihY9TbDa+u2cUuq5D0zRZUtnbEsYByvxJ/b7FvaLWc+BwwI/7/+nYMb9r53FOdE80Z7loo1UgkdLhN0sajutO2x+z2qN48JVteGP7EOZ2RmXjWi/42UcPQ/9oWrodOoqUiwLA4r4W3P/yNgBj70hU2pNtLJGt0XZEVBdgo/Y0Cwd8GEllG+6z9wrpZEtm5YK8Wp9FXuJWCaWiADCzPYqH/s8qdDiSar/9oYPlZLIYNidbFSZEaq85IN+tI34u+qMAwBazjMOnAfEp6qJUyXOyFREeVSdbrUs1pMg2Dieb6MlWzdKclkgAOwaTecm21XDkhMZwso2ksrJ8uqiTjcEHnqBuBg4lMthtpt96WS4KGCm1w6Zrd1ZHFOu2D8nXkuWiEyKyWfcweWwVnlPzTJfTW7uG5bgdCvhKrmBoBLrjygZvHTvZvA49EMzvjuPmDx9clecGjHnBcCrrqZOt2KaS2OQZTmUxkMigtSlo9RJsiWDJDMvJpj5Ps3mv4NVFNAAAMW9JREFUqGXogaAUMdUpiE70uauej0F/fp9tMnngzJw0HD0tEVxzymJcc8pibN47iuZIwLOyFcBYPKgLiPYiwQcAsN80ywUzlrigNmItOV1UuXG5los2cE+2OarI1qBCgRDZvHJTNhpiV3A4lZH9m6olXDgnQ+NZ6M/ujLr+vJRJmfp+qjEhE+KhcOuIxL1I0IdEOoehZAa5nI7tipNNPR4vx79GxTnBL7aYmNsZQ19rBDPbm+Cv8WcnFt2FkjzdmAgBQpzzgwXKRT0V2UyxsJCTba/y2Qy7iWxmaZ+zLx8pD79Pky6awURGCsBelIsG/UZLjnRWx2jaajEw2xTZ9gwb37UsF52AHk/SyWaWi+q6Ll3Z5Tq0xP1m51AK68z2BtNaIg3n1i9GS1MAIb8PqWyupinNhRBicbVEtmrT0hTE5v6EB042pVy0qfA13BTyoyMWwu7hFDbvHUVrk+Xg722NYFFvHAGfhkxOt33fYl3TKE5i54Z+LXuyxcONV8FDSofyKWloprc1Vd2JoPZkK+RkE4zHyVZq02i1J5ub2yseDuBjqxbgoiPnorPBElzaokF5g27U4IAjF3ShtyWMBd2xsR88CRHnfCKdk4vhak1amsMBqPORHg9L1oq+rvJ+qvHerJ5sZjNwU0gQO8u6bjTHFxPeRT3xvL+d6jgn+MUWx5GgHw9ftQp3/eMR1T6sMRHXjzNlsRjpCRAgxHk+mHA62Yxz0MtrT7iFRK85J/0jlsg2ynLRCSGufP/rtxsiUbE+R+NBfE8jqaws/51lJjXuMp1syQnsydbkKBcdSmZkqm6542tLJCidf399czcAb0us6wFN03DBEXNwzKIuLOyOj/0HE4xaLtqIiLYGIsW0XJpKdLIBVsmo6MumbqqEA37ZWkNdv4g1WKOImU2ODf2JFtnU+1StnfSkujTmqpaQCcTeky1/wje7I4qmoB+j6ezYPdmU35faR6mphATLq09eXNJz1RuapmF2ZxR/3zzQsOWi3z33YGRzelUa/TcCUeV7217ltCafT0NzOCAbck9UE2khBIcDvrJ79BRD7Ao7nWxt0aB0sw2MpqWT7ayDZ+Anf96IHYNJimwmEUdZ11ifSzW+x3IQY/rwOEQ24WQLBqq3A97iKGEWiHOw1FLtUhjLydY/hpPNShedmmNwNRB9KN/dO4IX3+0HABw2r9OT524K+jGYyGA0lcWQUi4KWAEgO4cMsW0i2jAIF/2oeW6J+0tIaepeDnO7Ytg1nMJTG3YBmFyhB4IvnrZ/rQ+hIJb405hL3atPXowVr2zD8fv1VPQ86jk8lhN/VnsUL707gPU7hnD8fr1SZBO9BK85ZTHufWkLjt2nW/6NmO81ipjpDMqbaKFrrOokMnngjISQMRirJ5vfp2Efs2S01HRRn2YvHS1GZJIPyCJhtFHLRTVNm7ICG2AsRERCooxED1dv0qJOEifKGSCu62r17ijUky0WCthKSXcMGgvPaS0RnHnQdNvfTnWcpYL12CPIjVgZTjZRSlftnmyAm5PN+3JRy8lWSGSz+tWNFk0XbYxFXiMgxrw/vrIdOR2Y3x2ztaaohKiSMCrEZafI9sKmvQBg6wNVLZxONuGcbGkKVlTKJeY2L2wyRMrJFHrQCBy5sBOr9u3GxUfOrfWhlMWBM1vxT+/dp+JxbTxOtmWz2gAAf9u4B4l0FnvMa0HMtY7dpxs3nL3UthZpNJHN2ZOtluWijdbih4wPfruEjMFY6aIA8PFVC/DLv72DVfsW33Ga1hqB36dhdke05D5KpTjZGhkxuZ6M720qoGkaoiE/BhIZbO0XCZzV+y4N0ckoZejx0E1TDLHTWa0UKiGkjaSySGdzMl00GvKjpSmI7YNGyqMQOHpawjh60Xxs3DWM8w6bU5VjajTygg8aRGSLl+FkS2erny7aUrAnm/fpotLJlinByebyOQmRjU427xDn5R9fMUKdjlzgjYsNsK7VoWRGBgzMajfmAXtG0tjSP4ptA0n4NGDJjJaCz+MVVrqocW6J863SPmNzzYRREdoxGZ1s9UxLJIifXLyy1odRc2w92caooFk5rwMA8LeNu+V8IxzwFb2fivlRpEHKRZ3pohPtZLOXi3LdM5nht0vIGDSF/LJkq1B/kJMOmIaTDpg25nN1N4fx248diY4S+7EB9l2XyehkO3H/Xvzm6U1YtW/32A8mdUnMLOEUk7J4NUU2ZeEzWZxs6kRrYDQtU+5i4YAU9gZGM9g+KAQOI5zl3y88tCrH04iopfyhgK9h+nMJB+9Q0r0fmRvpCQk+sM47QSKdlQJEj5dONnPzqhSRTYgyKkn2ZPMcIbLuNZ0sRy3o8uy5xSJ395DlUJzZYfSdyuZ0PPb6TgDAPr3Nea6TaiCOJ53Vkc7mpKO4UqF+bpe9T2uvR05AQsZDqemigOEcbQr6sXckjcfeMK7Daa3FAzvEc0YbZPyN1jj4oCk0uauTiAW/XUJKoCMawub+hCeLGmHHLhVb8EGD7BSNhxVzOvD0F09gwk4DIxYpsly0ijuDakN7Lxf6xRCOuZ7m6oh6Ab8P8XAAQ8kMBhKZPCcbYPQoEgveah1HI+PzaQgHfEhmcmUnAtYC0YtyXD3ZJqBcVKaLJi2Ba7vpYosEfZ66OsV9NVVAZNs7MoaTLUMnm9eoC09NAw6f752TTSwyRd81v9lrszkcwGAygz+9uh3A+OdK5aIKeSMpS0iuWGRzJFqzXJTUgvGIbEG/DyvmtOPxdTvx++c3Axi7/+aapX1Y+9YefPDQWZUf7ATgbE1TrQqFQjQx+GDKwBkJISUgouvdgg+qTWSSl4sCoMDW4IjzUiyaqlouak4Sm4L+kvsaVsoJ+/fgy6fvX9WAETH57R9NWz3ZwlZPtnVmwl9ojNKNqYwYK1srLPOaSMopFxW9y6paLtqU72TbNmj1Y/NyzBYiWzJTIF1UcbKNFOnJ5uzLR8pHHcP372uRcyAvEItMcb+IhfzQNA0dceM1Hl9nOGiWzmzz7DWLEQpYfUVHU1kMiHLRChfAczrtTjaKbKQWiM2HoF/LK5V0Qy0ZBcZ2YC7ojuOOS1bi0LkdFR7pxODsHTfRm3Lqd1DNqg9SeyiyEVICoi/bRMTJO2ESDal3xKRBN1rPVHVnUAhMvS3hCRNnwwE/LjpqHuZ3x6v2GlZ5XloKLoaTzfj5+h2GyNbTPHHvu9EQi4lGCT0Aygs+SMt00So62cL5Pdlk6IHHvRDDYzjZxhbZjL8LN0i5UiMQV8JrjlroXakoYKU97jTLRcU1IEKmxLVw0Kzqhx5Yx2Q6SlMZKbJVupnR2hS0BWf1TFB7A0JUmuTmU2lBHkJkE/O53knmnPf5tJq6ydiTbepAkY2QEhCpWrVwkKj1+5PVyUYaG6f9Pl7NdFFzQjRRpaIThauTLZTvZGOpaGEiymKiUZBOtlQ55aLVE1uFUKmmi4rQA6/FAsvJVp7IlmS5qOeoi78jPAw9AIAm83uSTjYhsim9aiNBH/bpbfb0dYshE089LBcFrITRtmiQPQNJTYg7ROyxWDarzeaS9ipVuJ4Q13vAp034fSMc8EFonRNVjUFqA79dQkrgU+9ZhHldMZx+0PQJf221BIYiG6lHoo7zspq7c9NajQX+7I7oGI9sLISoMZBQnGxhP3K68fMt/VapHnFHjJWN1JNNlIsMlxF8UM32BdJZmVB7slXnHBTBB6U52dzSRcXnQRHDK8T3H/BpWOlxGZjogbZj0CoXBewiwJLprVXtOejE2ChK2nqyVZouCgDzOmN49u29LBUlNWPFnHZcctS8khOCI0E/DprVir9t3ANgcs45omE/dg0b49xEVwZomuGkG0ll2ZNtksMVOyElMLsziitWL6zJa6sNvVkuSuqR+ASmNZ1x0AykMjkcv19v1V6jFhRysvkcE0A62QojdqQbyclmpYvWW/CBENlUJ5sQ2arlZCutJ1sup8Pns64L2ZONTjbPmNFmpH2unNfh+eZeRPZkc5SLxi2R7aAJCj0QiIqBkVRGnvPeONmMvmyTUaggjUHA78O1p+8/rr9ZOa9jUots4r5bK5ErGjJENq7pJjeckRDSABw2vxN9rZFJ594hk4Oos1y0iiJbU8iP84+Yi+nmInCyINxXA6OOdFHHJHCylcl6SbiRy0XHFXxgNMupbvCB8RmmMjkpYolyUe+dbKWniwJWmigA6Louy0xZjucdh8/vxI8vOgT/es4yz59b9EPaPVy4XHTpzInrxwZY5WNeposCwHv378WMtiasWdpX8XMRMlGsnGe53iajC1OI6rXqiVbr1ycTA79dQhqAn1x0KLK6PqHlE4SUSixU27SmyYAoTeofTWMkaaWL5kT3YRM62QojFu9elHlNFLGwtbjP5nT4fWOXrmzpHwUAhKvo3IqHAtA0o/n1YCKDSNAvnWw9Exh8kMvptpJVwCitFcK+2seNIpt3+Hwa3rO4Om5hIWjlzKHNrVx02YQ72YzzyV4uWvl9bP/pLXjimvdU/DyETCQr5rSjORKA36dNysAOy8lWm7nCPx4zH4+v24lls9tq8vpkYmicmSghUxifT4MPTBQk9Ynaky3o16raK2qy0qr2ZFOcbHnlopNwV9krhNN3QRVTYL1GLcUbTmXGFKhf3zaI/35+MwBg9b49VTsun09DPBzAYCKDwUQa3c3hCSgXzRfZBpMZmXIX8vuQyuYwqoQfCJcdAEQ47jQEEcemjLgGOs1y0bZocMJd+zEZfJCxRDZuFpEpSjwcwN0fOxKaNjk3L4TQX6tr/Pwj5uL8I+bW5LXJxEGRjRBCSEWoTrZ4eOIbyU4GrHJRpSdbOJDnXqWTrTD/fOp+eN+KmThogkvNKiEc8CHg05DJ6RhOji2y3fCHV5DTgZMPmIZDPG5I76QlEsRgwuhRNZTMYNg8L70Weos52frNUtGmoB+xsB87h1K2JFYhzAV8GgJ0ejcEUceiXZRMHzK3A8tmteHEA3on/B7SpJSLDnhYLkpIo7JoAtN9J5qoLNfkNU6qB0U2QgghFaH2ZOOkpTykk21USRcN+WUJpGAyNiH2iqaQf8LLzCpF0zTEwgH0K997IR5/Yyceem0HAj4NV5+yuOrHJkppBhNp6WKLhwOeN2su5mRT+2MZj0tJERqwnGx0zzYOTQ4nm7h/tESC+N0VR9XikOSie/dISp6HrVHeywiZjIjqC/ZEI9WEZxchhJCKiCnpopy0lIfo/6Mu8mKhgK2cMOjX0M6F36QjbopsQ0n3dE0AyOZ0fO0PrwAAPnL4HMzrilX9uNQwDr/P7MdWhf484YAxfrg62UyRrU0570cUJ1sizdCDRsO5cRAL1/67E0Lftn7jPNc0oy8hIWTysU+P0VJi8bTJ69YjtYd3EEIIIRWhOtkYSV4ewsm2rT8pfxYN+xEK+NAU9GM0nUV3PMxS3EmIEBmKOdm+9cBreHnLAJojAXzq+EUTclyqky2dNcSsXo9DDwArJTWZyRcZ946mABgidMY8BjcnG0W2xsHpZKuHe4Zwsm0xRbaWSBC+EkJICCGNx4VHzsXx+/ViZvvkSqkn9UXt72yEEEIaGruTjU6rchCJmKms1WNKiA+tTUGMprMMPZikCLfiUAGR7d4Xt+CWh9YDAK4/a4kthbGaCHflYCKDPWZvNK9DDwArJXWsclEReGB3smVtz0HqH6eTLVpHIpsoi2Y/NkImL5qmYdYEh6uQqQdnJYQQQipCdbK1sFy0LJyLumjIL11rQoBj6MHkRDh53Jxsr20dxP/59fMAgMuOmYczl82YsOMSTraBRBqPvbEDALDvtBbPX0eIyUJgVlFFtqjSnF6QMIW5SIBOtkYhmudkq/1312Tew4STjSIbIYSQSuBqiBBCSEXEbMEHvK2UQ1PQL1MmAdh6sYneWNXoh0Vqj7h+3ES2637/EkZSWRy5oBNXn1z9sAMVcS2/uXMYT765CwBw2tI+z18nbDqbkunC6aJtarmo0rsuKctFuWfcKDhLe2N10PtMJJ4KN6XY2CCEEELKgbMSQgghFaGWi8YpspWFpmk294Tq9hBle9Xoh0Vqj7hm3IIP3t41AgD47En7IuCf2CmbEHcf+Ps25HTgoFltVSmxKdnJZgrPbk62MJ1sDYOzJ1usDspFneELdLIRQgipBIpshBBCKkJdJLEnW/m0KAs79TNdMacdfp+GQ+Z21OKwSJUpVi46bApKtSjDFteyEL9Or4KLDQBCAbMnWzpfZJQiWzQo3UZuPdnoZGscnOWi9SCyNTncdBTZCCGEVELt72yEEEIamnDAB58G5HSWi1ZCSwEn2xWrF+Lio+baet+RyYNw0bgFHwhBqRbfvbNk7tQDqyOyhQOFnWx7R4o72ZJMF204nP3znC6yWuAU/lq4WUQIIaQCuPVHCCGkIjRNk3114nXgSmhUVLeSs08RBbbJS6F00VQmh3TW7NFXg+9fdaUeOrcd09uaqvI6QmRLZnLQdd32O7fgg2Gbk80MPqDI1jD4fJrNeVgPPdmciactdLIRQgipAIpshBBCKiZquhHoACgfm5ONYuWUoVC5qFoW6exjNRGortTTlk6v2uuIfmq6Dhn8IVBFtphIF1V617FctDERopam5bvIaoGzZJXlooQQQiqBsxJCCCEVM63VcLlUy+0yFVAXdrE6WHiSiUE4eZxONtGPLeT3yb5lE0l7NAQA8GnAKQdOq9rrqO9NpDsK7E42s1w0rQYfGP/N4IPGQohssVAAmqbV+GhcykUpshFCCKkAbpUTQgipmG+fswzrtw9h32nNtT6UhkV1AbI8dOoQK+RkM/8drVHPqrmdUVx+3AL0tUbQU8VkW1VkS2VyQNj470w2J4XHtmhICiEjyueUNMtFw3SyNRTCmVkPLjYg3ylKJxshhJBK4CyeEEJIxczrimFeV6zWh9HQ2JxsddAMnEwMVrmoPV1TONlq1bNK0zRcc8riqr+O36ch4NOQyemGyGYykLDEtJZIwDX4QDjZnM30SX0jRK166eEZDVJkI4QQ4h3c+iOEEELqADXNkU62qUOhdFErWXTyC0ghGX5gCWh7R1IADCEm4PdZTjYGHzQ80aAxvjl7odWKgKMkmyIbIYSQSqDIRgghhNQBdLJNTaSTLeUsFzUEp6kQgiESRlUnm9qPDYAisjH4oNGJ1Fm5KGA/FjXpmRBCCBkvnJUQQgghdQB7sk1NCvVkE6LbVAjBsJxsxUQ2l3JROtkakiZTFK2XclHAXjLK4ANCCCGVQJGNEEIIqQOYLjo1ESJbOqvbyiWFmDQVBFeRDlpMZIsp5aK6rpuPp5OtERHndD25NEWfuFjIj6Cf5xMhhJDy4V2EEEIIqQNU90Q9LT5JdVEFVTX8QDjbpkLpsFtPtq39CQCWyCZEkJxuiXEiXZTBB42FcB7G6+jcFmI3XWyEEEIqhSIbIYQQUgfQyTY1Cfh9aDJFB7VkdGo52ew92XI5Hb98+h0AwMp5HQDsn4P4bES6aJhOtoai2ex51hypH0FLXIMMPSCEEFIpk3/mRgghhDQAzRGmi05VYuEARtNZDCYskW0q9mQTItufXt2ON3cMozkSwAcPnQUA8Ps0hAM+JDM5DCcz6IiFrOADOtkaivevmIl3947iAytm1vpQJCL4gE42QgghlcKtP0IIIaQOCPp96IqHoWlAVzxU68MhE4gom1MTRqdSumjI7IE1aopmP3jsTQDAeYfNsTXHFyV94nEi+CDM4IOGYp/eZtxy7nIs6m2u9aFIxMZGSx256wghhDQmk3/mRgghhDQI3/vIcmwfTKKnJVLrQyETiBCPhpJT08nW12qc7//v3leRSGfx1IbdCPo1XHTkXNvjnGW10snGclFSIcLJxnJRQgghldIQs5KNGzfi0ksvxbx589DU1IQFCxbguuuuQyqVsj3u7bffxumnn45YLIauri586lOfynsMIYQQUq8cMrcDpx7YV+vDIBOMENlsPdmmkJPtsyftiwXdMWzpT+Dq374IADjjoBmY1moXm0UIxKjoySZFtskvRJLqQpGNEEKIVzTEzO3VV19FLpfD97//fSxcuBAvvfQSLrvsMgwPD+Omm24CAGSzWaxZswbd3d14/PHHsWvXLlx44YXQdR0333xzjd8BIYQQQog7cReRbSo52Wa2R3H3x47C5T9bi7+8uQsAcNmx8/Ie12SW9A2bIptIGaXIRirl+P168eCr23HCfj21PhRCCCENTkOIbCeffDJOPvlk+e/58+fjtddew2233SZFtvvvvx8vv/wy3nnnHUyfPh0A8M1vfhMXXXQRvvrVr6KlpaUmx04IIYQQUgyrXDQrfzaV0kUBoDUaxB2XrMSPHt+A9mgQi6flz9uE4DiSykDXdSmyiXRSQsrl2H268fjV76n1YRBCCJkENOzMrb+/Hx0dHfLff/nLX7BkyRIpsAHASSedhGQyibVr12L16tWuz5NMJpFMJuW/BwYGqnfQhBBCCCEOZPCB6mQz/1uUSE4FQgEfPrZqQcHfR6XIlpUCG0AnGyGEEELqh4bc+lu/fj1uvvlmXH755fJnW7duRW9vr+1x7e3tCIVC2Lp1a8HnuuGGG9Da2ir/N2vWrKodNyGEEEKIk1jIpSfbFHOylUJU+ZxEPzYAiNDJRgghhJA6oaazki9/+cvQNK3o/55++mnb32zevBknn3wyPvCBD+CjH/2o7XeapuW9hq7rrj8XfP7zn0d/f7/83zvvvOPNmyOEEEIIKQG3dNGR1NRzso2FGnyQSBtOtoBPQ8BPkY0QQggh9UFNt0c/8YlP4EMf+lDRx8ydO1f+9+bNm7F69WocccQR+MEPfmB73LRp0/DXv/7V9rM9e/YgnU7nOdxUwuEwwuHw+A+eEEIIIcQDXIMPzP5sMTrZJE1BK/iAyaKEEEIIqUdqOnPr6upCV1dXSY999913sXr1aqxYsQK33347fD77ruURRxyBr371q9iyZQv6+voAGGEI4XAYK1as8PzYCSGEEEK8wBl8kM3pGE2LclGKSALLyZZBIiNENrrYCCGEEFI/NMT26ObNm7Fq1SrMnj0bN910E3bs2CF/N23aNADAiSeeiP333x/nn38+brzxRuzevRuf/exncdlllzFZlBBCCCF1Szxid7KNKv3GhABHgCZTcBxOZZFMi2RRipCEEEIIqR8aYuZ2//33Y926dVi3bh1mzpxp+52u6wAAv9+P//mf/8HHP/5xHHXUUWhqasK5556Lm266qRaHTAghhBBSEiJdVPRkGzH/36cBYTb1l4jS2VGlXDRMJxshhBBC6oiGENkuuugiXHTRRWM+bvbs2bjnnnuqf0CEEEIIIR7hTBcdTln92IqFN001LCdbBomM4WSL0MlGCCGEkDqC23+EEEIIITXEmS4qxLYok0VtCDFyxBZ8wKksIYQQQuoHzkwIIYQQQmpIc8Quso2kmCzqhgiBGEllmC5KCCGEkLqEIhshhBBCSA3pjIcBGOLacDKD4RSdbG5YIpsVfECRjRBCCCH1BEU2QgghhJAaEg8HpIC0fTCJkaTh0orSyWZDfB5DiQwSGTP4gMEQhBBCCKkjODMhhBBCCKkxPc2Gm237QEI62WIhurRU2qJBAIYQ+Z0H3wBAJxshhBBC6guKbIQQQgghNaanJQIA2DaYxIgMPqCTTWVmexOuOWUxgn4NO4dSABh8QAghhJD6gjMTQgghhJAaY3eyieADurRUNE3D5cctwH9/8mgsmdECAJjZHq3xURFCCCGEWHCLlBBCCCGkxvSaTrbtg0kE/RoA9mQrxOJpLfjPjx+FV7YM4IDprbU+HEIIIYQQCZ1shBBCCCE1RnWyjQgnG9NFCxL0+7B0Zhv8Pq3Wh0IIIYQQIuEWKSGEEEJIjRFOtm0DSYQDhrhGJxshhBBCSGNBJxshhBBCSI2RTrZBposSQgghhDQqFNkIIYQQQmqMSBfdPpCU5aJMFyWEEEIIaSwoshFCCCGE1JieFsPJNpjMYOdQEgAQY7koIYQQQkhDQZGNEEIIIaTGNIcDaAoa5aEbdg4DAKIMPiCEEEIIaSgoshFCCCGE1BhN0yw3W0L0ZKOTjRBCCCGkkaDIRgghhBBSB/Q2R2z/jjL4gBBCCCGkoaDIRgghhBBSB3SbTjZBjMEHhBBCCCENBUU2QgghhJA6gE42QgghhJDGhiIbIYQQQkgd0ONwslFkI4QQQghpLCiyEUIIIYTUAT3NTpGN5aKEEEIIIY0ERTZCCCGEkDqgt8UqF40EffD7tBoeDSGEEEIIGS8U2QghhBBC6gDVyRaji40QQgghpOGgyEYIIYQQUgf0KE62aJj92AghhBBCGg2KbIQQQgghdUBLJIBwwJia0clGCCGEENJ4UGQjhBBCCKkDNE2TfdmYLEoIIYQQ0nhQZCOEEEIIqRNEX7ZYmE42QgghhJBGgyIbIYQQQkidQCcbIYQQQkjjQpGNEEIIIaRO6BZONvZkI4QQQghpOCiyEUIIIYTUCUtmtAIA5nfHanwkhBBCCCFkvHCblBBCCCGkTnjf8hk4aGYr5nfHa30ohBBCCCFknFBkI4QQQgipEzRNw6Le5lofBiGEEEIIKQOWixJCCCGEEEIIIYQQUiEU2QghhBBCCCGEEEIIqRCKbIQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKCdT6AOoNXdcBAAMDAzU+EkIIIYQQQgghhBBSS4Q+JPSiYlBkczA4OAgAmDVrVo2PhBBCCCGEEEIIIYTUA4ODg2htbS36GE0vRYqbQuRyOWzevBnNzc3QNK3Wh0MIKcDAwABmzZqFd955By0tLbU+HEJICfC6JaTx4HVLSGPBa5YQ79F1HYODg5g+fTp8vuJd1+hkc+Dz+TBz5sxaHwYhpERaWlo4gSCkweB1S0jjweuWkMaC1ywh3jKWg03A4ANCCCGEEEIIIYQQQiqEIhshhBBCCCGEEEIIIRVCkY0Q0pCEw2Fcd911CIfDtT4UQkiJ8LolpPHgdUtIY8FrlpDawuADQgghhBBCCCGEEEIqhE42QgghhBBCCCGEEEIqhCIbIYQQQgghhBBCCCEVQpGNEEIIIYQQQgghhJAKochGCCGEEEIIIYQQQkiFUGQjhNSEW2+9FfPmzUMkEsGKFSvw2GOPFX38z3/+cxx00EGIRqPo6+vDxRdfjF27dsnf//CHP8QxxxyD9vZ2tLe344QTTsBTTz1le45MJoMvfvGLmDdvHpqamjB//nx85StfQS6Xq8p7JGSy4fV1e/fdd+OQQw5BW1sbYrEYli1bhp/+9KcVvy4hxKIW1+0NN9yAQw89FM3Nzejp6cFZZ52F1157rSrvj5DJRq3utYIbbrgBmqbh05/+tFdviZCphU4IIRPMXXfdpQeDQf2HP/yh/vLLL+tXXnmlHovF9Lfeesv18Y899pju8/n0f/u3f9PffPNN/bHHHtMPOOAA/ayzzpKPOffcc/VbbrlFf/bZZ/VXXnlFv/jii/XW1lZ906ZN8jHXX3+93tnZqd9zzz36hg0b9F//+td6PB7Xv/3tb1f9PRPS6FTjun3ooYf0u+++W3/55Zf1devW6d/+9rd1v9+v33fffWW/LiHEolbX7UknnaTffvvt+ksvvaQ/99xz+po1a/TZs2frQ0NDVX/PhDQytbpmBU899ZQ+d+5cfenSpfqVV15ZrbdJyKSGIhshZMJZuXKlfvnll9t+tnjxYv2aa65xffyNN96oz58/3/az73znO/rMmTMLvkYmk9Gbm5v1O+64Q/5szZo1+iWXXGJ73Nlnn61/5CMfGe9bIGTKMRHXra7r+sEHH6x/8YtfLPt1CSEWtbpunWzfvl0HoD/yyCMlHjkhU5NaXrODg4P6okWL9AceeEA/7rjjKLIRUiYsFyWETCipVApr167FiSeeaPv5iSeeiD//+c+uf3PkkUdi06ZN+MMf/gBd17Ft2zb85je/wZo1awq+zsjICNLpNDo6OuTPjj76aDz44IN4/fXXAQDPP/88Hn/8cZx66qkevDNCJi8Tcd3quo4HH3wQr732Go499tiyX5cQYlCr69aN/v5+ALDdkwkhdmp9zV5xxRVYs2YNTjjhBG/eECFTlECtD4AQMrXYuXMnstksent7bT/v7e3F1q1bXf/myCOPxM9//nOcc845SCQSyGQyOOOMM3DzzTcXfJ1rrrkGM2bMsE0Urr76avT392Px4sXw+/3IZrP46le/ig9/+MPevDlCJinVvG77+/sxY8YMJJNJ+P1+3HrrrXjve99b9usSQgxqdd060XUdn/nMZ3D00UdjyZIl3rw5QiYhtbxm77rrLjzzzDP429/+5v0bI2SKQScbIaQmaJpm+7eu63k/E7z88sv41Kc+hWuvvRZr167Ffffdhw0bNuDyyy93ffw3vvEN3Hnnnbj77rsRiUTkz3/5y1/iZz/7GX7xi1/gmWeewR133IGbbroJd9xxh3dvjJBJTDWu2+bmZjz33HP429/+hq9+9av4zGc+g4cffrjs1yWE2KnVdSv4xCc+gRdeeAF33nmnJ++HkMnORF+z77zzDq688kr87Gc/s82bCSHlQScbIWRC6erqgt/vz9uR2759e97OneCGG27AUUcdhauuugoAsHTpUsRiMRxzzDG4/vrr0dfXJx9700034Wtf+xr++Mc/YunSpbbnueqqq3DNNdfgQx/6EADgwAMPxFtvvYUbbrgBF154oZdvk5BJRTWvW5/Ph4ULFwIAli1bhldeeQU33HADVq1aVdbrEkIManXdqnzyk5/E73//ezz66KOYOXOmx++QkMlFra7ZtWvXYvv27VixYoV83mw2i0cffRTf/e53pfuNEFIadLIRQiaUUCiEFStW4IEHHrD9/IEHHsCRRx7p+jcjIyPw+ezDlbjZ67ouf3bjjTfiX/7lX3DffffhkEMOKfl5crlcWe+FkKlCNa9bJ7quI5lMlv26hBCDWl234t+f+MQncPfdd+NPf/oT5s2bV+7bIGTKUKtr9vjjj8eLL76I5557Tv7vkEMOwXnnnYfnnnuOAhsh42VCYxYIIUS34sl/9KMf6S+//LL+6U9/Wo/FYvrGjRt1Xdf1a665Rj///PPl42+//XY9EAjot956q75+/Xr98ccf1w855BB95cqV8jFf//rX9VAopP/mN7/Rt2zZIv83ODgoH3PhhRfqM2bM0O+55x59w4YN+t133613dXXpn/vc5ybuzRPSoFTjuv3a176m33///fr69ev1V155Rf/mN7+pBwIB/Yc//GHJr0sIKUytrtuPfexjemtrq/7www/b7skjIyMT9+YJaUBqdc06YbooIeVDkY0QUhNuueUWfc6cOXooFNKXL1+uP/LII/J3F154oX7cccfZHv+d73xH33///fWmpia9r69PP++88/RNmzbJ38+ZM0cHkPe/6667Tj5mYGBAv/LKK/XZs2frkUhEnz9/vv6FL3xBTyaT1X67hEwKvL5uv/CFL+gLFy7UI5GI3t7erh9xxBH6XXfdNa7XJYQUpxbXrdv9GIB+++23V/OtEjIpqNW9VoUiGyHlo+l6ER8pIYQQQgghhBBCCCFkTNiTjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUCEU2QgghhBBCCCGEEEIqhCIbIYQQQgipKalUCgsXLsQTTzzh6fPec889OPjgg5HL5Tx9XkIIIYQQNyiyEUIIIYR4yEUXXQRN0/L+t27dulofWt3ygx/8AHPmzMFRRx0lf6ZpGn73u9/lPfaiiy7CWWedVdLznnbaadA0Db/4xS88OlJCCCGEkMJQZCOEEEII8ZiTTz4ZW7Zssf1v3rx5eY9LpVI1OLr64+abb8ZHP/rRqjz3xRdfjJtvvrkqz00IIYQQokKRjRBCCCHEY8LhMKZNm2b7n9/vx6pVq/CJT3wCn/nMZ9DV1YX3vve9AICXX34Zp556KuLxOHp7e3H++edj586d8vmGh4dxwQUXIB6Po6+vD9/85jexatUqfPrTn5aPcXN+tbW14Sc/+Yn897vvvotzzjkH7e3t6OzsxJlnnomNGzfK3wuX2E033YS+vj50dnbiiiuuQDqdlo9JJpP43Oc+h1mzZiEcDmPRokX40Y9+BF3XsXDhQtx00022Y3jppZfg8/mwfv1618/qmWeewbp167BmzZpxfsrAxo0bXV2Dq1atko8544wz8NRTT+HNN98c9/MTQgghhIwHimyEEEIIIRPIHXfcgUAggCeeeALf//73sWXLFhx33HFYtmwZnn76adx3333Ytm0bPvjBD8q/ueqqq/DQQw/hP//zP3H//ffj4Ycfxtq1a8f1uiMjI1i9ejXi8TgeffRRPP7444jH4zj55JNtjrqHHnoI69evx0MPPYQ77rgDP/nJT2xC3QUXXIC77roL3/nOd/DKK6/ge9/7HuLxODRNwyWXXILbb7/d9ro//vGPccwxx2DBggWux/Xoo49in332QUtLy7jeDwDMmjXL5hZ89tln0dnZiWOPPVY+Zs6cOejp6cFjjz027ucnhBBCCBkPgVofACGEEELIZOOee+5BPB6X/z7llFPw61//GgCwcOFCfOMb35C/u/baa7F8+XJ87Wtfkz/78Y9/jFmzZuH111/H9OnT8aMf/Qj/8R//IZ1vd9xxB2bOnDmuY7rrrrvg8/nw7//+79A0DQBw++23o62tDQ8//DBOPPFEAEB7ezu++93vwu/3Y/HixVizZg0efPBBXHbZZXj99dfxq1/9Cg888ABOOOEEAMD8+fPla1x88cW49tpr8dRTT2HlypVIp9P42c9+hhtvvLHgcW3cuBHTp093/d2HP/xh+P1+28+SyaR0vfn9fkybNg0AkEgkcNZZZ+GII47Al7/8ZdvfzJgxw+bYI4QQQgipBhTZCCGEEEI8ZvXq1bjtttvkv2OxmPzvQw45xPbYtWvX4qGHHrKJcoL169djdHQUqVQKRxxxhPx5R0cH9t1333Ed09q1a7Fu3To0Nzfbfp5IJGylnAcccIBN2Orr68OLL74IAHjuuefg9/tx3HHHub5GX18f1qxZgx//+MdYuXIl7rnnHiQSCXzgAx8oeFyjo6OIRCKuv/vXf/1XKeYJrr76amSz2bzHXnrppRgcHMQDDzwAn89erNHU1ISRkZGCx0AIIYQQ4gUU2QghhBBCPCYWi2HhwoUFf6eSy+Vw+umn4+tf/3reY/v6+vDGG2+U9JqapkHXddvP1F5quVwOK1aswM9//vO8v+3u7pb/HQwG8543l8sBMMSqsfjoRz+K888/H//6r/+K22+/Heeccw6i0WjBx3d1dUkRz8m0adPyPsfm5mbs3bvX9rPrr78e9913H5566qk8EREAdu/ebXuPhBBCCCHVgCIbIYQQQkgNWb58OX77299i7ty5CATyp2YLFy5EMBjEk08+idmzZwMA9uzZg9dff93mKOvu7saWLVvkv9944w2be2v58uX45S9/iZ6enrL6nwHAgQceiFwuh0ceeSTPYSY49dRTEYvFcNttt+Hee+/Fo48+WvQ5Dz74YNx2223QdV2WsY6H3/72t/jKV76Ce++917Xvm3DqHXzwweN+bkIIIYSQ8cDgA0IIIYSQGnLFFVdg9+7d+PCHPyxTMO+//35ccsklyGaziMfjuPTSS3HVVVfhwQcfxEsvvYSLLrooryTyPe95D7773e/imWeewdNPP43LL7/c5ko777zz0NXVhTPPPBOPPfYYNmzYgEceeQRXXnklNm3aVNKxzp07FxdeeCEuueQS/O53v8OGDRvw8MMP41e/+pV8jN/vx0UXXYTPf/7zWLhwoa3M1Y3Vq1djeHgYf//738fxqRm89NJLuOCCC3D11VfjgAMOwNatW7F161bs3r1bPubJJ59EOBwe8zgIIYQQQiqFIhshhBBCSA2ZPn06nnjiCWSzWZx00klYsmQJrrzySrS2tkoh7cYbb8Sxxx6LM844AyeccAKOPvporFixwvY83/zmNzFr1iwce+yxOPfcc/HZz37WVqYZjUbx6KOPYvbs2Tj77LOx33774ZJLLsHo6Oi4nG233XYb3v/+9+PjH/84Fi9ejMsuuwzDw8O2x1x66aVIpVK45JJLxny+zs5OnH322a5lrGPx9NNPY2RkBNdffz36+vrk/84++2z5mDvvvBPnnXde0ZJVQgghhBAv0HRn8w5CCCGEEFL3rFq1CsuWLcO3v/3tWh9KHk888QRWrVqFTZs2obe3d8zHv/jiizjhhBNcgxkqYceOHVi8eDGefvppzJs3z7PnJYQQQghxg042QgghhBDiCclkEuvWrcOXvvQlfPCDHyxJYAOMXm/f+MY3sHHjRk+PZ8OGDbj11lspsBFCCCFkQmDwASGEEEII8YQ777wTl156KZYtW4af/vSn4/rbCy+80PPjWblyJVauXOn58xJCCCGEuMFyUUIIIYQQQgghhBBCKoTlooQQQgghhBBCCCGEVAhFNkIIIYQQQgghhBBCKoQiGyGEEEIIIYQQQgghFUKRjRBCCCGEEEIIIYSQCqHIRgghhBBCCCGEEEJIhVBkI4QQQgghhBBCCCGkQiiyEUIIIYQQQgghhBBSIRTZCCGEEEIIIYQQQgipEIpshBBCCCGEEEIIIYRUyP8PYZbTWVhfgxMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# ---- PLOTTING --------\n", + "plt.figure()\n", + "plt.plot(freq, efstat-(nbin-1), label='EF statistics')\n", + "plt.plot(freq, fg(freq), label='Best fit')\n", + "plt.axvline(1/period, alpha=0.5, color='r', label='Correct frequency')\n", + "plt.axvline(fg.mean[0], alpha=0.5, label='Fit frequency')\n", + "\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('EF Statistics')\n", + "plt.legend()\n", + "\n", + "plt.figure(figsize=(15, 5))\n", + "plt.plot(freq, efstat-(nbin-1)-fg(freq))\n", + "plt.xlabel('Frequency (Hz)')\n", + "_ = plt.ylabel('Residuals')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "# Phaseogram\n", + "\n", + "Let us now calculate the phaseogram and plot it with the pulse profile. \n", + "We do that with the functions `phaseogram`, `plot_profile` and `plot_phaseogram` from `stingray.pulse.search`" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABO4AAATCCAYAAAAKFqn+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWOElEQVR4nOzde7xVdZ0//tfmnMM1OALGLRG1jFSwDJRLlhkIZkTWmPW14atlXma8ljZlV238RTWTNmGlOY6WaDSWNloNCnlp/AJeUEqTMctLkCBWeBBBrvv3R+OejiBwzlmcs+A8n4/Hfuhe67Pf57M46+z9frz2ulSq1Wo1AAAAAECpdOnoCQAAAAAAWxLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2FVs3rw5Tz/9dHr37p1KpdLR0wEAAACgg1Sr1Tz//PMZMmRIunTZecfFCe520NNPP52hQ4d29DQAAAAAKIklS5Zkr7322mn1BXc7qHfv3kn+8gvp06dPB88GAAAAgI6yatWqDB06tJYX7SyCux300umxffr0EdwBAAAAsNMvp+bmFAAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJdWhwd+GFF6ZSqTR7DBo0KEmyYcOGfPKTn8zIkSPTq1evDBkyJP/3//7fPP30081qrFu3LmeddVb23HPP9OrVK1OnTs3SpUubjVm5cmWmTZuWxsbGNDY2Ztq0aXnuuefaazMBAFqtWq1mzfqNhTyq1WpHbw4AQKt01p6ovqMncNBBB2Xu3Lm153V1dUmSNWvW5IEHHsjnPve5vPGNb8zKlStz7rnnZurUqbn//vtr488999zccsstmTVrVvr375/zzjsvU6ZMycKFC2u1TjjhhCxdujSzZ89Okpx66qmZNm1abrnllnbcUgCAlqlWqznu8vlZ+NTKQuqNHtY3N5w+LpVKpZB6AADtoTP3RB0e3NXX19eOsvtrjY2NmTNnTrNlM2bMyGGHHZbf//732XvvvdPU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fv/I0EAGiFtRs2FdagJsn9T63M2g2b0rNrh7eAAAA7rDP3RB0+w8ceeyxDhgxJt27dMmbMmHzpS1/Kfvvtt9WxTU1NqVQq2WOPPZIkCxcuzIYNGzJp0qTamCFDhmTEiBGZN29eJk+enPnz56exsbEW2iXJ2LFj09jYmHnz5r1icLdu3bqsW7eu9nzVqlUFbC0AQOvc/9mJ6dm1rlWvXbN+U0ZfPHf7AwEASq6z9UQdGtyNGTMm3/ve9/L6178+zzzzTC6++OKMHz8+v/71r9O/f/9mY1988cV86lOfygknnJA+ffokSZYvX56uXbumb9++zcYOHDgwy5cvr40ZMGDAFj97wIABtTFbM3369Fx00UVt3UQAoB1Uq9Ws3bCpkFo9GupKedpEz651u8S3wgBAxymyJ0rK2Rd1tp6oQ7f0ne98Z+3/R44cmXHjxuW1r31tvvvd7+bjH/94bd2GDRvywQ9+MJs3b863vvWt7datVqvNdqyt7WQvH/NyF1xwQbM5rFq1KkOHDt3uzwYA2ldnvuYJAMBLiu6JEn1RGXToXWVfrlevXhk5cmQee+yx2rINGzbk+OOPzxNPPJE5c+bUjrZLkkGDBmX9+vVZubL5TrlixYoMHDiwNuaZZ57Z4mc9++yztTFb061bt/Tp06fZAwAon511zRMAgF1J0T1Roi8qg1IdW7hu3bosXrw4b33rW5P8b2j32GOP5Y477tji9NlRo0aloaEhc+bMyfHHH58kWbZsWR5++OF89atfTZKMGzcuTU1Nuffee3PYYYclSe655540NTVl/Pjx7bh1AMDO1tmueQIAsDVt6YkSfVGZdGhwd/755+fd73539t5776xYsSIXX3xxVq1alRNPPDEbN27McccdlwceeCA/+clPsmnTpto16fr165euXbumsbExJ598cs4777z0798//fr1y/nnn5+RI0fW7jJ7wAEH5Oijj84pp5ySK664Ikly6qmnZsqUKe4oCwC7mc52zRMAgK3RE+0+OvS3uHTp0vyf//N/8sc//jGvfvWrM3bs2CxYsCDDhg3Lk08+mZtvvjlJ8qY3vanZ6+644468/e1vT5Jceumlqa+vz/HHH5+1a9dmwoQJueaaa1JX97/J8nXXXZezzz67dvfZqVOn5rLLLmuXbQQAAACA1ujQ4G7WrFmvuG6fffZJtVrdbo3u3btnxowZmTFjxiuO6devX2bOnNmqOQIAAABARyjVzSkAAAAAgL8Q3AEAAABACQnuAAAAAKCEBHcAAAAAUELuDQwAsBNUq9Ws3bCpTTXWrG/b6wEAOpqeqG0EdwAABatWqznu8vlZ+NTKjp4KAECH0RO1nVNlAQAKtnbDpkIb1NHD+qZHQ11h9QAA2oOeqO0ccQcAsBPd/9mJ6dm1bQ1mj4a6VCqVgmYEAND+9EStI7gDANiJenatS8+uWi4AoHPTE7WOU2UBAAAAoIQEdwAAAABQQo5RBAA6TLVazdoNm9pUY836tr0eAKCj6Yl4JYI7AKBDVKvVHHf5/ELvNAYAsKvRE7EtTpUFADrE2g2bCm1QRw/rmx4NbbtTGQBAe9MTsS2OuAMAOtz9n52Ynl3b1mD2aKhLpVIpaEYAAO1PT8TLCe4AgA7Xs2tdenbVlgAAnZueiJdzqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoITcY7gg1Wo1azds2qGxPRrqUqlUdvKMAACK15KeZ3v0RAAA2ya4K8jaDZty4Odv3aGxo4f1zQ2nj9OoArDLKiK8WbO+mPCH9lOtVnPc5fOz8KmVhdTTEwGwq9MTsbMJ7jrA/U+tzNoNm9Kzq39+AHY9RYc37DrWbthU6O9dTwTArkxPRHvQJRWkR0NdHvni5G2OWbN+U0ZfPLedZgQAO0fR4c3oYX3To6GusHq0j/s/OzE9u7bu96YnAmB3oCeiPQjuClKpVHxbDECn05bw5iWuc9a+2nI6zl+/tmfXOr0PAPwPPdGuZ0d6ojL8TnRbALALKOsNAYQ3ux5HugGwK9MTUZQd6Yke+eLkDv+92qsAoOTcEIC26tFQl9HD+ub+Avchp/IA0N70RLRV0T1RexDcAUDJuSEAbVWpVHLD6eNKeYQCAOwoPRFt1dKeqAxfVNo7AWAX4oYAtJbr8QKwO9ET0Vq7Wk+068wUAHD9FACA6InoPLp09AQAAAAAgC0J7gAAAACghAR3AAAAAFBCHRrcXXjhhalUKs0egwYNqq2vVqu58MILM2TIkPTo0SNvf/vb8+tf/7pZjXXr1uWss87KnnvumV69emXq1KlZunRpszErV67MtGnT0tjYmMbGxkybNi3PPfdce2wiAAAAALRKhx9xd9BBB2XZsmW1x0MPPVRb99WvfjWXXHJJLrvsstx3330ZNGhQjjrqqDz//PO1Meeee25uuummzJo1K3fffXdWr16dKVOmZNOm/7217wknnJBFixZl9uzZmT17dhYtWpRp06a163YCAAAAQEt0+C1Y6uvrmx1l95JqtZqvf/3r+cxnPpP3ve99SZLvfve7GThwYK6//vqcdtppaWpqylVXXZVrr702EydOTJLMnDkzQ4cOzdy5czN58uQsXrw4s2fPzoIFCzJmzJgkyZVXXplx48bl0UcfzfDhw9tvYwEAAABgB3X4EXePPfZYhgwZkn333Tcf/OAH8/jjjydJnnjiiSxfvjyTJk2qje3WrVuOOOKIzJs3L0mycOHCbNiwodmYIUOGZMSIEbUx8+fPT2NjYy20S5KxY8emsbGxNmZr1q1bl1WrVjV7AAAAAEB76dDgbsyYMfne976XW2+9NVdeeWWWL1+e8ePH509/+lOWL1+eJBk4cGCz1wwcOLC2bvny5enatWv69u27zTEDBgzY4mcPGDCgNmZrpk+fXrsmXmNjY4YOHdqmbQUAAACAlujQ4O6d73xn/uZv/iYjR47MxIkT89Of/jTJX06JfUmlUmn2mmq1usWyl3v5mK2N316dCy64IE1NTbXHkiVLdmibAAAAAKAIHX6q7F/r1atXRo4cmccee6x23buXHxW3YsWK2lF4gwYNyvr167Ny5cptjnnmmWe2+FnPPvvsFkfz/bVu3bqlT58+zR4AAAAA0F5KFdytW7cuixcvzuDBg7Pvvvtm0KBBmTNnTm39+vXrc9ddd2X8+PFJklGjRqWhoaHZmGXLluXhhx+ujRk3blyamppy77331sbcc889aWpqqo0BAAAAgLLp0LvKnn/++Xn3u9+dvffeOytWrMjFF1+cVatW5cQTT0ylUsm5556bL33pS9l///2z//7750tf+lJ69uyZE044IUnS2NiYk08+Oeedd1769++ffv365fzzz6+depskBxxwQI4++uiccsopueKKK5Ikp556aqZMmeKOsgAAAACUVocGd0uXLs3/+T//J3/84x/z6le/OmPHjs2CBQsybNiwJMk//MM/ZO3atfn7v//7rFy5MmPGjMltt92W3r1712pceumlqa+vz/HHH5+1a9dmwoQJueaaa1JXV1cbc9111+Xss8+u3X126tSpueyyy9p3YwEAAACgBTo0uJs1a9Y211cqlVx44YW58MILX3FM9+7dM2PGjMyYMeMVx/Tr1y8zZ85s7TQBAAAAoN2V6hp3AAAAAMBfCO4AAAAAoIQEdwAAAABQQh16jbvObM36TW2u0aOhLpVKpYDZAAB0DD0RAMArE9x1kNEXz217jWF9c8Pp4zSqALRYW8KSIoIWeImeCICOpCei7AR37ahHQ11GD+ub+59aWUi9+59ambUbNqVnV79GAFqmiLAEWktPBEBZ6IkoO91NO6pUKrnh9HFZu6Ftqfya9Zu8uQDQYkWHJaOH9U2PhrpCatG56IkA6Eh6InYlgrt2VqlUfBsMQIcoKix5ieuK0RZ6IgA6ip6IXYluCQA6EWEJAICeiF1Hl46eAAAAAACwJcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBJyCxUAgJdZs35Th74eAKAs2tLX6InaTnAHAPAyoy+e29FTAAAoBX1Rx3KqLABAkh4NdRk9rG+hNUcP65seDXWF1gQA2NmK7ov0RK3niDsAgCSVSiU3nD4uazcUd0pHj4a6VCqVwuoBALSHovsiPVHrCe4AAP5HpVJJz67aIwAAfVE5OFUWAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp4AAJRNtVrN2g2bCqnVo6EulUqlkFoAAO2pyJ4o0RdBawjuAOCvVKvVHHf5/Cx8amUh9UYP65sbTh+nSQUAdilF90SJvghaw6myAPBX1m7YVGiDev9TKwv9phoAoD0U3RMl+iJoDUfcAcAruP+zE9Oza12rXrtm/aaMvnhuwTMCAGh/bemJEn0RtIXgDgBeQc+udenZ1UclANC56Ymg4zhVFgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJlSa4mz59eiqVSs4999zastWrV+fMM8/MXnvtlR49euSAAw7It7/97WavW7duXc4666zsueee6dWrV6ZOnZqlS5c2G7Ny5cpMmzYtjY2NaWxszLRp0/Lcc8+1w1YBAAAAQOuU4rYw9913X77zne/k4IMPbrb8Yx/7WO64447MnDkz++yzT2677bb8/d//fYYMGZL3vOc9SZJzzz03t9xyS2bNmpX+/fvnvPPOy5QpU7Jw4cLU1f3ldtUnnHBCli5dmtmzZydJTj311EybNi233HJL+24oAJ3SmvWbOvT1AABl0Za+Rk9EZ9Thwd3q1avzoQ99KFdeeWUuvvjiZuvmz5+fE088MW9/+9uT/CVwu+KKK3L//ffnPe95T5qamnLVVVfl2muvzcSJE5MkM2fOzNChQzN37txMnjw5ixcvzuzZs7NgwYKMGTMmSXLllVdm3LhxefTRRzN8+PB23V4AOp/RF8/t6CkAAJSCvghapsNPlT3jjDPyrne9qxa8/bXDDz88N998c/7whz+kWq3mjjvuyG9+85tMnjw5SbJw4cJs2LAhkyZNqr1myJAhGTFiRObNm5fkL+FfY2NjLbRLkrFjx6axsbE2ZmvWrVuXVatWNXsAwI7q0VCX0cP6Flpz9LC+6dFQV2hNAICdrei+SE9EZ9KhR9zNmjUrDzzwQO67776trv/GN76RU045JXvttVfq6+vTpUuX/Ou//msOP/zwJMny5cvTtWvX9O3b/A1g4MCBWb58eW3MgAEDtqg9YMCA2pitmT59ei666KLWbhoAnVylUskNp4/L2g3FndLRo6EulUqlsHoAAO2h6L5IT0Rn0mHB3ZIlS3LOOefktttuS/fu3bc65hvf+EYWLFiQm2++OcOGDcsvfvGL/P3f/30GDx681SP0XlKtVpv9EW/tD/rlY17uggsuyMc//vHa81WrVmXo0KE7smkAkOQvnz89u3b4VSkAADqcvghap8P+ahYuXJgVK1Zk1KhRtWWbNm3KL37xi1x22WVpamrKpz/96dx0001517velSQ5+OCDs2jRovzzP/9zJk6cmEGDBmX9+vVZuXJls6PuVqxYkfHjxydJBg0alGeeeWaLn//ss89m4MCBrzi/bt26pVu3bkVtLgAAAAC0SKuucffAAw/koYceqj3/j//4jxx77LH59Kc/nfXr1+9QjQkTJuShhx7KokWLao/Ro0fnQx/6UBYtWpRNmzZlw4YN6dKl+RTr6uqyefPmJMmoUaPS0NCQOXPm1NYvW7YsDz/8cC24GzduXJqamnLvvffWxtxzzz1pamqqjQEAAACAsmnVEXennXZaPvWpT2XkyJF5/PHH88EPfjDvfe97c8MNN2TNmjX5+te/vt0avXv3zogRI5ot69WrV/r3719bfsQRR+QTn/hEevTokWHDhuWuu+7K9773vVxyySVJksbGxpx88sk577zz0r9///Tr1y/nn39+Ro4cWTuV9oADDsjRRx+dU045JVdccUWSv9yddsqUKe4oCwAAAEBpteqIu9/85jd505velCS54YYb8ra3vS3XX399rrnmmvzoRz8qbHKzZs3KoYcemg996EM58MAD8+Uvfzn/3//3/+X000+vjbn00ktz7LHH5vjjj89b3vKW9OzZM7fcckvq6v73DjPXXXddRo4cmUmTJmXSpEk5+OCDc+211xY2TwAAAAAoWquOuKtWq7XTVefOnZspU6YkSYYOHZo//vGPrZ7MnXfe2ez5oEGDcvXVV2/zNd27d8+MGTMyY8aMVxzTr1+/zJw5s9XzAgAAAID21qoj7kaPHp2LL7441157be66667azSOeeOKJbd7wAQAAAADYMa0K7i699NI88MADOfPMM/OZz3wmr3vd65IkP/zhD93wAQAAAAAK0KpTZd/4xjc2u6vsS/7pn/4p9fWtKkkHqVarWbthUyG1ejTUpVKpFFILAKC96YsAgLJpVcq233775b777kv//v2bLX/xxRfz5je/OY8//nghkyujb97+23Tv9aoOncOGTZtr/3/Z7b9NQ12rDpxMtVrNDQuXZlnTi4XMa3Bj97x/1F6aVGCXVtR7LLDzFfn3qi8CaE5PBNv24gur2+XntCq4e/LJJ7Np05bfRq5bty5Lly5t86RoHxs3VwtrTpNkWdOLWbthUyFv6PVdKhpdAKDdlLUv0hMBQOfWouDu5ptvrv3/rbfemsbGxtrzTZs25ec//3n23Xff4mZHuznlrfu2urHcsGlzrvyvJ5Kk9t+28i01ANBRytQX6YkAoHNrUXB37LHHJkkqlUpOPPHEZusaGhqyzz775Gtf+1phk6P9NNR1aXWDWt+lksGN3Qv/lnrj5moa6jSpAED7KlNfpCcCgM6tRcHd5s1/Ocd93333zX333Zc999xzp0yKXUulUsn7R+2VjZurba71199SAwDsaorqi/REAEDSymvcPfGEJoLmKpWKb4IBAKIvAgCK06rgLkl+/vOf5+c//3lWrFhROxLvJf/2b//W5okBAAAAQGfWquDuoosuyhe/+MWMHj06gwcPdrFcAAAAAChYq4K7yy+/PNdcc02mTZtW9HwAoNWq1Woh15UCANiV6Ylg99Gq4G79+vUZP3580XMBgFarVqu5YeHSQu9wDQCwq9ETwe6lVfe5/+hHP5rrr7++6LkAQKtt3FwttEEd3Ng99V1cCgIA2LXoiWD30qoj7l588cV85zvfydy5c3PwwQenoaGh2fpLLrmkkMkBQGuc8tZ901DXqu+mauq7VFzDFQDYpemJYNfXquDuV7/6Vd70pjclSR5++OFm6/xBA9DRGuq6tLlJBQDY1emJYNfXquDujjvuKHoetFJbLhjqYqMAwO6irX2NvggAKKNWBXeUx5X/9URHTwEAoMPpiQCA3VGrgrsjjzxym6fE3n777a2eENtX36WSwY3dC7vgqIuNAgC7oqJ7okRfBACUS6uCu5eub/eSDRs2ZNGiRXn44Ydz4oknFjEvtqFSqeT9o/bKxs3VQuq52CgAsCsquidK9EUAQLm0Kri79NJLt7r8wgsvzOrVq9s0IXZMpVJJQ52mEgDo3PREAMDurNDby/zt3/5t/u3f/q3IkgAAAADQKRUa3M2fPz/du3cvsiQAAAAAdEqtOlX2fe97X7Pn1Wo1y5Yty/3335/Pfe5zhUwMAAAAADqzVgV3jY2NzZ536dIlw4cPzxe/+MVMmjSpkIkBAAAAQGfWquDu6quvLnoesIUNmza3uYY7wwEAuzo9EQB0Xq0K7l6ycOHCLF68OJVKJQceeGAOOeSQouYFufK/nmhzjcGN3fP+UXtpVAGAXZaeCAA6r1YFdytWrMgHP/jB3Hnnndljjz1SrVbT1NSUI488MrNmzcqrX/3qoudJJ1HfpZLBjd2zrOnFQuota3oxGzdX01CnSQUAdh16IgAgaWVwd9ZZZ2XVqlX59a9/nQMOOCBJ8sgjj+TEE0/M2Wefne9///uFTpLOo1Kp5P2j9srGzdU21dmwaXMh304DAHQEPREAkLQyuJs9e3bmzp1bC+2S5MADD8w3v/lNN6egzSqVim+DAYBOT08EAHRpzYs2b96choaGLZY3NDRk8+a2XzwXAAAAADq7VgV373jHO3LOOefk6aefri37wx/+kI997GOZMGFCYZMDAAAAgM6qVcHdZZddlueffz777LNPXvva1+Z1r3td9t133zz//POZMWNG0XMEAAAAgE6nVde4Gzp0aB544IHMmTMn//3f/51qtZoDDzwwEydOLHp+AJRYtVpt84XTX1LfpZJKxbWcAIBdj54I2FlaFNzdfvvtOfPMM7NgwYL06dMnRx11VI466qgkSVNTUw466KBcfvnleetb37pTJgtAeVSr1dywcGmWNb1YSL3Bjd3z/lF7aVQBgF2KngjYmVoU3H3961/PKaeckj59+myxrrGxMaeddlouueSSVgV306dPz6c//emcc845+frXv15bvnjx4nzyk5/MXXfdlc2bN+eggw7Kv//7v2fvvfdOkqxbty7nn39+vv/972ft2rWZMGFCvvWtb2Wvvfaq1Vi5cmXOPvvs3HzzzUmSqVOnZsaMGdljjz1aPM8z3vG6rW4/5bJm/cZ8687fJUnOfMfr0rNrqw4uBbZhzfqN+cbtvy2s3rKmF3P621/b6r9Xf/cAW/LeCDufngg6p1WrVuXT7fBzWvQX/Mtf/jJf+cpXXnH9pEmT8s///M8tnsR9992X73znOzn44IObLf/d736Xww8/PCeffHIuuuiiNDY2ZvHixenevXttzLnnnptbbrkls2bNSv/+/XPeeedlypQpWbhwYerq6pIkJ5xwQpYuXZrZs2cnSU499dRMmzYtt9xyS4vnyq5nzfpNba7Ro6HON16wDfd/dmJ6dq1r1WvXrN+U0RfPLXhGALycngh2Pj0RULQWBXfPPPNMGhoaXrlYfX2effbZFk1g9erV+dCHPpQrr7wyF198cbN1n/nMZ3LMMcfkq1/9am3ZfvvtV/v/pqamXHXVVbn22mtr19ebOXNmhg4dmrlz52by5MlZvHhxZs+enQULFmTMmDFJkiuvvDLjxo3Lo48+muHDh7dovux6ivjwGz2sb244fZxGFV5Bz651vs0FKDk9Eex8eiKgaC26q+xrXvOaPPTQQ6+4/le/+lUGDx7cogmcccYZede73rXFjS02b96cn/70p3n961+fyZMnZ8CAARkzZkx+/OMf18YsXLgwGzZsyKRJk2rLhgwZkhEjRmTevHlJkvnz56exsbEW2iXJ2LFj09jYWBvD7qdHQ11GD+tbWL37n1qZtRva/i01AEB70hMBwK6tRV8FHHPMMfn85z+fd77znc1OV02StWvX5gtf+EKmTJmyw/VmzZqVBx54IPfdd98W61asWJHVq1fny1/+ci6++OJ85StfyezZs/O+970vd9xxR4444ogsX748Xbt2Td++zZuRgQMHZvny5UmS5cuXZ8CAAVvUHzBgQG3M1qxbty7r1q2rPV+1atUObxcdr1Kp5IbTx7W5sXS4OgCwK9MTAcCurUXB3Wc/+9nceOONef3rX58zzzwzw4cPT6VSyeLFi/PNb34zmzZtymc+85kdqrVkyZKcc845ue2227YIAZO/HHGXJO95z3vysY99LEnypje9KfPmzcvll1+eI4444hVrV6vVZofvb+1Q/pePebnp06fnoosu2qFtoZwqlYrD1AGATk9PBAC7rhZ9gg8cODDz5s3L3/3d3+WCCy5ItVpN8pdmYPLkyfnWt76VgQMH7lCthQsXZsWKFRk1alRt2aZNm/KLX/wil112WV544YXU19fnwAMPbPa6Aw44IHfffXeSZNCgQVm/fn1WrlzZ7Ki7FStWZPz48bUxzzzzzBY//9lnn93mXC+44IJ8/OMfrz1ftWpVhg4dukPbBgAAAABt1eKv3oYNG5af/exnWblyZX7729+mWq1m//333+J01e2ZMGHCFtfL+/CHP5w3vOEN+eQnP5lu3brl0EMPzaOPPtpszG9+85sMGzYsSTJq1Kg0NDRkzpw5Of7445Mky5Yty8MPP1y7ocW4cePS1NSUe++9N4cddliS5J577klTU1Mt3Nuabt26pVu3bi3aJgAAAAAoSquPme/bt28OPfTQVv/g3r17Z8SIEc2W9erVK/37968t/8QnPpEPfOADedvb3pYjjzwys2fPzi233JI777wzSdLY2JiTTz455513Xvr3759+/frl/PPPz8iRI2s3uzjggANy9NFH55RTTskVV1yRJDn11FMzZcoUd5QFAAAAoLRKfbGL9773vbn88sszffr0nH322Rk+fHh+9KMf5fDDD6+NufTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1+/YAAAAAwI4qVXD30pF0f+0jH/lIPvKRj7zia7p3754ZM2ZkxowZrzimX79+mTlzZhFTBAAAAIB20aWjJwAAAAAAbElwBwAAAAAlJLgDAAAAgBIS3AEAAABACZXq5hQAdG5r1m/qkNcCAJSJngh4ieAOgNIYffHcjp4CAECH0xMBL3GqLAAdqkdDXUYP61tYvdHD+qZHQ11h9QAA2oOeCNgaR9wB0KEqlUpuOH1c1m4o5rSOHg11qVQqhdQCAGgveiJgawR3AJ1QtVptc1NY5PVTKpVKenb1kQQAtC89EVB23hEAOplqtZrjLp+fhU+t7OipAAB0GD0RsCtwjTuATmbthk2FNqiunwIA7Ir0RMCuwBF3AJ3Y/Z+dmJ5d29Zgun4KALCr0xMBZSW4A+jEenatcx0VAKDT0xMBZeVUWQAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASqi+oycAwI6pVqtZu2FTm+usWd/2GgAAHamIvkhPBOwKBHcAu4BqtZrjLp+fhU+t7OipAAB0KH0R0Jk4VRZgF7B2w6bCm9PRw/qmR0NdoTUBAHa2ovsiPRFQZo64A9jF3P/ZienZte3NZY+GulQqlQJmBADQMYroi/REQJmV5oi76dOnp1Kp5Nxzz93q+tNOOy2VSiVf//rXmy1ft25dzjrrrOy5557p1atXpk6dmqVLlzYbs3LlykybNi2NjY1pbGzMtGnT8txzz+2cDQHYyXp2rUvPrvVtfmhQAYBdXRF9kZ4IKLNSBHf33XdfvvOd7+Tggw/e6vof//jHueeeezJkyJAt1p177rm56aabMmvWrNx9991ZvXp1pkyZkk2b/vdCoyeccEIWLVqU2bNnZ/bs2Vm0aFGmTZu207YHAAAAANqqw4O71atX50Mf+lCuvPLK9O3bd4v1f/jDH3LmmWfmuuuuS0NDQ7N1TU1Nueqqq/K1r30tEydOzCGHHJKZM2fmoYceyty5c5MkixcvzuzZs/Ov//qvGTduXMaNG5crr7wyP/nJT/Loo4+2yzYCAAAAQEt1eHB3xhln5F3velcmTpy4xbrNmzdn2rRp+cQnPpGDDjpoi/ULFy7Mhg0bMmnSpNqyIUOGZMSIEZk3b16SZP78+WlsbMyYMWNqY8aOHZvGxsbamK1Zt25dVq1a1ewBAAAAAO2lQ29OMWvWrDzwwAO57777trr+K1/5Surr63P22Wdvdf3y5cvTtWvXLY7UGzhwYJYvX14bM2DAgC1eO2DAgNqYrZk+fXouuuiiHd0UAAAAAChUhx1xt2TJkpxzzjmZOXNmunfvvsX6hQsX5l/+5V9yzTXXtPhiodVqtdlrtvb6l495uQsuuCBNTU21x5IlS1o0BwAAAABoiw4L7hYuXJgVK1Zk1KhRqa+vT319fe6666584xvfSH19fe68886sWLEie++9d239U089lfPOOy/77LNPkmTQoEFZv359Vq5c2az2ihUrMnDgwNqYZ555Zouf/+yzz9bGbE23bt3Sp0+fZg8AAAAAaC8ddqrshAkT8tBDDzVb9uEPfzhveMMb8slPfjKDBw/O5MmTm62fPHlypk2blg9/+MNJklGjRqWhoSFz5szJ8ccfnyRZtmxZHn744Xz1q19NkowbNy5NTU259957c9hhhyVJ7rnnnjQ1NWX8+PE7ezMBAAAAoFU6LLjr3bt3RowY0WxZr1690r9//9ry/v37N1vf0NCQQYMGZfjw4UmSxsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTptTqAAAAAEDZdOjNKYpw6aWXpr6+Pscff3zWrl2bCRMm5JprrkldXV1tzHXXXZezzz67dvfZqVOn5rLLLuuoKQMAAADAdpUquLvzzju3uf7JJ5/cYln37t0zY8aMzJgx4xVf169fv8ycObONswMAAACA9lOq4A52Z9VqNWs3bCqkVo+GuhbfbZmOU8Tvfs36YvYdAOhoRfZEib5oV1LU715fBHQmgjtoB9VqNcddPj8Ln1q5/cE7YPSwvrnh9HGa1F1A0b97ANiV7YzPRX3RrkFPBNA6XTp6AtAZrN2wqdAm5f6nVhb6TTU7T9G/+9HD+qZHQ932BwJACRX9uZjoi3YVO+N3ry8COgNH3EE7u/+zE9Oza+sajDXrN2X0xXMLnhHtpS2/+5c4HQiA3UVbPxf1RbuuInqiRF8EdA6CO2hnPbvWpWdXf3qdkd89APwvn4udl989wI5zqiwAAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJ1Xf0BADKqlqtZu2GTW2qsWZ9214PANDR9EQAHUdwB7AV1Wo1x10+PwufWtnRUwEA6DB6IoCO5VRZgK1Yu2FToQ3q6GF906OhrrB6AADtQU8E0LEccQc7qC2H9zs1YNd2/2cnpmfXtjWYPRrqUqlUCpoRAHQcPVHnpScCaH+CO9hBoy+e29FToIP07FqXnl29XQJAoifqzPREAO3PqbKwDT0a6jJ6WN/C6jk1AADYFemJAKBj+LoEtqFSqeSG08e1+S5aL3FqAACwK9ITAUDHENzBdlQqFacEAACdnp4IANqfU2UBAAAAoIR8ZQadVLVaLex0l8QpLwDArqvIvkhPBECRBHfQCVWr1Rx3+fwsfGplYTVHD+ubG04fp1EFAHYpRfdFeiIAiuRUWeiE1m7YVGholyT3P7Wy0CP4AADaQ9F9kZ4IgCI54g52UWvWt74h/OvX3v/ZienZta5NtUZfPLfVr98ZijjdpS3/vgBA+ypDX6QnAmBnENzBLqqoxrBn17rS3CGuiOayWk3ef/n8PLJsVUGzAgDKbnfri/REALyk4z+VgB3Wo6Euo4f1zf0FXoOlR0Prj7Yr0s647l4RyvRvBAD8r921L9ITAfDXBHewC6lUKrnh9HG75V3Pir6+zIGD+/zPhaHbVqdM/0YAwP/aXfsiPREAf01wB7uYSqVSilM4dqa2Xncv0VwCQGewu/dFeiIASnNX2enTp6dSqeTcc89NkmzYsCGf/OQnM3LkyPTq1StDhgzJ//2//zdPP/10s9etW7cuZ511Vvbcc8/06tUrU6dOzdKlS5uNWblyZaZNm5bGxsY0NjZm2rRpee6559ppy4CWeun6Mm15aFABgF2dngiAUgR39913X77zne/k4IMPri1bs2ZNHnjggXzuc5/LAw88kBtvvDG/+c1vMnXq1GavPffcc3PTTTdl1qxZufvuu7N69epMmTIlmzb97yHzJ5xwQhYtWpTZs2dn9uzZWbRoUaZNm9Zu2wcAAAAALdXhx5WvXr06H/rQh3LllVfm4osvri1vbGzMnDlzmo2dMWNGDjvssPz+97/P3nvvnaamplx11VW59tprM3HixCTJzJkzM3To0MydOzeTJ0/O4sWLM3v27CxYsCBjxoxJklx55ZUZN25cHn300QwfPrz9NhYAAAAAdlCHH3F3xhln5F3velcteNuWpqamVCqV7LHHHkmShQsXZsOGDZk0aVJtzJAhQzJixIjMmzcvSTJ//vw0NjbWQrskGTt2bBobG2tjtmbdunVZtWpVswcAAAAAtJcOPeJu1qxZeeCBB3Lfffdtd+yLL76YT33qUznhhBPSp0+fJMny5cvTtWvX9O3bt9nYgQMHZvny5bUxAwYM2KLegAEDamO2Zvr06bnoootasjkAAAAAUJgOO+JuyZIlOeecczJz5sx07959m2M3bNiQD37wg9m8eXO+9a1vbbd2tVptdhHWrV2Q9eVjXu6CCy5IU1NT7bFkyZLt/lwAAAAAKEqHHXG3cOHCrFixIqNGjaot27RpU37xi1/ksssuy7p161JXV5cNGzbk+OOPzxNPPJHbb7+9drRdkgwaNCjr16/PypUrmx11t2LFiowfP7425plnntni5z/77LMZOHDgK86vW7du6datWxGbCgAAAAAt1mHB3YQJE/LQQw81W/bhD384b3jDG/LJT36yWWj32GOP5Y477kj//v2bjR81alQaGhoyZ86cHH/88UmSZcuW5eGHH85Xv/rVJMm4cePS1NSUe++9N4cddliS5J577klTU1Mt3AOKsWb9pu0P2gmvBQAoEz0RAEXpsOCud+/eGTFiRLNlvXr1Sv/+/TNixIhs3Lgxxx13XB544IH85Cc/yaZNm2rXpOvXr1+6du2axsbGnHzyyTnvvPPSv3//9OvXL+eff35GjhxZu9nFAQcckKOPPjqnnHJKrrjiiiTJqaeemilTprijLBRs9MVzO3oKAAAdTk8EQFE6/K6yr2Tp0qW5+eabs3Tp0rzpTW/K4MGDa4+/vhvspZdemmOPPTbHH3983vKWt6Rnz5655ZZbUldXVxtz3XXXZeTIkZk0aVImTZqUgw8+ONdee21HbBbsdno01GX0sL7bH7iDRg/rmx4NddsfCABQInoiAHaGSrVarXb0JHYFq1atSmNjY5qamppdZw/4y81e1m4o5rSOHg1127xxDABAWemJADqP9sqJOuxUWWD3UalU0rOrtxMAoHPTEwFQtNKeKgsAAAAAnZngDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACih+o6ewK6iWq0mSVatWtXBMwEAAACgI72UD72UF+0sgrsd9Kc//SlJMnTo0A6eCQAAAABl8Kc//SmNjY07rb7gbgf169cvSfL73/9+p/5C2H2tWrUqQ4cOzZIlS9KnT5+Ong67IPsQRbAf0Vb2IdrKPkQR7Ee0lX2Itmpqasree+9dy4t2FsHdDurS5S+XA2xsbPRHTZv06dPHPkSb2Icogv2ItrIP0Vb2IYpgP6Kt7EO01Ut50U6rv1OrAwAAAACtIrgDAAAAgBIS3O2gbt265Qtf+EK6devW0VNhF2Ufoq3sQxTBfkRb2YdoK/sQRbAf0Vb2IdqqvfahSnVn37cWAAAAAGgxR9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFOG9x961vfyr777pvu3btn1KhR+a//+q9tjr/rrrsyatSodO/ePfvtt18uv/zyLcb86Ec/yoEHHphu3brlwAMPzE033bSzpk8JtGQfuvHGG3PUUUfl1a9+dfr06ZNx48bl1ltvbTbmmmuuSaVS2eLx4osv7uxNoQO1ZD+68847t7qP/Pd//3ezcd6LOpeW7EMnnXTSVvehgw46qDbGe1Hn8otf/CLvfve7M2TIkFQqlfz4xz/e7mv0RPy1lu5DeiK2pqX7kZ6Il2vpPqQn4uWmT5+eQw89NL17986AAQNy7LHH5tFHH93u69qjL+qUwd0PfvCDnHvuufnMZz6TBx98MG9961vzzne+M7///e+3Ov6JJ57IMccck7e+9a158MEH8+lPfzpnn312fvSjH9XGzJ8/Px/4wAcybdq0/PKXv8y0adNy/PHH55577mmvzaIdtXQf+sUvfpGjjjoqP/vZz7Jw4cIceeSRefe7350HH3yw2bg+ffpk2bJlzR7du3dvj02iA7R0P3rJo48+2mwf2X///WvrvBd1Li3dh/7lX/6l2b6zZMmS9OvXL+9///ubjfNe1Hm88MILeeMb35jLLrtsh8briXi5lu5DeiK2pqX70Uv0RLykpfuQnoiXu+uuu3LGGWdkwYIFmTNnTjZu3JhJkyblhRdeeMXXtFtfVO2EDjvssOrpp5/ebNkb3vCG6qc+9amtjv+Hf/iH6hve8IZmy0477bTq2LFja8+PP/746tFHH91szOTJk6sf/OAHC5o1ZdLSfWhrDjzwwOpFF11Ue3711VdXGxsbi5oiu4CW7kd33HFHNUl15cqVr1jTe1Hn0tb3optuuqlaqVSqTz75ZG2Z96LOK0n1pptu2uYYPRHbsiP70NboifhrO7If6YnYlta8F+mJeLkVK1ZUk1TvuuuuVxzTXn1Rpzvibv369Vm4cGEmTZrUbPmkSZMyb968rb5m/vz5W4yfPHly7r///mzYsGGbY16pJruu1uxDL7d58+Y8//zz6devX7Plq1evzrBhw7LXXntlypQpW3z7zO6jLfvRIYccksGDB2fChAm54447mq3zXtR5FPFedNVVV2XixIkZNmxYs+Xei3gleiKKpieiLfREFEVPxMs1NTUlyRafT3+tvfqiThfc/fGPf8ymTZsycODAZssHDhyY5cuXb/U1y5cv3+r4jRs35o9//OM2x7xSTXZdrdmHXu5rX/taXnjhhRx//PG1ZW94wxtyzTXX5Oabb873v//9dO/ePW95y1vy2GOPFTp/yqE1+9HgwYPzne98Jz/60Y9y4403Zvjw4ZkwYUJ+8Ytf1MZ4L+o82vpetGzZsvznf/5nPvrRjzZb7r2IbdETUTQ9Ea2hJ6JIeiJerlqt5uMf/3gOP/zwjBgx4hXHtVdfVN+Cue9WKpVKs+fVanWLZdsb//LlLa3Jrq21v+/vf//7ufDCC/Mf//EfGTBgQG352LFjM3bs2Nrzt7zlLXnzm9+cGTNm5Bvf+EZxE6dUWrIfDR8+PMOHD689HzduXJYsWZJ//ud/ztve9rZW1WTX19rf9zXXXJM99tgjxx57bLPl3ovYHj0RRdET0Vp6IoqkJ+LlzjzzzPzqV7/K3Xffvd2x7dEXdboj7vbcc8/U1dVtkW6uWLFiixT0JYMGDdrq+Pr6+vTv33+bY16pJruu1uxDL/nBD36Qk08+Of/+7/+eiRMnbnNsly5dcuihh/pGZzfVlv3or40dO7bZPuK9qPNoyz5UrVbzb//2b5k2bVq6du26zbHei/hreiKKoieiaHoiWkNPxMudddZZufnmm3PHHXdkr7322ubY9uqLOl1w17Vr14waNSpz5sxptnzOnDkZP378Vl8zbty4LcbfdtttGT16dBoaGrY55pVqsutqzT6U/OVb5ZNOOinXX3993vWud23351Sr1SxatCiDBw9u85wpn9buRy/34IMPNttHvBd1Hm3Zh+6666789re/zcknn7zdn+O9iL+mJ6IIeiJ2Bj0RraEn4iXVajVnnnlmbrzxxtx+++3Zd999t/uaduuLdvg2FruRWbNmVRsaGqpXXXVV9ZFHHqmee+651V69etXuIPOpT32qOm3atNr4xx9/vNqzZ8/qxz72seojjzxSveqqq6oNDQ3VH/7wh7Ux/+///b9qXV1d9ctf/nJ18eLF1S9/+cvV+vr66oIFC9p9+9j5WroPXX/99dX6+vrqN7/5zeqyZctqj+eee6425sILL6zOnj27+rvf/a764IMPVj/84Q9X6+vrq/fcc0+7bx/to6X70aWXXlq96aabqr/5zW+qDz/8cPVTn/pUNUn1Rz/6UW2M96LOpaX70Ev+9m//tjpmzJit1vRe1Lk8//zz1QcffLD64IMPVpNUL7nkkuqDDz5Yfeqpp6rVqp6I7WvpPqQnYmtauh/piXi5lu5DL9ET8ZK/+7u/qzY2NlbvvPPOZp9Pa9asqY3pqL6oUwZ31Wq1+s1vfrM6bNiwateuXatvfvObm93i98QTT6weccQRzcbfeeed1UMOOaTatWvX6j777FP99re/vUXNG264oTp8+PBqQ0ND9Q1veEOzDw52Py3Zh4444ohqki0eJ554Ym3MueeeW917772rXbt2rb761a+uTpo0qTpv3rx23CI6Qkv2o6985SvV1772tdXu3btX+/btWz388MOrP/3pT7eo6b2oc2np59lzzz1X7dGjR/U73/nOVut5L+pc7rjjjm1+PumJ2J6W7kN6IrampfuRnoiXa83nmZ6Iv7a1/SdJ9eqrr66N6ai+qPI/EwQAAAAASqTTXeMOAAAAAHYFgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AACd3J133plKpZLnnnuuo6cCAMBfEdwBAHQCJ510UiqVSiqVShoaGrLffvvl/PPPzwsvvNDRUwMA4BXUd/QEAABoH0cffXSuvvrqbNiwIf/1X/+Vj370o3nhhRfygQ98oKOnBgDAVjjiDgCgk+jWrVsGDRqUoUOH5oQTTsiHPvSh/PjHP66tX7hwYUaPHp2ePXtm/PjxefTRR2vrfve73+U973lPBg4cmFe96lU59NBDM3fu3Gb1v/Wtb2X//fdP9+7dM3DgwBx33HG1ddVqNV/96lez3377pUePHnnjG9+YH/7whzt9mwEAdmWCOwCATqpHjx7ZsGFD7flnPvOZfO1rX8v999+f+vr6fOQjH6mtW716dY455pjMnTs3Dz74YCZPnpx3v/vd+f3vf58kuf/++3P22Wfni1/8Yh599NHMnj07b3vb22qv/+xnP5urr7463/72t/PrX/86H/vYx/K3f/u3ueuuu9pvgwEAdjGVarVa7ehJAACwc5100kl57rnnakfY3XvvvTnmmGMyYcKE/N3f/V2OPPLIzJ07NxMmTEiS/OxnP8u73vWurF27Nt27d99qzYMOOih/93d/lzPPPDM33nhjPvzhD2fp0qXp3bt3s3EvvPBC9txzz9x+++0ZN25cbflHP/rRrFmzJtdff/3O2WgAgF2ca9wBAHQSP/nJT/KqV70qGzduzIYNG/Ke97wnM2bMyCOPPJIkOfjgg2tjBw8enCRZsWJF9t5777zwwgu56KKL8pOf/CRPP/10Nm7cmLVr19aOuDvqqKMybNiw7Lfffjn66KNz9NFH573vfW969uyZRx55JC+++GKOOuqoZvNZv359DjnkkHbaegCAXY/gDgCgkzjyyCPz7W9/Ow0NDRkyZEgaGhqSpBbcvfQ8SSqVSpJk8+bNSZJPfOITufXWW/PP//zPed3rXpcePXrkuOOOy/r165MkvXv3zgMPPJA777wzt912Wz7/+c/nwgsvzH333Ver8dOf/jSvec1rms2pW7duO3ejAQB2YYI7AIBOolevXnnd617Xqtf+13/9V0466aS8973vTfKXa949+eSTzcbU19dn4sSJmThxYr7whS9kjz32yO23356jjjoq3bp1y+9///scccQRbd0MAIBOQ3AHAMB2ve51r8uNN96Yd7/73alUKvnc5z5XO5Iu+ctpuI8//nje9ra3pW/fvvnZz36WzZs3Z/jw4endu3fOP//8fOxjH8vmzZtz+OGHZ9WqVZk3b15e9apX5cQTT+zALQMAKC/BHQAA23XppZfmIx/5SMaPH58999wzn/zkJ7Nq1ara+j322CM33nhjLrzwwrz44ovZf//98/3vfz8HHXRQkuQf//EfM2DAgEyfPj2PP/549thjj7z5zW/Opz/96Y7aJACA0nNXWQAAAAAooS4dPQEAAAAAYEuCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBKq7+gJ7Co2b96cp59+Or17906lUuno6QAAAADQQarVap5//vkMGTIkXbrsvOPiBHc76Omnn87QoUM7ehoAAAAAlMSSJUuy11577bT6grsd1Lt37yTJ4Tkm9WloU60Xjj20iCml14/vK6TOqYt+V0id77zptYXUKdKzp40ppM6rr7inkDp0Xl16dC+kzua1LxZSJ0nq9927kDobn/h9IXWKsvnwNxZSp8vdvyykTpE+8auHCqnz+YtPLqTOytcXcwT6ftctK6TOskmDC6nT8EK1kDpJsmZAMf9GB73zsULqPPHd1xVSZ4+Z9xZSp2w9UbL79kV6IsqiqJ4oKa4v0hNtm55o+3bXnigpri/aHXuiTetfzEP//o+1vGhnEdztoJdOj61PQ+orbQvu6huK+bBq6zxe0rN3XSF1ippPkeq6levfms6rS6VrIXU2VzYVUidJ6rt0K6ZQyf4+NtcX83ffpWTblSS9Cnq/rutazL9RXfdiGrCi9sWi3vPrNhQX3NV1K+bfqKFXMe8hRf3ui/pcLFtPlOy+fZGeiLIoqidKiuuL9ETbpifagTq7aU+UFNcX7a49UZKdfjk1N6cAAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQfUdPYFfz3N8elrqu3dtUo/+ipkLm8pZfrSukzmWv27+QOmXUa9nmjp5Cp1F3wOsLqbNp8W8KqVOU3XW7kmTj408WUmfJ58cXUqdhdSFlMuiSeYXU+f0PRxZSZ+/jHiqkTpLs0WVtIXX6XDe/kDr9hgwupM7Gp5cVUmftgCGF1HnDB4v7e/3zW/5USJ0Frz20kDpvmLWokDp/+vC4QuqUrSdKdt++SE/UfnbX3mF33a5ET7Q9RfVESXF9kZ5o24rqiZLi+qLdsSfaWF3f9onsAEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACVU39ET2NXs8eia1NdvblONzd0aCpnLfx3crZA6u7M+v/5zIXU2FVJl97Zp8W86ego7xe66XUUa+sV5hdTZfMSbC6lTlH3+v2L+8jePfWMhdZLk/H2KqVPXr28hdRZ/Zu9C6gw//7lC6nQ/eGUhdVZN611InST502nDC6kzYv8nCqmzaZ+hhdTpu3hNIXX0RO1HT9R+dtfeYXfdriLpibavqL5IT7RtRfVESXF90e7YE1U2rUseLWAy2+GIOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEL1HT2BXU39H1elvsu6NtV4/Ku9C5nL3scVUqaUVn1oXCF1+lw3v5A6wCtb9+7DCqnT7ZZ7C6lTlM0PPlJInS6HHFhInSTZeMSbC6kz5ds/L6TOpgNXFlJn5IPFfI+47pO9Cqnz53F7FFInSfpfMa+QOr/vNb6QOoMWFzOf+v32KaSOnmj79ESw69ATbV9RfZGeaNuK6omS4vqi3bEn2lTdUMBMts8RdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQq1Wq12tGT2BWsWrUqjY2NOfgjX0pd1+5tqnXpJ79dyJwu3u+NhdShExtb4D604JfF1SqRLoccWEidzQ8+UkidItX161tInTVv2b+QOiv3ry+kzqBL5hVSp36/fQqp8+dxgwupkyT95i8rpE7TmwcVUqfX0rWF1Pns9d8rpM5zm3sWUueyvz2ukDpJUtdUzL/Ri0P7FFKn4bb7C6nzp9PGF1JHT0SpFNUX6Ym2SU+0fbtrT5QU1xfpibatqJ4oKa4v2h17oo3VDbkz/5Gmpqb06VPMvLbGEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACVWq1Wq1oyexK1i1alUaGxtz5t3vTbdXNbSp1i8P2VzQrMqlS48ehdXavHZtIXXq+vUtpM6mP68spE7ZrPzwuMJq9b16fmG1ilB3wOsLqbNp8W8KqVNGXQ45sJg6TWsKqbN52TOF1HnufW8qpM6zhxbz8bjH4uK+I+t/xbxC6rzxwWLm9MN5hxZSp/G/6wqp88JexfzO9r2pmH06SZ56V69C6lz5oW8XUueCfzitkDrjP3NvIXV2154oKa4v0hO1n6L6Ij3RrkdPtG1F9URJcX2RnmjbiuqJkuL6ot2xJ9q44cXc9+PPpqmpKX369ClgVlvniDsAAAAAKCHBHQAAAACUkOAOAAAAAEqoQ4O76dOn59BDD03v3r0zYMCAHHvssXn00UebjTnppJNSqVSaPcaOHdtszLp163LWWWdlzz33TK9evTJ16tQsXbq02ZiVK1dm2rRpaWxsTGNjY6ZNm5bnnntuZ28iAAAAALRKhwZ3d911V84444wsWLAgc+bMycaNGzNp0qS88MILzcYdffTRWbZsWe3xs5/9rNn6c889NzfddFNmzZqVu+++O6tXr86UKVOyadOm2pgTTjghixYtyuzZszN79uwsWrQo06ZNa5ftBAAAAICWqu/IHz579uxmz6+++uoMGDAgCxcuzNve9rba8m7dumXQoEFbrdHU1JSrrroq1157bSZOnJgkmTlzZoYOHZq5c+dm8uTJWbx4cWbPnp0FCxZkzJgxSZIrr7wy48aNy6OPPprhw4fvpC0EAAAAgNYp1TXumpqakiT9+vVrtvzOO+/MgAED8vrXvz6nnHJKVqxYUVu3cOHCbNiwIZMmTaotGzJkSEaMGJF58/5yi+j58+ensbGxFtolydixY9PY2Fgb83Lr1q3LqlWrmj0AAAAAoL2UJrirVqv5+Mc/nsMPPzwjRoyoLX/nO9+Z6667Lrfffnu+9rWv5b777ss73vGOrFu3LkmyfPnydO3aNX379m1Wb+DAgVm+fHltzIABA7b4mQMGDKiNebnp06fXrofX2NiYoUOHFrWpAAAAALBdHXqq7F8788wz86tf/Sp33313s+Uf+MAHav8/YsSIjB49OsOGDctPf/rTvO9973vFetVqNZVKpfb8r///lcb8tQsuuCAf//jHa89XrVolvAMAAACg3ZTiiLuzzjorN998c+64447stdde2xw7ePDgDBs2LI899liSZNCgQVm/fn1WrlzZbNyKFSsycODA2phnnnlmi1rPPvtsbczLdevWLX369Gn2AAAAAID20qHBXbVazZlnnpkbb7wxt99+e/bdd9/tvuZPf/pTlixZksGDBydJRo0alYaGhsyZM6c2ZtmyZXn44Yczfvz4JMm4cePS1NSUe++9tzbmnnvuSVNTU20MAAAAAJRJh54qe8YZZ+T666/Pf/zHf6R379616801NjamR48eWb16dS688ML8zd/8TQYPHpwnn3wyn/70p7Pnnnvmve99b23sySefnPPOOy/9+/dPv379cv7552fkyJG1u8wecMABOfroo3PKKafkiiuuSJKceuqpmTJlijvKAgAAAFBKHRrcffvb306SvP3tb2+2/Oqrr85JJ52Uurq6PPTQQ/ne976X5557LoMHD86RRx6ZH/zgB+ndu3dt/KWXXpr6+vocf/zxWbt2bSZMmJBrrrkmdXV1tTHXXXddzj777NrdZ6dOnZrLLrts528kAAAAALRChwZ31Wp1m+t79OiRW2+9dbt1unfvnhkzZmTGjBmvOKZfv36ZOXNmi+cIAAAAAB2hFDenAAAAAACaE9wBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAlVqtVqtaMnsStYtWpVGhsbM+wrF6dL9+5tqrXH4mLy0heOer6QOt3v6l1InT1/9WIhdZKky10PFFJn8xFvLqROUfOpHzK4kDobn15WSJ0i1fXrW0idTX9eWUidsulyyIHF1GlaU0idJHn2iGL2x75Xzy+kTlEK2xdfv3chdep/v6KQOknywqihhdTpsm5zIXW6PVvM/vjbT3QrpM7Qa+oKqdPjt38spE6SnH7bnELqfOv97ymkzn/+9PuF1Hndv59WSJ2y9URJ+foiPdH2la0v0hNtW1E9UVJcX6Qn2raieqKkuL5IT7RtRfVESXF90e7YE616flP6vv7xNDU1pU+fPgXMausccQcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUUKVarVY7ehK7glWrVqWxsTH7fvH/S5fu3dtUa6+fbyhkTg233V9Infr99imkTpE2Pv5kR08BaGddevQopM7mtWsLqdPlkAMLqfPsYXsUUidJ1gwsps6gBesLqVPU59CVv7+7kDqnDT+qkDqVfYYWUidJ/vvMvoXUee2/F9M7FOWpY7oVUqdsPVFSvr5ITwSdz+7aEyXF9UV6om0rqidKiuuLdseeaOPGF/OLu7+Ypqam9OnTZ6f9HEfcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEqpUq9VqR09iV7Bq1ao0Njbm7XlP6isNHT2dvxj7xkLKbO5WV0id+nsXF1InSTavXVtYLdid/Om08YXV2njMykLqvOZjxfy9bnz8yULqFGXVh8YVUmePR5oKqZMkmx98pJA6v7ny0ELqTH7jrwup85umVxdSZ82GroXUaTzmsULqJEn9kMGF1Km++GIhdSrduxdSZ+PTywqpU5iCeqKkfH2RngheWVF9kZ5o24rqiZLi+iI90bYV1RMlxfVFu2NPtHHz+sxddkWamprSp0+fAma1dY64AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJVTf0RPY1az64WtT16tbm2o0HvNYMZNZ8MtCyhSV3i4/a3xBlZIBM+YVVgt2J/2vKO5vY/N/v7mQOhsfX1xInbLpN39ZIXV+9+EhhdRJkmEPFlOn2/KGQur8YsmbCqkz9IvF7NfP/WMxn0OrP/XqQuokyWu+XMy2PfGVcYXU2f9fniykTtPP9i+kTtl6oqR8fZGeCF5ZUX2RnmjbiuqJkuL6Ij3RthXVEyXF9UW7a0/UHhxxBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJRQpVqtVjt6EruCVatWpbGxMQec+aXUdeve0dNJkgy6ZF5HT6HTWPL58YXUGfpFv7POqn7I4ELqPP03+xZSJ0kGzChmf6zfb59C6mx8/MlC6myYNLqQOg233V9InS49ehRSp0ib164tpM5j3xxTSJ29ZxfTijx9eF0hdfb95PxC6iTJb648tJA6DX+uL6TOxldtLqRO798V829dFD1R+9ET0VZF9URJcX2RnmjbiuqJkvL1RXqi7SuqL9ode6LNa1/MkvM+l6ampvTp06eAWW2dI+4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlJDgDgAAAABKSHAHAAAAACUkuAMAAACAEhLcAQAAAEAJCe4AAAAAoIQEdwAAAABQQoI7AAAAACghwR0AAAAAlFCHBnfTp0/PoYcemt69e2fAgAE59thj8+ijjzYbU61Wc+GFF2bIkCHp0aNH3v72t+fXv/51szHr1q3LWWedlT333DO9evXK1KlTs3Tp0mZjVq5cmWnTpqWxsTGNjY2ZNm1annvuuZ29iQAAAADQKh0a3N11110544wzsmDBgsyZMycbN27MpEmT8sILL9TGfPWrX80ll1ySyy67LPfdd18GDRqUo446Ks8//3xtzLnnnpubbrops2bNyt13353Vq1dnypQp2bRpU23MCSeckEWLFmX27NmZPXt2Fi1alGnTprXr9gIAAADAjqrvyB8+e/bsZs+vvvrqDBgwIAsXLszb3va2VKvVfP3rX89nPvOZvO9970uSfPe7383AgQNz/fXX57TTTktTU1OuuuqqXHvttZk4cWKSZObMmRk6dGjmzp2byZMnZ/HixZk9e3YWLFiQMWPGJEmuvPLKjBs3Lo8++miGDx/evhsOAAAAANtRqmvcNTU1JUn69euXJHniiSeyfPnyTJo0qTamW7duOeKIIzJv3rwkycKFC7Nhw4ZmY4YMGZIRI0bUxsyfPz+NjY210C5Jxo4dm8bGxtqYl1u3bl1WrVrV7AEAAAAA7aU0wV21Ws3HP/7xHH744RkxYkSSZPny5UmSgQMHNhs7cODA2rrly5ena9eu6du37zbHDBgwYIufOWDAgNqYl5s+fXrteniNjY0ZOnRo2zYQAAAAAFqgNMHdmWeemV/96lf5/ve/v8W6SqXS7Hm1Wt1i2cu9fMzWxm+rzgUXXJCmpqbaY8mSJTuyGQAAAABQiFIEd2eddVZuvvnm3HHHHdlrr71qywcNGpQkWxwVt2LFitpReIMGDcr69euzcuXKbY555plntvi5zz777BZH872kW7du6dOnT7MHAAAAALSXDg3uqtVqzjzzzNx44425/fbbs++++zZbv++++2bQoEGZM2dObdn69etz1113Zfz48UmSUaNGpaGhodmYZcuW5eGHH66NGTduXJqamnLvvffWxtxzzz1pamqqjQEAAACAMunQu8qeccYZuf766/Mf//Ef6d27d+3IusbGxvTo0SOVSiXnnntuvvSlL2X//ffP/vvvny996Uvp2bNnTjjhhNrYk08+Oeedd1769++ffv365fzzz8/IkSNrd5k94IADcvTRR+eUU07JFVdckSQ59dRTM2XKFHeUBQAAAKCUOjS4+/a3v50kefvb395s+dVXX52TTjopSfIP//APWbt2bf7+7/8+K1euzJgxY3Lbbbeld+/etfGXXnpp6uvrc/zxx2ft2rWZMGFCrrnmmtTV1dXGXHfddTn77LNrd5+dOnVqLrvssp27gQAAAADQSh0a3FWr1e2OqVQqufDCC3PhhRe+4pju3btnxowZmTFjxiuO6devX2bOnNmaaQIAAABAuyvFzSkAAAAAgOYq1R057I2sWrUqjY2Ned2nvpS6bt3bVGvYPz1YyJyWnHNIIXUGz3+xkDpd7nqgkDpJsvLD4wqp0/fq+YXU2V1tmDS6sFoNt91fWC0og1UfKuZ9qM915XsfWv7xYm7M1PBCIWWyqWsxdVaPW1tInbrf9SikTpJs7L25kDp7/2xjIXXq1hUznz8c0bZe6CVl64mS8vVFeqL2U1RfpCdid1NUT5SUry/SE21fUX3R7tgTbdz4Yn5x9xfT1NSUPn36FDCrrXPEHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKFKtVqtdvQkdgWrVq1KY2NjJvQ9MfVdurap1hPf2auQOe193EOF1ClKlx49Cqu1ee3awmpBGax792GF1Ol2y72F1Cmj+iGDC6nz7OR9Cqmzrm+lkDrPv3ZTIXWSpNp1cyF1Xn/KfYXUqTvg9YXU+ePY/oXUWbVfMb+zTa8t32dQ413FfMZuPGZlIXWGfHh5IXV2154oKa4v0hOxuymqJ0p2375od+2JkuL6Ij3RthXVEyXl64vK1BNtWrMuj3zwq2lqakqfPn0KmNXWOeIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKKH6jp7ArqbPv3dJQ6+25Z11t/QuZC51/foWUqe69sVC6mw87IBC6iRJl7seKKbQ2DcWUmZzt7pC6hS2Xbuzgn5n9SuaCqmz8fEnC6nT7ZZ7C6lTpJUfHldInb5Xzy+kzsanlxVSZ88FxbzHblr8m2LqfGp8IXWS5JgP3FdInVs/XsycBl0yr5A6fRcXUibFfCoWa3lB/9avenpjIXXW/HiPQuo03rKikDpl64mS8vVFeqJOTE/UbvRE21ZUT5QU1xfpibZTp5gyhdode6JN64vpGbbHEXcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCEBHcAAAAAUEKCOwAAAAAoIcEdAAAAAJSQ4A4AAAAASkhwBwAAAAAlJLgDAAAAgBIS3AEAAABACQnuAAAAAKCE6jt6Arua+3+3d7r06N6mGr3XFzOXTX9eWUyhgjQ89ERhtTYVVKeuaW0xhRb/ppg6JbP5iDcXVqvLXQ8UU2jBLwsps7GQKsWp32+fQupsfPzJQuokSd+r5xdWq0w2Nfbo6Ck085o7Xyis1i+/vLmQOv0nFfNB9Ng1owqp029+t0LqrBlYSJnsc9niYgolGXTJvELqPPbNMYXU2ef1TxdS557H9imkzu7aEyXF9UV6ovZTVF+kJ9q2onqipLi+SE/Uforqi/RE21ZUT5QU1xftjj3RxhfWJTMLmMx2OOIOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBC9a150ZIlS/Lkk09mzZo1efWrX52DDjoo3bp1K3puAAAAANBp7XBw99RTT+Xyyy/P97///SxZsiTVarW2rmvXrnnrW9+aU089NX/zN3+TLl123wP5XnvVxtTXb2xTjfoVfypkLm2bxf9a8vnxhdQZ+sV5hdRJklUfGldInT7XzS+kzgvHjS2kTq8fLiikTlG63PVAYbU2H/HmQuoUOacy2fj4kx09hc5jwS8LKVPXr28hdSormgqpkyTPfriY98a+i9cUUqf7470KqfPngzcVUqcom/68srBahb03bqgUUufpBa8ppM7+P32hkDpl64mS8vVFeqL2U1QPoifaNj1ROypZT5QU1xfpidpPUX3R7tgTbXrxxQJmsn07lLCdc845GTlyZB577LF88YtfzK9//es0NTVl/fr1Wb58eX72s5/l8MMPz+c+97kcfPDBue+++3b2vAEAAABgt7ZDR9x17do1v/vd7/LqV796i3UDBgzIO97xjrzjHe/IF77whfzsZz/LU089lUMPPbTwyQIAAABAZ7FDwd0//dM/7XDBY445ptWTAQAAAAD+osUXo1u7dm3WrPnf88CfeuqpfP3rX8+tt95a6MQAAAAAoDNrcXD3nve8J9/73veSJM8991zGjBmTr33tazn22GPz7W9/u/AJAgAAAEBn1OLg7oEHHshb3/rWJMkPf/jDDBw4ME899VS+973v5Rvf+EbhEwQAAACAzqjFwd2aNWvSu3fvJMltt92W973vfenSpUvGjh2bp556qvAJAgAAAEBn1OLg7nWve11+/OMfZ8mSJbn11lszadKkJMmKFSvSp0+fwicIAAAAAJ1Ri4O7z3/+8zn//POzzz77ZMyYMRk3blySvxx9d8ghhxQ+QQAAAADojOpb+oLjjjsuhx9+eJYtW5Y3vvGNteUTJkzIe9/73kInBwAAAACdVYuDuyQZNGhQBg0a1GzZYYcdVsiEAAAAAIAdPFX29NNPz5IlS3ao4A9+8INcd911bZoUAAAAAHR2O3TE3atf/eqMGDEi48ePz9SpUzN69OgMGTIk3bt3z8qVK/PII4/k7rvvzqxZs/Ka17wm3/nOd3b2vAEAAABgt7ZDwd0//uM/5qyzzspVV12Vyy+/PA8//HCz9b17987EiRPzr//6r7W7zAIAAAAArbfD17gbMGBALrjgglxwwQV57rnn8tRTT2Xt2rXZc88989rXvjaVSmVnzhMAAAAAOpVW3Zxijz32yB577FHwVAAAAACAl+zQzSkAAAAAgPYluAMAAACAEhLcAQAAAEAJCe4AAAAAoIRaFdxt3Lgxc+fOzRVXXJHnn38+SfL0009n9erVLarzi1/8Iu9+97szZMiQVCqV/PjHP262/qSTTkqlUmn2GDt2bLMx69aty1lnnZU999wzvXr1ytSpU7N06dJmY1auXJlp06alsbExjY2NmTZtWp577rkWbzcAAAAAtJcWB3dPPfVURo4cmfe85z0544wz8uyzzyZJvvrVr+b8889vUa0XXnghb3zjG3PZZZe94pijjz46y5Ytqz1+9rOfNVt/7rnn5qabbsqsWbNy9913Z/Xq1ZkyZUo2bdpUG3PCCSdk0aJFmT17dmbPnp1FixZl2rRpLZorAAAAALSn+pa+4Jxzzsno0aPzy1/+Mv37968tf+9735uPfvSjLar1zne+M+985zu3OaZbt24ZNGjQVtc1NTXlqquuyrXXXpuJEycmSWbOnJmhQ4dm7ty5mTx5chYvXpzZs2dnwYIFGTNmTJLkyiuvzLhx4/Loo49m+PDhLZozAAAAALSHFh9xd/fdd+ezn/1sunbt2mz5sGHD8oc//KGwib3kzjvvzIABA/L6178+p5xySlasWFFbt3DhwmzYsCGTJk2qLRsyZEhGjBiRefPmJUnmz5+fxsbGWmiXJGPHjk1jY2NtzNasW7cuq1atavYAAAAAgPbS4iPuNm/e3Ow01JcsXbo0vXv3LmRSL3nnO9+Z97///Rk2bFieeOKJfO5zn8s73vGOLFy4MN26dcvy5cvTtWvX9O3bt9nrBg4cmOXLlydJli9fngEDBmxRe8CAAbUxWzN9+vRcdNFFWyx/4TU9Ut/QvU3b1ec3v2/T62tzOW7s9gftgM0NhZQp1B6PNBVSZ3MhVZJeP1xQUKXdV5e7HujoKUCSpH7I4ELqbHx6WSF18ueVxdRJUjeumG1beUDPQuoM/eIrfwHWEn86bXwhdTb0KqRMobpfVMx+VHl662cftFSfX7ath3nJC3v1KKRO2XqipHx9kZ5o16MnoixK1xMlhfVFeqJt0xNtXxE90ab11QJmsn0tPuLuqKOOyte//vXa80qlktWrV+cLX/hCjjnmmCLnlg984AN517velREjRuTd7353/vM//zO/+c1v8tOf/nSbr6tWq6lUKs3muL0xL3fBBRekqamp9liyZEnrNwQAAAAAWqjFR9xdeumlOfLII3PggQfmxRdfzAknnJDHHnsse+65Z77//e/vjDnWDB48OMOGDctjjz2WJBk0aFDWr1+flStXNjvqbsWKFRk/fnxtzDPPPLNFrWeffTYDBw58xZ/VrVu3dOvWreAtAAAAAIAd0+Ij7oYMGZJFixbl/PPPz2mnnZZDDjkkX/7yl/Pggw9u9ZTUIv3pT3/KkiVLMnjwXw6LHTVqVBoaGjJnzpzamGXLluXhhx+uBXfjxo1LU1NT7r333tqYe+65J01NTbUxAAAAAFA2LT7iLkl69OiRj3zkI/nIRz7Sph++evXq/Pa3v609f+KJJ7Jo0aL069cv/fr1y4UXXpi/+Zu/yeDBg/Pkk0/m05/+dPbcc8+8973vTZI0Njbm5JNPznnnnZf+/funX79+Of/88zNy5MjaXWYPOOCAHH300TnllFNyxRVXJElOPfXUTJkyxR1lAQAAACitVgV3f/jDH/L//t//y4oVK7J5c/NL3Z599tk7XOf+++/PkUceWXv+8Y9/PEly4okn5tvf/nYeeuihfO9738tzzz2XwYMH58gjj8wPfvCDZjfBuPTSS1NfX5/jjz8+a9euzYQJE3LNNdekrq6uNua6667L2WefXbv77NSpU3PZZZe1ZtMBAAAAoF20OLi7+uqrc/rpp6dr167p37//FjeBaElw9/a3vz3V6ivfhePWW2/dbo3u3btnxowZmTFjxiuO6devX2bOnLnD8wIAAACAjtbi4O7zn/98Pv/5z+eCCy5Ily4tvkQeAAAAALADWpy8rVmzJh/84AeFdgAAAACwE7U4fTv55JNzww037Iy5AAAAAAD/o8Wnyk6fPj1TpkzJ7NmzM3LkyDQ0NDRbf8kllxQ2OQAAAADorFoc3H3pS1/KrbfemuHDhyfJFjenAAAAAADarsXB3SWXXJJ/+7d/y0knnbQTpgMAAAAAJK24xl23bt3ylre8ZWfMBQAAAAD4Hy0O7s4555zMmDFjZ8wFAAAAAPgfLT5V9t57783tt9+en/zkJznooIO2uDnFjTfeWNjkAAAAAKCzanFwt8cee+R973vfzpgLAAAAAPA/WhzcXX311TtjHgAAAADAX2nxNe4AAAAAgJ1vh464e/Ob35yf//zn6du3bw455JBUKpVXHPvAAw8UNjkAAAAA6Kx2KLh7z3vek27duiVJjj322J05HwAAAAAgOxjcfeELX8hHPvKR/Mu//Eu+8IUv7Ow5AQAAAECnt8PXuPvud7+btWvX7sy5AAAAAAD/Y4eDu2q1ujPnAQAAAAD8lRbdVXZbN6UAAAAAAIqzQ9e4e8nrX//67YZ3f/7zn9s0obJrvGdJ6rt0bVONp049oJC5vObL8wqp0/unPQqpkx4F1Umy+cFHCqnT5ZADC6lT1HygTLoU9De7uWSXUdj49LKOnsJOU/3QHwups/K5VxVSp+/VhZRJ/yuK+Tz7/Q9HFlJnyavGF1InSf5uwE8LqbPs+/sWUudVf1hfSJ0eD/+hkDpl64mS8vVFeiLY+fREux490bYV1RMlxfVFu2NPtHHjhgJmsn0tCu4uuuiiNDY27qy5AAAAAAD/o0XB3Qc/+MEMGDBgZ80FAAAAAPgfO3yNO9e3AwAAAID2466yAAAAAFBCO3yq7ObNm3fmPAAAAACAv7LDR9wBAAAAAO1HcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcAAAAAJSS4AwAAAIASEtwBAAAAQAkJ7gAAAACghAR3AAAAAFBCgjsAAAAAKCHBHQAAAACUkOAOAAAAAEpIcAcA/397dx/ddXnfDfwTSEgCkggiBCwgKMXHOkXLQ63o4UF8QNvO2c6WI61uzk690Tpr67bSbtPO06obtK71dtLVqm0VbE+1iB4VdYgVxHYqVSs4tEKpLSQSw2O+9x+9/R3DQyLkMrkgr9c5+SO/35U315dcfPPxnZ8JAABAhso7ewN7m6YjBkZ5eVW7MhoP2ZJkL83jj0uSEwufSRKzZfLxSXIiIv5wVI8kOQfNWZ4kh66re98+SXK2/XFdkpxU+4lIt6fy4QcnyVn5mUFJcgZ/bVGSnO6HfzBJzuqJ/ZLkRES89VJzkpwPfu3FJDkbHxyaJKfqssokOWW/6p0k5+DZ6b523BxnJMmp6JUkJioWLEmS05Toa352M1FEdnORmYhc5DYTReS3JzNR21LNRWai1qWaiSLSzUX74kxUVqSZY9riFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGyjt7A3ubk/55cVTtV9GujLvuOCXRbrYlSel++AfT5LzWkCQnIuKAqEmWlZNUf9fblr+UJIe2bfvjus7eQgsp99N4zpgkOW8NSfM9oMFfW5QkZ8UdxybJGTyne5Kc/rPSXFdERP9EOcWxRyTJqb7o7SQ5v5vUL0lOqjNUNmhgkpyIiK29iiQ5g7/2ZJKcVP/up/zjwiQ5uc1EEfnNRWaitpmLOkZuM1FEuj2ZiVqXaiaKSDcXmYlal+oMRaSbi/bFmWjrlo0R9/4kwW5a5xV3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABkqK4qi6OxN7A0aGhqitrY2To6zo7ysorO3ExERL91yQpKcYT9OcwQqFixJkgPsXRrPGZMkp9fdi5PkpPK7nxyeJGfA2cuT5ERErLliXJKc3quak+RsmFafJOegy5uS5Pxhdpqvz7Wnv5wkJyLillVPJMmZ8n+vSpJT+0qar/k1P3gySU4qqWaiCHMRsOfMRG1LNReZiVqXaiaKSDcX7Ysz0bbNG2Ppj66J+vr6qKmpSbCrnfOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIENlRVEUnb2JvUFDQ0PU1tbGn33mX6J7j6p2ZfW57clEu0qjW3V1kpyygwcnyYmI2FabZk+x+JdpcjLT8OmxSXJqfpDXWUypfPjBSXKKyh5JcrYtfylJDu/BmGOSxJSvWpskZ+sbq5PkZCnR3/Wacb2S5Aw5a2WSnObPVSbJiYh4/WODkuQ0DUgzrh0y89kkOX/41J8lycltJorIby4yE7XNXNQ6M1EXltlMFLEPz0X76EwUkW4u2hdnoq3F5ni46YdRX18fNTU17d/ULnjFHQAAAABkSHEHAAAAABlS3AEAAABAhjq1uHvsscdi6tSpMWjQoCgrK4t77723xfNFUcTMmTNj0KBBUV1dHSeffHI8//zzLdZs2rQpLr300ujXr1/06tUrzjrrrHj99ddbrFm3bl1MmzYtamtro7a2NqZNmxbr169/n68OAAAAAPZcpxZ3jY2Nccwxx8Ts2bN3+vz1118fN9xwQ8yePTuefvrpqKuri0mTJsVbb71VWjNjxoyYN29e3HXXXfHEE0/Ehg0b4swzz4xt27aV1px33nnx7LPPxvz582P+/Pnx7LPPxrRp09736wMAAACAPVXemX/4aaedFqeddtpOnyuKIm666aa45ppr4hOf+ERERHzve9+LAQMGxB133BEXXXRR1NfXx6233hrf//73Y+LEiRERcfvtt8fgwYPjoYceilNPPTWWL18e8+fPj8WLF8fo0aMjIuKWW26JsWPHxosvvhgjR47smIsFAAAAgN2Q7c+4W7lyZaxZsyYmT55ceqyysjLGjx8fixYtioiIpUuXxpYtW1qsGTRoUBx11FGlNU8++WTU1taWSruIiDFjxkRtbW1pzc5s2rQpGhoaWrwBAAAAQEfJtrhbs2ZNREQMGDCgxeMDBgwoPbdmzZro0aNH9OnTp9U1/fv33yG/f//+pTU7c91115V+Jl5tbW0MHjy4XdcDAAAAALsj2+LuHWVlZS3eL4pih8e2t/2ana1vK+dLX/pS1NfXl95ee+213dw5AAAAAOy5bIu7urq6iIgdXhW3du3a0qvw6urqYvPmzbFu3bpW1/zud7/bIf/3v//9Dq/me7fKysqoqalp8QYAAAAAHSXb4m7YsGFRV1cXDz74YOmxzZs3x8KFC2PcuHERETFq1KioqKhosWb16tXx3HPPldaMHTs26uvr4xe/+EVpzVNPPRX19fWlNQAAAACQm079rbIbNmyI3/zmN6X3V65cGc8++2z07ds3hgwZEjNmzIhrr702RowYESNGjIhrr702evbsGeedd15ERNTW1sYFF1wQX/jCF+KAAw6Ivn37xpVXXhlHH3106bfMHn744TFlypT4q7/6q/jOd74TERF//dd/HWeeeabfKAsAAABAtjq1uFuyZEmccsoppfevuOKKiIg4//zzY86cOXHVVVdFU1NTfP7zn49169bF6NGjY8GCBdG7d+/Sx9x4441RXl4e5557bjQ1NcWECRNizpw50b1799KaH/zgB3HZZZeVfvvsWWedFbNnz+6gqwQAAACA3depxd3JJ58cRVHs8vmysrKYOXNmzJw5c5drqqqqYtasWTFr1qxdrunbt2/cfvvt7dkqAAAAAHSobH/GHQAAAAB0ZYo7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyFBZURRFZ29ib9DQ0BC1tbVxcpwd5WUVnb2diIjoVl2dJGfrhw9PktNt4TNJciIiXv7W6CQ5I/72qSQ5+6ryQQOTZW19Y3WyLHZty+Tjk2VVLFiSJKd5/HFJclLdQ3579bgkOYMfWJ8kZ/0RtUlyIiLeHlCWJOegn7+ZJKes/q0kOb+9ef8kORt/1SdJTtnhaa4rImL4ZWn+rn9/6sFJcrbsl+YM9Z+1KElOKqlmooj85iIzUcdJNReZiTpOqrnITNS6VDNRRLq5yEzUulQzUUS6uWhfnIm2bdoYz3/ny1FfXx81NTUJdrVzXnEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkKHyzt5AV9T98A8myVk9sV+SnP6zFiXJaR5/XJKciIi+v+qeLItd2/rG6s7eQpexZfLxSXIqFixJkhMR0b1vnzRBC59Jk5PIQY82JslpXvZCkpyaZUliIiJi/2OPSBeWQFHbO03OwjRnccRZK5PkbD453b1xa6KcX/zL/CQ5w+67MElO/yQp+c1EEfnNRWaijmMu6hipZqKIdHORmah1qWaiiHRzkZmodalmooh0c9G+OBM1N21JsJO2ecUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQofLO3sDe5vcXjY7ulVXtyui1ujnJXvrPWpQkp/GcMUly1h+argce+qM3kuQ0TT4+SU7VkleS5Gz747okOeWDBibJ2frG6iQ5OepWXZ0kp7mpKUlOxYIlSXJSSnUeU91Det29OElO95dWJcn59ZxRSXJGTF+aJCci4pVP1SbJ+cBxae6xm7+T5l70F9MfSZJzzy2nJMkZNLwySU5ExNUP/SRJzhnHT0mSc8DUiiQ5ay8dlyQnt5koIr+5yEzUNnNR68xEbTMTtS7VTBSRbi4yE7Uu1UwUkW4u2hdnom2bt8XrCfbSFq+4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMhQWVEURWdvYm/Q0NAQtbW1Mfg/vhLdqqvalTVi+tIke3p5zqgkOVUrKpPkbBywLUlORMQhP9qSJKfbwmeS5AB7jzVXjEuSc9Cc5UlyXr3k8CQ5ERHNFWlyhl27LEnO0IVlSXJWfvjtJDmppDpDERHVE3+fJOfAnhuS5Kz66bAkOW99aFOSnNxmooj85iIzEbCncpuJItLNRWaijpPqHO2LM9G2TRtj+ewvR319fdTU1CTY1c55xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJCh8s7ewN6mbn5FlFdUdPY2IiJixPSlSXIaPj02SU7P33VPkhMR0W3hU8myoD269+2TJGfbH9clyelWXZ0kJyKiuakpWVZO6hY1Jsn5zRcPS5LT/+nmJDkppfrcr7zsmCQ5r9yU5lwf+HRZkpy6GxYlyYmIiBvSxCy/aUySnEMSXVvvc9LsJ5VUM1FEfnORmYhc5DYTRaSbi8xErUs1E0XkNxeZidqWbC7aB2eircWWWJ5gL23xijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADGVd3M2cOTPKyspavNXV1ZWeL4oiZs6cGYMGDYrq6uo4+eST4/nnn2+RsWnTprj00kujX79+0atXrzjrrLPi9ddf7+hLAQAAAIDdknVxFxFx5JFHxurVq0tv//M//1N67vrrr48bbrghZs+eHU8//XTU1dXFpEmT4q233iqtmTFjRsybNy/uuuuueOKJJ2LDhg1x5plnxrZt2zrjcgAAAADgPSnv7A20pby8vMWr7N5RFEXcdNNNcc0118QnPvGJiIj43ve+FwMGDIg77rgjLrrooqivr49bb701vv/978fEiRMjIuL222+PwYMHx0MPPRSnnnpqh14LAAAAALxX2b/i7uWXX45BgwbFsGHD4lOf+lSsWLEiIiJWrlwZa9asicmTJ5fWVlZWxvjx42PRokUREbF06dLYsmVLizWDBg2Ko446qrRmVzZt2hQNDQ0t3gAAAACgo2Rd3I0ePTr+67/+Kx544IG45ZZbYs2aNTFu3Lj4wx/+EGvWrImIiAEDBrT4mAEDBpSeW7NmTfTo0SP69OmzyzW7ct1110VtbW3pbfDgwQmvDAAAAABal3Vxd9ppp8Wf//mfx9FHHx0TJ06M++67LyL+9L/EvqOsrKzFxxRFscNj23sva770pS9FfX196e21117bw6sAAAAAgN2XdXG3vV69esXRRx8dL7/8cunn3m3/yrm1a9eWXoVXV1cXmzdvjnXr1u1yza5UVlZGTU1NizcAAAAA6Ch7VXG3adOmWL58eQwcODCGDRsWdXV18eCDD5ae37x5cyxcuDDGjRsXERGjRo2KioqKFmtWr14dzz33XGkNAAAAAOQo698qe+WVV8bUqVNjyJAhsXbt2vjnf/7naGhoiPPPPz/KyspixowZce2118aIESNixIgRce2110bPnj3jvPPOi4iI2trauOCCC+ILX/hCHHDAAdG3b9+48sorS//rLQAAAADkKuvi7vXXX4+//Mu/jDfffDMOPPDAGDNmTCxevDiGDh0aERFXXXVVNDU1xec///lYt25djB49OhYsWBC9e/cuZdx4441RXl4e5557bjQ1NcWECRNizpw50b179866LAAAAABoU9bF3V133dXq82VlZTFz5syYOXPmLtdUVVXFrFmzYtasWYl3BwAAAADvn73qZ9wBAAAAQFehuAMAAACADGX9v8rm6O0B3aJ7Zfv6zm2fHptkLzU/eDJJTp+f/zpJzquXHJ4kJyLigGRJefnt1Wl+m/FBX1+UJIe2bfvjus7eQgvNTU2dvYXsrRnXK0nOsC+m+XfWvW+fJDkR6c5j8/jjkuR0W/hMkpzyM9LcG2t+kOZz1q26OklORMT6T/xZkpxDZqT5mp/qc984MM33fnObiSLym4vMRG0zF3WM3GaiCHNRW3KbiSLSzUVmotalmoki0s1F++JM1Lx1Y8QTP0mwm9Z5xR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhsqKoig6exN7g4aGhqitrY0Pfe7a6N6jql1Z/+eKHyfZ0+0jD0qS03jOmCQ5bw1J1wNXrktzLPvc9mSSHNrWrbo6SU5zU1OSHLquVGfxjYuPTZJTd8OiJDkREfX3j0iSU3v6y0lyXrkpzdePQ2YsTpLz8rdGJ8k5+CfbkuRERFQsWJIkZ9XdRyfJ2fJ6ryQ5+y9P8zU/t5koIr+5yEy09zETkYvcZqKIdHORmah1qWaiiHRz0b44EzVv3Bj/+8W/j/r6+qipqUmwq53zijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBD5Z29gb3N/i9tjPJ2/q3ddcrxaTYTq5Ok1D6zJklOr7tfTZITEdE8/rgkOd0P/2CSnG3LX0qS89ItJyTJ+eBfPZ0kJ6XmpqbO3gKd5A8XjUuSc8AvG5PkNC/+ZZKcukVp9rPmijR/PxERg65ZnySnOUlKRNWaNN//a/j02CQ5Q+ZvS5JT0bAlSU5ERLdjj0iSs2lDjyQ5PRN9zvr8emOSnNxmooj85iIzUdtym4vMRF2XmahtqeYiM1HrUs1EEenmon1xJtq2qWNeC+cVdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIbKO3sDe5s3TqyK7pVV7croNnZYkr0MfqBPkpyty15IkpNSt4XPJMlZe9G4JDkHLH8pSc7hN9QnydmWJAXSOOCXjUlyGj9QnSSnevxxSXJ6vPbHJDkRvRLlRBz9n79OkvPceR9MkrPfSb9PkvO7lX2T5HTvsyVJTq9em5PkRER84bCHkuR8bemZSXK2JjqOvx3fvlnoHbnNRBH5zUVmoraZi8iFmei9SPOFyEzUulQzUUS6uWhfnIm2dW9/xnvhFXcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGSrv7A3sbfZ7vYjuPYp2ZVx69d1J9nLXjz6SJKc5SUrEKzeNSZQUcciMxUlyNvZJEpPMtuUvJclZc8W4JDl1NyxKkkPbNk39cJKcXs+vTZITEbF1xatJcn57cq8kOQd9Pa/z2FxdnSSncUhdkpyIiCVvDk6SU5HoXrR25egkOYf9Q5r9rP704Uly6v7vr5PkRETc3nRQkpzhsSxJzstzRiXJ6bewR5Kc3GaiiPzmIjNR28xFe5dUM1FEurnITNS6VDNRRLq5yEzUulQzUUS6uWhfnImamzYl2EnbvOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEOKOwAAAADIkOIOAAAAADKkuAMAAACADCnuAAAAACBDijsAAAAAyJDiDgAAAAAypLgDAAAAgAwp7gAAAAAgQ4o7AAAAAMiQ4g4AAAAAMqS4AwAAAIAMKe4AAAAAIEPlnb2BvUVRFBERsW3zxnZnNW3Y2u6MiIitzZvS5BRbkuQ0b2z/3807Uu1p26Y0e0q1n1T21eval23dkuhzlujffYR/Z23pVnRPkpP03tiY5vNfluq+35TqXG9OkpPuLKbZT0REc2bnOtXnbNvm5iQ5uc1EEfnNRe7VbduXr21flGomisjvv4f21bOYaiaKSHhvNBO1KtVZjEg3F+2LM1Fz05/O4Tt90fulrHi//4R9xIoVK+KQQw7p7G0AAAAAkIlXXnklhg8f/r7le8Xde9S3b9+IiFi1alXU1tZ28m7YGzU0NMTgwYPjtddei5qams7eDnshZ4gUnCPayxmivZwhUnCOaC9niPaqr6+PIUOGlPqi94vi7j3q1u1PPw6wtrbWP2rapaamxhmiXZwhUnCOaC9niPZyhkjBOaK9nCHa652+6H3Lf1/TAQAAAIA9orgDAAAAgAwp7t6jysrK+MpXvhKVlZWdvRX2Us4Q7eUMkYJzRHs5Q7SXM0QKzhHt5QzRXh11hvxWWQAAAADIkFfcAQAAAECGFHcAAAAAkCHFHQAAAABkSHEHAAAAABnqssXdt7/97Rg2bFhUVVXFqFGj4vHHH291/cKFC2PUqFFRVVUVw4cPj//4j//YYc0999wTRxxxRFRWVsYRRxwR8+bNe7+2TwZ25wzNnTs3Jk2aFAceeGDU1NTE2LFj44EHHmixZs6cOVFWVrbD28aNG9/vS6ET7c45evTRR3d6Rn7961+3WOde1LXszhmaPn36Ts/QkUceWVrjXtS1PPbYYzF16tQYNGhQlJWVxb333tvmx5iJeLfdPUNmInZmd8+RmYjt7e4ZMhOxveuuuy5OOOGE6N27d/Tv3z8+9rGPxYsvvtjmx3XEXNQli7sf/vCHMWPGjLjmmmti2bJl8dGPfjROO+20WLVq1U7Xr1y5Mk4//fT46Ec/GsuWLYsvf/nLcdlll8U999xTWvPkk0/GJz/5yZg2bVr88pe/jGnTpsW5554bTz31VEddFh1od8/QY489FpMmTYr7778/li5dGqecckpMnTo1li1b1mJdTU1NrF69usVbVVVVR1wSnWB3z9E7XnzxxRZnZMSIEaXn3Iu6lt09Q//2b//W4uy89tpr0bdv3/iLv/iLFuvci7qOxsbGOOaYY2L27Nnvab2ZiO3t7hkyE7Ezu3uO3mEm4h27e4bMRGxv4cKF8bd/+7exePHiePDBB2Pr1q0xefLkaGxs3OXHdNhcVHRBH/7wh4u/+Zu/afHYYYcdVlx99dU7XX/VVVcVhx12WIvHLrroomLMmDGl988999xiypQpLdaceuqpxac+9alEuyYnu3uGduaII44ovvrVr5bev+2224ra2tpUW2QvsLvn6JFHHikioli3bt0uM92Lupb23ovmzZtXlJWVFa+++mrpMfeirisiinnz5rW6xkxEa97LGdoZMxHv9l7OkZmI1uzJvchMxPbWrl1bRESxcOHCXa7pqLmoy73ibvPmzbF06dKYPHlyi8cnT54cixYt2unHPPnkkzusP/XUU2PJkiWxZcuWVtfsKpO9156coe01NzfHW2+9FX379m3x+IYNG2Lo0KHxgQ98IM4888wdvvvMvqM95+jYY4+NgQMHxoQJE+KRRx5p8Zx7UdeR4l506623xsSJE2Po0KEtHncvYlfMRKRmJqI9zESkYiZie/X19RERO3x9ereOmou6XHH35ptvxrZt22LAgAEtHh8wYECsWbNmpx+zZs2ana7funVrvPnmm62u2VUme689OUPb++Y3vxmNjY1x7rnnlh477LDDYs6cOfHTn/407rzzzqiqqoqPfOQj8fLLLyfdP3nYk3M0cODA+O53vxv33HNPzJ07N0aOHBkTJkyIxx57rLTGvajraO+9aPXq1fHzn/88LrzwwhaPuxfRGjMRqZmJ2BNmIlIyE7G9oijiiiuuiBNPPDGOOuqoXa7rqLmofDf2vk8pKytr8X5RFDs81tb67R/f3Uz2bnv6+b7zzjtj5syZ8ZOf/CT69+9fenzMmDExZsyY0vsf+chH4rjjjotZs2bFv//7v6fbOFnZnXM0cuTIGDlyZOn9sWPHxmuvvRbf+MY34qSTTtqjTPZ+e/r5njNnTuy///7xsY99rMXj7kW0xUxEKmYi9pSZiJTMRGzvkksuiV/96lfxxBNPtLm2I+aiLveKu379+kX37t13aDfXrl27Qwv6jrq6up2uLy8vjwMOOKDVNbvKZO+1J2foHT/84Q/jggsuiB/96EcxceLEVtd269YtTjjhBN/R2Ue15xy925gxY1qcEfeirqM9Z6goivjP//zPmDZtWvTo0aPVte5FvJuZiFTMRKRmJmJPmInY3qWXXho//elP45FHHokPfOADra7tqLmoyxV3PXr0iFGjRsWDDz7Y4vEHH3wwxo0bt9OPGTt27A7rFyxYEMcff3xUVFS0umZXmey99uQMRfzpu8rTp0+PO+64I84444w2/5yiKOLZZ5+NgQMHtnvP5GdPz9H2li1b1uKMuBd1He05QwsXLozf/OY3ccEFF7T557gX8W5mIlIwE/F+MBOxJ8xEvKMoirjkkkti7ty58fDDD8ewYcPa/JgOm4ve86+x2IfcddddRUVFRXHrrbcWL7zwQjFjxoyiV69epd8gc/XVVxfTpk0rrV+xYkXRs2fP4vLLLy9eeOGF4tZbby0qKiqKu+++u7Tmv//7v4vu3bsXX//614vly5cXX//614vy8vJi8eLFHX59vP929wzdcccdRXl5efGtb32rWL16delt/fr1pTUzZ84s5s+fX7zyyivFsmXLis9+9rNFeXl58dRTT3X49dExdvcc3XjjjcW8efOKl156qXjuueeKq6++uoiI4p577imtcS/qWnb3DL3jM5/5TDF69OidZroXdS1vvfVWsWzZsmLZsmVFRBQ33HBDsWzZsuJ///d/i6IwE9G23T1DZiJ2ZnfPkZmI7e3uGXqHmYh3XHzxxUVtbW3x6KOPtvj69Pbbb5fWdNZc1CWLu6Ioim9961vF0KFDix49ehTHHXdci1/xe/755xfjx49vsf7RRx8tjj322KJHjx7FwQcfXNx88807ZP74xz8uRo4cWVRUVBSHHXZYiy8c7Ht25wyNHz++iIgd3s4///zSmhkzZhRDhgwpevToURx44IHF5MmTi0WLFnXgFdEZducc/eu//mtxyCGHFFVVVUWfPn2KE088sbjvvvt2yHQv6lp29+vZ+vXri+rq6uK73/3uTvPci7qWRx55pNWvT2Yi2rK7Z8hMxM7s7jkyE7G9Pfl6Zibi3XZ2fiKiuO2220prOmsuKvv/GwQAAAAAMtLlfsYdAAAAAOwNFHcAAAAAkCHFHQAAAABkSHEHAAAAABlS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwDQxT366KNRVlYW69ev7+ytAADwLoo7AIAuYPr06VFWVhZlZWVRUVERw4cPjyuvvDIaGxs7e2sAAOxCeWdvAACAjjFlypS47bbbYsuWLfH444/HhRdeGI2NjfHJT36ys7cGAMBOeMUdAEAXUVlZGXV1dTF48OA477zz4tOf/nTce++9peeXLl0axx9/fPTs2TPGjRsXL774Yum5V155Jc4+++wYMGBA7LfffnHCCSfEQw891CL/29/+dowYMSKqqqpiwIABcc4555SeK4oirr/++hg+fHhUV1fHMcccE3fffff7fs0AAHszxR0AQBdVXV0dW7ZsKb1/zTXXxDe/+c1YsmRJlJeXx+c+97nScxs2bIjTTz89HnrooVi2bFmceuqpMXXq1Fi1alVERCxZsiQuu+yy+NrXvhYvvvhizJ8/P0466aTSx//93/993HbbbXHzzTfH888/H5dffnl85jOfiYULF3bcBQMA7GXKiqIoOnsTAAC8v6ZPnx7r168vvcLuF7/4RZx++ukxYcKEuPjii+OUU06Jhx56KCZMmBAREffff3+cccYZ0dTUFFVVVTvNPPLII+Piiy+OSy65JObOnRuf/exn4/XXX4/evXu3WNfY2Bj9+vWLhx9+OMaOHVt6/MILL4y333477rjjjvfnogEA9nJ+xh0AQBfxs5/9LPbbb7/YunVrbNmyJc4+++yYNWtWvPDCCxER8aEPfai0duDAgRERsXbt2hgyZEg0NjbGV7/61fjZz34Wb7zxRmzdujWamppKr7ibNGlSDB06NIYPHx5TpkyJKVOmxMc//vHo2bNnvPDCC7Fx48aYNGlSi/1s3rw5jj322A66egCAvY/iDgCgizjllFPi5ptvjoqKihg0aFBUVFRERJSKu3fej4goKyuLiIjm5uaIiPi7v/u7eOCBB+Ib3/hGHHrooVFdXR3nnHNObN68OSIievfuHc8880w8+uijsWDBgvjHf/zHmDlzZjz99NOljPvuuy8OOuigFnuqrKx8fy8aAGAvprgDAOgievXqFYceeugefezjjz8e06dPj49//OMR8aefeffqq6+2WFNeXh4TJ06MiRMnxle+8pXYf//94+GHH45JkyZFZWVlrFq1KsaPH9/eywAA6DIUdwAAtOnQQw+NuXPnxtSpU6OsrCz+4R/+ofRKuog//W+4K1asiJNOOin69OkT999/fzQ3N8fIkSOjd+/eceWVV8bll18ezc3NceKJJ0ZDQ0MsWrQo9ttvvzj//PM78coAAPKluAMAoE033nhjfO5zn4tx48ZFv3794otf/GI0NDSUnt9///1j7ty5MXPmzNi4cWOMGDEi7rzzzjjyyCMjIuKf/umfon///nHdddfFihUrYv/994/jjjsuvvzlL3fWJQEAZM9vlQUAAACADHXr7A0AAAAAADtS3AEAAABAhhR3AAAAAJAhxR0AAAAAZEhxBwAAAAAZUtwBAAAAQIYUdwAAAACQIcUdAAAAAGRIcQcAAAAAGVLcAQAAAECGFHcAAAAAkCHFHQAAAABk6P8B9lixg7hZNuMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.pulse.search import phaseogram, plot_phaseogram, plot_profile\n", + "from matplotlib.gridspec import GridSpec\n", + "\n", + "# Calculate the phaseogram\n", + "phaseogr, phases, times, additional_info = \\\n", + " phaseogram(events.time, cand_freqs_ef[0], return_plot=True, nph=nbin, nt=32)\n", + " \n", + "# ---- PLOTTING --------\n", + "\n", + "# Plot on a grid\n", + "plt.figure(figsize=(15, 15))\n", + "gs = GridSpec(2, 1, height_ratios=(1, 3))\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "mean_phases = (phases[:-1] + phases[1:]) / 2\n", + "plot_profile(mean_phases, np.sum(phaseogr, axis=1), ax=ax0)\n", + "# Note that we can pass arguments to plt.pcolormesh, in this case vmin\n", + "_ = plot_phaseogram(phaseogr, phases, times, ax=ax1, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Examples of interactive phaseograms\n", + "\n", + "### First: shift the rows of the phaseogram interactively" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "def shift_phaseogram(phaseogr, tseg, delay_fun):\n", + " \"\"\"Shift the phaseogram rows according to an input delay function.\n", + "\n", + " Parameters\n", + " ----------\n", + " phaseogr : 2-d array\n", + " The phaseogram, as returned by ``phaseogram``\n", + " freq : float\n", + " The pulse frequency\n", + " tseg : float\n", + " The integration time for each row of the phaseogram\n", + " delay_fun : function\n", + " Function that gives the delay (in seconds) for each row of the\n", + " phaseogram\n", + "\n", + " Returns\n", + " -------\n", + " phaseogram_new : 2-d array\n", + " The shifted phaseogram\n", + "\n", + " \"\"\"\n", + " # Assume that the phaseogram is repeated twice in phase\n", + " nbin = phaseogr.shape[0] / 2\n", + " ntimes = phaseogr.shape[1]\n", + "\n", + " times = np.arange(0, tseg * ntimes, tseg)\n", + " phase_delays = delay_fun(times) # This gives the delay in units of time!\n", + "\n", + " delayed_bins = np.array(np.rint(phase_delays * nbin), dtype=int)\n", + " phaseogram_new = np.copy(phaseogr)\n", + " for i in range(ntimes):\n", + " phaseogram_new[:, i] = np.roll(phaseogram_new[:, i], \n", + " delayed_bins[i])\n", + "\n", + " return phaseogram_new\n", + "\n", + "\n", + "def interactive_phaseogram(phas, binx, biny, df=0, dfdot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(biny))\n", + " tobs = tseg * phas.shape[0]\n", + " delta_df_start = 2 / tobs\n", + " df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** df_order_of_mag\n", + "\n", + " delta_dfdot_start = 8 / tobs ** 2\n", + " dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** dfdot_order_of_mag\n", + "\n", + " pcolor = plt.pcolormesh(binx, biny, phas.T, cmap='magma')\n", + " l, = plt.plot(np.ones_like(biny), biny, zorder=10, lw=2, color='w')\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Times')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " sfreq = Slider(axfreq, 'Delta freq x$10^{}$'.format(df_order_of_mag), \n", + " -delta_df, delta_df, valinit=df)\n", + " sfdot = Slider(axfdot, 'Delta fdot x$10^{}$'.format(dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=dfdot)\n", + " spepoch = Slider(axpepoch, 'Delta pepoch', \n", + " 0, biny[-1] - biny[0], valinit=0)\n", + "\n", + " def update(val):\n", + " fdot = sfdot.val * 10 ** dfdot_order_of_mag\n", + " freq = sfreq.val * 10 ** df_order_of_mag\n", + " pepoch = spepoch.val\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " new_phaseogram = shift_phaseogram(phas, tseg, delay_fun)\n", + " pcolor.set_array(new_phaseogram.T.ravel())\n", + " l.set_xdata(1 + delay_fun(biny - biny[0]))\n", + " fig.canvas.draw_idle()\n", + "\n", + " resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " button = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " def reset(event):\n", + " sfreq.reset()\n", + " sfdot.reset()\n", + " spepoch.reset()\n", + " pcolor.set_array(phas.T.ravel())\n", + " l.set_xdata(1)\n", + "\n", + " button.on_clicked(reset)\n", + "\n", + " sfreq.on_changed(update)\n", + " sfdot.on_changed(update)\n", + " spepoch.on_changed(update)\n", + " \n", + " spepoch._dummy_reset_button_ref = button\n", + "\n", + " plt.show()\n", + " return " + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "# f0 = 0.0001\n", + "# fdot = 0\n", + "# delay_fun = lambda times: times * f0 + 0.5 * times ** 2 * fdot\n", + "\n", + "# new_phaseogr = shift_phaseogram(phaseogr, times[1] - times[0], delay_fun)\n", + "# _ = plot_phaseogram(new_phaseogr, phases, times, vmin=np.median(phaseogr))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIcCAYAAADhfaE0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB900lEQVR4nO3dd3hUVf7H8c+kTRJSSCENQhOkBRBBqQpKdylW3EURVuyCAqJrXVl3F1ZWBYUFyyJgxf0pKBYiIEURqYLSRKRISyBACCSkz/39gYxGkpMyySQzvF8+8zxmvufcOfdm5pDvnHPusVmWZQkAAAAA3MSnuhsAAAAA4MJCEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3A+B5HA6HDh8+rNDQUNlstupuDgAAqAEsy9Lp06eVkJAgH5/q+Z47JydHeXl5Lh8nICBAgYGBldAilIQkBOV2+PBhJSYmVnczANQABw4cUL169XTw4EH6BQCSfu0X3C0nJ0eNGtVVauoJl48VFxenvXv3kohUIZIQlFtoaKgkaUGHu1XLL6DYMs0apBmP8d2eOGP8irmtjPFPb9lpjEvSj6f9jfH7++42xr/bGGuM/9+BEGO8wGEZ413rOIzx7ELzt0hpuaWPQi06au6Ixzc1n0Mde04pbTB3zheFnTbGT2TbjfFCy3yOF8WkG+OS9PmeusZ4g2DzOV7x7iXGeNaERcZ40EXmbnbvl7WM8cSWJ43xwjPGsCTJP8p8Hf37mj9vZ97ZWmIsJjhIkhQdEKLFnUYXW4b+gP5Aoj+QvL8/OJ2Xr2ZvL3D+neBueXl5Sk09oX175yksLLjCxzl16owaNvqj8vLySEKqEEkIyu3cFKxafgGq5Vf8PxphAcUnJ+eUVM9ZP9TceQT7mutLUqCvuQ1hdtfaGOBj7ph8ZP6jI9i30BgvbclWoG/pQ91+NvM5lHYdQ/zM55BVUFr9XGM8t5RrXNofHaH+5t+hJAWVco61SjnH0t6LvqW814MCzd1sSAmJvPP1S3mfFhYYw5Ikf3spf3TUMr+X/QzneK4/sKnkzwz9Af3B2fr0B97eH5xT3VO1w8KCFRZmTuhQ/UhCAAAA4D0cjrMPV+qjypGEAAAAwHuQhHgEbtELAAAAwK0YCQEAAID3sKyzD1fqo8qRhAAAAMB7OCwXp2ORhLgDSQgAAAC8B2tCPAJrQgAAAAC4FSMhAAAA8B6MhHgEkhBUWFKLIyVuQpZWyu7BV/23oTH+6Q3bjHH/MozhRQaY53TmpJkPsvSIecfXpqVsCHtRSJ4xnu8wb+Z0WcxxY/y5rTHmBkjqERVtjDePSDXG39lj3iW6YS3zBmtv7TG38a+3mXepdmSZj//1V+bdjyXp9iezjPHFz5t30rZK2QDtnfUXGeNdfzbvUr3vtPmzclEdc/vtN7YwxiXpm0eOGuOdGv5sjG/fUfLvsW2+jwIk+fs71LZV8e8n+gP6A4n+QPL+/iCzwLwhpduQhHgEkhAAAAB4D8vFJMQiCXEH1oQAAAAAcCtGQgAAAOA1bJZDNhdGM1ypi7IjCQEAAID3YE2IRyAJAQAAgPdwWK5tOMhmhW7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEdgOhYAAAAAt2IkBAAAAN7DslzbcNBiYbo7kISgwk6mBqnQP6DYmJ9fobHuHb2OGOMtatuN8fwy9C0xdnOhY0dDjPHDZ8ydUGRt8+u/u8/88Qr1Nw9Ezthlbl+WTpgbIKlnYLQx/uqPscb4opN7jPG7AxoZ41fFZBnjM95rbIzf3Hy/Mb43K9AYl6TGc8zvtVax5vfqon7rjPGOUWeM8ZY35Bnj2fNyjHHfFubf0Y9Pm6+RJLW75KQxbru4hTEeEXSoxJiP7eznxFFoU3pKULFl6A/oDyT6A8n7+wO/AvP5uQ3TsTwCSQgAAAC8B7fo9QisCQEAAADgVoyEAAAAwHswHcsjkIQAAADAe1guJiGuLGpHmTEdCwAAAF7D5nC4/CiPL7/8UgMHDlRCQoJsNps+/PDDIvHMzEyNGjVK9erVU1BQkFq0aKGZM2cWKZObm6vRo0crOjpatWrV0qBBg3Tw4EFXL0WNRhICAAAAVFBWVpbatm2r6dOnFxsfO3askpOT9dZbb2nHjh0aO3asRo8erY8++shZZsyYMVqwYIHmzZunVatWKTMzUwMGDFBhofmObZ6M6VgAAADwHpbl2l4f5azbv39/9e/fv8T4N998o+HDh6tHjx6SpLvuukuvvPKKNmzYoMGDBysjI0OzZs3Sm2++qV69ekmS3nrrLSUmJmrp0qXq27dvhU+lJmMkBAAAAN7j3MJ0Vx6STp06VeSRm5tboeZ069ZNCxcu1KFDh2RZlpYvX64ff/zRmVxs3LhR+fn56tOnj7NOQkKCkpKStHr1atevRw1FEgIAAADvUUlJSGJiosLDw52PSZMmVag5L730klq2bKl69eopICBA/fr104wZM9StWzdJUmpqqgICAhQREVGkXmxsrFJTU127FjUY07EAAACA3zlw4IDCwsKcP9vt9god56WXXtKaNWu0cOFCNWjQQF9++aXuu+8+xcfHO6dfFceyLNlstgq9picgCUGFncmxy6cgoNjYxXcGGuu2+cm1D9Wm9NIXar08YK8xfs8njYxxfx/znNBCyzyQGOpvjn+U+YUx/kS9nsZ4kG+QMS5JsYE5xvi+rOJ/f+c8HN7AGK8XlG2M78o0t/HWNubf0fYDdYzxyIACY1yS3t8bb4zf2CjFGO9Q74gxHvOvzsb4W0P2G+PDZkcb48cmbTLGExJLvwZfrKtvjPcO3mGM/9++piXG7i/0VZjOTqHOyi7+H2j6A/oDif5A8v7+IKfQ/B5zm0raMT0sLKxIElIR2dnZevzxx7VgwQL94Q9/kCS1adNGmzdv1nPPPadevXopLi5OeXl5Sk9PLzIacvToUXXp0sWl16/JmI4FAAAA71FJ07EqQ35+vvLz8+XjU/RPbl9fXzl+eZ327dvL399fS5YsccZTUlK0detWr05CGAkBAACA93BYLu6YXr5RlMzMTP3000/On/fu3avNmzcrMjJS9evXV/fu3fXwww8rKChIDRo00MqVK/XGG2/ohRdekCSFh4dr5MiReuihhxQVFaXIyEiNHz9erVu3Nk7X8nQkIQAAAEAFbdiwQVdddZXz53HjxkmShg8frjlz5mjevHl67LHHdMstt+jEiRNq0KCB/vnPf+qee+5x1pkyZYr8/Pw0ZMgQZWdnq2fPnpozZ458fX3dfj7uQhICAAAA7+HmfUJ69Oghy1AnLi5Os2fPNh4jMDBQ06ZN07Rp08r12p6MJAQAAADew9V1HZW4JgQlY2E6AAAAALdiJAQAAADew3LxFr2uTOVCmZGEAAAAwHswHcsjkIQAAADAe5CEeATWhAAAAABwK0ZCUGH1mp5UWEBAsTGr+yBj3eahm1x67csi80sts3pbPWP8tkbmYzz24zFj/OqAeGP8h8xMY3x99+bG+F/WmL+JaRdV+r3DswuL//2cM6BBqjG+6WiUMX48z3z8jlEnjfHSXN41xRifs6hJqccYWC/NGI+KyzLGDx8IN8YD//6lMX51fbsxbiUkGeNRz5s3qjp8/wpjXJKaR5w0xk/t8zfGu9c5XWLM7nP2fernZ6l+s+Jfh/6A/kCiP5C8vz/IKsiVfiox7D4OF9eEuFIXZUYSAgAAAO9hOc4+XKmPKkcSAgAAAO/BSIhHYE0IAAAAALdiJAQAAADeg7tjeQSSEAAAAHgPpmN5BJIQAAAAeA+H5eJICEmIO7AmBAAAAIBbMRICAAAA78F0LI9AEgIAAAAv4uI+IWJhujswHQsAAACAWzESUkNMmjRJ8+fP1w8//KCgoCB16dJFzz77rJo1a+YsM2LECM2dO7dIvY4dO2rNmjXOn3NzczV+/Hi9++67ys7OVs+ePTVjxgzVq1fPWSY9PV0PPPCAFi5cKEkaNGiQpk2bptq1a5erzYHD2iswJKjY2EtX7TDWvTSiwBjffqpWKfVzzY2T5O9j/iYj0m4+xk0x9YzxJiGnjfG+ceHGeET8UWO8caj547kyNccYl6Qpl580xr84GGuM78vyNcabhpp/j7WDzW08djzEGN9zOMAYH3rZbmNckoLbBBrjeT+Zh923p5t/jxdPvtgYD/tmu/n1n11ojPsn2I3xsnyX1LBHtvkIt/c3t2H8JyXH/H75nNUKUODIy4stQ39AfyDRH0je3x+cysuT1pQYdh+mY3kERkJqiJUrV+r+++/XmjVrtGTJEhUUFKhPnz7KysoqUq5fv35KSUlxPj777LMi8TFjxmjBggWaN2+eVq1apczMTA0YMECFhYXOMkOHDtXmzZuVnJys5ORkbd68WcOGDXPLeQIAAFSpc0mIKw9UOUZCaojk5OQiP8+ePVsxMTHauHGjrrzySufzdrtdcXFxxR4jIyNDs2bN0ptvvqlevXpJkt566y0lJiZq6dKl6tu3r3bs2KHk5GStWbNGHTt2lCS99tpr6ty5s3bu3Flk5OWc3Nxc5eb++i3hqVOnXD5fAACAKsFmhR6BkZAaKiMjQ5IUGRlZ5PkVK1YoJiZGF198se68804dPfrrEP7GjRuVn5+vPn36OJ9LSEhQUlKSVq9eLUn65ptvFB4e7kxAJKlTp04KDw93lvm9SZMmKTw83PlITEystPMEAADAhYckpAayLEvjxo1Tt27dlJSU5Hy+f//+evvtt7Vs2TI9//zzWr9+va6++mrnKEVqaqoCAgIUERFR5HixsbFKTU11lomJiTnvNWNiYpxlfu+xxx5TRkaG83HgwIHKOlUAAIDKxXQsj8B0rBpo1KhR+v7777Vq1aoiz998883O/09KSlKHDh3UoEEDffrpp7r++utLPJ5lWbLZbM6ff/v/JZX5LbvdLru9tMVwAAAANQAL0z0CIyE1zOjRo7Vw4UItX768yB2tihMfH68GDRpo165dkqS4uDjl5eUpPT29SLmjR48qNjbWWebIkSPnHSstLc1ZBgAAwGOdWxPiygNVjiSkhrAsS6NGjdL8+fO1bNkyNWrUqNQ6x48f14EDBxQfHy9Jat++vfz9/bVkyRJnmZSUFG3dulVdunSRJHXu3FkZGRlat26ds8zatWuVkZHhLAMAAABUJaZj1RD333+/3nnnHX300UcKDQ11rs8IDw9XUFCQMjMzNWHCBN1www2Kj4/Xvn379Pjjjys6OlrXXXeds+zIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOydsQAAADyKZZ19uFIfVY4kpIaYOXOmJKlHjx5Fnp89e7ZGjBghX19fbdmyRW+88YZOnjyp+Ph4XXXVVXrvvfcUGhrqLD9lyhT5+flpyJAhzs0K58yZI1/fXzeZevvtt/XAAw8476I1aNAgTZ8+vepPEgAAoKqxJsQjkITUEFYpWXdQUJA+//zzUo8TGBioadOmadq0aSWWiYyM1FtvvVXuNv6e4+vtcgQWv4PtXVebd2QNvLL4vU7OuWzNT8b4yX2lL5TfnhJtjMdFmnc4Dk2rbYyH2fOM8Y9Tjxvj+cuaGuM3JJ4wxvecDjPGJWnTsShjfN7P5t/Ta13Ne8Lk5pu7kDqJmcb44o0NjPFv082/59J2wZak6GNZxvjJrEhj/Momh4zxY5MOG+NZmeZzaDDs/LvVFTn+gnRjPCs7yBiXJJ9bexjj+/+8zBhP/PjPJcZstl92M8/Nl2PllmLL0B/QH0j0B5L39wfWqSzpvXmltqHKkYR4BNaEAAAAAHArRkIAAADgPSwX73BlcXcsdyAJAQAAgPdgOpZHIAkBAACA93DIxSSk0loCA9aEAAAAAHArRkIAAADgPZiO5RFIQgAAAOA1LIcly4VEwpW6KDumYwEAAABwK0ZCAAAA4D0s6+zDlfqociQhAAAA8B6sCfEIJCGouALH2UcxMo/6G6u+OiHUGO9XN6fCzTrnYLbdGF+1pb4x/uGxg6W8Ql1j9OGm+cb4lgzz0f+9PcwYH3lRrvkAkrafCjLGb6wfbIwfPmW+T+GiFHMb07ZHG+OXRZk7+kF1T5by+hHGuCT9Kdj8XrqoxQlj3K+OrzF+cpvNGH/1hwRj/O8DOxjj+2YuNcYjgsrwWfn4K2M4MND8Xk276a0SY3VebSPfKLski/7AgP6A/kDy/v7gdH5e6a/vDiQhHoE1IQAAAADcipEQAAAAeA9GQjwCSQgAAAC8B0mIRyAJAQAAgNewLBf3CeHuWG7BmhAAAAAAbsVICAAAALwH07E8AkkIAAAAvAdJiEcgCQEAAID3IAnxCKwJAQAAAOBWjIQAAADAe1jW2Ycr9VHlSEJQYcsX1FEtP3uxsYPZAca6NzQ5aIz7+TmM8QPHws2Nk7Qs1WaMd65j7mRebFnbGJ9/0Hz8qADzQGO+w1w/0Ndcf+2JYGNckpqH5hnjJ/LMXcDSI6HG+OP9fzTGA3vVM8Z//E+mMf7tsQhj/GiOMSxJiorLMsaP7Akxxg9vNsc7Dc82xv85vpYxrm/WG8MdHjX/nj+dEGg+vqScD8zXuaDQfAw/35I/j1EOH/lKys321cr/iym2DP0B/YFEfyB5f3+QWVAz/qy0HGcfrtRH1asZ7xYAAACgMrAmxCOwJgQAAACAWzESAgAAAO/BSIhHIAkBAACA12BNiGdgOhYAAAAAt2IkBAAAAN7DcnE6FrfodQuSEAAAAHgPxy8PV+qjypGEAAAAwGtYDkuWCyMhrtRF2bEmBAAAAIBbMRICAAAA78F0LI9AEoIK6/mYr8KCfYuN3TrCPJS5NaOeMX5T4mlj/NLLU82Nk3RjTmCpZUze3lfLGI+024zxLRn+xvj645nG+HGfdGO8V1ycMS5JR3PNbTiRZz6H2EDz77Hnm5HG+PzDacb49nTzOYT6FxrjXaKNYUnS4QPhxvhFV2eZ638aYow7jp0xxq1F3xvj739Y3xi/acghY7xP7wJjXJLWrjBf5y7XnTDGdywyfxYkyR4m9Xma/qAk9Af0B9KF0x9UO+uXhyv1UeVIQgAAAOA1WBPiGVgTAgAAAMCtGAkBAACA92BNiEcgCQEAAIDXsBxnH67UR9UjCQEAAID3YCTEI7AmBAAAAKigL7/8UgMHDlRCQoJsNps+/PDD88rs2LFDgwYNUnh4uEJDQ9WpUyft37/fGc/NzdXo0aMVHR2tWrVqadCgQTp48KAbz8L9SEIAAADgNc5Nx3LlUR5ZWVlq27atpk+fXmx89+7d6tatm5o3b64VK1bou+++01NPPaXAwF9vHT5mzBgtWLBA8+bN06pVq5SZmakBAwaosNB8a2pPxnQsAAAAeA9Lrk2p+uUOvadOnSrytN1ul91uP694//791b9//xIP98QTT+iaa67R5MmTnc81btzY+f8ZGRmaNWuW3nzzTfXq1UuS9NZbbykxMVFLly5V3759XTiZmouREAAAAOB3EhMTFR4e7nxMmjSp3MdwOBz69NNPdfHFF6tv376KiYlRx44di0zZ2rhxo/Lz89WnTx/ncwkJCUpKStLq1asr41RqJJIQAAAAeA3Lcv0hSQcOHFBGRobz8dhjj5W7LUePHlVmZqb+9a9/qV+/flq8eLGuu+46XX/99Vq5cqUkKTU1VQEBAYqIiChSNzY2VqmpqS5fj5qK6ViosLyvflaePaDY2OsjzHXXfR1vjBdaNmP8/nebmF9AUoMQ8zH8S0nBp921xxhf9lmCMf7D6UBjfFgjc3xTej1j/PU9Wca4JN3V5Pxh4986eMbfGB9Y77gxPrz3CWN8zHvm39PYlseM8e9PRBjjPS4qfdHe/B0NjPFTi4p/D5/j72Me0/+//5l/TzffmWaM92l2wBi3+fsa44uXJBrjknTNnRnGuGUOq+UNeSXGbEG//GudW6i8FfuKLUN/QH8g0R9I3t8fnMrOl1aW2oQqV1m36A0LC1NYWJhLbXE4zh5s8ODBGjt2rCTpkksu0erVq/Xyyy+re/fuJbfDsmSzmfsuT8ZICAAAALyHoxIelSQ6Olp+fn5q2bJlkedbtGjhvDtWXFyc8vLylJ6eXqTM0aNHFRsbW3mNqWFIQgAAAIAqEBAQoMsuu0w7d+4s8vyPP/6oBg3Ojsy1b99e/v7+WrJkiTOekpKirVu3qkuXLm5trzsxHQsAAABew907pmdmZuqnn35y/rx3715t3rxZkZGRql+/vh5++GHdfPPNuvLKK3XVVVcpOTlZH3/8sVasWCFJCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3YiSkhpg0aZIuu+wyhYaGKiYmRtdee+15WbNlWZowYYISEhIUFBSkHj16aNu2bUXKlGWzm/T0dA0bNsx5t4dhw4bp5MmTVX2KAAAAVa6yFqaX1YYNG9SuXTu1a9dOkjRu3Di1a9dOf/3rXyVJ1113nV5++WVNnjxZrVu31n//+1998MEH6tatm/MYU6ZM0bXXXqshQ4aoa9euCg4O1scffyxfX/M6IE9GElJDrFy5Uvfff7/WrFmjJUuWqKCgQH369FFW1q+LDSdPnqwXXnhB06dP1/r16xUXF6fevXvr9OnTzjJl2exm6NCh2rx5s5KTk5WcnKzNmzdr2LBhbj1fAACAKuGwuf4ohx49esiyrPMec+bMcZa5/fbbtWvXLmVnZ2vz5s0aPHhwkWMEBgZq2rRpOn78uM6cOaOPP/5YiYml32jAkzEdq4ZITk4u8vPs2bMVExOjjRs36sorr5RlWZo6daqeeOIJXX/99ZKkuXPnKjY2Vu+8847uvvvuMm12s2PHDiUnJ2vNmjXq2LGjJOm1115T586dtXPnTjVr1uy8tuXm5io3N9f58+837wEAAADKg5GQGioj4+w98iIjIyWdnV+YmppaZCMbu92u7t27OzeyKctmN998843Cw8OdCYgkderUSeHh4SVuiDNp0qQim/V4e2YOAAA817k1Ia48UPVIQmogy7I0btw4devWTUlJSZLk3Kzm97dq++1GNmXZ7CY1NVUxMTHnvWZMTEyJG+I89thjRTbrOXDAfB9zAACA6mJZNpcfqHpMx6qBRo0ape+//16rVq06L/b7TWvKspHN78sUV950HLvdLrvdvMkVAABATeDuu2OhYhgJqWFGjx6thQsXavny5apX79edV+Pi4iTpvNGK325kU5bNbuLi4nTkyJHzXjctLc2rN8QBAABAzcFISA1hWZZGjx6tBQsWaMWKFWrUqFGReKNGjRQXF6clS5Y4bwGXl5enlStX6tlnn5VUdLObIUOGSPp1s5vJkydLkjp37qyMjAytW7dOl19+uSRp7dq1ysjIKPeGOD7BvvIJLP7WcZu/iDLW7dij+Klf55zYEWCMX5fvb26cpKva7TfG135f1xif8V5jY/xMoTGsr45kG+Nz+5yfDP7Wum8aGuPtImuZGyDpi1TzfQb7xuca49N/iDTGb8kxj5C1CDeP0u07FWqM1w0yX8NFP5a+PmnoZbuN8fU7EozxVceCjfG/XLfLGM/dbgyrlvnl5VPX/Dvod12K+QCSrCxzV39inflrv8KC/BJjdYZY8g2RZJN8atEflIT+gP5A8v7+4HR+yTF3siwXR0LKeYteVAxJSA1x//3365133tFHH32k0NBQ54hHeHi4goKCZLPZNGbMGE2cOFFNmzZV06ZNNXHiRAUHB2vo0KHOsqVtdtOiRQv169dPd955p1555RVJ0l133aUBAwYUe2csAAAAT+Lqug7WhLgHSUgNMXPmTEln7zX9W7Nnz9aIESMkSY888oiys7N13333KT09XR07dtTixYsVGvrrt0dTpkyRn5+fhgwZouzsbPXs2VNz5swpstnN22+/rQceeMB5F61BgwZp+vTpVXuCAAAA7uCwySrnXh+/r4+qRxJSQ1hlGPuz2WyaMGGCJkyYUGKZc5vdTJs2rcQykZGReuuttyrSTAAAAMBlJCEAAADwGpbl2roO1oS4B0kIAAAAvAZrQjwDt+gFAAAA4FaMhAAAAMBrWC4uTHdpUTvKjCQEAAAAXoM1IZ6BJAQAAABegzUhnoE1IQAAAADcipEQVNiOr2orxM9ebKzDKHN++/6zDY3x70/6G+OD6p40xiXpsw2NjPEdp8xv//xS5oReGpFrjB86E2SM374k3hgf2rDAGN93pvSPb90g8zl8czzAGP/nFXuN8U9/qG+MNw/NMcYXHCz+/XPOqOZZxvgNrVKNcUnyCzfHewzLMMf9M43xJf9NNMYvqm0+fnzDU8Z44b50Y9y3YYQxXhYhMUeN8cBe9UoOBp/dCDU/10fblxffFvoD+gOJ/kDy/v4g6Eyu9LHLTXCZw2GTw4V1Ha7URdmRhAAAAMBrsCbEM5CEAAAAwGuwJsQzsCYEAAAAgFsxEgIAAACvwUiIZyAJAQAAgNdwWDY5XEgkXKmLsiMJAQAAgNdgx3TPwJoQAAAAAG7FSAgAAAC8Brfo9QwkIQAAAPAaDrm4JkRMx3IHpmMBAAAAcCtGQlBhrZ+OV1itwGJj+Z9uMdZtGhpljDesZc6PE6MzzI2TtOBgbWP8vqQDxrifn8MY/+5QjDHeLz7XGN+SYTfGN500hvVA64PmApKyss2vcTy7+N/fOct2JRrj/jbzmHW3S8zXeO2Jpsb4qdwAYzxlX5gxLkkpmbWM8Y7+qca4/42XGeM9dq0zxlesNF/Do9uCjfGc732N8bUnzPUladzgXcb4mWPmfwoci0p+rwVdWShbkOQf5qu2ExOKLUN/QH8g0R9I3t8fnMnLK/X13YFb9HoGkhAAAAB4DcvFW/SShLgHSQgAAAC8BiMhnoE1IQAAAADcipEQAAAAeA3HLw9X6qPqkYQAAADAazAdyzOQhAAAAMBrOCy5tk8ImxW6BWtCAAAAALgVIyEAAADwGkzH8gwkIQAAAPAaZ6djuVYfVY8kBBW3+5AUVPwOvFa++RP88q7axvgtDbOM8dQToca4JDWoZb6/RU6uvzH+zo5YYzw20HyOB8+YZzve3/ZnY/y+FfHG+Lxd9YxxScov5RYfzUPNu9u2iUw3xufvr2OMv7W6iTHeOtz8+jtOmXc3rh9Z+k7Zx46bd1k+usW8S/S2pSnG+KUNzO+jPveZ38s5608Y4351zDskRy6PMMYlaf6SRsb4zXemGeO2pob3YtAv/4wUFEq7it9Jmf6A/kCiP5C8vz8oyMqRZpfahCrHSIhnYE0IAAAAALdiJAQAAABewyGbHHLh7lgu1EXZkYQAAADAa1jW2Ycr9VH1mI7lggMHDujgwV/nQK9bt05jxozRq6++Wo2tAgAAuHA5LJvLD1Q9khAXDB06VMuXL5ckpaamqnfv3lq3bp0ef/xxPfPMM9XcOgAAAKBmIglxwdatW3X55ZdLkv73v/8pKSlJq1ev1jvvvKM5c+ZUb+MAAAAuQNYva0Iq+rBYE+IWrAlxQX5+vuz2s7eoXbp0qQYNGiRJat68uVJSzLfxAwAAQOVjTYhnYCTEBa1atdLLL7+sr776SkuWLFG/fv0kSYcPH1ZUVFQ1tw4AAAComUhCXPDss8/qlVdeUY8ePfSnP/1Jbdu2lSQtXLjQOU0LAAAA7sPCdM/AdCwX9OjRQ8eOHdOpU6cUEfHrLqV33XWXgoODq7FlAAAAFybLxXUdrAlxD5IQF1mWpY0bN2r37t0aOnSoQkNDFRAQcEEkIYc/ytFpf0exsazs2sa6h87kGeOd+hw1xpd9lmCMS9LQy3Yb45NWNDXGH+n6kzG+aGuDUlpgHmh8dHU9Y3xGj4PG+Hs/1C/l9aVN6YXG+Ol8uzGeUxhhjHevc9oYP5JjPv7RXH9jPMzP3P7P95X+PmgfmWGMZ2Wb29jtkgPGeHpKkDFesM/8+vaWIcZ4ac4UlN6NX9XosDFu5Znfq44N+0qM+V5eIAVKhdmWUj/ILrYM/YFEf0B/IHl/f1CYY/4su4vDOvtwpT6qHkmIC37++Wf169dP+/fvV25urnr37q3Q0FBNnjxZOTk5evnll6u7iQAAAECNw5oQFzz44IPq0KGD0tPTFRT067cf1113nb744otqbBkAAMCFiTUhnoGREBesWrVKX3/9tQICAoo836BBAx06dKiaWgUAAHDhYk2IZyAJcYHD4VBh4flzVA8ePKjQ0NBqaBEAAMCFjTUhnoHpWC7o3bu3pk6d6vzZZrMpMzNTTz/9tK655prqaxgAAABQgzES4oIpU6boqquuUsuWLZWTk6OhQ4dq165dio6O1rvvvlvdzQMAALjgMB3LM5CEuCAhIUGbN2/Wu+++q2+//VYOh0MjR47ULbfcUmShOgAAANyD6ViegelYLgoKCtLtt9+u6dOna8aMGbrjjjsqlIB8+eWXGjhwoBISEmSz2fThhx8WiY8YMUI2m63Io1OnTkXK5ObmavTo0YqOjlatWrU0aNAgHTxY9N7y6enpGjZsmMLDwxUeHq5hw4bp5MmT5W4vAABATcTdsTwDIyEuOnTokL7++msdPXpUDkfRjfseeOCBMh8nKytLbdu21Z///GfdcMMNxZbp16+fZs+e7fz593flGjNmjD7++GPNmzdPUVFReuihhzRgwABt3LhRvr6+kqShQ4fq4MGDSk5OlnR2d/dhw4bp448/LnNbAQAAAFeQhLhg9uzZuueeexQQEKCoqCjZbL9mzjabrVxJSP/+/dW/f39jGbvdrri4uGJjGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fbVjxw4lJydrzZo16tixoyTptddeU+fOnbVz5041a9as2GPn5uYqNzfX+fOpU6fKfF4AAADuZP3ycKU+qh5JiAv++te/6q9//asee+wx+fhU/cy2FStWKCYmRrVr11b37t31z3/+UzExMZKkjRs3Kj8/X3369HGWT0hIUFJSklavXq2+ffvqm2++UXh4uDMBkaROnTopPDxcq1evLjEJmTRpkv72t7+d93ytsFyFBBT/UT12qpbxXN4ccNAYtwX4GuNlcTzV3IZIu7mb2bIn1nz8PHMbN5/IMcZ7xduN8bd21DfGO0ZmGuOS1DzU/BF/ZZfDGD+V72+MRwaY49H2PGN8d1aAMX66wNz+fgnHjXFJ+vZ4bWN812nzazySmGGMR8RnG+MfLmxkjA/ovNcY9wk2hnUiL9JcQFLnBxubCxw2X8czK46WGAsqlGySfHwshYTnFluG/oD+QKI/kLy/P8jNyy/19d3BkmtTqliY7h6sCXHBmTNn9Mc//tEtCUj//v319ttva9myZXr++ee1fv16XX311c4RitTUVAUEBCgiIqJIvdjYWKWmpjrLnEtafismJsZZpjiPPfaYMjIynI8DBw5U4pkBAABUHkclPFD1GAlxwciRI/V///d/evTRR6v8tW6++Wbn/yclJalDhw5q0KCBPv30U11//fUl1rMs67xpYqWV+T273S673fwtHQAAAFBWJCEumDRpkgYMGKDk5GS1bt1a/v5Fh6JfeOGFKnvt+Ph4NWjQQLt27ZIkxcXFKS8vT+np6UVGQ44ePaouXbo4yxw5cuS8Y6WlpSk21jzVAAAAwBNYlk2WK9OxuDuWW5CEuGDixIn6/PPPnWspShtxqEzHjx/XgQMHFB8fL0lq3769/P39tWTJEg0ZMkSSlJKSoq1bt2ry5MmSpM6dOysjI0Pr1q3T5ZdfLklau3atMjIynIkKAACAJ3N1ShXTsdyDJMQFL7zwgl5//XWNGDHC5WNlZmbqp59+cv68d+9ebd68WZGRkYqMjNSECRN0ww03KD4+Xvv27dPjjz+u6OhoXXfddZKk8PBwjRw5Ug899JCioqIUGRmp8ePHq3Xr1s67ZbVo0UL9+vXTnXfeqVdeeUXS2Vv0DhgwoMRF6QAAAEBlY2G6C+x2u7p27Vopx9qwYYPatWundu3aSZLGjRundu3a6a9//at8fX21ZcsWDR48WBdffLGGDx+uiy++WN98841CQ0Odx5gyZYquvfZaDRkyRF27dlVwcLA+/vhj5x4hkvT222+rdevW6tOnj/r06aM2bdrozTffrJRzAAAAqG7ndkx35VEepW04/Vt33323bDabpk6dWuT5smw47W0YCXHBgw8+qGnTpumll15y+Vg9evSQZZX8rv/8889LPUZgYKCmTZumadOmlVgmMjJSb731VoXaCAAAUNNZsrl0m93y1i3LhtOS9OGHH2rt2rVKSEg4L1aWDae9DUmIC9atW6dly5bpk08+UatWrc5bmD5//vxqahkAAMCFqSKjGb+vXx5l2XD60KFDGjVqlD7//HP94Q9/KBIry4bT3ogkxAW1a9c23h4XAAAAnunUqVNFfq7olgUOh0PDhg3Tww8/rFatWp0XL8uG096IJMQFs2fPru4mAAAA4DcqazpWYmJikeeffvppTZgwodzHe/bZZ+Xn56cHHnig2HhZNpz2RiQhqLDDqeE65Vf8NwItux431l217Pz5kL8V+nO+MR5pzzU3TtInP8cZ4zc2SjHG39gVb4wHl/LpCS5lDmdCUIEx/sye/cZ4l6g65gZIWnUsyBhvEm4ec37x4ExjvMBxjzE+8iLz7ynQx/z6sYGFxviWE+HGuCTF2s3vpfQ88+8p5MYG5hfIOGMMx23NMcY3bTa/TzsX/2+WU99ah8wFJFnxVxjjuf+3wxg/k+5fYizwl3tZFhb66ODh2sWWoT+gP5DoDyTv7w+y812YA1WJKms61oEDBxQWFuZ8viKjIBs3btSLL76ob7/9ttzbN5S2mbSnIwkpp0svvVRffPGFIiIi1K5dO+Ob49tvv3VjywAAAFBZSUhYWFiRJKQivvrqKx09elT169d3PldYWKiHHnpIU6dO1b59+8q04bQ3Igkpp8GDBzsz4WuvvbZ6GwMAAIAaa9iwYc7F5uf07dtXw4YN05///GdJZdtw2huRhJTT008/rdtvv10vvviinn766epuDgAAAH7D3bfoNW04Xb9+fUVFRRUp7+/vr7i4OOdG0WXZcNobsVlhBcydO1fZ2dnV3QwAAAD8juXiRoWGbduKZdpwuqzKsuG0t2EkpAJMmwoCAACg+jh+ebhSvzxK23D69/bt23fec2XZcNrbMBJSQd58twIAAACgKjESUkEXX3xxqYnIiRMn3NQaAAAASJJl2WRZLqwJcaEuyo4kpIL+9re/KTy89HuSAwAAwH3cPR0LFUMSUkF//OMfFRMTU93NAAAAADwOSUgFsB4EAACgZqqszQpRtUhCKoC7Y50VE5mpUP+8YmN+Dc07jLaMP2aMf7M/zhjv1viwuXGS2nQ6aozvWBdtjLcIKzDG6waZb9O8Pi3IGN+U7m+MXx7YyBj/KbP0AeNu0eY2xpZyDhEB9xrj/ePTjfGFhyKM8ZsbphnjjbudNsbXL6ljjEtSTK0zxnj3rgeMcceP5t/jlg9rGePdJpinbe5+7ogxXrAjyxjfttx8jSWplb4yxn2CzfWX7qpXYmxwga+CJfn4OBQbVfzvi/6A/kCiP5C8vz84U5hb6uu7g/XLw5X6qHokIRXgcDBbEAAAoCY6OxJS8VkrjIS4B7foBQAAAOBWjIQAAADAazAdyzOQhAAAAMBrsDDdM5CEAAAAwGuwT4hnYE0IAAAAALdiJAQAAABew7LOPlypj6pHEgIAAACvYckmhyp+i17LhbooO5IQAAAAeA1GQjwDa0IAAAAAuBUjIaiwqEfbKywkqNhY/jurS6kdYIy2jko3xjMyin/dIvaVXsSkblC2MR5T64wxfmMDcxvf2JNjjN/UwPzx3HW69I/vD6fMZfrHFxjj/qV8TbH2eG1j/IFOu43xoHjzPUiWfZZojPcZk2uMS9KxBebf438/b2KMH842X4S7mh82xn+cnGaM1292yhj/cGEjY7xF7QxjXJJ8apnfBy/Oa2yM39Gh5N9joH/h2dcIC1D005cXW4b+gP5Aoj+QvL8/OJWXJ31fahOqHHfH8gwkIQAAAPAa7BPiGUhCAAAA4DXYMd0zsCYEAAAAgFsxEgIAAACvwXQsz0ASAgAAAK/BLXo9A9OxAAAAALgVIyEAAADwGtyi1zOQhAAAAMBrsCbEM5CEAAAAwGtwi17PwJoQAAAAAG7FSAgq7Nk/pSnQN7DYWMfIesa6ve84ZYz7LjljjP/3u4bGuCRdWjvHGA/2KzDGt5+qZYwfTAkzxj88sdsYf6VVHWN8UUrx1/aclmH5xrgkbTpp/ogfPGN+jfVp5muUUMt8/DFLGhnjU3vvNcYPZgcY4/+aYG6/JD36rPkYUX8rNMbv/MNPxnh2ivm7nPAbEozxH/9jDOvGv5u/k1v1T7v5AJJ0Tz9j+MGs94zxnJ9L/17w9HGHpl57tNgY/QH9gUR/IHl/f+BbQ24rxXQsz0ASAgAAAK9hySZLNpfqo+qRhAAAAMBrWHJtNIOBEPdgTQgAAAAAt2IkBAAAAF6DNSGegSQEAAAAXoNb9HoGkhAAAAB4DUZCPANrQgAAAAC4FSMhAAAA8BrWL/+5Uh9VjyQEAAAAXoPpWJ6B6VgAAAAA3IqRkBriyy+/1L///W9t3LhRKSkpWrBgga699lpn3LIs/e1vf9Orr76q9PR0dezYUf/5z3/UqlUrZ5nc3FyNHz9e7777rrKzs9WzZ0/NmDFD9erVc5ZJT0/XAw88oIULF0qSBg0apGnTpql27drlbvPo7rsVFhBQbOyzDY2Mdb+eE2yMB/rajfGbGh4xN05SoD3fGP98X4Ixnu8wH79NbfPxH+luPsDwDwON8ea1za//9bHSP76jm6cZ474+5jYuTY0xxq+sk2eMh/sXGOPvbW5sjDcNyTbG+zY8YYxL0rZpQcb4ppNRxvjxT5sY4w1rma/BJa+bfwcN25nPUbXijeGY4JPm+pIKnnnHGPeLMX/efvgpvMRY2wIfBUgKsRfooat3FVuG/oD+QKI/kLy/P8gsyC319d2Bu2N5BkZCaoisrCy1bdtW06dPLzY+efJkvfDCC5o+fbrWr1+vuLg49e7dW6dPn3aWGTNmjBYsWKB58+Zp1apVyszM1IABA1RYWOgsM3ToUG3evFnJyclKTk7W5s2bNWzYsCo/PwAAAHc4Nx3LlQeqHiMhNUT//v3Vv3//YmOWZWnq1Kl64okndP3110uS5s6dq9jYWL3zzju6++67lZGRoVmzZunNN99Ur169JElvvfWWEhMTtXTpUvXt21c7duxQcnKy1qxZo44dO0qSXnvtNXXu3Fk7d+5Us2bNin393Nxc5eb++u3GqVOnKvPUAQAAKo1lnX24Uh9Vj5EQD7B3716lpqaqT58+zufsdru6d++u1atXS5I2btyo/Pz8ImUSEhKUlJTkLPPNN98oPDzcmYBIUqdOnRQeHu4sU5xJkyYpPDzc+UhMTKzsUwQAAMAFhCTEA6SmpkqSYmNjizwfGxvrjKWmpiogIEARERHGMjEx58/pjYmJcZYpzmOPPaaMjAzn48CBAy6dDwAAQFVxVMIDVY/pWB7EZrMV+dmyrPOe+73flymufGnHsdvtstvNC9UAAABqAm7R6xkYCfEAcXFxknTeaMXRo0edoyNxcXHKy8tTenq6scyRI+ffRSYtLe28URYAAACPZP26LqQiD26P5R4kIR6gUaNGiouL05IlS5zP5eXlaeXKlerSpYskqX379vL39y9SJiUlRVu3bnWW6dy5szIyMrRu3TpnmbVr1yojI8NZBgAAAKhqTMeqITIzM/XTTz85f967d682b96syMhI1a9fX2PGjNHEiRPVtGlTNW3aVBMnTlRwcLCGDh0qSQoPD9fIkSP10EMPKSoqSpGRkRo/frxat27tvFtWixYt1K9fP91555165ZVXJEl33XWXBgwYUOKdsQAAADyJq+s6WBPiHiQhNcSGDRt01VVXOX8eN26cJGn48OGaM2eOHnnkEWVnZ+u+++5zbla4ePFihYaGOutMmTJFfn5+GjJkiHOzwjlz5sjX19dZ5u2339YDDzzgvIvWoEGDStybBAAAwNNwi17PYLMsLjXK59SpUwoPD9fLrf+ioBJ2Mn5zb47xGBPbmnfOTYzOMMb3HI0wxiWp09BMY3zYBPPuv0kRvsZ49zqnjfFv00OM8R5x5t19H9lo3kW6fi3zDsuSlBBsvnFB8tHjxvjYJiXvjCtJPS46aIwv/KG+Mf6HJub6n/5UzxgfNnCPMS5JhzfVMsaj4rKM8YBocxd54LswYzynwPxdT6vR5t9z4Q7zbuC+F5l3eJakba+Yd3Fu1MT8XvQ1XEL7Uy/KVjtSWUcy9EG/F4otQ39AfyDRH0je3x+cys1T7H/+p4yMDIWFma9FVTj398ntCY8pwKf0z0RJ8hw5ev3wpGo7jwsFa0IAAAAAuBXTsQAAAOA1LMuSKxN9mCTkHiQhAAAA8BrsE+IZSEIAAADgNVzd6oMcxD1YEwIAAADArRgJAQAAgNdgOpZnIAkBAACA1yAJ8QxMxwIAAADgVoyEAAAAwGucXZjuwi16K68pMCAJAQAAgNdgOpZnIAlBheU7bPKz2YqNzeyUaaxbr9UpY/zbdXHGeOOYdHPjJOVuzzXG72kaaowvSjHHX/whyBjvElP8tTln3+kQYzzUz9cYbxdpDEuSNp0w96Qtgs0H6XHRz8b4D4eijfH2kRnG+Fc/JxjjO0+bZ4we3RJojEvSR/vizQX2mcODG6aU+homgX4Fxnje6oPGeMAfWhjjr4/OK7UNjWqZ30stZow0xm2vv19y0P/c+9ymfAf9QUnoD+gPJO/vDwKyS399d7Cssw9X6qPqsSYEAAAAgFsxEgIAAACvYcmSw6U1IQyFuANJCAAAALwG07E8A0kIAAAAvIbjl4cr9VH1WBMCAAAAwK0YCQEAAIDXsCxLlgtzqlypi7JjJAQAAABe49w+Ia48yuPLL7/UwIEDlZCQIJvNpg8//NAZy8/P11/+8he1bt1atWrVUkJCgm677TYdPny4yDFyc3M1evRoRUdHq1atWho0aJAOHjTfstnTkYQAAADAazh+uTuWK4/yyMrKUtu2bTV9+vTzYmfOnNG3336rp556St9++63mz5+vH3/8UYMGDSpSbsyYMVqwYIHmzZunVatWKTMzUwMGDFBhYaFL16ImYzoWAAAA8DunThXdSNVut8tut59Xrn///urfv3+xxwgPD9eSJUuKPDdt2jRdfvnl2r9/v+rXr6+MjAzNmjVLb775pnr16iVJeuutt5SYmKilS5eqb9++lXRGNQsjIQAAAPAaln69TW+FHr8cJzExUeHh4c7HpEmTKqV9GRkZstlsql27tiRp48aNys/PV58+fZxlEhISlJSUpNWrV1fKa9ZEjISgwob02KMwe0CxsZw0c367dFV9Y7xbM/M8yOD6pQ+V7l1X2xhvXveYMR7qn2+Mf3Ag0hjvGW8+/tdHzfVHNcsyxs8UlP7xvTQi1xg/khNojP97fUNjvFmo+UaGF4eeMcZ7t/zZGM/eYn79Y6dqGeOS9MBfjhvjf/5LhDE+6nbz+8Cnrfm9nPHGbmM8YHhXYzx31tfGeLfY2sa4JDV960pjfHufBcb4RS0ySowF3mBJtaRge4Fu6VX8udIf0B9I9AeS9/cHuXl5pb6+O1RkStXv60vSgQMHFBYW5ny+uFGQ8srJydGjjz6qoUOHOo+dmpqqgIAARUQUff/FxsYqNTXV5desqUhCAAAA4DV+O5pR0fqSFBYWViQJcVV+fr7++Mc/yuFwaMaMGWVohyWbzVZpr1/TMB0LAAAAqEL5+fkaMmSI9u7dqyVLlhRJbuLi4pSXl6f09PQidY4eParY2Fh3N9VtSEIAAADgNdx9d6zSnEtAdu3apaVLlyoqKqpIvH379vL39y+ygD0lJUVbt25Vly5dKrUtNQnTsQAAAOA1HJaLa0LKuVlhZmamfvrpJ+fPe/fu1ebNmxUZGamEhATdeOON+vbbb/XJJ5+osLDQuc4jMjJSAQEBCg8P18iRI/XQQw8pKipKkZGRGj9+vFq3bu28W5Y3IgkBAAAAKmjDhg266qqrnD+PGzdOkjR8+HBNmDBBCxculCRdcsklReotX75cPXr0kCRNmTJFfn5+GjJkiLKzs9WzZ0/NmTNHvr6+bjmH6kASAgAAAK9h/fKfK/XLo0ePHrIMoyem2DmBgYGaNm2apk2bVq7X9mQkIQAAAPAaliTzDaNLr4+qRxICAAAAr1FZ+4SganF3LAAAAABuxUgIAAAAvIZlubgmpJx3x0LFkISgwuytI2QPshcb+/a1AGPdP9yfaYwX7DPvEOpbJ9jcOEnhodnG+K7DUcb4P7aaPx4HbLuN8VxHY2N83YkMY3xia/NA5RdHA41xSeoXZ54V++4+8zlGFP/rdZr1c7oxnuNj/h0MT7/IGM8v5d+BFpcfMxeQ9N3saGP8tXv3GeNWvvn3sOHv5t9jh+faGuNv3pJijB/KbmqMjxu8yxiXJNvG743xVn81b4aV9+mJkoPnLo+/j+xtI4stQn9AfyDRH0je3x/41JAbOTEdyzOQhAAAAMBrkIR4BtaEAAAAAHArRkIAAADgNaxfxkJcqY+qRxICAAAAr8F0LM9AEgIAAACvQRLiGVgTAgAAAMCtGAkBAACA13D88p8r9VH1SEIAAADgNSybJcvmysJ0pmO5A9OxAAAAALgVIyEAAADwGpaLC9MZCXEPkhBUWMbyDFkBAcXGdpxqZKy7cmKoMT6qa7ox7peWaW6cpG/2Nyi1jImvzdwJBVrBxnj9YHN9P1ttY/zpLeZzvCLGGJYkvbKr+N/POY8lnTLGVx6NMMaHNzJ3Id+fTDDGH933qTE+v3V3YzzthyBjXJJaDzhtjJ/+rrR/bAqN0XyHeUD50D9+MMZvGWF+9TPf5xjj676ONx9Aku9q8zE63njEGH/5k6Ylxm4f66fQcMnKdejU0pPFlqE/oD+Q6A8k7+8PcgrNx3YXhxyysSakxiMJAQAAgNdgs0LPwJoQAAAAAG7FSAgAAAC8hsPmkM2Fu2MxHcs9GAnxIBMmTJDNZivyiIuLc8Yty9KECROUkJCgoKAg9ejRQ9u2bStyjNzcXI0ePVrR0dGqVauWBg0apIMHD7r7VAAAAKqEoxL+Q9UjCfEwrVq1UkpKivOxZcsWZ2zy5Ml64YUXNH36dK1fv15xcXHq3bu3Tp/+dSHemDFjtGDBAs2bN0+rVq1SZmamBgwYoMJC82I7AAAAT0AS4hmYjuVh/Pz8iox+nGNZlqZOnaonnnhC119/vSRp7ty5io2N1TvvvKO7775bGRkZmjVrlt5880316tVLkvTWW28pMTFRS5cuVd++fYt9zdzcXOXm5jp/PnXKfAcVAAAAwISREA+za9cuJSQkqFGjRvrjH/+oPXv2SJL27t2r1NRU9enTx1nWbrere/fuWr16tSRp48aNys/PL1ImISFBSUlJzjLFmTRpksLDw52PxMTEKjo7AAAA15y7O5YrD1Q9khAP0rFjR73xxhv6/PPP9dprryk1NVVdunTR8ePHlZqaKkmKjY0tUic2NtYZS01NVUBAgCIiIkosU5zHHntMGRkZzseBAwcq+cwAAAAqh0OFLj9Q9ZiO5UH69+/v/P/WrVurc+fOuuiiizR37lx16tRJkmSz2YrUsSzrvOd+r7QydrtddrvdhZYDAAC4h/XLnumu1EfVYyTEg9WqVUutW7fWrl27nOtEfj+icfToUefoSFxcnPLy8pSenl5iGQAAAKCqMRLiwXJzc7Vjxw5dccUVatSokeLi4rRkyRK1a9dOkpSXl6eVK1fq2WeflSS1b99e/v7+WrJkiYYMGSJJSklJ0datWzV58uRyv35gtEOB9uK/aRjSYY+x7iebGhrju/dEGeOtrko3xiXph9MBxrh/KSl4VAnnds4HIzON8Y+So43xrSfNr98uspYxHhtY+jc1X+XnGuPTdtY2xnvFFRjjCw6a63evk22MP514jTE+fad5SPyN283Hl6SVH9Q1xiPt5mu063SoMX5Fg8Pm+kcijfG47GPG+PSvmxjjvWIzjHFJat4kzRhf9I55ndfNzfeXGAv2P/sesflIgXXoD0pCf0B/IHl/f3A6P0+P7iy1CVWOfUI8A0mIBxk/frwGDhyo+vXr6+jRo/rHP/6hU6dOafjw4bLZbBozZowmTpyopk2bqmnTppo4caKCg4M1dOhQSVJ4eLhGjhyphx56SFFRUYqMjNT48ePVunVr592yAAAAPJlDhbK5MNmHNSHuQRLiQQ4ePKg//elPOnbsmOrUqaNOnTppzZo1atCggSTpkUceUXZ2tu677z6lp6erY8eOWrx4sUJDf/3mZsqUKfLz89OQIUOUnZ2tnj17as6cOfL19a2u0wIAAKhErt7hipEQdyAJ8SDz5s0zxm02myZMmKAJEyaUWCYwMFDTpk3TtGnTKrl1AAAAQNmQhAAAAMBrOKxCuXLvpbP1UdVIQgAAAOA1XN1wkM0K3YNb9AIAAABwK0ZCAAAA4DUsFcpy4Xt2i7tjuQVJCAAAALzG2X0+2CekpiMJAQAAgNewZLm4JqT0zT/hOtaEAAAAAHArRkJQYVa+ZNmKj9X6q3kH9sibfzDGGyaeMMYdWaV/w/FAj13G+OKNDYzxQ2cCjPEe0yOM8X+0zDPG6wTWMsYH1T1pjJ/O9zfGJSnU13wO6bkFxnhsYL4x/smhEt4AvzgSZm7jpRGZxvhnh8xd1PdrYoxxSep6xSHzaywzvw9u/Lv5G7HnH6pvjI+9+6AxvuideGP8Lw+mGOPHV+Qa45K0cmuiMf6H8eb3quNwyd9X+QT88h6wJKuEw9Af0B9I9AeS9/cH9hwf6eNSm1DlLKtQlszvx9Lqo+qRhAAAAMBrsCbEM5CEAAAAwGucvTuWCyMh3B3LLVgTAgAAAMCtGAkBAACA17AsF3dMt5iO5Q4kIQAAAPAarAnxDCQhAAAA8BrcHcszsCYEAAAAgFsxEgIAAACvwY7pnoEkBAAAAF7j7MJ0V6ZjsSbEHZiOBQAAAMCtGAlBhZ1KscvyDyg2dmzkRmPdI7m1zfHUMGN834+hxrgkta171BhvHZVujM/bF2WMr3rOvHDtzr8GGeP+PuZvWlYfCzfGj+SU/i1PauGxUsuY5DtqGePNwn1LqW8+x3aXpBrjr0aar+He47WNcUlK+8F8jGuu/tkY/3l6iDHeJcocL0zLMca7Jx0wxtO/NF/j3Bx/Y1ySkqJPmAtkF/85Psd0Dj6Os9MWHA4p47C92DL0B/QHZ+vTH3h7f1CYm1fq67tHoYsTqliY7g4kIQAAAPAaZ6dTMR2rpiMJAQAAgNcgCfEMrAkBAAAA4FaMhAAAAMBrOOSQzZWREHZMdwuSEAAAAHgNpmN5BpIQAAAAeA3Lcu3uVq7WR9mwJgQAAACAWzESAgAAAK9hyZJcWNdhubjLCMqGJAQAAABew9U1HawJcQ+SEFRYZFKBwgKLn9EXmWfefThkk3lX1Sc2xBjjA+qW/i3Fd4fMx7jyMvPOtJftjzXG97xvbsOAuvnG+DfHzbvSbjph7gS/zz1sjEvSpozZxviAiEeM8X1nzG3cc9rcxksjzNfg+H7z7sUh4bnGeFO/Unb+lZRx2vwadZRtjDf4Z0tjvODRH4xx/64NjHG/feZdrEMigo1xBZl/R5JkXdLCXOCb74xhnxDDPxW/rP308Zei2hYUW4T+gP5Aoj+QvL8/8PGrGX+8k4R4BtaEAAAAAHArRkIAAADgNVzd54N9QtyDJAQAAABeg+lYnoEkBAAAAF6DJMQzsCYEAAAAgFsxEgIAAAAv4upIBiMh7sBICAAAALyGZTlcfpTHl19+qYEDByohIUE2m00ffvjh79pjacKECUpISFBQUJB69Oihbdu2FSmTm5ur0aNHKzo6WrVq1dKgQYN08OBBVy9FjUYSAgAAAFRQVlaW2rZtq+nTpxcbnzx5sl544QVNnz5d69evV1xcnHr37q3Tp087y4wZM0YLFizQvHnztGrVKmVmZmrAgAEqLCx012m4HdOxAAAA4DXcfYve/v37q3///sUfy7I0depUPfHEE7r++uslSXPnzlVsbKzeeecd3X333crIyNCsWbP05ptvqlevXpKkt956S4mJiVq6dKn69u3r0vnUVIyEAAAAwGtYluXidCxLknTq1Kkij9zc3HK3Ze/evUpNTVWfPn2cz9ntdnXv3l2rV6+WJG3cuFH5+flFyiQkJCgpKclZxhsxEoIKy0stVF5A8cOEQY/1NtbNvXO9MR4T5GuMDxle+jzJRe/UMcZ9w23G+JkC8/EfWBtmjC+462dj/P05jY3xaxMtcwMOJZjjkm5q9pQx3iTEfJJXN91njPc4HmKMLzkcbYz3aZ1jjN/7+kXGeFSg+XcoSTclZhjjfglB5gMcSzeGf0ivbYw33nfMGP/+f4HGePNLjxrjWzbEGOOSdCRnpzEe7OtvjF91T2jJQd+z32VZhVLeYfqDktAf0B9I3t8f+GaX/4/0qlEoqfT3Q8nOft4SExOLPPv0009rwoQJ5TpSamqqJCk2NrbI87Gxsfr555+dZQICAhQREXFemXP1vRFJCAAAAPA7Bw4cUFjYr18w2O32Ch/LZiuaFFmWdd5zv1eWMp6M6VgAAADwGpV1d6ywsLAij4okIXFxcZJ03ojG0aNHnaMjcXFxysvLU3p6eollvBFJCAAAALyIoxIelaNRo0aKi4vTkiVLnM/l5eVp5cqV6tKliySpffv28vf3L1ImJSVFW7dudZbxRkzHAgAAgPewHHJpTYhVyhqs38nMzNRPP/3k/Hnv3r3avHmzIiMjVb9+fY0ZM0YTJ05U06ZN1bRpU02cOFHBwcEaOnSoJCk8PFwjR47UQw89pKioKEVGRmr8+PFq3bq1825Z3ogkBAAAAKigDRs26KqrrnL+PG7cOEnS8OHDNWfOHD3yyCPKzs7Wfffdp/T0dHXs2FGLFy9WaOivi/ynTJkiPz8/DRkyRNnZ2erZs6fmzJkjX1/zjTk8GUkIAAAAvIal8o1kuFq/R48eztv6Fsdms2nChAnGO2sFBgZq2rRpmjZtWrle25ORhAAAAMCLuDgdy8UkBmVDEgIAAAAvYrmYR5CEuAN3xwIAAADgVoyEoNzOzXs8nZdfYpn809nGY2QW5BnjuQ7zzrmncsz1JelMoXnn1lO55mPkFJrbkG+5dvx8h7n+mULzNzF5jtK/Q8gpLGUX6MLid7g+53S++RxK+z1ml3INS7tGeaW8D3IdpQ+3ZxaU8nsq5b3kk2Vuw5lCc/1T2aVdQ/M5lHaNSjs/STpTyvvAsszvg1OGXZBDLUs2ne0XTuUV31b6A/oDif5A8v7+4Nz5mdZHuIfl8roQVD2bVf3vFHiYPXv26KKLLqruZgAAgBpo9+7daty4sdtfNycnR40aNTpvY8CKiIuL0969exUYGFgJLUNxSEJQbidPnlRERIT279+v8PDw6m5OtTh16pQSExN14MABhYWFVXdzqgXXgGsgcQ0kroHENZC4BpKUkZGh+vXrKz09XbVr166WNuTk5CivhFHZ8ggICCABqWJMx0K5+ficHfYPDw+/YDvac8LCwrgGXAOugbgGEtdA4hpIXAPp178TqkNgYCDJg4dgYToAAAAAtyIJAQAAAOBWJCEoN7vdrqefflp2u726m1JtuAZcA4lrIHENJK6BxDWQuAYS1wDlw8J0AAAAAG7FSAgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEGjGjBlq1KiRAgMD1b59e3311VfG8itXrlT79u0VGBioxo0b6+WXXz6vzAcffKCWLVvKbrerZcuWWrBgQVU1v1KU5xrMnz9fvXv3Vp06dRQWFqbOnTvr888/L1Jmzpw5stls5z1ycnKq+lQqrDzXYMWKFcWe3w8//FCknDe/D0aMGFHsNWjVqpWzjKe9D7788ksNHDhQCQkJstls+vDDD0ut4239QXmvgTf2B+W9Bt7YH5T3GnhbfzBp0iRddtllCg0NVUxMjK699lrt3Lmz1Hre1h+gapGEXODee+89jRkzRk888YQ2bdqkK664Qv3799f+/fuLLb93715dc801uuKKK7Rp0yY9/vjjeuCBB/TBBx84y3zzzTe6+eabNWzYMH333XcaNmyYhgwZorVr17rrtMqlvNfgyy+/VO/evfXZZ59p48aNuuqqqzRw4EBt2rSpSLmwsDClpKQUeQQGBrrjlMqtvNfgnJ07dxY5v6ZNmzpj3v4+ePHFF4uc+4EDBxQZGambbrqpSDlPeh9kZWWpbdu2mj59epnKe2N/UN5r4I39QXmvwTne1B+U9xp4W3+wcuVK3X///VqzZo2WLFmigoIC9enTR1lZWSXW8cb+AFXMwgXt8ssvt+65554izzVv3tx69NFHiy3/yCOPWM2bNy/y3N1332116tTJ+fOQIUOsfv36FSnTt29f649//GMltbpylfcaFKdly5bW3/72N+fPs2fPtsLDwyuriVWuvNdg+fLlliQrPT29xGNeaO+DBQsWWDabzdq3b5/zOU97H/yWJGvBggXGMt7YH/xWWa5BcTy9P/itslwDb+wPfqsi7wNv6w+OHj1qSbJWrlxZYhlv7w9Q+RgJuYDl5eVp48aN6tOnT5Hn+/Tpo9WrVxdb55tvvjmvfN++fbVhwwbl5+cby5R0zOpUkWvwew6HQ6dPn1ZkZGSR5zMzM9WgQQPVq1dPAwYMOO+b0ZrClWvQrl07xcfHq2fPnlq+fHmR2IX2Ppg1a5Z69eqlBg0aFHneU94HFeFt/UFl8PT+wBXe0h9UBm/rDzIyMiTpvPf1b9EfoLxIQi5gx44dU2FhoWJjY4s8Hxsbq9TU1GLrpKamFlu+oKBAx44dM5Yp6ZjVqSLX4Peef/55ZWVlaciQIc7nmjdvrjlz5mjhwoV69913FRgYqK5du2rXrl2V2v7KUJFrEB8fr1dffVUffPCB5s+fr2bNmqlnz5768ssvnWUupPdBSkqKFi1apDvuuKPI8570PqgIb+sPKoOn9wcV4W39gau8rT+wLEvjxo1Tt27dlJSUVGI5+gOUl191NwDVz2azFfnZsqzzniut/O+fL+8xq1tF2/vuu+9qwoQJ+uijjxQTE+N8vlOnTurUqZPz565du+rSSy/VtGnT9NJLL1VewytRea5Bs2bN1KxZM+fPnTt31oEDB/Tcc8/pyiuvrNAxa4KKtnfOnDmqXbu2rr322iLPe+L7oLy8sT+oKG/qD8rDW/uDivK2/mDUqFH6/vvvtWrVqlLL0h+gPBgJuYBFR0fL19f3vG8gjh49et43FefExcUVW97Pz09RUVHGMiUdszpV5Bqc895772nkyJH63//+p169ehnL+vj46LLLLquR33i5cg1+q1OnTkXO70J5H1iWpddff13Dhg1TQECAsWxNfh9UhLf1B67wlv6gsnhyf+AKb+sPRo8erYULF2r58uWqV6+esSz9AcqLJOQCFhAQoPbt22vJkiVFnl+yZIm6dOlSbJ3OnTufV37x4sXq0KGD/P39jWVKOmZ1qsg1kM5+4zlixAi98847+sMf/lDq61iWpc2bNys+Pt7lNle2il6D39u0aVOR87sQ3gfS2bvI/PTTTxo5cmSpr1OT3wcV4W39QUV5U39QWTy5P3CFt/QHlmVp1KhRmj9/vpYtW6ZGjRqVWof+AOXm3nXwqGnmzZtn+fv7W7NmzbK2b99ujRkzxqpVq5bzjh6PPvqoNWzYMGf5PXv2WMHBwdbYsWOt7du3W7NmzbL8/f2t999/31nm66+/tnx9fa1//etf1o4dO6x//etflp+fn7VmzRq3n19ZlPcavPPOO5afn5/1n//8x0pJSXE+Tp486SwzYcIEKzk52dq9e7e1adMm689//rPl5+dnrV271u3nVxblvQZTpkyxFixYYP3444/W1q1brUcffdSSZH3wwQfOMt7+Pjjn1ltvtTp27FjsMT3tfXD69Glr06ZN1qZNmyxJ1gsvvGBt2rTJ+vnnny3LujD6g/JeA2/sD8p7DbyxPyjvNTjHW/qDe++91woPD7dWrFhR5H195swZZ5kLoT9A1SIJgfWf//zHatCggRUQEGBdeumlRW7BN3z4cKt79+5Fyq9YscJq166dFRAQYDVs2NCaOXPmecf8v//7P6tZs2aWv7+/1bx58yL/GNVE5bkG3bt3tySd9xg+fLizzJgxY6z69etbAQEBVp06daw+ffpYq1evduMZlV95rsGzzz5rXXTRRVZgYKAVERFhdevWzfr000/PO6Y3vw8sy7JOnjxpBQUFWa+++mqxx/O098G5W62W9N6+EPqD8l4Db+wPynsNvLE/qMhnwZv6g+LOXZI1e/ZsZ5kLoT9A1bJZ1i+rhgAAAADADVgTAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAEARK1askM1m08mTJ6u7KQAAL0USAgAXoBEjRshms8lms8nf31+NGzfW+PHjlZWVVd1NAwBcAPyquwEAgOrRr18/zZ49W/n5+frqq690xx13KCsrSzfffHN1Nw0A4OUYCQGAC5TdbldcXJwSExM1dOhQ3XLLLfrwww+d8Y0bN6pDhw4KDg5Wly5dtHPnTmds9+7dGjx4sGJjYxUSEqLLLrtMS5cuLXL8GTNmqGnTpgoMDFRsbKxuvPFGZ8yyLE2ePFmNGzdWUFCQ2rZtq/fff7/KzxkAUDOQhAAAJElBQUHKz893/vzEE0/o+eef14YNG+Tn56fbb7/dGcvMzNQ111yjpUuXatOmTerbt68GDhyo/fv3S5I2bNigBx54QM8884x27typ5ORkXXnllc76Tz75pGbPnq2ZM2dq27ZtGjt2rG699VatXLnSfScMAKg2NsuyrOpuBADAvUaMGKGTJ086Rz7WrVuna665Rj179tS9996rq666SkuXLlXPnj0lSZ999pn+8Ic/KDs7W4GBgcUes1WrVrr33ns1atQozZ8/X3/+85918OBBhYaGFimXlZWl6OhoLVu2TJ07d3Y+f8cdd+jMmTN65513quakAQA1BmtCAOAC9cknnygkJEQFBQXKz8/X4MGDNW3aNG3fvl2S1KZNG2fZ+Ph4SdLRo0dVv359ZWVl6W9/+5s++eQTHT58WAUFBcrOznaOhPTu3VsNGjRQ48aN1a9fP/Xr10/XXXedgoODtX37duXk5Kh3795F2pOXl6d27dq56ewBANWJJAQALlBXXXWVZs6cKX9/fyUkJMjf31+SnEnIuZ8lyWazSZIcDock6eGHH9bnn3+u5557Tk2aNFFQUJBuvPFG5eXlSZJCQ0P17bffasWKFVq8eLH++te/asKECVq/fr3zGJ9++qnq1q1bpE12u71qTxoAUCOQhADABapWrVpq0qRJhep+9dVXGjFihK677jpJZ9eI7Nu3r0gZPz8/9erVS7169dLTTz+t2rVra9myZerdu7fsdrv279+v7t27u3oaAAAPRBICACi3Jk2aaP78+Ro4cKBsNpueeuop5wiHdHaq1549e3TllVcqIiJCn332mRwOh5o1a6bQ0FCNHz9eY8eOlcPhULdu3XTq1CmtXr1aISEhGj58eDWeGQDAHUhCAADlNmXKFN1+++3q0qWLoqOj9Ze//EWnTp1yxmvXrq358+drwoQJysnJUdOmTfXuu++qVatWkqS///3viomJ0aRJk7Rnzx7Vrl1bl156qR5//PHqOiUAgBtxdywAAAAAbsU+IQAAAADciulYKBfLspSfn6/CwkL5+vrK39/fedccAAAAoCxIQlAm+fn5OnLkiA4dOqTs7Gzn80FBQapbt65iY2OL3M4TAAAAKMkFtSZkwoQJ+vDDD7V58+bqbkq16dGjhy655BJNnTq1zHVOnDihbdu2yeFwKDo6WnXq1JGfn58KCgqUlpamY8eOycfHR61atVJkZGTVNR4AAABeocavCRkxYoRsNptsNpv8/f0VGxur3r176/XXXy9yO8iKHvvaa6+tnIZ6qRMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDAIAqNGPGDDVq1EiBgYFq3769vvrqq+puEjyQR0zH6tevn2bPnq3CwkIdOXJEycnJevDBB/X+++9r4cKF8vPziNPwOPn5+dq2bZsiIiKUlJQkH5/ic1a73a6kpCRt3bpVW7ZsUURERIllAQBAzZGUlFSu8u+9957GjBmjGTNmqGvXrnrllVfUv39/bd++XfXr16+iVsIbecRfina7XXFxcapbt67zPvIfffSRFi1apDlz5jjLZWRk6K677lJMTIzCwsJ09dVX67vvviv2mBMmTNDcuXP10UcfOUdaVqxYIUn6y1/+oosvvljBwcFq3LixnnrqKeXn55fYvn379slms2nevHnq0qWLAgMD1apVK+fxztm+fbuuueYahYSEKDY2VsOGDdOxY8ec8R49emjUqFEaNWqUateuraioKD355JP67Yy59PR03XbbbYqIiFBwcLD69++vXbt2FXmdr7/+Wt27d1dwcLAiIiLUt29fpaenO+MOh0OPPPKIIiMjFRcXpwkTJhR7XkeOHHFuLlZaUuHj46NmzZrJsizl5uYaywIAAM/0wgsvaOTIkbrjjjvUokULTZ06VYmJiZo5c2Z1Nw0exiOSkOJcffXVatu2rebPny/p7F2b/vCHPyg1NVWfffaZNm7cqEsvvVQ9e/YsdorQ+PHjNWTIEPXr108pKSlKSUlRly5dJEmhoaGaM2eOtm/frhdffFGvvfaapkyZUmqbHn74YT300EPatGmTunTpokGDBun48eOSpJSUFHXv3l2XXHKJNmzYoOTkZB05ckRDhgwpcoy5c+fKz89Pa9eu1UsvvaQpU6bov//9rzM+YsQIbdiwQQsXLtQ333wjy7J0zTXXOJOkzZs3q2fPnmrVqpW++eYbrVq1SgMHDlRhYWGR16hVq5bWrl2ryZMn65lnntGSJUuKtMOyLB06dEjR0dGy2+1l+ZXIbrerTp06ysnJ0QW01AgAgAtCXl6eNm7cqD59+hR5vk+fPlq9enU1tQqeyqPnMTVv3lzff/+9JGn58uXasmWLjh496vyj+bnnntOHH36o999/X3fddVeRuiEhIQoKClJubq7i4uKKxJ588knn/zds2FAPPfSQ3nvvPT3yyCPG9owaNUo33HCDJGnmzJlKTk7WrFmz9Mgjj2jmzJm69NJLNXHiRGf5119/XYmJifrxxx918cUXS5ISExM1ZcoU2Ww2NWvWTFu2bNGUKVN05513ateuXVq4cKG+/vprZ8L09ttvKzExUR9++KFuuukmTZ48WR06dNCMGTOcr3Nuh+Jz2rRpo6efflqS1LRpU02fPl1ffPGFevfu7SyTn5+v7OxsNWrUyHjOv1enTh2lpaXJsixu3QsAgBc5duyYCgsLFRsbW+T52NhYpaamVlOr4Kk8Ogn57R+6GzduVGZmpqKiooqUyc7O1u7du8t13Pfff19Tp07VTz/9pMzMTBUUFCgsLKzUep07d3b+v5+fnzp06KAdO3Y427d8+XKFhIScV2/37t3OJKRTp05F/njv3Lmznn/+eRUWFmrHjh3y8/NTx44dnfGoqCg1a9bM+TqbN2/WTTfdZGxnmzZtivwcHx+vo0ePFnnu3MhJedfbnCvPSAgAAN7p918y8sUjKsKjk5AdO3Y4v6l3OByKj48/bx2GJNWuXbvMx1yzZo3++Mc/6m9/+5v69u2r8PBwzZs3T88//3yF2njuQ+lwODRw4EA9++yz55WJj48v07FK+sP+tx/+oKCgUo/z+/08bDbbeXca8/X1lSQVFBSUqW3nnCtPZwQAgHeJjo6Wr6/veaMeR48ePW90BCiNx64JWbZsmbZs2eKc/nTppZcqNTVVfn5+atKkSZFHdHR0sccICAgoslZCOruou0GDBnriiSfUoUMHNW3aVD///HOZ2rRmzRrn/xcUFGjjxo1q3ry5s33btm1Tw4YNz2tfrVq1ij3GuZ+bNm0qX19ftWzZUgUFBVq7dq0zfvz4cf34449q0aKFpLOjHF988UWZ2mvi7++voKAgpaWllateWlqafH19SUIAAPAyAQEBat++/XnrSJcsWeKcJg6UlUckIbm5uUpNTdWhQ4f07bffauLEiRo8eLAGDBig2267TZLUq1cvde7cWddee60+//xz7du3T6tXr9aTTz6pDRs2FHvchg0b6vvvv9fOnTt17Ngx5efnq0mTJtq/f7/mzZun3bt366WXXtKCBQvK1M7//Oc/WrBggX744Qfdf//9Sk9P1+233y5Juv/++3XixAn96U9/0rp167Rnzx4tXrxYt99+e5FE6MCBAxo3bpx27typd999V9OmTdODDz4o6ez6jcGDB+vOO+/UqlWr9N133+nWW29V3bp1NXjwYEnSY489pvXr1+u+++7T999/rx9++EEzZ84scheusrDZbKpbt66OHTtW5rtd5ebmKi0tTYGBgSQhAAB4oXHjxum///2vXn/9de3YsUNjx47V/v37dc8991R30+BhPCIJSU5OVnx8vBo2bKh+/fpp+fLleumll/TRRx85pw3ZbDZ99tlnuvLKK3X77bfr4osv1h//+Eft27evxCHCO++8U82aNVOHDh1Up04dff311xo8eLDGjh2rUaNG6ZJLLtHq1av11FNPlamd//rXv/Tss8+qbdu2+uqrr/TRRx85R2ESEhL09ddfq7CwUH379lVSUpIefPBBhYeHF7n97W233abs7Gxdfvnluv/++zV69Ogii+pnz56t9u3ba8CAAercubMsy9Jnn33mnGJ18cUXa/Hixfruu+90+eWXq3Pnzvroo48qtJdKbGysfHx8tHPnzlI3hnQ4HNq5c6dsNluZ76YFAAA8y80336ypU6fqmWee0SWXXKIvv/xSn332mRo0aFDdTYOHsVmsIHbZvn371KhRI23atEmXXHJJhY/To0cPXXLJJZo6dWqltc1V53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgAAwFN49MJ0VL3IyEi1bt1a27Zt05o1axQdHa06derIz89PBQUFSktL07Fjx+Tj40MCAgAAgDIhCUGpIiMj1alTJx05ckSHDh0qslg9KChIF110keLi4io05QsAAAAXHqZjoVwsy1JBQYEKCgrk5+cnPz8/FqEDAACgXEhCAAAAALiVR9wdCwAAAID3IAkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBb+VV3AwAANYtlWcrPz1dhYaF8fX3l7+8vm81W3c0CAHgRkhAAgCQpPz9fR44c0aFDh5Sdne18PigoSHXr1lVsbKz8/f2rsYUAAG9hsyzLqu5GAACq14kTJ7Rt2zY5HA5FR0erTp068vPzU0FBgdLS0nTs2DH5+PioVatWioyMrO7mAgA8XLWuCenRo4fGjBlT6ce1LEt33XWXIiMjZbPZtHnzZre+PgB4khMnTmjLli0KDw9Xp06d1KpVK8XExCgyMlIxMTFq1aqVOnXqpPDwcG3ZskUnTpyo7iYDqEYzZsxQo0aNFBgYqPbt2+urr76qlDqllamMY6DmKPd0rBEjRmju3LlnK/v5KTIyUm3atNGf/vQnjRgxQj4+Fc9revTooUsuuURTp06t8DEkKTk5WXPmzNGKFSvUuHFjRUdHu3S8ym7fl19+qX//+9/auHGjUlJStGDBAl177bXnlZsxY4b+/e9/KyUlRa1atdLUqVN1xRVXnFeuffv2ys3NPe/5xYsXKyEhochzhw4d0l/+8hctWrRI2dnZuvjiizVr1iy1b9++XOfQ8NFPy1UeQM0U7CdNuaqWYqMjlZSUVGIfbrfblZSUpK1bt2rLli2KiIhwqb8HUDMkJSWVq/x7772nMWPGaMaMGeratateeeUV9e/fX9u3b1f9+vUrXKe0MpVxDNQsFfoXpF+/fkpJSdG+ffu0aNEiXXXVVXrwwQc1YMAAFRQUVHYby2337t2Kj49Xly5dFBcXJz+/mrX0JSsrS23bttX06dNLLHPug/TEE09o06ZNuuKKK9S/f3/t37//vLIbN27U1q1bz3v8PgFJT09X165d5e/vr0WLFmn79u16/vnnVbt27co+RQAeomtdPwX4Si2aNys1qfDx8VGzZs1kWVaxX3wA8H4vvPCCRo4cqTvuuEMtWrTQ1KlTlZiYqJkzZ7pUp7QylXEM1CwVSkLsdrvi4uJUt25dXXrppXr88cf10UcfadGiRZozZ46ks1OiJk+erMaNGysoKEht27bV+++/X+IxR4wYoZUrV+rFF1+UzWaTzWbTvn37lJycrG7duql27dqKiorSgAEDtHv3buNxRo8erf3798tms6lhw4aSzv7hf9tttykkJETx8fF6/vnnz6ubm5urBx54QDExMQoMDFS3bt20fv16Y/t+Ly0tTXFxcZo4caLzubVr1yogIECLFy+WJPXv31//+Mc/dP3115d4HlXxQXr22WeVmJio2bNn6/LLL1fDhg3Vs2dPXXTRRRU+JgDP1rtBgOpE15Hdbi9Tebvdrjp16ignJ0csKQQuLHl5edq4caP69OlT5Pk+ffpo9erVFa5TWpnKOAZqnkobS7/66qvVtm1bzZ8/X5L05JNPavbs2Zo5c6a2bdumsWPH6tZbb9XKlSuLrf/iiy+qc+fOuvPOO5WSkqKUlBQlJiYqKytL48aN0/r16/XFF1/Ix8dH1113nRwOR4nHeeaZZ1SvXj2lpKQ4k4iHH35Yy5cv14IFC7R48WKtWLFCGzduLFL3kUce0QcffKC5c+fq22+/VZMmTdS3b1+dOHGixPb9Xp06dfT6669rwoQJ2rBhgzIzM3XrrbfqvvvuO++DUZKq+iAtXLhQHTp00E033aSYmBi1a9dOr732WoWPB8CzhfhLMcE2xcTUKVe9OnXqqLCwkCQEuMAcO3ZMhYWFio2NLfJ8bGysUlNTK1yntDKVcQzUPJU6T6l58+b6/vvvlZWVpRdeeEHLli1T586dJUmNGzfWqlWr9Morr6h79+7n1Q0PD1dAQICCg4MVFxfnfP6GG24oUm7WrFmKiYnR9u3bi53HGB4ertDQUPn6+jqPk5mZqVmzZumNN95Q7969JUlz585VvXr1nPWysrI0c+ZMzZkzR/3795ckvfbaa1qyZIlmzZqlhx9+uNj2Feeaa67RnXfeqVtuuUWXXXaZAgMD9a9//assl1BS1X2Q9uzZo5kzZ2rcuHF6/PHHtW7dOj3wwAOy2+267bbbKnxcAJ4p0O/s3h/lnbJ6rjxJCHBh+v2+QZZllbqXUFnqlFamMo6BmqNSk5Bzv+jt27crJyfH+Qf/OXl5eWrXrl25jrl792499dRTWrNmjY4dO+YcAdm/f3+ZF1Pt3r1beXl5zoRIkiIjI9WsWbMiZfLz89W1a1fnc/7+/rr88su1Y8eOcrVZkp577jklJSXpf//7nzZs2KDAwMByH6OyP0gOh0MdOnRwThVr166dtm3bppkzZ5KEABegnIKzSUR51/KdK88/7MCFJTo6Wr6+vud9IXr06NHzvjgtT53SylTGMVDzVOqtTXbs2KFGjRo5E4VPP/1Umzdvdj62b99uXBdSnIEDB+r48eN67bXXtHbtWq1du1bS2YSmrMrybd25MpX1h/+ePXt0+PBhORwO/fzzz+WqW1UfpPj4eLVs2bLIcy1atCh2sTsA75eZLx09Y+no0bRy1UtLS5Ovry9JCHCBCQgIUPv27bVkyZIizy9ZskRdunSpcJ3SylTGMVDzVFoSsmzZMm3ZskU33HCDWrZsKbvdrv3796tJkyZFHsWtozgnICBAhYWFzp+PHz+uHTt26Mknn1TPnj3VokULpaenl7ttTZo0kb+/v9asWeN8Lj09XT/++GORMgEBAVq1apXzufz8fG3YsEEtWrQotn0lycvL0y233KKbb75Z//jHPzRy5EgdOXKkzO2tqg9S165dtXPnziLP/fjjj2rQoEGFjwnAsy35OU9px9LKfLer3NxcpaWlKTAwkCQEuACNGzdO//3vf/X6669rx44dGjt2rPbv36977rlHkjR9+nT17NmzXHXKUqYyjoGapULTsXJzc5WamqrCwkIdOXJEycnJmjRpkgYMGKDbbrtNvr6+Gj9+vMaOHSuHw6Fu3brp1KlTWr16tUJCQjR8+PBij9uwYUOtXbtW+/btU0hIiCIjIxUVFaVXX31V8fHx2r9/vx599NFytzckJEQjR47Uww8/rKioKMXGxuqJJ54ocjvKWrVq6d5779XDDz+syMhI1a9fX5MnT9aZM2c0cuTIEttX3C0tn3jiCWVkZOill15SSEiIFi1apJEjR+qTTz6RdHaNyk8//eQsv3fvXm3evNn5utLZD9KwYcPUoUMHde7cWa+++qrLH6SxY8eqS5cumjhxooYMGaJ169bp1Vdf1auvvlrhYwLwbF8fKtCNF9u144edatO65H1CpLNTOnfu3CmbzVbmu2kB8C4333yzjh8/rmeeeUYpKSlKSkrSZ5995vxC89ixY+fdxbS0OmUpUxnHQA1jldPw4cMtSZYky8/Pz6pTp47Vq1cv6/XXX7cKCwud5RwOh/Xiiy9azZo1s/z9/a06depYffv2tVauXOks0717d+vBBx90/rxz506rU6dOVlBQkCXJ2rt3r7VkyRKrRYsWlt1ut9q0aWOtWLHCkmQtWLCgxDZOmTLFatCgQZHnTp8+bd16661WcHCwFRsba02ePPm818/OzrZGjx5tRUdHW3a73eratau1bt06Y/t+b/ny5Zafn5/11VdfOZ/7+eefrfDwcGvGjBnOMueu4W8fw4cPL3Ks//znP1aDBg2sgIAA69JLLy1y7Srq448/tpKSkiy73W41b97cevXVV10+JgDPdvz4cWvFihXWd999Z+Xk5BRbJicnx/ruu++sFStWWMePH3dzCwEA3sZmWdzeBAAudCdOnNC2bdvkcDgUHR2tOnXqyM/PTwUFBUpLS9OxY8fk4+OjVq1aKTIysrqbCwDwcCQhAABJZ9fBHTlyRIcOHVJ2drbz+aCgINWtW1dxcXHlvp0vAADFIQkBABRhWZYKCgpUUFAgPz8/+fn5sQgdAFCpSEIAAAAAuFWl7hMCAAAAAKUhCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFv5VXcDAAA1i2VZys/PV2FhoXx9feXv7y+bzVbdzQIAeBGSEACAJCk/P19HjhzRoUOHlJ2d7Xw+KChIdevWVWxsrPz9/auxhQAAb1Gt07F69OihMWPGVPpxLcvSXXfdpcjISNlsNm3evLnSXwMAvMmJEye0Zs0a7d69WyEhIWrZsqXatGmjli1bKiQkRLt379aaNWt04sSJ6m4qAMALlDsJGTFihGw2m2w2m/z9/RUbG6vevXvr9ddfl8PhcKkxlZWUJCcna86cOfrkk0+UkpKipKQkl49Z2b788ksNHDhQCQkJstls+vDDD88rM2PGDDVq1EiBgYFq3769vvrqq2KP1b59eyUlJZ33OHz48HllZ86cqTZt2igsLExhYWHq3LmzFi1aVNmnB8CDnDhxQlu2bFF4eLg6deqkVq1aKSYmRpGRkYqJiVGrVq3UqVMnhYeHa8uWLSQiwAWurH+flLdOaWUq4xioOSo0Hatfv36aPXu2CgsLdeTIESUnJ+vBBx/U+++/r4ULF8rPr3pnee3evVvx8fHq0qVLiWXy8vIUEBDgxlYVlZWVpbZt2+rPf/6zbrjhhvPi7733nsaMGaMZM2aoa9eueuWVV9S/f39t375d9evXL1J248aNZX7devXq6V//+peaNGkiSZo7d64GDx6sTZs2qVWrVmU+TsNHPy1zWQA1V7CfNOWqWoqNjlRSUpJ8fIr/bsputyspKUlbt27Vli1bFBERUWJZAJ6jvF/Ulufvk/LUKa1MZRwDNUuF/gWx2+2Ki4tT3bp1demll+rxxx/XRx99pEWLFmnOnDmSzk6Jmjx5sho3bqygoCC1bdtW77//fonHHDFihFauXKkXX3zROdKyb98+JScnq1u3bqpdu7aioqI0YMAA7d6923ic0aNHa//+/bLZbGrYsKGks6Mso0aN0rhx4xQdHa3evXuXqZ1ZWVm67bbbFBISovj4eD3//PPGEZu0tDTFxcVp4sSJzufWrl2rgIAALV682Plc//799Y9//EPXX399scd54YUXNHLkSN1xxx1q0aKFpk6dqsTERM2cObPEcy+LgQMH6pprrtHFF1+siy++WP/85z8VEhKiNWvWuHRcAJ6pa10/BfhKLZo3KzWp8PHxUbNmzWRZlnJzc93UQgA1SUX+PilLndLKVMYxULNU2tdYV199tdq2bav58+dLkp588knNnj1bM2fO1LZt2zR27FjdeuutWrlyZbH1X3zxRXXu3Fl33nmnUlJSlJKSosTERGVlZWncuHFav369vvjiC/n4+Oi6664rcerXiy++qGeeeUb16tVTSkqK1q9f74zNnTtXfn5++vrrr/XKK6+UqZ0PP/ywli9frgULFmjx4sVasWKFceShTp06ev311zVhwgRt2LBBmZmZuvXWW3XfffepT58+ZbqWeXl52rhx43nl+/Tpo9WrV5fpGGVRWFioefPmKSsrS507d6604wLwHL0bBKhOdB3Z7fYylbfb7apTp45ycnJkWVYVtw5ATVKRv0/KUqe0MpVxDNQ8lTpvqnnz5vr++++VlZWlF154QcuWLXP+cdu4cWOtWrVKr7zyirp3735e3fDwcAUEBCg4OFhxcXHO538/VWnWrFmKiYnR9u3bix1CDA8PV2hoqHx9fYscR5KaNGmiyZMnO38urZ3t27fXrFmz9MYbbzhHTubOnat69eoZr8M111yjO++8U7fccosuu+wyBQYG6l//+pexzm8dO3ZMhYWFio2NLfJ8bGysUlNTy3yckmzZskWdO3dWTk6OQkJCtGDBArVs2dLl4wLwLCH+UkywTTExdcpVr06dOkpLS5NlWdy6F7iAVOTvk7LUKa1MZRwDNU+lJiHn/kHavn27cnJynH+4n5OXl6d27dqV65i7d+/WU089pTVr1ujYsWPOEZD9+/eXex5jhw4divxcWjt3796tvLy8IqMEkZGRatasWamv9dxzzykpKUn/+9//tGHDBgUGBparrZLO+8e9sv7Bb9asmTZv3qyTJ0/qgw8+0PDhw7Vy5UoSEeACE+h3tj8p7zq+c+UZCQEuTBX5+6QsdUorUxnHQM1RqUnIjh071KhRI2ei8Omnn6pu3bpFypR1yP+cgQMHKjExUa+99poSEhLkcDiUlJSkvLy8crevVq1aRX4urZ3Hjx8v92ucs2fPHh0+fFgOh0M///yz2rRpU+a60dHR8vX1PS9zP3r06HkZfkUEBAQ4F6Z36NBB69ev14svvuicogbgwpBTcDaJKCgoKFe9c+X5hx24sFTk75Oy1CmtTGUcAzVPpa0JWbZsmbZs2aIbbrhBLVu2lN1u1/79+9WkSZMij8TExBKPERAQoMLCQufPx48f144dO/Tkk0+qZ8+eatGihdLT0yuryaW2s0mTJvL39y+yaDs9PV0//vij8bh5eXm65ZZbdPPNN+sf//iHRo4cqSNHjpS5XQEBAWrfvr2WLFlS5PklS5YY7/hVUSwyBS5MmfnS0TOWjh5NK1e9tLQ0+fr6koQAF5iK/H1SljqllamMY6DmqdBISG5urlJTU4vconfSpEkaMGCAbrvtNvn6+mr8+PEaO3asHA6HunXrplOnTmn16tUKCQnR8OHDiz1uw4YNtXbtWu3bt08hISGKjIxUVFSUXn31VcXHx2v//v169NFHXTrh3woNDS21nSNHjtTDDz+sqKgoxcbG6oknnij1DjJPPPGEMjIy9NJLLykkJESLFi3SyJEj9cknnzjLZGZm6qeffnL+vHfvXm3evFmRkZGqX7++xo0bp2HDhqlDhw7q3LmzXn31Ve3fv1/33HOPS+f8+OOPq3///kpMTNTp06c1b948rVixQsnJyS4dF4BnWvJznuoEpyk3N7dMI9W5ublKS0tTrVq1SEKAC1Bpf59Mnz5dCxYs0BdffFHmOmUpUxnHQM1SoSQkOTlZ8fHx8vPzU0REhNq2bauXXnpJw4cPd/6B/ve//10xMTGaNGmS9uzZo9q1aztv51uS8ePHa/jw4WrZsqWys7O1d+9ezZs3Tw888ICSkpLUrFkzvfTSS+rRo0eFTrY4pbXz3//+tzIzMzVo0CCFhobqoYceUkZGRonHW7FihaZOnarly5crLCxMkvTmm2+qTZs2mjlzpu69915J0oYNG3TVVVc5640bN06SNHz4cM2ZM0c333yzjh8/rmeeeca54eJnn32mBg0auHS+R44c0bBhw5SSkqLw8HC1adNGycnJ562LAXBh+PpQgW682K4dP+xUm9Yl7xMinZ3CunPnTtlstnJPrQXgHUr7++TYsWPnbaVQlr9pSitTGcdAzWKzWFlYbj169NAll1yiqVOnVndTAMBl53ZMj4iIULNmzYpNMHJzc7Vz506lp6erdevWioyMrIaWAgC8RfVubQ4AqHaRkZFq3bq1tm3bpjVr1ig6Olp16tSRn5+fCgoKlJaWpmPHjsnHx4cEBABQKUhCAACKjIxUp06ddOTIER06dEhpab8uVg8KCtJFF12kuLi4ct/OFwCA4jAdCwBQhGVZKigoUEFBgfz8/OTn58cidABApSIJAQAAAOBWlbZPCAAAAACUBUkIAAAAALciCQEAAADgViQhAAAAANyKJAQAAACAW5GEAAAAAHArkhAAAAAAbkUSAgAAAMCtSEIAAAAAuBVJCAAAAAC3IgkBAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCu/6m4AAAAAUFEOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JQ83kESAgAAAI91+PBhJSYmVncz8DsHDhxQvXr1SoyThAAAAMBjhYaGSpL27l2i0NBa1dwanD6dpUaNejt/LyUhCQEAAIDHOjcFKzS0lsLCQqq5NTintKlxLEwHAAAA4FYkIQAAAADciiQEAAAAgFuRhAAAAABwK5IQAAAAwAUjRz6pgIA2Cghoo6Cgdrrooj4aNervSk8/5ZbXf+aZGerQ4Sa3vFZl4e5YAAAAgIv69u2q1177uwoKCrRjxx7ddddfdfLkab311uTqblqNxEgIAAAA4KKAgADFxUWrXr049e7dRTfd1E9Ll37jjM+d+6Fatx6s0NAOSkoapJdfnueM5eXl68EHJ6p+/asVGtpBTZv207PP/tcZz8g4rXvv/Zvq1u2uqKjO6tNnpL77bqck6Y03PtI//vGyvv9+p3M05o03PnLfiVcQIyEAAABAJdqz56A+//xr+fuf/VN71qz39cwzMzV16mO65JLm2rz5B917798UHByk224brOnT39Ynn6zQO+/8W4mJ8Tp4MFUHDqRKkizL0uDBoxQREaaFC2coLCxE//3v/6lfvzu1bdvHuummvtq2bZc+//xrJSe/JkkKD6/5+6WQhAAAAAAu+uyzLxUR0VGFhQ7l5ORKkv7974clSRMnvqpnn31I113XS5LUqFE97dixR//97/u67bbBOnAgVU2a1FfXrpfKZrOpQYME53FXrFinrVt36dChFbLbAyRJzz47XgsXLtf8+Ut0xx03qlatYPn5+SkuLtrNZ11xJCEAAACAi3r0uEzTpj2pM2dyNHv2fO3atU/33/8npaWd0IEDqbr77gm6996/OcsXFBQ6Ryxuu22Q+ve/W61aDVLfvl11zTVXqnfvLpKkb7/drszMM4qLu6LI62Vn52r37gPuO8FKRhICAAAAuCg4OEhNmtSXJE2Z8qh69x6pv//9Zd13358kSTNnPq3LL29dpI6v79nl2e3atdSPPy5ScvIqLVu2RkOHPqyrr+6o9957QQ6Hpfj4aC1Z8vp5r1m7dmgVn1XVIQkBAAAAKtmTT96jgQPv0913D1HdujHau/eghg79Q4nlw8JCNGRIPw0Z0k/XX99bAwbcqxMnMtSuXQulph6Xn5+vGjasW2zdgAB/FRYWVtWpVAmSEAAAAKCSde9+mVq2vEjPPvtfPfXUvRo79lmFhdVS377dlJubp2+/3a709FMaM+Y2vfjim4qLi1bbts3l42PTBx8sVlxctGrXDlXPnp3UqVMb3XjjGE2cOEYXX9xQKSlpWrToKw0efLXat2+lBg0StG/fIW3e/IPq1YtVaGgt5/qRmopb9AIAAABV4MEHh2nWrA/Uu3dXvfzy03rjjYW69NIb1KvX7XrjjY+cIxshIUF67rnZ6tz5j+rSZah+/vmwPvroP/Lx8ZHNZtPChTN0xRXtddddT6tVq4G69dZH9PPPhxUTEyVJuv763urTp6v69BmphITueu+9RdV52mVisyzLqu5GAAAAABVx6tQphYeH69ix1QoLq/m3pvV2p05lKjq6izIyMhQWFlZiOUZCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbsU8IAAAAPNa5G72ePp1VzS2B9OvvobQb8JKEAAAAwGOdPn1aktSoUe9qbgl+6/Tp0woPDy8xzj4hAAAA8FgOh0OHDx9WaGiobDZbdTfngmdZlk6fPq2EhAT5+JS88oMkBAAAAIBbsTAdAAAAgFuRhAAAAABwK5IQAAAAAG5FEgIAAADArUhCAAAAALgVSQgAAAAAtyIJAQAAAOBWJCEAAAAA3IokBAAAAIBbkYQAAAAAcCuSEAAAAABuRRICAAAAwK3+H9wGuSBGjivaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "interactive_phaseogram(phaseogr, phases, times, df=0, dfdot=0)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Second: overplot a line with a pulse frequency solution, then update the full phaseogram\n", + "\n", + "This interactive phaseogram is implemented in `HENDRICS`, in the script `HENphaseogram`" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "class InteractivePhaseogram(object):\n", + " def __init__(self, ev_times, freq, nph=128, nt=128, fdot=0, fddot=0):\n", + " import matplotlib.pyplot as plt\n", + " from matplotlib.widgets import Slider, Button, RadioButtons\n", + "\n", + " self.df=0\n", + " self.dfdot=0\n", + " \n", + " self.freq = freq\n", + " self.fdot = fdot\n", + " self.nt = nt\n", + " self.nph = nph\n", + " self.ev_times = ev_times\n", + "\n", + " self.phaseogr, phases, times, additional_info = \\\n", + " phaseogram(ev_times, freq, return_plot=True, nph=nph, nt=nt, \n", + " fdot=fdot, fddot=fddot, plot=False)\n", + " self.phases, self.times = phases, times\n", + " self.fig, ax = plt.subplots()\n", + " plt.subplots_adjust(left=0.25, bottom=0.30)\n", + " tseg = np.median(np.diff(times))\n", + " tobs = tseg * nt\n", + " delta_df_start = 2 / tobs\n", + " self.df_order_of_mag = int(np.log10(delta_df_start))\n", + " delta_df = delta_df_start / 10 ** self.df_order_of_mag\n", + "\n", + " delta_dfdot_start = 2 / tobs ** 2\n", + " self.dfdot_order_of_mag = int(np.log10(delta_dfdot_start))\n", + " delta_dfdot = delta_dfdot_start / 10 ** self.dfdot_order_of_mag\n", + "\n", + " self.pcolor = plt.pcolormesh(phases, times, self.phaseogr.T, cmap='magma')\n", + " self.l1, = plt.plot(np.zeros_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + " self.l2, = plt.plot(np.ones_like(times), times, zorder=10, lw=2, color='w')\n", + " self.l3, = plt.plot(np.ones_like(times) + 0.5, times, zorder=10, lw=2, color='w')\n", + "\n", + " plt.xlabel('Phase')\n", + " plt.ylabel('Time')\n", + " plt.colorbar()\n", + "\n", + " axcolor = 'lightgoldenrodyellow'\n", + " self.axfreq = plt.axes([0.25, 0.1, 0.5, 0.03], facecolor=axcolor)\n", + " self.axfdot = plt.axes([0.25, 0.15, 0.5, 0.03], facecolor=axcolor)\n", + " self.axpepoch = plt.axes([0.25, 0.2, 0.5, 0.03], facecolor=axcolor)\n", + "\n", + " self.sfreq = Slider(self.axfreq, 'Delta freq x$10^{}$'.format(self.df_order_of_mag), \n", + " -delta_df, delta_df, valinit=self.df)\n", + " self.sfdot = Slider(self.axfdot, 'Delta fdot x$10^{}$'.format(self.dfdot_order_of_mag), \n", + " -delta_dfdot, delta_dfdot, valinit=self.dfdot)\n", + " self.spepoch = Slider(self.axpepoch, 'Delta pepoch', \n", + " 0, times[-1] - times[0], valinit=0)\n", + "\n", + " self.sfreq.on_changed(self.update)\n", + " self.sfdot.on_changed(self.update)\n", + " self.spepoch.on_changed(self.update)\n", + "\n", + " self.resetax = plt.axes([0.8, 0.020, 0.1, 0.04])\n", + " self.button = Button(self.resetax, 'Reset', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.recalcax = plt.axes([0.6, 0.020, 0.1, 0.04])\n", + " self.button_recalc = Button(self.recalcax, 'Recalculate', color=axcolor, hovercolor='0.975')\n", + "\n", + " self.button.on_clicked(self.reset)\n", + " self.button_recalc.on_clicked(self.recalculate)\n", + "\n", + " plt.show()\n", + "\n", + " def update(self, val):\n", + " fdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " freq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + " delay_fun = lambda times: (times - pepoch) * freq + \\\n", + " 0.5 * (times - pepoch) ** 2 * fdot\n", + " self.l1.set_xdata(0.5 + delay_fun(self.times - self.times[0]))\n", + " self.l2.set_xdata(1 + delay_fun(self.times - self.times[0]))\n", + " self.l3.set_xdata(1.5 + delay_fun(self.times - self.times[0]))\n", + "\n", + " self.fig.canvas.draw_idle()\n", + "\n", + " def recalculate(self, event):\n", + " dfdot = self.sfdot.val * 10 ** self.dfdot_order_of_mag\n", + " dfreq = self.sfreq.val * 10 ** self.df_order_of_mag\n", + " pepoch = self.spepoch.val + self.times[0]\n", + "\n", + " self.fdot = self.fdot - dfdot\n", + " self.freq = self.freq - dfreq\n", + "\n", + " self.phaseogr, _, _, _ = \\\n", + " phaseogram(self.ev_times, self.freq, fdot=self.fdot, plot=False, \n", + " nph=self.nph, nt=self.nt, pepoch=pepoch)\n", + " \n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + "\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " \n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + "\n", + " self.fig.canvas.draw()\n", + "\n", + " def reset(self, event):\n", + " self.sfreq.reset()\n", + " self.sfdot.reset()\n", + " self.spepoch.reset()\n", + " self.pcolor.set_array(self.phaseogr.T.ravel())\n", + " self.l1.set_xdata(0.5)\n", + " self.l2.set_xdata(1)\n", + " self.l3.set_xdata(1.5)\n", + " \n", + " def get_values(self):\n", + " return self.freq, self.fdot" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAyEAAAIiCAYAAADfDcfpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAACvoElEQVR4nOzdeXyU1d3//9eQbZKQTBbIJiEEiQEEEVEhaAVUNuuCeheplkrr7VK3UvV2vaux3xbU+1Zppbfbz4rWhdqqWKuCWCFqWaWAiBhRwiZZWLKQkMl6/f74XDM4ggsEApm8nz7mMcx1neuczznXmcucuZbjcRzHQUREREREpJ10OdIBiIiIiIhI56JBiIiIiIiItCsNQkREREREpF1pECIiIiIiIu1KgxAREREREWlXGoSIiIiIiEi70iBERERERETalQYhIiIiIiLSrjQIERERERGRdqVBiIiIiIiItCsNQo4Sjz76KCeccAKJiYkkJiZSUFDAW2+9FVzvOA6FhYVkZWURGxvLyJEjWbt2bUgeDQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqvaoooiIiIgIoEHIUaNHjx7cd999fPjhh3z44YeceeaZXHDBBcGBxgMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cH85g6dSqvvvoqs2fP5oMPPqC2tpZzzz2XlpaWYJpLL72UVatWMXfuXObOncuqVauYPHlyu9dXRERERDovj+M4zpEOQvYvJSWF//mf/+HnP/85WVlZTJ06ldtuuw2wsx7p6encf//9XH311VRXV9O9e3f+/Oc/c8kllwCwbds2srOzefPNNxk7dizr1q2jf//+LFmyhKFDhwKwZMkSCgoK+PTTT8nPzz9idRURERGRziPySAcg+2ppaeGvf/0rdXV1FBQUUFJSQllZGWPGjAmmiYmJYcSIESxatIirr76aFStW0NTUFJImKyuLAQMGsGjRIsaOHcvixYvx+XzBAQjAsGHD8Pl8LFq06BsHIQ0NDTQ0NAQ/t7a2smvXLlJTU/F4PIehBURERKSjcRyH3bt3k5WVRZcuR+ZiG7/fT2NjY5vziY6Oxuv1HoKI5JtoEHIUWbNmDQUFBfj9frp27cqrr75K//79WbRoEQDp6ekh6dPT09m0aRMAZWVlREdHk5ycvE+asrKyYJq0tLR9yk1LSwum2Z/p06dz7733tqluEn62bNlCjx492Lp1K9nZ2Uc6HDlC1A8E1A8kVKA/tDe/309u7jGUle1qc14ZGRmUlJRoIHIYaRByFMnPz2fVqlVUVVXx8ssvc/nll1NUVBRc//WzDo7jfOeZiK+n2V/678rnjjvu4Kabbgp+rq6upmfPnhRPvpCdm2xglHdqJQAvz+sFwA8HbgTg4UXHAjA6vRaAU8fsAOB/n8+x5Rk1IWW9sDERgMRoi+euyZbP66/bwayqcf+/rGR4mwHYtCcquOzq5zIAqJy+NCTtS2ut7A93tAJwcU+7ZybNWw/A+9sthuomT0jsD31qX5fjEmMA+OWJoTf9f1GR7G4X7eZjsVycbXXsnrAHgMc+sbhiIiz/mka7InJTnZ1tuuN4e29oiQDg5S3xlm+jxdsn0dqgpsnKPTvdb+ubrbzimohgTDnxrW7etk2ShUa538quqLf1Z2fau7eLm95tx0C6gBcqPwDg3PjTiI9IACCuSwJrxv7M1q+3ug1KsuCO774TgH9usX4S2E+BthmYZOWtqbL4Am366nrb3zFdrG3y3bbzxdivW8t2JFm8EYG26xJSbkyXvfdBLdtl/wNJ91raU7tVAfBRpS+k7MtyrQ8fO9D+5/Wbv1vfzUtw3LYLtGWEG5OVVbw7KuRzoB89+llXAH5+rH0eNGD/A/2dW23/bq1KcPOLA+CEJLvfK/CdmH7pBgAqi20n/vtLa1NfVGNI/r972+IO9C+Auwstry0vWl/+1zb7MeLDnVb3uwrsx4zaWuvbK8q7WyxuXzqje11IbBf02wzA0pIsUqKsnplxsSw64xprMx0PdDxAxwPofMeDPS0N/Hz1IyQkJOy3fodbY2MjZWW72Fgym8TEuIPOp6ZmD71yJ9HY2KhByGGkQchRJDo6mj59+gBw8skns3z5cn7/+98H7wMpKysjMzMzmL6ioiJ4diQjI4PGxkYqKytDzoZUVFQwfPjwYJry8vJ9yt2+ffs+Z1m+KiYmhpiYmH2WJ0RH0RBpyxNj7EAYG+F+jrbPMV3syxsfaQfkRK8t90bY8q6Rey/zAoh208d08YSkj3PzbYiIYH/iIprcfKODyxK7xgLQHBUdkjZQdpT7P6a4iBY3ltaQ9f4WT0jsUZ7IkDolfC3feLctmloDdY8OqWNCVHPI9oE6Rrv/Y41y/x/R1f1WRnoiQtokEK/XbYOGlkC5tn2TE+Wu3/u1jo0I3cbrNt/esltD2iDwR0egHQPpArq4bWAxBdZ5gm0RaLu4iC4hbRQbXB74oyCwvMX9HBGSPpCP122b+MjAPvKE5OeNCMQbEVKuN2LvHx2BvGLdP1C6uvsp0FcDZXf9Wl8O7KfAdsE2ctt3b1nRIZ8D/SiqS4wbu30OfCe+rtGtc3wwrsB3w/6YCOz/QFyB/hz4TsS7bfL179xX911inOWV4P6BEqh79Nfa3fO1vAN1jY9sDokt4SvpPG4/8Hg8+7Shjgc6Hlh+Oh50luNBwJG+VDsxMY7ExPgjGoN8Nz0d6yjmOA4NDQ3k5uaSkZHB/Pnzg+saGxspKioKDjCGDBlCVFRUSJrS0lI+/vjjYJqCggKqq6tZtmxZMM3SpUuprq4OphERERHp0Fpb2/6Sw05nQo4Sd955J+PHjyc7O5vdu3cze/ZsFi5cyNy5c/F4PEydOpVp06aRl5dHXl4e06ZNIy4ujksvvRQAn8/HFVdcwc0330xqaiopKSnccsstDBw4kLPPPhuAfv36MW7cOK688koef/xxAK666irOPfdcPRlLREREwkNbBxIahLQLDUKOEuXl5UyePJnS0lJ8Ph8nnHACc+fOZfTo0QDceuut1NfXc+2111JZWcnQoUN5++23Q667fPjhh4mMjGTixInU19dz1llnMWvWLCK+csnC888/z4033hh8itb555/PzJkz27eyIiIiItKpaRBylHjqqae+db3H46GwsJDCwsJvTOP1ennkkUd45JFHvjFNSkoKzz333MGGKSIiInJ0cxx7tWV7Oew0CBERERGR8NHqtPFyLA1C2oMGISIiIiISPnRPSIegp2OJiIiIiEi70pkQEREREQkfOhPSIWgQIgettiKGqgabpOi1ub0AGNP7SwDmrbHPgRls/e5sv9Nm5QJwYbbNQlu2xyYQO66bzU47tJvNKjuih02quOB1m3F3Ybl11ZkvWfqGv30EwAOv5wEwNsdmXi4pyQrG95MzbLbdCdnZAAxKtTIHJ9kssf0SLKbZm2zCpXyf1aW42nFjsfd1NTbh0TV5NrFWfnIFAC8V9wRgVLrlW9Vo26+ssvfFVTY78IQeNoHTZztsEskcqyK5cQ1u+RbHBdkxbls1h7RZID21oROz5SdafIGJuJaUWtuMy6wPpin1WyyX528DYFlpmrsm0t3WJpSavsFm1x2XbG3VNzE0hoBfZowAYHzWrq9M5ubwnNvug5Ns8qu5pVbuwgpbPijZYly8M8aN0WY8Toq29M+UWDnvbwrkU+umt8qvrLL34uqQcJiUY3Udlmb5JXa12aK37PAF01w3xOoWmP133iab8HN1pdV9Qg/LIyvNMv/NnOMAuDrf+uDqnSkAXHyl9bHfPmh9sldCrVv/2JCYHltvMxoP7W75D3/vHADqrvgTAEs/PQaAdbttO787j9oot/ylVgwF3W3FrSfavvvVMzaR6aBk2+/J0ba+zG/998Y5tn5clu27ysa9++7jx6zv9s63mY4ndCsBoN+G7iFtc0yB9cnK2RFuTLVunWJD6uRNtjJOSN9BlDtBnNOKjgfoeKDjQec+HuxuauSooEFIh6BBiIiIiIiED6eNgxBHg5D2oHtCRERERESkXelMiIiIiIiEDY/TiqcNZzPasq18fxqEiIiIiEj40D0hHYIGISIiIiISPlqdtk04qMkK24XuCRERERERkXalMyEiIiIiEj50OVaHoEGIiIiIiIQPDUI6BF2OJSIiIiIi7UpnQkREREQkfDhO2yYcdHRjenvQIETaZFBeGQBJm1MAuK4oE4BnJ5YAUPlBHwAW74wFYFRaLQAbd3cFID+5CoCPyrsBMDilGoBlpWm2fWMEAOm2OY9cWQ/Apto8AMrqWwC4aXF3AIZ23xvbpBxb542w99U7LcbZG+3gMqW3vSdFewCY0LMCgMeLreyqJstn9S7b/tFzNgMwb00vAPy2mLe2Wb658c0AVDfacn8Xi7WqMQGAhRXRVudEK7eyyeqW74sIKa+kzir7l422oJc1FZ/urnXTd+WryvzekHwfW//Vr7UdhF/bEmgYSzMiwz6V14dkxdzKLVZm/DEA/LS/1fmJNT0BKK4OtGkKuS1diAJaHQ9l9daGZfUx7nujm66L2wb2Pi6rya1rFAArq6yuveLcfRHld9NbW22yKjOhhwXq7WJ1zY23dJPWrgBgzgknApCaUgfAupq9bVRWb2UE2nvG1s8AeLy/1XFBRVc3VmujuyfY+j+8aX1scJKV/dsHM9y2sTaY9YXt93tGfQ7A7BXHAnDbwO0ANDTbfrgx5z0A0mPtu5BkVSPTa/2lr6/G4twT66YLPUG9uTIRgN//wr5Tf5rdC4D/uM3i+sn1cQAM7W77oNRv5U7M3xzMY8sOHwCLVvYAYPjgrQD4W6xNGhptm18+mgXAuEzbfz2TLbapfVtC0re4+/uzHcmkt3YJ/o9ExwMdD3Q86NzHg7rmBo4KuhyrQ9DlWCIiIiISPgKP6G3L6wB9+eWX/OQnPyE1NZW4uDhOPPFEVqxYEVzvOA6FhYVkZWURGxvLyJEjWbt27aGsdYejQYiIiIiIyEGqrKzktNNOIyoqirfeeotPPvmEBx98kKSkpGCaBx54gIceeoiZM2eyfPlyMjIyGD16NLt37z5ygR9huhxLRERERMJHO1+Odf/995Odnc3TTz8dXNarV6/gvx3HYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx98rB2YzoSIiIiISPhwWvcORA7m5d7UXlNTE/JqaNj/PS9///vfOfnkk/nRj35EWloagwcP5sknnwyuLykpoaysjDFjxgSXxcTEMGLECBYtWnR42+IopkGIiIiIiIQNT2trm18A2dnZ+Hy+4Gv69On7LW/Dhg08+uij5OXlMW/ePK655hpuvPFGnn32WQDKyuyhHenp6SHbpaenB9d1RrocS0RERETka7Zs2UJiYmLwc0xMzH7Ttba2cvLJJzNt2jQABg8ezNq1a3n00Uf56U9/Gkzn8XhCtnMcZ59lnYnOhIiIiIhI+HCctr+AxMTEkNc3DUIyMzPp379/yLJ+/fqxebM9Gjkjwx7p/PWzHhUVFfucHelMNAgRERERkfDRlvtBDuKm9tNOO43i4uKQZZ999hk5OTkA5ObmkpGRwfz584PrGxsbKSoqYvjw4W2vbwely7FEREREJHy089OxfvWrXzF8+HCmTZvGxIkTWbZsGU888QRPPPEEYJdhTZ06lWnTppGXl0deXh7Tpk0jLi6OSy+99ODj7OA0CBEREREROUinnHIKr776KnfccQe/+c1vyM3NZcaMGVx22WXBNLfeeiv19fVce+21VFZWMnToUN5++20SEhKOYORHlsdxnAOfFlI6tZqaGnw+HyvOvJKWZvvyzPi0KwBTejcCsHhnLAAZXute3ojQXxVy4+sBOGVoKQDLl2aGrPe3RIS8l+yJBiApqsVdblcS/teGvwLwt4HnhaQHqGyyfxeVW9r02NCrD6sbLbZxmY1ujC0h73npuwC4a3G2m7fVYUS65VNcYzeTldVb+nyflVduVcMXbeuTokO/Yhne0DoUlVu+VY1NAFyTZ8sXVlidh3VrBmBlZZSVW23xvtf0NgC/zv4hAKt3Oe72NcGyHluf6MZsZWR6bdu5pbZ/RqbZ5xmf2fs1fbwAnHNqCQAPvpPntpXlNyjZYp+3DR5ZeRMpWT4aK6oo/nEhALO+SAmJudRvv3MUlVndxmbZ5/PztgDwPyt6hrTNuMx6t22sLQP7MGBEj3IANldavd4qtf7XK97q52/1uPVsDm7TK74OgNtXW173DWoJyXPxTh8A/RLqQ9omJsLyyoh1+3AXey/oXglAVYPtnzlbre/n2BsFqdXA3rZ//PqNAET0sM8fPGHXFCfFWKPm9LR+NmdVbkhcgf4R+O4EvjPp8XsAOOZYK6el3uLcU2PxBNp0Qo/ar+Tlfo/qvCF12Li7a0iZGbFWxn1r44C9+2tk5nYAVu+0/Xumu/+eWpXLLxZMJSEjkabtlaz6j98COh6Ajgeg4wF0vuOBv8XPPeunU11dHXJDd3sJ/H1S9a//IbFr7MHnU1tP0mn/dcTq0VnoTIiIiIiIhI92vhxLDo4GISIiIiISPlqdNg5CdJFQe9DTsUREREREpF3pTIiIiIiIhI+vzPVx0NvLYadBiIiIiIiED90T0iHociwREREREWlXOhMiIiIiIuHDcdp2c7kux2oXGoSIiIiISPjQ5VgdggYhIiIiIhI+NAjpEHRPiIiIiIiItCuP4+jCNzkwNTU1+Hw+7s27g6RoLwCj0ncBULYnFgBvRAsA/pYIAEr90QBM+mEJAMWLUwBIjPMD0C27DoB/f5QJQEmd5VPVZNuX1XsAmNKnHIDHi9Ps87FW7spdPre8veNqf6ttU5BaDcCCCkszOKk+JKZ+ibUAzN5k6322mF7xLSHrV1YmujFZvklR9tWZt63ZLdvSD+1ubbKp1tYP7RYaj7eLLS8qt19aMmIDdQxsb59z4xrd7bq4bRIZEv/indZGo9IC8Xd149j7lU6PtW3vnvAZABf/Kdtij44CIKdrpPvZtsnwtrh1tBgyvVa3dTWWrrja1j99ZQlR/zUDjy+FxooqXjvnIQB+kLMNgJs/OAaAsVm4de0SEs+FParcOlsd1u2ODin/h303AxDlfi7bZm2/sLS7xVHjcfPDbQPbx2mJ1o8qauKDbfDq1iQA+iZaXWIjrK5LdlidRqZZOwf6bOA90AczvY1um0S5MfpD1idHtbht2MhXBfK5b20cANfkWfk5ibsBOOZYi3nRyh7A3u9KYH/39dUAsKDcvisT861Nup9udfev94eUF/juBMod9IPtwXX+L+090I6zPk93Y7a2+HqfmpRbAUBDs7XRp9W2nbdLoM/WB/Me9NdfE52WxO6yGp4+ewag44GVreOBjgd7dZbjQW1zA2cu+iPV1dUkJibS3gJ/n1S9dQ+J8d6Dz6fOT9L4e49YPToLXY4lIiIiIuHDabVXW7aXw06DEBEREREJH61tfDpWW7aV7033hIiIiIiISLvSmRARERERCR96OlaHoEGIiIiIiIQPXY7VIWgQIiIiIiLho9Vp45kQDULag+4JERERERGRdqUzISIiIiISPnQ5VoegQYiIiIiIhJE2zhOCbkxvD7oc6ygxffp0TjnlFBISEkhLS2PChAkUFxeHpJkyZQoejyfkNWzYsJA0DQ0N3HDDDXTr1o34+HjOP/98tm7dGpKmsrKSyZMn4/P58Pl8TJ48maqqqsNdRRERERERQGdCjhpFRUVcd911nHLKKTQ3N3PXXXcxZswYPvnkE+Lj44Ppxo0bx9NPPx38HB0dHZLP1KlTef3115k9ezapqancfPPNnHvuuaxYsYKIiAgALr30UrZu3crcuXMBuOqqq5g8eTKvv/76AcU8OrOSHfWpACwoTwFgyimfA5BwTjoA7zxkaUf0KAdgxst9AHisfAUAy8fadj99qRcAz1++EQD/oh4AVDXFAlBc3QhAtT/G1rdYvo99ZtsPSrZTp5nepmB8i3da2uxu1QBk1HQFoNRvbVbmj3C3sc/5iZaHNyL0F5CyeothcHKN1bXCB8DSHbZ+Ui8PAPUtUQAkR1msVw0sA+CuxdkAjMtqBiApymL0Zlm587a1uOWG/iaQn1wFQHldnLudxXvfOkufFGn59Iq3+B44bz0Ad7+Zx9ed+ZS106QeXmBv++XGu7F0sTonRTe6beMN2T7J7WYZsRbDa3N78cMbIojzwZ6WLizZYYeSheU9rZwcy6fUb22SHmt165tobeDzNgB7902vKts3hasTAKhqygUg09scEl/AyDTLf85Wy398VkvIen9LRPDfF/aosjq5+9EbYWlvHFgBwObKRABK6mx9oK/2z94OwDZ3f5+UZvvzjysstuJqy2faqdYRfrMiE4ApveusnEhb/8Ro+xHgjU+tbc6caHV/9yXr48d1qwSgW7Zt9/Li3gAs3p4MwMT8zQC8VGzbXxZdAsAnW6y8U4aWhsTfL7EWgMIX9/aDXvHWflf8zGLJeMr6+mUDLa+X1/YC4Fa3D71eZHUcO3CjtcUJFtsXc+07tXqn9acz87YQ4X5fvBGt5MbZftHxQMcD0PEAOt/xYHdTI0cFXY7VIWgQcpQIDAgCnn76adLS0lixYgVnnHFGcHlMTAwZGRn7zaO6upqnnnqKP//5z5x99tkAPPfcc2RnZ/POO+8wduxY1q1bx9y5c1myZAlDhw4F4Mknn6SgoIDi4mLy8/MPUw1FRERE2oEGIR2CLsc6SlVX2y9CKSkpIcsXLlxIWloaxx13HFdeeSUVFRXBdStWrKCpqYkxY8YEl2VlZTFgwAAWLVoEwOLFi/H5fMEBCMCwYcPw+XzBNF/X0NBATU1NyEtERETkqBSYrLAtLznsNAg5CjmOw0033cTpp5/OgAEDgsvHjx/P888/z7vvvsuDDz7I8uXLOfPMM2losNO5ZWVlREdHk5ycHJJfeno6ZWVlwTRpaWn7lJmWlhZM83XTp08P3j/i8/nIzs4+VFUVERERkU5Il2Mdha6//no++ugjPvjgg5Dll1xySfDfAwYM4OSTTyYnJ4c33niDiy666BvzcxwHj8cT/PzVf39Tmq+64447uOmmm4Kfa2pqNBARERGRo5Mux+oQNAg5ytxwww38/e9/57333qNHjx7fmjYzM5OcnBzWr7ebxzIyMmhsbKSysjLkbEhFRQXDhw8PpikvL98nr+3bt5Oenr7fcmJiYoiJiTnYKomIiIi0Hw1COgRdjnWUcByH66+/nldeeYV3332X3Nzc79xm586dbNmyhcxMeyrGkCFDiIqKYv78+cE0paWlfPzxx8FBSEFBAdXV1SxbtiyYZunSpVRXVwfTiIiIiHRYuiekQ9CZkKPEddddxwsvvMBrr71GQkJC8P4Mn89HbGwstbW1FBYWcvHFF5OZmcnGjRu588476datGxdeeGEw7RVXXMHNN99MamoqKSkp3HLLLQwcODD4tKx+/foxbtw4rrzySh5//HHAHtF77rnn6slYIiIiItIuNAg5Sjz66KMAjBw5MmT5008/zZQpU4iIiGDNmjU8++yzVFVVkZmZyahRo/jLX/5CQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YF5wgBeP7557nxxhuDT9E6//zzmTlz5uGvpIiIiMjh5jj2asv2cthpEHKUcL6jw8fGxjJv3rzvzMfr9fLII4/wyCOPfGOalJQUnnvuuQOOUUREROSop3tCOgSP811//Yp8TU1NDT6fj8/Om8yxP7SZbVe8YLOzBmamDcza+tK7NttrbMT+u1lgBtaybTZLbWJXv23nzgZ73RVbAGjZaY8hvuM5m2F5Uk51SD6Ld9ostlVfmax16mk2W3Pxhu7A3ll5711ls7yPSA+9JWpsjsVcUWMz1AdmQs6Nt1l6KxutbmV+e4pYQWo9ACV1Nptwv8Q6d719XlcTGZJuzlZrI1+0bV/dGNomK3fvBGBKT5sbJjDbc2Cm58Ast/7W0KeYjUrfZfG6s1TP3rozuG5kajcAkqKtrMFJFsvKKoul3D4G2zPQjkVlVra/xWb5HZHhdetS6y6P4Aev3Y43zUd1aQ0f/ei3ITG9VZrgprc2D8xKPLTvlwBEp1g889/PAWBuqU3BPLSbpVu6IyLkc6bXduy63RZ3Wb0npE0C+yQwk3NgVmGA9zdl2bbu/vC6JwV/2n9zyPqAwGzMJ6TbzMfXfmDtevvxzSHpAn090Jaj0qwNA7M+r9nWPaTugX4RyN/fav3vvBE2S/Ef3Jmt+yU0hqwflGr7t+cAy/eB1y1dhnffWcGtDWz7pJi9X4aNu7uGpBk/wfbDn2b3AmBkps0GnZpifXjnLvsObKpJCNkuUJfAe37v7XR9cAZdUlJo2bkLz9/+G9DxAHQ8+CodDzrP8aCmsZHsF/5CdXU1iYmJtLfA3ydVT15LYtzBP1CnZk8DSVf+3xGrR2ehG9NFRERERKRd6XIsEREREQkfThufcOXo6VjtQYMQEREREQkfuiekQ9AgRERERETCRyttHIQcskjkW+ieEBERERERaVc6EyIiIiIi4UOXY3UIGoSIiIiISNhwWh2cNgwk2rKtfH+6HEtERERERNqVzoSIiIiISPhwHHu1ZXs57DQIEREREZHwoXtCOgQNQuSg/fvLdNKXlAPQO6segD+uyLWVSzMBSI5qAaBXQi0AG3d3Dclj0+YUAKoaogG4f013AEak23YTf5cBQOGg3QBMyqkGYPFOHwCDkyzforImAG4/fk8w7yZ/BABvlVra1bsszQXZtr7M7wGgINXNY2t6SGxFZX4Ayn1eABbUbAVgao7VraTOlv9lcx0AfROsbuMyGwHI8NpBLCnaPuf7Yq3OtbbcF23l94q3ZwGmx6ZanZKtjvetjQNgUIqln7et2c0n2s3Xlr+6JcX9bHHPGtoSrMOSiuaQOlU1RQEwKs3KKPwoxupWYW00u9zqeG+fNKvjHqtjoJ0DSv3RtLjH6C4eWFnV1W2zQBtbuZVNtg9WV1hwMz7tAcDtxze7+dvysnrbbmNdlFtHyzvQfxbvtLbrl2jbFaTWhcQT2McFqVav5Vsygutmb7RAh1rXIinKPv+/ZT0BeHDiegDeX2SxBfZrpdsfnjrzSwC27LAyfN4GADbVJABwSZ9tAHy2I9liLbZ8LxtYAuz9TgRi97faVbATV0wHoPbUSQAMTrLv0FlTrA6tO+3z4jct8OL3kwC4+WyL98F38mx5jbXhuExLv64m3tou2htsA28X62OBvnj3U70BuGvsZwBEpVhfLF4c+n0MtIU3wrbfWGf7M9C3+8dWgG1KY3METUusn+h4oOOBtZmOB53teBARcZT88a5BSIege0JERERERKRd6UyIiIiIiIQPnQnpEDQIEREREZHwoUFIh6BBiIiIiIiEDcdp4zwhejpWu9A9ISIiIiIi0q50JkREREREwocux+oQNAgRERERkfChQUiHoEGIiIiIiIQPDUI6BN0TIiIiIiIi7UpnQkREREQkfDiOvdqyvRx2GoTIQUvz1jPjX30A8Ld4AOib2BySZt3uaPdfXUOWz94UAcDQ7ikAXDV2vbs8D4BhaTvdfLsDkJVWDcDLa3u5yy0fb4T9IyM2CoCqxkB5EOW1dcXVLSFlb6yzsqee9jkAd7zTx93W0k3KsfcRGV4Arhlm6QatygXgmZJ6AO4bZOmSo+MBmLvNDlpztlos6bF2orHM77N8cyusvBXJbv6WLjfe70Zm5V2+pgyA23P6uG1R4dY53fKv/BSA8Yn5btxWbnW07YPVO1OCdV26w+r6m9NLAFj0xTFuG1jMGbG2vtyqxKT0HgBUNlndvF0s78U7bf9luG3qb+mCg5XX1ApXnGH7r99K235lVSwABam1tjzRtjv5Cusf/5iZ4K63/bqp1uems/WDUnfZ8hpLV1RR65ab4MZhcafH77G2yLR8HlufCECS2xYAVc22rTfC2ntwcg0AVz6eAcAjV+a5MVj6cZnWGKV+60txiY0A9I62mN74tCcAn9bY4bOqKcqNyfZjWb2VnXJlb6vjRotxYNZ2AKKirS1e4g77nLIxpM3O3LMDgLfm2L468+RNALS4+caNsriT3iOkzQLbB/bllGNrgm2weLv1uZI9VqeMWNuvn6xNszq435vFOy2PQHsG+mZGnGUaG2HtW9lo7f/uhzmc3RhBLBDhcfgfHQ90PNDxwI2pcx4P9rQ0cDRwWu3Vlu3l8NMgRERERETCh+4J6RB0T4iIiIiIiLQrnQkRERERkfChMyEdggYhIiIiIhI2dE9Ix6DLsUREREREDlJhYSEejyfklZGREVzvOA6FhYVkZWURGxvLyJEjWbt27RGM+OigQYiIiIiIhA/H2XtJ1sG8DuIRvccffzylpaXB15o1a4LrHnjgAR566CFmzpzJ8uXLycjIYPTo0ezevftQ1rrD0eVYIiIiIhI+Wt1XW7Y/QJGRkSFnPwIcx2HGjBncddddXHTRRQA888wzpKen88ILL3D11Ve3IdCOTWdCRERERCRsOK1Om18ANTU1Ia+Ghm+eB2X9+vVkZWWRm5vLpEmT2LBhAwAlJSWUlZUxZsyYYNqYmBhGjBjBokWLDm9DHOU0CBERERER+Zrs7Gx8Pl/wNX369P2mGzp0KM8++yzz5s3jySefpKysjOHDh7Nz507KymzC0fT09JBt0tPTg+s6K12OJSIiIiLh4xBdjrVlyxYSExODi2NiYvabfPz48cF/Dxw4kIKCAo499lieeeYZhg0bBoDH4wnZxnGcfZZ1NhqEyEHLzaxkR0MKAGMHbgSgbJt9We9dlQpATlf7gnkjWgC4rXgnAFOyegBQ1Wh5zX8/B4CNtX4AFpZ2B6BfYh0Atxb1AuDuIaUALCtNA2BlpZX3y/4VABxzbHUwvjeX5QLwhzM3A3DVfCuz2i1zzipbnx5rn/N9EQBkxNYC4G+1E4UjX/MC8Mxgy3veNp9btq0vKrej1ZTeFvuCijgAVu+qB+D245utvM1pbv5WXlFZk5vO8i+rt9O89+dZXLM3Wboyv233zK6FVteMERZHqcV5Sc94izPT2mB2SVqwDfItVLZV2D8W77QDaEOLnWpOirb1E3rUumV2tRgtJJbusPe7h2yzGIqzANhU6/AfLYFSHG59PQ+AqkZbGNjvAVWNVtA/Zsa6bWBt81apxTUyzXbKnK1RAHi7JAGwssq2u72fpZ9banEH+tOmmgQASv3Rbj2aQuoJMCLN6jTuGGufJRXWN6tu2gXA4CTL67KB2wF4eW0vAMbmWF9r8lu/CPSfC7It38HJVtYF4zYCsHF5ohublffOXRbzwCzLd8sOX0ibeLtYv5n9Rm7I8k/+Ee/W1eq0boG17dSLPwfg48es3Eyv9av6Fmvrn/bfvN9yLK1tU+q39q1qCt0/Z060HV36rO3fdTVWh+Qod3/2tLaaMS8ZgKRo2/7i478kOtLSRES00i/RYtLxQMcD0PHAYutcx4PdTY3w732KbH+O+2rL9kBiYmLIIOT7io+PZ+DAgaxfv54JEyYAUFZWRmZmZjBNRUXFPmdHOhtdjiUiIiIiYeNQ3RNysBoaGli3bh2ZmZnk5uaSkZHB/Pnzg+sbGxspKipi+PDhba1qh6YzISIiIiIiB+mWW27hvPPOo2fPnlRUVPDb3/6WmpoaLr/8cjweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLz3SoR9RGoSIiIiISPho50f0bt26lR//+Mfs2LGD7t27M2zYMJYsWUJOjl1aeuutt1JfX8+1115LZWUlQ4cO5e233yYhIaENQXZ8GoSIiIiISNhwWu3Vlu0PxOzZs791vcfjobCwkMLCwoMPKgxpECIiIiIi4eMITFYoB043pouIiIiISLvSmRARERERCRvtfTmWHBwNQkREREQkfDi07ZKqtj2hV74nXY4lIiIiIiLtSmdCRERERCRsOI692rK9HH4ahMhBW1qSxYhe2wAo25YIQEZWDQAPdvUD8PaGY0K2eXygPRN7xqctANw+oBqABeUpAFyQbd/8SUO+sHT/6gPAIFvNA6uybH1OLQCPfW7LN9alA7B6WWKwrMIT6iyWZb0BGJFhea/eZe9Ld0QAMC6zEYB1u6MB8HkbLIO6eACm5mQCkJW22fJJT7Z8Kj0hdfi02soen7kbAG9EV7euTQBMH1IBwL2rUt06RQEwOMnKL/XHuO9WvL+lGYDZ5aUAbPqvngC88NcWvsobYeecpyx165P2lXVdrK6PfWYNOCnHYpu9qWtIHj2Tbb+lV9jyTG+jW1drk4oaa4tNtY4bu4do9zxqXCT8+lRrm7hE2+7Hc3q4OYc+A31U2h63TaycsVktbp2tLW4buB2A8ro4tw2sTeaWxgJwdb61YbXbVut22/LBSbUh5dx4Ylnw389+Yu22qcZiuW+TdZr3x1rdrppvsU5ptL5a0L0SgNdKrK/1S6gHICk60m0bvxuzbT/7jdyQNgvIiLPtEtKtPy34xAfA+KxdACyssO1/d/F6ANZ8aDsu0I9+2d/qmppi/Xje21aP/OQqAJbssHhGplm5T6yx9b3irU2Hpe0MxnJC+g57J1TXrhbbmy9a3X/Y1/bjy2t7AfDYRuu7Z55s+/0PE6ztdmyx/vDgst7c1hiJD2hsjuAHOToe6Hig48FX2yygsxwPGlr9HA10T0jHoEGIiIiIiIQPPaK3Q9A9ISIiIiIi0q40CDlKTJ8+nVNOOYWEhATS0tKYMGECxcXFIWkcx6GwsJCsrCxiY2MZOXIka9euDUnT0NDADTfcQLdu3YiPj+f8889n69atIWkqKyuZPHkyPp8Pn8/H5MmTqaqqOtxVFBERETnsApdjteUlh58GIUeJoqIirrvuOpYsWcL8+fNpbm5mzJgx1NXVBdM88MADPPTQQ8ycOZPly5eTkZHB6NGj2b17dzDN1KlTefXVV5k9ezYffPABtbW1nHvuubS07L1u+NJLL2XVqlXMnTuXuXPnsmrVKiZPntyu9RURERE5HAI3prflJYef7gk5SsydOzfk89NPP01aWhorVqzgjDPOwHEcZsyYwV133cVFF10EwDPPPEN6ejovvPACV199NdXV1Tz11FP8+c9/5uyzzwbgueeeIzs7m3feeYexY8eybt065s6dy5IlSxg6dCgATz75JAUFBRQXF5Ofn9++FRcRERE5lFo99mrL9nLY6UzIUaq62p6wkpJiTzEpKSmhrKyMMWPGBNPExMQwYsQIFi1aBMCKFStoamoKSZOVlcWAAQOCaRYvXozP5wsOQACGDRuGz+cLpvm6hoYGampqQl4iIiIiIgdLg5CjkOM43HTTTZx++ukMGDAAgLIye8Rgenp6SNr09PTgurKyMqKjo0lOTv7WNGlpaXxdWlpaMM3XTZ8+PXj/iM/nIzs7u20VFBERETlMdE9Ix6BByFHo+uuv56OPPuLFF1/cZ53HE3qK0HGcfZZ93dfT7C/9t+Vzxx13UF1dHXxt2bLl+1RDREREpN05jqfNLzn8NAg5ytxwww38/e9/Z8GCBfTo0SO4PCMjA2CfsxUVFRXBsyMZGRk0NjZSWVn5rWnKy8v3KXf79u37nGUJiImJITExMeQlIiIicjTSmZCOQYOQo4TjOFx//fW88sorvPvuu+Tm5oasz83NJSMjg/nz5weXNTY2UlRUxPDhwwEYMmQIUVFRIWlKS0v5+OOPg2kKCgqorq5m2bJlwTRLly6luro6mEZERERE5HDS07GOEtdddx0vvPACr732GgkJCcEzHj6fj9jYWDweD1OnTmXatGnk5eWRl5fHtGnTiIuL49JLLw2mveKKK7j55ptJTU0lJSWFW265hYEDBwafltWvXz/GjRvHlVdeyeOPPw7AVVddxbnnnnvAT8ZaXRXFxUPs0b8vvWD3mWTutBvpM7x+AKqaIqzcxEYA/C32eWh3e89KsxvwrzpxJwDLl2YCMG9NLwC8lozcONs+09slNJ/UOADGZ9pjigtSo4PxBdLceOIma+Miy3tslnX7onKLPT+5CoBeCbZ8YWl3t+xWNx8rc+Jbtvz2fn43Fst/xjq7ByffZ6dve8Vbvptq7Rl/K1s/AuD+NScBMO3UUgCWlVqbrdttMU/oWQHAarcNS1rtjNW9fSzd1TOjAMjpGnqaOBDfhMxUa6v45uC6xz63WK/p4wVg8c6u1m7dWtw6WLv+YU0WAAtqtrp1yAxZ/9h6O/s1Ir3VLaOeqC727+ZWD+9vsu1nfWFlT+1rdS/12+cyv7VVRly921axAFQ1WZxJURZPtT8GgNmburp1tXwC/WBTTYKbr7XZvC+tfgWptn1Voy1/e8MxwTa44sQSAF5e2wuA+/vYAH/RF7Y+0B8qm6w+izdaOwb61LqaeL7qpF723Xzj054AxEZYjAOztgOwssqWr9zlszZ50/bn/VdZHIvftH50db7t72fn9wFg0hAL6OT/sLb5839bHMPccjNire2WVKSGxBPov2eebN+lqBTrH8WLU/i6QPslRdt+/ai8W8j6nbtC61p4QgMAt76eB8CEHvUh24/P3B38njQ5HrrpeKDjgY4HQOc9HtQ1N/DQxn2KaneO07azGXpEb/vQIOQo8eijjwIwcuTIkOVPP/00U6ZMAeDWW2+lvr6ea6+9lsrKSoYOHcrbb79NQkJCMP3DDz9MZGQkEydOpL6+nrPOOotZs2YRERERTPP8889z4403Bp+idf755zNz5szDW0ERERGRdtDW+zp0T0j70CDkKOF8j2G3x+OhsLCQwsLCb0zj9Xp55JFHeOSRR74xTUpKCs8999zBhCkiIiJydGv14GiekKOe7gkREREREZF2pTMhIiIiIhI2HKdt93XonpD2oUGIiIiIiIQN3RPSMehyLBERERERaVc6EyIiIiIiYcNp443pbbqpXb43DUJEREREJGzonpCOQYMQEREREQkbuiekY9A9ISIiIiIi0q50JkQOWn5iC4vf7A7AdVdsAaDuowYAyrYlArB0fSwAuXH2XrIn2tbX268Mn2yx7Us+tfV/2dgEwJRjrQx/i70PP/ZLAG4t6gXA3UMqAJi1wfJbVxMPwODkmmB8b5X6LO86y3tEhs0av3SHnWcdlGKf52xOs/fSnQCMTLWxed/EVgAmDfkCgOKaPgAkRVcDsHin5Z/T1cqravS4dbPy5ta/B8A92We45Vq6P6zJ4qvGZdZbnZdaPJN62Nfy/vxUtxyrY74Vx6g0K7+oIiIkn6Xbm9x/RQWX/ekH1h6vlViQq3dZg3q727ZVTRarz4rgmh7HAJAbX2d18XtteV5NSJ1L6mI5yfEQA0R4HCobLb++vsiQNiqps+0zvFbu1BVW0AhrcnLjGi2d2y8C+2z62Z8DcMc71ua3nrgNgJo9lp83wvK7pFesG5ctvyDX0iW5/QFg0RdWp/PzrI8++0lPq9MwK6N4g/VBn9f67g/7Wt3/uCIXgDunlABQ8E+LLdBnl+6wOl9z3C4A/meF5Xt1vvXN+9dYuruHWEwv/NXWJ0dZ7ENHlgFQ9pI1xqbNKQD4H7D+0M++QiypsH4w8cwNAKycbyvuv8riWufG9eYyi3fswI0A5J24M9gGy5dmsj8ZsVZWYL+OON7289joZgA2V1pZE3pYupN6WcxPrbKycuObaXF/MYz0ODoeoOOBjged+3iwp+XoOIPQ2uqhtQ33dbRlW/n+NAgRERERkbChe0I6Bg1CRERERCRs6J6QjkH3hIiIiIiISLvSmRARERERCRs6E9IxaBAiIiIiImGj1fHQ2oaBRFu2le9PgxARERERCRuaMb1j0D0hIiIiIiLSrnQmRERERETChh7R2zFoECIiIiIiYaOVNt4Tgi7Hag+6HEtERERERNqVzoRIm1Q1RgPwyvOZAJxzagkAC0u7A3D7gEoAXt2SAsCotFoASqJiASjzewHYWBcBwAXZNi7u66t0S0gEIMrbAsCgFPt14qPybgA89ZMNAFzxXG8A/K2+YGxLt/vdMpsBWFnVFYChtimDk6tD6jChp5WxqWYPAHO2Woz+FccC4LNkeCMtXVJUi7u9xd430crxRtjy6b1Otzh2WMxJ7vaTcqzcX6629CPTEgAYl5bKV62sig35PPXizwGY/UYuAJf0tLbK9DYB8PR5mwEoWtszuM2P348B4Fd9rKx8n33lC1JD6z4wazsALxXbtrM3dXXTWz694t26d3HcOkVwXquHeKDZ8ZAbb21d1WQxpyXWAdCvxdpmxqcWR98Ey7ef21YnpO8AoKQkC4DqRitn6afHuG1l/SWwv7/O32JtMDjJ0v1mhfXDKb3r9km73d3/BamWdtbyPgBckLsNgJ4/tf3wyL1pANw5xfpyw1aLdUG59eGJ+dbOU9z9/NY2W351fgUAq3fa5xHprQA8/onVJSPW2i7Z7TeB/ZjhdULyL6u3/jI42fZrv0SL94HX89y6WiP9aXYvAKqaLP34rF0ANPmtzYvePyZY98U7rf0v7FHlfrYdW+W291UDrU7RKRZLTI3V+bH1tj+nnVrOV9181RYAvpgbQ1SX1uByHQ90PNDxoHMfD2qbGzka6BG9HYMGISIiIiISNpw2PqJXg5D2oUGIiIiIiIQNnQnpGHRPiIiIiIiItCudCRERERGRsNHqvtqyvRx+GoSIiIiISNjQ5VgdgwYhIiIiIhI2Wh3aNk+IJitsF7onRERERERE2pXOhIiIiIhI2NDlWB2DBiEiIiIiEjbscqy2bS+HnwYhctB6xtXRO8VmUn2m2Ga4TVrZAwB/q/2K8NhnNutrYKbdOVu7huQRmC14YbklmJRrM/VuqrHZanvF20y3s91Zivsl1ANwzzqbxTgj1mazndrXZpFdULF3huQRGV53mX0en2ll5fe2Msa9mmx5xiW6sVi6jDgrI6erzQ4bmIE2MOPy+EybgbbMnYk2MKvvX7bbjLYXZHvd9bbdL/uHzpy7sc6mG5411Ga0vX9NlKWv97vb22y2/hbb3mvFULzYtn9tS2vIcohw26K7u7wl2Ab94mybpCi/m6eVFZghNzDj8cpPerrp7PNvTt8IwBuf2vJ1NbbfArMxF0dEE/idyAOs2+3OJu0W/cAq6w/XHLfLjc22H5dpjVXqtziWlaa5dbfcfNFOSB0Cs1oHZkAOzOi8bne0u7w+ZHlgVuLAzNsAZ+bZbL63FvUC4O4hpcDevviXzy1W771um7l97OqZlv4PEz5328Zien9TVki+Pm8DAHO/tLrkxlkdzxuxyWLbaPtz+ZaMkLoNTrA6Ld5u/TCwL+6esB6A8s+sn1TU2HugP1Q22f4+3y3/on/Gu/HZvi5w6x1oY4Af99oJ7J3NOdB3fv3ftvzjZ6wtEuob+Ko/nGkzJ9/9gc3mPPOh3QD8eVocABPP3ECk22ciPU5wxmsdD3Q8sPxtmY4Hned4UNPQCO9yxOlMSMege0JERERERKRd6UyIiIiIiISNVjy0cvBnM9qyrXx/GoSIiIiISNhwHHu1ZXs5/DQIEREREZGw0ep42jhPiM6EtAfdEyIiIiIiIu1KZ0JEREREJGw4bbwnxNE9Ie1CZ0LaqLm5mXfeeYfHH3+c3bvtcXXbtm2jtrb2CEcmIiIi0vkE7glpy0sOPw1C2mDTpk0MHDiQCy64gOuuu47t2+158w888AC33HLLEY5ORERERNrT9OnT8Xg8TJ06NbjMcRwKCwvJysoiNjaWkSNHsnbt2iMX5FFCg5A2+OUvf8nJJ59MZWUlsbGxweUXXngh//znP49gZCIiIiKdU+DG9La8Dsby5ct54oknOOGEE0KWP/DAAzz00EPMnDmT5cuXk5GRwejRo4NX0HRWGoS0wQcffMB///d/Ex0dHbI8JyeHL7/88ghFJSIiItJ5OXja/DpQtbW1XHbZZTz55JMkJyfvjcVxmDFjBnfddRcXXXQRAwYM4JlnnmHPnj288MILh7LaHY5uTG+D1tZWWlpa9lm+detWEhISjkBE7cvnbWRzZRIAm2rtAsoMrxeAsnr7Ao/LbADgsfWtAPT1ed3l9QB4I639hnaz916n1ACw8O/dLZ+ddoZpfGY1ABvr4gH4/SDruutqugKQG1+/T3y58c0ALNlhaRfv9AFw39o4AF45qxSAqGgr848rcq0OdV63LhZTVVMEABdkxwCwoMLWj0qrdutqMX5qHymusbqPTGu0z24bXbt+HgDnx5/j5m9x5HS19LcNtDgamt14t9tBbHWlrb/935b+vpN2h6wvKre2nbXBt08bTOlt9yb5WyJCls/eutNiTO0GQEGq7adSfxQAT62ytrikzzYrY2t6yHpfNHRxj9FdPA7eLrb/N7m3Qk3tVwlA4Wr7HozIsOXeCGvT5Gj7/WNdTaS73LbvFW/ry/xeNy5r1NmbQus2KDmwbyyelZX2fnV/G/wvK00Lpq2tjXHbwNrpsx3WbpNyqkPapqTO9uNJvcoASIpOsbZ4Lw+ATK/1p8pGS79zl/XF8jrbL5cNLAHgjU97ArB+VSoAiXF+a4PjNwOw9NNjrI57rLzLTv88pJwn5tn7lFM+36cuAMPSbN/V1FobvT7e+s2/N1oc3ZNsJxR9vLfN+iXaDyU/7b85ZNt/zEwCYN1uWz/YjWlg1vaQtpvS29qqabUt31jXB4C7Xs7j17dEkpQEHo/D5spEQMcD0PEAdDyAznc8aGj1czRodezVlu0BampqQpbHxMQQExOz322uu+46fvjDH3L22Wfz29/+Nri8pKSEsrIyxowZE5LPiBEjWLRoEVdfffXBB9rB6UxIG4wePZoZM2YEP3s8Hmpra7nnnns455xzjlxgIiIiItIm2dnZ+Hy+4Gv69On7TTd79mz+/e9/73d9WZkNZNPT00OWp6enB9d1VjoT0gYPP/wwo0aNon///vj9fi699FLWr19Pt27dePHFF490eCIiIiKdzqGarHDLli0kJiYGl+/vLMiWLVv45S9/ydtvv43XPfu7Px5PaDyO4+yzrLPRIKQNsrKyWLVqFS+++CL//ve/aW1t5YorruCyyy4LuVFdRERERNrHwd7X8dXtARITE0MGIfuzYsUKKioqGDJkSHBZS0sL7733HjNnzqS4uBiwMyKZmZnBNBUVFfucHelsNAhpo9jYWH7+85/z85///EiHIiIiItLpHap7Qr6Ps846izVr1oQs+9nPfkbfvn257bbb6N27NxkZGcyfP5/BgwcD0NjYSFFREffff//BBxkGNAhpoy+//JJ//etfVFRU0NraGrLuxhtvPEJRiYiIiMjhlpCQwIABA0KWxcfHk5qaGlw+depUpk2bRl5eHnl5eUybNo24uDguvfTSIxHyUUODkDZ4+umnueaaa4iOjiY1NTXk2j6Px6NBiIiIiEg7O1SXYx0qt956K/X19Vx77bVUVlYydOhQ3n777U7xJNVvo6djtcHdd9/N3XffTXV1NRs3bqSkpCT42rBhwwHl9d5773HeeeeRlZWFx+Nhzpw5IeunTJmCx+MJeQ0bNiwkTUNDAzfccAPdunUjPj6e888/n61bt4akqaysZPLkycEnPUyePJmqqqqDqb6IiIjIUSdwOVZbXm2xcOHCfZ6eWlhYSGlpKX6/n6Kion3OnnRGGoS0wZ49e5g0aRJdurS9Gevq6hg0aBAzZ878xjTjxo2jtLQ0+HrzzTdD1k+dOpVXX32V2bNn88EHH1BbW8u5554bMpfJpZdeyqpVq5g7dy5z585l1apVTJ48uc3xi4iIiBwNjtSM6XJgdDlWG1xxxRX89a9/5fbbb29zXuPHj2f8+PHfmiYmJoaMjIz9rquuruapp57iz3/+M2effTYAzz33HNnZ2bzzzjuMHTuWdevWMXfuXJYsWcLQoUMBePLJJykoKKC4uJj8/Pw210NERERE5LtoENIG06dP59xzz2Xu3LkMHDiQqKiokPUPPfTQIS1v4cKFpKWlkZSUxIgRI/jd735HWprNnrpixQqamppCZuTMyspiwIABLFq0iLFjx7J48WJ8Pl9wAAIwbNgwfD4fixYt+sZBSENDAw0NDcHPX59BVERERORo4bivtmwvh58GIW0wbdo05s2bF/zj/es3ph9K48eP50c/+hE5OTmUlJTw61//mjPPPJMVK1YQExNDWVkZ0dHRJCcnh2z31Rk5y8rKgoOWr0pLS/vWWTunT5/Ovffeu8/ylOQ6vthoZ2byfVbf5Ohm990uAcuIrQfg4VNtELN6p3W5Un80AP6WCAAmnFgCQNE/jwGgoHslACt3+QBYUGHvm2qt7Ak9bPt+ibUhMfn3XnnGuhorK6crIdu+eM0mAGa/kQvAjE2lANyfb7Eu3mlzvEzK3QnAnM3WZqt3EZLfW6UW09LtfgBGZNgkRbPLt7rpegAwOMkK/l3OOSGxLqjo6tbB2mzW5/a88IJUaytvhD1tbWg3Sz8y3eozY53t46n9rI38rSkhdR+VVh0s4761cW5eXULyvCY3CYAyvx1qS/ZEu3W0z+OyLKZ5mzJDtqtq8rjpmmhyL5qNiWxhdaUtf3js5wAMe82Cube3PV99nTtu9UbY8tLdsW7Mtl1StOX1qbvP+rptsq7G2mjKsdb4i7cnu9t1ceP3uPmG/i9jzpa937+kKNsm32d9bWVVYA4fe++X0Ajs7YOzlvcBIDfOll9xxnoAfjfvOADGZ+4GoLgyyWLcbW1XUmf5JUdZHV/dYvvlwmyLffN6a4uTetl37eW1vQAYWm+xTszfDMCzn/S0/Dd0B+Cxz61/XWNhsanGbmQ8rpvt/4RjrTzvFnvfssP65Yj0vZeJJsVYXboNsTQNi619T0jfAUCpP7Cfbf3f12cDcPHxGy19o+2XeW/3dNNZvv26NRPdxdq+SxeHMr99B3Q80PEAdDyAznc82NPSAls44hzadknVob4xXfZPg5A2eOihh/jTn/7ElClTDntZl1xySfDfAwYM4OSTTyYnJ4c33niDiy666Bu3+/qMnPsbHH3XrJ133HEHN910U/BzTU0N2dnZB1oFERERkcOu1X21ZXs5/HRjehvExMRw2mmnHZGyMzMzycnJYf16+1UmIyODxsZGKisrQ9J9dUbOjIwMysvL98lr+/bt3zprZ0xMTHDW0O8ze6iIiIiIyLfRIKQNfvnLX/LII48ckbJ37tzJli1byMy006ZDhgwhKiqK+fPnB9OUlpby8ccfM3z4cAAKCgqorq5m2bJlwTRLly6luro6mEZERESkI3McT5tfcvjpcqw2WLZsGe+++y7/+Mc/OP744/e5Mf2VV1753nnV1tby+eefBz+XlJSwatUqUlJSSElJobCwkIsvvpjMzEw2btzInXfeSbdu3bjwwgsB8Pl8XHHFFdx8882kpqaSkpLCLbfcwsCBA4NPy+rXrx/jxo3jyiuv5PHHHwfgqquu4txzz9WTsURERCQs6HKsjkGDkDZISkr61vsxDsSHH37IqFGjgp8D92BcfvnlPProo6xZs4Znn32WqqoqMjMzGTVqFH/5y19CZtt8+OGHiYyMZOLEidTX13PWWWcxa9YsIiIigmmef/55brzxxuBTtM4///xvnZtERERERORQ0yCkDZ5++ulDltfIkSNxnG9+KNy8efO+Mw+v18sjjzzyrZeIpaSk8Nxzzx1UjCIiIiJHu7bOet7WGdPl+9EgRERERETChoOnTY/Z1SN624cGIQfopJNO4p///CfJyckMHjz4Wx9t++9//7sdIxMRERERnQnpGDQIOUAXXHABMTExAEyYMOHIBiMiIiIi0gFpEHKA7rnnHn7+85/z+9//nnvuuedIhyMiIiIiX6HLsToGDUIOwjPPPMN9990X8mSqzih5dAJz7rYv6oTsZgBK/dalkqJaAHhsvU1sePeQUgDOObUEgAffyQMgM7URgHsX9AHgv4ZsBiAhvQGA21+MA2BQiuU7Mr0pJIaVlZb/xjqb8ubGEzcF1y3fkgHAPZ9XADAlqwcA971kZSVFE7K8pM4JWR4TbXWaV1oLwNBU29/VjaHnaS/ItjNjr23xAzAuxWaTL6u39WVeLwC58bb+vnXWNo8O3WPlL7Wnl+XGJLnlWwCj0qoBWFDhA6BfQqNboqVfucsXEkdVo+2LdTVdg8sm9bJY52xxY6m3dv20JhaAhTt3ABCL1cHrCRwS7H11peXpdZ+w5nPbJt8XTaR7KWJDcwRDu1mdKnfY/qp2bBLNUn++Wyfbrn/2djfGeADGZ1rbFn5s6+8bZPkE9mtxjZWRHNXVjcMenJgbb41b5re2XVhu8W52txuUsveJcCV1lsbf4nHfbfnNp24AoKnR0u6psSBz4xr5qk/WpgEwpY9N9HnMsbZf3lyWC0CG1zKMjbC29reGTr8U2E/D0nYC8OCy3gD8dqFt/9z5oXUK7Pe0xDq3TeLduP3uu8Xbtavty9LV1uaBtq2ttX15frfqYAwNjdY+f5rdKyS2SUO+ACC51OqwoMLaeXCStcE2t++V7bH+UtlkZXvd5h2UuouoLhZ/F28X5mzR8UDHAx0PoPMeD2qbQ9vrSNHlWB2DBiEH4dueYiUiIiIiR44GIR2DZkw/SN92Q7qIiIiIiHwznQk5SMcdd9x3DkR27drVTtGIiIiICOiekI5Cg5CDdO+99+Lz+b47oYiIiIi0G6eNl2Ppqvv2oUHIQZo0aRJpaWlHOgwRERER+YpW99WW7eXw0z0hB0H3g4iIiIiIHDydCTkIejqWiIiIyNHJcTw4ThvuCWnDtvL9aRByEFpbdaJORERE5Giky7E6Bl2OJSIiIiIi7UpnQkREREQkbGiywo7B4+gGBzlANTU1+Hw+PjtvMv66FABW7rLHFW+siwBg6mmfAzBreR8A+iXU7zev2Zu8AOT7Qq+/vKTPNitrj61PjPMD0C27DoAvv7Dy5n5pTyjL9DYDUFK3d1zdL6ERgIxYK/v21Rbbo0P3ALB6p8Xu7WInXtftjrblu1qsDn1rASirjwWgssm2f6ykCoBxaakAJNlmeLvYV2l1pdUl3Taj2sIgp6u9V7mfV+9qAqBX1yhrg0TbfmxOKQB3Lkt387dyByXb+jK/5d8r3uLMjbf6rauJB+Di4zcG2+CpVbkAFKRaXd4qTXBjsrym9K62Oq1PBGBCD4vJG9HCVy3eaZXJ8Np287Y188RHt5Ca5aOuvJqXxz3k1t1iHdbN9sfcbfb57iFWp8D+fGubtf1P+2+2OvZqAGDNh7Y/F1T4QtY/saZnSJ0Hp1jci7cnA9Avsc6Ns6vbJs3B2C8YZ+2x+v3uAFQ1RofUbWDWdit7m60/qVcZANMWW9v53OQXZtu8P2V7YkO2P3PiDgC+mBsDQEx0c0hdAzEW19h+m5RjsftbrG0CbZ3dzZa/veEYK8dv64urrc1vG2hxJna178L2KqvrrC+sLW8caN+Z7HPtBPcbT6UEY8xPrgKgvC4OgPvW2vdkRIbFOD7L6lbVYJUtqYsNiSGw3t9snzfWWV87M28LSTMfJCI1hZadu/hk4m8AHQ8sHx0PdDzofMeD3U2N5L78AtXV1SQmJtLeAn+f/OH424mNiDnofOpbGrhx7X1HrB6dhc6EiIiIiEjYsDMhB39zuc6EtA/dEyIiIiIiIu1KZ0JEREREJGw47qst28vhp0GIiIiIiIQN3ZjeMWgQIiIiIiJhQ/OEdAy6J0RERERERNqVzoSIiIiISNhwHHu1ZXs5/DQIEREREZGw4eChlYN/RK/Thm3l+9MgRERERETChs6EdAy6J0RERERERNqVzoTIQdtd5+WD8hQAqhptWYbXfj4o3tAdgFHpuwCIiWy292h7X1aaFpJXQWotAIt3dgWga9cGAJ4pzgJgfGY1AB992A2AU7LLAMj0Wn4lddaV+yU0BvMs2RNtMcXWAzBjiK37/SdW9qBkx83DnoOxyULg9gHVIbF5I1oA2Fhl+U3qkeqWZfkuqIgDYPUuv+WbEgtAeb3lPy7Tys1PrgJgYam1jd9n+TW0OG45FsdrJVbnnK6hp4Nnbd4JwK/6+ABYWRnlrrHyVlda+sHbUoLblFuIJMU0hpRVVt9kMbREADCld53Fnmft+uM5PULq0iveYhuZud3aoi6dSI+V19Tq4eKCDQBc2sP2w8p5Ke72FutnO5IBWLc7NqRO72+yulautziu+NlWABY/Zdttr7L+MCm3AoDUFIvz3fXZAPRLtM8ldZZvVaPFtK7lK4e2ub3cNLbMa0Wxepe1xYKKHGu3ZGuTT7bY/hmUbPt9WJq1+9wvrd94u4T+RPbmi+kAJEVbGyc12/vi7Vbn5GjL57+GbAPg5g+OAWDaqeUA3LTYyiscZOkmnFgCwOwVxwJ7+0FxZRIAZx67CYC/u22Q7jZpt2xrix/dZfW9IHvvb0z3rrI++4czNwPwcHw8ADHR9v38qNy+VyvdPn55/raQ5b3zd4bUeeOyXKvrqZF0ibb4Wls9LNDxQMcDHQ+ATnw88LfCyxxxejpWx6BBiIiIiIiEDc0T0jFoECIiIiIiYUMzpncMuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNvSI3o5Bl2OJiIiIiEi70pkQEREREQkbekRvx6BBiIiIiIiEDd0T0jFoECIiIiIiYUOP6O0YdE+IiIiIiIi0K50JkYP28NpURme2AHDV2A0APDEvD4DeWbsA+GRLdwBOm9gIwP/OyAJgvLv+4c/t94aSuiQANtVa3n9ckQvAhdmWrnuSrXhscaKl39MTgCrLFn+Lx95b946rB7vbeCMtxsXbkwEYlGxlFpXbVZ+DUqIByOlq2836IsXN29Jdk1cDwOwdmwEYFZ8PQHF1LABDuzUDUN3oBeDq/l+GtNNNi7u75aQBUF5vy9NjLf/Bybb9kh2Rbnwt7pYRAOTGWSUbWlKtPl0a3bZqdpdbOl+0tUF2t+pg2b5SHwCvbkkJyXtYN0t731orMyM2xmIqzXO3rHfrZDH6Yy39Mcda3kmb0+hii/A7zTz7nm1XVNZkbdI9CoBrhn0OQOWOuJA2SYq2Ojy2PtH9bJn98anskHRTV9i++dMP/AA0NVpdS/0W9wXjyiyGfx4DwOAUi69wdUIwj8FJob9p9UuwuhWkWgxl9bYfhx9r++35Ndb3rhq7HoD3F/UI2T433mI5rlslAB+VdwPg9N9YmU9OtX6VHG1tneG19Mu3ZAAwIdvi6ZZdB8A1O6xfxkTa/py1vI8bn9Vl8U7bh5VNVvdP1lo/uux0a9uYHtYWO1bYPnxi9FZL5373AB49x9pp9opjrc5+a+9JuRUhdRufaWX+5XP7nlY1WrrSDywmf6t9vmxgCQAPPpHLL34cQUIC7G6KIClKxwMdD3Q8gM57PPC3+Dka6HKsjkGDEBEREREJGw4eHDxt2l4OPw1CRERERCRsOLTtbIZOhLQP3RMiIiIiIiLtSmdCRERERCRs6J6QjkGDEBEREREJG3pEb8egQYiIiIiIhA2dCekYdE+IiIiIiIi0K50JEREREZGw4bj/tWV7Ofw0CBERERGRsKHLsToGXY51lHjvvfc477zzyMrKwuPxMGfOnJD1juNQWFhIVlYWsbGxjBw5krVr14akaWho4IYbbqBbt27Ex8dz/vnns3Xr1pA0lZWVTJ48GZ/Ph8/nY/LkyVRVVR3m2omIiIiEp0cffZQTTjiBxMREEhMTKSgo4K233gqu/z5/w3VGOhNylKirq2PQoEH87Gc/4+KLL95n/QMPPMBDDz3ErFmzOO644/jtb3/L6NGjKS4uJiEhAYCpU6fy+uuvM3v2bFJTU7n55ps599xzWbFiBREREQBceumlbN26lblz5wJw1VVXMXnyZF5//fUDjtkX7aFfYi0AVzzXG4ApvesBiPK2APBWqcXGn+0tw13ub7Z4xqX5ALi4YD0AG9/JA6BXvKVbvD0ZAO8un5t/HQBJMY2WfndXAFZWRQOwrmZvl15ZaWWPz9wNQFWTzYCaG99sebpt4reiWL2rCYCnz9tkn9dnAPDY+kQA3h1VbXWLLgHg3xtt/X3rLIMRaRbLtR+kADC1r/2UMiIjys3fcctrBWBSjrXV7E22XVWj5TOsm6VbXYmb3up2dX4FANX+GAAGpfjceli6C3K/BGDLDl+wDQLr+iVYe80ttbx80R53fWhM4zOtffsmxro5WEyxbro3l+UCkBTl4HEnlPVFRFCQam2zqdYXUt69C/oAsLHW2vb5yzcC8MQ828/jsmxfzN1mgU5IqnPbwuK8vZ8t/6i8GwDrdtvywD7cuNz2TVK0lffYZ9b2pc07g20we1MSAJNyGt06W50WVFis5bYbWLc7120L+/zSu9anx/S2dk36SrsCbK60sgNtuu46x20Da5iZD1nGu17ZAez9TkSnWLrXi6y8DK/ftqux/jruGNvPC0u7h5T3qdu3f9h3FwBffmHxNBTb8vs+ts9/OHMzAAXnbA9uu6HIYi3zW2z9Eq395mxOs7Sp9j3O7713GwCftwGAJRWpABSVuyvWWOz9EhqJ9Fh9unjQ8QAdD3Q86NzHgz0tTRwN2vvpWD169OC+++6jTx/r48888wwXXHABK1eu5Pjjj/9ef8N1RhqEHCXGjx/P+PHj97vOcRxmzJjBXXfdxUUXXQRYB09PT+eFF17g6quvprq6mqeeeoo///nPnH322QA899xzZGdn88477zB27FjWrVvH3LlzWbJkCUOHDgXgySefpKCggOLiYvLz89unsiIiIiKHSXtfjnXeeeeFfP7d737Ho48+ypIlS+jfv/93/g3XWelyrA6gpKSEsrIyxowZE1wWExPDiBEjWLRoEQArVqygqakpJE1WVhYDBgwIplm8eDE+ny84AAEYNmwYPp8vmGZ/GhoaqKmpCXmJiIiIHI0cp+0vYJ+/fRoaGr6z7JaWFmbPnk1dXR0FBQXf62+4zkqDkA6grKwMgPT09JDl6enpwXVlZWVER0eTnJz8rWnS0tL2yT8tLS2YZn+mT58evIfE5/ORnZ3dpvqIiIiIHO2ys7ND/v6ZPn36N6Zds2YNXbt2JSYmhmuuuYZXX32V/v37f6+/4TorXY7VgXgCF926HMfZZ9nXfT3N/tJ/Vz533HEHN910U/BzTU2NBiIiIiJyVGp1X23ZHmDLli0kJiYGl8fExHzjNvn5+axatYqqqipefvllLr/8coqKioLrD+ZvuHCnQUgHkJFhNzyWlZWRmZkZXF5RUREcWWdkZNDY2EhlZWXI2ZCKigqGDx8eTFNeXs7Xbd++fZ8R+lfFxMR86xdPRERE5GhxqO4JCTzt6vuIjo4O3ph+8skns3z5cn7/+99z2223Ad/+N1xnpcuxOoDc3FwyMjKYP39+cFljYyNFRUXBAcaQIUOIiooKSVNaWsrHH38cTFNQUEB1dTXLli0Lplm6dCnV1dXBNCIiIiIdWlvvBzkE84Q4jkNDQ8P3+huus9KZkKNEbW0tn3/+efBzSUkJq1atIiUlhZ49ezJ16lSmTZtGXl4eeXl5TJs2jbi4OC699FIAfD4fV1xxBTfffDOpqamkpKRwyy23MHDgwODTsvr168e4ceO48sorefzxxwF7RO+5556rJ2OJiIiIHIQ777yT8ePHk52dze7du5k9ezYLFy5k7ty5eDye7/wbrrPSIOQo8eGHHzJq1Kjg58A9GJdffjmzZs3i1ltvpb6+nmuvvZbKykqGDh3K22+/HfJ86YcffpjIyEgmTpxIfX09Z511FrNmzQrOEQLw/PPPc+ONNwaf0nD++eczc+bMdqqliIiIyOF1qO4J+b7Ky8uZPHkypaWl+Hw+TjjhBObOncvo0aMBvtffcJ2RBiFHiZEjR+I433z+z+PxUFhYSGFh4Tem8Xq9PPLIIzzyyCPfmCYlJYXnnnuuLaGKiIiIHLW++pjdg93+QDz11FPfuv77/A3XGXmcb/vLV2Q/ampq8Pl8/CT9dvLcmXQDM64GnJm3BYBbi3oBMKGHzaJ6zo/txvjfPWpP17ow22Z7XVBuM9tusolamZRjM+4u3mmzvt7wst3M9Y/JNnvxwgqblTY9MJGvq7h63+6c5M4GPCjZZqitarIzQ5lei7lXvM3K++rWJAAKUhvcsu1m/FFpe9zPVli1TbTLyLTQGXfX7Q4NJjfO1t/2uc2o/Pv8ngCsrLJ0q3e1uNvbrVk5Xb/9KRmB2Y7HZ1mbXb7S4pqU3gOA2eVbAbijd0ZwmzlbLM8J2dYu3i72+86sDbZ8Sm9bXrLH2nNUuuXdO99mGH7+A7vJLjfeZvGds9ViT4+Fqe9NJTEjkdryGtZNvBfYO7Nxqd/e/S1d3Nit3I11VonADNgBgZm20xJtXzQ02u8jX5/B198S4ebntnlNPAA/HW2XMq750NKvrNx7I2FgZuxAe4/NsuUTTrT9En+C7edbf2998jfn2GzdT71nszgnRdl2r22xOgRmvA60VVaa9dXaWsunx5mW/t9zEkPaZMRZNtNy6eo4y6/EAvl6Pzz5Ptt/j1xpMyx7u4T26cC+mFtq++LGgdsAOKbA+u2GoviQtoO936txmaF99qReZSGx/+VziynwPRraLbTMQN8N9MXXttYye+2ddD8miV3bapg5cgag4wHoeAA6HkDnOx40Ow28V/MHqqurv/cN3YdS4O+Tn2fdQXQX70Hn09jq50/bph+xenQWujFdRERERETalS7HEhEREZGw4TjOt17i/n22l8NPgxARERERCRuHap4QObw0CBERERGRsNHWqT40BmkfuidERERERETalc6EiIiIiEjY0OVYHYMGISIiIiISNjQI6Rh0OZaIiIiIiLQrnQkRERERkbBhN6a34RG9hy4U+RYahIiIiIhI2NDlWB2DBiHSJr3iWwDo66sBICayGYAN21IAGJTisXQJtQA8+EQ2AOMzqwFIjPMDUFTWBMDtx+8BwN8SAcDE/M0AvDOl3pa3RgEw5dhdAHxanQhAUlST++4NxjZrs6W5v3cMACV1sSFlTeplsa2r6QrAplqLvbja4+bQ6NbR8szw2lGpvN7WVzZZjJ/utPwLUhssXWx9SL79uvR262TbzyndCcDghFRro2RbPjjZ2uStUp8bh7XttFPLAfjDmiwApq6IBmBUUoobj0XbLyrT6v1FU7ANnh1XCsDLa3sBcH7eNjf2Y9wUVkaZW6eNuy3mspXWVsU1Hjc2a4sJPWyrdbtjg9dyenBYUOFz62jLBidZ+lN6fwnAkHdLAHgsrwCAuaVWhxwrjtiI+JA2m3jmBsuvJA2ABRW2PCmaEBfkWn1++JTVvXCALV+6Y2+a2wZWAOCNsLw21rlpPrU2GFizHYCRaRbz8x/0AaBfgjXsnK3WFk+fZ3W4d4Gt3xhnMQ34reXzxrXWxzc+GuGWZ+XcNNm2W/xmBgBVjVaJKad8DkDljjgAPirvBsC551QCe/fdG5/2dOO2DKuaLJ78ROs3NXusfyavt+9O3mWWbtRT1cE2yO5v/25otEN+0dZ0AJJOtc9PPWF9q6jMvo+DUqyMTK/16R8M3wpAyfw+7nLrY8+ftYsUb2uwHB0PdDzQ8aBzHw92NzVy3OsccY5jr7ZsL4ef7gkREREREZF2pTMhIiIiIhI2HBxa23RPiE6FtAcNQkREREQkbOhyrI5BgxARERERCRut7qst28vhp3tCRERERESkXelMiIiIiIiEDcdxcNpwTVVbtpXvT4MQEREREQkbmiekY9AgRERERETCRmsbn47Vlm3l+9M9ISIiIiIi0q50JkREREREwoZDGx/Re8gikW+jQYgctLMzWxmcUg3AY5+lADAusxGAXgm1APRLqAfgxY2pAFzYowqAt0p9tr4uHoCpff0ApCXWAXBMQQMA6/5p6R5bb131jyO2AbBmW3cATs2sAOC1kiwAkqJagvFN6Wkxlflt2Yge5e5nSzvrCyuz8IQGd7nP3TICgHILnStv2QnAIw9YHby2mjK//SMpOvRw9erWJAAKUi3fXl2jAchPtlgnZKaF5NPPrfOCCit/cJK14fhMC+APayze/ETHfbc2S45utny62MMEV1ZZOaPS6oOxTFuca2X2sP3x9/XZABSV2zZVjfY+9hjLe/ixXwLw4LLeIesD++u6ISUAlKztBR4rw8GD28SMSrNyBuWVAdDkttHlKSMBqGyymAclW3llfk9IHQInZ//wZh4AVw3cDEBcorXJnFVWn4sLNgDw05d6AXBBjygA7ltr+3REhifYBg3NkW5dCKnDzl3Wjt2GuP0j0cqq3BEHwDPF1u63nmh9bvaKYwEY5+4Xf4vVbfcTa9zPtv7XD1tBu/9m+X252PLrmVxjdS61/b9ps/XPjbu7WhtEWByDUiz9oi+OASDTa/mN6b0dgPRJyQCs//8sjmPHWT/73aN9AFj9ehMAhYN2B9tgyw5fSMxVTfa+6GXLa0JP65uDkxLcdJZnUrSVXf5ZvBtLU8jyl4p78vOmSLoC3ghHxwN0PNDxoHMfD/wtfo4GuhyrY9AgRERERETChuO07WyGHo7VPnRPiIiIiIiItCudCRERERGRsKHLsToGDUJEREREJGy0Om0chOh6rHahy7FERERERKRd6UyIiIiIiIQNx/2vLdvL4adBiIiIiIiEDQdo/c5U3769HH4ahIiIiIhI2NCN6R2D7gkREREREZF2pTMhIiIiIhI2HKeN94To6VjtQoMQOWjjT9vI/f84HoDfnF4Ssm7nrngA5myNBeD3v9gAwMp5KQBUN1q6pKgmAE6/qgGAzX+15a++kg2At4td1Vk4aDcA72/KClmeflwdAI/9qxiAe3sfG4wh0+u3deutmy/ZYdturLUye3X1Wt4fWfqh3e196XbbblCKxf63P/jc5S1uuggAVu+yg1S+zwNAqT8KgGd2LQSgb+Lplk+ybbd6p9Xda5sz70srp1+CLfBbMhbvjAHg6v47AMjpauWX+a2cfonNAJTUWb2qGm15UrTFM2tDfLANFvutXWJK+wIwOLnJrZttmxvvuG1j6a+a38Pq0mwLJmSmAlBcbel+OjfTbTsPP3IvuG1qhV7xFvycrV3dmHq6dbXl1Y22/dIdVtd0a1om5VYAkHeZLf/zw0khbRHY30t2WLzjMusB2FBscY3NctvAqsVLP94CQEu9J9gGZdsSrW4DN9u222w/rKy05eVvxtnnKos9N846Z6BOAefnWd5R0bY80MdnLe8Tku4f99p7qd/64oytnwHw+3xrk3U1FnNSlDVCUrSVt3inlT8qbQ8AJ/UqC8k3EHfCAlve0Gxt8O851l9+/ZjV+YO77btU1RAd3DaQ93Wj1luZbvuV7bEYeo+w79HsWWnA3v2SmmLLn1+TC4C3i+3HyibbX4OTaolyv4uxMS3M+sJi1PFAxwPQ8QA63/GgrrmBo4Eux+oYNAgRERERkbChQUjHoHtCRERERESkXelMiIiIiIiEDcc9F9KW7eXw0yBERERERMKGLsfqGDQIEREREZGwoUFIx6B7QkREREREpF3pTIiIiIiIhI1W97+2bC+HnwYhIiIiIhI2HI+D42nLjem6HKs96HIsERERERFpVzoTIiIiIiJhw2njjek6E9I+NAiRg/bY28eyoGYrAIM+7QnA4JRqAD6tTgTgl/0rAHjhr7Y+N74egHtGfQ7AL97MBeC4v1YC0LVrAwArK6Msv+QmAF7dkgJAv8RmAHol1AKw+WMfAJO6pQHw8Oc7g/ENTkgFYErvRgDmbLWDir+lxcrYXWMxxSQBsKnW1o89xgvA6l12Kndho31Npp26DYCireluvlaXGZ/GhLTLPdlnALB0hwcAX7S994q3/GZtszabckwPAErqrNyl2/0AXNLL6v74J8eEbFfdaPks2WHxDEq2elS58Y3P2gVAhtcXjGVClLXvjM92A3BhjxY3TQQA/bO3AzB9g5V5b580d8sE973RLcPqOCjF2mbel35aWvcepKuaLL9VVbZfPq22mMYeEwtAvhtSbpzlV+mmL65MAmDh/wb2t7tP4m19XrrVqdRv/WdglsXb4Nb5stOtH728uDcAX35hBf3+k0A9IKervRekWmxJMRbDyEzLq7wuDoCyemvfccdUAfB4seXxaY3th6v7fwnA+5uyAOjrq+GrRrmxHj/R8v/nLDeWfIs9I876y1VuHf7fsp4h8fVLsO1WVlmbJW2zPu9viXCXW0LfF/YdeXFjqlsv+7zryQ1um1n6Ndu6B2ObXW59ruCjzJA8S+psfx632PZv4PsVaJNZn1tfD3wP19VYu0/Kte/ZHSuSeaLZQwxQ64/U8QAdD0DHA+i8x4Omo+RWilZa8eiekKOeBiEiIiIiEjY0WWHHoHtCRERERESkXWkQ0oEUFhbi8XhCXhkZGcH1juNQWFhIVlYWsbGxjBw5krVr14bk0dDQwA033EC3bt2Ij4/n/PPPZ+vWre1dFREREZHDotXT2uaXHH4ahHQwxx9/PKWlpcHXmjVrguseeOABHnroIWbOnMny5cvJyMhg9OjR7N69O5hm6tSpvPrqq8yePZsPPviA2tpazj33XFrc66JFREREOrLWQ/CfHH66J6SDiYyMDDn7EeA4DjNmzOCuu+7ioosuAuCZZ54hPT2dF154gauvvprq6mqeeuop/vznP3P22WcD8Nxzz5Gdnc0777zD2LFj27UuIiIiIoeabkzvGHQmpINZv349WVlZ5ObmMmnSJDZssCdglJSUUFZWxpgxY4JpY2JiGDFiBIsWLQJgxYoVNDU1haTJyspiwIABwTT709DQQE1NTchLRERERORgaRDSgQwdOpRnn32WefPm8eSTT1JWVsbw4cPZuXMnZWVlAKSnp4dsk56eHlxXVlZGdHQ0ycnJ35hmf6ZPn47P5wu+srOzD3HNRERERA6NwNOx2vKSw0+XY3Ug48ePD/574MCBFBQUcOyxx/LMM88wbNgwADweT8g2juPss+zrvivNHXfcwU033RT8XFNTo4GIiIiIHJVaacHDwd/r2tqGbeX705mQDiw+Pp6BAweyfv364H0iXz+jUVFRETw7kpGRQWNjI5WVld+YZn9iYmJITEwMeYmIiIgcjZzgnOkH+9KM6e1Bg5AOrKGhgXXr1pGZmUlubi4ZGRnMnz8/uL6xsZGioiKGDx8OwJAhQ4iKigpJU1payscffxxMIyIiIiJyuOlyrA7klltu4bzzzqNnz55UVFTw29/+lpqaGi6//HI8Hg9Tp05l2rRp5OXlkZeXx7Rp04iLi+PSSy8FwOfzccUVV3DzzTeTmppKSkoKt9xyCwMHDgw+LetA+KIcpuZkAlDVFAHAp9V2lmRQ6i4AllSkAlDmt/WDUxoB2LQ5BYB7TtwJwAOrsgC49cRtAIxK2wPA4p2xAHhtc+ZsscvGhvpt+6Xb7ZTp0O62/t5+ccH45rjTn/zyc3uMcWHOiQDERkS6Mdq2qSmbAXh3vV1i5u3S6r5HAZDptZgrauIBWF1pwczbZrENSrHPm2odN30TAH5fNADF1e7yVFvubbXtqhoDkVqdrsmz3wQWVlh+vmjbbtZma8uCJGvLYd2aAahstHTl9RbvY59Zm/hb9v6CM6V3PQCX9LTYF+/0uLHa+nVunUYl2vLKJmuTwP4cnGQJqxutLn0Tbf2UYyOJi9wbfW6cVeaCHl3dOhNSTo4tZmFFtFt3i/G2gbb/qUwCYGOdxXPeiBIALv6T7ZMLsi39+nKrY1KMlVe02M7gJUdZXMVuPr85vSTYBs+vyQWg8GP7PPU4C6bUH8X+ZGTZgxfyS61TJUdbe79WkhVSp4suqwOg7CV3fzZY3f71Z3vPiLO2D+yXfJ+lw61DwKg0ayxvpNXBG2HpFlT43M+WbtwxFQBU+2Pc7ew7sm63pV+8rLdl7/aH2wZuD5bx6mnWt5K72ZnS2SuOBWBjnS3vcaaV/ZcnAv9L8AJw19jPAGipt/7x8Kt2P9ngpCQApvZtoGuk7RuPBx0P0PFAx4POfTyoa27g9aUcca2eVjxtmOtDT8dqHxqEdCBbt27lxz/+MTt27KB79+4MGzaMJUuWkJOTA8Ctt95KfX091157LZWVlQwdOpS3336bhISEYB4PP/wwkZGRTJw4kfr6es466yxmzZpFRETEkaqWiIiIyCFj94Qc/MU+uiekfehyrA5k9uzZbNu2jcbGRr788ktefvll+vfvH1zv8XgoLCyktLQUv99PUVERAwYMCMnD6/XyyCOPsHPnTvbs2cPrr7+um8xFREQkjLT1yVgHdiZk+vTpnHLKKSQkJJCWlsaECRMoLi4OSeM4DoWFhWRlZREbG8vIkSNZu3btIaxzx6NBiIiIiIjIQSoqKuK6665jyZIlzJ8/n+bmZsaMGUNdXV0wzQMPPMBDDz3EzJkzWb58ORkZGYwePZrdu3cfwciPLF2OJSIiIiJho9VpoS2/s9v239/cuXNDPj/99NOkpaWxYsUKzjjjDBzHYcaMGdx1111cdNFFADzzzDOkp6fzwgsvcPXVVx90rB2ZzoSIiIiISNg4VJMV1tTUhLwaGhq+V/nV1faAgZQUe/BASUkJZWVljBkzJpgmJiaGESNGsGjRokNc+45DgxARERERka/Jzs7G5/MFX9OnT//ObRzH4aabbuL0008P3pcbmMPt63Oypaen7zO/W2eiy7FEREREJGw4tOC04Xd2x3061pYtW0ImaI6JifnOba+//no++ugjPvjgg33WeTye0HIcZ59lnYkGISIiIiISNloP4glX+24PiYmJIYOQ73LDDTfw97//nffee48ePXoEl2dkZAB2RiQzMzO4vKKiYp+zI52JLscSERERkbDh4LTxnhDnuwv5anmOw/XXX88rr7zCu+++S25ubsj63NxcMjIymD9/fnBZY2MjRUVFDB8+/JDUuSPSmRARERERkYN03XXX8cILL/Daa6+RkJAQvM/D5/MRGxuLx+Nh6tSpTJs2jby8PPLy8pg2bRpxcXFceumlRzj6I8fjOM6BDfek06upqcHn83F/3zuY0LMGgNU77QkQlY028/rqSrvG0Rdt74U/Xg9A0T+PAeC4bpUAVNTEA+CNtOsvy/bEApAU3RiyPCvNnjRxa1EvAIZ2s1i8EXbKNDbCuvG6mr3j6tW7mgCY0tvWVTZZbEXldgLQ32LbDkqx5Uu3W/oRGVHuekLex2daDCsr7dRsVZPVrarR3gtS7akZc0ujLdYTtwHwhzVZAEzoUQvAW6U2g/2Pe+0E4MWNqSHbr6yy7cvrrdxByRb/0h2BeELjDpTf0GLp8hP3fqUDMY7P2gXAq1tS3Haz9Rleq9xjJVUAjEtLDWm7fJ/FcnX/L63tttpp4zJ/BL9YMJWEjERqy2r409kzALggN7TO7uZBgToF+kXfxGZg3/3Xz11+3ogSAJ6d38faqHtlSD0CcT4xeisAL6/t5W6/99nsSTHWl/ILrA2WLswIWb54e7JbJ4up2hYH9/uU3tXuZ2u0U4aWArD5Yx8AczanAXvbeOPuriF1XlhhjTAu0yqfk2jPhM/Isu/OnFWhv5iN6W1t/VJxTwC8XaxtimssvhsHWhvX7PFafj2t3OgUJ6St9tcG/uZAn4kOiaWh2do9JtLafUmF9YPceIt5UJ79D7V4Q3cATr7evkP/c3dCSD/YdvmdgI4HoOMB6HgAne944G/xc8/66VRXVx/QZUyHSuDvkyzfSLp4Dv539lanmW3VC793Pb7pvo6nn36aKVOmAHa25N577+Xxxx+nsrKSoUOH8sc//nGfSaU7E50JEREREZGwcajuCfm+vs/v+R6Ph8LCQgoLCw8yqvCjQYiIiIiIhA17OtbBP3Uq8HQsObx0Y7qIiIiIiLQrnQkRERERkbDhOHtnPT/Y7eXw0yBERERERMJGe98TIgdHgxARERERCRuO08Z7QhzdE9IedE+IiIiIiIi0K50JEREREZGwEZgxvS3by+GnQYiIiIiIhA27Mb0tl2PpnpD2oMuxRERERESkXelMiBy0mC4OczanAZAb3wzA2JxSAKqastxUdkpz4/JEAErqvO57JgD9EusAeKvUB0BStG111ditALz0bm9bvy0FgD/+eD0AVzxnywelRAAw9eLPLd+X+wTj69U1CoBZG5rcz5Y2p6utn3paCQBl2yy2S/pYHV4rsdirGu1XlAt7VAFw9ZrdFnOUZZDvs/xGpe0BYManHrcOdkPbH9ZYPlfnVwAw90trq4U7dwBQXG3lTu27222TWAC8li1VjZbPrM1W/jW5SQCsrowISVdeb7/YbNxjbVlWHxtsg0D7fOqWNSnXYimviwNg9iary6QeqZb3Lttftx9vdVpQYW34wCqry7jMRsuvJpJW92y1N7IFbxf7UFETD8A9o2x/zFvTy62bHWpuPXFbSH5lfotvcFI9AP0sTE7NtDjfX9TD2qLJ2jYxzg/Ahdm73PS2QXyW7bvixZZubE5NsA02V1qa2W/kApAbb2U99pn1qQk97HNytNU1Kcr6yy+LNwPw627Wnt2G2P5Y8HoPvuqKE60fTVuc67aR5Td8sPXhpI8y3TawfPwtSQAsqbA2j41wQsrdssO+C4E2zY33u21g2wfaeGOdveel7ASgxYplZOb2kPwBynbafg6085kTrQ/+8alsAPoluG2y3vbTX39necx8JAOAlcvte1WQWg3A/9yd4G7XSKTH7QgedDxAxwMdDzr38WBPSxNHh5Y2XlClG9PbgwYhIiIiIhI27HIqXY51tNMgRERERETChgYhHYPuCRERERERkXalMyEiIiIiEjZaacXTljMhmjG9XWgQIiIiIiJhQ5djdQwahIiIiIhI2HCctj3dqq3by/eje0JERERERKRd6UyIiIiIiIQNBwfacF+H08ZZRuT70SBERERERMJGW+/p0D0h7UODEDloSdGt9I6vBWDOVpuBtbLRZoMtrrZfEXK62o1hgdmBy+rtc0FqAwD3rbUueEkvu/5yWJrN9vp6kc02u3SHzaCbb5PGEtXDZliekG35l9rkscx7u6ebb20wPn+LbRuY9bWs3sqYcqzN8nrHO33cGC39NcNsVt/c8kZ3++iQfO7obbPFzt1mVzEGZihet9tmrh2UEnoTXFK0xRiYRdr/tUtM832W/8oqm5l33pd+dztbX9VoM8+ubf4nAK9tuRCAjNiIkPz8LXawTIqMcePae5VlvwSrS68Ea5dZn6eHxDa0m2USmKk4MMvySndW4XJ31t10d9LlhRUW3P/+sQGSLA9/cwSDk21G4lkbbEf9upu1cWBm5FFp9jkw+/Qj/10GwA2/tTYtSHUr02Rtcecyi3PaqeUAlPqt3GWl1pZ9fVbeuhrLv3RensX1ohvo+phgG2R+ZmWlu7N0B/ZHoO4BpX7LKzA78zPRFttLxVanCxptduecRJvROu/GJAA2P2ZlBWZG/rrAzMiTZ9vMyn+7bAsA8yw7rsmz/d7TbcPMQTY79cD6ipB8Bm60choaA/3Z8g3MIj0wa3tI+kxvY/Dfk374JQCt9bbPfveotVe/RJtZesRZtj4pujsA/5xldS623cYfPj0FgFuPXw7AoGRru1Oyy4iOtH93wQl+/3Q80PEAdDzYn3A/HuxuaoR/77fq7UqDkI5B94SIiIiIiEi70pkQEREREQkbbZ3nQ/OEtA8NQkREREQkbOhyrI5BgxARERERCRsahHQMuidERERERETalc6EiIiIiEgYaeuZDJ0JaQ8ahIiIiIhI2NDlWB2DLscSEREREZF2pTMhIiIiIhI29IjejkGDEBEREREJG47j0Jb7Omx7Odw8jlpaDlBNTQ0+n49ZJ97KSSkNACTG+QF4rSQLgKXbWwCYkG3da2VlVEgehT9eD8Dq97sD0P/4CgAmvpgNQEZsDAAPjNgIwCdbLF3P5BoAumXXAXDr63kATMqpBWD2pq7BMgLL7ltrY+1LelkMf9nYFBLLNXl2VeLinVbmqLQ9AJzUqwyAd9dbTElRTW66WACqG237HLfI1btCv0pDu9l7QfdK2257MgBF5a1ufNZGMz6zjG7vFwHAY+st3l5dQ9tsyrG7AHhxYyoADS1WXlWjvT9+/UYANhTFB7dZvTMFgCU7It0yqwHwt1hZQ0daHe97qQ8AGV7La2OdtcngZKuzt0urG1urG0skP3zjZuLSfdSW1/DKuAcB+GHfzQA8vybXLQc33xY3Xyu3vN6We+0j+YmhbZccbennbrMEg1I8AIw7xvpJTHSz1fmTYyyePuUAJHa1ftj9dE8wry/m2n5dUmHtdnHBBovxgz4hdS1IbQiJwd9qy88bUQLAE/Osr1011vpui1uHp97LC9nO28XdL00Ww0/7W5u8v8m+G3191odX7vIBEBth6QP9q9Qf7W4f4S63tkh23+eW2vprjtsVUm4gv3nb7PPQ7hHBdTfcb33sb/dYnc7M2wLs/V6dMrQUgDUfpgHwVqnlNT4ztL/0z95udUy29v/dvOO47YNf4stMZE95NV9ceg+g4wHoeAA6Hlhbda7jQUOrn4c2TqO6uprExETaW+Dvky5dEvF4PN+9wTdwHIfW1pojVo/OQveEiIiIiIhIu9LlWCIiIiISNuzpVm07EyKHnwYhIiIiIhJG2jYIAQ1C2oMGISIiIiISPtp4JgSdCWkXuidERERERETalc6EiIiIiEjYcNp4OVVbt5fvR4MQEREREQkjuiekI9AgRERERETCiNPGcYQGIe1B94SIiIiIiEi70pkQOWCB52fXtzRQ22yzynqabAZWf4vNUNvUajPp7nFn8W1obQnJo6bB0ge2r2m0z02OfW5ste12u/nWuekCn6Pd9I2t/pD1ja17u3RgWZPT4sbb6n4OnSF5T0sXN0Znv2XtabHPUZ4mt44eNz3uZ0JiDqh3lwfqWB9sG8fN1xI0O4E6RrjrW9z8Q9sskE+DW+dAvIFya/yBNt07s3Ig9obW5tA83BlvA/shsN/qg/uri7u9bdfqBNousF9bgr8TOY5DfUtomwXyC7RNoO39bls3um0XmNA2UG5AjJu+0Y0j0Oa1ze5+9zSHtEVgeaAfxvj3noavbfa4ZYT2tcD+2FvXxpAYAjMkf72NAp8DyQPLAwLfj0DMX+9He/uDvQeuPQ70r0BbBNqq3p2dOqZLi9smrSH5BATyawr2y72/MdXsaXJj6BISU6Cvf/37GKjT1/tLYLvGxr3tH4jf+Up6HQ90PAAdDwLt8dWYw/140NDaEFLvI8fRfR0dgMc58j1FOpgNGzZw7LHHHukwRERE5Cj0xRdf0Lt373Yv1+/3k5ubS1lZWZvzysjIoKSkBK/Xewgik/3RIEQOWFVVFcnJyWzevBmfz3ekwzkiampqyM7OZsuWLSQmJh7pcI4ItYHaANQGoDYAtQGoDQCqq6vp2bMnlZWVJCUlHZEY/H4/jY2N353wO0RHR2sAcpjpciw5YF262Clcn8/XaQ+0AYmJiWoDtYHaALUBqA1AbQBqA9j7d8KR4PV6NXjoIHRjuoiIiIiItCsNQkREREREpF1pECIHLCYmhnvuuYeYmJgjHcoRozZQG4DaANQGoDYAtQGoDUBtIAdGN6aLiIiIiEi70pkQERERERFpVxqEiIiIiIhIu9IgRERERERE2pUGISIiIiIi0q40CBH+7//+j9zcXLxeL0OGDOH999//1vRFRUUMGTIEr9dL7969eeyxx/ZJ8/LLL9O/f39iYmLo378/r7766uEK/5A4kDZ45ZVXGD16NN27dycxMZGCggLmzZsXkmbWrFl4PJ59Xn6//3BX5aAdSBssXLhwv/X79NNPQ9KFcz+YMmXKftvg+OOPD6bpaP3gvffe47zzziMrKwuPx8OcOXO+c5twOx4caBuE4/HgQNsgHI8HB9oG4XY8mD59OqeccgoJCQmkpaUxYcIEiouLv3O7cDseyOGlQUgn95e//IWpU6dy1113sXLlSn7wgx8wfvx4Nm/evN/0JSUlnHPOOfzgBz9g5cqV3Hnnndx44428/PLLwTSLFy/mkksuYfLkyaxevZrJkyczceJEli5d2l7VOiAH2gbvvfceo0eP5s0332TFihWMGjWK8847j5UrV4akS0xMpLS0NOR1tM7ieqBtEFBcXBxSv7y8vOC6cO8Hv//970PqvmXLFlJSUvjRj34Ukq4j9YO6ujoGDRrEzJkzv1f6cDweHGgbhOPx4EDbICCcjgcH2gbhdjwoKiriuuuuY8mSJcyfP5/m5mbGjBlDXV3dN24TjscDOcwc6dROPfVU55prrglZ1rdvX+f222/fb/pbb73V6du3b8iyq6++2hk2bFjw88SJE51x48aFpBk7dqwzadKkQxT1oXWgbbA//fv3d+69997g56efftrx+XyHKsTD7kDbYMGCBQ7gVFZWfmOena0fvPrqq47H43E2btwYXNbR+sFXAc6rr776rWnC8XjwVd+nDfanox8Pvur7tEE4Hg++6mD6QbgdDyoqKhzAKSoq+sY04X48kENPZ0I6scbGRlasWMGYMWNClo8ZM4ZFixbtd5vFixfvk37s2LF8+OGHNDU1fWuab8rzSDqYNvi61tZWdu/eTUpKSsjy2tpacnJy6NGjB+eee+4+v4weLdrSBoMHDyYzM5OzzjqLBQsWhKzrbP3gqaee4uyzzyYnJydkeUfpBwcj3I4Hh0JHPx60RbgcDw6FcDseVFdXA+zTr79KxwM5UBqEdGI7duygpaWF9PT0kOXp6emUlZXtd5uysrL9pm9ubmbHjh3fmuab8jySDqYNvu7BBx+krq6OiRMnBpf17duXWbNm8fe//50XX3wRr9fLaaedxvr16w9p/IfCwbRBZmYmTzzxBC+//DKvvPIK+fn5nHXWWbz33nvBNJ2pH5SWlvLWW2/xn//5nyHLO1I/OBjhdjw4FDr68eBghNvxoK3C7XjgOA433XQTp59+OgMGDPjGdDoeyIGKPNIByJHn8XhCPjuOs8+y70r/9eUHmueRdrDxvvjiixQWFvLaa6+RlpYWXD5s2DCGDRsW/Hzaaadx0kkn8cgjj/CHP/zh0AV+CB1IG+Tn55Ofnx/8XFBQwJYtW/jf//1fzjjjjIPK82hwsPHOmjWLpKQkJkyYELK8I/aDAxWOx4ODFU7HgwMRrseDgxVux4Prr7+ejz76iA8++OA70+p4IAdCZ0I6sW7duhEREbHPLxAVFRX7/FIRkJGRsd/0kZGRpKamfmuab8rzSDqYNgj4y1/+whVXXMFLL73E2Wef/a1pu3TpwimnnHJU/uLVljb4qmHDhoXUr7P0A8dx+NOf/sTkyZOJjo7+1rRHcz84GOF2PGiLcDkeHCod+XjQFuF2PLjhhhv4+9//zoIFC+jRo8e3ptXxQA6UBiGdWHR0NEOGDGH+/Pkhy+fPn8/w4cP3u01BQcE+6d9++21OPvlkoqKivjXNN+V5JB1MG4D94jllyhReeOEFfvjDH35nOY7jsGrVKjIzM9sc86F2sG3wdStXrgypX2foB2BPkfn888+54oorvrOco7kfHIxwOx4crHA6HhwqHfl40BbhcjxwHIfrr7+eV155hXfffZfc3Nzv3EbHAzlg7XsfvBxtZs+e7URFRTlPPfWU88knnzhTp0514uPjg0/0uP32253JkycH02/YsMGJi4tzfvWrXzmffPKJ89RTTzlRUVHO3/72t2Caf/3rX05ERIRz3333OevWrXPuu+8+JzIy0lmyZEm71+/7ONA2eOGFF5zIyEjnj3/8o1NaWhp8VVVVBdMUFhY6c+fOdb744gtn5cqVzs9+9jMnMjLSWbp0abvX7/s40DZ4+OGHnVdffdX57LPPnI8//ti5/fbbHcB5+eWXg2nCvR8E/OQnP3GGDh263zw7Wj/YvXu3s3LlSmflypUO4Dz00EPOypUrnU2bNjmO0zmOBwfaBuF4PDjQNgjH48GBtkFAuBwPfvGLXzg+n89ZuHBhSL/es2dPME1nOB7I4aVBiDh//OMfnZycHCc6Oto56aSTQh7Bd/nllzsjRowISb9w4UJn8ODBTnR0tNOrVy/n0Ucf3SfPv/71r05+fr4TFRXl9O3bN+R/RkejA2mDESNGOMA+r8svvzyYZurUqU7Pnj2d6Ohop3v37s6YMWOcRYsWtWONDtyBtMH999/vHHvssY7X63WSk5Od008/3XnjjTf2yTOc+4HjOE5VVZUTGxvrPPHEE/vNr6P1g8CjVr+pb3eG48GBtkE4Hg8OtA3C8XhwMN+FcDoe7K/ugPP0008H03SG44EcXh7Hce8aEhERERERaQe6J0RERERERNqVBiEiIiIiItKuNAgREREREZF2pUGIiIiIiIi0Kw1CRERERESkXWkQIiIiIiIi7UqDEBERERERaVcahIiIiIiISLvSIEREREIsXLgQj8dDVVXVkQ5FRETClAYhIiKd0JQpU/B4PHg8HqKioujduze33HILdXV1Rzo0ERHpBCKPdAAiInJkjBs3jqeffpqmpibef/99/vM//5O6ujouueSSIx2aiIiEOZ0JERHppGJiYsjIyCA7O5tLL72Uyy67jDlz5gTXr1ixgpNPPpm4uDiGDx9OcXFxcN0XX3zBBRdcQHp6Ol27duWUU07hnXfeCcn///7v/8jLy8Pr9ZKens5//Md/BNc5jsMDDzxA7969iY2NZdCgQfztb3877HUWEZGjgwYhIiICQGxsLE1NTcHPd911Fw8++CAffvghkZGR/PznPw+uq62t5ZxzzuGdd95h5cqVjB07lvPOO4/NmzcD8OGHH3LjjTfym9/8huLiYubOncsZZ5wR3P6///u/efrpp3n00UdZu3Ytv/rVr/jJT35CUVFR+1VYRESOGI/jOM6RDkJERNrXlClTqKqqCp75WLZsGeeccw5nnXUWv/jFLxg1ahTvvPMOZ511FgBvvvkmP/zhD6mvr8fr9e43z+OPP55f/OIXXH/99bzyyiv87Gc/Y+vWrSQkJISkq6uro1u3brz77rsUFBQEl//nf/4ne/bs4YUXXjg8lRYRkaOG7gkREemk/vGPf9C1a1eam5tpamriggsu4JFHHuGTTz4B4IQTTgimzczMBKCiooKePXtSV1fHvffeyz/+8Q+2bdtGc3Mz9fX1wTMho0ePJicnh969ezNu3DjGjRvHhRdeSFxcHJ988gl+v5/Ro0eHxNPY2MjgwYPbqfYiInIkaRAiItJJjRo1ikcffZSoqCiysrKIiooCCA5CAp8BPB4PAK2trQD813/9F/PmzeN///d/6dOnD7GxsfzHf/wHjY2NACQkJPDvf/+bhQsX8vbbb3P33XdTWFjI8uXLg3m88cYbHHPMMSExxcTEHN5Ki4jIUUGDEBGRTio+Pp4+ffoc1Lbvv/8+U6ZM4cILLwTsHpGNGzeGpImMjOTss8/m7LPP5p577iEpKYl3332X0aNHExMTw+bNmxkxYkRbqyEiIh2QBiEiInLA+vTpwyuvvMJ5552Hx+Ph17/+dfAMB9ilXhs2bOCMM84gOTmZN998k9bWVvLz80lISOCWW27hV7/6Fa2trZx++unU1NSwaNEiunbtyuWXX34EayYiIu1BgxARETlgDz/8MD//+c8ZPnw43bp147bbbqOmpia4PikpiVdeeYXCwkL8fj95eXm8+OKLHH/88QD8v//3/0hLS2P69Ols2LCBpKQkTjrpJO68884jVSUREWlHejqWiIiIiIi0K80TIiIiIiIi7UqXY8kBcRyHpqYmWlpaiIiIICoqKvjUHBERERGR76NTDUIKCwuZM2cOq1atOtKhHDEjR47kxBNPZMaMGQe0XVNTE+Xl5Xz55ZfU19cHl8fGxnLMMceQnp4e8jhPEREREZFvctRfjjVlyhQ8Hg8ej4eoqCjS09MZPXo0f/rTn0KexHKweU+YMOHQBBrGdu3axZIl/397dx5XVbX/f/x14DApiCCjSGIOKCCgkIlDYoZDV9OyspvjI7KbTQ6pt9LuNevhWKlUUs7avd/0fsvpmpL+HCr1YuKQqKSFIqaIIGRCyHh+f/jgfC+BMkgH0Pfz8eDx8Oyz1tqffXBx9mevtfaOJzk5GUdHRwICAggODiYgIABHR0eSk5OJj48nKyurrkMVERGRP9jixYtp1aoV9vb2hIWF8e2339Z1SNIA1fskBKB///6kpaWRkpLCtm3b6N27N+PHj2fgwIEUFRXVdXh3tKysLBITE3F2dqZr164EBgbi4eGBq6srHh4eBAYG0rVrV5ydnUlMTFQiIiIicgdbt24dEyZMYNq0aRw5coSePXsyYMAAUlNT6zo0aWAaxHQsOzs7vLy8APDx8aFz58507dqVPn36sGrVKp599lkArl69ypQpU9i4cSPXr18nPDycBQsWEBISUq7NGTNmsHr1auD/ngS8e/duIiMj+etf/8qGDRv4+eef8fLyYvjw4fztb3+76XSjlJQUWrVqxWeffUZMTAyHDx+mdevWfPTRR0RGRprLnTx5ksmTJ/PNN9/QuHFj+vbty4IFC3BzcwNuTJUKCgoC4B//+AfW1taMGzeOt99+2xxjdnY248eP59///jf5+fn06tWLmJgY2rZta97Pvn37eOONNzh48CB2dnZ06dKFtWvX4uLiAtx44vHUqVNZtmwZtra2PP/888yYMaPccRUWFnLixAlcXFwICgrCyqrinNXOzo6goCCOHz9OYmIiLi4uNy0rIiIi9UfpeUdVvf/++0RHR5vPvRYuXMhXX31FbGwss2fP/iNClDtUgz1TfPDBBwkJCWH9+vXAjQXTf/rTn7h06RJbt27l0KFDdO7cmT59+lR4dX7y5Mk8+eST5lGWtLQ0unXrBoCTkxOrVq3i5MmTLFq0iKVLl7JgwYJKY5oyZQqvvvoqR44coVu3bjzyyCNcuXIFgLS0NHr16kVoaCgJCQnExcWRnp7Ok08+WaaN1atXYzQaOXDgADExMSxYsIBly5aZ3x8zZgwJCQls3ryZ//znP5hMJh5++GEKCwsBOHr0KH369CEwMJD//Oc/7N27l0GDBlFcXFxmH40bN+bAgQPMmzePmTNnsmPHjnLHk56ebn64WGVJhZWVFf7+/phMJvLz8yv9rERERKRhKSgo4NChQ/Tt27fM9r59+7J///46ikoaqgYxEnIz7du359ixY8CNUYzExEQuX76MnZ0dAO+++y4bN27k888/57nnnitT19HREQcHB/Lz882jLKWmT59u/refnx+vvvoq69atY+rUqbeM56WXXmLo0KEAxMbGEhcXx/Lly5k6dSqxsbF07tyZWbNmmcuvWLECX19fTp8+Tbt27QDw9fVlwYIFGAwG/P39SUxMZMGCBYwdO5Yff/yRzZs3s2/fPnPC9M9//hNfX182btzIE088wbx58wgPD2fx4sXm/ZQ+HKxUcHAwf//73wFo27YtH374ITt37iQqKspcxmQyceHCBdzc3MyfZ2Xs7Oxwd3cnKysLe3t73TVLRETkDpKZmUlxcTGenp5ltnt6enLp0qU6ikoaqgadhJhMJvOJ7qFDh8jJyaFZs2ZlyuTl5ZGcnFytdj///HMWLlzITz/9RE5ODkVFRTRp0qTSehEREeZ/G41GwsPDSUpKMse3e/duHB0dy9VLTk42JyFdu3Ytc/IeERHBe++9R3FxMUlJSRiNRu6//37z+82aNcPf39+8n6NHj/LEE0/cMs7g4OAyr729vbl8+XKZbYWFheTl5dGqVatKj/u/ubu7k5GRUeZ3IyIiIneO33+/6ztfaqJBJyFJSUnmk+SSkhK8vb3Zs2dPuXJNmzatcpvx8fE89dRTvPXWW/Tr1w9nZ2fWrl3Le++9V6MYSztlSUkJgwYNYu7cueXKeHt7V6mtmz3c/r87v4ODQ6Xt/H5ti8FgKHensdLpW0Zj9f6LlJa/WawiIiLSMLm5uWFtbV1u1OPy5cvlRkdEKtNg14Ts2rWLxMRE8/Snzp07c+nSJYxGI23atCnzU7rw+/dsbW3LrJWAG4u6W7ZsybRp0wgPD6dt27acO3euSjHFx8eb/11UVMShQ4do3769Ob4TJ07g5+dXLr7GjRtX2Ebp67Zt22JtbU1AQABFRUUcOHDA/P6VK1c4ffo0HTp0AG6McuzcubNK8d6KtbW1+Tiqo7S8roiIiIjcWWxtbQkLCyu3jnTHjh3maeIiVdUgkpD8/HwuXbrEhQsXOHz4MLNmzWLw4MEMHDiQUaNGAfDQQw8RERHBkCFD+Oqrr0hJSWH//v1Mnz6dhISECtv18/Pj2LFjnDp1iszMTAoLC2nTpg2pqamsXbuW5ORkYmJi2LBhQ5Xi/Oijj9iwYQM//PADL774ItnZ2TzzzDMAvPjii2RlZfHnP/+Z7777jjNnzrB9+3aeeeaZMonQ+fPnmTRpEqdOneKzzz7jgw8+YPz48cCN9RuDBw9m7Nix7N27l++//54RI0bg4+PD4MGDAXj99dc5ePAgL7zwAseOHeOHH34gNjaWzMzMan3mNjY2ODg4kJGRUa16GRkZWFtbKwkRERG5A02aNIlly5axYsUKkpKSmDhxIqmpqTz//PN1HZo0MA0iCYmLi8Pb2xs/Pz/69+/P7t27iYmJYdOmTeYr9gaDga1bt/LAAw/wzDPP0K5dO5566ilSUlJuOkQ4duxY/P39CQ8Px93dnX379jF48GAmTpzISy+9RGhoKPv37+fNN9+sUpxz5sxh7ty5hISE8O2337Jp0ybzKEzz5s3Zt28fxcXF9OvXj6CgIMaPH4+zs3OZO0+NGjWKvLw8unTpwosvvsjLL79cZlH9ypUrCQsLY+DAgURERGAymdi6dat5ilW7du3Yvn0733//PV26dCEiIoJNmzZVe1qVwWDAx8eHzMzMKt/tKj8/n4yMDC1KFxERuUMNGzaMhQsXMnPmTEJDQ/nmm2/YunUrLVu2rOvQpIExmDR5/7aVPifkyJEjhIaG1ridyMhIQkNDWbhwYa3FdjsKCwuJj4/H2dn5ls8JgRtrXo4fP052draeEyIiItJAVPc5ISK1pUEvTJc/lo2NDYGBgSQmJnL8+HH8/f0rvF1vfn4+p06dIjs7m44dO+Lq6loH0YqIiIhIQ6EkRG7J1dWVjh07cuLECeLj43Fzc8Pd3R2j0UhRUREZGRlkZmZiZWWlBEREREREqkTTsaRKCgsLSU9P58KFC+Tl5Zm3Ozg44OPjg5eXV7XXnYiIiIjI3UlJiFSLyWSiqKiIoqIijEYjRqNRi9BFREREpFqUhIiIiIiIiEXpFkYiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERizLWdQAiIlK/mEwmCgsLKS4uxtraGhsbGwwGQ12HJSIidxAlISIiAkBhYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RZ1Ox4qMjGTChAm13q7JZOK5557D1dUVg8HA0aNHLbp/EZGGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljixcvplWrVtjb2xMWFsa3335bK3UqK1MbbUj9Ue0kZMyYMRgMBgwGAzY2Nnh6ehIVFcWKFSsoKSm5rWBqKymIi4tj1apVbNmyhbS0NIKCgm67Tai9+L755hsGDRpE8+bNMRgMbNy4scJyVe1IYWFhBAUFlfu5ePFiubIXLlxgxIgRNGvWjEaNGhEaGsqhQ4du+5hEpOHKysoiMTERZ2dnunbtSmBgIB4eHri6uuLh4UFgYCBdu3bF2dmZxMREJSIid7F169YxYcIEpk2bxpEjR+jZsycDBgwgNTX1tupUVqY22pD6xWAymUzVqTBmzBjS09NZuXIlxcXFpKenExcXx+zZs+nZsyebN2/GaKzaLK/IyEhCQ0NZuHBhha9r6sMPP2T+/PmcO3euWvuvbrw1tW3bNvbt20fnzp0ZOnQoGzZsYMiQIWXKrFu3jpEjR7J48WK6d+/OJ598wrJlyzh58iT33HNPjfabnZ1Np06d6N27N+PGjcPDw4Pk5GT8/Pxo3bp1tdrye+3LGsUgIvVLIyMs6N0YTzdXgjsGYWV182tTJSUlHD9+nOzsbFxcXG5ZVkQahupeqL3//vvp3LkzsbGx5m0dOnRgyJAhzJ49u8Z1KitTG21I/VKjbxA7Ozu8vLzw8fGhc+fOvPHGG2zatIlt27axatUq4MaUqHnz5nHvvffi4OBASEgIn3/++U3bHDNmDF9//TWLFi0yj7SkpKQQFxdHjx49aNq0Kc2aNWPgwIEkJyffsp2XX36Z1NRUDAYDfn5+AOTm5jJq1CgcHR3x9vbmvffeK1c3Pz+fV155BQ8PD+zt7enRowcHDx68ZXy/l5GRgZeXF7NmzTJvO3DgALa2tmzfvh2AAQMG8M477/DYY4/d9Djef/99oqOjefbZZ+nQoQMLFy7E19e3TMeqrrlz5+Lr68vKlSvp0qULfn5+9OnTp9oJiIjcObr7GLG1hg7t/StNKqysrPD398dkMpGfn2+hCEWkvigoKODQoUP07du3zPa+ffuyf//+GteprExttCH1T61dxnrwwQcJCQlh/fr1AEyfPp2VK1cSGxvLiRMnmDhxIiNGjODrr7+usP6iRYuIiIhg7NixpKWlkZaWhq+vL7m5uUyaNImDBw+yc+dOrKysePTRR2869WvRokXMnDmTFi1akJaWZk4ipkyZwu7du9mwYQPbt29nz5495aYhTZ06lS+++ILVq1dz+PBh2rRpQ79+/cjKyrppfL/n7u7OihUrmDFjBgkJCeTk5DBixAheeOGFch3jZv6ojrR582bCw8N54okn8PDwoFOnTixdurTG7YlIwxfV0hZ3N3fs7OyqVN7Ozg53d3euX79ONQfSRaSBy8zMpLi4GE9PzzLbPT09uXTpUo3rVFamNtqQ+qdW747Vvn17jh07Rm5uLu+//z67du0iIiICgHvvvZe9e/fyySef0KtXr3J1nZ2dsbW1pVGjRnh5eZm3Dx06tEy55cuX4+HhwcmTJyscQnR2dsbJyQlra2tzOzk5OSxfvpw1a9YQFRUFwOrVq2nRooW5Xm5uLrGxsaxatYoBAwYAsHTpUnbs2MHy5cuZMmVKhfFV5OGHH2bs2LEMHz6c++67D3t7e+bMmVOVjxD44zrSmTNniI2NZdKkSbzxxht89913vPLKK9jZ2TFq1KgatysiDZOjDXg0MuDh4V6teu7u7mRkZGAymXTrXpG70O/7fVX+FlSlTmVlaqMNqT9qNQkp/UWfPHmS69evm0/4SxUUFNCpU6dqtZmcnMybb75JfHw8mZmZ5hGQ1NTUKs9jTE5OpqCgwJwQAbi6uuLv71+mTGFhId27dzdvs7GxoUuXLiQlJVUrZoB3332XoKAg/vWvf5GQkIC9vX2126jtjlRSUkJ4eLh5qlinTp04ceIEsbGxSkJE7kL2xht/T6q6jq9UaXmNhIjcXdzc3LC2ti53QfTy5cvlLpxWp05lZWqjDal/anVVYVJSEq1atTInCl9++SVHjx41/5w8efKW60IqMmjQIK5cucLSpUs5cOAABw4cAG4kNFVVlS/K0jK1deJ/5swZLl68SElJSaUL5H/vj+pI3t7eBAQElNnWoUMH3TVC5C51vejG372ioqJq1Sstr6uLIncXW1tbwsLC2LFjR5ntO3bsoFu3bjWuU1mZ2mhD6p9aS0J27dpFYmIiQ4cOJSAgADs7O1JTU2nTpk2Zn4rWUZSytbWluLjY/PrKlSskJSUxffp0+vTpQ4cOHcjOzq52bG3atMHGxob4+HjztuzsbE6fPl2mjK2tLXv37jVvKywsJCEhgQ4dOlQY380UFBQwfPhwhg0bxjvvvEN0dDTp6elVjveP6kjdu3fn1KlTZbadPn2ali1b1rhNEWm4cgrh8m8mLl/OqFa9jIwMrK2tlYSI3IUmTZrEsmXLWLFiBUlJSUycOJHU1FSef/554MYdSvv06VOtOlUpUxttSP1So+lY+fn5XLp0qdwtegcOHMioUaOwtrZm8uTJTJw4kZKSEnr06MGvv/7K/v37cXR0ZPTo0RW26+fnx4EDB0hJScHR0RFXV1eaNWvGkiVL8Pb2JjU1lddee63a8To6OhIdHc2UKVNo1qwZnp6eTJs2rcydYBo3bsy4ceOYMmUKrq6u3HPPPcybN4/ffvuN6Ojom8ZX0d1kpk2bxtWrV4mJicHR0ZFt27YRHR3Nli1bgBtrVH766Sdz+bNnz3L06FHzfuFGRxo5ciTh4eFERESwZMmS2+5IEydOpFu3bsyaNYsnn3yS7777jiVLlrBkyZIatykiDduOcwW4N8ogPz+/SovT8/PzycjIoHHjxkpCRO5Cw4YN48qVK8ycOdP8LLatW7eaL2hmZmaWu4tpZXWqUqY22pD6pUbPCVm9ejVwY16wi4sLISEhPP3004wePdp8Um4ymfjggw9YvHgxZ86coWnTpubb+T7wwANA+edunD59mtGjR/P999+Tl5fH2bNn+emnn3jllVc4c+YM/v7+xMTEEBkZWeGzNUotXLiQhQsXlrmFbk5ODuPGjWP9+vU4OTnx6quv8uWXX5bZ//Xr15k6dSqfffYZ165dIzw8nAULFnDffffdNL7SWwCX2rNnD1FRUezevZsePXoAN9avBAcHM3v2bMaNG8eePXvo3bt3ubhHjx5tvsUx3HhY4bx588wdacGCBebPrqa2bNnC66+/zo8//kirVq2YNGkSY8eOrXY7ek6IyJ1BzwkRubvV1gOdRaqr2kmIiIjcWUqfmO7i4oK/v3+FIyL5+fmcOnWK7OxsOnbsiKurax1EKiIidwolISIiQlZWFidOnKCkpAQ3Nzfc3d0xGo0UFRWRkZFBZmYmVlZWBAYGKgEREZHbpiRERESAGzfjSE9P58KFC+Tl5Zm3Ozg44OPjg5eXV7Vv5ysiIlIRJSEiIlKGyWSiqKiIoqIijEYjRqNRi9BFRKRWKQkRERERERGL0q1NRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUpCREREREREYtSEiIiIiIiIhZlrOsARESkfjGZTBQWFlJcXIy1tTU2NjYYDIa6DktERO4gdZqEREZGEhoaysKFC2u1XZPJxF/+8hc+//xzsrOzOXLkCKGhobW6DxGRO01hYSHp6elcuHCBvLw883YHBwd8fHzw9PTExsamDiMUEZE7RbWnY40ZMwaDwYDBYMDGxgZPT0+ioqJYsWIFJSUltxVMZGQkEyZMuK02AOLi4li1ahVbtmwhLS2NoKCg226ztn3zzTcMGjSI5s2bYzAY2LhxY7kyixcvplWrVtjb2xMWFsa3335bYVthYWEEBQWV+7l48WK5srGxsQQHB9OkSROaNGlCREQE27Ztq+3DE5EGJisri/j4eJKTk3F0dCQgIIDg4GACAgJwdHQkOTmZ+Ph4srKy6jpUEaljVT0/qW6dysrUZL9Sf9VoTUj//v1JS0sjJSWFbdu20bt3b8aPH8/AgQMpKiqq7RirLTk5GW9vb7p164aXlxdGY/kBn4KCgjqI7P/k5uYSEhLChx9+WOH769atY8KECUybNo0jR47Qs2dPBgwYQGpqarmyhw4d4vjx4+V+mjdvXq5sixYtmDNnDgkJCSQkJPDggw8yePBgTpw4UevHKCINQ1ZWFomJiTg7O9O1a1cCAwPx8PDA1dUVDw8PAgMD6dq1K87OziQmJioREbmLVef8pDp1KitTk/1K/WYwmUym6lQYM2YMv/zyS7kr97t27aJPnz4sXbqUZ599FpPJxPz58/n4449JS0ujXbt2vPnmmzz++OPmOv89HWvMmDGsXr26TJtnz57lhx9+4J133uH48eNYW1sTERHBokWLaN269U3j++92WrZsSUpKCpGRkQQFBWFra8uaNWsIDAzk66+/rjTO3Nxcxo0bx/r163FycmLy5Mn8+9//vuk0soyMDDp27Mgrr7zCG2+8AcCBAwfo2bMnW7ZsoW/fvuXqGAwGNmzYwJAhQ8zb7r//fjp37kxsbKx5W4cOHRgyZAizZ8+u+JdTQ66ursyfP5/o6Ogq1/F77ctajUFE6kYjIyzo3RhPN1eCOwZhZXXza1MlJSUcP36c7OxsXFxcbllWRBqG6s4Wqcn5SVXqVFbGkudFYhm19g3y4IMPEhISwvr16wGYPn06K1euJDY2lhMnTjBx4kRGjBjB119/XWH9RYsWERERwdixY0lLSyMtLQ1fX19yc3OZNGkSBw8eZOfOnVhZWfHoo4/edOrXokWLmDlzJi1atCAtLY2DBw+a31u9ejVGo5F9+/bxySefVCnOKVOmsHv3bjZs2MD27dvZs2cPhw4duunn4O7uzooVK5gxYwYJCQnk5OQwYsQIXnjhhQoTkIoUFBRw6NChcuX79u3L/v37q9RGVRQXF7N27Vpyc3OJiIiotXZFpOHo7mPE1ho6tPevNKmwsrLC398fk8lEfn6+hSIUkfqiJucnValTWRlLnReJZdXqwvT27dtz7NgxcnNzef/999m1a5f55Pbee+9l7969fPLJJ/Tq1atcXWdnZ2xtbWnUqBFeXl7m7UOHDi1Tbvny5Xh4eHDy5MkKs3dnZ2ecnJywtrYu0w5AmzZtmDdvnvl1ZXGGhYWxfPly1qxZQ1RUFHAjkWnRosUtP4eHH36YsWPHMnz4cO677z7s7e2ZM2fOLev8t8zMTIqLi/H09Cyz3dPTk0uXLlW5nZtJTEwkIiKC69ev4+joyIYNGwgICLjtdkWk4YlqaYu7mzt2dnZVKm9nZ4e7uztZWVnY29vrrlkid5GanJ9UpU5lZf7o8yKpG7WahJhMJgwGAydPnuT69evmE/dSBQUFdOrUqVptJicn8+abbxIfH09mZqZ5BCQ1NbXaQ4jh4eFlXlcWZ3JyMgUFBWVGCVxdXfH39690X++++y5BQUH861//IiEhAXt7+2rFCpT7ci/9fG+Xv78/R48e5ZdffuGLL75g9OjRfP3110pERO4yjjbg0ciAh4d7teq5u7uTkZFRa3+TRKRhqcn5SVXqVFbmjzovkrpRq0lIUlISrVq1MicKX375JT4+PmXKVPVqW6lBgwbh6+vL0qVLad68OSUlJQQFBdVoYXnjxo3LvK4szitXrlR7H6XOnDnDxYsXKSkp4dy5cwQHB1e5rpubG9bW1uWy+8uXL5e7ClATtra2tGnTBriRmB08eJBFixaZp6iJyN3B3njjy7uim3fcSmn5ai4pFJEGribnJ1WpU1mZP/q8SOpGra0J2bVrF4mJiQwdOpSAgADs7OxITU2lTZs2ZX58fX1v2oatrS3FxcXm11euXCEpKYnp06fTp08fOnToQHZ2dm2FXGmcbdq0wcbGhvj4eHOd7OxsTp8+fct2CwoKGD58OMOGDeOdd94hOjqa9PT0Ksdla2tLWFgYO3bsKLN9x44ddOvWrXoHWQWa3y1yd7pedCOJqO5dDUvL6wqkyN2lJucnValTWRlLnxeJZdRoJCQ/P59Lly5RXFxMeno6cXFxzJ49m4EDBzJq1Cisra2ZPHkyEydOpKSkhB49evDrr7+yf/9+HB0dGT16dIXt+vn5ceDAAVJSUnB0dMTV1ZVmzZqxZMkSvL29SU1N5bXXXrutA/5vpXe7ulWc0dHRTJkyhWbNmuHp6cm0adMqXbw5bdo0rl69SkxMDI6Ojmzbto3o6Gi2bNliLpOTk8NPP/1kfn327FmOHj2Kq6sr99xzD5MmTWLkyJGEh4cTERHBkiVLSE1N5fnnn7+tY37jjTcYMGAAvr6+XLt2jbVr17Jnzx7i4uJuq10RaXhyCuHybybcLmfg4eFR5XoZGRlYW1srCRG5C1V2fvLhhx+yYcMGdu7cWeU6VSnzR50XSd2pURISFxeHt7c3RqMRFxcXQkJCiImJYfTo0eYT9LfffhsPDw9mz57NmTNnaNq0KZ07dzbftrYikydPZvTo0QQEBJCXl8fZs2dZu3Ytr7zyCkFBQfj7+xMTE0NkZGSNDrYilcU5f/58cnJyeOSRR3BycuLVV1/l6tWrN21vz549LFy4kN27d9OkSRMAPv30U4KDg4mNjWXcuHEAJCQk0Lt3b3O9SZMmATB69GhWrVrFsGHDuHLlCjNnzjQ/cHHr1q20bNnyto43PT2dkSNHkpaWhrOzM8HBwcTFxZVbFyMid4cd5wpwb5RBfn5+labL5ufnk5GRQePGjZWEiNyFKjs/yczMJDk5uVp1qlLmjzovkrpT7eeESNnnm9yt9JwQkTuDnhMicner7k1+RGpLrS5Ml7tHypw/1XUIIlJLSp+Yfvz4cfz9/SscEcnPz+fUqVNkZ2fTsWNHXF1d6yBSERG5UygJERG5y7m6utKxY0dOnDhBfHw8bm5uuLu7YzQaKSoqIiMjg8zMTKysrJSAiIhIrdB0LBERAaCwsJD09HQuXLhAXl6eebuDgwM+Pj54eXlV+3a+IiIiFVESIiIiZZhMJoqKiigqKsJoNGI0GrUIXUREapWSEBERERERsSjd2kRERERERCxKSYiIiIiIiFiUkhAREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJSSEBERERERsSglISIiIiIiYlFKQkRERERExKKUhIiIiIiIiEUZ6zoAERERubWSkhIuXryIk5MTBoOhrsO565lMJq5du0bz5s2xstL13Lqm/lG/VLV/KAkRERGp5y5evIivr29dhyG/c/78eVq0aFHXYdz11D/qp8r6h5IQERGRes7JyQmAs2d34OTUuI6jkWvXcmnVKsr8e5G6pf5Rv1S1fygJERERqedKp5g4OTWmSRPHOo5GSmnqT/2g/lE/VdY/NJFRREREREQsSkmIiIiIiIhYlJIQERERqXVt2/YnJubTWmsvOno6Q4eOr7X2RKRuKQkRERG5w0RHT8fWNhhb22AcHDrRunVfXnrpbbKzf63r0CwmJeUCtrbBHD36Q12HIneBuu5zM2cuJjz8CYvsq7ZoYbqIiMgdqF+/7ixd+jZFRUUkJZ3huef+xi+/XOMf/5hX16GJ3JHU56pHIyEiIiJ3IFtbW7y83GjRwouoqG488UR//t//+4/5/dWrN9Kx42CcnMIJCnqEjz9eW6b+zz9fYvjwqXh69qBp0y507foU3313DIDk5PM89tgrtGgRiYvL/URE/JmdO+NvGc8vv/zKuHFv0aJFJE5O4YSGPsqXX34NVHwVNybmU9q27X/T9r76ai+RkaNxd++Ol1dPhgx5ieTk8+b327UbAECXLk9iaxvMQw89U+VjF6mJ2+lzBQWFjB8/i3vueRAnp3Datu3P3LnLzO9fvXqNcePewsenF82aRdC3bzTff38KgDVrNvHOOx9z7Ngp82jMmjWbLHfgNaSREBERkTvcmTM/89VX+7CxufG1v3z558ycGcvCha8TGtqeo0d/YNy4t2jUyIFRowaTk/MbDz30DM2be7B+fQyenm4cOZJESYkJgJyc3xgwoCdvvfUS9vZ2fPrpZh599GWOH9/MPfd4l9t/SUkJgwa9wLVruaxaNZt77/UlKSkZa+uaXwvNzc1j/PiRBAW1JTc3j7fe+ognnphAQsL/YmVlxf79/0O3bk8TF7eEgIA22NraVOnYRWpDdfvchx/+ky1b9vA//zMfX19vfv75EufPXwJuPIF88OCXcHFpwubNi2nSxJFly/6X/v3HcuLEv3niiX6cOPEjX321j7i4pQA4O9f/WxUrCREREbkDbd36DS4u91NcXML16/kAzJ8/BYBZs5Ywd+6rPProQwC0atWCpKQzLFv2OaNGDWbt2q1kZGSzf/9nuLo6A9CmzT3mtkNC/AkJ8Te/njnzZTZt2sWWLXt44YU/l4tl5854Dh48zrFjG2nXzg+Ae++9vSeNP/ZYVJnXS5a8hY9PJCdPJhMU1BY3NxcAXF2b4uXlZi5X2bGL1NTt9Lnz5y/Rps09dO/eGYPBQMuWzc3t7tnzHceP/8iFC3uws7MFYO7cyWzevJv163fw7LOP07hxI4xGY5n/6/WdkhAREZE7UGTkfXzwwXR+++06K1eu58cfU3jxxT+TkZHF+fOX+MtfZjBu3Fvm8kVFxearp99//wOhoe3NCcjv5eb+xttvf8zWrd+QlpZBUVEReXn5pKamVVj+++9/oEULT3MCUhuSk88zY8aHfPfdMTIzf6GkpASA8+cvERTUtsI6VTl2kZq6nT43atQjDBjwFwIDH6Ffv+48/PADREV1A+Dw4ZPk5PyGl1fPMvvLy8svMwWxoVESIiIicgdq1MjBPHqxYMFrREVF8/bbH5tHKmJj/06XLh3L1CmdHuXgYH/Ltl977X127NjPnDmv0rq1Lw4O9jz11KsUFhZWWL6y9qysrDCZTGW2FRYW3bLOo4++jK+vF7Gxf8fb24OSkhI6dXqMgoKKYwDM08ludewiNXU7fa5TpwBOn95GXNxedu2K5+mnp/Dgg/ezbt37lJSY8PZ2Y8eOFeX22bSp0x98VH8cJSEiIiJ3genTn2fQoBf4y1+exMfHg7Nnf+bpp/9UYdmgoLasWLGerKyrFY6G7N17mJEjBzNkSB/gxhqRc+cu3nTfHTu24+ef0zl9OqXC0RB3dxfS0zMxmUwYDAYA86Lbily58gs//HCGxYvfpEePMAD27TtcpkzpGpDSERIAT89mlR67SG2pTp8DaNLEkSef7M+TT/bnsceiGDhwHFlZV+nUqQOXLl3BaLTGz8+nwrq2tjYUFxf/UYfyh1ASIiIichfo1es+AgJaM3fuMt58cxwTJ86lSZPG9OvXg/z8Ag4fPkl29q9MmDCKp556mLlzl/H44+N5553xeHm5c/RoEs2be9C1awitW9/Dxo07+dOfemEwGJgx48MyJ/u/98AD4fTsGcawYZOYP38KrVv7curUWQwGA/369eCBB+4jI2MW7767kscei2L79n189dVemjSpeIqUi0sTmjVryrJlX+Dl5c7582lMm7aoTBkPD1ccHOz56qu9+Ph4Ym9vi7OzU6XHLlJbqtPnFi36FC8vN0JC2mNlZeCLL7bj5eVG06ZO9OnTla5dg3n88QnMmjWBdu38SEvLYNu2bxk8+EHCwgJp2bI5KSkXOHr0xtRHJ6fG5vUj9ZXGHkVERO4S48ePZPnyL4iK6s7HH/+dNWs207nzUB566BnWrNlkvspqa2vD1q2f4O7uyiOPvEjnzo8xf/4K89SRd9+dgouLE716jeKxx16mb9/udOrU4Zb7XrfufcLDgxg58q+EhDzK668voLj4RuLSocO9fPDBND7+eC3h4Y9z8GAiEyeOvmlbVlZW/OMf8zh8+CSdOj3G5MnzmTNnUpkyRqORBQv+yrJln9OyZR/z09afeWboLY9dpDZVtc85Ojrw7rsriYh4im7dnubcuYts2vQRVlZWGAwGNm9eTM+eYTz33N8JDBzEiBFTOXfuIh4ezYAbN2ro27c7fftG07x5L9at21aXh10lBtPvJ2GKiIhIvfLrr7/i7OxMZub+m44OiOX8+msObm7duHr1Kk2aNKnrcO566h/1S1X7h0ZCRERERETEopSEiIiIiIiIRSkJERERERERi1ISIiIiIiIiFqUkRERERERELEpJiIiIiIiIWJQeVigiIlLPld5N/9q13DqOROD/fg96ykH9oP5Rv1S1fygJERERqeeuXbsGQKtWUXUcify3a9eu4ezsXNdh3PXUP+qnyvqHHlYoIiJSz5WUlHDx4kWcnJwwGAx1Hc5dz2Qyce3aNZo3b46VlWa21zX1j/qlqv1DSYiIiIiIiFiU0ncREREREbEoJSEiIiIiImJRSkJERERERMSilISIiIiIiIhFKQkRERERERGLUhIiIiIiIiIWpSREREREREQsSkmIiIiIiIhYlJIQERERERGxKCUhIiIiIiJiUUpCRERERETEopSEiIiIiIiIRf1/6O69usheWdAAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "times_delayed = events.time + 0.5 * (events.time - events.time[0]) ** 2 * 3e-8 / cand_freqs_ef[0]\n", + "ip = InteractivePhaseogram(times_delayed, cand_freqs_ef[0], nt=32)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "An evolved implementation of this interactive phaseogram is implemented in [HENDRICS](https://github.com/stingraysoftware/hendrics) (command line tool `HENphaseogram`)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.13" + }, + "vscode": { + "interpreter": { + "hash": "b7a0f0345bf008463265b97b79e6b6ac46fd48f5252c12e26d20b6a21351a366" + } + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/notebooks/Simulator/Concepts/Inverse Transform Sampling.html b/notebooks/Simulator/Concepts/Inverse Transform Sampling.html new file mode 100644 index 000000000..ff64f24ea --- /dev/null +++ b/notebooks/Simulator/Concepts/Inverse Transform Sampling.html @@ -0,0 +1,252 @@ + + + + + + + + Inverse Transform Sampling — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Inverse Transform Sampling

+

This notebook will conceptualize how inverse transform sampling works

+
+
[2]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+import numpy.random as ra
+
+%matplotlib inline
+
+
+
+

Below is a spectrum which follows an almost bell-curve type distribution (anyway, the specific type of distribution is not important here).

+
+
[118]:
+
+
+
spectrum = [[1, 2, 3, 4, 5, 6],[2000, 4040, 6500, 6000, 4020, 2070]]
+energies = np.array(spectrum[0])
+fluxes = np.array(spectrum[1])
+spectrum
+
+
+
+
+
[118]:
+
+
+
+
+[[1, 2, 3, 4, 5, 6], [2000, 4040, 6500, 6000, 4020, 2070]]
+
+
+

Below, first we compute probabilities of flux. Afterwards, we compute the cumulative probability.

+
+
[119]:
+
+
+
prob = fluxes/float(sum(fluxes))
+cum_prob = np.cumsum(prob)
+cum_prob
+
+
+
+
+
[119]:
+
+
+
+
+array([ 0.08120179,  0.2452294 ,  0.5091352 ,  0.75274056,  0.91595615,  1.        ])
+
+
+

We draw ten thousand numbers from uniform random distribution.

+
+
[128]:
+
+
+
N = 10000
+R = ra.uniform(0, 1, N)
+R[1:10]
+
+
+
+
+
[128]:
+
+
+
+
+array([ 0.49834338,  0.31993222,  0.35882619,  0.15837646,  0.22595417,
+        0.85575223,  0.85203039,  0.78380252,  0.04170078])
+
+
+

We assign energies to events corresponding to the random number drawn.

+

Note: The command below finds bin interval using a single command. I am not sure though that it’s very readble. Would we want to split that in multiple lines and maybe use explicit loops to make it more readable? Or is it fine as it is? Comments?

+
+
[129]:
+
+
+
gen_energies = [int(energies[np.argwhere(cum_prob == min(cum_prob[(cum_prob - r) > 0]))]) for r in R]
+gen_energies[1:10]
+
+
+
+
+
[129]:
+
+
+
+
+[3, 3, 3, 2, 2, 5, 5, 5, 1]
+
+
+

Histogram energies to get shape approximation.

+
+
[130]:
+
+
+
gen_energies = ((np.array(gen_energies) - 1) / 1).astype(int)
+times = np.arange(1, 6, 1)
+lc = np.bincount(gen_energies, minlength=len(times))
+lc
+
+
+
+
+
[130]:
+
+
+
+
+array([ 825, 1652, 2626, 2466, 1589,  842], dtype=int64)
+
+
+
+
[131]:
+
+
+
plot1, = plt.plot(lc/float(sum(lc)), 'r--', label='Assigned energies')
+plot2, = plt.plot(prob,'g',label='Original Spectrum')
+plt.xlabel('Energies')
+plt.ylabel('Probability')
+plt.legend(handles=[plot1,plot2])
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Inverse_Transform_Sampling_12_0.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb b/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb new file mode 100644 index 000000000..1f1b783fe --- /dev/null +++ b/notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb @@ -0,0 +1,223 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Inverse Transform Sampling\n", + "\n", + "This notebook will conceptualize how inverse transform sampling works" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "import numpy.random as ra\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below is a spectrum which follows an `almost` bell-curve type distribution (anyway, the specific type of distribution is not important here). " + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[[1, 2, 3, 4, 5, 6], [2000, 4040, 6500, 6000, 4020, 2070]]" + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "spectrum = [[1, 2, 3, 4, 5, 6],[2000, 4040, 6500, 6000, 4020, 2070]]\n", + "energies = np.array(spectrum[0])\n", + "fluxes = np.array(spectrum[1])\n", + "spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, first we compute probabilities of flux. Afterwards, we compute the cumulative probability." + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.08120179, 0.2452294 , 0.5091352 , 0.75274056, 0.91595615, 1. ])" + ] + }, + "execution_count": 119, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "prob = fluxes/float(sum(fluxes))\n", + "cum_prob = np.cumsum(prob)\n", + "cum_prob" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We draw ten thousand numbers from uniform random distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 128, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.49834338, 0.31993222, 0.35882619, 0.15837646, 0.22595417,\n", + " 0.85575223, 0.85203039, 0.78380252, 0.04170078])" + ] + }, + "execution_count": 128, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "N = 10000\n", + "R = ra.uniform(0, 1, N)\n", + "R[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We assign energies to events corresponding to the random number drawn.\n", + "\n", + "_Note: The command below finds bin interval using a single command. I am not sure though that it's very readble. Would\n", + "we want to split that in multiple lines and maybe use explicit loops to make it more readable? Or is it fine as it is?\n", + "Comments?_" + ] + }, + { + "cell_type": "code", + "execution_count": 129, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[3, 3, 3, 2, 2, 5, 5, 5, 1]" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = [int(energies[np.argwhere(cum_prob == min(cum_prob[(cum_prob - r) > 0]))]) for r in R]\n", + "gen_energies[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Histogram energies to get shape approximation." + ] + }, + { + "cell_type": "code", + "execution_count": 130, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 825, 1652, 2626, 2466, 1589, 842], dtype=int64)" + ] + }, + "execution_count": 130, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "gen_energies = ((np.array(gen_energies) - 1) / 1).astype(int)\n", + "times = np.arange(1, 6, 1)\n", + "lc = np.bincount(gen_energies, minlength=len(times))\n", + "lc" + ] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd0VNXXxvHvDoROQgnSiRQpiihgAREMJaEX6UGqoqiI\nYgcLYEHUH/gqRSnSBWkiIDWAhN5BRKmCgDSlhg4h2e8fGWLADEwgk5uyP2vNyszcMs8MYXbOPfee\nI6qKMcYYEx8fpwMYY4xJvqxIGGOMccuKhDHGGLesSBhjjHHLioQxxhi3rEgYY4xxy+tFQkTqiMgO\nEdklIm/Hs7yRiGwRkc0isk5Eqni6rTHGGO8Sb14nISI+wC6gJnAYWA+0VtUdcdbJoqoXXPfvB6ao\nahlPtjXGGONd3m5JPALsVtX9qhoJTAIax13hWoFwyQZEe7qtMcYY7/J2kSgI/BXn8UHXc9cRkSYi\nsh34CXg6IdsaY4zxnmTRca2qM1S1DNAE+NjpPMYYY2Kk9/L+DwFF4jwu5HouXqq6QkSKiUiuhGwr\nIjYAlTHGJJCqyq3W8XZLYj1QQkQCRSQD0BqYFXcFESke534FIIOqnvRk27hU1W6q9O7d2/EMyeFm\nn4N9FvZZ3PzmKa+2JFQ1SkReAsKIKUgjVXW7iHSJWazDgWYi0h64AlwEWt5sW2/mNcYYcz1vH25C\nVecDpW54blic+58Dn3u6rTHGmKSTLDquTeIJCgpyOkKyYJ/Dv+yz+Jd9Fgnn1YvpkoqIaGp4H8YY\nk1REBPWg49rrh5uMMe7dfffd7N+/3+kYJhULDAxk3759t729tSSMcZDrrzmnY5hUzN3vmKctCeuT\nMMYY45YVCWOMMW5ZkTDGGOOWFQljTJIpW7Ysy5YtS/LX7dSpE7169Ury102oiRMnUqdOHadjXMeK\nhDHmpoKCgsiVKxeRkZF3vK/ffvuNatWqJUKq1KlNmzbMnz/f6RjXsSJhjHFr//79rFixAh8fH2bN\ncjt0mvFAVFSU0xFuixUJY4xb48aNo3LlynTs2JExY8Zct2zu3Lncd999+Pn5UbhwYb744gsATpw4\nQcOGDcmZMye5c+fmiSeeiN2maNGi/PzzzwBcunSJDh06kCtXLu677z7+97//Ubhw4evWHTBgAA88\n8AA5c+YkNDSUK1euxC6fPXs25cuXJ2fOnDz++ONs3bo1dtnmzZupWLEi/v7+tG7dmkuXLt30fY4a\nNYp7772X3LlzU7duXQ4cOBC7zMfHh2HDhlGyZEly5crFSy+9lKBtv/76a0qWLEnJkiUBCAsLo3Tp\n0uTMmZOuXbsSFBTEqFGjABg7dixVq1aN3X7Hjh2EhISQO3duypQpw9SpU2/5+Sc6p0ciTKTRDNWY\nlCi5/+6WKFFChw4dqhs3blRfX1/9559/Ypflz59fV65cqaqqp0+f1s2bN6uqas+ePfWFF17QqKgo\nvXr1qq5YsSJ2m7vvvlsXL16sqqpvv/22BgUFaUREhB46dEjLlSunhQsXvm7dRx99VI8ePaqnTp3S\nMmXK6LBhw1RVddOmTXrXXXfp+vXrNTo6WseNG6d33323XrlyRa9cuaKBgYH61Vdf6dWrV3XatGnq\n6+ur77//frzvccaMGXrPPffozp07NSoqSvv27auPPfZY7HIR0YYNG+qZM2f0wIEDmidPHl2wYIHH\n24aEhOjp06f10qVLevz4cfXz89MZM2ZoVFSUfvXVV5ohQwYdOXKkqqqOGTNGq1atqqqq58+f18KF\nC+vYsWM1Ojpaf/nlFw0ICNDt27ff9PO/kbvfMdfzt/5+9WSl5H5L7v/RjHHnlr+7vXvH/De98da7\nt+fru1v3FpYvX64ZMmTQkydPqqpqmTJl9Msvv4xdHhgYqMOHD9czZ85ct12vXr20SZMm+scff/xn\nn3GLRLFixXThwoWxy7799tv/FImJEyfGPn7rrbf0hRdeUFXVF154QXv16nXdvkuVKqXLli3TZcuW\nacGCBa9b9thjj7ktEnXr1tVRo0bFPo6KitIsWbLogQMHVDXmi37VqlWxy1u2bKmfffaZx9uGh4fH\nLh83btx1RURVtXDhwvEWicmTJ2u1atWuW7dLly764Ycfqqr7z/9Gd1ok7HCTMclZnz7xlYiY5z1d\n3926tzBu3DhCQkLImTMnAKGhoYwdOzZ2+Q8//MCcOXMIDAykevXqrFmzBoC33nqL4sWLExISQokS\nJfjss8/i3f/hw4cpVKhQ7OO4h5quyZs3b+z9LFmycO7cOSCmr2TAgAHkypWLXLlykTNnTg4ePMjh\nw4c5fPgwBQteP9NxYGCg2/e5f/9+Xnnlldh95c6dGxHh0KF/5zi7WY5bbRv3PR4+fPg/7zPu8htz\nrVmz5rr3OHHiRP7++2/A/eef2GzsJmPMf1y6dIkpU6YQHR1N/vz5Abhy5QqnT59m69at3H///VSs\nWJEZM2YQFRXFoEGDaNmyJQcOHCBr1qz079+f/v37s23bNqpXr84jjzxC9erVr3uN/Pnzc/DgQUqX\nLg1w3bH8WylcuDDvvvsuPXv2/M+yZcuWXfclfW3fJUqUiHdfRYoU4b333iM0NNTj14+b41bbivw7\n8kX+/Pn/cwLAwYMH3e47KCiIBQsWxLvc3eef2KwlYYz5jx9//JH06dOzfft2tmzZwpYtW9i+fTtV\nq1Zl3LhxXL16lYkTJ3LmzBnSpUtH9uzZSZcuHQBz5sxhz549AGTPnp306dPHLourZcuW9OvXj9On\nT3Po0CGGDBnicb5nn32WoUOHsm7dOgDOnz/P3LlzOX/+PJUrVyZ9+vQMGjSIq1evMn369Nj14tOl\nSxc++eQTtm3bBkBERATTpk3zKMfzzz+foG3r16/Pb7/9xqxZs4iKimLw4MGxLYMbNWjQgF27dvHd\nd99x9epVIiMj2bBhAzt27CAyMtLt55/YrEgYY/5j3LhxPP300xQsWJC77ror9ta1a1cmTJgAwPjx\n4ylatCg5cuRg+PDhTJw4EYDdu3dTq1YtsmfPTpUqVejatWvstRFx/6ru1asXBQsWpGjRooSEhNCi\nRQsyZswYuzzuujeqWLEiI0aM4KWXXiJXrlyULFky9lCYr68v06dPZ/To0eTOnZupU6fSrFkzt/tq\n0qQJPXr0oHXr1uTIkYNy5cpdd63CjTniPk7ottfyvPnmmwQEBLBjxw4eeuih6973NdmyZSMsLIxJ\nkyZRoEABChQoQI8ePWLP8HL3+Sc2GwXWGAfZKLD/Gjp0KJMnT2bJkiVOR0kyqkqhQoWYOHHidacK\nJyYbBdYYkyIdPXqUVatWoars3LmTAQMG0LRpU6djeV1YWBgRERFcvnyZvn37AlCpUiWHU7lnHdfG\nGEdcuXKFLl26sG/fPnLkyEFoaCgvvPCC07G8bvXq1bRp04bIyEjuvfdeZs6cGe/hpuTCDjcZ4yA7\n3GS8zQ43GWOM8RorEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxphE1a9fP5577rlEX/dWfHx8\n2Lt3b6Lsy/zLioRJdc5ePsvL815m8LrB7Dy+004xvQNjxoyhXLlyZM2alQIFCvDiiy8SERFx0216\n9uzJ8OHDPdp/Qta9lZsN47Ft2zZq165N7ty5yZUrFw8//LDXpwmtXr167GRCKZkVCZOqqCrP//Qc\nB35ZyuYD6wgeH8zdX91N51mdmfzbZI5fOO50xBRjwIAB9OzZkwEDBnDmzBnWrFnD/v37CQ4O5urV\nq/Fu4+QUnTf7Y6Bhw4bUrl2bv//+m3/++YeBAwfi5+eXhOn+K8VMZ+rJpBPJ/YZNOmRchm8YrmV7\nBej5+0urRkZqdHS0bj+2XQeuGagNJzZUv35+WvGb8tpjYQ9dvHexXoq85Gje5Pq7e+bMGc2WLZtO\nmzbtuufPnTunefLk0dGjR6uqap8+fbR58+batm1b9ff315EjR2qfPn20bdu2sduMHTtWAwMDNSAg\nQD/66KPrJh6Ku+6+fftURHTs2LFapEgRzZMnj/bt2zd2P+vWrdPKlStrjhw5tECBAvrSSy9pZGRk\n7HIR0T179vznvRw/flx9fHw0IiIi3vcaHh6uhQoV0k8++UQDAgK0aNGiOmHChNjlly9f1tdff12L\nFCmi+fLl0xdeeEEvXfr392bGjBn64IMPqp+fn5YoUUIXLFig7777rqZLl04zZ86s2bNn127dusVm\nHDJkiN5zzz1arFix2PccFRUVu7+goKDrJiGqUqWKvvrqq5ojRw4tXry4rlq1SseMGaOFCxfWvHnz\n6tixY2/yL3nnkw45/gWfGLfk+h/NJK1fjvyiAR/76fay+VSPHYt3nStHDumykhn1/dZ5tdI7d2n2\nDzJpnW+q6IAV/9Nfj/6q0dHRSZo5uf7uzp8/X319fa/78rqmQ4cO2qZNG1WN+ZLPkCGDzpo1S1VV\nL168qH369NF27dqpqurvv/+u2bJl01WrVmlkZKS+8cYbmiFDhuuKxLV1r31hPvfcc3r58mXdsmWL\nZsyYUXfs2KGqqhs3btS1a9dqdHS07t+/X++991796quvYnO5KxKqqiVLltQGDRrojBkz9O+//75u\nWXh4uKZPn17feOMNvXLlii5dulSzZs2qu3btUlXV7t27a+PGjfX06dN67tw5bdSokb7zzjuqqrp2\n7Vr19/ePfT+HDx/WnTt3qur1X/ZxM8adznTfvn3q4+Nz0yLh6+sbO4Xpe++9p0WKFNGXXnpJr1y5\nomFhYZo9e3Y9f/6823/LOy0SNnaTSRXOXj5Ly4lP8n/zlNIjfoSAgHjX881XgKq/RlD111/5cO1a\nTq1fxpKlK1i4vj9DHviGi5EXqVWsFsHFgqlVrBb5s+dP4ndyPfnglqMmeER7J6xf5vjx4wQEBODj\n898j0vnz52fTpk2xjytXrkzDhg0ByJQp03Xr/vDDDzRq1IjKlSsD8OGHHzJw4EC3rysi9OnThwwZ\nMlCuXDkeeOABtmzZQqlSpahQoULsekWKFOG5555j6dKlvPzyy7d8P0uWLOHTTz/ljTfe4M8//+Tx\nxx/n22+/jZ2ISET46KOP8PX1pVq1atSvX58pU6bw7rvvMmLECLZu3Yq/vz8APXr04KmnnqJv376M\nGjWKZ555hho1asR+NtcmaXLnnXfeid2XJ4oWLUr79u0BaNWqFZ988gm9e/fG19eX4OBgMmTIwB9/\n/EG5cuU83mdCWJEwKZ6q0mVmZ6ptjaBt60/gViNqZswIDz8MDz9MTl6iKdD08mXImJG9p/aycM9C\nZuycwSvzX6FQhgCCz+cluHR9qlXvSJbc+ZLkPV2T0C/3xBIQEMDx48eJjo7+T6E4cuQIAXGKcHzT\njl5z43SdmTNnJnfu3Dd9bXdThe7evZvXXnuNDRs2cPHiRa5evUrFihU9ej8FChSILU6HDh3i2Wef\npUOHDqxcuRKAnDlzXlfgAgMDOXz4MMeOHePChQvXvU50dHRs/8dff/1F/fr1PcpwjbvpSt2J+3lk\nzpwZ4LrPP3PmzLGfkTdYx7VJ8UZsGsFvJ7YxsOYA6Nr19nbiGoWzWM5idHmoCz+0/IFjbx5jRMUP\nyHk+mk9W9CPvF/mp+WI2Pu3+EBtnfE20Rifiu0heKleuTMaMGZk+ffp1z587d4558+ZRq1at2Odu\ndlbRtSlKr7l48SInTpy4rUwvvPACZcqUYc+ePZw+fZq+ffve1plrBQsWpGvXrvz222+xz506dYqL\nFy/GPj5w4AAFChQgICCALFmy8Pvvv3Py5ElOnjzJ6dOnY8/wKly4cOwsfDdy97nEfT5r1qwAXLhw\nIfa5o0ePJvg9eZMVCZOibTm6hXd/fpcpLaaSuW1HuMkXVkKl80nHo9VCea/fSpZ9GcHhnid4teHH\nHC6QnbY7PyVv/7y0ntaakZtGciDCNbfwhQtwG19cyY2fnx+9evWiW7duLFiwgKtXr7Jv3z5atWpF\nkSJFaNu2rUf7ad68OT/99BNr1qwhMjKSPn363HT9m33pnz17Fj8/P7JkycKOHTv45ptvPMpw+vRp\n+vTpw549e1BVjh8/zqhRo2IPgV173d69exMZGcny5cuZM2cOLVu2RER49tln6d69O8eOHQNiWiJh\nYWEAPPPMM4wePZolS5agqhw+fJidO3cCMS2AW123ERAQQMGCBfnuu++Ijo5m1KhRbouOJ5+RN1iR\nMCnW2ctnaTG1BV/W/pLSAaW9/nrZs+WiQd3uDHxrCdvfPsCm5zYRUjyERX8uouLwipQeXJpuHzzK\nrEo5OdOkLnz8MSxcCKdPez2bN7z55pt88sknvPHGG/j7+1O5cmUCAwNZtGgRvr6+Hu3j3nvvZdCg\nQbRq1YoCBQrg5+fHXXfd5Xb+hJtNFdq/f38mTJiAn58fXbp0oXXr1jfd9poMGTKwb98+goOD8ff3\np1y5cmTKlInRo0fHrpM/f35y5sxJgQIFaNeuHcOGDeOee+4B4LPPPqNEiRJUqlSJHDlyEBISwq5d\nuwB4+OGHGT16NN27d8ff35+goCAOHIj5g+GVV15h6tSp5M6dm+7du7vNOGLECD7//HMCAgLYvn07\nVapUuelnerPPyBu8Pp+EiNQBviSmII1U1c9uWN4GeNv18Czwoqr+6lq2D4gAooFIVX3EzWtoUldX\n4yxV5anpT5EtQzaGN0yci7HuRLRGs+XoFsL2LGDhttms/XsjD0bmJnh/eoJX/8PDQ2eRvkat/2yX\n1uaTOH/+PDly5OCPP/4gMDDQ6TgALF26lHbt2sV+uac2dzqfhFc7rkXEBxgM1AQOA+tFZKaq7oiz\n2l6gmqpGuArKcOBaz2M0EKSqp7yZ06Q8IzYO57cjW1jbZYPTUQDwER/K5y9P+fzlefvxHlyIvMCK\nAysI2xPG85XCOLC+BdWPVSe4WDAhxUMonqu405GTzOzZs6lZsybR0dG8/vrrlCtXLtkUCHNr3j67\n6RFgt6ruBxCRSUBjILZIqOqaOOuvAQrGeSzYITFzg1+O/sK7c15nxY7KZH4ps9Nx4pXFNwshxUMI\nKR4CwNFzR1m0dxEL9y7ko2UfkSl9JoKLBTucMmnMnDmTdu3aAfDQQw8xadIkhxOZhPDq4SYRaQbU\nVtXnXI/bAo+oarwnNovIG0DJOOvvBU4DUcBwVR3hZjs73JRGnLl8hoe+uo/eP53hqQlboUgRpyMl\nmKry+7HfWbhnIa899lqaOtxkkl6yPtyUECJSHegEPB7n6SqqekRE8gALRWS7qq6Ib/u4Z00EBQUR\nFBTkxbTGCarKc1PaEbTpBE+9PyNFFgiI+c9Z9q6ylL2rLK/xmtNxTBoRHh5OeHh4grfzdkuiEtBH\nVeu4Hvcg5lLwGzuvywE/AHVUNd7zv0SkN3BWVb+IZ5m1JNKAYWu/5uupb7Em+6tk7v2R03ESRVrr\nuDZJ705bEt4+3r8eKCEigSKSAWgNzIq7gogUIaZAtItbIEQki4hkc93PCoQAv2HSpM1HNvPeop5M\n2VuBzO9/4HQcY9IMrx5uUtUoEXkJCOPfU2C3i0iXmMU6HHgfyAV8LTEn/F471TUv8KOIqCvnBFUN\n82ZekzyduXyGltNaMrDRUEr1aAnxjCeUUgUGBnr9PHeTtt3pmWRev04iKdjhptRLVQn9IRT/jP4M\nazjM6TjJTsSlCJbsW0LYnjAW7l3ImctnYgcoDC4WTEG/grBhA9StC/PmwUMPOR3ZJBOeHm6yImGS\ntaEbhjJ0w1BWP7OazL7J83TX5GTf6X0s3LOQsL1h/Pznz+TLlo/GpRrzQUR5fLt1h9WrU2yHv0lc\nViRMirf5yGZCvgth5dMrKZm7pNNxUpyo6Cg2HdlEr/Be5Mqci/GnquNT7QlwDTdh0rbk0nFtzG05\nc/kMLUbXYWCJblYgblM6n3Q8XPBhpreczqEzh+iWbzPqmj/BGE9ZkTDJjqry7Ljm1Np8htAyLZ2O\nk+Jl9s3MrNBZrD20lveXvO90HJPCJJuL6Yy5ZuiyL9j521LWNBsJpb0/umta4JfRj/lt51N1dFVy\nZsrJ64+97nQkk0JYS8IkK5sPbaTXwneYmq41mVp7NmeB8UxAlgAWtlvIoHWDGLlpZMy8F7eYu8AY\na0mYZCPiUgQtvg1h0LZA7pkU7zBd5g4V8ivEwnYLeWLME/ifuUTzlh/AggVQvrzT0UwyZWc3mWRB\nVWk1rRW5j5/nm4bDIIHzAJuE2XJ0CyHfhTAu4Dlqvz8m5tRY+8zTFDsF1qQoX6//mhGbRrD6mdVk\nSp/p1huYO7bywEqenPwkM64257Epq2H5csiWzelYJolYkTApxqYjm6j9XW1WPb2Ke3LbOfxJacEf\nC2g/oz1he6vwwIErMHMmpEvndCyTBOw6CZMiRFyKoOXUlgyuO9gKhANql6jN4LqDqVd8LbuL54CT\nJ52OZJIZ67g2jlFVOv/QgZDiIbQq28rpOGlWi/taEHE5gpDlfVme8TLWM2HisiJhHPP1nD7sWT2H\n8e/udTpKmte5QmdOXTxFyPgQlnVaRkCWAKcjmWTCDjcZR2zcs4I+q/oypfT7ZMpf2Ok4Bnizyps0\nKd2EOt/V4czlM07HMcmEdVybJBdx8TQV+ham34nytPx6Kdh8CsmGqtJ1ble2HdvGvDZzyXzhCuTI\n4XQs4wV2dpNJllSVFp9VJO/v+xky9ABkzep0JHODaI2m7fS2nN2/m+kTo/Bdutz+nVIhO7vJJEtD\nVv0fe49uY8A74fbFk0z5iA9jm4xF8+WlU/UIotuEQlSU07GMQ6wlYZLMhsMbqDehHqs7Lqd4nlJO\nxzG3cDHyInXG1+b+NXsZlL0lMuALpyOZRGQtCZOsnL50mlbTWjGk3hArEClEZt/MzGrzE6sfDKDX\ngXEwdKjTkYwDrCVhvE5VaT61Ofmz5WdwvcFOxzEJdOz8MaoOr8Rz2zLz2tAtdkV2KmEtCZNsDF43\nmH2n9zEgZIDTUcxtyJM1DwufDmfgfecY9etYp+OYJGYX0xmv2rB5Dh8teIfVL/1CxvQZnY5jblNh\n/8KEtQsjaEwQfhn9aH5vc6cjmSRiRcJ4zekz/9ByUjO+zt6U4rmKOx3H3KGSuUsy96m51P6uNv4Z\n/QkuHux0JJMErE/CeIWq0uy9eyh4KopBg/eAjx3ZTC2uDTE+s+V0Khd+zP5tUyjrkzCOGjTsafaf\n/Yv+H6y2L5FUpkqRKox7chxNRtfh155POx3HeJn97zWJbv3KqXz851imNJ9Cxjz5nI5jvKBOiToM\nrPMldfmOP77p63Qc40XWJ2ES1elLp2m19g2+ue8tildr7HQc40WtKnXmzKmjBC/qxYrZxSjYINTp\nSMYLrE/CJBpVpdmUZhTyK8TAugOdjmOSyOfjn2fMhm9Z1iGcgAqPOx3HeMjTPglrSZhEM3DtQA5E\nHOD7Zt87HcUkobfaDeXUyUPUndqExfftxS+jn9ORTCKyloRJFOsOraPBxAas6byGYjmLOR3HJDFV\n5cU5L7DjxE7mPTWPTOkzOR3J3IKd3WSSzKljB2g1rRVDGwy1ApFGiQiD6w0hX7Z8tJrWisioSKcj\nmURiRcLcEY2KotPHD9MoshhNyzR1Oo5xUDqfdIxtMpbIqEienvU00RrtdCSTCKxImDvy1ccNOJT+\nAp+/NMvpKCYZyJAuA9NaTmP/6f28Mu9l7DBwymdFwty2dT8M5JOLYUx5bhEZM9kEQiZGFt8s/BT6\nEyuXT6T36PZOxzF3yIqEuS2ndm+l1apXGfZQH4qWetTpOCaZ8c/kz/ygb5n86/f838weTscxd8Dr\nRUJE6ojIDhHZJSJvx7O8jYhscd1WiEg5T7c1zlBVOo1pTOOclXmy+ftOxzHJ1F21m7Kw7Gd8uWIA\no5fZdTMplVeLhIj4AIOB2sB9QKiIlL5htb1ANVV9APgYGJ6AbY0DvlzzJYcDc/N5j8VORzHJXJHO\nrxOWsTPvzH+D6VsmOR3H3AZvtyQeAXar6n5VjQQmAdeN1aCqa1Q1wvVwDVDQ021N0lt7cC39VvRj\ncospZLD5IYwHSn04hLmHqvP8jM4s2rvI6TgmgTwqEiIyXUTqu/66T4iCwF9xHh/k3yIQn87AvNvc\n1njZyYsnaTWtFcMaDKNozqJOxzEphY8P5YfP4od2swn9IZQ1B9c4ncgkgKdf+l8DbYDdIvKpiCT6\nTPYiUh3oBFjfQzKkqnSa2YknSz/Jk2WedDqOSWkyZqRqsSDGNhlL40mN2fr3VqcTGQ95NHaTqi4C\nFomIPxDquv8XMAL4znU4KD6HgCJxHhdyPXcdV2f1cKCOqp5KyLbX9OnTJ/Z+UFAQQUFBN39TxnOq\n/N8nDTmS6zBTW0x1Oo1JwerdU4+BdQZSZ0IdlnZcSolcJZyOlGaEh4cTHh6e4O08HrtJRHIDbYF2\nwGFgAvA4cL+qBrnZJh2wE6gJHAHWAaGquj3OOkWAxUA7VV2TkG3jrGtjN3nRmv97jUbHBrG2268U\nzV/G6TgmFRi+cTifrviU5Z2WU9DPjiI7IVHHbhKRH4HlQBagoao2UtXJqtoNyOZuO1WNAl4CwoDf\ngUmqul1EuojIc67V3gdyAV+LyGYRWXezbT3JaxLPyWULaH3wK4aHDLICYRLNc2U70GW3PyFjanLi\nwgmn45ib8KglISL1VHXuDc9lVNXLXkuWANaS8A795x8a9wikxEMhfPHiTKfjmNSmRw/e/vs7llTO\nz+IOP5M9Y3anE6UpnrYkPC0Sm1S1wq2ec4oVCS+IimLAM2WYUuQcy3vvI0O6DE4nMqlNdDTaqiXP\nF9rC7gcLM/epuTbEeBJKlMNNIpJPRCoCmUWkvIhUcN2CiDn0ZFKp1QdX81nxo0x+eZkVCOMdPj7I\nuPF8vSond/35D62nteZq9FWnU5kb3LQlISIdgI7AQ8CGOIvOAmNUdbpX03nIWhKJ6+TFk5QfVp6B\ndQbSuLRdv2i87OhRrjz2KE1ezU9AoZKMaTIGnwRfkmUSKrEPNzVT1R8SJZkXWJFIPKpKo0mNKJmr\nJANqD3A6jkkrDh/mQm4/ak+sS/l85fmqzleI3PL7y9yBRCkSItJWVb8TkdeB/6yoql/cWczEYUUi\n8QxYNYCKby9MAAAb50lEQVSp26ayrJMdZjJJ7/Sl01QfW53GpRrTJ6iP03FSNU+LxK0uprs2SYDb\n01xN6rF65yI+X/U56zqvswJhHJEjUw7mPzWfqqOrkjNTTl6p9IrTkdI8jy+mS86sJXHnTowbSoXt\n3RnUcQqNSjVyOo5J4w5EHKDq6Kp8EPQBHR/s6HScVClRWhIictNB4FX15YQGM8lP9G9b6bDkZVrU\nCrUCYZKFIhczsCCiEdUX98Q/o7+NF+agWx1u2pgkKYxzzp7li/dqcuLRIvRr/a3TaYyJ4edH6dlr\nmNPoSerM7kL2jNmpVayW06nSJDvclJapsqpjTZ4MXM2613YQmCPQ6UTG/OvIEahUiWW9OtD85FBm\nhc6iUqFKTqdKNRLr7KYvVbW7iPxE/Gc3JYtjE1Ykbs+JpfMpP68RQ9p+T8OyzZyOY8x//for1KrF\nnBFv8vTu/ixqt4j7897vdKpUIbGKREVV3SgiT8S3XFWX3kHGRGNFIuGiNZpG3zeidM576F/3/5yO\nY4x78+ZBp058P603b67ry7JOyyiWs5jTqVK8ROm4VtWNrp9LRSQDUJqYFsVOVb2SKEmNIwasGsCJ\niyfo1+pHp6MYc3N168LcuYSWL09EJiF4fDDLOy2nQPYCTidLEzy94ro+MBTYAwhQFOiiqvNuumES\nsZZEwqw8sJKmU5qy/tn1FPEvcusNjElG+i3vx4StE1jacSm5s+R2Ok6KldjDcuwAGqjqH67HxYE5\nqlr6jpMmAisSnjt+4TgVhlVgSL0hNCzV0Ok4xiSYqvL2ordZun8pi9otsiHGb1OiTjoEnL1WIFz2\nEjPIn0lBoufPo8OohrS6r5UVCJNiiQif1fqMB/I+QJPJTbh09ZLTkVK1W3VcN3XdDQYCgSnE9Em0\nAA6o6oteT+gBa0l4YN8+Pu9Slhl1i7K02yZ80/k6nciY27dnD1Hbf6fNpQlcibrC1BZTSe9zq8u+\nTFyJ1ZJo6LplAv4GngCCgGNA5jvMaJLKpUusfLYOA6oIkzrNsQJhUr6zZ0n3dGfGF3iJS1cv8cys\nZ4jWaKdTpUp2MV0acPyFDlTINZWv20+mgR1mMqnFnDnw7LOcX7qI2sufo2L+inxZ50sbYtxDid1x\nnQl4BriPmFYFAKr69J2ETCxWJNyLHjeWBitepGyjznze4Cun4xiTuAYNgqFDOf3zXIJ+bMyTpZ+k\nd1Bvp1OlCIndcT0eyAfUBpYChbCO6xThf1HLiLi/JH3r9nc6ijGJr1s3qFmTHG07syB0LhO2TuCr\nNfbHUGLytCWxWVXLi8ivqlpORHyB5aqaLAZSsZZE/FYcWEHzKc1Z/+x6CvsXdjqOMd4RFRVz6KlR\nI/af3k/V0VX5qPpHdHiwg9PJkrXEmnTomkjXz9MiUhY4Ctx1u+GM9x07f4zQH0IZ2WikFQiTuqVL\nB41ihpELzBFIWLswqo+tjn8mf5qUbuJwuJTP0yIxXERyAu8Ds4iZqe59r6UydyRao2k/oz1tyrah\nfsn6TscxJkmVDijN7NDZ1J1Ql+wZslOzWE2nI6VodnZTanP+PJ9uHsRPu34ivEO4ne5q0qyl+5bS\nfGpzZofO5tFCjzodJ9lJ1I5rEcktIoNEZJOIbBSRL0XEBk1Jbv7+m+U1ivPlygFMajbJCoRJu37/\nnSfkbkY3Hk3jSY357Z/fnE6UYnl6dtMk4B+gGdAcOA5M9lYocxsiIznWvhlt6l5gVNOx1g9h0raf\nf4YGDWiQtypf1P6COt/VYe+pvU6nSpE8PbvpN1Ute8NzW1U1Wcz+keYPN0VHc7VDOxrkWciDdTvy\nafDnTicyxlmq0LUr7N0Ls2fzzeYR9F/dnxWdVpA/e36n0yULiX2dRJiItBYRH9etJbDgziKaxKJv\nvcmLmRYTVa4sH9Xo63QcY5wnAgMHxvzs1o0XHnqeZ8o/Q/D4YE5cOOF0uhTlVgP8nSVmQD8BsgLX\nBkfxAc6pqp/XE3ogTbckjh6ld89KzHkkB0ueXm7DJhsT15kz8Pjj0LEj+uqrvL3obZbsW8Li9ovx\ny5gsvr4ckygtCVXNrqp+rp8+qpredfNJLgUirfv6r+lMrODL3PZhViCMuZGfH8yeDXnzxg4x/lD+\nh2j4fUMuRF5wOl2K4PEpsCLSCKjmehiuqrO9liqB0mpLYtq2abwy/xWWd1puc/4a46FojabDjA4c\nv3CcGa1mkDF9RqcjOSKxB/j7FHgYmOB6KhTYoKo97yhlIkmLRWLJn0toNa0VYe3CeDDfg07HMSZF\nuRp9lZZTW+IjPkxqPilNzkWR2EXiV+BB1ZgB20UkHbBZVcvdcdJEkKaKxNmz/HJ+DyHjQ5jcfDLV\ni1Z3OpExKdLlq5dpNKkR+bLlY3Tj0fiIp+fxpA6JfXYTQI449/0THsncsYMH2Vu5NPXH1mZIvSFW\nIIy5XWvXkvGPP5necjp7T+3l5Xkvk2b+0EwgT4tEP2CziIwRkbHARsDOtUxKJ0/yT6Oa1G55mXdr\n9KbFfS2cTmRMyrV7N9SsSda9fzE7dDZrDq7hncXvOJ0qWbplkZCYaZ5WAJWA6cAPQGVV9eiKaxGp\nIyI7RGSXiLwdz/JSIrJKRC6JyGs3LNsnIltEZLOIrPPoHaVGFy5wtkk96jWIILTqi7z4cLKYWtyY\nlKttW+jXD2rWxP/Pw8xvO59Zu2bRb3k/p5MlO7fsrVFVFZG5rqurZyVk5yLiAwwGagKHgfUiMlNV\nd8RZ7QTQDYhvTN9oIEhVTyXkdVOVq1e50roFTSvvp8JDDfkg6AOnExmTOrRvH3OxXc2aBCxaxMJ2\nC6k2uhrZMmSj26PdnE6XbHjapb9JRB5W1fUJ3P8jwG5V3Q8gIpOAxkBskVDV48BxEWkQz/ZCwvpN\nUp3ovw7QsdR2sj74MF83+Mbm7zUmMbVrF1Mo6tShwPbtLGq/iGqjq5E9Y3Y6PtjR6XTJgqdF4lGg\nrYjsA84T8+WtHpzdVBD4K87jg8QUDk8psFBEooDhqjoiAdumeKrKazsH8te9BQlrPjlNnqZnjNe1\nbQvVqkHWrNxNVsLahVFjbA2y+ma1vj88LxK1vZrCvSqqekRE8hBTLLar6gqHsiS5z1d+zuI/F7Os\n4zIy+2Z2Oo4xqVeRIrF3SweUZt5T8wj5LoSsGbJS7556DgZz3k2LhIhkAp4HSgBbgZGqejUB+z8E\nFInzuJDrOY+o6hHXz2Mi8iMxrZB4i0SfPn1i7wcFBREUFJSAmMnP6M2j+WbDN6x8eiU5M+d0Oo4x\nacoD+R5gZuuZNPq+EVNaTCHo7iCnI92x8PBwwsPDE7zdrQb4m0zM/NbLgbrAflV9xeOdx1x0t5OY\njusjwDogVFW3x7Nub2IGDRzgepwF8FHVcyKSFQgDPlDVsHi2TT0X0/31F7MvbqHzrM6EdwyndEBp\npxMZkzZFRvLzweW0mtaKOW3m8EjBhBwpT/4S5YrruHNGiEh6YJ2qVkhgkDrAV8R0QI9U1U9FpAsx\nfRrDRSQvsAHITszZTOeAe4E8wI/E9EukByao6qduXiN1FIn161n9dAiNnvJhdtu5NuWiMU45dQoe\nfRSmTWN2pgM8M+sZFrZbSLm8yWKQiUSRWEViU9yicOPj5CJVFIldu9jWpArVn4pkTMvvqXtPXacT\nGZO2TZ4M3bvDggVM9tnOqwteJbxjOCVzl3Q6WaLwtEjcquP6ARE5c22fQGbX42tnN9lw4YnhyBH+\nalqLum2i+V+DgVYgjEkOWrWKOT22dm1aLVjAueofETw+mGUdlxGYI9DpdEnmpkVCVdMlVZA0KyKC\nkw1rUafFZbrV6En7B9o7ncgYc03LlrGF4pn58zlb6VVqja/F8k7LyZctn9PpkoSdeO+wC8cO07Dh\nOepWassbj73hdBxjzI1auK6V+PNPujfpztnLZwkeH0x4h3ByZ8ntbLYk4PGkQ8lZSu2TuBp9lScn\nP0mOTDkY22Rsmhuq2JiUSFV5e9HbhO8LZ1H7RSl2GtREnU8iuUuJRUJV6TyrM4fOHuKn0J/wTefr\ndCRjjIdUlRfnvMi249uY99Q8svhmcTpSgnljPgmTiN77+T22/rOVaS2nWYEwJoUREYbUH0IR/yI0\nm9KMK1FXnI7kNdaSSGobNzIwcgVDNnzNik4ryJM1j9OJjDG34+efueqXjRZ7+pFO0qW4aVCtJZEc\nTZvGpFeD+XzFZyxou8AKhDEp2ZkzpK/fkElF3+LM5TN0ntWZ6JgZnlMVKxJJJTycRZ905uW6MLfd\nfO7OcbfTiYwxd6JJExg2jIwNm/DjPe+z59SeVDkNqhWJpPDLL2x68UnaNBemtZmRqi7tNyZNa9IE\nhg8na6NmzC71IasPrubdn991OlWiSjkH0FKqvXv5I7Q2DdoKw54cSbXAak4nMsYkpsaNQQT/Vu1Z\nsGkFT0ytR/YM2elZtafTyRKFtSS87GjkKWq3g961+/FkmSedjmOM8YZGjWDzZgLyBLKw3UK+3fwt\ng9cNdjpVorCWhBeduXyGuuGd6VClK10e6uJ0HGOMNwUEAFAgewEWt18cO192Sp8G1U6B9ZLLVy9T\nb2I9SuUuxZB6Q2xuamPSmB3Hd1B9bHUG1R1E83ubOx3nP+yKawdFRUcR+kMo0RrN5OaTSedj4yQa\nkxb98udqav/QhNGNRye7aVDtOgknqKIzZ/LK/Jf55/w/fNf0OysQxqRVp07x4BOtmHHfR3SY0YGl\n+5Y6nei2WJFITP368cmELqzYt5yZrWeSKX0mpxMZY5ySMycMHUrlDu8xuUwvWkxtwbpD65xOlWBW\nJBLLt9/ybfgXjKyUkXntFuCfyd/pRMYYp9WrB2PHUqPTh4ws+QYNv2/I1r+3Op0qQaxIJIaZM5k5\n8k3er+nDgg6LyJ89v9OJjDHJRd26MH48DZ/tz1fFulJnQh12ndjldCqPWcf1nVq1ihXP16NpqA9z\nO4TxUIGHnMlhjEneFiwAYGSeg3y47EOWd1pOEf8ijsVJrDmuzS38ljOSZq19+K7lJCsQxhj3atcG\n4Bng7JWz1BpXi2WdliX7aVDtcNMd2H96P3Xnt+X/Gg4mpHiI03GMMSlE90rdaVeuHcHjgzl58aTT\ncW7KDjfdpuMXjlN1dFW6VOxC90rdk/S1jTEpn6ry1sK3WLp/qSPToNp1El50/sp5GkxsQONSja1A\nGGNui4jw+eVqVCQ/Db9vyIXIC05HipcViYSIjCRy8EBaTm1B6YDS9KvZz+lExpgUTLJkYcg7Kyl8\nMUOynQbVioSnoqPRpzvReef/EIQRDUfYeEzGmDtTsyY+kyYzpvdmMp06R5sf2nA1+qrTqa5jRcJT\nb79Nj3RL2HV/Aaa0nIpvOl+nExljUoOaNUk/aQqTPtrOmaP7k900qFYkPNG/P1/8MZ5ZFbIyu+1c\nsvhmcTqRMSY1qVGDjN9P4ceBf/PHsZ3JahpUO7vpVn78kQkDn6Vn/YyseHa1oxe/GGNSuXPniEgf\nRY1xNahdvDaf1PzEay9lZzclkrBiymt1YF77MCsQxhjvypYN/0z+LGi7gJk7Z9JvufMnx1iRuIn1\nh9bTNux5pofO5L677nM6jjEmjQjIEpBspkG1YTnc2HViF40mNeLbRt9SpUgVp+MYY9KYAtkLsKjd\nIqqNetzRaVCtSMTj8NnD1P6uNh9X/5hGpRo5HccYk0YVlZwsHBlJ9cuvky1DNkemQbUiEdepU0T0\n/5i6hRbxbIVneabCM04nMsakZTlyUHr4dOY914gQ7UwW3yxJPg2q9Ulcc/EilxrXp7HPFJ64uxo9\nH+/pdCJjjIHHH+fBET8xc5LQYUqbJJ8G1U6BBbh6lahmTWlZ8hfSP1KJ75tPwkesfhpjkpGVK1nc\nrT6hzWB2xzAeKfjIHe0u2ZwCKyJ1RGSHiOwSkbfjWV5KRFaJyCUReS0h2yYKVbTLc3QtsJmIsiUY\n9+R4KxDGmOSnShVqDp7LyHt7Juk0qF5tSYiID7ALqAkcBtYDrVV1R5x1AoBAoAlwSlW/8HTbOPu4\n/ZbEN9/wwYq+zHw8gPCnlyX5cL3GGJNQk36bxOthr7OkwxJK5i55W/tILjPTPQLsVtX9rlCTgMZA\n7Be9qh4HjotIg4RumxiGlrvC+MsZWNlugRUIY0yK0Lpsa85dOUfw+GCvT4Pq7eMqBYG/4jw+6HrO\n29t6ZPr26Xy45jMWtF9I3mx5E3PXxhjjVZ0rdObVSq9Sa1wtjp476rXXSTWnwPbp0yf2flBQEEFB\nQTddf+m+pTw/+3kWtF1A8VzFvRvOGGO8oHul7pzZuIrgryuxtNsmcmXO5Xbd8PBwwsPDE/wa3u6T\nqAT0UdU6rsc9AFXVz+JZtzdwNk6fREK2TVCfxJajWwgeH8yk5pOoUbTG7bw1Y4xJFnTNGt76tAZL\nqxRi0csbPD5snlzObloPlBCRQBHJALQGZt1k/biBE7rtre3ezZ/Pt6b+xPoMrjfYCoQxJsWTSpX4\nvOcSKqz7i4aDH0v0aVC9fp2EiNQBviKmII1U1U9FpAsxrYLhIpIX2ABkB6KBc8C9qnouvm3dvMat\nWxJHjnCsRiWqPHWJbsHv0e3Rbon1Fo0xxnHRa9fQ/qsgTj5clhkvryJDugw3Xd/TlkTauJguIoJz\n1atQo/FpQqp25OMaHyddOGOMSSKRa1fTYkQw6WvUYlLraaT3cd/tbEXimkuXuFI3hIaP7aPwo8GM\naPitzU1tjEm1Ll84S8MfmlEgewFGNR7l9uLg5NIn4bjozz/j6Qf3k6nsgwxtMMwKhDEmVcuYJTs/\ntvqRP07+wSvzXrnjaVBTdZFQVd6oeIJ9ZQsyqfnkmza9jDEmtciaIStz2sxh1cFVvPvzu3e0r1Rd\nJPqv6k/Y/p+Z1WY2mX0zOx3HGGOSjH8mf+Y/NZ8ZO2bQb06P295Pqv3TetyWcQxeP5iVT6+86QUm\nxhiTWuXJmodFTaZTdUBZsh86zkvPfZvgfaTKlsTc3XN5a+FbzH9qPoX8CjkdxxhjHFOgYGkWNZ3B\nZ7tHM/bbhJ/6n7paEuHhrBn3CR3L/MKs0FmUyVPG6UTGGOO4oo83YKFOo/pPzck6KiPNn+7v8bap\np0j88gvbuzSlSQcY0+Q7KhWq5HQiY4xJNkpXfZK5UROoPb8NWcdm8ni7VFMkDrWoQ91O6fms3v+S\nfA5YY4xJCcoHtWamXqHRmlc83ibVXExX9qMCtKv+Cm9VecvpOMYYk6wt3ruYWsVrpa0rrl+d/yoD\nQgbYxXLGGOOBNDcsR1R0lM1NbYwxHkpzw3JYgTDGmMRn36zGGGPcsiJhjDHGLSsSxhhj3LIiYYwx\nxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLG\nGGPcsiJhjDHGLSsSxhhj3LIiYYwxxi0rEsYYY9yyImGMMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIi\nYYwxxi2vFwkRqSMiO0Rkl4i87WadgSKyW0R+EZHycZ7fJyJbRGSziKzzdlZjjDHX82qREBEfYDBQ\nG7gPCBWR0jesUxcorqr3AF2Ab+IsjgaCVLW8qj7izaypRXh4uNMRkgX7HP5ln8W/7LNIOG+3JB4B\ndqvqflWNBCYBjW9YpzEwDkBV1wL+IpLXtUySIGOqYv8JYtjn8C/7LP5ln0XCefsLuCDwV5zHB13P\n3WydQ3HWUWChiKwXkWe9ltIYY0y80jsd4BaqqOoREclDTLHYrqornA5ljDFphaiq93YuUgnoo6p1\nXI97AKqqn8VZZyiwRFUnux7vAJ5Q1b9v2Fdv4KyqfhHP63jvTRhjTCqlqnKrdbzdklgPlBCRQOAI\n0BoIvWGdWUBXYLKrqJxW1b9FJAvgo6rnRCQrEAJ8EN+LePJGjTHGJJxXi4SqRonIS0AYMf0fI1V1\nu4h0iVmsw1V1rojUE5E/gPNAJ9fmeYEfXa2E9MAEVQ3zZl5jjDHX8+rhJmOMMSlbij691JML9dIC\nERkpIn+LyK9OZ3GaiBQSkZ9F5HcR2SoiLzudySkiklFE1rouRt3q6tdL00TER0Q2icgsp7M4KSEX\nKqfYloTrQr1dQE3gMDH9H61VdYejwRwgIo8D54BxqlrO6TxOEpF8QD5V/UVEsgEbgcZp8fcCQESy\nqOoFEUkHrAReVtU0O3qBiLwKVAT8VLWR03mcIiJ7gYqqeupW66bkloQnF+qlCa7Tgm/5j50WqOpR\nVf3Fdf8csJ3/XpuTZqjqBdfdjMT07aXMvwoTgYgUAuoB3zqdJRnw+ELllFwkPLlQz6RhInI38CCw\n1tkkznEdXtkMHAUWqup6pzM56P+AN0nDhTIOjy9UTslFwhi3XIeapgGvuFoUaZKqRqtqeaAQ8KiI\n3Ot0JieISH3gb1crU1y3tKyKqlYgpmXV1XXIOl4puUgcAorEeVzI9ZxJ40QkPTEFYryqznQ6T3Kg\nqmeAJUAdp7M4pArQyHUs/nuguoiMcziTY1T1iOvnMeBHYg7fxyslF4nYC/VEJAMxF+ql5TMW7K+j\nf40CtqnqV04HcZKIBIiIv+t+ZiAYSJMd+Kr6jqoWUdVixHxX/Kyq7Z3O5QQRyeJqaRPnQuXf3K2f\nYouEqkYB1y7U+x2YpKrbnU3lDBGZCKwCSorIARHpdKttUisRqQI8BdRwnd63SUTS6l/P+YElIvIL\nMf0yC1R1rsOZjPPyAitcfVVrgJ9udqFyij0F1hhjjPel2JaEMcYY77MiYYwxxi0rEsYYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxriISJTruopr11e8lQSvOVxESnv7dYy5XXadhDEuInJGVf0SeZ/p\nXBd+GpMiWUvCmH/FO6yJiPwpIn1EZKNropaSruezuCZ8WuNa1tD1fAcRmSkii4FFEuNrEdkmIgtE\nZI6INHWtu0REKrjuB4vIKhHZICKTXfO8IyKfishvIvKLiHyeJJ+EMS5WJIz5V+YbDje1iLPsH1Wt\nCAwF3nA99y6wWFUrATWA/q4xkgDKA01VtTrQFCiiqvcC7YHKN76wiOQG3gNqqupDxEyW9JqI5AKa\nqGpZVX0Q+DjR37UxN5He6QDGJCMXXMMnx+dH18+NwJOu+yFAQxF50/U4A/+OTLxQVSNc9x8HpgKo\n6t8isiSe/VcC7gVWiogAvsSMxxUBXBSRb4E5wOzbemfG3CYrEsZ45rLrZxT//r8RoJmq7o67oohU\nAs4ncP8ChKnqU/9ZIPIIMdP0tiBmUMuaCdy3MbfNDjcZ86+EDrW+AHg5dmORB92stxJo5uqbyAsE\nxbPOGqCKiBR37SuLiNzjGso5h6rOB14D0vQc5ibpWUvCmH9lEpFNxBQLBear6ju4n+7yI+BLEfmV\nmD+49gKN4lnvB2L6LH4nZsrdjcQcRuLavlX1uIh0BL4XkYyu598DzgIzRSSTa/1X7+gdGpNAdgqs\nMUlARLKq6nlXR/RaYqaP/MfpXMbcirUkjEkas0UkBzEd0h9agTAphbUkjDHGuGUd18YYY9yyImGM\nMcYtKxLGGGPcsiJhjDHGLSsSxhhj3LIiYYwxxq3/BwqGCBVMuSBSAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot1, = plt.plot(lc/float(sum(lc)), 'r--', label='Assigned energies')\n", + "plot2, = plt.plot(prob,'g',label='Original Spectrum')\n", + "plt.xlabel('Energies')\n", + "plt.ylabel('Probability')\n", + "plt.legend(handles=[plot1,plot2])\n", + "plt.show()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Concepts/PowerLaw Spectrum.html b/notebooks/Simulator/Concepts/PowerLaw Spectrum.html new file mode 100644 index 000000000..027d25589 --- /dev/null +++ b/notebooks/Simulator/Concepts/PowerLaw Spectrum.html @@ -0,0 +1,219 @@ + + + + + + + + Simulating Light Curves from Power Law Power Spectra — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Simulating Light Curves from Power Law Power Spectra

+

In this notebook, we will show how to simulate a light curve from a power spectrum that follows a power law shape.

+
+
[1]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+
+%matplotlib inline
+
+
+
+

The power distribution is of the form S(w) = (1/w)^B. Define a function to recover time series from power law spectrum.

+
+
[21]:
+
+
+
def simulate(B):
+
+    N = 1024
+
+    # Define frequencies from 0 to 2*pi
+    w = np.linspace(0.001,2*np.pi,N)
+
+    # Draw two set of 'N' guassian distributed numbers
+    a1 = np.random.normal(size=N)
+    a2 = np.random.normal(size=N)
+
+    # Multiply by (1/w)^B to get real and imaginary parts
+    real = a1 * np.power((1/w),B/2)
+    imaginary = a2 * np.power((1/w),B/2)
+
+    # Form complex numbers corresponding to each frequency
+    f = [complex(r, i) for r,i in zip(real,imaginary)]
+
+    # Obtain real valued time series
+    f_conj = np.conjugate(np.array(f))
+
+    # Obtain time series
+    f_inv = np.fft.ifft(f_conj)
+
+    return f_inv
+
+
+
+

Start with B=1 to get a flicker noise distribution.

+
+
[22]:
+
+
+
f = simulate(1)
+plt.plot(np.real(f))
+plt.xlabel('Time')
+plt.ylabel('Counts')
+plt.title('Recovered LightCurve with B=1')
+
+
+
+
+
[22]:
+
+
+
+
+<matplotlib.text.Text at 0xcbec4a8>
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_5_1.png +
+
+

Try out with B=2 to get random walk distribution.

+
+
[23]:
+
+
+
f = simulate(2)
+plt.plot(np.real(f))
+plt.xlabel('Time')
+plt.ylabel('Counts')
+plt.title('Recovered LightCurve with B=2')
+
+
+
+
+
[23]:
+
+
+
+
+<matplotlib.text.Text at 0xd188198>
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_PowerLaw_Spectrum_7_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb b/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb new file mode 100644 index 000000000..396e24edf --- /dev/null +++ b/notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb @@ -0,0 +1,171 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Simulating Light Curves from Power Law Power Spectra\n", + "\n", + "In this notebook, we will show how to simulate a light curve from a power spectrum that \n", + "follows a power law shape." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The power distribution is of the form `S(w) = (1/w)^B`. Define a function to recover time series from power law spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "def simulate(B):\n", + " \n", + " N = 1024\n", + " \n", + " # Define frequencies from 0 to 2*pi\n", + " w = np.linspace(0.001,2*np.pi,N)\n", + " \n", + " # Draw two set of 'N' guassian distributed numbers\n", + " a1 = np.random.normal(size=N)\n", + " a2 = np.random.normal(size=N)\n", + " \n", + " # Multiply by (1/w)^B to get real and imaginary parts\n", + " real = a1 * np.power((1/w),B/2)\n", + " imaginary = a2 * np.power((1/w),B/2)\n", + " \n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r,i in zip(real,imaginary)]\n", + " \n", + " # Obtain real valued time series\n", + " f_conj = np.conjugate(np.array(f))\n", + " \n", + " # Obtain time series\n", + " f_inv = np.fft.ifft(f_conj)\n", + "\n", + " return f_inv" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start with `B=1` to get a _flicker noise_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEZCAYAAABB4IgrAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXm4FMW5/7/v4QAKCoILKggYUVyCa8QtMSeJUbxXRRPN\nRXMVl5vw05jrjUtQs4DeJGquGmPcl+ASo0ajBo1RNOa4xAXcNxSMirK7Iohs57y/P6rLqamp6q7u\n6Z6Zc+b9PM88M9PTtXRPd337feutKmJmCIIgCEKRtNS7AoIgCEL3R8RGEARBKBwRG0EQBKFwRGwE\nQRCEwhGxEQRBEApHxEYQBEEoHBEboekgovFE9GiGdGcQ0VWB+04iohvT165rQ0QvE9HeMb//g4iO\nrWWdhMZAxEYAEb1NRMuJ6BMimk9EU4ioT73rVTDOAWZENIyIOomo4t5g5nOY+fvVlhGV8xYRfd3a\n1pOIJhPRLCJaSkRvEtE1RDQ0RZl1hZm/yMyPAJ8L7g1Z8yKirxJRR3RdfkJE7xLR5Ix5nU1ELxLR\naiL6edY6CdkRsREA1Sj+OzP3A7AjgJ0AnFHfKoVBRD0KyLZeI53/DOAAAOMA9AewA4CnAXwjbUYF\nnZd6MI+Z+0XX5pcBHEdEB2XIZzaA0wDck2vthGBEbAQNAQAzLwZwP5ToqB+IehHR+UQ0h4gWENFl\nRNTb+H0sET1HREuIaDYR7Rtt34SI/kJEH0RP6/9lbF9OROsZeexERO/pRpKIjiWiV6O0fzOf7iPL\n4wQimgVgVrRtayKaFu0/k4gOM/YfSERTo/o9CWCLTCfIco0R0VGRVfgeEf3UYa30JqLro6fyl4ho\n5yjdDQCGArg7+u1UIvoGlKgcxMzPMnMnMy9l5iuYeUqUrix/sz6GRXYsEc0B8HciupeITrCO4Xki\nOjjpnFlp2ojoReP7A0Q03fj+iBYAXUci2g/AmQD+I7LSnjOyHE5Ej0XHfh8RDQw5/8w8B8DjALYN\n2d9KeyMz3w9gWdq0Qj6I2AhlENEQAPtDPQlqzgMwAsD20ftgAD+P9h8N4HoApzBzfwB7A3g7Sncr\ngHcAbAzgMAC/IqI2Zl4A1Wh82yjjcAC3MXMHEY0FcDqAgwFsCOBRADdbVR0LYDSAbSOX3zQAfwCw\nAZRlcBkRbR3texmA5QAGATgOQDV9Bhwd97YALo3qvQmUJbKpte+BAP4Y/XZ3tD+Y+Sio83JA9NR+\nPoB9AExn5vlZ6mOwN4CRAPaDOmdH6B+iOg8FcI/nnF1qnDOTJwGMiES7FcAoAJsQUV8iWgvAlwA8\nUlYp1bD/CsCtzLwuM+9k/Hw4gPFQ/21vAKeGHCgRbQlgLwBPGNteIKIPo9dH1vslIfkKtUHERtDc\nRUSfQDWCiwBMNn77HoAfMfMSZv4UwLlQDQagGu5rmfkhAGDmBcw8KxKtPQBMZObVzPwCgGsAHBWl\nK2sIoRq7m6LPEwCcw8yzmLkzKm9HItrM2P9XzPwxM6+Ecj29xcw3sOIFKJfUYaT6Xr4F4GfMvIKZ\nX4ESx2r5NoCpzPwEM69BJL4WjzHz/awmILwRSqxNyPi8PoAFVdaJAUyKjnMlgDsB7GCctyMA3BHV\n13XO7oB6KCjPlHkFgBlQQrYLgBcA/BOq4d8dwCxm/jhFPacw87+iOv4JhhXtYHAkHEsAvAYlfP80\n6rYDMw+MXgOs9xNT1EkoGBEbQTM28ot/FcDWUE+7IKINAfQB8Ix+ggTwN6jGEQA2A/AvR36bAviQ\nmZcb2+ZAWUWAEoPdiWgQEX0VQAcz60ZkGIDfGuV9ANWQDjbymmt8Hhbl9fkTLlTDOgjq6bnV2n9O\n2CmJZVMA7+ovzPxZVE+Thcbn5QDWIkfgQcQHUBZStXx+nMy8DMC9UEIOqAeEP0SffedsY0++jwD4\nGpTgtEevNqjr5eGUdbTPyzox+86LhKM/gPUArACQOehAqB8iNoJG99k8CvXkf0G0/X2oBmE74wly\nvejmB1SD6+oDmQ9gIBH1NbYNBTAvKudjKDfOOKhG8BZjv3cATLCeWNdh5ieNfUz30bsA2q39+0VP\ntu8BWA0limY9qmUBgCH6CxGtjZIAh2C7vx4EMJqIbFecyadQwq9xCYOd780AjiCi3QH0Zub2aLvv\nnP3AU/bDUOLylejzI1BCszf8YpNroAUzL4VySx6gt5EKtf7Eei2N3i/Ls3yhOkRsBBcXAfgmEY2K\nXEBXA7gosnJARIMpCgIAcC2AY4joa6TYlIhGMvNcqH6Zc4ioNxFtD9VfYo49uRnKrfZtqEZEcyWA\nM6M+BhBRfyI6NKa+9wDYioj+k4haSYUQfymqRyeUe2gyEa0d5Tk+4fgJygrpbbzI2ud2AAcS0e5E\n1BPlbse4fDULAXxBf2HmvwN4AMCdRLQzEfUgonWIaAIRHR3t9jyAcdExfgmAfU7sOgLKshkG4Gyo\nPjSN75y5+mwA9V+OhOonm87Mr0b57garv8ZgEVQwgKteoXyelojWgXoweVlvi0Kt+1mvdaP3E4y0\nrVH/UguAntF/Ku1fDZGTLQDWEygzvw9l3eh+iNMBvAHgSSLSFslW0b4zABwDJVBLoNwr2nI4AsDm\nUFbOn6H6Tf5hFDUVwJYAFjDzS0b5d0H109wSlfcigDEx9V0GYF8oK2l+9DoXqvMZAH4IYF0oa+T3\n0SvpfCyFsug+i96/ZpX5apTvrVF5nwBYDGBlQr6acwH8LHJhnRxtOxRKHG4F8DGAl6D6SB6Mfv8Z\nVIDGhwAmodTH5cpf13MVlNh+A4agx5yzXs6KK3foMwBejvp8ANVR/3Z0vbjqcBuUWHxARE/76pjA\nJtpiAfAWlCvtP1PmAagHpuVQx3tm9DlLPkJGiOu8eBoRjYFqqFqgOprPs34fCWAKgJ0BnMnMFxq/\nvQ3VwHUCWM3Mo2tVb0EwidyFHwMYEYXoCoJg0FrPwiMz9hKop675AGYQ0V+Y+TVjtw+gniAPdmTR\nCaCNmT8qvLKCYEFEBwD4O9SD0gUAXhShEQQ39XajjQYwm5nnMPNqqE7iseYOzPw+Mz8DYI0jPaH+\nxyA0L2OhHpLmQgVJjIvfXRCal3o31INhhI9C3bSDPfu6YAAPENEMIvperjUThASY+XtRFNcAZv4m\nM89OTiUIzUld3Wg5sBczL4iipB4gopnM/Fi9KyUIgiCUU2+xmYfyMQ9Dom1BsJr2BMz8HhHdCeWW\nqxAbIqpvFIQgCEIXhZmrCV3/nHq70WZAzbk0jIh6Qfm8p8bsb8bc94ni7nUk0L4w4u9tmLnbviZN\nmlT3OsjxybHJ8XW/V57U1bJhNeniiVDjNnTo80wimqB+5quIaBDUNOvrAugkopOgZn3dEGoAHEMd\nx03MPK0+RyIIgiDEUW83Gpj5PqiRyea2K43Pi1A+1YhmGeIn8BMEQRAahHq70YQcaGtrq3cVCqU7\nH193PjZAjk8oUfcZBGoBEXEzHKcgCEKeEBG4mwQICIIgCE2AiI0gCIJQOCI2giAIQuGI2AiCIAiF\nI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAI\nhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIg\nCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOHUXGyIaQ0SvEdEs\nIpro+H0kET1ORCuI6OQ0aQVBEITGgJi5foUTtQCYBeAbAOYDmAFgHDO/ZuyzAYBhAA4G8BEzXxia\n1siD63mcgiAIXREiAjNTHnnV27IZDWA2M89h5tUAbgEw1tyBmd9n5mcArEmbVhAEQWgM6i02gwG8\na3yfG20rOq0gCHXk9dfrXQOh1tRbbARBaEK23hqYO7fetRBqSWudy58HYKjxfUi0Lfe0kydP/vxz\nW1sb2traQusoCEIBrF5d7xoINu3t7Whvby8k73oHCPQA8DpUJ/8CANMBHM7MMx37TgKwjJkvyJDW\nGyDw2mvAAQcAb7yRzzEJgpAMEfDmm8Dmm9e7JkIceQYI1NWyYeYOIjoRwDQol961zDyTiCaon/kq\nIhoE4GkA6wLoJKKTAGzLzMtcadPWYfp04F//yu2QBEEQBAf1dqOBme8DMNLadqXxeRGAzULTpqWz\ns5rUgiAIQggSIODg2WeVmS/Ulscfr3cNBEEoiqYXG1dXzpw5ta+HAOy1F7B0ab1rIQhCETS92Igb\nLZxzzgGef77etRAEoSvS9GLjsmxkZhs3Z54J/Pa39a6FIAhdEREbEZZUFN2XJf+HIHRPRGykcRME\nQSgcERsRm4ZCogAFoXsiYiNikwoRAyEv5N5rLppebCQaLR8WLlTTjwhCGjo6gEcfrXcthFrQ9GIj\nT1fp8Fk2++4LbLFF9fnL/9FcPPggsPfe9a6FUAtEbKRxy4VqB2N25f/h00+BE06ody26Jh0d9a6B\nUCtEbLpwI1cPiuqz0f9DV/w/Xn0VuPzyetdCEBobEZsu2Lh1RxpVbB5/HDjppPh9Gq3OjcoVVwA/\n/Wn5Ngk4aR6aXmwkQCAf8mpwG63hvvpq4OKL612L7sHZZwO//GX5g4WITfPQNGLT2Qn83/9Vbm+0\nxq3RKdqNVjQrV6Y7hpB6yTWUjjix+eCD2tdHqA1NIzbvvw/8+MeV27v63GhEwB131La8IqiVG+2j\nj4rNX/Cj/9tPPin/rpk7F9hgg9rWSagdTSM2PndZVxIWHy+9VO8aVE+txGbZsmLzF/zo/3bAgNJ3\n8+FF/pvujYhNisbtzjuBXXbJpz4+VqxI3+DWUjB9lk1X6bORBq1xkD6b5qJpxMbXiKVp3O69V63i\nWSRrrw0cfzxw/vnFltNoNKJlc+CBatChkA/2f9sdvApCOK31rkCt8Fk2aaLRanVzXHmlej/11NqU\n1wjU6txqsUl6qp49G7jnnrA8G6HRXLwYWLUKGDKk3jXx4xKbWlk2118PLF+uHuSE+tA0lk0eotII\njUq9abQAgTvuAHbYIXz/xYuTy3n1VWCrrdLVo97svTew2Wb55DVvXm2GBNhiU+T9dfzxMstDvWl6\nsREBSUejLZ52//3Aiy+G7z9njnqPa0xXrEhXh0a4hj78ML+8hgwBfv/7/PLT1NOyEepP04tNI7rR\n6sFnn6nQ06xUe26yWjZpG6uFC5PLKaIBXLSoJHRFkHed338/3/wA6bNpdppGbNK4xprhaWvNmvLv\nP/pRfm6YLGQVm5aUV7A+7lqLTVsbMHx4/vlq8q5zEUIglk1z0zRik+RGu+KK2tVFs3QpcPvt1efj\nahhWrgT228+fpmdPYNq00vf33gsrq9FmEEgrNvo6iLNo0+YZgs/NtWwZMHNm9fl3BbFxlVGrPhux\nouqPiE10EYZEqeR9wV53HXDYYfnmqVm8uFxMXLz9dklk6v2EWSvLRl8HeVo21Uxpc9ppwLbbpivP\nRa3F5sYbqz9PtRQbof6I2NRxuppGuLk22gh47LHqG6siBnWGWFtpxUavnxJn2dRSePPq2K/1w8L0\n6enTSJ9Nc9M0YpNHOHOj3hxnn10ZPRTS+OjjMSc/fOed+DS1Cn2eP18JYRJp6xNi2aSlGstm9er8\n6pEnScdk9/kVUYbQvWgasenu0Wg331z+Xdc15PhMd8Z228XvWyux+eyzsHRZLRvXf3n99arxL6LP\npmixybvORYiNBAg0N3UXGyIaQ0SvEdEsIpro2ediIppNRM8T0U7G9reJ6AUieo6IYg37Rly3pkjx\n0o1q3LK7LkGq19xhjRAgcPTRwIwZ+TWAN97on+FYk1ZsbrsN2HPPyu1F9dlcfLE6LzZZlnOuZ59N\nIz8oNgt1FRsiagFwCYD9AGwH4HAi2traZ38AWzDzlgAmADAX4O0E0MbMOzHz6LiyTPfJypXAK6+U\nvsfx978XOz6iKPSTZ8gTaJobsdEGdebtRkvztH3eefEDQI86Crj11vg8Vq0KK0szdSrwxBPq8+uv\np0ubhcsuUxafTZzYDBwYds90NcuGSIm9kI16WzajAcxm5jnMvBrALQDGWvuMBXADADDzUwD6E9Gg\n6DdC4DGYT7IXXQR88YuV213ssw/wgx+oz2YDtXSpP82MGfk38lddpTryQwkRmzSutlA+/jhbuizR\naO+9514Qr73df9whAQKhnH468MILYfvmZdnoxvmNN4CtjceyotxovvMYd1199BHw2mv+PF3fG0l0\nPvtM/S/MwFNPlf8WNxHvppuqlUgFN/UWm8EA3jW+z422xe0zz9iHATxARDOI6HtxBZm+eu3a0N9t\nkqJmFi4E+vXzlzV6dD5PQOYNO2GCCpP1YddRH2+I2GR5wuzsdD/Vf+c77v07OoBLLil9f/xxf11C\n8TX0X/uafxLNEMsmTR1aWuoTIGD/r0W50bKIjZk+blujWjaDBgHHHAPMmgXsvnt4ugUL1IOO4Kar\nz/q8FzMvIKINoURnJjM7n/+vumoyAGDyZOCtt9oAtAEI70A33z/9NDlNiHskqZHaZhsVKTZwYPq8\n0rrR9E2fdPPr3085Bbj88krB8YXyzp8P/PCHwIknqvL22kvVrUcPd/1DGiGd1oX+X5cvBx5+GNh/\nf/U9LkBAb8/TrZgkolnFJi9LpqPDfR51fX3usryi0Rqxz2bpUuD557MdY6NGF4bS3t6O9oIUs95i\nMw/AUOP7kGibvc9mrn2YeUH0/h4R3QnllnOKzbHHTsa11wKTJgFnnOGv0JgxlSPvs9wEed04nZ1A\na/QvpXkKTCM2aVxKug633676vny/f/KJetIbOVJ9X2st9c5c2eD/6lelgY1pzltrwNV73XXKDWq7\nDOOiE7NaNnFP6nm70WyxyWIhLF6snuLjjjfJHekji2UTV4/77lMPX8OGxZebF77/Jek85yHC9aSt\nrQ1tbW2ffz/rrLNyy7vebrQZAEYQ0TAi6gVgHICp1j5TARwFAES0O4CPmXkREfUhonWi7X0B7Avg\nZV9BZgNn3ij2BX7//aUOWJt6RbRkifwxxebmm4G//c2/r33TP/lkeZkLFlTeZHbfjH1uxo9XfQrP\nP6++6/QrVlTOT/aTnwC//rU7nzjiLBvfPiHjbNJaNnF56uP25Zk2QEDnZx9XFrEx3ck2M2cCf/lL\nZeM5Z446XvP6GD4c+Oc/k8tziY25Le46339/4OSTk8vIiyTR8NW1q1s2RVJXsWHmDgAnApgG4BUA\ntzDzTCKaQETfj/a5F8BbRPQGgCsB6FUpBgF4jIieA/AkgLuZ2TtBi9kgmE+1ridc+8a9777y+at8\nN/a0aX531Pz5auZfk2p8/UmYfTZHHOEOX/W5ePbYQy2Brfnoo8q0vnOgt+vZlS+6qLyMzz4r3cjm\nufe50+IIsWzsfZICBLK40UICLXx5Zn0SzkNs4o7zttuAgw+urN/w4cAtt5RvnzOnMnglS19okosz\n5P82eeWVSoHabLPKvr6ODuDNN8u3+f4XfZ5bW933hYiNn3pbNmDm+5h5JDNvycznRtuuZOarjH1O\nZOYRzLwDMz8bbXuLmXeMwp5H6bQ+zCcRn2UTd/P5rB2TuAkVBw9WnY5pMRuwpAbltNNKHe9xbrQF\nC9S72UjaImneNKbLJrRPx+5g1t+XLy/lbZ5vXUaahv6OO5L3sRuokACBNG7FlpZ01tKcOeVhwdVa\ny7psfd7TRAOGlO26fpYudW+//fZ0omcLe5Lw9uwZnjcA/OEPwG9+UyoLUMto2FPtXHcdsMUW5dtC\nHgJcA49FbPzUXWxqhdkgmGJjNixJjUXSzekyrc3pX+yn0ZCbPY0L7fzz1bgIIF5sNt20sh5xjUQ1\nEUMusXFN85/2qRVQ41x86DrbDVRSn001lk3c07x+33775Fkaksoz89PncskS9f6f/xmeV9brr0cP\ndzTcM8/E553kRkta/iHtNeJzs9rXsz53JllFQ8TGT9OIjWmi+9xocU+oIRaQ3YCtWqU6NEPWUPFh\n3tQhjf6aNWq/NKHPSa5E8/OUKcA66yS70TS2a8QUmxA32tlnZ5v0UeNzozED776rlkA2yRL6nGa+\ntWXLwqIZfdhi09GhrjM9aWmaiT2zWjatrZXb33sPODfWt1C92DzxhIpiDCWkT89HkhvN/qwRsfHT\nNGKTJDBA6SJPG1GksZ8C9fdqVj1MGxygjyfP0GfTjbZkSWVjOXVqKQTaTm8Li9lnE+JGmzSp1O+T\nhTg32pZbArvsUv573pbNlClqvIbv2kr7AOKybMz/OM31klVsevSoLGf+/PR52/vomQp8aWfNqhyf\nFUdoeLjrms/alyZi46dpxMYXjZbGjaYnu/Q1LuYFalpQdmBASHl2vUPReeqLXtcpzipKqocrrblt\n7NjymaPNPG1hWb06fYCAq/zQRtp2o5kBAitXKvFcvjxb3oDbslm9uhRl9uSTalR5XmJjp1uzJr7f\no0+fSiFIU7bLxdqjR2XakIY9ybK57jr3fhOtGRNDLV3Tsok7Vp/YZHEfp40ubCaaRmxC+mxsd9Ks\nWaXP5sW6xx6V24BKYdD5addGUjSOCzPPkItfl6nFRr/rtDvvXFl+kZOUxomNefxFiU1SgMCKFUDf\nvuX5phnoO3t2pXjut1/leU6q74MPJpfpKn/NmvL62mLz2WfAv/7lziO078h2R7n6Tnwuq87OUmRi\nktiY2++/v3Tt6rB4zW67qYi4tPXW2NdTVnfY3XdXLoMhlo2fphMbINyy8U29ot1idqNkfl+4ENh1\nV/d+aQi1bGzhcEV8AcBzz1WmdZ2bpMF2oX02trCsWhVv2bjyySI29ngU+/xUO6hTn6eDDgKuvrq8\njOnTSxO92nX1WTah7iGXGy1ObOwy77knvTVl/zdpLJspU4BNNnH/Fic2Y8aoIQc+zjnH/1tSnUL7\nPl0eDNNt+sgjlQv8xU3M2uw0jdiEBAjYF1fSmip2g2UKw3PPlWblzeoqsfOMw25MQ4ISzON13YCr\nVgEbbJCPWCZZNnfd5a+vq25p66TLTBrLkfSbq3wdzcQMPP10ZZ+W2aiaDeBPflIKgw69Rlxi4wrr\n9y0VceCB6ZeR6NWr/Htra7LY6N8XL67c5vtub682QlKLpGtS0BBcgR9z55b+b/sa7Nu30iUrlGga\nsUnjRtMXsik2rhvDvth8nYpplqS2SdtRqcsKaVTNerhu3k8/VX0xaSybJ55QA+neeEN9ty0sn9iY\ndQkpK+m4jj8e+MpXKvuwQsbZzJ0bnzfgvoaYS9asr77msZhT9//hD35LOi6/jo7y62vBAjWaf911\n/WnTRmnZebksG58ryhz3k8aNllTPNGKzzTbhfTZPPln67LKCr7sO+O53y+upGTIkuU7NTL3nRqsZ\naSwbjWkih4iNzwqpZinirH02aQYa+hp4/bSa1orQA+mAcDeaXSeTlhY1tYq2tELqtHChepkTcvbp\nEzaDwKGHxudtp09zrs3/0Jxb7o03SgIdR5Jl88knwJe/HJ8m7jpyLZ1hi42rz8YlJCefXJrp257i\nBlCh53/9qz+vlhbg5z931zPkXrCDVnyYeZnBPD6Xqw64sI85biZ4oQktGyC8z8b0v7oaksWLy10m\neSw9bZM19DmNu8icQcBEb7v8cv9vSbjcaL7+JN82ItXpPnx4aZt9TnU6exkGvV1PURJi2YTgs2zW\nW8+dZ5LYpMV0l4ZeXyHXhKvB1GLj6s/TuPI0AxNc1/Fll6lZB3x5tbQA//u/7nqGXH++tWVCr12f\n2NhWctp8m5WmEZs0gzpduG6mMWNUZIxdhr1/NQ1bVsvGblji0iaJ5O9+l1yuD9uKSbJsXBABL79c\nLuz2udN5/eMf5dv1fnqKnpAZBEJwXTednZX9G3a+Zt9GFrFJsmxMtMDqND6xSTrmddZR72Yj6zv/\nvjxddUz6D7K40ebPT+6T0mkXLFBTSPny+ta33PXU4c0iNuloGrHx9dmEiIKPZcvKo46S+mwWL04f\nh2/fpEnRLnagQDV9NnFikPbpMLTP5t573WXZDYjPhelrBHXDHrKeTQguS5nZHQHls2yqGZNhnk+f\n2BxySPn3pHPko0+fUll6/5A8zH1c90bSfxA3dsd1/b3/vpqD8Kij4stavlyt8Prgg6oPxhd5qaea\nChUbIZ6mERvfRJwu4Ql17+g1Wlx5mRewviifeQb48Y/V58ceU9FIaeoNAGuvXR7hY5PFjeYSG3Pq\n/Gqwz6lvUKdGD+Az663rpp+w7d+B5Kd2s4FwRVPF/fc2zOVRR6agphGbtLz3XuVxdnb6/ye7Llkt\nG52P+ZCQh2WTVG5ay+brX1fvcfcHoO69H/+4MiDIh8+NFhIkIZRoGrHRkwSGRKO5CImS8vX/mJ9f\nfVW9n39+5Q348MOVZbjmRotzE/gCBLLMIBAawROH3YibbrQQITTLMjuq0wZnaLHp6FBi42scQwT2\nxhvVVPV2GXFio0nbID3+eMkq22gj4Npry/O0r2dXuWbkml0f13cbXWfz2kprHdXCsrHHvPjQ3oEs\nVizg77MR4mkasdGzIdt9Ni5RSNNxbRIiYjpG3zWGR0/X4cvT5tZbK+uXNUDARR5uNLusJDeaRoeX\nAqVGZ+21K/PThFo2Wmx8+4U0IPYTd5IbzSTkvDEDF1ygPu+1F3DNNe59gHjLxm4Us7rR7DLffrvy\nN5d4m+WksWyq6bMBVP9e3Eh+LTZZLRvps8lG04iNiS8yLW2fjd2wmE9v5sVulqdXRzT7Xu6+219+\nnNiMG1e5Les4G9dCUHk8ub30EvDii27LJi7/p54qfdY3ce/e/rqF9tmsXq3yqcayMd15ZpoQsQlZ\nb2bVKuDUU0vfXQ1niGWj0+nf9bsdMaej/JIsJM1JJ1VaEVksG1+akAjMuOjJJUtKszpo7D4bs/y8\n3GhCPE0nNiFuNNdFFDebgO2mAMo7f80lmXVjZOann2JdN19aX3fcOBs7L/3b1VerJYBNzGk5XNiu\nlTjefddv2bjKsCda1GWZkV5ZLZvVq1U+PlEKOR5f2hA3WhpCrdJHH3Xvo+cks8XGt5/PGnBZ/PZ4\nnDz7bHTvSiO5AAAgAElEQVQ9Zs92/w6oa+Koo0ozT9j84Af+tDqqMfRhSiybfEgtNkQ0gIi2L6Iy\ntcB2o5mf9RxOrpvAnnkWKDWaLS3qacq8ocyw1t//vvRZD4gzxUYPPrvxxsoy8gp9BiobE/2bnlbH\n/i3kZgwdB6TzsgMEXOnNcHIgnWVjR3i5xMZl2djnLQ5f2s7O8Gnt4wgJVjDFZsKE+PySxAZQc7y5\n3GO++iTNlG3366Tps9HXqSuqzOTGG0uDQjs6SuHtSVRr2fgscxGbeIJuDSJqJ6J+RDQQwLMAriai\nC4utWnH4LBtN6JOoeQNtsIHfsjGJExsXLrFhroxk03XWy1e7LJu0M9LmKTa+AIGQ6XhcYuN7crbn\nwbIDBHyWjT13WhxxLrw8LBv7v3Ol17NKh+R96KGqHyPu2O6+G2hvd//mqod9LfkEWJNmnE3Idaqv\nic039+fvI61lc/zx7n0lQCAdoc9h/Zn5EwDfAnADM+8GYJ/iqlUccW40c58QzJvCHlznExvd6WmK\nTdzKjb7G+Lbb4uvmGtSZZlxHaOhzWrGxLZuQhuXpp9V7nGWTNEDQ7LPp1atyjaE0YhPnRqtmOQQ7\nv5DzH7LP0qVq2piHHorfzzfINMTSsge0+qwBV742aR5AdJlJ59j8Xd9vIZGagHLV7b9/fJ4h+TQ7\noWLTSkSbAPgOgHsKrE/hmGKzZo2act21Twh2Q+lzo5loy8ZM+8kn/sGaLmF0NTCPPOJOV41lE9Jn\nEzpRqGnZHHdcaVtIeh0sENeYhYY+azeave58mpVNfUKXxrKxZzpw7Z+l/8jHlVcCxx4bn873MBLX\nl2m6H+PW8MnSZxOHvYREGivDjtILEYlp0yq3iRstHaETcZ4F4H4AjzHzDCL6AoCY7rvGJunJMYsb\nDUhn2djccYd7u0tsOjrS+5lddUrqEyjKsjG3pRHAkAABX7mrVpXChF0TSZoPID7efFP9f3FiEzqj\nsh6AaPPyy6U1h/KybELTZbFszPNmrooaYtnk4UbLMllsFrFxIWKTjlDLZgEzb8/MJwAAM78JoEv2\n2ZiNaMgFqlfldGHfFHpFTiDZsrFvXHv5Yo3ZSWo+8SZd2CGWzcsv+9PHjd8AKufbisOMbDPrsPXW\npSlBkhg6tNxqsOs2YkT8+I+ODlV2a6vb+kiybGbMALbYAthll/g+m2rdaKecUvrP4yyKLHmbuI4z\nSWxcEV5m4Icp4iGWZ6NYNlnx1f+dd6qbZLW7Eio2rqkYq5iesX6YT9NJrhcAOPdcf172DfvYY6XP\nvkWUdL+DfaH6JnB01SuNZWP6pe2b2BX9pvGFJduEuJ3MvGzrSk8WmcR22wFvvVWep81vf+suu2dP\nVc/Vq9VnV3+UjmTyHY9eNXLFivjopGqj0bbaqvQ5RGyyNpiua99njevyXWHGpmVjWnV2NFoasdFj\n0eKwz00WsdGu56RVaZPqYKcdNgz42c/C82kWYt1oRLQHgD0BbEhEJxs/9QOQcgmmxuDss0tjBEIW\nO4trPNasAUaNUgMXbfTS0TY6v1DLxlWvNO4ts5w0AQKhlk2oG8xl2QClMR5JrLWWci8984zbugDc\nVhKzEnJTbFpaKv97veiZ75rQDanLjaaDDXx9NmkwZ0ko0o3mevJOGmfjQl9nui/MV6/RoyvT+uqu\n14uJwxT4X/6ycpxYCLZ4Xn11ab2kEOLGFoVOndNMJN0avQCsAyVK6xqvTwAELDHVeFx6acnd4rNs\n9PbeveMtiDVr/Asm+fJeswaYPLnc5QaE+frTWDbVBggkiY1m2LDkfUxLwq7DT38aVh/dkOkR+KED\nbzs7S5aN7ldwWXka3/+mXUQtLfF9fdWGPse5onxlZsElNnEPX766mP+rbdkkYVqqJiHjZUyxueEG\n5ebMiq7rgw+mS6fP/fjx5d/NPIUSsZYNMz8M4GEiuo6Z59SoTjXD1+DoC+XWW5Mb9bRL7HZ0lKan\nMQl5Iq7GjQaks2ySAgSyzo2WdVp97WZctUot26zHE5m4xEZbNnrRNm3Z+P5733b9/2QRm1D23LNc\nbELOVdZGzRX9GGfZ+GbQMAfT2n1qWYUwxI1mhqr7XNbbbVe+BEhSXi6rNQ697w03qCW+RWziCY1G\n601EVwEYbqZhZk9MTddg9Wo1k7Bv6g2ifMXm6qtVP8mzz1b+tu++yelNN1qo2Bx8cGlbGstm8eKw\n0OcQOjqqFxt9nleuVMekZ/E2cTU6xx2n1jix3Wi+evie7vUKoEVaNnak3MYbJ6fJ2qCnFRuftaHF\nZsWK+ACONIRcp6Zl4xPCUOHXde3RI2xJcDudxvwvsv4v3ZnQ57DbADwH4KcATjNeVUNEY4joNSKa\nRUSOSWEAIrqYiGYT0fNEtGOatD5691YNl+uCNMUm6YJN8yS71VaV4zvSoG/sPfZIH/q8ZAlwwgnh\nZZ16KvDf/53P9Ctr1pRuPnsA66BBYXlosVm1yj+tiu8J1+6zaW31d+AmRdfFPf36xMY3f5eN7yHi\n44+BfaIh1HHLWgBq5clttkkua+XK8j4WwC+0zMDXvuavM6DOfV5iE/JAoiMp8xSbtNe6PYefKTA3\n3ZQur2Yg9PSuYebLmXk6Mz+jX9UWTkQtAC4BsB+A7QAcTkRbW/vsD2ALZt4SwAQAV4SmjaNvX3VR\nuywTc631NJaNXkY2bt+4qWmSCB1ACVQ2mkuXhrkUTNrb/ZZbVsvGFptQS0fXY/Xqyv4ujU9sdJ/N\nRRepIILWVv+sDUnnOM6yqTYarbPTLXYffqhmzgb8sxdoevQIC0dfsQLYcMPybXGWja/DW5f12Wf5\nudHSWOAdHX6xCfU6pF2m3MXq1eUzlQuVhN4adxPRCUS0CREN1K8cyh8NYDYzz2Hm1QBuATDW2mcs\ngBsAgJmfAtCfiAYFpvXSq1eln1kTGo0GlF/QIfvGiU1SerMhTLox9MDAaknbJ+VCi02vXpWNfOh4\nBH1uVq70C52v0dFic+mllSG6Nklik8WyCcWeSkmzalV8WPLuu5fXz8xj5Eh3uhUrKs+DPQuFprMT\n2N4z9a4uy2XZZBWbNK7W55/3lxP6X6SZqsjHJZeI6yyJ0FtjPJTb7HEAz0Svp3MofzCAd43vc6Nt\nIfuEpPXSs6daNdPVcGXtswnZN26pAtutYWM2hEkXdl5PWXlYNtqN1ru3WmV00KDSsYY2LOZaJb6y\n49xojz9e+u6aQcCsaxxFBgj4LJvVq+OnkjHT2GLjO9bXXqv8b+fOde/L7B/crM9FvSybOBfl04Et\nVB6WjWvmdKGcoAABZt686IqkIOOkEJONz21obW3DEUe49zTdaGksm2qDCXr1ihcj34JsWdlhh+RB\nlXlZNp2dJbFZf/2w6WFMdMM1Z042y8akGsumKLEZOTJebOJG95t1DhWbZ5+NF127DF/5vhmvi+6z\n0aRxLfvQy6y76jx4MDBvXnIevnF1XY329na0+6b/rpKgy42IjnJtZ+Ybqix/HoChxvch0TZ7n80c\n+/QKSGswuexb3CBK86Lr08e9T1tbZZ9GtWIzcGB8AEHeYhMykDQPy+ahh5TA9O6tbsrQfgUTfbzz\n5vnL9jU89uwM1Vg2cbNhVyM2V10FnHii343mK/PRR8sHxtpuPt+x+vorXTD7J4r1uZz/+Mdwy8Im\n1LLZaad83MVvvKHeXec+5B7pTrS1taGtre3z72eddVZueYfeGrsar69AtdwH5VD+DAAjiGgYEfUC\nMA7AVGufqQCOAgAi2h3Ax8y8KDCtl7gGR190LS3qifOQQyr30RdhnmLTv3/84DR7EstqCXmy9dU5\nTfnXX68i4XSD1dKSfdr9NWv859nXIKexbFyNqrmY21tv+ceBhD4AmC49s06+Ppu4fq2LLioPS25p\nCbNsXH02PuLExizLFBuX0JhLNR9+uL+8UMvG1x+VFj3zhOvch1p/QjJBYsPMPzRe3wOwM9TMAlXB\nzB0ATgQwDcArAG5h5plENIGIvh/tcy+At4joDQBXAjghLm1o2SGWjW7URoyo3MccUa6pVmzWXjt5\nehyNr7EOGa8TWh/Af7O9+657u4933ikFR2R5+j/gAPUeMsbIJo1lY66qqvnCF8q/+yLZVq4ME1FX\n/0drq9+N5mvoTf78Z/Ue6kb761/j11Ey6exMLzY2W2wBbLRRcr2AcMsmZD7BEFwBAv37pytDggOS\nyarbnwLIpR+Hme8DMNLadqX1/cTQtKGEWDYh6fO0bPr0iQ8SCBGbNA15yFNbXB9SVrKIjTlbdlqx\nsY8zbT+U/aTtuz6WLMnu3qxWbLQgtraGic3SpZWDmX1kcaPZ2FM/+eo1cGC4ZZOX2OjzZR5Lv37q\n/2w2N1qRhC4LfTcRTY1efwXwOoA7i61asaSxbFwUJTbrref/PaTPJk1DbtfHXmoaqG4QKgAceWTl\ntizrfqSZPcHGflJO6xqx0/v6dcaP9y+tnITua3GJje7AjkM3vKGWTRqeeaZyuW1NR0f5VD4+bLHx\n3Qs9eoRbNnkJgT5f5gBjPeehuNHyI7RpOh/ABdHrVwD2ZubTC6tVDQixbPTN4WrcihCbTz4pFxvT\n7QCEzb2UVIe99gL+67/UZ/sc+Bb0Atz9Vj4uv1y977+/ezndLJZNNWJjhkSfemr6BsR+0vaJTchs\nxT7ixCbEAjH7EEMCBNIyxzMzYkeHGiANxP+vthUSF3hSazeaOXO1Zt118y1DCO+zeRjAa1AzPg8A\nkHGGq8YhNBrNRzVi41qECgAefrg8+k3fvP37qylIdtqp9FsWN9r666sVQc2n4NC0WWYu/t3vSr5v\nk1pbNpsZsYznnFO9Gy2PcFub1lZ/gEAasQkNEMiLTz8tXU9x14+ebTupXnGTpNrk3WdjPpToa0Tc\naPkR6kb7DoDpAA4D8B0ATxFRl1xiQOO6iHSjpKexj2vUzJtbQwTsvbc/jb6A7Q5nE7NMnfcuuwAn\nn6wakQ03LH96Pf748vRxN/xWWylrSQuHfbPGHW8WsWlpcTfsWfo1dJqHHw7rwzDp06fkImxpSd8A\n2/1WLrFZp8pwGf2fuvIOmQXZtGxMsYlbaTYP9t47LPCjV68wN1o9xEYPyHQtzS5utPwIdWj8BMCu\nzDyemY+Cmiqmy65FN2SI+yLSEVaLF6v3kD4bM59Qy8a8Sd58s/RZRxRp9M2rZzJYs0ZZJ6bY/PKX\n7jQuzEW+gPKFuszt1ZIkNlksg29+E/j3f1dCk3aMjrkkg1mne+8NS2+LzcsvA5Mmlbs5tSsplNMt\nJ3RcgEBIkIavz0avtVILkiwbkzjLJnTsTJFWh75ezKmAhOoIFZsWZl5sfP8gRdqGYv31VYdnyIUa\nJx66wbItm5A0Ztnm/gOt2ebMjlftHtHjMczlnl1pXGhh00Jli01cR3S9LZt111XWXRZscXOFrcdh\nN/bTp1eu9pmXZZN1fi5fn00es3aHkpcbLZQixebLX1bvv/hFcWU0G6F/7X1EdD8RHU1ERwP4K4DA\n58LGYtQo9UQaYh7HBQi4ttk3ysSJ5dP6J4mNrpNe78YsX1s22rfvmxY9pD/DZ9mEhsImkSQ2Wfps\ndH5ZsBtwXafQergsC1ts0lo2rvx8fTYh1FJsfHnGPZDY95vv/ktz/P/6V/i+aTjkkJKlGHqN+Ja9\nEErEXopENIKI9mLm06AGVG4fvZ4AcFUN6pc7ugO+2jm/XDecfWH27w+stVbpe6jYjBoFXHhhueuH\nSHVU9+xZPsmhXWYasbGn4gnpGwjBtPrymFtNk5fYVGvZ6LTVWDZ2w9zSoibCzLp2vW9GiyL6HC68\n0L09zj2qr2Hzu4vQWcCBbMLsW8fIJMt15loQUSgn6bReBOATAGDmO5j5ZGY+GWqMzUVFV64IdOMf\nckHFNdwhYmN/DxWb1lbgRz8q/aZdEAsXqtUbmYEvfcldjzTr1tuWzTe+kZwmhCTLJitZxcZuBF0u\nUED1C7k45ZTyFU912rwtG0AFQGTBJaA9egAbbFBdvVz4/tO4wZghM6gD6cQmdPCnvleAsOuxR4/s\n1rfGt9hcM5N0+w5i5pfsjdG24YXUqGD0TRlyMcXt43KxJfWfJIVL2zeC/q1HD5XXp58qc51ZNSLX\nX19Zph6MFoevz2bECGCsZ0WgNONskiwb5myNc1qxGTVKvdtl+a4BM0TaZOJE4IILKuuSp9hU27iZ\n6/1o9Lm3r4lqBSjLfHmhFngasQmdbsec2y50PsBq/w891kwokXT7xoxnx9oxvzUsvtHOOqpr/fVL\n2+L6bEItG5eY+MTGdyO0tpb20wMv9chtux4hDbJuFFxT4/gajB12APbbr/Rdd6C6MM+xr2G67jpg\nwoTEqjrzDWXMGPU+YED5cfncaHFWoWtMkrl/tWKTl7tLTyoJlI7PPq4NNoifqSKJLNaqfS/4GvM0\nywskrYzrIuQ82y6/LFSbvjuSdPs+TUTfszcS0X9BLaDW5TD7QUy02atHDgNq8sCkfOK2EZXfmL4I\nNo19I5iWjf783e+qz1psslzUvv4e8zeNHqdBVP5bXMOfZNkQAYce6h/c6sNV5le+ktyADBjgr59J\nGlehnbba8SymtWEKV9r/98ADS5/1caaN/tMDce+7D5gypbRdn2ff+BZ9/lz9V1n6FpPIEtZdKzda\nLaMAuwpJp+R/ABxDRO1EdEH0ehjAcQBOKr56+RNnrQwdqsZyAGoVz8Ex636GiI1peVxzjbts28fu\nwrRstMCsWeMWmzQBAq4bwm5w9aBRex2XuJspxLIJrWvS/n36+ENgmYFzz1XT87hEPY3Y2J3RdtoN\nN/SnTcIcxNi3b7l4pg3vNcf+6HN/2mnl+yT1n+gQ/C9+Ud0Tdl3ixGb+fDUGyUWIZWPjmu6oGkLE\nJu4hzh6eEJeHUE7sKWHmRcy8J4CzALwdvc5i5j2YeWFc2kbF50YjUvM/nRRJaNxN/utflw+4NPOw\n89QX93HHufNK60bTN4LPjRZyE/vCpl2YYcJmYxwSPJEkNmlvSJ/rMq4uEyeqQbxm3X2hz3EWgC02\ndiSf7zj/9jc1c0Mcvr46oLqxJDrfyZPTpdPWPXN5f4+ui3a/Dh9eno4Z2GQTt3s21I0GlN8rafoK\nbVxLo4fcH77rcurU8HBrcaNVEjo32j+Y+XfR66GiK1UkcZYNULqh4m7y3XcvXZBxDTBRcoMa4kZr\nbS0XNz3As1rfcohlY3amV+NG22absPLjMPe/6qpseQDZLJsRI9TqrBrbVeSqx847q34jHajgI846\nrUZsfOfGzP+cc8qjtfTvm26q+nW+9CW19g1Qsmh0nfR5tPveqn2qN62zLbeM3/eUU9T7V79a+Zvr\n3PnqZvbV+txo666rzskTTyhPRRxi2VTSdKfEZZGYuMTG3rdnz7AAgZDQ37R9NqZlY4tZ6AWexo1m\nCkc1bjTXjZ9WKM0ydaBElpva12cTZ9kQlfeHaLFxBX1obr89Wx2rERuXBRfH6acrYbHLnzevdIy6\n79Iey6PLuuKK8u9ZLFCTvn1LYejrrqtWI/Wh57xzWVOuevj+i002KX22z5ueJV3Xf/fdS9PY2NNF\nJZXTzDTdKfGJjTmmBYjvdDan3khyo6WxbOL6bMwGnEjN67VqVVh6G7tRMMfX+MSmWjeaaw65aiwb\nnzs0BF/oc5oAAd0QuyZktcdyVdM3VY1l4xs3lfa47bVdkkKfQ8RGuyVd4eZ9+wK/+pU/LxP9+5ln\nusvUTJtWuc3EDCKxPQa/+U1lXXwPGVokxY1WSdOJTVJDF2LZ2DPY+vazo9E0vkY7xI1m1tsebR4X\n0GBiLw5n3vBFudFc4p232OyzT1g+WaPRzN/t9U7M//nss8vzD4n6MzH3Tzuzsc53gw2Am24qbbfD\n7c0ykqLVdHRa0r0TJza29aSnd7HPzbhxyoIMFWq937Bh/t/M6Z18511HAB55pJqDz/UQ5wrssa9r\nHRwhlk0lTXdK9AXjm8Y8pM8m1I1WbZ+NpkeP8gZSPxUutEI0pk/335xmY2M3CmaaOMvGbJTizk+S\nZRMXeh2H68nSbDjN9X7Mcmx8fTbaXRKCbpxca7nEnd8QzHpntWzsWRNefrn0OSkwwv69Tx+1Yqvp\n1nXhE5tXX1WWipnvPvu4BxDffLNy2yX1rWriLFzXf5L0QDF+fHn5gFtsfJZN2qmQmommOyX6grGt\nAtuNlofYpO2zCXWj6YbkUGtFobjwW5fY6G3m2KJQyybu/Lgsm5DO2gce8Odp7+9qZEJvcNuNduCB\nwNNPuy0jsyPYdfyuOclCxCauETVn33ZZNnvu6U+ry46bp4xIWT66DiFzjPXrV3nOQxfwGzSo8jiO\nPBK46y7/eTDFZuut/fVKKzY+tPXmmpXAZQn7LJu0k7w2E00nNvoiWbLE/Xton42rIXGFIfsawEsv\nrUzv60fS09WYZbS0qGinUFw3ns7fXMzNNUGk3jdUbOzIOcB9Pu3jTXKD+cQmbR+Q2XjcdZdaUXSX\nXSr3W3/98jBcV+e7y41mh5anfcpduTJepH/wg1J/zAEHuPOwxcb+Xx99tDTbQOigz6yWTRbRNf/T\n/fYrjwR05V2t2EyZovraRoyorJcrb7Fs0tN069Dpi+imm4CDDgJeeKF8e0uLWrwpbrnnavtsgFJj\noZ8y33+/MqImrs8m7fQmcY3hkUf6fdo+sYkrv6WllE6Xe9hhavbkxx+vzDsUlxstzrLxNWRmg+By\n5Ywfr1agHDTIXxedhytAoBo3mt53nXXUA1FSI+oTijixISoPL7YtmyQBsMcY2WX4HprSiI197pKs\nqDhPw8YbJ/fZrL12+ezerodAV5+lb+kEEZtKmu6U6Atn6FC/ZbDjjvF52AtB2XlrzEbXty8RMHu2\nmt4/tM8GSC82cY3hwIFqlmnzN1c9zd/iOq5NS8wc1PrPf5bnmUeAQNITqCZkUKdm002BY48tzSYR\nl4fLstH76ai0NAECert2bbrStrSokN9f/MIvNmmm308rNrvsArzySuXvWRb082ELVFaxWbQIOOOM\n8D4bu3wTl9jYD5O+4BOhCcUmi4/fJk2AgC8azbyZ1luvvN/Exh7Uqbe5SBMgUFTHtcuyyWMRNZ/Y\n+MQrbYBAGnQe2ho189Lb4sRGc8MNldtuvrlyuzlDd0uLmsvvJz+pFBt9bdnHHhe2HipM5jW77bbJ\ngulK58szriyg5N6ySXJV6oUS084P56qXmYfvus4aFNIMNJ3Y+PpI0lwcphstqc8lxLJJqqurzyZP\ny8Yk7skvi9jE3XzVWDYuwcjSZ+PC95/Yls2MGaWBmzrPMWNKU9q7XGw2Rx5ZWfa4caWJYYlUv5I5\nKWySG811bcT9r2n7bJKwXXhZGl77AeLyy4GPPvLvl1RGUZaNfa6z9tM1A013SsyLIM4nH0eoZQNU\nPvlccQWw777hNwlQXJ9N0hgg+7vZKOnyzdHeZlkhN53vt512Uucobn9TMNK65ZIsm5D/pEcPNZWL\nnqhS12fbbSvXZKn2KXfsWODb33bnZ/4nI0YAm2+efG3Yx22vb2NO3WIS2qDby4tXEyCg33v1Kg0u\nPfHE+Hq48s7DsnG5UX2WjYhNJU13SsyL4Oc/V0vxJqHDIjVmY2piX6DMlftNmKAa6LSWTWifTVKH\nq66Xb98414jLspk4sTKSy7Rs1lpL9UmlqavpZrTz1VRj2aRZQM+uly8PXTYzsGJFeTq9j23FhKDT\nTp5cCtf3WTazZ6v+N5fVaV7D9nm68UYVmfbmmyqPW2+Nr4sPn9jkESAQUn5c3mktGxeu6ZqyrO3T\nrDSd2JgXYK9epVH3cRfySSepiSR79gT+9Ce1zV7l0pWHXlEzrh5ZLZu0g/3ixoGYxN2Uett55wH/\n7/9V5qsnZLTFOMnf7ivHxjxXrk7+0BkUsrrRXHmYDwQan2WT1NDtuqtan8eHvuayuNE226y0MJl9\n3P37q98331z9V76F1UL7xHxik4Y4N3VaKwVILzKhlo3rngey1bG7UzexIaIBRDSNiF4novuJqL9n\nvzFE9BoRzSKiicb2SUQ0l4iejV5jwspNtx1QovTssyo8+bDD1Lbjj1cDAceNKw2utPNYs0a5QN59\n119eyNO46bZLeqJKY9mk6bMxp/z48Y9LfQhmHuedp0LJ46LwXHX13bA2LivGdKMddZR6+n/22fh8\nsrrR4hqbOMsm1OJ64gngnnv8dXFdM65j9Fm9IX1IcdTDjeaqq6shd0VHutxo1fTZuCwbV/023tj9\nMNrs1NOyOR3Ag8w8EsBDAM6wdyCiFgCXANgPwHYADiciczzxhcy8c/S6L6TQrDfaWmuVr+3Ru7dy\nH+2+O/DHP+r6lqdZs0ZtGzKkMr9aBwi4+mzSuNF8v5nns39/YPvtw8XG1wj53GgmRModaa6QSaQs\nSXvaGpuk0OdQa9Pc10xjT4UU+mTvc89qXA2cK5Is6drI6voJFZtJk4C//MWf7uKLS59PPTW+rKRG\nH1AWW1w0p5mmGjeaK0DAZe0tWFDdBKrdlXqKzVgA10efrwdwsGOf0QBmM/McZl4N4JYonSa1gV5N\nA5OUpxmGCyRPGZJUrv6ttbXS9WMPAP3iF8PqCGSPRnPt36OHez61asUmhGXL0s1npnG5o0xCrgU7\nrZnmP/6jtAaM+VuWhs7M19XAhbrRTIq2bAYNKl+Owb7WzT6+738/vo4hUYy+hr2aPpvQ0Oes124z\nUk+x2YiZFwFAtOrnRo59BgMwnVBzo22aE4noeSK6xueGs/HdMK71MELxCUe1YqNxWTam2+CQQ4An\nn4zPw+V6SfOEy6xCcLWLypWvZsAANaVKEr5zkNbffdFFwIUXxu9jirFe2jdtoxs3VsV0o629NvBv\n/+bfF1B9XhdckK58VwPcSGLj29eud8h1F+dizfJgmEefTZwbTY+LEveZn0KnqyGiBwCYAcYEgAH8\n1LF72meCywCczcxMRL8AcCGA4/y7TwagRrG3t7ehra3t819eew0YOTJl6QZFi41rUKcpjnfcEV5H\nQL4mmTwAABDQSURBVI0DeeKJ9G60oUPL16S/7z7gy18uTamv6d07bCniOL93mrodfbR7u5nH4Yer\nF1BauyRPKzcujWu1yc03V1PZp8m32j4bTV5iExcmH5fOFpt+/dQMGq40oX02LsxpdfKwOFx9drp+\nAweq/kJfQFBXob29He3t7YXkXahlw8zfZObtjdeo6H0qgEVENAgAiGhjAIsdWcwDYDRvGBJtAzO/\nx/z53381gF3jazMZwGTsvffkMqEBqhMaoFw4zAvSt4yBnSZpH5dl47PEfPmZroazzvLPu5Xmptxv\nv9JU+2nQddQj7EPrkNb6TMpn+XL37yEBAr40rn3+53+Uy6/aBi+vPpui3Wia7bd3p7fFZsEC4Lrr\n3PuG9Nlo3noLODhyxn/6afn8b3afzTHHqPfBg93TU9nlnn46sNde/t91f2FXp62tDZMnT/78lSf1\ndKNNBXB09Hk8gL849pkBYAQRDSOiXgDGRem0QGm+BeBlR/oKqumbScK+ieMsmziftE1In00S998P\nvPiiuw4m116rVgEtEntafh2SC6ibeuLEyjSACsnN6/ofN65yQS+N7z8ZP77UmIWmAdR57tu3+j4b\nVwPcKG60009XQwRM7rrLnd4Wmz59/CPx04jN8OGlFVTtyULtPpvf/169H3OMmnjXxi73nHMqx9uZ\n+QnJ1HPW5/MA/ImIjgUwB8B3AICINgFwNTMfwMwdRHQigGlQwngtM8+M0v+aiHYE0AngbQATQgot\nQmyKDhDYbbfSOhtZxcZ0f9n5m2y9dfn6IXqNnLRRanHEReqcc4561+OZbHR/S7XcfLP/N99/MmQI\ncNpplY0oUNyI8aTrNYvYZL0H4o5R/28hhMxcEXd/uFbl1Fx8sTvCzXeN+oQr7TmSGQOSqZvYMPOH\nACpWMGHmBQAOML7fB6DC0cXMR2Upt5YXRZzYpGGzzYBZs9TnrGLjIulcrFhRKkc/MeZBSNh2tU+M\nRGo6maxpfST1S+Qpyr66mNtcUy7Vq8/GxicgaQIEXHU988xKK0ozYECpT87EF/oc2s/kI+ukts1I\n061nU7TYjB6tzPIlS+L7bNJSbZ+Ni113BX74Q//vuoxly+L7ZvK0bJIIPb6iRnBX2zilJSlQ4vbb\nK1eXvO22yiXDTWoRjRZHNdFoOr055i0E3/UgYlM7ms74K/qiOPdc4MMP1edqLRuzrnafja9zPQ39\n+pUPsPORJQggjkYf8BZ3jSS5XfL04R9wQCmCzke/fsAmm5RvGzpUPfT4yGtQZ9Zw4mrFJgu+cTbV\n/l8iNuE0jdgccYR6L9Ky0X02uow8xca2bJJGTNcS31xaPkyxmTtXRbXZ1PPmjSvbd959q1eapG3Y\n7r4bOOGEdGlCqJVlk8aNZu+bJoAmBNe8ef/4h1pYzYX02eRP05yim25S77VqxPr3L61rkgf2k56v\nD6UejfRppwFvvBG+vyk2oZNnNgo77QTMm1e+7f33sy9XkYVq/+Na9dn4CFlvJ67PJgv7718Zft7W\n5o4wA9Sg3ONiRu1pxLIJp+n6bGp1UXz8cfV5uMJeNb4n7B/9CNhuO/XU9pWvAKNGqZuqSHr1Kl/c\nKwnbjdZo4aNJ14gdMu1b/6VRqVefjU4f4kbN240GpAs/HzoUuOaa5P0a7dptZJpObLqquRsqNl/4\ngpoKRS8B8NRTxdYrCyHRaI3qRksi72i0IqiXG01TL7Epkq5Sz3rSRZvebJxyipoksauz0Ublo5nj\naMSbwDfgzsXw4YVWxUlRYtMoZBUbO13afkN9XkPcaHn32RSFrvfmm9e3Hl2BprJszj+/2PzT3Bgh\njdL3vgc89ljl9kWLwstpNJ5+ulJA4s7FoEHA22+Xvh9yCDBnThE1U2y0EbDnnsXl3wjkZdn8/e/A\nZ5/59/f1w6SxbPL2ROT9MGCvYCv4aSqx6Wocf7x6VUOjPRnaS0gD7nBiX70HDwb+7//yrZNJtULe\nFRqerNeEnc4OubbxRei5xCbNDALVUITYCGGI2NSJtIufZWXnnYE776xNWVn54Q+Bbbetdy2Kp1Ea\nplr12QweDHzwQel73DpKvrIaXWyEcERs6sSGG1ZOjBnHwIFhYzlsevTwTx7ZKBx8cOPXsZFolNDn\nEMy57PS4s5B8ukqAgIhXOCI2OZL2xhg1KnzfPn0qpyXpzjR6I9OVKWpZ6CTiBjn7AgTy7rP5/veT\n3X9pELEJR8QmR6SBzI+0y/g2CrUIfa4mn0suAb7+9WxpixQbX1l531ODBmVbSlyoHhEbQciJvfZS\n85n5aAThDFmu20d3EJu8MZdnF+IRsREakkZvZFy4wtSLoF7nplqXVho3WlcQm2eeca/yKbhpqkGd\nQtdjjz2AjTdO3q8rkIdls+uu9Yvcq7bhT7PkRlF9Nnmy886NXb9GQ06V0ND85jfA/Pn1rkXjMH16\nafXUWlPLAIGuYNkI6RA3Wo7IjZE/3emcHn10Pius1gvpsxGqQcRGaEi+9S3go4/qXYt8OfBA9eqq\nVNvw77OPWlzQxejR5ctNiNh0P8SNJjQkRx8NPPpovWshmFTb8PfvD0yc6P5t1Ci1kJ5dlohN90HE\nRhCEIDbYoHZltbQAf/pT7coTikfEJkfkKUzozlx6KfDWW7Upiwg47LDalCXUBumzyZGQqdMFoauy\nzjr+5cgFIQmxbHJExEYQBMGNiE2O1GrZAEEQhK6GiE2OiGUjCILgRsQmR8SyEQRBcCNikyNi2QiC\nILipm9gQ0QAimkZErxPR/UTU37PftUS0iIhezJK+lojYCIIguKmnZXM6gAeZeSSAhwCc4dlvCoD9\nqkhfM8SNJgiC4KaeYjMWwPXR5+sBOFehZ+bHALhmyQpKX0vEshEEQXBTT7HZiJkXAQAzLwSwUY3T\n545YNoIgCG4KbR6J6AEAg8xNABjATx27V7u0VN0X3RXLRhAEwU2hYsPM3/T9FnX6D2LmRUS0MYDF\nKbNPlX7y5Mmff25ra0NbW1vK4pIRsREEoSvT3t6O9vb2QvImzmOt2iwFE50H4ENmPo+IJgIYwMyn\ne/YdDuBuZh6VMT0XfZxEwMyZwNZbF1qMIAhCzSAiMHMuUwzXU2wGAvgTgM0AzAHwHWb+mIg2AXA1\nMx8Q7fdHAG0A1gewCMAkZp7iS+8pq3CxWb1aLBtBELoX3UJsakktxEYQBKG7kafYyAwCgiAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELh\niNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAIQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC\n4YjYCIIgCIUjYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBSOiI0gCIJQOCI2giAI\nQuGI2AiCIAiFI2IjCIIgFI6IjSAIglA4dRMbIhpARNOI6HUiup+I+nv2u5aIFhHRi9b2SUQ0l4ie\njV5jalNzQRAEIS31tGxOB/AgM48E8BCAMzz7TQGwn+e3C5l55+h1XxGV7Aq0t7fXuwqF0p2Przsf\nGyDHJ5Sop9iMBXB99Pl6AAe7dmLmxwB85MmDCqhXl6O7X/Dd+fi687EBcnxCiXqKzUbMvAgAmHkh\ngI0y5HEiET1PRNf43HCCIAhC/SlUbIjoASJ60Xi9FL0f5NidU2Z/GYAvMPOOABYCuLDqCguCIAiF\nQMxp2/icCiaaCaCNmRcR0cYA/sHM23j2HQbgbmbePuPv9TlIQRCELg4z59Jd0ZpHJhmZCuBoAOcB\nGA/gLzH7Eqz+GSLaOHK/AcC3ALzsS5zXyRIEQRCyUU/LZiCAPwHYDMAcAN9h5o+JaBMAVzPzAdF+\nfwTQBmB9AIsATGLmKUR0A4AdAXQCeBvABN0HJAiCIDQWdRMbQRAEoXno1jMIENEYInqNiGYR0cR6\n1ycLRDSEiB4ioleiAIv/jrZ7B8US0RlENJuIZhLRvvWrfRhE1BINzJ0afe82xwYARNSfiG6L6vwK\nEe3WXY6RiH5ERC9HgT83EVGvrnxsrkHkWY6HiHaOzsksIrqo1sfhw3N8v47q/zwR/ZmI+hm/5Xd8\nzNwtX1BC+gaAYQB6AngewNb1rleG49gYwI7R53UAvA5ga6i+rh9H2ycCODf6vC2A56D644ZH54Dq\nfRwJx/gjAH8AMDX63m2OLar3dQCOiT63AujfHY4RwKYA3gTQK/p+K1T/a5c9NgBfhnLPv2hsS308\nAJ4CsGv0+V4A+9X72GKObx8ALdHncwGcU8TxdWfLZjSA2cw8h5lXA7gFaiBpl4KZFzLz89HnZQBm\nAhgC/6DYgwDcwsxrmPltALOhzkVDQkRDAPwbgGuMzd3i2AAgekr8CjNPAYCo7kvQfY6xB4C+RNQK\nYG0A89CFj43dg8hTHU8UXbsuM8+I9rsBnkHrtcZ1fMz8IDN3Rl+fhGpfgJyPrzuLzWAA7xrf50bb\nuixENBzqqeRJAIPYPSjWPu55aOzj/g2A01A+zqq7HBsAbA7gfSKaErkKryKiPugGx8jM8wFcAOAd\nqHouYeYH0Q2OzcI3AN13PIOh2htNV2p7joWyVICcj687i023gojWAXA7gJMiC8eO7OhykR5E9O8A\nFkWWW1x4epc7NoNWADsDuJSZdwbwKdS8gN3h/1sP6ql/GJRLrS8RfRfd4NgS6G7HAwAgop8AWM3M\nNxeRf3cWm3kAhhrfh0TbuhyRi+J2ADcysx6PtIiIBkW/bwxgcbR9HlQ4uaaRj3svAAcR0ZsAbgbw\ndSK6EcDCbnBsmrkA3mXmp6Pvf4YSn+7w/+0D4E1m/pCZOwDcCWBPdI9jM0l7PF3uOInoaCh39hHG\n5lyPrzuLzQwAI4hoGBH1AjAOaiBpV+T3AF5l5t8a2/SgWKB8UOxUAOOiqKDNAYwAML1WFU0DM5/J\nzEOZ+QtQ/89DzHwkgLvRxY9NE7lf3iWiraJN3wDwCrrB/wflPtudiNYiIoI6tlfR9Y/NHkSe6ngi\nV9sSIhodnZejED9ovdaUHR+p5VlOA3AQM6809sv3+OodHVFw5MUYqOit2QBOr3d9Mh7DXgA6oKLp\nngPwbHRcAwE8GB3fNADrGWnOgIocmQlg33ofQ+BxfhWlaLTudmw7QD38PA/gDqhotG5xjAAmRfV8\nEarzvGdXPjYAfwQwH8BKKDE9BsCAtMcDYBcAL0Vtz2/rfVwJxzcbamD9s9HrsiKOTwZ1CoIgCIXT\nnd1ogiAIQoMgYiMIgiAUjoiNIAiCUDgiNoIgCELhiNgIgiAIhSNiIwiCIBROPVfqFIRuB6lFAf8O\nNaXJJlBjpBZDDaL7lJm/XMfqCULdkHE2glAQRPRzAMuY+cJ610UQ6o240QShOMomFyWipdH7V4mo\nnYjuIqI3iOgcIjqCiJ4ioheiqUFARBsQ0e3R9qeIaM96HIQg5IGIjSDUDtONsD2A70MtUHUkgC2Z\neTcA1wL4YbTPbwFcGG0/FOVr/ghCl0L6bAShPsxg5sUAQET/gppzC1DzTbVFn/cBsE002SEArENE\nfZh5eU1rKgg5IGIjCPXBnF230/jeidJ9SQB2Y7XSrCB0acSNJgi1I26BOBfTAJz0eWKiHfKtjiDU\nDhEbQagdvtBP3/aTAHwpChp4GcCEYqolCMUjoc+CIAhC4YhlIwiCIBSOiI0gCIJQOCI2giAIQuGI\n2AiCIAiFI2IjCIIgFI6IjSAIglA4IjaCIAhC4YjYCIIgCIXz/wFRfJZMiFR6wwAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(1)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=1')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Try out with `B=2` to get _random walk_ distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEZCAYAAABfKbiYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnXmYHGW5t+8nJDPZJwkJgSRkgwAhQgBlRwybRhDCAUEE\nDEEFVEQUQRaPEPQooOIHshwR2ZFFQSAoCgYI4GGHAAESwpYJZF8nyUwyE2be74+nXqq6p5fqnu7p\nZZ77uuaq6urq6rd6uutXz/qKcw7DMAzDKATdSj0AwzAMo3owUTEMwzAKhomKYRiGUTBMVAzDMIyC\nYaJiGIZhFAwTFcMwDKNgmKgYVYuInCIiz+TxugtF5I8x971ERO7IfXSVjYi8KSIHZnj+SRH5ZmeO\nySgPTFS6ECKyQESaRGSdiCwWkVtEpHepx1VkUhZiicgoEWkTkXa/AefcZc650zv6HsH7fCgiBydt\n6yEi00VkvoisF5EPRORPIjIyh/csKc65zzjnnoZPhfX2fI8lIl8Qkdbge7lORD4Skel5HGeIiNwl\nIotEZI2IPCMie+U7LiM/TFS6Fg44wjnXH9gN2B24sLRDioeIbFGEw5aq8vd+4CvACUAdMBF4GTgk\n1wMV6XMpBYucc/2D7+YBwLdE5Kgcj9EXeBH9Xg8Cbgf+0QVunMoKE5WuhwA455YDj6Liok+I1IjI\nb0WkXkSWiMj1IlIbeX6KiMwWkQYReVdEvhhs30ZEHhKRVcHd97cj25tEZEDkGLuLyAp/MRSRb4rI\n28Fr/xm9Ww8sie+JyHxgfrBtJxF5LNh/rogcF9l/kIjMCMb3PLBdXh9QkktLRKYGVt4KEfnvFNZH\nrYjcFtxlzxGRPYLX3Q6MBB4OnjtXRA5BxeMo59yrzrk259x659wfnHO3BK9LOH50PBEL65siUg88\nLiKPiMj3ks7hNRE5OttnlvSaSSLyRuTxv0Xkxcjjp/2F3o9RRL4EXAR8LbC6ZkcOOVpE/hOc+79E\nZFCcz985Vw88C+wcZ//I6z50zl3lnFvulBuBGmDHXI5jdAwTlS6KiIwAvgy8G9l8BbA9sGuwHA5c\nHOy/F3Ab8GPnXB1wILAgeN29wEJga+A44FciMsk5twS9OBwbeY+vA391zrWKyBTgAuBoYAjwDHB3\n0lCnAHsBOwd3nI8BdwKD0Tv960Vkp2Df64EmYCjwLaAjPn0XnPfOwHXBuLdBLYthSfseCdwVPPdw\nsD/Ouano5/KV4C78t8ChwIvOucX5jCfCgejF8kvoZ3aifyIY80jg72k+s+sin1mU54HtA3HuDuwC\nbCMifUSkJ/A54OmEQTn3KPAr4F7nXD/n3O6Rp78OnIL+b2uBc+OcqIiMA/YHnotse11EVgd/a5KW\n16Y5zm5AD+C9OO9rFAYTla7HgyKyDr3YLQOmR547DfiRc67BOdcIXI5eGEAv0Dc5554AcM4tcc7N\nD8RpX+B859xm59zrwJ+AqcHrEi546EXtz8H6GcBlzrn5zrm24P12E5FtI/v/yjm31jnXjLqMPnTO\n3R7cib6OupKOE42NHAP8zDm3yTn3FiqCHeVYYIZz7jnn3CcEIpvEf5xzjzptpHcHKspRJLK+JbCk\ng2NywCXBeTYDDwATI5/bicDfgvGm+sz+hop/4kGd2wS8hArWZ4HXgf9DL/D7APOdc2tzGOctzrn3\ngzH+hYhVnILhgUA0APNQgfu/yNgmOucGBX8Dk5bfTz6YiPRH3V/TnXPrcxiz0UFMVLoeUwK/9ReA\nndC7V0RkCNAbeMXfEQL/RC+CANsC76c43jBgtXOuKbKtHrVyQC/6+4jIUBH5AtDqnPMXi1HA1ZH3\nW4VeMIdHjvVxZH1UcKxP71jRC+hQ9G64e9L+9fE+kowMAz7yD5xzG4NxRlkaWW8CekqKBICAVajF\n01E+PU/n3AbgEVSwQW8E7gzW031mW6c57tPAQaiwzAr+JqHfl6dyHGPy59I3w76LAoGoAwYAm1BR\nyJnAqpoBPOuc+3U+xzDyx0Sl6+FjKs+gd/JXBttXoj/8CZE7wgHBjxz0wpoqRrEYGCQifSLbRgKL\ngvdZi7pfTkAvdvdE9lsInJF0B9rXOfd8ZJ+o2+cjYFbS/v2DO9UVwGZU/KLj6ChLgBH+gYj0IhTa\nOCS7rWYCe4lIsgstSiMq8J5UApB83LuBE0VkH6DWOTcr2J7uMzszzXs/hYrI54P1p1FBOZD0olLQ\nhIfAsrgLtbKAT1OY1yX9rQ+W10f2qwEeBBY6575TyHEZ8TBR6dpcBRwmIrsErpsbgasCqwURGS5B\nMB64CThVRA4SZZiI7Oic+xiNm1wmIrUisisaz4jWbtyNusOORS8WnhuAi4IYACJSJyJfzTDevwM7\niMjJItJdNDX3c8E42lC3znQR6RUc85Qs5y+oVVEb+ZOkfe4DjhSRfUSkB4nuwkzH9SwFxvoHzrnH\ngX8DD4jIHiKyhYj0FZEzRGRasNtrwAnBOX4OSP5MkscIaqmMAn6Oxrg86T6zVDEV0P/ljmgc60Xn\n3NvBcfcmKZ4SYRkalE81rrh8+loR6YvegLzptwUpzP2T/voFy+8Fr+uOWsZNwLQOjMXoACYqXYuE\nO0rn3ErUWvFxggvQoObzIuItjB2CfV8CTkWFqAF1i3hL4ERgDGq13I/GNZ6MvNUMYBywxDk3J/L+\nD6JxlHuC93sDmJxhvBuAL6JWz+Lg73I0CAxwFtAPtS5uDv6yfR7r0YvQxmB5UNJ7vh0c997g/dYB\ny4HmLMf1XA78LHA9nRNs+yoqAvcCa4E5aAxjZvD8z9BEidXAJYQxqFTH9+NsQUX1ECLCneEzq0k5\ncHVjvgK8GcRkQAPmC4LvS6ox/BUVhVUi8nK6MWZhG2+BAB+iLrCTczzGfsDh6Pk2RCyZ/XM8jtEB\nxNkkXYYRm8DNtxbY3mnqq2EYEcxSMYwsiMhXApdaHzQG9YYJimGkxkTFMLIzBXUbfYwmK5yQeXfD\n6LqY+8swDMMoGGapGIZhGAWje6kHUEhExMwuwzCMHHHOdSQdPIGqs1Scc1X5d8kll5R8DHZ+dn52\nftX3V2iqTlQMwzCM0mGiYhiGYRQME5UKYdKkSaUeQlGx86ts7PwMT1WlFIuIq6bzMQzDKDYigrNA\nvWEYhlGOmKgYhmEYBcNExTAMwygYJiqGYRhGwTBRMcoW52Dlyuz7GYZRPpioGGXLo4/CkCGlHoVh\nGLlQVb2/jOpg6VJYtw7Wry/1SAzDyBWzVIyyY/Jk2HFH6NVLH7e1lXY8hmHEx0TFKDuWL9dlS4su\n164t3VgMw8gNExUjKxdeCPff33nv19ioy6YmXZobzDAqBxMVIyuXXw7XXFPc92hthblzdT1ZVPzS\nMIzyx0TFiMWWWxb3+HfdBTvvrOutrdC9e3txMQyj/DFRMWLRv39xj79xY+Lj3r1DMfHiYhhG+WOi\nYuTMX/4C555b2GP26KFLH5SPiopZKoZROZRcVERksojME5H5InJ+iudPFJHXg7//iMgupRhnV2L4\ncHjjDaivh2uv1W2treHzl18OV16Z+rUrV+aXAtw9qJgaOFCXvXub+8swKpGSioqIdAOuBb4ETAC+\nLiI7Je32AXCgc24i8D/AjZ07yq7FunWweDEcdRSMHg1nnaXbFy6Eq66CTz6B+fNTv7a1VSvgH320\n4+Po08fcX4ZRiZS6on4v4F3nXD2AiNwDTAHm+R2cc89H9n8eGN6pI+xirFihy/r6xO1PPaV/Bxyg\n9SNbbKG9uUTavzafFOB0MZWoG8wwjPKn1O6v4cBHkccfk1k0vg38s6gj6uKsXp35+Q8/hHHj1F21\naVPic4sX63LDhtzfNyoq3/++ilVjIwwerJbPs8/mfkzDMDqfUlsqsRGRg4BTgQMy7Td9+vRP1ydN\nmmRzS+dINlE5/ng4/HD4+GNYsyZspQKhpZKru+rmmzUWM3Uq/OIXsGwZPPecWihDhsADD8CoUbDf\nfrkd1zCM9syaNYtZs2YV7filFpVFwMjI4xHBtgREZFfgj8Bk59yaTAeMioqRO+laohx6KMycqeuj\nR8Mjj8Cf/wznnRfu462NXC2Vb31LLZOLL4aRI1XYNm/W+M7QobrPRx9lPoZhGPFIvtm+9NJLC3r8\nUru/XgK2F5FRIlIDnADMiO4gIiOB+4FvOOfeL8EYuxTNzam3R2MnI0bAz37WPtbhRSWfwLpzodXT\no4eKyqpVKjKgllEhaGqCiy6CRe1uXQzDKAQlFRXnXCvwfeAx4C3gHufcXBE5Q0ROD3b7GTAIuF5E\nZovIiyUabpdg8+bU27tFvil1dZr6uybJZvQxllwsFefC9aioNDerS2zUKN1WKEvlF7+Ayy5TK8sw\njMJTavcXzrl/ATsmbbshsn4acFpnj6ur4jsDJ7PFFuF6v34qAK+9lrjPpk26Xy6WSjRA70Vl5Ej4\n4ANdHzFCl0uWqOD5Isl88R2Qt9qqY8cxDCM1pXZ/GWVGOksl6v7q3l0tleT4y8aNmq2Vi6XS2Bi2\ngOnZM3G5zTah+8s5FZaOsmwZbLttfhlqhmFkx0TFSCBqqdxzT3jBj7q/WlvTu78GD9bX3XJLvPdr\nbIQBA3T9k08Sn+vfH8aODR9ni6t861uamZaO1laYMwe2397a6RtGsSi5+8soL6KWyl576QX41Vfb\ni8qAAalFxXcz/uY34dRTs7+fL3CERFfYuefChAkwbJg+7tkzrINJx4wZGodJZtkyePddtVDWrIFJ\nk0xUDKNYmKgYCbS0wDe+AXfcATU1YYbXSSfphf3kk+GQQ7QmJZX7q7Y2fNzWlihG6d7Pu7uiovKb\n3yTu16NH9hkgo+8d5Yc/VOtp7lx1qdXVpRYfwzA6jomKkcDmzbDddrreo4fe1ffpA8cdp3+eVO6v\npqawrgQ0gytaHJmK5mYVrwcegIMOSr3P7Nlw663t3y8ZLyr19Zow4IP8vsFlY6NaRf36maViGMXC\nYipGAlHLobUV/vd/4eWX2+/Xt6+6u6LusvXrtUjynXf0cXI/r3TvV1MDRx+tFkQqdttNYzXZLJWa\nGl2OG6euO49PMrjrrlBU/BhfeCExrdkwjI5homIksHmzXpz/+U/Yeuv0+4mEcZWGBnjwQc2o6tsX\ndthB3UzJvcFS0dyc3m0VZcAADdRnOqYXlc2bE9OavagsWqSWU9++2gZm9mzYZx+YN6/9sQzDyA8T\nFSOBlhZ1e02enJhGnAqfVvzII/Bf/6Vxir599bmePeOJirdUsjFgANx+u8Z00hEVp+7d269v3KiW\nSp8++ti7xdKlURuGkTsmKkYC3lKJg7dU+vXTx888E64XQ1RAM7nSERWVaJHk5s0a61m0SEXFp017\n91y6gk/DMHLHRMVIwFsqcfDB+mghobdUevUqvPsLwuB7KtJZKg0NMGaMTjTWpw9MnKjbTzhBl378\n69bFiwMZhpEeExUjgVwslbo6vWBH4xdR91ecybXiWio+iyxTe5XocaLC6EVlxQqN9QwZosF/31TS\nZ4Jtt50mDBiGkT+WUmwkkIul4kUlapF499egQdnnZvHvF0dUfGPJTPGPqHUSPYd168LX+7FGq/fX\nrdPlypXwyivZx2IYRnrMUjESyNdS8ZaEt1SGDNECyiuuyHyMuO6vwYPhppsyu6eiQrF+fZgq3NAQ\nntOZZ+oyepxXXtEsMNBzeecdSzM2jHwxUTESyMVSGTBAL9gbNsDwYBJoX+MyZAjcdx9ccEH294sr\nYr16pReV1lZNg/asWRPWtTQ0wJQpmjk2ZoxuGz063PeOO7ReBdSS2Wknjb8YhpE7JipGArlc5Lfa\nSrOxGhvDALpPQx48ON4xfEV9HDKJio/r7LuvLnv21LYsra363MSJKh6ee+/V5Q47pK7U9y4xwzBy\nw0TFSCCXOUtGjtQ7+sZG2GOPxOeGDIl3jJaWeO4vyJxR5jskT56sjxsaYP/91Q3Wp0/ifDAQNr7s\n0SP1+zc0xBuTYRiJmKgYCeRiqQwfrvGIxx5TUfHFhJBoqWS66y+U+2vTJrVOLroosVlkQ0P69i+g\nYpMqS80sFcPIDxMVI4FcLJUBA3QeeV//Ea3Aj1oqqeZBefZZTfHNxf3Vs2d6UWlu1ue7dw+tENC4\nSjZR2XZbbbEfTSowUTGM/DBRMRLIxXKIXqx91pfHi0r//qkbQe6/P5x9du7ur2yWiufnP9cOyytW\nZK5t6dYNnn9e54w56qhwu3UxNoz8sDoVI4FcUop9TQq0b3Hv3V9Dh6a/69+8ufDuL89nP6vW0LJl\nie34o/zv/4ZWCoRusG7d1PIxDCN3TFSMBHJJKfYTcE2dCvvtl/icF5y6uvR3/a2thcv+ShaV2lo9\n9vLl6S2V73wn8bEfx6BBJiqGkS/m/jISyMVS8fTo0b6jsYjOtjhhQmipJBcUtrXll/3V0ABvvpn4\n3KZNicfxorJmjYpEHPzrBw2K17fMMIz2mKgYCeRiOXiWL0+9/Wtf02C+t1R22gl++9vw+ba2/CyV\nc86BXXZJfC6dpbJ2rTa+jENUVMxSMYz8MFExPmXtWhWI5KB7Jq6/Hn760/TP9+sXWirz58O114bP\nPfxwbjGVnj11/1TFig0NmhTgiVoqvsNxNryofPazJiqGkS8WUzFobdVsLR8j6d07/mu/+93Mz/fv\nn2jJrFiR+HwuloqIilSqwsRkN1fUUokrKjU1WnPz1luwYEH75737LtvkZYbRlTFLxeD739eL8qpV\n+rhbAb8V3lLx1kpy/GTJksx1JMn4fmPJrFmT6ObKx/0FcNhh+tpUMZUpU+Dzn49/LMPoipilYrB0\nafGO3b+/xlRuuEEfJ7dLef31+H3CQAXIt9R//XVNErjzTm0V49vbg1od3lUW11Lx9OyZ2v31+OPx\n5ogxjK6MWSpG7OyrfPCWSkuLNnv0FkDv3nDggboet08YqED4KYV3203jH5ddBvX1ibGgfNxfya9N\nphLcXm1t1rbfKC0mKkbKNiqFwlsqixZpNlhTk170+vULuwbnctHv1y/RWvAi9dBDqVOKc3V/+feY\nNw9+8Ytw28aNiTNclitTpoRt/A2jFJioGHz0Ubje2lrYY/frB08/rdXrAwdqby7vlurTRwUm2SWW\niT590j+XLCpNTSosmV6TisGDYfZsuPjicFul1K2sWgWLF5d6FO154gntam1UPyYqXZylS8PeXGPH\nFjZID4lpvn37qtvrrrtUWKJ1JXFJJRC+mj8qKn5q4ba23N1WqWI8lZJi3Nxcnm37//nPxJsXo3ox\nUenivPJKOLFVoQUFEvuD9emjAvbNb6rA5GpBQJiSHH2t70ocFRUvJNF2/HGJtnXxFkoliUo5dlhO\n1VTUqE5MVLo4y5fD1lvDLbeoi6rQRC2V7pFcw1xcXlGWLNHldtuF23x9Sj6WTyrq6uDII3Xd3/VX\nivurpaU8LZVUBatGdWKi0sXxDRenTYNDDy388aMX+rY22GYbXc83duPvwqPH9YH4XNvLZGLGDHUH\nbtigjyvJUmlogPfeK/VIEjFLpetgdSpdnOXLwwt9MRAJ+3KNHq1+9e7d8xeVb38b3n0XPvkEXnxR\nt/kOAKlSaa+6Kr/3AXXRJYtKvhZWZ9HcDHPmwLhx5ZVanK4/nFF9mKXSxcnUGr5Q1NbqBW7cuPCi\nnE+sA+AnP4Ebb4Qddwy3+YvnJ5+0378jGUeLF+v7gQrjNtuUfwZTc3NxU8TzYeVKFTqja2CWShdn\n6dLii0oyt9wSf86WdET7k3mrJznR4PHHwwLLfFi5UnuBgV6sBwyAuXPVesml6WZn0tISphTnMjV0\nMXnnHS1SnT1bbwAqoYjUyB+zVLowq1fDzJkwZkznvu+0aXDSSR07RlRUhg3TKYGT+3IdfHBickC+\nPP54KCoA3/tex49ZLKIpxeXSUqa+XhMrRMrPijIKj4lKF2bpUp3jJOpKqhT89MV33qlxlr33LnxK\ndH29Lo84Qt1fXlTuuANOPLGw71UIWlsTY1XlIipNTWrZtbaWv/vQ6DgmKl2Uk06CiRPDGo9Kw7tQ\nTjopv3qXOPgLYHOz/kW7KT/6aHHesyMkZ6ilm3q5s2luLm5/OaO8MFHpojz9tAa24061W250dt1I\n8syShUxfLhQtLYnZaeViqZiodC1KLioiMllE5onIfBE5P80+vxeRd0XkNRHZrbPHWI14MalUS6Wz\nROWss2D33dtfGMtRVJqbE5tnlouoJAuyUd2UVFREpBtwLfAlYALwdRHZKWmfLwPbOefGAWcAf+j0\ngVYh0fnYK5ETTgjnaCkmJ5+sd//NzXph9EH6chUVf/Hu1auwojJxIvztb/mPq7ZWE0PKIRvNKC6l\ntlT2At51ztU75zYD9wBTkvaZAtwO4Jx7AagTkaGdO8zqw/+4K9VSGTQITj+9+O9TWwsffAA/+pGu\nH3GEbs9lyuXOoqVFx3jXXbD//oWLqVx4IbzxRphenSteVOrqNM1548b8Bcoof0otKsOBaO/Sj4Nt\nmfZZlGIfI0d8hXMxmkhWE/4OG9Q6+fKX4eyzYcKE0o4rFf7i/fWva8+1Y44JheCTTzSO1tICCxfm\nVnx6+eW6zLebgHd/deumKd733QfHHgvXX5/f8YzypuqKH6dPn/7p+qRJk5g0aVLJxlKubN6s7VKu\nvVbnZDfSE3VzrV2rWWcHHAB33126MaUjGvfp1Usv5g89BF/8Ilx3Hfzwh3DaadqR4MUXYc89czt+\nvq11ouOqqQnjYQ8/XN41P9XKrFmzmDVrVtGOX2pRWQREM9dHBNuS99k2yz6fEhUVIzX+QnnmmaUd\nRyUQDc4vWhRua26GK6/U1jNHHVWasSUTvXh799zWW+vST0Fw443hvnG45ZZwff36jo+rpibsWLx4\nsQpVufdTqzaSb7YvvfTSgh6/1M6Pl4DtRWSUiNQAJwAzkvaZAUwFEJF9gLXOuWWdO8zqo1zbjJQb\nUVFpaQm3bdoE554LV1xRmnGloqUlvGHw1oC/XojAbpG8yThB/NZWnfsGNH6Vr6isWhVmpa1dC+cH\nOZ5vvAG33prfMY3ypaSi4pxrBb4PPAa8BdzjnJsrImeIyOnBPo8AH4rIe8ANgBnMHcBfGIdaqkMs\nvKg88kh4AYx2Lx49uhSjSk3UIvAxE++yamkJe7xtuWW8IL6fEA3U8lm/Pmze+ZvfJD6fifffh+23\nT9w2ZIguV62Kdwyjcii1+wvn3L+AHZO23ZD0+PudOqgqxv+IC9ETqyvgL9K77x5OMzxiBLzwQrhe\nLkRF5YortOp/5Up9vGlTKCpDh8azVKLT//bvr219unWDP/5Ruzf36wff+U7mY7S1afbc2LGJ20eN\nUlHKt1u1Ub6U2v1ldDJ+siTzY8fDp15HZ7AcNixczzd4XQwaG0O35vDhsOuu4XM//GGYxTZ4sPYu\na2zMfLyXX9bl0KFwyikwb54+/tWvdBnnO7RkiX52ye5WH+uplMnPjPiYqHQxvNvDRCUeIvDqq4l1\nKd27qwVwzTXlNc1wckv+u+7SpZ9nxv/vvUA+8UTm43lLZfz4REtjwQJdxklHr69PdBHedJMufbA+\n3ziNUb6YqHQx/EXwrLNKO45KYvfd22/bckutvShnURk6VJtt+imY/WRpvureu8bS4S/46W5A4loq\nUcvOj+/gg8MxG9WFiUoXY9MmmDRJ6xWMjlHuogJar7Jkia57V922QYK+txbS4UXFWySXXBK6vqLb\nM7FkSeJ01X58xx0Ht99uolKNmKh0MTZtCuciMTpGOYpK8jQAUVHZvFmXP/+5Fr1mEpU//hFuu03X\nvUUyfXpisWI2UVmzBh58MLWo9OypgX5zf1UfJipdgNbWMMvGOsYWjnIUlWRLpU8fbcsCYWylb1+Y\nMiWz+8sH6SHRzeWLKCEUqXTcdZfOmumD8v69QT+7aGq2UT2YqHQBDjxQLyKgwVoTlcJQCaKy++7w\n73/relQERo4MZ7ZMhZ+QbNw4nf7ZE7VOfM1TOrzV5MUMEkVl0KCwB51RPVi1QpWzeTM8+6zOEQ5m\nqRSSShCV0aPhsst0/Sc/CbePHQtz52rg3s+iGcVXwM+Z036CrXXrdEqAbOnAGzbA5z4HU6eG26Ki\nMmGCFkY2NZVn12cjP8xSqQJaWvSOMhXen77vvrq0mErhqARRiT4+5phwfeed9Ybj/fdTH6tnT23R\nkmrGxn799PuWzVLZsEGzvKKCERWV2lqtrDdrpbowUakC1q+H994LW2h4zjkH9tlH130FvVkqhaOS\nROWggxK3i6iLK934oxX4qfD9zzLR2Ng+ccA/9t/HwYOzpzYblYWJShXgfdbJd45//3toqfhaBYup\nFI5KEhXvAotSW5ve2sg2r3xdHTQ05D6eLbZIdLkNHmz9v6oNE5UqwPu2k5sEer94nz46095Xv2qW\nSiHp2bNwsysWgkyikmr645qa9HGRbKIyaFDY9iUdr7wSxvLSseWWMHly2ALGqHxMVKoAf2FIbhLo\nxcP3r7r/fvjlL01UCkUlWSqpBCKdpTJnjjakzFQxP3Bg5jqX9eu1vc3kyZnH7L+zVq9SPZioVAE7\n7KDL5LtmX5uy//6J2y1QXxh69tS79XKJCaQqfswkKuksFT8b6MyZ6d9r0KDMre8//FAzzzJZOxCK\nSragv1E5mKhUMA89BK+/Hj7euFF/6D5g70XliCMSW4xn+6Eb8fDi/OMfl3YcoP/fVKm5+Vgq/kJ/\nySXp32/XXXWSrXRdmlevVtdWNvx4TVSqBxOVCubooxNn87vuOs3YeeABfezFZfBgDYx+97v62NqN\nF4YttkicbreUbNyoIpfsssonpuJdUckWbpQtt1QhS9c+f/VqtWaycfPNMGaMfSerCROVKuLmm3Xp\nM768v99XR/tJprIFWI34DBgQzlFTSlLFUyCzpTJ7tiZvJBM35ta9e2K1fJTVq8NEkUwMGgSf+YxZ\nKtVEzqIiIgNFZNfsexqdje887Ntx+DtO76Y5/XRdRiecMjpGuYjKww+nzkTLJCp+XpRkdt4ZXnop\n+3v26JG+/9eaNfEsFcichWZUHrHatIjILOCoYP9XgOUi8n/OuXOKODYjR7xl4n/ovlmfr7YfMUJr\nArzlYnQ8lhtBAAAgAElEQVScAQOyt5DvDNJNZeAD96ncX562tsSeXo2N8dqmZBKVuO4vyFwvY1Qe\ncS2VOufcOuAY4Hbn3N7AocUblpELzsEdd4Si8pOfwFNPqaXS0JDYJXbQIJv1sZAMHFgelko6tthC\nkzdStan/wx90GXVhrV4N77zTPossFYVwf4FZKtVGXFHpLiLbAMcDfy/ieIwc2GKLMPsruWbimms0\niyfOxcHIn3Jxf2XCx9KSOeMMdY1GheG3v9VlnO9NJkvl3XfNUumqxBWVS4FHgfeccy+JyFjg3eIN\ny4jL+PG67NkzMRNn4UK94JlVUlz69dPPPd0de7nTvXuiMHi3Vz6iMm+efg5tbfDkkzrlQhzMUqku\n4orKEufcrs657wE45z4Afle8YRnZ8BNv+cZ8PXsm3jEvXJi5IaBRGLp108QH31stFVOnwnnndd6Y\nciHZheVFJU4GWPJrx4/XGSO9hRyd8TET5daZwOgYcUXlmpjbjE7iyisTG/P17JkYMF671kSls8jW\nsuSOO+Cee4o/ju23z/01PXokCsP69fCzn6WeYyXVa5PdXytXpk9vTkffvnDBBYkFukblkjH7S0T2\nBfYDhohINNOrP2COlRJy552Jj3v3Vj+2p7lZ3V9G8YkTV8nlf3HvvXqhPeKI7PuuW6f/+/7946UB\nJxO1NpqbNbFj2LB4r40Kkk9nbm7OXVS8td3YmDhdsVGZZLNUaoC+qPj0i/ytA1KUTRmdRfId4vjx\n7e/0bDa9zqHQwfoTToCvfEXneM92915XBz/8Yf6zJ0ZjKj17wrJl8XvD+dc+9VT43k1NuYuKF6Z0\n1flGZZHRUnHOPQU8JSK3OucyzGhtdDbJBYz+QrDDDjBpkvq2rXFk5xBHVNJlSWXipJO02nzXLKXG\nzzyjF/hMtSjp8NaGH9+aNfF7w3n313vvhdsWLzZR6erEnaO+VkT+CIyOvsY5d3AxBmVkp6kJXn45\ncduLL8K22+qP3ESl8xg8OHPHXsg/ZTZOB+T6+vy7JHTvri4rP/61a+OLk3edRQV13jxYujR9GnMq\nfFKAL9Y1Kpu4gfq/ArOB/wbOi/wZJeDZZ+HNN2HChMTte+6phY7+R2qi0jmMGwfz52fep7k5fiA6\nekHOJlagcZB8uyR0765B8uHD9fHq1blbKgsX6uNJkzSu9/rr4XQMcfjRj9SyMVGpDuKKyifOuf91\nzr3onHvF/xV1ZEZajj1Wl+nSPr2YWEylc9huO/jgg9TPeSFZvBh23DHe8erqwv/t4sXxXvPxx/H2\nS8XfI+XM+YjKhx/qYxEYMgSuvhoOOij++/fqpR2RswmzURnEFZWHReR7IrKNiAzyf0UdmZGWb3xD\ng7Pp8GJilkrnMGRI6KZ66SWtSwF1ea1cGRagRmMPmWhpCV1QyS7OQvPWW4mPV6+O7/7q21dTkD/8\nEI4/XtsDjR+v28aOzW0cX/oS/OtfVllfDcQVlVNQd9ezaEPJV4Aif92NZF59Ve8GW1pg1Kj0+/n0\nVROVzmHwYI1nicDvf691KaANPI89NvfU7pYWzQADjU/E4XcFKkVubY1vqYwcqZ2OFyyAG2/UqYO3\n3Vaf81NYx2X77eEvf4FjjsntdUb5EUtUnHNjUvzleC9idJS339Zl9E42Fd6/Hrehn9Exhg4Ns6ei\n9UMrVsBrr+U+02ZzM1x+OTz/PDzxhE7Glo1C9Hjzwf644x01Sgslo6/18aBcRcUX6v7jH7m9ziOi\nqc1G6YklKiIyNdVfsQdnJOKnbm1pyfzD9x1pLabSOaRqnOhjKRs26AX24ov18ciR2Y/nbxp8Wu5D\nD2V/Tb7/6699TZeHHhpaR3HdX/5cohaxF5Vc05sL0f1h5syOH8PoOHHdX3tG/j4PTEfnVzGKxGmn\nhdP/eryoNDfH+9GOGFH4cRmpSf5/RDOZamrgsMN0/aOPsh+ruVlvGnKp9cjXUrnnHth3X5gyJTxG\nXEvFi2l0nH5bvpZKPrU2ftrsOJ+tUXxi1ak4586KPhaRAUAndDPquvzpT+2DnbmIytq1NhlXZ5Kc\nLuxn3QS9wCbHt557DvbYo/0F3DcK3WKLsGVJnIt8R9xfzz6rS+/KihuL22ef9tv8a3MVFT/+fLo9\nNzToMl0GntG55DtHfSMwppADMdrTowd87nPhY19x3NCQXVRMUDqXqKgkdy2uqUm8UN92G+y3H1x/\nffvjvPhi2CjUi4q/mUgm2i4+F6smHf4YQ4fG2z9V00l/nvlYHKCZdLniBTxTp2ij84g7nfDDQGBk\nsgUwHvhLsQZVLFasgEsuSf1jLkfeeUeX69frBWbVKn382GPwgx+UblxGe6Ki4hy8Eqni6tEjseJ9\n2jRdLlvW/jg//Wni677whfSi0tAAW26pbp9CZvrlUp1/xRVhxheE9TW5Wiqgn9m3v5376zZu1Dii\niUp5ELdNy28j658A9c65DpRbdT5tbaHfthxExbnQzZHquSjz58NnP5tYXZ1qelijdNxwA8yerVP0\nrl+vtUSemprUc4usXt1+W3Ic7Oyz4fbbU79nQ4OmKxdKUCZP1my1OG3vPT/5SeJjb6Hk8/2sqcmv\nTmXjRrWuTFTKg7gpxU8B89AOxQOBiitRKrcWEDfcELb8TiZ5rL7SOCoqcXpCGZ3H6afDt76l69/9\nrrq3ohfnVDcPq1fDrbcmptFusw2cf374OHqhff99ePrp8LlCx80mToS77+7YMToy02i+otLUpDeM\n0TiWUTriphQfD7wIHIfOU/+CiHSo9b2IDBSRx0TkHRF5VETa/TxEZISIPCEib4nIHBHJ2+kTvVAn\nWwKlYPbs9M95N5fHByBXrAhTR8eNK864jPzx6bTHH6/Bb/89Szer4eLFcOqpcOaZ4ba1a2H06PBx\n9EJ70knqDvN4S6WcSHejFIeOWCoDB+rnbdMSl564RupPgT2dc6c456YCewE/6+B7XwDMdM7tCDwB\nXJhin0+Ac5xzE4B9gTNFZKd83ix6F1OKqUsvvxx+/OPwcaYsl1WrEt0HflbBFSvCIGqqzBujtIwe\nrRe25LoVn53k8Vl9zz2ny/r60PJcty4xphG90CbHVsoxw68UlsrGjeoCzDats9E5xBWVbs655ZHH\nq3J4bTqmALcF67cB7eqGnXNLnXOvBesbgLnA8HzeLCoqpfji/f73ia00Ms2vsWoV7BRI58CBYWvx\nlSttiuBKYNddE4UhOXaSSgimT9elv0B6amrCu+/kWEc5Wiod+X7mIyqrVmlWpBcVc4GVnrjC8K/A\nRTVNRKYB/wAe6eB7b+WcWwYqHkDGr6OIjAZ2A17I9Y1WrNC28J5SxCP8Reb113WZ6cezZAnssouu\nDx6sF4+2NrVYcpmnwigd0Qp3LypvvKHLVNlV110Hs2bBjBmJolJbG35Xkl1L5WipjBmTX60J5Ccq\ngwfDr3+tn3e/fmaplAMZRUVEtheR/Z1z5wE3ALsGf88Bf8x2cBH5t4i8EfmbEyxTVeOnjXSISF/g\nPuDswGLJCZ+a64nbTryQ+JqD44/XZaYf3oIFYcyke3e9eLS06Ho+qZpG5+OtigsuCF2V/kbBF/od\neGDiaw46SN1n0SkNevUK65OiorJokX6Py3FO93xdYLW17V3Tn3ySPqXa88ornef+8paRkZ5sYbWr\nCGIdzrm/AX8DEJFdgueOzPRi59xh6Z4TkWUiMtQ5t0xEtgaWp9mvOyoodzjnsnZBmu79CMCkSZOY\nNGlSO7dBKUTF37n69964UZezZmnBV3TCrQUL4IADdL1nz1BUamq0xiHdPCpG+eBjYpdd1v65MUHZ\n8MyZcMstcMYZic9HLZUBA8KYjK+FaWkJU49/+cvCjbnU1NaqGG/aFH7Hd99dLfdk78L99yd2NO4s\n99fw4frbrOQ+Y7NmzWLWrFlFO342URnqnJuTvNE5NydwR3WEGcA04Aq0tX46wbgZeNs5d3Wcg0ZF\nxZOcEVIKUfGtNnwev/+f+smMohlpCxbAySfreq9eOgHTpk362ilT9M8ob9LVeixfrv/r665Tq3Pr\nrdvvkywqy5bBI4+E3+Noj6tqu8Goq1MR9ef15pu6XLcODjlE56tpa4OvflVnmfT06tU57q/mZpjT\n7opYWfibbc+ll15a0ONni6lkCgN2tOTqCuAwEXkHOAS4HCCYCOzvwfr+wEnAwSIyW0ReFZHJub5R\nNJ145MjSiIoXE79sakq/74IFYVppr146XeuBB7ZPNTbKl3SiMmSIBrP9TcR222m8L1ocGRUKv/6H\nP4Suoe23D5/Pta1+ueNFxbPddrr84AOdsKy5OUxyiXYt6N278wL1lgyQmWyi8rKInJa8UUS+jU7U\nlTfOudXOuUOdczs6577onFsbbF/inPtKsP5/zrktnHO7Oed2d87t4Zz7V67v5b8Ee+yhbSWWLOnI\nyPPDi0mPHpkF5RvfUFHxrS/8RSM5LmSUN8Nj5ihOmKD9vqLZgFFR8eI0erSKSnKlejnUXBWSujqd\nOdMLqHfz+cnK6uvDYP68eeHrUsVUmpoy/9byQSR0XRupyeb++iHwgIicRCginwNqgP8q5sAKic++\n6dNHv3ilCLT5YGNrq7ozBgwIU4Wj+EmevAjFbe5nlBe33Za5wDWZaNZTctuVH/xALexNm8LZFj3J\n3ZErncGD4dFHdYri8ePVaqmtDb0LO+4Yxleyub9OPFFrgVL1WMuX3r0tUJ+NjKISpPzuJyIHAZ8J\nNv/DOfdE0UdWQD78UJfNzfqlKMWdhveH19Vp8dvYsYmi0traPmtm0SIVn0GD4MorO2+sRsfZYQf9\ni4u/M29tbW+N9O6t359Nm9SyiYpKtsyoSsNbJj47csMGFdJFi8J9vABHxaJ3b7X2Fi4Mt61dqzGs\nQtKR4s6uQtzeX086564J/ipKUCAMbLa06B1NKURl0yb4n/8JaxSS579IFWAcNkx/LIVoa26UNy0t\nGm9J1YixtjYUlWOP1c7EnnxrQsoVf24rVsB99+lvtbY2nDkTQlGJurEHDNBYVTReWoymq9bINTtd\n4iPyftWWFr1IF9rPGofmZhUHbzr36qX+8Msv14uJF76amvZdaQsx/7hR3vzjH5rhlQpfVd/UBN/7\nngbtPdXm/vKicsghcNxxKhw+A8wTFZXx43V9zBjtQvHOOzB3rt6Q5dJtOS5mqWSnS4iKdy2U0lJp\nblafr89s8f2hzj9f77AmTlSXWEtLWKPiMUul+jn88MQJ2aLU1mo3hZ499aLmL5YHHqhzy1cTRyWV\nRacSTf/7Xb1aBeTXv1a34LBh6hJ79VUVnGJYFSYq2alqUdljD03D9aIyaJCKSqkslaionHRS+Jy3\nRHzsJzlQa6LStamt1eB08vfgqad0np1qYqed4JprErsHPPNM4j7LliVmyJ13nlpz/ftrlthbb+l2\ns1RKQ1WLyuzZWnn77LPw8MPwz3+WNlDft6/GTsaODYsbof0dVXJBmxedX/yiuGM0ypOaGr058i1Z\ninGxLCeOPDIxAWG//XR55pnq7qqvD5MgRo4M9/NdK3wXA/85zZ1buLGZqGSnqkUFwhYYY8aElkop\nRQXaWyL+y+9npExnqUTn3TC6DrW1iaJS7WyzTWL9jb/pmjhRn6uvV6tk4kSt8fGkE9srrijc2ExU\nslO1opJcFObv/n3X185OxfTuL0g//asfU3KVtL8Dy2XucKN66NNHYwT+5mKXXRK7IFcbvkYryj33\nwCmnaN3WRx/pb+S11zLXcT32mC4L+bvxN6Q2GVh6qlZUklto+wu5iK539kRdmzaFX+7kC4KP8aTr\nW+QF0u6SuibDhydaKuPGdb0CvK99TcWmXz+tpB82LPV+yc05oXDTRbz+elj3UsR+jBVP1YpKcn+e\naOCvFC6w5ubwh5BcSb/ffnD00emL5bqK28NIjW/ZY98D/QzeeisxlhLlt79NfLzvvoX73HyrpL32\nsj58mejAjNLlTfKdzMCB4Xpn16o4F7auh/ZtI3wsxe+bzG67lWZiMaM8GDJEl10xCzDZqu/fX6vs\n/WeSTN++mmF57bXw05/qfoVyVS1eDGedpW5qE5X0VKWlsnFjYoO+q65KnNyqsy2VlhZ9fx9wzCee\nE62iNroWPsbW1aq5u3Vr7+bzVkemguD+/bVHGKjrq1Cu7g0bVLT+8x/tx1btWXj5UpVf0+Q7k+S7\nnc62VDZuTBxDtfVrMjqHamvJko1UIuqLhrN1mfA3YYMHF85SaWxUUTnnnMIcr1qpSlFJvjNJ/gJ6\nS+XttztnPE1NJipGx0nn8qlWUonK5z+vy7iisuWWhbVU+vQJpwSHRI+IoVS1qJx4oi6TLZVevXT2\ntgkTOqd3komK0VGuvhp+9KNSj6JzSeVe8kkL2Wa89PGnPn0Ka6n06ZNYElCK7hzlTlWLig+Mp3J/\nffyxrv/ud8Wf6KipKfGLWG1NAI3i84MfJM4OWe185jM6I2YyPjaazfoYPRr+/e/CtmXy7i/Qxp4A\nF11UmGNXE1UtKv4LmMpS8XNSnHde4vSlxSBqqTz+uE5CZBhGel56CWbOTP+8n247HSLabLOurnDz\n1nv3F8B11+nSCpLbU5UpxV5Upk6F+fPVzRWld+/EWePWr9f5GIpFVFQOPrh472MY1UIm91YunoXk\nOe+jHHigdob+3e/iHStqqXhMVNpTlZbKf/6j7eMPOEArX6M1KqCWSnTO91TT+haS5JiKYRidQypR\nWb9eM+meeQZmzIh/LB9T8ey6K3zpS4UZZzVRdZaKc+rSykSvXonFS53p/jIMo/Ooq9OpiF9+OZyv\npn//MC04l6SZqPsLtG2L0Z6qs1TipPglX+CLbakk16kYhtE5DBigc6wkB/19O/wNG8Jt6dxqv/kN\n7L13aveX0Z6qExVfKX/BBen32X13XfoviFkqhlGd1NWl3t7SonU/69ZpUP/UU7Uu5vnn2+/75z9r\ni/1kS8VITdWJyqZN2jxy+vT0+xxzDPz+9zpZFoTzwxcLExXDKA3J00h4Wlpg663Dbua33qrL5L58\nEGaR+jYtRmaqTlQ2bFA/aao5GTwi2hjOdy6+8EL1uRaL5DoVwzBKS0tL+wQegPPPb7/Nu9R79Mhe\ndGlUoag8+aRaBXGavUV9qMXsOmqWimGUF01NqcsIolmh0X2h67XJyZeqE5XTTovfeC9qGhez46iJ\nimGUnttuC28k58zR9eTCyFQT4flOydYpPB5VJyoQv8nbPfeEk/oUs1XL+vXmizWMUjFvni6nTUvs\nA/aPf2gr/ejMkN27t58Ww0/4Z66veFSlqAwfHm+/UaNgzBhdnzateMKydm1q/61hGMXHz60CcPjh\n4bpvTnnqqeqpWLhQg/dLliS+3nfo6Grz2eRLVX5Mu+wSf18frF+6NLF1SyFZu7a4bWAMw8jMDTfo\n8sknw20vvKDLX/9am7xuu6027YyKSmtr6E43UYlHVX5M48bF3zeax/7BB4UfC8CaNSYqhlFKRo1q\nv23o0Pbbhg1LLDHYuDHM3DRRiUfVfUwffACXXx5//wMPhPHjdT1aXVtIzP1lGKUlbtHi7rvDK6+E\nj6OiYtMHx6PqRGXMmNwCaiKw8866XkxRMUvFMEpHXFHZZZcwsA+JomKT68Wj6kQlH3waYTFEpa1N\n0xbTtYswDKP4jBgRb78xYxLd4FFRWb688OOqRkxUCH2lxRCVdes0nThV/rthGJ3DkCFw7726fsMN\n8OGHqffbdlvtauzxonLQQbD//sUfZzVgokJ4wff56IVk7VqzUgyjHPCdirfaKv3MkQMGaINZP31G\nY6MWLj/xBPzpT50yzIrHRIVQVLLNe50P1i7bMMoD30EjUx8+H4y/7z5dmus6d0xUCEXFdywtJM3N\n6TulGobRefgEnjgi8eUv63LdOpsyOFdMVIBDDtFloUXl44/V+rH2DoZRenwGmJ9PKR2//GUoPOvX\nm6jkiokKcNJJcPPNhRWV+noN+j33nFkqhlEO1NZqK6Zsv8fa2vBasG6d9gcz4lN1c9TnS01NYUXF\nN6U791zrUGwYlURNTdh40txfuVMyS0VEBorIYyLyjog8KiJpPZ0i0k1EXhWRGcUaT/SLVAh8u2wI\n52MwDKP8SbZUTFRyo5TurwuAmc65HYEngAsz7Hs28HYxB5PKUnn3Xa2izad+JSoqhmFUDrW1Zql0\nhFKKyhTgtmD9NuDoVDuJyAjgcKCoWeLRuxOABQtghx3gwQfh29/O/XjFavliGEZx8V6Lpia46SaL\nqeRKKUVlK+fcMgDn3FJgqzT7/T/gPKCI02i1t1T8PCsLF8LKlbkfzywVw6hM/A1mfb0+thvE3Chq\noF5E/g1EG0wLKg7/nWL3dqIhIkcAy5xzr4nIpOD1GZk+ffqn65MmTWLSpEmxxhoVlba2cPvSpflV\n2jc2wtSpOj9DtOupYRjljXd/LVyojz/zmdKOp9DMmjWLWbNmFe34RRUV59xh6Z4TkWUiMtQ5t0xE\ntgZStWvbHzhKRA4HegH9ROR259zUdMeNikoueJO3rS2xT9fSpe3nsY6Dr6TPpQ2/YRilx18L1q6F\n446DffYp9YgKS/LN9qWXXlrQ45fS/TUDmBasnwI8lLyDc+4i59xI59xY4ATgiUyC0hFqa+Hll+Hi\nixO33357aKk88gg8/ni8423YEL/dtmEY5YN3f1k3jPwoZZ3KFcBfROSbQD1wPICIbAPc6Jz7SmcO\npqZGl7/8ZfvnvKgccYQu48xl39hoomIYlYh3f5mo5EfJRMU5txo4NMX2JUA7QXHOPQU8VazxeFFJ\nxfr1KiRDhsCKFfGO19io8RTDMCoLH181UckPa9MSkEpUvvY1XToXP5urXz9YssS6ExtGpWKWSscw\nUQlIJSrnnhuuz5oVr43Lhg3w/vvm/jKMSsVEpWOYqASk+vJsFamcOfLI+G1cXnwR7rzT3F+GUYmY\n+6tjmKgERC2VUaN0OXBg4j7ZLJXWVl3++Me6HD++MGMzDKPzqK3VaSsWLTJRyQcTlQAvKocfDvvu\nq+s+JjJhgi7b2sL57FMRbRy5554wfHjhx2kYRnHxQnLTTSYq+WCiEuALHk8+ObRIRNRq8fNVQ+Ys\nsWgwv9qqcA2jqxD9jZuo5I7NpxLg56bu2zcxdrJggWZ//e1vMGNG5hqVqKhkmgfbMIzyJSok3kth\nxMcslST69m0fOxHRGhXQ59IJS2Nj+CXMZNEYhlG+dOsGW2+t6xYXzR0TlSQGDEid5dXQoMs+fdJ3\nLd1zT3jrLV03UTGMyuXoYCKOnj1LO45KxEQlwvPPw267pc7yGjtWzeIBA2DNmtSvj77ORMUwKhcv\nJiYquWOiEmHvvdXVdc45iYWPAJddpt2KBw5MLypRTFQMo3Lp0UOX9jvOHROVFBx3HPzmN4nbunXT\nL1hjY7z5USyd2DAqF5+4I1lncDKSMVHJkS23hL/+NXMW2KJFMG1apw3JMIwCE6cTuZEaE5UcOeMM\nzQTr1g1eeCH1PsOGZS6SNAyjvLHfb/7YR5cjtbWwPJij8qOP2j//7LOdOx7DMAqP9e3LHxOVHKmt\nDedUiQbsP/lE726qbepRw+iKHHYYDBpU6lFUJiYqORIVldWrw+1r12q6sQX2DKPy2XlnWLWq1KOo\nTExUcqS2NnR7RS2V1avtzsYwDMNEJUeieetr1sDf/65pxiYqhmEYJio5E202t3q1Tt51990qMAMG\nlG5chmEY5YCJSo74FvkQur9699a5VGz6YMMwujomKjmycaMuH300UVQ2brR294ZhGCYqOeLjJttv\nH2aB1daqpdK7d+nGZRiGUQ7YJF05suuusHkzrF8fZoG1tpqlYhiGAWap5EX37lBXFz7evNlExTAM\nA0xU8ibaG2jzZnN/GYZhgIlKh/BTjpqlYhiGoZiodIBRo3RplophGIZiotIBpk/XpVkqhmEYiolK\nB5g8Gb7zHZ2b3iwVwzAME5UOU1NjlophGIbHRKWD9OhhMRXDMAyPiUoH8aJilophGIaJSofxzSRN\nVAzDMExUOkz//rBunQqLiYphGF0dE5UO4kWlsRH69Sv1aAzDMEqLiUoHqatTUdmwAfr2LfVoDMMw\nSouJSgfxloqJimEYholKh+nfH+rrNQMsOn+9YRhGV8REpYP07w/vvVfqURiGYZQHJRMVERkoIo+J\nyDsi8qiI1KXZr05E/ioic0XkLRHZu7PHmon+/Us9AsMwjPKhlJbKBcBM59yOwBPAhWn2uxp4xDk3\nHpgIzO2k8cXCi8q//lXc95k1a1Zx36DE2PlVNnZ+hqeUojIFuC1Yvw04OnkHEekPfN45dwuAc+4T\n59y6zhtidvr00eXYscV9n2r/Utv5VTZ2foanlKKylXNuGYBzbimwVYp9xgArReQWEXlVRP4oImVV\nYigCN98M221X6pEYhmGUnqKKioj8W0TeiPzNCZZHpdjdpdjWHdgDuM45twfQhLrNyopTT02cXtgw\nDKOrIs6lupZ3whuLzAUmOeeWicjWwJNB3CS6z1DgOefc2ODxAcD5zrkj0xyzNCdjGIZRwTjnpFDH\n6l6oA+XBDGAacAVwCvBQ8g6B4HwkIjs45+YDhwBvpztgIT8YwzAMI3dKaakMAv4CbAvUA8c759aK\nyDbAjc65rwT7TQT+BPQAPgBOdc41lGTQhmEYRkZKJiqGYRhG9VEV4WURmSwi80RkvoicX+rx5IOI\njBCRJ4ICzzki8oNge9oiURG5UETeDQpDv1i60cdDRLoFWXwzgsfVdG7tinSr7Px+JCJvBok2fxaR\nmko+PxG5SUSWicgbkW05n4+I7BF8JvNF5KrOPo90pDm/Xwfjf01E7g9KNvxzhTs/51xF/6HC+B4w\nCnWRvQbsVOpx5XEeWwO7Bet9gXeAndCY00+C7ecDlwfrOwOz0bjY6OAzkFKfR5Zz/BFwJzAjeFxN\n53Yr6polGHddtZwfMAx1PdcEj+9F46AVe37AAcBuwBuRbTmfD/ACsGew/gjwpVKfW4bzOxToFqxf\nDknFLRMAAAQfSURBVFxWjPOrBktlL+Bd51y9c24zcA9aWFlROOeWOudeC9Y3oJ0DRpC+SPQo4B6n\nBaELgHfRz6IsEZERwOFofMxTLeeWqki3gSo5v4AtgD4i0h3oBSyigs/POfcfYE3S5pzOJ8ha7eec\neynY73ZSFHGXglTn55yb6ZxrCx4+j15foMDnVw2iMhz4KPL442BbxSIio9G7jOeBoS51kWjyeS+i\nvM/7/wHnkViPVC3nlqpItzdVcn7OucXAlcBCdKwNzrmZVMn5RUhXkJ3ufIaj1xtPJV17volaHlDg\n86sGUakqRKQvcB9wdmCxJGdSVFxmhYgcASwLLLFMad8Vd24ByUW6jWiRbsX/7wBEZAB6Fz8KdYX1\nEZGTqJLzy0C1nQ8AIvJTYLNz7u5iHL8aRGURMDLyeESwreIIXAv3AXc453zdzrKgCJTAHF0ebF+E\npmN7yvm89weOEpEPgLuBg0XkDmBpFZwb6B3cR865l4PH96MiUw3/O1Bf/AfOudXOuVbgAWA/quf8\nPLmeT8Wdp4hMQ93QJ0Y2F/T8qkFUXgK2F5FRIlIDnIAWVlYiNwNvO+eujmzzRaKQWCQ6AzghyMIZ\nA2wPvNhZA80F59xFzrmRTjsjnAA84Zz7BvAwFX5uoEW6wEciskOw6RDgLargfxewENhHRHqKiBAW\nIVf6+QmJlnNO5xO4yBpEZK/gc5lKiiLuEpJwfiIyGXVBH+Wca47sV9jzK3WWQoEyHSaj2VLvAheU\nejx5nsP+QCuavTYbeDU4r0HAzOD8HgMGRF5zIZqpMRf4YqnPIeZ5foEw+6tqzg2dluGl4P/3NzT7\nq5rO75JgrG+gQewelXx+wF3AYqAZFc1TgYG5ng/wWWBOcO25utTnleX83kULzV8N/q4vxvlZ8aNh\nGIZRMKrB/WUYhmGUCSYqhmEYRsEwUTEMwzAKhomKYRiGUTBMVAzDMIyCYaJiGIZhFIxSzvxoGBWL\n6CRzj6OtPLZBa4yWo8Vmjc65A0o4PMMoGVanYhgdREQuBjY4535X6rEYRqkx95dhdJyEJpkisj5Y\nfkFEZonIgyLynohcJiInisgLIvJ60BIDERksIvcF218Qkf1KcRKGUQhMVAyj8ETN/12B09GJkL4B\njHPO7Q3cBJwV7HM18Ltg+1dJnHPGMCoKi6kYRnF5yTm3HEBE3kd7SoH2U5oUrB8KjA+a9gH0FZHe\nzrmmTh2pYRQAExXDKC7RbrBtkcdthL8/AfZ2OnOpYVQ05v4yjMKTaSKyVDwGnP3pi0UmFnY4htF5\nmKgYRuFJl1KZbvvZwOeC4P2bwBnFGZZhFB9LKTYMwzAKhlkqhmEYRsEwUTEMwzAKhomKYRiGUTBM\nVAzDMIyCYaJiGIZhFAwTFcMwDKNgmKgYhmEYBcNExTAMwygY/x/mMNGYLMmcywAAAABJRU5ErkJg\ngg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "f = simulate(2)\n", + "plt.plot(np.real(f)) \n", + "plt.xlabel('Time')\n", + "plt.ylabel('Counts')\n", + "plt.title('Recovered LightCurve with B=2')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.4" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.html b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.html new file mode 100644 index 000000000..e5321da02 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.html @@ -0,0 +1,329 @@ + + + + + + + + Simulating event times with the inverse CDF method — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+
+import copy
+import glob
+import numpy as np
+
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+
+params = {
+    'font.size': 7,
+    'xtick.major.size': 0,
+    'xtick.minor.size': 0,
+    'xtick.major.width': 0,
+    'xtick.minor.width': 0,
+    'ytick.major.size': 0,
+    'ytick.minor.size': 0,
+    'ytick.major.width': 0,
+    'ytick.minor.width': 0,
+    'figure.figsize': (6, 4),
+    "axes.grid" : True,
+    "grid.color": "grey",
+    "grid.linewidth": 0.3,
+    "grid.linestyle": ":",
+    "axes.grid.axis": "y",
+    "axes.grid.which": "both",
+    "axes.axisbelow": False,
+    'axes.labelsize': 8,
+    'xtick.labelsize': 8,
+    'ytick.labelsize': 8,
+    'legend.fontsize': 8,
+    'legend.title_fontsize': 8,
+    'figure.dpi': 300,  # the left side of the subplots of the figure
+    'figure.subplot.left': 0.195,  # the left side of the subplots of the figure
+    'figure.subplot.right': 0.97,   # the right side of the subplots of the figure
+    'figure.subplot.bottom': 0.145,   # the bottom of the subplots of the figure
+    'figure.subplot.top': 0.97,   # the top of the subplots of the figure
+    'figure.subplot.wspace': 0.2,    # the amount of width reserved for space between subplots,
+                                   # expressed as a fraction of the average axis width
+    'figure.subplot.hspace': 0.2,    # the amount of height reserved for space between subplots,
+                               # expressed as a fraction of the average axis height
+}
+mpl.rcParams.update(params)
+
+
+
+
+
[2]:
+
+
+
def find_inverse(real, imaginary, N):
+
+    # Form complex numbers corresponding to each frequency
+    f = [complex(r, i) for r, i in zip(real, imaginary)]
+
+    f = np.hstack([0, f])
+    # Obtain time series
+    return np.fft.irfft(f, n=N)
+
+
+def scale_lc(lc, mean, rms):
+
+    lc_mean = np.mean(lc)
+    lc_std = np.std(lc)
+
+    return ((lc - lc_mean) / lc_std * rms + 1) * mean
+
+
+def timmerkoenig(pds_shape, mean, rms):
+    pds_size = pds_shape.size
+
+    real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)
+    imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)
+    imaginary[-1] = 0
+
+    flux = find_inverse(real, imaginary, N=2 * pds_size)
+
+    rescaled_flux = scale_lc(flux, mean, rms)
+
+    return rescaled_flux
+
+
+
+

Let us start with a standard light curve simulation with the Timmer & Koenig method:

+
+
[3]:
+
+
+
from astropy.modeling import models
+
+pds_model = \
+    models.PowerLaw1D(x_0=1, alpha=1, amplitude=1)
+
+nyq = 100.
+freq = np.linspace(0, nyq, 1000)[1:]
+
+pds_shape = pds_model(freq)
+mean = 10
+rms = 0.3
+
+dt = 0.5 / nyq
+
+flux = timmerkoenig(pds_shape, mean, rms)
+times = dt * np.arange(flux.size)
+
+plt.plot(times, flux)
+
+
+
+
+
[3]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fd1916a8e50>]
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_3_1.png +
+
+
+

Simulating event times with the inverse CDF method

+

Given a positive-definite light curve (generated, e.g., with the method by Timmer & Koenig), we treat it as a probability distribution: we calculate the cumulative distribution function by calculating its cumulative sum and normalizing to 1. Then, we generate random numbers uniformly distributed between 0 and 1 (horizontal lines) and take the event times at the corresponding values of the CDF (vertical lines).

+
+
[4]:
+
+
+
from scipy.interpolate import interp1d
+
+def cdf_from_lc(lc, dt):
+    cdf = np.cumsum(lc)
+    cdf = np.concatenate([[0], cdf])
+    cdf /= cdf.max()
+    return cdf
+
+
+# cdf_times = np.concatenate([[0], dt / 2 + time])
+cdf_values = cdf_from_lc(flux, dt)
+cdf_times = np.arange(cdf_values.size) * dt
+
+cdf_inverse = interp1d(cdf_values, cdf_times)
+
+plt.plot(times, flux / flux.max(), color="grey", label="Light curve")
+plt.plot(cdf_times, cdf_values, color="k", label="CDF")
+
+for prob_val in np.linspace(0, 1, 100):
+    time = cdf_inverse(prob_val)
+    plt.plot([0, time], [prob_val, prob_val], color="r", lw=0.3)
+    plt.plot([time, time], [0, prob_val], color="r", lw=0.3)
+
+plt.xlabel("Time")
+plt.ylabel("Probability")
+
+plt.ylim([0, 1])
+plt.xlim([0, 10])
+plt.legend(loc="lower right");
+plt.tight_layout()
+plt.savefig("CDF_lc.jpg")
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulate_Event_Lists_With_Inverse_CDF_5_0.png +
+
+

The same method can be used, in principle, to simulate variates from any probability distribution. The only requirement is that the input distribution is positive definite. Stingray implements this method in stingray.simulator.base:

+
+
[5]:
+
+
+
from stingray.simulator.base import simulate_with_inverse_cdf
+event_times = simulate_with_inverse_cdf(flux, 10)
+
+
+
+
+
[6]:
+
+
+
event_times
+
+
+
+
+
[6]:
+
+
+
+
+array([0.3809308 , 0.10856514, 0.71888075, 0.54479831, 0.87783205,
+       0.45405823, 0.66623686, 0.62832368, 0.72111516, 0.25882679])
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb new file mode 100644 index 000000000..cbceef802 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb @@ -0,0 +1,289 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "d1a67952", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "params = {\n", + " 'font.size': 7,\n", + " 'xtick.major.size': 0,\n", + " 'xtick.minor.size': 0,\n", + " 'xtick.major.width': 0,\n", + " 'xtick.minor.width': 0,\n", + " 'ytick.major.size': 0,\n", + " 'ytick.minor.size': 0,\n", + " 'ytick.major.width': 0,\n", + " 'ytick.minor.width': 0,\n", + " 'figure.figsize': (6, 4),\n", + " \"axes.grid\" : True,\n", + " \"grid.color\": \"grey\",\n", + " \"grid.linewidth\": 0.3,\n", + " \"grid.linestyle\": \":\",\n", + " \"axes.grid.axis\": \"y\",\n", + " \"axes.grid.which\": \"both\",\n", + " \"axes.axisbelow\": False,\n", + " 'axes.labelsize': 8,\n", + " 'xtick.labelsize': 8,\n", + " 'ytick.labelsize': 8,\n", + " 'legend.fontsize': 8,\n", + " 'legend.title_fontsize': 8,\n", + " 'figure.dpi': 300, # the left side of the subplots of the figure\n", + " 'figure.subplot.left': 0.195, # the left side of the subplots of the figure\n", + " 'figure.subplot.right': 0.97, # the right side of the subplots of the figure\n", + " 'figure.subplot.bottom': 0.145, # the bottom of the subplots of the figure\n", + " 'figure.subplot.top': 0.97, # the top of the subplots of the figure\n", + " 'figure.subplot.wspace': 0.2, # the amount of width reserved for space between subplots,\n", + " # expressed as a fraction of the average axis width\n", + " 'figure.subplot.hspace': 0.2, # the amount of height reserved for space between subplots,\n", + " # expressed as a fraction of the average axis height\n", + "}\n", + "mpl.rcParams.update(params)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "d515146e", + "metadata": {}, + "outputs": [], + "source": [ + "def find_inverse(real, imaginary, N):\n", + "\n", + " # Form complex numbers corresponding to each frequency\n", + " f = [complex(r, i) for r, i in zip(real, imaginary)]\n", + "\n", + " f = np.hstack([0, f])\n", + " # Obtain time series\n", + " return np.fft.irfft(f, n=N)\n", + "\n", + " \n", + "def scale_lc(lc, mean, rms):\n", + " \n", + " lc_mean = np.mean(lc)\n", + " lc_std = np.std(lc)\n", + "\n", + " return ((lc - lc_mean) / lc_std * rms + 1) * mean\n", + "\n", + " \n", + "def timmerkoenig(pds_shape, mean, rms):\n", + " pds_size = pds_shape.size\n", + "\n", + " real = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary = np.random.normal(size=pds_size) * np.sqrt(0.5 * pds_shape)\n", + " imaginary[-1] = 0\n", + "\n", + " flux = find_inverse(real, imaginary, N=2 * pds_size)\n", + "\n", + " rescaled_flux = scale_lc(flux, mean, rms)\n", + "\n", + " return rescaled_flux\n" + ] + }, + { + "cell_type": "markdown", + "id": "3730fb8c", + "metadata": {}, + "source": [ + "Let us start with a standard light curve simulation with the [Timmer & Koenig](https://ui.adsabs.harvard.edu/abs/1995A&A...300..707T/abstract) method:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "44483c14", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABggAAARJCAYAAAAc8YkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd7xkdX3/8fe5ZffusguINEUFIyACtljAXqIxURNNYk+MKaaaXozGJJYYyy8xcWMUBVyxYEUFVtoCwtJ2WWCXrcAWtvd2e5s78/39MfdeZu+d+c4p33PO98y8nnn4yDJ35pzv99Tv+X7O9/MNjDECAAAAAAAAAADtpSPvAgAAAAAAAAAAgOwRIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA0RIAAAAAAAAAAAoA115V0AuBcEwUmSXlPz0S5J4zkVBwAAAAAAAABQ3xxJT6/572XGmL6sVk6AoDW9RtJ1eRcCAAAAAAAAABDJ2yRdn9XKSDEEAAAAAAAAAEAbIkAAAAAAAAAAAEAbIsVQa9pV+x/XXnutzj333LzKAgAAAAAAAACoY8uWLXr7299e+9GuBl9NhTcBgiAIzpH0RlXz5z9X0jMkLZA0IGm3pOWSvmuMWRZj2S+R9PuSXivpaZMf75Z0p6RvGGMeSFZ679Z/3ITE5557ri666CLHqwAAAAAAAAAAODbe/Cvu5B4gCILghZK+KumlDb7ypMn/PVfSHwdBcKekDxhjdoZY9hxJ/ynpLyUFM/78nMn//WkQBIskfdgYU4pVCU/XDwAAAAAAAABAI7kHCCQ9W7ODA5skrZd0WNLJkl6uJ968f62k5UEQvMoY83iTZV8h6Xdr/vtxSSsm/32ppF9QteP+bySdKOkP41TA4/UDAAAAAAAAAFCXDwGCKVskXSnpO8aYPbV/CIKgQ9LvSfqSpPmSnirp6iAIXm6MMfUWFgTBH+iJzvmKpL+X9L/GmErNMv9K0hdUnaz5D4IgWGaM+ZaLyuS9fgAAAAAAAAAAbDryLoCkfarm57/AGPP5mcEBSTLGVIwxiyX9Ts3Hl0r65XoLDIJgrqRP1Hz0/4wxX5zqnK9Z5hdVTQE05VOTaYESyXv9AAAAAAAAAAA0k3uAwBizzBhzlTGmHOK7P5W0suajtzT46q9Levrkv/sk/btlsZ+S1D/577Mty4wi7/UDAAAAAAAAAGCVe4Aghntr/n1Og++8vebfPzDGDDda2OTffljz0W/ELpk/6wcAAAAAAAAAwKqIAYLaOQc6G3zndTX/vjPEMu+o+ffroxbIw/UDAAAAAAAAAGBVxADBc2v+vWvmH4MgOEnSU2o+WhVimbXfOSsIghNjli339QMAAAAAAAAAEEahAgRBEDxDx79hf1udrz17xn/vDLHomd+ZuYwo8l4/AAAAAAAAAABNFSpAIOm/9URaoZ2SltT5zpNr/t1vjBlpttDJeQAGaj46JXYJ81//tJ6eHi1YsECSVC6X1dvbK2OqGZr6+/s1Pj4uSRoZGdHQ0JAkaWJiQr29vdPL6OvrU6lUkiQNDw9reLg6nUKpVFJfX9/093p7ezUxMSFJGhoa0shItdrj4+Pq7++fqqd6e3tVLlfnox4cHNTo6KgkaWxsTAMD1U1QqVTU29urSqUiSRoYGNDY2JgkaXR0VIODg9SJOlEn6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfq1DJ1ykthAgRBEHxA0m/VfPRRY8xYna8uqPl30875Bt9d0PBbzeW9/mmXXnqp3vGOd0iSDh06pEWLFk0ftIsXL9bGjRslScuWLdOSJdVYy+7du7Vo0aLpZVx22WXaunWrJGnp0qVaunSpJGnr1q267LLLpr+3aNEi7d69W5K0ZMkSLVu2TJK0ceNGLV68WFL1hFq0aJEOHTokSbrmmmu0YsUKSdLq1at19dVXS6qeNIsWLZo+Sa+++mqtXr1akrRixQpdc8011Ik6USfqRJ2oE3WiTtSJOlEn6kSdqBN1ok7UiTpRJ+rUMnXKjTHG+/9JerGqHehm8n/ftXz3/TXf2xlhHTtrfvc7Ccqa6/onl3WRJNPT02MWLFhg1q9fbyYmJsyxY8dMpVIxxhjT19dnxsbGjDHGDA8Pm8HBQWOMMaVSyRw7dsxM6e3tNePj48YYY4aGhszQ0JAxxpjx8XHT29s7/b1jx46ZUqlkjDFmcHDQDA8PG2OMGRsbM319fcYYYyqVijl27JiZmJgwxhgzMDBgRkZGjDHGjI6Omv7+fmOMMeVy2Rw7dsyUy2VjjDH9/f1mdHTUGGPMyMiIGRgYMMYY6kSdqBN1ok7UiTpRJ+pEnagTdaJO1Ik6USfqRJ2oE3UqdJ3Wr19vavqFjaSLTIZ974GZHOrgqyAIninpPklnTn60VtKrjDH9Db7/Tkk/nPzPA8aYM+t9r87vDkg6ffI/32GM+XHM8ua6/sllXSRp/dR/r1+/XhdddFHcxQEAAAAAAAAAUrBhwwZdfPHFtR9dbIzZkNX6vU4xFATBUyTdqieCA49L+pVGwYFJgzX/nhdhdbXfHWz4rebyXj8AAAAAAAAAAE15GyAIguDJqgYHnjX50T5JbzDG7Gvy0yM1/z4xCIKeEOuaL2lhzUdHo5TVs/UDAAAAAAAAANCUlwGCIAhOlHSLqrn0JemwqsGBbSF+/tiM/z47xG+e0WQZUeS9fgAAAAAAAAAAmvIuQBAEwQmSbpT0osmP+lRNK7QxzO+NMX2qjjaY8sIQP/vFmn/vaZLCyOv1AwAAAAAAAAAQhlcBgsl0PNdLesXkR8OS3mKMeSjiou6o+fdrQ3z/NTX//nnEdfm4fgAAAAAAAAAArLwJEARB0C3px5JeP/nRmKS3GWPujbG4a2v+/e4gCBpOFjz5t3c1+G1cea8fAAAAAAAAAAArLwIEQRB0SvqupDdPfjQh6V3GmNtiLvJ6Sbsn/32ypI9Zvvuvk9+RpB2SfhZznT6tHwAAAAAAAAAAq9wDBEEQBJK+Lukdkx9VJL3fGHN93GUaY8Ykfbzmo48GQfBXQRBM1zcIgo4gCP5K0j/VfO/fjDHjlrLeGQSBmfzfnVmvHwAAAAAAAAAAV7ryLoCkP5P0gZr/3irplUEQvDLMj40xf9Hg88VBELxW0vtVDYQskvRXQRCsmPzKpZKeVfOTbxhjvhWt6NZy5bp+AAAAAAAAAABsfAgQnD7jv8+b/F9YdQMEkz4oqU/ShyQFqnbIP2vGd4ykL0n6hwjrDCvv9QMAAAAAAAAAUJcPAYLUTKbr+csgCL4t6Q8kvVbSWZN/3iPpTklfN8Y80IrrBwAAAAAAAACgkdwDBMaYT0j6RMrrWClppYPlvDbP9QMAAAAAAAAA4ErukxQDAAAAAAAAAIDsESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANESAAAAAAAAAAAKANdeVdAAAAAAAAUAxrdvXqZ2v3anBsQm94zhn6peeckXeRAABAAgQIAAAAAABAU8s2HdIfffNBjZcrkqTvrdylj735OfqjV/9CziUDAABxkWIIAAAAAAA09T+3bpoODkz571s3aWyinFOJAABAUgQIAAAAAACA1WiprId39c76fKRU1m0bD2ZfIAAA4AQBAgAAAAAAYFWaMXKg1t7ekQxLAgAAXCJAAAAAAAAAAABAGyJAAAAAAAAArIzlb0GQWTEAAIBjBAgAAAAAAAAAAGhDBAgAAAAAAICVsQ0hAAAAhUWAAAAAAAAAWBkiBAAAtCQCBAAAAAAAwIr4AAAArYkAAQAAAAAAsKpYIgQBsxQDAFBYBAgAAAAAAIBVxTKCgPAAAADF1ZV3AQAAAIpmZLysL962SfdsOaynnDRP73/Z2XrN+aflXSwAAFLDHAQAALQmAgQAAAARGGP0wW89oHu3HJEkbdjbrzsfO6iv/95LCBIAAFqWbQQBAAAoLlIMAQAARLDpwOB0cGDKRMXoOyt25FQiAADSZ5uDAAAAFBcBAgAAgAi+tmxr3c9v3Xgg45IAAJAdW3iAOYoBACguAgQAAAARHBwYy7sIAABkrmLJMUR8AACA4iJAAAAAEIGxvkMJAEBrIsMQAACtiQABAABABHSQAADakW0OgoAcQwAAFBYBAgAAgAgIEAAA2hGTFAMA0JoIEAAAAAAAACvCAwAAtCYCBAAAABEwBwEAoB0Za4qhDAsCAACcIkAAAAAAAACsKsTHAQBoSQQIAAAAAACAlXWS4gzLAQAA3CJAAAAAEAFzNAIA2lGlkncJAABAGggQAAAAREB8AADQjpiDBwCA1kSAAAAAIAr6RwAAbcg6go5ZigEAKCwCBAAAAAAAwMo2BwEAACguAgQAAAARkGIBANCOKpbbH+MHAAAoLgIEAAAAAADAihEEAAC0JgIEAAAAAADAyhAgAACgJREgAAAAiID+EQBAO7Ld/5ijGACA4iJAAAAAAAAArGxzEAAAgOIiQAAAABAB/SMAgHZkm4MgYJpiAAAKiwABAABABORgBgC0IyYpBgCgNREgAAAAiIDuEQBAO7LFBwgeAABQXAQIAAAAAACAlS0GQHgAAIDiIkAAAAAAAACsbKMESL8HAEBxESAAAACIgD4QAEA7sgcIMiwIAABwigABAAAAAACwsqYYIkIAAEBhESAAAACIgC4QAEA7so0gqHBzBACgsAgQAAAAAAAAKyYpBgCgNREgAAAAiII0CgCANsQkxQAAtCYCBAAAABHQBQIAaEe2NELEBwAAKC4CBAAAAAAAwMo2SsAQPgcAoLAIEAAAAETAW5IAgHZkG0HAJMUAABQXAQIAAAAAAGBln4Mgw4IAAACnCBAAAABEQBoFAEA7st39bMEDAADgNwIEAAAAAADAyjYHAQAAKC4CBAAAAAAAwMqeYojgAQAARUWAAAAAIAL6QAAA7ahSsfyNeyMAAIVFgAAAAAAAAFgxSTEAAK2pK+8CAK1qZLysHz64S2t29+rCp5yod7zoaTp5/py8iwUASIhOEABAO2KSYgAAWhMBAiAFI+NlfWDxSq3cflSS9BPt0Y9X7dH3/ugSggQAUHB0gQAA2pFtngHujQAAFBcphoAU/PzRg9PBgSmP7OvXdQ/vzalEAABXmIgRANCOrPMMeHBv3HV0WJfduVWfXLJBdz52MO/iAABQGIwgAFLwqZ9tqPv5Z296RB94+TnZFgYAAAAAErKlEcp7kuLH9g/ovVes0NGhcUnSN+7drr95w3n6mzecn2/BAAAoAEYQACk40D9W9/PRUiXjkgAAAABAcrYggMk5ydD/3r55OjgwZdHtm3VsxmcAAGA2AgQAAAAAAMDKOgdBRvEBY4y2HBzQvVsOa2S8PP35Dev21S3T9x7YmU3BAAAoMFIMAQAAAAAAK1sQIIsUQyPjZX3wWw/o3i1HJEnz53Tqyg+8WC9/1qkNf/PIvoH0CwYAQMExggAAACACD+ZhBAAgc7Y5CLJIMfSFpY9NBwckaXi8rA9+80GNlsqWXwEAgGYIEAAAAAAAACvrHAQZBM+vvGfbrM+Gx8u6deOBhr+xpUUCAABVBAgAAAAiyHsiRgAA8mCfgyC/e+P1a/bmtm4AAFoBAQIAAIAIeBkRANCOrCmGuDcCAFBYBAgAAAAAAIBV3pMUAwCAdBAgAAAAiIA+EABAO7LOQZDj3ZHRCwAAJEOAAAAAAAAAWPmbYogIAQAASRAgAAAAiCDPiRgBAMiLr5MUAwCAZAgQAAAAOEIHCQCgVdlTDAEAgKIiQAA4Zusc6u4MMiwJACANdIIAANqRfZJi5iAAAKCoCBAAjpXKjVuoczo55QCgldFJAQBoVb7OQWBbNbdlAACao7cScGxsotzwb3O6OOUAoPBIsQAAaEO2kdK29EMAAMBv9FYCjo1NVBr+jQABABQffSAAgHZkDwJwdwQAoKjorQQcI0AAAO2LSYoBAK3K1xRDAAAgGXorAcfGSpYUQ8xBAACFRxAAANCObCMI8p2kmPsyAABJdOVdAKDV2EcQdGZYEgBA1uiiAAAUyWP7B3TvlsN6ykk9euV5p2phT3fD7xrLXc7XSYoBAEBzBAgAx0gxBADti5cYAQBF8Z0VO/Qv166f/u9zT1+g7/7RJTp9YU/d79vucUxSDABAcdFbCThmG17bEWRYEABAKugDAQAU3bGhcf3rdeuP+2zLwUF98bbNDX9TsUQBbKMLAACA37wKEARB0BkEwfOCIPjDIAguC4LgwSAIxoMgMJP/uzPCskyC/13loC7nxFjvlqTrRf54exQA2hcdJACAIrjmod11n1u+e//Ohr+xjhLIM8UQt14AABLxJsVQEARvl3S1pPk5F0WS9uddABQZLVQAaGV0RAAAiu6uzYci/8Y2UjrXSYpzWzMAAK3BmwCBpJPlNjjw5QjfvUjSa2v++zsOyyFJA5K+FeJ70Vtp8A4dRwDQ2nydpBEAgLx4e/vztmAAAPjDpwDBlAOSHqj535sk/XXUhRhj/iLsd4Mg+FHNf64yxqxv+OV4jkYpD1oXHUcAUHxcywEARRfnXmYbJcC9EQCA4vIpQHCzpLONMcclPQyC4JI0VxoEwZMk/VrNR99Mc31ofbSNAQAAALQab1MMpbDu8YmK5nR5NWUjAACp8SZAYIzJK+//eyTNnfx3SdJ3cyoHWgRvzwBA++IeAAAoAlu6vEZskxS3yu3vxw/t1pd+vlm7jo3o+U87SZ/7refp/DMW5l0sAABSRUhc+kDNv28wxhzOrSRoCbY3WFql4QwA7YwgAACg6OLcy6zPOTneHF2NXrjjsYP6h2vWaPuRYZUrRqt29uq9l69Q7/C4k+UDAOCrtg4QBEFwvqTaFEakFwIAALHFeSMTAICsxQsQuF1eFqLcl5c8vHdWPY4MjeveLUcclwoAAL94k2IoJ7WjBw5LuiGl9XQFQfBGSS+WdKqk0cn1PShppTFmLKX1Igeeto0BtJG+kZLW7u7Vs89YqNNP7Mm7OAAAwDPxUgz5OUmxq3X/ZPWeup9/7Np1esvznuJmJXBqT++IJsoVnf3kE/IuCgAUWtsGCIIg6JD0/pqPvmuMKaW0urMkLW3wt2NBEHxF0ueMMYMprR8Z8vXtGQDt4Tsrdujfrls/nSf4919xjv7trRcqCIJ8C9YmuAcAAFqVbQ6CPCcpTnvdpYlKqstHdL3D4/rgNx/UgzuOSZIufMqJuur3X8KLMQAQUzunGHqdpKfX/Hde6YWeJOljkh6cTHkEAEAsG/f261+uXX/cA/w37t2uJWv35VeoFpRnnmUAAFyIcyuzjiBIUJakbIGLQLwg0Yr+8Zq108EBSdq4r19/fvWqHEsEAMXWzgGC36359zpjTBp3kwFJV0l6j6RnS1ogaa6qgYl3Srqt5rvPlnRzEASnuVp5T0+PFixYIEkql8vq7e2d7tTo7+/X+Hh1sqWRkRENDQ1JkiYmJtTb2zu9jL6+PpVK1YEVw8PDGh4eliSVSiX19fVNf6+3t1cTExOSpKGhIY2MjEiSxsfH1d/fL6naodLb26tyuSxJGhwc1OjoqCRpbGxMAwMDkqRKpaLe3l5VKtU3NQYGBjQ2Vs3CNDo6qsHBQa/rND5erVO3ypqnankCGS0IxqRKuZB1asX9RJ2oUyvW6YfLN0uSOlWpXnMmfeeuRwpbJx/301SvyjyNq1vV38zRhOapJFPQOrXifqJO1Ik6USfqZK/TfI2rq+Y+1qOStU7GSHNV0tzJ73WqrBMm2xtTZU2zTjPvuZLUoYq6J0Y0FaKYWadgYizSfqqtkyQtCMbUGZhc91MrHntJ6jQyXtbPN+6dtZ9W7ziiQwNjhaxTK+4n6kSdqFO8OuWlLQMEQRAskPRbNR+lMXpgn6SnGmN+3xjzA2PMJmPMkDFm3Biz2xhzjTHmjZL+RE+8cPFMSZ91VYBLL71U73jHOyRJhw4d0qJFi6YP2sWLF2vjxo2SpGXLlmnJkiWSpN27d2vRokXTy7jsssu0detWSdLSpUu1dGk1U9LWrVt12WWXTX9v0aJF2r17tyRpyZIlWrZsmSRp48aNWrx4saTqCbVo0SIdOnRIknTNNddoxYoVkqTVq1fr6quvllQ9aRYtWjR9kl599dVavXq1JGnFihW65pprvK7TzkfWSJLO6zysN86tdtadEIzrnT3r1F0ZK2SdWnE/USfq1Ip12rnmHknSaR2DemfPuumynntkeWHr5ON+6lG1rG+cu1nndR6WJF3YdUCvmbNVxphC1qkV9xN1ok7UiTpRp8Z1MpLePPdRndNZfQv7Bd179fI5O6x1qhijl3Tv1ku6q+U+q6Nfb5tb3SbGpF+nmfdcSTo5GNX5h+/WnMmgwMw6LTy0JtJ+qq2TJL2zZ51OMQO57Sep9Y69pHXafmSo7n46rWNQD+04Wsg6teJ+ok7UiTrFq1NeAt+HyQdB8AlJH5/8z2XGmNc6WOYHVH2zX5ImJD3dGLM/6XITlOc/JP3z5H+WJZ1ljDmQYHkXSVrf09Ojrq4urVixQhdccIEGBgZ00kknKQgC9ff3q6enR3PmzNHIyIgqlYpOOOEETUxMaHBwUCeffLKkajRu/vz56u7uno7EzZ8/X6VSScPDwzrppJMkVaNxCxYsUFdXl4aGhtTR0aF58+ZpfHxco6OjOvHEE2WMUV9fnxYuXKjOzk4NDg6qq6tLPT09Ghsb0/j4uBYuXKhKpaL+/n6deOKJ6ujo0MDAgObMmaO5c+dqdHRUExMTWrBggcrlspd1enBnn37vWw+rW2V1qawRzVEgoxOCcT3zKadqyV+9unB1asX9RJ2oUyvW6YWfvEWj6lanKpoXlDRo5kqSTgjG9PCnfq2QdfJxP/3qlx/UvoExzdO4JtSpkjo1RxPqlNHKT7xF87s7ClenVtxP1Ik6USfq1I51Ojw0rmtXbtWOY2N66bln6A3nnyJTKc+q07svX6H12/ZrXJ2amLyPdchoVN3a8uk31a3T31+zXresqQYRxtStTpXVE0xoyMzV6y84Xf/99vNS3U+/+B93HHfPHVG3OlTRpU+fr/t2jUgKNF/jx9Xpjc85TV/+wMtD7acLP3XHcXWSqm+mB909WvepN3PseVKnx4+V9LYvLZu1n0ZMt77y/pfolecsLFydWnE/USfqRJ2i1WnPnj26+OKLVeNiY8wGZaRdAwS3S3r95H/eYIx5a9JlJizPAkkHJc2b/Oj9xpjvJFjeRZLWT/33+vXrddFFFyUrJEK7d8th/faV99f928Vnnaif/eWrMi4RgHZxzkduaPi37Z97S4YlaW2XfuZ27e8frfu3tZ/4ZZ3Y051xiWarVIy+/8Au3bPlkM48cZ7e+eKn6TlPOTHvYgEAUrSvb0TvuXyFdhwZnv7sN194lv7rnc9XR8fxufjf9dXlWrn9aN3lNGoz/MV3V+lnDeY1eu2zT9NVv//SmCUPp1E750VnP0kP1eSjr/Xm556pr/z2ixItf8HcLq3/5JvCFRKpW7e7T7/2f/fU/dsVv/tivfHCMzIuEQAkt2HDhlwDBG2XYigIgmeoOkHxlLwmJ55mjBmUVNuj/Jy8yoLkbDE3z+NxAIAQTK5TMYbzTz9eq3/+6TrduG6/Ft+7Te/86nI9vKs372IBAFJ01X3bjwsOSNJPVu/R+r19DX4RTZ7PObYXG22TJ6P1lC37u7PtergAwI12vHy+X9LU6xPHJF2fY1lq1b6KcWpupUBito4j2q4A0Np8uM7vOjqsHz20+7jPBscmdMXdj+dUIgBAFr62rP51/it3bJ31WZxgt60jPu1Oel7CwpRypfEOD4Kg4d8AAI21Y4Dgd2v+/X1jzFhuJTneCTX/HsqtFEjM2njNrhgAgJTE7Yh4cPtRve+KFXr+J5fq/V+/X4/tH3BbsElX3be97uc3NEgLAQBobfVSCcW5l9k6ZvNkKxXBg9ZjG03SSYAAAGJpqwBBEASXSjq/5qPc0wvVeGHNv/fmVgqkyvc5PwAACTW4zG8+MKAPLF6p+7YeUd9ISXdvPqx3fW259vWNOC/CpgPpBB4AAO3NFh9IPcWQ9Y88Y7UT23HY2UGAAADiaKsAgaQP1Pz7UWNM/ZlkMxYEwRskPb3moztzKgocoHkKAK3N+qZig7/+bO0+DY2Xj/usb6Skm9fvd1gyAADCifPMkuc8APZ1p7pqeMaeYijDggBAC2mbAEEQBHMlvbvmo9RGDwRBMCcIgjkhv3uapK/WfPSIpFWpFAyZsDVeebkFAIovzrV80e2b637+ySUbE5ZmNu41AIBa9fpM44xstk0Om+cIgjjzKaC4SDEEAO61TYBA0q9LetLkvyuSvhNnIUEQbA+CwEz+76oGX3uqpK1BEHw4CIKzGywnCILgLZIekPSsyY+NpH8wxlTilA1+oPEKAO3Lh8557jUAgGbi3Clsb+qnPYLA5tF9jVPruegvpsvZL7bjsIMUQwAQS1feBagVBMGNqnau1zqz5t8vDoLg4To/fbMxplne/trJiW83xuyOUcQonibp85I+HwTBdknrJB2WVJJ0mqRLNLuuHzbG3JhyuZAjHzqOAABJ+X0xr/CaAQAgBdaR0qmvu/HfJiw9xi6ev/y+67cf20gW4gMAEI9XAQJJF0qq+8b9pBMkPb/O59Z0PkEQnC7pV2o+uipyyZI5Z/J/jeyR9OfGmOszKQ3SZZu8K7tSAEBdmw4M6Ker9+hg/5heff6p+vXnP1UBw7Gd8eE6zwgCAEAzcTrOraMEUk8xxL0NVbbjsIM2LQDE4luAIC2/rSfq2i/ppymvb4ek50p6maSXS7pI0qmSnixp/mQZ9qmaXugmST81xpRSLhMyYmu8xsn1CQCurNnVq9+58n4NjE1Ikn68arfW7u7Tv771wpxLVizW/hEPrvMeFAEA4BFXfaa2yWHTn6Q41cVb0eXsF1tbi5deACAerwIExphzUlru/0j6H0fLOifEd4yk9ZP/u8LFetEa6LMBkKev3LllOjgw5ev3bNOfvuZZOm3h3JxKBQAAsuZ6DgKec5CVsiWVog8vagBAEbXTJMVAJqxtEtorAHJ0y4YDdT+/+v4dGZekdcW5zN/+SP39kkYZeHAGgPZT99If435gu4fkOUkx2ovtWOMoBIB4vBpBALSCHFNzAkAsWw4O5l2EQnF9Lf+nH6/Tq8/bp5FSWa867zS95yVPV0eSWfYsBSxXjLo6GX4PAIjOlmIo7fhA3OUPj5fdFgS5s06WzQM3AMRCgABwjDc3ARQNV6Zo4jyYzu3q0NhE/THxhwfH9JPVeyRJN63fr3V7+vTZ33xu/PJZ9mjZmMwaf8YY3brxgO7efFinL5yrX3v+U3XOqSdktHYAgE3RUgzFnaR42aZDGhkva96cTsclQl5sKYZo1QJAPKQYAjJEcwWAl7g4RRJnc82P0DHx/Qd2avOBgRhrqbLFoivWh2q3/vOWx/TH335I316xQ1+4dZPe/pV79ci+/uwKAACQ5G6SYnuA3N/GxG2OU/khX9YUQ/4ehgDgNQIEgGM+N44BoJ64b+Vhtkbbcv6c8O/tGyP9z22bEpShsXJG96hDA2P6yp1bj/usd7ik/7tjSybrBwDYxbkdWEcQeJpiSJI+c+MjyVZOZj6vMAcBALhHgABwzJ5iKLNiAADy0OA6H2UEgSTduG5//CJYbja2/NEuNZr4+oa1+zJZPwAgvkb3EescBCl3zSZZ+r6+0fxWDucYQQAA7hEgAByzT1JMiwWAf3iYiibO9ooaIEjCVrxKRgGCDXtJJQQAPrM9lzS6z9k6ZtNOYccobUyxHWscJwAQDwECIEO0VwD4iGuTO4025Qlzs5oa2L4/s0oxlFUgAgDgXqMruP1FqBZGiiGvkGIIANwjQAA4x5BHAGhlcd5O6+zIrnfBVr6sOu6zCkQAAMKYfQ+Kc5m2XdvTfnObuwqmkGIIANwjQAA4RqMEQNGQ/swdH+4BPkxSnNVcBwCAeOwTDtf/Y54dsz7cX+GHsi3FEG1aAIiFAAHgmH2SYhosAPxDX240cTZXlpd/a4qhjHa2rRMJAOC3OCmGHjswoPsfP5JKeaorT2/RKBbryw4cJwAQCwECIEO0VwCgBcSYjD7LN9ps60p7Esms1wMAiMf24lKjPzULMn/gGyu1ZldvglL5iZi3X2zpEtlVABAPAQLAMesLDbRYAHiIa5M7jbalNyMIskoxxEEFAIXVKNDcbHTYaKmiH6/anUaRck0dMzg2oZItrw0yNWELEND8AIBYCBAAjtkar+REBOAnrk1RkGKouawmQwYANBfMnqPYKkmw+1vLd0RbWUh5d/x+f+XOfAuAafYRBLQ/ACAOAgRAhvJu2AIA0tUwb3OmKYYay2puAEYQAEDryXN+mbzvKv93x5acS4ApjCAAAPcIEACOMWcSAB/FyTWM+uJMOJ/tCILGK8tukuJMVgMAiClOWtSs7iE+OtA/lncRMMkWqGrfIxQAkiFAADhma5TQCQcgLwQvs9Goc96XbUyKIQBAM43nIMi4IDXiBOfRmmxtGY4TAIiHAAHgmL1RQoMFQD7swUuuTVHE2lqezEGQWYohAgQA4I1Kxejo0Phxn1nnTWs4B0H7phiCP6wphjIsBwC0EgIEQIbogwOQlzzzBreThp0qmc5B4EOKIY43APDFkaFx/eK/36p3f2259vSOSIo3sjDP+WW4rWCKdZQixwkAxEKAAMgQ7RUAeSHFkDtxOimynYOg8d+y6rgnQAAA/rl/21H96bcfUqlcsX6v0UgB0sfBB3kGqgCgVREgAByzT/hFYwZAPuKkEkB9cUYDZLmJbetq0ifkDCmGAMBP6/b06cZ1++ypB+t8tmrnMfWPTqRVrKayHIkHv1nnIOA4AYBYCBAAjlk74TIsBwDUYgRBNnwIttje3s8uxVAmqwEAxPCP16y1/n3mbWT3sWG9/8r7UyxRCNxXMMk+SXGGBQGAFkKAAMgQDRYAeQk7uskYo+2Hh3TTun3aO5mnGMeLl2IouxuALQUEkxQDAMYnKpHuS7dtPKCh8XKKJWqOuwqmECAAAPe68i4A0GpIMQTAR2GGXFcqRp9cskHfXL5j+rO/ecN5+ps3nJ9m0VpKo+2c5dV/wvLgnFXHPQECAPCb9So944+fWLIxzaIAkdhTDAEA4mAEAeAYMQAAPgpzbbplw/7jggOS9MXbNmvF40dSKlUxxbnMZ3lvsD04ZzWxHwFxAPCcNfWgf9dwbiuYYmvL0P4AgHgIEAAZorkCIC+21DJTf7rynm11//6TVbvTKFJLarSZfRlBYEs/5FJWgQgAgHs+XsJ9DFogH7a2DEcJAMRDgABwLMpwXQDIiu3yM/XQ/dCOY3X//sMHCRCE1XA7Z9jbYhtBYAseuC1DJqsBAMRkbxf4x8egBfJha8twnABAPAQIAMdswxpprwDICw9MDsWZpNh9KRqasPTOZzWCIKvJkAEA8VifWbiGw2P2tgzHLgDEQYAAcMzaXKGxDSAn9o6ADAvSAmxpDhpt5zjbOO49w4c5COwprTjgAMBnPl6lfSwT8mGfgyDDggBACyFAAGSI9gqAvNgemHiYiiZWZ3+MO0Dc/WIbem8LHrhkWw/HGwDkz/5SU2bFCI3gMqZYUwxlWA4AaCUECADX6IQD4CEuP9lotJ3jBRXisXXOZ5X6hwkEAaC4fJwQmOcoTLG2MThOACAWAgSAY9bUEx42tgG0B2vKF65NzjTazFk+sNpHEGRTBvvwf443AMib9VLMZRoes45S5OAFgFgIEACOkcYDgI9s159mWWe6OwO3hSm4OJfyWL+JcdNo9pvsJilu/DduhQDgN67T8BlpDAHAPQIEQIZorwDIi/WNqiYXpzmdNBfCazRJcYzO/hhrb9b/n9kkxTy8A4DXrKOePbxOJy3Tt5ZvP+5eXK4YPbyrV2t29WY2Pw/csI5SzLAcANBKuvIuANBqrI0SWiwA8pLg+jO3u9NdOVpAVily4qym2RwDmU1STEorACgsH6/TScv0b9dt0JHBcf3tG8/X7mPDet8V92vn0WFJ0tlPnq+rP3iJi2IiA/YRBP4duwBQBLwSCDhmTTHkYWMbQHuwp3wx1gcqRhCEl/ccBM0CBFlNUky6PQDwWztep6+6b7vKFaO/+f7D08EBSdpxZFh/+4OH8ysYIsmqLQMA7YQnfsCxog3XBdAeml2bxiYaz147p4vmQq14cxDESTEU/TeVJpMQk0YBACAV77nERXn7Rkq649GDenDHsVl/e2D77M/gJ+YgAAD3eOIHMkR7BUBemj0wjZbKDf9GgOB49pFi0X8TZz2N+JJiyIaHdwDwm4+XaVdlWr+3z9GSkBfbyxCM2AeAeHjiBxyzD9elwQIgH7aOY6MmIwhIMRRawxRDGa3flxRDNjy8A0D+rO0CD+4VM7kq09wu5lUqOvuxm2FBAKCF8MQPOGZrk9BeAZCXZsFL2wiCud00F5KK07ERbwSB/e/lJimIssDDOwDkr107WRkVWXzlNj12ASBN3B2BDNFgAeCr0RIjCFxo9HZ8Vpf/ZoEIP0YQAADy5kHGuUhcFXduggDBl+/YogkfIu1trmKbgyDDcgBAK+nKuwBAy/Gg8wUAZmqeYog5CFIVZw6COJMUNx1BkP89ysfUFYALfcMlLVm7V5sPDOgXz36S3vzcp6ibACs8ZbsW+3iZdlWmJG2a/7zlMW05OKj/efcL3BQGsdhHEHh48AJAARAgABxr1iQxxigIgkzKAgBT7CmG7CMIyNcbnss5CFp2kuK8CwCk4OjQuN53xQo9un9AkvTN5Tt08/r9+tJ7X6guggTwkO124OdcMW7K1JHwOeynq/fon9/8HJ22cK6T8iA6+yTFAIA4aK0CjjXr0OGlBgB5aDY/im0EAX1bycWagyDGegoxSXH+RQCc++GDu6aDA1NuWr9f9287mlOJALt2nYPAxWtaP3xwl4OlIC5rW6aFj10ASBOP/AAAtAH7w5TRmGUEgQcvnReGyxEELtc/xYcRBDy8oxV97qZH635++V2PZ1wSIJw087inkebF1SI7HPSAHB4cS74QxGZry/g5+gUA/EeAAHCsWYOYJguAPDR72apd3yR0reEkxXHmIIjxo2YBAB/iAz6MYgCysmzTobyLANRlTTFUc52OE1hO4zLvapGBgzEELpaB+OxzEGRYEABoIQQIAMfCzEEAANmzP0yF7ShAPHHeaEsjxZAPb9blXwIAgPXFgJp/l8qWhO8xlh2XT00RppPLFxmGAMA9AgSAY03nIMimGABwnObzo6SXaqCdNEwxFGsEQQq/8WBnEnBCO5nTxeMWshH12hp25OBEjBEEPoxWa8RF5z7xgXxZUwx5fOwBgM9osQIZo9ECIA/WEQIyjCBIWaxNGOM3hZikOO8CABmawyzvyEjUy7u9E/+JP074MoLAo7sHIwjy5cV8SgDQYrryLgDQapq/vEmDBkD2bNceY+x/5zmsOJrtKw/iA16UAcgKIwgQ1tZDg7rzsUOa192p119wus48qSfS76NeWq0jB2v+VCp7MgeBR/eOgAhBruzpsTw6UACgQAgQAI41naSYNguAHDS79thHGCCpOKMw4jzkNp+DIH88vKOdMIIAYSzdsF8f+u6q6c74k+d36+oPXqKLnnpS6GVETzEU7nsTFU9GEDhapIuyER7IV9j0WACA8GixAgDQBpo9TNnfJORpK6yGcxA4XJb9NwUIUvtQBiAj3V10JcKuUjH66E/WHfemfu9wSZ9csjHScqJeWq153Gv+PRFjBIEP6ewacVI0Tutc2bJe+XvkAYDfGEEAZMzj9jKAGA70j+pHD+7S5oODetHZT9K7Xvx09XR35lKWIIg3Sa4Rb2O50ujt+Fid/THW3+yNUB86bfIvAZCdbkYQoIkV247oyND4rM9XbjuqkfGy5s0J16ZweXk/PsVQnBEE7soyxdXoMxdl6yDFUK6sbRkP2jkAUEQECADHmrVJSK0AtI79faN619eWa+fRYUnSdQ/v1a0bD+jrH3hJofJOG2OaBBC4bhWFDwGAZgpQRMAZUgyhmcf2DzT822gpQoDA4b26dlkTMXrU0xh5SIohTAk7+gUAEB4tVsCxZo1zOkaA1vG9lTungwNT7t58WPdvO5JTiRpr9kBse/6PkX64bTVOMZRNB4vtoTnuMl0j4IRWYzvv5hYoWIx82C7bUd5Ub/URBM74XDaEUsRRr6Olsu7adEg/enCXdh8bbv4DAMgYIwiAjHnaZgEQw6LbN9f9/D9veUyvOu+0jEtj12w0tvVhiytXYlmlGEoyGXVWfH14B+Ian2jcgUqKITTjQ+B2ptoiNQs81+PzaDYXZSPFUL4qthEEHh57R4fG9b4rVujRydFCHYH0xfe8UL/+/KfmXDIAeAItVsCxpimGPGy0AHBr7e6+XNZre1xteuWxjSDgshVao02V1STFzTo+fAj25F8CwK2xiXLDvxEgQDOuAvRORxDUrDeNe1Ec7lIMJV8G8YF8la3njH++sPSx6eCAVD0G/+4HD2tgtJRjqQDgeLRYAceaNUp8bLQAaH3NOiDsE76lUKAW1SgIHG8EQZy3NpssM4N92SwQTqAcrcY2gqBI89EgH9YUfzldLmsv03E6+9O4zLsKcPsQKEcyttSXPjYxrr5/56zPJipGP1u7L4fSAEB9pBgCHGs+giCbcgBoP0EQNLzINE8xZPl7mz9Mj09U9L2VO7Xi8SM6+8knxFxKNtuw+QiC9HEfRLsZI8UQErBdt6N0zqd1r46z1NYfQcAQgjzZX3opjjsePaj3vvQZeRcDACQRIACyV6RWC4AWYn+YsndQpFCcgihXjD703VW6deOBUN9vmGIoVo6hxn/acnBQdz52UCfO69brnn26Tls4d3I9vL0PZG3cMokrkxSjGdtlOVKAIKVJiuPcN3xuN/SPJE/rQnggX9YUQwVq5xBnAuATAgSAY83e3mn3N3EBpMf2nNE09YztbwV62HJt7e7e0MEBG5fxgRvW7tNffX/19MSRpy6Yq+/90SU674yFfqQYavb39j2c0KLskxTTAwQ7+4Sr4Zfj8tKadA6CNNoNrpb4n7c8lngZ3MbyY4xpmXYEk10D8AmvtACOkVoBgI/sKYaM9WG+nS9bX75jS6TvN9qMcTpL6v2kVK7oIz9eOx0ckKTDg2P69A2PSLJ3NNnK51LTUQxtfUShFTEHAZKwz0EQZQSBu2vrcSMIEv7eFZ9eVijbkuAjVWUP2jmuEB8A4BNGEAAZK1CbBTH0jZR052MHtevosF72rCfrRWefkneRAEn2B2sje8eyz6kC0rZ+T7+T5bjahHc+dkgDYxOzPl+26ZCMMSFGiqS/MxlBgHbDHARIwlWKP7cjCGrKEKMRkMocBM6XGJ8lqxhS5kM7xxXmsgDgEwIEQMZ8evsFbh0aGNN7r1ihLQcHpz/7uzeer7/6pfNyLBVQ1ezKY33g4roVQfRJohsvafaPNuzta/x907xTJotgT9ORdOkXAciUbQRBVwcdQLCzPRtE6Zx3OwdBTYqhGL9P417jU1MkjQAIwmm27Yu0a7g7APAJr7QAjhEAaF+X3bn1uOCAJP33rZu0+9hwTiVCu7G9iGR9oDL2DoB2HkEQ9eWutFMMWb8vPx6cm87Fw30SLWa8XG74N452NGOfcDXCglI62OJcslu9A71Zmhukp2mKoYzK4QIjCAD4hAAB4BhvTravxfduq/v5t5bvyLgkQB2Wi0+56RwE7XvlcvXo5nKS4obf9yXFEPfBQjg0MKZv3rddn1qyUbduPEDgJgHbCAI2K5pxNgeBw6tr7ZLiBbjTOPD9OZkIEOTHFlCTinXNJTwAwCekGAIcI/cyZrpr0yH985ufk3cx0AYCBWqY4sbyu4ox1k4IrlvhNdxUcVIMRdzwvowgaMaHMrS7vb0jes/lK7TzaHWE2+J7t+l3X3a2PvnrF/FGYwy2OQjaOcCKcOxzEOSVYqjm3zF+bzsn4vLp3kGAID+myaFVpGsut1sAPmEEAZCxIjVa4IZPDzRoX9YOiIr9OG3n52BXnaVZbEJjmgcV/HhL3IcytLcr7942HRyY8q3lO7T10OCs746WGqfPQRWdhUjC1f3X7VH4xNLipAv6959tdFkYSX7dOZq9xY70MIIAANJBgABwrGmjpECNFt/t6xvRjx/arWWbDtGBATRhnYKgSWoaPzqViyHtOQiaLabS9M269DVNMcThlLtGKfGuvPuJzx/YflS/8sW7dMG/3qzXf+FO3bJhf1bFKxz79TO7cqCYbAGmKPcOl/fq40YQxFjsisePtnTboVxu3br5rmgBWdt50MEQAgAeIcUQ4FjTyRkzKkeru2XDfn3o6lWamGwknnf6An33jy7VaQvn5lyy2Rg1Ah80m4SYFEPpyqRjXvZUUZInkxSnXwTEtHLbUUnSrqPD+sDilRoerwbfHz80pA9dvUo/+tOX6YXPeFKeRfSS9fqZYTlQTLbj5x+vWatr/vRl6ups/l6fy2PNNPh3FP2jEzppXreL4lTL4dHJxAiC/DRv55jp/79qZ69WbjuqXzjtBL36vNM0b05nFkWcUR7LH4kPAPAIIwiAjNGeTG60VNZff3/1dHBAkjYfHNTnbno0x1I1xj6HD5rlOGaS4vqivtzVaDvGuQ5E/Y0xzdNRxEkVERUjCIpratfc9siB6eDAlImK0U3rGUVQj/X6yfGOJmzHyMO7erXo9s2JlxNV7bLi3je6Otz2fvo0IqFSsLfYW0mYFyGMMfrPWx7Tb112nz5/86P6k28/pPdduUL9o6WMSvkEW3kDIgQAPEKAAHCsacdIG3e0uXLz+v0aLc3Oo/HjVbtzKA3gEdtzRpMcx/YURLFLVHiRAwQNP89mIzadgyCLMjT9exsfUAXxySX184dfftfjGZekGOgrRBLNOjx/tnZfqOW4vLYedy+JudiP/mSd03QwPp1mjCDIT7Njykh6dP+AvnLn1uM+X72zV1fduz29gjVgKy4ZhgD4hAAB4FjTjhHak4ndvflw3kWIhF0OH9hTCNnnIMjirXNfuXq7K9YIgohXD2NCdFpkkWLIgzRHQJbs10gOeNg1u8duOzwUbkEuRxAc9+94C75+zV4tum2TmwJ5ZoKoYG6azrVkpG8t3173b/99a/bHo30EAQD4gwAB4JoHb2/CLz4NiUZrsz1oNAsAkEO7vugphhp8HmPdkVMMyR7okTJKMdTs7+18QKElMUkxknDV1+x0DoLaFENNOmRtbnY4ublP5xIphvLT7EUII6MbQo66yYKtuIwgAOATAgRAxugsBpAH+xwE5NBOXawRBBG/32Q/Tn0nb6QYQsvx4cRCYbl6NnA6B0HNdTpJCs9NBwZdFEeSX/cOl6mTEE2YOQg6HM9/kQRzEAAoCgIEgGO8OZk+nx4QwihWaVFktjeRbB0QFWM/q9o5sBn10a3Rloxz3Yq63Y1CPDhncEVikuLiaudzPQlGECAJV53NTq/vk4vadXTYn8nJPTqX2jn1Yt6ajd4wkjo8ejXfNuKhg944AB7hkgQ4RnsRs3BMwAPWFEMVUgylLYt7gzEmVG7e9AuSwTqAkMoVo93HhlMNftivn5wQsPPxZfSpIl3zUPzRA62MOQjy03yuJSOPBhDIWNplgUeBDADoyrsAQKtp9iBIAAFAHpqlGGKS4voiP7y5nIMgxveb7ass+jS4D8IXP3xwlz5z4yPqHS7p1AVz9ZnfuFi/fNGZztfDCAKEdd/Ww1q64YB6ujv1luc+Rc992knO7rFOUwxNLuvr92xzt9CEfDqVSDGUn2bb3sivjncmKQZQFAQIgIzxJpkDBduEBSsuWlSzAICtY6GdO7iipxhq8HmMjRh5kmIT5jcepBjiquitsJ0qj+0f0M8fPaj5czr1hgvP0Fknz0u5ZNHd//gR/dOP104fj4cHx/TnV6/SjX/9Kp1/xkKn6yI1E8L43sqd+uhP1k3/9+J7tulrv/siZ/fYNI5Cn45tj4rS1i9O5C3MpvdpBIE1QOBROQGAAAHgGLmXMZNPD1dobbbJzmw5W5tNbsshnFy8TRg1QhBu8r60MRdPcYW5X92wdp/+6vurp9/i/MLSx3T1By/Vc592UtrFi+SGdftmHWsTFaMb1u7T+W90GyAgRRuaKVeMPnvjI8d9Nl6u6L9ueUznnr7AyTpctjenArk+vSjvU3CZEQT5aTqCwPg1+a+tuD6VEwCYgwBwrGnHSCalAIDj2VMMNZmDoJ17dKNmGGqUYiij1D7N+iwymYKg6UTJKLKPXbvuuA6a/tEJ/fsNG3MsUX3fWr6j7ueLbt/sfF2kGEIzy7ceUf/oxKzPN+zt15HBcSfrSCPFkE+d8j4hQJCfZnMQGHk2BwEjCAAUBAECIGNt3dHmSNG2YNrlrVSMNu7t176+kZTXBN/ZHjSapRiydnDFL1Lh5fnsVu920WxfNHtw9iEtAvfBYusdLs36bOW2oxotlXMojR84pNHMXksbrX909jmVt6lD2qdj26eyECDIj21ErDQ5gsCjnnf7CAIA8AcphgDHmudeRrtJ84Fm84EB/d43HtCe3uqD56vOO1Vfe/+LNH8Ol3ccz/ZAVWmSu96HTuW8RH3IrPe2ZdwO8ciTFDdJFTX1nbQxkq49jZUq6unuzLsYubCnGOKIh6wBtPGJipN1uB1BUF2YT0evT2Up+1SYNhNmpGSnR0MI7HMQ+FNOAGAEAeBYswfBNu5ng2PGmOOCA5J09+bD+vQNj1h+hVZme8xo1slvTzEUs0AtIPIkxfXe+o+5/SJPUqwQb9bFK0q0cjAXT1sK2vipwhqY43hva7uODus3v3Kv/u26DQ2/M152FCBweLCZWf/In0+jz8oVN/sM0YWZg8Cj+ACjTQAURhs35YGU0AZInU8PCGGk9fbghr39xwUHpnz3/p2prA/F1uz5ZMLysFusM84/cbdf1GuHaZIqauo7aWtebo4oXyXZMx71x2SOFG2op1Su6D2Xr9Cqnb3W7/k4gmDqwGUETH2OYjqIodkLL9U5CPy5I9mK61M5AYAAAZA5GtrtJq3+uJvW72v4t2ZvEaP9NHugsr3hVLSgnEtRn91S31LWVCbN9/PmA4Pp709GEKDNtHMaNjS2emdv3Rc5ZiqF6G0Oc912Gx+oLs2n5qRHRaGdnaNmb+Tf8ehBDY/7MyeOPcVQhgUBgCYIEACONX1vkvYkHOnqaHwJdzVcHa2jWeeCPUDgujTFETh4Lzr2HARRUww1mUtCkvb3j+rX/u8eHR0aj1WmUOVI+HcUUzvnUraOIGjnC2ib++Jtm0J9rxQioX2Yw8jlsTa1KK+OX4+KUvZpu7SZZgHZTQcGtb9/NKPSNGcNEGRYDgBohgAB4FjTCSIzKkcrYxtWzekiQIDj2TromqYYsnRQ8HZsePXuAbFTDEWeg8CE2lfr9/Trw9esjVmqEOVgBEFb8qojMWO2urfvVkHYe2eYFENhluR0BMF0iiF/+JTuiLzy+Slam9R2qLRxXB2Ah7ryLgDQaugYwUxp7fMuywxcY6WK1JPOeuGX0VJZX7lji1ZsO6rBsYmG32v2QDVhG0EQu3TF5+LhLfYkxVG3vAmfDuK2Rw5otFRWT3dn9IIl1M4dyb5Lsmvaea9ySKOesMdFqACBMWr2vrHL43BqURzb9REgyE/R3oGytXmYgwCATwgQABnz6e0XFFtXJyMIIP3Zdx7SHY8davq9Zg+ztuHydBCEV29TZXXdDzMHQa39faM659QTUigHI+nQXmznHdfP9hV214dps4VblssUQ/4duD4ViQBBfoq27a3FJT4AwCOkGAIcYw6C9LENq+Z0Nm5VhnkbDcX34PajoYIDUvPzpkyKITfqbKrYIwhizEEQZeLEtPYqI+naUzvvV+scBNkVA75x+UZ/qDkIHK7P3aJ035bDOuAgJ7xP1xjaRflJGrzKOvhln4OACAEAfxAgAByjYwQzpdUQ7baNICBA0BY+c+Mjob/b7GH25g37G/+xja9bRZp4tToHQYTvp3Rtaj5JcRsfUK2sjXerdQ4CGn5ty+W1LkyHdBpzELjwvivv1yWfuV3/eu36SEHsWWVyV6TE9vWN6q+/v1oHPZoMt10knSA66wEIthEPBWpiAmgDXgUIgiDoDILgeUEQ/GEQBJcFQfBgEATjQRCYyf/dGWFZ59T8Luz/tqRYt18KguBbQRBsCoJgKAiCo0EQrA2C4D+DILggrfUie81TK/jUvEWRESDAqp29ob+b5IGond+Ui/rsVu8an+kIggg/Wr2zV6UU0pE17RBt38OppbVz+6adr5FoLOvDwvfD8Nsrduiah3bnXQxnrnt4r95zxQqNjJfzLkpbSZpiKOsURbbz0jKdHABkzpsAQRAEb5fUL2mNpCsl/amkF0nqzrFYiQVBcGIQBN+XdJuk90s6T9J8SU+S9FxJ/yBpbRAEH82vlMiS7433IijaJkyrvF22FENlHlZwvCQdWEU751xyMklxzC0Y9XdG0d5W/vsfrdHLP/dzPbq/P2LJmpSD+EBbauf2DSmGUE/Wb/S7DdKlc+R+/Z5tsX/r42icxw8N6f5tR/IuRltJGpDNOqBLiiEAReHTJMUnq9pxnoYBSd8K8b1wiZxDCoKgW9JPJb2+5uP1klZJ6pH0KklPUTUI8pkgCLqNMZ9yWQZkz8O2K3KW1jHR1dE4xjvGCALMkOTBup2va1EDBPW2VVZ5oY2JlmJIkg4NjOmD33xQd3/4dZmlU2rn4wmtydrhxPHetlx2aIfp/Hd6r0npuH3swEDs3/p6Kv37zzbqtc8+Pe9itI1KwkecrEcQWAMExAcAeMSnAMGUA5IeqPnfmyT9dcJlHjXG/EXSgsXwr3oiODAq6feNMd+f+mMQBHMkfVrSP05+9IkgCJYZY5ZlW0xkiY6RdBljCpUzPC2kGGp9UTsekmSSIX1GMnG3XpzNHmdf7T42orW7+/T8p58cfYV1NB9BwPHUitp5r3KJRD2+zgkQan3Zri4UX8+zI0PjeRehrSRtkyadwyAqWzyCJ1YAPvEpQHCzpLONMTtrPwyC4JKcypNIEASnS/q7mo/+pjY4IEnGmHFJHw6C4BmS3q3qPeKzkl6eWUGROTpGkvNxiLFNWvvc1kAmQND6op4GpBiKJ+rw7/ojCOKmGIr4fRN/rok7HjvoLEDQTMEu4QipaPdml6yTFLf1FbS9ZTV6LJX1cdiGxrbKVtLtnWSi7Dis90ZeagPgEW/mIDDG7J8ZHCi4D0g6YfLfmyRdbvnuhyVN9ea9LAiCF6ZZMKSr2QMyjch0+bh90yqTNUCQwsSj8Ev0zuMEB6KH51VWIqcYCvlZqGXF2Gdx9/NEOdlOHh6fmH7obtYh2saHk/eSdGa38361zkHQzhumzbkdQRAixZDDNfoZ2PKxTO0dHM1D4hEEmacYavw3wgMAfOLTCIJW8/aaf19lLC0HY8zOIAh+LukNkx/9hqTVKZYNKWrW5KAJmS62b9VYiQBBq4v6gJRkSDUphpLJavNVRxDEDBDEfGDe3zeqv/nBaj2w/ZhO7OnSb19ytt7xoqdZf0NnSmtq591qO+/aebu0PadzEGS6Oi+PWx/LJPHskbWk/fvZpxhiDgIAxeDNCIJWEgRBj6RLaz66M8TP7qj59+sbfgvea5p72dfWbYEUbQumVV5GELS3qB3BSR6oinbOuRT12e0nq3br0MDY8R/G3ICRR4nIxJ5rohxj1r9Kxei3r1yhFY8fVblidGy4pP+7Y4suv/vxJuUEWkvGL6SiIFweF8xB4GeZJHlcsNZUuBEE3CAAFES7jCDoCoLgjZJeLOlUVScMPizpQUkrjTFjth/H8Gw9EXwxCjcaYFXNv5/juDzwCE2EdFUDMH69jpHWQ51tucxB0PqiHldJjsO2HkEQ8fWum9bv1/3bjurqD16i5zzlREnxUzXE2cdZjiDYuK9fWw8Nzfp8yZq99h+28eHUyvxMSZIN5iBA6kIcRm5HEHDcwk9Jj80tBwf1lJPmOSpNc6SgA1AU7TKC4CxJSyV9RtWJg/9Z0n9LukvSviAIPh0EwQKH63t2zb8PGmNGQ/ymdv6FU4IgOM1heZChprmXaQikqp02r63BSYCg9UXvPE6QW7ydTiwHjg6N69+uWz/93/G3X7QfGmU7B8EVDUYKDIxOWH9Hh2mLauPdSooh1JP1nABFubbGvU/5ei55WqyWlfSF/I/8eJ2bgoRkvT9kWA4AaKZdAgQ2T5L0MUkPBkFwvqNlPrnm3wdC/mb/jP8+xVFZkLHmjVeaAokVbhOmU2DbAxYphlpf5DkIEj5RtevbhHHHIz2w/Zj6R0uSkkxSHPX7JvaD80SMFENxj6k2PZQKgbnM4+GYRj1ZzwlQlDkI4rZRfQ2AtGv7KC9JR7Xu6R3RyHjZUWmaa+tRuAAKpdUDBAOSrpL0HlXf6l8gaa6kp0t6p6Tbar77bEk3O3pzv3Y0wkjI38z8XuIRDT09PVqwoLqYcrms3t7e6QZMf3+/xsfHqyseGdHQUDVFwMTEhHp7e6eX0dfXp1Kp2sExPDys4eFhSVKpVFJfX9/093p7ezUxUX1jcGhoSCMj1eqMj4+rv79fUrXx1Nvbq3K5ekMeHBzU6Gh1cMXY2JgGBgYkSZVKRb29vapMdlYMDAxobKyaBWp0dFSDg4Ne18mUq2XoVlnzVP13IKMFwZgCGRlTvDr5tp86SsPT31sQjKlT1TL0qKTh4XzrNEcT6lG13J2qaEEwNv2Q5Xo/jQ0NqGOy7vNU0hxVf9OtskaGB3PfT6147M2sU+2xN7X9u1TW/MlzP806GUnzNa4uVZdd79ibckIwpnK5Wr65Kmnu9PfKOqHmezPPp9o69fUVdz8lOfY6zUTda7kkzdO4umu2/7zJ7doxuf17h6q/G+jvC72fOie/N1cljY+O1K1To/00XhpXZWwq5U+1rI2uETPrNDFRjryfNHlMRanTXJVkTPtcI3ytk20/DQ8Px7pGDHi2n+ode1N1cr2fzHj1N/WuEaqUnNWpFY69dqpTxcS/5061I6au5RMh6jQ00B/6/jQV0mvUjiiXS6HPp6h1Gi2VY+2nseGhRHUKc3+KU6ep0Xs+HXtS651PU3UqjY3G2k9V1fOpb3gsszoZYzn2jGnZ/USdqBN1il+nvLRygGCfpKcaY37fGPMDY8wmY8yQMWbcGLPbGHONMeaNkv5ET7z09ExJn3Ww7p6af483/NbxZs6DkDgx3qWXXqp3vOMdkqRDhw5p0aJF0wft4sWLtXHjRknSsmXLtGTJEknS7t27tWjRoullXHbZZdq6daskaenSpVq6dKkkaevWrbrsssumv7do0SLt3r1bkrRkyRItW7ZMkrRx40YtXry4WsGxMS1atEiHDh2SJF1zzTVasWKFJGn16tW6+uqrJVVPmkWLFk2fpFdffbVWr65O47BixQpdc801Xtep89AWSdJ5nYf1xrmbJUknBON6Z886nRCMF7JOvu2nU3Ytm/7eO3vW6bSO6gX45XN26J6778q1Ti/o3quXz9khSTqtY1Dv7HliGKvr/bT1zh/p5KB6w3rNnK26sKs6YOm8zsMa3rgs9/3UisfezDrVHnsv6K7mXT+n85jePPfRahAnxTpVjNGb5z6qczqPSbIfe2+bu1GmrzpQ7SXdu/WS7uq+OKujX2+bu3H6ezPPp9o6XXXVNwq7n5Ice08e3dvwWv7GuZt1XudhSdKFXQf0mjnV8pwcjOqdPes0Pl6t04+//53Q++msjv7p/bTxwXvq1qnRftqxZZO6t1avgXNU1jt71jW8RsysU2VsJPJ+mjOwN3KdXtK9WyaF/dSKx16adbLtp6VLl8a6Rlz3w6u92k/1jr2pOrneT/N3LZdU/xoxv3+3szq1wrHXTnUyxsS+57557qOSnriWHzncvE63/ugboe9PcyY7xhu1I4aOHgp9PkWt08DgSKz9tHX5zYnqFOb+FKdOxvh37Emtdz5N1alv84Ox9pP0xPnUf+xIZnWqGNPw2DMtvJ+oE3WiTvHrlJfA9yFxQRB8QtLHJ/9zmTHmtSms4z9UnZdAksqSzjLGhE0NVG95/yjp/03+5/3GmEtD/GaepOGaj15sjHko5vovkrS+p6dHXV1dWrFihS644AINDAzopJNOUhAE6u/vV09Pj+bMmaORkRFVKhWdcMIJmpiY0ODgoE4++WRJ1Wjc/Pnz1d3dPR2Jmz9/vkqlkoaHh3XSSSdJqkbjFixYoK6uLg0NDamjo0Pz5s3T+Pi4RkdHdeKJJ8oYo76+Pi1cuFCdnZ0aHBxUV1eXenp6NDY2pvHxcS1cuFCVSkX9/f068cQT1dHRoYGBAc2ZM0dz587V6OioJiYmtGDBApXLZS/r9B83PabvPbRf3SqrS2WNaI4CGZ0QjGvIzNEP//TluuDJ3YWqk2/76W+vvl8/e7QaDV4QjGnEdKusDvWopBUfe4NOXrgg8zrNnTtXz/74bZqjCXXIaFTd6lRF84KS5sxfqFX/+kbn++nbyzbqEzc/roo6NE8llRVoXF3qVlm/85Kz9PHfelHhzyffjr2ZdXrR5+6ePvYqk9u/S2XNUVlr/+Nt6uwIUqtT/8iEXvapn2lcnZpQZ91jb9DMlVR9U+m3XvoL+tb9e6bfkBtTtzpVVk8woaHJ7808n2rrdP8/vVpPftLJhdxPYY+9sWCOyibQiV3l6Tq988t3af2uI7Ou5UaB5mlcE+pUaXL7d8poRN3qUEXzg5Ju/Ic36RlPPkHb9h7SG/93eaj9NGq6VFan5qqkr3/gJXrlc846rk5fWPqYvnHHhrr76aa/vFTfvHuLvv/wYVXfkhvXsOmue42YeX963XPP1pfe96JI++mffvqIbnrkcKQ6SdKX3n+pXnf+k9viGuFrnZ71kSV199NTnrRAS//yUr3wU0sjXyNu+otLdd7TTvdmP1300Z/MOvam6rTqo69xup8+8qNV+un6o3WvEa989hm64vdfzrHXhnX6tS8v17b9R2Pdc+eorGHNmb6W3/6RX9EZJ8231um+R3bp/d9eF+r+NGjmSAo0X+N12xH/+ZsX6Y3nn6wXfO7ehtfyuHW6+8Ov1cKOUuT99OMVm/WRax+JXacw96c4dap09+iRT/2KV8deK55PU3X61n3b9Lnbtic6n+746K/qtBPnZVKn+3YM6k+/tbLusfdnr3u2/vxVT2/J/USdqBN1il6nPXv26OKLL1aNi40xG5QRAgTVdSyQdFBPvLX/fmPMdxIs788kfWXyP9caY54f4jenSDpS89EFxpjHYq7/IknTsyOuX79eF110UZxFIYaP/mStvrdyV8O///BPXqaXPpMpJpL486sf0o3rZk7bUfXov/+Kero7My6RVKkY/cI/31j3b0+a363V//bLztd59f079LGfrq/7t9+59Bn69Nuf63ydON45H7mh4d82ffpXNacrvYF6vcPjesGnbg39/d+59Bn6zoqdsdeXdn3yNDg2oT/7zkO6e3P1zcTnPe0kXfm7L9bpJ/boty67Tw/tOBZruXd/+HV6+inzdXBgVC/9j9sj//4Hf3ypLvmFJx/32ReWPqYv/XxL3e/f+rev1hV3P64fPrg78rre/Nwz9ZXfflGk3/zxtx7U0o3R36f42vtfpDdddGbk38GdRteupz1pnu75p9dbr22N3PeR1+upJyceAOuMrQ6/ctGZOmFul37jhWfpleedmnhdf/W91bp+zd66f3vDc07XlR94SeJ1oHh+5Yt36dH9A06W9cDH3qDTFs61fuehHcf0W5fd52R9X3jn8/VbL3parGtBM7f93Wt07unRs+le9/Ae/fX3H3ZenqTmdnXosU//at7FaBtfXbZVn7vp0UTLCHM+uXLLhv36k2/Xf+/zQ697lv7xTRdkUg4A/tuwYUOuAYLWfNKPyBgzKOn+mo+ek3CRtR39Z4T8zcwn5aMJy4CcNIu5+R6UQzx57FXboTRWYpLivKU9KVnU+WGTFsfXyQFd+OhP1k0HByRp7e4+/dnVqyTFn6RYqtnmGW06o+jHxZSJcvQfxl0Xt0F/tcskxTdv2K8fr9qt3118v25cty/x8mzXe4739uWyHRDuHuxyfekZm8hugtgscIpny8V5leXzeMXSWOL+AMAnBAieUPt0kPRVoto3/08PgqCn4Tef8Iyafx81xhxKWAZ4inZAcj42pmwNzbSKa1tn3I47uJN+gCDa8pOWx8fzzoXxiYqW1Hnz96Edx3Swf9TJOuJuunq/a7Yf4u7niVgXDZc1gw/29I7odf91Z6zfFvEFiIqRvnJn/RE5UdiqXrytktx9Ww7rczc9qivvflx7ekfyLk5unJ4SIZblcn1pns9jEy32Eks7nuQ5cnFoZvmcZFsXhw4An3TlXQCPnFDz76GEy3pMUkXVAEwg6QWSVjT5zS/W/PuRhOtHjpqPIMimHO0qr+1rW21aZbItNu3OaTRXTvnpI3KAIOHzeKseUnstnVf3bj2sIMEQgqk3PuNuu6i/Myb+ukrl6AcIIwha07bDSZvBxbJ+T79GxsuaNyd+esJWHmEV1Vfu3KL/d/MT70pddudWfe+PL9X5ZyzMsVT5yDg+kPn64oo7ypV7ByT7G/lhlbMcQcAIMwAFwQiCJ7yw5t/1k4iGZIwZ1fEBgdeG+Nlrav798yTrR76aPSTyEJmuvLZvHg08WwOZAEH+knbINxVxFyceQdCi1y7bdgkm/y+uqUXH3XZRf2dkYr/1GSegFfeYas0jCUW+7SS9Ptqu90UcWRFX33BJX1i66bjPjgyNa9Ftm3MqUb5c7vswi8p6xEJccVMM+doO8bVcrcrF+zcuggyh12UdZc6xA8AfBAgkBUHwBklPr/noTgeLvbbm37/XZP1Pl/RLDX6LVkM7IDEfn7VtDby+kZL+59ZN6h0ed7zOxkgxlD/f5iBI+rZUqx5TtmolGT0gVY+B8YmKlm890vzL9cQZQRBvTbFSDDGCoJjaqcM6rPGEKU/sHUDt44cP7qobbLzBwTwPReRy34dpUzgNSKR45MZNMeTrpcvXcrUqN3MQOCiIi3Vx7ADwSEsGCIIgmBMEwZyQ3z1N0ldrPnpE0ioHxfimnkhV9OwgCD5o+e7nJU2Na15ujHGxfuSkaYqhbIrRtnJLMdRkvYtu36z3XXG/+kdLztZp65xjBEH+0h6+HHUfJ56kuEWPqabVShAkGBid0HuvWKG/++Ga+AuJwJj4nfZxRhDEPSZ4Yy5fqaW9K/Bu/Y2v3KujQ/GD+NYc0wXeLlE9vKs37yL4xeWcANmuLtXjttXmIGijU9wLLtqj3qQYyqwUANBcSwYIJD1V0tYgCD4cBMHZ9b4QVL1F0gOSnjX5sZH0D8aYhq2WIAi2B0FgJv93VaPvGWMOSvrvmo/+NwiCd81YVncQBJ+T9N6ajz9qqxj81+xG304PinnwefNu3Nevnz9y0NnyrBMjc6DlLu0gTdSlJ06h0aKHlO1c6QiSJBiSvvTzLXpox7HYv4+6yZOkGJqINQdBzABBix5LRZHW5i9y4Gf7kWF9/qZHY/+ee25VnLlMWpnbDvswIwgcrs/domYZLcVMMeTpacb5ny0nKYYyDRA0/hvHDgCfeDVJcRAEN6rauV/rzJp/vzgIgofr/PTNxpiZ8wY8TdU38z8fBMF2SeskHZZUknSapEvqrOvDxpgb45W+rn+X9ApJr5c0T9IPgiD4F1VHKPRIerWkp9R8/+PGmGUO148cNB9BQEMgKR+3Ydj23b9cu15vf+FZqa8z9fz3aCrtfRA1f2riByr/TjsnbNulIwgSpRm67ZED8X+sbCcpjpNiKPbky/F+BkfS6pAoej/HDx7cpc+/43mxfssbolVxriOtLOs5CFxKc31xRqxJ7XUuoTEXb/+7vg/uODKk+7cd1dmnzNcvnv0kdXc+8R4ukxQDKAqvAgSSLpRU943/SSdIen6dz5ulEzpn8n+N7JH058aY65ssJxJjTCkIgt+UdLmkqdEDz538X62SpE8YYz7jcv3wEw2BdOX1JkbYoMXg2ISzddoanFkOnUV9qY8giLh4Jimuz1avIFCiSYqTirPN4+6niXKcOQjijiBozWOpKNj67vGGaBUjCI6X9Z53eZ9O854fZ8Sa5O+55GepWpeL9rXLWOa3l2/Xv163Yfq/X/rMU3TV779E8+dUu9qynBAZAJLwLUDgyg5VO+FfJunlki6SdKqkJ0uaL6lf0j5V0wvdJOmnxhh3icFrGGP6JL07CIIrJH1gskxPUTUosEvSLZK+box5JI31I3vNGtQ0EdKV1/bN45nFOueVpw9R7STuG3JhRX14T3pMtOrzjW2zBEo+UXGWko0giJNiKN66kK/U5iBIZ7GF0M51rxUn0NjKnKb8yXgSgjSbka020qSVmtwPbD+q76/cpQP9o3rVeafqD1/5THV1+pWV2sX2dtVG39M7clxwQJJWbjuqry57XH/3xvMlNQkgOykFALjhVYDAGHOOo+UYSesn/3eFi2XWLPucmL+7TdJtLssCTzVLMdRKrcic+LgJ8yiS7Q2aFnv2KqS0RxBE3cdJUx616rXLtp+CnKMDkVMMycQ+7mJ12MRNMdSah1JhpPVmcKteI8Jo57rX8nUEwYPbj+rm9ftVMdKvPvdMveScUzJZb9Zv9Dud88DhsmYixZCf7tt6WL/3jQc0PjmJ9D1bDmvdnj793/t+MeeSHc/FG/mu2ujfu39n3c//9/bNNQECUgwBKAa/wsFAC2h2n6cdkK68Glp5dA5Y5yCgxZm7tEcQRN3HSdNOtWrQybZZOoJ8RxBE3eSJRhBkmWKIO2GuGEHgHh1AVSUPbxRL1uzVu762XFfes02L792md39tua5fM3PqunRkPYLA6bGW4oEbewSBf4dXS1l8z/bp4MCUn63dp11Hh3MqUX0uLjOuDu/r1uwJsS7L/YGDGoBHCBAAWaMdkK68AgR5rJMRBF4rpZxqIfoEtsxBUI81xVDuIwgippFS/GtRnOMj/hwEsX4Gz7XzfrWN0GrVa2c9cXPLp8UYo8/f/OhxbaKKkT5/06OZvNjhNEAQ6jsuRyykJ/4IgvY5l/Jw2yMH6n7+9Xu2ZVwSOxcvQbl6icd27Z8oV/TQjqP6zor6owyk9r5vAvCPVymGgFbQ7IGDxm1yPm7BXOYgsOW0pMWZibldHRqbqP90MFoqp7ruqPs48bNQix5S1kmKlfckxRG/b0ym5378YITTYiAitr97jNqrso1EMsZkHnTdfHBQu4+NzPp8T++INh8c1PlnLMy0PEmEubYX5TBkropi2ds7+xzKk4t2jqtrtm05f371Ki3dWD/oAgA+YgQB4FjTFEO0iVOVWwAmh9XaOnzTTm+DqrldjW+jaQcIIs9BQIqhuqwphjr8m6S42TUu7m6O8zOyRBRTevfJ9t2z9oB9duXIW8nyOm0e2+HwwFjDvx0bGk99/S4DtuFGELiT5v4qx5wUqZ3OJTTmoj3qqk1rOybDBAd4oQuATxhBAGSMdkC6cpuDIIeOEfskxRxoWejsaNx7vL9/VPduOayLn3qSTprf7XzdUY+5pA9DrTr6yedJiqNu8mQphuL8Jm6KodY8looirWBfO+9W5iCosk1SXDFGHRmPyLLluu/qTL8sWXfYOw1IpDwHweqdx3TLhgPq7JB+5aKn6LlPO6l5mVIrEWx82+4unnGyGEEQhm/bFkB7I0AAONasnUBDIDkfH7ZzSTFk+Vurvu1dJH/9/YclVSe6/ec3P0cffNUvOF1+1Bfwkj7st+oxZatX3oMHogZljMk2OBh/kmLkKa2Ov1bYr3HT4LRC3V2wpY7J4x5iG03ZkUEA2O31OESKoUzXFt91D+/VV5dtnT4mLr/rcV322y/SGy48w14mTjTI0QgCV3MQJH35hmO6LY2Ml7Xj6JDOPW2BujpJ6gJ/cDQCjjW7z/Nmd7ry2rp57FdbJw9v6GYjzFauGOnTNzyih3YcdbruqMdc0rRTrXtM2UcQ5DmKIPomNwlSDEX/YcwsEfSm5iy1BEMtsF/r5asPwzqCoI0O+JI1QJD9drDd97o6ivUYHGrzOdzExrjrRJ1pT+/IcR2rpbLRZ296JJV1ofW4mYPAQUGUvCztdH9A1Zfv2KLnf2qpfuWLd+uFn7pVt2zYn3eRgGnFahkBBdCsoZBWYxtVeXVi5rFWW1U5zLIR5XD73spddT+vVIzW7+nTzev362iKOZGTBwgcFcQz1jkIAv8CI81ynWeZYij+CAK/tmm78eyQ9srbvnyvth4ajPw72+W1nbb3hGdzEJQtK80iPuCyzuHiA27nPLBtP9e2HhrSrqPD1u9w74DUYimGOKTbys3r9+s/b3lM4xPVe+XA2IT+/OpV2n54KOeSAVUECICMZdnYbl3+bcM8dqutUbq/bzTDkiCMax7aPeuz4fEJ/c7X79dbv3SP/vQ7D+ml/3Gbblq3L9Tysh9BkOjn3rKnGMo3yVDUbW6UYF6AWL+KJ04RxybKWru7V0NjE+4L1G7SmoPAw3tzVEeHxvXN+7ZH/p11RF+C8hSNPcVQ+40gyH4OApfrM4nbDVEdafKSRKu2Q3yXxnYfLZV13cN7dOXdj2vzgYFIv3UzSbEnKYaclAJFcUOdZ7xyxWjJmr05lAaYjQAB4FizG33Wje12k9fWzaNjxLbGPb0j+q3L7tORwbHMytOOkr5d/n8/36L7th6Z/u+JitFffm+1eoebjySIeilJGpxshc6/emz7sDqCIMPCzBB11cZkW96s5iD46erdev4nl+rX/+9ePf+TS/Wl2zfHWi+q0jqXW6XzbuW26OngSB9Z1WyS4qzZJinOIu2z00mDw8xB4HgTZ73Pmq2Ps6w1HOwf1Vu/dI/++vsP69M3PKI3/s9d+vo920L/3s0IgsSLmFwOL98gvEaBgC/cuinjkgD1ESAAXGtyo+chMl25bV7PRhBI0kM7jukvvrs6o9K0p6S7/St3bp312UTIN0miXkuSpjdr1UuXdbME+QZGonYuGWNilzdeiqFYq4q0rsf2D+jvf7hGo6Vqx+NExegLt27SrRsPxFs5UjuXW+Ua8ej+aG+zSk3m42iR7RKGPUCQYUGm1mlZaRbzy7h9oz/Ed9ytbnLSe4cLDLXONjpZ2tii2zdry8HjU7l9+oaN2tcXbg4YF4eJq5S/HLLxjE2UQ+9vANkhQAA41qxzxvLshJB8bIz5NgfBlOWPH0k1rz3Sce3DzQMEUc+DpCMIWjW4abtmdwRBsUYQKMHEwTGuYnE7c/75p+u0+J5toUbKXPvwnrqdVD94oP6cHmgurUO6VUcZhcEkxVX2uRj8SjFUtFtauBRDbkcsZD3qudkz0taD0ecHgV/KFaOr798563NjpAe3Hwu1jFaag6CtIsiqXqM+e+Mjev4nl+pln/25Xv9fd+qRff3W39yyYb/e/uV79YJPLdUff+tB7e0lsACkhQABkDEmKU5XXg/ieTxohn0QjJMuASHl2XkceQ6ChOtL9nNvNduMRQqMVCcpzm4EQZJN86mfbdQ7v7pchwbsadAuqzPKRpJue4QRBHHxli7ykEfzN++0nk7f6A+TYsjl+kz2zyzN7rdXxZgfBC64Ow427O1r+LfHQo7ecjMHQfJlSMmf/9rtdvzN+7bra3c9Pj0q9PHDQ3rfFSs0WirX/f69Ww7rz69epYd39ap3uKSlGw/oPZev0PA481EBaSBAADjW7EbPJMUpy2nz5hGYONDP/AJ5y/NsjjwHQfxXyyW1bqeirVpZ5/Svt/5Zn9m+L5OovDuPDOtfrl2n3/jKvfrE9RuaTnaeNHiy+eBg3cm7ka7URhC05iUiFOsIgjbeLrV8m4Mgizu4yzpnPkmxsn9msW2vHUeGMiwJ0vLQjsajBE5bODfUMlppBEG73R9+unrPrM+ODZd075bDdb//41W7ZwV6dx4d1v2P8/IbkAYCBIBjTQMEjCBIzMctmHUDr3+0pOtD5KlHutLqNA+TGTn6CAIeYupplhrEt/dPrfshQUDjyNC43n35cn1nxU6t3tmrq+7brvdcvlzHLCnKXGybz9/8qIOlIIpWPZfzZE2tk10xctXsnpRHgMDWwZ1FcbKeg8Dl0ZbHCAJbHVfv7M2sHEiPrU3RHXLmcBdtb1/mIMi7lZm1NbvrjyD5vzu21P38J6tmBxSk6ihUAO4RIAAcaz4HQXs1BLKW19bNer3LHjsU+rsZzMOHHES9lCS99LTqlatpp5V3IwhsAY1kD5v7ZowY2H5k2DoZcJHSL+EJaXVItPPhYB9B0B4b5vZHDtq/kMNmsHUCZlEc13MCZGnD3r7M00JxT2l99mBquP2fcEBs03JEWw4v37gQdTsMjJbSKQjQ5ggQABkjQJCuvBpaWXcAfPz6DZmuD/WltdfDBHWiHnMTCZ+oWvXBvekb+b6FRjJOifRPP1nb8G8uHtKRg5QOae/OlQy16OUxkpXb7SkfBseyzxltTzGUPtdzArj4Tlg/W7tP6/c0zhefBtvu4mWX/Lg8rlykY2upFENOSlF8bAfADwQIAMdaacJLX/n4Nl7WRTpqGaKL7OSanz7i95N25np42jlhTzHk3z5uVhzX9xj7HA0telC0OPaae82uI+1gqEkA4C++uzqjkjzBNvdOJpcvx3MCZLg6SdLV9+9wvES7rFMaIXtN3skIxc0kxa4CBMl+TzMKgE8IEACONbvPM4IgXe38BmMjvHTVmqI+3CS99rRqcNO2XYzJt3Ovboohj+ZMcDZEn/tiptI6lVvpEhH1eskkxc2vlRv39atvONu0EGVLYDyLq6XbEQTNl+b6WLsjQjpLF1q1nSFJB/pHtad3JO9i5M5FOjYncxB4cqzx3ArAJ115FwBoN7YJ05BcfimG8lkv8pVnwz5qn2rSa0+rHuPNtmOeb8nXO77sb/Rnu59cPWAPjU9oYU+3k2WhubQ6RlrpElEqV9TZ0Rn6+616fXTt5g379O6XPCOz9eU9gsDtHARhvlPsA9GeYqiYr7v0jZT0J99+UCser6bgev7TTtKVH3iJTls4N+eS5aRJGyYMJymGfEmRWOxT1p2I+5R7LpAORhAAjjVNMcSbkon5uAWL/lCGeNJqoAYhxn1E7Xjg2lOfT2/kz1p/vREEtu8r24CGqzX1j2afm7ydpXWEtFLKqai5662Bu4RlKYowuz/r2xBzEBSLbeROMcMD0oevWTMdHJCkNbv79KHvrsqxRNG5PKxcjCBwcVr78sKeH6UoHrYbkA4CBIBz9luWbbgzksurweBJOxNtJOoxl/RhyJfh2K7ZHjSzfiM/jGZzAmRZXFcdwlmnHWl3aXXke3aqJDIRsbFmvT76dhHJUUfGvby2wHg2IwicLs3BN/zWSkFGSRoZL+uWDQdmfb5y21EdHhzLoUT5s7a5Qi8j+XHiy7HmSzkAQCJAADjX7D7vyxsLrSqvhhZ7tT3lud8jz0FQJsVQPc0nKc4zxVC9z5qVN7XizOLq5dz+UQIEWWIOguZKEa+XTFIshalp1mlibG3ubOYgcJhiKNQIgmIfbbbSFzHD0LbDQw3/9uD2YxmWxB+2QzRsm8JJiiFPTpWpYgyMlnTf1sM60qaBI092B9D2mIMAyBhpPpLz8fnH54eyouZtLYQcdzsjCNxoVq98UwxFm4NAJtv95GwEwQgBAvhlImKCapp24aTZGtm4t1+3bNivijH65QvP1HOfdlL+KYYcrr4dDjF7iiHasq3ASYohB6Pxo05EnxZjpKvv36F/u27DdJn+7LXP0off9Gye3wBkjgAB4Fiz5kbeDyutLrdJivNZLVpViGeCyCMIEl57WvXS1exhtUhxEaNsy+vqmBgeZw6CLKV3jBToZGliIuIIAutcJq2zWazC1PPY8Hgq677j0YP6k28/pPHJ1FCX3blVX3rvC60j5zJJMeRyWW0wB0GrvohQdL69BNVKKYY27O3T9Wv2HvfZZXdu1fPOOkm/+tyn5FQqAO2KFEOAY80aHDR+WxO7tT3lOYVt1M7Z5Nee1jzIbW+iGfk3AXmzjsgsS+vqfsb1M1tpHdO+7cckL1+WIs9B0Phvvl1D0hJm/3/mxkf1K1+8S1sODjhd96dv2DgdHJCqL+N8+oZHck/r6bITMsyyin6s+XYNSVdbVXaard0Qtk3h4jjx5aWXrYfqp6H69oodGZckX1H3qS8BHqDVECAAHGt2u/JlSGOR+bkF/SyVlO6Q/naXVvs0zD6L2jhOeu2J+kZtUdgnF823w6Leuq0Zhky2D008nxVTanMQpLPY2JLc+6KO9mQEQXiP7h/Qey6/X6OlspPl7To6XLeTbU/viDbs6W/4u6LtlzDFLVqdZrK1U4r4ghUZYmazj9pMvoywfH8ev2/rkbyLAKANESAAMuZ7g6TocksxlPF6eegovqQduVF/nfTS8+7LV+gDi1dqf99osgV5xh4fyDfFUL23QZvEMzIrb6ViNDjmJjVQAft9Ci2tze3bfuxIcKN0OYKgXUR5e/3w4Jge2H7UyXoPWyb13NM74mQdcTmdg6DNUwwVMUCA2Zq1YcJwM0kxxxP8wqgI+IAAAeBYs2s7DZJ05TW8OspaXTQAknR8wJ0kezJph1Ie15Jlmw7pXV9bHrnzzGfNUlDkecWuP4KgyZwJGZX4rs2HnC2Lu2K22uUhNMltMurLHC7eim03X/r5FifLsU3kaZtsOotrpdM5CEIsreiHmu1cabUXrIp0XXBZVGs6ttAjCJKXo0jbvx0UPT2aC+Mt9GyF4iJAADhGiqH0+di5EaVILo6BDuIDXkhyLCbt4M/rUrLz6LCzNz990KxjL8/rTd0AQZO377I6Lr613F1+XB+v6a0svREEfu3HIEGSoVLkSYotf4tdimKJuvuzaMbY+luyOFydBvJDjSAo9tFm215FfH7iXZ56XMxB4CDFUMHPFbSeqO0OIA0ECADHmKQ4X7mlGIrQBRA1t3E9tjfmUAxJrwV5dgQsum1zbut2zcXbbFlqVqSsjoufP3owk/XAvbaZgyDBbXIicooh32rfPmy7uWwdQZC+jOMD3p2DUdnux5xjrcFySoZfhoNDgeMJvhmfYAQB8keAAMhYEd+AKZK8tm6UdqaLRmmUEQTEEtKTKMWQpR0YZp/l+WzTO1zKb+WOWScXVc6TFNf7rElAo4h3mCKWudjS2eK+9bckChA4TTHk2YZJSdRa3r/tqD5x/QYdGmg8h0BSEy30Rmaow6jg1bW91e3i5Rrkr1maxDBcPEe1yWW5MKLuj1bcfa2UvhXF1ZV3AYB2w7U/uvGJihbfu033bjmspz1pntbt6cu7SLNkn2KIXn8fJHnAsD3ghEmNkefbT63UiK00OR/zzIta/2HZVp58J1WOrW4qJUOHUErSG0Hg1/5ikmL/XXXfdt2z5bB+8ucv14k93c6Xb7uGFC1wE24OgmLVaSbbPml2ry6aItXG5aliHyWSfBmhy9FixxOKobszaJhKiBEE8AEBAsCxZo0o23BnzGaM0Ye+u0q3bjwQ+vt5iPJQRoAAkosUQ44KEkMrTaRle8HUGJNrx1+sEQQF6/SaqVIx+sKtj+mHD+7W0NhE3sVpScU+QsJLcpeM/OZ5wVKVpSFuPbccHNQdjx7U215wVqzf25pDtjfSi7Zbwmzfoh9rtk7bIo7ATjIPStayaju4mNCdOQhQVF0dHSqVy3X/NkaAAB4gxRCQsRYa7ZyJTQcGQwcHpGKkGEr6kPPY/gENRug4I5bgp6TPuowgcKN5iiG/LtrNJkP1q7Th1AZY//fnm/XlO7bq0MCYhsfrP0QhmdSuHZ4dfEnm6pmI+DJHKwVN8/CJ6zfE/q2tE9Y2l4Rnl/am2iFnuu0ZieendGV2eFnbMNmlGCpgvKmltcHlTZLUZckRXMQgKFoPAQLAsWaNG4Y0RnPZnVvyLoJzSRoA92w+rF//v3sclgZxJe04Tv77RD9PpJXyOjd7my3XmtZLvWPN31vMTqTaIl+7ek9+BWkTbRIfSBQcb5QCoJ5H9/db/170tC9hJannsQTz2tj2cys1udtgCoL2SjHkWXWyKo6LEQQuDgXfXv5Ae+iwBAiivpjQyKGBsZa7XiI7pBgCHGueYogLdhTbDg9F+n5e7b1IIwgSFPIzNz7CEERPJD3Wkl4K8ux0aqU8mU33Q64phmav3HbcffqGjdrXN5piidIxVSVjjLYfGc61LO0gtQCBZ82bRCmGIjyoX/fwXuvffdsumFKwHdMOKYYsFSAlTH5cbnnrLEoZTlLM8zjy0JniCIIHtx/V3/9ojXYcGdaT5nfrr3/pPP3eK56ZaJloP4wgABxrGiCggZuy1p2D4NDAmDbus7+piOKwTlIcomcrz2ebVkqnYX/QzPfd33pFs5WniMGBWjyvZyOto9q3N+Vtb+o1E2UEwb7ekdjraSl+7f6mitYcb4dJim1NiyJ26BYpxWd2cxBYyhByGS6KWsDDqaVF3R1Fu35Psc0h+PmbH9XX79mm3ceivyhzsH9UH1i8UjsmX7I5NlzSJ5Zs1NIN+2OXFe2JAAGQMYZ8taYs5iDoG4k/BB/uJT2Tk74BxRwEbtiuyXlP+ltvzUV9KLKZqhND/rPRLps5q0mKJ5rc09tkcxeunoUrb7uPIOD5KVXFSjGUvLS0N5AH23sL9245on//2Ub92pfu0fo9fZGWe8djBzVUZ96uG9bti1pEtDkCBIBjzd7eYQRBunJLMRThu1k/5Ngm8EN8SR8ukqaazPNS0krP6c3eZvOtqkV/Q7SeqTq1Xs3ai2/NG9ubes1ESTHUrLOKjqh0Fekt7SRCBQjSL0ZuWi1A4Nu9vN0mKW614wnFEKZdcmy4pP+5dVOk5f7Tj9fV/bxZCkRgJgIEgGPMQZCvvLZulA6AIk4iCveSHgd0OrnRvHMvo4KEXXcL73aujdlgkuLmoqQYajbawLftkpai3ZMKVtxwx1HRKjWD7RmJ+0N+XJ7btv0Y9hHZxVyuPI77pWj3j7jCBsFuf/RgyiUB6iNAADjW7LJPAzeaomytKOVslo7AzVpqtMnbdVlLM8WQ73MQtBLrCAKT71t+dScpzqEcaXsixVC+5WgXqc1B4N0OTDCCIEIaNdp1+Yo7StK/49UuTHmLVaPZWi3FUJEOsazaOrZtEnZ7uTh3uW4jD1EOu7GJ2SmDgLQRIAAyVsQGbpHklmIogzkIaMv6Jen+sP0+TIdH0To3fGXbjkbGuxEErbjfY4dMW3BbZKFdRhAkmKM4UiC/6Xd92zApyW0EZ8w1F223hClv0S+JtlMpbNv5vS99ui44c6F+84Vnqac7364O39II2WR17FjnIAidYijdcgBpiXLUDY8RIED2uvIuANBySDGUq/wa4xFSDLXO/K5IIPkkxY4K0uZs1+TqJMUZFiYEz4rjVNRzomKkTkZIRdbKx1CtJCmGorTVmn23XbZ3Xny7Rqcl3CTF2W+Mc548X9uPDDtZVsVyLoU9Jz/7m8+b/vfWw0Nas6s3abFic/G2fKtpNmoz3DIYQdDuivqCSJRyD45N6EknzEmxNMBsjCAAHGvWQT02Qe9wK4rSWRtl8kP4K2kwKmkHf94PN7YH+SJp+vJvjtu57hQEHmx259tkcnlRF0vAPZ7UjmnPdkdXR/zHnCgjCDgOq4owgtPF7/LjZ4qh73zwEmfLsqYYKt4OK+AxlgXbSxlZjiBIvgwgqijXhOFxRhAgewQIgIyt3d2n/176WGEj374rwgNq3I5djhi/JD3Wkk9SnGz9SY1HyNHtM3uKoZzPuzpl8+E64LpD1Mz4/2HlHSQrqrS2mm/pNBLEB1SOEMhvOoKA4zRV8VMMFWu/hBtBkH45al1w5kI97UnznS3PdirFeSkh7wFmRTrG0j52KhWjkfGykxEETuYgIELglXa5TUap5uDYRGrlABohxRDgWJgb3P/+fIvOPGme3nfJM9IvUMFFbTDkFyCIkGKoTRpBsEv6gFOkB0+fWfPhmpznIKj3mQdPUa6DQ1NVip5iKP9tUUSpDSBood3hcgRBC20Wq9wSPLbJBg5TzaJfE233tzgjCJKkGXPBmmIou2KEkubk9f95y2P67sqdGhqbUKlsfykjDBejSYp+rqCYohx3w+MECJA9AgSAY2Ev+9c9vMdJgGBgtKSv37NNa3b16vwzF+r9l57t9G2evBWlEzRKKeO+tRK3LZv3G1SoL2kfa96BplZ5tmo+v2iOKYbqrDqP0hhjFNT0tIynlCqPFENZSasjKJXF5qJs6cSa9d0mFW+l7ZKWJB25sTv6CrZf2uE4sl3TW2TQorfSOr4uW7ZVX7lza6jvhj2XXbz9T/MBeYhyng0xggA5IEAAOBb27c77tx1NvK6R8bJ+58r7tWZ3nyTpjscO6Wdr9ulHf/oyPfXkeYmXX0R5deZFueEXMY8qZkszxVCYzpK8334qSvCumebpQTIqSEh5jCAoV4y6OtMLEEzXKWLVeMCPp02mIEhUT+YgiC7JtakjQYQg7lqLttfC3HPzbhckZWsfR0n7NSXvF2SKvj+mJKnG9Q/vdb4eF5uVFEN+aZVnimaiXBOGxpiDANljDgIghL7hkq57eI+uuOtxPbq/P+/iTFu26eB0cGDKnt4R/WTV7pxKlL/cUgxFaNhkXcYg7zHWqKvocxC0yrOVdQ4Ck28nUr2y5bHfZ3bajLkOEEz+/8gphlrlIMwYm625KJ3+zVMMscGb6UwSIIg7gKBgu8XHOQhcr892TQ8zguCpJ/Uc999Ztn+j3q99a5mndeg8un/A+TJdBF5aJXjTrgq79yIUnBRDyAMjCIAm9vaO6D2Xr9DOo8PVD26UPvubz9V7X1o/PVCWN6xPLtlY9/P/WrpJf/H68zIsCaLs+HqdCSu3HdV3VuzQnt4RveLcU/Xnr32Wujs7VK4YzenqmFxFYZtDLSnp/kj6bJJ3Lvq81++KdcI8+TgHQebF0MwXN0sp5XqIWjUe8ONJ69z17ZrgywgCzzaLSuWKvr9yp1ZuP6Zznjxf73rx0/X0U5KnpkxSzST9uL4dd2kJNwdB6sVIlW0EQZjr/Ufe/ByXxYnEmNnHsa3Evu0qH86jsGVwcZwX/VwpIh+OsbxF2QKDjCBADggQoG2Mlsqa29UR+W2SLyzd9ERwYNK/XLteb3neU3RiT/es72d579vXN5rdynJSlLZEpDkIZlTq/seP6P2LV06n7XhoxzH97+2bdWJPlyYqRq+74HT9v996XmG2RbuIsz8qFaOOjuo1KGnnZt4PN61yONonKZbyrGn9OQiyL89EpSKpc/q/05qkOOrDI+na4klrq7XS3oiSzqRIKYYqFaMPXb1KSzcemP7sBw/s0g//5GU659QTki08wWbIJ8VQcfabFO76WLQ6zWS7tTQ7z1513qn65QvPOO6zLN/SrxijjhlrLFKHqA8lDXspzXIEwU9X79Y379uhh3f1SpK+/oEX63XPPn26LY/wrJN2+3AAZoBJiuE7Ugyh5T1+aFC/ddl9uvDfbtYrPvdzfXv59ki//3GddD3litG1q/fU/X6b3N+8lVuKoQjrndk4+NbyHXVzevePTmh4vKwb1u7TX39/ddIiwgO1+z5pn1Lejem81+9Ks8a6b/X0YQSB8zkIptYTsW4xUlJDKc5B4Nm5kkSrjiBYu6fvuOCAJB0cGNM3I7aNXUvS19YuKYZsyhWjNbt69fihoUzX6zogYU0x1GSHXfG7L1ZPd+dxn2WZYbNe0VvlEMsq8BR2PU7mIAixkJ+s2q2//cGa6eCAJP3hNx/Uh3+8tlCBYV+wxaIdu4NMUowcECBASxsen9C7L1+hh3YcU8VIe/tG9a/XbdDP1oafMKmRlQ4mGUbriNJ4ntmpdcO6fU1/8/NHD6pvpBS1WEhRnIZu+bgAQeMlhBnplHt6lRZp6ds6mXOfgyDkZ2mb2THjOsXQ1FuWUTshcj8HCiq9zh6/9keSt3cjzUFQoONw0W2b6n7+jXu3J152kuMq0QiCmNu/OHutqlE1Nx8Y0Cs+93O97cv36pqHij0HmXWS4rJ9j80MDmSt3v3I/sa0X0egD8UJWwYnIwhCNGO+s2JH3c+veWi37tt6OHEZ2o1vx3xSA6Ml/fCBXfrkkg267uE9oV6eiXLsjoyTYgjZI8UQWtqKx4/o0MDYrM+vf3iv3vq8pyZadsMOvBa7+RVNXsOro+z2OJ0JFSPdsmF/5N8hPXEaurU/SdpQzruhXfRUBlOsKYaa/D1tvkxSPDHjSTq1F+ciLpc3+GJiszUVZQTBRJOOy7yv1bVq34T1SZI3vdvlMlC/A9roD7/5oPb3t0bKUdv9Nk7bOch9KuACHZweFDXLFENhjqdVO3sb/u1LP9+iV557auJytBPbFo+8R3M+XvtHS3r/11dqTc099WcX7tOX3/eL03MH1hOl2B41HdBGGEGAlvbpnz1S9/OZw6vjaNTk5Fqer9xSDEX5bsxCxn1rN+/Ho1YVawRBzdNP4hRDyX6eWKs0XK2TFJt8JymuL/sCzXzTzpYGItF6Ii7Wv31TDKnFdzzbH0mK0+xt5VpFGskSJfARVZLN0Jkgx1DcYLVPgZsw6hX30f0Ds+ZJy9JbnpvsZauZbPeWWPedTFMM+RHQj8uPlz7ClcHFZSzpvlm57Wih9q8PijSippmfPLT7uOCAJN268YDu2XLI/sMI1fTjnES7YQQBWprriRTDKNj9zXuutufDu3r1vft3am/fiF5x7qn6w1c+U92d7mKkURo2cQ/LHA5nOFb7AJn07ee8O6Va5VLX7Nz17aElj+LMfNPOdRGmJymOuOQipXbxSWpzEKSz2FxEGkHQbA6CpIVxyNdRN0lSDMXdwH5uicbqlffOx5p0RqXs3S95utPl2eJytuv9Jc88xWk54ij6HAQ+TCAbZj3u2mTZjEJAa/rEko11P190+xa9/oIz6v5NivbsxuGFPBAgQEtL6y1HKdmEakjP1+7aqq/89ouO++yhHUf1O1eu1Eipmsvv7s2H9fDOXl32O78YKtd7GFGOtLgdu+WYM3JmOUlbO4mzG2svSdbUNiEWnnc/j28d53HZHvCMcp6DwJMOh5lvU6cVnIq6WF87O32X1ltpvl0SkpQnyv22WVvTp+3SLB1SEknqmaQtFnu1Hu2XMOrdcx2+5xLZf/zGxTrzpB6ny7ROUmz52/sueUbdz7Ns/hZ9BEEaorYTw3zd1W3fxb6hDRKNre3RKlty5qiCmVqlnmhdpBhCS0szst/oYYbhYPm6cd3+WZMELb53+3RwYMrNG/br8cND7lYcYbfH7VyLmxqg3R9QUhMnQFCzD5Pul7z3a6scVtbTKucIQb37SR6BmVn3UsdFmKpn1GtjqwSpspbeCAK/9keS8rgcQeCTmfOJ+CLJSzd5j6ZrxPX1qd7SOjvyeZQ/48S5+u1Lzna+XFuHq+1vv/78+qmOsnxBxtQ5tYp0j0qjpFEvjWHOZVfnu4vlFGj3eoHtFe2awOZCHggQoKXl8czGzS9/P3/0+Dkmbli7r+73Ll/2uLN1RumIiD+CgIOr6Gr3vX0EQfNl5f3g2SrXOvskxfl2eXozgmDGtcf1pWg6xVDUEQStchBmjK3WXJQ37ZuOIPBoi6fZjEhSzyQphuJeBtLeLyXXozXqLK4rp+HM5zz5hFSWa7umN2oD/9Xrz3U2GjiJuiMIcihHXGm0KSMH/VNYZpJ1NUMbBFFFuQdzeCEPBAjQ0tJMMeRBW7QtxNmD+/tGQ31v+xF3Iwii3MTjziUQewRBvNWhiTidC+XjAgSNv5flW1Rx+dTplYTPcxDUW3MucxDMOFhd7/u4S/P0ZWjvpXVM+/YwmyzFkLsRBL5tFx8lm6Q45u9S3i8lxxNH1bvuJtluSSSaM8LCOklxgx1mG0URZJhkqOgphtIoatT6h3s5Jl5Z0lgOL25FY93mUY+VRCXJR94vdgFhECBAS0s1xVCDRmea1/5KxWh0RqocxOdyX0VZVuwRBCnmDkZ0cXZj7W9sx0GYYyT3dmbe63fE1slsjH/VbMURBE8sN9qC8w6SFVVaW62V9kaUVDzN2pqttF1skpyOSTLlxL0OpH35mJnuMql65c0tQJBSD0KcEQS2eRiyfJmr/iTFyUaK+iJuWdNIG+jTCIIJx0HAVtcqLxbFFTlg1ubbC/lgkmK0tDxGEKTzBobR//18i765fLt6h0v6xWc8Sf/znheksCb/xIm2h/2Fy86lKEuKe1zGDXjxxoI/ysfNQWALEDRfVt4vLrXKUdV0kuIcK1o3xVAOBZp5rXSeWztmiiECBDGltNl8u9ckKU2UN0Ndv0U6Wirr+of36uHdvXrOmQv19heepYU93U7XkYYkWyHRG+l+HXbTxp2PIJit1UYQWOcgaPCnjpy2wUx1r38JR4pmyYfihEsx5GhdDio8PM5Le1H4cIzlqc2rj4IgQICWlmYHWqPmaBoPyN9ZsUNfuHXT9H+v3H5U77l8ufP15KF3eFxrdvfp2Wcs1Jkn9ThZZtj97jRAEGFZcY/LuJ0QNEjSEWe7HjcHgfXN9QKkGGqRA8u2rasjCPJMMeTHRp6ZQsX1vp+qZ9TFMrw/Hl+Oq7QlOU7DpvQzxjQ9DqOUY7RU1ge/+aDu2XJ4+rMfPbRb3/7DS3TSPP+DBHElmoMg5vGc9lmQyQiCnPKdphUgsJ0rjV6usW2DLDdPvZcNrBlVPLsMp3FfcD2CYF/fiD55/cYkRapZV/JlDI1PJF9IG3GYYaiQIvcRtcNGgXcIEKClJe08sF3Is2x0Xr9m76zPdh0dya4AKfnmfdv1iSUbphtpf/CKZ+pf3/qcxJONhb0Bu+xbirKouCMB4s5BgHTEGt1S8xPbcRBmV+f9tm7eAQpXmm1r/0YQZF+O2SmG0ikEKYaywdwNzYVtP4b7Wvjj9OePHjwuOCBJa3f3acmavfqdS88OvZw8JDkdEw0giLnetO+h7kcQzC5vV2deAYJ0lmu7pjdqA9tGUWQ5B0G9a4btEPPu7pVCgaI+tti+3jdS0nsvX6HtR4YTlemJdSWv8NAYIwiiyPu5JW8uzwcgLcxBgJaWtPPA9vMsG50PbD+W2bqysn5Pnz5+/YbjtvHie7dpydp9mZXBZUMlyqLirrcct1eHFoY3wqYYCnOM5L1b816/K9b9INMWb/k1MzvFkNvlx08x5LYc7SKtzebbuZKkpmED8q5HsVx59+N1P//49Rucrsc3Sd5Ij7sL0j5cnU9SXKfAab3J30weIwjGJ+p3xnbbJiHIUL0muu1+XaQAd+xROpGD/o3/tmzTIWfBAcnRCIIxRhBEUZwjPh3tMnoTxebHHRVISdLGl+33Decg4Nofyvcf2Fn3828v35542WH3gdvn+vALi9uhMBFzkmIaJOlInGLINpQ+xMLzfrhslTeBmqUA8O38yWOzz0ztkN6xF225pBiKJ61z17dzJYmwx1aY70XZ3Kt29iYqT77ilzHJG+m+3oucpxiq81lXbpMUZ7/e0VL97TlvTmfD3+SeYqhAOVXSKE7kN6YtG+xffrouYWmO56IdM0yKoUisI2pSmNDaN5EzDBWwjig+AgRoaYlTDFn+1niS4vwv5nM8eZvG5jsr6gcIZo6WGBiN3vgKuw9cPnBHuYdnPQcB0hGn3XZ8gCDZCIK8D4dWabc2SwGQb4qhiB0OKZl5rPnyBnreQbKi8mX/pS3ZHAThOnfDpAz0bLN4KdkcBDF/l/KOcT2CoF6B85qgN63V2trvI6X6IwjmdTcOEGSpboohy/d9eF6slcr54DClSn+M50HrupyMICDFUCR+HfKpsF0bmYIAReB/LyKQQNIONHvnQz6N8jC6c8pJ6tJEuaIPX7NGe3qjz7UQfgSBwwBBhO82mmitmbhzEPjWadPOandh0hEE7Nds5LmZD/SPzep0yKNTYWagwvVbTVPLi3qJI5d+PGldO3y7JiUpTjnkiL0w32uXtwDzqmb89aZb4LFWHkGQQ2qjkXG/AwT1ninsqSTTLE10PkxSnGXzxsWqmKQ4Gt+CYmmwzYnSDvVH8REgACyscxB4nGKou6v4p/b/3r5ZP3xwd6zfht0FLvdVtBEE8VbM27J+idPQCzsHQZh9nXenU6scjtZqGJPrdv72ih160adv1VX3bqstUuZmjSBwXIbpOQginlNcE+NKK8VQ6wg9BwHHYO7iXqPT3nXOUwzVKW9ucxCkFJhotE+MMY1HEFhTDOU8SbHl+3mPAo0i7rkS9R6d6T2dEQSZG7TM2VCg08HKdk2OnnIrYWGAGLryLgDgM/skxQ1+k0pJounM6YHBpZs37I/927ANTLcjCMIvK26HQuw5CHw4KFtRqimGoi0rD63yJox9kuL8r+m9wyV9YslGnfWk+XrjhWfkUp6Zx5rrjo2pxUU9pOmcjaddNluS4F7YlH5hUhFFKUV3Z6BSzHt93pKUOsn9zNet5Xo/1k05l1Pt0wpMbNjbr/+85VGNT1T0yxedqZecc4ok+2iMHssIgiyfhupeMyy7x7c2VBr3haiLzDY+YF9ZmPsHcxCEM1oq6+9/tEY3rN2Xd1FSZx1B0C6NLxRa8V8zBlIUb5Li/C/++ZcguU0HBmP/NuwucNm5FGVRcVcbdw6CVjgeWkXtvrf1K4UbQeCgQAnkvf4sGONPPW9aP/lglUN5Zl4r0+rYiPy2YZFewfRIWlvNh/aPK2FHEIRJcxVls/R0Ne7sbKXtO1OSUznuZkl7a2YxSXFeh0RamY0Gxyb05Tu26oq7t+ldX1uuHz24S1Lj9EKSPymG6u0L273St9M5jeJEvadnGTRpds0JU3TbG/F4wieXbGyL4IBkf0kzcsAsWVGAWAgQABa2hk1ew3rDaOWHSJecphiK8N24Hf1hJ01ENuLsxdp9n3wEQYwCONQqV5miXC5/smqPJD/mIHA+gsAc///DyvscKKrU5iBIZ7GxJSmPyxEEUfRY0qWMlvxuAyRpeyYZQRD3t0WbpLhuB3RuAYL0n4GMkT5706OqVBqnF5KapRhKo2T11XvpyLZ/vLtepnAw+XxPd1HfYVIMNVWpGP1kVfOUwR5PVxGJLf2aiXhLoD8HeSBAAFjYGio+pxhq906TL962KdT3nKYYirCsuOuNPYKABkYq4mzWsCmGwhwjuacYaoPjysc65jIHwYyHGueTFMe8c8a9Jra71IJMnu2OJIdp2I7/cCMIwhfE9jb0wFgp9HKKJsm+8uywm5bJCAKnawgvq5ekjg6Na8W2I9YAwXxbgCCNQjVQdw4CW4DAwX20UslmnqS4a4jc6ZtpiqFkf5ekQVIMNdU3UnI+YbvPmKQYRcccBIBNnOs41/7clcpGj+7v1wVnnmj9Xl4drHHTYoRNeTATh2Q64jT0jg8QhPteI3l3jrbKcWXbjz6mAs+jSDOPx7QunZHTEXgYwCmC9EYQtM7+CPu2vus5CHq6G7+7NTRWlhZGWFjGkuz9RHMQxB1BkPLxOu58BEG9Duh8zrm0UgzVs693VCf2dDf8u20OgizVO4ZteyfJriuVK/r3n23Ujev2KQgCveW5T9HH3vIcdXfGf/czjUMp+nmd3fHcrGhhzq1RS+ortCenkxQnLAsQByMIAAv7HASkGEqLi/J/a/mOpt9xmRkgSpHj9uuSb7v4jpuDIGGKobwnaC34ZWZa2m/4uZZHmWZeelx3rJFi6AlDYxOp7+MW3Gx1Jd2Oa3b1Nv1OqA6wCMWwdXYOjvr9tmqSzZ3HCxtpr9L5CIJ6KYacriG8LNOsGlUnOW3ENuomy2e1+iMIbO28+HvvYz9dp28t36HDg+M6NDCmq+7brn+7bkPs5aUlcnigYCmG8m6Ht5JWecHAFqPz8ZkCmIkAAWARa5LiCMtfv6cvlU7fot9/XGySMPkOnaYYirDn4zYoY48gKPjx4Ks427X2J7bdGWbR+QeM8l6/G7b9mHcap3ryKNGsOQgcjxY3M/5/+N/5t3/i2nZ4SL/xlXt18Sdu0Uv+43ZdftfW1NaV1kOqh6dLItc81LwdEfe+3IhtkuJWnhAzyTUl9hwE8VcZivMRBHVKnNscBBkOIaiYxnMQdHYE6u5sXJYsX+Wq1yaz7Z64l46xibKWrJk94euSNXsTBaVSGUEQsZJZtrlcpBjKeyQv/ONykuIWauKiQAgQABaxMgxFaNy89Uv36K1fukdHh8ZjrMlSBqdLy56LSf+CEI8FbucgCP/d2vVGOV5oiPol3vWh9t+Nl1CMOQhyXb0ztk5mH+uYR5lmBjVdF+F/b9+sj/10nQ70j0b6nY/7J47RUlnvuXy5Vu/slTHS4cExfebGR/WjB3flXbRIfNsdScvz7RXNRyKGuS+72i5DngcIktQzSdDK1+tAKYMRBHmddVmmGJKRRhqkcpnX3enNiO6sJiles6uvbsBkcGxCa3b3xlxqEzEL6/PEs81TDCVfBpIp4hv3tuBp5DSa3rWq0A4IEAAWtgt5o+G1US/lG/f161+vXR/xV3Z5dxwm5frt1IbrcbiZIgUIalYc5Xfx31Qs9vHQSowx2ri3X1++Y4u+e//Oht8LNweBy5JFt+nAYEu80WofQZBdOcLKo0gzt0Ma95ir79+pP/n2Q5F+4+HuieWB7Ud1oH9s1ufXr9mbyvpSm4OgVXZIBKECBFFeBLB81/VoBZ8kCy7E/V2629P9CII6n+U1giDTFEONRxA0m38gy9jBF5ZumvVZGimGbL8bCzl3St3lpnBHjbrMbCcpTr6yoj9vZyHsOejzhNYz2UbG2CYpbplGK1oakxQDFrabT6PLf5wb1g3r9ul/K6bhTWVed2fDxnErcjKCIESDxOXDYZQl1bYrovwu7ggC2q/piHP8fHflTl33cPNOvzCnQN4PJh/67ip1dQT6nUvP1r+99cJMUw5kJe9tXFcuubqPX6ctH3SWivh2WT3/fevsjiVJunvz4VTWl9Zx7d3bbhkUx/XIPlsQwMvrUY0k52OiSYpj/zJd7icprvOZ0zWEl+Xt3pjG95x5c5q965hdQR/e1auD/aM6/cSe6c/S2D9dliTnpQTPT+lMUhyxDO6L0FCzTRXmfsbI7nTZR+Dkt+1tgXynkxRzeCEHjCAALOLNQRDvam7LGxm1IV70G0pWDS63IwjipQqK8lDsInACd+KcZ2GCA9VlF+PBZKJidNV92/XN5dvzLkpstq3oYwd0PiMIqms1xmjRbZu9nAyxyLI+lz08rFORRTVdpxgqW+7zrTyCIEnVYs9BkPLmdD5JcYIj+ikn9ejk+d3OypLlCwFG0rAlxZBPvrvy+JGhacxxNMcSIJgo+xVoi9qGyrLN1WxNYYrSytdkH/i6dW33fdsIAp9H1ABTCBAAFtYRBI1SDMW8mNsailEX6ftbZs246CwJ8+iS1xwEtQ3gaKmJIhSodn3xfoYaj+7v19//cI1+7Uv36OPXrdfhwdnpQFwKs898Os9/8ECxcqUfp2gphnIo09S15/o1e/U/t9V/2z0PHp0CiWSdQzutzdYq+yOKcCmGwi/P1sGXdGJ6HwOeUxKVzdNqlbIYQRCy7q8+7zSnaYEyTTFkpL29I3X/trDHHvTIenqCh3YcO+6/05jjqMsyKbPrY25K3OCUz29Mu7geprW921H965ufF3drgCAINDZR1n1bD+vGdft0rGaeSU+rAxyHFEOAhXUEQYPPY+dCjfez1JeVh8xGEDhcT5TGc+3QxCi/YwRBPrYeGtR7Ll+h3uGSJGndnj4tf/yIFr3nhamtswiTFNd6dP9A3kWIrXCTFOdwhZ861n7o2aS53qW0iSnr7FxpPXT7tjey6FwIN4IgfDls1/WkbSOf33ZNUrS414G0rx+uRxDUE7YOQeA22U6mKYZktO3wUN2/nf3k+dbfZp34cGbgJI1JirtTChCkcb2MPILAslWCwL82WRbneDvzbHdPs6UYOjo8rrf+7z3afHBQktTT3aHFH3iJXn7uqUxSjEJgBAFgYb2OO251WkcQRL0/5Hg/GS2VdffmQ1qyZm/st6yzeoh12dCMNBKg5rtxfxeFbw3qovnxQ7ungwNTNh0Y1N2bD6W2zjD72ocUQ60gjRQAacqjSFPrvHfLkexXbuHh7okly7dxpRSbCK2yQyade/oCSdV2zX1bD2vltqOzOuBsHQVx2No/iQMECdKPhJFkUyS51vraNio53t71OlvD1sH1KKVMUwwZ6fFD9QMEzzptQWblCGPmZrHtnjTaF96lGIr4fdt7UK6PuGabP8zuIUCQLl+bFGXLeXZoYGw6OCBJo6WK/vQ7D2miXPG2PkAtRhAAFvYRBI1SDMV8k8nSxoicsy6nCMHB/lG954oV0w35nu4OXfm7L9Erzzs10nKcpBgK8TDkNMVQhO/WjlzIorHAGwjJfOXOrXU//8yNj6a2zjDXEQaUuGHb0j4Ob86jSK47QV3xtFiRZT69d0rbzbfdkbQ8xhhtOTio912xQgcHqi88PP2UefreH12qpz1p/uR3wiwn/Dpt7Z+k52GSCUzTlmREZ+yRuykfsK6D+EkmKXYdg8wyqDlRrmjn0eG6f/uFU0+w/jbrFEOzRxC4H6Fo+12yEQSxf9qQyzemO4LA6XNbs2WFeXYaI0CQmzzbf1FfZOwfndDdmw9Pv3QQVqu0cVEsjCAALOxzEDT4Tcx1uRxBkNcN5ZM/23jcWz6jpYo+9N1VmojYYC3mJMVR1hsvxRDaR5hj08e321uNj4M08igSx1q6sh9B4M/+3H1sWI8fGkwpvUWy35crRn/5vdXTwQFJ2nV0RP/wozXT/x3m3IhSDGuAwPcRBAmOq2RTEPhzPNdyHVitt7Sw543rF/6zTDHUO1Jq2CH39FOapRjK9tqaxcgK2x4vpdRoySoIF+e5Oy4XW4o5CJpLcg76em2P0yZe/viRGAGzcDYdKG6aV/iHEQSARZZzENgeJCIP0cypM+eGtftmfdY3UtJdmw/p9RecEXo5Wb2t6nI9keYgqGlPZtEBSd9e8YQ5h319q7tobB0sPnaM5zGqwcdAieTfG+txZf2Wa1qHUJTl9g2X9MFvPaAHth+TJJ1/xgJ98w9eqqecNC+dwsWw/Uj9t5ZXPH5UfSMlnTSvO/ExuOPIkO7ZclhPPmGOXn7uqakGCHy8nk1JUjYf5v6qu3zXAYIEiwsUOL3OzAxqnr5w7nGBNJdsx/3cLr/edZyVYsiyz2KPOLf8LOoLWTOWnOC39bnsEK12NDt8bms2giBMiiECBKny9ZYVNxVyWvX5/kq/5gdDsREgACxs1//GIwjiXf2tjaiob2DEKkF6lm89Ei1AkNkcBC4bmvHWm0Vnn2/HA5oLc1i4nGS7ndm2Ipu4ysdUS5K/5Yoq8wBBWsuNsD/+6cdrp4MDUnVelz/9zipd96FXuCtPine/PcdGdNK87nAbs8F3bli7T3/1/dXTbZ5nnDJf+/pGGy7G1jZavvWIrrpvm44Nl3TJM0/RX7z+XM3t6jy+GCmfLsnmIEiy3ridNeluEOcphuocSGGr0OF4gteZAYJ/feuF+svvrXa3ghrWl7WaXDxzTzFkuUDEnjvDssxEcxCkcDpEH0Fg29cJCzNzXQn/LjEHQRhh78NFas/Fff6KHDAL+fXF926LURqgPgIEgJVtBEGjOQjircllaljf7rFRX7BIexj8FKcphiJ8t/bNb892FTzBCILspPGGX5ryeAvY12CUn6WKzpZiqFIxztNWpHUI7T42om+v2KFA0usuOF1nnVx/NMBoqaybN+yf9fmaXb3a2zuipzb4nU+mdlmYzo963xktlfX3P3r4uE7kRnnWpzQ695dvPaLfXXz/9KS4K7cd1T1bDuu7H7xU8+Y8ESRIO11DXpMUx50MOO3rh+vLZv05CMKtxPkkxTOW90vPOV0vOvtJemjHsQa/iC/Oy1pTsr5dzrxW29sX8dZh+12SN9rT2FRR61gbNJ7JeYDAQYVJMZQuD5vgkuKNIIg3/sXTDYCW5te4PMAz8UYQxF1X41/mnYNvaGxCN6zdpy/dvlkrHj8SudMs6oOfiw6wMO1Ipx1tEZZVe1zZJqd2xcdOTtiFG0GQfjnagX0EgX/nTh5F8jQ+0DLPTraOjzQCgWm1Ka68Z5v+9dr1+pdr1+uX/3uZHtpxtO73bG/J37/tiLPypHmuTO2zMNfheuW4ef1+jZaiXcQbdUosvnfbrE7y1Tt79d+3PjajIJFWl6n4naVGn/rZRreFccR1YLXe0sJutyBw28E6M2Y5f06XvvkHL3W3ghq27disSlk/P82epLjxd+OWzZ5iKJ36pvFs28g9mw/HXFs0zVMMNS973OBkO2nJ+WViPoB5+EgBzEKAALDIdA4CSwM4zxtK33BJ771ihT703VX6wq2b9J7LV+g/bngkUqfzRMQbadzcflE5jQ9E+G7tw46vjR/kK8xDlY+d163Gx02cR5F8PdZa5fppG0GQRsq9LHbn0HhZ//yT9XX/ZuvUy+u+HNXUKNK464gTCGl0LGzc21/38yvuzjbtQJLzMe41ZtvhodjrTPvy4fy6WWd5oQMEjifrrTeqacHcdBIT2LZjswnes751zSyNbfXx585o/MOoz1vHLTeFbRXnHLjmofr51Jvt66ialaw1Whf5C7sdo27vPPdP3IEjUV/Y87TpjRZHgACwsLWzlm06pJHxcp2/uH8jJM/7w1X3bdfa3X3HfXblPdv0yL6B4z6z3fSi3kjjRuaP4/Gkj7UNZm7+qCdUiiFvX+suGNu1y8MTNI8RQZ++4RFtPTSY+Xqb8XD3xGLr+EgjYJ7VZnvswID29I7M+tyaUqkg+3Q6xVCIg7DeN+I0cxq9SV1vG9f7jc+bNm5nepIgSNoBRtcvF9cdQRDyt67Ts7jurLVJlGLIbVGamj1Jse3lL/fPi8lSDPlxr7n24b11P3d9xLVK+6GV+bqPYgXiAr/vwcAUrwIEQRB0BkHwvCAI/jAIgsuCIHgwCILxIAjM5P/ujLi8JwVB8M4gCL4SBMF9QRAcnFxefxAEW4Mg+H4QBL8dBEF3SvUxEf83kUY5EJ+tsbRmd5/e8dX7dGxo/PjfxB1B4LgR6aoT6X9u21T38yvveXzG+hovI+ow6yKmdIyyvWs7drN4M9fXBhYaC7PPfOy8LiLbVvQxCJNXid711eU5rbkx//ZOPNYUQ2mkMMjw2nGgf3Y6IVt9nQbA0kwxFGEVruoUJ1hU+4tWnKQ4SeAy/e3hOMVQncWFXYfjaUycL8/GPprbrxEEs+YgsHw3jaL5N0mxu4W6nkej2fMXTWw3wh4D9edY8VPcZ4PIk3bHWguQjDcBgiAI3i6pX9IaSVdK+lNJL5IUufM+CIIFQRAskbRf0g8l/Zmkl0k6bXJ5CyX9gqR3S/qOpE1BELw6eS3QappdyDfs7dei2zc7WZc1xVCM5aXdsLll/fETDFo72SIWJskQ2bxESjFU82Vu/skYY7Tl4IBuXr9fhwbG8i6OM+HmIODoccGaz9fHbZxTkY7MCIb7oFUe4O0jCNzfD7PcbFG7dIqyS5OOIIjztm6cFwpqy+d7Sq44nYkZDxaNxHWAud7+Cz+CIN1JitNknYOgaTGyPeZnbRfb6PC4KYZsbZaU3rBKY7RDVJlPUuz35bIt+DqHXtxre9R7uK/1R2tLJ1lgPCdLmu9oWQskvXXGZwckPahq0KBb0gskPW/yb+dIuj0Igt8wxvzMURlm+nKI79TLV4MchbmQX3Xfdn3i1y+a/u+4l3Lnbxo5XdpsM++N9hRD0UpTwPiA1ymGfO8UiGuiXNHf/OBh/WztvunP/uM3LtZvX3J2jqVyI9wcBBkUpA3Yzo9U3t5OyL8S5adVrm22t3HTGMWSZXAxcsek0wEEadZzcg6CFDr5GolzLGR5hiRdV8VInRn2+Mct75I1e3Xdw3s0NlHRr1x8pt730mfUPc5djxCtu7iQq6gWz93GrTcHQVoSpRjKegTBrPhA4wLEPT5syxz3bASBy1uNz8FANJbkEPC1hRfnXhwoaJmXWtDafAoQTDkg6YGa/71J0l/HXNYxSd+S9A1jzJqZfwyC4JWTf3+mqtvi6iAIzjfGHIi5voaMMX/heplw49jQuG7esF/bjwzpkmeeotc9+/Tphn6cC3ncjn57iqHoy6sYo84Um1MzG6gu03S0/giC2gBB+q2FVm2QXH3/zuOCA5L0sZ+u1yXPfLLOPX1BTqVygzkIsmPb1CUPr0W8UdSKGt+rSwWeg0CK36nTN1LS8q2HVSobveLcU3XKCXOcliup6REEIb7rKnVCrACBqf9vH1WvbdGOmCRvFcfZHt9ZsUP/cu0Tk2/fvfmw9vWO6h/e9OxZ33V9+6i3+8MGwZxPUpxhb63t+ahZADLrQ75zZooh2wiCmOtIawRBGgFVl0Ey16NgmrWlWuUFhKKoO0LK012Q2QiCWGsBkvEpQHCzpLONMTtrPwyC4JIYyxqX9ClJXzDG9Df6kjHmniAIXq9qWqMTJ//3N5I+GmOdKKCD/aN6zxUr9PihIUnS15Y9rt97+Tn6+K9dqCAI4g3njlkW9w8S6d5WZo8gaPzdqCmGXHR8Zv2mSdw5CLj5x/e1ZVvrfv6DB3bqY2+5MOPSuBXmFMhi/op2lySfb1r8K1F+WuUUsI4gSOEYzHK7RR9AYLT5wIDee8X9OjxYTRu3sKdL3/7DS/SCp58cbVkp1nN6DgLvRxBk2N5IuII4Tb8kHd9xOgAvv+vxWZ99495t+qtfOk9zuo7P3Ot8BEGCDjT3cxBk18q2ta+blSLrgPrMTmzb2mNfOyx/S5IWMZ05CNwty/Ux3KxordK+yFvY7Rh5e+e4f2KNIGAIDArCmzkIjDH7ZwYHEizrqDHm47bgQM13t0v6as1Hb3FRBhTD1+/ZNh0cmHLVfdu1+WB10rM47ay4DYpGDxI+5H2sv4KZ/2kZRht5kuLWbpXV7hsmKY5vb9/syS+l6jncCpqd+61+nmTFGtz0cBu36vkcR6tsitaegyBa6hVjpI/8ZN10cECSBkYn9Hc/eDjyutOs51RHYBppQhqJMzH98SMI/D5jfA967+8b1c6jw7M+Hxova9mmQ7M+j7O/rBKMRHHdOZVpiiHLJbBZoCLrI2pWiiHrCAL3pRtPaw6CuL/zeASB79cbyNtGXpxAXKDo7XcOUeTBmwBBzu6t+fc5eRUC2ftanTeBpCfeEIrTsInbGGocIIi1uNRvKjPL67KT7fBg8skwn0gTlc3dNcpqjhtBwM3fuVbZps3q4WHfdSHZ38bzMMWQr09MeWiRk93W75FGkCrLjuJ6dbOt/sjQuB7acWzW548fHtKWgwMOS5bM9AiCkN+ftc1j7IKlG5xnQHUq6bUpzmGZZYqhkqXztW+kNOsz16duvcWFH0FQ3BRDto5c3+Yg6Jw1gsAeDI3Ddv0uTfjVZvH5Dt1s+/tc9iIJe1+oe33zdC/EDf6SYghFQICgqvb868ytFHAqySR89245LCnehTnuWht1AsRdXvophsIvP2oHxz//dF3U4jTUrJi//42V+v7KnYk7TKI0Yo6bgyDRWsNptwZGq9S32TnG209u2M59L1MM+Vek3LTKprCPIGiVWj7Bdu060F9/ZJgkbT4wGGk9aQZCppYcdh0O4gPa0zuiK++u/2JLmPX6fu3I+p4WdW22zuh6x4HrycDrrSP8HARuRxFkmWLIOgdBk99mfcjPSjFkG0EQ43i/cd0+/cZX7mv4d99SDLk8p7NPMeT5BbMoEmxGX3dB3NSPnlYHOI5PcxDk6bk1/96VxgqCIHi1pJdKOkNSWdJhVec+uM8YM2T7LeJJMrR3qkETq3Efc7Wu+wDSftCauXSXcxBk6Y7HDumOxw5pb9+o/u6N58deTpQq1u4b1w+Q9dDILaaJilGXJWTtY/qbVuNj5yyn8xNaZVuEGUFQqRh9+Y4tumHdPnV2BPq15z9Vf/LqX4iVdiHL7VavI9F2WhVln0a9r85uM8Wr6P/cukm/+7JzZuW7b7ze7DZo0n0Xp92aZV5nW6d4vaI7n4MgweJcp2fJcgSBtd5NRxBke0GZuZlta49atFU7j+kvv7fa+h3bKJdm0pmk2OXSXE9S3OTvTteGOHzdB5mNIChKgwgtpe0DBEEQdEh6f81Ht6W0qmUNPh8OgmCxpH83xhxMad1tKUnn2dRPwy7CGPNESpvY62wwgiD2TShmQUKa/TZc4xXm0cc21UgPu+rF92zTh173LM219chaRKniA9uPaeW2o3rpM0+JtS7YtUqDqukIAg87r4uoaHMQ4Amtcq6HGUHw6Rse0eJ7t01/vmFvvwZGS/rHN10QeX1ZdhrXTzFkay9Y3haOPOFxeqaWHbcTOO6lZWi8rHu2HNLrLzgj1PezHEGQdPFZT1IcdYPYztN6x4Hr+0e9pYWtgvM5CDKMzNjOsSzLEcas8tjmW4m47JvX7296TCUJENikkQ4pKte7ulXaD74Lu5Xr7Q5f91HcSYo9rQ5wHFIMSX8uaerpqiLpsozXP1/SX0h6OAiCSzNed0tL8ubO1A0p7EN05bgHsJgPi45TDGV9U7XdK/PsyAy7HQbHJrTssdmTzIVfT7Tvv+try7Xots2ZNBbarT3SKvUtNRnCSoqh9KX1sJ2Erw9MeWiVLWF7G7dcqahUrugHD+yc9bfvrdwV6/6a9yFkHUHgcD1p1nNq2WHX4fK8PdA/1vxLU+t1ttb0ZX1ti7o2WwdlvWPa+RzF9dYR8rfu5yDIrmP+uof3Nvxb0xRDGZ8AM8tjW33UNtzlDebNq5UkLWIa28rlMrNPMeR2fXArz/kJ4j9/cVDBf20dIAiC4CJJn6356OvGmA0OVzEm6YeSfk/SxZJOlDRH0pmS3irpGj1xpXiKpBuCIIif42SGnp4eLViwQJJULpfV29s73fju7+/X+Hh1ItiRkRENDVWzHE1MTKi3t3d6GX19fSqVqhNvDQ8Pa3h4WJJUKpXU19c3/b3e3l5NTExIkoaGhjQyMiJJGh8fV39/v6Rqw7+3t1flclmSNDg4qNHRaq7ZsbExDQxUJ5+rVCrq7e1VZXJyyIGBAY2NVR+GRkdHNTg4GKpO/QPV73WqogXBEw9TJwRj6lS1DHNV0lyVJr9X1gmT3ytXzHF16lFJc1T9d5fKmq+pSXSNFgRjGh0vTdepa/J73Spr3uT3gsnvBZO7e57G1T1Zhjma0DyVVDambp3Gxsanv9czXdbmdTLGzX6aV1P3mXU6bj/198+qkyR1qKKO8eG6+ylqnWbuJ0laEIypU5XZ+8mU1d/fr6lQz4JgTB2T32tUp0P9o7GPvUo5ep2+ctsG7T42HL5OdY69ZnUKZDQ+PJD4fPLxGmE7n1zWKfKxF3M/zbxGjIyMWvdT2RjN17i6auqe2vkUsk5pXMvTPvaqDxn161SumEjX8kueNl9X/O6L9Xe/9KzJ7V/9nsv9ZBzsp6j3J6l6LU+rTopZp4nRkVTbEVld9zpLIw330+DAgB7YdlTD4xOz9tPA0Ig27uuPXCeT4X4KgtnX8qHB6n6qd+yZiep66x17UfdTmsfeyHC1TsaEO5+Mjj/2jIl/PnVNlqH22GtUJ2PM9LFnZKx1StouV6Wc6BpRMdHPpyBI0jYajHSNCCx1mpgozbpGmEp1va6OPVOZ3TaqlMZCXcvNxLjmmur3XFzLK6XRhvspy/vT8PDQrP0kPXGNMDKZ3p8qY0PHtWEnJq9T9epkIt6fwuynijGx709jY6MN91Ng4l0jprZ/1HZEvXtu52QZXJ1PqnM+1dapPHk9y7tt5GMfS5S2kTHh99PMOvX19Ta9Rvhep9pjr1yJdt0Le42Icz4VtX/Px/6ItOqUl7YNEARBcLKkayUtmPxos6S/c7yas4wx7zbGfNMYs8EYM2CMKRljDhhjbjDGvFPSr0uampHtFElfcbXySy+9VO94xzskSYcOHdKiRYumD9rFixdr48aNkqRly5ZpyZIlkqTdu3dr0aJF08u47LLLtHXrVknS0qVLtXTpUknS1q1bddllTwy2WLRokXbv3i1JWrJkiZYtq2ZU2rhxoxYvXiypekItWrRIhw5V39K+5pprtGLFCknS6tWrdfXVV0uqnjSLFi2aPkmvvvpqrV69WpK0YsUKXXPNNaHqdOvNN0qSTusY1Dt7npj09m1zN+qsjuqyX9K9Wy/prpb7rI5+vW1u9fcVU61T76H9kqSXz9mhF3RX32A5p/OY3jz3UUnSHJX1zp51Onjw4HSdzg+qvzmv87DeOHezJOmEYFzv7FmnE4LqxeCNczfrvM7qRMgXdh3Qa+ZslTH16/TII9UyvaB7r14+Z0foOlWMcbKfXjNnqy7sOlC3TrX76afX/GBWnSTp5GBUzzp0V939FLVOM/eTJL2zZ51O6xictZ+eqiNavHixjHliP50cjFrrNDw0EPvYGz24M1adrn14T+g61Tv2mtXphGBcW+/4UeLzycdrRKPz6dXdW53WKeqxF3c/zbxGrFv3sHU/VSrSm+c+qnM6j0lK93wKW6c0ruVpH3u2a0SpYkJfy1950jH96oIdeuOFZ6gy0q939qzTnMmGusv9ZEz6x16ja3ladZLi1enw+rtSbUdkdd078fFbG+6nB3++RGPlSsP9NF6uRK5TuWIy20+BglnX8rtu+qmk+sde57Htkuofe+XSeKT9lOaxd8/SG7RixQoZhT+f7r73vun91DEW/xoxcqRavtpjr1GdjJ449oyx1ylpu3xueSjRNaJiTKzzKe51b889P458jWhUp9HeQ7OuESdNHJXk7tgzI/2z9lP/ni2hjr2xvY/pF8uPSXJzLd+3cWXD/ZTl/emWn11Xdz9NXSOMyfb+ZNbfeFwbtn/HhoZ10ni1YyrpsVdbJ6P496fHVt/fcD/1lIem6xTlGvHd+3fGakfUu+eepl5n++mdPeu0UCPWOg0ODHjRNvKxjyVq2yjcfjKz6vTtK7/a8Brxuq5NudXJhK7TE8deoECl8fFI172u8mioOsU5n4rav+djf0RadcpL4PtQ9SAIPiHp45P/ucwY81oHy+yRdIukV09+1C/pVcaYtUmXHbM8fyTp8pqPXmyMeSjB8i6StL6np0ddXV1asWKFLrjgAg0MDOikk05SEATq7+9XT0+P5syZo5GREVUqFZ1wwgmamJjQ4OCgTj75ZEnVaNz8+fPV3d09HYmbP3++SqWShoeHddJJJ0mqRuMWLFigrq4uDQ0NqaOjQ/PmzdP4+LhGR0d14oknTkaC+7Rw4UJ1dnZW37bv6lJPT4/GxsY0Pj6uhQsXqlKpqL+/XyeeeKI6Ojo0MDCgOXPmaO7cuRodHdXExIQWLFigcrlsrdOBvmG99osr1KmK5gUlDZq5kqoR+1HTpa2f+3U9+yPXSpLG1K1OldUTTGjIzNWJPV26628u0ap9I/qDb65Sj0qqKNC4utSlsuaorGHNUfUthHHd9c9v1ikLezQ4OKiXff4ODZQ61K2yulTWiOYokNEJwbiGzBwZBZqncU2oUyV1ao4m1Cmjr/3BK/SKZ50yq05BV7ee+6mfa44m1CGjUXU3rFNZndNvINzzsV/VyT0diffTcz5yrcqTdZ9Zp9UfeeX0ftpz8Khe+9/3HFenEXWrQxW99Gnz9b0Pvf64/XT+v90auU4z95NUjdiPmG6V1XHcfnryvA7d8bevUM/8BTr/X27UgmBcw6ZbFXVUR2zUqdM/vel8vfeFp8U69r61co/+67bHI9fp5BMX6HD/cKg61Tv2mtUpkNGnfvWZ+u1XPSfR+eTjNeKFn7un4fn0yOfe7qxOL/zU0kjHXtz9NPMacdPfvk7nnHFyw/107sdu0tzKmMbVqYnJuqd1PoWp06bPvS2Va3nax95vXrlaWw4O1K3T+Wedosf2HAt1Lb/gtLm65k8u1YIFC/R/tz+mr962QYNmjqRA8zXuZD9t+Oxv6qX/cZuGB/tTPfZmnk9T1/L5Qcl5nZIcex99wzn6wCuflVo7Iqvr3t995z5dt+Fo3f305fc8T3Pmzdfvf2Nl3f30/T97lS46Y16kOi1esVdfvPXRTPbTjX/zGj1tQcdx1/K1Ow7rnYsfrnvs/foLn6EfrN5f99j7z/ddql997lND76eLPvqT1I69a//4RbrgqSfr+vWH9LFrVjc9n848ZYEOHB3QuafO0z+/7Rf1vZXbtWz9zljn0+ff9RK99YVPnz72LvzUHQ3rtOrjv6Kuyrg6Ojq0f6iiN/7X7Q3rtP5fXpOoXf6bX75bm3Yfin2NWP6xX9aCzkqk8+mPv7tWyzcfiHXd+9gbztYfvP6i0NeIgwNjet1nbqpbp0+89QK9/eInH3eN+I2vPaDHj445O/beccl5+sTbn3tc2+gbd23S/7txQ9Nr+d//0jP1g/u3a/egcXIt/5/ffI7edPGZs/bTOR+5IfW2Ue396c6/e7WeevqTGl73PnDVKj30+IHM7k8ve9o8/f1bnq8XPOMUjY4M6wcP7tG/37ylbp1+85Jz9am3Py/0/enCj/y06X564TNO1lW/fXGs+9P6vf1699dX1d1P5551mq79i1dFenYPOrt08eTza9R2xJZPv2nWPfetX1mpXX3jzs6nzrnztOYTv9qwTvt7h/WGz9+ca9to++fe4mUfS5S2UV8p0Cs/e2vT/XTigvm678OvOa5OW/cc1C//38q614h5nRWt/Y+351KnWzcd0999/6FIx94fvO5CvfLcJ+uDV94V+rr3/F84U1f/0cub1ukFn7sn8vlU1P49H/sjXNdpz549uvjii1XjYsdZbqzabpLiIAi6JP1ATwQHRiX9el7BgUlfl/Qvkp4x+d+/Kun/s3fe8ZJUZd7/VffNc+9kJgNDGBjikKMCEgwYEBQVw5pzWF13XXV1zWH1NYwJRUVYFxRFRVFEchAY0gwwMMAEGCbnuTN3bu7uev/o232ru6tOnXPqhOdU1/fzgenbXXVyfs7zPNICggoVVRgAyOfz1Q4EABMnTqx+7uzsrH5uaWmpea7SmYByJ6vQ2tpa81vwnQkTJlQ/t7W1oa2tDQDgeV7NcxXzRwDQ3t6O9vbyAJvL5Wqe6+npqX7u6OjgzlPLUFn4VUSuOhkDqA7kQHkirlBEHv1+2UGt75fzlNtavjUwFHiuMDbwlvGwz2+H73m489lt+NPSjegbLSvmjI4tIgDAH3uuwiDaqp9HxrphyfdD8zQ0Wqx5jjdPvu8rqafBQN7r81Rbnz3V34JpLSGHIa+j6sQ5WE+ieSo/N15PAGreCdZTyctj4sSJGC4UgYbyD8/TSBHybS+3VSpPna157jyFtb24PPnw0NbVg1wuJ56nMaiOEf6Ytdew/qQyT5W60l1P9WNEvrWcr6h6Kvn+2GanMe+q+xNvnnSM5RV0tb3yRYnwPBWKPvdYXvRaq23Wy+VrnlNZTyVff9sLS2upLq0U2l6+vbPallxse0B53BvNd6I0ptRbX08tHZ3wPI9RT75wnoq+b6yefL9xLO/o6h5LeWOeSrlyWwpre56Xi8wTUFtPvu9rbXsdXV3lcvf5+tP6XYMAWrBixyjeffXDOGj6BOn+1NFefjbY9iLz5AfaXn8/M09J1+W+l2yM8H25/iQ77uU7u4XWRr4fnSd4uYYxopImVW3PH1tHB+vJy7dW2xhrLG9pbcew1wZgWMlY3tbRWa2r+noyOT9N6CmXRdS458M3Oj89sGEIr//Zg5gzqQPXvPc0eC1tkXnyIbYu56kn35efn1rbR0LzVG575bSKjBG3rWjcF/G2vbA5t+Sp7U89YOfJy+WYbU80T7Jtj+IZSwWetdGePYPc9VSfp4kTJ0WujSrHmDby5Pu7pdpe43jGHvf4x4jy3CDSn+rzBLhxvtcMedq4cSNs0lQmhrzyzuIqlM36AEABwKW+799tLVEAfN8vAbgj8NURttKSJuIcfLIoVpwUcwbxp2Ub8a6rHsZfHo92pBWHaoejpnWDWM6CbDpTFYm6LEwwS2ebfjktcUUx0tjUsmM5yPV9P6tXAxQEHMAGfTbq9N9IXfMzQxxWlRaKPtM5o0xzkHFsLEtY+kysCXRHUXVSLLHaGi6U8MyWPum4W1vK2zeeegymT/fYkTR402tF0ejY69zG74qK+1lYaLwxeF68Q18RVDuMlSVurrU1XW7aM4QPXbOUWT82nayGobqs1u7sVxugamgVf2rhbVdJnLCbRqbveh69Pp+REUZTCQgA/BTAW8Y+lwD8i+/7f7WYniCbA5+nW0tFihgpRB+uxVHZpPBuVn505+rkG6OI5MqGS2mjpXqTxENFY2H1tn3c7wwnaDOyxd3Zqn8YzpYj8thouzxx20xX2mCVZIEhpGHhKT2KGefRF3ZjZ/9I/INNQlpkJaz5uljyme3p0p89gIfX7hKKr2iw4MLyxsqvK1VaFRBYSPCewVF86JpHsehLt+Al/+8u5rPB9FEvW5lpzdMpja2DVddhbVq1QCbs0gBvFKoP9HNEJAS5mPq32eaf3rwXLzAOyXWMHcmCpD1C5BRvl+JyS2F98efHNjp/KURX6m0Wi2zcwkJpt6s+w1GaRkDged73ALw38NX7fd//ja30hDAh8Jm4yN0NWLdv46gMyLybld6BUem4KkRt2GWlzSbPD33fx7dveTbyd5uHmR+/7jHuZ+1oEOTjH8qwhsmDtHpYt9dtpit1sG5vi2gQBA5xdZ1Zve7y+/UE7ChpuY3FmiMLpXgNgrdf+RBWb+O/kS7SrnXAip49tPGnW3cOK23PRlF+7DfLcNPyLegbLuD5HewtQzB52rUqEr4vo9mSZKgVjY15GzxMg0BxgYftNbg1CBQLreMO5k0RmwrLU8Sydb2Rv/E0d9/3sXJrH57l1DjSdphMYM2pug3HlRWF9cW//vYxfP+2VbaTYQ0CzS4UYwICAm0wo/loCgGB53lfA/DxwFef8H3/F5aSE8Xxgc/ydmoyqowkEBBUbgKZlNpHxSWtQWBw13rV/Wtx7YPrIn+3okEAYP2uATENgtEEQiXJ9zpbMxNDlInS7DFBgWEmTVWdtrfULgMOmNqFhbN6Ip5OJ6yiFBm7akwMyScnQ4C0jG2sZlYs+bENamCkiJuWb+GPz7KJIdbaypUNcRITQyZx6fap6aSKlo1ou1XdzcK0x3jzoPo8n4gCQbyJIcv9k63NzU7btr1DePn378VLv3cPXvb9e7jiS9KHqA8VqtuwK4q4l9+9puqP0EV4x6iwp2z33yhkUuWBbn4yMoKkXkDged5/Afhs4Kv/9n3/+5aSE4rneQsBnBH46i5LSUkVLBNDLTEr28qiweTiIYE8IxSTC70bY3wv2Lrt/NSmPULPJxEqyZJpENDGrgZBdHtUJXT79btPxdmH7Ye5kztx0XFz8Nv3nYauJmuTrM2LrC8bIpcrU09atlqsNljWIIhvUN+9dSV3fCanOuGDU2al8ncsUwfj1A/VfMZf6iNLFr6MaUyTYy3bxFDId4o3EbsTmJdTbYrJGRNDlvunvLZUWQP62a1ivkqSmJclPpQpv3gRd1g7WqBRIiOFEv7xFP8FgDRhu/9GIdvPRKcEqvnPSDf6r65axPO8fwXw1cBX3/J9/yuG4u72fT/26rLneV0oO06unMjsAHCzxqQ1DSwTQ3ELShsaBNEmhuQwKaVeylChBczeVgwi6lMgkQaBZBbjhCsqyG4syGPTPJYJE0OnHDQVpxx0Ss13zdZa2BoEtHwQZNSSls0Tqz/LtkEWJn0UiWoQPPLCbo2pUce4BgFtgnVN3cSQ7K1MCoj62pBh90CYBgHfux7UClOomBiKw3b/ZI11rPbROzCC+9fslIhP+BUl75pAdZtj5bdvaBRvvOIBpfElYeveIdtJkCZRm1SXDLVImxgim6OMjCqp1SDwPO9dAL4X+OrHvu//p4Jw7/I8zx/77y7Go2s9z/vymHZAVFhnAngAwKmBrz/PI1jIiIclIIg7MLWx8Ys2MWRGSq0TW/aORW//2vBBYIJsPSKPLeEWwDYxpDNdWXsZR8gHQWDz6sjZifOkRfjJamb/+YfleNMVS5TGZ1LwGRYTK/p1uwa0xauSStsjv+H3Qz+SxKTgClDrMDLUB4FqDYKB0Ya5n3cMVO6kmMgcF2tiyHL/FG0zFVZulTsKSKRBQN15vOI2x8rTj+5Yjc176BzKuyKQS0JY+7Pdf6OQXXuKZufB53dx+x/JyFAFKQ0Cz/NuAjCn7utZgc8neZ73WMirF/q+X72G63neMQB+jvGppL/8tfcjzqQs9n0/qUeYaQA+D+DznudtAvAEgK0AhgBMBXAigIPr3vmx7/s/TRhvxhgjClQDTW5WojYSsikwvdFiYeuQVdRRtajGQZC0HFRl1GLTxBDrcEHnAV+ztWRWFdvUIFHBG06ah989ssF2MrRBaJpLhOk50uS4ZmvTr/22vF/7L1XMXnRJ+r6MiSH5gzPRdRvr+bA+rLptFEs++oYKmNTVKhyHchNDRA4s47T1bHdP1l6MlTaqB6M2UW5iiFHGP7vnOcWxJSNPRSJHCJs9RKp7ep7UWcFlP1+CWz5xFqZ3t0tEmpEhDikBAYAjARzI+H0CgEUh37fV/T0NtdoREwB8SCAd1wNQ6TJ+DhoFH0F2A/gUQcfJTsOyJ887sJvcs0fFJbtGpLS4tHHI6nlmBQSUodMS3MOmBsEow7SI1mQRGjtMwFqws7Q46glu31Qfxshw3sIZ+K8Lj0y1gCAtmBbomxzXQm2zp2CIqWSB0lorjGDy4pLq+77Vsct0u1CpQRCWdh1r310DI7UCAs731GsQ2J/jgPh82e6eTAGBhrSl2geBQRND1GhWAQHVOpJNlkx+dvWP4J6V23HJCfMkY83IECO1JoYIcBiAtwP4KcpmhFYD6AVQGPt3JYDfAHg3gHmZcEA9o4zDXt7x2eTGL3LDLi0gkE+Laiz4/gXAdlQdRhITQ5TKO0MdVjUIWCaGNKbr0Bk92sKmCKsoWUKaeoJ7VwpbOc/zaCREI9QPZ3kxLSAwqxnTGJeJ/OrW6qu0PeotMFgOvOY1VcQlg5ST4kQxisG88W2onffW+SHgjkK5BoHS4KSJOzS23T9NawkkGdpVJqdQLCm/dKXeSbE7ULh0Igtvu3KpPkw5Ka7wqeufkHsxI0MCUhoEvu/PVxTOXdC0ZvR9/xzO51ahrIXwvzrSkRGP6O3xMEzu2VVvJCjd0LNl7oilRRL6fEo1CDLphTx2nRRHt0ed6Xr/2QfjD0ub59a5rI1gFhT2cjmPRjoy4tHgh5iJWRNDjd/JrgkotedKDiittcIQ0iDQm5RYZPpBkjYhml+2w9mQ7zT06/p4rPkgICIhiE0FZR8ErPek40uiQZBc26FQLOGLNz6FG5Ztwr7hgnRawlA9/rt0wSBPafIThHeMMmGmTRUy6fIg3+Zs+XLMaE5ICQgyMlTCdFLMOUAb9UEQ5aRYcplIyQdBwYIKge8Do4J+KJL5IKAL5bRRx/TBXRDWglCngGDBjG5ceMws3LR8i7Y40gg1DYKc55ExA6ELQtNcItJsYigsJhOxm/NBQLsRiqSunJcENv0TFgV5J8XMsCxpynBGEWerXxQqc0usk2IzyYiEbWJIfep0NTnWXvTmJ7fgl/98Dut3DWLLXn2OfVW3OZfOXFuICOR0Er5WoFlJ0gI8panIyNBDJiDISC2sw17eAdplHwSUBAQ2FmEl38dIUcxk0PBoSjUIMqRh3eLXDUsIoLN7e56HxW86HifPfwH3rd6J257eqi+yFBE8gKGgDp7L0RBU6ITOLJcM4yaGDEYXqkHg0slMJG7kIXgISWhZGIpc+pI5KX5my15cff9arNnWjxPnT8GHzjkEPR2t4c8z0hfWh/Vo6siFmfPUCgmonFfGmhiy3OZlnRTLkihMCW3KO5/dhg9d86iWfd4dz2zF7U9vQ09HK16ziOXKMf1Q0diRgbsPhjxnu/9GIpkw6hcKMjKATECQkWJGFeyAKfggkFczlU/LeBhq8m/DTEux5Au3gUSHNIQnfcJJI49NQRur/ao4eDj/iBmRv7Xmc3jnmQfhnWcehPmf/lviuCijY5wnIB+A53kk0qGTtIxtJg/sAcMaBCGV9D83P2Msfl2MaxDYTUccNSaG4nwQKIxLBikfBAnGuFVb9+Fndz+HPYOjAICH1u7CA2t24rr3n4b2lnzIG/wmhnzf19I26sPknb9UzwUUNAh4kqDqBnJLzpMy88G6Y8IKzsblMLaGTPj3v39kvRbhwE/vXoNv/n18nrjq/ucxpOESl23H7Lzkm8BrqGjbtXnYLhOz59FfL2RkAJmT4owUwzYxxBcGBR8EshOgGgFB8jAAO45efV/cp0Ba5+3sxoI8thxsl+PW64PgTScfkDiMIK62M1WppmZiKO95ys1KUIOq+rkopvrOpt5BfPEvT+FvyzcbiQ9oPATb1jeElVv3aY9Xu4mhsX8paWvGEeuDgPBtax38adnGqnCgwmPre/HQ87uEw6pPuy4ZnGywqg9BSQgIOJ5R1aR03OCmZmJIxl+CLlOU37t1Zc3fOoQDgP0xjxcK/U2WBAoEZFd4spcsUqE8mZF6MgFBRmpR4XDWqA8CxRoEKtKuKv82zAkUfV/YUXUy514ZacSmk2KWBoGKvnn8AZMThxHElY1WPVrSTWAz1wxOil1tc/Wo6M9tLewl/fa+Ybzxigdw1f1rE8clQr0Q57cPrZcOi1JzrmoQ2E1GLOd99258+x/PcPmCSipwS1oWMtOtjjYRpeEi4tBe1/6hUYOA7z3V5ZQjcILAc2iqqhpkncSaNjGkr92ZHemS+IQTgfr4XSHvsIkhXsKaGNWLR9LWHZxpcRnNTGZiKCO1iB4Oh2HybFD1HKhGQKAgIbCjQVA2MSQqINCUGMukNFtGsHk7lCWcUJEu1TcKXW1nqhbsXsRnW7h844wXV9tcPSo0ldpjBAQ3Ld+M9bsGk0ckSl0lrdi011C0eltH5eCC+rphpFDCj+9cg139I3jLqQcyn7WdFyqHQc9s7gv9npW6+oswpi4X8Maiej6gML/wmRhSg6yTWLZQiZgGQWpmVH5Kvo88iRUbG1kBFQV423nYvoZqi5TpZx4863NsRgYPBOT/GRl6GInZcfNMWCYXS1GH6PJ2KBMkphqGmvzbmBB9X9wPRZJkUp70v3TjCrzmR//EtQ+us50U57CpQcCyd6siXaq3Gy6Z2tBCYANHYS/XDD4ISA+8Aqg4KAq3mT7OF/7yVOI4ZKjPmambx6ZMDLlyqPaHpRsxMFLUGkfSdkzF/ELU3Mt2Usz/bBLqy5hbg8ADZkxsV5YOEgICjlWMqkP4fF6DBoGGNpJIE1pAQyYtuJIvl50U8xJqYoho/di07pCRoZtMQJCRWuJuj/OM0SY3K5E+CCSnIRWLYpfnsaLvxwqJ6qFye00HT2zYg8/+aXkmJBDEhvZLBZZJCJbjO15Ub/Bd7T460k3B9n/Oo3GIo5O4qts3XMDqbfvIj+0qBH5xGgS2qC96FxxC8uCKk+IKI4USbn96q+1kMDHtpFgU1nq8Pu261g71ofLuEXKeh0+9bKGydFBwmmqy7uVNDEX/xrb5L7n3k3or/l1XBKGiuJIvpzUIEj1Is36orykzMpKQmRjKSC0qfBCYnAAi7fRLJkFFynk2a1QnyZLvC7eBJGc0riwyf/PQOrz5VLXOadOMDf8ZFZgaBCr6neL9hit9oB5Vqa4xMURgL5fzKIgp9BLVDUolH1+88Slc++A6FEo+Zk5sx0/feiKOP2CK2QRyYsIHgS3qxwVTQivdo1ElX1TXQGH0DReYv9vOCvXblSLJI+eDwANOPmgKFszoxqptyZ2EUxD0cZkYUlQNsje4WeODjjWTqXaXFlzJl8s+CHjLWLTt2qw6eesOjjS4jKaG5m4iI0MBceZleIZok+O4YvmAkoNNnomMikp4Pb4vLiRyaaMvy/KNe5T452gWrJoY0uykWPV+w9XuoyrdwcMKClu5XM4jcYhjgyvvex7/+8ALVSHb1r3D+JdfPoT+mANSW6hog65oECQZdyi1Z9c0CABgNGZNlNhJccKykLXrbAq2iaHaH01dLuCNxfM8tLfk8Zv3naYkXgraaVwmhhQdI8qOW6y1mo4mksgHgWGHyhRwZfx29QKOCG6ZGJLTdqNmViwjIwyau4mMDAWo8EFgUtIbdRBp1wcBzzN0J6ahUTF7u4lUc+kWQwP//vvHbSfBGWyaGCoy7AipOHygdNhmF/V1TKFocx4NQYVOojZp1z+6oeG7vuEC7np2u+4kSaFinKGqQVC/RjCmQaB57K4KCLTGopbhOAFBpkHARMTEkC75QEMaOMus0uumd7dj/rSuxOmgcKHZpAZBi6TzFKbZHrZNHymSaUIzfiPeN2Vx5eDd7eLnS3xYG6Oabdn60FGPVC9qZrgLzd1ERoYC4m5K8WBy0FW9+FLjg0CPEMXUQjNuM9xAk0yyf3l8E3oHRmwnwwlU2PqXRbeT4kyDoIwyDYKaz/ZPT3JN4KQ4qu6e2dIX+v1P716jMTXyKDExRMEoeAj1OUtLm6wcLFE/1A4Sp1WZNCc2NBBMlj+r/OqnZG3ah/XyAc7XgoI5FSmjoEHAkwZVtSDrXJ19mUNHG9EjIXBnlBPDoeE79YR1Far1I23dQUOGXFqDZLhB5oMgI7XELc75TAwZ1CBQ7aSY87m7nt2Gu1dux/TudrzymNmYP31C9be4/Y3v+1KTt6lildUg2DM4igfW7MBo0ceZh07H1Alt3O+6gO8Df35sE95+xnzbSSGPVSfFmn0QqD7EduUmli48YjaGcl76tUREWxzVjZQKQWR7K00BQX0lpcYHgYMmhlRo1upEpn+avMjzkWuXRf5WX3a6yrI+VBEfBKLvsJC1ya8SnhSoqgfZcUtGg2C4UMS/XveYVHza+oND45wIrmTLpXmmnkRmr4jWkJw5PPn2xhp+XG4bGTTJBAQZqSVuo8EzoJocdKP2bTod4fz4ztX49j+erf59xT3P4Zr3nIqj507iCqNY8iU3dDQ1CHzfx6qtfbjs5w9ix75hAEBPewt+/Z5Tcdz+kzWk0B77iNripoZVJ8UMHwRKfBQ7pEEwNFrEA8/txPpdAzj94GlYMLNHWdg6km3/6CT9wgEgPRsjFXOirAkM3TQ6KTYUr+a24df96wK6/Q/Z8EFgSqixdkc/NvYORv5eL+QzdbmA9wAt2O1UHLoRkA9wTbSqaiEvOZ+y1pBR4/5X/roC2/uGpeJL0h9Y7cKlcU4EqpcG6nEjlcnxfb9m7Uq1eqTbjeRrrNHHlTac4Q40dxMZGQpQMVyaHHSjFnXyamzs3/cOjeK7t66s+W7P4CgW374qEEaMgMD3pW6rmDpzFdUgKPnAp/+4vCocAMp2qz/BcZPHtfmZgnq4C1h1UszyQaBCg0C1gEBtcFX2DI7ijVcswTt/9TD++89P4YLv3YMr//m8svBVHTDVmBgi0L+aoY+LHnRRHacpOh1XRaOTYvmEUspiddyg2qhCiPVBYCgdUVC+cPLLmDmnfizSZmGo3sQQtwaB2kM32QNzlXCNJYrqQVZjgtUOwn7yfR83P7lVKq64+OJgtQvb2kW6cCVbLpe/SMpF2q9rReJ52WF+hhtkAoKM1BJrHodjyjJ5NhjtpFguEXGT0B8e3RAa560rxhemcVFT1yAQvS03OFrEoy/sbvj++R39WLk13Ka1qxA1V00OqiaGVIxNyk0MaSqrn969Bo+v76357st/XcG8zSmCqlQTszDUHH1csPKobs7S7GSuvsiNCc8MaRC4VHe6nRQnLQrKF04272HPN/Xp0KV9WL934Y1FtYkhCkJwg/IBeQ0CRmGH/TQ0Wqq5pCRKIg0CQWFGKnAkY44kMzGNptosJSQGmX7meV4CE0PR4w/VdW2GuzTD9jGjSYkbvLlMDBmckqP2EtJabDEvPrM5/sCbx8SQL6GxbmouU7k/W7V1H/N3qnYSo2iG28UqsGliqMgwMUTxxrGukrr8rnDHsr97eL2S8HWMRxS6VzP0cbdG3WhUjDNUy6J+rKKq6SBMRYGAbMk3MhpndtFyVljz2ra9Q/jNQ+vws7vX4Jkte7neUUlcNPXp0JUuWQ0C1fMBhX5s0geBbPGxtFB1tBFd3SGtZ5CujN8ul79I2uu7C9X60Wn+OQzW8ONy28igSeaDICO1qBgwTQ66qheKccGp0KAoliSdFBua8FWah6G6SJGFwu0vF7CpQTDKMDGkYtOrug2YLqqbn9yCT1xwWOJw1JkYGi9PCt2rGfq4aN1RvWmlIl1Es9Ywc5pzUqy3QCrhUy33MOK0KpOWWdKxNOr9lVv78OafL8GOfSMAgP+5+Rl8743H4aLj5hq8cCJ26ciUeUIpHwRKLhjYn1940qCqFlrycvkVXUMmnQuSvM1614U9UM4TvxgWVtw0zfmU03T1/Wvxx6UbsH73II6aMxHvftFBOOfwGZbTxkak7RRKJbQF7i+TrArI9zMd+aG6rs1wl0yDICO1qFjMmLw9rHqAV5H0uPzLmhh6ZosZcz17BkeNxAPA+s07USjc/nIBmz4IWHGrGC6UtwHDRSVrE1gbNSaG7KeNWvHoQLQfUN1HqRhniGYtxAeBnXh1hU+13MPQbWIoKVHd4Os3PV0VDlSe++wfl2O0WDJ2OBLXRRs1CPSkoyFYXg2CwI5fRdIozL9cJoYU1YOsiSG2Xf/G75K25yTvsw7GbY8NPFx2ygHC74SVF8W8+j7w83uewxf+8hQe37AHu/pHcO+qHXjP1Y/gvtU7bCdPGcOjEmYJLCDbz2SbFmv4IdhcMxwnExBkpJbYG/QcIyoNHwRy4YnedpJ5piwgEEjUGL+6b634SxlK0XH7a8WmvfjG35/Gf17/BG5+covy8G1gc7Gq3QeBag0Cw8tUVecTOlJN4HIliRueuhGtO6obKYoHEuqozVxaNFsqdebS7b2ROBNDCUlaElFledez2xu+6x8p4vantxoUEIitqXXdQm6w0c35XlBoTdFEoRw8GgSKNAQ1jFthadPVh3hgahA4MMzJ3KQPyxbFMd0H8JuH1zV8Xyj5+PUDL5hPkAAixTlSp+VGsCoA6DP/LBWmGzKVDIfIBAQZqUWJyr7B44RtfeFOqWTToGISiivDvUMFqXhufHyTbJLIQnQNE4nqzd1Dz+/C6y6/Hz+7+zlc98h6fOD/HsX3b1upNhILbNg9YC9yRqNKOr7pOKMzrWyh7ABcUbpJnJcEoHGAo5df/vN57OofiX9wDJqmA1SZGKKZt0YNAvmGKfKq7tLwGz7Qp/7wpZ7EWUkYQNgcwmrXKzb3GZt3RH0Q6DJPWB8qb79X7aSYggDaqAaBhgk1zIpk0sM+otOAdo7bf7LUGizUxFDi1KhnuFDEc9v7Q3+7+al0XMgC3NEgMG1iiKWV7IL5rwy3yAQEGanFhA1+ldy6YiuuuKfRGae8lDrmd44w4g4ttu4dMn4omKEG1behfnD7KgyOFmu++9Edq7FvuKA0HtOs22VPQMAao5IeBurY2ps+oFRl4kCPBoH9wxMKJiBM8J6rH+Z+lup0ZdPXiW7qc5aWZlkZ71yquTgnxbaFTGHxM9eYvm8szXF7hvpkMFwIKYU3+8E5SUWJ6TgwF4UnCbzl89O3noC3nBptokbWxBCLsDaV2AdBgtfZ5pBoj3SeJ3fxRUcd6KBQpJcmXkSKc7hQu48ke/gt0Ub8JPMVo21n5zAZqskEBBmpRYWJIdMLoq/f9AweW99bmwbJsJJMGJV8x4Wxec8QyYWUDagvnutZum630vD+GWIDs1Dy8adlG5XGYxqrAgKmBkGysHXc/jPdAyR9Bjago+/aPzqhccPTBEvX9WJT7yDfw0SH6TRv8OrXCKYEV7rn5EroLs39w5o1CHSYR4krX119p94HV9yBf6MPAk0JqzdlxPlarZPi5MmgML2o9PVz+sHTcelJ+0f+ntNwYrJ3sIDP/mk5zvn2nXjzz5fglqe24Lkd+xKFmexAlXEpJUGoJsh5npyAIFRrKXl6VNMse+16PzlUsy2TLN/XM1+5tAbJcIMW2wnIyNCFEifFFgbd6x5eh+P2n5w4nLgbiXGOszwvftIpaxA0x8SUtmz+celGnLVgP7z2+Lla41m3M1wl1hXW7eI8eNQAW0BAz8SQ6T5C7QA8WCcUkkbggqcx/rRsIz78kkNjn6M6X6nY4BHNWkO6kvQNkTxqNzE0FoFLwp04HwS221DYITyrfH3o69MjxRI6cvlAOuIEFWYEBNJmRxl/yUBh/uUzMaSmHrT47dq8Fys27wUArN05gPvX7EwcZrLLYXK/UcCDnMDIHQGB7RTIIzJmNQgIVCdGETLjuw/5/LBatsttI4MmmQZBRmpRYWLHxiLhNw+tr0uDXCLqbz8JvcutQTBIciGlg7hsulgO3/z7M9nNAwa+72Nnf7hvECPxM1pd0gWhypt3FYw7KSZmYihYJzrKVxQKZo5MwTuOUR3tigp2eD58FEt+orlfB/WpSXLQtvj2VXjP1Q9j8W2rsFvA94QeyjlL0xSadAxPup4IO3RhHcT4frK1Lot6W9jxPghq/07Sp886bD+0RqjINTpD5gszWI4q2qwOkzui8Iwl3Fn12IdwFEwq8aDNOTbZ2bNMzoupwAhcMTGkYo3gAg0mhgjWBSA3hvq+nvxQ75sZ7pFpEGSklrgJ/g+PbuAIQ1Vq5JFNQiEm8TyHj3FluGXPMMmFVAYfW/YO4cmNe3HMvEmJwmEteFw+pCz5dg9/mDcnCWoQmF6jqjqgUFXH9DQICCSCGFTnKxVrjftW78QJX7kVLTkPr140B5975RFoyYvdAzp0RjdWb0tm4qKe+rEqyTnb8o17sHwjcNvT23DzU1vw2/edhkmdrRHxysfDQyX8bHOuDpk607VOHy4WAYy3rbixo8EHgUC6Dpo+ARcfPxcrt/bhpAOn4E2nHIATvnIrRovF2Hd521+wH6ooMlemF34fDew8uTKfJtIgYP1GfJiTlA+E5oviOoFimngRSXq9lpupXC9dtxvfu3Ulntq0F4vmTcKnX3EEDp/VE/m8TLp8+PJOihmN2+GmkUGUTECQkVrixssv/OWp+DAIjLqySSgm8JA2rkEQIyDYO9g0txricLUUdii4IU+gm2jBdtt2zsSQ+iCZqLIJrOqAL3iTlcJRgiMXHo1CcaxSuc7YMzgKALjq/rUolnx85bVHC73/qZcdjl/dtxYPPJfc1EUUqg7ant68F7c8tYVpN1wnlVqj2KakSZiXpEUhrEEAH/3DhYSxhjNa5xQ0XkAg9nyQmRPb8bHzFnA9K61BENgSqBhzKFz+4DIxJNAqWZp/rmgQAOX6lakfpomhBOkxQVnAI57n8DFHRYrUQk0zUBf1JoZMsHrbPvzLLx/CvrG55M5nt+PxDXvwt4+9CLMndYa+I61BINmTWGNTqtYgGSTITAxlpJLRYgnL1vUmDofGmCuXihhfdMxgqzfjYqIuaxDwpYeCsCVDDy7fbGFhW0Bw29NbI39LIP8DoMlJsYbiYo0bqvKgToNg/DOBsxOnDjSSwluHFIcqXePMXx7fJBx2Pucpd8bZ6INAXbv8/J+fjI5X8wpufJ1EsFFJYjsnYc2VVbwDI0U8t0OPn6MGJ8UxhVPv90vkQC/s0aheIltHNSaGJMOgBp8PAs6wYn53RYMAkJ/nWGMm9WEu58kZdgzNF8G8FgmmiUWhWMKjL+zGoy/sxmjsgcQ4DRoEBvL9tyc2V4UDFXb1j+C2FdF7MJn1hQ89wqe07sEz7JFpEGSkjpFCCR++dqmSsFyW2JvQINixb7jBXmAUFcfHaaWZ52dWN3G5ygtJT+EVcMOyjQ2OpIcLRXz6j08kClePhSH1nYB1wKnqAFxVqmvHS/stn8INT1O4PPzqWmbsGRzF6m37mGry9eRynnL/GfXjgkq51dAoY4zWbWKo4oNAbzRGSbqOSfq+qAbBjY9vThahAHGCoPq5ql5gwA688auo8bs+HbwCqmDyku5tqEwtKn0QeJ4XY2KIMyAC6BmTaI90cSaiRKB44OrSecT6XQN48y+WYP2uQeF3GzUI9Of7e7etDP3+839+Cm87fX7ob1JNxNdkYkguyIyMSDINgozUcfvTW3ErQ+rLyw3LNmpVs+dFdjKJ90EQDa+TYgDYuneIKz0UF1wipOmWoGpcr9soCMgH8JuH1jV896nrn2gwfyCKKxoErHGMgpPEIMEDIgpJc+lAIyn8GgT0xiqd46do2PmYQzKpNNSNo9T6rSy8mpYuYdufguhl3h37kptIjKK+78SVjKzpn3LYjQ/zahDwRqPaBwEFeEYSVRoELmnkyc4pTBNDxBtNWYNAjVklinsaIYGjZT5x3WNSwgEgzEmxihSpR2YtWdYgkDUxFA2P8Iji2jeDLpkGQUbq+H+3PKsknI9f95iScJIiO6QnMVvA66QYADb28gkI0j412d5Y24TZTNzZU9Wwelsffs/hyFw3Dz6/q+bv/uEC/r58S/KAHfFBwBrHlN2QV5TwYD+g0OxdMolgCoqjtA2bu1Hkc57ydlNf5jlDB22669qv/kuxVcmRWIMgYVmEHWL4lrpHo9NhQQ0CQzd+uX0QBJ9LSZPlWwOoyaxLAgJ5E0Nyv1FBZuoKG7Mo5tW2yVNedveP4JEXdku/b8tJsSiyPghskXYrDhlqyQQEGaljzXY99khtIe+kOEaDgOX4bew3Honz5l6+WwKZ8Dq9uHSzhYfbn96KD/zfo4lv6evgn6t3YETAnmcUWkwMaWgHrLalar+uzElxIK0UzPs4dJ6RGN46pHgzcHCEz0yfCXIaNAjqxwUCXUMJlXw5cm7Dhe2shN2EtNVn6+ON0yisn6tEDvRCsxjRTxo0FSTGPtv1rAqlPghiTNS4JHCX1yCI3xdSxZP0QRDWTSmuE1wxMfTcjn2J3q+/MEGwKgDIjaE+fOl+xNpTUGyvGW6TmRjKyCCO7OFVnIkhFuMaBPHP1jv2iSJNt+zCaOb5mbU4UW3PWje+7+O//vQkSeEAoO62sY5bvDr6QJFRD8p8EChKd/CAiEKrpyCkMIWok2Lf97FlzxCJW3kDI3xzqAyibduIBoGhdql7Tk6jiaGkJPdBEBJmsiClqY837hCm/gBPRJAfFnZ0L6kzfcStQRAQEKSk0arUH/DANlHTTAL3MMLKkVI7ynmQWniFai3RyVYVVy5i5XPJjhbrNQioIqtBILvkZDVtnrS40XoyqJAJCDIyiKNNg4DxW9UHAcdMxiuIcGRtkyEBywSAa2eUT2zYgy2cfjVsoOoWkSvVwhpfVAk5VA1NNSaGCBSwSyYRTOEDePC5nXjxt+7Ead+4Hcd/+Rb86r7nraZpgJAGQT6n4SCsroOlpVWOX3pIz+Im6YGfaSfFOml0Bsx+vv4AryBwySBUgSDSSXH8uzLxqeJ9Zx2sMfRaeITgqg6xTZlGU4GOPhMWJKV9nbQPgrDvCOWrgisaBC0J+0mjDwJ5awg6keljPhK0LUaxZhoEGarJBAQZGSklmQ8CftV51g3fINn8RRMVWx62BoFbrNs1YDsJTFTdeNZxi1fHIpWVX1V5ULXByJwU2yNYg6z63N43jHf86mFs2F02jbd3qIAv3bgCt67YqjmF0QyO0hEQlPuUag2CuoNWpaHzx6s8/BRqENjOC6VDSFFTPvUHeIU4m0SMuETgfTc4P+ks05cfPcuYcFqpBkGMiSGXnKtL+yBgvBd6014uGi188JxD5HwQuGJiiF6SQmnJJxQQjIr5ICBYVZH4vvy6pG+ogLf98kH84t7nGvZFPCFS0vbJoE8mIMjIII4+HwTxv/FMKNwaBKSWkhkqobiYTiuq1Ix17HV1NAPWIUvCfYhyanwQEBCNNZOJoWDji5uSwg7k//rEJtUp4qaf00yfCcomhtSGWV8fpqYLUyaGsvlPHWFlae+GKPvvuOdFTGWEaxDwPstXPsH06VyPn3DAFPzgTcdrCz8IzyUBkebDFBA4JHGX9kHAaBfUTQwdv/9kqVWX7/solnz0DoxUv6M4prtiYiipBkG9aba4bNsqFZm278NPJOi5d9UOfPVvT+M/fv+4cFrcaD0ZVMgEBBkZxNHlg4DLxBCPBgHnLSlXbj9EEbtIcWTxpgNW3bp2RkndEZ0yE0Ma8qmjBzA1CAibGCIgHyDfllUSLHqZzf2fH7MnINDppFh0/ZDzNPggELyJ7QqVXKRp6redl3CHoebTATS207hxpX6uEvIDJuCDoKE/cUazcFaP8DuyvPLY2fjuGxbpjQS8TooVaV06JCDQUr2E+mY9rzthHlryckdaP7xjNU74yq047su34hWL78WqrX3Wx8EwKAotwki6fmjUIIi77GinXKRi9aFk8P3jso3YvGdwPFg3mkaGQ2QCgowM4shrELAP7lmT6riTYoUaBNkMllrSVLfUz1SVaRAoCaUWHe2A6YNAmYkhJcHUmhhSE2QiHDrPUIprwxEtHwSe8jGwwcSQKQ0C3eGPZcSx5sYkqfAm6RwQqkFgqYTrl9BxWatPe0HISXHjd5E+CCT609zJnThqzkShd5JCZS3Fm1XPY2v+uTSfsvyCMd9jaZaHfkdj9DtoehcAuYsvf3l8E/YMjgIAnt68F5f9/EFSc3KFuMtBVPZhSS8f1fsgiGti9jQIJN6BOqHaVfevrX7mCZNI88hwhExAkJGRUgT2Jg1UFho8AgJem+jBpyZ3tcokizTNPPcyNQhIHJWmB8qOykxrEFCzCRwU3lAw7+OSSYSkBKcqV27aVRgg5IOgbGJIrwZBWkijBoFtwg65qGgQxB3A1c9VI0JOiuUzGfduV1se33vjcTVzkomDXRNrP66xijOrHtjC0SR7KtPI1q+wDwJiY5+KqWvHvmE8+PzO5AEpJq79UamLpIKKUcEB30S++4cLVSFSBSknxb6vbOzd1Ds0Hm5Tn0Bk6KDFdgIyMjLYaNMg4IiTJ25+DYLxz5QPOTPEce1AjgX1I1VVTop11JiOZqDbxJDKW1fBsCi0IwpCClO4vEEaHNHng0C0ebdo0SCo+9vQfKE9nuo6yd22V0/SrCQtibDh3poJibpo46beeu0+EQ2CsCwmNTHU0ZrD1y8+Bi9aMB0zejq43lGJielHoXwglvYWd+5Uyi4TmfvCsO+IDH2VtY6qJvetm59VFJI64vZZJd9HjsDKM3GTqB/fYh/X2wj/60/Lcf2jGzBcKOHYeZPww8uOx4HTJkjF6vvq+kxwXuSx9OzyGjnDPO7MdhkZGUII2T+tY9wHAYeJIc5NUHAyc3GaireDaCghBEmTgIA6ApcSmeipMvWBMgUE9vdCNdSYGCKQNmrlYwrXxqP+YToaBN3tLep9V9TVR2qcFCONJobsEu6k2EJCQuKNG1fqfxZZg4cKCDidFEfFcuHRs3HJCfMahAOsd3hpk7T3rhqVPgjKJoaimdzVWuPHgTI65sCwIKkdOqqauiguneIuB6Xl3p2oCbUPX7Os0SyRQq55cB2GxxzOP7FhD9511cMolXzrJob8ms8pqfwMMtCY4TMyMiKRHfhjbxozfh73QRAfj4wGgWPnNxkxsOqTwkGpCNTTS1n7Rke/1u2DQGWag0mlYFqrqZwUBzXU6HaRUAYJmRjqam/Rr0GgNnhrjGtapiVHyfOStCjCNQiShSlLg5PimIGlfs19dcBGdHxcYUT4IOAVuDH6cdJ67mzLJ3pfFSrnWQ/x679PXHCYE6b7ZKuX1S7C9qL05lr6dSNLnP8xKhcjEmuhNWgQsAO87emt+MZNzySLVIA12/vx4PO7ILOS8X2Fh/mCZypEmkeGI2QCgowM4sibGDKjQfDUpr1cYdZIu1M4UzWzBJ/KwlQN9DYYwf6iykmxjmM6Ha2AZSpNxUZdZZqD/YDC2bwD5xhacG1+GdBoYuiD1zyKIQEBRFdrXrlgqXKwumXPEH738Hr8YekGpeHbwq/7Nw3Yzku4DwI7qapfQseaGAo8sGLTXmzrG+aOK8mYFbX2ZB2eJy3RjpZ4AYEJE3c8c5yq1uPBw8uOmoXfvu80vP30A/Gmk/fHu190kKLQ1SLbnlhvhWoQEJlrK02NwrpLF3ECSjr7MLVCZp5s3fDYxkRxivLDO1ZJahDIaR5EhVX9TKXqM1JD5oMgI4M4suN+nICAdaBdWfTxLP529Y9wpafGXl42maUKVltL8XrdGCUfyI8VpCofBDrQokHAsKmkRoNAXaKDGzgK7T5NPghm9LQzD9yCtShtf9n38ct/Po+blm9GPufhNcfNxVtPPUB7OQ6M6NMgWL9rEF+/6Wl8+aKjuZ7PafJB8PDaXXjHlQ+hX2NeTVMZOggPycIk90GQLICwQy5bB18NN/Vj8hZM59+Wb0ocP3c/jEgW6/2kRdrRGn+/0Mjsw1FI7zvrYHz/tlUcQXlgpboS1cnzp+Lk+VMBAPev2YFf/vN5rqSaRLp6BV+kMvRVhGHpWfE04oqJIdVzCE9wvQOj8Q8pZOXWPsyb0in8XtkHgZqKqtWaJVL5Gakh0yDIyCCO7GSSzAdB7b8qCIaVxtv2zTw/M9uJY4eUFJNbGQPuW70D3/6HGudpOtqrjn6tWyCiVoMg8AeBdpSn2Jgl2X9qF/ezsnPm/9z8LL76t6exdF0vHl67G5+/4Un85K41UmGJIHLDX4brHxW7sa/aPJbvA5+6/gnjwgFjPgiaefKvQ4uJoWRBSpNEg+DHd4qNG0mcFNugo5VHg0B/OniiuOT4eVyaBjwmhuqhOsdq8UEQ9h2/H24jqBLm9w3r0+qTxRkTQ0nfT3DBwxQ79o0kSKeaNATrmydIXcXj+z4GU3TxI6NMJiDIyCCOtAaBoEO1ICImhngJHh5SuemQoQbWwozm9ikaiukt+cCTG8vOsShj2geBCoGEWh8EQQ0C+y0pl6IVXtxtLRU+bv5vyQsN3111/1rtG0+GFS0liGooqDZNtWrbPjy/o19toBzovohQ9UGgNRbT2M1NuJNiW2mqu8mq8YAurK1GOynmu2GrcwbiERCYgGesOmBaF77zhkWJTRKGvZ0jasdP+vCS1f9DhXc0Rr+qiSG7ydBKXJ1SEdYk1yCoD48vQNPThEx0vu+rc1IsqEHwp2Ub8anrH8eP7liFDbsHlKTh6vvX4vRv3IGjvnAzLv7JfVizfZ+ScDPsk6LtY0ZGOlB1IaXIMM0RR+XAQulBvh/x2RFiF2dmkkGSTOCjl5Lv48bHN2G4oG4HoKPKdCzQWRoERC5MVaHmgyAtJoaOmD0RnTEHUrUCaLmGsS/k1uD2vmGs3qZ302PikEXkkFW1D4Lnd6Rz0+g3fHAf1Yc7KgKwNc6LahAkWQeFaxDw9cOovq1z+OczMaR//uGd4y4+fh6W/fcFmNTZyghL/IBZ9VipCtk58KHnd0f+RtlJcaUWiFaHEuLqlI4Ggdp08IZmOvdyPgjUlU/NkQpHkJ/903L87pEN+H+3rMQlP7k/8aWNGx/fhC/85Sls2TuEkg8sW9eLy65Ygn6C2jcZ4mQCgowMYtSvb2Tn/DgTQzwaBErtcwtKu6nhYJKNwapP1xbsVA9Vf3bPc7aTEIuOg84kptJ4UJnmYFIptCKqhxeivO+sg+LHET/0oxJUCubCMDG3iMSh3AeBpblTe7waNC1tYzsn4T4ILCQEje0nbj2cxByeSBtqSFfEczoP6OMEtgAdE0MVJna04qzD9osOy/OY67+wn4gqEMgdXvo+04F82FqMmnk1Cpqbuoj3QUCjLhILmRtUCHjfM5t/mb1D2QeBovhrtGbFAt3WN4wrE/pO+cvjjX52tvUN46G1uxKFm0GDTECQkUGMxkMdudmkmMBuwbjzPT0mhmgsY9RCZG1mBSoL07SixZ6sljCVB8ncFKkoF20mhggczlM9vBDhkuPn4uLj50HkKEh1f9FdlSZGT5E4VLfdtM4OlXylafpTfrgjSNhwb2t9UYl3pFDCht0D8Qd0gd9Fx95LTpjX8F2kiaEGwUX4c3o1CDgEBPqiH49DMJK4x0XTnNRskS5kuszTm/tiw6zvA1SGvqqJIZrVoYS4cTDOrLA71Lcxvny5oUHgK9x7JTtT+XWISU0Rbl2xNfT7b9z0dKJwM2jQYjsBGRkZtdQvcGTnkjgLQ6xJt+qDQOHFSVF7eRlmUHEYxKpO1270UEytHofCGsI0LCCgNowE00Nho5oGDYJXHDMbQHx5iqpbU8KMBgF/JETPvIQxpEBAxg63CmznJdwHgYWEjMX7oztW4fK71nA52A4e0LXmc0KaR68LExBEpSvm7+r7GvsxGQ0Cg3NcWFxU51iZfrxqG1tAAACjxRLyufG6p7KXc22fIUOcgJJIVSgXMvOGZ9wHgUSEvg/4ipqq7wN7Bkexec8gCglMSquGitmxjGRkAoKMDGLUL0Jlx9okGgR6nBQHPqdyAkllprigsklQAcX9nivlq8fEUPQ4Rs1JcRAKzYjq4YUIlcPquJwEN8+q61Tn4cPeoVGug5mkiGkQaEtGqqgcEDgyPBsiWWGElaWt+e+GZRtx3SPruZ8PjkEiAoIXL5iOWZM6Gr7nPfyOPqjS15HbuZwUG/BBIPp8zAuiYx/VOVbmkI5HG2K0WKrVHiE29hGtDiUUY4YTKvuEpOty2bdNC7dlY1NVT7c/sw3Hf/kWcgfyKe6CTUUmIMjIIIYyHwQxEmW2D4JkcYeGWapsponNZhmJYS1Q0rxgNwW1BWAU5k0MJQ9f16aCQrtPw03w3Fgm4soz2E6obJRZlEo+/vsvT+I3D61PZLucF5EiUX7oZe0GuN6IK6G7Mj7zYLvrUOq7Nz25Wej5YNJb8/x96PUnNmoPsOPhM/Ni20mxCdSbGBILkK6JIfF+xDPujxb52p5pqiaGUnw8Ge+k2FBCYkiuQVDXxohqEMiUt1/9n7006Iaq0DRDjExAkJFBDFWDa5JDB1+DBsF42MqDNEJcsm3mK5/zjBwyRUFpU58UkmsbR4pXRzJZToppNzv7DalyuD5vSic27B60nBo5KvNh3MY/OAa54IPgyvuex/8tWac+4Ah4yuSblxwDID0bPFMmhpwZoDmw74OgMQBb64u+oYLQ80ETQy15/gN00f7WUBoRxaOzF1MxMWRyrHLJSbHMdoAnL6N119iprf1TMnWFIuIDxWV4TajZRsZKg++DwtZAK9G+c3zcs2oHHlizE3OndOLlR83Cfj3tZhOXwQ2NKwAZGRlVGn0QyE2PcQ6LWL9W1hkq1xs6HB9nAN3tLfjJW06wmoY0aYVQvIHkiqBORztgb4oImxgi1IzeccZ820mQhvcARquJIQ11+bflYreTTXD+kTMBqM+vbbv2uqjkKkXTn/W6ChvuXSnf4BjUJiAgiOpvkf3Qr/8zvIB0zkHzp02IfYakk+KYF4RNDFGVEEj0Yz4NgtpDUWp9k9K6SzVx+wAqdaHeBwFfgKbzL2f3X6WTYppEjSPf+sezePuVD+Gnd6/B5294Ehf/5D5s2D1gOHUZvGQCgowMYtQPrrJTSZIb5Tp8EFTCSuvUaGvOv/6Dp+NlR82yE/kYLNuYzq3XCSbYlT5Tn85HX9iNf//943jLL5bgJ3etxoiA08YKujUIdJUthWZU2cy/88yDcNFxcyynRo6qBkFMgQbnKhd8ECxb16s8TBZxZbJwVg+md5dvc6nOr00ns3rDT9+aJvHhTuL46WgQyFC5xStiYiiqv/EedkYVj67LDu0tObxq0ezY50w4EBbNY5IUhcVFVdtKnw+C2oCp9E2TzqptEbenj7sUaArVPgh4QzMt3JZp+75PR5Cji1zIyfKG3QO4/K41dd8N4qd3r2l8OIMEmYAgI1XU325wEVU+CEYKJTy3fR/2DYerSbOk2NXDfA1OitM+OZqGwo13KpsEJRDMih4NAr1aCQ89vwtv/vkSXP/oBty3eie+dfOz+Mi1S4XjLTLGdBXlkubbPJUbTvmch/936SLLqZFj3LYwG9d8EJgmbvN8xOyJ1c+qL8WmtTYyrUj1hFltcMlyRuWQrlXIxJBYHPV9OVJAoGlp+IGzD0FXW7yFYooaBKrjyhM9mJYZklzWIPCq/9KsDxXE+yBQVxmrt/XhI9cuxTnfvhMfuXYpVm/bx/2uLR8EpucJ1uWlKHw/up5sDCU69j9h48iv7lsb+qxJM5sZYmQ+CDJSxY/uWG07CYlpMDEkub1+Zksfzv3O3WhvyeFdLzoIn3rZ4TW3LFhzW2XOUDl16PRrQAFbqvkU9idpqlOKedEiIFAeYm2ov7rveQzXaQzcsmIrntvRj0P26+YOkaXFS1qDgEDHLARO2+ynRo5xDQJ2DoLnFqrrlEBVJiaurwTzSNdshih6x/LKnE9wyrBG0gOH8LnOnQIulny05sV8EESaGIoYtRtMcESZGOJOAR+vPW4Ozj1iJl6ziE8bzUStqZ5nxU0WKY1eGTJrRp5xX0YL1ATViwRE60MFcefRqg57N/YO4k1XPIgd+4YBAGt3DmDJc7vwl4+ciTmTO5XEoYMPXbMUX73oaBwwrctIfDJWGnz4keuFnOcZ1wIplHwhbTcewkJ7YM1OpXFk6CfTIMhIFX9/kp5dX1EaFrwJ54vhQgmX37UGv390Q833rMltXIMgWdxB3NniNR9Do0XcumIrfnLXajy8dpfwQpP1uGv1TvKwh2KaQgiW3d+f3BL6zC/ufQ6lko+7nt2G7926En9fvhmDI8XIMFmOwCgXC4V96khhvIQoCCxk4DXhoNNJcRqIK5HgYaSbLaUR/SaGxv7VG41RmHO572P1tj7sHRqNfiZh/GHLUpc0CCrlJ3boImZiqMEER6QGgbqefOC0Lnz/TcdzCwdMIZzDmBdEy4zHLI8NZMY+Hm2I+lvT1OZamrWhhjgnxKrGyb8v31wVDlTYsW84ck1fj63rTPes3I43XfEAdvePKE9BGDIWK3w/Ojc2hhIdVjfCxtA0WPdoNjINgoxUsXIrvxocVXSd49y2YivecNL+1b9ZCzsdqvOuaxDEHZrbylbS5tI/XMDbfvkgHl67u/rde150EP7rlUdwb5Z42pIrUGyfWg5INITJE+TzO/rxn394okZgecr8qfjVO0/Gyq19+MU/n8f6XQM4/eBp+Mi5h+r3QaCpuimcxwcX5UTPMWLJcd4M1OmkOA3EzV/B8nVVmGSacbOJ6WlwUbfRH1vfi/f/+hFs3TuMfM7DG0/eH1+96Gjl2iZhZelS8ao0MRTpo7hBg4AmFE0MJTFBE/YmXR8EEhoEHFkhb2KIZnUoIe52uaq9y1f/9nTo91/56wq8+0UHxb6fdD5sdFLM/+6mPUO4a+U2XHz8vERp4EFOg4BlYsiD6dF8tOADbWrDDBtHMgGBe2QCgowMYjT4IFAU7i0rttb8zVpMaNEg8Gv/dQ2qyU66IP6/JS/UCAcA4Bf/fB6vXjQHi/afzBUGa51E8cCdBcXU2jJfJUqlqncxbvA8vHY3ljy3q+a7h9buwmf+uBz/eGpL1SzRExv24JEXduNFh05nxEfXxhAFW7gnzZ9S/ezqoW8l3XHlGdw8qz6wdW0MCyNuLxvc1Cn3QWCp/HTH6vqaJoywvAyMlC8R9A2V/VkVSz6ufXAdDpjahQ+cfUjs+yKE9TWX+l/l0EhIfyDh2GzCBwHV2UP1Ab1oaGEOOSkg5YOAx0lxnYkhKn1zvA9RbanJidUgIHIGm7RFNPhYEXz/8zc8ZURAIOuDICpDNvyZjGg4uA8bk6maJsuIhujUlpHRvNQPrrrWXyzptxYfBGP/UllQqsbVXN0fYRvwyvue5w6DqUEgnCK7UGyeOjQItCgl+D7+/NhGnPTVWyOfiRp3/vL4pgafBY++sBtL1+0OfR5QkwddwhcK5/GzJ9G1F8sLrwZB8BBadX+hOCYIE5OHGhNDmZNiLqo+CFKUw7Cc3LNye1U4EOS6h9crjz/cxJA75Vs5xBM5PIrqblGCg8b2FnEjVeFhab0giAqqp1nW2OeUk2KJMYnHXNJoXbum1jOJVocSTGkQJCW5k+Jk4e0bbpyrdCDtgyDiNxttt6BBqhQqIGA5k8sgSSYgyEgNhZSoMKlyUhwHz61vlTf/qmEqCzGjjJ5VxY2Pb+J+ltVOXDO/QDG9FNMUxra+YXziuseUHtDeu2pH5G8qysWRohXmq6892nYSlFB1UhzzXI2JIcWzDJWNdxLiyiR4E1b1rVxbxWfMB4H7zaNK2Jj683vDLws8v6Of630RQvuaQ+VbOcQTGTOinRSHw3uAxurGh83sjk1XhY7WHF521Czu501i0qlwmMCFrokh8Xe4TAwViJoYqlwksJsMrcQdcdBZpyg2MUR0AijIHHr70fVkYywZLagv27BsZCaG3CMTEGSkhqGUqDDV3xrSNeez1BV13FjuH5Pq++mopgas+SDQtKYQUXtnXUIgs2blpM/Q7RMRdJShDqHDn5ZtNOpQUjSuJzfuwft//QjO/vad+Phvl2HdzgFtWw/b5wYHTuuymwBFVAUEsT4Ixj+rvhTl2hgWRnweghoE6ThmMXWwkIb2QYW/PrG54TuXnBRXDn9EDo8iD4Z4nRRHhMvqxf/58oUxqSozqbMVV779ZEyZoNhQtSJEx6q4p0W1LlT74FCFzPqOpywbfRDQ6JzjPgho1ocKTDkpTkpiDQKiAoF6ZH0QmDAJx4sOE0NJBQS7+0ewZ3BUYYoyZMh8EGSkhsGRou0kKEGXD4L2llp5oGkfBB/7zWO479PnOjP5NzsiaxWetkSdDbsH8PHfPoZHXog2aWMLkTI8d+EM3PHMNo2picZ0vCIta832fbjs50uqpjJe2DmAh9fuxtXvOllL2mz7IKBq+kAU3mwE+4jqMceRIYxJXBaC51yqW04Kii8UX+K2OHWS5kRFSWzsHcTcyePm0VxaM1aEk0KHRwk7XNQhLWvsPJPh2wcArn3PqZjY2YqFs3rQIuBw2TS2TQwRlQ9oOywmb2LIdgI0ImNiyPd940KTxHNIQhNDppAxz+P7Pi0NAkM+CHji2TM4io9cuxT/XF3WGj/7sP3ww8uOR09Hq/I0ZsRDd9bPyBBkaDQlAgJNc0RQQFAs+Vi6rjfy2cqGY9W2PmXxb+wdxN6hUTK3HET5zUPrcPFP7sN537kLX7/p6QanO7Y2sRQWxKw6daG6iyUfb/zZEpLCAUBsgTxzYgfedeZB8WEmSA8VRG6v/fmxTQ12tDf2DuL2p/UINWyfz6flJt24BkGMk2KNE4tLB5RRxPWVYPFSNZshijETQ3qjMUp9mS3fsAePGp4Xb35yS83fLq0ZK4d4cYd5QSJ9EES9wBk2a8zsaM3jtcfNifx9Ulcrjp47KZFwwMQwYtLEUBg8dvvtIHG7meMVqiaGwKlp6DJxgujgHL92Rz/e+auHcOwXb8ElP7kPdz5r59KQDLwaUraR1iCI+M3GUGJOQBBfVp+47jHcu2oHfL88rtz17Hb8x++fUJ6+DD4yAUFGakiLgKDRSbGa6TGoCvu5G5Yzny35wPWPbsDvHtmgJO4Kdz27nYxKqijL1vVi2bperNnejyvueQ6f+N1jtpMEQN9BoEiwrDqlfruyb2gUZ3/7TmzsHbSdlEhEypB3kUm8WrgQycIPbl8V+v03/v6MmsTUYXujSvfgQoyKbfy43OjUIHDpgDKKeA0CL/BZb1pU88SGXivx+g0f0sB4Zh5euwtv+NkDsq9Lc8U9a2qDdGiyqpgBETk8ihLIRTspZv/NS2dbtBEB2xpwvIimM+550VxTFabKzVnxL9UfKFJZ31dNDDnSbmXgNTHUOzCCN12xBHc+ux19wwUsXdeL9/3vI3j0hV0GUqlgb9GgQUCjjdUj4oi+gs+QENjRIDDjgyCO/uEC7lm5veH7m5/aYszpdEYtmYAgIzUMjabDuL0uE0OVyad/uIDrH2Uf/O8bKuAzf1QvuS2r1ykP1go3Ld+M3f0j41/Y8kGgLVz+kFm35Yiu7ap84P8exYbddoUDR86eyPxdpAhznmf9cNoUVDcOgP2NKmGrEEJUTSXF+iAYbwuqmwXldsZL3EFOsHiV29XWXH5v+cWD2LZ3yHS0AQ0C99tHhWCZ/ezuNRi0cPGmvSVf87dL3a8oISDQ5qSYOwUh7zqyhsipnucE801VQKCrzzSYGCLWN4lWhxJiTQyN1c29q3ZgS918OFr0ccOyTdrSFiTpesmV+VRWgyBqLWZD69eUBkEcj2/ojRS4PLlxT9IkZUiQki1kRgasbGR00DBJKJorK3v+m5/cEis1vuGxjVoky4A7k38cvg/8YalaDQtSCMzxTBND1HYQAbbsGcJ9q3faTgY6WtlTsUgZcmsQpKAfEm5a1jeqVA8uRKnMh3ECl+BmLdMgCCEmD8F1h+qmo7v4+oYKuDvk9pluKmNoKtrHGMGs3CZhfk1FUYj4y6JG1cSQiIAgoTA5MqaYYEXt7VNEtOxefBjb9wIzrpBCoaqpJ9NnZEwMUembrrTXJMSZvK+MPZ/9U7iFgF8veUF1kkJR3SKINLEGZM5IfN+PzI+NSz2yAgLWnlRmSKyf84MMF9Jx+dc1MgFBRmpIi4mhRvmAIhNDFQ2CkXh1rSXP6Ts0pTrZyzAQcIxtK1u6FsYiwbJNDCVPiy5ueGyj7SQAiD/MFfJ32Aw7pTEojyW2a4HqwYUolWzENetaE0OqU0G4oXESl4Ng+bro4Po/rm/UeNQtBK1qEFAeiAShkJX2OoE5hTTxUmkLIg4sIzUIIr6vb2+RTooTzEK2NeC4EUzmBUfORFdbvuH7S06YOxZcdIBhv1CdZmX6DM8rOm4cq6BSbw5OXdzE+yAo/1vva8s0ScdrV8b7ooyTYkSvS2yMubL9mbXGltmD1msNBknL2Z5rZAKCjNSQFg0CXTc/q84eOZ7VeajryuTvChQ2cqyFK+X6LhDZ7MSZ9BApQ97hg3K98ELl9loYtjeqadEg4J23am/sZhoE9cR1lWB7US1cstVNtZsYqvs3Q42wpP6wgPI4X09lSSGytIg2McTng0A0XN3vmkR0nmtvyeOHlx2PtsB13QUzuvHZC48AIOP0mKZJR11Cy3ozINS6ZpovyMRpJVEZJ5MK5h95YTded/n9+Obfn0Hf0ChZbWcZHwTwo9eTNoSNIwW5smW1tUyDIB1EeyjKyHCMtEgZGzQIFJsYsg2VRYxq0nSLEBDbKLEuUlCu7xYihtrjbuyKOSkm0tENQLdlAbZ1CNKjQcB3MzCo7a36QJ/wEMZN3Ca7xgdBE40hiRhrGGloHxWS249OTlvdvOxS8Y77IBDQIIiYK6I1CGr/jtr7JPJBkODdahgGhhGZKM47Yib++emX4IE1OzFtQjtOy57/1wABAABJREFUmj8FHa156fBynhdrH940MqnhycIIcRNDaZ654sq6su7xPMtzkoK4H31hNx59YTcefH4n3nTy/skD1ECc0+gwfESbGHLJBwFLWCWzfmTlfTglZ3uukQkIMlJDagQEdX+rmugp3Kzwfbc2ey6gz8QQf8BUNgmitBA5RI1ztCdSvDmP74DUzRqrhXKzsz3cpkVAML7xjxGiBX0QKJYQuDq+BYnVIAi0F+UaBKkYbRqpahCkoH1UoJCTRhNDFFLFR2WsUOGkOA7f9/H921bh4bW7pcJNwwwhW3Yzejpw0XFzlcRFsRzlfBDEv1N/oEilZ1bqwPa6Sye8GgQe7NaLyriXrevFwdO7hd4x1QZkNAh8P7qfKXe4zoGIKbwgrKFCrvyjA8w0COxA4/pkRoYChkbTMYjUH+Srmmyrk4/lFZTqwxsqpC1XIs2EtVigfLjWSkSDIN4HQaZBEA7dtsVTC8cfMFlb/GlpB5WD61gNgsC8orpVEB7CuIn1QRD4HGfyTDjuFJRfGFUfBHaToRQK9qM7GkwMJQ/TFOMaBPrm7ErINzy2EYtvXxX5XJxQNR1OihWHx8h41C8Uy0rXmNtoYsihzuk4cWNKpS4oXAZUyR+WbhB63lTupQUEEb/ZWLOPajExJJ4P1jCSCQjsQON0JCNDAWnxQdBoYkjNAiwtB0YZZhBpLa76IGjJ0+gTcX1TzAcBrxMC/jCpQvngiKce3vfig9HZGu2cKwlp0SCoOimOea7WSbHahhE3BxeKJTy5cQ/2DI4CKN+ypHZwEiuY1+ik2FY/1e+DIIUmhjRNDIfO4L8F2tbirpPiqgaBQKKjnRRH+CAYC/vPj22SCpczVUleNgaFfQ0FP2D1SGkQcDwzUihhaLSIr/1tBc7/7t14w88eEE+cBng1DV0mbh6tKHfYXvrZHq9NCUhEhMAVyiaGIjQILIxlI7ImhlQLCBi/pcU6iGtkJoYyUkNaBpEGE0OKwq1s+m0vn2wvHlQSLEtb+SKwP2IuXElrENjQ6QwhbkEvcmjDuzlIg9kPFYewLTlP+CbQp15+OL5187MN33/5oqOqn+Oq4R1nzMfLjpqFr19SxCeue1wofh5UH/Im5cULpuMdZ8zHB/9vqdCmhHezUaNBoNoHAeO3e1Zux0euXYq9Q4Xqdx2tOfR0tOKyk/fHJy44zIkbfbVOitWGbUtYonuMG9cgcH8srZIwK1EXdQ7ZbwJWb9vHFUa9w0LKa4h6pEwMCX5f4a5nt0uFy4MDQ1YZg+mMHMcJlpUuHwSjxRI++ptluHXFVokY9FERDDjTbiWI90FQMTFk18iQ7fnQtoCEhe9H75dttF1ZHwQ+4zWZfGQaBPSgcTqSkaGAtGgQ6JIiU1g4+fCd2uzFQSEnug6fRMJlahCoSIwEP717DZ7evJf5DBUNgrjb3iLn1xRu1JmCt1hYt6frb6vy8Opj52BGT3vNd7MndeDlR82q/h1XDV949ZHI5Tycd8RMLJzVI5yGOIjIvqr8/F9OwnlHzMRnL1wo9F61HGMKNHijSfUUEzW+be8bxnv+95Ea4QBQNne4vW8YP7hjNX5y1xq1iZEkrkyCpZtX3HjSNOcHqeRK0oxvqugdGMGbrlBzm7jBB4GSUM1QOW8RETpHaxAkTEyCAFxZRai+MS4jzKRYVjL54DnY3bB7kJxwIAjFulAFv4khfWm4f80O/PjO1bhtxVYMF8LPXGxP95S1SHxEz2c2LvXICgiUmxhi+iBIx9meaxDbQmZkyDOcGh8EtX+rmmwrg7bt80OXNnsipC1fIs2EtRmxdXv0m39/Bhf+4F787uH1kc+0OOKDQKQMuTUIUtBgec9gWDfWZfxQzJrUgevefzped8I8HD6zB68/cR5+897TMGNiR/WZePvP5d8ndrTit+87DUfNmSicDhaUBEWXnXIAOsZMKYkKNHOcmm81ToqVmxgK//7mp7ZgJOZ2058f26g0LbLEHf4Eq0X1sJhaE0Np9EEg+d4nrnsMS57bFR2uQMDtdT4IqJnrYlEs+SiVfD1mAcfgDTsuVNYcpeLiiYmDOtW3hVlFq02QowFdXebulWytFWt4df+mkHgNgvK/Otd+b/75g/j2P57Fe/73Ebz7qkcwONJ4eGt7tKbYHyuwnBTb0SCQqy22iSHZ1ISTlrM916BxOpKRoQiZ26DUaJzcbU+3aknrbUJbaFtTCATMOgCyWd2+D3zuhicxMFII/b2ViC5qvJNi/rA8j/L9GbXwHhyxFpgyc0bO83DQ9An4zhsW4R+fOAv/79JFmD99Qs0zIov9yV1t+ORLDxNOB4swrZTLTtlfaRy8JOlmnAoEtRoE8tGFEjVn/YDhILTCyq2NZlVsmEOM1yAYL2DVBwxpnfMr449LB9hxVIUeAnnaN1zAvat2KEtDvYkhl4q35PtC/gcAcee3vCY8knRjV9YQJg/Vok1B0SstKaGsQ/2snnH5AL26UEWcBkHVxJChIvjn6h24PsSBsO35kNLlmHr2Do1GzmeU010Pa01XL1zmaQ9sE0OZBoEN3D9NzcgY44uvOQorv/oKfO3io20nRSmq5loKa7+y9Nx2KtRR64PATsZ0rSlEgmUtXG0fDo0US5Eq0bocub78qFm47JQDuJ+PT4eIBgFfnlLUDWNhLTDbJK5L62g1qje2Ye3gky89HIfPVG/OKI5gUkTHq3ENAvaLwZv8yjUIFIWzbe8Qjv7CP7Dw8zcrCpEfkTyoHhdtTQG6o03jGCrjeHntjn5hPy4s6rW6bK8hRCiWfGHnlVG39aPGPH4NggQmhhw5q6JwIEyxrORMDLkPxbpQRdywUvndZBF886anG76z3Y4ot4GHnt+Ff64OF6bb8FUle27Beq0+GzxaCkwBQaZBYIVMQJCROlqI3AqWpf5gx/Zkqxrbtwsy1MPawNsyLxFk2bre0O91JS2XE1uk5pT6IFCfrzefyi/sMAnvUMJyciXjh4KnboXX+oqnrbBD3und7bjhw2fiqneerDayGIKHOKLZ5DWN1z88LgRSPceoCO+eldtxytdvx77hcG0m3YjkQbUtXBMHvGFJ1r3WqITv0gF2HJWsiOSp/sZ/GCJNqj5mCmsIXkq+uIAgavpP2g2TaRC4sY9SfabGbPaRghx6uNRnVOBVLxI0LxUziyZvoveHmBiyfWihUlhtEhtHV7JFxZrj6tsfz1qCpRU3lGkQWCETEGSkDlcWtlHo8kFA5WCeRirU4Ed8Nkmlvf/Hyw5XG67AIpPVtCg0u3qnhxV09QlRMz9xC0OWk92GsDhXmSJ5f8NJdkzTxMF7iKVcg4Cjb4jeBlI9a0Ud8na25XHO4TNwxGy1Pg9YJNqvejX/RNI/UgiYfEkQXwhJwxsplPCha5aqSYwkIge+vGOIjrhdYtwcj910qKSSFZGDAx6TOkJlVPcwlbUrDyXfFz6gEt2z8IYe64OA8QDlW7hBVN+6ZR1URZuColdYlT4zMFLA7U9vxa8fWIvV2xrN3dW+YyJlehg3RUivLkxRnWctFwGvCTRdjBRKkWZlKaNLo52FbJ9nOynmf5YnHZkGgR0yAUFG+nB8faBrfVMZf20LUHQeFrx60RxtYVOl0l4uPWmelnB5YNUphc19Z2s+9HtdSct7npgGQZyTYoG4dYwfx+0/GV+56Cj1ASeEt/6GFPog4C1f0bW+6o1tLiZbJmeBmrhEBSde7b9R+D4wMHabTfUFsqjweHNy17PbrGkOVBApE+UaBAb2d2EpNmViyP4Mpx6RdVpB0tFhFPWhEVhCcFMsiQn0AYbz24jnuU0M2d4LGYjfeh5Bc8vpA9jVP4JLfnI/3n31I/j8n5/C+d+9G9c+uI7xjkMdLQKKdWEKE06KXeHn9zxvOwnC2Kg12T7PmoMaNQikoqjC0gDP0EcmIMhIHa5PjfUDbxoWbUF0bfauftcpOGK2WfvaNW3NcjXN6OnAsfMmKQtPpB8xnRQnTklyOiIEBLo0UXOemCAu3kmxmA8CHWPg206fryHUZPCOjXev3B75W7296zh4N1+it4GUaxDExG/UuWMgMnkTQ/Fv9o8dwiv3QZAwPJUOXGURKRP1PghMmBiyd/uOghBcFTJaOKNFvRt4l9bAxZKEBkH01fTQr/mdFDeDDwLFyDQ1gmVV8n0svm0lntnSV/P9f92wHLv6RyylSh+8FwnSjGknxVFQmA4vv3u17SQIY3MNIwrLxFB9PhJrEGQmhqyQCQgyUofrKoYNAgJVk21F+9By8ag+vGnL5/DZCxfi7MP2s64dYYNgjqdNaFMXrkBDYfsgsL9ajLKRrOvgISesQRDzgKAPAh5kct7T0SLxlj54m9bi21dF/tYq6IOA9+mWuCv89eEqHroo3SJL4qRY5PHKLX3VQ46jJm1rWLujn/tZ9SaGlAYXSqgGgeZ4ZRz6UmfcxJCABoHiCq6P2qX+V/J94TVP1Lo1qQZBElzZR6me5yZ3Ra+hTzt4Wuj3FEvK94GrH3gh9PvfPbI+8h1XqQoISNaGGSrCXdtrPwrtiKU1TBUbPghkq4o1xzWYyeaoCtZePNMgsEMmIMhIHa4vDxrUqzWFa4OSr37x8PgXXor3nXWI2kAlsHbLLdDgbdUx6wYlhcWiaRNDoj4I4m7sijkp1jcC2t541MNbfyOMBaZoG+AtAlHnx6o3tqQ0CBLkTeRmYMVRsfob3eHh8ZYhhW7zgf/j94GQFifFuqlqEJiPWh9jmeGts7df+RDW7xqIfU7MSXFt3BQuGfAi44NA19oxrsxZPxMYsrhQ3e/bWnJ4+VGzGr4/dEY3Dp3RHZEGeqXF6jN3PrMt9Ht3ehkDelVhjMqwY7oIHlizs+bvVLQjC9jYX+3cN4zL71qDj/92Ga6673kMhjmdDoE1xan2QeDQ9J8qaF0HzMhQAMG1mhD1hxuqDztsFk+p5Csf7Dvbxg9/Xa/7pKgsW1UmhuIWB5v3DOK+1TsxubMVpx8yDRPa1U9LUU6KdR085HNim8a4G7si6eSNVybrNm64sFBxsCIaAm/5toiaGFJctnGHvCZv2tVoEAjGK7Jp6h9zTKe6Vye9wezCBidYzKpNDBkREFjxQjAWiwsVzEllTOVt83ev3M404VYNV6CItGnRGqBY8lEU9MkQ5cPB5nrWlbW0jmR+45JjsLF3EMs37gEAzJnUgSvedmJ0GhwpqwpRrdPlcawy/rtWFyqxZWLonVc9hL997MU4ZL+yAM3ldmQTGwKCawI+SW54bBP+8dRW/OqdJ0ea5a3AdlIsYWIo9okM02QCgozUQe2Wqyi65lYKk3bJ97XetLdZ87aKV9dBnzInxYz3bn96Kz74f0sxMmbD+MBpXfjNe0/DnMmd/JFzYHpMEI0v7jxOpGnpzCm1sVVFnxM3B8GHbR8EcUInsxoEyePlGef0+SBQGhx5VAsIduyzY/Nau4mhir1+vdEYhYJfhQYtWoc6YMn3URRMb5QPh2gTQ5w+CJJobjlyFVvH7f0pE9rwl4+ciTXb92FgpIij5kxijokUS4o5B7rTnbgZNzHUvFSco5vWaBkaLeGWp7big+eMCQiMxp4eKGyvHnhuJ+5dtQMXHDmT+ZyYgEBJ0jIMk5kYykgdFAbZJOg2VWOzfIq+n00WignWpy1dE6aT4oiFxGixhH/97WNV4QAAvLBzAF/92wrueHmJWsxoNTEk5INAnQaBzlv+qm2TJ4W3XFibe20mhgR9EKR5Z5tkzhExMbSvKiCQjy+MqHbmyiGaKIJ+u2lg0X6vSyZweKG0TiOUlFiKJaBYErOZPBqpQRDeqHmbm4pxNwkmuqSu/YzneTh0Rg+OnTeZw1wfvXmALR+IWA9rSotJKNaFKSpjto1l+v/c/Ez1cwqnQyNQuYD1vVtXxj7DdlJc+zePQNulSwDNgovbgIyMVKNLvZrC8Fv2QaBRg8Di/EphflNZtkI2gyV8ENz17PbqgV6Qm5Zv4Y+Yk6j9uk4TQyLEHiaL+CDQuDsgJh/gLhZWukX7DO8iXrSsTB82m4wtWGai8VZNB3A8W/FBsHPfsGAsbJKOEtb80wgQ7AZUNqoi2DAwNH7bXnNEBqnkxabQo8FJMSVpRQylko8IhYBIojQIkpKkF7syAlAQ0tpPQSNss58RP7jTzSKhWBemqJoYsl4KKWhIFlCtuSnLis17Y59hLQ9kNAiyFkOPzMRQRupw/QZBg3q1oqGzMqDbXDyUSpkGgWp01uaNj2/CH5ZuwEihhPOPmIl3njk/tH+xDhOifnt47a5EaRM52I22uZooCZHkPE+on7XGOLTV4YNABmoHh7zFolLbnrcEROvBeNFasjEkGm1lz8TnpLiAvz6xCV+6Ua0WUlLBq2sHyFQ2qiJYcVI8Nnq4Vr8sKGhF1K95XSrespNisQP/qPxFmhjiDDfWSTHrAUeGAApLEgppqIclVEvjbd1KW6ZYF6awqUGQkRyX2i7bxFDt3zwm91iPuFQuaSITEGSkDtfHkkYnxZYSooGyWpq+W+42hR+2bonqOhDe3jeMj/5mWfXv+9fsxPrdA/jCq49qeJZ1AS6q/Zo8dIs0MZQoBdHkBE0MtcQICETyqtXEELGVGm+xsJ4T9kGgqQxolaxaEtnCrmz8OcLY2DuIbwZU3VWRpjk4imCzptbPeQhrH/p9EOgN3wZVvwo281avQeBQORd9P1JjMYy2lhxOPWhq6G9R3ZDbxFCqZ5UyNA5DSSSiBtYt4GgFAoc6Wh30asA8lbHb9iXJNM6LJrBdbyKwTAw1aBBwTeBZo6FGZmIoI3U4NMaG0uigTVW49gfgku8rXTz896uOrPnb9bpPiu6F2TUPrkPf0GhIvCwNgvDvTS4io9Kn65ak54ltWPIxJobEfBBo1CAgtmLgFTLJmMCKQqfNY5OYjC2YNdFDq8rTPMXzx6UbmBsXWSJ9EKR0vnFRgyAM3TdlKdy2V42uPImE1rgGdqd8SyUxDYILj56FjtZ86G9RYyXvWj6RDwJHjlwpHKoRSEIDDz0fraEbfWlHU2IM4kq71QGVeYhGKtzDpWUXc5nd4IMgPjwiTTcjAKntvud5ec/zjvU8792e513ued4jnueNeJ7nj/13V4Kwz/M87389z1vpeV6/53m7PM97wvO8b3uet1BhNkjG30w4v0Co90GgKlgCA3BJ0knx+UfMaPiurSWHlx89S0Gq1GCrfE229pFCCX8P8RHAWphGbe6T2/UWeNawzdW8qAZBzMpQpM80lQYBr4khBWFU0FUCpovWkoUh4QIUSefeoUafJipIOra7dAMaSI+AQDdp9kFAKU+U0hJHseQzhZSXnXIApk1ow6TOVrzp5P3xP68/1mDq+CE21UdCIZkU0lDPM1vENQhcptJeXWm3OqhoctsuA5fGa0pQ21+xYAntG30QcJgYSpyiDNWQMTHked5rAVwDoEtxuBMBXAHgjXU/dQGYAuAYAP/qed4XfN//hsq4KcTfjLi+t03zQCnrpPhVx87BcftPxo/uXI2h0RKmd7fh+288HrMndWpIJT8U5vNgGkxoiazfPdDwHesAjEJ7Dqbv3lXbcc/K7ZjR0xGqDaECUUfBcSaGREqxqXwQcJYLa8hpVhNDzjgprtoWtug7p8l2vNT6OQ9hSdZfa2PmeEjMcmqx66S4Nm6X+l/RZ5tf+Oprj8bXLz4aJZ9DEJfUxFBMP9btgsDImE1gqKI4XMoIpR3qZg04fzFQAZVx0vb8ncb50AQunV2xTQzV/s0lIGD5IOBNVIZSyAgIAEyGeuFAK4A/ATg38PWTAJYC6ADwYgCzAbQC+Lrnea2+7385LfE3KxQXayI0+iBQM9lWg7FYPkVJJ8WeB3zk3AV471kHY1PvEA6c2iV8CKuDYNVQWBKZWOD3DjQeqss4KU6KSL+opOGHt6/Cd25dqSU9QTwPQg2iNdbEEH9YOjcH1MZWQV+QoYg2T13DDrWyVYls3mpNE9kjqomktcpc1CCwkWKKt+2To8cHgUj91MftUvGWYjQIcl754Dz2TgAUOCnmfC70XUcmpPaWcPNMJnHucNqwTy6TONJsteBXBQS202E3fldxZcwF2HvS+vGQZ//qkhnBZoGSgKDCVgAPB/57GYB/lQzr8xg/nB8C8E7f939b+dHzvDYAXwXwH2NffdHzvLt9379bMj5q8Tcp7gyyYTTYX7WSCj34vp/odkF7Sx4HTZ8Q+btLE6wqgpOxiTl2z2CYD4Lo52Xsnfq+r7QufQC7+kfw3dv0CweAsomhokA7jzuQo+KkOE+sf/EUS9zCk4oGgcp56zWL5sTHZrAugzGJxGv7JlyF5JsXt2bxOJNnFAlrV6acFLtmQorFeJ7o+CBwSYOg5PsoRqS3JecJjX+Rj3KWRzIfBG4wscP+MQaRaYobd3oTP1UTQ860XPWMmxhKVgael2zuTGP7MoFLyy7Wmri++cWtnz/5u8dx0/LNKpKVoRD7M+s4NwM40Pf9dcEvPc87VSYwz/NmAPi3wFcfDx7OA4Dv+yMAPuV53gEomwDyAHwDwBkycVKKv5lxbbFWT8NYavEml2qKJbmFB++Cx7iZjqB5H1urIsOZDhMQqNYg8P34fizmg8DH7x5Zb6yOcp4ndGgUZ2JIpAwntOub1qkc2FbgObiNe0S0SVDXIJg2oQ0ffsmh8fGpiY4PSRNDtYIFZakRxqHzSSVQ0M4TJSzFuk0djIefngZSyYlNoUd9f9sTorVIFR9AIaLwRPtV0sPOZBoEiaI2xsSOVttJcO5IOvrSjrvjWKUOXGm3OiiOqdQmLQNBBegGXG5HNnFJczNKCA40ji9xa4k/LN2gIEUZqiHjpNj3/S31woGEvB1A5arxSpT9AETxKQAVYwWne553fArib1rcGWLDqT8MVLXJpTBpF31fTkCgPimpxITtx15BAYEMqnNRKvlYvnGP4lCjKZsR4H8+bmHIW76drXmceOAU/ogFcXHzFVdy4m2Xpg+CI2dPxKdefjhu+PCZOHxWT3x8ButSNioqJoaSHpYSmHqFoKYpRJU0mhjSpUEgZGKobtT+2T3PKU2LTnwfKBajNQiUxMH5XKwPAkatuHITe2Kn/XuOrmkuR/XtNAxjtmti9qQOXHjMLCtxj44tVFhlwHMOQO0iULPgypgLiK2JXdIAzBiHjIBAA68NfL7KZ4yKY4KJOwJfXZyC+JsW1xZr9TTYX1U0tlZdEFgsH9/3pSYL3iSbzlptVuxMgqa1GPaGCgiin4/ejLBuICS/GV4bl1k8T2ypF+eDgJf/euURmN7drq0fUNs48Iwlsc8INg5dRZB0XP7qxUfjQ+cciv2nKnXlpISag36BbAbLxOq8lXAEcW1/pGg4Mku4CoFW0qc/MN7WKVwoAYD1uwZsJ0EIlokhUcFb1OP8ToqFoqt7OcG7BukhoEGgmgltev0qyJj9pE7VxJDlNer+U7rwmVccYSXuQrGiQRBdBjx1TG2d3yy4VOysfVX9ejmpgMDhYclpXNwGxOJ5XgeA0wJf3cXx2p2Bz+dGPuVA/M2OQ2Ns01EsyR21uCRZN43pkukdGGn4jnWYILM24LItL9CSTJtLEFUVVWFi6P9dughvPe1AoXhFoaYCy9O24p4RXbxqMzGU8H3R26kmx9RczUE//3tUTAylycY8Dy5qENhI8bgGQXoaCAW/CsHi/OPSjfYSIkmUk+I8j2fiAJECAs61j20TQyb6JAkTQ4oz+qpj56CzVZ+QID2jVRAv8H+7tLfaOVobHdNcYi0FWaZhKiRtzymaDo3ikmCmJLBASNoentiwB+t2unVRIA2kUkAA4HCM580HsIzjnaWBz0nFv7bjb2qcvP0WoH6zqWqurQRr21SDVg0C4ZCTQcIHQQATSRgcLTZ8VyqFPFj5LUqDwGB5mT7AUW1iiCf5rzthLn+EkhCTDygRJIkbGNJkYihhsMLCG0smhkTKj4qJoagOyHtb0YTpt6QEc0JNEMiD53kYGi1ixaa9GCmUJyTdpV6ZV+jXrjhUzAaOFhmLC4KUSn6kgMC4EDfBpOLKCNCTQifFh83qwdXvOgWnzJ+qNuAxotfD7o9k1s9YPaC9Ra8GSBSFsY0Y66CZZ1xPLCBIQTuygUvLLpZ8oNEHQfL28MYrHsDmPYOJw8ngx/Gj1EgOD3ze5vv+EMc7Qf8HUz3P28/h+Jsa12+bB4fSPzy6AZ/543JF4dqftEu+L7UGdbtG9VJzSGWpipnqhjIaBApuhgcxbQOxbGKIv9W2xEg14y5reF5tO9CVXdvq2/Xw1KtqDQJtJoYSjnJxbcgmsmVWs9G12PaaTYPARSfFewZHsehLt+DCH9yLRV+6Bb834JS+amIoRe2jkhWW0F97GgIF6pqwyke0BoGqG6LcJobifmc8QG2uj2JiJwENAsU7FA/AKQdNxe8+cDredeZBSsNm4fI4RsXEkAegw5IGQSHC90kQEyaGXG5HNnFKg0CgklWsnzfvGcLfnticPKAMbujuKJMxLfB5K+c7W+r+TiK6tx1/c+POGBtKZdz91X3P45O/f9xuYhRTKun2QWDTTrUdTOc4rPpYeZczMaT49qIPoxWUz3lC55lJTQyZMglC7qxGQZ2KHoTpWsSb1iAwWZW1vgQE3ov4bJo0mZDhwUUTQwAwPKY5MDhaxKf+8ASe2NirNb6qBkGK2kclLzYdCwZjVuXY1xS+DxRUaRBEmhhK9j7Xu/KvGiWNGgS65eIpGq6qUGqvbXm7JoZY+2CecT0TENjBtnCrAs80xTIxVP+LqrXEV//2tJJwMvhIq4CgO/CZVyel/rnu0KfciB8A0NHRge7ucjDFYhG9vb3Vxf/evXsxMlK2JT44OIj+/n4AQKFQQG9vbzWMPXv2YHS07JR0YGAAAwNlO2Cjo6PYs2dP9bne3l4UCgUAQH9/PwYHy9kZGRnB3r17AZQ3Hr29vSgWyyZK9u3bh6GhsnLF8PAw+vr6AAClUgm9vb0ojZ3c9PX1YXh4GAAwNDSEffv2MfPkAWhDAR0opzuPErq94WpaJ3jDyKOchnaMor36XBETAs91e8PIo5yGDoyiDeX8taCILlTssPvo9oaRG3uuM/BcK4roHHvOG3vOGxs6OzGC1rE0tKGAzrE05FBChz+IUqmEX9z7PLowgpbAc0ny5PvlevJLBeN5Kqe17LxtqH+fcJ5Gh4e42l5pZNBonoJtzxsrV9Ntr1Qa709eaURJPQGIbHs5lBrGCL9YiMxT5bC/fozwR4cj81QoxI8Re3p7ufNUudGnsj+x6gnFUfjDFZuJ8W2vJecx66k4Msysp7bc2MHY2Fjuefx5EhnL2/1KePrGCJF6aisNxc5Pvs/uT8J5GpvHeOYnVp6i5lzZtlccGarWE8+cm/cLxuqpONRfrafC8BB/f/KK1TwVh/vF6klhnkp++Noo5/PVkz9W/jbmXN568jG+3svnPJJrI5E8+T5ww7KNWtd7KAxhaGgIvsF6AvSuYUeHBsp58u3lCYXh6lju+W61vcJgX/XwpKGevHIaeOdcr1QIzZPvl8fyuDx58Jjzkz/cH5mngYHke8JiUe9eo6M1h+LoSOyeENC7z23x1bY9vzBazRNK6seI1tL4cUMwTyNDZvdPKvM0PNBXfa4nZ2+M8ODD8zwrY/loodz+84w8lfz4M5YObyRRPQ0P7iNxxiJybmSynqLylPNo9KdWrxQ77pV8dp6Ce42R4WGleUrbmWVcnmyRVgFBR+Bzo0fNcIbr/u50OH4AwGmnnYbXv/71AIDt27dj8eLF1UZ75ZVXYsWKFQCAu+++GzfeeCMAYMOGDVi8eHE1jMsvvxxr1qwBANxyyy245ZZbAABr1qzB5ZdfXn1u8eLF2LBhAwDgxhtvxN133w0AWLFiBa688spyBoeHsXjxYmzfvh0AcP3112PJkiUAgGXLluGaa64BUO40ixcvrnbSa665BsuWLQMALFmyBNdffz0zT57n4bjWTTij7QUAwH65fbi0Y9xMz0XtKzA3Vw775NYNOLm1nO65ub24qH1F9blLO5Zjv1y5Y5/R9gKOa90EAJif340L258BALShiEs7lmOyVx40zm5bgyNbykojC/I7cEH7KgDABG8El3Ysx4SxifeC9lVYkN8BADiyZSvObiuX8WRvCC8pPIq12/dgY+8gLmx/BvPzuwEgcZ78sXoa2L3deJ4u7ViONhRRKvlYfucNwnlat3wJV9vbseIBo3nyi+WJ6Morr0RX/2Yl9QSItb0dO8b707T+dUrqCUBk25vm7WsYI/L92yLzVLloUD9GeFue5spT1Bjx05/8iDtPxcIIM0+q62l4x3oMPHV7TZ5Yba8ln2PW087nn2LXU66cp+BYHpenU9vLzh9FxvKDdz3MnSdAfdurz9NJg4/Ezk8+fGZ/OmXkcaE8dWCYe35i5al+zq1cHpJte088sqRaTzxz7uTBjcbqqXfp36r1tPGpB7nzdJS3oZqnDUv+LlRPKvPkI3xtNK20m6uecoO7qnkyPeeK1FNlvZfzPJJrI9E8rdy6T+t6r3vTo+X+5JutJ515WvvIHViyZAlKvm8tT97G5dWxvNi7xam2t2/pjVUNgvp6OrzwPAD+ObdnaGtknq6//vrYPHkee37yn7wpMk+3/P0mAMn2hHt3bNVaT93trVx7QkDvPndGcYfStte3bkU1T8WBPcrHiOP3PRyap7XL7iHXn3jz9Pit11efe327vTEi79sby4uFESxevBidpf7IPJV8P/aM5TRvdaJ6WnP3n0icsYicG5msp6g85XMekf7UFzvulXw/Mk++X7vXWLdqhdI8pe3MMi5PtvCoq8Z6nvdFAF8Y+/Nu3/fP4XjnPwB8a+zPB33fP43jnU4AQTfZJ/m+/6hYasnEfxSAJzs6OtDS0oIlS5Zg4cKF6Ovrw6RJk+B5Hvbu3YuOjg60tbWVpYGlEiZMmIBCoYB9+/Zh8uTJAMrSuK6uLrS2tlYlcV1dXRgdHcXAwAAmTZoEoCyN6+7uRktLC/r7+5HL5dDZ2YmRkREMDQ1h4sSJ8H0fe/bsQU9PD/L5PPbt24eWlhZ0dHRgeHgYIyMj6OnpQalUwt69ezFx4kTkcjn09fWhra0N7e3tGBoaQqFQQHd3N4rFYmielqzdg/dceT9y8DGEVuRRQqc3in1+O4Cy1HTIb0ER+arEdBityKOIDq+A/rHnur1hDPqtKCJXvkUIDyNoQQuKaEMRA2hDWWo6ggG/FSXk0IlRFMeea0URLShiEG3w4GOCN4J+vw0+PHRiBAXkMYo82lBAHj4G0YocSpjX7eGq95+Dc79zN7owghHkURh7Lkme9utpx60fPgm3r+7FJ69/ymieurxR7PPb8LbT5uPkuR34tz+sEMrTj99wJF6ycGZs27vqrqfx9ZtXGsvT+88/Gh897zDs3bsXH//9k7hj1e7E9STa9pb896vQ3dmGffv24V1XP4qH1u9LXE+AF9n2OlqAJf9+Zs0Y8aWbVuGPj28NzdNh+8/Enz50ZsMY8T83P4v/fXhzbJ6ixohtO3bj9O8+wJWnD1xwDJ7e0oc7n3hBWX9i1dNnX3Yo+voH8cN/buRqe794z4vx1l8siaynr776MHztxqci66m1rQ2Pf/mV1bH8+3e9gCvvXcPM01dfezQuPe1QobH8Xb+8D/98YUDrGMFqe/X1tGByDjd98nzm/NQ/XMCpX/xLZH+a19OCtX0+d54OnNKJP7//BK75adHn/hyZp2WfP79mzt00kMOFP7hXuu39/RNn4aCZU7nn3Lf89J9Yuna7kXr6wsvm460vOgytra3440PP4TN/fIIrTxM6WvHoF1+JkZER/PaBNfjvvz9npe39+yuPxTtOP6BhbfTqyx/Cut6R2Hp62aL5+MNjm63Mubz19NFzD8V7Tp2Frq4u5PMtOOKzfya3NpJpezrXe685aiq+denxOOkbd2N4eDgVefrWRQvwmuMPwNPbBvGGn9yrLE/nHDEH9zy9kStPbz1pJj574ZHo6urCFXetxOJ/POlM2/vAGXMwa8Z0fP6GJxvqaf70CfjHv1/APee+/Rf34+HVWxvy9N6zD8VHX7w/Tvjq7cw8feOSY/HKI6ZEzk9fu2Eprnx4a2ieHvj0SzBt8sREe8LHtgziHVct1VZP0yZOwF3/dmbsnlD3Pvf8b9+OTTv3Kmt7X3zlArz++Dno7u7Gp363DDcte17pGLFwejv+9u8va8jTDQ8/h0/9YTmp/sSbpx+8/ki88qRDAQDHfvZP6C+1WBkjjj1oNq593+k48tN/iszTo59+MV59xVKs3zWodCy/4IgZ+PZFC/Av//sEntjUF5qnB/77lZjY0cI8Yznnf27DlkFPuJ6e/MYlAIBr730an//bKutnLI996ULuc6PD/vtWa3NuJU+vO+UgXP/QWuv9qavFxwP/8WLmuHfLs7vwyd8+Gpqn9529AB958bzqXuO+ZzbjPVctUZKn1d98TerOLKPmp40bN+Loo49GgKN9338KhrBvvE8P+wKfeW/i1z+3L/QpN+IHgKoqDADk8/lqBwKAiRMnjkfcOR51S0tLzXOVzgSUO1mF1tbWmt+C70yYMKH6ua2tDW1tbQDK9tWCz1XMHwFAe3s72tvLg1Yul6t5rqenp/q5o2NcOSMqT54HjASadhG56oAIoDqQA+XBcPy5PPr9fPXv4DtDgecKYwNvGa/mucHAc6Njgx4A+A3PtVU/B9NaQg4DaK/aohuIeE4mT75frqdcfp/xPFWeK/o+2jonVOPizVNbR1e1/bHaXr69sxqmiTxV6mnixIko5VqE8qSq7bW0lP/u7u5GMdeaOE8VotpeCbmGMcIfy3tYnioy6IYxoqUtMk+5MRuerDFi0uTJ8OFx5amSBpX9CYiup1xLK/IdFUOO8W2vJecx68lraau+F1ZPPWPlHxzLWXnq6e7GuUfvD0BsLC+1VOTY+saISp7CnqvP01CuHa2t5bij5icf7P5UjmuYO0/IedzzEytPlbKtzLmbB8u3T2Tb3oTOcv5551w/31KtD931NHHipGo9tbZ3VPMVl6d2r7Wap9bOSls03/Z8P3xtVPLKccXWUy5fzVMFU3NuVJ7Kaa19LjgO8La9iT3d2NY3TDZPOtd7pXw7Ojo64Pt+avLU2tGFjo4OlPxBa3ny8+3V8byttbXmN1vrct48ee3dKBZLDXkaRiv8fPk93jkXuZZAXIG0+uWxvBI3K0+s+SnXPgEV6+1x81MFkT1hfnv50ElXPeVzHteeENC7zy3l8uH1JJEnAGhpba/O1YNFKB8jhrzx34J5amnvMLp/Upmn9q7xdj6AdhTHTJMYHyM49u6TJ09GxbG1yrG8UPLLYedykXkq+fFnLCO5dgAj0vXU0tmNIjjXRjF5SlJPlf0i7xhh+9zI8zwS/cn3WmLHvZLvR+bJh1+z18i1tinda6TtzDIqTxs3boRN0mpiaGfg80zOd2bV/b3L4fibmsrE6y60tXqS4Pu+lAMj7ho17OSHilOhCrY0wlhOiGTSxPOKiCNjhj8lLfi+2DgU56Q4rjxEHNSeMn8qfvu+0zCtuz3+4Tp0OeiVhaudxDwk2jZ0lUDSohUdi0SdGiehs218AyXkpDjorFFhekRJ6mRNtdN1HciWr2tOZFXi1/2bBipNXfVaQqTfB2POW3L4KYsPH8WIosvnxPJi1Umxgm594oFTtC7JqSxHVCcjuM4aGi0qDj26/RA3KMGETFvgTIeO9FZMmyV3UpwwIQ63I5tQWUrxtM0xGTgX1C3VZITj1sqLn2cDn2d4ntcR+eQ4BwQ+7/J9f7vD8Tc1VAZZWfSNpfYH6WJJ7qiEe9ElEXYSghNf08yBIflk5V1mM8JTlCLl7cM33vxFNgAtMQcHcQusvEBk//vuU3DojO74B0OgsgmrwCdISv5EEF1CkqSCbdF5z6Rws7M1H/9QCMGyttn2mmVolyEfI9xMNdXDdLvJUEklL6aF6mFpAMTmNgqUfKBYCj89EZV1ROWc98AlyZyi4qJVV1sLXnok7x05cahcWFA9lwaD0yEgiJrQXB7Gai4TWGwWvP1GRxJHx05tWfkv+T56B0bwpRufwsU/uQ+fuv5xPLulr+aZpO3ZhQsRFKEynvEIkZjP1P2kci3x0d8sUxdYBpM0CwgqKzQPwHEc75wQ+Py04/E3NzTGWGl0Ta2V8dymhkXJl7uNSWTeJEmwbEwsy8IWf6x4o+qbtYhUfePA5mEHD3EaBHHpz7kuFZWEp53EPSLc1DQVddIxTnRzYfJct0aDQKAAvZrPNuct4gOIRVw7wFVJZQ5L04FIJSdU2rxrZev74zd56xHVIEhMTNc00XW/84bjcIEmIQGVZY96DYLxz4Mj5jQI0oILVgR0XNAojKkusdaCA8NFvPFnS/Cr+9Zi2bpe/O6RDXjTFQ/gue3jVq2T9isKU4fspRSbUBEQFKJU4AKI7NFVriXueHqrsrAy2KRSQOD7/hCAJYGvzuF47ezA5ztcjr/ZcWFxwILKxkwHpZKsiSHOWxlNfsvURNMphmx+WYuFqJ+SplXkddMqjn7VOwIfJjUIkvQRKgvYCly1GvOQ6HirT4Mg4fuCARg1MdSa3MSQzWk9qolw54XC5KAJk+2IGuPmeOymQyWVuUb1OlQsuPGHS9Sl+3X4vh+ZZlGhbNQhIm9Zxs1VrENKVdNcd3sLfv4vJ+Ge/3iJmgADUFmPqE5GcL8zVNAgIIi6tOPwQFazR7SpQWBR2320YmKI8cydz27Ds1trNQZ2D4zi949uCKQtqQaBfVw8RyEynKFQ8mPHApaJofo3VdZFM683TZNKAcEYNwQ+v4P1oOd5+wM4L+JdV+NvWqgMsrLomtcqwdosn6Lvy00WROuUgg+C4GLOxJKo5DduJNgaBOJxqM6H6cWi74v1szjTA3FlKLJoSmR2wH5zryGqWvcMjuLhtbswMFKIvYFKxwdBspBF3zdqYqhN7jZXMI02m17SgxP3tqr8tDpmI14lVQGB3WQoxW/4YCENgbijbuNTxUd0muMuAtQTaWKI8/0kZymqx9sJ7epv9FJZj6i+lBbMV6ZBwAkN+QA/OnwQcJgY+tKNK0K/v/yuNdXPadAgIJAEYagIPIH4eVdkT62yPbQ08XrTNGku6asB9I99PtzzvPcwnv0foOqK+wHf95emIP6mhc4QK4euWxwUbofI7vV469S09kitDwI75VuzpjCUhnotArYGgXiaVDifFQ1PNbwHsOXDffazcckXOXdIkwZB2CL1B7evwvFfvgWX/vQBLPrSLbjmwXXMMETbp64iSG5iSOx5k6ZhajQIBN6rUSCw2PbCmsiTG/dg/a5BrvdHRTy6OQa1McEkVeGj/aWVclSfyws5KQ7EHaaxSBmmBoHgIB3ppFiRBgE7btWH3urHCSpjj3INghonxernDgJbQa1Y9UHAGbleHwRmL5vUQ8EsHIXzDlEoXY6PMzMksudXeUGPypjfDKRWQOD7/jYA3w189QPP894QfMbzvFbP874J4LLA159hhet53lrP8/yx/64yHX9GPBRudSfBvWmNn1JJToPA9TpNG8V6DQJGlUaaGGJFoLgTlHyQlRzmPS92YajUxBD3k41M6mxN8LZ66kvljme24ru3rqwebo0WfXz7H8+ywxBsa3RNDImFYNIcdo0PAkkTQza7b/153/1rduD1P72f+/2/PrFZcYro0Mwq3+MaBClatY1lRbXWXXd7i0ASAiaGHDvoKTF9EJjtK0mmKtUp1ZHztB4W1fgg0OCkOGq8cqyr1VBrjdB+u3j5UbNCv7/khLkA2Os12WFi3AeB3PvV+FNwMuhiW6Y0no2W2IJJEcG9SiF/SxOvN03Dv2IzgOd5NwGYU/d1cJQ9yfO8x0JevdD3/U0h338FwJkAzgXQCeA6z/M+B2ApgA4AZwGYHXj+C77v3y2Z/DBsx9+UEBpj5dBsYsgmJV/WBwHnc4brnoLgokaBwFCcjRoE0c/KHJ7wvEPbBwF/W8zl4ttR3CFJvZNiXe1y9qQOLeHKUl8s1z64XjgMKgdQSetMdN1scjMi6zAumEa7/mVq28gPb1+t5WanizTzfq3SKogMIUqotHXV4+JFx83BDY9tFC4r15RvfD/6QERcQBDhg4Bz9RM3p7B+VT3e6phvCCy/AejQthj/rEOoFH1ph+5A1pr3MMq41ewRWStUon7b6Qfi5qe2NPz+2uPmxoaR8zyp8bdyqJtUQJK0r1KYDwkkQRgK5wkV4jQIWGf+9fWvUgmwmS+kmIaUgADAkQAOZPw+AcCikO/bwh72fX/U87xLAFwBoHJ7/5ix/4KMAvii7/tfF0suG9vxNyuujx8+9BxaUZi0iyVfarKw6fiJOsFFhak6fuj5XfjlP5/HM1v6sGjeZLywsz/yWSkfBIrz4Vf/Zw7eRXrei38yrjxEFvRJFqGzJ3dKv6uH2oK57emtCUOIR9ciPmmoops6kwKCjhoBgZy2i829U3AM830fDzy3015iiEFpU2uaVPog8Gv/VcWUrja86tg5uPHxsLtc4WkAgGLMTUZqlHw/Uqhh2sRQkp6pvF9rGCao3LhVnYpgvj574UJ84rrHlYZPYS8oyrwpXXh+R/Q+I4jNVlGpujMOmYZ/u+AwfPfWldXfPnbeApx12H7l5xhhlOtfvJIqh7rJzVUmNTFkHyoXf0SgdHZViJHMi/kgUKhBkCdUSCmHmoBAOb7v7wHwRs/zfg7g7QBOR/nW/iiA9QD+AeCXvu8/ncb4mxO3BxDfj/cgnwSbG/qSZN4oqIzGQWE9YuoG0Dt+9XD1c9yhbFR9s7UO4hEp7yibwDrh7Wb5nBf7bKyT4roAWH0sSU+aQ0yDQEW1ipsYSh5nGKaHZZM3cYJxiZkYCrxncw4INBLXbKLrhtKm1jzltuCiveMoKjlRfcDiecB3Ll2EOZM6cOvTW9HT0YrH1/cy0wC4p0EAqDMxZFporBMdSaFiCkVnMb94wX7o6WhB31BBWZgya3KbtOVz2K+7nSkgqL1MYL/de56Hj523AJedcgCe2rQHR82ZhP162gO/s96Vi3O0amIooQ+CRG+DREMikARhKI3XowmcFNf/kmkQuAkpAYHv+/M1hn0bgNsUhDPfZvwZ8RAaY6UoaxBoCJfAjFny5SZubg0Cx+teBupZlqlvrrYqIiAw3PR9n//gLJ/zYg8/RU0MsUjSR2YRExCoGNNED8K0OSk2rBZuazMiEiuV8Tw4frDMHDiNZGFTOIyxRZo1CHTMmW0tOXzmwiPwmQuPAAD82+8ewx+XboxMAwA8tNYtbR3fj76mIWo/OWnXotQ1dcw3VA7UdJpjmt7djv991ym4+Cf8Pm/iiGqfBLaIocye3BErDKLir6g+7v162nHO4TNCnotOpWy7LlRMDFkeN6g0I9/3nVqfiOzjdBOnQbBy6z7usFReNhDxt5eRDCLy94wMdbg+fPi+JhNDY//aLJ9iyZe65e5Cndqy3xmcLyku8KPbMv8NhKSYrhsfvloNgpjTGpF1ZZIF8yH7dUu/qwMVtSraZ0QO8kUOhJKrhet93gY1Y5vFbWcw7jjnbc2GC+1IF7c/sw1fv+lpkvNuUpRrEISMm1FjaaW//eHRDbhvtVsCApaTYlUHQLyC8djoDPZdHVFROfxTrd1Wn63jD5iCmRPbwx+WINoHAU06W/OxZVzzu8VmwdsmWY8ldVKclDT4IADopIMXGqNZGdZFGN/3cffK7dxhKRUQNPOC0zCZgCAjdVBZNMriw0dazyBKvpwPAt6Z0wVTRDqhuCDSdVtJ5MDQRrnwtsWcp8DEkCEnxR2tebz2uDlawpZBhemoEUEbFiLrU5M3gkTr3NZCWySdwT5k09RIjQZBIaWTsySur7eScsU9z9lOglIq86oJjVNW0ymVfHz9Jvcsr/rwUYw4XBHWIIgUoHC+H9M3D54+QSg9SdBiYojI0GPCoTMVbQkbeBxr5Jrn9SXFSNyydT06tkhK2laSCwhobETX7RqwnQQhKPXxAuMQqndgFNv7hiN/r69+lc0h80FgjkxAkJE6XB8+dGkQVHYVdp09+nImhvglBNawtSaifkAj05ZVlyVlh1UtOS+2Dosx6TfZBr7w6qOMxRWHlVoVKOsZPfy3/kxrEJhqM5ecMLfmb5G+GMyTDT8iFYJJTq2Jobp6efvpB3K9Rnv2EafZb6jpMjEkNNz4wCMv7MbO/hG1iTBAyY+er0XNI+h2UvzqRXPQlm88BnjRodP5IhBAx+EXFXMTqlMRFp7K8ou6XEPlYLceD/H5rzExRKRdsGClUTb5Fc0lmSksOA6kxcTQp65/wnYShKC09BgtRNei6KUqtRoE2bG1KbKSzkgdDqwNmOiaXCvh2lwDlkpyk4XrdWoKKguzIJHqzEwnxfE5EWlGptu87/O32VwuXvwVt3EzubCcMqENpx401VyELKxohvDzxQhhymWn7N8YblLHcsIaBImi4+Ztp9UeNIs4+Q3mKU5IppNg/xt10WuqBO8962DMm9IZ+xylW28qCOubzYQuJ8VhRLUcH8DmPYPa49eB70ePccJOihMLjdkBdLW14N9eeljdd3l8/PwFySI2BJmxR3E6wuZyledirpkYyuXiizj4s81mwe0vj/GbrOZpseSjVJKzu9/dMe6S1AUBCw8Prd2FfcPxzr2pCMYo+SAYLhQjf4tbG9Tv31VeNhDVwsuQh5ST4owMFZBZNMqiS4OAAEWGAzcWvDVqs+YpVBmVhU4QqSQ1kQYBjw+CuENV02MelTHWRq2KrE/POHQa5k/rwtqd46rObfkcXnfCvIZnTZeoqduXxx8wpeZvkb4YTKHNPhyMOa0CgmPnTa75e96ULvzxQ2fgpic244s3roh8L20Xur78mqNx4NQJ+JqD5m2UMNbPTCjsRN+Qpztfx+NHzteqzCPwrqJ5hvgPnH0IFs7qwR3PbMPkzla8atEcHDazJ2EK5dJCIUwZlGsQhASoVoPALURNx9ptFip8EMjnYLRUkrow1NEyPpEnPYOlNHxv2zuE7hjfaVTSS2U8A4Ch0eh1rmh5ZT4I3CQTEGRkEEPaTn8MlU2XVRNDJV9q85eWGw2qcaFYouqbtcnlaSEirciGdRLeNpv3vNgNQdzt6fo1k+4DFirtzsahschY1NXWguvefzq++ren8cjaXThkv268/+yDcdL8Rg0M02Vqa0wV0yAY/2zTxFAw7jSaGGpryeGcw/dr+H5GTwfeceZBTAFB2vz+5HIe3nvWwRgtlfCtm5+1nRzj+AC29w3j+kc3KA03bLhJamOfIqVS9BgnevAXWT6cBcQb3zmHz8A5h8/gTZYUOi4VULmo4JoPgsj2Q7Tj5TyO9YpzJoaif0tyBlp2VCweQHtrvvo5uX84t6CSXirjGZBQg6DBB4FCAQGhMko7mYAgI3W4Pn740HPwRWESlPZBwKu2abHy5XQjkuFCU5c511Pd/G3cSOStmzyHiaG4w9Gm1SCwMKiJbt5mTuzADy87PvY50wettm7iCGkQBE0M2fRBEPicRg2C77/xOLRI2pwiMhQoJ22CD16e3LgH37llJfYMjmqPK6mNfYr4LA0CYUcxUXFwvk6oCetIChXtJRM+CNTWpfilHat48aNx8AmbzZ7fxBDrQfkcFIq+VFtpVej81W0NMHtQuhyfRIPgwed34bu3PIs5kztxwZEz1ZoYypwUGyMTEGSkDtc3dr4vd8veBYqS5pOomhgaGi3irme3YVvfMDbvGTIceyMUm43MpoPPBwF/uOZ9EPAv0vM5L7bhxp1J1h/Yv+yoWfj5vc/zJUACKgcPdoRyejJvukxtbUYKAjfwg0m0eXE/OGelUUBwwZEzpd+lIixUTUqzFcvvHlGrOVBBdNykuJbhoeSPOwutR9TGdNImSOkmtY60UBl7VOctLDiVN2ctytqlyHm0Dk9ZcO9VNWkQyJoYCvYlx5oHEy5tdCKTDZXxDGBrEMQV19Ob9+LpzXsBAD++azVes2iOsnRlJobMkQkIMlIHoTFWirIGgYZwCcyBvmYNAtP88I7VVuOntAGMIqotM50Uc7QRMRNDdDUIcp4Xe3gSl/76m3QnHDAFsyZ2YMveWqFV2hxwWtnoaupypnuyLYdoYhoEgfdsahAEok6jiaEkLcGBKUiKlGaLFJEaBGaToZSyk+JwIaIqB4v8JoaURKcEHWmhsv5VnQr9JoYiNAiIdjwP8XUd/NkFJ8UsktR1oehLvR+s+6QH5lTbURRUkktlPANiNAgESmz9rkH8+M41KpIEIHNSbBIiCnoZGeogNMZK4ft6JtjKoG5z8i6WZO/88lWq63UvSn12KaoIy7Q31bkwfbZ40vyp/D4IOJwUxwoI6gLI5Tz86p0nY7+e9up3px88DZ975ZFcaYqDzE0XB0wMcWNcg8CWDwL+Z4NpjLqVa4LghrmQQg2CJG2BzFigmJRmyxrh5RllY5/eOoYXH36ktpOwBkFkI+R0UkxIzKVHg0B5kFIoz1pIeCrjcMwFwdglGjYe4y+KsFKYSINAcn2i8hIVxX0oCyrTDZXxDChbR4jCpgZSpkFgjkyDICN1UFoUy2LjxrMJitJOijUkJoVQbDZRbTlpUkXyanLBOr27DafMn4qVW/u4ns/n4p0UiwoIAOCI2ROx5DPnYfnGPZjS1YoDp03gSg8PVPpjqkwMmfZBYE1AYH8DK0ow5pEUCgiSNAUiQ4Fy0rCOpE6mQcAmUjzgoAaBDqgIJ1WPFcUQCZMRJ8VE8TyxOcqqBgFvW2AkMokwTdbPn8omQal98Wmj00gwlfEMAIYLLB8E9sorExCYIxMQZKQOQmNsla62PAZGoiWy9egwp1AZ021OhSPFkpyJId7nCNa9TurzS2OZU0uUwz62iSG1OTG1nulqy+MnbzkRuZzH7VSVx0lxvA+C6LCP238yVzpEoLKQtbFO1ZV14z4ILC20RZwNBzfKNk0M1fogoDjKJiPJgQQltfgMuoQ1k8iW43AX8/1oJ8V5Qa+6cV3L89hzYNr7JpmzIsXpCBNCq3TI7JyJIc/jMDE0/rvNZsHvpDiaJHUtsr4KElzjUG0HuqCSXzLjGShrEGSGb0yRCQgyUgelQbaCaJKKVGYsxRSKvpyT4pRvdGRx4ZajzIJV9a0PU7eP7//0uZjc1QYA6B8ucL2T9zhMDMWUoekDeyqtzsatcl1lbdwHgaVKFDlfD6bR5pwYjDqNJoaSQHG9pYJsyaEfVhlTudUpSsmPXvOo0tqqjEce2LKUtLdhKvsC1akIcxCqUuMv2sQQzT7nIb6Mqfgg4IXtpDiJBoFkPQZ9ECRsB5RakUvm6mxd2gmDpUFgs4bzdIoo9WSimIwUQm8EEV3I6rC3XAnR5oQ5WixJTS3cGgQE694kFBdDhQh1e5ObEVPFUhEOAEA/p8ZQLhffbuMOwk1vlKlswKz4KNamQZCZGKqHipPiYNRpNDGUhNZ8to3IiEdkbUb1oJIHH9Hr9xbB041oDwTl8OPmDCqafrqgcp6muphHQg7nlK4PIroXwe0DgDEfBCImhizuA5VoEFgwMaTUBwGhdsSzbKSSXkrnF1Q1CNI+p1EiW9lnpA6K44dokn79wAvqE0FgEhwtyi1euBddBOteKw6bGGLB1UYEgrVx05xXg6ClLCFgEnd72vQZHZWbe1QW9iowrkFg6XRFZDgIbpjsatWNx71i816L6aDH/OldtpOgBSpjXJqJOhBxeVz3fT9SmCl6uBHVBnnLJ+1NmMphkeqDvbDbu6qn6219Q85ow3lefBkHf3XBBwFrfkmSflkTQ8G3ko6/lAS8POVBJb1UBJ5AnA8CgwnJsEZmYigjdRAaY8cRTNQdz2zTkw7LlDUIJEwM0axV67hQKpHaMCwfBIoXbL6s2m0C9nEKCHI5L35hGJP0ZjUxBJQPZEwe5mkzMWTaB4E1DQL+fhjsFzZvLVWUHnzfx8/ufs5eQghy4oFTbCdBC5TGuDQQ6oMgopBdPoDwfYYGgSonxWP/5jyApadI6cBJB2QEBAY0CFTmtW+4gFO+djt62lvwvrMOxkfOPRSe5xE5Jm0k53mxdvlrTAzpTQ4byxoExZLcTqfGB4F07GPvE2pIPJfDqKSXyngGAMNMDQKLBUaniFJPpkGQkToo3vyikKLKssHm2F6QdVJMoQBdgMhCJ4jvi5sH4fNBwI+NBc3AMJ+JobwXP2bFpd/0wpLSQnbP4KjR+LSZGDI8S9iyDCM0FhBxUlyZO5/d2mctDbqYPakj0fvH759SAQGdIS4VhBVnnAkdF/HBclKstlHF3qpOeSOmYrNbdTF3tTXe3dSx5uobLuA7t67E9Y9uKH9B5aS0Dh4NgtrnabQLFmwfBPLh+r5cNQbfoWiqVhYuAYGBdPBAqdkOhfhBqZCi5pHBIBMQZKQOQmMsKSgM6qMiHiozYqlfUFAtXVGfGqrzYaPt949wOinO5WLHrLhuY3phSWkhW93cGkJb1hkBt7WoX6rZEvKIjAXBFMqqzqugEvVtK7ZaS4MuvvDqoxK9P7mrVVFKaEFoiEstLhzkiVIqMZwUi578JdSwSF/p1kJEPqBcuH/hMbMavou7QZ+EGx7bqC9wBXhlCUHcUyaSEosKf3lJ2pOsKUaVeyRKAgYuE0NE0kvp4tXwaLSJIZsaBJk1CXNkAoKM1EFojK1CaSNk83bWaKkkNRnz+yCgU84mcGWyDFuksVoBTxsRaUYl3zdeVkfMnsj1XD4X377veJp9MGncxBChZnfV/WuNxmfDxNDHzj0Uv3nvaUrjs7UZEbmxHjwAarHoDLcy1oTd7HSdpAf8aZ1z05ovW4gUp+wtWAqo1CCI9NFQWT3FBEfpwAkALjlhrtLwqORPdTImd7U1fKczr/et3gmA7gUjD/EH7zUmhmz6IFDgpThJ+l/74/twW8x+IYzgnitdJobin6GSXJ1CQFFYGgQ2ITLkNwWEmmNGhhqoLBqDUEgShUnQ9wEZv1jcjp/Eg3aaBg0CSiuzAIVSY6UnTauIoMvG5eM3nDSP67mc58W27/4R9mJNtemCOCgdnm3YPWg0Pn0mhqJpzedw+iHTlMZn6/blqxbN4X422M4uO2V/HcnhojJW9XSkT0BApyfTgtAQ13TQXMXw4fvRt3iFBQRxTghk37fE5155JBbO6lEWHrX8qeAjLzk09HsT+1qi2wfkOMxwBnGhXejyQSBLzR6JaDuQweZt97MP20/oeUpnV3Q1CDJMkQkIMjIMQGFQqxxy2F4EjhTFJdOE5k3SUF3XiZoHUZ8P8yVzyH7deA3HYWgu5yVu38ZNDJmNjhS6zKSx+oiO2/OmhUoVuttbuDdOwRQeOG0Cjj9gspY0xVGpmYmd6TOnQ0nYR4msVFTTWKJpdFJc8oFCxByhasytmmmLKSdKB04AMHVCG2786Ivw+w+criQ8KvlTOYa2Rsz1RLJqBc/zYi80eDWf7RWWipht3CRXeehLafjmMzGkJ+5ZE8X8O1EZz4DMB0FGJiDISCGExtiMEGQO2PhNDAkH7TSuZDfM7jjbxFB8mGImhvifVYXnefjuGxbFPpf3kgsImtlJsWkGOH1LiMISAsyb0qk8PpsHw5+5cCHXc/Xt7FfvOBkvO2qmjiQxqWyeW/Ppa/dN3JXZZAWjneiDPN/hQwg/8rCtRdjEUDh/eXwT1u8acNKZc2s+h5PnT8WnXn544rDo+CBQGFZEYGY0CGi2pxyHC4LgesauiaHkz9lYX6tUIKDUjLgEH5rSO72nTehSC6UlR5SQG7CsQUCojNJOJiDISB0Ub8TpcDIpSmVItz15jxTEbQy5YmvfNPVt3XbdRiHuYFRtRkq+b2UzzXPzu7z5Sda+TW+UCQ6xxugf1mObs7u9BUfPbfRb0dPegnMXzlAeny0NAqAsFOOi7rHJXW342dtOwvvOOlh9ohhUxtUQS2nO08RdmUlWLmoJ6/IsDQKbhxBJKPnRjtiVmRgC8InrHotd71EW5L/rzIOwaP/JicKgkj+VyYgKysR8TbfHeWImhjSmRFXcTCfFNgQEQR8E0o6Ox6wUEGpJPGs2Xen14OHzrzoSkzg1T6mMZwD7LIFO7WboxP6pZUaGYugMseMsmKHO7qYsVPZbIxJOCPjPkyjWvjkoLcyCjIbUOXMBovjSB5W2H4YKE0PGfRAYjY0WujQIAOCTFxzecEv9ky89LNLsQBK4D+k1kONsr1FPid7ETUrlsNLVQ0sWhPakpMjKRT+sIna1r/m+j5JmJ8UA8MgLuyMFERUoOb2sp6M1j6vecXKiMKhcBlOZiqi50cSUR7XLcWkQBD8TaRcs2BoE5tJRQUXdVy2fEWpHUf5gguhM7wkHTMHf//XF+M+Xx2vNUtGIAthnCTY1jZr9jMck6fO4ltH0UFwbnH7INPxz9Q7byQBgX/o7KqFBwAvFuteJK9m17YOg5NM1WZDzvMQ3R0xviCjddDGdlDiH0Ul4ycIZ+P0HzsBfH9+EwdEiLjhyJs45XL32AGB3rORtP1GPmU67X/dvuqDTlymRbUTVIlKaPuyYBVSBD4YGgeDAldg3EfE23JLQZBuVAzUT6y8XDr114Xnx+Q/+bFWDIOHaBrDlpDigQZAgjDw8UuskHkGzrvRWqnHO5E588JxDcPisbrzrqkcYz7vRx23upR0polSQCQgyUoeNRfHMie3Yunc48vdLT5qH79zyLIlNj207k2G3yXW80xTUNXWqh+BxN93q4fNBwB+m79Mtm7yXfMQyvlEmtEjjVd9VRf+wPg0CADhu/8k4LqHpBR5sCnl4D8qi0mh6jq+qzlMdRBKgohnkPHcPdKPINqL6iTYx5EuYJaRByY++EGFa04/KAXoUSQ/EqFxUMOODQGEkEVDtcTlBP11WbaRzPxf9pBUNguBnyeKrljuhdVKUNlcQXeu6+mo8YOoE5vNUxjOAXYU2p2ZCRZR6CCsgZmTIYXoA+fm/nIS3nHog85kZPR24+Ph5hlIUDYUDDhkTQ7x+C5p97iBQvaGEbZiZTooVb1V82PFBwEMul3zMMr2wpHQzUYcDXxYDGjUITGLT/ARv3GQ0CCo+CGgOIYlQUZSdrXkFodCCzgiXDsIOg6MOiH3QWKvKwBJuiN6YT6xBQLwRO3cxIgKV5Ry1lmtmJ8Uel4mh8SdcmKdZ1WnjJnnwIF12r1SVD6hIkCJ42oKp9MZVK5XxDIjZnxMdJzLUkgkIMlKH6bn13IUzuBa6X7roKFx2yv7obm9BV1veyC3RMGwP7SMF8RSMFm2nmiaE1hNMCoL1x6dBwB9eqUR30+B5Yg7YwjAtIKC0kKUkrHAJE23m/WeHOxPmNjEUUbemN9ClqgaB0Wjx4gXTtcehoiw729KnjEzpcPX8I/SYGbNNVBH7jFv41GGlXXzMdcv0oGno5E9dOqJC4vXbk0Y8Dg2C4O9W/Zco0sgzjYoSo+g3hmceMZXsuPGfkgYBC0en5gxBMgFBRuowfWDkIe42QPnf7vYWfOOSY7H8iy/FE194Kb5xyTFG0hfkb8s341PXP2E83iAyGgS8JoYcmV+VUb9BoirZD9UgMJjWsg8CmmWjwlmscQ0CQv3M1YOktJPzgIuPnxv6G6+pjUgNAtlESTKuQWC2rfE4tkuKirLsakujBgGdQe7Npx5gOwmJCS1NRhG7Oqz78CMdY7YIqm25plkoSlrypzIZ0SaGaOTVBh7ExmO78gHetU30czbmnmCZyZsYSva+Dvh8EGhKcF0dx9UqJSEga79sVxufThmlnUxAkJE6TK+j4hwo1f/ieR5a8jkrh2wfuXaZ+UjrkHFSPKWrTXk63n9W+O3WDPUUSo11zlZhVBu/7wN7BkfVBqoIFWtC0+tKSptVireWXEBnHXa15fG9Nx6HhbMmhv7OG3XUvGq6+ZUsCQjaW3La+7aKsjx5/tTkgVCDzhBHaryVRSQLZSfFbo7rpRJDg8Dwjtv9VsOGynmaymREmxhSGEkEVLtczvOE+o5VHwS8axvGbzbMPwYPhJP6IKBkzpWrLeiSD9T/HacFoycZUpjcn4uQgqWQM6RPLzij6TE9fsSpuUb9noZNnwyiDodnTmzHEbN7OJ/mK9OJHS143Ynz8LN7nhNKCzXqmxCdZVktore8eRaYIouUR17YRfZGoopbI6ZvnlAaukQdYGeU0VGHV77jJMyc2IEFM3rQ1hK9y+XVmol6yvwNOzttzEQ/U1GWHzznYPxh6QYFqaEDoSEutUS1PZedFLPSLaxBkDAt1PcYScce006fozBRzNTrUiflrMfts8c/uyBcZFWnjbpWMdz6Y1t7SsXPZWJIU9z11eiUiSFGoThuwSuDk0yDICN10LFLWSb6kKM5EREQ5DzgsxcewV2nvFV/7XtPw2EzeYUOdKnPLqWFWZDQQ1yDCxDKZw0qFoXmhzw6o1eJcuUSRsdmpKM1j6PmTGIKB0Tijjr/aRYNAiC5f5LYGBQEf+iMHrz+xHnJAyIEtXWk64QdBrOKmOqwfvjMHpy3MNonxGiItmSFvOCOO/VOihPnj0YG4wQdkzpb8apjZ/OFZVFrjtLN7yA5Hh8ERJwU81YT6zkb7VpF3VfCoNSKqO6JwyAi74zFBQ2djORkAoKM1GFy/KgMVjw+CHi/TzvDAiaGrnv/6bjouHA71rK05j0cPXeS0jB5mTu5U+utJ6oLfB23AanmVRQV7cH0jWpKC9koe89JeeNJ+4d+/7HzFmiJzzQ2q5BX4yXysERlYjioqN+b3he5tEb41uuOxXffsMh2MpThUNE7S1QZ+z7dW8BtLTn89G0n4rSDw81qFYrR6c4LaxAka4UujR8yUFqHRPHb952Gx/77AvzozSdwPR+VJRW+quIg2uXGfBDwY9PfmIpqstGug1s02fKj6IPAppPi+vE73tE2nQGNaWLIWCoybJIJCDJSh8kx1qv+y/JBkOkQBBHRIBC1bcxTojadDx4xuwc/eNPxmNLVqiQ8SgsKFss37mn4jnXAT2mBqRsVVWjD7woVdJmieNWi2Q3Cm5ach5ceOVNLfKaxOXZwOymO+t6aBoHZeEUPRqTiUBRBLufhkhPm4dWL5qgJ0DKUxrg0EFaeUWXswyerGZbzgNZ8DqcfPD30d9b6tsXwyR8pkxUacCF/HsTm2qgm4kJeteHF57/WxJDm9CiA1Sas1LWCMqPog4DnApGu9IqaGKJiMg1gC4moCu8z1JIJCDJSh8mDj0pczCgzDYIaRgR9ECjHarl7eOWxs/Ho5y7A3f9xjoLQaqE6b3/z788IPa/aBwFlVNwMM92kKW1WdR0kHTl7In721hMxe1IHgLL2z4/efII17SPV2NyL8MYdbW7BbOIrLcz0xsjjMK2QOA7FowedkSEZhIa4pkSXZlhixhpG1BjG8okjOm+m3cRQUqicp7HWq6L+oSJ91hk4rSHa4/hMDNUICNg5OWxmt4JURaRDwQxoR4Mg4KQ4aRiEGhKPNoSpqUakDZPGqgkvVwrJfTInxRmpw44GQfwzvN+nndGCvtmF5+CIQrnnch4OnDZBebiE1mUNPL+jHwdN58sz1bMBHbjog4BCH6qg6yDJ8zycf+RMnH/kTOzuH8HkrlZnNHZ40JEX3sU7b5unYp7Pt7TxNZFN1WWZli5CaSOapnEnSLSTYrq3gKtr/igBAUuDIC94WCz0dCOUBPlhpMUHAQvRFEbPeZmJIV7iLo2876xD8O+/fzxRmqJQoxFsvl3XCAgk2wHF9sNzH1Gbk+KGv9n1SkXgCbDLxKYGQXdHdmxtikyDICN1mBxjk/kgIDQbGETExJAo1Eu0mQ9j6s0MsdYYPMsPgmtRKSqLwhMPnCIdhunDLEpjl67hJLhYnzKhjVSeVaBjM8JbRNwCgsjvzdZFZUNkXoNAf15T1qyVkZWLfiJNDPn6nc/PndyJy045QPi98TV/eOJHGT4IxDUIkjVC6k046dhGXQACiI8jkRoEBrJKyTRMkLIGQYyJoUBbipumX3/iPBXJCk+HgnqycVDs13yW9UFAz0kxl4khbZeMav+Oq1dK4xlzf26xgt8sMWdnyJEJCDJSh42DHBkfBHSmArPYNjFkcw7WcWc3CMUbHBXaW2qnm6RptemITCUVFfR/Of1A6TCa2QeBrkPbtAkE6rGZPV5bq1EbJtNpHymU5yzzPgj0ZzQzMUSfNMx1oT4IIp714WsXxuVywNcvPhq3f/JsnH8Ev1+ZWA2CEh0fBGmfwyjduI1GjdaI7sPDlVv7tIafBJ6si5gYoo6Ng2IVRTbupJhO+VMyMRQ3FLgyXtvsX/tP7bIWd7ORCQgyUodRDYKx2OQ0CDQkyAEqhy064FpIpvoIg87CrJ62Fv7phtICUzeVzcBFx83FhLa8VBimWzSlPsQy6ZCEtI/PNjcj/D4IIr5XlxQu+oeLAMzfsPREbStIoPqQzZVNbhxpyQdpIsrY9/X7IPBQvpV8yH7deM1x/I61q37HIjpmgaFBYNoJJfUD9KRdTNS+vw3ENQgivk+eFCb/+YcnyF4w8jxP6NCcJcifP033AWPymrJ1k7yy75JtBxWtL0rtqGjRVl39GsItE0PR5WarRL//xuMsxdycZAKCjNRhdG7lOpCO+p7QbGAQnSaGeLCqQaDZxNCZh05XG4FCGjQIEi5ACK1BExE8NHjVsfwHFTUYbtSUFrK61v+U1H11YDN/vIevVITrAyMFAHTtoidB+ZykNjhrpCUfVAjr86wy1m1iKIjIfFZ5Nuod1vpWVEDQDDb6k+BC9kSTGK01pzezy9b1Ynf/iNY4ZPG8+LoO/sy64fyKY2arSVRUOlRUk6V2XdUAkHyfoI9irjWbKYFGekwM2anhLskLdBlyZAKCjNRh8uCdJ6aohR2hucAoOvd9fBoE9tBtzuG9Lz5YafgqEVn8ULqBoptgsciOCaYP7CmNXbpuCFESgujAdvYO3i/eYXnk3Gk49fsqGgRWfBBoj4V0cLagNMal4aBXJAc+9AvjgkUqsjaJ0xreO1SIfFfUxFByG/2JXtdO0uRROlCLQrTv2szRtr5hi7FHk+OYB4PFzJqm338W3T1SBdsaBLKUEmog6OArf12BE79yK977v4/ghZ39oc+Y0gyN9aNBaDij6IPAhfE+TWQCgozUYXIMiXNYBqRmv5wa0ngLtMJRcyY2ON7rbKUhda8/yGUvMgjZjdRMPjB2yI5dTe2kWJcPgpSP3DoW2yIhXnzcXOnwbGkQmB5zPM/Tnlee8OdN6Qz9/vgDJjeGl5J+k5Z8UCay7fn6TUMExz+hg/TKml+ifZg2iUO9DSddR1AXgAC1c9g7zpgf/7xFrTlCy7oayubA+J9naRDoNvOlInRb7Xrch4Dc+371X1qbs539I7h1xVa86YoloVoyutZ19W02rlpNm6CTxdYZCtXxKa1kAoKM1GFUQFC5TcR+KBQX7Ge6Bs+GSLdtWxa6TQx5noevvfZoXPG2E/GeFx2Er118NP704TPURiqJyIY/LYf/PKg4qG1qJ8WaVquU8qgD2/n7yLmH4rSDpzKfoSKIGhgpolTS7zi1HhO554nj4+cfFvr9R15yaGN4NKosgxjhTorDG4sPX7u2jsf4i+c9mXYurEGQ1MRQynf4LtwoDSbx3S86CHMnhwtbq89HtEUzDutpkvN46nr8d9YeT3ebURG8NQ2CwBG/DBQ1CIJs3jOEe1Ztb/jeVHLj6pW6QLeCLQGQC+N9mkj58iGjGTFqYsir/Tf0GcHvMxLAUagmbdvWo97ec2OAuZyHlx41C5971ZF4y6kHYnp3u9pIJRESECh8ijq1gkI3RgVKC9lidVOitj2kfS1qO3+e5+GTLz2c/UzE9zY2CoOjReM3p3Kep72v8QhhXr1oNs4/YkbNd5ccPxfnHD6j4dm0dBvb/SNImKZGGogq45Gij6sfeMFY3CLn9jxaw1EI+yAQjkHt+7pJnD9KnTSC4Pi9/9Qu/OGD7As7djUIaJanx2Frj9fEkH4NAvcu/FRIuoS2ZZtehM/d8GT189BoEau29mnTVmtoCzH1SunOKKsurR2hECqfZqDFdgIyMlRjVoOg9t/QZzIfBKSwqUFgA9Fba7poMDHEeLaZqihYPa74ICDSpACU24rv+8rbTNpvq1AS8kQR1c5sVE3/SMGKDwLtcXA8096Sx0/eciLuX7MDT23ai+P2n4zTDp4WetiSlm5DKRsTO1oxvbsdO/bRtBHOQ9h4E1XGj6/v1ZoWoN7EkIgGgTf2jnicpp0Up30OyzuQvfoqmDWpA52teQyOFiOej9Ig0A/V4izLB9SkjkqfYK0l7PkgqP1XFBfM9/aN+Yj54e2r8KM7V2O4EO1UPin11Rg3/FMV0NVjSxBEpe82C5kGQUbqMDmEVAZ0pg+CqEMOsssxd+EpUZuHz8qdFHMER8WuoYhghmcBkhYhQnDRI1tTpheW1NZpRQ3mX9K+GKUwLMQaDbB4WFJP/3DRvA8C6O9rvOG3teRwzuEz8OGXHIozD51OZl7RBbXuv/hNx9lOQqqo0SAQ2AlXNQgk4hQXECRrhNTnsMQCEEfHIFayI7XmTOSVaHHy+CDgTbp2DQIlJoaShyFD1URQ0veJb87+9sRmfOfWlVqFA2HEjeeUhjOKF/golU8zkAkIMlKHycOyqgaBjImhbLBrPpSbGIqHykGOmJPieKgtQd9/9sFS7wU3fq6MCdSEm4WSr/z2Eq0cqofC4Yrspt/GTav+4YJxHwQmGqFyoXVqeg6tfEzqbLWdhESE+iCwWMQ1gnmBhOQ4LgVFkW9yQX49ScdxF27chrf76HRHCavo51QfZR8E7Gd424LuZY+K4O35IBj7V3KdUyrVhkOV3z+63kg89bUYV6uUBLqsJmB8HTxGetaWbpAJCDJSh9EhhOM2EaVbkGnHhQ2DaagKCFjLSOoLzHqzTR2tObxm0RypsGpMDEmOCqabPZEmVaXk+8odZ6V9KNGRvQUze5SGR8k838BI0fi4pN8DgfqyTEu/SUs+KENlvSZkYsirvCMej3EfBDSKVxvU1iFhiJjWino+9qWUo9LEEJUxh4WtNCY9+KXupBgoj8F3PdvoqFgHjSaG4jQI6LRN1n4q0yBoDjIBQUbqsOGDgBVp5C/ZYKcc0SI95aCpWtIRheoq51lImr61FoWQk2KOR20uQq97/2l4yeH7YXJXK04/eBqueucpOGrOJKmwVNSP8ZsVRNpUhWJJvQ8CFzaSSVCdv1MOmoqpE9pEU8H+ldBZSf+IeQ0Cz3OvHTqW3EhSkg0yUCvPWh8EEgEINvScTF9OWGhpv3FJ6UAtClHNGZsmaake7OY8dSaGdKNivrZ1EOon1ACo+jAgfMXL5oW52DZMpRHHYEuDgEwnbxIyJ8UZqcOoiaGKujHzmYjvs9HOOh8/bwHe/IsHjcVn47CHqgYBa41BeYEJAIfO6MGv3nmKkrBqTR3IhqEkKdzQaFHjlEpAKUe7zVAj6VB04LQuvLBzAAAwf1oXvvfG45SnIVq4br4FDljyQaA9DuWRUBsd5KAmmCGWHCXYzFMwbpG1eKVdiM65LSKODipxJexLRJZ+2nAhf6ImhkTCUY3IJR6jePGzSprGR3smhpJpADihQWDUBLVYXFT26kDc/twOLgiE00QmIMjISEDVYRlz3KJjJiHtiJap6xoEXHESaWj1mw/mLQQeDQKLQgSVRVrjg0AyDPMmhmi0qQpF30fep5Um6iSpw2kT2nDHJ8/BU5v2wIOHI+dM1LK5iUqjjZoeHC0ad77neSZMDKmNgdjQIE1KskEHYgUqq0HgVf+lf/hDbZ5WDZW1LYuwdsJqCjbnPGs3g2PIlVXpbCeDC7edFCd9P5mTYxOYHIdFTQxRauJsJ8V2ajjt8xk1MhNDGRkJ4BmuKJlJyKilJZ/DNy85xlh8zWzvuVi3qGAuQPQmJTEqFyo1PggcqVBqySyWfLKbW6ocst8E6Xc9r7zROnbeZBwzb5L0pkv2VqCNjUKxVFLuCDsOIxoExMOzBbUxLo0apzbzJDvv8l0KakRmjEzaBqm14WYkrA5Y81fkftFAXVJdQnngcFKcovHR1j7Ar2oASDopJtp+gti8pB9Xra4cgFuzMORG8aSGTECQkZGAcRNDjAVfzLsZ6pBZJLbk3R0GXWpCjRoE0c9S90GgsthVLApNb44IacICGHNS7MDmhBI9Ha0467D9Gr4/ef4UC6kJx+ZhST0FDX4u4vA8aD9xb2ahNYu05IMKoc5abZaxpAZBZb4WnQOlBATCb9S9n/JGXHLgRDKsBlj1ErWWM7HGo3rJIud5sfmn0tRV1JOtvFS6k3wrcMDEkE0fBHG/E2nDALsObQ271Padacfdk7GMDAJUxivWwEVp0E87MmVtsnqauSk0+iCIXmVQ90GgVIMgaGJIMljTYwy1g4eyk2LabYYi333DIhw9d2L178NmduOHl51gLP64dhT1u43WZ0NLxcShkOo4ZMI7d+EMpWlQAbUbqcSGXGFCbbGbT0aV4Jo9J3DyYNLEkOt1rpt6rVRbsJIRrkEQ/XzUbybaAlUBgUMWhhSZGLKkQYBkEoLxLR7NdgQAeQlfMLLUr1/j6pWWBgHF/Tml8kk/mQ+CjIwE8KgbR20kyDqEIsKnX7HQSDwG1wvq7T07NGGKtHfyGgQKi13FrQhqB/amKR/e2k6Fe0zvbseNH3kR1u4cQLFUwiH7dXO2JTXtLfZGVdT3NjQIihaEUJ7+cY7C0EHJOV8VgklKG1adFAc+C/kgMGhiKIONC3N+2HwqZ2LIhAaBvrDb8jkcf8BkPPj8LuF3TfjioYStsSLpWqOi0UNUzgQAsGkwwCUTQ5kGQUYmIMhIJZ6BjfVYTGPxiS/4shuv0XS05nDBkTOF35OZP1xeehJaT8Qi5KSYg7Q4Kc4HApNti6abAaWFLJD5IEiC53k4aLq8PwKdRPvvMd/+iiXzI47nAQMjBb1xqA6PuBYfL9TSRGzIFSbU1IpVHwRBzT2RdMSv+cNokTIx5Hila8ZVE0PsA2B7WnO6yvMvHzkTC2b0oLMtjxO+cit29Y8Ive8hXsuHyvioIhnWNAgSmhiqvEd5Kd5iUoOg/u9YDQJ9aVFK5qS4KchMDGWkkreeeqCReKq3iVjPGElJOvA84MjZE/Grd5yCQ/brNhanKZQfxigOTycNTopZPgg0pyUpKjfuXs1BhWwYihJDNL44ipkPAqOoqn/pG1UW2l/Rt2FiyL1IZIKjuPGjppWVHRarJVi9Iu2PZ80fhkwbJ9YEyeGCFnbYOMKq1zSaGOpqa0FnWx4AMKWrVfh9ivNDFLxJZZW0jDBRBZX6l728OC5goNsvTVoMEIXSHM+qQVvDrkPDQCrINAgyUslnLzwC63YN4O6V27XGUxmv2Cqj4b/t19OOSZ2t2DM4qiFl7vGaRXPw7UuPRXtLXj4QmduLLksIHKLRB0H0szwLVJsHwirX78HbZLLBmtcgMBxhDKXMB4FRTFV/pIkhQ/EHsWHGyvM87Vtt5T4IUnIQSjBJTiN6UKqbGsG8yHtj/4oeNLXkZTQIMli4oDUYVocy+0UTh4e6SjNpP+fRpKMi0FWRDmsmhlSFQ7hb5g22E+GoaDRhADE+AjMNgqaAsCwtI0OezrY8rn7XKbj/0+dq3YTI2iMtv+PhjSfvrzZBjpNIOCCJySmHwmGMLURMDBFeXwJQW+7BvYC8BoHZdkDppgtQud1tOxUZosS1o8jDEgvjXtkHgdk4PTSHDwIKaaiHWpqopcd1apwUS2kQiFWIyYOpZoHyQWSFsGpnHQBHCsUNNB9dGhlJk57zgL2DMQKChHFQwpoGQcWHgOT7Fc0Byt1SxCF9UoTlA4404myv1RxkAoKMVDNncieOnD1RW/iVTYKM0ykA+PeXHq46Sc6iYnKUObh0WSrtUsobNAhYDxNfgKhcYwYXrLIHn01vYijzQeAksu3Ixv65WCoZvzllop8pN3snc1mC4EymIk1nH7afgpSkg7DStHnBIVi/IsmorBeNOCmmNtESo95sJUXCxhFWtdq0qqerOJPusTzPc0bTXkU95SW0jVQi3Q7od0drwhfXYFWlrWp2+azGRTIBQUZGAng0CFi/ZZPVOCpKQk6TQ0HEnLzuxLnmIiNGo4khlgZB/BLkmS19idMki1oNguRhmR5FqGmulEpumBtwhbedxvbhY6r6o/qGjeZXsCCEMnFwrrovy6SZ2HACQE2afnDZ8XjtcXPQ3d4iZXu7Jj3Jk0MOm3kKmgiS0iAQbCAyAoI01rlK3PBB0Pgdq73ZnPN0zW8qTAztHWILCMjMIQrSYdsHgSwuOCk2ecgsOkdQacJAchPAOqDsPyKNZD4IMlKPzvmgMk6yJgLWhpnMooYAtg4dTa3F9utpx6kHTVMbqEPtR8hJMcf640s3PpUwRTSoMTEkG4hxE0O0yJwUq+XiE+biuofXY6RYspqO6NuU5ltgsWTBxFCzaBAQXAipSFFXWx7ff9PxKBRLyHkevnbT0/jlP59XELJ7UKvi4BgicvBQeU80O1ICAmJlRo2SAwKCMJhNIWrOM9AYtAkIarR1ZARlHvbGaBBQ1EKTxdZNaVVOhik7KZbxBSNLWsdvW3utNPVxF8jkMRmpR+egUpkIWQs+tnaBR87hpy2UaBBYi5nNnEkd+PW7T1HufMqlpiNiYihuATI0WkTfENsmqSvU2CZ2xOQKtTHLxuFtmjnhgCn4xdtPivxd1Zwat4GK+tmeBoH5eHWjuixlgiM2nJRRYvKwTEs+h1wuWa9J42GDXSfF45+FDuQ8iXeQaQvrwIXxWFSDwGYrKWm6D5C0n+c8YG/Mep/K+KhibWRbg0B2LV19j3C/pOwLhtJFCZaWgC1t7WwKNUsmIMhIPUY0CFhaAjFhZHbVxrBUDLqL/11nHoT7Pn0uFs7S5wvDBVQ6KR4etXuzWSXBRaHs5sL0zQpKC1kg80Ggg7MY9tONmRgitCMolnzjN+PMaBDYL2NC1VxFRbnUj5OU2rNpQm2xW0hHNe5A3YhUS+VR0b4pU/cU+iZlnPBBENJQZEwMmdgnUjYx9PbT2WYPqaCimvJ5O0dzpaoGgRyZk+JaRGOiNNpT9EFAbNuZejIBQUbq0XmYVRko2RoE7PgzAYE6ZOpad/kvmNmtrQ1SO6hl0eiDwFJCEvLSI2cqDS9f46RYLozMSXEmIHCRuAOwaA0C8w2wUCqZNzFkYsuoWoNA0sTQe198kNqEJERFE6sPIlmYxAZdBdhcv9Su2fnTUUmz6DmTzK1gavMsNVwwMRRWhSyTVpFm9Qy0BX0CgmSJz3kezjl8BjuORDGoQ0U67GkbJTQtVBEwEF6LGy1blwdwRhXa2mu5dN6RBjIBQUbq0WlybtwHQfQzsRoEWS8EoOrGnky8etEZvkvTpZCT4rgFiKWMz53cic+/6kilYbp4qZTaQq3kp9P8Cy/EqkMdUYclZlMBoKy1ZNxJsQn5gHIBgcxNaeATFxyG0w9W7KMnASqKpb4okqxxnO/jIem3mafgxRCROXj8WbHEy1xEcb3KdXPeEexDYwqImxgK/81EW9C1hlKR9v2ndmEyy9F7ijqLalO0vFTrP2E7oLwUp3whk3DSarDngyDDJJmT4ozUo3OyrRxkMjfFMdFTnrBMYqsYKApoPM/dG/ZRNDgpZjxLMetvOfUAfOrlCzGpk7FJkSCo8irbBUx3HWojVln4RLHVmMHV+o8b822aW6jn949uwGWnHGA0ThO5VB2HVHge0NXWgmvfeyqe3dqHzXuGcNKBU/DAmp14368fVZxCziQpaGMNJoaoDZwGCStOqyaGAp9FxhNZE0MmnWM2A7MmdmDRvMm2kxFL2IE/28RQRDgGmo+um9/JfRCUA3jnGQfhe7etVJAifaioJ1saBEmdFFflC4SX4iaFLy6P+GwfgbZ8ELhcou5B8GgsI0MtOgeVcRNDrBshbLJBr4ySG3tS7+gtf5nq5W0TLjWdYpHfxBDFBeYrj52tXDgA1Na1bH2aHkOotbti02sQmK5/NfG55KQYAG5avtlofCbqVfnYkWC+8zwPC2dNxEsOn4Gejla89KhZatMmgI6iT1LWxIZc56n1QSBjYkisRvISN1GozbM2OXn+lOrn6d1tuPIdJzvh0yNcg4D1QtTX+vOqaw2VdI6pvN7eGt2HqPjrUJEOexoESU0M0V+EGxUQCEZFpQ0DcRr+BhMSIDsrM0umQZCReoxoECQIw4E1rhGsjf0Eyz/nAUWO53gXFEfOnogVm/cmS1RC6jUI2IvRmBWIhQWKrsVbsP9Lx2G4DVNbqJWa3AcBrdpQR6Q9ZrPJqLJncNRofCbWBurlA2pNqeQ8fQdXLJIWS+iN+bR2VA5Cs26xQIJRiyTDq/uXFxkFAmqm/Gzx9YuPwWWn7I/nd/Sjd3AUx86dhBZLjlxFCatBKRNDBppCvRlQVXgRn3mplFdna15JeijAWq7aEhCM+xBIGE7ypGjDVtny4Mpwb+sylivlkxbcmGEzMhKgVUAw9i/b6RQ7fhduwZjAlg8C3YedUgcmitP0jjPnKw1PBhEnxXELVBuHwbq6qQoNAtMjCLURq1jyUSrZToU9XF04x42NUWOzq/kVxcQBoWrBp5yTYtZvdio7abRhryfJSxoPi23mKDifC63Bvco7YvHJaBBkAJM6W/GShfvB8zwcvF83TjhgijPCAQDCvjdsdnNt6+qkY+nY+x0MDYKRIo0FoMsmhir1L9sKxk0M0RUR5A12MEoaAaKwr+/ZclJsJdqmxaFZNiNDDq0mhipOihkTQVzsJies9KP29qIteNeHvE3n9SfMk0+MIuoFBKzNSNzyw8byRNcBTY2AQDIM04dH1DQIik2vQUCrPniRNTFEc9R2EwIWhhKtn/SR1CxG4/vNfBckrDxsTiPBNicmH/Aa3udB5kyb2DRrnBMOmIxr3nMqZk/qtJ0UacLaCavtRAvF9TcGffIBNWMpy8RniYiNSRW15Kww0a/5hySUNQgowRoL7GkQZHVnEkdHoYwMfsw4KY5+JvYQJBv0ANjbDGk/7CSg1ZDLefjouYcqDVOUehNDLChqEOhqJirGp1bTDhCJDVmjRDaHGYppYg0CV/Mok27WjTRb5aBFgyDBwOloc2BiU7AZPIMTWW9Vp2vBpLe4euhnkT9+6EwcPXeS7WQkQtgOecTzJnqKrnV10iVu5fVzDp8RqkUwo6cd86YQESIpmLCsaxBItgPfAQkBaR8EhCZ5ppaANSfFVqJtWrIVS0bqMeGkmHXIH29GQWGCHEZFNak2b2CLBTN7lIdpO5tCTopjVpg21if6TAwF/pBojC05D+cunKEuQRzYbkv1jBRKza1BYFo+pCi+uGCi+hy19qcDU3mkMP+xum6atGOaea1HLevBNbtI2iqviTspltFupVZq5jB+6UET4abGxJ4HzIwdIpd4REh6Ca7S1zpa87j0xP0bfn/raQfSuWinoAyt+yBIGg5hCYFJk85EWqRybN3Hoqa5nnYyAUFG6tFprrIyobLmnLgxLVN5q2CmHF5x9KzaWC0qELwzwjfAf77scL6whbzr2W1nYk6K2dixcanJxFBO7qCiwsuOmoWejmjVax1QW6iNFkvWFq0UcFVAEBtPpMNGWu1PB6byqNwHgUR4zK5rS4Mg8fshJoYSrPXS2OTtmhgKfBZIyLiJITFk1vnNLfR2p8GzailsrSTjc8VtE0OBzwkvcX3xNUfh4+cvwMJZPThqzkR87pVHWNeODqKiCG2dCYxrEMi9r8rJsU4om3SmJBBOcoFPF3RKpzlosZ2AjAzd6PVB4CeOg9phmy2UaBBwPHNJnT1+m+X/5lMOwJ+WbUTvwGj1u5MOnIKT5k/FJcfPxR+XbWS+L3TzTTKNqmhwUsx4Nm6BaWN5QtVJ8XfesEhhavigNmQ1uwaBq8Sb3wv/vhlk6q5qEFDwaaAkXg02hpIESenwQIawvNvMUXDeFfJBYFCDoFBs3jmN8kGeCMpMDBkoDl0Xb4Jpl4ki2HXyOQ8fP/8wfPz8w5InTAMqitCaBkHC95/YsAcHTO0iLSAwab7J5SGMVYWZD4LmIBMQZKQenSplVRNDjGfiBrVszDPHf114BC44cmbNd7oFBKz6XzCzB9e973T8eslarN62D6fMn4r3n30I2lpyuOSEebjhsY3KJmPb7axBQJDASbEdHwR6CjC4ERY9BJrU2YqO1rzqJMVCTag5WiyR3pToxvThobr42OFEmhii1fy0YE5Lw354TBNDzmoQhH3XBA1XAJG6/dU7TsYTG/bge7etVB63yHxWeVS0XcoceBdLJeF30kJahMCiToqjfjFRHFRNDLk0bqrYm9jyQZBUQLT49lVYfPsqRanRhMGiPWh6t9Dzrqxrbe21XCmftJAJCDJSj86bKJWBku2DgE1mYqiMilKIW4hefMLchu90mqDi4fBZPfjqa49p+P5FC6bjJ285AR/4v6WR7wpZGLK8yG4UEEQ/G7dQtbFA0VV6wTp0xakVtYXacKFkyewUDajVhyoizS04dGAgi6k8Khd8SoTHUlm3JYxMrEAQ8n6SpZ7rfVz0oLThWU9tGdRqEIjrYgqbGJKwqa/rwNYFqF1CkEZQkygy3wbKQ5c8KskaV/YdW7hsYsj3bZlvNYih7E3vbsfJ86cIvUOqmSfYn+siNXOCI2Q+CDJSj87JtrKxTTJuZYNeGRMmhsLtgWrWIEjw7suPno23nnZAdNgSqvG2EDExFIcNDQJd/TSZ2YkMoGJiyHYq7GG6HShzUiwbTjM0/CbSIGBNBtZMDCWMOdQHgUSDtz1vUyGfUysyC4blCeyExzUIxFIjcyu40MSTmklnojoJNa3FyFqkfEBNcphoMzGU9H2HBkE1GgR2juaaYbgxkcXWvIevX3y0U+22HtalDVvNJCVTgjNkGgQZqUevD4L4OOIGU4fnEKWYuDEZNsFQF9CoKhfbuRRxUhzrg8CGBoGmAgwuIkWjsLUApdZnyk6Km2B3E4HpdmAqNpuHJbaxXcZ0wkuPBgGxYdMooXkXKI+c5yk9NA62K5H5rJIE0bqUmTOLTeyDIC2HQeHNnqVxHqE1Z6A8dB0QJx3DnWoLDvsgKPm+M6Y621tyGC6Iq7zovv3+zjPn482nHIAFM3uE33VFoFCyJElqBs1hSmQCgozUo9OETNUHQYJxKy3OuJKiRIMgJozwW33J42XGqeGgofqboIq+TYRMDMWsstMkIAi2P2ETQ2qTwh8vsSGr2Z0UE6sObmQ0vgB3NlJJMOaDQHFEMps4Vs81WdPvP+tgZWGFHgxKlHWbbRuIGhEy7KO4IdTMuyLpGHta9MA/0yAQIy2mV8P6vJwGgf7y0GXSKmlVujTdq1iHWjUxZCVmcf79pYfjouPmYPnGPThqziTct3oHPvn7x2Pf052/D5x9CGZO7NAci37Y+3M7iGj6ZSQnK+6M1KPVxNDYKMqKIk5iTe02ri1MlELYBEO9/FmpEzMxZDefjSaGEmgQWFii6NqgBcMVraNMg6DMaLHkzs4mo0pc+436lVbr04Ort6VkhgbmGklDMRx/wOSGg/ecB7z86Fnj0SY+1FJzGeFbrz9WSXooIjJ/5T1PaRkYd1IsUfn1a6ZmwvZ6VRXiWqFi36tEn4mhpBoEYu+//fQDQ79/94sOSpQOHlQUoT0Bge+MDwLPA2ZM7MB5R8zErEkd3GWmO3tJak5nrU/vbhN63gcwXCji4bW7sH7XQM1vti5jpWNGcIdMgyAj9ZgwMZRkMZsWW5sUiFuIhvsg0JUaNeGnZaNUv9llOURrJhNDLjqupNYiR4pN7oPAcIWYGpNsHpbYxkQeXShHHUk8ZL9ufOy8BfjvPz+J9bsGMXtSBz574RE4/oApgXiTxZzQog4AYEpXK168YL9E6aBCqMklgfdzOU/pWj4YltBFi7p/eZESEDhyWKeDtGyLwk2NiZsYMlEe+kwM6Qk3ilctmoOrH3ihIQ2vPW6u9rh5i5D1nIy2kQpcGm3q5wIq5yhJz4JOO3gqljy3K3E6jpg9ESceOBkbdw/i9EOmYdG8yXjjFUu43y+WfJz01dvQN1QAAJy3cAZ+/JYT0NGat2aGitrFtLSTCQgyUo9eJ8VlksRAZF5TyikHTcX6XQPYvGeI+x0Vh05xQTjpg4CljqwoHBOoVJdPk5PiYCU2k4mhVxw9C39/ckvygAAMN7uJIdudW5K4VEf1OepjtgqMaNQRCZNpYkhTXb/k8Bm491PnYlf/CKZ0tTbEkzjasLWG4GLv2veehqkT2sbS43abDzv4FMlSzlPbXuU1CLyaf3mREhA0sQ+CtJheDW33rOejhOIGZoS0rKFOnj8V37zkGHztb0+jb7iAno4WfPmio3DMvEna43bZxFDJt6GbLUd9EfEKVXTnL2nV/cfLDse//PIh9I8UE4Vz9JyJ+Oprj6n+vXTdbuEwKsIBALj9mW34/m2r8OlXLLSmZdIM635KZAKCjNSjV4OgYmIoOo64sTSNg97v3n86vnvLs/jBHattJ6WGsLLWXf7JbyKyJAQCG1vL977rFxVMJ8VxYSlIjyj65APyAVvTIEgY8SkHTcXcyZ2KUgOMFv3UbG5dQFWzk21G6ZsxGzFxIKwjDjkTQ2rDi+OoOROrnysH8KrjDddWFAv0iNnj6XS5zS+aNwltLcks2nqeWg2CWifFMu+LPS9z6NfMPghcF4hVEHVWHtnGTWgQaGpvNdo6hkayN51yAF5/4jy8sGsAB07tQoshXy4qlqEteUsaBL4d7WwZ6oXtvHODbge7ScetEw+cij9/5EX4+/LN2Ds0ip/f+7xkOmr/VjF3Xn3/2rKAIHFIcqRkSnCGzAdBRurRKiAY+zdJFFRU45QjbE9dUzpi4qBe/KrKhdrkynSCFLNKtXGDQVc7qXWWKNhnLB0bicZ68PQJmDu5Ez3tLXj1ojn4xdtPUtoeRwpFZzY2OjDetw3FF7nZIjaW6cDIfKgjTImEm3RSnM95uOSEebHPJRbshx0MJgrRTVrzHj5+wWGhv4k0FeU+CAKfRfYIlWdNOCkusuwwppy0OCkOQ06DQD+61lDBPL30qJl6IgmhJZ/DIft1GxMOqMKW9oxLl2zqx1/e8UJ3HlUMW4fO6MZHz1uA/3rlkckDG0NFixocLWs1WPNBkN4pgSSZBkFG6tG5NqiMk0wNghh5a1rXwaL5MnHYqeJWnyjJbyIywhZJR7JkJKZ+TcF0UiwYlhnkStDz2OkN3qwUNjFkqVJFD0f+7aWH4ZXHzEbJH1/Iq+x3o0XfiuNqKtju27LE+4yRey8NmMihCxsu1fPzv7/0cEzqbOWIN1k8Ya8nuaziQl3Vc8pBU/GZVyys8e0QRKQfq77oI+2DYOxZ0dTIXARqYgtDqdkXifsgiApHf4Ho8nkRTPllpxyAH4Zolp88fwoeXituBoUaKi4vWXNSjPjzCirUzwe8Aljdjt+paD69/sT9a/5WmSxbcqRmWPdTwi2xakaGBNRv6KfRxBAgni8VxRDvg6DxAeLNg72ZkNjY2qJ+4clcp8UsQGxo3usyddHTMX5YJRqFrSoVLYvzFs6E53naNj53PLMNX/jLU1rCpsT5R4TfvvvvV6u7aUSJ6MMSo8mwghETQxpGEDkTQ9EDusoh49r3nIoPnnMI17NJow2rP+prDdV86TVHRQoHAPH1i1onxcGw+bUTKo+JJiXTIBCD+r6NF3EfBOG/migNXTeDg3maM7kTn3vlETW/Hz13Ij78kkMj39eRrDedvH/8QxKo2Ju05Owczfm+74wmbv3wwDte6L79TmFtOqOnHSceWDvvqlzr2bJ8l5IpwRkyDYKM1GNCXS+JD4K0OOOqh2KuwtJEXZVZVepsS98bNAhYJoZiJAQ2brnIHk54iJZ3fOy8BbXPCmsQ2KlTkWgXzupBZ1u+MQyF6QGA9bsGFYdIj1cvmo3bnt5a811PewvOPmyG0XQoG5NiArJ5WGIbI9OShjhk5hn2aK4mkZ4HnHHodKHnE8UX8l0iDQIHW73K6Smn2sRQXWCsebr2vcrzYomRqftCE6sQpGVfJOqDINLEkIHi0HXwVz+XvefFB+NFC6ZjyZqdOGBaF04/eDpWbu3TE3kErzluDn73yHrleVaxN8lb9EHgCrIaBLoPt21f+Jw3pRNXvuPkhnMNtcmyZWIoHXOCK2QCgozUY+IAmCXwjxtK0zrmid4AUlEMcZu2cB8ExCuAtZkQCYZYNlm3RuMWqjYu1skWn8ewMfSyo2bJJ8giIgu1r19yTEQgihLTRFx03Fxs6h3CT+5ajb6hAg6c1oXvv/G4SEerrhNpYojaYKYBMxoEGsJUHKiq8MTn+WQRh0YnEOQlx89NFD8FVAo18jm1IpIwJ448t0sr/XKkKLYIkdMgcOjETjHk1+WciIq4bWrN6fLtFTaXLZw1EQtnBZywM/Kn40LQGYdMxw8vOwEfvnap0nBVFKE9HwRWopVC1gmvdhNDWkNnc/snz8bB0ydoXzvaUmwjfpczdWQCgozUY2KhmWTrQv0Guyw27KnL3EjV3TySTtas9isStu1DtfplWQILQ05pEIgg7KTYUpWKRNtqSV06rXzwnEPw3hcfhF39I5gxscNKGoyNJVEaBOmcMmswokCgRYOAZnjC4oHEETcGIDKHvPnUAxSnxzyyGkJh5Dy1Zmfq59py3XAICMb+HRUUEOQlnKEVXDqxU4xLJoZYKRXdc0RrzekvD5vNzYZA6JXHzsaOfUcpNU+pogxtjfVumRiqLSQ6TortjVuH7Ncd+ZtSHwSZBkFTkAkIMlKPEQ0C1u2HmAkpLTdl6hH3QWCnHKiXv60DEtXU94MkGgQ2FrGyzUSnloc1AYGQYCrie+st0l1a8jlrwgHAoImhiO8dOjuSxlUfBFIwxnNbGgRJow3XVuR77zOvWIiT5k9NmAL7xGVXbG5U21rr64K7eYw9N1IQFBBINOTm1iCwnQI1iCoSRWvNqUgNG92HpyyIb8MESF6Gtsqi5DvkpLhO3kpFQEC1Has852jiaampyAQEGanHhIAgydhLdUJJilmF/rEwJALRLSDQcdAgE7btdla/pmAtMmJ9EDi0QNFZ7rYO+ESGVJs2dTNoE3cIHj02q2s8OY/mhsdE/9CiQSARJmu8VzXGmfbvEnowGBPkj998As44ZBqmhJgMS+NwKVLE+ZyntMHKmqioPCcqIJAxMVRoZifFKVkgCPsgiDJKZKA8bK6rXahvhrXQKirK0Na6XpeJKR3IahBoNzFEtBkr1SBwp5lkJCC1uv+e553jeZ6f4L93JIz/HRJx/kJR9jMCGDENwogjbixNq4khFxZ8AP2bSqzFokgRW89mg5Pi6J7xjZuewW8fWofegZHQ323cdDKh8i66CbRnYkjENESUynxGBhsTwqUWCdMfJjAxL+mIQvXhhqq6FhYQaIgvbk101mHTQ4UDShJkgXgNIZF5RG2fqK8L3rArj01oF7tfJ7N+aGL5gFMmhlir0VATQxJrendKQw7W2EjhQHLhrB5c977TY59TIiCwVNk+aJQ1D/X9ildDS/eYSkYrsw6V6XJJkJQhD82dEQ222E5Ahhp415mHzujGdy5dhP162oXjSDL0unKQXuEDZx/C9Zxhn4BjQYgHovtmTtLgWe1XJL/U7Pexlhj7hgv49B+X49KfPoDtfcNC7+pCtvSE6kgwbFtjh8je3bXxLSMeZYe2kr+rbFEyN3tNYGKjqWNOkNIgYJkYkk9KDeImD5PFF1Z/ceVNbY5OjkpNH09pn6gva972UXns5PlThOIzrUHwymNnS79LAaLDshLYPgjE30kD1POX8zyuNPJeXmIdstoqipLvioGhxvGBW4NA8+E22fWkSg0CdUFlECbNJoY2AvixwPMvBbBg7PNWALcpTMszAG7neO5+hXFmjMEzcZx92H64+l2nAACue3h96KEkC+bmImY0JTqfhPLzfzkJFxw5E4vmTcIHr1nKfFbc5m/ygpAzMZQ4Wr0omtltL8AbnBRzrDJWbduHq+9fi39/2eE139vQIJAtv2+9/lh8/LrHGr6/+Pi5yRIEi7fKRDRXmnTDm2ZM3ZKK1D5R2HioavAZMTGkPwoumAICRQVhej2ytW8oJMy4OPWlxwbxTorFwlLZJxrC4tYgKD/Yks9h5sR2bN3Lt1eQGWfaW/LC71S4aNEc6XcpIOOzIQ3YdFJsE6LTcJVcjm+IULEzsSUoduliOFknxUQbsspU2fRVkmGO1AoIfN9fBeAjPM96npcHsCHw1TW+7xcUJudB3/e50pKhHp6NYVDq++IF0/HQ2l3K4ogbSl26YdvVVt6wvOKY2ThwWhde2DkQ+awrDlf1+yBIFj7zbZENdqJUJEfESXGQH925ukZAsHdoFLeu2Ko0bTzItpMXL5iOno4W9A3VTikXHtN4w8+G1o0MoqYhkoZR4cULpuPeVTuE38ugSWx7N2BuoZWoiSETXVuPDwLbM004ptcjYdNb3BxCtOikSSIQqSef8xSbGKr/W0yDAAA+eu4CfO6GJ7nekxEQfOy8BXjguZ3C733i/MPw0qNmCb9HCZf2RaKw8hapNZfe4gBAd96owKtBoMYHgR1Kvu+M+ZhGDQK+90oUHU4ZIPNBkCEKzZ2ReV4GILiautpWQjLUI7owf8PJ+wvHkWTwdWkhLJJS8Rt7yZEJg3r5q3NSbDefIk6Ko3h8fS/O/OYduPyuNUrSJIJs6U3rbsc17zkVh83sBgBM727HV157NC44cmbiOGzVqJiTYjWpnN7djlcc7bbZhLSgzsRQzIGp5vgByhoE+tOlxcSQxDsswwY5RbsU07Uc1qzimpoqf0NUiDepxB+WchNDdWGJ+iAAxNMvygkHTsa8KZ3C773rRfOF36GGi+2dG9aa3oBQnCLUfRDwzpUqDthttn0CRc1Fgw8CzoVCk8oHlK71Mg2C5iC1GgSCvD3weZnv+09YS0mGcnhUvoJjZ2ebuFov08JQzGCqagNshEA+Tz1oKlODQPTcxZrDVc3ln9wHgZqCsb3hqu8GotYufd/Hh65Z2nAT3xRJFljHzpuMWz5xNvYMjGJiZ0u0GrmwnWw7lSoSb9JD3gOmduGYeZPwifMPw/pd0eNNRvowYW6hWU1ZALo0CMTfYfsgUJNIUdX/pGUTdhCh0uSOC3CsvPnD8oQej0Veg2D8OZG1mUzdtrfk8dv3nYYX/c+dQu/ZvgyigvOOmGE7CVaINqtnOCGGISqnr1JOX3wiXTYx5NLBb4OJIc4yKzaphEBli2rOEmw+XDqa1ILneZMBvCbwVaY9kDL4Jg65RX/17QQTOvUb7EGCm/X3vPjg0Gfeeeb88rMW8iUTJfUDIlbqhGz4EruDJLoWXb5xDzb2DupJDAcqmsmkrlZmvxA2g5EwPbKocFLME8T33rgI93zqJfjxm0/AoTO603+NrsmIa++R5qkIahB85aKjMHtSh5KwTKGjO8lpEDDCU5RIcSfFGrQrEoSZxqFPpDjynqd2rVwXFm/dBB8zUSfzpnTh/WeFr7WjcKmtvP30Axu+y3nApSeKa3K7goyJIbdqVRxq+5N6+E0MuXt86vs0tDV4aBDw8poYciWDilG5nnG5jWfw0/QCAgBvAFDZ1Y0CuNZiWjI0wGObLumin3XGkCYfBMF8LpjRjTefekDN7/OmdOLdLzoIgMxhp4pyEA9Dvw+ChO+z1JFFb+BZpF5jQHSNsWxdr7rESGCi+ETjsKZ1o9m0QjUe4pvGjGTE1W6kuQWVN4kVrII/84qFeNvp85W2VhN924WbxqpSKDy2Koo3iEtrPRUo7aee2tmgUYNAJgz+l5KcqYhrFsrHZZp/Pf8wHDF7YvVvzwO+ecmxmDKhzWKq9MKsnogfqd+wTzs5j29OcPmCesmHM9fD68feFs6FXKZBkJxMPtAcZCaGas0L3eT7/nYNcUz2PO9SAEcBmARgL4BNAB4AsNzPxHFaEd2USWkQJBh+qdpADiO4UfE8D1977dE4a8F0PLBmJw6cNgGvWjQbM3rK8jbxG3tKk0o+Xl5UHeLYzmZSE0O2oXi4Y+8AXYFgSmqczaCAqYPlqPatst2r6NcUxwYetGgQSJQF08SQMhN79tcjsgKx8m/utTFZHyNh5DxPqTnO+j4r1YeFXpFf7zi0RRBm6oQ2/PGDZ2DJczuxsXcQZxwyDQfv1207WVphNbVoE0MpbgQxUNgpeJ7HVQcu31D3fd+ZfVl9VWQaBGxUDh/NWobNRlMLCDzPWwDgjMBXV2uK6qKx/8JY5Xne/wC4MhMU6IHnAD74hMxAytQgiKlVl9Z99Wn1PA8vP3o2Xh7iPFTYB0GCdI2nR/wd7RoECYNnHxqYS0dS6vuB6EUO28OjkfIjcIjFg5iT4ojvJd5t5k1yKompTiMaBAoCqwThWvuk4oOAdQSkKomi6xEd003cIQbTSbHitJgg3ueCgKA5p1YwWB8Sb1KCaTAlGBS+bONYa+lsy+MlC5vT50A9kfcpjKbCPNSnTl4NAuqHOAtn9eCZLX2hv7l0AiXrg6BJFQiUzgnNWobNRrObGPqXwOedAP5mIQ0LAPwCwF88z5ugMuCOjg50d5dvYhSLRfT29lYP2fbu3YuRkREAwODgIPr7+wEAhUIBvb291TD27NmD0dFRAMDAwAAGBspOIkdHR7Fnz57qc729vSgUys5D+/v7MThYthU+MjKCvXv3Aigf8PX29qJYLAIA9u3bh6GhIQDA8PAw+vrKk1apVEJvby9KpRIAoK+vD8PDwwCAoaEh7Nu3TyhPnl9EtzdcTesEbxh5lNPQjlG0YxSeN56nysTT7Q0jj3IaOjCKNpTz14IiujAyFppfk9bOwHOtKKITI/DhM/OUK42iE+UyzqE0ltZynrowgpaxtLahgI6x5/LV56LzVH6uiAmB53jz1O0NI4fGPBVGRrjrqTg8KJQn3y8lbntDAwPMPIW1vdGRYXSOPeeNPeeNpbUTI2gNpFWmnob7xxdjMnnyR4Yj89RaHOTuT5VZXUWeZNpehz9UM0a0+qOR9RTW9kqFEa31FD9GeNrHvcJgn3CebIzlACLrqTLuVeqpv29v6BiB4ghXPQXzVCoWjI17puYn6nNuWNt76ZEzlOWJVU/F0eHQPA3s28PV9njGiLyCMaI0OlzNk6o5tzVBnnjHvdxY++CpJ962Vxzqj8xTVD3lRgci+1OrPyKUp6h68jzBPA0NctUTq+3V58nzPGY99fVF96e9e8brydR6T0XbY40Rw/3j80lcnvJjNsBV5SmX82rGvZznCefJA/8YMTI0JD2Wl4Vb/PW0d0/zzE8U8uSVCkLriLK5rPD+5HleaJ6o7gl5x4i4ehodq6ewPFWe09H2/FKRK085+PA8jnGvJNb2TNbTZy+Yj5s/fhYOnNIZWk8+fAwNDhk9jzjjoMk4aPoE4TzlPK9mjMiNhRc3P5WKRa154ts/RddT/bj3+ZceyD3nssY9z1MzRvT398MrjHDXE6BuDdus85MtmlZA4JWvrrw18NW1vu+PRD0vyToA3wFwIYD9UfZ1MAHA4QA+BOCZwLOvAnCt53nK6uS0007D61//egDA9u3bsXjx4mqjvfLKK7FixQoAwN13340bb7wRALBhwwYsXry4Gsbll1+ONWvWAABuueUW3HLLLQCANWvW4PLLL68+t3jxYmzYsAEAcOONN+Luu+8GAKxYsQJXXnklgHKHWrx4MbZvL1txuv7667FkyRIAwLJly3DNNdcAKHeaxYsXVzvpNddcg2XLlgEAlixZguuvv14oTwO7t+PSjuXVtF7UvgJzc+WwT27dgJNbN8CDV81T5abZpR3LsV+u3LHPaHsBx7VuAgDMz+/Ghe3lqmtDEYsXL8buXTsAAGe3rcGRLVsBAAvyO3BB+6rYPHXseg5nt5XLeLI3hEs7lqNtbMC8sP0ZzM/vBgAc17oJZ7S9AADYL7cvNk8AMDe3Fxe1r6g+x5unSzuWY7I31JCnDatXcNfTxmV3CeWp1LcjcdtbcvctzDyFtb0nHn+sWk8TvBFc2rEcE7zyUHBB+yosyJfr9siWrVL19NjNv0mUp76VSyLzdPDWe7j7U2G4X1meZNreWSMP477Hn8Uv7n0OP7/m9zi2Razt7du0Rms9xY4Rnv5xb909fxDKk+d5Vsby4uhIZD0Fx70J3gh++6ufhY4Rw5ueja0nz/Nq8tS3c6uRce+j5x5qbH6iPOe+76yDQ9ve6xbNVJKnDS+sZdbTlmeWhebpr9deydX2eMaIHgwkHiP2rn4Ut9xyCzxP3Zx7QGGjdJ54x72p6FPe9jY99PfIPEXV09yNd0X2pyOHVgjlKaqecp4nlKdlD97PVU+stlefp5znMevp11dfFdmfrvr5eFpNrfeStj3PY48Rj9407vItLk+5MRMfKvMUHPc8j78/VfLkefxjxPrlS6TH8rJgib+efvqTHzXF/EQlT539myPbXliePET3p5wXnqfS2KEctT0h7xgRV09r16yMzZOOtjfSv4crT22lYXjwYscIvzhazRNP2zNZT3uW3wkA6MBwaD2VfGDZow8bPY+Y2zqIv370RfjwIXvwkSNGMKWrlStPOa92jOjv38s1P/X17tKaJ562x6qn+nFvw71/wIz2IjNP/5+9+47XpCrsx/85T7/97t7tvbN9ge27LAtLURApCioWRMTeYoxGTTRojDHGb5L9Jl9JYoLlJ2oSYiOxIJpgXSsoRQTBBigssnf77fP747n37nOfcuacmXNmzsx83nkR7z7PPDPnTDnnzKkT10mW7glhJo249dZb0dVffTaiKkdMXKes5k9xEXFP2xAXIcQ5AP6n5qMtnuf90OD+ewEc8TxvTLJNCcA/AnhJzccv8jzv4yGPvQ7APZVKBYVCAQcOHMDq1atx9OhR9PT0QAiBI0eOoFKpoFQq4eTJkxgbG0NHRwdGRkZw7Ngx9Pb2Aqi2xrW3t6NYLE62xLW3t2N4eBgnTpxAT08PgGprXGdnJwqFAo4fP45cLoe2tjYMDQ1hYGAA3d3d8DwPhw8fRldXF/L5PI4dO4ZCoYBKpYLBwUEMDQ2hq6sLY2NjOHLkCLq7u5HL5XD06FGUSiWUy2UMDFR7IXd2dmJ0dFQpTrfe+Ru87d+/j2NeGUC11XTAK2AU+ckW033rF+L/PncjTpw4gc6ubix/+xfQKQZx0itiFDlUMIwxCAyhgAJGUcIoTqAEwMNdbz0Lw7kytr73a2jDMEbHtytiFAWMom9aD77+5nNaxult//EDfPaHj+AkishhDO1iGMe8EgBRbTVFHiPIV1vN4WEAReQxhmu2zMaHf3CwZZwGUUQeo6iIERwfj7tqnDrFEE54RYwhNyVOn3rpZqyb06F0nT77w1/jrbc+qByn15+7DNdtnxvq3rv3V0/gihu/0zROXbkh3PXnlzXcewMDAzjjhi/iJEoQ8NAhhnDcK8FDtUfZCPIYHg9rHp72dfqbK1bjsu0rA8fpg1+5F3/31Z83jdM5Szrwry87W+l5+sqDR/Dm/7zbSJzaxLD0eTJ97z3wvstw0x0/w19/8T5r18kvTj+44Rmo5GE13fv/7vgpbvjyL5TjtHZuDz71kk2Rp+U/+U0/nv/BrzVNIybSvYnrdNtrtmL5/JkNacTffule/PP/Pii9Tn9z9RZcsGraZJzuuP93eM1Hv2393vv8687Gkp58JPmTy3nuwGgO1/7LN3H/Y4cnr9OfXLgU1527zkicfnvoGM5//20tr9NfXbkJl21Z2hCnO3/+KK781zt97z2VNGLN7A785omnQqUR73jaMly9fTEu/PsD+O2hY0bSvbnTOvC1P74AK9/6ee04qaZ7czqL+NJrtxm99z7x7Z/jhi/9QlqOqL9O56/owj9dt6fp83TFP3wdP31yOHRaPqe3E195/Q7lOP3u6CDO+7vvKJeNmt17P/mLy6fE6bu/OoLrb/p2y+t051vPQkd7W9Pn6bGDT+Hs/d+PtLwX5HmqjdO33noeunLDLdOIL9/1C7zmlgeU4vTDd1+Gr9z3ON72qQNG4vT6p2/EK85eOpnunfOBO3DwqX7fOP3hBafh2q2zUalU8IV7D+It//YDpTRi/5VrccHa2YHS8g9/73H87e0/U75OB960EzP7pqU+f3IlTi//yAF88/7fNr337vnTvQ1x+rMvPITP3PlI0+fpB++8COXcaEOcfvTbQVz30R84VS5XTSMefN+lvtfpyRNj2Pd332oapz979lZctWWhlXvvs/f8Hjf81/2+cTpj+Vz88UVrcdXff02aRpy1ZhH+8Zotvvfe6/7zZ/jGg082vU4/e9/lWP7Wzxu/Th941lpctm0F9v31/+CJpw41XKd3XXE6zl3Ri31//bXI3gkv3LgYf3P15snrdNW//AD3P3rIN04ffdlZOHNB52QacWxgCDve9V+RvhM2i9Ndb90tvfc2vvcbLeP0wPsua5ru/eLwGK648Tu+cbr7vVe0TPf6h3M4+323h04j7n3HOXjDp+7C7Q/2R1aOmLhOd737GZnKnx599FGsX78eNdZ7nncvIpLlNQhqFye+x2TjAAB4ntevsM2QEOJ6ACsA7Bn/+I8BhGogmDAxFAYA8vn85AMEAN3d3ZN/t7W1Tf5dKBSmbDfxMAHVh2xCsVic8l3tbzo6Ts2UVCqVUCqVAFTnG63dbmL6IwAol8sol6uJUS6Xm7JdV1fX5N+VSkU7TsViYTJBBDCZ6AHVxLA+ThONZrW/GajZbmQ8M6mqxunQ8fFhQjXbDY8nen5xEoXy5O/GkJty3GrCWzVU87iOIodn7zwNM2dMxz/+70M4cupST4nTKPI47uUn/60ap9rtauNULpcnw+53ncrj94tqnHJ11zPIvdfe0TG5z/o4nUAF+Xz137X3XqVSwYAoAR7gNcS9eVh1rlOl89R5CRKnYrmtZZxGi+1N49TsecqN9wAwESeV58n0vZcrlCbDbuM6+cUpJwSKxYLVdK/U0QVvfK5IlTjlcvGk5blc6+tUm+55EOjp7UFufPLt2jQiXyz5pnuiLk75vFpaHvbeWz//1PkA7OZPLue5ZQCffNXZ+O4vnsKvnzqBncv6sGLWqX2YiFPtNay/TsVypWmcurp7MDY+AFZ276mkESKXD51GFCttaG9vhxDm0r3RXCFwnFTTPa/uupu494ptE/9WTyNG8m1N04hKpYKRXBnAsJG0XCdO5aFqOqyaPzW7TvVxygkhvU493d3IjQ9hrX+eenqmNY2TzTw37L0nIE8j2jpPfecXp9z4FEOm4iTE1HQvnxPacRJC/d4rlCqT959uWl4sPKEUJ6B6nXqn9bZ8niakIX9yJU5erlCTHk29Tk3jJCTPk2geJ/H4EwDcK5erphF+1+nwyAnfONm490SuXylOuVy+IU7N0ghPnIrTBNm9F+V1KrePnwvR/DqNeR5K5WD1EYHvvfHzOnGdBIRSnHJiahpRLOS18ycbcVK59/zqWOrTvTN6gX9/xU4855++I43TxJo+ze69w/0njaQRHR0dGMlVt42qHAFUr9PE+ctK/vToo48iTplsIBBCtAN4ds1HH40rLJ7njQkh3gXg9vGP1gshFnie90hcYUoblQW+ajcJstCg7Bh+g3RUF9dpdsxXn7MCrzh7Ob5w92/xuk/eGWg/OrQWlUP0C6vJ9iBbpDAnBEYdHU1lavEu1xcB8xP31XHx/MW1GKHW4tghwti4SHHgXSn7z1fttH+QBKkU89i7aqaVfftdzpYLNhq8EfwWjlUxER6bi6jaYCP9ML1PUwvBmrjOocPgExUX8xibdO6VfE4YXRS4/lroLmIN6KVD+SAHGFfK6928SVukOGuki5G3+CrLVzTusj+gnj44+ho5bryc0iIunudFf64DlvFzdRckaD1KUoSNnsnT4/Y9TqY4UGSOxbMATDTxjAK4OcawAMDXgfHxPVVr4gpIGqkUzEMXqEP8POh7w0SCn88JzOgsyzc2RCeouhmS7fxddo1DvLspHNcNKS8/WWeycqIV3SPEdU110stWz5bKHuqPE0V0Ny3ojeAoBPhXsLX63uR9b+LF0sZ9abIRpPUx3Nin7H3TVBh1028rL8G+DQSSDRKYf/ueco045YTZU1B/PwTJ31V/UcwL7Fk5Q3v/p36v2UCQwHslS2TXp9V9GEV+ECfXozcxgsnPWAIqT1vdSx6ir/wNWsavf68I0wCbBGFjZ6rR2PM8jLGFIBOy2kBQO73QbZ7n/Ta2kADwPG8YwJM1HwUvSVKD+pbmpkKmnWHyJqXwNT3mqd9FVbjSOY7uC5eJKEgPGaBQ7gLZi4HNER2uyUKZRLtRzU4wfOn0xm39whvgwJYj/OeXrUNBszKGggvao9poRaGBF8uJe9zhbKQpV4IbRdruQlxdLmfY4Ffm0OtwolZBF1SQCibV8Fy4bg46ysEH7Os2EJDbgrympLz+E13lYsvvFk5rb/ldVIQQiu9Q7r6oTKRXre6lj3zrl4h9XVLFRLX+3VcIkepnJGzeZ+rcxH17UHQyV+oQQiwAsK/mo4/EFJR6HTV/H48tFCmk0kMwbNopn2JInqIGfWmsTfCjyhf1eg67lVvLQmMzrGF7/pjK2B27HIkTxfnTbsSJ6aLqhDNMEBumGLKc0s3urvhvRMYErUA02ZvSxAiCiTTa5N0ZxZNto1dqkD3KRxCYCaML5ZEwYXAg+NpMhXmi8t7o1GIBRxDUbub3m562Ip6zZQH+z1WbtMNXq5iPvrMN2SO7b1o3iqf7qva0F7FpQU/D530dJWxfOj2GEE2VE2rpmcsVqBPBb3X/Pfzkcbzjc/dEFyA0K+OraVZuS/cogpBxM9VAAHAEQUZkcQ2CF+JUw0g/gM/HF5QqIcQyAN01Hz0WV1jSKIpMI8x7S9gphqp/R5Mxas09HkNdZ5C5PQG3e+cEHBTRuG0SaxgcEkkFU0JGEOilA61GEOg33FqfhozPSKSETxeVlqNPDIbBxHM9sQuj909Cb0XTj5Cp3bnwaLsQhij5RVf1ebHSAFe3s0AjCCTf7VzWh49fv93I+0epoDvFUMZutIQJNsWQpcA45O0Xr8G1H/4+Tg6PAqg+93926Tojo/zCUp9iyN3KU5V04cv3Ph5BSFpTXoOgyYbVz9w9/2GEXoPA4BRDDt/iZFAWGwhqpxf6N8/zBmILySnX1fx9GMBdMYUjldQWKQ7by1sygsDvtwELP7VhdnOKId19m6uoaUZ2jayOIAj7+wC9jWyEI25xl0ki6dGru31MF1Xn2Q7zbhd1/JL+jCSNX7rbsjelyXp4Ew3TCa29sbIGQYCnSDbKMq41CGwIlRaaC0Z0fAKtGqfJRcCtjiDQC4tfePI5YaxzkvYaBEaOSi7JwjXdvqwP//X6s3DbvY9jYHgU56+ZjQ1NRhXEIZdTy9vifk9R4UJeOKGhE5Dq75psWMgJDIYNkKPC1yMYCUYs61RQPDLVQCCE2AZgdc1HH7F0nE7P844pbrsLwJtqPvqU53kjNsKVVREsQRBK8CmGal5UTAXGh97UIu4UQgCfnvhuBXUKU2FzOY5J4FKhekJ8IQqfDgQ5nbbjq7O2AoXn38O41e/M3QkmRxi6l0LIWUnSTI8giCn/m9ZRMnPgKWEIHhnXylMqfKcQU+4tOvV/Tag/dpCOOrLwm7xcBQd6UFNruhVmge6bjNwCy2d24lXndMYdjAaqa6CYqjy9dtcSfOTbvzSzs3ETwXc5K1EfVdZkBEGK08mw+b+pM+N5gJeIZjAKK2uvw7WjBx7wPO+Azo+FEEuEEF7Nf9e22PRKIcT3hBDXCCGaNn8LISpCiNcDuB3AxMTH/QDepRMm8qdSARB+ARjJCAKftDTwFEO1fzs5gkAvULbjIB1BYLFgEXpooGwEgc5+svKGYUkkMwxpPzPxXNORsTHlbcM9WlN/bDu+fEai5TuCoMX1MHkbmGggeOLI+EBUkxWY5nYlOYb5o5jeo6kw6pZHOssF43NfM3WZSvXaTsw3bXbk0NSdBVmLJKrrWdSeYshSQMgQybtIy2n1eFHjpJp/mKo6ffaZC1Apmq2im4iCS52dgq5B0KwzT7rXIAjH1LuTBw9jbB/IhMw0EAghSgCeV/PRRy0fcuv4MZ4UQtwthPgPIcQ/CyH+VQjxJQCPA9gPoG18+5MALvM877eWw5U5UbQqh0l7gy6SODWTjyZjtDmljfUCsGT3LhWY6slHPuj05A4fliyLojJe/5mJh9ZIolaVvAr7aHh5sB1hPiOR8rue0UwxFH5njx8xP7A9kvTGwiGChFvWicLcCAL9Hf3lszZgdnfZTAAQcpFiY6GITtDnu97EeTNZRqx/LQhybaKatrKkO8UQC3uRai/ltbaXjiAI8BuyLyfU0mDZdHk6NizowUdfsg3nnDbTyP5quXwvhVmDwPZIq9fvW4F/eP4ZVo/RStiYmTo1nodkzKNFoWVpiqFLAEx0BxoD8LGIjlsAsH78v1a+B+Baz/N+Gk2QskWlAj5sni5fg0C+86CF+dqfRTaCQCObimO6jiAFb8DuIsXhRxAYCoeZ3cTGVMHbZbrXOq6C/opZneiuFHBkwH82vDCVvPWbsH0gXfwrEFuNIDB3pfIGdrV3VfUlPmn3j43wBtmnrIxkKoxB9rNsZidu/8O9OPDwUxgYHsXvjw3ihlvvCxwGlzsi2GDs2omp/2tkn3WhC1JejWqKId01CChar9i7DJ//8WMNn+9Y1nwEUpBOP9lKOdyjukixydeU7cv6sH1ZHz74vz/H+7/0s9D7O5WOunM31afDqnUMzd7Z509rx5PHhkwEq/kxcwKXbJyH137izqbf2zytoesRDKUg/SeG8b1fPmVkX+S2LJU6aqcX+prneY9YPNYnAewG8GYA/4nqosOPoDpKYBDAEwC+i+oIgj2e521n44A9KsPOfnv4ZKhjyA7hP8VQwBEENQeNKrvXqUjXny5FMzCa5Iv9ulNgqifL2HVC7XIcqUq7gSCm18Z8TuBle5YpbWuyUizOacjIPP8phvQ+txEGP4WcwNbxqWhMprFR3Ik28oQgu5SPIDATxqAdFroqRVywdjaeuWkepneGG00QJipJTJr8rp1qlCbK8DbLMKrTU9QGQZZ2mAxp0UQrJlmzZk431s3rbvj8ys0Lm24fbAQB74E4VU+/QmdDC92rTZXzJ/bj0p3UcFsrBq7Z87B7eV/4AEn4lRVtvj+EvgcMBe35H9KamZ0SLDMjCDzPu8zAPn4JhcfM87xBAN8e/49ippJoL5zWHuoYYQpvQTsH1R4xqsKj3SmGwpM3ArT+ndURBCFjJgub1vVwqVRIZsR4TV+7bwX+z1ce8N2u5QgChWNE/VLMZyRafqe7Vd5tcih52CkI/+a5p6OnrQjA7OMYyZon9g+hZFp76wWBTZ0HEy/vYfeQtfTFN7qK52Pi2pksp9VX5AW6P6RlM3OB5QgCt+VyAh9/6Xb86efuwTcffBJzuiu4ZtdiXLl5QdPtpZ1+WnzF6dXjpTqCQGN5Lo1ju70/k1SD1iy9PmPRNLOBaTim/Pug00WrcGUmgoefPG5mR+S8zDQQUHap9AxaM7ex94cpfv0JTLxIRJffqx8pjkWKZbuIar5Y0zjFUHboNibFWdAXQmD9/G7c8+gR6XYtF91TCHvjJnYjzIUAo+U7gqDF1yYXowvzUrd6Thcu3TTPWFhqRXIvWjhEkNP56nOXt95fiLCY3k/YvDjcGgTJS5t8pxBTjNNEGdnmOVC9NrVhkJc3QwaoRklzkWKK3rSOEv7f88+E53n+I2cCNCw5/IqSaKpTl6quQbB6bpficZU2A2Dw2ouJ/blzM9UHRX0NgsbPOjTXAtHl15nEodPawOGgkaNY6qDU8+t809NWxNPWzYkmME0ErewYrVlKPrI1CDSOo91AYL3yrzWrDQShRwbKdqC+c5cKhdRcUqYYmqBSuRqmoiToy4Op45Fd/hWIzRUMLnATZlezuytT/p20+8dGcHXTpDMW9WLNnNYdNEzlW2Y6YoQdDZiwGyQkv/OlejpsrEFQX0EXpBwuv54cQZBFKulMsDsjW2mHa6ojCPyvwXW7l1o5tgkTe3F7BIFa4JqdE9vvuH7XwWTHlXrhRxA4fNHJSRxBQKmX96kB+LdX7MCivnBTDMn4r0EQbL8jtQ0EERUedY6iGy8jIwgCDvmOY0FlZdI4GdlNImRgjWJtcZf5lF6GWy66p/Lb+t/YlfRnJGn8e1o2/75gcE7uMC/f9S+EcTfY6YpzDYKF09tw1ooZeNvFa6Q980yF0MS7e5zD/ONO6+M0ce1sngPlEQSi+d+y7cLiGgTpEiTdzfLzb5PqtRDCP3e/etsiLJxury4hrChGYumrK0NpNhrXst3wEesUQxanKk4Cpn/RYwMBpZ7ffMWrJb3XohC0gqI2M4puBEFya6TlaxDYzNjDMdZ7xLHroUN1GHDSubawt58wPWYCTflsOcLsZeOWSKYYCrEvq2vXRHArxnW3//srdmLb+MLOfoxNsefAs530l3RtAUcINW5nv2IrSCf9qBYpLnEEQeZlLemIis4UQ37+4vL1IUPT6thmr74DWWFL6lMMuTeCwOpEBGE7JziUgnRVCjg6MKL1G3dCnx0sdVDq2Rz2pUZeAAmS+c/tqWDh9LagAQpM51TGMZxeuviX9HfuMhVulwuFfjyvcVHBNNK9RHEX+mz2mAEa42d9BEGCn5GkkvbCbfG5yUWKw9zD9Xlc0u4fG+FVeUnXuXym0jgTewm7DxcaKaLkO4WY4vmwMYKgvjQRpLwq+4XJ8i+nGEoXFztHkJzKIsV+c9QHP7aZ/UzsxqVbqXGUsGqe0Lid/REE8gO4PcWQmXCE9ZwtC3DnOy7Q/h3Tv+ix1EGpF3cDgY0phl561tIpCWZkIwisLlIcPhJBh3yPWax7DhsvU8PYk5zBjmVkBIGuuC+p9am5Io5fcp+QdGr1wm0yTw+TLsY9p/yiJtMZbF0yTfn3NhoYVfYYx0hEE9cqfC+++I4dB78gq08nUd3Q5vOmWrknWv6jbjuDQS1ykeJUCbLmXQIf/0TQaaSMq0OOuXV4qv8bd7lFRn0EQbPf2h5BIP/eagNBSlKAnBAosME7EXiVKPXibiDwo9vr4P3P3ojr9yyb8llkaxBojSDQ3Lfe5tpk52jUZgtBSMamWFDYZrHFtTjCcPjyGOVwub2pcFMM+f+2fgvb5yfJjWhp1OpqmLxOYYoH9Q2XJsOlsq9PvGw7zlzUCyGqw7Zfdc5yvKyubCA/RpgQBt+n3ggCQ4zsKNxOXK6YscF3jRHt/QUPS4O6Z1d1JFHtZlFdT65BkC7blkzHzK5yw+dXb1vY8jcZSzoiozrFkFAYQWCL6SoMl/KhoCFplrdYH0HgcwCb7w9pGUEQNByOBD9TuAYBpZ7J6QiC8Ct+6GTWH7pmCy5YO7vhc1cS/1q6YTIRB/mQ79bf2WwgCBst+Ty36ntXKbz8/dVn4LqP/ABPHhtU3m8UsjKCQLehL+4K7TAvGkF+absh1PG25MyJ4vYO08gVd8Plgmnt+PSrd+PowDDainkU8jncft/jyr+3skixwjOqk25E2UDuu4+QOwmXXiYvcTI1gmBipJrNMxAkHYjqihStD9WjKOVyAh++ditefNP38PvjQwCA7Uun40+esbblb5L4/KdJrJXqpkYQTKzl4tCt1DDFkOa0c0F+G5TvFEMOr2XoTvoRLBwu3bNZwQYCSj3nRxBopHytohLZFEM6Pf8cS9Fl4RmJu6YnINMzNWyY34Ovv+Uc/Pg3h1EqCAyOjOH5H/pu4PCZkpkGAsdG3fixnbbWP7P2RxDY3T81EmjdiB5FHhLmGA0jCMIGJuC+uirFyb916hLjut110g1TFTO2OyBEFYYkMde4M1GxZe4E1qc5QXZta87xZsfJ54TTI11Jz/r5PTjw9vPwk0cOY3pHCUv62qX3d9bSjqhoTTFk8Bos6msHfq62rbE1CMTE/7p7M6mGLKlrELzr0nX4s8/f2/D5n1+2Tvo7jiBwJAIZwm4JlHqFmHvf+A1h1JmOrVXiGt0UQ/Ze7OOcAWB0bMzE0ZsKn7GbeWlQ2VYIgfZSATuX92Hz4unODEUd8/zX8kiDWKdcCCBMjxml+zHAftuK+QC/CnNEsiWKqxFmOtTGKYZCBsbAvvRGlQU7Rth9ms63lPZj4G6yuZ6Qzd+6Sy1Spyq2zB25vjyhPMVQTZijvCRxj4Qm84r5HDYvnoalMzr8p+Pi5bdCdYqhXE4YrVi//qylTT9/xoa5DZ+Zfr936Vaqj5v6GgTNGgjiHWGsUtV00YY5WDCtbcpnC6e34enrG6/7VOHi5sq7fGAJD34SsYGAUs/1EQQ6hY5WBYWo0n6dU6m9BoGJRQQluYgs83Z5BIGx3iMBclhXKuU5gqDF9naCoSxMD0qVXzYOP5Zvf+aiXlx31pKgQeJLuGOi6OkWppGrvkevC/dPHJXvU/apsI3WFEOGUjkXRhAk/iVdk9+1060Msnn2Ak0xFOHlZANBtrEHbbyEMJv+LJ3RgYs3TF2sulLM4SW7lzRsa+4d0Oz+bFANmmjyPm87PfZ731EpS87qquDfXrET1+5agjMX9eLaXUvwqZfvbLomSa3QHQ3D/dwY1Qa5eq6EP0s4xRClXtwFa5NrELRKJaOKoVbvRO351HVDo0cWnjGraxCE7HUo+X3cvUWj4o35P0dZFPdQ4TBJq5X5z4XAmy44DV+853d4+OBx/d8bDxH5EUK0bImMIusOcx/abLcMPIJA44dPHh0KdhDp8f23iWMNAhcq56NesyVuftFVrgwa/1+T17C+oiJIOiD7jem0wfWOTmSXA8lXKqlPMWR2kWIhBPY/7wycvvAX+ObPf4/5vRU8Z8tCnLFoWpNtTR301LFdEXwNgsbt7K9RJt+/aoep+b1tuOFS+ZRC9cLGzJVLHjRfdCX8WcIGAkq9qOYJbcUvQdSaYqjV5xGlnjZ7J5qIgeyYsu9GHe6hLj2PBq9Hs+89R6rlszKCQPcpiLvOwPoaBPXDj/16pKKa3r/tojV42cd+oH08FyoR6ZQoek2GuYcbRhAYDG/Qfen86vjgSKBjhA1BHOmWkREEIfcR5l5zqVLHFOU4TVZs2QuLajm8NgxRXpFimLnQKPFS+Pg7QXmKIQvnv5jP4eVnL8fLz14u3c5U2j9Rpoj7vaFWfZlbNWjN4mB7NmnfKYYcfkhdKT9wHZ3kYImDKGZ6ixQ33zaqtF/nMNphshwJ2d5tZlquDA1UqVx1VVYaCPTvlbhHEISp8NLfxu83E+Ep5ANWrrr8EGRQFNcjzMuyzTUIgjIxIjEM1bVu1PfnwEkdFzYocY9mjZrp0R9GRxDU/TvIVGNRVghxBEG2cYqheOWEiO0aWBhra3yPQVXq1gxzew0C+f7DTFfpx6VyUBhBq1qY/kWPDQRElvn1UNB7WW7xuU6AwtA40PBo9JW6suDJMneX1yCQLlKstZ8AB3fktHCR4hbbJ3gEgcov67fxje/498WAXYlYCI1e3Gc8zAhDmw2XwacYUt/WxtR6KofXOeXGGsgtr3GkImjDZfXYyWOqU0IUcQ+SDnANAopK3GW9rBOGpxjSYarie2I3LiUlbXUNBKqpfbNTYjtefnmEzfvDxK5dSEOCzkrgQtizhg0ERCH8xRXrQ+9Dp9W59SLF0aSeOgWVpTM6tPZtPQaSA1idSzrs7yU70Fvg2u84jVu4UicfdGGjpNF9juMuM/mlXZdsnGv0eKoVThxBkA5R9NAN0+urvn7dZGiD7ksnOkOjYwGPEk4caxAY2U3oEQTZeuUKMq2hbDuTyUF9kSJIWiPLj0xPz5gP0bhEycerb4f6nPfxXQPTeaBL5dy20tQ8McwIAttXyK8BwuYoLxPXzIUpkAKvQWA2GKQgW6VVIoMWTGvD09bN8d3Of5Fi9WPGPYJA5zg9bUW9fRuIhKne9i6Jqgely3MDjnqeM+sh2JS0EQR+PWpef97K1l8qzUWi95OJ74tsIEiFaKYYMjiCwIEbSKeXu41RfirZiFYDQYiwTNmPifJFyN+HW4Mg5MEdpHqv2phiqJ7qtaktR0U7goCv61mWxuffBeprEMTXQmA63XOhonhC/QgC1ZA169hhfQSB3xRDNhsIDNx8Llz1oKNu0zLFUpKwxEGkacP8Hrxg+yJ86uU7MKOzHHp/JnqBR7YGgeaBXnWOfPGlKfu2nAHGVigKedg4pxhypeO+w20XsYp7ShxZ7+uOUh6rZne1/F4l5Lrxm9g+aGVK3Oczi4IuLB/F8f3YHEEQNGBxTx+gUuGitUyCoZvARP4fNixZmybGf9Si5v4snr5AIwhkaZfhvCRr9w5NxQqyeFVHEMRzDYyNIBjfkUu3UtA1CJpPMWR7BIHPCGaraxC4sY+wOIIgOQpxB4AoaW593Vl6P/BJEHVanVtlQFEVXHSPMq1dfRSB7czLhcwxCNntEfN6lJGxMVe2i1yqMFEhG0GwcHp76P3Xx88vuhPtApxiKB1sv/AJEe6lzsV0Ke6KJKURBBplHlP1oi482mHWu4j7ugZhKsyTFVvKIw7878OGRYoDtCnL0ifjUwyxgSDTePXtUE2j4lyDwFw6anZ/JrSV6kcQ6I/kmmC/gUD+veuzwFXPbbxl1sDrdjl+btOIIwiILItkiqHIRhDobR/1VAJR9uhSFfa4pnuP6HBlWh9XRjLYlrQGAlmlit/9FiTsvlMMjT9rxSC1PQr7p2jZvhw5ES51rn/ZMXn/BN1V3PWIKi+AemE0WzkSah/hd5Epps7XxP2iet8EqUxXLavWbhXpFEOu1z6RVS5V6qaJzhRDcV0B03m6y1MMhWE7Wn7nbceyPmvHNhI3By57Vt7l04ANBEQx0+lVFnf6rltEcqnXk0NlIi2yc64TpaTGHwjR6yBhgk6pExfZFEO+00sohL1xC7VGh6DTMcR9Pmkq66PKQh6jft0Wk8ENGq6403m1BgKdUZNhQjNlT+H3wORBS1yLFKtUptZXDCo3ENRsFmV+kecaBJnGpCdecb7KmkpnRN3/uqB+iqEw73rWGwjGk+Dnb1/U9Ptrdi6xdmwTDYQuXPeg19elRq2sYImDyDK/Hgp6L8vNt41sBIFmiqE3fZJmYJrtw4kscKrQ8ZKNirA8QmNuT1uAX5k35nnZ6Hmge5Fivt1l959ffYbSGsV1G6ne7kFHEDjUnpkZ0gbQCOaUDZNnuJgmxd3TVOWcJHeRYvWd/NGFq8IfsP74CUuffEeRqU4noVm1FSQdDzbqQP84QRWZOWVa0p79pFDNL3NCxJa3GptmT3MkVhQaGwiC7yuqNQhee+4KLKqbQvUPzl+JOT0Va8c2ETMXKtmDL1JsOCDki2sQEMXMzBRD0aSeukfRqwiwOweAC5ljELJwm1i/QmbFrE4sndGBXzx5XPu3Jjk41bcVCWsfkN5/RhYd19zFxLPCNQjSwfrlECFHEDRMMWQuxEH3FPctbHqKIWNT7JnYh+JOyoUcnr15gYEjppvuCALV+yZIWS9IA0GU+UWY9Sso+Vzs/JQGqlMMCRFf3mo6nYm7E0Gt+imGVK9HM1E1EMzrbcNnXr0Lt//0cTxy6CR2LZ+BncvtTS8EGOrg4MBlz8q7fBqwgYDIMr/0UDZNR71W7whRpfu6BQutqT5sTycRU+ZocQAB5nSr91gIGo53X7YO13/0BxgcGQu4h/DCFBrTLO6CvqxSxe/RDxJyv9+cmmIo6OBIB0rQNMn2/S0QrjddwxoE4YIzdV8B4x53Q7j5EQRm4mPivKju4T9ftcvK6DuBuJcYNEt3yiCd3r62wjL1N9E9a0GnzaN0cKFyL8tyKVikeCIHc+leql+k2OkphmoO0NdZxnO3Np9qyAYjHa4MhCMsrlGcHJxiiChmepl/820jm2JIc/uo11eQnYe4K06CkgV7Xq96JUTQ6O9ZORNffMMe5e1ftmdpsANJZKXXge6LQNx3tPSZMrBIcf0m/lNWVBU5giAVbNeJhZ02YKx+DQIH7p+4w+DqGgRRLvK3YJobU/PFycaC3aq7DHJs1Y46osXftrm0nhdRWqjm/9URBPE8g8aaB8TE/txJS+pHEIR514tqDYI4mBlBEP91D9rZz4WwZw0bCIgs80sPjUwxFFGGr5tG64yOsC2pvT9GJCWmeb06IwiCh2PZzE6l7RZNb8eu5TMCH6eV6hoE6W8l0G6Ai/nxkk31byJs9Y+O/wiC6haFwGsQuJNekd/6BAb2H3IfNhsugwYt7ntYpYFAZy0jlxoIlOfMZzqidKbUz2f1f1XvbZXt6jtXBFuDoPVvTBdXOIIg25ik2KH6XpGLcY4hU3n6xF5cSkoaGwjcn2IoDhH2b7Aq8BoEhsNB/thAQGSZ5zMoXGse+VafRzaCQO9AtufIb9hHwO9c9sSRgZbfzY9gBIGKGZ0lXLR+Dv7tFTvQXjdk1ITRjAwh0L1GcVdEyRoAfSvzFauQpvzL5ycTXwetTElqGpFoAQehmHphCrUGQf0IAoN3UFIrhFSS6jimGIqy16St3t5JygZV8ibV22DiflHfXv59eymP89bManoMP7XxivIZDdroTekQd8Nv1uVEnJ3M3N5fGJXS1HQtTMNqmhsI0tJCELQM49I9mxVcg4AoZjqVfK0yqKjSTu1FQyOfYihgbZNFYQ/bXSm2/G6uIw0EP/jTCyb//s1TJ43vPwODBwDoV2LFXWaSPd++6VqAwPudn8kRBEEbCOI+oTRFFHPKhqk4buh96MD9E3dFkulFis3Nr2BgF4r7cGnkZFz0m3/DbzfBr4HmDy9YhXJhakeGIFlGlI1OHEGQbUxS4iVEfBPzGBtBML6fuMsItUp1DZ9hOoPZjlWcbbQm7j4XrnuYESIULXZJILLMLz3U62Xf6gv18IRhc4oh23lX/FljMDuX9zU9N6fN7kJnWb2N16V5J3VVpxiKOxQOivmSyp5vG1MMqW4ftAdvkp+RNJI1Mhl52RHh7tOlMzvCh6GFoPdi3O+AphcpNvVSG+UixXHOVewKpTVmFE/o5BRDig+rLN1oK+Zx/Z5lDZ+r5hm1u47yWeMaBNnGskm8Et97vGY3cZcRatWn1S5PMRTniG0XptQ0IfjldSDwGcNiLJFlfumh1hoErRYpjmoNAqtTDOmGpsk+JN/F9X4V9rC97SU8b+vChs9fsbfxJVcaDkcbkVRkpdeBdoV4zIUm6QgCv97+Cvuv30Z1UELQgrwLBeiskZ1y6XcGrlV1keLgv3/9vpVT/u23q/NWz/LZIry4e4mpzOmsE0SHBhAopyscQaCWN+lO66PcQCPZ8NzVM5v/JkABMdIphthAkGlMUuJVnWIonotgOk+Pe2rSCbtX9DV8pvKqt69FOUpnbaMg4i5bheVC6P2m3G4l4ac+kTjFEJFtvosUh69Ed7XyV299hfS2/of1nss3YElfB26773FMay/iqi0L8bR1c7T2Ed06FeYlae7lMHTPXdy3tCzt8q3MV5qjWi+CYc9H3OeTprI+qkyEy3fOXDytYX8ysgXnGwQMVtz3sPE1CEz1noywB17SKxKiUlScs2HibJpcpNj2b0wXWbgGQbYxRYlXLsYphow1kguz+wvrpWctbfhMpTPYtbuWNP3c/hoEVncvFWUHB5vGxoL9Lv6QZw8bCIhiFuXQ96iPE/U7jexUxjaCwMBx8zmBV+xdjlfsXR48HFGNMrFwGJVeqTY964z50RxIewRBvGTPt4klCOqvu98+w6alLhSg6RR5A5RA2Go4geDp1Y5l0xsqOP3S2KER9bejoHdi3B2N1dYg0Ok4YIaRF2zF7YL0Rk8dhVNQKig2EIip/+snSD6gOuqjdiuOIKDI8PLHSoj4Gt+NrUEwfhO50IB98/XbsXvFjIbPR33KDy/bsxRnr2o+Csx2rOI8bybeTeK/6sFnA3Dgls0cdkkgssxvSJXOfLUtFymOKPXUzSDj6CnYcv+S7HG5xbmkXRFdBmv+QGOe+R55qgo5gSu3LIjkWNqLFDs8gsBEYbq+N7JfOhd6BEG4n1MAsmsmux4mrlWYe1Rn/ZcJQ6MBu09pifcuVhtBoL4/U2UbIy/YTCCUqZwq1UrviedU9fQHuU7KjTo1O5fl16ZvFa5BkG1xTyeZddURBPFcA9OPftz52PVnLW3aOAD4lx92tfgdEMUIghgbCEzsw4EkJGhfP6Z/0WMDAVHMjEwxZCgsQY/fStQvNdJMRPLV689b2frL0NzI2KK6FGlYg+BZZ8zHvJ4Kdi3vw4eu2YJdy1sXSk1K2hoEsufbf4ohlSPUjSDw2Trs+XChAE01bDcaizAvfY2/89uV1giCgMHS+d3V2xrXtglLbQ2CZI4gcCUvTwKVS1zUHkGg16DQdF8trmGQ0a6yMpXxKYbYQJBpLJvEK5eL8RoYOu5E+OOq6O5pK+LFOxfjrRetbrmNX/khzLSmYel05jTNzBSJ8SciHEGQHJxiiMgyv/QwWWsQ6B1Ib5Fiuz38ZHt/2ro52LtqJu544GDoMLgruTls1A0Ef/Pc0yM9XlBxF5pkz7dfuqYSdu0O1yHPhwtDr7NG1qhje4SKEMEXKW72O6MNBAFvZp3zcqHmOjYqjKfVxipHsvNsz+wq4+DRwVjDoHL/lpTXIJiYGkPt2EHq0gOlJxHeUvk4a6codtlJvdwUZ9nQ/CLFRnen5CMv2Yo9K2f61gn4lR9kP7d9jVSnobPBRGcwF9KQqN/lKTiWOIgs80sOtYbbt0ji4+5J3IpOhmo7BrKgVIp5/NOLNuODLzgTr9y7HPufd3okx41Skhcp9rzgQxOTRPfcxX1v2S6Q1xcmTaxrIMMGArfIroaRHlU+x/D7ra4ophhSCVdXpYAbnrkW5542y/jxTS8ob6psE+UixXFa3NeOd1+6Lu5gqI0gUG0gGN+XaocTm4sU124VZX5RzCfg5iNrWDaJV5jOBKGPbWo/EyOxYqgv2LigVyn99isixTmCINZOBikpvwQtHjoQ9MxhAwFRzIzM0+9o6qk3gsBiQOB/nivFPC7eMBdvvWg1Ltk4z25gYhDVLWKjEDVqutbJUfrnLt4HXz7FkM8IAoWw1zcK+f0m7Es0Z3Fwi+weet7WRQb2Hzy9ajqCwOAixUHJnoFrdy3BN95yLu58xwW4dvdSK8c/SzJHcBCyy3PNzsXq+zERFgP7sKm3vYj/9/wz8fT1c/C6fStiTc9UDp3PCaUwTjyjqs9qkEc6yHSYUZ5eLnydbS5U7gWxben0uINgRE7E1xHP9LMfR1KiumaT3xRDsufA/hoEVncvZaZDTPyJSNBX+SyNAHUFGwiILPPL8HReTFpt6mra6dJLjc45MhlqV85AVBmsjaOMeZ7vYt8TTpvdZSEE0dC9RHE/XrIRQn5hU4lrfdppZl2D1thLzy2ye+j528M3EOSEWgWlKr/bZzDmNQiEABZOb0chyITritbN68aCaW3G9ic7DTM6y+r7MdIDz9304c8vW4dvv3Uf1s/vgRACb7rwNNz5zgulv/n/XroN0ztKEYWwOZVRBBNn3cgIghZfBUn7o7wfuAZBtrlQuRfEtbuWxB0EI5K+QG11PxMNrYZ2qKiQEygprjfjP8VQ8HeOsOJcKN5IBwcHkhCVNarIDWwgIIqZXqLdfGMH0v2m9KYYCh8L+XuhO6MZ4hDdCALz+1QtUyyb2YF187rNByAi2uMHYr5PZQ2AJoJW39vEb59hj+lSgybJ0+wVszrx9otbL3antn8EfoiC5FdDI6Pq+7fRQBBBLiCEwIeu2WJsf/IFZ4HnblFbaDktc/i2sm/NbLSXpvbS7GkrSn+zZ+VMa5UqqpXnKusQTIRRfQ0C/Uip7rt219JFig3Xg8RZOUUOSODlv/6spbhovfl1buKQE/GVt003REbd2DGi0W3cb7S4fIohu/GKs5HOyBqNBsIRVtB8Me533SxiAwGRIa2G1r/94jXS35lZpNjN1DPqKYZkGbjWCAKD59OVa+NIMAIZ8zylgsWqWV2JruTVvUZx9yqT1e2YeAlp6E3kO4Ig3DETfOsklvSS+VyPl5+9HF97094Qxw7+BAW51XTWIAgaMhfymzVzu3HxBjMVQ34jIt7y9NOURo2lfQ2CoAsoqi4UrEs1NEWFnqUT97TyOgEBToVqWbX2uYwy/1Vdr4HSyeW0p9b5a2bhpmu34Dtv24c/vWStE/mRCWHKCuGPbXqHhvdnkN97nomRyUHFuU68mREE8V/4oNMFOxD0zGGJg8iQq7YsaPislM/hog1zpb/TaiDQ/DxuWg0EFsMB6GeOacuQouo1YqMYrVqmyOWCV5QkUdxRDbNgmMrz6DfcWPeYfthL0y0ql2PZzE48fV3ryuj5va2nuxEhegU2XYPAZ2fRrEFg/RBKCobepv2uT19nGZ977W6F/ZjogefIyW0i6HVXnfpBm2J4VBbfndhCtQwTaARBkDUIInyDZt6UbUm5+jO7yti3ejbm9pibZs4FOSFiq2A1/e7m8lSafmV+v2tgM26xTjOVkg4Ouu90E1wue6UVGwiImgiSkF66aR7ecN7KyR5Zve1F/NM1m6UVFIDei12rDMqFhL+ZyEcQSKdX0GOqMODopbHGxr2oWqgQEIkeQaB7t8Qd0zDDfVXCXn/V/QqJYQuRLr84ZZHqC7msLrqjnJfsP0RP/Sa/89uTTuepwA0XsacKVeZmWPFPYyrFPDbM75HvxY3TYk3QfM/WehTKIwhU1iAYv3jKaxBIdtlqD0E6FkR5S21ePC3Co5FrXOj9qyYp4dRTXaQ4Hn7HXTW7U2k/E+u4uXyF/MpIflmAzde/eNehMNDBweULT85hAwGRIUIIvPGCVfjxn12I2954Nn74pxfg3NNm+f5O58Wu5RRDjmb5LlW46U/fki4OXQptqgsbCSGf9sZ12vdozBdVVmFjImRRL1Kc5GckqWSnXPVyyPI/WU/2UIsUB/jdn1+2LuDB1MniE+X9/bytzdcG6K4Umn7eimqYfdMGraMGO0acgo6cszV1jWrepNZAUP1f1Wc1yLkIMn1RlPnvlsXTMLtbfVFuSheHk54pEt0/R6I6giC+Y7dy0fo5uO2Ne/GJ67f77meiOO3Se3m9MGsQAHbT5DhPm+0pmKPygh2LA/0uremKyxJclUKkbtMCee+yemHSorZSHqtmd6n3djKwkK+r+b3esGgTUwC0plsoMjaCwJFrE9XLrJ0RBKrHFomeYihpIZc9I/4Fef/9j9XNyOL3k7DnL8n3ThqZSIMLkilMBMymV377Okehw0D4QNg/hIptS6djRmep4fMXar4gShuQaitr/fbjyHmxJeizUlKY4icI1eDoTDEkFCvpgpR1gsyIFWWlhRACf3/1mSiwpiSTkpJ+uVz5HEZ1OsJ44qZyWJW1XHT2Fxe/zmB+95fN5NHl86Yi7vAX8wLP8Jlyu5W4O8NlERsIKBPedOFpTT9/89Oafx5lYqSToSUtjdSpcLMdN+3dJ+xc+0lydMY8T2nKCoHgUy24IGnrZEhHEPj26PUPfP3UUr7TFoU8H2l9uU0qE5dDVqFWXXgw2EGa/cpvTwunt6vvP2DkpdN+BdpjMMV8Dh+7bjvm9VSqxxbVaRjfeMEqrf0onwbfKc3SPUQ/6JIPcS9+q3L82ntaJY0OUgQINsVQtDfEtqXT8c0/3hfpMckNSSmbJLj4LeX6/PM66XjUla2v3LtceVu/zmAm3iuCivMeCDh1/xRxPpqlQg4ffMFmTO9o7DRCbtIb60uUUDuW9WHf6ln42v1PTH62fGYHnrOl+TD4KBNSI4vnOVooy2v0TjMzBUDwCst6pgq6LgzrA6K7R2JdpFgkuxe4bsjjvrdk7yQmCtP1191vj2GPmeTGpaQy8rIq2YVsiiEh5L+VHrJJuGVxOX+N3uiBoGfFpTt47bxufOut+/DzJ45hRmcZ0wK8HMrSuNrv/NMG7UNrhSVuQRextTbFkMHj1z5WeSEw6tNdIMjaOKrnr3YredJlbhWOWqxgIZclradvZ6WotJ2r889PBEtnZFHUMblg7Wzlbf3Wm4tzBEGsDQQ++clbL1rtu4+ow3/triW4bvdS/PqpEzhjUS86ysGrnJOVqqQDGwgoE0qFHG584Zn4zI8exY9+fQirZnfh8jPmY0Zn8zk9o0xHtRYpbrGxqy+ueiMIDDSUGNy/q+c0qKgKB1amGBrzlLpQCCECV5QkUdzvYtJ7yq+nj0LYdS9l3OeDzIpkiqGA+9VuzIvo5nStp6kQAitnd4X4vdp3/uuTuNERI58TvvMsBxH0uutMTaFD9XyXNBsI1PKNAKMBFH+iGxYiE5JyryUlnBMuWj8Hb/v0TzA86lcxHVGAmh1bIYnWaeiNqoyQE8DbL16jtcC6bwOBTzRtxi3Oe6CtmEdXpYCjAyNNv1eauifi8OdzAov62rGoT33kbEsJS1fSgFMMUWaUC3k8b9sivP/KTbh+z7KWjQNAtJXDOhWarbZ0tVCmM+zddhR0929sBIEj1yaqYNhZg0B9keIk9wLXPXdxxzTMIsUqYT9r5Yypv/H9UdxnhEwyVSHbSnWR4mAHafYz2Z6CJkuv2Lus6ed/fvn6pp+7kt+YohqdKKJt5H60dIECNxBYyi+VRxAU/LesbWxQKS8HabdWbdCY29NWs6/oH7a0Pd+kJikdllxroPbTUS7gys3NZxKoFefICJVzKusIUS+qqNz5zgtx/Z7m5ZdW/NrO/fJPm3GL8x4QQuDy0+c3/e5D12xRmr4y6tCb7KyXrFQlHdhAQBQzrUWKW2zqauIZ9XQvqr0N1fbl6lkNKKLoxDnFkEDSFynWHOUSc1Rl57q3XW3odiud5QLaS1MHOfqdn7jPB+mTjvoysH9Zz7rqwoPB9tvsZ7J96VacTGx+yYZ5Db2suysFnLe6+ZRFJqfZc4E0PorbVb83EBYDd2TQtQL8ODfFkGJwlKYYqvlbbQ0C/XOh8puetiJ2rzjVaB1HX4QEPsJkQFLS7iT2z3nP5esxo1M+dVec8VI5dFEhY5noZxVFXFbN7kRPm/47gF9nMP98Pp0jCADgTy9Zg8tOn4fieGNQRymPA287T3kKp6jrNEw2FqauPiYB2EBA1EyEaZFOutfqBdXVxFNrdITlKCSt8tW0pPRAakZ1keJc1kYQxHyTDo2OtfzuzEXyYcV+Qf/AVRub/Ej+mwRfempC9f6WbSUf5SIiS+cnXpYqRbVi90SwNizowYdevAUb5veglM9hy+JpuPn6HZjX29b8dyl7BpSnGPLbT0T537POaN7Lb8K+Fg07YQVuILA0xZBqIVptDYJT+7KVxqvs9+0Xr55ynuPOfyk7knKnJW0EAVBNO1977grpNnG+V8gbyavf6Y0gcPcajfn0Bou1oSbm81Yu5LH/eWfgrndeiB+94wLc++6nY05PRfn30Y8giPiAZBTXICBqIsqE1MQIAlcrxnQKVUZ6+BnsPenoKQ0sqrKNjeN4GlMMJXkEga64oyqbpu2sFTNaflclD3y5mG/8hU98k9wIRo1M5GtF2RoEIvg90zyv8c9//ujC0/Ce//6p1rH2rpqJvatmYnTM860IDrJAq8uUFyn2SxuMlC/k3xdyAlduWSDd5lV7V+ALd/+u4fPX75NXUNkiez7CUD3fSmsQ1PytUqYMcq390oFtS6fjuVsXTflMFhTFIou2JD7DFF5SrntSwlnPL9y2nmcVKqfUpc54YfiNFverL1GdjjYIV+pZOsoFdLR+9Wop6utudASBsT2RKrbvEDURZUJqZIohIZSHmUWpoLW+gt2TrptZmeox4kphLKpg2DiO4hrFyAmR6F4L+o1Y8d5cq+d0obvS2M9gz8oZmNUt79niX9mv9pnOPilZlEcQSLbLS4beCxF8BEHT+1Oyr4n854U7Fis0njWPk9L8675bJIvq9fFLC01k5367+OdrNmPXcvm1XTevG8/bOnXO65WzOnHNriXhAheQytQUtf7wglVmj6/QQFF77cJ2AGhdhpb/bvvS6U1+E/3T5nfE63YvjSQcFC3ZdXel4hJwKyw6/B7lp44PRROQJlTeXVVO+8Q4bJdHefguUhxjQ47L501F1O+LZqcYMrYrUsQRBERNRJmQ6hSoZOG64dJ1uP93R/Cbp04aCJUZWhmE7VOe+REE0cTIxmGyskixrrgLTYV8DvufdwZe9rEfYGS868+8ngreccna0PsOcr9m58qniOWLJluENSdCpItNfqZSiVMp5nHTtVvxg18+hXseO4z3fuF+1d0rSfpLbD1ZbKZE1XcEQfjzItvF6/etwL7V/p00cjmB916xAeetmY3v//IpLJ/Zgaetm4Pedvkc2LaoLBJcSzV7Vd2r7hRDKtcxyKX2e250d2nrMfTb7yvP0VsUlJJBdt3zOYGx0Ri7uNdIavbjF+xVszsjCUczKqe02YjbehOvUS5fIv81CML9Poyk3tsTog6/2UWKE37yE4gNBEQxm+jFqJKvyRL4+b1t+NIbzsZ3f/F7XPeRH5gLYAhawx4thgMIskikoREEjmRs0dWbmz+Q8iLFQm2R4rVzu3Hfb4+EDJV5rtwrOs5dPQvffus+3P7TJ9BRzuPc1bPQXfFfnMx3NECzz2JcoIySSTY3b3WKoWB0n9Xa/KdUyGHXihk4c/G01g0EQdstUvYIqDb4BklP9LXei061RC5XHfHpwqjP6ZpzFaiP6lHbX0FziiGVEYJB8lHf8Go+WHFNSTKrS31OakoO+fSpAnopkD2JbaD2CffSGR0RBaSR9JyOf9XTVlR+r3H5Go21XtYMgH95wO4UQ+6eNxVRvx8ZbSBI9qlPpARPxkBkj6tztflt1VEuYN/q2ZjfYgHDqLk0H7xuSNLWET2qyudY1yCAWqHk2pimc/Dj0OOiZVZ3Bc/fvgiXnT5fqXEAUKnsb/KZ7z5P/f3+ZzdZ5JhSSXZfSKcYCrFIcdP7U9rdXXN7C5KYvEgXmZ7Ss9xnRwYin9T0Wea5ddMd+TE15dOEksIUQ1MXKbZzEUyPILCFjeBUz6n3LIfCokMW6medMT/WeKke+g/OXyn9fuItyuVL5D/FkN/vDQam4dgOnzgFUYc+6ecr69hAQNRE9Amp2nZJK3zpLVJsN276uzfU59CVS+ZKOAIYUyz15YTwLZQ8f/siXLlZvpBkXJy5VxzQrILJf92CUxucc9pMtJf8h11TvGzf8rI5znPCbMOpbF/N0iUbjbZpeylTXcfI71yaONfpOrNVup1JVM+j6m2oNsXQqb+V5uP273DbwO82S9ljRSniUmcml8KiQ/Z8n76oN7JwNKOa9ly4bg5ec+5yhf25e5HCr0GQ/kWKg4q+46u5fbl8z6YVGwiImog6MVI9XhIzKPUXfLsyP4IgZHzedtHqpp+/9twVU48T7jBNeTi1wJaMEP4jCN57xQZn1ylI4hRDQQWZ0cG3ErDm61ndFXzsum1YNL0dADCtvYgbnhl+bQRyj9/8zLIfmlykWKZZMOTHDhYw3VEMritIR4DU/B1BBW9aX1Lfc/l65W2Nr0FQ0JtiSHNNZWW+I9qS+PBQJtgsz7YpzG1fK6kN1LLnW5YHRUEn39myuHEx9Yb9hQmMZX59wfxOxajFIQRJz/+TvAYBRY9rEBA1EXWypjpE1HTvrSjkckJp3J/tMOtm7qbC48q1CBuM89fOxt/e/gAGhk9NElnMCzx9/Zypx4kxwjkhpC9LXeV0ZXlxzXNsgv9ogPC/2bJkOr7+lnNx8Ogg+jpKyOUEbrj1Pp1gUsLJeijnRPCGYN0phvTXwNEMkMJxkljJ6beGRLO/m+G7amsdZfVKQOUphhQ3VOlAUntP25pOxfRuE5w1U8LYrJRfMasTj/WfxO+PDymGxVpQrJKdQtkoRJXfhyXt42B4f67zu9dttQ+48h4fRtTlP5PpUgpOf+JwBAFRM64OxVJ+OQscFONMN34EpXtOktoTppWwFffLZ3biphdvxWmzuwAAy2Z24MYXbMb6+T1TjxPqKM15nnpluOx+c/2Suh4+k2zMGd6qcWhmV9nZUSNZZ7tBUTqHfc3/16U7BVazeNqIedruclkF8pQRBJxiKDCdso7pcpHulEGxrUGQ1otPiWezp24+J3D1tkXK2ye1l7XsFKpMg2aTqXfjiel3knqNgPjey9NQHxD1KxAXKU62dHWnJEoo5UWKE5hIujLMTLeQZSrUrvTaNBGKXStm4MtvPBsnh0bR1mJ+dyuLFCtuV51iSPa9G9eiFbdDF60gzw3PH9Ur+ixya3SRYukaBM2P33L/QQKFZJYRZAqKlTPRTDEUfh8u0skXTeehKiMIpjQQhCxPdlaav/b6rkGgeZyU3irkIJuvWPmcwJsuXIXOSgGfu+sxeJ6HSjGPu37T33T7pKaRsrw77gYCreursK0jr+RNvXLvcvzjHQ+1/D6usLt8zpRF/HDK8uobnrlWazR3UtOVJOMIAqImok6LVBM/5YYEh15P1BdgdiMcE1yvTNZlsgdEq8YBm1QaCfwWKXa9kJeyW05KZz0B2Wd1O6UMkl32vGT+4OoixQGPaXlEWvCGi3Q9BNIRBDoV2wbCIkuzkjzdm06+aLo8p1LhX3udVY4vhMC2Jc3n4r5u99Lm4TA8giDBtwMljM3ezXkhIITAK/cuxxffsAdf+oOz8cYLVsUSFqskwZZNcxcJQ4efTJMiuEZB88Nnnzlf+n1c5Zs0lKuijoEsrz5/7Wx0tWisb8alOq2sYAMBURNRZwaqvaJUQ+VSXqY6gsB2kHXPSerWIIgoHDYyck+xtCkgv9/cf3lxPXwGBeixGcU0IpQu0jnsIczm9ZJdNR1BYO7ISqa1FyM+YnjqaxDYH0LgfPYRkE6+aLoMqjSCoOZvpSmJADx368KGz7ctmY6lMzrUAla/z7RefEo8m+XaZu3rskfW9U44rciCXYp9BIGZ9HniNcrla7RydhfmdFdafs8RBMFFvkix5IALprXj5uu3K++L2W/02EBA1IRLCWmtJCaSsh6cU1iOm27lofuVyW6K87TlckI+57jj19Tx4MWOC5Gmj+17XloBKcLcM40/lO2q6RoE0qAFPzGbFvQ0fCYEcNWWxkpT1xUl5QfR4m+/bWkqrREEyh0+1LZT6UASZA2CZ29egPc/eyM2LujBnO4KnrNlAW56ydaWZQCuUUNJZXuKocbjJbkTTnOydwOVEQQ2Yy07p/XhVnnHiaIjTZjb4HnbWpdTuAZBcJGPIPBJmDYu6HWmAyk14hoERE2oVtibolpxqZqxu5SYKg9Jd2yRYlO3wJgjcw+koHzjS8Dv5SW6sJCcb4VegEVds3CPkx7Z/ME5EWYqH73tm6VL0jUIQtzLL961BH/47z+e8tllm+Zhekcp+E5jovwC6dt4yBEErdiYqkl1lyrXt/ba6TQoPGfrQjynyUiC5sdQ2ozIOTY7vjTPt6wdzkkqaxDYvAY6e+6WTNvSWa5+l+S0jg0EwUXdQS7qejQyiw0ERE38+eXr8eqbf9Tw+TM2zrVyPFfm6bfBlQWYbc8Z3crYmJHdhBbV9CtWFilWbGMRQj6CwPVCntuhM8uvsBrkUnGKoWyS3UvFgqwHugh8zzT7lSwc+mvg6G1f61lnLkAxn8O//+A3OHxyGOeeNguv27ci+A5jJO29WXOS2HgYnNYUFsqdWdQoVfjX/G2rcsv0GgREUVFtRDW1b50e7UkxKnlRK8a8BoFO+rxpQS9mdJbw5LGhKZ/P7alg1exO7f3FQVYmU52QwDS3z5iaqBuGVNKl0THF6YMdv2fTiA0ERE3sXjEDve1F9J8YnvL5JRtsNRCYrUR3KTF1pbeC7jkxFWzPkeXqHLolAlFpJBDC7+XFYIAscOm5jZtuBWz1ezthIXtsX7KS5OU+lwsegKaLaEu2j3oKk2dumodnbpoX6TFtkPXerD2jvmmDgbCkNX3WuTVNnwK1EQGntlFa1DhAOHwbmDT3qrpuElFYS2Z04NdPnbCy72a9gF2vYA5ieLT186oygsAqjdOdywm85twVeNet9035/LX7VpxKRyO4fGGSP9ntFde9l4ZbPuoOVEaX90rB+U8aNhAQNdHTVsQnrt+BN/3Hj/HT3x7BzK4yXnvuClxkrYFAbbskTjFkusdZ4HBY/0FzrrwnRnVP2KhEUW1kyYlkL1LsdujMCtLj178Sh7JIdt1LkhEEnmf2npGuKcCbMxD5mjI1f/vsx8T5T+sl1MkX1TuzqG2nMg2B7hoEQcogbHwm151z2kz8788OTvlMCOAF2xfh6w8cbPGrcJo1yLnS6cskWU/mQlzd1sf5LKPU4CW7l2JOdwX/ffdvkRMCl2yciwvXzanZn9sXsK2YjzsIDVKxRo2DIwjIXWwgIGph7bxufPENe3BkYBhd5YLdeR4NzbPrIldGPbSX9AodpgpRrjQQRFUotHEUz1NrJBAQkHX2cf35cT18JvnHtXEDv9+ktYcvBSfr/Tc65gVOF5s11ptcvJHTZVWZmt7BRNrgavISNlw6v1d951feTmlEwKltbM1r7BcMRy89Zcirz1mBAw//HgPDp6bDuXbXEszotLe2TLPnLY3lrOHR1lMMlQrxxjfI+b5ow9yWHRqjiE2YW+SKM+fjL77w04bPl87oiG00h+uNKiqijsHs7oqxfSX/7CcPGwiIfHRXitaPodwrS3WHDqWmUa9BsHFBD37yyOGGz6/ZuURrP6ZOYdYWKY6zHJUTZivpoqY9jYEj01cF4RfXpiMI2MszdWxXNpR8GghMLlIsH72kewDN7VMqL+m9WZuG+KWEZkYQtN5JnGlxIWRPPa1FihW3Vc1rVcI+ZaSIwm6DnI00VnpSumxbOh23vHIXPv2jR/HksUHsXTUTzzpzPu78Tb+1Y+abNNCmsWNw2BEENk+J6fMdxYCIMK+9MzrL2Ld6Fr52/xNTPr9y84KQoQouDfd8lFlcqZDDhvk9xvbH/Dl6bCAgcoD6IsVuTNejQ336JDOu2rKwoYFg57I+LJzerrUfY4sUO9NAENUIAhtTDKke3G+RYiPBoQgEquRxKuWjyEguu2yKoVHPM7pIsayy0/XGSVcVFacY8mMibXD1EoadAkNrDQLlfSpOMaRw8NpNbE1b4DuCwNFrT9myfn4P1tdVvNm8NXXXIEjq2hsjkgaCoqQMEQXT5doklJP/3/PPxA2fvxdfvf9xdFWKuHLzArz6nOWxhScNFdRRXvdNC3pQMThVVPLPfvKwgYDIAaovU0ms4Ix6BMGLdizG6OgYPvm93+D3x4dwzmkzccOl67T3Yyo8knIn6VA4jzkhn4KgtpD3nsvX408/e0/DNnH2UklBGVSZjemCsnT+SI20gSDUCILGHxYk0+Ho3s+8lasKPiNAVKV5DYKwIwjsrEGgtj/tRYo11yxQ5b/IdfPvF0xrwyOHTjZ8/uJdS/QDQRSAzcbnZs9nGhu7R2SLFMf84m16baMkXL62Uh5/deVGeJ7nROV8Eute6kW5lEZvu9lpz+obRck+NhAQOcD0PP0uZKiTYgjKtbuX4trdS0Ptw9w5zFYLgY1bT7VTkoCQzmlc+825q2ehrZjHyeHRKdtcstHOQuQ0ld9t0up7IVrfD2koxGeN7Utma4qhZmQ9uXlvBiOrQNZqIDARGEevoaxhSoXWSAzFbZVHEKhU+NfuV+lB0j8fQUcQPG/rQnzgtgemfDa9o4Sdy/u0w0AUhM3XvWbPsUuvl6aMjrVeg0Bl3nub58T0vp2qH/DhSliTMOrCT5RxMF3efelZ4epzSF+846aICID5HhkuZWXqcXMp1CbXIDC0o4SwcRU9xRmehZBXKNXeivN72/Dhl2zFovGpp/o6SviLK9bjnNNmhQxtcI6UhZ3Q6lzITpErLxPkDt8RBAZTLPn0ZpojCHgvA5AvUlzbQOA3tUWaT6dsnQYVOvem6hQ/qkHSH0Ggtl9dQZ+3V52zAldvWzgZj/m9bfj4S7ejXDA3vQKRjN0RBM0+S19iOixbgyBkA2xYsusbJGQpvHzWpeGcRVkGMpkmvWjHYu0poik8jiAgcoDpApdLL8Pq6yvYDYcuU8PxxthCEBm/RYpLdS/tO5b14etvORcHjw6ir6Ok2DvRHu1KiiTfWn49NltsIGRDCCiTZJX8st5/I4YXKZZVJOgmLY5lh7GRjcrQG0EQ/oy62otQ1oiiwsYUQybXIKjdlUrSH+SZ9h9B0HyDfE7gL5+1EW+/eA2ePDaEJX3tbNyj1MjKFEOyvERpBIHFvMH0nl3Nx1zGNF2PiTTi6m0LsWv5DI7qjwkbCIgcYDrzcakAoDxnreVw6DJ1DrPXPmD+Snqe2uJnwmeR4la9iWd2lQOHzSTXngGb/O6TYCMIgoeH0kk2gmBszAv8zDW7f2VzwfMFMxhZo4tsYcl6RtYgcPQShu1govNz1fUOVO93pQaCmr/HLDUOh63Q6KoU0VUpGgoNkTqbFfbN9i17ZJPad0O6BoFCA4FNpq9vGnrDRy3K+fttibIMauJQf/msjeF3QoGl4JYnSj7TGbarL7IyrlWgmLomapPjpEecl1EI+ZzG5ZgL+mSXSw2jpMZ2eiFbg6A6giBYAJr9TDbVi/4UQ7ohSidZhbRs3uh6JsoXrl6SsBVYOudGdZSdavlJt3FDaQSB1h7Hf+M7oo3ITTbzimbPp2vvaibI8pK4p1QyvwaB2f1lQRpGzUQZgzScr6xjbQkRWZXYwqShcCe1R41r1CoGhLSnR7Hg9r2ofcu5HR0p3wqZViMIJL9jzyiq57cGQdB7ptnPitI1CMLvP4tkUwxpjSAwEBZZWSbOfD7KEQQqiwpX92luBEEtlREEQYpuQUe0EcXNpREESSVbgyBuxmcYYGKmLQ0V3lE+t2lMI7KGDQREDjD9culSZqYaEndCXGUqPFlrILBxHT1PbRxGTsgrHGS9iV2QpR7wfjFtuQaB5JcOJXsUIdl1l/WuHjW8BkFeMh0O781gZFMMTVmk2Gc/RqYYCr8LK1Sn/WlFa5FixfUOlEcQaF4Ye1MMyb939doTRT2CwKX3S1NmdJTiDkJk0nf17EvDLR9lw1Aa04iscbu2hCgjTL/yJDFtdi3MOu/cq2Z3oq2Yb/i8VMhhy5JpBkPlPluFENXFCWUVDrLexC5w7RmwKfB9IvlZlhpY6BTZVZct4FrtgW7unpFV1OpPMcR7GTC4BoGBsLh6SWTnSIVWA4HqmlLWRhAoHDvA1fY7B3weyVU2e+tmpYHgedsWNf18x7LpajtI0ClJ4/WzLQ3nLMoYML9MPrdrS4gyQmUBVh0upc2qYXGtck8ngysX8njautkNn1+wZjYqTRoO0szOCAK1tRxyQkjnSC4V3L4W2ucuxaNTuEgxmSCbombMCzOCoPGHsmPpvjDxVq6SndNRrUWKw59R18ooE2RrX6jQOTWqFfr21iCwk+kx76DkinaKoTQ+K/N62/D0dXOmfCYE8OKdS5R+H9cpCZKvpWHB3ail4ZaP8rnlFEPJx2SCyAGmh0271NqtGhaHggxAL4MTAnjfszfi8tPnoa2YR7mQwzM2zsUHrtpkL4COsnEdPahP1SQdQeD4FENZYmMNAvZaSSK710x2S4yMjgU+erPfyXpy84UpGNUphvyk+fyftaKv5Xcv2b2k6ecbF/RM/q1TXlTd1t4aBP7bBFqDwHcEgf4+iaJgdwRBk+NJDqg2Gaib/u/VZ+B1+1Zgw/we7Fs9C//0ws24aMPcuINlXBQN3S/Y3nxERlK5VKcSnHtTDK2Z29308z0rZ5gMDgVQiDsARKT3oqvCpawsqfmqTiFKAKgU8/i7552BwZFReB4yN3LABTkh5GsQOD7FkFMPrmV+UQ3yEpOh00eKZPlPdZFic1NdydIe7ePwZgYAFBVHEPg2IKdgEYIX7liEjx/4dcPn10h6uT5ny0J8+Fu/bPj82l2nfqPTo1R9BIGdBgKVsnLQS50TrRsg+DiSq2x2jGjW4Ub2yCZ5zbVSIYc3XXga3nThaXEHRVmQK2/7nbyQE3jmpnl2DxKxpNZj1IoyDqrHum73Erz5lp80fP6Ks5cbDhHpcry2hCgbjBeqHMrN3AmJHq1TWLNxuZDPdOOAjd4pnqc2tYAQ8t5NZccbCFydwiIOracYan2OHEr2KEKy6y6rqBwNM8VQk/tQVpmd5h7sNskqkEfGxpT3k4Y1CF577kos6Wuf8tkfXbgKs7srLX+zZm43/uKK9VPuv2t2LsYVZ8yf/LfWGgSKN7LqLm1MMXTVloVa+5wgPQ9xX3yiFmzmLc3K0+noTZ1dtkfafvAFZ6Kvs2z1GFFLwz0fZRlU9R677PT5uHDt1OmZr962CLuWtx4VSdHgCAIiB5huH0hiZYRr+a9OeBwLerwsnQyVZyQnBBcpTgjfKYYC/C5Dpy81bN/zst2PjnmBG+WahVtW2am/BgHvZkC+8LPeGgThwyLbRRQdZ+f0VPDZ1+zG7T99Ao8eOoldK/qwdYn/Ipov2L4Yl2yYh7se6ceq2Z2Y29M25Xud8qLpEQSy69uMyiXfvTzY9ATMWyiJbOYVzUcQ8Gmol6RTYrN+4HX7VuDCurUc0iAN6zZEWaZUvcdKhRw++IIz8f1fHsJ9vz2CTQt6sHnxNE4X6wA2EBA5wPQaBE4lraprELgVaq1CMPOyU+ysQeApjbKpjiBo/X3a1iBI8Ghu+KVSQRYplo0eofSS5R2ydHxkLPgIgmbkaxDoHWjV7M6wwUkF2TM9MqrRQGCgfOHCS2tvewlXbl6g/bue9iL2rprZ9DudeKkmserb+W9Ye5X9ysqv27cicEeA6nlovn8HLj1RUzbvzeYjCOwdj+yz+a7dWU5ntWIaGsWiXaRY/WCFfA47l/dhJ0cNOCVdtSVECWW8gcChzEw1JKbPQVg6pzANhQdTbJwJz1Nb/EwkfASBY49AzJpfR1naxqeQ6smS5jDPW7PdFgJMMXT+mtkNnwkBPHdrsGlSsmTKGgQ+26ZgCQJrdOJlepFi2TPTjN8IgvXze+QbSLDik5LI5utHsxFDfN9xSIBLYXVKqpTeGy7VqQQVbQNBdMciO9yuLSHKCI2pdJW4lDirZkrDo4ZPQkhaIwgshoPUCcinQHC+gSDhYwJ0+E4xFGAEAbt5Jo/tK+b3Yhf0hVZ3iqFWx3n9eSvQVZna6+51565Ab3spULiyZERjiiETZaK0Ji86z4DqtqoVKirtA7V7UlmDIChZ3Fwb4Uo0wWalrO4UQ9kpwbrhjEXT9H9kMSlLax6ZhmhFmYeloUEl69I5FogoYUy/9Lj0MqMaEp2XfdcwLzzFRsHAg1pvX79Dp22KoSTzu0uC3EV8DEmX0UWKJVMMtTrOxgW9+OxrduPWHz+Gg0cHsXfVTFywtnFUATXSWoOAqUNLNhYpVm2QURlBoDPFUJirLPsty3jkqqhHEAgWoxvYzl+euWkebv3xY1M+K+QELj99nva+dEdt6UjrCAKXOl0G5ugUQ+QmNhAQOcB41bhDabNqhXGyRxA4dMJjZuVMeGp963NCoFzIt/x+9Zwuc2GyQTMhSPJd55cutPxe8jOWSZPHyNQvIfYRuIHA0AgCAFg+sxN/cP6qYAHJsI0LNKaTMTLFUDoTGL3pFFW3MzeCoJZfm1CYDgryEQREbrI6goBTDCmxfUredMEq/OCXT+G3hwcmP/uzS9ehq1LU3lelaLOBwNquY5WGez7KGKT1PsgSNhAQOcD0/PsuJc7KIwg0FhyMglZ5wKHzHTdb5SilEQQA2kp5bF0yDd//5aEp383oLGHHMi6ClBStbiPZ7RWmEJ+C8n8inbloGr54z+9iO37QSl/tNQjY6zKwy06fh8/d9VjD5zqL9Zp4vNOaRugs7m5y6iAgwBoEFkeayqKW1mtPyWfz1uQixW5YMqMDt77uLHzt/idw8Oggzl45Ext0GshryDpRhaWTlyRJGhoIooxDWu+DLOErC5EDTL/zuNTTTTVPGjG9EENIbB8Ixsa959X8f5mJAtA7L1mH7pp5vYt5gfdcvj51hRa3mtT0+E4x1GoAgaVenum6M5Lj1eesaPr5S89aGsnxTb4zFSRTDFFwr9u3ErO6ylM++6MLV6Gv89RnftM0ck7c1nSyRdVtVc93sznOZWxOMZS28gFlg820rdnz6dL7ZZbM6CzjOVsW4jXnrgjcOADYHUGQ1nw2DdGKMg5pOF9ZxxEERA5QWYPg6evmKO/PpcRZtTBpc17EILSmGHLofKeV0iCb8euwYUEPvvzGs3H7T5/A4PAozjltJlbMcnx6ISS7wl+X7yLFLdINW7080/pi47p187px6aZ5+HzN/Lpzeyq4dtcS5X2EuXSB6wSbHLQg2Zlj7d+JsmJWJz732t340j2/w++ODGDvypnYtWKG1j5sL1Jsce1c6+ysQRDPFENhSNcgYKUoOcpmu5busl1JTgezwuoIgpiTyT0rZ+AbDz5pfL9pGEEQ7RRDyT9fWZfqBgIhxLUAPqz5s3/1PO96w+EoAXgugKsBrAMwG8AhAL8A8GkAH/E8z3yKRomh8tLzsrOXKe/PqcRZMSjbl023Gw5NOqeQL4+n2Lj1PE/txaP2vp/b04YX7VhsPjAW8eXqlABLEIR6DuN+scmqXE7gb56zCXtWzsB3f/EUls7owBVnzMe83raIQmBuiiFZ5anpaQSzZm5PG16yO/ioEiNrXaQ0n9dbg0C1gUBtf9pTDPmOFNHa3RTSuKXz0lMK2Ozc0OyZkOVzi/varYWFzLC7BkG8CeU1O5fYaSBwq/9iIFF2guL7VPKluoHABUKI1QA+CeD0uq/mjP+3E8CbhRAv8TzvCxEHjxzhN4Lgxhecic2LpynvL4HtA1Z7NQShk5m6dL7TyBv/Pz9Jvwy97foLjiWVjcq2UCMIEn/3JFchn8NVWxbiqi0LA+4h+rUnmv2uKOluyQaCeJl4vtOaz9sYLWlrBIHfY2RrFFlKLz2lgN0RBI07LxVyTdf5ai/lcd6aWfYC47AkpQ8237V1p4wz7fw1s3DtriX4yLd/aXS/aXg/4AgC0pGlBoL7AXxVYbtvmzqgEGLB+DHnjX/kAfg6gIcAzARwPoA2ALMAfFYI8XTP875m6viUHH4jCNbNCz7fYBLc8My1cQehgdYaBMwLJ8W5SHHSe3lUinlrQ2RdE7xiVlKJE66FgBJq44IefPJ7wX4beIahJr+UjyAIeCAywswIgnTSeZlX3VZ1l6ZHEIQhn74urVefks5m5WWrPO1NF56Gl3z4+zg5PDr52R8/fbVzHb2oUblgcw0Ca7tWPL7Anz1zLXYsm45XfvxHBvdrbFfxiXQNgjScsGzLUgPBdz3Pe23Ex/wETjUO/ArAZZ7n/XjiSyHEDACfAnAegCKA/xBCLPc8rz/icFLMxnxqD3TTWpcSZ5Wg5HUnuoyAVq+61FYd6LOySLGnNj9/Gq7DXz5rA67+0AH85qmTAKovaKMt0geVtUuSKtgUQyGOF+K3FK9LN83DOz93D4ZHpz4PF62vrtszt6eC3x4eaPjd3lUzjeaVRckixRxBQK6y0QPZ9FREE/wXKbYzzRzzB3KVsPj61Oo53rGsD595zS584e7f4ejAMC5YM1t7XRiKh83F2F3oOS6EwLKZnUb36UK8wooyDpxiKPmy1EAQKSHExQD2jP9zCMAzPc+7u3Ybz/OeFEJcBuAnAJYBmA7gLQDeHmVYKX6mKw9cSpxVXtgcCu4krTUIXIxAinhQG0GQhuuwYFo7vvLGvfjhrw7h5NAoNizowfb3qgx+S5dWFbf2FikO/luKV0e5gHdeshbv+Ny9k5/N6CzjTReuAgC88YJVeMstP2n43XVnLQ2cVza7X/KS3tB+nQDILhMNQS51vDDJRrxUnyvdY/s+RrbWICBylM27VjYqbvWcbqye023x6MmR1rxBlyujuE1fDZfqVILiFEOkgw0E9rym5u+P1jcOTPA877gQ4p0APj7+0SuEEO/0PG/EegjJGX4vPdojCIIHxTiVAoOLeQkzuGDiPG1pKaRXinnsHu+NdWIonVmB36UKMhs01yDIrhftXIINC3pxx88Ooq+zhAvWzsbs7goA4LLT5+G2ex/H7T99fHL7521diD0rZuCRQycDHa/Z3VLgFEPOMvGCn9YUIs4RBLpsjpqThTklRQtKIZvvKnwPIh2u3C+mg+FKvMKIMgppaFDJOjYQWCCE6ER12qAJH/b5yX8C+EcAnaiOIjgbANciyBC/BVh1Kz5dqihVG0HgTngnaY0gcDD8MbFxJqpTDPlXDKSxUOLks2GAX7xaTjEk+VmYQjwf4eQ7fWEvTl/Y2/B5uZDHjS88E9/7xVO477EjOGNRL85cNA25nDC6SHGBUww5i4sUt2aj8sNWmehPn7EWf/Bvd7U+rpWjpvfaU/LZvDdlIwjoFJ6lqrS+C6chXlG+S6bhfGUdGwjs2AWgPP73cQDfl23sed6AEOI7AC4Y/2gf2ECQKb4jCDT3l7QynYt5id4aBDTBWsFAZYqhFF4JF5+NKER9LdPQQ4haK+Zz2L1ixuTInLCapXOyypRW64iQGX7tL0YWKZbsRKUB21U6aV93W1Fxn0FD06j22p69aqa5HdeRjXZNY9mC0sFm2cXB5eHIYa7UPZjuj+FKvMKIdgRBCk5YxmWpgaBXCHEVgHUAegAcAfAYgO8AuNszO251Tc3fdytOF/QjnGogWCPbkNLH7/bTT2vdSZxVwu5OaE/RCRPzwlOsjCBQrH7hdUgO3ymGWo0gkP4mxAiCwL8kqirI1iDgCIJY8fluTTXZ3LZ0OjrLaq+NtioIpneUsLivHb/6/Ymm34fJAzjFENFUrOgjHa7cL6ZLW67EKwxOMUQ6stRAcNn4f808KIT4KwA3GWooOK3m718p/ubXNX+vNhAGShD/EQS6UwyFCAwB0MvgeLpPsXLveWpzD6exUJKGgmkzQdcgkC5SHDg0YX9MJJ9iaHQswoBQg5Qmo0ao5DEzOkt4z+XrNfYZJkRT1Qdv8+JprRsIQhwnrXktpZvdEQR8JkhdWm+XNGQNUU77w7w0+Th4rGolgH8B8HkhRIeB/fXV/P14y62m+l3N39MNhAGVSgWdnZ0AgNHRUfT3909Wsh05cgRDQ0MAgJMnT+L48eMAgJGREfT390/u4/DhwxgeHgYAnDhxAidOVAvlw8PDOHz48OR2/f39GBmpDpQ4fvw4Tp6sLvw3NDSEI0eOAKhW8PX392N0dBQAcOzYMQwMDAAABgcHcfToUQDA2NgY+vv7MTZWfaM+evQoBgcHAQADAwM4duxY6uJU9qrhzmEMnWIQE+3f7RhCAaMQQi9OhbHq/vIYRYcYnNyuUwwij2oYKhhGCdX4FTCKdgyNb+WhUwwiN75dW812Qa6TGN9ffZwAoIQRVDAMIdy7TkIItGEIxZqwtmG46XUqjA4k5t6Txcnk82T63vNGh9E2vt3EPSXGz/+pOInUpRFCyO+9JMYJAIYGB1rGqR1DGB5uHqd279Q91SEGkR+/l8sYxujQoG+cnrFmWtN7792XrmP+lNE4+eVPAJCfvEerxgaPN8SpkBMt070xz+N1shin/Ohg0+t0Ko0QRuIky5+Sep0OH+5vGqciRtGGIeRzAl96wx7MKo8qlSOqeTO04lSflpcnn7tRjA0cnxInMSYvRwS998pjgy3jNHjiaOzXqTZOza5Tszi5fu8x3QsfJyFk6V7j86RTLs8Lweuk8P4kDL8/2Y5T8/cn+buGStlICOHEdTpx/JixOAFAYeRk7HEK+zyJsVEraUTV1LLR2NDJzKYRpuMUlyw0EPwawP8BcDGAhQAqADpQ7eX/agD312x7CYBPCCHCnpfOmr9PKv6mdrvOlltp2LFjB6688koAwMGDB7F///7Jm/amm27CfffdBwC44447cOuttwIAHnnkEezfv39yHzfeeCMeeughAMBtt92G2267DQDw0EMP4cYbb5zcbv/+/XjkkUcAALfeeivuuOMOAMB9992Hm266CUD1gdq/fz8OHjwIALjllltw4MABAMCdd96Jm2++GUD1odm/f//kQ3rzzTfjzjvvBAAcOHAAt9xyS+ridHaxGp5eMYCrKnejNJ5oX1y+H0vyhyCEXpy6f/9TAMD83BFcVr5vcrurKndjZq6aWO0q/QqnFx8DACzJH8LF5eqjUMIorqrcjV5RTQj3lh7C2sLjga9TefhY0zgBwOnFx7Cr9CsICOeukwBwQflBrMw/CQBYW3gce0vNr9Oc3x1IzL0ni5OJ5+krX/kKALP3ngegfPjXuKD8IACgQwzhqsrd6BBDU+KUE+lLI0ST61R77yUxTgDwwN13tozTxeX78fCDP2sap3NGfjAZ1svK92F+rrrvrcVH8Mg9B3zjtHLwgYZ7r6tcwI7F3cyfMhin/qee9M2fAGBmrpqPTTj0g/9uiFM+J1qme57n8TpZjNOs/nubXqeJNCInzMSpVdlo7OAvEnudPvgPf980TivzT+KC8oO4dNM8FEYHlMsRV1Xuhhgb0YpTfVq+tVgN9/zcEQzd8+UpcSoOPAWgeTlCiOD33obBu1vG6adf+bfYr1NtnJpdp2Zxcv3eY7oXPk45IVqme0Dj86RTLs/lBK+TQrrXLU4mKk7N3p/q4zSRlj/ttD7sWTkDz6jcj53TT2LBtLaWZaOcEE5cpzu+8Bmld3fV8t7039wRe5zCPk+5k09ZSSOAxnf3p+79RmbTCNNxioswO/W+W4QQvQCOeJ7XcnC3EKIE4B8BvKTm4xd5nvfxEMf9KqoLDQPAn3ue906F3+wD8NXxf456nhd4+ichxDoA91QqFRQKBRw4cACrV6/G0aNH0dPTAyEEjhw5gkqlglKphJMnT2JsbAwdHR0YGRnBsWPH0NvbC6DaGtfe3o5isTjZEtfe3o7h4WGcOHECPT09AKqtcZ2dnSgUCjh+/DhyuRza2towNDSEgYEBdHd3j/dUOoyuri7k83kcO3YMhUIBlUoFg4ODGBoaQldXF8bGxnDkyBF0d3cjl8vh6NGjKJVKKJfLGBgYwMjICDo7OzE6OpqaOJ1xw5dwEkXkMIZ2MYxjXgmAQDuGMIQ8vvMnT0NnYUw5Tn/0Hz/GF376FPIYRUWM4LhXXTO7UwzipFfEKHKoYBhjEBhCAQWMooRRnEAJ1ZbgIZzwihhDDm0Yxuj4dj971/na1+namw7gBw8+1hCnEeRRwghy8PDuKzfjWafPdeo6vfmWu/GFHz2MEeQxPB7WPLym1+lpK7vw9y/a4fy9t+ztX0QbhlrG6Udv3WPkeVr77v8xeu+9eM9KPH7oGL5yz6M4iRIEPHSIIRz3SvAgJuP0wWu2Y8+ynlSlEYViCWve/vmm997L9izD6/YsSFycyuUy7vn1QVz1wW+1TPduf8v5mDe9qyFOF77/y3i4Wg5DhxjEgFfAKPIoYxh/feUmXLplqW+cPn7g1/jgN3+D4ycHsGJ6Ge+7ejs2Lehh/pTBOP3y4FFc8jdfkeZPAygijzG0iWEcG0/P3nzuQrx835opcapU2rDy7bc2Tff+5nln4vyVvbxOluL0io99D1//xbGG6zSRRvzjNduxe0lX6DhtePtnmpaN/uWFm7B9cU8ir9OhQ/3Y8v5vNsSpiFEUMIqLzrtPxf8AAGBPSURBVFiKD1y1Ubkc0S6G8dxdp+Edz1ynFKc//Le78OW7Hp6SlgPAIIrIYxTX75iPt12+eTJO773tYfz7j37btBzxTy89C2etmBHo3nvGB27DA08ONI3T+y9dhWfvXOXE87T8T77U9DqdRAkPv/eiRN17TPfCx6mtrR0r3/5fTdO9Zs+TTrn8o6/ciy2Lp/E6jcdpzVs/0zTd66nkcMcf7ExMnDb+yWcb3p9apeXP230a/vSSdejvP4z29jb83dcexr/878+alo3+9cVbsGVeJfbrdNdDv8VVH/p+0zi9Zd9ivP9/fo0xT728d/naXvz11dsSm0Z0dHTgHZ/+MT7z/YeMpxHN3t3/9MKleOGuZZlMI0zF6dFHH8X69VOmdVzved69iEiq1yDwPK9fYZshIcT1AFYA2DP+8R8DCNxAAGCg5u+S4m/KNX+rjjqQB2LgVDDy+fzkAwQA3d3dk3+3tbVN/l0oFKZsN/EwAdWHbEKxWJzyXe1vOjpOzdJUKpVQKlVPgRBiynYT0x8BQLlcRrlcPQW5XG7Kdl1dXZN/VyqVVMbpJIoAgDHkJhNvAOMJb3X+O504iUJ1H6PI47iXn/yudt8D48cEgJHxDLJKTNnuZM12Qa4TRPM4AcDQeBIkFOI0IarrJARwsklYgcbrNFponzyW6/eeLE6mnichgFHP7L03litMht1r2K76eU6kL40YG/Ok914S4wQApbI83Su3eJ4GRAUTWezxmt8MoojS+LX3i9MrzluD689djaeOD2FmV7npdsyfshMnv/wJAEbr7tFCpQPFYrEhTpuXzMT3fvnU5L+PeWWUCzk8bd0cVIqn0kNeJ7NxGs2XARxruE4TaYQwFKdzNy7FrT+u9qCbSL9624s4d+38yfm6k3adpk3rxdj4gPLaPHd4vNIIQq8cccwrI5/PKcfpVecsx6fvfHTyu8GaMIwiD1E+Ffbe3l6IXPV4zcoRAiLwvTeSr2B4vKKkPk6Vzq7JOZxdeJ6aXqcmcXL93mO6Fz5Onue1TPeAxudJp1yeE8GfpzRep1bpnmfw/SmKODV7f6qP00RaPpHu9fb2NN2u9t7LCeHEdWrr6JxME+vjtGjuTAjxCOB5yuU9lNqblveSkkYAgKgr65pKI8b3PmW7YqV9MoxZSyNMxenRR0+VieKQhSmGfI2PMHhXzUfrhRALQuzyWM3fbS23mqp2u2Mtt6JM0l7uxaH1YVQWq4ly8RxVWosUuxf8WJk+HZ43MWOkz3FTeB1kcUryAEC/S9UqTZCnFeo3QD4npjQOUDYFTTNa/e4Pzl+JcmFq0foPL1g1pXGAomcqb3jnJWuxctapF8W2Yh43vmBzohfztFH+0tnlytld+Nxrditvn5O8uYaJiuy3wqVCNVENm+9PSU7XbCjlmyc+V25eGHFIwrn89HnK29bfX9J00pHbxfN5Y9QNZhoW3Y0yBkw2ki/VIwg0fR3AMDDZPLYGwCMB9/X7mr9nK/5mTs3fT7XcijJJtwDoUtqsEhaXwjtB54XQxfA387p9K/D3X/t53MEI5K5f9/tu42JDU1hpjBPg/yIRJNYslFLcdq2Ygf981S7c+pPHcHRgBOevmYV9q1WLgRSUX2OpqWR0ZlcZ//36Pbjz14dw6MQwdi7rQ0970f+HCRakcly3QmVxX7v/RpPsJPRpzWsp/XICGLPQYaTAQtUUb7xgFf7qS/c3fP787YtiCE1wz9++GJ+96zGlbevvAFl+4EpFuqw8IKBfHkhD3hBlHNJwvrKODQTjPM8bFkI8CWDu+EczQuzuZzV/L1b8TW3u0pj7UKrN6CzjyWODLb93obX77RevDvQ7laC4mJfIeqnVczH8zbzqnOWRNBAIIYx2b//iPb/Do/3+M68l5DIQAL+r1eqZkvde4h1AeoLeM7KX5PXze7B+fk/L7yl6JnuAlwo5bF/WZ2x/rgvyiOjWK2p1yJD29A9OFmZmLeQy02XuCa5U+LriJbuX4NsPPYlvPPjk5Gd/+ow1WFEzqiwJti2djo5SHseHRrV/K7slknC/BAliAqLlK8o4JOE+IDk2EEzVUfP38RD7+WnN3xuEEAXP80Z8fnNmi99TBtxw6Vq89hN3tvxev7U7ZIDqzOmu4Jmb1IckTqUyxVDAXVulM4LAyQg0aC9Fk+SbPhsqjQMACyVp0uqZslU5RKSDSU2y8HrJma5f1M6LZVPp1U0XYetSMm+hpMoJQL+q1x+nGJqqUszjw9duxY8f6cdDTxzH1qXTsXRGh/8PHfSys5fh725/0H9DjVtAp2NdnKrvF+oZXhoegyjrKdJwvrKODQTjhBDLAHTXfKQ29qq5bwMYRHXh4Q4AWwAckBy7DGBHzUdfC3FsSqA9K2dKv9dN2E2mzfmcwL+9Ygfm9qgup6HPxQp2rkEQXFzng9chOQLP/S5JK3j9iagZji6Sk1WXBDlzuudbp7wlbXwIcZll++XtQy7TrfBUxQaCRoV8DpsXT8fmxdPjDkooNt67E9NJSzOYiYmXBEcQkI6EtPVF4rqavw8DuCvojjzPOwbgqzUfXevzk2cBmFj2+ilU10OgDOlpK2Lf6lmtN4gxM3vP5euxuC94D4mkTjGkEyYXwx+nuBp8WChJDt8rFWhaC15/0hP0jmGFc7LwasmZvp+1pxiSVc7XXT1biwnLzwHvIHKXreyIDQTppXrP1KepspFmrpTBTc+2lYbyXpQxSMHpyrzUNhAIIZQnhBNC7ALwppqPPqUwJZCfD9b8fa0QYl2LY7cDeHfNR/9s4NiUQPN7W/fQ105sHUqcHQqKFp2CjosjILIorVdhZle56edXbVkYcUiiE2QNgtTeAOQc3mpuiWqR4iwKtgaBuREEUU0xxLpQSipbFbNcpDi9VK9s/a1Vnx7XcuV2kYUxyBu7K/EKgyMISEdqGwgAXCmE+J4Q4hohRNPV4oQQFSHE6wHcDqAy/nE/gHe12H6JEMKr+e/aVgf3PO+/AXxj/J9lAP8lhNhYt78+AJ8FsGL8o6cA/JVK5Ch9pAukae7LZIV12D0lNZ/QCXZS42hNbFMMpfNCPOvM+Q2fLZ/ZgVWzk7UwWi2/a9XqW7YPkEmdFc60mQVsxJeTp6v6587mIsXS/YTYjfQc8PYhh9nq6c8RBOkVNE0bk9S9J+EdTAj9uKehwjvKOCRlLQpqLe1vRlsBfBTAiBDifgD3AzgEIA9gPoCdmLruwEkAl3me91tDx38+gO8BmAtgCYC7hBB3AHgIwEwA5wNoH992BMBzPM/rN3RsShjpEGuL87n6CZunqGRKLhYqdMLkYvjjFNfZSOtlePOFp+HQ8SF89s7HMDQ6ho0LenDjCzcn+r7zC3mruJlMJ4m6K0WcsagXd/66f8rnhZzAiORNmLdasvB6yZk+P7ppsc60QfLpiIKTrkEQYr9Ettmqx+cIgvRSTaPrt5JPMRQ8PCb5jijUTNFdiVcoHEFAGtLeQDChAGD9+H+tfA/AtZ7n/dTUQT3Pe0QIsQ/AJwGcjurjec74f7UOAniJ53lfBWWWyZcTk2lz2J5dSmsQhDqCHVprENgLRiLFtkhxPIe1rpDP4f1XbsK7Ll2PY4MjLaccShK/e4QjCCgqf/bMdXjRv34XRweqszsW8wLvvWID3nzLT1r+hvdasvB6BRfFFEOyzeXTRZgjX6SYdxC5iyMIyBa9KYbcv18E9PO0NKT/UY6iTMP5yro0NxB8EsADAHYB2AFgOYAZAPpQnVrpMIBfADgA4BbP875pIxCe590vhNgO4HkArgawDsBsVKcyehjApwF82PO8J20cn5JDlp5qv2yZzAgiSOddzEt0zqGL4Y9TbIsUp/xlpq2UR1spH3cwIhFFpRQRAJy+sBdffMMefO3+J3ByaBT7Vs/C7J6KvIGA95pToqpETqtqnt38HAZLi4McP7wwz6V8FAORu/KW5vQocK6Q1AqcVCZgkeKetmLL72Z0lXHd7qX4h//5ufL+HIlWKNGuQRDdsciO1DYQeJ43CODb4/+Z2ucvEaCc6HneEICPjf9H1JTJ+U9dysxUXvxcnB9YJ4NzL/TZxOuQHH7PfMvvZZU4vAEooAXT2nHNziWT/z4+OCLdnvdasrD5wIfh+9nkIsX1bD170gYCPu/ksLylevx8njd+Wqm+d9dvNyaZv8eVdHLh9HYsm9mBhw8en/L5zK4yzljYi76OklYDgSsNH2FEGYM0nK+sY9MwkSNM9n422bsx9J5UphhyMC/RmmLIxQjEKLYphngdEsN3iiH99gE2EJExfi84vNcoTUzf7TancJBVbIUpArBSg5Iqb+ne5RoE6aV6yzRMMZSAEQQA8MdPXz3l/hUCeNtFqyGEwOK+Dizpa5f8eqo0PAYcQUA62EBA5AiTvZeMrkEQcmcqv3YxL9F7YU2Ov7ii+VIsrz5nubFjxHU+HCqbkiXS55LXnwxhWkIUnP60mGaE2Y8szC5VfBHVszW9JtcgSC8LMwzBpRmpnrZuDv7jlTvx8rOX4brdS/FvL9+JZ525YPL7525dpLyvNKT/UcaBnfWSL7VTDBEljXyR4nhetkzsSyWjcDEv0QqSg+Fv5bzVs/GB9p/h0Inhyc8qxRwu2TjP2DHiKhykoRBHVVyDgOLkey/xXqMUMT29jvYaBA5MMSRTLjhU80VUx1ZPf1sjEyh+yiMI6v4tm2LItTL4GYum4YxF00LvJw0V3pxiiHSwxEPkCFn5TjetTV7i7GB4tdYgcDD8LczpqeATL9uBs1bMQGe5gK1LpuGma7di7bxuY8eIbQRBTMclfb71ry2upieb/zRMgIhq+NW38F5zi2zaA/InnbYnwP50ezSbGrEZpug7MjbW8rtyka/L5C5bIwhs7Zfip/zeWpeoyqcYChEgh6UiXlGOIIjsSGQLRxAQOUI+gkCP2SmGQv4+gmPYoFPp72L4ZdbM7cbHr98Oz/Ps9IyI6Xwkr2GMWglyKdPQy4fc4LsGAW81ShHT97PNtNjWrodHW9d8lQt5OwclMoA9/UmXlVe/BN2HOkFNw7tlpCMI2J6eeLyERI6QZay6ma7RKYZC7kyl5d3FrFenx4CL4VeRpMKcipRFJ9X87r0gl5LXn0wJOsKFKG2imGJIZk53RWPr4AceGpGMIOAUQ+QwrhVAulRH3SV5iiFT0hCtKOPA8nHyscRD5AjpsGndfRnMCcIm9GprELiXmbg+J67LuEgx+fG7VK3SBNk7DS8/mSKEMD4vO8WHUxDJycuf+jd7kIqirUsa54rO58SUhSUBv8402oedJGsgqBQ5goDcxQYC0jUaMFOUNxAEDU30dILqYh2Frkgr7ZN/ujKPDQREjti6ZHrL73TzpqRNMeQirSmGEhtLO+IqTPE6JId/D+0WZPOfJunthJyX1t5wacT6/3BM59lBkuJXnbO8YbHVa3ctQU9bccpntp7K4VGOIKBk8msgYNGI6skq+mvVZw3yNQjSeaOl4fmJMg4pOF2ZxzUIiByxc3kfpneU8NTxoSmfn79mdoAphpKVPLsYWo4gCC6u88F5D9NP9lLDeXjJpLwQGG1R9cw7jdLE9MK/QRoc9q2ejY9fvx2f+dGjOHRiCPtWz8Jzty7UO672UU8ZkjYQcAQBucuvYvbKzQvw7z94JKLQUBKMjSk2ENSlqrJfJamTTubWIIgwCmk4X1nHBgIiR+RzAn9/9Rl46Ue/j4Hh6ovKwulteNdl67T35VQerbIGgUvhHac3/NBaMBIptimGWG2XGH7XqtUzJRsWzWH2ZBKnGEoPXq9oBa0g2LGsDzuW9ck3kj6XwS+0dARBkb0PyF2yss95q2fh6evnsIGAppAkd1LyEQTB9um6NLxbRDmyn+Wt5GMDAZFDdq+YgW+8ZR++/dCT6K4UsX3ZdLSX9B9Ts1MMhVyDQKHS1snMRCtQLkYge5y8j6gp3ymGWmwwJnmpSUMhntwhq+RkY2SycA0CH7JK9wC7s5kU23r2ZGsQlPJsICB3yco+V25ekIo51Mks1TUIGqcYSscixTr5SP3UdySXpPuAmmMDAZFjZnaVcdnp80Ptw+wixSF/rzKCwMHKFo4gCC6ulxGW4dJPOsUQbwAySHo78VajFJFPMRTNIsUmhDnq8Kik4ot5CzlMNr1iLufiGxbFTX2Koalk7QppfRdOw7tFkLUsg3asSP7ZInaJIEohlzJppaA4FN4JWmsQ2AtGIgU5H8tmdsR0ZIpD0Cs1KnmpYa8VMon3U4JwhIBTbD46tvYtG0FA5DJZBWZeCOZl1EB1BEE9T5LZpvU+S0UDgeZbV5hryRFLyccGAqIU0skIXrJ7Cd5xydrW+wqZzquNIHCPzjlkXjhVkPNxyYa5WDCtLdRxU1CGy46A10rW6YnDgMkk6RoE0QWDyDrTL/Q2K4pML6g8QbZIMZHLZCNc8jk2EFAj2WjcWo1TDLXeNkn3mU5Q0/BuoT2CIMJjkXvYQECUQqqJ8/+5ahP+7Jnr0FVuPdtY2MGpamsQuJeb6I0gcC/88dI/H0IIbFk8LdxRHbyPyCzZ/Kdp6OVD7pBVujCtoTQxvSB3fFMM8bmk7JFVYOZyghV21EB5iqG6m0f2s7QWwdMwxZxuFMLk4UlqKKLm2EBAlELaeZnhl0Pd37uYlXANgmjlhAhd6ZaCMlxmBK3IkQ2LTkMhntwhX6SYKD1M389WFynmw0c0hSyvygs2m1GjoAOmZFMMpbXjRCpGEGimAk9bPyf4sZJ/ujKPDQREKaSaEUwk4jbXYlRqIHAwM9GpbHQw+LEKcj3zOQP3Gq9EYgR95mVrEKShEE/ukN1OLuZZWSartKBwguSrNiuKZOHhc0lZlJfU5uRy4EsKNVCdYqhBBkcQ5HPJry7VzRuv270k8LHSeh9kSet5RYgosVQzgskGAqtvVQpTDCW89JrWXhNBBTkbJs4hL0NyBL1UaZn/lNwnS5N4qyULGxDkzK9BYHR3U/DZI5pK9g6VF4KpHzWQdbap1bAGgWTbtJbBZQ1wafS6fSuwanZXiD2k8z7IEjYQEKWQ6sveRKHS1qJvJn4fl6SG2wWB5yzO6L1G6mS9nrgGAZmUZ4JCGWG6DJjWiiKipMnnhHJlMGWHbLpOGVkZPK3pfjpGEMivzTsuWYuhkTFsWzodZy7qxcnh0cDH4qtY8rGBgCiFtJcgkP7AfkrvYplCZ1SDi+GPU5ARISYKFGktnKZR0B6rshddNhCQSdIphthDilJEukhxgP3ZrE+x2aGFKIlk930uJ6QLy1I2KS9SXJfiytoVkpT+6ryDpGH6Ur8YPH39HMzvbTNyLL6LJ1/ym8SIqIH+FEPh99Xy94a2iZpOvFlZFF5OiNDnkWWS5LAxxRAbCMgkTjGUHEGnUyY7rE67yIePSFleCD4y1CDoqJIsTjGUhnj5vR7Vfx/mfTwFpyvz2EBAlEK6CbvNCm6ljMLBzEQnSMwMpwpyPoQIfx7TUIgjOdmwaE4JQyalYFQ5kSKzjWFx5cVhyrJnLupt+nlfRynwPonils+xCxM1Up1iqGENAukUQ2FCFC2doKZiBIFPnlyfSoTJwvkunnx8/SFKIdW8bCLDMD28fGpYkrlIsd4IAqoVaEoCE4sUh94DRSXo5eYUQxQVWZrEhekpTXRu57981gbfbawuUiz7LsRxX372sqafv+3iNcF3ShSzHEcQUBOqo+7qbx3Z79JaMZzPJz9efpeGr09Uiw0ERClkMo8OWxGiNIDAwYyJaxAEF+SeKeTDNxOx0i45bDQKsoGATJI2EEQYDgpvSV9H3EFIrPp89fw1szG3pyL9jc2KIlu7Pm/NbDxt3ewpn+1ZOQPP2DDXzgGJDJE9E/mcYNmYGsgWGw76u7TeZmkYnewbg/ophjiCINO4SDFRCqkWBqOY/UclLC5mJTr5GzPD8IyMIOBlyDS2D5BJTE/S4bTZXVg4vT3uYDhN2iu/7t8zu8r41Mt34Mp//A4OHh1s+pu41oQI88wW8zn8/dVn4n9/9gR+/Eg/1s3rwb7Vs1Ap5s0FkChi+Zyb71gUL9U1CBqnGJJtm5w7TSeoaZhiyC/CJusxEnQbUAtsICBKIf1FiuNNzeM+fmgJD75pQS5ntZdTyOOG+zlFycLFSnw6Qk6RTzEUYUDIl6yq4/88Z1Nk4Ugq3ft5cV8HPnTNFlz+/77V9PvBkVEDoWrO5pSUpUIOF66bgwvXzbF2DKIoVacYYoZFU6mOIKhPb4OOPEiyNIxO9otB/fdh8ll2mkw+TjFElEKqCfvEdrbmdFXlYl6iU6B2cQ2FpKkupBbuPLJQkhy8VOQ62Tsh0/zkWD+/J+4gOE96P7f4qk3Ss/7EkL0GAhk+l0RTcZFiakZ1BEG9tDQP6DwTaWgg8Hs/rv8+zDsa3++Sjw0ERCmkmzhLFykO26tb4fcu5iU6YWJmOFWgEQScYihTeKnIdRxBQNS60l3WQHBy2OIIAovlVaIkkjUBcJFiambBNLVp93SmGEqrNDQQ+KUB9d+HiXHyzxaxgYAohVTzsskphiTJedi+Jyq/d7HwqlMecDD4sQpyzxiZYsjFG4mIEomLFCfH0zklTChBss5KqfUrZNDeqSr47BGpMzE6l9LnxTuXBPxl9loIUtFA4Pc91yCgGmwgIEoh9SmGxv9XZ4U63bAo/d693ERriiH3gh+r2NYg4HVIDDbmkOtykhIyb1+3PHvzgqaN+teftTT6wCRQkGkmZ3SU0ddRavrdeatnhQ+UZngAF0uSRPEyUbam9FnU145nbJyr/TuLbb/OSkUDgU8U6qMY5h2N73fJxwYCohTSXqTYXlAS+8Kmk7+xd85UQc6GiQIY1yBIDl4pch3Tk+SY3lHC+6/cNCXfPn1hL15//sr4ApUgQV7oczmBS5pUMG1bMh2zuismgtUUKx+I6kgeCeZj1MrfPfd0vPlpp0m3qU9vvZTMMaSTjxRkvUUSwq+eov58cIqhbCvEHQAiMk/3BcpmjyylNQgczE24BkG0qi8xYaezIiIyQ56PMrVxzZWbF2DHsuk48PBTmN/bhjMX96JcaD1PPqmR3el/8oy1ODk8is//+DEMj3rYtbwP//d5Z0QWtnosixFNlRNsJKDmivkcXnPuCvzLNx7GoRPDTbepv3PS0TygJ5/89gHfImvjCILgh2J6k3xsICBKIY3JcXx/Eba3lsrvncxKdKYYshiMJApyzxQ4giBTeKnIdbIkifevmxZMa8eVm9UWXyQ1snu9VMjh/Vduwnsu34DBkVF0VYrRBawpPphEtTjFEPnRGcGdkgEEWs9EPgUjCPzej+tHGISbYijwT8kRbCAgSiHtKYZsjiBQCod7uYlWiBwMf5yCTjHENQiyg9Nykeu4SDFlRdi8s1TIoVSIphKF+TyRulzAsvXOZX3mA0NOkr2D1381lpYWAg0mOrDFzX+RYnPHYme95Et+kxgRNVBNnP3HD4S3fn6PcjhcorcGAU0R4ITkcuGrjFkmISJT5CMImNhQNiSpMZePJWWR7LbPCxHoGX7deSuCB4gSJc/OEFK5NDQQ+ETBZN5ZLrJ6Oel4BYlSSDeh1+k9oOvCdbPRVpTPA+ziS51OgdrF8Mcp0AgCAycxSRUZWcdnhlwnzRcjDAeRbdJRpAm62RMUVKJIBBmd+6wz5mP7Uo4gyIpMTjGksW0qRhD4rkFgJo7LZnZgVlfFyL4oPmwgIEoh1WRebX2AcJlGuZDHX1yx3uoxbNAbQeBe+JPGxBRDKSjDEZEjTDRaEiWBrAzj2lPA8haRupzQf2L++qpNWpXGlGyyKfbr6wm8DC5TnIZnwS8VMNVA8Kq9y43sh+LFNQiIUkh1+gOVKYZM5BnPOnMBPvLtX+Injxy2dgzTdILkYvjjFGT6jXwu2DDosMelePBSkevkL83RhYPItiTdz/LRDgmKCFEEgnS+SUOFKKnT6QwxNmYxIFHSiHMaOov4TjEUcL+vOHsZHjp4HJViDpedPh8XrJ0dcE/kEjYQEKWQS4sUTzhtdlfLBgIXcQ2C4IItUhzPcYmImpEuUszEhrLCsZvdrdAQxU/WMFat6+dTQ63plHU2LuzBdx7+veUQ2bd35UzlbfP55D8/fo3nQbP5KzcvwMrZXcF+TM7iFENEKaTbEzuK9z/ZoETH3j8B6PVEczH8cQpyPvK5XOjzyOuQHJwmglwnX4OA9y+lh3QUaWShCC9JYSWKghCC02+SlGwR3vpvrtm5pOl2V21eYC5AEVjU1461c7uVtk3FGgR+3/MFmmqwgYAohbRHEMiyjgjyDBcrW/SmGHIv/HEKcj2NLFLM65AYvFTkOuk7Ie9fShFpY5hj93paFlQmMoWVfxSGzvvX/N42vGzP0imfzewq45XnJG/u+X++ZjNWzOr03c7U/PxxkkUhTPtHCk4NNcEphohSSDWxn6zIlbYP2E/9XcxgWKCOVi4Xrs4tBR08iMghaeg1RqRC3hbm1nPgWniIXMcnhmRkIwiavaC//eI12LpkOr718ycxr7cNl2yah/m9bRZDaMeCae34yhvPxi+ePI4//Pcf467f9DfdLg1lQVm+Ga6+I/nnhhqxgYAohZRfoBQ2y2o9ORcpDi7YFEMiVCGFDTrJIrta5QIHN1L8CpJVipnaUFYkKWtl4wFlkd8zOi+BlbcUHWn7QLPPhMCF6+bgwnVzrIUpKkIILJvZidnd5ZbbpGHRbo4gIB18CydKI80EO+703cUMRm+RYgcjkDBhe2ikoPyWKbIGne62YoQhIWquIFmYjg2SlCrxzjKphY8ekZ5SIYfLTp8XdzDIUWmYQies0bHW36WhvJekUYIUPzYQEKWQamavspWpbMOTrFLsYuak1UDgXvBjFaQwFbaA6uI9RMF0Vzi4keJXzHMEAWWDtPIgQTd7ksJKZMr2pX2+27z3ig3Yt3oWnxFqwHVdAE9WSZECttYZysjtkTlsICBKIdUEW6UiN4qWcxcLIDoVzg4GP1ZBzkd1iqEQx+RFSBTZ5eIIAnKBbFQT0xtKE3nlAW92Ipddevq8pvnVs86YP/l3R7mAm67dijvfcQFueeXOKINHjmPvcmA09Q0Erb8L00GP5YN0YgMBUQqpptcTm8myxSjSfhezF44gCC7oGgRRH5PiI7te3RU2EFD8CtIRBExwiOLACgmiqTrLBbz3ig1TylWLprfjTU87rWHb3vYSZndXIgwdOY9pKkbHUt5AIPuOIwioDsfxE6WQyfkEjU0xJGmGSHrZhJVF4eVzItR55ByaycI1CMh1RckaBERpkqQphpIUVqKoPGfrQpy+qBdff+AgZnVXsHflTPS0Ny9L5bhoF9WQLlKckVsl5QMIpO9cfH+memwgIEoh5REE49vFnzXEH4J6Or3UmLdOFaSwkQ+9BgGlBdcgIBfIRjUxzac0kc5BzdzVKctmduDhg8cbPj9/zawYQkMuWTW7C6tmd/lux/YBqiWfYigbMj2CIMx+s3KDZAynGCLKMJUXP2OJv2yRYgczGAeDlBhBrmcu5BoEYacoIncsndERdxCIuEgxEdwrn8kX1HQssBa89twVTT+/7qylEYeEkoo9hqlWFtJNP1legyDcFEO8d9KIDQREKaRa+FPbLIJFiq0fQZ/eGgQuxiA+Qc5HIReumCGbL5zcdPrC3obPCjmBKzcviD4wRHVkixQ7mWkRBSTLfV271bPe2/XSTfNw2enzpnz28rOXYeeyvphCREnDVxaqxWnbAC/lDQSyeqEwdRhZuT+yhuP4iVIoaQm2ixXsOj1s3At9vIJ05g87JypHECTPK/cuw6tv/hFqR/a+YPsi9LaX4gsU0TguUkxZ4WARrCUXy4tRKuRz+NvnnI6XnrUU9z12BGcsmoZVszszf15IXdgpPSldOKIk/VMMyYqsfH2memwgIEoh1cqLia2ieLGQZb0u5k06YWLmOlXQNQjC3IbS3r7kpKevn4sPv2QbbvnhIzg2MIxzV8/Ci3YsjjtYRADkaQrfpykrknSvJymsYeRyAhsX9GLjgt64g0IJxAphmoJr0GBOTyXuIFglu4pMD6geGwiIUki5rtSRPMHFvIlTDAUX5GzkcyLUeeQIgmTau2om9q6aGXcwiBoU8kxTiFyrIOKCykThsEKQaknvhozcKq/auwJfuPt3DZ8/Y8PcGEJjnuz9OtQaBBm5P7KGkzYTpZBqgs2XKRmNKYZ4GqcINIIgZAU/RxAQkUnSEQQRhoPINluVBzY4FhyixBGs/aEarqXxcVg3rxtbl0yb8lkxL/D87YtiCpFZ8nUmwqxBwJsnjTiCgCiVkpVgu9hQoTWCwF4wEilIeSEvwt0FHEFARCblc5I1CPhSRCmSlruZjyWRP44goFrSBWwjDEeccjmBD79kG/72Kw/gWz9/Egunt+PFO5dg94oZcQfNCPnIO6Kp2EBAlEKqdaVqZUQzC/d4Xuv9uFhW1QqSixGIke7LhxDhFykuSCrzKD3eeP4q/O3tDzR8fsMz18YQGkozrkFAWSGtPHDtZnctPEQJw/40VCtR6b9FneUC3nFJOt8lZF3wwjQYZufuyBbWqBClkGqGzoS9NZ1CEc/jVLpljfzED0KcSI4gyIZnbJyLzvLUvg297UVcsG5OTCGitJKlKUxtKCtcu9elUyVEFgqi5OIIAqrl4ih+Mkv2isw1CKgeGwiIUkh5jWJHUnZHgjGFTpBcDH+cdF8+JkYPhCmksoEgG1bM6sRHr9uGs1bMwLT2IvaumolPvmwH5ve2xR00ShmOIKCskPcgjS4cRGQfn2mqxelnMkByIdlgSPU4xRBRCpmdbcVMxiGbqMiVhopaemsQuBf+OAUeQRACGwiyY/Piafj49dvjDgalXCHPPjSUDbIyjGs5q6y4YGZCTKJ0Y4Ug1UrSIvUUjK16CtZ/pBPffohSSDXBjnINAhkXsxetBgIXIxAj3ZePiZ66Yc6jrLcvEZEueZrC9IaywbUOHLLyrWSpKyIaxwYCqsW7If1sPfJMStKJDQREaaS6SLHe5qHIXtxczGB0WsUdDH6sdOvqwy5QDHAEARGZJV2DgMkNpUiSphhyLTxEScPiMtVKUvpPwUi7u4RZgyD4T8lhbCAgSiHVBLtUcCMJcHGIGkcQBKfb4zA/uQZBcIU8LwIRmSNdgyDCcBDZxrEyRNnh2qggipc8/ee9kgacRop0uFE7SERGqQ4frRTzlkOixsXMSacAzQLUVLq9k/IGphjKm114g4gyTj6CgGk+pUiCupDKQuNxFQIiIi2ccir9rI0a4q2TSqxRIUoh1by+UoiugUC6SHFkoVCnFSYXIxAj7REEBgqnXIOAiEziqCQi94o30kWK2T5ARKQlQe3DFJC1NQicKyGQCWwgIEoh1QS7UvRPAiJ54XIwf9GaYsheMBIp8AiCEGeSaxAQkUkFyaik0bGxCENCZBdzTyKirGIOkH52rjEbkNKJDQREKaRaV1oen2KICXwjrUWKeQKn0K3on6iHC3MaOYKAiEySNTqOjLKrMqVHknqQysoXfCqJiPS4lsaTedI8ng1EVIcNBERppDrFkMIIgii4mDlxBEFwussByHrqquIIAiIySZamjI6xKpLSI1GLVEqnGOJzSUSkQ/b6xA5w6cAlCEiHG7WDRGSU6gtdKe9GEuBi+UMnSC6GP066BcqJwmmY08gRBERkkixNGWEDAWVEkso3bB8gItLjXCMwGSd7Lw+Tx7MBKZ3cqB0kIqNU60qjTNhlPbuczF50RhA4GYH45HQXKTZQuZ83MAqBiGgCRxBQVkgrDyIMhwrXwkNElGTy6WcoDWz1oeP9kU6sUSFKoaS16LoYXq01CJhFTqF7NvIGFiHgCAIiMkk29dnwKBcppvSQTjHkWNbaUS60/I5TDRIR6UnSGjQUDOspSAcbCIhSyMUMXdbf0sHg6q1B4GIEYqT7jm5iiqF8nheBiMwpSNIUjiCgrHCtYmHf6lkoFRpfX+f3tmFuTyWGEBERJZeLnfTILFujRHjrpBMbCIhSKGmdqFzMYBwMUmLEMcUQRxAQkUlcg4CyQpplO5a1Vop5PGfLgobPX7hjMSu6iIg0JWqRenIK7490aj1Ok4gSzFyCHUU1iIsZjM6LJl9Kp9I9HxNbhzmNuo0SREQyXZViy+/6OkoRhoTILlkZzMWc9V2Xrsesrgq+dM/vUC7mcPnp83HNzsVxB4uIKHFsLWBL7pBPIxVmleLgPyV3sYGAKIV00/pIKugTNseQTod0B4MfK93O/BOFkzD3IUcQEJFJc3oqWDGrEz9/4tiUz3vaiti+rC+mUBFZYKvywJJ8TuD1563E689bGXdQiIgSzb0UnkxzsSMmuYtTDBGlUNJ6U7sYXK5BEJzu+TBRt881CIjItD84f2VD+vTG81dyMVTKDN7pRETpJSvOMP1Ph5ylGl/Wf6QTRxAQpZCL6bUnGULgYnh1QsWW+al0G6gmtg9T0OAIAiIy7ZKN89DXUcZ/3/0YBofH8LR1c3D+2tlxB4vIKOkc1MxaiYhSi1MMpZ+tegreHunEBgKiFEpahu7iEHaOIAhOew0CEyMIbHWPIKJM27m8DzuXc0ohSi/5/MTRhYOIiKLFJD79pHl8qP3y7kkj1qgQpZDJKYY8Q6sUJ62XvU5okxUz+4KvQRAcRxAQERHpky9SzLyViCi1pEk80/804CUmHWwgIEqhYl7v0Y6iAThpUwzptIqzAX2qoGsQhDmPnBOciIiIiIhITdLWLSR9ti4x75x0YgMBUQpViv6P9pufdtrk36ZGCQTlYtlEc5IcS6FIpqBrEITBEQRERET6OMUQEVE2cQ2aLJCNEgyxV94fqcQGAqIUaivmpd+X8jk8bd0cpX2ZSvxljRAuDmHXiTfrpqfSrfAXkyMIgp9IjiAgIiLSx5d8IqJssjU/PbmDr8ikgw0ERClUKckbCP712i1YMatTaV9RjC5w8eVUp9GCi/RMpT/FEEcQEBERxUG6BgHLN0REqeViJz0yy1Y+znsnndhAQJRCfiMI9qycOeXffP9rpHNOePqm0h9BEP4M5jXX3SAiIiI5lm+IiNIrJ3l9YgNxOti6irw90ok1KkQppLtI8eK+9pbfLZzeFjY4AHymGEp4BpP08JumezpMLFLMEQRERET6uAYBEVFW2Zmfntwhz+N5lWkqNhAQERZMa8eaud0Nn6+d2425PWYaCGRcHKKm0wueeetUOc3KehOnj2sQEBERmeVi+YyIiMzgO2z6SacRjDAclAxsICAiAMAHrtqI3vbi5L+ntRfxgas2Gdu/h9ZDCFwsnOhNMeRgBGIUdA2CMOeRIwiIiIjMcrF8RkREZsiSeKb/6WDrOvL+SKdC3AEgIjesm9eD//2jc/Dth34PANi9fAZ6ahoMbHIxf9HK9FyMQIyCrkEQpqDBEQRERET6ZFMMMGclIkov2TsbK4DTwVoDAUsIqcQGAiKa1NtewsUb5lrZt3wNAvcyGJ1Mz73QxyvoGgRhsIGAiIhIH3uQEhFlE9P49LNVz8J7J504xRARxc7F/EVriiHmkFPojyAY/98Qx+QUQ0RERPrkWTbzViKitJI2EDP9TwV2AiAdbCAgokgkLQPiDEPB6dbV5wxMMaTbKEFERERyzFqJiNJL2smN6X8q2JtiiNKIDQREFAn5FEPRhUOV3ggCe+FIIt0RFSYq9znFEBERkT55D1IiIkorvsOmn2wkSJhRIpxBIZ1S30AghFgihHiZEOLjQogfCyEOCSGGhRBPCSF+IoT4JyHEXgvHPUcI4Wn+d7vpcBAlgZsZjM4aBC6GPz66l/PUFEPBz2OODQRERETa3CyDERGRbfLKY0oDjiAgHaldpFgIcQaAfwSwrcUm08b/2wDg5UKI/wXwYs/zfh1NCImyRTKAwEkcQRCc/hoEBkYQ8CIQERFpk89PzLyViCitpDMMMf1PBa5BQDpS20AA4DQ0Ng48AOAeAE8C6AWwC8CC8e/OAfAdIcQez/MeNhyWxwB8RmG7+w0fl4gC4hoEwemvQVD93zCFFE4xREREZBZzViKi9GIan362GnrYuJBOaW4gmPBzAP8C4OOe5z1a+4UQIgfgWgB/D6AdwDwANwshdnmebMZ0bQ96nvdag/sj8rVzWR++8/DvGz5fOqMjhtAkj1ZmygxyijjWIGAhhYiISJ+8B2l04SAiomjJpmhl8p8OQfLxq7ctwie/J59YhSNM0inNaxD8FsBLAKz2PO+v6hsHAMDzvDHP824C8MKaj3cAuDCiMBJZ89p9K5p+fv2epRGHpMpok1sE9EYQMIOspT/FUPhjcoohIiKiICQVRMxaiYhSi0l8+gW5xi/Yvsh4OCgZUttA4HneHZ7nfcTzvFGFbT8D4Hs1Hz3DXsiIorFjWR+eu2XhlM/OXjUTzz5zQYtfUC2dSm6+QE+lvUjxeNElTE8ETjFERERkFjtAEBGlGEeQpV6Q9+v183vwwRecaSE05LosTDGk6ls4tWbBkhjDQWREPifwvmdvwGVnzMOPf3MYa+Z2YdfyGSgV4moXTNYQAp28NGmjI2wLugZBqGOygYCIiEibtLzDrJWIKLVkjcBsIE4H+SLFrb/dML/HfGDIeWwgOKW2ii8fWyiIDBJCYNfyGdi1fEbcQUk1L2GNH7bpTjE0sX2YYiinGCIiItLH9gEiomxi/6r0C/qKzNH52cQGglM21Pz9G8P7bhNCPBPAJgDTARwH8DiA7wK40/O8EcPHI6KQWN8cnPYixbmJ3wU/pomFjomIiLJGvkgx81YiorTiIvXpFzQf57t1NrGBAIAQYhGAfTUf3W74ENsAfL7Fd48JIf4WwH7P84YNH5eIAtLKTDmAYAr94kT4AkgutSvqEBERxYPVA0RE6SWfYojSQNoIJPkd362ziZe96m9walqhXwO4NcJjzwPw1wC+LoSYbXLHlUoFnZ2dAIDR0VH09/fDG58s/ciRIxgaGgIAnDx5EsePHwcAjIyMoL+/f3Ifhw8fxvBwtd3ixIkTOHHiBABgeHgYhw8fntyuv78fIyPVgRDHjx/HyZMnAQBDQ0M4cuQIAMDzPPT392N0tLpu9LFjxzAwMAAAGBwcxNGjRwEAY2Nj6O/vx9jYGADg6NGjGBwcBAAMDAzg2LFjjFMC4zQxUX87hlBAdd8ljKCCYSfjJAC0YQjFmrC2jYc1hzF0ikFMtAycPHEsNdfJxL2XE0Aeo+gQg5PbdYpB5FENQwXDKKEavwJGkRuungd4HjrFIHLj27XVbFfEKNpQDY9AdTsxfv7bMISxkSGrcUrjdWKcGCfGiXFinBgn4U3kpY15rhDJjFMarxPjxDiZjFOrcnmS45TG62Q7ThithqHZe25S45TG6xQmTqMjI+P1FlUdYhD58fqNwthQyzgdP3K45bt7+/g7Oa+TvTjFJfMNBEKIFwN4ds1Hb/M8b7DV9poOAvgggCsALAPQDqAy/veLAXy/ZtsdAG4VQrQZOjZ27NiBK6+8shqQgwexf//+yZv2pptuwn333QcAuOOOO3DrrdU2kUceeQT79++f3MeNN96Ihx56CABw22234bbbbgMAPPTQQ7jxxhsnt9u/fz8eeeQRAMCtt96KO+64AwBw33334aabbgJQfaD279+PgwcPAgBuueUWHDhwAABw55134uabbwZQfWj2798/+ZDefPPNuPPOOwEABw4cwC233MI4JTBOGKsmxheX78eS/CEAwOnFx7Cr9Csn4yQEcEH5QazMPwkAWFt4HHtL1fD0igFcVbkbpfHM9Qe3fTo118nEvZfLCczPHcFl5fsmt7uqcjdm5qoZ5a7Sr3B68TEAwJL8IRQf+joAwBsdwVWVu9Erqpnw3tJDWFt4HACwMv8kLig/CADoEEO4qnI3OkQ1c72g/CB++bP7rMYpjdeJcWKcGCfGiXFinIrD1ZfdZnmugEhknNJ4nRgnxslknFqVy5McpzReJ9txGjn4MIDm77kj452vkhanNF6nMHH63WOP4arK3ZNhvax8H+bnqvteNPDzlnH62L/8Y8t394vL9/M6WY5TXMRES0YWCSG2APgGqpX2APBJz/Oeb2jfnQCGPM8bkmwjALwLwDtqPn6H53nvCXnsdQDuqVQqKBQKOHDgAFavXo2jR4+ip6cHQlQL+5VKBaVSCSdPnsTY2Bg6OjowMjKCY8eOobe3F0C1Na69vR3FYnGyJa69vR3Dw8M4ceIEenqqq5v39/ejs7MThUIBx48fRy6XQ1tbG4aGhjAwMIDu7m54nofDhw+jq6sL+Xwex44dQ6FQQKVSweDgIIaGhtDV1YWxsTEcOXIE3d3dyOVyOHr0KEqlEsrlMgYGBjAyMoLOzk6Mjo4yTgmK05s+8wC++rODaMcQhpDHCPIoYQQ5eLj/fZc7F6cnjg7h3L/8IkaQx/B4WPPwcBJF5DCGdjGMY14JgMC/XL0OZ6+Zl4rrZOLe+8+fHMQNn/0xKmIEx70ygGpPpZNeEaPIoYJhjEFgCAUUMIoXbJ6Dd121DR/51i/wgf+6Eye8IsaQQxuGMTq+XRGjKGAUJ1GCgIcOMYTjXgkeBNowhE+/7mysmd+XmeeJcWKcGCfGiXFinEzE6e3/9SC+cM8TTfPcf7l+D3Yum564OKXxOjFOjJOpOC1563+3LJc/8O4LEhmnNF6nKOL0oW/+Gv/3jl82fc/955eejV0rZiQuTmm8TmHidPj4AHa/5ws4Nv5O3iEGMeAVMIo8Ns2p4JMv39k0Tr95/CDO+dsDTd/dSxjFfe+7gtfJQpweffRRrF+/HjXWe553LyKS2QYCIcRSAN8GMGf8o58A2ON53pEYwnIzgImGiUMAZoVZuHiigWDi3/fccw/WrVsXLpBEIb30I9/HV+9/oul3v3zfMyIOjb/Hjwxg+3u/qrTt//fSbdizcqblECXHzd/9Ff7kM/f4bzju2l1LcMOl6/Cx7/wS7/xcsPzvf/7oHCyd0RHot0RERFn16pt/iC/c/bum333i+u3YtWJGxCEiIpuWvPW/W37n4jsZ2fN3tz+Av7v9wabfffJlO7BzeV/EISLTTgyNYO07v9z0u/Xzu/Ffr9vT9LvjgyNY92fNfwcwrbDl3nvvjbWBIJNTDAkh5gL4Ck41DjwM4OlxNA6Me2fN39NQnW6IKFWS1hTJhZmCky141XR7Ayc7b2InREREGaObZxMRUfrx1SodcgEvZNDfUbJlroFACNGHauPA8vGPfgvgfM/zfhtXmDzPewjAL2s+WhNTUIhogkaemNGBWC3lNMsTEwWQMMWQXOZyMyIiIgNkmS/rB4iIMonJf7bx3TqbMnXZhRDdAL4MYGK+nSdRbRz4RXyhmlTbQMGxvJQ6SZvOTKfVPFkxs0+3x8Fkg0KIngp53VYJIiIikuLoAiKi9GIan35BX69lo/MLfO9Orcw0EAghOgB8AcDm8Y8Oozqt0H3xhWqK2smzj8cWCiICwF4TYegWRISBIYycYoiIiMgsZq1E6fO0dbO1Pqf0kqXxJt7PKH6yRiDZd7LOd+VCZqqRMycTV1YIUQHweQC7xz86AeAZnuf9ML5QnSKEaAdwWs1Hj8UVFiKqYqEoON1zN7F5mDPO60VERGQWc1ai9HnRjiVNP3/B9sXRBoRixzQ+/eSNQLLvWn9ZYgNBaqX+ygohigD+E8C+8Y8GAVzmed634gtVg+cDKI//7QH4eoxhIbIiadPwsMAUXOA1CEKcdE4xREREFICkgMbGd6L0OWvlDLzx/FVTPnvDeStx9qqZMYWIXMTkPx1sXEY2EKRXIe4A2CSEyAP4BICLxz8aAfAcz/Nut3zcdgADnueNKWy7EsD7aj66zfO8J6wFjoiU6BSKkra+gm2B1yAIgVMMERERmcWslSid3nD+Sjx/+yLc89hhrJ/Xg5ldZf8fUepIe5BHFwyySPe9XAUbCNIrtVdWVLu8/CuAK8c/GgPwIs/zPh9yv17Nfze02GwbgHuFEK8SQsxqsZ+8EOKFAL4DoG/84yEAfxwmfERkhs6iTWwemEp7DYLxcx1moaxcanMzIiKieLCCiCi9ZnaVce5ps9g4kGEcJZZ+Ni5xuZA3v1NyQppHELwKwItr/v0QgLOEEGep/NjzvNeGPP5qAB8E8A9CiJ8DuBfAU6g2VMwBsBPAjJrtRwFc43nej0Mel4hMYHkpMN3CppERBJxiiIiIyCjWHRERZRPT/3SQvZcHvcRcpDi90txAUN9zf+X4f6rCNhBMyAFYNf5fKz8DcJ3ned82dEwi5yRtFh6tQlHC4mabbl29MLAGgY3hk0RERGnnSQsxzFuJiLKJ6T81xymG0ivNDQRx+gaALaiOEtgF4DRUpxHqQ3Ux4sMAfgPguwA+D+BLHicxJ3KKXvsAH99a+msQTEwxFN0xiYiISI5ZKxERUUoFzOQ5giC9UttA4HneDQBusLBf36fI87xRAD8c/+8fTIeBiOzjnIzB6Y8gCH9MTjFERERkFnNWIqL0ki5SzAwg9YJe4hLXIEgtNv0QUSSS1sdeawRB0iJnWdA1CMJNMRT8t0RERNSInSWIiLKJqT+1ctH6OXEHgSxhAwERURM678RsIJhKt0A5uQZBiKIoKzGIiIj0ycowzFmJiNIrzLsXpd8Ldyxq+KyUz+GZm+bFEBqKAhsIiCgSSVtmQ2dO+2kdJYshSZ6gaxAQERERERFRvNj5iv7owtOwfn735L+LeYG/fe7p6Cyndqb6zOOVJSIKYUZnCWcs7I07GE7JaTY9T5Y/WQ4lIiKKFOegJiLKJmn6H10wKCZ+eXxvewmfftVu/PBXh/DE0QFsX9qHOT2VaAJHsWADARFFYlZXsjIT1ZfiN16wCjlOgD9F0DUIiIiIKFryKYaYQRMRpRVTePJTKuSwc3lf3MGgiHCKISKKxCv2Lmv6+flrZkUcEjV+L8XP3bIQH37JVrxg++KIQpQcuoXN3OQaBEREROQKjiAgIsompv/px0tM9TiCgIgisXJWJ85aMQPf/PmTk58VcgIv3OFmBbtfoeivrtwYTUASSHdNgclFilkSJSIiIiIiso6vXkRUiw0ERBQJIQQ+dM0W/N1XH8C3fv4k5va04YU7FmPvqplxB60plpeC024gsBQOIiIiCo6VR0RE6SUbMc8p5oiyhw0ERBSZtlIeb7toTdzBUMLe7MHprikwsT3POBERUbS4BgEREdXjq3D6sb6D6nENAiKiJphdhqDbQJCbmGLIQliIiIgoEObLRETpxTSeiGqxgYCIqAkWmIILugYBERERuYPZMxERUToxi6d6bCAgImqCldbBBV2DgKeciIjIHZxiiIgom/heRpQ9bCAgIiKj9NcgYAmUiIgoDh5aL0LA7JmIKL3YIY6IarGBgIiIjNItbJ5apJiFVCIiIlcwVyYiyia+lxFlDxsIiIjIKN3OKBMjCNiJhYiIyB3Ml4mI0kuWxDP9Tz9eY6rHBgIiIjJKf5FiSwEhIiIiKa/1DEPgGAIiovTiOxgR1WIDARERGaVb1uT8l0RERERERG7g61n6cRopqscGAiIiMmpU3h2xge6ixkRERGSGrBKIFURERNnEyuMM4CWmOmwgICIio4ZHxrS2P7UGAUspRERErmCuTESUXkzjiagWGwiIiDQV2OVdanhUbwTBRLsAzyoREVG0ZIP+2HBPRJResjSeyT9R9rCBgIhIUzHPpFNmeExvBAErIIiIiNzD3JmIiIgoG1jLRUSkqZjnK7OM/hRD1f9lOwEREZE7mC8TEaWXdA2a6IJBMeE1pnpsICAi0lQqMOmUWTKjQ2v7yTUIWEwhIiJyBvNlIqL0kqXwbCAmyh7WchERaeIUQ3IrZ3ViwbQ25e25pAMREVE8ZKsGsYKIiCjFmMhn2sUb5sYdBHIMa7mIiDQVOMWQlBAC73/2RlSKqlnM+AgCnlYiIiIiIqKY8cUsLa4/a2nDZ/mcwOWnz48hNOSyQtwBICJKGo4g8LdrxQzc/od78T8/O4hSXmDMA9726bubbssRBERERO5hwz0RUTYx/U+PN5y/Ej/89SHc+et+ANV377997unoaS/GGzByDhsIiIg0ldhAoGTBtHa8aMdiAMD//uyJltudWoOAiIiIouRJ5hgSrCEiIkotpvDZ0FUp4t9fsRM//k0/Hu0/iR3L+jC7uxJ3sMhBbCAgItLEEQT68pJhArnx08l6CCIiIncwWyYiSi/ZuxfT/3Qp5nPYsmQ6tsQdEHIaa7mIiDQVuQaBtpykBCpYBCUiInIOG+6JiLKJI8iIsocNBEREmjiCQJ+sgeBU+wALokRERK5gAz4RUXoxjSeiWqzlIiLSVCow6dSlshBx0I4qr9u3ItgPiYiIiIiIaAo2HRBlD2u5iIg0cQSBPtkaBJAskOinvZTHJRvnBd8BERERNcUZJoiI0ks6wJvpP1HmcJFiIiJN566eFXcQEicnaSDwxlsIdMuhO5f14Q8vXIXT5nSFCBkRERE1w/ohIqL0YhpPRLXYDZaIqIWrty1q+KyYF7jijPkxhCbZZGsQeAFGEFyzczE++fId2LpkeohQERERUUusPSIiyiSuT0CUPWwgICJq4Y8uXIXVNb3T8zmBD1y1CZ1lDr7SpbYGgXpBlEVWIiIiE1q30rOCiIgovTjFEBHVYi0XEVELfZ1lfPY1u/HdXzyFxw8PYOfyPiyc3h53sFJnYgSBTjlUpzGBiIiI9DGrJSJKLzYCE1EtNhAQEUlUinnsXTUz7mAknqwAGmKNYiIiIrKEVUdERERE2cAphoiIyDpZL0RvfAiBTk9F9mokIiKyi6P1iIhSjEk8EdVgAwERETlBq4GAJVoiIqLQPMkwPua0RERERNnABgIiIopVkCmG2KmRiIjILua1RETpxSSeiGqxgYCIiKyTTzE0vo1GMZUFWiIiIrs4Wo+IKL04jRwR1WIDARERWSevZOAyxURERHGQ5sCsOyIiIiLKBDYQEBGRdSojCHQqItjhhYiIyC7mtURE6SXtvsX+W0SZwwYCIiJygk49BIfEEhER2cWclogovaQduDjCmyhz2EBARETWyQugAfYXOCREREQ0gfkpEREREbGBgIiIrJOtQTC5SLHOqADWaBAREYUma6TnaD0iomziFENE2cMGAiIism7BtLaW352xqBeA5hRDbCEgIiKyijktEVF6mR7hTUTJxgYCIiKyrqNcwDmnzWz4fMP8Hszrbd140Ao7NRIREdnFvJaIKL3Y4YqIarGBgIiIIvHXV27C6jldk/9eOL0NH3zBmZP/5gxDRERE7mDlERFRNnmcY4gocwpxB4CIiLJhZlcZX3zDHjzw+DEMj45h7dxu5HLBKh/Yq5GIiCg8WSUQ81oiovRiGk9EtdhAQEREkRFC4LSaUQRTvtPoqchejUREREREROZx/ABR9nCKISIicoLWFENsHyAiIrKKeS0RUXoJSSLPGYaIsocNBERERERERBkkqwPiaD0iIiKibGADAREROUGnGoJVFkRERHZxBAERUVZxCAFR1rCBgIiIEifo4sZERESkhjktEVF6bVsyveV383vbIwwJEbmADQREROQGjZqIciFvLxxEREQknZ+aiIiSbU5PBWcs6m34/Pw1s9BW4rsWUdawgYCIiNygMZK1UmT2RUREFJZsIUo2DxARpdsHX3AmVs7qnPz36Qt78ddXbooxREQUl0LcASAiIgKAMY0GAo4gICIisosDCIiI0m1uTxtue+PZeOjgMRTzOSzu64g7SEQUEzYQEBGREzyNIQTlAkcQEBERhcVGACKibBNCYMWsrriDQUQxYw0LERE5QTbNQb0ypxgiIiKyimsQEBEREWUDa1iIiMgJYxotBBVOMURERBSaTuM8EREREaUTGwiIiMgJHEFARERERERERBQt1rAQEZETdEYQcJFiIiIiIiIiIqLw2EBARERO0BpBwEWKiYiIQuMMQ0RERETEGhYiInKCTiUFpxgiIiIiIiIiIgqPNSxEROQELlJMRERERERERBQtNhAQEZETuEgxEREREREREVG0WMNCRESO4CLFREREUfJ0WueJiIiIKJXYQEBERE4Y4yLFRERERERERESRYg0LERE5QWuKITYQEBERERERERGFxhoWIiJygs4ixYU8sy8iIiIiIiIiorBYw0JERE7gLMhERERERERERNFiAwERETmBCyUSEREREREREUWLDQREROQEtg8QEREREREREUWLDQREROQET3GSoa1LplkOCRERERERERFRNrCBgIiInKA6guCZm+bZDQgRERERERERUUYU4g4AERERAIz5NBB0lgu4bvcSvGjH4mgCRERERERERESUcmwgICIiJ8gWKf7ca3Zj3bxuFPIc+EZEREREREREZAprWoiIyAmyKYb6OktsHCAiIjJMdXo/IiIiIkov1rYQEZETOiutB7WV2DhARERERERERGQca1yIiMgJ+1bPQqnQmC0tmt6OWd2VGEJERERERERERJRubCAgIiInVIp5PH/boobPr921JPrAEBERERERERFlABcpJiIiZ7zzkrWY01PBl+/9HdqKeVx++nw8Z+vCuINFRESUSh64CAERERFR1rGBgIiInJHLCbxy73K8cu/yuINCRERERERERJR6nGKIiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsogNhAQEREREREREREREWUQGwiIiIiIiIiIiIiIiDKIDQREREREREQZ5Hlxh4CIiIiI4sYGAiIiIiIiIiIiIiKiDGIDARERERERUQbtXjEj7iAQERERUcwy00AghCgJIV4khPiCEOJXQogBIcRvhRDfFkL8kRDCWuk4zmMTERERERE189ytC5t+/vztiyIOCRERERHFJRMNBEKI1QC+C+BjAC4CsAhAGcAcADsB/DWAe4UQF6fp2ERERERERK3M6CzjnZesnfLZshkd+IPzVsYUIiIiIiKKWiHuANgmhFgA4KsA5o1/5AH4OoCHAMwEcD6ANgCzAHxWCPF0z/O+lvRjExERERER+bnurKXYtnQ6vvnzJzGvtw17V81ET1sx7mARERERUURS30AA4BM4VUH/KwCXeZ7344kvx6f3+RSA8wAUAfyHEGK553n9CT82ERERERGRr/Xze7B+fk/cwSAiIiKiGKR6iqHxaXv2jP9zCMAzayvoAcDzvCcBXAbg4fGPpgN4S5KPTURERERERERERETkJ9UNBABeU/P3Rz3Pu7vZRp7nHQfwzpqPXiGECDu6Is5jExERERERERERERFJpbaBQAjRierUPRM+7POT/wRwbPzv6QDOTuKxiYiIiIiIiIiIiIhUpLaBAMAuAOXxv48D+L5sY8/zBgB8p+ajfQk9NhERERERERERERGRrzQ3EKyp+ftuz/NGFH7zoxa/T9KxiYiIiIiIiIiIiIh8pbmB4LSav3+l+Jtf1/y9OqHHJiIiIiIiIiIiIiLyleYGgr6avx9X/M3vav6entBjT6pUKujs7AQAjI6Oor+/H57nAQCOHDmCoaEhAMDJkydx/PhxAMDIyAj6+/sn93H48GEMDw8DAE6cOIETJ04AAIaHh3H48OHJ7fr7+zEyUh0ocfz4cZw8eRIAMDQ0hCNHjgAAPM9Df38/RkdHAQDHjh3DwMAAAGBwcBBHjx4FAIyNjaG/vx9jY2MAgKNHj2JwcBAAMDAwgGPHjjFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDgxTowT48Q4pSZOcUlzA0Fnzd8nFX9Tu11ny63cPvakHTt24MorrwQAHDx4EPv375+8aW+66Sbcd999AIA77rgDt956KwDgkUcewf79+yf3ceONN+Khhx4CANx222247bbbAAAPPfQQbrzxxsnt9u/fj0ceeQQAcOutt+KOO+4AANx333246aabAFQfqP379+PgwYMAgFtuuQUHDhwAANx55524+eabAVQfmv37908+pDfffDPuvPNOAMCBAwdwyy23ME6ME+PEODFOjBPjxDgxTowT48Q4MU6ME+PEODFOjBPjxDilJk6x8Twvlf8B+CoAb/y/dyv+Zl/Nb0aSeOzxfa0D4FUqFa+zs9O75557vJGREe/QoUPe2NiY53med/jwYW9wcNDzPM87ceKEd+zYMc/zPG94eNg7dOiQN6G/v98bGhryPM/zjh8/7h0/ftzzPM8bGhry+vv7J7c7dOiQNzw87Hme5x07dsw7ceKE53meNzg46B0+fNjzPM8bGxvzDh065I2MjHie53lHjx71Tp486Xme5w0MDHhHjhzxPM/zRkdHvUOHDnmjo6Oe53nekSNHvIGBAc/zPO/kyZPe0aNHPc/zGCfGiXFinBgnxolxYpwYJ8aJcWKcGCfGiXFinBgnxolxYpwSHad77rnHq6kX9gCs8yKsRxdetUI5dYQQ/w3g4vF//pXneW9V+M1FAL4w/s9jnud1Je3Y4/taB+CeiX/fc889WLduXdDdEREREREREREREZEF9957L9avX1/70XrP8+6N6vhpnmLoWM3fbYq/qd3uWMut3D42EREREREREREREZGvNDcQ/L7m79mKv5lT8/dTCT02EREREREREREREZGvNDcQ/Kzm78WKv1lU8/f9CT02EREREREREREREZGvNDcQ/LTm7w1CiILCb85s8fskHZuIiIiIiIiIiIiIyFeaGwi+DWBw/O8OAFtkGwshygB21Hz0tYQem4iIiIiIiIiIiIjIV2obCDzPOwbgqzUfXevzk2cB6Br/+ykAX0/isYmIiIiIiIiIiIiIVKS2gWDcB2v+vlYIsa7ZRkKIdgDvrvnonz3PG0nwsYmIiIiIiIiIiIiIpFLdQOB53n8D+Mb4P8sA/ksIsbF2GyFEH4DPAlgx/tFTAP6q2f6EEEuEEF7Nf9dGdWwiIiIiIiIiIiIiIpNUFs9NuucD+B6AuQCWALhLCHEHgIcAzARwPoD28W1HADzH87z+FBybiIiIiIiIiIiIiKil1DcQeJ73iBBiH4BPAjgdgABwzvh/tQ4CeInneV+FIXEem4iIiIiIiIiIiIhIJvUNBADged79QojtAJ4H4GoA6wDMBtAP4GEAnwbwYc/znkzTsYmIiIiIiIiIiIiIWslEAwEAeJ43BOBj4/8F3ccvUR0FEPmxiYiIiIiIiIiIiIhMSvUixURERERERERERERE1BwbCIiIiIiIiIiIiIiIMogNBEREREREREREREREGcQGAiIiIiIiIiIiIiKiDGIDARERERERERERERFRBrGBgIiIiIiIiIiIiIgog9hAQERERERERERERESUQWwgICIiIiIiIiIiIiLKIDYQEBERERERERERERFlEBsIiIiIiIiIiIiIiIgyiA0EREREREREREREREQZxAYCIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiIiIiIiIiIiIsqgQtwBICtKtf/4+c9/Hlc4iIiIiIiIiIiIiKiFJnW3pWbb2SI8z4vyeBQBIcSlAD4XdziIiIiIiIiIiIiISMtlnud9PqqDcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGcYqhFBJC9ADYW/PRbwAMxRQcIiIiIiIiIiIiImquBGBhzb/v8DzvcFQHZwMBEREREREREREREVEGcYohIiIiIiIiIiIiIqIMYgMBEREREREREREREVEGsYGAiIiIiIiIiIiIiCiD2EBARERERERERERERJRBbCAgIiL6/9u78yDNqvKO49+fbCOLUCAIyBqMYNApg4iKcQmShNKUe0AxCFPRiAmpWInG0sRAmahYqSIVLZRFBaICalTKKAYBAY2OS8QIlsAoKBJFthEIqDDokz/uHftOZ7r7nel36bfv91PVVeeee86dZ/7o9719nrNIkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQItC0m2TnJckouT3JzkF0luTfLlJK9P8shJxyhpOJLsl+TVST6U5FtJfppkXZK1Sa5JcmaSZ006Tknjk+S0JNX5+cGkY5I0XEkOSXJqkv9q3/MfSPLjJFcn+UD7t8Duk45T0uIleVqS97S/32vbd/17k3w3yUeTHJtkm0nHKWluSbZIsjLJnyR5b/v9/WDnff3KRTz7OUn+NcmaJPd3xgL+KclBQ/xv9EaqatIxSIvS/vJfADxxnma3A6uq6uKxBCVp6JL8NnAGcNiAXa4Ejq+qH44sKEkTl+QwYDUbTny5uar2m0xEkoYpyW7AacArBmh+elWdNOKQJI1Ikl2A9wMvGKD5jTTv+l8abVSSNlWSFwIfBradp9lVVfXsTXzuI4CzgGPmabYOOLmq3rEpz+67LScdgLQYSfYCLgf2bKsK+ALNy8KuwJHAw4HdgIuSHFVVn59ErJIW7UD+f3JgDfBt4E5gJ+BwYK/23rOB1UmeUVU3jSlGSWOUZCvgfbgqVlqWkuxDk/Dfv1N9A3AtcBfNwMMBNBOF5huEkLTEJXk4cBkbTvy7A/gm8D80f98fDPxGe+8A4HNJjqiqr44xVEkL24khfy+37/2fBI7oVH8buBpYATwD2APYCnh7kq2q6q3DjGE5M0GgaXc+M8mBm4EXVNW31t9stxa6EHgOzYfEx5IcUFV3jztQSUPzPZoBwQ9V1Y+6N5I8DDgBeDfNC8mewIeTHF4umZOWozcCT2jL5wPHTjAWSUOUZEfgCmaSA1cAr6uqazbSdmuaAYMdxhehpCF7IzPJgQLeApxWVT9f3yBJaGYOnwHsSPO+fzawcqyRShrUbcDXOz9/APzlZj7rLcwkB35Bs0vIhetvtu8C/wi8oa06JclVVXXVZv57veIWQ5paSZ4LfKa9fBA4tKqu3Ui77YBrmJlp8I6qevN4opQ0LO25AvsDH6yqXy7Q9kXAJzpVR1XVJaOMT9J4tVsM/jewDc0S5suAc9rbbjEkTbkkZwOvai8/Arxioe9/SdOrPT9o3/byX6rqdfO0fSnwsU7Vyo2NBUiajPZMoK1nb/eb5BTg5PZy4C2G2u0GbwK2a6tOrKoz52h7ITNbEK2uqsM3Lfp+cjm2ptmfd8rnzfVCUFX3A3/fqXpNElfPSFOmqq6qqnMHGRyoqk8CX+tUPW90kUkat3YG4ftokgM/Bf5qshFJGqYkT2QmOXAL8GqTA9Ly1e4rvm+n6oIFulwE/Kxz/dhhxyRp81XVT4Z8FuDxzCQH1tCcQzCXvwF+1Zaf1p5lqAWYINBUSrI9zbZB650zV9vWx4H72vLOwDNHEZekJaV7YNl+kwpC0ki8Fnh6W35DVd0+yWAkDd2JnfLpVfW/E4tE0jhsP+v6p/M1rqqHgHs7VY5tScvbCzvlc+fbPrhNTHTPHn3RqIJaTvwQ1bQ6nGbWIMD9NHuZzamqfgGs7lQdMVdbSctG96Vhi4lFIWmokuwNnNpefhH4wATDkTRkSbYAXt6p+vikYpE0NnfQ7Cm+3sHzNU6yK7Bbp+pbc7WVNN2SrACe2qm6coBuV3TKjv8NwASBptXjOuVr2xkEC7l6jv6SlqcndMq3TCwKScP2HpqDSB8EXuMB5NKy83jgEW35HuDGJFsmWZXk8iQ/SfJAkh8l+WyS1ybZZp7nSVriqmod8NlO1d8l2XaeLu9kZjzr8qpaM7LgJE3agcz8vhfwzQH6OP63iUwQaFod2CnfPGCf7v5nBw0xFklLTJJ92HCmwGWTikXS8CR5GfCH7eU7q+q6ScYjaSSe3CnfAuxFs23gB2i+2x8FbA3sCRxFkzRck+TJSJpmb2ZmW+BDgGuSHJ/kMUlWJNk7yfOSfBFY1bb7TqcsaXnqjv/d3u4QspDu+N/O7aojzcODWjWtdumUbxuwz0865Z2HGIukpec0ZrYV+iHw7xOMRdIQJNkFeFd7uQZ42wTDkTQ6e8+6/iwz241cT7O16C+BlTSDiAD7AFcmeWZVfWMsUUoaqqq6PsnTad7b9wEOAM6do/ndwAeBv/WMEmnZW+z4HzRjgHcMJ5zlyRUEmlbdQ4x+PmCfbrvZhyBJWiaSHA+8pFP1pqp6YFLxSBqafwbWz/450d9radnaqVN+PE1y4GfA0VX1uKp6ZVWtqqon0awouLNtuy3wkSRbjzVaSUNTVdcAjwVOojlrcC6XABeYHJB6YbHjf7OfoY0wQaBptaJTfnDAPt2BhIcPMRZJS0SSQ4EzOlUXVNX5k4pH0nAk+X3guPbyvKq6Yr72kqbadhup++Oq+tjsyvaz4PnAr9qqA4BXjDA2SSOU5JHAe2kmBWxHMwv4E8BZwEeZ2V74GODLSc5sDzaXtHwtdvwPHANckAkCTavunmODzhLqHl42aNZR0pRIsj/NkuT1LxDXACdOLiJJw5BkO+DM9vIu4PUTDEfS6M3eW3h1VX1yrsZVtZpmAHG9Y0YSlaSRSvKbNIePrqJJ+p0E7F1VL6mq11TVMcD+wLHAvW23PwXePYl4JY3NYsf/wDHABZkg0LS6r1MeNBPYbXffnK0kTZ0kewCXAru3VTcBR1XVvXP3kjQl3gbs15b/uqrunKetpOk3+z19zuTAHG0OH2IsksYgyZY0ib692qoTq+r0qnqo264aFwAv7VS/NslhYwpV0vgtdvxv9jO0ESYINK3u6pQfNWCf3TvltUOMRdIEtQeXXkqzrQDArcCRVXXr5KKSNAxJDgH+or28oqrOm2Q8ksbirlnX3xmgz3Wd8g5JdhhiPJJG7yU0Z44A3ADM+31fVZcCl3WqVo0oLkmTt9jxP3AMcEFbTjoAaTPd0CnvO2CffTrl64cYi6QJSfIImkPKDm6r7qRJDnx/clFJGqKVzExo2SfJV+Zpu2unvMestv9QVZ8ZenSSRmH2e/ogs/5mH1S6w0bqJC1dR3XKV1RVDdDn88CRbfnQ4YckaYnojv/tlmRFVc3ejnC27vjf2qq6YwRxLSsmCDSturOEnpBky9nLDzfikDn6S5pC7b7kFwNPaqvuodlWaJCZhpKmzwHMrBRayNbAUzrXu87VUNKS8+1Z19sP0Gf2ioF7hhSLpPF4dKc8exXRXLpbDu44xFgkLS030JxL8jAgwBOB+SYNgeN/m8wthjStvszMqeTbscCMgSTbAE/tVH1+RHFJGoMkK4BPAU9vq34GPK+qvjG5qCRJ0mK1qwC7KwF/a4Buj+uU11bV/cONStKIdQ8Q3XnAPrt0yncPLxRJS0m7WqCbEHj2AN2e1Sk7/jcAEwSaSlV1H3B5p+qEBbq8mJmZRWuBL4wgLEljkGQr4OPAEW3VA8ALqupLk4tK0ihU1blVlUF+2HD/4Ztn3T93Qv8FSZvnE53yCwdo323je740fX7YKf/ugH2O6JS/N8RYJC09F3XKJ8zXMMnewHPm6Ks5mCDQNHtPp3xCkoM31ijJtsBbO1VnDbAdkaQlKMkWwPnAc9uqh4Cjq+qyuXtJkqQp815gXVs+PMnz52qY5DCayUDrnTvCuCSNRvdd/qAkx83XOMkRwO91qi4ZSVSSlorzgPWrAw9M8qp52r4T2KItr66qq0ca2TJhgkBTqz1s8Ivt5TbAp5Os7LZJsgtNtvAxbdVamg8LSVMmSYD3Ay9tq34FHFdVn5pcVJIkadiq6kY2nAx0fpIXz26X5FnAp5kZCPgKzRaEkqbLZ4A1neuzkpzYTg76tTSOZsNVRrcAF44hRkkTUlW3A6d1qt7Vfhb8WpKtkpwKvLxT/aZxxLccZLDD4aWlKclewNeAPdqqAq4CbqQ5kPBIYNv23kM0B5hePvs5kpa+JH8GnN6p+i7wuUH7V9VJQw9K0pKR5ATgnPby5qrab3LRSFqs9gyxS4FndKqvA74O/BJYCTypc+9W4ClVdcvYgpQ0NEmeQrNX+Lad6ltpzh+8k+Yg4qcC+3XuPwAcWVX/OaYwJQ0oycXAnrOqdwce1ZbvZ+Pbgz23qn68kedtBfwHG24vdi1wNbACeCYzY4MAJ1dVdzcRzcMEgaZekoOAC2hOMp/LHcCqdtWBpCmU5BTg5M3t3+5RLmmZMkEgLT9JdqTZbujlCzT9KvBHJgek6dZuGfZB4LEDNP8+zWpizyGTlqAkPwD23Yyu+1fVD+Z45o7AWcDRG7vfWgecUlVv34x/u7e2nHQA0mJV1fXtbIOX0fzxcDBNRvJu4Caa5YfnVNWdEwtSkiRJ0iapqnuAY5OcAbwS+B3g0TRbCt1Gs6XQR4GLyplv0tSrqq+1Zws+n+bw8UNpZiBvTzPb+DbgGzRbif1bVa2b41GSlqH2veCYJGcDxwNPo1k1sI5mu7FLgPdX1XWTi3I6uYJAkiRJkiRJkqQe8pBiSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB4yQSBJkiRJkiRJUg+ZIJAkSZIkSZIkqYdMEEiSJEmSJEmS1EMmCCRJkiRJkiRJ6iETBJIkSZIkSZIk9ZAJAkmSJEmSJEmSesgEgSRJkiRJkiRJPWSCQJIkSZIkSZKkHjJBIEmSJEmSJElSD5kgkCRJkiRJkiSph0wQSJIkSZIkSZLUQyYIJEmSJEmSJEnqIRMEkiRJkiRJkiT1kAkCSZIkSZIkSZJ6yASBJEmSJEmSJEk9ZIJAkiRJkiRJkqQeMkEgSZIkSZIkSVIPmSCQJEmSJEmSJKmHTBBIkiRJkiRJktRDJggkSZIkSZIkSeohEwSSJEmSJEmSJPWQCQJJkiRJkiRJknrIBIEkSZIkSZIkST1kgkCSJEmSJEmSpB76P73oL1SqEQt4AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from astropy.modeling import models\n", + "\n", + "pds_model = \\\n", + " models.PowerLaw1D(x_0=1, alpha=1, amplitude=1)\n", + "\n", + "nyq = 100.\n", + "freq = np.linspace(0, nyq, 1000)[1:]\n", + "\n", + "pds_shape = pds_model(freq)\n", + "mean = 10\n", + "rms = 0.3\n", + "\n", + "dt = 0.5 / nyq\n", + "\n", + "flux = timmerkoenig(pds_shape, mean, rms)\n", + "times = dt * np.arange(flux.size)\n", + "\n", + "plt.plot(times, flux)" + ] + }, + { + "cell_type": "markdown", + "id": "de32c52b", + "metadata": {}, + "source": [ + "## Simulating event times with the inverse CDF method\n", + "\n", + "Given a positive-definite light curve (generated, e.g., with the method by Timmer & Koenig), we treat it as a probability distribution: we calculate the cumulative distribution function by calculating its cumulative sum and normalizing to 1. Then, we generate random numbers uniformly distributed between 0 and 1 (horizontal lines) and take the event times at the corresponding values of the CDF (vertical lines)." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "27458926", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABwUAAAStCAYAAAClVIT2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdeXwU9f3H8fckIQkJEMJ9BAiKKIeKotVaFdSqrYonWqv1vq1HtO3Po7ba1trTClLBG8X7wgOEgoqgIDcil6BiEkgIJEDIQc7Nzu8PkpjAzt6zO7v7ej4eeTw2M/P9zmd2ru/OZ74zhmmaAgAAAAAAAAAAABC/kqIdAAAAAAAAAAAAAAB7kRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJQQAAAAAAAAAAACDOkRQEAAAAAAAAAAAA4hxJwTAzDCPZMIwjDMO4zjCMKYZhrDAMo8EwDLP5b34EYkg1DOMKwzBmGYZRaBhGnWEYJYZhfGEYxm8Nw+hhdwwAAAAAAAAAAABwDsM0zWjHEDcMwzhf0iuSMrxMtsA0zbE2xnCYpNckjfIyWamka0zTnGVXHAAAAAAAAAAAAHAOegqGV1d5TwjayjCMHEmf6IeEoClpgaTnJc2QVNs8vJek9wzDODXSMQIAAAAAAAAAACDyUqIdQJzaIWl5m78zJd0Zgfm+Kqlf8+dCSeeZpvlVy8jmx4a+Luk0SR0kvWUYxsGmae6JQGwAAAAAAAAAAACIEpKC4fU/SYNM09zSdqBhGMfZPWPDMM6SdFLzvw2SxpmmubbtNKZp7jQM4zxJayQdJKmbpP+TdL/d8QEAAAAAAAAAACB6eHxoGJmmuX3/hGAE/brN5xf3Twi2ME1zr6Q/thl0k2EYJIcBAAAAAAAAAADiGEnBOGAYRifteyRoi6k+irwjqbr5czdJJ9sRFwAAAAAAAAAAAJyBpGB8OEFSWvPnvdr3HkNLpmnWSVrcZtCpNsUFAAAAAAAAAAAAByApGB+Gtfm81jRNlx9lVlmUBwAAAAAAAAAAQJwhKRgfDm3zudDPMm3ffXhYGGMBAAAAAAAAAACAw6REOwCERfc2n3f4WWZ7m8/dQg3AMIwsSWPaDNoqqSHUegEAAAAAAAAAAKIgVdKANv8vME2zIlrBhANJwfjQqc3nWj/LtJ2uk+VU/hsj6f0w1AMAAAAAAAAAAOA050n6INpBhILHh8aH9Daf/e2dV9/mc8dwBTJ27FhdffXVkqQ+ffrooYceUnr6vvDy8vI0atQoSdLPfvYzXXrppZKk3NxcPfTQQ6113HvvvTrssH1PND3//PN1/vnnS5IOO+ww3Xvvva3TPfTQQ8rNzZUkXXrppfrZz34mSRo1apTy8vIkSenp6XrooYfUp08fSdLVV1+tsWPHSpKOP/543XzzzZKkrl276qGHHlLXrl0lSTfffLOOP/54lollYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimRJ4meKKaZr82fwn6SFJZvPffBvq/7BN/X/3s8zP25SpCkMM50oy09PTzU6dOpmSzOTkZLNr166mYRimJLNLly5mamqqKcns2LGjmZmZaUoyU1JSzK5du7bEYmZlZZkdOnQwJZkZGRlmRkaGKcns0KGDmZWV1Tpd165dzZSUFFOSmZmZaXbs2NGUZKampppdunQxJZmGYZhdu3Y1k5OTTUlmp06dzPT0dFOSmZaWZnbu3NmUZCYlJZldu3Y1k5KSTElm586dzbS0NJNlYplYJpaJZWKZWCaWiWVimVgmlollYplYJpaJZWKZWCaWiWVimVimxF2mlngknRvtfFOofzw+ND5Ut/nsb6+/ttNVW07lv62SVFdXJ0l67733NGTIkDBUCwAAAAAAEDmTJ0/2ODwlJUU33nhjhKMBAADhUF1drTfeeENPPfWUampqVFVV1TquJa8hSU1NTdqzZ4/6Spoi6fzKyrbVbI1UvHYhKRgfdrX53NvPMn3afN4dhhjaPbZ0yJAhGjFiRBiqBQAAAAAAiJxevXp5HJ6amsq1DgAAYkxjY6OefPJJPfjggyovL/e7XPdOnTSk+oD+VP6+vs2xkqIdAMJiU5vPg/wsM7DN541hjAUAAAAAAAAAACBqXC6XXnjhBQ0bNkx33HGH3wnB9PR03XjjjZo3b57NEUYHPQXjw9dtPh9uGEaKaZouH2WOtigPAAAAAAAAAAAQk5YsWaKrr75amzZt8j1xGz/96U/13HPPaeDAgVJBgUptii+a6CkYH76QVN/8OVPSMd4mNgwjTdLxbQbFZ8obAAAAAAAAAAAkhLKyMt1www064YQT/E4IJiUl6fzzz9fcuXM1d+7cfQnBOEZPwThgmma1YRifSDqredDVkpZ4KXKhpM7Nn3dL+sy+6AAAAAAAAGKfYRjRDgEAAHjgcrk0efJk/fGPf1RFRYVfZTp37qzbb79dN910U9wnAtsiKRg/JqtNUtAwjEmmaa7ffyLDMDIk/bnNoKf9eNQoAAAAAAAAAACAYzQ1NWn69On6y1/+orVr1/pVJiMjQ7fffrvuvPNO9e3b1+YInYekoIMZhpErKb/NoGtM03zB07SmaX5oGMbnkk6SlCZppmEY55mmuaZNfd0lvSZpSPOg3ZL+YUPoUnGxlJlpS9UAAAAAAAB2ySov9zg8LS1NKiiIbDAAAOAALpdL77//vp544gl9n78vhTJIUrKkvpKWS2rYr0xycrKuvPJK/fnPf1ZOTk5kA3YQwzTNaMcQVwzDmCWp336D+0jq3fx5r6TvPBQ9yzTNbfvVlSs/k4LN0+dIWqZ9270kmZIWSNosqaekn0rKaB7nkvQz0zQ/8b5E/jEMY4SkdS3/r5M0IhwVAwAAAAAAAAAA+OlESYva/H/ppZfqr3/9qw466CD/Kyko0PrBgzWy/dCRnp7QGEvoKRh+w7UvKW0lU9KRHoanhjpj0zSLDMM4Vft6A46SZEga2/zXVpn2JRjDkhD0aM4caehQ26oHAADOVV5erk2bNqm6ulqDBg3SkCFDeAcPAACIGRMmTPA4PC0tTbfccktkgwEAACosLNQHH3yg1157TdtKSiyny5G0UFLLFAcffLAmTJigc845JxJhxgSSgnHGNM2NhmEcJ+lSSb/Uvg57vSXtkfS9pOmSppqmudPWQPr3l3JzbZ0FAABwnu3bt+vFuXNVV1cnSVpUXKwfm6bOOOOMKEcGAADgn4rsbI/D09PTudYBAEAEffrpp7rnnnu0fPnygMqlpqfrr3/4g+6+++5952+0IikYZqZp5oaxrgLt6+0XaLkGSdOa/wAAACJm4cKFrQnBFosXL9YJJ5ygTp06RSkqAAAAAAAQK3bu3Kk//OEPevLJJ4Mq/8knn6jfCSeEOar4kBTtAAAAABA/1q/3/Gj9QO/qAwAAAAAAiWPLli16+eWXdcUVV+iggw4KKCGYnJysK664Qh/OnClJ6tevn11hxjx6CgIAAMB2ZWVl0Q4BAAAAAAA4RG1trT777DO9//77mj17tgoKCgKuIyUlRVdddZXuu+8+HXzwwVIQdSQakoIAAAAAAACAD4YR8BteAADAfrZs2aInnnhCzzzzjMrLy4OqIy0trTUZmMv7fgNCUhAAAAC24yIaAAAAAACJa+HChZowYYLeffddud3uoOo4+uijddlll+nqq69W9+7dwxxhYiApCAAAAAAAAAAAgLAyTVMffvih/v73v2vRokVB1zNw4EA988wzOuOMM8IYXWIiKQgAAAAAAAAAAICwKCkp0VNPPaXXXntN33zzTdD1ZGdn65577tEdd9yhjh07hjHCxEVSEPYoLpYyM6MdBQAAiLAsi/cBZJSW8sJvAAAQE6zaM+m1tbRnAADwoqmpSS+++KL+/e9/q6a2VpI0qM34ZEl9JS2X1GBRx/DhwzV27FidddZZOvXUU0kGhplhmma0Y0AcMAxjhKR1Lf+vkzQieuEAAAAAAAAAAAAHOlFSy8NEu3TpolNOOUUXX3yxzjjjDPXs2TP4igsKpMGDpfx8KTc3tCALCrR+8GCNbD90pGma60OrOLroKQh7zJkjDR0a7SgAAECETZgwwePwoUOH6qyzzopsMAAAAEGwas907NhRN910U2SDAQDAoerr6zV//nwtXbpUy5Yt07r1vnNlOZIWSiqRdNhhh+mOO+7QFVdcoU6dOtkdLpqRFIQ9+vcPPRMPAABiTkV2tsfhNb160TYAAAAxwao905iRQXsGAJDwTNPUc889pz/+8Y8qKSkJqo6pL76ok664QoZhhDk6+JIU7QAAAAAQ/2joAwAAAAAQ24qLi3XOOefohhtuCCghmJSUpAsvvFDvv/eeJOnkk0/mOkGUkBQEAAAAAAAAfODiJQAgUdXX1+vvf/+7Dj30UM2aNcvvcpmZmfr73/+u4uJivfPOOzryyCNtjBL+4PGhAAAAAAAAAAAAaMc0TX344Ye6++679e233wZU9txzz9V///tfDRgwwKboEAx6CgIAAAAAAAAAAKDVmjVrdPrpp2vcuHEBJQR/8pOfaMaMGXrvvfdICDoQPQUBAABgOx63BQAAAABAbJgyZYruuOMOuVwun9OmpaVp/PjxOvbYY3XeeecpNzfX/gARNJKCAAAAAAAAgPY9Jg0AgETV0NCgO++8U08++aRf0x999NF6+eWXNWzYMJsjQ7iQFIQ9ioulzMxoRwEAACIsq7zc4/CM0lKpoCCywQAAAATIdLst2zOZDQ20ZwAAcWvFihV64IEHtHHTJg2SlCypr6Tlkhr2mzYrK0t//vOfdeuttyolhTRTLGFtwR5nnhntCAAAQBTkRTsAAACAECTJR3vmkUciEwgAABF2jKT/eRh+oqRFbf6/9tpr9be//U29evWKTGAIK5KCsMecOdLQodGOAgAARNiECRM8Dh82bJjO5KYhAADgcC6XS//97389jsvMzNQNN9wQ4YgAALBHdXW1nnzyST3zzDOqb9i/L6CUI2mhpJLm/8eMGaNHH31Uo0ePjmSYCDOSgrBH//4SLxQFACChmKapiuxsj+NqevWibQAAABzPbGy0bM80depEewYAEPNM09TMmTN10003qaSkxOf0SSkpeuqJJ3TDDTfIMIwIRAg7kRQEAABAWJimaTmOHw4AACAW0J4BAMQr0zS1YMEC/elPf9L8+fP9LvfKK6/oR5dcYl9giKikaAcAAAAAAAAAOIG3pCAAALHINE299957OvbYY3XKKaf4nRAcd845kqQf/ehHNkaHSKOnIAAAAMKCi2gAACDW0Z4BAMST0tJS3XLLLZo+fbrfZQ499FBNmjRJpx9yiDRzpo3RIRroKQgAAAAAAACIpCAAID64XC49+uijGjZsmN8JwZ49e2ry5Mlau3atTj/9dJsjRLTQUxAAAABhwTt4AABArCMpCACIdevWrdPVV1+tlStX+l3mjjvu0F/+8hd16dLFxsjgBPQUBAAAQFhwEQ0AAMQ6bnICAMQql8ulRx55RKNHj/Y7IXjKKado+fLlmjhxIgnBBEFPQdijuFjKzIx2FAAAIJIaG5VVXu5xVMcdO6SCgsjGAwAAEKi9ey3bM51dLtozAABH2rBhg+69916tWbtWfSUlS+orabmkBg/Tn3nmmbrvvvt08sknc9NLgiEpCHuceWa0IwAAABHWQVJetIMAAAAIQaZ8tGcefjgygQAAEIDhkj7wMPxESYva/H/44Ydr6tSpGj16dGQCg+OQFIQ95syRhg6NdhQAACCC6uvrNWXKFI/jRowYwYvKAQCA41VVVem5557zOK5Lly669tprIxwRAACeVVVV6fbbb9f8BQsOGJcjaaGkkub/MzMz9dvf/lb33Xef0tLSIhkmHIakIOzRv7+UmxvtKAAAQCTV16siO9vjqNrevWkbAAAAx3NXVFi2Z5SVRXsGAOAImzdv1rmXXqoNGzZ4na5J0llnnaWnn35a/fv3j0xwcLSkaAcAAACA+GCaZrRDAAAACAntGQCA082dO1fHHHOMz4SgJP37X//SzJkzSQiiFUlBAAAAAAAAQN6TgoZhRDASAADaM01TEyZM0M9//nPt2bPH67SnjB0rSRo/fjznL7TD40MBAAAQFlxEAwAAsY6eggAAJ2pqatJdd92lSZMmeZ2ua9eueuaZZ3TR6NHSQQdFKDrEEpKCAAAACAsuogEAgFhHewYA4DR79+7VZZddpg8++MDrdIcccohmzJihQw89VCooiExwiDk8PhQAAAAAAAAQSUEAgHOYpqnXX39do0eP9pkQPP3007VkyZJ9CUHAC5KCAAAACAsuogEAgFhHewYA4ATr16/XmDFj9Mtf/lKbNm3yOu1vf/tbzZo1S926dYtQdIhlPD4UAAAAYcE7BQEAQKyjPQMAiKba2lo9/PDD+uc//ymXy+V12pSUFD377LO66qqrIhQd4gFJQdijuFjKzIx2FAAAIIKMvXuVVV7ucVzHHTt4pwEAAHA8o6zMsj3T2e2mPQMAsM3ChQv1wAMPqKCwUP2bhyVL6itpuaSGNtNmZWVp+vTpOvXUUyMeJ2IbSUHY48wzox0BAACIsExJedEOAgAAIAQ95aM98+c/RyYQAEDCOVHSfC/jFjV/HjRokGbNmqXhw4dHJC7EF5KCsMecOdLQodGOAgAARFB1dbWeffZZj+OOOOII7mAEAACOV1paqldffdXjuKysLF1zzTURjggAEM8WLFige+65R9t37PA4PkfSQkklzf9feeWVevTRR9WjR49IhYg4Q1IQ9ujfX8rNjXYUAAAggtyVlarIzvY4rrZ3b9oGAADA8VypqZbtmeRu3WjPAADCoqqqSr/73e/01FNP+TX98SecoBnPPEPvQISMpCAAAADCwjTNaIcAAAAQEtozAAC7rVq1Spdccok2b97sc9ru3bpJu3fr5ZdfljF4cASiQ7xLinYAQDTs3r1ba9euVWlpKQ1+AAAiwDCMaIcAAADgE9cIAAB2MU1TkydP1o9//GO/EoLXXXedPvnkE0n8pkb40FMQCcU0TS1YsEALFixoHXbEEUfovPPOU1ISOXIAAELBRTQAABDraM8AAOxQVVWlG264QW+88YbPaQ855BA9++yzOvnkk6WCAvuDQ0IhC4KEUlxc3C4hKElr1qzRmjVrohQRAAAAAABwinhKCpqmqfr6+miHAQAJ7/3339ewYcP8SgjecccdWr169b6EIGADegoioSxZssTj8FWrVmnUqFGRDQYAgDjj7SIajzoBAACxIF7aM4sXL9YXX3yh6upq9evXTxdccIF69OgR7bAAIKG43W799a9/1R//+Eef0w4aNEhTp07VKaecEoHIkMjoKYiEsn79eo/Dt27dGuFIAACIP/F0Zz0AAEhM8dCeWbNmjebOnavq6mpJ0rZt2/TCCy+ooaEhypEBQOJYtmyZTjrpJL8SgpdeeqnWrFlDQhARQU9B2KO4WMrMjHYUB8gqL7ceyfOZAQAISdKePZbn2o47dnCuBQAAjpe8datle6aTacZEe6Zg/vwDl6G8XMWLFmnw4MHRCQoAEkRBQYEeffRRzZg5U5I0SFKypL6Slktqe3tGWlqaJk6cqBtvvDGmeqMjtpEUhD3OPDPaEXiU523kxIkRigIAgPjUVT7OtQAAAA43QD7aM3/6U2QCCcG5ViO47gEAtsuVNKn5b38nSlrU/Pnggw/WW2+9paOOOipSoQGSSArCLnPmSEOHRjuKA0yYMMFyXF5eXsTiAAAgHu3evVvTpk3zOO6oo47SmDFjIhwRAABAYAoLC/Xuu+96HJeVlaVrrrkmwhG1Z5qmFi5cqJUrV7YOO+qoo3TyySe39jKxuvaRnZ2tq666KhJhAkDCqKmp0eTJk/Xcc8+ptq7O4zQ5khZKKmn+/7bbbtPDDz+srKysSIUJtCIpCHv07y/l5kY7igNUZGdbj3RgvAAAxBJ3p06W59ra3r051wIAAMdrdLks2zNG165Rb89s/u47zfv+e6lNjPMLCtT3xz/W0Oabs63iT+nePerxA0A8WbRoka666ipt3rzZr+lT09P1ziuv6MILL7Q5MsBaUrQDAAAAQHwwTTPaIQAAAITEW3vGCW2dpUuXehy+ZMmSCEcCAIkrPz9fv/zlL3XiiSf6nRCUpNmzZ5MQRNSRFAQAAAAAAADk/KTgd99953F4fn5+hCMBgMRTVFSku+++W4cddphef/11v8qMGDFCL0ydKknKpbc2HIDHhwIAACAsvF0oa3nHDQAAgJM5PSkIAIis3bt365lnntH777+vZcuWqampya9ygwYN0p///GddfvnlSt661eYoAf+RFAQAAEBYcKEMAADEOtozAABJampq0ssvv6y8vDzt2bPH73I9evTQAw88oJtvvllpaWn2BQgEiaQgAAAAAAAAIHoKAkCiy8/P1zvvvKMpU6bo+++/D6jsVVddpQkTJqhr1672BAeEAUlBAAAAhAWPDwUAALGOpCAAJB63263//e9/euKJJzR79uyAj/cjR47Uv//9b5155pk2RQiED0lBAAAAhAUXygAAQKwjKQgAiWP37t2aOnWqJk+eHHCvQEnq27ev/vKXv+jqq69WcnKyDREC4UdSEPYoLpYyM6MdRTumaSqrvNx6goKCiMUCAEA8Si4ttTzXpm/fzrkWAAA4XkpRkWV7pmNdXdTbM/5c17CapnObaQAgkW3cuFHTpk3T9OnTVVdfL0ka1GZ8sqS+kpZLavBQfsiQIcrLy9M111yjjIwM+wMGwoikIOzhwK7ShqQ8bxNMnBiZQAAAiFO95ONcCwAA4HCHNv9Z+vvfIxSJZ3neRjZf1/A6zUMPhSsUAIhZh0l6pPnPmxMlLWr+nJycrP/7v//T5ZdfruHDh/OKDMQskoKwx5w50tCh0Y6indraWj311FMex6WlpemWW26JcEQAAMSXHTt26LXXXvM4bvTo0TrppJMiHBEAAEBgvv76a82ZM8fjOCdcO5gwYYLluLy8PK/TZGdn66qrrgp/UADgYDU1NXrzzTf17LPPqqi42K8yOZIWSiqRlJKSossuu0z33nuvhg0bZmeoQESQFIQ9+veXcnOjHUU7jZWVqsjO9jguMzPTcfECABBrXB06WJ5r6/r04VwLAAAcr6GiwrI9k5aWFvX2jFVsklpjs5ompXv3qMcPAJGydu1avfjii5o6dap2794dVB133nWXzs/L08CBA8McHRA9JAWRMBobGy3HpaSwKwAAECrTNC3H8WgVAAAQC7y1Z7yNAwA4w6JFi/SXv/zFste3NykpKRo/frzuvvBC6ZJLdMcdd0gkBBFnyIQgYbhcLstxJAUBAAAAAACJPwCITd9//71uu+02zZ49O+Cyffv21c0336wbb7xRffr0kQoKwh8g4BBkQpAw6CkIAIC9uIgGAABiHT0FASC2uFwuPfbYY3rwwQdVW1sbUNmf/OQn+vWvf62LLrpIqampNkUIOAuZECQMbz0Fk5OTIxgJAAAAAABwIrfbbTmOpCAAOMvKlSt1/fXXa/Xq1X6X6dChg6644grdddddGjlypH3BAQ5FUhAJw1tPQd5zBABA6HinIAAAiHXx3FMw1uMHgBY7duzQX/7yF02ZMsXrzRxtdenSRTfffLPuvPNO9evXz+YIAeciKYiE4a2nIA1jAABCx/kUAAA4gWma2rVrl4qKitSrVy/17dvX7xuUaM8AgHO53W5NnjxZ9913n6qrq/0qc9xxx+mmm27S+PHj1blzZ5sjBJyPpCDsUVwsZWZGO4p2jMJCZZWXexzXKTWVF8gCABCi5KIiy3Nt+vbtnGsBAIDtTNPU4sWLtWzZstZhhx56qM4880wlJSX5LN+huNiyPZOUlBT19oxVbJJaY7OaprNpRj1+AAjW1q1b9bvf/U5Lli5Vd0ndJSVL6itpuaSG/aY/7rjj9PDDD+u0007jyTVAGyQFYY8zz4x2BAc4rPnP0v33RygSAADiU46kvGgHAQAAEpoh6YTmv2Ac1fxn6bHHgqw5PPK8jZw40fc0f/pT2GIBgEgaIOl1i3EnSlrU/LlLly76+9//rptuusmvm0GARENSEPaYM0caOjTaUbTz9ddfa86cOR7H9erVS5dddlmEIwIAIL5s3bpV77zzjsdxP/rRj3TCCcFengMAAPDPrFmz9M033xwwPDs7W1dddZXP8qtWrdJnn31mOT4vLy+U8EI2YcIEy3EtsVlN07VrV1199dVhjwkA7FJfX6///Oc/eurppz2Oz5G0UFJJ8/8XXnihHn/8cfXv3z9SIQIxh6Qg7NG/v5SbG+0o2mmoqFBFdrbHcR27d3dcvAAAxBqXaVqea2t79+ZcCwAAbLe8rEzy0B6pkPxqi9Rt22bZnpGfddjJn9ispknu1i3q8QOAPxoaGjRt2jT99a9/VYEfjz3u3bevHp08Weeff77tsQGxjqQgAAAAwsI0zWiHAAAAEBJf7RnTNHk3FQDYpKKiQi+//LL+9a9/qbCw0Of0HdPTpbo6ffrpp0o79NAIRAjEPh6qi4ThrWHPRUwAAAAAAOBPUhAAEF6FhYW64YYb1K9fP912221+JQRPPPFEzZ49W5KUlpZmd4hA3CApCAAAgLDgBhwAABDraLMAQOTU1dXp4Ycf1rBhw/Tss8+qpqbGr3J/+9vftGDBAuXySGQgYDw+FAmDC5UAANiL8ykAAIh19BT0ze12yzAMHqMKICSzZ8/W7bffrs2bN/tdpnfv3nr66ad17rnn2hgZEN9ICgKiUQ8AAAAAAEgKelNXV6cZM2bou+++U2pqqo466iidcsopJAcBBOSrr77SPffcozlz5vhdJiUlRdddd50eeeQRdevWzcbogPhHUhAAAABhQa98AAAQ60gKWnvjjTdUUFAgSWpoaNDnn3+u5ORkjRkzJrqBAYgJTU1NeuSRR/TQQw/J7Xb7VaZDhw669tprdd9992nQoEE2RwgkBpKCsEdxsZSZGe0o2ulQXKys8nKP4zoZhtTcsAUAAMFJKSqyPNemb9/OuRYAANjOqi0iya+2SFpJidc6zPx8KTU1iMjCw5/ls5qms2kG3R6rqqpS+ZdfKmu/4fmffqoxXKgH4MOuXbt05513auGiRRogKVlSX0nLJTV4mL5Pnz669tprdfPNN2vAgAERjRWIdyQFYY8zz4x2BAcY2fxn6cEHIxQJAADxabCkvGgHAQAAElqet5ETJ/os/+Pmv1DqsFOet5HNsXmd5k9/Cmq+nb3VG2SdABJHd0kvexh+oqRFbf7Pzs7Www8/rBtuuEEdOnSITHBAgiEpCHvMmSMNHRrtKNpZu3atPvnkE4/jsrOzddVVV0U4IgDA/lwul5YvX66tW7eqc+fOOvzww5WTkxPtsOCnzZs3a8aMGR7HHX300Tr55JMjHBEAAEg0EyZMsByXl5fns/yiRYu0fPlyy/G33HKL0tLSgogsPPxZPqtpunbtqquvvjqo+S5evFhLly71OO7OO+/kvYIJrqioSBs3blRDQ4MGDx6sww47jG0Camho0NSpU/Wvf/1LrqamduNyJC2UVNJm2PXXX69HHnlEPXv2jGSYQMIhKQh79O8v5eZGO4p2GnbtUkV2tsdxKd27Oy5eAEg0pmnqjVdf1XfffbdvQG2tVs6fr1/96lfK5RgdE1z19Zbn2ro+fTjXAgAA21m1RST51Rap/e47r3WYgwZJ6elBRBYe/iyf1TTJ3boF3R6ry8+3nndurkQCKGFt2rRJb376aes74paXlemktDSdeuqpUY4M0bRq1Spdd911Wr16tdfpmiT95Cc/0aOPPqrjjjsuIrEBiS4p2gEATpDILwoHAKcoKyv7ISHYrKmpyeud2nAWzqcAACDW+WrP0N4B2vv8889bE4ItvvjiCzU2NkYpIkTTsmXLdO6552r06NE+E4KSNOnxx/X555+TEAQiiKQgEgYNdwBwtkWLFnkcvmHDhghHgmB5O9dyHgYAALGANkvg+M4Sl9vtVnFx8QHDm5qa+B2XYNavX68zzzxTxx13nOUrJdoaPmyYJGncuHE8ahaIMJKCgGjAAoATVFRURDsEAAAAJLh47ikYy7HDmZr2e09cW1VVVRGMBNHidrv12GOPafTo0Zo7d65fZa6//npNnz7d5sgAWOGdgkgYNH4BALAX51oAABBOVVVV+uabb1RdXa2DDz5YOTk5ts8znpOCduE7SVze1j29v+JbQ0OD3nnnHT322GN+v/IjMzNTkyZN0jXXXCMVFNgbIABLJAUB0YAFAMBusXiudbvd+v7771VUVKQ+ffpoyJAhSkmh+QwAQCTs2rVLL774Ymtvo/nz5+tnP/uZ7e+dIinoWaIuN7wjKZh4duzYoaefflpTpkxRSUmJ3+XGjh2rl19+Wf3797cxOgD+4KoGAAAAwiKeLha53W699957Wrt2beuwgw46SJdeeqk6dOgQxcgAAEgMn3766QGPH5wzZ45GjRqltLQ02+ZLUhDwn9vtthyXlMRbq+LJ2rVr9a9//UtvvPGGGhoa/C531FFH6Z577tHFF1/MNgE4BHsiEoa3hjuNegCIPu4kjX3xdD79/vvv2yUEW4atWbMmShEBAJBY1q9ff8Aw0zT11Vdf2TrfeGrPhJO3tjrfWeLylhTk913sM01TX3zxhc4991wdccQReumll/xOCJ5wwgmaNWuWVq5cqV/84hckBAEHoacg7FFcLGVmRjuKdlK3bVNWebnHcV2amniWNQBEWWZZmeVxmmN0bOhQXGy5DtO3b/d7PbpcLhUVFammpkY5OTnq0qVLGKP0z+r33vO4LCvfeUeju3ePeDwAACQaqzbFntWrpV69Ai4nya+2SFpJie86Onf2WY9d/Fk+q2k6u91Bt6vTt2/33lbnEesJyayuttwu0kpK+B0Xo8rLy/XMM8/o/fffV/G2bZKkQW3GJ0vqK2m5pP1ThJmZmXrsscd0/fXXkxgGHMrgbh6Eg2EYIySta/l/naQR0QsHAAAAAAAAAGCTEyUtavP/mWeeqf/+978aMmSI78IFBdLgwVJ+vpSbG3wQ4arH7npDqS/YsuFYBju+X7vWmR31FxRo/eDBGtl+6EjTNA98nEEM4TYe2GPOHGno0GhH0c6XX36pBQsWeBzXuXNnXXfddRGOCADQ1ttvv62ioiKP4/Ly8iIbDILy9ddfa86cOR7HjRo1SmPHjvVZx9y5c7Vhw4Z2wzp06KAbb7wxou/ymzBhguU4tkcAAOxndS4ePny4zjjjjIDLSf6dwz21Rdq69tpro/IUgxb+LJ/VNFlZWbrmmmuCmu8XX3yhZcuWeRz361//mncuJ6iKigpNnTrV47jTTjtNhx9+eIQjQrDy8/N13333acnSpT6nzZG0UFKJpI4dO+qKK67Q7bffrpEjR/ooCcAJSArCHv3725PpD0HDjh2qyM72OM7dubPj4gWARLO3Z09V7N3reSTH6JjQWFlpea6t7d3br/W4uKRE8lDHuupqHXXUUaGG6Der5ZDE9ggAQARYnYtrevXyei4O9Rxe06uXKkpKLMe7Bw6Uunb1WY9d/Fk+q2mSsrODbsfUff+99bxzcyWSggnJtWuX5XbR6MBrg2jP7Xbrk08+0VNPPaX3339fLpcroPL33Hefxv/2t+rWrZtNEQKwA2/4RMLgUbkA4Gy8byD2eTvXhnoe3rRpU0jlAQAA/OGrzcK1hQPxnSQut9ttOY7fd87V0NCgiRMnaujQoTrjjDP0zjvv+J0QPProozX5iSckSTfeeCMJQSAG0VMQEA1YAACcrqFh/1fYAwAAhF8sJwXr6uqUnp4e7TCQQLztD0lJ9EVxoqVLl+r666/XunXr/C6TnJys0047Tb/5zW90+umnyygstDFCAHYjKYiEYWfvBQAAYO/5tL6+3ra6AQAAWnjr+SQ5+/rBP//5Tx1zzDHRDgMJhJ6CsaGkpESLFi3S66+/runTp/t9HEtNTdXvf/973X777cr29uhiADGFpCAAAIg5pmlq586d2rVrlwYMGKDMzMxohwTZewMOPQUBAEAkxHJPQdM0tXz58qjMF4mJpKAzmaaplStX6u2339b06dP17bffBlzHmDFj9NRTT+nQQw+1IUIA0URSEBANWACIJU1NTZo+fbo2bNjQOuy8887TqFGjohcUbEdSEAAARALXBwD/eUsK8vjQyDJNU0uXLtXbb7+tt99+W4VBPuJzyJAhuv/++3X11VeT2AXiFElBJAwa9gDgbP7+4Fi2bFm7hKAkvf/++xo0aBCPNIkyO8+1dXV1ttUNAADQIpYfHwpEGj0Fo880Tb333nu6//77tXHjxqDqSElJ0fnnn6+bb75Zp5xyCgldIM6RFIQ9ioslhz3KLa2kRFnl5R7HpdfWSgUFkQ0IANBOZlmZ5XG67TF6/YcfKqu6+oBJNv7vf/rxj39sU3TwR+q2bdbn2u3b/TrXWm4Dkuo3bVJaWlqw4QXEWxy0GQAAsJ/VuTijtNTruTjUc3hGaanXOozCQmnvXp/12MXr8vnQ2e0Ouh2Tvn2797Z6hNpocJakoiLL7SKtpETKyIhwRIll3bp1evjhh7Vk6VJJ0qDm4cmS+kpaLsnX81Z+8Ytf6D//+Y/69etnX6AAHMXgDieEg2EYIySta/l/naQR0QsHAAAAAAAAABLWiZIWWYw75JBD9O9//1vnnntu4BUXFEiDB0v5+VJubnDBhaOOcNZjd72h1BdsWSetJ7vrtKv+ggKtHzxYI9sPHWma5vrQKo4uegrCHnPmSEOHRjuKdlasWKGFCxd6HJeWlqZbbrklwhEBANqaPn26tmzZ4nFcXl5e6+cJEyZ4nIZjefStWbNG8+bN8zju8MMP12mnneazDqv1K0lZWVk6/fTTtWTJElVVValnz5466aSTlJWVFWzIQcXRdnsEAAD2sDoXDx8+XGeccUbA5ST/zuHvvfeeCrz0prv88svVs2dPn/XYxdvy+SPYdswXX3yhZcuWeRx38803Kz09PYSoEKsKCwv17rvvehx3zjnnaMiQIRGOKL5VVlbqqaee0vPPP69aL69XyJG0UFLJfsO7du2qn/3sZ7r++ut5TCiQwEgKwh79+9uT6Q9BXVGRKizeNZWenu64eAEg0dT06qWKqirPI9sco62O5WlpaRzLo6xh507L9VPTq5df68eqvCRVSHpxwQK5XC4pKUlbdu3Sd59+qltvvVWpqalBRh14HE7bzrZt26Z169apvr5ehx56qIY67MYsAACCYXUuru3d2+u5ONRzeFX37qqoqLAc3zRggNSnj8967OJ1+fywprJSRxxxRMDlajdvtpy3OWiQ1LFjSHEhNjU0NlpuFw39+jmu3RyrXC6XnnzyST344IPavXu33+WM5GT97PTTNX78eJ199tnq3bs373oEQFIQkHhROAAA4RCJ86nL5Wr3f0VFhVasWKETTjjB9nk70ebNm/Xaa6+pqalJkrRq1SqdfvrpCft9AAAQKl/tmVi/frB48eKgkoKAJ263O9ohxL2lS5fqhhtu0Nq1a/2a3jAMnTJmjDR/vlasWKGuo0bZGyCAmEMfYQAAAIRFtC6SffTRR1GZrxPMnz+/NSHY4tNPPz0geQoAQCyJZuIt3pOC27dvV2NjY1jrjPXvBMHzlhRkuwjNihUrdNlll+nHP/6x3wnB0047TatXr9bUqVMl7XtcKADsj6QgEoa3xggNFQCIfRzLnc3u9ePtMV/xqqmpSUVFRQcMd7lc2rRpUxQiAgAg9vnq+RQPbc5gloFHDsITegqGl9vt1nvvvaeTTz5Zxx57rF577TW/9tehQ4dqxowZ+uijj+gJDMAnHh8KAACAsIjmRbLS0lJlZWVFbf7R4K03YCImSQEA8cPJPQUTFd8LPKGnYPjMnTtX//d//6evvvrK7zI9e/bUH/7wB918883q0KGDjdEBiCckBZEw6CkIAPGNY3liS8THZXrb5rmbHwCA4MT740PtwHeSuOgpGBrTNDVv3jz99a9/1aeffup3uYyMDP32t7/Vb3/7W3Xu3NnGCAHEI5KCAAAACAtuwIksbxdhkpJ4SwAAIHY5uacgbRrgB7T/g/fVV1/prrvuCigZKEkXX3yx/vOf/ygnJ8emyADEO5KCsEdxsZSZGe0o2kkrKVFWebnHcSkpKVJBQWQDAgC0k1lWZnmcbnuMtpqmQ4cOHMujLHXbNsv103HHDr/Wj+U24ENKUZHUsWNQZQOOwynbWU2NZZxpJSXOiRMAgEA1NQXdpgj1HJ5RWuq1jqQtW6SmJp/12CXYtlI7BQVSampARdK3b/feVnfYNSBERkpRkfXvs+JiiV5sB3C5XJo0aZImTZokt2lqkKRkSX0lLZfUYFHukEMO0aOPPqpx48ZFLFYA8cngrg2Eg2EYIySta/l/naQR0QsHAAAAAAAAAGLGiZIW7Tds7Nixuuuuu3TOOef4/zSQggJp8GApP1/KzQ1vkOGqP1wx2rWs4a43lPqCLeuk9WR3nXbVX1Cg9YMHa2T7oSNN01wfWsXRRU9B2GPOHGno0GhH0c6SJUu0ZMkSj+OSk5N1++23RzgiAEBb7733ngos7t7Oy8tr/TxhwgSP03Asj76VK1fq888/9zhu+PDhOuOMM7yWN01TEydODGreZ599tg455JCgynpitZ1J7bfHaKqsrNTzzz/vcdxpp52mww8/PMIRAQAQHi6XS//97389jvPVpgj1HP7KK6+orKzMcnxycrIuuugi9evXz2dddvC2fP665ZZblJaWFlCZRYsWafny5R7H3XDDDcqkp2BCWr16tebPn+9x3Jlnnqlhw4ZFNiCH2rhxo5544gnNnDlTnrrn5EhaKKmkzbCLLrpI999/v44++ujIBAkgYZAUhD3697cn0x+CuoICVWRnexyXlJTkuHgBINHs7dlTFRUVnke2OUZbHcuTk5M5lkdZXXGx5fqp7d3b5/ox3W7L8r409OsX1vXvNQ6HbGeu3bst43Tl5DgmTgAAAmU2Ngbdpgj1HF6Rna0Kl8vrNC8uWKDrrrtOvXr18llfuAXbVmrLHDRISk8PqEzd5s2W83YPHMhjIhNU3fbtlttFuNvnsai0tFR33XWXXn31Vb+mb5I0ZswY/eMf/9Bxxx1nb3AAEpaffY4BAACA4PnzyHqnPNbeVxxOidPtdluO8/vRQgAAoB1/zvMNDQ1avz52nxwW7rbMihUrwlofYoe39qhT2szR4Ha79cILL2jYsGF+JwQl6c033tD8+fNJCAKwFVcLACV2QwUAnMIwjJDKcyyPvmiug3DOOx6SgqHuTwAARFMstCk+++wzmyOJHZ999pmKioqiHQaiwFt7NFF99tlnOvbYY3XNNddo9+7dPqfPzs7WfydNkiT96Ec/sjs8ACApiMThlAt4AADAM6ecq31d3HDKxQ96CgIA4lUsJAVjmR3LuHr16rDXCeejp+AP6urqdPfdd2vMmDFatWqVX2VOPvlkffXVVzrnnHNsjg4AfsDVAkCJ11ABgHjEsTz6vK0Du9dPOOtvamqK2LxCQU9BAEAisvsc55Sbf+xkR1tm5cqVYa8TzueUdnG0rV69WqNHj9Zjjz3m1/TDhg3Tyy+/rE8//VQDBgywOToAaI+kIBIGDRUAiF0cw2NDqOvJKeuZnoIAAEQXPQWB2JDoPQVN09SECRN03HHHacOGDT6nHz58uN555x2tW7dOl19+OW12AFGREu0AAAAAACeJh6QgPQUBAAhOoiQyIlEG8c8p7eJo2Lt3r6677jq98cYbPqft0KGDHnjgAd17771KTU2NQHQAYI2kINDMNE0uoAFAFHk7BvtzjOZCRfSF+vjQUNZhONe/r4sbTtnW6CkIAIhXvs61VVVVcrvdysrKivi840EiLCMiI1F7Cn7zzTe6+OKLtWbNGp/TXnDBBXrkkUd02GGHRSAyAPCNpCDsUVwsZWZGO4p20kpKlFVebj1BQYFEUhAAoiazrMz6OF1QIDUnOXweyxE13s61GaWlvtdPQ4P39etFh+JiqUuXoMruz6ys9BqHmZ/viHaOUVhoGWfy1q0SdyEDAGKUUVdneY77ft48fT9vniQpJydH55xzjtLT01vHh9pW7LRzp5JqavwLNAptz2DbSm0ZhYVSp04BlUnfvt33vGmLJ5zUbdsst4vUbduk7t0jHJG9TNPUq6++qocffli1dXUa1Dw8WVJfScslNTQP69Onj55//nn9/Oc/j0qsAGDFiOe7NhA5hmGMkLSu5f91kkZELxwAAAAAAAAAiJgTJS2SdNFFF+mpp55Sd3+TogUF0uDBUn6+lJsbeiDhrs+O+sMVo13L6qR1EmxZJ60nu+u0q/6CAq0fPFgj2w8daZrm+tAqji56CsIec+ZIQ4dGO4p2Fi5cqBUrVliOv+OOO3jUFgBE0QcffKDvv//e47jbb79dycnJkqQJEyZY1pGXl2dDZPDX4sWLtXTpUo/jDj30UJ93ydbX12vKlClBzfuMM87Q8OHDgyq7v927d2vatGmW46+99lp1CVOvxFBs3rxZM2bM8Dhu3LhxOvjggyMcEQAA4VFbW6unnnrK7+kvuOACDRq0r89OKG3Fb7/9Vh9++KHf841G29Pb8vnruuuuU+fOnQMq4+uaikRbPBHNmzfP8hGap556qo444ogIRxR+pmnqlVde0Z/+9Cc1ulwep8mRtFBSeWqqnp08Wddeey2vKALgWCQFYY/+/e3J9Ieg7rvvVJGdbTneHDRIar7gDACIvL09e6rC4tEz5qBBUsq+Zou3Y7nTzj2Jpi4/33L91PTq5XP9mHV13tevFw39+oVt/Td27Og1jqYBA6Qg4wynhtpayzgbHdgWAwDAX+69ewNqE3yyebOuHTNGUvBtxbVr12r6F18Edo6Pwrk22LZSW+6BA6UA38fo65qKJNoeCaimVy/L7aK+b9+Y3yYaGxt122236emnn/Zr+jenT9eIs8+2OSoACA3dogAAgCNwJ2XsC/Wx9E55rL3b7Q5pfKR4i8Mp3yUAAJFQXFwcch3Lli0LQySxgXYCwsUp7WI77Nq1S2eccYZfCcExJ58sSRoxgpcpAXA+egoiYfhq9NIoBgDnCvYY3djYqAULFqigoEBdu3bVscce2/poKYSft/UUS+dZkoIAAERXoOexcJybi4qKQq4DSDTx2h79+uuvNW7cOG3evNnrdOnp6frXv/6lX599tnTQQRGKDgBCQ1IQAADEJdM09eqrr6qgoEDSvjvIN23apF/96lckBh0qlAsH4bzo4OvColMucDglOQkAQKxzyrk9UhJteWGfeEwKzpkzR5dccokqKyu9Tvfzn/9cjz76qIYNGyY1/+YEgFjA40ORMOgpCACxK5hjdElJSWtCsIXL5dKKFSvCFBX2Fy/n0qamJq/jnZKMi8eLMAAASJE/jznl3A7Emnhrcz777LM666yzvCYEU1NT9eSTT+rDDz/clxAEgBhDUhAAAMSlBQsWeBy+bt26CEcCyb8LBrHSU9ApFw6dEgcAALEu0c6p8ZbIQfTEy01q9fX1+r//+z/dcMMNXpepZ8+emjdvnm666SYZhhHBCAEgfHh8KNAslhorABCPvP2oCuYYvWvXrlDCQRDi5VwaK48P9daj0SkxAgAQjEifx3w9JSDe0E5AuMRDQn3NmjW64oortGbNGq/TjRw5UjNmzFBubm5kAgMAm5AUhD2Ki6XMzGhH0U5aSYmyysstx5v5+VJaWgQjAgC0lVFaan2cLihoPUZ7O5a3fZdDRmmpXFaPfeGdD7bwdq7NKC31/b3v3et9/XrRobhY6tYtqLL7MwoLvcZhFBZKjY1hmVcoOhQXW8bZobhY6tQpwhEBABAeRlVV4G2CggKZpul3W7Etd01NcG2QKLQpg20rtZW0ZYtUVRVQmfTt233PmzZ2wum4Y4fldpG6bZujt4mmpiY9++yzevTRR9XQ2KhBkpIl9ZW0XFJDm2nPOeccvfrqq+rcuXNUYgWAcDK4OwjhYBjGCEmtz2NbJ2lE9MIBAAAAAAAAgICdKGlR8+ff/OY3+sc//qHk5GTrAgUF0uDBUn6+FExPwlDL212fHfWHK0a7ltVJ6yTYsk5aT3bXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7SxYsEBffvml5fhbbrlFafQUBIComTFjhjZv3uxxXNtj9IQJEyzryMvLa/08ZcoU1dfX+5wO4ePtXDtkyBCdc845XstXV1fr2WefDWrep556qo444oigyu7vm2++0axZsyzHjx8/Xjk5OWGZVyiWL1+uRYsWeRz3s5/9TIcddliEIwIAIDwqKyv1/PPPB1QmLy9Pbrdbjz/+uNdpPKmoqNDUqVMDmp+3+uzkrS3sryuuuELdu3cPqMzChQu1YsUKr9PQxk4806dP15YtWzyOO+mkkzR69OgIR+TbzJkzdf/996vSQ2/ZHEkLJZVo3+stJk6cqNtvvz3SIQKArUgKwh79+9uT6Q9B7caNqsjOthxvDhokpadHMCIAQFs1vXqpYvduj+PcAwdKHTtKktdjedtzz67OndWUkeFzOoSPt3NtTa9ePr93s6rK+/r1oqFfv7Ct13ofcYRzXqGo3bLFMk6nxAgAQDDce/YE3ibIzZXZ1OR3W7Gtxp07g2uDROFcG2xbqS33wIFSz54Blan77jvf86btkXCqundXhcWjaOv79nXUNmGapv7xj3/ovvvu8zlt127dNGPaNJ199tkRiAwAIoukIBKGr0fl8ihdAIguwzDCWl9TU1NY60No/DnPOuVc7Ha7QxofKd7icMp3CQBAMII9jwVbzinn9kgJ5nuibQFPvG0XTtpmqqurdd111+nNN9/0a/o5c+aoxzHH2BwVAERHUrQDAAAA8MVJPyhhLdT1FEr5cG4j8ZAUBAAgEQXbHuBmMiA4sdAe3bRpk4477jifCcHOnTvr3//6lySpR48ekQgNAKKCpCDQjAvOAABAip2nC9BTEAAQryLdUzDRkoKxkMhBbHB6e/Tdd9/Vscceqw0bNnid7ic/+Ym++uorjR8/PkKRAUD0kBREwnBCYwQAEBqO5c4W6uODnNJT0FddTrmQlmgXMAEA8IWkoH+eeuopffDBB2psbDxgXF1dnb7++mvl5+fL5XJFITrEEqe0i/f39ddf6xe/+IUuvPBCVVm887DFn/70J82fP1+DBw+OUHQAEF28UxBoxoVmAHCulmM0x2pni5f1EytJQaffmQ0AQLCCfecdSUH/ffnll6qpqdGll17aOmzLli165ZVX1NDQIEnq3r27rrzySnXp0iVaYcLhnNYe/eyzz/SXv/xFn3zyic/5p6en69lnn9Xll18eoegAwBnoKYiEwcUxAACcLVZ6CjqlTeGU5CQAAE4QSlIwUc+pmzZtUm1traR939+bb77ZmhCUpF27dul///tftMJDDHBKUrCpqUl33323xowZo48//tjnvAcPHqzFixeTEASQkEgKAs2ccoEPAHAgegrGhlAfH+oUvi4MOuXCoVMuwgAAEG70FIycjRs3StrXS3Dv3r0HjP/6669pV8CSE7aN0tJSjRs3To899phf05911llauXKlRo0aZW9gAOBQPD4U9iguljIzox1FOx137FBWebnleKOw0HExA0AiySwrszxOtxyjTZfL67FcBQWtH/2dDuHj7VybWVbm83s39uzxvt68SN22LWzrNXXbNq9xpBQVSQ54jFZaSYllnB2Ki6Vu3SIcEQAA4ZG0e3fgbYKCAqm+Pqg2YNKWLcG1QaLQpgy2rWQlpahIys7W9qVLLet2f/+90rdv9z1v2tgJJ7OsTI179ngcF872uSemaeqDDz7QQw89pPI9ezSoeXiypL6SlktqaDO9YRh68MEH9Yc//EFJSfSTAZC4DCfc0YHYZxjGCEnrWv5fJ2lE9MIBAAAAAAAAkKBOlLSo+fPIkSP12GOP6ac//an3QgUF0uDBUn6+lJvr/8yCLReu8nbXZ0f94YrRrmV10jqJ1nYZrjoiUadd9RcUaP3gwRrZfuhI0zTXh1ZxdNFTEPaYM0caOjTaUbTzySefaO3atZbjr7/+enXq1CmCEQEA2vrwww/17bffehzXcoxubGzUE088YVlHXl5e6+cJEyb4NR3C56OPPtL69Z7bxgcddJDOPfdcr+XLy8v14osvBjXvMWPG6Kijjgqq7P5Wrlypzz//3HL8aaedpsMPPzws8wrF7NmztWnTJo/jTj31VB1xxBERjggAgPDYtWuXXnrppYDK/PrXv1Z9fb2effZZy2ms2oAbNmzQ3LlzA5qft/rs5K2NG4yf//znOvTQQ7V8+XItWrTI4zS33nqrli5dqpUrV3qtizZ24nn++edVWVnpcdzxxx+v448/Pqzzc7lceuONN/SPf/xDlVVVHqfJkbRQUomkESNG6IEHHtAll1xC70AAaEZSEPbo39+eTH8Ianr1UkV2tuV498CBjngUGAAkqppevVSxc6fHcS3HaLOhweuxvOXc09TU5Nd0CK/a3r1VsW2bx3HVPXr4/N7dnTt7X29e1PXpE7b1Wldc7DWOcM4rFNU9eqiitNTjuIZ+/RwRIwAAwWjKyAi4TWAOGiR3XV1QbcDaXbuCa4NE4VwbbFvJinvgQCk3Vw1e2j/moEGqKyz0OW9z0CAZhhHW+OBsFdnZqkxO9jgunG1ml8ulmTNn6oEHHrC8CXF/z02dqjFXXcU2CQD74RYJAAAQM/x97LnL5bI5EngS6mPpnfJYe7fb7XV8LMTplBgBAIgU0zR9nv+sxvs698ezlJR9/QW8JU78/X7+85//aNmyZWGJC7HB7vbozp07df/992vgwIG64IIL/EoIHtr85LKxY8eSEAQAD+gpCDTj4hkARJe3H2wtx2h/j9WNjY1hiQmRFcq5OJzncV91OeXCoVPiABCYqqoqrVixQqWlpcrJydExxxyjtLS0aIcFOEow5/VQ2gJNTU1Bl411yc29vHy1xf35fqurqzV79mx17txZw4YNC1uMcC67rqU1NDTo5Zdf1j333KOdFk+T2V9KSop+//vf6/7LLpMOPdSWuAAgHpAURMIg6QcAiYOkYHR4O9fG0nk4HpKCsfR9A4mkqqpKU6dOVXl5uSRp48aN2rhxo6688kp16NAhytEBsc3fnoKekl8kBcPTU7DFunXrSAomCDvao0uWLNGVV15p+b55T44++mhNnTp13zu1CwqCmi8AJAoeHwo04+IZADgXPQUTAz0FA+OUOAD4b82aNa0JwRZFRUX67rvvohQR4EzB9hQMtj2QyEnBFv48tcNfGzZsCDUcxIhwtsF37typG2+8USeccILfCcG0tDT97W9/09KlS/clBAEAPpEURMII9t0CAADn4J2CzhYv59JYaTPQUxCIPR9//LHH4Z9++mmEIwHiU7Dn8EROCrZ8J756CvJuNngSjvZoU1OTnn76aR166KF65pln/C532WWXadOmTbr33ntb340JAPCNIyYAAHC8QBMcJESiI9THhzplvcVKUtDbBUynxAjAP2VlZdEOAXCUSPcUpPe976QgbQt4Eup2sXbtWt1www1aunSpX9N37NhRF110ke68804dc8wxIc0bABIVSUHYo7hYysyMdhTtdNyxQ1n7PaqnLaOwUKqoiGBEAIC2MsvKLI/TSVu27DtG19R4PZa3vD8iqaTEr+kQXhmlpZbfe2ZZmc/vPcnLNuBL6rZtYVuvqdu2eY0jnPMKhbfvO62kxBExAmiPcxPgnyQfv989KiiQUV/vtZyZny956FHUobg4uDZIFPbbYNtKVlKKiiTtaztY1W0UFip9+/bA5s0xLSF03rXL8kY1X+3R559/Xo888ohcTU0a1DwsWVJfScslNbSZtkOHDrr33nv1m9/8RllZWeEJHgASlMGdPggHwzBGSFrX8v86SSOiFw4AAAAAAACAGHSipEXNny+99FI99NBDOvTQQ/0rXFAgDR4s5edLubmBzTjYsqHMMxzl7a7PjvrDFaNdy+qkdRKt7TJcdUSiTrvqLyjQ+sGDNbL90JGmaa4PreLooqcg7DFnjjR0aLSjaGfu3LleX3Z91VVXKTs7O4IRAQDamj17tjZt2uRx3NVXX62uXbuqurpazz77rGUdeXl5kqTi4mK99dZbltPdeeedvBfFBt7W4cCBA3XhhRd6LV9WVqZXXnklqHmfcMIJ+tGPfhRU2f199tlnWrVqleX4448/Xscff3xY5hWKV155xfKRgyeffLKOPvroCEcEwJcJEyZYjms5hwGQtm/frtdffz2gMtddd53q6+v18ssvW07z61//Wh06dDhg+CeffKK1a9cGHGc02pTejiPBuOiiizRgwACtW7fO8r2nV1xxhdavX++1fbQ/jmmJwdv2OHr0aJ100knthtXV1emuu+7S7P/9z2OZHEkLJZVIOuigg/T444/r7LPPDlu8AACSgrBL//72ZPpDUNOrlypKSizHuwcOlLp3j2BEAIC2anr1UkVpqcdxTQMGSN27y6yqUoW3Gziazz0uw/A9HUnBsNvbs6flOtzbs6fPtoErLc37evOivm/fsLU9ajdt8hpHbe/ejmjnVHbrpgqXy+O4uj59HBEjgPasji0pKSnss0AbTR06BNwmcA8cqKa6Ot9tQA9JweoePYJqg5iDBslISgq4XCiCbStZaWy+ftNYXm5ZtysnR3W7dgU2b45pcc80zYDazLt27dJ5v/qVFi1aZFmmxR15ebrpb39Tenp6OEIFALRBUhAJw9ejcnmULgBElz93Wft7rPbnmE9PwfCL5rk0nPOOlTaDU+IAELrk5ORohwAEbfv27dq4caNM09Rhhx2mvn37hlxnMOc40zSDPoe73e6A5+etvljkrW0cT8uJ8Alku8jPz9fPf/5zy6eKtBg7Zoy0YIHuvPNOiYQgANiCpCAAAHC8lh+c4UwKIrL8+c6dsl6CvTDoJE75LgH4JyWFn+aITd98843efPNNNTU1SZIWLlyo8ePHa9iwYRGPxZ+koJWW+APldrvjJqnvLSkYD20jhJ+v7cI0TblcLj3zzDP6wx/+oF27dllOm5KSoieffFLXnnqqdNBB4Q4VANBGZJ9xADgYF88AwPlICjpbqN+rU9ZLrGw/TokDQOhICiJWzZ07t11Cze12a86cOVFpE4TSUzDYpGA8nItbloGkIALla7v49ttvdeSRR+rWW2/1mhDs3LmzZs2apeuuu46nuQBABPDLAwkjHhrrABAIl8ulrVu3qqqqSrm5uerSpUu0QwpaoMfwWEnqIHwS8fGh3sRCjAB+EC89jZBYysvLPV7or6ioUGlpqXr37h3xmII9//H4UB4fisB52y42bdqk6dOnq76+3msd/fr106xZs3TkkUeGOzwAgAWSgkAzGrkA4klNTY2mTZumHTt2SJKSkpKi9iincPL3XYEc06PD2/ceS48PJSkIwA7ekg70FEQsqq6uthxXVVUVUlKQnoKRR09BBMpqu1i+fLlmzZrlc/8YMWKEZs+erQEDBtgRHgDAAo8PRcKIp8Y6APjy8ccftyYEpX0/2KZPn67GxsYoRuWdP3cn+3uhJx6SOrEomt9rJHsKOkWsxAlgH5fLZTmOnoKIRd7OQ9F4BGA03ikYD+fiWLpxC86y/3ZhmqY+/vhjffjhhz63mbFjx2rhwoUkBAEgCrgdEfYoLpYyM6MdRTsZpaXKKi+3HG8UFko1NRGMCADs8/28ecryMPzbjz7S8OHDIx6PP7wdp5O2bJFqamSUl3s9lpv5+VJyspK3bvU9XVpayDGjvcyyMsvvPTMzUyoo8Fo+ads2r+vNm/Tt233WH0hd3uJIKykJ27xC0XnXLrks4kzdts0RMQL4QVNtreWxpWvHjuyziDlJRUWW23Tqtm1SCMlub3VbMQoLlVRX571cQYGUnn7A4I47dgTXBikokDp2DLxcCIJtK1lJKSqSUlLUobjYa1vcV/voABzT4p65d2/rNtHU1KSPP/5YWzdu1CBJyZL6SlouqaFNmfT0dP32t7/VH/7wB6WmpkY+6ADt2LFDCxcu1Pbt29W/f3+NHTtWXbt2jXZYABASg7t9EA6GYYyQtK7l/3WSRkQvHAAAAAAAAABRdKKkRc2fL7jgAk2YMEEDBw60LlBQIA0eLOXnS7m5wc00lDralN3dpYueffZZ1dbWto7OysrSDTfcsO+Gx3DGHY7ltrM+O+oPV4x2LauT1kmwZZ20nuyu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2pk1a5a++eYby/GXX365evbsGcGIAMA+EyZM8Dj8kEMO0dlnnx3ZYPw0Z84cff311x7HtRyjd+/erWnTplnWceuttyo1NVWbN2/WjBkzLKe75ZZblEZPwbB7//33lZ+f73FcTk6Oxo8f77V8cXGx3nrrraDmfdxxx+nHP/5xUGX3521blKSjjjpKY8aMCcu8QvHCCy9oz549Hscdf/zxOv744yMbEACv9uzZoxdeeMHjuMGDB+u8886LbEBAiLZs2aLp06d7HDd+/Hjl5OQEXXdRUZHefvvtgMpcfvnlqq+v91rupptuUkcPPftef/11bd++PeA4PSYHbGbVzg/Weeedp8GDB2vjxo363//+ZznNli1b9OWXX/pd7x133KGkJN5aFM8qKyv13HPP6eOPP9b6DRvajcuRtFBSSfP/9913nx5++OGY2ibWrVvXLiEoSRUVFdq0aZOOPvroKEUFAKEjKQh79O9vT6Y/BDW9eqmirMxyfNOAAVKfPhGMCADsU5Gd7XH43p49HXd8blHTq5cqLC7GtByjmzIzLZdNksxBg6S0NDXU1nqdzj1wYMQf9ZQI9vbsqQqLJFXXHj18bntNSUle15s3tb17h23b3tuzp+W2GO55haKyWzdVWLyzqb5vX0fECOAHDaWllse4uj592GcRcxqbmiy3affAgZK33kA+uGTdnrXSNGCAGn20Ac1Bg6SMjAOGV/fooYr6+kDD3LecnTsHXC4UwbaVrLhycqTcXDVWVVnW3di/v+oaGgKat3vgQCWlcNkxntWXlemlzz/Xl/slBNsyDUNTJk/WzTffHMHIwuPTTz/1OHzGjBkkBQHENM7OSBi+HpXLo3QBJAInH+sMi+RGIFqWj2O+/UzT1Pr16/Xdd98pMzNThx9+uNfv1Z/v3Cnrxe12ex3vlDi9iYUYgUTjcrksx6Vw4RwxyNu5JtR2XTDnMdM0g24DBnvejIfzrT/tZ19tI2/1Ij7t3LlTF154oc/eo08//bR+ev31EYoKAOAPfnkAzWiwAkgEsXqsCzTZR1LQfp988okWLVrU+v/y5ctj5nFA5eXlKisrU05OjjI89BaIle0n1CQsgMjylhRMTk6OYCRAeHhLFIXjZq9gRDq5F0/nW2/HqGCSgsGUQWxYtWqVLrjgAm3ZssVymrTUVKmhQT/96U8jGBkAwB8kBQEASCCx/uOcpKAz1NTUtEsISlJjY2PI9YayXvwp63a79cEHH+irr75qHTZu3LgDHv/D9gHADt4uuMfKTRVAW3aeL+kpGDm7du3S1KlTvSZ4/Plu9xfrvztwoPr6ek2ePFn333+/6urqLKdLSUnRuHHjpHfeiWB0AAB/kRREwuACMQDE/rHOV/wtFx9ifTmdbvXq1QGXccI6WbVqVbuEoLTvnSADBw5Ujx49WofFSpuBnoJAbPGWFGSfRSyy8zxkV1Iw3CKd+LJj+ebOnetzGnoKJjbTNPXmm2/q3nvvVUFBgddpk5OT9ctf/lI53bpFJjgAQMC4HREAIogLPoi2WN0G/Y073NPBs127dtlSr909BRcvXuxx+P7vQomVpCCA2OItKQjEIm9Jn2icK0N5f3Ei9xT0Bz0FE9eePXv0y1/+UpdeeqnPhGBGRoauuOIKHXzwwZEJDgAQFHoKImFwgQ/RVFtbq9mzZ2vz5s3q3Lmzjj32WI0ePTraYQExh8eHxje718vu3bs9Dl+8eLFOP/301v9j5SIWPQWB2EJSEPHG27km1HMpjw91FnoKJqbPP/9cv/rVr7w+WrZF7969demllyo7OzsCkQEAQkFSEABsZpqmXn75ZW3btk3SvndxzZw5UykpKTryyCOjHB0STaz+OA802UdS0Hns/s7DWT/bDwA78PhQxBun3ZwSyuNDYyUpGK1jRTDfLce12NXY2Kg///nPeuSRR/z6/Thy5Eide+65Sk1NjUB0AIBQkRSEPYqLpczMaEfRTkZpqbLKyy3HJ23ZInH3Lmyws6xMe9evV9Z+w7/96CMdmbX/UCA8rI53GZmZko/HvkSLt+N08tatUmOjkrZv93osNwoLpS5d1KG42K/pEBxf51RPOqWn+9z2krduDbjeFunbt/us36puwzDalfW1fP7MKxI679olo7ra47i0khJHxAjgB0lbtlifn0tL2WcRc7xt08lbt0qGEXTdwbQJkrZsUUp9vfdyBQUe24Cddu5UQxBtEKOwUNq7N+ByQXO7g24rhSKlqEgdd+4MbN4FBVLXrnaFBJsUFhYqLy9PX65erQHNw5Il9ZW0XFJDm2k7duyok08+Wccff/y+9jQAICaQFIQ9zjwz2hEcYJyvCSZOjEQYSEA9JeVZjfzd7yIXCBJKnreRDt3uzmj+86j5GN1HPpatebrhzX++pkNwTmv+C9i993odPUg+1m+IvNY9YULrxwtsjCGcro92AAACMqr5D4gXXttbIba1BiuINkHzPL2Ws4jrykDn5aM+uyTJ3raSpeblPCWIMogtgyS9azHuREmLJCUnJ+vGG2/UNddco1mzZkUuOABAWJAUhD3mzJGGDo12FO3MmDFDmzdvthx/8cUXq3///hGMCIli5syZ+u677zyOy8vLi2wwSBgT2iQ42urfv78uvvjiyAbjp7lz52rDhg0ex/3iF79Q3759VVJSojfeeMOyjquuukrZ2dlat26dPv74Y8vprrnmGmXRUzdo8+bN05o1awIq06dPH1166aVepykoKNB7770XVExHH320Tj75ZK/TWO0XhmHozjvvbP3/nXfe0datWy3rGT58uM44wzKFHTHPPPOM9lr0Thg9erROOumkCEeEaKmsrNTbb7+tysrK1mEHH3ywzj77bCUlJUUxMrS1dOlSLV682OO4YcOG6UwH3lgJeLN27Vp98sknHsedf/75ys3NDbru77//Xh988EFAZcaPH6/a2lp9+OGHltNce+216uKhp+CLL76o8iB64J133nkaPHhwwOWC1dTUpEmTJkVsfi3Gjh2r3bt3B9T++9WvfqUePXrYGBXCZf369Xr44Ye1eMkSj+NzJC2UVCJp6NChevXVVzV69GgV0MMdAGISSUHYo39/KYQfAHao7tFDFbt3W45vGjBAGjgwghEhUdT06qWKXbs8j3TYfoL4UWHxgvcu3bs7drur7d1bFSUlHse5cnKkAQPkSk62XDap+Vjeo4fqd+3yPV23biHHnKhqe/f2+v160qlHD5/bnsvlCrjeFnV9+vis36puwzDala3u0UMVFo/llPYd152wH1V266Zqi3e31Pbu7YgYERnLPv5YW5OTpTbb+Krdu3VkSooG0r51jNqCAsvjkFOOK0Ag6srKLLfpxhCvCbgaGgJuEzT276+Gmhqv5dwDB3p8pGVlt26qCDRISdM++0x/HDs2Yo9ONENoK4Wirk8f1XboENC8XTk5Up8+NkaFUFVVVemee+7Rk08+6dc7IC+59FI98Oyzymx+XRDvjQSA2MRto0AzGjOxo7a2NqbWF8/Wh5PE0r7jia/4W8b7Ox2cJZT1Es516na7w1aXndiO0WLRokUehy9YsOCAYY2NjZo3b56ee+45vfPOOyosLLQ7PDTzts+yPyMWNTU1WY4LdZsOprxpmkG3AUOJd7eXm4/jhT/fracycK7Fixfr8MMP15QpU3yuq67NT1j529/+1poQlGKnzQwAaI+kIBIGDdLYV1xcrMmTJ+uf//yn/vOf/2j58uXRDgmIObF6LPQ3bn+TgghNMDc7xNI6iYekcizECPtt2bKl3f+maeqNN97Q559/rqKiIq1bt04vvfQSj/+KEPZLxBtvCYG5c+eqpqYmgtEEl7gKh9WrV0d8npEWTPKHhJEzmaapCRMm6OSTT/brxqBTTz1V//vf/yzrCkZjYyPnRACIIpKCQDMaJM62d+9evfTSSyorK5MkVVdXa9asWdq4cWOUI/ONnoJwklg/1tFTML45padgrGw/TokDsaO0tPSAd2w3NTVpxYoVUYoosbDPIt54S/rs2rVLL774ourr64OqO5Z6Ckby9160jiPBJFxJCjpPQ0ODrr/+et11111yuVxep+3YsaMef/xxffTRR+pj8RjYQNfxrl279Pzzz+tvf/ubJkyYoGXLlgVUHgAQHiQFbWIYRqphGFcYhjHLMIxCwzDqDMMoMQzjC8MwfmsYhm1vWzYM48eGYUw2DGOVYRi7DcNoNAyj0jCMbw3DeNMwjMsMw0iza/6AHTZv3uzxB+WGDRuiEA0Qu5x8QdLbBZVAk32xktSBM8XD9hEPy4DQ7X9cXbhwocfp1q9fH4lwEh6PD0W88fb4UMnzjQh2CqWnYCj74KZNm9TY2Bh0+VhAT8HYt3v3bp155pl6/vnnfU578skna/Xq1br99tuVlGR96TiQ/aahoUEvvviitm7dKtM0VVlZqdmzZ2vdunV+1wEACA+SgjYwDOMwSUslTZP0c0kDJaVJ6iPpx5L+JWm9YRhnhXm+3Q3DeE/SF5JukXSUpGxJKZI6Sxoi6WJJrzTP/yfhnL/TcYE4tn3wwQceh69duzbCkQCxLdaPdb7ib7n4wDHfXnbdEU9PwcA4JQ441/7bSEVFRZQigcQ+i/jjT9Jn7ty5QdUdSz0FS0tL9eqrr0YkMUhPQQRj1qxZOuaYYzR//nyv0w0cOFDvvfee5s+fr6FDh/qsN5B1XFhYqKqqqgOGkxQEgMgjKRhmhmHkSPpE0qjmQaakBZKelzRDUm3z8F6S3jMM49QwzbejpI8lnddmcJmkuW3m/X2bcQdLmmsYxnHhmD8AIDbE6gVJ3ikY+/xZJ05Zb74ucDglTm9iIUYg0Xg7trDPIhb5kxCI5M0I0dyPCgoKtGbNmqjN3270FIxN3377rc455xydffbZys/P9zrtNddco3Xr1um8887z+wbAQPa5Tz75xOPwTZs2+V0HACA8UqIdQBx6VVK/5s+Fks4zTfOrlpHNjw19XdJpkjpIesswjINN09wT4nzvUftE5B8k/cc0zZYkpIx9Z/VfSHpSUpakDEnPSDoixHkfqLhYyswMe7WhyCgtVVZ5ueX45K1bJd795lhZ5eXWj6cpKIhoLIHKLCuz3vYcHjtil9U21yk52bHbXccdOyzjTikqkrTvWO3tWJ60ZYvU2KjUbdu8TmcUFko1NaEFnMB8nVM96dShg89tr0NxccD1tui4Y4fP+q3qNgyjXdlOO3d6jcOfeUVCl927lVpX53Fc+vbtjogRkWF57ExJ8X/bZnuxXfr27Zbff0ZpKesAMcfv83YQ23ZKUVHAbYKUoiJ1qKvz3Qb00FsppahIWT4eh+rLN3PnanT37iHV4VNDQ9BtpVCkbtumjjU1Ac07eetWKTnZxqjgzVtvvaUHHnhA9Q0NGtQ8LFlSX0nLJTU0D0tLS9OTTz6pq6++OuB5BJL49fW4YQBA5JAUDKPmx4Ge1Pxvg6Rxpmm2e7ahaZo7DcM4T9IaSQdJ6ibp/yTdH+Lsr27z+XHTNP+6/wTmvlt4XjcMwyXprebBhxuGcfj+cYbszDPDWl04XOBrgokTIxEGgnS7t5EOX3c/b/7zyOGxI3bleRv5hz9EKIrAnN7851HzvjJQPpatebrRzX++pkNwxjT/Bez3v/c6+mD5WL8h8lr3hAmtHy/3p7LbbgsplnC4OdoBwDHyvI189NHWj5d4m47jou2CPnYCDnVy859PQRxfDlEQbYLm+YwIIhavvzcDcX+ol3a8S5W9bSVfLNvqnnBeiaqLm/88OVHSIkk9e/bUe++9pxNOOCGoeQTSU9Cu1w8AAAJHUjC8ft3m84tWiTbTNPcahvFHSS83D7rJMIw/mqbpCmamhmF0kVpv/JGk13wUeU9Sjfb1FJSkoZLCmxScM0fy4/njkfTuu++qsLDQcvwFF1ygQYMGWY5HdE2aNMnyzrK8vLzIBhOg//3vf9q4caPHcU6PHbFrQpsER1vdunXTlVdeGdlg/PTRRx9p/fr1HsdddNFFGjBggAoLC/Xuu+9a1nHxxRerf//+Wr58uRYtWmQ53WWXXaZevXqFHHOiWrBggb788suAyvTs2VOXX+493fbdd99p5syZQcV05JFH6pRTTvE6jdV+kZSUpDvuuKP1/5deekm7du2yrGfIkCE655xzgooznKZMmaL6+nqP44444gidempYnlKPGGC1baekpOi2NgnsN998U9u2bfM4LW0S+3366af66quvPI475JBDdPbZZ0c4IiA03rbptoI5vnzzzTeaNWtWQGXOOecc1dbWWj6mUJKuuOIKdW/Tm6++vl5PP/102Hox2X0sra+v15QpU2ydhydHH3206urqtGHDBr/LjBs3TgcffLCNUWF/O3fu1O23367FS5Z4HJ8jaaGkEkkjRozQzJkzlZubG/T8AukpmJTEG6wAwClICoaJYRidtO+RoC2m+ijyjvY9xrOT9vUWPFnSvCBn32m//70+z8E0TZdhGJX6ISkY/jNz//5SCA0LO1T36KGKykrL8Y0OjBk/qMjOtv6h5vD1VtOrlyp27PA4zhw0iDvmYIuK7GyPw1O6dXPsPlPTq5cqLC5WtxyjG10uy2WTJFdOjjRokOq2bvU9Xb9+luPhXd2mTV6/X0869ujhc9trqKkJuN4WNb16+azfqu6kpKR2ZSu7dVOFl4sce3v2dMR+VJGdbZkUrO3d2xExIjIsj/kpKe22g+oePVRRW+txWrYX+9X06mW5rvw5hgFOs7dnT//O20Fs2w3V1QG3CRr69VO9j7aEe+BAqWfP1v/Xr1ql3V26BByfJZv3Y7OuLui2Uihqe/dWXV2dKkpK/C5T37cvx7UImjFjhq6//nqVlpb6nHb8JZfo9888oy4hbvv0FASA2MRtGuFzgqS05s97te8R3ZZM06yTtLjNoFBu5S6T1PaFMl6flmEYRk9JbbtH+L61D4AtAmlEA+EQ69ucr/hb7laN9eVEdMXD9hMPywCEU3Fxsd5//31NmzZNn332mVyuoB7SEhJv+yX7LJystrZWZWVlB2ynTntHmD/70f7TrFu3zq5w4orb7Q74OBVILzIEr7y8XFdddZXOPfdcnwnBo0aNkiT94x//CDkhKAW2jkkKAoBz0FMwfIa1+bzWz0eBrtIPj2Qf5m1Cb0zTbDQMY7Z+eG3eA4ZhzDFNs8aiyD/0Q0L4E9M0vwl23rHEVwOWH+LOFsvrh8YvIi0eLzq2xO3vsZxjvr2COa4Fc6Eu3PX7y9cFDqdsP06JA/HJNM24acMUFRVp2rRpamxslCTl5+dr69atuuyyyyK6jOyziDVut1sffPCB1qxZI9M01blzZ/3yl79U3759W8f7Euw+Fsz+YppmwOVibb+MVryJ8N3Govfee0+33nqrSnz04ExOTta///1v3XHuuVIYH+lKT0EAiE0kBcPn0DafrV9c196WNp8PC3H+92tfgrGTpKMlrTEM4y/a9+7gIkk9JR0h6V7te6ewJG2QdE2I8wUQAn4oIdLi/Y5dkoIIh3jYfmIhRtgvmO1g7969mjVrlvLz89W1a1cdf/zxOuKII2yILnKWLVvWmhBs8d1336m0tFS9e/eOWBzsl4g1n3/+ebt3BlZVVemll17S3XffrZSUFL/alZF8j5g/iSs798OOHTvaVne0rV69+oDjqC/x/rsjmrZt26bbbrvN67vWW3Tv3l1vvvnmvndNFxSENQ56CgJAbOLxoeHTvc1nzy8PO9D2Np+7hTJz0zQ3SvqJfkg0HizpBUnfSqptHj5T+xKCeyRNknS8aZpbQ5lvPOFHOqKB7Q6RFqvbHD0FE4NT1kusbD9OiQPxw+1268UXX9SGDRtUW1urkpISvfvuu/r666+jHVpI1q5d63H4559/HtE44rEnP+Lb6tWrDxhWW1ur77//XhI9BfcXz0nBQBOCEklBO7jdbj355JMaNmyYXwnBUaNGafny5fsSgjagpyAAxCaSguHTqc3nWj/LtJ2uk+VUfjJNc42koZJu0773GlqZI+k10zSrQp3n/tLT09Wp075FaWpq0p49e1obCZWVlWpoaJC074fE3r37QnS5XNqzZ09rHRUVFa0NzpqaGtXU7HsKamNjoyoqKlqn27NnT+u7QPbu3ava2n1fZ0NDgyorKyXta6Ds2bNHTU1NPhsr1dXVrY3Wqqoq1dfXS5Lq6upUXV3tyGVqibuubt8rJevr61VVtW+1ut1u7dmzJ66WyRsnL5O3xm9LrPG0nuJx24u1ZSovL5eVlmV14jJ5u9hQXV3t17G8qqrKr3eeVFVVRX09xfK2F8y7uFrKeFumlpiD0bLs3pbJW9m268mfdyQ5YT15284bGhricttjmTwvky/7L5OVwsJClZWVHTD8q6++iun1ZGXnzp0RXSZf338sbnvxuD+xTD8sk9XxZfny5a3z8iUpKSmoZWpZnkDU19f7LNdyzm9ZT+FMXGVkZERkPcUKrrGEd5k2btyoMWPG6L777msdl5mZ2ZqMTk1NbX1PoGEYuueee7Ro0SINHjy4/TKlpamquXxAy9S16wHL5Gv/qcjKUmOb3wBW2q2n2lrVNi9T0Oupulru5l7KQa2njh21t9b3pd1268nlUkVWludl8nfb69RJdc0xhGXb69JFDc3bVNj3Jyesp7bLlJKiPc1lgl6m/ddTc91hO0Y01x30MaLN/hSz62n/Zaqutu9YHub9KRzvYXUSkoLhk97ms79XtNq2oEO+pcwwjB6Spkh6TFKm9vVEnC7paUlv6ofHmv5C0heGYTxlGEZyqPNt6/jjj9f48eMlSWVlZZo4cWLrjvX8889rw4YNkqQFCxZoxowZkva942PixImtdUyZMkWbN2+WJM2dO1dz586VJG3evFlTpkxpnW7ixIkqKiqSJM2YMUMLFiyQJG3YsEHPP/+8pH07/cSJEz1e3NjfjBkzWg8kr7zyir788ktJ0pIlS/T22287dpnefvttLVmyRJL05Zdf6pVXXpG07wA8ceLEuFkmXxdRnL5MVioqKqK6noqKilRVVcW2F2fLNGnSJFlpaTw5cZm2brXuvP7++++rrKzM57Hggw8+UGVlpc/p3nrrraivp1je9lo+B6KlUe9tmb799tuA692ft2WyYppmu/XU8qPF2/ROWE/eLq5s2bIlLrc9lsnzMllp+VHcsky+jo0tMe9v06ZNMb2erFRUVER0mbzd+GCaZkxue/G4P7FM7ZfJk5ZjSX5+vuU0LZKSkoJapmXLlvmse3+bN29u97hTK23Xkz+JTX+lp6fbvp6efvrpsMVrt3nz5rE/hWGZNmzYoMcee0xHHnmkFi5cqLy8POXk5EiSxo0bpzFjxkiShg8frmuvvVaHHHKI5s2bp44dO7bG2m6ZjjpKr3z8cWDLVFGhiXl5qm++eN+yTL6SglNuuUWbt22TpHYX+PfXbj0tXqwFzcsU9Hp65x1VNl/AD2o9jRmjGYsXe102ab9tb9s2TbnlFs/L5O+2N368ljTHEJZt79prtaFw36XgsO9PTlhPbZcpJ0cT33kntGXafz3Nnr1vmRobw3OMaK67rPk6YMDHiDb7U8yup/2X6YMP7DuWh2t/aj7uXXvttYonBo8pCQ/DMD6UdFbzv/8wTfNeP8r8XNKs5n+rTdPsHML8D5E0T1KO9iUbfyPpKdM0XW2mMSRdKulJSS3p7Smmad4a7Hzb1D1C0rr09HSlpKRoyTvv6LCDD1ZVba2yMjNlGIYq9+5VemqqUjt0UG19vdxutzI7dpSrqUnVtbXq2tzDsKK6Whnp6eqQkqKa5rsUMtLT1ehyqaauTlnN0+2prlanjh2VkpysvbW1SkpKUse0NDU0NqquoUFdMjNlmqYq9u5V544d9e6772pLcbEMSYZpypRkGoaSmj+fevrpOnzYMCUlJamqpkapKSlKS01VXUODXE1N6tSxo5qamhy1TMnJyaqurVVKcrLSU1NV39CgBpdLnTMy5Ha7VVlToy4ZGXGxTM8/84zcpikzKUmG2y1DktswZJim7srLc/QyffLJJ1r39dcet72bbrpJ9U1NEV9PBYWFmjl7tlzNw3KHDNHPzzhDaampbHtxsEy7Kys1berUH/aTNttex8xM3XzDDY5cpg9nz9amb75pPS63PUb/9MwzNXzoUOXn5+uDDz/0eSz/4osvtGzlShmmKaN5GlNqne5nZ5+tw4YMYdsLcpmWLl2qNatXH/D9H3CMbrOesrt319VXXOF1mb5au1afzJtnXV/z+nQ398BuO93hw4bp9NNP97pMk554QknNbV93m7qVnKybbryxdT09N3Wq6mtqLJcpd+BAnXX22VFfT5P++181NjV5XKZDDj1Up556atxte/G4P4VjmaY+++wB+4lpGEpKTtadt93WukxzPvxQJSUlHvenu++8U6+8+qp27NyppOaLfG2nu/Hmm2N2PT3+xBMel6lbjx4aP358xJZpycKF2rhx4wHryZR0yEEH6ayzzoq5bS8e9yeW6YdlmvzEEx7Pubk5Obrwwgv1xjvvaNvWrZ7Pzc3tg44dO+oXl18e8DKt+uorLZg/32N7z6p9MPbUU1VTW6tlixdbTnf5ZZepc1ZW63p6/Y03tG3HDo/HCKtl2v+c2zLdwbm5+vlZZ9m6nkp379brr7ziV9soHMvkqV3urb3Xdrof/fjH+vGxx7I/BblMO3ft0vS33tIbb72lyr17tbeiQsmSBnftqi+qq1XrcikzM1Nut1u1tbVKS0vTbbfdpj//+c/q2LGjKioq1Llz533LVF2tlJQUpW/frvrDDlPDqlXqPHz4vmWqrFSXLl32LVNVlVJTU5WWlqa6ujq5XC516tRJTZs3q+qYY5S1apWMwYNVWVmp9PR0LV++XB83Jxj3l1VermteeEEZK1aow5Aheu655yxv1LnzzjvVqVMnpaSkaO/XXytp9Gh13LBBDf36qa6uTl26dNm3njwtU3q66uvr1dDQoM6dO+9bpg0b1OXII5W0ebOqunf3vExNTaqqqlJWVta+9dS8TKnbtql2+HC5V67Uv99802O8kvTggw+29mrKyMhQ43ffqeaYY5S1erWUm6s9e/b8sEx79+7b9jp2VENDg+dl2rpV1YcfrpSVK5U+dOiBy+TPemq7TIWFqjzySKWvWKHUQw5RbW3tvm0vM1Mul0vV1dXq2rXrvm2vokIZGRnq0KFD+2VqbFRNTY2ymntAtlumaK+n1NQflqmsTK5DDlH1l1+q68iRwS/T/uvp22/VZeRImd9/r4rsbP+Wydt6ys9Xp+HD1fTdd6rq3t37Mu2/ngoKVDFqVOv+FJPrqe0y7dkjDR6sirVrlXHooaGtJ7v3p/JybTjoIJ3QpUtrIlHSSNM011seIGIAScEwMQzjDUmXNP/7uGmad/pR5kJJLbcxbDdNs2+Q806R9KWkkc2DrjFN8wUv058uqe1twMeZphn4bXjt6xwhaV3L/+skjQilQgAAAAAAAADtnChpUZv/R40apWeeeUbHHHOM94IFBdLgwVJ+vpSb6/8MLcp9/vnnmjdvnsciWeXlyps4sbXMtGnTLHsX//GPf/zhtSvBxuhHvIGW/dOLL1pO9uCDD4ZvnuEob3d9dtQfrhjtWlYnrZMw77sRmXek67Sr/oICrR88uDXp0izmk4Ip0Q4gjuxq87m3n2X6tPm8O4R5X6QfEoKbJFmftSSZpvmRYRgfS/pp86BrJIWUFDzAnDnS0KFhrTJUb7/9ttfHB40bN04HH3xwBCNCILw98iovLy+ywQRo7ty5lo/fufnmm5Wenu5xnF2+++47zZw584DhGRkZuvHGGyMaC+zR1NRk+QjR9PR03dzc28Np5syZo6+//trjuHPPPVcHHXSQvvnmG82aNcvjNJJ09tln65BDDtFnn32mVatWWU530UUXacCAASHHnKgWLlyoFStWBFSme/fuuuKKK7xOs2HDBsvHF/oyfPhwnXHGGV6nmTBhgsfhSUlJuuOOO1r/f/LJJ72+k2jgwIG68MILg4oznCZNmmT5/kN/vg/ED6ttOzk5Wbfffnvr/2+++aa2NT92aH95eXl69dVXVVpaajk+Vll9Pz169NCvfvWriMUxe/Zsbdq0yeO4gw46SOeee27EYgE82bRpk2Y3Py7Nm5ycHI0fP15vvfWWiouLvU6bmZmpG264IeBYgmkT/PSnP1VdXZ0WLlxoOc0vf/lL9e79wyWbN954QyUlJQHH50lubq7OP//8sNRlpaamJmYeIXrSSSdp9OjR0Q4jZtTV1enFF1/U5MmTVfFDb5R2ciQtlNSyxaanp+tPf/qT7rrrLnXo0CFSobYKpKNJa9LPoh5v4wEA4UVSMHza/rob5GeZgW0+bwxh3j9r8/lT07+z8jz9kBT0cStREPr3tyfTH4Kq7t1V4eUdQQ39+jkuZvygIjvbusHp8PVW27u3Kix+aLoHDpQyMiIaz8L581WRnX3A8ArJ8d8l/GO6XB7XsSTVp6c7dj3X9Oqliu3bPY5rbD6vNFRXWy6b9MOxvHbTJq/TuXJyHPs9xIL6zZu9fr+epHbv7vM7b6yoCLjeFrW9e/us36rupKSkdmUrsrO9JgWre/RwxPazp2tXy3e51PTq5YgYERlW23ZycnK77aC6Rw9VNL9b9gC5ufvay83vzfA0PlZZfT+p3bpFdLmqe/RQhUXSdW/PnjH9HSM+LF+40K/zcFbzOb2yWzdVND/uy4rZpUtQ23Z9eXnAbYL6vn1VV1vrtVzTgAFSv36t/1d1764KL+f8QESifeD20RZ2En/aZpAKCws1efJkPfvss9q927/+Ak2STjvtND311FNRvbnd1zsF2/KVFIwlJDABxDqSguHTtmvD4YZhpLR9n5+Foy3KB6p/m8+7LKdqb2ebz1khzBtACKLR+E1OTo74POEcsfaDK1Aty+drOeP9e3Aif75zp6wXX3Hk5+dr9uzZOv7445Xt0AtzTvkuAfzA237JPgsn2Lx5s1/TtWyv/iQEkpKSQoopEMG0Ndj37BNIwigRlZWV6e6779arr74a8Hf173/9Sxf95jdRT075s/+89tpr6v+Tn3id1u12c50CACIocq2z+PeFpPrmz5ny0fvOMIw0Sce3GeT5Idz+aXu7bzc/y3Rv83lPCPOOGVwgjm2xvH6cdkdcSgr3gyQyJ+9L4UgakRREOPizfSxbtkwvvPBC25eNRxzbMRCaSO9D7LOIFy0JDKtHWLcVbFIwmP3FNM2otgEjsY/H0nGEpKC12bNn6/DDD9fLL7/s9/eUlpama66+WpI0fvz4qCcEJf/W8Y4dO/Tpp5/q+++/D6keJ3HCdw8AoSApGCamaVZL+qTNoKt9FLlQUufmz7slfRbC7Le0+XyKn2VObfP5uxDmDSAE9BSEHWKxJ0K4kn3+/qB06vcQK+z6IRzKegnnOvV3O6qsrNTatWvDNt9wYhtHMBJtuyEpCAQnkJ6Ckbx47k9S0FMZ2IPv9kA1NTX69a9/rbPOOks7duzwq0zPnj3173//W9u2bdODDz5oc4SBCdc6jrVthaQggFhHd5HwmizprObPVxuGMck0zfX7T2QYRoakP7cZ9LQfjxr15mNJtzV/PswwjCtM03zJamLDME6VdHqbQXNCmHfciLVGCGKH03oKeksKut3uiD7iB5HnpGNdXV2d5s6dqw0bNkiS6uvrfZQIX/IQkRdL6ySQWD/++GP95Cc/sTEaa7F4AwAii+3AOyclBVlXiCWRSAoGu08E2lMwnPsePQXbi7XeX3ZbuXKlLr/8cm3atMmv6Tt16qTf/e53uuuuu9S5c3Ofgig+ocKTcK1jJ24rsbSvAUCguPIbRqZpfijp8+Z/0yTNNAzjiLbTGIbRXdJ7koY0D9ot6R+e6jMMI9cwDLPN39UWs/5Q0jdt/n/aMIybDcNod+Xf2OcSSdPbDN4q6XWfCxcHOKHDiZyWFHS5Qrk/AU4RKxcdP/zwQ3355Zeqr6/3mRD0N24eHxoZ8d5TkO0DiSrRtn0nJQWBWNJyAd+J7xRkP3MOJyZ6Is3lcmnRokW6+eabdfzxx/uVEMzKytJvfvMbff/99/rjH//4Q0LQgcK1vzlxW/G2bPQUBBDr6CkYfpdJWiapr6RcSasNw1ggabOknpJ+KimjeVqXpEtM09wTygxN03QZhnGl9r2XMENSuqQpkv5oGMYXknZKytK+dxjmtilaL+ky0zR9d81IAPx4QDQ4MSmYmpoawWgQaU451u3evVvr1q0LuBzvFEQkxMP2EQ/LgNAFetEq0bYbJyUFE+27R2xr2V6d+E7BQKcJ901FLpdLlZWVys7OTvjEgRMTPZFQU1OjRYsWaebMmXr55Ze1e/duv8odcsghuuuuu3TFFVeoU6dONkcZHonaUzDR920AsY+kYJiZplnU/HjO1ySNkmRIGtv811aZpGtM0/xEYWCa5lLDME6R9JKkoc2D+0q6yKJIvqQrTNNcFI75xwIuEAP70FMwsTnlWLdoUWCnn0CSfTt37tTKlSv9qg/BCeaHcDAX6sJdfzTqskssxIjoYztxFtYH4kVLe6vSj0cZRjopGM13ChYUFOgf//iHXC6XOnXqpPHjx2vQoEFhq1+KrePIkiVL5Ha7dcwxx6hnz57RDsdWpmnq008/1RNPPKGZM2eqoaEhoPK/+c1v9PDDDys9Pd2mCO0Rz+8UJCkIIJ6RFLSBaZobDcM4TtKlkn4paYSk3pL2SPpe+x7fOdU0zZ1hnu8ywzBGSDpX0vmSjpHUT1InSXsl7ZC0UtIHkt42TbMxnPNvp7hYysy0rfpgdNq5U1nl5ZbjOxQXSw5+LEOi87buVFAQsTiCkVFaahm/UVgo7dkT0Xgyy8os43F//73UtWtE40H4mfX1jt9ntn3xhbJqa/2evkNxsZSRodRt27wuW8M332j6O+8oq6bGa30pRUVSWprf80d76du3e9/GPOhsmj63vQ7FxQHX2yKjtNRn/VZ1Jycnt5Y1TTPwGKKxT/mIs+OOHY7Y1xEZVttCUlJSu+3Aa3u4oECdd+1Sg5fxscpqmTs3NUV0uby1CTPLymL6O0Z88Pf8l1Jfr7f//W9l1dX5nLZzWlpQ27avNp9VGV/t4KQtW6Q2vZI679ql+iDbHl6Vl2vGpEm69tprlZGR4Xt6PxmVlUG3laJh05w5KlywQBdffLG6d+8e7XBssWrVKv31r3/VylWrJO27O7+t5OZhyyXtnyrs37+/XnzxRZ122mn2B2qDRO0pCACxzuAgh3BoTka2PgdunfZlQgEAAAAAAIBEdqKkts9KueSSS/Tkk08qOzvb/0oKCqTBg6X8fCk3N/Aggi1vUW7GjBla1ZwM3V9WebnyJk7UhDvvVIWPZbztttt+SBqHuoyh1tFctmHTJv3ttdc8TpKWlqZ77703fPMMR3m767Oj/nDFaNeyOmmdhHnfjci8I12nXfUXFGj94MEa2X7oSNM014dWcXTRUxD2mDNHGjrU93QR9Nprr2nHjh2W488880wNGzYsghEhEBMmTLAcl5eXF7E4gjFv3jytWbPG47irrroqsB8BYbB48WItXbrU47hf/vKX6t27d0TjQfjV19drypQpluOdsM9426c9OeusszR06FCtXbtWn3wS+pO3zznnHA0ZMiTkehLVkiVLtGTJkoDKZGVl6ZprrvE6zVdffaVPP/00qJgOPfRQ/fznP/c6jdV2l5ycrNtvv13SvvcjTZo0KagY0tLS9Itf/ELdunULqnwg3G63Hn/8ccvxQ4YM0TnnnGN7HHAGq207KSlJd9xxR+v/b775prZt2+Zx2ry8PE2bNs3y3UdOOHcEy+r76dSpk66//vqIxfH222+rqKjI47iBAwfqwgsvjFgsgCeBts/80b9/f1188cUBl1u9erXmz58fUJmf/OQnqq+v14oVKyynGT9+vHJyclr/93bcC4fU1FTdeuutYauvsrJSzz//fNjqi6RYPo+0qKys1JQpUzR16lTV1df7VSZH0kJJJc3/9+7dW//+9791+eWXx/xjKBO1p2CsrzcAICkIe/Tvb0+mPwTVPXqowstz3Rv69XNczPiB1zvLHL7eanv3toy/acAAqUePiMbTuGWLZTz1fftKAwdGNB6En1lX5/h9xtfdovtrOUbX79wZcFlv9SE49YWFAa+HpOxsn995Q1lZ0Ou3plcvn/Vb1Z2cnNxa1t3YGNI2tqayUmOPPjro8n5zu73GubdnT7bxBGK1LSQlJbXbDqp79FCF1aObc3NV2a2bKqwugsXw9mTZDuvUKaLLVd2jhyr27rUcF8vfMeJDONpY+8v24/zsSf2OHQHHU9enj+rr672Wc+XktIvH63EvDPY/DofKvWePLespImL4GOd2u/XSSy/pd7/7ncrKyoKqY+ypp+qRG2/U+eefrzReY9COE59i58SYACBcSAoiYXBChxNFY7v0dleby+WKYCRA9HBOcKZQ1ku41mmo9SxYsEBjx44NSyzesA0DsYf9FokoKSkpovPztZ9Fej8Mdw8ojiORVVpaqmnTpumpp57Sd999F1DZbt26aezYsfrFccdJ99yj5557LqYTo56Ea3ukpyAARBZJQaAZjWtEg9O2O5KC8cFp29X+gomvpYzTly1RhLIOnS5W4vQlXpYDsFOk9xP2SySiYC+eB9vWCLQc+yX2l5+fr/fee0+zZ8/WvHnz1NTUFFD5M888U7/73e90yimn7EuKFxRI99xjT7BRlqiPDwWAWEdSEAmDEzqixdsP4Whsl97mSVIQTueU3mCwRzz0FLSLy+VSSsoPTXenxonYlmjblZOSgon23SNxRLKnoD9JwVjf12I9fif76KOP9Le//S3o91sfffTR+vvf/67TTz89zJE5Fz0FASA2kRQEmtG4RjSQFEQickJPQY75oYnn789py7Zy5UotXLhQFRUVysnJ0bnnnqsefryL1mnLgehgO/DOSUlBINrs2j7pKQin27Nnj+68805NmzYt4LK9evXSTTfdpIsvvlgjR45MuGRRPP8285aoTLT1DCD+kBQEAJvRUxCR5sQfVW05IT4nxBDLgvn+qqqqVFJSot69e1v2GqCnYHtff/21Zs6c2fr/1q1b9eKLL+q2226L+DuakBictP3HI3oKwsns2gYj3VMw0Glibd+LtXidbsOGDTr33HO1efPmgMqlpqbqd7/7ne655x517tzZpuicL1F7CgJArONqAhJGvD9GBLHJaUnBQN+XAATDCT0FEXlNTU16+umn9Z///EfFxcXRDseSky5KrFu37oBh1dXVKigo8FmWfQVS4HeyJ9p2Q09B4Ad2bZ/B1hupnoJITKZpavLkyTruuOMCSgimpKTo4osv1po1a/Twww8ndEJQCt9xw5+2rZPQUxBArKOnIOxRXCxlZkY7inY679qluvJyy/Gp27ZJ3bpFMCIEIsvLupPDG5AZpaWW8Sdt2SI1NEQ0nvTt2y3jSd66VerZM6LxwAY1NY7eZ8zGRu/xedChuFjKylLqtm0Bl/UkpahI6tIl5HoSVVpJSfDrobxcHzz+uG688UYlJye3GxXK+s0oLfW5bVse+5KTfyhbXR36Nhamfax40SJleRi++LXXNPiyy7zGmVlWFvV9HZFjtS0YhtFuO+i0c6f1dlNQoM67dsmsrLQcH6usljktLS2iy5VZVmYZS6fMzJj+jhH7TJcrLG2s/QV7PgqmrZFWUiKjocFrueStW6U27Q+vx71wCeO+nVRebst6igiHHOOqqqp0zz33aNbs2eouqbukZEl9JS2X5OnX+ZAhQ3TllVfq+uuvV9++fSMZrqOFKyk4f/58/ehHP1LHjh3DUl848E5BAPHM4C4qhINhGCMktd7Ovk7SiOiFAwAAAAAAAPjtREmLmj+PGjVK559/vs4++2yNHj06+ERQQYE0eLCUny/l5oYWYKh1BVveotzrr7+uTZs2eSySVV6uvIkTNeHOO1WRne1zFuPHj9eIESPC832FUkdz2T1ffqmJ77/vcZLOnTvr7rvvDt88w1He7vrsqD9cMdq1rE5aJ2HedyMy70jXaVf9BQVaP3iwRrYfOtI0zfWhVRxd9BSEPebMkYYOjXYU7bz88svauXOn5fjTTjtNhx9+eAQjQiAmTJhgOS4vLy9icQRjwYIF+vLLLz2Ou+SSS9SvX7+IxrNo0SItX77c47jjjjtOP/7xjyMaD8KvpqZGTz/9tOX4aO8z9fX1mjJlSkBlzjjjDA0fPlwrV67U559/HnIMp59++r4fnQjKwoULtWLFipDqGDJkiM4555x2w0JZvwcffLDGjRvndRqrc0lycrJuv/12SVJlZaWef/75oGJoEa59zCreLl266PLLL/e6Hw0aNEgXXHBBWOKA81ltK4Zh6M4772z9/80339S2bds8TpuXl6fnn39elRY9ZqJ97giF1ffToUMH/frXv45YHN5+j/Tv318XX3xxxGIB9tfQ0KDJkyeHvd6DDjpI5557bsDlVqxYoYULFwZU5phjjlF9fb3Wrl1rOc15552nwYMHt/7/3HPPqaqqKuD4AhHO4+fu3bs1bdq0sNUXSdE8j3z++ef6/e9/ry1bt3ocnyNpoaQSSYcccoieffZZnXzyyZEMMSaF87H78+fPd9TvM2/LRk9BALGOpCDs0b+/PZn+EFR1764KL+9Lq+/b13Ex4wde7yxz+Hqr3bjRMn5XTo40cGBk4/nuO8t4qnv0cPz3Cd/c1dWO3mfMujq/7hZtq+UYXVdcHHBZb/UhOLXffhvyeqjp1euAdRDK+t3bs6fPdWpVd3JycmtZ9549oW9jYdq2rOJIys6WcnO9xunP94H4YbUtGIbRbjuo7tFDFbW1Hqc1Bw1SZbduqtjvsb6tYnh7svp+OnToENHlquzWzfL3SJfu3WP6O0bsM+vrw9LG2l+wvy/qiooCjqe2d2/V19eroqjIchpXTk67eCqys1WVYvOlsTDu202Zmbasp4iIwjFu9+7dysvL00svveTX9Kecdpr+M326uvCaAb+E8+lz+79WINp4fCiAeEZSEAmDR+UiWpzWYPS2L7hcrghGgkQVyvGYYzns0PY4HY47nk3TtPXYbxiGz32BfQXBSLTtJtLLm2jfL2KLXdtnJLd70zQDPj+yX8avjz76SFdffbVlD/m20tPSpPp6Pf3000oiIei3cO4/SUlJYasrHDg2AIhnzjriAlHECR/REI3tjqRg/HP68SyY+MK9TE7/jpygsbFRe/bs8TjOiRcOwxVTOOpp8vJkgnBw2s0miA+JeFwkKQj8wGnbZ7DtRactByKvrq5Od911l8444wy/EoKHHHKI3n33XUnOS0w5HT0FASA20VMQCYM76hEt3hqMJAWRiOIl8ROvTNPU7NmztWrVKjU1Nalbt276xS9+oV69erWbJhzzcaJwxOVyuZRi46PI6CkIuyTadmOapjZu3Khvv/1W6enpGjlypPr27Wvr/IIZB0SC0274sSspGOs9BWMt3khbu3atLrvsMq1bt86v6a+44gpNmjRJWeXlNkcWn+I5KegNSUEAsY5bYADAZk67AERSELGoZbslKWi/RYsWafny5a293Xbv3q1p06ZF5PgQrfXSdr7hSgraiQsRsEMiHhfdbrfeeOMNrVq1Sl988YWef/55FRQU2Da/RPyOETviYft06jLY/QQB7Fv3kyZN0rHHHutXQvDaa6/Vpk2bNG3aNGVlZUUgwvgUz0lBpx5PACAc6CkINOOEj2hw2nbntHgQHKevRyf0FIS11atXHzBs7969Kiws1MEHHyzJmT0FnZQwjkRSkJ6C8IdpmnK73Vq6dKkKCwu1devWaIfkaC6XSwsWLFBubq4t9TvtRrF44Ha7tWPHDmVlZSkjIyPa4cQ0egrax+VyhS3hwbHiQGVlZbr22ms1c+ZMn9Medthhevrpp3XSSSdFILL4F8/vFPT2nnFu0AMQ60gKImHQeEa0OO0CkNPiQeSZphnVHzK8U9DZdu3a5XH4kiVLWpOCdnHCeomVpKAvTvgu4QzvvPOONmzY4HM63sW1j509Bb1dYETgCgsL9cYbb6i2tlaSNGrUKI0bN85xF5ZjhdOSgsHOK9D5RSK+xsZGpaWl2T6fRPTxxx/ryiuvVElJic9p77jjDv39739Xx44dIxBZYgjneS2WegqSFAQQ62gtA824CAK7OC0J522eXKxKDNFez07oKcgxP3Btf/w68ftz0rbhhJ6CQAt/EoIt2K7sxfcbPg0NDXrllVdaE4LSvp7uX3zxRRSjim1O2z7tuoksWj0Fw8Vp6yla6uvrdc899+iMM87wmRDs06eP/ve//2nixIkkBMOMx4cCQGyipyDsUVwsZWZGO4p2Ou3cKdeePZbj00pKJBvvDEZovL742+HrreOOHZbxG4WFMpOTI3qnWfr27ZbxZJSWOv77hB8qK73uM2Z+vpQSxSaAj/g86VBcLPXoobSSkoDLepK6bRvbugWr77fTzp2t35m344i/MsvKDlgHqdu2BV2vp/raMk3Tsu6UlJTWssllZSEvm5mfL9XVhVSHZL0uOnfoIKOw0GucmRkZbOMJJBzHRTM/X11271ZKTY3nCWJ4ewr4+7FpWTvv2qWkvXs9jstMTY3p7zjSNn/99b52634KFyzQiTk5UYgoDgTRPvNHRmZmUNt2MG2Njjt2KKWx0Wu5lKIiqU1iqMvu3Uqrrw84vkA0bd4sde8elrrC0U6JmjAd4zZu3Ki77rpLX2/cqIHNw5Il9ZW0XFJDm2nPP/98PfPMM+rRo0dY5o32EjUpSE9BALHO4M4HhINhGCMktb7NeZ2kEdELBwAAAAAAAAnkREmLJHXs2FETJkzQDTfc4F8Cp6BAGjxYys+Xwv1e2XDWHWpdwZa3KPfMM89o27ZtHotklZcrb+JETbjzTlVkZ/ucxahRo3TeeeeF5/sKpY7mskWff67nPvnE4yQ9e/bUrbfeGr55hqO83fXZUX+4YrRrWZ20TsK870Zk3pGu0676Cwq0fvBgjWw/dKRpmutDqzi66CkIe8yZIw0dGu0o2nnhhRe0x0tPwZNPPllHH3105AJCQCZMmGA5Li8vL2JxBOPTTz/VV1995XO6U089VUcccYTt8Xz88cdat26dx3GDBg3SBRdcYHsMsFdlZaWef/55y/G33HJLVN9rUlFRoalTpwZUZuzYsRo1apS++OILLVu2LOQYOOZbszreHnzwwRo3bpwkad68eVqzZk1I8znooIN07rnnaseOHZo+fbrqQ7xL39fxy+126/HHH/c4LiUlRbfddpskaceOHXrttddCiuX8889Xbhh+3Fitiz59+mjcuHF65plnLMv269dPl1xyScgxwPlM09TEiRNDrufWW2/V1KlT2z2OsS2nt7e88daOtHLEEUfo1FNPDWscTz31lOX326tXL1122WVhnV88e+mllyzfgRvL22o0BdM+80dOTo7Gjx8fcLnFixdr6dKlAZUZMWKEGhsb9c0331hOc9ZZZ2lom2sVkydPVkNDg+X04XDxxRerf//+YamrtLRUr776aljqirRg902Xy6WXX35ZEyZM0J6KCo/T5EhaKKlE0pFHHqnXXntNw4YNCzZU+CmcHU2c9j5YOtEAiGckBWGP/v3tyfSHoLJbN1V4uUOsrk8fx8WMH3i9s8zh662mVy+/7oxbuWuXjojAsniLp6p7d8d/n/DNvWeP123OHDRISk+PYETtNe3e7dc+0VZDv35Sbq5qN28OuKwnHPOtWX2/Nb16tX5n/h7XvNnbs6eUm6v5S5eqNCNDysgIqb7qHj28r1O32zLmlJSU1rKuDh1CXrZwbV9WcXTu2VPugQO9xtnF1/eB+GGaYTkuKjdXld26qcbq8aExvD0F8/18vnWrjsrKUnY4vts2cdRanH8z2GcDsqdrV1VYvSOZ7zEowbTP/JEV5O+L2u+/Dzieml691NDQoIqyMstpGve7VlGRnW17UrC+b9+wbZdNaWm2rKeICOI72Lx5sy7/1a/8ThBfefXVumfKFKVH8bdOIiEpCACxyVlHXABIYFu2bInIfLw1bmn4Jga31UW0CAllOwvXNsq2Hji73p2xceNGW+rdXyTXucvlsrV+f9YF23jiCOdxke2mvcWLF4e1Pr7f8Glqaop2CHEnUbbP/ZczEssdzu01UdZTU1OT/vnPf+qII47wKyHYvVs3SdKDDz5IQjCCYjUpWFNTo/z8fNV5eQc4100AxDN6CiJh+Dppc1KHXWJp24qlWGHN6ce7YObfUoakYPS0TUSF4/tz6joIR1yRSAo69ftD5LEt2KekpCSs9XGBMXxICoafXdtgsPUG21504r4U7RvyYs2WLVt0zTXXaN68eX5Nf9555+nZBx6Qjj3W5siwv3Bu25HYd03T1IIFC7RgwQJJ+9rUZ5xxho4//vioxAMA0UJPQQCwmdMak1yQQrQvTLCdxSa7egqGS7iS4bGSFPSF/QyBcurF9GgK9/fB9xs+0W7LxKN42D79OY5Fo6dgrCVOosU0Tb300ks6/PDD/UoI9u3bV9OmTdO7776rHj16RCDC0O3du1dr167VunXrrB/XHUPCuT1GYtv+9ttvWxOCLfOcM2eOtm7dGlA88bwfAkgM9BQEmnFSR6KgcRv/6CloTwz4QSz2FCQpiHgVqXVtmqbjbw5wOtpg4RPrPQVdLpeqqqrUtWtXx+xXidpTMNaSgrHM23mkrKxMN998s6ZPn+6znoyMDP3ud7/Tb3/7W3Xq1CncYdpm+/bteuH111VfXy9J6tixo6688kr16dMnypEFL9aSgitWrPA4fPXq1RowYEC7Yey3AOIZSUEkDH5oI1qctu15i4eGb2KI9jbJOwVjU7gfHxpuToopHElBb8vD40NhB3oKHoiegs4Vq0lB0zT18ccfa+nSpWpqalLXrl118cUXq1+/ftEOLS62T6f2FIzV7TXcrJKCM2fO1PXXX68dO3b4rOPUU0/VCy+8cEACJxbMnTtX9W22t9raWn3wwQe68cYboxhVaMK5/0TiWsS3337rcfiqVas0btw4v+uJh+MlgMTG40OBZpzUkSi4Sx1292LyhZ6CzuUrERXLItlTMBx1eLswQk9BtMW6jh2sq/CJ1STL8uXL9cUXX7TGv2fPHr300kutPYeiKV56CjoRjw/dZ//Yq6qqdMMNN2jcuHE+E4JdunTRpEmT9NFHH8VkQlCSdu/efcCwkpISVVdXRyGa8Ii1noKBcFo8ABBO9BSEPYqLpczMaEfRTuddu6SqKsvxaSUlUkFB5AJCQLLKy61HOny9pW/f7j3+Nsz8fNsvvGeUllrGk9mhg+O/T/hmlJd73ebc33/v9XhotyQv26CVlmN0xx07Ai7rrT60Z7rd1seHsrLW7ywc66GlvnCsT0nKzMz0vk4bGiznlZKS0lo2uago5JjCsX2ZLpdlHJ127pRRWOg1zk4czxOG6WXbDoRRWKguu3eroaHh/9l77zirijT//3M75xzpprsFDAQF0SEojqgDKiNGxADiKCYMY+/+Nn5nvt+d2Z3ZMDuzSxvGcQxkQSQoOapIlKyNZOic4+0c7r3n90cHb3effKrOqXNvvV+v+4I+lZ5T+dRTT5V4OgUFcATYc0+p3vwhPS+Kqa+XVA5EBQbyNquBGJHF9X4YzsfLe/aI1sfSAwcwcuRICyT6ET3zMzVEhoToKhMt31B9hFdVIVhm/ASAoNJSICam/++Y+nrqi/9BpaVAXByRuAIrKqiUkxkIBQVAUM8y5NGjR/G3f/u3KC0rQ3aveyCAdADHAHiPRFOnTsWKFSssbyO0cDqdtjoG1RtfUwq63W6czc/HjQC+/fZbSX8syMrhcDhG4EpBDh3uvddqCYawUMlDXp4ZYnB0kivnyHjZzez9qcKEd7m/9yfJr35FXQYOXeLBdptJgYJ8YvTKfGfvzzCM9xtWEQB1ZaOpX5Pjb/5Ge12Q4+//XtIpBArv9qc/AQAylfypgUD9ClIhh5I778/9A8W6rZa8PLyq4G5Xco0EJtiOfqnk4f/+X2Jp+Tq5co4M19WnpRwYkFnX/Ewt/+f/aA5yR++POIPy+k0aaSikaYR0UCwn2njlwyQAByS8TQNwEEBwcDB++9vf4h/+4R8QGBhogoAcrfiSUtDj8WDdunWoOHwYN6LnnkvEx1sqE4fD4dCCKwU5dNi5E7juOqulGMBHH32EZhnLmKlTp2Ly5MkmSsTRwuLFiyXdcnNzTZNDD7t27cLZs2dV+X399dd7LFYosnXrVsmz9JOSkjB//nyq6XPo09DQgGXLlkm6P/bYY5Yeu1NZWYk1a9ZoCnPHHXfglltuwVdffYXvvvvOsAyTJ0/G1KlTDcfja3R3d+Pdd98VdRszZgxmzuxRBe7cuRPnzp0zlFZ2djYeeeQR2f5dC5mZmZgzZ46ke2dnJ9577z1Rt6CgILz++usAgJKSEqxfv96QLCTmFHLyXnPNNZg+fTqWLFkiGT45ORnz5s0zJAPHHsjVFS28/PLL+Pjjj9Hd3S3q/sYbb9h2UVZvP0O6HcnJkZiYiGeeeYZYWr6OXb8NpOROS0vDk08+aa4wg9AzP1NDSkoKnn5aUh0qyb59+3Dq1ClNYUaNGoXu7m4UFRVJ+pk5cybGjBkDoEcJkWeCQvbOO+/EzTffTCSu8vJyrF27lkhcZjNq1Cj8z//8D64WFIi6Z6JHUVgBYNy4cVixYgUmTJhgooQcrfjS0bhlZWU4f/48YlX4tVpWDofDMQpXCnLokJEB5ORYLcUAnPHxaJZRtnSkpTEnM+dHnHI7tBgvt7aUFDgrKlT59WRlASEhVOVpTU6Gs7ZW1C0kIYH5/OQo446Kkm0z7ampELKz0dLSgqioKNPvinMHB8u3aRH6+uj21FTNYcVoT03ldV0EoatLMn+986wtJQXOykpDabUmJwM5OUTKEwBiExNly1To6JBMKygoqD9st8djWCYScwo5edtSUuDJypKVM0whPzg+RGcnkXbUV6eklILIyQFsqhTUmz8k25EgCLJyhPA2qwm7fhtIyR2TkmK53K6gIGJjsjcRSUm63q3jwgXN8rQmJ6OrqwvOpiZJP13DhvXLIxAY89XQNy/o6urClStXUFdXh+zsbGRmZmqeh7sDA02RmSTd3d3YsmULvlOpgH3hpZfwt2+9hdDQUMqScYxCUjlGUsGoh/3791uaPofD4ZgJVwpyOL3wnT4cWmipW2ZMhOXk4e3AP7h48SK2bdsGp9OJ8PBw3H333bj11ltNS99IPSNVR3ldF0cuX7wXreyYf3Z7NyV5leRk5T049DHr6C5ep4zB848jRwAD93XSqqN649UTTk0Ybz9mKSE8Hg/a29uxcuVKlJeX9z+fNm0a7r77bk2KQbv1JY2Njfj0009RoWKT7PDMTKC0FP/8z/8McIWgLfCl40NLSkpU+7VaVg6HwzEKVwpy/Aa+eMaxA1wpyCGBUjmeOHGi///t7e3YunUr4uLiMGrUKNqiATC2yMPrKF3MzF/SafmawlitEpPD8bW6zxJOpxOCIBBpc/xbhCMHC/06a0pBvWlpSc8s2TweD44cOTJAIQgABw4cwE033YTk5GRT5DCboqIirF27Fq2trYp+X3jhBfzvm28CN95ogmRsYef+35eUgiz0wxyOEpcvX8aBr7+G0+nENddcg5kzZyIsLMxqsTg2xPrtaBwOI1g9AeH4Lqx9mHKlIEeMH374wbS0uKUgu8htTGDRmk4LdlN4KpUFVzBwzMYf61RHRwc2bdpEZNOWP+YfRz2+bCmoF72byLSMj2ZZCrrdbnzzzTeibkeOHNEUF2vlJMWxY8ewbNkyRYVgamoqNm/ejA8++ABRUVEmScchhb8qBa2WleO/bN26FUVFRWhsbMSpU6ewYsUKXh85urB+5snhmIRSJ2n1+eUcDmC9pSBvB/7L6dOnFf1cvHgRa9aswUcffYR9+/bB7XbrSsuIpSCpOsonzuLY7YhNb3xNYcwtBTlqIVn3Wan/LHH69GkcP37ccDxckW8edsxLX1YKmlkeHo+HuasblNI5f/68KTKYhcvlwubNm7F161bZ9w4ICMCCBQuQn5+PBx54wEQJOSTxpTsF+fyaYwcGt7ny8vIhVugcjhr48aEcTi9WT0A4vguLH6ZSNDY24syZMxg1ahQ/gsDG0Fh8OX/+PNauXdsfd2lpKWpqajBnzhzNcXFLQXbxZUWU2jInUTdox2GWpWB3dzcuXLiAiooKDBs2DNdffz2Cgvjng7/iz/3mpUuXMGnSJENx+HP+cZQJDAy0WgTm6qgZloJmHh+qx00M1srJm5aWFnz66aeKd7NlZmZi/fr1hvtVjna6uroQAuDTTz+Fe/hwTJkyBSNGjNAdH7cU5HCs55tvvsFTTz1ltRgcm8G/6jmcXqxWxnB8F9aUgkryrF+/HklJSXj22Wf5ES6cfr799tshdeeHH37AzJkzERMToykuFu4U5B9y4phpKcjvFJRH7VGutOju7saaNWtw9erV/mfXXnst5s6dyxWDjMEtBemj5j4sJXjemgepeyBJw/rGG1+xFKTpXy9y6fhK31BXV4dly5ahqalJ1t+0adOwbt06pKammiQZpw9BELBp0ybMAVBRUQFnRweuXLmC+fPn45prrtEVJ8k2ZHVbYKEf5nD00NLSYrUIHBvCv+g5dCgrAyIjrZZiANF1dQhqb5d0D6usBAoLzROIo4nYhgZpR8bLLaK6Wl5+bwoLAafTcnm6Gxpw7LPPcNddd1GVhUOHgNpa9XXOG5m21HDqFGJFnp/ZsgW33XabpmQCS0o0yxdaUQEUFiK8qkrfuw2C9/kSNDdL5m94VVV/nmnq1ySIjIoCCguJlCcARIWGypdpa6tkWsHBwf1hg0pLDctEon45nE5JOSJrauAoKpKVMwowJMOls2dRd+LEgHZfffQoriYl4brrrtMdL4cCMnVbC46iIsTU10svyhUWAiEhhtOxAqP509bQYHzM6OyUb7OCwMcllXg8Htm89Fy9igAGNy+4XS5JuaNqay0vfz3zMzVEORy63i2sslKzPBERERAEQTZccFkZkJjY80dLC5V3HkxIeblkOiEhIZryh8Q8hTSNjY34ct06xLe2Ih5AIIB0AMcAdHn5e/755/Hee+/1vDPHdK5evYrS0tIBzzweD44ePapbKehLx4dqwWoFpp1xu92orq5GUlISgnWEZ3Xjj5XovdaF49+wN1Pm+Ab33mu1BEN42WoBOIbIlXPMyzNJCn3M6v2pwoR3eYR6ChyrSYJCm5FCpv7pik+CLD3x9cp2X++PQ4doqCubn5NK8O/+jmjdwj//s6RTJBTe7Y9/BACMVPJnErFQlkPJHb/5je70x/T+hsD4mOuPKNZtteTl4U0Fd7uSSyISg+8fqkaO3/7WUBr+QgDs+W0QBAW5X3/dHEEkyAbF8e9f/kVzkLt7f8Txqh9RMG/Mny7n+N//rTqeTLAxTxnMb0SeTQNwED33B86aNQv/8z//wxWCFrJt2zbR51VVVbrj5MeHcrTw/fffY8uWLeju7kZgYCDuHz0at6gM29TUhC1btqCwsBCxsbGYMmUKbrlFbWjfhisFOXrgSkEOHXbuBBjbRf6Xv/wFHR0dku7jxo3Dz372MxMl4mhh8eLFkm65ubmmyaGHrVu34tKlS6r8zps3D8nJyVTlWb9+veI9D32wnrcccWpqarBq1SrN4eTKW6oNjh07FjNmzNCUTmFhIT7//HNNYaZMmYIpU6Zoak9yTJgwAdOnTzccj6/hdDqxZMkSUbebb74Zd955JwBg8+bNuHLliqG0hg8fjscee0y2f9dCamqq7F0KLS0t+PDDD0XdgoOD8dprrwEALl++jC1bthiSZdKkSZotaAdTX1+P5cuXi7qNGTMGEydOxMqVK1XFFRwcjNmzZyMrK0t1+nYed/0Nubqtheeffx5LliyRXOhatGgRQkNDDadjBUb7mZiYGDz//POG4mhvb8f7778v6R4bG4vnnnvOUBr+glJevvrqq0wqHjo7O/Hee++Juo0ePRr3WryxtqCgAF988QXxeOPj4/Hss89qDrd3717k5+drCpOWlgYAqKyslPRz1113Yfz48QDk5z0kGTduHM6cOSPqFhgYiDfeeENVPIIgII8hpXdFRQU+//xzdHZ1DXieCeAAgAoAkZGRmDt3LrKzs7kixUIEQUB9fb3oyS8NBixP/VUpyNFOZWUlNm7c2P+32+3G/v37VSkF3W43li1bhvr6egBAbW0ttmzZgtDQUIwbN46SxPaBKwU5euBKQQ4dMjKAnByrpRhAU0IC2mWOD21NTmZOZs6POOPjpR0ZL7fW5GQ4a2tV+XVlZgLp6VTlKQTQIpef3jCetxxx3GFh8m1GCpnyloqvPTVVcz3p7u7WLF9HWhqQk6OpPcnRlpLC67cI7vp6ybLpKwOgJ/+cvR9leolPSgJycvTVVREie+OTwtPUJJlWcHBwf9iutjbDMvW1C7fbjfPnz6OsrAxpaWkYPXp0T1oqcEdGyrY7T1aWJjn3XL6M53/6U9X+7Tzu+htCczORduTJykJjXJx0OtnZQFiY4XTMRhAEw/kjxMQYrvee1lZZOQLi43nbUkm3TH8O9NZVBhXYLpk64D3GWkV3VxexMdmboMREXe/WnpoK56CjDpWISEhAQEAAnJ2dkn66hg3rl0du3kOS1uRkyXQCAgJU509Zaakp8qqhuLgYKzZuRHd3t6SfxORkPDR/PmJje1RRdjoe0tdobm6mEq8vHR/KLQXponWThzdlZWX9CkFvvv/+e64UBFcKcvTBlYIcTi98UOewAO2JcGlpKb+EmEMUPTsqjfS3vK+mi1z+epc1i+XAmkxutxtr167FxYsX+5+dPHkSTz/9tCoLFqX30fq+JSUl6OzstK2lF0ca1uq+L0JisYWXEznkTn8B2M1ruXl+QECAiZKIQyvf9MarJ5wgCJrGT7OUEHLpaHnPwffBWcWlS5fw2WefySoEAWDOnDloj/3RNo3VtukPtLW1SboZsZDjloIctRw6dEh32K+//lr0OYkThHwBrhTk6MH6mSeHYxJKEwyrdyVxfBctk1vaE2GpyRSHYyZ6F3kAcn211R+drCKXv6SVgmaXgdr0SMl18eLFAQpBACgqKpI8PmwwastCC3ILQhz7QqrOklZE+xJmKAX9OX+1snv3bll3VvNSrh5xpSAZPB6Ppu9+s2QjpRRkQWlx9epVrFmzBl2Djgz1JmPYMAAYsgmK1bZpNWbki1waak+x0BInC/FphVsKsovSBgR/hysFOXqwfubJ4TACH9Q5tNBSt2grp43eAcaxB6x/oLFgKcj7fHHsnC8s1Q1BELBv3z5RN6XFbDVyOBwOXXIqWddwOL4IiTZNYn5m5/6VNeTuiwPYzWt/tRTUix551CgFd+7ciaampn7/ZuALC7aCIGD//v1YuXKl7Ptce+21ePjhhyXj4FgDjbwnHafVG/VZULpzOHqwuu1w7In1M08OxyS4pSDHDvB6yGERFpSCfWFYUvz4ImYeH1pUVGTqIpnZloJVVVWiz9Uq5tSWhRbk7lbm2BduKUgfbinIFkpH4e/fv98kSbThr0pBM+u2muNDAWDjxo39/s2A1DeeVUoLj8eD7du3Y+/evbLvMm7cODz55JOSlme8n7MOOygFra4f3FKQY1d8YeMJx3ysn3lyOIzAlTEcWrBkKcjxD1j/QDMSHz8+lC40FFFyfPrpp8TjlMLsRUmjKB0fyi0FORzzcLvdhts1H3fM48iRI6itrbVajCH46/GhetFrKaiGwsJCdHR0aEpj7ty5uPnmmzXLpEUuFunu7sa6detw9OhRWX+jR4/GI488gsDAQEk/rNUxf4IrBZXhloIcu8KVghw9WD/z5HAYweoJCIcD2PuDkeO7sPDBR9pSkCOOmXcKAmQvh/c1K1JuKchRC7cUlIeVvsGu+WdXTpw4YbUIQ+CWgvRRc3xoH42NjZpkCw0NRVBQkG657EhTUxOWLFmCs2fPyvqbOHEiHn/8cVmFIKCtLnR3d6O4uBitra2qw3DMhYVvRJJwS0EOh+NP6JvRcDg2hB8fyrEKbinIsTssffSwsrjrq5h5fKjZmH18qFG4UpDDYQu3221IceOrSldWOXPmDO69916rxRiAvyoF9aJ3Exmtby8jVkR2tOIoKSnBp59+qnhc76233opZs2apqsNqy+bSpUtYu2oVXC4XAOAnP/kJ7r//fm7JZQAa7Zv02oWVayEOh4PXLw6H41dwpSCHDmVlQGSk1VIMILahAV1dXZLu4VVVQGGheQJxNBHb0CDtyHi5RdbUyMvvRWBJCRASQkUOQRBUy9EP43nLESegslJ7WQOS5S10dUnGp6fvDCot1SxfaEUFUFioqT3Jwft8cQIqKiTzN6yysj/PSJUDSaICA2XLNKCxUVLm4ODg/rDBZWWG3y1UJh8BqKp7ATLtJKK6GgHFxZrl9Fy9CmRmqvJr53HX33DI1G0tKNUpR1EREBFhOB3TcbuJ5I/n6lUgNFR3eEdDg6wc0S4Xb1sqUDufjeruZi8/ZcYXFuYleuZnatBbtyOqqzXLE9nVhdDQUHSpCBdYUgJPd7fqNILLynTJBAARERFExlXF+QUhioqK8PXmzUh0u5EIIBBAOoBjAPpWVAICAvDQQw9h/PjxquNVq5jatm0bXHFx/X8fO3YMaWlpmDhxouq07IQZCnl+fKg8WpWCrG2i4HA4HK1wpSCHDoztygSAV9V4+tu/pS0GRye5co55eSZJoY+HtHim+C4OKOSjGIznLUecNOgoa0CyvEP0xifB9b0/PcwhKAdnKOlQV9aPUJZDN//3/0o6xUHh3f74RwDAmN6fUX4q56iib82EclkouRtBNm4+NjBFHAjVhbw8nyz3QJDLHyPEq5Hjd78zlIY/oGk++/vf0xNEBxmQkZ2B9jW690cFHXV7Zu+PGr15nqvBfyaA6RRlUWJ8788M/lfk2TQABwGEhIRg7ty5GDVqlKY4jZzacOzYMZ9VCpoBVwrKwy0FORyOv8GVghw67NwJXHed1VIM4N1330V3d7eke2ZmJubM4cvNrLJ48WJJt9zcXNPk0MPGjRtRVFSkyu+sWbNwHaW24/F48NZbb2kKw3recsSprKzEmjVrNIeTKu/Ozk689957om433ngj7rnnHk3pnDt3Djt37tQU5pZbbsEdd9yBTz/9FBUVFZrCijF69GjmjhVjgdLSUqxbt07UbcqUKZgyZQoAYMOGDSguLjZTNEUSExPxzDPPSLo3NDRg2bJlom7BwcF47bXXAAA//PADdu/ebUiWm2++GadOnZJ0V9O3FhcXY8OGDZLxX3/99Zrb+ciRIzF79mxVfu087vobcnVbCwsWLMDy5csl3V988UVEMnYSiBpcLhfeeecdw/G88MILiIqK0h2+rq4OK1askHSPiorCCy+8oDt+f0EQBOSpUKBER0dj4cKFJkiknqKiImzcuFHU7bbbbsOkSZNMlmggZ8+exa5du4jHq7du79y5E+fOndMUJiwsDOHh4WhQYU33zDPPoL29XXLeM5g5c+bgypUrsuO7FKmpqaiqqpJ0Vzuufv/99/jyyy81p6+Wb7/9FoePHBnyPBPAAQAV6GlbTz/9NNLT0zXHb0TpU1lZqTssxx5KQTsdH8otBc2FK2w5HPJwpSCHDhkZQE6O1VIMwBkfL6sUjE1MZE5mzo844+OlHRkvt9bkZDibmlT57UxPp/Y+gtstn49iMJ63HHFcQUHayxqQLG9Pe7tkfO2pqZrrSZfTqVm+jrQ0ICcHzYmJcHZ0aAorRmtyMq/fIrgg3d92DRvWn2ctSUlwNjebJ5gKQhTGcXdUlOS7BQcH94ftrK/X13686EhLMzxudcv02e2pqXAPH65ZztqoKNX13s7jrr8hV7c1xaNQpzxZWUB0tOF0TMflIpI/rsxMwOs4O624IyLk8zc6mrctNQiCuvKMjbU0Pzs6OhAWFjbgWVd3t6TsffMcK+lsaCDSVgbj1jD2eNOanAynRkVQR2gouiMj4VTh15OVhe6WFtXv7MnKQkdrq648CouPh1PmKhO1+dNVW0unjNxubN26FSdPnpT1l5qejkeefhrROscCrkjxLbilYA/V1dU4ePAgWn/4AfMBNDU1IYaseBwOh0McrhTk+A1KEwwrdyVxfBtal91zOGbB0gcfqTbCFyXEMXKsk9UoySTnTnr3KYn8UarretLoIKBQ53DsBqn+yu12U5WDxX6VRdTmk1VWBRcuXMDOnTvR0NCAhIQE3Hfffbj22msBsD/P94U66PF4VL/Hxx9/rGlcNKI0YLnsOzs78dlnn+Hy5cuKfh977DG0GNgc4gt1zK7YwVLQ6vqhx1Kwvr4ey5YtQ1tbW/99n+vXr8cTo0Yhwo73MHM4HL8hwGoBOBxWYHmizpHH6skjSWjWQ1/KJ448rB/loke+vjC8HtOF5y87eSAnh14ZWXk3DllIlStXWsljdCz09/wzm8bGRpw4cQK1tbWmpVlZWYm1a9f2H11ZX1+PTz/9FNXV1QDkFcss1A9aMpg5ZmlRCmrdKGNE0czqWkNTUxOWLl2qqBC8ecIEAEBgYKCh9Fio5/6KHeaVVh8fqof8/Hy0tbUNeOZ0OnHx4kUSYnE4HA41uFKQ4zfwhQ6OVbBiKcjrOEcvLO0CNWvx219Ru2Bgx/yzmxUkjXkLK+/GIQsvV3PgloL2Y8uWLXj33XdxROSONBqcO3duyFze7Xbj/PnzANhVDPXBmlJQb1q00mPBUpDkuxUXF+P9999XvKv73nvvxZ133kkkTd7PWQeNvGdh4yip+AMCAnRZCn799dei7ps2bdIkG4fD4ZgNVwpyOL2w/pHG8Q94PeSwCAtKwb4wJBdVjC7w+iJq85fFRR2WFMZmHB/K4ZDGV5VWrBwfyts0GfSU586dO1FfX09BmoF88803os+/+uorAPJ1gIX2xYIM3ui1FKSFEaUgqTknqTnK0aNHsXTpUrS2tkr6CwwMxOOPP46pU6caTtM7bc5QrM4XViwFrVQKGmnfWtPicDgcFuB3CnI4vfAPdfsiCIJl94aogVsKcsyG9Q80FiwFz549i3PnziE5ORkzZ87EyJEjicRrd2gcLcQKdpN/3759su52ex8OPXhdMAfaloIcuhw/fhwzZ860VAbWNyP5gqUgQO97ioXjQ0kcY7x7924cOnRI1l9YWBieeuopZGdnG0pPLH2ONdjh+FDa9UOu/WhVCvK6zOFw7A63FOT4DUqDNlcKcmjBilKQw9ELCx98NO4UFAQB1dXVWL16NaqqqojFa2fsdsSmN75kKdjY2ChbJ1lZvOH4Fr5qKUgK2ncK+nv+0iY/P99qEZif57NWB/XKQ9taUA+sKAW/+uorRYVgbGwsFi5cSFwhCLBXx/wJGnlvtzsFzbQU5JCFlw1f0+aQh1sKcuhQVgZERlotxQBiGxpkO8koQQAKC80TiKOJ2IYGSTehoAAweOk5TaJqa2Xl9yakvJxaPRQ6O1XL0Q9vE7YkoLRUe1kDkuXtcDol4wuvqtJcT4LLyjTL15dOZE0NXE6nprBquLJ3L1Jvu414vHYjSKbuhFZU9Je1ln7NLKIVxvGAmhpJmUNCQvrD6qmfgwmvqpKPQ6HNnD10SDZ8eFUVAmJiNMsZrSLtPozIzzEXubqthcCSEtl4AoqLgcZGw+mYja75jwiOoiJD4QMU+pbwjg7etlQguFy6yjOyq4t6/ir1m3JtzHuMtYqQ8nIqY3toW5uud4uortYlT2hbG4I6OzWHUyKotFR5fJeRKVhOJpX5Y2SOcuzYMRQdOoRsAIEA0gEcA9Dl5SczMxNPPPEEoqOjdaWhBF+0tg5uKcgtBTn2RhAEyNVQl8vV803L4aiEKwU5dLj3XqslGMIv1Xj67W9pi8HRSa6cY16eSVLoY44WzxTfJRQK+SgG43nLEScTOsoakCzvWL3xSTCh96eH58iJwRFhJNSV9VzKcuhGZhxPhsK7/fd/AwBu7v0Z5S45R4W+9bbenxK56sX5kd/8RpU32bj52MAUinVbLXl5PlnuuuY/Yhh8/ww1cvznfxpKwx8IgoHy/Pd/JyeICLlyjnl5huY/ZkBq/BPlD3/QHOTnFMQwRF4ekqFufNYTtxp+0vsjxTQAB3v/P3HiRMyaNQtBQfSWCbkiRRwz8oUrBbmlIMe34UpBjla4UpBDh507geuus1qKAeTl5clOAqKjo7Fw4UITJeJoYfHixZJub7zxBgIZthT87LPPUFZWpsrv1KlTMXnyZCpydHZ24r333tMUJjc3l4osHLqUlpZi3bp1msO9+eaboh9DDQ0NWLZsmWiYG2+8Effcc4+mdE6dOqV4X9pgJkyYgOnTp+Pjjz9GU1OTprBq4fUduHjxIrZt2ybqNnnyZEydOhUAsGbNGlRWVpopmiKxsbF47jlptXF1dTU++eQTUbeQkBC8+uqrAPTVz8HcdNNN+P777yXdleraqlWrUFNTIxv/ddddp7mdx8XF4Re/+IUqv3LjLm8rbCFXt7Xw9NNPy8bz3HPPITY21nA6ZqNn/iPGAw88gFGjRukOrzQ2h4WF4ZVXXtEdv7/gcrnwzjvv6Ar78MMPIz09HaGhoYSl6kGp3zxx4gT2798v6j5p0iTcZvGJBXLyGSE0NBSLFi3SHG7Lli24fPmy5nCBgYFU7m+cN28eLl++jG+//Za4TGrH1SNHjuDIkSOa0j58+DC+PXp0wLNMAAcAVAAICAjAz3/+c9xyyy2a4tUDVwqyCStKQdqWpNxSkGNnlOoc6/cWc9iDKwU5dMjIAHJyrJZiAI1xcbLu7qgo5mT2Z9xuN9rb2xEVFQUAcMbHS/oVsrMBijsajdKcmAhnW5sqv+2pqdTqoae9XTYfReFtwpa4IN9mpBCys+EIGHrdsDsqSjI+PXW2o6JCs3xtKSlATg6c8fFoorUJgNd3dLW0qCrrlqQkOCkczWWEgPh42TJ0hYRIvltISEh/WD31czDtqanycSjUtebERDhdLtn4XZmZmuUMTEhQXc+NyM8xF7m6rSkehTrlycoCCKRjNkJHB5H86UxPN1T3uwVBVo6u8HDettTgcukuz2X79iEgIACPPPIIxo0bR1gw5X6zraRE0k9HWprl5d9RVkakrQzGe4zVQmtyMpx1dcTl0Yt7+HB0trbqyiOHwyG/oKsyf9oLCjSlv3//fuwdpBD0xgPgsccew9ixY1XHaQSuSBHHaktBvZBW4nFLQQ5HGqX24ZL5duRwxGB3FZ3DMRk+QWUDQRCwd+9eHDt2DF1dXUhJScGcOZoO4LQ1NHfH8TrOUUKqjrB0NAy/i4QuasuGxf6ElEwk4jEah5pFCT1pyIVxu90oKSlBWFgYUlNTNcfN8X1YbPdmYnQHtlL++Xv+qsVoPnk8HmzYsAFZWVmIiYkhJJX6tFmG10F6kMpbLXXo5MmT2Lt3r6yfmTNnYphJCkGA1zEpWFAKCoKgWSnG0jeiGkhaCnI4ZsOVghzScKUgh9ML6x9p/sLRo0dx8ODB/r+rq6uxfPlyCyUyjpbJLa+HHCvxeDyiR/GysAu0LwxfTKCLXFnbPe/trPAcDGkZKysrsWLFCrT1WrWnp6cTjZ9DF5YU4r4MbaUgxzwEQcCZM2dMP65Trg6xUD9oycDK0YRGYUFpoHZO/t1332HTpk2K/kaPHg2nUaE0wFqZ+hM08t5ux4eSthTk9ZnDEvz4UI5Whp4RxuH4KVwZwwb5+flDnrW0tMiGYX0yxoJS8OLFi6o+DDm+AenFF5baGEuy+CJ2VpyxKBNNSCqC1qxZ068QBICKigoicXPMway6b9c2Rkpuo4stzc3Nsu52zV+7oudeOKOw/r3JWh1kTR5AnSU/TdTkSX5+Pj7//HNJd4fDgXtnziQolXpYLFMWYMVSkHSceqCZF9xSkGNnlNoG63MMDntwS0GOX6BmYsEnqGxQVlZmtQiWQmMgP3r0KLZv3048Xo7voUcpqOfjychHJ5/s0kWubLzd7DhmmqnwNOP4UD2IyVVeXg6n00w7AQ6r2LFdm4nR8Wfz5s2EJPFvSNVTKxZ/WbfGZ81SkDMUpX7o7Nmz2LBhg2yeP/LIIxg9fDiwaxdp8RThdYFdWFIK0uqduaUgx84o1TealoI02yXHOrilIIfTC19oti+sT8a0yEfjCI6vv/6aaJwc9tFbj6T6QZbui6DZ3lnvS8zAznlgZAe0w+FAd3c3du/erXj/DgmM5rMgCMTK6urVq0Ti4VgHtxQ0ByOLLS6Xi39rMIYVSkHWj/ZiTSnIWp/DgiWRXD9y/vx5rFu3TjbfZs6ciZtuuomGaKpgrUxZgQVLQV+Osw9uKcjxZWjNMw8dOoQlS5YAAD7//HPFky849oErBTmcXviHOocFSNfDoqIitLe3E42T47uYdXwoq3cKdnd3U4vbLtj5+FAj9B2heejQIWLxGXGnha+VG4csvlo/WDg+VM1czFfzn1VYsxRkAV4HlbFaaSBVhy5cuIC1a9fK1rG7777b9Hs0B8PrmHXw40O5pSDH3ijVN5fLheLiYtTW1hKrmydOnMDu3bvR1NQEACgsLMTy5cuZn89w1MGPD+XQoawMiIy0Wop+BI8HsQ0Nyh4LC6nLwpFHVTkNprAQCAkhLgspImtqVL9XaEUF0XrYeeGCvjztg7cJWxJUWqq/LUVEDHkcUFEhGV94VZXmehJSXq5Zvr50ouvq4HK5NIVVS/elSwhhaOyyArm6490/RdXWosNI30KBaJdLti4GlJXJ1ru6qirEEpIlvKpKNi3P1asICJKehkfV1sqGD6+qQmB0tOZ2FON2D8mjUJn2LQkfG5hCqW6rJbCkRDYeR1ERoHDPM4s42tuJ5E9Qaanuui80NSnKEBISwtuWCoTOTiLlGSMIxPNbVq7CQtn+lvQ3gB50jQcqCAgI0PVuEdXVVOTRS0BxMbU8Ups/YZWVQ9I/e/YsDu/ejeEAAgGkAzgGoMvLz5133omf/vSnZGQ1AFeiiMOCpaAeGWgoBmgqG+TeMSAgwHKlP4djhJUrV/b/Pzs7G08++STCwsIMxZmfnz/kWW1tLSorKzFs2DBDcXOshysFOXS4916rJRhAAIBcNR7z8ugKwlEkV08gxsvtaQvTvqH3pxvG85YjThbItqV0vfFJMKX3p4fXCcoxBF7fMb73p8R82oLo5Xe/k3TKANl6rMQMOUeFuqZ23MhV6W8A//ZvA/6c1PvTBG8rTEGsbuflycdj03IPB7n80UuMWhn++791p+EvhIJgX/7b35KKCYCCXHl5+BmAnxFNkSy39f6o8L//qznIw+SlMEZeHpIA/IRS3GpQW4emATjY9/9p0zB9+nR9chGGKwV9C7tZCiodH6oVXp/NgytstdW3oqIi7N69G7NnzzaUZlFRkejzAwcOYO7cuYbi5lgPVwpy6LBzJ3DddVZL0Y/b7cbbb7+t6O+NN95AYGCgCRJxpFi8eLHmMIsWLUJoaCh5YQixatUq1NTUqPI7ZswYzJw5k1ja586dw86dO3WHz83NJSYLxzyKioqwceNGzeEWLlyI6OjoIc/Lysrw2WefiYa56aabcPfdd2tK5/Dhw/j22281hRk7dixmzJiBt956i9oO0nnz5iE5OZlK3Hbh1KlT2Ldvn6jbxIkT+3eZr1ixAnV1dWaKpkhUVBReeOEFSffS0lKsW7fOFFnGjBmDs2fPSrorjVurV69GVVWVpPvYsWMxatQofPHFF5rkio6OxsKFCwc8O3r0qOZjU/nYwBZm1e1nnnkGiYmJ1NMhTVtbG/76178ajufWW2/FtGnTdIVtaGjAsmXLZP0EBwfjtdde0xW/P9HZ2Yn33nvPcDyJiYl45plnCEj0I3LfMbm5udixYwfOnz8v6u49xlrFgQMHcPz4ceLxOhwOvPnmm5rDbdy4UXJB0gqeeeYZFBYWYv/+/cTjVjuu7tq1q39+ceHCBWzfsWOAeyaAAwAqev+eOnUq7rnnHmYW1LkSRRy7WgraTSlI+vhQDsdMtLaNkydPGlYKSsH6HckcdXClIIcOGRlATo7VUvyI2w1nfLyiNyE7G5A5zotDHzXlNIScHIBhpWBzYiKcKo87bElKItp2upua9OVpHyy1Y45qul0uXeXuycoCYoceoOhyOCTja09N1VxP2q9e1SxfaVAQkJODxrg4ah+L7ampQFYWlbjtQmdlpWTZdKSl9Zd1c2IinIzdJeCOipKti26Zekya9tRUOCsqJN09WVlAeLike3NiIpxdXZLu7ampcGVman4fISZmSB51lpRozxc+NjCFCzrnTxpxDx8OpKRQT4c0QmsrkfxpTU7WXfddkZGKMgQHB/O2pYbOTiLlGUp4zg0otMOcHLQmJ8MpseHDe4y1ivZLl+j1JTrerTU5Gc7ee4xYwJOVhU5C9W8IKvOnJSkJzvh4HDlyBDsGKQS9caNHIThz5sx+RUdQUBCSk5NRITM/oQ1XCorDlYJ04+xDaWMpv1OQwzJ66pvb7QYNsxeuQPcNAqwWgMNhCX5Zqj3xpckYr4McK5Gqf6TbmJ74iouLcfbsWartvUtGCeMvqO2D7NjvsiSzUj4r7b7U+y4s5QGHYzeM7IpW07fy9qkOUvnE2oIWC+XPggzesCZPeHi45fWmu7sb27dvl1UIAsB9996LFStWID09HQ6HA2lpaXj66aeRYvHGDtbK1J+wi1LQqjsFrW7bHP3wfkWazs5Oq0XgMAw3ieL4BWoHCa6Q4dBAyySF10GOlUjVVbl6aeYHpJ4jUbXAlYLyZePtxuLHF43FDr0opaXU17tUWJdbWQaCIPDFE4Ywqy6w2O7VQEpuI3M0Pr9jDyv6MNbbEOvyWUlqaiqioqIsHftaW1vxxz/+UdURr08++SRGjhyJkSNH9liK9F6R8t1339EWUxZex8RhwVLQl+Psg98pyLEzeupbZ2cnIijIwr8DfQNuKcjheME/2DlWQ7oO8omqf6K33PVYCpqpFFSjKDECVwryPsMsSCgFrYTXE44/QlspyNuVufAFraFYdZcXyTA0CAoKInrnux527NiBCRMmKCoEb5s6FcDA+t2nEBz83ApYKVPOUFhpo1beKag1bV6f2cBfykGvUpDDkYIrBTl+gdrO018GE1+D9XLjloIcuyBVV1lRCtKGKwW5paBZGD0+FLC27bGUlxxuKWgW3FKQDfjxob4tA4u8+OKLGDFiBADz601JSQkee+wx3H///bh8+bKs3zvvvBOTJk0CAAQEsLnUx+uYOCxYCuqRgcbYRnO8lIub1TbD4fTBklKQtTkURx+81+NwvFi1ahXKysqsFoPjx/APJY6V+LtSkHXrLDPgC9dkMLrwwnpdZLUN+yu8POThx4dyxLBiAZj1tsotBcXxvofPzIXQTZs24aabbsKGDRtk/QUEBOChhx7CXXfdNeAZi/C+0DrsYtVnZT/ELQXtCS8HafimZ44c/E5Bjl+gdpCoqKjA8uXL8cILLyA5OZmyVBxSsD4J4JaCHLMx8/hQPbDeZv0ZO1sKKsGSzEaPDxUEgdgCq54FTj5W+ScstSErUGPBKwU/PpQ9WNvlzkL5c6WgdXjf1etyufDrX/8a//Vf/6UYLjQ0FE888US/JWMfrNXvPvypTLVAI18aGhpw8uRJ1NXVYfjw4VRksJtSUG4s5nWT44t0dnYCwcHE42V1jOFogysFOZxBdHV1IT8/H3fffTf1dBoaGpCcnMzsTj4OGbRMMLnyhWMl/m4pyKpcZmLn47ZZkklJFqVFCSPKBzNgKa85vDzMglsKsoGdjw9lva2yJh9r8gD06o3H40FgYCBKSkrwzDPPYN++fYphYmNjMW/evAGWjH1IrS9YvZDLYpn6IvX19ViyZAlaWloAAOfOnVMMw8o3Hc3xklsK+ib+Ug66jw+NiqIgDccX4EpBDh3KyoDISKul+JGuLsQ2NKj2/v2mTbh70G47UgiCgAMHDuDkyZMQBAFhYWGYNWsWsrKyqKRnN7SUUx+OoiIgPJyCNGSIrquDS+V7RURGAoWFxNIOKS/Xlaf9EJSFYx6BJSW6yj2guBgQOXc+qLRUMr7wqirN9SSsstJYvaREaEWF39f50IoKVWUdXVcHoanJRMmUCWtvly0/ve1ClywKddxRVAS0tYm6uV0uRTkjqqsRFBWl+X0iOjuH5JFcmUshFBQAYWGawnDoIddHk0RqjGCe5mYi+aNnvOsjoLhYUQaHw+H3Y5AaHO3tRMozmvCcG1D4jiksRER1NdH5FGlozs+EggIgSNvyU2RNDRvzRa9y0TNmqkEoKMDm7dvxq1/9Ck3NzcjufR4IIB3AMQDeh8DdfPPNmDFjBiIiIkTjs1r5J4W/LN5rhXS+HD9+vF8hSFMGbinIMQu5Ps1fyo7fKcghDVcKcuhw771WSzCAEAC5WgPl5ZEXBIADwB29v35UHA3iL+TqCUSprEjxrNYAf//3xNIe0/vTDeN5yxFnJMi2Jd3xSXBX7485eH3Hbb0/JZ6nLYheZMbTHJCtx0rMknOUqWtBUC+nWn8D+I//GPDnT3p/muBthSlyYFLdtmm5R4Ng/rz5pq5g16iVYfFiXfH7E+EgWJ4E59yAglx5eXiAaGrk+Vnvjwo6+o+5FMTQhZfsN/X+aKQxG8BsCedpAA4CyMrKwowZMxSPgwymcFwcCfxl8V4rpPPl8OHDROOTwm5KQW4pyLEzLCkFOb4BVwpy6LBzJ3DddcSjFQQB586dQ0lJCSIiInDDDTeouvuvs7MT7733nqa0cnNzdUopz6effoqKioohz2fOnIkxYwypb3yCxToWQ1566SXJXZIssHTpUjQ2NqryO2zYMMydS+4T+OzZs9i1a5fu8LTaAYcuV65cwebNmzWHmzt3LoYNGzbk+aVLl7B161bRMNdffz3uv/9+Tel8+eWX+P777zXLR5vbb78dP/mJZvWIT7F//36cOHFC1G38+PG4664ede5HH32E5uZmM0VTJDQ0FIsWLZJ0LygowBdffGGKLCNHjsSVK1ck3Z944gmkp6eLurW2tuKDDz6QjX/06NEYMWKEZLuUIjw8HC+//PKAZ8eOHcPBgwc1xfPiiy8ikqUTIfycq1evYtOmTdTTeeqpp5Camko9HdI0Nzfjo48+MhzP8OHD8dhjj+kKe/nyZWzZskXWj8PhwJs6lY7+RHt7O95//33D8RgpTynkvmNyc3OxefNmybHBe4y1il27duHs2bNU4n7ttdc0K6qkvpvNxvt7KD8/H3v37iUWd1lZGXbu3IkmiTlVJoADACoA/OpXv8Lw4cNRWVmpGO/1118v+txq6w6uRGEXf7cU5NgX3q9Iwy0FOXJwpSCHDhkZQE4O8Wh3bN+Oo8eO9f99oLQUCxYsQEZGhmw4oaMDzvh4bYlRkB8Aznd0ACKybD93DmNmydoV+AWaywmAkJ3N1nG1g2hKSIBT5aAZlZAgW/cKCwtx4MAB1NbWYvjw4ZgxYwZiYmL676AKGnQsT2dDg6487YdSO+DQpVtPnwfAlZkJiBxl3NnSIhlfa3Ky5nrSlpJirF5SoiMtze/rfPvFi5Jl05aS0p8/TQkJaNJ4DBhtQkNDZcuvu6vLtHrXnJgIZ329tCwZGaJtDQBcTqeinG0pKejOyND8Pl3h4UPyqLO0VHM8nqwsIDpaUxgOPVwm1W1XZmbPHN9meFS0KTXEJSbqHiM6W1vVyWDTMaimpgbffvstamtrkZWVhdtvv72nT6aAR21eKpCUmko8v2Xlysnpmf9IjA3eY6xVtKWkwElJCSdkZwMhIZrCNCcmwtnRQUUeTXiVS3d9PZH619zcjH379uHEiROqFrQ/WrIE03/xC/z1r39VFT+rG3f44r04LOSLHhloKNmsulNQEARuKchhGm4pyCENW6s5HI4Mzc3NOHr06IBnXV1dOHjwIFHLKqsIDAy0WgTbwvpkTIt8cn7LysqwatUquFwuAIDT6URZWRlGjRqFH374AZ2dnbjmmmvw8MMPM/shyGEbqY8wpQ8orbDaZlmVy0zU5gHPK3mUFjTk8q+vj1cKb2UZ8J3WbMHbozkYqfe+3GZqa2uxZMkStLe3AwCKiopQUFCAZ599dshmNZawYpc7622VNflYkwcgU2/Onz+PjRs3qlqsvWXiRODkSUyfPh2Acp7ccMMNhuWjCYtlytEPK5aC1dXV2LdvHwoKCtDZ2Ynbb78dk1JSEDXIny+Pxf6Mv/QrLCkFuaWgb8DuLJ1jewRBwL59+/DDDz/A4/FgzJgxuOuuuxAQEKArvmNeFoLenDt3zoiYzMDyRzPHPOQmqqdPnx6yWNzQ0DCgbVy+fBmrVq3Ciy++yAdqP0bvxFgqnL8oBTnky5olzJRfadFBzl2NUtBq7F4XOPrw93LnSkFxTp482a8Q7KO0tBSFhYUYNWqURVIpw+fJQ7HyLi9vXC4XgoKCfK7P8Xg8OHr0KHbu3Kn4boGBgfiXf/kX/PNTTwHXXjsgDjnuu+8+WXer672vlSkpWMgXVr7ptMbZ2NiIZcuWoa2trf/Z/v378X1Dw5B7XrmlIMfOmK0U5PXb9+FaCA41du/ePeCC4wMHDqCzsxOzdB6RWVtbq1sWO3RmXCmoH9bLl5Sl4PHjx1XFUVFRgbq6OiQlJalOl8MBuKUgq3KZidqFaxbziiWZlGSRy2e3200kDVJhaMbDIQMvD3lI5Y/atimGLysFvb/3vPnqq6+oKAVJlafVypHBsNCOrZahrKwMW7duRUVFBRISElAvcwy3VeitN+3t7Vi3bp3sfcN9jBw5EqtWrcLkyZOBwsIBbnbvS6yuYxxpWPmm01rHf/jhhwEKwcEIggCH1/85voedyrWrqwshAJqamhBjUno0YG0OxdGHPpMtDkcBj8eDU6dODXn+3Xff6f6gtlNHrwd+fCgHIFfP1SoQORxvuKUgx5ePD7WLpaAaOa3Of7svSvoaZtUHq+ud1ZhhKehLeVxdXW21CLLw40OHYqWlYFNTE1asWIGK3jsNWVQIAvrqTXV1NT788ENVCsGFCxfi9OnTPQpBEew+/rLeBqyChXxh5ZtOa5x79uyRda/wuidVaf7NLQXZRa7vtUs5nDt3Du+//z4A4OOPP8bGjRs19elmt1G75CtHP1wpyKFCTU0NOkQuBe/q6kJJSYnp8rDSmcnJwS0FfRct9Y/Uh16f8p2Vus8xF358qD5YlctM7Hx8qJJ8vqQU1OKPBqzXBQ6HBvz4UG3ovTLCLFjb5c5Cv2qlUvDy5cvU7j4ygpGNu4Ig4NSpU/jggw9QV1cn6zczMxMbNmzAhx9+iKiowTeh/YjRvsTqes9CPeeQgwWloBLeG1R4/eNYRXNzMz777LMBRjLff/89jh49aqFU8si1F6vHEg4ZuBaCQwU5a0C9E1lfGMDl7gniSkHyiozBdHd3QxAEhISE6ErHDPjRbhwr4ceHsimXmdhBIWUHzFAK6oFU3P6o4GAZbikoDwv1XouloK8stNBSCvrq8aEsYGUb37x5s2Vpy3HvvfcO+FttvWltbcWmTZtw4cIFRb+333471q5di2HDhin6tWs/3Ifd5acFC/niS9903njLqDQWc0tBe2KHcsjPzxeV8/jx45gyZYqqOMx+TzvkK8cYXAvBoUJAZSViGxpE3YLLygAdH4mRNTWScQ4+a38wjvZ26bBSKMSpB5eMHDH19VTStBWCoL2cALSdPYuYtDRJ9+7ubuzevRtXrlyBIAi45pprMHPmTISGhhqRVjXRdXVwtLSo8hvp8UjWAy15E1ZZCRQWIqS8XFee9iEUFPBFExsSXFamq9yDSksBkXYhF19EdbXmviuiutpQvaRFX7vxZ0IrKiTLxjt/YurrEdzebqJkygQFBcmWX1BpqWn1LiIoSDatwJISIDxc1C1ARfsNr6pCUESE5vcJDQ0dkkdyZS6Fo6gIkLm/hWMuevt8rQSWlAA2VAgHOJ1E8ifS7dY9Rqguo8JCXd9JViI5P4iIoDKmOlpaiJRneFUVcflk5SoslJ3/sDAHCa+qoteXFBZKjnuAtu8csxg2bBhuiokZUC5qvq2ampqwe+NGdDQ2IhtAIIB0AMcAeN/uFBgYiPvvvx+33nqr6k2rckqNSZMmKYa3+ruOLzKzi56yobFJjHQd8ZbRzieicOzNoUOHRJ8rWZF7w9LxoVaPJRwycKUghwppCxbgHinHvDxdcc6Wc1SIMxxArtYEdcppSI5cWVefxwEd5QQollUwgFl64iXEC1oD/Ou/ij7O1ZH2uN6fbii0Aw59rgXZtnRj70+Sv/kbTcnc1/vjsMfM3p8SL9MWRC9/+pOkk+52QQOZvjUD6uUcrSftP/xhwJ8/6f1pgo8NTGFa3bZpuceCYP7827/pCjax96eIDfM4V87xP/6DeHpRSmlq4Ze/JBUTAAW58vLwENHUyCP7vW0UhbqdSzNtI/zjPw7484benxL/T+TZNAAHe/+flJSEJ598EklJSQDUK1fk/N1+++0Ao3cx9sEVL+LYNV/scHyod5vhloK+iR3KgZ+ywmERrhTkUKF8yRLsPn1a1G3u3LmqjsYYzBdffIGCggJRt1wFZVpbWxv++te/akpPKU49NDQ0YNmyZaJuN9xwA+67z7+Xyd1uN95++21dYaXqldvtxl/+8hd0d3cPeO5wOPDKK6+YYi34wQcfoLW1VZXfmJgYPP/886JuixcvVp3mmDFjMHPmTOTn52Pv3r2qww3mzTff5LuAbMjFixexbds2zeFmzZqF6667bsjz7777Dl999ZVomKysLDz66KOa0tm2bRsuXryoWT7aTJo0CbfddpvVYljKzp07ce7cOVG3sWPHYsaMGQCA9957j7m7fwIDA/HGG29IuuttF3pISEhAvczC3L333ovRo8VVeqWlpVi3bp1s/Ndddx1ycnKwa9cuTXKFhITg1VdfHfDs2LFjOHjwoEQIcZ566imkpqZqCsOhx4ULF7B9+3bq6cyZMweZmZnU0yFNY2Mjli5dajieiIgIvPTSS7rCqm1nb7zxhqE7zKxAan4qN6c1QktLCz788EPD8YwYMQIPPvggAYl+RG6unpubi88//xyFEtaA3mOsVWzatAlXr16lEvdLL73UYz0qgZbvHDMYN24cfvaznw15LtfflpSUYNu2bWjv6BjwPBPAAQAVvX9ff/31eOSRRxAWFtbvR+2ittTC8qxZsxATE+PzSkFfOmLZGxaUGr56fCi3FOSwAIn6xY8P5ZCGKwU5VHClpsIZHy/q5snKAnQsKLQmJ8PZ2CjumJMjG9bT0iIpjyQKceqhMyxMUo7O9HQqadoKt1t7OfXyVUEB5oks5ldXVKBW4rL2AkHADSbkuTM+Hq1qj4SJjpasB1rypi0lBcjJQVddne48BQAhOxsOmx1jxQG69PR5ALqGDROtfx1VVZLxtSQlae67WpOT4ayp0SwfbdpTU/2+H25NToazslLUra9fAYCmhAR0DFr0sprAwEDZ8utubTXUH2qSJT4eTpkPKbkxv1sQFOVsTU5Gd0aG5vcJCQkZkm5naanmeFyZmUBGhqYwHHp06+zzteIePhzIzqaeDmk89fVE8qczLEz3GNFeXKxOhpwcwGZKQan3CoiPpzKmepqaiJRnc2Iicflk5crJ6RljnU5RZ+8x1iqaEhLgpHSMp5CdDURGSrqbNT6rpSMtTbQ8xPpbj8eDgwcP4ssvv5RfRA0IwL0zZmDKlClDFFta7h0VI0rie3cwVivU+CIzu7CiFBQEASBYT/mdgr6PHcqBhKUgPz6UQxquFORQQa7D09t52KGjV8Llckm62W1XMA2MlLHb7RZ9LlffWKxTpGTixxNw9CBV/0jvqmSx7QHsymUmavPAjnllpsxKfbCcO80y4GOMb2JW3bZjuyeJkXpvdMHfjrD+beNLeU0KuW9Voyjld0BAAFNjS4DKTZGdnZ34/PPPJU9Z8Oapp55C8LXXiroZPT5UrbxWwy0FxWGhP2Llm460UpBbCvo+dig7q5SCdkqPYz5cKcihglznYZcJKw0GH2HpDesfzmZAYxcLC0pBLemQ+hjmAzhHD1L1z1+Ughx7KwWVZLKLUtAOsFj+HI4ULCjD7d7m9cD6N58V/RjrfSdXCv6IGsVTS0sLVqxYgaqqKll/aampQFUVkpKSIG4navz4UNbbWx9Gy5j1NuRv2O1OQamN5HrT5vWRoxY71hVuKej72GPmwLEdrFkKmt0BNzY24quvvsL69etx9OjR/smHnFKQQwcWlIJaICVTXzwkdmNy7IfecuOWgmzKZSZ8By0ZaFsKkm7jWmFp4ZbD5iYnX8QuSsHm5ma0tLSYlp4UtDY8kp4rswIL8igtmNOEtQ2ySmsWTqcTy5YtU1QIXnPNNaru3jbLUtDqhVwW6jmLsJAvvvRN5413m2HtPnQOGexWD/XC0vGhHN+AWwpyTEfvLja7dEgNDQ1YsmQJmpubAQBnzpzB5cuX8dRTT8nuvrTL+9GExoAlV99YXETz1YUOjj3gloIcOx9xx5KloFJaVh0fSgoWy9+f4eVhDh6PR/fRdWb0re3t7fj0009RVFQEAMjKysITTzyBiIgI3XEqYefTYbil4FCsthRkCTl5amtrsXz5cjQ1NcnGMWXKFMyYMQMhCv4A42O/1co+tXBLQXbRmrdNTU2qjs2lLYeW+OSUgoIgcEtBCxEEAfboxfRBoq6wVN/sMuZw5OFKQQ4VWNtBbmbneezYsX6FYB+XLl1CaWmprKUgSx08SVpbW3H8+HFUVlYiIyMDt956K8LCwkT98uNDybUd1togx1y4paA+WJXLTLilIBmU+mC75zMfY/wTO9RNMUjKTVspaISNGzf2KwQBoLi4GBs3bsS8efOopSn3XqwpeQZj1/pME5pKQSVYqy9S7by4uBhLly6VtcYNDg7GQw89hHHjxqlOT00fIae08BdLQV9tt3Z7r6+//hr79u2jEjfN40O7urqIxs0hh5JSkIV1PX+D56vvw5WCHCrY4WxxWhw+fFj0+d69e2U/DOzyflpoa2vD0qVLUVtbCwA4f/48zp07hwULFiA0NNQUGeQmDywuavLjQzlWwpWCbMplJnawUpOCJUtBM44PtbLtsVj+/gwvD/Nwu926lBe0LQW7urpw5cqVIc8vX76M9vZ2hIeH64pXCbnjJlk/PpS17wAW2jHN40PtZiko9g1ZUFCAhQsXyioE4+Li8NRTTyE1NZW4THLlw1r+ScFCPeeIo7ZsSkpKqCkEaeDdbkhbClZXV+uWi8MxA1rHh1q9wYRDBnvMHDi2g8SxWL5GUVGR3x0fmp+f368Q7KO8vBwXL14U9c8tBfmCLcda+PGhHLXwMpSHWwpyfBE71E3a6K37tNtMdXW1ZBqlpaXU0rWzkoIfHzoUux0fSnNRcnDcly9fxl133YXKykrJMElJSVi4cCEVhSAA2VOHQkJCqKRJGn58qDgsvJdaGb7//nsm5FALzTsFP/vsM6Lx+TP87jtlzH5Pf8lXf4ZbCnKoEFxdjdiGBlG3gOJioL1dc5wRMnGisFA+cFOTdFgplOKUQC6dgOJiSfewykrdabLK4dWrESvy/OCqVbjxlVeGOnR0aC+nXiLDwkTzL8DplIwzuKwMiIvTlZ4WYhsaVE9AAwICJOuBlryJqK4GCgsRUl6uO08B9MgSxIcKuxFUWqqr3IPLykTrn1w9iggK0tx3yfbnFuKL/bBW5MomvKqqP39iGxqoWhToRqb8gsvKTKt3gYGBsvkj1dYAde03oroawRERmt9HbIwJq6zUHE9gSQlgkwVIf8Csuh1UWgpQsv6iiaOujlj+CAUFgMQx+HKEVlSok6GwUFfbCq2pkYxfKCgAgoM1x6kGT2urZLrRdXVUxtQAPd91IkSGhhKXT1auwkJEypST9xhrFZE1NQiRUTwZIaC4GGhslHSPbWgAnE5NcSqNtUbo+5YCgCtXruDpp54CamqQDSAQQDqAYwD6DiPMyMjA008/jcjISF3pqVl8lTv6MFhlG7fauoMrBcVh4b3UynDp0iUgPt5yOfRA2lKQb5IjB1cKKsOSUtDqsYRDBr7Sy6HCyFdfxYNSjnl5uuKcI+eoEGcMgFytCeqUUzadvDxM0hWrPcmVc/yv/xryKEwpjBL/9E9DHsXKxamzjLWySGuA//1f0ce5WuPJzcV4AOO1hvPGpDzikGVM708zEuU9pfcnya9/rSmZRzX55pjJQyr9vUFVCgPI9Fm62wUNZOQcCfX9/Y160h40xtza+9MEHxuYYmzvjzo2LfdEGJxfeqMzD2b0/mjFnwxr5ruRcukCwN/8DfE0dX3XSfHP/0wqJgDK34GPEU2NPK/RjFyhHj5HM22DjARwVOT5NAAHAWRlZWHevHnUr8fwBUtBfrUFx2xoWgpyyMHbtjJmn9DEy8T34UpBDhUuvvMOdl+6JOo2b948JCcna45z3bp1ksff5ObmyoZtamrCxx9/rCk9pTilWLx4saTbxIkTcfLkSVG3MWPGYObMmbrSZBW5vPDOX7fbjX379hk6iiItLQ1PPvnkkOeNjY1YunSpaJi7774bN910k+401fLnP/9Z06XWb775pujOG7n8HExWVhYeffRRnDp1ytCZ/6+99prqnaccdjh79ix27dqlOdwdd9yBW265ZcjzQ4cO4ehRseWQnqOS5s+frykduf7cSiZMmIDp06dbLYalfPHFFygoKBB1u/7663H//fcDAN566y0md8dK9Z8A8MMPP2D37t0mSyTOlClTMGWKuKr98uXL2LJli2z4kSNHIjs7G19++aWmdAMCAvDLX/5ywLPjx4/jwIEDmuL5+c9/jmuvvVZTGA49zpw5gz179lBP5+GHH0ZOTg71dEhTV1eHFStWEIlr4cKFiI6O1hxux44dOH/+vKK/RYsW6VIs1NTUYNWqVaJu06dPx4QJEzTHqQan04klS5aIuo0aNQoPPPCAqWlqISUlBU8//TQBiX5E6dtHbv5zww034L777iMqjxY8Hg/eeustavE/99xziI0VO0OmhxUrVqCurk5TnKGhodQW+adMmYKbbroJTz/9NE5/990At0wABwBUAMjMzDRFIQjIWwraRSnI4tyRBVhYfGdBBsDa40NZyQOONvyl3Fh6T24p6BtwpSCHCp2JiXAOukuuD/fw4UBamuY4W5KS4GxtFXdUWKDwNDbCqfWIA52LHnLpNCcmSrq3paToTpNVZPPc6113btuGYyUlho6hiEpKEs0/T329pByd6emm5HljXJzszs7BCNnZcIjcq6GlDrf05kdnZaX2uu9NTg61I6c49OjS0+cB6EhLE20T7VeuSMYXkpCguR3J9ucW4ov9sFZakpLglDjeyzt/GuPimPow6ePDPXvgcDgwbtw4TJ48ecAHS6fMeGA27ampknWtq61NUc7W5GR0DRum+X0cDseQdDvLyjTH0zVsmN+3FZborKszpW67MjNtWe7uiAhi+eMePlzX0fMtSUmqZBCys3UdT9odEiIZf2tyMrVy666tlUxXak5hFE9DA5HyDE9MJC6f0rdPa3Ky5PyHZjmpwd3dTbUfcQ8fDiQkSLq3JifDqVFhFB4ejnYd15KooTU5GY/+7d9i5yCFoDfJqam4a/58IgpBfzk+lFsKsgsreUtaDu8jhpWOD+VYB89/9uBl4vtwpSDHdPR2LL7QIcm9gy+8nx48Hg/OnDljOB6p/GMhz7WmQ0Kuvjj4hxdHC2a1I16v7A+rZVheXg4AKCsrQ0dHB7OWnyTaFKky0BMP3+nvn7Da7s1Eb92n3Wbk4teyMU0rcve5BYhscGMJK/oxltuQy+WiGr/Su+tRVtGqY263G//2b/+meNrKI488gg4dSnwpBEFAQ0MDoqOjRZV8Um05MDCQ+fbWB79TUBxffS8W6Mtbt9ut2M/xciBPW1sbDh8+jLKyMll//JhLZVg6PtTqDSYcMnClIIcKNDplXxgkWFBQsUZzczO1HZ5KsJrnLCkFOfZEb7lLfaj7i1KQVbnMxJfGqWPHjuHOO+/s/2hhSX65RTE1clq9wYqlvOTw8jATrhQciJxSMDAwkEqavtqPWS0PbaWgEnqUWjQUYS6XC5999hkuXLgg6SclORmoqUFoaCg6CKVbVlaGTZs2oampCYGBgfjJT36CmTNnwnvZVcpSUMvRoVYv5PJNRexidR/UB63jQ5Wuc2Hl/X2Jzs5OLF++HFVVVVaL4hOYXUd5m/B97LGdiGM7+GRPHLmPLX/tcEl9zPmSpSCJ9tMXB7cU5GiBWwpyfIm2tjZUV1dbLYYo3FKQY0fs2neTlFtOCUZCBtKbegDlhVAjyKVrtfJBCbvWZ1rordtqUcpvPd+EpBXPXV1dWLNmjaxCMC0tDQ8++CDRdAHgq6++QlNTE4Cesjhy5MiQ+7xJKAWthn+bisPCe7EgA0BPKajm/lFW8sBXuHjxoikKQX8pN5aUgqzP8Tjq4EpBDhWM7oAnGc5oWK3IfdDIWcT5y0A2GFILixUVFZrDsJrn3FKQYxXcUpBNucxETVnbKZ+8FzlZkpuFDStG0mMpLzm8PMzEjpaCNJWCVlgKksKKvpbltmq1paCe+kLSUrCzsxOffPIJLl++LOknKSkJ77//PqKiooilK8epU6cG/C1l9av2PkEW4MeHsouv5q1apaCvvr+VbN26VbVfu6z32g2eNxw5uFKQYxvs0pmFydwrwJWCQyG5SCL2ESeXr2ZZOlhhKWjHxXsOOUhvviCtwGDVyoi3F3XYKZ+8dzGyJLdRWSorK7F3715C0miHpbzksHvygS9CWylIw1Kwo4PUAYdDoW1dJgY/PpQOVt8paOXxoW1tbVixYgUKCwsl/cTExGDHjh245ppriKSphsEWNvz4UHp0d3dTPWpZCavbP2nGjh2LiRMn6gpLOi/64uOWguajJs/7oHHvLMcY3FLQ9+F3CnKowNIOeLPTDAsLQ1tbm6gbVwoOheSHwaFDhzBq1CjV/lnNc5YsBVnNIw4d+PGhHNbGb6Ow+sFi9ESFviPG9CAIgmFlKauLehwObbQscHljpaWgXpnVYIVSkBTcUnAgdjw+lIRSsKSkBJ999pnsuBoXF4ddu3bhlltuQX5+vuE09SKltOLHh+qnu7sbn3/+OS5cuIDYhga8gR7lq9k5ykLfQFIGh8Oh21qc1vGhVltDc+ThloLKmL3u4i/56s9wpSCHCkFVVYhtaBB1CywpAXTswoqsqZGMEzK7+gAgoKFBOqwUCnFKEdfYCLdEWsEdHYiVUAyGV1XpTpNVZPO8713r6rSXjQT1DQ3AT3864FmATPwh5eWm5HlMfb22AbWwEIiIGPJYSz5FBgcDhYUIKS83lL+OoiIgNFR3eI41BJeV6Sr3sMpK0TYRVlkpGV+0y6W5Hcn25xYi9f7+hFzZRFRXA4WFENxuJstPjMCSEqDXSkZvu6CBXF2jLmdhIeClFAytqNCcXnBZGZCURFgwjl7MqttBpaW2nBMEEBxzdn/wAV5++WXN4SKqq1XJ4CgqAsLDNccfWFIiGX9wUBC1sS2guFgyXVrfNrq+60SIcruJyycnl1BQgKjaWtPzSy1CaSnVfiSguBiQ2DgLANE6vgljgoLQaUDm06dP45tvvkG8ICAeQCCAdADHAPTZ5CUmJmLXrl26rZ5IImUpyI8P1c+mTZtw9uxZAD8qxnft2oUHrruOaDp2gGTeGlHY01IKKtU91jducDgsXTHB6sZbjja4UpBDhfH/8A8YK+WYl6crzqfkHBXijAeQqzVBnXI+oytUL7/8pZHQzJEr59ibv4lK/rQyqNxk49dZxlp5U2sACblytcbzq19hCoApWsOpkIXDNjf2/khxV+9Pkt/9TlN8840Iw6HKY0oe3ngDgSDcb9PEqw+b0PtjnTG9P2oM6td1jRN8bGCKm3t/1LFpuSeDcJ/1n/+pOcjjaj3qzOORUHjHX/9aV7yG06WAru86Kf7t30jFBED522euUgRvvEFMFq1kgnJZKtTth2imrZFpAA4CSEtLw549ezB2rOTKhqn4wvGhLFkKulwunD9/fsjzgoKCHmtBEy0wfU0Z5XA4LK9rffQpA9Xksa+Vg53gFm3KsKQU5PgGXCnIocKp//ov7C4vF3V74oknkJ6erjnOTz75BNXV1aJuubm5smHr6+uxfPlyzWnGxsZi2rRpuPbaa1WHWb58Oerr6zWnNWLECDz44IOaw7HM4sWLJd36yqy6uhqffPIJsTQH14Xa2lqsXLlS1O+UKVMwZYohlZkq5PJBjIULFyI6OtpQPElJSZg/fz4OHz6Mb7/9VlP63rzyyiuy92Ry2CQ/P1/XfWO33norpk2bNuT5nj17cObMGdEwkZGRePHFFzWls2zZMjQwYrHlzZgxYzBz5kyrxbCUdevWobS0VNRt5MiRmD17NlwuF9555x2TJdPHM888g8TERADAqVOnsG/fPosl6uHGG2/EPffcI+p25swZ7Nmzh1rakyZNQlxcHEaMGIGwsDBd48T06dMxYcIEOgLahKqqKnz22WcDjqOKjo7GvHnzTB83zarbs2fPxsiRI6mnQ5qamhqsWrWKWHxz5sxBZmampjCrV68ecj+YGC+99BIiRE6LUOLChQvYvn27qFtYWBheeeUVzXGq4fz589ixY4eom1w/ZwS933WDiYqKwgsvvEBAoh+Rm6u/9tpr2LBhAyoqKkTd+8ZYq7h69So2bdpELf558+YhOTlZ0n3Lli2i98PLcc0116CgoEBTmLa2Nmzbtg2lZWVD3DIBHABQASA1NRXffPONpnUA2kgdH+pPloIkqaqqEj1S0u12o6ioiKmy1wLpu+X1YEQhSOtOQaV4uQLEWnj+04GWspUVpT/HGFwpyKFCZ2IinBLHZLqHDwc0fkgDQHNiIpwSE2EhO1u2U/JERcEZH685TSeA1YcP47kbbsDw4cPVy6mj421JSgJycjSHYxnZPO991+7gYF1lI8XguuAOD5eMvz011ZQ81/p+nqwsIDbWUDwhCQlATg7ar141lL9CdrauY6w41tJZW6ur3Ae3CZfLhaCgILSlpEjG54qM1NyOmhIS4NQsHX3M6hNYpiUpCc7WVlG3tpQUICcHQnc30X6bJp6sLKB3EbKrqooZufvyUozOujqqcu6+dAkAkFRQgGeffRbtqama0+saNszv28qp8+dRN2gDjxPApe5u3HjDDabK0lFRYUrdtmu5u0JDieaPJysLyMrSFKYpIQFOCSufIXFHRWmWqbOpSfIdO0JDqZVbR2OjZLpy/ZwR9H7XDcYdFUVcPjm5hOzsnjG290jrwdDKL7V0tLVR7Ufcw4cDaWnS6aelwVlXpzq+uLg4RIwZA2djo+owpaWlWLt2reK9vPGJiXjro4+YUwr5gqVgZWUlGhsbERcXpyu8WUdcmq28JPleLCgFAf11jdbxodxSkG24paAy/vKeHPPgSkEOFVjaAQYYH2DOnj2rWinIyiTMLpCuK4IgqJ6AmpHnetIgkSdqd8RxOGIUFxdjx44dqKioQExMjOQiBGBdHVfLzJkzsWvXLlV+S0tLsX37dnR2duL666/H6NGjKUtnL+zYn3jLzJL8cm3ALDlra2tx6NAhBAYGag7LUl5ahZR15ZYtW3DjjSQPcOawhp67kmiPe3Lx00y77w4uO8KP4RqImMWUmWhVIEyfPh21tbWq/Z86dQqbN29W1R6eeOIJzdbAZuALloIAsHbtWrz00ku6wpJsR3LzH3/s21i5U5A0Wu4U5HBYhqV5i9UbTDhkYKen5vgUcp0HC5MUrRw5coR6Gv46CaGhFJT7W62blZCQi1S+sppHHDoIggCn04lPPvmk/3irpqYmdEjsau8LoxUzlYJadnnX1tbi6NGj+O6777B27Vp88803FCWzL3bqF1hVCkpRUFCAr776yrT0Dh8+bIt8sRNymyhoYVYZ8rrSg54xzB+VgrTqC6l4rVhcY/m7hLYSROn9tCww3nHHHRg/fryqMIIg4KuvvsIXX3wh2xYCAgLws97jboODgyXjtrKcSFgKskBFRQWcTuvPDGFJKWh1+yeNkTsFuaWgf2JkjPCXctPzntwCkyMHVwpyqMDSDgY17iSxo9LTSkgvVGiJj1sKcnwBsfpipNwvXryIzs5O1f7NnpxqJShI/6EI+/fvl9yV7auoWbC0U7/Cqqxi7fbLL7/E8uXL0dbWZoFE2mA1XzkcMWgtMNIIo1dWuQVsmkpB1k6H0YKdjwekAW1LQZLf6yNGjACgbI3k8XiwadMmxTtXw8LCMH/+fIwbN67/GYtWEK0Sx7vb6fjQPoqKinSFM+veO24paAw73inIsS+8bOnALQV9H358KIcKNDplX9/hYAcZacAtBYdCQi4++fV9Lly4gK+++go1NTXIyMjA/fffj/T0dENxCoKAixcvag6jFTMX4owcX+NyuXDu3DncdNNNBCXimAmrloKDZWlsbMT+/fuZkIVjP7iloLnYzVKwz0KNxgKOFZaCpOCWggOx+vhQLfTVZSXLkZ07d+LUqVOycaWlpWHu3LlISEgAGhqGpMEK3d3daPCSz5tYkbvoWYcVKzIp7GwpyIpSkJU2pOX4UKv7YX+G5z1QVVWFy5cvIywsDNdddx2iB91dzprxDcf+cKUghwpm35XDUmfFwiTMTtBWCpqZthhWWVGRUgr6a71kndLSUqxdu7a/DpeUlGDFihVYtGgRoqOjDfVDdXV1msPoSccMAgICDH+QsnC8kZn42tE6rMo6WC6p++nMgOU2zFEHLw9zYdFSUM1ip9lKQVrY+fhQlrH6+FA9+SNVpz0eD7Zt24bjx4/Lhh8/fjweeOAB0Tv5WLoTDYCkQhAAUlJSTJSEDCwoBeXi8kelIElYshTsK0sW8oVDB18o2/z8fGzcuLH/XSIiIvDss88a7t9pGdewovTnGIOtmQ7HZ2BN8WeHQYJ1GQVBQHV1NcrKyogq0/jxoUMhkSdazs7n2I8zZ84MqSft7e24dOmS4bjT0tI0+WfZUjAwMJBPWAlix/7ELpaCBQUFFknCVr5w2MaudYX28aFNTU2or6/XFIY0SvHTSt8fj9izS3pasaOloJjirqGhAUuXLlVUCN533314+OGHRRWC3mmofU6b2tpa0edBQUGIj49XHQ8r82JW5JDCH/s2ViwFrTo+lFsKWos/573b7caWLVsG5EFbWxt27949wJ8/5xGHDtxSkEOFkNpaxErsZgsoLgZ0fJhG1daiS2qHXGEhIHNRdGBNjaQ8qiksVOUtuq4OHh2WJZEREarTMJv29nZs3LgR1dXVAIDo6Gg88sgjPcesyCCb573vGlhSYrxsBscbHt7/Z0BVlWT8YZWV9PPc5dL8fgHFxUBHx5DnWuKJ7OoCCgsRVllpKH8dRUVARITu8Bw6nN+xA2IHBX2zfDkmJiQgpLxcV7mHVVYi3OFAuYawQUFBmttRTH09QjXcW6iX0NBQBBQXG2oDoRUVzPbNNIiUGS8ja2p68qKjg2y/TZGA4mKg917I0IoKZuQOr6oaUK/k8p02esaJkPJyv2oXYqiZ45iF3j5fK8FlZUBUFPV0SBNocC40JL6SEiAkBJ2dndi8eTNKS0sBAMnJyXjooYcQJZJHMfX1CJS4D8wbR1ERMOi4KDUEl5XJvqPn6lVAw71jJNId3M+RIkDmO1MLeuYvcgiCoNgvyPX1EdXVlvartMdI7/FYjHCZb7bBBJWWAh7PkPHr0qVL2LNnDxxdXcgGEAggHcAxAF19YYOC8Oijj2LMmDGyaUgpNKxalJXaeJCUlMScVaMa9MpslkWd2UpyFiwFWblTkDRqjw/lWIuvG4HIceHCBXR1dQ15fvnyZQuk+RG5zREstXGOfrhSkEOF237zG4yVcszL0xXnAjlHhTiTAeTqSlV9Gn08ZySNf/gHI6GpEQ7g6cEPf/c7xXC5co69+TlKyZ9WBpVTKun4NRKkJ32JuqY5nn//d9wJ4E6t4VTIwrGWXDnHvDxMADDBQPya68yf/qTJ+yKt8RvhD38w1gf4WRt4QslDbi7CYG2/qgmv8ru198cMr7/e/99nLBQD0NHm/axdiJEr52hy/kzq/VHHpuWeBjpzzVAAcwa7/frXokFe1Bi3VhTrAKWym9b7M5MkECxPjfMXORxQ7heGfE8NJlc2BqpM7f1RQ6EO/lxHXGrH9WkADqJHEfXkk09i1KhRimFYW/Bsa2sTfZ6YmKgpHlbeixUrMim4paAxjCiqaVn3c0tBtvHnvK+srFTlz8wrHzweDzZs2KArLMc+cKUghwoH/+VfsLuxUdRtzpw5yMzM1BznsmXLJM/Sf/3113t2e0pQXV2NTz75RHOa3uSq/Ej7+OOP0dTUpDn+9PR0PPGE4nKs6bjdbrz99tuibvPnz0dSUpJk2MWLF0u69eXn+fPnsWPHDiMiDuCFF14YsEO7srISa9asEfV744034p577iGWthjd3d149913NYV54oknkJ6ePuS5XH4OJjw8HC+//DK++uorfPfdd5rS9+bFF19EZGSk7vAcOii1rVOnTmHfvn2a4x0/fjwAaKozAQEB+OUvf6kpnXfeeceUHbgRERFYsGAB/vKXv+iO47bbbsOkSaYstzPBmjVrJD9McnJy8PDDD6O9vR3vv/++yZLp4/HHH0dGRgYA4OjRozh06JDFEvUwcuRIzJ49u/9vvXMHEkyYMAGnT5/WFGbatGm49VamVKymo2aOYxbffvstDh8+TD2d++67DzfccIPu8GVlZTh9+jScTicyMjIwZcoUhIaGEpRQnIqKCnz66afE4ps1axauueYayfnd4LkoALz//vtob29XjPv5559HTEyMor/BdwQePnxY9m7Sl19+GeFeJ2mQYt++fTh16pSo2+jRo3HvvfcST7OmpgarVq0yHI+e+YscHo8Hb731lqT7woULsXnz5v6TVwbTN8ZaxYEDBxSP3DTC3LlzMWzYMEn3LVu2qLaKePLJJ5GWloZTp07hyy+/xJ49e3Du/Pkh/jIBHABQgZ4j5efMmaNKIQhIKzVotCMjyK2BsAwLykl+pyA9WLpTkF+r4vvYvWzlvgG953tmvmdJSQmam5sl3VnowznGsecMgsM8bXFxcEp0Eq7MTCAnR3OczYmJkDqUU8jOBiTuAwAAV0gInBrO2hdFpcxNCQlwyhxlKkVUYqKufKFNR2urZN5d9XiQJCOzbJ73hut0Oo2XjRfu4cOB2B8PVnQHB0vG35aSQj3Pha4uze/nyswEhg8f8lxLPF3h4UBODtpSUgzlr5CdbcujwnwdpbbVWVmpq9zbU1OV4x+Ew+HQ3I4aYmNNOcJFiIkBcnIMtYHO9HQm+2ZatCQlwSlxtGtrcjKQkwOPzLjAGq7MTCA7GwDQWVLCjNwtSUkD6pUzPh5NOuYOJNAzTvhbuxBDzRzHLDqLi02p290ZGbrfrbS0FMu+/rp/Q8ilwkJc6u7Gc889h0DKdd8dFEQ0fzrT09EYFycZZyGAcYPyqSkhQdLSxxtPVhYQFyfp3tHRgW3btuHy5cuIiorCrbfeikmTJqHtyhXZd/RkZQEqNnn13SEeGBiIhIQERWuP9vPnTZ9ne8LDyZUnQfkEt1uxDJoTE+GUOEKzb4y1ivZLl6j2I67MTCArS9K9NTkZzro6VXF5srKAYcPQWlqKv+7ahYsXL8r6DwoJwbwnn8SIESNUyyu14DlixAiEUDiK19/gloL0YMFS0OFwMKOoUXunoFo/HDr48/Ghajdkm/meBw4cMC0tjnVwpSDHNti9o1eC1feTWwwgsahPWjEwOB/l8tWMPNeTBsl8NfqOrNZLDh3MOpLCrHoVEBDAd7FpxOo+kzTeMrMk/2BZ7HbPCUt5yTGvPIykc+LEiSEW4mVlZSgrK0OWjKKARTwej2xeiI07JMpIEAR88sknKCkpAdBz5/f27dsRGBio2Ieo6WOampqwatWqfku2jIwMPProo7J3iNu9LxhscUk7LZax2zjU2dmJf/qnf1JUCALAvHnzejY6akCqXgQGBmLixIma4iKBVP3RWn9ZmRezoBTkloIDIdkHsGQp2IfS+7HeR/s6vpz/RhWeRiwF9aZt9X2GHHOw343EHFtA46PCLjtHWNiZRRK5CR2LSkEt8bGa56QWjkjFxfEvaE82zbyvgSsF6WCnfoVVWVlSCrKaRxz1mFmGV65cwYYNG/DJJ5/g+PHjqtOWOqL2q6++IiidOLSOIjNbhrq6un6FoDenT58mohRcv379gKMty8rKsGzZMrS0tGgXFvTqJat9VkdHh6y70vzH6veinb6a+7zU0tnZiUcffRQHDx6U9Tdl8mQAUHUk72DkNsZO7o3XTKyuH6RhQSkoh50tBfXyxRdfEMtfFpWC3FKQbZTyXq5OsV5udtt0Ayi3YdbznKMObinIoYLZHzy+0CGZ9Q4dHR04ffo0KioqkJ6ejptvvln3fS4sKgV91VJQazxcKejfGNmcYPWiEEm4UlA7avpMO/UrrFoKDu7n7aYUZCkvOeZx7tw5XLhwob/8L126hLq6OkP3xjVK3EHOMnosBdUiF++RI0dEn5eWlsre1QYo9zHt7e0oLi4e8rypqQl79uyRvOvO7n2Bx+Mhdnyt0r2VrOeVXeZ/3d3dWLhwoeyGgqCgIDz44IOYMnw4IHPXphxy7ZiluSVLstgNbik4EI/Hg4qKCsXxRA0Oh4M5xS/JjQkcjhaMfOex+i3L8Q24pSCHCtxS0LxwWujs7MSKFSuwc+dOfP/999i5cydWrFiBTon7o5TkIiEzbaUgKb9mIiaXVUpBVvOIwxZa6omZyo/AwEC+WOLnsPohxS0FOSQxqwzPnz8/JK2jR4/KziOVsGP9s+r40G6Ju+j6ZJJDyV3uvsMzZ87ICyaBHcqWlIwtLS2iVpxa0rI6v6y2ZFDz/t3d3VizZo2sQjAsLAy/+MUvcNNNNxmSh5X5o9I3nV2PD2VhzUQuLrPbAwtKQQA4dOgQERlYqWfeqClTq/thjj5YLzcrlYJ684bFNswhD1cKcqhgtnVWSUmJ7Y94MGMgO3v2LMrLywc8Kysrw7lz5yTD0J4s+/rxoVZZYFj9Yc+xJ3otBVlVxnNLQbLY3VKQJQoKCnDo0KH+hXi7zWFYzVeO+Xg8Ht1KI4DduZgcNI8P1fsNReL4UClY659YWTz3Jj8/X1VaLPedrFsKdnR04JNPPsGVK1ck/YSHh+PZZ59FZmamobQA9hZEWa47etDbJ/HjQ5UxkkdXr14lIoORbzBaJ4uxvjHD3/Hl/PfFtTlfLi9/gisFOVQw21Jw5cqVeOedd9DQ0KA5LGlY2PUmxa5du0Sfb9++XVd8LCoFtRwfyurgzI8P5RjFbMtqVi0FuVJQO2rKktW+UwxWLQUBYPfu3Vi+fDna29u5pSDHEFaXod475+wKi32gUaUgje8Xq+ulGkjJqEaBwHp+WC2fXPotLS1YunQpCgoKJP2Eh4djwYIFSE9PJyKP3J2CZsItBa2RwR+PDwXI1Xt+pyBHK0aUtqyXGylLQTNhZazg0IWNmQ7H57DiY7mxsRGff/65qBvrgwRgjowdHR2iz7u6uiTDcEtBY5BSsPDjQ9nE1/LHjE0NZuYZPz6UDiwuiEvBehutqqpCfn6+pXJaZdHOIYedy8OOslt1fKiRObkd89kMSOWLmrmGkqWK1WVEe2zX+36tra1YuXIlKisrJf30WQiSUggC7CyIKuUbK3JqheWN1ID/WgqSqk9G7hSkAeuW2hxjsF62pMZXfnwohzRBVgvA8U3C6+sR4XKJugWWlAA6diBF19UBzc2yfpwNDWg7exYRERED0ywrQ6yEFaFqCgtVeYuuq0OgzL0cUkRpSEMvsnkgkbajrU0yXEh5uazMatILJlE2XgQUFwNed9sElJZKxh9eVUU9zyGTf1IElpQAoaEDngnd3drzqbAQ4VVVhvLXUVQExMToDu+rNDU14euvv0ZZWRni4+Pxk5/8BCNHjjQtfaW2FVJerqvcw6uqIAiC5rBCQQEQEqLOb3s70TYvR3RkJBxFRYbSC62ooN9PMERUba1kfkVERvbkRX29aWVolMCSkv66GVpRwaTch1evRqyFH7N6xgl/axdi6JlT0SKsstLSuh1WWan4zlLyRXV3U88vubmgHoLLyhAYHCwZZ3BZGRAWNuBZTH09XBLfRt44ioqApiZRN7m2qlQHHEVFgMTmQABw1NXpqtNy6dKaZwcYnNsOoLBwyJxbD2rGF0dREaLr6tAl4S8yKopYfgmCgJqaGjQ3NyMjIwNhg+qjGEa/GZQIKi2VXQOIqK4ekn5VVRV2bN2K0OZmZAMIBJAO4BiAvi2tERERWLBgAdLS0ojKy8qCKGlLQVZgQSnILQWHQlIpqBdaCh41m2dYVy75Mr58vKuVdwrSgiVZOPrhSkEOFWb+6U8YK+WYl6crzoVqPYrEnwEgV1eq8vGK8ZKRNH7zGyOhFcmVc5R4vwilcAbTm9L7I8ag98hUkuONN0imPgRd+SdSFsE647kPwH1awynIwgFiADxoYfq5co55ebgVwK0G4p+pNYCGehIOAv2xFv7+742l52dtYJ6Sh7//eyTA5DI0glf53db74wyFZpv3VXLlHE3On9t7f5ah4n1z5Rx//3tSkoiiOBfUSu/7SsYpkh+va4xbjFm9Pynu1xkvACRCX52+p/cnyeuq31w1qSBYnoTaqqp5V14enlHy83d/R0QeB4CU3p9aZkLHWKAFhbx+WOL5f4g8mwbgIICEhAQ88cQTSE1NNSabCHY5PlQrrCgRWVAKyuGvloKkMGIpaNWdghxrMfv6EzOx0lJQL6yMFRy6cKUghwrb/+ZvsFui43vkkUeQnZ3d/3dDQwO++eYblJeXIzExEZMnTx7g3seHH36o6s6SOXPmDLlcvLS0FOvWrdP4FgPJzc1V5e/9999He3u75vhjY2Px3HPPaQ6nhcWLF0u6Sb1fa2srPvjgA1G3m2++GXfeeaeh9A4ePIhjx45JcNgfwwABAABJREFU+tPK3LlzMWzYsP6/5cp+5MiRmD17NrG0xZDLPylmzZqF6667bsCzrq4u/PnPf9YUT25uLrZt24aLFy9qCufN888/jxhuKTiAK1euYPPmzUOejx07FjNmzDBFBrm2FRAQoHviOWbMGAiCgHPnzmkKt2jRIoSq3Gnf0tKCDz/8UI94msnJycHDDz8sm19K3HbbbZg0aRI5oRhn5cqVqK2tFXXLzMzEnDlzUFNTg1WrVpksmT4eeOABjBo1CgD58cZXGD16tOY2P2XKFEyZQnRLj+3QM6eixYEDB3D8+HFT0/RGTT8plV+RkZF48cUX+/++cuUKzp49i+7ubowYMQLjx483vDBB4jvAm8mTJ2PEiBFYvXq1qPuDDz6IESNGDHj29ttvq1pkXrBgARISEkTdtm7dikuXLom6jRw5EleuXJGM9/HHH0dGRoake11dHVasWCHpLlWn9+zZgzNnzoi6jRo1Cg888IBknHqpqqqSzHutvPTSS0NOmNHDiRMnsH//flk/Tz/9NHbs2IH6+npR974x1ij79+/HiRMnBjwLCAjAyy+/LDtX2759Oy5cuGA4fSkefvhh5OTkSLpv3LgRRUVF8Hg82L9/P06dPj3ETyaAAwAqAIwYMQJ//vOfceTIESrysrIgyo8PtUYGbiloDBbrpRpLNBbqpb/CLQXF4dcBcWjClYIcKrTGxkq6dWdkAL0fBG1tbfh4/foeZV9EBKrb23Fx/378YuTIIYo9Z3w8WoKDFdPuGjasP/4+XL3hDSHzEeNNU0IC2nQcH+qIi1Odhl5k80AibU9zs2S41uRkWZnVpNd26ZLxsvHClZkJZGX9+LeMHC1JSdTzXGhp0fx+nenpQ+QSOju151NODlqTk+GsqdEWzgtPVhYQF6c7vC+yaeNGNImUxaHycsygXJ/6INlmvGlPTYXb7YZT5t4WMTxZWUB4uDq/TU3U5B9MR1oakJNjKD2x9ujLNCcmwimxEBLX22d2h4SYVoZG8Z4TtF++bBu5zaQtJUVzm29PTfWrdiGGnjkVLdoJz6W0Ijb3HoyUfK7IyP6w3333HT4/cKDfLf+771AVHo57773XkHxEvgO8aEtJgSszU/qdMjOH5EdjXJyqRSFPVhaQlCSZrlNi00ZLUhKcEsomYOD3lxjuiAhddbo9NRXOsjJRt7aUFCptwU1wDPJkZQFRUYbj6SwvV5TJlZnZM8ZKLNDFEfou+XLZMkBElvzmZtx6/fWS4VqTk+GsrjacvhRi7WJw+hWVlVi/fr2sghsA0jMy8NmBA2hubuZKQUbk1IreRXJuKUgXFu4UpGUpaKc70TnaYF3x5YuWgqznOUcdbJyJwPE51HZ6ly9fHmL953a7kZ+frzttu3ZOrMotJxcJmUlPzgbHJyejGRNDUpcBs37Eij/RIXMnj93Ru0NSSxjS7S4oSHp/EytHP9kJNX2+nT6qeR+oDM8j+2N1GZJaRDx8+PCQZ8eOHUN3dzeR+Emhpw8kUUZG5rRW9Nu06iUrFjXeqGkDVrdTpe9r2vIpWWXt2rULb7/9tqJCEOg5QSg9PZ2qQow1ZRs/PtRYOK1xcUtBYxj5BrNq7OCWgtbCLQXFMXqnoN58Y2Ws4NCFr5ZxqCDX6Xl3Slu2bBH1c/ToUdlwWtM2cwBhYYJrFkYXGFwuF65evUpImh605COreU6yDvPjBsjDJ0hDsbLdyR2FxcuKDnbaPc3q5ewsYeYHJoczmL661NXVhaqqqiHubrcbZ8+eNVssWTwej2wbMDL26G1bSnPykydPUtnoZ/e+wOxvRCvzSyltqxTH+/fvxx133IEVK1YoXsFxQ6+lY99VETTneaxsLFO6U9Cuc10W+g65+ayd5rqDYUEpaMRSkAZW978cZfidgsqw/p4c+8GPD+VQQW1npWXnrxGloB1gtYOnZWlXVlaGlStXEre60iLTlStXsH79ekRGRmL8+PFIT08nKgtg7WIrq3WKwy52tBQMCwtDa2urKWn5A2rK0k75yvtBjj9gdT0noQST61f0HMsvlgYplMZKsfygbSmotID9ww8/IDw8HD//+c8Ny6EWq+ulGliS0UpLPbPTFwQB27Ztw+9//3tRC+HBOBwO3Hvvvbj3+usBr3sPaSruWFFo+OrxoVZuRGhtbcUXX3wheUcrwC0FjWLF5hgS8bI0JnAGQvsEM5pYaSmoF358qH/AlYIcKli5YEjy6EVS6dMMZyVGynn16tVUjmEcnI9K+XrmzBkAPTuo582bh+zsbKry6A2jNx5uKcjRip4y19IXkB4f5CwF7bzLl0Xsfnwo78/E4ZaC9BEEAadOncLVq1cRFRWFCRMmIC0tzWqxODqh2QfSshQEgOPHj+OnP/0poqOjdaUhhhV9Ack0zRzPrLZUsdpSUBB67vT6/PPP8bvf/Q6nTp1SFS4sLAxz587FiBEjgIYGAD8uVvrD8aGkLQVZey+zwnmHX7lyJSoV7lLmSkFj2PFOQT635dCCtfVxDqcPrhTkUEHt8aFa4JaC1kBrR46UZY9R9JZ/d3c3Dh48SFwpqIe6ujq43W4EBgb2P7NKKcgZCisf0zTQW2e0fDibeXwoVwrSwU7jLO8DleF5RJ+tW7fixIkT/X+fOnUKzzzzDDIzM4nEb3UZsmgRQBOlPnBwfphxAoTafvn06dO44447NMXty7C0cdSXLQXdbjc2b96MJUuWaDoOOCkpCU899RQSExMHPO9rY/5kKehrbVTvXNJoPtTU1CgqBAF7f0OwohTUC7cU9E/48aHiWPVurIyBHLpwpSCHClZ2yvxOQbLQOj6UFlotBb2RO0JEL3rK9dChQzh+/DjuvvtuTJ48WXc8SnfecDiksNJSMCwsTNLNzh/0VqFmI4iRMgwNDcWsWbNw+fJl5Ofn645HLdxSUBluKagdNYvrfR/TTU1NAxSCQM/9eYcOHcLcuXNNkYdl1MhudGGCdP5onV+xpBSsr68nIosa7FAvScmopo5anR9WKAVdLhe+//57HDhwQFPdCw4Oxu23347bbrsNISEhQ9zNsBRk5U5BpetW/M1S0CjHjx9X5Y9bChrDjncKWt1H+zu+XD6kFJ4s5QFLsnD0w5WCHCpENDYitrNT1C2otBTondzH9h4BIkph4YA/o+vqECIR55D4o6IGPAssKZFPSw2D5JEitqEBnSrkHExYe7vqNPSiJb/7CHA6JcOFVVbKymw4z3UQWFICeFkOBZWWapJDKCggOoENaGrSnQ+HV69Gans7cnJy4Ght1RyP5+pVRFRXGyoHR1ER0NSkO7wvEtvQgFCpo28pt2GgZwJGq22FV1XB5XJpjl8oKACam1X5DTBYJwcT19goGV94WBhQWGgovdCKClPKlRWi6+rgksivqN781DOmJiQkICkpCbfccgtSY2Jw08SJKP7mGxIiyxJcVgbExQHoGbOsGJdYR884oTT++zqCxyObZ0JBARy9C8r5Bw+K+i0/dAiYNImIPOFVVZbWbTX1QUq+0NBQoLAQjs5OaT8G+2Gtc0ElwiorEVBcLBlncFkZ4HXaAxTqizeOoiJA4g7FyJoayXgig4JUpRFZUyOal4pjs0T+y9U9qbSMElBeTqw8HUVFqucvcoRWVCjKFFhSgqjaWridTlH3qPBwIvklV0fk4ifdj5SVlWHXrl1wNjUhGkDfobWBANIBHAPQJRJuxIgRmD17NuLj4xXT8AdLwaVLlyIXQFFRESCSJ6zIqRWrNlKrVfaxuPlZLbSVgqT8SEFL2aCmTLmiwzp82VLQjM1hpNO269jC0QZXCnKoMOevf8VYKce8vP7/5spF4uUPABapTXxQOADIUUpLZ7xiqJZTjP/6LyOhFcmVc5R4v1ilcG+8oS89Wgx6j2ytcqgsZ7XEaE1/ML3yROqJJy8PDxtJ2yt9zo+8IudoQn45YFHbkkPDe6eAvPwz5Rz/6Z+ItEF/4VklD//0TxgFMmVIIg5FvMrvzt4fh2OUAKifU93e+1PyZ4TpvT/LUPEeuXKOf/gDQuX8GMynLKX0dSIZ5yB5FeuLTFhvHlQbhw4Ux2YJuWZCYQx+8029IkkyDATLk1AbvLn3p5TWc0p+/vEfDcuSK+f4619LOj1mOOWh/LeM2zQAB73+Hjt2LCZMmIBRo0YpLkb6052CvopVSkHv6zlYgqRSo9nARgeSSkHW7hT0ZUs0f8DO5WNHhScfA/0DrhTkUGHN888jUeIS+9mzZ2PkyJEAgLfeektyx05ubu6Av9977z1VFngzZszA2LEDVZIFBQX44osvVEguzZtvvqmqY/zzn/+Mri6xfY/yhIaGYtEiQypFRRYvXizpNji/+2hsbMTSpUtF3UaMGIEHHxRfohAEAXkWLKbPmjUL1113Xf/fhYWF+Pzzz1WHf/nllxEeHk5MHqfTiSVLlhiKIzc3F83Nzfjoo480hXvppZewY8cOFBcX60772WefVbVT1594//330d7eLuom1Y5I4nK58M4771CJ+7rrroPL5cLVq1c1hXvyySeRlpamym9FRQU+/fRTPeKJcssttww5mq+PpKQkzJ8/X7bvU+K2227DJELWPHZg6dKlaGxsFHVLS0vDk08+ifPnz2PHjh2a4n3jjTeGLMTk5eVR/9C55557cOONNwIAvv76a5w+fZpqenZk5MiRuHLliqYwt9xyi+i9ZP6CUj+8aNGi/vtOt2zZgsuXL4v6IzVm7N2715TjeKW48847cfPN8ioRqX44ODgYr732Gjo6OvCXv/xFd/xyFBUVYePGjbrDD+a6667DjTfeiPXr14u6P/roo8jKyur/W8u4PW/ePCQmJqKmpgbh4eGIiYnpd/viiy9QUFAgGi4+Ph4NKqy8Jk6ciJ/+9KdDnldVVWH16tWS4aTq6q5duyTviLvmmmvw0EMPKcqklfLycqxdu5ZIXPPnz0dSUpLheE6dOoV9+/bJ+nn00UexZ88eNEmcwJGeno4nnnjCsCxSba1vTiTFZ599hrKyMsPpHzlyBEe+/VbSPRPAAQAVvX8/9NBD+NWvfoUzZ86o/mYx405BVo4PVYIfH6oNu5SrXjwej6HvLFL1g8V85ncKso0dFWdmw9J7siQLRz9cKcihgjMyEkESioTujAwgJwcA0JSQIH2EQ6+f/jjj41UpBTvS0oaEdXV3w2lQsSFkZ/cfBSVHY1yc4tn/YoSEhAyRmzSyeSCRtruuTjJcc2KiZDjB4zGc53roTE8fIJPL5dIkR9ewYQiPjSUmj7u+3ng+5OTA43RqjkfIzkZLUhKcBnYLuocPBwgslvgSTQkJaJM42ot2GwYAgUB/JkVbSgq6u7vh1Hh8VHdGBjB8uDq/AQFE5e8aNgxOCSVmUFwckJNjKL3BfYqv05SQAKfEgkBUUhKQk4NOHf2R45prgEFjaFNCAvXjmbzLrzU52ZJxiXVakpLg1HjPWHtqql+1i8F4urpk65InKwvo3WDUnpoKZ12duEdCeWh13fae20shJV9wcDCQkwOhvV3Sj9F+2OV2E82flqQkdGdkSMY5JD80zEVLg4KwbMMGtLa2AgBGjRqFuXPnIjg4uKetSmzaCIiPh/ihlAqy9eIOCdH1nSBX91p6xwzSuAMDiZWnKzMTULmpSY6uqipFmbozMtCcmAinhKVSlMx3lRak5AhJSJCNvzkxEU6p+a0KBEHAl19+if0yCkFvZj3wAF78/e9x0003AYCmjQ3cUvBH7CLnYFpaWnDmzBlERERg+PDhPWOBCsyyFDR7wZtUekYV+/5sKcixFiOWnKyXrZV3CvLjQzlycKUghwpqz2rX0tGo7cz6/AmCgNOnT+Ps2bOSO7S1QHugYX0gE0NuMdeq9xmcrlY59Ch0WYVPfulg9QSJphJFb51R2+f3pUESuZ2oWuTiKNNXdna6Z4XVy9k59kapLnm3ETPGDKvrNot3B9HE4/FokluL302bNg34+/Lly9izZw/uv/9+RZnUEBRk/89/knWGVFxq2oDVdZ3m0XmCIGDXrl04fPiwrL/AwEDMefhhYP16vP3227qVoFwp+CN2kXMwBw/+eHhsUlISFixYgGiJk6a8MdqOWLRgI8mBAwcMhfflOwXV9IFW99P+jC/nvZV3CnI4cvj2iMhhHi2TMrUdYN9H8YEDB7Bp0yYiCkHveJWw6nx8WsjJxaJS0OhiNWmloNUTAFbrFUc/tBUyeuqMFplIyy+345crBbWjpvz1lKHY4oDZyhLeH4pj5q5TX0Hp/b37HjPquZ0U9VLQrFOk4xYEQdMc2Gj6J0+eVIxHbR2QGjNpzDPt0E+YKaPVC85aNjNowePxYMuWLYoKwdmzZ+PSpUv44x//qEs+MWgqeOyqbFOC1nvl5OQMucJFLbW1tdi5c6cqv9xSUJ6Ojg5D4UnVDyOWgjRQGrc57GP3+YZeWL1T0Jfz3J/gSkGO6Xh3HjQmCh6PBx6PB4cOHSIar79aCuodfFmxFDxy5Iim8KxaCupdtDVaDqzWS3+GxYVTVi0FU1JSiKbl75C2FDRTKdjU1ITy8nLq6dkR3s9rh5Sl4Jo1a3DmzBnD8li90GVk4cCO9U/JUpC0UtDlcqmSSQ19C+LV1dXYtGkTPvroI+zatUvyrmRfx2yloBF3FtN3uVxYt26d5N3OQE//MHv2bPzrv/4rrrnmGs1pyEFzHmEXizJWFC/z58/vuQ5FJz/88ANBaaRRW652HJvMwlctBWmkfeHCBWbXl1jDl9uclYYC/PhQjhz2Pz+EY2toHB/q8XhQUlJieJeU3vRZjV8PXV1d+PLLLyXdWbcUvHTpEq5K3DUmRVdXF2mRiMAtBdnB6gkStxQcSEBAAG655RbRBanbb7+daFr+AC1LQavo7u7G1q1bceLECd4fSsAtBbWj1AbUtpELFy7gwoULaG1txeTJk3XL4wvlYad30Hp8KClIWQrW1dVh6dKl/YrA0tJSRSsvQRA0z3+sXNi1Ii6W0tKTvlb5Ojs7sWbNGhQUFEj6cTgceOSRR3DTTTf135NJIv2+usgtBbXLSeu9AgMDbXFcNqtKQav7hz5IWgrqhUZeWGWpvWbNGgwfPhzz5s1DaGio6en7EnbeYGb0eG4S8XA4YnClIMdSaCkFSSsE++JVg68ob9xuN1atWoXi4mJJPywqBb3TPX36tObwvrSTy+pjijh0YPFOQRaUgvn5+QOU+hkZGcjKyiKaFqcHOx0funfvXuppcPwPUpaCfRw8eBCTJk3S3SasVtSzbilIOg2zLQXVxKOlDpw+fZqYZaDd55lm7t5XmmNZvQFVSx1qaWnBJ598ImuBHxAQgMcee6z/SEklpaAW+J2CbGJUSSsIApRyXWs7uXTpEo4fP47m5maMGDFCtWLGrn2b0XqrpgzVWgqy1oassBQEgJKSEhw9ehR33HEH8bh9Cbu2OV+FHx/qH3ClIMd0zDg+lNbuIpqw1qmWlZXJKgQB9pWCZ8+e1Rye3ylINrwvYvUHDouWglYfH5qeno5nn30W3377Lerq6pCdnY077rhD9b0hnB9Rs2BptQKCQxZuKagdpffXeqdgc3Mz6uvrkZiYqEse1tukVQtxtND6rcGS4lMQBBw4cEBX/KxYCpKEVNuxQx0nZSlYW1uLlStXorGxUdJPYGAgHn/8cdxwww39z9ra2oikD5hjKciPD9WOUVnUKAW1cPHiRaxZs6a/blVUVBCMnSxW9w99kDoa1Ej7obWWp6a/p1UOX375JVcKGsTqDWZGsNJSkPW84VgLVwpyqBDV1ITY4GBRt+CyMiAiAgAQ29CAYKkPhMLCAX/G1NerGsiDy8oQ3N2N2IYGTTIrIRQUAJGRiv7UyimVBs2JvWyeDMrvo+vWKeZhZFDQkHD9dHQQLwM1BJWWAsnJABTeVwJHUREQE0NMnoD6euP5UFgIh554CgsRWVNjKP2A4mJA4SPe34ipr0dAS4u4o1R7IIjD6aTWtiKqqxHU1aU5/sCSEiAqSrVfkvKHVVYChYUYBuCRm2/+0aGysv+/RtILragwpVxZIaa+Ho7mZlG3qN4+P7isTFd/NJi4xkZmj2z2JyKqqzWXZ3hVlV+1i8EITU2yeeYoKgJ6LbHU5q9QUABItD0l9JQhSZT6ScHlkpTP4XD0zHNaWyX9GO2Hg0pLieZPRFiYbJyBJSWA191aDhJz4sJC2XIODg5WtbFNV/+N3vopstEmvKpKMr7IqCgq/UQgwfIMLCkBCCyYhZSXK8oUVFqK6Lo6OCTmkLLfVRqQkiPa5ZKNP7KmBl0K71BWVoZdmzYhtqsLsQACAaQDOAagbzQPDw/H3Llzh9wf2CI1d9aBGZaCdoGV40NJxE1auX78+HHDi/H+VsdIHh+qNy4tZXb58mWi8XIFinWQUpyxiB3fzd/6Pn+FKwU5VFiwciXGSjnm5fX/9yW5SLz8AcAvNcqQq9G/IoPkkUKrnHrS0EuuhrTnqI30178WfRymlB4tvN5DV/qEyyBBrxze5OXpiycvD08RSJszkBfkHE3Ir1hY1Lbk0PDeo0BYfhVpG0rPz9rAQiUPv/41JgGYpDVikXx8VWscHA4jxED9nGpm708RA33Ng7pDEkJB9iAo5NfixYiU82OwH75GKX2dSMY5SF4ic+K8PPVzc4V4JuoMJ8as3p8kf/d3elKTJRMEy5PQGD+x96eU1rVKfiS+q7SQK+f4u99JOj2rMv7/Fnk2DcBBAJGRkfjDH/6AmpqaIX7sdKcgi0cfSsGSnEZl8Xg8UDrjQ0s9uXTpkiF5zFQKsqLUYOFOQbXk5+djw4YNqvyqvSKDlXLwR3jeK6Mnj2hdj8TLyzfgSkEOFZbPn490iSOQZs2aheuuuw4A8OGHH0ruGszNzR3wd15enqqOZ+LEiUhPT8fWrVu1Ca3A888/jxgVFmRq5RTjl7/8JdWjShYvXizp9uabbw6YvH3wwQeKH28JCQlYsGCBqFtbWxv++te/6pLTCHfccQduueUWAPLvK8XUqVMxefJkYvLU1dVhxYoVhuNJTU1FVVWVpjDPP/88tmzZgurqat3pzps3D8m9lpecHj766CM0S1hzDO63aECqTokxYsQIdHV1obS0VFO4e+65BzfeeKMqvxcuXMD27dv1iCfKzJkzMWbMGFk/evqCPm677TZMmqRZBWZb5Mbl5ORkzJs3D4cPH8a3336rOk6Hw4E333xzyPP33nsPnZ2dumWlTXBwMMLDw5GTk4PCwkI0NTVZLRIVMjMzNbf58ePH46677qIkEfs4nU4sWbJE0n3GjBk4ceIE6uvrVcepdp4pxoYNGxSPfKfJjBkz+u8NE6Orqwt//vOfJd0dDgdmzJiBXbt2ibrfeeeduNnbElwjV69exaZNm3SHH0xycjJuvfVWybFs9uzZGDlyZP/fJObEubm5WLdunWRbDQgIUHVSybRp03QdH/r6668jKGjo0sG2bdtw8eJF0TCZmZmYM4eIKnMApaWlWLduHZG4Hn30USL3Dx8/flwxX++//37s379fcYw1itScJzIyEi+++KJkuCVLlsDpdIq6HTt2DAcPHRryPBPAAQAVAOLi4vDMM89gwoQJ2L179xC/JJWCfdBSPLCkaLMTJO4UJOGHFHZc9DZDZtp3Cqp9B61jmZXHh3KUMXLENevlZuXxoQCwevVqzcYCfBz0D7hSkEOFlpgYOOPjRd26MzKAnBwAQHNiIpokjhnt89NHY1ycqrTbUlLQNWyYZPp68WRlASpkcMbH67//LTtb9GgeUsjliZCdDYfXRN4ZH49Wr6OPxAiMjx9STn14WlqIl4EaOtLS+mXSk35LUpLkO+nBExlJJB+cXV2Axng8WVloTkyE08DuIE9WFpCaqju8L9KcmAinyMIYAKJ1Rwp3RAS1ttWanIyOjg44FRZuBtOemqr63buam4nK78rMVEzbSHqd6emmlCsrNCUkoFliXA5NSAByctB25YqmPHU4HKJ56IyPZ1op+NprryEpKQkA8O6778Lpo3dUOltbNY8vbSkpftUuBuOqq5NtA+uOH+/5j4Z8FbKzgdhYXfI0JybCqfPoURJ0DRsmWx+Ezk7FPuNIZaWkH6X4lXB1dREdd0ITEmS/NQbLK7S2Gk8/JwctSUmS47PD4VD1/dGRlqZPlpwcQGTu05qcDKeIVRgAxCcnU+knXDA2rnvj/V1qhI7SUkWZujMy4IyPR4vEGBuWmEhEFik5XJGRsvE74+PhHKTUcbvd2Lp1K06ePCmbZkJSEh5esAAxMTGIlLhuo7W1ldidcbSPD7XTYqgvHR/K2v24/qiAJHWnoJG6oCYv2tvbNW185paCHCshVa/0xqPVuACw1zjI0Q9XCnJMx7sjo2EV53a7iccJqO+A7XheNNAzCddaHnITd6vexejHBC3zeqvgE1vfg+YHs976okUm0vLTtK72R9TUAVJlyPrHBuvycayDxthq1/mjmvTVyFdSUkJKHF3pa8Hj8WiK04zFILVp6L73XMc70KqXJOMlFZcdLFC0ttOGhgasX79elSX5448/jvZeS+coiTumPR4POjo6EK5TPm/MOD7ULrAkK2t3CtoJVt7LLncKulwuKvGyUg7+iC9bChqB5Lu1trZCfNuOdnw5z/0JvpLGsRQak1itH+pa4qWN1UpBb4wuDFv1LkbT9SWloNodcUpxcNiCdl+kp8y1bMYgXad4HTUfrXVQaqxnaSFLDNblsxJ/b3esvT9r1hWDYS2/jOLxeDTNgVl6f92nmUiEY+nd9GDm7n2leTntvFSK37tOl5SU4IMPPlBUCN44bhwAIMTrdBkpS0Ggx7qHJLTGaV/ecMaypSBrShs79m9Gy4AFS0EakFgX4dDFl8vHakvBPrRswGOtDXPowC0FOZZiJ6WgGYOULykFrVqgYs1S0OrJjdXp+yJWT5BoWwrqqTNWWgp2dXUp+pk6dSoOHz5MNF1fRc2CJesKCFJ4t3Wr2z2HLWi0ASPjtdVtkoSloJ1Q+tagoRQktaDJF9QHYrZS0ErUttPvv/8eX3zxheKGr5/97Ge4Z+xY4MyZAc8DdR61rSd/uKUgW7IaLQ+rx7LB2KW/zM/Px7lz5xAYGIiioiJDcpCqTwEBAdTvFNQKa/WLMxBfthS0+k7BPlgaLzhswJWCHNPx7sjkOiVBEHR1WrSODzXjWBi7KQVZHJi5peCP8B1xvonVO8nFsNJSUM2ddJMnT8a5c+fQ2NhING1/xV+OD/VlSwGj+PvYwtr7Wy0P60pBq48PJYHVSkGWLAVZPD7UF5SCXV1d2LJlC4733YkqQWBgIB555BGMGzcOaGgY4q70fU8S1ucRZsBSHnBLQfp0dHSg5NIlXAugsbERZw4cwN69e4nFz4KlII16wNdFfBt/KVsz31OpDftLnvs6XCnIsRQaSkFuKagPPYu8LB8fqnfRWo3VkZ2ws6KaVaz++OZ3CmqPLzY2Fs8//zzOnDmDuro6VFdXU72/ys7QsBS0us3oxa5yc+jD2tjI+u531vLLKFZYCpLC3xfUB8Py8aFdXV1oaWlBfHw8kfFILu2LFy/inXfeQUVFhWwc4eHhePLJJ5GdnW1YnsGwZClop01BWusGy8eHsnY3J2tpNTY2YtmyZRAKCpALYOnSpXDGx1OXze12D7AAVqsUZG0ebYcxiSONncuPlKWgmbDWfjl04EpBjul4d2pyE269nZ/b7bZMKWhnBYyv3CnYJ5Nei1FalqZWwHfE+SZ2v1OQtPzXX3+9Kn/R0dGYOnUqAODYsWNcKWgAf7EUZF0+K/H3sYUfHzoQJdl9zUpb6wZElo4P1VtXfLXNs2gpKAgCduzYgePHj8Pj8SAmJgZPPPEEhg0bRlzGhoYG/P73v8fbb7+tuDEyOzsbjzzyCOLi4mT9+YKlIB//9WFUmcotBeXZs2cPGhsbEUsxDe93Pn36NPbv34/GxkYMHz4cD40fj3iwcaegHktBq+dKHHnsqDhTCyvy8bGNMxj7bIHi+CRynZLeQZuWpaAZkwiuFDROX7oul8tQeFJYPQGwOn1fxOrJFM0y1bvoqKV/JC1/UlIS0fj8HaN9vy9hdVvnsAtrY6vV8sil73K5sGTJEhOlGYrZx4eyfGKJmceH0qqXvnp8aJ/7t99+i6NHj/aPtU1NTVi+fLnh00y80+/s7MT//M//YOTIkfjTn/6kGPfNN9+MZ555RlEhCOhXDOkpC64UZEtWMywFzYQ1BeQPP/xgmhwXL17EF198gfr6eng8HhQVFWHdunWq4zFiKUhLOWz1XIkjD+tH0VuF93vz40M5pOGWghwqRDU1ITY4WNQtuKwMiIkBAETX1aFD5C4CABAKCoCQkP6/YyX8DSasshIhsbGq/asloLgYUPoY83iMpVtYCERE6A+vgKxshYWA14debEOD4gdiUFBQTzgRHHV1xMtADSHl5UBhIdwtLbrSjwgLk3wnPQTU1FiSD0BPnY2qrYWnqclQHFBxZ5s/EV1XB7eU1QPBuiNFQHExtToVWVODwI4OzfH3tTs1BJeVEZN/ypQpcBQVaQ4XWlGhWobQigpTypUVYurrEdLRIeoWBQCFhQirrNRUhlJjRWxDA4JaW/UJagIBxcX9Y3JMfT26LOrLWSSsstKv2sVgAsrL6cwzNYzX9fX1OHjwICorK9HV2krVckAJuTGgvLgY0XV11OJXA8lxBwBCQkJk4wwuKwOio/v/djidxtMvLEQkgTmllvHPG0dRERAWNuS5nExRhOfUfQSVlhIrz6DSUiLfXiEq+oTgsjJE19UhWGKMjXY4gMJClB44IBpX8TffYNSoUYqySMkREBAAoaAAW7ZswR/+8AeUlJYiBkBMr3sggHQAxwD0fQE6HA7cc889uP3221Uv8LOkpNKLnd7Bl44PZc1S0B/py9/8/Pwhbq29c3YW7hTUEyevO74L62XLihWkncY2jjlwpSCHCgtWrsRYKce8vP7/zpOLxMsfAORqlGGMRv+KDJJHjABol1NrGkbI1ZD2q2oj/dOfRB8nKqVHmSgj6f/TPxGTI9mIHEbJy8PzBOLgDOQXco4m5FcOrG1bRrml90cEnfl9U++PZhp25RUlD7/5De4HcL/WiEXGihe1xmE2XmU/30IxOOwxDBT6YY19TQKA2aRl0IuM7FkgkFcG++FRJGQQYYKUwyB5Y0mkn5eHp4zG0ctPdaYvhmIdJDin7iMbBMuT0Bj/U6jI17w85bnHv/wL5siEV0OunOP//i9mQ77cpgE4iJ5j1x977DHk5OSoSrcPvceHsrSoa6c7BVnC15SCvpqWHH1ynDlzxlA83FKQoxVfthS0+rQHPXAFon/AlYIcKiyfPx/piYmibjNnzsSYMT0qu9WrV6OqqkrU3yuvvIIwrx2pixcvVpV2RkYGRo8ejT179mgTWoHHH38cGRkZsn7cbjfefvtt3Wm88MILiIqK0h1eCbk8nD9//oBj+N599110d3crxpmbmyv6vKamBqtWrdIqomHGjx+Pu+66C3V1dVixYoXm8CkpKXj66aeJyWNVPgDAggULsHHjRjQ3N+uO46mnnkJqaipBqezPsmXL0CCxC1uqPZDkypUr2Lx5M5W4hw8fjo6ODtTU1GgKN2bMGMycOVOV36NHj+LQoUN6xBuC93iihfz8fOzdu1eV39tuuw2TJk3SnIZdee+999ApYR0cFxeHX/ziF9i8eTOuXLmiOs7g4GC89tprQ55/+OGHaGlp0S0rbRYtWoTQ0FAAwMqVK1FbW2uxROygpc37IqWlpZqO0VLDs88+i/j4eFV+z5w5Q3yea4Q777wTN998s6gbibYzffp0TJgwQXf4S5cuYevWrYZk8CYgIAB33HEH9u3bJ+o+eGxqbGzE0qVLDaX56quvYt26daiurjYUz4QJE3D69GlDcdx333244YYbAACbNm3C1atXRf2lpaXhySefNJSWGEVFRdi4cSORuLzfxQj79u3DqVOnZP1Mnz4dhw8flhxj4+Pj8eyzz0p+ryUlJWH+fOUtKoPDX716FQcPHkRdfb1suEwABwBUABg5ciQeffRRREZGKqY3GL6QaC4sWQoaVab2Hc3MSg2ysxJCL6TemTXFOr9TkH1YsaZjDauOD1WCJVk4+uFKQQ4VWmJi4JRY2OjOyAB6dxy2JifDKXFEpXv4cMDrQ0QqvsFEJySga9gw1f7V4srMBLKzZf0ILpehdD1ZWf1Hq9JATjZXZiaQltb/d2NcnKp7+YTsbNGPC3dYGPEyUENbSgqQk4Ou0FBd6YcnJvbXTxJYlQ9ATxtyxsejOUh/V7+vqAhCYSHS0tJw66236loc8DWaExPhlHIkWHek6Gpvp1an4pOS0NbWBqfGOzlbk5NVv3tHcTEx+b3HE03h6utVy9CZnm5KubJCU0ICOiSONgtMSAByctCSlASnwuKiN8HBwaJ52JyYiCaJo8aZICcH6FUKNicmwul2WysPQ/SNtf5KtyAQ74fdw4cDKu9IXb9sGWDR3EIMuX6yJSnJcNvpGjbMUH3rbmsjWl4OhwMdaWmqvnUAwF1XZzz9vr5XxYY9OdpSUgzLcrS6Gjfcdx+A3vKV2CgVSXhO3Ue3we8tb4zWrT7azp1TlKkzPV12jHVFRqI6IkIynuD4eEVZBa++yel0YvPmzbh8+bLyC3hx989+hmG33UZlUd8uloJ2UmyyJCu3FLRHWnKokUPt8aEsWQq6XC7Dm2o4dOGWgubFowaWxhYOPdjavsHxC7w7MrmORu9OHrfbTaWzNGNnkZUD3eD3UyuLlD+r3qUvXTUKTTF8bQeZ0XI4d+4czp8/j6+//hpLly5FW1sbIcnsi9UTJBbrqBaZSMpvdVn4ImoW7FisgzTg9YsjhZ0XJmgglx++2o7k+sHB+UGivpC6D4lEHAUFBYbjYAUzF+qU/LS2tuK9996TdNcy9l6+fBnvv/++aoVgZGQkpk6ZAgAYO3asIYWg2W0+W2HTrh7s1G+xJKtRWfosBeUwukahBa4UFMeOdwr+5S9/IR4nhx1YaT9SsGIFydJ4wWEDrhTkWIreOwfkUDOZ1IMZO9dYUgoaxap36XsPNUefisH6hEILpN+ltrbW8P0CHOPQVMjoXXTUIhMLE1s+ITaG1joold+slwPr8lmJ2nbc1NSE3bt3Y8WKFdi7dy9aW1spS2YO/qIYJwELR4jpHXek+gBBENDe3k49/cFx8EVu8pitFDSSnpp+p6WlBZ9//jlWrlypaiNfYGAgXn75ZVy8eBGTJ0/WLZs3NK2DxKBxxDsL/RYtaM5tSFgK+qtSkBVYsBRUgz+Wja/DiuKMZViaw/lLnvs6vjvb4TCLd+chN+HmloLmwi0Fe/AV5Sit9Ldv3040PjtitaKAdp3SE79bw9Fw3FKQbeTKv6Wlxa/u5PCeo/C6pp2WlhYsXboUhw4dwtWrV3HgwAEsX75c8ug8O2HV5jNW8VVLQTnZDx48KOnGcln6wjyXZJosWQoqoTTX+vrrrzXdGTl79mzk5+fjL3/5C1JSUgzJ5g2NTb9yjBkzhvjdlXbqt1iSlcSdgqRguR8Wg5UFeFLpsGYpyGEfVtoADUgpPI3mgZZ2aef85qiHKwU5lkLLUpAGvmApqCW//VUp6EuDH6ld5YOprKwkHidHPdxS8EfMsBT0pT7BKN3d3XjrrbdQWFhIJD6WFrLEYF0+K1HTLvLz89Ew6K6x6upqXLhwgZZYpsH7hYH4o1JQDl8/PpRkPFZD6j3UzIOMnmYjlUZTUxMWLVqEu+66C1evXlWM5/HHH8f+/fuxadMmjB49GgAbczMjMlx//fVITk7WHX4wduq3WJKVWwrSgyWloB3vFOT4NqzXBzvOvVjPUw4ZuFKQYyn8TsGB2NFSUAqrjw9lxVLQamiUw+rVq/16kmD1xzeLddQqS0G9WF2GLKPUthsbGzXHadf8tqvcZqBmDNi1a5fo8y1btpAWx3Ro9GO+Oq6y0I705i2pIwRZWpwmFU/fuC8Xnx3qtN0tBbdv345x48apui8rIyMDx44dw9q1azFt2rQBbmad4mCX+sJCv0ULlo8PVVMPfXVRnJX6T1IpSBNW8otjHv5a5lYbW+h159gDrhTkmI5358HvFCQbXiluufj1fgxyS0Fz42Mh/aamJpSVlRGPl6MOK/sJKbT0H3Y7PtTqNuzLsL7oxrp8dkXv+MwSvF8YCLcUHAit+sGSctHKdszi8aFmpOU9fyoqKsKcOXMwa9YslJSUKIadMmUKnn/+edx6661UZPPGzm2+Dzu9Awuy9slghqWgWkh8b7A01rNkKaiGgIAAbinI0QSpIzZZhHX5OP5LkNUCcHyTqKYmxAYHi7qFlJcDCQk9/mprETvoaKl+CguBlpb+PyX9DSK8owMh5eWq/aslqLQUCAuT99TZaShdR1HRgHdWQ3d3Ny5duoTq6mqkpKRg1KhRCAkJGepREGRlCyguBgID+/9W+x5CQQEgkl5AaSnxMlBDWGUlUFiIgOJiXelHdXf31L1empqaUF5ejsTERCQlJWme3AZWVVmSD0BPmcbU1yO0s5N43CX79yNz6lTi8dqB6Lo6dEqUqVBQQP3jPIhi24oKD4ejtRVup1NTuPDw8AHtRo6wykpi8oeUlwMREbrCqZUhtKJC9bv5AjH19cQXe0NDQ0XzMLquDh6Ndc0sHA7HAJmj6+rQYVFfziLhVVWK7UK2jdm8TdHohwOKi4G2NlV+rZpXSBFSXi5ZptF1dYbllYtfDcFlZbpkCA0NRaeOOVRIeTmQmNj/d0BNjfEyKyxEVG0tugzGE05oXuq+cgWIjESkzLtFBQVRaesk219wWRmQlGQ4HjVzm5DycsTU16O7u1tXGkFBQei8cAF//etf8e6776KjsxPZvW6BANIBHAPQ5RUmNjYWjzzyCHJycmTjZkHhwNLmWhYUbWrRKivNdzNqXU1KGVRfX4+lGzYYkkVtWqRgxSpHTTp1dXVAfLysH9p3CnIli+/BShugASt3CupNl+O7cKUghwoLVq7EWCnHvLz+/z4iF4mXPwDI1SjDzRr9KzJIHjFCoV1OrWkMJhjAmN6fHA4oyKY3vyVkztQSB2lefx0TAEzQG/73v+//b0zvTy+psDAf8vKwyKq0fZj5co462rBWxvf+mOMf/1GVt+m9PyLozO/RvT+aadiV12lF/Ic/DHn0HK20SLF4cf9/51knhW3JlXO0ebu6FhTGdg15Qjxto8jIPody/Gq4vvdnGoPkTQaBMsvLwwKjcfRyH4lIet9R9lsOAH79axKpDWAECLYBQn3Rvb0/pbSmGE3oT3/CGwDekHCeBuBg7/8nTpyImTNnIkxpUyvYONqdJXxZKUgTEseHklAMfP7552j22uysF5YWxVlSCqrByJ2CamCpbDhk8GVLQVJwpSCHNFwpyKHC8vnzke61Q9abe+65BzfeeCMA4IsvvkBBQYGov6effhopKSkAeiaIb731lqq0w8LCMGnSJHzzzTc6JJfm/vvvx/XXyy8pdHZ24r333tOdxrx58zRdkn7+/Hns2LFjyPOZM2dizJiBakK32423335bMq4HHngAo0aN6v97sddiqByLFi3qsQIZRElJCdavX68qDpKMHDkSs2fPxrfffovDhw9rDh8eHo6XX34ZNTU1WLVq1RD3u+++GzfddJPq+KqqqrB69WrNcpDg6aefxmeffaZ7R7IcU6ZMwZQphpc2bMmqVatQU1Mj6vbLX/6S2B1EUpw6dQr79u2jEnd6ejpaW1vR1NSkKVxycjLmzVOnNvnyyy/x/fff6xFvCLNnz8bIkSM1h5PqO8WYPHkyplpgFdvW1oaNGzf217Xo6Gg8+uijiFfYmWuUt99+W9MdkWoIDQ3FokVDtygsW7YMDYxZPPURGBiIN974cdlVrt37I9deey1+/vOfy/qRm0fk5uaSFchktPQhatEyB1Q7RzOLqVOnYvLkyaJu69evV3W8oRzTp0/HhAkTdIfXW17h4eFob2/XHG7wXLG6uhqffPKJ5ni8efHFF7F+/XrU19cbiufaa6/FpUuXDMUBAAsWLEBCQgI2bNiA4uJiUT9JSUmYP192K5Uurly5gs2bNxOJ684778TNNxvfSrp9+3ZcuHBB1s/kyZNx8uRJTfPyyspKfPXVV6iqrpb1lwngAIAKAHFxcZrnRyxY2bFkKUh7Lu9rmHl8qJpybmpqUrRkUyuPWbBiJUVSKUhTBq6w8D/scietGNxSkMMqXCnIoUJLTAycEhOxrmHDgN4jTNpTU+FsbBT158rMBIYNAwAIbrdkfIPpDAtDR1qaav9q6UxP75dbCqGjw1C67uHDgbQ01f63b9yIJpH0tv7wA8bMmjXgmae7W1a2we+n9j2E7GzRY1W7PR7iZaCGlqQkICcHbQUFutLvCg8HcnJwJD9fNPyXV6/ipgcfVB2fKzjYknwAeupTY1wclXtfvNuxv9GSlASnRJ4K2dkDjuGlQXt5ObU6FZWYiJbQUDg1vkNoQoLq+tCWkkJMfldmpq566GppUS1DR1qaJXV986ef4rLL1b+o4QSw+vBhvPrqq1TTdcbHE1cKhvf2q4NpTkwEm4eHAsHBwQNklmv3/khbSopiu5BtYzYfP7qamoj3w1rmgFbNK6SQ6yfbU1Ph1Hg0/mC6MzIM1Znu5mZdeeaOikKLDtkHz6ldISGGy8yTlYWmhAQ4DS7StCYnw1lbaygOoLdMUlN7+sbmZlE/oYmJVNq6q7OTWBtQ832nhtbkZDgVFHftqamq5+VutxvffPMNvvnmG00LczeOH48xs2aJbtiUwyxLQbssMrJkfacES7KSsBT0V1hpG6TudeRKQY5WfLlM7WgFycpGBQ5duFKQYylykwXvSaGWDodW52TG5ERreClrnjaRO2mU4tY7CZeKl9XBS4m+fDh58qSou5PR+6/EKC4upqIQBPgOWiuh/cGspw1pUSKxsBtdC1b0ZS6XC+fPnx/yvKamBvX19UjovZeXBma+L0sLWYNhWTYW8PcPQX9euNQKC21Jb30lZfFEor2QWqgl1XbVzC/t0E9olVEQBNF6QfI7sba2Fhs2bEB5eblqucaOGQOcPYvp06fDqVEhqEU2NfiCpSAL/ZZatMpKs12ycqcgKVjqw8y0FCQ11vDjQzlaMKKE8pf6YOY46S956u9wpSDHdLw7F7mJghEzaRodmBmdIs00aCkF9aZHi7730Ju+Lw1+pI8288ZOH8tmYkb9obkYrVd+LTKxsGijJZwVfYKcZUpRURFVpSCnB97HceTwpbkCCeTyw85tiZTsLNUX0kpBlt5ND2rlz8/Px6FDh1BfX4+cnBz8/Oc/R0zMj7eOq1VmKC1qnjhxAjt37lR9xGh8fDz+/d//HS/OmAF4XQOhFbsdTUgbO/dbStAsAyKWggqKRV9VCrJilSMIApETQwINnJzDmnKYFk6nE1VVVQgNDcXw4cP9ftO1L2+4Y+X4UK4U5AyGKwUp4XA4QgA8AeApAGMBpAJoAFAAYAOApYIgGD+7RV6GiQDmAvgZgAwACQDqAFQCOA3gKwC7BUGopCmHgoySbkYsBWl0YGoGKZZ2OGqNm7SloJ7jlkhQVlZmKLwvT0ZI4ssfy0qo3cxAC9ppcEtB6/G1BXYpmVl+l8GysSyrFfj7h6JdN5/Rwtf6rD70LtDRqh/cUpB8vGriunjxIjZs2DDg75qaGrz66qsICgpSHY/cN0ZLSws2bdqEixcvqpC651ju5557Dr/97W+RlJQEFBaqCqdHNq1wS0FzYUFWM+8UNBN/lcVof5CRkYGQkBCqfQFLZaMVQRCwe/duHD58uP9ZZGQk5s6diywL5bIapXmFnS0FScnHklKQ9TznqIMrBSngcDhuALAawIRBTmm9v6kA/t7hcDwnCMI2CumnAPgfAPNEnNN7fzcDeA7AuwBeJy2DHGotBVlTCtp9sd9speAXX3yhKz6jdHR0oKmpiRlLQV8dLFn4AGURX7AU1PMO3FKQLHJp0t5F6qt9llb8fbcuRx7eTtTDwnxBb3mxZClIqs6RmkOQvnvWKtTk63fffTfkWUNDA4qKijBy5EgAxjaPXrp0CZ9//jlaW1sV47j//vuxaNEi3HPPPYiIiFD0rxZfsBRkYX5pBb52fChLC9G+mpYcgiAYHid+9rOfGZaBhB9WOXv27ACFIAC0trbik08+wf/32GMItkguq/GVeQVpzN4IRSNdDrtwpSBhHA5HJoC9AIb1PhIAfAPgCoBk9FjthQNIAfC5w+G4TxCELwmmnwXgawDXeD2+ACAfPVaCEQBGokdhSe5LggJ6zaQFQcD+/fuJy+PrloIk755raGggFpcexO7iUgu3FFSHmR/LgiDg5MmTuHDhAkJDQ3HTTTfh2muvNS39wVi9UEDbCldPP8QnmGSR64esrn8kYfldWJaNBfx9rPT39x+Mr1oKsnSnIKl4Ll++TEASdceH2mG8VyPj2bNnRZ/v2bOnXymo5/jQrq4u7Nq1C8ePH1cMGxYWhtmzZ2Pt2rWKfvXAQp/GUn2xU7/Fkqz8+FB6mKm4N9of5OTkAKBbN1kqG61IjcOdnZ2oqKjwW2tBbilIPx6+ZsMZDFcKkucT/KgQLALwkCAI/dsLHQ5HEoA1AO4BEAzgM4fDMVIQhEajCTscjlj0HAnapxD8CkCuIAjfi/gNAXA3gGij6RpBrqPRaylIUrnljdPppBKvN1YqBfUqGsTi/eGHH3TFRYq6ujoEB+vbY8UHP3WY+QG6Z88eHDp0qP/vH374AY8++ijGjRtnmgxqMaP+1NXVUYvbbhbR3FLQ3LT1wtKClVrsKLOZXLx4Efv378cdd9xhtSiWYNcTKWjhq0pBXzw+lBS0vrfUYNWu+cF0dnZqisfbT21tLVavXq1qTjdixAg8/PDDiImJgSAIVNoUC3Mzo5B8B18+LUBLPj311FO4fPkyKioqMDw9XdKfmceH+qpSkJX3NqoUJNH+fd1SUM4qXI3FuK9ixFKQ9fpgRD6r3o2VPolDF64UJIjD4ZgFoG91pAvAbEEQ8r39CIJQ63A4HgLwPYAR6Lnn7x8A/B8CIvyxN04A+BTAPEEQRHtWQRC6AOwgkKYoUU1NiJVQygSXlQHJyQCAiOpqxEpYlQWWlAC99zSgvV3Sn1mc2bIFHefP4/7775e+OLm11ZCcAcXFgIZJmGxag+6WEFpaZP13X7oE9O52VYx7cDpRUQMehVZUWFpeoRUVCAkJ0S2DUFCgKW/lCCgvt7zu0iCsstLw/SVq6OrqwvkdOxA7aJL4/aZNGDeo3plFdF2ddJkWFgKhoVTT7750CbGUPhiigoKAlhYEtbdrChfe0aG6PoRXVRFrE8FlZYo7isUI0dAuQysqTKnrA6ipkZQvpLwciIykljSN/iqis1M0D2Pq69HJaP8Y1d09QOao2lqf7MuNcGL9eiS1tGD06NGi7qTGURYJLisjXh8CS0qAri5Vflmri3JzgkiZ/kwtIeXlhuqM3vKKCQhAt45wg8eNgNJSw3ngKCpCTH090NRkKB5SBBQXAzExsuUbJQhU2jrJ9qembkmlFe3x9IeV+6btI6yyEjH19SgpKcGerVsR1dGBKACB6Lnb4xh6FhD6CAwMxIwZMzBp0qR+JZXb7e6/x5AkLBwfytICo502M9CUNT4+HrNmzQIAdF64QF0WFixWWcWOSkF+p6A4dukHzcbKzUa04ZaCHFbhSkGyvOb1/2WDFYJ9CILQ6nA4/h+Alb2PXnY4HP9PEATdvaDD4ZgA4IXeP0sAvCilEDSDBStXYqyUY15e/39/LheJl79wALnGxaJOJAzK6fXOapBNa1BcUUr+tcQtkw4A/KT3ZzXT9AbMy9OUt3IMgz3qrmY01lW9hAB4Q8rxV78yRYbBPCnnaEK+vEg9BZ3853+q8nZ/748IOvN7JNhul8mQkY9yHZNM1yj/8R9DHoldfMwUv/99/3+ftlAMppGpj7k6w9mBm3t/RNGQJ7mk06aI7FxfLQbry5jen2kMkjcTBMosLw/PG42DJL3v+LiSv9/+lnjSo0CwDaioW7Jp/eu/AgAeUZncXb3//lHEbRqAg73/T01NxWOPPYaUlJQBflwuFxWlIElljC9YCtoJf7xTUBAEXLhwAZcuXUJkZCTGjRs3pK2QgCVLQbNgwVJQDazklx7sLDtNlCwF/VWZqvdaLaW4OByAKwWJ4XA4otBzJGgfSxSCrAfwF/ToahIA/BSAkbsFX/H6/7uCIDQbiMswy+fPR3pioqjb9OnTMWHCBADAli1bJM/Unj17dv89DW1tbfjrX/9KRVathIaGYtGiRaJuLS0t+PDDD3XH/eijjyIrS/0p4osXL5Z0y83NHfB3U1MTPv74Y0n/0dHRWLhwoaq4vVm4cCGioweeQpufn4+9e/eqCk+LESNG4OrVq7rCvv7663jnnXck3QfnrRzl5eXU7v+wmvHjx2P69OlUJ//Hjh3DwYMHRd1ee+013cfEGmHNmjWorKwUdXvllVcQFhZGLe3q6mp88skn1OJPTk5GU1PTgCOx1CDXLw5Grt/Xypw5c5CZmak53JUrV7B582ZVfm+++WbceeedmtMwQlVVFVavXi3q5j02kkYQBORRUNZERkbixReHqrNXrVqFmpoa4umRICYmBs8//+MS/OrVq1FVVWWhROwiNSZqmaPYjRMnThC/v/rJJ59EWlqaKr9q52hmceutt2LaNPGtWDt27DB01zMA3HXXXRg/frzu8GfPnsWuXbs0h0tOTtbVR91xxx245ZZb+v8uLS3FunXrNMfjTd/coqOjw1A8pPjpT3+KiRMnYu3atSgvLxf1ExcXh1/84hfE07506RK2bt1KJK7Jkydj6tSpsn6k2pv3OLF+/XqUlJSI+istLcWxY8dQVFws6p4J4ACAit6/p06dinvuuUdU+UfLkkLPQqHY/P+GG27QnQ5Li512shSkidp8IHV8qBpllCAI2LdvH/bt29f/7Ntvv8Xdd9+Ny3v2EN1wxpJSkFsKavfDKmqvUPI3uru7rRaBGnasr6z0SRy6cKUgOW4D0HdmXCt6TgCRRBCEDofDcRjAjN5Hd0OnUtDhcAQCeMrr0Xo98ZCkJSYGzvh4UbfO9HSg9/LhtpQUOCXuUvD252lpkYzPEnrlGozQ3GxIzq5hwyTjFkM2rUHxeBobZf03ORxwDx/efzSq2vfwZGUBsbEDnzmdlpfXqYYGQKcMnqwsTXkrhzsw0PK8oMU3xcVI6+iQPDqOBB0lJdL5l5MDWKAUbE1OhlNCaebJygIiIqil3dDZSbU+hSYkoCkoSPOiY1hYmOp20ZqcLNnva8U9fDiQna05nEtDPnakpWlq8yRwBQdLyufJyqInjyBQqV/uqChRmVuTk+Fk9KiYgPj4ATK3JCXBqfJoR79Doj6SGkdZpKOsjHhbcQ8fDmRkqPKrNe2wsDCqyqT21FTJMm1PTYXToEK9a9gwCNnZqK2tRWxsLEJCQrSFV5gDSxGhs48aPG50E+hb+282Dw83FA8pWpOTgZycnr5R4sjxwf0oKbrb2oi1P7m624dUWo64uP6wLUlJcA66n93pdGLbtm24oOLYRQCIiIrCgkcfxYgRIyT9GFUKSt1JqHUhOjAwENOnT8dxL2V3eHg47rzzTqqKALOw052CLFkKmnGnYEdHB06cODHgWVdXF3bs2EH8aG2W6qSZSsHq6mpT0pKTgYQfVvFXizclfNlSkNSdgvz4UA5puFKQHN6r4vkqjwI9iR+VgkZW1ccBiOn9vxPAFYfDEQTgGQDzAYwFEA+gFj13GW4C8LEgCNpMQSigtmO3S4dkVE6aO4PU7PRobm5GXFyc4XitsN4iCcn6Zpe6q5cjR45QVQraDdrlbeQCbrXoeQerJph6Fx+0hLOiDcuNBTR3r9N6VzvueuVWAhw5aNRpQRBQU1OD0tJSpKamIj093XA9nDZtGjIyMpCUlIR3332XkKRDkes7SLSlkpIS7Nu3D62trQgICMCkSZMwc+ZM1XHr7dtIKTd8cS7oK3f/kCqbwX3CxYsXsX79ek0nL8yfP79HoSwDLaWg1nwQBAHTpk1DlscD5OVh2rRpGHnPPYiPj5ftH2m2BRbml1bgS0rB0tJSXPjhB1lrv++//56JOzDNTsssWbq7uw2dcvT/s/fmcVJU5/7/p7p79g1mZWAYhn1HEEVWwQUEFBRFjYK4b3FhvInfX5LvvTc3N7k3N8n3JowxIcbEBAVjFBdEQZF9l31fxGGG2fd9n56u3x/T3fb01HKq6lTVqZ56v179gqmqc85z1jp1nvM8h4alIAlWfq9aWbmlJ6zPKzweD0qLi9HR0YHBgwfr4spbCFspaKMntlKQHqMD/n+NMEygDxFpXxvSBB7fVohuLyQbAUwLem6g97cQwI84jlvO87ykRaMeNDc3Y+vWrSgsLERpaanoc4EfFH1lQDJTKQgAdXV1ipWCQvisDa2KFRewzaJAxBWSEZg1Lpi5UKB32yTZoSsWTo9n5eiLSkEr7V73IVaGLC+6sSybjfnoMS7s3LkTeXl5/r/Hjx+Pe++9V1OfnzFjBqKjo9EUZMFkJDT60tmz3x3T7vF4cPjwYSQlJeGGG27QHLcUVhxvjcK3eGf1xU1aMvri4Xkehw4dwldffUUc97ixY4GLFxEREQE5e16t7tXEZFKjFATgP/bihhtuUO2hRa0MtMMHYqU5gJ6ykip4fPe0jpmnT5+WtfbrMNBrA0tjmFGyaPUqQKM9slTuemD196ZesG4p+O677yLXK2NUVBRWrVpF7Paf9lxDiP79+6NWZvykuWbTl9tqKGF/6dAj8AA9Uh85gYdSJWpIe3DQ31vxnULwEoB3APwd3ZaJPjIB7OY4bioMZt++fThy5IikQhCwLQVpQyJbfX297DMk8VqlvsSwuvx9BRbrSW+ZjFBY652HvrpoowSzNiboVfcs9lU5QrVt2dBBjzYdqBAEgPPnz+P06dOa4jSqHettKSjEqVOndIk3ENtSUBwjPBeIwaJHj8LCQrS2tuK9997Dtm3biOLNyMjAI488ggULFhCno9e3Js15Ryi8P0N5QwDLloKswZKloFWwzxSUx2zlFqto2fRiRLlVVVX5/9/a2op//vOfxOnSch8qxu23347ly5dTlaMvt8W+ROjOdownNuD/wgcr9CbwuVjRp+TpF/D/Ceh2F9oC4AGe58fyPL+K5/nHeZ6fiu6zC32jWTSAf3Icp+xgDgkiIyMRG6slK9/h8XjQ0tKClpYW5gYknzwNDQ3+3Wqtra1oaWnRFG9jY6N/521zczNavWd0dHR0oKGhwZ92XV2d7Me4x+NBXV2d/yOPZJd4fX19jzyRwPO8v56A7pe5mTvSaSD3YVxXV0dcT6y7QaBFe3s7GhsbAfRue42NjX73SW1tbf720dXVhbq6OtH+1NzcLDtpDm57gYptJfXk609NTU3+HZJieZL6wHG73bJ5CnzOR319vX8iLJUnvfuW2kW+jo4OFBUVEeVJLA01H44cx6lqe0oWvwJ3zJLWk9a2J7VLt6WlRXV/AuTbnh54PB7BemKZQKsP1mU1G6m2J4VR/UmP95Oe5/MFsnv3bsE8kdLR0YGmpibdF2qD5zyB9aTXJofi4mJF454a1Mrua9e+tsfadwwN3G43PB6P5CKer+3Sej/5xgiac2ue52XHCKn88TyPwsJC5Ofn46233sLly5cRFRWFmJgYAIDL5erhhSUhIQGZmZlYsWIFnnzySQwfPhwA0BkWBg9BP5Uc92JjwcvEwXuPiwge93ieBw+grl8/kLTWwDZdn5CATm+dBNaTEP4xIiYGrV4ZfHki6Se+MhKqJ6H+qiRPgbR3dRG9nzyEykOPw4EuDZ502iIjRdtHS0tLz/7kHXvd3n7nI7A/Ad+VpVTZtLa2+sfyTrcbDfHxgs/xPI+2trZe7xqPw0FcRoE0xMcrrjOALE+S4YPqyVeuVOYRzc3oIDgPV2zcC55XqWnXgbRHRBCNOYGQ9CeO43qP5QkJimVtbm1Fq/cMXbVrLGrbn4/WqChVZVSfkCB4zzc3klvfaIqNRRvNthcfjw5vm6KxHtFjvhdQT21tbbh48SIuXbqElpYW4u8nXz11dXVJ5klqncLXP9wuF+oC1ktofGvUecs/uNbq6uqQn58PQL6eAtur0nGqK2As53lesD9xHCdZPh6OQ2tUFHieJ/5+Cn6nBvcnXxgq6xFNTfp9E1LuT/Ei70GrYisF6REZ8H9SjUrgIQNaTo2PEbi2kuf5D4Iv8jy/C8BSAL4ePhyQdNuuiOnTpxPtUCCB53ls27aNeLelkfgGi7feegsXLlwAAOzZswfbt2/XFO8XX3yBoqIiAMDmzZuxZ88eAMCFCxfw1ltv+dPOyclBZWWlZFwNDQ3IycnxD46bN2+WTb+urq5HnkgIrCcAyM3N9f/fqsgtAuXk5BDXU19ZTD558iQ2bNgAoHfb27BhA06ePAmg+wzCjRs3AgAqKyuRk5Mj2p/k2qxQ21u7dq3/vpJ68vWnjRs34vDhw7J5EqOqqoooT0VFRcjJyfGHW7t2LXJzcwFAMk9fffWVZPpaaW9vVz3evvPOO7J52rt3L65evSoYXu2itZq2p8Qq+syZM/7/k9aT1rb37bffisqzc+dOTf1Jqu1pfYeJwfO8YD2ZaWkih8/9iq+etLpsC2Wk2p4URvUnPd5PV65cUV5QKmhoaBDMEynHjh3Dxo0bDbHeEKsnPedBpOOenDslMYqLi1WFKywsBPBd22PtO4YGXV1daGhoQHm5uIMc36IOjfdT4BghlaZSxN5PgWOEGI2NjcjJycGsWbPQr18/DBo0CAAwd+5cLFmyBEC3NWB2djYAYNiwYVi9ejUef/xxjBw5ske/zB0+HI0EC015eXni497y5WiPiJAM7/F4BMc9j8cDj9OJnOxsQOF4sfb555FbUgKgu56k5qo+WTcvWYI9XkvowLFcjmbv5uOGlpZe9SSkJFCbp9OVlUTvp0aRxf9gGhMSUJmSokiGQA5Pn46WGKEln+71gx796dAhAECRt9/58PUn33jU5l3Id4eFiaa7c+dO/1h+qbAQbz3xhOBzbrcbhw8f7vWuaYiPJy6jQN564gl0EijQgiHJkxTB9eQrVyrziK1bcWHcONG0ffUiNu5du9bzhKKc7Gx0aTjT7OSUKf7+RApJf+I4zj+W+9rD2uefV1QnPM9j86FD2DN3LgDh+R7Jt1xjQoKoIpuEPXPnojU6WlEYd1gY1j7/vOA939xITim4cflyHKbZ9p54Ahe87YfGekSP+Z63nlpbW7F27Vq8//77+Oc//4nf/e53PeKWwldPbrdbMk9SGw59385FGRnI+fBDbXkK+tb42xdfdD8k0O73798PQL6eysq+cxLoG8s9hBtFKgPGcp7nBfuTr9+J0RodjT1z54LneeLvp+B2GtyffHNrKusRn36q3zchrf7kXQt4QuQ9aFW4UPxIMQOO4z4HsNj75694nv8RQZhFALZ4/2zieT5OZdqvA3gh4NIhnudnyoT5AIBPe/clz/ML1aQdEN94AOciIyPhcrmwatUqpKamaokSd911F4YMGYKWlhbExMTg9ddf1xQfTf793/8dHMehoaEBkZGRCA8PR2trK2pra/Hmm2+qjnf+/PmYNm0aXC4Xmpub4XA4EBUVhY6ODrS1tSE+Pr57d0h9PeLi4vCLX/xCNK5/+7d/Q0NDA+Lj4+FwOHD16lW88847kukPGzYMd999NyIjI/HLX/6SSOYXX3wRUd4JeHR0NDo7O3H69Gl8/vnn5BlnjOzsbKxZs0b0/urVqxEbG0tUTzU1NbLlbnV++tOfor29HR0dHYiLi4PH4+nR9hobGxEeHt59VkpbG9xuN2JjY/27wRISEgT7k8fjwfHjx7Fr1y7BdF999VX//31tr6WlBQnej8+6ujrieoqLi4PT6URTUxNcLhciIyNF8/T222/3+jDz8fLLL4PjOMk8xcTEwO12o6mpyb97vL6+HtHR0QgLC/Mvognlae/evaLlQYP+/fujoaFBtbJmwYIFmDFjBoDeeTpy5Ih/4iaEy+VSvPv/6aefRlJSkuK298033+Af//gHURoTJ07EvffeK5gnQJ+2d+7cOXwY8EETyLJlyzB69GhV/Umu7TU0NOB3v/udojogweVy4Yc//GGvetq4caPqRXe9SUlJwfe//31/PX3wwQco8S562vTkX//1XwXbntQ84qc//alh/UmP99Pu3btx5MgRw8o3OE8/+9nPiML+4Ac/ANB91vOvf/1r3WScNm0aZsyYIVhPn376qf8jmzZibS943Dt69Ci2bNkiH2EQGRkZkossYsyePRu33Xabv+2VlZXh3XffVRwPy0yYMAHLli3Dn//8Z1ElXWxsLH7wgx9QeT8FjhGnTp3Cpk2bqOTjpptuwi233CI5Rvz2t7/1P8/zPL755hucPHkS5eXl/t3j8fHxaGtrQ0dHB6KiouBwONDc3AyXy4XY2FhMmDABL774Ii5dutRLhoTaWrzwxz/i9y+8gEaZs91XrVqFpKSk3uNeYSGaJk7Em089hQaJOF599VV0dXX1GvfKysqw+fXX8fi6dfjbo4+igeB8wJ/+9KdAfj7qJ09G9LFjCBsxwl9Pv/nNbwTDrFixAiNcLjRPmADH8eOIGj3aP5b//ve/l50HxtXV4V/WrIEnNxcNiYk96umPf/xjL2vq+NpaRXlKqK1Fdk4OPl+7FguefFL8/VRbCwwdit++8gqR0iuuvh6rX3sNv3/xRdQrPHsxobYWz73xBv743HOC7WP58uUYOXLkd/0pPx8x48bB/e23aEpK6tWffN/pvrL83erVomXz5JNPIikpCVFRUWi+cAFdM2bgrccf75WH8PBwvPLKK2hoaPAv4CbU1uLl3/8ea1avVqQYTKitxRN/+xv++vjjRHUWCEmeJMMH1dMDDzyAsWPH0plHnD+PyOuvxx+ff16wDaSlpeG5554THffKysrwxhtv+MvoMQXtOpiE2lo8/6c/4Q/PPy875gRC0p+io6PxyiuvoKmpCdXV1dj8+9/j8b//HW899hixrAMHDsTDs2fDMXUqoi5cQMfAgb3me0VFRaLfSj7i6uuRnZOD1156SVW/e/bPf8baZ59VXEZP/P3v+Ntjj/VIk+M4/OAHP4DD4cCGDRtEv3/umjABox97DK7jxxE5apT2tnftGhquuw6Rx44hfORIKusRPeblFy/CMXUq9q1Zg0NBx0OFh4cTeQ7x1dPaf/kXrPr3fxfN069//WvR+G688UYsHjcO7pEj0XTyJPpNmKA+T0HfGvXnzyPl+usFx5V58+Zh7ty5svV08OBBv7JN6Tj1wAMPID09Hf369cOG//ov3PWb3/TqTwsWLEBGRoboBpu4ujo8/8YbuPzuuxi3eDHR91Pwt0Zwfxo9ejS+973vaVuPqKsDhg5F/dmziB49mv43oXduRKU/1dbiwrBhmBkfH2goMIHn+fOylcgw6reW2AQT6NON1Oov8DktPuGCw35MEOZjfKcUlFQgKoGmO6XPPvuMWly08e16CjQdjoqK8u+IUItPqQrA73YG6H6hhnt3y3Ec18MNjRgOh6PHc9EEu5zq6+sVm0PzPN8j7rCwML+S0KrIWQoGlqtcPak5p9GKREREIMK7Ozm47cXFfbffITLyO6Nqp9PZ47ng/gTI+zIPbnsJAR+dSurJR6D7Y6k8ieFwOHrIIJQnQNidlFSeeJ5HeXm57tZKWs9Q2bFjh18pGJynixcvSoZV6z5UTdtzKdhZGx6wU1munnxobXtOiZ2D0dHR/vwq7U8AedujCc/zgvXE8pk9vjbiq6dQOyeHJlJtTwqj+pMe7ycj24NvPFDjnj86OhoOh0N3d6c8z4vWk5LxVimk457asSZCxupKDF+efW1P7hx1K+J2u+FwOCTfV75yp/1+otmmxN5PPgLHiMrKSnz22WeCG8MCPUn43Fn5uOWWW3DddddJjhthnZ1wEGzWdrlc/vLrNe41NYGTiYPnecFxj+d5cAD61dVB6eiWUF8PeOtEbh7hay8xzc2At8wDx3I5fGUkVU+BqM1TZFgYwryWGILvJ6+FhIPQxbDD44FTg3eEyLY20fYRGxvrL7+oqCjA26dcQf3O159831a++KTKJiYmxt9HI8LD4RLxmMJxHCIjI3u523V4PMRlFEh8Q4PiOgPI8iQZPqiefG2AyjwiJgaQUJD46kVqbhSImnYdSER7O9GYEwhpf/KN5TU1NQC6xwilssZERQHesVRovkeyUU9t+/MR1dqqqowSBNZ/HA6Hf24kZykY29QEePNLpe01NADe9qNlPcJHj/met54uXLgABCm4SI8k8tVTZ2cnYmNj/e/K4DxJvkO9+XO53egXMF+m8a0R7w0nlHo4YT0FzluUjlPB8Qn1J47jeo0RPeLgeUR5XdeSfj/1iiOoP/ne55rWI7zeRBJiY/1tlPo3Ia3+5JVVznOY1bCVgvSoDvh/GmGYAQH/r6GUNgCQ+H4MXJ2N4zgujud58UMTFBLb0IAElW4bLIHXd3QwXH19985BlbiKioDEROLnJdMKktFRUSEvW2Mj+Ly8bksnwnxw164BQeecuYqKNJWD2XDXrikqWymcFi8LIhSUh1IiSkvFyy8/H9BJiSFFbFWVqEzctWsAZT/jlZWV2LRpk9+vuXInPOTE8jw8DQ3azoASaQ/tly9Lyk66mzAQV1ERoGIzhpIxKqq8XNc2LoSjoEBUPmdhoX/xjTZ8Z6cu4xXHcYJlKNWXzCY+IqKHzCzLajoi/YPWe5RFnIWFxrUHgbJSNEfjOHDt7brKKzVORpPMP9VC2I7CS0pUyaC230eUlvaQzdD2YhC+PEqVUWxnpy59Pay4mFp5RpaVycoYX1ODEydO4ODBg4DHgyEB95wA0gEcRe/zQ5KTk3H//fcjLa17aYDG+ZpavTyJyWCUO2+e50VdD7LkwcpKG4GUyqpnOVup3Egwsk3KpcVS/5CCRhsgyatVysNHYLlIvQusli/aeDwe0c1GVi4bWrKLxUN77A3FPmgjjK0UpMflgP8PEX2qJ5kB/+/tS4Sc4LAkVofBCsA4gWuqWbV+PcbTioxFRPxjJwDI1iFeMSTTCoorVe55H//7v/JxS6QDAKO9P8uSk6OobKXIgMY2YQUUtlslTPf+jE5XCslTU3WQKQXAU9Rj1RGRMsg2MC05MsF2v5QcQ3Vs92HQsVwEXDI/oFdatPjxj/3//Z6JYjCPmj5v0vhNi/nenyEIlFW2wrARSsJQZp73pwuE7Wii92cYQXINB9vvHNW88goeknvmv/6LerJGf2e8QvDMbAAHAv6eNGkS7rzzzh7WpjQW0LTGIRaetlKQ4zjDFwxppseyJ4NgWFDE+WSwUrmRwNKiN0uySBHYHtW2zVBUSAT2DSnZaWwesTKdnZ2SHgjEYL09aJEvMKyUUpCkv7FeTjbGYysF6RFoeTeR4zgXz/NyhyNdLxJeKeeC/ibxLxTsY4Oqj8O3V65EelISzSiZwndgfDB1dXX4+9//rjreuXPnYsqUKcTPS517FyxjWVkZ3nvvPdk4X3zxRbhcLsm4A1m5ciWSk5N7XLt06RK+8B3Ia0EeeeQRyXMAxepfiKKiIv8htaGKkvJQyuHDh/3+14N56qmnVLlT08rGjRtFzxh6/PHHe7g40IrR7SchIUGzy1uh9uB2u2XPhY2MjFTs4m7FihVISUlRFAYACgsLZc+h8DFhwgTcfvvtitPQwoULF/wHbAezZMkSDB8+XJd0Ozo68Mc//lGXuIXaxQcffMDsmYIDBw7EAw98p7b85z//GZIuAGkg9g4gmaO43W7k5+ejsrISaWlpyMrKssSi4qZNm5CXl2dIWkLlSzJHczqdeOmllwB0L7L84Q9/oCzZd0ycOBG33Xab4L09e/bodqYg6fzjzJkz2Llzp+L4hw8fjtzcXMXhbrrpJr8rbQDIzc3F5s2bFcfDMr4x8t1330VFRYXgMzExMXj66aepp03zO0Os7RYWFuKXv/wltmzdKhk+A8B+AL63w+jRozF9+nQMHTq017O2paA0eik81UCqzIiPj6e7iGIASspJqYKHBQWlVbEtBb8jFJWCgeUi5z60LyN3rqwYfaXctFoKkpZTXylPG1spSJODANrRvRk3BsANAIRXsgFwHBeBngYwyr9UvfA8n8dxXB4A39fHOACfywQbG/D/Gp7nm9WmL0RTfLziw3wtRVaW4GVPTY2mfLempYnGLYRkWkHxuF0uItk8mZlAeDhxProGDwbSenrM7WhosHT9uzMyFJWtZFyQqadQQEF5KKUtP1+0/DyZmdRddZLQkpqK+mbhIbNr8GBFLoDlOH76tKHtx9G/P+q1LsgLtIeu9nbZfLhjYtAsUq5i8EOGAKmpisIAQBfI+2VLaqqubVyINol3iTsjQz95Ojr0a28CMjenpKDee5g4aySkpPSQuSk5GfU6n8tmWUTao9x7tLOzE++99x6uXr3afe2bbzC+pgb33nsv84rB2oQE48ZmgfIlSdvlcn0XtrNTV3ml5q+tly4ZOq4I0VFVpUqGltRU1NcoP+GhbcCAHrJ1tLaG3Fwwul8/ICsLjUlJqBc577grNlaX91VnYyO18gx+xzc2NuKXv/wlfvvb3yo6K37S5MlYMH06BgwYIPoMC4tsZlsKslAGNJkyZQoKz5wxVQaWFHEsyUKDUGuvRjB27HfLjHq2B6vVDYm1l420UtDK5aa3paCSuHiel+2boaiYtxGG7S9uC8HzfBOAHQGXHpMJci++s9arAbBXowgfBfz/HoLnA5/RmraNF60Do567NPXaFRKKH3w05bd6WbAMi2VLWyajP671KlOSsU1NXtWWj5JwZrQzs86aYLFPmUWoLWyxyNmzZ79TCHo5f/48vv32W5MkIkeJssAsAhWrerfnUN31rlY5beU8k0Kym98K5eCTsba2Fq+99hpGjhyJX/7yl0R9fMSIEdj4wQcAur29SCkEA9OiIa9abEtBMkj7/nXXXYeJEw11TtwLPc8UJLUU9N0LtbmTfaagcm688UbNcYSiQoJUsWO1fNEmVC0FaSkFxSB1H7p//3786le/wmuvvYYDBw6Ixs16edrQw1YK0iXQ59ZjHMcJHqvHcVw0gP8MuPRnAlejcqwF4NumOZPjuKViD3IcNw3dSkkff9eYtg0l9PQhTho3Cx+sZtPXfbmzBIuTZqkJl9Xbfl9RCrKOVHlZvY0FwnL9sW6pFgrs2LFD8PrevezvVevo6DBbBFlYUQqygJh8SUlJ6C9hcUbrPCTWy0cNahfuaECrPHmex7lz57Bq1SoMHDgQq1evRnl5uWy48PBwLF26FM899xxuuOEG4vT6kvtQsb5jlb5A2vcdDgfuvfdevPzyyzpLZA1Cbe7EUntlSRYxkpKSehwrQ+Md6vF4BD3JWKE8xGBxfYMVOkU8DwB22QDa3YcC3Rsba2trsX37dtFjeuyy7jvY7kMpwvP85xzH7QMwB91uRD/jOO5unuf9PiU4jksC8A8AI7yXagD8Sig+juOyAAQeWPI4z/N/F0k7l+O4PwJY7b30Lsdxq3ieD7QgBMdxcwF8AMB3euthAJ8SZ9JGEr0+1GhAKptSGWxLQRsb/ehLloJqFhKMsBQ0A7M2Jthj33cEtxHW24yZkLihEaJFxHUsq+dMBmIFpaDSs6D0guVxRa5caJUby2WgFt973Yp5a2trw5EjR3Dy5EnU1tYqCjt27FgsWLAA/fv3V9w+WFAKGuU+VA0sWQoqrVupzQV6o6eloFJCba5kWwoqY+7cudTi4nkeHIA33ngDFdHRSElJwX333Yc077E1ViiPQEgtBfv65nQWLQXNNpogaTtqx97Tp0/3OANbLh2lz9iwj60UpM/DAI4ASAeQBeAUx3F7AOQCSAFwO4Bo77NuAA/wPF9HKe3/D8D16FZKxgD4kOO4iwCOovsIpUkApgY8X+pN3+7NjMCCUtB2H0q3HqxeFixjWwrSR68xyMqWgn3JfajRsLx4xLJsrKFWKWhlbPehPQnVXe+03IdauQzEsKr70KtXr+KTTz5BQ0ODonBpaWlYuHAhhg4dqjptsxcWAfH5RSgsRJupFDQT232ofrA0hrEkCylaLAUvXLiA8fDOt6KjUVlZiXXr1mH16tWIiIiwZHn4CNU5Ew3sMwXVx6Omv4l5R7ByWdsow1YKUobn+SKO425FtzXgZAAcgHneXyCV6Lb8E/adpC7tdo7jlqDblehD3stjvb9gvgZwP8/zhbTStwkNS0H7BWCXgVVgsZ5YlEkJVrMUVAvrixZ95UxBluuBZdmMZNCgQbKWex6PJ+RchknB87ykeyNW6Et1IofaRRR7HBDHt3BnxrxHTZo8z2Pv3r3YtWuXonCpqam46aabMGXKFM19igWloFGWgkrdh5LkKy4uDgtuvBHIydEkGwlWGj9ZGqes/h0UDEuWgn0Jnudx6dIlBJ/F1NraimvXrmHUqFGWKy9SS0Gr5Ys2at9FofR9rCZ9lt4DNtbCVgrqAM/zlziOuwnA99CtnBsPIA1AHYCrAD4C8Dee56t0SLsewMMcx/0JwCoAswEMQre70HJ0uwt9H8AntoUge1hRKWhbCtroidUmzbRl6kvuQ420FFQSzrYUJIPjOGZlU4P9cQU88cQTyMvLI1IK9iWs4DoUsC0FSdDLfahtKdgNK/nu7OzEp59+irNnzxKHCQ8PR3Z2Nv7v//2/+N3vfif4jNL8sTBWGnWmIE0effRRpKWlITIyEty1a6LPsdLeWEdtOZGMh1ZSprJGKLgPpTnXKCwUtl3Yvn27JZWCgVh1zmQ2LJdbaWkpjh49isbGRgwePBizZs2C0+n039dbPtrzfNt9aN/BVgrqBM/zHQDe9v7UxpGPbktDNWH3AtirNm2txDY0ICEszKzk9Sc/X/Cyo7oaCQrPpggkorRUNG4hJNMKisdZWEgkG5+XB8THE+fDUVAABO2YDysu1lQOZiNbVgrqyFVUZOmyIEJBeSglsqxMtPy4a9eAxkbd0hYjtqpKVCZHQQHQ2kotrajyckPbT2RrK8La2rRFItQeSktl8xHPcXArzKuzsBCor1cUBgCcBPL4iCov17WNCxFeUiIqX1hxMRAbq0u6XFub6vbmdDqlFxUFylCqL5lNXHV1D5lZllUvXEVFkmOwDz4vD4iI6HVdKhyfl0ftPWs0nU1NxrYFgbIgST/Z6ewRtl9dnW4f8NEVFaJ1put7jLCdiI2pcQ4Hurq60FVXJxguprJSleyRZWU9ZAvVuSCfl4fYqiq0i+QtsrVVl76s5DujoaEB2z77DA2VlRiC7l2y6eg+W0NIvT9o0CA88cQTePrppzF48GB6QqNvnSlI01KQ4zhERUXJpklzfAuz0DqGnps+SOP2PRcdHY3k5GRUVVHf+24KLC16syQLKbQ21gTiUzxbrTxILQX7OmrL5tixY7guIQEZlOUB5GUqLS3F3//+d/+mwW+//Rb5+fl45JFH/H3AiDMFab4L7Dbad7CVgja6sGr9+l7m/iGFiNuSJADZBoohmVaQjFlyzweFI3pWIB2g+/DKSaThWSQnR1HZSpEJY9uEKejoxmem92d0ulLcI3WTsky3eX+WQqAM0qFTP1BZ3rrJQ4kZ3p8gOrb7SOhYLgJyL9MrLVq8/LL/vw+YKIZp5OQgHcA0gueEyJYJI3efVWJh8PghUBbE6f/bv/n/u5qKMMrR9T1G2E4me39quF1luEDEznKwPDk5eETumV/9inqy47w/Uv5d4NpsAAe8/3e5XLjrrrvwxBNPYNGiRXC59FkiYcF9qJhisqysTFO8oUYoKwX1XuydM2cOPv74Y13TMAqW3If2pUV6EpffVi4PKdlZsChnFbk6//DDD02Z63799de9vIjk5eXh2rVryMrKopqWHu1e6Gx4K/cvG2XYSkEbXXh75UqkJyWZLYZuZGdnC16vqqrC+vXrVcc7YcIE3H47+fLDmjVrRO8Fy3j16lV8+umnsnE+/vjjSEhIkIw7kAceeAADBw7sce3UqVPYvXs3UXgWueeee/DJJ5+I3herfyGuXbsWMh9GYigpD6UcOHAAR48eFby3cuVKJCcn65a2GJs2bUJeXp7gvYcffhipqanU0tq5cyfOnDlDLT4jEGoPBQUF+OijjyTDpaSkoLKyUlFaTz75JOLi4hSFAboXv9577z2iZ0ePHo1FixYpTkMLe/fuxYkTJwTv3XHHHRg7Vp/l5dbWVrzxxhuqwrpcLkl3ckLt4pNPPkE+oxZhI0aMwF133eX/+/3330dJSYmJEhnPSy+9hBMnTuDAgQOSzz3zzDOIjo7udV1qHvHiiy/i9ddfF72v53tFK+Xl5fjHP/5hWHrPPvtsLysZkjna0KFDcffdd/v//v3vf6+bi8AxY8Zg4cKFgve2b9+Oc+fO6ZIuaTs5efIk9uzZ0+t6cnIyurq6UCtidTZp0iRV7+ApU6Zg7ty5/r8vXLiAbdu2KY6HdZ577jl88MEHqK6uFrwfERGB559/nnq6cuXJ8zwOHjyIo8eO9bqXAWA/gFLv3/Pnz8f69etF5240F8ZYVQqWlJTg6tWrSNAUMxlqLQW1xK2G8PBwanFZGTWWJ5MmTUJUVBRyd+wAACxcuBDDb7sN//3f/01bPN2xF8aVEdxe9LBitapS0D5TkAxaFnU0kYv3ypUrgtd37NiBJ598kigO0vSlLAW1xK9GKdjX22qoYCsFbXShKT4e9f37my2Gfojs+OiKitKU7+aUFNG4hZBMKyiejrY2Itm6Bg/Glepq4ny4MzKAzMyeaVVUWLr+OwYOVFS2Uri7uixdFkRQ3gEVSFturmj5eTIzAYoKOFKaU1JQL+JqzJ2RAQQpybXQmpZmvfYj0B7aOztl8xGdkoJ6gjOKAuGHDAHi4xWFAQBPeDhxubakpuraxgXTvHRJVL7OQYN0k8fT3Ky6vcm6DxWQuTklBfUq3L8aQWtaWg+Zm1NSUE/RNbAVcA4fjvbSUtk24cnMFHRpKxWOHzKE2nvWaFohM/+izO83b8aqVaswYMAA/zWS9N0ZGT3KsSExkegcODUEj5NXr17FpUuXEB4ejqsej37lRdhOOsrLBWWISEpCV1cXxEahtgEDUC9yrpEUbQMG9JCto67Oeu9yAtwZGWhITES9iGVDRESELn1Zqjzr6urw0ccfo6CgQDIOzunEA/fdh3vvvVf1Zi4zzhTUw33owYMHNcUphNXP5Q1lS0ESV6xaGTlyJEZ6y3DMmDHosuhZg7aloDb0cB9q9bEFsJWCaiEtm9bWVug/ynXDcRxaWloE7xUVFfn/b8SZgjT7m90O+w62UtDGhiH0dBdAOrB7PB7s2rVLU7xWf4mwtivYRhizytbIj5FQ+PAByM6qUZNXteWjJJwZ7UzqXcDqmKJGLpbbN8uyGYEv/yTloGbuQhrm2rVr2L17N8rKyjBo0CAsWLCAqjW2GoJdBOlNa2srNm/ejKefflpRuIigcx71bNOB/f/o0aPYsmWLbmmpQe246VC5kM3qOE0bvZTMajl37hw2b96M9vZ22Wfvv/9+RI4ZY+hCPAtKQSEZzp8/rylOGrCmBAgeP1lGaflMmDABn3/+uaEyqB1LzYalsZwlWcSg1VdD0X2obSlIBo380/aKYXadGGEpSHLNJjSx5tvZxoZR9DrngQaksrW3t6O0tFT+QQppsYrty90asNjOWJTJTLq6urBt2zb885//lH1WzYKBEQtFfUkpyKLLFrOw6gIWLZQsiOqlFCwvL8eGDRuQn5+PtrY25ObmYt26dWhoaFCcHk3MUISUlJSgublZURgzFrW7urqww+syzgrI7aw2YoHTyrjdblMWN4Pj5Xkeu3fvxsaNG2UVghmDBgEA0tLSiGQMtY2CRskg1ndYKAMSQtlSMCIiAtdff70ucesdj9HYloLa0KPeKyoqAFizPHzYSkFxaOSfpW8439ydVr2ypBTs6201VGCnt9jYWAi9BkAWlIJKd9aE4s4Sq8uvhEHexRFWsdqkmUWZzOTzzz/HoUOHiJ5l1VLQDKTGYVbbmG0pGFqMHz8eAFk5qKl7kjDnz59HZ2dnj2stLS345ptvFKdHE7P6YGNjo6LnzbAUzM3NJbLSsgq0XDGxOm5rhQVLQY/Hg88//1z2LHOO43Drrbfivvvu63HdakpBljegaoE1S8FQP1PwzjvvxOzZsw1Ns6/Pq2zIkRoPOjs7kZeXZ+n3qtXWN6wG7bFGrk6k3hd13iNn9D5TEKDrrpdUXp7nUVxcjMOHDyM3N1fXeWF7ezs2bdqE3/72t3jzzTdx6tQp3dLqSzDtPpTjuAk8z+tzMr2NjQ6w/KGmZGDXGq/VJzOsfjDrwdChQ1FcXGy2GKpg0X2o1ds+TdxuN86ePUv8vJFKQSWYUadmtSOj07XSApGVZKXB1KlTiZ/Vy1Jw3759gtc///xz3HDDDYrTpAWL7x4hzFAK1omct2s2WuqM4zjNc+NQnRvIbSTUO98dHR345JNPcOHCBcnnIiIisGzZMowZMwZcbW2Pe1qUgqFypqAe2JaCxqF2/ux7j06dOhU7r17VXQaHw0HdrZ/e0N4UIFVKoWApGNwOtCgppELu3r0bo0aNUhW3mfA8r2pO0ZcQKxuWyywqKkr0aAGj3vta5vhCMpJaCm7fvr3HucTDhg3Dgw8+SH1jDc/z2LBhAwq953w3NjZi06ZNcDqdmDhxItW0+hqsWwqe4TjuEMdxT3IcF2O2MDY2PliwFKShvNMqg9a0WIW1XcE2wvSFsrWyIuLq1auKdosZ6eqD9XK14pmCoUZf2hwSzLhx45Ceng5AvzMF7XasHJaVgkamQRM5eeXci/Z15NyH6gXP88jLy8PatWtlFYKZmZl4/vnnMWbMGNG45NKihW0pKI5tKagePcuHZtxWHEtp9v9Lly5J3pfrm1acN9G0XAqkoKCACUt1tUjVNatjtJWg3Vfk4pNq5776DEX3oSUlJT0UgkD3+s/x48dVyyJGZWWlXyEYyMmTJ6mn1ddgXSkIANMA/BlAKcdxb3IcN91sgWxsxDDyQ03phEEvpaAVJ6hy9KXJGOsfaCy617AtBclQ+rHGqvtQM+rULPehtqXgd1htNzstRowY0cu9nhxq2o2V37NmjfNKN04EL2obYSloRUgUg0rpK5aCZizKNjY24pe//CXWrVuH2iCrv2BuueUWPPbYY+jXr5/oM0bWDQsbL2mNvZmZmarCWaUvhLqloBmwdM4XKTTbq9wGBrMtr62GFeeRvjpkcX2DFaxoKUiiFNQCqaWgXkp4MVpbWwWv79mzR1V8UgQrH33k5eVRT6uvwbT7UAAtAKK9/48F8ASAJziOuwDgLwDe4Xm+xizhbPouVrQUJI2bhlKQ5Zc2CVaXXwlW+ZAUgsV6oi2TletHKWoWC0LVfagVP3RDDSvvQNbCDTfc0KMv6mUpaLdx5Sgd74IXtfuyUlCtfLTKjPXyUYucpSDNfDc3N+OTTz7BT37yExQUFEg+63Q6ce+99/rPRpXCypaCdXV1uHz5Mrq6ujA6IgJJBskAADfffLPkfaV9hzVLwb40/5aCtBxInrNimdLs/0JWLoGEglKQpvtQOaw8j7SVgvpidBmS1KfeloK049SSjh5ni7e1tVGP06Yb1pWCAwB8D93KwOmA37X0OAC/BfA/HMd9AuCvPM9vN0VCG0FiGxqQYKEddorJzweczl6XHWVlSJDZtSpFVHl5d9wE8J2d0mkFxRNWXEwkm6OgQFEenIWFvcoivKREUzmYjauoSFHZaorLZCI1tlkAispDKVLyOQsLAROseWIqK6VlojhZiyovZ7r9COJtD6Rjjo/YqirFeeWuXQOCXOSR4KyuJk4rprJS1zYuhFS9hxUXA0kkS3/K4Rob9WtvAmUo1ZfMJrKsrIfMatqnFQkrLu7RpyJKS2Xz7SgoAAQ+1qTCcdeuyb5nab2HaWPWe91ZWAg0NgKQLlsfUeXlQMBcPKG2FmEtLbrIFl1RAeTnE7UXqhC2AzG54sLC0NXVhQ4RmSPLytCvrk7xJoHg8cPq82IxuGvXEFddDU99veB9l8ulqa+63W4cOHAAn3zyCb788ku0tLaCAzDEe98JIB3AUQC+03zCw8Pxve99D8OGDSNKw0ilIM1F7KKiIqxfv96/+Ha0rg6rDZIhMTERQ4cO1RyPDR20KtuMUtb1daWgHH3VQ4UQpOeZWQ3bUlAeGpaCRroPlRvXaLgP1ftMQZ7n0d7ejqtXr6KhoQFDhw6FU2Ct20z6er/QE6aVgjzPN6HbIvAvHMeNBfAUgJUAUryPRAB4AMADHMddA/AWgL/xPF9shrw237Fq/XrI7820MDk5gpcHAMjWGverrxI9FiaXVpCM470/WXJylOVBoCymeX+WJScHE2TukzIUFNqEzszQGoGC8lDKHO/P6HSluEvqJmWZ5np/lsJbBiNhQNtXWd5JUCjbyy+rSkctS6Vu6tju46BjnQnILdmXWOAHP/D/d7mJYhhKUD1N8f6UhPGRLRNG632zGOv9GU5AnrMVPg8Az1AVRoCXX8YkAJP0TicQwnYw1ftTw2yV4QK5zvsLOXJyMErumf/9X9XRu0A2D5oN4ACAuLg4PPTQQxg4cCBxGlqUgnqd704SxxdffNFjNz5p3DRc2y5btkzWu4PYAqWaBV8rKpOMxCrl09fdh5Kk5fF4RMvJCovitCwFSbBCeYhhKwVDCyPrU+pMQbX9rbGxER999BGqqqr812666SZVcemF3S/0g2mlYCA8z18E8AOO4/4/AHej23rwDnx3LuIQAD8D8FOO47YBeBPAZp7n7S03JvD2ypVI18mSgQVeeOEFwbMGysrK8N5776mOd8CAAfje975H9Gx7ezvWrl0rej87O7vH32fPnsWOHTtk4120aBG2bt1KJAMA3H333b12ix4+fBiHDx8mjoM1brnlFuzevVv05RNctlJcvXoVn376KSXJ6DJ58mRERkZqrisl5aGUvXv34sSJE4L3li9fjoyMDN3SFuOzzz7Dt99+K3jvvvvuw+DBg6mltWfPHssdoOxrD99++y0+++wz4nDDhw9Hbm6uorS+//3v9zo3i4Samhq8/fbbRM8OGzYMS5dKqumo89FHH4m6R5s3bx4mT56sS7oNDQ146623dIlbaJz4/PPPceXKFV3S00p6ejoefPBB/9+bN29W3D6tyD333IOsrCz/3ydPnpQ9G+KBBx4QXIRfs2aNaJhHHnkE77zzjuj97OxsyfB6vneEKCgowKeffmqqW9nAs9GkysbHE088gfj4eP/ff/nLX9DU1KSLbL5x8syZM9i5c6cuaQhB2g6OHTuG/fv397qempoKj8fTYyEkkGnTpuHUqVPo6OgQvC/GhAkTcPvtt/v/JulHVuT222/HkSNH0NDQIHjf6XTipZdeIo6voaEB77zzDv785z+jXiTOQDIA7AdQCmDKlClYsGABoqKiiNMDrGcpyPM82traUFysbg90sAxq8seaBYGNfvR196FG09XVZWmlIC1Ixkorug+1LQXlsZqloBy0LQWllIJq2bVrV6958Ndff606Pj3o6/1CTyyjFPTB87wbwIcAPuQ4bhCAxwE8BsDnI8QJYKH3V8Fx3Dp0uxdlc9UpRGmKj0d9//5mi6EfWVk9XDL5cLtcmvIdnZjYHTcBXS0t0mkFxdNeVUUkW3t6uqI8dA4a1Duta9csXf++MhB9+RDWEQC4OzqYLIsBAwbgpgcfxJEjR7TLp6A8lNL2zTei8rkzMnRNW4zmlBTUV1cL3hPqD1pou3yZyfYjiTf/na2timRvSU1FfY2yY4K5oUMFx2I5+Lg4YtmakpMNb2eNSUmo97oJDKZj4EDd5PHU1enX3gRkbklNRb3IYrzZRPfv30PmG5Yvx4k//9k8gQyia/DgHvnurKiQbRPujAwgM7PXdalw7owM2TmMkjmOnrjdbmz4xz/QERdnWJpCeDIzgcREANJlCwApKSmIn9TTZq8hMRGNOrn2b05JAbKy0Fldbew7i7AdtBcXC8oVk5ICt9uNehG3bW0DBqAhMVHx+Sgtqak9ZOsoL7feu5yAltTU7veViJLI4XAQ1ZHH40FOTg5+9rOfoV7EFakUdy9bhoTr1NliWvFMQaVKaikZ9Fposy0FjcMq7kNtS0F5urq6BDeemyELDdS2LRKFnxXLAzD2nWNjDFJ1RkMpSJKWFktBVjfoBqK1/FpbW3HlzBk0Nzdj+PDhSE1NpSSZ9bGcUjAQr5vQXwD4BcdxtwJ4EsAyAJHeR9IAvArgVY7j9gP4M4APeJ5XP5O2sYF+L2slO55IJhSBLwZSmWntYrUyNHeesVYWYWFhePDBB5GZmSn60cESVttJR1umvrQQomaxwIjyMaOdSZ0rwmK7VwvL7Tu4DgYMGICBAweipKTEJImMQU2dCL0z5dqplXZ45+bmalqEp4WSvn/LLbf0uma78VIOrTIL1fJxu92a87Z7926sXr0aZ86cURz2ukmTgDNnkJmZCeWqxG6saCmoxVIvWAY1MukxlthKQfVYpXysImcgZigFrQwt96Ek5WCleaSPUD0rkSahZilI0204rfisiNZ8v/vuuyhyfaf+uueee3Cdys1koYb1tuuIwPP8Tp7nV6D7GCOfrauv5XDoPm7gbQDFHMf9J8dx/YyX0ibU0TpY0VYKKnneh9LJqFC8Vn9ZWV1+Ka6//noMHz7crxBk/QPNakpBG/WoaYtq2y+tdt/c3IzTp0/j6NGjqK2tpRInIP0u0LPdG92nSOvB5TJ+D1uwm0iO4/DII49g2LBhIiFCAzULOmqUglYavy9evGi2CACUldnYsb1PPTRCKcjqnEKLwkFNnoyyxjIbuW8GqXyXl5djxYoVuOWWWxQpBFNSUvDAAw/gueeeE1R+K8WqZwqqxWylYKj2BTPRc9ylGbdtKSiPlIvyvtR3QtV9KCAvd1+q51DBSEtBMVidf9NCa/k1Bnlg2rx5Mzo7OzXFGSpY780sAsdxN3Ec92cAFwBMQ0+FoO9fDkASgP8L4DLHcXcaLqhNSMCCpaDSCYVeloKhqBS06iSTBKtNGKymFGRRJqtgNUvByspKrF27Fp988gm2bNmCP/zhD/jmm2+opBnKY5AaWLHWjIyMxN133224LEaiph+qmQdYqY2HyvlZVnv/GwGJQpBGuYXq3ECNpWB5eTleeeUVjBkzBu+++y5RmOjoaKxYsQJbtmxBcXExXn31VQwYMECNyL2wovtQmlYLeo3FSvsNK5aCZpxVbjY0yjdUzxRkyVLQiu8RtXVOklcrzSN9kIzfRtVzV1cXcnNzcfjwYRQVFTHTvmhYCtKGxjvXiDMFrTjGkkK7/ru6unD58mWqcVoVS7sP5TguCcAqdLsN9W2JDewJ5wG8CeAjALcBeALAHO8zKQA+5jjuZp7nDxsmtE1IoNfLqqurC8ePH0dBQQFiY2MxZcoUJCcnq0rLVgqqx+d61er5IIH1yQOLE34jFZWs1w9NjMwrjbS++OILNDc3+//u6urCpk2b8MMf/lBz/LalYE/McKdkdRdOarEtBXvDilJQa5nZ7kONwy6PbnzlUFZWhq+//hpbtmzBunXriM9ojI2Nxf/5P/8Hr7zyCmJjY3vFS1NGK6FlbhwcVk3+Q21u+tBDD6GoqAipqakYHREBvPqq2SIpwiqWglZsN7ZSUBlG1rEVykMIFjbNdXZ24r333sPVq1f912bOnInbb7/dkv00mG+//RZjR45EVFSUIemRWArSil9KKRjK6NHfCwsLMWHCBOrxWg3LKQW57tZ+B7oVgUsA+A7F8vWCVgDvA3iT5/mDAUHXAVjHcdwUAL8HMBPd+f8xgNDe9m1jGerq6vDZZ5/5/z5x4gQef/xxwYNQWbEUJEnbaoTymYJWw7YU7Duw6j5UqE67urp6fEj5aGlpQX5+PoYOHapKLh9mKQVZJSkpCdXV1YamKbYwE+ofXfaZgr0xw32tEFZQCrLaP9RaIdlnCkojZfXg24V955134osvvlDU52NjY/GDH/wAL7/8MhITE2mJK4jVNjCwYCmoxSpMzcZavceVUaNGYdSoUd1/5OfrmpYesDruBmO7D5Un1Dak6dk2rTSP9EHSnoxoc8ePH+/1HXvw4EGMHTvWdGtpGsYXe/fuxReXLmHFihUYMmSIbjKRYJT7UNbwGVnQjE8NHo9H1D0mK993ZmOZUuA4Lgvdln6PARjkuxzwyBl0WwWu53le9KxxnudPchx3G4ArADIAzNJDXpvQxiiz9ra2Nhw8eBD33HOP4rTUykLjTEGrE4p58kHrAHAhGhsbcfDgQZSUlCA9PR0zZsxAQkKCpjitphSkjVU+9GlgpFJQCULtTOrMj9LSUr9S8Pz58zhz5gza29sxZswY3HTTTb1k9ng8vRZKbEvBnsTGxiIsLAxlZWU6S/QdtlJQ+G8hbPeh1iDU264a9DhPEOg7ZwqKbZo5ceIEDhw4gLq6OsVxLl68GK+99hqGDx9OQUJ5+ppS0OwzBW3Yw3Yfyg62pSA5VppHBsJCPe7atUvw+uHDh7F8+XKDpdGHzs5OvP/++/jBD36g+4YEkvUqvV2QsuY+1OPxUP1+Ult+brcb4SL3QuX7TitMKwU5jgsHcB+6rQLnoef5gADQDOCf6LYK/Jo0Xp7n2zmO2wHgUQD9qQls4ye2oQEJYWHyD1oU7to1IDKy13VnURESamupplVy8CAweXJvGWprJdPi8/KAiAj/3+ElJUSyhRUXK8qDq6gIiI7ucS2itJR6ORiJr6xEJ5sKdpEqLU+9iSwr6yE/lbrKz0drays+/Oc//QtA9adPo+TgQTz44IOIiYnRJK+YfM7CQsCEcSa6okJapnCxqYdypPLPLN72pbTtx1RWKs+ryh3djoYG4rRiYmN7p9PeLho+vKQEyM/HuXPnsH37dv/1w6dOof3yZcydOxcAcPbsWRw9ehRNTU3IyMjAbbfd5leix1RWwl0vvL8porRUt53sDpn3iiYEZJbqS4HExsTgrnnzsH79eh0EEyY9PV1QZkdLi/X6pAJcRUVAgNKbZO7gLCzsPSfq6JAM5ywslI43P1/2vlGoGpt0gLt2DWhpAQBJeTiOEyyf+JoauHXKR3RFBZCfTzzXpAZhOxCb68RGRsLtdovKHFFaiviaGoS3tSkSy1ceculbHV/5OJqaAAA1NTX48ssvUV5RgQQAvm1hTgDpAI4C6BCJKyUlBYsXL8bQoUNx4sQJZGVliS7YGOk+lLXNaZ2dnThw4IDq8EYprK1kKWh1rOI+1LYUlEdq0yELyiSl2G7Le8KKpWBHh/Cb+Pz586YrBWnmv6WlBQUFBcjKytIUD82NOHrJwdp7squriwmloNRGC1sp2A3TSkEApQD6ef8f2MpPAfgzgA08zzeqjLtOtVQ2sqxavx7jzRZCT3JyBC9nAMjWI73f/KbXpf5yaQXJONX7kyUnBzcRC9Y7HaD74M45SuJgkBlSN0XqX4jh0KlNUOJG708TOTmIQrcZdy9+/nNNUc/3/sTSNYOlUjcpyzTb+7MU3jIYAeVt/3aVaSklHgpl++EPe/wZIRXeK9ME70+Mid6fEI9LyaJju5d9r2hBQO47vD9SsmnJQsqPftTrUrQZchhJUD1JtVOxMAAQDvk5itb7RjHd+zOdgDxnyz27Zk2vS6toyiLED3+I8YCx83/CdjDN+1MTv6I5sQhU5lqMEjxH+U+ZZ4PVWTExMZg2bRpmzZrld+V04cIFjBw5EpMFNkXSxmqWgjt27NAU3rYUDD2sUh9WkTMQltyHsjYWkWC7D+2N1d45rKC2XPLz8zUrBeUwylJQCtbGV9qukLVYCophuw/thvVS6A+AR7dCsAnAP9BtFXiMQtzfAthDIR4bAd5euRLpSUlmiyHLsGHDBM+FkuOZZ55BdJB1HAAUFRVh48aNNETrQXZ2dq9rVVVVklYTzz33HCIDdu4fO3YM+/fvl01r2rRpOHLkCLFsixYtwujRo3tc27NnD06ePEkcB2vccMMNOHHihOhkU6g+xPj22297nBNpNlOnTsWcOd+pbEnbhRTZ2dlYI7AAGXhfLdu2bcOFCxcE7y1ZssQw91KBfPrpp6Ljxl133YURI0ZQS+vAgQM4evQotfiMwFffStv+lClTFI8battWY2Mj/vrXvxI9m5GR4d81WVZWho8//hjt7e2iz8+ePRsTJ07E2rVrBe8vXLgQFy5cQEFBQa979957LzIzM/HXv/4VjY3Ce55mzpyJadNULW/LUlNTg7fffluXuIXqSqp/BzJ48GDcd999kuMMbV544QWECVgit7a24o033jBMDqNZsWIFUlJS/H8HW7wKsXDhQowZM6bHtfb2dtE+AAB33303Nm3aJHpfz/eKUk6ePIk9e8z/ZAisG6my4TgOq1ev7nX9nXfe0e1sTt84eeHCBWzbtk2XNIQgbQdff/01Dh061Ov6wIED4Xa7UVFRIRhu5syZOHHiBNoUWgqOGTMGCxculE1fbyIiIiTfV1qZOnUqDh48iE2bNqGktFT0uQwA+9G929fHwIED8S//8i9ISEhAcXFxrzD79u2zlYI6YLZSkDVLwZEjR+oWt1FoLR8a56qSPGdbCspjdaWg7T5UGhL3z1bMF01ot3MabZKVMwXl4mBJMSiljFOD2n5hWwrKw7pSEABOoNsq8F2e55tpRcrz/B8A/IFWfDY9aYqPR31/9j2ztqeno16FOx9+yBBAwCViJ8/rk2+B3S3uyEjJtLoGD+4hY1tREZFsLampivLQMXBgL/laL12yRP2L0ZqWhvr+/cVfPgp2G3W2tjJVFm0DBvSQv6OkRLt8WVnScWjYndWckiIat1DbM4Km5GTRcaNz0CCqMrXl5jLVfojw5l9p28+8+WbsLShQNulTW9aNjcSy9UtOBrKywPM8/vHxx2iIju7lMjmQtgED0DlokGj8DYmJONvYCAjcP1pZicybb0Z9//5oFNm91p6erlu798TG6tfeBGRuTUtDvcRCso+k1FT5cYYiixYtQpjYQiFjYzptPJmZQFqa/+/O2lrZ/Aq1SY9MOXUMHCj73tDrvaIUd2UlE3XuzsgA0tMBQFIejuMEy6cpORn1Oi02+cbJjro6Y8uKsB20FxQIyhWfnAy32436zk7BcB0DB6LB6yJdCc0pKT1kE0tfb6Kjo9HidTlLm/Lycnzy179i3759xO/t8MhIzJs+Hffccw+eeuopxMTE4Gc/+5ngszU1NTTFFaWvKQWD86PXArQZi5NDhw5FXl4e8fMcx2HqVCI/OjYUYGnBmhSWlIJWxLYU7E1fe+fQguVykZKNRjslPVOQJWxLQevAeilcz/P8KbOFsLEJhoWXkl4TCqUDeENDg6p0WMaqk0wSWJswyMFCX1OC1eRlifDwcIwfPx5nz541W5Qe+Oq0uLiYeLxT2w58Fh1SY5DWNsbzPC5evIiCggIkJydj3Lhxfst3LXFnZWUh38Bz3vQkKirKbBFMQ807Qqi9htJO6FD5aDTi/c/qHMPod7NR57bJoYdlTklJCY4cOYLTp08T5SssLAz33303sHEjLly4AG7oUM0y0CxPOetZ1s4U1Erw2KsmD3r0cxqLnbNmzZJUCk6ZMgVhYWG4evUq4uPjceONN/bydmNFWBh3SWRgQU6lsKQUtMJ4Y2QdW6E8giGxFLRivmjCoqWglvhpuA8NjkuNHEbDilLQthSUh+mvXFshaKM3tAdPPV7i4eHhqtJSuyChdKFu+/btmDx5MmICrBKtPpnheZ5a22C9LFibQARjtcUYWhO+c+fOITc3F6dPn6YglTVwOBxYunQpnE4nTp06pWtaatp9YWEh0XM8z0uOo1IWJ75xVK92z/M8Nm3a1KNdff3113j00UcRGxurOl6g222qUqUgaT0YPWmXWkhnfczUSnD+SPIr1CZDadGDlTrXWmZ65sNK9RkIx3FUXOfJYVb50Kzz1tZWbN26FWfOnCEOM2LECGzbtg1DOQ7YuJGZvhTM6dOncd111wnes2rbFoOGpaAWBZCe5Tl06FBERUWJzrPCw8N7uPUNFfTsVzTjtqL7UKORsmqx4lhkWwr2JpTmx0aitlyMmHeQWArSOFNQTinI0hyLFaWg1JgqtL7Q0tKCw4cPo6ioCGlpaZg+fToSEhJUpW0VmH4zcxx31fv7qcrwP/aGz6Utm01ooHbgNPJlLXSmESA/0KqVUc0E69KlS1TSZgUS+Ts7O3H16lXk5uaiU8TtlI129LSYUoveisrt27fjo48+srxCUOn4ynEcXC4XFi9erJNE6vDVqZL8SI3Pzc3intBJLPa0tLGSkpJe7aqqqsp/bqWWuIdSsP4Qw2jLPSOUBKxiWwr2hpU5ja0UNB5a3wlWtxTMy8vDn/70J2KFYHh4OJYsWYIVK1YgMzNT9DlWXOWdO3fObBEMw+wzBcWgYQHhcDhwzz33UJLIhjZWnD/ZloLasJWCPSGxFBTD4/GgsLAQx44dQ1lZmSXbAwksWgrSUOjpDWvjK+0zBdWixFKwvb0db7/9Nvbt24e8vDwcPnwYb731Vkh6xguEaUtBAFkAeABJKsMnBsRhY9MLKygFhT7om5ub8dZbb0mGC5QxNzcXO3fuJEpPzQTrs88+63Emg9UnKXLyV1dXY926dWhsbAQAxMbG4rHHHkNSktqhyjjUWIGYidUsBbXA8zyKiopw8OBBs0URJS0tDeXl5brEbWRbVJMWaRie5yUnoFLnO0VGRgLQ70N37969otdvueUW1fHOmjVL1eIzaZlGS5zhqAe2paD430KEuqVgqBCK7kNbWlqIxoe+2t601kdTUxO2bdumyDowKysLd999N/p7z1AUK/v9+/dj3759quSiXZ/ffvutYWmZjdkKa73T64vvb6vky4qWgiwpBa2AkW3RikpBQN2mua6uLmzcuLHHRvxZs2bhtttus0z/1wrLloJSGGUpyBq0xzK1/V2J9fU333zTa52roaEBZ86cwezZs1WlbwWs92a2saGIFdyHCsm4ZcsWYlny8/Pxj3/8gzg9mofhWhU5+T/++GO/QhDoXjT56KOP9BarT2I1paBamXiex+bNm2WV/Wby8ssv49FHH9Utft9YZ/bkPRgjLQWD01R6T45vvvlGdbpS6L3Qw5JSMNQxylLQSgtfrLxrbEvB3qxZswYFBQWqw8uVSV+1FPR4PDh+/Dhef/11YoVgYmIili5dilWrVvkVgmKcO3cOO3bsQEdHhyr5jISV/k8LoywFlfYdK52VxBpay4eGdwT7TEE62JaC5FhRKaj2TMGTJ0/28sx14MABFBUVUZWPBVhs51o2OtruQ+lghBe8Xbt2CV7fsWOHqrStAuuWglrx2YOyYbtqwxxWsBQMlpHneVy4cEE2nE/GkydPKhqUbaWgfBkUFxf3ulZSUoLGxkbExcX1uM56WbA0eRCCRaWgHjKdOXMGJ0+eVCuSIcTGxurqCoJVS0EjlYK+sYdFt7lSqK07Vi0F+7L70GAlAkl+Q10pyAq2UrA3nZ2d2LhxI1555RXdxyElWFkp2Nraig8//FDSei6Q/v374/bbb8fYsWMF0xPKe/DiJsuwOA/VAqvuQ2ml1xff31rz5XKJLwnSbONW3HBlKwXZxarloUbBJGZVf/jwYQwePJiKXKxjVUtBmu3USptnWFEKKrEUrK2tVZWG1Ql1paDvEINGyadsqBPb0IAEkbPwWCK6ogIJKjo/d+0aEB/f67qzsFBVfFLEd3UB+fn+vz1dXURpcNeuAfX1uLZnD5QcjRpZVqYuDwEyRpWXUy8HI/GVgdKXWd2pU4gLmpiFFRczVRZR5eU96iq8pES7fPn50nEEpKcUqT7qKioS7Id6E1NZSV2my19+yVQ7ESQ/Hw6PR15Ob30rbfvOwkKguRkc4RgXmJZSHG1txGnERkQA+fnEfSW8pARwOkWfdba1IaG1VfBeRGkpkJ+P+Joa0fEnsqxMdb7l+qlDom1L4RtXlI4DpO+KhNpa+fgpEl5SAojMYTi3m/2+qgFHQQFQV+f/m6Qfh5eU9KpfrqFBMpzsfEnH94pSWHmPOwsLAe+4ICUPx3GC5RNXXa1bPpSOk1SprUXpoUMYOHCg6CMRpaWCcsXGxMAt0acjy8oQX1OD8LY2RSJFV1T0qAPVc2uNxDsc6CRMl+d5fPPNNzh06BA66+sxBN27a9MBHAUQbNOXlJSEW265BWPHju11Losc58+fV/S8kKxGYdWFZzGC82O0paBYedIqZ9YWRq3A2LFj8ZnAuZpJSUmK+7YUVqwbo/u/kgVsFjHymJK+ZCkodqYZiaGA1bDimYJGWQpKwdr4SnsjudryszehyhOySkGO46YCWIju8wSl/WXZUGfV+vUYb7YQhCxQEygnR/ByFoBs9aKI8/Of+//rJE3DKyPRs0EsUhEmsExu9/6szHw1gQTaxSjvj1WmeH+ayMmRbmci/YWEpTrFq4VlUjdVyvSAqlAGQzqmeJ8bTvKsQDjiMS4gjFIilaQBAD/+Ma4DcB3JsxrGXl/Yl9SEJSBbJu0UuWckwpLEH8xt3h+V+Gki0a5cRsphBkF5H+v9KQkDAPGQbw+TZe7LhTeKid6f6QTkOVvu2TVrel3S/T3z4x9jDIAxeqcjhEx7mOH9qYlX9Rzp5Zf9/53l/VmV2QAOBPx9/fXXY+HChQgPD5cNa4WFbClIFgPZWoqTJnghnZX6McICgrVFU1pozVd0dDRGjRrVy8X85MmTNcUbjBXL37YUZBerlod95rY6rG4pSKNe5eIwO6+BWNFSsK/CjFKQ47idEreXcRw3gTCqMACDAAwBwKFbKbhNo3g2Cnl75UqkJyWZLYYsEyZMwDmBnXFyPP7440hI6G1/l5eXh02bNtEQzU9cXByefPJJ/98ejwevvfaabLhVq1YhMTERawQWhqQYPnw4cnNzlYqJ7Oxs//+3bdtm6Z1L48aNwzfffKN4h8t9993Xy4XD5cuXsXXrVpriaeKmm27CjBnfLY2dOnUKu3fv1hRndna2ZDsLbBtK+fjjj3Ht2jXBewsWLMC4ceNUx60WPWRS2k/N4KWXXoLb7cbatWsln/PVd25uLjZv3kwc/2OPPYZ+/fqhq6sLv//974nCqG1b7e3tsvnwkZaWhoceeghnz54l8ik/ffp0DBgwAJ988ongfYfDIbq79YYbbsDs2bMl24PvGTXI9dOKigq8++67iuOdPn06pk+frngc2LlzJ9F5VY888giSkpIM6yfLly9HRkaG4D0l7dOKPPXUU4iNjfX/fenSJXzxxReSYWbMmIGbbrqpx7X6+nr87W9/Ew1z8803Y+/evaL39XyvKOXMmTPYuVPqM8UY7r//fgwaNAiAdF/mOA6rV6/udf3DDz9EYWGhLrKlpqbi4YcfJmovejBv3jzJBexDhw7h66+/7nU9IyMDXV1dKC0tFQw3d+5cHD58GO3t7YrkGT58OJYsWeL/e9++fTh+/LiiOGiQkpKCyspK0fvV1dXYtWsXigTc4gNABoD9AHylk5ycjDvvvBNDhw6lLiurhNqiEauWgrToi+5DabB8+XJs3boV33zzDSIjIzF58mTMmkW+lYGkbK3oPtRorG7VYlsKSqPWUrAvUVhYiPr6ejidTowbNw5paWma4mPFUpBG+rb7UH3l4DiuT/Y/ZpSCAOahW4EXDAdgoPenBF+vKAPwunqxbNTQFB+PeplD5lmgbcAA1It8CEvhycwEBPLn7uyknm8+Ph7Iyvru764uojS6Bg8GUlIUy9OYlIT6mhqlYvaQsTUtDfUiCyxWoDklBfWVlYqVgu6MjB7lAACdTU1M9YW2AQN6yNhZWaldvqws6TiCykQJTcnJqBdxmdGenq4pbrXoIRNLbUQMbuhQcG63vKze/He2tSnKFz9kCNC/PziPhzycyvrnFcgWnZQEZGWhs6aGKEzbgAHoGDhQVZ22pqWBHzJEMmxrWprqfMv1066ICFVydwwcqGocaBswAPUESorIMWOAmBjD+oknMxPIzBS8p6h9WpGsLCBAKegmeIcFv1cAoEumv7Smpcm2F73eK0ppp/GepIA7IwMYMgSAdF/mOE6wfFpSU1Hf1KSLbNHJyUBWFlF70QPfGCRG69WrgnL1T0mB2+1GvYh70M5Bg9CYlIRWEZfPYjR5y8NH25UrppRLTGoq6gXmsm63GwcPHsSePXuIFkw4pxO3zp2LmTNnSp4/JoTVF1jkzhS0mqWgUUpBpdBa7GRtYVRvaOU3LCwMS5cu7W7POpWhFevGthTUhq0U7I2c3FasZ5qcPXvW//8DBw7goYcewvDhw1XHZ3Z50nAf6sNWCipHiaWgy+VCZ2enqnSsDEtKQQCic2o1LbwFwCcAfsLzfJVqiWxCGrWDp97nIdCIU+1EieZuFqtSXV1ttgg2XuQWY1iDRZlooueE08jJrJK0fHVKGobnedUTYY/HY2obMto1C2m4qKgoVfGrpS9bGqjJn9C8Qa4tWXUxx0y0jg16WmmY/e7TcwxSk7fgMGaVT3D+6uvrcejQIZw9exbNzc3E8axYsQKOYcNoi6casfKMiYlRlC8taVkVs92HCqVXVVWFzz//3FA5QgXac5JQmefTwlYKsosV55G2paAyurq6sH37dgwfPtzwNdFAtNQZDfehpGcKsjTGWvFMwbCwMFspaDK3BP3NAdiJbuvBTwDI+0vsfrYNQDWAPJ7nrfemsDEUlgZO2rD84mSdYhXWo1bBSLceNLCaUjCU0but+OI3ok2qSUNJGLVKQat+LOpdZ0a7nOrLLq6C805St2qUgiy2YzGsJKsURrRr1ucUSqGVH7PakK/OPR4PTpw4gS+//FLRgse4sWOBixfRv39/1KuUwci8x8fHY/r06USuvmlhtfEheLw22n1oMDU1Nfj73/8uqcy1LQXZJ1TL3ej+bfXzr2z3ofKE0vzYCMrKyjRt9jG7ndBM30ptw4qWgmFhYarSsDrMKAV5nt8TfC3gJVIsdN/GRitWtBQkTcNWCrKBXRbaYFEpyKJMRqD3DjRWFTFKLQU9Ho8mS8G+5FaGpEwnTZpkgCQ9kWqLLC98hYWFITk5WfR8NBLU5E+oTdqWgvTR2vf1bLtmj0tyeTPa5ZLZ5eHD4XCgubkZGzduRF5eHnG4sWPH4tZbb8UIlwu4eFFHCekze/ZsxMXFiZ7rqxRW6pIWrLkPPXXqFFXrTpbf0XpgpfxaSVYfRvf/4P7Y1dWFqqoqJCYmGiqHFbDi2Eyy+dOeH/emvb0dTqdTVdhQshS03YfqK4eUe3yPxwM2V6q0w4xSUISfef89YqoUNiELbaUgSxgxcNJO2+qw9jIWwrYU1BcWZaKJnru1Q8VSsC+7D73llluwa9euXvfVngWRkJCAm2++2f/3woUL8cUXX6iKSwmsj4tiTJ06FXPnzsXJkydRUlKCc+fOKY5DzTuCZfehXV1dKCwsRHl5OTIyMjBw4EB0dHSgsrISAwYMIDofjZVx3XYfSh+59m11S8G8vDy88cYbaBA5BzmYzMxMzJs3D8N8rkJrazXLYMbRCgMHDjQkLSu2exruQ7VYCgant2/fPirp9VVYKRua1qMsYab70HPnzmHz5s3o6OiAy+Uy3JU+DWxLwd7YloLK0dKOzG4nRp4pyNIYy4pSkJalYGdnJyJUScA+TCsFeZ7/mfxTNjbqoT1wsvQSN9NS0MaGFlZrjyyNATRhVVFnBEZaCvI8b0lLQV/ZTJw4EXv27OmVh+uuu04ynBhPP/00YmJi/H+PGTMG27dvp35OQTCsWq1KceONN2L+/PlwOByYMWMGAKC0tFTxGblGnSloxKJIV1cX3n//fXzzzTc9rnMcB57n4XK5sGTJEllrVBb7nBqs2K5JYe39wcKZgidOnMCWLVuIxsvIyEjccccdmDx5MnNlGQzP86Ju/vXYXCSnFLTa+EDDUpBlpOreanVlYz5muQ+tqKjARx995E/f7XajsbHRUFnUYLsPlcaqx0SwAKte0HzfFGrCKk3fSpaCrJwpqKT+baWgjY0NMUa+rG33odaG9bJgbQIRDIs7tKXSvXjxIpqbmzFo0CAMHz485BZhlbQXpfVjZFtUkw+j3Iea+bGo1VKwf//+WL58OT755BN0dHTA4XBg5syZmDBhguI4x44d20MhCHRbDq5cuRKbNm1CLQULFjGs1m/T0tKwePHiXtdpWMSSxKGH+1Aa7fzUqVO9FIKBcbvdbnzyyScYMGAAUlNTNaenN1pdEBlhKcjqnEfr2GZW+mpwu93YunUrjh8/LvtsWFgYpkyZgjlz5iAuLs4A6bRRXV2Nd955B/X1ak84VA6L81AtmH2moF6WiWqeDQWslF8ryWoWvv547tw5S44vRmJFpSBgjfdGSUkJcnNzER8fj5EjRyI6OtpskVRjdjuhaSkohW0pKIwSS0Ep7zFKzuO2GrZS0KZPw9LASRvbfajxWCHfVmvzVluMycvL85/bM2HCBCxbtsxyCgYhjHDtyapSUGkYrZaCVt9BOnbsWIwaNQoVFRVITExERIT4vjo19TBkyBC8/PLLeOedd3D16lUtoooiJ1dcXBxTO7ZpjjFGWQrKfaTT+Ijfs0f+OHKe53Hu3Dnceuutks+wgFbFWyifKagWuUUUqx0zUF9fj/fff1/Uks6H0+nEnDlzMGPGDMkxmgY0y+L9998nUgjaloLisHamIG1Ylk0P+lp+jcbo/u1Lj8StLosYaSlotbEXsMZ33tdff93jqIZ+/frh0UcfRb9+/cwTCmx7QWPhTEHWoF3uRqxty1kKhiqmKwU5jvv3wL95nv9PsXtaCIzXRn9iGxqQINGpWCGqvBwJKqwNuGvXAIFD0V1FRarikyK6vR3Iz//uQmcnURqOggKgq0uxPDEAOtTkIUBGteVqdVxFRUDQ5DesuJipsogoLe1RVxGlpdrly8+XjiOw/SokprJSNO7wkhJNcatFSqZACvftw7XERAwdOlT2WaPayMKFC+FwOJCfn48LFy4Qh3M6nd1lzfPysnrrROl46CgoALyLk8Th1Na/grExluOA/HyEl5QQhQkvKYGrsVFVnUaWlYHPy5MMG1Verjrfcv3UQZjHYCLLynrI5ASQDgClpbLhxNKLqayUzGdyUxOqdeo3rqIiQELpd2NKCo4XFOiSthriwsMFyyq+pgadCsuIu3YNcDr9f5O0++D3CgA4ZOYBUnUPQLYfkPQBR0EBEmSfAs58+ilu9Z2hJgCV9yQFXEVFgMsFeDyS8nDeMSsY0neXGuK8aeoxDyZBqA0GItbeYior4Xa7JecZ8TU1iGhvVyRPdEVFD3nk2jsNLly4gL1798LV3o4h3mu+sfgogA7vtbS0NDzwwANISkrSVR7aNDQ0oKKiQvIZPRagWV/AVQqNMwW1oLelYF+DlbKxzxS0ZnpWxmwLMLWwcua2GMFnt9fV1WHPnj24++67TZKou8zM3KSlJQ6aXtis5D6U9lhmWwrqh+lKQQD/ASCwNv5T4p4WbKWggaxavx7jzRaCkDlqAuXkCF4eASBbgyyi/PKX/v+GkabhlZHoWRoElMldRqXJGgLtYqz3xwxBMo73/rTGma0gTSU8rFO8Wliu5GFCGbPVCKIGrzyjACxQGva3vwUHAlm9aSgeDwPKijicyjbgVJIGAPz0pxipMMxNSuIPQkk61OLNycFAtWmrrIebvT9RXnxR9NYi708XZPIzByrnDnryk5/0uvSImniC8j4c6tpEGkG4uTJySIYnaHNy6ZPGd733ZzpeGR0gyNuaNb0uLYCKcV8JP/0pxgAYo2caYsi0h9nen5p4lTs/9vLDH/r/e6v3ZxazARwAMGnSJNx1110IDw83LG1aC0NlZWXEzxplKUhynzXMdh+qN6wtjNrYKMFq44kc9pmCPbGCpaAQp06dMl0pqBa924lcndJwH3rgwAHU1NRg8ODBos+w5j6UNkZYCtpKQXPxtV6hmqbRstkbWUOct1euRLoFdqDecMMNOHbsmOJwK1asQEpKSq/rV65cweeff05DND9RUVF49tln/X93dHTgj3/8o2y45cuXIyMjA2sEFoakiI+PR0NDg1IxkZ2d7f//5s2bkZubqzgOtVx//fU4ceKEYemJ4SvzQC5cuIBt27aZJFFvZs6ciWnTpvn/zs3NxebNmzXFmZ2dLdnOAtuGUjZs2IDKykrBe3PmzMHUqVNVx62WjRs3oqioiPh5kvwr7adqWbZsGYYMGYLKykps2LCBOJzL5cKLXgWNnKy+/CodD7///e/7FypJy0Nt2+J5HjmEiqz+/fvj0UcfxbfffovPPvtM9vlx48YhOjpa1btl5MiRuPnmm/HXv/5V9JmJEyfitttuUxx3Z2cn/vCHP4jez87ORnFxMT744APFcc+bNw+TJ09WHG7//v2i5TRy5EjceeedomG/+OILXLp0SXGaJDz55JNE52t1dnaivr4e69ev10UOUgYMGIDvfe97va6/8847qK6uVhTX6tWre3xUkrwjhg8fjiVLlvS4VlZWhvfee080zMSJE3H27FnR+88++yzeeOMN0fu0x9XA+E6ePEnketRo7r77bgwdOhRutxuvv/666HMOhwMvv/xyr+s7duyQLHMt9OvXD4899hguXryIL7/8Upc0pJg/fz7Gjxff4rRv3z7BM/aysrLgdrtF3+nz58/H3r170a7QUjAjIwPLl3+3hUiPsu/q6sKxY8dw5MgRdIksemUA2A+gHMCiRYswbdo0yy4a6e3mVAwrLuBKYUX3obTOFLRaXZFgpf5sJVl9GN1mrKjoCsTIOrZqWYXaO8UIPB5Pt9cilWG1woLrz4sXL+LixYuiHlBYG19ZsRRUchSRVBl2dnYCFvCEqAYWlII/U3nPhmGa4uNR37+/2WLI0p6ejobERMWDTNfgwcCAAb2ud7a0UM93Z3Q0kJX13YWODqI0OgYOBLKyFMvjiYtDo5qXboCMzSkpqK+pUR6HCiIjI5F5883Y5T3HzUzcGRk96wpAZ309U32hPT29h4xZgwej9cgRdHR0iAeSQ66dBZWJEur790e9iNl/24ABmuJWS1NyMuoF3AeLQiCjUW3Ek5kJZGWhKzJSUZphYWH+fMiG8z6ndDzkhg71T7aIw6msfw5AxuzZOH/+vOyzzsREICsLHYT5aUpOBh8To6pOm5KT0TV4sGTY1rQ0Vfl2t7bK9tMuh0OV3L73jVLavv1WND25fLampaG+vFxxmiRwQ4cCsbGyz4UBiNbhva+UuJQUwbJqSk5GvdKP4aysHm6w3e3tsvmriY/vlb7b5ZIM15ySInnfnZGh+b2iqF688R0/fhyfnTkDMPTe9tE5aFC3nG63ZN4cDodg+bSnp6NewYYWJfjGyc6GBlP6g9wY1HbliqBczSkp3cp9kXd656BBaEhMRFtbmyJ5+gf1yZbUVKrlUlBQgM2bN4tumgpm2f33I0ZCaaonRi5wmrEoZrUFXBruQ7VYClqtvFiHlYVgVuSgje0+VBv2mYI9saqloNloOb/3woULkptM9YaGpaAVYUUpqEQpLJVGR0eHrRTUC57nRRV/UvdsbFhEj8Fej10RUpi9m0YJ4eHhWLVqFSIjIw1JLxQInpw7nU7MnDkTu3fvNkcgGVicQLEoEym++lf6kabmo05pORm9oLB48WJUV1cTuyQjzY/H41HkqiKQS5cuYc4caceUevjUdzgcmuJWW3esLiKxKpcRBOedpCyErKi0LnqYtQP8zJkzpqRLgtbdxkYszpn1fpTLm9kLu7TSb21txfbt2wWtHoUYPmwYcPUqBg4ciHoqEpiHkveqke5DrWatQsNS0GhoWQramIsV6ya4v5SVleHQoUOoqKhARkYG5s6di1iCTWRq07M6tlKwN7ZSUDlaLAVbWlpw5coVjBw5UnX6SqzNlN6nBWvuQ1lRCmqpu0BC2X2ow2wBbGzMRO3gaebLmjRtI/wu005bCXFxcfjRj36E9PR03dPSghUmdjffLHmql6nQepGbBUuTM4Bt5Y3RZRUdHY1nnnlG9jnFluRdXZrGUTmXq2rbvZQ1sNoPLR9q686njDQyTRKUyMVCHxeTwQjlPwBBKyqtH8k05iJqKCgoMCVdJagdA7T0Nzms8D4WQq7Nq+0TtMvD4/Hg3Llz+MMf/kCkEHQ6nZg3bx5eeeUVqnKogVZZmDUmhJpS0KgzBcXQyzJRzbOhQF/Lr9EEtteqqiqsW7cOZ86cQVlZGY4dO4Z169Ypdi9Nmp4VsdujNFos3voyWsvt5MmTFKXpCekcQe96D/W+p3aupaTcpZ4NZaWg6ZaCNjZWRGzAsC0FtaVNitPpxF133RXyLz+j4DgO0dHRaGlpMVuUXlhdKRjGmJsBtZaCalBaP3ouWIvBcRwiIiKIPuiVWApqGUdLSkqoyBHM1q1bRe9JHaxNgh5KQTPHdzPaohb0LCu9LAXl+ojVFtqNQKs1nhHt2grv5WCk2jitvqVlTn7u3Dns2bOH+HzQIUOGYMmSJUhOTvaf0xsKKBkTjLQUtFqbN8pS0P5GMwZWyjk+Pl72GVZkVUJgfzl9+nSvTVBVVVXIzc3FuHHjqKcXClixzvUm1OrYCLS+py5evKgpvJb1qI6ODuTm5hK7e1cLa32NlXZuWwrKYysFbfo0rA2eNAlFpWBiYiKmTp2KUaNGITk52X89lOuRNlYrK1spSBe1i8JWs6hWAm23c1rch+oFz/PIzc0Vve9rp0bXGauWglYbJ2mhNt+2UtAYGhsb0dTUpPq9EsqWgqy7D1VDdXU1PvzwQ9mNIj4iIyOxYMECTJkyxdANQHIYaSmoNr9SfSrUlIJGnSkohpmWglarKxJY6OMA215ntBDYZvbv3y/4zJYtW2yloBc17ZHjOMvnmxQrWwryPG/aeMNymcnJVlRUhPXr1xsiCyvvA4CdOqNlKSh1DIvVsZWCNn0emovdRgx+VnAfqhfTp0/HjTfeaLYYNgbColJQSbqsKQWNPFNQKWZNZEkXk404U1Av5KyAzXIfKpWuVSwFWfgA09N9KEkcXV1dcLvdPSxOtSoFWetDLLBlyxZs2bIFAwcOVBW+L58pqDacWZaCZ86cwWeffSbp9jmQiRMn4o477uh1thUL45MW3nzzTdx0002YNGmSrmcKSlnLh7pSMNQsBa3e5q1A8NwtMzMTAwYMkA0XqnXT3NxMLS6rjSdykNS5w+HoU3M+q9bxBx98gKVLlyIyMtLwtM1WprK4HhUMq+PrtWvXkJubi5iYGIwdO5bIqtwoWKk7szFdKchxnCHbinie32tEOjbWgtXBMxCj3YfSGBz1GmCtUF/BWOVlw6qcUosVSmVuaGhAeHi4oZNZUqWg0+k05IPIyDMFldSPmX2bNG0lSsGKigotIlGRQ0kYnxJM7TgQamcKWu1dw0JZtLe3K1IKhto5XUZCajkWjNXc4hqFHv0nuH2Tjq0dHR3YsmULTp06RfR8v379cNddd2HEiBGC91kYy7TML0tKSvDxxx/D5XKZNiaE2lhllPtQmtBqxyz0B9qYkad77rkHh0pLUVtbi6FDh2LevHkh+34x+vvYCv2RNn1JKcjzvGXr+OLFi2hsbMQTTzxh+LjDcpmxsobG2vuN53kcPHgQX331lf/avn378OijjyIlJcVQOWg8y0o964HpSkEAuwHoXcI82MhrnyG2oQEJjFnICBFZVoZ+dXWKzYEdBQWAgF9hV1EREmpraYkHAIiIiADy8/1/c+3tRGm4ioqAyEjq8ogSIGN0RYUu6UaUlvZIx4ejocG4fErgKirqdS28pIQJ2XxElpUJlmF8TQ3Cg85JICY/XzqPAumRElddDa6pSfCeWHsIpqGhAZs3b0ZlZSU4jsOIESNwxx13qD5HLbaqirhO+4eHE8nYv77eEF/lYcXFQEcHnDU1itplVFubPx+y4bzPhRUXE6fhcDh6lBOxbBralo9+dXUIk9jlG+d2A/n5xPnxeDzorK9HgmbJhIkqL1ecb665WVL2WJ4H8vNVv8MiSkuB/v0Vh4ssKxNNL7qiQjKfUeXluo2tjoICgPDjivSdrCcxMTGCZRVXXY1WBbK5XK5e8ZC2ic4rV4B+/fx/OwsLJcPJ1h+F94qieiEd3yxA8HjqQ88+g9paReMkbcKKiwGJ3cdiY01MZSU6OztFZQ4vKUF8TQ0iCM6dDSQ2MlLxvLiwsBA7duxAXX09hgBwAkgHcBRAsL0gx3GYOXMm5s6dG1LnBopx6tQpjBkzRvY5td4QtCwEsbxYKQQN96EkiNWB3gtrtvtQ/Rk8eDAGz5mjOBxri9YkWNH1tJmo8ThhxXahBSvXcVFREWpqapCUlGRouraloDwcxzHVl9ra2rBjx44e15qbm7Fnzx4sX76calpSrm1pGhiEKqwoythpvTZUWLV+PcabLQQJOTmYrjKcEGO9P+r8+tf+/0YAyCYJ45WR6FkaBJTJfQakEUg8DMynFALyjff+mEGkDJ/TGGe2ijRJeEp1yO+IB7CCQjw+HlAa4Cc/kX3kBVWSqMBbF4lQ0Wf+538AknDeNBSPh7/7nf+/smkEpaWFp0ke+sUv9BvfDSAGBGX6s59hMMlzQqish8nenxrme3+6oCA/xO9kvXn11V6XHlYTz//+b48/h0DZnENxOIn4JMMT1JGi9I2eM+lNwHjq4ybvTzdycjABwAQ905BIW4q53p+aeEerCQcAP/qR/793eH9qmA3ggPf/HMdhzJgxmDt3bp9y13flyhWMHDnSlLRDzX1oqFsKhkqbJ6Wv5ddobKWg/oSqlakQZiu3aHDkyBEsWrTI0DQ9Hg/a1G5e1xlW6pO1d8GFCxcEr58/f566UlAKWpaCoQwLSsG90N9S0MZg3l65EukG7yBRw4wZM3Ds2DHFFjoPPPCA4JkuFy9exJdffklLPABAeHg4vv/97/v/bmtrw5/+9CfZcIsXL8aoUaOwZs0aqvKIkZ2d7f//xo0bUSRgNaeV+fPnY/z43iq2hoYGvPXWW9TTU8ry5cuRkZHR49r58+d7mM2LERERgeHDh4u+QGlx88034/rrr+91fe3atWhXuBPeR3Z2tmQ7C2wbSvnzn/8seh7atGnTMHPmTMnw1dXVeOedd3pdd7lcePHFF1XJ9M9//hOlpaVEz2ZlZeGee+6RfU4qnzRZuXIlkpOTUVtbi3Xr1hGHi42NxVNPdato5cYUX31fuHAB27ZtI4o/LCwML7zwnWqUdNzS0rZ8/PWvf0VjY6PofV/eleRHT8aMGYOFCxcqCtPU1IS//OUvovf79euHxx57DAUFBfjoo48Uy7RgwQKMGzdOcTip8XHs2LG44w7xZfTt27fj3LlzitMkQUm7am9vx9q1a3WRg5TMzEzce++9va6/++67ilzZBs83ABC3ieD3X15eHjZt2iQpc0FBgej9e++9VzJdkjoiHUccDgdefvllRWFYJjA/gRw7dgz79+/XLd3hw4cjKyur185gI1i4cKGkJdmePXtw8uTJXteHDx+Ojo4OFBYWCoZbvHgxduzYoXh+lJaWhoceesj/99atW3H58uVez129ehXbt29HS2trr3sZAPYD8M02hg0bhsWLFyM5OZlYDhYWiWgtsuipvNIio9UWkYw6U1AMMy0FbczFinVDs72S5N9q4wkJcvnuS0pBwPp1rNTDGg14nsfWrVsNTzcwfRtrQsvKM5TbgOlKQZ7n55ktgw19muLjUa/ClZjRtKeno75/f8VKQXdGBpCZ2et6R3099XyHh4cDWVn+v/nWVqI0OgYOBLKyjKuHABmbkpNRr/LQ7alTp+L48eOC9zoHDeqRjg9eh3JXgzsjo5d87TU1RLJFRUWhbcAA1BMqm9TSnp4uWIb1/furVgrKtrOA9FpbWxEZGUn8YVjfvz9aIiIE77WmpQnmJZAzeXmisvFDhqj6QG1KTkY94W41Xz8kiVNKMUULfsgQICUFnrg4ZX0mIcGfD9lw3uc66uqI0wge54hlIyhbOZqSk1Ev4Uq2KzYWyMpSlB89aU5JUZxvT0ODpOyO/v2BrCx0dnWpyqPQ2EcUTmLsbklNlYyzbcAA1BcXK06TCAV54To6TG8XYm2iOSUF9QrmN8H9EAC6eJ4of03Jyf6wFRUV+Pz8eclwTcnJqJcY83zzM1EI6oi0XpxOJ/n4ZgEcDodg+XSWluqavxM1NRg4c6YpZSg3BrVeuiQoV3NKCjo7O1Ev4qa8c9AgNCQmKt6hHhPQH3zp1Acp6I8fP47NmzfLxuUBcPvtt2PmzJmKF0+tuAgvBsmZU2rdh0oRau5D1Z53qRSadRBK7Zg2ViobK8nqw1YKKkNNHVuxXaglFCwFzcDj8aCsrMxsMQRhpT5Zcx/KCrbiTx7TlYI2NmZixYGTdLAy8yNVy4A6bdo0UaWg2GKIFetRiFDJhxAVFRX4+OOPUVZWhoiICMyePRuzZs2SzTOLPtyVpEtap06nU604ivD1IaVtLZR3cZKWBSsTRVbkCETt2CXVrkJ5PKQNrbLSEo9vU0lpaSnWrVsnu8lEbo5i5Bymr7Q1I8ZxFscnQL1catuGXHonTpwgUggC3d5JolVYYgNstG1abYJEKagWLXNNVtu8GLalYGjR1/JrNE0iG0bUQPIOttp4QoJtKfgdR44cUWTtb9MNy/2CFdms9C6QOgOQdny2paA8fWcEtrERQc2AJDYo6DFYqI2T1cN4pbj11lsRGRkpej86OlqtSJbAiEmxGROGjo4OvP322/4dXu3t7dixYwdOnz4tG1bPw4GN6COkaRhVL3oob8TQQ3mqB6SKaStPBkkXNY3OoxZlOCsfPyzIISaDUtmEnieNw+dx4euvvyayOpdbiNZTARAMC3VoBKGcT72UfrTKLHCM3bNnDz799FPZMOPGdp9im56eTkUGq6NEeWVbCopDqhQcM2YMwsLCel2fMIHs1FCzLAWlnrXyPC4UsOI7qLy8HM0qvR8FQ5J/q40nwaiZR/YlpeCpU6ewfft2s8XQhBn9mOV+wcp7xUrjK6v1yUpdGk3fGYFtbATQawcwC1hRKehwOBAfH4/ExMRe9yIjIzFs2DCtohmOEqWQmS9zPdtLfn6+4AfVmTNnZMNq3d1jdl81O/1g1LrWorl5QuuztLHSJBpQV1as7sy3LQXZQkuZ+9oYyWaPwOfFMMNSkLXxmjZ92VJQCj3GGiEXjW1tbdi0aRN27dolGTYpKQmPPfYYFixYoFkOFsZRWu4qbUtBOgTLKzbWhoWFYdmyZT3GjcTERMyfP19X+WyUwUIfD3W+/fZbKvH0VUtBOew2bCOH2UokFj1XCWGVvmTkxk+r1J2Z2O5Dbfo8Ru4mNTJOKyoFfXUxZ84cbNq0qce92bNn2+5DLYqYO9i8vDzZsHq+yI3oW6TPGtVf1S4Kh/IuTrm8sWYpqOd7xmgXe1raFSvjJQty6CmDXnHbloLGE8rjuF6KGxqbB/Pz87Fu3Tps374dHR0dkuFmzJiBW2+9tdtCq7ZWVdqBsNi21dYFyaKgGWcKsjI3ICW4HMXkdzgcGDt2LF566SXk5eUhOjoaQ4cO7T57lgA1rryUxqX12VDASvm1kqyBVASdB6snVhtPSLAtBUMLM/qxkd8ESmGlz1ppfKWt5JWqAyVp9VUFoq0UtOnTWNFSkDUlA820ffUxefJkxMTE4Ny5c+jq6sKYMWOI3dVYFaMsBWl+pJPidrtF78n5FLf6C1hIfrfbjaKiIng8HgwePBhhYWGG5VPtgpne7kPNpC+cKciqpWAouA9lAT3dh5KitI2xeKYgK31cL0LZUtBopR8JFy9exH/8x39g48aNRO35tttuw5w5c3STxyysYCkoBUtWzTQgtRT09Y1+/fphypQpustFC3tu0LcZp/L8VSlovddI2qbV5yFq+p+tFLSRw+z3rBWURVZ699mWgmxhulKQ47jAFsHzPO8SuaeFHvHa2ATCuqWgWliSRQ0jR47EyJEjzRbDUEJ1Uix1FmRra6vkfRYtBbWkUVtbi3Xr1qG+vh4AEBMTg0cffVR3OXwYYdGl5vBolt2HWn0sZZlQHfOsipYzBZViKwWNx0oLBqygpsyqqqqwa9cuvPTSS5KbogKZP38+Zs2apTgtOVgcY41QCtKcg/RlS0E9sFp5sY7QuY+sovc7aN68eRjJcHn0VfehRp3da2MM9pmCPQnFPqs3rCgFlTwbyvXMgqKMA8B7/1Vyz4ZhYhsakMDwpMxHZFkZ4mtqENHeriics7AQEHghhpeUIIGCu58eaTmdQH6+/2+upYUoDUdBAZCURF0eUQJkjKmsVJVuZFlZj3hIcTQ3G5dPCVxFRb2uhRUXE8kW3d6OqPJy3fMRUVoqWMYJtbXo7OxUF2l+vqTciQ0NovdbL15EdFKSaNj4mhrRiSBJe4koLRWXLT8fcCl/DcZWVRHXU0xlZQ8Zd2zcCBQVIcF3obYWX77xBuLa24HGRsWyKMVRUADExMAhUSdCxEdG+vMhF47PywPncBC3fcC7qBFQTsSyqRgvgomrrkabRHoRLS1Afr6i/OhJdEWF4nxzdXWSsse53UB+PpyFharyGF5SAkgo98WQKtOo8nLJfEZXVOhSH+PGjVNUvlxXl+ntIraqSlDmuOpqRbLFdHT0isdJ2O7Diotl3wWBxDocaJd4VrYtEtQRqSxRbW1Afj54t9v0uqSBw+EQLB/J92EQHMep+gA2a5wMKy4GEhJE70eWlQnKFV1RgXCJencVFRF/J7S1teHQoUM4c+YMeACDADgBpAM4CkDIcajT6cSyZct084bBglKQlqWgEvehNOnrloJqoVUXNC3eQ3FRLyoqymwRiNFbmRAeHq7LoqGR7cbqbdS2FLTRA7Pdh1pBWWQl5TorSkGe5/0evBIkviFCHRaUgoC00s86rdvGz6r16zHebCFIyMnBVJXhhJjg/VHnt7/1/zcaQDZJGK+MRM/SIKBMHqYQhxJiYGA+pRCQf5L3R4rujqNEyvgFjXFmyzxyi0RYKV5WIU4gs7w/NWmL8ZDSANnZ/v8uV5UiRbx5joeKPvOjHwEk4bxpKG37+H//z/9f2TSC0tLCCpKHfv1rXAfgOs2pUeJlZT2jHwjK9Be/wDCS54RQWQ8ZatMDMNf7MxsnGHn/CLSJB9TE89//3ePPQTBpzpGTg8kE6UmRrSS9//kfuJSGYZnf/a7XpTHen67k5MAUR4My7eFW709NvM+rCRfEbAAHgq7Fx8dj+fLlyMzMpJCCMCwuErHoPlTLoh4rC4KkkCoFWVmoN9INthWxklLQRh6rjScksHqm4Lhx43D16lW0tbWZkr4NOSxvvqHZZxMTE1FTU6M4nNXee0aeKSh1Lz8/H/v375c971suHqtjulKQ53nRt4DUPRu2eXvlSqRLWP+wws0334wjR44ongwsW7YMQ4YM6XX97Nmz2LFjBy3xAHTvIn7ppZf8fzc3N+PNN98kCvv8889j7dq1VOUR4+WXX/ZP6jZs2IDKykrFccydO1fVuRVKysTH2LFjMXToUGzZskVxemIsX74cGRkZPa6dOXMGO3fulA0bExODcePG4ejRo9TkEWLevHmYPHlyr+uvv/46sZurYLKzs7FmzRrR+9OnT8fhw4cF7y1atAijR48WvMfzPHIkFvomTZqEW2+VXuY7cOCAaJm+8MILqtzuvPvuu8SHzg8ZMgTLli0DAFRWVmLDhg2K06PJc889h8jISDQ2NuKvf/0rcbiMjAwsX96t0pSqawB46aWX4HQ6cfr0aezatYso/hEjRuCuu+7y/y2Xho/sAIWrWt577z2UlZWJ3o+IiMDzzz+PU6dOYffu3ZrT08qwYcOwdOlSRWF8bmvFiI2NxVNPPYXc3Fxs3rxZsUxLlizB8OHDFYcrLy/HP/7xD8F7o0ePxqJFi0TD7tmzBydPnlScZjCTJk2Cw+FAbGwsRo0ahfj4eEXhPR4PXnvtNc1yaGH48OFYsmRJr+vvv/8+SkpKiOPxtYNASkpK8P7778uG9b2/SftuQkKC342yELNnz8b+/fsF73Ech9WrV8umQSqLL98dHR344x//SBSGZRwOB14WUBJfuXIFn3/+OVEcTqdTlRJm7ty52LNnj+JwWpk/fz7Gjxffjrhz506cOXOm1/WRI0eis7MT+SKWp3fffTe++OILtItYCra1tWHbtm24mpcneD8DwH4ApQHXoqOjceONN2LGjBmIjIwUlZkGLCwUkSqh5FASjma+Dx48KHnfagtFpJabWhfqzTjDvC+i9xhCE73HI47jmLYUJImHZeWHXpilFExNTcW8efNw+vRpHDgQvG3HRgwz5hV9xVJQbV9gYa6nBLPr08fVq1fNFoEJTFcK2oQmTfHxqO/f32wxZGlPT0dDYiJaW1sVhescNAjIyuodX1UV9Xw7HI4eafFNTcRplEdFGVYP/JAhgNMJAGhITES9CgVTx8CBguUqS3Oz4nw2p6TAnZFBtXzcGRm95G+vrCRKoys2Fh0DB+peX2Jtt65fP/Uv6KwsSbnbBgwQvV/Xr594nfO8ZLwtqamy7aX1229F4+CHDAHCwyXDC9GUnIx6QlerTcnJfhm7IiPNHxezsoDISPANDYpkSQwoa7lw/JAhgMuF9ooKojQiIiIwa8UKIOBZYtnUjBdBNKekoF7CNVxERASQlYX28nLz6w892xQpXbGxkrJ74uKArCy429tV5bFr8GBVdcFL9Am5fLZdvkylPrLmzcOwYcPUR+DxmN4uWtPSBMuqOSUF9QrmN3x8fK94PC4XUf7aBgyQfRcEwvXrh3qJj9/WtDTRuDiOI2pvpLL48s2rbP+sETxv9NHV1kacv7CwMFUuxdvT000pw/b0dMk20ZKaKihXS2oqOjs7RRXUvnlisFLQ4/Hg1KlT2LFjB5qbm2Xl6wKQnJyMGTNmYNKkSYadA8aKtVcgeloKql0YE5Oprq5OcvOCVFirYFsKWhvbUvA7OI5DfFwc9Xht96HkqOl/ZvVZjuOQkpKC22+/HRzHiW5EszEflpXlNPtsX3l/seI+1KYbWylo06fhOM5yg6+Sgc3IF6jH4+k+/1ADRtcFS3VvxbZIilQ7bGpqUhUOMO8lT+vAYjPwtTGlbU3J4pCSPCckJGD58uXob+JCvFxZsFaHespjdF6l2pVc/6c1Xmp9b5GQmppKbF2sBhbeHUrbjlz9Gjl/8ZUfa32dNkrGcdrKFVaRy6fQ/ZqaGnz00UcoEjhHWoyVK1bAOXy44YoWFhQ7Rp4p6IPWmHj69GnZZ1herBSD53l/GemlFDTLUpCF96GR2JaCPeOPVnG+NUtY7R1KAqvuQwNxuexlcVLMGGPNfs8aZSmotmyt9t4zUilIq+2E4tjsw/wR2MbGRGgverA2WJi1s421chCDhUloIEa80FmbyEntsNe7HRnRTlnrC2rbvBqlIEnen3/++V4ud41GLm9K8mMEauSQC6M1b2rHFSmFnFFKQb0WPn0MHjwYgwcP1pSGUQjlRa93hlz9Sn0w0pbJVgr2xmoLDEa9z0+ePIk//elPRArBIUOG4H9++UsAwA033GDKnJO1eS5grTMFz58/LxvW7MVKrYSapWBfw7YU/I7AthITE0MtXiPdh4b6PEQIs8aawPZC03o/Tgdr1b4OK+4m9cZWCqrDCKXtwYMHUVBQQCUu1mBjtmdjowOjRo0iek7NIGoVNxJGyhn4Uak2XaNfhCy9QM22FNSznUktmEidY6i3IsMIWJNRraWgkudJ8xwdHd3tmtNkSPPGWl3qgdFjtxZLQVrovRgxceJEQ3bHK7muNB4SlLYdLe8N2vQVpaCS+rWapWBgukKLDVrHttbWVmzcuBGbNm1CR0eHZBiXy4XFixfj4sWL+N73vqcp/VDECKWgkZtGrFi3gTIbrRS0LQXpYiWloJFzoVWrVuGhhx7CzTffrGuatLHieBKIms1lLGxAoKUUnDNnDh5//HEqcbEKaxvMjcC2FKSLkfVJs34++eQTanGxhKXspDmOiwXwEIBbAEwBkAIgDkAjgCoAJwDsAvAPnufFfdLZ9AlIJhi0BtDm5macP38eX3zxBZX4pGDVdSENS8FQdB+qpCxYmBSrQYvyTsukQOuOS7XtlNU+SIIeyptgSC3rWGnvfcF9KKuWgiy4D9XbUtBKFuBWsRSkTagpBcXqTElbZ2V8VkJubi6++uorVFRUIC0tDXfccQeyZM6eJNmQVVxcjHfeeUf2bDmg+9zABx54AGPGjGFisZ6FejTSfShtZTaJe2mzFyvVYIRSUM/3khHpWgUruQ81koiICIzKykJcXBz27t2rKS7bUlAbLMyT5aClFAwLC2MiP6EGy5aCNPssC3M2I7DqmYJWnO+RYAmlIMdxDgCvAvi/AAJ9AfhG3EQA/QGMBPAggP/lOO6/Afya5/nQrDkbWfQcVAMHl8bGRqxbtw7V1dW6p2VkWKXQsBQ0GtqTNi35NspSUI8zPrScDSV1z7YUpI9vXGThTEFWPpqsZilonylIFyPOFDSrrRuZrn2mIPuE8pmCZWVl+OKLL/wLDWVlZXj33XfxzDPPIDk5WXW8X331Fd544w10dnZKPsdxHGbOnIl58+YhLCyMmiJMKywuMIWapaAVF4nMtBTUG6m6D8UxnoXNB6SY4TWBRppW8RDFAmrKO5Tch7LybRtqmP2etS0F6WJVpWCowrxSkOO4aACfots6UKq1B96LBfBfABZwHHcXz/MtOopowygkgyMNRczRo0d1Uwhqpa9YChph/WQEVnuh+9DiBk6LUlArffFMQbWEsqWg1c4UVAOrloKhcKagHH3FUpC2UlDqg5F2X7Tqu1cpSpWCEydOxNmzZ3WUiB4XL17s1WY6Oztx+fJlJCcnq2ozBw8exFdffSUbNisrC0uXLkViYqL/mq0U/A5aZWGGpQBJ+bFswSCGmZaCwfXPcZxkm+gr47NabKWgcfEbgdnKDz3oS+5DgdBoh1JY1X0oz/O6yG4rBZVj1JmCVl67MRLmlYIA/gHgVgC+Gi0F8B6AQwAKADSj23pwMIAZ6LYUHIRuJeFcb/i7jRXZhgX0HBwDB5h9+/bplo5W7J1t0rBkKQhY74XuQy9LQTnMcsMSCu5D9bQUVCqL2djuQ7XFDdhnCkphhBW4WB6U1qeRfVLLe0MvpSBrfZ02SurX4XBg0qRJipWCZpVhS4vw/s/t27dj1qxZouGEysTj8WD79u04ePCgZJoOhwO33XYbZsyYwcSiphCsvGcDYdF9qBiheqZgIGZbCjocDqoLhCy2eT2x3Yd+h20paE1Y8KYhpRQcNmwYIseMgdvtxsCBA7Fp0yaiOG3owfLmG1spqByjvvH74niqBqaVghzHLQWwBN0KQQ7ALwD8gud5oRPejwD4kOO4H6Pbzei/ecPcxXHcEp7nNxsktg2A2IYGJFDccaOGmMpKJNTWSj4TUVqKhNpaOJuUHUHpKioCvJNwuTSokJ//3f8bGojTdBYWGiMfAD4vD4iPBwDEVlXB09CgOI6I0tKeeSWEa2tTnM+o8nKEFRdTLR9XUREQ9BFNmkZ8Vxciy8p0ry+xMo6vqVEfaX6+pNxS+YoqLxev8/Z2yXglwxKkjfx8QMUO27jqarQT1lNMeLhfRifBmKQ7Xlm41lZFssRUVvrDyobLzweioxFeUiL5bALPi9YfiWzDhg1TNV4EE1tVJZmew+EA8vNl82MUMTExivMt1/ai2tqA/HzVY2JYcTGgxmVQR4doetEBfUeIqPJyKvXhKioCVLyvAulXVyf64RFeUoIomTamlfiaGsGyIpkH9YiH43rF4yKMI7ykRPZdEIjD4ZD8KJR7H/J5ebIfwaSyJLhc3flubGSij2vF6XQKtocwBX0mvqsLI1wujI+JQVFREXHavnk1U+Tni44X0RUVCOvs9N/zKQSLL17EEO8zTgDpAI4C8H2AJiUlYfny5UhPTxdMkhVLQRYWisywFFSTbyErAtt9qL5pA/TPG2OhzRuJy8X0cl4PrOo+1GisvJCtpg5Y2FQjpRRMSUnBjAULAAANGr8XQoG+aCloVJ/sK0pBpUpeteVv5bHUSFifRTwe8P9/5Xn+v+UC8DzfCeA/OI5rR7cLUQB4AoCtFDSQVevXY7zZQgBYKPdATg4mqYk4J8f/32w14TWkF68kzZwcY+TzpuXjCQpxKCES6utBbThBBOSf4v2RouRZVYiUcbbGOOXCz5e6+S//Ing5Atrr52bvTxCV7W2l0gA/+QkAIAUGjRdSePMcBR37jDeNqd6fJD/7mbo0fKxeTfqkKEtJHvrd73AjgBs1p0aJV19V9DhR2/uf/8EoAKPUyKOyL4VDRi5v3xFipvenGZWyByLZCr3xz9OcinLuVxPopz/t8SfxuOXNJ9GzhCwgSE+KbCWJ/eu/Ik5pGJb57W97XUqDwvz9/OdYrjTdnBx2xkkfOTmYD5l5SADCMxJgNoADACZMmIClS5ciPDycinh6wsJiazC2+1DzMdN9KO10+jpWWwzWk1CwFDQjPRLmzZsHl8uFox98QD1uFsYAKaWgGefZ2vSEllJQD2jGy0JfMALbfShbsK4UvMH7bzmAXyoM+ysAL6J7cydz36ehztsrVyI9KclUGcaOHYuLFy9KPnPbbbfhyJEjaGxsVBT3nXfeiZEjRwIA1qxZo1ZEYlavXu2fZDQ0NOCtt94iCnfnnXfi888/11M0P4899hj69esHAPjrX/+quEwBYP78+Rg/Xrk6ub29HWvXrlUUZvTo0Zg0aRI+oDi5XbZsGYYMGdLj2smTJ7Fnzx7ZsAkJCbj++uuxa9cuavIIIVbGWtrx008/jTfffFP0vlRfzMjIwPLlwsuObW1t+NOf/iQa76hRo7B48WJJ2fbu3YsTJ04I3nvmmWcQHR0tGV6Id955h/gc0ZSUFKxYsQIAUFlZiQ0bNihOjybZ2dkA5Ms2mIkTJ+K2224DIN9WnnrqKcTGxuLYsWPYv3+/6HNJSUl45JFHBO/JpXHTTTdh+vTpVD6+PvvsM3z77bei9zmOw+rVq3HkyBFZd3JGMGjQINx/vzJ1T0VFBd59913R+5GRkXjuuedw+fJlbN26VbFMy5cvR0ZGhuJwPM8jR0S5k5ycjJUrxVXwhw4dwtdff604zWCefvrpbutLDbz22muiH6zz589HVVUVTp48qSkNKaZPn47p06f3uv6Pf/wD5eXlxPEI9UnSccsnA6050ciRI3HlyhXR+y+//LLsxzOpLKmpqXj44YcVza9Yxul04qWXXup1Xck7KCEhAY8//jjOnj2LHTt2EKc9c+ZMJsbJQLKzs7Ft2zZcuHCh172xY8eivb0dW7duxc6dO9He0dsZTQaA/eg+v2Lu3LmYN2+eZdxOs7DAFFwWahf3lLgPNdJSkJW6VgJLloJy6dC0FNS7rqKjo0VdGeuFlZQQVpI1EFrtRm9X/nqi5cw92tbAtCB1HxqowLBqG6aJVS0FtSDVJ233ocpRqhRUW/8sjqUswrpSMAXdrkP38AprlOd5D8dxe9F9xqC52qk+SFN8POr79zdVhpbUVNSXlUk+0zFwIBoSE9Gg0PVG56BBQFYWABiTz6wsv2s2T10dcZodAwcaVg9dgwcDXkVwff/+aFThzqRj4EB/uSqBb2tTnM+W1FTwQ4ZQLR93RkYv+dvLyojScPTvj85Bg3SvL7Ey1pKuJzNTMnxTcrLo/fjERNE697S0SMbbnJIi215aL18WjYMfMgRQoQxoTEpCPeHkJDIpyS+jOyLC9HHRX14K+0zbgAHEY54nMxOIj0dbUZHks5ES9ScV7tVXX1WlzBWjNS0N9XJK3qwstBUUmF9/AOID2hQp7vBwSdnbIyOBrCx0NjWpyqMnMxPIzFQcjoN4XYdLjA0A0J6fT6c+srJUjQOBNCQmin7gdA4ahDaXS9e248nMFCyrxqQk1AsoOcSISE7uFY8nKopIdt8YQSufTcnJqK+qEr3PDxkCOJ2ScZDKEuMdi7pqa5no41pxOp3CfScmhjh/Lu8401lTo/hdwVwZZmV1j/Olpb1uNSUnY/369fjkiy9ko7lt/nwMkjifMBBWFiJYUAoGY1sKqktHL8y2FKS9mGnm4ujChQvx0UcfGZqm1RaD9SRU3Id+9dVXZovQC5fLRTTWhaL7ULfbTRyPFdubFaDxng1lS0GrtTvbfShbsK4UrAQwEIByk6NufOHEVxVsQhaSwZF1v9KB6and9WoUNHbwGL07hvYLVGt5szApVoNc3Uvdl7onV55ay9uI/hGYhpUnJkraJmk+1bT3iIgIqgpBwHoTaT3bkdq49ShDo3aF0pDd4XBIfuDo3cbE3BgqLUOWFtTkPhj12Jlr5TGaBCVjrhaLK6vQ0dGB3/72t7KWjWEuF+B2Y9y4cahXmZZ9pqD436QYcaZgME6ZjQeA+RYMajDTUlBpOiy0YVJGjx6NjIwMReewasVK5dPXzxQkHftoeMGgDalSUA0sWApKnc2pxFLQ7PZWXl6OU6dOoampCSNGjMCkSZPATg9Qj9nuQ21LQboorU+1ZWzF+ZkZsK4UvAhgEIDhKsMPR7el4SVqEtmEFBzHMa9s04KRctJQfhj9QmPpBaq2LapJhzZyL1yp9hDqL2tWlYJK24EapaBcflnpfyRy8DzPVP0pxYqyy40NtNoPjXik4jCindNSCmqBdhuT25mtx85cK/YTJRihFGS1DIPlqq6uxj//+U9UVFRIhktISMADd94JSLhfJkmvLysFg7HS4g5JnzFzU6RazDxTUKn7UFrpGkF4eDhWrlyJ48ePo7i4WNBlMU1Y7N9mEipnCrKIy+VCB4HnCTXlzcKmaFpnCppJYWEh1q9f76+nc+fOoaSkBIvGjqWajhnjTl+xFOwrYzpt96H2mYLaMH8ElsZ38MUcjuOGKQnofX5OUDw2fYhQHVSVDG5GfkAHpmWVAZi1NsKaPKScPn1a8n6oWQoqCceqUlAprFgK6gGpHKzUnxo5SPsSSxs6rGYpqHcaUrBgKXjmzBlUSbj7VEpnZye1uOToK5aCStphKFsK5ubm4s9//rOsQjA5ORkffvihqvNSWYGF96yRloJazxQMxiiloNFYyVJQqRxmj1kRERGYOXOm4rOf1WB2XpViVUtBe27QrRTUq/5YaMdSVuGBm9RYtBT0tc8DBw70UtweOXIETU1NhstEG9tSUJ9wZmG7D2UL878UpNkA4BC6LRrf4ziO6JAKjuMSALznDXcYwHrdJLSxNFaxFLTCQGimpSArL1ChfCspC6u90H3s2bNH8r6ZSkGzJwOsKgVtS8HvILUUZAWWZPFhhlLQSpaCerd1sR3ONJSCpNTV1eEPf/iD6vDByCkFbfehylEyjvueDRVLQR/nzp3Dhg0b0N7eLvnc3Llz8eyzz2L06NGq0mHFUpAFpWAwVjpTkKT920pB9WkDbC6yWwWrlY3V5KUNq+9Hkr4u5V5TDlb7eGC6UjJYZYy/fPmy4PUrV65QTceMdmy2UtCoeO0zBYWxwlq4lWHafSjP826O4+4D8DGAmwCc5jju3wB8wPN8S/DzHMdFAbgfwH8CGAzgawD38TxPfjqsjU0IYTWloNGwtFhiZfehcqhVCsphhTMFA7HKR4UQeigFWel/VnMfKrdb8fz58/jmm28QFRWFSZMmYdCgQbaloAR6Wwpa3X2oWR+aWt2HqtmQw0of14u+fKZgYWEhNmzYILs4FhYWhvvuuw9jxowxSDJ9YaH+aClI9X4nCMlFkqaVx1nAePehescj9XyojfEs9G+WsC0F1UHTUlBNHfjWQFgtZytYCkqVXU1NDfX0jMZsF662pSBdlM6b1M6zWB1TWMN0pSDHcW8RPJYLYAqADABvAVjLcdxZAAUAWgBEA8gEMAFAJAAOQDuAbwH8N8dxPM/zT+ogvg3DkE5crGApqBYj5aThPtTIFxrP84ZYCiqBFSUJbdSeKai3+1C1hIL7UJqLLGphpb2LKVSCYan+xNi1axf27dvn//v48eN4+OGHJc/KYJVQsRSklYYUYm1YaZtl6aNSi6XgoUOH8PXXXxOn5ct3bW0tcRgrYoT7UNbGycbGRnz/+9/HG2+8ITum9OvXDw8++CDS09P919T2CdtSUBw9d3zTVmaTLESx1uZJYMlS0Irlxwos9m8pzHAfyhKstnWSdhQfH4/q6mpdZTBa8UPaXlJSUnSWRBsej0dyziz0jeBwOCylaGHZUpAmrI9htKBtKWifKagN05WCAB4DQFpbPLoVfpEAbvD+AuECngsH8HDAPVspaCCxDQ1IMHkRMqq8HAkyCzxhxcWIq66Gp75eUdyuoiIgPh4AZNOgAZ+XB3jdNnB1dcRphhUXGyIfADgKCgDvTqr4mhpEyLhmEiKsuBiIi1McjuvsVJzP6IoKOAsLqZaPq6gICJp4hZeUEKURz3HEz2ohvKQESEjodV3PdKX6YmxXF5CfLxywoUFSruiKCvGwXiLLysTjyM/392MlxFVXw01YXrEej19G2u1NFb7yUthnosrL/WHlwnHXrgGNjYgoLZV8NjYuTrT+xMJFRETI1rlS0lpbZfPE5+VJtyUDiXG5BMugvb0d5z77DAlBH04nPvoIM2bMkJQ9PDwcyM9X/c5wFRUBQedYkCJa1y0tknVNrT7y8wGN85V+dXVwNjYK3gsvKUFkVZWubSeyrAxobe11PbaqClxzM3E8cQL9y1lba0q7j2xtBdfWJv5Afj4QGdnr8tmzZ/H1jh0AgN5vOmFi4+LQfvkytq5dSxyGZZxOp2Dfcba1EddlfGQkkJ+veF7CwjjZ2dmJvLw8XLx4EdeuXYOH5zHYe88JIB3AUQCBI9aIESNw7733Ijo6mooMrCxEsLjAxErZkEAiK42FbKPryQilIEsbd0IVu2x6IlQeNM4nttKYpQaSvt6vXz/V8au1MDSayZMn49SpU72uT5o0yf9/szcBCsHzPFoFvgF8REREUE3PDM9HZisFbUtButjuQ9mCBaUg8J0yj1aY4Ht2azCYVevXY7zZQgCYL/dATg7GqYk4J8f/32w14TWk109Jmjk5mEhfGtG0fDxPIQ4lhEF9PagNJ4iA/FO9P1JGURNGBJEyztY7XSl+/nPBy/EgkOuVVyRvz/P+BFHZ3h5VGuA//xNAt0/rbFUpUsSbZ8V9RsmY5312uvcnyQ9+IHhZMo1f/1ouVkVc7/1JkpODmQBmUk1ZA//6r70uRQB4WSJItlycv/kNxgGa34lKyZa6KVHXN3p/mtEguw/JXWc5ORgNYJbmVKTTEOJpNXH9+Mc9/uwPBsYtIUTyPNH7U8wPfsBmPtXy29/2uhQJhXX5ox9hFJTPS2YofN4MZgM44P3//PnzMWPGDMGFUVoLLX3ZUtAMyzCO4zB+/HicP3+eOIyZ7kONJtBluFh9GNV2rHL+NItYrWzMsBSk4Skj1BeW5fp6fHy8JvehJGFYaMvTp0/H5cuXeynYEgQ2U7OEGqWglvK2qvtQK5wpaCsFhVE7z7Li/MwMWFAKPm62ADb0eXvlSqQnJZkqw4QJE3Du3DnJZ+644w58/fXXqKurUxT3ggULMG5c99LpmjVrVEpIzosvvug/4Lmurg5///vficLdcsst2LVrl46Sfcfy5cuRkZEBAPjjH/+IDhVWI4sWLcLo0aMVh+vs7MQf/vAHRWFGjRqFWbNm4W9/+5vi9MRYsmQJhg8f3uPa8ePHe7jzEyMpKQkzZszAZ599Rk0eIe644w6MHTu213U92/HAgQNRUlIieC86OhrPPPMMmpqasGfPHhQVFSEhIQFTp05FWloa3npL3MP0kCFDsGzZMsm0d+/eLbjrDwCeeOIJxKuwFPz73/9OPGbEx8fjiSeeAABcu3YNH3/8seL0aJKdnQ2g+3yE119/nTjcnDlzMHVqt3pbrq2sXLkSycnJsi78hg0bhqVLlwreE0sjIiICzz+vetuBIJWVldiwYYPkMy+88AK+/vprHDt2jGraakhJScGKFSt6Xd+7dy9OnDghGGb58uXYuHGjaJxhYWF44YUXcP78eXz11VeKZVqxYoVq9zpide10OvHSSy+Jhjt27Bj279+vKs1AXnrppW7LKg289dZbaGhoELy3ePFiVFVV4ciRI5rSkOL73/++oHugtWvXol2B1X56ejoefPDBHteUzDmM5Nlnn0VUVFSv62reZVlZWSgpKVE1b2ERsb6jZK40aNAg3H///bhy5Qo+//xz4nSnTp2qa1sXwu124+zZszh69ChaJBbGgO5zKPYDKPX+/b3vfQ+LFy/G1atXBZ+n5T7ULFhQCgajZ9kE1teiRYtQWVmJiooKAN3zh1tvvRUH332XOL5QVQr6kJJdL0tBK7u1Zg27bHoiVB79+vVDv379FK/16AEr74Vg5Pp6//79AeirsDDjXRUsV1paGp588kmcOXMG9fX1GBUeDuTk9HiOVUvBNgnPGkKKcaspBfuKpaDafmC1d4HS+rQtBfXFdKUgz/PrzJbBhj5N8fGo904gzKJtwADUFxdLPuPOyEDjt9+iXuFA2jFwIJCVBQCG5JMfMsTv3qyrupo4zfb0dMPqIbBM6vr1U+Wuw52R4Y9DCZzbrTifLamp4IcMoVo+QvK3l5QQpRGelISuwYN1ry+xMtYz3djERNSLLNTVA/jjli2orKzsvhAZibL2dnxz6BAWLVokKVdTcrJse2lNSxONw5OZCahwh9KYlEQ8ZvDx8X4ZO1W0U+p4ZeG6uhTJ0jloEPGY1zV4MJCWhra8PMlnW1JTRetPLFxERISqMUKK+PR01G/ZIvkMP2QI2q5dM7/+AEQkJgqWQevly6LyuTMyJGV3uVxAVhY6amtV5dGTmQmkpSkOB4jXNcdxknXdXlxMpT64oUMBjYsRzSkpqBdRLHYOGoT2sDBd207YyJGAwJhU16+fIkVXfEpKrzL31NQw0e6D8WRmAjExva6rkbUlNRWV9fWC8VkRp9Mp2HeUzJX6eduCu7WVOIzT6eyeexvUXtxut3/jVVNTk6KwqQMG4JY778TSpUtFFfo0MWthgoWFIrPOkIuJicGzzz6LkpIStLW1ITMzE1VVVaLPm2kpaJb7UD2VgrRgoQ2zitXKxix5b731Vnz00Ueqw4f6wjJNpaDVLZ2SkpJwyy23dP+h4rgKFt2HCmE1paDR500qwbYUVI7S+pT7lrXPFNSG6UpBGxuzUTOIWmWAMVLOwLTUpmv0C412ekL5VlIWVnuhkyK3YOJXCAbA87yohV/gM3IYtbOLJA2rjBtCKGmbgW6ppGBlwYn0rAVW6o8VOQLRY+wyyqUYjXik4jDCLZKeFhmsvpdY+Ai3GkrGXN+zSsd+I8Ynj8eDkydPYs+ePYoVevFxcUBjIx588EG/8lJKZlqWgn3ZfWgwRlrWORwOvxcTpfA8j9LSUtnnrGgpaKZSUGnf6CvjsxqsVjZmzYUmTpyIrq4ubNq0SVW8tMZvFufvgHxf13KeIEBmXWdGW1br6pQ1PB6PpKWgEFZTCpptKWhUvCy2Lz1QqhQsljH0EYPVMZc1bKWgTcii524mowcYtekZ+aFqtY9inueZevEaNSE2I89q24aYy1EfZr3olaTLqlJQaTtQsjhEmk+W+l9KSoqgctoHS3WnRha5MKSKXDFYqkul0JBdqn+YWTZKx14r1aP9Ea4cJfn0Pcta2ZSXl2Pz5s0oKipSFC4pKQk33ngjbh8xAghwna1X/txuN/Lz8xFbVYVkXVIggwWlICsKUkC6vgPlcrvdeP/994ksUFm2YBDDCKUgSxt3fLA0l6MBC/2bJaTayrBhwwyUxFrI9TGf+8lQcx+qByxaCtIe96xqKRjKSkHW5upyKP0+vXz5sqp0Qu2drxe2UtCmT8PKwcZKUKuQ0BszLQVD5QXKmjy0YHUSZlsKkqNGKWil3d833XST5HmeRlnAaIGGVaxaBb5VdvjqEQdJPGa1dSu6tSNFras/Iay2qUkOsTrTWyno8XionPMpRGdnJ/bu3YsDBw4Q11dYWBgmTpyINWvWoKysDBcuXICztlZRuhzHCZ7HI0dXVxfWrVuHhNpaZAPdZ3tqPLtUDSz2X6POFNTCwYMHceXKFaJnaeSnL7kPNdNSMC4ujlpcLMBi/5bCLEtBQFt7Zn3+rxW5slEyH1BrfWeVtsyinHJnCoaCUpDGPL2xsRHx8fGqwhrleSpU1jTlUKrklTMUECPUx25ahMaWDBsbAfQcHK0ywFhNKWg0tD94teSb47iQ2SUXjF4LrlZoZ6z2CyMsBa2kFJwyZQqGDh0qep8lpaAeloI+Pv/8c8VxmwVL7cdMS8FRo0aJ3qPhPpRVaCoFSRf/rYJUvWdmZhLFocZ9qB60t7dj7969eO2117Bv3z6iOna5XJg5cyays7OxdOlSzJkzR1M+5s2bpzqsDyPOLRTC7PoDrGkpeODAAeI4rbypIFQtBcXmczfccINWcZiChf7NEnKu3M2Gle+IYEiVgmrR03uXFvRI0yqWglraolWVgn/729/Q2dlJQZqe0CwPte9dFsY3JShVCra3t0vet88U1IalLAU5jksAMBvAZADJAOJAptjkeZ5/UkfRbGx0Re2AZuRAGPiytooLOiPSY+1MQSu5D5XDPlPQOPRQWLOkBHc4HLjjjjvwpz/9yWxRZFHTjuT6IM/zRG7SxNAyrgwdOhR5eXm9rtNYiJcjFCwFp0yZQi0uK50pKITb7TZbBOaZNWsWioqKZMcEs92Hut1unDhxAnv27EFzczNRGKfTiRtvvBGzZs0itgjiOE72TMHBgwcTxcUiLL1nfVhhLtTR0UH8rO0+lD2mT5+Oa9eu9cjfuHHjEBsba6JU9LHS+xkw11LQameoGQlNS0G9ZGAFFvucbSlIRldXF65du4YRI0YoDsu6paDVUKqctcJRWlbGEkpBjuP6A/gVgBUAIlVGYysF+xgkg2pnZ6eqwdfMyWEouw9VCyum9lrzHaoTgVB7IffFMwWVPG9FS0E5WLIUVAOJ7GfOnFEdv5a6nDp1ai+lIMdxGD9+vG5p0owDkLcU1Kuth4WFYcyYMdTis1qfDMaKi/N6EBkp/qk0atQoPPLIIzh9+jROnz4tOjaYqRQsKCjAJ598gpqaGqLnnU4nrr/+esyZM0fUNZRcPsXgOA4REREAuq0sL7a2Wkr5zMJCK8/zQEA5m+k+lNRSUAlWnBuYeaagEe5DR40ahYcffhinTp0C751f3H777YrjYR0rvbPNxlYKikPa10PNfWioWAp6PB5ZSyqaWPVMQQDYvn27KqWgFCwoBa32LtDDYlOIUB+7acG8UpDjuCwAewBkACBp7bzAc3ZrsBFE7YBklQHGLEtBtRj5QuN5nqkXqJX86StFr4Va+0xB41DjPlQO1tq73GIhK/WnxkWGnOw8z6OxsVG1TFrqcty4cZgzZw72798Pnufhcrlw9913Izk5WXWcpJjp3owGEydO1D0N1vqpDxaVgomJicSKLD1ZvHix5P2srCxkZWVh3LhxePfddwWfMUMp2NXVhX379mHPnj3E4+2IESNw5513on///pLPqVUKBnLvvfeCHzIEP//5z5l5H8jBglIwGKuUHSlW3PhmJUtBtWPQ8OHDMXz4cCA/H3j1VWbyQxNW389iWPVMwVBHb/ehJFilLbMo5+nTpyXXNG33od9B6nkiGNYtBVlsl1Io3VxHso6hJpxNN0wrBbnu1v0xAJ/fljMANgBYAOA2dCv7nkC3G9EhAG4GcKP32SYAPwNQZaDINl5iGxqQEBZmqgzRFRVIqK2VfMZRUID4mhp0yDwXTHhJSfdHBiCbBhXy8wHvTmVHdTVxmuElJcbIB8BVVATExoLnedVpuoqK/PlUhMejOM3oigpw165RLZ+w4mIgOrrHNdI6iHW5EFZcrHt9hZeUADExva7rmW50ezscLS3U442JiPD3QzEiy8pE8+YoKABUuEyMq64GT3g+UHh4uF9GV1GRYf1RlIDyUiJLRGkp4HW7RDKuoqsLEaWlks9GV1SI1p9YuAiCOleLU2pszc9HVHm5+fUHILarS7AMpOSTa3scxyG2qkp1/hwFBUB9vaqwHIBbhw3DrEGDUFtbi+TkZLhcLtl6lmtfJISFhVFpT/E1NaKyhBUXI1LBe1sJUn0IUD6ux1ZV9YqPa2xkot0Hw1271qvN8fX1psp6/YgRiBk8GLt37zZNhtjYWAx3OonatdScw9cWjJiXAN1n7m3/4guUlJYi8NRDJ4B0AEcBBDp0jImJwcKFCzFhwgSixRCxBSUS96FSf7MOC/IGlm9JSQlOXLtmojT0sdqmSMBcpaARloJ9BbtsesJxHEBhA0gwNBaWWV6cpuk+VI0beo7jQkZpa0af3L17NwYMGCB633Yfqi/2mYLKMcp9KMvjLkswrRQEsBzAdehW/n0JYCnP826O4zLRrRQEz/PrAgNwHDcVwJ8BTAGwGsACnucvGSq1DVatXw9px1/GMFfugZwcTFUTcU6O/7/ZasJrSC9JSZo5OZiugzhiaQHdC7zZGuNQikNDmmrDCSIg/zTvj5RsWrKIIVLGuqerFz/+seTt27w/QVS2tyeUBvjNbwAAo70/U1E7dikJ5332Zu9PDZJp/PrXKmOVRnJszcnBPADzdElZBT//ea9L8yAhX04OUX3PUiuPyr4USAQA8U/a3kz2/jTz//6f5ijul7qZk4Nh+G7HmpFkqwn0L//S4884tfHojUCbSwAbsk42W4D/+i+ix7IgU14vvojBcs9Q5N8l7s0GcADdrkInT56M2267DdFBm7CkoGEpGBjGKgsNrCwUud1uuAC8//77qJex6tSCGe5DzbZQ1oIZ7kPNiicUsZoixRBLQR2UgqGO3mcK6uV2VCtq3/+046RBWVmZ6L1QUAqaDeuWglaDtlKQ53mUlpaisrISgwcP9nsP6YttVQ2sKwWXef/lATzP87ysnSnP88c5jpsN4CsAMwG8z3HcNJ7nxU9ftaHO2ytXIj0pyVQZpkyZgpMnT0o+c8MNN+DatWuorKxUFPe8efMwefJkAMCaNWtUSkjO888/7z/TpKqqCuvXrycKN23aNBw5ckRP0fwsWLAA48aNQ1dXF37/+9+riuPuu+/G0KFDFYfjeR45ChelR4wYgYULF+L1119XnJ4YixcvxqhRo8DzPFpaWhATE4MjR47g4MGDsmFTU1Nx66234r333qMmjxB33XWXoC91PdtxeHg4Ojo65B9USGpqKh5++GHJZ3bs2IGzZ88K3nvkkUeQpGKceuutt9BAaCnocrnw4osvAgAuXryIL7/8UnF6JGmQumHIzs72/19JnS9duhTDhg0jCrd8+XJkZGRgz549kmPwxIkTcdttwirbzZs3Izc3t9d13zijB7W1tVi3bp3gvaeeegpHjhzRdO4eLeLj4/HEE71V07t27cLp06cFwyxevBhbtmyRjHfmzJlEY5UQTzzxhOhZXnpx+vRp7Nq1S1McEREReP755zXLsnHjRhQVFQneu/vuu1FdXY39+/drTieYSZMm4dZbbxW9r3Rcz8rKwj333NPjWlNTE/7yl7+okE5fVq1ahcTExB7XKisrsWHDBpMk6p5zxcbGYufOnabJEDjGy1FQUICPPvpI8N7o0aOxaNEiFBUVYePGjZSk60ljYyO2bt2KktJS0WcyAOwHUOlwYNaMGZg1a5YiZaAPsYUBFtym6QkLSgOe53H69Gl1mzAtAI1Fp75kKSgmixhW74N6YrWyMdN9qG0pKA4Lii6rtWWrYzX3oSzDglLQav2HtlLwgw8+QGFhof/v+fPnY+bMmXZbJYR1peA0dCsET/A8T+xrhOf5Vo7jHgNwEcB4AA8DeEsXCW0EaYqP13UnKAltAwbIytCYlITGpibUK/Rr3J6eDmRlAYAh+fRkZgJRUd3/j44mTrM1Lc2wevCXSVeX6jTdGRn+clUEzytOsyU1FdzQoVTLp2PgQByvrsaOHTvQ2tqK/v37IzExkSiN6ORkeDIzda+vzkGDBMtYz3SVKK2UEJWUJNteWtPSUC+yWN81eDCQmqo43YbERNQ7nUTPOp1Ov4wd9fW6lLMipWtAeSmRpWvwYOIxz9fGWi9dknw2cBwNZugtt+BE0Nlc4eHhGDJ3rqD7Wxp44uJE5fVkZqL12jXT32sAwMfHC5ab1HjfMXCgrOzujAz1+cvKAgxWCnZUVmquj4iICHXvnCBa09JQL3JORdfgwWgPD9el7bQNGCApv5r3Yq/4mpqYaPfBeDIzgaBzJzt1KmdS2tPTEWH2/FdBe+6SmDv52lYXx+mSn9zcXHz44YdoIXQtvvKxx7rrXCW0LQWtAgtKQQD4+uuvmVAK6mEpyLJbMzGMUAqKlbXScrZSfzMau2x6wrJSkGX6qvvQULIUlMK2FPwO1t1Q9hWloNvtBs/zxHLLlX+gQhAAvvrqKwwfPtzSbdVI2PhSECfF++/FoOv+GSzHcZFCAXme/xbAQXR7M/yeLtLZMA3JIDNq1ChVcVtlgDFSTt+HpZY0jX4R0n6B5ubm4rPPPkNrayuAbssjIWsnMVlYWbyhjV6ulUjamh59QEmcgc/q1R9J242W9q6kbZLmU0qeCRMm4Pbbb/dbSPfv3x8rV65EjE4KQTl5eJ5nZtxXIwfJoqWTUNEthFXc/ugRB0k8VvlYs4qcgHA/YMGNn5XKkGQBlXZ+urq6sH37drzzzjuyCsHIyEjcuXgxACAuLk5TulJKQSVnCloNVuTXw1sEK7Aw7iiFJUtBOVhpwyxitbIxU15W2jOLGPEdaWbcfR2hOY5tKUgP+0xBdehhMBDIsWPHLLlpywxYtxT0Kfyagq4H/p0IoEQk/BUAc8DAMU42bJKVlWWJQVStYsFqSkGjoV33Ym4qSVEjT3Z2Nnbv3o1Tp07ploZW9GoTWuM1oq0aoRQkVebMnz9fdRpqlIJaXULNmjULM2bMQFNTkyGuKa2iFBRD63kHWpSCZiBVX9HR0cQWSDSQ6h8cx+k27tKOV80Ob7MQatN6f2DKwWpZiWH0OT91dXX48MMPe+3oFWLIkCFYtmwZhlAad9VaClqpTwjBgqxGvjvNOFPQiu5DfbCgFLTdh6rHLpue6FUeoe4+lKYbbbXvTKu0ZbM2AbJ0ljErchgJ62cKWqX/BNLZ2YmwsDDZ59SW77Fjx3Q7cibUYF0p2IBupV/w4RHVAf8fAXGlYIL3X+X+4Wwsj9zgOG7cONWLoKSL3mZjpHy+nbJmWAqqQYnJOiladgurWTh2uVxISEiQfzBEsdruHzMtBQcPHozrr79e1zSUQtLeHQ6HYWfVWWVCraYdkYTRUsesbTaIiYkhUgoaZSloQx8WLQX1VADrgVELdTzP4/jx49i2bZusxZjL5cK8efMwc+bM7jGptlZz+j4ZhAh196E2+mP2uKMGEktBre2clvtQG3GsNhaZfaYgS4oVlqDpPlQqvNR9q7gPNQstbdd2H6ovLCgFrQjpuYK2Vav+sK4UzEW3UnBA0PXzAf+/FcDe4IAcxzkA+FZAjdsubmMZsrznroSyj3kjlSY0lIJmwNIHgtK22JcmDkJobd9GTK5ZcB96//33Y+TIkUS7sdSmEQgtS0GWYMlSUC+loNXch0r1/5iYGFRWVhomi20paDwsKgUBdstLCCPch1ZVVeHzzz9HXl6e7LODBw/Gvffei/46nGHYV92HsgAr707APlPQh5xS0MgNDqE0VzQau2x6QqJ80msObUQceqG3UpAEq7RlKx4XYLsP1Y5RloK2+1C69MW2qgbWlYKnAEwDEGz3eRhAO4BwAM9xHPdHnucrgp7JBjAUAA/gnL5i2rCIni9toy0FreA+lMZinBkvNIfDwcRCIqBeKajVrYdVIVmIYWEy4LNKNUMpmJGRQcV1gh5nCrJ2vocei4V6oNeZglax8vYhNW6Tnj1pdUtBI5SCrMKiUtC2FPyOlpYW7NixAydOnCAaW6ZPn4758+fr5sZYSvmhFCvVMQsYqTRjbYMKKUbLLacUpDE/o2UpaPc3cVibR8thdl2qTZ+lbwA9MNt9qFlzJ7PboxJYMmII9f6gFJrlofY7xkpt2YdtKcgOrCsFdwN4BkAGx3HDeJ6/CgA8z9dzHPchgIcBpAA4xnHcGgBn0e1qdCmARwPiec9IoW2shZpB9MqVK5g5cybzA43V3IdqQa3ShZWXqBrXGazIbhZmWQqqSUdPpaDUIiqtNJW0NdLzRVlrv3JKQSuP9ySys56/YKR2GEZHB3ud1xezLAVpYyVLQSHMVgoC1iovEiIiIhQ97/F4cOLECezYsQOtra2yz0dFReGee+7B6NH6Hv8uNr7RXAy1EYald4tVNv/ojRFKQaWyiGH3QXHssumJ3HehXV7CkG6k17P8rKTglvqmp1lGPM/DFxttpWBfVbToITvNOBsaGlSFs+LYZisF2YF1peAWAB0AwgAsB/DrgHv/H4BFAPoBGATgNyJxnADwF/1EtBEitqEBCRpc1dEgqrwcCRJnkUSUlgL5+YitqpJ8Toja2lo0Xn89IiMjFYdVA3ftGuBd5HRWVhKnGVlWZoh8ABBWXAzk5wNtbarTDCsuBlROChNqaxUN/NEVFUB+PvrV1RG/lPQkNjISzsJCRWUXEREB5OcjuqKCOFxYcTEgsMhnVDuhSXR7e3ebk0BqHHAWFgLt7YrTjauuhqO5mfh5Pi8PcDoRVlysSzknOJ3oFIk3JjxctIyUyBJWXAx4z4KSC+cqKgIiImTH4Kjyctn6MxJHU5OovNy1a7L5MYrI1lbBcpOSj6TtuYqKVOfPUVAAREaqCqsWqTwlNjQQ5YVkDCEhRuK9HFZcjAgV8wwS5PqQ0jR978VAOA3vdD1xFBT0Gr9LDh40VdbIsjKEt7SYW14K2rNLYo7oawv9PR6ktrSgneBdmZ+fj0OHDqG8osJ/mLsTQDqAo+j+oAskMzMT9913nyFnI9tnCpqHFd1rGo1ZbYoFpaAcdn8Tx2plo7e8ct/zcu06PDxc8Hpfdx/qQ68zBbXEzRo08+HxeODb9suSpWBffKcb5T5UrVLQithKQXZgWinI83wDx3EPAUgFUBx0r5jjuNsBfAggSySKvQAe4Hne/BX/Psaq9esx3mwhAMySupmTAwB4SG3k3vDZasOrSAvoNo1VkuattGWRIRIayiQgn0pZrSbQyy/jBdUp6sCPfqS87H79a9wO4HbS50XKWHG6rPDLX0renu/9CaKyvT2tNIA3ncnen+H85CeCl7OVxBFQVrLhvM/eCuPHHy3EQiJvOTlYAGCBYdLI8Ktf9bp0m/cnSE4OrpOLMycHE9XKo2HsVst070+QnBzxe8HIjCEkLPL+xGTJgDl9P1tNoBdf7PGnpne6ngi0uTu8P9PwyjSGARlIGAD5unUAeF6DOD5mAzjg/b/L5cKtt96K6dOnG6Z8sM8UNA8jF2Xs+iKD5ExBrdjuQ/XHamWjt7xutxtwiS9vyqUv9j4iabP79u3D+fPnwXEcxo8fj1mzZlmmfmieKah2o42V3Ifq6f0nkMA0WGpLtqKlJywoBVlqH6QYoRTsiwpsNTCtFAQAnuc/lrh3kuO4MQDuQ/da2EAAHgBXAWzmef4rY6S0CebtlSuRnpRkqgzTpk3DkSNHRO/ffvvtmDBhAt577z2UlZUpjt/lcuHpp5/G2rVrtYhJxNNPP+0/I6miogLvvvsuUbgJEybg3DljjtS87rrrcMstt6CtrQ1/+tOfVMWxfPlyZGRkqAr72muvKRr4hw8fjiVLlmDt2rVEO+D1ZuDAgVi4cCHeeust4jDR0dF45plnsGPHDpw9e5YozNKlSzFs2LBe19esWUOcLitERETg+eellyu3bduGCxcuCN576KGHkJaWpjjdN998E80KLAVfeOEFhIWF4eTJk9izZ4/i9OQYMGCA6BiWkpKCFStWCN5TUuerVq1CYmIiUbglS5Zg+PDh2L59u+T4M336dEyfTqy60Z3m5ma8+eabgvceeeQRHDt2DBcvXjRYKmFeeumlXm5jpcp77ty5sm1v5syZOHjwoCp5nn/+ecVuBrWyd+9enDhxQvDes88+i/fffx+1MhZbMTExePppxWr+Xnz55ZeibWP58uWorq7Grl27NKcTzNSpUzFnzhzR+0rH9dGjR2PRop7qzfb2dkPmOUp58MEHkZ6e7v/73Llz2L59u4kSAbNmzUJ8fDy2bt1qSvozZszATTfdRPy81Hxy/PjxmD+/e0vNiRMnsHfv3l7PXLt2DXv37kV1TY1oGhkA9gMo9f6dmZmJpUuXIjk5mVhOGqi1FLS6S10WYGlRxnYf2o3tPjQ0sMumJ2rGc1rs3LnT//+ysjL8/+y9d5wVRbr//+kzZ3LOOcCQ4xAkZ5SgBANGBAVdFOPsvbvu3t+6691w73f37t27jKuru64orqwJVxQDILpiAgXFgIAKOsAEhgGGyXn698ecczhz5nR3dXd1d3Wfer9e5zVzTldXPRW7up56nmpra8PFF1/Yssvy+MKCG22ntGXaloIswnJbNgqz8jxp0iS89tprqu+zY//hloLswLxSUAlRFDsAPOP5cBihKSEB9cnJlsrQlpUlK0NHTg5QVISmtDTUa1AKhYeHQywsNCWfYmEhEBcHAOiOjCROszk93bR6aEpLA4qK0NPSojnN7vx8oLBQ0731ycmqJk8tGRlAUREaU1OJzr0xmoS0NAgDBqgqu+64OKCoCK2ZmaivqCC7Jz8fKCrq97vV/VUL4eHhQfPiT2tmJuqrq4Ne68rLA3JzVafbkJKCJgkXM8EQCwuBiAi0VlUZUs4JGRmSY1hUaqpkGamSpagI8CgFle7rzM290C4rKyXDecdgZmhulsxbd34+Wk6cQL2GDSRG8FFNDaZNm9bnN7nyVnoeAsAbhw8DWttnUVFQt8RG0nz4sGSewoqLMWv1ajz77LPo6Ah0WngB7xiql9bMTMm20Z2fjw4Vz201tGVlycqvNk3vc9GfntZWJp8PXXl5QH6+7/ubL72EBovl7MjJQVdSkmXlddHVV6tywd4TFSUpa2tmpq8tRDY3o95v41FbWxtef/11fPHFF8RpxSUk4Ir58zF69GhLXBOacf4PJzisLmxKYcUiktnt0EqlYChZCubk5KCqqsqw+O1WNkbLW1BQAMi8d2hVGmoZEz755BPMmzePKVe8UtA8U1DrRhoryslId6g0oPUsCoxHb7x2VrSwfqZgkcZ3Urs9CwCPZTcBXCloPOw/pTgcjRh9aLJZrgMAewxo3d3dVougCm+ZsvIQ1eI6w4yDv1nGqjantj96wxvVj83Y+a6mjZHml7V2q1SOLI3Dx44dUxXeaNmtqEu5/h8WFoYBAwZg/fr1GD9+vGQ4WnLLxWOkWyTa8QaLj9UFfdqLHLSwalxzu92qF9WU2q0XfyvgEydO4LHHHiNWCLo9Fs2rVq3C2LFjLVsgpek+lGYdu2Vc3TkFVvomQDZfYnXMMwIjlYKk/cRuc0U1zJo1y9D47aBwMouUlJTezaIymGlJ2NbWZqhCmCY03YdqwSr3oUZAMx+HDh1CY0TPNvsAAQAASURBVGMjALYUIyw9083CrDMF09LSMGfOHNX32bH/kFoKasXMtXq7w2cSnJBF7+Bp1UCjJk0z5fMu0OpJU0+daL2XpRcqrUrBUEXvwo3ZSn2j0pNrw3Jp5qqwklTTT9577z3s2LFDUXHFWvtlTR45vvvuu36/mfXCEgzWlILe9pqUlCSrFLQ7SuWu9sUyWHxmu4XVSnR0tNUi2G5hi1TWiIgItLa2Ytu2bdi4cSPOnj1LdN/QoUOxevVqANYqv0RRlHSxbXV9zZtnp5N3tWGmko1GfXJLQev7hVMYPHgwRo4caVj8dqsnI+VdunSpYhitbjK1jgn+ljAsL04b7T7UqLMIrcIsWXfv3o2HH34YJ0+e1BUPVwoaC+3yMHozCStw96HsYMvtiYIgRAMYAyAdQDyARgBnAHwuiqL1fgA5TED6wHaypaAVSkG7EXgul5WobYtaFJp2mnST0NPTw5RiVw7WLAVHjx6NShk3O/6oKePq6mpUS7hs1Rqn1bBmKagWoxdlWVMK+stDag2lB6ssBZUYPnw43nnnHeLwweR0u90oLi5WbZ1qNIH9MSoqyiJJ2EBLGyPtG++99x4efvhhNDU1EcU7bNgwTJ8+Hfn5+UhQONfTDF599VXJa1afKcjSHNQoWHp2ckvBXsxwH0qqYHGypaDL5cKVV16JkpISnNm/Hygroxq/ncuGNiRjqZnuQ/XcZzak/d0o5Z4gCLZyH2pmnO3t7XjllVd0xcHdh+rHzI23tOfzrMKVguxgG6WgIAhhAFYB+AGAiwAEe/J3C4KwD8BjAJ4WRZHMUS0nJLHrblI1hJKloFZYWZDRMiH2hrfjRIAWSkpBIyZxrLkP1Zr/SZMmoba2Fp988oliGnZ4cdKLndyHqsXOskvB0kYUVt2HZmRkYOrUqdizZ4+udJYsWYJNmzbh/PnzuuKhSWCbDnVLQSMWEVpaWvCjH/0IjzzyCFF8w4cPx/Tp05GXl6daFiM5cOCA5DWrN6dYnb4Z2E3J5sTnZSBWninodYdHCmtzRbW4XC4MGjQIgwywlrZb2RgpLw2FFW357DKWGO0+lFsK6uPMmTO67ueWgsZiRHkMGDAA33//PXF4O/UfL2YoBe02/7QKW7yJCIIwBsAnAB4HMAW9ykwhyMftuf44gE8EQSixQl4OGzjJUtAf1t2HWoXWemRFKQiY4z7UjpMGOezwsGf1TEFBEDBz5kzdaWiFtbaotRztgBMtBUeMGKE7DjMsBa1m0KBBxGGl8pGUlIQ777wTq1atQkJCAi3RdMGVgvqRk7WhoQEzZ84kUggmJydj7dq1uPbaa5lTCALKz0ErzxTkSkG66Fn055aCFzCyXZ44cYJoM5oXO42pJNC0ardb2dhVKUhjEynL7xGh6j40FN5tAW4pSAOzj+gYO3asqvAstjslSMtNz/i7detWTfeGGsy/iQiCMAXAbgCjcUH5BwBNAI6gV1l4BL0uROF3fTSA3Z77OZx+eAfPiIgIzfdz96EX4JaC+tCymMgtBfUt3oT6mYK00tAKa+3W7paCoXam4ODBg4OeUzZp0qQ+382QzQwXpVrjptV33W43Bg4ciKFDh1KJTy+BbZqVsw+dYCl45swZ/OQnP8Gnn36qGMeoUaOwbt06FBQUqE6fBbj7UONh/dkZiN3k1YORZwrKxfHee+/5/ney+9BgXHXVVdTiclrZGI3Ryi+7QtNS0E7uQ7Vi1ZyfFez8jDRCdqOUgosWLUJiYiL1uO2GndubXWDafaggCPEAXgDg7Q3tAB4GsEkUxS+DhB8F4CYAdwKIRO95g88LgjBSFEV1vio4uohraEBieLilMkSdOoVEmbNMwisrgYQEDHS5UKvhzJOY9nagvFw2DVoIx48Dnt35YQr58kepDGgSHR0NlJdDaGrSnKa7ogLo0ub1N7Gurs+B3krE1tb66q+VgTNvYmNjIRw/rqrsEt1uoLwc0TU1xPe5KyqAIItQZrUT2vR89x0QEyN5Peb0acm8hZ08CWhQKsafPYvwtjbyG8rLgdhYRFZXG1LOcWfOSMYb193dm74ErsZGIplcJ04AnkV3WnmIOnVKVjazETo7ZduKmn5mCgFlJyefUW3Pi3D8OGDyi3AEgJXTp2Pbtm2+TSm5ubmYN3Bgn7IJkxkDEhT6BylK40yETB/VQ3RNjaL87ooK4rRjTp9WjE8ur2YSdvIk4LeIxEL/jKyuRnhrqyVyREZGqm7LYfX1/WQ9efIkdr76KsI6OlCI3rMasgHsA9DhFy4pKQmXXXYZBg8erE9wi7F6Ac9OC6FaYcnyjsRSMBQWoKy0FFSL1X2UNunp6Vi8eDHeeOMN3XHZrWys3iRFsgkkWO/nloLcfaid4e5D9WPFxtvJkydj8uTJaG5uxubNm1FdXS0Z1o79JxTbEaswrRREr3IvF4AIoBLAIlEUD0kFFkXxIIAfC4KwEcB2APme++8A8DvjxeV4Wf300xhptRBlZZiscB0Apno+mvh//w+lWu9Vg9/B5FmAOWlq4Sc/QRx0yKfjAPa7tNx0zz24TnOKBvDjH6svu/vvxxwAc0jDS5Sx6nRZQaHNLPB8tNwrxe1qb6Ax1ujh17+WvBQPwrr3Kyui8CrjZIFwyOStrAxLzBOFjIDyk23rAKaZKItZFAG4O/DH++7r8zUDCm1Wpn+QMtfzCUpZGbIAjNKdSvC4lcgD3fF9DlQ8b4wkIO+zPR9L8chUalX6//M/qoInIrisfwjy2wwAH3j+nzp1KubOnavZ0wZLcPehxmO3hR8rlJhmL+iZoRQkzVOoWQoC9PIUCuMHKawrBVmG5lmLRioOaWOErHYYr7j7ULoYXR6xsbFYvXo1fvc7aXWGHdqdVnh7Mx7WlYJX+P1/rZxC0B9RFA8LgnAdLry/XgWuFDSVp268EdmpqZaknZqaiquuugoHDx7Ehx9+KBlu0aJFGDZsGHp6evDoo4+io6OjX5ioqCi0SVgExcXF4eqrr8YTTzxBTXYp1q5d6zvHp7q6Gs899xzRfcXFxTh27JiRovlIS0vDjTfeiMbGRjz++OOa4lixYoXm82gefvhh4gNrAWDgwIFYtmwZXnzxRZw8eVJTmjTJz8/HFVdcgQcffJD4nszMTFx//fXYvXs3Dhw4QHTPlVdeGdTN14YNG4jTZQn/vhGMHTt24PDhw0GvaW1vjz76qOS4EIxbbrkF8fHx+OCDD7Bv3z7V6SkxaNAgHD16NOi1+Ph43HLLLZL3Njc347HHHlNM484770S4x/qbVluZP38+Ro8eTSUuGnR1deGhhx4Keu2aa67BJ598Ytp4qkRYWBjuvruvOmznzp04dCj4NCktLU33QfVylJaWGha3Xmpra7F58+ag1xITE7FmzRrdabzzzjv47LPPgl67/vrrUVtbi127dulOJ5ApU6ZgyhR5L/lq5gyjR4/G/PnzZcOoed4YyeWXX46ioiLfdxbkmjNnDpKSkiw5wyIyMhLr169XdU9DQwM2btyIlpYWvPfeezh85Ei/MHkA3gdQjd7nyRVXXIGBAwdSkZkFrF5IsTp9M2DJUpCEUFiA4paCzsBuZWMHS0Ga2GUsIe3vRin8BEFgxgW8E+GWgvqx8ogOoHdNWm5d2m7PAsD4MwU55LCuFByEXivB/aIo7lFzoyiKewRB2AfgIk88HBNpSkhAfXKy6enOnTsXEyZMQExsLNrPnpWVoSsvDygqggvA8MWL8e677/a5npKSgpjERNR8/33Q+8WEBHTn55uSz56CAiApCQDQ7XYTp9mUlob6c+cMlOwC7qQkoKgIPfX1msukIycH8FvkU0N9crIqpWBzejpQVIS2rCzUNzVpSpMmKenpEAYMUFV28RkZQFERWo8cIb6vOz8/aBlb0V9p0J2fD8jI3pKRgfpTp4Je844BaqlPTlalFOwpKAASE9F69Kgh5dySkYH6s2eDpx0fL5/H5mYimYQBAwDP+W208tCZm6u5vxuB0N0tmbeuvDw0nzhh2niqRExMTL+ya83MRL2Ea5H67m7ZfkJCRERE0M0zAJiqx0B6oqMl69WVnExF9rasLMk0egoK0BkRYUjfJ3lmiirSbs3MVIyv7euvmXheBI4fLYcPWy5XR04O4ouLUb97t+lpR0dHq2/LDQ34qKYGL7/8MlpbW2WDJiYnY/nNNzvufBOrzxS040KOWsxUCupZ9FdSlBmJVZaCXtfbgXBLQXvAy0YdWs8U5O5D9bkPJSFG5igQowgVS8HAthfKloJ2OVMwGCy2LTOwc3uzC+xsAwuOd8tIv/MDCTno+Wvt4XYc05g6dSpiY2MBqHsxnDFjBiZMmOD7np2djRtuuEHxoc/6IGWmfFIvlmpQcyZgIFoflGFBztezAkEQVOfBjEk66yi1Oxb6qJXn1NBabDFi1zhLO9EBe/WjYPVqZPuaPXs238Urg1VtJ5XAI4MZbp+sgPYiBw0EQUBqairS0tIsSVsNoijiF7/4BZ599llFhSAAXHvttY5TCALWt3kj01ey+jULFvqmGuwmrx7sYCnoRGj1e6vHL7VwS0E20aosJYWk3K1QCoYK3FLQGdhNGU0L3t6Mh3VLwUr0WvlpPbTCqwysoiMOh3W0Dojh4eFYsmQJFi5ciNbWVll3hP5pmTVI+afT0tKi6T6joaEUpBGHWlhRCmqBv7Tr29Ftdv+1s1LQiMmmnSawoigyNSk125LhoosuwldffYXGxkZT06WBGS9RVmwgCg8Px9ChQxXD0VYKstJvWVUKAsDSpUtNcS2vlbq6Otxxxx149tlnFcOuXbMGeOIJREZGgtw+3j64XC5LzxQ0kvHjxwOnT1stBlPuQ1m1FDQbJUtBlt6N7NLfrICXzQWMVApyS0GyTch62qOdlIJ2U87Qbnuh8IxUAwt9m8V2pwR3H8oOrCsF3wUwGMBkjfdPRq/70feoScRhGv8BUcvEJTw83HduFqA8CJk5SDU3N2PLli0oLy8nvsfMh7b3xVJPmeixFFTLoEG9XoVZefHV8jD3TuKdaglCglIbZ8FNBFcKmhenHpQWC1malJo5tqelpSE2NhYREVr3Z7GLWUpBGgS6b12wYAHcbuVpvJrNI1wpSIdg5/YaDWm9HDhwAMuWLUNFRYVsOJfLhT/96U+449JLAYYVnHox23LErPiHDh3KzCKrmX2TRnlaMZZY5T5Uai5BQ55QtYYzE7uVjdXy6lEKahkXWJqXyMHdh4YWoew+VCtWnykI2E8ZTYtQbG9mw7qZyV8A9AAYJAjCdWpu9IQfjF6l4F8NkI0TAsgtvAqCYNrCrCiKeO6551QpBL33mQUNK7/c3FzN96pVjI0ePRoAO0pBLTh5AkCKHvehZlsKtre3m5JesLSlsLINsdZ+SSwIWMFM96Fel9zcfag0ZrTldevWYd68eZg+fTpuvvlmTJw4keg+1vqZUbDQR/3LmhWFjD+vvfYaZs6cqagQTEtLw29/+1vccccdvt+Ki4uNFs8StPQPO/Sp6Ohoq0XwwZJVAclznoWxRA8lJSWKYZSUgma9G5GUtR36m1pCVWGqVt4iFefkcveh2uHuQ9VhN+UMdx96ARY2i2vFbu1OCTu3I6fBtFJQFMX9AH4DQADwuCAIK0juEwThSgCPe77+lyiKHxskIocx9FoKBqKkFCQdzPQO1E1NTTh58qTq+6xQCmpNMy0tDSkpKTRFkuTyyy9HVFQUAHsrBbVYCjoNlhabpBBFEV9++SUOHDhgWPxargHWth07ub8NZUtBbxuxq1KQBfehNEhNTcXMmTNx8cUXo7CwkPg+bikYGijVy5///GcsW7YMzc3NsuFmzpyJ22+/3bdxysu4ceN0y8giSnN5u1oKstJPAfv1TSvmlTTra/DgwcRhjTxTkKU26FScXsbTpk0jDktSFlqVXzQsBVkeB0n7u9Pch4aCFxyA/nyZ5bZsFCxsMmexbZlBKLY3s2F+RU4Uxf8EcC+AMADPCYLwjiAIawVBGC4IQqzQS6zn+xpBEN4C8AJ683avKIoPWCg+x+YoLRSQDlIkLr7k+O677zTdZxdLwdjYWFx99dUUpZFm1apVGDNmjO87K0pB74M+MzOT+B4tL+1Om1DocR9qVv84d+4cXnrpJVPSCoRlpSCLbZFFmYLBlYJsYbULQlpp26X9A2wqBVms5+7ubvz7v/877rzzTtlxIywsDNdffz3mz58fdM6am5uL2bNnU5OXFZxqKciSjFY8r7Rcd4qlYG5uLi6//HKflX8wlM4UNKv9hKqloBrk3lPtVjZy8mZmZuLmm2/GjBkzMHPmTABARkYGlbhJw8gpBZ2M0e5Dle7r7u62laWg3eCWgsbCQnnY7VmgBhbK1+lYfqagIAhqNAkCgJmej1K4CAAbBEHYAEAURdHyvHKMh1VLwfDwcHR2dhKFDYbWHZtmDqKiKKKnp0d1mosWLcKECRN0K05JSUpK6vOdFaWgl9GjR6OmpoYorBk+/lnHDmcKHjx40NC+qMftJYuL2FYiNa6LooijR49aIJE0oij2KUOj2pg3jcmTJ+Pzzz/vdz09Pd2QdGnhFEtBrdC2yLU6P15Yf0lkoZzq6upw/fXXY8eOHbLhUlNTceWVV8q6cBcEAXPmzEFJSQkOHTqEN998k7a4lmC1Qt+o+FmyxLeDRwd/7CZvMMaOHYsxY8bgV7/6VdDrZrgPDVUXmSSoyZOTlIJyCIKAwsLCXk8IKo9LUZOG1uuhbClotFKwo6PDtHUgoxEEAWC4rmnAcls2ChY2mbP8rqkF0nILxfZmNiyMvgJ6z/2Ta8liwF/vfVrDcQwmrqEBieHh5idcXg54rRqqq5FYVycZNLyyEvC4kJQi5vRpyTgSXC64TpyQTcNLfFcXwhsbFcNJ3n/2LFE6gcRGR2u6Tyvdx47B1dysKs1BbjfcCufbkJBYV0d0ZlvYyZNAQ4Pve2xtrallJEVsbS1QXo5pOTkIGzoUX3zxBdrb22UtMOPOnAHKyxF16hRxHtwVFUEnqyyUgRY6vvnG1+eDEV1TI5m3sJMnAQ0LH4l1dejo6CAOf+Ldd5GoOhVy5PIYHh4u/3Ld1UVW935x0GorEVVVAEPnHgFA0vnzQfvc0V27mOsjPd9912exSO55pQfv2JQlihggCDh37lyf6+OHDjVsAYcGrnPnJMsl3uWiIrtcH3SdOIEIFWO0JBrldDU0EKcdXVOjmI5cXs3EXVEB+FnCsCBXZHW1r/wSzp2Du6XFtLTju7r61N23336LW2+9FcdPnIDX2WwYgGwA+wB4n2AjR47E8uXLERER0Sc+qQWGpKQkDB8+PGSUgrTuMSMuM+LVAksLOqxaChrlxi4hIQENfu88XpQsBc1SKnNLQWXklIIsKf9JMLIuWbQUZGnsk4PWmYJa65dk/cYItMprl3qVgrsPpQsLSkEnw9ub8bCgFASUFXekPSA0ewqDrH76aYy0IuGyMt+/4z0fkrBSrFQK8ItfoFRZKv2UlcEWp7mUlSEJUFcmBPVAwnqN6U33fJjghz+EAGCK50PE3XdjBoAZpOElyruU9H7WUGg/S3XcK8Udmu6ykP/9X8lLbhDWvV9ZEYVXGScr3C1zbaFpUhASUH6LPB9D+Pd/hwBgNYEcrJEChTb7i1/oTkN2zC4rQyqgf06ksZwTQHd8n+b5WE5AeSzwfCzFT6Z1VqT/m9/4/h0MYLdEsBkAPgBw3333ISoqynYLyzSx+kxBo2BJbrtZ3tlNXi0oWQqyNCaw1JatIJQsBY2+X4/yS6+lIMuQKkuNtBQEes9D/fbbbzWlwQos9knuPlQ/LOSZWwpyjMJypaAoiuzMOjnUeOrGG5Gdmmp6uqWlpb7/Dxw4gN27pZZEgGXLlmHgwIGy8f3973/H2bNng15LT0/H3Llz8fzzzyvKlZaWhjNnziiGk2L27NmyeZEiMzOT2BUlDdatW4f29nZs2rSJ+J6bbroJycnJutN+5JFHiHaarV27FgkJCb7vH3/8MT788EPd6etlwIABWL58eb/fjxw5gu3btwe9Z+jQoVi8eDE++OAD7Nu3jyidq6++OqiLsA0bNqiSlyWk8gQA27Ztw7Fjx4JeW758OQYMGKA6vYcffliXO2DaDBo0SNK1ZVhYGO6+W1rV1dPTgwcffFA2fpfLhXvuucf3nVZb0Vr+RvLQQw+hq6vLajGIuOOOO/pY97zxxhv4+uuvqadTVFSEyy+/vM9v7e3tcLvdzLlfDkZdXZ3kMyktLQ033nij7jT27t2LvXv3Br120003obKyErt27dKVhv/8Rg1NTU3429/+RhR24sSJmDFDfovJnj178NFHH2mShSaLFi3CsGHDfN+3b9+OI0eOWCgRsGDBAowYMQIA8Nhjj6G5udm0tBMSErB27Vp8+OGH+MEPfoDmIFaKeQDeB3BaEPDYX/+Km266Cf/93/8dND6nLT5IoWWRmFsKqsPMBR0a+bZyAYr2M5XkLK9g0FAKcveh0oSq+9BQthRkeWGblvtQvZaCJSUlpioF7dZ/tMKVghews+xyhEpb5hiD5UpBjjNpSkhAPQVFjxoEQQCKinzfO2pqZGXoysvrEz4YDSkpqJfYRRmdloauvDyifMZmZqJexg2kEm1ZWZrKMyY1FfUq3BzqpSsvD90dHapkFQsLgZQU3Wk3pqaitbVVMVxPQQHgd65gV1WV6W01GC0ZGUHbY1dTk6R8bVlZQFER2o4dI85DT0EBkJ/f73cWykAr71dU4Nrpwe09m9LSUB/g7tALyRgQjPrkZKaUgs3p6aiX2Lzgcrlk8yiIomLdh4WF9Ylj4Lx5OHDggBZR+9Cdn6+p/I2kISWFqbqVo6egoI8L7JaMDNSfPk09nWBjUyT1VIyjJz5eso1HpaVRaYMdJ05IptFTUIAOgn6miFY5ZZ4hgXifKXK0l5cz8bzoyMnpI2tzejrqTdwEFYzO3FyfTA0pKWgKcMlpJGJCAv53yxb8x3/8h+LGhr89+SRmrV5tmw0QRmK1+1CjYElGlhbhSCyBrLAU9Mo1depUvPbVV9TjDYQVS0HuPlSZsLAwSK0gOKlszMiLHqWgky0Fje7vSuXuVQqOGDEC8fHxaNRx5I7VsNgnA9shdx+qHhbyzGLbMgMWyt7pcKUgJ2QhGVjlXgyVXA75o/fwZK0vqGYPonLn30lh9gMuMD2WXOSoxSt7qE4SvNTX10teY+FgaCtRyqOWtjNhwgQqSkEW2y2LMklh1sKlncokGFYvNAmCYGkZqknbTnUd2P5DYTyXoqWlBS+88AK+UlAmDB40CDh6FLNmzQJgnCswO2G1+9BQsBS0mztOK8eSiRMnImHMGHzzzTcQRRGffvqprvi0KgVpWCxyS0E6OEkpaKQFupGWglrxXxdheY5Cy1JQK/6ensaNG4d3333XkHTMgMU+yS0FnYHTPHhw96HsYN/VcA4ngMDBkMbgSEspqPflyk5KQbVpWv0QY0UpKFUOTpsAGEF4eLjkNSP6gJ0mJzRkDWxnubm5uPjii3XHy0rfsytcKaifUFi0pK0UZCWvHQFeEFgYl/3LxqxyOnr0KB599FFFheDixYvx0ksv9fmNzy+4paAZmKkU1LPo7x1DrBhL/OUaMmQIlixZgksuucSw9Lx5lNrMaVb7CVVLQe4+1Jq4zbYUfO2112xhkW+0+1Cl++Li4ojD0sRu/Ucr3FJQPyzkOVTn7CyUvdOx9YqcIAhxgiBkC4IQpxyaw+kLyeCpNAiRDlJ6F7/tpBRUi9mLsqFuKejESYNWS1w+ySAjWJuZPn26rDJWa7xWw6JMUtB+yZPCTmUSDBYsBa3Eqc+HwDOEWRjPzSy/1tZWvPzyy3j66afR0NAgG/baa6/F1q1b+yy8AdxSELA+L6FgKchC31QDLSWm3g2hNOpQKQ4jLQU5dHCSUpB1jChPGp5VjEbL2bpqULp/6tSp1NKyGrvLT4LdnumhgJPbHW9vxmOr1XBBEAoFQfgvQRA+FAShFUA9gAoA9YIgtHp+/40gCAUWi8qxAJYtBfUqnrQo2wBuKUgC60pBsxabs7Ozg/4eExNDLQ2jkFMK8omEfqTaWXx8vCHxWgmLMknBLQXZgeUyoi0bK3ll0VLQDOrr67Fr1y48+OCDRIuNd955JzZv3owIE883tBPcUtB4WHIfaqaloN73CyOVgkqWgjTejWhsviWNx8nIKQVZf4cNJNQsBQFg9+7dvjhYxWr3ofn5+YbEq0SojC3cfegFtMrOQp5Z3oCqBe4+lB1sMZMQBCFCEIQNAI4C+CmAyQAiAQh+n0jP7/8B4JggCH8UBIG/AXMk0fuyYqZSUOsLtdkv4loGbbMfYqxaCmpxuUHTUnD27NlBf6fhJtJotLoPtfPE0Ey0uoPRGq+VsCiTFFwpSIYZL1Esv6hFRkYiISGBKKyd3IeybilIu5xaWlrw+uuvo6ysDO+//z5aW1tlw8fExGDTpk146KGHJBeVtbZbVtoADdTM5Y1K307xasHM8jV6Q6gaWLYUVDpTkKX2w5IstAhV96FGYrRSUCvNzc2a7zULo92HyjFr1qw+m3vt3qZZlJ+2ZxmWNvpo4fTp0/jggw/w8ccf4/z581aLQwyLbYvjDLT5XDMRQRCiAbwJYCp6lX+ywT1/wwDcA+AiQRAuFkWxzUAROYxgtqWgml1joXKmoJVKQa3xsKIU1AJN2QcPHowRI0bg0KFDvt+Ki4sxatQovPLKK9TSMQJuKWgsRk1CWex7dppwBz4XuPtQ9VjtWtQMBEHAmDFj8P777xOFtQssKgWNoLW1FZ9++imRItDLiBEj8MILL2DEiBGa001OTtZ8r52w2lIwFJSCLC0gmmkpqObdL5hcRioFX3/9dVRVVaG2tjbodRruQ61+v3MKTlIKatlsMmrUKBw8eFBX3KSQjA9OxMp2RLppjcMOdu4LXV1d+Mtf/uKbl7z99ttYvXo1cnJyLJZMGadt1uOWguzAvFIQwGMApgHwtoavAGwE8AGAcgDNAGIBFHnCrQEwGr0Kwqme+1eZKTAHiGtoQKLO86bU4na7gfJy3/eIqiok1tVJhg+vrAQUXnrizpxBeMDCk5fYiAiEnTwpm4Z/PCThpIisrtZ0f1xPD7rr6zWnqxbXiRMQwsNVyeo6cQKg4KIy4dw5uFtayNKLjfV911q2tImtre3Tfr3ItePomhqgvBxRp04R5yHs5Emgs7Pf7y4AV02YgAmpqaipqUFGRgYKCwvhrqxkonzkiDtzJmjZAb3lKiW/u6ICiIpSnV5iXZ1ml75GEHP6tHwdSZSNF6X6jYqKChpHwrlz6NLRNtwVFUBXl+b7jSDh3DmEEy68W41w/DjQ2Oj7Hl1TY0hflRqb7IKroUGyXOIiIqjkTW4MFo4fV5yPEKFDznkDByKiqgqffPKJbLjI6mrFdNQ8b4zEXVHRR1a5sd4sIqqqAM+5fQnnzkHw659q6enpwYEDB/DRRx+ho7MTGZ7fwwBkA9gHoCPIfevXr8fvf/97xPrNc+QoKipCeUCdu1wujB49WvIeOy4+SOFyuRy54MDSphuWlIIkWGEpaJRSUI7PPvtM8ppZ7Ye7D1XGSUpBLUydOhXffvttv41AWrDCUpBmHEZBWi5GWAoasalfa9qsxqkX2paCLLdlEvyf8e3t7dixYwfWrFljoUT6YbHd0cLu7c0OMK0UFARhEoAb0KsQ7AHwYwBlYv+W0QzgNICPBUEoA3A3gD+g9935BkEQHhRFcZ95knNWP/00RlqR8B/+4Pt3jOcjSVmZYnTrCZIsJQgDAIsJw0kR3LkjY3jKtFTDPXpZpzG9oZ4PE9x9d7+fiqFcnlM8HyJkytsFYKDn449S+ixzldxFjW2vfy0xjkI+S0ni+N3v+v20WpMwflDq+zS5zWoB1BBQfkssEoN1EqDQxv+//093GuM8n6CUlWEkoH9OpKO/CABmej5607jI82GCe+7x/bvMQjF8+JXfLQYnNQO9uyO9pKWlYcuWLZKuwKWYNWsWKioq0OW3QWPGjBkhcwah1QspoWApyNKCDoklkJOUglZ6UeGWgtKEqvtQLfLm5ORgzZo1ePTRR3XHrUepxdI4RhtaSkEt8QeONXZr03bAiLYriqJj6urEiRPo7OzUfByNWTjNUpAUFsre6TCtFERfC78fi6K4QekGj8LwQaG3Z/zR8/Nq9G6q5ZjEUzfeiOzUVFPTjIiIwB133OH7/uWXX+Ktt96SDH/VVVcpHmz88MMPozOIVRUApKenY8qUKdi2bZuibIFuGdUyevRofPnll6rvS0hIQENDg+Z01bJixQpERkZi8+bNxPfcfvvtvZZIOnnssceI/PavW7cOMX6WiceOHSOqQ6MZNGgQlizpv6wvJ9+kSZMwbdo07N27F3v37iVK5/rrr0dmZqYq2TZs2KAqvNmMGzdOciF0y5YtqKioCHrtsssuw+DBg1Wn9+CDDzK18724uBjHjh2TvF5aWip7v1L9RkdH47bb+qvL/v73v+Ps2bMkIgblhhtuQEZGhnJAEyEdR1hg5cqVSE9P933ftm2bbDvQyrBhw7Bo0SLq8ZpFQ0MDNm7cGPRaVlYWrrvuOt1pfPbZZ3jnnXeCXrvllltw4sQJvPnmm7rSUOrHJDz99NM4c+aM5PVp06Zh0qRJsnHs37+fyBWp0WRmZuL666/3fd+6dWs/izez8X+mbNy4UfX8q7u7Gx9//DE+/vhjSL0C5wF4H0C153tERAQmTZqEq666SrVCEAAGDBiANWvW4Msvv0Rra6vPlbgcTlp8cFJe/GEpX2bOl/Tm+8yZM3jxxRepyaLnzEq7KwVpwVJbtgK5IxLsVjZalW6ZmZmYOnUq9uzZoyluUriloLbreuK3cqwJVUtBTn+6urr6KAXb29tx8uRJJCcnIyUlxULJLsBi29IDdx/KDqwrBed4/laRKAQDeBDAjwDkAJhLUSYOAU0JCag3+TySiIgIoKjI973z3DlZGbrz8/uED8b5pKQ+u6f9iUxJQWduLlE+O3JyUF9drRhOiub0dE3lKSYkoIHCuRCkdOXlwR0VpU7WoiJNLhwDaUhJQRPBznaxsLCP+9Cezk7T22owWjMzg7bHrvZ2Sfnas7OBoiK0lZcT56E7Px9Q6TedhfKRoyUjQ7IvN6amol5CydOZm6s4BgSjPjmZKaVgS0YG6s+dkw6gkEel+u2KjQ0aR2NqKup1lENPQQGQlaX5fiNoTE1Fo00sZDpzc/v05aa0NPl2oBGpsck2NDRItvH49HQqeeusrZXuR0VF6Ojq0j+OUpCzMTUV9TKujztychTT6aiqYuKZ4I6P7yNrU1oa6k10lx6Mrrw8n0wNKSmoJ5x/iaKIr7/+Gjt37sQ5wj4cExeHxTNnoqSkBJGRkbos+3JycmxxnooRaFlkoblAYZaloJULr3ZZ0Ons7FS1qZEEl8tF5G6eNYtRGmcK0sJpC6Fqkeu7LClvjYaG4kqP+1C7jGNaCFX3oUZgB/lpKbntkFdS/PNy5MgRbNmyxffsHjZsGOIZODaGWwpyjIJ1pWAuel2Hvqf2RlEURUEQ3gNwHXoVgxyHY8RgKLfw39PTI2kZEIjeSbtWBYTZg6iWSbPZDzGWFkpIINldp6bMnThpkOsfcmUTCpMMf0syrUi1Gb1tifW+xzq0z4iQwoljBm3sUkZWWp7QJvB8IbuO5+fOncOOHTvw9ddfE4V3h4UB3d1YvXp174YYD3Y/h8cqnJQXfwLzdckll+D5jz+2RBaWNlHJ1fcnn3yC8+fPU00rLCxMs1LQyrZplvvQUD1TkLsPNfdeltJgEe4+1NkY5T7USXjbXXNzM1544YU+85YjR44gsa4Ol1olHAFO7jdOa2sswrpSMNrzt0nj/d77omVDcRwJjd1Mci+yci64AgklpaBarD5zgnXFBG2loBMxe8GJxfKeO3cu/vWvf/X7/eKLL9YdN2s72I2ERZmkCGz3XCkYHL6QRI6d8sGiUtC//JTKsrGxETt37sTBgweJZI+MjMTUqVNxyeDBwGOPyZ59wiFHj3tHWumbEa+Vc127uA89fPgwRUl6IS13uc1XetqnEYv4HHNxklJQDr3rNqxbCrIwR5GCtB0ZYSnI3YcajxGbSHt6epiyKNeLt0y+/PJLpjYy+eM0S0GWx8RQg3Wl4Bn0WvkN0nh/sV88HIfD8mAYSkpB1gd4lhZK/NHjcoNbCnJLwZKSEhw4cKDPLvfCwkIMGDDAOqEUYLEtsiiTFFwpqB8zNqWoqZecnBxUVVX1+33s2LGa5FILjUU1s+js7ERPT48tN8eUl5fjxRdfRGNjI1H44cOHY/HixUhISEBMXV3QMNxSUBtW5yUUNt2w1DfN7ieki6asKQVpLPZavenTKThJKWikpaDRSkEnY+WZgk5zH8oi3FKQnP3791stgiSh2jec2tZYgnWl4FfodSE6QxCEAaIofk96oyAIAwDMRK/70a8Mko/DMEZPcNSg9+WKxPVMMOxgQWX1Ay7W73xBFuGWgspoVQo6iYSEBKxZswaffvopTp8+jby8PEycOJGKNYlR7kOt7vvBYFEmKbj7UP2YkTc19XLppZfib3/7W7/faSkFWZoX0aCjowNRnjOJWRjrlcqvp6cHu3fvxrvvvkskb3R0NJYsWYKRI0fSEpETgNWWgkbBUl9mdde9GejdeGjVPMusDZPcfagyTlIK6sFqrw+hbClopvtQMwlVS0FW47QSO+THaZaCpNihbuwO60rB1wEsABAGYLMgCAtFUVTcVisIQiyAp9GbPxHAq4ZKyWEClncacUtBaczeSRoYLjU1FcnJyaiT2H1vFnpcboT6w1KrNaDWcmO1vBMSEjBnzhzq8Ro1lrJipesPS88NJcyyFLQ7dlpIys3NxdKlS/HGG2+gq6sLbrcbF198MVMWvyz1kfb2dmaVgoHlVFdXh1deeQXff0+2v3H8+PGYN28e4uLiVKdtNCy1Ab1oeQ7RbGtmWQpaWWdm9k2WNj4IgkDFfaheGbRg1pmCZsZjV5ykFDRSXm4pqB1aSkEa7kPt1qbtCI327PQ+wSJOUwqStiHe1oyHdaXg4wB+CiATwGQA+wVB+DGAV0VR7KclEXp7w2UAfg9gCHoVgjUANpomMcc22MlS0E5KQbWY/RALtlAyb948vPjii6bKQQrJBIC7Dw3dXehW4kRLQTvB3YfqhzX3oUCvMmjMmDGora1Feno63G7zpup2ch8K9FoKemH1pbGpqQl79uzB3r17ibw+5OTkYMmSJcjJyVGVDkv1YiecWm4s5SuU52h63YdatXmKWwqyg5OUgnqw0n0owO4cgwbcfSg9WJSfWwoq482PXfPFYrujhV3rxE4wrRQURbFZEIR1AF4C4AIw2PP/GUEQPgZwHEAzgFgABQAmAUj33C4A6AJwqyiKLWbLHurENTQgkYLbOjVEt7UB5eW+7xFVVUiUsf5yV1QACgs0cverkq2mRldcWu+PiIjos2hmNGEnT8IVE6NKVuH4cYDCy2fCuXMQSM7nKS8HIiP7/DQqLg57OjrQ3NysWw6txNbW9mm/XtwVFZLlGXXqFFBejsjqauIyd504AbS2qpKNVj8wCm85BCO2tlZSfndFBRAfrzo91soj5vRpyfyToJSfhO7uoPHHnTmjqyxcJ04AfmcgskDCuXPoYUwmKVwnTgB+CiO5tq4Hve3LalwtLZLlEhcbSyVvKQ0NkmlEVFUpzkd8eGRxA8gGgIoK3bL5E3/2LFpl5IisrlYsD+K8qEQQBAwfPhyHDh0iv6m8HPA8t41q/2oIr6wEIiJ88uzZtQv79u1DV3c38tDr9iQbwD4AgTOz1NRUzJw5E2PGjGHSitofGosPBQUFOHHiBAVp9GH1QopZloJWEqoLOmosBeXisOJ+GmcK0oKltkwLWu5DWX9WBKKnLs2wAjbSUpDlcdBo96FyOM19aKjAcnt2Kk6zFCSFtzXjYVopCACiKL4qCMKNAB4DEIdeZV86gEuDBPfvDU3oVQi+bryUnEBWP/00LDkB5be/9f073PORpKxMMbpSvfL4pXURrbhYxlOmpRru0cstOtP7ARUp6FMImfL05GW250OEhvKWTJ8l7r476M83yN2jse2VarrLYO65R/OtpSSBfv3rfj+t1JyiB0p9nyY3Wy2AGgLKb4VFYrBODBTa+I9/rDuNArk0ysowEiCbExncJ2THQ8L0Szwfo1igJrCfvNdSl0QDfvLcAul5yQwAH/h9nzhxIhYuXKjrDFi7LQhccsklePzxx60Ww3blRgpLLtlYsxRk0VMMa+5DjVSw+EOycdWpfZQUJ1kKGqkUpBGHnFLQyQvTWo9g0RqPPyw9q2jAovxGnEHv5P7AKiy2LT3wNsQOzCsFAUAUxecEQdgH4AEA1wCIRF8FoD/tAJ4D8CtRFL8zSUROAE/deCOyU1NNTTMmJgbr1q3zfT9y5Ai2b98uGf66665DVlaWbJwbNmygItvs2bOxe/duzffn5OSgqqpK9X1utxtdXV2a01XLkiVLEBsbi+eee474ntLSUippb9y4EQ0NDYrh7rjjDkR4dvL788Ybb+Drr7+mIosWhg0bhkWLFvX7/eTJk5KuTS+++GKMGjUKu3fvxoEDB4jSufHGG5GWlqZKtrKyMqYf3AMGDMDy5cuDXtu8eTNqa2uDXluwYAFGjBihOj1a4wItiouLsXTpUs33K+UnKSkJN998c7/f//GPf+D06dOa0/3BD36A2NhYzfcbwVNPPYVz585ZLQYRS5YswaBBg3zfn3/+eU3PCSVKSkoMOavSLFpbW/GXv/wl6LW8vDysWEFHnfrFF1/g7bff9n13uVy47LLLUFxcjK+++gpvvvmmYhy0nodSKPXZOXPmoKSkRDaOwHzSwu12Y/ny5apceV977bXIzs4GADzzzDOoqamhLpcali5dirfffhv/+7//i/Ygi915AN4HUO35HhkZieXLl2t6DlmJ3oWJ2267TXH+bRaCIKie39jxTEErMVMpyFK+Q/1MQRKefPJJIDlZNgxLdWoFci7EQ6lslNok62XB8nu00VaYcnm30n2oEWmx2A65+1Bl7OA+lFsKcozCFkpBAPAo+G4SBOEeANMAjEOvxWAceq0CawEcAPChKIr1lgnKAQA0JSSgXmGST5vuuDigqMj3vbOxUVaG7vx8IDdXNk5aeejIydEVV1xKCupVunwEencXkpxhQ4uOnBxExsery6tfnemhISUF9QQ7coUBA4Agu/FbMzNRr0PBoZfWzMygZdElipLl2ZWXBxQVoeXwYeIy7ykoADIyVMnWkJLC3E5vfxpTUyXbUUNKCuolFOOdubmq258oUx9W0ZKRoasfKeXHLVG+zenpqO/s1JwuiooAxpSCjampqLfJ5LM9O7tPvTSmpmp6TijRlpVFbZy2ArGlRbKNp+jsO/6MKSpC7MiROHLkCNxuN0aOHIm8vDwAQEddHdm4YXA5K/VZkjGx48wZQ8bAiIgIdOfnq4q7MzcXKCgAADSlpaHeRHfpgdTV1eHan/wEn3zyiWLYbvRu9lqxYgVSUlKopG+nBQFaeaaBncpNDSzli7UFHW4pqAwN96FmnNlrV9TkSU4ZZreysdp9aChaCo4cORJnzpyR3TRFy32o1FqBXNnZzQWuHeGWgs7Hbs8CgLwN8bZmPEwrBQVBGOP39StRFLs9Cr83PB8ORxIzfM+TojctrQoZsxU5agftXAWlrBqsenE2Gjm5vBNpNeWu1bUHy0pBrbLxSQYZoWDJ4IVFmaQIbPdGtWc7lYnVFBcXo7i42GoxNENjUU1P2mrj9t/0ZOV4fuTIEWzduhVtbW1E4S+ePx+506dTXQyz05yWpTFFi6Ug7fTtFK8Wenp6EIrLvixYCmqFL9Szg5Pch+rBjLw6oTwnTpyIlJQUnDlzBgUFBRg9ejTq6+vx4IMPSt5DSynYKrExUY1S0O51wKL83FJQGTvkh1sKcoyCaaUggM8AiACOi6I40GJZOIxjpfsBJaxSCpo9iKrdSTdlyhQDpQkOS+3CHy1yee8xup5ZLTMvcv2DTySMw0kLw15YlEkKI3Z+BsNOZRKMUH2Jshsul0t1ffiP/VaM9d3d3Xj77bfxwQcfKIaNiorC9PHjgQ8/xKhRo1AfwovuLPU7LbLY0X2olWVuZt9kqW0B5Mo11iwFaSgFuaUgHeTch9rtHYd1S0Gpdk/DUtCsuoqLi8PUqVP7/Jas00Wvme5DzSRUxha7jRNWwnJZhUp7DYTlOnEKrCsFO9Er416rBeHYD24pyB7z5s3DsWPHEB0djZKSEgwdOtRqkXyw+qAlWdA2+mHJ+o5hrUpBLeUWihMTo/oGi+2K1XEgGNxSkKMWMxbVtKLFUtAqpaAoiqiqqsLOnTtx/PhxxfDFxcVYvnw58ru7gQ8/NEQmO81pWYLF5xANWKqjnp4e6HdGSQ8W3YdKYWelIC1Yasu0UJMnuTYUSu8kVrpRtVM569lkrHRdazk7zVKQVSWnFNx9qDJ2yI/TNrly96HswLpS8BSAPPSeGcjhyGLErtgFCxZg586duuMJFaWg0k666dOnY+bMmYakTVrGrLno0YMWpaARLwtWwy0FjYW1HexGwqJMUnClIBlOe4kyEiuVgnaxFDx37hy2bduG77//XjFsREQEFixYgAkTJvTmra7OBAnZh6V+Z7UsoeI+NBRhwX2o1vtpnClIC5bashXI1YXd+paRloI04pC7bhdLQSPf852mFAz1sYXTH7uuGzm5Ldu1TuwEO9vAgnMEgACg0GpBOOpYtWoVli9fbqkMNHbEDxkyxBRZlLDLpJ8P2trRsiDALQV7sYt7XbsSCouWdoQrBTm0sdqNE8tKwZ6eHuzbtw+PPPIIkUJw0KBBWL9+PSZOnOi4s5CctCGEBVmmT59OPU7uPlRfGFqQKtdY27BohgLG7HjsCrcU7IXGBi+ta0NOL2crvWs5rX/bIT/cUrA/dsiP0za52qHMQwXWLQWfB3AJgBmCIKSKonjWaoE4ZMTHx5s+OKl9ASaRLzU1FVOnTsWePXt0yaaX7u5uS9MnRclSkIUHFmsv3krQVgo60VKQtotQrWk5lVBSCrIokxT8TEEy7C4/TVha6A1Ei6Wg/9zIqPbf2dmJAwcOYO/evTh37pxieEEQ8LOf/QwZGRlE4TnWIgiCpc91QRBQUlJCdC6l2nhZwS4bG2mjxlJQLg4r7mdpMyBLbZkWtNyH2q1vGWUpaIYC2i7vf9x9KCcQu7Rdjjyh2jd4+zUedmZ8wdkM4BCAKAAPWywLh3GM2hU7ePBg3XFwS0HjsfvO9YSEBNX3mCUzS4sDwTDzTMFQxChFOovtyupxQA1mWQo6GbPqOyMjw5R09GKllQ2LloLffPMN/vznP+P1118nUvAlJSXh9ddfx69//WvT3e9xS0FtsCBLWloali1b1keWkpISFBcXa46ThXx5Ye3ZZGbZhLL7UG4pSAcnWQrqqUsa7wxWWgra2X2oU5WCRqTF4nhlt3HCCrxlxHJZOc1SkBSW68QpMG0pKIpimyAIKwBsB3C1IAgJAEpFUfzGYtE4SlRWIsLlQqKJ56fEd3cD5eW+7+6KCtn0w06eBFpbFeMNr6zUnY/I6mpdcUS3tSGMQFarCa+sRFhjo2RehePHDUs7/uxZdJ8/rxhOOH4cCPLgjDl92tT2GshF6el92q8Xt0zbCa+sBKKiEF1TQyy768QJoLFRlWyJdXVwqbzHTGIFIWjZAUDcmTPoaWgIei2iqgpITVWVVvmxY5a2k2DEnD4tmX8SlPITFx4eNP64M2d0lYVUX7SS+LNnmatfKcIrK/vUS9yZM+gwQPbomhpd7ctqhI4OyTqNO3PGlLzliCLyurrQqDSOGiyLUp+NqKoCkpJk46AxJwpGoigqztsCcVdUAJ4NNXFnzqCLYA5AQkNDA3bv3o1j332HBADeLTthALIB7APQEXBPfn4+nnnmGUNcQZJgpwUBlmTVYilIc4HCWxbjxo3DsGHDUFlZibS0NCQlJeHVhx7SHS8L2GVjI20EQbDcfajW+1lqPyzJYgVOshTUg5XuQwFnL0wb7T6UdS9SNGExP0Z4lnFyf7AjLLY7JUjbEG9rxsO0UlAQhF94/n0FwO0AFgI4LAjCFwA+AVALgEhTIorirwwRkhOchQsxCECp2en++te+fwcqpV9WRhRlnlI8JJSVYYTeOOyAp0xLFa4bwc2kASVkmO/5WIaEXNlQLs8Fno+edOS4RfUdFvDAA0F/Xit3j4ayKIYF4xoJ99yj+dZSkkA/+1m/n67RnKIHA8cDrVxntQBqCCi/1RaJwToRUGjjpbJXqSCAcBw1uE9cSyH9EZ6PIfzyl+rGVz95b6YsihwzAHidPebl5WHatGkYNmwY8vPzTZTCOuy4+CCF1XnxTz86OhqDBg0Kek1PvFZjpuKCtTMF7WopyBJOyEMgtNyH2m2x1M7uQ+2CkceEcEtBe2K3cUINLpeLyhzDDmXELQU5RsG0UhDAfwIIbAUCgDGejxq4UtBMduzAsbAwbNu2zbQkExMTsWbNGt/38vJybN26VTL8qlWrkEpgJVRVVYXnn39el2wLFy7Ejh07NN8fERGBjo7AfensMX/+fCQmJuKf//xn0OulBi6+btq0CXUEFgZSMrz99tv44osvKEslT2FhIYqKijB27FjJhYPq6mo899xzQa9dfvnlKCoqwvbt23HkyBGiNG+++WYkKViCBPLEE0+gvr5e1T1mkpCQgLVrg6v/Nm7ciAYJS8F58+ZhzBjyR0lzczMee+wxTTIaSXFxMZYuXar5/g0bNshez8rKwnXX9VeXvfDCC6isrNScrpHjgVaee+45VFdXWy1GHyIjI9He3t7v9+nTp+Oiiy7yfX/yySdxnpKllD9TpkzBlClTqMdrFh0dHfjzn/8c9NrAgQOxbNky02RpbGzE448/Lnnd6D7x/PPPo6qqSvL6woULMXz4cNk4Dh8+rGs+I0VqaioWL16Mp59+mvge/zFcbqxXoqenB1999RX279+Pepk48gC8D6AagNvtxvz58zF58uSgz289L+hLlizBq6++quoeJy8IGAnL5caybBxl1JwpaLfzzkmws+wsIdeGuKWg8jU14eSu6y1r7j40OCweJaEHFsc9J1sK0lIKemElX8FwmlKQWwqyA+tKQaBXCUjymxy8JZlNbi46w8JQn5xsWpJhKSlAUZHve3d3t2z6PQUFQHq6Yrw9brfufHTl5emKw+12o6urS5cMZtCenY2ulJSgeRUEoU/90KYxNRVEaisJGdqyslB/8iRNkWQZPXo0rrjySsVwnS6XZNvpzs8HiorQnJ6O+poaonR7CgqAlBRVsjalpaGe4Um7mJAgWa/1yclokNhl256drapNtp87Z+qYRkrOtGm6+pZSnuLT04PG35yejvqWFs3pGjkeaKU5PR31bW1Wi9GH2NhYNDc39/u9NTOzTxk2pKSg3oCXgo6cHCbrihShs1OyjTdLtG2jiIdCfzNYlqa0NNTLuCLvystTlKGrsdGQcTAyLQ1iYaGquNuysnzyNqSkoF7lOVgdHR04fPgwPvzwQ9QQPkMBYMiwYViyYAFSAp6lpC/lERERktdcLhfzL/e05EtMTLR8w5HVZW1W+lbnkyXMLAu7ug9lCSfkQQ9yShO7LZZafaagEqHqPlQN4eHhqu9R4z401Ps7Rx202osd+jfvGxyjYF0p+EurBeBox+qdP7T8o5txsLUSdtkJaIcHqhRmP2hJ0yOZSKspdyPdiliFXP+wc5skweVyYdSoUVaL4RhYbOtSL+CB7d6ots5imXC0QWNeZFR70KIM6+7u9v2vpv2fOXMGe/bswcGDB4Na4UoxetQo4OBBLFy4UJdi1IgytGM/nTRpEt58802rxVANyxYfoQ5LZabGUlAuDivvZyFtluqUFmryxC0Fe7HaUlDvuO+E54YgCBgwYIDq+0LJfSiL45WT10JYLG8rcHI5OLn9sgLTSkFRFLlS0MZYrWRh6WUklJSCVg3cTn0Y0lYKasFqBb8SWpWCdp9kCIKAK664ApGRkYano+Z3O8Nintzu4FM1rhQkw2nuVozE6gVktemrnRu1tbVh9+7d+Oijj1Tdm5OTg8suuwwjYmKAgwclw9GaL4ZKu5wyZQpqamp8rtvDw8OxYsUKvPbaa5pdwWrByrmAUeNTqLQh1gllpSAtnJAHPchZm+bk5JgoiX6sPlPQSqWgWRjdX+bOnav6nlByH8oiTnYfSttSkJV8BcNp77PcfSg7MK0U5Ngbqx/ytCwFWVAK2gU17iFYg1X5uKWgMnZRmtNk+fLlGDBgABITEw1Pi/X6Z5mlS5eisrISn376qeY4pCwFjXjJCwavf44/LFkKnvRz+S3X/nt6evDFF19g165daGpqIo4/KioK8+fPx4QJE3rntArnFvvLr+fl3Q7PaUEQdI85LpcLV1xxBS6++GKcO3cOubm5cLvdiIuLY/L8XrPhY6+9EQQhpN2HsrQ51+4UBXHrHRUVpclqy0qsVgrqSYMvTPcSHR1NNT4r3YeGiqWgkwmlfuk0pSApoVTHVsGcUlAQhBwAdwC4GMBAAAkA6gF8D+AtAH8WRbHSOgk5pJitFFQ7qbCT+1C7YKWloF5YrSMWLAVZLRsvoWYpGBsbi5KSEtPS45aC2hk/fjyqqqp0xcEtBfURqi9RwWDZfagWC7mvv/4a1dXVyM7Olmz/VVVVeP3111FRUaFKlnHjxmH+/PmIjY1VJRNp/FquaY2TdeLj4xEfH+/7npOTg0WLFmH79u2mpK927KQ51pplKWjn9qEG1vJJ+g4ZSvMstTixDNTkSRRFzJo1q89v3g0VVm/ANhMz1mO4+1BjkHtPt9J9aKjgZEtB/2ME9MBKfuRwWt/gloLswJRSUBCEWwE8CMDrC83b8tMBpAG4CMAPBUH4oSiKf7FARI4KrHYfylK8ThvEpbDSUtBuu2lJ02NBKZiYmIiamhpD09BDqJ0pyGpbdQIs5pWfKWgcTs6bFqwsDy2WggDw2WefBVUKNjc34+2338Ynn3yiKr6RI0fikksuQVJSkmpZaG02s0O7pGEpKIfUuMfh6MWs/hXqloK0cEIe9BAREYH4lBQAwOLFi9GYmori4mIk6zjX1iq4paDxsNhfQsl9qN3K3+7Q9hZl17Jisd3Rwq51YieYUQoKgrAKwF89X0VcUAj6gnh+jwLwZ0EQWkVRfMpEETkqsfohz92Hmg+3FKQPC+5DZ82ahW+++Ub1fWYRapaCrLRVVuSgCYuuZLilIIcWLM9ntFgKAsDHH3+MxYsX+9p/d3c3PvnkE7z99ttoa2sjiiM6OhpjxozBuHHjkJWVpVqGYGhdwAxFS8FQhlsyOxurLQW5+1B7k5eX1+fc8KFDhwJBXImGAjTGSm4paA1qNo1z96H0MaLtsbKGQksOVvIjB58vcoyCCaWgIAgJAP7k+epVCH4O4EMAdQCSAUwHMMbv+oOCIGwVRdG8k+g55FRWIjw+HokK56/QJCEsDCgv9313V1XJpu86cQKor1eM133+vO58hFdWmloWVhFRVQV3e3vQvLrd7j71Q5v4s2fRQVLGEjJEnTplah3FnD5NVB5hJ09KyhVeWQl0dyO2tpZYduH4cSAhQY2oyBFFDIuKQnV1tar7zEIQBMmyTDh3DhESC8OR1dWq2qSLwlhAg/iuLqp9SSlPcXFxQdNT0+6CYuB4oBXdeQqkvBzRNTWa4xQEAfFnzwa9P+rUqT5lGH/2LNytrVollURtP2ENoadHsvxJx2GayLYFg2VRat8RVVWAwnkxRs1n4uPi4DpxQlvc5eWIra3FNwcO4OOPP0Z9QwMyPZfCAGQD2AegIzDN+HjMnz8fo0aNklS+q8GMhUlWYN37g10wa5EnVMqTBDMtBUNZKUgLJ+QhEJI8RUREYMGCBSZIYx5GWQrSisMJloIswsuOLXh92BOnKQW5+1B2YEIpCGA1es8OFNF7fuCNoii+HhhIEITLAPwdQBKAeM99D5knJoeYhQuRDaDU7HR//nPfvzlK6ZeVEUWZpBQPCWVl5peFFXjKtFTq+h/+YFjSq0gDStT7TM+HNQZApjw9eVmmJkLCdu+PAOBa1XeZzIYNQX++Xe4elWWRBAvGNCl+8xtqUZWSBPrRj/r9dKXehDW0RaPRnadAysowD8A82vEG4TajImawntTggkIbv/tucwTxUCp30eCyXqEUgCD9QTB2HNQUd1kZ7lAIMgPAB57/XS4Xpk6dilmzZvWxwjALpRd7LS/3dlwQkMPM/DhxwcFp7YEU1vIdyko9O8tuJZGRkZg9ezaGDRtmSxehRiGnYDfDKpW2m0KjYLHfGe3RSCvcUpATCMtl5TSlICks14lTYEUpeLHf/2uCKQQBQBTF1wRBWAvgn373caUgi+zYgdNJSfjHP/6h6farr74aL7zwgqp70tPTsXLlSt/3U6dO4dlnn5UMv3btWiQQWEw1NDRg48aNqmQJ5PLLL8fWrVt1xWEHpk2bhrS0NLzyyiv9roWHh+POO+80LO2nn34aZ86cUQxXWloa9PcPPvgA+/btoyyVNCNGjCDaAXrs2DFs27Yt6LUbbrgBGRkZ2Lp1K8oJLUxuueUWxMfHqxHVx6ZNm1DHgKVcMO6+++6gZ7c88sgjaG9vD3rPrFmzMH78eOI0zp8/jyeffFKriNRISEjA2rVrqcW3QUKh6qWwsBBXXHFFv99feuklHD9+XHO6Un3RStT0JRJKS0vxr3/9C59//rmm+yMiIlBcXIzDhw/3uxY4hsi1dT3MmTMHJSUl1OM1C1EUUSah7Bo8eDAuu+wyU+WR6m+CIODee+81NO0XX3wRJ0+elLy+bNkyDBw4UDYOuWeSHoqKinDJJZfgscceUwzb0dGBb7/9Ft9++y2qq6vR3hFoA3iBPADvA/DauQ8aNAiLFi1CWloaFbn98X8p1/PybgeloJMXIMwkVBd5rMRMS0G91sOhrFT04oQ8qGH27NmYOnWq1WIYgtVnCnL3ocYyevRo3XHYob/bTUnhZPehtHBafuwAtxRkB1aUgmM9f78VRfFluYCiKG4VBOFbAIPR606UwyK5uehJTUW9xh1uPQUFqu+NSk3t42e/JyJCNg6xsBBITFSMV6yv15wPL935+brjsANtWVnozMwMmtfw8HBDz0FoTE1FfXe3ckAJGdq/+87UOmrNzCQqD7GrS1quoiIgIwNNaWmoJ3CFC3javUr3oV4aU1NBlor59BQUICw8vN/v55OS0CGxYNyWlaWqTXafPctEPxaSkqj2JaU8tWRkBE2vOT0d9Q3aPHgXFRUxeS5KS0YGcV8ioqgIrRJjIglRUVFoz85G/alT/a41Bjzz6pOTDVEKdubmMllXxIiiZPmTjsM0kZJFEATDZWlOT0d9U5Pk9a68PEUZutrbDRkHveOMXNytra348MMP8dFHH0mO61LEJSTg+ssuw5AhQww9F1FvOK2Wgk6D5TKw4+Iuy+XpZEJZKcjPFJRGLk+kLmedhhlutbn7UHrk5+f3mU+63W5cdNFFQcOGUtmxOF4Flj8r9ZGfny+7UZHTl1DdRMZKe3UyrCgFU9HrOpTUTOdj9CoFUw2TiKMbsye1Rh1UHKqTcy2oOUjaCuQsA1iQLxhFRUUIDw9HZ2dnn99jY2ORnp4OwDy3HKyWESDt1sWJEwlWLEL0yEFjN6kRsOZKJiwsTPKss66urj7fjWrrLPd7Euwuv5mQlJVR5elyuSTj7u7uxt69e/Hee++hTeKMWCnC3W6gqwurVq1Cs+eZaTWsjTN2SM9IrJwnGLXI46T6UYOVY1iwdOys1GOFUCsDJ6876FG6mdEOuKUgOcuXL0fKyZMoLy9HUlISJk6ciPz8/KBh1eTdzOdxqIwtrFoKTp48mRmloDc/dl03cnJbtmud2AlWlIJx6FUKnicM7w0XZ4QwHDromdTScJ1Ea8eZGTvTnIIoipYN3CRlPHz4cF33W4Hb7UZJSUk/16bjx4/3yTx+/Hh89913VojHDFrOelDbVvmkhA4ZGRmq3LaGMmFhYUHd4gK9ihJ/uFJQPU7OWzBozIuMtLILFndlZSW2bduGU0GsZeVwuVwYM2YMrhw/Hti4UVK5ThNV7kMl+iu3FOyFlwEvA1YYNWoU2tvbMWTIEOzatUuVRX4oWwrSwgl5CCRULT705I2GsjQULAXNaj9utxtz584lCsuqUtAI7NB/WSljO5QVSzjtucHdh7IDK0pBL7zGHQTrgxNXCtKHZUvB8ePHY86cOZLXrZZPjkWLFiEmJgaHDh1CWFgYRo0ahWnTpvmuDx48GBEREardqamF5TKSans0JxKsTEpYsQjRKod/22UN1tq4y+XiloIGwlLeWJDFShkCLQWPHz+Ojz76CIcOHVIdz7hx4zBjxgwkJycjnsFzcI1QCrLyXLBL/HqgOdaatcjDcnmyTFRUFK666irf97feeov4XjVlLhVWryKEuw+1H062FNSDGQo7JygFWUTNxl1uKUgfI8q0pqYGx44dQ0JCAgaHhyOSegrmYgdLwVBprxzzYU0pyHEQrFsKkmLGzjSnwOqDNDs7G0uXLpUNw/KCmsvlwpw5cySVmhEREVi5ciWeeeYZRddqTm2LWtyH2tVSkOW2andYc+snCAJXCnKYwmhLwbq6OuzcuROHDx9WdX94eDhKSkowY8YMJBKcF20EpGXjcrkAmUUy3udCByP7UyhC29o58B1QbblyS0H9OCEPanCyUtBql8hWWgo6zX2oGtTkXYvnH5ZgsfyN4KWXXvL9XyiKuFlDHKFSVqRccsklstedZilICivrb07GubMOjuVYPThx96Hmw6r70IiICF3324GCggL86Ec/QlZWlmFpsFxGZpwpyMqkhBWloFY5WG5HrMkmpxTk7kM5amHZfWh7ezseeOABPPTQQ8QKwejoaEydOhXvvPMO7rvvPlx22WWWKQQD0TM+cktBc/PDyrM9ED72Wo9eJYbVSkEr4ZaC0oTq4q4cSvmWU5aSjuHcfSj72KWcpWCx/APLlHYZnz9/XtN9NMpq4sSJuuMArG93ERERGDp0qOb7WWx3SnD3oezAmqXgJEEQfkESzvsPYXiIovgrzVJxNOEUS0GuFCSHVfehJGk7YWdmWFgYcnNzZc9ecmpbDKUzBZ1ah5zgSJ0pyC0F9ePkvGnBqvI4evQo/vSnP+Hs2bNE4SMiIjBt2jRMnToVkZGRmD17Nnbv3m35GE1rs5kdlIIcOnDlAF0CN8sEQ49bT6MsBVm9nwWckAc1OOF9VAqrLQX1pMEtBbXD6pmCLJaVEVg9N5aCRvnn5eWhsrIS1dXVfX5PTExEvYb4zC4rl8uF3NxcLFiwAKmpqbJhQ3W+yGr7dRKsKQUv8nxI8LaOBwjDc6WgyVg9qaW16MLdh5JjpaWgHFZaP5idnpH5YLkdm2EpGKpwS0Fr4+TuQ0MDFsrZ7GdlS0sLdu3ahU8//ZT4nmHDhuHSSy9FQkJCn99ZGOtpKAVZaAckOMlSUGrjhRR2WNw1aqMk67S2tlKNT085smApyPqGTE5/rF4/YRUaCjs9a0N2d2tpJdx9qLUYbSmoFRplFRYWhlWrVuHNN9/E999/j9zYWADAzTffjN88/TRxe7KqTO666y64Bg4kCsti2wKA3NxcVFZWqr6PWwqyA2tKQaNaOm9JZlNZCZcgILGuTtPt7ooK1ffGR0UB5eW+72F1dbJxCMePAzExivEKXV2a8+FFS37sSGR1NcKBoHmNCqgf2sSfPYtWiTKOi49XTDvq1ClT6yi6psaQ8og5fZpKuw9G/NmzaGO1HZeXAw0N/X5OOHdO8paIqipVdeBSKFuzSAgLo9p2lPIUW1sbNL3Y2lpN5RFRVQXEx6u+zwy05kmS8nJdY0sCpPt0bHe3r15EUTSsbUZUVQEBChi7IVU2Um3bClnCKPfrYMSdOSPbTtwVFYpx0JjPdHR04PDhw9i7dy9a29pQ6Pk9DEA2gH0AOgLuSU1NxcKFCzFkyJB+8e3YsUOXPEYg9/KutOjLLQXNzc+ll16K559/vt/vo0ePNjxtJyiIWaKlpUUxjJpy5WcKcoxAz/PBzlhtKWiV+9BQt37jloLW4mSliiAIiI6OxrJly3p/KC8HfvxjCIKA7OxsTcoqM1Ez3ls9X0xNTUVXwPtffHw8brnlFvz2t79FR0fgmxsdnNx+WYEVpeC74Io7Z7FwIWIAlGq9v6xM270//anv32Sl9MvKiKJ0K8VDgtb82JRSqQu/+51had6gFODf/1328njPx+7M9XwkIWz3wVip+U4TkMhXqYZ7pMhQis9Mfv5zalGVkgS6665+Py3VmqCONmg0l3o+1Cgrw2wAs3VGM0Lqwq9/DaB3R1WpzjQkYbi+SCm1WgA/SuUu/t//GZr25UoBCOq6AMaX5wwAH3j+z8rKwty5czFo0CBJi669e/caLBEZtCwF7bBQZQcZSRkwYABiY2PR3Nzc5/dRo0ZZJFEvWss4LCwM+fn5lKWxByRKQTWYpZRz4pmCHG2Eap0rLfzSOFNQCSOVgnawMDeK8eODr7AkJSX1+41bCtKHVaWK0Yp+NQo3bxmxWlZKmNHu5s+fj53HjvVJ8+KLL7bNewtHGiaUgqIozrFaBg5lduxAe2EhHnnkEU23r1y5Eps3b1Z1T05ODq655hrf9/r6ejzxxBOS4W+77TZER0crxiuKIsp0Lopef/31eO6552w/0QGA6OhoxMXFoba2tt+19PR0NDU1BXXfEx0djdtuu80wuf7xj3/g9OnTQa8VFRXh8ssvl73/wIED2L17twGSBWfUqFG4+OKLqcf7zjvv4LPPPpO8Ttrug7F58+ag9e5PRESEYTuF5Fi5ciXS09P7/KbUd6dMmYIpU6YQp3Hq1Ck8++yzmmWkRXp6OlaupKei3bBhg+z1oUOHYvHixf1+37ZtG475TQ5JufTSS4Na+7DA9u3bceTIEWrxlZaW4t1331XlHtGf5ORkTJ8+Ha+++mq/a5GRkVi/fj2A3pfoBx98UJesUixevFjX4ecsINXGR4wYgQULFjAhS1hYGO6++25D0966dSvKZawRr776auTm5srGUVFRgS1btqhKt6mpCW+//Ta++/572XB5AN4HUA0gNjYW8+bNw7hx4xxnOcHPFFTGzPxERUXh5ptvxiuvvIKKigokJydj5syZpjynjNj5PWTIEISHh1OJy24YrRTUcx4hjfTVYtcFzlDGyX01VC0FQ53i4uKgv190Uf9To3g508fJ7kNDyeqadL54ySWX4M0336Se/vDhw5F0zTXAhg0YN24ciubMQWFhoaJsUng3S3zx+ecYC2DXrl0YtmgR8vLy+oXjGAsTSkEnIghCBIBrAVwPYCSATAB1AL4H8E8AT4qieMZEef4PwA/9fjouimKRYQnm5kIYMAD1ycmabu/Oz1d9b2J6OlBU5PveU1cnH0dREUCgHBEAzfnwyVJQgIaUFHR3d+uKx0oSEhKQk5ODuXPn4l//+hfqA86zAtD7W1RU7yeAzpiYPvVDm+b0dNR3dga91pKRoZh25+nTuutZDW1ZWYaUR1tWlmw+xMJCze5Dm9PTg9a7P8F225tBZ24ukJPT5zexp0e2LNqzs1XVQZfbbWobkSI6LY1q21HKk1T/acnIQL2Me1YpOnNzDR0L9NCSkYH6mhoqcY0cORIoKkLbN99objfhaWkQCwuD3u92u33lKHZ3G9Y2u/LymK0vUqTKpjUz0/S8ScniX59G0ZKRgfr6esnr3fn5QEGBbBxdIJ8T9fT04KuvvsIbb7yharF+1JgxuObSS3vdjtsI/5dircoeu+y4ddKZggCQlpaGtWvXoru7W/UZg0ahpQyGDx+uuAnOyQQqQ/Vid/ehgWcPm4kTNsIaRSgtZPujZxOEGQo77j7UGLxzucjISN9vJSUlQTfmhnpZhRJGKwXVxG8HxRNpXseMGYP9+/ejzoBjRbKzswEAs2fPBgoLfb9rrctt27bhu3/9C2MBHDx4EB/V1GDlypUo8nsftkPd2B2uFDQAQRCGAXgGQEnApSzPZyqAHwuCsEYUxddNkGcSgHuNTicQPZNaFnZXBsalZ0CyyyKPHD/84QWdst12sZOk7eSXMH+M3qVpVTkGW3xQ6rN2nWSY3ZdoL1axPBZqkW3w4MH49ttv+/3udZejN79SC9RdXV0QRVH380kJluuLQxeSuiZtD9999x127dqFqqoq4vQL8vOBkycxd+5c1NtMIUgTu82xnITZCkHa9ebvMSUUUeP9gQS9loJWKwWt3IzKlYLa4GN5cOxsKRjq7kO9rFu3DtWRkUhOTkZsbGzQMHzcMB5W1j9YtBRkpWyCQVpecXFxuPnmm7Fv3z7U1NQgNzcXsbGxeP/ppw2WUB0NDQ0oLy9Hot9vXV1d2LNnD1cKmgxXClJGEIQ8AG8B8JqsiOg9M/EYgHQAFwOIRu/xVFsFQVgkiuLbBsoTDuBvAExfqbd6UkLTPRNXCvbFbnmhudDJOlbnw+r0jYSVSQkrSkEnoiWvAwYMQE5OTh/3w3PmzMHAgQOpyOR2S0/Venp6EBYWxpWCGnFy3rSg91kpiiJOnDiBd955B98ruAr1JywsDNdddx3+dv/9wPDhxPexBml7kluosMtmCydYCo4YIXlaqyw0x1sj3IeGKjExMRgwYIBiODNdgFqtFLTSUtDO3nGsxMn9Xk/eaJwpaKVSkNM71wt0DRgItxQMHVhSCtq9jwaWQ0JCAubPn+/7fujQIVPTJ+GchLepb775ps93u9eNHeBKQfr8AxcUgscBLBdF8XPvRUEQ0gA8C2A+gHAALwiCUCyK4nmD5PkJgNF+st1gUDr9YN1SUE0aLpdL184lrhS0dgGJRaWgUenRbPda7rXKUjDYhIG2pSArkxJW2qpdFq/VoEU2URQxZ84cTJw4EadOnUJ2dnafHbB6+5ycUrCrq4srBR2CGeVs1POhu7sbBw8exPvvv6947qw/MTExGDduHC666CJcakN3oYH4l59RbtI49NCqFDQL3g7IycrKwtzVqzWfmS2F3S0FuftQNpGbs4WK5xq1WD1HsruloNQ5YxMmTDBaJFWw8q7NsQdy46XTxlKW3yuMjJ+PCcbDlYIUEQThUgAzPV87ACwVRfFL/zCiKJ4RBGE5gC8ADASQAuA+AP+fAfIMA3C/5+tmALtgolLQ7JfZwAGDtvtQvfc76eXebnlhUSloFFbnw+r0/aE9iWBlUmJ2GRf6+YynAUtthAYJCQkAet11DBo0iHr8cu7surq6EBkZyZWCGomIiLBaBNvh3x66u7vxxRdf4N1331V1dkVmZiamTZuGESNG+M4AM6OdlZSU4LPPPjMsfr0KAO81FjdemZ2e0fHPnj2799xXi+GWgvrwPn+vu+46IDOT6B61m0K13qslPO37uVKQTeTmbE7u90ZtTGXdUtBMpPIwdOhQ/Otf/+o3Jhjx3qIH2hs7OP2xS1smgbalIMtlY6VS8KKLLjI0fjlYrhOn4Cz1ufXc6ff/pkCFoBdRFJsB/MLvp9sEQaCqoBV6e+bfAEQCqAPwbzTjJ0XrDg2t1hpq4jDTfQytOFjBDgtWatN2Uv0YBcvlGEqWgmYSFhYmuXDqxD6jNk9hYWEYNmyYQdL0Imcp2NTUhJqaGjQ0NBiWvhPqOTc3N+jvkydPNlkStiGta1EU8cUXX+Chhx7Cyy+/TKwQFAQB06dPx7p16zB27FifQhAwZ0ev0efF0VAKqonHyRhVBt6NAOPGjdMchx3nArxNaUOvpaDesFwpaM/+pkSoKgX1YLUXKT3tmYU2nJqaihtuuAFpaWkAgMTE3pO8srOzrRSrHyNGjDDNwov3NftDSyloB4z29iWF2+3G2LFjNd/PYR9uKUgJQRDi0OsS1MsTCre8COBRAHHotRacBYDm2YLrAUz3/P9jURRPW/HgY10RZFZcgiA46sHE4iTKbu5DjSJU3YeaAQsvdYC5bXXZsmXUralY7mtqZZs1a5as0k5LnIH3ysX/6KOPao5bjQx2p6SkBJWVlX1+KyoqQnJyskUS9cdq11ikMpw9exbPPvssvv76a1VpDx06FBdffDHS09M1p60XVtqyEZaCZmMHGYMRGRlptQh94JaC5mPmplCr3Ydaea4ftxSURq5snPwepac90zhTUAknuw8Fes9Av/POO9He3o7I6mrgV78yRSY1REZGYvz48di/f7/VojgWVtYzaMgRSkpBOYxY/0tMTERaWhpmzJghublWT/yksNJenQxXCtJjGnqt8gCgGcA+ucCiKLYJgrAHwCWen+aBklJQEIR8AL/1fH0PwEYa8aqishKIjUVyfT06OztV3x528iQSVbiiAoDYyEigvNz33dXaKhuHcPw44LdLXY6k8+fR1tamSh5/wk6eRMK5cwhvbdUch+X4lW1sba3q+onr7OwTB23izpyRlCm2tlYx7cjqatV50kPM6dOGlEd0TY18PsrLAY2LYnJl7CXB5UKnieXoJezkSSDgJVtsb5eVN7K6WlUduCsqTG0jUsTHxFBtO3J5GpOQIJmWlnEA6C1HrW3QaBT7TwCzCgoU6yLq1CnN7SY+LAzhlZWWtrvwykriZyWrTExLQ3hJCQ4ePIiWlhYUFhZi9pQphj6TpJCqy4iICMPlUeqz7ooKoL096DVRFPH666/j/vvvR9v58/A6FQ4DkI3eSW9HkPsKCwsxf/58FBQUyMrmhJd3/5dircoerS/WTlMgGZUfO5WTWlnj4uIMkiR00WspaLVS0AmWgk6EWwqqx2pLQb1KQbMgKSfWNscEcumllyI5ORkfP/+8oenwvmZ/aM2n7eA+VA7aSsEpU6Zg4cKF1NLXg13rxE5wpSA9hvv9/6UoiiSz8E9xQSk4XC6gSv4MIB696zO3iVb0JM8gcqdCMEnKylCq5b7/+A/fv9GAfBxlZcTR3q5FloC0btMbh9X4ldcCz0c1//VftKTpx7U67x/m+did6bhgIhwUFe0+kGs032kCQfIVCYUxQCX5lOPTxX33UYuqVO6iTHtZ7PmoRkcbNJqLPR9iCPKi2CeV+PnPrW13DNeXGsZ6PlZTKnfx9783NO2lSgFk6loAcJnnE4wZAD7whhUEFBcXY+rUqRg4cCAz1vqsnINnxI5esxe3+GIaHWgqiGfNmqVXHNthdF/hZwpqhysFpZFbmnHCBhkpjPJWwy0FL+CEZ7MgCJg2bRpyOjoc8w7C6Q+3FKQH7fcKlsYRrhQ0Hq4UpMdQv/+PE95zwu9/KvoIQRCuA7DE8/V3oigephGvanbsAIYMwSOPPIJ2iV3nctx0003YtGmTqnsyMzNx/fXX+763tbXJula76667FN2+efnrX/+KlpYWVfL4s2bNGrzwwgtoamrSHIfVlJaW+v7fuXMnDh06pOr++Ph43HLLLZSlusDzzz+PqqqqoNeGDx+uuNvlm2++weuvv26EaEEZO3Ys5s6dSz3eDz/8EB9//LHk9TvuuEOzO8gtW7agoqJCNkx6ejpqa2s1xa+HFStWIC8vr89vSmPAxIkTMWPGDOI0jh8/jpdeekmzjLTIy8vDihUrqMW3YcMGyWv+/T6Q7du348iRI6rTW7ZsGQYOHKj6PjN4++238cUXXxCHlysfL0p9Uo709HRce+21eOihhzTdT4MrrrgChYWFygE5REj1t4iICNxxxx2Gpr1t2zYcO3ZM8vrKlSv7uff89ttv8YMf/ADlx4NPbfMAvA+gGr0vkWPHjsXMmTORmpqqSjYzXt7toBS0i/tQo2HZUpDFxd3hw4dj/PjxVOLiXIBbCmqHlutSJ7ZdOYWpE/NLAxoKu1CwFORwlGClPbKkFGSlTIzCaKVgqFgKOvX5zJWC9PBf/aghvOeU3/8pegUQBCEVwIOer98AMM4sS4ncXKCoCE1paZqUaT0FBahXedZPTGoqUFR04Ye2Nvk4iooAQqVgU1oaGhsbVcnjj1hYiMbUVDTY2QWbX9m2ZWWhvrpa3f2JiX3rhzJNaWmol3DP2pqZqZh2V0uL6janBxKZtND+/ffK7V6jUrApLQ31zc2yYWLS01FvwSJEV15ev/LsUajTtqwsVXXQ2dVlahuRIjk9nWrbUWwvErRkZKC+hvRxd4Hu/HxDxwI9tGVlof7kSfIbCPLR9t13mttNVGoqwoqLLW13wfoWRztSdRkZGWl4ObdkZKD+3DnJ62JhIZCR4fv+z3/+EzfddBPRhqZhI0ZgycUXIyVF23TWCZaCpGlxS0Hr4mfthV6PPAsXLkR0dDTS09ORlZUVUrvi9cDPFDQHWpaCLC0I0oK7D1UPjfHNKqWgmTip/ajNS3h4OCIiIpCamooTJ04ohndSWdkRo5WCWurXLv08EKstBblS0N7wtwd6+B/kQHpwnH84GgdB/BGAd4v37aIoqjfR00lUVJTvTIvu7m5NnXj48OGadjZ6Xz46OjrQ0NCg2Gk7Ojp8ir6enh6cP3/eF0djY6PPwrGtrU33YKRHoWgkGRkZyMnJIQrb1dWF8+fPA9A+IDY3N6PVo7jz1hPQO9ifP3/e9/La1NTkO8Oxvb2dqJ7kXj47OzvR0dF72lFrayuaPYotGnnSivesTaW2512M7e7uxvnz531tsaGhIWielF7CveXf2dmJ+vp63+/nz5/39TupeiLBykWpwDz5/x8MrzsX0rbHSj/2tgFa/UkJubanhe7ubtVtj8YYQdqf1ODd9CLXn7Scq+uPKIpMLPayVk9SYznQ2/e95d7S0kJUT2blSQ6j86TUFgVBQHt7O86fP4/7778fV199Ndxut6/9xcfH+86i8c730tPS0B0WhvkLF2pWCHrz2+IpV9qvf+2RkeihYIHnlatHZgHfW0/B5o3e+5T6c7PM5hvRE0dg7O3t7WT9KSlJfX9KTESnp035tz1SOiIi+pQZaX/yz6dUmavF2wbqm5rI+5NH1ubWVl9/IkUE0BgfL3ldbtzzIpX3xMREFBYWIicnBy6XS3qMCA9Hk8YzzWmVvwj0tj1dsfTHW5/nm5qIx3Jv+yfJk8vl6tOfgvVrqTJSo5ATBAGd4eGo93tO+MtKSlNcHNo8fbq9vV31/MNXTxTGCKX3kebYWKI6aG1t7TtGeNq1qnmEljyRjhGkba+pCd1hYb50pWhqagqep6goXz9WnBt5wnUFjCX9xghPuXZ2dZHNIzo70ZCQcCFPJGO5y4XzfnmSIrB/NiQkoMMja2trq+xzxxu3Up5I+mSPy+WrJ3/0zOV7enogiiJ6BAEdGjfmBiPYmCoIAvkcNjLS15/kMHIeITeHbe3oQGt0NFFZuFwu/OQnP8Fdd92FadOm+X7vcbnQIzHn8soq25+ioy/0p4A8SdHZ1YX6xEQiuaVoiovzzfdo4N+ftHhxk6NHEIjryR//ua5cPcnhbdd92p7bjfNNTaotBeWeuT0Sc2+teONT857r7bdAb3/yl8Vbp1L9SRAEVfXkLdd+77lNTb56UpobqcV/PuA/RtDYYEStP3niSPA8B52C9atMziHK73/SlUX/EVn9SOqHIAgLAKzyfN0kiuK/9MSnlSlTpvjc2tXW1qp+eU5NTcV3331HtLsnEO+AdejQIWzcuFFx8efzzz/H5s2bAfQOwGVlZb4J1ObNm3HgwAEAwN69e1XnI5DNmzdb6sJFiilTpiAzM5MobEVFBco8ft217mLftm0bdu/eDeBCPQG9D5yysjKf28ktW7Zg7969AIADBw4Q1ZOcwubo0aM+d6e7d+/Gtm3bqORJD9988w0A5ba3ZcsWAL39qayszPfw3bhxY9A8KSmu3nrrLQDAsWPH8Mgjj/h+Lysr87kGlaonkge+VTtoRFHsl6e//vWvsvccPXoUO3bsQFlZGU56rMPk2t4rr7xikPTq8E4WafUnJaTanta6rq6uVt32aIwRJP1JbZ527twJQL4/ffvtt6ri9EcQBDQ0NFh6No+337NUT4D0WA4AjzzyiM9N5s6dO4nqyaw8yWF0nkjmVh9++CH++7//G//1X/+FhIQElJaW+l5+Vq5ciXHjxgHonT/ccsstuO6661Cbno5GnQsg33zzDXbu3w8A6KLsVeHAuHFojovT/Xzq9CzmtUdFBb0uCEKfegqk0VOOcnK0t7fLPmvaPUrZDs9fLwcPHlTuT/X1KCstRbtnYYi4P61fj2Me9+zetqemLA+NGIEmP8UYSX/yzrtFz+JDcxyNvZMXyv6RV14h708eWbft2ePrT6R0REZi88qVktflxr0uz7jfJKFUPHv2LNkYUVyMFz1lrJYez+J4S2yspvv94ykrLfUtqNCm7MUXicdy70s6SZ4EQejTn4K+D3ryFFhPlZWVqvrJseJiPOLX98vKymQ3CARjy4oV2Ovp0wcOHEBYEOWGHN56ojFGKM1bti1dKjmW+vPuu+/2HSN27QIANLS0kM0jtI57pGMEadt78UXUetxz79mzRzK/mzdvDp6nKVOwxRO34tzIE3+FJ5wvT4FjhOeZe6yqimwecfw4Nq5deyFPJHOjhASUvfii4gbTzs7OvnlauxaHPG7Ld+/ejTfeeEP2fpI8KW0W7erqQmNioq+e/FE6PkMO72J+U3w8Do0YoTmeQMpKS9EdxOsV8Rx23Dhff5LDqHkEID+H/fDrr7F79myishBFEWFhYfjss898cQNAY2KiT5EdyKuvvtqbJ7n+NHv2hf4UkCcpjlVV4ZH164nklmLLihW++R4N/PvT559/Ti1eAGiNiSGuJ3/851Ny9SRHeXm5Ly5f28vLQ9mLL6reUFtWVia51uV7vlOaw3jnH7X19cTvufs9YxvQ25/835W8x5RI9SdBEFTVk/dIpn7vuS++6Ksn/+cTDUVzo1/9+48RSuM2CbT6k7d1rPU8B52CwJI5pp0RBOE1AJd6vv5OFMWfEtyzGID3ELMmURSlt5LKxxML4CCAIgBnAQwTRfFMkHA3A3jC8/W4KIpFWtKTkGEkgINRUVFwu93Yu3cvhg0bhrKyMiLrmlmzZiE7OxsDBw5Ea2sr2tvb+wxoJKSnp+OOO+5AR0cH2traEB0djf/+7/+WDH/fffehq6sL8fHx6OnpQUNDAxISEny7QiMiIhAZGek7l0zPgHTrrbdiy5YtRLuLzGLJkiWYMGECWltb8fTTT0uex+flZz/7GZqampCUlITXXnutz4OJhKSkJNx6661wuVyIjo721VNCQgJEUUR9fT3i4+MRFhaGpqYmuN1uREVFob29HR0dHYr19Pjjj0tO2EeNGoWlS5ciIiICra2t6OnpQWxsLLq6unx5+uabb/DMM8+oypMeSkpKsHz5csW219XVhbi4OHR3d6OxsRGJiYk+RUFUVFS/PL399tt47733JNMtLS1FYmIiOjs70dLSgkTPQu758+cRFxcHt9uN5ubmoPW0adMm3+RLivz8fJ+CzUxWr16NvLy8PnmqrKzE3/72N6L709LScNNNNwGAZNv77LPPfJMzKxkwYABWr14tWU9q+9ODDz4oOQl+4IEHJNvea6+9pur8PS/XXXcdsrKyVLU9GmMESX96++238dFHHxHn5cc//jFiYmJk+9OOHTt8L+BqycrKwg9+8AP8/ve/77ND0ExuuOEGDB48mKl6khvLgd4XiJiYGISHh/t2GirVk1l5+uUvfxm0nKOionDPPfcYmqcXXngBR48elazr+fPnY926daioqEBjYyNcLhcSEhJ8iun4+Hh0dHQgISEBV111VW8/rqvD3Q89hLJ77tGlGJw/fz7Gp6UhZvhw/PHee9FAyWVuYl0d1j/6KB5evx6jL70UH374oea4Eurq8MOyMvxfaSkaPfXiz09/+lO0tbUhJiYGTz/9dD8lbPz58/i3DRuw8y9/wR4JF+ypqalYtGiR7yW8nwznz+OHGzb0K6PRo0fj8ssvl+9Px46hceJEJH76KYQBA8j6U3k56ktKELN/P8IHDfK1vccee4xoTptYV4c7HnkED91xh6/M7r33XsX+dOzYMTz99NOKZa6WgS4XVv3iF6j/8kvEDB1K1p/OnoV70CA0HzoEV1ER/vSnPxFvFkyoq8OtGzfi8bVrg7oO/ulPfyo57h3fvRtjL79cMu/XXnstsrKy5MeI06fROWQIyrdvxz9k5oZy8tMo/4S6OqzZtAlP3HQTtb4N9L743vSf/4nzX36JuGHDiMbybX/6E1b94hdEeSouLsby5ct9/emRRx7B6dOn++UtWBkNHz4cEydOxN///nfFfFw5fjyGXXUVWj79FImjRgHobXt79uwhPpM4sa4Otz7+ONyffIKoIUPQ3t6OqqoqPPXUU0T3e/OyZtMmKmPErl27fAuGwWT9wd/+hr/84AeydRAdHY3169cjPDz8whhx7BjiR45Ez7FjaEhJUZ5HqB33zp8HBgxQHiPq6oABA8jb3ldfIb6kBGFHj2Jfba3kOfarV69GYWFh3zxVV6Nt+HB0ffop4oYPV54blZcjdsQIdB09iqbUVOkx4sQJxAwfjs5vv0VLerryPOLbb9E2cSISPv8cYmGh8tzo7Fn0FBej4fPPkTBiBFwul+QcKC8vD1dddVVvno4fR8PYsYjavx8RgwejtbUVnZ2d+OMf/yjZVh544AHFPH399dfYvn27ZByrVq3C1ocewr0PPog/3XVXnzF7zpw5eOeddyTvlaO0tBTV1dV4/S9/wV1//jP+vH697mMBEuvqcHOQMXX16tXIzc1VnsOeOoX2YcPQ8emniB8xQrJeAOAnP/mJIfMIpTns17t2oWDZMvxl3TrF8nK73fjZz36G9vZ2lJeX49lnnwUAxNfXo7SsDA/efXe/ONavX4+MjAzp/lRVhdYRI9DzySeI9Xgya2pqwiOPPCLpXeaBBx5A59GjaJk4EU/cfLOmevaO5Y/deisaKMx7EuvqsPaJJ3z96fDhw3j++ed1x+sl/vx5rP/LX4jqyZ/ly5fj5Zdf7o1Dpp7kWLNmDQoKCi60vdpadA0ejKYDB/BRZSXx+/fq1auRnJwsqfT1zt9pvZ944+s+ehSNqalE77k7duzA/v37kVhXhzVPPomNN9/sk2XVqlUYOHCgZH+qrKzEixs2ENfT1KlTsWDBgv7vuYcOIWHsWLiOHUNjaqrvmVtWVqZ5nTuxrg6lAXOoH//4xwB6x4h//vOf+PLLLzXF7Y2fVn9KaWzEvD/8AdM878YeRomi+JWuiC2GnylID3+/UKRWf/7hlP1KSfNf6H0vAoB/D6YQNAv/RcuwsDDiHYozZ86E27PTKSIiQtPip3c3SEREBCIiIhQt86Kionw7OF0ul2/CDPS6yPIPp3anZSCJiYlMuH/zMnHiREyYMAFA7wvXrbfeioqKCt+usmC43W5fGWm1FIz125XrrSfvNf/yj/PbER4ZGelzVyZXT3LlGxkZ6Usr2s9sXm+e9ECSpyi/HbRhYWF9wvmbrQfmSQ5vHYSHh/smDAD6xC1VTyRt2Kp2LopivzypMe0/c+YMPvroI8yfP9/3W2Dbi9W5U54W3jKm1Z+WL1+OrVu39kvH635Fqu1p7TNa2h6NMYKkP6nNU0xMjGKeInXsTEtOTobL5dL8XKQJS/UESI/lAPrUhbeOADbanhxm5SkYhw4dwu9///u+7nwCXAw3NjZi4cKFGDduXN966u6GS6c1a2RkJGI8cdJ+Gke2t8MlivrPB/P8dclsqEyUUYzK3edLQxD6tJ1+1z1xBOYkKiqqj5tX/9+9hIWF9S54B3F/I9v26ut9Z3B7256asozo6OiTd5L+5J13k5S5GrxyJ8bFAZ5d1or9ydMHYqOjAZUusgQA8RKbI10uVx93vF68495JT31K5Z14jOjsRJwG115e+eVkUBNP0vnz1Pu2l6S4OF8bVRrLfe9+GvpjsDmuVBm53W5VZwqGd3b2tktvnpKSVL9/xjU1+c4Nj4yMxIABA1Td760nGmNEuILFd2xzs2IdTJo0qU/5R0ZGItITv6p5hJo8efq74hhRVwdARduLiwM8LtnknsX+awZ98tTW5ht/FOdGnnDugHD9xghPOYW73WTziPBwRHgWQonmRmfPwtXT05t3hffDwPgSGhp85R8dHS07j/L2M6U8Kb0ju1wuuHp6EBbEzSiN91uXKCJCx/ELgQQbUwVBIJ/Dtrf7+pMcRs0jAPk5bHREBKIJN+B46ycyMrJPm3X19EjOT73hZPtTa+uF/hSQJynC3e7e/OogrqnJN9+jgX9/kht/tOASReJ68iIIQp92JVdPcvRb36uthburC0lxcar7rHd+EGyjtEti7q0Vb3xq3nP9yyuxvr6PLN5rUv1JEARV9eR9fvd7z42LAzz15P980rtWDvSdQ/mPETTGXlr9yeUZ99QcrWQH2NFS2J+zfv+T+WMEsvz+P6clUUEQxgO42/P1X6IobtISj1GQduLAlybSBTR/AgdwmkoeGgfNs3wwqSAIyM/PVxWeNfQeNMxinuyIncvx/fffl73OimU97TIePHhwPwVqeHg4Ro8eTTUdO8Ba+50xYwYAOpNtDicYPT09eOutt/D8888ruqr75S9/iSeffFLTHE0JMzaUGN2//eOXe14ozVe0brxyEkblx07lxNJ7DKsY3VcCxyU196rpy1LhaNSbdx5hNhdddJGu+xcvXozZGlzS2QGtz4dQRq5cSN/PlMqWRhoca/CvO73jLsd4pJRvWuKRQu2Zgv5/7YaesY1GeCNhqU5YKheacEtBenzt938h4T0Ffv8f0ZjuGFxQ7hYIgiBnI+3vID07IOyvRVF8TaMMkuhZ5Fm0aJGsi4dA1A4Yel4K1cKaUpCGktPsNPUQSkpB2pMCtfdaeaYgyW9a4n333Xfx5Zdf4uzZs8o3mADtMo6JicHNN9+MN998EydPnkRmZiZmzpyJrKws2fu0yuGUvkaK1vwWFRUhOztbVxw0YGky7mSsqOOGhgZs27ZN8dzLhIQEPP3001i6dGk/13m0MDr/LpcLAwYMUNz8oQdaC1F2GCPtICPr6G0HvA6MJ7CMjVpYM1IpaFU7SU1NRV5enuaz2CZNmkRZInaQO2+RJc9CoYZRSkFRFE2bSzvpuaB2EwbHXrCkFLQ7VisFjex/LK1DOHWc4UpBehz2+3+0IAhuURTl/VcC4yXu10qx50NCBIDJft/7n6ish8pKIDYWCefOodPjXkMO4fjxfm4lMrz++gmJd7kAv/POhJ4e+fsVzkbzJ+HcOXSokCUQ14kTxGVhBjGnTwfNP2l5RdfUqKobAIgXRVVlrpa4M2ckZZLKrz/hlZWq86SH6JoaQ8oj6tQp5XrUaHUkV8Ze4hMSTC1HL+6Kiv75amhQL0tAnez58EMc8Jznov20LLrEnTlDve0kA7hm0iTAuwhD0F+1jANAb18Do5Mq1XkiqIfI6mqiOJctW4avv/4aDQ0NyMvLw6RJk3qfjQDiz55Ft0Vn0rorKnzuyDj6kWoLUa2thj4jASC2thaJdXVoamrCJ598gi+++ALdPT0oBBAGIBvAPgD+zq2GDRuGrVu3YujQoQDsa8E1cOBA6i6TAuGWgvSwaztTg9JCB0uysoqZ1r9q02NFoWdVOxIEAStXrsTrr7+u6zwgJyLnIlrJ7SpHO1ZZCpq5qB2qzw1uKUgOS0oWvej1FObF7mXClYIcPXClID0+BNAOIBJALICJACSt9gRBiAQwxe+ntw2VzmwWLgQArCINH+RQ1wEAStWm+4tf+P51Kd0vcZBsMG5UK0eQtIjLwkJK5S76lddsz0c1ModY62WFzvsLoKG9MchFno8kKtp9IJdrvtMEguQrARrqNCCeaZ4Pc9x7r9USYIHnoxodbdBoZno+xBDkZQr6Puzl4hoocelmconow3B92ZFSuYu/+52haV/q+cgxA8AHnv+XL1+Op556qo97YbsqaxYuXIgaQ1MgxwkWYGYrY1iKl9YChd54uBWF8ZjlWcVIS0EriYqKwpVXXomvvvpK1jou1PBuUukIOF8uMzOzz1lKHLpYqRTkC9vqMdOrF8dcaLkPlat33iYuYDeloOh3DjwfO42HKwUpIYpikyAIb+HCesvNkFEKArgSgHeb2DkA72pM90kAT5KEFQThZgBPeL4eF0WxSEuaROzYAQwZgs2bN6O2tlYx+L333ttvMDl+/Dheeukl4iRTUlKwevXqPr9t2LBBMnxpaSlx3P/4xz90ucxav349tmzZQlQWZjBu3Lig5zQ0NDTgmWeeQavfIbSxsbG47rrr+uxqfO+99/DJJ5+oSjM5ORk33XSTdqEV2LJli6SLGqn8+lNRUYEtW7YYIVpQSGTSwv79+2Xdo91zzz2aJ0kvv/wyvv/+e9kwAwcOxHfffacpfj1cfvnlKCoq6vNbQ0MDNm7cqCoe/3FBy/1mUFxcjKVLl1otBt5880189dVXqu9bsWIF8vLyDJBIPx988AH27dtHHJ7kOfLRRx9hz549iuHWr1/vO8w7kE2bNqHOIkvzpUuXoriY1AkBRwmpeUl0dDRuu+02w9I9f/481qxZgwOffRb0eh6A9wFUe77/8pe/xP3332/aS7VRi99r164FysoQHh7OzJmCcmXK3TIbC0vlxC0F9cPPFNQet5mwIANLhIWFYc6cOdi5c6fvN0EQHHuGol3gloL2RYulYKjCipKFJfehrJSJVqy2FDQSluqGpXKhCVcK0uXP8FMKCoLwJ1EU+62YCoIQA+BXfj/9lcDVqL3IzQWKitCSkYH6LoKsFRX1cyfX3dOD+uRk4iTdKSm98fghe39AWDma09NR39lJHD5YWk1paWRlYQJtWVlB858A4MrsbLz77ruoqqpCTk4OZs+ejfi0tD7h2o8eVVU3AOBOTVVV5mppTk9HfXNz0Gvt2dmKafe4XKrzpAepOtBLR1WVcrvXuMjbkpGBegUXhi0ZGai3QHnRlZfXrzy76+rU16lfHF3nzpnaJkhpycgwtC+R0pqZifqqKtX39RQUAAUFygEtoO3YMXV1TlAP7SdOkMVZVARIKAWb0tJQTy4VVTo9z3MOHaTaQmdMjCHl3NPTg02bNuG+++7DmTNnFMPHxMVh2zPPYMmSJUGvs2zBFQy327xXHSvPFDT7RTWULQXNwgkWpXaHnylIBxZkYI2pU6ciJSUFhw8fRnh4OEaNGoXCwkKrxXI03H2oc7HDvMloxo8fj08//dRqMYgx+vkWSpaCVisFQ8VS0GljhheuFKSIKIqvCYLwHnq9j0UCeFUQhOWiKH7hDSMIQiqAZwAM8vx0DkBQf1GCIBQB8DfLWeOxDLQNegZjtZ3OyAGDhvsYuwwi6enpuOqqq2TDsDjx0utT3GkLalZh1QQsWP9naRJBE1baDity0MSIPNn9bAun9qNQoLm5Gddddx1effVV4nu2bt2K4vnzJa+z2k6lMHP3OKmloFIcditjO2GnsrWTrFZh9PuIHqUgjb7MlYLOZujQob7zejnWY5RSkMb9pIRqXwt1S8G0tDRMmDDBNkpBQRBQXFys240otxTsxWlKQVZxaj65UpA+NwD4GEA2gCIAnwmCsBvAMQDpAC4G4HUW3wXgGlEUz5svpjnoWQxlqdPpVXSwtsjDwkuqmbCoFDQKI3eW260c7T7Bk4KlMtYCy/KzKhurcnHYpba2FsuWLcPevXKe7HuJj4/HnPHjgd27LXMVG0qWYUqbmFjceGV2eizWmxdWFnf1KLc4ZOjd3MqCpSALhJLFBoddQsFSMFSxw7zJCEpKSpCZmYnRo0eju7ub6B5W2mNUVBQGDx6Mb775RnMcoWQpKFdvSm1ZrdcUq/uGf15Zaa+A9eViFM7qKQwgimIFgHkAPvP8JACYA+AWAMtwQSFYC+ByURTfMllEU+GWghfuZ2kQsUIpaGX+7abM0oOR+WC5HI2wFGRpEsIxB6eMAzThZUKXuLi4oL9PmjSJWhrvvfcexo0bp6gQDA8Px6JFi3DPPfegpKSEKG67Ke/MbL+kloJKc2Pe55zRHjj2R6+loN6w3FKQw6GHHqVgT0+P5nS5+1DjCVVLwaVLl2LKlCmIjY21Zb6vuuoqjBgxwqe0GjlypKr1Y24pSEZKSork+ycNjHAfGux/jjFwpaABiKJ4BMBkADcB2A7gJIAOAKcB7AVwH4ARoii+ZpmQJmG0VZI/rCsF582bR0ka62Fx0qHXfahTdhMZaSlII30z6OjosFoEQ2GhjAHtcrAifzC4+9C+uFwuDBw40GoxHMW0adOC/j527FjdcXd3d+M3v/kN5syZg8rKStmwKSkpuOWWWzBlyhSEh4frTlsvZrR/qzfNkITlloLGYie5rZ7PORUW3YdypSCHYz1GWgqyYmFuJ7g1vDJalKEsKFm8skZERODqq6/G7bffDgC45JJLEBYWpjoetdcCee+99/Duu+8Sh2cNkvki6eZPkvj0hlcDC+3Vi1PHGe4+1CBEUewA8JTnozWOcvRaGtKS6UkAT9KKjwQSRYsdXKbQcB9aUFCA+Ph4NDY2UpJKnzxm329lfepph0bBUvsmhWXlqiiK+Oabb7Bjxw6cO3fO51vfidix7fhjd/mtwKoyGzZsGCIiIixJ26lMmjQJFRUVOHToEIDeur388suRlJSkK97Ozk5cf/31ePHFF2XDhYWFYcaMGZgxY4YmZaDdLLhYsl73wsdAZXgZcfehJJi90Y0rBe0rA4fD3Yc6Fy3KMaeNS3bOj797SzX5kFt3UrMmVVFRgYqKCuLwrEFSZhMnTgQAxMTEoJ5CfHrCK8GqpaCd+5gcXCnIMRTuPvTC/W63GzfddBNeeuklVFZWIiYmBi0tLZQkVC+PlfebDctuL2ljtSWEVeV46tQpvPvuuz73LmfOnMGOHTsskcVoWGmrrMhBE24p2JfLL7/cahEcR1hYGFasWIFz587h7NmzyM/PR3R0tK44Ozs7cd111+Gf//ynbLjU1FRce+21yMjI0JwWi+1UDrNcSnFLQXtAQ25u8WFvzFKmau3L/tDYaMdCO1Jj+cHhGIVVSkEa95PCQn+nBd/4og6nlAGteneKFzAS1JTZVVddhYdefZVafEbDlYLGw5WCHEPRo0RgqdPRUqKlpqbi1ltvRXt7OyIiIvCHP/wBzc3NNEQ0FRYXrPS6D2CpvenB6nxYlf6hQ4d0nfcQDJYmIU7C6jYqB6uyWSHXmDFjmHAr6UQEQUBqaipSU1N1x9Xc3IzVq1crKgTHjh2LO++8E1VVVbrTNAK7WwoGpqPHUpDFOZbZ2L09mIGT8qIVli0F1YS3w7uwHrhSkGMH5JQIdrEUdMqYoRb/urPzZky1aMmDk9Y3uFJQPUasixppKcgxHq4U5BhDZSUQG4v4s2eRWFcnG9TlcgHl5f1+d9fUKN7rT3xXV794ZO8PkqZk3AT5kCUgrUjP34Rz5+C2wFowuqZGVf4DiayuVl0e8W63rjSViK2tlZQp6tQpxbTD9NaxSkhk0kJEVZVkPgRB0JWmXBl7iTl92tRy9NJeV4dEGhH5lY/r3DlVeRk3bhwOHDhAQwpZYmtrDe1LpGita3dFBcDouY9Rp06pyxNBPZCOl8Lx44DEwln82bNoM7lfTc7MZKKdcaQ5evQo1q9fj2+PHkWh57cwANkA9qH3MGsAuO222/DHP/4R27dv160UtJuyxiqloNawNKyLnIDd2wMN7CSrndDjmsxs96FOsRT0dw3H4ViFUl9wglIwVGFhnLMaO5WB3s38JGGdphQ0o8y0xKclvBKsug91KnyGxjGGhQsBAEtJw//xj/1+ygRQqjbd3/ymz1fZ+8vKiKNdrlYOwrTW6Y3XIiZ5Pqq5/37KklzgCrmLBHWdCg3tjUHGej6SbNigOe5LPR8lLtGcAgP4tZUUqG8Ts2nKwjhzPR/VqBh7zeYiz4cYgrxM9Hz0xLWSWCCKMFxPnF4GAXhT4toMAF/Ex+Nvf/sbrrnmGgBsn09lRrxmLpg43VLQTotP/thJbiPaidNg2VKQlfFWTRwJCQm60wsGtxTkKMHCeGaU+1BRFLn7UA1oHW+dVAZqIM23k5QsoaQUlIN2m7daKegPS+3VqWMLVwpyjGHHDmDIELz22mv49ttvFYOXlpb2+622thabN28mTjIuLg633nprn982yChAgqUpxbZt23Ds2DHi8KRpPfbYY5a4D508eTKmTp2q+f79+/fj/fffV3VPeno6Vq40bml769atKJewapkxY4bvcF0pzp8/jyeffJK+YBJMnDgRM2bMoB7vl19+ibfeeivoNUEQcO+992qO+4033sDXX38tG2bMmDH44osvNKdhNf599dy5c3jqqaeI7x0/fjw+/fRTA6Tqy4gRI7BgwQLD01HinXfewWeffab6vpUrVyI9PZ2+QBRQO7aRPEc++eQTvPfee4rh7r77bsmFs82bN6O2tpZYLr1cc801yMnJMS09Djmtra343//9Xzy+cWPQ63kA3gfQGBuLXbt2YdKkC1t4nPoyIweLloJybnlDsY6CYTflsxHYSVY7weKZgixYCoaHh2PB/PnAr3+tO81AuFKQwwJWnSloB/ehkyZNwscff9zv99GjR+sVyRTM3EzFkpLCH6X8tLe3+7yVsQy3FFSP1ZaCtGHVUtDqcjEKrhTkGENuLlBUhLasLNSfOaMcvqio30890dGoT04mTrI7Lq5fPLL3B0lTitbMTNSfO0ccnjStxtRUNEZEaI9XI+3Z2aryH0hHVZWqugGAmPR0XWkq0Zyejvr6+qDXOnJyFNMW6+pU50kPbVlZhpRHx9mzkvlwuVy60mzNzET96dOyYdqzs1F/8qTmNCzHr3x64uJUtYn27GxT2lBrZqahfUmNHFry21NQAGRmGiCRflSPbQT10E4YpzBgACDxAtOcno76ri5yuXTSnZ8P5Oeblh6HjF27dmHdunX4/vvvFcNuevpplEzqa9PPiuWKmfGalYaaMwUjI+WXZbilINvtjBWLD7Ot1liEdUtBFs4UlIsjIiICixcvRnd3NwYNGmSY+3/uPpSjhBnjqpXuQ1l5bkgxduzYoErBsWNl/Q8xA7cUVM73P//5T6z40Y9MkkYeWnVEy6Umpy/cUjA4Tm1ToaM+51iC3h2WajBywGB5ccKKdO02ILK4I8ZpbYqV9Gmidkwxa0caK2XMihw0MSJPdiwnO8rsZNra2rBu3TpccskligrBvNxcAEBJSUm/ayzXq92fiWrSiZDZDNbZ2cl0PdkdO5WtnWS1E6F2pqAc8fHxKCkpwYQJE5CYSOVk7qBwS0GOHZDrs0atM7Eyzufk5GDp0qU+Bb7L5cIll1yC4uJiy2QyeuMLK2VPC6X81NTU4LvvvmNKyRIMPc9o0mtOw+pNYkaeKcgSThszvPBtWxxD0TMYs9TpWJKFBViceOndKeSUOjbTEsLs9FmHxcVnFrG7/EbB0m5HXkfs0NDQgOXLl+Odd95RDLtkyRL8/de/BsaNM0weuyvvzELuhVZOKdjR0cHkHCsQo1/YndYetEDTUpCjDadbCpoFVwpyWIBkTDVCKSh3r8vlQnd3t+a4A9HT38ePH48xY8bg9OnTSEtLk52rsAa3FCTL986dOzF//nwTpNEOdx8aHD1nlavF6j7EqvtQp+KsnsJhDqdYChr1UOGWguYQSsosIxULJPc7bQKmBqe0IVK05pflcmppaaEeJ8v55bBNTU0N5syZo6gQFAQBv/71r/Hyyy8jKSlJNpxe7KwUtHrTjBc596FcKWgsNMppyJAhFCRRhj87lLFywyHJvSxYCrKw4YgrBTlKsDAHkLtulPtQ2u/NesvR7XYjJyeHCYWg1dZPesln8BiGc3qOQ6KIGe5DrVyTMvuZR7uvcPehwWFxnKFB6K7eckyBWwqyCVcKagvDUSaUy5FbCtqf8+fPW5Y2Cwt3VqXH6c/HH3+MiRMn4sCBA7LhsrKy8Prrr+P+++9XnHPxejUPrZaC7e3ttqgnu1oK0oh32rRpFCTRj90XTO2AXvehtNPXAgtzC36mIMcOWGEpyMdmOmixFDS67EeMGGFo/IGQ5oclJUswaNWLVUrBkSNHYt26dUhPTzctTastBY10H8p6e3UCXCnIMRSnWAoaNWmw6yBnh13satM2e+JgxYKXGcrgUH65CbUzBbXCsvxdXV1Wi8AELNeR0+nu7saf/vQnzJw5ExUVFbJh161bh8OHD2PRokVEcXNLQTYsBZXOFDQ6fRqEslIwOzsbEydO7PNbZmYmxo4dqztuf/g4rIzZloJ2dB/KAtxSkMMCeiwFe3p6NKd7+PBhvPvuu0GvsWYpaFdYzPfw4cOxdOlSZGRkICoqyvD0WCwDo2HNUjAuLg4rVqxARkYGMxvItGC1UpBjLnzbFsdQzLQUtKNS0CqcaCmoVxnGYp60YHU+uPtQ56SjhBPdh44aNQpHjhyhGifL+eWwRU1NDa6++mq89957suEyMzPxzDPPYO7cuariD3WloJkonSEkhx3KIpQ2tQWL49JLL8WQIUNw/PhxpKWlYdiwYZKLvnrS0XOdExw91n5GLZRx96GcUMcst8xyGGUp+PHHHwMAEoNc40pBadTkxb8cjbYUVHPf+PHjMX78eIiiiCeeeAInT57UlCZNuViYv5nxXJJz1W8U/rKXlJTgrbfeQlNTk6npshifWli1FLS6XIyCKwU5xlBZCcTGIra2Fol1dcrhy8v7/RTW0EB2r4fIyMh+8cjeHyRNKWJOn1YlC2la8WfPQjDhQRFIZHW1qvwHu19tecRHRelKUwm5tkaSX1dbm746VknUqVOGlEd4ZaVkPtxut640SfpB3JkzppYjbcTvv/c98AWVeYk6dcqUvMecPm1oXyJFa35dJ04AjY0GSKSfgS4XUhsbyS0GCeohoqpK83PQS/zZs6b2K3dFBdDeblp6HOCjjz5CaWkpqk+dQqHntzAA2QD2Aejw/DZw4EDs3LkTxcXFqtNg+WXGCNlycnKox0kDI5Q93FLQ3HgFQcDgwYMxePBg6nEbER/LfV8PZlsKqr2XhU2YXCnIYYnJkyfjo48+6vd7SUmJ4WkrtXeXy2WIUlAOp47NZmNmOWppC7yezSctLQ3R0dFobW01Lc3Aeh48eLDiMRBGpKs3rNWWgt4+9vnnnyt6zeHohysFOcawcCEAYLbno0hZWb+fEgCUqk33f/6nz1fZ+4OkKcUlno9mJNK6VU+celCR92CM9nxU89Of6kpXjmVyFwnyGwUN7Y1Bhns+kvzhD5rjJuoHZWW4SHMKDODXVtKgsk3YPe8qmeX5qEbn+GMk0QDuUnMDQV7GeT564rqWWCBKMFxHTmUygD0S12YA+ADAuHHj8NprryE7O1tTGixbChrBhAkT+nw3032onjOE7FDGLO3cVYMdytaLE9oJi2i1PlF7Lw33oUZbCpoFVwpyvMyePRvHjx/HqVOnfL8tXboUsbGxhqetZ0w16pnHLQXp4J9vVsuA5U0sLEFz89bQoUPx2WefUYmPhMD+bNZc2epNaUa0vQ8++AC7du2iHq8enNLHAuFKQY4x7NgBDBmC9957D5988ols0KioKNx+++39fm9sbMTjjz9OnGRERATuuOOOPr9t2LBBMnxpaSlx3G+//Ta++OIL4vCkaT322GNobm7WHK9WZs6c2W+xTA1fffUV3nzzTVX35OTk4JprrtGcphLbtm3DsWPHgl675JJLMHLkSNn729vb8cgjjxghWlAmT56MqVOnUo/366+/xhtvvBH0Wnh4OO68807Nce/atQsHDx6UDbNs2TK88sormtOwmrvvvtu3eHHmzBk8/fTTxPfOmjWLuvuwYIwbNw6zZxNttzAUkvE9GGvWrEFiYjAnOuzw/PPPo6qqSjEcyXPks88+wzvvvKMrLlJ5aLFy5UpTD0gPVQ4ePIgf/vCH+Pbo0aDX8wC8D6AawOrVq/Hoo48iOjpac3o0XmaMchEtCAJA8eV56dKlGD9+PBNW1WrhloL2fPE2e1HGjmVkN5xwpiALloJuN19y4vQSHR2NtWvX4vjx4zh//jwGDBiA1NRUq8UCYJz7UDm4UlAa2tZPNO7RgxnpCYKg2FZZ39RFs5xycnJMVQqq2SBoFXY4VkkURXz44YeWyhBK8Bkaxxhyc4GiIrQfPYr65GTZoOmDBgFFRf0vNDYq3utPREREv3hk7w+WpgRtWVmo1+MDXCKt+uRkNEdEaI9XI+3Z2aryH0jn+fOq6gYAEtLSdKWpRHN6OurPnQt6rdPTHuUQOjpU50kPbVlZhpRHZ1OTZD6C9RE1tGVlob6yUjZMT0GBqeVIG7GwEPAsXvTExKjKS0dOjil5N6rtqIVkfA9GT0EBwHgbac/ORj2JuxGCeug4fZqsnGTiakpLI5OHEmJhIZCRYVp6oUZDQwP+53/+B7/73e+IXNX+569+hRvvv58JV3RGWXzQVArGxsb2KgSDpWEQVi8E2EUpeOmllxKFY919qN0I1XwHw6wzBVmxFNSSLm24pSDHn/DwcAwaNMj0dEk2WthdKRiqcEvBC2mwqIgKxKnPnsB89fT0WJKu2fHRTr+iogItLS1U4+RIw5WCHENRmuiEhYVhypQpQa+pHVyMfAA6bcJmxcKilRM0krSdUsesToTtgp7Jm1llb/c6toP8NMcDO7pstEMd2ZV9+/ZhxYoVOHHihGLYUSNHAl99hVWrVgGMWIzYQVnDwvOcuw/tT2pqKkaMGGGANGzALQXNh2V3bDSsXJxiKciVghw7YIX7UNqE6nNBbb4HDBhgkCTSmKUUVIL1tkyznKx+f2bRfagRZUI7zvb2dqrxAaE7NpJg/Vszx9EoLcysXr0axcXFQa+xpBQ0ahCx6qHMgrUBbfS+9Fo9aWA9XtK4WWwbavDvk2r7p93zrhYn59fJeeNYQ0dHB/7zP/8TM2fOJFII3nrrrdiyZQtVGWgtMBuhdLPzIoBa7PBCrgTJ83HSpEmYNGkSAOCiiy7CTTfdRHxulB3nSLSxk6x2ItQsBVloR9x9KIcF9KwVGLVmo2acII0vFFFrKThv3jwjxQkKK0rBUMLs8gh8ZnNLQW0YoRQsLCykHqdT4DM0jqHIvcwkJSWhoKBA8jpLDzWnKQX14kRLQZbamx6M3BHslDKSQ0+fZME6xQ7YoR1xS0H268hOVFdX4/LLL8fHH3+sGDYzMxOPP/44LrvsMlPPw1NT52FhYaa96GpBqv+y0q5ZkUMPJM/KuLg4TBs+HAAwffp0ID6eOH47lhHL47Qdy5MEsy0FjVIKkqZPOw5uKcgJJVhUCgK9c5bu7m4qcTl1rFdCTb6vvPJK5OXlGShNcEK1boJh1nPJ6nkZi2u9dlgX3bFjB/U4Fy9ejOb9+3Hs2DHN9WJ1uRgFX8HkGIrcSwBttzisug+VU3xaBQsvqWZih4efk4iMjLRaBM3oGUdCrQ1pza8dyskOMhpJqOefJkeOHMHUqVOJFIIrVqzAwYMHexWCBkDrJZxbCiqnqeQ+dPDgwUGvZWVlUUnfaEielSyOIyzKJIWdZA0VnGYpyJWCHE5fpPqEURuhaFsKOgmtG1+U7ktNTdUsE+s4wX0oTUJFKeg0S0EjiIyMxMqVK3Hfffdh3LhxVovDFFwpyDEUuZcZ2kpBI9Ejy7BhwySvhZL7ULN386pN2+pJA+vxksYtCAKys7MNSX/OnDnErse0YgelYChN5q2CNatPlp6HHHJefvllTJ48GcePH5cNl5KSgs2bN+P5559HWlqaYfKEulKQpX40Y8aMoL9PmDBBU3xm541kgVSPTHacI9HGTu9JVmH0+4jeNhxqmzCl4O5DOUYSFRVFFI5kDiQVxi7H1DhlzFCLmnmpVWXE3YeSYef+YAf3oUasi9qp3UVFRSEiIsJqMZiCrVUvjuMwUynI2mQtLCwMkydPxpQpUyTD2HVx304DP0Aur93yFQwWdgTPnTs36O+5ubma45wyZQpmz55t+MKCHc4UZGXccLKlIGvuQ83GjjKzRE9PDx544AFcfvnlaGhokA27atUqHDt2DDfccIOlm2fUYITVh50XAYKlqWQpmJ+fj8mTJ/f5fciQIbbZvUryHGJtcwVg/cYpK+PjqEeP+1A14bmlIIejjNT75aWXXkp0P6vuQ+0+/2EBNZaCoa4UZGEdwaznktWb/kNFKWg3nLyGpQW+bYtjDJWVQGwsok6dQmJdXdAgCYIge16O0NEheW/Q8EHik71fxVk9MadPq5JlypQpmDBhAsLDwwEZC4HEujpDDlJVIrK6WtdZRRFVVarKA0CvhZeB5yPJ1VFEVRUQE6MYR9L586Y9vPXWgRTuigrJcoiMjNSVJkk/CK+sRF5eHoZGRuLUqVO+38PCwjDtoouw8+BBzWmjvBwJ584BCovsehC//x6IiwMAhNXWqmrnkdXVqvuFFqJrakw9a0wKufFdDteJE4DBFp96iSWte4J6IB4vZeKKO3PGlLblJezkSUP7mZM5deoUfvrTn+Kd3btRCCAMQDaAfQA6/MKlpqbit7/9LW655RbTXjJYthSkCQsLHkpKQUEQsHDhQowaNQqVlZXIzMxEQUGB5rJ1mvtQp754q4HmwqZTy5N1S0G9YblSkMO5wJgxY7Bv3z40NTX5fktPT5d0x60Fsy0FBUFgfk5lFU57xrGiFAwlrFYKsvA+ogUnWwoC9pPXaLhSkGMMCxcCAMZ6PpI88IDkpQgApWrT3bChz1fZ+8vKiKOd4vkQQxj3ejVx0kRF3oMxCBrqBgB+/GNd6cqxRO4iYX7voSIJITrrQIpiKNTN//yP5rhnez6yePJ1XbBr//d/GKE59V7W6rxfEb96SYfKdl5Wpjt/dmKq56Mag9o+TRZ5PooQ5GW056MnrqtI7qeJDeqIVbIAPBnk9xkAPvD8P2HCBGzbts0wV8tS0FocZt1SUOolnJWXQH83ZXl5ecjLy7NYIvXYVSnILQU5elC7SK3XUpBGG2ChHXGlIIcGSUlJWLNmDfbu3YtTp04hLy8P06dPN8V9qJGbhu1sGcUK3FLQvDSMxs79wUhLQVrHS4S6+1CAWwoGwpWCHGPYsQMYMgRfffUV3nzzzaBB0tLScOONN0pG0dXVhYceekhVsqWlpX2+bwhQEsqFleOjjz7Cnj17iMMvWLAAI0YoqwcefvhhdHZ2EsdLi3nz5mHMmDGa7z927Bi2bdum6p78/HxcdZVxS9uvvfYavv3226DXli1bhoEDByrGIddeaDN16tR+rsNo8P333+Pll18Oei0qKgq333675rh3796NAwcOyIa56qqrkJ+fH/RaY2MjHn/8cU1pT548GVOnTsXGjRsV3fHpYe3atUhISAAAnD59Gv/4xz+I7120aBG2b99ulGg+SkpKMGfOHMPTUWLv3r3Yu3ev6vvWrVuHGALLXSvZuXMnDh06pBiO5Dly8OBB7Nq1S1dcL774Ik6ePCl7f0JCArW+4d8POMrU19fj7rvvxrvvvdfvWh6A9wFUe75feumleO655xDnsUg2E5YtBWm+aJll8e+P1S+KTrMUNAoWZZKC1YVNljDbUtBspaDRFkRmtSF+piCHFikpKcTuQrVghaWgnZUgRmKUpaDeMsrJyVE8K9yIdGmlwYL1GgseUowg8JlNs6xHjhyJV199td/vJGucauFKwdCCz9A4xpCbCxQVoau+HvXJyUGDRKWlAUVFklEI3d2S90oSEJ/s/TJpB9JZUaFKlq68PKL465OTLVEKdnrqRyvdHR2q6yY1I0NXmkq0ZGSg/syZoNe68/OJ68Ms2rOzDSmPrs5OyXx0REfrSrP9m29Qr+AuUa6sxYYGzWXckZMDFBWhKS0N9QbuOO4pKACSkgAAXRERqvu9GW2oxeC+REpbebm2/BYVEbnztZL27GzUV1crBySoh45z58jKSSaulowM1Pu5Swpk6NChuPbaa3HkyBE8//zzymkpIBYWAomJuuMJBU6dOoWFy5fjiy++kA3XDeDnP/85HnjgAcusJmi9BLGuFGTBUpCFRRcjMfpMQTu+sLNsKag2rpKSEuTn5+Pdp56iJoMdsVopaLSlIHcfygkl9FgKGvlM5+5D9aPGUlAvc+bMwaZNm/r9Pm3aNNn77DivsQI7K8mNtBQMDw/HvHnz8LHfe35ERAQTG8XtBu+LfeFKQY6hyL0E2GkHrFG7JaxaNNJbtizVjRcWXnpZwMhysPJ+s16Y9PRJs9oZK4vNTu5Xdnsh8S4+DhgwgIrFoJPrlibHjh3DggUL8N133ymG/etf/oIF69aZIJU0tOrVru5DzcRsGULNUlAQBE1l7KSxzci8lJSU4Pz584bFTwuj69NqpSA/U5DDoYcet3ncfSjbmGkpmJ+fj+LiYhw7dsz3W1xcHCZMmKArXhqEav1LYbVSkPa7wLRp05Db2QmUlWHKlCkonj8f6enpVNMAnG8pqBWn5pNvS+EYitzLjJOVgk7HaHc9tAml+rM6r0YtPijt4KSF/+RN7USO7/Qkw+o2SgJrdUn6vIyKisJNN91khkghz+7duzF9+nRFheDoUaMA9LoVtxqW3YfShLsPNR6rzxScPn265riNgmVLQY75GG3lZ2YceuHuQzmso9RPuPtQ89Gq6DN6jTEsLAzXXXcdFixYgGHDhmHGjBlYu3YtUlJSDE2XBLu4D5XDzv0h8P3IiPeRwsJCAMCUKVM0KQT1bI6gFd5q7Cav0bD9Vs+xPaGqFOSWgmzBorxGyWT0znwr7zcDPZM3bilo7H1mYgcZ/fGXNyUlBddffz21+Dj9efDBBzFv3jzU1NRIhomMjMRvf/tbvPTSSyZKZg52tRTk7kPpYbVSMBTGKCXlO8vzPbMwepMitxSkA7cU5LCAnvbO3YeyjdnPLLfbjalTp+Laa6/F/PnzkUxwTAQrSkEWMOu55DRLQbOwSzvSipPXsLTAt21xDEWPUpAl1E7WuFKQfpp64rdTWzMSM+rd6Hpg2VIw1JSCTobmC7oV7V6v/HzMDE53dzf+/d//HWVlZbLhBg0ahG3btmHYsGGAwjmsZsKypSDNNmeFpaDVsGgpaORCJ4sv9LTjtnKhmLb1il3RqxSknT5tuFKQE0qQzIHMdh/KLQXpYKaloFZYUQqysI5glvW41UpBFt9HuKWg/eQ1Gq4U5BiKU5SCRsnKwkNZC+3t7VaLoAo7tTW9hFJejUBPnwy1nZ4sLsrSwm51GVimfAGOPs3NzVi5ciVefvll2XAlJSXYvn07MjMzTZKMHFpKQW4pqBy3Xed3pFhtKah1jLbD88eLlZaCnF7MUgpaZSloFtx9KMcuSPUXI5/pXCkYHLPHW6NhRSnIAhEREZLX7NwfnPIuYJd2pBWn508tfIbGMRQzF1aHDBliWNxO2y2hV77IyEjT01RC7qHLYn1w96Ha7uWWgvadYHphsT8GQiLjiBEjqMWlNw7aSkE71JGZnD17FosWLcL+/ftlw82ZMwdbt25FYmKiSZKpg2VLQZrYfYzUAot91kilIIuYbSlo5CKoHcufFBbzJiWT0fMHbinICSX0WAraxX0oi+ObGaixFLQKrhS8QHh4uCnpmF0eZpwpqBduKejsje1aYPutnmN7zHwJmD59umFxc/ehfcnKyqIkiTk4dQBnERYWH/Sgp0/aIX80cXJ+Scb8CRMmmCAJGVwpaByNjY1YvHixokLwtttuwxtvvMGsQhCgV6+suw+1Ym7F+0x/WNykZKd6slr5bqeyMgqnWwpypSCH0xe7uw91EtxS0BhY2DjHLQXZxulKQU5fuKUgxxgqK4HYWIRXVSGxri5okNjISMWzdqTuDWTkyJHI7+7uF5/s/SrO+YmsriaWBQDCKyuB6GjFcGripEl4ZSWQkKD5/hiolz3uzBlDz1aKrqmRlMldUQEQTObNrI/I6mpDysNdUSGZj5j2dl1pypWxl7CTJ4Hu7qDXhPZ2zWXsLa/4s2fRaWA9uU6cANraev+vrFQlb4TMeEeTqFOnmDinTO246EU4fhwwaYegVmJOn5bNW35+Pga6XET1EE7ajmTiijtzRjaOmNOn+9wfUVurqy0Kx48TPcOcTnNzM9bdeitO79uHQgBhALIB7APQ4Qnjdrvxl7/8BWvXrrVMTlJCxX2o1OKdmS+tZi8EsPhCrkehEYreFAKx0n0oi+0pGFrk1LN4bPYitRmeBsyAKwU5LMCqpaCdlSCsYAeloBnYJW9OtRS0g1KQWwqGxsZCNXClIMcYFi4EAOQAKJUL9x//IRuN7L0EyN5fVkYczyjPhxjCuEvVxEkTFXmXolTLTffeqztdKS6Tu8hifVCog2DkQSEf/+//aY57qucji0y+IqGjjD3xrtZ6v8p0ACAXKuUtK7OuT1vARZ6Pagxq+zSZ4vnI8qMfEcU1wvNRRKZclhGldIF06BzPbFBHZhAL4Jkgv88A8AGAhIQEvPjii7j44ovNFUwjLLsPtbuloNWw+KLKokx2wsry49YrwbGjpaCWdGnDzxTksICe9m6kG0CrrcKdgH8ZsvrsYsV9KAtzZKdaCtrBfSgJrPYhWjg9f2rhMzSOMezYAQwZgtOnT+Mf//hH0CAZGRm44YYbZKPZsGGD5LXS0lJFMfTe7+XQoUPYuXMncfilS5eiuLhYMZycfEayePFiDB06VFccR44cwfbt24nDDxw4EMuWqV3aJmfbtm04duxY0GvXXXcdkctTM+tjxowZmDhxIvV4Kysr8cILLwS9Fh0djdtuu01z3Hv37sXevXtlw1x77bXIzs4Oeq2zsxMPP/ywprS95fX3v/8dZ8+e1RQHCf7yV1RUYMuWLcT3rlixQlV4rYwYMQILFiwwPB0l9u/fj/fff1/1fXfddRfzC0Qff/wxPvzwQ8nrK1asQF5eHlFchw8fxo4dOxTDyT2T5MY3oH+bqKurw6ZNm4jkC8b69es1nR3rFKqrq7Fq1SocDSjzPADvA6gGUFBQgNdeew2jRqnaMmQpLFsK0iQULQVZxMgzBVnc5Wv1jnRaYe2E2ZaCZqdjtKWgWeMUV3pwWMcqS0HaY7OTxnruPpTNNGggZyloZ6WgUywFWYjTSOwmr9GwvSrHsS+5uUBREcToaNQnJwcNEpWSAhQVyUYjdS8AxXtp3O+lq6FBPq7A8Hl5+uUzkE5P/eihu7lZlfwtGRm605SjOT0d9efOBb3WU1AA5OQoxmFmfbRnZxtSHj1hYZL56IyJ0ZVm+/HjimXUnZ8PSClLOjs1l7G3vJrS0lBv4K6rrrw8ID8fANAtCKrk7SkoMKUNNaenG9qXSGmvrNSUX2HAAIBxpUJHRYVs3rrz84HCQqK4uhobycpJpk7lxjeg//gqJCXpaotiYSEQFaX5fjuzf/9+XHnttTh58qRkmOzcXDz7wQfEimFWCJUzBa3A6oUAFsvPLIUKC/E6DV5OvZjlPlQKo88U5HBCCT3uQ1taWgyRSS5NDjn+ZWjUpiK9cKXgBULFfWhCQgLOnz9vqgw0cLr7UE5f+LYtjqHIvcywuHNCCqcNjKy8qJoF6/VBE6t3wdOyRLEK/3FJ7Rhlh/zRxMn5tfIsJy0EyqPXkou1/JnFE088gRkzZsgqBAHgqaeesp1CEOBKQY65GDlPZLG9WL34ZLf4aeCUMwVZj4PDCXWMtBTkfVQ/vAx74e5DjYtLS3pz584NGm7ECKKDRQzBiDMF7YbT86cW+6zqc2yJ3MIkCw8kUtQubLA+0FihFDS6TOTaE4v1YcUueKv7nJ70lXZw0kKPUtAsRbnV9agXFvtjIKwpBdWmp7ct2qGOaNLR0YE77rgDa9euRXt7u2S4XI/F+cCBA80SjSqhcqagFWlY3WesTj8Y3FJQHr1u/NXgtM2NVmG2OzuuMOBw6MHqYridNlqzCrcUNC8NGjjVUjCwL+fn5/c7VsftdjN/9ASfMwbHqfnk7kM5hiI3ybHTwatOHQD0wFqZ2E0paEf0vky53W7Ex8ejsbGRplhUoaG4DBW05tcO5WS3XYq0LQVDiaqqKqxYsQJ79uyRDTdixAhs+dvfgGnTTJLMXKw+j8UO44IauPtQNmUyErX51bso5GQlNylmWwpakY4gCHxuyuFQQI/7UCPhfVQ/Vs9hWU43EBY2F7vd0moIu72Dy6UXFhaGVatW4e2338bx48eRkpKCKVOmQPlQI+MwYnMEK22bFLvJazRcKcgxFO4+lE2caCnIatpmI5dXvbuy9JajIAgYOXIk9u7da5kMSvhvVmDVfaidxk67YndLQe4+lIz3338fV199NU6dOiUbbtKkSXj99deRyvCGBhJCpV6lMDP/fJw2VqFi97Y8Z84cx+0UdyJmuQ+VC+tyuXRtpOX1yOEoY5VSkFsDS6N1DGW1PLml4AWcaikYLL3o6GhcdtllfX8sLzdHII04be2bFk7NJ7dV5xiKU5SCdlKAkWCFUtBouKVgL3J5TUpKsjR9ALjkkkswfvx41ZPBmJgYPWIRo2dcYq1PGI2TLQVpKgXtaClohzrSy8MPP4y5c+cqKgRvvPFG/Otf/0JqaqpJkhkHLfeh3FKQPVgsPxafiSxY1w0YMACzZ882LT21YbWEtwqj5WRBKUhjQx6Hw2G3L7D4rLQbVs9hWUnXLhuq5CwFacKCUtCOOCUfUjg9f2rhTyCOoThFKcgHjv6wpii1m1LQCpn0KgVpKZOXLl2Kn/zkJ8T3hIWF+Q5kNrMdcUvB0IW1lyq18rA45rGCKIr4+c9/jrvuugtdXV2S4dxuNx588EE89dRTpm1KMBojF571YnX6egmUn4/Txioz7NxezNohzwmOWS5BacXrlDOCueKDYzUsug/lloJ0UGMpGMpKQYCN+amcUpCmfKy9r9sFp24k4wSHuw/lGENlJRAbi7D2diTW1QUNEt/drWg6LXUvACKza733ewmvrJSPK0h4EFhqqImTJuGVlUBUlO441Mgfc/q0oabysbW1kvKEnTwJNDUpxmFmfURWVxtSHm6ZcshsbdWVZtSpU4plFHbyJNDerhhXGMjLu6SkBBFVVQCAuDNnDK2nsJMnAc9E1V1RoSqtsJMnTWlD0TU1TLidiKyuVp1fQRCYkF0JpbburqgAOjqI4iIeK2XKJeb0adk4AsdXAUBKQwO6u7uJZAxEOH6c6BlmN06fPo2f/exneHPXLhSidxzKBrAPgH9tZmRk4IUXXsCsWbMskdMoaL202dVSkL+0mosgCAADi0/+sGApSEs5YraVHIuwXAYsj7dWoNcNKodjBlb0N6f0cdqoKRc7bDrg89wLyG2OsrNS0A7tkASuFAyOU/PJlYIcY1i4EAAQCaBULtyvfy0bjey9ZWWKYui938sApbg0xq0qTpqoyLsUudAg/1136U5XiivkLrJYHxTqIBjpMC4fEzwfWVTkq1SDDDdouEcVfvIXQn2/VxVeDwb2JVLGeT6q2bCBriAGMMLzkURFOx/i+SgiE+dlklekuVvDPT4MGp+sJgPAY0F+nwHgA8//U6ZMwZYtW5Cbm2ueYCbhVMsrFrDaUlDO6tUqWLQUZKGd22HRmQVLAhYww31obm6u7EIitxTkcOjAoqUgwPsGDexgKWgGTrAUpLl5hFsKmoPd8m03eY2GKwU5xrBjBzBkCLq7u/GnP/0paJDY2Fj84Ac/kI1mg8zicWlpqaIYeu/3cuLECfzzn/8kDn/VVVchPz9fMZycfEaybNkyDBw4UFccp06dwrPPPkscfsiQIbj00kt1pSnHiy++iJMnTwa9tmbNGiQmJirGYWZ9zJo1C+PHj6ceb0VFBbZs2RL02pVXXomCggLNcX/66ad49913ZcOsXLkS6enpRPFJlXdCQgLWrl0b9NozzzyDmpoaovi1sHTpUhQXFwMAysvLsXXrVuJ7b7rpJmzatMkgyS4waNAgLFmyxPB0lPjss8/wzjvvqLrH5XLhnnvuMUYgihw5cgTbt2+XvK6mnX/77bd47bXXFMPJPZNef/11fPPNN5LXx44di7lz5/b57ZFHHkE7gdVuMO69917HTJhra2tx33334V9B2moegPcBVHu+33bbbSgrK0NkZKSJEppHqJ8pqCaNzMxMQ581tGFRKehyuQCN1sqA/V7anWQpyMKiIQl2P1NQEATMmDFDdzxG3k8LvWcdczhmwN2H2hOr57CspGuXtsTdh7KNU/JBG6eWC1cKcowhNxcoKoJLFFGfnBw0SFdsLFBUJBuN1L0AFO+lcb+Xbpl8BA2fn69fPgMhlU8OMTJSlfytmZm605SjOT0d9RIuQsXCQoDgPD0z66MjJ8eQ8kjJyED9W28FvZY5eTKgY7G7vbpasYx6CgqAzEyi+KTiciUnS5ZNU1oa6gndNmrBv146OztVtQmxsNCUNtScnm5oXyKl4/Rp1fkNCwtjQnYlupubZfOmpp13trSQlZNMubRmZqK+tlbyeltWVr/7m9PT0dzcTCRjUFkcMPHdsmULbr/9dpw9e1Y2nCgI+Mujj2LdunUmSWYNoa4UJCUmJgZXXnklHnnkEc1xmK1U0eoq2EhYqlMvLMhkF6sQFsqKNWiPk6tWrcKAAQNk3YdzS0EOhw6sektgpY+yhtXzUtqwICMLMgDOdR/KSvnqhbsPDS347IxjKHIDhF12oQLqX2RYHxhpyMfay51ce2K9PmgSExODwsLCfr+PGjVKt/ULC+VotAx6xiUWyodDB5quZ6xqF3p25du9LdfV1eHGG2/E1VdfragQBIAHH3zQ8QpBgO16pSnblClTdN1/zz33ICMjQ9U9VpetE5WCdnMfShq3Hc6as9M7mlrMen6T3DtgwABDZVC638x6Zu29kRN6WP2cDoYgCLxvUMAO72WsWAqy8HxPSUmRvEbqPnTo0KGKYfiZgtpwulLQbvIajTNaLceWsPBAIsXpA6MWWMsjVwpeYMWKFX3c1w4aNIiK69ZQKEf/dqR2jDKrfFgZO53cHpQm9aztPAx23SkvJmr59NNPMW7cOGzevFkx7NAhvac9suCO1wxYVkbQjHPMmDG60rCj+1gW3Yc6+RmhByvch/IzBS+gZsOMGWcKKuGUZzl3H8phGSvPFOTPyuAYNd6GulLQagYPHiw7zyadf5Acw8Pa+7pdcEo+aOPUcuHuQzmWQfMQWaNx2gBghaWglRZeLL5QG1kecXFxWLt2Lerr6xEREYHo6GjD0grE7PNdaGMHS0G1Fiwc9djNUjBYGloX4Oz8vNu0aRNuv/12tLW1yYaLjY3Fr371K9y1ZAlAsNM0FLBzvQeSnZ1teppWlx+LSkEj3R5yS0FjEUXRFnJqIdSUgqzUI4vvYpzQguSZwpWC9sQOZciVgkBWVhaWLVsmG4ZkLWb27NkY4tnYKQdXCmqDG8SEFlwpyLEMO+1CZU0BxgJ2erkLhfoIRmJiItX4QqEcWbIUTEpKwvnz5/v9ftFFF1FNRytObg92Gt+kCKVd+R0dHfi3f/s3PPzww4phS0pKsHnzZowYMUL2HCcnQkvJwrKlYElJieFpsAiLSkEj3R6yFKdVMnD3odrKQM/z3YpxksV+pAUnzKs49oakL1ihROB9Qz9Wz2FZSZdkU6tVz/fRo0fjiiuuUJRRSb4hQ4Zgzpw5RGly96HacLpSkMWNhVbijFbLsSV2eeEEnDcwhpqlIGnaZlrU2REWXqZCyVJwxowZiIqK6vPb5MmTER8fTzUdTn9C2X0o68+vQPbv34+pU6cqKgRdLhfuv/9+fPTRR70KwRCE5bplWTY74MQzBa2KWyukMlmxaMRieVmF202+J1pPuXFLwb44ZbGU42y4pSA7OM19qBmwmrfY2FjMnTuXSD4lb3IxMTHE6bL2vm4XnLb2zZGHWwpyLIO7D7UOK5SCRkNDKTh79mxs376dlkgcG+I/LlltKZidnY1bbrkFX3zxBRobGzFw4ECMGjWKahp6cNq46I8T3Ic6fRecKIr4r//6LzzwwAOK84nBgwfjqaeewpQpU0ySjk1CwVLQLu2XNnIWklbhFGUGbezQ1u3iPtRoS0E97kNpYYd6ICGUvBdw2IRF96GCIDimj1uJHcqQBUtBwFzDjJycHGRmZmLatGlITk4mukdJPqvfV1hKzyickg8pnJ4/tXClIMcy7GQpyJpVHAvYaQcJadrjxo37/9m77zgrqrt/4J977/a+y8JWtlCWXpcOSlFZRbESuwImFozoxvLLk5gniab4GI2wamJJomhEo2JPVLC3iKJiAWwgC+yy9C1sb/P7Y+8ud3dvmZk75czM5/167Uu8d8r3zDlT7nznnME333yDcp8h5SZNmoSvv/465Duq9IpJJCLE7KSegi6XC+np6ViwYIGmy6XQrNZT0B879xSUJAmlpaW4++67Q057wQUX4G9/+xvi4+MNiExsIicFjWDXnmspKSnIyMgwbf2B6D3sYXR0NFpaWjRdZjhE7imoVEJCgm2PmeG8UzCchKJadkmuW6Hdk3OZlRQ0a512Y8axWSlR6rmurs6Q9dx8882KeuZ3Y1LQfFa6z2sku5aTSUHSR2Ul4P0xmVxd7XcSl8sV8n0+geYFIOtdQOHO381z6FDwZfURUVEBtLWFnE7JMrUUWVkJhHlQ8zQ2Koo/7sABXd/fFH/wYOC2tmsXEB0dchlRAC6cNQu7c3Nx6NAhZGVlYfDgwdj73/8iWkVSMDs7G3v37vW/rr17Lfc+q+iqqpB17tmzB2hokLW8QMtK7OwMuG0SFO6LSkVWVgLeJ9kiKioUrcuzZ4+msUVUVAAKb3gaSU576Mvj8Vii3UdWVgYtm2fPHqC2VpNl9QiyXeIOHAi6jNj9+/vNn3j4sKr2GBkZKXQdSZKEsrIyvHD33cj3fuYBkAVgE4DW7s88Htx555247rrrbHsRr5RWSUE9WKH3lEi6y5meno7zzz9fyHLrnYCbNWsW3nrrLd3WITq9tm96enrPE/0DBgxQPH9RURG+++47rcPyS802CKfHmhk3I/VOrhuFSUEymyj7Ql+ixmU2uw0fKkJPwY6ODmzatEn3OAoKClQlBIHQo8mJXNdOPc/xGGZtTAqSPkpKev5ZGmy61auDLibovGVlIcMId/5u6aGWpXLZipapJQVlDyQOJsbvx/nBvlRQ3kgAQ71/3a5SF1JwGtSB0cZ5/4JSUK7SYF/eeqvfj38ke+kq+cQ/DMr3e0XTK4hFRGO9f4rddZfGkWgvB9qdP4aEWpaMZS70/ilxnsLpe7nzznDm1pULXduz1M93cwB8AGDQoEF46qmnMHfuXAMjE59WP9qUvM9DDqN+TIrQS0wrV111FRoHDZI9HJPWIiMj0Rbi4Te9kxmzZ89WnBQU4caFyCOlRERE4JRTTun5/4ULFwK//rXs+UePHq358UFr4fQUNONmpF16CnL4UDKbqMOHOjWRoCVRjnPBiJAUNEo41wGhrpFE7hUqyvYPl13KEYjdy6cUk4Kkj/XrgaIiAMDqIIm/0tLSoIsJZ14t5u925MgRPProo7Knv/DCCzFo0KCQ0wWLT09LlixBbm5uWMtoaWnBfffdJ3v60aNHd91c0Mnjjz+OAwcO+P3upz/9aVfvF5UefPBBNDY2Kppn7NixyMzMxOuvv+73+/nz52PChAmqYzLDli1bApan29KlS2XfpAzU/pOTk7F8+XK/361btw4VFRWylq/GggULMH78eADA999/j//85z+y5psxYwYmT56Mv/71r5rFctFFF2HgwIGaLU9rW7duxWuvvaZoHo/Hg5UrV+oUkXb27duHf/3rXwG/v+yyy5CUlCRrWT/88ANefPHFkNMFOydt2LAB27ZtC/j91KlTMXv27F6fqd1XoqOjsWLFCsXz6e3jjz/G1VdfjUOHD/f7LhfA+wCqAJxxxhn4y1/+gpycHKNDFJ5WPQXHjx+PDRs2CJnccMoPvejoaESblBAEgEWLFuGFF14wbf0ulwsejwcnnnhiyOuSvvPpGZMcWr1TXcuyDBs2DIWFhRgxYkSv3oHdw9IuWrQIG/ftw86dOwMuY+7cuTjuuOOwfv16zeLSg9WGD2VPQSJ702ofHTNmjCbLsSKRe48ZuV5RjvcxMTGq5+Xwoebj8KHOwqQg6SMnBygoAADUBrtp4Z0mkHDm1WL+HklJwZfVR2deHpCZGXI6JcvUUmdeHpCXF9Yy3G1tiuJvyshQts0Vqk9PR22Ap9ZdhYWAyiEMAODogAGolzH8qK/mzEy05eQE3Eat2dm6bg89tB45ErLOO/PyAJnDTQValjs1NeC2qU9PR63M4UnVaMnK6ll3W2Oj7DY+/bzz0NHRoek+LeXnAzIeLjBLa3W14vJ6PB5LtPvOqKjQ5w+ZScEOucfKINulKSMDtVVVAb/3bbfdGgYOVLWvxMbGCldHDz/8MK688sqQPZNW3303Flsg6WwWLXsKjh8/Hl988YUmy+OPSesZOXIkPvzww4APYwHGJDMmTJigKCkoAjOS6aG25axZs1BYWBjw+6KiItSmpgZMCp5//vkYMWKErHVpycj37Spdnyg9BUVhl3KQdYnYU1CrdUZGRmL69OkaRGNNVriOZFJQHisnBe1ynmNS0D+7ltMerZZIZ3Y7AGhRHtFOFsEuIMx6ytYuFwbd5GwHvetZ7+X7PsEv98bd3Llz4XK5NI9N9OOO6PGFI9S+K9qTh/6+VxujSPUqSRJ+9atf4bLLLguaEOyOePHixcYEZlHB6lZpouL000/HvHnzenoSBVNcXKw6LqVEfm+incTExGDp0qVITEzUbR1y6ishIQHDhg3TdJlqyV22iD1s5Vyvyt23RL/2VfKeI/YU1A6HDyWzifA71t/61BwzM70PnxcWFmLKlClYtmwZBg8erHV4liFyoshIopTNqUlBUbZ/uES7z6s1q8WrN7Gv2onCdNppp/n9fObMmYqWY/cDoxqi/egXLSmoR5LIbHYrjz/h3KxTsk+UlJTg+OOPDzqNE7a3qLRMCppVj2qP0SId2++44w784Q9/CDpNdHQ07hT4HYgi0bItut1uzJ07FxdccEHIaU8++eSg38uNS+Rjosix6SUuLi7oezuNSsD96Ec/kj0cuwj1pNXwoVrS8mZ5OMP1K6V3T0G+U1A7Il1bEPVltZ6C3Un2M844A6eeeiqys7O1DstSRDnOBeOknoLRCkfY8hXqGkmUMvojcmxK2KUcJA+vzsjWioqKuoZC8+HxeBSPuW63pKAdewqKtu5QSUHR24iojOxxKjdBqOaHZHR0NObPn49p06aFXC4ZT03PPD05safgmjVr8POf/zzoNBMmTMCnn36Kc845x6CoSKlFixYhIiJCVo/CULTszUTa0LPXm9z6ioqKwplnnhn0fGoEkXsKhopNy8RTVFRUWMvSWzjvFDQjKajng41GtkUmBclsIl4DqH2IWMSymMkK2yNYjKNGjZL9rnorYE9BZ3FKue1aTl6dka0lJiZi6dKlKCgoQEREBHJycnD++ecjJydH0XLs9kNGq6SgSAdGEW5MaTWfqEQcdkVratqRmmGzrL6dAHuUIRCrHfPtlBSUJAkPP/wwfvKTnwSd7oorrsBHH32k+CEfJzOjbrt7DQXbp+TGJfLwc2bvNyIyeqhOq1yjiDh8qJbbzsikoJr6VDJ8aF9mDB9ql56Cwd5ZSWQ2M3sKWu03h4hEOc4FEyzGlJQULFu2DDNmzAhrGFhRtgOTgtZmpc4falgtXr2pvyomsoiMjAwsXboUkiQZdpPUKQcat9uNjo4Os8MAIObwoXa7yBehXYvcUxDo2ie0GhpMhO3tVBw+1Bw1NTW46qqr8OSTTwacxu12Y/Xq1bjmmmu4jyhk5vbSIikYbk9BObKyssKa32mCDVkWzvBRgD7t1ehEpT8iDh+qZS9c0XsKGjV8qFbscp4bN24cXnnlFWF+N5LziPrgCHsKhs8K91xCnUNTU1NRUlICjBgB3Hij5uswUjhJwVDXSGY8nCPq+shYdq1f8Y+eRBoJZye2W1LQjKdXjUzmaE3txbro7UAPVi9zuD0F5ZZf1B+mSogeXzg4fKjxdu3ahVmzZgVNCALAI488gpUrV9q6/enFzJtdRiUFwzV58mTd12EnWVlZSE5O7vf50KFDw363nNKhYK1yTLBqT0G5RO8pGM7woewpqF5UVBQWL14sTDzkPHLOKWZc3zMpGD4rbA+l1zRar8NI4TwUxp6C1iNKue00BK+R2FOQ9FFZCcTHAwDmFRRg8+bN/SY56aSTgPLyoItJrq4O/GWIebXkbmoKHkvf6XfvBurrQ06nZJlaiqioAFpbw15Oam0tWlpaZE0bu3+/rnWWePgw2gJtzzDXm3TkCDprahTNE7t/P6IiIwPWcXRVlaFtWAtRe/eGbLPu3bsBmdsq0LISOzsDbpuEQ4d03W8iKyt71h1RUSFrXTH79vXMI3efiKysBJKTEbNvX8B1ePbsAWprZcdutMjKSsV14fF4LNHuPUePBi2be/duQOYPHtnbKch2id2/P+gyfNtgt/iDB1XtK0mSZHgdvfzyy/jVr36Fxupq5APwAMgCsAmA75nqz3/+My6++GJDY7OTYD/a9EpUyLnRZmRS0OVyBS0rk4LKuFwuLFmyBI899ljPuS8lJQWnnXaayZEZT247tuo7BdlT0JybkXZJCgJd7wHOycnB43/8o9mhEPnFnoLWZIXtwaSgPEwKWo8o5S4sLERERAQ+/fTTns/y8/P7TSdKvKJgUpD0UVLS88+53r9+yspCLqY02Jcy5tdKLELE0pfM2BQtU0sabbsVmixFG5cG+zLM8i4LY97SQF8Y2H61MtL7F5SCcpUG+/LWW/1+fJbspavkE/8o75+SeWTvE9555nv/Qi1XRLK3T1933aVxJNpLhHbnn7xQy5KxzBO8f0rmDeuW/C23hDO3You8f33NAfCB99//8z//g+uvv964oGxI1J6Ccuk9fOjQoUNVx+nkH5i5ubkoLS1FeXk5IiMjkZeXF3YvQUCfUTpEqCcRhw/VctuJnhQM552CZtyMNOMVCHpKT0/HhAkTzA6DHMiIpIxSal83Itp+bTarbw9RzhdaSElJ8TuChFaYFBSPKOV2u9049dRTMXbsWFRUVCAzMxMFAKDR/QNRyqk1JgVJH+vXA0VFPf+7c+dOfPjhhzhy5AgyMzMxd+5cDBw4MORiVq9eHfC70tJSDQKVp6WlBffdd5/s6ZctW4aUlJSQ0wUrn54uuugiWds/lAceeABNTU2yph0/fjwWLFgQ9joDWbNmDWoC9FALt6088sgjqFbY42by5MkYPHgwXnjhBb/fn3DCCRg3blxYcRnt22+/xSuvvBJ0mssuu0x21/1A7T85ORnLly/3+91zzz2HXbt2yVq+GjNmzMCMGTMAANu2bcOGDRtCznPcccehuLgYgPx9oqSkBKNGjcJbb72FL774wu80SralGb755hu8+uqriubxeDxYuXKlThFpp7GxEQ8++GDA71esWCH7Kcjdu3fj2WefDTldsOPUm2++iS+//DLg97Nnz8bUqVN7ffbKK6/g22+/lRWjrwEDBuCSSy5RPJ9S1dXVuOaaa/DBf//b77tcAO8DqELXDdw//elPhp7z7UrUpKAoPQXt+mPPCDExMRg5MuRjQ4q4XC4Eel5cxOFDRe4pGIqWvdFETwo6bfhQIgrNrPOHx+NhT8EAlDzAYYXt4ZSegnPnztU1DiYF9VVQUGB2CKp1D8dcUFBwrBx+Rj+yQz1piUlB0kdODuBzQCksKEDh/PmQJEnRTlibmhr4SwMPWK7W1uCx9NGZlwekpYWcTskytdSZlwdkZIS9nPr0dNTLGCYVAJozM3Wts6MDBqA2UNsKc7316elQOohjS1YWOgYPDljHbX32EStob2gI2Wal/HxA5tNhgZblTk0NuG0aBw1CbV2drOWr0ZSR0bPuttpaWftoa3Z2zzxy94n23FygoABNGRmB11FQAAicFGyvr1d8DPN4PJZo966mpqBlcxUWAjJvfHZIkrztFGS7NGdmonbPnoDf+7bBbk0ZGag9cEBWjL6i09N1r6MdO3Zg0fnn47vvvgs6XX5hIZ56+umepDuFxwlJwXDKqOW8iYmJOHr0qOrlkT5EuBEg4vChVu0pqKY+rTZ8aLhEicOXiDGR/YnYmzwmJoZJwQCYFLSW0aNHY+gJJ2Do0KG6rkfNKBJGXXdZpR5HjhyJb775xu93M2fOVLw8Ucqt90NUopRTa3z0jAxl1R1JjyGM7ECkp1f1PNmrrU+7tQMRf0xpzbcdyW1TvmXWcp+w+ra0Mi1uoCoR7nvM/MWjti3qfVzfuHEjZsyYETIhCADPPvssE4IaMvOYosXNECU9fNTQcvucfPLJmi3LqZS2GbOvUeQuW8ThQ530TsFwbjSb0VNQ7nJycnJ0jYPI6uQcw8xICnL40OBiY2NDTmOF7WH3noILFy7UPSEIiH1f1grtEACmTZvm9zfVpZdeiiKf0f7kEqXccuMQJV5RiHNHn0hgIp981DDjwkPvbSJaUrC7+zppS8R25BuTk+rczmUN9QM9nHcS+RMq8WXkU8R61uvTTz+N+fPn49ChQwGncbvd+OnVVwOArGG4ST5RewrKpUVPwWDfa5kQHzZsGDIzM3t9FhcXp9nyybrk3OA0mgjDh6pJ+uvdUzCc9Rn9WyvQdYSdr9WItGb0/hIbG8t9NISLLroo5DRW2IZ2TwqKiknB/goLC3HJJZdg3LhxyMvLw9y5c3HzzTejsLDQ7NDCIlKHFSvh8KFEMtjtAMP3XOjP5VL34nCRGXWhY+YFle8T/GoShHLr3OweDRRcsHqMj4/X9MZgXFwcsrOzZS9P7jpESgpKkoQ//elP+J//+Z+g06WmpuJf//oXFhYVAX/9q+ZxOF2wutXrwRqjhw8Nh5bDh0ZFReGSSy7BBx98gIqKCmRkZGBmVhZw223hhukYejyQJ0JPQTVDM4UrVGxa9sKNjIxUNd+4cePw+eefaxZHIOG8U1DUpODEiRMDvgfIjON+KLy+JTOIOHxjTEwMOjo6FM/npH0oISEB2dnZ2Lt3b8BprLA9mBQ0B5OC/uXn5yM/P1+TZYlSbpF/J4qMSUEiGfTqKZiSkoKamhoVEYnBjGF0ArFaT0GzfojrTe96FrEdOXX4UNHjC4fb7Q74DgKth7MMNOSXLzW9n4LNM23aNHz88cd+v9P6grqtrQ1XX301/v73vwedbsyYMXjxxRcxZMgQvy8FJ2uSMySXlknBcHoK9v1u4cKF2LBhg6zY/ImLi8NJJ5107AO2a0VEvIEbruzs7H49SNVQM7xTMHISZXLrQ23dzJ8/Hx6PB59++qnsefTuKWiF4UOHDRuG008/Ha5duzRZH5GTmTF8aFNTk+L5rHoOVCucaztR2PGaxgxK79UYuW3t1iFALlHaL4cPVceZrZZIIb2SgieccIKacMJmx56CoiUFQ81nxaSgE06g4b5TUMuLESdsb1G53W5kZWX1+zwiIgJTp05VtCyz6jHY8XngwIEBv9My3traWixatChkQnDBggV4//33uxKCpBtRhw8Vtafg5MmTMXjwYFXzkvHMPq+GWvaECRNw8cUXK46h74MoUVFRmDNnjuL4ghHhet7tduO0007DyJEjdV1POL39zDyGBpKfn2+5m82hYjr++OMNioSoi5wHmPQQExOj+uFjJwlV3ra2NoMi0Qd7CuqHPQX1J0q52VNQHfYUJJIpUK+RcIwYMQIFBQUoN/jpcTOSgiL28JKLPQW7mH3DzYjli9RTkMx1wgknYO3atb2GlJ07dy4SEhI0XY8W+5XSnoJaJGhCqaysxMKFC7Ft27ag0y1btgwPPPCA6vdQkXxm/pgR5Z2CSuaNjo7GxRdfjO+//x779+/H4I4OoKxM9fJJGT0SHWbtAyUlJRh1yimq5p0zZw5SJ03Cjh07EBcXh/HjxyMjI0PRMvQePlSL7dq9DCXv7DW6PkXsKWiHHjR9TZw40ewQyKGM3l9iY2ODvmc7ECvu13pSO2y1kTh8qDZE7inohO0vMm5/dZgUJH1UVgLx8WEvJrm6OvCXBifSUmpqet0cDsa9ezcg48ZxJIALZ83CtwMGYN++fdiyZUuYUcrj3r0bOHo07OUkHj6M5mB15CNm3z5d6yzx8GG4Gxr8fxnmehMPH0ajzHJ2i92/H5GxsQHbcGRlJRCkt46IIioqgu+TQNfwRTL3/UDLSpSkgHUWf/BgyBjC4dtOIysrZa0ruqqqZ56kI0fQImOeuAMHgPh4xOzbF3Ad7t27gZgY2bEbLWrvXsV14fF4LDOE3hC3G1eWlGDbtm3o7OxEYWEhCnNzFcfvCbHfxB88GHKZwdoJ0LsNdos7cCDgPNFVVYH3v/j4sOuosbERly9Zgoavv0Y+AA+ALACbALT6TPeHP/wBv/jFL3gRbxD2FFR+UyYqKgpjxozBmDFj0Pb992Gvn/Rj9nFEr/W7XC6MHTsWY8eO1WX5AB9oCiScnoK8yavO8OHDkZqaanYY5DBm9hRsbW0NPWEfTjsuhCqvv9FdRKP0+jM1NRW1Gq7DqZgU1J8o5ea1rDpMCpI+Sko0WUxpsC8Nflr7WiUTK4gtEsBY79+JykJST6Ntd5EmS9HG5cG+DLO8F6iZybvO0hDfW8lQhNgnAUXlCrqsW27x+/Fi2UsP3zjvX0g+ZZa9T3jnWeD9C7VcEQ2DjPbgz113aRuIjgZ5/8KRCxnb6brrgn491/sXkJ+2Ms/7F2j6McGWd9NNQeMJJQ7Ay34+nwPgA3T1wFqzZg3OP//8sNZDypjRe120dwrqNS9pT48ezWbVsehtK9z4tOwpaEbiTe7yrZgUFLHtBYuJCUEyg1n7CZOC4cvKyrJlT8ERI0ag/NtvNVuHUzEpqD9Ryq3la3ychElB0sf69UBRUdiLWb16dcDvSktLw16+Evfeey/a29tlTXv55ZcjXkVPyZdffhnfffed4vmArovK5uZmWdMuX74cycnJqtbj68knn0RVVZWsaSdPnqzrOyIefPBBNDY2+v0u3Lbyr3/9C/v27VM0z4wZMzBkyBA8/vjjfr+fO3cuJk2aFFZcRtu5cydeeOGFoNNcccUViIuLk7W8QPt3cnIyli9f7ve7l156CTt27JC1fDXGjRvX867PL7/8Em+++WbIeU488cSeJ/jltJVJkyZh7tyuFM+bb76JL7/80u90K1asQHR0tJLwDbVjxw689NJLiubxeDxYuXKlThGJqbKyEk8//XTA74cOHYrFi4Onu99991189tlnAb+fP38+JkyY0OuzpqYmPPDAA/2mzc7OxtixY7Fhwwa/y8rLy8PZZ58dNJ5APvjgA1xzzTWorqnp9XkugPcBVAEYMGAAXnjhBcyePVvVOkg99hQMLzlptfd2WZ3S+ja7Dsxev96UlG/u3Ll45513dIzGGH3LbMXhQ63GbuUha2FPQTEFG62rRKPOCHpTeg05bdo0HIiLw+bNmzVZh11w+FDxiFJu9hRUh0lB0kdODlBQEPZiaoM9LajB8pU4OmCA/Iu2ggJVw6c2DhqE2oMHFc8HAG1xcQGTYn115uUBGjyJ2ThoEGplJiKbMzN1rbPa1FQ0BkqghLnehoEDUdvSomie1uxsdOblBWzDem8PPbS3tQXfJwFI+fmy236gZcVkZATcNo2DBqH2yBFZy1ejyWfdrYcOhSwvALT5HO8aBw0K2lZOOOGErmSI9+KpKSMj8DoKCgCBk4Jtzc2yto8vt9ttuXYfrk6PJ+h2ahw0KOQ2af7uu6DLaPNzzo0FMGTBgl4/Jl0uF0oWL0Zra2vA5TUF2f+CWbNmDS6//PKgD8/kFRTgb6+9hmHDhilePoXPzKQgewqSUkrfcydy/Zkdm9E96qZMmaI4Kaj2/d1GsmJPQRHZsUxkbWa0SY/Hg4iICFVJQacJlhRU8h5aMym9Dna73Tj99NOZFOyDSUEKhElBdbjViGQSaTibcNepVXxmPDFrBrU3Kux2YpKzHZRsqzFj/A9geNJJJ2myfDV8LzTlXnT6xhQsvoSEBMyZM8c2QxuIHp+dqN3WixcvxsKFC1FYWIjRo0fjggsuwKhRozTt8SRJEn77299i+fLlIXvTP/3000wImkjUnoJy6X1OZUJRLFYbPpRt4JiEhASMGDFC1bwibUf2FCRyFiP3p+joaLhcLsQI/P54UQRLCip9gMgsHG3CHEwK6k+Ucut9j02UcmrNGo9VEAnAiIOAUTek7Pj0ql7vQwL0OXHoGa9etK7v8ePHY+vWrb0+S01NRV5enqbrUUtNUlDLm5gi7V9asWOZwqXlu5j8fT5z5kzMnDlTl3gkScL1118fdKhvABiYng4cOoT09HTZyybtmbn/2X34UNKeHj0FWYf68LddY2Njw16GHvOEs3yn/9YygtPKS2KQM6qB1rrPcZMnT8amTZsUzeu0/aSjoyPgd1ZJCgbD84V+mBTUnyjllvs7UZR4RWGvbixEOhK9p6AZROopKFpS0OVy2S4pKIeSbVVUVISzzz4bmZmZiIqKQlFREZYuXRr0ZeEi7ltOTQqqic+u7T4YPZN+atcRbHq5x/XGxkYsW7YsZEJw2rRpePbZZ5WERzoRtacghw8lf4Ld6BOxrtgLoDe1SXyRt5WIvwVF3l6BWDFmcgYj22b3MTIjIwM5OTn9vu9+X70/TtuH2FMw/HXYBYcPpUC4/dVhT0EimYxIgFmtp6DdhsfUkh2TgnqcaMeNG4dx48ZBkiQhTuRqhg/1pfSCP9g6RNgepD/RhpuWE8+XX36JCy+8sF9P375WrlyJP//5z4isrFQcI9mDnKfv7dBTkMdr7Smtb/YUNI+/7WqHbR3O8KF6xWB3TisvicGMnoK+67z44ouxfv167NixA0lJSZg2bRqio6OxZcuWoPM6hR16CjIpKE9aWhqOHDlidhiq2GH7qyFKueVeo/l7CEMOUcqpNSYFiWQS8elQtes0IynotJ6CQPDtY8WkoJ70HgNcT3r1FBSdiEN9iUjEnoJql9Xc3Izf//73uP3224O+P9DlcmHVqlW47rrrNIuLwidqT0G52FPQWfS40adnHTs5aaxFUlDEbaTF8KFDhgzBDz/80O97ue9c1PP8b9ZvERHrmggwp6cgAMTExOCMM87o9f13330XcF6n7UN27ylopXXobcGCBVi3bl3A70W+h2aH7a+GKOWWG0dycjKys7Oxd+9enSOyBnbzIZJJlIOdSETaJqIlBZ3aU1CkNhEuvlNQe1Zs93ozImmoZPpAbfjTTz/FxIkT8Yc//CFoQjAiIgJPPfUUE4ICMuOcZPTwoeGw4zHXypS2Gdafvoy6hhGpHrXoKTht2jS/n0+dOlVVDHbntPKSGMxod6GOJ05+0KQvuycF2VPwmKKiImRkZGi2PCPvPdhh+6shSrmVXKMtWbJE8fJFKafWmBQkksmInnh2Hj7UygdRJgW7iFCHIvY49Y1Jywt+EbY36c+MZLuSdtre3o7/+7//w8yZM/Htt98GXW50dDSef/55VRfapD8zjymivFNQTUJczrxab9vCwkK/n0dHR2u6HpGxp6B1mNVT0OjtqmZ9RUVFmDlzZq/PjjvuOAwZMkSTddq9bREZyYzhQ9V877T9nsOHhr8Oq4iMjMRFF12k2fKCJZS1Zoftb2VK7k2npqbyAWYvDh9K+qisBOLjw15McnV14C/Ly8NevhLJ1dVw1dXJmta1axcQGal4HXEHDgQvcxBJHR2Akvg0qJ+EQ4dkxxuzb5+udZZ05Aja2tr8fxnmepWUs1vMvn1wJyQEnC+6qsrwNhyuiIqKkNvBtWsXoONNy3D2ETli9+/vqZeovXtlrStq796e/SlYW0kC+tV57P79gddRXg4IfHEZWVmpuC48Ho/l2n24IoLVMbradKhtErNvX9BlRO3dC6SkyI4pWN0lHDrUE8/u3buxcuVKfPHll8j2fu8BkAVgE4BWn/lyc3PxzDPPBOwVQeYzc/hQLW6GOKmn4Jw5c7Bz585+n8+ePduEaMwR7Eaf2iSUSHVsd3bY1uEMH+o7z8KFCzFt2jRUVVUhOzsbycnJqmOwO6eVl8QgYk9BJ72SIhQmBZ0l2ANwSh/gZk9B/YlSbqVxWOXYoTcmBUkfJSWaLKY02JdlZZqsQ67LlEysMrYS75/uNNp2p3j/RPDTYF+GWd6z1MzkXWdpiO+tJBch9klA93IZ2eYme/9C8inzqaGm/e1ve/3vCd6/UMsVUQFktAd/7rpL0zhElwGV28nHLO9fQArbynDIiykPwAsBvpsD4APvv88880z84x//QFpamqI4yFhmDh+qNMHjj949BUXqkVNYWIiJEyfi888/7/lsyJAhGDVqlGExmE1pEtjsmxJmr99MWvYUNGPkE7nLD+fBhJSUFKQoeHgnUAxKvyci+cx6p6A/3LePCdbbS+8HxowQrK7z8vKwe/fusJdjJVrWKZOC+hOl3ErbjdV+Z+iFSUHSx/r1QFFR2IvZunUrXnvttX6fT5w4EfPmzQt7+UqsWbMGNTU1sqa95pprEBGhfPfasGEDtm3bpng+AEhKSkKdzJ6CV155JWJjY1Wtx9f69evx9ddfy5p2+vTp/YbP0dI999wT8Cmy0tLSsJb9/PPPo1xh76a5c+dixIgRePDBB/1+P23aNMyaFfQ2v3AqKyvx9NNPB53m6quvRlRUlG4xvPrqq/jmm290W/7o0aOxcOFCAF3vUHvvvfdCznPaaadh2LBhAILvEwMGDMAll1zS67M33ngDX331ld/pw223etu1axeee+45RfO43W5ce+21OkUkpv379+OJJ54I+P3IkSNx8sknB13Ghx9+iI8++ijg9yUlJYqSBTt27MBLL73k97sRI0Zg9+7duOOOO9Du55iaC+B9AFUA0tPTUVZWhgsuuMC2F8p2YmZPQS2extT7iU6jhnCXu7zTTz8d48aNQ2VlJTIyMjBkyBBEVFRouh6R6dFLwqzjlMjHR71iE7nMcmnRU1DrGOzAjmUia1PzUEK4RBqyXHTBegpaZVuorc958+bh0Ucf9fu5kuVYiZYPMTIp6BxKt78dHijQApOCpI+cHKCgIOzF5Keno3XrVjQ1NfV85na7MWTBAiAvL+zlK1Gfno5amQcaV2EhoOLmVeOgQaitqlI8HwAgORm1Mtcp5ecDcXHq1uOjKSMDtfv2yZq2OTNTkzYRSE1KSuCnyMJcb+OgQaitrVU0T5t3H6hNTfX7fVNGhq7bQw8dbnfA8vQoKAB0TAo2DhqE2v37dV1+d7207N0burwA2nNze+YJtk9Ep6f3q/OmjAzUBrrJK3j7aO/okLV9fLndbuHLpbXO6Oig20nOsaB5586gy/Btg3K0NTf3W54kSfj666/xp6eeQpWM89Ci007Dbx5+GOnp6bLXS+Yy84a2KO8U1GtePbhcLgwZMkT2u8fsRmkSWLT6swq5N0X0fkegFd4paMYNJKe1a6eVl8SQkJAAwDrvFCTrUZsUzMvLw8iRI3s9FJ2eno7i4mJFy7ESLc+1fKeg/kQpN3sKqsOkIAktISEBl156KV5++WVUVlZi4MCBmDdvHvIMTggC9joImPEyYytvPz2eSDfyqSWtiFCHRsYgt458Y3LSU512K4/ItL5x0Hf6Xbt24bXXXkOFjF5IiQkJQH097r77briYELQUM/dZo4YPDcVJx2irs9oTvFZtP3r1wLVab05/rNBTUKTtRSS6YcOGYfv27f0+7x7NyCo9Bcl61F5/ejweLFmyBF999RV2796NQYMGYdy4cYiPj1e0HCthT0FrEaXcfKegOkwKkvAyMzNx2WWXobOz09QbBErWLfoPYTOSgnrT84Sv9unlYG3GrklBkdqEUXzLzJfCU19G3NBTkxRsbW3Fli1b8Mknn2Dv3r2y5luwYAEe+/3vgVmz2J4tSNThQ63yTsFw1kvKKW0zvEZRR4vfVv6uaY3oKaj370IrJAWtiA9nkFmmTZuGHTt29DpmDR8+3JR3YjMp6Czh1KfH48HEiRMxceJE3dZhFSNHjlQ0PZOC+hOl3DExMYqmt9rDh3rhViDLMHundUqvOCVE2ibTpk3z+3mcBsOkqk0K2q2noAj0bke+9aKmp6DSpKCV24FTjnMi0HJbd3Z24pFHHsFdd92FF198UXZCcOXKlVi/fj2ysrI0i4XsT05SUC4trgP54IZ16PEEr551bNX2Y+WegkZvcxGTglZtd0RmGD58OC688EKMGDEC2dnZmDNnDs4991xV7xSMjIwMK5ZQ6zL73hdpy4hjtZ3OB/4SoImJicjNzVW0HCYFncHtdiM7O1vRPEY8vGYF7ClIJJOdDgJ27Ck4efJkfPTRR/0+P/74402Ixp5JQT6FHxqffialjOwpuGPHDlx22WV49913ZS87ISEBq1evxo9//GO14ZEgnNBTMJxlsKegWJTWFetAHb1uPBvxrha969xfT0GXy8WbjGHitTKZadiwYRg2bJjf75QmBdva2lTHwZ6CzsL6VObkk09GdXU1du3aBQCIj4/HhRdeqHg78nytPxHKPXjwYERHRyuaR4S4RcCkIJFMIj+5qpQZSUG9t8mgQYNQUlKC9evX93w2cuRITJkyJexl6/G0s12TgnaKwYiegomJicoDE4QI7cEKjEj6hfr+k08+wapVq/DUU0+hvb1d1jrdbjeWL1+OW2+9VfGTd0TdutumFsk4LYYPZU9B62BPQWOI1lNQdKIlBcPZzlqMpkJkJ0r2p3CPneEkBa14H4H0Z6fzbnR0NJYuXYrq6mo0NjYiOztb1UNMIp2v7UqEcivtQaqGCOXUA5OCRDIZMYSD1Q40osU7Y8YMjBw5Env27EF6ejoyMzNNeV9X9zx2e6egE6ipl3CSgsXFxXjnnXf6fV5QUKA4DiJfHR0deOmll7Bq1SpFPQMBYNGiRbj99tsxduxYnaIjpxCtp2CwODhUl1j06Gkm2nWrCPRq92qHZRLpgUMR1qnF+oqKivDdd9/1+3zOnDlhL1tr3EfJKsJNCnJoYGcxooe03dqMy+VCWlpaWO/8ZFLQGSIi9E9t5ebmoln3tRiPSUHSR2UlEB9vdhSaSjx8GMnV1fImLi9XtY7Y/fvlr6OPpI4OoK5O1rSuXbuAMMfBB4C4Awdkxxuzb5/q7aJECoCUxESgpQXwDjcQrviDBxXXS3RVFVypqQHnM2p7aClCRn27du0CdHrqHAhvH5Ej7sCBnnqJ2rtX1roiKyt7yhwsvsTY2H51nghgekYGvvnmm57PXC4X5uTmCt8+IioqFNeF2+0Wvlxa8xw6FHQ7+ba5QGL27Qu6jKi9e4HYWABdP37Wr1+Pu+66C999/z0AIL87FgBZADYBaPWznMLCQqxYsQI33XRT0HiIlNKiN5KcZZjVU5A3ArSnNJFsdh2YvX61ROspKHpS0OiH+rRIHBQXF+P777/vFfvgwYORkZERdnxqWHVfIftT0jbDfaCCw4c6C98paH9O3f4ilFvvGKKjo1FQUIBvQk9qOUwKkj5KSsyOQHPnKZm4rEzVOk7y/ulOZXx9zfP+GblOMyzy/iniLW+pxrGYaRBklEfnel7o/TPCdO9fSD5lPs77F9DPf97vo5O9f72sXi1nzabKhcr2vWqVtoEILh3hHwemef8C8mmDLgRoUz7mAPjA++/IyEgUFxdjypQpSE9PR3FxcZjREh0jp6eg3JvsevcUFOFHLR1jteFDrUrufqW255/S6ZkU7E2rnoLnnnsuNm3ahJqaGgwZMgQnnngi9weiMJg5fChZD5OC9ufUEUdEaHd6xuDxeLBkyRLdHqIzG5OCpI/164GiIrOj0NTTTz+NyspKWdOWlpaqWsfrr7+OLVu2qJo3KSkJdTJ7Cl5zzTWadLF+5513sHnzZlnTzp49G1OnTg17nWZ49dVXe/XkkmPhwoUYPXo0VgdI7owbNw4nnHCCBtEZ5+DBg1i7dm3Qaa699lpdL4hee+01bN26VbfljxgxAqeccgoAYOPGjdi4cWPIeZYsWdIzjvmHH36Ijz76yO90hYWFOOOMM7QL1mR79uzBM888o2get9uNa6+9VqeIxHTo0CE89thjAb8fO3YsTjzxxKDL2LRpEz744IOA3+fm5mLdunXYGKDt9UwH4H0AVd7/z8/PxxlnnNFrWBYRLuzJPuQkBTs7O2Uti+8UdBaldWX28KFWbT9a3OTwlyhjT0FtaDXE4MiRIzFy5EgtQgqbEcPoEakh0jsFnZpgsCsmBe3PqdtfhHLrEcPFF1+MxsZGFBYWIiEhwbajXTEpSPrIyQFs9k6sxkGDUNvYKG9ilWVvzsxErczEY1+ulBTUyrw4dRUWajLEY8t336FW5sGxJSvLsm2icdAg1O7fr2ieNu8+UJuaGnCZVtsenbGxAcvTo6AA0PFHTFNGBmr37tVt+b710rJrV+jyAmjPzT02T3l5wHlas7MtV+fBtEuSrO3jy+1222obyCHFxwfdTk0ZGSG3SUtFRb9lSJKE7777Du+++67sB1a6ZeXkYMzkyZg0aVK/mw4iXNiTfXS3p2A3t+QmBbVomxw+1Drs+kSuaER5p6Ca+Zxw05zHFiLjGJkU5DsFnYVJQfvj9jePHteDQ4cO1XyZImJSkEgmOx3kzXiZsZW3n5rYQ81j9JPGdqF3O/KtF7l15BtTsAuSqKgo9YEJiG1YG0p7txw9ehQ7duzAhx9+iP0KH1aYMX068NFHWLt2Lda8/bbqeMh+9Nqftewp2L28YLGGar8cPtQ62FPQGKK9U1DJjR2rbnMlnFBGX04rL4mF7xQkvbA+7c+pdSxCuUWIwaqYFCSSiU/39Ge1eNXSo5xWTKiYfcNNVHKTgpGRkUaEQ4LRap+oqKjA22+/je3btyte/7nnnoubbroJxQMGAIWFTIyQ4bRICrpcLrjdbnR0dKiOg8OHWgd7ChrDyj0FncCOvYmsGDM5A3sKkpWxzZjLqdtfhHKLEINVMSlIJJOdkoJm9BS0Mj16ClqRCGUyMgb2FCQjhGrThw8fxu9+9zusX79e8bLnzp2Lu+++G+PHj+/6QMZwzyLs52QfWvcUDJUUNKunIPcb7SlNVpldB8HWL/KDYHJvbCvdvnZ9p6DRnFBGX04rL4mFPQXJDLw3Zw9O3f4ilFuEGKzK/gPxE2mEScHwluO0A3Wo8iYmJhoUibGsXs9qbtz5ljlY+dlTkJR6/vnnMWbMGMUJwXnz5uH111/HW2+9dSwh6MPq+ylZh5ZJQZfLFXbbZU9B69Ajgcs67k+0noIcPrQ3O/YmsmLM5AzsKSimQYMG+f08PT3d4EjExgfZzcVtaR5ue/WYFCSSyQkvs1dKycFXSU8A0YRzkgn0gtqpU6eqXqZZRDjZithT0JeTegqK3PNBJGp+9O/atQs/+tGPcNZZZyl6b+App5yC999/H2+99RZOOOGEgOsOFpMI+znZR3d7CnZsVNpTUM76AuHQudah9Iar2UOcW7X9aPH7xt/1gNrl8oHD3pxQRl9OKy9ZV7hJwVDHSN57Omb27Nl+P58/f77BkahnxO9mHj/N5dTtL0K5RYjBqnimIZLJTj0FtaIk3nDeAWS2cJ66mjFjRr+L+gkTJliyp6DV2qdR+E5BCodv+2lsbMRvfvMbjBw5EuvWrZO9jIULF+KTTz7Byy+/HPCHs5p4iMJlpZ6C4dyA436jvWD14e/mGutAHb3e3cjhQ7XB3kREYtI7KWjVIan1MGbMGBQVFfX6bNSoURgxYoRJEYmJ5wNzOXX7i1BuEWKwKr5TkPRRWQnEx5sdhabiDx5EcnW1vIllvLfJn9j9++Wvo4/Ejg5IdXXyJlYZX18x+/bJjjdq717N1mu0uAMHFNdL1N69QHw8hkVEYPn8+di6dSsaGhqQn5+PSePHW3JbuKurQ28Hnculpi6UiN2/v6cM0VVVstYVUVEBtLWFnCf+4EFL1nsgERUViuvC7XbbahvIEWq/id2/Hx07duC5557DnXfeiX379yPD+50HQBaATQBa+8yXlpaGoUOHYsqUKbjppptQWFgoOyZeOFNfet1g0uOdgnLWp2Z+7hdi0ap3qS/2FOwvNzdX1nTZ2dkBv0tLS+v3GYcP1YYTykgkCr5TUEwejwfnnnsuduzYgaqqKmRnZ2Po0KHsTdmH2gfZnZZk1gv3WfOo3fZxcXFobGzs9/mkSZPCDckymBQkfZSUmB2B5hYrmbisTNU65nr/dKcyvr5meP/s7gTvnyI+2zjX+2d1qQBKQ02kUdsKZL73T1crVwIAZnv/QvIp83jvX6jp7CAfMtqDP6tWaRuI4GTtNwCWeP/8mQPgA++/BwwYgJNPPhnDhg3TpScGf9CQHqzQU5BtXyzB2oy/0SdYf8GNGTMGW7du7fWZ2+3GxIkTZc2fmJiInJwcVFZW9vq8sLAQMTEx/aY3oqegE24IO62noN3KQ9bCdwqKy+PxoKioqF+PQTLX4MGDzQ5BGE7dZ0Uot9oYZs6ciTfeeKPf59OnTw83JMtgUpD0sX49YLMT9ssvv4zvvvtO1rSlpaWq1vHuu+/is88+UzVvUlIS6mT2FFQbX18ff/wx/vvf/8qadtKkSZg715CUp+befPNNfPnll4rmOe200zBs2DCdIjJHTU0N1qxZE3QardpWIG+99Ra++OIL3ZY/bNgwnHbaaQCA999/H5988knIeS666CIMHDgQALB161a89tprfqc766yzkJ+fr12wJisvL8fzzz+vaB63241rr71Wn4AEFWi/aWtrw4cffojNmzcj0POZuQDeB1CFrovdWbNmYd68ef2GolV6ISzCxTs5Q3dbC9bmtOwpGIpe7xTkPqU9q/UUFN2CBQuwe/duHD16tOezhQsX+k3oBbJkyRI8+uijqPb2fk9PT8dZZ53ld1ojkoJkTaxjEpXctqn3Q0pKYiHqFs4rb9RIT09Hydy5wI03ql6GnTh1nxWh3GpjmDZtGrZv345du3b1fHbcccdh0KBBWoUmPCYFSR85OUBBgdlRaKopIwO1Bw/Km1hl2Vu+/x61qamq5nWnpqJW7hNrGtVNa0WF7HgbBg60bJtozsxE7Z49iuZpz821bHkDkaqrQ9e3zmVuzsxE7e7dui3ft502b98uq3135uUBGV0DPrYcORJwHldhIZCXp1msZmtvb1d8vHK73bbbL0Lpu990dHTgiy++wNtvvy37QY7B+flYcNJJAYd50/JiXIQLe7IPLZOCcm7CcfhQ+1CaFJRTf04ePjQtLQ1XXHEFvv32W9TX12Po0KGyhw7tlpKSgpUrV6KqqgputxsZGRkBy+3k4UOPO+44zZbltN5EdisPWYvc9ud2u5kUJM1oVddGtpmBAwdixYoVcPkkU5zOqfusCOVWG0NUVBQuvvhilJeX49ChQxg8eDBycnI0jk5sTAoSyWTEwU6EA6oSSuJV+1S3CKxWL3px2nZQM75+e3t7wO+ioqLCCUc4fP+AMrt378aHH36InTt3orm5WdY8qSkpQE0N/vznP+PfW7ZoFguHDyWjyGlPSq4Pwm2fevUUJO3p0VPQ6RISElBcXBzWMlwuV9D3C/pOp3b5ekxrpFmzZmm2LFHLSORkWvQUDOchJiJ/jDxfZGVl8fzUB7eHecI5XkZERGDYsGG2G+VNLiYFiWRiUrA/JfH6e/+LVRg9FAMFJuJ29Y3JSUlBkqempgYvvviioqGhIyMjcfXVV+OW5cuBiRNDvreEw4eSqLRMCorcU3Dq1Kmq5yX/rNZTkHpzalJw2rRpioZkDUXEMoaLDyaRqKzSU5APZlqPEXVm5D0rHqv7c+o2EaHcIsRgVXz8hEgmPq3Vn1N6ClIXJ5xsfS/Y5V68y00K9n0PHNmbJElYt24dZsyYoSgheO655+Kbb77B6tWrkZycLGseDh9K4TLzBpOR7xTUIymYmJiIwYMHqw2JAghWV2ofNOPxzThOHT40IkLbZ66dNnwokZmskhQk8sfINsP22ZuTt4cIZRchBqtiloNIIFY7mLGnoLbziE6EMokQQ19O7SnIp1QD27VrF84880z86Ec/woEDB2TNk52djZdeeglPPvkkhgwZ0us7/sgjq9K6PYV7g1yL4UPHjh3bczNvwIABuPTSS/ngmA6C1ZXanoJkHKf2FDT6mGdF7ClIojIyKciEv7Ok+rxfvq+srCxN1sHfi+Hr+xtcLrtuD6vg9lePw4cSycThQ/tjUpDsjD0FSan6+nr8/ve/x+rVq9HS0iJrnoiICFx11VW49dZbg/5gDEbL4UN5vCMtiXaDXIuegieeeCKOz85GY2MjUlJSwoqHAtNj+FCzOPEhGqcmBbXGxAGReLR4pyB7CjpLTEwMhgwZgh9++KHX59nZ2bJHhglFzQNqHD60N7UP+dl1e8ghQtlFiMGq+FgrkUx8Crw/JgW1nUd0IpRJ7xjCvXGXk5MT8DseQ+zthRdewOjRo3H77bfLSghGRERg4sSJePjhh3HPPfeoTggCYuybRP5o2TYlSRKipyDQ1fObCUF9BXuQxqgHKEg9pw4fqjUnlJFIFBw+lPR05plnIj09vef/U1JSsGTJEs2Wb+QDyHZtn0ySKidC2UWIwarYU5BIJvYU7I9JQW3nEZ0dyxSMmp6CRUVF8Hg8/dr7yJEjNY2NxLF7925ce+21eOGFF2RNn5qaigULFmDkyJGIjIxEZmZmyHm07inAnoLUV1JSki7LtVJPQT64IZaoqChkZ2f3+zw6OhpDhw7t9zmPXWIx4ml7EetctCGTRcRrEBIVk4Kkp8TERFx99dXYv38/Ojo6kJWVpem1J5OC4WNPQeVEKLsIMVgVk4Kkj8pKID7e7Cg0FXfgAJKrq+VNXF6uah0x+/bJX0cfiZ2d6KytlTexyvj6iq6qkh1v7P79mq3XaLH79yuul4iKCiDCXodYV0ND6O2gcx2rqQtfqampqA4yf9yBAz1lkLsuz549QF0dACASwJkTJ+L1118/tsy4OJwwdKhl238gnj17FNeF2+22zXZoa2vDww8/jFWrVqGpuRn53s89ALIAbALQ6jO9y+XCrFmzMHfu3F7vlzTjIpYXzs41YcIEfPHFF/0+nz59ui7r07qthXsTTauegmSMWbNm9fts4cKFvGljARw+VBtOKCOR1RjxTsFgnDgktV24XC5ZD4SqoSYpaESvfivh9aU1cfurZ6871iSOkhKzI9DcfO+fLGVlqtYxw/unO5Xx9TXe+yfbTTdpsl6jzfb+KaLRNhZJPIDSUBPpXO7jvH+6Ki0FAMz1/oXUp8xjvX+93HZb2GGJZihktAd/Vq3SNhCTRAK4wvvnzxwAH3j/nZWVhdNPP131i+SN7CnAi2p7mzJlCrZt24a2traez/Lz85GRkWFiVPKJ8E5BMk5ubi4AYObMmahNTcWIESOQn5/vd1o59cc6Ng6HD9UGewoSGUdu+zPinYJESkUY+EC6VY7VERERaG9vlz09hw9VToSyixCDVTEpSPpYvx4oKjI7Ck298cYb+Oqrr0JOV1JSglGjRqlax0cffYQPP/xQ1bzJycmoldlTsNSb9AjXli1bevWICmb+/PmYMGGCJus12n//+198/PHHiuY566yzAt64sqqmpiY88MADQafRqm0F8t577+HTTz9VPX96ejoOHToU8PvCwkKcccYZAIC3334bn3/+echlXnbZZboNvSeyHTt24KWXXlI0j9vtxrXXXqtTRPrbsWMH/vCHP+DNt94KOE0ugPcBVAHIyMjAL3/5Sxw6dChgDyUtLmI5fCjJlZubi0suuQSbNm1CdXU18vPzcfzxx8O9d68u6xNtKD0mBa1p+vTpQEGB2WGQAk7tKSjakMlEJB+TgmRlHD60v0WLFuHFF1+UPT17CionQtlFiMGqmBQkfeTk2O7He+OgQahNTQ06zamnnopRU6aoXkfrnj0h1xGIOzUVtXJPYhrVTVt1tex4h590EhAXp8l6jdayc6fieukYPNh2+4DU2Bh6O+hc5pbt21XvIwAQk56O2iDvt6xPT+8pg5x9HkDX9A5MCna0tiquC7fbbcn94siRI7j11lvxl7/8RfbThpcsXYqflZXB7XbjrrvuCmv9vMlIWho8eDAGDx5syLpEa7scPtS+zO4pyPbTm1OTglqzY0/BYOxWHrIWI5OCcuZPTEzE0aNH+30+dmy/MWmIDB0+1CrH6pEjR+K///1v0IfCfdl9e9gVt796fDyFSKZQY7ePGjUKU8JICALhHcxEfi9VVlYW4iyaEATUbVs7npjsUCYlZeD7GoIrLCz0e4M9JibGhGj0sXPnTvzsZz/DkCFDUFZWJishOHbMGADAb3/7WyQnJ4ec3oyegkYti0hLkiSxpyCFhXVsHA4fqg07ltGOZSJ7MPKhBDnHuvHj+7+oJTU1FQMHDgxr3WRP7CnYX2xsLJYuXYo5c+bImp49BZUToezsea0etxyRTKESBFokEEQ4oCohN94x3pvkVmW1erEzM1/qbuQyrSAyMtLvvj1u3DgTotHWV199hR/96EcYNmwYVq9eLWto5sTERJSVleGFF17o9bkRST8OH0qi0ro9hfujj23fvsyuPz5I1JtTewqKNmSy1ditPGQtog0f2v36le5pMzIycMkll3A/Ib/UvFPQCT3jEhIScMIJJ/S8pzoYJ2wPO+L2V4/DhxLJZERS0GqUXDg7jR3LbIcyhfoB5rsfy92n7bBd1Fq8eDEiIyPx9ddfw+12Y8yYMVi4cCE2bdpkdmiq1NXV4YYbbsA//vEPRcf0Cy64AHfccQdycnKA8nJF63Ry+yH7iI+PR9/Ued8HBHJyclBZWdlvXiXDYOl5E477orWZPXwo9ebUpKDW7FhGO5aJnMeIB1U9Hg/OPPNMLFq0CM3NzcfeYS/jYUVyHiN7S9n1OM6egsqJUHYRYrAqJgWJZGJPwf6ckhS0evxaEWE7sKegWCIiInDaaafh1FNPBWDtbbFx40Zcdtll+Prrr2XPM336dKxatQozZ84MOI2IPQWDna+sXIdknsWLF+ORd95Bc3MzACAzMxMnn3xyr2lmzpyJdevW9Zt38uTJstcT7r7AnoLOxjo2DocP1YYTykhkNUb1FOwWFRWFqKiosNZHpCW7DtfIpKByIpRdhBisiklBIpmYFOzPavGqxXcK2oce7xRkXVt7G7S3t+Pmm2/GHXfcIbvOc3Nzcfvtt+P888/XdThDI5ehx7LIOTIzM3H99ddjz549iI2NRWZmZr+2NHr0aBQXF+PTTz/t+ey4445DQUGB7PXo+WAI2761sf7E4tSeghw+NDx2Kw9Zi2jDhxLpzUnDZcr5ne+k7WEn3P7qMSlIJBOHD+2PPQWdRYTtoHdPQSfux05WXV2N888/Hxs2bJA1fWpqKkpLS3HjjTciLi5OkxjM2K/YzkkPkZGRGDJkSMDvXS4XTj31VMyYMQP79u1DTk4OUlNTFa2DPQVJVGw/vdk1KTh06FDs2LHDsPWxXREZx8ikIPdtsjK7tl/2FFROhLKLEINVMSlI+qisBOLjzY5CU7H79yO5ujrg93EHDih+l1RfMfv2BV1HMImShI6aGnkThxlnt6i9e2XFG11Vpdk6zaCmXiIqKgCb3Xh3tbWF3g4613M4+wgAJMbHB50//uDBnjLIXZd7924gJkZ1THYUaLu53W5hjgXbt2/H5Zdfjp3l5cgH4AGQBWATgNY+044aNQrXX389LrroIsTGxipajxEXqRw+lKzC5XIhPT0d6enpiueVJEnXJ/M7OzvDWjaZi+8UFItdhw+dOnWqUElBu7Vpu5WHrMXIhxLYU5CszK7HavYUtCZuf/WYFCR9lJSYHYHmFnn/grr++rDWMcn7p7uyMk0WMxxAqYHrM8sU758iFi+zP5GQUd86l3um909XN9wAADjJ+xeSDes6XKXBvly1yqAoghsG4C0/n88B8IH33wUFBbjzzjtx9tln63axyeFDieQLdRMtnBvo7EFLpB0lN7xHjBjR82/RewoWFRUF/d7o4UOtyI5lInvg8KHkNEyC9caegsqJUHYRYrAqJgVJH+vXAyF+NFnNv//9b2zfvj3g94MHD8Y555wT1jo+//xzvP3226rmTUlJQY3MnoKlpaWq1tHXjh078NJLL4Wcbu7cuZg0yZB0py4+/fRTvPfee4rmOffcc5Gdna1TROZob2/HvffeG3QardpWIBs3bsTGjRtVz5+Xl4fdu3cH/N53P96wYQO2bdsWcpkrVqxAdHS06pjsaPXq1X4/d7vduPbaa40NxockSbj//vvxpz/9CX1v/+cCeB9Alff/zz33XNx3331IS0szNkg/tL7QZfKDrIo9BSkQ9hQUi9xt7Xa7MWXKsUfvRE8Kulyufu9G1Xt94XxvNXYrD1kLewoSyWPXYzWTgtbE7a8ek4Kkj5wcoKDA7Cg01TBwIGoPHw74fWp6ethlbj1wALUK36/TzZOWhlq5B0ON6qa9pUVWvG0Wbw+tVVWK66UzLw/IzdUpInO4OjpCbwed67m5vFz1PgIAjYMGofbo0YDfpw0c2FOGpowM1FZVBZy2m6uwEIiKUh2THQWqI7fbbdqxoKOjA1dddRX+/ve/B50uPjERL65di8WLF2uyXiNu6CldhsfjCfgdE9wkMj3fKchkuf3xpoFx5GzroqIiTJ06FcOGDev5zAo3yo18N6kd26wdy0TOwncKkp0sWLAAb775Zr/Ps7OzsXfvXr/zWLH9yrnOHzNmDN5//33Fy7bi9tCKCGUXIQarYlKQSKZQJxEtbiZZ7WBmtXjVcko5rUDEH2BsH+JraWnBxRdfjHXr1oWc9oUXXkDh/PkGRCWf1onF5ORkJCYm4mifBHlUVBSGDBmiOD4io+h5DmBS0NpEPhc7sW2Fqo/09HRccMEFiudTO62WjFwvewoSGYfDh5LTdPd+37p1K/bv39/z+dixYxEfHx8wKWjH9jto0CBV7zwHeO4yG7e/evbbk4l0wqRgf0ounK1MTfxWL7M/dihTqDL47sdOvIlnR/X19Vi8eHHIhOAJCxYAAAoLCzVdv4g39FwuF6ZPn97v8+Li4qC9CInMpmdPQQ4fam0cPlQsRrynyKybkiIlBYlIO0wKkhPFxcVh6dKlOO200zB9+nQsWbIEZ511VtA2ardzU2ZmJi688EIOH6qCCGXn8VQ99hQkkolJwf6sFq9aTimnFYj4A4ztQ1xHjhzBokWL8NFHHwWd7he/+AV+9+MfAz5DmIlEj8Ti7NmzERMTg6+++godHR0YNWoUZs6cqTZEIt1JkhT2MTw2NlbVd2QPep6vExMTA36n9slzJ1Kyj4dTn4MHD0Ztfb3q+QMxevhQK16DWjFmor5EHL2GSK3Y2FgUFxf3+szIobLNduWVVwJQf0/XbtvDarj91WNSkEgmI5KC4TCrt4mW09mJHctshzIpKYPcfdoO28WO9u7di5KSEmzZsiXgNDExMXj44Ydx/vnnA+XlxgXnw4x3CnYrLi7u9wOQSGTh3iBPT09HcnIyamtre30eHx+P7OzssOMj85h9Lo6NjUVeXh52797d77u0tDQTIjKX2n3VqOFD58yZg+1vv43m5mbF85rd1uyM25bMxJ6C5DRG9Oq3ErXlcvL+LEJbECEGq3JuyyVSiD0F+7NavGpx+NAuIpRJ76cy1ezHImwX6m3Hjh2YM2dO0IRgUlL2axQJAACoNUlEQVQS1q9f35UQ1JGZST8iu9HiHDBv3rx+n8+bN4/7mQPoXcenn356rx6D0dHRuq7PjoxKCmZkZPT0DFCKw4eGx45lInsw8p2mTk4imMUJ52Qt3w1vt56CenbisOL20IoIZRchBqtiT0EimZgU7M8pPQWtHr+W8vPzsWvXLrPDUI09Be3vyy+/RElJCfbt2xdwmoEDB+LVV1/F5MmTDYzMPyYNieTToq1PnDgRCQkJ2Lp1KyRJwujRo1FUVKRBdGQmEY6DAwYMwDXXXINdu3aho6MDhS4X8Kc/mR2WKdT2FDRq+FAASElJUTWfkTdK7Th8aDB2Kw/ZkxY9BdnW9bNo0SK8/PLLfj+3u+OPPx4//PCD7OnZU1Ab3B7m4vZXj0lB0kdlJRAfb3YUmoo7cADJ1dUBv4+PjAx7+Lnoqqqg6wgmEUC7jHmTk5M1GyYvsrJSVrxRe/cCAwZosk4zqKmXiIoKoKVFp4jMs2DIEDz7+eeBJ9B5CMaYfftU7yMAEH/wYND5E+LjgfJyNDc3Y/e77yJZzkLLywFeiPQSaBu73W5d28ibb76JlStXIrqxEUMAZAHYBKDVZ5rBgwfjtddew4gRI3SLw5cRST9eCJNTaLUvDBs2DMMEfYco6ceIY2VUVBSGDx/e9T8mDUttZTyf9cbtQWQcDh9qD2PHjsUnn3yCFp/fo9nZ2Yb99jPT4MGDUVBQgHKdrz/Yfntz8rlahLKLEINVMSlI+igpMTsCzZ0jZ6Kbbw5rHaO9f7q79VZNFpMLoFTOhGVlmqzPLOO8f4pYvMyB5CFEnetc7qnev3CEfEbwppsQA5ltG7BtXYejNNiXq1bptt4FALb2+WwOgA+8/x45ciQ2bNiAwYMH6xaDUuwpSCQf2zoFwrYhFiN6H5hV5yINH2rFdm+3IenIPjh8qD3ExsZi6dKl2Pqf/wBlZTjuuOMw5tRTHTF8qNvtxumnn46777477GXxWC0ft4e5uP3VY1KQ9LF+PWCzoZgaGxvx4IMPBvx+4MCBuOiii8Jax7Zt27BhwwZV86ampqI6RA+q0aNH48QTT9TsIrSyshJPP/10yOlOPPFEjB07VpN1mmHLli14/fXXFc1z0UUXYeDAgTpFZK5HH30UR44c8ftdaWmpruvetGkTPvjgg9ATBjBq1Ch8/fXXAb/PycnBtGnT8Nxzz8lansvlwnXXXac6HrtavXq138/dbjeuvfZaTdfV0dGBX//611j7+OO9Ps8F8D6AKu//FxcX45VXXrHtfknkBHa8QU7kRCIMH6qWSMOHEpF2jOwpyH1bX3FxcZg6tetR4uLiYiAmxuSIjGPEedSK7ZfvFNSHCGUXIQarYlKQ9JGTAxQUmB2FpuIAzLzgArz66qt+v49OSwu7zO11dahNTVU1b8SAAagN8v0NN9yAhIQEdYEF0OnxyIq3zeLtoa26WnG9SPn5wKBBOkVkrqMDBqA20EWVzvXcWlmpeh8BgKaMDNQGeddc0oABeGPHDtnrcLlclm7begm0/dxut6bbq6WlBZdccknQhxM6AMydOxcvvvgikpKSNFu3XFokMZgIIerCtk6BsG3Yg5J6NKunDXsKhseKMZMzGJkU9Hg8Yc1PpDf2FJSP28Nc3P7qsc86kQLTp08P+J2eT55oQeuEIOCcg69TyimXlbeHnNhD9bhVujzSR0NDA04//fSQvZVPLinBK6+8YkpC0Chsh+QUoZIA3Beci3UvFjsPH2okJ5TRl9PKS2Ixsv1x+FDSixHtmMfq3py8PUQouwgxWBXPREQa0SIpaLWDmZKn6axMTfxWL7OojBiqRcmTm6xn/0aNGuX380WLQr7RUZampiacccYZsoZb/utf/4rY2FhN1quGET0FiZxAkiTuC0Q2weFDw1+XHusjotC06CnIpCCJwEnDh+qJ28Nc3P7q8UxEpBEmBe3LKeWUy8rbI1TskiQxKagBf+8QjYyMRJEG75o9ePAgTj31VLzxxhsBp4mKisKf77wTgDN+dLMdkhPEx8fzBjkFxLoXi51vNIo0fKgVcUg6EpWRw4c64fcJmUOr4yiP1fI5eXuIUHYeT9XjliPSCJOC4U8nKvYUFAd7ClrD6NGjcdJJJyE6OhoAkJycjIsuugiJiYlhLfejjz7C5MmT8dZbbwWcJjExEevXr8c555wT1rqMokUbYjskO0n1807S2NhY5Ofns60T2ZyRN+WtgA9CEBnHyJ7KvIlNejHivGDF9qvn6554LjYXt796EWYHQGQXor9TUA88+DqTletdTuxWGLrKCmbNmoUZM2bg6NGjSEpKCmtbSZKE++67D6WlpWhraws4XXp6Ol599VUUFxcD5eWq16clthEiZWbMmIFdH33U67pq7ty5cLvdvEFOAbHurSXc4UPNrG+Rhg+1G6eVl8Si5PgTbltV8hAqkV7Uns94rO7NydtDhLKLEINVMSlIpBH2FAx/OlGxp6A49H4qs6KiIqzlU29utxvJyclhLaOhoQFXXXUVHnvssaDTDRo0CG+99RZGjx4d1vqMpsU7BXm8ITsZMWIELikqwtatW9HR0YGRI0dixIgRANjWiaxC7+FDRU0KGr0uHhOJtGNkUpD7LunFiLbF9tubk7eHCGUXIQarYlKQSCNmJwXNOBA65eDLpGBvVi4bn+C2lsrKSixevBibN28OOl16ejreeOMNyyUEAQ4fSuRPYWEhCgsL+30e6oYd9wXnYt3bA5OC5q1LBE4rL4lFSftjWyUns2L7nz17Np599tl+n6enp/f6//Hjx+PLL79UtGwrbg874fZXj0lB0kdlJRAfb3YUukiurvb7eWJ7e9jD1UXt3Rtw+aEkulxoCzavDkPpeQ4flhVv1N69QFKS5us3ipp6ce/eDdTV6RSRuRIOHQq8PXQesjG6qkr1PgIAsfv3hzV/v3iio4UZptJuNmzYgJtvvhlHDh1CPgAPgCwAmwC0+kw3ceJEPPPMMxgyZIgpcYbCpB+RdrgvEFmD2h5uVhg+NBg+fBaaHctE9mBkT0EivWiV3Lbb8KHDhw9HVFQUWltbe31eXFzc6/8nT57MpKABsrOzkRwbq8myuP3VY1KQ9FFSYnYEuikN9uXvfx/WsoeGWn44yso0X+QAyIxXh3UbaThU1IvFyxzMRcG+1Lnck7x/4ZirRSC+/vQnrZdIABZ6//qaA+AD77+XL1+Ov/zlL4jV6ILSDEwaEsnHofQoENa9PbCnoLJ1sd0TaUfJ8Yf7HomKw4f6FxMTg4suughPPfUUGhoa4HK5MGXKFEyfPr3XdPn5+cjNzVX0Whkrbg8tuVwuxSPnRUZG4owzzgB+/nNN1k/qMClI+li/HigqMjsKXaxevdrv5/Hx8bj88svDWvaOHTvw0ksvqZo3NTUV1UF6QJWWlqqMKrDq6mo88sgjIac75ZRTet4HZEXbt2/Hv//9b0XzLF++POx3qYlq//79eOKJJ/p9PmLECJxyyim6rnvz5s145513VM9fXFyMTz/9VLN4YmNjceWVV2q2PKfr7OzEvffei7tWrer3XS6A9wFUAYiKisK9996Ln/zkJ8JfBBqR9BN9GxBphW2dAmHbsAcmBZWty4rt3m69T8g+5PYUBNhWyR6c1FMQAPLy8nDDDTfg4MGDSEpKQkxMjN/pCgsLmRQ0QHR0tCbL4fZXj0lB0kdODlBQYHYUuqhNTfX7eVtcXNhl7mhtDbj8UDxpaagNNoEO9SElJcmKt83i7aG9uVlxvUj5+UBKij4BmWxQfj5Svv4au3bt6vnM4/Fg9KJFQH6+rutuO3BA9T4CAK3Z2aj94Qft4tFgv6cuzc3NWLZsGZ588smg02VmZ+PJF17AlClTDIpMX7yIJZKP+wuRNXD4UGOWFxHB2zlEWmFPQbIDI9qmkgS6aFwuFwYNGqT5Mp1MTU9BLbeZ07d/OHgVSaQRpQdBf6x2MLPC07ykPZfLhQsvvBDvvPMOysvLkZKSgqlTpyJf54SgFviuFzFVVlbirLPOwqZNm0JO+/zzz2OgTRKCWmE7JKcIdROC+4Jzse7twQq/LUTqKRgZGWlQJMbgfkxWwKQgOZ3d27/S8tl9e+iBSUExMClIRKo55eCrppx23zZRUVE46aSTDF+vaNtVtHis6JtvvsFJJ50UcoiOy3/yE+Dvf8fAgQMNikwbWgz9Zcfhw4jUYFsnsga991UzeymIlBS0Yk9BHsfJDtiOSVRK2qbadsz235vTt4fZ90udvv3DYd0+v0SCMbunoBbrV8oKT/NqweyTHGlDjxtIrOfwfPbZZzjuuONCJgTvv/9+3HzzzQZFRUSiYoKcAmHdW0u49SVqT0Gj42JPQSLjsacgicyItsn23xu3h7m4/dVjUpBII2YnBc1gtXjJ+sJpc3q0V+4D6j355JOYN28eDh06FHCa+Ph4rF27FldeeaWBkRmLPQWJ5GNbJyJAu2PB1KlT/X4+adIkTZYfLjsOH8rjOFkdk4LkBMHub7L99+b07cFOFNbFpCARqcaegtrOQ/piUlAMDQ0N+MlPfoLzzz8fR48eDThddnY23nnnHVx44YUGRkdEImOCnAJh3YtF7/rQavnjx4/3+/mECRN0X7cWRIpFC3YrD9lTZmYm2yoJi8OHGs/p24P3S62LSUEihcaNG+f381NPPTXsZdt1+FAirYjWU5CU+fzzz1FcXIx//OMfQaebNm0aPvnkExQXFxsUmb7CHWos2DRmvleJyGg8jhPZgyjDh+bm5uL000/v6XEXGRmJU089Ffn5+arWzWMUkf1Nnjw5rH2d1+5kBcHuL9q9DSvdv3nuJ6uy3pupyRoqK4H4eLOj0MWE5GTsrq7u9Vl0dDSGejxAeXlYy46srERyn2XLldjRAamuLvAEYcbmj7uxUVa8UXv3ArGxmq/fKGrqxb17t233ATNF7d2reh+JiopCzL59quf3J6mjQ5d9y25aW1vx0EMP4a677kJrWxvyAXgAZAHYBKDVZ9qFCxfi2WefRTz3H1ns/qOMyFeo9s4f5c7FuheLVXoKAl1DhY4fPx6HDh3CgAEDEBHBWyR64r5KVnb88ccjLi6OD6qSsLRqXxw+VD6n/x5nT0Hr4hUv6aOkxOwIdDMUQKm/L/70p7CXPTjQsrVQVqb5IuMgM14d1m2kAqioF4uXWVTjvH/hmKVFIL5+9zutl2g7UQCu8v71NQfAB95/n3POOVi7di2io6MNi80ILpcr4A+rcHsK8oKanITtnQJh23AWrevb4/EgIyMj7HWzHYaH249EVlhYiPnz5wMIr606PYFA+tJq+FAmBeXjPq0c25AYmBQkfaxfDxQVmR2FriRJQmtrq6Y3rysqKrBu3TpV8w4cOBAHDx4M+H1paanKqAJrbm7G/fffH3K6xYsXY+jQoZqv3yi7du3Cc889p2ieK664AnFxcTpF5FxbtmzB66+/rmremJgYzJo1C2+++aZm8aSkpGDZsmWaLc8uJEnC+vXr8eCDD+KzzZv9TpML4H0AVei6Gffb3/4Wv/jFL+DxeIwM1fL4I4SchO8UJLIHUYYPtdq67YDbj6xqxIgRPf9mUpDsjklB+Zy+T7OnoHUxKUj6yMkBCgrMjkJXLgBa92XpcLlQm5qqat7F55+Pxx57LPAEetRHc7OseNtzcy3dHjo6O5XXS0EBwKSg5lqPHFG9j7TFxWFESQle+OILdHZ2ahJPxIABlm7beti4cSNuvPFGfPDBB6EnBpCVk4N/PvUUZs3SvA+nJVj5xiiR0djeKRC2DbHoXR9m3oBjW9MPty2JzLd9cvhQEpUR7YttuDenJwXJuthyiQSi9uSampqKvLw8jaMJTW68vGggrYT7Ayw6OhrTp0/XMCLqtmXLFpx11lmYOXOm7IQgALz88su2TwjqeQzk8ZWchD0FiezBrg/EiBoXEYXP98Y/ewqSHXD4UP+Uls/p+zR7ClqXs1sukWCUHhhjYmIwcuRILFu2DJGRkTpFFZhTDuQ8ydlDd52cdNJJyMzM1HSZTvbee+/hvPPOw/jx4/H888/LmicxMRH/d9ttAICkpCQdoxNfuO8UdPqPEHIWtncKhOdjsehdHxw+1Lr4TkayKq2SgmznpCet2peTk4JK8feJcmxDYuDwoUQWNXHiRJx++umW+FFs9QO+1eO3Ey2eynS5XJg0aRJeeeUVU+OxutraWqxYsQJPPPGEovmWLVuG//u//0NGUxPwi1/oFJ1Y2FOQSBvsKUhEAJOCRGQ8rYYPZQKBRKG2pyDbcG9O3x68LrIuZ7dcIsEoPZiaffB1SlJQDSeWWXR61IlT6/mLL77AlClTFCUEp06dildeeQUPP/wwMjIydIzOWsJtQ07/EULO4tRjLoXGtiEWvRP4oiYFjYyLbZ7IWBw+lKyA7xQ0Hvdp5diGxMCWSyQQqx0YrRavWhw+VByiDdXixHpes2YNZsyYge3bt8uavqSkBJs3b8bHH3+Mk08+Wefo7EmUG5BEZmN7JyKAxwIA8Hg8ZodA5CgcPpSchMOHyuf0pKCa9lBcXKxDJKSUs1suEYWFPQXJSrQa8iXQMu2uqakJl19+OZYvX47m5uaQ0xcXF2P9+vV49dVXMXHiRP0DFJieST2n/wghZ+HwoRQI695ZRO0paKSICL4JhshIHD6U7Ebt8KGinAf1orR8Tt+nlW6v+Ph4FBQU6BMMKcIrSSKBKDmYinAiFiEGI7CnoDj4VKY5duzYgSVLluDzzz8POe3IkSPx+9//HmeffTa3uQxythF7ChJ1YXunQNg2xMLhQ/Vn1Z6C3FfJqthTkKgL23BvTk8KBpOeno6cnBx8+eWXkCQJKSkpuOCCC7jNBMGkIOmjshKIjzc7CsuJOHAAydXVsqaN3b8fKC/v9VnQeftMqwVXqHV6RVZWAhb94QoAEXv3yq6XHuXlQFSULvE4WWRlpfK68Ep2uXr2gyg1depHYmSkLvuWSF577TXccMMNqDt6FPnezzwAsgBsAtDq/Wz48OFYtWoVTj75ZMveqNKLnj+ceEFNThKqvfMmBZEzdHR0mB2C6dhTkMhYfKcgOYmTewoq5fR9Olh78Hg8OPPMM3HyySejoaEBaWlpbD8C4ZUk6aOkxOwILGkQgNIw5g86b1lZGEtWuU6d122UbKioF4uXWVSjvH+q/eY3AIAJ3j9N3HyzVksS0kkAvgzw3RwAHwBYsmQJ/vGPfyApKcm4wGyCPQWJ5GN7p0DYNsSid320tbXpuvxgRGlrfACLyFgcPpTshsOH+sfhQ7XTvS1jYmIQExNjcjTUF5OCpI/164GiIrOjsJyDBw9i7dq1sqYdO3YsTjzxxF6frV69OuD0paWlYUQWWLB1djvnnHMwePBgXdZvhKqqKjz55JOK5vnpT3+KyMhInSJyrm+++QavvvqqqnnT09Nx8cUXAwC+/PJLvPnmm2HHk5mZifPPPz/s5Yjmhx9+wC9/+Uts/Ogjv9/nAngfwEG3G6vvugvXXnut7X8ciIrbnZyE7xQksodw99XW1tbQE+lElAd1rNpTMNiNZiKRcfhQcpJgx2omwXpz+vYQ5bqIlLPmlSSJLycH4ItDFeuMjUVtaqqsaZszM/tt46Dz6lQfcuJtz821dHvoiIiQXS/dXIWFgEV/rIus7ehRxXXRLSY9vacdth46pHo5vhIHDrR02+6rtbUVd9xxB373u9+hpaUl5PSPP/UUis85x4DIrC3cC+Vg0zj9Rwg5C39YEhEgblLQSLGxsWaHQOQoHD6UqIso50FRcJ8OjG1FbGy5RAKx6wHT6uVSE7/VyywqrZ7KZP309+GHH6K4uBi/+tWvQiYE58yeDQAoLi42IjQKgm2ZnIQ9BYmsIZx9MTo6OuQ0Zg4farRhw4b5/XzevHnGBkLkcFr9luS1ComCw4dqw+lJQfYUtC5nt1wiwfCAKSbWiz3ocbFmh7ZRV1eHa665BrNnz8aWLVtCTn/zzTfjkUceMSAy+9Czp6Ad2iCRXE7/0U1kF8HOXccff3zI+Ts7O7UMRxGjz8kTJvR/C3ZaWhry8vI0XxcRBcaeguQkTk4K8p2C2rF7W7E6jm1HZFFWOrhaKVatOLHMRhDtB5jV6/n999/HBRdcgIqKipDTJicn45///CcWL14MlJfrHxzJwh8h5CTsKUhqFfFd54YKZ1+cNm0aysvL8f3332sYkXaMPs6MHTsWLS0t2LhxI2pra1FQUIDFixfz/E9kMCYFyW7YU1AbTt+n2R6si0lBIoHwYCom1os9aPVDzpdV24YkSbj77rtx4403or29PeT0xx9/PB566CEMHTrUgOichT0FieRjeye1xowZY3YIJFNERATOP/987Nu3D3/729/MDkcIxcXFKC4uhiRJPA4SmYTDhxJ1YRvuzelJwWDYVsTGlkskECUHTCsdXK0Uq1acWGYjiPZUphXrub6+HhdeeCFKS0tDJgRTUlLw97//HW+99RYTgmHQs53wRwg5CXsKkhopKSkYP3682WGQj1D7qtvtRnZ2tkHRKGPmgzo8xhGZhz0FyUmC9RRkG+7N6duDDzBbF3sKEgmEB0wxsV7swekXawDw7bff4uyzz8a2bdtCTnveeedh9erVyMzMNCAy5wr3+MLjEzkJ2zupMXv2bLNDcBw776t2LhsRBaZVUpDHEBKF2rbINtyb0+8zMSloXUwKkj4qK4H4eLOjsBx3TQ2Sq6tlTRu7f3+/93oFnVend4DJiTeiogLo7NRl/UbwHDwou166uXbt0ikaZ4vau1dxXXRLOHSoZz+IrqpSvZxey0xIsMz79V599VXceOONaGhoQD4AD4AsAJsAtPpMl5eXh/vuuw+LFi0yJU5Sxuk/QshZQrV3/vB0rmBPtBNpiccZImfSavhQXruTFTj5nYJKy8d9OjC7txWrY1JQJy6XKwrAeQAuADAGQAaAagA7ATwLYI0kSYc0XmcBgJMAzAUwDkAegAQARwFUAPgQwOOSJL2j5Xr9KinRfRV2lAKgNIz5g85bVhbGklWuU+d1G2UgVNSLxcssqmEIbx/B9dcD6Dooa/Z2oRtv1GpJujrZ+9fXHAAfeP99+eWX46677upKdpJm9Hx6jhfa5CRs7xRIRETgn7XxfFDRcE4d6teu5SIi9hQk68jJyUFlZWVYy3ByUlAppycF2VPQupgU1IHL5RoJ4AkAE/t8len9mwngJpfLtVySpJc1WN8kAPcDmBZgklTv3zgAV7hcrrcBLJUkaXe46w5o/XqgqEi3xdtVXV0dHnroIVnTTpw4EfPmzev12erVqwNOX1paqj6wIIKts9t5552HrKwsXdZvhEOHDuGxxx6TPb3L5cJ1112nY0TOtX37dvz73/9WNe/QoUOxePFiAMDWrVvx2muvhR1Pfn4+zjrrrLCXoxdJknDrrbfi4TVr+n2XC+B9AFUAYmJi8Ne//hXLly83OEKSgxfaRF3Y3imQ2NhYDBo0CAcOHOj1eWRkJIYPH25SVBSu7Oxs7N27t9/nZg5tzuMQkTPxnYJkFePHj5eVFAzWjpkUlI/7dGBsK2JjUlBjLpcrF8AbALrfjC4BeBfADnR1ODoRQCyAQQCed7lcJ0uS9GaYqx2B/gnB7wBsAXAIXR3QZqHrHjAAzAPwocvlOk6SpB/CXLd/OTlAQYEui7azzpoa1Kamypq2OTOz3zYOOq9O9SEn3o7Bg4Hc3JDTiUqKj5ddL4D3xMf2r4v25mZFdeGrKSOjp17aFOxrwTQOGiRsXbe0tGDlypX4m5+EoK/s3Fyse/FFTJo0yZjAHEjPpB5/hJCTOLX3Eclz3HHH4dlnn+11I2v27NlBexGS2ObNm4fHH3+83+fTpgV6FlZ/PM7oh9uWRMbhQ8kqpk6ditbWVnyybp3ZoTiC0/dpPsBsXfyFpL3HcSwhuAvAGZIkfdH9pcvlSgfwLwAnAIgE8LTL5RoqSVKNBuveDuDvAB6TJKnXYyEul8sNYBmAewDEeWNc63K5Zkl8CYcw7HrAtGu5AnFaea1Cj4s1Uev6s88+w9KlS7Fly5aQ07700ktImThR/6BINV5oE3Vhe6dgxo4di9jYWHz11Vdoa2vDyJEjMW7cOLPDciStEvhDhgzB2LFje13PDBs2rKteKyrCilEPPEaFh7clSGQcPpSswuVyYc6cOZidk6P6tTY8Hsvn9KRgMDzeiY1JQQ25XK5FAI7z/m8rgMWSJH3lO40kSYdcLtcZAL4EMARAGoD/B+CXYay6CsByAP+UJKnD3wSSJHUCeMjlclWj652GADADwEIA68NYN2lIyQGTB1fjcFuLQ6unMu1ap52dnbjjjjtw8803o6PD7+kAQFf5f3bddcDq1UhJSTEuQOqH7xQkko89BSmUoUOHYujQoWaHQRrxeDw4++yzMX78eFRVVSEzMxNDhgwxtfcnjzNEzsThQ8lqwrludnJSUOn+7fR9mtdF1uXslqu9n/r8+5G+CcFukiQ1APi1z0dXulwu1b9sJEl6R5KkNYESgn2mfQ7Axz4fnap2vaQ9ux5M7VquQJxWXqvQo15Equvt27fjlFNOwf/8z/8ETQhGRkbi6aef5nsvLSRYO3P6jxByFrZ3ImvQ8vrI5XJh+PDhOP7441FUVGT6cLAiXfsRkXG0Gj6UxxAie+Hvk8B4vBMbW65GXC5XArqGBO32cIhZngFQ7/13GoDj9YgrgA98/l1g4HqJLEnpiYwnPv2I9lSmCHUtSRLWrFmDiRMnYsOGDUGnjY6OxvPPP49zzjnHoOgoFPYUJJKPPQWJ7MHK+yqH9CZyJq16Cg4ePFiLcIh05eSegko5PSnI6yLrcnbL1dYsANHefzcA2BRsYkmSmgF86PPRAp3i8rt6n397DFwvhWDX4UOtFKs/Vo+fuugxfKjZbaOurg4XXXQRli9fjoaGhqDTpqen45VXXsGiRYsMio66hfujij0FibqYfcwlIiL98BhPItPimtvtdmP8+PEaREMUPg4fqg3+Hg+M53WxseVqZ5TPv7+SJKldxjyfBZhfb+N8/r3HwPVSCFY8YBYXF5sdgnCsWI9WwZ6Cx3z88ceYNGkSnnjiiZDTLlmyBFu3bsX8+fMNiIyUYE9BIvnYU5CIzMYn4omcSYvhQ+fPn4+oqCitQiLSDZOC8jk9KWjEdVFcXJzfz2fPnq3J8p3K3AH57WWEz793yZxnt8+/R2oYS0AulysPvXslvq7Liiorgfh4XRZtZ+6mJiRXV8uaNnb/fqC8vNdnQeftM61W5uTmYt/Gjaivrw84TURFBdDSosv6jeCprZVdL0DXO9v02t5OF1FRoagufMUdONBTL5GVlaqXE2iZRmlra8MDDzyA1atXo6OjA/no6vKdha4u6q0+08bHx+OBBx7ARRddZGiMJJ+cC2XegCTqwvZOZB0ulyvgTUUr78tWjp2I1NPixv+4ceNCT0RkEJ7P/FO6XZgU1L8dDRs2DLt370ZNTU3PZ1FRUex5HSYmBbUzwOff+2XOs8/n32kaxhLMXTg2ZOhuAC/pspaSEl0Wa3exAErDmD/ovGVlYSw5sBQAPwk1kU7rNkoyVNTLnXdqHwihEOHtI91GQcPu2StXarUkWSIBXOP962sOjr00dvr06VizZg1GjjTkmRMyCX/MkZOE+tHN/YHIGqy8r3K4NSJncvqNf3IWns/k47EhMK2u92JjY7F06VK8+eab2LNnDzIyMjBnzhwMGjRIk+U7FZOC2knw+XeTzHl8p0sIOJVGXC7XUgDn+Hz0C0mSNO2+FRMTg4iICOCZZ9AxdCiONjUhOT4eLpcLdQ0NiImKQlRkJJpaWtDZ2Yn42Fi0d3SgvqkJKQldm6C2vh5xMTGIjIhAY3MzACAuJgZt7e1obG5Gsne6mvp6JMTGIsLjQUNTE9xuN2Kjo9Ha1obm1lYkxcdDkiTUNjQgMTYWHo8H9U1NiPB4EBMVhZbWVrS2tyMxLg6dnZ2oa2xEUlwc3G43jjY2IioiAtFRUWhubUV7RwcSYmPR0dGha5n2Hz6Mx//5T7gAdHoPnm5JggRAcrmO/dvtxpRJk3D8ccf1KtOq1av7Tefq7IQLwI+vuELXMj33/PM4uG9fr1gBoNPtxgXnnouszEzL1tPhI0fwyD//2atM3dvVXz3FREZixYoVQpfJqvtTeXk5nn3hBbgkKeh+4q+eJowfjxPmz0drWxu2bNuGd996q99+0ulywQXAFWC/6zWdJGFEUREWnHii7vUUGxWFe++9F4+sXYv6ujp0tLcjJj4enZ2daG1qQn5UFF6KiUFVXR0iIyPxxz/+Eddddx0iIyNRX1+PiIgIxMTEoKWlBa2trUhMTOyqp5QUJHV2wg3g6NGjiIqKQnR0NJqbm9He3o6EhISuMh09iuTk5K4y1dUhpq0NUUBXmRoaEB8fj/b2dtTX1yMlJaWrTLW1iIuLQ2RkJBobG7vKFBeHtrY2NDY2Itl73qipr0dCezsiIiLQ0NDQ1fZiY9Ha2orm5mYkJSV1tb36eiR6PPAAwctUV4ekpKSuMiUmIqq1FdGAMWVK7ipVTUoKEjo6EAGgoaEh6I+qzs5OIFCZvO24zrsufzo6Onr+269MMTGIiopCU1NTV9sD0B4R0VUm7/yyy1RTg4SEhK4yxcfD3dKCWKB/PdXWIjExsesY0V0mAC3R0WhtbOwqk289ud39215TExK6y1RTE7xM8fFd+1NKivIy1dcjISKip54Ctr3uMgGoT0hARGtrV5kCtT3fMgFojonpXaZQ9eTb9vQuU3c9dZeptRWtR48GL5PvMQJAh8eDo/X1SJYkeWUKtD81NyMO6Dru1db2b3sREWhqCn6J3b0/qG57eh4j6uuPHfd8ymRIPXWXKSWlq54A+fWUnIy49nZEAvKOEb5lAtAaFYXmhgYkAYGPEYGO5d3np8ZGRLW0yKsnOftTfT3i2trkHfe6j+VNTXA3Ncmrp+4ytbaiNTFRXdvrrqeGBsS0tirfn4Cu/SkyUn3b6+joOu41NSGiuTn4OddPmbpJ6Dov+p4Ju899issUznWEBmVqb+/9hpDuMnX63PQyvJ7Unp9MOkYAXdcRnX5uFEqShJqamsDHCN9jeU2N9mXyxhHyGKG07Sm9hg3nOqKpqet6r6MD9TU1YZ1ze5WprQ3NSUnyj+XwXsPW13cdy+WecwHUJSUdO+dqfB0hp54CcblcvepJiU6XC61RUcrL1LftBfitIfs6ItxrI6OuI5qa4I6Nlf9bw9/+VF+PJLdb+e/cmJiueoqNPbY/ya2n9nY0Jiebfyzvsz8F+iXa1tbW8+++Zep7vvPV3n3cM7uetP6d662niIhjqZLuc1WwFGl7ezuOyr0uV/o71wL7U/c1nT/d90GCnXP9XQ/01Z1cPP3003vtTwhWJmi4P3nLkZSUhLq6upDxWgXT2dqJ8fl3a8CpevNNyMVqGEs/LpdrCoD7fT56QpKkx7Vez4wZM7BkyRIgJwcH4+NR9swzaMnKAgoK8NBrr2FbQwNQUIB3du7ES198ARQUoMLjQdkzzwAFBUBBAe7797+xo70dKCjAhm++wYZvvgEKCrCjvR33/fvfPdOVPfMMKjweoKAAL33xBd7ZuRMoKMC2hgY89NprQEEBWrKyUPbMMzgYHw8UFGDdRx9h4969QEEBNh85grXvvgsUFKAuLQ1lzzyDurQ0oKAAa999F5uPHAEKCrBx716s++gjoKBA9zLd/+9/oy41FbWpqTiakoKjKSmoTU1Fnff/e/6dnIwjiYn9yuRvuu7l6V2mvR5Pv1hrvTFURUVZup7KJalfmYLVU11amvBlsur+1J6b27WNQ+wn/uppR1tbT5ne+O47v/vJ0ZQU1AXZ73pNl5qKpowM3evp3hdeQPE55+CGe+7B2ddei87cXOwCMGnxYgydOxe7AESOHo2HLrsMg/Pz8e6776KhoQGHDx8GAKxbtw4bN24EAGzevBlr164FANQ1NqKstLQn4bR27Vps3rwZALBx40asW7cOAHDw4EGUlZWhxTsE8EMPPYRtu7pGyX7niy/w0ktdHc4rKipQ5tMr+L777sOOHTsAABs2bMCGDRsAADt27MB9993XM13ZM8+goqICAPDSSy/hnXfeAQBs27YNDz30EICuC7iyZ57BwYEDg5eprg5lZWU9F2prL7oIm7dvN75MpaWoOHiwp0y+P7j66h4CI2CZkpLw8GuvBZx/586dgcu0bVtXmd5551iZcnO72p7SMpWVHaunxYvxzhdfAPBTT2VlOOgte68yTZqEta93jVjer576tj1vGzhYWyuvTAcPoqy0VHmZnnkGFbm5XWUK1vZ8y7RkCTZ6Ywja9nzLNGPGsTLJraeKCnX1pKZM69YdK9P27fLK5Ls/DRzYddyTU6Zg+9Mnn3SVae/egG3vjTfeQDBHjhw5ViY1bU/PY8SLL/otk2H1VFuLstJStHiPR7LracUK7Ni713+ZAh0jfMs0ejQeeuWVwGUKdizvPj+9/rr8epJTphdflH/c6z6Wf/ih/HrqLtP27VjrHb5bcdvrrqdXXlG3P3WXaehQ9W2vtrarTO+8I++c26dM3TeCOj2ermO0z02fo0ePqi+T2usIDcq0bt263k+9e/9dn5jY85Hh9RTO+cmsY8TixWiJ8b190qWtrS34MaL7WN7YqG+Z5B4j9LyGVXsd8eGHXWXyTtdTJhXn3F5l2rULD1122bEyyTmWJyV1/SZUes697LJj51yNryPk1pM/bre7Xz3JVZ+YiG2jRysvk8zfGorPT2qujYw8Rnz4Id6ZO1dZmfruT888gzpv8lbR9V53mebOPbY/ya2nvXtx34oV/stk1LHcz/7UFuA9lpWVlQHLFCzRI1Q9af0796WXcPDgQXi8Dwj0nN+DJK62bt0qv56U/s61wP7kO6RnX93bIViZjsp8yMLU/cl73LvMex60Cxe7BGvD5XL9B8Ai7//eLknS/8iY5xQAL3v/t16SpMRg04cRWyGA/wLI9H70JYDjJEnSLL3tcrnGANjS3VNw48aNGDlypLKnd5U+HaX2KWslT+aF+0SywjLt378f999/P+SYOXMmFi5c2KtMt9xyS8Dpr7/+el3L9Nhjj6Gqqsrvui+//HJkZ2dbtp4OHTqEv/zlL7LqBejqMfv//t//E7pMVt2fduzYgccee0x2XfiaMWMGSkpK0Nrais8//xyveG9ShmPcuHFYtGiRLvW0f/9+XHvttXjvvfdQ672JlZKSgvr6erS3tyPe21OwqakJQ6Oi8FlMDNwffID4MWPk1dMPP6CuuBhJn34K95Ahyupp/35EFRWh6Ztv0Jmbq67tVVcDhYWo+eorJIwcGbrtbd2KxIkT4dm+HfXp6aHb3u7dODp+PKI++QTRRUXGlCk5GSgvR82kSUj45BNEDB2KhoYG3Hvvvb16Tfhavnw58vLy/NfT4cPoHDoUFe+9FzAxOHHiRJxxxhny2t7Bg2gfPhz1mzcjZexY+WWCzzGiogINY8fC/emniB0xQt4xYt8+tIwcidbPPkPi6NGhjxE7dyJh9Gh0bN+OowMGhN6fduxA/ZQpSNm8GSgokF+mLVuQMGkSIr7/Hg0DB4Y+7u3Zg/px4xDx6aeIKSqSd9yrqkLzqFFo/+wzJIwapewY8c03SBk3Dti5E7WpqfqUqbue9u5FzIgRaPn2W7RmZck/lh86hI5hw3D088+RPGZMeMe93bsRN2oU2r7/Ho0DB/o9P4W6Trruuut6jpOq2p6ex4hvv0Wytz5rUlLUnXPV1lNCAjp27MDRKVOQ/NlncBUWyqun8nLUTpyIuE8+QeSwYcqvI/bvR+uIEWj+7DMkjRmj/DriyBG4hw7F0a1bETV0aPjXETU1QGEhar/6CnEjRsg77h0+jIhhw9CwbRvcBQXKro2++w6tU6Yg8csv0ZmXp6ztVVfDNWQI6rZsQczw4equ9w4cQFtRERo/+wzJ3mO+ouu9w4fhGTYM9du2IaKwUPH13p/+9CdIkoSk6mosf+QRPLx0KepSUwEAI0eOxHnnnRfeNazS6wgNytTe3o7q6uqem09J1dX4WVkZ7iotxdGUFJxzzjkYOnSosfWk9vxk0jFi38aNSD35ZDxw+eU46t0u3S655BKkpaUFPkbs2IHEMWPQuWMH6tLStC+T3GOE3tew4VxHlJcjfvRotG/fjvoBA8I65/Yq0/ffo3nKFCR98QWk/PzQx3LvNWzdF18gafRo+efcXbtQN2ECYj75BFHDh2t+HSGnnu655hrUeo9Vvn79619DkqSeevrd734X6HKkn8SaGlzz178i6ttv0ZSREd5vdz+/NRT9dld7bWTkdcTXX8NdXIzYbdvQmp2t7n7Etm1ImjAB7h07cHTAAGX3I/buRdPo0ej89FPEjxolv562b0fjlClI/vxzoKDAnGO5n/3pH8uX95x/feXm5uLHP/6x3zK1t7fjvvvu6/cbdtq0aTjppJPEqCetf+f61NN7772HDz/8EIk1Nbh+9Wqsuu46v9sQAH72s5/B5XLJqyelv3MtsD89/PDDOHDggN9tM2rUKJx77rlBz7nd11DBzJw5E9OmTTNvf6quxrYhQzCrd0/BsZIkbQ0auOA4fKh26n3+LbfXn+909QGnCoPL5coC8BqOJQR/AHCylglBX74nDI/H03PSBNBriIXY2GNFj4iI6DVd90EM6Dq4dYuMjOz1ne888fHxPf+OiopClPdJGJfL1Wu67iFLACA6OhrR0dEAup768p0u0edpzxifpxiNLFMo3U+u+JYpGL3L1B2PP93d761aT91xKiF6may8P6nVHV9UVFSvbREOl8uleT1FRUVh1apV+M1vftNvqDzfp7AaGhoAdNXdHb/+NZKuvx5ISACU1FNNDeAddkFRPXl748RGRwPe9qK47VVXd8WfkADIOUYkJADeoQFlt72jRwHvMgwpk1dKTQ3gPSbGx8f3PAHoT/dy/Jbp8GG4Ozt7hpn1p3sbyWp7Bw8ior291/JUHSMaGgCf/UnWMaKlBdHe5Yc8Rnjjlb0/eTxd21xpmRISAO/QOLKPe/X1PW1K9nGvuVl5mSIi1NWTmjIlJBwrU1QUor2xyzqWHzoET0dH13q9T9CqPj95lxkZESHr/OSPv2sjRW3PZzmaHyN8YlJ9zlVbT91lqqlRXk+1tT3HaFXXEa2tiPL+v+LrCO9+nRgX13PMCeuc611eckICEBkpr0zeeeJjY3v2Y9nHvagoRHt7xClue971JsXH99S7quu9tjb1bc8bQ0JsbM/+qeR6z+12o6OjAy50nRd9n7Hv3lfDuoZVeh2hQZkAoNq7XgA9ZXL7PGhteD15qTo/mXWMaGjotc26hTxGqDmWKymT3GOEEdewaq8jvNNF9Jku3HNuVGQkorw3QmUdy32vYZX+1qir69n+el5HBKsnf1wuV7+yy+WWJES1tiovk1eo3xoBy6TFdbmXoceI2FjA+ztY9f2IhATA29tN1f2IpqZj+5PceoqI6CqvvzIZeSzvsz8F6uMW6d3PApXpkksuwRNPPIH6+q7b1WPHjsXChQt7zuFC1JPWv3O99XTSSSchLS0NFe+/31UmBBYbG9uzLTX/nWuB/SnYveCg13vec66/6wF/TN2fvLHaaehQgElBLR32+XeGzHkyff59RMNYAAAul2sAuhKCQ70fVQE4UZIk/925yHRavYTVDMF6HVu5XGo4rbxGCmfbWqFeNm3ahCuuuAKff/65rOnPOOMM3HfffchqaQGuv17f4Ei1YMdH3wtkNazQrom0EuxHJ8D9gYj0F+w4w1GYiIjIKkJdN2dnZ+P666/H/v37kZiYGPLhPDtxuVyYMmUKpqSnAz/7GQoKCvCFT8LXV/e77ZwqWDvibzOxObvlautbn3/ny5wnz+ff32gYC1wuVxKA9QDGeD86hK6E4E4t10PaUnLA5MHVONzW9uB7saZVnWq1nB07dmDFihWYPn26rITggAED8Pjjj+O5555DVlaWJjGQOcJNCjr9Rwg5S6ikIBGJw643iawcOxFph9ck5AQulwuZmZmOSgj6E+yhH/4eD0y0+27UG1uudr72+fc4l8slpxfm5ADzh8XlcsWj612Fxd6PatE1ZOg2rdZBpITVD+BK47d6eUUWzrbV42It3Lo+fPgwrr32WowYMQL333+/rCfMf/SjH2Hr1q244IIL2NZsINx2yTZAThJqf+H+QER643GGiABg+vTpZodARAbp9A6d6Y/Trwvs+hCYEzApqJ3/Auh+aVA8gCnBJna5XNEAZvh89KYWQbhcrhgALwKY7f2oEcCpkiR9qsXySV88YNoD61FMIj3BtW/fPlx77bXIy8vDPffcg44g76/oNnXqVPznP//BU089hYwMuaNUkx3wQpuoC5/KJ7IHu567OHwokXPMnz8fo0aN6vl/3/dxEVmBXc/FeuD5XR32FBQb3ymoEUmS6l0u1xsAFnk/WgZgY5BZzgbQ/SbLIwDeDTcGl8sVCeAZAAu8H7UAOEOSpA/CXTYZw67Dh1opVn+sHr+daNVT0KyLk6amJqxatQq33XZbzwu7Q0lKSsJtt92Gq666SqjEJomBbYKcJNQxl+drInHYdX+0a7mIKLDCwsJ+n0VERODcc89FfX096uvrkZGRgd/97ndMHhCRo/C6yLqYFNTWX+GTFHS5XPdIkrS170QulysOwK0+Hz0oSVJ7OCt2uVweAI/7rL8dwLmSJL0eznJVq6wEHD7mtBquzk4kV1fLmjZm3z6gvLzXZ0Hn7TOt1hIOHQq4fvfu3cDRo7quX0+uxkbZ9QIA8a2tum9vp4qoqFBUF75895nIykrVy/EVd+CArLru6OjAf/7zH9x+++2o3LsXAwAM8H7nAZAFYBOA1j7znXPOObj77ruRnZ0ddqxkXewpSEREdmLlc5eVYyei0IYOHYrPjhzp+X+Xy4Vp06YFnD4hIaGnl6Db7ZY1AgwRWUuw4UOdzoh7Fbz20geTghqSJOk/LpfrPQDHAYgG8G+Xy3WGJElfdk/jcrkGAHgCwDDvR0cA3O5veS6XqwDATp+PlkuStMbPdC4A/wCwxPtRJ4BLJEl6MawChaOkxLRVW5kbQGkY8wedt6wsjCWHdr6J69ZbHFTUyx//qH0ghFyEsY/4tMPh4SxHBQ+A071/gcwB0N2tOz8/H/fccw8WL16se2xkbewpSHQMfzASicOJ+yN7CBFZ3ymnnIL43buxY8cOJCQkYPLkyRgxYoSseZ143CPrYnuVj+d3siMmBbV3IYCP0dXxowDA5y6X6x0AOwAMBHAiunIMwLHefDVhrnMFgKU+/78DwByXyzVHzsySJF0T5vr7W78eKCrSfLF2J0kSymQm0GbMmIEZM2b0+mz16tUBpy8tLQ0jstCeeOIJ7N+/3+93y5YtQ0pKiq7r11NzczPuv/9+2dMnJCTgJz/5iY4ROVdFRQXWrVunat4TTzwRY8eOBQBs374d//73v8OOZ/z48ViwYEG/z7dt24Y1a9bghRdeQEtr3/5/veUCeB9AFYC8vDz88pe/xKWXXorY2Niw4yOxyU3osacgERHZiZXPXVaOnYhCi4iIwIIFC/z+xguFxwcie2JPwcB4r8K6mBTUmCRJFS6XawG6egNOBOACMM/75+sgunr+vaHBagf1+f/h3j+5tE8K5uQABQWaL9buXABqU1NlTduSldVvGwedV+f6qE9PR22A5IeUnw/ILJeIpKYm2fUCAJ2JiWz/Oul0uxXVha/23NyeemlTWKeBNGVk9Krr7777DitXrsSGDRsUL+uGm27Cst/+FnFxcaEnJlvQIvHLnoJEx/CHJ5E47Lo/2rVcRhkwYEDA7zIyMgyMhEh7PD6QlbC9ysekoDocPlRsvJOkA0mSvgEwHV29914FsAddr4o6AGAjgP8HYLQkSf8xLUgikk3pCYgnLP2Es219kyda1ZHH4wEAtLS04JZbbsG4ceMUJQSTk5Nx8y9/CQC4+uqrmRB0mKysrLCXweMNERFZjZXPXcFi5/BioQV6ICo/P5/XwWR5Vj62ERGpwZ6C1sWkoE4kSWqVJOlRSZJOkSQpT5KkaEmSMiRJmilJ0h2SJB2SsYxySZJcPn9rAkz32z7TKfrTvPAUFqseNIP9CLZqmdRyWnmNpFVSUEv/+te/MG7cOPz2t79Fa4ihQrt5PB789Kc/xfbt23H55ZfrEheJY/z48X4/nzdvnqz5g7V79hQkOobnXyIia/DtMThw4ECcffbZJkZDpA1ehxDZE3sKqsOegmLj8KFEgnG5XLKeMrXSQdFKsfpj9fjtRKSk4JEjR/Czn/0M33zzjex5oqKicN555+EXv/gFRo0a1fVhfb2mcZF4pk6diq+//hptbW09nxUUFCA7OzvsZfP4REREIrLr+Yk9BbVx8cUX42B8PICupKBd2ws5C9sxWQnbq3w8vwfGdmRdTAoSEYXA4UPFIcLwoXV1ddi4cSM++eQT2T0Dc3JysGLFClx++eUYNKjva2DJ7nJzc3HppZfik08+QU1NDfLz83HcccfJbocckoNIHu4PRNZg5X3VyrGLxOVy8ZqYiIgsobOzE+D5XzFeM4mNSUEiwWhxk1g0VoqVxBZOW1I7b2trK8rLy7F9+3bs2rULBw4ckP2k2IwZM3DDDTfgjDPOQGRkpKr1kz3k5uYiNzdX1bzBhivh8KFERCQiXv8TERGRHRQXF2PXZ5/1+zw5OdmEaMRixAPMvKbUB5OCRIKx6sHOzt3p2VNQHHoPH9re3o6DBw+iqqoKBw4cwMGDB1FeXo6Ojg5F60pLS8Of//xnLF26lO2BwsZ3thId43a7+V4PIouz8rmLw4cSUSBWPraR87C9yjd06FB4vvii332hadOmmRSRNbCNiY1JQdJHZSXgfUcAKZNcXY329vaQ08Xs2weUl/ebN6A+02ot4dChgOt3794NJCToun49udrbg2/bPhI7O3Xf3k7lOXhQUV34itq7F/D21ousrERydTUOHjyIb775BkeOHEF9fT2OHDmCjj43m/v27fIAyAKwCUDfwUNdLheWLVuG22+/HQMHDlQVJ1FfTAoSHRMsKcj9gYj0xuMMEQXC4wORPcXFxeG8887D008/jba2NgDAhAkTMGPGDJMjMx97CloXk4Kkj5ISsyOwrGvkTlhW1u+jUoXTa+kiE9ettwiE2Lb+3Hqr9oEQBkJFXXTzaYdDwlmO1xwAH/j8/wknnIB77rkHo0aNCnPJRL15PJ6A38XzARxyGI/HI+vhKSIyl13fh8uegkRERM4zfPhw/L//9/+wd+9epKamIjEx0eyQhGDlazqnY1KQ9LF+PVBUZHYUlvTXv/4Vra19+x/1N3v2bEydOrXXZ6tXrw44fWlpaZiRBbd27VocPHjQ73eXX365pW9cd3R04J577pE9fUpKCpYtW6ZfQA52+PBh/POf/1Q17/z58/HGG2/gsccewxGVvQ2Brp6D7wOo8v5/SkoKfv3rX+O6667j+91IF3FxcUhPT8ehQ4d6fR4VFYXhw4ebFBWROYIdZ/mjlMgauK8SERGZi+di5SIiIpCXl2d2GJbBNiY2JgVJHzk5QEGB2VFYUl1aGlpaWkJO15qd3W8b16amBp5B5/qoT09HbYAn96X8fEsPH4qOjuDbtg9PWhrbv06khARFdQEAjY2N+Pjjj/E/998va9+SKyEpCTddeSV++9vfIi4uTrPlEvlz3HHH4bnnnuv12ezZs4P2IiSyIz58QWQNdr0RZNdyEVH4eHwgIqfh8KHWxaQgEenO6gdwpfFz6CD9yKmL+vp6VFZWYv/+/aiqqsJ3333X74XQasTGxmLYsGGYkZkJvPYali9fjuPPP58JQTLE+PHjERsbiy1btqCtrQ0jR47E+PHjzQ6LyHDBEuFWv94gcgor76scPpSIiIgoNCtf7zkBk4JEgpF70BTt4GrnH8GibWsnC1QXHR0dKC8vx8aNG/H999+HvR6Px4OMjAykp6djwIABGDp0KLKzs+F2u5FcXQ289hoA9lghYw0fPpzDhZLj8bhLRGbi7wIiCoTHB7IStlfSAnsKWheTgkSCsePBzo5lCsbOCVKzdbellpYW7Ny5E/v27UNVVRX27NmDxsZG1cvNycnB0KFDkZaWhszMTAwcOFDWsIy8OU1EZCy+U5DIGoy4SUREJBIe24iIyCqYFCQSDC8kxcM6EUdLSwveeecdfPDBB2htbQ1rWVFRUSguLsbkyZMxcOBAVctgUpCIyFg87hKRmTh8KBER2QHvc5EW2FPQupgUJLIoK90U4wGctPD222/j8ssvx/bt28NaTnJyMlasWAEAiImJCWtZVtoPiYjsgO8UJLIG9hQkIiIici5e74mNdzOJBCP3oBkZGalzJERiOHz4MC677DLMnz8/rIRgdnY2br31Vnz//ff4yU9+EnZCEAh+c5qIiLTHhzGIyEy8wUVEgfD4QEROw4fArIs9BUkflZVAfLzZUVhScnU1IhoaQk4Xd+AAUF7eb96A+kyrtcTDh9EcYP3u3buB6Ghd16+3lJoa2UMCJXZ06L69neDIkSP429/+hn/+85+ob2hAPgAPgCwAmwCEGjw0KSkJmZmZyMjIQH5+PlatWoX09HQAQF1dnSYx8uY0EZGx+E5BIuuz677K4UOJiMgq7HouJmNx+FDrYlKQ9FFSYnYElnW53AnLyvp9VKpwei1dZOK6jXCd0hl+9zs9wnCUNAA/9/71NQfAB34+j4yMRFFREaZOnYr8/PxeFw9RUVGax8ikIBGRsXjcJbIGu97AsWu5iCh8PD4QEZFVMClI+li/HigqMjsKS/r73/+O+vr6kNOdeeaZKCgo6PXZ6tWrA05fWloaXmAhPPbYYzh06JDf71asWIFoi/cUvPvuu9HZ2Slr2sTERPz4xz/WOSL7qa2txV//+lesWbMGLa3++wHmAngfQJX3/yMjIzFkyBBkZWUhJycH+fn5AZN/vj/StPrBxpvTRETG4rDNRNZn1xvn7ClIRERETsKegtbFpCDpIycH6JOwInmODhiAOhnvC3QVFgL5+b0+q01NDTyDzvVxdMAA1HZ0BF63xZOCdWlp6AhUvj6kpCS2fwWam5tx77334o9//COqgw2B66MDwIQJE7Bw4ULEyxyqWI8EHpOCRETG4nGXyBp4A4eInIbHPbIStlfSG9uY2JgUJBKM3INmpIzEoSh4IiB/Ojo6sHbtWvzv//4vdu/erWjeJeecg8Rx4xTN43sjWas2yR4rRETG4nGXyPqs/NsgWOzsKUhEREROYkRPQdIHH7UlsigrJQXtgCcz7XR2duK5557D5MmTsXTpUtkJwQEDBqD0uq63O+bm5ipeL3sKEhFZH4+7REREJCLeMyAiOobDh4qNv6qJBMOegmJSUgY+JRzYxx9/jGnTpuHss8/Gl19+KWuegQMH4rbbbkN5eTlWrFihet1MChIRWR+Pu0TWwCfHiYiIxMVzMWmB7ci6OHwokWCsmhRkIoyCOXz4MG6++WY8+OCDsttKRkYG/vd//xeXXXYZYmNjAQAtYcSgx/ChvDlNRGQsHneJyEwcPpSIAuHNcSKiY9hTUGxMChIJxqpJwWDscABnT0F1Ojo68Le//Q0333wzjhw5ImuehIQE3HTTTbj++uuRkJDQ67tw2pIe7ZA3p4mIjMV3ChJZg117CkZEBL6FMmDAAAMjISIiIjKXXa/3nIBJQSKLCvaDlLTHk5kykiTh2Wefxa9//Wts27ZN1jwRERG48sor8b//+7/IyMjwO41oSUHenCYiMhYfxiAiM0VERCAvL6/fO7Gjo6MxbNgwk6IiIhHwngFZCdsr6Y1tTGz8VU0kGLkHTSvdFOOJwFm++OILzJs3D0uWLJGdEPzRj36Ebdu24d577w2YEAS0Swpy+FAiImvicZfIGuz85PhJJ52E6OjoXp+dcsopPD4RERGRoxhxvWf160ZRsasR6aOyEoiPNzsKS0o6cgTt1dWhJywv7/dRcrD5/EyvpcTDh9EaaP3l5YDFe1QlV1ejpUXeG+3iW1t1394iqqmpwV133YXHHnsMnZKEfO/nHgBZADYBaO0zz+mnn47f/e53GD9+vKx1qL0Y0Osigjd/iIiMlZqaanYIRORwubm5uOKKK7DzrbeAsjJccMEFyJgwweywiMhkvHFNVsL2SlpgO7IuJgVJHyUlZkdgWZfKnbCsrN9HpQqn19IlJq7bCCuUzvDHP+oRhtBSANzq/fNnDoAPvP8uLCxEWVkZFi9erGgdTAoSETnb5MmT8cYbb/T7vLCw0IRoiEgNO9xASktLQ1pxMQAEHeWCiIiIyInYU1BsTAqSPtavB4qKzI7Ckv75z3/i8OHDIacrLS3t99nq1asVTa+lRx99FEeOHPH73bXXXmv55Mn999+P5uZmWdPGxcXhiiuu0DkiMXz66af4zW9+gy1btwacJhfA+wCqAMTExOCXv/wlbrzxRsTGxipen1ZJQQ4fSkRkTXFxcZg6dSo2bdrU85nH48Hs2bNNjIqI+uINHCJyGh73iMhp7DxcvN0xKUj6yMkBCgrMjsKS6tPTUdvZGXpCP9u3NtiQWjrXx9EBA1ArSX6/cxUWAhY/GRwdMACNjY2ypm2Li7N1+z98+DAeffRRrF27Fp9++qns+U5dvBg33HMP8vPzQ08cgGg9BT0WHxaXiMiKTjnlFGRkZGD79u2Ii4vDhAkTkJeXZ3ZYRCQTbxIRERGZi+di0ht7CoqNSUEiwfBgR6Lq7OzEXXfdhVtuuQX19fWy55s9axbw3//i7rvvBsJICIaDw4cSEdmHy+VCcXExir1D9xGRePjkOBE5DY9tROQ0vN6zLiYFiUh3djgR2KEM4di8eTOuuOIKfPLJJ7LnycvLw1133YWzJ08GhgzRMbrQOHwoEREREREREREROR3vZhIJxunJJxJLZ2cn/vznP2P69OmyE4LR0dH49a9/ja+//hrnnHOOEG1arxhEKBsRERGRlfD6iYjsiMc2IqJjOHyo2NhTkEgwkZGRZodAfig5CUkB3q1oNXv37sWyZcvw2muvyZ7nzDPPxF133YXCwkIdI1NOj4sIt9vNixMiIiIiP3iNREREJC6ep0kLHD7UuthTkEgwcpKC8+fPNyASZeySCAvEaSezF198EePHj5edEJw1axbWr1+P5557TriEIKDP8KEcOpSIiIhIOaddVxORM/DYRkR0DHsKio09BYkEExUVFfT76OhojB071qBoSA0rJ0gbGxtxww034P777w85bUJCAm688UZccsklGGLyOwND0aunIBERERH1xxs4RERERPbGnoLWxaQg6aOyEoiPNzsKS0qurkZydXXA7y+88EKk1dUBdXV+5w2ovFyD6AJLPHwY7YHWr/O6jZBcXQ330aOypo2OjrZkmTdu3Igbb7wRFZWVyAfgAZAFYBOA1j7TnnbaaVi9ejWGDh1qeJxq6HExwgscIiIiIuV4DUVEdsRjG1kJ2yuRszEpSPooKTE7Ass62fsXUFlZwK9KVc6nhaUmrtsIP1Y6w5/+pEcYupoB4H0/n88B8IH33/Hx8bjnnnuwbNkyS11E6jF8qMfjCXsZREREREREREREVmNET0Er3Xu0EiYFSR/r1wNFRWZHYUnvvPMONm/e7Pe7U045BSNGjAg47+rVqwN+V1paGmZkwT3yyCOoDtBTUO91G+Ghhx5CnZ/emf5ER0djxYoVOkekjba2Ntx888146umn+32Xi64kYZX3/6dOnYq1a9di+PDhRoaoCQ4fSkRERGQcDidFRE7DYxsROQ2v96yLSUHSR04OUFBgdhSW1PHDD6gNMPRke25u0O06+6KL8PLLL/f7/OSTT9a9Po4OGIDaQF/aoC0cHTAAtTJ7hkVHR1uizA0NDTj33HP9thlfnQB+8Ytf4JZbbkFkZKQxwWmMSUEiIiIiIiIiIiZsSH/sKSg2JgWJBBMVFRXwu1AHwlGjRuG///0vampqej5LTk7G6NGjtQovIEmSdF8HaefgwYM47bTT8PHHH4ec9oknnsCM8883ICr96DF8KC9MiIiIiPzjk+NE5DQ8thGR0/B6z7qYFCQSTLCeWKEOqAkJCVi6dCk++OAD7N27F1lZWZg9ezYSExO1DtNxlJzMRE+Q7ty5EyUlJfj++++DTrfknHOAZ57BjBkzDIpMP+wpSERERERERERERE7HpCCRYMLpKQgAKSkpOPXUU7UMiWzk/fffx5IlS7B///6A00RHR+POO+/ET089FXjmGQOj048ePQU9MoeTJSIiIqJj+OQ4EdkRj21kJWyvpAUjegqyreqD3RyIBBNOT0Ezid47Llwib3s5JEnCqlWrMG/evKAJwdTUVLz55pu45pprLF9mX3qUxU7bh4iIiEhLvE4iIiIici5eC4qNPQWJBBNuT0HSh5W3/dGjR/HjH/8YTz/9dNDp8vLy8Oqrr2LUqFEGRWYcDh9KREREJAYrX1cTEQXCYxsROQ17CloXk4JEggmWFLR7bzy7EKmetm3bhrPPPhvffvtt0OnGjRuHV155BTk5OQZFZiw9hg9lUpCIiIjIP97AISIiEhfP06Q3tjGx8Y4mkWCCDR/a3t5uYCTky2ons/379+OWW27BtGnTQiYE586di3fffde2CUGAw4cSERERiYLXUERERETWZ8Q1Ha8b9cGegqSPykogPt7sKCwp5vBhJFdX+/3OtWuXsNs18fBhdNbW+v+yvNzQWPSQePgw2gLUS18RERGmlbmjowOPPPII7rzzTjQ2NSEdQLr3Ow+ALACbALR6P7vyyitRVlaG6OhoM8I1DIcPJSIiIiIiIr3wxjVZCdsr6Y1tTGxMCpI+SkrMjsCyBgAoDfRlWZlxgSi0PNiXAsct16VKZ/jzn/UIIyQPgMu8f4HMAfBpTAzuv/9+LF261JjATKbH8KG8wCEiIiLyz4h3zBARiYTHNiJyGl7vWReTgqSP9euBoiKzo7CkpqYmPPDAA36/O/744zF58mSDI5LnoYceQl1dnd/vSktLjQ1GB4899hgOHToka9qIiAhcc801Okd0TEdHB26//XY8+Le/BZ0uF8D7AKIGD8bGl17ChAkTDIlPBBw+lIiIiIiIiIiISBtGJAV5700fTAqSPnJygIICs6OwpIi2NtSmpvr9rmHgQGG369EBA1Dr8fj/UtCYlTg6YABqOzpkTevxeAwrc1VVFX784x/jlVdekT3P8//+N5LGj9cxKvFw+FAiIiIi4/DJcSIiInHxXEx6YxsTG+9oEgkmIiJwrn748OEGRkK+RDuZSZKERx99FKNHj5aVEIyPj8fNv/wlACApKUnv8ITD4UOJiIiIiIhIL/x9SEROE+5xLy0tTfd1kH9MChIJxuVy+R3WMTk5GRkZGSZERIBYJ6Hq6mpccMEFWLp0KWpqaoJOGx8fj//7v/9DRUUFLr/8cmMCFBB7ChIREREZhz0FichpeGwjIjpGzjHxhBNO4LHTJLyjSSSgkpIS5Obm9vx/fHw8LrjgAh4oLUKSJN2W/eabb2LChAl48sknQ0579tlnY9u2bfj5z3+OlJQU3WKyAu47RERERERERES8R0LaCPchsJycHKxcuVLLkEgmvlOQSECxsbG47LLLcPjwYTQ1NSEnJ4e9kkxm9gVTU1MTfvnLX2L16tUhp01OTsbjjz+ORYsW6R+YRegxfCj3SSIiIiLlzL6uJiLSA49tROQ0wTpFyD0mJicnB/2ex1Z9MClIJCiXy4X09HSzw5BNz95xTrd582ZcfPHF2LZtW8hpJ0yYgH/9618YOXKkAZFZB4cPJSIiIjIOhw8lIiIici6513u8LjQH72gSEcmg5CSlVYK0vb0df/jDHzBt2rSQCcHIyEj84Q9/wKZNm5gQ9EOPiwxeuBARERERERGR1fB+BonC5XLxYTITsKcg6aOyEoiPNzsKMlDSkSNAXZ3/L8vLDY1FD4mHDyO5ulrWtC6XK+wyl5eX4/rrr8dnmzcjx/uZB0AWgE0AWn2mHTFiBB5//HFMnjw5rHXaGYcPJSIiIjIOb+4QkdPw2EZETqPF8KHd03IEOmMxKUj6KCkxOwIy2GXBviwrMyoM3ZyvdAYZ7/4LpgDAswG+mwPgA++/V6xYgTvvvBNxcXFhrc/u+AONiIiIiIiI9MLfnERExyg5JrrdbnR2duoYDfXFpCDpY/16oKjI7CjIQA899BDqAvQULC0tNTYYHTz55JOoqqqSPb2aMtfW1uLGG2/Ea6+/7vf7XADvA6gCkJWVhYceeggnn3yy4vU4EYcPJSIiIhIDr6GIiIjMxXMx6U1pUlDNd6Qek4Kkj5wcoKDA7CjIQHVpaaj1ePx/aYO2UJ+ejtrmZvkzKCzzZ599hiVLlmDnzp0hpz150SLc+uijGDBggKJ1OBmHDyUiIiIyDm82EhERETmX0uFDA4mKitIiHOqDdzSJSBN2H/tZrxsbkiThwQcfxKxZs0ImBJMSEwEA9957LxOCCrGnIBEREZEYeA1FRHbEYxtZCdsriaSjoyPgd5GRkQZG4hxMChIRyaDHBVNbWxt+8pOf4Morr0RLS0vQaRcsWIBXX31Vt1ichj0FiYiIiPTD61Uichoe94jIaYJ1EFFyTGxvbw/4HXsK6oN3NImITNDQ0IAzzzwTDz30UNDpoqOjsWrVKrz22mvIzs42KDr7YU9BIiIiIjHwGoqIiIjI3rS63mNSUB98pyARkQxa3rxYv349rr32Wnz33XdBpxs1ahSefvppjBkzRrN1OxWTgkREREREREThkyQJnZ2dwV8j09kJJCZ2/TdILyDN5tNqGWbFrUW5/SwvIirK7/CLbrc7aO8sucs3rZ70WI7ey7ViuwyxDJfLFXB4T0mSArexPssMNkSox+OR3VZdLhfcbjd4ty40JgWJiAwiSRJuv/12/OIXvwg57QUXXIAHH3wQCQkJBkRmf30TeBw+lIiIiEg/wa61+GAVEdmRnY9tkiShccwY1Dc1oeGHH0K+/gQA0NIC/OUvQF0d8P338lemdj6tlmFW3FqU28/yxmZkoMPj6fd1fHw8vg9nPWbXkx7L0Xu5VmyXIZaRmJiI6dOn+53t4MGDqKmpkbXMQMsAgIqKCsXH1+j2dsRfcAES2toQJ0m2Pj6rxaQgEZEM4Z5AJEnCz3/+c9xxxx1Bp4uMjMSqVatw9dVX86SlIfYUJCIiIiIiIr3Y9YHetrY2VNTXo/nnP++6kU9EZCA1995aOjrQcsopONLQgJjycuTm5gbtjehETAqSPiorgfh4s6MgAyUePgxXfb3/L8vLDY1FDwmHDiG5ulr+DD5l/vbbb3Hbbbfh7XfeQT4AD4AsAJsAtPrMkpaWhpdeegmzZs3SJGY6Ro8EHnsKEhEREfnHnoJE5DQzZszAJ5980u/z/Px8E6LRRnNzM/bs2YP2jg7A4wGU/AaOjARGjer6rxJq59NqGWbFrUW5/SwvLTIS8HPeDft+htn1pMdy9F6uFdtliGUkJCQgLi7O72wREUHSTn2WOXDgQPXx+V85kJICuFxobm5GeXk5Bg8ejJiYGG3XY2FMCpI+SkrMjoAM9pNgX5aVGRWGbs5ROoNPmUcAWONnkjkAPvD+Oy8vD6+88gpGjx6tJjwKQY/hQ3lDi4iIiIiIiICuh3yHDx/ea0hGl8uF8ePHmxiVepIkYffu3ejo6OhKKhUWdiUGiYhE53IBWVldyUEA7e3t2LNnD4YNG8Z7eV5MCpI+1q8HiorMjoIM9Pe//x31AXoKlpaWGhuMDp599lns3r1b1rR1dXU4evQonnnmGXT6efF2LoD3AVR5/3/p0qVYtWoVUlNTNYuXeuPwoURERERi4DUUEdmRy+XCueeei7fffhs//PADEhMTUVxcjKFRUWaHpkp9fX1XQhDourEeGYnIyEgkp6YiPj4ekZGRwY/nra3Atm1dyUQl20DtfFotw6y4tSi3n+UdTE5Gh58eW/Hx8UhMTAx7+abVkx7L0Xu5VmyXIZZRV1eHxsZGv7Olp6cH7i3YZ5n79u0LuPrMzEzZoUqShLa2NjTU1qK2shJtPt+1t7ejvr4+vHZvI0wKkj5ycoCCArOjIAPVpaXhaKDu6DZoCw0DB6L26NGg09TV1eG9997Dp59+is7OztALdbux9p//xIUXXqhRlBQIhw8lIiIiMg4Tf0TkRBERETjxxBN7f2jR16nU1NT0+v9oAHm5uYgIMFRgP90JRY+np7eOrvNptQyz4tai3H6W53a7Ifm5d+HxeIIP7yhz+abVkx7L0Xu5VmyXIZbh8XgC3huLiIgI3Mb6LDPY/TWl7TQyMhJxHg9SKyuxOyoKLe3tPd/V1NQwKejFpCARkQyBbmzU19fju+++w549e/DVV1+h3edkE8r999+Pk5gQNASHDyUiIiISA6+hiIjEJkkSGhoaen2WBiCCw4cSkUVEAEhLSUHVoUM9nzU0NECSJF6LgklBIiJZfE8YkiTh0KFDeP311/Hdd99B8jNEaDAF+fnArl046aSTtA6TAmBPQSIiIiLj8GYLEZF1dXZ29rvPIbN/IFkEz9PkBHExMb3+X5IkJgW9mBQkIk0oTYxZTXNzMzZv3owvv/wSFRUVaGtrCz1TH2PGjMGvfvUrnD15MjBihA5RUiB8pyARERGRGHgNRUQkNn/3d/hILBFZjb+H+Ts7O/mQP5gUJCIKqrOzE2vWrMH111+Puro6VcsYNmwYbrnlFpx33nnweDyWfaeAlXH4UCIiIiIiIiIiIofgfbuAmBQkIgrgo48+wsqVK7Fp0yZV8w8ePBi/+c1vcOmllyIyMlLj6EgJDh9KREREZJxg1158sIqIiIjI3ni9JzYmBYmI+vj000/x5z//GU888YSq+RMSEnDbbbfh8ssvR3R0tMbRkRocPpSIiIiIiIiIiIicjklBIiKvXbt24Wc/+xmee+45xfMmJydj+PDhKCgowIgRI3DNNdfoECGppcfwoewpSEREROQfewoSERERkRxxcXFobGzs93lycrIJ0TgDk4Kkj8pKID7e7CjIQElHjsDT0OD/S8HfoSdJEh599FHcdtttaG5pQb7Pdx4AWQA2AWj1M+/AgQMxY8YMTJo0iUkigbGnIBEREZEYeA1FRERERN1iYmL6JQVdLhdiYmJMisj+mBQkfZSUmB0BGezyYF+WlRkVhiouAEu9f4HMAfABAI/HgylTpmDMmDFIS0tDQkJCv2mzs7P1CZRUY1KQiIiIyDi8TiIiIiIiOWJiYpCSkoKjR4+io6MDERERSElJgcfjMTs022JSkPSxfj1QVGR2FGSgBx980G9XbwAoLS01NhiZ/vOf/+Dmm29GTW1twGlyAbwPoArAiBEjUFJSgrS0tKDLnT9/vqZxUvj0GD6UN7uIiIiIlOM1FBERkfjWrFmD5cuXAwCWLl2KNWvWGLZu32sFSZIMWy+ZJy4uDrGxsZAkiSOxGYBJQdJHTg5QUGB2FGSgurQ0NERH+/9SsLZQU1ODlStX4rHHHpM9z5UrVqApIyPkdEOHDkVhYWE44ZEO9Lj5xIsUIiIiIiIiIhLJvHnz8M477wAAbigtxfU33WRyRETyuFwuPjxmEN7RJCJNLFq0yO/no0ePNjiS4N5++22MHz9eVkJw0qRJePCBBwAAY8aMCTrt+PHjsWjRIpx//vns3u4QTAoSERER+Rfshg5v9hAREZHR5s2b15N0evvtt80OxxaC9eLk9Z7Y2FOQiDRRWFiI2NhYNDU19fo8VDLNKJ2dnfjNb36DP/zhDyGHHoiNjcXtt9+Oq6++Gp49e0Iue+bMmVi4cKFWoZIOOHwoEREREREREREROR27ORCRJmJjY3HppZciwzvEZnx8PE4++WQhegru378fZ599Nn7/+9+HTAhOnToVmzdvxsqVK3v1+OPTztamRx2x3omIiIj847UzERGRtS1btgySJEGSJEPfJ0hE+mNPQSLSTGZmJq666io0NzcjOjpaiB/8L7/8Mi699FIcPnw46HQejwe/+tWvcPPNNyMyMrLf9yKUhdRjT0EiIiIiIiIiIiJyOiYFiUhzMTExZoeAyspKlJaWYt26dSGn/f/t3Xl8FEX+//F35YZcnComQBANqFxyiuABi8KiIKKisKDgsnjyA8XV1ZVzPdCvoq6gIrogoKCCouCBiuKBIIiioCLIoQjIaSThCCGp3x8zDJOQY5LMTM8Mr+fjMQ+qq6uqPw0k6fSnq/qMM87QjBkz1K5duwodi+RQ6AvEvxHvFAQAACg/rp0BAAAA53BHE0BE2bFjh8aOHavGjRv7lBC86aab9M0335SZECzt5gXJodDH8qEAAADBw3USAAChq6xX60jStGnTZIyRMUYDBw4ss/0ff/yh+++/X61bt1b16tWVlJSkRo0aafDgwVqxYoWn3dExTTknFPz0008aPny4zjzzTCUlJSklJUXNmzfXPffdp91ZWSX2O3q8Tz75xFPXqVOnY3F4ffy1TOrGjRs1ZswYXXDBBUpLS1NCQoKqVq+u0y6/XL2uvlpPPfWUdu7cWWq8vl5LXXTRRZ72ixcvLr7NxRcf12b79u168MEH1bZtW51yyimKjo5WtWrVJEnNmjXztJ/1yis+n/ddd92ltLQ0paWl6bbbbiu17Y+bNunekSPVtm1bnXzyyYqLi1Pt2rXVrl07jRo1Stu2bfP5uCg/ZgoiMLZulRITnY4CJ5CCggJNmTJFEyZMUO7hw6opqaakaEl1JK2QdNirfVJSkmbOnKnLL7+80seOieFbaagLxPKhJIMBAADKj4QhAACR5eOPP1bfvn21Y8eOQvXr1q3TunXrNHXqVI0aNUqjR4+u0PjPPvushg8frtzc3EL13333nb777jtNmTJF773zjlqfd16Fz8EfcnNzNWLECE2ePFlHjhw5bv+mgwe1ads2vTl/vkaMGKE9e/YoOTk56HG++eabGjRokP74449i9/fv31933323JGnmrFnq+5//lDlmbm6u3n777UJjlNRu2G236fmpU5Wfn19o3+7du7V7924tX75cjz76qB555JEyk4uoGO5kIzC6dnU6ApxgoiTd6P4Up6OkJe5y48aN9dprr6lJkyY+j1/azQuSgqGPmYIAAADBw3USAAAnhmXLlumyyy7TgQMHJLmuAdq0aaOzzz5bhw8f1vLly7V+/XqNGTNGtWrVKvf406ZN08033yxJatSokVq3bq0qVapo7dq1WrJkiay12vPnn+p51VX68ccflZqaWqj/rbfeKkl64403PLPPevXqpbS0tOOOdeaZZ5Y7vqNycnJ0ySWXaOnSpZ66qlWrqkOHDqpbt67skSPaum6dVq5frz179igvL++4pFgwfPHFFxozZozy8vJUs2ZNXXDBBapVq5Z27typb775RpLUr18/3XPPPSooKND7H36oXXfcodpljPvRRx8pyz1jMyMjQ+3btz+uzf79+9W1a1ctWbLEU9ewYUO1atVK1atX1969e7VkyRJt27ZNBw8e1NChQ7Vv3z7de++9/jp9uHEnG4GxcKGUmel0FDgBLFmyRMOHD9eu3buL3Z8u6XNJ293bt99+u8aPH6+4uLhyHYekYHgjKQgAABAauIYCgMhSUFCgffv2Fa7MzZUOHJCysqT4eN8Hq2g/f40RwLhTUlIibsWhQ4cO6brrrvMkBBs0aKBXXnlFbdq0KdTu1Vdf1aBBgzRixIhyH+Omm25S7dq1NX36dHXr1q3Qvk8//VQ9evTQvn37tH37dj355JMaNWpUoTYTJ06UJK1Zs8aTFBw2bJguuuiicsdSmsGDB3sSgtHR0Ro1apRGjBihxKMr6eXmSqtXq+Dss/XJsmV68sknHbkmGj16tPLz8/Wf//xHd999t2JjYz37js7ETE9P14UXXqiPP/5YR44c0SsffKDbLrig1HFff/11T7l3797Ftrnllls8CcHMevU0ecoUXXTJJYXa5Ofn67nnntPtt9+u3NxcjRo1Sp06dSo2yYiK4042AiMtTcrIcDoKRLCCggLdf//9GjNmjE9roWc2bqwZL7yg8wKwlABJwdDH8qEAAAAAAPjfvn379OSTTxa/8+OPKzZoRfv5a4wAxD1s2DDPO9sixbQZM7R+/XpJrllxH3zwgRo2bHhcuz59+ig2NrbEZFFZPvzwQzVr1uy4+gsuuEAPjhun24YPlyTNmjXruKRgMHz44Yd6xevdezNnztS1115bbNuoqCh16tRJnTp1ClZ4hRw5ckT333+//v3vfx+3L94roT1gwAB97P7//NJ77+m2UpYQ3bdvnxYtWuTZLu7f+bPPPtP06dMlSQ1PO01LJk9WrfPPP65ddHS0br75ZlWpUkWDBg1Sfn6+xo0bp3fffdf3k0SZuKMJIOzs379fffr00ejRo8tMCCa5n8iZP39+QBKCEknBcMBMQQAAgNDANRQAAJHhhWnTPOXhw4cXmxA86oorrqhQImzIkCHFJgSPuu5vf1NMdLQk6aeffjp+1moQPPbYY57yNddcU2JCMBSceuqpnvcFlubKK69UlSpVJEnLVq/Whg0bSmy7YMECzyzDli1bqkGDBse1mTBhgqf82MMPq1YZCfKBAweqcePGkqSFCxdqz549ZcYM35EUBBBWvv/+e7Vv315z584ttV1SUpIeeeQRz7T0QCbuSAqGvkDcfGKmIAAAAAAAOBFl79+vr93voJOk/v37l9nHlzZFXX311aXuT05OVsP0dEmStVa//PJLuY9RGbm5uVq8eLFne+jQoUE9fnldddVVPt3HTElJUY8ePTzbL82eXWJb76VDr7zySkmF78MdOXJEH3zwgWfcy7p39ynWo0lka22h9xCi8riTDSBsLFmyRH/961+VnZ1daruWLVtq9uzZOuOMM6TNm/1y7NKSStHuJ5IQugKxfCgAAADKj+swAADC33c//6yCggJJrkTP0VldpWnXrl25j9O0adMy29RMTfWUgz1TcNWqVTp06JAk1xKqFTnHYGrVqpXPbfv3769XX31VkispOGrcuOPabNu2TcuWLZMkxcbGqmfPnse1+e6777R//35Pm2EjRkh79kg1a0ql3FNdsWKFp7xlyxaf40bZSAoCCHnWWj3zzDMaPny48vLySm07bNgwPfzww4XWwQ40ZgqGPmYKAgAABI8v7/wGAADha9cff3jK6enpPt13SXfP6CuPVK+EX0live7LlXXf0N927NjhKdetWzfk7xHWrl3b57bdunVTrVq1tHv3bq1bv14rVqxQmzZtCrWZN2+e57rvoosuUo0aNY4bZ9u2bZ7ynj17NOnZZ8sd9x9e/99QedzRBBDScnJy1L9/f916662l/mBPTEzU3Llz9cQTTwQkIVjajY1Q/4EPkoIAAAChgpmCAACEv5wDBzzlqlWr+tQnKSmp3McJ9esG79XMKnJ+wXb0PYG+iI2N1TVXXeXZnjlz5nFtils6tKg///yzHBEW78iRI5UeA8dwJxtAyPr+++919dVX68cffyy1Xf369fXWW2+V+uLhyjq6JEJxSAqGvkAsHxrqF6YAAAAAAARaSkqKhg0bVrgyN1f66SepUSOpPA9uV7Sfv8YIYNwpKSnliyXEJXklAg94JQhLc3QJyUiSnJzsKefk5AT9+KXdr/SH/n37emb2vfLKK5owYYLnNUrff/+9555tSkqKLr744mLHSExM9JSbNWumb5cvl1avlpo2rfjXOSqFO9kIjK1bJa8veKA8rLWaOnWqHn74YeUePqz6kqIl1ZG0QtJhr7bdu3fXtGnTyjX9vSJKeyKFpGDoY6YgAABAaODBKgCILFFRUapWrVrhytxcqWpVqVq18ifXKtLPX2M4GXeYqeX1b75161af+vz2228BisY5J598sqe8ZcsWHTlypFL3CWNiYjz3IH0Zyx+z8Epzbrt2Or1uXf28ZYt27NihDz74QN26dZMkz/sGJenSSy9VQkJCsWN4/x39/vvvAY0XvuFONgKja1enI0AYM5JucH+K6ihpibs8aNAgPffcc0FJyjFTMLxx8wkAAAAAAMA/mp1+uqKiolRQUKA///xTa9euVePGjUvts3z58iBFd7xA3Rdq0aKFEhISdOjQIR04cEBffvmlOnToUOHxUlJStHfvXkmu9+95J9SKOnz4sNatW1fhY/nqb926aeyUKZKkl156Sd26dZO1VnPnzvW06d27d4n9W7Roofj4eOXm5mrnzp36ecMGnR7wqFEa7mQjMBYulDIznY4CYea3337TkCFD9EMxy4WmS/pc0nZJ8fHxeuqppzR48OCgJXvy8/NL3EdSMPQFYvlQZgoCAACUHw9rAQAQ/lKSknROixZa+fXXklzJov/85z+l9inunXTB4j2LLS8vz2/jxsfHq1OnTnr33XclSRMnTqxUUjAjI8OTFFy1apW6ljLx5q233tKhQ4cqfCxf9f/rXz1JwXnz5unAgQNavny5Z4boqaeeqvbt25fYv0qVKurcubPn7+jpyZM1YcCAgMeNknEnG4GRliZlZDgdBcLI4sWLddVVV2nPnj2ltjs1PV2vzpunVq1aBSkyF5KC4S0QN5+4oQUAAFA8a22J+7iGAgDAWaX9nC6PG66/3pMUfOKJJ3TDDTeoQYMGxbZ96623tGjRIr8ctyJq1qzpKfu63Kmv7rjjDk/Ca/bs2br88st17bXXVmisdu3a6Wv33+m0adNKTAru27dP//rXvyoWcDmdXreuzm3XTsu+/FI5OTmaN2+ePv74Y8/+3r17l3l9d/fdd3v+jp56+ml1z8xUl6ZNfTr+77//rlNOOaXiJ4DjMM0BgKOstXrqqafUpUuXMhOCkrRgwYKgJwQlkoLhjncKAgAAAAAA+M+g667T6ae7FoLMyclRly5dtHLlyuPazZkzR/369VO8g+9bbNKkSaF4/JUYlaQuXbro6quv9mz3799f48aN04EDB45rW1BQoI8//lhXXHFFse8D7Nevn6c8e/ZsTZw48bg2a9euVefOnbVhw4ag/Z3279vXU37hhRc0Z84cz3ZpS4cedeGFF+r666+X5HpX4qW3366HHnlEOTk5xbY/dOiQ5s2bp8svv1w9e/asZPQoijvZAByzf/9+3XrrrXrxxRdLbVe1alU9dN990r33KjU1NUjRFUZSMLRUq1ZN3pdOxhi1aNFC33zzTbHtWT4UAAAgNDBTEACA4Jj+0kt69/33j6uPiopSdHT0cfXjxo0rVwKmSpUqmjZtmi6++GIdPHhQGzduVJs2bdSuXTudddZZOnz4sJYvX+55793EiRN12223SQr+9UDv3r117733ylqrt99+W82aNdN5552n5ORkT5trr71WrVu3rtD4zz//vH755RctX75c+fn5Gj16tB555BF16NBBdevWlT1yRFt/+klfrV/vmRRRXGKyY8eOuvTSS/X2229LkoYOHapJEyfq3DPOkKlRQz/9/LOWLVumgoICDRw4UJs2bdInn3xSoZjL45qrrtLt//yn8vLy9NFHH3nqmzRpokaNGhVqGxsbW+wYkydP1vbt2/X+++/rcF6e7h01SvePH6927dqpXr16io+PV1ZWljZs2KA1a9YoNzdXkhyZHBLpuJMNwBGffvqpbrzxRq1du7bUdvXr19ebb76p5qmp0r33Bim64xUUFJS4j+RQ8F155ZV654cftHnzZtWsWdOzXruvSUEAAAAAAIBItmvXLu3atcvn9kffZVceHTp00FtvvaV+/fpp165dstZq2bJlWrZsmadNVFSURo0apSFDhniSgikpKeU+VmVkZmbqX//6lx566CFJ0po1a7RmzZpCbZo0aVLhpGBKSooWL16sYcOG6X//+5/y8/O1f/9+vV9MUlZyveOwuMSsJE2fPl1du3bVV199JUla+9NPWvvTT4Xa/P3vf9ekSZNKfeegP9WqVUtdu3bVggULCtV7z5A8qmrVqsWOER8fr3feeUdjR47UY48/rgOHDunAgQOFliItKjY2Vueee27lgsdxSAoCCKo9e/bozjvv1LRp08pse+GFF+q1115T7dq1pc2bAx5baY4cOSKVkFgi4RR8ycnJuuaaawrV/VTkAskbMwUBAABCA9fOAABEli5dumjt2rWaOHGi5s2bp40bNyovL09paWm64IILdOONN6pNmzbasWOHp081B1YCe/DBB9WxY0dNnTpVK1eu1I4dO4pd4rOiqlSpoueee0533HGHpk+frkWLFmnz5s3au3ev4uLiVKdGDTVr1UoXd+2qa665ptAsRW81atTQF198oeeff16zZs3S999/r5zsbNWpU0dt2rbVkCFDdPHFF/stbl8NGDCgUFIwOjpaf//731WlShXl5uYqKipKVatWVWJiYoljREdHa9zo0RraqZOmf/21Ply8WD/88IN2796tvLw8paSkqH79+mratKk6deqk7t27u+4Lw69ICgIImtdee0233HKLdu/eXWbboUOH6rHHHitxynmwFRQUSCU8wYPQUNoNpkDcfOKGFgAAAAAACCWLFy+WcnOl1au146STlF/MK28SExPLfD3PwIEDNXDgQJ+PW6NGDY0aNUqjRo0qsc13333nKZ/ZuHGJ7cr7vr/FkydLTZtKPrxfr3v37urevXu5xi+vxo0b68EHHyxc6f438TXO2NhY3Xzzzbr55ptL7bt48eIyx1r8wQc+HbMsffr0UZ8+fYrdZ60t132y2tWra8Tw4Rpx992VjgvlR1IQQMBlZ2dr6NChZb47UJLi4uL0zDPP6IYbbghCZL7Lz88nKRjiSpu5F4gEHjMFAQAAyo8HqwAAODG98sornnIb3hMXUbi+Cy8kBQEE1NKlS9W/f39t3LixzLb169fX7NmzQ3Kt6Pz8fKdDQBnKM1PQHxcrXPAAAAAAAACU7csvv9T06dM92/2uvVY6fNjBiIATF0lBBMbWrVIp6wcj8h0+fFgTJ07UpEmTlF9QoPqSoiXVkbRCUtEf+3379tWkSZNUvXr1oMfqC5KCoS/YMwVJCgIAAJQf11AAAESOX3/9VSNGjNCwYcPUoUOH437O5+fna9asWbrtttuUl5cnSerZs6caN2rkWhITQNCRFERgdO3qdARwWJykO9yfojpKWuIun3HGGXr22WfVuXPnoMVWESQFQx83mAAAAAAAAIKnoKBAc+bM0Zw5c3TSSSepVatWqlOnjqKjo7Vjxw4tXbpUu3bt8rSvU6eOnn32WQcjBkBSEIGxcKGUmel0FAiSXbt2af78+Zo1a5bW//xzie3SJX0uabtcs7ruuece3XfffUpISAhWqBVWUFDgdAgoQ3mSgiQQAQAAAsdaW+I+rsMAAIhMO3fu1Lvvvlvi/tatW2vOnDmqU6eOlJsbxMgAeCMpiMBIS5MyMpyOAgH2888/a+TIkZozZ46OHDnic7+0unU185VX1L59+wBGhxNNacuHlnZjqrxq1arlt7EAAAAAAADCVUZGhr788kvNnz9fy5Yt02+//abdu3crKytLSUlJOvnkk9W+fXv17t1bPXr0cDpcACIpCKACsrOz9cADD+jxxx/X4Qq8FPidd95RUpMmAYgscDp16qR5q1YdV3/WWWcFPxgUK9BPnffo0UO1atVSWl6eNHJkQI8FAAAQqZgpCABAZGnbtq3atm3rdBgAfFTytAoAKMJaq5kzZ6pRo0Z6+OGHy5UQrFmzpp6eNEmSlJSUFKgQA6ZBgwaKiTn+OYpmzZo5EA2KU56ZghW5GdW4cWPVq1dP0dHR5e4LAAAAAAAAAE4jKQjAJ/v27VPv3r01YMAAbd++3ed+MTEx6t+/v9asWaPu3bsHMMLASklJ0bXXXutJaMbFxalr165q1KiRw5HhKJ46BwAACH1cswEAAADOYflQAGV67733NGzYMK1bt86n9sYYdenSRVdffbWuuOKKY+9g27w5cEEGQcOGDXXHHXcoKytLqamppc5MQ/AF+gYTN7AAAAAAAEC4K7qaEoATC0lBACX6448/dOONN+q1117zqf1pp52mAQMGqG/fvhE7g84Yo+rVqzsdBopRnuVDAQAA4AwetAIAAACcQ1IQQLG++OIL9evXT7/88kuZbU8++WSNHz9e1113HbPn4BhmCgIAAAAAAABAyUgKIjC2bpUSE52OAhXw22+/6dFHH9W8N9+UJNWXFC2pjqQVkg57tY2NjdXw4cN13333KSUlJfjBAl6YKQgAABD6eNAKAAAAcA5JQQRG165OR4AKSpf0hPtTVEdJS9zl008/XW+88YaaNGkSpMiA0jFTEAAAAAAAAABKRlIQgbFwoZSZ6XQU8EFubq6mTZumSZMmaV92drFt0iV9Lmm7e/u6667TE088wbv1EFKYKQgAABD6eNAKAAAAcA5JQQRGWpqUkeF0FCjDN998o/79++uHH37wqX3Gaafp5ZdfVrt27QIcGVB+zBQEAAAIDTyQBQAAAIQmkoLACchaq6eeekp33nmn8vLyfO43f/58VT3rrABGBlRcaUk7bkwBAACEBh60AgAAAJxT8lprACJSdna2+vbtq2HDhvmUEDzrrLP0vxdekCRVrVo10OEBIYsbWAAAAJXHNRUAAADgHJKCwAnCWquXX35ZZ555pl555ZUy29epU0dTpkzRt99+q86dOwchQqBymCkIAAAAAAAAACVj+VAgwllr9c4772js2LFasWJFme2Tk5N19913a/jw4UpMTAxChEB44Kl2AACAyuOaCgAAAHAOSUEgQllrNX/+fI0bN04rV670qc9VV12lSZMm6aSTTgpwdID/MVMQAAAgNHDtBQAAAIQmkoJAhNmwYYOmTZumN998U6tXr/apT0JCgiZNmqRBgwbx5C7CVkxMyT/S/DHrla8NAACAyuOaCgAAAHAOSUEgQvz6668aPny43njjjXL1a9CggV5//XW1aNEiMIEBQZKQkKCTTjpJO3fuLFQfExOjzMxMh6ICAAAAAAAAgNBAUhCBsXWrxPvogsJaq7lz52rs2LHKzslR/SL7oyXVkbRC0mGv+piYGA0dOlSjR49Wampq0OIFAqljx456/fXXC9V16NCh1FmEvuKpdgAAgMrjmgoAAABwDklBBEbXrk5HcMIwkq5yf0rTUdISd/myyy7T//3f/6lx48YBjQ0ItqZNm6pKlSpavXq18vLy1KhRIzVr1szpsAAAAAAAAByTnZ2tjz76SJ999plWr16tvXv3avfu3YqLi1P16tWVmZmpNm3aqGfPnmrfvn2xY4wZM0Zjx44tdl90dLRSU1OVmpqq6tWrq2nTpmrdurU6dOigc845p1yxXnTRRfrkk0/KfY4ff/yxLrroonL3A040JAURGAsXSizXFzDr16/XM888o3nz5qnA2lLbpkv6XNJ2ST179tTIkSPVunXrYIQJOOL000/X6aef7vdxeaodAACg8rimAgAgeA4ePKgpU6Zo8uTJysrKOm7/4cOHlZOToy1btmjRokUaP368MjMzNWbMGF177bU+/9zOz8/X3r17tXfvXm3atElff/21XnzxRUlSixYtdNNNN2nw4MGKjo725+kBqACSggiMtDQpI8PpKCLO5s2bNXr0aM2YMUO2jGRgUW8tWKCzL700QJEBAAAAAAAACBW/bd2qAX//u3788cdC9enp6WrRooVq166t/Px8/f777/r222+1Y8cOSdK6devUr18/bdmyRXfddVexY59au7auuPJKySvJl52draysLG3evFlr1qxRQUGBJGnVqlW66aabNG3aNM2YMaNcD3K3adNGbdu2LblBfr60Z49Us6bS0tJ8Hhc4kZEUBEJYfn6+Vq9erXnz5mnRokX6/PPPfe7bpEkT3XDDDerVooXUubPOPvvswAUKnAB4qh0AAKDyuKYCACDwNm/bpu6DB2vnrl2SXD9/e/XqpaFDh6pFixaqXr16ofbWWn311Vd66qmn9NJLL6mgoEAHDhwocfwz6tbVxCeekOLji92fnZ2tBQsWaMKECfrqq68kScuWLVPbtm21bNkyZdav79N5dO/eXWPGjCm5QW6utHq11LRpibEAKCzK6QAAHG/RokXq0aOHqlWrpnPOOUdjx471OSEYGxurhx56SKtWrdLtt9+uBg0aBDhaAAAAAAAAAKHg8OHDuvpf//IkBBMSEvT8889r4sSJatSoUbF9jDFq06aNpk+frm+//VZNmjSpVAzJycnq27evli9frgcffNCzbOgff/yhyy67TH/++WelxgdQccwUBELIr7/+qttvv12vv/56hfo3b95c06dPV7NmzfwcGQAAAABUHjMFAQAIrEcee0xfeS0Z+vjjj6tbt24+92/SpImWLVumVatWVToWY4zuuecexcTEeJYiXb9+vZ6cOFGjevas9PgAyo+ZgkAI+P3333XfffepcePGFUoI1q5dW1OnTtVXX31FQhAAAAAAAAA4AR08eFD/ffppz3b37t3Vs0jyLSam7HlCiYmJ6tChg9/iuvPOOwuN9+SkScopZXlSAIFDUhBwUG5urkaNGqWMjAw98MADOnjwYLn6Z2Zmavr06dq8ebMGDhzo0w91AOXHE+0AAAC+s9aWuI/rKgAAAmfOnDna5V42VJKGDBlyXJuqVasGMyRJrp//d9xxh2d77969+uDLL4MeBwCWDwUc88MPP6hPnz76/vvvy923bt26Gj16tK6//noSgUAQHF37HgAAAAAAIFR99NFHnnK9unXVtm3bQg/rVK1a1bF7HD169FBCQoIOHTokSfps1Spd4UgkwImNbAICY+tWKTHR6ShC1nvvvacRI0Zo/4EDqu+ui5ZUR9IKSYeLtI+Li1ObNm3Uu3dvnXfeeWrTpg1JCiCISL4DAAD4BzMFASCyHDlyRL/99lvhytxcads2KTlZio/3fbCK9vPXGAGMOz09PSj3Fj777DNPuV3btqpZs6YOHjyo/Px8xcfHOzJL8KjY2Fidc845Wrp0qSRp2erVjsUCnMi4y4nA6NrV6QhCWjf3pzgdJS1xl8855xyNHj1a3bp1U3xFL4YAVBpJQQAAAAAAjvfbb7+pQYMGTocR8jZt2qSMjIyAH+eXX37xlM8+80zFxcUpLi4u4Mf1VaNGjTxJwR1795bZ/p133tHu3btLbpCfL+3Zo3vGj1faaaf5K0wgonGXE4GxcKGUmel0FCGjoKBAL7/8sh5++GFl5+QU2yZd0ueStkuqXr26HnjgAQ0ZMoQZgUAI4OsQAADAP5gpCABAYOzbt09HjhzxbFerVs25YEqQmprqKf+RnV1m+xUrVmjFihVltht8550kBQEfkRREYKSlSUF4+iUcrF27VjfccIPnKZiy3PPvf6vPXXcpJSUlwJEB8BUzBQEAAAAAQCjLLpJkSwrBVzslJSV5ytn79zsYCXDiinI6ACCSzZ8/X23atPEpIXhxly6SpMGDB5MQBEIMSUEAAAD/YKYgAACBkZycXGg7JwSTbt6JyxSvBGFJRo8eLWttyZ9Dh2RXrFCL5s0DGTYQUUgKAgFgrdX48eN1+eWXK6eE5UKPMsZo1KhRmjx5cpCiA1BeLB8KAAAAAABCWUpKSqGHmrOyspwLpgR//vmnp1yDSRGAI0gKAn62evVq9ejRQ/fcc4+staW2bd68uZYtW6axY8cqKoovRyBUMVMQAADAd6X9HsRMQQAAAqd+/fqe8g9r1zoYSfHWesV0Ss2aDkYCnLi4ywn4ydq1azVmzBi9+uqrZSYDq1SporFjx2r48OGKjY0NUoQAKoqZggAAAP5BUhAAIkt6ero2bdpUuDI3V/rpJ6lRIyk+3vfBKtrPX2MEMO709PTyxVJBHTt21IYNGyRJXy5fHpRj+urw4cNatWqVZ/vcJk2cCwY4gZEUBCpp48aNGjt2rGbOnKmCgoIy219yySV69tln1aBBgyBEB8AfmCkIAAAAAMDxYmJilJGRUbgyN1fKzpYyMsqfXKtIP3+N4WTcftK5c2e9+OKLkqRffv1VX3zxhc477zxHYzrqrbfeUm5urmf7gnPOcTAa4MTFeoVABVhrtWrVKg0ZMkSNGjXS9OnTfUoI3nfffXr33XdJCAJhhqQgAACAfzBTEACAwLn66qtVq1Ytz/aECRMcjOYYa60ef/xxz3bt2rX1l7ZtHYwIOHFxlxOBsXWrlJjodBR+t2vXLr322muaO3euNmzcKElKc++LllRH0gpJh4v0S0hI0LRp03TNNdcEL1gAfkNSEAAAAAAAhLoqVaro/91yi0aNGydJmjt3rubOnasrr7yyXOPs379f3377rd9mGT766KP64osvPNu3Dx2qqgkJfhkbQPlwlxOB0bWr0xEERG1Jt7g/JekoaYnXdsuWLfX888/rHKbEA2GLdwoCAAD4BzMFAQAIrLtGjNC8V1/V12vXSpIGDBiguLg49ejRw6f+a9asUd++fXXllVdWOilordXDDz+s++67z1N35plnaugtt0hF30UJIChICiIwFi6UMjOdjsIvli9frn//+99a//PPpbZLl/S5pO3u7SZNmmjcuHHq1asXv/gCYY6kIAAAAAAACAfx8fF67aGH1P7GG7Vz504dPHhQvXr10t/+9jfdc889OvPMM4/rY63VV199pYkTJ2rmzJkqKCgo9+xCbzk5OVqwYIEmTJigFStWeOpr1aqlBQsWKCkpqcJjA6gckoIIjLQ018t1w9ju3bt11113aerUqeXql3HaaXrggQfUp08fRUXx2k4gErB8KAAAAAAACBenpafry08/VY+rrtKaNWtUUFCgGTNmaMaMGcrIyFCzZs1Uq1Yt5efn6/fff9eqVau0Y8eOQmMkJyeXOP76LVt02/DhktdD1Dk5OcrKytLmzZu1Zs0a5efnF+rToUMHzZgxQw0aNJByc/16vgB8x11OoBiLFy/WNddco507d/rcp256uvTbb1q4cKFiTj89gNEBCDZmCgIAAPjOWut0CAAAnPAyMjK0dOlSPf7445owYYKysrIkSZs3b9bmzZtL7Ne8eXONGTNGvXr1KrHNtl27NOnZZ32Ko2XLlrr55pt1ww03MIECCAEkBQEveXl5Gj9+vMaOHXvc0yzFiYqK0oUXXqj+/ftrwPnnS5mZzCgCIhBf1wAAAAAAINwkJSVp5MiR+n//7//pnXfe0QcffKCVK1dq586d2rt3r+Li4lSjRg01btxY7dq1U69evdSyZctyHyc6OlopKSlKSUlRzZo11bRpU7Vq1UoXXHCBmjdvHoAzA1BR3OUE3H7++WfdcMMN+uyzz8psm5qaqn/961+67rrrdOqpp7oqS3nCBkB4IykIAAAAAADCVWpqqvr27au+fftWeIwxY8ZozJgxrqU/V6+WmjaV4uP9F6Tb4sWL/T4mgGO4y4kTnrVW48eP15gxY3T48OEy2/fr10+PPfaYTjnllCBEByAUsHwoAAAAAAAAgHBHUhAntKysLP3jH//QnDlzymx7xhln6Omnn1aXLl2CEBmAUMJMQQAAAAAAAADhjrucOGH98MMP6tWrl9avX19m21tvvVWPPvqoEhISghAZgFDDTEEAAAAAAAAA4Y6kIE5IX3zxhbp166bs7OxS21WvXl3//e9/1b9//yBFBiAUNW7c2OkQAAAAAAAAAKBSSAoiMLZulRITnY6iWGvXrtVNffqoRna2akiKllRH0gpJ3m8UbN++vWbPnq169eo5EieA0HDaaacpMUS/nwEAAAAAAACAr0gKIjC6dnU6ghI1lvRdMfUdJS2RVKVKFU2cOFEDBw5UVFRUcIMDEBJiYmJUUFCghg0bqnfv3k6HAwAAAAAAAACVRlIQgbFwoZSZ6XQUHtZavf/++7rvvvu0a/fuQvvSJX0uabukzMxMzZ49W+ecc44TYQIIAaeccopuuOEGWWsVFxfndDgAAAAAAAAA4BckBREYaWlSRobTUUiSli5dqjvuuEPLli0rtV2nv/xFE15/XSkpKUGKDEAoMsYoNjbW6TAAAAAAAAAAwK9YGxERKy8vTyNHjlTHjh3LTAhK0jPPPENCEICMMU6HAAAAENastU6HAAAAAKAYzBRERFq/fr369++v5cuXl9m2Xdu20vLlzAwCIEmqX7++0yEAAAAAAAAAgN8xUxARxVqr559/Xuecc45PCcGOHTtqypQpQYgMQKhp3bp1sfVt27YNciQAAAAAAAAAEHgkBRExdu3apSuuuEL/+Mc/tH///lLbRkVF6fbbb9eHH37IkqHACapjx46qVq1aobrzzz//uDoAAAAAAAAAYYTl7EvE8qGICK+//rpuvvlm7dy5s8y2Xbp00cMPP6yWLVsGITIAoSo1NVWDBw/W2rVrlZWVpQYNGqhBgwZOhwUAAAAAgGOMMcfVcWsdQLgpKCYpWNz3txMRSUGEtYMHD+qWW27RtGnTymxbo0YNPffcc7ryyisDHxiAsJCYmKhWrVo5HQYAAEBEsTyZDQBhKyrq+IXlDkuKDX4oAFBheXl5x9UV9/3tRERSEIGxdauUmBjQQ6xcuVIjR47UDz/+qPruumhJdSStkOuC5aguXbpo2rRpSktLC2hMAAAAAAAAQLgyxighIUGHDh3y1O2TFNi7fADgX/tycgptJyQkMFPQjaQgAqNr14AfopWkd0rY11HSEknx8fF66KGHNGzYMJ4EAAAAAAAAAMqQnJx8XFIw9dAhVY2Pdy4oAPDRAR2fFExJSXEmmBBEUhCBsXChlJnp92GXLVumoUOHatfu3cXuT5f0uaTtkpo2baqXXnpJTZs29XscAAAAAAAAQCRKSUnRrl27XBvWqkDSlm3blHLggFJSUhQbG1v6w/f5+cf+PHLE9wNXtJ+/xnAqbn+cdyDHC8T4/ooxUOcaSv8m4fr1FMwxJRUUFCgvL0/79u7VPve2vL5PJScn++1Y4Y6kIAIjLU3KyPDbcLt379bo0aP19NNP+9R+yE03afgTTyieJ5gAAAAAAAAAn8XFxSk5OVnZ2dmuG/cHDqigShVlZWUpKyur7AEKClx/btpU6KZ8wPr5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8Ecs7jxvd5xnZycrLi4OP8fK0yxniJCWk5Oju655x6lp6f7lBCsc8opkqS7776bhCAAAAAAAABQAaeeeqqSkpJcN9Z//fXY7B4ACGUFBa7vWe5ZiElJSTr11FMdDiq0kBRESLLWaubMmWrUqJHGjx+v3NzcMvv06NFD8+fPD0J0AAAAAAAAQOSKiopSWlqakmNjXYnBo7NvfJGXJ/34o+vP8qhoP3+N4VTc/jjvQI4XiPH9FWOgzjWU/k3C9espmGN6y8+X9u+X5JohmJaWVvpyxycg/jYQclauXKmOHTtqwIAB2rZtW5ntmzdvrg8//FBvvfWWatWqFYQIAQAAAAAAgMgWFRWl9MRENbzzTtVOSFBCQoLTIQFAqRKio3XSK6+oYXKy0tPTSQgWg3cKImTs2rVL9957r1544QVZrzV/SzNkyBD997//ZalQAAAAAAAAIADidu5UrYQE1crIkLVWBQUFpd+7+/VX6dZbpVWrpHr1fD9QRfv5awyn4vbHeQdyvECM768YA3WuofRvEq5fT8EcU5IxRlFRUTK//CK9/bY0caLfxo40JAUREj744AP169dPu3fv9ql9vXr1NGXKFF1yySUBjgwAAAAAUB61a9fWxo0bnQ4DABAAxhhFR0eX3igqSsrOdv0ZU47bzxXt568xnIrbH+cdyPECMb6/YgzUuYbSv0m4fj0Fc0yUC3Mn4aitW7fqpptuUteuXX1KCJ500kl64IEHtGbNGhKCAAAAABCCzj333GLrmzZtGuRIAAAAAHgjFRsgxpg4SddI6ivpbEknS/pD0iZJr0uaZq31bVpcGB3bY+tWKTGxxN3WWs2aNUv333+/Dhw8qHqSoiXVkbRC0uEi7WNiYjR8+HCNHDlSKSkpgYsbAAAAAFAp1apVU8uWLbVh0SJPXUJCgtq3b+9gVAAAAABICgaAMaaxpFmSWhTZdYr7017SP40xg6y170TKsQvp2rXU3UZSP/enqI6Slnhtd+vWTY8//rgaN27sv/gAAAAAAAFz2WWX6cfoaOnJJ9WmTRtlXnKJateu7XRYAAAAwAmNpKCfGWPSJS2SdKq7ykr6VNIGSbUldZFURdJJkuYZY7pZaz8K92MfZ+FCKTOzUNV3332nZ555Ru+9956KexVxuqTPJW13bzds2FBPPPGELr30UhljAhImAAAAAMD/jDE666yzJEkdOnSQSAgCAAAAjiMp6H8v61hS7hdJl1trvz260xhTS9JsSX+RFCvpNWNMQ2ttVpgfu7C0NCkjQ5K0fPlyjR49Wu+9955PXfMl3XHHHXrwwQcVHx/v99AAAAAAAAAAAABONFFOBxBJjDHdJZ3v3jwsqYd3Uk6S3O/yu1zSRndVDUl3hfOxS1JQUKDRo0fr3HPP9TkhKEnPTZ6sxx57jIQgAAAAAAAAAACAn5AU9K9bvcovWmtXF9fIWrtf0iivqhuNMZWdtenksY+zfft2XXzxxRo3bpysLW6x0MISEhJ037//LUm65JJL/B0OAAAAAAAAAADACY2koJ8YY5LkWpbzqKlldJkrKcddriHpgnA8dkmuuOIKffSRb68rbNmypVauXKnBgwf7OwwAAAAAAAAAAACIpKA/nSfp6HqX+yWtKK2xtfaQpKVeVZ3D9NjFysnJKbPN2WefrRdffFFffvml5wX0AAAAAAAAAAAA8D+Sgv5zpld5tbX2iA99vi6hfzgdu9zOPfdczZ8/X6tXr9Z1112nmBi/r14KAAAAAAAAAAAAL2Rj/KeRV/kXH/v86lVuHKbH9lliYqL+97//6eqrr5YxJhiHBAAAAAAAAAAAgEgK+lNNr/IOH/v87lWuEabHPiqutJ3NmzfXQw89pHr16umHH34ovtHWra4/162T9u+vWBQVGcMfx/XHOP6KIxDjhsLfUUX7huK/S7icSyj8uwdyrFCJIRy/9zkRc6i1D/Q4/h7LX+MF4/9asP7tgnGcYH+dBfvnSyj/f/f3mKFwPREu/59Cpb8/xnPqZ6XT/1/8FYM/x/HHuKHwfyqSxgj1r6lAtQ/mNWa4noMT1xWh8j0v0GM7dZ7hcF3qrzHC5X5NsMcLxPiReK0RqPHC9espmGMGavytW/Xz8bWl5kHCgrWWjx8+kt6WZN2f8T72+atXn+xwPLbXeD0l2YSEBJuUlGQl2ejoaFutWjVrjLGSbEpKio2Li7OSbJUqVWxiYqKVZGNiYmy1atWOxmJTU1NtbGyslWSrVq1qq1ataiXZ2NhYm5qa6mlXrVo1GxMTYyXZxMREW6VKFSvJxsXF2ZSUFCvJGmNstWrVbHR0tJVkk5KSbEJCgpVk4+PjbXJyspVko6KibLVq1WxUVJSVZJOTk218fLzlnDgnzolz4pw4J86Jc+KcOCfOiXPinDgnzolz4pw4J86Jc+KcOCfO6cQ9p6PxSOrpdC6qsh/jTuigkowxiyR1dm/+x1o7yoc+nSUtcm/mW2srNHPTyWN7jddT0puVGQMAAAAAAAAAACBEXW6tfcvpICojyukAIsghr7KvU0jjvcoHw/TYAAAAAAAAAAAACHG8U9B/crzKVXzs490up8RWoX3soz6RdLnX9hZJh/0wLgAAAAAAAAAAQLDFSarrtf2JU4H4C0lB/9njVT7Zxz6neJX3humxJUnW2j8lhfW0WQAAAAAAAAAAAC/fOB2AP7F8qP/85FWu72Ofel7ltWF6bAAAAAAAAAAAAIQ4koL+86NXuakxxpdZmC1L6B9OxwYAAAAAAAAAAECIIynoP19IynWXEyW1Lq2xMSZe0rleVR+F6bEBAAAAAAAAAAAQ4kgK+om1NkfSIq+qgWV06S0p2V3eK+nTcDw2AAAAAAAAAAAAQh9JQf962qs80BhzdnGNjDFVJY3zqnrOWnskjI8NAAAAAAAAAACAEEZS0I+stW9L+sy9GS9pgTGmmXcbY0xNSfMkne6u2ivp4eLGM8ZkGGOs12dgsI4NAAAAAAAAAACAyBHjdAARqJ+k5ZLqSMqQtMoY84mkDZJqS+oiqaq77RFJfay1WRFwbAAAAAAAAAAAAIQoY611OoaIY4xpLGmWpBalNNslaZB7hl9J42RI2uRVNchaOy0YxwYAAAAAAAAAAEDkYKZgAFhr1xpj2km6VlJfSWdLOllSlqSNkl6XNNVauzuSjg0AAAAAAAAAAIDQxExBAAAAAAAAAAAAIMJFOR0AAAAAAAAAAAAAgMAiKYgKM8bEGWMGGGPeMcb8Yow5ZIzZboz5whhzpzGmltMxAoA/GWMyjDH/MMbMNMZ8a4z5wxiTZ4zZa4z5zhgz2RhzodNxAkAwGWMmGGOs12ez0zEBQCAYY1oaY8YbY75y/+6ba4zZZoz52hjzP/fvx6c4HScA+Isxpr0x5mn397m97t9/9xlj1htjXjXG9DPGxDsdJwCUxhgTbYxpZoz5uzHmGfe13GGv32EXV2Lsvxhjphtj1hlj9nvdI/w/Y0xjP56G37B8KCrE/R96lqQWpTTbKWmQtfadoAQFAAFijDlH0rOS2vrYZbGk6621vwYsKAAIAcaYtpKWqvDDhr9YazOciQgA/M8Yc5KkCZL+5kPzSdba2wIcEgAElDGmpqQXJF3uQ/MNcv3+uySwUQFA+Rljekl6SVLVUpp9Yq29qJzjpkh6TtI1pTTLkzTaWvtQecYOtBinA0D4McakS1ok6VR3lZX0qVwXAbUldZFURdJJkuYZY7pZaz9yIlYA8JNGOj4huE7SGkm7JVWTdJ6kdPe+iyQtNcacb63dGKQYASCojDGxkp4Xq48AiGDGmHpyPfDVwKv6J0mrJe2R6wZTQ7kemC3tZhMAhAVjTBVJH6rwRIBdkr6R9Jtc9/7OlnSae19DSe8bYzpba78MYqgA4Itq8vM1mvt34TckdfaqXiPpa0kJks6XVEdSrKQHjTGx1tpx/oyhMkgKoiJe1rGE4C+SLrfWfnt0p3vZ0NmS/iLXf/zXjDENrbVZwQ4UAPzsZ7lugM+01m713mGMiZI0UNJTcl1snCrpJWPMeZZp+QAi092SmrrLL0vq52AsAOB3xphUSR/rWELwY0nDrbXfFdM2Tq4bQ8nBixAAAuJuHUsIWkkjJU2w1h482sAYY+SaHfOspFS5fgeeIqlZUCMFAN/tkLTC69NV0rAKjjVSxxKCh+RaLXH20Z3u68L7Jf3TXTXGGPOJtfaTCh7Pr1g+FOVijOku6W335mFJra21q4tplyjpOx17augha+29wYkSAPzL/Z7ABpJmWGvzy2h7haTXvaq6WWsXBjI+AAg291LyqyTFy7UUy4eSprp3s3wogIhgjJkiabB78xVJfyvrWhAAwp37/dD13ZtPWmuHl9L2KkmveVU1K+4+IQA4xf2+57iir/gxxoyRNNq96fPyoe5l5TdKSnRX3WStnVxC29k6trzoUmvteeWLPjBY6gfldatX+cWSftBba/dLGuVVdaMxhpmpAMKStfYTa+00X24CWWvfkLTcq+rSwEUGAMHnfjL8ebkSgn9IusPZiADA/4wxLXQsIbhF0j9ICAKIdO53ZNX3qppVRpd5kg54bWf6OyYAqAxr7e9FE4KVdL2OJQTXyfVewZLcJanAXW5vjDnHj3FUGElB+MwYkyTXkqBHTS2prdtcSTnucg1JFwQiLgAIQd4vWM9wKggACJCbJXVwl/9prd3pZDAAECA3eZUnWWuzHYsEAIInqcj2H6U1ttYekbTPq4p7zQAiXS+v8rTSXhnkTkZ+5FV1RaCCKg++UaM8zpPriXBJ2i/X2rslstYekrTUq6pzSW0BIMJ4XxBEOxYFAPiZMaaupPHuzc8k/c/BcAAgIIwx0ZL6elXNdSoWAAiyXXK9H+uos0trbIypLekkr6pvAxEUAIQCY0yCpHO9qhb70O1jr3JI5EdICqI8zvQqr3Y/DVSWr0voDwCRrKlXeYtjUQCA/z0tKVmud0vfWNpTkQAQxppISnGX/5S0wRgTY4wZZIxZZIz53RiTa4zZaox51xhzszEmvpTxACAsWGvzJL3rVXWfMaZqKV0e1rH7y4ustesCFhwAOK+Rjn3Ps5K+8aFPyOVHSAqiPBp5lX/xsY/3er2N/RgLAIQkY0w9FX7y50OnYgEAfzLGXCvpMvfmw9baH52MBwACqI1XeYukdLmWh/+fXNd5J0uKk3SqpG5yPTCxzhjTRgAQ/u7VsdcBtZT0nTHmemPM6caYBGNMXWPMpcaYzyQNcrf7wasMAJHKOz+y071SYlm88yM13DOsHRXjdAAIKzW9yjt87PO7V7mGH2MBgFA1QceWDP1V0nwHYwEAvzDG1JT0X/fmOkkPOBgOAARa3SLb7+rYEnpr5XqVRr6kZnLdMJekepIWG2MusNauDEqUABAA1tq1xpgOcv0uW09SQ0nTSmieJWmGpH/z7lUAJ4DK5kckV45kl3/CqRhmCqI8vF82fNDHPt7tir6sGAAiijHmeklXelXdY63NdSoeAPCjxyUdfaLxJr63AYhw1bzKTeRKCB6Q1Mdae6a19jpr7SBrbSu5Zg7udretKukVY0xcUKMFAD+z1n4nKVPSbZL2l9J0oaRZJAQBnCAqmx8pOoYjSAqiPBK8yod97ON9w6iKH2MBgJBijGkt6VmvqlnW2pedigcA/MUYc4mkAe7NF621H5fWHgAiQGIxdf2tta8VrXR/T+wpqcBd1VDS3wIYGwAEnDGmlqRn5HowLFGumS6vS3pO0qs69lqhayR9YYyZbIyJLm4sAIgglc2PSCGQIyEpiPLwXiPX1ycfvV+27mv2HADCijGmgVxLqxy9OPhO0k3ORQQA/mGMSZQ02b25R9KdDoYDAMFS9P0wS621b5TU2Fq7VK6b5UddE5CoACAIjDFnSPpGrncEFsg1W7CutfZKa+2N1tprJDWQ1E/SPne3IZKeciJeAAiiyuZHpBDIkZAURHnkeJV9zWh7t8spsRUAhCljTB1JH0g6xV21UVI3a+2+knsBQNh4QFKGuzzCWru7lLYAECmK/u5aYkKwhDbn+TEWAAgaY0yMXA85pLurbrLWTrLWHvFuZ11mSbrKq/pmY0zbIIUKAE6obH6k6BiOICmI8tjjVT7Zxz6neJX3+jEWAHCcMaamXAnBhu6q7ZK6WGu3OxcVAPiHMaalpKHuzY+ttS86GQ8ABNGeIts/+NDnR69ysjEm2Y/xAECwXCnXu1Ql6SdJpV7/WWs/kPShV9WgAMUFAKGgsvkRKQRyJDFOB4Cw8pNXub6Pfep5ldf6MRYAcJQxJkWul6qf7a7aLVdCcJNzUQGAXzXTsYcI6xljlpXStrZXuU6Rtv+x1r7t9+gAIHCK/u7qyxPd2UW2k4upA4BQ182r/LG11vrQ5yNJXdzl1v4PCQBChnd+5CRjTIK1tuiy80V550f2Wmt3BSCuciEpiPLwfvKxqTEmpujyAcVoWUJ/AAhb7ndsvSOplbvqT7mWDPXlKXIACEcNdWxWdFniJLXz2q5dUkMACFFrimwn+dCn6MzAP/0UCwAEU5pXueis6ZJ4Ly+f6sdYACDU/CTXu1ajJBlJLSSV9vCsFIL5EZYPRXl8ISnXXU5UGU//GGPiJZ3rVfVRgOICgKAxxiRIektSB3fVAUmXWmtXOhcVAAAA/MW98oP36g9n+dDtTK/yXmvtfv9GBQBBcdCrXMPHPjW9yln+CwUAQot7VqB3EvAiH7pd6FUOifwISUH4zFqbI2mRV9XAMrr01rGnJfdK+jQAYQFA0BhjYiXNldTZXZUr6XJr7RLnogKAwLDWTrPWGl8+Kvz+mF+K7J/m0CkAQGW87lXu5UN77zb87gsgXP3qVe7kY5/OXuWf/RgLAISieV7lgaU1NMbUlfSXEvo6hqQgyutpr/JAY8zZxTUyxlSVNM6r6jkflhoFgJBljImW9LKk7u6qI5L6WGs/LLkXAAAAwtQzkvLc5fOMMT1LamiMaSvXQ7FHTQtgXAAQSN6/3zY2xgworbExprOki72qFgYkKgAIHS9KOroiRCNjzOBS2j4sKdpdXmqt/TqgkfmIpCDKxVr7tqTP3JvxkhYYY5p5tzHG1JQr6326u2qvXF8AABCWjDFG0guSrnJXFUgaYK19y7moAAAAECjW2g0q/FDsy8aY3kXbGWMulLRAx274LJNrqXkACEdvS1rntf2cMeYm90OyHsaljwrPqt4iaXYQYgQAx1hrd0qa4FX1X/f3Qw9jTKwxZrykvl7V9wQjPl8Ya63TMSDMGGPSJS2XVMddZSV9ImmDpNqSukiq6t53RFI3a+2iouMAQLgwxtwiaZJX1XpJ7/va31p7m9+DAoAQYowZKGmqe/MXa22Gc9EAgH8YY+IlfSDpfK/qHyWtkJQvqZmkVl77tktqZ63dErQgAcDPjDHt5HrvVVWv6u2SvpC0W1KqpHMlZXjtz5XUxVr7eZDCBACfGWPekXRqkepTJJ3sLu9X8csfd7fWbitmvFhJ76nw8smrJX0tKUHSBTqWO5Gk0dZa71UVHUVSEBVijGksaZakFqU02yVpkHt2IQCELWPMGEmjK9rf/b4tAIhYJAUBRCpjTKpcS4n2LaPpl5KuJiEIIBK4l0WeISnTh+ab5FpJZ0lgowKAijHGbJZUvwJdG1hrN5cwZqqk5yT1KW6/W56kMdbaBytw7ICJcToAhCdr7Vr3k0PXyvXL0dlyZdazJG2Ua/mAqdba3Y4FCQAAAABAJVhr/5TUzxjzrKTrJHWUlCbXcqE75Fou9FVJ8yxPXQOIENba5caYsyX1lNRLUmu5ZtkkyTWjZoeklXItlzzHWptXwlAAEJHc14jXGGOmSLpeUnu5ZgfmybWc8kJJL1hrf3QuyuIxUxAAAAAAAAAAAACIcFFOBwAAAAAAAAAAAAAgsEgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAAAAAAAAABGOpCAAAAAAAAAAAAAQ4UgKAgAAAACCwhgzxhhj3Z8xTscDAAAAACeSGKcDAAAAAACEFmNMhqRNfh52rJ/HAwAAAACUAzMFAQAAAAAAAAAAgAjHTEEAAAAAQFH7JE0qo01bSW3c5W2S3iij/XJ3HwAAAACAA4y11ukYAAAAAABhxv1OwNHuzU+stRc5Fw0AAAAAoCwsHwoAAAAAAAAAAABEOJKCAAAAAAAAAAAAQIQjKQgAAAAACApjzBhjjHV/xpTQZqBXm2nuuihjTD9jzLvGmC3GmFxjzA5jzFxjTPtixogzxgwwxixytz9kjPnVGPOiMebMcsYc6x7rVWPMRmNMtjFmvzFmkzFmljHmCmOMqcjfBwAAAAAEU4zTAQAAAAAAUBJjTC1Jr0jqXGTXSZJ6S7rCGPN3a+1Ud/vTJb0lqWjyr66k6yRda4y5xlo7z4djXyTpeUkNi9md4f5cK2mZMeYqa+1Wn04KAAAAABxAUhAAAAAAEKpiJL0u6XxJhyR9IulXSTUk/UVSNUlG0vPGmPWS1kn6SK4E4D5Jn0raLulkSV0kVZUUJ+llY8zZ1tpNJR3YGHO1pJckxbqrDkpaJmmzpAJJmZLau2M8V9JSY0wba+0O/5w6AAAAAPgXSUEAAAAAQKi6SlK8pDclDbHW7jy6wxhT3V1/vlyvxhgn6U+5EoLPSrrLWpvt1T5d0vtyzSCsImmkpBuKO6gx5mxJL8qVELSSHpP0gLU2q0i709ztOrqPO1VS90qeMwAAAAAEBO8UBAAAAACEqnhJiyVd6Z0QlCRr7R+SBkjKd1d1ktRL0ovW2pu9E4Lu9r9J+odX1VXGmJIelP2vXIlDSRphrf1n0YSge8yNkrpJ+sFd9VdjTDvfTg0AAAAAgoukIAAAAAAglN1urc0vboe19hdJX3hV5Uq6q6SBrLVLJG1xbyZLaly0jTGmuY69v/AbSU+UFpy1dr+k/3hV/a209gAAAADgFJKCAAAAAIBQtcFau6qMNqu9yp8VnVFYjDVe5QbF7Pde/nOWtdaWMZ7keo/hUR19aA8AAAAAQcc7BQEAAAAAoWpN2U30h1f5ex/a7/UqpxSzv71XuZMxpr4PYxqvcl0f2gMAAABA0JEUBAAAAACEqj99aHOkEu1ji9l/qlf5rz6MV1T1CvQBAAAAgIBj+VAAAAAAQKjyZenOyrQvTmol+0f7IQYAAAAA8DuSggAAAAAAHLPfq9zbWmvK+3EscgAAAAAoBUlBAAAAAACO2eFVPsWxKAAAAADAz0gKAgAAAABwzJde5Q6ORQEAAAAAfkZSEAAAAACAYxZ4lXsbY052LBIAAAAA8COSggAAAAAAuFlrl0ta7N6sImmGMSbOl77GmDhjTPVAxQYAAAAAlUFSEAAAAACAwoZKynGXL5b0qTGmXUmNjTGZxpiRkjaLJUcBAAAAhKgYpwMAAAAAACCUWGvXGGP6SnpFUlVJ7SQtM8ZskPS1pL2SEiSdJKmZpDSnYgUAAAAAX5EUBAAAAACgCGvtAmPMeZJekNTKXd3Q/SnJZkm/BTg0AAAAAKgQkoIAAAAAABTDWvutpNbGmEsk9ZJradBTJVWTlCtpl6SfJH0paaGkpdZa60iwAAAAAFAGw+8rAAAAAAAAAAAAQGSLcjoAAAAAAAAAAAAAAIFFUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcCQFAQAAAAAAAAAAgAhHUhAAAAAAAAAAAACIcP8f/QlVT34BTAwAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from scipy.interpolate import interp1d\n", + "\n", + "def cdf_from_lc(lc, dt):\n", + " cdf = np.cumsum(lc)\n", + " cdf = np.concatenate([[0], cdf])\n", + " cdf /= cdf.max()\n", + " return cdf \n", + "\n", + "\n", + "# cdf_times = np.concatenate([[0], dt / 2 + time])\n", + "cdf_values = cdf_from_lc(flux, dt)\n", + "cdf_times = np.arange(cdf_values.size) * dt\n", + "\n", + "cdf_inverse = interp1d(cdf_values, cdf_times)\n", + "\n", + "plt.plot(times, flux / flux.max(), color=\"grey\", label=\"Light curve\")\n", + "plt.plot(cdf_times, cdf_values, color=\"k\", label=\"CDF\")\n", + "\n", + "for prob_val in np.linspace(0, 1, 100):\n", + " time = cdf_inverse(prob_val)\n", + " plt.plot([0, time], [prob_val, prob_val], color=\"r\", lw=0.3)\n", + " plt.plot([time, time], [0, prob_val], color=\"r\", lw=0.3)\n", + " \n", + "plt.xlabel(\"Time\")\n", + "plt.ylabel(\"Probability\")\n", + "\n", + "plt.ylim([0, 1])\n", + "plt.xlim([0, 10])\n", + "plt.legend(loc=\"lower right\");\n", + "plt.tight_layout()\n", + "plt.savefig(\"CDF_lc.jpg\")" + ] + }, + { + "cell_type": "markdown", + "id": "55e11634", + "metadata": {}, + "source": [ + "The same method can be used, in principle, to simulate variates from *any* probability distribution. The only requirement is that the input distribution is positive definite.\n", + "Stingray implements this method in `stingray.simulator.base`:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e77b524a", + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator.base import simulate_with_inverse_cdf\n", + "event_times = simulate_with_inverse_cdf(flux, 10)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "6ed2573e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3809308 , 0.10856514, 0.71888075, 0.54479831, 0.87783205,\n", + " 0.45405823, 0.66623686, 0.62832368, 0.72111516, 0.25882679])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "event_times" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "eab73320", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Simulator/Concepts/Simulator.html b/notebooks/Simulator/Concepts/Simulator.html new file mode 100644 index 000000000..66d3e6234 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulator.html @@ -0,0 +1,586 @@ + + + + + + + + Outline — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Outline

+

Following features of impulse response simulator have been implemented in this notebook.

+

1- Find lag-frequency spectrum of a simple delta impulse response.

+

2- Find lag-frequency spectrum of a more realistic impulse response based on real physical principles.

+

3- Compute lag-frequency spectrum of delta impulse responses with same intensities and varying positions at different energy levels.

+

4- Compute lag-frequency spectrum of delta impulse responses with same positions and varying intensities at different energy levels.

+

Import libraries and obtain data.

+
+
[1]:
+
+
+
from stingray import Crossspectrum, Lightcurve, sampledata
+import numpy as np
+from scipy import signal
+from matplotlib import pyplot as plt
+
+%matplotlib inline
+
+
+
+

Define variability signal.

+
+
[2]:
+
+
+
lc = sampledata.sample_data()
+s = lc.counts
+
+
+
+
+
+

Lag-frequency Spectrum

+
+

Simple Delta Impulse Response

+

Define a delta impulse response with a delay of 10.

+
+
[3]:
+
+
+
delay = int(10/lc.dt)
+h_zeros = np.zeros(delay)
+h = np.append(h_zeros, 1)
+
+
+
+

Find output signal by taking convolution of variability signal and impulse response.

+
+
[4]:
+
+
+
output = signal.fftconvolve(s, h)
+# To make two counts of equal size, remove last 'delay' entries and avoid first zeros
+output = output[delay:-delay]
+s_mod = s[delay:]
+
+
+
+

Visualize input and output signals.

+
+
[5]:
+
+
+
plt.figure()
+plt.plot(s_mod[-80:],'r',output[-80:],'g')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_13_0.png +
+
+

Make lightcurves using Lightcurve class.

+
+
[6]:
+
+
+
time = lc.time[delay:]
+lc1 = Lightcurve(time, s_mod)
+lc2 = Lightcurve(time, output)
+
+
+
+

Compute crossspectrum.

+
+
[7]:
+
+
+
cross = Crossspectrum(lc2, lc1)
+# Rebin the cross spectrum for ease of visualization
+cross = cross.rebin(0.0075)
+
+
+
+

Calculate time lag.

+
+
[8]:
+
+
+
lag = np.angle(cross.power)/ (2 * np.pi * cross.freq)
+
+
+
+

Plot lag.

+
+
[9]:
+
+
+
plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.plot(cross.freq, lag, 'r')
+
+# Find cutoff points
+v_cutoff = 1.0/(2*10.0)
+h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]
+
+plt.axvline(v_cutoff, color='g',linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-15,15])
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_21_0.png +
+
+

According to Uttley et al, the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase warps and the lag becomes negative. This is given in page 43 of review.

+
+
+

More realistic impulse response

+

The response of refelection from an accretion disk to an instantaneous flash follows the top-hat function to first order approximation. The response shows an initial steep rise some time after the initial flash (slope depending on the light travel time to the disk) and then gradually decays, as parts of the accretion disk farther away from the source receieve radiations at later times.

+

The secondary peak is caused due to the bending of light in strong gravitational field around the black hole. This is the re-emergence of photons reflected from the far side of accretion disk that although would be classically blocked from our view, are lensed by strong gravitational field around black hole into our line of sight.

+

Below, we obtain an impulse response similar to one in Utley et al.

+
+
[10]:
+
+
+
# Primary peak time, secondary peak time, end time
+t1, t2, t3 = 3, 4, 10
+# Peaks' values
+p1, p2 = 1, 1.4
+# Rise and decay slopes
+rise, decay = 0.6, 0.1
+
+# Append zeros before start time
+h_primary = np.append(np.zeros(int(t1/lc.dt)), p1)
+
+# Create a rising exponential of user-provided slope that ends at secondary peak time and secondary peak
+# value
+x = np.linspace(int(t1/lc.dt), int(t2/lc.dt), int((t2-t1)/lc.dt))
+h_rise = np.exp(rise*x)
+# Find a factor for scaling
+factor = np.max(h_rise)/(p2-p1)
+h_secondary = (h_rise/factor) + p1
+
+# Create a decaying exponential until the end time
+x = np.linspace(int(t2/lc.dt), int(t3/lc.dt), int((t3-t2)/lc.dt))
+h_decay = (np.exp((-decay)*(x-4/lc.dt)))
+
+# Add the three responses
+h = np.append(h_primary, h_secondary)
+h = np.append(h, h_decay)
+
+# Plot
+plt.plot(h,'y')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_25_0.png +
+
+

Obtain output through convolution.

+
+
[11]:
+
+
+
delay = (int(t3/lc.dt))
+output = signal.fftconvolve(s, h)
+output = output[delay:-delay]
+s_mod = s[delay:]
+
+
+
+

Form light curves.

+
+
[12]:
+
+
+
time = lc.time[delay:]
+lc1 = Lightcurve(time, s_mod)
+lc2 = Lightcurve(time, output)
+
+
+
+

Find cross spectrum and compute lags.

+
+
[13]:
+
+
+
cross = Crossspectrum(lc2, lc1)
+cross = cross.rebin(0.0075)
+lag = np.angle(cross.power)/ (2 * np.pi * cross.freq)
+
+
+
+

Plot results.

+
+
[14]:
+
+
+
plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.plot(cross.freq, lag, 'r')
+
+# Define the x-position of vertical line
+v_cutoff = 1.0/(2*t2)
+h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]
+
+plt.axvline(v_cutoff, color='g', linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-10,10])
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_33_0.png +
+
+
+
+
+

Energy Dependence

+
+

With same intensity and varying position

+

To create different lags for different energy channels, we create delta impulses of same intensity at different positions.

+
+
[15]:
+
+
+
energies = np.array([4.5,8.5])
+
+
+
+

Create impulse responses for all energy channels.

+
+
[16]:
+
+
+
h_zeros = [np.zeros(int(i/lc.dt)) for i in energies]
+responses = [np.append(h, 1) for h in h_zeros]
+
+
+
+
+
[17]:
+
+
+
delays = [int(i/lc.dt) for i in energies]
+outputs = [signal.fftconvolve(s, h)[d:-d] for h,d in zip(responses,delays)]
+s_mods = [s[d:] for d in delays]
+
+
+
+

Make light curves.

+
+
[18]:
+
+
+
t_mods = [lc.time[d:] for d in delays]
+lc_input = [Lightcurve(t_mod, s_mod) for t_mod, s_mod in zip(t_mods,s_mods)]
+lc_output = [Lightcurve(t_mod, output) for t_mod, output in zip(t_mods,outputs)]
+
+
+
+
+
[19]:
+
+
+
cross_spectrums = [Crossspectrum(lc2, lc1).rebin(0.0075) for lc1,lc2 in zip(lc_input,lc_output)]
+
+
+
+

Compute lags and cutoffs.

+
+
[20]:
+
+
+
lags = [np.angle(cross.power)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]
+
+
+
+

Get cutoff points for all energy channels.

+
+
[21]:
+
+
+
v_cutoffs = [1.0/(2*energy) for energy in energies]
+h_cutoffs = [lag[int((v_cutoff-0.0075)*1/0.0075)] for lag, v_cutoff in zip(lags, v_cutoffs)]
+
+
+
+

We plot lag-frequency spectrum for all energy channels.

+
+
[22]:
+
+
+
plt.figure()
+plots = []
+colors = ['r','g']
+
+# Plot lag-frequency spectrum
+for i in range(0,len(lags)):
+    plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')
+    plt.axvline(v_cutoffs[i],color=colors[i],linestyle='--')
+    plt.axhline(h_cutoffs[i], color=colors[i], linestyle='-.')
+
+# Define axes and add labels
+plt.axis([0,0.2,-20,20])
+plt.legend()
+plt.xlabel('Frequencies (Hz)')
+plt.ylabel('Lags')
+plt.title('Energy Dependent Frequency-lag Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_49_0.png +
+
+

Note:

+

Currently, lag-energy spectrum isn’t plotted and hence I am unable to verify results from Uttley et al. However, as soon as it is implemented in library project, I will test it here as well.

+
+
+

With same position and varying intensity

+

Here, we use delta impulse responses whose position remains same but intensity varies.

+

Again, first we define energies and then create impulse responses, and subsequently using convolution, obtain the output light curves.

+
+
[23]:
+
+
+
energies = np.array([4.5,8.5])
+
+
+
+
+
[24]:
+
+
+
h_zeros = np.zeros(int(10/lc.dt))
+responses = [np.append(h_zeros, i+1) for i in range(0,len(energies))]
+
+
+
+
+
[25]:
+
+
+
delay = int(10/lc.dt)
+outputs = [signal.fftconvolve(s, h)[delay:-delay] for h in responses]
+s_mod = s[delay:]
+
+
+
+
+
[26]:
+
+
+
t_mod = lc.time[delay:]
+lc_input = Lightcurve(t_mod, s_mod)
+lc_output = [Lightcurve(t_mod, output) for output in outputs]
+
+
+
+
+
[27]:
+
+
+
cross_spectrums = [Crossspectrum(lc2, lc_input).rebin(0.0075) for lc2 in lc_output]
+
+
+
+
+
[28]:
+
+
+
lags = [np.angle(cross.power)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]
+
+
+
+
+
[29]:
+
+
+
v_cutoff = 1.0/(2.0*10)
+h_cutoff = lags[0][int((v_cutoff-0.0075)*1/0.0075)]
+
+
+
+
+
[30]:
+
+
+
plt.figure()
+plots = []
+colors = ['r','g']
+
+# Plot lag-frequency spectrum
+for i in range(0,len(lags)):
+    plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')
+
+# Draw horizontal and vertical line
+plt.axvline(v_cutoff, color='g', linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+
+# Define axis
+plt.axis([0,0.2,-25,25])
+plt.legend()
+plt.xlabel('Frequencies (Hz)')
+plt.ylabel('Lags')
+plt.title('Energy Dependent Frequency-lag Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../../_images/notebooks_Simulator_Concepts_Simulator_60_0.png +
+
+

As expected (and also demonstrated in Utley et al), the shape of lag-frequency spectrum for both energy channels is similar.

+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Concepts/Simulator.ipynb b/notebooks/Simulator/Concepts/Simulator.ipynb new file mode 100644 index 000000000..4d93c4ec7 --- /dev/null +++ b/notebooks/Simulator/Concepts/Simulator.ipynb @@ -0,0 +1,793 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Outline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Following features of impulse response simulator have been implemented in this notebook.\n", + "\n", + "1- Find lag-frequency spectrum of a simple delta impulse response.\n", + "\n", + "2- Find lag-frequency spectrum of a _more_ realistic impulse response based on real physical principles.\n", + "\n", + "3- Compute lag-frequency spectrum of delta impulse responses with same intensities and varying positions at different energy levels.\n", + "\n", + "4- Compute lag-frequency spectrum of delta impulse responses with same positions and varying intensities at different energy levels." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import libraries and obtain data." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "from stingray import Crossspectrum, Lightcurve, sampledata\n", + "import numpy as np\n", + "from scipy import signal\n", + "from matplotlib import pyplot as plt\n", + "\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lc = sampledata.sample_data()\n", + "s = lc.counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Lag-frequency Spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Simple Delta Impulse Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Define a delta impulse response with a delay of 10." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "h_zeros = np.zeros(delay)\n", + "h = np.append(h_zeros, 1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find output signal by taking convolution of variability signal and impulse response." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "output = signal.fftconvolve(s, h)\n", + "# To make two counts of equal size, remove last 'delay' entries and avoid first zeros\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Visualize input and output signals." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGdCAYAAAAMm0nCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVxklEQVR4nO3dd3jT1fcH8HfSkbZ0UuiipRTKKrTsUZGNFKwMQURkqYCiRQH5geIXFSc4ERURRUEFRUBAplCZAmUVCmWPFspqy+qCzuT+/rjcjDZJkzRpmuS8nqdP0uSTT25aSE7PPfdcCWOMgRBCCCHEhkitPQBCCCGEEGNRAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5FMAQQgghxOZQAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5ztYegKUoFArcuHEDXl5ekEgk1h4OIYQQQgzAGEN+fj5CQkIglerOs9htAHPjxg2EhYVZexiEEEIIMcHVq1cRGhqq8367DWC8vLwA8B+At7e3lUdDCCGEEEPk5eUhLCxM+Tmui90GMGLayNvbmwIYQgghxMZUVv5BRbyEEEIIsTkUwBBCCCHE5lAAQwghhBCbQwEMIYQQQmwOBTCEEEIIsTkUwBBCCCHE5lAAQwghhBCbQwEMIYQQQmwOBTCEEEIIsTkUwBBCCCHE5lAAQwghhBCbQwEMIYQQQmwOBTCEEEIMs3kz8Pff1h4FIQDseDdqQgghZnTtGjBgACCVArduAb6+1h4RcXCUgSGEEFK5X38FFAqgrAzIyDDvue/fB1q3BhISzHteYteqFMDMnTsXEokEU6ZMUd7Wo0cPSCQSja+JEydqPC4jIwPx8fHw8PBAQEAApk+fjrKyMo1jdu3ahbZt20ImkyEyMhJLly6tylAJIYSYijFA/T34+nXznv/QIeD4cWD5cvOel9g1k6eQDh8+jEWLFiEmJqbCfRMmTMD777+v/N7Dw0N5XS6XIz4+HkFBQdi/fz9u3ryJMWPGwMXFBR9//DEAID09HfHx8Zg4cSKWL1+O7du3Y/z48QgODkZcXJypQyaEEGKK/fuBCxdU31+7Zt7zp6Xxy9xcoLgYkMnMe35il0zKwBQUFGDkyJH48ccf4efnV+F+Dw8PBAUFKb+8vb2V923btg2nT5/GsmXL0Lp1a/Tv3x8ffPABFixYgJKSEgDA999/j4iICHzxxRdo3rw5Jk2ahKeeegrz5s0z8WUSQgip4MQJIDwcWLxY/3HlM+DmzsCIAAbg9TWEGMCkACYhIQHx8fHo06eP1vuXL1+OOnXqoGXLlpg5cyYePHigvC8pKQnR0dEIDAxU3hYXF4e8vDycOnVKeUz5c8fFxSEpKUnnmIqLi5GXl6fxRQghRI9163g9y9SpQHa29mMePAD+/JNf792bX1oygNE1DkLKMXoKacWKFTh69CgOHz6s9f5nn30W4eHhCAkJwYkTJ/DGG2/g3LlzWLNmDQAgMzNTI3gBoPw+MzNT7zF5eXkoLCyEu7t7heedM2cO3nvvPWNfDiGEOK6rV/llQQHw4YfA119XPGbNGiA/H2jYEBgxAti+3XJTSAAFMMRgRgUwV69exeTJk5GYmAg3Nzetx7z44ovK69HR0QgODkbv3r1x6dIlNGrUqGqj1WPmzJl4/fXXld/n5eUhLCzMYs9HCCE2T3010fffA5MnA+Xfp8X00XPPAaGh/DplYEgNYNQUUnJyMrKzs9G2bVs4OzvD2dkZu3fvxtdffw1nZ2fI5fIKj+nUqRMA4OLFiwCAoKAgZGVlaRwjvg8KCtJ7jLe3t9bsCwDIZDJ4e3trfBFCCNFDZGACAoDSUmDWLM37r1wBduzg18eMAerV49fNmYHJywNu31Z9TwEMMZBRAUzv3r2RmpqKlJQU5Vf79u0xcuRIpKSkwMnJqcJjUlJSAADBwcEAgNjYWKSmpiJb7R9pYmIivL29ERUVpTxm+/btGudJTExEbGysUS+OEEKIDoypAhgxdbRiBZCcrDrm11/5cb168WJfkYG5dw8oLDTPONLTNb8v98crIboYFcB4eXmhZcuWGl+1atWCv78/WrZsiUuXLuGDDz5AcnIyLl++jPXr12PMmDHo1q2bcrl13759ERUVhdGjR+P48ePYunUrZs2ahYSEBMgeLp2bOHEi0tLSMGPGDJw9exbfffcdVq5cialTp5r/J0AIIY4oN5fXvgC8w+7Ikfz6m2/yS4VCNX30/PP80scHEG0xzDWNpD59BFAGhhjMrJ14XV1d8e+//6Jv375o1qwZpk2bhqFDh2LDhg3KY5ycnLBx40Y4OTkhNjYWo0aNwpgxYzT6xkRERGDTpk1ITExEq1at8MUXX2Dx4sXUA4YQQsxFZF/8/XlQ8uGHgKsr8O+/QGIisHcvDy68vIAnn+THSiSqLIy5ppFEACN9+HFEAQwxUJX3Qtq1a5fyelhYGHbv3l3pY8LDw7F582a9x/To0QPHjh2r6vAIIYRoIwp4xWKHBg2AV14BvvoKeOMNQDQpffppoFYt1ePq1QPOnzd/BiY6mnfjpQCGGIj2QiKEEEckMjDqqzX/9z+ecTl2DPjlF36bmD4SRCGvuQOYzp35JQUwxEAUwBBCiCPSFsDUqcOzL0LjxsAjj2g+zlJTSGKRRnY2LxwmpBIUwBBCiCPSFsAAwJQpwMOWFhg7lte9qDNnBkYuBy5f5tcfttxASQlfWk1IJSiAIYQQRyQCmPr1NW+vVQtYvZo3tZs8ueLjzNkL5sYNHrC4uPBsj6cnv52mkYgBqlzESwghxAaVL+JV16UL/9LGnN14xfRRgwaAkxNvqFdQwAOYxo2rfn5i1ygDQwghjkahUGVQjN1yRWRgMjOBsrKqjUMEMA0b8suAAH5JGRhiAApgCCHE0dy6xaduJBJVQGKowECeLZHL9XfNXbOGnzspSfcxFMCQKqAAhhBCHI2ofwkK4vUnxnByAh5uDaN3GmnpUl7jsnix7mMogCFVQAEMIYQ4Gl0FvIYypJD35El+uW+f7mNEABMRwS8pgCFGoACGEEIcjb4CXkNUVsh7/75qk8Zz5zR3m1ZHGRhSBRTAEEKIo9HVA8ZQlfWCOXNG8/sDByoeI1YbARTAEJNQAEMIIY7GXAGMrimkU6c0v9c2jSQyNLVr812uAQpgiFEogCGEEEdT1QCmsikkEcD4+fHL/fsrHlN++gigAIYYhQIYQghxNOYq4tUVwIgC3rFj+eWhQ0BpqeYx+gKYO3eq3mOG2D0KYAghxJGUlfHlzUDVMzDXrmnfeFFkYJ58kk8RFRXxHa7VaQtg/P15bxrGeBBDiB4UwBBCiCO5cYN34nVx4U3pTBESwi8LC4GcHM378vNVq5xatlTtZl1+GklbAOPszIMYQH+TPEJAAQwhhDgWMX1Urx4gNfEjwN2dZ1aAioW8p0/zy+BgfowIYMoX8moLYACqgyEGowCGEEIcSVULeAVdhbxi+qhFC34pNoXcv1813aRQqFYhUQBDTEQBDCGEOJKqFvAKugp5RQGvCGDat+dTQzduqKaWbt4Eiov5tgTlAykxrUUBDKkEBTCEEOJIzJWB0dULpnwGxsMDaNuWXxfTSGL6KDycBzfqKANDDEQBDCGEOJKqbiMgVDaF1LKl6rbyhby66l8ACmCIwSiAIYQQR2LJDExOjiqgiYpS3U4BDLEACmAIIcSRmDuAUc/AiBVIoaGq7QEAVSHv8eN8mTUFMMQMKIAhhBBHUVQE3LrFr1e1iFfbFFL5Al4hJITXuygUvCsvBTDEDCiAIYQQRyGmezw8VPsUmUpkYO7c4Q3tgIoFvOrUl1NTAEPMgAIYQghxFOoFvBJJ1c7l58cb2gGqrQm0FfAKog4mMRHIzOTX9QUw9+/zL0J0oACGEEIchbnqXwAeAJWvg9GXgREBzH//8UtfX+1ZIC8vQCbj18V0FyFaUABDCCGOwpwBDKC5EunOHVVmRX0FkhAdDXh6qr7Xln0BeGBE00jEABTAEEKIozBXF15BvZBXZF/CwzUDFcHZGejUSfW9rgAGoACGGIQCGEIIcRSWzMDomz4SRCEvQAEMqTLnyg8hhBBiF8zVhVdQr4GRy/l1bQW8gqiDASiAIVVGAQwhhDgKc2dg1KeQ7tzh1/VlYDp35jUujFEAQ6qMAhhCCHEEeXn8C7DMFFJxMb+uL4Dx8QGGDgUOHAA6dNB9HAUwxAAUwBBCiCMQ2Rc/P+1FtqYQGRjRIE8iAZo31/+YlSsr70FDAQwxABXxEkKIIzD39BEABAYCUrWPkYYNeZdffQxpoCcCmKws08dG7B4FMIQQ4gjMXcAL8KXRQUGq7/VNHxmDMjDEABTAEEKII7BEBgZQTSMB5gtgAgP55a1bfANIQrSgAIYQQhyBpQIYUcgLmC+AqVuXX8rlwL175jknsTsUwBBCiCMwdxdewRIBjKsr3ysJoGkkohMFMIQQ4ggsPYUklQLNmpnvvFQHQypBAQwhhBjqwgXg8cf5fj83b1p7NIZjzPJTSJGRgJub+c5LAQypBAUwhBBSmaIi4L33eJv8LVv4ip5Dh6w9KsOlp/PXAGhO+ZhD375A+/bAa6+Z97wUwJBKUCM7QgjR599/gVde4dkXgC8dLisDcnKsOiyD3b0LDBzIr3foAMhk5j1/QABw+LB5zynOC1AAQ3SiDAwhhGiTkwOMGgU89hgPXoKDgT//5K3wxf013f37QHw83yk6JIR3wbUVFMCQSlQpgJk7dy4kEgmmTJmivK2oqAgJCQnw9/eHp6cnhg4diqxy3RQzMjIQHx8PDw8PBAQEYPr06SgrK9M4ZteuXWjbti1kMhkiIyOxdOnSqgyVEEIMp1AAw4cDy5fzzrGvvgqcOQM8/TRvxQ/U/ACmpAQYMoTvO+TnB2zdCjRoYO1RGY4CGFIJkwOYw4cPY9GiRYiJidG4ferUqdiwYQNWrVqF3bt348aNGxgyZIjyfrlcjvj4eJSUlGD//v345ZdfsHTpUrzzzjvKY9LT0xEfH4+ePXsiJSUFU6ZMwfjx47F161ZTh0sIIYabMwfYtg1wdwf27gW+/ppvRAiolvfm5lpteJWSy4HRo/lrqFUL2LyZ1+/YEgpgSGWYCfLz81njxo1ZYmIi6969O5s8eTJjjLGcnBzm4uLCVq1apTz2zJkzDABLSkpijDG2efNmJpVKWWZmpvKYhQsXMm9vb1ZcXMwYY2zGjBmsRYsWGs85fPhwFhcXZ/AYc3NzGQCWm5trykskhDiqnTsZk0oZAxj7+eeK98+dy+97/vlqH5pBFArGXnqJj9HFhbFt26w9ItPs2sVfQ5Mm1h4JqWaGfn6blIFJSEhAfHw8+vTpo3F7cnIySktLNW5v1qwZ6tevj6SkJABAUlISoqOjEShaRQOIi4tDXl4eTp06pTym/Lnj4uKU59CmuLgYeXl5Gl+EEGKUrCxgxAg+hTR2LPD88xWPEZmYmjqFNHcusGgRn/pavpzX8NgiysCQShi9CmnFihU4evQoDmupOs/MzISrqyt8RYr1ocDAQGRmZiqPUQ9exP3iPn3H5OXlobCwEO7u7hWee86cOXjvvfeMfTmEEMLJ5cDIkUBmJhAVBSxYoP048f5WUwOYRYv45bx5wLBh1h1LVYgAJieH1/O4ulp1OKTmMSoDc/XqVUyePBnLly+HmzkbFpnBzJkzkZubq/y6Kpo2EUKIIT76CNi+HfDwAFat4rUj2tTkAIYxVYO9QYOsO5aq8vMDnJz49Vu3rDsWUiMZFcAkJycjOzsbbdu2hbOzM5ydnbF79258/fXXcHZ2RmBgIEpKSpBT7j92VlYWgh5uuR4UFFRhVZL4vrJjvL29tWZfAEAmk8Hb21vjixBCDLJjBzB7Nr/+/fc8A6NLTQ5gRLYCAB6+n9osqVS1qSNNIxEtjApgevfujdTUVKSkpCi/2rdvj5EjRyqvu7i4YPv27crHnDt3DhkZGYiNjQUAxMbGIjU1Fdlq/yATExPh7e2NqIdvGrGxsRrnEMeIcxBCiNncuwc8+yzPXowbx1fv6FOTA5iH0/Dw9TVvW39roToYoodRNTBeXl5oWW4pXq1ateDv76+8fdy4cXj99ddRu3ZteHt749VXX0VsbCw6d+4MAOjbty+ioqIwevRofPrpp8jMzMSsWbOQkJAA2cMOkRMnTsS3336LGTNm4IUXXsCOHTuwcuVKbNq0yRyvmRBCVH77jRfvNmnCl0tXRn0ZtULBMwU1hZg+svXsi0ABDNHD7FsJzJs3D1KpFEOHDkVxcTHi4uLw3XffKe93cnLCxo0b8fLLLyM2Nha1atXC2LFj8f777yuPiYiIwKZNmzB16lTMnz8foaGhWLx4MeLi4sw9XEKIoxNNMidN4vUvlREBjEIBFBQANWm6WmRg7CWAEYs5ypUUEAKYIYDZtWuXxvdubm5YsGABFuiq4AcQHh6OzZs36z1vjx49cOzYsaoOjxBCdDt+HDh2DHBx4dNIhnBz4/sJFRfzaaSaGMAEB1t3HOZCGRiiRw3KfRJCSDUT2ZeBAwF/f8MfJ3rB1LRuvPaWgREBDGVgiBYUwBBCHFNJCbBsGb+urWGdPjW1kNdea2BoGTXRggIYQohj2rwZuH2bf9gbW19XUwMYe83A0BQS0YICGEKIYxLTR6NHA85GlgPW9ACGamCIA6AAhhDieLKzAdGW4bnnjH98TQ9g7CUDo74KiTHrjoXUOBTAEEIcz/LlQFkZ0LGj/q67utTEAKakhE+JAfYTwIhOvCUlAG3QS8qhAIYQ4lgYA5Ys4ddNyb4ANTOAEdMszs7GraiqyTw8AE9Pfp2mkUg5FMAQQhzLsWNAairv5fLMM6adoyYGMGL6KDCwZnUHriqqgyE62NG/ckIIMYAo3h08mO94bIqaHMDYy/SRQL1giA4UwBBCHEdxMa9/AUyfPgJqZiM7e+sBI4hCXsrAkHIogCGEOI6NG4G7d4GQEOCxx0w/D2Vgqg9NIREdKIAhhDgOUbw7Zgzg5GT6eWpyAGMvPWAECmCIDhTAEEIcQ1ERkJjIr48eXbVzVWcAwxiweDHfeFIfe8/AUA0MKYcCGEKIYzh8mPcTCQ4Gmjev2rnUAxhLN1jbuROYMAEYN07/cVQDQxwMBTCEEMewdy+/fPRRQCKp2rlEACOXA/fvV+1clTl4kF+eOgUoFLqPoykk4mAogCGEOIb//uOXjz5a9XO5uwMuLvy6paeRjh3jl0VFwI0b2o9hzP6nkCiAIeVQAEMIsX9yObB/P79ujgBGIqm+OpiUFNX1Cxe0H5OfDxQW8utiysVeiADm7l2gtNS6YyE1CgUwhBD7d+oU79ni6QnExJjnnKIXjCUDmPx8zaDl4kXtx4n6Fy8voFYty43HGvz9VZ2Fb92y7lhIjUIBDCHE/on6l9hYvleQOVRHBqb8yiNdGRh7rX8BePAiNnWkaSSihgIYQoj9Uy/gNRcRwFiyG6+ofxF0ZWDstf5FoDoYogUFMIQQ+2fJAMaSGRgRwHTowC8ry8DYewBDvWCIGgpgCCH2LSMDuHqVd97t1Ml8562OAEYU8A4bxi8vXtS+lNpee8AI1AuGaEEBDCHEvonsS9u25i1wtXQAU1ICnDzJrw8ezAMwXUup7bkGBqApJKIVBTCEEPtmiekjwPIBzOnTfNmwry8QGQlERPDbtU0jOcoUEgUwRA0FMIQQ+2arAYyof2ndmvedadyYf6+tkJcCGOKAKIAhhNive/dU0zBdupj33JbuAyPqX9q04ZeRkfxSWwbGUWpgqIiXqKEAhhBiv5KSeJv9xo3N36G2ujIwIoDRlYEpK1M1eKMaGOJAKIAhhNgvsf9R167mP7clAxiFQpWBad2aX+rKwNy6xYM0qRSoU8f8Y6kJ1AMYS+/+TWwGBTCEEPtlqfoXwLKN7NLS+DYCMhnQrBm/TWRgLl3SXEot6l8CAvhKJXskApjiYv5zIQQUwBBC7FVREXDoEL9uyQAmJ8f8WQExfRQdrdr1OjycByiFhZpLqe29gBcAPDz4PlYA1cEQJQpgCCH2KTmZ91IJCFBNv5iTCGBKS1U7QZtL+QJegAcyYim1eh2MKOC11/oXgepgSDkUwBBC7JP69JFEYv7z16qlmrIxdx2M+hJqddrqYBwhAwNQAEMqoACGEGKfLFn/AvCgyFKFvOVXIAmiDoYCGEIogCGE2CGFAti3j1+3VAADWCaAyczkXxIJEBOjeZ/IwKhPITlaAEM1MOQhCmAIIfbnzBnexM7Do+I0jDlZopmdyL40bVpx7yZtGRhHqYGhDR1JORTAEELsj5g+6txZtYrHEiyRgSnf/0WdyMCoL6V2tAwMBTDkIQpgCCH25+BBfmnu7QPKs0QAo6v+BQAaNKi4lJoCGOKgKIAhhNiftDR+KZrAWUp1BzAuLjyIAXgdTEEB/wIcJ4ChGhjyEAUwhBD7k5HBL+vXt+zzmLsbb16eqkBXV+2Oeh2MyL7UqgV4eZlnDDUV1cCQciiAIcReZWYCo0YB+/dbeyTVSy4Hrl3j18PDLftc5s7AnDjBL+vVA+rW1X6M+qaOjjJ9BKgyMHfv8uaBxOFRAEOIvfrlF2D5cuCTT6w9kuqVmck/4JycLL8yx9wBjL7pI0G9mZ0jBTC1a/MNKwHg9m3rjoXUCBTAEGKvUlP5ZXq6dcdR3cT0Ub16gLOzZZ/LGgGMo2ZgnJxUu23TNBIBBTCE2K+TJ/nl5cvm32ywJhMBjKWnjwDz94ExJgNz8aJqJZK994ARRB0MFfISUABDiH0qK+PN3AAgP583dXMUV67wS0sX8ALmzcCUlQGnTvHrrVrpPk59KXVyMr/NETIwAC2lJhqMCmAWLlyImJgYeHt7w9vbG7GxsdiyZYvy/h49ekAikWh8TZw4UeMcGRkZiI+Ph4eHBwICAjB9+nSUlZVpHLNr1y60bdsWMpkMkZGRWLp0qemvkBBHdPEi34lZcKRppOrMwJgzgElL47U7Hh6qpdLaqC+lTkrilxTAEAdkVAATGhqKuXPnIjk5GUeOHEGvXr0waNAgnBJ/NQCYMGECbt68qfz69NNPlffJ5XLEx8ejpKQE+/fvxy+//IKlS5finXfeUR6Tnp6O+Ph49OzZEykpKZgyZQrGjx+PrVu3muHlEuIgxPSRcPmyVYZhFdbKwFR1mk5kzJo2VRWr6iLqYPLz+SUFMMQBGVXhNmDAAI3vP/roIyxcuBAHDhxAixYtAAAeHh4I0vGfadu2bTh9+jT+/fdfBAYGonXr1vjggw/wxhtvYPbs2XB1dcX333+PiIgIfPHFFwCA5s2bY+/evZg3bx7i4uJMeY2EOB5HDmCqqwcMoApgSkqAoiLA3d30c509yy8Nab4n6mAEqoEhDsjkGhi5XI4VK1bg/v37iI2NVd6+fPly1KlTBy1btsTMmTPx4MED5X1JSUmIjo5GoPhHCCAuLg55eXnKLE5SUhL69Omj8VxxcXFIEqlSHYqLi5GXl6fxRYjDEiuQRHMzRwxgqmMKydNTlS2pajM7kYFp3rzyY0UGRqAMDHFARq8xTE1NRWxsLIqKiuDp6Ym1a9ciKioKAPDss88iPDwcISEhOHHiBN544w2cO3cOa9asAQBkZmZqBC8AlN9nPlwOqOuYvLw8FBYWwl3HXzhz5szBe++9Z+zLIcQ+iQxMXBywerXjBDB5eap6lOrIwEilfCXSvXv8easSSJiagZFIdDe9szcUwBA1RgcwTZs2RUpKCnJzc7F69WqMHTsWu3fvRlRUFF588UXlcdHR0QgODkbv3r1x6dIlNGrUyKwDL2/mzJl4/fXXld/n5eUhLCzMos9JSI1UWKhqR//EE44VwIjsS+3aPDtSHXx9VQGMqRhTBTDGZmDq1LHsjts1CQUwRI3RU0iurq6IjIxEu3btMGfOHLRq1Qrz58/XemynTp0AABcfvpkGBQUhq9zcpfhe1M3oOsbb21tn9gUAZDKZcnWU+CLEIZ09CygUgL8/0Lkzv81ResFUZ/2LYI5eMJmZfApKKq04PaSNWEoNOE79C6BZA+MI/56JXlXuA6NQKFBcXKz1vpSUFABA8MP/YLGxsUhNTUW2WvScmJgIb29v5TRUbGwstm/frnGexMREjTobQogeYvqoZUtVHUhBAXDnjvXGVF2qcwWSYI6l1CL70rAhIJNVfrz6UmpHqX8BVFNlxcWqFVjEYRkVwMycORN79uzB5cuXkZqaipkzZ2LXrl0YOXIkLl26hA8++ADJycm4fPky1q9fjzFjxqBbt26IiYkBAPTt2xdRUVEYPXo0jh8/jq1bt2LWrFlISEiA7OF/2okTJyItLQ0zZszA2bNn8d1332HlypWYOnWq+V89IfZIPYBxc1P9he4I00jVWcArmCOAEQW8htS/CCJT40gBTK1a/AugaSRiXACTnZ2NMWPGoGnTpujduzcOHz6MrVu34rHHHoOrqyv+/fdf9O3bF82aNcO0adMwdOhQbNiwQfl4JycnbNy4EU5OToiNjcWoUaMwZswYvP/++8pjIiIisGnTJiQmJqJVq1b44osvsHjxYlpCTYih1AMYQPWXuiMEMLaegTEmgHmYta7WYK0moDoY8pBRRbw//fSTzvvCwsKwe/fuSs8RHh6OzZs36z2mR48eOCb2BCGEGEdbAJOUZDsBTGYmb6nfu7fxj7X1DIwhBbzC9Ol8SuWFF0x/XlsUEMA7S1MvGIdHeyERYk9yc1Uf4raagZk0CejTB/j9d+Mfa40iXmtlYIKCgDffVGUkHIUo5KUMjMOjAIYQeyK29QgNVX2wRkTwS1sJYM6f55effWbcSpPSUuD6dX7dlgKY/Hzg2jV+3ZgAxlHRFBJ5iAIYQuxJ+ekjQJWBsZUNHe/e5ZcpKYAB09JKN27w5eOurqq/0quDCGBM7cR77hy/DAjg/WuIfhTAkIcogCHEnugLYGylF4wIYADgyy8Nf5wo4A0Lq3wzRHOqagbGmAZ2hAIYokQBDCH2RFsAI6ZTHjwAbt+u/jEZo7CQfwkbN6qmlCpjjfoXoOqN7ExZQu3IaENH8hAFMITYE20BjEwGhITw6zW9DubePX7p5ATEx/OMkY5O3xVYYwUSQBmY6kYZGPIQBTCE2IvsbODWLb65X/kPQ1tZiSSmj/z8gGnT+PWlSzWnlXSxRg8YoOoBDGVgjEMBDHmIAhhC7IXIvjRqBHh4aN5XlQDm+HG+y3N1EIFK7dpAjx5Aq1Z86uuHHyp/rLUzMEVF/MsYpaWqjTcpA2MYEcDcuQOUlVl3LMSqKIAhxF5omz4STF1KnZwMtG4NjBlTlZEZTj2AkUgAscP8N98AJSX6H2utGhhvbz5WwPiVSGlpPIjx8OBL30nl/P1VRdq3bll3LMSqKIAhxF6kpvLL6OiK95m6lDo5mV+K/jKWph7AAMAzz/CGbTduAKtW6X4cY9abQpJKeRADGD+NJOpfmjat3pVTtszJCahTh1+naSSHRv9jCLEX+jIwpk4hiaCguj4oygcwrq68My/Al1TrWgZ+7x5w/z6/HhZm2TFqY2odjClbCBDVNBKtRHJoFMAQYktmzuQZFvHBJzBmeABjTC8YEfDk5Rlf32GK8gEMALz0EuDuDhw9Cvz3n/bHiUArIIAfW91MbWZnyhYCRLXDuui8TBwSBTCE2Irbt4HPP+eBSr9+mm/eGRlAQQHg4gI0blzxsWFhvE6jsNC4ugH1jE111BtoC2Dq1FHV4OhqbGetAl7B1F4wtITaNOL3LAJX4pAogCHEVqxYoVp1kZEB9O+v+sAU2ZdmzXgQU56pvWDUPyCsFcAAwJQp/HL9eu1/dVurgFcwZQqJMVpCbSqRUaQAxqFRAEOIrfjlF345dSovbE1NBQYP5lM7+qaPBGPrYIqLefGsUB11MLoCmGbNgEcf5R/6K1ZUfJy1CngFUwKYzEw+NSeVas+aEd0oA0NAAQwhtuH0aeDIEcDZGXjzTeCff/jKl927gdGjea8WQH8AI5ZSG7oS6epVzXoZawYwAPDss/zy998r3mftKSRTAhiRfWnYkGfIiOHE77mmN2YkFkUBDCG24Lff+GX//rxQtVUrYN06vkpn9WpVVsKcGZjyf91WRwAjthLQFsAMG8YDuKNHVbUjgi1OIVH9i+lEAHP1KiCXW3csxGoogCGkppPLgWXL+PWxY1W39+zJAxuJRJUp0dYDRjA2gCl/nLUzMHXqAHFx/Poff2jeJ4ItW8zAUP2L8UJCeD+YsjLg5k1rj4ZYCQUwhNR0u3YB167xD8knntC87+mnVZsd+vvr/wCv6QFMaalqywJtAQygOY0kgrbiYl5PAlAGxlE4O6v6/VAdjMOiAIaQmk4U7z7zjPZaiVdfBTZuBLZs0d/N1dheMOKDoUkTfmnpVUjqH/4iIChv4EDedv/iReDwYX7b1av80t2dB3HWQBmY6keFvA6PAhhCarKCAuCvv/h1ffsRxccDHTroP5foBVNUZFg2RWRgxHktnYER00e+vnx6QBtPT2DQIH5dFPOqF/CKPYmqm7F9YPLzVcvBKYAxDQUwDo8CGEJqsjVr+G7MjRsDnTtX7VyurkC9evy6ISuRRADTsSO/rEoAY0jGR1/9izoxjbRiBa8PsnYBL2B8J95z5/hlYCDg52eRIdk9Wonk8CiAIaQm+/VXfjlmjHmyC4buSl1aqsoQqGdgjNmGQCgo4NNQo0bpP87QAKZvX35MVhawc6f1e8AAqgBGrKKqDE0fVR1lYBweBTCE1FRXrwI7dvDrlX34G8rQQt5r1wCFgtfciJVNRUU8GDHW0aO8ZmXNGv0BkKEBjKsrX1IN8Gkka/eAAXhjQbFVgyGZKirgrTrqxuvwKIAhpKZatox/4HfvrnqzripDAxhxf3g4rzvx8ODfm1LIK85VWKhaZaSNCGAMmVIZOZJf/vUXcP48v27NDIyHB9CoEb+emlr58adP80vKwJhOPQNjSmaQ2DwKYAipiRjTnD4yF0MDmPJ9VQIC+KUpdTDqz6WvZ4ehGRgA6NKFFyXn5QF79/LbrJmBAVRNBMW2DvqIIEdf3x6in1hGXVjINzolDocCGEJqoiNH+DSDuzvw1FPmO6+xGRhxfE0LYKRSYMQIzdusmYEBDA9g8vOBS5f49ZgYy47JnslkQHAwv07TSA6JAhhCaiLRaXbwYL7nkbmo1w3oS7tbKoARDee0MSaAAVSrkQBefyJWWFmLyKZUFsCI+0NCeHdhYjpaieTQKIAhpCbauJFfDh1q3vOGhfHsRVGR/mCipk8hATx7ERXFr4eE8OJea1LPwOgLDk+c4JeUfak6Wonk0CiAIaSmuXCBf7m4AI89Zt5zu7gAoaH8ur6/Ws2VgSkrU3XKBcwbwEgkqiyMtetfAN6rx8WFr9QSK6O0ETuHUwBTdbQSyaFRAENITbN5M7/s2tW800eCeNMXdRjlqQcd4ti6dfmlsauQbtzg5xPMGcAAwKRJwLhxwHvvGTcuS3BxUa0q0jeNJDIwrVpZfkz2jjIwDo0CGEJqmk2b+GV8vGXOLz44Dx7Ufv+NG7zDrYuLqkjS1AxM+SyPuQMYHx9g8WKgTx/jxmUplRXyMkZTSOZEAYxDowCGkJqkoADYvZtff/xxyzxH16788r//tN8vgo769VWbQ5oawIgtC8QmlLrqbhQKVRdbYwKYmqayAObyZb4KydUVaNq02oZlt6iI16FRAENITbJ9O1BSAjRsaLkPuEcf5ZcnTmjfu6d8/QtQ9QxMu3b8UlcGJjdXVfhqy3sDVRbAiOxLVBTPcJGqEQFMbq7h+1ARu0EBDCE1ifr0kaV2Vg4O5l1jGQP27694f/kVSIAqgLl1i2dLDCUCmNhYfnnvHl8BVZ7IvtSqpcrW2CIRwJw5o1n7I1ABr3l5egL+/vw6TSM5HApgCKkpGFMV8Fpq+kjQN42kLQMj+pXI5YZvWKh+rtat9U8jmVL/UhM1aMC3FSgu5vs/lUf1L+ZHdTAOiwIYQmqKEyf4DtAeHkCPHpZ9LjGNJNrwqxMfBOoBjKurasdlY1YiiQAmIoJveAjYdwAjlQItWvDr2qaRaAWS+VEA47AogCGkphDTR717A25uln0ukYE5dIhnC9Spb+Soztg6mPLLscWKJm11MPYSwAC6O/Lev6/KylAGxnwogHFYFMAQUlNYevm0usaNeUBSXMz3XRIUClUTtvI7YBsbwFy/rrkc21ECGF2FvKJDb2Cg6mdJqo5WIjksCmAIqQnu3AEOHODX+/e3/PNJJKppJPU6mJs3gdJSwNmZt+dXZ2wAo57JkUpVU0iOGsDQ9JFlUAbGYVEAQ0hNsHUrz35ER1ffrsra6mBE0BEayoMYdaYGMCKTIzIw9lwDA6gCmAsXNFdc0Qoky6DtBBwWBTCE1ATVOX0kiDqYfftUS6O1rUASjN1OQFcAY+8ZmKAg/joUCuDsWdXttALJMkQGJjsbKCy07lhItaIAhhBrk8uBf/7h16szgGndmvddyckBTp3it2lbgSSYKwNj7wGMRFJxGkl9CwGaQjIvPz/eDwbQv4kmsTsUwBBibQcP8g9wPz+gc+fqe15nZ1WDOVEHo2sFElD1AMZRamCAigFMRgbvFOvsrNrwkZiHREJ1MA7KqABm4cKFiImJgbe3N7y9vREbG4stW7Yo7y8qKkJCQgL8/f3h6emJoUOHIisrS+McGRkZiI+Ph4eHBwICAjB9+nSUletYuWvXLrRt2xYymQyRkZFYunSp6a+QkJpOTB/FxVWsO7E0MY0k6mD0TSGZKwOTlcWzTupEAGPL2wioKx/AiOxL8+a8pw4xL1qJ5JCMCmBCQ0Mxd+5cJCcn48iRI+jVqxcGDRqEUw/Tz1OnTsWGDRuwatUq7N69Gzdu3MCQIUOUj5fL5YiPj0dJSQn279+PX375BUuXLsU777yjPCY9PR3x8fHo2bMnUlJSMGXKFIwfPx5bt24100smdmvBAmDCBONa3VenY8eAn3/mAcuRI8C1a3zfI2vUvwjqK5EYM98UUvkeMOLxEgn//dy+rXm8vWZgUlP5JU0fWRYV8jomVkV+fn5s8eLFLCcnh7m4uLBVq1Yp7ztz5gwDwJKSkhhjjG3evJlJpVKWmZmpPGbhwoXM29ubFRcXM8YYmzFjBmvRooXGcwwfPpzFxcUZNa7c3FwGgOXm5pr60ogtKS5mTCZjDGAsOdnao6noxAnG3N35+LR9SSSMZWdX/7gKChhzduZjSEtT/QzT0ioem52tGm9Jif7zXr7Mj3NxYUwuV90eGMhvP3ZMdZtCwY8DGMvIMMvLsrq7d1U/q9xcxoYN49c//dTaI7NPn3zCf74jR1p7JMQMDP38NrkGRi6XY8WKFbh//z5iY2ORnJyM0tJS9OnTR3lMs2bNUL9+fSQlJQEAkpKSEB0djcDAQOUxcXFxyMvLU2ZxkpKSNM4hjhHn0KW4uBh5eXkaX8SBHD+u6iira8dja8nNBYYO5SskGjcG2rYF6tXTnC7q10+1yqc61arFxwMAf/3Ff4ZSKV9GXV7t2vw+gPet0ad8DxhBWx3M/fu894x4Dnvg58d/xwAvkKYVSJZFNTAOyegAJjU1FZ6enpDJZJg4cSLWrl2LqKgoZGZmwtXVFb5iv5SHAgMDkfmw70NmZqZG8CLuF/fpOyYvLw+FepbIzZkzBz4+PsqvsLAwY18asWWiCRygvc+ItTAGvPAC7wlSvz6QlAQkJ/Ppo+JiviT57Flg3TrrjVHUwfz2G78MDeXdc8tzclJt6ljZNJKuWhptK5HE9JGrK98Hyl6IaaRDh/jvH6ApJEuhAMYhGR3ANG3aFCkpKTh48CBefvlljB07FqdPn7bE2Iwyc+ZM5ObmKr+uivl34hhqagDz5ZfAmjX8w3n1asDfX3WfVMoDgqZNrVvYKepgRJZA2wokwdA6mMoCGPXfkXr9i0RS2Whthwhg/vyT1/3Urcu3ESDmJ/7NXr+uyuYRu2f0kgdXV1dERkYCANq1a4fDhw9j/vz5GD58OEpKSpCTk6ORhcnKykLQw7RxUFAQDh06pHE+sUpJ/ZjyK5eysrLg7e0Nd3d3neOSyWSQyWTGvhxiL9QDmJoyhbRnD/DGG/z6V18BHTpYdTg6demi+b22Al7BXAGMtgyMvUwfCSKAEdPfMTH2FaDVJIGB/I+AkhKe3YyIsPaISDWoch8YhUKB4uJitGvXDi4uLti+fbvyvnPnziEjIwOxD3tNxMbGIjU1Fdlqb36JiYnw9vZGVFSU8hj1c4hjxDkIqSA7G0hLU31fEzIwmZnA8OF8ufCoUcDEidYekW5162r2JrFkAKOtBubePX5prwGMQNNHliOV0jSSAzIqAzNz5kz0798f9evXR35+Pn7//Xfs2rULW7duhY+PD8aNG4fXX38dtWvXhre3N1599VXExsai88PmXH379kVUVBRGjx6NTz/9FJmZmZg1axYSEhKU2ZOJEyfi22+/xYwZM/DCCy9gx44dWLlyJTaJpaaElHfwoOb31g5gysp48JKZCbRoAXz/fc3/y7trV1Xbe31TSKLQmDIwlWvenP/eGePfUwGvZYWH81ojCmAchlEZmOzsbIwZMwZNmzZF7969cfjwYWzduhWPPfYYAGDevHl44oknMHToUHTr1g1BQUFYs2aN8vFOTk7YuHEjnJycEBsbi1GjRmHMmDF4//33lcdERERg06ZNSExMRKtWrfDFF19g8eLFiIuLM9NLJnZHTB81acIvrR3AzJ3Lp4+8vPjKnlq1rDseQ4hCXsCwDIy+/ZC09YARKquBsSe1agENG6q+pwDGsigD43CMysD89NNPeu93c3PDggULsGDBAp3HhIeHY/PmzXrP06NHDxw7dsyYoRFHJgKYJ58EPvmE/3XPmHWyHnI5sHAhv/7117xA1xaIQl6g6lNI16/zn4OLiypgEdQzMOJ3ZK8BDMCnkS5d4iu4Hk6TEwuhAMbh0F5IxLbJ5XyZKgAMGsQvHzwACgqsM55du4AbNwBfX2DECOuMwRQNGgDPPQc89ZT+AkhDAhhdPWAAVQ1MYSEgejXZcwATHc0vmzUDaJGBZdF2Ag6HAhhi206f5sGKpyfQsaNqV1prTSMtX84vhw2zrQ8siQRYsgRYtapi0KHOmABGWybHwwPw9ubXRR2MPQcw8fH85ymCa2I5tJ2Aw6EAhtg2MX3UsSNP04u/8K0RwBQV8ZoXABg5svqfvzoYUsSrL4ABKhby2nMA07kzf31qdX7EQkQGJiOj4mahxC5RAENsmwhgHq5007rKpbps3MinRcLCNIti7YnIwBQU8GkgbQwNYESQac8BDAD4+PDgmlhWaCjPwJaWqnYBJ3aNAhhi28oHMNbMwIjpoxEj9E/D2DJvb1XXYF0rkSgDQ6zByUn1PrB/v3XHQqqFnb7LEoeQk8NrYACgUyd+aa0A5t49QKyus9fpI4DXylRWB1NZAFO+mR0FMMRcHnmEX1IA4xAogCG26/BhftmwoepD1dAAhjE+Vy6ajFXV6tW8jXnLlvbf70NfAKOvB4ygnoEpKuKrxgAKYEjVUQDjUCiAIbar/PQRYHgNzLJlvOivb1/gzp2qj0VMH40aVfVz1XT6Ahh9PWAE9RoYsY2Ak5NqdRIhpurUiWcJ09Ks39CSWBwFMMR2aQtgDM3A7NvHL//9l2+yKHZiNsXVq8Du3fy6LfV+MZW+lUj6esAI6kGmmD7y9a352y2Qms/Xl2/fAag20SR2iwIYYpsYq1oAk57OL11c+PXYWGDlStPG8scf/LJbN6B+fdPOYUv0bSdQWf0LoFkDQ/UvxNxoGslhUABDbNPFi/zDTybT3OVXfDhmZ+vvBSECmBUrgMce43UYw4cDb75pfA+JZcv4pT0X76rTN4UkAhh93XxFBubePd61GKAAhpgPBTAOgwIYYptE9qVdO9WyXoB/uEqlgEKhe5mvXK76oG3fnq8emj6df//JJ8ATTwDFxYaNIzWVf7m48Db8jsCQAEZfBsbPT9Wl+MwZfkkBDDEXEcAcOWL4/2NikyiAIbZJ2/QRwItBRY2GrmmkGzd4sysXF6BePcDZGfj0U+D33wF3d+Cff4ClSw0bhyjeffxxx/kQrmoAI5GoMmWnTvFLR/nZEcuLjATq1OGrAo8etfZoiAVRAENsk64ABqi8DiYtjV+Gh2t2SB0xAvjgA359yZLKx6BQ8KAHcJzpI0B3Ee+lS0ByMr+ubwoJUP2ORB8fCmCIuUgkNI3kICiAIbbnwQPg+HF+3ZQARtS/aPuQHTWKZ2QOHlR9uOry3398BZKXF592chTqGRjRRyc/n29YmJ/P96Xq2FH/OUQdzPnz/JICGGJOFMA4BApgiO1JTuZ1LCEhfP+T8sp3ei1PZGAaNqx4X2Ag30EYqDwLM28evxw+nE89OQqRgSkp4QGLQgGMHcung4KCgLVrK9/7RwQwZWX8kgIYYk7qAYy5mlWSGocCGGJ7xPRRbKz23iHlNwssT18GBgBeeIFf/vorr5XR5uxZ4O+/+fXXX698zPbEw4NvmgfwLMyHH/KgxdUVWLOGB5aVKd/kjgIYYk7t2/NMamamqi6L2B0KYIjtEQGM2P+oPENrYLRlYACgf38+TZKdDWzZov2Yzz7jl4MGAc2bVz5meyOmkX78EXj3XX594UIeVBpC/I4ECmCIObm7A23b8us0jWS3KIAhtoUxVYdNbfUvQNVqYAC+OmnMGH79558r3n/jBvDbb/z6jBmVj9keiQDm00/55aRJqsyVISgDQyyN6mDsHgUwxLZcu8ZrW5yceA8YbfTVwBQWqm7Xt1Lm+ef55aZNQFaW5n1ffcWnlh59VPUm6WhEHQwA9OgBfPmlcY+nAIZYGgUwdo8CGGJbxPRRTAyvxdBGXw2MmA/39tb/oRkVxaeoyspUnXYBIDcX+P57ft1Rsy+AKkgMD+dbMLi4GPd4CmCIpYkA5sQJXmxO7A4FMMS2HDzIL3VNHwGqD9f8fOD+fc371KePKts8UGRhfv5ZtZJh0SJ+3qgo1WolRzRpEjB6NO9irJ6NMVRAgObP39fXbEMjBABvUhkezlfJHTpk7dEQC6AAhtgWfQ3sBC8v1bLm8tM/lRXwqnvmGcDNjfeDOXyYtyX/6it+34wZundbdgQxMXyVVlSUaY93dlYFPj4+/HtCzI2mkeyaA78DE5tTWqrq9KprBRKg2aq+fB1MZQW86nx8VPsb/fwzn0q6eZP3nhkxwrixk4rENBJNHxFLoQDGrlEAQ2zHiRNAURHfDLBxY/3H6qqDMSYDA6imkf74g2/0CABTp2puIElMQwEMsTQRwCQl8akkYlcogCG2Q73/S2XTN7qWUhuTgQH4CpsGDYC8PODCBV6rMWGCgQMmelEAQyxNFPvn5qp2Pid2gwIYYjsqa2CnTlsAw5jxGRipFHjuOdX3r7zCa2xI1YnfEQUwxFKcnVXvFzSNZHcogCG2w5AVSIK2Gpi7d1XLKRs0MPx5n3uOLxN2dwdefdXwxxH9evfmRdK9ell7JMSeiWmkffusOw5idlT6T2zDnTt8CgeofKdjQHsNjMi+BAfzD05DhYcDe/YAMlnFFvjEdL1786k5Y3vIEGKMHj2Ajz4CNmzgKwllMmuPiJgJZWCIbRDZlyZNDJty0DaFJOpfDJ0+Ute5M9CmjfGPI/pR8EIsrWdP3hPm7l0exBC7QQEMsQ3GTB8B2gMYkYExtICXEGL7nJxUe5stWWLdsRCzogCG2AZDGtipEwFMVpZq+WRVMjCEENslCvH/+Uf7HmnEJlEAQ2o+hUKVgTFkBRIABAbyy7IyXj8DGL+EmhBiH5o04cW8CoVqJ3mi6f59vkHuM89YeyQGowCG1Hznz/M+Du7uQHS0YY9xcQHq1OHXxTSSsUuoCSH2Q2Rhli5V7W1GVPbuBY4eBf78k2+dUpmMDODKFcuPSw8KYEjNJ6aP2rc3ruhTvQ5GLlf9Z6MMDCGO5+mn+R9BZ84Y9gHtaNR/JgsWVH78rFlAZCSwcKHlxlQJCmBIzWdMAzt16r1grl3j00murkBIiHnHRwip+Xx8gCFD+HUq5q1IfcfuFStUU+/aXLoE/P47f081pK2FhVAAQ2o+Y1cgCeq9YET9S3g4X5VACHE8Yhrpjz/4vmqEY0yVgfHx4f1y9AV5n3zCs9r9+vG6GSuhAIYYbvly4KWX+Mqe6nL/Pt/EETA+gFGfQqL6F0JIr15AWBivqVu3ztqjqTmuX+fvk05OwAcf8NsWLtS+Aea1a7yOCODTSFZEAQwxDGPAlCnADz8AbdtWX1vuI0f4f6J69fiXMdQDGFqBRAiRSoGxY/l18SFMVNmXli2BceN4FiYtDdi6teKxn30GlJbyDsddulTrMMujAIYY5to14PZtfv3GDf6Pd948y1fzmzp9BGjWwFATO0IIoJpG2raNv68RVQDToQPfvfv55/n35Yt5s7L4H7EA8L//Vd/4dKAAhhjm2DF+2awZ7xNQVga8/jqv7M/Ls9zzGtvATp22GhiaQiLEsTVqBHTtyv/4op4wnHoAAwAvv8wvN29WvXcC/I/WoiK+oKJ37+odoxYUwBDDHD3KLzt35tXnX3/NlzSvXs3/0Z86Zf7nZAxISuLXjV2BBGivgaEMDCFEZBioJwyfoj9yhF8XAUyTJsBjj/GfzaJF/La7d1UZmVmzAImk+sdaDgUwxDAiA9OmDf+H++qrfIfm0FDeaG7wYPO/EVy9qiosM6XSXQQwOTmqwmPKwBBCnnqKT5WcP6/6I8lRXbzI3yPd3HgNjPDKK/xy8WKedfn6a6CgAGjVCoiPt8pQy6MAhhhGZGDUd2Tu3BlITua9VS5eVGU5zGX7dn4ZE8PfbIzl6wvIZKrvfXwAPz+zDI0QYsO8vHgQA1Axr5g+atNGs1HoE0/wFVt37gA//cQDGIDXvtSA7AtgZAAzZ84cdOjQAV5eXggICMDgwYNx7tw5jWN69OgBiUSi8TVx4kSNYzIyMhAfHw8PDw8EBARg+vTpKCsr0zhm165daNu2LWQyGSIjI7HU0f+RWdPt26pit9atNe8LCFClHf/7z7zPu3gxvxRvNMaSSFRZGICyL4QQFVHM++efQGGhVYdiEYWFwNy5QPfuQEqK7uPK178Izs68bQYATJ0K3LvHayBFM8AawKgAZvfu3UhISMCBAweQmJiI0tJS9O3bF/fv39c4bsKECbh586by69NPP1XeJ5fLER8fj5KSEuzfvx+//PILli5dinfeeUd5THp6OuLj49GzZ0+kpKRgypQpGD9+PLZqW9LlyIqLq+d5xPRR48b8L5fyHn2UX5ozgDl5Eti/n08fiflqU6gHMFT/QggRunfnjS3z8oC//7b2aMxHoQCWLQOaNgVmzuRT/W+/rft4XQEMAIwfz7MypaX8+7feqlmNQFkVZGdnMwBs9+7dytu6d+/OJk+erPMxmzdvZlKplGVmZipvW7hwIfP29mbFxcWMMcZmzJjBWrRoofG44cOHs7i4OIPHlpubywCw3Nxcgx9jU/btY8zFhbGPPrL8c82dyxjA2NNPa79/40Z+f5Mm5nvOV1/l53zyyaqdZ9Agfh6Asf/7P7MMjRBiJ2bN4u8N/fpZeyTmsXMnY23bqt7zQkL4pZMTY2qfuUqlpYy5u/Njzp7Vfs4RI/j9ERH8+Gpg6Od3lWpgcnNzAQC1a9fWuH358uWoU6cOWrZsiZkzZ+LBgwfK+5KSkhAdHY3AwEDlbXFxccjLy8OphytZkpKS0KdPH41zxsXFIUlPsVVxcTHy8vI0vuzaunU8Kt6yxfLPJTIwbdtqv/+RR/h0zfnz5unS++CBanmjSGGaijIwhBBdRFO7bdt4fytbVVbGW1r07MnrFb28gDlzeG1ip0687f/vv1d83KlTfKrJ25tn2LV5/32gb1/gxx/5tFINYnIAo1AoMGXKFHTp0gUt1SqXn332WSxbtgw7d+7EzJkz8dtvv2HUqFHK+zMzMzWCFwDK7zMzM/Uek5eXh0Idc5Vz5syBj4+P8issLMzUl2YbxLK3S5cs/1zaCnjV+fmpqtfN0aF31SpeFd+gAV/KVxWiFwxAAQwhRFNkJO8mK6ZdbNWWLfx908kJSEjggcubb/Ldt/V1HhYbOLZvz7sUaxMZyTvy1oC+L+WZHMAkJCTg5MmTWLFihcbtL774IuLi4hAdHY2RI0fi119/xdq1a3HJwh+0M2fORG5urvLr6tWrFn2+KikpATZu5JemUCj46h+Ad5lVy3CZXX4+cOECv64rgAHMWwcjOj1OmKD7P5WhqIiXEKKP+ID/5ReL94S5df8W8ovzzX/i06f55fDhwLff8sUVwjPP8JWiJ05ULObVV/9iA0z6dJg0aRI2btyInTt3IjQ0VO+xnR42ILt48SIAICgoCFnlphnE90EPP2x0HePt7Q13d3etzyOTyeDt7a3xVWN98QUwYIDprZgvXNDsfnv5slmGpdXx4/wyNBSoW1f3cV278su9e6v2fOYq3hXUA5jw8KqfjxBiX55+mvdAOX1aldm2gPzifDT5tgna/9gezNyBklgN3LRpxfv8/IBBg/j1X37RvE8EMB07mnc81cSoAIYxhkmTJmHt2rXYsWMHIgxIyac8jPiCH6byY2NjkZqaiuzsbOUxiYmJ8Pb2RlRUlPKY7aIHiNoxsbGxxgy35tqxg18uXaqq7jZG+f9k5u6/oq6y6SNBZGCOHePNjkwlsi8DB2pO/5hKBC0NGvA3KUIIUefjAzz5JL9e/gPejE7fOo2cohycv3Me1/Ovm/fk+gIYQJVlWr5c9ZlTWAikpvLrjpCBSUhIwLJly/D777/Dy8sLmZmZyMzMVNalXLp0CR988AGSk5Nx+fJlrF+/HmPGjEG3bt0QExMDAOjbty+ioqIwevRoHD9+HFu3bsWsWbOQkJAA2cOmYxMnTkRaWhpmzJiBs2fP4rvvvsPKlSsxdepUM798K1AoVPOOt28D//xj/DnKBzCWnJ6rrIBXCAvjwYJcrtq/yFjmLN4VWrXiKVULvjERQmyc+ID/4w+Ltae4dE/1Pn0i64R5T37+PL/UFcDExQGBgcCtW6qFHykp/P06MBAIDQVjDIuPLsa/af+ad2yWZMzSJgBav5YsWcIYYywjI4N169aN1a5dm8lkMhYZGcmmT59eYSnU5cuXWf/+/Zm7uzurU6cOmzZtGisttzxr586drHXr1szV1ZU1bNhQ+RyGqrHLqM+cUS1xAxgbNsz4czz6qOYSuddeM/84hZgY/hzr1lV+7MiR/Nh33jHtuZYu5Y9v0IAxudy0cxBCiLHKylTvp3/9VfF+hYK3rrhxw+SneH/X+wyzwTAbbM5/c6ow2HLu3FF9nhQU6D5u2jR+zJAh/Pv58/n3TzzBGGPs15RfGWaDeX7syQpLC803PhMY+vlt1JooVsm8XVhYGHbv3l3pecLDw7F582a9x/To0QPHxF//9kRkXwID+ZLj9ev5ihtfX8MeL5erpnWGDQPmz7fcFFJxsao4rLIpJIDXwSxfbnodjDmLdwkhxFBOTsDo0cAnn/CpffVus7du8d2Z//qLvw+K918j6c3AlJTwJcqmvO+J6aPQUKBWLd3HjR3L6y83bODbA6gV8N55cAevb3sdAFBQUoCd6TvRv3F/48dSzehTorqJAObZZ4EWLXiQsHq14Y8/e5ZPtXh6Av368dssFcCcPMn7C/j78ymiyog6mAMHjK/tMXfxLiGEGENMI23ZAogazbVr+fv0X3/x748dA9LTTTq9zgDm4EG+11tICDBmDP8jUK1GtFKV1b8I0dE8ACst5VNl4rOoQwe88e8buP3gtvLQ9efWG/78VkQBTHUT/2g6deIRP6Cq+zCEqH9p21bVeCgtjdfWmJt6Aa8hm3c1bw7Urs0DLGOzZ+Yu3iWEEGM0b86LWcvKgAUL+PvzkCE8A9OyparXVSWzB7pcuqsKYM7ePouisiL+zd9/88x6Vhb/LBg1imfo27UDZs+ufJ+myupf1In9nxYsUD7uv3pl+OnYTwCAtx59CwCw4fwG86+UsgAKYKpTUZFqHX7HjsDIkTww2LPH8KXQIu3Xvj1Qvz7PWBQVAQ+bAJqVCEIMmT4CePqzSxd+3Zh+MMXF5i/eJYQQY4kP+Pff543tpFLeEO7IEdUfnJs2GX3aB6UPcLPgJgDA3dkdcibHmVtn+J0nHmZjXn4ZeOMN1Ya5R48C773HMzL6GJqBAYARI/hU1dmzAICSRg3w0n9vAABebPsi3u7+NjxcPHA9/zqOZdb8Eg4KYKrT8eM8fVenDl/WGxrKWz8DhneBFBmY9u35Jlv16/PvLTGNJDIwla1AUmdKP5jERF4HFBJS9c67hBBiKtH0DQCaNOGdxefMAWQy4PHH+e07dxrdPDT9Hp928pH5oGM93nNFOY0kApgRI/ju0ceO8QalooP9wYP6Ty4CmCZNKh9I3bpAfLzy28/iPHHm9hkE1ArA3D5z4ebshrhGcQCADec2GPbirIgCmOqkPn0kpmTUp5EqS9mVlqoyOO3b80vRXdbcAYxcrvqPZWgGBtAMYAxNQa5Zwy+HDKHiXUKI9dSuzd+P5s3jgUTnzqr7WrTgfzAWFfEgxgii/qVR7UZoFdgKwMMAJicHEF3jo6NVDwgKUvWm0ddcTy7n2wYAhmVgAGWW6WJt4MMAnomZFzcPfu5+AIABTQYAANafr/l1MPRpYayqzAuKAEa96+HQoXy/ivPnVdNDupw6xadbfHyARo34bSKAMXcvmHPn+NxrrVq6N/nSpm1b/npu31b9ZaBPaalqK/uhQ00bKyGEmEt8PDBlCi+sVSeRqLIXRk4jifqXRn6NEBPIe6KdyD6haiRXv37Flajt2vHLkyd50KTNlSv8M0EmU2XjK/P442B16+CVeKAIZejTsA9GtByhvDu+STwkkODozaO4lnfN0JdoFRTAGOvTT3lUPns2kJTEC74MpS2A8fJSRdqVFfOqTx+JTIWlMjBi+qh1a+OyIq6uPMMEGFYHs3s3cPcun1YTq5gIIaQmEtNImzYZ9cesyMA09GuoCmCyTqiy3A8bvWqoX5+vAC0rUwU65YkC3saNeT2kIVxdseKH15DYCJA5ybAwfiEkaos0AmoFoHMozzxtPL/RsHNaCQUwxtq8mc9Jvvce8MgjfE5x2DDgp5/0L327d0/1j61822YxjbRihf7lx+oBjCAyMeYOYIwt4FUnAhFD6mDE8sTBg2vcVu2EEKKhVy++JUlGBs+IG0g5heTXCC0CWkACCbLvZyPr5MOu5erTR4JEosrCiM17yzOm/kXNhzf4Jsyzus1CZO3ICvcPbDoQQM1fTk0BjLGWLQMWL+ZBi68vn8NcvRoYP55H0Tdvan+cmB5q1IhH1er69OHL5irbWkBbAGPpDIwpAYyog6ksAyOX8z4LAE0fEUJqPg8P1cILI5ZTp93j78+NajeCh4sHGvvzafkTVx++p2vLwACq9/rKAhhD618AlMhLcO42f9wLbV7Qeoyog9mRvgMFJVXY287CKIAxVlgYMG4csHIl7w+wfz/w7rv89qws4McftT9OvYC3PGdnvqQaAH79Vfvji4tV6UZtAUxmJnD/vvGvRxvGVMXCxqxAEjp35tNO6enAdT2blu3fz39mPj78LxtCCKnpjKyDkSvkylVIjfx4xlw5jXT/4R+eugIYkYHRVchrQgCTfi8dciZHLZdaCPbU3nMrqm4UGvo1RLG8GImXEg0+d3WjAKYqnJ2B2FheDzN3Lr9t0SLt00Da6l/UiWmkDRv4dFN5J07w8/r7q3ZYBvhW6aL4y8QOkRVcvswzSy4uwMMdwo3i7a3qZaBvGklMHw0cqFq6SAghNZmog9m3T/t7dTnX8q6hVFEKF6kLQr1DAQAxAQ8DGN8S/t6nawqoskJeY5rYiYfc4Y9p4t9Eo/ZFnUQiUWZhNpyvucupKYAxl6FDgYAA4MYNvr+ROsYqD2BateJReHEx8L//Vbxfffqo/D86c9fBiOmj6GjTAwtRB1P+ZyEwplo+TdNHhBBbERHBu/bK5cC2bZUeLupfIvwi4CTlhbbKDEwg+PJsXfV/+gp5798Hrj1cJWREDcyFuxcAQDmNpYuog9l4fiPkCrnB569OFMCYi0zG62AA4LvvNO+7epVPlTg7qzIT5UkkvPcAACxcWLHPgLb6F8HcS6nF3K4p9S/CiIfL8n7/nTeqK+/wYf5zqVUL6NvX9OchhJDqJqaRDKiDEUuoG/o1VN4mApjTdYHSmJa6H6yvkFdkX+rU4f1rDKTMwNTWH/R0rd8VPjIf3HpwC4euHzL4/NWJAhhzeuklXvuxYwdw5ozqdtFJMSaG90jRpVcvYOJEfn3cOKBArXhKBDDlVzAB5i3kXbIE+Plnfv2pp0w/T+fOwKRJ/Pr48UB+vub9YvooPl7/z4QQQmoaMY20ZUul+9Cpr0ASwn3D4SV3RokzcC4qQP9z6SrkNaH+BdCcQtLHxclFuSN1TV2NRAGMOdWvDwzg84ZYuFB1u74C3vI+/ZSfJz0deItvrIUHD1RL9vRlYKoawOzdq9qL6O23Vbtdm2rOHJ5uzcjge3wINH1ECLFljz7Ka/1u3aq0AalyBZJaACOVSBFzh08bnQh10f9clWVgjFxCLaaQKgtgAGBgEz6NVFPrYCiAMbdXXuGXv/yiyqBUVv+izstLtZLpm2/4UuTjx/l8a1AQ3y+oPHPUwFy+zFv5l5byoGL2bNPPJXh68iXnAA/oduzg11NTeftrNzfVXzKEEGIrXFxUU9+VrEZS30ZA6cEDxFzhRbknalWyTFkEMKmpmoW8JmRg7pfcV3bXrawGBgD6RfaDk8QJp26dUgZiNQkFMObWpw8QGQnk5fH6j7Iy1fSPIQEMwP9jjBvHr7/wAt+tGtBewAuoMjDp6brTma+8wvsXrFxZsXtwfj5fCXTrFq97+eUX8+1JpD4tNn48D+rE9FFcHA9yCCHE1og/vvTUwTDGNLYRUDp1CjFZ/OqJgkpqF3UV8poQwFy8y/dN8nf3R233yutm/Nz90C28G4CaubkjBTDmJpWqsjALFgCnT/MpIC8v4+Yqv/gCqFePZypENkTb9BHAe9A4O/MVTDduVLz/9GmeAdm1Cxg+nI9j4UK+15FCwXc9TU3lzfT+/psX1ppT+WkxEcAMGWLe5yGEkOrSn9eHIDlZZwPTu4V3kVucC4CvQlI6cUIVwIhdqXXRVsjLmEkBjKH1L+pq8nJqCmAs4bnneGHqiROqlUXt2xu+VwXAm7v98AO/LtKGugIYZ2dVbxht00giYGjYkEfyaWk8yAoPB554gi91lsl48BIWZvgYDeXlpZpK+uYbXs/j7KyqFyKEEFsTFKR6T377ba19uMT0UbBnMDxc1DaHPHECLR/uPHM9/zruPLij/7nKF/JmZvJstlSqysAbwNAl1OqeaPIEAGDPlT3IK84z+HHVgQIYS/DzA559ll9fupRfGjp9pO7xx4GxY1Xf6wpgAP2FvKtX88tZs/jupV9/zYOXW7d4FT3A93IypMjYVI89plpmDgC9e/OfEyGE2CrRQf2nn/h7cPfufBXnw1WXyukj9foXADhxAt7FQIRzXQBAaraOzRqF8hkYkX2JiOB/fBrI0CXU6hr7N0bj2o1RqiitcV15KYCxFDGNJJgaHMybx9v5DxnCp3h00dUL5vx5nglydgYGDeLTQ6++yqemfv+d1+zMm6f6j2hJn38OhPJOlBg2zPLPRwghljR5Mt8fr3dvPtWzZw+vXwwMBCZORNotHjBo1L8wpqxlifHnnc4rnUYqX8hr4SXU5cU35n1vNl0wbPuE6kIBjKW0basZtJiSgQF4liI5WTUNpIuuDIx4XK9ems2OnJ15s7nERGDKFNPGZiwfH+Dff/k00nPPVc9zEkKIpUgk/I+/f//l2e2PP+ZBRWEhsGgRLiXxD3yNAObmTeDOHUAqRUyjRwAYEMCUL+Q1MYAxZQoJUE0jbb6wGQqmv+9NdaIAxpISEvhlaCgvyLUkXUupRQBTlaZ05tS0KW9wZ0w9ECGE1HRhYcDMmbyJ6ddfAwAuXUkBUG4KSWzK27QpYurxzXKNLuQ1oQfM3cK7uP3gNgAgsnakwY8DgK7hXeHl6oWs+1lIvqFjZ2wroADGkp59lkfkS5ZY/rm0ZWDS0/k/dqkUGDzY8mMghBBHJ5Hw1hEREbjkxTf21cjAiAAmJka5pcDJ7JOV7zekXshrQgbmwh2efannVQ+ersa1r3B1ckXfRrzvTU2aRqIAxpKcnHhE3qeP5Z9LBDDZ2aq2/SL70r07ULeu5cdACCEEcHFB4VszcN2bf9vQLUh1nwhgoqPRyK8R3J3dUVhWqFyxpJPIwCQlqVY8GRPAmDh9JNTEOhgKYOyFj4+qxkX84xarj2rK9BEhhDiI9MdjAQBexUCdX1ar7hDN6GJi4CR1QnRgNADDC3kTC0/hryZy3gQ0ONjg8ZiyAkmd2BfpyI0juJmvve9NdaMAxp6o18Fcvco3kZRIgCeftO64CCHEwaQVXAUANLoLSD77jDc0LSlRbfQbw6ePYgL45fHM4/pPWL8+7gfWxsARwFPDgXNt6mvvzK6DqSuQhCDPIHQI4ZsJb7m4xaRzmBsFMPZEvQ5GbJb46KNGRemEEEKqTtkDptgDyMoCFi3itSulpXwjyPr1AUBZB3M086j+E0okONy1IYoe7v24NqaSTSDLMWYTR11q2jQSBTD2RL0XjJg+ot2eCSGk2ik3cWzZld/wySfAgQP8ekyMMnsSG8anmvZf3V/pEuV9zVTbvKyre9vgsTDGlBkYU2tgACC+CQ9gtl3ahuKyYpPPYy4UwNgTEcDs28e/ANpviBBCjPDr8V8x9Z+pOHz9MBhjJp9HGcA8OhBo0IBnYd55h9/5cPoIAFoHtYanqydyinJwMvuk3nPu81W18j+I67ied92gsWQWZKKgpABSiRQN/QzfeqC8tsFtEeQZhIKSAvyX8Z/J5zEXCmDsiaiBOX6cd3vs3NkyexsRQogdupp7FS/8/QK+OvgVOi7uiHY/tMOiI4uQX5xv9LnEFFLDuk34JrYA38MIAKKjlcc5S53xSBhvaLfnyh6d51MwBZJK+Dnr3Oe3rT+33qCxiOxLhG8EXJ1cDX4N5UklUjweyXfh3nTe+tNIFMDYk/KbetHqI0IIMdj3R76HnMkRWCsQMicZjmUew8RNExH8RTBe3PAiLt69aNB55Ao50nP4atBGfo34nnZiw11AIwMDAF3r82kmfVmN07dOI6ckDx5yKaZeqgMAWHt2rUHjqeoSanWiK+/GCxurfK6qogDGnoSG8i0CBJo+IoQQgxSVFeGHoz8AAL6L/w7XX7+OL/t+iab+TXG/9D5+PPojhq40rKbwRv4NlMhL4Cx1RphPGODqCvzvf6oDWrbUOL5beDcAPAOja9pqXwYvC+jUqDue+oFf33l5J3KKciodT1WXUKvr07APXKQuuHj3ovK81kIBjD1xcuJzrQDvGRARYdXhEEJs0zcHv0Gjrxvhs32foUReYu3hVIsVJ1fg9oPbCPMOw8CmA+Hv4Y+psVNxJuEMto3aBgBIzUo1aDpJ1L808G0AZ+nDPyrHjuXd2d94g69CUtOxXke4OrkisyBTZ0O7/df2AwC6hHVBE/8miKobhTJFmUFTOVVdQq3OS+aF7g26AwA2nrduFoYCGHvTrBm/pOkjQogJ5Ao5PvzvQ6TdS8OMf2cgemE0tlyoGX0/LIUxhm8OfQMAeKXDK6qgA4BEIsFjjR5DqHcoGBhSMlMqPZ9yCbX6FgKursDy5cDcuRWOd3N2Q8d6fMPf/65on0YSGZgu9bsAAAY3HQwAWHduXaXjMecUEgA80ZhPI1l7OTUFMPZmzhxg9my+zTshhBhp/9X9yL6fDS9XLwTWCsT5O+fx+O+PY8AfAwyuAbE1SdeScPTmUcicZBjfdrzWY9oF8064yTcr38xQuQJJPYCphKiD2ZNRsZA3qyALl+5dggQSxIbyZddPNucNSrdc2ILC0kKd55Ur5MrfmzkyMIBqOfWeK3uQV5xXydGWQwGMvWnZEnj3XcDd3dojIYTYIFEYOrjZYJybdA7TYqfBWeqMjec3osV3LfDKplfw99m/cbfwrpVHWtH+q/tx+Pphox8nsi8jo0eijkcdrce0DeY7RxsTwBizZFnUwWjLwOy7yrMvLQNawsfNBwAPqEK9Q3G/9D62p2/Xed6M3AyUyEsgc5IhzNs8q1Ija0eiiX8TlCnKsO3SNrOc0xQUwBBCCAHAp1JEAPNksyfh4+aDz/t+jtSXU9G3UV+UyEuw8MhCDP5zMOp8Wgetv2+NyVsmY+2ZtXhQ+sCqY79XeA+9f+2Nbku7Iasgy+DH3ci/gdWneePPVzu9qvM4ZQbmRuUBjNj5uVFtwzMwj4Q9AqlEikv3LuFG/g2N+8T0kVhuDfCpLTGNtPaM7tVIYvqoUe1GcJI6GTyeygxpNgSPNXwMPjIfs53TWBTAEEIIAQCkZKbgcs5luDu7Iy4yTnl7szrN8M/If7Bl5Ba82PZFNPVvCgaG41nH8fWhrzFk5RDELIwx6MPdUk5knUBRWRGKyorwy/FfDH7coiOLUKYow6P1H0XroNY6j2sXwgOYs7fPoqCkQOdxBSUFyo0Z2wS1MXgc3jJvtApsBaBiFka9gFfd4GaDAQDrz6+HXCHXel5zFvCqm9NnDraN3obHGj1m1vMagwIYQgixI2duncG6s+tMeqzIvvSL7AcPFw+N+yQSCfpF9sOiAYtwdtJZ3Jx2E38+9Sdebv8yQrxCcOneJcT+FIuvD35dpQ62pkrNTlVeX3x0sUFjKC4rxqLkRQCAVzvqzr4AfDPDEK+QSgt5k64mQc7kCPcJR7hvuM7jtFFOI6n1gyksLVQGhqKAV/14Pzc/3H5wWznNVJ45l1DXNBTAEEKInbj94Da6Le2GJ/98EtvTdNdF6KI+fVSZIM8gPN3iaXwX/x1OvnwSTzZ7EqWKUkz+ZzKe/PPJaq+REVkPgE+b7L6yu9LHrDq9Cln3s1DPq55Br9mQaSTRTVcEI8ZQFvKqdeQ9cuMIShWlCPIMQoSvZmsMFycXZWM5XUGrpTIwNQEFMIQQYide3/o6bj/gm/z9euJXox574c4FnMw+CWeps/JD0VB+7n746+m/8E3/b+Dq5Iq/z/2N1t+3xv6r+406T1WIAKaeVz0AwI9Hf6z0MaJ4d2L7iXBxqnx3Z0NWIolVRCYFMOE8gDmZfVIZAIrMSpewLpA83ABSnQi81p5dqzXrZO4l1DUJBTCEEGIHEi8l4rcTvym/X3NmjVGFtSL70rNBT/i5+xn9/BKJBJM6TsKBcQcQWTsSV/OuotuSbnhpw0u4nHPZ6PMZQ8EUyo0Q5/bhfVb+Ov0X7jy4o/Mxh64fwqHrh+Dq5IoX271o0POIOpijN49qvb+orAgHrx0EYFoAE1ArQFlfJAp3RQCjXsCrLi4yDu7O7ricc1kjCwXwKTLxs6cMDCGE1DCX7l5CUVmRtYdhVQ9KH2DipokAgEkdJqGBbwMUlBRgw7kNBp/DmOkjfdoEt8HRF49iZPRIyJkcPxz9AY2/aYwJ6ycg7V5alc6tS/q9dNwvvQ+ZkwzPtHwGrYNao1herBHQqWOMYfau2QCA4S2GI6BWgEHPIzIwZ26fwf2S+xXuP3z9MIrlxQisFYjGtU3LeKjXwSiYQpnFKl/AK3i4eKBvo74A+E7a6sW8affSoGAKZU8fe2NUADNnzhx06NABXl5eCAgIwODBg3Hu3DmNY4qKipCQkAB/f394enpi6NChyMrSXNKWkZGB+Ph4eHh4ICAgANOnT0dZWZnGMbt27ULbtm0hk8kQGRmJpUuXmvYKCSF2iTGGD3Z/gMhvIjFm7RhrD8eq3tv1HtLupSHUOxQf9/4Yz7Z8FgCwPHW5QY+/nncdB64dAAAMajaoyuPxknlh2ZBl+O/5/9CnYR+UKcqw+NhiNPmmCZ7/+3mzN8QTBbxRdaPgLHXGhLYTAPBpJG3TKouPLsaWi1vg6uSKNx990+DnCfYKRrBnMBRMgeNZxyvcL2pXuoZ31TrdYwj1jR3P3zmPu4V34ebshjbBulc0iaDzywNfIviLYLzw9wv4++zfyjE29m9s8nhqMqMCmN27dyMhIQEHDhxAYmIiSktL0bdvX9y/r4pEp06dig0bNmDVqlXYvXs3bty4gSFqmwrK5XLEx8ejpKQE+/fvxy+//IKlS5finXfeUR6Tnp6O+Ph49OzZEykpKZgyZQrGjx+PrVu3muElE0JsHWMMM7fPxDu7+PvG6tOrcSXnipVHZR3Hbh7DF0lfAAC+e/w7eMm8MDJmJABgy8UteqdRhL/P/Q0AiA2NRYhXiNnG9mj9R5E4OhH7XtiHuEZxkDM5lqYsRfTCaBy6fshszyOmTmIC+S7PI6NHwt3ZHadvnUbStSSNY9PupWHq1qkAgI97fYyoulFGPZeyoZ2WQl6xeqhbfeOnjwSRgTly4wgSLyUCUO2VpMvTLZ7GuDbj4Ovmi1sPbmFJyhIM/nMwRvw1AoB9Th8BAFgVZGdnMwBs9+7djDHGcnJymIuLC1u1apXymDNnzjAALCkpiTHG2ObNm5lUKmWZmZnKYxYuXMi8vb1ZcXExY4yxGTNmsBYtWmg81/Dhw1lcXJzBY8vNzWUAWG5ursmvjxBS88gVcjZp0ySG2WCYDRb0eRDDbLBZ22dZe2jVrlReytotascwG2zYymEa97X5vg3DbLCFhxdWep4+v/ZhmA326d5PLTVUxhhjB64eYF1+6sIwG6z+vPrs1v1bZjnvUyufYpgN9vm+z5W3PbfuOYbZYM+te055W5m8TPn83ZZ0Y2XyMqOf650d7zDMBhu7dqzG7aXyUub5sSfDbLCUmykmvxbGGAv7MoxhNljD+Q0ZZoPN/HemQY8rKSth29O2s9c2v8bC54Ur/49Y+vdqboZ+flepBiY3NxcAULt2bQBAcnIySktL0adPH+UxzZo1Q/369ZGUxKPgpKQkREdHIzBQNR8XFxeHvLw8nDp1SnmM+jnEMeIc2hQXFyMvL0/jixBiX+QKOSasn4BvD38LCST4Pv57zO83HwDw07GfUCovtfIIq9c3B79B8s1k+Mh8lD8HYWQ0z8JUNo10t/AudqbvBKDaX8dSOoV2wqZnNyGydiQycjMwas0onQ3YjFE+AwNAOY3058k/kVvEP6u+SPoC+67ug6erJ34Z/ItJnWlFIW/5lUgpmSkoKCmAr5svWga0NOl1CGI1kqgZ0lXAW56Lkwt6RfTC/P7zkT45HSkvpeDPp/7EpI6TqjSemsrkAEahUGDKlCno0qULWrbkv6zMzEy4urrC19dX49jAwEBkZmYqj1EPXsT94j59x+Tl5aGwUPumVXPmzIGPj4/yKyzMPHs+EEJqhlJ5KUatHYWfU36GVCLFL4N/wUvtX8LgZoMRUCsANwtuYsN5w4tWzTmuozeP4sfkH5F4KbHamrhdzrmMWTtnAQA+e+wzBHsFa9z/TMtnIIEEezP26l0FtPH8RsiZHNEB0YisHWnJIQMAfNx88NfTf8Hd2R1bL23Fh3s+rNL5HpQ+UNbURAdGK2+PDY1FVN0oFJYVYnnqcpzIOoG3d74NAJjfbz4a+DYw6flEIe/pW6c1VnmJ+pdH6z9a5Zb95aegDA1g1EkkErQKaoWnWzwNdxf73BvP5AAmISEBJ0+exIoVK8w5HpPNnDkTubm5yq+rV69ae0iEEDMavXY0VpxcAWepM/586k+MbjUaAODq5IpxbcYBAL4/8r3Fx1FYWojVp1fj/7b9H7ou6QqfuT5o90M7vLjxRfRd1hdP/PEE0u+lW3wcc/6bgwelD9C1fleMazuuwv31vOuhZ0RPAMDvqb/rPI+5Vh8ZIyYwBt8/wX9X7+1+D/9c/Mfkc52+dRoKpkBdj7oaK20kEokyC7MoeRFGrx2NEnkJBjYdiOdbP2/y84V4hSCwViAv5M1UFfIqG9hVof5FEBkYAGhepzlqu9eu8jntkUkBzKRJk7Bx40bs3LkToaGhytuDgoJQUlKCnJwcjeOzsrIQFBSkPKb8qiTxfWXHeHt7w13HLssymQze3t4aX4QQ+3A19yr+PPUnpBIp1g1fh6eintK4f0LbCZBAgsS0RFy6e8li4yhTlKHXr70wbNUwfJH0BfZm7EVhWSF83XzRPbw7XKQu2HxhM1p81wJz/puDEnlJhXPceXAHK06uwLykeVrvN0RRWRH+PPUnAOC9Hu9BKtH+Vq4+jaQtM3S/5L4yeLD09FF5Y1qNwUvtXgIDw8g1I00uwlafPiq/0mZ0zGi4OrniRNYJnMg6gboedfHDEz9UaUWORCKp0A9GwRSqAl4T+r+U17xOc+Wu2LqWTxMjAxjGGCZNmoS1a9dix44diIjQbGvcrl07uLi4YPt2VQvrc+fOISMjA7GxsQCA2NhYpKamIjs7W3lMYmIivL29ERUVpTxG/RziGHEOQohjEXvPtKjbAvFN4ivcH+EXodx88IfkHyw2jnlJ83Dg2gF4y7zxcvuXsXTQUpxJOIM7M+5g13O7cOLlE+jZoCcKywrx1o630GZRG+y6vAt7M/bi7R1vo+OPHVH3s7oY8dcIvL7tdZMzRhvObUBucS7CvMPQvUF3nccNbT4UMicZTt86XWHZL2MMXx34CkVlRYjwjVBuJFidvur3FdoFt8PdwrsYtmoYisuKjT5HahZfQh0dEF3hPn8Pf41gd9ETixDoWfV+KOU78p6+dRp3C+/Cw8VDuUqpKiQSCR5v/DgAoH/j/lU+n70yKoBJSEjAsmXL8Pvvv8PLywuZmZnIzMxU1qX4+Phg3LhxeP3117Fz504kJyfj+eefR2xsLDp37gwA6Nu3L6KiojB69GgcP34cW7duxaxZs5CQkACZTAYAmDhxItLS0jBjxgycPXsW3333HVauXImpU6ea+eUTQmzBscxjAKB3t+CX2r0EAFiSssSkD8LKXLhzQblse36/+fgu/juMbT0Wzeo0U2ZAmtVphu1jtuO3J39DXY+6OH3rNHr+0hNdl3TFh/99iMM3DoOBoa5HXQAweepENGgbGT1SZ/YF4PUmA5oOAAAsP6Eq5i0qK8K49eOUNTQvtnvRKn1C3JzdsPrp1fBz88PhG4fRbWk3vLLpFXyy9xP8efJPHLx2ELfu39J7jhPZFQt41U2LnQZ3Z3dM6jDJbFmm8gGMmD6KDY01aEsCQ3zd72vseW5PtU7t2RxjljYB0Pq1ZMkS5TGFhYXslVdeYX5+fszDw4M9+eST7ObNmxrnuXz5Muvfvz9zd3dnderUYdOmTWOlpaUax+zcuZO1bt2aubq6soYNG2o8hyFoGTUh9uPJFU8yzAb7Yv8XOo8plZeykC9CGGaD/ZH6h1mfX66Qs+5LujPMBnvs18eYQqGo9DF3HtxhL214iUlmS5j/J/7smdXPsCXHlrDredfZ8czjDLPBPD7yYEWlRUaNJbsgmzm/78wwG+xU9qlKj197Zi3DbLB6X9RjZfIydjX3Kuv4Y0eG2WDS96Tss32fGfR6LGnz+c1M+p5Uuey3/Nc3B7/R+jiFQsHqfFqHYTbY4euHdZ7flOXS+mTkZDDMBnN6z4k9KHnAnln9DMNssPd2vWfW53FUhn5+Sxizwr7n1SAvLw8+Pj7Izc21Wj1MblEuXlj/Ano26Gm3y9gIqQ4N5zdEek46to/Zjl4RvXQeN3vXbLy3+z10D++OXc/tMtvzLzqyCBM3TUQtl1o4+cpJo1awFJYWwtXJVWNlCmMMwV8EI+t+FnaO3YkeDXoYfL5vD32LV7e8inbB7XDkxSOVHl9cVoygL4KQU5SDj3t9jPkH5yPrfhb83Pzw51N/4rFGjxn83JZ0+tZp7L+6H5dzLuNK7hVczrmMS3cv4WbBTTT0a4iLr16skCXKLMhE8BfBkEqkyJ+ZDw8Xj2oZK2MMgZ8H4taDWzgw7gCGrByCG/k3jP5dEu0M/fx2rsYxOZz5B+djzZk1+DftX7zc/uUqL60jlpV2Lw0LDi3AoRuH4OXqBV83X/i6+cJH5gNfN190C++G2DCqw6puOUU5SM/hq3r0TSEBwPi24/HBng+w+8punL19Fs3qNKvy81/Lu4bpidMBAB/3/tjo5bfalrBKJBL0adgHy1OXI/FSolEfemL6aHTMaIOOlznLMCxqGH48+iPe2vEWAF4vsu6ZdWjo19Dg57W0qLpRFbri3i+5j8DPA5F2Lw37r+5Hl/qaBa2i/iWydmS1BS+AqpD3n4v/YOWplbiRfwMuUhd0qtep2sZAaDNHiykoKcD8g7yxVF5xHk7dOmXlERFtGGPYkb4Dg1YMQuTXkfjywJfYm7EXWy5uwR8n/8DCIwsxd99cvLn9TTzy8yN4f/f7UDCFtYftUMQqk/o+9StdThrqHYonmjwBgGdNqooxhokbJyK/JB+xobFI6JBQ5XMKjzXkmY/EtESDH3Pu9jkcun4IThInjIgeYfDjxGokgLedTxqXVKOCF11qudbC0KihAKB1Y0ZtDeyqi6iDWXxsMQDe7t9e+63UVJSBsZAfk3/E3cK7yu/3Zuy1yn8yop2CKbDk2BJ8dfArnMw+qbw9rlGcchfdnKIc5VfavTRsOL8B7+56F8cyj+GXwb/AW0ZL9avDsZuVF/Cqm9huItafW4+lx5fi494fV+lDZcXJFdh0YRNcnVyxeOBis2ZR+zTk3caP3DiCu4V3Der1IT7E4yLjDN5BGeBLez/u9TFqu9e2WsGuqUbHjMavx3/Fn6f+xPx+8yFzlinvE5s4aluBZGkigMkr5l3fzbF8mhiHAhgLKC4rxudJnwMAmvo3xbk757A3Yy9e6fCKlUdWcx24dgCMsWqbopmXNA//l/h/AIBaLrUwttVYvNrpVb1TDkuOLcHETROx7uw6dF7cGeueWVftm6Sl30vHxbsXa0zdQnVIyUoBALQObG3Q8X0b9UW4Tziu5F5B3LI4vNX1LcQ1ijP6Q/v2g9t47Z/XAACzus4yetO/ytTzroeoulE4fes0dqTvqNDbpjwFU2DZiWUADJ8+EiQSCWZ2nWnyWK2pZ4OeqOdVD9fzr2Pj+Y3KjAxg5QzMw14wAgUw1Y+mkIyUfT8bU/+ZqrcB1a/Hf8WN/BsI9Q7FvLh5AIB9V/dV1xBtTmpWKrou6YquS7ri9K3TFn8+BVNgweEFAICpnafi2uvXsCB+QaX1Es+3eR57ntuDEK8QnLl9Bh1/7IhN5zdZfLwCYwwD/hiAvsv64uC1g9X2vNYmesC0CW5j0PFOUifM6T0HzlJn/JfxH/ov74/Wi1pj+YnlBu+V9KD0AYb8OQS3H9xGdEA03nj0DVOHr5dyGulS5dNIezP24kruFXjLvDGo6SCLjKcmcpI6KafA1KeRyhRlyvcLawQwYd5hymZzUonUpHb/pGoogDGCgikQtywOXx38CuPXj9fa2bJMUYZP9n0CAPi/2P9D1/CucJI4ISM3Axm5GdU95BpPwRR4aeNLKFOUQc7kmLZtmsWfc9flXUjPSYe3zBsf9voQvm6+Bj+2U2gnJL+YjC5hXZBbnIsBfwywaOM0danZqcpaqh3pO6rlOa2tRF6CU9n8NRs6hQQAI6JHIO21NEztPBW1XGrhRNYJjFo7Co2/aYyFhxfqrWMqlZfi6VVP47+M/+At88ayIcvg6uRa1ZeiVd9GfQEA29K2VbqH0m/H+Yf3U82fcrhaC7FtxOYLm3HnwR0AvC9PsbwYtVxqmbyvUVVIJBLlNFKboDY0pWwFFMAYQSqRYk7vOXCSOOG3E7/h3V3vVjhm1alVuHTvEup41MH4tuPh6eqpfOPdl0FZmPJ+TP4RSdeS4OnqCRepC/65+A+2XNhi0ef86dhPAIARLUeYtHIhyDMIO8buULZBn/zPZJy/c97cw6zgr9N/Ka8fuH7A4s9XE5y5dQalilL4yHwQ7hNu1GPDfMLwZdyXyJiagQ97foi6HnVxJfcKXtn8Cvov74+sgqwKj1EwBZ7/+3lsurAJbs5u2Dhio0X/uhfbD1zOuYxL93RvgVBYWohVp1cBUH2YO5KWAS3ROqg1ShWlyi0UxPRRdGC03mZ+liRWj/WL7GeV53d0FMAYqV9kP+UmZB/s+QA/Hf1JeZ+CKfDx3o8BAFM6TUEt11oA+O6kAE0jlZdVkIU3t78JAPiw54d4rROvN5i2bZrBqX5j3Su8pwwExAaApnB1csXC+IV4rOFjKCorwoQNEyy+OumvM6oAJulqUrXtemxN6h14TS08re1eG//r9j9cmXIFX8V9BXdnd2y7tA2tF7XWyGQxxjDlnylYnroczlJnrB62WmNTPUuo5VpLOfWgbxppw3m+dUB9n/oOW2sxJmYMANU0kjULeIXXY1/H38/8jbe7vW21MTgyCmBMML7teMzqyltwv7TxJWy9uBUAsOn8JpzMPgkvVy8kdFQttxSbce3N2Fv9g63BXt/2OnKKctAuuB0mdZyEWd1moY5HHZy5fcZi0zJ/nPwDxfJitAxoifYh7at0LolEgh8G/IBaLrWw58oe/Jj8o5lGWdG52+dw6tYpOEud4SJ1wa0Ht5S9Uczl/7b9H17a8FKNWiaurH8JMqz+RR93F3dM7jwZhyccRlTdKGQWZKLPr33wzs53UKYow/u738c3h74BACwdtFTrnkuWYMhyakO3DrBnI6JHQCqR4sC1A7hw54JVC3gFVydXDGw6UGNlFKk+jvk/wQze7/k+RseMhpzJ8dSqp5CSmYKP/vsIAJDQIUGjrkI0X0rNTkVuUa41hlvjbLu0Db+n/g6pRIpFTyyCk9QJvm6+eL/H+wCAd3a9g3uF98z+vGL6aFybcWZZStrAtwE+7s2zbtMTp+Na3rUqn1ObNWfWAAB6R/RWFrMeuGa+aaSzt8/ii6Qv8MPRH5Q1JzWBCGCMqX+pTIuAFjg84TDGtxkPBoYP9nyA6IXRmL17NgDgm/7fYGTMSP0nMSOxomxH+g6UKcoq3H8z/6ZyzyRjVx/ZkyDPIGXN0G8nfqsRGRhiXRTAmEgikWDxwMXoFdELBSUF6LG0Bw5ePwg3ZzdM6TxF49gQrxA09GsIBVOY9UPHVhWWFuKVTXxJ+asdX9VYjjih3QS0qNsCdwvv4oM9H5j1eVMyU3D05lG4SF0wKmaU2c6b0CEBsaGxyC/Jx8SNEy0ytSOmj4Y2H4rYUL7UPOlqktnOv+7sOuX1/Vf3m+28VcEYs0gAAwAeLh74ceCPWD5kOTxdPXH29lkAwOzus6t92492we3g5+aH3OJcHLmhuTWAXCHHmHVjUKYoQ+fQzmhet3m1jq2mEQHcz8d+xuWcywB4DQxxTBTAVIGrkyvWPL0GLQNaIreYZ1bGtxmvdbt2mkZS+ei/j3Dp3iXU86qHD3pqBinOUmd8GfclAOCbQ9+YtThW1CsNbjZYufzRHJykTlg8cDFcnVyx6cImrDi5wmznBoDLOZeRfDMZUokUg5sNRudQvrO7OQt5NQKYazUjgLmccxm5xblwkbpY7IP72ehncfTFo3iy2ZP4qNdHeKf7OxZ5Hn2cpE7o3bA3gIp1MO/tfg//pv0LDxcPLB6wuNrHVtMMbjYYnq6euJ5/HQBQz6ueQQ0AiX2iAKaKfNx8sPnZzQj1DoWnqyf+75H/03ocFfJyp2+dxqf7PgXAU/VeMq8Kx/Rt1BfxjeNRpihT7kFjCLlCrjP7UVRWhOWpywEAL7R5wYSR6xdVN0pZF/XaP6/h1v1bZju3mD7qFt4NdWvVVWZgUjJTUFhaWOXzX8+7joPXVX1lakoGRmRfWgS0sNgyZgBo7N8Ya4avwVtd37Jah1ptdTCbzm9SZiF/HPAjWgS0sMrYahIPFw+Nhn/U3dyxUQBjBmE+YTj58klcePUCwn21L/UUAcyBawcstsLGFry1/S2UKkoxoMkADG42WOdxn/f9HM5SZ6w/tx7b07ZXel7GGAauGIjAzwOx4dyGCvevO7sO94ruIcw7TPlhYW5vPPoGogOicfvBbUzZOsVs51WfPgL4nkBBnkEoU5Qh+WZylc+//tx6AECLuvwD8uLdi8i+n13l81aVOQt4azrxbzLpWhLyi/NxOecyRq/l0yUJHRLwbPSz1hxejaJeB0QBjGOjAMZMfNx8EOQZpPP+ZnWawc/ND4VlhcqlobamVF6KB6UPTH58XnEetlzkPV4+7v2x3r92m9VphpfbvwwAmLl9ZqV1Jfuv7sfmC5tx68EtDFwxsMKmi6J497nWz1lsV3BXJ1f8NPAnSCVS/J76u7Lwsipu5N9QZkSebPYkAF5/pZxGMkNN1dqzawEAY1uNVQYxldXX5BTlYNGRRbied73Kz6+LcgsBM9e/1EQRfhFo5NcIZYoybL20FU+tfAr3iu6hY72O+KLvF9YeXo3So0EPhHqHAgBaBbay8miINVEAU02kEqlyNZKuhnaJlxIxe9dsvdsUWNNTq56C9xxvjF031qTalH8u/oMSeQma+DdRflDqM6vbLMicZDh84zCSrun/QBVbA4g3tnd3vYuhK4cirzgPl3MuK7M4z7d+3uhxG6NDvQ6Y3GkyAOD1ra9rXVVijLVneHARGxqLet71lLcrC3kr+blUJqcoBzsv7wTA6wtET5LKppGmbZ2GiZsmotmCZph/YL7e1/mg9AFWn15t9OomSxXw1lQiCzNu/Tgk30yGv7s/Vg1bRUt0y5FKpPh18K+YFjtNY18k4ngogKlGj4bxaaS9VysW8p6/cx6DVgzCe7vfw7ykedU9tErdLbyLDec2QM7k+PX4r2i+oDlGrRmFM7fOGHwO8Zf+k82eNKjWIKBWgHIPlK8OfKXzuKyCLKw+vRoAsG74Ovw88Ge4OrkqN118f/f7YGDoFdELEX4RBo/XVO90fwf+7v44c/sMFh+tWuFl+ekjQWRgqtrQbtP5TShTlKFF3RZo7N9YFcDoKeSVK+T4+9zfAICCkgJM2ToFnRZ3wuHrhzWOu5p7FTP/nYmweWEYtmoYHvvtMYMDujsP7ii33nCUv7LFcuq84jxIIMHyIctR36e+lUdVM/WM6InP+35u0dooUvNRAFONRAZmb8ZejQ+dMkUZxqwdg8IyXpD58d6PTa5B2JexDy9vfFlrm/Sq+O/Kf2BgqO9THwOaDICCKbA8dTlafNcCI/4agYt3L+p9fHFZsXLjQ321L+VN7syzGX+d+QtXcq5oPeanYz+hVFGKTvU6oV1IuwqbLi5JWQKgap13jeHr5ot3u/NtJt7Z+Q7yivNMOs+t+7ew+8puAMCQ5kM07msf0h5OEifcLLhZpd4z686tA6D6nYgA5vD1wzozgUnXknCn8A783Pzw3ePfwdfNF0dvHkWnxZ0wafMkbE/bjqdXPY2I+RGYu28u7hbeBQDcLLhpcIHw8azjAICGfg3h4+Zj8uuzJb0iesFJwqc33+3+LuIi46w8IkJqNgpgqlH7kPZwdXJF9v1sjX1P5u6di4PXD8JH5oMWdVsgrzgPs3fNNvr8jDFM2DAB3yd/j6dXP13l6Qt1Yprh8cjHsX7EeiS/mIzBzQaDgWHFyRXo+UtPFJcV6318fkk+gj2D0bFeR4OfNyYwBr0iemnsIK1OrpDj+yN8a4dXOryivF1900WABxWihqQ6TGw/EU38m+DWg1uYu3euSef4+9zfUDAF2ga3rZA58nDxQKsgnpkwdRqpsLRQue+U+Nk0rt0Y/u7+KJYX49hN7bVaokj68caP4+UOL+NswlmMjhkNBoYFhxegz299sOr0KsiZHD0b9MTa4WuVmTT15dr6ONr0EcD/jf4w4Ae81+M9vN2dWtMTUhkKYKqRm7Obsn296Adz9OZRvLf7PQDAgscX4NvHvwUA/JD8g1HTMwD/IDtzmz9mz5U9eHdnxc0mTSUCmJ4RPQEAbYPbYu3wtUh5KQUhXiG4lncNK0+t1Pl4UcsxqOkgo1uhT+k0BQDw49EfUVBSoHHfxvMbcTXvKvzd/fF0i6c17hObLn4V9xXWDl9brTv4uji54NM+fLn4vAPzTNqJXEwfDWk2ROv9og7G1ELe7enbcb/0PsK8w9A2uC0AXiBcWR3M+vN81dKAJgMAAIGegfj1yV+xfcx2NPVvCjdnN4xvMx7HJx7HjrE7MLjZYOUU2Lqz6wya8lIGMIGtTXpttuqFNi/gne7vOOx2AYQYg/6XVDNlHUzGXhSVFWH02tEoU5Thqain8Gz0s+jRoAcGNR0EOZMb1QMFUDVqa1anGQA+FWWOlTC3H9xW7jsidl8VWgW1wqQOvHPp/IPztX44KZhCWTPxZHPjsyDxTeIRWTsSOUU5+PX4rxr3fXfkOwB8esjN2a3CY12dXDG58+QK464OA5sORI8GPVBUVoS3tr9l1GNzinKUhce6ChWVdTAmZmBEUDm42WCNmiR9dTAX7lzA2dtn4Sx1rrADb6+IXjidcBp3Z9zFjwN/1Fji2rdRX7g5uyE9Jx0ns09WOjZHzMAQQoxDAUw1U29o97/t/8PpW6cR5BmEhfELlR8inz72KZylzth0YZNBPVAAXvi34hTvAPvjgB8xsd1EAMCoNaOqvD/Pnit7APA+IQG1AircP6HdBLg5uyH5ZrLWD9MD1w4g634WfGQ+JgUSUolUubJn/sH5yuXRF+5cwLZL2yCBBC+1f8no81qaRCLBF32/4AWZqcsrFLlqk1+cj/Xn1uPFDS+iVFGKqLpRyoC0PBHAHL15VO/0nTZyhVyZSSlfk6SegSkfkG44z6ePuod311qbIpVItWa6arnWUq6yqWwaqaisCKdvnQYA5b5PhBBSHgUw1Ux8OJy9fRbzDvDVRosHLNZobd/Ev4myB8q0bdMgV8grPe+fJ//Eg9IHaOrfFF3CumBev3loE9QGdwrv4JnVz1SpHmZnOp8+0hV81PGoo6xx+Prg1xXuFx9Y8U3iTV418Fzr5+Aj88H5O+eVWaWFRxYCAPo37o+Gfg1NOq+ltQ1ui9GteOOtadumVQgI5Ao5jt48irl756LnLz3h/6k/Bq0YhFWnVwGA8ueqTSO/RqjjUQcl8hJlxsJQ+67uw+0Ht+Hn5odu4d007msf0h7OUmfcyL9RYepLNL0b2HSgUc8HqAIlUTisy6nsU5AzOfzd/VHPq57eYwkhjosCmGrm7+GP5nX4vi4MDBPaTkB8k/gKx73T/R34yHxwPOt4hWkTbRYf48t1x7cdD4lEAjdnN6wcthJerl7Yd3UfZu2YZfKYlfUvDXrqPOa1Tq8BAFafXq2R8WGMaSyfNpWnqyfGtx0PgC+pflD6QLm6KKFDgsnnrQ4f9foI7s7u+C/jP/x15i8cuXEEn+//HAP+GAD/T/3R7od2mLl9JnZd3oVSRSka+jXEy+1fxvpn1uONLm/oPK96Qztjp5FEUDmg6QA4S5017vNw8VB2v1Wvg7lbeFdZuyXqX4wxoMkASCVSHL15VG9NkPr0kbVa+xNCaj4KYKxATCM19Guo3LiwvDoedTCrGw86/rfjf7hfcl/n+U5kncCh64fgLHXGmFZjlLdH1o7Ez4N+BgB8su8T5TJmY2Tfz8apW7wBWfcG3XUeFxMYgx4NekDO5Pju8HfK20/dOoWLdy9C5iSrUDNhrEkdJ0EqkSIxLRFv73gbOUU5iPCNQFyjmr3cNNQ7FNNipwEAhq0ahg4/dsD0xOnYeH4jcotz4eXqhSeaPIFv+3+LC69ewKXXLuG7+O8woOmASrsGm1LIa0hQqa2Qd8uFLZAzOVoGtDSpn07dWnWV5xWZHG2o/oUQYggKYKxg+iPTMTJ6JNYOXwtPV0+dx73a8VVE+EbgZsFNfL7/c53HieLdQU0HVahReSrqKWWR7dh1Yyus4qnMrsu7APAApbIdnF/ryLMwPyT/oNxkUPyl/1ijx/S+VkM08G2g/MD98gAP/Ca2n2ixrQHMaUaXGcouwb5uvhjQZAA+f+xzHJ5wGHffuIsNIzYgoWMCImtHGnVeUzIwx7OO43LOZbg7u6Nvo75aj9FWyCvqX0zJvgiDmw4GoLsOprC0EBsvbATgGHsgEUJMRwGMFTT2b4xlQ5ZVuhGZzFmGuX14D5GP936sDCbUFZUV4bcTvwGAcoqlvM/7fo6Gfg1xp/CO3r98tRHP2SO8R6XHDmw6EOE+4bhTeAe/p/4OQNV9V3xwVdWUzlOU12VOMovsLG0JXjIvHH3xKFJfTsXt6bexfsR6THtkmrLexFQdQjpAKpEiIzcDN/JvGPQYETzERcbBw8VD6zEigDmeeRwFJQUokZco97Eypf5FGNRsEAD+7+pe4b0K98/ZOweXcy6jnle9Kj0PIcT+UQBTww2LGoYhzYegRF6CQSsGKZczC2vPrK10l2WZs0xZDLri5Aqjnr98/xd9nKROmNSRZ3u+PvQ1ruRcwdGbRyGVSM32YdQlrAvaBbcDAAxvObzSrFBNUrdWXbQMaGnWjJGXzAstA1oCAA5eO2jQYzZd4FOJg5oO0nlMqHcowrzDIGdyHL5+GP9d+Q95xXkIqBVgVCPC8iJrR6JlQEvImRybL2zWuO/8nfP4ZN8nAICv+n0FL5mXyc9DCLF/FMDUcBKJBMueXIau9bsirzgP/Zf312ipL4p3X2jzgt4PxmdaPgOAb6goWrtX5mb+TZy9fRYSSNA9XHf9i7pxbcbBw8UDJ7JO4PVtrwPgQUfdWnUNenxlJBIJfhjwA0bFjMKHPT80yzltXed6hk8j3XlwB8k3kgGg0toh9ToYkbl7ovETVW6yJgIn9dVIjDEkbE5AibwEcY3iKuz9RAgh5VEAYwPcXdzx9zN/o0XdFriRfwNxy+Jw58EdXLp7CTvSd0ACSaW7LEfVjUJMYAxKFaXKBmaVEdNHrYNaw8/dz6DH+Ln7YWyrsQCANWfWAKja6iNt2ga3xW9P/oYwnzCzntdWxYYZXsi7PX07GBhaBrREsFew3mNFALPv6j5V/UtT0+tfBLGcesuFLSgqKwIArDy1Ev+m/QuZkwzfPv4trT4ihFSKAhgb4efuh39G/YMw7zCcu3MOT/zxBL49xLcd6NuoL8J9wys9xzMteBZGNLyrjAhg9C2f1ubVjq9qfG/M5o3EeGIl0qHrh/SuVgOAxEuJAKBzulGdCGD+TfsX6TnpkDnJDHpcZdoFt0M9r3q4X3of29O2I684D1O3TgUAvNX1LaMLmQkhjokCGBsS6h2Kf0b9Az83Pxy4dgBfHfwKgOG7LA9vORwAsCN9h0G7VYv6F2O75zav21y5uqVVYCuTltwSwzXxb4II3wgUy4v1bh3BGENimuEBTKvAVnB3dkepohQA0Lthb9RyrVXl8UokEmVQ+/e5v/HOzndws+AmImtHYkaXGVU+PyHEMVAAY2Oi6kZh47Mblfv+1PGoY3CBbEO/huhYryMUTKHs9KrL9bzruHD3AqQSaYVOrYb4sOeHiKwdiZmPzjT6scQ4EokEQ5rzDR/Fqi9tLt69iCu5V+Dq5GrQ79TFyUWjYHdgE/OtChJ1MH+e+hPfHPoGAN/MVNt+VoQQog0FMDbokbBHsPKplajrURdvPfoWZM4ygx87ouUIAJWvRhLZl7bBbbXueVOZDvU64MKrF5RZH2JZos5o4/mNKJGXaD1GZF8eCXvE4EyKmEYCgCeaPFHFUap0b9AdPjIf5BXnQcEUeLrF0zp70hBCiDYUwNioAU0HIHt6NqbGTjXqccOihkECCfZd3ae3nbvY/8jY+hdiHbFhsQjyDEJuca7yd1eeMdNHQp+GfQDwQKaet/n2JXJ1clVuoeHl6oV5cfPMdm5CiGOgAMbB1POup5w+WHlqpc7jdl3ZBcD4+hdiHVKJVDkto20aqUxRhh3pOwAYF8D0iuiFraO2YuVTuv+tmGpKpylo6NcQC+MXIsQrxOznJ4TYNwpgHJDoCaNrGikjNwNp99LgJHFC1/pdq3NopArENNK6s+sq7GB+6Poh5BXnwc/ND22D2xp13r6N+po1+yJ0qNcBl167hJExunfcJoQQXSiAcUBDmw+Fk8QJyTeTceHOhQr3b7u0DQDQPqQ9dUO1IT0jesJH5oOs+1kVesKI5dN9Gvaxib2jCCGkMhTAOKC6terisUZ8GkE9C6NgCnyZ9CUSNicAABVV2hhXJ1dloW35aSRT6l8IIaQmowDGQYmmdn+c/AOMMVzPu464ZXGYtm0aSuQlGNh0IKY/Mt3KoyTGEtNIa8+uBWMMAJBXnKfMyIjAlRBCbB0FMA5qcLPBcHVyxZnbZzB371zEfB+Df9P+hbuzO76P/x7rhq+j6SMb1C+yH9yc3ZB2L0258eeuy7sgZ3JE1o5EA98G1h0gIYSYCQUwDsrHzQePN34cAPDWjrdwt/Au2ga3xdGXjuKl9i/RXjQ2qpZrLeUmjWIayZjtAwghxFZQAOPARkbz1R8SSPBmlzeRNC4Jzeo0s/KoSFWpTyMBVP9CCLFPztYeALGeoc2H4rcnf0Pj2o3RKbSTtYdDzGRA0wFwkjjhRNYJ7EzfiXN3zkEqkaJnBDUlJITYD6MzMHv27MGAAQMQEhICiUSCdevWadz/3HPPQSKRaHz169dP45i7d+9i5MiR8Pb2hq+vL8aNG4eCggKNY06cOIGuXbvCzc0NYWFh+PTTT41/dUQviUSCUTGjKHixM7XdaysbEL72z2sAgI71OsLXzdd6gyKEEDMzOoC5f/8+WrVqhQULFug8pl+/frh586by648//tC4f+TIkTh16hQSExOxceNG7NmzBy+++KLy/ry8PPTt2xfh4eFITk7GZ599htmzZ+OHH34wdriEOCQxjXQy+yQAmj4ihNgfo6eQ+vfvj/79++s9RiaTISgoSOt9Z86cwT///IPDhw+jffv2AIBvvvkGjz/+OD7//HOEhIRg+fLlKCkpwc8//wxXV1e0aNECKSkp+PLLLzUCHUKIdoObDcakLZOU31NPH0KIvbFIEe+uXbsQEBCApk2b4uWXX8adO3eU9yUlJcHX11cZvABAnz59IJVKcfDgQeUx3bp1g6urq/KYuLg4nDt3Dvfu3dP6nMXFxcjLy9P4IsRR1fOuh071+NSgl6uX8johhNgLswcw/fr1w6+//ort27fjk08+we7du9G/f3/I5XxvlszMTAQEBGg8xtnZGbVr10ZmZqbymMDAQI1jxPfimPLmzJkDHx8f5VdYWJi5XxohNmVY1DAAfPsAFycXK4+GEELMy+yrkJ555hnl9ejoaMTExKBRo0bYtWsXevfube6nU5o5cyZef/115fd5eXkUxBCH9lqn1+Dp6qncXoAQQuyJxZdRN2zYEHXq1MHFixfRu3dvBAUFITs7W+OYsrIy3L17V1k3ExQUhKysLI1jxPe6amtkMhlkMpkFXgEhtsnFyQUvtX/J2sMghBCLsHgju2vXruHOnTsIDg4GAMTGxiInJwfJycnKY3bs2AGFQoFOnTopj9mzZw9KS0uVxyQmJqJp06bw8/Oz9JAJIYQQUsMZHcAUFBQgJSUFKSkpAID09HSkpKQgIyMDBQUFmD59Og4cOIDLly9j+/btGDRoECIjIxEXx9ubN2/eHP369cOECRNw6NAh7Nu3D5MmTcIzzzyDkJAQAMCzzz4LV1dXjBs3DqdOncKff/6J+fPna0wREUIIIcRxSZjYstZAu3btQs+eFTt6jh07FgsXLsTgwYNx7Ngx5OTkICQkBH379sUHH3ygUZR79+5dTJo0CRs2bIBUKsXQoUPx9ddfw9PTU3nMiRMnkJCQgMOHD6NOnTp49dVX8cYbbxg8zry8PPj4+CA3Nxfe3t7GvERCCCGEWImhn99GBzC2ggIYQgghxPYY+vlNmzkSQgghxOZQAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5FMAQQgghxOZQAEMIIYQQm0MBDCGEEEJsDgUwhBBCCLE5FMAQQgghxOZYfDdqaxENhvPy8qw8EkIIIYQYSnxuV7ZRgN0GMPn5+QCAsLAwK4+EEEIIIcbKz8+Hj4+Pzvvtdi8khUKBGzduwMvLCxKJxGznzcvLQ1hYGK5evWq3eyw5wmsEHON10mu0D/Qa7QO9RsMwxpCfn4+QkBBIpborXew2AyOVShEaGmqx83t7e9vtP0DBEV4j4Bivk16jfaDXaB/oNVZOX+ZFoCJeQgghhNgcCmAIIYQQYnMogDGSTCbDu+++C5lMZu2hWIwjvEbAMV4nvUb7QK/RPtBrNC+7LeIlhBBCiP2iDAwhhBBCbA4FMIQQQgixORTAEEIIIcTmUABDCCGEEJtDAYyRFixYgAYNGsDNzQ2dOnXCoUOHrD0kk+3ZswcDBgxASEgIJBIJ1q1bp3E/YwzvvPMOgoOD4e7ujj59+uDChQvWGayJ5syZgw4dOsDLywsBAQEYPHgwzp07p3FMUVEREhIS4O/vD09PTwwdOhRZWVlWGrHxFi5ciJiYGGXjqNjYWGzZskV5v62/Pm3mzp0LiUSCKVOmKG+z9dc5e/ZsSCQSja9mzZop77f11ydcv34do0aNgr+/P9zd3REdHY0jR44o77f1950GDRpU+D1KJBIkJCQAsI/fo1wux9tvv42IiAi4u7ujUaNG+OCDDzT2LqqW3yMjBluxYgVzdXVlP//8Mzt16hSbMGEC8/X1ZVlZWdYemkk2b97M/ve//7E1a9YwAGzt2rUa98+dO5f5+PiwdevWsePHj7OBAweyiIgIVlhYaJ0BmyAuLo4tWbKEnTx5kqWkpLDHH3+c1a9fnxUUFCiPmThxIgsLC2Pbt29nR44cYZ07d2aPPPKIFUdtnPXr17NNmzax8+fPs3PnzrG33nqLubi4sJMnTzLGbP/1lXfo0CHWoEEDFhMTwyZPnqy83dZf57vvvstatGjBbt68qfy6deuW8n5bf32MMXb37l0WHh7OnnvuOXbw4EGWlpbGtm7dyi5evKg8xtbfd7KzszV+h4mJiQwA27lzJ2PMPn6PH330EfP392cbN25k6enpbNWqVczT05PNnz9feUx1/B4pgDFCx44dWUJCgvJ7uVzOQkJC2Jw5c6w4KvMoH8AoFAoWFBTEPvvsM+VtOTk5TCaTsT/++MMKIzSP7OxsBoDt3r2bMcZfk4uLC1u1apXymDNnzjAALCkpyVrDrDI/Pz+2ePFiu3t9+fn5rHHjxiwxMZF1795dGcDYw+t89913WatWrbTeZw+vjzHG3njjDfboo4/qvN8e33cmT57MGjVqxBQKhd38HuPj49kLL7ygcduQIUPYyJEjGWPV93ukKSQDlZSUIDk5GX369FHeJpVK0adPHyQlJVlxZJaRnp6OzMxMjdfr4+ODTp062fTrzc3NBQDUrl0bAJCcnIzS0lKN19msWTPUr1/fJl+nXC7HihUrcP/+fcTGxtrd60tISEB8fLzG6wHs5/d44cIFhISEoGHDhhg5ciQyMjIA2M/rW79+Pdq3b49hw4YhICAAbdq0wY8//qi8397ed0pKSrBs2TK88MILkEgkdvN7fOSRR7B9+3acP38eAHD8+HHs3bsX/fv3B1B9v0e73czR3G7fvg25XI7AwECN2wMDA3H27FkrjcpyMjMzAUDr6xX32RqFQoEpU6agS5cuaNmyJQD+Ol1dXeHr66txrK29ztTUVMTGxqKoqAienp5Yu3YtoqKikJKSYhevDwBWrFiBo0eP4vDhwxXus4ffY6dOnbB06VI0bdoUN2/exHvvvYeuXbvi5MmTdvH6ACAtLQ0LFy7E66+/jrfeeguHDx/Ga6+9BldXV4wdO9bu3nfWrVuHnJwcPPfccwDs498pALz55pvIy8tDs2bN4OTkBLlcjo8++ggjR44EUH2fHxTAEIeRkJCAkydPYu/evdYeitk1bdoUKSkpyM3NxerVqzF27Fjs3r3b2sMym6tXr2Ly5MlITEyEm5ubtYdjEeKvVwCIiYlBp06dEB4ejpUrV8Ld3d2KIzMfhUKB9u3b4+OPPwYAtGnTBidPnsT333+PsWPHWnl05vfTTz+hf//+CAkJsfZQzGrlypVYvnw5fv/9d7Ro0QIpKSmYMmUKQkJCqvX3SFNIBqpTpw6cnJwqVItnZWUhKCjISqOyHPGa7OX1Tpo0CRs3bsTOnTsRGhqqvD0oKAglJSXIycnRON7WXqerqysiIyPRrl07zJkzB61atcL8+fPt5vUlJycjOzsbbdu2hbOzM5ydnbF79258/fXXcHZ2RmBgoF28TnW+vr5o0qQJLl68aDe/x+DgYERFRWnc1rx5c+VUmT2971y5cgX//vsvxo8fr7zNXn6P06dPx5tvvolnnnkG0dHRGD16NKZOnYo5c+YAqL7fIwUwBnJ1dUW7du2wfft25W0KhQLbt29HbGysFUdmGREREQgKCtJ4vXl5eTh48KBNvV7GGCZNmoS1a9dix44diIiI0Li/Xbt2cHFx0Xid586dQ0ZGhk29zvIUCgWKi4vt5vX17t0bqampSElJUX61b98eI0eOVF63h9eprqCgAJcuXUJwcLDd/B67dOlSoY3B+fPnER4eDsB+3ncAYMmSJQgICEB8fLzyNnv5PT548ABSqWb44OTkBIVCAaAaf49mKwd2ACtWrGAymYwtXbqUnT59mr344ovM19eXZWZmWntoJsnPz2fHjh1jx44dYwDYl19+yY4dO8auXLnCGOPL4Hx9fdnff//NTpw4wQYNGmRTyxkZY+zll19mPj4+bNeuXRpLGx88eKA8ZuLEiax+/fpsx44d7MiRIyw2NpbFxsZacdTGefPNN9nu3btZeno6O3HiBHvzzTeZRCJh27ZtY4zZ/uvTRX0VEmO2/zqnTZvGdu3axdLT09m+fftYnz59WJ06dVh2djZjzPZfH2N8CbyzszP76KOP2IULF9jy5cuZh4cHW7ZsmfIYe3jfkcvlrH79+uyNN96ocJ89/B7Hjh3L6tWrp1xGvWbNGlanTh02Y8YM5THV8XukAMZI33zzDatfvz5zdXVlHTt2ZAcOHLD2kEy2c+dOBqDC19ixYxljfCnc22+/zQIDA5lMJmO9e/dm586ds+6gjaTt9QFgS5YsUR5TWFjIXnnlFebn58c8PDzYk08+yW7evGm9QRvphRdeYOHh4czV1ZXVrVuX9e7dWxm8MGb7r0+X8gGMrb/O4cOHs+DgYObq6srq1avHhg8frtEfxdZfn7BhwwbWsmVLJpPJWLNmzdgPP/ygcb89vO9s3bqVAdA6bnv4Pebl5bHJkyez+vXrMzc3N9awYUP2v//9jxUXFyuPqY7fo4QxtdZ5hBBCCCE2gGpgCCGEEGJzKIAhhBBCiM2hAIYQQgghNocCGEIIIYTYHApgCCGEEGJzKIAhhBBCiM2hAIYQQgghNocCGEIIIYTYHApgCCGEEGJzKIAhhBBCiM2hAIYQQgghNocCGEIIIYTYnP8HJQgFG/29ssoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(s_mod[-80:],'r',output[-80:],'g')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make lightcurves using `Lightcurve` class." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc2, lc1)\n", + "# Rebin the cross spectrum for ease of visualization\n", + "cross = cross.rebin(0.0075)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lag = np.angle(cross.power)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAGiCAYAAADnfswJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABGTklEQVR4nO3dd3hUZcL+8XvSSUISSgpRelEBBVFAVJqy0ixYENFVcBVXhJ8iYsFdRXQVVnztWJfmu64i7qq7YgVBUCIIwvpKcakGlI5JTEL68/vj2UwYSDATMjk5M9/Pdc3FmZmTM8/hTGbuPNVjjDECAAAIAWFOFwAAAKCuEHwAAEDIIPgAAICQQfABAAAhg+ADAABCBsEHAACEDIIPAAAIGQQfAAAQMgg+AAAgZBB8AABAyAho8Fm2bJkuueQSpaeny+Px6N133/V5fvTo0fJ4PD63QYMGBbJIAAAghAU0+OTl5alLly6aOXNmlfsMGjRIu3fv9t7eeOONQBYJAACEsIhAHnzw4MEaPHjwcfeJjo5WWlpaIIsBAAAgKcDBpzqWLl2qlJQUNWrUSBdccIH+9Kc/qUmTJlXuX1hYqMLCQu/9srIyHTp0SE2aNJHH46mLIgMAgBNkjNEvv/yi9PR0hYXVXZdjR4PPoEGDdMUVV6h169baunWr7r//fg0ePFgZGRkKDw+v9GemTZumqVOn1nFJAQBAIOzcuVMnn3xynb2exxhj6uSFPB698847GjZsWJX7bNu2TW3bttWiRYt04YUXVrrP0TU+2dnZatGihXbu3KmEhITaLjbqkbyiPKX/T7ok6ae7flJcVJzDJQIA1FROTo6aN2+urKwsJSYm1tnrOt7UdaQ2bdqoadOm2rJlS5XBJzo6WtHR0cc8npCQQPAJcuFF4VKM3U5ISCD4AEAQqOtuKvVqHp9du3bp4MGDatasmdNFAQAAQSigNT65ubnasmWL9/727du1bt06NW7cWI0bN9bUqVN15ZVXKi0tTVu3btU999yjdu3aaeDAgYEsFlwqIixCo7qM8m4DAOCvgPbxWbp0qfr373/M46NGjdKLL76oYcOGae3atcrKylJ6erouuugiPfLII0pNTa32a+Tk5CgxMVHZ2dk0dQEA4BJOfX/XWefmQCH4AADgPk59f9NeANcwxii/OF+SFBsZy7xNAAC/1avOzcDx5BfnK35avOKnxXsDEAAA/iD4AACAkEHwAQAAIYPgAwAAQgbBBwAAhAyCDwAACBkEHwAAEDJCZx6f9eslj0fq2NHpkqCGwsPCdVXHq7zbAAD4KzSCz7PPSnfcIV16qfTee06XBjUUExGjBcMXOF0MAICLhUZTV/mip//6l3TEoqkAACC0hEbwOeUUacgQyRhb+wMAAEJSaAQfSZowwf47e7aUleVkSVBDeUV58kz1yDPVo7yiPKeLAwBwodAJPgMGSJ07S3l50qxZTpcGAAA4IHSCj8dTUevz7LNSSYmjxQEAAHUvdIKPJF13ndS0qZSZKb3zjtOlAQAAdSy0gk9MjDR2rN1+6ilnywIAAOpcaAUfSbrtNikqSsrIkFaudLo0AACgDoVe8ElLk0aOtNtPP+1oUQAAQN0KveAjVXRyXrBA2rnT0aKg+sLDwjWk/RANaT+EJSsAADUSmsGna1epXz+ptFSaOdPp0qCaYiJitPDahVp47ULFRMQ4XRwAgAuFZvCRpDvvtP++8oqd2wcAAAS90A0+Q4dKbdtKP/8szZvndGkAAEAdCN3gEx5uV2yXbCfnsjJHi4Nfl1eUp7jH4hT3WBxLVgAAaiR0g48k3XijlJgobd4sffih06VBNeQX5yu/ON/pYgAAXCq0g098vDRmjN1mQkMAAIJeaAcfSRo/XgoLkxYvlr791unSAACAACL4tGwpXXml3X7mGWfLAgAAAorgI1UMbX/9dWnfPmfLAgAAAobgI0nnnCP16CEVFkovvuh0aQAAQIAQfCTJ46mo9XnhBRuAUO+EecLUt2Vf9W3ZV2Ee3roAAP95jDHG6UKciJycHCUmJio7O1sJCQk1P1BxsdSmjbRrlzRnjjR6dK2VEQAA+Kq1728/8WdzuchIO8JLskPb3Z0HAQBAJQg+R7rlFik21g5rX7LE6dIAAIBaRvA5UqNGFU1cTz/tZElQibyiPCXPSFbyjGSWrAAA1AjB52jl63e9/75dygL1yoH8AzqQf8DpYgAAXIrgc7QOHezK7cYwoSEAAEGG4FOZ8qHtc+ZIP//sbFkAAECtIfhU5oILpNNPl/Lzpb/8xenSAACAWkLwqYzHI02YYLefe04qKXG0OAAAoHYQfKpy7bVSSoq0c6f09787XRoAAFALCD5ViYmRxo612wxtrxfCPGE6O/1snZ1+NktWAABqhCUrjmfvXqlFC6moSMrIsIuZAgCAE8aSFfVRaqpt8pLsMhYAAMDVCD6/pryT89//LmVmOloUAABwYgg+v6ZLFzu8vbRUev55p0sT0vKL89Xq6VZq9XQr5RfnO10cAIALEXyqo7zW55VXpNxcR4sSyowx+iH7B/2Q/YNc3jUNAOAQgk91DB0qtW8vZWdL8+Y5XRoAAFBDBJ/qCAurWLz0mWeksjJnywMAAGqE4FNdo0ZJSUl2xfaFC50uDQAAqIEIpwvgGvHx0pgx0owZdmj7JZfYx42RioulwkJ7Kyqq2D76fmXPtWsn9elja5UAAEBABTT4LFu2TDNmzNCaNWu0e/duvfPOOxo2bJj3eWOMpkyZoldffVVZWVk677zz9OKLL6p9+/aBLFbNjR8vPfmktGSJlJBQEV5O1MknS7/9rXT99VLHjid+PAAAUKmAVjPk5eWpS5cumjlzZqXPP/7443r22Wf10ksvaeXKlYqLi9PAgQNVUFAQyGLVXIsWtslLkn75pfLQEx4uxcZKjRpJaWn2Z9q3lzp3lrp1k3r1kvr1kwYOlIYMsc1nu3ZJ06dLnTpJZ58tPfustG9fXZ5Z/VZSIhUWyuPxqGNyR3VM7iiPx+N0qQAALlRnS1Z4PB6fGh9jjNLT03XXXXdp0qRJkqTs7GylpqZq7ty5uuaaayo9TmFhoQoLC733c3Jy1Lx587qb8rq0VNq61TZNRUdLUVH23/Lt8HD/jldQYPsMvfaa9MEHFSvBh4dLgwfbWqBLL7VrhwUrY6RDh6Rt2+xt+/aK7W3b7MSRkZHSqlXS6ac7XVoAQC1waskKx/r4bN++XXv27NGAAQO8jyUmJqpnz57KyMioMvhMmzZNU6dOPebxvKI8hRdVP3RER0QrIsyefklZiQpLChXmCVODyAY+x6xUq5MqebBMKi1QlKIUGR4pSSotK1VBSYE8Ho9iI2O9e+YX51fMQxMm6ZJB9nZgv50h+m9/k9Z8I338vr0lJCjy8isVdcON0nnnqcwjHS4+LEmKi4rzHvdw8WGVGf9GnEWERSg6IlqSDaP5WfukrGzFxSV5w1xBuFGp/MvH4WHhiomoCGt5OQelnZmK/WG3PDt2SNu2qXD7ZpXs2Cbt+MHWoFUlTDZwLluksFPbVXqNGkQ28C5cWlRapOLSYr/KW9U1iomIUXiYfV8VlxarqNT/ps3KrlFl778TOW5BSYFKy0oVFX7s+89fsZGx3hq1wpJClZSVKDI8UlHhUZKkMlPmff/5o7JrdMz7rwYTU1Z2jY55/1X1u3wcJ/QZcRyVXaPjfkZUU1XXqNY/I/57jSp7//mjqmtU2fvPH1VdIz4j6t9nRE1+f2qDY8Fnz549kqTU1FSfx1NTU73PVWby5MmaOHGi9355jU/6/6RLflSKvHXVWxreabgk6Z2N7+jqt69W35Z9tXT0Uu8+rZ5ppQP5B6p/UEnPD35e43qMkyQtz1yu/vP6q2NyR62/bb13n+6vdteG/RuqPsig/968cjRl6Rw91GeO1KqVNl4/UJ3DX1bT2Kbaf/d+716DXx+sz3/43K/y3lZ2tmZuPUXaulUHftyslJsOSpLMQxX7XD9ceruTX4fVVVknacFP50m7d0vbtyv+5l2SpH2PS8n//W6bOER64VI/Dnpgovq+/l6l1+i7sd+pU4ot5GPLH9PUz48Nx8dT1TVaMmqJ+rXqJ0l6Zc0rGv/heL+OW9U1quz95y8zpeKL8fp3rtfbG96u9P3nr32T9ik5LlmSNPHjiXph9Qua0neKHur3kCRp4/6N6vxiZ7+PW9k1uu3s2zRzqG0KP5B/QClPpPh93Mqu0VUdr9KC4Qu8+8RPi/f7uPX6M6ISlV2jWvmMqOIaVfb+80dV16iy958/qrpGfEbUw88Ih3q1uG5UV3R0tKKjo50uRt07s6u0Zqu0Y4f00svSOElZWdILL0gjRkhNmtTsuKtXSx+sttuxx9/VLz/+KC1469jHTztNOrmD1KaNlLJaKlzu12G//ulrdXqhk74e87XPX18AAFSHY318tm3bprZt22rt2rXq2rWrd7++ffuqa9eueuaZZ6p13PI2wp/2/+RXG6Erq7ELS6R//lNlr83T4SWfSKVliiuW7f9y4YU6XJirsh3bbeg43uHDw6TmzaXWbRTRqo2i23aQ2raVad1a+S3SpIRExUXGeofpF+TnqLTgsO3MXVQ+FL/YbhcVSYX/HaZfXOR9LryoWDHFRkpJkdq0UV7zVKlJU8VGxflfjf3Si9Kku5V3xSVKPe1fkqTcybmKi4qjGvu/6mM19tFo6rJo6rJo6qoQqp8ROTk5Sk9OD50+Pq1bt1ZaWpoWL17sDT45OTlauXKlxo4d6/fx4qLifC6yPyLCIhQRdex/RU2PVy48LLzSY9S4piI2SrrmGoVdc43i9uyR3nhD+t//ldaulT76SA2O3Dc+Xmrb1tastG3ru92ihQ1LR/FI8iltVJQUFaWYhg1rVt4jVPY/GR0RrWhVo/Yu5WSpWNK+n6XTjjpuJf+/UeFR3l/AmqrsGkWGR3o/MGrqyA/kclW9//xx5BdIuaref/6o7BqFecJO+LiVXSOPx3PCx63qGp3ocV3zGfFfVV2jyt5//qjqGlX2/vNXZcet9meEn8flM8Jy+jOiNMq/sFxbAhp8cnNztWXLFu/97du3a926dWrcuLFatGihCRMm6E9/+pPat2+v1q1b64EHHlB6errPXD+oQlqadOed9vbdd9LixVLTphUhp2lTKViGfKf8t9/H/v3H3w8AgF8R0OCzevVq9e9f0XGqvFPyqFGjNHfuXN1zzz3Ky8vTLbfcoqysLJ1//vn66KOPFBPMQ7cDoXNnewtW5cHngH+dSAEAOFqd9fEJFKfmAUAd2rtXSktTXpQUf799qLyPDwDAnZz6/maBKNR/TZrYZjtXR3QAQH3guuHsCEEREVLjxvLkHFTL2HQpMpIlKwAANULwgTukpCj24EHtOOt/pQsucLo0AACXoqkL7sDILgBALSD4wB2S7fTorFoPADgRBB+4Q0qKDkdI3Q9OU/dXu9do5mAAAOjjA3dITlaZR1rt2S39tNvvafcBAJCo8YFbpPi/ajcAAEcj+MAdCD4AgFpA8IE7lHduBgDgBBB84A7U+AAAagHBB+5AjQ8AoBYwqgvu0LixFOZR0zwjNWnsdGkAAC5F8IE7hIUpLilF+2fsldZ9JrEyOwCgBmjqgnswezMA4AQRfOAerNcFADhBBB+4xuGURuo3Wuq37UGWrAAA1Ah9fOAaZcnJ+ryJpNKtLFkBAKgRanzgHgxpBwCcIIIP3KNpU6dLAABwOYIP3COFGh8AwIkh+MA9qPEBAJwggg/cgz4+AIATRPCBeyQnK7ZIii2SVFDgdGkAAC7EcHa4RlzTdOXNiJSKi6Vb86WEJk4XCQDgMtT4wD08HpatAACcEIIP3KU8+LBsBQCgBmjqgmsUlBToyr4/Sp2kv+/ZpRinCwQAcB2CD1yjtKxUHzQ+IDWWSg/Q1AUA8B9NXXAnmroAADVA8IE7EXwAADVA8IE7HTjgdAkAAC5E8IE7UeMDAKgBgg/ciRofAEANEHzgTtT4AABqgOHscI24qDiZiTlSQoKkw1JenhQX53SxAAAuQo0P3CU+Xor579SF1PoAAPxE8IG7sF4XAOAEEHzgGgUlBRq+YLiGD/5FBRGixgcA4Df6+MA1SstK9faGt6V0aa5H1PgAAPxGjQ/ci+ADAPATwQfuRVMXAMBPBB+4FzU+AAA/EXzgXtT4AAD8RPCBe1HjAwDwE8EH7kXwAQD4ieAD14iNjFXu5FzlXrdBscWyTV3GOF0sAICLEHzgGh6PR3FRcYpLbymPJBUWSr/84nSxAAAuQvCB+8TGVixOSnMXAMAPzNwM1ygsKdTv3/+9JOnl1KaK3pZnm7vatXO4ZAAAt3C8xuehhx6Sx+PxuZ166qlOFwv1UElZieb9e57m/XueSlKb2gep8QEA+KFe1Ph06tRJixYt8t6PiKgXxUJ9Vr5CO3P5AAD8UC8SRkREhNLS0pwuBtykKTU+AAD/Od7UJUmbN29Wenq62rRpo+uuu06ZmZlV7ltYWKicnByfG0JQeY0PwQcA4AfHg0/Pnj01d+5cffTRR3rxxRe1fft29e7dW79UMUx52rRpSkxM9N6aN29exyVGvVBe40NTFwDADx5j6tcMcFlZWWrZsqWefPJJ3XTTTcc8X1hYqMLCQu/9nJwcNW/eXNnZ2UpISKjLoqKO5RXlKX5avCQpt9Wrihs9RhowQPr0U4dLBgDwV05OjhITE+v8+7te9PE5UlJSkjp06KAtW7ZU+nx0dLSio6PruFSod+jcDACoAcebuo6Wm5urrVu3qlmzZk4XBfVMbGSs9k3ap32T9ik29WT7IH18AAB+cDz4TJo0SZ9//rl27NihFStW6PLLL1d4eLhGjhzpdNFQz3g8HiXHJSs5Llme1FT7IOt1AQD84HhT165duzRy5EgdPHhQycnJOv/88/XVV18pubwpA6hM+fujpETKypIaNXK0OAAAd3A8+Lz55ptOFwEuUVhSqIkfT5QkPTnwSUUnJEg5Oba5i+ADAKgGx5u6gOoqKSvRC6tf0AurX1BJWYmUkmKfoIMzAKCaCD5wLyYxBAD4ieAD9yqv8SH4AACqieAD96KpCwDgJ4IP3IumLgCAnwg+cC9qfAAAfiL4wL2o8QEA+MnxeXyA6moQ2UDb79ju3aZzMwDAXwQfuEaYJ0ytklpVPEBTFwDATzR1wb3Km7oOHJDKypwtCwDAFQg+cI2i0iLd/cnduvuTu1VUWiQ1bWqfKCuTDh1ytnAAAFcg+MA1ikuL9UTGE3oi4wkVlxZLkZEVa3TRzwcAUA0EH7gbHZwBAH4g+MDd6OAM1H95edL770tLlzpdEoBRXXA55vIB6qetW6UPPpAWLrSBp7BQCguTNm6UOnRwunQIYQQfuBs1PkD9UFQkLV9ug84HH0jff+/7fFiYHYjw2WcEHziK4AN3o8YHcM5PP0kffmjDzqefSrm5Fc9FREjnny8NHWpvb70lPfSQtGyZdOutjhUZIPjA3ejcDNSd0lJp1aqKWp21a32fT02Vhgyxt9/8RkpMrHiub1/777JlkjGSx1N35QaOQPCBazSIbKDvxn7n3ZZEUxcQaIcOSR9/bMPORx9JBw9WPOfxSN272xqdIUOkbt1sk1Zleva0U1D8+KO0fbvUpk3dlB84CsEHrhHmCVOnlE6+D9LUBdSurCzpiy9sh+SlS22tzpEzoyclSQMH2qAzaFDFHx+/pkEDqUcP6csvba0PwQcOIfjA3WjqAk5MVpbtlLx0qfT558cGHUnq3LmiVufcc23/nZro3dsGn+XLpdGjT7DgQM0QfOAaRaVFemz5Y5Kk+3vfr6jwqIoan0OHpJKSmn8gA6HiyKBTXqNjjO8+7dtL/frZW9++0kkn1c5r9+kjTZ9ua3wAh3iMOfod7y45OTlKTExUdna2EhISnC4OAiivKE/x0+IlSbmTcxUXFWc7W0ZG2g/u3bultDSHSwnUMz//7Bt01q07Nuh06OAbdNLTA1OW7GypcWNbo/Tjj4F7HbiCU9/f/HkMdwsPt4uV7t9vbwQfhLrDh6XFi+18OVUFnVNOsQEn0EHnaImJUteu0jff2DA2YkTdvC5wBIIP3C852YYe+vkgVB04YJeEeO896ZNPpPx83+dPOcW3RqdZMydKafXpY4PPsmUEHziC4AP3S0mRNmwg+CC0bN1qg85779lRWEd2SG7eXBo8WOrf3/mgc7Q+faSnn6afDxxD8IH7lXdwZi4fBLOyMmnNmoqw8913vs936SJddpm9nXlm/Z0g8Pzz7b/ffWfnBGrSxNnyIOQQfOB+DGlHsCoslJYssUHnn/+0S0SUCw+3tTmXXSZdeqnUqpVjxfRLcrJ02ml2sdIvvrDlB+oQwQfux+zNCCZZWXY5iPfes+tg/fJLxXPx8XbSwMsus3PqNG7sWDFPSJ8+NvgsX07wQZ0j+MA1YiJitOrmVd5tL2Zvhtvl50vz50uvv24nESwpqXguLa2iCat/fykmpurjuEWfPtLLL9PPB44g+MA1wsPC1f2k7sc+QVMX3Gr9ehsAXnvNznFTrmPHirDTvXvV61+5Ve/e9t9vvrE1Wg0bOlsehBSCD9yPzs1wk4IC6e23beD54ouKx1u3lsaMkYYPl9q1c658daF5c3u+27dLGRnSRRc5XSKEEIIPXKOotEjPfPWMJOmOc+6wS1ZI1PjAHf7zHxt25s61S6xItoPypZdKt94qDRgQfDU7x9Onjw0+y5YRfFCnCD5wjeLSYt2z6B5J0m3dbzs2+GRnS0VFUlSUQyUEjlJUJL37rvTSS3Z0VrnmzW3tzk03he6yDX36SPPm0c8HdY7gA/dLSrJ/OZeW2uau2lpQEaipbdukV1+VZs+uqIkMC7MjsW691Y7MCg93toxOK+/ns3Klbf4Lhk7bcAWCD9wvLMz289mzx37JEHzghJIS6V//ss1ZH39c8XizZtLNN9tbixbOla++adfOjljbs0f6+uuKIAQEWAg1KCOo0cEZTsnMlB58UGrZUrriiorQM3Cg9I9/SD/8ID38MKHnaB6Pbe6SaO5CnSL4IDjQwRl1KTtbmjNHuvBCO2PyI4/YWZWTk6X77rPraH30kXT55VJkpNOlrb8IPnAATV0IDszejEArKrIzKb/+ul0+orCw4rn+/W3fnWHD6Fzvj/Lg8+WXtqkwgq8kBB7vMgQHZm9GIJSVSStWSH/9q7RgQcUwdMmuN3X99dLIke5ZJ6u+6dRJatRI+vlnae1aO1kjEGAEH7hGTESMloxa4t32QVMXatPGjTbs/O1v0o4dFY83ayZde6103XVS1671dwV0twgLs52a//lP29xF8EEdIPjANcLDwtWvVb/Kn6SpCyfqp5+kN9+0gWft2orHGzaUrrxS+u1vpX79GIZe244MPnfd5XRpEAIIPggONHWhJnJypHfesWHns89s05Zk+5oMGWJrdi65RGrQwNlyBrPyfj5ffGH//0Np9mo4guAD1yguLdYra16RJN1y1i2KDD9itAw1PqiusjLpk0/s0hHvvWcnzyt33nm2Zmf4cKlJE8eKGFLOPFOKi7P9pzZskDp3drpECHIEH7hGUWmRxn84XpI0uuto3+BDjQ9+zS+/2CUSnnvOrptV7tRTbdi59lq7cCbqVmSkdO650qef2uYugg8CjOCD4FBe45ObKx0+TNMEKmzZIj3/vF0+4pdf7GMJCdLo0dINN0jdutFJ2Wl9+lQEn9tuc7o0CHIEHwSHhAQ7f0pRkW3uYpbc0GaM/SJ99lnpgw/sfUk65RTp9ttt4ImPd7aMqHDkRIbGEEQRUAQfBAePxzZ3/fijbe4i+ISm3Fzptddsc9amTRWPDx1qA8+AAXSerY969LB/uOzebWe9btfO6RIhiPEJgODBXD6ha9s2OxT65JOlceNs6GnY0Iad//xHev996aKLCD31VUyM1LOn3Wb5CgQYnwIIHixUGlqMkRYvli67zNYQPPmkXUOrfXvbxLVrl/TMM/Y+6r/y1dkJPggwgg+CBzU+oSEvT3r5ZTv6Z8AAO/mdMdKgQbY/z6ZN0v/7f7bfF9yjvJ/P8uXOlgNBr14En5kzZ6pVq1aKiYlRz549tWrVKqeLhHooOiJa7498X++PfF/REdHH7sBcPsFt717p7rttc9att9o5X+LjpfHjbdj58ENp8GCas9zq3HPttdu2zdbWAQHi+CfE/PnzNXHiRE2ZMkXffPONunTpooEDB2off7XjKBFhERraYaiGdhiqiLBK+uUzl09wKiqS/ud/pA4dpCeekLKypLZtpaeftl+Qzz1nR2vB3Ro2tFMLSNT6IKAcDz5PPvmkxowZoxtvvFEdO3bUSy+9pNjYWM2ePbvS/QsLC5WTk+NzAyTR1BWMFi60TVqTJtnlJc4+W/rXv2yH5TvukBITnS4hatORw9oR/MqnmahjjgafoqIirVmzRgMGDPA+FhYWpgEDBigjI6PSn5k2bZoSExO9t+bNm9dVceGw4tJizV03V3PXzVVxafGxO9C5OXhs2mTXyrr4YmnzZik1VZozR1q50j5Gc1ZwIvgEv8OH7Rxbt98unXGGI0VwdB6fAwcOqLS0VKmpqT6Pp6amatORc3AcYfLkyZo4caL3fk5ODuEnRBSVFunG926UJA3vONx3yQqJGp9gkJUlPfywbb4qKbHLGdx5p/SHP9BZORScf779d8MG+wdM+R8zcKeyMls7u3Jlxe3bb+3vtoNcN4FhdHS0oqMr6dgKHNm5mdlf3aW01C4p8Yc/VNTYXXKJ7dvDcPTQ0aSJ1KmTtH69Xa398sudLhH8sW+fb8j5+ms7xcTRmjWzNboXXmjXyKtjjgafpk2bKjw8XHv37vV5fO/evUpLS3OoVHCt8r8ODx+2Q55ZksAdli2z/XXWrbP3TztNeuopaeBAR4sFh/TpY4PP8uUEn/rs8GFp7VrfoLNjx7H7NWggnXWWnaCy/Na8uf3D1KE+uo4Gn6ioKJ111llavHixhg0bJkkqKyvT4sWLNX78eCeLBjeKi7O/ZIcP2788CD71W2amHZ7+1lv2fmKiNHWqXaQyMvL4P4vg1aeP9OKL9POpT4yxi/1mZFSEnH//+9gmK4/H/uHSo0dFyOncud79Pjve1DVx4kSNGjVKZ599tnr06KGnn35aeXl5uvHGG50uGtymfL2uzEzbXNKmjdMlQmXy86XHH5f+/GepoMB2VL7lFtu3hz4dKJ/Bee1aWyNA3y5nHDxoZ0b/5BN727nz2H1SU31rcs4+2xUjLR0PPiNGjND+/fv14IMPas+ePeratas++uijYzo8A9WSkmKDDx2c6x9jpPnzpXvuqfgQ7dvXzsfTtauTJUN9ctJJdp6mrVulFSvsjNwIvKIiW6NTHnTWrPEdbh4VJXXv7ht0WrRwZV9Kx4OPJI0fP56mLdQOZm+un775xg5f/fJLe79lSzsZ4ZVXuvKDEwHWp48NPsuWEXwCxRjp++8rgs7SpbZv5JFOP136zW/sAr+9e0uxsY4UtbbVi+ADVEd0RLTeuuot73almL25ftm3z47UmjXLftA2aCBNnmwnJGzQwOnSob7q08fO20Q/n9p14IBv89XRS4OkpFQEnQEDpPR0Z8oZYAQfuEZEWISGdxp+/J2Yy6d+KCqyc/E8/HDFyI1rr5WmT7cjOoDjKe/ns2qVHaxASK6ZoiLbXFgedL75xrf5KjrahszysHP66SExOSjBB8GF2Zud98EHdtLB//zH3u/WTXr2Wem885wtF9yjTRtb2/DTT3YEUb9+TpfIPYqLba3O/PnSO+8cO4/OGWf4Nl+FYKgk+MA1SspK9M7GdyRJl592eeULlVLj45xNm6SJE+0q6ZK9FtOmSaNHh8RfkahFHo+tiXjzTTufD8Hn+EpKbB+d+fOlf/xDOnSo4rnUVN/mq2bNHCtmfUHwgWsUlhTq6revliTlTs5VRNRxgg81PnUnK0t65BFbq1O+zMQdd0gPPMBQZNRcefChn0/lSkttKJw/X/r7330/81JSpKuukkaMsMuA8IeHD4IPggudm+tOZctMXHyxXWaiQwdnywb3K1+wdMUK23xTzybBc0RZmf3/mD9fevttac+eiueaNLGjJEeMsNNEhIc7V856juCD4HJkUxfrdQXO8uW2VmftWnv/1FPtMhMMPUZtOe00+2V+8KDtlNuzp9MlcoYxtp/T/PnSggXSjz9WPNeokV3WY8QIqX9/wmE1EXwQXMprfIqL7WgiF8wi6iqZmXYCwvnz7f3EROmhh6Rx4/jQRe0KC7Odb9991zZ3hVLwMcZOIDh/vl3SJTOz4rmEBGnYMBt2BgywEwvCLwQfBJcGDewaXbm5ttaH4FM78vOlGTPsMhOHD9uatDFjpD/9iWUmEDh9+lQEn7vvdro0gWWMXf+qPOxs21bxXHy8dOmlNuwMHGiHoaPGCD4IPikpNvjs3y+1b+90adzNGPshfPfdFctM9OkjPfMMy0wg8Mrn8/niC9u/JRg76X73XUXYKZ8CQrKzJF98sQ07gweH5LDzQCH4IPgkJ9u/lujgfGLWrrX9eJYvt/dbtLDLTFx1FX2nUDe6drW1HVlZNiCccYbTJaodmzZVhJ0NGyoej4mRhgyxYWfoUCkuzrkyBjGCD1wjKjxKcy6b492uEnP5nJjcXLusxMyZFctM3HefXWYiSNbqgUtERNiJLz/+2DZ3uTn4bNlSEXa+/bbi8agoOyhgxAjpkkukhg2dK2OIIPjANSLDIzW66+hf35G5fGru88+lG2+Utm+390eOtP16WGYCTunTpyL4uG0x6+3bbdB56y07Mq1cRISdUHDECNt3JynJsSKGIoIPgg9z+fgvL0+6/347CaFkg86sWXbGV8BJ5fP5LFvmjikqdu6sCDurVlU8Hh4uXXihDTvDhkmNGztWxFBH8IFrlJSV6OMtH0uSBrYbWPmSFRI1Pv5avtzW8mzdau/ffLOdhJBZl1EfdO9uRzHt3Stt3lw/J8fcsUN67z0bdlasqHg8LMwutzFihJ1vhxGQ9QLBB65RWFKoi9+4WNJxlqyQqPGprvx8O+vyM8/Yv6RPPln6y1/scFmgvoiOls45xzbDLltWP4KPMdL//Z8dav/uuxUTeUq2Rqp3b+nqq+1MymlpTpUSVSD4IPjQufnXffmlreXZvNne/93vpCefZN4j1E+9e1cEn5tvdqYMpaW2Nqc87Bw5z075ZIuXX25HPZ50kjNlRLUQfBB8aOqq2uHD0h//aJeXMEZKT7e1PIMHO10yoGrl/XzKp1aoKwUF0qJFNuj885++nykxMbaD8rBhdr4dmrFcg+CD4FP+AbR/f/BOelYTGRnS6NEVk6SNHm0DECNKUN/16mU7B+/YYZdvaNEicK+VlSUtXGjDzocf2o7/5ZKS7JDzYcNskzDz7LgSwQfBpzz4lJZKP/9sFzoMZYcPSw8+aJuyysqkZs2kV1+1E6QBbhAfL511lh0ltXy5dN11tXv8H3+0nZPffVdaskQqKal47uSTbdAZNszWPLEmnesRfBB8oqJsX5XsbFvrE8rBZ+VKW7OzaZO9f8MN0tNP21WdATfp08cGn2XLaif45OVJ8+bZ25HDziWpUycbdC6/XOrWrf4PoYdfCD4ITikpNvjs2yedeqrTpal7BQV21fQZM2wtT1qa9MortpoecKM+feySKcuWndhxdu2Snn/e/j78/LN9zOOxzWnlNTus8RfUCD5wjajwKD0/+Hnv9nGlpNgRS6HYwfnrr20tT/kaQNddZycmZMI0uNn559uAsmmT/YOmfBBDda1aZfu0LVhgm8ElqV076f/9Pzv0nGHnIYPgA9eIDI/UuB7jqrdzKM7lU1IiTZlil5goLZVSU6WXX5Yuu8zpkgEnrlEjqXNnO3/O8uV2jpxfU1Ji++089ZTvxIL9+kl33mn7uYWHB6rEqKcY7oLgFGpz+RQU2PlDHnvMhp6RI6X16wk9CC5HLl9xPDk5Nuy0by8NH25DT2Sk7eP2zTe2A/OllxJ6QhQ1PnCN0rJSLc+083j0btFb4WHH+dA6ckh7sPvlF9sv4bPP7Cy38+bZKfKBYNOnjzRzZtXz+Wzfbpt1Z82yvxeSHdxw663SuHF2RCNCHsEHrlFQUqD+8/pLsktWxEUdZw6NUKnxOXhQGjLE9l+Ij7eTrPXv73SpgMDo3dv+u26dHbyQmGgn4vzyS1vD8+67tjO/JJ12mjRhgnT99VKDBg4VGPURwQfBKRRmb/7pJztz7Pr1tuPyRx/ZBR2BYNWsmW2+2rxZWrrUDkl/6ilp9eqKfS66yPbfuegiJi9FpQg+CE7B3rl52zZpwABbtZ+eLn3yiZ17BAh2ffrY4HPllRWjs6Kjbc3OhAn8HuBXEYcRnIK5qeu77+zQ3u3bpTZtpC++4MMeoaNfP/tv+cjFhx+Wdu60s5Hze4BqoMYHwam8xufgQfsBGSyjN1autAuK/vyzHdr7ySd02ERoueYau17XSSfZ7ehop0sElyH4IDg1bWr/NcaGH38nO6uPFi+2w9Pz8qSePaUPPmBSQoSeiAjp/vudLgVcjKYuBKeIiIo1uoKhg/O779rRW3l5tm/PokWEHgCoAWp84BqR4ZF6fMDj3u1flZxsa3v27XN32/9rr0m/+51tsrviCulvf6N6HwBqiOAD14gKj9Ld591d/R9ISalY18etnntOuv12uz16tO3AGcGvLQDUFE1dCF5unr3ZGDtapTz0TJhgZ6Ml9ADACeFTFK5RWlaqb3Z/I0nq1qzb8ZeskNw7pL2sTLrrLunpp+39qVOlBx6wK1MDAE4IwQeuUVBSoB5/6SGpGktWSO6cvbmkRBozRpo7195/5pmKWh8AwAkj+CB4uW325sJC6dprpX/8w847NHu2XU0aAFBrCD4IXm5q6srNtSO2Pv1UioqS5s+3K64DAGoVwQfByy2dm3/+2c7R89VXUlyc9N570oUXOl0qAAhKBB8ELzfU+GRnSxdcIK1bJzVqJH34oZ2VGQAQEAQfBK/y4PPzz1JxsRRZjUkP61JBgV2CYt06W9bFi+36WwCAgGEeHwSvxo2lsP++xQ8ccLYsRyspkUaOlD7/XEpIkD7+mNADAHWAGh+4RmR4pKb0neLd/lVhYXax0n377K2+rGJujDR2rF1/Kzra9unp2tXpUgFASCD4wDWiwqP0UL+H/PuhlBQbeupTB+cHHpD+8hcbzP72N6lfP6dLBAAhg6YuBLf6NpfPs89Kjz5qt196yQ5hBwDUGWp84Bplpkwb92+UJJ2WfJrCPNXI7fVpZNcbb0h33GG3H3nEztAMAKhTBB+4xuHiw+r8ou0AXK0lK6T6M5fPJ59Io0bZ7fHjpT/8wdnyAECIoqkLwa0+1PisWmWbtIqLpWuusetvseAoADjC0eDTqlUreTwen9v06dOdLBKCjdMLlW7aZGdlzsuTfvMbad68iiH2AIA653hT18MPP6wxR/R1aNiwoYOlQdBxsnPzrl3SwIHSwYPS2WdLf/+7XYcLAOAYx4NPw4YNlZaW5nQxEKycauo6dEgaNEjKzJQ6dJA++EAi1AOA4xyvc58+fbqaNGmiM888UzNmzFBJSclx9y8sLFROTo7PDaiSE52b8/OlSy6R1q+X0tNtx+bycgAAHOVojc/tt9+ubt26qXHjxlqxYoUmT56s3bt368knn6zyZ6ZNm6apU6fWYSnhauU1Pjk5UmGhnSk5kIqLpauvllaskJKS7FIULVsG9jUBANXmMcaY2jzgfffdpz//+c/H3Wfjxo069dRTj3l89uzZ+v3vf6/c3FxFV/EFVVhYqMLCQu/9nJwcNW/eXNnZ2UpISDixwqNeKyot0h8W22Hgj174qKLCq9Ffxhjbr6akRNq5Uzr55MAV0BjpxhttB+aYGGnRIum88wL3egDgYjk5OUpMTKzz7+9aDz779+/XwYMHj7tPmzZtFFVJJ8/169erc+fO2rRpk0455ZRqvZ5T/3FwkfR0afduac0aqVu3wL3OPfdIM2ZI4eF2Ha6LLw7cawGAyzn1/V3rTV3JyclKrmF/hnXr1iksLEwp5c0TQG1ISbHBJ5AdnJ94woYeya7DRegBgHrJsT4+GRkZWrlypfr376+GDRsqIyNDd955p37729+qUaNGThUL9ViZKVNmdqYkqUVii+otWSEFvoPza69Jd99ttx9/XBo9OjCvAwA4YY4Fn+joaL355pt66KGHVFhYqNatW+vOO+/UxIkTnSoS6rnDxYfV+pnWkvxYskIK7JD2hQul3/3Obt91V0UAAgDUS44Fn27duumrr75y6uURSgI1e/OKFdLw4VJpqXT99ba2BwBQrzk+jw8QcIGYvXnjRtuP5/BhuyTFrFksRQEALsAnNYJfbTd1FRbaxUZ//lnq1UtasECKjKydYwMAAorgg+BX252bH3pI+vZbqWlT6Z13pNjY2jkuACDgCD4IfrVZ4/PllxV9eV55RUpNPfFjAgDqDMEHwa+2Ojfn5ko33CCVldl/L7/8xMsGAKhTjq/ODlRXRFiEbjv7Nu92tZU3deXl2VtcNYfBH+2uu6Rt26QWLaRnn63ZMQAAjiL4wDWiI6I1c+hM/3+wYUO7OGlhoa31qUnwWbjQNm1J0ty5UmKi/8cAADiOpi4EP4/nxDo4Hzgg3XST3Z4wQerfv9aKBgCoWwQfuIYxRvvz9mt/3n75vbZuTTs4GyONHSvt3Suddpr02GP+/TwAoF6hqQuukV+cr5QnbIDxa8kKqeYdnF9/XXr7bSkiQvrf/5UaNPDv5wEA9Qo1PggNNZm9eedOafx4u/3gg9JZZ9V+uQAAdYrgg9Dgb1NXWZl0441SdrbUs6c0eXLgygYAqDMEH4QGfzs3P/+8tHixbdp67TXb1AUAcD2CD0KDPzU+mzZJ995rt2fMkDp0CFy5AAB1iuCD0FDdzs3FxdL110sFBdJFF0m33Rb4sgEA6gzBB6Ghup2bH31UWr1aSkqSZs+2cwABAIIGHRfgGhFhERrVZZR32y9HNnUZU3mg+fpr6U9/stsvvCCddNIJlBYAUB8RfOAa0RHRmjtsbs1+uLzGp7DQLjbasKHv8/n5tomrtFQaMUIaOfKEygoAqJ9o6kJoiIuTYmPtdmXNXffdJ33/vdSsma3tAQAEJYIPXMMYo7yiPOUV5fm/ZIVU9ciuRYuk556z27NnS40bn1hBAQD1FsEHrpFfnK/4afGKnxav/OJ8/w9Q2Vw+WVl2okLJrsk1aNAJlxMAUH8RfBA6KqvxGT9e2rVLatfOztkDAAhqBB+EjqPn8lmwwC5CGhZmFyCN82PRUwCAKxF8EDqOnMtn927p1lvt/cmTpXPOca5cAIA6Q/BB6Diyqevmm6VDh6Qzz7QrrwMAQgLz+CB0lNf4vPuunbcnOto2cUVFOVosAEDdocYHoaO8xif/vyPCHntM6tTJufIAAOocNT5wjfCwcF3V8Srvtt/Kg48k9e0rTZhQOwUDALgGwQeuERMRowXDF9T8AK1aSTExtmlr7lw7mgsAEFIIPggdjRtLK1fadbpatXK6NAAABxB8EFrOOMPpEgAAHERdP1wjryhPnqkeeaZ6lFeU53RxAAAuRPABAAAhg+ADAABCBsEHAACEDIIPAAAIGQQfAAAQMgg+AAAgZDCPD1wjPCxcQ9oP8W4DAOAvgg9cIyYiRguvXeh0MQAALkZTFwAACBkEHwAAEDIIPnCNvKI8xT0Wp7jH4liyAgBQI/TxgavkF+c7XQQAgItR4wMAAEIGwQcAAIQMgg8AAAgZBB8AABAyCD4AACBkMKoLrhHmCVPfln292wAA+IvgA9doENlAS0cvdboYAAAXC9ifzY8++qjOPfdcxcbGKikpqdJ9MjMzNXToUMXGxiolJUV33323SkpKAlUkAAAQ4gJW41NUVKThw4erV69emjVr1jHPl5aWaujQoUpLS9OKFSu0e/du3XDDDYqMjNRjjz0WqGIBAIAQ5jHGmEC+wNy5czVhwgRlZWX5PP7hhx/q4osv1k8//aTU1FRJ0ksvvaR7771X+/fvV1RUVLWOn5OTo8TERGVnZyshIaG2i496JK8oT62eaSVJ2nHHDsVFxTlbIABAjTn1/e1YD9GMjAydfvrp3tAjSQMHDlROTo7Wr19f5c8VFhYqJyfH54bQcSD/gA7kH3C6GAAAl3Is+OzZs8cn9Ejy3t+zZ0+VPzdt2jQlJiZ6b82bNw9oOQEAQPDwK/jcd9998ng8x71t2rQpUGWVJE2ePFnZ2dne286dOwP6egAAIHj41bn5rrvu0ujRo4+7T5s2bap1rLS0NK1atcrnsb1793qfq0p0dLSio6Or9RoAAABH8iv4JCcnKzk5uVZeuFevXnr00Ue1b98+paSkSJI+/fRTJSQkqGPHjrXyGgAAAEcK2HD2zMxMHTp0SJmZmSotLdW6deskSe3atVN8fLwuuugidezYUddff70ef/xx7dmzR3/84x81btw4anQAAEBABCz4PPjgg5o3b573/plnnilJWrJkifr166fw8HC9//77Gjt2rHr16qW4uDiNGjVKDz/8cKCKBJcL84Tp7PSzvdsAAPgr4PP4BBrz+AAA4D4hN48PAABAXSP4AACAkEHwgWvkF+er1dOt1OrpVsovzne6OAAAFwpY52agthlj9EP2D95tAAD8RY0PAAAIGQQfAAAQMgg+AAAgZBB8AABAyCD4AACAkMGoLriGx+NRx+SO3m0AAPxF8IFrxEbGav1t650uBgDAxWjqAgAAIYPgAwAAQgbBB66RX5yvTi90UqcXOrFkBQCgRujjA9cwxmjD/g3ebQAA/EWNDwAACBkEHwAAEDIIPgAAIGQQfAAAQMgg+AAAgJDBqC64hsfjUcvElt5tAAD8RfCBa8RGxmrHhB1OFwMA4GI0dQEAgJBB8AEAACGD4APXOFx8WN1f7a7ur3bX4eLDThcHAOBC9PGBa5SZMq3+abV3GwAAf1HjAwAAQgbBBwAAhAyCDwAACBkEHwAAEDIIPgAAIGQwqguu0jS2qdNFAAC4GMEHrhEXFaf9d+93uhgAABejqQsAAIQMgg8AAAgZBB+4xuHiw+o3t5/6ze3HkhUAgBqhjw9co8yU6fMfPvduAwDgL2p8AABAyCD4AACAkEHwAQAAIYPgAwAAQgbBBwAAhAxGdcFVYiNjnS4CAMDFCD5wjbioOOXdn+d0MQAALkZTFwAACBkEHwAAEDIIPnCNgpICDf3bUA3921AVlBQ4XRwAgAvRxweuUVpWqg82f+DdBgDAX9T4AACAkEHwAQAAIYPgAwAAQkbAgs+jjz6qc889V7GxsUpKSqp0H4/Hc8ztzTffDFSRAABAiAtY5+aioiINHz5cvXr10qxZs6rcb86cORo0aJD3flUhCQAA4EQFLPhMnTpVkjR37tzj7peUlKS0tLRqH7ewsFCFhYXe+9nZ2ZKknJwc/wsJV8krypP+O4o9JydHpVGM7AIAtyr/3jbG1O0LmwCbM2eOSUxMrPQ5SSY9Pd00adLEdO/e3cyaNcuUlZUd93hTpkwxkrhx48aNGzduQXDbunVrANJH1Rydx+fhhx/WBRdcoNjYWH3yySe67bbblJubq9tvv73Kn5k8ebImTpzovZ+VlaWWLVsqMzNTiYmJdVHseiEnJ0fNmzfXzp07lZCQ4HRx6gznzXmHAs6b8w4F2dnZatGihRo3blynr+tX8Lnvvvv05z//+bj7bNy4Uaeeemq1jvfAAw94t88880zl5eVpxowZxw0+0dHRio6OPubxxMTEkHrDlEtISOC8QwjnHVo479ASqucdFla3A8z9Cj533XWXRo8efdx92rRpU+PC9OzZU4888ogKCwsrDTcAAAAnwq/gk5ycrOTk5ECVRevWrVOjRo0IPQAAICAC1scnMzNThw4dUmZmpkpLS7Vu3TpJUrt27RQfH69//etf2rt3r8455xzFxMTo008/1WOPPaZJkyb59TrR0dGaMmVKyIUlzpvzDgWcN+cdCjjvuj1vjzGBGUc2evRozZs375jHlyxZon79+umjjz7S5MmTtWXLFhlj1K5dO40dO1Zjxoyp8/Y+AAAQGgIWfAAAAOobqlYAAEDIIPgAAICQQfABAAAhg+ADAABChuPBZ+bMmWrVqpViYmLUs2dPrVq16rj7L1iwQKeeeqpiYmJ0+umn64MPPvB53hijBx98UM2aNVODBg00YMAAbd682WefQ4cO6brrrlNCQoKSkpJ00003KTc3t9bP7Xhq87yLi4t177336vTTT1dcXJzS09N1ww036KeffvI5RqtWreTxeHxu06dPD8j5VaW2r/fo0aOPOadBgwb57BNs11vSMedcfpsxY4Z3H7dd7/Xr1+vKK6/0lvvpp5+u0TELCgo0btw4NWnSRPHx8bryyiu1d+/e2jytX1Xb5z1t2jR1795dDRs2VEpKioYNG6bvv//eZ59+/fodc71vvfXW2j6146rt837ooYeOOaejVwYIxutd2e+ux+PRuHHjvPu47Xq/+uqr6t27txo1aqRGjRppwIABx+xfZ9/fdboy2FHefPNNExUVZWbPnm3Wr19vxowZY5KSkszevXsr3f/LL7804eHh5vHHHzcbNmwwf/zjH01kZKT5v//7P+8+06dPN4mJiebdd981//73v82ll15qWrdubQ4fPuzdZ9CgQaZLly7mq6++MsuXLzft2rUzI0eODPj5lqvt887KyjIDBgww8+fPN5s2bTIZGRmmR48e5qyzzvI5TsuWLc3DDz9sdu/e7b3l5uYG/HzLBeJ6jxo1ygwaNMjnnA4dOuRznGC73sYYn/PdvXu3mT17tvF4PD6L/bnteq9atcpMmjTJvPHGGyYtLc089dRTNTrmrbfeapo3b24WL15sVq9ebc455xxz7rnnBuo0a1TGI1XnvAcOHGjmzJljvvvuO7Nu3TozZMgQ06JFC5/r2bdvXzNmzBif652dnR2o0zxGIM57ypQpplOnTj7ntH//fp99gvF679u3z+ecP/30UyPJLFmyxLuP2673tddea2bOnGnWrl1rNm7caEaPHm0SExPNrl27vPvU1fe3o8GnR48eZty4cd77paWlJj093UybNq3S/a+++mozdOhQn8d69uxpfv/73xtjjCkrKzNpaWlmxowZ3uezsrJMdHS0eeONN4wxxmzYsMFIMl9//bV3nw8//NB4PB7z448/1tq5HU9tn3dlVq1aZSSZH374wftYy5YtK/0lqyuBOO9Ro0aZyy67rMrXDJXrfdlll5kLLrjA5zG3Xe8jVVX2XztmVlaWiYyMNAsWLPDus3HjRiPJZGRknMDZVF8gzvto+/btM5LM559/7n2sb9++5o477qhJkWtFIM57ypQppkuXLlX+XKhc7zvuuMO0bdvWlJWVeR9z8/U2xpiSkhLTsGFDM2/ePGNM3X5/O9bUVVRUpDVr1mjAgAHex8LCwjRgwABlZGRU+jMZGRk++0vSwIEDvftv375de/bs8dknMTFRPXv29O6TkZGhpKQknX322d59BgwYoLCwMK1cubLWzq8qgTjvymRnZ8vj8SgpKcnn8enTp6tJkyY688wzNWPGDJWUlNT8ZPwQyPNeunSpUlJSdMopp2js2LE6ePCgzzGC/Xrv3btXCxcu1E033XTMc2663rVxzDVr1qi4uNhnn1NPPVUtWrSo8evWdhlrQ3Z2tiQds6r166+/rqZNm6pz586aPHmy8vPza+01jyeQ571582alp6erTZs2uu6665SZmel9LhSud1FRkf7617/qd7/7nTwej89zbr7e+fn5Ki4u9r6H6/L7O2BLVvyaAwcOqLS0VKmpqT6Pp6amatOmTZX+zJ49eyrdf8+ePd7nyx873j4pKSk+z0dERKhx48befQIpEOd9tIKCAt17770aOXKkz0q/t99+u7p166bGjRtrxYoVmjx5snbv3q0nn3zyBM/q1wXqvAcNGqQrrrhCrVu31tatW3X//fdr8ODBysjIUHh4eEhc73nz5qlhw4a64oorfB532/WujWPu2bNHUVFRxwT+4/3/1aZAnPfRysrKNGHCBJ133nnq3Lmz9/Frr71WLVu2VHp6ur799lvde++9+v777/WPf/yjVl73eAJ13j179tTcuXN1yimnaPfu3Zo6dap69+6t7777Tg0bNgyJ6/3uu+8qKyvrmAXC3X697733XqWnp3uDTl1+fzsWfBAYxcXFuvrqq2WM0Ysvvujz3MSJE73bZ5xxhqKiovT73/9e06ZNc+0aMddcc413+/TTT9cZZ5yhtm3baunSpbrwwgsdLFndmT17tq677jrFxMT4PB6M1xvSuHHj9N133+mLL77wefyWW27xbp9++ulq1qyZLrzwQm3dulVt27at62LWisGDB3u3zzjjDPXs2VMtW7bUW2+9VWkNZzCaNWuWBg8erPT0dJ/H3Xy9p0+frjfffFNLly495nOrLjjW1NW0aVOFh4cf0/t+7969SktLq/Rn0tLSjrt/+b+/ts++fft8ni8pKdGhQ4eqfN3aFIjzLlceen744Qd9+umnPrU9lenZs6dKSkq0Y8cO/0/ET4E87yO1adNGTZs21ZYtW7zHCNbrLUnLly/X999/r5tvvvlXy1Lfr3dtHDMtLU1FRUXKysqqtdet7TKeiPHjx+v999/XkiVLdPLJJx933549e0qS93chkAJ93uWSkpLUoUMHn9/vYL7eP/zwgxYtWlTt32+p/l/vJ554QtOnT9cnn3yiM844w/t4XX5/OxZ8oqKidNZZZ2nx4sXex8rKyrR48WL16tWr0p/p1auXz/6S9Omnn3r3b926tdLS0nz2ycnJ0cqVK7379OrVS1lZWVqzZo13n88++0xlZWXeN04gBeK8pYrQs3nzZi1atEhNmjT51bKsW7dOYWFhx1QdBkKgzvtou3bt0sGDB9WsWTPvMYLxepebNWuWzjrrLHXp0uVXy1Lfr3dtHPOss85SZGSkzz7ff/+9MjMza/y6tV3GmjDGaPz48XrnnXf02WefqXXr1r/6M+vWrZMk7+9CIAXqvI+Wm5urrVu3es8pWK93uTlz5iglJUVDhw791X3dcL0ff/xxPfLII/roo498+ulIdfz9Xe1u0AHw5ptvmujoaDN37lyzYcMGc8stt5ikpCSzZ88eY4wx119/vbnvvvu8+3/55ZcmIiLCPPHEE2bjxo1mypQplQ5nT0pKMu+995759ttvzWWXXVbpcLgzzzzTrFy50nzxxRemffv2dT68uTbPu6ioyFx66aXm5JNPNuvWrfMZ3lhYWGiMMWbFihXmqaeeMuvWrTNbt241f/3rX01ycrK54YYbXHvev/zyi5k0aZLJyMgw27dvN4sWLTLdunUz7du3NwUFBd7jBNv1LpednW1iY2PNiy++eMxruvF6FxYWmrVr15q1a9eaZs2amUmTJpm1a9eazZs3V/uYxtjhzS1atDCfffaZWb16tenVq5fp1auXq8977NixJjEx0SxdutTn9zs/P98YY8yWLVvMww8/bFavXm22b99u3nvvPdOmTRvTp08fV5/3XXfdZZYuXWq2b99uvvzySzNgwADTtGlTs2/fPu8+wXi9jbGjpFq0aGHuvffeY17Tjdd7+vTpJioqyrz99ts+7+FffvnFZ5+6+P52NPgYY8xzzz1nWrRoYaKiokyPHj3MV1995X2ub9++ZtSoUT77v/XWW6ZDhw4mKirKdOrUySxcuNDn+bKyMvPAAw+Y1NRUEx0dbS688ELz/fff++xz8OBBM3LkSBMfH28SEhLMjTfe6POfXxdq87y3b99uJFV6K5/3Yc2aNaZnz54mMTHRxMTEmNNOO8089thjPgGhLtTmeefn55uLLrrIJCcnm8jISNOyZUszZswYny9BY4Lvepd7+eWXTYMGDUxWVtYxz7nxelf1Pu7bt2+1j2mMMYcPHza33XabadSokYmNjTWXX3652b17dyBP8xi1fd5V/X7PmTPHGGNMZmam6dOnj2ncuLGJjo427dq1M3fffXedzutiTO2f94gRI0yzZs1MVFSUOemkk8yIESPMli1bfF4zGK+3McZ8/PHHRtIx31/GuPN6t2zZstLznjJlinefuvr+9hhjTPXrhwAAANzL8SUrAAAA6grBBwAAhAyCDwAACBkEHwAAEDIIPgAAIGQQfAAAQMgg+AAAgJBB8AEAACGD4AMAAEIGwQcAAIQMgg8AAAgZ/x/yizjQQIHlKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*10.0)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-15,15])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al, the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase warps and the lag becomes negative. This is given in page 43 of review." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### More realistic impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The response of refelection from an accretion disk to an instantaneous flash follows the _top-hat function_ to first\n", + "order approximation. The response shows an initial steep rise some time after the initial flash (slope depending on\n", + "the light travel time to the disk) and then gradually decays, as parts of the accretion disk farther away from the \n", + "source receieve radiations at later times.\n", + "\n", + "The secondary peak is caused due to the bending of light in strong gravitational field around the black hole. This is the re-emergence of photons reflected from the far side of accretion disk that although would be classically blocked from our view, are lensed by strong gravitational field around black hole into our line of sight. \n", + "\n", + "Below, we obtain an impulse response similar to one in Utley et al.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABB1klEQVR4nO3de3wU5b0/8M/MXnPbzX2TQEK4XwQCgoSIVq1RipTW2p5ylCOI1VYPtmj6ayUqIPVotFarrSgVRfQognqUeqEoRpGqCBIIikK4BRMgu0mA7Oay2U12nt8fSZYkBMyGJLOz+3m/XvMimZ3Z/T4uJh++zzOzkhBCgIiIiEglstoFEBERUXhjGCEiIiJVMYwQERGRqhhGiIiISFUMI0RERKQqhhEiIiJSFcMIERERqYphhIiIiFSlV7uA7lAUBcePH0dMTAwkSVK7HCIiIuoGIQRqa2uRlpYGWT57/0MTYeT48eNIT09XuwwiIiLqgfLycgwcOPCsj2sijMTExABoGYzFYlG5GiIiIuoOl8uF9PR0/+/xs9FEGGmbmrFYLAwjREREGvN9Syy4gJWIiIhUxTBCREREqmIYISIiIlUxjBAREZGqGEaIiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVBVwGNmyZQtmzZqFtLQ0SJKE9evXd/vczz77DHq9HhMmTAj0ZYmIiChEBRxG6uvrkZWVheXLlwd0Xk1NDebOnYsrr7wy0JckIiKiEBbwZ9PMmDEDM2bMCPiFbrvtNtxwww3Q6XQBdVOIiIgotPXLmpEXXngBhw8fxtKlS7t1vMfjgcvl6rAR0bn5fPUoK3sEDQ0H1S6FiCggfR5GDhw4gEWLFuHll1+GXt+9RkxBQQGsVqt/S09P7+MqibTP4XgFhw8vwpEj96tdChFRQPo0jPh8Ptxwww1YtmwZRowY0e3z8vPz4XQ6/Vt5eXkfVkkUGtzulo6I12tXuRIiosAEvGYkELW1tdixYwd27dqFO+64AwCgKAqEENDr9fjggw/wwx/+8IzzTCYTTCZTX5ZGFHIaG78DAPh8TpUrISIKTJ+GEYvFgq+//rrDvqeffhofffQR3njjDQwePLgvX54orHg8ZQCA5maGESLSloDDSF1dHQ4ePL1ArrS0FMXFxYiPj0dGRgby8/Nx7NgxvPTSS5BlGWPHju1wfnJyMsxm8xn7iej8NDYyjBCRNgUcRnbs2IErrrjC/31eXh4AYN68eVi9ejUqKipQVlbWexUS0fdSFC+83goADCNEpD2SEEKoXcT3cblcsFqtcDqdsFgsapdDFHTc7sPYtm2o//sf/KARssx1V0Skru7+/uZn0xCFgLYpmjbsjhCRljCMEIWAtsWrbRhGiEhLGEaIQkDbZb1tGEaISEsYRohCQOfOCO81QkRawjBCFAK4ZoSItIxhhCgEtHVGZDkSANDcXKNiNUREgWEYIdI4IYR/zUhU1AUA2BkhIm1hGCHSuKamE1AUNwCGESLSJoYRIo1rm6IxGlNgMCQD4AJWItIWhhEijWubojGZBkGvtwJgZ4SItIVhhEjj2jojZnMGwwgRaRLDCJHGtV3WazJlQKdjGCEi7WEYIdK4rjojXDNCRFrCMEKkcW1rRsxmrhkhIm3Sq10AEZ2f9tM0ktTy7wuGESLSEnZGiDTM52tEU5MDQMs0DdeMEJEWsTNCpGEeTzmAltvA6/XxaPv3hRAeKIoHsmxSsToiou5hZ4RIw04vXh0ESZKg11v8j7E7QkRawTBCpGHt14sAgCTpoNNFA2AYISLtYBgh0rD2l/W24boRItIahhEiDWt/WW8b3muEiLSGYYRIwzpP0wCAXh8LgJ0RItIOhhEiDetqmoY3PiMirWEYIdIoIZSzdEYYRohIWxhGiDSqqakKQngASDCZBvr3ty1g5ZoRItIKhhEijWrrihiNaZBlg38/OyNEpDUMI0Qa1dV6EYBhhIi0h2GESKPaLuttv14EYBghIu1hGCHSqLZpmvb3GAG4ZoSItIdhhEijOE1DRKGCYYRIozhNQ0ShgmGESKPYGSGiUMEwQqRBPl8DmpqqAQAmE9eMEJG2MYwQaZDHUw4A0Oli/J2QNm3fK0ojFMXb77UREQWKYYRIg9qvF5EkqcNjer3F/zWnaohICxhGiDTobJf1AoAk6aDTRQNgGCEibWAYIdKgsy1ebcN1I0SkJQGHkS1btmDWrFlIS0uDJElYv379OY9/8803cdVVVyEpKQkWiwU5OTl4//33e1ovEeHsl/W24RU1RKQlAYeR+vp6ZGVlYfny5d06fsuWLbjqqquwYcMGFBUV4YorrsCsWbOwa9eugIslohbf1xlhGCEiLdEHesKMGTMwY8aMbh//xBNPdPj+oYcewj//+U+88847mDhxYqAvT0Q4vWak82W9bRhGiEhLAg4j50tRFNTW1iI+Pv6sx3g8Hng8Hv/3LperP0oj0gQhFP+lvVwzQkShoN8XsP7lL39BXV0dfvnLX571mIKCAlitVv+Wnp7ejxUSBbeGhn0QogmyHAmjMa3LY9gZISIt6dcwsmbNGixbtgyvvfYakpOTz3pcfn4+nE6nfysvL+/HKomCm9P5bwCAxTIVstx1c5NhhIi0pN+madauXYtbbrkFr7/+OnJzc895rMlkgslk6qfKiLTF6fwUAGC1XnLWYxhGiEhL+qUz8uqrr2L+/Pl49dVXMXPmzP54SaKQ1Z0wwjUjRKQlAXdG6urqcPDgQf/3paWlKC4uRnx8PDIyMpCfn49jx47hpZdeAtAyNTNv3jw8+eSTyM7Oht1uBwBERETAarV2+RpE1LXGxqNobDwCQIbFMvWsx53ujNT0S11EROcj4M7Ijh07MHHiRP9luXl5eZg4cSKWLFkCAKioqEBZWZn/+GeffRbNzc1YsGABUlNT/dvChQt7aQhE4cPl+gwAEB09EXp9zFmP4zQNEWlJwJ2Ryy+/HEKIsz6+evXqDt9v3rw50JcgorPozhQNwDBCRNrCz6Yh0pDuhpG2NSMMI0SkBQwjRBrR3OxEXd1uAIDVOu2cx7Z1RriAlYi0gGGESCOczq0ABMzmoTCZUs95bFsYUZRGKIq3H6ojIuo5hhEijejuFA0A6HQW/9ecqiGiYMcwQqQRgYQRWdZDlqMAMIwQUfBjGCHSAEXxorZ2GwAgNvbSbp3DdSNEpBUMI0QaUFu7E4rSCIMhERERI7p1Di/vJSKtYBgh0oC2D8ezWi+BJEndOodhhIi0gmGESAMCWS/ShvcaISKtYBghCnJCKHA6W24DH0gY0etjAXDNCBEFP4YRoiDX0FCC5uYTkOUIREdP7PZ5nKYhIq1gGCEKcm1TNBZLNmTZ2O3zGEaISCsYRoiCXE/WiwAMI0SkHQwjREHudBjp3v1F2rQtYOWaESIKdgwjREHM4zmOxsbDAGRYLFMDOpedESLSCoYRoiDW1hWJjs6CXm/5nqM7YhghIq1gGCEKYjU1WwAEvl4EYBghIu1gGCEKUs3NdaisXAMAiIvLDfh8rhkhIq1gGCEKUhUVz6G5+RQiIoYjIWFmwOezM0JEWsEwQhSEFMWLo0cfAwCkp/8BkqQL+DnawoiiuKEoTb1aHxFRb2IYIQpClZWvwuM5CqMxBTbbjT16Dp3u9IJXdkeIKJgxjBAFGSEUlJX9GQAwcOCd0OnMPXoeWdZDlqMAcN0IEQU3hhGiIHPixLtoaPgWOp0FaWm3nddzcd0IEWkBwwhRkCkrewQAkJZ2uz9M9BTDCBFpAcMIURCpqfkULtfnkCQjBg5ceN7PxzBCRFrAMEIURMrLW7oiKSnzYDKlnvfz8V4jRKQFDCNEQaKubg9OnHgXgIT09D/0ynOyM0JEWsAwQhQkystbrqBJSvo5IiOH98pzMowQkRYwjBAFgYaGElRWvgoASE+/u9eel2GEiLSAYYRIZR7PcXz11Y8gRDPi4q6GxTK5156ba0aISAsYRohU1NR0Ert3X43GxiOIiBiG0aNf6tXnZ2eEiLSAYYRIJT5fPb7+eiYaGr6B0ZiG8eM3wWi09eprMIwQkRYwjBCpQFE82LPnOrhcX0Cvj0dW1geIiMjs9ddhGCEiLWAYIepnQviwd++NOHXqA8hyFMaP34CoqAv65LW4ZoSItIBhhKgfeb2V2Lv3RlRVvQ5JMmDs2LdgsWT32euxM0JEWqBXuwCicODz1aO8/K8oL/8zfL5aADJGj16D+Pir+vR1GUaISAsYRoj6kKI0w25fhSNH7ofXWwEAiImZjKFD/4LY2Mv6/PXbwoiiNEBRmiDLhj5/TSKiQAU8TbNlyxbMmjULaWlpkCQJ69ev/95zNm/ejAsvvBAmkwnDhg3D6tWre1AqkTYIoaCubjfKyh7Fjh3jsH//b+D1VsBsHowxY9biwgu39UsQAQCdzuL/mt0RIgpWAXdG6uvrkZWVhZtvvhnXXXfd9x5fWlqKmTNn4rbbbsMrr7yCwsJC3HLLLUhNTcX06dN7VDRRMBFCwOM5ipqazTh16gOcPLkJTU0O/+N6fQIyM5cgLe02yLKxX2uTZQNkORKK0tC6iDWxX1+fiKg7Ag4jM2bMwIwZM7p9/IoVKzB48GA89thjAIDRo0fj008/xV//+leGEdIMRWmGx1MGt/sQ3O6DrdshNDYegtt9CIri7nC8LEciNvYKxMdPR0rKXP90iRr0eiu83gZ2RogoaPX5mpGtW7ciNze3w77p06fjzjvvPOs5Ho8HHo/H/73L5eqr8oi65PVWo7z8EdTXfwO3+yAaG0shRPM5zpARHZ2F+PjpiIubDqs1B7Js6rd6z6UljFQwjBBR0OrzMGK322GzdbyrpM1mg8vlgtvtRkRExBnnFBQUYNmyZX1dGtFZ2e3Po7z8Lx32SZIJERFDW7dhiIgYCrO55WuzeVDQLg7V6xMAAF7vcZUrISLqWlBeTZOfn4+8vDz/9y6XC+np6SpWROGmubkGABAf/yOkp/8RERHDYDINgCRp79Y8FstFcLk+g9P5OWy2OWqXQ0R0hj4PIykpKXA4HB32ORwOWCyWLrsiAGAymWAyBUeLm8KTongBAFFR4xEXd4XK1Zwfq/UHOHr0CTidW9QuhYioS33+z7ycnBwUFhZ22Ldp0ybk5OT09UsT9ZgQLWGkv69+6QtW6yUAgPr6PWhqOqFyNUREZwo4jNTV1aG4uBjFxcUAWi7dLS4uRllZGYCWKZa5c+f6j7/ttttw+PBh/PGPf8S+ffvw9NNP47XXXsNdd93VOyMg6gNtnRFJ0n4YMRqTEBk5GgDgdH6qcjVERGcKOIzs2LEDEydOxMSJEwEAeXl5mDhxIpYsWQIAqKio8AcTABg8eDDee+89bNq0CVlZWXjsscfw3HPP8bJeCmqh1BkBWqZqAKCmhlM1RBR8Al4zcvnll0MIcdbHu7q76uWXX45du3YF+lJEqgmlzggAxMb+ABUV/+C6ESIKStq7NICoH4ReZ+RSAEBt7U40N9eqXA0RUUcMI0RdCLXOiNmcDrN5MAAFLtfnapdDRNQBwwhRF0KtMwJw3QgRBS+GEaIuhFpnBGhZNwKA60aIKOgwjBB1IZQ7Iy7Xdvh87u85moio/zCMEHUhFDsjERFDYTSmQggvamu3q10OEZEfwwhRF0KxMyJJEteNEFFQYhgh6kIodkYArhshouDEMELUhVDsjACn1404nZ9DUZpUroaIqAXDCFEXQrUzEhU1Bnp9PBSlAXV1O9Uuh4gIAMMIUZdCtTMiSbL/bqxcN0JEwYJhhKgLodoZAbhuhIiCD8MIURdCtTMCtF838imEUFSuhoiIYYSoS6HcGYmOngCdLhrNzTWor9+jdjlERAwjRJ0JIUK6MyLLelgsFwPguhEiCg4MI0SdCNHs/zoUOyMA140QUXBhGCHqpK0rAoRmZwRo/wm+n0AIoXI1RBTuGEaIOmlbLwKEbmfEYpkCWY5EU1Ml140QkeoYRog6Od0ZkSBJelVr6SuybPJP1Zw6tUnlaogo3DGMEHXS/koaSZJUrqbvxMXlAgBOnfpQ5UqIKNwxjBB1EspX0rQXF3cVgJZ1I4riUbkaIgpnDCNEnYTyPUbai4oaC4MhGYrSAJfrC7XLIaIwxjBC1Em4dEYkSfZP1Zw8yXUjRKQehhGiTsKlMwKcnqrhuhEiUhPDCFEn4dIZAU4vYq2t/RJNTadUroaIwhXDCFEn4dQZMZsHIjJyFAAFNTUfq10OEYUphhGiTsKpMwLwEl8iUh/DCFEn4dQZAdqvG+EiViJSB8MIUSfh1hmJjb0cgA5u90G43UdUroaIwhHDCFEn4dYZ0estsFiyAXCqhojUwTBC1Em4dUYAXuJLROpiGCHqJNw6I8DpRaw1NYUQQlG5GiIKNwwjRJ2EY2fEYsmGTheDpqZq1NUVq10OEYUZhhGiTsKxMyLLhtaFrJyqIaL+xzBC1Ek4dkaA9vcb4SW+RNS/GEaIOgnHzghwehFrTc2/4fO5Va6GiMIJwwhRJ+HaGYmMHAWjMQ1CeOB0fqZ2OUQURnoURpYvX47MzEyYzWZkZ2dj+/bt5zz+iSeewMiRIxEREYH09HTcddddaGxs7FHBRH0tXDsjkiS1u8T3A5WrIaJwEnAYWbduHfLy8rB06VLs3LkTWVlZmD59OiorK7s8fs2aNVi0aBGWLl2KvXv34vnnn8e6detwzz33nHfxRH0hXDsjABAf/yMAwIkTG1SuhIjCScBh5PHHH8ett96K+fPnY8yYMVixYgUiIyOxatWqLo///PPPMW3aNNxwww3IzMzE1Vdfjeuvv/57uylEagnXzggAxMdPB6BDQ8M3cLtL1S6HiMJEQGHE6/WiqKgIubm5p59AlpGbm4utW7d2ec7FF1+MoqIif/g4fPgwNmzYgGuuueasr+PxeOByuTpsRP0lnDsjBkMcrNZLAAAnTryncjVEFC4CCiPV1dXw+Xyw2Wwd9ttsNtjt9i7PueGGG/CnP/0Jl1xyCQwGA4YOHYrLL7/8nNM0BQUFsFqt/i09PT2QMonOSzh3RgAgIeHHAIATJ95VuRIiChd9fjXN5s2b8dBDD+Hpp5/Gzp078eabb+K9997DAw88cNZz8vPz4XQ6/Vt5eXlfl0nkF86dEeB0GKmp+RjNzXUqV0NE4UAfyMGJiYnQ6XRwOBwd9jscDqSkpHR5zuLFi3HjjTfilltuAQCMGzcO9fX1+PWvf417770XsnxmHjKZTDCZTIGURtRrwr0zEhk5EmbzUDQ2HsKpUx8iKelatUsiohAXUGfEaDRi0qRJKCws9O9TFAWFhYXIycnp8pyGhoYzAodOpwMACCECrZeoz4V7Z0SSJCQkzATAqRoi6h8BT9Pk5eVh5cqVePHFF7F3717cfvvtqK+vx/z58wEAc+fORX5+vv/4WbNm4ZlnnsHatWtRWlqKTZs2YfHixZg1a5Y/lBAFk3DvjACnp2pOnnyPn+JLRH0uoGkaAJg9ezaqqqqwZMkS2O12TJgwARs3bvQvai0rK+vQCbnvvvsgSRLuu+8+HDt2DElJSZg1axYefPDB3hsFUS8K984IAMTG/gA6XTS8Xjtqa3fCYpmsdklEFMIkoYG5EpfLBavVCqfTCYvFonY5FOJ27pwGl+tzXHDBW2G9XmLPnp+juvpNDBq0FIMH3692OUSkQd39/c3PpiHqRFE8AMK7MwLwEl8i6j8MI0SdtE3ThPOaEQBISGi5MWFdXRE8nuMqV0NEoYxhhKiTtgWs4d4ZMRptiImZAoCfVUNEfYthhKgTdkZO41QNEfUHhhGiTtgZOa0tjJw6tQk+X6PK1RBRqGIYIeqEnZHToqMnwGhMg6I0oKZms9rlEFGIYhgh6oSdkdNa7sbKqRoi6lsMI0SdsDPSUfswooHbEhGRBjGMEHXCzkhHcXFXQpbN8Hi+Q339HrXLIaIQxDBC1I4QPgA+AOyMtNHpIhEXdxUAoKrq/1SuhohCEcMIUTuK0uT/mp2R05KSfgEAqKp6Q+VKiCgUMYwQtdO2XgRgZ6S9hIRZkCQDGhq+QX39XrXLIaIQwzBC1E7behEAkGWDipUEF4MhDnFxuQA4VUNEvY9hhKid050RHSRJp2otwYZTNUTUVxhGiNrhlTRnl5h4LSRJj/r63WhoOKB2OUQUQhhGiNrhPUbOzmCIR2zsDwFwqoaIehfDCFE77IycG6dqiKgvMIwQtcPOyLklJl4LQEZdXRHc7lK1yyGiEMEwQtQOOyPnZjQmITb2cgCcqiGi3sMwQtQOOyPf7/RUzesqV0JEoYJhhKgddka+X2LizwBIqK3djsbG79Quh4hCAMMIUTvsjHw/kykFVuulAICqqjdVroaIQgHDCFE77Ix0D6+qIaLexDBC1A47I92TlPRzAIDL9Tk8nmMqV0NEWscwQtQOOyPdYzKlwWKZBoBTNUR0/hhGiNphZ6T7eFUNEfUWhhGidtgZ6b6WMCLB6fw3r6ohovPCMELUDjsj3Wc2D/TfAM3heFndYohI0xhGiNphZyQwNttcAIDd/r8QQqhcDRFpFcMIUTvsjAQmKennkOUIuN0lqK3doXY5RKRRDCNE7bAzEhi9Pqb1w/MAh+N/1S2GiDSLYYSoHXZGAmez3QgAqKx8FYrSpHI1RKRFDCNE7bAzEri4uKtgMNjQ1FSNkyc3ql0OEWkQwwhRO+yMBE6W9bDZrgfAqRoi6hmGEaJ22Bnpmbaraqqr30ZTU426xRCR5jCMELXDzkjPREdPQGTkBRDCww/PI6KAMYwQtcPOSM9IkoSUlJaFrJyqIaJA9SiMLF++HJmZmTCbzcjOzsb27dvPeXxNTQ0WLFiA1NRUmEwmjBgxAhs2bOhRwUR9iZ2RnktOnoOW28Nvgdt9RO1yiEhDAg4j69atQ15eHpYuXYqdO3ciKysL06dPR2VlZZfHe71eXHXVVThy5AjeeOMNlJSUYOXKlRgwYMB5F0/U29gZ6bmW28NfAYC3hyeiwAQcRh5//HHceuutmD9/PsaMGYMVK1YgMjISq1at6vL4VatW4eTJk1i/fj2mTZuGzMxMXHbZZcjKyjrv4ol6Gzsj5yclpWUhq8PB28MTUfcFFEa8Xi+KioqQm5t7+glkGbm5udi6dWuX57z99tvIycnBggULYLPZMHbsWDz00EPw+XxnfR2PxwOXy9VhI+oP7Iycn8TE61pvD78ftbVfql0OEWlEQGGkuroaPp8PNputw36bzQa73d7lOYcPH8Ybb7wBn8+HDRs2YPHixXjsscfwP//zP2d9nYKCAlitVv+Wnp4eSJlEPcbOyPlpuT38zwAAFRVdd0uJiDrr86tpFEVBcnIynn32WUyaNAmzZ8/GvffeixUrVpz1nPz8fDidTv9WXl7e12USAWBnpDekpt4CAKisfAXNzbUqV0NEWqAP5ODExETodDo4HI4O+x0OB1JSUro8JzU1FQaDATqdzr9v9OjRsNvt8Hq9MBrP/KFvMplgMpkCKY2oV7R1RmSZf/96Kjb2ckREjIDbvR+Vla8iLe3XapdEREEuoM6I0WjEpEmTUFhY6N+nKAoKCwuRk5PT5TnTpk3DwYMHoSiKf9/+/fuRmpraZRAhUlNbZ4TTND0nSZI/gBw//g+VqyEiLQh4miYvLw8rV67Eiy++iL179+L2229HfX095s+fDwCYO3cu8vPz/cfffvvtOHnyJBYuXIj9+/fjvffew0MPPYQFCxb03iiIesnpzgjDyPmw2eZBkoyoq9sJl2uH2uUQUZALaJoGAGbPno2qqiosWbIEdrsdEyZMwMaNG/2LWsvKyiDLpzNOeno63n//fdx1110YP348BgwYgIULF+Luu+/uvVEQ9RJ2RnqH0ZiIpKRfoLJyDSoq/gGLZbLaJRFREJOEBm4G4HK5YLVa4XQ6YbFY1C6HQtjnn6fB663A5MnFiI7mvXDOR03Nv1Fc/APIchQuvvgY9Hqr2iURUT/r7u9vfjYNUTvsjPQeq/USREaOhqLUw+F4Re1yiCiIMYwQtcM1I72nZSHrbwC0LGTVQBOWiFTCMELUDjsjvctmmwtZNqO+/iu4XNvULoeIghTDCFErIQQ7I73MYIhDUtIvAQAVFbzMl4i6xjBC1EoIH4CWqQR2RnpPWtptAIDKynVoaqpRtxgiCkoMI0St2roiADsjvclimYqoqHFQFDccjv9VuxwiCkIMI0St2taLAOyM9KaOC1lXcCErEZ2BYYSoVfvOiCQFfD9AOgeb7b8gy5FoaPgWNTWb1S6HiIIMwwhRq/ZX0kiSpHI1oUWvtyIl5SYAwNGjj6tbDBEFHYYRola8kqZvDRy4EICEEyfeRUNDidrlEFEQYRghasV7jPStyMgRSEiYBQAoL/+rytUQUTBhGCFqxc5I30tP/z0AwOF4EV5vtcrVEFGwYBghasXOSN+zWi9FdPQkKEojjh9foXY5RBQkGEaIWrEz0vckSfJ3R44dewqK4lG5IiIKBgwjRK3YGekfSUm/gMk0EE1NDjgca9Quh4iCAMMIUSt2RvqHLBswYMDvALRc5suboBERwwhRK3ZG+k9q6q3Q6aJRX78Hp059qHY5RKQyhhGiVuyM9B+DIRYpKb8CAJSXP6ZyNUSkNoYRolbsjPSvlpugyTh16n3U1e1RuxwiUhHDCFErdkb6V0TEYCQlXQeAt4gnCncMI0St2BnpfwMHtt0E7X/hdh9RtxgiUg3DCFErdkb6n9U6FXFxuRCiGWVlD6tdDhGphGGEqBU7I+oYNGgpAMBuX4XGxjKVqyEiNTCMELViZ0QdsbGXIDb2CgjRhLKyR9Quh4hUwDBC1IqdEfVkZrZ0RyoqnkNj41GVqyGi/sYwQtSKnRH1xMZeBqv1BxDCi/JydkeIwg3DCFErdkbU1dYdOX58JTye4ypXQ0T9iWGEqBU7I+qKjb0CFss0COFBWdmf1S6HiPoRwwhRK3ZG1CVJUru1I/+Ax2NXuSIi6i8MI0St2BlRX1xcLiyWqVCURpSXP6p2OUTUTxhGiFopigcAOyNqkiTJf9+R48efgdfrULkiIuoPDCNErdgZCQ7x8dMREzMFiuLGd989pHY5RNQPGEaIWnHNSHCQJAlDhrSEkOPHn0ZDw0GVKyKivsYwQtSKnZHgERd3JeLjfwQhmlFaeo/a5RBRH2MYIWrFzkhwGTLkEQASqqpeh8u1Te1yiKgPMYwQtWJnJLhER49HSso8AMChQ3+AEELlioiorzCMELViZyT4ZGY+AFk2w+n8N06ceEftcoioj/QojCxfvhyZmZkwm83Izs7G9u3bu3Xe2rVrIUkSrr322p68LFGfYmck+JjNAzFw4F0AgMOH74aiNKtcERH1hYDDyLp165CXl4elS5di586dyMrKwvTp01FZWXnO844cOYL/9//+Hy699NIeF0vUl9gZCU4ZGXdDr09AQ8M+2O3Pq10OEfWBgMPI448/jltvvRXz58/HmDFjsGLFCkRGRmLVqlVnPcfn82HOnDlYtmwZhgwZcl4FE/UVdkaCk15vRWbmEgBAaelSNDfXqVwREfW2gMKI1+tFUVERcnNzTz+BLCM3Nxdbt24963l/+tOfkJycjF/96lfdeh2PxwOXy9VhI+pr7IwEr7S022A2D0VTkwNHjz6mdjlE1MsCCiPV1dXw+Xyw2Wwd9ttsNtjtXX+o1aeffornn38eK1eu7PbrFBQUwGq1+rf09PRAyiTqEXZGgpcsGzFkSAEAoKzsz2hsPKpyRUTUm/r0apra2lrceOONWLlyJRITE7t9Xn5+PpxOp38rLy/vwyqJWrAzEtySkn4Bi2UaFKUBhw7dpXY5RNSL9IEcnJiYCJ1OB4ej44dXORwOpKSknHH8oUOHcOTIEcyaNcu/T1GUlhfW61FSUoKhQ4eecZ7JZILJZAqkNKLzxs5IcJMkCSNGPI0dOy5EVdUbOHnyA8THX612WUTUCwLqjBiNRkyaNAmFhYX+fYqioLCwEDk5OWccP2rUKHz99dcoLi72bz/5yU9wxRVXoLi4mNMvFFTYGQl+0dHjMXDgbwEABw7c4f+kZSLStoA6IwCQl5eHefPmYfLkyZgyZQqeeOIJ1NfXY/78+QCAuXPnYsCAASgoKIDZbMbYsWM7nB8bGwsAZ+wnUhs7I9qQmbkMlZXr4HYfQFnZo8jMvE/tkojoPAUcRmbPno2qqiosWbIEdrsdEyZMwMaNG/2LWsvKyiDLvLEraYsQCoRouaEWOyPBTa+3YOjQx7B37w0oK3sQNtscREQMVrssIjoPktDABz64XC5YrVY4nU5YLBa1y6EQpCgebNliBgBcckkN9HqryhXRuQghsHt3LmpqPkJCwo8xbhxvFU8UjLr7+5stDCKcXi8CsDOiBZIkYfjw5ZAkA06ceBfV1W+rXRIRnQeGESKcXi8CcM2IVkRFjUJ6+u8BAAcO/A4+X4PKFRFRTzGMEKF9Z0SGJOlUrYW6b9Cg+2AyZcDj+Q7fffeA2uUQUQ8xjBCBV9JolU4XheHD/wYAKCt7FC7XlypXREQ9wTBCBN5jRMsSE3+K5OTrAfiwb99N8Pka1S6JiALEMEIEdka0bvjwv8NgsKGh4VscOXK/2uUQUYAYRojAzojWGQwJGDnyHwCA8vJH4XR+oXJFRBQIhhEisDMSChITfwqb7UYASut0jVvtkoiomxhGiMDOSKgYNuxJGI2pcLtLUFq6WO1yiKibGEaIwM5IqDAY4jBy5EoAwNGjj8Pp/EzlioioOxhGiMDOSChJSJiJlJT5AETrdE292iUR0fdgGCECOyOhZujQx2EyDYTbfRAHDixUuxwi+h4MI0RgZyTUGAyxGDXqJQAS7Pbn4XC8onZJRHQODCNEYGckFMXFXYFBg5YAAEpKfoOGhv0qV0REZ8MwQgR2RkJVZuZixMZeDkWpxzff/JJ3ZyUKUgwjRGBnJFRJkg6jR78CgyEJ9fW7cehQntolEVEXGEaIwM5IKDOZ0jB69MsAgOPHn0Fl5esqV0REnTGMEIGdkVAXH381MjLyAQAlJbfA7T6kckVE1B7DCBHYGQkHmZl/gsUyDT6fq3X9CG8XTxQsGEaI0L4zYlK5EuorsqzHmDGvQq9PQF3dTpSU3AwhhNplEREYRogAsDMSLszmdIwd+3+QJD0qK9eirKxA7ZKICAwjRAC4ZiScxMZehuHDnwIAlJbei+rqf6pcERExjBCBnZFwk5b2G6SlLQAAfPvtHNTVfa1yRUThjWGECOyMhKNhw/6K2NgfQlHqsWfPT+D1VqldElHYYhghAjsj4UiWDbjggtdhNg9FY+MRfPPNL/x/D4iofzGMEIGdkXBlMMRj3Li3odPFwOncgpKSW3mFDZEKGEaIwM5IOIuKGoMxY9YC0MHheAmHD9+tdklEYYdhhAjsjIS7hIRrMHLkcwCA8vJHUVb2F5UrIgovDCNEYGeEgNTUmzBkyCMAgMOH/wC7/UWVKyIKHwwjRGBnhFqkp/8BAwf+HgCwb9+vUF39rsoVEYUHhhEisDNCLSRJwtChf4bNNheAD99++x9wOj9TuyyikMcwQgR2Rug0SZIxcuRziI+fCUVpxNdf/xi1tTvVLosopDGMEIGdEeqo5R4kr8FiuRjNzTXYvftKuFw71C6LKGQxjBCBnRE6k04XifHj/9UukOTC5dqudllEIYlhhAjsjFDX9HoLxo/fCKv1Evh8TuzefRVcrm1ql0UUchhGiMDOCJ2dXh+DceP+Bav1Uvh8LuzefRWczq1ql0UUUhhGiMDOCJ2bXh+NceM2wGq9DD5fLb766mrU1HyqdllEIaNHYWT58uXIzMyE2WxGdnY2tm8/+zzqypUrcemllyIuLg5xcXHIzc095/FEamBnhL6PXh+N8ePfQ2zsFfD56vDVV1ejuvodtcsiCgkBh5F169YhLy8PS5cuxc6dO5GVlYXp06ejsrKyy+M3b96M66+/Hh9//DG2bt2K9PR0XH311Th27Nh5F0/UW9gZoe7Q6aIwbty7iI+fAUVxY8+ea3H8+HNql0WkeZII8CMqs7OzcdFFF+Gpp54CACiKgvT0dPz2t7/FokWLvvd8n8+HuLg4PPXUU5g7d263XtPlcsFqtcLpdMJisQRSLlG3bNkSAUVpxNSp38FszlC7HApyitKE/ft/Dbt9NQAgM/N+DBq0BJIkqVsYUZDp7u/vgDojXq8XRUVFyM3NPf0Esozc3Fxs3dq9BV0NDQ1oampCfHz8WY/xeDxwuVwdNqK+xM4IBUKWDRg5chUyMu4FABw5cj/27/8NFKVZ5cqItCmgMFJdXQ2fzwebzdZhv81mg91u79Zz3H333UhLS+sQaDorKCiA1Wr1b+np6YGUSRQQIXwAFABcM0LdJ0kShgz5Hwwf/jQAGRUVK/HNN9fB56tXuzQizenXq2kefvhhrF27Fm+99RbMZvNZj8vPz4fT6fRv5eXl/VglhZu2rgjAzggFbsCA23HBBf8HWTbjxIl3sGvXJXC7j6hdFpGmBBRGEhMTodPp4HA4Oux3OBxISUk557l/+ctf8PDDD+ODDz7A+PHjz3msyWSCxWLpsBH1lbYraQB2RqhnkpKuRVbWhzAYklBXV4ydOy/CqVOb1S6LSDMCCiNGoxGTJk1CYWGhf5+iKCgsLEROTs5Zz/vzn/+MBx54ABs3bsTkyZN7Xi1RH+jYGTGoWAlpmdU6DZMmFSE6+kI0NVVj9+5cHD36dwR4jQBRWAp4miYvLw8rV67Eiy++iL179+L2229HfX095s+fDwCYO3cu8vPz/cc/8sgjWLx4MVatWoXMzEzY7XbY7XbU1dX13iiIzkNbZ0SSDLwags6L2ZyOiRM/hc32XwB8OHjwdygpuRk+X6PapREFNX2gJ8yePRtVVVVYsmQJ7HY7JkyYgI0bN/oXtZaVlUGWT2ecZ555Bl6vF7/4xS86PM/SpUtx//33n1/1RL2AV9JQb9LpIjBq1EuIjp6IQ4f+ALt9Nerrv8GYMesQETFY7fKIglLA9xlRA+8zQn2poaEE27ePgl4fh0suOal2ORRCTp78EN9++0s0N5+CTmfByJHPIjl5ttplEfWbPrnPCFEoYmeE+kp8fC4mT94Fi+Vi+HwufPvtf2Lfvl/x8l+iThhGKOzxc2moL5nNgzBhwicYNOg+ABLs9lXYsWMSamuL1S6NKGgwjFDYY2eE+pos6zF48APIyvoIRmMa3O4S7NyZjfLyx1tvukcU3hhGKOyxM0L9JS7uckyevBsJCbMghBeHDv0eu3Zdivr6fWqXRqQqhhEKe+yMUH8yGhMxduw/MWLEP6DTxcDl2oodOyagrOwRfrYNhS2GEQp77IxQf5MkCWlpv8ZFF32D+PgfQQgPDh9ehF27clBX97Xa5RH1O4YRCnvsjJBazOZ0jBu3AaNGrYZeH4va2h0oKpqEQ4cWobmZN4ak8MEwQmGPnRFSkyRJSEmZh4su+hYJCT+FEE0oL38E27ePgsOxlreTp7DAMEJhj50RCgYmUyrGjn0LY8e+DbN5CLzeY9i793oUF1/BqRsKeQwjFPbYGaFgIUkSEhNn4aKLvkFm5gOQ5Qg4nZ9gx46JOHDgt/B6q9QukahPMIxQ2GNnhIKNTmdGZuZ9mDJlLxITfw7Ah2PHnsK2bUNx5MifuJ6EQg7DCIU9RfEAYGeEgo/ZPAhjx76BrKwPER09CT5fLY4cWYpt24bi2LHl/iBNpHUMIxT22qZp2BmhYBUXdyUmTdqOMWPWwmweiqamShw4cAe2bx8Nu/0l3p+ENI9hhMJe278u2RmhYCZJMpKTZ2PKlL0YPnw5DAYbGhsPY9++edi+fQSOH1/p7/IRaQ3DCIU9dkZIS2TZgAED/hvZ2QcxeHABDIYkNDaWYv/+X2PbtmE4evTv8PncapdJFBCGEQp77IyQFun10Rg0aBGmTj2CYcOegNGYBo/nKA4e/B2++CITR44sg9frULtMom5hGKGwx84IaZlOF4mBAxdi6tTDGDFiBczmTDQ1VeLIkfuxdWsG9u69CbW1u9Quk+icGEYo7LEzQqFAlk1IS/sNpkzZjzFj1sFimQohvHA4XkRR0YXYtesyVFX9HxSlSe1Sic6gV7sAIrWxM0KhRJYNSE7+JZKTfwmXaxuOHn0SVVWvw+ncAqdzCwyGZKSk3ITU1FsQGTlc7XKJALAzQsTOCIUsiyUbY8asQXZ2KTIy8mEw2NDUVIny8j9j+/YRKC6+Ag7HGi54JdUxjFDYY2eEQp3ZPBBDhjyEnJxyXHDBm4iPnwFAQk3NZuzdOweff27Dvn3zcfLkhxDCp3a5FIY4TUNhj50RCheybEBS0s+QlPQzNDaWoaJiFez2F+DxlMFuXw27fTWMxlQkJ18Pm+0GREdfCEmS1C6bwgA7IxT22BmhcGQ2Z2Dw4PsxdWopJkzYgtTU30Cvj4PXW4GjRx9HUdFkbNs2BAcP/h5O5+cQQlG7ZAph7IxQ2GNnhMKZJMmIjb0UsbGXYvjwv+HkyX/B4XgFJ068i8bGIzh69HEcPfo4jMZUJCZei8TEa2G1/gA6nVnt0imEMIxQ2GNnhKiFLBuRmPhTJCb+FD5fA06e3Iiqqjdx4sQ78HorcPz4Mzh+/BnIciTi4nKRkHAN4uNnwGzOULt00jiGEQp77IwQnUmni0RS0nVISroOiuLFqVOFqK5+EydObIDXexwnTryNEyfeBgBERY1FXNxViIu7ElbrD6DXx6hcPWkNwwiFPXZGiM5Nlo1ISJiBhIQZEEKgrm43Tp7cgBMnNsDl2or6+j2or9+Do0f/CknSIyZmCuLirkRs7A9hsWRDp4tQewgU5BhGKOyxM0LUfZIkISZmAmJiJmDQoHvQ1HQCp059iFOnCnHqVCEaGw/D5focLtfn+O67ByBJBsTETILVemnrNg0GQ7zaw6AgwzBCYY+dEaKeMxgSkJw8G8nJswEAbncpTp0qRE1NIWpqPoHXWwGX6wu4XF+gvPxRAEBk5CjExGTDYpkCiyUbUVHjIcsGNYdBKmMYobDHzghR74mIGIyIiFuQlnYLhBBobCyF0/lvOJ2foqbm33C7S9DQsA8NDfvgcLwIAJBlM6KjJyI6+kLExFyI6OiJiIq6gP9PhhGGEQp77IwQ9Q1JkhARMQQREUOQkjIPAOD1VqG2djtcrm1wubahtnY7mptr4HJthcu1td25BkRFjUV09ARERY1r3cbCaLTxRmwhiGGEwh47I0T9x2hMQkLCTCQkzAQACCHgdh9Abe2XqK3dhbq6nair24Xm5hrU1e1CXd2uDucbDImIihqHyMgxiIwc5d9MpgEMKRrGMEJhj50RIvVIkoTIyBGIjBwBm20OALRO73zXGky+Qn3916iv3wO3+yCamqpRU/Mxamo+7vA8Ol00IiJGIjJyOCIihiEiou3PYTAYkhhUghzDCIU9dkaIgkvL9E4mIiIykZR0nX+/z+dGQ8O3rZcS7/WvPXG7D8Lnq0NdXRHq6orOeD6dLhpm8+DWLRNm82BERAyGyZQBszkDen08w4rKGEYo7LEzQqQNOl0EYmImISZmUof9iuKF230IDQ0lcLsPttsOwOMph89X19pd+brL55XlCH8wMZnSYTINgNGYBpNpgH9r6a7w49z6CsMIhTUhBIRoAsDOCJFWybIRUVGjERU1+ozHfL5GeDzfwe0uRWPj6c3tLoXHU46mpkooihtudwnc7pJzvIoORqMNRmNKpy0ZBkNyhz/1+gTIMn+9BoL/tSistQURgJ0RolCk05kRGTkSkZEju3y8JawchcdTBo+nHI2N5fB6j8Hjadm83uPweh0AfK1fH+/W6+r1cTAYEmAwJMJgSIRen9D6fTz0+jjo9fHtvo6DXh8Lvd4atvdb6VEYWb58OR599FHY7XZkZWXh73//O6ZMmXLW419//XUsXrwYR44cwfDhw/HII4/gmmuu6XHRRL2lbb0IwM4IUThqCSvDEBk57KzHKEoTmpoq4fXau9gq0dRU1fpnJZqaqgEINDefQnPzKbjdBwOqR5ajWoNJLPR6C3Q6C/R6a+vXVuj1MdDpTm8dv4+CThfdukVBknTn+V+n/wQcRtatW4e8vDysWLEC2dnZeOKJJzB9+nSUlJQgOTn5jOM///xzXH/99SgoKMCPf/xjrFmzBtdeey127tyJsWPH9sogiHqqbb0IwM4IEXVNlg3+tSPfRwgfmppOoqnpBJqaqjtszc0n0dR0sjWotH19Es3NTvh8tQAARamH11sPr/dYL9RthixHQaeLhE4X5f9aliNb/4zw/ynLkUhL+w0iIgaf9+v2hCSEEIGckJ2djYsuughPPfUUAEBRFKSnp+O3v/0tFi1adMbxs2fPRn19Pd59913/vqlTp2LChAlYsWJFt17T5XLBarXC6XTCYrEEUi7ROXk8dmzdmgpAwmWX+biinohUoSjN8PlcaG6uaQ0rztaQ4mr92gWfz4nm5lr4fKe3lv218Pnq4fPVweerA6D0qIaJE7fCap3aq+Pq7u/vgDojXq8XRUVFyM/P9++TZRm5ubnYunVrl+ds3boVeXl5HfZNnz4d69evP+vreDweeDwe//culyuQMrutvPwJNDYe6ZPnJm1o+9eIJBkZRIhINbKshyzHn/eHCAohoCgef0BRlIbWoHL6a0Vxw+drgKK4W/e1fN2dzk9fCSiMVFdXw+fzwWazddhvs9mwb9++Ls+x2+1dHm+328/6OgUFBVi2bFkgpfVIVdVrHW4/TOHLYEhQuwQiovMmSRJ0OjN0OjOAJLXL6bagvJomPz+/QzfF5XIhPT29118nJWUeYmOv6PXnJe2Jj5+hdglERGEroDCSmJgInU4Hh8PRYb/D4UBKSkqX56SkpAR0PACYTCaYTKZASuuRtLTf9PlrEBER0bkFdDs5o9GISZMmobCw0L9PURQUFhYiJyeny3NycnI6HA8AmzZtOuvxREREFF4CnqbJy8vDvHnzMHnyZEyZMgVPPPEE6uvrMX/+fADA3LlzMWDAABQUFAAAFi5ciMsuuwyPPfYYZs6cibVr12LHjh149tlne3ckREREpEkBh5HZs2ejqqoKS5Ysgd1ux4QJE7Bx40b/ItWysjLI8umGy8UXX4w1a9bgvvvuwz333IPhw4dj/fr1vMcIERERAejBfUbUwPuMEBERaU93f3/zIwiJiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVMUwQkRERKpiGCEiIiJVMYwQERGRqhhGiIiISFUB3w5eDW03iXW5XCpXQkRERN3V9nv7+272rokwUltbCwBIT09XuRIiIiIKVG1tLaxW61kf18Rn0yiKguPHjyMmJgaSJPXa87pcLqSnp6O8vDxkP/Mm1MfI8WlfqI+R49O+UB9jX45PCIHa2lqkpaV1+BDdzjTRGZFlGQMHDuyz57dYLCH5F6y9UB8jx6d9oT5Gjk/7Qn2MfTW+c3VE2nABKxEREamKYYSIiIhUFdZhxGQyYenSpTCZTGqX0mdCfYwcn/aF+hg5Pu0L9TEGw/g0sYCViIiIQldYd0aIiIhIfQwjREREpCqGESIiIlIVwwgRERGpKqzDyPLly5GZmQmz2Yzs7Gxs375d7ZJ6ZMuWLZg1axbS0tIgSRLWr1/f4XEhBJYsWYLU1FREREQgNzcXBw4cUKfYHigoKMBFF12EmJgYJCcn49prr0VJSUmHYxobG7FgwQIkJCQgOjoaP//5z+FwOFSqOHDPPPMMxo8f77/pUE5ODv71r3/5H9f6+Dp7+OGHIUkS7rzzTv8+LY/x/vvvhyRJHbZRo0b5H9fy2No7duwY/uu//gsJCQmIiIjAuHHjsGPHDv/jWv5Zk5mZecZ7KEkSFixYAED776HP58PixYsxePBgREREYOjQoXjggQc6fGaMqu+fCFNr164VRqNRrFq1SnzzzTfi1ltvFbGxscLhcKhdWsA2bNgg7r33XvHmm28KAOKtt97q8PjDDz8srFarWL9+vdi9e7f4yU9+IgYPHizcbrc6BQdo+vTp4oUXXhB79uwRxcXF4pprrhEZGRmirq7Of8xtt90m0tPTRWFhodixY4eYOnWquPjii1WsOjBvv/22eO+998T+/ftFSUmJuOeee4TBYBB79uwRQmh/fO1t375dZGZmivHjx4uFCxf692t5jEuXLhUXXHCBqKio8G9VVVX+x7U8tjYnT54UgwYNEjfddJPYtm2bOHz4sHj//ffFwYMH/cdo+WdNZWVlh/dv06ZNAoD4+OOPhRDafw8ffPBBkZCQIN59911RWloqXn/9dREdHS2efPJJ/zFqvn9hG0amTJkiFixY4P/e5/OJtLQ0UVBQoGJV569zGFEURaSkpIhHH33Uv6+mpkaYTCbx6quvqlDh+ausrBQAxCeffCKEaBmPwWAQr7/+uv+YvXv3CgBi69atapV53uLi4sRzzz0XUuOrra0Vw4cPF5s2bRKXXXaZP4xofYxLly4VWVlZXT6m9bG1ufvuu8Ull1xy1sdD7WfNwoULxdChQ4WiKCHxHs6cOVPcfPPNHfZdd911Ys6cOUII9d+/sJym8Xq9KCoqQm5urn+fLMvIzc3F1q1bVays95WWlsJut3cYq9VqRXZ2tmbH6nQ6AQDx8fEAgKKiIjQ1NXUY46hRo5CRkaHJMfp8Pqxduxb19fXIyckJqfEtWLAAM2fO7DAWIDTewwMHDiAtLQ1DhgzBnDlzUFZWBiA0xgYAb7/9NiZPnoz/+I//QHJyMiZOnIiVK1f6Hw+lnzVerxcvv/wybr75ZkiSFBLv4cUXX4zCwkLs378fALB79258+umnmDFjBgD13z9NfFBeb6uurobP54PNZuuw32azYd++fSpV1TfsdjsAdDnWtse0RFEU3HnnnZg2bRrGjh0LoGWMRqMRsbGxHY7V2hi//vpr5OTkoLGxEdHR0XjrrbcwZswYFBcXh8T41q5di507d+LLL7884zGtv4fZ2dlYvXo1Ro4ciYqKCixbtgyXXnop9uzZo/mxtTl8+DCeeeYZ5OXl4Z577sGXX36J3/3udzAajZg3b15I/axZv349ampqcNNNNwHQ/t9PAFi0aBFcLhdGjRoFnU4Hn8+HBx98EHPmzAGg/u+KsAwjpF0LFizAnj178Omnn6pdSq8bOXIkiouL4XQ68cYbb2DevHn45JNP1C6rV5SXl2PhwoXYtGkTzGaz2uX0urZ/XQLA+PHjkZ2djUGDBuG1115DRESEipX1HkVRMHnyZDz00EMAgIkTJ2LPnj1YsWIF5s2bp3J1vev555/HjBkzkJaWpnYpvea1117DK6+8gjVr1uCCCy5AcXEx7rzzTqSlpQXF+xeW0zSJiYnQ6XRnrIR2OBxISUlRqaq+0TaeUBjrHXfcgXfffRcff/wxBg4c6N+fkpICr9eLmpqaDsdrbYxGoxHDhg3DpEmTUFBQgKysLDz55JMhMb6ioiJUVlbiwgsvhF6vh16vxyeffIK//e1v0Ov1sNlsmh9je7GxsRgxYgQOHjwYEu8fAKSmpmLMmDEd9o0ePdo/HRUqP2u+++47fPjhh7jlllv8+0LhPfzDH/6ARYsW4T//8z8xbtw43HjjjbjrrrtQUFAAQP33LyzDiNFoxKRJk1BYWOjfpygKCgsLkZOTo2JlvW/w4MFISUnpMFaXy4Vt27ZpZqxCCNxxxx1466238NFHH2Hw4MEdHp80aRIMBkOHMZaUlKCsrEwzY+yKoijweDwhMb4rr7wSX3/9NYqLi/3b5MmTMWfOHP/XWh9je3V1dTh06BBSU1ND4v0DgGnTpp1xSf3+/fsxaNAgAKHxswYAXnjhBSQnJ2PmzJn+faHwHjY0NECWO/7K1+l0UBQFQBC8f32+RDZIrV27VphMJrF69Wrx7bffil//+tciNjZW2O12tUsLWG1trdi1a5fYtWuXACAef/xxsWvXLvHdd98JIVou14qNjRX//Oc/xVdffSV++tOfauZyOyGEuP3224XVahWbN2/ucOldQ0OD/5jbbrtNZGRkiI8++kjs2LFD5OTkiJycHBWrDsyiRYvEJ598IkpLS8VXX30lFi1aJCRJEh988IEQQvvj60r7q2mE0PYYf//734vNmzeL0tJS8dlnn4nc3FyRmJgoKisrhRDaHlub7du3C71eLx588EFx4MAB8corr4jIyEjx8ssv+4/R+s8an88nMjIyxN13333GY1p/D+fNmycGDBjgv7T3zTffFImJieKPf/yj/xg137+wDSNCCPH3v/9dZGRkCKPRKKZMmSK++OILtUvqkY8//lgAOGObN2+eEKLlkq3FixcLm80mTCaTuPLKK0VJSYm6RQegq7EBEC+88IL/GLfbLf77v/9bxMXFicjISPGzn/1MVFRUqFd0gG6++WYxaNAgYTQaRVJSkrjyyiv9QUQI7Y+vK53DiJbHOHv2bJGamiqMRqMYMGCAmD17dof7b2h5bO298847YuzYscJkMolRo0aJZ599tsPjWv9Z8/777wsAXdas9ffQ5XKJhQsXioyMDGE2m8WQIUPEvffeKzwej/8YNd8/SYh2t18jIiIi6mdhuWaEiIiIggfDCBEREamKYYSIiIhUxTBCREREqmIYISIiIlUxjBAREZGqGEaIiIhIVQwjREREpCqGESIiIlIVwwgRERGpimGEiIiIVMUwQkRERKr6/7ePxQ0t3jCpAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Primary peak time, secondary peak time, end time\n", + "t1, t2, t3 = 3, 4, 10\n", + "# Peaks' values\n", + "p1, p2 = 1, 1.4\n", + "# Rise and decay slopes\n", + "rise, decay = 0.6, 0.1\n", + "\n", + "# Append zeros before start time\n", + "h_primary = np.append(np.zeros(int(t1/lc.dt)), p1)\n", + "\n", + "# Create a rising exponential of user-provided slope that ends at secondary peak time and secondary peak\n", + "# value\n", + "x = np.linspace(int(t1/lc.dt), int(t2/lc.dt), int((t2-t1)/lc.dt))\n", + "h_rise = np.exp(rise*x)\n", + "# Find a factor for scaling\n", + "factor = np.max(h_rise)/(p2-p1)\n", + "h_secondary = (h_rise/factor) + p1\n", + "\n", + "# Create a decaying exponential until the end time\n", + "x = np.linspace(int(t2/lc.dt), int(t3/lc.dt), int((t3-t2)/lc.dt))\n", + "h_decay = (np.exp((-decay)*(x-4/lc.dt)))\n", + "\n", + "# Add the three responses\n", + "h = np.append(h_primary, h_secondary)\n", + "h = np.append(h, h_decay)\n", + "\n", + "# Plot\n", + "plt.plot(h,'y')\n", + "plt.show()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Obtain output through convolution." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delay = (int(t3/lc.dt))\n", + "output = signal.fftconvolve(s, h)\n", + "output = output[delay:-delay]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Form light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "time = lc.time[delay:]\n", + "lc1 = Lightcurve(time, s_mod)\n", + "lc2 = Lightcurve(time, output)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Find cross spectrum and compute lags." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc2, lc1)\n", + "cross = cross.rebin(0.0075)\n", + "lag = np.angle(cross.power)/ (2 * np.pi * cross.freq)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot results." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAGiCAYAAAD3HoLVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABC/UlEQVR4nO3de3wU1eH38e/mTkIuQBJCakjAGxcBFSGGVoklFRStWkSLWC5FrApWRS2kjwro04K3qlW0rT8k9qfWio93EQsoeCHKRVFBoIBAuCXcTCK5bDbJef4Ys7AkWQjs7uwmn/frNa/Mzp6ZPZPZ7H5z5swZhzHGCAAAAE0Ks7sCAAAAwYywBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOCFX8PSRx99pMsvv1zp6elyOBx64403PJ43xui+++5Tly5d1K5dO+Xl5WnTpk3H3O6cOXOUlZWlmJgYZWdna8WKFX7aAwAA0Nb5NSxVVFSoX79+mjNnTpPPP/TQQ/rrX/+qv/3tb/r8888VFxenoUOHqrq6utlt/vvf/9aUKVM0ffp0ffHFF+rXr5+GDh2qvXv3+ms3AABAG+YI1I10HQ6HXn/9dV155ZWSrFal9PR03XnnnbrrrrskSWVlZercubMKCgr061//usntZGdna8CAAXrqqackSfX19crIyNCtt96qadOmBWJXAABAGxJh1wtv3bpVxcXFysvLcy9LTExUdna2CgsLmwxLNTU1Wr16tfLz893LwsLClJeXp8LCwmZfy+l0yul0uh/X19fr4MGD6tSpkxwOh4/2CAAA+JMxRj/88IPS09MVFha4bte2haXi4mJJUufOnT2Wd+7c2f3c0fbv36+6urom19mwYUOzrzVr1izNnDnzJGsMAACCwY4dO3TKKacE7PVsC0uBlJ+frylTprgfl5WVqWvXrtqxY4cSEhJsrBkAnLyKmgqlP5ouSdp9527FRcXZXCPAP8rLy5WRkaH4+PiAvq5tYSktLU2SVFJSoi5duriXl5SU6Oyzz25yneTkZIWHh6ukpMRjeUlJiXt7TYmOjlZ0dHSj5QkJCYQlACEvvCZcirHmExISCEto9QLdhca2cZa6deumtLQ0LVmyxL2svLxcn3/+uXJycppcJyoqSv379/dYp76+XkuWLGl2HQAAgJPh15alQ4cOafPmze7HW7du1Zo1a9SxY0d17dpVt99+u/7v//2/Ov3009WtWzfde++9Sk9Pd18xJ0lDhgzRVVddpcmTJ0uSpkyZorFjx+q8887TwIED9fjjj6uiokLjx4/3564AQNCKCIvQ2H5j3fMAfMuvf1WrVq3SRRdd5H7c0G9o7NixKigo0B/+8AdVVFToxhtvVGlpqX72s59p4cKFiomJca+zZcsW7d+/3/342muv1b59+3TfffepuLhYZ599thYuXNio0zcAtBXREdEquLLA7moArVbAxlkKJuXl5UpMTFRZWRl9lgAACBF2fX/TXgsAIc4Yo0pXpSQpNjKW8eMAH+NGugAQ4ipdlWo/q73az2rvDk0AfIewBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALxgnCUACHHhYeG6utfV7nkAvkVYAoAQFxMRo/kj59tdDaDV4jQcAACAF4QlAAAALwhLABDiKmoq5JjpkGOmQxU1FXZXB2h1CEsAAABeEJYAAAC8ICwBAAB4QVgCAADwgrAEAADgBWEJAADAC0bwBoAQFx4WrktPv9Q9D8C3CEsAEOJiImL07nXv2l0NoNXiNBwAAIAXhCUAAAAvCEsAEOIqaioU9+c4xf05jtudAH5AnyUAaAUqXZV2VwFotWhZAgAA8IKwBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC+4Gg4AQlyYI0yDMwe75wH4FmEJAEJcu8h2Wjpuqd3VAFot/gUBAADwgrAEAADgBWEJAEJcRU2FUh5OUcrDKdzuBPAD28NSVlaWHA5Ho2nSpElNli8oKGhUNiYmJsC1BoDgsr9yv/ZX7re7GkCrZHsH75UrV6qurs79eO3atfrFL36hkSNHNrtOQkKCNm7c6H7scDj8WkcAANB22R6WUlJSPB7Pnj1bp556qgYPHtzsOg6HQ2lpaf6uGgAAgP2n4Y5UU1OjF154Qb/97W+9thYdOnRImZmZysjI0BVXXKF169Z53a7T6VR5ebnHBAAAcDyCKiy98cYbKi0t1bhx45otc+aZZ+q5557Tm2++qRdeeEH19fUaNGiQdu7c2ew6s2bNUmJionvKyMjwQ+0BAEBr5DDGGLsr0WDo0KGKiorS22+/fdzruFwu9ezZU6NGjdIDDzzQZBmn0ymn0+l+XF5eroyMDJWVlSkhIeGk6w0AdqqoqVD7We0lSYfyDykuKs7mGgH+UV5ersTExIB/f9veZ6nB9u3btXjxYr322mstWi8yMlLnnHOONm/e3GyZ6OhoRUdHn2wVASAohTnCdF76ee55AL4VNGFp3rx5Sk1N1fDhw1u0Xl1dnb755htdeumlfqoZAAS3dpHttHLiSrurAbRaQfEvSH19vebNm6exY8cqIsIzv40ZM0b5+fnux/fff7/+85//6LvvvtMXX3yh66+/Xtu3b9cNN9wQ6GoDAIA2IChalhYvXqyioiL99re/bfRcUVGRwsIOZ7rvv/9eEydOVHFxsTp06KD+/ftr+fLl6tWrVyCrDAAA2oig6uAdKHZ1EAMAf6h0VarXHOsfxm8nfavYyFibawT4R5vv4A0AODHGGG0v2+6eB+BbQdFnCQAAIFgRlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFV8MBQIhzOBzqldLLPQ/AtwhLABDiYiNjte6WdXZXA2i1OA0HAADgBWEJAADAC8ISAIS4Slelej/dW72f7q1KV6Xd1QFaHfosAUCIM8bo233fuucB+BYtSwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFV8MBQIhzOBzKTMx0zwPwLcISAIS42MhYbbt9m93VAFotTsN58+WX1gQAANoswlJzXn9dGjhQGj1aqq62uzYAAMAmhKXmXHih1KmTtH69NGOG3bUBgGZVuao04NkBGvDsAFW5quyuDtDqEJaa06mT9Pe/W/MPPyx99pm99QGAZtSbeq3avUqrdq9Svam3uzpAq0NY8uaKK6Trr5fq66Xx46Uq/mMDAKCtISwdyxNPSF26SBs2SPfdZ3dtAABAgBGWjqVjR+kf/7DmH31UWr7c3voAAICAIiwdj8suk8aOlYyRxo2TKivtrhEAAAgQwtLxevxxKT1d2rRJuuceu2sDAAAChLB0vJKSpGefteYff1z65BM7awMAHpJjk5Ucm2x3NYBWyWGMMXZXItDKy8uVmJiosrIyJSQktGzl3/5WmjdPOu006auvpNhY/1QSAAB4OKnv75NAy1JL/eUv0imnSJs3S3/8o921AQAAfkZYaqmkJOl//seaf+IJ6aOPbK0OAADwL8LSiRg6VLrhBmt+/HiposLe+gBo06pcVcotyFVuQS63OwH8gLB0oh59VMrIkL77Tpo2ze7aAGjD6k29lm1fpmXbl3G7E8APCEsnKiFBmjvXmn/qKWnpUlurAwAA/MP2sDRjxgw5HA6PqUePHl7XmT9/vnr06KGYmBj16dNHCxYsCFBtj/KLX0i/+501P368dOiQPfUAAAB+Y3tYkqTevXtrz5497ukTL2MYLV++XKNGjdKECRP05Zdf6sorr9SVV16ptWvXBrDGR3j4YSkzU9q2TfrDH+ypAwAA8JugCEsRERFKS0tzT8nJzQ+s9sQTT2jYsGG6++671bNnTz3wwAM699xz9dRTTwWwxkeIjz98Ou6ZZ6QlS+ypBwAA8IugCEubNm1Senq6unfvrtGjR6uoqKjZsoWFhcrLy/NYNnToUBUWFja7jtPpVHl5ucfkU0OGSLfcYs1PmCD98INvtw8AAGxje1jKzs5WQUGBFi5cqGeeeUZbt27VBRdcoB+aCRzFxcXq3Lmzx7LOnTuruLi42deYNWuWEhMT3VNGRoZP90GS9OCDUrdu0vbt0t13+377AOBFbGSsYiO5owDgD7aHpUsuuUQjR45U3759NXToUC1YsEClpaV65ZVXfPYa+fn5Kisrc087duzw2bbd2reXnnvOmv/736VFi3z/GgDQhLioOFX8sUIVf6xQXFSc3dUBWh3bw9LRkpKSdMYZZ2jz5s1NPp+WlqaSkhKPZSUlJUpLS2t2m9HR0UpISPCY/CI3V5o82ZqfMEHy9ek+AAAQcEEXlg4dOqQtW7aoS5cuTT6fk5OjJUd1ol60aJFycnICUb1jmz1b6t5d2rFDuvNOu2sDAABOku1h6a677tKyZcu0bds2LV++XFdddZXCw8M1atQoSdKYMWOUn5/vLn/bbbdp4cKFevTRR7VhwwbNmDFDq1at0uSGFh27xcVJ8+ZZ8//zP9L779tbHwCtXnVttYa/NFzDXxqu6tpqu6sDtDq2h6WdO3dq1KhROvPMM3XNNdeoU6dO+uyzz5SSkiJJKioq0p49e9zlBw0apJdeekn/+Mc/1K9fP7366qt64403dNZZZ9m1C41deKF0223W/IQJUmmprdUB0LrV1ddpwaYFWrBpgerq6+yuDtDqOIwxxu5KBFp5ebkSExNVVlbmv/5LlZVSv37S5s3W6N4Nnb8BwMcqairUflZ7SdKh/EN08karFZDv7ybY3rLUasXGSgUFksNhnZbzxS1Z6uutEFbHf44AAARKhN0VaNV++lPpjjukv/xFmjjRulKuqkqqrm76p7fnqqulmhpru/HxUl6edOml0iWXSD/5ib37CQBAK8ZpOH8341VVSWefLf33v/57jX79DgennBwpggwMtCWchkNbYddpOL5V/a1dO+m116RHH7VOycXEWMsafh45fzw/Y2KkjRul996zTu19/rn01VfWNGuWlJQkXXyxFZ6GDZOOGu3cL8rLpe+/lxISrCk83P+v2Ryn0+pQX1oqHTokRUUd/j0f+ft2OHz/2nV1UkWF9bpHTz/8YP2sqJAiIxsfe29TVJR/6gsAOC60LAUwmfrF/v3W8AQLFkgLF0oHD3o+37+/FZwuvVQaMODEgozLZY0btXWr9N131nTk/IEDnuXj46XExMNTUpLn42Mtc7ms8NUQehqmo5c19bj6OC+bPp6QcuQkNQ4+R0+VlS3/3R4Ph6PpYBUTYx3P8HCrNbFhvrll3spERR0O40dO0dEtW06rpi1oWUJbYdf3N2Ep1MPSkerqpJUrreC0YIG0erXn8506SUOHWsFp6FApOdlabowVeI4OQQ2Pi4qO3ak8Otpq1QkGDocVutq3t/p5NfQHq60NzOuHh1uvHR9v/TxyiouzwuCR/dSam+rrA1NfX4qIsN5XKSlSaqr188j5o38mJdnbambM4ffI8fQllKy6d+4spaVZ+0pABAKGsBRADb/s3ft2t+iXHR0RrYgw64Oxtr5WzlqnwhxhahfZzl2moqaixfWJCo9SZHikJGu8lOraajkcDo+bYla6KtXSQxW574CiFn0gvfee6t9fqKpK6/YrcS5ZX1D9+6uqtlr127dZLSPeREdJmVlStyxFZHZXdPfTpe7dZbKyVJnRWYpPUJwipbIyqaxM1Qf3qq70oHWKrqxcKis9PF9e9mM5z/nw0jLFVP8YaOLiVJGcICV1UGx8BzmSOkgdOsiZFK/apB9brpI6SEmJh+cTE63H8QlS2OELPd3HyOWSqqpUUb5fqqpWO5dRWLVTqqpSTUW5XJWHpOoqqar6x59HzEtS+3ipfZwU116Kby9HXHvFJia7g1BlTLhMXJxi4hIVHm69T1x1LtXU1bTouElSXGSsu75VPxxUfWWlomvqFOG0ltVWHpKz6pAVYuvrrCBYV/fjVH/48VHPxdVHuB9X1zlVV1ujqDopsqZOqq5WnbNK1c5KKxw4q6Vq548XFzgPzzcsdzqteVetYl1SQ+Rxhku1YVJkvRT1Y8aud0hVTWWKyAgrxKekSMk/BquGsBXbTu1qHQqrrZNcLtXUOuVyVSvCVafoWkkul4yrRpV1Vh1UW2v9zmpdP87/+Njlsupf9WPdq6oUc6ha4VXW/rgcRjXhUriRYo7I0xWRx3GgHJI6JVsBKjVV0aldFNG5i9S5s2pTk+VM7aSwzp3VLj3T2qeIiOD6jAiPVFR4lCSp3tSrymW9149smapyVanetCy4R4RFKDoiWpJkjFGlq7LRdqtrq1s8JlR4WLhiImLcjxt+l7GRsXL8GLqdtU7V1rfsH6PmPsfbRbZTmMP6LKmpq5GrztWi7TZ3jGIiYhQeZrXyn/BnRBPHqKnvqJPZbsMxaur911JNHaPm3n/elJeXKz0lnbAUCA1hSdMkxRyzuNsrV7+ikb1HSpLmr5uva169RoMzB2vpuKXuMikPp2h/5f4W1eepS57SpIGTJElLty3VRc9fpF4pvbTulnXuMr2f7q1v933bou1OHzxdM3JnSJLW7flKZ/3jbCWbdtr3+unS119LknLHScuyWrRZ3XLeLZozfI4kaV/FPqU+kipJMtMPv5VGzh+pV799tUXbvbrn1Zp/2fNWn57ISDlmWn9Ye+/aq5Q4a5DSSe9O0tOrnm7Rdps7RmtvXqveqb0lSTOWztDMZTNbtN3mjtGHYz9UblauJGnOijma/F7LRpdPjk3Wvrv3uR/nFuRq2fZlTb7/WqqpY9TU+6+l9k7appSweKmiQpM+uFNPb5uv6R2u0oy6C6S9e7Xu+//qrC6vtXi7a+dIvX/8VczIlWbmSreskOb8OBLHvlgp9Q8t3qw+LJByt1nzcwZIk4dLV6+T5r9z+DSnY+KuFm/3lVekkT/+mc7vJV1zjTR4m7S0QNY/KJ06KWXi99of3bKQEJDPiL3rdNYzZzX7/msJv31G9Lpa80fOdz/mM8ISEp8RTRyjpt5/x1Qtabbo4A0/+bGlQ3FxVmfwnTulTz6Rdv9Z+uEbe+vWwCFrfCqEnnaxUlxHqWNHq4Vom6S+faXcO6zn966Tnml5WNLll0uyWmSU+KWkldbVpf0usUJ1uFMyD7Z8uwUFUuZgq5/Vf1+QPrxbuvpq6ZXDX8SaeQKnB39zvXQgTSopkWq/kvS1Vc+wOuu06v79Uq2k6JZv2pvq2mrtLN/p240CcGvTLUut/jQcTeySaGJvbrvB2MR+tKaOUXPvv5Zo6hg19/5riWY/I8KirH6BJSWq2PpfK5hJVqiKO3Zn7GN9RhzZwbvkzpLj7uDNZ4SFz4imtxuMnxGchgugVtvBG0Bo6NDBuoJz3TqpV6+T3hxXw6Gt4HYnANBWZGVZP7dts7MWAI4TYQkAAo2wBIQUwhIABBphCQgphCUACDTCEhBSCEsAEGiEJSCkMM4SAASaj8NSbGSsDuUfcs8D8C3CEgAEWmam9XPfPqmi4rjGWvLG4XAwXADgR5yGA4BAS0qyJknavt3OmgA4DoQlALBDt27Wz61bT3pTzlqnxr0xTuPeGHdCozYD8I6wBAB28GG/pdr6Wj3/1fN6/qvnW3yrDwDHRlgCADtwRRwQMghLAGAHwhIQMghLAGAHwhIQMghLAGAHwhIQMghLAGCHhrGW9u+XDh2yty4AvCIsAYAdEhOlDh2secZaAoIaI3gDgF2ysqTvv7dOxfXufcKbiY2M1d679rrnAfgWLUsAYBcf9VtyOBxKiUtRSlyKHA7HSVcLgCfCEgDYhU7eQEggLAGAXXwUlpy1Tk16d5ImvTuJ250AfkBYAgC7+Oj+cLX1tXp61dN6etXT3O4E8APCEgDYhdNwQEggLAGAXRrGWjpwQPrhB3vrAqBZhCUAsEtCgtSxozXPWEtA0CIsAYCdOBUHBD3bw9KsWbM0YMAAxcfHKzU1VVdeeaU2btzodZ2CggI5HA6PKSYmJkA1BgAfIiwBQc/2sLRs2TJNmjRJn332mRYtWiSXy6WLL75YFRUVXtdLSEjQnj173NN2mrABhCLCEhD0bL/dycKFCz0eFxQUKDU1VatXr9aFF17Y7HoOh0NpaWnH9RpOp1NO5+GxR8rLy0+ssgDgaz4IS+0i22nrbVvd8wB8y/aWpaOVlZVJkjo2dHpsxqFDh5SZmamMjAxdccUVWrduXbNlZ82apcTERPeUkZHh0zoDwAnzQVgKc4QpKylLWUlZCnME3cc6EPIcxhhjdyUa1NfX65e//KVKS0v1ySefNFuusLBQmzZtUt++fVVWVqZHHnlEH330kdatW6dTTjmlUfmmWpYyMjJUVlamhIQEv+wLAByXb76R+vaVOnWS9u+3uzZAUCsvL1diYmLAv7+DKizdfPPNeu+99/TJJ580GXqa43K51LNnT40aNUoPPPDAMcvb9csGgEbKy6XExMPz8fEt3kRNXY3+z5L/I0n605A/KSo8ypc1BIKGXd/fQdNeO3nyZL3zzjv68MMPWxSUJCkyMlLnnHOONm/e7KfaAYCf+GCsJVedS48UPqJHCh+Rq87lw8oBkIIgLBljNHnyZL3++uv64IMP1K3hXkktUFdXp2+++UZdunTxQw0BwM8a+i2d5D3iAPiH7WFp0qRJeuGFF/TSSy8pPj5excXFKi4uVlVVlbvMmDFjlJ+f7358//336z//+Y++++47ffHFF7r++uu1fft23XDDDXbsAgCcnIZ/Ehk+AAhKtg8d8Mwzz0iScnNzPZbPmzdP48aNkyQVFRUpLOxwrvv+++81ceJEFRcXq0OHDurfv7+WL1+uXr16BaraAOA7jLUEBDXbw9Lx9C9funSpx+PHHntMjz32mJ9qBAABRlgCgprtp+EAoM0jLAFBjbAEAHYjLAFBzfbTcADQ5mVmWj8PHrTGWmrh+DHtIttp7c1r3fMAfIuWJQCwW3y8NYK3dEJjLYU5wtQ7tbd6p/bmdieAH/BXBQDBgFNxQNAiLAFAMDiJsFRTV6MZS2doxtIZqqmr8Wm1ANBnCQCCw0mEJVedSzOXzZQk3T3obu4NB/gYLUsAEAw4DQcELcISAAQDwhIQtAhLABAMGu4Px810gaBDWAKAYNAw1tL330tlZfbWBYAHwhIABIP27aXkZGv+BMZaAuA/hCUACBb0WwKCEkMHAECwyMqSVq1qcViKiYjRihtWuOcB+BZhCQCCxQm2LIWHhWvATwb4vDoALJyGA4BgwWk4ICjRsgQAweIEw1JNXY2e+OwJSdJt59/GCN6AjxGWACBYnGBYctW59IfFf5Ak3TLgFsIS4GOchgOAYMFYS0BQIiwBQLBgrCUgKBGWACCY0MkbCDqEJQAIJtwjDgg6hCUACCa0LAFBh7AEAMGEsAQEHYYOAIBgcgJhKSYiRh+O/dA9D8C3CEsAEExOICyFh4UrNyvXH7UBIE7DAUBwaRhrqbTUmgDYjrAEAMEkLk5KSbHmj3OsJVedS3NWzNGcFXPkqnP5sXJA20RYAoBg08JTcTV1NZr83mRNfm+yaupq/FYtoK0iLAFAsOGKOCCoEJYAINgQloCgQlgCgGBDWAKCCmEJAIINYQkIKoQlAAg2DWGJ+8MBQYGwBADBpiEslZUx1hIQBIIiLM2ZM0dZWVmKiYlRdna2VqxY4bX8/Pnz1aNHD8XExKhPnz5asGBBgGoKAAEQGyulplrzx3EqLjoiWu+MekfvjHpH0RHR/q0b0AbZHpb+/e9/a8qUKZo+fbq++OIL9evXT0OHDtXevXubLL98+XKNGjVKEyZM0Jdffqkrr7xSV155pdauXRvgmgOAH7Wg31JEWISGnzFcw88Yrogw7mIF+JrDGGPsrEB2drYGDBigp556SpJUX1+vjIwM3XrrrZo2bVqj8tdee60qKir0zjvvuJedf/75Ovvss/W3v/2tyddwOp1yOp3ux+Xl5crIyFBZWZkSEhJ8vEcA4APXXiu98or02GPS7bfbXRsgKJSXlysxMTHg39+2tizV1NRo9erVysvLcy8LCwtTXl6eCgsLm1ynsLDQo7wkDR06tNnykjRr1iwlJia6p4yMDN/sAAD4Swtallx1LhWsKVDBmgJudwL4ga1haf/+/aqrq1Pnzp09lnfu3FnFxcVNrlNcXNyi8pKUn5+vsrIy97Rjx46TrzwA+FMLwlJNXY3Gvzle498cz+1OAD9oEye3o6OjFR1Np0cAIYSxloCgYWvLUnJyssLDw1VSUuKxvKSkRGlpaU2uk5aW1qLyABCSCEtA0LA1LEVFRal///5asmSJe1l9fb2WLFminJycJtfJycnxKC9JixYtarY8AISkzEzrJ2MtAbazfeiAKVOm6Nlnn9Xzzz+v9evX6+abb1ZFRYXGjx8vSRozZozy8/Pd5W+77TYtXLhQjz76qDZs2KAZM2Zo1apVmjx5sl27AAC+18KxlgD4j+19lq699lrt27dP9913n4qLi3X22Wdr4cKF7k7cRUVFCgs7nOkGDRqkl156Sffcc4/++Mc/6vTTT9cbb7yhs846y65dAAD/yMqS9u61wtLZZ9tcGaDtsn2cJTvYNU4DALTIcY61VFFTofaz2kuSDuUfUlxUXIAqCASWXd/ftrcsAQCa0a2b9fMYN9SNjojWK1e/4p4H4FuEJQAIVsd5RVxEWIRG9h7p9+oAbZXtHbwBAM1g+AAgKNCyBADB6siwZIzkcDRZrLa+Vq+vf12SdFXPq7iZLuBj/EUBQLBqGGupvNwaa6lDhyaLOWuduubVayRZHbwjovhoB3yJ03AAEKzatZMa7oXJqTjANoQlAAhm9FsCbEdYAoBgRlgCbEdYAoBgRlgCbEdYAoBgRlgCbMclEwAQzAhLaOuMkXbtklaskD7+2JYqEJYAIJgdx1hLUeFRmnfFPPc8EFKMkQ4etG7rs22bNR05v22bVFlpaxW5kS430gUQzKqqpNhYa/7AAaljR3vrA5yI779vOgg1zB865H39sDCpTx+Vn3OOEgsKuJEuAOAI7dpJaWlScbH1pUJYQjBzOqUvvpAKC6XPPpP++1/rfVtWdux1u3SxWlK7dbN+HjmfkSFFR1sDtBYU+HMPmkRYAoBgl5V1OCyde26jp2vra/X+5vclSUNPG8rtThA4e/ZIy5db4Wj5cmn1aqmmpumyqanNh6GuXa1/DIIUf1EAEOyysqz/0pvp5O2sdeqyf10midudwI9cLunrrw8Ho8LCpt+TyclSTo40aJDUp48ViDIzpbi4gFfZV/iLAoBgxxVxsMP+/VZIX77cmlaubNzR2uGwAlFDOMrJkU47rdmbPocqwhIABDvCEvytrk769lvPVqP//rdxucREKxA1hKOBA6U2cKEUYQkAgh1hCb5WViZ9/vnhYPTZZ1bn6aP16OHZatSzp3VlWhtDWAKAYHccYy0BzTJG2rTJsyP2unXW8iPFxUnZ2YfD0fnnc/XljwhLABDsuna1fv7wgzVeDV9g8Kaiwupf1BCOCgutMbqO1r27Z6tRnz5SBLGgKfxWACDYMdYSvCkqkj799HBH7K++svogHSk6WhowwLPVKC3NnvqGIMISAIQCL2MtRYVH6alLnnLPoxWrq7NOoX3yyeFpx47G5X7yEysUNbQanXOOFMV740QRlgAgFHgZaykyPFKTBk4KeJUQAFVV1g1kG4LR8uWNO2KHh1th6Kc/PRyOMjLsqW8rRVgCgFDQrZv1kyviWrd9+6xA1BCOVq+2BoM8Uvv2ViD62c+sKTs7pAd8DAWEJQAIBQ1XxG3d2uipuvo6fVz0sSTpgq4XKDwsPIAVwwkzRtqyxfOU2saNjct16SJdcIHVcvSzn0l9+9IRO8D4bQNAKPAy1lJ1bbUuev4iSdbtTuKiaGUIStXVVktRQ0fs5culvXsbl+vV63Cr0c9+Zh17houwFWEJAEIBYy2Fnt27PYPRF180PqUWFWVdpfaznx3uc9Spkz31RbMISwAQChrGWjp0SDp4kC/UYNNwk9mGYFRYKG3f3rhc586eV6n17y/FxAS+vmgRwhIAhIKYGKvvyp49VusSYcleBw543kdtxYrGN5kNC7P6Fx0Zjrp1o1UwBBGWACBUZGUdDkv9+9tdm7alpkb66CPp7bel999vuiN2UpLniNgDB0rx8QGvKnyPsAQAoSIry2rFYPiAwDh4UFqwwApICxc2Ht+oR4/DwWjQIOtxG7zJbFtAWAKAUOHlijj4yH//a4Wjt96ybiFy5G1DUlOlyy+XLrvMupSfU6FtBmEJAEJFM2EpMjxSD+U95J5HC9TWWq11b71lhaSjT6/16WMFpF/+0rpqjZajNomwBAChopmwFBUepbt/enfAqxOyysutfkdvvy29+651uq1BZKSUm2sFpMsvP/w7R5tmW0Tetm2bJkyYoG7duqldu3Y69dRTNX36dNXU1HhdLzc3Vw6Hw2O66aabAlRrALDR0WMt4fht2yY99ZR08cVScrJ0zTXS//6vFZQ6dpSuv1565RVp/37pP/+Rbr2VoAQ321qWNmzYoPr6ev3973/XaaedprVr12rixImqqKjQI4884nXdiRMn6v7773c/jo2N9Xd1AcB+zYy1VFdfpy/2fCFJOrfLudzuRLJCz4cfSosXS0uWWLcVOdIZZ1in1i6/3Oqcze1D4IVt745hw4Zp2LBh7sfdu3fXxo0b9cwzzxwzLMXGxiotLc3fVQSA4BITI6WnWyNDb93qDkvVtdUa+D8DJbXh251UVkoff2wFo8WLpTVrPFvfwsOtEbIbAtIZZ9hWVYSeoIrSZWVl6tix4zHLvfjii3rhhReUlpamyy+/XPfee6/X1iWn0ymn0+l+XH705Z8AECqysqywtG2bdN55dtfGPrW10sqVh8NRYaE1FtKRzjpLysuThgyRLrxQSkiwp64IeUETljZv3qwnn3zymK1K1113nTIzM5Wenq6vv/5aU6dO1caNG/Xaa681u86sWbM0c+ZMX1cZAAIvK8saNbqtDR9gjPTtt4fD0bJljcc9ysiwwlFenvTzn0ucgYCP+DwsTZs2TQ8++KDXMuvXr1ePHj3cj3ft2qVhw4Zp5MiRmjhxotd1b7zxRvd8nz591KVLFw0ZMkRbtmzRqaee2uQ6+fn5mjJlivtxeXm5MjIyjmd3ACC4tKWxlvbts65WawhIxcWez3foYIWihtaj007jViLwC5+HpTvvvFPjxo3zWqZ79+7u+d27d+uiiy7SoEGD9I9//KPFr5ednS3JaplqLixFR0crOjq6xdsGgKDT2sNSXZ11Wf9zz1ljH7lch5+LibEGg2wIR2efbfVFAvzM52EpJSVFKSkpx1V2165duuiii9S/f3/NmzdPYScw2NeaNWskSV26dGnxugAQclprWPruOysgFRRIu3YdXn7OOdIll1gBKSfHCkxAgNnWZ2nXrl3Kzc1VZmamHnnkEe3bt8/9XMOVbrt27dKQIUP0z3/+UwMHDtSWLVv00ksv6dJLL1WnTp309ddf64477tCFF16ovn372rUrABA4R4+1FMqnnaqqpNdek+bOtS7zb9Aw7tGECRKf7QgCtoWlRYsWafPmzdq8ebNOOeUUj+fMj5d7ulwubdy4UZWVlZKkqKgoLV68WI8//rgqKiqUkZGhESNG6J577gl4/QHAFg1jLVVUSAcOSMnJigyP1PTB0yWFyO1OvvjCCkgvvSSVllrLHA7pF7+wAtIVV0h0nUAQcRjT9oaBLS8vV2JiosrKypTApaQAQs1PfmINH7ByZegMH/D999KLL1oh6cfuE5KkzExp/Hhp3DhrHvDCru/voBk6AABwnEJlrKX6euv02ty51um2hvHuoqKkq66yWpGGDOHmtAh6hCUACDVHjbVUb+q1ft96SVLPlJ4Kc9gcPnbssDpqP/ecZ0f0vn2tgDR6tHv0cSAUEJYAINQcdUVclatKZz1zliQbb3dSWir9v/9nnWpbuvTwrUYSE6XrrrNC0rnnhnaHdLRZhCUACDXdulk/t261tx7V1dKCBVZAevfdw6fZJCk31wpIv/qVxM3OEeIISwAQauwca6m+3rrVyIsvSq++KpWVHX6ud2/rFNuoUYfrCLQChCUACDVHj7Xkb8ZIX31lBaR//ctz0MhTTrHC0ejRVp8kTrOhFSIsAUCoyciwQkllpbR/v5Top9Nc27ZZYyG9+KJ1E9sGSUnS1VdbAenCC7maDa0eYQkAQk10tJSebrXwbNsm9evlu23v3y/Nn28FpE8/9XzNyy6zAtKllzJoJNoUwhIAhKKsLN+Fpdpa6c03rcv9Fy60HktW69VFF1kBacQI68o2oA0iLAFAKMrKslp+tm1TZHik7sq5S1ILb3dSWmoNGPnkk9L27YeXn3OOFZB+/WtrtHCgjSMsAUAoOqKTd1R4lB6++OHjX3fLFumJJ6R586RDh6xlycnSxInSb34j9ezp8+oCoYywBAChqKXDBxgjffSR9Nhj0ltvHb6Krndv6fbbrZakdu38UFEg9BGWACAUHRGW6k29isqKJEldE7t63u6kpkZ6+WXp8celL788vPySS6yQ9ItfcLk/cAyEJQAIRUeEpaqaSnV7whrV2327k/37pb/9TZozRyoutsq2ayeNGSPddhun2oAWICwBQCg6cqylA/sPL9+wXnrqH9L//q91OxLJGmZg8mTpxhu5gS1wAghLABCKoqOtK9V27pS2HXEl23kDJNeP8/37S3fcIY0cKUVF2VJNoDVg2FUACFUNp+KuuurwsjCHdfPajz+WVq60Om4TlICTQssSAISqrCzpk0+k778/vOzrb6QzettWJaA1IiwBQKi6/XaprEy66KdS+TRrWUNrEwCf4TQcAISq/v2tMZMmTba7JkCrRssSAIS4iLAI3XLeLe55AL7FXxUAhLjoiGjNGT7H7moArRan4QAAALygZQkAQpwxRvsrrYEpk2OT5eD2JYBPEZYAIMRVuiqV+kiqpCNudwLAZzgNBwAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALxg6AAACHERYREa22+sex6Ab/FXBQAhLjoiWgVXFthdDaDV4jQcAACAF7QsAUCIM8ao0lUpSYqNjOV2J4CP2dqylJWVJYfD4THNnj3b6zrV1dWaNGmSOnXqpPbt22vEiBEqKSkJUI0BIPhUuirVflZ7tZ/V3h2aAPiO7afh7r//fu3Zs8c93XrrrV7L33HHHXr77bc1f/58LVu2TLt379avfvWrANUWAAC0NbafhouPj1daWtpxlS0rK9PcuXP10ksv6ec//7kkad68eerZs6c+++wznX/++f6sKgAAaINsb1maPXu2OnXqpHPOOUcPP/ywamtrmy27evVquVwu5eXluZf16NFDXbt2VWFhYbPrOZ1OlZeXe0wAAADHw9aWpd///vc699xz1bFjRy1fvlz5+fnas2eP/vKXvzRZvri4WFFRUUpKSvJY3rlzZxUXFzf7OrNmzdLMmTN9WXUAANBG+Lxladq0aY06bR89bdiwQZI0ZcoU5ebmqm/fvrrpppv06KOP6sknn5TT6fRpnfLz81VWVuaeduzY4dPtAwCA1svnLUt33nmnxo0b57VM9+7dm1yenZ2t2tpabdu2TWeeeWaj59PS0lRTU6PS0lKP1qWSkhKv/Z6io6MVHR19XPUHAAA4ks/DUkpKilJSUk5o3TVr1igsLEypqalNPt+/f39FRkZqyZIlGjFihCRp48aNKioqUk5OzgnXGQBCWXhYuK7udbV7HoBv2dZnqbCwUJ9//rkuuugixcfHq7CwUHfccYeuv/56dejQQZK0a9cuDRkyRP/85z81cOBAJSYmasKECZoyZYo6duyohIQE3XrrrcrJyeFKOABtVkxEjOaPnG93NYBWy7awFB0drZdfflkzZsyQ0+lUt27ddMcdd2jKlCnuMi6XSxs3blRl5eFB1h577DGFhYVpxIgRcjqdGjp0qJ5++mk7dgEAALQBDmOMsbsSgVZeXq7ExESVlZUpISHB7uoAAIDjYNf3t+3jLAEATk5FTYUcMx1yzHSooqbC7uoArQ5hCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALwgLAEAAHhh26CUAADfCA8L16WnX+qeB+BbhCUACHExETF697p37a4G0GpxGg4AAMALwhIAAIAXhCUACHEVNRWK+3Oc4v4cx+1OAD+gzxIAtAKVrkq7qwC0WrQsAQAAeEFYAgAA8IKwBAAA4AVhCQAAwAvCEgAAgBdcDQcAIS7MEabBmYPd8wB8i7AEACGuXWQ7LR231O5qAK0W/4IAAAB4QVgCAADwgrAEACGuoqZCKQ+nKOXhFG53AvgBfZYAoBXYX7nf7ioArRYtSwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFV8MBQIgLc4TpvPTz3PMAfIuwBAAhrl1kO62cuNLuagCtFv+CAAAAeEFYAgAA8IKwBAAhrtJVqazHs5T1eJYqXZV2VwdodeizBAAhzhij7WXb3fMAfMu2lqWlS5fK4XA0Oa1c2XxHxdzc3Eblb7rppgDWHAAAtCW2tSwNGjRIe/bs8Vh27733asmSJTrvvPO8rjtx4kTdf//97sexsbF+qSMAAIBtYSkqKkppaWnuxy6XS2+++aZuvfVWORwOr+vGxsZ6rAsAAOAvQdPB+6233tKBAwc0fvz4Y5Z98cUXlZycrLPOOkv5+fmqrPTeodHpdKq8vNxjAgAAOB5B08F77ty5Gjp0qE455RSv5a677jplZmYqPT1dX3/9taZOnaqNGzfqtddea3adWbNmaebMmb6uMgAAaAMcxseXTkybNk0PPvig1zLr169Xjx493I937typzMxMvfLKKxoxYkSLXu+DDz7QkCFDtHnzZp166qlNlnE6nXI6ne7H5eXlysjIUFlZmRISElr0egAQbCpdlRrw7ABJ0sqJKxUbST9OtE7l5eVKTEwM+Pe3z8PSvn37dODAAa9lunfvrqioKPfjBx54QE8++aR27dqlyMjIFr1eRUWF2rdvr4ULF2ro0KHHtY5dv2wAAHDi7Pr+9vlpuJSUFKWkpBx3eWOM5s2bpzFjxrQ4KEnSmjVrJEldunRp8boAAADHYnsH7w8++EBbt27VDTfc0Oi5Xbt2qUePHlqxYoUkacuWLXrggQe0evVqbdu2TW+99ZbGjBmjCy+8UH379g101QEAQBtgewfvuXPnatCgQR59mBq4XC5t3LjRfbVbVFSUFi9erMcff1wVFRXKyMjQiBEjdM899wS62gAQNOizBPiXz/sshQL6LAFoTSpqKtR+VntJ0qH8Q4qLirO5RoB/2PX9bftpOAAAgGBGWAIAAPCCsAQAAOAFYQkAAMALwhIAAIAXtg8dAAA4OQ6HQ5mJme55AL5FWAKAEBcbGattt2+zuxpAq8VpOAAAAC8ISwAAAF4QlgAgxFW5qjTg2QEa8OwAVbmq7K4O0OrQZwkAQly9qdeq3avc8wB8i5YlAAAALwhLAAAAXhCWAAAAvCAsAQAAeEFYAgAA8IKr4QCgFUiOTba7CkCrRVgCgBAXFxWnfXfvs7saQKvFaTgAAAAvCEsAAABeEJYAIMRVuaqUW5Cr3IJcbncC+AF9lgAgxNWbei3bvsw9D8C3aFkCAADwgrAEAADgBWEJAADAC8ISAACAF4QlAAAAL7gaDgBagdjIWLurALRahCUACHFxUXGq+GOF3dUAWi1OwwEAAHhBWAIAAPCCsAQAIa66tlrDXxqu4S8NV3Vttd3VAVod+iwBQIirq6/Tgk0L3PMAfIuWJQAAAC8ISwAAAF4QlgAAALzwW1j605/+pEGDBik2NlZJSUlNlikqKtLw4cMVGxur1NRU3X333aqtrfW63YMHD2r06NFKSEhQUlKSJkyYoEOHDvlhDwAAAPwYlmpqajRy5EjdfPPNTT5fV1en4cOHq6amRsuXL9fzzz+vgoIC3XfffV63O3r0aK1bt06LFi3SO++8o48++kg33nijP3YBAABADmOM8ecLFBQU6Pbbb1dpaanH8vfee0+XXXaZdu/erc6dO0uS/va3v2nq1Knat2+foqKiGm1r/fr16tWrl1auXKnzzjtPkrRw4UJdeuml2rlzp9LT05usg9PplNPpdD8uKytT165dtWPHDiUkJPhoTwHAHhU1FUp/1Pr8233nbsVFxdlcI8A/ysvLlZGRodLSUiUmJgbuhY2fzZs3zyQmJjZafu+995p+/fp5LPvuu++MJPPFF180ua25c+eapKQkj2Uul8uEh4eb1157rdk6TJ8+3UhiYmJiYmJiagXTli1bWpxHToZt4ywVFxe7W5QaNDwuLi5udp3U1FSPZREREerYsWOz60hSfn6+pkyZ4n5cWlqqzMxMFRUVBTaZ2qwhkbe1FjX2m/1uC9hv9rstaDgz1LFjx4C+bovC0rRp0/Tggw96LbN+/Xr16NHjpCrla9HR0YqOjm60PDExsU29yRokJCSw320I+922sN9tS1vd77CwwF7M36KwdOedd2rcuHFey3Tv3v24tpWWlqYVK1Z4LCspKXE/19w6e/fu9VhWW1urgwcPNrsOAADAyWhRWEpJSVFKSopPXjgnJ0d/+tOftHfvXveptUWLFikhIUG9evVqdp3S0lKtXr1a/fv3lyR98MEHqq+vV3Z2tk/qBQAAcCS/tWMVFRVpzZo1KioqUl1dndasWaM1a9a4x0S6+OKL1atXL/3mN7/RV199pffff1/33HOPJk2a5D5ltmLFCvXo0UO7du2SJPXs2VPDhg3TxIkTtWLFCn366aeaPHmyfv3rXzd7JVxToqOjNX369CZPzbVm7Df73Raw3+x3W8B+B3a//TZ0wLhx4/T88883Wv7hhx8qNzdXkrR9+3bdfPPNWrp0qeLi4jR27FjNnj1bERFWg9fSpUt10UUXaevWrcrKypJkDUo5efJkvf322woLC9OIESP017/+Ve3bt/fHbgAAgDbO7+MsAQAAhDLuDQcAAOAFYQkAAMALwhIAAIAXhCUAAAAvQjIszZkzR1lZWYqJiVF2dnajwS2PNn/+fPXo0UMxMTHq06ePFixY4PG8MUb33XefunTponbt2ikvL0+bNm3yKHPw4EGNHj1aCQkJSkpK0oQJE9zDIASKL/fb5XJp6tSp6tOnj+Li4pSenq4xY8Zo9+7dHtvIysqSw+HwmGbPnu2X/WuOr4/3uHHjGu3TsGHDPMq0tuMtqdE+N0wPP/ywu0yoHe9169ZpxIgR7no//vjjJ7TN6upqTZo0SZ06dVL79u01YsQI9yC5geLr/Z41a5YGDBig+Ph4paam6sorr9TGjRs9yuTm5jY63jfddJOvd80rX+/3jBkzGu3T0XeVaI3Hu6m/XYfDoUmTJrnLhNrxfvbZZ3XBBReoQ4cO6tChg/Ly8hqVD9j3d0DvROcDL7/8somKijLPPfecWbdunZk4caJJSkoyJSUlTZb/9NNPTXh4uHnooYfMt99+a+655x4TGRlpvvnmG3eZ2bNnm8TERPPGG2+Yr776yvzyl7803bp1M1VVVe4yw4YNM/369TOfffaZ+fjjj81pp51mRo0a5ff9beDr/S4tLTV5eXnm3//+t9mwYYMpLCw0AwcONP379/fYTmZmprn//vvNnj173NOhQ4f8vr8N/HG8x44da4YNG+axTwcPHvTYTms73sYYj/3ds2ePee6554zD4fC4IWWoHe8VK1aYu+66y/zrX/8yaWlp5rHHHjuhbd50000mIyPDLFmyxKxatcqcf/75ZtCgQf7azROq45GOZ7+HDh1q5s2bZ9auXWvWrFljLr30UtO1a1eP4zl48GAzceJEj+NdVlbmr91sxB/7PX36dNO7d2+Pfdq3b59HmdZ4vPfu3euxz4sWLTKSzIcffuguE2rH+7rrrjNz5swxX375pVm/fr0ZN26cSUxMNDt37nSXCdT3d8iFpYEDB5pJkya5H9fV1Zn09HQza9asJstfc801Zvjw4R7LsrOzze9+9ztjjDH19fUmLS3NPPzww+7nS0tLTXR0tPnXv/5ljDHm22+/NZLMypUr3WXee+8943A4zK5du3y2b974er+bsmLFCiPJbN++3b0sMzOzyT/MQPHHfo8dO9ZcccUVzb5mWzneV1xxhfn5z3/usSzUjveRmqv7sbZZWlpqIiMjzfz5891l1q9fbySZwsLCk9ib4+eP/T7a3r17jSSzbNky97LBgweb22677USq7BP+2O/p06ebfv36NbteWznet912mzn11FNNfX29e1koH29jjKmtrTXx8fHm+eefN8YE9vs7pE7D1dTUaPXq1crLy3MvCwsLU15engoLC5tcp7Cw0KO8JA0dOtRdfuvWrSouLvYok5iYqOzsbHeZwsJCJSUl6bzzznOXycvLU1hYmD7//HOf7V9z/LHfTSkrK5PD4VBSUpLH8tmzZ6tTp04655xz9PDDD6u2tvbEd6YF/LnfS5cuVWpqqs4880zdfPPNOnDggMc2WvvxLikp0bvvvqsJEyY0ei6Ujrcvtrl69Wq5XC6PMj169FDXrl1P+HV9XUdfKCsrk6RGd2t/8cUXlZycrLPOOkv5+fmqrKz02Wt648/93rRpk9LT09W9e3eNHj1aRUVF7ufawvGuqanRCy+8oN/+9rdyOBwez4Xy8a6srJTL5XK/hwP5/d2ie8PZbf/+/aqrq1Pnzp09lnfu3FkbNmxocp3i4uImyxcXF7ufb1jmrUzD/esaREREqGPHju4y/uSP/T5adXW1pk6dqlGjRnncwfr3v/+9zj33XHXs2FHLly9Xfn6+9uzZo7/85S8nuVfH5q/9HjZsmH71q1+pW7du2rJli/74xz/qkksuUWFhocLDw9vE8X7++ecVHx+vX/3qVx7LQ+14+2KbxcXFioqKavRPgrffny/5Y7+PVl9fr9tvv10//elPddZZZ7mXX3fddcrMzFR6erq+/vprTZ06VRs3btRrr73mk9f1xl/7nZ2drYKCAp155pnas2ePZs6cqQsuuEBr165VfHx8mzjeb7zxhkpLSxvd+D7Uj/fUqVOVnp7uDkeB/P4OqbAE/3C5XLrmmmtkjNEzzzzj8dyUKVPc83379lVUVJR+97vfadasWSF7T6Jf//rX7vk+ffqob9++OvXUU7V06VINGTLExpoFznPPPafRo0crJibGY3lrPN6QJk2apLVr1+qTTz7xWH7jjTe65/v06aMuXbpoyJAh2rJli0499dRAV9MnLrnkEvd83759lZ2drczMTL3yyitNtqS2RnPnztUll1zS6J6poXy8Z8+erZdffllLly5t9LkVCCF1Gi45OVnh4eGNrlooKSlRWlpak+ukpaV5Ld/w81hl9u7d6/F8bW2tDh482Ozr+pI/9rtBQ1Davn27Fi1a5NGq1JTs7GzV1tZq27ZtLd+RFvLnfh+pe/fuSk5O1ubNm93baK3HW5I+/vhjbdy4UTfccMMx6xLsx9sX20xLS1NNTY1KS0t99rq+ruPJmDx5st555x19+OGHOuWUU7yWzc7OliT334I/+Xu/GyQlJemMM87w+Ptuzcd7+/btWrx48XH/fUvBf7wfeeQRzZ49W//5z3/Ut29f9/JAfn+HVFiKiopS//79tWTJEvey+vp6LVmyRDk5OU2uk5OT41FekhYtWuQu361bN6WlpXmUKS8v1+eff+4uk5OTo9LSUq1evdpd5oMPPlB9fb37zeZP/thv6XBQ2rRpkxYvXqxOnTodsy5r1qxRWFhYo2ZNf/DXfh9t586dOnDggLp06eLeRms83g3mzp2r/v37q1+/fsesS7Afb19ss3///oqMjPQos3HjRhUVFZ3w6/q6jifCGKPJkyfr9ddf1wcffKBu3bodc501a9ZIkvtvwZ/8td9HO3TokLZs2eLep9Z6vBvMmzdPqampGj58+DHLhsLxfuihh/TAAw9o4cKFHv2OpAB/fx93V/Ag8fLLL5vo6GhTUFBgvv32W3PjjTeapKQkU1xcbIwx5je/+Y2ZNm2au/ynn35qIiIizCOPPGLWr19vpk+f3uTQAUlJSebNN980X3/9tbniiiuavPTwnHPOMZ9//rn55JNPzOmnnx7wS8l9ud81NTXml7/8pTnllFPMmjVrPC4ldTqdxhhjli9fbh577DGzZs0as2XLFvPCCy+YlJQUM2bMmJDd7x9++MHcddddprCw0GzdutUsXrzYnHvuueb000831dXV7u20tuPdoKyszMTGxppnnnmm0WuG4vF2Op3myy+/NF9++aXp0qWLueuuu8yXX35pNm3adNzbNMa6lLxr167mgw8+MKtWrTI5OTkmJycnpPf75ptvNomJiWbp0qUef9+VlZXGGGM2b95s7r//frNq1SqzdetW8+abb5ru3bubCy+8MKT3+8477zRLly41W7duNZ9++qnJy8szycnJZu/eve4yrfF4G2NdXda1a1czderURq8Zisd79uzZJioqyrz66qse7+EffvjBo0wgvr9DLiwZY8yTTz5punbtaqKioszAgQPNZ5995n5u8ODBZuzYsR7lX3nlFXPGGWeYqKgo07t3b/Puu+96PF9fX2/uvfde07lzZxMdHW2GDBliNm7c6FHmwIEDZtSoUaZ9+/YmISHBjB8/3uOABYIv93vr1q1GUpNTw7gcq1evNtnZ2SYxMdHExMSYnj17mj//+c8eoSIQfLnflZWV5uKLLzYpKSkmMjLSZGZmmokTJ3p8cRrT+o53g7///e+mXbt2prS0tNFzoXi8m3sfDx48+Li3aYwxVVVV5pZbbjEdOnQwsbGx5qqrrjJ79uzx52424uv9bu7ve968ecYYY4qKisyFF15oOnbsaKKjo81pp51m7r777oCOu2OM7/f72muvNV26dDFRUVHmJz/5ibn22mvN5s2bPV6zNR5vY4x5//33jaRG31/GhObxzszMbHK/p0+f7i4TqO9vhzHGHH87FAAAQNsSUn2WAAAAAo2wBAAA4AVhCQAAwAvCEgAAgBeEJQAAAC8ISwAAAF4QlgAAALwgLAEAAHhBWAIAAPCCsAQAAOAFYQkAAMCL/w+NfYe2u2nhTgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Define the x-position of vertical line\n", + "v_cutoff = 1.0/(2*t2)\n", + "h_cutoff = lag[int((v_cutoff-0.0075)*1/0.0075)]\n", + "\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-10,10])\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "## Energy Dependence" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same intensity and varying position" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create different lags for different energy channels, we create delta impulses of same intensity at different positions." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create impulse responses for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = [np.zeros(int(i/lc.dt)) for i in energies]\n", + "responses = [np.append(h, 1) for h in h_zeros]" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "delays = [int(i/lc.dt) for i in energies]\n", + "outputs = [signal.fftconvolve(s, h)[d:-d] for h,d in zip(responses,delays)]\n", + "s_mods = [s[d:] for d in delays]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Make light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mods = [lc.time[d:] for d in delays]\n", + "lc_input = [Lightcurve(t_mod, s_mod) for t_mod, s_mod in zip(t_mods,s_mods)]\n", + "lc_output = [Lightcurve(t_mod, output) for t_mod, output in zip(t_mods,outputs)]" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc2, lc1).rebin(0.0075) for lc1,lc2 in zip(lc_input,lc_output)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute lags and cutoffs." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.power)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cutoff points for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "v_cutoffs = [1.0/(2*energy) for energy in energies]\n", + "h_cutoffs = [lag[int((v_cutoff-0.0075)*1/0.0075)] for lag, v_cutoff in zip(lags, v_cutoffs)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We plot lag-frequency spectrum for all energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHHklEQVR4nO3dd3hT1f8H8HeStulO94K2lA0FpOwyKyBDRGSLSCmylAIiosLPAbhAcQPiQJYgCCKgggpC2XtvaKGD1QGlLd0j5/fH/SY0tIU2pEmbvF/Pc5/e3Jzc+7m5N8mn5557jkwIIUBEREREFSY3dQBERERE1RUTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSLSCgsLQ1hYmKnDIBPZuXMnZDIZdu7caepQiKoNJlL0UMuWLYNMJitzOnjwoKlDrFTF99XKygpubm5o2bIlXn31VZw/f97U4VVL+/fvx6xZs5CWllau8hEREWWef//880/lBktGo1arsWLFCrRt2xZubm5wcnJC/fr1ER4eXiW+Zyp63pLlsDJ1AFQ9vP/++wgKCiqxvG7duiaIxrieeuophIeHQwiB9PR0nDp1CsuXL8e3336LTz75BFOnTjV1iNXK/v37MXv2bERERMDFxaVcr1EqlVi8eHGJ5U888YSBoyNTmTx5MhYuXIh+/fph+PDhsLKywqVLl/D333+jdu3aaNeunUnj0+e8JcvARIrKpXfv3mjVqpWpw0BWVhYcHByMus369evjxRdf1Fk2d+5c9O3bF6+//joaNmyIp59+2qgxWRorK6sSx+BhTHGekP6SkpLw7bffYuzYsfjhhx90nvvqq6+QkpJiosj0o1arkZ+fD1tbW1OHQkbAS3tkEHFxcZDJZPjss8/www8/oE6dOlAqlWjdujWOHDlSovzFixcxaNAguLm5wdbWFq1atcIff/yhU0ZzWXHXrl2YMGECvLy8ULNmTe3zCxcuRO3atWFnZ4c2bdpgz549Om18MjMz4eDggFdffbXE9q9fvw6FQoE5c+botb/u7u5Ys2YNrKys8NFHH+k8l5eXh5kzZ6Ju3bpQKpXw9/fHm2++iby8PJ1yMpkMEydOxKpVq9CgQQPY2tqiZcuW2L17d4nt3bhxAy+99BK8vb2hVCoRHByMJUuW6JTRtG9Zu3YtPvroI9SsWRO2trbo1q0bYmJiSqxTc5yKv3+lqej+bNy4EU2aNNHGWfzy26xZs/DGG28AAIKCgrSX6OLi4sp+sx9h1qxZkMlkOH/+PF544QW4urqiY8eO2udXrlyJli1bws7ODm5ubnj++edx7dq1cr0fD7YZ05yTD8ZbVtuiQ4cOoVevXlCpVLC3t0eXLl2wb9++UuOPiYnR1naoVCqMGjUK2dnZJeJcuXIl2rRpA3t7e7i6uqJz587YunUrAGDkyJHw8PBAQUFBidf16NEDDRo0eNTbWcKePXswePBgBAQEaI//a6+9hpycnBJl161bh8aNG8PW1hZNmjTBhg0bEBERgVq1aj10G7GxsRBCoEOHDiWek8lk8PLy0j7WHIPdu3dj/PjxcHd3h7OzM8LDw3H37t0Sr//777/RqVMnODg4wMnJCX369MG5c+dKlLt48SKGDBkCT09P2NnZoUGDBnj77bcBPPq8Lf5ZDg4OhlKpxD///FPmeaH5vly2bJl2WUREBBwdHZGQkIBnnnkGjo6OqFGjBhYuXAgAOHPmDLp27QoHBwcEBgbil19+eeh7SsbDGikql/T0dNy+fVtnmUwmg7u7u86yX375Bffu3cP48eMhk8nw6aefYsCAAbh69Sqsra0BAOfOnUOHDh1Qo0YNTJ8+HQ4ODli7di2ee+45rF+/Hv3799dZ54QJE+Dp6Yn33nsPWVlZAIBFixZh4sSJ6NSpE1577TXExcXhueeeg6urqzbZcnR0RP/+/fHrr7/iiy++gEKh0K5z9erVEEJg+PDher8nAQEB6NKlC6KiopCRkQFnZ2eo1Wo8++yz2Lt3L8aNG4dGjRrhzJkz+PLLL3H58mVs3LhRZx27du3Cr7/+ismTJ0OpVOLbb79Fr169cPjwYTRp0gSA9N96u3bttF/Wnp6e+PvvvzF69GhkZGRgypQpOuucO3cu5HI5pk2bhvT0dHz66acYPnw4Dh06pC3z008/Yfz48Wjfvj2mTJmCq1ev4tlnn4Wbmxv8/f215Sq6P3v37sXvv/+OCRMmwMnJCd988w0GDhyIhIQEuLu7Y8CAAbh8+TJWr16NL7/8Eh4eHgAAT0/PR77fD55/1tbWUKlU2seDBw9GvXr18PHHH0MIAQD46KOP8O6772LIkCEYM2YMUlJSMH/+fHTu3BknTpzQXqIp7/tRETt27EDv3r3RsmVLzJw5E3K5HEuXLkXXrl2xZ88etGnTRqf8kCFDEBQUhDlz5uD48eNYvHgxvLy88Mknn2jLzJ49G7NmzUL79u3x/vvvw8bGBocOHcKOHTvQo0cPjBgxAitWrMC///6LZ555Rvu6xMRE7NixAzNnzqzwfqxbtw7Z2dl45ZVX4O7ujsOHD2P+/Pm4fv061q1bpy23efNmDB06FE2bNsWcOXNw9+5djB49GjVq1HjkNgIDA7XbGjx4MOzt7R/5mokTJ8LFxQWzZs3CpUuXsGjRIsTHx2uTFwD4+eefMXLkSPTs2ROffPIJsrOzsWjRInTs2BEnTpzQJninT59Gp06dYG1tjXHjxqFWrVq4cuUK/vzzT3z00UflOm937NiBtWvXYuLEifDw8ECtWrUq3J6qqKgIvXv3RufOnfHpp59i1apVmDhxIhwcHPD2229j+PDhGDBgAL777juEh4cjNDS01CYXZGSC6CGWLl0qAJQ6KZVKbbnY2FgBQLi7u4vU1FTt8k2bNgkA4s8//9Qu69atm2jatKnIzc3VLlOr1aJ9+/aiXr16JbbdsWNHUVhYqF2el5cn3N3dRevWrUVBQYF2+bJlywQA0aVLF+2yf//9VwAQf//9t85+NWvWTKdcWQCIyMjIMp9/9dVXBQBx6tQpIYQQP//8s5DL5WLPnj065b777jsBQOzbt09n3QDE0aNHtcvi4+OFra2t6N+/v3bZ6NGjha+vr7h9+7bOOp9//nmhUqlEdna2EEKIqKgoAUA0atRI5OXlact9/fXXAoA4c+aMEEKI/Px84eXlJZo3b65T7ocffijx/lV0f2xsbERMTIx22alTpwQAMX/+fO2yefPmCQAiNja2jHdV18iRI0s9/zRxzpw5UwAQw4YN03ldXFycUCgU4qOPPtJZfubMGWFlZaVdXpH3Q3NOPhi75r2PiooSQkjnc7169UTPnj2FWq3WlsvOzhZBQUHiqaee0i7TxP/SSy/prLN///7C3d1d+zg6OlrI5XLRv39/UVRUpFNWs42ioiJRs2ZNMXToUJ3nv/jiCyGTycTVq1fFwzy4H5qYHzRnzhwhk8lEfHy8dlnTpk1FzZo1xb1797TLdu7cKQCIwMDAh25XCCHCw8MFAOHq6ir69+8vPvvsM3HhwoUS5TTHoGXLliI/P1+7/NNPPxUAxKZNm4QQQty7d0+4uLiIsWPH6rw+MTFRqFQqneWdO3cWTk5OOvsjhNA5dg87bwEIuVwuzp07p7O8tPdTiPvfl0uXLtUu05znH3/8sXbZ3bt3hZ2dnZDJZGLNmjXa5RcvXhQAxMyZM0vEQsbHS3tULgsXLsS2bdt0pr///rtEuaFDh8LV1VX7uFOnTgCAq1evAgBSU1OxY8cODBkyBPfu3cPt27dx+/Zt3LlzBz179kR0dDRu3Lihs86xY8fq1CYdPXoUd+7cwdixY2Fldb9Sdfjw4TrbBoDu3bvDz88Pq1at0i47e/YsTp8+XaE2N2VxdHQEANy7dw+A9B91o0aN0LBhQ+2+3b59G127dgUAREVF6bw+NDQULVu21D4OCAhAv3798O+//6KoqAhCCKxfvx59+/aFEEJnnT179kR6ejqOHz+us85Ro0bBxsZG+/jBY3D06FEkJyfj5Zdf1ikXERGhU8Ojz/50794dderU0T5u1qwZnJ2dtdvWl62tbYnz7/PPP9cp8/LLL+s8/v3336FWqzFkyBCd2H18fFCvXj1t7BV5P8rr5MmTiI6OxgsvvIA7d+5ot52VlYVu3bph9+7dUKvVD42/U6dOuHPnDjIyMgAAGzduhFqtxnvvvQe5XPerW1MDI5fLMXz4cPzxxx/acxIAVq1ahfbt2+tVe2FnZ6edz8rKwu3bt9G+fXsIIXDixAkAwM2bN3HmzBmEh4drPxMA0KVLFzRt2rRc21m6dCkWLFiAoKAgbNiwAdOmTUOjRo3QrVu3Et8JADBu3DhtLTcAvPLKK7CyssKWLVsAANu2bUNaWhqGDRumc/wVCgXatm2rPf4pKSnYvXs3XnrpJQQEBOhsQ/O+lkeXLl3QuHHjcpcvy5gxY7TzLi4uaNCgARwcHDBkyBDt8gYNGsDFxeWxP1dkGLy0R+XSpk2bcjU2f/CLSJPYaNouxMTEQAiBd999F++++26p60hOTta5HPDgl398fDyAkncMWllZlWiLoflhWbRoEbKzs2Fvb49Vq1bB1tYWgwcPfuT+PEpmZiYAwMnJCQAQHR2NCxculHmpKjk5WedxvXr1SpSpX78+srOzkZKSArlcjrS0NPzwww8lGuGWtc5HHQPN+/fgtq2trVG7dm2dZRXdnwe3rdl+aW1XKkKhUKB79+4PLfPgeRIdHQ0hRKnvMQDtj3BF3o/yio6OBiC1WSpLenq6TuL/sOPm7OyMK1euQC6XP/LHOjw8HJ988gk2bNiA8PBwXLp0CceOHcN3332nLZOYmKjzGpVKpZMwFZeQkID33nsPf/zxR4njmJ6eDqDsz6Rm2YPJfmnkcjkiIyMRGRmJO3fuYN++ffjuu+/w999/4/nnny/Rhu/B4+Xo6AhfX19tuyXNMdAk/Q9ydnYGcP8fDM2ldH0Z4hKbra1tic+aSqVCzZo1SyR1KpXqsT9XZBhMpMigitccFSf+12ZF81/4tGnT0LNnz1LLPvhlXNYXfHmFh4dj3rx52LhxI4YNG4ZffvkFzzzzjN61DcWdPXsWCoVC+yWqVqvRtGlTfPHFF6WWr2h7G8379eKLL5b5o9ysWTOdx486BhXdfkX2x5DbrqgHzxO1Wg2ZTIa///671LiK15yUV1k1FEVFRSW2DQDz5s1D8+bNS33Ng9s31HvXuHFjtGzZEitXrkR4eDhWrlwJGxsbnRoNX19fndcsXboUERERJdZVVFSEp556CqmpqXjrrbfQsGFDODg44MaNG4iIiChRq2Yo7u7uePbZZ/Hss88iLCwMu3btQnx8vLYtVXloYvv555/h4+NT4vnitdmGUNr3VHnPF42yzgFTfq7o0ZhIkVFp/sO3trZ+ZA1DWTRfpjExMXjyySe1ywsLCxEXF1cisWjSpAlCQkKwatUq1KxZEwkJCZg/f76ee3BfQkICdu3ahdDQUG2NVJ06dXDq1Cl069atXJcFNP81F3f58mXY29tr/zN1cnJCUVGR3u/XgzTvX3R0tM5/6wUFBYiNjdXpm6mi+1MehlrPo9SpUwdCCAQFBaF+/fpllqvI+6GpJXqwEbGmRqb4tgGp1sNQx61OnTpQq9U4f/58mcmZRnh4OKZOnYpbt27hl19+QZ8+fXRqv7Zt26ZTPjg4uNT1nDlzBpcvX8by5csRHh5e5uuLfyYfVNqyimjVqhV27dqFW7du6SRS0dHROp//zMxM3Lp1S9sVieYYeHl5PfQYaL6Tzp49+9A49Dlvy3u+UPXGNlJkVF5eXggLC8P333+PW7dulXi+PP3FtGrVCu7u7vjxxx9RWFioXb5q1aoyq7pHjBiBrVu34quvvoK7uzt69+6t/05Aaus1bNgwFBUVaW+RBqQ7r27cuIEff/yxxGtycnK0dx1qHDhwQOeyx7Vr17Bp0yb06NEDCoUCCoUCAwcOxPr160v9otenf51WrVrB09MT3333HfLz87XLly1bVuILv6L7Ux6a/p0qu4foAQMGQKFQYPbs2SX+cxdC4M6dOwAq9n5ofpyLd1FRVFRU4rJry5YtUadOHXz22Wfay7/F6XPcnnvuOcjlcrz//vslaoIe3L9hw4ZBJpPh1VdfxdWrV0u0B+zevbvO9GANlYamJqT4+oUQ+Prrr3XK+fn5oUmTJlixYoXO/u7atQtnzpx55L4lJiaWOlJAfn4+tm/fDrlcXqKm+ocfftDp5mHRokUoLCzUfrZ79uwJZ2dnfPzxx6V2B6E5Bp6enujcuTOWLFmChIQEnTLF91uf8zYwMBAKhaJElybffvttuddBVR9rpKhc/v77b1y8eLHE8vbt21e4HcnChQvRsWNHNG3aFGPHjkXt2rWRlJSEAwcO4Pr16zh16tRDX29jY4NZs2Zh0qRJ6Nq1K4YMGYK4uDgsW7YMderUKfU/xxdeeAFvvvkmNmzYgFdeeUWnkeqjXL58GStXroQQAhkZGTh16hTWrVuHzMxMfPHFF+jVq5e27IgRI7B27Vq8/PLLiIqKQocOHVBUVISLFy9i7dq1+Pfff3XamjVp0gQ9e/bU6f4AkG5z15g7dy6ioqLQtm1bjB07Fo0bN0ZqaiqOHz+O//77D6mpqeXeF0CqDfzwww8xfvx4dO3aFUOHDkVsbCyWLl1a4lhWdH/KQ9O4/u2338bzzz8Pa2tr9O3b1+AdaNapUwcffvghZsyYoe0ew8nJCbGxsdiwYQPGjRuHadOmVej9CA4ORrt27TBjxgykpqbCzc0Na9as0UnoAam9z+LFi9G7d28EBwdj1KhRqFGjBm7cuIGoqCg4Ozvjzz//rND+1K1bF2+//TY++OADdOrUCQMGDIBSqcSRI0fg5+en0yeap6cnevXqhXXr1sHFxQV9+vTR6z1s2LAh6tSpg2nTpuHGjRtwdnbG+vXrS/2H5eOPP0a/fv3QoUMHjBo1Cnfv3sWCBQvQpEmTUpPJ4q5fv442bdqga9eu6NatG3x8fJCcnIzVq1fj1KlTmDJlirbLAY38/Hx069YNQ4YMwaVLl/Dtt9+iY8eOePbZZwFItYGLFi3CiBEj0KJFCzz//PPw9PREQkICNm/ejA4dOmDBggUAgG+++QYdO3ZEixYtMG7cOAQFBSEuLg6bN2/GyZMnAeh33qpUKgwePBjz58+HTCZDnTp18Ndff5VoW0jVnLFvE6Tq5WHdH6DY7bua23nnzZtXYh0o5TbdK1euiPDwcOHj4yOsra1FjRo1xDPPPCN+++23Ets+cuRIqbF98803IjAwUCiVStGmTRuxb98+0bJlS9GrV69Syz/99NMCgNi/f3+597/4vsrlcuHi4iJCQkLEq6++WuJWZ438/HzxySefiODgYKFUKoWrq6to2bKlmD17tkhPT9dZd2RkpFi5cqWoV6+eUCqVIiQkpMSt0kIIkZSUJCIjI4W/v7+wtrYWPj4+olu3buKHH37QltHcar1u3Tqd15Z2q7UQQnz77bciKChIKJVK0apVK7F7927RpUuXEt1CVHR/HhQYGChGjhyps+yDDz4QNWrUEHK5/JFdIYwcOVI4ODiU+bym+4CUlJRSn1+/fr3o2LGjcHBwEA4ODqJhw4YiMjJSXLp0Sa/348qVK6J79+5CqVQKb29v8X//939i27Ztpd7mfuLECTFgwADh7u4ulEqlCAwMFEOGDBHbt29/ZPxldbWwZMkSERISoj0WXbp0Edu2bSux32vXrhUAxLhx48p87x5U2u3658+fF927dxeOjo7Cw8NDjB07VtutxYPn1Jo1a0TDhg2FUqkUTZo0EX/88YcYOHCgaNiw4UO3m5GRIb7++mvRs2dPUbNmTWFtbS2cnJxEaGio+PHHH3W6IdC8L7t27RLjxo0Trq6uwtHRUQwfPlzcuXOn1H3q2bOnUKlUwtbWVtSpU0dERETodDsihBBnz54V/fv3Fy4uLsLW1lY0aNBAvPvuuzplyjpvyzr3hRAiJSVFDBw4UNjb2wtXV1cxfvx4cfbs2VK7PyjtPO/SpYsIDg4usTwwMFD06dOnzPeUjEcmBFurkXlQq9Xw9PTEgAEDSr0U1b9/f5w5c+ax22wYikwmQ2RkpPa/Yqp6NL2aP9gzdXWwadMmPPfcc9i9e7e2CwxTaN68OTw9PUu0q9LXsmXLMGrUKBw5cqRKDFtFxDZSVC3l5uaWaBeyYsUKpKam6gzpoXHr1i1s3rwZI0aMMFKERKb1448/onbt2jrD5VSmgoKCEpc4d+7ciVOnTpX6mSQyF2wjRdXSwYMH8dprr2Hw4MFwd3fH8ePH8dNPP6FJkyY6/UPFxsZi3759WLx4MaytrTF+/HgTRk1U+dasWYPTp09j8+bN+Prrr412l+SNGzfQvXt3vPjii/Dz88PFixfx3XffwcfHp0Rno0TmhIkUVUu1atWCv78/vvnmG22j3/DwcMydO1end+pdu3Zh1KhRCAgIwPLly0vtT4bInAwbNgyOjo4YPXo0JkyYYLTturq6omXLlli8eDFSUlLg4OCAPn36YO7cuSXG5CQyJ9WmjdScOXPw+++/4+LFi7Czs0P79u3xySef6Ixmnpubi9dffx1r1qxBXl4eevbsiW+//Rbe3t4mjJyIiIjMVbVpI7Vr1y5ERkbi4MGD2LZtGwoKCtCjRw+dfmxee+01/Pnnn1i3bh127dqFmzdvYsCAASaMmoiIiMxZtamRelBKSgq8vLywa9cudO7cGenp6fD09MQvv/yCQYMGAQAuXryIRo0a4cCBA2jXrp2JIyYiIiJzU23bSGkGy3RzcwMAHDt2DAUFBTpDATRs2BABAQEPTaTy8vKQl5enfaxWq5Gamgp3d3ejNdIkIiKixyOEwL179+Dn5we53HgX3KplIqVWqzFlyhR06NBBO2J3YmIibGxs4OLiolPW29u7xEjnxc2ZM0enF2kiIiKqvq5du4aaNWsabXvVMpGKjIzE2bNnsXfv3sde14wZMzB16lTt4/T0dAQEBODatWtwdnZ+7PWTZcnKz4Lf534AgJuv34SDjWGHPaFqIisL8JPOA9y8CRh4+BsiKikjIwP+/v7aQeSNpdolUhMnTsRff/2F3bt362ScPj4+yM/PR1pamk6tVFJS0kNveVcqlVAqlSWWOzs7M5GiClPkKwBbad7Z2ZmJlKX632C/AABnZyZSREZk7GY51eauPSEEJk6ciA0bNmDHjh0ICgrSeb5ly5awtrbG9u3btcsuXbqEhIQEhIaGGjtcIiIisgDVpkYqMjISv/zyCzZt2gQnJydtuyeVSgU7OzuoVCqMHj0aU6dOhZubG5ydnTFp0iSEhobyjj0iIiKqFNUmkVq0aBEAlBizaenSpYiIiAAAfPnll5DL5Rg4cKBOh5xExmIlt8LIJ0Zq58lCWVkBI0fenycis1Vt+5GqLBkZGVCpVEhPT2cbKSIiKqGoqAgFBQWmDsPiWFtbQ1G8/eEDTPX7zX+ViIiIykEIgcTERKSlpZk6FIvl4uICHx+fKtXPIxMpIgMSQiC7IBsAYG9tX6U+7GREQgDZ0nkAe3uA54FZ0CRRXl5esLfn59uYhBDIzs5GcnIyAMDX19fEEd3HRIrIgLILsuE4xxEAkDkjk90fWKrsbMBROg+QmcnuD8xAUVGRNolyd3c3dTgWyc7ODgCQnJwMLy+vh17mM6Zq0/0BERGRqWjaRNnb25s4Esumef+rUhs1JlJERETlxMt5plUV338mUkRERER6YiJFREREFVKrVi189dVXpg6jSmAiRUREZCHmzp0LmUyGKVOmlFlm2bJlkMlkOpOtra3BYujbty969epV6nN79uyBTCbD6dOnDba9ysa79oiIiCzAkSNH8P3336NZs2aPLOvs7IxLly5pHxuybdLo0aMxcOBAXL9+HTVr1tR5bunSpWjVqlW5YqwqWCNFZEAKuQKDGg/CoMaDoJBXjVtzyQQUCmDQIGmqIrdok2XLzMzE8OHD8eOPP8LV1fWR5WUyGXx8fLSTt7f3Q8svXrwYLi4u2L59OwDg7Nmz6N27NxwdHeHt7Y0RI0bg9u3bAIBnnnkGnp6eWLZsWYkY161bh9GjR+u3kybCRIrIgGytbLFu8DqsG7wOtlaGqwqnasbWFli3TpoMeEmEqhghgKws4096jOwWGRmJPn36oHv37uUqn5mZicDAQPj7+6Nfv344d+5cmWU//fRTTJ8+HVu3bkW3bt2QlpaGrl27IiQkBEePHsU///yDpKQkDBkyBABgZWWF8PBwLFu2DMVHqVu3bh2KioowbNiwCu+fKfHSHhERkT6Kd7xqTBXs5HXNmjU4fvw4jhw5Uq7yDRo0wJIlS9CsWTOkp6fjs88+Q/v27XHu3LkSl+Leeust/Pzzz9i1axeCg4MBAAsWLEBISAg+/vhjbbklS5bA398fly9fRv369fHSSy9h3rx52LVrF8LCwgBIl/UGDhwIlUpV7n2rCphIERERmalr167h1VdfxbZt28rdYDw0NBShoaHax+3bt0ejRo3w/fff44MPPtAu//zzz5GVlYWjR4+idu3a2uWnTp1CVFQUHEtJMq9cuYL69eujYcOGaN++PZYsWYKwsDDExMRgz549eP/99x9jb02DiRSRAWXlZ3GIGJIuv3CIGPNnby8dX1Nst5yOHTuG5ORktGjRQrusqKgIu3fvxoIFC5CXl/fIoVasra0REhKCmJgYneWdOnXC5s2bsXbtWkyfPl27PDMzE3379sUnn3xSYl3Fx8gbPXo0Jk2ahIULF2Lp0qWoU6cOunTpUu59qyqYSBEREelDJqvySXK3bt1w5swZnWWjRo1Cw4YN8dZbb5VrvLqioiKcOXMGTz/9tM7yNm3aYOLEiejVqxesrKwwbdo0AECLFi2wfv161KpVC1ZWZacZQ4YMwauvvopffvkFK1aswCuvvFIley5/FDY2JyIiMlNOTk5o0qSJzuTg4AB3d3c0adIEABAeHo4ZM2ZoX/P+++9j69atuHr1Ko4fP44XX3wR8fHxGDNmTIn1t2/fHlu2bMHs2bO1HXRGRkYiNTUVw4YNw5EjR3DlyhX8+++/GDVqFIqKirSvdXR0xNChQzFjxgzcunULERERlfpeVBYmUkRERBYsISEBt27d0j6+e/cuxo4di0aNGuHpp59GRkYG9u/fj8aNG5f6+o4dO2Lz5s145513MH/+fPj5+WHfvn0oKipCjx490LRpU0yZMgUuLi6Qy3XTjtGjR+Pu3bvo2bMn/Pz8KnU/K4tMCD3uozRjGRkZUKlUSE9Ph7Ozs6nDoWqGbaQIANtImaHc3FzExsYiKCjIoL18U8U87DiY6vebNVJEREREemIiRURERKQn3rVHZEAKuQJP13taO08WSqEANHc4cYgYIrPGRIrIgGytbLH5hc2mDoNMzdYW2MzzgMgS8NIeERERkZ6YSBERERHpiYkUkQFl5WfB4WMHOHzsgKz8LFOHQ6aSlSV1eeDgIM0TkdliGykiA8suyDZ1CFQVZPM8ILIErJEiIiIi0hMTKSIiIqqQsLAwTJkyxdRhVAlMpIiIiMxUUVER3n33XQQFBcHOzg516tTBBx98gIeNDrdz507IZLISU2JiokFimjRpEho1alTqcwkJCVAoFPjjjz8Msi1jYBspIiIiM/XJJ59g0aJFWL58OYKDg3H06FGMGjUKKpUKkydPfuhrL126pDNmnZeXl0FiGj16NBYsWID9+/ejffv2Os8tW7YMXl5eeFrToW01wBopIiIiM7V//37069cPffr0Qa1atTBo0CD06NEDhw8ffuRrvby84OPjo53k8rJThs2bN0OlUmHVqlUAgGvXrmHIkCFwcXGBm5sb+vXrh7i4OABA8+bN0aJFCyxZskRnHUIILFu2DCNHjoSVVfWp52EiRWRAcpkcXQK7oEtgF8hl/HhZLLkc6NJFmh7y40PVmxACWflZRp8edlnuQe3bt8f27dtx+fJlAMCpU6ewd+9e9O7d+5Gvbd68OXx9ffHUU09h3759ZZb75ZdfMGzYMKxatQrDhw9HQUEBevbsCScnJ+zZswf79u2Do6MjevXqhfz8fABSrdTatWuRVax7kJ07dyI2NhYvvfRSufevKqg+KR9RNWBnbYedETtNHQaZmp0dsHOnqaOgSpZdkA3HOY5G327mjEw42DiUq+z06dORkZGBhg0bQqFQoKioCB999BGGDx9e5mt8fX3x3XffoVWrVsjLy8PixYsRFhaGQ4cOoUWLFjplFy5ciLfffht//vknunTpAgD49ddfoVarsXjxYshkMgDA0qVL4eLigp07d6JHjx544YUX8Prrr2PdunWIiIjQlunYsSPq16+vx7tiOkykiIiIzNTatWuxatUq/PLLLwgODsbJkycxZcoU+Pn5YeTIkaW+pkGDBmjQoIH2cfv27XHlyhV8+eWX+Pnnn7XLf/vtNyQnJ2Pfvn1o3bq1dvmpU6cQExMDJycnnfXm5ubiypUrAAAXFxcMGDAAS5YsQUREBDIyMrB+/XosXLjQkLtvFEykiIiI9GBvbY/MGZkm2W55vfHGG5g+fTqef/55AEDTpk0RHx+POXPmlJlIlaZNmzbYu3evzrKQkBAcP34cS5YsQatWrbS1T5mZmWjZsqW2vVRxnp6e2vnRo0ejW7duiImJQVRUFBQKBQYPHlzumKqKanXxfvfu3ejbty/8/Pwgk8mwceNGnecjIiJK3K7Zq1cv0wRLFikrPwue8zzhOc+TQ8RYsqwswNNTmjhEjNmSyWRwsHEw+qRJWMojOzu7RCNxhUIBtVpdoX09efIkfH19dZbVqVMHUVFR2LRpEyZNmqRd3qJFC0RHR8PLywt169bVmVQqlbbck08+iaCgICxduhRLly7F888/DweH8l2yrEqqVSKVlZWFJ5544qFVf7169cKtW7e00+rVq40YIRFwO/s2bmffNnUYZGq3b0sTkQn17dsXH330ETZv3oy4uDhs2LABX3zxBfr3768tM2PGDISHh2sff/XVV9i0aRNiYmJw9uxZTJkyBTt27EBkZGSJ9devXx9RUVFYv369toPO4cOHw8PDA/369cOePXsQGxuLnTt3YvLkybh+/br2tTKZDC+99BIWLVqEAwcOYPTo0ZX3RlSianVpr3fv3o+800CpVMLHx8dIEREREVVd8+fPx7vvvosJEyYgOTkZfn5+GD9+PN577z1tmVu3biEhIUH7OD8/H6+//jpu3LgBe3t7NGvWDP/99x+efPLJUrfRoEED7NixA2FhYVAoFPj888+xe/duvPXWWxgwYADu3buHGjVqoFu3bjr9UgHSlaSZM2ciODgYbdu2rZw3oZLJREXuo6xCZDIZNmzYgOeee067LCIiAhs3boSNjQ1cXV3RtWtXfPjhh3B3dy9zPXl5ecjLy9M+zsjIgL+/P9LT00sccKJHycrP0t7FU5E7a8jMZGUBjv+7myszE6iGlytIV25uLmJjYxEUFARbW1tTh2OxHnYcMjIyoFKpjP77Xa0u7T1Kr169sGLFCmzfvh2ffPIJdu3ahd69e6OoqKjM18yZMwcqlUo7+fv7GzFiIiIiqs6q1aW9R9HclQBIdyY0a9YMderUwc6dO9GtW7dSXzNjxgxMnTpV+1hTI0VERET0KGZVI/Wg2rVrw8PDAzExMWWWUSqVcHZ21pmIiIiIysOsaqQedP36ddy5c6fELZtElUUuk6OVXyvtPFkouRxo1er+PBGZrWqVSGVmZurULsXGxuLkyZNwc3ODm5sbZs+ejYEDB8LHxwdXrlzBm2++ibp166Jnz54mjJosiZ21HY6MPWLqMMjU7OyAIzwPzFE1vT/LbFTF979a/at09OhRhISEICQkBAAwdepUhISE4L333oNCocDp06fx7LPPon79+hg9ejRatmyJPXv2QKlUmjhyIiKqzqytrQFIHVyS6Wjef83xqAqqVY1UWFjYQ7PRf//914jREBGRpVAoFHBxcUFycjIAwN7evkI9jNPjEUIgOzsbycnJcHFxgUKhMHVIWtUqkSKq6rILstF4YWMAwPnI8xUaE4vMSHY20Fg6D3D+PGDP88AcaDp71iRTZHwuLi5VrtNtJlJEBiSEQHx6vHaeLJQQQHz8/XkyCzKZDL6+vvDy8kJBQYGpw7E41tbWVaomSoOJFBERUQUoFIoq+YNOplGtGpsTERERVSVMpIiIiIj0xESKiIiISE9MpIiIiIj0xMbmRAYkk8nQ2LOxdp4slEx2v/sDngdEZo2JFJEB2Vvb49yEc6YOg0zN3h44x/OAyBLw0h4RERGRnphIEREREemJiRSRAWUXZCP422AEfxuM7AIObmqxsrOB4GBp4iC3RGaNbaSIDEgIgfMp57XzZKGEkMbY08wTkdlijRQRERGRnphIEREREemJiRQRERGRnphIEREREemJiRQRERGRnnjXHpEByWQyBKoCtfNkoWQyIDDw/jwRmS0mUkQGZG9tj7gpcaYOg0zN3h6IizN1FERkBLy0R0RERKQnJlJEREREemIiRWRAOQU5aP1ja7T+sTVyCnJMHQ6ZSk4O0Lq1NOXwPCAyZ2wjpaeY1BjUdatr6jCoilELNY7ePKqdJwulVgNHj96fJyKzxRqpCsotzMWLv7+IJt82wbnkc6YOh4iIiEyIiVQFKRVK3M29i7yiPLy44UXkF+WbOiQiIiIyESZSFSSTybC472K427njZOJJzN4529QhERERkYkwkdKDr5Mvvn/mewDA3H1zsf/afhNHRERERKbAREpPAxsPRPgT4VALNUZsGIHM/ExTh0RERERGxkTqMXzT6xsEqAJw9e5VvP7v66YOh6oID3sPeNh7mDoMMjUPD2kiIrMmE0IIUwdRlWRkZEClUiE9PR3Ozs6PLL8zbie6Lu8KAYE/h/2JZ+o/Y4QoiYiIqLiK/n4bCmukHlNYrTC81u41AMCYP8YgJSvFxBERERGRsTCRMoCPun2EYM9gJGUlYfxf48FKPiIiIsvARMoAbK1s8XP/n2Ett8aGixuw4tQKU4dEJpJTkIOwZWEIWxbGIWIsWU4OEBYmTRwihsisMZEykBDfEMwOk/qUmvT3JMSlxZk2IDIJtVBjV/wu7IrfxSFiLJlaDezaJU0cIobIrFWrRGr37t3o27cv/Pz8IJPJsHHjRp3nhRB477334OvrCzs7O3Tv3h3R0dFGi+/NDm+ivX973Mu/h4iNEfwhJSIiMnPVKpHKysrCE088gYULF5b6/KeffopvvvkG3333HQ4dOgQHBwf07NkTubm5RolPIVdgxXMr4GDtgF3xu/DlgS+Nsl0iIiIyjWqVSPXu3Rsffvgh+vfvX+I5IQS++uorvPPOO+jXrx+aNWuGFStW4ObNmyVqripTHbc6+LKnlED9347/w5mkM0bbNhERERlXtUqkHiY2NhaJiYno3r27dplKpULbtm1x4MABo8YypsUYPFP/GeQX5WPEhhHIK8wz6vaJiIjIOMwmkUpMTAQAeHt76yz39vbWPleavLw8ZGRk6EyPSzOwsYe9B04lncLMnTMfe51ERERU9ZhNIqWvOXPmQKVSaSd/f3+DrNfb0Rs/PPMDAODTfZ9ib8Jeg6yXqj57a3vYW9ubOgwyNXt7aSIis2Y2iZSPjw8AICkpSWd5UlKS9rnSzJgxA+np6drp2rVrBoupf6P+iGgeAQGB8A3huJd3z2DrpqrJwcYBWf+Xhaz/y4KDjYOpwyFTcXAAsrKkyYHnAZE5M5tEKigoCD4+Pti+fbt2WUZGBg4dOoTQ0NAyX6dUKuHs7KwzGdLXvb5GoCoQsWmxeO3f1wy6biIiIjKtapVIZWZm4uTJkzh58iQAqYH5yZMnkZCQAJlMhilTpuDDDz/EH3/8gTNnziA8PBx+fn547rnnTBazs9IZK/qvgAwy/HTiJ2y6uMlksRAREZFhVatE6ujRowgJCUFISAgAYOrUqQgJCcF7770HAHjzzTcxadIkjBs3Dq1bt0ZmZib++ecf2NramjJsdA7sjNdDXwcAjP1zLJKzkk0aD1We3MJc9PmlD/r80ge5hcbpv4yqoNxcoE8faTJSP3ZEZBoywRF2dWRkZEClUiE9Pd2gl/nyCvPQ+sfWOJN8Bv0a9MOGoRsgk8kMtn6qGrLys+A4xxEAkDkjk+2kLFVWFuAonQfIzGQ7KSIjqKzf70epVjVS1ZnSSqkd2HjTpU1YenKpqUMiIiKix8REyoie8HkCH3b9EADw6j+vIvZurIkjIiIiosfBRMrIXg99HZ0COiEzPxPhG8NRpC4ydUhERESkJyZSRqaQK7D8ueVwtHHE3oS9+PzA56YOiYiIiPRkZeoALFGQaxC+7vU1Rv8xGu/seAdtarRBgCoAaqF+rMlKboVm3s3gYuti6l0kIiKyCEykypCVnwVFvqLc5ZVWSljJpbezUF2IvMI8yGVy2Fnb6axTY0jjIVh/YT22RG/Bk8ufNFzgABp7Nka7Gu0QWjMU7fzboZaqVok7BK0V1rBR2AAA1EKNnIIcANC5yyynIAdqoa7Qtq3kVlBaKQEAQghkF2SXWG9uYW6FL2kq5ArYWt3vxkLzXtpb22v3La8wD4Xqwgqtt6xjZGdtB7lMqrDNL8pHQVFBudZX/BgXl12QDSEEbK1soZBL51VBUQHyi/IrFC9Q+jEq7fx7nPVqjpGNwgbWCmsAQJG6SK8uHUo7RmWdfxVR2jEq6/yriNKOUVnnX5nyswBr3fmKfkeUV2nHSCaT6QxTpDn/KoLfERJDf0dolHWM+B2h/3eEPp8fQ2D3Bw/Q3D6J6QAq0P3U2kFrMTh4MABg3bl1GPLbEHQJ7IKdETu1ZTzneeJ29u0KxeNk4wRHG0fIZXLkF+UjJTsF1nJrBKgCIJfJIZfJEZsWW+EP28wuMzErbBYA4FzyOTRZ1AQe9h5IeSNFWyZsWRh2xe+q0HontJqAhX0WAgBSslLg9ZkXAEDMvH+aDV43GL+d/61C6x3UeBDWDV6nfSybLX3okqclw9PBE0IIjP1zLH468VOF1uti64Knaj8FD3sPuNu548uDXyKrIAuLnl6EFn4t4G7njh+P/4hP9n1SofU29myMcxPOaR8HfxuM8ynnETUyCmG1wgAACw8vxMS/J1ZovWUdo9LOv4oq7Rgt6L0AkW0iAQA743bqlfRrjhEARG6OxLdHvy31/Kuos6+cRbBXMABg1s5ZmL1rdpnnX0WUdozKOv8qorK+I0o7RmWdfxVhbt8RwP3zryLKOkalnX8Vwe+I+wz2HZELYC6M3v0Ba6SquDnd5pQ4Seu513vsL8nlJ5ejSF2EDgEd4KJ0MVi81+9dx5qza5CUmYTYtPt3JY77cxys5FZQyBQ4lXiqwuuNvRuLH479gJSsFKRkF/uSWB6Guzl3kZKdUuH/NAEgLTcN686vK7H8lS2vVHhdRERkeVgj9QBNjdTNlJsVymirarV9TkEOjt06hoPXD+LA9QM4eP0g0vPSS5QL9gxGuxrt8GTQk+gQ0AE1nWsiIS0BSVlJSMlOQXJmMpKzk5GUmYTk7GQkZ0lTSlYKUrJSoEbFqvcri5ONEzzsPeBp7wkPBw942v3vr72ntNzBEx52HigSRUjNScXd3Lu4l3cPt7Nv407OHSRlJSE1OxWpOalIzU3Fnew7yCp4+HGb3mE63un8js4yVtvfZ5GX9kpRVb8jysJLexJe2it9vVXxOyIjIwN+nn5Gr5FiIvUAU/WMaixqocaFlAvYd22fNCXsw5W7VwyybldbV3g7esPbwRvejt7wsveCl4MXrORWKFQXokgUSX/VRWU+flgZuUwOT3tPeDp4wsvBC572//v7v8ce9h46X6SGkluYizvZd3An54727+3s2/gn5h9surQJQ4OHYs2gNdqyIzaMAAD83P/nSomHqoHcXGCEdB7g558BEw9TRWQJTPX7zUTqAeaeSJUmMTMR+6/tx74EKbk6dusYCtWFkMvk8LD30CZG3g7S5OXgpZMweTt4w9PBU/vfg6XYcGEDBqwdgDY12uDQmEMAOEQM/Q+HiCEyOlP9frONFMHH0QcDGg3AgEYDAEhVwffy78Hdzl1bxUwlBbkGAQB7qCcismBMpKgEO2s7nTYBVLogFymRSslOQWZ+JhxtHE0cERERGRt7NifSk8pWBVdbVwCslSIislRMpIgeg/byXhoTKSIiS8REiugxaC7vsUaKiMgyMZEiegzaRIo1UkREFomNzYkeQ23X2gDuJ1L21vbInJGpnScLZW8vdXugmScis8VEiugxPNgFgkwmY99RBMhk7DuKyELw0h7RYyh+aY992xIRWR4mUkSPIdAlEACQmZ+J29m3kVeYh4iNEYjYGKHXWFZkJvLygIgIacrjeUBkzphIET0GWytb+Dn5AZBqpQrVhVh+ajmWn1pe4cFRyYwUFgLLl0tTIc8DInPGRIroMbELBCIiy8VEiugxsVNOIiLLxUSK6DGxRoqIyHIxkSJ6TA/2JUVERJaDiRTRY2Lv5kRElouJlL7YZxD9j6aNVHxaPIrURSaOhoiIjImJlD5+/x0YMAC4e9fUkVAVUMOpBqzl1ihQF+Bu7l0kT0tG8rRkDhFjyeztgeRkaeIQMURmjYlUReXkAK+8AmzcCLRoARw5YuqIyMQUcgUCVAEAgLi0OHg6eMLTwRMymczEkZHJyGSAp6c08TwgMmtMpCrKzg7YsgUICgLi4oAOHYBvvuGlPgvHLhCIiCwTEyl9tGwJHD8O9O8PFBQAr74KDB4MpKebOjIyEU2D8+g70YjcHInIzZEcIsaS5eUBkZHSxCFiiMwaEyl9ubgA69cDX30FWFtL8y1aSAkWWRxNInU17Sq+Pfotvj36LYeIsWSFhcC330oTh4ghMmtMpB6HTCbVRu3dCwQGAlevAqGhwKJFvNRnYYrfuUdERJaDiZQhtGkj1UT17Qvk5wMTJgDDhgEZGaaOjIxE0ylnXFqcaQMhIiKjMqtEatasWZDJZDpTw4YNjbNxNzdg0ybgs88AKyvg11+BVq2AU6eMs30yKc2lvVuZt0wcCRERGZNZJVIAEBwcjFu3bmmnvXv3Gm/jMhnw+uvA7t1AzZpAdDTQrh3w44+81GfmPOw94GDtYOowiIjIyMwukbKysoKPj4928vDwMH4QoaHAiRNA795Abi4wbhwQHg5kZho/FjIKmUymbSdFRESWw+wSqejoaPj5+aF27doYPnw4EhISTBOIhwfw11/AnDmAQgGsXAm0bg2cPWuaeKjSaS7vERGR5TCrRKpt27ZYtmwZ/vnnHyxatAixsbHo1KkT7t27V+Zr8vLykJGRoTMZjFwOTJ8OREUBfn7AxYtSw/Rlywy3DaoyNInUuBbjEPtqLOys7UwcEZmMnR0QGytNdjwPiMyZWSVSvXv3xuDBg9GsWTP07NkTW7ZsQVpaGtauXVvma+bMmQOVSqWd/P39DR9Yp07Spb4ePaQhZkaNkqbsbMNvi0xGc2kvNTcVtVxqQS4zq48XVYRcDtSqJU1yngdE5sysP+EuLi6oX78+YmJiyiwzY8YMpKena6dr165VTjBeXsDffwMffCB9sS5bJtVOXbhQOdsjo9PUSMXe5TAxRESWwsrUAVSmzMxMXLlyBSNGjCizjFKphFKpLPlEVpbUtqm8lEqp2wNA6sk4L09KmIpX6+fkAK+9JvWAPmoUcO6c1EXCiy9Kr5fJpNdoJoVC6jXd2vr+f7VqtTRva3u/XGGh9Fpra8DXV7pjsGZNwNW17AFTra0BG5v768zJkeYdit15lpMjPVcRVlbSvgDSnYqaWrfi683NBYqKKrZehULaZ42sLOmvvf39fczLq3gv0g8eI8167ezuv+f5+dJQQI9Q29YHAHAu+Rze2DIFH/X8FDaK/73H2dnS+2Fre/+8KiiQ1l1RpR2j0s6/x1mv5hjZ2EjnCiA9zs2t+HpLO0ZlnX8VUdoxKuv8q4jSjlFp558Q9ydA9/siPx+YNUuanzVL2tfyfEdozr+KKO0YyWTS+66hOf8qgt8REgN+R+go6xjxO0L/7wh9Pj+GIMzI66+/Lnbu3CliY2PFvn37RPfu3YWHh4dITk4u9zrS09MFAJGu+zX56Gnt2vsrWbtWWtali+7KPTwqts7KnCIjhcjKkuI6e1Za5uGhG2+XLhVf74QJQhQWCpGeLsTp0/eXX74sRHS0EDExQvTuXfH19usnxJ07QiQkCHHx4v3lq1cL8dtvQixfLkTnzhVfr6urEAMHCjFypBATJwphZyctnzFDiKVLpXUPH16udd2zgcCs+1NmXLQQV69K8dapI5WbP1+IqCgh/vlHiPHjKx6vnZ0Qr70mxKRJQrzyihC+vtLyzp2FGDZMiMGDhWjTRr9z4sknhQgLk4675lytXVuI0FBpnfXr67deBwch7O2FcHQUQqmUljk5CVGrlhD16knb0Ge9zzwjxPPPS8evQQNpmb+/tB+dOgnRqpV+67W1leK1sxPCykpaJpMJoVAIIZdL8/qst7K+IxYsuP/6qChpWePGuutt3Lji65058/7rDf0doZGcfH95cYMGVXy9gwbprkOzvPj3/4QJFV9vWcfo7Nn7y2bOrPh6yzpGUVH3ly1YUPH1lnWMSjv/KjqVdoxKO/8qOpV2jEo7/x4xpQMCgEhPTxfGZFY1UtevX8ewYcNw584deHp6omPHjjh48CA8PT1NHZr+OnUCgoOljPz6dWDLFmmcv2eflbJ/tRrYvLnivagvXChNbm6A5v3JzAQ++QTw9wecnIDk5IrH+8MP0vhiD6pfv+LrKm7TJsDdveTyYcMeb71370rjJD5ozpwKr8oxH3DPAu5o/mmrVw948J/USZMqvF4dOTnAl1+WXL579+OtF5BuinjQ1avS9DhK+y/x3j1pehx//VVy2bVr0vQ4SvuPWoiK15AQkUWQCSGEqYOoSjIyMqBSqZB+8yacnZ3L/8KqVm2fmwvcuCElX5rp2jXp740b0nxl92slkwGOjrqXJTU/SJr/ITTLNH8fdTpaWUnVy3Z20l9HR2lycJCqxO3tdScHh9L/FhZK+5+dLR2re/ekx6mp0nxurvT43j0pSdU8f+/eQ6vEW44DjvtJ85lz5XCQKaVzQ3OJ1tZWeqw5rprqaxsbad+sraW/Vlb3L+1qHmsmO7v780JI5ZRKad2ac1Ctlt7/sibNMSm+zM7u/nxBgbRua2tp3ZpLDZr1KhT3J81l6OKPiy9zcJDiUqulz0DxKvqCAun9zMqS5jVTYaE0FV9WfLmV1f330srqftxKpbQf1tbStouK7s9r3svi76km1uLvi+Z9lMmk1xcWSq/XvD9yuXTeaF6TnS39swMAV64A3t7S/nh7S8uSkqT3oKp9RzwKL+1JeGmv9PVWwUt7GRkZUPn5IT09vWK/34+JidQDtImUkQ+ESaSnSwlVQkLJv9nZUq2UJlEpbXrU85p2X/ooLdGSye5/sExJk4Tduye9T5oPvFKJgf+Oxu9X/gQAZM7IhIMNezu3CM2aAWfOSLWbAwZIP7aOjtJzmZm6P0BEVClM9fttVpf2qIJUKmlq0sTUkZT0YM1JVWJlJV1edXEp8VSgZ13gitEjIlPr2FFKpPbtkxIpIrIYVfBXiqj6qqWqZeoQyBQ6dJD+GnNsTyKqEphIERlQLddapg6BTKFjR+nv8ePsaJfIwjCRIjKghh4NAQC2VrawtbJ9RGkyGwEBQI0aUvu5w4elhshnz0oTh4ghMmtMpIgMqJZLLcggQ25hLm5n3zZ1OGQsMtn9Wql9+6S2fcHB0lQV2/kRkcHwE05kQDYKG9R0rgkAuHr3MftfouqF7aSILBITKSIDyi/Kh+x/XT5Ep0abOBoyKk2N1P79Up83s2ZJkz79ABFRtcHuD4gMqKCoAAnpCQCAK6nsB8GiNG0q9R2VkQGcOgXMni0tf+ONqtH/GRFVCtZIEVWSuLQ4U4dAxmRlBYSGSvMHDpg2FiIyGiZSRJUkPj3e1CGQsWnaSR08aNo4iMhomEgRVRLWSFmg4u2kiMgiMJEiqiTX0q+hUF3BAVKpemvbVhpw9vp1U0dCBAC4m3MX2QXsJLYysbE5USVRQ43rGddRy6WWqUMhY3F0BJo3B44dM3UkZEGyC7IRkxqDy3cul5ju5NyBl4MXLkRegJudm6lDNUtMpIgqUezdWCZSlqZDByZSZHAFRQWIS4vD5TuXEZ0arZMsXcu49tDXJmclY9XpVZjUdpKRorUsTKSIDMjWyhaHxxzG5L8n4+CNg7h69yqeDHrS1GGRMXXsCHzzDVC/PrByJWDLoYLo0bLys5CclYykrCQkZyXj5r2biL4TjcupUrJ09e7VhzYVcLV1RX33+iWm/67+hze2vYEfj/+IiW0mavu5I8NhIkVkQAq5Aq1rtEZzn+Y4eOMgYtNiTR0SGZvmzr2YGKBBA6nNFFkcIQTu5t6VkqPMJG2CpDNfbFlWQdYj12lnZYd67vWkJMlNN2Fyt3cv9TWBqkC8G/UuziSfwdGbR9G6RmtD76rFYyJFVAmCXIMAgImUJfLzA4KCgNhYqRuEHj1MHRFVEiEEbt67ieO3juP4reM4kXgCCekJ2gSpojeb2FrZwtvBG14OXvBx9EFdt7raRKmeWz3UcK4Buaxi94i52rliUONBWHl6JRYfX8xEqhIwkSIyoPyifHx98GucSToDQGojRRaoXTspkZo3DwgLY8/mZkAIgbi0OG3SdDxR+puclfzQ16mUKng7emsTJG8Hb3g73p/3cvDSPu9o41gpl97GhIzBytMr8cvZX/B5z8/haONo8G1YMiZSRAZUUFSAN/97U/uYNVIWql07YPVq4L//gIICJlLVjFqoEX0nukTSlJabVqKsXCZHY8/GaOHbAi18WqCeez1tguTl4AWlldL4O/CAzoGdUdetLmJSY7Du3DqMChll6pDMChMpokqUmJmInIIc2FnbmToUMibNUDGAlEhRlZVbmFsiaTqZeBKZ+ZklylrLrdHUuyla+LSQEiffFmjq3RT21vYmiLz8ZDIZxoSMwfTt07H4xGImUgbGRIqokjjZOOFe/j3EpcWhkWcjU4dDxtSw4f35M2eATp1MF4sFE0LgTs4dxKfFIyE9AQnpCYhP150v69KcnZUdmvs01yZMIT4hCPYKho2ietYujmw+Em/veBv7r+3H+ZTzaOzZ2NQhmQ0mUkSVJNAlEGeTzyI2LZaJlKWRF2sQfOAAE6lKkl+Uj+sZ1+8nRpqEKeP+fE5hziPX46x0RohPiDZpauHbAvXd68NKbj4/kT6OPnim/jPYdGkTfjr+Ez7v+bmpQzIb5nOWEFUxtVxq4WzyWVy9e9XUoZApHThg6gjMQnZBNo7dPIaD1w/i4I2DOHLjCK5nXIeAeORrfR19EaAKQIAqAIGqwPvzLtK8q62rRfSvNKbFGGy6tAkrTq/Ax90+rhLtt8wBEymiSlJLVQsA79yzeAcOAEIAFvBDbShCCFy9exUHrh+QEqfrB3Eq6VSp3QnYWtlqE6MA5/vJkSZhqulckwnD//Sq2wt+Tn64ee8m/rj0BwYHDzZ1SGaBiRRRJQlUBQLgnXsWLylJ6gqhdm1TR1Jl3cu7hyM3j+DAtQM4eENKnG5n3y5RzsfRB6E1Q9GuZju0q9kODT0awtPe0yJqkwzBSm6FUc1H4aM9H+GnEz8xkTIQJlJEBmRrZYuokVEAgPTcdABMpCySrS0QFQVERgLnzwN79zKR+h+1UOPS7Us4eP2gtsbpbPLZEpfobBQ2aOHbAu1qSElTqH8o/J39mTQ9ppdCXsJHez7C1itbEZ8Wj0CXQFOHVO3plUgdP34c1tbWaNq0KQBg06ZNWLp0KRo3boxZs2bBhn2mkIVSyBUIqxUGADiXfA4AL+1ZJIVC6ojz6aelRGrfPiA83NRRGd3t7Ns4l3wO51PO43zKeZxLOYcTiSdK7Y8pUBWorWkKrRmK5j7NeUmuEtR2rY1uQd2wPXY7lp5cillhs0wdUrWnVyI1fvx4TJ8+HU2bNsXVq1fx/PPPo3///li3bh2ys7Px1VdfGThMouqnlkstAEB6Xjru5tyFq52raQMi4+vYEfjsM6lGykwJIZCSnVIiYTqfch4p2SmlvsbOyg6ta7TW1ja1q9kOvk6+Ro7cco1pMQbbY7djyYkleLfzu1DIOR7k49Arkbp8+TKaN28OAFi3bh06d+6MX375Bfv27cPzzz/PRIosVkFRAX449gMAYFzLcfB28EZSVhJi02KZSFmSggLghx+Ae/ekx+fPA6mpgJubaeN6DEIIJGUllZow3cm5U+brglyC0NizMRp7NkawZzCaejdFU6+msFZYGzF6Ku65hs/Bzc4N1zKuYdvVbehVt5epQ6rW9EqkhBBQq9UAgP/++w/PPPMMAMDf3x+3b5dsIEhkKfKL8jHx74kAgIjmEQhyDZISqbuxaOHbwsTRkdHk5wMTpfMA9eoB0dHA/v3A/74rq4O7OXexN2Ev9iTswYHrB3Au+Rzu5t4ttawMMtR2ra2TMDX2bIyGHg3hYONg5MjpUWytbDGi2Qh8fehrLD6+mInUY9IrkWrVqhU+/PBDdO/eHbt27cKiRYsAALGxsfD29jZogETVWZBLEA5eP8i+pCxZu3ZSIrVvX5VOpG7du4U9CXuwJ34PdifsxpmkMyUagMtlctRxrVMiYWrg0aDKD5NCukaHjMbXh77GpkubkJyVDC8HL1OHVG3plUh99dVXGD58ODZu3Ii3334bdevWBQD89ttvaN++vUEDJKrOglyCAPDOPYvWvj3w889Vqp2UEAJxaXHYHb8bexL2YHf8bkSnRpco18C9AToFdELHgI5o7tMc9d3rc9xIM9HUuyna1miLQzcOYcWpFZjWfpqpQ6q29EqkmjVrhjNnzpRYPm/ePCgUbLRGpBHkykTK4rVrJ/09cgTIywOUxr8TTQiBC7cv6CRO1zOu65SRQYYnfJ5A54DO6BTYCZ0COsHbkVcYzNmYFmNw6MYhLD6+GK+Hvs6uJfRk0H6kbG1tDbk6ompPWyPFLhAsV926gKcnkJICHDsm1VBVMiEETiaexM64ndLluoQ9JTq4tJJbobVfa3QO7IxOAZ3QIaADXGxdKj02qjqGBg/FlH+m4NKdS9h3bR86BnQ0dUjVkl6JlKtr6eMSyWQy2Nraom7duoiIiMCoUaMeO0Ci6kxTIxWXFge1UEMukz/iFWR2ZDKgQwdg40apnVQlJVL38u5h29Vt2Hx5M/6O+Ru3Mm/pPG9nZYdQ/1B0DuiMzoGd0bZmW7ZrsnBOSicMDR6KJSeXYPHxxUyk9KRXIvXee+/ho48+Qu/evdGmTRsAwOHDh/HPP/8gMjISsbGxeOWVV1BYWIixY8caNODyWLhwIebNm4fExEQ88cQTmD9/vjZOImPyd/aHXCZHXlEeEjMT4efkZ+qQyBQ6dpQSqb17gTfeMMgqhRC4dOcStkRvwebozdgTvwcF6gLt8w7WDuhSqwu6BHZB58DOaOHbAjYKdpZMusa0GIMlJ5dg7bm1+LrX11DZqkwdUrWjVyK1d+9efPjhh3j55Zd1ln///ffYunUr1q9fj2bNmuGbb74xeiL166+/YurUqfjuu+/Qtm1bfPXVV+jZsycuXboELy/elUCVS2mlxF/D/tLOW8mtEKAKQFxaHGLvxjKRshRKJfDXX/fnO3SQ5vfte6wBjHMLc7Ezbic2X96MLTFbStwNWt+9Pp6u+zT61O+DTgGd2DM4PVK7mu3Q2LMxzqecx+qzq/Fyq5cf/SLSIRNCiEcX0+Xo6IiTJ09q79bTiImJQfPmzZGZmYkrV66gWbNmyMrKMliw5dG2bVu0bt0aCxYsAACo1Wr4+/tj0qRJmD59+iNfn5GRAZVKhfT0dDg7O1d2uGQBui7viqi4KPzc/2e82OxFU4dDppCfD6hUQG4ucOEC0LBhuV+akJ6grXXafnU7cgpztM/ZKGwQVisMfer1wdP1nkZdt7oPWRNR6b488CWmbp2Klr4tcXTcUVOHozdT/X7rVSPl5uaGP//8E6+99prO8j///BNu/+u5NysrC05OTo8fYQXk5+fj2LFjmDFjhnaZXC5H9+7dceDAgVJfk5eXh7y8PO3jjIyMSo+TLEuQSxCiEMW+pCyZjQ3Qpg2we7dUK/WQRKpQXYj91/Zra53OJp/Veb6mc01trVPXoK5wtHGs7OjJzI14YgTe+u8tHLt1DCdunUCIb4ipQ6pW9Eqk3n33XbzyyiuIiorStj06cuQItmzZgu+++w4AsG3bNnTp0sVwkZbD7du3UVRUVKJTUG9vb1y8eLHU18yZMwezZ882RnhkAQqKCrDqzCoAwPCmw2GtsGYXCJaooABYJZ0HGD4csLaW2knt3i21kxo9Wqd4XFoctl3Zhq1Xt2LblW1Iz0vXPieXydHev702eWrq1ZS3qZNBedh7oH+j/lh7bi1+OvETFvguMHVI1YpeidTYsWPRuHFjLFiwAL///jsAoEGDBti1a5e2Q87XX3/dcFFWohkzZmDq1KnaxxkZGfD39zdhRFSd5RflY9Qm6W7VwY0HS4kUu0CwPPn5gOau5cGDpUSqWDupjLwMRMVGYdvVbdh6ZWuJzjDd7dzRu15v9KnXBz3q9ICbXfUdo4+qhzEhY7D23FqsPL0S856ax45XK0DvfqQ6dOiADpovhirCw8MDCoUCSUlJOsuTkpLg4+NT6muUSiWUJuggjywHa6SoSF2Eo0HW2NoF2Fo7Ggc+cUORKNI+r5ApEOofih61e+CpOk+htV9rKOTs3JiMp1vtbghUBSI+PR6/X/gdw5sNN3VI1cZjd8iZm5uL/Px8nWWmaqRtY2ODli1bYvv27XjuuecASI3Nt2/fjomaAUSJjExTI3U94zoKigo46r2FiHUBttUBtm4aju3XdiEtNw148n9PiiLUc6uHHnV64KnaT+HJoCfhrOTNLWQ6cpkco0NG472d72HxicXVK5EqKgJu3ZJu5DABvRKp7OxsvPnmm1i7di3u3LlT4vmioqJSXmUcU6dOxciRI9GqVSu0adMGX331FbKystg5KJmMj6MPbK1skVuYi4T0BNRxq2PqkKgSaC7Xbb2yFVtj/kXMlP89Eb0JAOBi64JuaW7ose0qngobjaCZi00WK1FpIppHYNauWdgZtxPRd6JRz72ecQMoKgLS04G7d4HUVN2/D1uWmAgUFho31mL0SqTeeOMNREVFYdGiRRgxYgQWLlyIGzdu4Pvvv8fcuXMNHWOFDB06FCkpKXjvvfeQmJiI5s2b459//inRAJ3IWGQyGYJcgnDh9gXEpsUykTIjt+7dwrrz67Du/DocuHZA53KdVRHQ7jrQ44V30KPhM2jl1wqK1WuAuS8CVmcfslYi0/BX+aNX3V7YEr0FS04swZzucx5/pUJIyU58vO5082bJxCg9XSqvDysrwM8PSEh4/JgrSK9+pAICArBixQqEhYXB2dkZx48fR926dfHzzz9j9erV2LJlS2XEahTsR4oeR1Z+FhznSLejZ87IhIONAwCgzy99sCV6C3545geMbWn83v7JcFKyUrD+wnr8eu5X7IrbBYH7X6Gay3U9anRGWNuhcM4DkJkJOEjnAeLigKAg6Us/PR2w5xAtVLVsuLABA9YOgI+jDxKmJDy6KYLmslp8vJTEPJgwxccDFe1P0sEBcHUF3Nykv8XnS1vm4wP4+SEjK6v69COVmpqK2rVrA5DaQ6WmpgIAOnbsiFdeecVw0RGZCU07KfYlVT3dzbmLjRc3Ys25Ndh+dbtOzVNozVAMDR6Kfg37oZZLLWlhVhaQV8qKAgOBGjWAGzeAw4eBsDBjhE9Ubs/UfwZeDl5IzEzElugt6BfUC7h2rfQEKT4euH5d6u7jUby9pfNfM9WsCbi7l0yKXF2lfteqEb0Sqdq1ayM2NhYBAQFo2LAh1q5dizZt2uDPP/+ESsVxeshyKa2UWDtorXZeQ9sFAu/cqzbu5d3DH5f+wK/nfsU/Mf/ojGPX0rclhgYPxZDgIQh0CSz5YqUSWLv2/ryGZgDjtWuljjmZSJGp3bunkxhZx8djZI4b5rknY/GnQ9FvWf6jL7cpFFJiVDxRKj4FBAC2tsbZHxPQK5EaNWoUTp06hS5dumD69Ono27cvFixYgIKCAnzxxReGjpGo2rCSW2Fw8OASy9kFQvWQXZCNLdFbsObsGmyO3ozcwlztc028muD54OcxtMnQRw/FYmUl9R9Vmo4dpURq714DRk5UCiGAlJSya5MSEqS2SQ8Y7Q7MmwRs8c/DDUegRqFd2UlSYCDg6yud8xZKrz0vPjRM9+7dcfHiRRw7dgweHh5YuXKlwYIjMhfslLPqyivMw9YrW7Hm3BpsurgJWQX323PUc6uH55s8j6HBQxHsFWyYDWr63ztwQGpfomB/UaSnwkKp0fbDEqWcnEevx9VVJzFqEBiITkWLsSf7Apb9OgNv9/pI74G2LYFejc3LcurUKbRo0cKk3R88LjY2p8dRqC7EhgsbAAD9G/WHlVz6XyUtNw2un7gCAO7NuMfx0UxMCIGouCisPL0Sv1/4XWdIlkBVoDZ5au7TXL/hWAoLgQ3SeYD+/XX/Wy8slH64MjOBU6eAZs0ec2/IbOXklN6AW7Ps+nUpGX8YmUyqMQoIKLtGqZRxcVecWoGRG0ciyCUIMZNjIJfJK2knDadaDVpMRKXLK8zDkN+GAJDu2rOykT5iLrYucLF1QVpuGuLS4tDEq4kpw7RY6bnpWH5qOb498i0u3bmkXe7n5IchjYfg+SbPo02NNo8/ll1eHjBEOg+QmambSFlZAe3aAf/9J7WTYiJludLSyq5Nio8HkpMfvQ5ra8Dfv+wkqWZN3XZ65TSo8SBM+nsSYtNiERUbhW61u1V8/4ykUF2Iy3cuY3/MfpNsn4kUkZHUdq2N47eOI/ZuLBMpIzuTdAYLjyzEytMrtZfuHG0cMbzpcLzQ9AV0DOho3P+4O3aUEqm9ewHe6Wye1GogKenh3QJkZDx6PQ4OD2+f5ONTKZeH7a3tMbzpcCw6ugiLTyyuMonUvbx7OJN8BicTT2qnM8lnpPaMuY9+fWVgIkVkJEEuQVIixQbnRpFflI/fL/yOhUcWYm/C/YbdjT0bI7J1JEY0GwEnZclLGkZRbABjqsaKiqSE6OLF+9PVq9Kya9ekmslHcXd/eKLk5may9kljWozBoqOL8PuF33En+w7c7d2Ntm0hBG5l3tJJmE4mnkRMaoxO320ajjaOaOzRGIdx2GgxalQokRowYMBDn09LS3ucWIjMGvuSMo7rGdfx/dHv8ePxH5GUJQ1gbiW3Qv+G/RHZOhKdAzs//qW7x9W2rVSLoGnnUrOmaeOhh8vKAi5f1k2YLlyQlj0sWZLLpd62H9YtgKaz1iqohW8LhPiE4ETiCaw8vRKvtnu1UrajuTT3YNKUkp1SavkaTjXQ3Ke5zlTbtTYy72VCNdH4XTBVKJF6VB9RKpUK4eHhjxUQkbliFwiVRwiBHbE78O3Rb7Hp4iZth5m+jr4Y33I8xrYcCz8nPxNHWYyTE/DEE8Dx41Kt1NChpo6IhJAuxRVPljQJ08OGHbGxAerXBxo2BBo1AurU0W2fZF29Bykf02IMIrdEYvGJxZjcdvJj/xOSW5iLU4mncOzWsZKX5h4gl8nRyKORTsL0hPcT8HTwfKwYDK1CidTSpUsrKw4is8cuEAwvPTcdK06twLdHv8XF2xe1y7sEdkFk60g81/C5Rw9xYSodO0qJ1N69TKSMqaBAuvz2YMJ08aLU+Lssbm5SotSokZQ0aaZatcy6C4sXmr6A17e+jrPJZ3H4xmG0rdm23K8tVBfifMp5HLlxBEduStPppNMoVJccYNjRxhFPeD+hkzQFewbDztrOkLtTKdhGishIitdICSFMf3mpGiur8Xh4s3BMaD3BcH0+VaYOHYBvvmE7qcqSng5culSydikmRuqCojQymTQW4oPJUsOGgIeHceOvIlxsXTC48WD8fPpn/HTipzITKSEErty9ok2aDt84jBOJJ5BdkF2irKe9J1r5tUKITwia+zRHiG8IarvWrhZdLJSGiRSRAdkobLC031LtfHGacdgy8zNxJ+cOPOwt84tZXwVFBdhwcQMWHF6APQl7tMurROPxB9nYAJoa/LLGDdM0OD91Shqmo5S+fOgRhJDamD2YLF28KA2kWxZ7+5KJUsOGQL16Zj2Uib7GtBiDn0//jNVnV+OLnl/A0cYRN+/dxOEbh7WJ09GbR3E3t2Qv6U42Tmjp1xJt/NqgdY3WaO3XGgGqALP6R5KJFJEBWSusEdE8otTnbK1s4evoi1uZtxB7N5aJVDklZSbhh2M/4Ltj3+HmvZsAqmDj8QdZWwMREQ8vU6OGdFkoLg44eBB46ikjBFaNZWQAp08DJ0/eny5elBqCl8XXt/SEqWZNqSE4lUungE6o51YP0anR6Lq8K27cu6H9LBanVCjR3Kc5Wvu11iZNDTwaVNuapvJiIkVkREGuQVIilRaL1jVamzqcKu3IjSOYf3g+fj33K/KL8gEA3g7eGN9yPMa3Gl+1Go/rq2NHKZHau5eJlIYQ0rAnxROmEyeAK1dKL29lBdStWzJZatAAcHExXtxmTCaTYUyLMXjrv7dw5OYRAFJD8GDPYJ2kqal30xI18ZaAiRSRARWqC/FvzL8AgJ51e2qHiNGo7Vob+6/tZ4PzMuQV5mHd+XVYcHgBDt04pF3etkZbTGozCYODB1ePL+rCQuBf6TxAz55lD+jaoQOwcqXltpMqLJS6ECieNJ08KQ20W5qaNYHmzaXpiSeAJk2ku+Sq+Z1x1cHktpORU5ADJ6UT2tRogxCfEDjYVN2uG4yJiRSRAeUV5uGZ1c8A0B0iRoN9SZXu5r2b+O7od/jh2A/avp9sFDYYGjwUk9pMqn61d3l5wDPSeVBiiJjiOnaU/h48KCUVZZUzB3l5UnuwY8fuJ0ynTwO5pXRHrVBItUohIbqJk4U2+K4KbK1sMTNspqnDqJLM+FNLVPVou0BgX1IQQuDA9QP45tA3WH9hvfaWaD8nP7zS6hWMazkOXg5eJo6ykjVuLF1+SkuTkoyWLU0dkWGo1UB0NHD4sDQdOiQlTgUFJcs6OkpJkiZhat4cCA4G7Kr+be9EABMpIqNip5xSh3xrzq7B/MPzcfzWce3yjgEdManNJPRv2L/q9v1kaHI50L49sGWL1E6quiZSSUm6SdORI6X3yeThAbRurVvTVKcOG35TtcZEisiINDVS8WnxKFIXQSE33478HnQt/RoWHV2EH4//iNvZtwFIlwteaPICJrWdhOY+zU0boKl06CAlUvv2Aa9WzhAcBpWdLV2e0yRNhw9LQ908yNZWSgzbtJGGxGnTRrpLsardYUn0mJhIERlRTeeasJJboUBdgJv3bsJf5W/qkCrdhZQLmLVrFtafX68duiVAFYAJrSZgTIsxRh0ItUrStJPau1e6Y60qJRpFRcD587q1TWfPSsuLk8mky5TFk6YmTdgInCwCEykiI1LIFQhQBeDq3auITYs160TqWvo1zNo5C8tOLYNaqAEAT9Z6EpPaTELfBn1L3NFosVq3lhKOW7eA2Figdm3TxKHp3LJ40nT0aOn9NPn53U+Y2raVap6cnY0fM1EVwG8yIiMLcgmSEqm7segc2NnU4Rjcnew7mLt3LuYfno+8ojwAwHMNn8PssNlo5t3MxNFVQXZ2UiJy8KB0ec9YiVRGhtSWqfglutJ6A3d0lJK94rVNNWoYJ0aiaoCJFJEB2ShssKD3Au18aWq71sb22O1m1+A8Kz8LXx/6Gp/u+xTpeekAgM6BnTG321yE+oeaODojs7EBFiy4P/8oHTtKidTevcCIEYaPp6BA6mqgeNJ08aJUC1WcQgE0bapb29SwoVkPykv0uJhIERmQtcIakW0iH1rG3PqSKigqwE8nfsLsXbORmJkIAGjm3Qxzus1B77q9q97wLcZgbQ1EPvw80NGhA/DZZ4brmPPuXeC//4D9+6XE6cSJ0vtrqlVLN2kKCZHGoSOicmMiRWRk5tIFglqo8dv53/DOjncQnRoNQEoSP3jyAwxrOszsx9cyKM0AxufOAampgJtbxV4vBHDmjHT335YtUgL1YINwFxfdy3Nt2gBeZt5PF5ERMJEiMqAidRH2JOwBIA30WVr3BtpOOavxMDHbrmzDjO0zcOzWMQCAp70n3u38Lsa3Gl89hnCpbEVFwB7pPECnTo++NObpCdSvLw2XcuAA0KfPo7eRmSnVOmmSpxs3dJ9v3Bjo2vV+4lSvXtW6I5DITDCRIjKg3MJcPLn8SQDSEDGljUWlqZG6ee8m8grzoLRSGjXGx3H05lFM/286tsduBwA42jhiWug0TA2dCielk4mjq0Jyc4EnpfMAmZmAQznGJOvYUUqk9u4tPZESQnpekzjt2qXbU7idHdCtG/D000Dv3tJlOyKqdEykiIzM094T9tb2yC7IRnx6POq71zd1SI90+c5lvLPjHaw7vw4AYC23xoTWE/B2p7fh6eBp4ujMRIcOwJIluu2kcnKAnTvvJ09XH2hXV6eOlHQ9/TTQpYvUCSYRGRUTKSIjk8lkCHIJwrmUc4i9G1ulE6mb925i9s7Z+OnETygSRZBBhhebvYj3n3wftVxqmTo886LpmPPwYemOv7//Bnbs0G0kbmMjJUxPPy1N9avuuUNkKZhIEZlAkOv/Eqkq2uC8oKgAc/fOxZy9c5BTmAMAeKb+M/io60fsC6qy1KsntZVKSQEmTbq/3N//fuLUtavUrxMRVRlMpIhMoLaL1OliVWxwfibpDEZuHIkTiScAAO3922Nut7noFNjJxJGZOZkMeOkl4MsvgdDQ+8lTcDAbiRNVYUykiExA0+D8alrV6UuqUF2IefvmYebOmShQF8DV1hULnl6AYU2GWWZfUKYwdy4wZw4TJ6JqhIkUkQlUtS4QLqRcQMSmCBy+cRgA0Ld+X3z/zPfwdfI1cWQWiEkUUbXCRIrIgKwV1vi0+6fa+bJUlU45i9RF+PLgl3hnxzvIK8qDSqnC172+RvgT4ayFehzW1sCnn96fJyKzJRPiwcGWqq9atWohPj5eZ9mcOXMwffr0cq8jIyMDKpUK6enpcOZo5lRJ7uXdg/Nc6fxKn54OZ6Xxz7XoO9GI2BSB/df2AwB61umJxc8uRk3nmkaPhYjocZnq99vsaqTef/99jB07VvvYyYmdBFLV46R0grudO+7k3EHs3Vg84fOE0batFmrMPzQfM7bPQE5hDpxsnPBFzy8wOmQ0a6GIiCrI7BIpJycn+Pj4mDoMslBF6iIcv3UcANDCt0WpQ8RoBLkGSYlUmvESqat3r2LUplHYHb8bANA1qCuWPLsEgS6BRtm+xSgqAo5L5wFatHj0EDFEVG2Z3aiic+fOhbu7O0JCQjBv3jwUFhY+tHxeXh4yMjJ0JiJ95Rbmos3iNmizuA1yC3MfWtaYDc7VQo1FRxah2aJm2B2/G/bW9lj49EJsG7GNSVRlyM29PzBw7sPPAyKq3syqRmry5Mlo0aIF3NzcsH//fsyYMQO3bt3CF198UeZr5syZg9mzZxsxSiJJbdf/9SVVyQ3O49PiMfqP0drx8ToHdsbSfku12yciIv1V+Rqp6dOnQyaTPXS6ePEiAGDq1KkICwtDs2bN8PLLL+Pzzz/H/PnzkZeXV+b6Z8yYgfT0dO107do1Y+0aWThNjdTVu5XTl5QQAouPL0bTRU2xPXY77Kzs8FXPrxA1MopJFBGRgVT5GqnXX38dERERDy1Tu3bpPwpt27ZFYWEh4uLi0KBBg1LLKJVKKJXKxw2TqMIqswuE6xnXMfbPsfgn5h8AQGjNUCx7blmVHtePiKg6qvKJlKenJzw99Rtd/uTJk5DL5fDy8jJwVESPT1MjFZcWByGEQe6YE0Lg59M/Y/Lfk5Gelw6lQokPu36I19q99tCG70REpJ8qn0iV14EDB3Do0CE8+eSTcHJywoEDB/Daa6/hxRdfhKurq6nDIyohQBUAGWTILshGclYyvB29H2t9+UX5iNwcicUnFgMAWvu1xrLnlqGxZ2NDhEtERKUwm0RKqVRizZo1mDVrFvLy8hAUFITXXnsNU6dONXVoRKVSWilRw7kGrmdcR2xa7GMlUrezb2Pg2oHYHb8bcpkcs8NmY3rH6bCSm81HnIioSjKbb9kWLVrg4MGDpg6DLJy1whozu8zUzj9KkEuQlEjdjUW7mu302ua55HN4ds2zuHr3KpxsnLBm0Bo8Xe9pvdZFBmJtDcyceX+eiMyW2SRSRFWBjcIGs8Jmlbt8kGsQ9iTs0bvB+ebLmzFs/TDcy7+HIJcg/DnsTwR7Beu1LjIgGxtg1ixTR0FERlDluz8gMmf6dsophMAXB75A39V9cS//HjoHdsbhsYeZRBERGRlrpIgMSC3UuJByAQDQyLMR5LKH/6+iT6ec+UX5eOWvV7Dk5BIAwJiQMVjYZyFsFDZ6Rk0Gp1YDF6TzAI0aAXL+z0pkrphIERlQTkEOmixqAgDInJEJBxuHh5avaKecKVkpGLh2IPYk7IFcJsfnPT7Hq21f5WDDVU1ODtBEOg+QmQk4PPw8IKLqi4kUkQlpOuVMSE9AobrwoXfZnU0+i76r+yIuLQ7OSmesGbgGvev1NlaoRERUCtY3E5mQn5MfbBQ2KBJFuJ5xvcxyf13+C6E/hSIuLQ51XOvg4OiDTKKIiKoAJlJEJiSXyRGoCgRQeoNzIQQ+2/8Znl39LDLzMxFWKwyHxhxCI89Gxg6ViIhKwUSKyMTKGnMvrzAPL/3xEt7Y9gYEBMa1GIetL26Fu727KcIkIqJSsI0UkYmV1gVCclYyBq4diL0JeyGXyfFlzy8xqc0kNionIqpimEgRmZg2kfpfjdSZpDPou7ov4tPjoVKqsHbwWvSo08OUIRIRURmYSBEZkLXCGtNCp2nny6N4X1J/XvoTL/z+AjLzM1HXrS7+HPYnGno0rLR4qZJYWwPTpt2fJyKzJRNCCFMHUZVkZGRApVIhPT0dzs7Opg6HLMDRm0fR+sfWsFHYoKCoAAICXYO6Yt3gdXCzczN1eERE1YKpfr/Z2JzIxDSX9vKL8iEg8HLLl/HP8H+YRBERVQNMpIgMSC3UiEuLQ1xaHNRCXa7XuNm5IcglCAqZAgt6L8CiZxaV+7IgVVFqNRAXJ03q8p0HRFQ9sY0UkQHlFOQg6Guphqk8Q8QAgEwmw/7R+5GVn4U6bnUqO0QyhpwcIEg6DzhEDJF5YyJFVAX4OPqYOgQiItIDL+0RERER6YmJFBEREZGemEgRERER6YmJFBEREZGemEgRERER6Yl37REZkJXcChNaTdDOk4WysgImTLg/T0Rmi0PEPIBDxBAREVU/HCKGiIiIqJphnTORAQkhcDv7NgDAw94DMpnMxBGRSQgB3JbOA3h4ADwPiMwWEykiA8ouyIbXZ14Ayj9EDJmh7GzASzoPOEQMkXnjpT0iIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITuz8gMiAruRVGPjFSO08WysoKGDny/jwRmS0OEfMADhFDRERU/XCIGCIiIqJqptokUh999BHat28Pe3t7uLi4lFomISEBffr0gb29Pby8vPDGG2+gsLDQuIGSRRNCICs/C1n5WWBlrwUTAsjKkiaeB0RmrdpcvM/Pz8fgwYMRGhqKn376qcTzRUVF6NOnD3x8fLB//37cunUL4eHhsLa2xscff2yCiMkSZRdkw3GOIwAOEWPRsrMBR+k84BAxROat2tRIzZ49G6+99hqaNm1a6vNbt27F+fPnsXLlSjRv3hy9e/fGBx98gIULFyI/P9/I0RIREZElqDaJ1KMcOHAATZs2hbe3t3ZZz549kZGRgXPnzpX5ury8PGRkZOhMREREROVhNolUYmKiThIFQPs4MTGxzNfNmTMHKpVKO/n7+1dqnERERGQ+TJpITZ8+HTKZ7KHTxYsXKzWGGTNmID09XTtdu3atUrdHRERE5sOkjc1ff/11REREPLRM7dq1y7UuHx8fHD58WGdZUlKS9rmyKJVKKJXKcm2DiIiIqDiTJlKenp7w9PQ0yLpCQ0Px0UcfITk5GV5eXgCAbdu2wdnZGY0bNzbINoiIiIiKqzbdHyQkJCA1NRUJCQkoKirCyZMnAQB169aFo6MjevTogcaNG2PEiBH49NNPkZiYiHfeeQeRkZGscSKjUcgVGNR4kHaeLJRCAQwadH+eiMxWtRkiJiIiAsuXLy+xPCoqCmFhYQCA+Ph4vPLKK9i5cyccHBwwcuRIzJ07F1YVGOuKQ8QQERFVP6b6/a42iZSxMJEiIiKqfjjWHhEREVE1w0SKyICy8rMgmy2DbLYMWflZpg6HTCUrC5DJpCmL5wGROWMiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREeqo2Q8QQVQcKuQJP13taO08WSqEAnn76/jwRmS32bP4A9mxORERU/bBncyIiIqJqhokUERERkZ6YSBEZUFZ+Fhw+doDDxw4cIsaSZWUBDg7SxCFiiMwaG5sTGVh2QbapQ6CqIJvnAZElYI0UERERkZ6YSBERERHpiYkUERERkZ6YSBERERHpiYkUERERkZ541x6RAcllcnQJ7KKdJwsllwNdutyfJyKzxSFiHsAhYoiIiKofDhFDREREVM0wkSIiIiLSExMpIgPKys+C5zxPeM7z5BAxliwrC/D0lCYOEUNk1tjYnMjAbmffNnUIVBXc5nlAZAlYI0VERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVERESkJ961R2RAcpkcrfxaaefJQsnlQKtW9+eJyGxxiJgHcIgYIiKi6odDxBARERFVM0ykiIiIiPTERIrIgLILslHrq1qo9VUtZBdkmzocMpXsbKBWLWnK5nlAZM6qTSL10UcfoX379rC3t4eLi0upZWQyWYlpzZo1xg2ULJoQAvHp8YhPjwebH1owIYD4eGnieUBk1qrNXXv5+fkYPHgwQkND8dNPP5VZbunSpejVq5f2cVlJFxEREdHjqjaJ1OzZswEAy5Yte2g5FxcX+Pj4GCEiIiIisnTV5tJeeUVGRsLDwwNt2rTBkiVLeHmFiIiIKk21qZEqj/fffx9du3aFvb09tm7digkTJiAzMxOTJ08u8zV5eXnIy8vTPs7IyDBGqERERGQGTFojNX369FIbiBefLl68WO71vfvuu+jQoQNCQkLw1ltv4c0338S8efMe+po5c+ZApVJpJ39//8fdLSIiIrIQJq2Rev311xEREfHQMrVr19Z7/W3btsUHH3yAvLw8KJXKUsvMmDEDU6dO1T7OyMhgMkV6k8lkaOzZWDtPFkomAxo3vj9PRGbLpImUp6cnPD09K239J0+ehKura5lJFAAolcqHPk9UEfbW9jg34ZypwyBTs7cHzvE8ILIE1aaNVEJCAlJTU5GQkICioiKcPHkSAFC3bl04Ojrizz//RFJSEtq1awdbW1ts27YNH3/8MaZNm2bawImIiMhsVZtE6r333sPy5cu1j0NCQgAAUVFRCAsLg7W1NRYuXIjXXnsNQgjUrVsXX3zxBcaOHWuqkImIiMjMyQT7B9BhqtGjyTxkF2Sj9Y+tAQBHxh6BvbW9iSMik8jOBlpL5wGOHJEu9RFRpTLV73e1qZEiqg6EEDifcl47TxZKCOD8+fvzRGS2zK5DTiIiIiJjYSJFREREpCcmUkRERER6YiJFREREpCcmUkRERER64l17RAYkk8kQqArUzpOFksmAwMD780RktphIERmQvbU94qbEmToMMjV7eyAuztRREJER8NIeERERkZ6YSBERERHpiYkUkQHlFOSg9Y+t0frH1sgpyDF1OGQqOTnSEDGtW0vzRGS22EaKyIDUQo2jN49q58lCqdXA0aP354nIbLFGioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREioiIiEhPvGuPyMA87D1MHQJVBR48D4gsARMpIgNysHFAyhsppg6DTM3BAUjheUBkCXhpj4iIiEhPTKSIiIiI9MREisiAcgpyELYsDGHLwjhEjCXLyQHCwqSJQ8QQmTW2kSIyILVQY1f8Lu08WSi1Gti16/48EZkt1kgRERER6YmJFBEREZGemEgRERER6YmJFBEREZGemEgRERER6Yl37REZmL21valDoKrAnucBkSVgIkVkQA42Dsj6vyxTh0Gm5uAAZPE8ILIEvLRHREREpCcmUkRERER6YiJFZEC5hbno80sf9PmlD3ILc00dDplKbi7Qp4805fI8IDJnbCNFZEBF6iJsid6inScLVVQEbNlyf56IzBZrpIiIiIj0VC0Sqbi4OIwePRpBQUGws7NDnTp1MHPmTOTn5+uUO336NDp16gRbW1v4+/vj008/NVHEREREZAmqxaW9ixcvQq1W4/vvv0fdunVx9uxZjB07FllZWfjss88AABkZGejRowe6d++O7777DmfOnMFLL70EFxcXjBs3zsR7QEREROaoWiRSvXr1Qq9evbSPa9eujUuXLmHRokXaRGrVqlXIz8/HkiVLYGNjg+DgYJw8eRJffPEFEykiIiKqFNXi0l5p0tPT4ebmpn184MABdO7cGTY2NtplPXv2xKVLl3D37l1ThEhERERmrlrUSD0oJiYG8+fP19ZGAUBiYiKCgoJ0ynl7e2ufc3V1LXVdeXl5yMvL0z5OT08HIF0qJKqorPws4H93u2dkZKDIhndsWaTivZpnZPDOPSIj0PxuCyGMul2TJlLTp0/HJ5988tAyFy5cQMOGDbWPb9y4gV69emHw4MEYO3bsY8cwZ84czJ49u8Ryf3//x143WTa/uX6mDoGqAj+eB0TGdOfOHahUKqNtTyaMnboVk5KSgjt37jy0TO3atbWX627evImwsDC0a9cOy5Ytg1x+/8pkeHg4MjIysHHjRu2yqKgodO3aFampqeWukUpLS0NgYCASEhKMeiBMLSMjA/7+/rh27RqcnZ1NHY7RcL+535aA+839tgTp6ekICAjA3bt34eLiYrTtmrRGytPTE56enuUqe+PGDTz55JNo2bIlli5dqpNEAUBoaCjefvttFBQUwNraGgCwbds2NGjQoMwkCgCUSiWUSmWJ5SqVyqJOQA1nZ2futwXhflsW7rdlsdT9fjA/qPTtGXVrerpx4wbCwsIQEBCAzz77DCkpKUhMTERiYqK2zAsvvAAbGxuMHj0a586dw6+//oqvv/4aU6dONWHkREREZM6qRWPzbdu2ISYmBjExMahZs6bOc5orkyqVClu3bkVkZCRatmwJDw8PvPfee+z6gIiIiCpNtUikIiIiEBER8chyzZo1w549ex5rW0qlEjNnziz1cp85435zvy0B95v7bQm438bdb5M2NiciIiKqzqpFGykiIiKiqoiJFBEREZGemEgRERER6YmJFBEREZGezC6RWrhwIWrVqgVbW1u0bdsWhw8ffmj5devWoWHDhrC1tUXTpk2xZcsWneeFEHjvvffg6+sLOzs7dO/eHdHR0TplUlNTMXz4cDg7O8PFxQWjR49GZmamwfftYQy53wUFBXjrrbfQtGlTODg4wM/PD+Hh4bh586bOOmrVqgWZTKYzzZ07t1L2ryyGPt4REREl9qlXr146ZczteAMosc+aad68edoy1e14nzt3DgMHDtTG/dVXX+m1ztzcXERGRsLd3R2Ojo4YOHAgkpKSDLlbj2To/Z4zZw5at24NJycneHl54bnnnsOlS5d0yoSFhZU43i+//LKhd+2hDL3fs2bNKrFPxYcgA8zzeJf22ZXJZIiMjNSWqW7H+8cff0SnTp3g6uoKV1dXdO/evUR5o/1+CzOyZs0aYWNjI5YsWSLOnTsnxo4dK1xcXERSUlKp5fft2ycUCoX49NNPxfnz58U777wjrK2txZkzZ7Rl5s6dK1Qqldi4caM4deqUePbZZ0VQUJDIycnRlunVq5d44oknxMGDB8WePXtE3bp1xbBhwyp9fzUMvd9paWmie/fu4tdffxUXL14UBw4cEG3atBEtW7bUWU9gYKB4//33xa1bt7RTZmZmpe+vRmUc75EjR4pevXrp7FNqaqrOeszteAshdPb31q1bYsmSJUImk4krV65oy1S343348GExbdo0sXr1auHj4yO+/PJLvdb58ssvC39/f7F9+3Zx9OhR0a5dO9G+ffvK2k29YiyuPPvds2dPsXTpUnH27Flx8uRJ8fTTT4uAgACd49mlSxcxduxYneOdnp5eWbtZQmXs98yZM0VwcLDOPqWkpOiUMcfjnZycrLPP27ZtEwBEVFSUtkx1O94vvPCCWLhwoThx4oS4cOGCiIiIECqVSly/fl1bxli/32aVSLVp00ZERkZqHxcVFQk/Pz8xZ86cUssPGTJE9OnTR2dZ27Ztxfjx44UQQqjVauHj4yPmzZunfT4tLU0olUqxevVqIYQQ58+fFwDEkSNHtGX+/vtvIZPJxI0bNwy2bw9j6P0uzeHDhwUAER8fr10WGBhY6ofWWCpjv0eOHCn69etX5jYt5Xj369dPdO3aVWdZdTvexZUV+6PWmZaWJqytrcW6deu0ZS5cuCAAiAMHDjzG3pRfZez3g5KTkwUAsWvXLu2yLl26iFdffVWfkA2iMvZ75syZ4oknnijzdZZyvF999VVRp04doVartcuq8/EWQojCwkLh5OQkli9fLoQw7u+32Vzay8/Px7Fjx9C9e3ftMrlcju7du+PAgQOlvubAgQM65QGgZ8+e2vKxsbFITEzUKaNSqdC2bVttmQMHDsDFxQWtWrXSlunevTvkcjkOHTpksP0rS2Xsd2nS09Mhk8lKDAQ5d+5cuLu7IyQkBPPmzUNhYaH+O1MBlbnfO3fuhJeXFxo0aIBXXnlFZ2BtSzjeSUlJ2Lx5M0aPHl3iuep0vA2xzmPHjqGgoECnTMOGDREQEKD3dg0doyGkp6cDANzc3HSWr1q1Ch4eHmjSpAlmzJiB7Oxsg23zYSpzv6Ojo+Hn54fatWtj+PDhSEhI0D5nCcc7Pz8fK1euxEsvvQSZTKbzXHU+3tnZ2SgoKNCew8b8/a4WPZuXx+3bt1FUVARvb2+d5d7e3rh48WKpr0lMTCy1vGYMP83fR5Xx8vLSed7Kygpubm46YwFWlsrY7wfl5ubirbfewrBhw3QGwJw8eTJatGgBNzc37N+/HzNmzMCtW7fwxRdfPOZePVpl7XevXr0wYMAABAUF4cqVK/i///s/9O7dGwcOHIBCobCI4718+XI4OTlhwIABOsur2/E2xDoTExNhY2NT4h+Ih71/hlQZ+/0gtVqNKVOmoEOHDmjSpIl2+QsvvIDAwED4+fnh9OnTeOutt3Dp0iX8/vvvBtnuw1TWfrdt2xbLli1DgwYNcOvWLcyePRudOnXC2bNn4eTkZBHHe+PGjUhLSysxWkh1P95vvfUW/Pz8tImTMX+/zSaRospRUFCAIUOGQAiBRYsW6TxXfEDoZs2awcbGBuPHj8ecOXOq7dAEzz//vHa+adOmaNasGerUqYOdO3eiW7duJozMeJYsWYLhw4fD1tZWZ7k5Hm8CIiMjcfbsWezdu1dnefFxSps2bQpfX19069YNV65cQZ06dYwdpkH07t1bO9+sWTO0bdsWgYGBWLt2bak1sObop59+Qu/eveHn56ezvDof77lz52LNmjXYuXNnie8tYzCbS3seHh5QKBQl7q5ISkqCj49Pqa/x8fF5aHnN30eVSU5O1nm+sLAQqampZW7XkCpjvzU0SVR8fDy2bdumUxtVmrZt26KwsBBxcXEV35EKqsz9Lq527drw8PBATEyMdh3merwBYM+ePbh06RLGjBnzyFiq+vE2xDp9fHyQn5+PtLQ0g23X0DE+jokTJ+Kvv/5CVFRUiQHhH9S2bVsA0H4WKlNl77eGi4sL6tevr/P5NufjHR8fj//++6/cn2+g6h/vzz77DHPnzsXWrVvRrFkz7XJj/n6bTSJlY2ODli1bYvv27dplarUa27dvR2hoaKmvCQ0N1SkPANu2bdOWDwoKgo+Pj06ZjIwMHDp0SFsmNDQUaWlpOHbsmLbMjh07oFartSdiZaqM/QbuJ1HR0dH477//4O7u/shYTp48CblcXqKqtDJU1n4/6Pr167hz5w58fX216zDH463x008/oWXLlnjiiSceGUtVP96GWGfLli1hbW2tU+bSpUtISEjQe7uGjlEfQghMnDgRGzZswI4dOxAUFPTI15w8eRIAtJ+FylRZ+/2gzMxMXLlyRbtP5nq8NZYuXQovLy/06dPnkWWrw/H+9NNP8cEHH+Cff/7RaecEGPn3u9zN0quBNWvWCKVSKZYtWybOnz8vxo0bJ1xcXERiYqIQQogRI0aI6dOna8vv27dPWFlZic8++0xcuHBBzJw5s9TuD1xcXMSmTZvE6dOnRb9+/Uq9fTIkJEQcOnRI7N27V9SrV8/ot8Mbcr/z8/PFs88+K2rWrClOnjypcztsXl6eEEKI/fv3iy+//FKcPHlSXLlyRaxcuVJ4enqK8PDwarvf9+7dE9OmTRMHDhwQsbGx4r///hMtWrQQ9erVE7m5udr1mNvx1khPTxf29vZi0aJFJbZZHY93Xl6eOHHihDhx4oTw9fUV06ZNEydOnBDR0dHlXqcQ0u3wAQEBYseOHeLo0aMiNDRUhIaGVuv9fuWVV4RKpRI7d+7U+XxnZ2cLIYSIiYkR77//vjh69KiIjY0VmzZtErVr1xadO3eu1vv9+uuvi507d4rY2Fixb98+0b17d+Hh4SGSk5O1ZczxeAsh3QUXEBAg3nrrrRLbrI7He+7cucLGxkb89ttvOufwvXv3dMoY4/fbrBIpIYSYP3++CAgIEDY2NqJNmzbi4MGD2ue6dOkiRo4cqVN+7dq1on79+sLGxkYEBweLzZs36zyvVqvFu+++K7y9vYVSqRTdunUTly5d0ilz584dMWzYMOHo6CicnZ3FqFGjdA6mMRhyv2NjYwWAUidNvyPHjh0Tbdu2FSqVStja2opGjRqJjz/+WCfhMAZD7nd2drbo0aOH8PT0FNbW1iIwMFCMHTtW50dVCPM73hrff/+9sLOzE2lpaSWeq47Hu6zzuEuXLuVepxBC5OTkiAkTJghXV1dhb28v+vfvL27dulWZu1mCofe7rM/30qVLhRBCJCQkiM6dOws3NzehVCpF3bp1xRtvvGHUfoWEMPx+Dx06VPj6+gobGxtRo0YNMXToUBETE6OzTXM83kII8e+//woAJX6/hKiexzswMLDU/Z45c6a2jLF+v2VCCFH++isiIiIi0jCbNlJERERExsZEioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREiogIwM6dOyGTyUqMs2ZoI0aMwMcff2zQdd6+fRteXl64fv26QddLRI/GRIqItCIiIiCTyUpMxhi41NTat2+PW7duQaVSVdo2Tp06hS1btmDy5MnaZWFhYZgyZUqJssuWLYOLi0u51uvh4YHw8HDMnDnTQJESUXkxkSIiHb169cKtW7d0ptIGtc3PzzdBdJXHxsYGPj4+kMlklbaN+fPnY/DgwXB0dDT4ukeNGoVVq1YhNTXV4OsmorIxkSIiHUqlEj4+PjqTQqFAWFgYJk6ciClTpsDDwwM9e/YEAJw9exa9e/eGo6MjvL29MWLECNy+fVu7vqysLISHh8PR0RG+vr74/PPPS9TCyGQybNy4UScOFxcXLFu2TPv42rVrGDJkCFxcXODm5oZ+/fohLi5O+3xERASee+45fPbZZ/D19YW7uzsiIyNRUFCgLZOXl4e33noL/v7+UCqVqFu3Ln766ScApV/a27t3Lzp16gQ7Ozv4+/tj8uTJyMrK0j7/7bffol69erC1tYW3tzcGDRpU5vtaVFSE3377DX379i3PYSihVq1apdYWagQHB8PPzw8bNmzQa/1EpB8mUkRUbsuXL4eNjQ327duH7777DmlpaejatStCQkJw9OhR/PPPP0hKSsKQIUO0r3njjTewa9cubNq0CVu3bsXOnTtx/PjxCm23oKAAPXv2hJOTE/bs2YN9+/bB0dERvXr10qkZi4qKwpUrVxAVFYXly5dj2bJlOslYeHg4Vq9ejW+++QYXLlzA999/X2bt0JUrV9CrVy8MHDgQp0+fxq+//oq9e/di4sSJAICjR49i8uTJeP/993Hp0iX8888/6Ny5c5n7cPr0aaSnp6NVq1YV2neNI0eOaGsIr1+/jnbt2qFTp046Zdq0aYM9e/botX4i0pMeAzQTkZkaOXKkUCgUwsHBQTsNGjRICCGNvh4SEqJT/oMPPhA9evTQWXbt2jXtKPP37t0TNjY2Yu3atdrn79y5I+zs7MSrr76qXQZAbNiwQWc9KpVKLF26VAghxM8//ywaNGgg1Gq19vm8vDxhZ2cn/v33X23sgYGBorCwUFtm8ODBYujQoUIIIS5duiQAiG3btpW671FRUQKAuHv3rhBCiNGjR4tx48bplNmzZ4+Qy+UiJydHrF+/Xjg7O4uMjIxS1/egDRs2CIVCobMPQkjvq7W1tc577uDgIJRKpVCpVKWua/LkySIwMFAkJyfrLH/ttddEWFhYueIhIsOwMm0aR0RVzZNPPolFixZpHzs4OGjnW7ZsqVP21KlTiIqKKrVW58qVK8jJyUF+fj7atm2rXe7m5oYGDRpUKKZTp04hJiYGTk5OOstzc3Nx5coV7ePg4GAoFArtY19fX5w5cwYAcPLkSSgUCnTp0qXc2zx9+jRWrVqlXSaEgFqtRmxsLJ566ikEBgaidu3a6NWrF3r16oX+/fvD3t6+1PXl5ORAqVSW2gZr+PDhePvtt3WW/f7776Xe3ffDDz/gp59+wv79++Hp6anznJ2dHbKzs8u1f0RkGEykiEiHg4MD6tatW+ZzxWVmZqJv37745JNPSpT19fUt991+MpkMQgidZcXbNmVmZqJly5Y6SY1G8WTC2tq6xHrVajUAKcmoiMzMTIwfP17nDjuNgIAA2NjY4Pjx49i5cye2bt2K9957D7NmzcKRI0dKvdvOw8MD2dnZyM/Ph42Njc5zKpWqxHvu5eVVYh1RUVGYNGkSVq9ejWbNmpV4PjU1tURyRUSVi4kUEemtRYsWWL9+PWrVqgUrq5JfJ3Xq1IG1tTUOHTqEgIAAAMDdu3dx+fJlnZohT09P3Lp1S/s4Ojpap2alRYsW+PXXX+Hl5QVnZ2e9Ym3atCnUajV27dqF7t27l2vfzp8/X2ZSCQBWVlbo3r07unfvjpkzZ8LFxQU7duzAgAEDSpRt3rw5AOD8+fPa+YqIiYnBoEGD8H//93+lrh+QGv6HhYVVeN1EpD82NicivUVGRiI1NRXDhg3DkSNHcOXKFfz7778YNWoUioqK4OjoiNGjR+ONN97Ajh07cPbsWUREREAu1/3q6dq1KxYsWIATJ07g6NGjePnll3Vql4YPHw4PDw/069cPe/bsQWxsLHbu3InJkyeXuxPKWrVqYeTIkXjppZewceNG7TrWrl1bavm33noL+/fvx8SJE3Hy5ElER0dj06ZN2sbmf/31F7755hucPHkS8fHxWLFiBdRqdZmXLT09PdGiRQvs3bu3XPEWl5OTg759+yIkJATjxo1DYmKidtLIzs7GsWPH0KNHjwqvn4j0x0SKiPTm5+eHffv2oaioCD169EDTpk0xZcoUuLi4aJOlefPmoVOnTujbty+6d++Ojh07lmhr9fnnn8Pf3x+dOnXCCy+8gGnTpum0NbK3t8fu3bsREBCAAQMGoFGjRhg9ejRyc3MrVEO1aNEiDBo0CBMmTEDDhg0xduxYne4MimvWrBl27dqFy5cvo1OnTggJCcF7770HPz8/AFL3DL///ju6du2KRo0a4bvvvsPq1asRHBxc5vbHjBlT6uXJR0lKSsLFixexfft2+Pn5wdfXVztpbNq0CQEBASXu5COiyiUTDzZMICKqZGFhYWjevDm++uorU4diVDk5OWjQoAF+/fVXhIaGGnTd7dq1w+TJk/HCCy8YdL1E9HCskSIiMhI7OzusWLFCp8NSQ7h9+zYGDBiAYcOGGXS9RPRobGxORGREldEY3MPDA2+++abB10tEj8ZLe0RERER64qU9IiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj39P8kMfez2u3hPAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + " plt.axvline(v_cutoffs[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cutoffs[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note:\n", + "\n", + "Currently, lag-energy spectrum isn't plotted and hence I am unable to verify results from Uttley et al. However, as soon as it is implemented in library project, I will test it here as well." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### With same position and varying intensity" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we use delta impulse responses whose position remains same but intensity varies. \n", + "\n", + "Again, first we define energies and then create impulse responses, and subsequently using convolution, obtain the output light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "energies = np.array([4.5,8.5])" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "h_zeros = np.zeros(int(10/lc.dt))\n", + "responses = [np.append(h_zeros, i+1) for i in range(0,len(energies))]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "delay = int(10/lc.dt)\n", + "outputs = [signal.fftconvolve(s, h)[delay:-delay] for h in responses]\n", + "s_mod = s[delay:]" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "t_mod = lc.time[delay:]\n", + "lc_input = Lightcurve(t_mod, s_mod)\n", + "lc_output = [Lightcurve(t_mod, output) for output in outputs]" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "cross_spectrums = [Crossspectrum(lc2, lc_input).rebin(0.0075) for lc2 in lc_output]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "lags = [np.angle(cross.power)/ (2 * np.pi * cross.freq) for cross in cross_spectrums]" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "v_cutoff = 1.0/(2.0*10)\n", + "h_cutoff = lags[0][int((v_cutoff-0.0075)*1/0.0075)]" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlIAAAHHCAYAAAB0nLYeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB1i0lEQVR4nO3deVhU1RsH8O/MwLAzgICAAiIoKuIGau6k5JKZqbknYqaWWppZav1yadPUzFJzyRTL3cyszH3BNRMVd9FBFBcQEQFZB2bO7w9kcgQURmAc5/t5nnmYuffce98z987My7nnnisRQggQERERUZlJDR0AERERkbFiIkVERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVERESkJyZSRERERHpiIkVEWiEhIQgJCTF0GGQg+/btg0Qiwb59+wwdCpHRYCJFjxUREQGJRFLi459//jF0iBXq4bqamZnByckJQUFBGDNmDM6fP2/o8IzS4cOHMXXqVKSmppaqfHh4eInH37Zt2yo2WKo0Go0GP//8M5o3bw4nJyfY2dmhdu3aCAsLeya+Z8p63JLpMDN0AGQcPvvsM/j4+BSZ7ufnZ4BoKtdLL72EsLAwCCGQlpaGU6dOYcWKFfjhhx/w9ddfY9y4cYYO0agcPnwY06ZNQ3h4OBwcHEq1jIWFBZYuXVpkesOGDcs5OjKU9957DwsWLED37t0xcOBAmJmZISYmBlu3bkXNmjXxwgsvGDQ+fY5bMg1MpKhUunTpguDgYEOHgczMTNjY2FTqNmvXro033nhDZ9qMGTPQrVs3fPDBB6hTpw5efvnlSo3J1JiZmRXZB49jiOOE9Hf79m388MMPGDZsGJYsWaIzb+7cubhz546BItOPRqOBSqWCpaWloUOhSsBTe1Qurl69ColEgtmzZ2PJkiXw9fWFhYUFmjZtimPHjhUpf/HiRbz++utwcnKCpaUlgoOD8ccff+iUKTytGBkZiZEjR8LV1RXVq1fXzl+wYAFq1qwJKysrNGvWDAcOHNDp45ORkQEbGxuMGTOmyPZv3LgBmUyG6dOn61XfKlWqYO3atTAzM8OXX36pMy83NxdTpkyBn58fLCws4OnpiY8++gi5ubk65SQSCUaPHo1Vq1bB398flpaWCAoKwv79+4ts7+bNm3jzzTdRtWpVWFhYICAgAMuWLdMpU9i/Zf369fjyyy9RvXp1WFpaokOHDlAqlUXWWbifHn7/ilPW+vz++++oX7++Ns6HT79NnToVH374IQDAx8dHe4ru6tWrJb/ZTzB16lRIJBKcP38eAwYMgKOjI1q3bq2dv3LlSgQFBcHKygpOTk7o168frl+/Xqr349E+Y4XH5KPxltS36OjRo+jcuTMUCgWsra3Rrl07HDp0qNj4lUqltrVDoVBgyJAhyMrKKhLnypUr0axZM1hbW8PR0RFt27bFjh07AACDBw+Gs7Mz8vLyiizXsWNH+Pv7P+ntLOLAgQPo3bs3vLy8tPv//fffR3Z2dpGyGzZsQL169WBpaYn69etj06ZNCA8PR40aNR67jbi4OAgh0KpVqyLzJBIJXF1dta8L98H+/fsxYsQIVKlSBfb29ggLC8O9e/eKLL9161a0adMGNjY2sLOzQ9euXXHu3Lki5S5evIg+ffrAxcUFVlZW8Pf3xyeffALgycftw5/lgIAAWFhYYNu2bSUeF4XflxEREdpp4eHhsLW1RXx8PF555RXY2tqiWrVqWLBgAQDgzJkzaN++PWxsbODt7Y3Vq1c/9j2lysMWKSqVtLQ0JCcn60yTSCSoUqWKzrTVq1fj/v37GDFiBCQSCWbOnImePXviypUrMDc3BwCcO3cOrVq1QrVq1TBx4kTY2Nhg/fr1eO2117Bx40b06NFDZ50jR46Ei4sLJk+ejMzMTADAwoULMXr0aLRp0wbvv/8+rl69itdeew2Ojo7aZMvW1hY9evTAunXrMGfOHMhkMu0616xZAyEEBg4cqPd74uXlhXbt2mHv3r1IT0+Hvb09NBoNXn31VRw8eBDDhw9H3bp1cebMGXz77be4dOkSfv/9d511REZGYt26dXjvvfdgYWGBH374AZ07d8a///6L+vXrAyj4b/2FF17Qflm7uLhg69atGDp0KNLT0zF27Fiddc6YMQNSqRTjx49HWloaZs6ciYEDB+Lo0aPaMj/99BNGjBiBli1bYuzYsbhy5QpeffVVODk5wdPTU1uurPU5ePAgfvvtN4wcORJ2dnb4/vvv0atXL8THx6NKlSro2bMnLl26hDVr1uDbb7+Fs7MzAMDFxeWJ7/ejx5+5uTkUCoX2de/evVGrVi189dVXEEIAAL788kt8+umn6NOnD9566y3cuXMH8+bNQ9u2bXHy5EntKZrSvh9lsWfPHnTp0gVBQUGYMmUKpFIpli9fjvbt2+PAgQNo1qyZTvk+ffrAx8cH06dPx4kTJ7B06VK4urri66+/1paZNm0apk6dipYtW+Kzzz6DXC7H0aNHsWfPHnTs2BGDBg3Czz//jO3bt+OVV17RLpeYmIg9e/ZgypQpZa7Hhg0bkJWVhXfeeQdVqlTBv//+i3nz5uHGjRvYsGGDttyWLVvQt29fBAYGYvr06bh37x6GDh2KatWqPXEb3t7e2m317t0b1tbWT1xm9OjRcHBwwNSpUxETE4OFCxfi2rVr2uQFAH755RcMHjwYnTp1wtdff42srCwsXLgQrVu3xsmTJ7UJ3unTp9GmTRuYm5tj+PDhqFGjBmJjY/Hnn3/iyy+/LNVxu2fPHqxfvx6jR4+Gs7MzatSoUeb+VGq1Gl26dEHbtm0xc+ZMrFq1CqNHj4aNjQ0++eQTDBw4ED179sSiRYsQFhaGFi1aFNvlgiqZIHqM5cuXCwDFPiwsLLTl4uLiBABRpUoVkZKSop2+efNmAUD8+eef2mkdOnQQgYGBIicnRztNo9GIli1bilq1ahXZduvWrUV+fr52em5urqhSpYpo2rSpyMvL006PiIgQAES7du2007Zv3y4AiK1bt+rUq0GDBjrlSgJAjBo1qsT5Y8aMEQDEqVOnhBBC/PLLL0IqlYoDBw7olFu0aJEAIA4dOqSzbgAiKipKO+3atWvC0tJS9OjRQztt6NChwt3dXSQnJ+uss1+/fkKhUIisrCwhhBB79+4VAETdunVFbm6uttx3330nAIgzZ84IIYRQqVTC1dVVNGrUSKfckiVLirx/Za2PXC4XSqVSO+3UqVMCgJg3b5522qxZswQAERcXV8K7qmvw4MHFHn+FcU6ZMkUAEP3799dZ7urVq0Imk4kvv/xSZ/qZM2eEmZmZdnpZ3o/CY/LR2Avf+7179wohCo7nWrVqiU6dOgmNRqMtl5WVJXx8fMRLL72knVYY/5tvvqmzzh49eogqVapoX1++fFlIpVLRo0cPoVardcoWbkOtVovq1auLvn376syfM2eOkEgk4sqVK+JxHq1HYcyPmj59upBIJOLatWvaaYGBgaJ69eri/v372mn79u0TAIS3t/djtyuEEGFhYQKAcHR0FD169BCzZ88WFy5cKFKucB8EBQUJlUqlnT5z5kwBQGzevFkIIcT9+/eFg4ODGDZsmM7yiYmJQqFQ6Exv27atsLOz06mPEEJn3z3uuAUgpFKpOHfunM704t5PIf77vly+fLl2WuFx/tVXX2mn3bt3T1hZWQmJRCLWrl2rnX7x4kUBQEyZMqVILFT5eGqPSmXBggXYuXOnzmPr1q1FyvXt2xeOjo7a123atAEAXLlyBQCQkpKCPXv2oE+fPrh//z6Sk5ORnJyMu3fvolOnTrh8+TJu3ryps85hw4bptCZFRUXh7t27GDZsGMzM/mtUHThwoM62ASA0NBQeHh5YtWqVdtrZs2dx+vTpMvW5KYmtrS0A4P79+wAK/qOuW7cu6tSpo61bcnIy2rdvDwDYu3evzvItWrRAUFCQ9rWXlxe6d++O7du3Q61WQwiBjRs3olu3bhBC6KyzU6dOSEtLw4kTJ3TWOWTIEMjlcu3rR/dBVFQUkpKS8Pbbb+uUCw8P12nh0ac+oaGh8PX11b5u0KAB7O3ttdvWl6WlZZHj75tvvtEp8/bbb+u8/u2336DRaNCnTx+d2N3c3FCrVi1t7GV5P0orOjoaly9fxoABA3D37l3ttjMzM9GhQwfs378fGo3msfG3adMGd+/eRXp6OgDg999/h0ajweTJkyGV6n51F7bASKVSDBw4EH/88Yf2mASAVatWoWXLlnq1XlhZWWmfZ2ZmIjk5GS1btoQQAidPngQA3Lp1C2fOnEFYWJj2MwEA7dq1Q2BgYKm2s3z5csyfPx8+Pj7YtGkTxo8fj7p166JDhw5FvhMAYPjw4dpWbgB45513YGZmhr///hsAsHPnTqSmpqJ///46+18mk6F58+ba/X/nzh3s378fb775Jry8vHS2Ufi+lka7du1Qr169UpcvyVtvvaV97uDgAH9/f9jY2KBPnz7a6f7+/nBwcHjqzxWVD57ao1Jp1qxZqTqbP/pFVJjYFPZdUCqVEELg008/xaefflrsOpKSknROBzz65X/t2jUARa8YNDMzK9IXo/CHZeHChcjKyoK1tTVWrVoFS0tL9O7d+4n1eZKMjAwAgJ2dHQDg8uXLuHDhQomnqpKSknRe16pVq0iZ2rVrIysrC3fu3IFUKkVqaiqWLFlSpBNuSet80j4ofP8e3ba5uTlq1qypM62s9Xl024XbL67vSlnIZDKEhoY+tsyjx8nly5chhCj2PQag/REuy/tRWpcvXwZQ0GepJGlpaTqJ/+P2m729PWJjYyGVSp/4Yx0WFoavv/4amzZtQlhYGGJiYnD8+HEsWrRIWyYxMVFnGYVCoZMwPSw+Ph6TJ0/GH3/8UWQ/pqWlASj5M1k47dFkvzhSqRSjRo3CqFGjcPfuXRw6dAiLFi3C1q1b0a9fvyJ9+B7dX7a2tnB3d9f2WyrcB4VJ/6Ps7e0B/PcPRuGpdH2Vxyk2S0vLIp81hUKB6tWrF0nqFArFU3+uqHwwkaJy9XDL0cPEgz4rhf+Fjx8/Hp06dSq27KNfxiV9wZdWWFgYZs2ahd9//x39+/fH6tWr8corr+jd2vCws2fPQiaTab9ENRoNAgMDMWfOnGLLl7W/TeH79cYbb5T4o9ygQQOd10/aB2XdflnqU57bLqtHjxONRgOJRIKtW7cWG9fDLSelVVILhVqtLrJtAJg1axYaNWpU7DKPbr+83rt69eohKCgIK1euRFhYGFauXAm5XK7TouHu7q6zzPLlyxEeHl5kXWq1Gi+99BJSUlIwYcIE1KlTBzY2Nrh58ybCw8OLtKqVlypVquDVV1/Fq6++ipCQEERGRuLatWvavlSlURjbL7/8Ajc3tyLzH27NLg/FfU+V9ngpVNIxYMjPFT0ZEymqVIX/4Zubmz+xhaEkhV+mSqUSL774onZ6fn4+rl69WiSxqF+/Pho3boxVq1ahevXqiI+Px7x58/SswX/i4+MRGRmJFi1aaFukfH19cerUKXTo0KFUpwUK/2t+2KVLl2Btba39z9TOzg5qtVrv9+tRhe/f5cuXdf5bz8vLQ1xcnM7YTGWtT2mU13qexNfXF0II+Pj4oHbt2iWWK8v7UdhK9Ggn4sIWmYe3DRS0epTXfvP19YVGo8H58+dLTM4KhYWFYdy4cUhISMDq1avRtWtXndavnTt36pQPCAgodj1nzpzBpUuXsGLFCoSFhZW4/MOfyUcVN60sgoODERkZiYSEBJ1E6vLlyzqf/4yMDCQkJGiHIincB66uro/dB4XfSWfPnn1sHPoct6U9Xsi4sY8UVSpXV1eEhIRg8eLFSEhIKDK/NOPFBAcHo0qVKvjxxx+Rn5+vnb5q1aoSm7oHDRqEHTt2YO7cuahSpQq6dOmifyVQ0Nerf//+UKvV2kukgYIrr27evIkff/yxyDLZ2dnaqw4LHTlyROe0x/Xr17F582Z07NgRMpkMMpkMvXr1wsaNG4v9otdnfJ3g4GC4uLhg0aJFUKlU2ukRERFFvvDLWp/SKBzfqaJHiO7ZsydkMhmmTZtW5D93IQTu3r0LoGzvR+GP88NDVKjV6iKnXYOCguDr64vZs2drT/8+TJ/99tprr0EqleKzzz4r0hL0aP369+8PiUSCMWPG4MqVK0X6A4aGhuo8Hm2hKlTYEvLw+oUQ+O6773TKeXh4oH79+vj555916hsZGYkzZ848sW6JiYnF3ilApVJh9+7dkEqlRVqqlyxZojPMw8KFC5Gfn6/9bHfq1An29vb46quvih0OonAfuLi4oG3btli2bBni4+N1yjxcb32OW29vb8hksiJDmvzwww+lXgc9+9giRaWydetWXLx4scj0li1blrkfyYIFC9C6dWsEBgZi2LBhqFmzJm7fvo0jR47gxo0bOHXq1GOXl8vlmDp1Kt599120b98effr0wdWrVxEREQFfX99i/3McMGAAPvroI2zatAnvvPOOTifVJ7l06RJWrlwJIQTS09Nx6tQpbNiwARkZGZgzZw46d+6sLTto0CCsX78eb7/9Nvbu3YtWrVpBrVbj4sWLWL9+PbZv367T16x+/fro1KmTzvAHQMFl7oVmzJiBvXv3onnz5hg2bBjq1auHlJQUnDhxArt27UJKSkqp6wIUtAZ+8cUXGDFiBNq3b4++ffsiLi4Oy5cvL7Ivy1qf0ijsXP/JJ5+gX79+MDc3R7du3cp9AE1fX1988cUXmDRpknZ4DDs7O8TFxWHTpk0YPnw4xo8fX6b3IyAgAC+88AImTZqElJQUODk5Ye3atToJPVDQ32fp0qXo0qULAgICMGTIEFSrVg03b97E3r17YW9vjz///LNM9fHz88Mnn3yCzz//HG3atEHPnj1hYWGBY8eOwcPDQ2dMNBcXF3Tu3BkbNmyAg4MDunbtqtd7WKdOHfj6+mL8+PG4efMm7O3tsXHjxmL/Yfnqq6/QvXt3tGrVCkOGDMG9e/cwf/581K9fv9hk8mE3btxAs2bN0L59e3To0AFubm5ISkrCmjVrcOrUKYwdO1Y75EAhlUqFDh06oE+fPoiJicEPP/yA1q1b49VXXwVQ0Bq4cOFCDBo0CE2aNEG/fv3g4uKC+Ph4bNmyBa1atcL8+fMBAN9//z1at26NJk2aYPjw4fDx8cHVq1exZcsWREdHA9DvuFUoFOjduzfmzZsHiUQCX19f/PXXX0X6FpKRq+zLBMm4PG74Azx0+W7h5byzZs0qsg4Uc5lubGysCAsLE25ubsLc3FxUq1ZNvPLKK+LXX38tsu1jx44VG9v3338vvL29hYWFhWjWrJk4dOiQCAoKEp07dy62/MsvvywAiMOHD5e6/g/XVSqVCgcHB9G4cWMxZsyYIpc6F1KpVOLrr78WAQEBwsLCQjg6OoqgoCAxbdo0kZaWprPuUaNGiZUrV4patWoJCwsL0bhx4yKXSgshxO3bt8WoUaOEp6enMDc3F25ubqJDhw5iyZIl2jKFl1pv2LBBZ9niLrUWQogffvhB+Pj4CAsLCxEcHCz2798v2rVrV2RYiLLW51He3t5i8ODBOtM+//xzUa1aNSGVSp84FMLgwYOFjY1NifMLhw+4c+dOsfM3btwoWrduLWxsbISNjY2oU6eOGDVqlIiJidHr/YiNjRWhoaHCwsJCVK1aVXz88cdi586dxV7mfvLkSdGzZ09RpUoVYWFhIby9vUWfPn3E7t27nxh/SUMtLFu2TDRu3Fi7L9q1ayd27txZpN7r168XAMTw4cNLfO8eVdzl+ufPnxehoaHC1tZWODs7i2HDhmmHtXj0mFq7dq2oU6eOsLCwEPXr1xd//PGH6NWrl6hTp85jt5ueni6+++470alTJ1G9enVhbm4u7OzsRIsWLcSPP/6oMwxB4fsSGRkphg8fLhwdHYWtra0YOHCguHv3brF16tSpk1AoFMLS0lL4+vqK8PBwnWFHhBDi7NmzokePHsLBwUFYWloKf39/8emnn+qUKem4LenYF0KIO3fuiF69eglra2vh6OgoRowYIc6ePVvs8AfFHeft2rUTAQEBRaZ7e3uLrl27lvieUuWRCMHeavR80Gg0cHFxQc+ePYs9FdWjRw+cOXPmqftslBeJRIJRo0Zp/yumZ0/hqOaPjkxtDDZv3ozXXnsN+/fv1w6BYQiNGjWCi4tLkX5V+oqIiMCQIUNw7NixZ+K2VUTsI0VGKScnp0i/kJ9//hkpKSk6t/QolJCQgC1btmDQoEGVFCGRYf3444+oWbOmzu1yKlJeXl6RU5z79u3DqVOniv1MEj0v2EeKjNI///yD999/H71790aVKlVw4sQJ/PTTT6hfv77O+FBxcXE4dOgQli5dCnNzc4wYMcKAURNVvLVr1+L06dPYsmULvvvuu0q7SvLmzZsIDQ3FG2+8AQ8PD1y8eBGLFi2Cm5tbkcFGiZ4nTKTIKNWoUQOenp74/vvvtZ1+w8LCMGPGDJ3RqSMjIzFkyBB4eXlhxYoVxY4nQ/Q86d+/P2xtbTF06FCMHDmy0rbr6OiIoKAgLF26FHfu3IGNjQ26du2KGTNmFLknJ9HzhH2kiIiIiPTEPlJEREREemIiRURERKQn9pF6hEajwa1bt2BnZ1dpnTSJiIjo6QghcP/+fXh4eEAqrbx2IiZSj7h161aZbyxLREREz4br16+jevXqlbY9JlKPKLz57PXr12Fvb2/gaKgiZaoy4fGNBwDg1ge3YCMv31uUEBFR5UlPT4enp6f2d7yyMJF6ROHpPHt7eyZSzzmZSgZYFjy3t7dnIkVE9Byo7G457GxOREREpCcmUkRERER64qk9MllmUjMMbjhY+5yIiKis+OtBJsvCzAIRr0UYOgwiMjJqtRp5eXmGDsPkmJubQyaTGTqMIphIERERlYIQAomJiUhNTTV0KCbLwcEBbm5uz9Q4j0ykyGQJIZCVlwUAsDa3fqY+mET07ClMolxdXWFtze+MyiSEQFZWFpKSkgAA7u7uBo7oP0ykyGRl5WXBdrotACBjUgaHPyCiEqnVam0SVaVKFUOHY5KsrKwAAElJSXB1dX1mTvPxqj0iIqInKOwTZW1tbeBITFvh+/8s9VFjIkVERFRKPJ1nWM/i+89EioiIiEhPTKSIiIioTGrUqIG5c+caOoxnAhMpIiIiEzFjxgxIJBKMHTu2xDIRERGQSCQ6D0tLy3KLoVu3bujcuXOx8w4cOACJRILTp0+X2/YqGq/aIyIiMgHHjh3D4sWL0aBBgyeWtbe3R0xMjPZ1efZNGjp0KHr16oUbN26gevXqOvOWL1+O4ODgUsX4rGCLFJksmVSG1+u9jtfrvQ6Z9Nm4jJaIqCJkZGRg4MCB+PHHH+Ho6PjE8hKJBG5ubtpH1apVH1t+6dKlcHBwwO7duwEAZ8+eRZcuXWBra4uqVati0KBBSE5OBgC88sorcHFxQURERJEYN2zYgKFDh+pXSQNhIkUmy9LMEht6b8CG3htgaVZ+zdZEZCKEADIzK/8hRJlDHTVqFLp27YrQ0NBSlc/IyIC3tzc8PT3RvXt3nDt3rsSyM2fOxMSJE7Fjxw506NABqampaN++PRo3boyoqChs27YNt2/fRp8+fQAAZmZmCAsLQ0REBMRDddmwYQPUajX69+9f5voZEk/tERER6SMrC7C1rfztZmQANqUfQHjt2rU4ceIEjh07Vqry/v7+WLZsGRo0aIC0tDTMnj0bLVu2xLlz54qcipswYQJ++eUXREZGIiAgAAAwf/58NG7cGF999ZW23LJly+Dp6YlLly6hdu3aePPNNzFr1ixERkYiJCQEQMFpvV69ekGhUJS6bs8CJlJERETPqevXr2PMmDHYuXNnqTuMt2jRAi1atNC+btmyJerWrYvFixfj888/107/5ptvkJmZiaioKNSsWVM7/dSpU9i7dy9si0kyY2NjUbt2bdSpUwctW7bEsmXLEBISAqVSiQMHDuCzzz57itoaBhMpMlmZqkzeIoaI9GdtXdA6ZIjtltLx48eRlJSEJk2aaKep1Wrs378f8+fPR25u7hNvtWJubo7GjRtDqVTqTG/Tpg22bNmC9evXY+LEidrpGRkZ6NatG77++usi63r4HnlDhw7Fu+++iwULFmD58uXw9fVFu3btSl23ZwUTKSIiIn1IJGU6xWYIHTp0wJkzZ3SmDRkyBHXq1MGECRNKdb86tVqNM2fO4OWXX9aZ3qxZM4wePRqdO3eGmZkZxo8fDwBo0qQJNm7ciBo1asDMrOQ0o0+fPhgzZgxWr16Nn3/+Ge+8884zOXL5k7CzORER0XPKzs4O9evX13nY2NigSpUqqF+/PgAgLCwMkyZN0i7z2WefYceOHbhy5QpOnDiBN954A9euXcNbb71VZP0tW7bE33//jWnTpmkH6Bw1ahRSUlLQv39/HDt2DLGxsdi+fTuGDBkCtVqtXdbW1hZ9+/bFpEmTkJCQgPDw8Ap9LyoKEykiIiITFh8fj4SEBO3re/fuYdiwYahbty5efvllpKen4/Dhw6hXr16xy7du3RpbtmzB//73P8ybNw8eHh44dOgQ1Go1OnbsiMDAQIwdOxYODg6QSnXTjqFDh+LevXvo1KkTPDw8KrSeFUUihB7XUT7H0tPToVAokJaWBnt7e0OHQxWIfaSIqLRycnIQFxcHHx+fch3lm8rmcfvBUL/fbJEiIiIi0hMTKSIiIiI98ao9MlkyqQwv13pZ+5yIiKismEiRybI0s8SWAVsMHQYRERkxntojIiIi0hMTKSIiIiI9MZEik5WpyoTNVzaw+coGmapMQ4dDRERGiH2kyKRl5WUZOgQiIjJiRtMiNX36dDRt2hR2dnZwdXXFa6+9hpiYGJ0yOTk5GDVqFKpUqQJbW1v06tULt2/fNlDERERE9LwzmkQqMjISo0aNwj///IOdO3ciLy8PHTt2RGbmf6dk3n//ffz555/YsGEDIiMjcevWLfTs2dOAURMRET1/QkJCMHbsWEOH8UwwmkRq27ZtCA8PR0BAABo2bIiIiAjEx8fj+PHjAIC0tDT89NNPmDNnDtq3b4+goCAsX74chw8fxj///GPg6ImIiCqfWq3Gp59+Ch8fH1hZWcHX1xeff/45Hnd3uH379kEikRR5JCYmlktM7777LurWrVvsvPj4eMhkMvzxxx/lsq3KYDSJ1KPS0tIAAE5OTgCA48ePIy8vD6GhodoyderUgZeXF44cOVLienJzc5Genq7zICIieh58/fXXWLhwIebPn48LFy7g66+/xsyZMzFv3rwnLhsTE4OEhATtw9XVtVxiGjp0KC5evIjDhw8XmRcREQFXV1e8/PLL5bKtymCUiZRGo8HYsWPRqlUr1K9fHwCQmJgIuVwOBwcHnbJVq1Z9bBY9ffp0KBQK7cPT07MiQyciIqo0hw8fRvfu3dG1a1fUqFEDr7/+Ojp27Ih///33icu6urrCzc1N+5BKS04ZtmzZAoVCgVWrVgEArl+/jj59+sDBwQFOTk7o3r07rl69CgBo1KgRmjRpgmXLlumsQwiBiIgIDB48GGZmxnMtnFEmUqNGjcLZs2exdu3ap17XpEmTkJaWpn1cv369HCIkYyCVSNHOux3aebeDVGKUHwUiMiAhBDJVmZX+eNxpuUe1bNkSu3fvxqVLlwAAp06dwsGDB9GlS5cnLtuoUSO4u7vjpZdewqFDh0ost3r1avTv3x+rVq3CwIEDkZeXh06dOsHOzg4HDhzAoUOHYGtri86dO0OlUgEoaJVav369Tj/nffv2IS4uDm+++Wap6/csMJ6U74HRo0fjr7/+wv79+1G9enXtdDc3N6hUKqSmpuq0St2+fRtubm4lrs/CwgIWFhYVGTI9o6zMrbAvfJ+hwyAiI5WVlwXb6baVvt2MSRmwkduUquzEiRORnp6OOnXqQCaTQa1W48svv8TAgQNLXMbd3R2LFi1CcHAwcnNzsXTpUoSEhODo0aNo0qSJTtkFCxbgk08+wZ9//ol27doBANatWweNRoOlS5dCIpEAAJYvXw4HBwfs27cPHTt2xIABA/DBBx9gw4YNCA8P15Zp3bo1ateurce7YjhGk0gJIfDuu+9i06ZN2LdvH3x8fHTmBwUFwdzcHLt370avXr0AFJzfjY+PR4sWLQwRMhERkUGtX78eq1atwurVqxEQEIDo6GiMHTsWHh4eGDx4cLHL+Pv7w9/fX/u6ZcuWiI2NxbfffotffvlFO/3XX39FUlISDh06hKZNm2qnnzp1CkqlEnZ2djrrzcnJQWxsLADAwcEBPXv2xLJlyxAeHo709HRs3LgRCxYsKM/qVwqjSaRGjRqF1atXY/PmzbCzs9P2e1IoFLCysoJCocDQoUMxbtw4ODk5wd7eHu+++y5atGiBF154wcDRExHR88ba3BoZkzIMst3S+vDDDzFx4kT069cPABAYGIhr165h+vTpJSZSxWnWrBkOHjyoM61x48Y4ceIEli1bhuDgYG3rU0ZGBoKCgrT9pR7m4uKifT506FB06NABSqUSe/fuhUwmQ+/evUsd07PCaBKphQsXAigYu+Jhy5cv1zYLfvvtt5BKpejVqxdyc3PRqVMn/PDDD5UcKRmLTFUmanxXAwBwdczVUjeVExEBgEQieea/N7Kysop0EpfJZNBoNGVaT3R0NNzd3XWm+fr64ptvvkFISAhkMhnmz58PAGjSpAnWrVsHV1dX2Nvbl7jOF198ET4+Pli+fDn27t2Lfv36wcbm2X4/i2M0iVRpOtdZWlpiwYIFRtk0SIaRnJVs6BCIiCpMt27d8OWXX8LLywsBAQE4efIk5syZo9Ohe9KkSbh58yZ+/vlnAMDcuXPh4+ODgIAA5OTkYOnSpdizZw927NhRZP21a9fG3r17ERISAjMzM8ydOxcDBw7ErFmz0L17d3z22WeoXr06rl27ht9++w0fffSRtn+zRCLBm2++iTlz5uDevXv49ttvK+dNKWdGk0gRERFR2cybNw+ffvopRo4ciaSkJHh4eGDEiBGYPHmytkxCQgLi4+O1r1UqFT744APcvHkT1tbWaNCgAXbt2oUXX3yx2G34+/tjz5492papb775Bvv378eECRPQs2dP3L9/H9WqVUOHDh2KtFCFh4djypQpCAgIQPPmzSvmTahgElGW6yhNQHp6OhQKBdLS0h7bJEnGL1OVqb3ipixXwRCR6cnJyUFcXBx8fHxgaWlp6HBM1uP2g6F+vzl4DhEREZGemEgRERER6YmJFBEREZGe2NmcTJZUIkWwR7D2ORERUVkxkSKTZWVuhWPDjhk6DCIyIrw+y7Cexfef/4YTERE9gbm5OYCCAS7JcArf/8L98SxgixQREdETyGQyODg4ICkpCQBgbW2tvSUKVTwhBLKyspCUlAQHBwfIZDJDh6TFRIpMVlZeFuotqAcAOD/qfJnuX0VEpsfNzQ0AtMkUVT4HBwftfnhWMJEikyWEwLW0a9rnRESPI5FI4O7uDldXV+Tl5Rk6HJNjbm7+TLVEFWIiRUREVAYymeyZ/EEnw2BncyIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hM7m5PJkkgkqOdST/uciIiorJhIkcmyNrfGuZHnDB0GEREZMZ7aIyIiItITEykiIiIiPTGRIpOVlZeFgB8CEPBDALLyeCNSIiIqO/aRIpMlhMD5O+e1z4mIiMqKLVJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREeuJVe2SyJBIJvBXe2udERERlxUSKTJa1uTWujr1q6DCIiMiI8dQeERERkZ6YSBERERHpiYkUmazsvGw0/bEpmv7YFNl52YYOh4iIjBD7SJHJ0ggNom5FaZ8TERGVFVukiIiIiPTERIqIiIhIT0ykiIiIiPTERIqIiIhIT0ykiIiIiPTEq/b0pM5TQWYuN3QY9JScrZ0NHQIRERkxtkjpYeXCd9B4ggKpt68ZOhR6CjZyG9z58A7ufHgHNnIbQ4dDRERGiIlUGWWnp2BK7FKcUeRg+NetITQcf4iIiMhUMZEqIyt7J6zttBRmamCD4gZ+/D7M0CERERGRgTCR0kPTlwZjhtUrAIAxyatw9tAmA0dE+sjOy0ZIRAhCIkJ4ixgiItILEyk9vf/RJnRJdUGOOdB3Y39kpSUbOiQqI43QIPJaJCKvRfIWMUREpBcmUnqSyswQMWYv3DKlOK/Ixdgv2xg6JCIiIqpkTKSegmuNAKxsPgMSAfxocxHrfhxj6JCIiIioEjGRekoden2IjzWtAADD475H3On9Bo6IiIiIKgsTqXIw9X+70OqeHdItgH7LX0ZeTpahQyIiIqJKwESqHJjJLbF6+HY45Ejwr0Mm/vfFi4YOiYiIiCoBE6ly4lWvBZb5fwgAmGn+L7av+9LAEVFpWJtbw9rc2tBhEBGRkZIIIYShg3iWpKenQ6FQIC0tDfb29mVefvTEBlhgdQYuWRKcGn4C7r6Nyj9IIiIi0vG0v9/6YotUOZv9v/1okGqJO9YCYfM6QKPON3RIREREVEGYSJUzS1sHrOu/EdYqYJdjCmZOf8XQIREREVEFYSJVAeo0exnz3YYAAP6Xtx1Hti4xcERUnJz8HHRd3RVdV3dFTn6OocMhIiIjxESqgoSPWooB6d5QS4H+u0fiXkKcoUOiR6g1avx9+W/8fflvqDVqQ4dDRERGiIlUBZFIpVg48SB8081wzU6NYbPaQGh4PzciIqLnCROpCmTvUh1ru/wEczWwUXETi+e+YeiQiIiIqBwxkapgwaFh+Nq6OwBg7L01OH3gVwNHREREROWFiVQlGPvRb+ia6opcM6DfpoHIvJdk6JCIiIioHDCRqgQSqRTL398Hj0wpLihUGPtVW0OHREREROWAiVQlcfGqi5UtZkEigKW2MVi75D1Dh0RERERPiYlUJXqxxzj8T7QBAAy/Og9XTu0zbEAmzkZuAzFFQEwRsJHbGDocIiIyQkykKtnkT3ag9T173LcA+kW8AlV2hqFDIiIiIj0ZVSK1f/9+dOvWDR4eHpBIJPj999915gshMHnyZLi7u8PKygqhoaG4fPmyYYItgZncEqtH7IBjjgTHHDLxyRcvGjokIiIi0pOZoQMoi8zMTDRs2BBvvvkmevbsWWT+zJkz8f3332PFihXw8fHBp59+ik6dOuH8+fOwtLQ0QMTF86zbHMvrTsRrcdMxWx4Ft+nd4OboiXx1nu5Dk//f32IeeZp85At1wWuhhlQiRaBLAF5o1A0NW/eC3MrW0FV9puXk52DQpkEAgF96/AJLs2fnGCEiIuMgEUIIQwehD4lEgk2bNuG1114DUNAa5eHhgQ8++ADjx48HAKSlpaFq1aqIiIhAv379SrXe9PR0KBQKpKWlwd7evqLCBwC8N7Eh5lmdrpB1W+YBQRl2eMGmNl6o2Q4vtO6H6v5NK2RbxkBoNLh/9xaSbymRcice/o1DIbVTwHZ6QbKZMSmD/aSIiIxYZf5+P8yoWqQeJy4uDomJiQgNDdVOUygUaN68OY4cOVJiIpWbm4vc3Fzt6/T0dABApioTMpWs1Nu3MLOAmbTg7czX5CM3PxdSiRRW5lbaMpmqTJ1lpkz4G6lftcO1vGSYQQqZRAYzSGEGCcwkMphJZJBLzCCXmMFMIoNUIoVEIoWZ1AxWEnOYSc1gJjWDRiqBmcQM2epsnEy/jGOWyUi1BA453schHAduHAfWzoF7hgTN1G5o5twALeq/jBdC3oCVvRM0QoPsvGwA0EkmsvOyoRFlu62NmdQMFmYWAACNWo27924AABQ2VWAmt4RUZoac/Jwy39tOJpXptBil3EvA3QQlMu/cwt3keNy5ex0JqTdwJ+sOkrNTcDcvDXc1mbgrycYdcxXuWgrkP7Q7G22xwvbPrxbZTuE+sjK3glRScOZbpVYhT51XpnglEgmsza21r7PysiCEgKWZJWTSgkDy1HlQqVVlWi9Q/D4q7vh7mvUW7iO5TA5zmTmAgnsT6nNzZ2tza0gkEgBAbn4u8jX5MJeZQy6TA4DO8VcWxe2jh48/IQSy8rLKvN7i9tGjx9+jn+XS0Oc7ojSK20clHX9lUdI+Ks/viIf3UXHHX1mUtI+KO/7KoqR9xO+IZ+87Qp/PT3l4bhKpxMREAEDVqlV1pletWlU7rzjTp0/HtGnTikz3+MYDKMOZnvWvr0fvgN4AgE0XNqHPr33Qzrsd9oXv05ap8V0NJGcl6y74hLNv87vMx6hmowAA+67uw4srXkQ9l3o4N/KktkzADwE4f+d8QY83h5LXlWArsBkJ2JyXAJzcDrOoMWh03xq1LKthjeVlOMoVuDshBRJpwZdDl1VdEHktsrRvAQDAM8cCzjlSJJupkGShRq550TISAQhJmVYLJ5UMNbMscFemQrI8H/ctSigoAWBdwryHRDtko+o3VYtML9xHZ985iwDXAADAVwe+wrTIosfI4xTso3Pa101/bIrzd85j7+C9CKkRAgBYcnwJRm8dXab1Ols7486Hd7SvC/dRccdfWYkp//3QDto0CL+e/1Xn+DsQfwAvrih7n76k8UlwsXEBAIzbPg4/RP2AKe2mYGrIVADAhTsXUH9h/TKvt7h9NDJ4JBZ0XQAASM5Khuts1zKvt7h99Hq917Gh9wZtmcKWzLLQ+zviCYrbRyUdf2VR3D4q6fgri5L2UXHHX1mUtI+KO/7KoqR9xO+IZ/A7ouw5XLl4bhIpfU2aNAnjxo3Tvk5PT4enp6cBI6ocNnlApjkQ5ZCFKBR0yL+nSoPrx2Z4IdcF1eXOOCdXlvkIuW6Zi+tPSEDLmkQBQIpcjRR50dYF10wJXPPlcNZY4bp1HmItDPMfCRERmabnpo/UlStX4Ovri5MnT6JRo0bacu3atUOjRo3w3XfflWq9hedYb925VaZzrMbWbG8mkSHx0nH8c3g9jlzZj8M5lxFtm4m8UiRO9jlAFZUMzhpLOMMGzmZ2qGLhABdrZ7jae8DDyRvOzl5wrloTVi7ukJmZwwIy5Ktyoc5XISMnHSpVNvLzcpGfp0J+fi7y81VQ5+UiPz8P+fmqgodaBfWD1xp1PixlFqhSpTpc3Hxh5eIBhXN12FjYlrnZvvUEF0Q7ZCPC8z2EX/8ewH99pNhsX+BZbLZ/FE/tFeCpvQI8tfcfU/2OSE9Ph4eLB/tI6cvHxwdubm7YvXu3NpFKT0/H0aNH8c4775R5fTZyG707H5tJzWAmL/rWPm1nZplUVuw6Hv4wloV3QCt4B7RC3wevczPTcfLAevxzagtSsu7CxdYVLgoPODtVh4trDbi4+8G5eu2nvhqw7CdbSsfCzAIWKOmc33/8Jc6IxnXcTLxUZF5x769cJtd+oPVV3D4yl5lrv4D09fAXfKGSjr+yKO4KxpKOv7Iobh9JJdKnXm9x+0gikTz1ekvaR0+7XmP5jihU0j4q7vgri5L2UXlcQVvcekv7HVHW9fI7ooChvyPU8rIl3+XFqBKpjIwMKJVK7eu4uDhER0fDyckJXl5eGDt2LL744gvUqlVLO/yBh4eHttWKHs/Cxh4vdH4LL3R+y9ChVCg/Wy8A13El7Wqp+lMRERGVxKgSqaioKLz44n8d2Qr7Ng0ePBgRERH46KOPkJmZieHDhyM1NRWtW7fGtm3bnqkxpMjw/FzrAHcP4WrubWR8XjCy/NP+x05ERKbJaPtIVRRDjUNBlefgXz+gzfFRqHHfDHGzy9avgYiInk2G+v02qlvEEJUHv3qtAQDxNvnIzUw3cDRERGTMmEiRyalaoz5sVIBGCvRb0wvhv4frdQULEREREykyORKpFH5ZBf3mfr+5CytOrSjzJdFEREQAEykyUbUkVQwdAhERPQeYSJFJ8rN5/kevJyKiisdEikySn4u/oUMgIqLnABMpMkl+3o0NHQIRET0HmEiRSfKr28rQIRAR0XOAiRSZJHffRrDkWJxERPSUmEiRSZLKzOCbVXCT0bV+k3iLGCIi0gsTKTJZtUTBEAjJCUpIJBIDR0NERMaIiRSZLD/ragAA5V2lgSMhIiJjxUSKTJZ3FV8AwCbJRd4ihoiI9MJEikxWDc9AAMA1i2zeIoaIiPTCRIpMlm/t5trn6jyVASMhIiJjxUSKTFY1vyDt85vK4waMhIiIjBUTKTJZMnO59nnspaMGjISIiIwVEykiAFeunzZ0CEREZISYSBEBiL172dAhEBGREWIiRQTgStYtQ4dARERGiIkUmSwrcytE1PwAABAnuWfgaIiIyBgxkSKTJZVI0TrwZQDAFWsVNGqOJUVERGXDRIpMmne9ljBTA9nmQEJstKHDISIiI8NEikyWSq3CpH2fwja/4GOgvHDIwBEREZGxYSJFJitPnYfZR2Yj1UIDAFBeO2ngiIiIyNgwkSJ6QHknxtAhEBGRkWEiRfSAMvO6oUMgIiIjw0SK6AGlSDF0CEREZGSYSBE9oLTOhtBoDB0GEREZESZSRAAkGiBDDiRdO2/oUIiIyIgwkSIC4JkpAwAozx8wcCRERGRMmEiRybIyt8LZd87i7DtnUSvfHgCgvHrCwFEREZExMTN0AESGIpVIEeAaAACoZeGO3bgHZdJFA0dFRETGhC1SRAD8HGoCAJQZ8QaOhIiIjAlbpMhkqdQqfHXgKwBAfY96wNW/oNQkGzgqIiIyJkykyGTlqfMwLXIaAODf9muBq8BlyywIjQYSKRtriYjoyfhrQQTAp15LAECaJZByK9bA0RARkbFgIkUEwMrOCdUzHgyBcG6/gaMhIiJjwUSK6AG/PDsAgDLuuIEjISIiY8FEiugBP/OqAADl7QsGjoSIiIwFEymiB/wcfAAAyvRrBo6EiIiMBRMpogf83OsDAJSaOwaOhIieRKPON3QIRAA4/AGZMEszS/z71r/a535+TYHrgNIi08CREVGhfFUOlNF7cObMLpyJj8KZdCXOSpMRZ5uHTyRtMW1qpKFDJBPHRIpMlkwqQ9NqTbWvfeu3BfYCyVYCqbevwaGqtwGjIzItQqPBzcvHcebEVpyNO4ozKRdxRp2AC7bZyC38pZICcPhvmW9U+/HBnRuwd6lugIiJCjCRInrA1skNbplSJNpoEHv2AIKYSBFViNTb13D22BaciTmAM0lncDb3Os5Y3UeqpfivkN1/T61VQP0sGwSaVUOgSwDq+7bA6EP/w0WFCqt/+Qhvj1td+ZUgeoCJFJkslVqF7/75DgAw5oUxkMvk8FPZItEmHcorxxDU4Q0DR0hkvDTqfFy/eBSXzh/ApWsnEJMcg0u5N3HeLBXXbdX/FbR+8AAg0wC178sRiKoIdKiNwBrNUL9BKHwC20Iq0/25Gn75EMblbsbi679jBO9GQAbERIpMVp46Dx/t+ggAMLLpyIJEyswVB5EOZeJ5A0dHZBxSbsUi5tRuXLpyDJdun0dMxjVcwl1cts5BjvlDBa0ePB6oniFDYL4TAm18EFitCerXC0GdoE6wtHUo1XYHh32DSQs3I9ohG8d2rUCzjkPKs1pEpcZEiughfooagEYJZdpVQ4dC9MzITk+B8vReXLr0Dy7dOo2Y1Fhcyr+NS5aZuGv10Ok4GQDFfy/N1YBvhhy1hRP8rT1R27Uu/Gs2Rf3grnB093mqmJw8fNEnuyZ+sbuCxTunM5Eig2EiRfQQP7d6wK1dUOYnGToUokonNBrcUp7AqagtiI49hFP3LiJakojLdnkQkocK2ukuVz1Dhtp59vC38EBtp1qo7dkIteu2Ro2AVjCTW1ZYvCNeHI9fokZirfwy5iTFQ+HqVWHbIioJEymih/jVbArcApTyDEOHQlSh8nKycDFqK6JP78Spm1GIzryCU5apSH64hemh1iVFDuCfYwN/WVXUtvdBbY9A+NduAb/AENg4ulZ+BQC07DICAbvfxzlFLlb+PB6jxq83SBxk2phIET3Et34b4CCQaKNBRkoibJ3cDB0S0VO7lxCHU0c3IzomEqfunEW0+ibO22ZDVfgLIH/wQEGHb//7FmgkcUNDp3poVKsNGgR3RdUa9Z+5Dt0SqRQj3F/Be1kbsfjWnxjJTudkAEykiB7iUNUbztkSJFsJxJ7dj4Zt+xg6JKIyyUpLxj+7V+DAmb9wPPUCTpklI/7hq+QeOi1nnws0zLJHQ0tvNPJogob12iOg2Suwsneq/MD1NCjsG0yYtxFnFDk4su1HtHx5hKFDIhPDRIroEX65Nki2yoBSeYyJFD3z0pLicXh3BPaf34r998/hmP195MkezHT4r1yN+2ZopHZBQ0VtNPJpgYaNu6BG/dZG34LjUNUbfXP8EGGuxOI9M5lIUaVjIkUmy9LMEnsH79U+L+QndcE/yIAy4ayhQiMqUfL1GBzYvQz7Y3Zif85FRNtnQyNFwbe5Y0GZahlStNN4onnVIDSqE4IGzV99rkfqHxE6ARFHh2G95RXMTYh76isCicpCr0TqxIkTMDc3R2BgIABg8+bNWL58OerVq4epU6dCLpeXa5BEFUEmlSGkRkiR6X723gDioEyNq/SYiB5181IUDuz7GZGxu7E/LxbnFbkFMywfPAD4ppuhrdQHbb3bol3bsOeipaksmnd8Ew22v4vTDjn4+ZcPMOaj3wwdEpkQvRKpESNGYOLEiQgMDMSVK1fQr18/9OjRAxs2bEBWVhbmzp1bzmESVR6/qnWB2/ugzLtt6FDIxAiNBnFn9mP/gZXYf20/9mviEGufXzDT+r9yAWkWaGvuh7a+7dEmJAzVagcbJuBnhEQqxYjq3TEqYx0WJ27Be+x0TpVIr0Tq0qVLaNSoEQBgw4YNaNu2LVavXo1Dhw6hX79+TKTIKOSp87Dk+BIAwPCg4TCXFQzD7OcTBNwGlOb3DRkemYD0OzdwbP8aHD2/E0dTzuCoPAm3rTUFM20L/kg1QON0a7S1qoO2/h3Run04nD39DRf0M2rgoJn48Lt1uKBQ4eCWH9Cm22hDh0QmQq9ESggBjabgw75r1y688sorAABPT08kJyeXX3REFUilVmH01oIv2/BG4f8lUgFtgX+AG7ZqZKenGNUVTPTsylfl4MzhTTh64k/8mxCFo+p4XLDP/W+gS4eCP+ZqoGm6HdraBaBtvS5oFfom7F2qGypso6Fw9cIAlT+WymOweN83TKSo0uiVSAUHB+OLL75AaGgoIiMjsXDhQgBAXFwcqlatWq4BElU2Jw9fOORIkGopcOXsAQS07G7okMjICI0G1y8exdEjG3D0yn4czbyM47bpyC6895ztf2Vr3DdDc407mrs2QfMGXdC4dW8m73oa0eljLD00GL9aX8V3Ny6jSvVahg6JTIBeidTcuXMxcOBA/P777/jkk0/g5+cHAPj111/RsmXLcg2QqLJJpFL45VghyjILSuVRJlL0ROl3biDqwDocPb8DR++exlHzJCTaPDhF99Bgl/a5QLMsJzS3r4vmtV5Es9Z9UdWnvsHift4Eh4ahyZa3ccIhGytWjse4iZsNHRKZAL0SqQYNGuDMmTNFps+aNQsymayYJYiMi5/UGVGIh/Jm0eOcKCstGQe3/4g9pzdjT+ZZHLfPLBiCANCeojNTAw3uW6G5vCaae7VAs+Du8A/uDKmMo85UpBHePTEibRWW3NmG99npnCpBuX6iLS0r7uaURJXJz9YLQDwu34s1dCj0DFBlZ+DorgjsObERe+6dxBH7tIJBL82hTZy878vQXOOB5q6N0TywM5q06ctTdAbQf9BMfDBnFWLsVYj843uEvDbW0CHRc06vRMrR0RESiaTIdIlEAktLS/j5+SE8PBxDhgx56gCJDMHPtQ6QfBBKVaKhQyEDUOepcGLfGuz5dy323DmGgzZ3kVU4PN6DQS89M2ToIHzQvmYHvNhhKKr7NzVYvPQfuyoeGJhXF4vlF7Bo/xwmUlTh9EqkJk+ejC+//BJdunRBs2bNAAD//vsvtm3bhlGjRiEuLg7vvPMO8vPzMWzYsHINuDQWLFiAWbNmITExEQ0bNsS8efO0cRKVhl+NJkAyoDRLN3QoVAk06nycO7IZew6vwp6EI4i0TERaYQP7g8TJJUuC9nnV0cErBO1DwlGzQQhPGz2jRrz8KRZHDsBvtteRdPUcXGsEGDokeo7plUgdPHgQX3zxBd5++22d6YsXL8aOHTuwceNGNGjQAN9//32lJ1Lr1q3DuHHjsGjRIjRv3hxz585Fp06dEBMTA1dX10qNhZ5tFmYW+Kv/X9rnD/Or1waIAuJt1cjNTIeFjb0hQqQKdO3cIWzfuRB74vdjj/kN3LEWBTMcCv4ocoCQHDe0d2+J9q3eQECL7kycjETjkP5ounkYjjlkImLVh/jok78NHRI9xyRCCFHWhWxtbREdHa29Wq+QUqlEo0aNkJGRgdjYWDRo0ACZmZnlFmxpNG/eHE2bNsX8+fMBABqNBp6ennj33XcxceLEJy6fnp4OhUKBtLQ02Nvzx9NUCY0G9p/KkCEHLnTZgjrNXjZ0SFQObsedxfpfp2LNze044pihM89aBbTJqoL2zs3Qvnk/NG7XDzJz3u7KWP30fTjeurcCvulmuDQzm538TYChfr/1OrKcnJzw559/4v3339eZ/ueff8LJqaBzZWZmJuzs7J4+wjJQqVQ4fvw4Jk2apJ0mlUoRGhqKI0eOFLtMbm4ucnNzta/T03kqhx4MgZBlhWh5NpSX/mEiZcRSb1/Db+umYs2VP7BHkVJwdZ0jIBFAq1R7vOQYhPZBr6NZhzDIrWyfuD4yDv0GzcS4WSsQa5+PPZvmIPT1jwwdEpUjdZ4Kt5QnEXf5X5y7fBink07jRHq8QWLRK5H69NNP8c4772Dv3r3avkfHjh3D33//jUWLFgEAdu7ciXbt2pVfpKWQnJwMtVpdZFDQqlWr4uLFi8UuM336dEybNq0ywqNnTJ46D6vOrAIADAwcqB3ZvJCfxAnRuMkhEIxQVloy/lz/OdacX4+ttolQmUHb16lZqg36u72EPj0/hUetJgaNkyqOjaMrBmkCsQBnsPjw90ykjIzQaHAn/gKuXvoXcdeiEXc7BnHp1xCnSkKc7D6u2eQVXDlbyBqAgc6865VIDRs2DPXq1cP8+fPx228Fd9n29/dHZGSkdkDODz74oPyirECTJk3CuHHjtK/T09Ph6elpwIiosqjUKgzZXHBlae96vYsmUjaeAG5CySEQjIIqOwM7Ns7EmpM/Y7PlNWTKoe3vFJBmgf6ObdCv2yT4NmpvyDCpEo14ZQoW7H4dv9veROKV03Cr2cDQIdFD0u/cQNyFw4iLO4m4hAuIS41DXG4i4iRpuGqVW/AZfpjNg8cDZmrAK8sM/mpHNLT1RS23hhiKxZVZhYI49F2wVatWaNWqVXnG8tScnZ0hk8lw+/Ztnem3b9+Gm5tbsctYWFjAwsKi2Hlk2vxc/IF7/0CZe8vQoVAJ1Hkq7P9rPtYc+REbpTFIsRLAg64RPvfN0M+qKfp3+gCBrXsZNlAyiMDWvdDiV1sccczA8tUfYtL/ths6JJOjUefj+sWjOH96N85fPYbzKTG4kJeAGMvMgs/rw6wePB6QCMAjUwqfPFv4mDnDx7Y6fJxrwcczED61mqFarSCdfozp6ekYOtaIEqlCOTk5UKlUOtMM1UlbLpcjKCgIu3fvxmuvvQagoLP57t27MXo0b2BJZePn3Ri4twJKaZqhQ6GHCI0Gx3atwJq987BOfQoJNhrtf6lumVL0kQWif7vRaN7xTV5lRxhRqx+OJC/Fj6l7MEGdz07nFUSdp0Lc2QM4f3YPzl87jvOpl3FBnYgL1lm6LUuPdEOski2BT64VfCRO8LH2gI+TL3yqBcDHNxjedVsYxRXTeh1RWVlZ+Oijj7B+/XrcvXu3yHy1Wv3Ugelr3LhxGDx4MIKDg9GsWTPMnTsXmZmZHByUysyvbisgGrhqm4+8nCyYW1obOiSTdu7wZqzZNgtrM48i1j4feDDOk0OOBL3ya6H/C28h5NUxvNKOdPQZ9DXGTv8JcXb52Pnr1+jU9xNDh2TU8nKyoDy1B+fPReLCjZM4n6bEec1tXLTNQe7DGcVD15qZq4HaGRaoBxfUs/dFveqN4V+7BWoGtIZdFY9Kr0N50yuR+vDDD7F3714sXLgQgwYNwoIFC3Dz5k0sXrwYM2bMKO8Yy6Rv3764c+cOJk+ejMTERDRq1Ajbtm0r0gGd6EncfRvBKg/INgeuXTgCv8YdDB2SyYk7vR9r//gSa1L244wiB5ABsC8YquDVHC/0b/QGOvWcYBT/tZJhWNk7IQwN8D1OYfE/C5hIlUFWWjJOHf4NUWd3IOr2SRzX3ESMbS7yH+7k/dBHzzIPqJNphXpSV9RzqIV6nk1QLyAENQPbPdf/iOo1jpSXlxd+/vlnhISEwN7eHidOnICfnx9++eUXrFmzBn//bbyDn3EcKdORqcqE7fSCduaMSRmwkdsUKRM4zhJnFbnY6v85Ovf7X2WHaJISYqOxfuNnWJOwA0cd/huHzlwNdLnvhn51XserfT6FjSMH2KXSOf/PHwjY3h0yDRD/xnFerVmM3Mx0nD68CVGntyEq8Tii8q/jnH0O1MWcHbdVAfWybFBX5oZ6jrVRzzsY9QLbw7teS4O2CBvVOFIpKSmoWbMmgIL+UCkpKQCA1q1b45133im/6IgMzE844SwSoLx+ytChPNfuJcRh4/qpWBP3J/Yp7hWM9eQASDXAi2mO6F/zVfTsPQWO7j6GDpWMUL0XXkXrtfY46JiOn9Z8iE8n7zZ0SAalys7AuaN/Iip6K6JuHUNU3jWcscv+bziBh/oxuWVK0TTPBcEO9RDk1xYNmnRBdf+m7H/4EL0SqZo1ayIuLg5eXl6oU6cO1q9fj2bNmuHPP/+EQqEo7xiJKoSFmQXWv75e+7w4ftbVACRAmaKsxMhMQ+a9JPyx/nOsubgB2+xuF3yJPxjr6YVUW/R374g+r0/hJetULkb4D8DBpEX48X4kPs5TmUxfunxVDi78uwVRJ7cg6sYxRKnicMo287/+TA81xDtnSxCcWwXB9nUQ7NsGwS/0hIdfEyZNT6BXIjVkyBCcOnUK7dq1w8SJE9GtWzfMnz8feXl5mDNnTnnHSFQhzKRm6B3Q+7Fl/JxrA+lRUOZwCITykJuZju2/fY010Svxh2U8sh4a6ykwzRL9ndqi36ufwKdBW0OGSc+h1wdNx5gvFuO6rRrb1n+FrgOnGjqkcqfOU+HSiR2IOv4Xoq7/g6jsKzhpex/ZhUPkWT94oOAijeBsRwTb1UawT2sEN38NXnVbMGnSg16J1MO3hgkNDcXFixdx/PhxODs7Y+XKleUWHJGh+Xk1As6uhlKaauhQjJZGnY/IP77HqsOLsdHsMlIt/xvrqeZ9M/S3bo7+nT9EQMvuhg2UnmuWtg4IlzbBHBzH4qhFRp9IadT5iI3ei6ioPxB17QiispQ4YZOGjMKGNktor2y1ywWCshwQbOOH4BotEdy0O2o2CGHSVE706mxeklOnTqFJkyYGHf7gabGzuenI1+Rj04VNAIAedXvATFr0/4pr5w6hxq+tYa4Gsj/NNZnTAeXhTvwFRKwcjyV3d0Jpn6ed7p4pRV9ZQ/R/8V00DR3ML3OqNDHHtqLO3y9DqgGu9vsHnnWbGzqkUhEaDa6ePYioY78jKu4QojIu47jVPaRZFi1rrQKaZNoj2MoXwd4vIDioG2o1eckkxs8yqs7mRM+D3Pxc9Pm1D4CCq/bM5EU/DtVrN4U8H1CZAddj/kWN+q0rO0yjIjQaRP7xPRYf+Ba/WccX3OPOvuA/4r55/hjQcjjavjKaCSkZhH/TLghZ5YB9jqn4ad0ETJ26z9AhFSE0Glw7fxgno/5E1JWDiEqPQZRlyn+jgJtD25fQMg9olGmLYAsfBHs2R3DjV1CnaRd+vioZEymix5CZy1EzU46LChWUFw8zkSpB8vUYrFg5HkuSt+OSfZ721F1wqjVG1Hgd/QZ9DVun4m/TRFSZRtQbhH0J87A08wD+p8qBmbyYZp1KosrOwIVjfyP6zE6cvBGF6Ow4RFul/dfS9NAFGOZqoOF9awTLayC4WlMEN3oZ9Zq98lyPz2QsmEgRPYGfcMBFJEEZH41QQwfzDBEaDQ78tQCLI7/Br9bXtK1PtipgYF5dDO/8CZq0H2joMIl09Bj4BZw/n4+bthr8ve5zvDroy0rZblpSPE79sxnRF/fhZNJpRKtv4tzDQw481KfJXA3Uu2+JYDMvBLsHIbhBZwS2eI0Dzz6jypRI9ezZ87HzU1NTnyYWomeSn2U1AElQ3r1k6FCeCSm3YvHzL+Ox5PbfuKBQaVufmqRaYYR3T/QfNPO5uO0DPZ8sbOwxRBaMWTiGxSd+LPdESmg0uBFzDNFRfyE67jBO3ruAaNkdxNnl/1foodunKHKARtkKNLaqiUbVg9Ao8CXUbfoy5Fa2RVdOz6QyJVJPGiNKoVAgLCzsqQIietb4VfEDMk9CmXXT0KEYjNBocOjvRViy7xust7pSMAaNArBRAf1V/hjR6WMEh/KzT8Zh+OvTMeuPUGxV3MG1c4fgHdBK73Vp1PmIjlyHXUdWYfedf3HcMgV3rR66hsvhv6deGTI0zndBI4U/Gvm0QKOgrvCu15IXXBi5MiVSy5cvr6g4iJ5Zfp4NgYsboJTcM3Qole5eQhx++WU8liRuwTlFrvY/6UapVhjh+RoGDJoJe5fqhg2SqIz8GndAhxWO2O14Dz+um4AvPjtY6mWFRoMrp/dh196fsOt6JPbKb/2XOD3oz2T24NRcI5kHGjkHopF/WzRs3h1OHr4VUBsyNPaRInoCP/8WwEUg1joXGnW+SVxGnHw9Bp8t6IMfzU4jxxyAouCy6n6qWhjx0iQOW0BGb0RgOHbf+BY/5RzBlJysx3baTrp6Dnt2LMbuyzuwS8TiauFpugcnaexygRez3dDBvSVaB/dEQPNu7M9kQp7/XwSiEshlcizvvlz7vCTe9VrC7Dcgxxy4pTyJ6v5NKyvESpebmY553w/AF+lbkGZVMK1BqiVGVO+OgYNmQuHqZdgAicpJ9wGfwXXqXCTaaPDnmqnoOWSmdl7mvSTs37YIu8/+gV1Z53DKIadgxoNuS+ZqoEW6AqFOQQht2hdNO4QZ9Oo/MiwmUmSyzGXmCG8U/sRyZnJL1Mg0h9I+D8oLh57LREpoNPh1+XhMuDCvoFOsZcHpu9mtp6F9jw/Y+kTPHbmVLYbKX8B0HMHCUz/Bfasfdh1bh10px3HEPq3gajr5gweAhqmWCLUOQGjga2jTaThsHF0NGT49Q5hIEZWCn0YBJZKhvHYSIYYOppz9s20pPtg2Docd7wN2BSOPf+U1BIM+/oED+9FzbVjvGZjxWzvsckzBrn9HFEx80M/J+74ML0n80KFWR7TvOAKuNQIMFyg905hIkcnK1+Rju3I7AKCTX6dibxFTyM/CHUAylHdiKim6inf17EFMWj4Qa+3jAceCPlAfyUMwftI6/rdNJsGnQVv0jKiGjYqbcMqWoL3KA6Ge7RD64lDei45KjYkUmazc/Fy8suYVACXfIqaQn5MfkH0GyqwblRVehUlLisf07/tgruQocu0BiQDCM2vhi+Fr4VGriaHDI6pUKz87i+kxx+Db6EWTuJCEyh+PGqJS8KvWAFBuglLcNXQoestX5WDp/Dcx+fZa3LEuuFy7/T1HfNNjIRq162vg6IgMw9LWAbWCXjJ0GGTEmEgRlYJf7eaAElBa50BoNEbV5C80Gmxd+zk+jJqO84pcwBrwT5djVqOP8MrAaUZVFyKiZw0TKaJSqFGvFaR/AZly4PbVs3Cr2cDQIZXK6QO/YvzGEdjpmAIogCrZEkxzfh3DJ0TwZqdEROWAiRRRKVjY2MMr0wxX7fKhPH/wmU+kEq+cxqcL+2CZdQw0joA8H3hPE4xP3v8VDlW9DR0eEdFzg4kUUSn55dvjKlKgvHoCrQ0dTAlyM9Mxe04vTM/ZhcwHgwf2TquOGYN/Qc2GIQaNjYjoecREiqiU/CzcsAspUCZdNHQoxTq6/ScM2T4SFxQqQA40T7XBnJe+QcuXRxg6NCKi5xYTKTJZcpkc87vM1z5/Ej+HmoDqPJQZ8RUdWplkp6fg06874luz49AogKpZUnxbcyT6ffodO5ITEVUwJlJkssxl5hjVbFSpy/tVCwTi/nqmhkA48Od8DN03Dpft8wAAg+7XxLdjt6FK9VoGjoyIyDQwkSIqJT+/5kAcoLTMMvgQCBkpifh4ZifMtzwNYQ94ZEqxuMEneOWNzwwWExGRKWIiRSZLrVHjQPwBAEAbrzaQSWWPLV+zfhtgJ5BmCdy9eRnOnv6VEWYRe377Bm8dnlhwc2EAQzNqY/b4Hbwaj4jIAJhIkcnKyc/BiyteBFBwixgbuc1jy1vZO6F6hgw3bNVQnjtQ6YlU+p0b+HDWS1hicxGwA7wyZFja7Au81HtipcZBRET/YU9UojLwy7MDACjjjlfqdret/QIBM2sUJFEARmbVx9mJ8UyiiIgMjC1SRGXgZ14V+5AK5e0LlbK9ewlxGPdNR0TYKQFboOZ9M/zUehZCXhtbKdsnIqLHYyJFVAZ+Dj5AfgyU969V+Lb++OUTvH1mBhLsNJAIYExuY3zxyTbYOLpW+LaJiKh0mEgRlYGfe33g+jYoNXcqbBvJ12MwZm4nrLa/BtgU3GB4WYfvObAmEdEziIkUURn4+TUFrgNKi6wKWf+vP32AUZe+RZK9gFQDfKhujqnTtsHS1qFCtkdERE+Hnc2JysC3flsAwF0rgXsJceW23ttxZ/H6uOrofWMOkqwF6qdZ4J/WEZjxxT9MooiInmFskSKTZS4zx8zQmdrnpWHr5Aa3TCkSbTSIPXcAwe4+Tx1H1K6f0W3HECQqNDBTAx9L2+Ljz/+EhY39U6+biIgqFhMpMllymRwftvqwzMv5qWyRaJMO5ZUoBCPsqWL485dP0e/iF8iyAeqnWeCX7ivQqF3fp1onERFVHiZSRGXkZ+aKg0iHMvH8U61nwew+eO/+BmjkQKfUKlj/cTTsXaqXU5RERFQZ2EeKTJZao8axm8dw7OYxqDXqUi/np6gBAFCmX9Vruxp1PsZ/EozRmRugkQJvZfjjz+nxTKKIiIwQEykyWTn5OWi2tBmaLW2GnPycUi/n51YPAKDMTyrzNrPTU9Dnwxr4Rl4wMvpXso5Y8vV5mFtal3ldRERkeEykiMrIr2ZTAIDSIrNMy92Jv4AOk72xUXET8nxgVdWRmPS/7ZBI+TEkIjJW/AYnKiPf+m0AALetNbh/91aplrkUtR0tvmuAI44ZcMyRYGfT7zHg7QUVGSYREVUCJlJEZeRQ1RvO2RIAQOzZA08sf2jLQrT4tQti7fPhc98Mh3v8hbavvlvRYRIRUSVgIkWkB79cGwCAUvnvY8ut+3EMOvwzEilWAs1SbXBk1EnUafZyZYRIRESVgIkUkR78pC4AAGXCuWLnC40GX3/ZBf1ufY9cM+C1VHfsnXoVVX3qV2aYRERUwZhIEenBz94bAKBMK3qbmHxVDkZOCsTE/G0AgDE5jfDrzKuwVjhXaoxERFTxOCAnmSxzmTmmtJuifV4WflXrArf3QZl3W2d6Rkoi+n7eAH873IFEAN9a98CYKb+VW8xERPRsYSJFJksuk2NqyFS9lvXzCQJuA0rz+9ppty6fwCs/tMZJh2xY5QGra03Ea4Onl1O0RET0LGIiRaQHv4C2wD/ATVsNstKSEXsmEl0398V1BzVcsyT4s8NPaNZxiKHDJCKiCsZEikyWRmhw4c4FAEBdl7qQSkrfZdDJwxcOORKkWgosWTQMU9J+R7ot4J8ux99h21GzYUgFRU1ERM8SJlJksrLzslF/YcFVdBmTMmAjtyn1shKpFH45VoiyzML7Ob8DFkDbewps+ug4nDx8KyhiIiJ61vCqPSI9+Un/uwpvQLo3dnwZzySKiMjEMJEi0tMrtbrCIh/4RN0Kv8xUwsLG3tAhERFRJeOpPSI9DXz7B/RVzYGZ3NLQoRARkYGwRYroKTCJIiIybUykiIiIiPTERIqIiIhIT+wjRSbLXGaO8S3Ga58TERGVFRMpMllymRyzOs4ydBhERGTEeGqPiIiISE9skSKTpREaxKfFAwC8FF5lukUMERERwESKTFh2XjZ8vvMBUPZbxBAREQE8tUdERESkNyZSRERERHoymkTqyy+/RMuWLWFtbQ0HB4diy8THx6Nr166wtraGq6srPvzwQ+Tn51duoERERGQyjKaPlEqlQu/evdGiRQv89NNPRear1Wp07doVbm5uOHz4MBISEhAWFgZzc3N89dVXBoiYiIiInndG0yI1bdo0vP/++wgMDCx2/o4dO3D+/HmsXLkSjRo1QpcuXfD5559jwYIFUKlUlRwtERERmQKjSaSe5MiRIwgMDETVqlW10zp16oT09HScO3euxOVyc3ORnp6u8yAiIiIqDaM5tfckiYmJOkkUAO3rxMTEEpebPn06pk2bVqGx0bPJTGqGkcEjtc+JiIjKyqAtUhMnToREInns4+LFixUaw6RJk5CWlqZ9XL9+vUK3R88OCzMLLOi6AAu6LoCFmYWhwyEiIiNk0H/DP/jgA4SHhz+2TM2aNUu1Ljc3N/z77786027fvq2dVxILCwtYWPBHlIiIiMrOoImUi4sLXFxcymVdLVq0wJdffomkpCS4uroCAHbu3Al7e3vUq1evXLZBzxchBJKzkgEAztbOkEgkBo6IiIiMjdF0DImPj0dKSgri4+OhVqsRHR0NAPDz84OtrS06duyIevXqYdCgQZg5cyYSExPxv//9D6NGjWKLExUrKy8LrrMLkm7eIoaIiPRhNInU5MmTsWLFCu3rxo0bAwD27t2LkJAQyGQy/PXXX3jnnXfQokUL2NjYYPDgwfjss88MFTIRERE95yRCCGHoIJ4l6enpUCgUSEtLg729vaHDoQqUqcqE7XRbAGyRIiIydob6/X5uxpEiIiIiqmxMpIiIiIj0xESKiIiISE9MpIiIiIj0ZDRX7RGVNzOpGQY3HKx9TkREVFb89SCTZWFmgYjXIgwdBhERGTGe2iMiIiLSE1ukyGQJIZCVlwUAsDa35i1iiIiozNgiRSYrKy8LttNtYTvdVptQERERlQUTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hMTKSIiIiI9MZEiIiIi0hPHkSKTJZPK8Hq917XPiYiIyoqJFJksSzNLbOi9wdBhEBGREeOpPSIiIiI9MZEiIiIi0hMTKTJZmapMSKZJIJkmQaYq09DhEBGREWIiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREeuLI5mSyZFIZXq71svY5ERFRWTGRIpNlaWaJLQO2GDoMIiIyYjy1R0RERKQnJlJEREREemIiRSYrU5UJm69sYPOVDW8RQ0REemEfKTJpWXlZhg6BiIiMGFukiIiIiPTERIqIiIhIT0ykiIiIiPTERIqIiIhIT0ykiIiIiPTEq/bIZEklUrTzbqd9TkREVFZMpMhkWZlbYV/4PkOHQURERoz/hhMRERHpiYkUERERkZ6YSJHJylRlwmWWC1xmufAWMUREpBf2kSKTlpyVbOgQiIjIiLFFioiIiEhPTKSIiIiI9MREioiIiEhPTKSIiIiI9MREioiIiEhPvGqPTJZUIkWwR7D2ORERUVkxkSKTZWVuhWPDjhk6DCIiMmL8N5yIiIhIT0ykiIiIiPTERIpMVlZeFmrMrYEac2sgKy/L0OEQEZERYh8pMllCCFxLu6Z9TkREVFZskSIiIiLSExMpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLSE6/aI5MlkUhQz6We9jkREVFZMZEik2Vtbo1zI88ZOgwiIjJiPLVHREREpCejSKSuXr2KoUOHwsfHB1ZWVvD19cWUKVOgUql0yp0+fRpt2rSBpaUlPD09MXPmTANFTERERKbAKE7tXbx4ERqNBosXL4afnx/Onj2LYcOGITMzE7NnzwYApKeno2PHjggNDcWiRYtw5swZvPnmm3BwcMDw4cMNXAN6FmXlZaHpj00BAMeGHYO1ubWBIyIiImNjFIlU586d0blzZ+3rmjVrIiYmBgsXLtQmUqtWrYJKpcKyZcsgl8sREBCA6OhozJkzh4kUFUsIgfN3zmufExERlZVRnNorTlpaGpycnLSvjxw5grZt20Iul2underUCTExMbh3754hQiQiIqLnnFEmUkqlEvPmzcOIESO00xITE1G1alWdcoWvExMTS1xXbm4u0tPTdR5EREREpWHQRGrixImQSCSPfVy8eFFnmZs3b6Jz587o3bs3hg0b9tQxTJ8+HQqFQvvw9PR86nUSERGRaTBoH6kPPvgA4eHhjy1Ts2ZN7fNbt27hxRdfRMuWLbFkyRKdcm5ubrh9+7bOtMLXbm5uJa5/0qRJGDdunPZ1eno6kykiIiIqFYMmUi4uLnBxcSlV2Zs3b+LFF19EUFAQli9fDqlUtzGtRYsW+OSTT5CXlwdzc3MAwM6dO+Hv7w9HR8cS12thYQELCwv9K0FEREQmyyj6SN28eRMhISHw8vLC7NmzcefOHSQmJur0fRowYADkcjmGDh2Kc+fOYd26dfjuu+90WpuIHiaRSOCt8Ia3wpu3iCEiIr0YxfAHO3fuhFKphFKpRPXq1XXmFV62rlAosGPHDowaNQpBQUFwdnbG5MmTOfQBlcja3BpXx141dBhERGTEJIID6OhIT0+HQqFAWloa7O3tDR0OERERlYKhfr+N4tQeERER0bOIiRSZrOy8bDT9sSma/tgU2XnZhg6HiIiMkFH0kSKqCBqhQdStKO1zIiKismKLFBEREZGemEgRERER6YmJFBEREZGemEgRERER6YmJFBEREZGeeNUemTRna2dDh0BEREaMiRSZLBu5De58eMfQYRARkRHjqT0iIiIiPTGRIiIiItITEykyWdl52QiJCEFIRAhvEUNERHphHykyWRqhQeS1SO1zIiKismKLFBEREZGemEgRERER6YmJFBEREZGemEgRERER6YmJFBEREZGeeNUemTRrc2tDh0BEREaMiRSZLBu5DTI/zjR0GEREZMR4ao+IiIhIT0ykiIiIiPTERIpMVk5+Drqu7oquq7siJz/H0OEQEZERYh8pMllqjRp/X/5b+5yIiKis2CJFREREpCcmUkRERER6YiJFREREpCcmUkRERER6YiJFREREpCdetfcIIQQAID093cCRUEXLVGUCD0Y9SE9Ph1rOK/eIiIxV4e924e94ZZGIyt7iM+7KlSvw9fU1dBhERESkh9jYWNSsWbPStscWqUc4OTkBAOLj46FQKAwcTeVJT0+Hp6cnrl+/Dnt7e0OHU2lYb9bbFLDerLcpSEtLg5eXl/Z3vLIwkXqEVFrQbUyhUJjUAVjI3t6e9TYhrLdpYb1Ni6nWu/B3vNK2V6lbIyIiInqOMJEiIiIi0hMTqUdYWFhgypQpsLCwMHQolYr1Zr1NAevNepsC1rty682r9oiIiIj0xBYpIiIiIj0xkSIiIiLSExMpIiIiIj0xkSIiIiLS03OXSC1YsAA1atSApaUlmjdvjn///fex5Tds2IA6derA0tISgYGB+Pvvv3XmCyEwefJkuLu7w8rKCqGhobh8+bJOmZSUFAwcOBD29vZwcHDA0KFDkZGRUe51e5zyrHdeXh4mTJiAwMBA2NjYwMPDA2FhYbh165bOOmrUqAGJRKLzmDFjRoXUryTlvb/Dw8OL1Klz5846ZZ63/Q2gSJ0LH7NmzdKWMbb9fe7cOfTq1Usb99y5c/VaZ05ODkaNGoUqVarA1tYWvXr1wu3bt8uzWk9U3vWePn06mjZtCjs7O7i6uuK1115DTEyMTpmQkJAi+/vtt98u76o9VnnXe+rUqUXqVKdOHZ0yz+P+Lu6zK5FIMGrUKG0ZY9vfP/74I9q0aQNHR0c4OjoiNDS0SPlK+/0Wz5G1a9cKuVwuli1bJs6dOyeGDRsmHBwcxO3bt4stf+jQISGTycTMmTPF+fPnxf/+9z9hbm4uzpw5oy0zY8YMoVAoxO+//y5OnTolXn31VeHj4yOys7O1ZTp37iwaNmwo/vnnH3HgwAHh5+cn+vfvX+H1LVTe9U5NTRWhoaFi3bp14uLFi+LIkSOiWbNmIigoSGc93t7e4rPPPhMJCQnaR0ZGRoXXt1BF7O/BgweLzp0769QpJSVFZz3P2/4WQujUNyEhQSxbtkxIJBIRGxurLWNs+/vff/8V48ePF2vWrBFubm7i22+/1Wudb7/9tvD09BS7d+8WUVFR4oUXXhAtW7asqGrqFePDSlPvTp06ieXLl4uzZ8+K6Oho8fLLLwsvLy+d/dmuXTsxbNgwnf2dlpZWUdUsoiLqPWXKFBEQEKBTpzt37uiUeR73d1JSkk6dd+7cKQCIvXv3assY2/4eMGCAWLBggTh58qS4cOGCCA8PFwqFQty4cUNbprJ+v5+rRKpZs2Zi1KhR2tdqtVp4eHiI6dOnF1u+T58+omvXrjrTmjdvLkaMGCGEEEKj0Qg3Nzcxa9Ys7fzU1FRhYWEh1qxZI4QQ4vz58wKAOHbsmLbM1q1bhUQiETdv3iy3uj1Oede7OP/++68AIK5du6ad5u3tXeyHtrJURL0HDx4sunfvXuI2TWV/d+/eXbRv315nmrHt74eVFPuT1pmamirMzc3Fhg0btGUuXLggAIgjR448RW1KryLq/aikpCQBQERGRmqntWvXTowZM0afkMtFRdR7ypQpomHDhiUuZyr7e8yYMcLX11doNBrtNGPe30IIkZ+fL+zs7MSKFSuEEJX7+/3cnNpTqVQ4fvw4QkNDtdOkUilCQ0Nx5MiRYpc5cuSITnkA6NSpk7Z8XFwcEhMTdcooFAo0b95cW+bIkSNwcHBAcHCwtkxoaCikUimOHj1abvUrSUXUuzhpaWmQSCRwcHDQmT5jxgxUqVIFjRs3xqxZs5Cfn69/ZcqgIuu9b98+uLq6wt/fH++88w7u3r2rs47nfX/fvn0bW7ZswdChQ4vMM6b9XR7rPH78OPLy8nTK1KlTB15eXnpvt7xjLA9paWkAUORmr6tWrYKzszPq16+PSZMmISsrq9y2+TgVWe/Lly/Dw8MDNWvWxMCBAxEfH6+dZwr7W6VSYeXKlXjzzTchkUh05hnz/s7KykJeXp72GK7M3+/n5qbFycnJUKvVqFq1qs70qlWr4uLFi8Uuk5iYWGz5xMRE7fzCaY8r4+rqqjPfzMwMTk5O2jIVqSLq/aicnBxMmDAB/fv317kB5nvvvYcmTZrAyckJhw8fxqRJk5CQkIA5c+Y8Za2erKLq3blzZ/Ts2RM+Pj6IjY3Fxx9/jC5duuDIkSOQyWQmsb9XrFgBOzs79OzZU2e6se3v8lhnYmIi5HJ5kX8gHvf+laeKqPejNBoNxo4di1atWqF+/fra6QMGDIC3tzc8PDxw+vRpTJgwATExMfjtt9/KZbuPU1H1bt68OSIiIuDv74+EhARMmzYNbdq0wdmzZ2FnZ2cS+/v3339HamoqwsPDdaYb+/6eMGECPDw8tIlTZf5+PzeJFFWMvLw89OnTB0IILFy4UGfeuHHjtM8bNGgAuVyOESNGYPr06UZ7a4J+/fppnwcGBqJBgwbw9fXFvn370KFDBwNGVnmWLVuGgQMHwtLSUmf687i/CRg1ahTOnj2LgwcP6kwfPny49nlgYCDc3d3RoUMHxMbGwtfXt7LDLBddunTRPm/QoAGaN28Ob29vrF+/vtgW2OfRTz/9hC5dusDDw0NnujHv7xkzZmDt2rXYt29fke+tyvDcnNpzdnaGTCYrcnXF7du34ebmVuwybm5ujy1f+PdJZZKSknTm5+fnIyUlpcTtlqeKqHehwiTq2rVr2Llzp05rVHGaN2+O/Px8XL16tewVKaOKrPfDatasCWdnZyiVSu06ntf9DQAHDhxATEwM3nrrrSfG8qzv7/JYp5ubG1QqFVJTU8ttu+Ud49MYPXo0/vrrL+zduxfVq1d/bNnmzZsDgPazUJEqut6FHBwcULt2bZ3P9/O8v69du4Zdu3aV+vMNPPv7e/bs2ZgxYwZ27NiBBg0aaKdX5u/3c5NIyeVyBAUFYffu3dppGo0Gu3fvRosWLYpdpkWLFjrlAWDnzp3a8j4+PnBzc9Mpk56ejqNHj2rLtGjRAqmpqTh+/Li2zJ49e6DRaLQHYkWqiHoD/yVRly9fxq5du1ClSpUnxhIdHQ2pVFqkqbQiVFS9H3Xjxg3cvXsX7u7u2nU8j/u70E8//YSgoCA0bNjwibE86/u7PNYZFBQEc3NznTIxMTGIj4/Xe7vlHaM+hBAYPXo0Nm3ahD179sDHx+eJy0RHRwOA9rNQkSqq3o/KyMhAbGystk7P6/4utHz5cri6uqJr165PLGsM+3vmzJn4/PPPsW3bNp1+TkAl/36Xulu6EVi7dq2wsLAQERER4vz582L48OHCwcFBJCYmCiGEGDRokJg4caK2/KFDh4SZmZmYPXu2uHDhgpgyZUqxwx84ODiIzZs3i9OnT4vu3bsXe/lk48aNxdGjR8XBgwdFrVq1Kv1y+PKst0qlEq+++qqoXr26iI6O1rkcNjc3VwghxOHDh8W3334roqOjRWxsrFi5cqVwcXERYWFhRlvv+/fvi/Hjx4sjR46IuLg4sWvXLtGkSRNRq1YtkZOTo13P87a/C6WlpQlra2uxcOHCIts0xv2dm5srTp48KU6ePCnc3d3F+PHjxcmTJ8Xly5dLvU4hCi6H9/LyEnv27BFRUVGiRYsWokWLFkZd73feeUcoFAqxb98+nc93VlaWEEIIpVIpPvvsMxEVFSXi4uLE5s2bRc2aNUXbtm2Nut4ffPCB2Ldvn4iLixOHDh0SoaGhwtnZWSQlJWnLPI/7W4iCq+C8vLzEhAkTimzTGPf3jBkzhFwuF7/++qvOMXz//n2dMpXx+/1cJVJCCDFv3jzh5eUl5HK5aNasmfjnn3+089q1aycGDx6sU379+vWidu3aQi6Xi4CAALFlyxad+RqNRnz66aeiatWqwsLCQnTo0EHExMTolLl7967o37+/sLW1Ffb29mLIkCE6O7MylGe94+LiBIBiH4Xjjhw/flw0b95cKBQKYWlpKerWrSu++uornYSjMpRnvbOyskTHjh2Fi4uLMDc3F97e3mLYsGE6P6pCPH/7u9DixYuFlZWVSE1NLTLPGPd3Scdxu3btSr1OIYTIzs4WI0eOFI6OjsLa2lr06NFDJCQkVGQ1iyjvepf0+V6+fLkQQoj4+HjRtm1b4eTkJCwsLISfn5/48MMPK3VcISHKv959+/YV7u7uQi6Xi2rVqom+ffsKpVKps83ncX8LIcT27dsFgCK/X0IY5/729vYutt5TpkzRlqms32+JEEKUvv2KiIiIiAo9N32kiIiIiCobEykiIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITEykiIiIiPTGRIiIiItITEykiIgD79u2DRCIpcp+18jZo0CB89dVX5brO5ORkuLq64saNG+W6XiJ6MiZSRKQVHh4OiURS5FEZNy41tJYtWyIhIQEKhaLCtnHq1Cn8/fffeO+997TTQkJCMHbs2CJlIyIi4ODgUKr1Ojs7IywsDFOmTCmnSImotJhIEZGOzp07IyEhQedR3E1tVSqVAaKrOHK5HG5ubpBIJBW2jXnz5qF3796wtbUt93UPGTIEq1atQkpKSrmvm4hKxkSKiHRYWFjAzc1N5yGTyRASEoLRo0dj7NixcHZ2RqdOnQAAZ8+eRZcuXWBra4uqVati0KBBSE5O1q4vMzMTYWFhsLW1hbu7O7755psirTASiQS///67ThwODg6IiIjQvr5+/Tr69OkDBwcHODk5oXv37rh69ap2fnh4OF577TXMnj0b7u7uqFKlCkaNGoW8vDxtmdzcXEyYMAGenp6wsLCAn58ffvrpJwDFn9o7ePAg2rRpAysrK3h6euK9995DZmamdv4PP/yAWrVqwdLSElWrVsXrr79e4vuqVqvx66+/olu3bqXZDUXUqFGj2NbCQgEBAfDw8MCmTZv0Wj8R6YeJFBGV2ooVKyCXy3Ho0CEsWrQIqampaN++PRo3boyoqChs27YNt2/fRp8+fbTLfPjhh4iMjMTmzZuxY8cO7Nu3DydOnCjTdvPy8tCpUyfY2dnhwIEDOHToEGxtbdG5c2edlrG9e/ciNjYWe/fuxYoVKxAREaGTjIWFhWHNmjX4/vvvceHCBSxevLjE1qHY2Fh07twZvXr1wunTp7Fu3TocPHgQo0ePBgBERUXhvffew2effYaYmBhs27YNbdu2LbEOp0+fRlpaGoKDg8tU90LHjh3TthDeuHEDL7zwAtq0aaNTplmzZjhw4IBe6yciPelxg2Yiek4NHjxYyGQyYWNjo328/vrrQoiCu683btxYp/znn38uOnbsqDPt+vXr2rvM379/X8jlcrF+/Xrt/Lt37worKysxZswY7TQAYtOmTTrrUSgUYvny5UIIIX755Rfh7+8vNBqNdn5ubq6wsrIS27dv18bu7e0t8vPztWV69+4t+vbtK4QQIiYmRgAQO3fuLLbue/fuFQDEvXv3hBBCDB06VAwfPlynzIEDB4RUKhXZ2dli48aNwt7eXqSnpxe7vkdt2rRJyGQynToIUfC+mpub67znNjY2wsLCQigUimLX9d577wlvb2+RlJSkM/39998XISEhpYqHiMqHmWHTOCJ61rz44otYuHCh9rWNjY32eVBQkE7ZU6dOYe/evcW26sTGxiI7OxsqlQrNmzfXTndycoK/v3+ZYjp16hSUSiXs7Ox0pufk5CA2Nlb7OiAgADKZTPva3d0dZ86cAQBER0dDJpOhXbt2pd7m6dOnsWrVKu00IQQ0Gg3i4uLw0ksvwdvbGzVr1kTnzp3RuXNn9OjRA9bW1sWuLzs7GxYWFsX2wRo4cCA++eQTnWm//fZbsVf3LVmyBD/99BMOHz4MFxcXnXlWVlbIysoqVf2IqHwwkSIiHTY2NvDz8ytx3sMyMjLQrVs3fP3110XKuru7l/pqP4lEAiGEzrSH+zZlZGQgKChIJ6kp9HAyYW5uXmS9Go0GQEGSURYZGRkYMWKEzhV2hby8vCCXy3HixAns27cPO3bswOTJkzF16lQcO3as2KvtnJ2dkZWVBZVKBblcrjNPoVAUec9dXV2LrGPv3r149913sWbNGjRo0KDI/JSUlCLJFRFVLCZSRKS3Jk2aYOPGjahRowbMzIp+nfj6+sLc3BxHjx6Fl5cXAODevXu4dOmSTsuQi4sLEhIStK8vX76s07LSpEkTrFu3Dq6urrC3t9cr1sDAQGg0GkRGRiI0NLRUdTt//nyJSSUAmJmZITQ0FKGhoZgyZQocHBywZ88e9OzZs0jZRo0aAQDOnz+vfV4WSqUSr7/+Oj7++ONi1w8UdPwPCQkp87qJSH/sbE5Eehs1ahRSUlLQv39/HDt2DLGxsdi+fTuGDBkCtVoNW1tbDB06FB9++CH27NmDs2fPIjw8HFKp7ldP+/btMX/+fJw8eRJRUVF4++23dVqXBg4cCGdnZ3Tv3h0HDhxAXFwc9u3bh/fee6/Ug1DWqFEDgwcPxptvvonff/9du47169cXW37ChAk4fPgwRo8ejejoaFy+fBmbN2/Wdjb/66+/8P333yM6OhrXrl3Dzz//DI1GU+JpSxcXFzRp0gQHDx4sVbwPy87ORrdu3dC4cWMMHz4ciYmJ2kehrKwsHD9+HB07dizz+olIf0ykiEhvHh4eOHToENRqNTp27IjAwECMHTsWDg4O2mRp1qxZaNOmDbp164bQ0FC0bt26SF+rb775Bp6enmjTpg0GDBiA8ePH6/Q1sra2xv79++Hl5YWePXuibt26GDp0KHJycsrUQrVw4UK8/vrrGDlyJOrUqYNhw4bpDGfwsAYNGiAyMhKXLl1CmzZt0LhxY0yePBkeHh4ACoZn+O2339C+fXvUrVsXixYtwpo1axAQEFDi9t96661iT08+ye3bt3Hx4kXs3r0bHh4ecHd31z4Kbd68GV5eXkWu5COiiiURj3ZMICKqYCEhIWjUqBHmzp1r6FAqVXZ2Nvz9/bFu3Tq0aNGiXNf9wgsv4L333sOAAQPKdb1E9HhskSIiqiRWVlb4+eefdQYsLQ/Jycno2bMn+vfvX67rJaInY2dzIqJKVBGdwZ2dnfHRRx+V+3qJ6Ml4ao+IiIhITzy1R0RERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKQnJlJEREREemIiRURERKSn/wOcIL5tVkYgZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross_spectrums[i].freq, lags[i], colors[i], label=str(energies[i])+'keV')\n", + "\n", + "# Draw horizontal and vertical line\n", + "plt.axvline(v_cutoff, color='g', linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-25,25])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As expected (and also demonstrated in Utley et al), the shape of lag-frequency spectrum for both energy channels is similar.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/Simulator/Lag Analysis.html b/notebooks/Simulator/Lag Analysis.html new file mode 100644 index 000000000..fce40c389 --- /dev/null +++ b/notebooks/Simulator/Lag Analysis.html @@ -0,0 +1,410 @@ + + + + + + + + Contents — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook analyses lag-frequency spectrums of the light curves simulated through impulse response approach. First, a simple case with delta impulse response is covered. Subsequently, an energy-dependent impulse response scenario is analysed.

+
+
+

Setup

+

Import some useful libraries.

+
+
[1]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import relevant stingray libraries.

+
+
[2]:
+
+
+
from stingray import Lightcurve, Crossspectrum, sampledata, AveragedCrossspectrum
+from stingray.simulator import simulator, models
+
+
+
+
+
+

Initializing

+

Instantiate a simulator object and define a variability signal.

+
+
[3]:
+
+
+
var = sampledata.sample_data()
+
+# Beware: set tstart here, or nothing will work!
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.4, tstart=var.tstart)
+
+
+
+

For ease of analysis, define a simple delta impulse response with width 1. Here, start parameter refers to the lag delay, which we will soon see.

+
+
[4]:
+
+
+
delay = 10
+s_ir = sim.simple_ir(start=delay, width=1)
+
+
+
+

Finally, simulate a filtered light curve. Here, filtered means that the initial lag delay portion is cut.

+
+
[5]:
+
+
+
lc = sim.simulate(var.counts, s_ir)
+
+plt.plot(lc.time, lc.counts)
+plt.plot(var.time, var.counts)
+
+
+
+
+
[5]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fdec2fedcd0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_13_1.png +
+
+
+

Analysis

+

Compute crossspectrum.

+
+
[6]:
+
+
+
cross = Crossspectrum(lc, var)
+
+
+
+

Rebin the crosss-spectrum for ease of visualization.

+
+
[7]:
+
+
+
cross = cross.rebin(0.0050)
+
+
+
+

Calculate time lag.

+
+
[8]:
+
+
+
lag = cross.time_lag()
+
+
+
+

Plot lag.

+
+
[9]:
+
+
+
plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.plot(cross.freq, lag, 'r')
+
+# Find cutoff points
+v_cutoff = 1.0/(2*delay)
+h_cutoff = lag[int((v_cutoff-0.0050)*1/0.0050)]
+
+plt.axvline(v_cutoff, color='g',linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-20,20])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Lag')
+plt.title('Lag-frequency Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_22_0.png +
+
+

According to Uttley et al (2014), the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase wraps and the lag becomes negative.

+
+
[10]:
+
+
+
cross = AveragedCrossspectrum(lc, var, segment_size=200)
+
+
+
+
+
+
+
+
+13it [00:00, 3156.72it/s]
+
+
+
+
[11]:
+
+
+
cross = cross.rebin(0.0050)
+lag, lag_e = cross.time_lag()
+plt.figure()
+
+# Plot lag-frequency spectrum.
+plt.errorbar(cross.freq, lag, yerr=lag_e, color='r', fmt="o-")
+
+# Find cutoff points
+v_cutoff = 1.0/(2*delay)
+h_cutoff = lag[int((v_cutoff-cross.df*2)*1/cross.df)]
+
+plt.axvline(v_cutoff, color='g',linestyle='--')
+plt.axhline(h_cutoff, color='g', linestyle='-.')
+
+# Define axis
+plt.axis([0,0.2,-20,20])
+plt.xlabel('Frequency (Hz)')
+plt.ylabel('Lag')
+plt.title('Lag-frequency Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_25_0.png +
+
+
+
+

Energy Dependent Impulse Responses

+

In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, stingray an option to simulate light curves and add them to corresponding energy channels.

+

Below, we analyse the lag-frequency spectrum in such cases.

+

We define two delta impulse responses with same intensity but varying positions, each applicable on different energy channels (say ‘3.5-4.5 keV’ and ‘4.5-5.5 keV’ energy ranges).

+
+
[12]:
+
+
+
delays = [10,20]
+h1 = sim.simple_ir(start=delays[0], width=1)
+h2 = sim.simple_ir(start=delays[1], width=1)
+
+
+
+

Now, we create two energy channels to simulate light curves for these two impulse responses.

+
+
[13]:
+
+
+
sim.simulate_channel('3.5-4.5', var, h1)
+sim.simulate_channel('4.5-5.5', var, h2)
+
+
+
+

Compute cross-spectrum for each channel.

+
+
[14]:
+
+
+
cross = [Crossspectrum(lc, var).rebin(0.005) for lc in sim.get_channels(['3.5-4.5', '4.5-5.5'])]
+
+
+
+

Calculate lags.

+
+
[15]:
+
+
+
lags = [c.time_lag() for c in cross]
+
+
+
+

Get cut-off points.

+
+
[16]:
+
+
+
v_cuts = [1.0/(2*d) for d in delays]
+h_cuts = [lag[int((v_cutoff-0.005*6)*1/0.005)] for lag, v_cut in zip(lags, v_cuts)]
+
+
+
+

Plot lag-frequency spectrums.

+
+
[17]:
+
+
+
plt.figure()
+plots = []
+colors = ['r','g']
+energies = ['3.5-4.5 keV', '4.5-5.5 keV']
+
+# Plot lag-frequency spectrum
+for i in range(0,len(lags)):
+    plots += plt.plot(cross[i].freq, lags[i], colors[i], label=energies[i])
+    plt.axvline(v_cuts[i],color=colors[i],linestyle='--')
+    plt.axhline(h_cuts[i], color=colors[i], linestyle='-.')
+
+# Define axes and add labels
+plt.axis([0,0.2,-20,20])
+plt.legend()
+plt.xlabel('Frequencies (Hz)')
+plt.ylabel('Lags')
+plt.ylim(None, 25)
+plt.title('Energy Dependent Frequency-lag Spectrum')
+plt.show()
+
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Lag_Analysis_38_0.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Lag Analysis.ipynb b/notebooks/Simulator/Lag Analysis.ipynb new file mode 100644 index 000000000..42a45e543 --- /dev/null +++ b/notebooks/Simulator/Lag Analysis.ipynb @@ -0,0 +1,481 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook analyses lag-frequency spectrums of the light curves simulated through impulse response approach. First, a simple case with delta impulse response is covered. Subsequently, an energy-dependent impulse response scenario is analysed." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, AveragedCrossspectrum\n", + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Initializing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Instantiate a simulator object and define a variability signal." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "var = sampledata.sample_data()\n", + "\n", + "# Beware: set tstart here, or nothing will work!\n", + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.4, tstart=var.tstart)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For ease of analysis, define a simple delta impulse response with width 1. Here, `start` parameter refers to the lag delay, which we will soon see." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "delay = 10\n", + "s_ir = sim.simple_ir(start=delay, width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, simulate a `filtered` light curve. Here, filtered means that the initial lag delay portion is cut." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEFCAYAAAABjYvXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACIxUlEQVR4nO1dd7gdRdn/zbktvVcSQgqhhBYghF6kJnQQFRsIKKKgIqAG/BREUVARQZrSQaUpAhI6BAhSA4SQ3knvyb1pt5xz5vtjZnbfmZ2Z3XPuubltf89znnPO7OzM7O7svP0dxjlHihQpUqRo38g09wBSpEiRIkXzIyUGKVKkSJEiJQYpUqRIkSIlBilSpEiRAikxSJEiRYoUAMqbewDFok+fPnzo0KHNPYwUKVKkaDX46KOP1nHO+9qOtVpiMHToUEyZMqW5h5EiRYoUrQaMsc9dx1I1UYoUKVKkSIlBihQpUqRIiUGKFClSpEBKDFKkSJEiBVJikCJFihQpkBKDFClSpEiBlBikSJEiRQqkxKDNIpvL44kPlyKXT1OUp0iRIh4pMWijePCdxfjpv6fhsQ+XNPdQUqRI0QqQEoM2ivVb6wEAm7Y1NPNIUqRI0RqQEoM2inQDuxQpUhSClBi0cTDW3CNIkSJFa0BKDFKkSJEiRUoM2hK21WeD3xypnihFihTJkRKDNoJnpi7HqF++hFkra7RyhlRPlCJFinikxKCNYNLsNQAQIQYpUqRIkQQpMWhjSA3GKVKkKAYpMWgjUBaCVC3UfvHM1OXYUpeNr5gihQUpMWgjUHEFqWTQPvHZsmr86LGpuOapz5p7KClaKVJi0EbQ3nyHrnt2Bva59qXmHkaLwVbpSbaqpraZR5KitaK8uQeQIkUxePCdxc09hBQp2hRSyaCNgJv5J1K1UQoDm7bV4825a5t7GClaKFJi0MbA5OofGpRbD5Zu2IahEyZixorq5h5Km8R3Hp6C8+//ADW1afLCFFGkxKCNoC3YDF6ZuRoA8OSUZc08kpaHTdvqkc3lG9XG/DVbAADZXFuYLSlKjZQYtBUotVDzjiJFE6Aum8Po61/BL5+d4ayTZqlN0VikxKCNoTXbCHbUevbfT1dg+vLWo4qqywqJ4L9TV5SkvYh9KUUKpMSgzSBNTJccP3j0E5z6l7ebexgFgz7hT5ZsxNAJEzF39WYAyZgA056UIgVFSgxSpGjhsK3zz01bCQB4c05y7yDVTioYpLAhJQZtBOoFzyjur5Fv/N1vLsBbzeSG2JpVXS0ZpbqvDbk8TrrlLbwxZ01pGkzRIpASgzYCXmID8o0vzMZ5939QotbaPhas3YLXZ69u7mEkQmNViqtrajFn9Wb8/D/TSzSiFC0BaQRyG4F6wRX3x1L2eofiuJvfBAAsvvGUkrdtW7oblYuqkWqiNA9W20QqGbQR5IMXPH1D2xpKp+MXcyPfyPbyckCZlBq0KSQmBoyxMsbYJ4yx5+T/YYyx9xlj8xljjzPGKmV5lfw/Xx4fStq4WpbPYYydRMrHybL5jLEJJby+dgOTW9vR7oMNjQyIAuxjnrWyBkMnTMTSDdsa3X6rhbwt9P4Uo+oJ5kYjRYN8YJ9qVDMpWhgKkQx+BGAW+X8TgFs457sC2AjgIll+EYCNsvwWWQ+MsVEAzgWwF4BxAO6UBKYMwB0AxgMYBeCrsm6KgiDVRM3Q85TFGzDy5y/gnfnrSt724x8uBRBGJzcnlm3chrpsbof3G6oAo0+3EHUg5/p3sShGMthSl0X1tjQNRktGImLAGBsM4BQA98r/DMCxAP4lqzwE4Ez5+wz5H/L4cbL+GQAe45zXcc4XAZgPYKz8zOecL+Sc1wN4TNZNUQBCyYBp3zsC7y1cDwD434LSE4OWgtqGHI64aRJ+8uS0Hd43t0kGjVjQGyszqnEUMsUO/e1r2O/6lxvZc4qmRFLJ4M8AfgpA6QJ6A9jEOVfbKi0DMEj+HgRgKQDI49WyflBunOMqj4AxdjFjbApjbMratWn2RYrmTEwXBDOVSDPVEndrU1HAaq/pYjB/zRYs37S94PNKpfBTi3e+kUYDpREsRDLYnO7A1uIRSwwYY6cCWMM5/2gHjMcLzvnfOOdjOOdj+vbt29zDaVFQ3FqmGV0CmtJK0WLipBpBp47/05s4/MbXCz4vif1nR5qIlJqoLDUatCkkcS09HMDpjLGTAXQA0A3ArQB6MMbKJfc/GMByWX85gJ0BLGOMlQPoDmA9KVeg57jKUyREU+6BzDnHonVbMbxvl5K3rffTpM03Ds04Nm58UxTlWVoim0Hqvty2EMtHcs6v5pwP5pwPhTAAv845/zqASQDOkdXOB/CM/P2s/A95/HUuWJtnAZwrvY2GARgJ4AMAHwIYKb2TKmUfz5bk6toRuENPVIo17Ompy3HszW/GbozS2EXmttfmAQCWbNjauIbaGJLcV9e6vK0+i231uoqmsd5EYbR7o5pJ0cLQGKXCzwBcwRibD2ETuE+W3wegtyy/AsAEAOCczwDwBICZAF4EcCnnPCcli8sAvAThrfSErNvs4Jzjo883NvcwEsGkBaV8Tz9bVgMAmCeTopkoFYOo9Mqra+pK3nZjoRbQ5vCtty3eSY24o375Eva9TjfcNjbOIJdv+XEGE6etTDfxKRAFEQPO+Ruc81Pl74Wc87Gc810551/inNfJ8lr5f1d5fCE5/wbO+QjO+e6c8xdI+fOc893ksRtKdXGNxd/f+xxfvOsdvDar+d0a48ATiO5PTlmKo/8waUcNqWi0xAyszRp163EJTTKcrLH6NzYGJXAtbaGiwfw1W3DpPz/GT578tLmH0qqQpqPwQO0M1RoCntT7nc3lnf7+P/lX07pFtsRFvFRoTm8tazoK838Bt76xT6mlB51trxexIMV4brVnpMSgjUAtxDe+MBvz1mzBEbv2EeWWN59zXlLjX2C0LhEtoGNuKUblJJJXUyFfhF+/D429p4HnWgtWE6UoHGluogRoIeuRF+oFnyelmY3b6mPrJm475g60hzWhWSUDz+0PgwwLarFR4wltBo1qJkULQ0oM2gjMBSPjWSTiloKmymt03bMzMOY3r8bWo92XmtAUe23NaTMIXEtL9FgabUCWA/lwcetwrkiRDKmaKAFaAwNkcu8+rk0siO4KTaWaefCdxQWfU+qxFNseb0bZwEbAGpWOorFxBo3PSdikaMu2q6ZEKhkkQGuYWuYL7tNtx11PvsDVIthOsaCzCkOpluBix1ioZDB16Sbc9OLsInuz921DmKW2gPYKvAu1DTmM+uWLeOEzsdVmtsTU4I8vzcFTHy8raZtAy0xr0pKREoM2AtfrbTcgF9ZW3EvVXGmzi0GhhE6h0NPOvON/uOuNBUX15RwDeTKN4X4LvZaV1bXYVp8LiFs2V9rnfPuk+bjiidQNtLmREoO2AuP9nLp0k6eq/2UudsFsChSTIdPfXnyd2oZcZH+GMG1zacbhw5tz12LB2i3Bfx9BD4IMCxDPiiaI8tuMW2ipSNVFhSElBh60ptwrhUx8uhZUb2uIcPTNRQt6da4EAOy3c/dwLPI7yZOo3tYQGyCYZCHc4xcv4uw737GetyNUD+ff/0GwjSYQ82yVo0AB7Rf6fAM6I8/LtXBikKqHikNKDBKgBTHKTphj7Nu1KvacZRu3Yb/rX8Y9kxdq5bSt7z4yxbkYfbJkI7KEg27sfTp5nwEAgD0Hdou0mYQw/+CxT3DRQ1Owuqa2cQMB8Nnyau1/sd5EpVCd+Talacjmkc/zIBq4UK7/llfmYr9fJdtnQF17rjW8ECXEhq31jU773RrQbonB5+u3tgodNwA8N20Fzrjjf9465iLg9yYS30s3iAjNV2fpOfppWy/NCDltuiB/unQTzrrzHdz62rwdwoklWYQXrROqlboGt4GzsTaDQq+0FFPM1sTmWpHH6frnZuLHT0wNxpXk+miVW1+bh+rtheXwyZZgi9PWgnVb6nDAr1/BLa/Obe6hNDnaJTGYtbIGR//hDQy7+nlvvWAzkGYmGpf98xN86rEBANEFQzEy1iRnsizYTjFybrzaSHHfs1bWOMdQLP43fx2GTpiIdVvqClJ/KScXH+ForGtpoarDUtwTWwTys5+uCH4/M3VFMC4fA1sIwbAhSHnSBrjk9VvqsJDYZVxYt0UkTXx5RsvPT9ZYtEtisLI6Wc6SlqZ79Eky5iHf+x51Q9X/u951Wo0uiqU2rShp5KPPNxbNkbtQ7DJW7PpXSjWRD0oS9M4R4zsp6POdtmwT7nlrobtyM+HRD5bgt8+LLdqTMBDH/OENHEvsMoXikyUbC362P3nyUwydMLHoPpsa7ZIYVJaVJaoXvmBNOBgLXpy+EnMt6aK9C3ykrtvgySM/YhqzYLNMD/z5+jCJX+Nz3uj/c3nyWiegOEk8j4rniovzairN1JGSnNeOzBL3VyyBWl1Ti9Nv/1+Q8kRh9qoaDJ0w0evB1tS4+qnP8DeDSPmYuaTbcNpu1aQ5a3DWne/gkfc+L2iMT360TLbZMiWrdkkMkqK51ESX/P1jnHjLW5Fy7yiMMfrGrCZj6KmjvzSuc+lC+ML0VQAQWRgUVlXXFrw4+K4vyRocXI8v4K7IR6kkg8INyMX1V2wbiWwGRY5D7QNt4o05YtOj52VQWluHymI8b3W8mqk1oV0Sg4aEEZSFcFvF4sIHP8S/P0oWfZlEBaDgtxmo9sR3VE1k2gyibUw3vG1MHPPHSTgzxugdGZepvrKUJTk/PhWH/v9vby3A2s11jjOCmnJMhdoMSqAmSlJHXleSqV0oZxpXvVzecDM2o7lB7/32+hxmr6rx1N5xaKGCQfskBt06VCSqZ/pXNwVen70GV5ZgE46ozSC5fcEkBi7CQqvF3ZNaj0dPYRAdbUkg1ieJBTDHPXNlDX77/Gz86LFPYtoW380pGSRpyicZFDuf41xJFTFoyfEHP3j0E4z78+TIFqDFoNHq0EaPoGnQLolBUrVPKBm0jMfnG4U5Ru8leqQGIHp/bPeLnlu6+6Sfn8kwLFwr9kO+8YX4PD+hmshdx7wWtYApV01n2yU2ZBeCJPfVlPa8dQrs/5F3/brxsjKxjLQULyOVsZfeiw8WrQcA1DtUXXEopZPEyurtuPGF2S0udqFdEoP1W+JUAgLFJAFrShTiIeS1GRgGSZOTjrYl65E3gs7jppKgOlSUJZIIFJIs2MV7EykDcnNkLU1et9A4gySIVaHtwFQdhaCp1trGToHLH5uKu99cgKnLNpVkPKVCuyQGl/z940T1Wtjc9nKIrgU8Sd2kNgNab+zQXgCAYX06uzsqEFFvonyBqgfdMG4DvbZZK2uwuqZOnuPvJ6lkcNWTn2quyyU1ICd4psmIQYGDirnovIOpaC7YEicyi7SQBL68UMVCSaHlLYx6tkti4MKWuiyGTpgYeEUE3kQtTJyzIarn17l/6zFXWw4pg07dg4cLYnD4rr0LHGlyZHO8IGLgS9sQVgp/jr91Mr7z8JREbecTUoN/fbQMh/7uddJd8XNHea3Y2th/SA+jJJ4QhkFnhY0jbskqdTLBxqKxROnZT1c49xHX+imymznSbbyirGUtvy1rNM2MxeuEfvr21+cDCCdVSyEFfjWRwc372nGcoxC1GbjHUkpu0BxONs9xzO59AQDj9hoQf36CPlwLYVJur6nXu9qGXPD7SpnW2TY2ylXSRSnJdRRKoOJUY6q1pt4T+d7JCzHPEn9Tavzw0U/wtXvfj63XWAmhLEYymLmiBhu2urevLTVSYmDBzJU1OPbmNxIFneXyvEUEkRTjTRQaXP02A7uoHHKDTbWfQTbP0b2j8Pwa0S9eHRVKPPH2kkJRrM2g0FtC8wRtrsti7ea6sA3Hop9hLPi/SDI01rFEfiRDnDZjRwjOnHP8ZuIsnGCJv3GfE/4O5miJxkLbLBZxrrgn3zYZ59z1jrdOKdGuicHOvTo6jy1cuzV42nQBWbphG7bXC+5tdU0tRlzzPB77cKl27vw1m3HtM9N3qHrJXOR86hWzrjmnnYSFzH66PpUuVYTecTaXT5RzJzg/gZqoWHpVrDdRY2bArJU1OOiGV8P7Qhqj0luhuudCx5RUTdSUkkFB6kIj91ZTobFX69skSN3ThR7iXmq0a2IQu4OX/KYLyJG/n4TzH/gAAAK3x/98slw778IHp+Chdz/Hkg3bUEoU5k2kym1svfFtIGJA9vTXlN412RwvyKMriWTiMrDGnWpLFpcEpQjw8j1CQOie1f/+3dypyxubqM6FQjb+eeLDpUWlGC8kbbbyfqIqFu57HzywJSh0SdSFwrd9qCvauynRLolBny5iE5W4lyL0Vxb1lJvjB4s2iHJH1k+FlmBQs+r75bd6WbYa7puuOAMt6MzSV2OXGJvNIDwW33qS4KyiJYMC6laWl/a1svVNn2tZJlQTJQkCLrVW0yI4OvHTf0/Dtx74sOA+CpEM7v/fYgDAui2UGBR30UmJ8xf++Ab2vz7ZvhAKipm0IS62oynQLonBLr2F/jlufph6xjmOcPYdtej7deGOcs9kvn2SMJRP+Xyjdtx873zv4YeLN3j11I1BNp8vKPo2zjAujvnPdZ+XXBVCA5sKXYKs6UMsthB6jRVl4ZhyHm4zRiCMPS/ueFI10ZoiJAM6B+NSodhQ7LXbAy4F6OUuWrcVG7cVti/ET/41zXnsBpmBdUeifIf32IIQxy2YaiLnQmKUl1o95OqHwqn+sOYmkouLs0GHZKAZMEXZjBU1mLGiNDlfzNEo2wyQzL03kfRQtAFZfDe1AdnahnU81GaQCa7dFQV895sLyJgKG9RRI/vimakrnMfVWN6TEnMcilGv0Os99S9vAwAW/PbkWI+cAEU8hxHXPI8TR/WPNhVIyi1A9C8h2qVkoLCiuhYPvbPYedzMWhp5z+R/F0dU7vAjvnfyQsx3ZPukL+rJt07WuO6aWg/nkZBQAcBTHy9HPu9eFl3XGdeuz+soCcyqf31rYXB+Ep3xVkk8fKkl4miK090271cJuhsssHrC+0oFgHIiGbiIJk3nUSiB6lzlT/mu2ovbgCmsX/jKbDtlxDXPawyDgjcCvYCuc3keZOfd0bjw8GEAgAMi8SRNh3ZNDADg2mdnBNv4mRPFzFpqTmJX8rLecmN3G9OSywsXudNvf9s6Hvouz1xZg1teCbfbu8mTnycZjy/wh5fm4Ompy9GjU6X1HFM/m3QzeLuKw3uK9/wzRw8ihvDk7Yy/dbK7D6cBWUlL9vMUMco0wxtjCyCkwyzPsOC/Lz+Qeq6FSkfFElAX1m+tx4vTC0x37ehis49Bij+9KBRiIykGddkcunQQSpuhJYzwj0O7JAbOBcExZVR1+lLMWllDPA3MduL73mbhaEQf+tmriH51e4P9HNpu0vKN2xpwzgGDAABfGbOzdwxqEdHURAlfr8a8hF07lBPDaGle59iFzVUuD0xfXoNH3l3sbYOm6Ch04bXVbrB4lug2g/A19jlFNDiYHkBXI0X7ch6SffqP21DoNpJuNWgUx+/ZDwDQqTKUaGx2l0KgO08UKSUmxJE3TcJtr80DAJTtQC+UdkkMTKjpYU5qcwLRiTT+1snOKFzlpRPnEmhLp+t78fyxA45yp/oovJqKcmNzG2PtsaWwbpIQCvP+I7znLjVR4SoHf33XokPLf/HMDG8bPTuFKdILHZ5NzVNvcRHSbAZlmaAfn2TgIwa+rLBJ8zYVAtNpIQ6FdDGwu4gfGjWwW+z5xcQCNbVksIYkBmzqqG6KlBiAGoi5o1z/Do7Lb9fzsk0z+hKP+uVL3uNmI15i4Fr0Pa+RehFM7iO68Ba/8jc2Klldsuul/W2BXhdx776bGCTvgzt+JzrXcoIt7TIdT0UZC3z3fbe7EM+suDHpYyn8GRe6EU4h88iWeys43WhmYhG7s4XvfdMv1NNXVKO6QC+lYhFLDBhjHRhjHzDGPmWMzWCM/UqWD2OMvc8Ym88Ye5wxVinLq+T/+fL4UNLW1bJ8DmPsJFI+TpbNZ4xNaILr9MJlIFaLYrCLlMv/voBJUeh7Q3XU3kykMSouE9k8hwqANMcftRmoev524yShOETqch402uCI1rxn8qICevBJSv7jhSx4mm5f/kmaR9/Wj+3azQjkK56YGj8uTx+FjsnWbiEY3rcwXXghkq+truv9SBrcRc8O1KaJznTjuD36xdaZsaIG597zXiN7SoYkkkEdgGM55/sBGA1gHGPsEAA3AbiFc74rgI0ALpL1LwKwUZbfIuuBMTYKwLkA9gIwDsCdjLEyxlgZgDsAjAcwCsBXZd1mgLEIKoOb4k4dDLNrUhTDFZsvXleyK5t/X2NHuaP+mpq6YHyme16hm9v4+irkFtgin9U99/nPFyLqF6vyKFbCUalKkuqqbfe6PpeTbdDxhL/LM5mE6Tr0+VwqFHNvjhzZt8A+CqnreU+M/zRGw3curXXzy3MAAIvXNy6+pmdnuwOHiVkrd8x2nbHEgAsoP8gK+eEAjgXwL1n+EIAz5e8z5H/I48cxwXqeAeAxznkd53wRgPkAxsrPfM75Qs55PYDHZN0mg/m4XemeA8lA1cubi5WSDPTz1ARLyj3rY9H/n0D8nIshBq5zVmzaHnA4pteTeZ22fPVJX845q5JnmYxoyHh4j3268JdnRt3/ah3GdhdNUf041UQFaDVoC+r6k94v22U2ZHUJVdQrfAEOT7Gf61LdxHVlk4RKjca4KAPubVijjFB8+50rhadPhwq/y20cmuhWFY1ENgPJwU8FsAbAKwAWANjEOVcW0GUABsnfgwAsBQB5vBpAb1punOMq32Fwcf7q3Qh1rQYxkH+31JrpHDx9xXKm5opI2i0mXYmju7HDehF3Sb/NoDGeGKfd/nYk4nTohImxQy3LMHDw0DDqSeplE/U/chgoY++/o7ygxZfULfSO2RY9ZUCm8yqv9VGY1OGan04C6rj2XXp3ihxPuvVlqRL+mdc+dMLE4H7Z7qWpAjWdP5J4rZ07Vnjf7UkM1MWgpWynq5CIGHDOc5zz0QAGQ3DyezTloFxgjF3MGJvCGJuydu3akrWrHkk0jkBfBDtWlBvHxXc0nUPhHLzZZji2sMAXeEX7rCSuhq4zBvfs6DQgO7nnGA7QNbxlm7bbDxig18Bke+p+FLq/bt+u9oRtcTaDJN5EcdDVOX6JI9pPtMzGsdNnVKjU4arvcl121bdtluMj2o1BIbQ4MKZbjh124+vBviVA9J0yn5Mv8V9jNyrL5XkQ49QSUJA3Eed8E4BJAA4F0IMxplbHwQBU6s7lAHYGAHm8O4D1tNw4x1Vu6/9vnPMxnPMxffsWpnP0wWlANmwGSfWLPmNknBeFy6MJ8OvGVb3K8oyR995+Toax4HpNUdn1guiLnHUU1r66VCXMekJOZwy6a6lHLLKlJIhb9F1dc9JNXZakwyhyjVOn0fOnLHanbbARjZmWdB/0uRYsfbiMqQ5Viqv9MCiTSgbJFreCs786RmELhFQGd9ez/pTsPexiABVsr6t6lr99fjaue9bvZuzDM1NX4MQ/J9+foamRxJuoL2Osh/zdEcAJAGZBEIVzZLXzATwjfz8r/0Mef52LO/4sgHOlt9EwACMBfADgQwAjpXdSJYSR+dkSXFtiuNRAamIoomCKkMWsD+8uWJ9oLOEYouOxnkcCYZLGA4TBZDEGZENdJvqLwuVVldRXWpcMZCbOBJLB4J6dImWuxcOdwlo+Y3L8lZlhYFSx3kRqGHTROefud53n2vqx5bSnt6NQPb3rVq537KoVZ1Slh5NKBrZF/HceN2E3EY9XBZn4i9zJ0FY3+t8f4/GgJ51NEvgyl+5oJJEMBgKYxBibBrFwv8I5fw7AzwBcwRibD2ETuE/Wvw9Ab1l+BYAJAMA5nwHgCQAzAbwI4FKpfsoCuAzASxBE5glZt8kQmVgOTl5x4i7JIe4ltE3ULXXuvDm0L1sbSTa5pzuP0fLo2MLxR9VELsmAcKOWdl1ic9LFSqvGRH+q7yQbgTjbouUxY6CLwWX//CT4XVicQbRy0vNt41a6eb29RkgGjptjSr6+MQEIqAFtj+7U5h2DZdR/fWuhs34hxFgxDq4zqA0r4kZtrP02wlIKw29iaXkHInZEnPNpAPa3lC+EsB+Y5bUAvuRo6wYAN1jKnwfwfILxNgnCLJ56eS4gAuq4W4VjbddyvFCbQVIOUB0xOS4fh1wjDd+T563Fj44fGRyLSEC267C068pdlPTdMW0G4GHfxURfx/VhayNOcigU8Rliddj679e1g6UeHZtxLM8jTgFJkIT7vurE3fDHl0W+LJtk8P6i9Yny6RSqKneNzTYtcjZRlqBP16pg7rveebN9rpU1nhq4CG9zIo1Ahtt4qCZsoCYixzOsODVRXPbNyCJL6m/Y5t4cW1XLJJUMeCjixhnAw+A7z8DhlgySvjyaYBBkjBXfDb48/QUQXVpu2/a0JAZkUjVmXbL0k6xvk7jQ/FJxxvZCd3uj5VXloTulUv/R7kb07eLtO24MhcJGZOMkg28fMTz4bb6PcWojwD/2pDEvnSpbnmSQEgOEk+ZzI4gkVBNB+wZEoE+cbtJ2NPYckxaQ30s3+LxyRE3GdP486Z4FFCbXltSA7LIZcJ6MM45IXgiJ40aHPtvZlscZUWHfQT0ixa7nQ2lR1w7+F9l2qcm9iSyLj01VYfzeqUdI2AqdY76+RXn4mz5iM8U7ANwqE6zFQY3R5c5qohCHAKVSdF1Px8pw2Xtumr5PgytJo17HPc5/fbTMfZCgqsS74ZUCLW9EzQA1AcwEZCrCMCAKZBZkMvEvnU1/GrckRI23CblqWY3Bvl9rtB/g6wcPSTYG9ZfqqS0vmstOnOc8YYQsaQsMnIdxBovX+zYMsnHOrrGEv22qFJcAktOu3TMU62gaZzOIlRY418YX59FTqD0lzpOHzoVC024kzVFEx3DuQTt7asa/l/k8MKCbUL39b77u0GHOfdu99DE2P/23e/cyhcN37d10KU8bgXZJDMxH6Xq278udm0IDclixPJPRUgfbcOYd/4uUxc0Bn2TgPY90oHsTuVUCbkJhcOgWycCGjo6IzKSSgWYzYIVIFLFVrHWp2lYVJ7EZFLc5S1KiHq1n9WghCx43zitGYvWN0dWcuS0sAHx5THShtrUbbBaU2NMs/E1die0qQu48BgjC7urWmZdLaz9utH6wFrpHWrskBibiIgGVI4vGVbJQR97PEeBkw147+aMWowtx+LurxwNB26M3gc0gz7nz5XdtbqMxo7YxOMeWjDOmVZj8n2SHM+tYEqhCyiw71Zj9NVijf2PGQ9ro07XSOUb7+KJl9RZPKkMw0J5ZsTYD12n0emyLd+y8sBSazhlx4Npzo5KvhXjGEAPOudPd2Z2uhNRxMEtJITz+Wh45SIkBEPumKi6GvnBlGUYmtPvc9VvqtP9x08acV4VGrmYikoGjH5gLipuzDI2gflWJW/3AE12Hrptm2iLnc8UrVjIo1zhM+SyNa1dRuYWmf1BZOVUMRDE2g9P32wlAvK87h64mCoMlPQ+/gAN0PtC5xQIDcnjcpta0XXuQ6iWhVxFtgS7ktkt8c+5a2Yfretz9JGE+XMGpSWHa9VoKUmKA5Hp8kzsJ54C7hWnLqvW+YiZbsSJosEk3Y7rNwKP2yDsIgIsg0WJ71tLCOE7bmBSYbC+MJi3sxrhTeoflGY3DtI9VLVaFSAZASGjUfU16D+gzGTusFwB7jIXpWkpvj28TG6Dw5+RUE1mOWw3glvODgM7EkkH4u8zy3CiUo4UziI6cNbin7lGWZGF32tQSQtj1CjtnRyAlBnC/NHsPEiodm2tpWYYFC4tvAq0zJIM4e5kvfbRvzqlj5kRzi8r6JJ62PCRa0UR10bas7XrE8iScsVZF2gyChc17noUwJWCKbSafaJR5lBglIeiK98vHcemWc8PxiTbidjoz1URr5U5ZhauDXOWESFu8ifRsqrb+bJIBdx5zjCL4ZZPoCgG9X6baNpnNSD9WqJssYzt2B7OkaJ/EwFzsHEuN6aKmGbEYc6apoDBTJRS6UUih7wqLqIkckxtca5vmv3HaDDzj9PWV58m4J/oc1DXY3ARtLqjRtuwwnQDCNqPHxX/57ZGcon1zzFm9WTs/6XPUbBpMly60PihhNs5Tjg2uLpPYU1zlupoo2p6N07faDAokBrSaTaJznOUszQbvrn1cvv6TuJ/6YHr8tRS0T2JgQD1bJZYrmCK+qWJQx2tqs9ju2OA+buMYE7YNXpKAvq5JXEuFaiE8Sie0awxF2wy421hNQVXj6hpsKo9EEdJODi/8bePOXMbBnGcx8PXxl9fnJTonbDv8rYYXt9MZ51wjVq79OYL6ThWavb5LmlX3T09TYiEGnlmcnEiGv8tibAa2c8xOlR3GtMc47QwO6ef4Pftrz+LIkX3cA5LIMOacn8XsyVwqpMQA4WJ3xK76g1QT4/XZa7T/gLIZhP9rau05WUxVRCxX6VMTeU4OvYmSSQZ5rhOKXmTXJZdkoPVntRk4xobCJQNAXJNNTRTR6xcwFt2bKCzfJom5KxlhoVlCFQ+QNeZQHDTJRfq+2nzdXVHiADEgF2gbSJLcjzIaVptBwiCtJCpW19h0Bst9fqXD9TvPqerXHJejf40Y0ErcysT4oJwjbEhqQ2kKpMQA4YP2vWDiePhbNyAn5/wKjkAm/31nqmOJE9UZevyB3cP8N+YQrdxKAZJBPq9LBu7gNGh1qDgP370uREohv6lrqbLtuFx7TR29DxxAny66u/GnSzf5TwraDhtXnHcSA7JtLjrHmUBqco+JlFvOs+UTtDMT7mNxY4uLM9itv0iJMbK/PTUG5zyU+o25nciV2ZASdNVe7OlYWb09kUpuRyMlBiAvvDExzJeQHqc2AyC5G1u8msgcW1jgS4OgqjEjibVTXWL0pXHejsCbOMLkSwKnnesTISQyknsKJQMXZ1YgyKnllghk83mFjIK93NoFIbQHDe1pdusF5TIzhqrM2R90NZG5Q1+0vqPcxa3S7i0qmjjjus19lFvmlA9OYmCp2zkmIyhHuOj7chHZCB+gPyPOuZGzLJ4aKAO/DbY4h06VjdteMylSYkDg8h/u06VSHtdF1XcXhqHsLvHQF0SWtH5nORmGebJB0v2Y6VB8gUQubteVvCtON+xC3uir0pGXxTRU5jkPCLLXZmBtLZ7zsqajcNhLCnEn5GSMamGybcATNz5FrOKCyDi323ycah9He0m4VXoZtghku2upuyx5EkP7gms73RYXpLXFqZrIfK70/pN5qjFCXCuOm1Mmjtuzv5Mg2yST/t2iWWubAu2SGJi326YKAMIHo1IIm2qiidNWxvYVEUMLVRMBKJe6T+8CJI9ljIAWb4ZKjVt3Sznmjm+2cZpt6Af0e+7idGgdpSayeTJFuXTbWBxDoc/QZkB2GKej6jsPYeQkc6Y8dOKoAfYBmf1T6UgRA8Kau5LWmWoj25hpfdu43RKDfSG2BZ3Zdwazj1nUT0gMSLXymAjkbBwxIMd872e5Q+cTUdEVuAUpY8kIbzCOxu6vmRDtkhiYcAXAmO5vZpyB1oaT27L3FTcW+j/r2eBbwVxIbeVmfVcMg9mPMmBqdWLGQGHqVZ2pALR+maYL1/S0jliAZGOhzzB6PBJjAfui4QtC46S+OpT0fbYtvNSbyCYlRKQ8NeYY24B5OElcgiYZWI7HBZ1967Ch6NOlijBg5tj8YwbibQZxLt/ifsm65vtmOIkE5zjGaEq9SSRmZjbo6N82jqZESgxgN4QB0UllRiBfdMSwsA3Xwy1AvUD7ou02GC6uVshjIs4g3mYgchPp/YRj0OuaXK75m7ZpH5rel2tqa3XkG2PT2buC4uLKRIshbLmJosTb3mfeWBAUMkzXI7ucE1yg/SuOkNoMbC7MJmFXF+nKs+NU0TiGSK/dlkgh1mZAyob16Rw8W1t9Nzev3+Owbct4HSogBUpQI+88KaCJKH2BdVr0vrVHHUrqtcF2/S4JpdRIiQHIC+sQGW2cRhlj2kNyvezRhcs/XaKcabIAHXUsw1gBEchRbtI2hpzS28NeP66vPDcXevvkjqSj4HYCmCya2c0VKtjE76iaKJ4Qm1IPR3QhTuo+btM/03lXl7PEs3D7IuLbEMg2pmSupVq34tvDSJj97DO4e/BsbWNw27jC35kYNZFLBaRA1W5mDdN93AbT1kbHlmRuMjBnPduQberMpkBKDED0lzHqEVOfm2QSRDifODWRqY7IEzc4z6nqUPIIZONFoNdielUltRm4xmaI0nRzEdf5KoW1njNJveTJ+rWPRe/DhCugzR//EZareWFmzkyqG7cZa+mi7rrvNpVfXDStuZA6M3bS67NwGj5GAsbYyhgLPMVsY3TN1xWbwo2dtCgDblNrcu3bhBbE55EyKbNACZDuhad7EyURABlz7xVtu/5UTdSEiEjH3F4e4e7ILGAwPTjsfUVdS/1jMyewvhC4Tw4S1UHnvH3eRK5AKnNCxm2WEjc+Uwpx7pVMF2owmNlOQ27Szr1rZY4xuu7HKfsOtLYdnudeNCJqIvDEi5wJWq0sMCDTeWa5Vs6tRkzXYuiKQ3BKt3TeWyQDbXrEEYMM0wyoNhuZDVc88Wn4x6Di5r1WnL+LGNL57JMMqOSvezCR55H3R+/bwABs2mYnBrYxp8Rgh8I+MQPJwDJxOexcq4kkC5dW3yQG2WQTLZQM9InjVxPZ60UlJLV4xC1KrrEZ9omE6ghTBHdxvLbWfGMJ+wjvVWXgsWVfnHyOALqBlekLc4wx14TJRQM6J2tb3zj0Z6b6zDriEwq5j+aYbG6dcddmShaM9BUlSPY2XGm0OY8SvfqYbS8pcTWr0Puo566yn8PBY99pE74oZRsx2FFJ7VJiAPekDjxZjP+qMEmKgkJdS12bq4i23Oep06IRyO6F12UzSOJeWQgxyOfjVUxmuVowbJ4akfO5W9cf14eCeuGiQWfyGkyiTn6bi2XWotZJKFxpcyyQDPJ0Dtjvu+16XZJBnOTgqg+YkoF8HrRuzPlCMmCed84+JtpvRpN8o1JYQ6xk4L5ulzeRa4xUJaj+NwapZNDMCDklfz3TgyTJJEhqIFOIqIkoMUgogupBZ+4FwSkZJNjtydasT8USGrh990rn2k31UvCcIgsztxre4/rIaAuMq235bTRIo2rp7wwzJUZ7uy7Q8Slvloas32ZgLojBYm/LDUH6cBF9E3pUblwEsrs/IHTnVYRkwdot+hhikuIBUVWV651xvWu6Adlg1jTJwO5aas5JSugTvaOetd02T1JisANhm9S24+a+szmLOsCEzyXRBvMFpRuMJ5to+g6rrjM4otdTSD8udQUQvY+cHEsq8jJmUS+phdXSeZJMptE+ovfJZSh27XNA66g2NddFhwulC7btHWl7LolMs4nK7zhbT5RD9hMPwL6QxakATcmJET3RbybO0uq6iKa2j4LWt1sycF2/17XUYTPQHCy0OemO5HfBt89ZGmewgxHJjhmj11XH9TS23Om6pp1rLowxs8Wc2PWaZBDbnchamjAdRdZhnI4LVjLrm8cjLotUMsh40vcai44pGYSGz+jC71usfX2YY3cRlRrD+4NWM6WNnEUnHSd12tpVkkEcMRD98MhvX9CVra0k0q1VMohpw1R9UT97n5eWa2ymZBAlBvL6HPfcZzPQpRhiM9DGop/vijlxoVDJILUZ7EDEvbC2RS6iwnDMgWhqB/9Yop4RBU40g+/wevhoko17DGEd//W6FiHOw2M+Jkd74cFAI0UpbEFnSQLRon2QctjHru7Mkx8t00pdBuSyjCkZROuLccQTK8WZxnmtKe5YqTVUFds+CLQNUzJwza64rKWuSHZby5nAtdR+v5N4czGDILmTRNrLG7zeROFv145qumtpEUFnnmOFbpRTSqTEAPFqorCezn0VZzOIkQyM41QySKb6MF1L3Qt71kENknBnVnWF41ieh+eqoCwbIpIB7Pp3W5xBNEWFqw/yx+InaV5WEqLCjYXK9kIXE4FcYYmQdrnR5vI8kiQtLs6gGJuBbSnz7Z9tlpWXMZmEUPwf2F3fgzhJrIPhL+dUB7lUTj4vQI0YJ7AZ5E2GJeE76oLtUorZ2rMYpMQACdREgeSgcwCT562LtGHilZmrtBQChaqJlP6zoswdtWgiiVCZ5+b1hL99Cb5sv4Myl/oB4QtT5tnYw1xyqERBx2jjsqPSiOtZkoXb0rdvDwtXO7oaBVYim3Th1SKkLWkI7JKB+ASRqorzd7qWigpRycAvSQBmKghxQM/h42YSADFGRhiCc8fubPRlH8P5h+0S/E4qGah7Hpea3nYOoN9/nRGCVl64msjjWkrO//tFB4s+YlssDVJiALLYx9x1U09M85K7pIuXZqzGL5+ZHvy3TVw6N8xweEUMKssyiSZaxghBdo2Lc7EY9O1apdUT1+ZoPGbSq/Oion9YXxmGfc0r6YYj+uLZ+uYIX6Kd5CY9CS4h4qJoG7tzrOS3aSC13b+IHcUxPm0xsujU7IutkFJDNZF9sTfHktTo7spaSs/bb+ceztTk2j3PyDiDgHEwx2YfxE49QgnCVFU5XWjlt8vbSNmlKPRklK7r0ZlC9cwyLNlzZQCG9OpkrUefSd+uVdhvcPdEGoFSoF0SA86Bnp0qtP9AvHEuiY3ANi8/W17tPU5zj5jEQHkTVZZnEvmqZzLRoBzbeFWUbIVaQCgxSCIZ2DjU4HyjnIdeQWUZj2SgCAYQLBhJ0yyoPo8c2Tc6WG2M5KVMSDQBsdet1p+DMJqLpU+asYFemo2DNKUlVZbnoZrIJslGTiDHDxneS47VDm3zFsuKkec83G7VOi+M+8Pos9QnSxI1kamWijOUR+xw8n95hkWIq4sYOzdXIuri8oybYdPKGdChIn5Pj7IMAI9atdRol8QAMLwiErr/6ZuO2+vYJubsVZvJecklg4oMC4yAFWWZRLpDBma4TLoWI/FSVJRHI29dulaXntwssxlzVftlGZ/NAEEdtWCYbnyuawleSCnau1/K8LdVTeTgll1EwvxtLpY+acY+Pjuxou3ZpIxcnqOiTCcGrh3SQo5ZHFcENBGB0jLihmNWLqO2FmizZWq/jYBgmWOLZ0QaNG8g7lT7mNeJ4H+4eEckA/r+udREWlxBeCyTcTOJ9J3YWpe1VzL6D6K1d5Bo0G6JgY0rdHIl8ttcmBRHpbUR8+Bsh+kLZu6ZENoMMok4hIBDM2Bz97R5oADJvIlcumsg+vKZKSCcL0w+JBhqwbBFeUf7Dt18yy2Sjm2MYiy0nMuxG5wiIUB7DuyG3529j1Zu/na5Aboim33jS7bvgzinPpuPbADv1KWra5JjqohJkex0x1XqqJyYR8oDzIR2zzPKiUBx7XlnXb3czqwoQmg/R9aP2AxEn+UWxoTSlXIthXVYbkbu5yhxsQ9fW1t6dKxEj05i90TzEedNYrBjvEpFfzuuq5YFW8BRHEccCUO3GGAL9RYyYYbDK2+iyvIoF2ODKzeRXTLIB77srslua8tVJ4gqXbNVK8/nw/pisba3r7jq8w4dKm0G9oAek+NVUg4QvsCuW6XGWFmWsQbn+SSKyvKMldi4/PB97SaKg3CM3+b+2pDLB1KeOtoQs0gqoq1043EL8aiB3awEqiEn5pFNB6/GrFAmFzi1OCZ3bw1/a8GS3B1c5iLwSpIoL4sSL3Of8zhQqTSjvB4soO99h4oM7vjaAQCitgOTGfQ0WXK0X2JAfoc5b/wcsckR2CIZ4/yEfYsooE/cDAslA5t+0wbG7H7PZrd5LoKjwg08CKebJB2F7ThX39EXXA3JZWAFxMt3yj4DcfX4PYK0FVlDJQBE/ecpdxgu1u5FHQDenvAFq57IJxlkWLjYuwijafMNFiRzzI57oNsMosc5j57LubgnlQFht3PdQX1j3IF6yTG/cnmOQT064j+XHmaVqLNSReUi86a0ozLSqrYp4gI/zXNMhkE/J1pfjFcngq7+XTm+TAZFHSv3SO+6+imDvl2rcObonbz1MhmmSVFNjVhiwBjbmTE2iTE2kzE2gzH2I1neizH2CmNsnvzuKcsZY+w2xth8xtg0xtgBpK3zZf15jLHzSfmBjLHP5Dm3MZ/vVQnAOTC0d7i5vGvSmDCDf7SFSpXHGHmtnBMpM9MF12wX+kVhM/C3DYiXbeE6wplzNd4oZ5rN80DHro0hgWRgW2xVH0oEpuXUDdG3UFeWZ4KUGnnOUZ/Lo6pc51xpig6z7zKL2st2ESr4KShWBN9pM9DFdn1B0Am4DcXkJnK9Bjb7Q0MuH3jzqKNxuYnU8bh0B3kOdOtYgaryMuOeCdRn8ygvy3hVgAoqkSIlJNq1OM53SqXc4yrq6EM3IOvIOZ4lrWd6FSpBNZFzBAPOP2woKdfrmYwFlaKaGkkkgyyAKznnowAcAuBSxtgoABMAvMY5HwngNfkfAMYDGCk/FwO4CxDEA8C1AA4GMBbAtYqAyDrfIeeNa/yl+dGtYwUevOAgAISrj5mI5iRQHJGoIzmdODWRheDoE01fDNQmGOu31jk5atNtzVrHFIe5NDpmomqVZGk23GURsZ1TNY5bMshzHiy2asGotyxyNjVRVDJw9SHbh93ryqW2iEgGpA4djrl+h0xCskWPwiUZ2HbP04iB41rMQYVeMHF2Fh5IPLYxZfNcqt1c54e/TWLtivh2DBlvXHVMRPKNi4vJGS92A1ETmd3lDWbMBlMyoCpQl5SixnjdaXuhQ0WZbD/K9dO5VGZIUU2NWGLAOV/JOf9Y/t4MYBaAQQDOAPCQrPYQgDPl7zMAPMwF3gPQgzE2EMBJAF7hnG/gnG8E8AqAcfJYN875e1ysqA+TtpoUIeclF/IYsdrMSZLL57Wc56IN/4OLsylkHQv7tvocXC+KqVqiCFVcxkm8CMnA5V4XHI+OR9VVHhRdq8rd6jiujz+bFy6pVeVl8rg4L0IMiB49FP39XLHKkUP7BqKLNlUTMYdkQMdjzgc3kXGMz/Ms1XlmZk8OwZ1XGAbkOP97avikYzXx6qw1mLGiBoAuldHnUe5RNb09PwzOzKigM3VfEqrPVHn/bh0ikf/uVN2iPOJN5DMgU8Ju8ZyK/AbHXOkt6JMMArsCkcJs9gBdMyC96nYMLSjMZsAYGwpgfwDvA+jPOV8pD60CoByxBwFYSk5bJst85css5bb+L2aMTWGMTVm7dm0hQ7ciIAWKUyrAK0G5tJneOHGLvd0LhyyyDs6k3DPRTD2nb5G79rRRQXBMLs+tKgInPeP+Ok79OBQxA7p0KPdeR8iBhjEWVYZkUJeNSgYBd2YhbhTLN24P2l+2MdxK0RmVq+4fV2J7tH16Dr2fesLAZIuey/VVrxNti9oM1J1yRiAHNgXjnjn6o6htiO7BnFW2J8fC9czU5cFvIV2FvUW8iRz95oPF1DAgWw3qOpxxBhZ3bV1NRMdlZ4TyHLj5lbmyvsdtWqmSjPSrPjWRih/dQbQgOTFgjHUB8G8Al3POa+gxydE3+Zg553/jnI/hnI/p27dvo9szovdjdXM0WVme6376cQRFwZVbRsHF5Q/r09l5g+k5Px23h8G5qPHyoE3GmFRzEW8izYDs5yjFdViOB9yeEUjEObZIyaBLVbn3OtRiyhAuPOGOc6JeVDLQ3VLNsVLc+/Yi0T4D7n5zARmj+LapYNS38vum5eZ4KDGgnKeNQNrgclMN5ipPriZyu5bqx4N75qBQfbpUok8XEalOCbGqXZ/LBwbkuGtS0pUaQ1KbQeBibZG8Co1AVvPJJhm4mDGN+HuSR7ruoXpmVHiz3TEthbaSXluSZMAYq4AgBP/gnD8li1dLFQ/k9xpZvhwATTgyWJb5ygdbypsM6t6qh+HUdUfOCCEMR5xEKfKg3AerzYBy3A410e4DurknmjznF6eOwoG79LTWUS9EhdTtKj27TV8cF9EJABu31UePG32F54ULe+fKcuc9yuZCtRtjoTShjOiKYDVEJIPQo0RdT9xzMH3ygwXUsWjn8lwzOtNanyzZGPxWi6YYS9hH0kVDlU//1UkRyVD1S9sa0bdzsCBWGm61cTud0YBG85oodu7VCXsO7ArAmBuE+JdnlAHZ9q6I78N37Q0gzEgbaQ/u55bNSZuNISELRsAlAcHah+5aqp+TxICsMSPaWNxzLkxZoRN4X6K8TKaF2QykZ899AGZxzv9EDj0L4Hz5+3wAz5Dy86RX0SEAqqU66SUAJzLGekrD8YkAXpLHahhjh8i+ziNtNSlCbktOTMc9NyfM2GG95AsY9dOPky7ibLMrq2vJ+MKJU1HmFkEDDs9qcBTH1GJcVZ5BhjFs3NaAhhwP9Lm07RwXroQ3f2k/o63w90efb4QJl46Wc66l1XCt0xu3NWBzrTCYMxa2s4dciNQgbamZ1fsZZwxVqCjLGLl01BwwXk55bz9esglvz19ntRn06yryId149j7YuVeYQ6ecbOsWDcSzI88Fp96lqlwrD/X6YWqP3561D47ara8WiyLqiOPxier081yDyhOJzXZfle3JHYEsSmmglY9xsKEhn7fGkHDOPZKBuk5TMlCMQyay0CaRDGw5rQC/xx+VzIP2LfVskkFLshkcDuCbAI5ljE2Vn5MB3AjgBMbYPADHy/8A8DyAhQDmA7gHwPcBgHO+AcCvAXwoP9fLMsg698pzFgB4oQTX5gXVrat7HedFs+/g7jhqt77YpVenwGZQYehb47yJ4kLLqSrKUC+6jVOKGBjcLhWDaxvEi9+hogxgwMwV1QBC7ttMz71L707o0kFfkOLmpDpuiwNQL2BluT/h3tNTVwAQ3KNqJ9ysXtRRi9+9540JzgtE/xgud48BgrCUZRiuP2PvcIwOLtJsJ8P0+uqaAGD0kB666E8WvaQRyNRuQhcOqtfPBVymuE8mMVCIlwykTcaiKjTbUbpu5QmjxgLQCGT7dYXMSqgCdN9vt2Rgy6NF74eJsA+PAdk4Vc3N16482una26myDAO7d8Dxe/ZHngNn7S9MnLv16+ocv6mSo+O31bvg8KHoVFnuJLBNgSTeRG9zzhnnfF/O+Wj5eZ5zvp5zfhznfCTn/Hi1sEsvoks55yM45/twzqeQtu7nnO8qPw+Q8imc873lOZfxHZSMQ724gd91jO5RGelU4JTgiPRbqNJVq0UHAHbr3yX4TSfuvBvG4wfH7ir6sFyyRgwcIjht04yYpN4NddlQMnDpdml7GcZwyLDeWnncUzFf8McuPgSAILLqBax0BOaoa7vg8KEAxLVTaQIIFwpVPqxv56DffEQysA92n0HdMVBmNu1LVDouTlXNjT5dqnDcHv2CBcLmTaSicBU214Y5aHL5PAZ064BfnDpK79BAnocSoVVNxKkxVeccTfuPYgBMBF5A2ZBAq7ZtoHsljNt7ACaM3wPH79lfU/WUSTWRDx0VISGG1qSSQTYXSgYn7zOAnBDvWmraa6ibc0RNlBd2rRF9u0T2TVBYuG4rBnTvgG4dhcqzd+dKdKos83Lx9Jkp2Oqret8+crio40jx0RRotxHIAHnZ5L12Gk65WoRyQs2SidoM1PP6+dOfAQC+dvCQ4PyuHcIMqbSLirJMRPw+96DQrOJKbWDC9BdXoMY+KhlkGAvGdPFRw7X+RXti0pqcZpzuMiSa4eKoygP9dLk94Z66Lz0DVULI8ZqquAZpsAz195wY6PwLUo6HKg8tD788PzIH5N8OFRl071gR8UADvbZMlNCGBJLkXIL7XlKffl0yiObJoQZtAJHgPGogt1xSVL1krS3mejm5Z5ccPQKdq0IJQahL1aY10VYuOHwYAOCiI4fJcRPVbD6Pob074S9f3d/Ru0BDPpTCR/bvimcuPTwYW1w8hTMdhSMCWd1/X5biT5Zskju2hXPK500UBKZpaiJ3nEEZYQhajGTQFhFEA6r/8tuZ40R+hwFQQjLQ/Ktlm58s2QQAzg1tzJfF9ChwxRn4vAqU0dPc6YqOXdkMOlRkNK67fzeV/5+MMc9RxqJqBx+D0oOkBM9a1DvZfB7lGRakmTARpggIVQmBZGCofoJcOGRcecLt+cZK3WmpUEc51X5dq/DPbx8cjF1dUzklQKT9QO1QpscujB3aC2GcB9diG/xqovAeKFBHBU1NRCq5FvVT9hkY6QMIiXacZJDNR3dRU/3k8zywczDHYqiIlLKDUDVRNsfRoaIskBqSOBcAhndVwTaD8HlFXEvJ/LBlGKDIMIMpZO7xL1y7BYAIHqXX4DJgUzrVkmwGbRamz/iCtSKNg1oITKjMkMpPWqQNtr+AlJOjc/GDRRtgg6qiJvZ954/RxG7BRdjhkgyG9+kcXFxd4LNfJhZaz0KgXggfl20aOHt2qox4iFSUh4SyQS6mKs2EiWzg2RJyRIGEEYxRSWj5iEomXCBDacEG6r5q29w9n+eoLM9EVFPZvEq5IOtRNREhRPSZdayk3DM3JAM7RDxDVE1EJcjHp4hwnfcXbtD6M3MT7TmwGwDgl6eN0vowbQY292JtTMRmoKAWdDr3KMdPYc5PGnmbI8ZnOjYTihiH/Yc2FLXYv3/NcdbrVDaDpy89HN07VoQRyI50FOpe+7bHBFSeLa4/W8f47//fIgDAC5+tCq/BwvUrpiaUDNL9DJocDNSAHN7ufQd3R8/OYW6dPQZ0DSZVfVZIBhkm9rnN5kk6B+OJ6QErIWauFCEaKmthxKMpzzGsT2cct2f/4Ng+g7pb3dAU1GQ3ubfBvTpZJYMMCeiqtHDSM1fW4NVZa2CC+txvqw/14S9dfpQmGagNx6l6R3HzGcsLAIQvtIogppKBmae/PicW7NDmA9QGNpEyra6JPFHt2VwHs/J4uOjLa5IGTJtraTBOQ01EDZTV2xuwuTZLGBDHwstpSo6wNcp0fCw9uRat36oRDDMCeWjvTtitfxdniox1W+qDcfpAF0gFNTYa+c2Y3ZsuINRE6gskg8DeoI/NREOea9dH35ucQdQUgmdKFn8bgaXI50PJTM1JumjT58ak7TCX417JyA2bzULdTzVHoU3m+Ws24625jQ+4taHdEgMgGoHcr2sVRg3spk2YKqLj3ritQeoGdV9lIMpV2fTRgAgeA4BT9h2oj0F+UzFVHQtS2Tquw3SrDMZA/obEQHgTJdUX21CXzWvSzu4DukZEf4CqdziJUrVHUgfSRCAZsNADyXjJG3JCQqMLwg0TZwEA1myulWX2sWfJy77NosrLcS4Ns+GizTlH9fYGMR6LZPDr52YCkHOB3HM6j96auxbrttTFLnqcG+6H8ie1TdFEa1TNqCQx81pNVaS61r+9tRAAInYrE/m8feGkmXvLPRk2F0qJW9ODB1w7167DRSSFmsiuqsoaC6gajy3SWiPWFldQ+v6FczKsp75/fPxugSS0tT6LhhwveCMam73dNDQz6JqF4//0Fs67/4PEfRSC9k0MjBcz8JemL5j0ftmwVXBRD76zWDNumt5EYdsMI/sJLyI6P0b266J5GpkTQunWgXBRULpm9wKX1+pTqHPqSGoHynVXlul5fxT2HtQt2pb8vu21eUHZV+WG5lT0pwFugJjMj7z3OTZsrSeumXp/Su9uEkIgqsoKDMhkEeveUUgmoQ3EjrpsPrhPSzZsjRzPSTdJaht4d8F6AMA/3l9itRkoVBh7JNjqmQyICWrABPQ5IM7jmq5fsxlEYl6UnUPvIyrFRqUdimw+71YTkcynrvTkD76zWGufGk6z+Xyws51vDELN6LcZUGKRzYdkSSV7FHspGATDNOASm83Ez1YG51FmAVBpNcT1PjdtJTZsrfcaew/ftQ8AYDz1hLJcccQN10FgmwLtmhjA4EaUkYq+PIrzX7dFN/wEC15Gn8VHyId+1Mg+eOWKo3HcHv0ibohV5dHbrqq8NGN1sE0m9XrxTQrTrXK4lD7oOUHQWUUZMhmGJRu2ASB+87IttSjTFN/mGB9593MAwHmH7oLfnb2v6Iscny1VYYrLpxw4Ve1QBN5O5SqjY3jM1GkHNgN1/ZzjtP1EbvgRfbsEZTa8NXdtoKo7bESfoDxPXvayjN52DXERDRfzaPumHQPEztOjUwW6dSgPLsy3uY0tMImqQFbXCOnHzBRaZdg5Xpu9BtOX12gL4IBuHYLnpGwKQdtONaTFOUH+3SLVhdl8XqaZcC9c5cQeZEoGPiKr2q+w2Azg8SRTbU14Snj4banLGmq8qGTAeXTr0hwhLFTllTGu19DoaNitv2AADybu2rb65rWYdcbs0jNWrVcs2jUxsEoGhl5RiYj0BVU2AyCa5Ou9hYKL3KU3WZDJw5w0Zy0+XVZNxuBeHFTKhw8WbfBONNMT5z+XHo5XrzhKO8eUDBSC/ZllvZdnrgYguB0TaoybZZ4hda3iOsK+VOCc4uifm7YiqOeSDLZTNRZ0LyvVjiIgL0xfhXlrtmgc7fb6HBgjG40nYKZ6EdsQXZzKMuYmNmFjqpwSs28dNhRdq8o1AzGgE7Sde3bCmKG9wuNOyUC3FaifNOfS6hrBmFSYkoGFyQCAHh1Dew5dsPcb3B39u1XFqq6oaykF58B9kxcBAB5653On9LrXToLodJPuzCYx0AzrTjWRPgYqGcxeKeZw3CKpgrgUKsttWUujxnKa6nrFJpHc8NOlm4TNQItY9jBsRKKg12DWNtNWmPe0V+dK7NqvC5oC7ZYYsFAyDZ5IVoqipocG51zj5jPahNINlqYbWxy3FAzBUkW99KIh/8sKhAtG944V2LVfV23i/+GlOQDCdBQKw1XgFnGBTDrG8XuHLou2pFtqcVI6YyB8iaOSQWjglg2G7RheMgrUH/z2SfPBuZ+4mqDPVF+cdK8hOlYbMctzjjLC9VLoHlAsduH9YNEGTQpVni+L5IZF9BZ0qSyPqDTNOoAlbTLCa9WT79nHlM3lowZkeVZ9Tjy3bfVZ6XcfbWTfwT20nE1KTbStPouPl2zC5HnrYu/L2/PX4WPptg3ojNyznwpmg45R2eY45/jqWBHzs/uArjActq2cuSkFlRGvI2W8fXnm6iDOIGzNp/5T49alG/N+PSyl7vBadILlyjRcCrRbYgBEF476XB4yE28AZTNQz+zq8XtoD/R9yR27Fp+4x2YzItnbcVMD345VEZ010yWf/Qb3sNazwaxCd2wSx0WNo3YTGWVtNgzXYl0bkQxCmEbu4X0749R9B5JoYNK+GovleswXr7wsgy8dOFgbz5tz10quT11TuMgO69OZGJDDdmjwIV2c6TWsqN6OXJ64RDru9/w1W6zlSu9N79uVJ+2mPUt172jbnYl7K6A8YEKVmMpiK86zD6qmNht5luqv8t7q06XKaTPI5gwVj+R2N25rCMti7osJW336XnYn0pBSC9Jxh7/1Dqkb7b6DuwOARuRoMLNSE3XtUI5jZXS6a/zq/DjJQEmrqp64V2Gt12aHe0uUGu2bGMhvzoE/vypykt8xaYFuZCoLowwBoB8Rq4HwYbomgck9AHqUcdKXQEwchwjtyHtichW0XMFcaH3jMI91ogsNEWfLmHCHtRMDe1uvzlqtleuqOv0e5Qx1nsqzpLVvGb9tofrDl/YLEg9q4yT2JLXQ//6cfa1xDA25vPW+0WvYXJvFq7NWW92ZCwJHQMD6de2AtZtDKaKzjP1QLXeqLMO5Y4dopzMiGrw1d60wfIZNR7BYSiT/eP/z6FA4x+idewAAfnf2Pk4pWLkV0zFwwKH2SXZf4u4jNaZ/unRTUK4txojOQ7pJkFIFV29vsLqWZjIMW+tz2Fybxeuz18S4f+vqH9W/iX0Hd8eAbh2CNahpZAA72jUxoHrhP786j5SHdYTxiONJGeizqrpOe6BlweIgMHZoLwzqEWaupC+ImhADZG4cdVyc738JfCLodc/O0K6Htm0PlqG/9YXWPwpTTWNXP2yty6FzVZl1IrsMhfdI3fOm7fWRtsOFRJyUzQlVjqqzeN02Mg43cXVFqtKxA8BhI3oHRkTOQzfcjhVlVsnjiSnLsF56mynXVljqqb5c40sCDkHU1Bx77MNwvyhFnDnnyOc5ttXnAhVK0D95KOu21GN7Q84b8KUcDcwNhdQ9+/HjUwEAPTtXOudoQz4aMGZmG/URJEBwzN88ZJdofW6XiFXAn9meJrlZOPMtddkgoHJwT3GP+3erCq6rb1eh7jpj9E4Rqd6cRxTqUl1GboVPl1ZjVQ3NXFz8XCkU7ZIYmNxnnnOctFf/4DidMFXlGeQ58PQnYouFBWu3aByNOQ/Lyxh26tGBHA+5c2UkpRx1hryIvqypPre1eVK1MHf1Zv0cT1vmb9eG8BQRXbTZjjz+weINeG/hBqsKTBWZHOQ5kts9cdSAyBhtm7aoiFcA+kLjIa4uewgde9eqcuzWv6vm9RRGR2c0d1YbnpgijOfH79kvaIM+lzjdeBLQfaG/d8yIoJxy32/MFUGDVHJQ4DC2V1QE1NKXSz+triP0qss44wyyMi6Ensuhp9i27SBntmHbRc68FoWOFXaXaXXeATLDrHn8/UUbUCPTqH/tYEF8DiJpRbrKTL4XHj7MwXzZx79s4zatf/E72v+cyDscvadUBVZKtEtiAOgLPgcwqEcnACLNAn1g/bp1AHiYcoAmSAOAi45Uid7EceFLr8uiahHaJr1wOlWWk8Nq0eFB5K6JCeP3sE5cEx0ryrzHzT7l8OT4xbfSO//9IpGS46nvH4YDd+mJnp0qnP7pqk1z0ppZLC/7wq5On/buHSvQubIsWORshtE8F9lXV9XU4vEpS4P2yzLu66FwEgMy9jrp+kuN05f+82M5DuYkZgrKIE/TWZx4y1sAgEuOHqGpn4oB5yJholpcexOPKPWbIzREKk8e7Vo51zdo8ahofGoKXV8v/e4tU7jBTCUhbQvzVgsm5jtHDotVE+kbSYUjczEvnZySgUCvzlURBkv1rTzsjt6tLxbfeAoG9egYXGt9ljAGEcnA7U2kNA/mOxE3CyiBUZmHlf2o1Gi3xADQ9dcDugvx75Kjh2vEoEwGptA8LnRSDu0tiAgHsH5LHWav2oz3Sf6hDJlxyt+eSgaUw1GeI1eduJs2zq8dPMQrGSh88cDB2n81kQ664VUAwP5Desgx0Uph/0CoElH344AhPfHv7x2GqvIyy2If/b1Kbs7TVYratK+rTtpdk8YottXntNa1Z0D09NvqcpE6egIzN5frVBPJ+6Q24aG5clYTkb2CeJq5nsVFRwyLtKtw95sLyMJrP79v16ogkM8GMRd5EG1M3UmDe8ZDIqA8acK8QGLsr0gXYu08C1T7vzxVz2+kFr59BnUHINRWiW0GAMA5nvxIqLjenLs2Vk2UzYceW3TMtj2ZAaBDZWhMZww4cmQfeZ448Y05ayJqLRXrshNR45oII/ejkd1JVDobt4Y7BFKJVGHXfl20xIL0va+tF30fu0c/fydFon0TAzIF//7eEgDAlw/aWcsDn5EPuK4hzKBJXc/CgB3gv4Z+VvQRviDKC0BzGVUj4MBTHwsVw11v6KmHla7aNdEOHtbLGsimXlilKlAZVdUL0aWKuCbKxn/46CfyOk0vlGi/ES6HA0ulOKxiEcw6LnXAox8s0YLTJs9bF/xW0ko+j0CEB1zeSmosFjWRfKxfGaMvtkqVpyKN7528KBjnWuLmSblBl2Sg5sDzn62K3LNBPTrGGgTNhdME58DrMpgMcBFCjsE9BZNy3J5i4Xjn6mO12BNK5HxjUmqgYLe5oC/xPbhnR+zWv0uQwsNGbxtyeW3vYrXAHTS0FwDg7AMGx6qJTMlA/druIAbhm83Rs1NlJIgym+eRuansPSpamDamhvXz/4gANqtkkIBho5KaLfnk9vqctoGQtkWo/D56t8bv/25D+yYGZB1UhrLKsowWjKSybNKgKC0HCslNtH5rdF/gVdW1WLxetD1Der2s16KZQ9b8NzK/zla5KP71mwfi0OG9g5w+LlSWZ4IIR9v1mVALwZa6rCGZhETQFsDk43rUi2B26QhcLUhNou5xnnPc/LLw+tpjQNegbZp63KcmUs9wtwHRhS3POZ6SdqG6bD5opzNR6dGspGr8n5EAQgB4b6GelZYO44LDh8Yueg1ZOzF44FsHRdozQa+9LtjmVCws/bp2kLEnYgEy00q7xhSmerDPh9qGXNCHeB7RRpas3xYwB2qcnAPvSOIr3DJlmw6bQzbPsb0+amOgDARFoDLjur0hsrMauWjVlhnURd261YZFGcaCpIoA8I9vHwzA7Vpqjlv8jr4H2xty6FgZJZxAmAbbJQ01Fu2SGKgJp57Lo8Qjo9zYG1csFOG5Z+6/k8ah0ECfft2i4uUHi8Xi0JDLB37LZx8QqnMoB6PpcQGctNcAPCp3C/MtopPnrcNny6sj5S9MX4W5q0O/9XF7CeOs1YuDh1IBECUGG7fVY8PWeue+uoqDUZ4Qvzp9L2s9ajBPCioBKO+Y+lyYY0gZeB+6cKzXZ/7ZT8VirzzDKDgH/kW2HDUzVwI6N6ia/8PLc7R2dPuFbuc5dERv7Xmb2F6fw9b6HB5+d3HkWLeO5ZEyAHj8wyVhf4TwXvdfkTwvCOILxiTujfKKueUro52xH4DbbVktUpPmrA1iI1xxBiuqazFL8/UXEuvrs4WRW212D9jnhdoKVaWBVtcBAP98f0n0BIRqIkDESaj8SFtl+gy14xztbo2UoIf20aUIca36wMzNn3p3qbTGLfhg49W21+c02x+NXTjn7ncBAG/NS7OWlhSMhTpCmhK2U0UZulSV49dn7IVnLzs88sAUd6VACUPPTm4rP+fAljqVHyiq5/3nB0uCh/6bM/c2T/e6/yXFJcTzJGw3XDxfmB7mWjeJQW1DHq/NXoParIMYyMXhJ09OAxB6T5j7Idu2jbThzNE7Bb+tqhnyUxFRofaKHA6gpKfL5FajdEy0/n479wjuNyXQFSSJoVr0Nm3TpcGXLj8KgNya0Zg8u/fv6n2Oyq3WvGdylPI8cUzln7JtbUnPNjO+Kib3kr8Lo3hlecYrTb0u4z+iqR7C/0rictkMTCjVq4I4xz0vtpN06UHvsvvlMj3EIcOFyunCw4dhRN/OwXOaI43BSg+vOPuuylGEdHfBAyIbqGmgpSpaZXcb2K2DpppV+5zYLp9GlJug1Rev2yokA01NFGVsyixSWinQbokBACuXq+wB3zx0KPYd3COiVwTClMWAnv5XuXzZNsfJc46rnvwUgP6CqtZ//2LIYX6D+FMH43IYLgtRt2y0qLFciyeNGKWo8XgycB4uDK4JaybGU+jXtUoLxqN+7bZ8QNXbGyLcOw1Es90WVUTjQIDQoKlw+n47BW03kHGUZ/S02YAReAehYph/w3jc+fUDAYQbJgHQNsexPTXVp82ArM771gMfAhAqPgBB0Je4jqgKysyqazKvdTTOwDKmhyLpEULUGioam81AEdMhvTppo6DqGpo23jYGG3E0jbfH7ylcw3952ii8duUxQXtn3PE/ACFzovDB4g0Rnb3Lq5qqakb07YKduneISAYcoUrZBDXWR9ol1X8gJfNN5B2z2SEqLM+iFGjXxKDeweVS+DwtAPICQgRbAUCnqqhIf4/MHR9tP9mDVbXMyabsEUmw1cNhmXM4wlFKnH7729byyfPWYSqJ9DzH8GwyOzSvY3uDbjij0prNA6lbx4qAsKgFp4zmxbd0PdGSfA+QKSiWVeOLUn33dbJ/9b1vh6oJ26Y3W+ui+lu1ANuerM+1VM3HA4b0tJynQ6k0viwJKJVmfAGMjDG8SxIMHrVbXysRMWESg0mz12h2AEDf21hBMQfnHRoyOIyFXjmAYMCC1i1jsG1Ha14jddcGovdrUE+dAQhSTlsuOpquW6j7cnmOf320DCukxxwlBt06VDgNyOsdkoGZ2G7pxui7TKWSYHwpMSg96h36bwpbArade+kRxoBYkC75+0cA7Fz1za/MDX7360aSdiV8rq5Fe/H6aE5+F0yXtN+cuXdwfaZhzUWk1O5YcTC5b4VgHls4SPpybaVpr+VYKIclIkBF+TRpxCXaButLrmwCdDGk+Lf05uog03xHxp6hMSbSgCxtNWOlZwxFUkKvcPvr8wEALxJ1XVxbI/t3QceKMlx5wm6ause0FQTtINybY0ivTuhQUZaIiFDvIwBalKyCLfVKtcw/VGWoPpR3njLW+uwWNu87c76a75x5u1RqdIVhfTrD0BI5z1WL/BOGrYmqifp2rXJ6/NkcSwBga11WU/OpmAnaxtNTV2DJhm2a0Xi0VFWVGu2SGNBIVoquFo7e9g5++4jhkbJNJOmWzzUQCD08AL9bnz4O+8tygVQb7EfUBS6YQWlfGzskGMBfXp9nOcMN5V/uQrnxcj55yaEAQuJq28/A5ioKhASEutz+4NiREU8llVM/Djv37BRbx2z7oKGCW6eSAZ0/t351dKSNVdXbI2U+dYja21h52QDA4xcfgju+doBznnTrUIFZvx4nkgPKSiurt1ttCbR/IPSgU/BJBiry1geGqMR35RNCNXo3eXaMhRLDt2SyQ5/d4j4inSmY765p4zKZODOp4oVHDNPUNHSxNZkmtcib0r0pPdsiigGxV7UN/5DGb7WFrLqknKWNPX7xYvD7kqOitr9SoF0SA4Wxw3Ru7uUrjorUoYvCp9eeCEB4+QAQBmZ5/BrpfwzEEwMNBXKPrhf24iOjBIqCZls9cBexsGWI2oNu4JIEV5ywm/e4aXBUPuU2Y/D/PS3uHfUWUThhVH8rkVAb/lBwuHMfURwyvLf7oIS5mByzez85/rB9ldwQsKcI+HDxRmf7vvE9fNHY4PfBw3vjlH0HRqbJhPF7OM+/Y9IC5zHqXaYQ54IMAHvt5Cb+o+QmOTbJQBl4N9BgK7Dgv1INJnluXx4Tqh7NVPE2bycKk1nq2qFcU9NQD7MenSq1uqqxhet0KbyDJeLfNnyaNdUG5dKq7EBxdkCb1FoKtFtiwBjQtYP+AtsWcaqTVy/8gO4dsPjGU4SB2cKzuYyvNtCMmwDEbliO8fpgcuIm6IL6yEVj8b8Jx4p2LXXPPmCQvzPEq9hcag2bv7cK+KM2nHvPGwMA+MM5+8aORSGX507bCkWfLpXOYwrm+9axokwrz3OOl2aE6hxTZ23iO0cOA0Dvi3t8Y3aJ2gxMfMvgdAG7SjMJ1Hk0oA8ALn54SvDbt3FMj07hpjXmfVfE4NARIQGmNoAKYx8I33OjRNyUDA5NQOApOleWa2qdLRbbj8JctQGUAeUVqCKWTe8kBbWF7EMXjtXKlaNAfTaPj5eEjENjPAYbg3ZLDGyosHjAUN/zpgBVLwFRH2cFm5HvL2QvYturesnRoTj5TWLA61RZHuj0bYv2TV+MLsAq507YRrI8SCYU0TI5OxPHj+qPxTeegh6dKhO5KwLATjIlAhB9J7XEbMY1/2xcyGUHhNC4LV8/RBmVQwP4yuqo3twFxXi41CENlqRtFOZCb404L5JhVOf99U1dDUJ35PMZLW/+8n4A7JKBwk/H7R78fnXWGmdbvid9MknTsIcRONibbJ4DAH9/73NrG8fs3hcVZSzYd1n1N91gyihenKHbcB64QAYAypOVQdkWUQwAe0up6kgjsllpJuqyeZx95ztBuc2QrJA0/1gxSIkBQTHuu7YXsCcRM6+MUadEMx/aX7pJMkBH5ZXP57lmlN5kcfk8bb/w5bGJtICdiNgkJHMi0/2DTfzaEiehoFxOc/k8VlXXYuiEicGxHxj+/wqunEImRLoHu7phm8WTSoEurMputHFrg1FHlwxWbKoNfNaTYHe5eLmIVVxUadSoaSMYOlQ+njio5632kbb37yYG/bqGnLG537cCjeSmC3mw16/DQYLOD6qjLy/LBIFzNri87B68YCzm3XCy6FNSg1kra5yeZjZ8QaoMTUbO5Z2k0oyb6h01p1R8g8JfvznG2bfv3Wos2iUxKKUUZr4j3zhkSLDJCAAMMzhqZYgMG9D/Ul97igUyFP0RyfGYnDXdWlLB5R6qdZ+QmzT91X2cYqVHZaXUDdk8xzl3v6MdcxmlTcmAuimacHnG+AgKJZTq2e3W377PrFoUb3pxtrM9G5SdyUas1tTU4nsyCMyFJNKRuWCftb9f3TecSKFdqsrRt4t7cTXxe6K+U1OBpmsHdO6cLoQj+ob3tiJww41Xn5mLqbolFx/lt5dR7z8Kdbsu+6f/3rtw/ChBFI4OdvaLjv6jz+3GYyC0yZiEq4vFkUXBF8DWWMS7CLQjFGT4TdgG/X/X1w/AeCLqArpk8Jev7u/kzpR72ufrt+Hqp6ZFAtP2t7ibmQu4DUn1zFRnHCeq2vLYmO1c/9+ZWLZR97ZxeROZ5onrz4jnjsy18/g/veWs27kqej0uTthGA6/2GHNNqPwy67bUYXcIDvma/3yGt+eLxHxUnUJBib9rcTNxkMXdlYLq8SvKmMbJ0+03v2eJXKcLerArlyEZZEmwGE01PfGzkAtXNgO6mVBSqIVxcE///ahzeFblOUd9Lq8FBsaBqkeryssw+adfCCQUuqWowhfvetfZls1l1sQJo/prLtU+201j0S4lAyC6CP7i1FFWVYrNUEeRNaIjTfUJ5c6t3gdk8ozbe4C3L4VHP1iKU27Tg796mh4QSDZxzDXPxZ3/lbjVxRmYX58T6oTfuOoYvHbl0eGY5MtP3ScVXDQkiZoo2AfBcck+jkrbKS3mltmIpy1i3AXlNriRpLGoJ3OoqtxOaOk9oLYgfWwh/vbNA7FzL78L7TAiGVSUZTTDLiUM1KaisN2SIG51Ta0moT5G8ia5bESKAXC5HCeBLT8RDXp866dfsJ6nVK8UN31xH29ffzeyC+wsYzWA0AX1yic+1dRbLhxhZke1wJxbLoapFGi3xMDE6Q6O/IfHjfSeZyaXMx8wlQyqLIFAlJiYkY8Uwx2GZQXTTRZIplow8d8fHBFbh26ookDz3VP969A+nTUu0pdXxcWNU4J57WmjrHWU15G6h0ntDCa+61hoFWxD7OwQ6wdYEheq59S7c6iSmUwSj22ts9sh6Dw5c7SdGNOxucZ0+fFiPleWZTTf+4qyTLBxCxAf5aoeI+1z7uotqN7egPlrNiNrcNxxHlxJAt9cMN9BQGykpOCyl9ncbL9y0BBLzRBDfARWqolU8KLPTgXYvQ5Nw7ip6j14uF/aawxSYiDh4qLjXgqT4+loeNnQB25Tn1BuzOc/bEspHQfTw8KGYhiNiB829AVN5YmxwSetmFGiCjQIhxIWCsUxlZdlUJZhgZvqX99coHFpNhULNbR36+DfUrCQ+/Xi5UdGypSxuj6XB+cci9ZtNXIJ2Tug88Q1F6jUMsCxQYtS13zvmBEao0LVRPNWb9ZiKGzYqbu4jz8izJJihI7/01vY9ecvaPVNN24Fdemhy254TNnJ4mBL39E7gftwMfBtOUlTXQPAqF++5G3LFlx2+9f21/6bDKQv3qOxaJc2A+sm8Y5FKi5mII4DpXr7zbVRj584F8sk/Tz1/cPsfSdRE5EF5NZzRzvrnXPg4MDNdqTFuErzMf3Z046LuB4wpEeQedIEvfajHBt70GutKs+gLpvDR59vxO9e0A29NkJlI24UNB13IWK6zRCoNg36+PONuPnlOUEqDYVejrFQycD5XEnxLg4OVqmkTIJSUZZBQy6PP7w02xu0pjC0T2dM/ukXtLQjvSwSIwD83yl7av/F8xGER7ldKonxw0UbsGjtVpx36C5YTmxKNIutwln7D8J/Pllu5dY7x8R9FAvfOyXSViSXbGwqWZPZoTYKG3NRSrRLYmBDsZJBvDoiPL7FogKw+YsX2o+NMwKSGcTp2qYiSW04a/9BATGw9UdTefi8IVz3+V+XHOZREzmbC5AxiME9kxfhnsnRiGabzj9ug/HdieheCDGwzR21XeWtr9nTf5xuWfSAkGkY3qdzopxHLucBJTGZ6oeKsoyWwlyBbuNpwrRJuObbMEPF2bNTZZDbSBlf1bxQ3nK3GJLJn748OtLuLV8ZjV+eOgo9LUSo0Cjdrh3K8d7Vx1mPXXL0CLFlKfwutgyu9OP2QEJTWrrk6BGR9qmzxh4D3O9nKRC7WjDG7meMrWGMTSdlvRhjrzDG5snvnrKcMcZuY4zNZ4xNY4wdQM45X9afxxg7n5QfyBj7TJ5zGys0u1exkL2oF9a16NsC0SjUIr3/kB5BugoKmtVytCV/0A1n+Q1WCl8oYt/TJO8DreIjfIpoDe/b2aqPVsZvX5oEwK5m+fgXJ3hfXl9enBNGCU6/P9HPu4ywADDQoj4pyzAsvvEULL7xFOs5lADEpT3Qj4mDNH4izt3X9QxUqdogyd6ft2kAwHypelF7Jyi4JOBvFmAcd/V/kGHPOu8w0Sa108UxRa75YSMExeD9a45z2ll8e1JT+O7/pcSGYcP3jhlhTfFiqp2bEkkkgwcB3A7gYVI2AcBrnPMbGWMT5P+fARgPYKT8HAzgLgAHM8Z6AbgWwBgIVvkjxtiznPONss53ALwP4HkA4wDoCscmxNcPHoKH3/3cydXEcRjq5d2pe0crh6n2HwaAXXpHjcB9ulTh2D36oX83v37/6vF7WBN23Xe+O0AlCV2ldXxCjroPtmR+gMjdM+NXJzlfKAVqpASEF5dLvaDg2wD8zq8fgI8+36gRWltGTYULPZyuiQOG9MDHSzZpRLVQ241JYOLOdzEfX9ijH3543EhcdLh7/Emkli8eMAhvzV0bBE4F/brmfwG8mSta37TDfO/oEdhnUHccTjzvirGJxeG2r+4f63gR9O8h0i5u34QtnblCHDNn89gCmk7dZUNsT5zztxhjQ43iMwAcI38/BOANCGJwBoCHuVDKv8cY68EYGyjrvsI53wAAjLFXAIxjjL0BoBvn/D1Z/jCAM7EDicF1p+2Fq8fvWXSO8EOH98ZVJ+7mdC88Zd+BuFJuauPC/XJ/Wx/K5d7MG7bWY+ywXti1Xxecd+guiUTHCz0LCL1u3z1QOmtfCus4QgDEZ5u0wUfUKsoyiRLPAcDEHx5R0HNWQ6X9mxz0dwvMIOm63jG79MSZ+w9yMh9lGRabHNCnnlM4Y/QgHDq8d2SLVjODqULSmIZCwBjDkSN1249PmnvzJ8cU1Y/LQ9AGX0yOK1+YCbW1polfnGr3gEuCYtO+FINiyU5/zrnyH1wFQFnlBgGgSb+XyTJf+TJLuRWMsYsBXAwAQ4b4XcB8oMtRJsMaJYplMgyXHet2P+1QIQJTbG6lheLs/Qfh3rcX4aYv7hvRw7rgUn1QPHLRWFz/35nYqYfdAwUIvVwKScJng7nBjs+dluKDa45LFETnQ6GeGMqDhxIQqsO94oTdYl2PTVSV2efakN6dCopXcGHeDeNj7Vi2vbrXbNbjMO7+xgEYt/fASL1CcdtX94+vBD9TkITJKAZ9ulQliujt160Dnr70cIzsZ/dki4PP7hKHHaU1B0pgQOacc8bYDsmzxzn/G4C/AcCYMWOaKbdf4YgL/kmKCeP3wBcPHJyYECTFkSP74pUrjvbWOWBIT7xx1TF+P+sEMO0mSf2mbQtYUnzpwMFatG1SXHni7rj8sanaIkBfTpsNKA7KgExx4C49NRfNxqCiLINS5DJT6TMai6TcuU9is8W1lAJPfPcQHHvzm4nqFvOsAZHmvrGYef1Jib0OG4NiicFqxthAzvlKqQZSoXzLAVBry2BZthyhWkmVvyHLB1vqNzkKobcdKjL48phkRqSmRHlZBnt6PH6aGq6MqoWAGnrn/mZ8k+iKTfzhS/sVdd4Xdu9ndQpQKOZZ2HTT//6e3TW4OVEMR3ruQTsHSdkA925rO2IsSTC8bxfc8pX9EqsZ4zDvhvEYacRX7Du4h/ecdyYcG5t+Pi49eqlQbC/PAjgfwI3y+xlSfhlj7DEIA3K1JBgvAfit8joCcCKAqznnGxhjNYyxQyAMyOcB+EuRY2oyzP71+OYeQpvEjiAETQkRYZo8uRug66Z7dqrwBui1Nvzu7H3QtUM5fnzCbtiwtb7oKHCKpPr6YnHW/o69uosANcI/94MjnIF/FDs5todtDsTeacbYoxBcfR/G2DIIr6AbATzBGLsIwOcAviyrPw/gZADzAWwDcAEAyEX/1wA+lPWuV8ZkAN+H8FjqCGE43mHG4xRtE5d+YQTumLQAPzlpd2cW2MbguR8cgVtemdtoldnvzt6nJHr5UmBwz45B4kC1RWmhYIzh56cIY2mpuNn3rrH7/rdUTPyhSOfSlJHCTYUk3kRfdRyKPCXpRXSpo537AdxvKZ8CoOmSdKdocfjq2J2tic5KhZ+ctAeuOnH3JlMv7D2oO+5L4AEWh1KpJ0qBX5+5d7Cfdly20x2FJM4PLQ2tkQgotM8I5FZjem6b+N3ZybeyLBY70gujWMSlwdihaAHvxE/H7Y7fvzgHn113YmRzoRRNj/ZJDNA6FosUbRPD+nTGonXJc+jvCKicOjsl0HM3Fb5/zK74/jEiUteV2C5F06HdEoMUKZoLk646prmHEMH+O/dEl6ryxHEBKdoeUmKQIkUK9Oxciem/Oqm5h5GiGdG6fftSpEiRIkVJ0C6JQQuwlaVIkSJFi0K7JAZAYRHIKVKkSNHW0W6JQYoUKVKkCJESgxQpUqRIkRKDNon37gKu6w5s39TcI0mxoyDTbadIUSzaJTHgSTbVbU3IZYEta8L/Hz0ovjevtFZv9cjn29fit/ht8YxdWDQZuL4nsPRDd52alcDyj0o/thRtBu2SGLQ5vPxz4I8jgdoa8Z/Jx8pb+YI56znguh5AvRGt+5f9gZsavxFMq8Dn7wAPngK89Qd3nfmviu/Fk911/rwPcM+xpRnTtg3xdVK0OrRbYtCmslHMfFZ8120W340lBis/jS7ALtSsAN78AxAnbU15IJRYbFg2Bfj9cH2hee16AByoNvbW3bgYqKtJNj4Ts/4ruORSItcgPk2BmhXie92csGz2ROA3A5I/IwDIl2h8n78D/H6YGEOKNoV2SwxisXEx8P5fm3sUyaAW/Yzc4kpRunwRmUHrtwF/PQp48lvJ6j95ATDpN8DqGf56z10O/PdH7uOvXQ9sWy8WG4WsSKmMsgR5atbMBj77l79OrgF4/BvAw6fHt0fBOTD1n+Le2PDnfYHfkVTZT18K3GXscPXuHX41ThwYeVVf/ZW4N5uWqAEW326hWPGJ+F7kkUKaE7kGYMr9xc39do6UGLjw0OnACz8FaqubdxzbNwLVMZu/bVkV/uYcyMjFM0/0zLmGZAblrWvF97yXxfe7dwhjdK2DE2+QC2RjOc9FcvtBKrKpxS7u+gHgzoOBf1/kr5OV+91uXOyu85cxwIf36mWLJwNPfw946Rr7OZtXhIQLAKb+HVg9Xa/z0jXAfcf7x2dDIN1RUZbrZUoqM8XdvxwIPP8Td9t1W9zP1QUmGQ4uF9t8Hpj+lN+G88hZwH++Zz/WUFta+897dwLP/dgvha6dA6ydm6y9VZ+VZFjINYhrbcFol8QgER9Vu0l8NxWHUb8NuPMwYOkHevnW9eGiBQC3jgZuGZWszZf/D/hVj1BCoKqLX/fR9ezLPhKL/PoFehvryEuyYFK4AK6fF5bn8yFnqPqiL/SUBwQRKQY21db2Eumo1X3N1YdllDBwLq5z4pX6eXVbxPeOMMjXb7UvjnShV88oKDOIg8L6+cAHf3P39ceRwI0xm/8smyLmyTr5/IPnLRmNB8YD/7oAeO06dxsLXgc+/We0PJ8HbugvmK7GYNVn4fi2b9S/bbhjLHBHgv0opj0J3H1EqIYFgGw9MPOZeLWoib8eJa61BaP9EYMta/Dm1jNx2hpDBbRospj0K6aK/0osp8Tgs3+FCwMArJxW/DhWTwfWzIhym38YDtx5SPhfEaUk+OxJ8b1MqiPoomfi00fF9/zX9HK6GD9yZvi7nKQ2nvhj4KFTgTkvABmZ65CT+/Tc5W4uOg5PXgA8dJpetvh/xbVlYtWn+v8Z/wFu3S80wAZqFwMr5Xlr59iPlwoNtcBvd9IXVrXo2BafO8YKG4iC73mb7QGhVOfDvXIPq9sPEu/H81fJduQ8Wfqe+H7vrvi2TCiCMuU+fz3OgamPAg3b7cfvPgK4fUxYl34DwCf/AJ44v/DxrZwqvjcuCsve+j3wxHnA3JfCspd+LtSIPqyZWXj/NqyaDmxeXZq2DLQ/YvDHkQCA4zc8Crx7Z1g+S1L/6f8WE0lxFmohWP6xUENMvEL8/+xfwF+PFAsKxZpZwMeP2Ptev0C8ULOfD8vopFWG0g0Li7gwC2xGTdXfh/fIOnX68R6Gl043uUdshujtlQj+9PdCYlAqA2q+AVj0lq6+WNUIokvRiewsdu/xwIdyEVKqgBqHOkoRTroo2HBdd7suPakaRDkA/O9WQRgaakNO3OUM8Pg3gNVyoZl0Q3wf2br4OlYYxMiUmJMQIhOKGMQ5Oix4DXj6EuA/3wUmXiUW33mv2Ov+78/ieytxtX7m+8DMp5ON6bruoWS4drb4Xj8/PD7lAfFNF/d3bxfvQhJMvEr04ULNSrH2ZB338+7DgZt3S9ZXgWh/xIDipavD30qcfuc2oWpRqJELtNIBT3tcLNbKYEonCiC4+mcvs/e3cJL4fozuJEqJAVmMbtgpyRX4YdPjK25HYfMq/f8jZ+n/lYRke9m3bwSWvOs+3hhMezz8bd5jBZs3jal20+oTTnjZh6ErplrYpv/bcR6RBs37ZeKhU6NlSe0pswmXf0N/8VG2FB9nuWFBtIwSICr9mcQfABa+mWx8FC4u3Ydf99O9kPKe2AkKFUMz8xnBxLx7O/CPc/znrJvnP26Dmh8f3gvctn8oMU4nDN+2deLbfI+SQjFh056wS3t/2gO4aSjwm76CaOxAQ3j7JgZJ8NFD4vvZH4RlT38fyEpj0LICAnmWTQl/33eC+NYeNhXhtwpdq8KS95L3o2Dj1v92TMiBRvqHMIZSKL20bRGhsL3YisOi+lvatw+f/D38rYzagD7e31oIprqvNrjUImqx2bY+LKOEgwZ83by7u/1Iu3LcVFrwcea0f4WPHxbfiku1wWYQbyCE8u9nkz6k/YVeU6HeVUDyxZAueLk64LGvhcFvnydU/yV1of3gnvB3ZefocdNF2TToUoaGSuf1ljmr2ip2sX7qO8D94+LrvXlT+LuJMwq0P2Kw88GF1V/xcbRsybvCawEA5r5gP48u5ApK3UCRJRPSFJeXvB/+LsYg61r8qATyfoyud9Pn4tsltirYFrkP7xWLDrWz/G6wvx2FgfvZy80XwvaCuMbquh9K/TOHPMvfDgx/+zh732LwzPfF99t/Cst+089dPymhpOjjIE4uA6qScsxrKlR9ZJPWbOpNW7tK+qSeej7VCZXMfFD2DMDOnNyyl3BBVlhkSESue7DvV6Jlyz8S7sNbiP5+09Jk41RYajB4trk098Xwt88oXgK0P2Jw0cuYy4Ynrz/ksOL6eeSsZLpiyvGZnOEupO9Zz6JgON0GTf1vgnHGqYEUUTN98dfPK06lsMvh9nJTQqnfGl38XYuqaxw9h4nvrMP1z2do9S2iilB1S6jyK4YY9N/LXl6zwl6+Vao5qJQK6F5kxWLyn6Jl6y3qGkUETOcFF3z3xfVMlQRkPh9qV/nnl/VjVE1H4XrGq6fr/f95b/c4k8B2LSuJ08PCNxrXfgzaHzEAsBsnHIztAVBD4xIZBFXl4VxcqHZ4p7hgSgauxSkpXpA+5lvW6uXmwl5HOLSDL7G3Fcc5qrGqoCSFTDmwfEq0vgtdBsgxOvozVV/5hijH5CJcrgUyzjDsg8voDADLpP1CeXnFoVCff8Ctdzefg4LyqjHjIFiCpWD3U/zHbQR8poWJOeF68b0gITFwPbdsvdvDS9178/32MVWv/8Ze7jM+J4lDSupAMO0x//HnLk/WTpFol8RAw8bPo2W2F4wumBWd7G2ZBqFb9wP+/e3kY3njJv2/yb0VC9MOYHLS9IV5/257G3E2g4AYGGq1bB3wzKXh/zg1nQqgcxGfjx4wxpWNjs1FRF+9Nvy9D+EKVYBdEvQaof+nLoZJ0HcP97HuRIV23LX2OubCYs5VZQtwzZ1dDhXfNLEhAJRV2ut3I2PqM5LUr4rWtUWK23T3CjYbiQ1UvUoJ0poZ8YTcJ9EOP0b/X6gaZuiRSBS11JDQ5rGhEUxJCZASgw7domV0cVSukxS7j9f/qxd08h+jdZNyhYCY3BRv/T78Pexo+zlJuMmthmSQNbilJLl6YiUDeVzFOCjkG4CeQ8P/GcuCYQPVE1d2DX+/fUu0/cj1JdB/J/HwsXl7mIuLy7YByMXCbNPDJdJjgw6MHs/ndZdJwEIMYqKs1QKoPGWC81zSFDG60piXPU+LVLUSYVsEr60vFdkcB5qjae1c4J2/+Osvt9j8FDr2Stbn4LGO83voRNckLgr0Hf26J2VKxx7JxtNESImB7eWkk3XIodHjpneDWlhcYqaCjZvqu6f/nGBMjsXLJzqO/rr47tBDLzeDq2zeEibUAusymCoCOvMZvTyX1Q2LNqmLXpsiem/dTI57uLtcQzRiOIl6zYwPscHWjklobE4BCl0sEae+a3nntvA3DfKj55rE1jTaqvG5VHPq/puxG0niRGiKh3w2ykTYrm06Wfyu3eTui+eSeeZQw/VOo91pudV7Ve0x6vqexYB9w99KujEl6vptevS0+Z4p0Dq+9Ba2bLA243UTISUG+Zz/Rcg1RHWW1MKv6iSBTdXCE7qmuSYu9Y2nHDQQvlwqilSBqm2AcBKbqgOtfzn26x3clGsBpveq+87267idpAZQahRKoHL17vD/fENUP27rg7pSUpsQAIxx5DRq2A6sI4vPwNHRZzj1H/Zz1dgi40g4V2w6/FydCDKjML164gihy8ZgGxdlenrvGm1n6ft6Wdy1MSYkw1y9fX+GQgMXfSkhlERPPYxM+OIcKLFU8+mTh/U61LGgc1/3+Gc/F/6mi7vJHL5HgmC/Il2r0ziDpsUXOj4R/qlZIfL2uFC9FPhTDPeeb4iqL0xMdXCQ6uV9+lL7cQDYbZx9gTNfhvE3hr87dBcBPj6XPYV8VuQ1+uNId50kBmSbPzhVnW1da3fVpXrfE3+tH6voDICLl+Ll/wvL+8goTBpF/uWHw7GYoJzy5RbuzBY5vHkVcDtR1ww7UucOqZtihaEb7zFELHi/N2wMLqJOF5LdxgEVFskgSWR6tla/T5Hj9Xp21+OvE982wkX3P7j4zfD+AmLOPGmkePBx2qMlESurFHPp172jdWznUyn2wpeBg74T/ldBnDbkG/zpYnbaX7/nPrdQNfdNCVQFXAKS0Yl5R464Aug+CDh6gvjfi3g1mobwPU8Tc1wRrMakvkmIdkkMsqwCMzvL/D8PeAI/+u/t9xbpJInITUOBV68Ly01O87ruIpxe4VvPA9dVAwecLyb7dd1FpkuF776ln19WEeU6PrxXj5Q+/XZgf8I11lZH1T9XGu6DZ8vsnPceF9W9mmN4cYKfsLzzFz0I7PTbo3XUIr11nUjN8e9vA/8mL/eAfYFyg1s6Uqb/+HVvfYzH/kJ8UzVEt0GyH8tLef9J4W/TqDnlPj1y+AwZ03GXoSIsqxIvfD4nApzuJMbwnxvS46YlwJyJYcQqIDy1XAsmZUi+9jjQsWe0zt+OCX8f/TP92Kl/Ft/3Hq/fJ9Nu8cZv9eyuSh9ujmvOC7rbc1UXYNQZYt4CUekYiEpodL4c+3Px3bBV54AB4NDL7GPYul5syqMw5GDgxN+EHm8vTgiPnWAwEWtni3QxLpR3CPtbN093C/3eu3rd2k3RuW/adMqrovPujRv18/Y7V3x/4Wpha8o3iPd09kSRZ0phgiSA6+YKT6bruuvXcpFh7ykRLNbR9oFRWy0RvafeItLfKpjud995XeeW9v+6yCNj4qQb/Mm3hkoXvI8fsh+nRskjfhxKHb7FePTXwjE21AIPnhyt08lQ8XQdYG+rU2+/YRQIFwXXuIYeof8/egLwppRc/jAiWh8QYzfh8rAwVT1AqGdv2CYSp9HFwsTZ94goUBtsqQz+b61ICc3zblWZD6O/Lvzla6sFMfn0UWDS73QDLQU1tPcbFU1H8YVr9OhU9Syph85RPwWOuNweqa2giNXDZwD7nisWpg7d9XEpwuvChCXAjUOEytKV0sMVa9FrhJCiAKGm3LAQ2OkAu+QACInJZu859DLgFc84v/cOcBeJ21FcvW3u9h8lVIIqytpUxanrpSirFMzOH3aNOjQoKGkWCOMHzHYAcf992DlBxtUi0C4lAwB4YoBFlzjmQvHSH/J94DKLYWqnA/T/n1km/pl3ARUdgZ9Y8sUAoRHNhZ9L18ofThWeB0qM92GPU8OEZoMODIkNxS/W6a5/X7zPLdZ+X+qC/28t8Msi0kf/cGp0Qn/haiGa+2C6Jo65SJeYFL73TjQq9ZqVoRH7ifPchOCX0n1w3y8LCc3ETxbYXYfLK91xI+dJ3/W9vyi+x90UrXPmnaF94fpewm5jIwRnyRxZFR3DMnM/h859xbdSvXz7Nbu959ifCynosinAjy2bD427STcCT3tMSJPmuA73bEoExC9ePvzw43BLz7sOFelEbITgHOJSfIChnrp8OpDJACf9VnxMfOlBoDdRgV7lyHUFhO/fd9/UGR4K83p/ukhEMy99300IgGTbK8Y5lNgYphKhXRIDzoH3exic808lB1peCYz7HdBn1/DlBoD/WyMe5vkySvGKWUAnQ5QfuF/IoXfuI/SIFF138k+Ib00MF4Few4CRnjw7FF+xLJh08l9XHS6011WLzz7nRHO1AGLR6CIXm/LKkMhQHPaDaJnCXmeLsVMpRL1UrkAoQCc6339PvNSn/kl3SwWEvr//XsCQQ/Tyyk5AF0+qB4UMmfIm0fzWRPHc+hkv5ASPPvnQy4Dh0gPq7HuAi98ADjEC9woR6/eTBsYO3YQ0dfEbwIhj9DpXScnlzDvEvR08Jmpwpv74fUbqMQxqTIdcAoy92D+evc6OEmmqIrnGERBGoQiwCcUYJSEme5P8Skcaunt1bYdeKj70vQWAUWeKuXz+c0I1qua3ieHH6ETYhi9Kif9nMj7pwpeiErcN5j2wueYCgtFx4aJX7S7HJUK7JAYAwOki95OF9gd6rDTE7TY+1GUPO0q8gN12Ai6QuWzGXAR846monn0cMehe8jbwY0PtdLHMjdJ7JHD1sqhqReFCR2DTcb8ErpxjJzCXSIPoaRY1lgLlsE7+o5AezEUD0PX/11ULvS2F4oQ79gLOuV+vS7mrb1siTg84Xyxu9Hn021O81ID+clxXHaoU6AKiCElPI/22icunR8uuqxb69ss/C+8/fVG/+1YYi2LaXA78llAJKmTKQunnumox9quXhWL9mTF5oExOVElT5zwA7Hq8WIgu+8j+vPcjmXB/PEN/DgqnSdfV854Jx5TxLAFn3wN86YFo+bdfEwzIj2f4g8oAscDSPpQR+ov3hddxVsz2spcZbrIVHcJo52s3Re/HOfcLl/AvPyzuqTo+7Ehg3y+J39SWMnC0uCe2GAA1Z/Y8PWSiABETcF11lCmx4UfTovf5y0aa+599Ltqj9ah24fTbm0w9FIBz3io/Bx54IC8Wh9/4Gv/x459wns+Ljw8znuZ8e3XRffFP/sn55jXFn6/wzGWcX9ut8e2YWDqF88l/Kn27Ljz6Nc7fu7uwczYs5rx2c7K6D50u7tOiyZzPe5XzbRuSn0tRs4rzRW9Hy+e8xPmdh3OeyxXeZi4rxnZtN86n/4fz2pri2nFh3XzxKRT/+b4Y030ncZ5t4PydOziv21pYG7kc5/eP57x6BeeTbix8HA+eFt6ba7tx/u5dnK+eVVgbheLz98T1lgo3j+L88W9yft84Mf/iUL2C84Zaf50lH3C+fmFpxsc5BzCFO9ZUxgvdvq2JwBgbB+BWAGUA7uWc3+irP2bMGD5lSnHpGo646XWMHdYLf/ry6KLOT9GCkc8LQ16lI2VICjvWzIqqx1K0OTDGPuKcj7EdaxFqIsZYGYA7AIwHMArAVxljCTf+TZGCIJNJCUExSAlBu0eLIAYAxgKYzzlfyDmvB/AYgDOaoqPT/vI2VlU3MhtoihQpUrQxtJQ4g0EAqMvGMgCR9JaMsYsBXAwAQ4ZY/HMTYETfzti5V0d88YCEm6ykSJEiRTtASyEGicA5/xuAvwHCZlBMG38+N8bXPUWKFCnaIVqKmmg5AOqUP1iWpUiRIkWKHYCWQgw+BDCSMTaMMVYJ4FwARezzmCJFihQpikGLUBNxzrOMscsAvAThWno/59wSP58iRYoUKZoCLYIYAADn/HkAlmQxKVKkSJGiqdFS1EQpUqRIkaIZkRKDFClSpEiREoMUKVKkSJESgxQpUqRIAbScRHWFgjG2FsDnCar2AbAutlbrRHptrRPptbVOtIVr24Vzbt3QodUSg6RgjE1xZelr7UivrXUivbbWibZ8bUCqJkqRIkWKFEiJQYoUKVKkQPsgBn9r7gE0IdJra51Ir611oi1fW9u3GaRIkSJFini0B8kgRYoUKVLEICUGKVKkSJGidRIDxtj9jLE1jLHppKwXY+wVxtg8+d1TljPG2G2MsfmMsWmMsQPIOefL+vMYY+c3x7WYcFzbdYyx5YyxqfJzMjl2tby2OYyxk0j5OFk2nzE2YUdfhw2MsZ0ZY5MYYzMZYzMYYz+S5a362Xmuq608tw6MsQ8YY5/K6/uVLB/GGHtfjvVxmX4ejLEq+X++PD6UtGW97uaA57oeZIwtIs9ttCxvFfOxaHDOW90HwFEADgAwnZT9HsAE+XsCgJvk75MBvACAATgEwPuyvBeAhfK7p/zds4Ve23UArrLUHQXgUwBVAIYBWACRArxM/h4OoFLWGdUCrm0ggAPk764A5spraNXPznNdbeW5MQBd5O8KAO/L5/EEgHNl+d0Avid/fx/A3fL3uQAe9113C7yuBwGcY6nfKuZjsZ9WKRlwzt8CsMEoPgPAQ/L3QwDOJOUPc4H3APRgjA0EcBKAVzjnGzjnGwG8AmBckw8+Bo5rc+EMAI9xzus454sAzAcwVn7mc84Xcs7rATwm6zYrOOcrOecfy9+bAcyC2P+6VT87z3W50NqeG+ecb5F/K+SHAzgWwL9kufnc1PP8F4DjGGMM7utuFniuy4VWMR+LRaskBg7055yvlL9XAegvfw8CsJTUWybLXOUtFZdJ0fR+pUZBK742qTrYH4IbazPPzrguoI08N8ZYGWNsKoA1EIvdAgCbOOdZWYWONbgOebwaQG+0wOszr4tzrp7bDfK53cIYq5Jlre65FYK2RAwCcCG7tSWf2bsAjAAwGsBKADc362gaCcZYFwD/BnA557yGHmvNz85yXW3muXHOc5zz0RD7k48FsEfzjqg0MK+LMbY3gKshru8gCNXPz5pvhDsObYkYrJYiG+T3Glm+HMDOpN5gWeYqb3HgnK+WkzYP4B6EonWruzbGWAXEgvkPzvlTsrjVPzvbdbWl56bAOd8EYBKAQyHUJGq3RDrW4Drk8e4A1qMFXx+5rnFS7cc553UAHkAbeG5J0JaIwbMAlBX/fADPkPLzpCfAIQCqpUriJQAnMsZ6SvH9RFnW4qAWSomzAChPo2cBnCu9N4YBGAngAwAfAhgpvT0qIYx4z+7IMdsg9cb3AZjFOf8TOdSqn53rutrQc+vLGOshf3cEcAKEXWQSgHNkNfO5qed5DoDXpcTnuu5mgeO6ZhPGhEHYQehza/HzsWg0twW7mA+ARyHE7gYI/dxFEDrJ1wDMA/AqgF489Bi4A0LH+RmAMaSdCyGMWPMBXNDc1+W5tkfk2KdBTMiBpP7P5bXNATCelJ8M4dWyAMDPm/u65JiOgFABTQMwVX5Obu3PznNdbeW57QvgE3kd0wH8UpYPh1jM5wN4EkCVLO8g/8+Xx4fHXXcLu67X5XObDuDvCD2OWsV8LPaTpqNIkSJFihRtSk2UIkWKFCmKREoMUqRIkSJFSgxSpEiRIkVKDFKkSJEiBVJikCJFihYKxtiXZAK5PGPMufcwsyR3lOWuBIg9GWP/kRHGH8hAs2LbKjh5HWPsQMbYZ/Kc26QLa1F9eO7Jj+W9m84Ye5Qx1iHunJQYpEiRotnBGDuGMfagUTwdwNkA3oo5/UHYcwFNAPAa53wkhOuyygJ7DYCpnPN9AZwH4NZGtDUeIl5iJICLIaLOwRjrBeBaAAdDBK1dy8J0JHcB+A45b1wxfbjAGBsE4IcQrq97QyRAPNd3DpASgxQpUrRQcM5ncc7nJKjnSu7oSoA4CiKWAJzz2QCGMsb6F9lWQcnr5LFunPP3uPDrfxj2BH9J+gBj7CeMsQ+lxPArMt5yAB1lBHgnACss16QhJQYpUqRoq3AlQPwUQuIAY2wsgF0gUkgU01ahyesGyd9mecF9MMZOhJAWxkLkvzqQMXYU53w5gD8CWAIRwFrNOX855vpSYpAiRYrmAxOb30wFcC+A01m4oUxJN76RXLiKsL0RgrueCuAHEFHIuSLbahIk7ONE+fkEwMcQyfVGSnXUGRB7RuwEoDNj7BtxfZbHVUiRIkWKpgLn/GBA2AwAfItz/q0SNr+aMTaQc76SkQSIXGSUvUD2ywAsgtiQpuC24E9ed4xR/oYsH2ypX0wfDMDvOOd/pQNljH0JwCLO+Vr5/ykAh0Gk1nAilQxSpEjRVmFNgMgY6yETAQLAtwG8xY1U6knbQoHJ6+SxGsbYIZIQnQd7gr+kfVzIROp0MMYGMcb6QaiHDmGMdZJ9HAeRWNCP5k6OlH7ST/pJPxBc9ING2VkQ+vE6AKvlYgoI1cfzpF4kuaMsdyVAPBQiGeAcAE+BbFFZRFsFJ68DMAbCU2oBgNuBIEdcMX38SJZ9BuBdACNk+a8AzJb9PAKZRND3SRPVpUiRIkWKVE2UIkWKFClSYpAiRYoUKZASgxQpUqRIgZQYpEiRIkUKpMQgRYoUKVIgJQYpUqRIkQIpMUiRIkWKFAD+H0QCPOho5eFZAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(var.counts, s_ir)\n", + "\n", + "plt.plot(lc.time, lc.counts)\n", + "plt.plot(var.time, var.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Analysis" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute crossspectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "cross = Crossspectrum(lc, var)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Rebin the crosss-spectrum for ease of visualization." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "cross = cross.rebin(0.0050)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate time lag." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "lag = cross.time_lag()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvRklEQVR4nO3dd5xU9b3/8deHIghSlF1EKYJKURRXXRsBgoEoGogNscWI8RfUVBJNYkmi3tjuvXg1ibGgiVgjBKIRYoWIKEUFXRHLIkUFRLqAgkj5/P74nnVnlu07s2dm9v18POYxM6fNZ87OzmfOt5q7IyIikgqN4g5ARERyh5KKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKKZAUz29fMZpjZZjO7Le54RKR8SipSJ2b2oZkNroeXGgWsBVq7+xX18HoZxcw6mdkkM1trZhvNbIGZjUzza44zsxvT+RqSe5rEHYBINR0AvOsV9NY1sybuvqOeY6pPDwNvEc7DNuBwoEOcATWAcy61oCsVSQsz29vMppjZGjPbED3ulLC+W0Jx1lQz+4uZPVLBscYBFwG/NrPPzWywmV1vZhPN7BEz2wSMNLM2ZvZXM1tpZivM7EYzaxwdo7GZjYl+6S8xsx+bmZtZk2h90hVXdPxHEp4fb2azzOwzM3vLzAYmrJtuZn8ws5nR+3nezPIS1vdL2HeZmY00s2PMbFVJfNF2Z5rZWxWc0mOAce7+hbvvcPc33f2ZaL+u0XsZZWafRO//yoTjNjKzq8xssZmtM7MJZrZPFfGNAi5IOOeTE87Tb8xsPvCFmTWJXvvgxL9XyRWOmQ00s+Vm9mszWx3FdrqZnWpmC81svZldU8F7liykpCLp0gh4gPDLuguwFbgzYf1jwGtAO+B64MKKDuTuI4FHgf9x973cfWq06jRgItA2Wj8O2AEcDBwJnAT8v2jbHwJDo+WFwPDqvhEz6wj8G7gR2Ae4EphkZvkJm50PXAy0B/aItsHMDgCeAf4M5AMFQJG7vw6si2IscSHwUAVhzAH+YmbnmlmXCrY5EegeHfM3CUnyp8DpwDeB/YENwF+qiG8syed8WMLrnAd8B2hbzSuVDkBzoCPwe+A+4HvA0UB/4Hdm1q0ax5EsoKQiaeHu69x9krtvcffNwE2ELzWiL8VjgN+7+1fu/grwVC1eZra7P+nuu4DWwKnA6OjX/GrgduDcaNsRwB3uvszd1wO31OB1vgc87e5Pu/sud38BmBu9XokH3H2hu28FJhC+nCEkm6nu/nd33x6dl6Jo3YPRsYmuHE4mJNvynA28DPwOWGpmRWZ2TJltboje+9uEhH5etPwy4Fp3X+7u2whJfHh0lVZZfBX5U3Qet1axXYntwE3uvh14HMgD/ujum939HeBd4IhqHksynJKKpIWZtTCze83so6h4agbQNiru2R9Y7+5bEnZZlrDvPVGRy+dVFI0sS3h8ANAUWBkV43wG3Eu4ciB6zcTtP6rB2zkAOLvkuNGx+wH7JWzzacLjLcBe0ePOwOIKjvsIMMzMWhKS3svuvrK8Dd19g7tf5e69gX2BIuBJM7OEzcq+v/0T4n8iIfb3gJ3RcSqLryLLqt4kyTp33xk9LklEqxLWb6X0fEmWU1KRdLkC6Akc5+6tgQHRcgNWAvuYWYuE7TuXPHD3y6Iil73c/eZKXiOx0n4ZoQI7z93bRrfW0Zcw0Wt2Tti+bBHSF0BiPImV4MuAhxOO29bdW7r7rZXElrjvQeUG774CmA2cSSj6ergax8Pd1wJjCEljn4RVZd/fJwkxnFIm/ubR61cYH8nnt7LlW6j43EkDo6QiqdDUzJon3JoArQi/QD+LinauK9nY3T8iFB9db2Z7mNkJwLByj1xN0S/854HbzKx1VDl9kJl9M9pkAvAzC01z9wauKnOIIuBcM2tqZmXrXEquKE6OKvybRxXQnajao8BgMxsRVWq3M7OChPUPAb8mtOb6Z0UHMbP/NrPDomO0Ai4HFrn7uoTNfhddIfYm1O+Mj5bfA9wU1Z9gZvlmdlo14lsFHFiN91gEnB+dmyFExZzSMCmpSCo8TUggJbfrgTuAPQl9S+YAz5bZ5wLgBEJl9Y2EL8BtdYzj+4RK8ncJldETKS2iug94jtAs9w12/wL/HeEX+wbgBhLqNtx9GaFRwDXAGsKv+19Rjf8fd/+YUPdyBbCe8AWcWH/wBFHxVJniwLJaRNt+BiyJ9vlumW1eAhYB04Ax7v58tPyPhDqr581sM+HvcVw14vsrcGhUbPZkJbH9nPCj4DPC37WybSXHmSbpkkxgZuOB9939uio3Ts3rdQWWAk3j7mthZouBSxNatdV0/65kyHsR0ZWKxCLqp3FQVEw1hHAl8GTMYdU7MzuLUEfxn7hjEUmF2HrUm1lnQnnyvoR/qrHu/seo/H080BX4EBjh7hviilPSpgOhCKodsBy43N3fjDek+mVm04FDgQujZtEiWS+24i8z2w/Yz93fiCoe5xE6aI0kNDe91cyuAvZ299/EEqSIiNRIbMVf7r7S3d+IHm8mtJ3vSCgGeTDa7EFCohERkSyQERX1UUXjDOAw4GN3bxstN2BDyfMy+4wijFxLy5Ytj+7Vq1d9hZvTitcVA9CzXc+YIxGRdJs3b95ad8+vesvqiz2pmNlehKaQN7n7P83ss8QkYmYb3H3vyo5RWFjoc+fOTXOkDcPAcQMBmD5yeqxxiEj6mdk8dy9M5TFjbf1lZk2BScCj7l7Sb2BVVN9SUu+yOq74RESkZuJs/WWEzlXvufv/Jax6ijDM+a3R/b9iCK/B+u2A38YdgohksTgn6foGYbyjt82sKFp2DSGZTDCzSwiD4o2IJ7yGafCB9TGJo4jkqtiSSjTcuVWwelB9xiKlij4tAqCgQ0GscYhIdtJ0wpJk9LOjAVXUi0jtaJgWERFJGSUVERFJGSUVERFJGSUVERFJGVXUS5KbB1U2e6+ISOWUVCRJ38594w5BRLKYir8kyaxls5i1bFbcYYhIltKViiS5Zto1gPqpiEjt6EpFRERSRklFRERSRklFRERSJjeTijt8+WXcUYiINDi5V1G/fTt07QoXXww33hh3NFnnjiF3xB2CiGSx3EsqTZtCx47w8stxR5KVNOS9iNRFbhZ/9e8Pr74K27bFHUnWmbpkKlOXTI07DBHJUrmbVLZtg7lz444k69w440ZunKFiQxGpndxMKv36hXsVgYmI1KtYk4qZ/c3MVpvZgoRl15vZCjMrim6n1vjAeXlwyCFKKiIi9SzuK5VxwJBylt/u7gXR7elaHbl/f5g5E3burEt8IiJSA7EmFXefAaxPy8H794eNG+Htt9NyeBER2V2mNin+iZl9H5gLXOHuG2p8hAEDwv3LL0NBQSpjy2n3Dr037hBEJIvFXfxVnruBg4ACYCVwW3kbmdkoM5trZnPXrFmz+wZduoSb6lVqpGdeT3rm9Yw7DBHJUhmXVNx9lbvvdPddwH3AsRVsN9bdC929MD8/v/yD9e8fkop7+gLOMZOLJzO5eHLcYYhIlsq4pGJm+yU8PQNYUNG2VerfHz79FBYvrnNcDcVts2/jttnlXhyKiFQp1joVM/s7MBDIM7PlwHXAQDMrABz4ELi01i/Qv3+4f/llOPjgOsUqIiJVizWpuPt55Sz+a8pe4JBDoF27kFQuvjhlhxURkfJlXPFXSpmF3vUzZsQdiYhIg5DbSQVCEdjixbByZdyRiIjkvEztp5I6ifUqI0bEG0sWePiMh+MOQUSyWO5fqRx5JLRsqf4q1dS5TWc6t+kcdxgikqVyP6k0bQonnKCkUk3jF4xn/ILxcYchIlkq95MKhCKw+fPhs8/ijiTj3T33bu6ee3fcYYhIlmo4ScUdZs2KOxIRkZzWMJLKcceFYjAVgYmIpFXDSCotWsDRR6u/iohImjWMpAKhCOz112Hr1rgjERHJWQ0rqWzfDq+9FnckGW3iiIlMHDEx7jBEJEs1nKTSr18YtkX1KpXKa5FHXou8uMMQkSzVcJLK3nvDYYcpqVRhXNE4xhWNizsMEclSDSepQCgCmzULduyIO5KMpaQiInXR8JLK55/DW2/FHYmISE5qeEkF6l4EtnkzvP02LFkCu3bVPS4RkRyR+6MUJ+rYEbp1C/1VRo+ufNslS6C4GJYuhQ8/DPclt/XrS7dr2RIOPzzc+vQpfbzPPrWPc8cO+M9/YPx42LQpNDIYMCAcv3Hj2h9XRCTNGlZSgXC18swzYdgWs93Xv/YaXHcdPPts6bI99oCuXUNCKiwM9127ll6xzJ8PkybBffeV7tOxIxQUhMEs+/aFY48NCagi7jBnDvz97yGZrF4NrVuHBgYToya+rVuHBNO/f0gyhYUhNoCdO8OcMR9/DMuWhfuPP4YVK0KsAwaE/dq1q9v5ExGphLl73DHUWWFhoc+dO7d6G99/P/zwh/Dee9CrV+nyN94IyWTKlPDFe8UV4Yu4Wzfo0AEaVVFS6B6+1OfPD4nm7bdh3jx4992wvnHjkGT69i29dekCCxbAY4/B44+Hq6DmzWHoUDj/fDjllPD8449Dkd3LL4errPfeC8fcc0849FBYsyYkj507k2Nq1Soktw8/hC+/DMsOPxy++c3w3gYMgH33Tdply/YtALRo2qJ651NEspaZzXP3wpQeM86kYmZ/A4YCq939sGjZPsB4oCvwITDC3TdUdpxW3Vr50dcdXelrDe0xlCv7XgkLFzLwlp6MLBjJyJ8/wNpXX2T4P86GdeugSRPo3Dl8EZcpZhpZMJKRBSNZu2UtwycM54oTrmBYz2EUry3m0imXVvzCO3bApk1c8dkhDJu5luKFs7l08FZungZ9P9+bWXtt4JpBhCuSffeFvLxyi7huHnQzfTv3ZdayWVzz7K+4d6/z6PnaYiZ/Mp3bun0CzZpDs2YhCTVrFm5NogvRXbu4t+Nl9Jy7lMnzJ3LbXvOZ+Pgu8rbAuFM6MO6EFuF9V2LiiInktcj7unXY9JHTARgzawxTFk6pdF8gafvZy2czacQkAK6eejWzl8+udN92Ldolbb9u6zrGDhsLwKjJo1i4bmGl+/do1yNp+3Z7tuOWwbcAcNaEs1i3ZV2l+5/Q6YSk7U/odEL4LAEDxw2sdF9I+OxF25f9LFWl1p+9SNntkz5L066pcv+y29879F565vVkcvFkbpt9W5X7l92+7GepKvrspe+z99LFL6U8qcRd/DUOuBN4KGHZVcA0d7/VzK6Knv8mZa/YvXsYXPK112D4cHhmEpzXOBQRdexY+kWcKk2ahPqV73wP/msYrHoH/nER9BkACzbC4W2h5ZwQU3U1bQrf/jac9xMongxV/WM3ahTGPjv5fCjuA7PGwMhrYPZbMP32cCUUJZVPNn8CwP6t9q/lGxaRhiz24i8z6wpMSbhSKQYGuvtKM9sPmO7uPSs7Ro2KvyAkk0mTQvHQL34Rbm3b1vo9ZLXrr4cbboCvvoKmTb/+9VPy605Eclc6ir/ivlIpz77uvjJ6/Cmwb3kbmdkoYBRAly5davYKv/89HH88/OAHdWullQvy88P9unWh7khEpA4yMal8zd3dzMq9lHL3scBYCFcqNTpwnz7hJqVJZc0aJRURqbNM7Py4Kir2IrpfHXM8ua19+3C/Zk28cYhITsjEpPIUcFH0+CLgXzHGkvtKrlRWK3eLSN3FWvxlZn8HBgJ5ZrYcuA64FZhgZpcAHwEj4ouwAUgs/kIV9CJSN7EmFXc/r4JVg+o1kIasXbswsoCKv0QkBTKx+EvqU+PGoQVclFTGzBrDmFljYg5KRLKVkoqEIrAoqUxZOKVavZRFRMqjpCKhBZiKv0QkBZRUJOlKRUSkLpRUJCQVNSkWkRTI6B71Uk/y88PEYzt3smfTPeOORkSymJKKhKTiDuvW8cwFz8QdjYhkMRV/yW4dIEVEaktJRZKSyh9e+gN/eOkP8cYjIllLSUWSBpWctnQa05ZOizceEclaSiqi4i8RSRklFQnjf4GaFYtInSmpSJjzfu+9daUiInWmJsUSRL3q27VoF3ckIpLFlFQkiJLKpBEvxh2JiGQxFX9JoPG/RCQFlFQkiEYqvnrq1Vw99eq4oxGRLKXiLwny82HtWmYvnx13JCKSxTI2qZjZh8BmYCeww90L440ox+Xnw65dsH17aA0mIlILGZtUIie6+9q4g2gQSjpAKqmISB2oTkWCxKQiIlJLmZxUHHjezOaZ2aiyK81slJnNNbO5a9Rqqe6ipNLJW9GpdaeYgxGRbJXJxV/93H2FmbUHXjCz9919RslKdx8LjAUoLCz0uILMGdGgko80Px/OvCzmYEQkW2XslYq7r4juVwNPAMfGG1GOy8sL97rqE5E6yMikYmYtzaxVyWPgJGBBvFHluD32gDZtGP3FJEY/OzruaEQkS2Vq8de+wBNmBiHGx9z92XhDagDy8yna9Ql8WhR3JCKSpTIyqbj7EuCIuONocPLzYbtacItI7WVk8ZfEJD9fTYpFpE4y8kpFYpKfD9u/ijsKaQjWr4f586FNGzjyyLijkRRSUpFS7dvT450d0K573JFIrti+HYqLQwJJvK1YEda3bg3r1kETfRXlCv0lpVR+PmOfchj3P3FHItnms89C8li4MPn+/ffhq+jqt2lTOOQQOPFEOOII2LABbr4ZioqgUEP75QolFSlVMlTLmjVhemGRstxh0SJ46SWYMyckjuLi5P5NjRvDgQdC9+4wZAj06RNuPXuGpuslli8PSeWVV5RUcoiSipTKz2fUMOClKxnb46m4o5FM4B6uNl56qfS2cmVY164d9O4Np50WEkaPHuG+W7fk5FGRTp2ga9eQVEaPTue7kHqkpCKl8vNZ2A7YuCTuSCQO7iFhvP12uL36KsyYAatXh/X77Qff/GbprVcvCH3Jaq9/f3j++fDadT2WZAQlFSmlkYobjs2bYcGC0gRSclu/vnSbLl3g5JNLk8hBB6X+i79fP3j44VCk1l0NRHKBkoqUKkkqX6lZcc7Yvj1UmpdNHh9+WLpNy5Zw2GFw1llw+OHhdthhpePBpVO/fuH+lVeUVHKEkoqUat48VLLqSiV7rV0LU6bAtGmh6W5i66vGjUO9x7HHwiWXlCaQrl2hUUz9oHv1gn32CUnl4ovjiUFSSklFkhRsbgl77RV3GFITixfDv/4Vbq+8EqaF3nff0Knw5JNLk8chh0CzZnFHm6xRo3C18sorcUciKaKkIknu+OgQ2NA67jCkMu4wbx48+WRIJAuiAbwPPxyuvTa0xjrqqOyp+O7XD556KjQIiOb1keylpCLJ8vNh2bK4o5BEO3eGepAZM+Dll0tbZDVqFFpP/d//hURy4IFxR1o7ifUqZ54ZbyxSZ0oqkuR7vd6FNit5JO5AGrKvvgpXIjNmhNvMmbBxY1h3wAFw0kkweDB85zv1U5mebkcfHerzlFRygpKKJFm+53bY40v1G6hvH38MTz8dbtOmwZYtYXmvXnDOOeGKpH//kFRyzR57wHHHqV4lR1QrqZjZPuUs3uzuaiaUa5o2DQll06Ywgqykx44dMGtWSCL//ndpvUi3bqEV1Le+FYqFGkodQ79+cOut8MUXoYmzZK3qXqm8AXQGNgAGtAU+NbNVwA/dfV56wpN6VzK8xpo1SiqptmlTSCBPPgnPPReKtJo0gQEDYMyYUJzVs2fDvELs1y/UHc2ZA4MGxR2N1EF1k8oLwER3fw7AzE4CzgIeAO4CjktPeFLvmjYN92vWwMEHxxtLLvjsM5g8GSZODIlk2zbo0CF0NDz1VPj2t8Pw7w3dCSeEZPrKK0oqWa66SeV4d/9hyRN3f97Mxrj7pWaWlobvZjYE+CPQGLjf3W9Nx+tIshPaHwXL3k4edVZqZv360ER24sQwrtX27WHwxMsvh+HDwxdoXJ0NM1WbNmE4fNWrpMeXX8KSJaEzbOK8NmlQ3aSy0sx+AzwePT8HWGVmjYFdqQ4qOu5fgG8Dy4HXzewpd3831a8lyW7pfwNc+CCcuzruULLLtm2hz8i4cfDCC6HO5IAD4Gc/C4nk2GOVSKrSrx888EA4d5q0q+a+/DJ0hP3ggzCWWsn9okWhm4B72K5RozAkzlFHhe1TrLp/ufOB64Ano+czo2WNgREpjwqOBRa5+xIAM3scOA1QUkm3xDlVpHLu8MYb4YvwscfCpFOdOsEvfwlnnx2ayjbE+pHa6tcP7rxTk3ZVh3sYv2327FAPNWdOOG+JQyy1axeSx4AB4f7gg8MwPYceCi1ahG3S8PmsVlJx97XATytYvSh14XytI5DYA285ZeptzGwUMAqgS5cuaQihYTpryoVwXmMmKalUbM0aePRR+NvfQqfEZs3gjDNCq61Bg8IYW1Jz3/hGuNekXbvbsCEkjVdfLU0kJVMStGgBxxwDV1wRJkPr3j2MKB3TRHvVbVKcD/wa6A00L1nu7t9KU1xVcvexwFiAwsJCjyuOXLNuyzpo00RXKmXt2hXqR8aODRXvO3aEf+S77oJzz9VMmamgSbvC5+qDD+Ctt5LrPhJHuejRI8yoefzxoX7usMMyqriwupE8CowHhgKXARcB6fzWWUFowlyiU7RM6kPTPZRUSqxaFYq3xo6FpUtD8eDPfw4jR4Z/ZkmthjRp15o1yYlj/nx4551QPwchUfTqFc5Jnz6hIcMxx4RirQxW3aTSzt3/amY/d/eXgJfM7PU0xvU60N3MuhGSybmEOhypD02bNuyk4h6mzb3nHvjnP0M59cCBcMstoZirOlPlSu3k4qRdX321e6ur+fNLp2WG0My8Tx/46U/DfZ8+IaFk2qjS1VDdpFJS+7PSzL4DfAKU18s+Jdx9h5n9BHiO0Bjgb+7+TrpeT8poqEll/Xp46KGQTIqLoW1b+PGP4dJLwz+4pF82T9rlDp9+Wpo0Soqw3nsvFGtB+EHSu3cYv60kefTpk1MjJ1Q3qdxoZm2AK4A/A62B0ekKCsDdnwaeTudryO4GdRsEC3fA6rkNowjCPVR+3nMPjB8fmmUef3xoGjxiBOy5Z9wRNizZNGmXO7z7bqhjmzo1JJG1a0vXd+oUEsZ3vlNafNW9e2kH4xxV3dZfU6KHG4ETAcxsdJpikhj97pu/g1ebwbaZ8Pnn0KpV3CGlx+bNoQXXPfeEL4O99gr1JJdeCgUFcUfXcGX6pF1ffRVGjp48OdyWLg3LCwrg9NNLrzwOPzwkxwaoLk0GfgnckaI4JJMk9lXJtaRSVBQSyaOPhqR5xBHh+fnn5957zVYlk3atWhVmsIzbypXhSmTy5DDUzqZNYaj+QYPgqqvClUjHjnFHmTHqklRyvFykYTrl0VPgszU8AyGpZOvET4m2b4dJk+CPfwzt+5s3D82AL7ss9HTP9SK+bFNSrzJzZv3Or+IerjzefDN0ai25X7UqrO/QIRSJDhsW5rMp6UAoSeqSVNQ3JAdt3b4VmkR/2myvrN+wITQFvvNOWL48lGfffjtcdJH6lWSy+pq0a+vWUJQ1dSrMnRuSSMlkaI0bhwr1IUPgyCOhb98Ql4baqVKlScXMNlN+8jBANZi5KnGk4mxUXAx/+lOobN+yJcxNcvfdYVRgfSlkvnRN2uUePhvPPhuKsaZPDw0zmjULdSLnnRcSyFFHhT5IzZtXdUQpR6VJxd1VyNwQZWNScQ8zJt5xR5izZI894IILQs/sPn3ijk5qqmTSrs8/D40oamvz5nAlUpJIPvooLO/ZMzTKGDIkjI2loqyUyZy+/ZI5GjcOv9KyJals2gSXXBKGmm/fHq6/PtSXZEIlr9ROyaRdr75a8/lVPvqotHXWiy+GOrVWrcJxrr4aTj45DAcjaaGkIkmG9hgaHuQvKR2wLpO9/XaY8GrJktDjffRoFVvkgppM2rVrF7z+emkiKZknpEePMKTO0KGhTiTH+4dkCiUVSXJl3yvDg/aPZ/6VyoMPhomv2rYNv0j79487IkmVyibt2rUr9FKfOTPcnnsutNBq3Dhc4YwZE1po9ehR/3GLkopUID8/c5PK1q1h8qv774cTTwxzmXToEHdUkmolk3Zt3Ajz5sGsWeE2e3aYphnC5/TEE+G734VTTmmwHQ4ziZKKJBk4biAA0/O7hF+DmWbx4jCTYlERXHMN3HBDRg37LSlUMmnX3nuXzlrYu3eYAO0b3whFWgcfrH5GGUb/jVK+TLxSefLJMJRKo0YwZUroySy565RT4MILoUuXkESOP179i7KAkoqULz8/9PHYsiX+5paffAI33hj6mhQWwj/+odY7DUHr1mHUaMkq6gkm5cuEuepXrAh1JwceGHrG/+xnoeJWCUUkYympSPlKkkoczYpLkslBB4Xpei+4ABYuDGN3ZeGkRSINiYq/JMmI3iPCg53RpEH1eaWyYkXoRX3ffaHj20UXhcr4XBjUUqSBUFKRJD865kfhweLF4b4+ksqWLaGn8z33hD4II0eGZNKtW/pfW0RSSklFkmzZvgWAFvVVp7JiRehj8OabYaiVa69VnYlIFsu4pGJm1wM/BEq+za6JphaWenDqo6cCMP2iF8OgjOlMKvPmhYSyaVOYlGno0PS9lojUi4xLKpHb3X1M3EE0aGbp7asycSJ8//vhNWbO1EjCIjlCrb+kYulIKu5w002hV3RBAbz2mhKKSA7J1KTyEzObb2Z/M7Nyu9Ca2Sgzm2tmc9dkWs/vXJGfn9omxV9+Ga5Ofvvb0Ez4P//R8PQiOSaWpGJmU81sQTm304C7gYOAAmAlcFt5x3D3se5e6O6F+SWVypJa7dun7kpl9eowhPkjj4Te8Q8/rCHqRXJQLHUq7j64OtuZ2X3AlDSHIwlGFowsfZKq4q933w1T+a5eHYZYGT687scUkYyUcRX1Zrafu6+Mnp4BLIgznoZmt6Ty+eeh2Kq2VxXvvx+GJm/UCGbMCGN3iUjOyrikAvyPmRUADnwIXBprNA3M2i1rAchrkZc8/lfnzjU/2AcfwLe+FVqSvfgi9OqVwkhFJBNlXFJx9wvjjqEhGz4hFE1NHzm9bkllyZKQULZvh+nTlVBEGoiMSyqSQWrbq/6jj0JC2bIltPDq3Tv1sYlIRlJSkYq1jwaVrEmz4uXLQ0LZuBGmTQvzjItIg6GkIhWr6ZXKypUhoaxZA1OnwlFHpS82EclISipSsTZtoGnT6iWVVatCQvnkE3j+eTj22PTHJyIZR0lFklxeeHnpEzPIy6s6qaxdC4MHh7qUZ5+Fvn3TG6SIZCwlFUlyzmHnJC+oqgPk4sVw+umwaBFMmQIDBqQ1PhHJbJk69pfEZNnGZSzbuKx0QWVJ5dlnQ2fGFStCQhk0qH6CFJGMpaQiSS584kIufCKhq1B5SWXXrjDS8KmnQpcuMHeuEoqIACr+kqq0b5/cpHjTpjB3/JNPwvnnw9ix0LJlbOGJSGZRUpHK5eeHRLJtGyxdCmecEYZfuf12+PnPQ2W+iEhExV9SuZK+KvffH5oJr1sX+qCMHq2EIiK7UVKRypUklZ/8BA45BN54AwYOjDUkEclcKv6SJFeccEXygp49wxXJJZfAn/+sibVEpFJKKpJkWM9hyQt694b166Ft21jiEZHsouIvSVK8tpjitcXJC5VQRKSadKUiSS6dEuZEmz5yeryBiEhW0pWKiIikjJKKiIikTCxJxczONrN3zGyXmRWWWXe1mS0ys2IzOzmO+EREpHbiqlNZAJwJ3Ju40MwOBc4FegP7A1PNrIe776z/EEVEpKZiSSru/h6A7d4j+zTgcXffBiw1s0XAscDs+o2w4frtgN/GHYKIZLFMa/3VEZiT8Hx5tGw3ZjYKGAXQpUuX9EfWQAw+cHDcIYhIFktbUjGzqUCHclZd6+7/quvx3X0sMBagsLDQ63o8CYo+LQKgoENBrHGISHZKW1Jx99r85F0BdE543ilaJvVk9LOjAfVTEZHaybQmxU8B55pZMzPrBnQHXos5JhERqaa4mhSfYWbLgROAf5vZcwDu/g4wAXgXeBb4sVp+iYhkj7hafz0BPFHBupuAm+o3IhERSYVMK/4SEZEslmlNiiVmNw+6Oe4QRCSLKalIkr6d+8YdgohkMRV/SZJZy2Yxa9msuMMQkSylKxVJcs20awD1UxGR2tGVioiIpIySioiIpIySioiIpIySioiIpIwq6iXJHUPuiDsEEcliSiqSREPei0hdqPhLkkxdMpWpS6bGHYaIZCldqUiSG2fcCGgGSBGpHV2piIhIyiipiIhIyiipiIhIyiipiIhIyqiiXpLcO/TeuEMQkSwW1xz1Z5vZO2a2y8wKE5Z3NbOtZlYU3e6JI76GrGdeT3rm9Yw7DBHJUnFdqSwAzgTK+1m82N0L6jccKTG5eDIAw3oOizkSEclGsSQVd38PwMzieHmpxG2zbwOUVESkdjKxor6bmb1pZi+ZWf+4gxERkepL25WKmU0FOpSz6lp3/1cFu60Eurj7OjM7GnjSzHq7+6Zyjj8KGAXQpUuXVIUtIiJ1kLak4u41HufD3bcB26LH88xsMdADmFvOtmOBsQCFhYVet2hFRCQVMqr4y8zyzaxx9PhAoDuwJN6oRESkumKpqDezM4A/A/nAv82syN1PBgYA/2Vm24FdwGXuvj6OGBuqh894OO4QRCSLxdX66wngiXKWTwIm1X9EUqJzm85xhyAiWSyjir8kfuMXjGf8gvFxhyEiWUrDtEiSu+feDcA5h50TcyQiko10pSIiIimjpCIiIimjpCIiIimjpCIiIimjinpJMnHExLhDEJEspqQiSfJa5MUdgohkMRV/SZJxReMYVzQu7jBEJEspqUgSJRURqQslFRERSRklFRERSRklFRERSRklFRERSRk1KZYkT1/wdNwhiEgWU1KRJC2atog7BBHJYir+kiR3vX4Xd71+V9xhiEiWUlKRJBPemcCEdybEHYaIZCklFRERSZlYkoqZ/a+ZvW9m883sCTNrm7DuajNbZGbFZnZyHPGJiEjtxHWl8gJwmLv3ARYCVwOY2aHAuUBvYAhwl5k1jilGERGpoViSirs/7+47oqdzgE7R49OAx919m7svBRYBx8YRo4iI1FwmNCn+ATA+etyRkGRKLI+W7cbMRgGjoqfbzGxB2iJMnTxgbdxBVEOeXWxZESdZcj5RnKmSDTFC9sTZM9UHTFtSMbOpQIdyVl3r7v+KtrkW2AE8WtPju/tYYGx0nLnuXliHcOuF4kwtxZla2RBnNsQI2RVnqo+ZtqTi7oMrW29mI4GhwCB392jxCqBzwmadomUiIpIF4mr9NQT4NfBdd9+SsOop4Fwza2Zm3YDuwGtxxCgiIjUXV53KnUAz4AUzA5jj7pe5+ztmNgF4l1As9mN331mN441NX6gppThTS3GmVjbEmQ0xQgOO00pLnkREROpGPepFRCRllFRERCRlMjKpmNmQaJiWRWZ2VTnrm5nZ+Gj9q2bWNWFducO8VHXM+ozTzL5tZvPM7O3o/lsJ+0yPjlkU3drHFGNXM9uaEMc9CfscHcW+yMz+ZFHFWExxXpAQY5GZ7TKzgmhdSs9lNeMcYGZvmNkOMxteZt1FZvZBdLsoYXkc57PcOM2swMxmm9k7FoZROidh3TgzW5pwPgviijNatzMhlqcSlneLPiOLos/MHnHFaWYnlvl8fmlmp0fr4jifvzSzd6O/7TQzOyBhXWo+n+6eUTegMbAYOBDYA3gLOLTMNj8C7okenwuMjx4fGm3fDOgWHadxdY5Zz3EeCewfPT4MWJGwz3SgMAPOZVdgQQXHfQ04HjDgGeCUuOIss83hwOJ0nMsaxNkV6AM8BAxPWL4PsCS63zt6vHeM57OiOHsA3aPH+wMrgbbR83GJ28Z5PqN1n1dw3AnAudHje4DL44yzzGdgPdAixvN5YsLrX07p/3vKPp+ZeKVyLLDI3Ze4+1fA44ThWxKdBjwYPZ4IDIqyZ0XDvFTnmPUWp7u/6e6fRMvfAfY0s2Z1jCelMVZ0QDPbD2jt7nM8fOIeAk7PkDjPi/ZNlyrjdPcP3X0+sKvMvicDL7j7enffQBj/bkhc57OiON19obt/ED3+BFgN5NcxnpTHWZHoM/EtwmcEwmfm9AyJczjwjCd3o0il6sT5YsLrJw6RlbLPZyYmlY7AsoTn5Q3V8vU2HsYQ2wi0q2Tf6hyzPuNMdBbwhrtvS1j2QHQ5/Ls6FoXUNcZuZvammb1kZv0Ttl9exTHrO84S5wB/L7MsVeeyunHWdN+4zmeVzOxYwi/exQmLb4qKTm5PwQ+husbZ3MzmmtmckiIlwmfiMy8dWzBjzifhCrvs5zPO83kJ4cqjsn1r/PnMxKTSYJhZb+C/gUsTFl/g7ocD/aPbhXHERij26OLuRwK/BB4zs9YxxVIlMzsO2OLuiWPAZcq5zDrRL9SHgYvdveTX99VAL+AYQjHJb2IKr8QBHoZCOR+4w8wOijmeCkXn83DguYTFsZ1PM/seUAj8b6qPnYlJpTpDtXy9jZk1AdoA6yrZNx3Dv9QlTsysE/AE8H13//qXoLuviO43A49Rt1Gaax1jVIS4LoplHuHXao9o+04J+8d+LiO7/QpM8bmsbpw13Teu81mh6MfDvwnj9H09wKu7r/RgG/AA8Z7PxL/vEkL92ZGEz0Tb6DNS42OmI87ICOAJd99esiCu82lmg4FrCSOabKti35p/PlNVSZSqG6GX/xJCRXtJZVPvMtv8mORK2wnR494kV9QvIVReVXnMeo6zbbT9meUcMy963JRQLnxZTDHmA42jxwdGH6R9vPyKu1PjOpfR80ZRfAem61xWN86Ebcexe0X9UkIl6N7R49jOZyVx7gFMA0aXs+1+0b0BdwC3xhjn3kCz6HEe8AFRpTTwD5Ir6n8UV5wJy+cAJ8Z9PgmJdzFRY4x0fD5r/QbSeQNOJUzetZjwawngvwiZFaB59MFZFL3hxC+Ta6P9iklopVDeMeOKE/gt8AVQlHBrD7QE5gHzCRX4fyT6Yo8hxrOiGIqAN4BhCccsBBZEx7yTaGSGGP/mAwlD/SQeL+XnsppxHkMod/6C8Kv5nYR9fxDFv4hQrBTn+Sw3TuB7wPYyn82CaN1/gLejWB8B9ooxzr5RLG9F95ckHPPA6DOyKPrMNIv5796V8KOnUZljxnE+pwKrEv62T6X686lhWkREJGUysU5FRESylJKKiIikjJKKiIikjJKKiIikjJKKiIikjJKK5JQyI9cWWcII1tnOzI40s79Gj0ea2Z1l1k83s8JK9n/czLqnO05p2OKaTlgkXba6e0F5K6Kxv8xLhx3JNtcAN9Zh/7uBXwM/TE04IrvTlYrkNAvzwhSb2UOEDlydzexXZvZ6NJDfDQnbXmtmC83sFTP7u5ldGS3/+grAzPLM7MPocWMz+9+EY10aLR8Y7TPRzN43s0dLBrM0s2PMbJaZvWVmr5lZKzObkTiXRvT6R5R5H62APu7+VjXe83cTrtSKzWxptOplYHDCECYiKacPl+SaPc2sKHq8FPgF0B24yN3nmNlJ0fNjCcNOPGVmAwg9oc8FCgj/F28QeuRX5hJgo7sfE40wO9PMno/WHUkYNugTYCbwDTN7DRgPnOPur0djbG0F/gqMBEabWQ+geTnJo6RXc6JzzKxfwvODAdz9KeApADObALwULd9lZouAI6rx3kRqRUlFck1S8VdUp/KRlw6MeFJ0ezN6vhchybQiDPi3Jdrv65kEK3ES0MdKZ/prEx3rK+A1d18eHauIMFTHRmClu78O4O6bovX/AH5nZr8iDJUxrpzX2g9YU2bZeHf/ScJ7nZ640sx+TTgff0lYvJow+ZaSiqSFkoo0BF8kPDbgFne/N3EDMxtdyf47KC0qbl7mWD9198ThzDGzgUDi/Dg7qeR/zd23mNkLhAmVRgBHl7PZ1jKvXaloJNqzgQFlVjWPjiWSFqpTkYbmOeAHZrYXgJl1tDB3/QzgdDPbM6q/GJawz4eUftEPL3Osy82saXSsHmbWspLXLgb2M7Njou1bJdRv3A/8CXjdw8x7Zb1HVLxVFQvzjv8FONvdyyaQHuxejCaSMrpSkQbF3Z83s0OA2VHd+efA99z9DTMbTxj1djXwesJuY4AJZjaKMM9IifsJxVpvRBXxa6hkqlV3/8rMzgH+bGZ7Eq4YBhPmWp9nZpsI82qUt+/7ZtbGzFp5mB+mMiMJMyA+Gb3HT9z9VDPbl1Ac9mkV+4vUmkYpFimHmV1P+LIfU0+vtz9hoqleFTV5NrNfAJvd/f5avsYvgE3u/tdaBypSBRV/icTMzL4PvEqY/6KyPjR3k1xXU1OfAQ/WYX+RKulKRUREUkZXKiIikjJKKiIikjJKKiIikjJKKiIikjJKKiIikjL/H3DbH9bCFmNTAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.plot(cross.freq, lag, 'r')\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-0.0050)*1/0.0050)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "According to Uttley et al (2014), the lag-frequency spectrum shows a constant delay until the frequency (1/2*time_delay) which is represented by the green vertical line in the above figure. After this point, the phase wraps and the lag becomes negative. " + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "13it [00:00, 3156.72it/s]\n" + ] + } + ], + "source": [ + "cross = AveragedCrossspectrum(lc, var, segment_size=200)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvIUlEQVR4nO3debyUdfn/8dcFKJssyiFF2bSEfm5hHO2rolL6U/KruYYaWqSFWdaXzA2wb1ailpqUqUmalJBCmiZqZtgPrYAU7GhuEG4skiKioiDbuX5/fO7juWeYOWfOOfece5b38/GYx5m512tuhrnms97m7oiIiCShQ9oBiIhI5VBSERGRxCipiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKlAUz29nMHjOzdWZ2bdrxiEhuSirSJmb2ipkd2Q6nGge8CfR09++0w/lKipn1N7O7zexNM3vHzJ4xs7FFPuc0M7u8mOeQytMp7QBECjQIeM7zjNY1s07uvqWdY2pPtwNPEa7DRmBfYJc0A6qCay6toJKKFIWZ7Whm95vZajNbGz3vH1u/e6w6a46Z3WBm0/McaxrwJeAiM3vPzI40s8vM7C4zm25m7wJjzayXmd1qZqvMbKWZXW5mHaNjdDSza6Jf+i+Z2TfMzM2sU7Q+o8QVHX967PV/mdk8M3vbzJ4ys5GxdXPN7Idm9vfo/TxsZjWx9SNi+y43s7FmdoCZvd4QX7TdSWb2VJ5LegAwzd3fd/ct7v5Pd/9jtN/g6L2MM7PXovd/Qey4HczsEjN70czWmNksM9upmfjGAWNi13x27DpdbGZPA++bWafo3B+L/3s1lHDMbKSZrTCzi8zsjSi2E8zsGDNbYmZvmdnEPO9ZypCSihRLB+A2wi/rgcAG4Oex9b8FHgf6AJcBZ+Y7kLuPBWYAP3b3Hdx9TrTqeOAuoHe0fhqwBfgYsD9wFPCVaNuvAsdGy2uBUwp9I2a2G/AAcDmwE3ABcLeZ9Y1t9gXgy8BHgO2jbTCzQcAfgeuBvsAwoM7dnwDWRDE2OBP4TZ4wFgA3mNlpZjYwzzafBvaMjnlxLEl+EzgBOBzYFVgL3NBMfFPJvObHxc5zOvDfQO8CSyq7AF2A3YD/BX4JnAEMBw4FvmtmuxdwHCkDSipSFO6+xt3vdvf17r4OmEz4UiP6UjwA+F933+TufwPua8Vp5rv7ve5eD/QEjgHGR7/m3wCuA06Lth0NTHH35e7+FnBlC85zBvCguz/o7vXu/mdgYXS+Bre5+xJ33wDMInw5Q0g2c9z9DnffHF2Xumjdr6NjE5UcjiYk21w+D/wV+C7wspnVmdkBWdt8P3rv/yIk9NOj5V8DJrn7CnffSEjip0SltKbiy+dn0XXc0Mx2DTYDk919M3AnUAP81N3XufuzwHPAJwo8lpQ4JRUpCjPrZmY3m9mrUfXUY0DvqLpnV+Atd18f22V5bN9fRFUu7zVTNbI89nwQsB2wKqrGeRu4mVByIDpnfPtXW/B2BgGfbzhudOwRQL/YNv+JPV8P7BA9HwC8mOe404HjzKw7Ien91d1X5drQ3de6+yXuvjewM1AH3GtmFtss+/3tGov/nljszwNbo+M0FV8+y5vfJMMad98aPW9IRK/H1m+g8XpJmVNSkWL5DjAU+JS79wQOi5YbsArYycy6xbYf0PDE3b8WVbns4O5XNHGOeKP9ckIDdo27944ePaMvYaJzDohtn12F9D4QjyfeCL4cuD123N7u3t3dr2oitvi+H80ZvPtKYD5wEqHq6/YCjoe7vwlcQ0gaO8VWZb+/12IxfDYr/i7R+fPGR+b1bWr5evJfO6kySiqShO3MrEvs0QnoQfgF+nZUtfO9ho3d/VVC9dFlZra9mR0EHJfzyAWKfuE/DFxrZj2jxumPmtnh0SazgG9Z6Jq7I3BJ1iHqgNPMbDszy25zaShRHB01+HeJGqD707wZwJFmNjpq1O5jZsNi638DXETozfX7fAcxsx+Z2T7RMXoA5wJL3X1NbLPvRiXEvQntOzOj5b8AJkftJ5hZXzM7voD4Xgf2KOA91gFfiK7NKKJqTqlOSiqShAcJCaThcRkwBehKGFuyAHgoa58xwEGExurLCV+AG9sYxxcJjeTPERqj76KxiuqXwJ8I3XKfZNsv8O8SfrGvBb5PrG3D3ZcTOgVMBFYTft1fSAH/f9x9GaHt5TvAW4Qv4Hj7wT1E1VNZ1YHZukXbvg28FO3zuaxtHgWWAo8A17j7w9HynxLarB42s3WEf49PFRDfrcBeUbXZvU3E9j+EHwVvE/5dm9pWKpzpJl1SCsxsJvCCu3+v2Y2TOd9g4GVgu7THWpjZi8A5sV5tLd1/MCXyXkRUUpFUROM0PhpVU40ilATuTTmsdmdmJxPaKP6SdiwiSUhtRL2ZDSDUJ+9M+E811d1/GtW/zwQGA68Ao919bVpxStHsQqiC6gOsAM5193+mG1L7MrO5wF7AmVG3aJGyl1r1l5n1A/q5+5NRw+MiwgCtsYTupleZ2SXAju5+cSpBiohIi6RW/eXuq9z9yej5OkLf+d0I1SC/jjb7NSHRiIhIGSiJhvqoofExYB9gmbv3jpYbsLbhddY+4wgz19K9e/fhH//4x9sr3Iq2eM1iAIb2GZpyJCJSbIsWLXrT3fs2v2XhUk8qZrYDoSvkZHf/vZm9HU8iZrbW3Xds6hi1tbW+cOHCIkdaHUZOGwnA3LFzU41DRIrPzBa5e22Sx0y195eZbQfcDcxw94ZxA69H7S0N7S5vpBWfiIi0TJq9v4wwuOp5d/9JbNV9hGnOr4r+/iGF8KrWpYddmnYIIlLG0rxJ1yGE+Y7+ZWZ10bKJhGQyy8zOJkyKNzqd8KrTkXu0x00cRaRSpZZUounOLc/qI9ozFmlU9586AIbtMizVOESkPOl2wpJh/EPjATXUi0jraJoWERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZLjiiKbu3isi0jQlFclw8ICD0w5BRMqYqr8kw7zl85i3fF7aYYhImVJJRTJMfGQioHEqItI6KqmIiEhilFRERCQxSioiIpIYJRUREUmMGuolw5RRU9IOQUTKmJKKZNCU9yLSFqr+kgxzXprDnJfmpB2GiJQplVQkw+WPXQ7oDpAi0joqqYiISGJSTSpm9isze8PMnoktu8zMVppZXfQ4Js0YRUSkcGmXVKYBo3Isv87dh0WPB9s5JhERaaVUk4q7Pwa8lWYMIiKSnFJtqD/PzL4ILAS+4+5r0w6oWtx87M1phyAiZSzt6q9cbgI+CgwDVgHX5trIzMaZ2UIzW7h69ep2DK+yDa0ZytCaoWmHISJlquSSiru/7u5b3b0e+CVwYJ7tprp7rbvX9u3bt32DrGCzF89m9uLZaYchImWq5Kq/zKyfu6+KXp4IPNPU9pKsa+eHguFxQ49LORIRKUepJhUzuwMYCdSY2Qrge8BIMxsGOPAKcE5a8YmISMukmlTc/fQci29t90BERCQRJdemIiIi5UtJRUREElNyDfWSrttPvD3tEESkjCmpSIYBvQakHYKIlLHqqP4aOTI8pFkzn5nJzGdmph2GiJQplVQkw00LbwLg1H1OTTkSESlH1VFSERGRdlH5SWXGDFiwAB59FAYPDq9FRKQoKjupzJgB48bBxo3h9auvhtdKLCIiRVHZSWXSJFi/PnPZ+vVhuYiIJK6yG+qXLWvZcuGu0XelHYKIlLHKLqkMHNiy5UJNtxpqutWkHYaIlKnKTiqTJ0O3bpnLunULyyWnaXXTmFY3Le0wRKRMVXb115gx4e/ZZzc21p9+euNy2UZDQhk7bGyqcYhIearspAIhgfzyl+AOW7fC7Nmwbh306JF2ZCIiFaeyq7/izOAnP4E33oCrrip8vxkzwviWDh2KO86lvc4jIlJE1ZFU5s4NjwMPDCWXa68NY1aa0zDO5dVXQ0mnWONc2vM8SlwiUkTVkVTirrgilFomTGh+20LHuTT3Zd3c+gkT2j6eppAY2iNxiUhVM3dPO4Y267F7Dx/+veFNbnPskGO54OALAPjN5wbxxdnLYP583tzvY5wy65Sc+/zly4/mzLoOPH/hWPY6/Vu8tmAOO42/hC6b6j9c/8H2Hbh67BAeOWhnjpj/OhdOW5KxfnNHY33tJ+i1fQ82Lnmezq+/mfP8Dnz6V4eBGVPfHcmQn0zDly3j9Z22p/7yy9n1axcwe/Fs6n5y0Tbn2NjJuOuo3Xhh95503biVi+/6Dx3ffmebc7zXrw/HXrHPh6/rPRyjg2W+87tG30VNt5oPe4fNHTsXgGvmXcP9S+7PGX9cfPv5K+Zz9+i7AZgwZwLzV8xvct8+3fpkbL9mwxqmHjcVgHGzx7FkzZIm9x/SZ0jG9n269uHKI68E4ORZJ7Nm/Zom9z+o/0EZ2x/U/6APP0sjp41scl/I/OyNnDaSscPGMnbYWN5c/2bez15c9vbfOeg7HDf0OBa/uZhz7j+n2f2zt7/iiCs4eMDBzFs+j4mPTGx2/+ztbz72ZobWDGX24tlcO//aZvfP3j77s9QcffaK99l79MuPLnL32mYP1AKpNtSb2a+AY4E33H2faNlOwExgMPAKMNrd1yZ53juOGcgp89+h2/nnw5//kHe7d3foRO/3tmyzfEtHY6+rp8HV0+jXoQNWX5+xvsumei6ctoQTH3mNj7/8Lp0yV7PdVqfnE0/DIYfwzmEH0vX+P9Fjw9ZtzmPAzAv+wYqdu/CxF+fBps0YsMuajdSPnwT/eJa969dw1B1L6Lw58ySdtzhjHlzR7LXo/p/MD3V2MhERaRF3T+0BHAZ8EngmtuzHwCXR80uAHzV3nOHDh3uL3XKLO7jPnLntuq1b3S+9NKzv0CH8bXh06+Y+fbr7ypXuv/lN5rrsxxFH5F9n1ni+6dPDcePru3Z1/8pX3E88MWyb7zjZ+2Wfo67OfelS9/79c28zaFDGW7/h8Rv8hsdvaPn1FJGyAyz0pL/Xkz5giwMIJZJ4UlkM9Iue9wMWN3eMViWVLVvc99vPffBg9w0bGpe/+6778ceHS3P22e7TpoUvXrPwd/r0zOMMGtT0l3Vz6xtMn57/PPmSipl7fX1h58iVuBoSZMzhtx3uh992eMuvp4iUnWpJKm/Hnlv8ddZ+44CFwMKBAwe27orOmRMuQceO4e+uu7rvtlt4/bOfhS/s5jT3ZV3gl3mTmksahZ5j+nT3Tp0a980Rg5KKSPWouqQSvV7b3DFaVVJxD1+qDQkl/pgwoeXHaao009z6Qo7fXNIo9ByHHOL+mc/kPZWSikj1KEZSSb33l5kNBu73xob6xcBId19lZv2Aue4+tKlj1NbW+sKFC1t+8sGDc49XGTQIXnml5ccrphkzQhfjZcvChJiTJ7duupkTToCXX4annsq5uqFHSUOPGRGpXGaWeO+vUuzqcx/wpej5l4D83bPaqpymxh8zJiS6+vrwt7Xzl9XUwJu5uzCLiLRV2l2K7wBGAjVmtgL4HnAVMMvMzgZeBUYXLYCBA3OXVCp5avyGpOIeBoFmUQlFRNoi1aTi7qfnWXVEuwQweXIYVR4fzV7pU+PX1MCmTfDee5pUU0QSV4rVX+1nzBiYOjW0oZiFv1OnVvbU+DXRDbjyVIFdM+8arpl3TTsGJCKVpLqTCiTXVlEumkkq9y+5v6CpL0REclFSqTbNJBURkbZQUqk2SioiUkRKKtVGSUVEiqjybycsmXr1gk6dYPXqnKu7bte1nQMSkUqipFJtzJocAPnHMX9s54BEpJKo+qsaaVS9iBSJkko1aiKp/PDRH/LDR3/YzgGJSKVQUqlGTSSVR15+hEdefqSdAxKRSqGkUo1U/SUiRaKkUo1qamDNmjCLgIhIgpRUqlFNTUgob7+ddiQiUmHUpbgaxQdA7rRTxqo+3fqkEJCIVAollWoUTypDhmSsunv03SkEJCKVQtVf1UhTtYhIkSipVKMmksqEOROYMGdCOwckIpVC1V/VqImkMn/F/HYORkQqSckmFTN7BVgHbAW2uHttuhFVkG7doEsXVX+JSOJKNqlEPu3u+uZLWjOTSoqItJbaVKqVkoqIFEEpJxUHHjazRWY2LnulmY0zs4VmtnB1nnuDSBPyJJX+PfvTv2f/FAISkUpQytVfI9x9pZl9BPizmb3g7o81rHT3qcBUgNraWk8ryLJVUwOvvrrN4uknTU8hGBGpFCVbUnH3ldHfN4B7gAPTjajCqPpLRIqgJJOKmXU3sx4Nz4GjgGfSjarC1NTA2rWwZUvG4vEPjWf8Q+PTiUlEyl6pVn/tDNxjZhBi/K27P5RuSBWmYazKmjWw884fLq77T1068YhIRSjJpOLuLwGfSDuOihYfABlLKiIibVGS1V/SDjT/l7SnGTNg8GDo0CH8nTEj7YikSJRUqlXfvuGvkoq0VXMJY8YMGDcu9DZ0D3/HjVNiqVBKKtUqT0llSJ8hDOkzJMcOIjk0lzDc4ZJLYP36zP3Wr4dJk9o/Xik6JZVq1Se6GVdWUpl63FSmHjc1hYCkZDVVEpk0KXfC+OpXYf/9YccdYcWK3MddtqxYEUuKSrKhXtpB587Qo4eqv6RpDSWRhsTx6qtw1llwzz2w/fY5B9ACsGED7LorjBgRjrF27bbbDBxYvLglNSqpVLMcAyDHzR7HuNnbzIojlSxfSeS112D8+G1LIps2wd13w/z5YbbrXAYNggcegOuvD49u3TLXd+sGkycn/EakFCipVLMcSWXJmiUsWbMkpYCk3eVqE/nSl0I38912y1+SNYOXX4Zbbmk+YYwZA1OnNla59usXXo8ZU5z3JKlSUqlmmqql8jXVHvLWW7lLIlu3wrp1cO21sMsuuY/bUHXVkDAGDQqJZtCg3AljzBhYuDA8v/RSJZQKpqRSzZRUKluuUshXvgInnwwHHRS6lef79//gAzj/fLjmmsJKIq+8AvX14W++hDFoUCj9/O1vSbw7KVFKKtVMSaWy5eqZ9cEH8PvfhyTz3e/mn02hpSWRQpiFhnsllYqmpFLNamrgvffCF01k2C7DGLbLsPRikpbJVb21bFloHM/XM8sMFiyAyy4LVVxJlUQKMWIELF+u7sQVTEmlmsUnlYxMGTWFKaOmpBOPZGrNSPUzzwyliW99CzrlGTEQ78qbZEmkECNGhL8qrVQsJZVqpvm/0tVU0siVMM4+G849F666Cs47LwwwzK7ecofevWHxYpg2rbCuvEmWRJqz775hfJSSSsXS4MdqliOpnPH7MwDdAbLocg0q/OpX4dlnQ2P2hAnbJoyNG+EXvwjPe/cOAwxzeecdGDIkPCC0rSxbFkookyen2/OqY0c4+GAllQqmpFLNciSVFe/mmVJDkpWrEX3DBrjyyqb3Mwvdfbt3D6WbXO0m2dVbpdZ9d8QI+N//DaPsd9wx7WgkYQVVf5nZTjke2xU7OCkyVX+1v/p6eOihphvRV67MP4XJwIEhoUAodZTjSPURI0I13fz5aUdSvaKq1+EwPOlDF9qm8iSwGlgC/Dt6/oqZPWlmiQcl7WSnncJfJZXiiLeZDBgAZ5wBQ4fCZz8bluUycGCYM+uKKwofqd5ejexJOfDA0IlAVWDpiLfXFUGhSeXPwDHuXuPufYDPAvcDXwduLEpkUnydOoXqByWV5GU3tK9YEZaZhb+/+lXTSaMlI9Xbq5E9Kd26wfDhSirF1FQnkIkTt616TVChbSr/5e5fbXjh7g+b2TXufo6ZdS5GYGY2Cvgp0BG4xd2vKsZ5ql5NDaxe/eHLg/oflGIwFeLdd0OX3lz/cTdtgi98ITzv1KnpRvRSbA9JyogR8POfh84HnYvyFVK9cnUCOfts+N3vQieOIo8RKrSkssrMLjazQdHjIuB1M+sI1CcdVHTcGwglor2A081sr6TPI2wzqv7KI6/kyiObaSyW3L8E588P08L36xfm1col/h+6HEsZSRkxIiSUhvnApHBNlUI2b4YLL8zdc/APfwidPHr0KGp4hSaVLwD9gXujx8BoWUdgdBHiOhBY6u4vufsm4E7g+CKcRzRVS8vlG3R48MEwa1YoiTQ3EWO1O+SQ8FdVYNtq6fils86Co44K87n17AmrVuU+rllI4jfdtG3Va4IKSiru/qa7f9Pd948e57n7anff5O5LixDXbsDy2OsV0bIPmdk4M1toZgtXx6pvpIWyksrJs07m5FknpxhQGchVJ+0eOj6sWgW//GVhEzFWs759Q6cFJZVM+W7PfN11cP/9YdBrrvvbzJkTbpr29a839urMlms+tyIotEtxXzO72sweNLO/NDyKElGB3H2qu9e6e23fvn3TDKW8NSQVdwDWrF/DmvVrmtmpCuT6tbhuXRh8mK9Oeu3axqqFcu2Z1Z5GjIC//z1U/1WTpkoil1yS+/bM558Pxx0Hb7+d/7iPPhrmcpsypeD53BbBora9mW0VWv01A3gB2B34PvAK8ETSwcSsBAbEXvePlknSampCfev776cdSenI9Wtx7Njw6/rcc2G7PEO0squ2qrnNpBCHHhoS8fPPpx1JclozX9uXvwy1teGHx4omBh/Pmwf9++del+Z8blkKTSp93P1WYLO7P+ruZwGfKWJcTwB7mtnuZrY9cBpwXxHPV70aSnlqV2mUa7T7li2ht9aCBXDbbaraSkKlTS6Zr+rq17+Gp56C6dND9VT2Z2vz5rD+4IPD9Du5DBoU2kyuuqr05nPLUmhS2Rz9XWVm/21m+wM7FSkm3H0LcB7wJ+B5YJa7P1us81U1jarPtGxZ/kFh69fDpz6V+i/BirHHHqFDQzkllaZKIrl+jKxfH0q5w4aFzhzvvpv7uFu3wh13hG7WSYxfSlGh41QuN7NewHeA64GewPhiBQXg7g8CDxbzHMI2SeWI3Y9IMZh2NGNG4xiRAQPg1FPhhRfggQfy71Pqc2qVm3K7aVeu8R9f+Qo88khjySSfO+4IMzQfc0zuNrl4IzqU9/gld2/VAxjf2n2TfgwfPtyllZYscQf3229PO5L2M326e7du4X3HHz16uE+c6D5lyrbru3UL+0mypkwJ13f58rQjCaZPdx80yN0s/I3/m/fvv+1npuHRt69716651w0alHn8EvpsAQs94e/jtiSVZUkH09qHkkobvPVW+Bhcd13akSQn3xfDli3uCxa49+qV+z//wIHNH0OStXBhuPZ33pl2JLm/8Lff3v2II9z32Sd/QjFzr68vPGGU0Ger1JLK8qSDae1DSaUNtm5179jRfdIkd3cfNX2Uj5o+KuWg2iDfF0NtrXvv3vm/GBq+HKR9bd7s3r27+3nnpR1J/pKImfvRR+f/MZJdEimRhFGIYiSVttz50dta9SYloEMH6NPnwzaVDZs3sGFznps/lYNcjaWbNsE//wknnRTqtgvplinto1On0KupPdpVcjWyP/ss/OhHoXtzU915H3oIbrih4PEf1dyNvMmGejNbR+7kYUDXokQk7a+SpmrJNzCxvh5uvTU837o1s8EV1CU4TSNGwA9+ECY77NWrOOfI1ch+5pkfDvrlk58M537nnW33bUkjujRdUnH3Hu7eM8ejh7vrrpGVolKSyqxZoUdRLiU0OEyyjBgRkv6CBW07Tq6SyObNYdDgN76Rf2qdFStg0SKVRBLSluovqRTlnlTWrg3/uU89NXyZdOmSub7EBodJlk99Kty7vi1VYLkGHn7xi7DDDmHyylwlEAifnd2iaQX1YyMRSiqSkVSOHXIsxw45NuWAmhH/RbrzzmEQ3cyZ8P3vw+LFcMst+mIoJzvsAPvv33RSyTfo0B2eew6++c1tSyL19WGSxbvuKrwdTT822i7plv80Hur91UYTJ4YeYPX1aUfSvFy9u8zcf/CDtCOTthg/3r1LF/eNG7ddl69H30EHue+8c2E9+kpsfEipoMR6f0mlqKkJjdf5qghKSb5p5xsa4aU81dfDBx+Eqsvs6U8uvjh3j75//AOOPDL82++6a+7j5pruXSXYolJjuzRO1bJ6NSPvPQGAuWPnphZOXnV1+Xt3FfkWqVJEM2aEe9BA5o2nbrstNKKvzDNBuXuYpBHCLYmb69FX6tObVAiVVKT0J5VctSrcY/uTnwx16rlojEn5mjQJNmSNjdq0Cf7yF/jYx2DHHXPvpx59JUlJRUovqcQbZXv3Ds9vvz3cqCjXrVA1xqS8NVXKvP9+uP76kp/uXRqp+ksyk0qeYR7tJnuQ2jvvhO6mV18N3/52WNa9uwagVZKBA3PP8KtBh2VJJRUprZJKrob4rVvhpz9tfK1fpJVl8mQNOqwgKqlIGCew/fbw5puMHjk6vTjc1RBfjVQSqShKKhIaNqMBkF8/4EfpxOAeBrDlo4b4yqaeWRVD1V8SREll/eb1rN+8vvntk1RfH+ZmuuGGcGc8NcSLlK2SSypmdpmZrTSzuuhxTNoxVYUoqRwz4xiOmdGOl7y+Hs49N/Tquvji0NtHXUNFylapVn9d5+7XpB1EVampCYML6dd+56yvh3POCXN1TZwIl18eEomqQkTKVsmVVCQlffu2T++v+BiUnj1DQrn00saEIiJlrVSTynlm9rSZ/crMcg6nNbNxZrbQzBauXr26veOrPDU1sHYtHbcW8Yae2dOTv/8+bLcdfPzjSigiFSKVpGJmc8zsmRyP44GbgI8Cw4BVwLW5juHuU9291t1r+/bt237BV6qaGnBnh/c3F+8cuW71u3lzWC4iFSGVNhV3P7KQ7czsl8D9RQ5H4MMBkGP7H8s7e+SZ8bWtNAZFpOKVXEO9mfVz91XRyxOBZ9KMp2pESeXEvofCsEOTP358KvNsGoMiUjFKsU3lx2b2LzN7Gvg08O20A6oKUVJ5d+VLvLk+wQb7jRvDGJQzzoAhQ6Br18z1GoMiUlFKLqm4+5nuvq+77+fun4uVWqSYoqRy85+u4JRZp7T+OPHeXf37w157wY03wgUXwL/+Fe6boTEoIhWr5Kq/JCV9+gDQa10bGuqzZxhuuLnS//xPmGUYNAZFpMKVXElFUtK1K3TvTq/32pBUcvXuArj33tYfU0TKipKKNKqpaVtJRb27RKqekoo0qqmhd2uTysqVYSBjLurdJVI1lFSkUU0Ne/qOnFt7bsv2W7QIDjwwNL537py5Tr27RKqKkoo0qqmhz/v1nLrPqYXv87vfwaGHhlLKE0/Arbeqd5dIFVNSkUY1NdS/uZrl7yzPvT7eXXjQIDjlFBg9GvbfHx5/HPbdV7d9FalySirSqKaGDuve46xZORJB9mSQy5bB3XfDIYfAI4/ARz7S/vGKSMlRUpFG0QDInrm6FefrLrx8OXTpUuTARKRcKKlIoyip5Byrkq9b8PI8VWUiUpWUVKRRQ1LJ1a24X547Qqq7sIjEKKlIo3wllaefhnXrtt1e3YVFJIuSijSKkspJfQ9vXLZgARx+OPTqBT/+sboLi0iTNKGkNIomldyvY1TV9Ze/wOc+B7vsEnp4DRoEF16YYoAiUupUUpFGs2bhZvj3vhe6CB91FOy+O/z1ryGhiIg0Q0lFgmgcirljAKtXh/Eo3/xm/kZ6EZEsSioS5BqHUl8PV1yRTjwiUpaUVCTQtPUikoBUkoqZfd7MnjWzejOrzVo3wcyWmtliMzs6jfiqUr7xJhqHIiItkFZJ5RngJOCx+EIz2ws4DdgbGAXcaGYd2z+8KjR5chh3EqdxKCLSQqkkFXd/3t0X51h1PHCnu29095eBpcCB7RtdlRozBqZOZcOuH8E1DkVEWqnUxqnsBiyIvV4RLduGmY0DxgEMVBVNMsaMoauSiIi0QdGSipnNAXbJsWqSu/+hrcd396nAVIDa2lpv6/EkqPtPHQDDdhmWahwiUp6KllTc/chW7LYSGBB73T9aJu1k/EPjAZg7dm6qcYhIeSq1LsX3AaeZWWcz2x3YE3g85ZhERKRAaXUpPtHMVgAHAQ+Y2Z8A3P1ZYBbwHPAQ8A1335pGjCIi0nKpNNS7+z3APXnWTQbUj1VEpAyVWvWXiIiUsVLrUiwpu+IIzfUlIq2npCIZDh5wcNohiEgZU/WXZJi3fB7zls9LOwwRKVMqqUiGiY9MBDRORURaRyUVERFJjJKKiIgkRklFREQSo6QiIiKJUUO9ZJgyakraIYhIGVNSkQya8l5E2kLVX5JhzktzmPPSnLTDEJEypZKKZLj8scsBOHKP1twOR0SqnUoqIiKSGCUVERFJjJKKiIgkRklFREQSo4Z6yXDzsTenHYKIlLG07lH/eTN71szqzaw2tnywmW0ws7ro8Ys04qtmQ2uGMrRmaNphiEiZSquk8gxwEpDrZ/GL7j6sfcORBrMXzwbguKHHpRyJiJSjVJKKuz8PYGZpnF6acO38awElFRFpnVJsqN/dzP5pZo+a2aFpByMiIoUrWknFzOYAu+RYNcnd/5Bnt1XAQHdfY2bDgXvNbG93fzfH8ccB4wAGDhyYVNgiItIGRUsq7t7ieT7cfSOwMXq+yMxeBIYAC3NsOxWYClBbW+tti1ZERJJQUtVfZtbXzDpGz/cA9gReSjcqEREpVCoN9WZ2InA90Bd4wMzq3P1o4DDgB2a2GagHvubub6URY7W6/cTb0w5BRMpYWr2/7gHuybH8buDu9o9IGgzoNSDtEESkjJVU9Zekb+YzM5n5zMy0wxCRMqVpWiTDTQtvAuDUfU5NORIRKUcqqYiISGKUVEREJDFKKiIikhglFRERSYwa6iXDXaPvSjsEESljSiqSoaZbTdohiEgZU/WXZJhWN41pddPSDkNEypSSimRQUhGRtlBSERGRxCipiIhIYpRUREQkMUoqIiKSGHUplgwPjnkw7RBEpIwpqUiGbtt1SzsEESljqv6SDDc+cSM3PnFj2mGISJlSUpEMs56dxaxnZ6UdhoiUKSUVERFJTCpJxcyuNrMXzOxpM7vHzHrH1k0ws6VmttjMjk4jPhERaZ20Sip/BvZx9/2AJcAEADPbCzgN2BsYBdxoZh1TilFERFoolaTi7g+7+5bo5QKgf/T8eOBOd9/o7i8DS4ED04hRRERarhS6FJ8FzIye70ZIMg1WRMu2YWbjgHHRy41m9kzRIkxODfBm2kEUoMa+bGURJ2VyPVGcSSmHGKF84hya9AGLllTMbA6wS45Vk9z9D9E2k4AtwIyWHt/dpwJTo+MsdPfaNoTbLhRnshRnssohznKIEcorzqSPWbSk4u5HNrXezMYCxwJHuLtHi1cCA2Kb9Y+WiYhIGUir99co4CLgc+6+PrbqPuA0M+tsZrsDewKPpxGjiIi0XFptKj8HOgN/NjOABe7+NXd/1sxmAc8RqsW+4e5bCzje1OKFmijFmSzFmaxyiLMcYoQqjtMaa55ERETaRiPqRUQkMUoqIiKSmJJMKmY2KpqmZamZXZJjfWczmxmt/4eZDY6tyznNS3PHbM84zez/mtkiM/tX9PczsX3mRsesix4fSSnGwWa2IRbHL2L7DI9iX2pmP7OoYSylOMfEYqwzs3ozGxatS/RaFhjnYWb2pJltMbNTstZ9ycz+HT2+FFuexvXMGaeZDTOz+Wb2rIVplE6NrZtmZi/HruewtOKM1m2NxXJfbPnu0WdkafSZ2T6tOM3s01mfzw/M7IRoXRrX83wzey76t33EzAbF1iXz+XT3knoAHYEXgT2A7YGngL2ytvk68Ivo+WnAzOj5XtH2nYHdo+N0LOSY7Rzn/sCu0fN9gJWxfeYCtSVwLQcDz+Q57uPAfwEG/BH4bFpxZm2zL/BiMa5lC+IcDOwH/AY4JbZ8J+Cl6O+O0fMdU7ye+eIcAuwZPd8VWAX0jl5Pi2+b5vWM1r2X57izgNOi578Azk0zzqzPwFtAtxSv56dj5z+Xxv/viX0+S7GkciCw1N1fcvdNwJ2E6Vvijgd+HT2/Czgiyp75pnkp5JjtFqe7/9PdX4uWPwt0NbPObYwn0RjzHdDM+gE93X2Bh0/cb4ATSiTO06N9i6XZON39FXd/GqjP2vdo4M/u/pa7ryXMfzcqreuZL053X+Lu/46evwa8AfRtYzyJx5lP9Jn4DOEzAuEzc0KJxHkK8EfPHEaRpELi/H+x88enyErs81mKSWU3YHnsda6pWj7cxsMcYu8AfZrYt5BjtmeccScDT7r7xtiy26Li8HfbWBXS1hh3N7N/mtmjZnZobPsVzRyzveNscCpwR9aypK5loXG2dN+0rmezzOxAwi/eF2OLJ0dVJ9cl8EOorXF2MbOFZragoUqJ8Jl42xvnFiyZ60koYWd/PtO8nmcTSh5N7dviz2cpJpWqYWZ7Az8CzoktHuPu+wKHRo8z04iNUO0x0N33B84HfmtmPVOKpVlm9ilgvbvH54ArlWtZdqJfqLcDX3b3hl/fE4CPAwcQqkkuTim8BoM8TIXyBWCKmX005Xjyiq7nvsCfYotTu55mdgZQC1yd9LFLMakUMlXLh9uYWSegF7CmiX2LMf1LW+LEzPoD9wBfdPcPfwm6+8ro7zrgt7RtluZWxxhVIa6JYllE+LU6JNq+f2z/1K9lZJtfgQlfy0LjbOm+aV3PvKIfDw8Q5un7cIJXd1/lwUbgNtK9nvF/35cI7Wf7Ez4TvaPPSIuPWYw4I6OBe9x9c8OCtK6nmR0JTCLMaLKxmX1b/vlMqpEoqQdhlP9LhIb2hsamvbO2+QaZjbazoud7k9lQ/xKh8arZY7ZznL2j7U/Kccya6Pl2hHrhr6UUY1+gY/R8j+iDtJPnbrg7Jq1rGb3uEMW3R7GuZaFxxradxrYN9S8TGkF3jJ6ndj2biHN74BFgfI5t+0V/DZgCXJVinDsCnaPnNcC/iRqlgd+R2VD/9bTijC1fAHw67etJSLwvEnXGKMbns9VvoJgP4BjCzbteJPxaAvgBIbMCdIk+OEujNxz/MpkU7beYWC+FXMdMK07gUuB9oC72+AjQHVgEPE1owP8p0Rd7CjGeHMVQBzwJHBc7Zi3wTHTMnxPNzJDiv/lIwlQ/8eMlfi0LjPMAQr3z+4Rfzc/G9j0rin8poVopzeuZM07gDGBz1mdzWLTuL8C/olinAzukGOfBUSxPRX/Pjh1zj+gzsjT6zHRO+d99MOFHT4esY6ZxPecAr8f+be9L+vOpaVpERCQxpdimIiIiZUpJRUREEqOkIiIiiVFSERGRxCipiIhIYpRUpKJkzVxbZ7EZrMudme1vZrdGz8ea2c+z1s81s9om9r/TzPYsdpxS3dK6nbBIsWxw92G5VkRzf5k3TjtSbiYCl7dh/5uAi4CvJhOOyLZUUpGKZuG+MIvN7DeEAVwDzOxCM3simsjv+7FtJ5nZEjP7m5ndYWYXRMs/LAGYWY2ZvRI972hmV8eOdU60fGS0z11m9oKZzWiYzNLMDjCzeWb2lJk9bmY9zOyx+L00ovN/Iut99AD2c/enCnjPn4uV1Bab2cvRqr8CR8amMBFJnD5cUmm6mlld9Pxl4NvAnsCX3H2BmR0VvT6QMO3EfWZ2GGEk9GnAMML/iycJI/KbcjbwjrsfEM0w+3czezhatz9h2qDXgL8Dh5jZ48BM4FR3fyKaY2sDcCswFhhvZkOALjmSR8Oo5rhTzWxE7PXHANz9PuA+ADObBTwaLa83s6XAJwp4byKtoqQilSaj+itqU3nVGydGPCp6/DN6vQMhyfQgTPi3PtrvwzsJNuEoYD9rvNNfr+hYm4DH3X1FdKw6wlQd7wCr3P0JAHd/N1r/O+C7ZnYhYaqMaTnO1Q9YnbVsprufF3uvc+MrzewiwvW4Ibb4DcLNt5RUpCiUVKQavB97bsCV7n5zfAMzG9/E/ltorCruknWsb7p7fDpzzGwkEL8/zlaa+L/m7uvN7M+EGyqNBobn2GxD1rmbFM1E+3ngsKxVXaJjiRSF2lSk2vwJOMvMdgAws90s3Lv+MeAEM+satV8cF9vnFRq/6E/JOta5ZrZddKwhZta9iXMvBvqZ2QHR9j1i7Ru3AD8DnvBw571szxNVbzXHwn3HbwA+7+7ZCWQI21ajiSRGJRWpKu7+sJn9H2B+1Hb+HnCGuz9pZjMJs96+ATwR2+0aYJaZjSPcZ6TBLYRqrSejhvjVNHGrVXffZGanAtebWVdCieFIwr3WF5nZu4T7auTa9wUz62VmPTzcH6YpYwl3QLw3eo+vufsxZrYzoTrsP83sL9JqmqVYJAczu4zwZX9NO51vV8KNpj6er8uzmX0bWOfut7TyHN8G3nX3W1sdqEgzVP0lkjIz+yLwD8L9L5oaQ3MTmW01LfU28Os27C/SLJVUREQkMSqpiIhIYpRUREQkMUoqIiKSGCUVERFJjJKKiIgk5v8D8ZVR1RH7rk8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "cross = cross.rebin(0.0050)\n", + "lag, lag_e = cross.time_lag()\n", + "plt.figure()\n", + "\n", + "# Plot lag-frequency spectrum.\n", + "plt.errorbar(cross.freq, lag, yerr=lag_e, color='r', fmt=\"o-\")\n", + "\n", + "# Find cutoff points\n", + "v_cutoff = 1.0/(2*delay)\n", + "h_cutoff = lag[int((v_cutoff-cross.df*2)*1/cross.df)]\n", + "\n", + "plt.axvline(v_cutoff, color='g',linestyle='--')\n", + "plt.axhline(h_cutoff, color='g', linestyle='-.')\n", + "\n", + "# Define axis\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.xlabel('Frequency (Hz)')\n", + "plt.ylabel('Lag')\n", + "plt.title('Lag-frequency Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Energy Dependent Impulse Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, stingray an option to simulate light curves and add them to corresponding energy channels.\n", + "\n", + "Below, we analyse the lag-frequency spectrum in such cases. \n", + "\n", + "We define two delta impulse responses with same intensity but varying positions, each applicable on different energy channels (say '3.5-4.5 keV' and '4.5-5.5 keV' energy ranges). " + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [], + "source": [ + "delays = [10,20]\n", + "h1 = sim.simple_ir(start=delays[0], width=1)\n", + "h2 = sim.simple_ir(start=delays[1], width=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, we create two energy channels to simulate light curves for these two impulse responses." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', var, h1)\n", + "sim.simulate_channel('4.5-5.5', var, h2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Compute cross-spectrum for each channel." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [], + "source": [ + "cross = [Crossspectrum(lc, var).rebin(0.005) for lc in sim.get_channels(['3.5-4.5', '4.5-5.5'])]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Calculate lags." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [], + "source": [ + "lags = [c.time_lag() for c in cross]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Get cut-off points." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "v_cuts = [1.0/(2*d) for d in delays]\n", + "h_cuts = [lag[int((v_cutoff-0.005*6)*1/0.005)] for lag, v_cut in zip(lags, v_cuts)]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Plot lag-frequency spectrums." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZUAAAEWCAYAAACufwpNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABZAUlEQVR4nO2dd3gU1frHP286kNBCCdJRQkeaVEVaAAVEpHv1gohYfurFfu0oYrkiKioKNlCQIohSlSYiTYoEpYcSJHRCCyUJIef3x5mFTUjZJLs7m+R8nmeenZ1z5px3zs7Od057jyilMBgMBoPBHfjZbYDBYDAYCg5GVAwGg8HgNoyoGAwGg8FtGFExGAwGg9swomIwGAwGt2FExWAwGAxuw4iKId8iIiNEZLLddhQmTJkbssOIiocQkVgRuSgi55y2j+22KztERInIecveeBFZKiL97bbLk4hINeu6A7KIM0JELqX7PZ/1pp0FHRG5X0R2iEiCiBwVkQUiEubB/LL93Q05xxSmZ+mhlFriyQxEJEApleLmZG9USu0WkTLAbcDHIlJbKfWam/PJb0xXSt2TVQQR8VdKXfaWQQUFEbkVeBPoqpTaJCKlgR42m+Wp/1eBxtRUbEBEBovIShEZLSKnRGSfiNzmFF5CRL4UkcMiclBE3hARf6dzV4nI+yISD4wQkXARmSsiZ0VkvRV/pRX/ExF5L13+c0TkiezsVEqdUEp9CzwMPC8i4Tmw72MROWO9eXbMwbVlVS7VReQ36012MVAm3XW1FJHVInJaRDaLSDunsOUiMtKyLUFEFlmiCbDC+jxt1UBaZVc2TulOFJFPrbfq80B7EblORGaJyHHrGh53il/EOueUiGwTkWdEJM4pXInIDenSf8Ppe3cRibaucbWINHQKixWRp0XkL6vsp4tIiFN4T+vcsyKyR0S6ikhfEdmY7pqeFJGfXLz+70XkiJXfChGp5xSW6X2ZATcBa5RSmwCUUieVUpOUUglO5fCZiCy2fr/fRKSqU161rbCTIrJTRPqlK/P3RGS/ZedKESlCBr+7ZPz/StPkJ+lqONa99Yb1e5yzrjlcRKY4XXs1V8qzQKCUMpsHNiAW6JRJ2GDgEvAA4I9+aB8CxAqfDYwHigHlgHXAg07npgCPoWuaRYBp1lYUqAscAFZa8ZtbaftZ38sAF4DymdimgBvSHQu08rwtB/Y9YZ3XHzgDlHbx3KzKZQ0wBggG2gIJwGQrrCIQD9yOflmKsr6XtcKXA3uASKvMlgNvW2HVrOsOyOL3HOHIK93xidb1tbHyLQpsBF4BgoAawF6gixX/beB3oDRQGdgCxGVW/lb6b1j7jYFjQAurfAah77Ngp3tuHXCdlf524CGn++CMVS5+VnnVtsryJFDHKc9NQG9XygEYAoRZ6XwARDuFZXpfZpDuLcBF4DWrLIMzKOcE63cPBj7k6j1ezEr7PvR/ojFwAqhrhX9i/d4VrXJrbaVxze9Oxv+v9Nec5jwr7d3A9UAJYBuwC+hkpfEN8LXdzySvPfvsNqCgbtYf/Bxw2ml7wAobDOx2ilvUukkjgPJAElDEKXwg8KvTuf84hfmjH8S1nI694fznRT9coqz9R4EFWdh9jahYx48A/3LRvitCYB1bB9zr4rmZlUsV689ezCn8O66KynPAt+ls/gUYZO0vB15yCnsE+Nnav+bhksH1jwCS0/2e16Efdt84xWvh/PtYx553PFTQAtPVKWwYrovKp8DIdGnvBG51uufucQr7H/CZtT8eeD+Ta/sUGGXt1wNOke6hnq4crhFXK6ykZX8JXLgvMzj/NmCuVbbn0C8Q/k7lMM0pbihwGS3M/YHf06U1HngVLaAX0U266fO75ncn3f8ro2tOf551b73oFP4esNDpew+cxLagb6ZPxbPcqTLvUzni2FFKXRAR0H+U0ug3/MPWMdB/jANO5zrvl0W/DWUWDjAJuAdYbH1+mJOLEJFAK5+TQFUX7DuorH+TxX70A9iVczMrlzLAKaXU+XTpVrb2qwJ9RcS5HT4Q+DWjtNG1tdBMLzpjZqh0fSqWfc72VwWuE5HTTsf80bUT0OXgHH9/DvKvCgwSkcecjgVZaTpIf42OsMrAgkzSnQRMFZGX0OI/QymVJCL/Qj+cQT+0b3M+SXSz5SigL/r+SLWCyqDf8LO7L9OglFoILBQRP6A98D1aNB02HHCKe05ETnL1vmqRrswDgG8tW0LQtVRXydLOTDjqtH8xg+85vdfyLUZUfI8D6Lf5MirzDkLnB/Zx9Bt8JXSVG64+aB1MBraIyI1AHeDHHNrU08pjHfohlp19FUVEnISlCjAH164tMw4DpUSkmJOwVOFqWRxA11QeyGG6kLY8c4Pz+QeAfUqpmpnEPYz+fbZa36ukC7+ArqE5iAAcfS4H0DWKUbmw8QC6eeYalFJrRSQZ3QR1t7WhlJoCTMkizbvR90YndC2pBLqWI7h2X2aIUioVWCoiy4D6TkFXzhcRxwvYIevaflNKRaVPyxKoRPS1b06fVWYmpPt+nmt/E0MmmI56H0MpdRhYBLwnIsVFxE9Erhc9Oiaj+JeBH9AdikVFpDbw73Rx4oD16De3WUqpi67YIiKlrbfVT4B3lFLxLtpXDnhcRAJFpC9ayBbk9NrSXcN+YAPwmogEicjNpB0dNBnoISJdRMRfREJEpJ2IVHLhUo+j37JruBA3O9YBCSLynNVB7C8i9UXkJit8BnrQQynLtsfSnR8N3G2d1xVwLpvPgYdEpIVoiolIN3Ft2O2XwH0i0tEq94rWveLgG+Bj4JJSKrPO9PSEoV8S4tEP3TcdAa7cl86IHkQwwCoXEZHm1rWvdYp2u4jcLCJBwEhgrVLqADAPiBSRe617LlBEbhKROpZAfQWMET2Awt/qkA/G9d89GmgrIlVEpAS6OdOQCUZUPMtcSTuvYbaL5/0bXSPYhn7zmwlUyCL+o+i3xCNo4ZiK/rM7MwloYIVnx2YROYfufBwKPKGUeiUH9v0B1ER3lo4C+iil4nN5bc7cje6zOIluL//GEWA9XHoCL6AfFgeAZ3DhHldKXbDsXCV6VFVLF+3JKK3LQHegEbAPXQZfoH8f0B3R+62wRVz7e/wHLZan0X1YPzqlvQE9iOFjdNntRvcBuGLXOnRH9vvoDvvf0M1GDr5F1wpyMrHxG+taDqJ/z7Xpwl25Lx2cQl9bDHDWsuNdq7bk4Dv0734SaIpuykXpEWKdgQHomssR4B10ZzzA08Df6Berk1aYn6u/u1JqMTAd+As9CGNeFmVS6HGMqjEUIETkHSBCKTXI6Vhb9B+1qvLgjy4ig4GhSqmbPZVHQUL0sOfJSilXalSetKMIemRZE6VUjIfyuOa+zMG5E9EDGl5yu2EGt2JqKgUA0WP0Gzo1G9yPHrrrCA9EvwF/4UlBMeRrHgbWu1NQsrsvDQUT2zrqRaQyuvpcHt0xNkEp9aGIjEBXg49bUV9QSmU2asWgCUM3LVyHHnXyHvATgIjUQfdFbEY3fxgMaRCRWHTn+p1uTjrT+9JQcLGt+UtEKgAVlFJ/Wh2NG9E3dT/gnFJqtC2GGQwGgyHX2FZTsUYCHbb2E0RkO3rGq8FgMBjyKT7RUS/aL84K9OiTJ9EjWs6im22eUkqdyuCcYejZyBQrVqxp7dq100e5wtmks8TEx1CrTC1Cg+yZg7QzficAtcJr2ZK/y+zUdlLLx+00GAx5ZuPGjSeUUmXdmabtomJNYvoNPanrBxEpjx6GqdBj0SsopYZklUazZs3Uhg0bMg3fc3IPN3x0A1/e8SVDGmeZlMdoN7EdAMsHL7clf5dp105/Ll9upxUGg8ELiMhGpVQzd6Zp6+gva1TSLGCKUuoHAKXUUaXUZWvS0udoR3h5omrJqgT6BRIT75GRkgaDwWCwsHP0l6Bn+W5XSo1xOl7B6m8B6IX24ponAvwCqFGqBjEn7ROVl9rmk+H1L+UTOw0Gg09ip++vNmjndX+LSLR17AVgoIg0Qjd/xQIPuiOzmuE12RW/K/uIHqJTjU625Z0jOuUTOw0Gg09i5+ivleix8enxyJyUyNKRLN27lFSVip94v9Uv+kg0AI0iGnk97xwRHa0/GzWy0wqDwZBPKTReimuG1+RiykUOJRyiUnHve8QY/vNwIB901A8frj9NR73BYMgFhcZNS83S2hO5nU1gBoPBUNApNKISGR4JYEaAGQwGgwcpNKJSsXhFQgJCbB0BZjAYDAWdQiMqfuLHDaVvMM1fBoPB4EEKTUc96Cawbce32ZL3mx3fzD6SL/BmPrHTYDD4JIVKVGqWrsncnXO5nHoZfz9/r+bdunJrr+aXa1rnEzsNBoNPUmiav0CLyqXUS+w/s9/rea8+sJrVB1Z7Pd8cs3q13gwGgyEXFKqaivMIsBqlang17xeWvgDkg3kqL2g7zTwVg8GQGwpXTSVcz1UxI8AMBoPBMxQqUSlfrDyhQaFmBJjBYDB4iELV/CUiRIZH5qmmcuHSBdYdXMfqA6spFliMqOujqFOmDtrpssFgMBRuCpWogO6s33Ao8wW90hN/IZ5VB1bx+/7fWXlgJRsPbeRS6qU0ca4Lu46oGlFE1YiiU41OlA8t726zDQaDIV9g+8qP7iCsephq+mrTLON0j+zO062f5uVlL/PG72/weY/PGdpkKCcunKDPjD5p4iZfTmb/6f2cTjzNhZQLAPiLPy0rtaRphaYsi13GCze/QOvKrfn2r28Z+8dYTiWeIiU1BYBigcUoVaQUZYuWpXhwcQB61e7FrdVupUhAER6c9yBvdnyT1pVbs/rA6iud+FmRPv747uOpVaYWc3fO5b0172V7fvr4M/vNpEzRMkyMnsjE6IlXI547pz9D0y67nD6+Y8DB6NWjmbdrXrb5O8dfE7eGWf1mAfD8kudZE7cmy3PDi4aniR9/MZ4JPSYAMGzusGybMyPDI9PEDy8Szlud3gKg94zexF+Iz/L8VpVapYnfqlIrnm79NHB1Rc+scNx7jviDGw1mcKPBGd57GZE+/lOtnqJHrR7sPLGTB+dlvzJE+vg+e+9lgrn3PHfv/Xbfb25f+bHQ1VQcI8COnz+eYfix88eIiY/hsrpMqZBSlA8tT4ngEjxy0yM80PQBTlw4weajmwkNCqVqyar0rduXJXuXAJCQnMCpi6c4lXiKg2cPEnc2jluq3IKf+FGjVA0aRTRi54mdXrvWXJFOTAwGgyEn2FZTEZHKwDdAefSCXBOUUh+KSGlgOlANvUhXP6XUqazSym6NemfWxq2l1ZetmDtwLt0ju185Hn8hnkcWPMKMrTNoWaklk+6cdEWAcsO49eP4vwX/x+GnDhMRGnFFeHx+sa4l2k6zWJfBUPDxxBr1dtZUUoCnlFJ/ikgYsFFEFgODgaVKqbdF5L/Af4Hn3JVpRi7w5++az9C5Q4m/EM+oDqN4ts2zBPjlrWjCgsIAOJesm5PeWPEGkA9E5Q1tpxEVg8GQG+xc+fEwcNjaTxCR7UBFoCfQzoo2CViOG0UlvGg4pYuUJiY+hrNJZ3nylyf5ctOXNCjXgJ//9TM3RtzolnxCg3QzkkNUDAaDoTDgE30qIlINaAz8AZS3BAfgCLp5zK3ULF2TZbHLuPGzG/nnzD/8t81/GdFuBMEBwW7LIyw4bU3FYDAYCgO2T34UkVBgFjBcKXXWOUzpDp8MO31EZJiIbBCRDcePZ9zpnhmR4ZHsit9FgF8Av9/3O291esutggKmpmIwGAonttZURCQQLShTlFI/WIePikgFpdRhEakAHMvoXKXUBGAC6I76nOQ7vOVw6pSpw+MtHqdYULE8XEHmGFExGAyFEdtERfQU9C+B7UqpMU5Bc4BBwNvW50/uzrtJhSY0qdDE3cmmIb2ojO8+3qP5uY3x+cROg8Hgk9hZU2kD3Av8LSLR1rEX0GIyQ0TuB/YD/ewxL284RCUhKQGAWmVq2WmO69TKJ3YaDAafxM7RXyuBzBxmdfSmLZ4gfU1l7s65APSo1cM2m1xirraTHj5up8Fg8El8YvRXQSTYPxh/8b8iKg53Fj4vKu9ZbjeMqBgMhlxg++ivgoqIEBoUajrqDQZDocKIigcJCw4zomIwGAoVRlQ8SGhQKOcuGVExGAyFByMqHsQ0fxkMhsKG6aj3IM6i8m2vb222xkW+zSd2GgwGn8SIigcJDQrl4NmDAFQuUdlma1ykcj6x02Aw+CSm+cuDONdUpm+ZzvQt0222yAWmT9ebwWAw5AJTU/EgoYFXReXTDZ8C0L9+fztNyp5PtZ3093E7DQaDT2JqKh7EdNQbDIbCRsEUFaUgMdFuK66Iil1LNhsMBoO3KXiikpwMVarAqFF2W0JYcBgKxcWUi3abYjAYDF6h4IlKUJAewbR4sd2WmDVVDAZDoaNgdtR36qRrKqdOQalStpnhLCoz+820zY4cMTOf2GkwGHySgldTAYiKgtRUWL7cVjOcRaVM0TKUKVrGVntcokwZvRkMBkMuKJii0rIlhIba3gTmvFDXxOiJTIyeaKs9LjFxot4MBoMhF9gqKiLylYgcE5EtTsdGiMhBEYm2tttznHBgILRr5zOici75nBEVg8FQKLC7pjIR6JrB8feVUo2sbUGuUu7UCXbvhtjYPJiXN0xHvcFgKGzYKipKqRXASY8kHhWlP22srRhRMRgMhQ27ayqZ8aiI/GU1j2U4fEtEhonIBhHZcPz48Wsj1KkD110HS5Z42tZMCQsKA4yoGAyGwoMvisqnwPVAI+Aw8F5GkZRSE5RSzZRSzcqWLXttBBFdW1m6VI8EswFTUzEYDIUNn5unopQ66tgXkc+BeblOrFMnmDQJNm2Cpk3dYV6OCAkIwU/8OJd8jgX/yl3XkNdZkE/sNBgMPonP1VREpILT117AlsziZkunTvrTpn4VEbni/6toYFGKBha1xY4cUbSo3gwGgyEX2D2keCqwBqglInEicj/wPxH5W0T+AtoDT+Q6g4gIaNDA1n6V0KBQEpITGLd+HOPWj7PNDpcZN05vBoPBkAtsbf5SSg3M4PCXbs0kKgo++QQuXoQiRdyatCs4aiozts4A4JGbHvG6DTlihraTR3zcToPB4JP4XPOX2+nUCZKS4PffbcnerKliMBgKEwVfVNq21Z6LbepXMaJiMBgKEwVfVIoVg9atbROVsKAwIyoGg6HQUPBFBXS/yubNcOyY17M2NRWDwVCYKByi4hhavHSp17N2iMrywctZPni51/PPMcuX275kgMFgyL8UDlFp2lQv1mVDE5ipqRgMhsJE4RAVf3/o0EGLilJezdoxT+XdVe8yevVor+adK0aP1pvBYDDkgsIhKqD7VeLiYNcur2YbGhRKqkpl7q65zNuVe48zXmPePL0ZDAZDLig8omKTyxaHU8nLqZe9mq/BYDDYQeERleuvh+rV7RMVZUTFYDAUfAqPqIBuAvv1V7h0yWtZOtZUMTUVg8FQGCh8opKQAOvWeS1LR00lwC+AIoHe9z2WY4oUscVHmsFgKBj43HoqHqV9e71415Il0KZNzs69eFF39B84oLe4OP3wrV1brzJZtSr4XavRDlF5vf3rRF0flbM8ExPh8mXtFcBbLFzovbwMBkOBo3CJSni4nrOyeDG8+mrm8f76CyZOhD17rorIiRNZpx0SArVqaZFxCE3duoSWDgFysPpjfDzMnw8//gi//KKFpW5daNHi6lavnh4mnRVK6VrZ4cNQoQIUL+5a/gaDwZAHRHl53oYnaBYWpjZkt7Jj9+7w9NPwwgvw1lt6zZCHH9Zi0aePjnPypK6BnDqlazRFi0JwsN5atYKePfXD+a234NlnoV07WLQIRoyACxeubomJV7LdEy7c8JjirpMRNKrRipevHwLvvqvTaN0aVq+GJ5/Udpw4AWfO6BODgqBMGQgMhLNnISVFiwToGlHTprrmlZwMc+dqT8zJyWk/nZdRrlkTbr1Vi9/atXrYcPnyWjwnTrwab/9+/Vm1atrymzlT2+OI75h1P3q0a0OQneOvWQOzZunvzz+vv2dFeHja+PHxMGGC/j5sWPbDxCMj08YPD9flD9C7t04vK1q1Shu/VSt9L4G+B7LDce854g8erDfney8r0sd/6ino0QN27oQHH8z+/PTx33zz6r33wgvZn58+/vjx+gVq7lx4L8PVvtOSPn76eyk7zL13Nb6b7z357beNSqlm2SfkOrbWVETkK6A7cEwpVd86VhqYDlQDYoF+SqlTbss0Kkr/SDt26O9JSXDkiBaT8+f1w7x6dbjuOghwKp4ePeDf/9Y/RpEiOl54ODRpomsCzqSm6uayc+cIvXwGOMzfHCE+ejYvD5+tReGhh6BlSz1wYPdufV7RolCliv4DhYWlTXPUKChXDiZPhi+/1ML1/vtXBx2IaPELCoLQUG1bUJDeLl7UC5bNmqUFE/RouJYt9bUkJFzNzxGeXlQMBoPBBWytqYhIW+Ac8I2TqPwPOKmUeltE/guUUko9l1U6zZo1Uxs2bHAt06Qk7bKlb1/dTDV2rBaVBg30G93AgfpB7CbOJ58n9K1QapSsTuXAMiwPeww2boQNG2DLFp3vnXfqWtANN+Qs8aQkiI2FsmX1NYlkHV8piInRNZU//tCfmzdrwYmL03Ecbz/G/5fBUOARkYJVU1FKrRCRaukO9wTaWfuTgOVAlqKSI4KD9Ror33yjv3fuDJMm6RpMdg/lXFA0sCiCcFml6prIvffqzR0EB+tmBVcR0dXxyEhd6wJ4+WXdvHH5cvb9NAaDwZANvthRX14pddjaPwKUzyiSiAwDhgFUqVIlZzk8/7x+sA4dCg0b5sHU7BERQoNCfXeeSkSEbq47cUL3sRgMBkMe8EVRuYJSSolIhu1zSqkJwATQzV85SvjWW/XmJUKDQgnwDyC8aLjX8nSZiAj9eeSIFpVwH7TRYDDkG3xRVI6KSAWl1GERqQB4f2UtNxMaFEqz65rxXe/v7DblWhy1kyNH4MYbr450MRgMhlzgizPq5wCDrP1BwE822uIWfHpNFeeaisFgMOQRW0VFRKYCa4BaIhInIvcDbwNRIhIDdLK+52tCg0LZfHQzzy953m5TriW9qDz/vN4MBoMhF9g9+mtgJkEdvWqIhwkNCuXkxZOsictmopUdhIZqNzBHj+rv2U0GMxgMhizwxeavAodPj/4CXVsxzV8Gg8ENGFHxAqFBob69nkr58kZUDAaDWzCi4gVMTcVgMBQWjKh4gbCgMFJVKpWKV7LblIyJiLjap1Kpkt4MBoMhF/jiPJUCR2hQKArFl3d8abcpGRMRoT00JyVph5UGg8GQS0xNxQs4Fury+bkqx/L9PFODwWAzRlS8gENUnln8jM2WZILzrPrhw/VmMBgMucA0f3kBh6j8fexvmy3JBOcJkNHRtppiMBjyN6am4gUcouKzI8AcouLorDcYDIZcYkTFC1wRFV+dq+Lc/OWDKKVYtm8ZW49ttdsUg8GQDUZUvIDP11SCg/XKkT4mKkop5u6cS/MvmtPxm44MmzfMbpMMBkM2mD4VLxAWrNd/L1usrM2WZIFjVn1kpN2WkKpS+WnHT4xcMZJNRzZRvWR1ml3XjB0ndthtmsFgyAZTU/ECjppK/3r9bbYkCxyz6idM0JsNpKpUZm6bSePxjblrxl0kJCfwdc+v2fnoTu6ufzcnL54k/kK8LbYZDAbXMDUVL+Dz81RAi8qGDbZkrZTi+23f8/pvr7P1+FYiwyP55s5vGNhgIAF++hatGV4TgJiTMb65gqbBYABMTcUrFA0sCsDULVNttiQLHDWVYcP05iWOnjtKz2k96T+zP6kqle/u+o5tj2zj3hvvvSIoAJHhulluV/wur9lmMBhyjs/WVEQkFkgALgMpSqlm9lqUe/zEDz/x49h5H56xXr48nDsH27eDv79Xsvxxx488MPcBEpISeL/L+zzW/DH8/TLOu3rJ6viLvxEVg8HH8VlRsWivlDphtxHuwF/8fXf0F1ydq5KcDEWKeDSrs0ln+c/P/2Fi9EQaRzRm8l2TqVu2bpbnBPoHUqNUDSMqBoOP4+uiUmDw9/P33XkqcFVULl3yqKis2L+Cf8/+NwfOHuDFW17klVtfIcg/yKVzI8MjjagYDD6OL/epKGCRiGwUkWsa+UVkmIhsEJENx48ft8G8nJGvaioeICkliWcWPUO7ie0I8Atg5X0reaPDGy4LCmhRiTkZg1LKIzYaDIa848s1lZuVUgdFpBywWER2KKVWOAKVUhOACQDNmjXz+adMiZAS+IkPa7hDVMqVg4YN3Zr09uPb6T+zP38f+5sHmz7I6M6jr4yIywk1S9fkwqULHEo4RMXiFd1qo8FgcA8+KypKqYPW5zERmQ00B1ZkfZbv0rB8Q05ePGm3GZlTpgyIwM03w+uvuy3ZdQfXcduU2wjwC2DewHl0i+yW67ScR4AZUTEYfBOffHUWkWIiEubYBzoDW+y1Km+EBoX69jyVgAAoW9atrlqW7l1Kh0kdKBlSkjX3r8mToIAZVmww5AdcEhUR6ev0kH9JRH4QkSYetKs8sFJENgPrgPlKqZ89mJ/H+fPwn8SejrXbjKyJiIAFC+Cee/Kc1Ozts7n9u9upXqo6K+9bSY1SNfKcZsXiFSkSUMSIisHgw7ja/PWyUup7EbkZ6AS8C3wKtPCEUUqpvcCNnkjbLhJTEkm+7JlOcLcREQH79kFcXJ6S+WrTVzww9wGaV2zO/LvnU7pIabeY5yd+1Ayvya6TRlQMBl/F1eYvx7ClbsAEpdR8wPVhOwbfH/0FWlTyOPprzJox3D/nfjpW78iSe5e4TVAc1Cxdk5j4GLemWZA4n3yekb+NpPeM3r79EqMUHDxolrAugLhaUzkoIuOBKOAdEQnGR/tjfBV/P38UiuTLyTkaRutVypfPtagopXj515cZ9fso+tTtw+RekwkOCHazgbpf5aedP5GSmpLGjUthJyU1ha82fcWry1/lyDndL7bh0AZaV25ts2Epuva7fXvabccOOHsWKlSAAwe85sXB4Hlc/Vf2A7oCo5VSp0WkAuCjC677Jv6i/zTnks+5/e3dbURE6DfIlJQcnXY59TKPLniUzzZ+xtDGQ/ms+2eZulvJK5HhkaSkphB7OpYbSt/gkTzyE0op5uycw3+X/pcdJ3bQpnIbPuv2GXdOv5NV/6zyjqhcvAixsbB3r9727Lm6HxOT9kWlQgWoUwfuvVef99VXegnrpk09b6fBK7gqKiHAcgARKQ0kAb96yKYCSa3wWuw5tcf3RQWgbtYuU5w5l3yOIT8N4ftt3/Ns62d5u9PbiIiHDEw7Aqywi8qaA2t4ZvEzrDqwilrhtfix/4/cUesORITrS13P6rjV7s1QKfjnH1i7Vm9//gm7d8OhQ2njFSsGNWrADTfA7bdrEalTB2rXhpIlr8Y7ckSLypIlRlQKEK6Kyp9AZeAUIEBJ4IiIHAUeUEpt9Ix5BYdBjQaxYPcC3x5W7BCVu+92KfrfR/+m7/d9iTkZw7tR7/J066c9aJzGWVRur3m7x/PzRbYf385Lv77ED9t/ICI0gvHdxzOk8ZA0zYFtqrRhYcxClFK5F/lz5/RyCGvXwh9/6E/HkPMiRaBxY+jcGa6/XouIYytbVs95yo6ICKhfH5Yuheeey52NBp/DVVFZDMxUSv0CICKdgT7AV8A4PDQKrCCRb9ZUgWznqiil+Dr6ax5d8CglQkqw5N4ltK/e3gsGQniRcEqFlCp0nfWXUy+zIGYBH6//mEV7FhEaFMpr7V7jyVZPZuidoE3lNnyz+Rt2n9x9ZS2aTDlzBnbu1P0cjm37dti1C1JTdZyaNSEqClq21FuDBhAYmPcL69QJPvsMEhMhJCTv6bmRlNQU1h1cx9K9S6lfrj696vSy26R8gaui0lIp9YDji1JqkYiMVkoNszrtDdnwzqp3AB8XlfLl9edbb8GAARlGOZ98nkcWPMI3m7+hY/WOTLlrCuVDy3vNRBEpVMOKT148yVebvmLc+nHsO72P68KuY2T7kQxrOoxyxcplel6bym0AWHVglRaV1FQ9VNxZOBzb4cNXTwwI0AJSpw707asFpEULCPfQwmgdO8IHH8Dq1dChg2fycBGlFLtP7mbx3sUs3ruYZfuWcTbpLKBfZnrU6mEGh7iAqyV0WESeA6ZZ3/sDR0XEH0j1iGUFjPPJ5wEfF5VSpXSzxalTGQZvPbaVvt/3ZceJHYy4dQQvtX3JYx3yWREZHsmK/fnWY49LbD6ymY/WfcSUv6eQmJJI26pteafTO9xZ+04C/bOpIRw8SJ2Vf1OSEFZPeoPBQ8bqmsiFC1fjlCyphaNrV93X4diqV3dPDcRVbr1Vj/xassQWUUlKSWJ+zHx+3v0zi/YsYv+Z/QBUK1mNAfUGEHV9FAlJCQyZM4Rf9/1K1PVRXrcxv+GqqNwNvAr8aH1fZR3zR48MM2SD8+gvn8XPTz9QMhhWPCl6Eo8seITQoFAW37uYjjU62mCgJrJ0JJP/mszFSxcpEujZtV+8zfLY5bzy6yv8/s/vFAkowr0N7+XR5o/SsHwWTj4vXoTff4dfftHb1q34Aa3+BavK/APlO+qHt7N4lCvnWr+HpwkL07WhpUu9mu3WY1v5ctOXfLP5G+IvxlM8uDgdqnfguTbPEXV9FNeXuv5KX1RiSiKP//w4M7bOMKLiAi6JirVQ1mOZBO92nzkFF8cbfUJSgs2WZENQUBpRSb6czMPzHuar6K9oV60d3931HRXCKtho4NXO+t0nd9OgfANbbXEXm49s5r9L/8vPu3+mUvFKvNf5Pe5rdB+lipS6NrJSsHWrFpBFi2DFCt0nERwMt9wCgwZBhw60OT2XhStf4+QPU3x3xCHofpWRI3UNuVQG1+smziefZ/rW6Xzx5xesiVtDoF8gd9a+k6FNhtKheodMm7ZCAkLoWasnP+z4gXHdxmVfUyzkuCQqIlIWeBaohx5eDIBSyt5G0HxEvqipgBaVpKQrXx9f+DhfRX/FS7e8xKvtXvWJNmXnEWD5XVT2ndrHy7++zHd/f0fJkJK8G/Uu/3fT/6WtgZ0+DevW6e2PP/TmWEOobl146CHo0gXatoWiRa+c1iY2AVa+xpoDeXfm6VE6doTXXoPly6GXezvDlVJsPLyRzzd+ztQtU0lITqB2mdq81/k97m14L2WLlXUpnX71+jHl7yks3beUrjd0dauNBQ1XnxBTgOlAd+AhYBDg+ytj+RCdanRi5YGVvi8q1arpUT/Al39+yfiN43muzXOM7DDSXruccMxPiTmZf0eAHT9/nDdWvMGnGz4lwC+A59o8x3M3P0fJwDA9GXDt2qsisnPn1RPr1IFu3fQSBZ07Q+XKmeZx03U34S/+rD6w2rdFpUULPbdlyRK3icruk7uZ+vdUvtvyHTtO7KBIQBH61+/P0MZDaV25dY6HWXe+vjPFg4szY+sMIyrZ4KqohCulvhSR/yilfgN+E5H1njSsoPFqu1f53+r/+b6o3HYbbN7Mun/W8MiCR4iqEcWoDqPstioNYcFhVAitkC+9FZ9LPseYNWN4d/W7XLx0kfsbD+HVCgO5bvXf8PFg/bZ+5oyOXL68fuDee6/+vOkmKFHC5byKBRWjcYXGrDqwyiPX4jaCgnSfTx77VQ6ePcj0rdOZumUqGw5tQBBuqXoLw1sMZ0D9AZQIcb3s0uNoApu9Yzafdf/Md10t+QCuisol6/OwiHQDDgE+3Ejrm/j8mioAEREcC7lM7xl9uC7sOqb2nmrLCK/syG/r1aeqVCZFT+LFZS9y+Nxheoc0YdSeCGp98hMc+1xHqlFDD+Pt0AFat4YqVfLcmd6mchsmbJzApcuXfLsvoFMnvezCgQNZ1r7Sc+LCCWZtm8XULVNZsX8FCkXTCk0ZHTWa/vX7U6l4JbeZ2K9eP77961uW7F1SaCfeuoKrovKGiJQAngI+AooDwz1lVEHktim3kZCUwLlLvi0ql776gn594cTFeFb/aw3hRT00PyGPRIZH8uOOH+02wyWW71rEk3P+j03nd9PyeDCzfoJWcX9qP1hRUbpPoX173fToZtpUbsOHf3zIpiObaF6xudvTdxsdrdGES5fC4MFZRk1ISuCnnT8xdctUFu1ZREpqCrXL1GZEuxEMrD8w+8meuSSqRhQlgkswY+sMIypZ4Oror3nW7hmgPYCIDPeQTVjpdwU+RA9b/kIp9bYn8/M0Fy9dxE/8fL6m8my9Q/xWDb6t8R8aV2hstzmZEhkeyfELxzmdeJqSISXtNuda4uLYPWciz8R8wo8lj1DlNEz9LZD+FTogz92u38xr1fL4sF6HQ8nVB1b7tqjUr6+HOS9ZkqGoJKYksjBmIVO3TGXurrkkpiRSpUQVnmz5JAMbDOTG8jd61OccQHBAML3q9GL29tkkpSR5xAu3xzlzBrZv5/CWNczb65l1D/MylOdJ4AM32ZEGa1LlJ2hX+3HAehGZo5Ta5on8vIW/n79Pi8p3f3/HBzcc5/G1cE/1enabkyWOEWAx8THcVPEmm61BD/PdsgVmzOD0zz8ysvQWPmoBwcWEUeda8ETH5ygyqkua0VneoGLxilQtUZVVB1YxvOVwr+adI/z8dG1l6VJdliKkqlSW7l3Kd1u+44ftP3A26SzlipXj/sb3M7D+QFpVboWfeHcFjn51+zExeiKL9y6me2R3r+btEhcuwP792mv0vn36MzaW1H172XR+DwvKnmZuLVhfEfCQJuZFVDz5WtAc2G2tAImITAN6AvlbVMTfZ+epRB+JZuicodxyqjijF52FDkftNilLapbWTRy74nfZKyrbtsH06TBjBqk7dzChmfBSZ39OBglDqvXijbs+JsLmeT1tqrTh132/5s25pDfo1AmmTuXM5j/4OnEtn6z/hN0nd1M8uDh31bmLgfUHZjmfxBt0rNGRUiGlmLF1hr2i4ljk7M8/024HD16JElccFkf6s6h+URZ3SSQ+8BKC0KJoJKNq3k6P5vfScIT7V4XPy6+j3GbFtVQEDjh9jyOd00oRGQYMA6hSpYoHTXEfvlpTOXnxJHdNv4tSRUoxY1tVAvkjW6eSdlOjVA38xM+ezvqdO2HGDC0mW7eCCP90acl9/67FsuSdtKt2M+93eZ9GEY28b1sGtKnchu/+/o7Y07FUL1XdbnMyZXvTqnx8O0z66VbOk0ybym0Y2X4kd9a+k5AA33A2GeQfRK/avZi5fSaJKYnesevSJb3EwNatsGnTVQFxrJrp5we1a3Oh/c38ViuYRWHHWHRpB9vOxwKXiQgtRrfre9G5Rmc61ejkcV99WYqKiCSQsXgIYKt/DKXUBGACQLNmzTwpcG6he2R3ziWf48SFE3abkobLqZcZOGsgcWfjWHHfCiJSV8LGnT4vKsEBwVQrWc17jiXj4uC77/S2ebPuC7nlFtRHH/FNg1QeX/MyqSqVCd0nMLTJUJ+qETj3q/iaqDi8L49dN5Yle5cQ3FQYeKIcj73wE00quP8t2h30q9ePr6K/4pfdv9Czdk/3JXz+/FUP0c7b7t1XF84LCIB69fRcpSZNSG3SmOWlTjNp5wxmbZvF+UvnCTkXQtuqbRlS41E6X9+Z+uXqe/V+zFJUlFJh3jIkHQfR67c4qGQdy7c83fppYk/HMm3LtOwje5ERy0ewaM8ixncfT8tKLeHplvDDDz4vKuCFYcVnz+qy+PZb+PVX3eTQsiV8+CH07s2xkoEMmzuMn5b/xC1VbmHinROpUaqG5+zJJQ3KNSAsKIxVB1bxr4b/stscAM4mneWrTV8x9o+x7Du9j4phFRnVYRQPTN1F2W9nwRjf9ZTQoXoHShcpzYxtM3InKidOXCsc27frBdAcBAToRc7q1IG77rq60Fm9ehASQkx8DJM2T+LbdXfzz5l/KB5cnIH1B9K3Xl9uqXKLrT7x7Pe5kTHrgZoiUh0tJgPQDizzNb42T2XJ3iWM+n0U9zW6j2FNh10NiIi4Mqvel4ksHcnKf1a6t6/g0iXtT+vbb+Gnn7RPrRtugFdfhXvu0QtSAT9s/4EHv3uQhKQERkeNZnjL4T45nwd0s2vLSi19YhLkP2f+YewfY/n8z885m3SWNpXbpPW+fGwWfDoJ1q/Xc3V8kED/QO6qfRfTtk7L3KmpUnrOTUbiccKptaJIEe3g8+abrwpH3br6PgtKO8HydOJpZmz9hkmbJ7H6wGr8xI+oGlG83fFt7qx9p884V/VJUVFKpYjIo8Av6CHFXymlttpsVp5oN7Ed+8/sJ+lykk9MRDt67ij3/HAPtcvU5qPbProa0K6dXlfcyf+Xr1IzvCbnks9x9PxRIkIjcp+QUvohNnkyTJum/WqFh8P992shadHiytDf04mneXzh43z717c0qdCEb+78hnrlfHukHOh+ldd+e40ziWfyNLM8t6w/uJ4xa8fw/dbvAehbry9PtHzi2mHO7dvrsl6yxGdFBXQT2BebvuDn3T/Tq8zNej2YbduuCseOHXrlTAelS2vBuPPOq+JRp46e4OqX+Qi22NOxzN81n3kx8/h1368kXU6ibtm6vNPpHe5peA/XhV3n+YvNIT4pKgBKqQXAArvtcCcOp5LnL52npH9J2+xIVancM/seziSdYcm/l1AsqFjaCEFBet3x5ORr3pZ8CWfHkrkSlX37tJBMnqxrZsHB0LOnFpIuXa659mX7ljHox0EcTjjMK21f4aW2L9n+cuAqrSu3RqH44+AfdL6+s1fyvJx6mbm75vLemvdY+c9KigcXZ3jL4TzW/DGqlqya8UmlS0OTJlpUXnnFK3bmmIsXab/nMmVUEWaMGUKvL05fDatUSYvFkCFpxcPFJZZTUlNYG7eWebvmMT9mPluObQH0vf7ITY9wd4O7aVqhqU/12aXHZ0WlIOJoHjmXfM7WCXtvr3ybJXuXMKH7BOqXq39tBMfD9Ngx/SfxUZxFpW3Vtq6ddPKkHrk1eTKsspqD2rXTa6T37p2hb62klCReWvYSo9eMplZ4Ldbcv8Y35sbkgJaVWuInfqz6Z5XHReVM4hkmRk/ko3UfsefUHqqWqMqYzmO4v8n9FA8unn0CnTrBe+/pN/3Qa5dK9jqXL2snn4sXa7FbuZKApCR63+HH5BuTuDDyFYp27KoncIblvBs6MSWR+bvmM3vHbBbuXsjJiycJ8AugbdW2jOk8hm6R3a7c6/kBIypexBfc36/6ZxWv/PoK/ev1Z2iToRlHcqz8d+SIT4tK5eKVCfYPzr6zPiVFrz3y5Zcwb57uN6lbVy+bfPfdugkiE7Yf387dP9xN9JFoHmr6EO91eY+igd6dwOgOwoLDaFi+oUf7VXbF7+KjPz5i4uaJnEs+R+vKrXmz45vcVeeunM0t6dQJ3nlHLzx2220es/caHHM/tmxJu23bphdCA2jYEP7v/yAqin5VLzN+RncW3tWQ3nVb5SirVJXKiv0rmPzXZGZum8mZpDOUKVqGHpE96B7ZXbuEsaGZ0h0YUfEidi/UFX8hnoGzBlKtZDUm9JiQeRXaUVM56tsTIP39/Lmh9A2Zi8q+ffDVV/D11/phUa4cPPaYbt5q1CjL5gilFJ9u+JSnFj1FaFAocwbMoUetHp65EC/RpnIbJkZPJCU1xW0TCFNVKov2LGLsH2NZuHshgX6BDKg/gMdbPE6z65rl0tA2uilyyRLPisqhQ/Dbb1q8/vpLC4jDQzRo32z16+v1apo10zP+y1+d49E2NYVyxcoxY9sMetft7VKWfx39i8l/TWbqlqnEnY0jNCiUu+rcxT0N7qF99fY+sV5RXsn/V5BP6FevH7vid7Hl2BZbaipKKYbMGcKRc0dYff/qzJsh+vXTTUSbNuWbYcU7453WG0lKgh9/hC++0A8lPz+9DvtHH0H37i6tv37s/DGG/DSE+THz6XpDV77u+XXeBgL4CG0qt+GT9Z/w99G/8+zXLTElkS///JKP1n3EzvidRIRG8Fq71xjWdFjey6pIES0sS5bkLZ30HDyolxb47Tf9GWOtx1O8uH7J+Ne/tIjUr6+H7pbO2hF7gF8Avev0ZtLmSZxPPn9t36TFnpN7+H7b90z5ewpbjm0hwC+Arjd05d2od7mj1h35suabJUqpfL81bdpU5Qc2HNygGIGas2OO1/P+YM0HihGo99e8n33kixeVAqXeeMPjduWVZxc9q4JGBqmUg3FKDR+uVHi4tr1qVaVef12pf/7JUXrzd81X5d4tp4JHBquxa8eq1NRUzxhuA7GnYhUjUB/98VGe0pm3c566/sPrFSNQN024SU3ePFklpSS5yUqLN9/Uv+PRo7lP4+hRpb77TqmhQ5W64QadHihVooRSPXoo9d57Sm3YoFRKSq6z+HXfr4oRqOlbpqc5HhMfo95c8aZq/FljxQgUI1CtvmilPln3iTp+/njur8nNABuUm5/HpqbiJS5cumBbn8qGQxt4ZvEz9IjswX9a/CfryBcu6M8SJfJNTSX5cjL/tKlH9YMX9JDNoUN1u3wWQzXTk3w5mWcXP8uHf3xIw/INWfrvpRkPYsjHVClRhYphFVl1YBWPNn80x+fvPbWX4T8PZ+6uudQuU5tF9ywi6vooD1iK/v1eeAGWLYMBA1w758IFWLlSd6gvXqw9HwCULKmXWn7kET0oo2FD8HfPnKJbqtxC+WLlmbF1Bo0iGvH91u/5ftv3bD6q825RsQWjo0bTp26fzEe8FTCMqHiJ26fcTtJlPffDm6JyNuksA2YOoHxoeb7u+XX2QxFvt9aJiIjw+T4V4uOJ/Pg7qAq76pan+sKf9ESyHBJ3No6+3/dlbdxaHm/+OO9EveMzvqbciYjQpkobVv2Ts876i5cu8s6qd3h75dsE+AXwv07/4z8t/+PZ1Q+bNNFisGRJ5qKSmKhHZS1frkVk1Srd/BkYqJvPRo3S69U0aeI2EUmPv58/fer24ZP1nzBr+ywAWlVqxZjOY+hdtzdVSuQPv4TuxIiKF7GjpvLQvIeIPR3L8sHLc7bgVkSEb9dU5s+HoUOJTDwBw2HXSw/TJReCsnjPYu7+4W4SUxKZ0WcGfev1db+tPkSbym2YsXUGB84coHKJrFdYVEoxd9dchv88nH2n9zGg/gBGR42mYvGKnjfU319PhFy8WDdaXboEf/8NGzZc3bZsueoTq0GDK6OyuOUWvea9l3is+WPEnY2jXbV29K7TO9tyLegYUfEizvNUvMGCmAVM3TKV19q9xs1Vbs7ZyRER2hOqr3H2LDzxhB7V1bAh5SYtpPjPt7Lr1J4cJZOqUhm1YhSvLn+VumXrMqvfLGqVqeUho30HZ+eS/Uv0zzTervhdPPHLEyyIWUDdsnVZ9u9ltK/e3ltmajp1gtmzdU1j2zY9GRd0B3qzZvDss/qzVSt9v9pErTK1+HHAj7bl72sYUfEighASEOIVUUlMSeTxhY9TK7wW/735vzlPwBdrKsuWwX33aY/BL7wAr7yCBAdTc11NYk7GuJxM/IV47p19Lwt3L+SehvfwWbfPMh25U9C4sfyNFA0syqoDq+hf/1pR2XR4E2+tfIuZ22YSGhTKmM5jeLT5o/Z4DrjjDj1qLzwchg/XAtKsmV522YdnlBd2jKh4mdCgUBKSPT9PZfTq0ew5tYdF9yzKXdt3+fKQkKA7P728WuE1bNsGo0fr+SaRkdrPUoury+tEhkeyNm6tS0mtP7iePt/34ci5I3za7VMebPqgT7u8cDeB/oG0qNgizSRIpRQr9q/grZVv8cueXygeXJzn2jzH8JbDPb72RpZUqqT9aBnyFUZUvMTgRoMBeO231zxeU9l/ej9v/v4mvev0zvnoHMf64MpaouboUahuwxocSulO2jFj4OefISQEnnwSRo68RuQiwyOZtmValuuGK6UYv3E8//n5P1QIrcCqIatyPzkvn9OmchveWvkWCUkJLI9dzlsr32JN3BrKFSvHWx3f4uFmD+fb2dwG+zGi4iUcojJmzRiPi8oTvzyBiDCmy5icn+wQlYUL9eeRI94VlcREmDIFPvhAd8SWL6+F5MEHtVO+DIgMj0Sh2HNqD3XL1r0m/OKlizw8/2EmbZ7EbTfcxre9vs3ZoIUCRuvKrbmsLlPnkzocTDhItZLV+OT2T7iv0X0+4z7dkH8xouIlHCs+enpNlV92/8LsHbMZ1WFU7oYzOtZ6cHR8eqtf5ehR+PRTGDdOu55v2BAmTtTDSYMzrn04cHYsmV5UYk/Hctf0u9h0ZBMjbh3By7e+jJ+4Pn+lINK6cmtKBJegZEhJ3u70NgPqDygQ7kEMvoG5k7xEnxl9AM+KSlJKEo8tfIyapWvyVKuncpdIH20nU6fqT0+LilJ6JNdjj2mnfd266WYux7oaLlCzdE0AYuLTdtYv2rOIgbMGahfsA+fSPbK7283Pj5QIKcGhpw4REhBS6AXW4H587o4SkREiclBEoq3tdrttcieeFJUxa8YQczKGsbeNzbRvwWUc6z94UlQSEuDee/UM+NatdafsvHnQoUOORveUCClBuWLlrjiWVErx1u9v0XVyV64Lu44NwzYYQUlH0cCiRlAMHsFXayrvK6VG222EJ/CUqPxz5h/e+P0N7qx9J11v6Jr3BAMCoEwZz82q37xZO6/cvRtef10PEc7DrOfI8Eh2ndzF2aSzDP5xMLN3zGZA/QF80eOLQjNc2GDwBXxVVAosnhKVpxY9RapK5f0u77svUU/MVVEKJkyA//xHT2JbtgxuvTXPyUaWjmT2jtk0/7w5u0/uZkznMQxvObxQDRc2GHwBX63/Pioif4nIVyJSKqMIIjJMRDaIyIbjx497275c4wlRWbJ3CTO3zeSFm1+gWslq7kvY3aJy9iwMHKjXp7j1Vu23yQ2CArqmcirxFKcST7Hk30t4otUTRlAMBhuwpaYiIkuAjPwqvAh8CowElPX5HjAkfUSl1ARgAkCzZs2Ux4x1Ew83exiAnfE7uZhy0W0LJSVfTubRBY9yfanreabNM3lOj4cfvrofEaHXbncHmzbp5q59++DNN/XyvTnwIpwdA+oPYP+Z/bxwywtUKu67q1UaDAUdW0RFKdXJlXgi8jkwz8PmeAWHS4z31+jmqfPJ590yweyDtR+wM34n8wbOc49n3f5OrjvKl9d9KkrlzS3GpEkwbJju/F++HG7OoR8yF6hasirjuo1ze7oGgyFn+Fzzl4hUcPraC9hily3u5MCZAxw4c4DQoFDAPU4lD549yOu/vU6PyB50i+yW5/QAOHBAb6BrKomJutkqNyil1xofPFh7jo2O9oigGAwG38EXO+r/JyKN0M1fscCDtlrjJu6dfS8ADzbVl+MOUflg7QckpiTyQdcP8pzWFe7VdrJ8edoJkCVyWKtKTYWnn4b339cTGCdNgiAPrr9hMBh8Ap8TFaXUvXbb4EncVVM5n3yeLzZ9Qe+6valRqoY7TLsWZ1GplQO38JcuwZAhMHmyntT4wQdu7T8xGAy+i8+JSkHHXaIy5e8pnE48zePNH3eHWRlT3vJQm5MRYOfP61n5P/+sV957/nnjptxgKEQYUfEy7hAVpRRj/xhLkwpNriy65BEcNRVXJ0DGx2s3K+vXw+ef65nyBoOhUGFExcu4Q1R+jf2Vrce3MrHnRM/OxShdWs+sd6Wm8s8/0KWLHjI8axbceafn7DIYDD6LERUv4XDw6BCVvCzUNfaPsZQtWjbDlfvyzFNOjij9/HQTWHaism2bFpSEBFi0CNq2db9dBoMhX2BExUv0qNUDgNOJp4Hc11T2ndrHnJ1zeOGWF9wzLyU9PXqk/Z7VrHql4Ntv4dFHoVgxWLFCu6w3GAyFFjMkx0vsPLGTnSd2UixQOzfMraiMWz8OP/G7MkPf7ezcqTcHmdVUTp7UEyUHDYLGjeGPP4ygGAwGU1PxFg/O0/NTlg9eTrB/cK5ExTGMuE/dPlQsXtHdJmoetKYFLV+uPyMi9KRFZ5Yu1WJy7Bi8/baej5IHD8MGg6HgYGoqNpBbp5KT/5qshxG38OAw4vREROjRX6mpkJSkBaRTJwgLg7VrtQ8vIygGg8HCiIoN5EZUlFKMXTeWphWa0qpSKw9ZlgEREXD5Mvz2G9x0E7z3HjzyCGzcCE2aeM8Og8GQLzDNXzaQG1FZtm8Z245vY9Kdk7zr0t0xV6VjR+0Qcv58uL1ALcZpMBjciKmp2EBuRGXsOmsYcT0PDCPOishI/dm9O/z9txEUg8GQJaam4iVeavvSlf2cisq+U/uYu3MuL97yYt7Xns+Ol15K+/3GGyEuDq67zrhbMRgM2WJExUt0qnF1CZmw4DCOX3B9tcpP1n+Cv58/DzV7yBOmpaVTBkvdVPTQSDODwVDgMM1fXiL6SDTRR6KBnNVUziWf44s/PTyM2Jno6GuHEBsMBoOLmJqKlxj+83BAz1MJDXRdVCb/NZkzSWc8643YmeHD9adjnorBYDDkAFtqKiLSV0S2ikiqiDRLF/a8iOwWkZ0i0sUO+zyNqzUVpRQfrfuIphWa0rJSSy9YZjAYDHnDruavLcBdwArngyJSFxgA1AO6AuNEpMDNrAsNCuXCpQtcTr2cZTzHMOLHWzzu3WHEBoPBkEtsERWl1Hal1M4MgnoC05RSSUqpfcBuoLl3rfM8Dk/FFy5dyDLeuA3j7BlGbDAYDLnE1zrqKwIHnL7HWceuQUSGicgGEdlw/LjrI6l8AVfWVElMSeTn3T/Tt25fzw8jNhgMBjfhsY56EVkCRGQQ9KJS6qe8pq+UmgBMAGjWrJnKa3qe5s2Ob17Zd0VUfov9jQuXLtAtspvHbUvDm29mH8dgMBgywWOiopTKYMJDthwEKjt9r2Qdy/c4L/vrykJd82PmUySgCO2rtfe4bWlo7cHliQ0GQ4HH15q/5gADRCRYRKoDNYF1NtvkFlYfWM3qA6sBPfkRMq+pKKWYt2seHWt0pEhgEa/ZCMDq1XozGAyGXGDLPBUR6QV8BJQF5otItFKqi1Jqq4jMALYBKcD/KaWyHiKVT3hh6QuANU8lm+avHSd2sO/0Pp5t86zX7LvCC9pOM0/FYDDkBltERSk1G5idSdgoYJR3LfIu2YnK/Jj5ANxe0zhvNBgM+Qtfa/4qFLgiKg3KNaBKiSreNMtgMBjyjBEVG8hKVE4nnmblPyvpHtnd22YZDAZDnjGiYgNZicqiPYtISU2hW00vDyU2GAwGN2AcSnqJD7p+cGU/yD+IQL/ADEVlfsx8ShcpbZ+vrw8+sCdfg8FQIDCi4iUaRTRK8z00KJSEpLTzVFJVKgtjFtL1hq74+9nk8qxRI3vyNRgMBQIjKl5iyd4lwNXFusKCwzh3KW1NZf3B9Ry/cNzepq8l2s4MF+syGNzEpUuXiIuLIzEx0W5TCgUhISFUqlSJwMBAj+dlRMVLvLHiDeCqqGTk/n7ernn4iR9db+jqdfuu8Ia204iKwZPExcURFhZGtWrVjAduD6OUIj4+nri4OKpXr+7x/ExHvU1kJCrzY+bTunJrShcpbZNVBoN3SExMJDw83AiKFxARwsPDvVYrNKJiE+lF5VDCITYd2WRGfRkKDUZQvIc3y9qIik2kF5UFMQsAjKgYDIZ8jREVm0gvKvN2zaNy8crUL1ffRqsMhsJBYmIizZs358Ybb6RevXq8+uqrGcabOHEiZcuWpVGjRjRq1Igvvvgiy3RnzZqFiLBhw4YMw6tVq0aDBg1o1KgRzZo1yzDO4MGDmTlzpkvX0b59e3755Zc0xz744AMefvhhl873BKaj3kuM7z4+zffQwKuikpSSxJK9S/j3jf+2v0lg/Pjs4xgM+Zzg4GCWLVtGaGgoly5d4uabb+a2226jZctr54f179+fjz/+ONs0ExIS+PDDD2nRokWW8X799VfKlCmTa9udGThwINOmTaNLly5Xjk2bNo3//e9/bkk/NxhR8RK1ytRK8925pvLb/t84f+m8bzR91aqVfRyDwZ0MHw7R0e5Ns1GjLCfyigihodqzxaVLl7h06VKeX+hefvllnnvuOd599908pZM+zQMHDvDll18yZswYZsyYQVJSEr169eK1116jT58+vPTSSyQnJxMUFERsbCyHDh3illtucZsNOcU0f3mJuTvnMnfn3Cvfw4LDOJd8jlSVyvxd8wkJCKF9dS8vyJURc+fqzWAo4Fy+fJlGjRpRrlw5oqKiMq1hzJo1i4YNG9KnTx8OHDiQYZw///yTAwcO0K1b1i+GIkLnzp1p2rQpEyZMyDLuM888w/Hjx/n6669ZunQpMTExrFu3jujoaDZu3MiKFSsoXbo0zZs3Z+HChYCupfTr18/WFg9TU/ES7615D4AetXoAV/1/nU8+z7yYeXSo3oGigUVts+8K72k76dHDXjsMhQebXAP5+/sTHR3N6dOn6dWrF1u2bKF+/bR9mj169GDgwIEEBwczfvx4Bg0axLJly9LESU1N5cknn2TixInZ5rly5UoqVqzIsWPHiIqKonbt2rRt2/aaeCNHjqRFixZXhGfRokUsWrSIxo0bA3Du3DliYmJo27btlSawnj17Mm3aNL788stcloh7sKWmIiJ9RWSriKSKSDOn49VE5KKIRFvbZ3bY5w0corLx8Eb2ntrrG01fBkMhpGTJkrRv356ff/75mrDw8HCCg4MBGDp0KBs3bgTgxRdfvNJ5n5CQwJYtW2jXrh3VqlVj7dq13HHHHRl21lesWBGAcuXK0atXL9aty3hh25tuuomNGzdy8uRJQE9gfP7554mOjiY6Oprdu3dz//33A9CzZ0+WLl3Kn3/+yYULF2jatGneCyUP2NX8tQW4C1iRQdgepVQja3vIy3Z5DYeoTN8yHTBDiQ0Gb3L8+HFOnz4NwMWLF1m8eDG1a9e+Jt7hw4ev7M+ZM4c6deoAMGrUqCsP+BIlSnDixAliY2OJjY2lZcuWzJkz55rRXefPnychIeHK/qJFi66pGTno2rUr//3vf+nWrRsJCQl06dKFr776inPndD/swYMHOXbsGAChoaG0b9+eIUOGMHDgwLwVjBuwa+XH7VC4Jz85RGXm9pnUL1efqiWr2myRwVB4OHz4MIMGDeLy5cukpqbSr18/unfXaxi98sorNGvWjDvuuIOxY8cyZ84cAgICKF26tEtNXM4cOnSIoUOHsmDBAo4ePUqvXr0ASElJ4e6776Zr18xdMvXt25eEhATuuOMOFixYwN13302rVq0ALSSTJ0+mXLlygB4F1qtXL6ZNm5aL0nAvopSyL3OR5cDTSqkN1vdqwFZgF3AWeEkp9Xt26TRr1kxlNi7cV2g3sR2g16gH7WAy6tsoAJ5r8xxvd3rbJsvS0a6d/jRr1Bs8yPbt26+89Ru8Q0ZlLiIblVIZT5jJJR6rqYjIEiAig6AXlVI/ZXLaYaCKUipeRJoCP4pIPaXU2QzSHwYMA6hSxfeX3f2217dpvjtqKuBjTV/ffpt9HIPBYMgEj4mKUirHbm6VUklAkrW/UUT2AJHANdUQpdQEYALomkrerPU8lUtUTvPdISqlQkrRqnIrO0zKmMqVs49jMBgMmeBT81REpKyI+Fv7NYCawF57rXIP07dMv9IpDxAWFAZA1xu6EuDnQyO7p0/Xm8FgMOQCW55mItIL+AgoC8wXkWilVBegLfC6iFwCUoGHlFIn7bDR3Xy64VMA+tfvD0D50PI0qdCE+xvfb6dZ1/KptpP+/e21w2Aw5EvsGv01G5idwfFZwCzvW+R9QgJC2Dhso91mGAwGg1vxqeYvg8FgMORvjKgYDIZCy+XLl2ncuPGVOSrpcdX1vavx2rVrR61ata7Ec0xgdGbEiBGMHj3aJfvvu+8+xqfzLP7jjz9y2223uXS+J/ChHmKDwWDwLh9++CF16tTh7NlrZi1cwVXX967GmzJlSqZrqeSUgQMH8tZbb/Hggw9eOTZt2jRbZ9YbUfESM/u5tuiO7bi4OJDB4C6G/zyc6CPRbk2zUUQjPuj6QZZx4uLimD9/Pi+++CJjxoxxa/7u4vPPP+eHH37ghx9+YNasWYwdO5bk5GRatGjBuHHj6NixI4MGDeLw4cNUqFCB8+fPs2TJkmw9IHsS0/zlJcoULUOZou5ZmMejlCmjN4OhgDN8+HD+97//4eeX9WPQFdf3OYl333330ahRI0aOHElWHk0+/vhj5s2bx48//khsbCzTp09n1apVREdH4+/vz5QpU/D396d3797MmDEDgLlz59KuXTuKFy+ezdV7EKVUvt+aNm2qfJ2vN32tvt70td1mZM/XX+vNYPAg27ZtszX/uXPnqocfflgppdSvv/6qunXrlmG8EydOqMTERKWUUp999plq3759nuLFxcUppZQ6e/asioqKUpMmTbomzquvvqoaNGigbr/9dpWcnKyUUuqjjz5SFSpUUDfeeKO68cYbVWRkpHr11VeVUkqtXLlStWzZUimlVM+ePdXMmTMzzDujMgc2KDc/j01NxUtMjJ7IxOiJdpuRPRMn6s1gKMCsWrWKOXPmUK1aNQYMGMCyZcu45557ronniuv7rOKlx+H6PiwsjLvvvjtT1/cNGjQgNjaWuLg4QL/8Dxo06Ipn5J07dzJixAgAWrduzeHDh9m8eTOrV6/OdqEwT2NExWAwFDreeust4uLiiI2NZdq0aXTo0IHJkydfE88V1/dZxXMmJSWFEydOAHoJ43nz5mXq+r5x48aMHz+eO+64g0OHDtGxY0dmzpx5ZbTYyZMn2b9/P6C9vffv359BgwZx2223ERISkosScR9GVAwGg8GJV155hTlz5gAwduxY6tWrx4033sjYsWMzdX2fVTxHbSYpKYkuXbrQsGFDGjVqRMWKFXnggQcytePmm29m9OjRdOvWjXLlyvHGG2/QuXNnGjZsSFRUVBohGzhwIJs3b/aJ9VRsdX3vLvKj63ufxbi+N3gB4/re+3jL9b2pqRgMBoPBbZh5Kl5iwb8W2G2CayzIJ3YaDAafxIiKlygaWNRuE1yjaD6x05DvUUoV6iXFvYk3uzlM85eXGLd+HOPWj7PbjOwZN05vBoMHCQkJIT4+3qsPu8KKUor4+HivjQozNRUvMWOrnvH6yE2P2GxJNlgzc3nEx+005GsqVapEXFwcx48ft9uUQkFISAiVKlXySl5GVAwGg9cJDAykevXqdpth8AC2NH+JyLsiskNE/hKR2SJS0inseRHZLSI7RaSLHfYZDAaDIXfY1aeyGKivlGoI7AKeBxCRusAAoB7QFRjnWLPeYDAYDL6PLaKilFqklEqxvq4FHI19PYFpSqkkpdQ+YDfQ3A4bDQaDwZBzfKFPZQgw3dqviBYZB3HWsWsQkWHAMOtrkohs8ZiF7qOM3Ccn7DbCBcog+cROMHa6j/xgZ36wEfKPnbXcnaDHREVElgARGQS9qJT6yYrzIpACTMlp+kqpCcAEK50N7nY14AmMne7F2Ole8oOd+cFGyF92ujtNj4mKUqpTVuEiMhjoDnRUVwerHwQqO0WrZB0zGAwGQz7ArtFfXYFngTuUUhecguYAA0QkWESqAzWBjBccMBgMBoPPYVefysdAMLDYctOwVin1kFJqq4jMALahm8X+Tyl12YX07FuQOWcYO92LsdO95Ac784ONUIjtLBCu7w0Gg8HgGxjfXwaDwWBwG0ZUDAaDweA2fFJURKSr5aZlt4j8N4PwYBGZboX/ISLVnMIydPOSXZretFNEokRko4j8bX12cDpnuZVmtLWVs8nGaiJy0cmOz5zOaWrZvltExoob/Jfnwc5/OdkYLSKpItLICnNrWbpoZ1sR+VNEUkSkT7qwQSISY22DnI7bUZ4Z2ikijURkjYhsFe1Gqb9T2EQR2edUno3sstMKu+xkyxyn49Wte2S3dc8E2WWniLRPd38misidVpgd5fmkiGyzftulIlLVKcw996dSyqc2wB/YA9QAgoDNQN10cR4BPrP2BwDTrf26VvxgoLqVjr8raXrZzsbAddZ+feCg0znLgWY+UJbVgC2ZpLsOaAkIsBC4zS4708VpAOzxRFnmwM5qQEPgG6CP0/HSwF7rs5S1X8rG8szMzkigprV/HXAYKGl9n+gc187ytMLOZZLuDGCAtf8Z8LCddqa7B04CRW0sz/ZO+T/M1f+72+5PX6ypNAd2K6X2KqWSgWlo9y3O9AQmWfszgY6Wembm5sWVNL1mp1Jqk1LqkHV8K1BERILzaI9bbcwsQRGpABRXSq1V+o77BrjTR+wcaJ3rKbK1UykVq5T6C0hNd24XYLFS6qRS6hTa/11Xu8ozMzuVUruUUjHW/iHgGFA2j/a43c7MsO6JDuh7BPQ9c6eP2NkHWKjSTqNwJ67Y+atT/s4ustx2f/qiqFQEDjh9z8hVy5U4SvsQOwOEZ3GuK2l6005negN/KqWSnI59bVWHX85jU0hebawuIptE5DcRucUpflw2aXrbTgf9ganpjrmrLF21M6fn2lWe2SIizdFvvHucDo+ymk7ed8OLUF7tDBGRDSKy1tGkhL4nTqurvgV9pjzRNez096ed5Xk/uuaR1bk5vj99UVQKDSJSD3gHeNDp8L+UUg2AW6ztXjtsQzd7VFFKNQaeBL4TkeI22ZItItICuKCUcvYB5ytlme+w3lC/Be5TSjnevp8HagM3oZtJnrPJPAdVlXaFcjfwgYhcb7M9mWKVZwPgF6fDtpWniNwDNAPedXfavigqrrhquRJHRAKAEkB8Fud6wv1LXuxERCoBs4F/K6WuvAkqpQ5anwnAd+TNS3OubbSaEOMtWzai31YjrfjOS8jZXpYW17wFurksXbUzp+faVZ6ZYr08zEf76bvi4FUpdVhpkoCvsbc8nX/fvej+s8boe6KkdY/kOE1P2GnRD5itlLrkOGBXeYpIJ+BFtEeTpGzOzfn96a5OIndt6Fn+e9Ed7Y7Opnrp4vwfaTttZ1j79UjbUb8X3XmVbZpetrOkFf+uDNIsY+0HotuFH7LJxrKAv7Vfw7qRSquMO+5ut6ssre9+ln01PFWWrtrpFHci13bU70N3gpay9m0rzyzsDAKWAsMziFvB+hTgA+BtG+0sBQRb+2WAGKxOaeB70nbUP2KXnU7H1wLt7S5PtPDuwRqM4Yn7M9cX4MkNuB29eNce9NsSwOtoZQUIsW6c3dYFOz9MXrTO24nTKIWM0rTLTuAl4DwQ7bSVA4oBG4G/0B34H2I92G2wsbdlQzTwJ9DDKc1mwBYrzY+xPDPY+Ju3Q7v6cU7P7WXpop03odudz6Pfmrc6nTvEsn83ulnJzvLM0E7gHuBSunuzkRW2DPjbsnUyEGqjna0tWzZbn/c7pVnDukd2W/dMsM2/ezX0S49fujTtKM8lwFGn33aOu+9P46bFYDAYDG7DF/tUDAaDwZBPMaJiMBgMBrdhRMVgMBgMbsOIisFgMBjchhEVg8FgMLgNIyqGfE06T7XR4uSx2lcRkWYiMtYN6YiILHN4OhCRc+nCB4vIx1mc311EXs+rHQaDM3YtJ2wwuIuLSqlGGQVYvr5EXXUz4hMopTYAG9yQ1O3AZqXU2VyePx8YKSJvK885OTQUMkxNxVCgEL0OzE4R+QY9YauyiDwjIustx32vOcV9UUR2ichKEZkqIk9bx5eLSDNrv4yIxFr7/iLyrlNaD1rH21nnzBSRHSIyxeG8UkRuEpHVIrJZRNaJSJgVf54VXkxEvrLCNolIT+t4PetYtJVXzQwu91/ATy6Wi3Nt7qKI3Kr0JLXlQPfclLXBkBGmpmLI7xQRkWhrfx/wBFATGKSUWisina3vzdFuJuaISFv0zOcBQCP0/+BP9Az8rLgfOKOUusnyKLtKRBZZYY3RboIOAauANiKyDpgO9FdKrbeaqS6mS/NFYJlSaoiIlATWicgS4CHgQ6XUFNGLTPlnYE8b0jojdS4L0K435gA4anMi0gN4FlhtxdmAdrY5I5trNxhcwoiKIb+TpvnL6lPZr646QuxsbZus76FokQlDO/i7YJ13ZeXALOgMNJSrK/uVsNJKBtYppeKstKLRrjnOAIeVUusBHM1U6TzwdwbucNSS0O5oqgBrgBctx6M/KGuNk3SUVtpZZmZlMRjtYsPxvSbaK217ddWx4TH0YlwGg1swomIoiJx32hfgLaXUeOcIIjI8i/NTuNo0HJIurceUUs7uyxGRdoDzejiXcf2/JUBvpdTOdMe3i8gfQDdggYg8qJRalt5OEfFzpc9IRELRtZEHlFKHnYJCuLb2ZDDkGtOnYijo/AIMsR6qiEhF0WvVrwDuFJEiIhIG9HA6JxZoau33SZfWwyISaKUVKSLFssh7J1BBRG6y4oc5uWR3TvMxpz6YxtZnDWCvUmosut+kYSbp18jy6q/yFfC1Uur3dMcj0X1PBoNbMKJiKNAopRah11JZIyJ/o13ghyml/kT3d2xGu/Ne73TaaLR4bEK7VXfwBbAN+FNEtgDjyaJGovSSrv2Bj0RkM3qJ1pB00UaiXfP/JSJbre+g19/YYjWl1Ucv45qe+WgPzVkiIlXR4jjEqbPe0SzW3krHYHALxkuxwQCIyAjgnFJqtN22uIro1QS/UUpF5fL88sB3SqmO7rXMUJgxNRWDIZ9i9Y18Lrlf5rkK8JQbTTIYTE3FYDAYDO7D1FQMBoPB4DaMqBgMBoPBbRhRMRgMBoPbMKJiMBgMBrdhRMVgMBgMbuP/AV0TwObWCJV1AAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plots = []\n", + "colors = ['r','g']\n", + "energies = ['3.5-4.5 keV', '4.5-5.5 keV']\n", + "\n", + "# Plot lag-frequency spectrum\n", + "for i in range(0,len(lags)):\n", + " plots += plt.plot(cross[i].freq, lags[i], colors[i], label=energies[i])\n", + " plt.axvline(v_cuts[i],color=colors[i],linestyle='--')\n", + " plt.axhline(h_cuts[i], color=colors[i], linestyle='-.')\n", + "\n", + "# Define axes and add labels\n", + "plt.axis([0,0.2,-20,20])\n", + "plt.legend()\n", + "plt.xlabel('Frequencies (Hz)')\n", + "plt.ylabel('Lags')\n", + "plt.ylim(None, 25)\n", + "plt.title('Energy Dependent Frequency-lag Spectrum')\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.7" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Power Spectral Models.html b/notebooks/Simulator/Power Spectral Models.html new file mode 100644 index 000000000..7528834aa --- /dev/null +++ b/notebooks/Simulator/Power Spectral Models.html @@ -0,0 +1,244 @@ + + + + + + + + Contents — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the pre-defined spectral models available for light curve simulation. Specifically, the notebook describes the meaning of different parameters that describe these models.

+
+
+

Setup

+

Import relevant stingray libraries.

+
+
[1]:
+
+
+
from stingray.simulator import simulator, models
+
+
+
+

Import pyplot from matplotlib for plotting light curves.

+
+
[2]:
+
+
+
from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+
+

Power Spectral Models

+

Currently, stingray has two spectral models namely generalized lorenzian function and smooth broken power law function. More models might be added in future, but, as explained in the rest of the section, Astropy models can be used to create most power spectral shapes one might be interested in.

+
+

Generalized Lorenzian Function

+

Apart from the frequencies, the lorenzian function needs the following parameters specified.

+
p: iterable
+p[0] = peak centeral frequency
+p[1] = FWHM of the peak (gamma)
+p[2] = peak value at x=x0
+p[3] = power coefficient [n]
+
+
+
+
+

Smooth Broken Power Law Model

+

Apart from the frequencies which need to be passed as a numpy array, smooth broken power law needs the following parameters specified.

+
p: iterable
+p[0] = normalization frequency
+p[1] = power law index for f --> zero
+p[2] = power law index for f --> infinity
+p[3] = break frequency
+
+
+
+
+
+

Light Curve Simulation

+

These models can be imported while simulating lightcurve(s).

+
+
[3]:
+
+
+
sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.2)
+
+
+
+
+
[4]:
+
+
+
lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[4]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f86b4348910>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Power_Spectral_Models_16_1.png +
+
+
+
[5]:
+
+
+
lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[5]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7f86b44f96a0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Power_Spectral_Models_17_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Power Spectral Models.ipynb b/notebooks/Simulator/Power Spectral Models.ipynb new file mode 100644 index 000000000..747733347 --- /dev/null +++ b/notebooks/Simulator/Power Spectral Models.ipynb @@ -0,0 +1,229 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the pre-defined spectral models available for light curve simulation. Specifically, the notebook describes the meaning of different parameters that describe these models." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray.simulator import simulator, models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import pyplot from matplotlib for plotting light curves." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Power Spectral Models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Currently, stingray has two spectral models namely generalized lorenzian function and smooth broken power law function. More models might be added in future, but, as explained in the rest of the section, Astropy models can be used to create most power spectral shapes one might be interested in." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Generalized Lorenzian Function" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies, the lorenzian function needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = peak centeral frequency\n", + " p[1] = FWHM of the peak (gamma)\n", + " p[2] = peak value at x=x0\n", + " p[3] = power coefficient [n]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Smooth Broken Power Law Model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Apart from the frequencies which need to be passed as a numpy array, smooth broken power law needs the following parameters specified.\n", + "\n", + " p: iterable\n", + " p[0] = normalization frequency\n", + " p[1] = power law index for f --> zero\n", + " p[2] = power law index for f --> infinity\n", + " p[3] = break frequency" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These models can be imported while simulating lightcurve(s)." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=0.2)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACCY0lEQVR4nO29edwsR10u/lR3z8y7nH3JQvaEhBgChBASEATZCcpykaug3gv+uOaq4NWb6xLkCgii6P2pqCBcRFBUBMQtEmQLIYACSQhJyL7v28nJOTnnvMvMdHfdP6q+Vd+qrp7pmXfmnZk3/Xw+53Pememlurv6W08936WElBI1atSoUWP2EU26ATVq1KhRYzSoDXqNGjVqbBDUBr1GjRo1Nghqg16jRo0aGwS1Qa9Ro0aNDYJkUifetWuXPP744yd1+ho1atSYSXz3u999REq5O/TbxAz68ccfjyuuuGJSp69Ro0aNmYQQ4q6y32rJpUaNGjU2CGqDXqNGjRobBLVBr1GjRo0Ngtqg16hRo8YGQW3Qa9SoUWODoDboNWrUqLFBUBv0GjVq1NggqA16Rdy25xC+ddveSTejRo0aPfDIoTZu33No0s2YGGqDXhF/dslteNs/XjPpZtSoUaMHnv/7l+CFf3DppJsxMdQGvSI6WY5uNp2LgVx0zQP4oy/fPOlm1KgxcSx1skk3YaKoDXpF5LlElk+nQX/LJ6/EH198y6SbUaPGhsZDB1Zx5yNLk25GT0yslsusIc1zZPVyfTVqPG5xzu9cDAC4830/MuGWlKNm6BWR5Yql16hRY/rxeF0ruTboFZHlOfLHaSepUWPW0MnysR07HeOx14raoFdEJjG1GnqNGjVctNPxGd19y92xHXutqA16ReS5RG3Pa9SYDXTGaND3LrXHduy1ojboFZHmec3Qa9SYEZQx9Lv2LuH4Cy7C9+99bOBjNmNlLvce6qypbeNEJYMuhHi5EOImIcStQogLAr//kRDiKv3vZiHE/pG3dMLIc9Qaeo0aU4b9yx18+fqHCt+3u+F49K/c8DAA4B+uvHfgc21fbABQ2ajTir4GXQgRA/gggHMBnAbgDUKI0/g2Usr/KaU8Q0p5BoA/BfCPY2jrRJFJWRv0GjWmDOd94rv42U9cgUeXXNZcxtApUi2OxMDn2rHYAjD7DP1sALdKKW+XUnYAfArAq3ts/wYAfzeKxk0T0ilOLKoxu/jM5ffg05ffPelmzCzu2KsSffzIkzINPdXvcDKEQd/cUmk706yhV0ksOgrAPezzvQDOCW0ohDgOwAkAvlry+3kAzgOAY489dqCGThrkFJVSQojBO0ONGiH82j+o+kA/8czZeh+mHaUMXc+yoyEMOuHASjr0vuPGqJ2irwfwWSllUMCSUn5ESnmWlPKs3bt3j/jU4wWx82km6Y/XZIoaNajnE9dqp2ENnd7jeAhSRpni0yy9VjHo9wE4hn0+Wn8XwuuxAeUWgBv06X2YU9y0GjXGAjLL1PcbkTJpZZILvcfDMPRcTj+pq2LQLwdwshDiBCFEE8poX+hvJIQ4FcB2AN8abROnAzQ6T7OOXteaqfF4AxFt6vtJrL7oJ7kMo6HTqz/NM+G+Bl1KmQJ4K4AvArgBwGeklNcJId4thHgV2/T1AD4lp/lq14B8Bhj6NA82NWqME7nn7CyTXNI1RLnIGZBcKlVblFJ+HsDnve/e4X1+1+iaNX2gjjDNRnOaO1qNGuMEvZeNuLfkQoY/GkJD3yiSSw1Mzin6qg98Ez//N9+ttO00DzZrxX37V8aazl1jtlFVcsnWELaY60NOM3GqDXpFGIO+zkbzmnsfw79d+2ClbfMNau+W2ime876v4u3/9P1JN6XGlMJKLsqktbslBn0NYYuGoU8xcaoNekUYp+gUj87T3La14OCqivv9+i17JtySGtMGoeNcSBJtJlpyKSlxa8MWBz8XvV5TbM9rg14V+YQY+iDYqJJLV7+cxL42CjZo/MBEYMIRKQ69pJZLtganaD4DTtGN9YaMEemENPRBMM0dbS0gg97QtCrNcnz40tuwWvLSzgqmddHxWYTvsOwXtjhMtjftO82vWW3QK4KY+TTLGhuVoa9qPTTREQyf/e69eN+/3YgPXnLrJJsFAHjP567Hh75221D7jnNVnUGwf7mD4y+4CP969f2TbsrQ8BP/ygx6qgfRYd4UK7lM73tWG/SKyGbAIbJRDTrFFFNI2opm5qStTxL/cdteXHbH3qH2nZaonesfOAAA+Otv3TXhlgyPzAsrLo1yMSx78HdlUMklzXLsObi+hbxqg14Rk45DrzKQTDNzWAuIoZPkQjHE03C9UkrTN+7dt4w/vfgW3L7nUKV9p8WgU7GpLfONCbdkcJhM0dyVQ8oSi9biC8ul+38/vOdz1+OZ7/0KDrXXj3jUBr0iJp0pulrSQTk2KEE3106xw+TPmgaDnuXSaPy/8U/X4g++fHPlxRO6UyK5HFhRa2Ruma+UZziV8EtzpCX+Cfp6GPeFHTSq7fyv1zwAAOvq69lQBv2Bx1ZwxZ2PjuXYk660ttTu3yk2rOSiXwjS0MmhNQ32MJe2Tv5qR7UzZc8hyyXu278S3HecCxkPgse0Qd86gwyd4Cf9lPm6Mr1hFaP80IFVfIWthiQ9x2s/dPXzXc9i2xvKoL/4Dy7F6z48+tpgeS7NVG5SRmS503/aNg2MdRwok1wG1UHHMfWV0karGJbI6N8fX3wLnvO+r+KeR5cL+06L5PKIXrChlcQTbsnw8AlXmaQySNXU1334P/DfPnFFwZBXfc/I6b2eRGtDGfSlznimNny0H/fDuX3PIXzn9qKTbbnCtW1Uhk5TVnKK6v8GGsCuvHsfTn/nF/Gl66pl3VZFJiVSzfqoPZyh/8etjwAAHnhstbDvtEgu5LiblvYMg8w8A/pcZtDhbNcL9zy64mw7aC0Xup/rGRm3oQz6uMA7x7hZ8Av/4FL8xEe+Xfi+CkPfqAadpAlKLBLGKVr9GFffsx8A8O/awI4KuZRGrw35WWgQChnLaQlbfESvkTktM4ZBQHIG3Uo/2sVH5g2+VeDXcao6M6Tty/T8caA26BWwnga9DFU09I0ruRBDV68vvcSDXK9ZCGGE7QKUdusnnXGG3uiRij4tBvQRzdCnpT3DwK+1VKqhG6Nc/dg2oWg4P1otuUwZ1lNyKcPjW3JxE4tM6dMBLlcY3X2kTVNhi55WyvXbRkTZrcUTj4qhp1mO9/3bjYWV76uCfAuzLLn4MeJl78IwYYupN/MatAheLblMGbiTaz1ZMJ/aPa6dojpske4HlXQZ5EWxY8Bo71EmpXGKhjT0npLLiBjxJTftwYcvvQ3vuvC6ofY32ZUzbNAzj5mXvQv+doMce1CnqL//emBDGnRuCLtZjg99bW11P/jDX08SzDtCFYdv1ffxW7ftNaxyFkDPzn+RBnkW/tqTo0IuUXCK5gHJpZ9BX0uhLkqiGZZhU3s3hOTSxymaes7TKvB9I4M+qlpDXyP4w7zm3sfwe1+4Ed8ORI5UBX9B13O05QPJyoiconftXcIb/vzbuOSm2SlFS05RejFspMJAmguA0WvoksWhBzV0LbmECnFxA8of3b37lvGez11fWRagzYap8c33n0WDbnMSPMd0yaXQcxhkAM08Q14z9HVGSPNeS2U7/oL2eskeDISmrQW8U1bpE1U6GtU/qSLhTAuIofsv7SAvJdm6UZesVZmi5Q65XpIL/46/9L/0qavwF9+8A1ffu79SG+i88RAVBAHbbwZh+PuWOlPVh3yppUxS8WdTlY7ta+iDGvRaQ18bXEM4eGf1wV+2sofzH7c9gmf97sX4/PcfGPo8PtKcM7j+naLKNsR2Z8mBSqvP+IuMDOKcooUQxiK5ZK6R4D6XRkIMvXfYIn92g8pha6nxrc6t2zMAQ3/6e76Ml7//G0OdbxxQyX8yOEvi6KbubKoKigZ9sLZl67iU2IY06I7mna/doOcBxu/j6nse0//vH/o8hfOyJlcxRFWMdGcGDbrP0AfJ9iOIMdV/yVlxrtCqVhQ7HzKW/Lu1PA+zrJrH0KWUeO9F1+PGBw845/RLEdCsZdCom7sD2a+TQsaMOVA+k+6uYxw6odbQ1wg3blz9PyrJpexZ2kUYRndLQwNTL1Rj6BQxMny71oIX/cHXcP5nrhpoH4pyGWTq+9o/+3f80qe+Zz5byWWgU/eFlCyszUtuAXovica/W8u0nAYGn6A/cqiDP//GHfjpj15mvnvnhdfiOe/7Kg6sds13dB/5AHNwtYvr77cDwbQjy2Ul4kXv6TBx6MOuiVBLLmuE48SkULK1MPQKTtGxGPTAwNR7+/7bGIY+AYu+0slw254l/OOV9w20H8Wh+yWMe92TK+/ej3+5qrhgw6ivOsuVU1RN9932AbZC5Gpg0WInymUNs3KawfiSS4hJXqqd4VRhEWCSC+tAP/XR7+AVf/KNoX0Ojy138bWbHh5q30HAy+dWSQC0jvXq1zVMHHpWwWaMAxvSoKeBB7smDV0WBwgf9DKQZupj31IHtzx0cLDzDpihWklymUDBIML37t431H7tdO2SCz3+0Wvo1L/CBp3+DNXn5lPxtQywKzqk1Y9ysVKM/c6GURb7Fh9grrlXSYjD9pO3/t2VeNPHL8feQ+uzwIMaVN3PIXSzwSWX3CMQg8yEgXI9fxzYkAad33DJXrhhwV+8Um1OO1uaJQz9lR/4Jl7yR1/veR6fDWWB6+i1T5WORi/tJBYovvxOZdCP37kw0H4+q+rnnAoZT1M2dcQcnW6jYoj2b/u7+rsdYOh+mV2zj/6/6rqXfuKVOX5W1NZDUTe0W0jnH/a9uXPvEoBqJStGgVzKSsTLhi1WP3YmpXNvq+y7wvJG1nOVsw1p0N3pjvo/XYOnOXeMZnibfpLLvfvCNbE5Us8Q5AGm56MKK+GYpFN0zyEV1pkMKEtxo6n+p+/D17B/uVv4ju7t2Bh6npv2hKbboUEmH3AwLsNKJ9fncPs49UnO0EkCcmPgNUMPhVYG3psqZICITdnKQaNGlnv3syyxaAiGrvR5+7nKvqvs/tYMfY0ISRWjcoqWj/zVNPReL4Mf9RCSjnxkAxoFI7msvz03s5hBs3Z9KaOfU3Tfsq1p4hvZkcehGx8Nk1wCTDHI0LnksoaXntZY9Rk29XkuxTQDmavmHdH7P8YGxG6AtVcxUE1dW33ci3hYDT13jDi18Zzf+Qpe+2f/br73yzRUge9wrbIvZ+jrSZ5md82pHghLLqNxipaN/J0AGwqhm0k0S3R2x6BL38lT0rYKnv3QOSax2DU9g5CDsBd8g96vRCovUrXcybDYSixDH6zJPSGl1W3TLLfLnwWiokKGbdBnV4bVUoNOfbIouYSyVKkP37PPhiOGiFCVd4kGjvVafi3LPSKn/37oQBsPHbA6/jCp/75BrzIW8OuuGfoaEZJcRpZYVDqVK7KzEHpNQdtObY/wwORjUMmFzjGJQl7dvD9Dl1IWfqfL8teNLFPR9i1ZhkmZsf4iwqMAP1bKnHKhqKjQNWcBwx/C9fcfwN9fcU/p78QGfcmEPvPoFypBvOr0NTuLzXOJR5gjM5jhmva/iS1t0FfGbNAl6xu8+4feQ554NAihyaXrcB1kJjzoudaKDWnQQ9OjtQT3V4k2Md7zPg+v1xTUl1xC55VS4qJrHiiUbO3VttD5JxG2SNP3Xgb94/9+J079zS84RqVMcinzizzKJBeKt6bnP8qr5vcwzaxTLiTRhZ57PymPrvMVf/IN/OpnryltR6nkQmta8igX0rbZM8ilNfodNtMAhl+Ygwx6lbLPawEvh+vOeIrbDruuQUGfr7ArJ2BTx9CFEC8XQtwkhLhVCHFByTY/LoS4XghxnRDik6Nt5mAIac/9OuGhdor3/duN4QiJCvoZdfx+D6+XMetkTHcrkVz+4cr78JZPXolPXnZ3oT2DxKFPUnJJc1k6Y/rb79wFAEGDTgY8JG1w7GOSC8Vbm5VqRnjd/N538zxYbZFe7NBz75ff4M/KytpeLrloDT0gubQ98tBi2jqXWYaWXPR5VsZs0Hl2Lt3/RiyC7+mwVVPTPB/YKcpv0VSl/gshYgAfBHAugNMAvEEIcZq3zckA3gbgOVLKJwP45dE3tTpCI3E/hn7ZHXvx4Utvw7X3FbPjQhKOj07FhIVeDJ1ry9LXBPV1UCw7Oa4G7Wg2yqXvpiMHH1TLBjZidI7Gm7v/9yu4xp2iJLmkZp/RXbgjuWTStI/PHGyUS2+GHnp2fldaKimGZQx65hv0ol+HJBdqDw0acw3lxOyk/Rl6lXvYahQZ+mo3w+s+9B+4aoTlMXioKLW7EUfB9zBU46kXTLkIj6FXIfdVbMY4UIWhnw3gVinl7VLKDoBPAXi1t83PAviglHIfAEgpx58i1gPOg6uooXfScoNcpThX1xjKPga9h0PQTwXPAp3oMc0455vqBcz7GIXiOcK1xceBGx88gPM+cYUxzvwZkEzwx1+5BdewqoJLevUcWkWHt7XA0EueKT8PSS79WP0wcApqMYYeepn7hS3263eAe084yiQX66gvMnRbY159P8dKFPABKRjKWEG+NAydDdw3PHAAV9y1D+/8l2v77l8V/J7T7WzEUXA2w6+rSvfn+rwccDCQzrOdIoYO4CgA3CNzr/6O4xQApwgh/l0I8W0hxMtDBxJCnCeEuEIIccWePeOrxx0KG+vXCY0cEOjAoUSRsv3X4hStoqHv1XICGfaho1zWwaD/yt9fjS9d/5ApDsVnSTSw/dFXbsarPmDDysgA8IQU+9KqzyGtmoN/fWCMDJ3fb66hhyS6UGRPmbPdOFe9Z7Q0oEGnaxU9JBc6RxlDD81sKzF0HbbI6/jTPWjpc40CPOKJM/RQ3xiUodv9Bg9bdPwr06ahV0AC4GQAPwzgDQD+XAixzd9ISvkRKeVZUsqzdu/ePaJTFxEywP0ZerkGPkjRn7U4Rdte5EHoJb9HV7jbH5BcJp1Y9OR3fAEf/cbt5jMZg9gs8uBKLqHBkQbeJYehQ7fZvcdl5V7zXGLzXOIcJxuDQee3MM1zy+gCafWh8/aLcvGJ3aGSrMt+iUU8NcJKLu5MrcUMOn8HhpVcaJlALrnQOUmvHwX4akJkRBuxCBKrYTX0LJcD7zvoezkqVLmz9wE4hn0+Wn/HcS+AC6WUXSnlHQBuhjLwE0HIUdgvU9Qw7OBUrb9BJw2932hcOcpF+pmi6u+79mqDHmDovZjDVffsh5SSJRaNtpNJKbHUyfDbF91QaI+NoJBGz13pZoUXgxt4R3JhLIy3veyZcieflVpoBja66+btbXvPjrdFnX9wKc9/nodWwwy9k5Zo6FpG5JJLYqJcSENX35Ohz6V7j8KSS3+DTtfmGnTN0JMRMnRHcrEMvZ/kUsU5Trctzf049P77TmqVsyoG/XIAJwshThBCNAG8HsCF3jb/DMXOIYTYBSXB3I4JISRVdPrEzvaKUqkS7mQYT18NvVccuptd5rMCKaWZXu/Xjr8qUS5fuf4hvOaD/45PX34Pq+XSs5kDI3TZdN9oJZ1ulmPLfAOAmn77Hf0xVgGQr4ZTTCxS35cZ50xKIy34y9Z11/ByXXLjwzjhbRcVdHmgvLa5dcr3CVsM9TtvQCzT0GnfMg2dSy4m6sZj6HSOXEpH8w3d437vEmCvbcVzigLAXGP0FUl5LZ0QQ1elNOzngSQXafX5JBJOX79v/0rYATutkouUMgXwVgBfBHADgM9IKa8TQrxbCPEqvdkXAewVQlwP4BIAvyqlHH4RzzUiJLn0Y+g2SqX31Ljs2bS75QMCx2pFhi5lsbYLb0dIcinrpLc/cggAcOvDh4Zasegd/3ItLr7hoZ7b9HLq8RLGJIUohu7u88ghG51yyNHQ1f+27nhv+STPJRLNOC2DK/eRcHz79r1OrXCOD1xyK6QEbn7woNMuoIdB7zH49JtdUd9N+hj0tMSgh6JcqD3UX6mpdA6/3w0rudAz4k5ROufcCDV0I3PlPGwxgpQuk/advbmUSLMcf3LxLU6Yawj82HFkQyLv27+C57zvq/iTi28J7hP6e9yoNFRKKT8vpTxFSnmSlPK9+rt3SCkv1H9LKeX5UsrTpJRPkVJ+apyNLmmj+Tt0M/t1wqoMvezhmFV1+jlFe8Whe0bBl1x42yg0LzS1e+jAqpP+TpceR2Jgg95OM3ziW3fhzX91BQDg2vseK6x4Q+3zQe0lY9bNJDa3iKEXDToPZVwKSC5+rZReTtFYCMSRsIbca0sIB1a7eP1Hvo1f+Jsrg78n3oLPZZJLKGEo1NZ+DJ3sD0WMlDlFDUMvDVu0Ft1PdAoz9LUbdLo2LrnQrGstGvqeg2286eOXmRkqd0Rzpyjg3tN2mhfW6P3Xa+7HH375Znzgklt7njOX0hn4qD9SCPHXbykGeIyqrMOg2DCZomV6JH3dN8rFW1meo0oVN2IiWWj/PPziF9rghy16MwP+2cahFzvOOb9zMc58z5cL7Y8iEYxyeee/XIvjL7go2CZywi7qMMkf/dNv4jnv+2phu14DITc4xNBXu1mho5cadM8o5n2McyYloogMutuWUPVA//x8yTYOv7BVGUMP1f4JzRD71QiifkyzjRBDl2yg9yOjbGIRO6cx6LrkLhvs1fHcZ9lJc+xf7uDSm63RqhK2SOdZ6do2L3XIKTo8Q7/u/sfwtZv2mNWUMtYnfH8Av452Ny+Uo77hAWWQdyw2nXMstVMcf8FFrE6PJVdxJMz3t+9RJYI3tYolsabZKToTSEtejl5RBhydHgy9SrXFXgydM6dho1w4Q98638DBdopuVi2DjWvZIYP+V9+6q7RNdzyiDPoxO3rXMK8iubgaelaI4uChfYcCUS5SqmdLx+tkedBBledSMXRRZOi9+gEdqqwOuV9LnD9resZJJEoWWJGFtpZJeVSznbann0IGnfZbaNooFdMmk/pvr4feDSu5kKGKzLm5LJXmEu+96Aa88WOX4WbNSId1ilL717KoFx33UDv1Viazz4OeE+/j7TRz5NRcWoa9e3PLOcc3PMadcQ09jsx5bnn4oD52b5l2qjT0WUGZLFI1U9Su5KP+v/Xhg6YUQF8mldspWciwuQa9XHLhzCfL4TEKe+yt2igut7PS6+YwDF3w6yxtBm556KDp7Hc+oljI0dvXYNDJmKacoeeFAYjfmxBDB4ozF5KmHnxs1fkujgQSztCz/v2AjltWMdOXXHhfIOPZiCOvvcXj88/E+oNhdp7eHZJciPmHDHoolJb+9MMWk4hFuZRILrR8Xcig3/PoMl73of/AwwdWnWu99aFDOP6Ci/CFax/ActvNCRgGJqy1k3rRRLY/lUkuvNm5lLh1j/It+e/0pTc/4nzmcehcQ7/lIbX//X0kyPUshLdhDHpZGrWVXPpo6Kk7rf/sd+/Dhy+9De+68Pq+TlFHKglswLNDe2WK+scpMnT1O03xVlM3lrvsPaEO60guQc1WffeSP/q6WV2JVp7ZMte70nKvKA2joecSm1tMcvHkImLoOxabwcQi2s6PIHj/xbfgWb97sXmxcikRCYE4DjH08pcrtMIPR8OTXPh7SgayEYvS2aJvyDIpjT4efB5SsXo6dihske47ZQ63WT2gkF+oqKGr7+mafQ29k+ZmMP/mrY84x+X4yNdvxxV37cNnr7zXaddBbcT/5ar7jaN7FIXyDgXIDN1DE4LJmuknTGW5xD2Pqv7iD6bfv2+/e04pnYGPDvPQQTV4PXRgtdD/nT66josPbBiDXjbFGdQpal4Q7Ym/8q59fSWX0GIBHFUlF/84nFlzDX0TRYp03FjuMibAX9pei0SHYo6plnQ/VhUshsTq20ipCnJRhIMfZ3+onRrZaudisyC5NFlcue+0u1QvRvyQZoe5VIktsRBMXybj1uP+564Tcf9yB2/82GW4VU+tm7GvoRcZejOJjDTkb+Pfw5Qz9BKDnrLZH92Tx1a6JsSTBqhN5GzucIbuzpCA4pJ4fiSNr6GnuSUSdH87WfF4qybDN8zC40iU/jYIqC1L7bQQsltwinpO67JELn8w9Q0wn4EnsbCLpjBn/yPe2qm8m01b6v9MIFQQCeBhi707kU39dwcACS/tN3AczvrCcbu2bb2rLfphVfpl09N4+ryZMfQqkguPZ/an2hyh2QN1xn7RO0GnqLn3uTbqNiNRSveYS+3UDHY7CgZdohFZR5czdc6tRszj1SnKxXeo9mJLNlVefb7pwYO49OY9eNn7vwGASy4BDZ1JLvw3h2h4A2aeS8MmyxKLOAGg/vG03/oSnvZbX3KOv03LcAfb3cL2IYJDceimb8Rk0JWGbgavNC8MDHwVIyOtaPmCZAi/fyWRMMXF1mLg6HxL7bQwg6WPQcnFmxH2ikLx286TlpIosvKqtBnJvCAc/UaoNfQhUJb8YxJK+iyF1fEYOp+u0jEiETaa/EUNMl927p4MPXU7mdEEI+E4SV2G3t+gW6bfW3Lh03WCYbh9po3hzDxrCMgotEqY9rsuvM4MdkdunTMvCK0KRHKHX1cjzXOjedPhchbl4i8w3Wum5ksuNFBkucRyJzVtIIbqhC1mnkEPMPRuJnHZHY/iQ1+7zWxD24eduy4BCLWdiMz2RWXQuSxjC8a5zkDAJvzQ51i4Gjovp+sP6pw8pVrquEnH5pPj1B844ygaDUPXx1VOUfu9G4fuDvBAkaGX+TnoWP5nc58YSchy25/9MWrQonmjwoYx6O76jPZ7E2XQl6HTdmpnbuCpQyuHV3Ffp0piyFAyZx//+959y6UvrJJY1N+NJEKe2xdhsWWTc5ypo9dxyEgYDZ07RUPX0WOZtGEYug3ZsyUHuEHnh/zS9Q9h75Kath61fR4HV1PlkPZYV5oXnaIUcseNt4lD9xl6j37gJ+L4IYDEWjue/gzY2Y1h3Mag222yXOLH/++38HtfuNF8bpoBoNiezGPooZWCDENfUKF3B7lBD5SzoGdC0Sf02Uou6v4msUAzjtDJ7GBsE7rc+//wwTaWOxm2zCW4W4e5Bhn6CDR0en5Lbd8p6iYW8W2BkEG3x/TJiN9FuPyZ6LBFdZ/yYEQNPwYnFeuBDWPQy2SR6sW53DjyrmPQ1TZNL4KB4Hfw4rHDDP25v3cJfvYTV7DjuJILDSRqmmcNGUkufmytf247VVafhQhHaITaSfAZbhmCMxfG0GkW00wiCFEMywRshcUjt84DUGuD0v1ushfH16WJSdOgQQxdRbm47efOMx/+ghD+wOEXtnKchz5DD0gufh/kJQrKlkzjiWihGHp6PiS5cKkqpKHb+HAdh84Mj/pd3dM4ipSDl2VYmnBRL4nq/seUc/GE3ZuQSx1a6t3jOBZY7rqF0oZBZjT0otxoNPSk6GhuM3kyEr1XFPLbx0kEj9fnM6yCTMNmC/x4h9op3nXhdbj8zkcHuu6q2DAGvcxx6UdalIE6v6+1coaeeA/HnLsPQ3cMetdlRt+4xYZI+UzfOnmEftHcKBc/fd7vVHZarV/iTl66LdB7IeN+L2GvaWXKJJdGHKn4cCkLRmy5k6KZRCYueO+hjnMP6FipN4ASozY1vnMlIUQsJtwJxSvRcM1zJIbuRCrkJlZ71YvhBlynKGCJQZlTlJ5vM2B8aJcsd59Jr4qN24mhM4Me1ND1nyR/+JmiUkpkmUQSCTSSSEsuRAKK7chyiQf2K2fpMdvnzfn8/pIwptqvDEcv0LUc8p2ikiUWBap7dlI3rNFh6AHNnIMnLSXMgPNB3t+HBowmi1sH1H3/y/+400hTo8aGMehlzkH6s98SdP701JFcpJrW8yk8R1/JhXesHlUZ/WxDevliT0NfZKF/fskDfn6TvUrTbJa112/g8bfzt3/Txy9zCmj1ju/Ozf1txBEiHR9ORuxZJ+4AoDIJ55IIuzYp4/TIobazaAGgDKU/KyFGzZO7oshN0+5XcAooLgjhhxzaCBGX3QLlTtHcGxT49r0MAu3bZgNFSHIxyWYL2inK6tCEJBdzDWmONMsLBj2XasBTcfyu5BLyQ2S5NOGilHxG7wxHHAlnxjYs6NkVnKIOASL9nzN0WxaYVjQSAWkNCBn4cLw+n2GVDQrNxK3Nbt6DaDymd8MYdJ+1EWyaeD/JxWUzXYehqw4ZCRF0XlWVXDa3EiPthFiKr6FT20nqobZtYgWu+GVluXsMMriWoRdjux0Wk+WF+1QmVXztpj34OkvA6MnQM8kkCWGmvHQ4eimW2ylajRi7NimG/sihjsOqABTCHVNm0EnHJiMfOWGL7JpK2mqdovbY/D6YCJFuMVLIGnTXQPPzuppu5kzZS6Nc9Lk2t5LCzCJl7HmxmSCJhOsU7RHlAgDLrISx0dDBNXSBLusTocViMi25LDZj7NCzhG6eFwZNxdDzwv6DgjN0h8SxGV8SW4cuod21CYIUekjZBiEnqPNZysDA582wJPCFax8w4Yt8cMkC9oHKOYwaG8aglzN0Ykq9mYFlM7rTMQOf5bmawosKkkvgxSQDsHku6bmQhvOiMAOexAKSXZeRXDpFyYUflxg6vVw8DZuOxavhddK8UA3SKX7kXVszsZ2yl7MxYzKJkVyYgTTFpzoZ5hoRdm4iyaVdiFzI8qLfgJgWLwkbRwJJHGbofsTOfftX8JZPXmn055CGnjLWGSpwVtDQjUwhjbHkRo7KB5NBKCthQOdabCUFyWW5mxlikMQCm+cS1ykaWFaR95fltp3hWSlBXStJLkpDt9cCuIYyzXM8sH8VR26btxUuM1kY4OMoquyP6QWjoXf8OHTJZI5ALRePoefSllSg43zumvvx2Eo3wLbz4sAnXQ39wEoXP/c3V+KNH7vM/E7n4v2V3nEaGEaN3ul/U4zVboYL/uEaPO2YbXjTDx5fKI1p/7b7dLMccRQuDGSiXDynaM4YOi/2xNFPcqHynIdtmbO6ZsnSXpRExMPzKPaV9iGD3k7zQqfm4ZnEyOla3Brj7jbqeFmhGqTrS/AMemzvZa+XVGnoruSSSxTY93InxVwSY7EZo5VE2LvUMbqtNZS+FJIXJJdcUpSLne76yTIcv/256/Fv1z5oDIIf167Om5vz+utxAkxDD4QtNpMIaSdzGHY7zVynaKBf5dIOHptaiVNBE1AG2eQqRAKb5hLHKeqH4gJueJ0yiupvh3lmEkkUAVAx6PxagICG/tgKjtw6Zweu3LJXu0JWbq5/FBp62Cmq/vZr7vA2AVrXzq0unuYStz58EG/95PfwiqccEWDsdsCl+5TpGaZfCOwOXSqDjHgzcRespmunNo4aM8vQ79y7hH++6n781r9ejz2H2qUMvVeUAUeZhk6rlViDHpJKyBCEDdujSx1EQhUBsiUGisfppLmpRMejWhpJ5Gjoc40YcSQUQ3ckF+kYDWLkbWPQi5IL/y7E0LlT1GcuoSp+BF/bdyUXUbg+QBmoViOCEAI7F5vYG5Bc0gBDt05ReoaqzEEswk7dTpbjPZ+73kyP6XB+dUJ/EKDzrnpZlgBP/XcNeiYtC089TTfLWdhiieRCg8emuaTQZ5Y7qWljHAlsbjVKwxa/dN2D+MK1DzrPic/wDGOUFOUi0Igjp4648cWwPpPmEvuWu9ix2DROYxr8eRVCPjCsjaGrfQtOUdY/TYkGr9idIUixcPbNc2kyb+/bH07j9xl66s3I/IRE3m+dfsQG4HFgZg26v+Cwr6cRnPAkto9f17uoodtOnBonkQjGb9PDnW/EYYO+3MG2hSbmGnFfhk6ruajz2ofPa7kkscBcEhVqiqeedklyCnXsoOTiLRFWYOjsJfSZLZ+Z+NfT8dhRlzHYWIcTGhZjJBfF0AGVUdphTrsGS+DIcruPMrTqPKssgigSamZjIitY+756w0P4i2/egXfo1eepuiHdk6BTNLMMMBi2SBp6YttFx2gldjAiUJ8NhdgRcinN89k63yg4rZc7lqU24gib5hLHKUq/pXmO8/76u/i5v/mucfADbvp8whh6mudKQ/clF91EvrJUpo3h1vmGkVxo0KWCYfSdPwseBrRvJ82d6pwyMONzM6/tM/GNbJZLHFhRA2HDW5GIfrcDn3tsvxyEHxbcjF0SyNswDsys5FLQN51pZdi4c4b+o3/6TQCKNX/pl59XqLZonKLSl1zKnZlzZQZ9qYPtCw2VqNFjgYluJnWtE6XjkWGKhdCGzL588824ELbItWrAGmu6Np7EZDV0NkVP80LoIl/P0zc6/MXMvUHUXazDvsxJHBmGbjRPrcUvtzNT64WcaNbo61A0LX00YoFOptm/NrCGoWujFUWuU5dK29JLteqtq9krsYhf/6q32g9gpZFQYlGYoWcuQ8/5/aNzWpls63yjUIJ3hWnocSSwZS7BA6zqZGh2kkvly9m/3MVyJzMRUxHLFM00Q4+ECDr8abUsumcHVrVBj+y1Z5nE5rmGvd5uXjjOMODvH60sFQk3P8HIIFn4+SVsoRdA9Ze9Ws6iCBj3nLIw8HGfEODalr/9zl2mbxQkl8w+r3Fgdhm6d5P45wOrKX7vCzdqBmv3CWWL7jnYxn37VwoRAW5iUW4yD7903UM4/oKLzMIPgA1FnEui4NT50aUOdi620Ewi05HKVoIhg5ZLa5iEcB2ecSTQSuJCCdrUk1wMQ/ckFxVlordhsentNC/UmilbPAEoJpjY63AzHHm7KMoll0XNc6mTGjabaBZF7UyoXrd2zvKiVtQOvq5rJFTYHc8U9VfKoTZTy+n6RB+nKDlf/SXOgKKGnuXSyGicoZNTNJSmTsilNItCbJtvmJo4BM7Qk0hgU8t1ilqG7pIdkkK4Y5FniqaZREMnFnVSG3JK179/pWOS2x5b7kJKNeCYjF19rxZalqGvlvSVQeG855pVU62jXho6lyybOr6e35O9Wn7z5RiAHK7qb6p5Y3xCpkSC3eft/3RtIUSSYIlN7RR10Iuh/8U370CWS2xfaDgvXdd78Qmr3awQa+vWlbZRE/Sgrr53v4m7TSsw9BN2LaIZC5uR6m13/qevwo0PHsSpR2w2v+eMKXGDmkQR5puxs0gEOXo4KyEDTtdCjH2uEZuXkztKfYYupWU1oSgX/6Xg3zsMPbOSS4NLLt70M5coMHSue9I2ee4ZdDMDsfolzah4tcVWI8ZSx5ZLKKuyZxi6r9H2Yuhde320PbWlGZcz9LI4ZmpfO1WOchXlIh3DsdJJTbGzWM/a+IBM7eOHznJizitOPf04LjL0ViPCvqWOjYBhDH3npiYOtlPDbLfMN8ygSw7KxaY1L+7scHinKH9viKFTOr5fxoATOLou+t1h74yhh3xFfvlcwBrmhmfgCe1uBiHUc1npcltVO0WDcAoEZa6+Szf9vn0rnuFX+3ANEFBMtutp6Px4nTTXBsLeLv4A6e9WqUFXTiPFDGgG4G73j9+7zxwDsIxcZTwWGfp8w5VcVJq2dNpFRpVmEGS8udbPmVMncw06181D6dxlCyN3vePwTNFmQpKLNWJNxpxbDWLoArx0rNF4c5ehK33eZc6ZZNUW2fNsxj5DdyUXmtGEwxat/NP2KhXSvePXwlP/m56uro6RezMNFJBLxaIXm4nZjg/AS+3MhGAmUYRWEheen4/lTmrY9TKPchGMoWsNnfqYGRSlKuFwcDU1oaUUeeMw9EzNahc5Q2cGfS21Tfh7c0C/x7SoiN+f/HBivqKRr6Hv1QuUH1xNC/ctz93iXKodYQ2doAZi4SS3AXDe4XFgZg26Y0Dy3Bn16WapxBS7D3WGx5Y9g97JmLOyKIm0U+sUNcdK+cusJZdGUX/Lc4l9yx1j0EOhZBxziWVsWa5qktioEO0UjQTmGq5TtKG1Omd6Ld3ZxjJj6PRb249D77oRDLRdKJ3bd3zy7/3QNjds0Q3L5GyF5ImGdmjatRwti3e159y0w5ZVULKJn53YTFw2bLuM+kzlXctqudBnf/k2unf8WuhZ5RJO5UICrakaYuj0FzlF55uxYYLOosvM2BKjDvlJOPYtd01impqtuAZGwka5GIOe2YGPyNBOvQ7nXmbQHQ09lw5DX/EiY4YFf89Jy29pqdNfgq5YG8kafCcvIZemMJyKQ/fP2V9D9zPRV7tZIXTW2a/OFHXh3yT+mTr9noNt50WhBxxi6IXyuR5zjYQ7qroRHlpySYoMnUb87QtNNOPYdPayeiJmAYjcSgdCM1rqDHEkMGcYutqvGUc6yqUYeUIyD7G3hSYz6N4alD6z5gbRb7JTqsC5z7Kgr9O9TyJha7nQC8b0RDJ+yhjnzgyEzqMkl9hcI51rlWWKxhE5k+2ARMc2iUH62NT0ZV0czI96of1pO9pfBgx60zhF7X2hWVcoAim0wAVfHGNJOy5JzuAGfaWTOpFPxNBNlc2AjPPYShdzjQhJJByG7kS56Dj0uWaMlY4bOUWMfKcuz/CoNoRb5xtWX9Za/yILW1zpM9BUBX/PH9UllucaMfLcSkzWyLJB0pdcnMEahqHv9+qaU3t9YuHPyPxZRzvN1SIrkdePMvu8xoGZNeg82y/NcocBEO7dt+xpu+rv/R5DP9ROnSQDwO0MnTRDEkUuQw9ILiGGTgsObJ6z02Z/OSwOClskiUNlqLpOHTMd7mQOy81yV2OlKfKyd2+U1q/+5gbcTyzKvNhhX0On1dH/7Gu3uk7R1GfoeU/JhTN0usdJrCIs/KluHnCKto1BZ5JLpJagS3VUTMocznSNvlOUGHrKDGroXnRSOxNQ7bcLh/B4eWpfKJKFBo9GVJwN5Mwgr3RSzDdiG6vPJBfuFFWOctfYlPWxSAgsNGMstYtx6DQDSjRDX2WRNAAz6ItFycVh6FKavgzYZ0MD9bCgtgHW+LZ0noa/BJ2/EId9f6LC/SaSdyC0zJ/kZSo8p2iJ5LLazdQyiJGbXd712jhqzKxBT72bFHoQDx5Y9SQXddP3ewydvOUAY+hZbjq5Gm2Fw9D5iNw1kktcMHq8Ch89xI5n8DjmmIaeSy65uPrbYitxXmgqAuQb0pe+/+tOKBugNPTcGCc7GPmJRTyqwl+cGVDTdwD40CW3FZyizipOBclFmAxcajuBWB4NUCHHqYpDtxEVJmyRRZ+Qfqmm00p6O3zLnN5OyyFk0I2D2K2EWZZYZGvK0wzDVu/j8fKqvWyxCGbIaPBIYltOmGD1d6WTL7Zic70rDkN3M0Wp74SqQXJEQm2r6s27zJM09DigoQPWgO9YbDqffQ09z9W10bVTm+Yb8drqoWfSLJK+b0lLLo0oSBD87PGcPS9fQw8VpuO/86xtaoc6llu6mdBOWbkQx7mutotrycWFq2/mJqGCL2ZMbIOQGobuTqu4BMMzvuaY9hlHLpO86p79uF0vu9UrDt2Gs8V2yp+5acvcGLaYUy3PVcSFDfOznWq+GWOZRWxQ3WV3KT7g9j1LhXs314wLDr5NrYZyinpTY4ehe9dGJVj9xQN6a+iiUMuF31fSFuNIFYbyNV56Mbke7ke5UJQGSTu0FuZR25RBL2Pofpifr6H7g6CNoy/OMOg58MQiHotNhpmkIW5g6JlKKbHczTDftJLLEjPopMMDrvHkiU8h5xtJdqvdnIWF2holVMtlvqn6M5/h7S1ILh0kkWL8PMIn1aG+FItODH2u4RrTQZHmuTXohqHHzvsRqrZI16XulSg4TLtZXpq9yXMmEo+hm0JgXiXMVR3l4jtFu2wAHgdm1qBzw9XNVKbXplbivFyAO3LSQzjgM/RAdl03y81K6irKJXJejou+/wBe+AeXmm1NJqlv0BlDbya2o/lhUwTD0DUjjAXT0DlDb8ZaA+0huZTp9IldqKOd5mjEysna9jT0bh+DTnVDOplr0LtetE2a89T/yMTV85rRBLrHDT/Kha15meUsttvR0K0hM9PdzBr0J2ybN9dM91gd070/JuTQYeg2yiWX0CGVMNdEaHmaKpeHuI68bAx6VCjLzO/5cjvFYjMsuXD2zBk6rzoZmtoLodrJneqRp6HH7Hi8giO9K2RUD6ykWGjGxgkN6OQvqZ7l//0vz8ATD9tkrr0V8DP5KFuAhK6JnMTcKcoZum90aT9u8PkpMt2HaNbhIw1If77k4stIK91MJ7e5g7XvTB01ZtegZ+5NOrDaxZa5xEQoEEJad1FyYQw9z/UK9dK+IGmOWJSPqt1MvTihBTBCBr2T5oUpH4Fn7OW5klwE7JJXADQjUpKLn8DgL8XnJ9MAKjSSs81WomYPfmIRrz3ur+UJuIsp+Bm5zsCSedUWdSkDE5XAqjaSAUqiKBhdQBmzZjk4ZlhtHQ1Ygy4lHjqgHHe+QQ/VLFf3LSC5ZO6AxmclrQY36G4SUS4RDjnUf1O/CpVYzaUy/PNNK7ksOwzdRndxDd0uBI5CqKY6J0kuPaoIRhHmdf/nAxHNLCg5iUuTdAzq83Ek8IzjtuPo7fOmX7UaUU8NfbWb4cTf+Dz+9OJbgr+nuUQSR1hsJYahU9QWXUso7p+c6UDRmGZ6lseduBxcrimLQ/clm3ZXhS1yx7xqf+0UDcKPET6w0sUWpuMRKIYcsA/hNi2VELj+zmOmyaB3TRx6mUFXawuGyuvyDEKqTthJ3WiU0MruZMwosciPQ6cYX5I9SBd0JZccJ+7e5LSnmUS6Jo2VXNRgE6OT5k5Fv06WO85iurYP/dSZ2L7QwKFVPhAyg+47RfWUliKFyCcQklxoCptoyYXLTHQsHoLoFxejexdHMA6phw6sQgi1+DTgMnm+H28v4DlFvQGNr4DDjSYZd17ToxVoKzlFY+1TcCUXe/5lHYcejHLxGLqvV6v7VKwuqjR0l6FzSSvNpdLQmxHbB875yfjx9ysOGHTVNsuI55LeGvpnrrgHAPC337k7+LuKwBFYbCbmvZlruEs0hsMWeR0V9z3OtSRI77uPLC8ydHrPDEnznaJpZvxumVSE85+/d19dnKsMfqq5YuiNAkNXDNROix5d6uDbtz/qbONr6PSwiKF0smIcOgcZ9NCKRqVOUdZ+Z6FokgOkKjoV6cQiKcGSSATmdYwvTYepZoQf5QIALzz1MJxzwg4AQItqqVCUS1fdH9Lg9xxsF9pOx6LjzTdjNJPIKdXqrt9Y1NA7mV1QN9KGNmQQeZRLlkvHRwAUU/9XTOw4M6LSrimaaoO+c7Fl2LNfz9x/GbnkQfDj8Plgx41m05uCu221z9kydGGKr5nzM4O+1MmUPm0qUtp7zjV0LpG0WV340Awtioohji5Dz02Ui7kuNssQwn03qFQCDTptz6BzA0oaupQSf/Tlm3Hrwy65oiUZn3L01kK7AXVf40g4lRxbSayXifNYs5fJnEtVO79gI/QsjxcT48gkCvfJL5dcCFvs5mYZxCxX5QB++dNX4Zp796vjTFJyEUK8XAhxkxDiViHEBYHf3ySE2COEuEr/+2+jb6oLd0mxHAdWUmyZT0wn4lPyFpM6Lr35YWS5xAtPPczsf1AbdCp/Sw6OeaZJ+pmiHN1USS6k2XLQg29xySXLnPbzF52X36TiXCLE0HXnI01TRbm4zD/LYQpZ0RSvmUSII5Z0pO8Pre7zMDfomX0xuQYZR6oS36FA3RBqE+/wlM1JBp3K2pqwv4BTMYkjHbZI57RRLuqaXMa62LKLh+RSspdJGfTDt7RY1FIfhh4w6Koeut3GZegsjp4xdCnVgJREESLhOjQdp6iXfMIlpE6aY6GZGCNFx1hoUkihncH4DJ07jzkiAcvQ9TXZxKKihg5YKWm5k6GVRKY/dbLcZJkWGLr3PWBnvXuXOvjji2/BT3/0O07baN+ldjFqDbBhizwLVYUt2tj/ssQicvb6Bp18DqUGPc8L/dCvmljMFM1sYT0p8bD245BTeWIMXQgRA/gggHMBnAbgDUKI0wKbflpKeYb+99ERt7OAYtiiYuj0rGiNRV5jPM1tiu/Jh1kpgozifCNGyjIP6eVUDD0qZ+h57ix+DKiOd/feZScBwWroLpN2ZAMjudjEIrX0nY1aEEJp6ICdXVA6P49zpdV9+GBEceBkrNrd3MoweY49B9vYrCOFKBqE6sRwg96II1dDdwy6rdPdaqisvDTPjVEyma8hpyiTXLgjkie+cOZJ+u6mVqJZszROUXJSH2qn2DyXGCPEJQn1PCoydMaiHQ3dYejWWUu7U6GwFUdDt05RX0On2c6hNg1WNoKEjrF5LnGyOEMMnfsaOGxxNyu58Fo5qR4w5xuu0QRUGGUrie0AIK0ck3gDpmXotg1GxqTsXq+uEn1/qMSgUxbrQpMzdDf1369RTtdFRdv813jFRODY6+XbqAgn9xqLxbkCGrqWXNIsL8zSJukUPRvArVLK26WUHQCfAvDqsbRmADjsKbMa+l17VRVEcoB1spyxphxL+iXZtmA92gWjmAUkF2FjpH0op2ikE1lUu37/Czfief/nEtytqzI2WViZHxXCnU6UsJEzw0Rhi9SZARiGQp7++WasNHQajBKVPKQGATsYNRNaMchq6PSCppnEnkNtozXzBYoBlqkqBJpx5FT249PbAytd5x5SjZmC5BLQ0CnRJonUWox+uFgu1T8aHIpOOmVIo8gydHo+Zu1RbUQePLCKr930cKFkMI+95985kkvKJZeihs5j+ONItZ8P3O0uZ+jCY+jqb2Kpc424MCPZPNdQcehcQ2/Y8Ehas5U7nAmRUNtyp6h1xktDHOabRcllpZtirhEZ9g3YCBmet8E/cyJEyUb03Eiu+cwV9+C2PYdMHzsYyCsBVB9sxJGTtNRkUS5CADSR7ngMndh95Fl0ev84Q+d9Ms/BGLrrj7Nx6O7MfDW1iUWqv7rPb0wEvZJBPwrAPezzvfo7Hz8mhLhGCPFZIcQxoQMJIc4TQlwhhLhiz549QzTXwtfQD7VTJwb9ZU8+HICroXczaUq0zrMOQQ+HjKIxRvoBS4neGroO/eMe7YtvfBiATSluJuVOUdLQzz5hB3793FMBWM2PFjvOmbYJwDCU/XwwYtEkc5oZZ7lEzHTDVmLX9ATUy0dT6H3LHXTSHEdudaNBbCq1ZV7+VJ5HCnHJhWKZO47kouu7h+K49TaNWJjwN8AtzsW3oxefwugouShmDD3V980wSBYP/qaPX96ToVv/i+cUzZjkwg06k/d4SKBKtXcXE1H3MtL+AtfnANh+0Yyt/4WOsWUuMSV4I6HOQYuDrKZuSQgfkSiWX7bliWHuV4ihK8kldowi9a2E+YjoutX3jKEz6QaAieD6tc9eg1f96TeNES416DlVgtQ1f2I9cGuGHuvIEqAY5ZLmOmrMe41X+xj0TLIyziWZov7i6lShleRK6nsr3QyNWJiBbNQYFe//VwDHSymfCuDLAP4qtJGU8iNSyrOklGft3r17TSfkbGn/isoE3DJvC+ofpRl6l013FENX8eqtgEebs0nAdj7ALnARakeqJReKHvnXq+83zp6USS7ElvywRWIrP37WMVigWi6aYfn10GNj0NV2VGiMnE0dztC1TBMxY0ZsnE7fSXOtq0cmo/QJOgGH6//8cxSJgqGgELLtCw0cWEntINmwgyQ9B6oe6adqA9Zw04zBr6Hha5f7V9zMxdWuq01nOq46iaMCgyQ8eMDNpA1VSiSGPmdYcNhocnnPGHShJCoetthmA4+fWER/mgE1EYzhkeTSMBo6GWPO0On9CEVukIbuZooKc53U70Ia+opeyJszdB7Nwq/N+EPYe0PvXUhmXOpkTHJxQ4sJRGro3aSZl5LabLgqUIxyMWWVPWNKEhy/Xt4nuQPfZsN6ZCeQaUoO2EzalalWOpm5T+NAlSPfB4Az7qP1dwZSyr1SSvKmfRTAM0bTvHK4BYPUw9/USnD521+Mq9/xUnPTHA1dG/SFVhxkLsTQO+QUbboGPaR7rXYzdLTBiCKldf/i333P/E46s2Loluk6dcu79gUwCR65tOyLaej0ciwaht7RTk83Dp20a8NadAfd1ErUAOEz9EgYVkQp8vRiWmeulVz8e0FlALYvNHFg1Uouc0zGorZTJw8ZRGJAtMCF0dBN0Ssbiw/Y9G/KXCT2HekXV0roCBv7ovuLePggPZtr9RSHzmW40AyDl241kos2MmTEkkiYdnIWR/CrZCZRxBYBIclFaeg8G5T6OdfG5wMGnYx1u2tnQL4RpExR/7rUDNdl6GQfC3HoHnMHrORCA5MQ1qDSfVbXYCOl8lzi+/c+pn7PyWFLM7lIOx4puql4LXQMI7kUnKJZ4V7xWQVFVvFrtHHoYQ2drj+O1Lmpj690s7HFoAPVDPrlAE4WQpwghGgCeD2AC/kGQogj2cdXAbhhdE0MI7QU1UIrwe7NLWxdaIBrXdaQ6up1zWJGKUAauu1IPGGEj/wcVEu9GYclGRNWGLNM0dStDrlKuhpjp7aD+hp6pK/Vaug0O0i181EI15HJ5aLFVuI4b7mGTtgyZx3K1Hb+OSS5HFpNEQk1Szqw0kWa6Xbo6BvSsele8vrqoeJcjcKLo5kRc8wmkTBlHMj3YBi6sJE97W7uFFfzGboPnvpPma1ZrjRzY9BZyF/IoPPCYpEmAzQTm2/Gjs7sG3TfWduIRcFnsGW+ofoeGyjN7CHtzdCFUDHrnSyHvyQa3e84ioJhi8TQeVc30Sye5NLLKWoju4QxqEK4hpF8CO+/+Ba88gPfxG9/7nrcvmfJyYpVDJ1HhYnCtQBFnxQHyXRcctnMwiI5+SCiaOqhJ+65zjx2m70vkS2fa6KU2unYIlyACgZdSpkCeCuAL0IZ6s9IKa8TQrxbCPEqvdn/EEJcJ4S4GsD/APCmcTWYQDcpiYTRbxf4CMvYgmLXwjD0xUCJAIA5FnMrW/DjhR7ESifDo0sdbJ1vFJwtgPXWc4PezlwNfaXrTlEjAUcTNFEhWZGhq9R9W8GQ4r0pkoUGBerkm1qxY0A6qXIa82koz5AF4EhWQHi20smU0dwy38CB1RQdbcBJx+5muZl28gGLH1/dA71NwThY6QPQ09lIGB8CSS58kQruBE0YQ/cjK3zwZesoWoZmC3OsHIRZCNgLuzSlf3OSXJRRptjzhWbMQkJRyDAmvZZXcCxKLgmk1HW3Y5+h29lDyKDHkf2e2LG/mj3fRh3b1dA5ATAaujdgBp2iuo0//7dXAlDPsZ3aNnBHJs0Yv3jtgwCAj37zDrUdc4qSHi0lTKkMak+oHjpFiXFYH5o14r/4oifiF374JDzvlN3IchSc82Vhi7/1qtPNMQTT87lkOK4YdKCihi6l/LyU8hQp5UlSyvfq794hpbxQ//02KeWTpZRPk1K+QEp549harGGYZ8wMOotNNQZBM8VEj5RUX7qcodsqgDwpgxvFSFin61InxR17l3Di7k2O5k441E6N46bFnaLsBbaebytJWMnFreVCbZhrRGaqS4YTUGy0EdkyBMopagejTXOJkYYA9TI1dYQOwTI9T3JhL6qfsNLR9Z+3zCU4qKNcmlq3Nho6C1v0a2sQ6IVpRO45/YUFyNDSvbMaupVc3HtiNXQ+xQ/BpN7nrmMrL0guansuGVFBppSVTaABcNXEO1vDoWq5eNX/zOxJX7tj0MkpqmZRB1ct4yPi0k4zM5jwbE9zTiGYgU7NvoAt7+rPSF2DHjmyhR/lUsgUZffHf+8EvNK6rJoiGfS7HnULzHENXcBdkIS/p34ZDLN4eED/B1zJZbGZ4NdefirmG5EKUGAzQ36NvkHn0TfKj2P/JjTYOUeN8Q0VYwY5g5IoMqn7/EXhK4KQ4e+k5BSN0Qpp6A2fobNjMKN4yuGb8Z+fodwKt+9ZQifNccKuRccpSzi0mpoXfr4ZQwgVEcJT9H2jRbVO8lw5ECNha7mQwRNCmBlJM7YauWKjNlEoy9049MVWYmYAanvF0N3QMrfIky+5KCefz3JUgoli6F0dpmhnUEvMGWSmyCENnVVbBGxkjV/FMBJ2m2YSmbBFK7nY31c9hs7xNC8jcdemps5QVZm6amZm9fx5Nnsh1ub3k4aXFEVOUQI3HDwah8AjkABlAEJRLoAiDK7hjR3JJaShC8FL7box47w2DN+fz1bnGrFr0I2GbiUffgzet3xnJ9fQk0gt3kyDM81u/QGYO2wzKc35u5k0yTyAG7YoGUPn3YC3bcHzmdH/ruTi9kNbH536Ao9ltz4xFiA1eYY+jUgpHT8WpnRu6IEA6sbSij7L7RQLTEPnLyOF2JmFlxOXOfJMUXIY/YKeOp64a9EwC46D7dQcp5lEeMLWedy1d8lhZCYc0GGwbmKRz9B5GxqJNcgHV9WCCJROnktiMOp8m5qJE7ZITuMQGzMVEr3PIQ2dpK0tcxTlQuUQIty2ZwlX37Pfk1xYIgiLlTYM3SxS4LL4NHcZOqCMGx2bGyiupZJh9vHKpz3B+XyEjsHPdZioqcehB0e65+00HLZIg103s5mlkRBONqzfT0miAdy66KQtc4a+0lFlWamWyqHV1LkuqqJoyjSUOEX9+jLWUNn7CwBH6ogn/p60ErfyKJ+50r3hx+BOwDecfSx26fVIAUBA2FBTLbls10mBh9rdQjggtZWYcJbbGQLZhMgzugCTXIQbh+4MtOy5RJF9F3lfJRtA/TLWWcBGjoxtBBgV5wLcKJiJaujTCkrjTaLILFDBXxTeiSLtIOumKl6dl9nlRpgkl9DK3NyAAEVt8oTdi04cPOHQauq88MfvWsAde5ed6aAfFUAMNpNuYhGPcgHY+pvacAIqS3OhpaIQqC5NEgvDchZbiRNJQ8W5ggy9xCmaBDR0Wnd1y7zK2DywmqIRRw4jM5JL1ENy8abpbc9pRxEoqlyr2mZTK3GiCOgc3OioKCTb3l2bWvjK+c/DG3/wePzMc4433x+hI3x8uUoZaFuBs8OScvgMI4qEjtDJmeQCZ0boR0/xAZYzdZsHYO83+UjIUPsM3VRR1PZjLpDOHgn7jG0ZX0/S0p8pycxNnoodlkuatND3yg9b5LPl7QtNvOUFJ7F97UyQpCpi6AdXU5Mqz9HN7bJ+tJgJoGwCtSWOhDG6KpzYJUgEbiecgdaTP6XH0GmxEopgMgadzV45qeCO+ElHuUwVPv/9B/Cmj1+GlU5mNENijq426U4J1TRYLce2oItLAcC2BWvQF5jDC/Cm0p6B4Mzn7ON3YPemlik3wLHSzVyDvnMRdz6yVMg6BEKSC9PQczfKBbBROFxDP7DS1dX5mGwjhM2onEtMZ+3q6JNWErnH9TRzn7FHkV24wFyDLo+wQ2fgPnxgFY1Y4MYHD5pteJQLhWHy6wasITcvQreMQdrvNs81zD1eZU5R16C7DH2uEeGJh21GI47wzlc+2XxPDJ18KfTc//Y7d+P+x1adKBdqv8vQlUTSZTH0iqGXTe1dpyjrFo7jjUsFzTgyhvrgauoYCJ+hh/w6EWO4RcnFhloCMElmvA5NK4kghE3Q4fYpjkRRcond58DfHa6hJ3pmQ9LlcicLhpgeWk1LJBe3roxdhELFqVONGldyKZHCCpKLq6GbaCDtlLXRQXb2ymVBl6HXkovBvfuW8bWb9mA1zZQhKxlhuZEgDXOpo2qMLDJGxxl6y2emnkEPxdMCwGd+7tkQQgQlF8BloCfsWsRjK13sOcSLYLmsyEao2MQiPw4dsC9rk+nDB1a7WGjGxhmpHEFuzRM6D7F2JbnY9vo1QQpOUSFw+BY7babf4sg6Jx88sIpGHDnrt/LiXPSSCAEn6sCwOk+bJEOfMSMZG4NunyddU+wZ9EbkhtqV1dIwDF37LPyInn5hizExdJZJ6mvonHg0YzfqKLRsHI/Np8/UjqWOGwbXMgydnKLFSpCUKQoEGDrzUQDAE/QA9xBLvqL+wVmsaWskAuVz3efAZ7dCCCe7N80lts2rPrTUToMhpgdWu2Y1MQocsH/DHKtrchZsrRce/aTuSXjW7QYooKChd9m7EAvhyJGcuFhfUM3QgyAmSRUQG8zRxhl14jlF+Qoni4yhkxFOIlGQFvhL6BuI+cBUlhv0Y3bMm7/5lPz4nYsAgNtY2VCfoVOtFZ5Y5GeKAnCSKyxDV2GZcWQjZWIhDNNRTlG1LbF2JblEheP6TtGuYejW8BGIHVGCz0OPtdGIIzzvFJsRTB2Zh1T6WXvGeHlRLtbgWIZuQzGTIkOPhMf8hZEE+PEITzlKOUcpdE0t7mHlIUIjEVrrZZminoaexMJZ7akwKPAU88SGRQJhg0770nNoxLYu0FI7dQyUYeh50WFLf6sFLlyJyl8rkwb9n37WcTj9qC34qXOOLRwnYv2VkMSRE4YIwMnKVrMD992x1SHV562MobcDEUkHGUPPc2lmCt1MOhE3RnKJqQSERBKLQnsJnBCagSFyM0UT712gGZwruViD7tcP4vdlHJg5g85jXSnmF1Csx2F6bBSksEUqwrXYSnDk1nn85DnH4iWnqfBDmtYCbFEKzrxi4WiBxHC4PeJTtgvf8ly2rd2PsjDv379ivuNSBgBT6yR3NHS3lgtvA2+7YehsGhhFwiyMvKmVGDZOIWtNz8ll6oZ798Fh6Ftdg95J1cLClODT0XHnf/HGs/DqM5Tj0TDEiCQXl90B1rCYPIKMYrFJ41Vt4MZ581zD/G4YeuQabV4YjB+f8MmfPQdf/9UXGPkg05JXLNyVhqgwmSO5eL6WRuQxdEYW4sgtm2Dq6Ac0dLNNRIZcmPPxdTN5P6WlBDNPIgCsRCeEm8rPtzOJW/q5HLZlDp/7xR/C0dstQSFjSod2JQyrodMx/cGfD2gqysXWb6draCVqRr0ayBk4uNr1JBdi6HaxjUiw1YH0Ahu8CqdprzPDL0q2RKb8tW27bLCmGTSgyA49Dy7TOpLLGKNcwmsuTTGskyEz01ugyJh9L3wjiXCvrnxIKxv9zn96Cq6+Zz8AgNcMJ922VcLQhRDYNt/Auacfgf/y7OPMNnxA4SGM/IXbvVkZvAM6fpivWh9MLIp0+VxIU/CHYBg6r0+d5ipxJbVlgGMhTDbqQtOGnFFY2KZW7E3bPYbuaehJFBVe0lTPBHZsslUsm9qZd5i+Zl6cyyY9OYcpOEV5+judR90jT3LxyukWNHRmyDsoSi6b5xrYPNcw5Xsp6zaJIqcaZqQ10k6aY76h2KHrPIdehNjmM8TC6qoUymnvUWTCIgE4NddN2wOSS8MbFAitJMb+la6j3/NzAW6Ui5/UZiQt77n4swC6LjoeIY5sWQNqNx8MABi5BFDE5h+uvBeAXay7Easl5pbbvRi6OgYtpA7YRDBqB1+QmYrd+dUWGwHfkbp+d7ZcKrlEfj+zhdSEsPeIS0ehdV5HhZkz6Jyhk5QCwCz44G8HEGsSxmNOhbsAOxBw2SHI0CNXQ48igQ/9dHnJGnrQvMATYGuOAKoDpZ3Mie+mY4cSi3gtEbU/19BdjfbgasokEqtT8hhimrFsajW8gcImzwDFAkRRZAcm/5o3txIdtmdT/Te1GuZ32p+WkiuVXLxMUVvLxUouxOh2LjaZhs4MujNjc52toZh0wL6AeQ6TB8BTyMk4U+lZklj4PUjiKCC5WHadeMaYZJ3f/8KN+NCltxXalLB9aZ9QQTNA9ak2c4ry67TOOhba580OTZ/xnkuof3CfD2+LZejqfE/Y5hp0Tr5yCXzv7v0ALMttJBEWmjGWOmkwq/edrzzNYegxa7uVSgTaHetspcWvQ1IcgYeWmsGKkQ9+H1IWr+8mWTHiUsLQyxbKGQVmTnKhTtTu5jpyQX3mabuAO63xWRTvYGQgm162JVA06GVGoAz0AvpTbIqzbXmG0+rHNpmBarkoL32OIEOP3bDDRZ3e7+vPdL1Gnlkhhp4UWKO6D+WZoiGnopp+CuMYpWewiRbMSK2xldKWJeCg41rJpUxDFyahbPtis6Ch+8+Lh5Lxzz544gg3FvwaW8agSx1tw/uaQDMW6KZ5UEP3Q0SJsWe5xOV3PoqAhM4MObU9cu6/K7nEWOlmuP7+A+Y+EYgARBFPj3cNFW8zR5ChBwx6HAsnDJHaxBGKjQdYsk6k1gxdbmeFpKK3nXsqXn76kSYgIGOhimnmM3RLSHIKWywZ6NV27sBM//Pa/VaWtezfuX6mofNZPTfodaYoA3/RVS1pdQn+8lH8peGFmuYa1qCqzzY5p6eGzrS3qo+DJxRxUGKFHx7InaJUfjUWpOPZ+jWFtseuBr7QTFyDLgT+4o1n4a0veCIO39IyRtQy9ISxLWtUaZpo68m77G3nYhMn7l4057Xfq+ujCAIqdMQrDNJLUsYE/axDKwmQhm5rsO9cbJo2c4buM2d+nLLB2cbooxAmSr9vW2hg/3IHmZSOlk9QEoq72hJ3bPqskO4HjwhyjmekFjqGO6D6DP2uvcs4/zNXF67TFJtjzmg+44lEMbHIXLco9jsbCeJeux+26KNsMWZ6do04wkIrzNDpHsx5hfMApWsbQyw8yYXyOLyMYR7lwuUXHuUiJUzEmYl5Z+8Cv0zuIxFsJsQlFx7hNmrMnORiNPRuhmSxaQycb9D5Q1NhWuomH7Vt3tG6TbYle9H8hBqAElX6j3+f/NlzTA0Ka9Ddtu3e3MItDx9i8d3uS0SaX2HFIk9Dbxld1i2utdgsMvQnHrYZv/KyJ6nPvuQyZxm60KxCiEBikceWv/ubL8Geg208871fUe3W949kJTI6PLuSrjMzIZUeQ/ccgFZy8aIwhI13dhl6eCpMx7UMPfwsOUMnpyhHLAR2LLbw6FJHLXwibBbom597grkPK11pBp8osv2v4TF0mhmqBczDRcMSr82JPyiwa/GNJb9MakPGIkNsmKK6X2kFyaXFpBv/NxUB5A7CPsoNus1MXmwmKsrFC1ukfuFEzujTZLldsNqPZFEGvehbabDZT+RdBx2b/Fk06AG2H/LAjEjoSpYN6muuhr65leBgO8U1uhTwODBzBp0ztziyySK9GHoUAc84bge+ckNxubE5bhS96ZFfRc8avfL2/eBJu8zfZAh9fd8ydDeRydY60Qw9pxVWFEvo5rm7+gvJRYlwimst6BK5vgEm0Av56JJiCiryRbMKdr0dLw7dpDt7mimBvj9u5wK+cYs9L53PlVzCUS6xJ43wWYbgDJIZqp2LTSR6ELJp5F61TDpuwAhxGIbOan84vwtg12ITtz18yCzi/dwn7sLfvPkc/OBJOwGovqSWoLP3xWXorgRHDjwqBeyjwZi5+uw5RQOhiba9bPAggy7tdfLqlfz+FqUm+zc3WGrfkv7A/v7q/3q+WYA8FPLrXG8ksNCM8cihtpH9zG89GLpayKT4fBvaSY3IFlsz7WV+idD1mtmkhE6m0rMB5nvwBzaqhKoGD3WcdprhB56wBZfd8WghoGCUmDmDbqNc3GXFFnto6JEQ+LEzj8LvfeHG4HbNOHLqmZclFtG5QzpnCLQ/d4QC1qFoS7FS7LQ9V06JRcItB8r1N2IpvNY33YuEZdD6OjW9UHv0C7Z5LimwqTgShfvQ1pUrneXHAi/wk5+gYropGcVP2IojFhboEWWfjZprEJbZA6oGCGH7YhNCuDXHhXAXaDBOUS/O3QfPSA0a9EjF2u9dahunaBwJPPfkXc4xqOwC3ZcGMxy+0UsigUcDKe503UYuYsdw/DIhWYUdn0D70EBE16nOo4wVl2DcdpRLLqHVi6idhBN3b8KJu9XC7HNJ+N7z/RZbiQ5bdAkY3Tu6ls16wRZAvR+tJAm2qZPmkLko+lZKZmxOgIIOW+TPguyP2sbdh6q+cmPf0VVNv/DLP1SagDgKzJxBt0ZXhS0+ol+EJ+vEEH87QN3ow7bM4S/eeBZO0p2KY64ROfVQTIakNygMmhBA8cukKRN+/KxjICXwoh84DD/10e844YDUdsrypGqLAGVjFtmYhGt4KDSRBh4/koScUo8c6iDRcoANyYRpS6iWSyEqJWDQT9cG/Sad9m8YetdO5ylzr+x4ofUpI2ElAr7bNv2CtOLIGACePAPAWXwaKHeK8qzDoFNUSy6r3RyH2t3gbI3KTFAIogqb1YbIk1zo2ghHbZvHfSxHIeS0K+jwfNbmyXv8/vLl8fh10nVHophYZI7TQ3LhYyNvb9ksqF8cNkW58LBFIRSRomsVQuD//89PwzOO244r79pnriskuTSiCEsyNb4Dl6HbWU/oep0QW+GSPp43wvfhDN30Yx3QcOoRW3pe+1oxcwadGBZV0KM48nNO2OFuFzA0L/qBw4PHnNeZo74R8R98YjpTtbbSakU+Q3/SEZvxjleeZqZtPBxQ/e/WcrEhZWGnaJa7jHOhGXuG1m0Xsbg9B9tYbKmELFOWF7ZzFqNcsp4vOv19yhFq0KQBZaeOeqG1SlVYJoxTMXQ8E+/LNF3FIGE+EwxzTSITbx9HIrikGDW31NgwKSLktCWGDgAPH2wHj5PEdkCmc/GIJ9+g8Wd18uGbHIPuR0jR8UP1b4AiQ+fPi36jkguAm3krIBxN3TlOgKGHolycdg1IgAiNSBiG3k7VosrkM+GD1+uecTQAGBvAfUxuJIsKKpCyuKao7Rfh61XvIgohqp00Y3kjrkEnhk4BDYB6F8aZIUqYOYPuGqoIW+YSHFhN8QNHuiMff2j9DPBCM3GmwiEvve9MqQIqaOQzdL+NvoZOYWyUWETtpxK1BGJKuScN8IqK1HYOMnR7DrVNHXGzv/6vEQscansaelZk1I7jUb8crSTGH/7408wzOfnwzfjIf3kGfvCJu/Q+XHJxj0cG3k/9V5KLjXLxrwlQxm+V6fRzjaKGbhl6mCXy8D2q6NmMIyb9COzSBn1PiUFvxJEOW7T9iEc8FeUt25bTn7AVX7tpT6HdvM1qWTwq0ytL65Hw66H7A7jhfVZDF/r+Fv0k/nEsQ4e5J6HtBn1fCMTQV7u5WSFJQMscgZkVd/CGBmySMKX+m/ub6J5s8wrrcUcnYB3JXHLhmc98H2LoEkVSOG7MnEH3HXIXvvW52LtUfLHsWpzhl59j52IT29k6pH6iD2C1TqA6QzfH9xg6b6MQxRkBOUVtlIttVyhcjTLgCJtZRUV+XAJpy48udXDqEZvVNoEX2NfQO2leMEZljOy1Zx7tbPfSJx9hj60ll0z2mpa7g6ugKAzGKP/mzedg/4rVnsmRRu13VnH3olzKzsuTqGgFnO/8xovwO5+/AX//3XuRZjl26AH64YPtYN9qmFou9r7waIpeDP31Zx+DhVaMb922F9+45RFn5sUlF2prN8tcht7DKUoMnafLpywZJxK8XIR7Tfx++YlFcUkfqFpV8EeeeiS2zDXwd5fdba6LjOK+5Q5aSWRr5weMolucq9imBkW5hBi63s5PlPOZvkpaskEYnSw375EZREhDb9rFQ9xzVbsfa8HsGXRvxDt+1yKO37UY3DaJowKrDeEDP3kmmkmEW3XBLL+eM513UENOKDPogBsva51fwqzIzuNcSYcjmEgFT+s9fMucw0IKBp0ZOp+h05ZJFBnJxCQaBSSXskJHvUC1XLhzzoefnUovImm8QriOSAA47Qlb8LlrHtDb+6u4uy96mYZO0+XlbmY0/u2LTZOM1s2lkZD2HGybeuEcia7lwmcTZU5R3iZAVav8hR9+okkMapQwdHUe4XwG3Mge/9jN2Ba04szTGH3hauocvVL/+aZOQbuKjHTHQtMkn9F10XN4dEkZdKqdEppZ8SQpLpXw4+WSygSE5ardm1yD7h8nzVynKIWshralxUdWujlCQQPjxPiHjBHDqa3c5wZVZdRHbJ3DjsVmMVSOP4xhrTlgaoSHEIrbNWGLuvStqxczg871OW/azdtbJrkAtvP508HQFLtscEz6GEkfkcd6QvBrjURCPceyKAwAePqx283fJEn4bezH0IkZLrczU50PcBfKbgVC5jj8Wi6q9oo9jn+veT+e9/TpUM0Wv02uX8WLcilh6Ca7khl01e/Coa5Bhk5s2JHdqr2fv/Sik3HsjgVzHTxSp5lEZmA6oCsrNs0gFjLo6n+eSc1vcSOOzMI1fi0XKrrlM3RfuunmeWEw8H0I9Jth6J2sdAY7LsycQed6Y79En5CDpBd4FqoQyig88/jt5juCqJwrqo/bg7n6Oj21w5bPdVcpd9dKVf/7kgu/Fv9vwF3FhpiRiUMXxX1MvHyJAbYVDKt1J/OSZOWzJzIaVECMnMNlTjsAOPPYbfYc3n2jZ0AvcJlfg17GpU7qOEV5tUe/NLOPRhyhq4t7UVtpgGoGGDrP0hXCMxIOQ3eNfMgf4DN0/kjIKGYeQ6fbFInyTFH+DvnacciPAvRmpP/zJafgJ56p1uVtegusJJH1ORxc7TqDYDMpHtPEhrNr8WfykhKLItcoP3JISXa7NvWWXKjEQMhH4Bt2IgWr3oy2ZugBDDLihbzwVbZvd2143s885wR9jOrx54R3vfK0wpqVhXMG9Lw4UgyPap3w1ocGgKwkRT30N+AydFo2z5Y1KBoSYnaq2mPxGvxQw34w+m0gisScM4kghF2AgXwJZdUAARX/zkuXhtr40AGlsfsVAAkkQS21U0fKIuPpO4bLZiz0/Ggbt5ZLWEN32bj+ztHQ7TEAmFDI0LMKtc8wdHbf+TMQTNLyL0vowzaTiGnn6ruyNTr7ESkeFus7f2nQOLCSotWwUVsh0kDXyBm67/8ytVwit717dXJdgaF7s3uSXPxlKfm2xilKkksnC0bUjBMzZ9CdEbKPAaHaEFUD+f2YUQB4xVOOxD+/5TmOk6+q+vKm55yAP33D03tuw6+Bdwwq2RkLt1ZEo0xy0RvRlDuUwWmPYePOt2k5yI9D5wMED50LvlDEYisydGpaL/+GEAJzSVyoNdJlGrqPZhLh9Cds0dsXrxlQKykBwDF6uu/DaOidDBkLg+MLZfPLDDVfrSkqnVoiXP/2+y2dgyeybTcFzorG0gwAkWX9hIKGzu7DmVqSOuu47cHIlEiUF+ei4zjLMgq7n712+51PJHzwjGzer5Xkog36ahetJCrITRx0mpzp2m7yUIRMF7fzk/AoEa3gFPWOQ/Jg6F2k70ySo+5DqzpXhlBLLgH0MlQ+qDaEH5JUfmzt/Ou6huaMY7aVhrmtFXQNvjZno1zgTdtsOyiu+6TDNpmpMnXMflM9enGpUFmvhCFnaa7AbTCSS0WGbhhVXqy2yOGswu4z9JJnT0arwNC9tpUZdJJEDEM3g1WRBYbOo46hiQFLiuLsulEib3HDTI5Xp0qfJ7n4/wNFDV0Igf/09KMAAM86cSeu+N8vxrlPOdIhJcYnKsolLbpOf/k4/x700rp9vPZM1a4ffeqRzvaU7Aao659rxE7pBB+8raE2xTFV97T9iPCe15yONz/3BDz7xJ3B6/XlQV6MzWQfe0ydFspY6eTBgXOcmLkol7LpXS9QOdd+cCo5BgzG6UdtxU+ecyx+9odOrHS8Kggt4xXrKAn63tHQmWF6xnE78Jn//myceew2kyH5G+f+gHMt/rF90PqNxBppS9cJxqb9gRc1JBn0gi13mvc26N7SZZFjcML7/PCTDsMnvnUXti+6g7jf7rJ6GkKopJblTuak/vMVgvhLGnaKqm1X2eIRpP3yInDGqehJKYDV+A+sFtdkpe382vGh9sSRwP953VPxW69WC2GTVhy6hkgA7ax3lIu/cLq/baiWShlOOXwz7nzfj+hr48eInHvRYhp6SLbgTaWf+axDhcnCVFvk9+uY7Qv4zR89rXBM7igGKAvVHptyFPg2ZDMMQ++uP0OfOYPuVKrrUxOCsK1HlAmH1dCzYMeJI7XK0ShhtUE+82B1qr1pnt8pztYZspviyLwcgKch9pjJ0OylzKkaiWJNGx9ly7qVgd6nTiax2GMQIM2XDsslgTKG/tyTd+Hqd760UACqVxSPj8VmjEPt1MSh8/27WV6YTfngxIDaSiGDPLFIeNvzAZFWfqKa9aoNblRLiKH7S9ip0tERthRqlRT/FhDIshLJJQoYdM/o8bYMarz4zJOv+UvnpAE5dNzQ4MTbRv2GfAduBFhZezyDzgbyJBJogy0Y4vkSiKH7Br1qGOdaMHMG3Z3eVbtBlRk609DLSnyOGqFEiDiKnMJajnGuyIL9apNlKGrobnv8Wuuhgc6fgvaDo0tGqgt+4Zd/CEvt1Nlu3guPU5KArQ5YhlA1P3q2//DzzzZlg8uw0Epw255DSHOJw7WERYz+6O0LfSUXP/w1iVgtF5ZY5D97zlJJcuHL31F/9+vR8P1O3L2IHYtNU+yr7NmXMfSuCVv0t1f/u5KL+5tqo5YhBjReSU+GHju1cHpeizfjpegom1jkPrOQL4ZfE92HUBaqz9D9sEV/UfeqPqa1YOYMehLw+vfD9ooaujU0vbXdUSIUFx1Hbg0TxxFTlQVX9DVsNwzdvZduIoyrb/rwQ/v6gUsu1LZQ0aLCQgqRWw99ENDL9IzjdvTddrEZm5rVTztmGwDgnBN34uM/80w856RduoyqckaH2mFmegEN3UksIgNh7h+TXDYVwyrNMVjJZ3+/hWaCK3/zJTj+gouctvhwNXQ7YPJSAO72qh+GJBc/RBAYnKH7fafpXFPslMXw4TqpPYYeqe9ofYE4ivoOyEAxfJRLbf6CI7E3iDT0gPQrLz2lb0TUqDFzBt1h6BUlly1zgzlFgeqx62uFP9rTd3YRWvflqtop3Hj98n22LrjrfdKWPGvVkXx61NKo3jb7kvRypBqGTlNaIVC25mXfcw7AGBdbCTK9OhSvEfSCJx1mjycE0kA1RiDM0E1xroRr6Gp7+txyNPTirJKvWMQ/93JAlvVjMtDKUUjfsXroJQMVZ+j+rA5wqyEOAroGChvl7/Z8M7azkT4MPfb6IhEifl1u6G/vdlkHfl5wYtsoFxpE7H43//a5AIB79y2zaxy/TalkEYUQLxdC3CSEuFUIcUGP7X5MCCGFEGeNroku+E2pytCrsu0qI/eoURY322VMtCxxo/dxi+cIwThFPdbIdV3u2Q9NG83ivlXbpq+nLFGJEMpIzPo4RcswyHSXNNAfOHJLqfTWK2kt8Qx6HClHaySAzXONQsx/KGwxdN6mp53T51CyDaFX3/cdf5FgJZdLZmJ80LHynN2G2jZozgbdEzLoPPxyrmEZeug59pJcYi25EBGoKrkQbIy7q6Gr/10fT6/BHVgfDb1vLxdCxAA+COBcAKcBeIMQouAWFkJsBvBLAL4z6kZy8JsSGq3XgtAiseNGMGxRCMeh1o8hB49bkaGbiIkShk4ST2h6TaDsy6oMhN6hULEvjjnjFCUmCKahD8gAB2Loypg87ehtpdvYaXbxN15MjT7vWGzisz//g06InmHobPD0cfxOG17Z8Kb6fsZosJ097hPXzvn/QNhHUWDoZj9OONTfckCLTte0ea7I0OcakXnXe8Wh87bwsh+RjnJR1xANxNBDJRJiz3fR692YxiiXswHcKqW8HQCEEJ8C8GoA13vbvQfA7wH41ZG20IOTkj7i2PBJMPSysEXeDicsrPJsg50j8HbuXGxiL1slpyxum+u1ZeVL6WUZzilafj3WKWqvo1ctl14Y5GWiTD/Sz0PotZQdd67zc/sx8r5O6xv0y9/+4uCqS77k0mtm1Ov+UrfgGrq5vpBx8hi6z/B5WwYk6OaeLRqGziSXRswWKCm2y2m316ZWI3b6ShzBi3Lpw9CZvydhK4Tx/0Ox7/7+fPtxoopBPwrAPezzvQDO4RsIIc4EcIyU8iIhRKlBF0KcB+A8ADj22GMHby28ztNjqgkAX/qfzxuo6gq/4etkz8Nhi44xdtlS9XopvRn6V85/vlnMmp/fr0fuF7UKvVAS5aVNQ+DFuXozdAr1s9JLWa2RMvz5fz0Ln778noEYPa0Be8YxW0u3CdUxMb8xSYlvSzA6s/4sve8JfvZiMVzRZYoh9CIm3NkMePHcgesSoizKhRkt3bZ8QIZORzAMPXYNOhU4Cz1Hh6GbOHT1fyuJCgbcfc/d473h7GNNGV9+nG4msdD03gVi6IGBze7P7810MPSeEEJEAP4QwJv6bSul/AiAjwDAWWedNeggDmAwDf2UwzcPdGxH2liH0RToz9CLYYsVGXoftrV9sWnSy0Pb+DJAr9BEw9Crpv4zp2iVTFHKiBXCXdS4Cl5y2uF4yWnhlarKcPpRW/HUo7fixF3F5QoJvabZfHGO0IDll1kgacavZe6j6UsufRbrAPpJLu42oYxLjqO3L+DYncUMW376ppFcSk8bxJJeTIU0dN4v5psxkrhYA4cQjEPX+6uaQO4Mlx/Gv8zffe1T8LuvtbkmNrHIlnzw3w2+FnChbes8669i0O8DcAz7fLT+jrAZwOkAvqZv3BEALhRCvEpKecWoGkoIpRmPCuT865eSPkqQfS5j6HyRaKC6c8/VCftfi50+uvtTpw3FShOkkVwGH2yqMHSKAY+j/qn/o8CrzzgKrz7jqJ7b9HKK8rDFUD/yZ0PksOsXtVVILErcZxRCr+7iF5fiLQ0Zn8/94nODA6lrMIdj6IfaKjeADDrHXCPG9oVGaQmPUF+3ma1xIeCgF0MvO3Zo8Qw/Dj1kj6r29VGhikG/HMDJQogToAz56wH8JP0opXwMgFlpQAjxNQC/Mg5jro9v/h61UxRQDysNrEY/LlgHWQlD95yig4YGVt3HZ/7+4rlWegndmEElF3benlEu6lw7A+nqY7TnleDX73B+09/xdSc5yNTRT8TQ+90/8inMe1puT8mlx40yg3eAoYf2KyM5TvIMvZMDMnSqZR8aSOcaMX7u+SfhJ84Ky7Qi8H7wyCFHwvQYer9Xg8ehGzmyJA49tJCNnzA4bvQ16FLKVAjxVgBfBBAD+JiU8johxLsBXCGlvHDcjSzDqJ2igE3rXa84dHrGoZRq9Xt5LZdeGKSIGd+GtrQ6oe60ppxr8VjDSi78PCGQoduh67KEohkmhaphi6Hft8438IIn7cZ5zzsJgGXo/STEZ524A+//iTNM9E3TSzDq1c4QfD8Ab6qo9Chpf/sN9Y9BGTqv6+JjvhFj81wDm0vyScJZr+WSyyAM3cqDeWE2Te8iHSGUkT6NUS6QUn4ewOe9795Rsu0Pr71Z1TAOhq4MWFaZCa8VVusrLpemfve0/YqDGJ++V7Gz1jFGjNxlf/S5V9hi1cGmavbc/mU1Dd+uyxOIwIs7KVTRTTtZHvR5xJHAx3/mbPP5qdpA88SlEJI4wmuebhlslTr0vZzBBcmlD0PvdxzADi75UB6yMOb7lOFwDbr6n+6NinJx+w1/ZP0u00a5hCQXda0UXLAjsGgKv49Vy3ivBTOXKcoxjpK2flTHuEHTsLJlzSIhCgyjCnjnqcKcI4+h+44fn7FzDM7Q+d/l10OVFQ/TGrrL0CudamwwUlkPjbyMoft42jHbcMO7Xx6sQdMLvUrKVoFxikbuZ/XdkAY9obDF0Vn0+Wbv6wu1mztF+e1JvEiZftFP1FdpCTqgyND369pAoexe3j/8qKVxYKYN+qidogBLGFknBkjkymHonpPHZejV2sUdSFXsrD9Djj1m3mvdUJNYNGDYIj9uCP/rJU/Ctvkmzj39iMJ+gyYWjRo2QiT0GzPoFQ3joMYcYLOnId8DEz8djHKpfhy3ABVJLkM1KYh+hfJCBjpiBj0kyVQF3RspiwED1N/3Lat8jn5FAA8vKdk8Ssy2Qe8Thz4M1p+hq/PwmuO+xjxMYhFn6FVYIkUXvO6so53z0D3unSmq/q86Y6qqYW5fbOJXXvYku60z0FU61djgF2TiMIlFAxj0YUCGrl+4YxmoaTaxyP5Wpc/YOHT73bBO0V7oZ9D9wnaAbX8riYeqhUSIPHLFj0H9+DEtDYacohwhBj9qzLRBH4fkQsx03TJFWccjJJ7hch0r1a6Zh39VuZb5Zowb3v1yYxxiw8y92Oeg5DJY6r9TKnWgqT3/e9IM3WW3HCbKJcsLS8KNEq8982gcs2PBZFcOCt9ADWv4oqj4PAd1ivZCfw2d/+0OtM0kcmZRgzom3Tox7m9FyaW3pLIeodDrFJw3HlSttjgIejn/xgEybmUMPRLCOAX59v3gOBAHmPb7i1X4TqYgQzdtq8rQhzQcU+QU7Vm/Q7etrFTCqLBjsYmXPfmI4G+bKxj54mIQ9rdBJK2wU3R0Br0fQw8mFpnYcBFk2VURinG3eRfqWs1yjovjd3r2Q83QPfQKRxsHQgzdjwLZtZkZ9CFiWYe5FjJEvs4aDlscLMqFG/5hDfqk49DNgBcy6AM6RceBL5//fNzDSreGYCQTinDS3w9KZvg1No1TdHTo1x5+i23NchpwozVJLrHT57RB15+pD5x13HZccde+sc7GqqI26B56vajjQEhD952ifCo3DOMbZrbBq9Xx/0MsXA4Y5TIsQ3de3AmL6FGPgZ9LLus10/NxxNY5HLG1txMuVD4XGJwA8M3p2Y6QoPeFm5TntimJReUw2eCxA0lINkxX/fiJN59tQmzLcOoRg5UhGRYzbdCHdQb1wrArrgwLOgsf3Z0pYiQcaWmYdg0jT5CGTjW7pfk+ILkYp+jgGvogL9ggZU/HjZ7VFplRm5RBrwIbtuga9EG7ixPlsl4p1gyheuh5bv06w4ZjFo7t3RjqxwvNxNTQD+Gy33gRNs2tj6mdaYM+HsmlPL54HOjqjlfG0H22NEyI2loYutm1h9E2TtFhNPQhtdpJa+i9qi1OogzzMChcg2fg+4G2GmYBlir4+M88E7c9fKjvdqEl6GiBmCR2wxYHnX2ESIQhMBVnpIetQ7giYaYN+jheFuP8WyeDkWbFSnu9wvOGY+iDt8uvCGi/D0gu+v/KUS68tO8AEpLrtKu821hgGXrgt1kx6N4sw8bWDypLcIM+uut9wZMO65s9CyBosCkprRGJQhjwIAjlPphy0WMIm14rZjrKZRzwi1GNG7ToMffkOxq6145B2vU/XvhEAMMl4fgdv1fN89zTFAc59iDGY5pS/826oD2cov7f0wZqmv1/OMklGIe+jgg5y6luvmLodtuBnaI9ydX0mc+ZZujjAK2xud6SS1nqv98BB+mQ57/0STj/pU/qv2EANK0s6IY91hSt6rBtDB3lwv+esORSIQ697PdpQalTdA2RIIOs3ToqhAw2EaVG7CbmDfpeh449qM9oPVEbdA+06MN6vYhdXVFwrkdiEQD83c8+C1+87sF1S3knRk6ns5Es5ecfplb78HHolXcbC3rGofeYYU0T/KXT/NT2/vu7/wOTMXKhmVvGnaLsetaSWETnsYl0NUOfelB67noRK9L6nMV3A8kMzz5pJ5590s71aRSsAfcHkF4svDpDH9KgR8WXa1LwZQoO/qKvl3Q3DMw1GIPu/j8MJiExOTM3/YFKEsee5DLaxKLpe7a1QfdABXYOttM+W44G5I136qFPgQZLsbb+2Xu1p/KKRSNg6JNXMnow9DXEPa8nipKL+n4ts1MhBI7ePo///vyT1ty+qgg6RTMetsgY+oBGOBjloj9PIkSzH2qD7oEK7BxY6Z0oMCoQQ2/1YejrDeq0YoBOXFVycTT0gcIW+d+TNZS95Il4yBnIesMacPW/8L6vCj+J6Ju//sI1tWtQhIxuV79XvkEfOIIn5IiXxfNOC6ZviJkwiKH3y/waFbppb4Y+MYNOkovH0UMSAi3CXFUv3ggaOiEYh74GA7Ke8EvN+oWtZgWhDGLS0Bu+5LIGp6i15+HZ6zRgJhn6V85/PlY62ViObQz6Smcsx/fRNRr6dEouNpmivOb5B37y6XhsgBnNSFL/p8RQznYcuvrfLD84ZJTLpBFi0c87eTf+5ar78QNHbsG9rKbNoD6NaSBXg2AmDfoTD9s0tmNT3ZT1Yug2vCoctjip0Kjcc4ra5KGiBWslMQ7bXL0w0bDFktxCSZV3GytmOlPU09DpUqoaLr8sxKQQquXyY884Gi958uHYMtfA/ftXgttWOnaPTNFJO+ZDqCUXD8TQ+5XsHBUoU5SnzXMW0a/G8rhQ9pKOOmpjVsvnEoJriorev08LfInFTzSaFZT5VrboRaXFGp5HHOhzvn9pmjCTDH2caCYRfve1T8HZJ+xYl/PRy9QoYXVb5ifziHbo2s60bJZfA3pUGGiBi0DNjkmBzh4yEEIIJJFAmsupNujWsav+HzaxaNLgTHlzoAhWs4QsVQG/F2a2WhIBNg2oDXoAbzj72HU711/+zNn45+/d5ywgG+pE643XnHEUIiHwI0850vl+1C/7IIbZTSAZaTOGRln7o0gAuZxqp6if7Tqo5DKN2BGY0e7cZL8b1Cnq+m3U/9PM0GvJZcJ44mGb8Csve9KaivCPA0IIvPqMowwjH1cnHiQu2I04mPw9Asqf1XqvTTsMzMIWnlO0sobuacrTgNC6nbvYWp80eJ1xzDYsVFiYOyS5vPc1T8HzTtmN04/autbmjhw1Q59CTKURGNNbOwgb9BNgpgFlDLxXvfRpQbHa4vS3uR+2Bww6X8KRcgT++S3PqXS8UIz7aU/Ygk/8f2evoZXjQ83QpxChNR43KoZxik6DJGDkiZL2r/di48OgUMtFfz/FTe6LxQDrdsrnDth3hBB9n/U0oTboUwh6wTizmBaMukvPqkEnlPmISXKZiVouHoGoarim6DEY9JPihhlg4ynsd2WoDfoUYqWrkqa2LUx+FXEfo9auh0n9n6b3qtQpqr9faE2vqunPBIddU3SWMNTqXbF7n6YZ09vbHsc4YdciXnjqYTj/JadMuikG83oqO+qXfSCnaDR9TKnMQFBiVkgCmBYUMkMHjHLZOq8IB89ynnYM038bcYTVbj5V/a4MtUGfQjTiCB970zMn3QwHf/z6p+NTl92D04/aMtLjDha2SPuMtAlrQpmBaOtZ1uIUM3Q/TNEmGlXb/+0/chqeeNhmvPDU/svETRon7lrE7Y8sDaWDUxz7tERW9cL09rYaU4XDt8zhl1588siPO8giAdOkoftFy3ysptqg91gNflpQWFO0otHb1Erw5ueeMK5mDYQkEvjPZx1d+vtnf/4HcfNDB4c6NpXlmCYiUYZKvU0I8XIAfwwgBvBRKeX7vN9/DsBbAGQADgE4T0p5/YjbWmMDYpBFX/wEmGkG1blfaE2v5GKXGVT/0yA1DQPmoLj1d17R8/cdi00868ThFoihxaBn4b70fZ2EEDGADwI4F8BpAN4ghDjN2+yTUsqnSCnPAPD7AP5w1A2tsTExCENveElOs4BpllzoThrfhFcCoIbCLDH0Km/T2QBulVLeLqXsAPgUgFfzDaSUB9jHRczWO1djghikNAwtpE3Li00D+nX0aZZciKHPevnccYMWbtkoGvpRAO5hn+8FcI6/kRDiLQDOB9AEEFyyRAhxHoDzAODYY9evXkqN6UU8AEOnRUA66fQY9H6okl4+afgGnKfK1+Bhi9Nv0EcWbySl/KCU8iQAvw7gf5ds8xEp5VlSyrN27949qlPXmGEMEkZGJY3zKZj/VW32pimWXGx9HnUxdz6yBAB4xnHbJ9Si6UTiOY2nGVUM+n0AjmGfj9bfleFTAF6zhjbVeBxhEKcoX6ZvVjDdTlFl0ikV4Mq79wEAnnHc+pSOnhWYKKAZsOhV3pDLAZwshDhBCNEE8HoAF/INhBA8nu1HANwyuibW2MgYxCnaSqbXOJZhFhg6GazXnqnC/k7avTihFk0nTK2b6bfn/TV0KWUqhHgrgC9ChS1+TEp5nRDi3QCukFJeCOCtQogXA+gC2AfgjeNsdI2Ng1ln6P2KUM7NwCBEzPO9rzkd73zlaTPh/FtPkEGfhZIIleiDlPLzAD7vffcO9vcvjbhdNR4nGIShr9eygFVQ9d2e5mm6jUO3US6zOAsaN6iPPq6cojVqDINBWE9rhmqGzAKM5DIDhmqSmCXJpX5DakwU8QDFuaZRcpllkFN0mmcR0wB/AZBpRv2G1JgoBmLoUyQHHL19AUB5ieMXPGk3jto2v55NGhojXvd7w8GvdTPNmF4XfI3HBQbJSpymMq3/66Wn4Mxjt+M5T9wV/P3jPzOdS5SFMAvMc5JINljYYo0aY8MgBn2aGHorifHy04+YdDNGgtqg94bV0Kf/PtUGvcZEMQjpqTX00cLUcpkB5jlJbLRM0Ro1Ro4Lzj0VQgzGeuool/GgZui9Ec9Q2GKtodeYCH7u+Sfh555/0kD7TJPkshEgqXzu9NupiWKaF/r2UVOeGjODWhoYLWrJpRootDabhqpwfVAb9Bo1HqcwmaK1Qe8JYui1Qa9Ro8bUo84U7Q3SztPaoNeoUWNaYTX02qD3AjH0vDboNWrUmFZYyWWy7Zh2kIZeM/QaNWpMLcyKRagZei9YDX36lz6sDXqNGo9z1IpLb1Aces3Qa9SoMb2Yfvs0FZilKJc6sajGTOHyt7940k3YMCCnaE3Qe4Pi9GeBodcGvcZMYffm1qSbsGFATtFZKDo1ScwSQ68llxo1Hueo7XlvGIae1Qa9Ro0aU4rpN0/TAVrM5Ojt079gSS251KjxOAUtQVcT9N542ZMPx1+/+Ww856TwYibThNqg16jxOIWJQ68tek8IIfBDJ++edDMqoZZcatSoUWODoDboNWrUqLFBUBv0GjUep5DGK1prLhsFtUGvUeNxijm9pF+9wMXGQe0UrVHjcYr3/8TT8cnv3IWnHb110k2pMSLUBr1Gjccpjtg6h/Nf+qRJN6PGCFFLLjVq1KixQVDJoAshXi6EuEkIcasQ4oLA7+cLIa4XQlwjhLhYCHHc6Jtao0aNGjV6oa9BF0LEAD4I4FwApwF4gxDiNG+z7wE4S0r5VACfBfD7o25ojRo1atTojSoM/WwAt0opb5dSdgB8CsCr+QZSykuklMv647cBHD3aZtaoUaNGjX6oYtCPAnAP+3yv/q4Mbwbwb6EfhBDnCSGuEEJcsWfPnuqtrFGjRo0afTFSp6gQ4qcBnAXg/4R+l1J+REp5lpTyrN27Z6M2Qo0aNWrMCqqELd4H4Bj2+Wj9nQMhxIsBvB3A86WU7dE0r0aNGjVqVEUVhn45gJOFECcIIZoAXg/gQr6BEOLpAP4vgFdJKR8efTNr1KhRo0Y/CCn7l7kXQrwCwPsBxAA+JqV8rxDi3QCukFJeKIT4CoCnAHhA73K3lPJVfY65B8BdQ7Z7F4BHhtx33JjWttXtGgx1uwbHtLZto7XrOCllULOuZNCnDUKIK6SUZ026HSFMa9vqdg2Gul2DY1rb9nhqV50pWqNGjRobBLVBr1GjRo0Nglk16B+ZdAN6YFrbVrdrMNTtGhzT2rbHTbtmUkOvUaNGjRpFzCpDr1GjRo0aHmqDXqNGjRobBDNn0PuV8l3nttwphPi+EOIqIcQV+rsdQogvCyFu0f9vX4d2fEwI8bAQ4lr2XbAdQuFP9P27Rghx5gTa9i4hxH36vl2l8xzot7fptt0khHjZGNt1jBDiEl32+TohxC/p7yd633q0a6L3TAgxJ4S4TAhxtW7Xb+nvTxBCfEef/9M6+RBCiJb+fKv+/fh1btdfCiHuYPfrDP39evf/WAjxPSHE5/Tn8d4vKeXM/INKbLoNwIkAmgCuBnDaBNtzJ4Bd3ne/D+AC/fcFAH5vHdrxPABnAri2XzsAvAKqeJoA8CwA35lA294F4FcC256mn2kLwAn6WcdjateRAM7Uf28GcLM+/0TvW492TfSe6evepP9uAPiOvg+fAfB6/f2HAfy8/vsXAHxY//16AJ8e0/0qa9dfAnhdYPv17v/nA/gkgM/pz2O9X7PG0PuW8p0CvBrAX+m//wrAa8Z9Qinl1wE8WrEdrwbwCanwbQDbhBBHrnPbyvBqAJ+SUrallHcAuBXqmY+jXQ9IKa/Ufx8EcANUFdGJ3rce7SrDutwzfd2H9MeG/icBvBBqDQSgeL/oPn4WwIuEECNfjbpHu8qwbv1fCHE0gB8B8FH9WWDM92vWDPqgpXzHDQngS0KI7wohztPfHS6lpBIIDwI4fDJNK23HtNzDt+op78eYLDWRtunp7dOh2N3U3DevXcCE75mWD64C8DCAL0PNBvZLKdPAuU279O+PAdi5Hu2SUtL9eq++X38khGj57Qq0edR4P4BfA5Drzzsx5vs1awZ92vBcKeWZUKs5vUUI8Tz+o1Tzp4nHhU5LOxg+BOAkAGdA1f/5g0k1RAixCcA/APhlKeUB/tsk71ugXRO/Z1LKTEp5BlTF1bMBnLrebQjBb5cQ4nQAb4Nq3zMB7ADw6+vZJiHEjwJ4WEr53fU876wZ9EqlfNcLUsr79P8PA/gnqE7+EE3h9P+Tqj5Z1o6J30Mp5UP6JcwB/DmsRLCubRNCNKCM5t9KKf9Rfz3x+xZq17TcM92W/QAuAfBsKMmCynDzc5t26d+3Ati7Tu16uZaupFSlvD+O9b9fzwHwKiHEnVDS8AsB/DHGfL9mzaD3LeW7XhBCLAohNtPfAF4K4Frdnjfqzd4I4F8m0b4e7bgQwH/V3v5nAXiMSQzrAk+z/E9Q943a9nrt8T8BwMkALhtTGwSAvwBwg5TyD9lPE71vZe2a9D0TQuwWQmzTf88DeAmUvn8JgNfpzfz7RffxdQC+qmc869GuG9mgLKB0an6/xv4cpZRvk1IeLaU8HspOfVVK+VMY9/0apUd3Pf5BealvhtLv3j7BdpwIFV1wNYDrqC1QutfFAG4B8BUAO9ahLX8HNQ3vQulyby5rB5R3/4P6/n0fanHv9W7bX+tzX6M78pFs+7frtt0E4Nwxtuu5UHLKNQCu0v9eMen71qNdE71nAJ4KtRj8NVDG8R3sPbgMyhn79wBa+vs5/flW/fuJ69yur+r7dS2Av4GNhFnX/q/P+cOwUS5jvV916n+NGjVqbBDMmuRSo0aNGjVKUBv0GjVq1NggqA16jRo1amwQ1Aa9Ro0aNTYIaoNeo0aNGhsEtUGvUaNGjQ2C2qDXqFGjxgbB/wNgL5auqlstQAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABltklEQVR4nO29d/wlVX0+/pyZWz59e2MLS1maVFlQUMGGgg39xgIalXxNiN2o0S9+Y4ii38SY/DQmYkFjiY1gi6hIUVAUpSxSFxZZlgW290+/ZWbO74+Z98yZM2fa/dzOeV6vfe3n3jt35szcmWeeed7lMM45NDQ0NDR6H0anB6ChoaGh0RxoQtfQ0NDoE2hC19DQ0OgTaELX0NDQ6BNoQtfQ0NDoExQ6teHFixfztWvXdmrzGhoaGj2Ju+++ex/nfInqs44R+tq1a7Fhw4ZObV5DQ0OjJ8EYeyLuM225aGhoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGho9Ak0oWtoaGj0CTSha2hoaPQJNKFraGiAc47xmXqnh9FSPLBtHPc9dajTw2gpNKFraGjgjscP4PRP3oTdE5VOD6VleOXnf4cLr7yt08NoKTSha2hoYNd4BZbDsX+q1umhtBybdk3gH37yIPpxch9N6BoaGqjbDgDAcpwOj6T1+POv3olv/uEJ7J2qdnooTYcmdA0NDViOq1brdv+pVhl00yoY/Ud//bdHGhoauWGRQrf7X6Hb3k1LWy4aGhp9CVLmpNT7GbSPtiZ0DQ2NfgTZEPWngUKnfe3HcIEmdA2NPsD4bH1OFgIpdFsr9J6GJnQNjR7HnskKTvn4jTj7UzejatkNrYOUebcGRSt1Gwenm5NSSTzu9OHNSxO6hkaP4+C0W+G5c7zScB655Xvo3elDvOVrd+K0T9zU1HX249OIJnQNjR6H6Hs7DdoIdYeyXLqT5O58/EDT16ktFw0Nja6DqDQbFdhE5E+HoChBWy4aGhpdBzHVsFGFTvnn/WhDxEErdA0Nja6DSMKNklSdKkWfToTeh/uqCV1Do8chBjIbTV1sd6Xot/6wFT+9b0fu7zWzuvORXZNNy5zpFmhC19DocYQ89Ab5zq8UbVNQ9Eu/2YIf/nFb7u81qqpVN4IPXHMfLvjcb2O/M1Hpvf7wmtA1NHocIgnLhHfHlv2ZiMnPQ29D2mKlbmPH+CxqVv5tNdqaIO5GsCum//vNm3bj5I/d2JLsmlZCE7qGRo8jLig6PlvHG666He/6zh/T10GVom1Q6E8dmAHnaIjQGw765rwR/H7zfgDouRmONKFraPQ4bEFViwK7UnerRh/eOZm6Dr+XSxsChVv3zwAAag349Y0q9Lzfo8UZa2hzHYMmdA2NHkecQiebwcxwlQceeustlyf2TwNoUKE3arnkfPLg6M0MmEyEzhg7nzH2CGNsM2PsMsXnn2WM3ev9+xNj7FDTR6qhoaGEHUPoZKOYGWQmKfR2tM/dSoTeVoWeb1t0GI0ek+iFtAUYYyaAKwGcB2AbgLsYY9dyzh+iZTjn7xeWfw+A01owVg0NDQXEoKhI6NSoyzTTSanexkrRJ8hyaaNCz2+5uMsbvcXnmRT6mQA2c863cM5rAK4GcGHC8hcD+F4zBqehoZEOUX2KvFX1CDOTQrfz9XI5NFPDTM3KMcoAj+9r3HJpl4fuK/QeY/QshL4SwFPC623eexEwxg4HcASAm2M+v5QxtoExtmHv3r15x6qhoaGASFai/UKWhpmBlGgdWYnv1Ctuwks+e2ueYQJwnxp2HJoNjS8PGs1Dz+uhk0LvLTpvflD0IgA/4JwrmzJzzq/inK/nnK9fsmRJkzetofH0RJyHXq1nJ3RSy3mCotsOzmZeVvyOw4FFw6WGFLq4r5xzXPfAzkxjzu2he/8z4enm95v34doGqlvbiSyEvh3AauH1Ku89FS6Ctls0NNoK0SYR07RJAWcJ7OVV6I1i854pAMC6ZSNztlx+/sBOvPM7f8RVv92S63tZwH0PPTh2b/zqHXjv9+7p6h4wWQj9LgDrGGNHMMZKcEn7WnkhxthxABYA+ENzh6ihoZEEO85ysXJYLv6MRXmzQfKR2//csx0Lhoo4bc0CWA7PHeQUn0AOeH1YyMJJQt6WBiToVffCjTvGc62rnUgldM65BeDdAG4A8DCAazjnGxljVzDGXiUsehGAq3kzu+d0GDvHZ/0AjoZGtyIuD93PcslA6I32cpmsZg+MTlTquPGh3Xjd+tUYKbsJdnl9dHF8pJ6zrCKvqqbjKH5v7aIhAMBtXhVpNyI1bREAOOfXAbhOeu9y6fXHmjes7sBZ/+TGdrd+6uUdHomGRjxClaK8QYXeYB767vEKxgaKmZY9OF2D7XAcu2wUB2dcdV2zHQwUzczbE/ePCD2Lhszbo4YOg+jPj3r7uf3QTK51tRO6UlRDo8chTuws8lYtV9piY3OK7p6oZl52puY+MQyXTZQKRmiMWSHecOg+laW/S16FTpWi4vboiaeLLXRN6BoavY7YLBcre1C0njMPnRDXrVAFylsfLBVQMhsjdHFfKUc8i+WSuy0wj26v4mUNdbOrrAldQ6PHEeeh57NcGqsUzVNcNF31FHrJRNEj9LzbCxF6DsulUQ9dpdC7Ocslk4euoaHRvbBjKkXzFBb5Cj0DWXHFTSMLyHIZKhUatlxsheWSNO2eZTs477O3Yv3hC3Jtx0lQ6F3M51qha2j0OmKzXLz2uWmOC+c8yHLJwFaqm0YWkJofKgUe+qZdk/juHU9mXodKoTscuH/bIexR2D/TNRuP75vG9++Onx1JpfBpO2oPvXsZXSt0DY0eR1weetUj2zSLQPw8S9WlKtc9CZv3TOELt2zGsctHAQBDQlD0Pd+7BwBw8ZmrQ1WZcRCDtkS2Dud41edvw+hAAT9/z/OwxksvzLM/BamBWV2aY5VzHij0LpboWqFraPQQ7nnyID59/abQe3WpUtRxOB7cPi6U80cJaKJSx/n/dis27ZoIqdAswUOR0LN44D+7fwd+dM92/NMv3HEPlQooS03as6ZLhvu9hwl2smLhnH+5BU8dCNIKszxB1BX7XJduhuJ6upjPNaFraHQDbnpoN174r79OJcjXfOH3+MKvHwsFI0UP3XY4vvibx/CK//idPx+mKhXxtkf3YdOuSXz2pj+FtpklX1tcXxaFvnC4FHo9WDRRLISpJ2twVLzhiApdxHahclQe3yVnr8WP3nl26D0V6csWFKlz1fa6CZrQNTS6AB/50QPYsm8aB71y9jTsmwyWkz30e548BCBonqWyXCiQaBosTJK5FXr68uI6ywUDpsH8tMU86wHUE3jI3w3doCSy/t/POQInrBiLXV5+j/aV/HN5DN0GTegaGt2EBBv50ExA4nunggCg7XCfIDkPyEiVekcI5sxkIVWerXNhNNc9CSqLpqRQ6D+/fydOveLGEHkmbTtQz+HlRTUtj880WSQvP4nQ6WmkKir01s8B0jA0oWtodAXSVd9DOyf8v/dOBhWalsNR9IJ6NucBQSlS7/ytCd0ESekyBtRsjvd87x7ctfVA7DicnB56XZFWKRO6ZXP843UP49BMHXsSqk/DAWB3vZQOSZiYrft/y5ZLwWCRNE7VU4nc20Yr9B5HNxcPaPQfiCNYgkSnwhwgTOi2zX2CdARClxX6ZKWOd3z7buydrAYTSLOAlAeLJvZNVfHT+3bg4qtujx2HqJKzeOiqySWilouDsrcPSapfZffICn2iUo8sQygYLDKtnNpDD+flhz302OF1HJrQY9BIr2YNjVZCPCfDCt3xKy8dh6NmU7DQ+9wjp4d2TOAXD+7CPU8e9InRMJhPeqMDBWGd8ayVN8tFta6ywnIpe026ZIKO27YdY7lMzAYB46hCNyLpkT/+4/ZI5lBNe+j9BU3oGu0E9/+PJ4uaLSj0qbDlEih0oO6duzVJZc56xDdbt0Oz2pNPvHL+YOIYZ2s23vXdP2Lr/qCldCaFriD0oiIoSiQ/ldCS11Z46NOy5SIodPGYAeoJsz9/y2Z84dePYdd4BR/6/n2YqVkpCr17CV0XFsWgaserBA2NZoM87SSuIPJcMFQMWy5CULRuO5GeI/T/rEd8MzXbN3YMFvjEqxcO4Y9ehgwAjM/WMW8waI37q0278fP7d2Lz7qlgTBkVesk0QsvKHvobrvoDDs24RDxViSf0cM68o1w+7KFHLZc4/NcftuL7d2/DkUtGUPe+d2C6ikMzNf+YGkxbLj2JrGlUGhrNRFLshrzlZWMDODgTkJYleOif/PnDeGxveFIWIkEKHs7W7FDaIqnRNQuHQt/bKk3uQjeEYiEgxSwK3bIdvxLz6KUj/nZFHBL2Z1pq+CUGYcOFReEnD8K4SOh2NCgah9Xe/t/71EH/qeW2zftx6hU3+Qp9qFTo6kpRrdBjoC0XjU4g6XGezsmxwSKmq2JhEY8oXhEy8c3WbT8rxrVcPIW+IEzoMlGSVy3aJVk99ILBcM/fn4dy0f1uUsOwSUlx24rcc1qvCiHLRU5bTNgufXTfU+OR75FCHyyZ2nLpRWhC12gnfA89gStIoY8NFP35NIFwUFQFIt3AcrH8WYIMFij0wyQPXSZrUqnitrJYLm6vFAMLhIrRpEk3ZA89rt97XM68Kij62TecgrufOJjYL4aCybsmKpEbJO37YLG7CV1bLjHI26dZQ2MuII7IotBHBwqhzA5L8NBViCj0muOvS/TQB0vJ5fhk2ZC6HygavtecBMvhEWVsGCy2C+R0AqHfuHG3fzPLotBpH85ZtwSffPVJieMURVxEodep9a+pC4t6EWIubDd7Zhr9haRTrWY7KJkGBopmKOvCsnmkN4qIiIdetwJCFzz0gmHguOWjWLXAVepyHGnSI0oi8cGimVGhO0rvOk6lT1YsjM/U/UCxaLncufUA/vKbd3nrVR8s8UZE+5lkSRGS0iVpP8sJCn3PRKXjQlATegzEO3Q3P2Jp9AeIvJLOtWrdQalgYKBo+IoRCGe5qBBkubjKd6Zm++l8bqsA9/OCyXD935yDr19yBoCoQj/kBRtn6tTXvJAxKBptTwsEU8jJ2LhjHKdccSO+4/VJlwXVpl2T3vjUx0r02YmIsxB60uxLtK2yaSh/o+mqhTP/8Vf4+E83pm6nldCEHgNReSTNiKKh0QwEHnpyHrpL6CYqlmi5OJFCHRG2w8E59y2XmZotdBN0/IwO8sbjpoejTBSqWB0oGpnTFgtGdHxxCv1PXlrkz+7f4Y8/tD6b0jHV21Yp9KJi+zLkFgIiKFBbLDCo7iP7p1wb6JZNe1O300poQo9BXVAems812oVEy8XyLJeCibrNQ3nmKgUswna4T1iVuu0Tne1wnyDJFiH7RvbHx2dd0iKPe6hUyGQx2AoPHYjPOCGep+CoTOjUGybOQ69LCr1ostinAREz1SD7BwCec/Qi/29KhSyahvKme9BrnCZW23YCfUvoB6driQ2G0hBS6NpD12g1MgZFyXIBAs+Xgo5JnGU53F9+pmb7MSLLDnq/BArdXZHcG50UOt0YBopGNsslxkOPGy+tf/9UDROVeuQJmV7GtfqV+7Un2VEipmsWCoaBH73zbFz33ueFbgwTlTpMg8FkTPkb7Z92C71GyprQW4JXf+E2vO5Lf8g0I7gK2kPXaCfoDEvKoKh5DawGpJ4ntpfnnQRLUOiu5SIodCfw0IHAnqhbag+dCn8GiqZSoe8cn8WJ/3ADHva6Q+ZV6HTt7Ryv4OSP3RgrqJIUOl33ddtJDBiLx2225ir0Z65ZgBMOGwvt28SsS+iMMageSshyGdEKvTV4Yr87DVWWfs0qhKac6uI0JY3+QtagKABUvHO7bnOYhpFo19g2FypFgyyXusP9fG5foZPlIilgCsTSEIdKrvUjBy1/88heTFUtfO13j/vrKShUclKRT2jsMTsW56GL30lT6IMl0/97pmaHgqcyoVOnRpVI3O+lUmqF3gKIBzwpFSkJWqFrdAKJlovt+EFRQLRc1JaGCMtx/OVnQx664xM3KXOyXOSAp0ysg944ZGuG+r+Q7xz3BCFPNBGHAzGzOKkU+rnHLAl9RjZVHMRxzdSscBWsJVoulmu5GDGWi9csLe13aDX6jtCnq5Y/9RYQLV/OCpHQdZaLRqsRpC3GL1P11Ga5EBA65xzTVSv2UZ/UqRgU3T1RxfUbdwEIe+gRy0UidJlAB0vuNmUffXQgTOiW4+SyXGTsGq9E3qvbDiybY1hQ2Fs/9XI89+jFobFX7WRCN4Xsl5maHdvWIFDoTPkbkULPkvXTSvRd6f8z/uGG0OvZhFSkJIg/plboGq2G76GnBEVHBwp+P5RK3cFs3U1BHBsoKr9TNBlqtmutqMSNykM3PCUqBx1jFbq0HAlvUaGrWhNkVeg7FIQ+PluH7XCsWTTse/XiPtCY6imWi/jRTM32jy0QJufx2TrmD5XAmLrQkDx0caq6TqDvFLqMRhV6aOJd7aFrtAlJQfyq5QVFPYVerds+aYptbkWQOrVtrhQ3dUfIchHUatFkIVHDOVcodHd5WaET8U/M1nHtfTuwcceE0kNPS7Uk7Bqfjbw3PltH3XGweKQUep9uHBQXqKUpdBa2XEoxCp0ajMVZLpS22GmF3v+ErhW6Rg8g6OUSv0zNslEumH5Q9FPXb8JOT72mEXrdcTBTs3Dyqnmhz23HtS4MFq7cLEr9y1XjIoX+s/t34Peb9wXr9HZmfLaO937vHszU7Fyl/zJ2KhT6Y3umlN58kHKZLShqhDz0sOWi6tQYZ7nQsqokjId2TMTGAZqNTITOGDufMfYIY2wzY+yymGVezxh7iDG2kTH23eYOs3E0rNCFx0idh67RatBMRUl9g+Sg6P3bxvG5Xz4KABgbjPHQPUIfn63D4cArTz4Mn7voVP9zy+aoK7o1lkxDUqhRoiIP/ZM/fxhv/Ood/vu0D+JMQiq/PEuxDxAl9NULB/G5Xz0Ky8vuEUEVqaTQ63ZyJ0pxXFXLCRUWReYjNd2GYio+CKaqCx+n6x7YiZf9+2/xqV88HDuGZiKV0BljJoArAVwA4AQAFzPGTpCWWQfgIwCewzl/BoC/af5QG0OjCj1kuWiFrtEm2JzjJ/duV2Zn+ZWixSAQSIJFVOjHLR/1/yYyO+gpxHmDRSwZLQfb8ypFZdIrmCxV1IgBydA+KJZtRKFfdsFxOGbZCB7bOxV6/zWnrsTGHROo2W52z60fegF+8b7n+eMGAjJOy3KRx5DUGpgKi1S2mJgmKeJHf9wGAHhk91TkO61AFoV+JoDNnPMtnPMagKsBXCgt81cAruScHwQAzvme5g6zcTSu0Htjlm+N/gBxxG2b9+F9V9+Lf73hkcgycqWo+0X3P5HQX3v6Kv9vshsoC2NssIClAqFbXh667GfLlgsJHHHbwzE51yoB1IhCP2fdEpy6en5oNiMAGPBuJLM1GwWTYc2iIRy/YswftzvewAJJInR5DKosF9rnpCwXspnEyaSBgH/2CVMGthJZCH0lgKeE19u890QcA+AYxthtjLHbGWPnq1bEGLuUMbaBMbZh797mN7FRKYNG89BFha4tl+7Ck/tnsPayn2PjjvFOD6VpoDNs94R74e+ciPrGRE4UFAWCyaLFLBeRwOhv8nDHBopYMjrgf245DuqK5lmu5SJcA97fw6WAxONSJVVxQZXtkVaRbxoMpx++IPI+3aRm61Fvnl5TDnmlbvtev3IbEYUevL74zDUAgn02DQOGoU5jtmy1Qqc2xzvHZ9syaU6zgqIFAOsAPB/AxQC+whibLy/EOb+Kc76ec75+yZIlTdp0APnuCCR3UEuCHOHX6B788uHdAIDvb9jW4ZE0H2SNqAJ5NStc+g8EOdpjgkIXv0t/+4Q+WMSYQMSWzVGXvGPAJWCx9J8EzlA52PZojEJXEZ4yDz3FcokjdOosOV21Ih663ynSU+iVuhN+opGQpNA/eeGJ2PSJ8/2nF1LoSZaL7KGToHQ4sO3gTOw4moUshL4dwGrh9SrvPRHbAFzLOa9zzh8H8Ce4BN9WVBQ5oI1aLqIq14VF3QW6BvvxRrv9kJuiJ9sWjpcvXioYoVa5s3Ubo+VCiDBFhU551ZQnPW+wCMYYPv1nJ2PNwiE/D122XApS2iJdD1kUuiqwq6wUTbFcTINh7aJh//W/vPZk3HbZC/39k4OYgJi26Cl0yw7dAKPbCL8W+74YBsNA0fTXmZTlYsV46JW6jWVjrsX1xIHuIPS7AKxjjB3BGCsBuAjAtdIy/wNXnYMxthiuBbOlecPMBpVCrzSs0HUeereCyKuvnDBvX6jKmQiYIE7UYBgMr18f+ORjUsqiqDKpqpS6AZI18/ozVuOU1fNhe3nocr/womn4qX9A4EmLvUri+paoLMqGFDpjofz1o5aOYOX8wdANS14v3ZgoBlappxC6NAbVk5HYhdKIyXJxYjz0St3xb0q7FemXzUYqoXPOLQDvBnADgIcBXMM538gYu4Ix9ipvsRsA7GeMPQTgFgAf4pzvb9Wg4yAq9HLBwGDRnENhkc5D71bQRL/99OREaYvUA3zfVDiIRo/u5J9/+rWnYMGQS87JhB4odMbC/boLBkPdy0NXpi1aUYW+dCwIqA6VslsuykrRFIUuz0lB5CuuKykPnXPuWi6KoOhLn7EMRy8dwcde9QysWTgUuz5xndRtUcUHfiGT5YSeHKuWjZXe5NsHZlqfi56p9J9zfh2A66T3Lhf+5gA+4P3rGMS7Y6lgoGQazakU7SPi6AdQyXg/Wi4EmdDpPBa7Aw4WTRxEHfOkHPRSISClgNCrGCkXQiRqGgy2zd3mXrJ1UWChMnZ6Yl0qBFTjgo0qy6VRDx0AFg6XcGC65r8WVbRcgSrmoZOfXVaM88tvXu//fcPfnIPjL78eAJStdmmdBcOAaTDlhDd0w3O4yx10E6jUHcwfKmGwaOLAVOsJva8qRUWFTvm6s7XG/BJL4R9qdAeIG/rJCpNJYv90LXQOUj2FSKKUvidXiZbMYBmyXPZN1yLLFU0Gy+HK9rYFw1B66MvnBYQeN+2dSqEr89AzeOgAsMLbpmp+0EiWi5+H7vg3pCTLRfwOEGe5BAo9znIR91n00V3Lx/BvSq1GnxF6WKEPlkzM1uMnfk2CWFSh+by7YPgeev/8MOKelEwDnIfbxlYU5DTkEbrcmEsVFK1ZTmQ502BeUNRBUZHtUbOjHvrysYDQ4yyTzApdeE+0PfzPPQVPHRTpdYjQY4KidZv7864mZbkA4ZuCHGQV1xnkoauzXKjQKpgNyoHlcAwUTZfQ22C59BWhiylDJfLQMwZFN++ZCt0QtOXSPPzk3u24+4nGpwOUYfShhy5i1ULXc6WMFyDecgGiCl0kJVFFy1kppMJdhS4FBwtM+ZSaZc7MzEFR772Lz1yDt5x1OICgU6P4+YfPPw7f/atn4ZTV8yP7JNs+YmGRHHeIA2PMV+Yqr78gKnTPcvnSbx7DX39rg7+M5fBIO2GagEQr9AYhEnLRzB4UnazU8eLP/AYf/sH9/nuhoKiW6HPC+66+F3/2xT80bX1B2mLTVtlxiPEAyooQ+/oH5BRcsgMxhB5S6AXRfglf7qTQVf1OipFeLtz/ThzoOlFN9amajIJuzOIqxZa69ARgGgxnH7XYf1+0lGQ7xS8ssrnyqSYOtF+qrpC+QveyXBzO8alfbMING916CMfh4Dx4YqJYnv+bkULXhJ4PIYVuGv4JmwYqPrp9S5CYE6qS6yfmgFu88u3bn+j0MBoGXfP99OQk7gnZD6GJWmpRhe5bLhEPXST9aMYLoeB56JYd7VroqvdotbRcUSqCPG6VALIU5aM0TMoeAcKB0rjZf8QblpxpI+ahB4SaTnO02VKC5WIaBgzGInxAr+n38BW68ISgCb0BhBR6IZ7Qn9w/g3uePOi/pmVEdWAJfZT7iDcAAO+/5l589H8eDE0M0Eugh6dufnC68/ED+OVDuxv67thAAQuGinhKqCz0LZdiFstFrdDlniaFBIVeKrBwLxc7XaH7E0+r0voSbJiwKg8+j5sAQ9wP6slOEIOis4JCTgNtSWm5kHr3K0XDnxN/DEkeOj0hlD3LZaZmN9yKJCv6asYiUaGXTbcAQ/X4d86/3ALAnbIKCH4Q8WS1HY6yaaBmOX2X5bLH6xfSq/vlp4h18fhf/2XXYqJzLA0iSRgGw+qFQ8qpFEVyGozJchHPY3EGHjmDwzQMV6ErZhQqmobSQy+YDH//ihOUfXSCeUrje52IIMI2DeYTqqjQ424epSQPXZg+L49Cp9GpCJ1SGalSVIbfFsF7WlBZLvO9moGDMzWsmDeYOp5G0VcKvSpluZjCdFGX/fB+vOHLah9XReh1m/snTj892gPB/mSdAqzbQBdQ2u/ytd89jqfaUG7dbJiMYeX8wVDvj6oiKErkLlsuhZigaKRFrkG50rYyW6SuyHIxDYa3PfcIfOb1p0bGTcsrLZdEhQ6cffQiAMD5J64IPo9T6Kao0KVAL1WKOoGHXk4JigJBsLesIP9iSKGHP6tatt+4jH4bSpesWgGhlwQrqJXoL0IXFHrRZCHL5eq7nsIdj6szLSzfchHfc/yLoW8JvUd/fXqkT/pdpqoWrvjZQ/jZ/TvbNaymwTQZRsqFUNsKleUy5Cv0MKmJwqRgGP55LVsutNxU1Yoo3YIZtlwCD71By0XloVNQ1GA4bvmYO8nzukX+53FpkSFCj8tysZ0Qoabhe3/1bHz05cfj/Gcsj3wW6uUijenYj16PL/7mMQBBs7KKr9C9oGzBELJvNKFnhpyHrsoZVVUX0oko/ljUCAlQtwPtBszULLz5P+/A5j35mufTOdWrCt2m4FvCtUGKVkUk3Q6TeZM0CztIBXIDCg89Uvov3KkNI8jckAmd0hsPzdQj6YhkN5LazpLlQoJKpdBVNoyfxSJ66BnOyXBQVCZ0Mcslu+Vy5JIR/OXzjsSikXLkMzp+hRjL5Xt3Pgkg6A9fqbt2z0d+9IC3fdM/bq0+H/uK0MN56KYyKEq9MkQQoZuhoGj3Wy53bDmA3z66Dx//6cZc36MLrjfpPEiLS5tQGUCowVSvgJSgeN7N1m0/c4tw2poFOPOIhVg4FJ4o2TTDBFmKIXSx9exIOXxTmO+tc6LiTi5B11HSdG71hBut6nfwFToLP1GkoaRI3SQw/2bo5EpbTEJQKWpELBfAFVaASOg2fv3IXjzp2X0DRdN/stEKPQfCeejMC4qGD+A+RT+FuiKCb9mO7711a/CNVBXN/J4Vjm9ZNH1IbYHtxAffCGK1Xq/BYAwFSaFTCbmI5xy9GNf89VmKsv0woZOvXE5YTi46WjjsEjql2sUp9LOPCiySJMvFVvRpIIUe7i8TWSwCcQyDimnwCgYLKfSkCS6yQMxDVz2h1P3JP9ztVOpOKFA9UDT836jViQh9Reii+i4XDJiMRchYbnoECJYLU1su3Up8dJHJU3SlgS643s1ycf9PGn5SxkW3g7IpbInQVeQV933V33EeOhCdrGKBR+gHvXJ1ImTZQ//6X5yBf7/4NADBMVcJoOceHZ3QhlYVzmzJR0lDCrKmoqhmKfSC1G0xDqJCF387UaHXWyww+iptcVog9KJpwDSciFrYq5jbL/DQg/csh/tB0W4tLCIVmluh+4TYnfuVBiKXpPFTQEyeub0XYBquQheJcTZlKjURom1hsCAlUiZ00X+OKPQhUujuuRWXh14umP4cpRRElW+iV1/6bDzriIWRcRI3iqvMotBFKBW6N8F1xbL95Ii5oBTy0OOXGxGCoiJxDxQCD10r9ByYrtr+o2LJ9IKi0g1RpdD9k1W4+9ZDhUXdSQr0SNm45dKd+5UGulaShl/1FXr7LZe5XrSmoQqKJk/UIH+fIE6ZJuehiwFAebKKBcNe3rRkuag8brIk/Kci6YdZMlpOVLZhyyUfJak6PhZNA5bjYKpizVmdu2Nyx8eQHLQdFCwXIvQ/e+YqzBsqhtIpW4m+IvSpquUn8JcKBkwjuLhI3Yizb5MCqqmyXGzuXwDd+tguz1+YFU7PWy6eP55A1rUOBkXFvvyNiAGTqYOijZCTwZhfNFOS8rEXjwTB1FgPfSbZQweCG4WYh57U4lZGyCLKmXmlulEUPQ/9D1v24+RV83KtT7kNL32AI3lSjqLJUC4YqNZt/1hces6RAIIboVboOTBTs/xHxSL1cvEuCrpjHhLULE0kq8pysXvAQxcLqfJ4c3avWy7+b5puuXQiKCp2+GzkAjYMdVC0keCeOCGDbLksFhS67KEPFk2UC4av0ClVVEXOtF4xKCoqZ1XDKxFhy2XuuVcDJRMPbh/H5j1TeNFxy+a8Pr//PueJlotpuHMwVOqB5SL2Ugda76H3FaFPV20/mOPnoTvc70sMIDQLC11sZLmId9+6E1gu3ZrlIir0PI1/ej3LhX7LpIuDfudWP+KqIHb4bGT7Ys8QUvhps9fHgbFgHXKvb1LhADAq9UpnjIUaSvkKXdm8yn0vCESHrZA4hU7K1wgFRedO6KetXoBNuyYBAOedMHdCp+Fxnmy5mIab0SJaLmIvdUAr9FyYqlpYOlrGsctGcdzyUV+hixVvoYZDkuVCCt322mE2WinKOcc1G57K3Iu9UYiEnmdbvW65OE66QqfftNWl1ipUQlO35VdkpNCB4Deq206q0lXBNALLRfabxZxy2XIBXMIPslziK0V9D13othiuVs1huTSBkajatFwwsFoxcUZekK3DkWwJ+QrdCiwXMeURaL3A6JssF845pqsW5g0WccP7zwEA/PbRfbCFng5A2N+kHgxilstU1fKVBuWh581y+d3mffjwD+7Hg9vHccWFJza+UykQ8+7zzJ1KhCg+efz+sX0YLRdxUhM8x1ZDVOh/8fU78fxjl2LjjnH87tF9+P1HXgRAVOgO9nuBcFUVYCsQmiilgRsKeeiAu68F0yXUNGJUQayWli0XEar0v7GBoh9wT/LQywrLxcxRLGTMIW1RBUqR/MgFx815XSIczpFk8RcMhoGCO6kOxXfo6SWY61QTeiZULddWGRa8QNNL/RJJXJzvz5ItF8bwt9fchxnvgmzUQ5+quOmTuycq+XckB0IKPQ+he/sj3qje+JU7AGTvDthJOAKh3/LIXtzyyN7IMoGHznH6J38JIP++7Tg0i/M+8xv8+F3PwTHLRjN/T/wt6hmybGRLzzQCVes/TXGeGJCLg9juVZwYIrKcYt0DRQP7p91zOakfupzl4jjhscqNvwgqcswaFD1+xVjs08+S0TIevuL8zHn7afCHlGq5MNdysRz/WNBTlV/63+Ksq74hdJqkYlj4EQ3mXgjVkEKPeuh+UNRg2DVRwaRX7kzR++710APiyNNnWZyhvBfhK/SELB+/UnQOO3njxl2Yrtn49u1P5HrSyqvQ5SdAgzGBAIKnqbwZIO664vPQ00ABPnEcqnuKKigaV9yUhqzL/uJ9z0v8vFlkDgQkzpE8PtNgKHvHjI5XMLVdezz0viF0KioSFbphuHnoFYH4RHKnu6XooVctx785NNrLpV09r8R9yUPoflA058n1oe/fh1se2YMNHz0v83dakcNP468lZrmEM5gaganokPdff9iK+7eN419fd0rs9/JmucjnlzvVmafQnUChp5HdLz9wLvZIT4Wuhx5vudz0/nOwc1z9JFkuGKF8/kJMpWRRSlu0pZtPUv8XIHyONCMo2mz4Aj3FcjENhsGiiUMzNV9sFKQsF90+NyOo7F8skDC96aJCCl3RElTMcqlZtn9z8CtFG7yrNpvLOOc459O34Ad3bwMgK/TsxEXjyrtf3797m7IXThJaIUjo90p6fK02ofTfD0wKF+HlP9noH/84zOZMJ5V3Q+y/Eij09E6ERy8dwdlHLw69xxjzfwO5sAgA1i0bxTnHRMvyATeGJGYLxZEtqU+/26JkD8VxtOBk+OhGQvcVeorlUiDLpe749Q/BbEfeTc9xWlqo2DeErlLo1G2RTrSRciGUu61Kf6taDqYlhd4t6drbD83iyQMz+Pv/eRBAWKFfdesW3PqnqJesgi34sq1Gs3PdHW+GHSDNcgk89EbRaIe88FNg+LsHp2v40+7J0Hvy7yDOjOMrdIc3lAHi5qGnB0VVKBcN/zjainlHCczr6OhbLpJCj6sSVb3fjYQezGGbbrkEWS4OimbwREM36H2TNRz70etxtddyt9noG0KfUlku3sEkxTQ6UFA27RfTrcQp50oN9nKhi7jZdLlpp0sEh80fAODefMa8dLN7nzqEt3ztzkzrof1rR0uDZm/i7E/djB/fsx2AOm3R/039StHGLZeC73s6sGwHn/rFpkzfS1Lor/z87/CSz94aek++6ZlMSFsUbr6NkJ3BgqckVZl8EsoFw3/yS1LogKvSxTz0PAFccfcbyeRpFzjSCovcLJdK3UbdCs/TSvu1b6qKmu00pSWBCn1D6NNV9yIakRQ6AMx4ZD82UAyrJ3p0p5JlzsM91c2oh/7g9nE851M349BMvPVAJ3azyWzTrgkAwGHz3TkJq5bt961uBO0oomy2Qt8leMQ1xQ4QgTbDQydBYDkcN2/agy95M9OkISkoKs4TOlW18MiuyUgswzCEtEWhnL4xQg++00hQtGrZGJ+p4+ZNexLz4IuFQKE7vLGnCSDfjaBdEC2XpJ40ouUiz9NqCoQOwG9R0vSxtmStHcBU1c1MEQskfEL3LJR5g8XELBebh9May8VoP/R/++Wj2H5oNnY6OyC8jmaCqt+IJKuWE5kgOA8atVzylNO3264ikqcbN6WQAsDay36OOxN+Nxli/408fXMqisC7Cm/+zzvw0n+7NeLzFwzmWxb0W1sNZ7lkD07KKBcMOBx4/zX34skDM4nVyEmWSx50o0JfMc99Il61YDBbYVHdRs2zXAh07Pd7Mai5CLEk9A2hT3oXrjiVFp3MM6LlYokeeljFyTnrQXOuYDtxfaFFBMqxuWy2/ZCr7mhfK3Ubw+Xwo1seGyVt2Tu27Fcuk4fc2t0vhnx1+g0mK+EZqq7Z8FTudVoOzxVcFc+h937vXv93E2E7HPc8echfvwjDUAVFG8xDF67w3B66V1i3QzF+GUXTiA2K5kE3Tot4/onL8bVL1uMvnnNE4jy8BYNh8UgZVcvB/dsOJSr0BVqhJ2PCu3BHSqJCd//3LZdYhR74ruK1VSqEVRIgFCMlXOCtUuhUtUckVbWiXpxqir04JJHUdQ/sxBuuuh3/fVeUALua0L3fkoLfMqEnWWUyxIlA5N87y/R3gHsT/oefRKcIFK0g+XwxWUzaYgNkJ35HleWShLLXO0bs+RKHUsGITVtMQ7dnuTDG8MLjlqVOcGEYDK8/YzUWDBXx4PaJUEEVHY+9ZLkMaoWeiKmKhZFyQUqXilouql4udHHJ1ZYDBROMhUmJSHCqEk+cjba1TcOET+ju/9W6gwGpJapqAo84qAidiGrTTtevV+Uoiwo0De1OECJyrEpKnZBndqegTS+P9FVPEuzy8VH5+LVQZlV4eZrgAgjfVBohO8YYnrlmPoBoc640UBB1QQZ7oGQa/tORnfFpQlkp2oWELiLpRlUwGOYNFnHq6vkAwhaX4U2OMVmxYDBEJuVuFvqmsGiyEp25PPDQAztGFFayhy4T+mDJdKexUyh0IlUVWhEU5Zz7Cn3CV+i2r6IIeyarOHLJSKZ1qtQzqf4JhYXlL5Mn573N3WuJKOOekg7lmAxEDEjKCr1uOzANdaaCXBNA1t7vHt0XjFMYn7y8wRRB0QZtDNNg+Mb/PhNPHZhJVJcq0NNflsByscCCbDHOM032rEK3E3pa6T8QZNoVpWNQMA3UvLhXq4K/mY46Y+x8xtgjjLHNjLHLFJ9fwhjbyxi71/v3l80fajImK1YsoU9VbTDmZrmIuPVPezFbCzqjyR0Lh8sFb27H4D3bJ/R4he6TShPTSGa9pvmj5QJqloOqZaNSdyKpaHkUOnGUGPSlMU8JmUEy2mW5WLaD32/el76ggCDLRf0UkU+hBzd8ORMlyXKTj0/d5ti6bxp//p93RMapWr5gsmgvlzmU/o8NFPGMw+bl/i6dW9O1dBsvEhTNlbYYHMtuDIqKoOGpWhnT7zPs2b7FQnhfaN9aFRAFMhA6Y8wEcCWACwCcAOBixtgJikX/m3N+qvfvq00eZyomq/VIT2e6m05XLbdhv/QjfPnWLfj7nzwYr9CLJgwjfMJRAVOSV+0H5ppovZA6X7nATVmcrFioWnYk0JVHgdqCP0s499O3YM9k0M9GPmZAPstlLoT+mZv+hDd+9Q5s2Jo9M0VOW5QxPpvfQ3/qwAwekYqBLNvBnskK7nvqUOR71bodsjcs24mcL6IgkM+TkEJ3ODjncHhjKX1zCTJSUHTKSwn+l9eeHLts0VOfgJstlslyQXSZbgyKiqCnHFUeOfWKJ4UuP6WYPqG3JiAKZFPoZwLYzDnfwjmvAbgawIUtG1EKvnPHEzj7n34V6V0ylajQLX8GFhmb90wFhB6r0ANSIoU3kUGhN9NLJ0JftcDt7zxZcdv8liUPvZrS00W8Oan6oh+cqePae3f4hBNny2TFXEr/H/HSNA+mqOrLX3EC3vvCowEE5Bh3M63bPHMPGzouO8Yr+Pbt4cq+us1x4edvw4VX3hb5XtVyQvUQlsP9OA5BjE2oPHRTCIom9SJPw1we7X2FXrWweKSE161fHbtsqWCE+6Ez4PeXvRC/+uC5ubbZ7QqdOEU1e1TBt1zcz+SYBXnq8+eQapyGLIS+EoCY6rDNe0/GnzHG7meM/YAxpvzlGWOXMsY2MMY27N2brUxdRqXuYMd4JeLjTnpBURF0UUxVLQyWzAj5Ae4jlG+5SGQ45HvowXuHPIWXpNDTSKURjM8QobsKfapioW7ziEJPI1vRKvB72chpc4z5hG7ZHLdv2Y/th2b9kznLfl3/4E5s3jM1p2pUKyORDRRNnHWU28Mky810MmMmUFLbANvhPinLwWU3nTQ4F+s29wPahF3jQSqgPNZQpajD/SeFRvzlRvPBgeDpbLpqpXriKsvlsPmDOCohniPOBEToxsIiEYHlolDokocuX1f0+VxqR1LH16T1/BTAWs75yQBuAvBN1UKc86s45+s55+uXLFE3BEoDeVcVSdVMVKyo5WKELRdVHq7BWGzQp1wwQlkulbrtB7CyBEWb6aEHCt0l9IlK3SteyEfo4r7S+SYXCpkG8/fPdjguuup2vPBff+2TTBbL5e3f/iNe/JnfzCnLhYKJcf20g/GKLVyp6Cp+jFlvtElpneJxlM8FWaHXLBsT0jK7J6rC55LlYgTnru1wv3lXI3bEXPgxsFys1JtJ0TRQt4QAboaxdjd1q0GWiyoFNPDQ3eMm/64FifBbgSyEvh2AqLhXee/54Jzv55zTGfpVAKc3Z3hRUJqebLlMVup+XxMCHfNpX6HnI3TGmHuiep+LAcfEtEVFYG7D1gP46m+3xH4nDUToVPZPr8V9KhWMVLIV+584MQrd4TxQ6E5QlUo3jzxZLnMLipJCpyZp6nUZXnMoIFv8IuuNNinw6ZZ2uxfoxGz4XKhaTuiinahYEYUuBmcjQVHDCKUtBgo907BDmIviHRAUelrKY1GwXLIGRekJIG86ZSdB+6XaP1mhRwjd7A5CvwvAOsbYEYyxEoCLAFwrLsAYWyG8fBWAh5s3xDDoUUe0R9ysDyfioRui5RKn0I3ki79UCII9VHq/ZLScnOWiIJWf3LsDn/vlo4n7lgQi8GVjA6HXRZPhh+84C599wykYKBipZCuqcVvhoQNu3j7ZEuJnBalNahbMxUP3LZeUyQFMg/kZBWlBUSA9zkBIuhlZdqDCZfVdtcKWy/hMHfulsvlDQnBWvgmLCl2sUm1Moc89KOpwpM5nWgoFRbOlWL7rBUfjnc8/Chc/a03DY2w34ibcBgL1PuRlucjCgYLAQ02cfENGKqFzzi0A7wZwA1yivoZzvpExdgVj7FXeYu9ljG1kjN0H4L0ALmnVgAdLnuUiEBf52bLlEgqKxnroLLGXuBjs2bhjHIwBZ6xdkNtDtxwe6sWeFxMVC4wBS0fdeTFJ8ZVMA6cfvhCvOW0Vyl4zpSSIqlPsExLeVt0fu/iZr9DzZLnMgdHp5kPcEKeYTYNFJiquWk6s3ZD1hpTkodftYLpDWX1X6w5GRcvFdvAfN28OLSN+R1UpKgZF6Ri23UMXBFBaHKMk5qFnTLEcKhXw4fOPU16X3Qo/QJ1wgxuJUegkNlpJ6Jm0P+f8OgDXSe9dLvz9EQAfae7Q1FBZLvS3nBtKJ1Wl7sRmubiEHk9QovLYuGMCRywextLRAUxU4vOj5WpFIGjN6856kv8iq1o2SqbhnwykCovCPpUzKPSaNCYgPIEDEJ9SV/IJPUdhURMUOt0H46wS0XKpWW6rW9txc/ZVAdCs45erQ8Of8RSFnnzRjs/GWy6mEZ6Cbi5BUTaHKJlItGmNvURrstFWv70AsiyT9m+orPbQ6fVQqbOWS1eBOiCKJGz7Cia8O+Jj32BJbbkwljx9m9vk3/0hNu+ZwvHLxzBYMiMpjiJU1Yp0UTYaKLVsjpJp+HMlkm8rBmfEKcNi1xPKcqH3wt8ZF/xd8dj4lkvKTUP0uvkcwqKWHbaE4hSzabBQUJSO8VAMqdLvcvWdT+LynzwYv/2koKgTWHzjCoUuWi7/67RoUpj4HTmlUST0Pz550D/XOpXlAqQHpsXS/yyzKyXhg+cdg+/85bMa/n4rQddKku8fp9DpddrNfi7oudJ/P8tFQejyY6F4Mg8WTWXuqMEYKkkeuqDQJysWxgaLGC6ZsDzFrbpJiHYFBYhIDVcVueNZULcdFAuG/4RChFAKKfQMlksGD/2g0MBKzCbKarnYIVsncdFE0OQUdIOIa9trsMByqduOf8NxK/ailbM0/st+9AAAxE4AndRe2LIFhS4FRSuWHUpre9vzjsCP7gnlEYQIfVaqxBR7uXz5N1vw6O4p9/22e+jBuSWXscuIBkUb3ize86J1jX+5xQhSaYMdvPH95+Bhr/cREFgqssVa1Qo9ikFfoYf9aSAa0RcVzWDRVHpXjGUPilbrNgaKhv+DzMSURIvrEwNF8md5ULfdSXoNT43SY35IoRfTFbp43HiMhy4W8ohqnA5nnqeAuWS5iJWsW/dN48x//JVyOddDD3LkiVhIJQ9Lv3vWLB3ZihJh2U7wtFSp+yradjjqNg+R4ZGLg1zsWz/0AgDJCl2sFAXcSVWABitF53CFMxY8+WRS6LZb1drPlkvZu96WjJbxspOW48PnH4tjlo3iwlODp7BYhd4tHno3YUBhuRBpyApdvACGSqZ/AYpII9hSwfQvPlLX9IPM1GzMH4p+R7RVapZ74duCQm8ENSuYAWWwaApZLsEVS9NfJUFU3D5hSoQutpgNH2caS/I+iOubU2GRYLl8+/YnYpcT89BrgkKn32n+UAnTtfhCntjtJ1ou3I8P3PLIHvzHzZvxrbedifWHLwQQ9p/pvDtu+ahvA4k3Vtm+ExU6vQbar9ABV6XXLCc9y0WwvBwnWx56L+KsoxbhE68+Ef/rtJWx6YdpClwrdAEqQrdiAhXiBTBQMpUHMq1/OFkutsO9uQANDJWzK/QHd7jqSp7rMi/qdmDvDBZNP0siFBTNpNAFQo9V6HGEnu2mJFoVqnk/s8LyLZdk/9hgzLcE6rbjWyp0wS0YDmc/1exsWTpJhUW2E8w9++B293H7qlu3+Nsma/CEFWMAgA0ffTF++I6zlRad3PxK7IcOJOc+p2EuHjoQ3JiKqYVF3hOS7fS1QmeM4c3PPjwxl5x+40vOXqv8XHvoAuhCmRUUjh8UZbJCD/4eLJrKk2xCKNCpWg4YC2dmuArFFi5UE0PFQKGrULUcvOyk5di4YwKf+NlDuP5vzhEUevaUPxE0izjgKr7xuKBoip0gfh7MKO++d8nZa7Fvqoqf3b/TX6aiWD7VQxdIfDrHhBsyRIWeZDeYnhVVMJhH6I7/PhDt553ZcvFOhJedtBzXPbAr9Fnd5pH4wO827/OPV7lg4vaPvMgPnC4ecdNNxRvkcMnEdM2OWi5CUFTcj0Ysl7kKZbreslgugNvS4NBMvW8VelY8/k8vi81mG9YKPYAqbdFP6zLjFXqcb0UpenTHLRcMvPWsw3H1pc8GEOSh04U6UDD8x2aamFpGzbKxdHQAZx+1GNsOzuLl//5b3P3EQQD5qixF1O3AcnH7lVNQNNjHLEFR0XIJSv/dP15ywjK/+VfS8qnFSwLT5ZlBCQDue+qQH/y0BA89cS5H77Oi5+MSodN65Hal8hPGA9vGcdoVN0bmzLRtjuVjA/j0a0+JbNOyeSQ+wHlQ8FYuGFg+byCi5ESLjOomVBlTzbJcGkmRFVH2PfT0oCgAvPgztwLo/r7mrUbScVdZv81CzxE6BQXDXrCnyKSDKJ5UqmY6QBCcomBryTTw8QtPxLOPXOS/rlmOkOtupgZFK5aDctHNGZ+qWti4Y8KvFGw0bbEu9G0ZLAaB2pIZ7FeWtMWK4skmSPtkkVx+VTZRkrcsLgfkI/Q7tuzHhVfehq/d9ri7HTvIckniB1KuRZP5veLFccrd7eSb3pdvfQwHZ+r4/WPh2gLLy1AaUpw7luMoA750U1C1HQbCKYmk3lVPeqIap/N6LpkjjSK75RIenFxspRFAK3QJcol70PMjKSiqPoh00ZOvVZYuXspyEQl9uBRvuVAB0UBBnVXTuEIPWy4EsYl+Xg9drhQtmCxyYYo3ALqBJc1kD4Q9dLHnTVqA9F6vtzh1MawLhUVplgvgBrBrthOkjXrnxQJpTsy4pkmyZ247jm/nyKjb6omj93tzRialppI9MebdaFTCQKnQ55Ky0iDKxWwKXS7au+PxAy0bU69DNTlGs9CbhF4MF/aIClOEnIeeBCJ8uYtaQOjkjQbFPaoLkQh1oBiTVZMxICcjrNCD9ZZyZrnQ+AoGi/RDNw0jsv/i+ugGllQSD4Q9dFGhy3x+00O7cePGwJsmIj9s3mBoXLaie9/bzz3K/5s+K5kMdSvw0C95zlqsWzqCN565RlhWVZlpKPfLcrhPrO+TcqNtx1FWwW7dPw0geVZ3ujGPZVToRgcVOlmcqc25pMG9NSYgqDF3GywJPUnogyUzbLnElEaH8tBLybsaKHQFoQuZE65Cj78QxTYEqkf1RhV6TfLQCcXceeju+IZKplApGjzhyBeuSOi07qTsD3d9wRjENgKyRfFX/7UBl37rbv/1Tq9HOPnOtB3Oeaio6EfvPBuvW7/Kf02/85KxATy6Z8of51FLhnHTB87F8nluQ7PXnb7K60gpE3p03DReWvf7zzvGz1gBKCgaPQ4PeBkvRywejnxGKHkkmeShm4osl04EGn2FnlZYJJyH1/z1WXjbc49o6bg01Oi5LBcgqkStGIVuhBR6ttxQWaGWC26gzQ92FUWFriB0i4JiplJRNeyhW2qFLj7qlgtuvrtlx+cNVwXrSM5ycbsWxlsu/lgcjqcOzOCJ/TN47rrFkc9FwhezXNKqRkmhy8RqS43NikJ7WSAgv5c+Yxk+ff0j+OdfbAIQtj02feJ8FE0DNz60G9W6HbpB+ApdGqBlx6ffUb8YGfdvO4R5g0UsHI6fN7JECn3QEwZ1O5Jdpcpy6USgsZyxsEjsdLpmoaI4QwP/9oZTcf+28ZZuoycV+kDRCAf3pL7ZhLBCD4KeKpAvrvLQgUBpDnhNvkyDKS0XPxumaGBQ4dvPxUOnjJaQhy6lLQLJeeIVy51YumCwSB56wVB46IqsGdtx8IJ//XVo0uPQ5wIziTewtKrRHYc879yWvWweOm7FQjhPm372V5x0GABg+yFX6Ys53wNe2mqZspaEY+RPyBzx0MOELgpkSygsEvHE/hkcuWQ48bGabpqk0G2HR85LJaHnUOgvP3lF+kIZ4AdFU/yeM9YuxLnHLMHikZLfEVQjjFefthKXv1I1HXPz0JOEXi6aoX7oRCDyU6F4DvpZLIrCDgA++ZZlD917TdkwAwUTjLmZD6q0xVA2jMpyaTAP3fVzo5ZLuJdLOqG77QtMGEoPnUWCWypP3rK5fxMYn63jC7/eHG4VLBCyOHlIWtEoFTTJPVs4D98YCoYRUoxEeGsWDeGqNwdzq6i6a5aLbkBd3C+xs2FoPwUPXYbYBVFGkt0CuJNOA26JOHF0hNAV5J0nD/3zF5+Gx/7xZZmXj4Ov0FO2bRoM3/zfZ+L3l72o66eR62f0JKEPFs3QJAVBcy6p2yKLKnQ6QY9bPhq6iAKFHrVcgCANiyLUQ2V1x8UgKGqos1waLv13Uj10ej/pplGpu9WuBgsahokzAyVluRBE4nvL1+7Ep69/BHc8vt9/T7Qiala2vi6c89i0SJtLCt1kYY9Z+Pusoxb5f6syTUqm66GLhE7niWyhiB66DMtWpy0CwNpFyYT+nKMXgzHgVacc5le4ylaXSIp0g8tjuTDGmmLR0DmVdfLmOMGk0R705NEflBR6nIcuN+cCAoL+0p+fjne94Gj/cyrnV2W5AO4EE0BgyQyXCpGSbUBQ6AV1lkujhC5aLkMhyyWctuiOIclysX37gYS0r9AVaYsqiIR7n5dquG8q6GoYLv3PZrmIx6VuO6EUR9vhoZtU0TTCWSDC3+IkJypyoeIr8RjR/cDy4g+/eni3F4vgscFA6lmiwkpvmsA4fOUt6/GnT16A1QuH/CeNpCySWoYe3K1C1sIije5AT/5KQyUzFJCMm9ElSPcKsjfoInc4D13wQzEKvSQrdO/1ivkDuPuJgxEfveIHT9W9Y+bSy4XIdpEQcBO9Wtpe0nynlbqNcsGAwYLjRm1q5SyXuHxZ1cQPuyequHnTbuyeqISUrmpSavl9IBxgpr45BM556LgVTKYMispQESBlAokKnZaybAc3b9qDt31zA/75+k0pHroT2h9xPCsXJBP6QNH0f0v6XpKy9RV6J7Ncemjez6czepLQB6QJJsSgngi6GIeKZjBbt+AzixeRf2FFPPTwDEH0CPq+Fx2DneMV/Fjqcx0Kiio99LmX/lManozFIy7R75+O9gAXt08KXeWhlxQWjgxVHvruiQre/q0/4ju3PyF56OrOi3KGkHhjrNthAncVejjLJVRJmUO5UjWtMjbgcOz2JgK/6tYtsLzCIhUsqbBIXC5NoYug3zTpyajegOXSLASVoj1JFU879OSvNFQ0JUWnPuHp9YBgUbz/xccAAFYtGAwROi0r+66BQg+yXADglNXzAIRnbwcQyldXWy6NBUVrtuOrpOVjakJfNOxmF+yfqik/B1yFPlAwYTAWmQmoIKUtDsRUO6pK/3eNV1CzHczW7UwKXY4/iL+nJVR7AoDNw082xUI4bVEOwn3opcfiGYeNQYVSwfQIPWq52A7Hbi91EnCPeSyhO+E8dJGQ4264KpgxQkIE3RQ7koeeMW1RozvQk3noQyXXQ3e8LnzEGXGWi6iULzhpBbZ+6uUAgnzgdUtHgmrDgtpymazU3WAc9Q0R2rWKCPd8yd9/PQ6W7fgX/bIYwlikUOiUUbHayw2u1N2p04yqWqGHg6xxlkuU0Hd4RFiznEweuqjIHYeHCd2bJILAedhDT5qZCnBnkxfjIyJKpoFq3Vb2ebcdjt0TwbGbqdlYNipYLgj+loOiIuFliUPIyyZ9x4oRLO2AHxTVHnpPoCcJnVIMK5aNoVIhVaHHdVqkvOfzTljmqzw51Y1IdKJihRQrtTgVCeupAzP44q8f89fTLMvFdtxWrXTRj8b0Yh4pF1AyDb8RGAA879O3AIB/E6vUbSweKXuWi7uMOK1WKMgao9DlmxgA7PByv2u2E/LYQ5NSCwQoBrVrtoOZqmi5OKHioojlYhoh+yaPG1A03RuZmF9P+1O3HeyaCCbCmKnasSRad7jkoTdGeAUhtvOFNz3T7wUjIuj339Am5gS6HtKac2l0B3qS0MUZg4ZKhXgP3VNucV7wa09fhS37pvGO5x+Fn97n9gCPU+gTs/VIwLRgsJBf/I7v3I2t+2f8barycRtR6EQ4ROhxRSuMMSwaKcVaLn/7/fuwadckjl46AoOJ3Ra9oKgpe+jZFPrYQAF7Pe+5ZvFMeeii5VKzHclyCfvTthQUNQ0WrqrMYUWYBoPl8ND2aYw1y/GrVQF34onEtEVhjAYD/vCRF6bm2sugc7ZoMrzsJHUxEAWIO1r6rxV6T6AnCZ28aXEeRyDqpZJoimvMtXrhEP7j4tMABOpHVqViHvqY1Ia1ZBqhbAyRlAZishYa8dBrPqGnX9AuoauDoj+4exsAN4ApFhb5aZ/CHJJAtGqWIHvow+WCn9ZZk0riawK5OzFB0ZrlhFJA644T2gbn7pPNi45bivef58ZAxJtaHiuiYLBIFg3ZO1XLwa7xChYMFXFwxp0nNG7dh2bqkTTMFfOyB0MJmSyXmErodqCcsTmXRnegJwmdFDo9tttxCj3FchER56GTSp2sWjhiSbhgpGCGFbqYAx2naBpS6NT7XBjb1y85w8+8EbFouByyXESsXTSErftnsGuigmWjA6F+6AZzb4iqQiUZciWnaFPVLDvkoVsxQVGZ0OnmXCoYUYXutSRePFLGiSvnRcaTpzLRNNz1i+qafpP90zXM1GysWzqCgzPjkUpRuoecsmoefrVpT2qTsiwgy0VV1UqgJ4hOJJoElaJaofcCevJXGpKaY6U15xrIQejyhbVkJAhA0jRiBHeGnICwxgai98dffuCcUOOiRjz0ukKhveC4paGZxglJlgv1Bf/im06PKHRad3jSafXpISt08UYj9wkPBUWF98WgpKvQ3ddjA0W/qIdAhUWxk0bksCIKBoPlOMox7qL2vULaoaoH+dued2SEzBuldtVxJ3zuolMBxJ/f7UAQFNUKvRfQk4ROnRMpU8IRLAMRdAGk9UIXl5UV+thgwSf5JUpCDy5l1XaOXjqKFUJWSmOEnt1yWTl/EDvHZ5VtCWqWgxcfvwwnrpznFRa574sFNFny0GUyK4UUupOQhx58Z0by0Ge933LeYAF1ybZxPA89LrUvl+ViupaLmEpPYyT/XEw7VG0yLijdCIp+pWh0QxeeuhKHiWPpYNqitlx6A71tuaQodLoAMlkuMVkujDEsGS1j28FZLB4Nt0Qtmm6Wyz9e97CXWqcma1HlzSUomqVPxjMOmweHA5t2TeC0NQtCn1W9TovumIIMHbfE3SMWYQYkIhkxVlCUbCb6nFCzZA89PW2RFHrRZBgsmW4JvhP+XtWb1k+FPMHCghcUdRQKndoXHDZPrdCZ/17zyG2eF5eJ89DFWEEnml6dtGoeLj3nSJx5xKL0hTU6jp5U6LLlQgpTzv4w8ij0GA9dfE9W6AXTgOU4uOrWLfjKbx+PneFevFazBkWf3D+Dt33jLkxW6r6CzJLffNIq12N+cPt45LOqZfuELhYW1YWiJXEbqrL0ohQIlr9TtbPloYtPEFXPQx8smigYro3l8LDKtxwemj9VRB6CNQ0Dts1jxwi4bR0IqqZU4nt0PPNmtxCOXjrqjStuvOktDlqJcsHE/33Z8Rhp4lOJRuvQk4QeyXJJmBX+xccvw/q1C1PXGZflAgQX0uLRqOUidhMkHziaD59foX/+lkfxq0178LP7d0bSFpNw2LwBLBgq4gEVodcDlWsaDFNVCzXLwWSl7gd0Qz1SFI2jkm54gBvAFdNI65Y6KHpgJvD5a5aD6aqF4XLBfwIQnwJIzccrdOXbShRMV6GLTxHyE8eKkOUSXbn43ly7C65bOgIAoXRJEeLmdVtajTT05G13qBT20OUmSiK++tb1mdbJYoKiQHABR4OiLGQNzNQsvPzkFfjM608JLSeSpGzLxI196ahLKjsPzeL3j7mtabMEphhjWLVgCPsUgVHXcnFvWAZj2LxnCm/66u0YHSj6gVvxKYfGLWbsqHzsUJaL7cAWLKK4Xi6P7Z32/657eeiDJVehy0HLfZPuviwcUs8ClGeORtMLijoxttBg0cS8wWA7SoUuFV9NIr4ZWhrWLXMJneYilWE0mJ6p8fRETyp033KpB5MWZ+3XHAczgdDpiWBY6p5YNI2QupuqWJg/WIyofDOG0G/cuAtH/d/r8NCOicg2aV7Ne546hJ/etwNAcr+P8LiYspqzJjQkoxHdtfUgJit1jA1EJzUO2hwkl7XLQVE6JDQ7EEFU6I/tmcKR3kQQNcvBTM3CcKmAgsl8i4WwZ9JVr3IMoxGQhx6aVUn4TRYOl0LngPjbjXg3PdUsUY3iqCUuocf1zRFV+VzPcY3+R6azkTF2PmPsEcbYZsbYZQnL/RljjDPGssniBlEuGGBMLCxy5vw46ucDKx7rP/v6U/Hnz16D41eMhr9jhKeh2z9d84lYhDg0kTxoguSHd0YJndb720f3Bd/NOB+paiJk6odCBCTmqk/MWqHUSoJKoasITLzR1IXSfzlLhnzx2ZqN7Ydmcbw36XLNdoOiQyW3rays0Pd4VajUfGwuKBgGOI+fVWnRSJjQxfPqs68/FR887xictHKef2yC86UxE324XMDn33gavnbJGcrPQ5ZLBzx0jd5CKqEzxkwAVwK4AMAJAC5mjEUmxmOMjQJ4HwD1RJNNBE0BNyN46HNVL88+chE+9NJjccqq+ZHP1i4exidffVKkWKhUMHBQ6raoyqgRmzpRUFS0Hya9AqH9U1V8/bbHwTlXTm93/HJ1B0EZcn48QN0BA0KmnOuiyVyFPqhS6NFOeyrPuChluZC6lsmfCP2xvVPu/ng3SCosGiqZfjuFkEL3GmbJMYxGQPsi3hzFbS0eKYeesMRg4NKxAbznRetCswFlfWpKwitOPsxvniZDWy4aeZDFQz8TwGbO+RYAYIxdDeBCAA9Jy30CwD8D+FBTRxiD0YGiT4RJHnpWDBTN2A59cSgYDAekqkxVNoA4b2TN6wEiPvL/9P6dWDo2gG/f/gR+/9h+nHPMksjEGdRcKwvKBQMHpsOEToqdyGrXhEvoS0cHMD5bT1ToYi/stKBozXL8SbvlZW94cBdOWDGGf75+E8oFA886cpH/nemahTXlIXDOvaCl0ODLI19xYo9GQeeJ+KQk/v3KU1aEntLmKW50gHtsqohvj9AshNIWNZ9rpCCLvFgJ4Cnh9TbvPR+MsWcCWM05/3nSihhjlzLGNjDGNuzduzf3YEXMHyri0Ewd37njCXzvzqc6ol6KpuFPHk1QzVJE1yR58XK/k7ufOIh3fuePeHSPq1xth2OqamGNp9oOy9Ffm8YlK/SXfvZWAFGSXTxaxlTVSvTQFwwHn6V66ELaorytf795M27YuBu/fXQf3n7uUTh8kbt/VdtT6F7aomU7kWrU0XIhttApD+gmFe7l4v79/GOX4FWnrAyp7jhC9/vnt7hpFa3eYPmCvxpPT8w5y4UxZgD4DIBL0pblnF8F4CoAWL9+/ZwaYcwbLOLQbB1/9+MHAXTmcVRFbsPleNIZKpkYn62jajlKtXXIS+WbrlqYqdmYN1jEbz/8gtyBN7mCFQC2e+1t5XVRrxWVQidVf+rqBbjj8QPgXG0xyIRu2W5vGNXxefKAm82xeuEQyl5euZi2aPN6pH0AEPR6nytUCt1yOI5fMYZv/MWZkeXnD8UodG/f4lIpmwVxGkUNjTRkORu3A1gtvF7lvUcYBXAigF8zxrYCeDaAa1sdGF0wVPIJEOhMBoCqHFrOhAECD50UetWylY2diISnqzamqxaGSiZWLxzC0pgZiuJQKhix+e5EQF980zMBAAc9y0il0B/YfggA8Mw182OblwFhlep2RnS7FKp+k8kKlfgX/XXVLHemo8GSiaKXtijnhsspo42ioCD0uuXEFvakKfRmeOhJIFWuA6IaWZDlbLwLwDrG2BGMsRKAiwBcSx9yzsc554s552s552sB3A7gVZzzDS0ZsQeyXAidKLpQdVQ8TsqEEUEVq9W6E1HQIqZrFqZrljJjJgtU1ZwE8tAvOGkFnrdusV/gMzYY3dZzj14CADhj7UI/rJsWFAXcLpimwZSqkibbnjdY9G+IMzULdZtjuGSiYDLsnqjig9+/D0BAnHFKOS8o0CtW7NZsJ7YwLZbQKc21xQqdNINOWdTIglTG4JxbjLF3A7gBgAnga5zzjYyxKwBs4Jxfm7yG1mCeROiOQvG2GjKRPeOwMaxaEM1WIK4YEjz0pCKhmZqFmaqNoUWNecYlk6FmOaFMmuCzcGk/za05qlDobz/3SLz17MMxVCp4CpGnBkUBYLbmoGAYyparFHMYGyygYBoomQa2H3TtoMFSIXJMS6aBWceOnT0pL/wsFyvsoccJgvmDaqtHVuiNlv6ngZS5rhLVyIJMEpBzfh2A66T3Lo9Z9vlzH1Y6FgyVQiq00bk65wLRcrn5g+cqyVwETZ1Xrcd3DgSAqartKnSFfZMFboWmA9U9TlSUYksC0XL59tueBQ7upoeWqILUW3eKhw4As3V3ph/VTWtcUOgAcNZRi/ATr3Bq2EtbFFE0GWbrcy+xJ6iCog6P75Oiii2IoBtNq+QEEbpW6BpZ0JOVogAwX3oUbqQt7VxBarJcMHDkkpFY0iEfdNAj05qQxXHK6vmR5WeqrkKfi+Uit6AliEpXvCENCvnzz123GM9btyT0Pd9Dz0DoM7V4D53SPInQX3nKYf44B0umItffjN1uI1AFRYF4BRz/Po2vxUFRb/WqvuwaGjJ69iyRPdVOEDopUJVdocKQr9BtP8/6L597BP7fa04MLTdVJQ+9MZuBslzEPjMEMcslrQJUBPGa0nKRPfRavIe+d7Lqtsn14gmnH77A/2y4VIjcBGhczVPoQSBWRN5OhhTonmvpfxq0QtfIgx4m9LC32QnLhYhMNVORCkGWSxAULRgs0t53/3QNDlfntGcal0cy5I+rPqNtE9I6OdJTRloeurtdGwWDKT30vVNVjA0U/fWJnQ2HSmYknZOeIppF6HSTkQVA3hl5aJytnjxZpy1q5EFPdlsEgCVSGXjWPifNBBFWms9Kl+JQMci79if+NQ3IUws/sM1tfduoQqcbzWw92j6gHEvoyYTBcij0mQSFXrd5KHNELBYaKhcwJbU8KDVdoUc9dCCaFvi3LzkmNMG1DOYTrfs6brq+uYIsHz0FnEYW9CyhH7VkBN/4izOwf6rmp7i1GzS7z0gaoUuVolXL8e2QgslQECZuWDxSwgPbx7F4pIwXHLu0oXER+ammoRNL1UNtcVMtl3ilHA2KxnvoAJR9YwBXoU9KE1/TTbNpHrpHjFXp6UW++bz7hesS10O/6aLhMt7/4mPwilNWNGV8MmhYWqFrZEHPEjoAPP/YpfjT7smObZ96nIyWkz10uhSJ0A/O1DDt9WopGCxkYwyXC9g3VcNbzzo8tmFT6rhMslyihC6nLcrfiQMtquy2qLBcxgaLsSSUTOjhHjakkVU3kh+/8+zI8mmg3yxNoadBtELe9+Jk8p8LaDtFHRTVyICeJnQg2/RyrULRD4pmO4xkuXz0fx703ysYRmgfaOaaY5fHFyhlHZeK0EUSFx/j0wmdPPQo8aksl4XDpVibQJ5kuey1+x0smpishhU6BY9VNxJ5ztQsELNcxLlS8z4A0GFsdX64VugaedDzt/1GU/uaAbIssma5DCpa6xa8iZEJFNw9LmOrXBV8y0Ui9He/4GgsEDoWEonH+d0iWELaYlFhuRhMHRQFoi2Gv/Tm03HG2gWYP1TCyVL7YivHfKpZIBYWiTecvIRJWS6t5lk/y0V76BoZ0PMKXdV/vF0gtZruobvLqboFqrJcAGDVAjlUmh1+UFTy0P/63CNDr/P0IwnSFqNjlb/PuXtTiSNJ+Sb8gmOX+vGCD5x3DAwGXHnLYwCCXuXNznKp2Y7X6tg9RnktF1q81RM36ywXjTzoeUJvdR5wEooZ0xbpUlSNtWgaIaL/7l8+C1v2Tc/pUb4Yk+UiK+ZijgwK4i2V5RI3i1FcUDTpJlw0DRwrPJ1Q0VGzgqI0JtvhIdWfW6G3qWkW/WQ6D10jC3qe0DvZIzqwXLJluZiG4c33GaTDmUbYcjn76MU4++jFcxpXkIcuEbpExjT+LGRBxKXqWRKX+WLG3CjSnqrkKe3ittEIzFAguHHLpX0eulboGtnR8x56J1HKWSnKOY/YLkWTNT2HuRhjucj2AJFElpsiEcuAR8anCi0L4gg9XqEn3wBLheB7dpMtF/EpJaTQG7Rc2uah6ywXjQzoeYUOAKetmY+zvOnM2omshUVkunC4WTliqp1pGE2vNgyCosn9SkihZiElIrDDFw7h+28/CyPlAi743G+99agtl7j+I2kFU+L64mY/ahThzJ65KPQ2WS5+RapW6Brp6AtC//E7n9OR7a5aOIiiyXD4wuHM35EzXUQVu3ZRY3nnMkoJeejhbbvL5VHopsFwxuqF2LpvOthekxW6SOiU5dKsqd7icu/zWie+h95qy4XiHNpy0ciAviD0TuG45WN4+IrzUxU28SXn0bx5Ul6/+uC5WDzcnFl5qII1ldC9bWehCtqHIB4QfCuuA2Oc6k310IUbBFXUtsZDb9xy8T30Nlku2kPXyAJN6HNEXrtE9tBJJR+1ZKRpY0rq5aLadhYuk4lF/I5INgZz+4uXC0Zsf5hUD120XFrqoc/dcml92qL7v/bQNbJAnyVtQHDJ84hCT2uK1QjigqIyCr6HnsVyof+jilEkNdp2szx0yghqhUIXb8a589Dp/xYTOo1XK3SNLNCE3gaELBfJbmjFhRpXKSqDfNksZCYTl0ji4kdid8RG8tDFdYTea4GHXgrloedbT7usEOZnuWhC10iHJvQ2YI3XZGv+UEmh0Jv/EwRB0eSWwnnsIkO4KQFhghf/FiekiPfQ04Ki0e+1Pssl5/rb5qG7/2uFrpEFmtDbgA+99Dhc9ebTcdZRiyIeeisu1KKv0JM7EVKlaBYuo94ljsfoceMOLBcztK/PPnKh/3faXKnKIGvTFHpMHnrXNufKXs2roaEJvQ0oFQy85BnLAYQnaQZa8yg9VDTBGDAxm0zofoAzQ54LiXCf0GNsGtFyWSBME3j1pWf5f6ualKnWkfZeI2hWlkvQnKtNhK6DohoZoM+SNkO+/FsRVDMMhpFSAYdma4nLEaFluacQEfqWS8yZQ0q6VDAi8776y6SQc5Zp7hqFeAMNZefkzXLxhqPTFjW6CZrQ24x2tZ4ZGSjg0HQ9cZk8WS5ZFXpRIPR5g+F5X89YuyB1O+I6RDTLcjEMpsylz5+HThZUU4aVsB33fx0U1cgCTehtRhZ7oxkYHShgsprNcskypEvOPgIAsHrBUPi7EnzLxWQRhf6ttz0LGz764tRtqYKizWyPoMruabRSlKu6lTURftqi9tA1MkAXFrUZbVPoGSb+ICWcZUivPX0VXnv6Kv91nKoXPfT50lRzA0VT2RNeRjtyu+s2D9kl+Se4cNFiPtdpixq5oBV6m9GuyzJLB8g8eegy4vilJGS5NENVr5g3MOd1yKD5OUNFRg22z+VoLaMHaYv6UtVIh1bobUa7+rdnmeeUMicaIfRUy6VJQcyfvee52DVRacq6CGRfiDZL/hmLPA89OdV/zqDbhVboGlmgCb1PkYXQVX1ZsiLuxiRmuTQDi0bKWDTSnKZlBCp+EgOhjU5w0WLHxQ9C6zx0jSzQz3FtxhvOWN2W7WSxXMguaOZTQ9EPinbvqUU+/lzSFiEVWrUKtPpW57tr9Ae696rrUxy/YgxbP/Xylm8nS1DUzylv4nabpdC/+KZn4ifvak2f+wFvomuRJEczHC8RQSuEVhM6D21PQyMJ2nLpU2SxXEhdNlP8EZGTrXHde5+HXROzuddzwUkrmjcoCQNFCooG7x29NF/74nbloTtaoWvkQCYZxRg7nzH2CGNsM2PsMsXnb2eMPcAYu5cx9jvG2AnNH6pGHmRR6PO8tMKTVs6b8/buvfw83Hv5ef48q0TsJxw2hhcet2zO628myHIRbZa8hH74Imq4lm0+2UYR3HQ1oWukI/WqZ4yZAK4EcB6AbQDuYoxdyzl/SFjsu5zzL3nLvwrAZwCc34LxamREFg/98EXD+OE7zsKJTSD0+UNuVWiplzx0gSSz5MeL+OBLjsX6tQtx9lGLmzo2Ga2wxTT6F1muujMBbOacb+Gc1wBcDeBCcQHO+YTwchitD/5rpCBr/vbphy9EuZCPzJLQ7LTFViCwXBqnyVLBwHkntP7Jw9EeukYOZPHQVwJ4Sni9DcCz5IUYY+8C8AEAJQAvbMro+hgGa60veuzy0ZatOwnFJqcttgJlISj6g7ef1fS0yGYirV2xhoaIpgVFOedXAriSMfZGAB8F8FZ5GcbYpQAuBYA1a9Y0a9M9iY0fb60jlddCaBZ6QaHT2EyDYf3ahSlLdxZ+0FV76BoZkIXQtwMQk6dXee/F4WoAX1R9wDm/CsBVALB+/fqntS2T1hO8V/GSE5ZjtmbnTgNsJ+gpohdUb5CH3tlxaPQGssiouwCsY4wdwRgrAbgIwLXiAoyxdcLLlwN4tHlD1GgUN73/HPzdy45v6zaPXjqCD77k2K7OyqCUyl5IBQzy0Lt/rBqdRyqhc84tAO8GcAOAhwFcwznfyBi7wstoAYB3M8Y2MsbuheujR+wWjfZj3bJRXPKctZ0eRteh6PeB7/BAMsBPW+zwODR6A5meiznn1wG4TnrvcuHv9zV5XBpNQt6JG54OIMulbre4s1YToEv/NfKgeyNXGk1Bqycx7kUQodfs7g/j2C2o5tXoX3Rv5Eqjabjk7LW44MTlnR5G14CyXLRC1+g3aEJ/GuBjr3pGp4fQVaAq1rrVC4TuBUX1s7RGBujTRONpBwqK1npAoevmXBp5oAld42mHYg9ZLro5l0YeaMtFo2Gcd8IyHNaCOT9bDT8oanV/UFQ359LIA03oGg3jK29Z3+khNIRyDyn015y2Ej9/YCdOXT2/00PR6AFoQtd42kE1BV234sUnLGvLDFca/QFN6BpPO7zouKV4x/OPwl8978hOD0VDo6nQhK7xtEPBNPB/zj+u08PQ0Gg6dJaLhoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn0ATuoaGhkafQBO6hoaGRp9AE7qGhoZGn4BRv+W2b5ixvQCeaPDriwHsa+JwmoluHZseVz7oceVHt46t38Z1OOd8ieqDjhH6XMAY28A578rOUN06Nj2ufNDjyo9uHdvTaVzactHQ0NDoE2hC19DQ0OgT9CqhX9XpASSgW8emx5UPelz50a1je9qMqyc9dA0NDQ2NKHpVoWtoaGhoSNCErqGhodEn6DlCZ4ydzxh7hDG2mTF2WYfHspUx9gBj7F7G2AbvvYWMsZsYY496/y9owzi+xhjbwxh7UHhPOQ7m4t+943c/Y+yZHRjbxxhj273jdi9j7GXCZx/xxvYIY+ylLRzXasbYLYyxhxhjGxlj7/Pe7+hxSxhXR48ZY2yAMXYnY+w+b1wf994/gjF2h7f9/2aMlbz3y97rzd7na9s8rm8wxh4Xjtep3vvtPv9Nxtg9jLGfea9be7w45z3zD4AJ4DEARwIoAbgPwAkdHM9WAIul9z4N4DLv78sA/HMbxnEOgGcCeDBtHABeBuAXcCeSfzaAOzowto8B+FvFsid4v2kZwBHeb222aFwrADzT+3sUwJ+87Xf0uCWMq6PHzNvvEe/vIoA7vONwDYCLvPe/BOAd3t/vBPAl7++LAPx3i45X3Li+AeC1iuXbff5/AMB3AfzMe93S49VrCv1MAJs551s45zUAVwO4sMNjknEhgG96f38TwKtbvUHO+a0ADmQcx4UA/ou7uB3AfMbYijaPLQ4XAriac17lnD8OYDPc37wV49rJOf+j9/ckgIcBrESHj1vCuOLQlmPm7feU97Lo/eMAXgjgB9778vGi4/gDAC9ijDV9Vu6EccWhbec/Y2wVgJcD+Kr3mqHFx6vXCH0lgKeE19uQfLK3GhzAjYyxuxljl3rvLeOc7/T+3gVgWWeGFjuObjmG7/Yeeb8m2FIdGZv3eHsaXHXXNcdNGhfQ4WPm2Qf3AtgD4Ca4TwOHOOeWYtv+uLzPxwEsase4OOd0vP6fd7w+yxgry+NSjLnZ+DcAHwbgeK8XocXHq9cIvdvwXM75MwFcAOBdjLFzxA+5+/zU8bzQbhmHgC8COArAqQB2Avj/OjUQxtgIgB8C+BvO+YT4WSePm2JcHT9mnHObc34qgFVwnwK6YqZteVyMsRMBfATu+M4AsBDA/2nnmBhjrwCwh3N+dzu322uEvh3AauH1Ku+9joBzvt37fw+AH8M9yXfTI5z3/54ODS9uHB0/hpzz3d5F6AD4CgKLoK1jY4wV4ZLmdzjnP/Le7vhxU42rW46ZN5ZDAG4BcBZcy6Kg2LY/Lu/zeQD2t2lc53vWFeecVwF8He0/Xs8B8CrG2Fa41vALAXwOLT5evUbodwFY50WKS3CDB9d2YiCMsWHG2Cj9DeAlAB70xvNWb7G3AvhJJ8aXMI5rAbzFi/Y/G8C4YDG0BZJn+Rq4x43GdpEX8T8CwDoAd7ZoDAzAfwJ4mHP+GeGjjh63uHF1+pgxxpYwxuZ7fw8COA+uv38LgNd6i8nHi47jawHc7D3xtGNcm4SbMoPrU4vHq+W/I+f8I5zzVZzztXB56mbO+ZvQ6uPVzIhuO/7BjVL/Ca5/93cdHMeRcLML7gOwkcYC1/f6FYBHAfwSwMI2jOV7cB/D63B9ubfFjQNudP9K7/g9AGB9B8b2LW/b93sn8gph+b/zxvYIgAtaOK7nwrVT7gdwr/fvZZ0+bgnj6ugxA3AygHu87T8I4HLhOrgTbjD2+wDK3vsD3uvN3udHtnlcN3vH60EA30aQCdPW89/b5vMRZLm09Hjp0n8NDQ2NPkGvWS4aGhoaGjHQhK6hoaHRJ9CErqGhodEn0ISuoaGh0SfQhK6hoaHRJ9CErqGhodEn0ISuoaGh0Sf4/wG2WSuQME7B4wAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Simulator/Simulator Tutorial.html b/notebooks/Simulator/Simulator Tutorial.html new file mode 100644 index 000000000..f24433c3a --- /dev/null +++ b/notebooks/Simulator/Simulator Tutorial.html @@ -0,0 +1,674 @@ + + + + + + + + Contents — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the basics of initializing and using the functionalities of simulator class. Various ways of simulating light curves that include ‘power law distribution’, ‘user-defined responses’, ‘pre’defined responses’ and ‘impulse responses’ are covered. The notebook also illustrates channel creation and ways to store and retrieve simulator objects.

+
+
+

Setup

+

Import some useful libraries.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import relevant stingray libraries.

+
+
[2]:
+
+
+
from stingray import Lightcurve, Crossspectrum, sampledata, Powerspectrum
+from stingray.simulator import simulator, models
+from stingray.fourier import poisson_level
+
+
+
+
+

Creating a Simulator Object

+

Stingray has a simulator class which can be used to instantiate a simulator object and subsequently, perform simulations. Arguments can be passed in Simulator class to set the properties of simulated light curve.

+

In this case, we instantiate a simulator object specifying the number of data points in the output light curve, the expected mean and binning interval.

+
+
[3]:
+
+
+
sim = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=False)
+sim_pois = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=True)
+
+
+
+

We also import some sample data for later use.

+
+
[4]:
+
+
+
sample = sampledata.sample_data().counts
+
+
+
+
+
+

Light Curve Simulation

+

There are multiple way to simulate a light curve:

+
    +
  1. Using power-law spectrum

  2. +
  3. Using user-defined model

  4. +
  5. Using pre-defined models (lorenzian etc)

  6. +
  7. Using impulse response

  8. +
+
+
+
+

(i) Using power-law spectrum

+

By passing a beta value as a function argument, the shape of power-law spectrum can be defined. Passing beta as 1 gives a flicker-noise distribution.

+
+
[5]:
+
+
+
lc = sim.simulate(1)
+plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)
+
+
+
+
+
[5]:
+
+
+
+
+<ErrorbarContainer object of 3 artists>
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_16_1.png +
+
+

When simulating Poisson-distributed light curves, a smooth_counts attribute is added to the light curve, containing the original smooth light curve, for debugging purposes.

+
+
[6]:
+
+
+
lc_pois = sim_pois.simulate(1)
+plt.plot(lc_pois.time, lc_pois.counts)
+plt.plot(lc_pois.time, lc_pois.smooth_counts)
+
+
+
+
+
[6]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd1d29c10>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_18_1.png +
+
+

Passing beta as 2, gives random-walk distribution.

+
+
[7]:
+
+
+
lc = sim.simulate(2)
+
+plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)
+
+
+
+
+
[7]:
+
+
+
+
+<ErrorbarContainer object of 3 artists>
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_20_1.png +
+
+
+
[8]:
+
+
+
lc_pois = sim_pois.simulate(2)
+plt.plot(lc_pois.time, lc_pois.counts)
+plt.plot(lc_pois.time, lc_pois.smooth_counts)
+
+
+
+
+
[8]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd3f9b9a0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_21_1.png +
+
+

These light curves can be used for standard power spectral analysis with other Stingray classes.

+
+
[9]:
+
+
+
pds = Powerspectrum.from_lightcurve(lc_pois, norm="leahy")
+pds = pds.rebin_log(0.005)
+poisson = poisson_level(meanrate=lc_pois.meanrate, norm="leahy")
+plt.loglog(pds.freq, pds.power)
+plt.axhline(poisson)
+
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.lines.Line2D at 0x7fccd359b610>
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_23_1.png +
+
+
+
+

(ii) Using user-defined model

+

Light curve can also be simulated using a user-defined spectrum.

+
+
[10]:
+
+
+
w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]
+spectrum = np.power((1/w),2/2)
+plt.plot(spectrum)
+
+
+
+
+
[10]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd5485b80>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_26_1.png +
+
+
+
[11]:
+
+
+
lc = sim.simulate(spectrum)
+plt.plot(lc.counts)
+
+
+
+
+
[11]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd6506550>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_27_1.png +
+
+
+
+

(iii) Using pre-defined models

+

One of the pre-defined spectrum models can also be used to simulate a light curve. In this case, model name and model parameters (as list iterable) need to be passed as function arguments.

+

To read more about the models and what the different parameters mean, see models notebook.

+
+
[12]:
+
+
+
lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[12]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccb6d9b4f0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_30_1.png +
+
+
+
[13]:
+
+
+
lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])
+plt.plot(lc.counts[1:400])
+
+
+
+
+
[13]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccb6dfddc0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_31_1.png +
+
+
+
+

(iv) Using impulse response

+

Before simulating a light curve through this approach, an appropriate impulse response needs to be constructed. There are two helper functions available for that purpose.

+

simple_ir() allows to define an impulse response of constant height. It takes in starting time, width and intensity as arguments, all of whom are set by default.

+
+
[14]:
+
+
+
s_ir = sim.simple_ir(10, 5, 0.1)
+plt.plot(s_ir)
+
+
+
+
+
[14]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd66015e0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_35_1.png +
+
+

A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default.

+
+
[15]:
+
+
+
r_ir = sim.relativistic_ir()
+r_ir = sim.relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)
+plt.plot(r_ir)
+
+
+
+
+
[15]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccd65955e0>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_37_1.png +
+
+

Now, that the impulse response is ready, simulate() method can be called to produce a light curve.

+
+
[16]:
+
+
+
lc_new = sim.simulate(sample, r_ir)
+
+
+
+

Since, the new light curve is produced by the convolution of original light curve and impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter full.

+
+
[17]:
+
+
+
lc_new = sim.simulate(sample, r_ir, 'full')
+
+
+
+

Finally, some times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to filtered.

+
+
[18]:
+
+
+
lc_new = sim.simulate(sample, r_ir, 'filtered')
+
+
+
+

To learn more about what the lags look like in practice, head to the lag analysis notebook.

+
+

Channel Simulation

+

Here, we demonstrate simulator’s functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where you can create a new channel for each energy range and simulate.

+

In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, there is an option to simulate light curves and add them to corresponding energy channels.

+
+
[19]:
+
+
+
sim.simulate_channel('3.5-4.5', 2)
+sim.count_channels()
+
+
+
+
+
[19]:
+
+
+
+
+1
+
+
+

Above command assigns a light curve of random-walk distribution to energy channel of range 3.5-4.5. Notice, that simulate_channel() has the same parameters as simulate() with the exception of first parameter that describes the energy range of channel.

+

To get a light curve belonging to a specific channel, get_channel() is used.

+
+
[20]:
+
+
+
lc = sim.get_channel('3.5-4.5')
+plt.plot(lc.counts)
+
+
+
+
+
[20]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x7fccb763d340>]
+
+
+
+
+
+
+../../_images/notebooks_Simulator_Simulator_Tutorial_49_1.png +
+
+

A specific energy channel can also be deleted.

+
+
[21]:
+
+
+
sim.delete_channel('3.5-4.5')
+sim.count_channels()
+
+
+
+
+
[21]:
+
+
+
+
+0
+
+
+

Alternatively, if there are multiple channels that need to be added or deleted, this can be done by a single command.

+
+
[22]:
+
+
+
sim.simulate_channel('3.5-4.5', 1)
+sim.simulate_channel('4.5-5.5', 'smoothbknpo', [.6, 0.9, .2, 4])
+
+
+
+
+
[23]:
+
+
+
sim.count_channels()
+
+
+
+
+
[23]:
+
+
+
+
+2
+
+
+
+
[24]:
+
+
+
sim.get_channels(['3.5-4.5', '4.5-5.5'])
+sim.delete_channels(['3.5-4.5', '4.5-5.5'])
+
+
+
+
+
[25]:
+
+
+
sim.count_channels()
+
+
+
+
+
[25]:
+
+
+
+
+0
+
+
+
+
+

Reading/Writing

+

Simulator object can be saved or retrieved at any time using pickle.

+
+
[26]:
+
+
+
sim.write('data.pickle')
+
+
+
+
+
[27]:
+
+
+
sim.read('data.pickle')
+
+
+
+
+
[27]:
+
+
+
+
+<stingray.simulator.simulator.Simulator at 0x7fccd6629640>
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Simulator/Simulator Tutorial.ipynb b/notebooks/Simulator/Simulator Tutorial.ipynb new file mode 100644 index 000000000..00fa37407 --- /dev/null +++ b/notebooks/Simulator/Simulator Tutorial.ipynb @@ -0,0 +1,886 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of initializing and using the functionalities of simulator class. Various ways of simulating light curves that include 'power law distribution', 'user-defined responses', 'pre'defined responses' and 'impulse responses' are covered. The notebook also illustrates channel creation and ways to store and retrieve simulator objects." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import Lightcurve, Crossspectrum, sampledata, Powerspectrum\n", + "from stingray.simulator import simulator, models\n", + "from stingray.fourier import poisson_level" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating a Simulator Object" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Stingray has a simulator class which can be used to instantiate a simulator object and subsequently, perform simulations. Arguments can be passed in Simulator class to set the properties of simulated light curve. \n", + "\n", + "In this case, we instantiate a simulator object specifying the number of data points in the output light curve, the expected mean and binning interval." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "sim = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=False)\n", + "sim_pois = simulator.Simulator(N=10000, mean=5, rms=0.4, dt=0.125, red_noise=8, poisson=True)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We also import some sample data for later use." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "sample = sampledata.sample_data().counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Light Curve Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are multiple way to simulate a light curve:\n", + "\n", + "1. Using `power-law` spectrum\n", + "2. Using user-defined model\n", + "3. Using pre-defined models (`lorenzian` etc)\n", + "4. Using `impulse response`" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (i) Using power-law spectrum" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By passing a `beta` value as a function argument, the shape of power-law spectrum can be defined. Passing `beta` as 1 gives a flicker-noise distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5sElEQVR4nO2dd5gV1fnHv+82ll6XDi5dEBBwxQJKFRCMJb+YaIyxhsQSNSYaQKNGTULUqDFqDFGsaIyKDRBFSrAAsjTpvcPCgjRZYFn2/P64M7t3706fc2fO3Pt+noeHvXPnnnln5sw757znLSSEAMMwDBNdMsIWgGEYhvEHK3KGYZiIw4qcYRgm4rAiZxiGiTisyBmGYSJOVhgHbdKkicjPzw/j0AzDMJFl0aJF+4QQeYnbQ1Hk+fn5KCwsDOPQDMMwkYWIthptd2xaIaKJRLSXiFbEbXuciNYQ0bdE9D4RNZAgK8MwDOMCNzbyVwCMSNg2A0B3IURPAOsAjJUkF8MwDOMQx4pcCDEXwHcJ2z4TQpRpH+cDaC1RNoZhGMYBMr1WbgTwidmXRDSaiAqJqLC4uFjiYRmGYdIbKYqciO4DUAZgktk+QogJQogCIURBXl61RVeGYRjGI769VojoegCXABgiOAMXwzBM4PhS5EQ0AsC9AAYIIUrkiMQwDMO4wY374VsA5gHoQkQ7iOgmAM8CqAtgBhEtJaIXkiQnwzAeOXqiDNNXFIUtBpNEHI/IhRBXG2x+SaIsDMMkgbGTl+OjZbsw/a4LcHrzemGLwyQBzrXCMCnO9gMxq+fRE6dCloRJFqzIGYZhIg4rcoZhmIjDipxhGCbisCJnGIaJOKzIGSZirNx1CBx7x8TDipxhIsRnK4sw6pkvMXnxzrBFYRSCFTnDRIgNxd8DANbtPeL4Nzx4T31YkTNMhNCVMoHCFYRRClbkDBNByIceP3TsJPZ9f0KeMEzosCJnmDSj98OfoeDRzys+L91+EPljpuKlLzeHKBXjB1bkDBNB/BhWyhNs5pc/9xUA4JEpq3y0yoQJK3KGiRDsdsgYwYqcYSJExWKniyG5H3s6Ew1YkTNMBHHjtcKD+NSHFTnDRAhdJz87ewNmrdkTqiyMOrAiZ5iIUF4uMGvN3orPN75SGKI0jEqwImeYiDBpwVYs3X4wbDECQwiB+z9YjtW7D4ctivKwImeYiLDj4LGwRQiUosPH8cb8bbj+5W/CFkV5WJGHyN3/XYr8MVNDO/7Og8ew5/Dx0I7PuCPdwvIzNXebPYdPoDzR+Z2pguPiy4x8wspgd/JUOTrd90nF5y3jR4UiB+OOdHMjzMyoPOHjZadQK6dSXZ08VY6l2w/i7PxGYYimHI5H5EQ0kYj2EtGKuG2NiGgGEa3X/m+YHDHlsPPgMZz1yAxs2Xc0bFFCpYSL8KYM97yzzHHelMQXgerBRfGKPJHHpq/BlS/Mw7UvLQhQInVxY1p5BcCIhG1jAMwUQnQCMFP7rCwfLNmJ/UdL8Xbh9rBFYRgpvLNoB/4ybY3lPvoC6R8+WIEXv9hUsX3xtgNKK3OymIKs2xNL5/vF+n2G37/y1Wac8cD0pMilIo4VuRBiLoDvEjZfBuBV7e9XAVwuRywmWZSXC7w6b0vYYjAeMFNrTk0uK3cdxqNTV1d8/r9/zsOHS3f5FywE7M75oY9X4Whp+sw8/S52NhNC7Nb+LgLQzGxHIhpNRIVEVFhcXOzzsIxXpq8swpMz1oUtBuOBZNjIN+z9Xn6jAZBmywW2SPNaEbE5muk8TQgxQQhRIIQoyMvLk3VYxiXfnygLWwTGIyVpNMIEgG93HDT9zsrsko74VeR7iKgFAGj/77XZn2EYj7z81ZawRQiUjRGdLYSBX0X+EYDrtL+vA/Chz/aSysZi7hg8jmHiEeaTaCZCuHE/fAvAPABdiGgHEd0EYDyAi4hoPYCh2mdl0f22i4/E3LXyx0zFmPe+DVOkwOHHNvVQ2PHEF2w+cY4br5WrhRAthBDZQojWQoiXhBD7hRBDhBCdhBBDhRCJXi3K85+F4bgiquz2xUSL9xbvQGlZedhiSMerHj9+Mr3WEgAO0Q+Ndwp3hHJcHuOkJkeOn/T0O5XHE/F9NVFOq37c/6+zkyGO0qSlIldBmX210TiQgWGY6rh53ziNdE0l0lKRB8m6PUewM82y1jEMEyysyJPMsKfmot/4WdW2qzilXbT1AKZ8G81Iv6jyhw9WYNz7y0M7voLdsJI4I3nimtLMNezpHA8r8pD4aJl6CvP//vk1bn9zSdhipBWvz9+KNxdsC1sM5Sl49HMMfmJO2GIoS1oq8nT2amKXLiaKnCgrxyaPWUsnfrkZI56eK1kitUhLRR4V3lywDX/8eGXgx12y7QDue385u0imASrf4j98sMJ+Jwc8PGUV1hQdkdKWqqSlIg+i8w56Yo7v6j/j3l/uOyy77FQ5fvzCPHy1wbmXzE8mzMekBdtwIgV9k4Ok7FQ5np+zAcfSLEeKE7btL8GyNKo/mmwipciPHD+JW95Y5Nu96OuN+yVJZM5mF9NAu5Hvd0dLPcux7/tSfLPlO9z936U4VS6cjfAVHqUFQeGW71BS6j+52PtLduKx6Wvx9Exn2SY37D2CAz7utReKDoXjUXXh47Nx2XNfhXLsVCRSivydwh34ZEURnp21wVc7J0+FN9I8fPwkPlhStcSb3Qzh/SX+S8LtOXwCCzbtx5Hj9gqqVLs+6WhOLzp0HD96YR7uedd/6obtB2JK0umIfOiTc3HRU3JtuXa1LlclVKi/9NkvpR6fCYZIKXJZ7D0SXsDAve98i7veXhrKsd3Wr023Yr8AcFQbia/eddh0n5+9uABTv91t+r3OMzPXAwAyXLwRvc42E29taVk58sdMxchnvrD83dGEsn/f7jjk6fiqcrCkcoZTUlqGWWv2hChN8khLRQ5Y5zpOJrsNqtarYMk4VFI9xDsdR+RO1k++3LAPt7252HGbbhS5V95fvLNKnz6q5Z23W+RTKVjt0LGTmC3ZP3zok5UznDHvLceNrxTaFtM4cLQUp9yOekImbRX5jFWp+WZOxKkOGTM5vbJA2iJR91rUEDbksIe8KX+athqXPltpc5b17jhwtBRrA/L4uHXSItzwykKpIfbxbW3ZH1u3OmpRXOXoiTL0fmQGHg7BW8wPkVLkMgc2ekpbI1btOowPl/q3SxtiMOQLys3vz9NWm37nZ0GVsSbDpSZ/QJLbnVduemUhXp+/FQBw6XNfYnhAPtibimOKNkxvKV3JT1tRFJoMXoiUIteRofisppQjn/kCd/5nqe9jOGWFhT0WkKfoExe2dE6UnTI076jsY5w8rE+62MP6yh4Dc5oVh455y2Qoi5lr9lb4cG//LjjTi/66CzN+IapdPlKKXL/Ra/ccwSat2s/mfUfR5f5PsHW/t6gvFbj8ua9Czdi2YmdqLXAlk9fnbXH9m9UmL1AzZCiTKC5U61HHdnr8+Tn+vNasuOL5mHnKyws7TCKlyHXmb/oOg//2PwDA5MU7cKKsHB8utc5donqUYqKL2qNTVvlqTwiBmav3+Fq0OXTsJPLHTMXHCuaFCQsvKQ6yMtw9Zn66qp27YSrw2PS1SWu7baNaSWs7mURSkcfjtNPvOuRueuuV8nKBMg9+6onn8eKXm33JMW15EW56tRAT5m5ytL+RXVIPakqUZd2eIymvMDYVH8UZD0yvtj3T7colgCt6t3K1v58re8Fjs9HjoU/x+vwtPloJh3T0kpJFpBR5FBI+3fX2UnS875OwxUCRZpd95estjvZ3Gi69evdhDHtqLv7hMyhLVU6eqlSjRw0CeTzocWRluvuR2eyxT9sGtr/97mgpjhwvwxOfOYsmVZFkTZ7d+si7XdsIk0gpcj8E9QqwTU/r4GWkSm4Oo0W33VpI95LtB4IWJxDsTFFOBxPxgShOfvHfQvvasT1bN7Dd51iE61Xql1a4nJNYuRO6Jf4lsnV/ibR2k40URU5EvyGilUS0gojeIqJcGe0msqbI3aKRSrhRzkdOhOu1oPOL1wqrbdMX0ZyOmspOlePZWeuVeTn5xUlwz7HSU1UCcZy4H85cXRnXsPew8ULbspCC2Mz4Yn0x8sdMleZo4LZv6Ux0aYZcuMVZjXgvs6+w8K3IiagVgDsAFAghugPIBHCV33aNeOsb7xXvw7bK3Pue84CbICIB4ylxo2Rdivbfwh144rN1+Mes9e5+mATeXLAN8zdZJ0wrt9EimQ6emOte/gZXTZhf8dnskp0oq7zu8Yddu8c4AGfJtoP2B08SRuYePRZj0VY5s7PKEbk5urdaPKdcav5Hp5rHUxjJEwVkmVayANQkoiwAtQAE7uaQjGsuM1x4pY2LX/x0MlGRJ3tt4NqXvrH83s/Rj2tTfVcviyQx7v3luGrCfGwq/h7bTKbNdm57T86wtz1/szlhxGdy/87980zbtnTe+ibcKkLTllcPkFkqOQ2tEz/yfd9XD1xLnqtldDS5b0UuhNgJ4AkA2wDsBnBICPGZ33a98NSMdcgfM9XQzunlZt/wykJ5ORccHP6DJTuRP2ZqhfJTkcOa3TxqPitD/zan4u/Bf/sfLnx8tqd2jp9075FkdusPGOS3MWPs5PDqegLA/qPVzT26V5PfccaWfUcxc/UeR9HFMsc0K3cdsnxppNWInIgaArgMQDsALQHUJqKfGew3mogKiaiwuLjY72EBVA9k0QMFXvpyEzbslZMfQta9tGuHQBXZ8nYnuEp6CU6Q6TcfP/LSI14j1McBAP075flu45Pl9hkPjYiSQjBD5imUJri6DnxiDm56tRCHtRTLQQwSZqzag1HPfIn3LFJ1eKGktAzrTUxjyUSGaWUogM1CiGIhxEkAkwGcn7iTEGKCEKJACFGQl+f/oQKAS/5RNXeyrrv+PG1Nte+8PkyyOpWdeaTqSn3Vo77wv42SpJCP3SKmKiN3O9u4jpXHxC2TrDMeCmFcuMPJmocq18kUiW+jR2yC3azGIDsOyPEk2ajZ2hOVbvxpejnj0a8twkVPzQ08e6IMRb4NwLlEVIti2moIAGerCRKIf/DiL13iFFj1QdE7hTs8F5fdVPw98sdMxacrizBz9R7c8dYSydIZ8/GyXej6wHTXIehhEETNxi37SwxL8+U4WCGdu07OLDVZyHx+nHqNGPH5qurrVvHKd9z7zkxQZi8LvxPZrzc6L6kokyy/DQghFhDRuwAWAygDsATABL/tOuW52bHR6tHSU9bmBIc9MXHaFxTPzq4MsFm3xzpfciJ6oMO05bsrUhX0bF1fnnAm6IvBK3cdRtcW9ZJ+vCBIRjCKkybTqT6q/TV29xzHb3pzgctFYQu9EKWc5FK8VoQQDwohThdCdBdCXCuECDzjzKFj5gsldjckf8zUikCXfuNnVflOlq15w97vMc2hjfVVh9GYTCVz18V8mot8pmKwcz9MZMeBEtz99tLQBgBBYWVZke01YnULZLnmOgk6cqvIN+87WlGFK+jcTikV2Zl46Ub+/QsIIdBh3DT0/ZO1q5c+tc12GU7thlsnLU7KkM9tJFwq8oaWP3vp9oM44qEwg47bK3nf+ysweclOfLVxn6k6M92uuL0vPtXzip2HpeWs99NfZV0y/TG0egm5lXLQE3M8y+OXFFLk1W/Iqt2HKwoJO8Xtzes3fhZGPD3XdgFH51sHKWPdjgr/4yNQSgZOHq6glNaaosPo8dBn1Qpch8kzJsFQiutxrItbCHzrm22+CzMfLCmtkrrADKveL6sfPf5pLINioiNBFZcDH+OjoPNCpZAiN77wX6zzt/hgdy93HjyGNUVH8JLDMGEnncNtB1qQGIASACWlZUrNA3RZ9IXX/3lcPHR77eN3LzOZipvl7Ag6gtctidLtOGBcZMLpafR6eAZ6PTzDdj+3S12yLuPKXYeqB3N5hE0rknE7uvVz/f1M6eMxUwhuSHY/iq++roI+0muw6lPl+PB3N9Sukelq/3hvk3cX7XD1W6v7/K//baxwkYsKPR78FDe/utB2P7u+6db08sRn6/Cah4IflfLEjnf9y1Vlj5LJMmUUuSxlUuQjdeXIZ76QIsNmj26I8SQGFckmI8PdqGPZ9oPSgrSs0AsXG4WUO6F2jndHrmOl8rLw/eWTNfjxC/OkteeF711mFTxyogyfr7ZPa2HXa4QAOt03zfA7s1mM03TNRsSnLo5n+3dplv1QBY6bBKaM8Rna7GZkG2R9QzsmfuWvMIUd8YtETl6ii7cdxNAnk1/E9+uN1QN/xk52nrDMzf1ekBBkJNsuul9bXJQVBOOW299MTjzCbot6uQBw8d+/MFWuZgsLfmagZeXG62i/f285Vu6KRhnElFHkk00Wt7g6fHJwqrNUKLHnJmummxnZU59XJtAi2F+Tm15ZiKc/d1/w4Qf/8LfIqBpGBTucYuZl4taEGs/JMvPfLtjkzWYedK9PGUXuF7MOEiU7WdCm6uhcGWOmr9iNL9ZXXRT98zTnQcnzEx5yu8XLmWv24unP3aXzveL5r1wl10p1zC6xjPGCUdPHy05FIpc+K3KXCCHw2rwthtVzwiC+OkqQipWAiihSK1/cIB6CEo+26V+9sbhaCl+ja1h2qhzjP1lj255VIQInFYCMCDMHuVMWS8pH7oRk+ORbDdYem74WXQ1qt9rx8bJdyB8zNbBiOKzIdRx0hAc/XIGeD32GBz5ciXEhpxXViZ9SBpnzZOdBZyaIkx4KUbvljAc/TWr7n6wocpS4zGpEfu+7zu30UePVeVvDFsGXaSUZ3P3fZQCAW9+wTrQmC1bkNsT3j1fnbcURbQR8wEFgQxDEL7C5zdHih3gFbbUgFMTMReozbNCY41BtBdwww+KwgevtjgMlFRG3sjB7V27/7hj6/3WW8Zc2yOg/Ya8FsSLXcPsMBn3f9n1vnL5GBd3x7y82Y9aaPSgpLcPnq/ZU+S5xtBalRESMc4wKX1zz4gLc/8EKqS9zq1mPWcCSDOxyjL+90Nh0FlRvZ0UeEdaapGENKzowsVr7ln0lGDd5OW5+rdBUVgCGIdq3vLEIc9bKK6un8+FSZ2H6dsFDKgQ8qc4uA5fCCo8xidosGQMBvcW9FgVcLnrK2nV2+krzuIUbX1mItxcmt1QfK3KNoHMjuEU16RKz/REBW7UACreBJJ+sKKoWVScDpznIF289iIMlpfh64z5PpdwA9/3H6wKtqlhdtz1HjjuqdeqEZJjq9n1/okpeGZnsPXwcs9bsxe/fS+6amu985KnEfQ6T0gMhuCWqpsk9knjVkmlbdNo0EXDdywuxTHIxYSt6PBRKWdukUZ4wUp65eg+OaKXbhtmMZt2QjBG5X/nu/2A55qw1zu0T7zO/fs8REBE6Nq3j63hGsCKPY5JBUnpVFsP/9tk6HBt4CkO6NquyXU0/d4Ht35XgdYOFLlWuZzwEa48fJ7bX6yZ+Y7tPPKm2VpDYD10XeIgAx0pPoWZO9Vw8b8x3dq66eWbL+FFS5QLYtFKB6gPeRVsP4KZXC6ts23XwGFbsDMblcMm2A/h6g/NMkrdOWowJczfZ7qeCYs+wcgBHZcpTBpi9dq/h2oPX95LbOIMwu8s3PkrUJRsekWt8/O2usEVwxZJtB3DF818Hdjy7YyWqQjP/cTcziJOnynGqXCA3211GQrfHotjOjANu0NYyLj2zpeV+TpcM3AbbhOnmZ3RKBxRJAcIjcg0zG5dqpgs9X/L6AH3GneJlVmN1dX/4/Nc4/Q/uo+rcQqTefVadxPQEiQp2rs86ACpi5CF2wWOzQ5CkOqzII8bjn8ZCxSOreFyIvdxBNSU5kBImniiR6D2ysbhq6mW3lbmcsklCimevEAGLtx3A9BWVtXfdemglC1bkHgn7BqqmeHbapCY1YvO+o45C+PfEZSScvWYvXnGYovdf/7O30QPeZE93zFK/JhuzaktBQIjNEn8VUNi9G6QociJqQETvEtEaIlpNROfJaFcFzBRmUIuMZiimx/HvL6oq1w17jU0/uty7Dx3DoCfmYICDqWl8+a0bXlmIhz52Vh/VKWuLDptez7BDrxnGCbIWO/8OYLoQ4kdElAOglqR2lUAIgcURyEKnEmZlzHS9qBfhqF8rG3ssIur8snW/v6n4HI+1P5nU5lDJSbyzKNyi5/H4VuREVB/AhQCuBwAhRCkANZZyJXD4+EkMemKOYfhumKO1qA8Ufz5xgel3W/cfRXZm5WTRz6lahV3rEMj0XhYn8SUTZUpOqJ+jWzbxRUfOfFitgC4ZI/J2AIoBvExEZwJYBOBOIUSVoRARjQYwGgDatm0r4bDBMOypuRURaomEqUyjutipy62HdBtdwwGPz6ny+Y63lqDo0DGMvrCD6+Nd6aDuZQaZvyyiUFQgDKLa//zwlIfqTkEhw0aeBaAPgH8KIXoDOApgTOJOQogJQogCIURBXl6ehMMGg5kSB8KxU+tFHFQekVvJ9siUVeh83yeV+zps88/T7As7+MFM5gc/WpnU40aVRMtZTmbq+02EtL7rCBlXfweAHUIIfa78LmKKPeXZWBy8L/c3W76DENEdD01bXmTomqZ4zjKpbA7RhU4WiS+++Ht6xCA3OZNcfCtyIUQRgO1E1EXbNASAXLcCRZGZDMgNG4u/V3tIHjGCznw56Ik5vn7/8e395QjiA6uhRKolBNNR2YNJltfKrwFM0jxWNgG4QVK7jAHFR0ojOyJXkajNBnq0rh+2CGk5jth1yFl5wzCQosiFEEsBFMhoi7Hn6n/Px+gL24ctRjW8uGgmjnLCGPUcVSQ6L0qoPDpNR1J/hSJFSdVoRLdZ9LZIsDcnBjMx9rAaVwtW5FGFnyQAwK/eWBS2CGkJD8jVghV5RFmy7UDYIkhBVwhU8dmdhmCFEg7bvgsv5wlTHc5HHlFUXnhxg57NTjepODWt/PL1Qnx/oixyC5WpwktfsjlKJViRM0oRnyDLik9X7gEAnN68bjLFYZhIwKYVRilOqhw+pxCNa+eELQKjEKzIGaVIrMbOGHNZr1a+fv/Bbf0kScKoACtyRims9Pjew9XXBYKOylQFv0kaerVpIEcQRglYkTPK8POJ31h6rfT988wApVEbt946mRnp+cJLFyKlyLkvpjZz1xW7DghKV2pku3t0rz33tIq/n78mLXLapRWRUuS1a6jjZNOuSe2wRfDNA5d0C1uEarj1I0/Xd3vN7EzH+w7t2qzK55E9WsgWhwmZSClylR7aOgq9VLzSskHNKp9/P+L0kCSpZNz7y13tn6Ymclczl9+P6GK/ExMYx0/KL1YSLUWerk9tkhh+RtWRWpYCtiuVZl0qkle3RuwPlzOX5vVzAaTvi08l5m3aL73NSClyRi6JL0YVHvIdB1IzGZgsdP09onvMPNK2kX2dc6LKGeTVfaNTZpFxTqQUuQqKRkdGjZ47BneUIIk8ojjjiaDIUujWsh62jB/Fka0m5De2f8GlEtFS5GELEIeMZE29T2vov5E0Z/XuI2GLEDBVO56zF1nlTlFLMlbXo6ntpevPliyJ2kRKkauEjAdCpReTTILUFafYXzGlqVgTcEnDWgqnMEhCl42UIo/a1P9PV3T3/NvbB3XE12MGS5TGHllrnVEb9UWJJ648U1pbCqxt22Lm5munChqlWS6aaClyCW3kZMk5ZSe6imwkrpubbfpdw9o5aOpxNGLE8oeG2e4j67kuZ02eFG4b1AEDuzR1/TsiY8W3/KHhEqQKh6UP2PfndCJSilwGQQ5CerSyLpJbv6a5/U92TUSrl4aOrBkPK/JoEBVXzy/uHVTN26Z+Tfv+nE5ESpGrZFpxomjtqp13bGrucSCEPFPamIuDDfRhPZ4c7GZ45r8DzmgZ64vnd2gsUaJgaNOoFprVkzc7DZsTZfJTNUtT5ESUSURLiGiKrDaTQVR0TLkQ0mYPI85o7mg/We/JVFfkXhfgwqRXmwZY9sAw/ODMlqb7jL6wfYASpS9Fh+THSsgckd8JYLXE9qohQ9HIUo5riuS4vZ1l4oIoAGRlBjthknVtZPjYq4zTtQunL1A/6KN0q7S0WRmxflS/VnVzxL+uPQsttKjPM1rWky+gTxSahEsjGZYFKZqCiFoDGAXgRRntmR4nmY0rRp+2MQV/z/Dg8mTMd1hmzY7X5m2V0k7UeeHas5J+DP2l+UuL0XRbi+CY4Wc0R+dm6gcVpdIsLxkvJ1lDvqcB3AvA1PhDRKOJqJCICouLiz0dpFaO84xvUadvu0YA5Cx6Om2hVJLtbsaqPVLaYRidFNLjSRmQ+lbkRHQJgL1CiEVW+wkhJgghCoQQBXl5eZ6O9eJ1cqO1/v3zAqntRZ0o+BUzVfG6AFqlDa0JpUe9Sgvnjlo58r2FZIzI+wG4lIi2APgPgMFE9IaEdqvRumFN+51sGNqtmf1OKYbTUX1GKhokU5wGmt07NzsTNTzGSERBR0ZARMe4LQriBN+vBiHEWABjAYCIBgL4nRDiZ37bNUKGnqkRt4AYptqafOv5AOT7izth0s3noEmd6gt2rMidEZbiM7o991/SDZ2b1cXALnloVDsHuw9Vr2uaCnBsgjWR8iNPJfTFTDuXLxn9N7GJfh2boItB1jzW49GjTo0s3Ni/nS9PiArTisLj3lTS48k4F6mKXAgxRwhxicw24/FqD6yXWznxiL+GKiius/MbhXr8+EpHXKDXGQdKSsMWIe0w0n23DeoQuByqkhYj8tYNo5ubOMiBCKtxZ3z5+8FKFmgoS8lMkLFeWW5wbvcMD780oSpESpF7HUHXzY1GTolk0d6iUHS8jZ5t5M7IzCC01IJoVMIoW2b/jk0c/z5I88UtA92NplPxFSWTaClyj79rkBDR1rJ+Lu4b2TUQ08rZ+f6KR0jJe+7wRFXKZaM6KiqW7MwMzBs7GIX3D63Y9sbN54QokX9G9YxFx4bhFBAlIqXIZTCsWzN8PXYIfhFQXomJ15+t9IwgXnm3aeTfvZNxz9IHLnK0n5PXbIv6NdGkTg20a1Ibdw3t5E+wkNnwp4txRe/WAICUtBpJRF0NY4CMEePFPVpUtheAVbhubjbq18zGkeNlnn6f7EFy/EinVQNW5GHQIAnVbGb/bqDjffUuFqRpzckAOz7XkN8B+dCuzVB0+BhW7DzsryEJJOOdlHYjcqf87Fx5i1lz7xmEBeOGePqtzBnl+B/2wMe396+y7Yo+rSr+JiIMPr0pHrnsDHkHTVH6dZSbDvaac8JbPNW7WD2L/Phh49eP/MXrCjDl1xdIkkY9WJGbIHO0npFBaFYv/MWxq/q2rZYj/Y+XVi1HN/H6s3HtefkBShVNzjpNrtuo28U/Jrokw94fKUXu1c3Z9LpFYG0v2UEa7DtujJWnT2gkyfQRRg9w2695sdOaSClyIgrMf1cVB47TmzvLEf3ur85LsiTRp+C0hnjm6t62+718w9mY5cLGLANV9NSCcUOC6fsm59upaR3D7bzYaU2kFDkgN0Of3lT3Vv4T6o/q2SIpL5kR3Z0VJzAKuXdL/KX9xQXtHP3m/lFdfR83KBrXycGlFhVydAZZFDiWbRu34kdnta7y+WKHfcErQgDN6uWicQAV6M308vS7LjTc7sfzKytOaTSpU6PKZzOeuPJMz8cLg8gp8mTQqHb1BFJu3xfDujVDfPesF7DLoWwf8KFdnWWJdPqiUQmzqkxOGNXD/kUgi9pa/v2HftANW8aPQtcW6lXw8YqZqcTM1JdtUi3LymX2lwPa48Z+7bD0wWEV2+aPHYzVj4ywla/ARx8Jg8gpci/6ym5W5tf+dumZLTE8oayXkym8ani5tlEKItJv82mNopGy4RJt9tDPRXSmH/RbGYhlxeUjF/+M/i1utFynRvXydTpjL+6KB37QrUo+oazMDNOXQpXjuRMvdCKnyO34+XmnVdtmpqitlJDZd0Yj7Weu7o3c7MyKzvnnK3pgoMX0PBnIePjiE3hFSUEn8qcrutvv5JEgMwSend8IW8aPQqeASrHp/ffrsUPwwW39MH+sN5dZR8fysX+8mSWKi6DKZz8MglM21cg65FVfLDmVBislfoI59BFLm7iRaoT1uL0d3Me5JUtvNK1XAw0NiiMHQeJLOzszA73aNEDzJOaTcT8id77vLwfIjdr+Ye9W9juFTOQU+U89LCh6yQqXzE4cT91c+4f33Pb2Pss1fdQz/eTOC/DPa/p4/j3jnxpZmVjywDD7HZNAGKNatzObQafHZrjN6+Xiws7WpSKduI5aDVTa59VGi/qxRd8J156FM9s0cCOqLcmY1UVOkfdoXR9bxo8y/d7I42BT8VHDfa0GZjf3d+a1EY/+PLgZzeY4KM/lNDgpg4C+ceaRYQ7L2rVpVKtK6gI3RGngLuPxcdrGb4Z2BmBs6ounUQAeIn6YN7Z6RkUZuH13nHVaQ2wZPwrzxw1BbnbloMWonZOn7Bu36rcZRMjNzsSiP1yEYWdEYzE/corcjraNa+H68/MrPs/67QDMvXeQ5W+MOkOWgwUR2Xx4Wz9fv9/0l1H4b5w/+YSfF1i+9KzoaGCiMqKFw5mL3Sgq1ejdtgEAe7fQJnXCV+RW6yEt6qudf6dFg+r977NVe3y16dT11itsI/dA+7w6gUUv6lMmu6NFwf7c0OFI0XGKXD/CuMRMJrfue0YL205fcE7vsR9XyCgjy5zz95/0xqieLTD9rso8KqfKbRbSYN1vf3K2ekVD7Eh5RS6bSxwElNg9xBHQ4ynJee1jwTxe8+g8cnl3nNfBWUCQ02OMuVidgCoz3XplQmCSlGNJaqd+rWw899M+VSKga2R5Xy+KKmmtyL0Unb28l/kKttNBhlvXvrBH8Oe0858gKshzyDVZd6jwk/YoS35j5/7nicfIq1s96AwIPnDMC48nIcox/ln5peTaADsPlNjuE+QjdWO/5JpqgAgr8nuGdzH9zmja9soNZ7vK0ZxMzDpR2ArbDCcLsiphtr4RpHNG4r0c2rX6IvygLnmR9tf3Q/zgadgZzhblnfLpbwbY7hPkZW9cJ6dKmmIlbeRE1IaIZhPRKiJaSUR3yhDMjm4t3dk7B3ZpinaKZLRz6/Md1rM+7Y4LMPt3A33nggaqBhtFBT9nfU47bzlZflwg34xhh5PuJXuxOr5LyU4JLBv9+bvmnLZ47ca+ntrIb5xc3SNjqFUG4LdCiG4AzgVwGxF1k9CuJee1b2zauZw+gLIrBOnHtWs3UTH3aFXfeMeQ6dayHto1qS0lv4jT3C3JxOlidCK6Z47T99lXYwYbLLA7dSFVc4ReK9vY7pyd6U3esEP0vDz7GUSe7k/iT5SsECSE2C2EWKz9fQTAagBJD4XKzc70/HZMRNZUZ/HWAwCAzjYuZ9VvbNjd2pqr+7bBnUOiXf8xniwT5fPhbf0w8fqCatvdPrrGJfPUvce1tMhes+tiRXweEzf0at3A0++k4eJU9YXUrzfu83y4jCR7zkldaSGifAC9ASww+G40gNEA0LZtct17nJoCZA9+Zv52APYeOWFaDahLs7pYu+cI2jQ0XjQLooaoF4gI9Wr6Cx+vaTKiCxL9+t41tDOWbT+EN24+B30emVHxvVkEX6rbsR+9rDu6NKuDCzu5N594de1NrFR138iuvqKT3ZLp4p72bdcIX48ZjJYNauLL9d6U+TXntMUjU1YBULxCEBHVAfAegLuEENUqnAohJgghCoQQBXl58uxtb9x0TrVtYaVWIbIu6XaTFmiQ2Ilt21VUwbuhrQuPj0RkBc3oM59m9XIx7c4L7KMqpfYjde9h/VrZuH1wJ8tRo5necxuZero2W03UZb+4sD1+dq51FKxMarucSbT0WZg8N8kDGSmKnIiyEVPik4QQk2W06ZT+nSpTfI7sEQundfvGc7O7n8HZwC55qJ2TWc0dqXWDmJKrmWN8O5I9LXNC0BLo9xJITpV5nYcdFJrO0G6LusaR5GPW73Wzw19+2APjf9jDcXthmxPf/uW5uHeEuedbMlHSRk6xeedLAFYLIZ70L5J3WmrhxA4CuwBUKicBgWUPDktq2k4AaFo3FysfHoHuCYubj1/ZE89f0wcdmxrb1h/7v55JlUt1ajmYco/q6S1XTI6DVAyyZkS9HCRfUjWVgd01qJmdiascJLTTFwvDzj7bIa8Obh3YUWqbZuOtIGbUMkbk/QBcC2AwES3V/o2U0K5r9L6h28jdpAWtXzM7sIyHidTNzcZIi6RVzevnYtXDwzHHxA8+cbT03E/7SE/lGTTxnd948bAqz/00edkbm9WLBfMkvlAmXl9QJTTcDifrDMl2U5ONVVDd6zdVd0ZI1eWG317UGWseubjis12yNNn4XuwUQnwJxQyAuo183Eh1wp/9UisnC/lNnN2uUT1beB6hMpXoqunhy7pj+Y5D1cp/DT5dvkulqorOSyzBBRaLp2GPyL2S+MIyS0r38GXdcW77xrh10mIM0GZZ/7ymD26ZtDgpFZ+iFbLnEN1Gbufz2bhObKTVrYWaftx2/OzcaCT3saqraErcrUu8jfH2c78MceDfXqdGFn58dpuU916xIl8Lpnv6J718tVNhWkmDFYeRPVpgy/hRFcGLF2ufncww3aJ+ogcX6I+ZPnrIsHlNdWleF5NvPV+pgJzc7AwcP+nMyB+V5EBN63owWcU954mjt1o5Hrutge6wMr/pA4I01t8V3H1RZ5zfoTEu6JSHu95e6rmdClOMhR6/Y0gnnLQrBRYSqnqQpdSIXO8benHVLDtNDqBP24aOirEGxdx7BmHKr/uHLYYr5t4zCM9LrjB08Fhpxd+J4f1z1u6Vdhwno2w/I/GLujZDw1rZVXLkW+E1wCbZZGdmWJpKErGzEQvEkpCNG3l6te/uvqgzfj+i+vYguMhhMRbVUEeDSeT+Ud3wqwEdcHH3aFT3iKdpvdxqXi1mZDgY3cjm+vPz0aRO1Ux+bRvXQuuG5tNFL96TX23YX/H3JWdWtfe7USjxWF0mI11dmXLBO03r5WLJA8PQpXldR+3E102NAmbn1L1lrA8nXleq8FoRmHPPIIy+sINUefw+83Zl4lQ1Can5+vdJ/VrZGHNxct7oKk2spny7G0DwozgjpWcVhCV7OtrYJAjlX9eehdpezS4WuBmQW7201FQBycFM4VW6/MrHazUsmbx+U1+UlJ4K/LgpqcjThSt6t0LDWjkY2CVY3+Pm9XJRfORElW0lpWWe2+veqh5W7KwWDAwg5haaiFlk7HCb+opeXydOX0SzfzdQSg3OKb/ujx0HjvluJ1k0r5eLosPHHe1LMFbaqnqt2Ill1xe8zhb9kpKmFVl0alq9rJfb9LmyiV+cE4iFNndqZp2kSzYvGSSWssxdYaMH6+WaLzjmZGU4Ctpxglfd4XRE3qROjuGLp+L4DrVX91b1MUJhs6BRUrjEUzM71coZi6KaPKKkhCK/2kFEmRcS3641szO9e0xIYskDw0I9PhDzQvnDJd3w3i2VhZ6N0ggM0xeObJ7ZFTsPmX4nRPUQ/aBGPboycjqSt1sUTfTF/u2wcELEg6BifSHhmpAikZ1m2L1sVbWRp4Qi75AXTDQcu6FVclP/dlUKAhjZhm/s76zElVnWQTNkmC90HN1SSfd9QEL4vdNFbdVwcjkS9eHndw+oEn2rpjp0/oJpWT8XU+9Qx7ssJRR5UKg6ilAD76YVo1wqunK/sX++d5ESaOvRI8TOLuq0FN4vLmiPhfcN9SSDioz/YQ/HrpmnNa6FUT1bVKQzVnVM5PQRb5dXG2e0VOdFnFKLnbIVrarTKB2VXizLth+sts2pfEYeL3+6vDua1q2BphZpgd3wn9HnGrr2ORHRTldNu+MCfLqyyNZ7iIhMizBHCf16NK1nfi5mz86TPz4Tr83bij5tGxp+z3iDR+QWqKQow+by3q3Qs3V93HyBsbnEbY71eMoNNHkGkWMl7qRohV3NUCNd7bQ0XMemdXDbILmZ9FSmcu2Aqm1L5Omf9ELnZnWQpdnemtbLxe+Gd1EiNbMRTp951SI8U2pELsuGfVmvWI3KxIWPhy5NeilSZWlUOwcf3W5uEzQKdXd6P4wSMrmZDTmpLOOna6RzjhUjKlNgmF8X/Zb+4MyW+MGZ/mu+BoXqs3AzeESewLcPDcPfrjwTQOW0+5aBHbBg3BD85OyYd0zh/eHaOW8bJDcaLlk4Hd1c1K26q12L+vITC3klGWq8o4Fra1Rw4s0TTXXovM+qpvBTSpHLMIXUy81Glua3rI88WtbPrVLCzU29v2Sgl6lSrTOZYXe1ru7bBiv/OLzKNjeeKX5m6RkUM8388VLzSkGyb/ec3w3E5FvPl9togFSMyMncwNAl4NgGr0Qlg6gdKWVakU2F6baaL2zwskQZ22g5Itc1FBNa8P5LIqx+ZIThd0a2YBnk2+TzUB39uli9QPu2s16TUIUGNb25sqpmI0+pEblszKaQ9XKz0T8JyeGjTJgLw0Yv1p8UtPHdbsV7nJ+SKpS7jZSKEMmocB8E3EUtMS5QkZFBeOPmc8IQCIB6owE73ErbuZk7+7GRWaRD06qjXj+zqGhd7eSjq7r450Lf9tHt/fDo5d0Dl8krieZJp2pcNbMmm1Ys0Is4K+oppfyKkllnn/Lr/sjKJNTIyjS8the6DME3qncqc2DFXisJWAzIe7ZugJ6tGwQpDQNW5JYM7toUbxduV65jRl2vBBGa3j5PgldI6loQfFHhXx/1jojqs9thBh5UTn4XNlIUORGNAPB3AJkAXhRCjJfRbtgMP6M51j16sWkI9sTrC9AyCfX3UoUwO/s57eUttqWAvpKK7gRAhJR6y6mQz9wrvhU5EWUCeA7ARQB2AFhIRB8JIVb5bdsp9bTUoVb1F71ilUcjGVXU3aC4ZcWzHfE6h2XRrJCpX1QbfYVNZXFz4NaBHbFs+0EMOb1pyFKlNzJG5H0BbBBCbAIAIvoPgMsABKbIf9SnNU6eKseVZ/n3VGDk43ZEK7PcWXYmYcG4ob7MADwir8rVfdti8baDOK1xbTSpUwMzfzswbJECo7PmH39lQeuQJamKDEXeCsD2uM87AATq0pGRQbjmHOtir0xysRp7h+nRlZWR4TntrWqeCapwZUEbXCnBvTOKNKuXq6QJJjD3QyIaTUSFRFRYXFwc1GFTEh4gBguPyBnVkaHIdwKIfz231rZVQQgxQQhRIIQoyMsLp65dqqFy8MKKPw5Hcy2twY4DJdLbz8601q4yPSrYRp66pMpLWoYiXwigExG1I6IcAFcB+EhCu0yEqVMjC+3z6mD27wZi7r2Dpbe/+mHjsPpEUuVBZRgrfNvIhRBlRHQ7gE8Rcz+cKIRY6VsyJiVoJymvSI2sDJwoK6/4nCWpILMVCk94GEmkyj2W8jQIIaYJIToLIToIIf4ko03GHBVHmcl+IKbfdaGr/WVcor/8sAea1q1RURSBST1UfJa8wJGdESZVRhNO8Dqy93ON0tk7I11oXl9OKcGw4aRZEUT1xbd+HRuHLULKjLSY5HJBx5jjRauIR2jziDyCXNW3DZbtOIhbFawTmZOVgX//vCBsMSpgX3DGCRkRH9KyIo8gdXOz8exP+4QthiGnNaqFWjnG3WrMxaeje8vkJ8wC1J+1MGqQKi96VuRMYPxqQDRqjTLpR9Rf/BGfUDCqoZptOp0WhBnvRH1kzoqckYJqD0Km5jLYOSJFgJlwiPpIXIdNK0xkGNq1Kb7csM/RvjlZGZh08zno1qJekqViooxqAxCvsCJnIsOL153tav9+XCCbcUjUR+asyBmp+HkgZv12AA6UlEqUhmHSA1bkjDJIqbPJMC6oUyOmAgtOaxiyJP5gRc5IQY+M+9XA9iFLwjDOaVynBj6960Kc1lheVaowYEXOSKFubraSlVMYxo4uzaPv2cTuhwzDMBGHFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYfdDJrL8/apeaNMo2v6/DCMDVuRMZLmsV6uwRWAYJfBlWiGix4loDRF9S0TvE1EDSXIxDMMwDvFrI58BoLsQoieAdQDG+heJYRiGcYMvRS6E+EwIUaZ9nA+gtX+RGIZhGDfI9Fq5EcAnZl8S0WgiKiSiwuLiYomHZRiGSW9sFzuJ6HMAzQ2+uk8I8aG2z30AygBMMmtHCDEBwAQAKCgoSI2yHAzDMApgq8iFEEOtviei6wFcAmCIEFzqlmEYJmh8uR8S0QgA9wIYIIQokSMSwzAM4wa/NvJnAdQFMIOIlhLRCxJkYhiGYVxAYVhDiKgYwFaPP28CwFkpdXXhcwifqMsP8DmoQNDynyaEyEvcGIoi9wMRFQohCsKWww98DuETdfkBPgcVUEV+TprFMAwTcViRMwzDRJwoKvIJYQsgAT6H8Im6/ACfgwooIX/kbOQMwzBMVaI4ImcYhmHiYEXOMAwTcSKlyIloBBGtJaINRDQmbHmMIKI2RDSbiFYR0UoiulPb3oiIZhDReu3/htp2IqJntHP6loj6hHsGlRBRJhEtIaIp2ud2RLRAk/VtIsrRttfQPm/Qvs8PVXANImpARO9qOfNXE9F5UboPRPQbrQ+tIKK3iChX9XtARBOJaC8RrYjb5vqaE9F12v7rieg6Bc7BtPYCEY3VzmEtEQ2P2x6cvhJCROIfgEwAGwG0B5ADYBmAbmHLZSBnCwB9tL/rIpanvRuAxwCM0baPAfBX7e+RiGWNJADnAlgQ9jnEncvdAN4EMEX7/F8AV2l/vwDgFu3vWwG8oP19FYC3w5Zdk+VVADdrf+cAaBCV+wCgFYDNAGrGXfvrVb8HAC4E0AfAirhtrq45gEYANmn/N9T+bhjyOQwDkKX9/de4c+im6aIaANppOiozaH0VWkf1cHHPA/Bp3OexAMaGLZcDuT8EcBGAtQBaaNtaAFir/f0vAFfH7V+xX8hytwYwE8BgAFO0h21fXGeuuB8APgVwnvZ3lrYfhSx/fU0RUsL2SNwHTZFv15RZlnYPhkfhHgDIT1CCrq45gKsB/Ctue5X9wjiHhO+uADBJ+7uKHtLvQ9D6KkqmFb1j6+zQtimLNr3tDWABgGZCiN3aV0UAmml/q3peTyOWEK1c+9wYwEFRWUgkXs6Kc9C+P6TtHybtABQDeFkzD71IRLURkfsghNgJ4AkA2wDsRuyaLkK07oGO22uu1L0wIL72ghLnECVFHimIqA6A9wDcJYQ4HP+diL2ilfX7JKJLAOwVQiwKWxYfZCE2Pf6nEKI3gKOITesrUPk+aHbkyxB7IbUEUBvAiFCFkoDK19wJTmovhEGUFPlOAG3iPrfWtikHEWUjpsQnCSEma5v3EFEL7fsWAPZq21U8r34ALiWiLQD+g5h55e8AGhCRnvo4Xs6Kc9C+rw9gf5ACG7ADwA4hxALt87uIKfao3IehADYLIYqFECcBTEbsvkTpHui4veaq3QsAVWovXKO9kABFziFKinwhgE7aqn0OYgs6H4UsUzWIiAC8BGC1EOLJuK8+AqCvvl+HmO1c3/5zbQX/XACH4qahoSCEGCuEaC2EyEfsOs8SQlwDYDaAH2m7JZ6Dfm4/0vYPddQlhCgCsJ2IumibhgBYhejch20AziWiWlqf0uWPzD2Iw+01/xTAMCJqqM1MhmnbQoMqay9cKqrWXvgIwFWa11A7AJ0AfIOg9VWQCwgSFiBGIuYFshGxUnOhy2QgY3/Epo7fAliq/RuJmL1yJoD1AD4H0EjbnwA8p53TcgAFYZ9DwvkMRKXXSnutk24A8A6AGtr2XO3zBu379mHLrcnVC0Chdi8+QMwDIjL3AcAfAawBsALA64h5Rih9DwC8hZhN/yRis6KbvFxzxOzQG7R/NyhwDhsQs3nrz/QLcfvfp53DWgAXx20PTF9xiD7DMEzEiZJphWEYhjGAFTnDMEzEYUXOMAwTcViRMwzDRBxW5AzDMBGHFTnDMEzEYUXOMAwTcf4f3Jnkxmg4ENcAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(1)\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When simulating Poisson-distributed light curves, a `smooth_counts` attribute is added to the light curve, containing the original smooth light curve, for debugging purposes." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABOSklEQVR4nO2dd5zUxPvHP7Ptjt5BinKogKICIgiKBUURxfqzARZEsWL9qogVBQTEgqioIBakKXbkpEsRld57Pekd7oC72zq/PzbZzWbTN9lN9ub9evFiL5lkJpPJk8kzTyGUUjAYDAbDebgy3QAGg8FgGIMJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUDzprKxmzZo0Ly8vnVUyGAyG41m2bNlhSmkt8fa0CvC8vDwsXbo0nVUyGAyG4yGE/Ce1nalQGAwGw6EwAc5gMBgOhQlwBoPBcChMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh8IEOIPBKJMEwxFMWroLkYhzQ2qn1ZGHwWAw7MIXf23H0GmbAArc1eb0TDfHEGwGzmAwyiRHTwYAAIUlwQy3xDhMgDMYDIZDYQKcwWAwHAoT4AwGg+FQmABnMBgMh6IqwAkhpxNC5hBC1hNC1hFCnuG2VyeEzCSEbOH+r2Z9cxkMBsNcKJxrRqhlBh4C8DyltBmAdgB6E0KaAegLYDaltDGA2dzfDAaD4QgIyXQLUkdVgFNK91FKl3O/TwDYAKA+gFsAjOGKjQFwq0VtZDAYDIYEunTghJA8ABcCWASgDqV0H7drP4A65jaNwXAOPyzdhby++dhfWJrppjDKEJoFOCGkIoCfADxLKS0S7qOUUkBakUQIeYQQspQQsvTQoUMpNZbBsCs/Ld8NANh++GSGW8IoS2gS4IQQL6LCezyl9Gdu8wFCSF1uf10AB6WOpZSOopS2ppS2rlUrKScng8FgMAyixQqFAPgSwAZK6QeCXZMB9OB+9wDwm/nNYzAYDIYcWoJZtQdwH4A1hJCV3LZXAAwBMIkQ8hCA/wDcZUkLGQwGgyGJqgCnlC4AIGdw09Hc5jAYDAZDK8wTk8FgMBwKE+AMhglQ5zrzMRwME+AMhokQWW0jg2E+TIBnEZNX7cWcjZLWnAwGIwthKdWyiKcnrgAAFAzpkuGWMBjOwcnqLzYDZzBMxMmR7coaJAuiWTEBzmCYQBbIAoYDYQKcwWAwHAoT4AyGCThZj1pWoVlw05gAZzBMhJkROg8nq7+YAGcwGGUaJ0/EmQBnMBhlEmaFkkZ2HD4luf3YqQCOFwfS3Brnc/RUABv2FaE0GLa8rl1HixEKRyyvh8EoazhCgE9ftx9XvTcX09buS9p34YCZaNl/ZgZa5WxaDZiJ64f/hUfHLrO0noMnSnH50DkYmL/B0noYjLKIIwT4hn3RDG7r953IcEuyj3mbrU1zd7w4CAD4e+thS+thMMoijhDgDAaDwUjGEQLcyavEDAbD3jhZvDhCgPM4f82YwWDYhWyQJ44S4AwGg8GIwwQ4g8FgOBRHCHAn66gYDIY9yQa54ggBzpMFjlNlDrYAzbA7ThYrjhLgDG3k9c3HKX8o081IINtfvuw95VycfO+cIcDZNE43K3cdz3QTyiTZ/qLKJrLhVjlDgDMYDAYjCWcIcDatcTzsI4rBMB9nCHD29DuWsvbuZUOVkU6cIcA5WLYThl1hI5ORCRwlwBnaYTNBBiP7YQKcYSll5UVSRi4zK3HyGHWEAHdw/zI4yoouvKxcZ1aQBffKEQL8GJcyzU4Px9o9hdh5pDjt9W4/dBIb9hVh2tr9iETkX227jmlvW3HAeqefzQdOYu/xEqzZXYhdR9Pfb05l55FirN1TmOlmZIxwhGL6uv2gFkyT1+8tMv2c6cYRAnzcwp0AojfTLtz48QJc8e6ctNd79fvzcP3wv/DYuGWYuGSnbLmXf16j+Zx9f9JeNhUuHfInbvpkAS4fmv5+cypXvDsHN368INPNyBij/9qOR8cuQ/6a5HSKqfLXFudniXKEAGdIc6DIb8p5Co5IJ4xmMDLN3uMlAIDDJ8wZ61LY6cteL0yAMxgM22Kfb2574igBzm4mg1E2IRZOk5kVCsPROPgL0j44WAgwnIujBDgTNAxG2cLJs+N04CwBziR4Imx02wc2Ni2FPfvSqApwQshXhJCDhJC1gm1vEkL2EEJWcv9usLaZUZi8sgj2dDAYjkTLDPwbAJ0ltg+jlLbk/v1hbrMYDAaDoYaqAKeUzgdwNA1tUUVpolhYHNR8ni8X7EBe33wEQhETWmUe3UYtRKdh8yT3LSk4iry++bLHjl34n1XNSjufz9uGvL75uh23flu5B3l983HsVMCilqWH3uOXo/XAWZluhmkMn7VFcexawei/tiOvbz6C4cRnvN2g2cjrm48+P66KbXtn2sa0ts1MUtGBP0kIWc2pWKrJFSKEPEIIWUoIWXro0KEUqlNWoezU4Z798Z9bAMB2eSP/3X4Emw+clNw3eeXe5I2CN9rnc7cZrtduCpRhMzcDQNLDp8Y3/xQAALYfdrZjUv6afTh80jrHlXQzbNZmw8dSg+Y9w2dFn/GSYDhh+/6iUgDApKW7DbfJThgV4J8BOAtASwD7ALwvV5BSOopS2ppS2rpWrVoGq2MwbA5bn7EUo5OMbF83MyTAKaUHKKVhSmkEwBcALja3WdKwtbayhfGHL3NPLRuiNoG/EUyAJ0MIqSv48zYAa+XKmkm2v011I+iQVKK12e3FaLQ9NrsMhgkYHdZlZSx41AoQQiYC6ACgJiFkN4B+ADoQQloi+n4rAPCodU00H/YiSB9GdZipHsvIMgy+1bN9DKkKcEppN4nNX1rQlpQwcqPsNvNUwkltTZVUc59m8gWd3eLCOfCxU7J9suYoT0yGNWTLu8HKgEfqlWeuakYyZWXC4ygBnuUv04xhZb+mMpvO9tkTw3qyfQg5SoB/NHsLvv57h+7jpqzei1W7jgMAIhGKwhLtTj9ClhQcxfR1+xO2fbVgBz6du1XSeaSwOIgRc7bKpj77csEO7C8sla1v6pp9WL7zmHyDuGlGIBTBXonzfDhrM35buQfT1u7H0gLtvljFgRD6/LgKXy1I7uutB09g0pJdqudYuP0IZm84oLlOAJi3+RAWbDmc8uzJ6oe2NBjGkKkb8cGMTThRGsRHs7cgpGCzXliSOA6mrd2PZf+Z4xu3/dBJTFgkn5nJrhwsKsW5r09DqchOW4zeexkKR3DF0Dk4rsOxz8mo6sDtxlu/r8eNzeuhVqUczcc8OWEFAKBgSBfM2XTQcN13fv5v7Dw8/aesBwCs2nUcI+9rnVC+3+S1+HXlXjSrVxlXNa2dsG/X0WIMmLIev67Yg9+fukyyvsfHL0+qLwFuijpxsfQD/CHnzMAjex4Rw2dtiTk63Nm6ASrlemP7Og2bjwgF7mpzuuI5uo5aCACY/uwVmuoEgB5fLQYAlPe5Aeh/eNP11fzZ3G34fF7UcWrikl04JMgWI9WG/r+vx0/Ld6NpnUq4plkdPDZuGQDt90OJmz/5Gyf9IXRve0bK50onFw+aDQDoNWYpxvVqq1pe6739ecWeBKc+K3Jp2glHzcB5UrkpVrnPn/InzyROctuCEnWGuNnYidLUZwpqsxg1xA9HcSB+PnFPpyMtqd3Vl0LvvuPF6m77vMevXs9SLZy0mTexXswY/0L8omctu8W3QwU4I31k1KLDYOXpbHOWT/AyDutfZZgAzzDZPj6z3Q6XkRpaR0dZsSrRS5kT4HYZCDZpBgAV8zsHyt903mMHdk9WI7712T6DL3MC3C7YdYEuG0ivCiXLJQTD1jhTgEtIMyPPUaoef2WBTKhAjDrk2OXrimEfsl2F50wB7jCkhpCdZI1SW5zolp7OWbGWmrJdiKSC+q1Kse+yvOsdLcCVEjIUlgRREghLmHnJi6sjKQbRLwmEccofSgrG7w9FYuZSgVAEhcVBHBE5/igF8I9EqCnme4XFQUlTthOlIfhDcdO4I6fU+6E4YK75mvB8Rl9uer6oTvpDkuaX/lAYRSqmbYdPaB8n/lAYJ0qj1yb1hXDsVACHTvh1v3SckvBB6MQm5dCm9nI7cjL6nBw9mWyuefRUQNZJjoe/z2plC7gkIOEIxf7CUt3mjceLA4rOXFbhaAF+Xr/psvtavDUD574xDS37zxTtEYRgFfzOX70PFw2chSU6PBbFtBs8G+f1m47WA2dh5vq4F+LTE1fggjdnAAAe+HoxWvSfgds/+ye2f/q6/YoptIbN2mxKyrQW/WfgyQnLk7ZvOnAC945eBABYv7cIf6yJe5vKDfkWb81IuT1Cmr0Rv5cn0mDbfH6/6bhi6Jyk7d2/WITmbypf288r9miup/sXi/DPtiOS+wqLg7hwwEy0eXsWRs7frvmcq3cfR+uBs/DTMvtnlRkxZ2vs97szNuk6dvuhk5jBPUfvz9yMRdvj/Xj0VACtBsxUPefV78/Def2mo9WAmYqZgTq8NxdHTvoxZOoGtBs8O/a8aiEcoWjZfyZe+mmN5mPMwtECXEiq+s/FO6KDY92eQsPnELroy7nASz3My/5TcJcHEl4GqTJ9nfS5lhRE27Dl4AlN5wmGtc0YMxELRethByVm0mr3Qi9K5zteEp9VztXhIbxxf/Qe/btd+sVgJ2ZtjF+XOAyFGv+J0iSu21sU+32U+0qcITqnlBzgc6uqPUfHigOYulZfGwEgFInOvH9fJZH20GIcKcClhAJbxLSGVPXJadX/ZuB2MiMUC1HoW6v63Wn305ECPDWUn/J03z+nDZi0wvpGkbI2diSNAcq46VEZFODSmD0Q0jGsytjzqxm7Cjaz2uVUkWX3dtt13CjBBLgIs26intMwZxBzsIOAKOszQkZ6KXMCPBufL/6aXIjgPKI/XroSmXy1ZJv9tHjsCd/b2foOF16y3peb+P6ziU4yZU6AJ2ChME/ne4If173dvyI/51U0J9vSWDsjUzjtBSclgM22NMqEYUIm3ytZI8CdNZTNQTxUz3cVAADqEnOyvQCZDiebubqNko5ZYjapaVLtLjN7giLF+5eB2+JIAT5k6kb0+22t7P781fu0nUhwrxbviAq9D0XG/hMW7cQXIicLqZvM24LyfDp3G2aJUor1GrNEognSA0aYok3KXllIss258iDsNWap5PZ/th6W3D5q/jZcMng2flgqnUqt4PApPDp2KUbM2YpxC/9L8HgLy3i/vfJL1Olh8NQNmKZge0spRZ8fV2FJwVHM3nAAA7gMSEIG/bHBsK18rzFLsed4SdL2vL75+H3VXjz3/cqE6/l07taksnr4V+AHsFjFaaz3+ESnq4MnSvHQN0tMS4KQv3of3puuz7kmXfyyYjeGz07s64H5G3DJ4NnI65uPF39YBQAoKg0ir29+LEOSErz9fLp4+ec1+Geb9DNlFo5LqQYAPy1P9kATvvx6S3gbqrF+X9RJoKg00QuQFzQPX3FmbFtIQihtOXBStY5ZG6SdNaRe+mP+LYj9PiqRb1MI75xDNU4BxC8Wnu6jF2F415aJbQPFoD82AgBe/HG15HH9Jq/DvM2HYu3ockHd2L5dImcMngmLdmLQbRdg5Dx5D0RCgEA4gklLd+PXFXsR4FyVX7+xWUK5UfO3Y9T87WjbqHqszVqZteEAKuV6MOzulkn7npoYTcX38vXnoHblXADA0GmpCbxuXyyM/e4j0588+WsSJyIj/tyK2RsPxl/oCTp0qntmzj8nL1zXVNdxejD6sfDc96skt+/jcr+u2h11uDtQFO2LIVM34rErz7JVPtWJi3di4uKdpqTOk8ORM/BsIiVPRRPbYRWpfJHqPTaLNAuKlJXrNIIT1W6pULYFuIkPguHIeaCSD6RtVHFl7IFIlWzST5uBcBw7oW+c9gLIGgGuOTWTpa1giEnlmTX8LNn2IWSjz2oy+o7IwLjLGgHOsAbbykIJjKqjVC0PmNxl2BQmwG2A2d6fJM1i1wFfxlmFkz7zhWND0g48jW3RQkq29cyMkMFjZBh5ELXSuM29wLx2GInymPDQplK3sYPtJhTMwgk6ZL2YbTefSg856cXIU+YEuPAhyLbnoRaJ2oN3ci/TVP4612LUgrnxr4HMPQjZdj/VEHazE4SPE15ATuhHIVkjwA8Wcfahu44rlpNzLNHDX1sOJW1Ts9WWY9fRZCcSQNtMQmyP3tKlPauLD0GM9H2I73wDNR8jZuvBE9h8wDrniEU74o4uAYl0VUWlQYwV2MvHjpNJdHC8OICx/xZItnnX0WJZm/XVu/Ql+di0/wQOFJXGnMPiyI89fs9KmfG7v7A05huw65h0O42y+cAJLNx+BAe4ZwiIOpJt2FekcJT5lATCsolQtPDN3zsEqQopvNCX2emkKBPUnI0HEYlQBMMRiXupzEFBX67ZbTxJjBqOdOSR4pGxy7BpYGfcMuJv2TK/rtiT4CBj9G374DfSnoxGCRvUDX42dxte6nyOoTp5PXl9YtxT7JoP5gMAOjStZfgcSjwxfjkWvdJRdv+NHy3AToHQ5bMdffTnVnQ8tw5anF41oXybt2fJZhK6XCK9Gk+vb5di5RvXomp5n6Z2X/fhfE3lxBwvDuBWmfHbbvBsQTlzPDF5Og2Lt5d3Ornx4wXYc7zEUicUMS/8sAr5a/Zh8avy91yJN3+Pe+n29UzEY54paFI6BgF4k8q+6PkOe2gtTAjH63p07DK4BDOnnt8sQb+bmmF/USlGztuO33q3TxpTcgjv102fLMCOwTdY8gWSNQIcUJ9d7zh8ClsPqntMpptMfrapDalMB0wqCSQnHubZKTNjBqQTM8sJby1XWBo0I2Gtcm/rrcPKuCtS4QWMoEdkreHSGSrdc610d0cFaA6CkgK8t2cyACQI8MMn/ahdKSehXMHhU7FxpiXZN48ZSci1kDUqFECbILS/Fo4hROrrhMHQil6LLKXSdhyKWSXA1SDEnouYku1I02hRqyVlKxT9h4vqT0N0PwPH1MIxfO/rj+pIr57Yydj9a08KCu2Lr5kQJ2VLgFvUxR6E4FTjtXQNurPIHjzt/ln3cRJrl7bgIc80tHVtxF3uuaacj0D/hILK/LYr2r2lzRuVWgO8xcpblEjZqnlI2RLgxPxZdyUUY2vu/ejt/s3cE9sEI+NOarB+7xuA/3l/RCXos6CIGLUFT5NEM2s4OUEAl1Vs8qEuiSMEuA9B1IB1pjipUJNE23WHe57hc9hRt2Y2PhiznDDD7FMNQy8p01uR/dhZEGrBjvdcVYATQr4ihBwkhKwVbKtOCJlJCNnC/V/NykaO8A7HstzHVcupdbB4ADl9QKUDLTpoK/vR6MstXesb4kUyu6yrOAWrJy9mhJXQek8VF0BTboU0Wmbg3wDoLNrWF8BsSmljALO5vy3jWrf+BA1yWPV86dW12YUcEsQFRLsDkF5SfUCNqlDsiJogcOYIsitGe1PB2cqGY1FVgFNK5wMQuyHdAmAM93sMgFvNbZY1vD9zM44JnCB+WLobeX3z8efGxAw1LfvPSEqjltc3X/KcZrzhxQMjr28+PvoztdRdqnUKBvhA71ex3898tzKh3GXvyDu48Ig92IRek0rZka5+f67queUcs64f/pficQ9+sxSDp25A64GzkNc3PyEtmpjfVu5Vbcekpbtw9it/qJYzyuIdR3HxoNnqBQWUBhPtpdu8PSsh5dvzk1bh7pH/mtI+I3QaNg/Ldx6P/S309JTCGvmo76SHTyZ6VH/773+ymbQAYMCU9egscNxavOOorKywAqM68DqUUj7f034AdeQKEkIeIYQsJYQsPXQo2QU9k/Tn8it+Njcxn97x4iDe/mODrnPZbwauPHCFL55Un5sdh08l/H3kpLawAtsPnVIvJIMWN++R87bj8Mmo80Uwkpo5ywczNyeELojf78TeS+ckjU8nFq2X4tAJf0LKt5+W704IR5BuNovSDIrTFQLSpoNWq6FcMM+06csFO1BwJLowTwB8888O086thZQXMWl0+ig7bCmloyilrSmlrWvVssblOlUy/WVkRvUVkOg5dx4p0HG0uU9MWdAD2+9jOnsw83mUGopXuVaYV4FGrFK/GBXgBwghdQGA+1/+G8NUKJqTbbjXPVN6bwYksTkqlNSOv8y1ButyH0rYlqPD6iPVrwc97U93rHKr0dNzmZ4olEWkxpsHxlz17Xj7jArwyQB6cL97AEiLETQBxeSc1zHQ+7Wp57XjjdFDJ1dycK2PfJ+krX61hcY6OIpcGIvWyCh7mPEFp5TcxEyjiEyjxYxwIoB/ATQlhOwmhDwEYAiAawkhWwBcw/1tOdn6ZZ7qgJUSnw0EUQbLoRRnkAMSpeSPTwWX4IJyEMCi3CfhI2GurszcRau8cJPqSePlOX3iYRVuhOHm9NxSt+MOd3zRsQXZigvJFk3n1RZrKb3jWzUaIaW0m8wuYzEfUyDbPr95Uvq0Dpagh0dapcTzrW8I2rg2I690gnT9qapQRH8LhdgZJFG7li33MJdTUem5nrKwNmAH1uf0RA6JLpiq3Z/fct4AANlnQy9y8VwyaQduG9RuRjpFQ3vXGtzm+ivWplSEYEpBfErUA+C3cW1Wqd86HXi2CGwxD3mmWnp+H4IY5PkCU319URfSCSqyDTPWCBqQQzHhDej5atdSuf3GsqMEuMuiDjSy+DneNxjDfJ/Fz2FTBQ+RMZkSCtbWrs140G1cIIn7T6kn7NJPUdd++z2QPHe756C7Zw7Ode3EI54pquXteyXpRWx9pXUCUQXGTVpjdZH0q1AcJcClbsaj7t/xkDvqYPHlX8ZsMIXOBkLGL/pPcntNHXFZKqEYBbndcZPrH9ky4xbulN0XFcDyg7DdoFmK9fdwz4j9bkj240wi7bTyhnes4nl43AijtiiPpti+V0lVYMaMfNLSXbqPmbI6ft2VUIzNuT3wtPuXlNtShSQ++C/9uFq27P++X6n5vD4N6cDU0geKCYQi+GzuNnw+b5tkKjopZq4/gL+3HsZvK/doKu8PhTHmnwIUB6Tbv3F/UcILf/OBkzh4IurgIzVuzifbUZDbXXENJ6H+JK2wtvH2lEd9LNjRishRAlzK/Odl70S87h0HABg+W9tihFZe/WVtwt/VUIT2rjUJgZmU3rePuycj3/cyAGCI9wvd9VfFCezIvRfDvSNky1Qm8tH9XvGMRz0S//yel/M//Jnzgu52COnn+RaLc3ujssKMxeqB3kdBSMrxv0mrYr+rkWhOzNvdxlKfCRGba24/LN8vp7hMM26EdTmTmPXV8tncbXhn2kYMmboRr/+2TtMxD3+7FPeMXoRnvluJoIbYviPmbEO/yetwuYwHb+cP/8LfWxNVQhe/HfVAlRo3d3JB4q5yrdTUXvET+aiGrxcA6GWCSkwp7hoLJwtgTs7zsvt6uKcDAMqj1JJM6wAwzjcY432D4SbxF0lcB57MS97vcIYr6n1agfjRgGj3RL3FtQArcx+N/nb/Ax+CuNW1IKmmK12rJI6O8ojHfJfea7mM9xWg7BZdVjDyRbEt9z5sz71XsYwVqqbCEnNzaUpxvDhqLnpEIcm33OxcCYUIJbjEtS5WQtxvYsHczzMG2YSjBHhtclx2Hx9Y/1ff61iS29uS+puS6Ke7cIjwXwVaHjc92VsucyXO/jfn9sCHvk9xtciLzOiDblSVUZcc5epVOLegSWr1DPR8iSsUXkJA1BRxuq8P2pCNWpupSKpqnA6Ce2AXnX46sKMK4TrXEkz0vY37OVWhWhN7eqYbrsuGl+8sAa4E/xg1cWnT1RmrI3m2/UfOKwCAxly9FVGMtmSD5OKhnoddruzD7j9QkNsdBbndUQXqCZrlBl17l7ZPaGNov857PbPxre8d1EQh3vV8jhwJh58mZDeaunbjDe+3ZjbSsPC9xBXPft7ctU2hpHFowm9zXhJONGNUazKvImxE9gMAIjYVaVali7Pn1WpEKMCkHnyz0TL+h3tH4PucAdih8olslEvcceFxOjmoOwY6z2jf+ym1QyhUquAkHndPBi92jAiKSb63cKdnPm50LdRUp11o6TIeivcj78d4zvODKe2w4+zYTMT33ocgnnD/KnDYkVdl8ng1LAwrtsGGfexoAb4q95HY74qkRKGkubgVFqCakN2y+yiAJmQX6iHqJUkQgVsmLoMWYRUto1xOys1ejjvdczWXFbbvbe9XeMn7HZ5wT0ZLohwGd5Kvv+TL9kxXdAZVjviT9snZ2ldACW5zSYeVbUm24hbXAuWLMIhZL5Kb3f/iGRnrhw4qaiUj2O/1p04F7rlu60pUn/X1TEQf7yS85h0PALjRHX3xS5kaE0SQg4CuZ8Ewae5kRwtwIXUk9OOn4QhW5/TC2QpCVQ8uEh0c97mlTfeucy3G6S7lhcoZOS/hn9ynAQCjvMOwLfc+yXK3uKXjYOslz6XN/AoA3vWO0lxW+JhU5CIh9vF+j19z3kgYw+LxfI5rFwZ5v5Q9r5SlkdzsapD3SwzzfYbmJFmN8WvOGxju+1ThCszh7/B5SWaVQs4ie3CXWz2mupgr3XFLGxtO/GQxe5Z6uzv6EuYFNE8HkVVKTVKEid6BeMEzKekceeQANuU+gAdVLE2ak20op7A4b5UaJBUcLMDVO/MN71hUJsX4zDscBbndYzPfVJGzSR3p+1DxOPHMjbfokCKXaLMYMDIbNCcDT7xe8Z1QuzMtOIErtU5QnRShn2cMPFD3pjuNW1AtLzFrVyLVRUy+XgBo716HxRKL5le6VmFJzuOYnfMihhowIRUifKmVRykmegeiEdmncISzkVPBtXetUTzuEvd6tJBQaT3BJRy/yKVsZjw553V85I0GgSvI7Y43POatuTAzQhFavDJvcC8GEF9g7O/9Gk3ILgzyjDacZBewVzQzI+MilQTMWmpWM1c727UXFVCCCyXULU97fkVPz3S8Iyn0Ep9s/uVlVCAbfaZudcs7ZfG84hmPWkSrw5dySx7wzEBtHENBbne86Pkel7jXo4/nu4QypaG4kBdnHwqFIwiGIwmZkpQQZ/qJt5IiEIroTDRNkQu/aEsy/lA41j45YTfeN1hwDu0Tlzs92u39hS+ABz3TEtsYjPcf36dCAqGIbOYnf8i8JBJCHCvApR5aJecSALjGvQIzcl5Cd8+fuMmViVRTZivIjJ1PLfhVHPkHVanm//s0KuC6uBaivcgckqeX+w9FZ5bb3XHdtpwOnNLU+rORDvWSXvS8VOqLvgzF6gEg3h9yZnDN34x73D71XaKp6ZXvzkXjV6fi23+lPYuFvD9jE855fZrs/iavTcXj4+S/HMX0dE/DxtyeCWqmBVuSv4SbvjYNh05EBf17MzYl7U8XSnft+R/i6xI3frwAjV9NVslMXbtf8tgWb83AnuPmr9NllQCvTrTbWduRh91TsCTnMc3l83NeQT+NLvB68CKEgtzu2JDTU7aMFgE1wvdRzEtWDNURNUKLhQEQVW1psUZqTLSZmt7rnomLiDFhoufVIlYZvC2xRvCSN3HGfYFLPmxE/upE9YoewfGxQi5WfmY8Y732F9/13FdwHtmPPLIPNVCIOZuU879oyVGaaTbuP6H7mP8UvHSN4lgBrqZCqQrlDpY6+jLXGjQg1iUXUhNAr3onoBYpSnAUyQR8QKByRF4YJubU1D8TDsNlWqTCx92TUR6lmJ/zHD7wqi9c3uPWljx4oPdr/JTzlqE26bk2scpAy7HlHeIJG1dzAXNznse/OU+act5ZkVamnEeMlDGEWVihBnesAFcb5Lwbuh7G+QZjQc6zBltkHt/43s1o/cKePYfsjJk78kHDAGXhrq0OggtdyiaHPLIqFO7/K9xrcB+XZu8KlYUuq4nqe6nuxLnDvCNiZpz1iHoiYqeZBBLOgstHjKUzE3OAVjflPGqcRfagsgaHOS1YsZDpWAEuhdMGNc/1rkWZboIAivsFOvJpOX3xuHsy7nHPSlCHvCmIKXGWTIRDJSqSErzsnaipbDfPHK5l0ouYAGIp28Qv9jwJaw0rZkL3umeiLo5gY25P9HDPQI0kdZ5SNA+C29x/6zLjtCtiUzv+Hp1PjEUKFeNCBLnwy4ZJNgOhwJ6d82LM29qOOEKAb4o0SNomNcPRk6w0E159cnV+5huOOlCfdaWDa1zLExYQAaC5awcqiCwJ+MBcPgTR0KVf7dRKxaRLCJ8Cy4jgFbb7ctdq/J3zlGTC5xwE8L2vv2ETy4Her2PZh25wL0JAFNZU6YvRyFjMhEWykRkkv9DMO9zoQcrJbXvuvdiY2xPPeH7W3xiNjPR+mPB3A3IYZ2lcN1HCCjtyRwjwU8hN2iY15IWf+GbSimw2vJglZGrOy7L7FuWaoxtMFSnd6jlkp6QNbkOyH5tzexiqp51rg2oZM8MjeBHCWN8Q1CdH0FDC+uRcshNtXRvxe85rhl2uqxD5T+2bFEIEXKjjZcZTXaEuvXR2LcY837OyXsGpICWyCAFudS3A7z7lme01Lnlrl8oWel4Lw1XwNCPqFjxqWKFCUc2JaQekZtZSM3Cl2Nip8HPOm5ac1ynkuQ4gD4lCj4Cqus2nigfhhHm/nA5c3C5IlBLG/q6N47Hfl7jW4d/IeQmhfvt6JmJB5HyZVsk/haN8w2K/xYvsj3smY3LgUsnjrjHoV1AFJ1GIioaOFTLYOxrVyElUQjGOo5JsOSMzSLmviw9VvGTr4Cje9n6luz6rMCNIVpldxJSKPS1OlgsoxygRIx5YTYj+LC/ZiFbriTNd++Ej0jPV5zw/KLok62mL0JpISQcux5WuqEu6cBLgFSykTfS9DSCawoznIc9UfC2zkMyHLVaiKdmFGiTRCkqpX//PbSxmi96F0kwgddVaZqKDvF+ipo3Mgs0QvkZSN6rhiBm41OCXWljQY7p1sWsjfo1cFvv7a99QY43LMnTZL8v09zOeX1AJqX/iVkIJhinM1M53FcR+P+f9CUA0cYZQDVSLMwsza83jIqKu7qhKku19+b5SczYzi0sGazOV1MO2g+ptD4akFzGF7D5WAgmtaAJ2eznxM/C3fl+Hf7fpSTJN4UEYIYtErSNm4FoFs9TilBzdPX8abY4pKAVAyiS36ZgNKolEsRuyEe71zJTUlXdzz8YgzxeoJqMHftkzIfZbqyCoq2C614ZsjMVgzzFoPsmP4aYmfukRAL3c+diWc0/Svn2F2r+AtD5fPb9ZrFpm1oZEVZvRF6fdQgfzPfT13wW6nHi6u//E1tz7cRqOlF0Vitet7WaeQDnDdViV8V4OqQBIdkAYBU+NZqIM4GbTkEgLg8HeL9HdIx/hTyjYtYqBs13yppDvekfGftfSkdBaCD++rnSrhYnVNw5f846Hm6Q2dvkvBjVBri8GijZakc2S2+0mwLu7jU34eP+EM8hBS5TgjhDg6UBpBsaQRntMFWPc6E60j9diuQIkzrrlnID0IAzJa9R7lD9ObZ1Gz/nN8mTlOceV+tcB0ZnN4wPvZ5Lb7Ra4Vc/ERsi5rp0AouOvzJoRah2oLNGucxgQTP7s18LlLvUH6QKB04jZQs5NjOlm+ZeKmkpH3xqEMe52z0FBbndURKLVVgnNUTxOS08K5XcFlEhGZOzt/jX2Wy5evS/F7Dl24A9f3Gw4hwTLriem1ocw3WoQhnGucxvLjjLWN0S1jDCphtkf4uLMMFrhIx+aOQOX4iF3Pk6D8iLbw+58APG45kU0qno8SKvGyrzmGYv3NcSVEUMQjYX+g+9NTPG9EpuBCnnRm5x0QUx1oj9YlPVovzdehNDMFbcdr4XjZViAa7xys2dbDOu42JWekKH8mLhHJotSOqmAElMFuDDpRVOyEw3IIbzuHY+FuU8pHicMMOVCJOYU87I3vvjbyzM1lg0ndhwFnvP8iBtd/8qaxBECfOz9GG1cm1MK1yu0MLILeu6NMNQEAATLshXKDPcVmsqZJcDPIcmzBifxd/i8TDfBNvAxSc5zpe5JlypveMaaqkLhE5YAwPScvobig1QX2Nnf5Jb3FuV5xvMzPvF9LLvfZSSjtUPQc2UXi77UdtC6ZdcKZQ1pqqnc5W7p5AFyyLkO93SnbgLHsAdGVTVWUJWcVJ2B64nFInbdpwYeZz3u81ocUVIV38O8I/C8RF5Lp/Ck+xfM9j0vOZkss448VlEZp3AMlZO2C7tZzszJzjBVUiJKMTXSjdo6jZ6wDeKM9hGNGYqELcjVYddOKWIS+u+tR1DO50Z5nxvhCEWOx4WGNSrgYOFJVM41FtKiDo7iNpOSeVuBlufqBe8PAIBtkbqiPdakRHaEALdKIF3mWovfI8nxKXJJAAQR1MVRR8ZBsSomjFMZ7Xtfcf/tLu05E1NFLvyAGUQ0zn/5MBQEVPWL4EyyF93dszEwdC9O+EMxD8p7v0wOgdy97Rm42aWeL1SOL1TuU6aRkkM3u/5GM9d/GB76P/jhi22vKAq25QItu8GsrLIK/dj3CX4vTRbgt7r/QQnNwbTIxZbUazV2XACyM+/7Pk9LPRQkFhrXCpJjkEuTS6Iey0Qi8YQbYVQVxMMe7X0PZ7r2Y2z4WvxHT1M877KCY2huwMySDyhW1aTECVYh9Xr8yDcCAPCYZwrGhTrGtosz+xDQpNR5ZuAIHTgsjovgkbA57eaZgzG+dyyt1wp4kzBG2SM/51XZfTkI4H739ISFzp7uaUkqHQKKRTm9E/4W/q9GhOoXKVdqsO23A2p9oBTozCotgiMEeIla5JsU0RPF0O4MC92R6SYwbIQXIbzt+RIzfH3Q3zsGXQTZn7p65kqOfY9gFs2bHGr1sdCqxhHCfwWUI36VkplFTQgrpYuzyjbHEQJ8CWmOEaGbLTv/NS5j8ZjtiFX2pozU6exekvY6O7mW4h7P7FjWpO6ihM5iFYo4oceZrv0AtM0gCYkmq9YL34ZaNgofK0Uqs2irois6QoCDEEwKd7Dk1NVQhBG+jyw5dyYwI/A8I3sQC45LRdlmKokW204jqUXJNBJzxike1E94fjN8bASusuuJacWF89yowXnBSURAElyiGQwlPvZqm7x01PiVaiQdXSbNXgsidTSXfdrzq+F6hF6uZpKSACeEFBBC1hBCVhJCLPOYoLAuvOQA7zeWnDdTREDQwf9BppshyaLIOZluAkOEVrWFVFAqKV7yfqe7DZlM3rCP1tB5RPRlM9QzEne652o+ymgMHTXMUJheRSk9bMJ5FHHGR1bmoSAotnjR1yhDg3eDgOLHnP6ZbgpDBrnZcEuXtvynYvM5LThFhQIAuQigFD7c5ZmHuzAv081xjgrFbgHe7UgRLYe54ZaZboYsFAQ7qfZPVkbq6H1q5Mq3cW1WdbvXk6lGSENyIKOz8F6B5zWXfc870laezqkKcApgBiFkGSHkEakChJBHCCFLCSFLDx06JFVEYzX247Vgz0w3Icas8IVo7v8Sh1A1YfteWh0tS0dKH5QB7HknsxOCiG7BeFLh6004U25LpJNrhDW68wu5wr0GI72ZUfv9GmmPWZGLNJe/zLXGVlPJVAX4ZZTSVgCuB9CbEJIUNpBSOopS2ppS2rpWrVopVGWnbovyR7htppsQQ24QBqkHx1Epza2RJjpzsd99zEZOwxGsynkEHyokhZZCyalGOPNsLRMO2IgZIQBc606/KW+j0nH4Xqd1W1VyCoM8o61pkAFSEuCU0j3c/wcB/ALAEt9zSoEDtBp205oYE7rWiioMYSfdnVxbDqNKmlsiTxhuQ44eDP0szH3KUEycZzw/y+4TCnA5pxsjEREzRbSt+sdjV89c09tiFMO9TQipQAipxP8G0AmAvniuOgjCg8v8H2FmpLVVVejGTrowubbsoql89ZjH4GA3rKRnsbUMm1Nb4yLkk57f0IALivWQ+w8U5HaHCxEbPRHJBKk7sw2g2kP3aiWV12UdAAsIIasALAaQTym1JJA2lfmdaYpQPtNNiHGEJobFfSbwhKbjhgS7ok/wYSualMDI8E1Qe+UtizS2vB0M44jv3oKcZ3Eh2YI+nu8BGLMBTyeZ/vqrfsh8T1zDApxSup1S2oL7dx6l9G0zGyaHnTwN/fAhr9QaA309nKS5mBZpY+jYz8M3YVL4KpxIUxAspftXSCukpQ0MY3RyJbt6nEn2ZaAl6uyI1MEU0RrVw8HnMSfcIkMtAjxB80MF2EcaKmBFJotsYnqkNVJdHPwkdKspbVEj2+7k0kiTTDchbfChU5Ohgl/2UJFdFRiGQyKP5PmRFugZfCkzDQLgCZ0y/ZyOEOBC7DJAngwoJ45NJ6n1SPToUNqGgnxr7XJv9fBruH2mm2Ab7Hb/ttL6mW5CAsRmOvCMQA3YmVrBCR3679/CyUkjzETK1rcUOQCAE1RbO9PVq0p6SCfNztuUjkCj0nEYF74m003JOELduJ0W9seHO+L//G9muhlxLNAkOEKA23URU4kZ4ahd9sLIufgufJWhc2yMnC67b2SoS+y3lEicEbkIA4L3YHCoe8L2t4PdJUrri0exMnKW5rJi7DZLMw4xbIaWTbzv+zwWB5vY7u4SLKfRhfF0rfEoYcXLzREC/M2bzov9Fg+Rw7QyOvjtkUtPKFRfDD6KN4I90DXwGgLUWMiZ78JXYbwgTZMQYS9ICV8KF74Md4nFRSmlXgDA2PC1eDDwguL51PgvBXd4uz3iRsmW6zCT3p5fkcOla7MPBP2CPXBLYEBsS7vSj9G69LOEUj+HL7O+KdT8cAGOEODCXHLiT/C1kUYooOIM0NYjfJf+FL4cALBZMGMuREV8G74OqczQlN7YBBRHaUUd5zIP/RHc4ijNQZhQdDaphFvVXVcgnvbt/aByFqox4euwndaL/b0fNZIc3PamMKa1QsqqCkWI+CFXC7CTDmaFWwEA1tG8tNXpAsWbwR4A9Ak+ubLp0l3ayQw0FVLtrfWRhqplVkXOjE0OGIlMjsQXj8eEr8tgS7RTsWiz6ed03NMkFgA+knnngamRtmha+g020jNMPe+KSGNZwToj3BpHEXXe2Ulrazibssj5O3K+5nb9Hr5Ec9lsJdWvhRsCg1XL3BIYiOeDjydtHxsq2wun+eHEiB1FSN1/QGlxfULo6pTPDwC5xftNOY8Qxwlwsbmbn9PtphvxA+yHT7as0dntSnq27L5F9FwsiFyAXoHn8WHodtVz8W2QEzyHqPaYKal8aWSLmiRTi+l5pRPweujBDNVuD/ZYEB5CaVyupMYX7RPqIOa78jtOgJdw5nE8J5D51WU1rBRZsyIXIaQhLwffBgqC/bS67H4rEHq/Kbsz20u474zICwqtLyI7eOpmG1a4xCsFpjOrtpOV5SdkRnGcAN9G6yXoBXcbeBt/lCavQx6z9MuXlH6c8jkogPVp1NVPCF2Nx4LPCeqXfhz+FCWiEAceutw/DG1K9YVGTRXeBE2KbPmScCJW9P2EUEfLv+a3NzU/5pDjBDhA8HzwceSVTkCvwPN4L3S3YulRnGnf6ND1sW2TTXCs0TOIzNDRAcA+RFfKD5iQtLiT/x28Enwo9rf4JdM18Jruc7YoHZW0bRetnaBekuu3B4N94Ef8AfozcqHoPHWSklXopW+wF6aGtceM2UVryy42mvFKvsI/TFO5h3RkjMlG7vS/gQ8EliZSMcc3RE7Hv+FmhuvYhxq4XsO6RCpEXOa/IBwhwOWsb2ZFLkJQQn0gNNr/IXwl2pR+ioGh++LnM+ENXiTj4dg/eB9u9SfmfNxIz8D9AekYDIW0fFIWk2v9Q/FA4EXJ8ueXjsaVGh98IWIBvZmejgnhjrL7F0b0PwyFUDdrVPr8ncotTn0SukV33VpRu/c7BFnKA9SDmwX2w7tpTVPbopRe7jb/W7Hfs3VkjMlGltBz8FH4/2J/S42h6wPv4OXQQ0nb9ZCp9bRUcIQA18sLwUdjvwlo0szNDAG+WmZh46vw9ZKLj/MjzSXLt/CPRhfRm38LbYC5ohnoO8GuAICTKB9zk9eD2iJmwJT81vJc3IjXuxO8FbxPskx+pC16BZ7HB6E7EYT5Cz6LIufipIpH3v8F3sKCcNRxjHJJyXj2JAhwa1UoKyTUN3vSYKvsBMbJJHVJ9bneg1roHXga7wXvTNhulgr07Nra/Ta0kpUC3A9fzA1dqvMzo7+Ur7MK1KOU6Yk93rROcgq1z8I3A5CfAR9CtaRt3QKvonfgaeSVTsBZpWM11y+E7/2vHoirLuR7gmBW5CJE4MJnoZs1nX+ujvCgO2hd7Oeuc2uknmSZY6iMVdzLmSo8ulrGkB5VV0TwFbYqcmbS/tv9/XCLf2Ds7+NlOPRuMTeB6R54JcELO5XFTY8remx+pB0+Cd+Ka/1DU2ukBPWrmX/PHCHAqYY3oFyHC2/pw4H/4elAb9vFU9Hyaa7PWSf5Ct8L3Y280gm6Ul79GzkP+ZF2AKLp0ITc7u+HYUF180W+3XpDAq+jjWTVTkJ6B5+W3XeZ/0PZfSWKZp9RKOT7XelqugVeTfj7Tv8bCqWT2RxpkLRtGW2a4D24WkLIZyPtJBbu+XvyT+T8BC9sfnsg5cw7BFtoA8Ff5kgMYsG80RECXAvCDl8XaRjrcmHnz4y0xuRIexwVZa/JNHtQC9f5h0ju4xfzVqUQQMoKltGmGB5WF+A8Rh6B+RH12XWpQBBPCbeL/R4S7IrdmhyclCCQ+15QeqHywpVPer2EniNbdm0kjztfnAGhe3W1Mlt5OvAk9kOP2ih6T04ZMC1Oz6TOCvNHB6A3hEBUHSDfWUWogDt0zoqsYJfAzphfjN0WSYzrMityEZqUjtHlPGNV/ouZ4YuwKCIvjCTbwv+v0CalmbbcYnH8/AQvBx/Cz+HL8KRgNv55WJsKRgivY9Yy41IS4KdQDi1LR2JASFrXL6X2EZ6vSMNisFPMGPU4iInRq77i1VBmD38797S1K1c2QO5hXKowK1LjqcCTho8VIjSHUhIaAehbHTc6gB8MvICvfO8lvUR4Hg4aN2dTUqEozbSv9Q9FHjmgeO6J4Y6YGJaO2iiH1EMZoa6EfUpCUq2PjyN5HULp2L20Bs4gh1TO6jz20eqoRQoNHatXfRVT19la5JpLVs7AgfhNtOJW/h4xJ0GDVZ9tRlPQ8U5RIRMsQEYJQutG2xT/rUeneADVsYieK7tf75VO5+zAZ0VaJe0jhHLti4b9VFoUkzJf1Yo41ZcRnCKklPrwJ5UQrvICXGYGbnMBTlxlVIWilU9DN+PxwDMAgKGhu1FEy2M7PU3z8bz5mBxFtDw6+t9NqY1CrBpodlikFZstRmyS13QdbYS80gmSDjriuOpKLdYSvkCOfqEesd8bItEAaHoyPDkJpRfdLyqRFpdEmuqqK5XnSWnSMzOsboevyYa8rIaT1bp6OzTUFVMj0YWjuZGWaO4fjRIuoYEWlFynJ4WuxGX+4dhmYp69HRmIY64FM1bdebty/gGOWCS/1R7a80tHS26XVKHAJbvPTIRj8rXQg7jL/zp26JhoAOa/pIWOQ2ZCQXC5fxial36R5Kkr5VEp5KCEaSt/Tuntif+bhRYP4I4B+YndgOA9CFEXSFkNZpWuyZvSg/tR+LYEl/i2jZIDQr11s/QM/okOyRYkiyLn4NlgPCi9mqONEj3b5yX8PaJ7snpAzJk1k21SzVQ7fRK6FZ+GbsaEcEf06dwU1StErUXuap1sIhdrUy11O1lhIP8oia19JfhQghnfSY0z289DN+H+QF/ujPruxUGBSuSJgLxZoxR++LBYQUWUDm72D5B0HDKLXbQOilABhaiIddyXz/zwBVgUMfu6ieh/bTSrm7pVmpLF0zfhzjjbP84SO0JHCPB0QUBlF/DEg6J25fgsqmBIFxQM6YIel+ahYEgX8YG4pWXyrH1uuKWhz2a+LuHf/W46D5OfjAe4P7du5Vg5cXmeP1/ogPvaJaoRxO/Jcw0M7DAl2BapixLkYmioKwLw4okOZ8PtIigY0gVD72iBmhWlbbD/fL4DCoZ0wa0tpZ1sAPXgZRPCHfFvRFkVBiTbgQ8JdYtlbZET4Pzfzwcei20rGNIllq4OAP6ItIMUzUu/SPh7+euJ3oTieOw3tagXu3dXNEm+ZqmIkkaR8yo2A7mX4DuhbpLJPXg15kEN6wR9OjeN9dFPj18KvXPvTs2ioQye7tjYUrWjlTp5RwjwdGlPCSjcOpL7aj6vPddUTIHP+n2ERq0uGvvH4hqFz0kAcKlkUdJ6vx8NPKuxZDLzI83xRrCH5D6hI48Ue5DoePVG6AEAwBrOplsKcUAzsc51Ylhf0oD+IhPF/yKp2rwnMk4mF2uq/BW5AEB8vIh5I9QTgPLip5RAJESb9ZDcGaXo4h+Ey/zDdZ4rGf5amCOPxRDoy86uF6VoacYHH3eciW85D7RnOVpOm+Aa/1Bcyy3uRuBS9/bkFOKbI/XxdrB70m6t1zI9crF6IVkIl7M0mR/DVwCIOn4BwGvBnrjeLx+p7hgnjNR0ukKS1wSUAgwko2dtxwhHRDkjzWJoqCsuLf1I1kGnmEbd5LU8B8SAl2zC8YLDpcbcOppnKFw1z6/hSzkva+tmcI6wAzdqFqcXAgoXka7LjCZ0C76Gl+hEPO75XbZMJm01eHvdRq6o3bXWYbeVyuu1pYm+JGdFLsIX4Rt1HcmrN5ZFrNPZbqANExIxjAtLB09KBTWrHOGY1zImjC489w32MnScVsSCOAIX9kI+dEQqoi6VdSQreDaY6C9iRavYDFwAUQxfZH5dQvis2KN0CrTY+UwYHTWR6HBhVU8QqmxnrVTvAUR1v/PD0tEd04EZY8QuZpWTwh0sPf/SSBNDxxnpHZfNBHg6YAJcAAFVTK1kBvwn2T7RItQplENe6QT8GL7S0vqFiIW+HhVAKvxFona103QkV+DZTWuhbekn+Ch8m9nNUqWAixUu596vJjb4CJmAPrNKLeKIF1pKenjp4/Rt18sHoTvVCwnQ83IUBm0jiOfLPU71hW3V8i6VSlbCszlinmmxXpyhQklTPUo68NScBOK/J4Svxh5aE3M1BGpKN3zALD+NDgur5jGbkKeYK1JNZcbPwtNNv9ADmBm5COtoI0PH3xV4A7XJMQBAxGTDeKPqA6tnq1KWJlow0q5DqIbXgw9ocrwB5HXoUmhJVpIJHCHA00V0Bp4owP3UgxyifVFPDQoX5kZamnY+M+EfmiOwNlqjmuwy+4XdI/CSalAsLfjhSyk7ThEqoIiL462qAzdYh37BJ13ehQimhNvhRvdCgy0xhpYZOO8kJiWAx4Y7md4msyBl1Q78rFrRt98158qnoFKj/dnyYSknhaJqCykVCi/MxA9GmzxpLzG70kjguHNG9agwu/CMqgllhNd4zbm1cXlj/SnELmqo3i/iesW00XAOPcyLtLDUUUWv0Lz6nNqolJvser1TEJ1S2AftzkwcuxfUT7YQ4R2WtAj+PkH15LpuRCzJiiRGbK7IyzipPr3RPxBX+d8H/9I5p27cFLFmRX1ZqirnetCGc8Y7o0Z6whhY8a3jiBn4RQ2r4a8+V6FBtXLYcfgUcr1uzN5wAK//tg71quTi+0cvwZCpG5G/Zp/sOcY91BbL/juGelXL4dIhfybs4wPlE0TzMt7rmR3b93DgBTzgnhbL5MJzX7uGaHdmDVQrn+yUsuL1a1Fw5BQe+HoJCkuCSftHdG+F+tXKgVKK2z79B4QAL19/Dgb9sTGh3KDbLsArv6wBANx2YX281kXdc61uFWnzsilPXYaSYNT+upzXzZ2zAVo3rI5whMLjJug7aTk27WmAwaFu+Lx7K3jdLnRoWhsRSnHP6EWoUcGHUfe3Rl6N8rho4KyE8w/v2hLXNqsDFyE4eioQ6+MH2yerG+5qfTpmrj8AFwGmPXsF/jtSjMaCdFM9Ls3DWbUr4sjJADo0rYUIBTbuK8LPK/bgx2W7k87XpXld5K/ehzZ51bCk4Fhs+/LXr8X+wlL8u/0IBkxZn1C2bpVc7CssVe3PijkenPQrf4Ed5SIPLucsY75+oA38oQia1KmIq9+fx/V1ffyyYg8a166IL3u0BiEEf/e9Gu25fhp9f2vc9O3bqEWO44+nL8e5AuH06BVn4uJG1XFG9fIoLAmgflVO4AyK/vd2sDvW04YY79OWlHdS+CrMCl+ExmQPAGDeix1w5btzNR1rhIUvR4V0u8Hx5+rze1vB7XLh13ELcS9mC0rLv4LW0mic9fG92sLncaFNXlyVVrtyogD/q89VqFrei2CYYsfhU1ix8xgG5m/ANefWxtA7WsDrJqiY40GnZnVwevW4AF/y6jV46/d1mLI6LksaVCuH3cdKFK/x03taAT8pFoHLgmBWjhDgAGKdfCY3G2/CpQ1rUK08Tq9eHpXLKV8KIQSt8xJ1pydoOVQiJXFDe1D0Cz2AD0J3Ynlu1NtuHc3Di6HHJM/XRCJ1GQBUq+BDtQo+1K6UIynAuzSPentu3F8EAGhcuyI6nlsHg/7YiEY1K2DH4WiKtWrl47O0Fg2qoIbCLIP/IpebiVTI8aBCTnIfCQdvw9pVcN2OaGajXE7IX3JWDew+VhzbJjfDFnqb1qsaD6gv90IBgKua1kaTOpWS+pEQgssbJ9rfXnp2zQThzFOjgg91KkXraC8qU72CD9Ur+NCsXuWYAOe/PmpXjgrwd4JdcZV7hWwbtViL7Ka10cn/DrZzsW2qVfCh5elVcfBE9AVRs2IOWp5eFb+s2INLzqoR+5SuL+in06rkohAVUUgrolm9RBWWy0Vi/V6rUvz+tiwdiQhcKEIFtCRbVdsp5CgqYxGX2ER4v2J1gqaUokzIaRJjoEG18ji7dkU8ztnaJ9XvklcOtD87+ctQrE4RjuvqFXxYvy/6rNWpnBsL6yAux5ct70v88mjdsJqqAL/hgrqqAtwKHCPAxfAPQfwBMz7YwrEgRhRhuHEUlXGNf2jKCzxaVV7CwSc8JMHRwOQ604VSezLRVnGVn4VvjuULTYXNNG5h4k7ThQljjqeybiDVWgIai4+ul/nhC7A4cg7qk8OqZcVRHffSmpgZboUfyt0JKMvMBMzqcgL9gdfGhq/FAHOq142DBXj0fzMWvPiBKlzA1O+cIo9cTk/h5M4mZsGmY+Z1qT2kWurS+6AbaX9yHem7uWqX1z3wiuZzGbUg8cOLTwyaeUbgwsPBF1C/QjnokuAmIrYQUrt7Y8OdMibAHbGIKQWvTjLDSzM+AzcXrWZKCQ98wiE2m05nGLlbrUco8/dE67gx4nDDt0d4/632JtbytdiidBT+EQXNAuJfs138g+LbQOHXmQmKR5wAWw5TX+4mVUYIEDahYZrig5uAYwU4f8v4l2Uqn1BCHbgVyI2HxO2Zn4KnqwVmCjOrtRVGWuq2YLFKja20Po7Sing3dLfk/u2R02RtmfnWCvOuEgBfhzsDAFZySZrF8MkoxGzWGDOf/zLlvwpmhS/UdJwUWk30tBRL1UT/KK2Itv5PUjuJRlIS4ISQzoSQTYSQrYSQvmY1Slvd0f9T0YAn+nGZL8D1CBdepsnqwDMv3zOOmcJaa38aedm4DDQ01ftbjFy08o/CAi7aX9L5dT4hLkSwg9bF04He6BnoI1lmqMzLopCqx3UH4tf8T+R8XFA6Go8Fn9PVRiFmDQ1CSMpOVvtoDcWcqGZiWICTaHqJEQCuB9AMQDdCiHy4PZOJ3TATJJuV+TMBhRm44IURexHJPPxMfstj7OWtrUeNDC8lAW5HpZhUc/lNkyPtcQyVJcO/ppo7Vdi1J1A+YUFT7zvQzJe7nNrsycBT5lViEqnMwC8GsJVSup1SGgDwHYBbzGmWOh7OzCjHEx1EvNmbHgq4NFa8Zxc85uqt+DbJWUTxD3o5nzum0y8nuA6P4FPco/JZzn+253iM31K5Y/l25nj1n1tKneBx823Vd8+87uT6czxu+Lh2+zRcO19Ga93lDIwr/pp5oZLrdcPDtV3qGoRlraIU0kk0onUnVy524pFKsHCYVkGb0k+Ttgc06M5dRHmFSO/zLLwGqXGg1v/CsS8u4+P+nhK5JCkxhxRG1w6MkIoVSn0AuwR/7wbQVlyIEPIIgEcA4IwzpHVmRji/fmU83bExul8cPefznZrgywU7ULNiDl654RycUb08th86BX8ojJanJ9ouj3uoLY6c8mPLvnewaOEEfBvuhFqkEJ2feA+fHI7gyQlxu+C8GuVx3fmnweMiCIUpzqpVEcGItpjhn97TCt8v2YWmdSrht97t0W/yOrwqcMY557RKeKZjY3S9+HScVjkXz13TBHe0boDVu46j/5T16NC0Nn7r3R63fvo3ul2c2HcDbjkv4brOq5fYH0Z4qfM5+PrvAkx/9oqE7XWr5OKFTk1wc4u4bvPDu1vi/Zmb8NbN5yEQSu6PFzo1weKCY7inXXJ7rmxSG090OAu9LpfWrcrRs30e5m8+hL2FJfjvSDFubF4XL3RqilqVchCOUPS6vBHcLoL3Z2xC/1sSF+te63Iupqzeh4cvPxOn/CE83bExPpmzFV4XQefz62L17uOolOvF76v2YvnOY6hfrRxaNKiKZ69pjM/mbsO97Rpi0tJdqFIuWqbrxWeg6WnRWemEXm3RffQi3NP2DNSpnIs8zrOvZsUcvHhdU3S5oC7qVS2HXUeL8VTHRI/Q/13bBIt3HMV59Spj8pPtsWp3oeb+uKppLZxXrwrK57gxdNqm2Pa3gvehITmA38LtcYv7bzzgmYFHAv+L7X/66rPRpXk93DN6Ycyv4puebfDA10vQN9gLQ7yjcbzdS7hsfwkWbI2aAj4QeAl/5TyDzoF38KznJ7RybcEGGs3o1C3wKm52/YNunjkAgN/Cl8bqGnp7PGrk5/e2wmPjlqOCz41z61YCIQRdLqgbc8C7OK86Bv3f+Zi6Zj9uvbA+Zm84gDaNqoNSYMXOY6hRMSfJRlt8j7ccOImHLk92Hru9VQMUHD6FJ68+W/LY35+6DPM3H4r2383noX61cjhY5MdPy3fjtS7NUBIMY8XO49hzHHgn2BXLI40xyDsab4Z64M2booqHEfXewbW7P0JvLrF6p2Z18MCleYhQ4Mgpv2y7U4EYXVAihNwBoDOltBf3930A2lJKn5Q7pnXr1nTp0qWG6mMwGIyyCiFkGaU0yespFRXKHgCnC/5uwG1jMBgMRhpIRYAvAdCYENKIEOID0BXAZHOaxWAwGAw1DOvAKaUhQsiTAKYDcAP4ilK6zrSWMRgMBkORlFzpKaV/APjDpLYwGAwGQwcO9sRkMBiMsg0T4AwGg+FQmABnMBgMh8IEOIPBYDgUw448hioj5BCA/wweXhOAeoR4e8OuIfM4vf0AuwY7kO72N6SU1hJvTKsATwVCyFIpTyQnwa4h8zi9/QC7Bjtgl/YzFQqDwWA4FCbAGQwGw6E4SYCPynQDTIBdQ+ZxevsBdg12wBbtd4wOnMFgMBiJOGkGzmAwGAwBTIAzGAyGQ3GEAM9k8mStEEJOJ4TMIYSsJ4SsI4Q8w22vTgiZSQjZwv1fjdtOCCEfcde0mhDSKrNXEIcQ4iaErCCETOH+bkQIWcS19XsufDAIITnc31u5/XkZbTgHIaQqIeRHQshGQsgGQsglTroPhJDnuDG0lhAykRCSa/d7QAj5ihBykBCyVrBNd58TQnpw5bcQQnrY4Bre5cbRakLIL4SQqoJ9L3PXsIkQcp1ge/rkFaXU1v8QDVW7DcCZAHwAVgFolul2SbSzLoBW3O9KADYjmux5KIC+3Pa+AN7hft8AYCqi+WPbAViU6WsQXMv/AEwAMIX7exKArtzvzwE8zv1+AsDn3O+uAL7PdNu5towB0Iv77QNQ1Sn3AdFUhTsAlBP0/QN2vwcArgDQCsBawTZdfQ6gOoDt3P/VuN/VMnwNnQB4uN/vCK6hGSeLcgA04mSUO93yKmMDVUenXgJguuDvlwG8nOl2aWj3bwCuBbAJQF1uW10Am7jfIwF0E5SPlctwuxsAmA3gagBTuIfssGAQx+4HorHgL+F+e7hyJMPtr8IJQCLa7oj7gHiu2epcn04BcJ0T7gGAPJHw09XnALoBGCnYnlAuE9cg2ncbgPHc7wQ5xN+HdMsrJ6hQpJIn15cpawu4z9gLASwCUIdSuo/btR9AHe63Xa/rQwB9APCZimsAOE4pDXF/C9sZuwZufyFXPpM0AnAIwNecGmg0IaQCHHIfKKV7ALwHYCeAfYj26TI46x7w6O1zW90LCR5E9MsBsMk1OEGAOwpCSEUAPwF4llJaJNxHo69k29ptEkJuBHCQUros021JAQ+in8GfUUovBHAK0c/3GHa+D5ye+BZEX0T1AFQA0DmjjTIBO/e5FgghrwIIARif6bYIcYIAd0zyZEKIF1HhPZ5S+jO3+QAhpC63vy6Ag9x2O15XewA3E0IKAHyHqBplOICqhBA+e5OwnbFr4PZXAXAknQ2WYDeA3ZTSRdzfPyIq0J1yH64BsINSeohSGgTwM6L3xUn3gEdvn9vtXgAACCEPALgRwD3ciwiwyTU4QYA7InkyIYQA+BLABkrpB4JdkwHwq+k9ENWN89vv51bk2wEoFHxuZgRK6cuU0gaU0jxE+/lPSuk9AOYAuIMrJr4G/tru4MpndJZFKd0PYBchpCm3qSOA9XDOfdgJoB0hpDw3pvj2O+YeCNDb59MBdCKEVOO+RDpx2zIGIaQzoirFmymlxYJdkwF05ayAGgFoDGAx0i2v0rlAkMLCwg2IWnVsA/Bqptsj08bLEP1EXA1gJffvBkT1kbMBbAEwC0B1rjwBMIK7pjUAWmf6GkTX0wFxK5QzucG5FcAPAHK47bnc31u5/Wdmut1cu1oCWMrdi18RtWhwzH0A8BaAjQDWAhiLqKWDre8BgImI6uyDiH4FPWSkzxHVM2/l/vW0wTVsRVSnzT/TnwvKv8pdwyYA1wu2p01eMVd6BoPBcChOUKEwGAwGQwImwBkMBsOhMAHOYDAYDoUJcAaDwXAoTIAzGAyGQ2ECnMFgMBwKE+AMBoPhUP4fhJWeNqSRcesAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(1)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Passing `beta` as 2, gives random-walk distribution." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAA26ElEQVR4nO3dd3gTV9YH4N+VZMtgm25Mx3TTmxMIxYTe0jfJpmxCevZLNnV3sySkENJI3YRkUwhpm142nUDoxIQEYno1GDAdbAPGvUi63x+aGc2MRtKMijWSz/s8eTKaGY2vkH10defccxnnHIQQQszLEu0GEEII8Y8CNSGEmBwFakIIMTkK1IQQYnIUqAkhxORskbhoq1ateEZGRiQuTQghcWnDhg3FnPM0rWMRCdQZGRnIzc2NxKUJISQuMcYO+jpGQx+EEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHAVqQhqg9QdOo7i8JtrNIDpRoCakgeGc48q3fsPV83+PdlOIThSoCWkATpytxomz1QCA6joXAGBvYXk0m0QMiMgUckKIuQx/ZjkAYGKfdDx/+YAot4YYRT1qQhqQpTtPIrfgTLSbQQyiQE1IAzP7hx3StstFa6bGAgrUhMQ5dXZH26ZJ0nbBqYr6bg4JAgVqQuJcaVWd4vEfsqGPBCuFgFhA7xIhcW77sVKfx/JOlNVjS0iwKFATEufSU+0+j93yX1rgIxZQoCYkztU56YZhrKNATUicq3U6/R4vr3HUU0tIsChQExLnnvlpt9/j419YVT8NIUGjQE1InKuu89+jHtm9VT21hASLAjUhce7wmSoAQJdWybAw7+PFFbX13KLAOOfgnMbWRRSoCWkgFszIwt8n9fLa73S5otAa/ya//Au6PPhTtJthGhSoCWkgEq0W3HF+N+nx5kcnAgAOn64M+dqcc9Q4/A+xGLHnJFX2k6NATUgcu/i1NdJ2xxaNwRhDZptUdG7ZGMl2d/HMK7M6hvxz5i7ajV4PL8bTP+0K+VrEG5U5JSSObTly1mvf4nuzAbh7wRYG1DhCH/p465f9AID5v+zHQ9N6h3StFbtPSttOF4dVa2C9gaEeNSFxSl4Zj2nEOsYY7DZrWAK13Be5h3Wfe+hUJZbsOKHYd6DYMxRz2oQ3OqOBAjUhcaq81jORxVef1J5gQU2A9D1/vtt8FJmPLFLse+CrrdL2K8v2ImPmQqzNL/bK4jhbVYfs51fitg83KPbLx7qfoaEUABSoCYlbZdWeQN20UYLmOSWVdfjgt4NB/4x7PtssLe2l5d/L9gAArlmwDu/+WiDt33y4BAMfXyI9PlVegyNnKrH+wGk8tzhP2v/1pqN4d82BBl83O2CgZoz1Yoxtlv1Xyhi7tx7aRggJQVm1p7zpmco6P2fWj+83H5W21x84pTg29MllGPXsStz5yUav5835cSdGzF0e8faZWcCbiZzzPACDAIAxZgVwFMA3kW0WISQUnHP8uOW49LhZY+0etWhfUTm6paVEtE3yG5sf/a7diy8qq9HcL/920BAZHfoYD2Af5zz470qEkIjLfm4lXluZLz0ONMnv201H/Z9gwBVDOwQ8p1ebJoau+dcx3RSPSyprsXZfsaFrxDKjgfoqAJ9qHWCM3cYYy2WM5RYVFYXeMkJIUIrLa6Rp44A74+PJS/r5fc4R2fl6bT/qnfoHAAu3eXrymW1SFcfEsealO0/CiBeX7lFkk1y7YB2ueXsdzlZFf0inPugO1IyxRAAXAfhS6zjnfD7nPItznpWWlhau9hFCDNp9XLlqy8aHJ+LCge00z01OtAIABnZoquvanHMs23kSLhdHzl5lj/aVqwYBACpr3VkbZ6vqsFu1gszEf6/WVcOjR2vvYRh5NskOYdWauz7dpKvdsc5Ij3oqgI2cc2MfhYSQemVR/VU3EoKxFnHyS2O7vrlv3285hlv+m4uP1h2ESxVw7TblDz5yxntq+r6iCr9ZIp7n6uvhbzx4JvBJccBIoL4aPoY9CCHmcKaiFiWqDA91AJVLEQJ0pc7FA46VVAMAXluR75V/nWC1oFe6e6hj3vK9sGjNsgEw+/sd0nZGy8aa53Ro3shrn9blGsqiB7o+RhljyQAmArg9ss0hhASrzunC4CeWeu1nPgImADS2u3vbFbX+J70cP1uF/UUVeHaxexGCwrIar5Q/m9WCvJPuoY6Xlu5Boo8PiM9lY83L7h+D7rMWeZ2jVUP7nvE9/LYxnunqUXPOKzjnLTnn2ncPCCFRt3Dr8cAnqSRaLWAAPlaly9U5Xbj70014dvFuOJwunPfMCly7YJ3inA+F54hZHt1V48pzF/lfWQZwB/f+7ZXj4w9OzcTKf5yPxfeOxvzrhkr7NzSQYQ4tVJSJkDhRUmm8LgZjDBYLg1M13vz0T7vw/ZZjAICvco/4vcbVwzrhiUv6ISlBeyz8oWmZeNrPcmCPXtgHV7z5GwBg39PTpCJMmW2aIFOWxpeztxgHiivQpVWytG96/7Z+26ZXxsyFAICCudPDcr1woynkhMSJl5buCep5ThfHydIa5Bd6akDLU++KyrUnoYgaJ1qlIP3ynwd5HR/auYXm8yb1SQcAnJPRAneN647bs7sGrJT32op8xXTyOqf5Fj2IBArUhMSJB6ZkKh7/c3IvzLm4r+7nT3hpNQCgqtaJOqf+2hryXq+8tytq0zQJ78zI8tr//BUDpe2/T+qFB3WUR/3fxiP4Yesx6bEzDDVAvpSNme8U0v7MhoY+CIkT6nKld47tbvgau46XYuorOUG3oXdb7xmH7Zs1Qvtm3lkcvgpFBfKYLGukLohA/fqqfPRonYqJQo/+Q9n4/LR5Och7cgrsNt8pjdFAPWpC4sT7vx4I+Rpvrd4X8JzhXbWHMgAg0WbBE7JZkE9d6tnu1MKTiveirDcdyLT+bdBINv4tTz80ut6jw+nCc4vzcOt/c3H8bBVOllZjq2pxhVV55ptZTYGakDihnoASjG83Hwt4zh3n+++pXza4PVokJ+KvY7rh2mGdpf33TvCk1/1JRz0Q0evXDsWqf56vecxhYIgGgKK0as7eYgx72rsq3+0fbjBdHREK1ITEiWlBZkAEqqwnOjfD3ZPObJvq97xkuw0bH5mImVMz/Z5nhK9UcIfBoQ95vri/QlRmW/uRAjUhceDw6Uq8nRPc0EeCVV8YuHpYRxx4ZhpapyZJ+5bel63754jBdnSPVobaBwBpKXbN/fJAffBUBTJmLsS6/ac0z1Vbu8/3eT3T/X8Y1TcK1ITEgfyi8sAn+aB36dhEq1Wa5fj29VmYf91Q9DAQ0OYt3wsAQVW8Y4xh15wpXvvlY9S/CEWifA3f6CkGJfp641FUmGh6OgVqQuKA1c808UDev/Fcn8duH9NVc//EPumY1LeNoZ8zLtOdZaG+eadXo0QrbhnVRbFPPkb92HfbAQAnS6s1nx8o5fCTW4cpHk/69y/BNDMiKFATEgfUE0XO76W/1HCfdk1wzbBOmscenNobLZITAQAOgxkWarOm9cZ1wztj55zJQV/jvok9pe3MNqnS0Mfrq/IhjoJs81EnO9DkGHVK3tES4zW6I4UCNSFxQF7EKP+pqXh3xjmGnv/JukM+j4ljyqFmlVgsDE9c0g+NE4OfvpEsK8faMz0VDiH4yhfEvWlkF6/nAUCtkGfu6zhg3gV0KVATEgeqhEA9tV8b2KwWWAJMxVZTL3UlJxZ7CrFDHTa92zbB8K4tYLMwqUc9sntL6XiNQ7sSoNijbqxRn7tji0YY1LE5bhiREf4GhwEFakLiwEtL3HU+HtIxDVvLv6b08tr3yS3uMducf43FtP5tMLW/sTHpSFl0z2h8eutw2KwMR85U4Y6PN+DQKc8iBeoZmur96iyXh6ZlIueBcbBaGGZf1Bcf3OR7zD5aKFATEgduHJkBwP9qLv4wxqRr5DwwFt/cMQIjuruHPNo2bYTXrx0a0pBFuDHGYBWWsvlp2wlcO9wzsabWR6AWe9SpScrXoV7gYExP9/i+r0UNAGDF7pNeP+ftX/bj1v/m6nwFxlCgJiTGcc7xhVCK1FepUT0eu7AvCuZOR8cWjTG4U/NwNS9ift5xQtqukS3v5Wvoo1YI1G2aJimq/Pmqm11wynspMQD4ff8p3PR+Ll5cmqfYv2pPoeFFe/WiQE1IjFuZVyhlOiT5WXYr3pyu8NTfLqv25Gbv0KiAV1JZiykve4pNXTK4vTRWfYef4lVaudTiz31r9X7F/l/z9U20CUbDeVcJiVOHT3vSyGw6ZxnGmwVrPLMyNx0qQUFxheL4FlnuthjUxbTDbD8zJUs0JufI16Cc+NLqsJRaDaRhvquExJFGIQx3xDKx9oiWM6rVbma8u17aFoeHTpx1T4yRT4kXXTyoHQB4LeALeGZYAsDewnLFEEykUKAmJMaJC9Q2NNU+xqJFi7YdR8bMhahSLdwrTg66ZbR71mXrJt51RC4Y4A7UFTXeP2OLamblit2FOH7W/a0m2BrbgZjnNi4hJChMd7WO+OJvKnqtw4X/+3gjAOCB/21VHGslFHh6YHIv3D2+u+YN2GRpdfbA9T6+2nAEa/YWw26z4KpzOupuvxHUoyYkxr24JC/wSXGog8aqMSJ5LvVP25Srsw/r4h4ysViYz5TDZGF/WbUyULt8jEefKK1GjcMVsRRGCtSExDhxanfXNO/1CuPZ13eO8NrXv31TAMpcavnNvqzOzaUKgP6IU9XVedFdH/rJ7/O0Zj2GAwVqQmKcWFDp+7+NinJL6pfWuobPXzEAgCdnWu0e2Soz/iRrjPvrKZMa7ISjQChQExLjKoWbZQ0t+yNZIygmCumJb6zahwsHtlOeb7didA99VQWTND4EjpwJXE1Pz5qTwaCbiYTEuKo6J+w2i1ep03hns1pQMHc6qmqdqKpzokVyIg6ecudPbzt61muqeN+2TXVfW6tS4FXzf5e2LxvSHuMyW+Nvn2xSnHODz8p8oaEeNSExrqrWGbGx0VjQKNEqTV6RZ3Col9qyJ+gPd6lJ3ml28vrUPVqnSil8cgnWyHxYUqAmJMpKKmsxb/lenxkFgXz4+0GcqTS+vFU8Sm/iPXlFVK0xecWXRNnsw6paJ85/fqXiuM3Ht5dIfaehQE1IFDmcLpz/wiq8tHQPVu8pCuoaDW1sOlh/FJwJ6nn7isq9CjTlHjytee5lQzoE9TMCoUBNSBS9tjIfJUJv2BFkj3pIp+YY2tn81e5ildaEmIJid+B+QFXHW74CTThRoCYkivYVeYoHMQDdHvoJ172zztA11uQXY8PB4HqLJDCtIRNxBZ07zvddeS+cdAVqxlgzxthXjLHdjLFdjLHzIt0wQhqCH7Yck7atFganiyNnb3EUWxT7ltyXLW0bWeRX7fZsdy0QrfrWz18+QNoWF1yIJL096lcALOacZwIYCGBX5JpESMPRWb6KSBB3ovRMwmhoeqanYul92dg1Zwr2FZZL+1f8fYyh64zNbA0AqK5zKd6agrnT0a+9J9XvNiGgR1LAQM0YawogG8A7AMA5r+Wcl0S4XYQ0CAdlN6mCyfoQa1qMDaHnGI96pKeiUaIVV53rnrV548gMdE1LMXSNx77bDgBYvqtQWp98/azxXueJFfMenJoZfIMD0NOj7gKgCMB7jLFNjLEFjDGvogKMsdsYY7mMsdyiouDuXhPSkP1nZb7h54glPPcXVQQ4s2ES/01/22d89ZWLB7cHALz7q2dRAq3a1Y0TbSiYOx23+1nJPVR6ArUNwBAAb3DOBwOoADBTfRLnfD7nPItznpWWRp/uhBi18VCJ4eeszCsEAAzv2jLMrYkP4jeOozqmf6v5W5igvukJ1EcAHOGci7eiv4I7cBNCQnCytDrka3z4+0EAwB8F2nm9DV3+U1Nx4cB2yH1kguHnDujQLPwNClLAQM05PwHgMGNMTBgcD2BnRFtFSAMQjpS6G0ZkAADenpEV8rXiEWMMr149WLPSXiDq6eB/jeDQRiB6s7PvAvAxYywRwH4AN0auSYQ0DHcIK5Bocbq4riJLYo6v1qQMEhrGGBJtFqm29U2jMqLWFl3peZzzzcL48wDO+SWcc8quJySCZn+/Q9d54s3EJBvNXYsEu2xVd60bifWF3l1Comz2hX289n34+0FdtT+qhd5epArWN3RlNYHXTKwPFKgJibLpsnKZd4/zTEme8e56aWjjZGk1Nh7y/iIrDX0EMQZLYgctHEBIPfsy9zDeztkvPRYnTADwmpRRWl2HpAQrxr+4GuU1DhTMna44Xl3nQqLVItWeIPGJAjUh9ejN1fswd9FuxT557eMxPZVzEKpr3UMb5T6+gtc43Ku7kPhG7zAhEXaguAKPfrcdVbVOryAtaiIsG9U8OVERuF9f5X+2osPJkUCBOuIm9UmP6s+nHjUhETZ9Xg4qa50YqDGBIklYHmrFP87HmYpaAO7KbPd8thkAsL9Ye2p4SWUtVuYVShNeSGQ8flFfLN5+Am9dNzSq7aBATUiEdUtLwbajZ/Hqir1ex+6b0BMA0CrFjlYpdgDKFVsuHqRcl8/l4rBYGO7+bDN+CXJFGKLfjBEZmCFMKoom+s5ESISJM9zUyzkBQO+2Tbz2NU709J/EyRaiovIaAMCxEuO1K0jsokBNSITZrL7/zFKTvL/UNkr0nK8O1MOeXo4P1hYgX1ZnmcQ/CtSERFiin0A9uJP3Woc2i+f8GlWgBoDHVLMWbxnVJYTWkVhAgZqQCLNZjeU4y2t8qHvUWkZ2b2W4TSS2UKAmJMJW5Wnf9NManwZUgdrpgjPAyi+JlJ4X9+gdJiRK5NPF5bq3TpHydmsdLtQ5/feq9fS6SWyjQE1IPVs7cxyeuaw/pvRro3k8wWrB/Ouz0CrFjhqHC6VVdX6vp3VDksQXeocJqUdL78tGu2aNcLWw6Ko/xeU1+HT9IXy6/pDf84Z29r4hSeILBWpCIui6d9ZJ2+qCSuHCGBVkinc09EFIBOXsLY7o9fc9PS2i1yfmQIGakBjz/OUDAAAWBl3LdZHYR0MfhERQWqodRWU1YblWy+REnKqoRYrdhtX/PB/NkxPDcl1ifhSoCYmgGmEFli2PTQr5WqeE6npl1Q50bpkc8vVI7KChD0IiqHvrFIzu0UqxikuoNh2mtaUbGupRExJBu0+UBT1z0G6zaNb6sFCWR4NDgZqQCEpvkoR+7ZsG9VzuY+a4nRaybXBo6IOQCKqqdaJRQnB/Zk9e0g+A+ybiH7Mm4Dkh2+PSwe3D1j4SG6hHTUgEVTucihVbjOjVJhUA0L55I6Sl2nFlVkdcmdUxnM0jMYJ61IREyE3v/4GSyjokJQYXqO1CTzy9SVI4m0ViEPWoCYmQFbsLASDoHnVmmyZ44YqBmBjlFbBJ9FGgJiTCkoIM1ABw+dAOYWwJiVU09EGIQT9tO46zlZ7So3VOFzJmLkTGzIXSPoeshnSwPWpCRNSjJsSAwrJq3PHxRgCeanjfbT4mHeecgzGGihqntI8CNQkV9agJMaDO6Z3c7JItlSVOUHHJkqB3Hi+NfMNIXNPVo2aMFQAoA+AE4OCcZ0WyUYSYlVi7Q65NU09WRnWdE0kJVtS5PEMf6w+crpe2kfhlZOhjLOc8ssV1CTE5+ZRul4vDYmGoqHFI+6rqnGgGwCHreb934zn12EISj2jogxAD8gvLpe1KoXf9v41HpH1r80+Bcy4tSPviFQMpD5qETG+g5gCWMMY2MMZu0zqBMXYbYyyXMZZbVFQUvhYSYiJ3fbpJ2q4UetLiDEIA+PuXWzD6uZXSWHZCkAWZCJHT+1s0inM+BMBUAHcyxrLVJ3DO53POszjnWWlpaWFtJCFmIL9pCLiHQdbtP4X/rNyn2H/kTBUOn6kEACTQCiwkDHSNUXPOjwr/L2SMfQPgXAC/RLJhhJhNmWwsGgDGv7gafds30Tx378kyAECClXrUJHQBf4sYY8mMsVRxG8AkANsj3bD6UlZdhwU5+6PdDBIDDp+uVDyudbqw85h26l1NnXuM2malHjUJnZ4edTqAb4Ql6W0APuGcL45oq+pR/9lLAAA90lMxpicN2cSz9349gLRUOy4Y0C5s12yUaNUs7v/i0j0AgETqUZMwCBioOef7AQysh7ZEVX5hOQXqOLZ6TxEe/2EnAAQdqP/55RavfSWyqeRa6GYiCQf6LRIUllZHuwkkgma8uz7ka9w/qZfh59joZiIJAwrUgqKymmg3gZhceY3/3rMWuplIwsG0v0X5heX4ZN2hevt5y3adrLefRaKL+1qMMIDyanfWxz8m9YRV1VMumDsdn9w6DC9dqRwlpEBNwsG0v0XT5+XgoW+21dvP0yq2Q+KT02X8veac45HvdgAAbhndFf+5Zoh0rGurZADAiG6tcNkQZf3oWo0bjYQYZdpArb6T7nC6UK1RECdc7EEuQEpiTzAfyiPnrpC27TaLokf9yAV9fD6veXKC4Z9FiJrpo5P4NTXzkcXIfCRyWYGB7t6T2KUe6qhxGPvAr65z4myV5/eDMYa1+zz1ycZmtlacP6xLC2m7WeNEQz+LEC2mD9QOFwfnHI4gvq76U1pdV69DKyR6vtxwRPH4iR93GXr+K8v3oqJWGdxHdW/l8/xtR89K23ZKzyNhYPrfIocz/EEaAKa9nFOvNytJ9Dzw1VbFY3m1Oz2Wa9xo7tE6VeNMt0pZUKebiSQcTP9bVOt0SSUjgfDdnBnQsWlYrkOi64O1BXj8hx2Gn1dWrX+oS+vmI/OTHt0ymYY7SHiZPlDXOV2K4HwyTBNTqKcT+85W1uGx73fgvV8L/J4n3vf7/Lbh0r5VefpL8WpNEU9Ltfs8/49ZE3RfmxA9TB+tVucV4eYPcqXHf/1oQ1iuK1+QVG7z4RKp8hkxt4Fzlkjb6hKkcnabe3HZwZ2aS/sOqQos+XPkTJW0vfQ+d4XfJD8L1lpoNiIJM9OvQv7t5qPYcPCM9HjHsVIUFFcgQ8hdDac6pwuX/OdXAJ4VpklsqHW6kGTRDp5VQlpngqyS3fM/5+HOsd0DXlf9AdAj3TM2/cgFfdCpRWPN5+19aiqs/sZHCDHAlD1q+fhhzl7vZRrv/GRjWH+e+AfcY9aisF6X1B+xrKhaxsyF0jYLInBWy1L59jw5VXHs5lFdMLFPuubzEqwW6lmTsDFVj7q6zomnf9qF3IIzfs9zhDCLcPeJUqSnetawa5WSiOLy2qCvR8yhvNaBpo19Ty7JbOOdpeF0ca+p4GoLtx6XthMp1Y5Eial+877ddBT//e0gdh7XLsYuOllWjYyZC7E23/ii6FNezsHgJ5ZKj7+5Y6Tha5Do+G7zUfxN9m2qW5pn+OvzPw77fe7uE973HfTMdJ3zo7s06sAOlCVEosdUgbpctdSRL+Iswo/XG8uD1qqQ19HHGCMxn3s+24wfZT1c+Teh5ETfN/d80crmEJ2ucF+7TCjElGw31ZdP0sCYKlAbZXQE8Jynlike35bd1ee5RqcZk/ojTgnv3dYznPHMot2Gr+PrPe718CIMeWIpnhR60wBw3fDOhq9PSLiYKlA3TjTWa1l34LTftKxAxD/4z2T5tSJ5bQdiLg4Xh9PF8fv+0yFdx9cNSLGnvWDNAWnf1P5tQ/pZhITCVIG6mexmUCNVnuqy+7MV6VWAeyhjiGy82ai3c9x/iMO7tsTd45SpWr7+iONBfmEZVu4ujHYzgjbtlRyU6vgg1ZpR+MpVg6RtraGPV5fvDalthESCqQK1fAZiVZ0TrWWzv7q3TsXOOVO8nlMSQs/35lFdpO15K/IVxyJRX8QsrnjzN9z4/h/RbkbQ9haWo9YZ+IO0stb7nsfFg9rjnRlZALSHPsRFaeX8FWAipD6YNlADwMK7Ryseh3vad8fmjaTtm0Z2URxz6AgEsepMHJR01VPzZecxT/bQy38eJG2LMxWrVd+aNh8u0bzOiO4tjTeQkDAyVaCuUPWA9BbzLywLrv7HtAGecUf5jSnAvWp1vIu1G6bnZnjqPH+iI+OnuVAc6YUrBuKSwe2l/eLvlfr1i7NS1RIspvozIQ2QqX4DH/9hp+JxYz/1FOSCWVoJAFrLJr5cPKi94tiTC43VLI5FvSO4EEMkyGcJvrFqHwDgn5N7Ybpwo0+9QIDY626SpLxJPft7d7U9vfchOOJ3GIzEBlMFajWbzqEOPTMVxT9sXxrirLNYGIYvr3GgpNKd07z1yFmv404Xx8Jt7txq9bcg8T6Desjsmcv6AwAe/W67rja8vIxuMJLoMlV0unhQO2k7u2caAODZP/WXKpYBwOJ7R3s9r07HePKzi915tv7KU8pFamWOrzYcwe/7T0Xk2pG2+0QpvggwAzDcBs9ZgkFzfGf2uGS96Ie+Vq7YI/5eqAO1Raj54a+w15VZnkVqe6b7XiSAkPpgqulWYunRD246V6rN8OdzOinO6Z6W4vW8QBkax0o8ZSrPzWiBSwe3R7/2/qcE92nXRFebjfrHl1sARKc6345jZzF93pqgnz/l5RwAwJXndAxXkwIKtBDtTaO64NCpSny96SiOna1GrcMlfTuqc4iBWpnW2amlezbqOGGtw6MlVVKvHXDPcnxwam98keteCaZzS5q9SqLLVD1q0ZieaUhvkqR5zGa14MlL+mF0D0/KVKAMgBGyFaQXbjuOCX3S0aap9/XnXtZf+oDYdKgEGTMXoqo2tm64+bM2X9mTH961hY8z/TOyOko4aU0Tb5KUIN00BICeD3sqIIorv6iH0JKErI/31xYAcK8wLv8Am31RX6TIxrWpXCmJNlMG6kD+MrwzPrx5GBZc786HveDVNThV7l3Hw6irzu2ExfdmK/adrgxfZb1QZlGGgzqrpqrOhdMVtbjz4404GyBlT36j7hbZQg71ydc3pxtHZmjuFxcKEOt2iBKsDBYGXDq4vdbTMLxrS8VwyeVDO2ieR0h9MV2g7tiiUeCTBPIbgEOfXObnzODZwlhT+JUoznrbeaxUKqAv2nOiDO+uOYCF245j+rwcv8/PlGWIrDsQ2tTtYKkD9ZyL+wIAOjTXHpr4TBhPV7+DjDG4OPDqinzNFEV1oa4RNOGFRJmpAnV6EztGdNX/R/H0T4FT6ILJFb5EdlMzlKnkZypqkTFzIdbsLcau46VRC9R7TpZh2rwcvLV6v2J/VZ0TH607CADI7pXm9xrtm+v/AI2ER7/b7pWG+ZdhnkJJb/5lqLRdXF6jGA4b0rk5fBnxzAqfxwgxC1MFaqcLsFr192AfvaBPwHNKq5Rf928f47tinuiCAZ5A/cZq/2l9/tz3xWYAwF/eWYfDqjX6/A01VNc58c6aA0Hnh6v5q4shloz9ZN0hv2P9+4sqAv6cwrJqfPj7QeMN9EE+3PLf35TXTU60KlZQOV/2QbN810kcP+u5gdzYTwnUUxX+h7bC+Y2KkGDpzvpgjFkB5AI4yjm/IBKNcbpchv4winSMS09TfaX/1+TMgM9pnuwpDvXp+kNS3q1R8pWu1SG3rKbO54okLy7Jw9s5B9AiOQGXDg59fDTQKiaiz/44hOvPywh43lChh1pQXIFnF+/GlsMl6NY6xbNsGue4Tsd1AvH3QaV+TfLFZv/1P2WaXrCplpsfnUir1RNTMJKedw+AXQAik7cG9xik3qACAKN7eHpRU/q20TxHvljA6B6tdK1jN6ST76/KwVLPmlM9hMvFwZh7/FSs6hfoBp9eeoONnvoZgDs/+bvNR3HPZ5ulfcfOeqbxv7+2IKRALf5b+Eu7NLL+YTBrJQJAs8aJgU8ipB7o+gtmjHUAMB3Agkg2xunihnrU8vxYpyryFZXVKBY2/f5vI/HhzcN0XZcxhnMyQg/WLYS0sRS7TQq+InX1t64P/YSbVdkU4UoS0bPkFOC757nnpGcZq/QmdtQ6XIogrWYJMZ2t3+yfMfWVnACBWt+1Hp7eW3P/hocnBNM0QqJC7/e6lwE8AMBnl4sxdhtjLJcxlltUFFxBo3GZrdGrjf4Ou7z3rZ6d+JmqaE//ABNc1N6Q3ZwKljihorzGgQ0HlQv2ynuvYttXqGpEh2t49Lp31nvt01rsVWutyt/2ncKkf/8iPU622zTXH5QLdbJQZa0Tu0+U+e3ha/3TvC2ka8q1bap9E7S5qrf8syotkxAzCRioGWMXACjknG/wdx7nfD7nPItznpWW5j+DwJfXrhliKGdV3nNT/1Gr6wob/frbKsWuqNYWDH89WfkHS6WPSTUtUvRNdw9EnZYHABcObOe179P13tPDNxxUpuLpuanoa7KSHodOeW66TnxptaHntmvm/XN91XBRD4H1aO2e8drVz7RyQqJFT496JICLGGMFAD4DMI4x9lFEW6WTvx51OKwvcAepUc8Gl8KlrncMALeOdte91jMevPlQCXYc8y5EFA7yRRP8eWGJ5wNPK7hrCSVbpdbp+VDRysh48pJ+ALx7xID20M0LP+fp+rkWC8Oy+7NpVXpiSgEDNef8Qc55B855BoCrAKzgnP8l4i3TweqnRx1OR85UBT5Jg1YO9/je6QCAh7/1VG6Tz1iUB+Z3fz0QUm0Of5J8lJDtP/tn6UNPnVKod6Vv8b1wuThyC4xNjtH6cPvHpJ7SdtumSXj0gj744KZzvc5LtHq373FhUoyWxy9SHuveOtVnJg4h0RTTuUfyr6+1for3RCsVVmvoQ1wLcrAss+SMbJr64u0ndF1HL3WwBfynq5VVO1BW7cDmwyUY/dxKxTE9GTOA+zW4XBx3fbYJl7/5G9bmFyuOv74qH5mPLNJ87kWveX8wtZGNM3du2Rg3jeriNXsQ0F5oYo6qxrlcVhhuGBNSHwwFas75qkjlUIdql8aNMNF3d46qx5Z4aPUOGwm90k9lNzt/k5U9fVW1diPge+URPW77UHlrYebUTOQ9OVV6zADkPDBWcU6tw4W8E97/ngkWhj9nBa6cN7pnK7z76wEs3OquEy1P3QOA5xbnobrO5ZWyCGhnuqzbfwrL7s/Gguuz0L2175KjYrElueevGODz/E4awZ4QMzJVmdNQ1TicsNusigDwyz/HSmUtjRrTMy2kJbn2FpbBwpTBR726OgAkJ/p/GwJlWfhzstQTJB+/qC+uPtdTNnbJfdlo3jjRq0a3w+XSXKE7KcGK3m2b4PNc/zWp65wcb8pmdPrqhztdHDYdM1FrHC50b53qN0gD2j1qf98eUpNomIPEhpge+lB79FthiSVZkAk2SAOhTXz5/I9DqK5zYfqAdpjYJ13a30hjnPfezzf7vZZ4AzIY8spxM0ZkKLIgeqanai6k4HByzeGWH7ce85vb/NC0TKTabah1OBWTRXwl3HSftQi3fOBZDd3XfQa9k6C0grLWuDUhsSbmA7W8AP/nuYdxtrIOZ/3UtjDib+O6B/1ccRpzit2Gt6/Pwp+zOuLdG7IUdSf0jj3X9zRmh8ulGZCPlVRrZluIbsvuhi5pyahxuJBfWC7t95cZuWxXIWocTny/5Ri+33JM2r/872N0PV9OKwVT7wLJhJhZXA19AMC9n2/CvRN6Bj5RB6uFoUmSzXBGSXmNpxCUWBzo2cu9x0pLq+p8Zl/IhfLBM7lvOn7ecdLQTLw6J8eWwyVe+/u2b4Jp/dtg3tWDMa1fG3Sf5X1DMCnB6rXYQqCZii8u2YP5vygr+8k/EO4L4f0M9CG3+p/ne9WrJsRs4qK70S3NM0lhZV4R3vol+Ip3aqN7pqGdwRKf767xTBfXGuN++c+DALjzhNUTSrQE+qAoq67D4DlLsHafMrviWEkVft5xEql2G1oamDwz9ZUc/LzjpNf+e8b3BGMMFw1s53Ph4QQr8+qNv7p8LxZuPe7ztZ5Q3WwEgGaNPOPHWqvx+HL1uZ3wwJRe0uNku/8Pws4tkxUZOISYUVwE6q9VkxR+2uad4hYsu81iuCa1fMVzrdolYq70Q99sw5/e+E3a/80dIxQ/F3Cno8nrgnDOUSpbCmtfUTn6z16CM5V1eGmJcjbmO8IHRlmNstSrlm/vDDzRQ732oBabxQKHavLRxL5tcOcnGxWvVU4+5CGSpwIaGfp55rL+uFq2zqZdIxOEkFgTF4G6aSPtu/daGRZGWRjD0ZLAE152HS+Vsk3kU7ZT7N6jS+2auXvomw6VKPZ3a+1ZuHfLY5Ow/fHJXh8UX+YewYDZS7C/yD0G/Ns+T2rfxkPKeiLbj+qf1TioYzNcpJp5aLMwRQ66OmCunzUen946HIAnVz3ByrBXNj4NKD+4rnxLO1jLzfEzSUUPGpcm8SZufqNbyb7ai/WSt86eFPJ1v9rgXona35qMS3eexNRXcjBBqE0hzz7QKhR02RDteibiB8s943sgKcGKFLsNiTaLokf90Dfum5RiASX5DUn5iEPeiTLNyS7+XH9eZ8XjTi0bY/8z09FOGHp48kfl5JHWqUk4r1tLfH3HCPz24HgA7puDvmqXAMB6Hct4yVduCQb1okm8iZtA/do1g6XtMxW1SLHbwpotkecnl1ksAzqxj7sm9owRGQCA+yf2RJZGYadEjXa9f+M5SLBaUDB3Ou6b6Ll5VlrlwPajZ7GvqByP/7BDqsgn1tPwlTky+eVfvCaaBKIu3iQGPPE6T17aT/N5Qzo11yzE1CQpuHvV4rDHJ7cOw4c3e08VD8RITXNCYkHcZH0M7tRM2t5fXOFzkoVRrVPtKCyrwTUL1ilSAbWIyQ0uF0ejBCvuHt9D8zytSR7ZPbQrDh4SesXT5+Wgus6Fnunu4ZF7PtuMvBNl+HbTUencVI1hFgBoprN+xTHVEI96TNpoBcLnLh+Av3600dBz5EZ0o0VlCQHiqEet/robppr7GNixmbTtq/cqFlWyMOCj3w9iwZoDmqVFRVo3GAPV0RCnoxfIyoC+vmqfotdcVuPAS0v34OuNRxTP/ey24X6vLeqRrpz55xDqp4jj7Ear4qXYaeYfIeEQNz3qSGkhy+ctqaxDm6be459i+GJgfosAiRhj6JqWjNSkBM18ZX8CperN01jp3NfNVrXBsg8lwDMOnmK3obzGoevm7ITerbFsl3sBhC1HSjTPSbAyJNmsmtkok2SzOAkhbnHTo46U2bJSmMOfWY4lO7xT/z7/w137wsKAOpc7kAYqCWq3WXUF6YlhCFx6x+p9DW38ePcoPHVpP/TVsXLL/Os8N099rarDGEPuIxPwuayn3ys9Fd/dORLzNW6+BmPh3aPw24PjwnItQqItrgL10vvCv5ySujaHuhodALiEtLx5K/KlRWsr/GQ+AP6r/cn1a2dsCTEtwd5UFbM9WqXYce2wzrrGqOVDONk903D3uO64fUxXxTm1DhfsNqu0piQA/HxftmKYKVR92zX1uQwXIbEmroY+5GOs9bkG3nGD2RVq/pZ/0pMTnGi1eC2Wqz4ejNLqwBNltCQnWqUPqvsnuWcJXjSwndciCJSdQYg+cdWjluulsXhrpAQbCEX9O/juNfsr0ynqEGCKe5KBCSCzpvXGAKE93WUTcIzY8MhEbH50omJf33ZNcfW5ylrW4SqeRUi8i9tAHU7d0/wveNo8xOWb/uRjAgzge3FWubLqOrx3wzle+zPbpOK9G84xlFZ3a3ZXaYkqrcL+eiQlWBVlTkVje7VWPG4VpsV7CYl3FKh1uMtHPrToZJn3rMWFd+tfVSa7p+9V2/XUGVkw4xwM6exdWOihab0xNrO1xjP8EwOo1mSdUKin09P6hIToE3eBOhLDnvKbXkDgFc9vz+6KvgFuAh54Zpqun+2vzog4IaV1E7tmTZE+OrI0tHRs0RiL7hmtqEIXDsmqNqYk2pCUYMFTPmY8EkLc4upmIgBsf3yy5rp7oRjVvRXmXzcU+4srMHfRblTWOtG0keczrkmSTXHjbVr/tgGvKQ5HBKpIN6F3ulQFT23b7Mk4cqZSym5Ydv8Yqd4IoFyl3ajebYML8v4M6NAUt47ugkl93VPtLRaG3U9MDfAsQkjcBerGAdYfDAZjDJP6tsHH6w4CcM9QlE8iSbYrA7XeRVN3zpkcsKi+1hj1xD7puHeCu3CTfB3B7q1TkGBlqBNmFJqtihxjDLOm94l2MwiJOeb6SzY5cRkt+QomLhdXpOf9MWsCmif7Xq5KeT1bwBVe5Fkf905wj5U/PL23z6GVpy7pDwCYf93QiHxoEULqH/0lG/D6SnddZXkZT7GXDbgDqNZisaGQ96gvHtQed47t7ncCyxVZHTC5bxu6UUdIHKFAbYB4o1JecOmR73ZI27eM7qp+SsjkOdqdWzQOWLyJMUZBmpA4Q0MfBjwhDCuoF28FgL+NDX7Fcn/kPepAQZoQEp8oUBsgVo/TKmGaGmSR/ED0THghhMQ3igIGiAWa5IG6i1Cn4/xexieW6KFnCjkhJL7RGLUBUqCu9aTiDezQFC7OI1ZbhHrUhBCKAgZIQx+yMeqKWmdYVjv3JdSCT4SQ2EdRwAAxj/qFJXukZbmqap1eU6PDyeg6hYSQ+EOB2gBxvLi8xoE3V7tzqtfkF2PvSd8rlIdD//ZNpYp2hJCGJ2BXkDGWBOAXAHbh/K84549FumFmJO/dyie9BFtgX68f7tJfiY8QEn/0fGevATCOc17OGEsAsIYxtohz/nuE22ZqLheXquilUV1lQkgEBQzU3F09vlx4mCD8F+b6dLHHxYHznlkOABgXRM1nQgjRS9cYNWPMyhjbDKAQwFLO+TqNc25jjOUyxnKLiorC3EzzeX/tARSX1wIAPs89HOXWEELima5AzTl3cs4HAegA4FzGmFeld875fM55Fuc8Ky3N94ol8SLcNa8JIcQXQ1kfnPMSACsBTIlIa2IUrf1HCImkgIGaMZbGGGsmbDcCMBHA7gi3y7R+1MjASE6M3IQXQgjRk/XRFsAHjDEr3IH9C875j5Ftlnn1a+9dsH/xvdlRaAkhpKHQk/WxFcDgemhLTMpskyrVACGEkEigmYlBuHNst2g3gRDSgFCgDsLNozwruVTURnZWIiGEUKAOQgvZ4rUnS2ui2BJCSENAgTpINmFZrFqHK8otIYTEOwrUQXLQjBdCSD2hQB2kxy7sE+0mEEIaCArUQZo+oC0AgBYGJ4REGgXqIFmF2tQZwuK2hBASKbS4bZBaptgx+8I+mNKvbbSbQgiJcxSoQ3DDyC7RbgIhpAGgoQ9CCDE5CtSEEGJyFKgJIcTkKFATQojJUaAmhBCTo0BNCCEmR4GaEEJMjgI1IYSYHOM8/FXgGGNFAA4G+fRWAIrD2Jz6FuvtB+g1mEWsv4ZYbz9Qv6+hM+c8TetARAJ1KBhjuZzzrGi3I1ix3n6AXoNZxPpriPX2A+Z5DTT0QQghJkeBmhBCTM6MgXp+tBsQolhvP0CvwSxi/TXEevsBk7wG041RE0IIUTJjj5oQQogMBWpCCDE50wRqxtgUxlgeYyyfMTYz2u3xhTHWkTG2kjG2kzG2gzF2j7C/BWNsKWNsr/D/5sJ+xhibJ7yurYyxIdF9BW6MMStjbBNj7EfhcRfG2DqhnZ8zxhKF/Xbhcb5wPCOqDRcwxpoxxr5ijO1mjO1ijJ0Xg+/BfcLv0HbG2KeMsSSzvw+MsXcZY4WMse2yfYb/3RljM4Tz9zLGZpjgNTwv/C5tZYx9wxhrJjv2oPAa8hhjk2X76y9mcc6j/h8AK4B9ALoCSASwBUCfaLfLR1vbAhgibKcC2AOgD4DnAMwU9s8E8KywPQ3AIgAMwHAA66L9GoR23Q/gEwA/Co+/AHCVsP0mgP8Ttu8A8KawfRWAz6PddqEtHwC4RdhOBNAslt4DAO0BHADQSPbvf4PZ3wcA2QCGANgu22fo3x1ACwD7hf83F7abR/k1TAJgE7aflb2GPkI8sgPoIsQpa33HrKj+ssr+kc4D8LPs8YMAHox2u3S2/TsAEwHkAWgr7GsLIE/YfgvA1bLzpfOi2OYOAJYDGAfgR+EPqVj2iyq9HwB+BnCesG0TzmNRbn9TIcgx1f5Yeg/aAzgsBCub8D5MjoX3AUCGKsgZ+ncHcDWAt2T7FedF4zWojl0K4GNhWxGLxPehvmOWWYY+xF9a0RFhn6kJXz8HA1gHIJ1zflw4dAJAurBtxtf2MoAHALiExy0BlHDOHcJjeRul9gvHzwrnR1MXAEUA3hOGbxYwxpIRQ+8B5/wogBcAHAJwHO5/1w2IrfdBZPTf3XTvh8pNcH8TAEzyGswSqGMOYywFwP8A3Ms5L5Uf4+6PWFPmPTLGLgBQyDnfEO22hMAG91fXNzjngwFUwP2VW2Lm9wAAhHHci+H+0GkHIBnAlKg2KgzM/u8eCGNsFgAHgI+j3RY5swTqowA6yh53EPaZEmMsAe4g/THn/Gth90nGWFvheFsAhcJ+s722kQAuYowVAPgM7uGPVwA0Y4yJq9LL2yi1XzjeFMCp+mywhiMAjnDO1wmPv4I7cMfKewAAEwAc4JwXcc7rAHwN93sTS++DyOi/uxnfDzDGbgBwAYBrhQ8cwCSvwSyB+g8APYQ73olw3yz5Pspt0sQYYwDeAbCLc/6S7ND3AMS71zPgHrsW918v3AEfDuCs7GtiveOcP8g578A5z4D733kF5/xaACsBXC6cpm6/+LouF86Pao+Jc34CwGHGWC9h13gAOxEj74HgEIDhjLHGwu+U+Bpi5n2QMfrv/jOASYyx5sI3i0nCvqhhjE2BezjwIs55pezQ9wCuErJuugDoAWA96jtm1ecAfoDB/WlwZ1DsAzAr2u3x085RcH+12wpgs/DfNLjHC5cD2AtgGYAWwvkMwH+E17UNQFa0X4PstZwPT9ZHV+EXMB/AlwDswv4k4XG+cLxrtNsttGsQgFzhffgW7uyBmHoPADwOYDeA7QA+hDuzwNTvA4BP4R5Tr4P7m83Nwfy7wz0OnC/8d6MJXkM+3GPO4t/0m7LzZwmvIQ/AVNn+eotZNIWcEEJMzixDH4QQQnygQE0IISZHgZoQQkyOAjUhhJgcBWpCCDE5CtSEEGJyFKgJIcTk/h/C5Usiz5J1cAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(2)\n", + "\n", + "plt.errorbar(lc.time, lc.counts, yerr=lc.counts_err)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABAq0lEQVR4nO2dd5gURfrHP+/MbABEAUVEUVeQpJ6ioqKgh4cBAfU8Pc+MATFhOhNmz3BnOLOeOSvq705RBCOKCqLAooLkuGTJGWZ3Z6Z+f0zP7ISe2Yk7Yd/P88wz3VXV1W93V3+7urrqLTHGoCiKohQvjlwboCiKomQXFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocV64NsGOXXXYxFRUVuTZDURSlYJg8efIaY0xru7h6hV5EXgUGAKuMMQdYYe8Dna0kLYANxphuNttWAZsBL+AxxnRPxOCKigoqKysTSaooiqIAIrIoVlwiNfrXgWeANwMBxpi/hWT+KLAxzvbHGmPWJLAfRVEUJQvUK/TGmO9FpMIuTkQEOBP4U4btUhRFUTJEuh9jjwZWGmPmxog3wJciMllEBsfLSEQGi0iliFSuXr06TbMURVGUAOkK/dnAu3HiexljDgFOAq4SkWNiJTTGvGiM6W6M6d66te33BEVRFCUFUhZ6EXEBfwHej5XGGLPM+l8FDAcOT3V/iqIoSmqkU6M/DphljFlqFykizUSkeWAZOAGYlsb+FEVRlBSoV+hF5F3gR6CziCwVkUusqLOIaLYRkd1F5FNrtQ0wTkSmABOBUcaYzzNnuqIoipIIifS6OTtG+IU2YcuBftbyAuCgNO0rOmb9voktbg/dK1rl2hRFURoJeTkytpjp+8RYAKoe7J9jSxRFaSyorxtFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXJU6BVFUYocFXpFUZQiR4VeURSlyFGhVxRFKXLqFXoReVVEVonItJCwe0RkmYj8av36xdi2r4jMFpF5IjI0k4YriqIoiZFIjf51oK9N+OPGmG7W79PISBFxAs8CJwH7AWeLyH7pGKsoiqIkT71Cb4z5HliXQt6HA/OMMQuMMTXAe8CpKeSjZIkl67ZhjMm1GYqiZJl02uiHiMhUq2mnpU38HsCSkPWlVpgtIjJYRCpFpHL16tVpmKUkwuRF6zj64TG8P2lJ/YkVRSloUhX654AOQDdgBfBouoYYY140xnQ3xnRv3bp1utkp9TBv1RYAfl68PseWKIqSbVISemPMSmOM1xjjA17C30wTyTJgz5D1dlaYoiiK0oCkJPQi0jZk9TRgmk2ySUBHEdlHREqBs4ARqexPURRFSR1XfQlE5F2gN7CLiCwF7gZ6i0g3wABVwGVW2t2Bl40x/YwxHhEZAnwBOIFXjTHTs3EQiqIoSmzqFXpjzNk2wa/ESLsc6Bey/ikQ1fVSURRFaTh0ZKyiKEqRo0LfSNHu84rSeFChb+QIkmsTFEXJMir0iqIoRY4KvaIoSpGjQp/H1Hh8PP7VHNy13mDYM9/MZegHU6nx+Gy3WbR2K2/+WGW7rR2TFq3j/yqXMOv3TRm1XUmdl8cuYMXG7bk2I2XGzl3NmFmrktpmybptvPbDwixZlBjDJiwOjhjPNL8sXs8nU5bz6riFLF2/LSv7iEe93SuV3PHWT4t48uu5OES49riOLFm3jX9/OQeA/XbfkQuOrIja5q/P/8iqzdVsrfby5NdzAbj++E4x97Fg9VZu/t9UAKoe7J/5g1CSYsm6bdw/aiYf/bqMkVcfnWtzUuL8VyYCyZWnc1+ewOJ12zjt4D1o0bQ0W6bF5bbhv1HqcjDn/pMynvdp/xkfXB42cTGj//7HjO8jHlqjz2MCtXG3x//vC+kqU11rX6PfuL3WdlulMPD4/Nd4i9uTY0salk1uf7nNdW+wWG/KmWSzdawNiQq9oig5J9cCX+yo0BcQmbwZ9L5S8hHR3r5ZQYW+ALAr+7FuCBVwpZDRmn12UKEvAOzKvt4QxY1eXiWTqNAXGYm++eobcn7S2K+LNt1kBxX6AkDLvqIo6aBCX6AkXPPRNgBFySty4V9KhT6PMSk0xAe20FdgRVECqNAXAAHRzmTlXCv6itJ4UKFPkkPv+4p7P5mR0rYdb48/2dbaLdVUDB3F6Bkrw8LtKvb3j5rJ4rXRPjMiK/IvfL8gyo/NoDcmceuHv0VtWx0xinb0jJVUDB3F2i3Vce1W/NwzYjrd7x+dkbxCr/nDn89i/7s+z0i+6TBv1WYqho5i6tINaee1fMN2KoaOYvy8NUBqb6/ZxuszVAwdRcXQUVRWrYsZF2BLtScY9vm0FQ1tblxU6JNk7dYaXk3R+VKtN35hnrHCL8ivj68CQOppf/lh/pqE9vvl9PAHx+iZ9g6nNm0PH3YfOM5Zv29OaD+NndfHV7EmzYei3SX/z7fz2VqTe1cWX1vlZuTU9EVskiWc705aknZe2SK04vO/yUtjxgUIdVb20tjcOmiLRIU+j0mnlpOHFSRFiUl9lZpiwuSg4bReoReRV0VklYhMCwl7RERmichUERkuIi1ibFslIr+JyK8iUplBuxsVydwDqu9KIZKPTTehJGJePh9CIjX614G+EWFfAQcYYw4E5gC3xtn+WGNMN2NM99RMVJTGQz6LRUNQKFNbpnOd8rJ7pTHme2BdRNiXxphAg+5PQLss2NZoSfTVztYHTibtaOSik0saUUtG3lIoD51EyEQb/cXAZzHiDPCliEwWkcEZ2JeSAukKdvEU98JBH7L5RWTlq9AexGnNMCUitwMe4J0YSXoZY5aJyK7AVyIyy3pDsMtrMDAYYK+99krHrIInVk0imXbMQiuIip9CuG753p7eENidgnw+LSnX6EXkQmAAcK6JceWNMcus/1XAcODwWPkZY140xnQ3xnRv3bp1qmYVFakUnDwua0qBk42HUEA6tNxml5SEXkT6AjcDpxhjbGe6FZFmItI8sAycAEyzS6uEE/WaGKOG31C1P70JlUxTCN0pC8DEhEmke+W7wI9AZxFZKiKXAM8AzfE3x/wqIs9baXcXkcDwzzbAOBGZAkwERhljcj+8L4/JxMefIiqbSiNCy212SaTXzdnGmLbGmBJjTDtjzCvGmH2NMXta3Sa7GWMut9IuN8b0s5YXGGMOsn77G2MeyPbBpMO8VZuTGtU4edE6Ji8KHxZd6/VFhcXDGMPEhevYVuPh5bELmLhwrX06DNOXbwyOTAwwqWo9Xp99fTt0cumN22uj3CDY8duyDWyv8bJk3TaWbdjOlmp/Hpm+CScuXFdw7bxbqz38tnQji9duY/mG7cHwiQvX4bO5BoFr2xB2fTH9d5as28aqzW7mr96Scl7LN2xn5NTlLFm3jQUh+azeXJ1QvvNXb2H15rp7KHSkaCShTTZTlmzAHTHZ/SZ3LdOXb2TCgrXBtKs2uVm4ZmvCxzNt2UY2u2tZun4bS9dv443xVcFJyOtj4sJ1DP9lWUJpF6/dxswVm8LyDlx/u3Ie601h2rKNwXsu06T1MbaYOO6x79mhzMW0f5yYUPrTn/sRgI+u6km3PVsA8O8vZ/PCdwsYeXUvDthjp3rzGDZxMbcPj27NsqvZ939qXFTY/yYvZa9WTbmmT8eouJfH1Q3BfvWHhbz6w0KqHuwf156LX6/kxP3b8EWEywRPjIdJKoyesZJBb1Zyz8n7cWHPfTKWb7YZMuxnxsxeHVyverA/381ZzcBXJ3J7v65cekz7sPRv/riIu0dM56ULunP8fm2S3l+iXWwvf3syY+eGu8Ko7zrH4qgHv7HNp8e/vsbrM9zWr0vc7fs8+h2OkKLb66ExMW35v0q/64NRU1cwKtSlgrX9wFcn8sviDQA88bdu/PngPTj8n1+H2RUPn88w4OlxHFbRkklV64Phd4+YntD2Z77wY71pAhzzyJiosJ8Xb+DMF37kybO6cWq3PerNo9rjZcDT4+i57868M6hHwvtOFHWBEEIqT9M1ITWYWSv8PmFWJ/hmsHC1fe0k0TZ6gLmrwmta6Ury1KUb08whPoFaXjI1s3zglyUbosICNXu72m6gRrwsTq3WjmSb735etL7+RGkS663RjkSTVq2JcV6s7QMiD7B4XXLnMCQbJmfo/KT6ArokQdsD5/jnRRtS21E9qNAripIUBdbqlhUK7RSo0KdJNr/M50thKqbeB6mSr+JWCL1X7Ij5jaYwDycpclGWVOhzSKHco8U0FFxJn0Ipt5kkUpsL7RSo0OeQ+p7shVaYlIanUMtIzDeRPH1ziiRbZmbLhbEKfR6TyCWPul0KxK9NgdzPQZLtDpru8eVrU5GSHIk2rWX7rVmFPoMke28m+gqcnD/69BQi2/pSqG3KqZL14y3Q01lo4ygyaa5dkcj2ZCQq9Glid9Fyee9pe3rDkU2tamTPQ8UiW/evCn0ek5pTs8yrj4pO/pKLS5PNB1wuptlrDKjQ55DG1oxRbDS2y1dIb4v50jSU/Led7NhdVC4Q3p+0mDs/ms5Pt/WhVbNS/v7+r3z4yzKO67or1/bpxMnPjKNzm+YMv+oompbWHfq2mroRsR6vD5cz8effxa9XMmJIT0555odg2IWvTQLA5ZCY7gOuefcXRkxZbhv3w7y1VAwdFVx/+pt5MfcfKTa13tgF5ZVxC7lv5IyY8QArNrqjwmo8fj8kn09bwdqtNZx7xN5x8ygmPF4fJzz+PZvc4aOmI2/gMbPC/RDFYvKi9Xw1YyXrt9Zwc9/O7LxDWTDuv5VLWLU5sVHVj3wxiz5d20TZBX6fS3d9PJ39d9+RtVtqeHz0HN69tAdHdtjZNq8HRs3gpbELo8LHzl3N0R3rXIYHRGj8/LU89+18rujdga3VHu4ZMZ07T94vpq3j561h6rKNXP7HDsGwZCo5kSkrho7iiH1aMezSHkxcuI5flqznyt772m8rEvcVpNbro+8T3zM/ZJT6Lf+bGpXug5+Xcv+fD2Ds3NWs3OTmtEMSm1Tv31/O4Yj24ec98h575ItZWf/4XlRCf8sHvwHw8OezePD0A/nQcko0euYqRlsOwWav3Mx7E5dwca86PyvDJiwOLk9cuI6j9t0lqf2Ginwo8XzExBL5bFKfyMfio1+XcWyXXbn87Z8BMiL0eVLhqpcfF6xlgY27hkhBvuj1SWHrsY7v9OfG16XB8PAZBwXXbwoRmPrOz7Nj5vPsmPm2cWPnrubdiYvDws5+6aeYPl7sRB7g/Fcmhm2zapP/mGes2MSMFZu4oncH3vixiv9OXsouzcts8wA45+UJAGFCny4TFq6jsmodZ7/0E0BMoa+PcfPWhIk8wPuWH55IXvh+Pk+MnguQsNAD/PX5+H5zYl3HTKJNN0TcVIXzdgoUjmAGKJbmjkQPo1iOF2L0Fslw+bOduSlG2kTeCjLZhFNITVeRNEqhL6abr9AotAdTujS2421I4ol4oXz/aqhvCUUp9DriNLNkoywWyH2YMln1gVTPBSnkmqeSHYpS6BsTDSGYjblSGk9TtbaupEtDlaFGKfRxX+v05m0Qil0k0z2+tLYvgAp9rLeSfC4WoV0f86X7ZqIUpdAn2xdVB2nEJ5O6USxNNobEjiUbx5srjYm33yK5rA1OQ13KohT6tNASqxQ4WoSVSBISehF5VURWici0kLBWIvKViMy1/lvG2HaglWauiAzMlOHpUCy1SiX76LteHZm8bzLRKybetclG00o2PnJH2pmtt7VEa/SvA30jwoYCXxtjOgJfW+thiEgr4G7gCOBw4O5YD4SGpJh0vpiORUmM+rSgULoW2mEn0OkcTSGfi0ySkNAbY74H1kUEnwq8YS2/AfzZZtMTga+MMeuMMeuBr4h+YOQcr69u2efzT9RrjMHn8/8Cy/n4AcZr/PZ6vL6kJnFOhlqvD58vsuZhgmGR+40Xly1C9xmPWq8veB0T3Sb2PhNL5/H6gr/oPBIvWx7L9vrOaaxjCtjg89WfR6h9dcvhcd4Qu+ONAg+1K9XzbXd+fCFhoefW66v76uaz2c7rM7hrvdR6fUk9RLwheaVbrL3WuUjkvGWCdFwgtDHGrLCWfwfa2KTZAwgdT7zUCssbflqwloc+nxVcP++VCVFpLv9jB57/LvvDlFPhkynL+STL7hQ+m/Y77W/7NCzsuMe+Y8m67bxw/qFc9PokRl3Ti/133wmAf302ixe/X8DIq3sx4OlxvHphd/7UJbx4ZPoD+D0jpvPGj4tiDvMHmLp0A6c88wNddmvO59cdw5//M54pSzbE3SYWAtw23O9yY8aKTVHxgeNbv7WWfW//LGY+d308nbd+WkS3PVuEhS/bsD0q7b63f8ZuO5bz+6Zof0ShRLpjCN0+lF/vOp4WTUsTzuvlceGuEjqElIkXv18QNx8gWIZSOd8X2xzTOS/V3av73v4Zn117NLvsUMZhD4zmzgF+3zt2z89Qu586++CEbXjq67nB5YP+8WXC29nRIeJ+CpCtF5CMfIw1/sdtWneuiAwWkUoRqVy9enWa9tS7s+Di2Ln17+uVcfUX4sbG/NVbqfH6GD1zJQA/L94QjHv9hyrA748E4OuZdQ6/svUi/caPi+pNM27eGgBm/b4ZgClLNtS7TSx7Q4vY1KUbY26/YmO0YIfy1k9+u39NwBagXpFPhkQcqH07O717MVOMScCOX5dsYOn6bQAM/2VpQvmu3ZKYE7lCJx2hXykibQGsfzv3fcuAPUPW21lhURhjXjTGdDfGdG/durVdkqzgSMhfRgMYUkQUU3fV4jmSwqCxn+9cf4y1YwQQ6EUzEPjYJs0XwAki0tL6CHuCFZZTJMZyLOza+ZQIbNpy8+0zmF7GwiTRyxZa3vRah5No98p3gR+BziKyVEQuAR4EjheRucBx1joi0l1EXgYwxqwD7gMmWb97rbCskkTLTUKNYlpmkiPyfGnHB6WhSLaXTWN5ICT0MdYYc3aMqD42aSuBQSHrrwKvpmRdA6AalCFUzQuOYr5ijUXAE6XRj4xNpI1eSYCwphv/cjGc2nzsUlvMpHu6i6DIZYVGKfShI9wSESO911OjmM9bMR9boRJ6Lyd6eRrLZWycQh9SILQGkCFsnpiBm0j9oyvpkEzpCRRDfRMLp1EKfSjF0LyQF4Q23eTQDCVxtOw3HopS6JOZYUp9YWSefK1MpVLLiz1faXq2QO7fdPLxOjX0GIzGUvMvSqH/ZMpyajzRfkUC/LbMP5JxUtU6nhg9p6HMKhruHzkjuFxr+Rh5+pt5rNrkZt6qzcG4EZZrhm9mreLJ0XMZP39NMG78/LW2w/wDeLw+PvplWdI34ke/LKPW6+OXxeuZt2ozo2es5JVxC1m3tYZ/f2l/rcfPX8PitduiwtduqeaRz2fbbvPNLLvxgX4CrhEgvpiuqGeU68H3fsn3c7I3MvX4x79nwNNjs5Y/2I/4vevjaTGv/T9GzGDk1HCXHo9+ldg9umKjO/jwDIx+ro+VGRxpnM9IPj7RunfvbiorK5PermLoqODy4RWtmFgVu8t+1YP9w9Ir6bNHiyZxxRvgvlP3586PpwNQXuJg1n0n2aZ7dsw8HvliNk+e1Y1Tu9XvHin0Wl7bpyNPhvglsWPGvSey313hY/cifbD0f2os05dH+7FJhKM77sLYuWs467A9eW/Skvo3UDLCJ0N6cfIz43JtRsqUuhzMud/+nqgPEZlsjOluF1eUNXqAuasSe6IrmaM+kQfC2jzctbHfulZZNa31W2uStiMRHy6JeA2sWrM16X0HqLaOTVsGlXygaIVeUdIl/951lWInW/UCFXpFUZQiR4VeyUuKpTadh5/AihptKrNHhV5plCSiByrSSrFQtEKv/eOVXBLoD67FUEmGbNUtilbo87HbqNIYXU40viNW8o+iFXolP0llEonCRiscSu4pWqHXppvCptDlMdfuDRorhX7ba/dKRWlgMuF3RVsQlXwgoRmmCpF19YyoVPcHueGN8VUx46o9Xs58/kfuGLBfMGzD9loqho6iYuemfHvTscHw24b/xt6tmnLZHztwX4jvHUi9Vnfy0+OCfpDSJeB+Q90fNCz9nypc9wcA1XF8dKWD1uiVBmXeqi0x4xau2cqUpRu5Y/i0YNhXM1YCUBXhdGzYhMX867NZALwybmFGbMuUyCtKvqFCrxQd2lyiKOGo0CuNEv1YrzQmUhZ6EeksIr+G/DaJyHURaXqLyMaQNHelbbFS9KT7EVQ1XFHCSfljrDFmNtANQEScwDJguE3SscaYAanuR2k82HVJVNFWlPTJVNNNH2C+MWZRhvJTGiENPY2cojQWMiX0ZwHvxog7UkSmiMhnIrJ/rAxEZLCIVIpI5erV2Zs+Tcl/dLCRomSWtIVeREqBU4D/2kT/DOxtjDkIeBr4KFY+xpgXjTHdjTHdW7duna5ZSgGjNXtFySyZqNGfBPxsjFkZGWGM2WSM2WItfwqUiMguGdinUoRoTV5RskMmhP5sYjTbiMhuYvVjE5HDrf2tzcA+FUVRlARJywWCiDQDjgcuCwm7HMAY8zxwBnCFiHiA7cBZRv0HKyH8vtGNwwEtm5byuzUh+IqNbjZtrwVg/qq6Cbq31XjYuL2Wtjs1CYa5a71Rec6PM/o2wIZtyU86riiFiuSj7nbv3t1UVlYmvZ36r2kcPH/eIVz+9s8AdNmtObN+35xjixQlc1Q92D+l7URksjGmu12cjoxVCo5fl9T5pFGRV5T6UaEvINrJKjrKUhxkx8OdoijFSdG6KS42DpE5fFh2T3C9wj0sd8bkGO1+qSjJoTX6AiFU5AF2YJt9QkVRlAhU6AuAcqqjwn4ouyYHluQJWqFXlKRQoc8yxzsqmVN2Ph1kGZ+X3sJfnd8mncc1rmhfcTtJ463Rq84rSnKo0GeZl0ofo1S8fF12E10cS3ik5EXbGno8Bjn93Ub7Vz9A/+p/BsNvcr3HMyVPJpVXF1nMKY7xuPAktZ2iKIWLCn0WkRi9Y2aVX2Sb9nznl9ziepdTHePoIMtw4KOrLKJU/IOCZpi9mW4qgttc5RrBAOcE9pWlNMUd046/Or9lVtlAyqjh87KhPFX6DHe53krr2BRFKRy0102WuMj5GTvJ1pjxD7te4GZPcEAxh8oc7it5PSrd054/B5eN9Vx+2XMSg1yfBcNHl90MxO6J80jJiwB8X3ZdMOwC11fc5bkIMFSVn8tNtYP5r7d3PUeVH+TjID9FiUdnWUxTqvnFdMzJ/rVGnwVas4G7S97iOteHYeGfeHsEl890fUcztgNQRg0HO+bZ5nW16yMAjnI/FQz7wXeAbdrLnJ9EhZVRN9S/jWwIizvd8T1V5ecC/odBKzbFOKL8QnVeyVd2ZCsdZWlYWFdZxBdlQxledneOrFKhzziCj0GucFcMQ2quppv7Ba6uvYbu7ueC4bvIRtqyltnlF3J7Sfx+8atpEVwe4+tmm+bWknfpJEvCwvaSVTHzfLT0+bD1f5c8T7s46fOFD39ZlmsTFCXIza73qCo/h3+5XmJq+aV8VXYzJSHfwP7q/C6H1vlRoc8A5VRzrfMDjpCZLCw/j8tChL5/9T8Z6TuSDTQHYA078aqnL+Cv+f9YfrVtnltNWdh6bVgrm3CY+1m6ul+lm/uFsHRflt0SXB7o/IKvrGadsd66t4A7ay+03eefnL8yzmre2VNW8mjJc3n50XbdVnVIpjQszSPGrQS+v/V0/MaVrhEAnO0aE4z/m9O/7MDHxa7Pg+GHyuxsm2qLCn0GuMP1NteXfMD7ZfeFhVe4h4V9PA0w1dcegP+V3RsVV+F+h87u1/nI2ysY1tMd3bNmNS3ZTjkbaE6Fexj9qx8Ixu0rSymlln+UvBEMu9UziNtrL2Zf95u85T0hLK9jqh+PyN0wtux6TneO5dGS51GUxszJjvH8Vj6IrrKIoa53GV82hIXl5+HCwzul/7Ld5v6S17jS+THHO8KdM35Q9o+GMDkKFfoM0Mf5S1LpP/UdESdWqKaUez3nc17NrVS432EZ9c+4Nd3sE1weXXYzc8oHhsUvNbvyjvc4PDbf3xebNmHrgXZ7gFOd49lHVtS7f6U42VeWUlV+Dje4/i/XpmQcwceVzo+oKj+HqvJzYqZ7uvQZwN9Ec7nrE3aXdQDMK78gmGaDaRa13c0l7/NC6RMA/L3m8gxanjwq9Bmg0tcpbP0z72Hs5341ZvoaSsLWA4Vgo2kaDKumlHG+P0ASsy6dXXN7VNgkXyeur7kiKvxn374AfOs9CIBu7hd42XOSbb5jym6IeyMo+UcLNoe1E6fK7a53gLpOAcXCJc5PWVh+HjeX1D3A6vs+daxzSsy4E6sfirvtcF/dG3prNgSX28tydqL++RPSRYU+BQK1nOdKHqeq/BxOdv7ELN+eVLiHUeEexhW117ON8rh5nFZd9wr3pa877d1v0636xbTs+snXNSrs77VXMNx3dFT4BTVD6Vf9Ty6s9bfpb6A593vOD0tzWc11Yet7oJO2FwK7sZZfyy9jbvkFvF4SW4B2Yy0DnV/EzetAxwIAfvTuFwwL1ICHOKNHbBcCZdRwZ8nbUeG7hggwwOXOEQlVcMZ792MlrYLrf6x+LCx+gq9LsGs0QB/nz9aS4ZuyG5lSPpgmccbBZAIV+hQI9Fs/yTkpGNbFsSRWclt+M/vwibcH59cMZQtN8eEIKwypYHAwpOZq5vj2CIYtNfbNPltoygyb7wc93U/y95rLqXAP4wvf4WF5/VB+LeqAIP85zflDcLm3cwqdZbFtup/Kr+YfJW9wi+tdTnRMsh3gt7P4/f03l23szEb+U/JEMO7Gkv9m1nAbDpNZMQcepsr5zq/C1gNv5JdanSgCD7KhJe8F02wx4RW3NWbH4PI5tf436UBFb5HZLWxMyx21FwMEe9w9WPIyAC1CavIzyy9O76DqQYU+Q8zy7ZlUeg8urq69hrG+AzNqx0jfkfSv+RczfXvy95rLk354LKM1H/qOCa6fXXMHF9XcFFzv4/jZbjMlj7glRKAAvigbGjf9Fa5PeKH0ce5zvRYM24FtvFtyf3C9pWxmcvkV9HNODNu2j2NyBiwOZz+pwoWHC52f89+ye5lfFvqmaegm80inwtFK6iarecNzPBfV1FXc/HlHc6/n/LBOD8dWP8ZH3qOsZlf75tX7as9lvq8tc007ANZQ93CoKj+HPo7wb3vJukZJBp1KMEl2ZCtTyy8NCzuh+iEWmrYRXSCLi9BX2MbsCz8fudj5Gb/6OvCz6YQDHwvKzwPgptrBwVHR4O/RFSpKz5Q8yQDnhLC8jqt+mBGld9JU4ovOKtOCXa0BeI/WnsHT3r9QggfBUENJsLzYlZVA3BnVd1FpuoTEGJ4qeYZTnD/ylOfPXBPxXeDu2oFc5PycCsdK7qs9j1e8/eLaGIsRpbfTSZbSpfp1AucjYNMEXxeOcMwKpq02Lh70nM1r3r4k870sFvGagj72HsW1tUN0KsFcshNbuNn1Hgc4FgLwpOc0AE6uvp85Zs+iFnkIiISfm1zvxUmpNBTN2cb8snO5q+QtPiy7h6ryc5hdVtfbKtKlRaA31U5soar8nCiRB3i39IEokQ98sA9lZMgo7xtK/gfA6NIbmVM+MK6YneoYF1wOdC9uxSarueRcTnH+CMApjh+jtv1HyRtUOFYCcIIz+Yog+CfwOdCxkHKpxU64Q0Ue4Oraq3nNe5Jt2lTo6H4zKuyh2rMAfw+3w2VmRvYTSdpCLyJVIvKbiPwqIlFnX/w8JSLzRGSqiByS7j5j0ZoNtGZ9VHgT3FSVn8PdrjdstkqMM5zfcaVrBMNK/d4jv/V2o8I9jN9M+5TzLCzqCvpVrhF5OZAqlzTBTRvWpbx9OdU0Y3uwffjL0rrmstdKHuK9Uv8Yjd6OX7nR9T4Av5UPwinhb+QllgO8e2r9Xf/e9/QOi+8kS5hSPji4Pt/XliPczwQ/traWjURydW3doL6bay9lUM0NPOz5W1iaK50fsbcjutfKYTILMBwiczjKMY0nS/8TFj+h7Ep+Lo/uehgQ9Fgc4ZgV1nslUU5xjgfgF6vXWYAe7qfD1o+pfpzHas9gtO/QpPcRj1pcYaPjAZ7znhxcDgy+yjSZqtEfa4zpFuO14SSgo/UbDDxnkyZ9arYxqfxKJpVfxV8c31NVfk6w//cxjt8AuMj1Bam27bWTNWHrs0xybfLFwKCaG4LLn5XemkNLGo4DZEG9FYTdWcPM8ouZUD6k3vyceNmFaDEdXXYT08svCa53ciwjUFaPdU6hh2MmQ13DeL30YYa4Pq63N8jb3uMAuMUzOOxtLHTkNEApHlbSik99h0fl8YKnP+3db7OZum6/n3qPYLTvUNyUcbC7bjBdaDfFUP5bdi+9HVP4sOyeYCUplEj/S5HcWXshJ1ffbxs3qfzKuNsGOMP5XfABeqHrSwCuqw3f9nd2DltfbNrwlPcv+LLQ6LGGnYLLndxvABLsh782pB0/kzRE082pwJvGz09ACxFpm/G9lNYVxscsHy5jym5gf1nIQY75wbiznGOiNq2PVmyyHhJ1bK+n+2QxMtp3KP+qPRuAjo7G4W9mZNkdXOT6gr/HGDDU1zGR8eV1s33Fm7jdgY/55edTWX5FVO0/siIBcIAspAV1Hw4vd420zfdAd3S3XE+Ey4zLI7rKjvYeDMDLVjv3J94jw+Ifrz2dpzx1QlfhfocK9zC2hIj+enYME/tQjnA/E1x+vfThqPhIewLcURvuwvst7wn8ZtoHa9zDPMcyzHNsMP4S56i4LroB/l3yQlTYErNrVNgUa8T63bUDo+IyzYHul+jpfjI4pqZb9Uv85OvK3hL/TSZVMiH0BvhSRCaLyGCb+D2A0L6HS62wMERksIhUikjl6tWZ6689quz2sNchu6/q/pszdk3/07Lw2utttZfESFn8vOAdEFx24o2K7yB1NdFiIvBh8K/Ob6kqP4cdra5xz1sjHwMEPoTacWfIHADPlvq9kQ4vvSuqdj7B5/9AObLsDvZ3VNVr2yZ2oMI9jPZuf9/whb42UWk+9x3OfF9d/WpQ7U3s636TNyx3GBtoTj9rUpsB1ffzpPd0ttIkJAf7Nur17Mha0zy4/qTnLxxd/TgracU47/4xbf484g0iMIBvhPcourlfoFf1E2Efcn9nZ06tvpd7PRfwqOfMYPidJe8woeyq4PqFzs+DTVuA7aCxu2sH2tbUT6253zonJ8a0O1NsolnUiPcFvt2yNgo9E18QexljlonIrsBXIjLLGPN9spkYY14EXgR/r5tUDOnsfp3Z5RfGTXOW61uGevzPo1Jqudo1nKtdH/G+pze3eOyeU7Cb+Nv9b629hHe9fVIxrYiou+Hnl58fdjOe6JjEC6WPc1nN9XzhOywXxmWc0N4ld7veCL7ZTS0fzAfe6IFo8dhZ6txAbzelMd1TX1MzJNgMFMuXSoATqx8MLvtw0Kv6ybA+3qH0qXmUIx3TmefbHYis9cMMU5FSj6rTa+7h2zJ/s16lrxNLLJcavZzTo9I+VHsWX1rt3vu636QFW8OaMgJsCHl4BJhi/A8DN2VcWXMN/7Eels3F/21jtPdgjrPckXzp7c5U057bXeEDo57w/CWukNu5CGkoXvb25y3vCXxmDEhmPv4GSPuojDHLrP9VIjIcOBwIFfplQGiDdjsrLONUU8pJ1f+iqyyiv3NCmA+av9dcHmzSCRDqD+Zvrm9thT50sIaKvJ8+1Y/wddlNUeHXuT4A4FTnD8w27agymW+ha0iasT0o8kBU893pzrHB5dOq/xH0N15Vfg4nV98f9qG+FZuCPUpWmx052jmN2c4Lo/Y5y7cnK2nFYl9r9nLUvdlWuN+hDes53jmZj709w9rNQ4k1QC7Aj77YtexUCb3OP/nqRtAuN63YXdbxg3d/3vf2ZoSvZ9h2Hly2Ip8In/p6AE+FhR0Xcr+PKLszLO5tTx/u8OT3m/gC438AZ1rkIc2mGxFpJiLNA8vACcC0iGQjgAus3jc9gI3GmKx5yZpp9uZD3zHcWFs3e1N393N86DuGdWYHAB4teS7mx6w/yAKqys8JTgpyhtP/zLqv9lzb9I2R+WYPNhv/a/2JDv/o4BI8dHX4R2D2c04M1vAKmdOc/q6Am4y9qAb4g/vlqJmDPim7g6ryc7jV8hUT2rOkdUjNHmC6b2+6uF+jwj2MvjV+lwXH1ER6LBVW0oq3vcfHFPlcEhgVGtrN+KjqZ6hwv8O5tbdHiXwmOML9DG5TUn9CsGZTa7yk20bfBhgnIlOAicAoY8znInK5iARK9qfAAmAe8BKQ2KfyNFnPjozxHsTFNTcGaw3rrdfB0JpYKC+VPMonZXcAML38EpqxPTjg5Hezs+02jZXnPf4uYS+UPs6DrhfpZfVsKiZ2sB72f6upqx2uMzvQp/qR4Pr5NUODwhsaHuAy1yjru0VsBtQ8gJuymPGfeQu5GSzztdMAK2lF1+rX6k13ZvWdWek9U0ikdfTGmAXGmIOs3/7GmAes8OeNMc9by8YYc5UxpoMx5g/GmNRGOqTARbW38I2vrtv++TXRXQJDnYsd7wwfzh3a3W2UrwdKHb+FuEU+y/Utr5VGi1yXGD5WCoV9Hcv53bRkptkrGHZo9fMsNG3xGAcDa24Jc2Ex3+xh28Yd2cx1ZnXdg+OU6vtiuql40vMXAK6ptZ+cRiHq3A2quYFvvN2C69fVXMlEE+3sr7FR3MM5I1jOLrzk6celrk8BeMnTj19MR3q6n7Qcdtlj5xWysfN9DB8959XcytvWB8TPy4ZyiPt51mWpb3C2CTTbgdDT/SRNpRqDAwPsWx3t/TDAoJobeLn0UbabUppI3WxY831tObnmAbZRznHVD9NBljPVdIiZz+OeM3jcc0aGjqZ4qXAPw4GP7jKbiaYrY31/oK1nbcF/I8okje595gHPecH2xAc8/q5wy2jNNTV1XbQeqT0zbBs7P++KcLj72ajQH3z781htnTj9XH45B8r8qHQNTUfLtfR+UpVQ+siJ0pfROuicqj5G+w6lwj2MXtXh7ezH1zwSdF89z7TjC5tBSkpq+HAEa+7VlKrIR9CoavTxGOHryfzqPZhu9gaELo7FnOz8CYh+PVT8rKJlVJjBwVPe0+jiWBz0dNjNMY+p3tg112zixIsDE5w799Oy2xLqQhgYWGc3aUuirGUnBlTfTzWlCT8kFCUbqNCHEDq/6/2157HG7MQ/PdrbJh4V7mGUUsuc8oEhbaNCdcgsWveWvMGbDTAIxY755edHhTXFzTbKaEJ1zBHON5f4B92M8x1gG58o0xqNLyQln9GqagxW0op/eAYWvVfKTFBDCYe5n+Wy2r8Hw57znJJDi/zYjdwF/0fiW13DmFl+sa1ztlDHeKtt3loUpdBQoVcywmpahj0U55g9w5pIqsrPob0sr9cvSSZ5rSTcx8qlNf4HUVtZx2XWbEKBUc8BHPiYVH4VilJMqNArWeW6mrphE9+U3ciMLE+Z5sLDmc4xtGUtxzjD+/ZPsHpPDQmZ0GJc2bXB0c8OfPxWVtelNrTrraIUMtouoWSV8TZD7supjjtAKB3mlfv9sId8ImBo7SAqfZ3YhN8VbGAEb4D7Xa9xu+cS/iALaBYy6UbkaFdFKVS0Rq9klVW05LyIgWpDXB+xq80EMenyQsljUWGjvQfznvdPzIvT6+Vc19cAYS5iQ324K0qho0KvZJ1xvj8E3dACDHF9zMTyq/iDLLBNf5RjGgNsppKLRxdZzIkR08tN9e3DoNrwUamh3h7f8BwfFne9yz8l3p+q/002h+4rSkOjQq80CINrbuDqmvAZmD4pu4MjHeGubHdmI8NK/8kzpeFTu9XH52VDg8sV7nfY1/0mp9Q8EJVuttmL7aYUgEdCpsPbnTXsY01fF/QiqChFggq90iCsYSc+8R0V5ucF4EZr5qYjHdNx4WFyed0AJYkzW1MobVkbXH7Gcyogcf2Kn1NzO294jmdLyMQaobNEKUqxoUKvNCgTTdewaeZWmxb0cMzg3dIHeLwkfOLoc5zfJJTnAGddM8+/IyattuMX05G7PRcBEjVb2Hdeex8+ilLIqNArDc5KWvnnHzXl9HVO4i5rir2Ay4kAD5S8ynel14UNYLKjlfjnVf1r9V1J2zIsYjKZ//P2TjoPRcl3VOiVnLHS+Eed7udYFDPN3o5VvFj6eNx8rnB9AsAMs3dKdgScs600LRjlOyKlPBQln9F+9ErOmOjrQgdH9GRjf62+i6mmfXD+X7t5VcE/OOqr0rpeNeGTWSfOKlqmNFeqohQKWqNXcsY9noF87/1DVPgk04VqSuld/Wjc7Q9zzA72lFEUJTYq9ErOqKaUC2pvpcI9jGsiul6Cf9Lp9dY8v5G48PBuaV33ydAPvIqihKNCn+d0btM81yY0CCN8RwUnhAnlLe9xgN8pWmBC9x6OGdzjeiMs3doCncVKKX7a79Is1yZoG32+I418gOYSs2vYuuDjvdL7g+uP157OSF+PuP3mFSWXmFwbQBo1ehHZU0TGiMgMEZkuIlGTropIbxHZKCK/Wr/k+78pjZpNJrw29HJJeLv9W97jmW/2aEiTFKXgSKca5AFuMMb8LCLNgcki8pUxZkZEurHGmAFp7EdpxIz37c9y04rdZR0AfZy/BOOqTUnBTjyuKA1JyjV6Y8wKY8zP1vJmYCagVSslo2ymKUdVP0MPd7jvmzOr76RL9Ws5skpRCouMfIwVkQrgYGCCTfSRIjJFRD4TkWjn5HV5DBaRShGpXL16dSbMUoqI39mZCb4uwfUppoNO2q4oCZL2nSIiOwAfANcZYzZFRP8M7G2MOQh4GvgoVj7GmBeNMd2NMd1bt26drllKETK4pm5O2mpKc2iJohQWaXVVEJES/CL/jjHmw8j4UOE3xnwqIv8RkV2MMWvS2a/SONnIDlxccyNrzE65NkVREsaY3Pe7SVnoRUSAV4CZxpjoqX38aXYDVhpjjIgcjv8NYq1dWkVJhG98h+TaBEUpONKp0fcEzgd+E5FfrbDbgL0AjDHPA2cAV4iIB9gOnGXy4fGmKIrSiEhZ6I0x46hnvjVjzDNA0Y5Nb1LiZHutN6v76NSmObN+35zVfSiKkj0679acqrXbcmqDdltIg9/uOSFs/YMrjmLwMe2D67f07cLIq3vx1iWHc+FRFUnnP+TYfXno9AMZc2Nvnj/vUMbdciw39+0cluagPVvwysDufHX9MXHzuq2fv8fKe4N7RMVdf1wnptwVfiz/+ku0szElv3E6khtGfWXvDlFhd/TvGhV2yF4tOK7rrlHhADedGF4e/3JIXQ/rdi2bcOjeLZOyCeDxvx2U9DaZ4to+HePGt92pPGbcXQP2Cy5f2bsDlXccx+39uvLYmd0S3v+YG3snnDYZikroky3oAFUP9k95fy5n+Ok7dO+W3NavK13b+gfxHNNpFw7YYyeO7tg6SqABWjWL33OkR/udaVLqZJ9dmtH3gN1o17Ipf+wU3iPp46t60qdrGzq2ac7eOzeNmdclvdpT9WB/erTfOSru2uM6slPTkrCwsw/fK25+Sv4x/5/9kkp/c98uUWGDjm7PiCE9w8KuP74TZx++V3D9huM7BZfPPWIvdm1eFlwP9c305FndeP68Q5OyCeDkA6Pn7N1/9+iBcS0jymwmGHT0PrS2jscu/8P3aWW73f1/PoCLe+0TXP/LIXuwyw5lXHpMe5qV1TWcHNQufkeCfbLkF6eohL7Qmv8LzV6l8RKrqEaGh/tmSs1Rk9g4ePI10K1iYizXR777pCoqoW/sZLqs5XnZVbKE2Fz5WKJnaBiRs6sUZVv7kzksu3NmnzA3d5UKvaIocYkUsVCB9RkTFp+w4BUAdg+SWEenNXolZewKT7wbKV4NJ8/LoZJHmHrqyqGVa189zY/15WWHXVltqFZOCdmXnR12zUqxc8ofVOizQKJt7/UVGm3CV/KF0DIdKt7GxK7NZrKWa/fAyIaU1nfLxazRJ51Tw6JCn0Ua+jU2v+oQSjERS7b8TTd1hIp7JsujXaUn21KqH2PzlPx6hqb22hpKvhcepTiJ35MmsummvswyYlLe3duRJFqpy9UtXVRCny8k2o7XkBc9328UpXAI+xjrMzHLe+Lt2ZHbRYfV9y0gs8TZV+JtN3mFCr2iKPWSeD/60B44mTQgk5klhu3H2BhHlec6X1xCH1nompY6G2zfe7WKP4q01Jn8qe7YZoeosD1aNgkuX/bH9mFxlx7TPjJ5kFgFccix+0aFnXzQ7mH5hQ5rV/KTPl38LgrO77F3VNzO1ghsu/vhpAN2Y6cmJRy6d8vgqNbIEdEd2+xAWUld+T2+a5u6vHco5ZaT6kbYHtu5buT23js3Zccm0aNLL+pZwZnd2xE6kP3Wk6JH6QLBUeaDjo4u23ZlN12alDi5orc/3+utEcBHhIyGPbN7O675kz9+55CR7YdVhI+YbbNjbFcJAXruGz1KPVtIPo7O7N69u6msrEx6u4qho4LL39zwR9q33iEsPJ67g3tGTOf18VXcNWA/7h0ZPu1tmctBtccHwGkH78HwX5ax+07ljL+1j21efZ/4nlm/b2bUNb3Yf/fwIc83/XcK/528FPC7QPj5zuPpfMdnVHt8zLqvL+Ul6T+cPv51Gde+9yunHLQ7T519cMLbJXKeAmkCtkeyZks13e8fHXc/C/7ZD4dD+H7Oai54dWLC9tlR9WB/3vppEXd+NM02LrRMBChxCiOG9OKkJ8fGzDORc5EMkXa8dEF3rhr2MzXWde9y5+dR+3vmm7n8+8s5YXYBfDNrJRe/XsmxnVvz2kWH17vPyGNI5dgC16rXvrvw9qAjEt6uPkJtCSwv/Fc/9rn10ygbI89hrOOKZME/+9H+tuj8AO78aBpv/bSIe0/dnwuOrEj9QBLkz8/+wK9LNvDBFUel5AcoHiIy2RjT3S6uqGr0oaTaPlhvvkmlzd1Q7myTTgXBkYJPokySN4N66jmFscpwLutmDdFBINP3brzs0u0wkSy56mBRtEKfr8QTyEzfwPn+TMmYfXn4VlofsbokKko2UKGPINuDPOx6DxTijR6zp0UD25EqhXjOA+TC9sJ7lOY7DXtGi1bos3YvWBnHdTcQ504slqabvKKQVTsFCvAFJqck0hTUUCVI+9FnmFTv/fpuokTad+M1zzRsf+DskVcf8VOwJZ/MT5VsfYeyI6+ut5I0RSv0+YCtu9c490tDfxhSckv9zsPyrzw05MNFyRwq9EmSbjm3baMvmJbt+ikUIcgnM5O9/nmo/0qek5bQi0hfEZktIvNEZKhNfJmIvG/FTxCRinT2l5RteSqeXm2kzziFekbTFWx1oZE+uXpoNvR+UxZ6EXECzwInAfsBZ4vIfhHJLgHWG2P2BR4HHkp1f/lCujeX6rwSST69XdRHAZmaHA10EXL1xptOjf5wYJ4xZoExpgZ4Dzg1Is2pwBvW8v+APpLFI20SMqo02b2UufynwuUUykvCT0uTkKHjpVa6eCNYA3EOm7Mb2A9AubWcaVcNLmvHJc7sFaomMY4/mbFQrgwNnHLZneg4lJc4cORYXZ0OCZarQO0u0k1GSQy3GU7rupa6Gq7lNXCtGnKfmS6/drYHwjJVFusjoC0NLfiu+pPEZA9gScj6UiBybHQwjTHGIyIbgZ2BNZGZichgYDDAXnvtFRmdECOG9OTtnxaxyw5ltAvxCfPmxYezcXtt3G2v7tMRgL8dtied2jTntuG/0X6XZrTZsZyLeu7DlCUbeGnsAu7ovx+7t2hiO1N9gP+cewj/V7kk6DsklPv+fAB779yUpqVOBlh5/N/lR/LVjJU0LU3nctRx4v5tuPyPHbj8j7F939iRyHm6/rhOPD56DiOvOdo2vkXTUm7u25k2zcup9fqo9RnKnA62VHto37oZW6u9wbRHtt+Z3p1b8+3s1QDsvlM5yze6+ezao3l2zDxGTl0Rlf9xXXeleXkJ5xyxFzNXbALgjEPb8eOCtey2YxkHtmvB1e/+wgOnHQDA+4N78NhXc/AZQ7uWTWnXsgmndtuDDq2b0afLrnRp25zenXdl4ZqtYKB962YAjLqmF5MWrkvq/MXjuXMPYfWWav756Uy6792KYzq1ZviVR/HNrFWUuhzc0b8rx3RqHbbNwKMqWLe1hnYtm9B5tx2D4cd0bM2VvTvY+n8J5aULutt+0B11TS8mJnlsPTvswlXHduCinvsktV19DL/yKGau2AzAR1f1ZPryjQDc0b8rR3cMPx93n7wfw39Zxo0ndGaDTTkddukR/LRgHU1KnDgd0KzMRbnLGcwv8vwC/P34TpQ6HZx+SLuMHlcsHj+zG2/9tIhD9mrRIPsLkLKvGxE5A+hrjBlkrZ8PHGGMGRKSZpqVZqm1Pt9KEyX0oaTq60ZRFKWxki1fN8uAPUPW21lhtmlExAXsBKxNY5+KoihKkqQj9JOAjiKyj4iUAmcBIyLSjAAGWstnAN+YfOwcrCiKUsSk3ChstbkPAb4AnMCrxpjpInIvUGmMGQG8ArwlIvOAdfgfBoqiKEoDktbXP2PMp8CnEWF3hSy7gb+msw9FURQlPXRkrKIoSpGjQq8oilLkqNAriqIUOSr0iqIoRU5eTg4uIquBRSluvgs2I28LiEK3H/QY8oVCP4ZCtx8a9hj2NsZED/8lT4U+HUSkMtbosEKg0O0HPYZ8odCPodDth/w5Bm26URRFKXJU6BVFUYqcYhT6F3NtQJoUuv2gx5AvFPoxFLr9kCfHUHRt9IqiKEo4xVijVxRFUUJQoVcURSlyikbo65uoPF8QkT1FZIyIzBCR6SJyrRXeSkS+EpG51n9LK1xE5CnruKaKyCG5PQI/IuIUkV9EZKS1vo81Afw8a0L4Uis8ZxPEx0NEWojI/0RklojMFJEjC/AaXG+VoWki8q6IlOf7dRCRV0VklTUpUSAs6fMuIgOt9HNFZKDdvhr4GB6xytJUERkuIi1C4m61jmG2iJwYEt5wmmWMKfgffjfJ84H2QCkwBdgv13bFsLUtcIi13ByYg39y9YeBoVb4UOAha7kf8Bn+eZl7ABNyfQyWXX8HhgEjrfX/A86ylp8HrrCWrwSet5bPAt7Pte2WLW8Ag6zlUqBFIV0D/NN0LgSahJz/C/P9OgDHAIcA00LCkjrvQCtggfXf0lpumeNjOAFwWcsPhRzDfpYelQH7WDrlbGjNymlhzeCJPxL4ImT9VuDWXNuVoO0fA8cDs4G2VlhbYLa1/AJwdkj6YLoc2twO+Br4EzDSuhHXhBT04PXAP1/Bkdayy0onObZ/J0skJSK8kK5BYD7mVtZ5HQmcWAjXAaiIEMmkzjtwNvBCSHhYulwcQ0TcacA71nKYFgWuQ0NrVrE03dhNVL5HjmxJGOv1+WBgAtDGGBOYDft3oI21nI/H9gRwM+Cz1ncGNhhjPNZ6qI1hE8QDgQnic8k+wGrgNav56WURaUYBXQNjzDLg38BiYAX+8zqZwroOAZI973l3PSK4GP+bCOTJMRSL0BccIrID8AFwnTFmU2ic8T/i87Lfq4gMAFYZYybn2pY0cOF/9X7OGHMwsBV/k0GQfL4GAFY79qn4H1q7A82Avjk1KgPk+3mvDxG5HfAA7+TallCKRegTmag8bxCREvwi/44x5kMreKWItLXi2wKrrPB8O7aewCkiUgW8h7/55kmghfgngIdwG/NxgvilwFJjzARr/X/4hb9QrgHAccBCY8xqY0wt8CH+a1NI1yFAsuc9H68HInIhMAA413pgQZ4cQ7EIfSITlecFIiL459KdaYx5LCQqdCL1gfjb7gPhF1g9EHoAG0NecxscY8ytxph2xpgK/Of5G2PMucAY/BPAQ7T9eTVBvDHmd2CJiHS2gvoAMyiQa2CxGOghIk2tMhU4hoK5DiEke96/AE4QkZbWm80JVljOEJG++JszTzHGbAuJGgGcZfV62gfoCEykoTWrIT9gZPnjSD/8PVjmA7fn2p44dvbC/2o6FfjV+vXD3176NTAXGA20stIL8Kx1XL8B3XN9DCHH0pu6XjftrQI8D/gvUGaFl1vr86z49rm227KrG1BpXYeP8PfeKKhrAPwDmAVMA97C37Mjr68D8C7+bwq1+N+sLknlvONvB59n/S7Kg2OYh7/NPXBPPx+S/nbrGGYDJ4WEN5hmqQsERVGUIqdYmm4URVGUGKjQK4qiFDkq9IqiKEWOCr2iKEqRo0KvKIpS5KjQK4qiFDkq9IqiKEXO/wPB3e/dO1x1vwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc_pois = sim_pois.simulate(2)\n", + "plt.plot(lc_pois.time, lc_pois.counts)\n", + "plt.plot(lc_pois.time, lc_pois.smooth_counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These light curves can be used for standard power spectral analysis with other Stingray classes." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD8CAYAAAB0IB+mAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABBcklEQVR4nO2deZgcVbn/v6d6nenZlyQzmUwmOwlkZUhYwmpYA0QFFYTrQgD5XUEfr5d7UblXxY3rxY0LiigYFAUBURMSBNkMsmSFbCSBkGSSyTaT2ffezu+P6lNdVV3VXb3XTL+f58mTmerqqjM1Pd966/u+5z2Mcw6CIAhi7CPlewAEQRBEbiDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBCc+R5APGpqanhTU1O+h0EQBDFq2LJly0nOea3Ra7YUfMbYVQCumj59OjZv3pzv4RAEQYwaGGMtZq/Z0tLhnK/hnN9aXl6e76EQBEGMGWwp+ARBEETmsaXgM8auYow93NPTk++hEARBjBlsKfhk6RAEQWQeWwo+QRAEkXlI8AmCIAoEWwp+uh7++vfbsfFAJ070DoPaPxMEQcjYsg6fc74GwJrm5uZbUnn/f/91Jw52DAIAilwONFYVo7G6GJOrijG5uhiN1T40VRejvqIILoct73kEQRAZx5aCny6rPr8YBzsGcKhzEAdPDuJQ5wAOnhzA+vfbMRIMK/s5JIaJFUXyTUDcDKp8aKqRvy92j8nLQxBEgTImFa2pxoemGl/M9nCYo61vBC0dA2jpHMShjsHI/wN4bvsx9AwFNPvXlnowWXk68GFydXHknw+VxS4wxnL1IxEEQaTNmBR8MySJYUK5FxPKvVgytTrm9Z7BAFo6B9DSMYhDnYPyjaFjEG992IFntx7R7FvqdeLmpVNx+0XT4ZBI+AmCsD+2FHx1L51cUl7swrziCsxrqIh5bTgQQmuXbBG1dA5i44EO/OSl97G5pRM/u24hqnzunI6VIAgiWZidq1iam5u5XZuncc7x5KbD+ObqXajxufHgDYuwsLEy38MiCKLAYYxt4Zw3G71GJSopwhjD9Ysb8afbzoYkMXzyl2/hsTcPUhkoQRC2hQQ/TeY2lGPtHefivBm1+ObqXfjSk+9iYCSY72ERBEHEQIKfAcqLXfjVZ5px56WzsHb7Uax48A3sa+vL97AIgiA0kOBnCEli+OKF0/H4yiXoHvTj6gfewOptR/M9LIIgCAUS/Axz9vQaPHfHuZhTV4YvPfEOvvnXnfCrJnsRBEHkC1sK/mjvhz+h3Isnbj0TNy+dgsfeasEnf/kWjnYP5XtYBEEUOLYU/LHQD9/lkHD3lXPw8xsWYV9bP5bf/zrWv9+e72ERBFHA2FLwxxJXzK3D6tvPwbhSLz77m4342UsfIBym0k2CIHIPCX4OmFpbgj9/8Wx8bMFE/OSl93Hr7zaT6BMEkXNI8HNEsduJH31yPr568Uy8tLsNWw915XtIBEEUGCT4OYQxhs8vnQKvS8Jf36WSTYIgcgsJfo4p8TixbPZ4rNtxDIEQlWsSBJE7SPDzwIoFE9Ex4Mcb+07meygEQRQQJPh54PyZtSgvcmE12ToEQeQQWwr+aJ94lQi3U8Llp03AC7uOY8gfyvdwCIIoEGwp+GNh4lUirl5QjwF/CC/vOZHvoRAEUSDYUvALgSVTqjG+zEPVOgRB5AwS/DzhkBiumleP1/a2oWcwkPgNBEEQaUKCn0dWLJiIQIjj+Z3H8j0UgiAKABL8PHLaxDJMrfGRrUMQRE4gwc8jjDFcvaAebx/owIne4XwPhyCIMQ4Jfp65en49OAfW0OpYBEFkGRL8PDO1tgRzJ5bTcogEQWQdEnwbsGJBPba39mB/e3++h0IQxBiGBN8GXDmvHoyBonyCILIKCb4NmFDuxZlTqrH63aPgnBZGIQgiO+RM8BljH2WM/Yox9kfG2CW5Ou9oYcWCeuw/OYCdR3rzPRSCIMYoaQk+Y+xRxlgbY2ynbvtljLG9jLF9jLG7AIBz/hfO+S0AbgPwqXTOOxa5/LQ6uBwMf333SL6HQhDEGCXdCH8VgMvUGxhjDgAPArgcwBwA1zPG5qh2uTvyOqGivNiFC2aNw5rtRxGi9W4JgsgCaQk+53w9gE7d5sUA9nHO93PO/QCeBLCCyfwPgOc551vNjskYu5Uxtpkxtrm9vT2d4Y06rp5fjxO9I9h4QH9JCYIg0icbHv5EAIdV37dGtt0BYBmAaxljt5m9mXP+MOe8mXPeXFtbm4Xh2Zdls8ej2O3A6m1k6xAEkXlylrTlnN/POT+dc34b5/yhXJ13NFHkduDSUydg3Y7jGAnSwigEQWSWbAj+EQCTVN83RLZZZqyveBWPqxfUo2cogPXv03q3BEFklmwI/iYAMxhjUxhjbgDXAVidzAEKYcUrM5ZOr0GVz03VOgRBZJx0yzKfAPAWgFmMsVbG2ErOeRDA7QBeALAbwFOc813pD7UwcDkkLJ9bh5d2n0D/SDDfwyEIYgyRbpXO9ZzzOs65i3PewDl/JLJ9Hed8Jud8Guf8e8ket5AtHUCehDUcCOPv7x3P91AIghhD2LK1QiFbOgCwqLESEyuKaGEUgiAyii0Fv9CRJIar5tfj9Q9OoqN/JN/DIQhijGBLwS90SweQbZ1QmFMHTYIgMoYtBb/QLR0AmF1XhvkN5fj9hkPUQZMgiIxgS8EnZG44czL2tfVjA7VaIAgiA9hS8MnSkblqXj3Ki1z43dst+R4KQRBjAFsKPlk6MkVuB649vQEv7DyOtr7hfA+HIIhRji0Fn4hyw5JGBMMcT206nHhngiCIOJDg25yptSVYOr0Gf9hwiPrkEwSRFrYUfPLwtdx4ZiOO9gzjlT1t+R4KQRCjGFsKPnn4WpbNHo/xZR48TslbgiDSwJaCT2hxOiRcv7gR/3i/HS0dA/keDkEQoxQS/FHCdWc0wiEx/GHDoYT7BkNhujEQBBEDCf4oYUK5F5fMGY+nNh/GcMB8NSzOOf7tqW24+Mfr0TMYyOEICYKwO7YUfEraGnPjmZPRNRjAuh3HTPd5fMMhrN52FP5QGO8d683h6AiCsDu2FHxK2hpz9rRqTK3xmSZvt7d24ztr3sPpkysBALtJ8AmCUGFLwSeMYYzhhjMnY+uhbrx3VCvmPYMB/Ovvt6KmxI1ff6YZNSVuEnyCIDSQ4I8yrl3UAK9LwuMbolF+OMzxb0+9ixO9w3jghkWo9Lkxu66MLB2CIDSQ4I8yyotduGpePf7yzhH0DctJ2V+u34+X97Th61fMxqJG2c6ZU1eGD070IxAK53O4BEHYCBL8Uci/nDUZg/4Q/vzOEWzY34H7XtyL5XPr8Lmzm5R9ZteVwR8KY387lWcSBCHjzPcAiOSZ11CBeQ3l+M0bBzEwEkRjVTHuvWYuGGPKPrPrygAA7x3rwawJpfkaKkEQNsKWET6VZSbmxiWTceDkAHqGAvj5DYtQ6nVpXp9a64PbKWH3sb48jZAgCLthS8GnsszEXDW/HufOqMF9n5ivRPNqXA4JM8eXUKUOQRAKZOmMUorcDvxu5ZK4+8ypK8PLu9vAOdfYPQRBFCa2jPCJzDC7rgwdA360943keygEQdgAEvwxTDRxm31bZ/exXnBOC7QQhJ0hwR/D5Erw3z3cjct/9jre+rAjq+chCCI9SPDHMOVFLkysKMp6pc7GA7LQt5F1RBC2hgR/jDO7rizrlTpbW7oBAP0jwayehyCI9CDBH+PMqS/D/vb+uD3004Fzjq2HugCQ4BOE3bGl4NPEq8wxp64UYQ7sPZ4dW+doz7Bi5fQPk+AThJ2xpeDTxKvMke3E7daWLuVrivAJwt7QxKsxzqTKYpR4nFnz8bce6oLXJaHM60IfRfgEYWtsGeETmUOSGE6ZUJo1wX/nUDfmNVSgotiFAYrwCcLWkOAXAHPqy7D7WB/C4cxOjBoOhLDraA8WNlagxOMkS4cgbA4JfgEwu64M/SNBtHYNZfS4u472IBDiWNRYiRKvC30k+ARha0jwC4BsJW7fOdQNAFjUWIlSjxP9kRW4CIKwJyT4BcCs8aWQWOYFf+uhLkyqKkJtqYcsHYIYBZDgFwBFbgem1Pgynrjd2tKNhZPkNXR9HicGRrIzuYsgiMxAgl8gZLrFQmvXII73DmNRYwUAoMQrR/iZTgyPNZruWov/+svOfA+DKFBI8AuEOfVlaO0aQs9QZnz2F3edAACcN7MWAFDqkad0DPjJ1knE795uyfcQiAKFBL9AEInbPRmK8tftOIZTJpRiam0JADnCB2i2LUHYmZwJPmNsKmPsEcbYM7k6JxFlTkTwM2HrHO8ZxuaWLiyfW6dsK4lE+NRPhyDsS1qtFRhjjwK4EkAb5/w01fbLAPwMgAPArznn93LO9wNYSYKfH8aVelDtc+NHf38ff999AjPHl2LW+FLMnFCKBQ0VkCTra94+v/MYAOCKeQaCTxE+QdiWdHvprALwAIDfig2MMQeABwFcDKAVwCbG2GrO+XtpnotIA8YYfnjtPLyw6zj2nujHkxsPYyjSMvkbV8zGLedNtXwsYedMi9g5AFk6VqAlIIl8k5bgc87XM8aadJsXA9gXiejBGHsSwAoAlgSfMXYrgFsBoLGxMZ3hETo+Mns8PjJ7PAAgHOZo7RrC8v97HYc6By0f40SvbOd8ZdlMzXaydBJDBUxEvsmGhz8RwGHV960AJjLGqhljDwFYyBj7mtmbOecPc86bOefNtbW1WRgeAchN1Rqri1Fb4kHngN/y+57fcQycA1eo/HsgKvi5bK8wEgzh2l+8iS0tnTk7ZzqESPGJPJOz9sic8w4At+XqfIQ1qnxudAxYX4t23Y7jmDW+FNPHlWi2l3pzH+G39Y5gc0sX3jnUjdMnV+XsvKlCgk/km2xE+EcATFJ93xDZZhla8Sp3VPnc6BqwVpvf1juMTS2dMdE9IM+0BZDTFskiXzDkHx0zfEPk4RN5JhuCvwnADMbYFMaYG8B1AFYncwBa8Sp3VJe40WHR0vnru0fBObB83oSY11wOCR6nlNOkrbi5DGZpvd5MEwqR4BP5JS3BZ4w9AeAtALMYY62MsZWc8yCA2wG8AGA3gKc457uSPC5F+DmiyudG16A/YUuEcJjj8Q0tWNxUhenjSg33KfU6c+rhD0Qie3WE7w+GcetvN2dtDd90oAifyDdpCT7n/HrOeR3n3MU5b+CcPxLZvo5zPpNzPo1z/r0UjksRfo6oLHYjFOboTdDaeP0H7WjpGMSNZ0023afE48yph69E+Kp2Dsd7hvHieyewRbXWrl0IhsP5HgJR4FBrhQKnusQNAAkrdR5/uwU1JW5cdmqsnSMo8TqT8vAH/UEs+/E/sGF/h+X3qOlXBD8a4Q8H5a+zGU0//nYLrvnFm0m/j/SeyDe2FHyydHJHlc8DIL7gH+4cxMt72nDdGY1wO80/Mj53cpbO0e5h7Gvrx7bWbsvvUTNgkLQVX4dC2VPXu/+yE1taupKuuqEIn8g3thR8snRyR7VPjvDjJW7/sPEQGIBPL4k/Ea7Um5ylIzp3dg2m1sFzwCjCD4gIP6VDJkXXoPX5CwBF+ET+saXgE7mj0hff0hkJhvDHTYexbPZ41FcUxT1Wsqte9QrBT2LilxqRtFVX6Yh2Ebnoy3+y3/r8BSA2wj/cOYhVbxzI5JAIIi4k+AVOdQLBX7fjGDoH/PiXOMlagVgERfD7DS1455B58jQa4aco+IqlEz3ncEAW1WAWBV/0/j/Zl2SEr8sr3PjIBnxrzXvoSfEJhyCSxZaCTx5+7vC6HCh2O0wF/8mNhzG1xodzptUkPFaJx6UIfjjM8e017+GJjYdM90/X0jFM2ooIP4tJW9EoLvkIXzumvoj9FUjC6wmEwtSgjkgZWwo+efi5pcrnNhX8fW39OHNataX2ySUeB/zBMEaCIZzsH4E/GI67zq0Q/O60I/xYSyeYRRO/NEXB1yd5JSZf02Tsp1t+uxmnffMFNN21NmOrlxGFgy0Fn8gt1T7j2baBUBgdA36MK/VYOk6J0l4hhMNdcgfOeFU7QrA6LbZ20CNuJsZJ2+QFn3OOE73DCfdzOeQ/m/Y0BT9ymKTG+treduXrw0l0OSUIgASfgJy4NUqcigh2XKnX0nFKvC4AcgO11q6hyNfmYt6rivBT6RUv1s8dCoSUKDmdpO1jbx7Eku+/nHCW7khQtmC6k7xRxQh+JMJPtamaPxTGyf6RlJ+QiMLDloJPHn5uMbN02nqF4CcX4feNBJToM57fLCL8YJin5EurJ3mJCVfpJG3Xf3ASQOLIWTxFBJKs9dfnFYRNlqr9NBwIofm7L2HBPX9P6f1dA37sOpr+31jTXWtxzxrtchfbDnePmrbVhYQtBZ88/NxSbdIiua0vIvhl1gRfeNsDIyElwrfi4QOw3LFTjfrYwtZJJ2krbhIOR/x8hbip+JMUfL2wO4Tgp1ign0obi/eORtc0/tjP38Dy+/+Z0rn1PKorL13x4Bu45hdvpXSstr5htHaRXZUNbCn4RG6p8nkwHAhretIA8h8eANRajPB9yrq2gaiHH8fS6RkKwBUR11RKM/tHgvC5HQCiidvhNJK2oYjwOhMkqEeCqUX4eq9eWDqBFCP8PpXg72uTbaje4YBp1L5uxzFccf/rWLPtKADgYIf8O+oa8OPl3SdMz3OkewhXP/BP/G3n8bhW2dZDXWi6ay3ufX6P6T67jvYktO8Wf+9lLP2fV+PuQ6QGCT6BKp/svXf0a0W3rXcEjAE1JUlaOmoPfyRo+gfeOxTApMpiAMkLPuccAyNB5WY0qOucmVKEHxFeRyLBj0T4yQp1TJVOmpaO+ma67Mfrse1wNz776EYsv/+fyjXnnMMfyTkc7BgAAOw8or0hfG7VJqx8bLOprfbI6wewvbUHtz2+Bb9586DpeD7+c7m/0EP/+NDw9b/tPI7l9/8Tf333qLUfkMg4JPiE0k9HL7rt/SOoKnYrVSmJEJZO71AAR7uH4HZICPNoIlVPz1AAk6tlwe9OshbfHwojGObKzWhQlcAFUkuEiveIyNtsH2HlJB3hmyRtk6nDV7NLZc8AwKHOQbxzqFtzrh++sBcz734eI8EQ9rX1A4j9few9Lh/H7MbMEd2+v70/pbECwP6T8ntf3duGYBLX7sVdx9F019qYc+880oM/bjKf55EKw4EQbvj12xnJbQhe2XMCx3sSV3/lAlsKPiVtc0uVST+dtt4Ry3YOEI3wP2wfQCDElWUQjSLHQCiMAX8Ik6t9ABJ369Qj/Hsxvqilk3rSVrxH/9ZAKIxP/+ptbGnpVOwcsV3NByf60HTXWrxt0v0z0xH+01taNd+rn2rEz/L7t1sAAMP+MJ7dKi88N6wTfHHNzO476vuApLsZJlNdJayyv757NMbzj8faHccAANtbtXpw5f/9E//5px2Wj2OFnUd68Ma+Dvz3X5NawiMuN63anFJ31WxgS8GnpG1uUdor6Cyd9r5hjCuzVpIJAMVuBxgD9kQixlPq5IVSjJKLoiSzsaoYjCU/+UpU6OgtneE0yjKFIOuF+UjXEN78sANffvJdRRyBWEvnH+/LNfIv7Doe9/gCpyL4iaPdE73DyvHNUGuv/makTgyrfwY1H//FG5obb/9IENt1nUz1bpdVvf+/lz/QjH+PQenr4c5BnPG9l2K2S2mWr6ZCKmXCRojP4ZHuoYwcL11sKfhEbqky6Ynf1jdiuSQTABhjKHE7sfuY/Mc8e0IZAOMIX1ToVPpcKC9yJd1eQRyzVlg6Aa3ghzjHcCCk+NdWEFGxvmpGtITu6PdromO1qPYMBvD0ZjniLnI5DI9vFuFbqfa574W9+OyjG+Puo47w9Tcj9fertx01vC4ftg/g2a3Rp4Z//f1WXP3AG5pkPtNF+FYnjf3o7+/jjX3RJ58ilwMPvPKB5no+s6UV7X2x1WJC8L/69DYcODlg6XxWGQ6E0HTXWjwZaQESx81LiVTtumxBgk+g1OOEy8HQqYqyw2GO9iQFH5D7zPQMBcAYMHNCnAg/sq28yIWqYnfSSVshQlFLJ9bDv+W3m3HPc9YfzUWVjl6YQ6pJXSMqoVSL5n/+aTv2npBvdMVuE8GPqdKR/7di6Vhpo6AedjAUxoneYeU66wVeVOroEdbY8Z5hrI9E5Or3CvH99ppd+OHf9qQcda/dcQz3vfg+Hnhln7JNH1W/uqctcs7otusffhtAtCoJAL727Pa454r3tCeCnJ++9EFki3yyTD1L5PKpxAok+AQYY6gsdmssna5BP4JhnpSHD0R9/PGlXsUqihfhlxe5UFHsSlrw+yMefjRpq4vwwxxHu4dwvMd6+4NohG8s+OrjS0wb4av76hS5nYbHj7V0pMj5EkeBouQ1HpoIP8w10bD+KcKsiun1yOSzH724V9mmvh6PvnEAr+5pw2/eOIifv/Zhyk3qRJJevbSmXhs/v2oTAG3VlPjcbDgQndT1xMbDmvdxzpWbx6o3DmDq19eh+bsvoaVjAI/884BmYp2I6I/3DmtsRfWPdbR7KKmV3NSor52R1RcMhfHq3raUjp0KJPgEADlxq07aKpOuLLZVEIhOkg2VRYr4JxL8ymJ30hOvzD38aJQeCvOEghQOc1z20/V47M2Dph6+OjIXgl/qdWn+mMXPDQAek1XBYi0d+X8r5Z2uBJPBAGjC0mAorBFKfYSvT74KNh7sxIneYbSoRFF/CX/1+n7laysR7NE4/rX6Zzf6XX39zzs0NlJIKTc1P9/X/7wDU762DgDw7Dtyovpk/wh++MJefOe593DjIxuUfRmix15wz9+xQ5ezCIbCOPveV/DFP2w1P6GKO5/ehpsf26R6f3SgX/jdFk3SHwB+8dqH+PxvNilPM9mGBJ8AIK9t26mabZvsLFuBEPlJVcWqiVjmgl9W5EJFsTvppK04ZpXPDYlFrQi1pROM/IvHpoOd2HO8D99cvUv549S/R20JiPOWF7kQUImoOgI3u8noj6ufabv5YCemf30d2nQN3N472osP2xN711oPP6yxQvRJ3Hhe9XAghI2qCFr/BKI+jxWL+ux7XzF9TZ2wNvpV/WHDIairgsUNJt5vVR3xq/Mpa7fL1T5qe0z/u/qWrkWEuCGpm9bF4+ktrXhpd1S89ddO/9EQN9b2vhF8ELEEB/1BdPSPZCxxrMaWgk9lmbmnstitSZy29yXXR0cgBL+hskipy++LU6VT5nWhypd80lZE+D6PE8VuZ6ylwyMRfgLB/3MkAhxf5lH+OEO6P1J1hL/5oLygy6wJpfCrordSleCbRez6sUi6mbbfX7cbwTBXcgFHuofQ0T+CK+5/HVtauuL+HIBWMOVJc1FVT0bw9RPP9DkG9eVJlLQ1K1FV3q8aNLfgnJs9Uby8+wSa7lqryU003bVWY/0o51Edwux4YqtZ0lVdV987HMCnfvkWHnx1X8x++uPrL5e40s/vPIaLf7Ief9t5HI/+8wBO/+5LKc/AjoctBZ/KMnNPtc+Njn51hC9/oJO2dESEX1kMj1OCU2KG/mfPUAAepwSvy4GKYjeGAqGY+nA1hzsHNf1VhMD7PA4UuR0YCsgzevURfiLLYdNBWRBO9vuVpwS9wKm/f/PDk6gt9aC+3KsRUfXkNLMJWaYRfojj7f0d2BqZNFUa6Tp6zr2v4PTvxpYpmqGOVj/96w2an11v6aitDD16u0c/bnXU2pGgRfR1kSSrGQG14Jv8qgy36zZ+5zk5Mr/jiXfing+QP3uiTDLRE2DIQHS3HurCmT94GX+KzIP44EQfNhzoxP++sDdm35ibJef4wbrdeHqz/BTy90hLC5FvefdwN+578X0AiWd8p4ItBZ/IPVU+D3qHg4pYtfWOoNTjRJFJxYkZag+fMRaz7KGgZzCA8iJZ2CqL5eRuvMTtnc9sw9f/vFP5vn8kCJeDweOUV+wa9IfgD4UVHQiFOYKhcMIItGswAJ/bgVCYKxUt+puEWki3t/bg1PoyuBySxo5QC6pZXb04jtBTMdM2GA5rhDHMOW74dXyhjHd8gdpy0idt40X4+iumtyUOdUY9+Yt/sj65QeqPHQqjpWMAfcMBwydBo/EYIfoCWeWce19B14A/bpABRJ8A1QjrZcMB+ekl3tNXjD3IOX65fj/ufGY7mu5aqySvj0aeGPpHok+6WdB7JE79EwWBqMXvGvBjXJkX7X3JzbIVlCqWjtwywed2GpZl9gxFBV/08ukaCKCu3Hih9EMdgyiL7A/Ilk5xpBqmyCUL/rA/KkxWIvxwmKN70I9zptco1SlA/CqdkWAYU2p8cDklzSO3OhnnN3kUF9Ge+DsWdfj6R3fOuaZm3Sp6wfSb3JCA2Hp6NU9s0LYr0I8v2ZW+4hEIcZz/v69hfkM5trUaW7jZ8LIBYOF3zNtKC7G957mop/+t1bvwtStOgbis4mPx/XXmzeL09qBZzkP8ftR/K/F+R6lCgk8AUM22HZQFv61vOCXBn9dQgXkN5airkK2gUq/TcNUrteBXRCJ8s8RtKMxxok/rSfePBBX7qL6iCB+c6FN64ov3hBIIfu9wAGEOnD65UiP4oTDH33YeQ2OVD3Pqy2KO4XZIcEks8kTBwRjDSDCMiRVFONI9pET4f9rSimA4jE+d0QhAHeEzHO4cxN/fkx/n9U8Eqepbr65WXy3UetGOJyUPr9+v+d7sGlYUu5LugaRHrDBmJvZA7PUIhTn+K4OtD4wocjnwoq6MctWbB/Gnra3KjTVeBdigP4h//f3WmGRvoqqxo1nuuUOWDgEgaquIWvy2vpGk2ioIls0Zj9W3L1U87RKP09DD7x2OCn59JKrfZ9KY62T/CEJhrqmuGBgJwueR7aYLZtXiYMegptd7iMsRfrw/MJEobqwqhtcV/VMIhjlue3wrrrj/dflYBjNkxc8nngZGgmFU+dzwuiRl21ef3qbp9SJyBG6HpNSYq48h+JIFH/r8mbX4z8tO0WzTT85S30iOdGstj2SCRzOLKhPx544jiQsz9L/CJzZmtmGaEUUuB2793ZaY7eqnqGe3HsHCe140fP/KVZsNK3su/sk/4p73PV1DvExDgk8AkMsyAbmBGuccbb3Jz7I1wtTDV0X4k6qK0FRdjJd3G9ciH1P8zaAiPoP+kFIKeeGscQDkfu8C4eHHm8UqcgaVxW5U+6I/q9rX3XSwU2n1LHBKDK5Irb3IeYwEQ/A4Jbgckmk7B9H+waFLZOurO6xEeQ6JYWKl1v7q1a09oLZ09LbDV/74bsJzCMyqRZKtrEoV/U377r/sNNkzc7xssS7e7Bq8ZVKddLI/fvlxKiu/JQNZOgSAaMfMzgE/+keCGAqEMiL4Po8ThwwSaj1DAcWTZ4zhI7PH43dvtUQid+3H8nhPVHD7hoOo9Lk1ls6kqmLMGFeiEfxgKIwwj/8ILSykimIXako9SuWGup/LJx6KXbVJYtEIX4jhSCAMj0sWfLOZsyLC108IUy/CbhWJxdbZ6CevxSvri/eaPsGb6opcmcJezQlGNyxbCZFMUDV5Nr/464/mexgFAQew8UAnJlYUoabEjW2tPZhW67O8+IkZ+08OoHvQj0WNlZrtGyLnaohEqb3DAew+1ocZ40qUm4/geO8wWiI3jfkN5fC6HNje2g2vy4GZ4+V+PYe7BnG0W46MJQZ4nA4MBUIockmY11BhOLaT/SP4sH0A8xvK0dIxiO6IJVJV7EJnnOi1obIITonhYMcgFjVWwOWQsONID9wOCQP+ICqK3Zha41NqwJdMqZKvRXs/2vv9YJAj9FRaOAsqi12oLvEoPe4BoMglYSgy09jlYGioLM5IszGvU8JwEk3oMk1NiTthZDwWEZ+bZHnqtrO3cM6bjV6zpaUjJl4Fg9l9vCGiKCIUCisRntviwifxcDAW44ELoVMvJVjqdcHBjEsz1RZJtP2Btk55YkXU3nBITJnEEy+eEVGuyyFp2xAk6F7JEK2gEIfnnENicn27WRCVhXk0GkR1kMQAr9ORseqWfIeEQyk8ARHG2DrCb25u5ps3b873MAqGi370GmZPKMOlp03Al554By9+5Twlgk6Vn770Pn760gf48PtXKKLa0jGA8//3Ndz3ifm49vQGZd87nngHb+47iY3fWKYR4C8/+Y6yLN7vVi7GuTNqMf/bL2LFgnrcs+I0Zb+uAT/+/M4RvPnhSew+1ocj3UOYXF2Mf9x5oeHY/veFPXjoH/vxwXcvx3+v3onH35aTgaLaxoy7Lj8FNSUe/PvT27D+zgvRWF2M8374KhY1VuDdw92Y11CB+69fiKa71gIADt67HABw06pNeGVPGxwSQ6nXGbfCpczrVOYFGLF8bh2umFtn2ONlfJkHEyuKsHxevTIhKR3qy71Zrx4hYhGfm2RhjI2uCJ/ID9U+NzoGRpReLhlJ2hr00xGJrspil2bfc2fUoGPAr6y9KjjWM4yKyL69Q/JxBv2xXn+lz42blk6Bx+lQ2hjHK8vsGgygosgFSWIo8UTHImYZm+FgTGlm5tckbR1wOaSYmbbDgRDaeoeVls5hnrjlQ6IJb4yZV9r0DQex9VA3ntp02HiHJDES+0QLvRPWmFRlPO8kW5DgEwpVPjc6B/xo7xuB2ykpVTTpYCz4Ilmq9erFYib6evLjPcPKk0bPUAAjwRACIa4cW48kMfiDide27R70KzeSUq+2F47bKWlKNfXHdzu0rY1HgnLS1umQYhKin/vNRiz+/suKNcG5caMwNR5nfME/d0aNaVmkSAKLnjzZwGuyyAthnfs+MR+v/8dFOT0nCT6hUOXzoHMggLa+EdSWeDIy00+0WlCXIXYr5ZAuw33Vtc6ccxzvGcYpkcVUeocDynq2ZguNOBisRfgDAWX+gVrwAaDG5zYVXaeqDj8QjFbpeF0OuBwspqrl7f1y8nZA5UUnWgDdrMWy4JPNk+K+nm3sIPgVxckHJNcvTnzdptb6NF+r80PNkyuN3pI0H1s4ER9bOBEAcPfy2Rk5phVI8AkFuWulHyd6h5Nui2yGiMLVIt6tWDpuw33VTwOdA374Q3I7A6fE0DMU0HTKNMIhSYrVoi/L7B70K5UrXYN+5SnjgpnjNPtVFLtNRVdS1eE/8OoH+PjP38BQIFqHbybm6uRjoqZu7jiC75AYGGOmlo7Zk0kmydQ50ikMELbYqfVllt8jWn7Ew6G6sK989QLN78Ls93LO9Grl64vnjE94jpVLpyh5qpvPnZpw/0xBgk8oVPk8CIU59rX1Z8S/B6KRs97DZwya3jiASvBVNwcx6aqu3IvyIhd6hwLKscwsHYcUrc7Rlz5e9tPXceF9r0XG4VeeMhqri3Hw3uWoiUxAK3I7TP+4HYzBFfljfWHXCaXLpdshdwc1q3FXrw2bqCQznuCLQovJ1T7D111SLgQ/QxF+Eg+RHzlFe1MWv+Mbz5xsuP8dF01PaUjjdTPMxWcCAJwmN6hk51I4rSxokwVI8AkF0U9HXrw8+bYKRvgMRLx70I8yryum/WtZpC2wuveO6Ds+obwIZUUu9AwFFOE0j/BVKyTphPV4JCHNOUfXYCCm5l+81+OUTCN89UxbzXaHFNNFU42VdWkFiSwdAJhdV4bFTdpa7aXTa5SmbNlEXf+fDlaHev3iRnxRJ+DiN2uWQJ41IbbCTP/7NuL+6xdqvn/whkVYMKki7rlGArGlw2q+cL4cxYt5LWZNArMNCT6hoP5jSKVxmhEiCh/QRfh6/x6A0hunT9UiQJRH1ld4UVbkQu9wUFnPtsRj4uGr/ijNqmGGAiH4g+GYxLFYZ9bjlOA28fDVvXS055UnPAVC3LAGPsy18wXiYXZuPQ269gqnT65Muo/6jWc2JrV/JjFbatEIvf0jrrHLIeG6M6zlNIxyH2c0aX15/U1hXKlX8f7NBP/+6xcoXxvOG4h8HFYunYKD9y6PWxDx0r+djw+/f4Xp6+lAgk8oqD/oGbN0PLFRe7fKO1fjdEgocjk0TwNHuofgdkqo8XlQ5nVqPPxik8XC1R6smXViVhoqxNLtlMwtHcl4jVmJsUiVTtjU1tH3vzEjnretPrI+se52SkmJKAB89qympPbPJNbHymNsEPGrdToY7r1mHurLtU+lRou8OCSmyT8smz0eT992dsKad3GDN7rRA8D0cdGniSFVL6bl8+rw40/OV/ozWcl9lBU5s7L4CUCCT6jQCH6GkrYialeLuNo711Oqa7Z2pHsIEyuKIEkM5UUu9Fny8KMfa7NeOl0DxqWhTsXScZjaKg5JMhRkicnlmvJausa2jj4iN8NjMSmq10uHxJBMHrSputhUxJLlkc82x4huIpKRNf04xe9WPJXpb37jdZ/h9+65FID2JvPAp7X2jeCrF8/EU184y/TcgDwJ0IjFqpYID356ET6+qAFfvGg6LpkzHteoJhqaUepJvxzaDGqeRihoI/zMePhOh1zPrl7Jp2sggJnjjGfwluj65x/pGkJ9pLe+8PATV+lEvzarhulOEOHH8/AdkUg+9rwMTgeTI/yg8XkbqxJXiQCAJ16Erzq0kWAmM3k+zJNrlSyY11CO7boe9pOqipNP5lo8N+exyWjxc4qnLfFzrL79HARCYZw+WZvfEE+E6idAs/He8ZEZmu/FOYLhML5xxWycNa0ap00sx7LZ43HWtGrNvndeOitmTYFxpV48/BnDya8xZLPKKmcRPmPMxxh7jDH2K8bYDbk6L2Edr8sBX6S2PVOWDgCUeFyK7w7IyUsjSweQV8zqG46N8AGgPEbwzT12QZgbr5jUKeYCmCVtXXEE38zSkRickoRAMGy6+LXVG2m8Kh3NOXVqnWynlDDnSVtAAPDQjacbjCX5vjtm5/7DzUs033MOuJzafb959RxcdMo4nD2tBoBq6UiJxYi95pwp2CVinKEwxy3nTcVpE+X1tn/92WasXDpFs6/LIeGH18zDv5hUD8Xj9f+4MCsrXQnSEnzG2KOMsTbG2E7d9ssYY3sZY/sYY3dFNn8cwDOc81sAXJ3OeYnsUVXihsSA6jS7ZKpR2zT+YBj9I0FTS6fE60R/JGk7HAihvW8EEyvkqLjM60IwzHGy36+sZ2uEPrFmFOWfjLRA1s8FED6xxxmnLNPU0pGjs5GgeR/+Ire1PzmrHq5eG7jSNs4aqbbSMgoIGDNvHGeG0Y/pdUk4e3oNvv+xuZpJUE5dhD+ttgSPfu4MpQ2FEGX1TcRoUtNZU6tjtiVC/D7izZ/49tWnKuL/yTMm4TsfPc10Xz2rbz8HL3/1fEyy+ASYKulG+KsAXKbewBhzAHgQwOUA5gC4njE2B0ADANHcg9rf2ZSqYjeqSzwZTRqVeKIi3j0U7UFvRKnHpdwcREmmSHSKyoaj3UOmCVtA+8gOwHAhc7Euq34cDlWVjtkNRY7wDSwdxpQF1b/27HbD93otVt9YjbqNdktGdDnnKUW8aktLPO2or7vVHjFG0axItn56SSNuVU1K0t9k9XaMkeAbTWr67sdkITbLARkh/h7izZ/47NlN+K8r51g+ppp5DRWYVluS0nuTIS3B55yvB9Cp27wYwD7O+X7OuR/AkwBWAGiFLPpxz8sYu5Uxtpkxtrm9PXaJMCK7NFQVY3KGowyfx6G0QxDeuZmlI0f4suCrSzIBleD3DMX9Y3XoIkEjd+Vk/whKPc4Y4RZS4XYaR/FAZAEUg+hfkhiK3U4MBUJ41WB5O8B6Mtb6DTd2v6Q9/AT7fPHCaXFfF9dQYkx5upg3scLS+Y1+TDOrTl+loy/LVRaHT/ADVfvc+NzZTXjy1jMtjRGIPl0kmiFtd7Lh4U9ENJIHZKGfCOBZANcwxn4BYI3ZmznnD3POmznnzbW1tVkYHhGP7330NPzCwJ9NhxKPS0nEiuoYvZUS3Tfq4R+JLC3YELF0RFL5QPuAqSgAiKlSMaqYOdnvR4Uv9ilDVH7Et3SYYT22g7G44xLHtUKi4wiMFkBPRpKsePhfvXiW4XZxfYTgqw9j9tTwzG1n6bbE7vfHL+j3ka0q/c055inP5Mf49JJGZeKUPE6Gb119quLDC6bUGM9cBqxF+KOBnFXpcM4HAHw+V+cjUsMs8k4H2cOXI/suJcI3tnTKvE70+4MIhzmOdA+BMWBCpNTvjKZKNFYV41DnoGmFDhArNkYRfv9wEMWu2GOICC5ulY7JxCtJAoriWE3iuFa4eelUPPjqhwn3EwLkdpj3D4oHR+KIWJIYdnzrEsz9lnbB7hnjSrDraK8mgS1ObXbMZt3MYKP91NaGuIlwHpso1zfPEzcu/U///Y/NNR6Mjhe/cp7ptRNPF4naWtudbET4RwCop7M1RLZZRqx41dPTk3hnwvbIHr4ctXebVMco+3qd4Fxe8PtI9xDGl3qVSNLpkHDb+dOUY5qhj76P9w7j4MkBjbc9HAwZ9jNRBN8VZ+IVY4aWi8SYUuVkhtUI3+ty4Mu60kAjhECJ8SSbNPU4JUulkaXe6A36uTuWAgAeu2kxfv2ZZuVnYgxKythqDiLRfurJU3q/Xz0m+Vjy/8nc8NS4HPHyNmMjws+G4G8CMIMxNoUx5gZwHYDVyRyAc76Gc35reXl54p0J21PilW2aUJgr68aaVulEJp30Dwc1NfiCa06fiPpyr9I73wi9iFz60/W44L7XNEsXDgdChrZMMBy1dBL98Rttj5dMBpKbUGXFx1dmm0qxUbYVilyOpMsyhRVSU+LBMpPOkJYzEFbr8FVfOySGXd++NOb6iJtDNhbxc1qo0hkNpFuW+QSAtwDMYoy1MsZWcs6DAG4H8AKA3QCe4pzvSvK4FOGPIWaMK0Ew0oWza9APt1NuoWBEqdITPyDX4Ova2XqcDvzl9nPwzatPNT2fmVCOqNbGHQmGDSdPqS2deB6+4fZIlY6aZbO1HR6tWjqSyVOEHhHNrlhYDwC49NQJSUW4XpcjqdmuiVBOrTpodZyGZYnOLW6Q4slp57cvxd7vXGZo6antn0wjboqjPcJPy8PnnF9vsn0dgHVpHHcNgDXNzc23pHoMwj7MjyTMth3uRveAvKyg2eQSsQhKz1AAx3qGsHxeXcw+iSYvmTW4Glb1ODGP8CMLuCfw8I1gBklbvT5YtXQcEtPcoEyJHH9OXXm0H0wWI/zTLS4AYtTHxnC/yLln15Vh97HemNevnFePQx2DuClS3x7PyhM/R6qWTjxEHuny0yZk/Ni5hHrpEFlnSrUPpV4n3m3tjvTRMY/4SiN/0Pva+hEIccutCNSYVYiol04cDoQNE68iwRsvwjcTSCNLR91LXRzXChIDeiL5DkBOyt6zIvapRjyRqH+UZOTO63ZYtlW23L0Mv9fNgNWTKGmrR1TQ3vtx48SqQ2K44yMz4ibpBdmM8GtKPNj+rUtw+4Wp9di3C7YUfLJ0xhaSxDC/oUKO8AcDcZemExH+rqNytDfJwgpFeswi/LbI7FpAjvCNInUR4ccryzRbvMIhaStHLjt1Aq6cV6/Zx2qvGcaYku8A5NzF7LrYlZ2iSdvEDeOMuHJuneWp/NUlHsPxL2ysAKAtk1TfFPWjmaaaPWv1ScAKiuAn3eDBGmVeV07WGsgmthR8StqOPeZPKsee43041jsUP8KPVF68F3m8TynCNxGwdpXgjwTDhv1wREsEj8s8z6Cfyas+r1r0rppfH3PTsNojB4hOUgPkqNXorELaNBG+Tu/M9Pz3Ny/BJ8+YlFLzNDX3fWI+nrtjqab5Xrxjrr59qfL1vdfMxUdOGWd4M0sW0bvGyjKGhYotBZ8Ye8xvqEAozHG4cwiVBhOeBMKj3XOsFw6Joa4i+a6dZh67WvCB2N4sgLpKR8JFp4xTykDVmEV5ks7DF2vcWhmbEeqKEG7S1VKUYapvcndeqp0oZXZGca1TaZ6mxutyKJU7YjyfOmOSphKrRlVV5fM4lddOmVCGRz53RlI3QjM+dUYjDt673NKqVoUKCT6RE9QzHeNN7lJWyPKHUFfuTalXu2XBN4jww6qyTJ/HiZvOaYrZx8wyckhM81TgcUmGTxFW+Z9r5ykrj3FwQ+tFRPPqn/mmyKpKAjPLJtp7JuUhmjKuzIvnvnRuZIwcr915AbbcvSxmTNlIsBLm2FLwycMfe4wr8yqLY5jV4AOycIkSvFTsHHEMI2Ij/Hh1+JLpscwiYokxjbh6nA5T++qq+fWG29VMrCjCv18yE4C5paN4+HGidHXPmOsXR5czFG/JpI++6qbF+Pw5Tagv92qOWuJxajqwfnTBRACxs2WJ7GJLwScPf2wiyjMTtW8QidtUBd8sAm/v10f48evw5WMZL3RihH67xylhUlVxTAXKwXuX43sfs9Y6V5lMBOMbjXB94iUTz2iqwrcj8xbUh1AE3+StCxsrML8hub/BmeNL8c2rTgVjLK5V9I3ls7H9W5cknKhGZBa62kTOmD+pAs/vPI6KOAs4A3I0eAIjKfcGt5K0BYwXMVFX6QDGto/ZDUW/WUwaOtOg/3q8iFyDqtTQ0MO3eDzxsnqMwk0xe+uf//Uca2M0QZzLyLRxSAxlutYIP79hEaaPy36L4EKGBJ/IGedMq4FTYppFLYwoiQhBqoKfTtJWRMxCrA0tHTPB120X7ZWNjmF5gZPI/xzc0Hrhul46yRCtmc9SqWGSh71ibuwkOyKz2NLSIQ9/bDK3oRw7v30pppusZysoi1g6kywu+K3HTPw6BvyW9gOiYm220InheSPbxZODJ5LANeysaXmBk2iYbFylEzleAsFXvzpXVNREYm/1a1Y7S1ohazcSImVsKfjk4Y9drEw8EpU6mU7a6jGydB5fuQQfXzhREVCjQ5mJqziv8KWVlaAi29X6l3yEbyz4VpK26pNzru4qKf+vFuZPL2nUvzNlSO7thy0Fnyhsyrwu+NyOlOuprfrjRknbpTNq8ONPLVC+NyppNPPwxa436/q+iP3V77LqwETbBRgvVBJW6vATHCfyv3zj0JZEZs3RoQjfdpCHT9iOledOwUWzx6UsGJYj/BQL0BNV6dx+0XT8vwumKTcUh0NE+NH3Wf3ZVI6OSYSf3PHUyV+uCH52hFm5yVCpvW0gwSdsx8zxpZg5Pr7PHw+rgq9f+9Yqps3TWFTY1dU9zjj2UCLUPd6NzsutRviq1yWVvZNNKMC3H7a0dChpS6SDVcE3a4KW8H2R4+s7YcZruQCkNsFJE+EbvG6lDh8AlkyRlxZcPrcOp9bLfWvKE5THEmMPW0b41A+fSAcjwf/CeVNx+uRKOCSGlY9tBmCctLWCENfnv3wejvUM4eoH3pC3m4S0okrn2uaGmNdqSjw4qZsQZgTnPEEvnfjvnz6uVGm3sHhKFVYsqMeMNJ6ikiHZZReJ7GFLwSeIdDAS3kqfG5ecOkFTi5+qpSOoLfUovW6AOOWakUXA9bNKn7ntLDRWF2Px9142PYfw19XJVjXR/mrWb15up4TTJ1cl3jFNMtmygcgMJPjEmENYNS4HQyDS7ljYMOoKm3QamxkR7/6hX3AbAJqbEouuMsIE7ZGNIvx7VpwKXx5bF4jrUVee2nwKIvOQ4BNjDhFpux0SAiF5WUPRftehSaZmNoWVymzXRKgX9YiftI197TNnNWV8PMlQ6nXhZ9ctwFkGrSWI/ECCT4w5hPB6XA4M+GXBF+KujvBTTdqakY2ZpeoqnXgTr+xaEbMi0hWTsAe2rNIhiHQQgu9WTaxy6ma9AuYTqIxoqk486zddwX/9Py6M2aZep9W4l05mzk0UBrYUfCrLJNJBiJ9ogAZE/Xq1jWM009aIPd+5DC9+5fyE+6Vq6VwwqxaAcbO4c6bXYPq4Enx52YwEE69SOjVRYNjS0qGyTCIdRDTvUS2bJ4RerclWZ9paXXjccstjHb/+TLOSXNZTXuTCS/8m32xauwZjXldmy1JFDGEBWwo+QaSDkrR1qiN8+WvGGJwSQzDMLUf4VmEpHs7pkOC0cE8xTtpGXrPlszphN+hjQow5jDx8dQmmw6BEMyPnzbKvEjdpSxE+YQESfGLMoVTpqMJmdTSv1ORnuEonG2WZaowifNFzSCwLmQnGl3kS70SMSsjSIcYcovWBxtKRjCL8zMY72a6UMTr6D6+dhxvObMTEisxNbnr9Py5SFkchxhYk+MSYwykZJG0dsV8nO9P21X+/AF2DftPXsxzgGyq+z+PE2dNqMnoa9Y2SGFuQ4BNjjmhZptrSiY3wk7VgptT4MAXm6/Hmw9IhiGSgWzkx5hDCq47g3QYevtFas+mQ7RWeSO6JdLGl4NPEKyIdRLWMU2JRv96oSifDSdtsQxE+kS62FHxaxJxIB0liYExuf2yUoBWRfaaTttmG9J5IF/LwiTGJU5InWIloPxd1+Nkmm7X2j69cggnlVI451iHBJ8YkEpPtnKh9k/06/GyT6kxeKyydkdlKH8KejK5nWoKwyPgyL8aXeQ0TuI4sJW2zzei6PRF2ZHR94gnCImu/tBQ3nzslKu6SQYQ/yiwdStoS6UKWDjEmEUsKCpE0rNKhpC1RYIyuTzxBJIlRzb2y+tUo8/ApwifShQSfGNMYVeSM1jp8gkgXEnxiTCNJiNTkx65l6yJLhygwRtcnniCSxClJcEmSpu2BIzIxS6KkLVFgkOATYxqJxVo3TomNuugeoLJMIn1yVqXDGJsK4BsAyjnn1+bqvERh44jMuI3ZZlP//g+3LEFNifGMV4rwiXSxFOYwxh5ljLUxxnbqtl/GGNvLGNvHGLsr3jE45/s55yvTGSxBJItDkmImWDklKaM1+N/56Gn43NlNGTnW2dNqlFWs9JDeE+liNcJfBeABAL8VGxhjDgAPArgYQCuATYyx1QAcAH6ge/9NnPO2tEdLEEnikGItHTnCz5yl8y9nTs7YseKR7fbLxNjHkuBzztczxpp0mxcD2Mc53w8AjLEnAazgnP8AwJWpDogxdiuAWwGgsbEx1cMQBAC5VXJshB9r8xBEIZBOmDMRwGHV962RbYYwxqoZYw8BWMgY+5rZfpzzhznnzZzz5tra2jSGRxByNK8X/ElVxWisKs7TiAgif+Qsacs57wBwW67ORxCAcdL2KxfPxFcunpmnERFE/kgnwj8CYJLq+4bItrShFa+ITCGxzPr1BDGaSecvYROAGYyxKYwxN4DrAKzOxKBoxSsiUzgdTNMamSAKGatlmU8AeAvALMZYK2NsJec8COB2AC8A2A3gKc75rkwMiiJ8IlMsmVKNs6ZV53sYBGELrFbpXG+yfR2AdRkdkXzcNQDWNDc335LpYxOFxZc+MiPfQyAI20D98AliFHHezFp8dEF9vodBjFJsKfiMsasAXDV9+vR8D4UgbMVvb1qc7yEQoxhbli9Q0pYgCCLz2FLwCYIgiMxDgk8QBFEg2FLwqSyTIAgi89hS8MnDJwiCyDy2FHyCIAgi85DgEwRBFAi2FHzy8AmCIDIP45znewymMMbaAbToNpcD0N8JrGzTf18D4GQGhhkPo3Fl8n2J9ov3Ol3H5PY1e93q9kTX1s7XMZn3Zvs6Gm3L9WfSztcRAGZwzo0ToJzzUfUPwMOpbDP4fnM+xprJ9yXaL97rdB0zcy2tbk90be18HZN5b7avo5Vrm+1raefrmOg1W1o6CViT4jajfbJNque0+r5E+8V7na5jcvuavW51u9XrnU3SOV+2P5PJbM/3Z9LO1zHua7a2dLIJY2wz57w53+MY7dB1zAx0HTMHXUtzRmOEnykezvcAxgh0HTMDXcfMQdfShIKN8AmCIAqNQo7wCYIgCgoSfIIgiAKBBJ8gCKJAIME3gDE2mzH2EGPsGcbY/8v3eEYrjLGPMsZ+xRj7I2PsknyPZ7TCGJvKGHuEMfZMvscy2mCM+Rhjj0U+hzfkezz5ZswJPmPsUcZYG2Nsp277ZYyxvYyxfYyxu+Idg3O+m3N+G4BPAjgnm+O1Kxm6jn/hnN8C4DYAn8rmeO1Khq7jfs75yuyOdPSQ5DX9OIBnIp/Dq3M+WJsx5gQfwCoAl6k3MMYcAB4EcDmAOQCuZ4zNYYzNZYw9p/s3LvKeqwGsBbAut8O3DauQgesY4e7I+wqRVcjcdSRkVsHiNQXQAOBwZLdQDsdoS2y5iHk6cM7XM8aadJsXA9jHOd8PAIyxJwGs4Jz/AMCVJsdZDWA1Y2wtgD9kcci2JBPXkTHGANwL4HnO+dYsD9mWZOrzSERJ5poCaIUs+u9ibAa4SVEoF2Aiond5QP4QTDTbmTF2AWPsfsbYL1G4Eb4RSV1HAHcAWAbgWsbYbdkc2Cgj2c9jNWPsIQALGWNfy/bgRilm1/RZANcwxn6B/LQFsRVjLsLPBJzz1wC8ludhjHo45/cDuD/f4xjtcM47IOdBiCThnA8A+Hy+x2EXCiXCPwJgkur7hsg2IjnoOmYGuo6Zh66pBQpF8DcBmMEYm8IYcwO4DsDqPI9pNELXMTPQdcw8dE0tMOYEnzH2BIC3AMxijLUyxlZyzoMAbgfwAoDdAJ7inO/K5zjtDl3HzEDXMfPQNU0dap5GEARRIIy5CJ8gCIIwhgSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgCgQSfIAiiQCDBJwiCKBBI8AmCIAoEEnyCIIgC4f8D0ms9A+23UnIAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "pds = Powerspectrum.from_lightcurve(lc_pois, norm=\"leahy\")\n", + "pds = pds.rebin_log(0.005)\n", + "poisson = poisson_level(meanrate=lc_pois.meanrate, norm=\"leahy\")\n", + "plt.loglog(pds.freq, pds.power)\n", + "plt.axhline(poisson)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (ii) Using user-defined model" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Light curve can also be simulated using a user-defined spectrum." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAD4CAYAAAAAczaOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAVqElEQVR4nO3dbYxc133f8e9/d/kgUZZIiltCJumQroimbJ4sLGQ6DgLDqm1JMUy9cAwJQcw6Qoi0cuJUBRyqBiKkQQC7LexYReqEiJTIgCNbUeyKMJTKjKQgCFDJXlmynmhZa9oySVDm6omO9URy998Xc5aa2ZkluTu7s8sz3w8wmHvPPXPvOcPhb+6eOTM3MhNJUn8YWOwGSJJ6x9CXpD5i6EtSHzH0JamPGPqS1EeGFrsBp7Nu3brcvHnzYjdDks4pDz/88POZOdxp25IO/c2bNzM6OrrYzZCkc0pEPDvTNod3JKmPGPqS1EcMfUnqI4a+JPURQ1+S+oihL0l9xNCXpD5SZei/evwkn/3G0zzyo5cWuymStKRUGfqvHZ/glvvHePzwscVuiiQtKVWGviSps6pD34uCSVKrKkM/Iha7CZK0JFUZ+pKkzs4Y+hFxW0QcjYgnmsr+R0R8NyIei4ivRcTqpm03RcRYRDwdER9oKr+ylI1FxO5570kHXvRdklqdzZn+XwNXTivbB/xcZv4C8D3gJoCI2AZcC/y78pj/HRGDETEI/BlwFbANuK7UXRAO7khSZ2cM/cz8J+DFaWXfyMyTZfVBYGNZ3gF8OTPfyMwfAGPA5eU2lpkHMvM48OVSV5LUQ/Mxpv9bwN+X5Q3AwaZth0rZTOVtImJXRIxGxOj4+Pg8NE+SNKWr0I+ITwEngS/NT3MgM/dk5khmjgwPd7za19nva57aJEm1mPPlEiPiPwAfBK7INz8xPQxsaqq2sZRxmvJ554xNSepsTmf6EXEl8EngQ5n5atOmvcC1EbEiIrYAW4FvAt8CtkbElohYTuPD3r3dNV2SNFtnPNOPiDuA9wDrIuIQcDON2TorgH3li1APZubvZOaTEXEn8BSNYZ8bMnOi7OfjwL3AIHBbZj65AP1p4YxNSWp1xtDPzOs6FN96mvp/AvxJh/J7gHtm1bo5CidtSlJHfiNXkvpI1aHv6I4ktaoz9B3dkaSO6gx9SVJHVYe+P7gmSa2qDH2/nCVJnVUZ+pKkzgx9SeojVYa+ozuS1FmVoS9J6qzq0HfyjiS1qjL0w+k7ktRRlaEvSerM0JekPlJ16Kc/uSZJLaoMfUf0JamzKkNfktRZ1aHvlE1JalVl6DtjU5I6qzL0JUmdVR36ju5IUqsqQz+cvyNJHVUZ+pKkzs4Y+hFxW0QcjYgnmsrWRsS+iHim3K8p5RERt0TEWEQ8FhGXNT1mZ6n/TETsXJjutHL2jiS1Opsz/b8GrpxWthu4LzO3AveVdYCrgK3ltgv4AjTeJICbgXcClwM3T71RLARn70hSZ2cM/cz8J+DFacU7gNvL8u3ANU3lX8yGB4HVEXEJ8AFgX2a+mJkvAftofyORJC2wuY7pr8/MI2X5OWB9Wd4AHGyqd6iUzVTeJiJ2RcRoRIyOj4/PsXkN/vaOJLXq+oPczEzmcXZkZu7JzJHMHBkeHp6v3UqSmHvo/7gM21Duj5byw8CmpnobS9lM5ZKkHppr6O8Fpmbg7ATubir/aJnFsx04VoaB7gXeHxFryge47y9lC8rZO5LUauhMFSLiDuA9wLqIOERjFs6ngTsj4nrgWeAjpfo9wNXAGPAq8DGAzHwxIv4Y+Fap998yc/qHw/PG2TuS1NkZQz8zr5th0xUd6iZwwwz7uQ24bVatkyTNK7+RK0l9xNCXpD5SZej7g2uS1FmVoS9J6qzq0E/nbEpSiypD3ymbktRZlaEvSeqs6tB3dEeSWlUZ+o7uSFJnVYa+JKmzqkPf0R1JalVl6IfTdySpoypDX5LUWdWh7+wdSWpVZeg7uCNJnVUZ+pKkzqoO/XT+jiS1qDL0nbwjSZ1VGfqSpM4MfUnqI1WHvlM2JalVlaHvN3IlqbOuQj8i/nNEPBkRT0TEHRGxMiK2RMRDETEWEV+JiOWl7oqyPla2b56XHkiSztqcQz8iNgC/B4xk5s8Bg8C1wGeAz2XmpcBLwPXlIdcDL5Xyz5V6C8rRHUlq1e3wzhBwXkQMAecDR4D3AneV7bcD15TlHWWdsv2KcBxGknpqzqGfmYeB/wn8iEbYHwMeBl7OzJOl2iFgQ1neABwsjz1Z6l88fb8RsSsiRiNidHx8fK7NkyR10M3wzhoaZ+9bgLcCq4Aru21QZu7JzJHMHBkeHu52Z902R5Kq0s3wzr8HfpCZ45l5Avgq8G5gdRnuAdgIHC7Lh4FNAGX7RcALXRz/tBw4kqR23YT+j4DtEXF+GZu/AngKeAD4cKmzE7i7LO8t65Tt92d6Ki5JvdTNmP5DND6Q/TbweNnXHuAPgBsjYozGmP2t5SG3AheX8huB3V20++zauNAHkKRzzNCZq8wsM28Gbp5WfAC4vEPd14Ff7+Z4s+HojiS1q/IbuZKkzqoOfT8xkKRW1Ya+3/uSpHbVhr4kqV3Voe/lEiWpVbWh7+COJLWrNvQlSe0MfUnqI1WHvlM2JalVtaHvjE1Jaldt6EuS2lUd+o7uSFKrakM/nLQpSW2qDX1JUruqQ9/ZO5LUqt7Qd3RHktrUG/qSpDZVh74/uCZJraoNfUd3JKldtaEvSWpXd+g7uiNJLaoNfX97R5LaVRv6kqR2XYV+RKyOiLsi4rsRsT8i3hURayNiX0Q8U+7XlLoREbdExFhEPBYRl81PF2bm6I4kter2TP/zwP/NzJ8FfhHYD+wG7svMrcB9ZR3gKmBrue0CvtDlsU/L396RpHZzDv2IuAj4VeBWgMw8npkvAzuA20u124FryvIO4IvZ8CCwOiIumevxJUmz182Z/hZgHPiriHgkIv4yIlYB6zPzSKnzHLC+LG8ADjY9/lApaxERuyJiNCJGx8fHu2ieJGm6bkJ/CLgM+EJmvgN4hTeHcgDIzGSWQ+uZuSczRzJzZHh4uIvmQfqLa5LUopvQPwQcysyHyvpdNN4Efjw1bFPuj5bth4FNTY/fWMoWhFM2JandnEM/M58DDkbEvylFVwBPAXuBnaVsJ3B3Wd4LfLTM4tkOHGsaBpIk9cBQl4//XeBLEbEcOAB8jMYbyZ0RcT3wLPCRUvce4GpgDHi11F1Qju5IUquuQj8zHwVGOmy6okPdBG7o5niz4eiOJLXzG7mS1EeqDn1HdySpVbWhH07fkaQ21Ya+JKld1aHv7B1JalVt6Du4I0ntqg19SVK7qkM/nb8jSS3qDX3HdySpTb2hL0lqU3XoO3tHklpVG/qO7khSu2pDX5LUztCXpD5i6EtSH6k29P3BNUlqV23oS5LaVR366ZxNSWpRbeg7uiNJ7aoNfUlSu6pD38EdSWpVbeg7uiNJ7aoNfUlSu65DPyIGI+KRiPh6Wd8SEQ9FxFhEfCUilpfyFWV9rGzf3O2xz8TJO5LUaj7O9D8B7G9a/wzwucy8FHgJuL6UXw+8VMo/V+otGL+cJUntugr9iNgI/Brwl2U9gPcCd5UqtwPXlOUdZZ2y/YowmSWpp7o90/9T4JPAZFm/GHg5M0+W9UPAhrK8ATgIULYfK/VbRMSuiBiNiNHx8fGuGuflEiWp1ZxDPyI+CBzNzIfnsT1k5p7MHMnMkeHh4Tnvxz8hJKndUBePfTfwoYi4GlgJXAh8HlgdEUPlbH4jcLjUPwxsAg5FxBBwEfBCF8eXJM3SnM/0M/OmzNyYmZuBa4H7M/M3gAeAD5dqO4G7y/Lesk7Zfn/64ziS1FMLMU//D4AbI2KMxpj9raX8VuDiUn4jsHsBjt3CtxRJatXN8M4pmfmPwD+W5QPA5R3qvA78+nwc72w4L0iS2vmNXEnqI1WHvqM7ktSq4tB3fEeSpqs49CVJ01Ud+s7ekaRW1Ya+s3ckqV21oS9Jald56Du+I0nNqg39wQgmJ89cT5L6SbWhPxAw4Se5ktSi3tAfCCYNfUlqUW/oRzA5aehLUrNqQ39wIDDzJalVtaEfjulLUptqQ38wAq/RIkmtqg39gQgmHN+RpBb1hr5j+pLUpt7QD5y9I0nTVBv6g87Tl6Q21YZ+RDBh5ktSi2pDfzBw9o4kTVNt6Dt7R5LazTn0I2JTRDwQEU9FxJMR8YlSvjYi9kXEM+V+TSmPiLglIsYi4rGIuGy+OtGJv70jSe26OdM/CfyXzNwGbAduiIhtwG7gvszcCtxX1gGuAraW2y7gC10c+4was3cW8giSdO6Zc+hn5pHM/HZZ/hdgP7AB2AHcXqrdDlxTlncAX8yGB4HVEXHJXI9/Js7ekaR28zKmHxGbgXcADwHrM/NI2fQcsL4sbwAONj3sUCmbvq9dETEaEaPj4+NzbtNAhL+9I0nTdB36EXEB8HfA72fmT5q3ZWP6zKySNzP3ZOZIZo4MDw/PuV0D4TdyJWm6rkI/IpbRCPwvZeZXS/GPp4Ztyv3RUn4Y2NT08I2lbEH4jVxJatfN7J0AbgX2Z+ZnmzbtBXaW5Z3A3U3lHy2zeLYDx5qGgeadY/qS1G6oi8e+G/hN4PGIeLSU/Vfg08CdEXE98CzwkbLtHuBqYAx4FfhYF8c+o3CeviS1mXPoZ+Y/AzHD5is61E/ghrkeb7Yav6ffq6NJ0rmh3m/kDnjlLEmartrQHxoY4OSE386SpGbVhv6KoQGOnzT0JalZvaG/bIA3DH1JalFv6A8N8vqJicVuhiQtKRWHvmf6kjRdxaE/yMnJ9MNcSWpSb+gva3TtuKEvSadUG/orhxpde+OEoS9JU6oN/RXLBgF4/aQf5krSlHpDv5zpv+6ZviSdUm3oX7hyGQA/ee3EIrdEkpaOakN/zarlALz46vFFbokkLR31hv75jTP9lw19STql2tBfO3Wm/4rDO5I0pdrQv3DlMgYHgud/+sZiN0WSloxqQ39gIHjb2vN59oVXFrspkrRkVBv6AG9ft4oD44a+JE2pOvQvXX8BB8Zf4bXjfkFLkqDy0P/lf72O4xOTPPiDFxa7KZK0JFQd+u/cspa3rBzirtFDi90USVoSqg79lcsG+c3tP8M9Txzhn595frGbI0mLrurQB/j4ey/l0uEL+O0vjnLHN3/k7+tL6ms9D/2IuDIino6IsYjYvdDHO3/5EH/z29v5+Y0XcdNXH+ddn76fT33tcf7PI4fZf+QnvHr85EI3QZKWjMjM3h0sYhD4HvA+4BDwLeC6zHyqU/2RkZEcHR2dl2NnJv+w/yh3jh7k/33/BX76xpthf/Gq5axdtZw1q5az5vxlXHTeMs5fPsTKZYOct2yQ85YPcN6yQVYsG2T54ACDA8GywWBwYIChwWBoIBiaYTkCIoKBCAYCgkbZwEAQ8GZ5lPLmegON9al6U9tP3Z96Xk89v/PyXEk6t0XEw5k50mnbUI/bcjkwlpkHACLiy8AOoGPoz6eI4H3b1vO+beuZmEyefu5fOPD8T3n2hVc5/PJrvPTKcV585Tg/eP4Vjr12gteOT/D6iclz+spbze8Bb75BxLT1qe3RUnGm7dG2vXV/7Y/v/LjTtYUZjnU2ZvO+F7PY82zfT2fX5oV5s57VczHr/i3Mc7eQz9usai+BNv/bSy7kf133jlns/ez0OvQ3AAeb1g8B72yuEBG7gF0Ab3vb2xakEYMDwba3Xsi2t154xroTk8nrJyZ47cQErx2f4MTEJBOTyYmJbNxPNtZPTiQnJyfLdXmTiclJTkwkSeOvjEyYzGQyW9eTzuUz1cuEycnGdoDGFshT60XTX3A5rWimx0zfTtv2s3vc9D8eTz2upezs2tL6qNObzR+ts6o7izbMft8Ltd8FasQsq89mJGGhnovZ73th2jy7f5Jk05rzZrP3s9br0D+jzNwD7IHG8M4iN4fBgWDViiFWrVhyT5UkzVqvP8g9DGxqWt9YyiRJPdDr0P8WsDUitkTEcuBaYG+P2yBJfaunYxaZeTIiPg7cCwwCt2Xmk71sgyT1s54PVGfmPcA9vT6uJKkPvpErSXqToS9JfcTQl6Q+YuhLUh/p6W/vzFZEjAPPdrGLdUC//aZyv/W53/oL9rlfdNPnn8nM4U4blnTodysiRmf60aFa9Vuf+62/YJ/7xUL12eEdSeojhr4k9ZHaQ3/PYjdgEfRbn/utv2Cf+8WC9LnqMX1JUqvaz/QlSU0MfUnqI1WGfq8vvr6QIuK2iDgaEU80la2NiH0R8Uy5X1PKIyJuKf1+LCIua3rMzlL/mYjYuRh9OVsRsSkiHoiIpyLiyYj4RCmvtt8RsTIivhkR3yl9/qNSviUiHip9+0r5SXIiYkVZHyvbNzft66ZS/nREfGCRunRWImIwIh6JiK+X9dr7+8OIeDwiHo2I0VLW29d145J89dxo/GTz94G3A8uB7wDbFrtdXfTnV4HLgCeayv47sLss7wY+U5avBv6exmU7twMPlfK1wIFyv6Ysr1nsvp2mz5cAl5XltwDfA7bV3O/S9gvK8jLgodKXO4FrS/mfA/+xLP8n4M/L8rXAV8rytvKaXwFsKf8XBhe7f6fp943A3wBfL+u19/eHwLppZT19XS/6k7AAT+q7gHub1m8CblrsdnXZp83TQv9p4JKyfAnwdFn+C+C66fWA64C/aCpvqbfUb8DdwPv6pd/A+cC3aVw/+nlgqJSfem3TuCbFu8ryUKkX01/vzfWW2o3GlfPuA94LfL20v9r+lvZ1Cv2evq5rHN7pdPH1DYvUloWyPjOPlOXngPVleaa+n7PPSfkz/h00znyr7ncZ6ngUOArso3HW+nJmnixVmtt/qm9l+zHgYs6tPv8p8ElgsqxfTN39hcbl0b8REQ9HxK5S1tPXtVf7PsdlZkZElfNuI+IC4O+A38/Mn0TEqW019jszJ4BfiojVwNeAn13cFi2ciPggcDQzH46I9yxyc3rpVzLzcET8K2BfRHy3eWMvXtc1nun3w8XXfxwRlwCU+6OlfKa+n3PPSUQsoxH4X8rMr5bi6vsNkJkvAw/QGN5YHRFTJ2fN7T/Vt7L9IuAFzp0+vxv4UET8EPgyjSGez1NvfwHIzMPl/iiNN/bL6fHrusbQ74eLr+8Fpj6x30ljzHuq/KPlU//twLHyZ+O9wPsjYk2ZGfD+UrYkReOU/lZgf2Z+tmlTtf2OiOFyhk9EnEfjM4z9NML/w6Xa9D5PPRcfBu7PxgDvXuDaMttlC7AV+GZPOjELmXlTZm7MzM00/o/en5m/QaX9BYiIVRHxlqllGq/HJ+j163qxP9hYoA9LrqYx4+P7wKcWuz1d9uUO4AhwgsbY3fU0xjLvA54B/gFYW+oG8Gel348DI037+S1grNw+ttj9OkOff4XG2OdjwKPldnXN/QZ+AXik9PkJ4A9L+dtphNgY8LfAilK+sqyPle1vb9rXp8pz8TRw1WL37Sz6/h7enL1TbX9L375Tbk9OZVOvX9f+DIMk9ZEah3ckSTMw9CWpjxj6ktRHDH1J6iOGviT1EUNfkvqIoS9JfeT/A6eL3sW0puviAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]\n", + "spectrum = np.power((1/w),2/2)\n", + "plt.plot(spectrum)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD4CAYAAAAaT9YAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABRAUlEQVR4nO2dd7gVxfnHv+85t1CliwjIRcAWFVFUQLFrbElsSTSxxpLEVH9JDNYUSzTFJGqisZeoMdEYexcLgiCgCEivggiXdulw7z3z++PsnDM7O7M7u2f3lHvm8zw8nLs7uzs7O/POO++88w4xxmCxWCyWyiRV6gxYLBaLJTpWiFssFksFY4W4xWKxVDBWiFssFksFY4W4xWKxVDA1xXxYz549WUNDQzEfabFYLBXPlClTVjPGeqnOFVWINzQ0YPLkycV8pMVisVQ8RLREd86aUywWi6WCsULcYrFYKhgrxC0Wi6WCCRTiRPQAEa0iohnCsT8Q0Wwi+oSIniGironm0mKxWCxKTDTxhwCcKB17HcC+jLH9AcwFcFXM+bJYLBaLAYFCnDH2LoC10rHXGGMtzp8fAOiXQN4sFovFEkAcNvHvAHhZd5KILiOiyUQ0ubGxMYbHWSwWi4VTkBAnomsAtAB4TJeGMXYPY2w4Y2x4r15KX3WLxWKJxMvTV2DNpu2lzkZJiSzEiehCAKcC+DazQcktFkuRadrSjO8/NhXfeejDUmelpERasUlEJwK4EsCRjLEt8WbJYrFYgml1dMcla6tbBJm4GD4BYAKAPYloGRFdDOBOAJ0BvE5EHxPR3Qnn02KxWFykKPt/JlPdhoBATZwxdo7i8P0J5MVisViM4UZcIiptRkqMXbFpsVgqEq5/V7kMt0LcYrFUJtyfospluBXiFoulMqluS3geK8QtFktFkrGezQCsELdYLBWKndjMYoW4xWKpSKwinsUKcYvFUpFk7MQmACvELRZLhWJt4lmsELdYLBXH2s07cMnDdtN1wApxi8VSgTwwbhFmf7ERgF3sY4W4xWKpOKpdcItYIW6xWCqOancrFLFC3GKxVBzk81e1YYW4xWKpOFKCJl7tSrkV4haLpeJIVbngFrFC3FI1ZDIMG7Y1lzoblhiodu1bxApxS9Vw66uzsf+vX8NGK8grHnFis9rluRXilqrhhWkrAADrt1gh3paodq3cCnFL1ZByartdrm1pS1ghbqk6qOoH4Ja2hBXilqrBKuBtByZ8zGrvlK0Qt1Qd1W5DtbQt2qwQ/2DhGutOZrFUAdXeKQcKcSJ6gIhWEdEM4Vh3InqdiOY5/3dLNpvh2LitGWff8wG+9+iUUmfFUkZYc0rbpNq/q4km/hCAE6VjYwC8yRgbAuBN5++yoaU1+1VnLG8qcU4sFkvSWE08AMbYuwDWSoe/BuBh5/fDAE6LN1vxUO09tEVNtTf6tka1f86oNvHejLEVzu8vAPTWJSSiy4hoMhFNbmxsjPi4cLQ60tv6A1tEuEeDDWNqaUsUPLHJsi1DKy0ZY/cwxoYzxob36tWr0McZ0ZrhQrwoj7NUGMx27hWP/YR5ogrxlUTUBwCc/1fFl6XC+WRZ1hZuI51ZRHi7twKgbVHtI6uoQvw5ABc4vy8A8Gw82YmHSx/JbqBa7R/XYqkGqn1kZeJi+ASACQD2JKJlRHQxgFsAHE9E8wAc5/xtsVQEVd7mLW2MmqAEjLFzNKeOjTkvsWP1cIsIF95MP4VjsVQcbXbFJgArxS1KrCbetqj2z9mmhXjGuqdYBLgGbmtF5WO/YZ42LcSbrRC3KKj2ibBqZFtzK9Zs2l7qbCRCmxbiVhN3s2FbM1a30YochiRrxcZtzfjBY1OxfP3WBJ9iETHpk8+9byIOuvGN5DNTAtq0EG+xQtzFkb8fi+FttCKbkJvYTLBajJ3TiBenr8Adb85L7iGW0Exesq7UWUiMNi3ELW7W2b0lHZKT4pu3tyR272rg6SnL0DDmRWxrbjW+ptq9jawQt1QNxVixmcnFZ0nuGW2ZP742BwCwdvMO33R2WiOPFeKWqiPJ9p8XLpUhxVszDH96bQ7Wb/EXmsUmzDdqzSSWjYrACnFL1ZGkFsc9Xyolbs87c1fhjrfm41fPzSx1VgDku74wHkTNVS7FrRC3VA3FWLHZ7GxIUpuujKaVceTfpm3lYcvn8Y7CdLQtVoi3PQ4akN0t7og9ihP6ttKodj/pJF+/xZGKNQGq+JI1m7FlR+kFZzqdzWeQJ9f4+atx/G3vYHuL+YRjIYTxLKv29SBtUoi3q22TrxUbrVVb6ZN/b66J1wRo4kf+4W1c/NDkxPMTF9c/NxPzVm3C4tVbivK81oy/di2OpnTmlLWbd+CztcXJbylpk9KOC6lq1zh1VKv/fDH8xPkCs/vHLcRna7dgj2tfxpl3jVemnbBwTXIZiRk+smjcmOxiMe7VE6aO6r7nkb8fi9G/HxtDrsqbNinEeSdevRqnP9UqxDlJ2sT5nZtbGb5930TsaMlgShtaaHLu/RMTvX9OiLeaf6PBO3dSHt9YJT77bVKI8z02rRBXU60TQcXe2adpq3pxlR0hBhOm7XZpX+s5pivjtlj2bVOI58wpxXle48btaBjzIv47dVlxHlgg1a6JJ4k4nanbqLuc5Ei5ekK2BhSSeFpVzv+Zom6L5VT2cdEmhTj/qEEVIS4Wr9kMAHhs4tKiPK9QwgxV2yLFasi655RT6ZdTXgCAnG4lSBMXNWpV0kmL1uZ+X//sjPx1BeavHGmTQjy/231xPlkYbWbz9paSRxKs1sURvOEXwyYuPk+mWPWykgkS4uLpIBPJIxOWGKetRNq2EC9Ds8FX7xxX8kiC1T5XUKx2rCvmNihHYoNPbAZq4hA18RCeLJFyVd5UnBB/dMJinPa397Hfr17F7Zpwn8U2p3BMevkFjZtjf+7gq1/Cz/8zzTh9S4APblL8+8PPMPzGN0quDSX5dHFUptP4yynqXjnYxKcva8LY2atcx8Jo4qrqrDVllU/Rx0bFCfHrnp2Jjz9bj43bW3Db63OVafKaeHHyVOqIdS0Zhqc0EzkqmktkE7/6melYvWl7yZ6f904pzvO3NasrYDkJknLIylfuHIeLHvoQAJAif5v4jOVNePD9RYETmzraoikrcLf7SoR//7b4weKgVBObtekUWjKt2N7Sirqa0ukPiUYxNElThtWyXLLE9SGdED/1jnEAgO8esXvumKo8y2m0kzQVp4mbsMlx8i+27Vf3tFkrNuC3z39acjMCJylzStCEaQ2P01EqTbwYKzYNbl5OAmb5ujLbRo7bxAPKUXSTVZa5NaeYQURXENFMIppBRE8QUbu4MhaWGcubMGN5E5q2NueWBhdPE/e3p5x3/0Q88P4i/HvyZ0XKjz9JdG4vTV+BIde8jJte/FSbJjdULnlLStA7xeDWQWm27GjBPe8uKMrE/LX/y7rfJWERfGrKstCeWEGaOEdcsKZq57qry6kDjYvIQpyI+gL4MYDhjLF9AaQBnB1XxsJy6h3jcOod41yR4QptAy2tmVACL6hx/vLp6bnfz0/7PGq2CiYJm/SrM78AANz73iJtGh7Yr1ReQzkXwwQfbzLaCkrxh1fn4OaXZuPF6SviyZQBcRfJqo3b8PP/TMPFD5sH+drW3Jqb+A8U4sL5MN+z5PpDAhRqTqkB0J6IagB0AFB0ySSHxkwLIUAL1cQHX/MyTv/7+wXdI5sP77H73ltY8H2jUioXw1Jr4kz6P05mft6EZeu2GCkOqno5dvYqzPliIwBgoxPbe6tin8lVG7fh9L+/j1UbtgEA7n13IWYsb3KlYYzhj6/OwaLV8XlCUcjZe/6KK9abm2vWCbsLBXun5M+r6pN22b1xbiqHyEKcMbYcwB8BLAWwAkATY+w1OR0RXUZEk4locmNjY/ScanjyQ7eJQjT3xiGsPlnWFJzIQVfPVY22lCaF5gRs4iavQwGeB4mToE38lNvH4fBbx5rZxBVJLnroQ3z5L+8CEEwbinSPfbAUHy1dj39+kF3ActNLs3KTfZwVTdtw59j5uOCBSWFeIRGiFnWwOUUQ4oq0WnNKG1TFCzGndAPwNQADAewKoCMRnSunY4zdwxgbzhgb3qtX/Js0bJIilYmNqNjDdl39UOWjlIsmWxMwp5jcMW9Oif3xRsTlYvjmrJVY0LjJ9xky785txEpHexYTqdxk+YhF1SHwkaZf1ebKRJgd48sBl2AO+Eai4Fa1L21bbHsyvCBzynEAFjHGGhljzQD+C2BUPNkyZ0eLWyLwip+i4n2woJFmOXT+Yjkl4Z1iIhi5cCrVYqP8svvCuPjhyTj2T+8AyAqQFz/J2651mvj5D0zC1+5835Pmb2Pn50wjHF6fTAS1H35ptjW3FkXJCWOEEb2bgjTx1gBzipYyaItxU4gQXwpgBBF1oOw4+VgAs+LJljlyReTyoSadKshkMXnxWu25rTtasXWHuZajysesFRs8HVBSbGtuxR7Xvpz7+9EPlvikjkYoTbzUKzZjfPyL01fgB49PNbr3F46wFpO0ZhgOuflNV7rcPpMRJQ7PA2lEaEtrBntd9wp++4LekyguwryBKLjDTGyqRrW6q+96Z0GIHFUGhdjEJwJ4CsBUANOde90TU75cPDJhMX4oNBSR5gzDuHmrc39zAVGbosiaxubtLTjr7gna8/v/5lUM/a3H/K+tODqhJZuCkmK71Fm8P38NZq3YgOufnYGN29Qxr0MTyiYezyPDEpc5RWS5NHFn5J0SkMZPExcvNb2PDBeA/0ygMy+ElhBCXDQJhlEK7m6DQrygFZuMsV8B+FVMedGyePUWT2wFzl1vL8Bdb+c/DP+g6RRF1vjkeNtfuWMcNmxrxju/OBoAd9HLpwkaMuqWX5dyc4Z731uI/05djg51NRhz0l4F389Ea0w5KkOpA3AV8vTNUscrv4vJq93x1vwCcpCFfJ4VlAXl2piYR0dRbifa8MNp4ubeKW2RilixWZsm440MuOCuq0lFFhayBjN9eROWrNmCFz5xe1DKk1vTPluPv411N1C/0UCxPFRUeUhz+3RMHYmJmdtvwq4Y8McW8vyv/c3tcioLC5N7PzR+sdGzgpQD/aYTzPf6KGaasIuBojzj9L/n9yJVtd1VG7cJ54XFPm1xtjIEFSHEUyG0av49a1KpSNrAefdPxP6/9ppKAOCjpetdf/PJLZE/vDpHyo+PEC9S5VN1Fnw39rg6EiNNPDex6U37v4+WY/6qjbHkRQf3uy7kleevUnulcOIozvfnrw5OhOCdg3S+3apqF9YPPIhCy0FVL102c+aftpqoCCGeJjIWeKI5JcrHfW+evgHp8qBqAF80bQNjzHd4XSwhrtJU+CRjXHkwKWq/Z/70yY9x3G3vxpKXIOIsdXkgE8cwfsmaLUbpoj5Klccw+Z6+rAmLAxYSFTraUtURcaJW1MRLbZ4rNRUhxLOauFlF4x+Um1O27mjFlCV6T5MwmG6+uqBxE0b87k3c+95C38ocx/J3ozJRpMkEDLnDYtKOTM0pLa0ZrNu8wzdNWMbP905+F8qTHy7FNmnFcKHyZO7K/Ggk6Fa69wh6P57HqMr3V+4ch6P++LZvmkKDjSmFOKnPl9rbqdRUhBBP5xp/cFr+PWtSBMaAq/77Cc68awJWNBUerc10ImmZExnuvXmrfStxHBqESf1VPYYrMvFVf3Nzyvot/h4xv3t5Nobd8Hqsi1UueUSI4RHTS//y6emuSXWgcIHym+dn+p5372ijThMkpFUdf9zmlEJRa+J5PliYV8xURR7mfTKSh1ulURlCPIRXA0/DzSmzVmQ1m6at8bjSqWfC3X+nheXl/pp44ZOKJiJjpbSYBACejDmiotmy++z/lz7iHxTpP07etmu8eqKQFhq1/E0YY5iyZF0szyl0s2zRZOArhkg/T5QbZWmFuOq58ZKEOUV3R9Wz/N7niN+Pdf39wPuLcO79E/HGpytD5LB8qBAh7kzCGQjxnJ94OoUMY8Z79pmiFrzue4uudH6V2dTjxg+TxnKGMOsvE585JTgf5aLtyVl9ZMISnHnXeK0bazkybl4jrn1mhvJckImNfys52ZuzVmrLIGxNTWJiU3dP1eHnfKKELl3rnnPgcxDL1pnNRZQbFSHEw6z0y3mnpLPmlKDVa2FgYNihEOKebAnDWf+JzcI1zbAaz9D+XQt+pgqTXAgBJvFFU350oI84l4ytUy4z7iq6ZE38+5+GxTSEw9Sl67WCKhNQ58W358/r1K4GFz88ObdNmve55t+iaUsznvlouXF6FarJeFVdP31Y34I7jDLRLSJTEUI8H/QnnCYO5ON0pGJ602bFUnm5vvE/CeRb+eOZ2AyXviaVTI01yYcYJnjSYr1Nk0LMgZjCNL8BMURufM8rJUHmFLEd9e/WAUA0r5rz7p+I65/1jgZ+8dQ0/FWzibkpqlGq3P7r0ins1j16/jlhWkTT1uay09grQoiHadQLHa2qNu0OexqHJg6oK5dcgfJ+uv55jmObMl3dfXn6CjSMeRFrpJ1VZCG+ckO4nVd0mESPFM0pYplF9bKIivy9eJkUY9HIQ+8vKuh6E62RD/C0SYXX5GUcxdz43rzVeGSCd+n+qo3BdWrZui24/c15WuFrMvfUypjg8SSmi/YdTa464c/v4PBbxwYnLCIVIcTD7AjDd8/hdvQ47M4cxoB/TfJOCHqtKdkjKZ/Jp2zekjOn3D8uKyzmrHQvoOEjFM4rzo48IvNXbUJTgAeJHzM/36A8LvYfKddEo/o+SQnxHVLnyUcIxVg08uvnowWdenvOKjSMeTHQswcwdzEE8m0qqJnM/sJ8IVbaYLT3g8em4rbX5+Z28pFRCXH5vVoz+Tkvt1JgnFUA3rmaNZu240NNALy4lJ44qQghHsacwqmTNuWNQyCs39qMP7/hjf8s39qtifsI8Tg08YDzW7a73fRMdpk/7rZ38JU7xwWmc+VDyIjuWlFwp3y8RVT3NOWiByfhgXH+2u6Pn/jI9XfJN6sQ0E3+/n1s1pVx1gp1B3n1M9NzIRSCV2x6BZ6f9irHiwnCRBPe7EQB1X179doGbzreX4inoipH/JHfuncivn73hIqJv1IRQjyKjbRG0sTjEOJi3GgReQJO/OuNT/UeD0lq4rz9ypES69Jmn1yewY+aDxFRQROzIV+bj+IX/puNndOoDLHq1yC5OaUshLjiWOPG7Vi9OasB6rTcxycuxWTHTTJoIZf4loWYU3SY3EmM+688bzixmZcNojnPIAM+8NFrGVQHIwqKYlgsosShTuds4m7txI8bo8ZXlu6dn1giXP3MdMUFWeIw9ejei1duOdSsiSYeZz5ESKuJq9MXqxGlIoz0isnBN72R++1nqjAddXIBKY4U/co6bLmYJOdpUprRgsncEwDBnCJeG1ETl/7OMIZ07B708VMRmniU6He1KXewJZNr7wsYhuvw3JkPZwOue29u4avEdBomf/aGbW5NPMwO6lOXrjPPh4H+JWpXJhtaFys6XdCcy2+f/xTX/U/tk50kqtz4CnFHeOVew2QSlPH/9WUd9jPox6XiPfU3ra9JaTRx998pyjssiLcLO6oIszduOVIRQjzMsntOLkpfJv7hokgmw7w2ceQ1HT/i0IqDXmuDtFL1sME9je/tt0hIxqS+NwuZdWni0kvwM8VqQ7kVtpoHPvD+okR2QwpC1UGbuIjmTRX+NnFCfuLdr6yDbMPPTfsc/xZWAJvYkvMjAG/aDnVpjSbu/rtjXU2ujc36YgM+dzboiDrCfXTCYld4jlLtBRuWihDiuVWXISYCuYthXhOPPVsAgE07WrB+qztYU36BkT9dO9QW/Hx9UK7s/7ImfsQQcyEeLh/BaVzb0QmFo/s2cXqLqO7UmmH4fP1WwZwS2+MiowvyxDHJY85cojkvFmvGQMkJeuaPn/gIVz71ifL++jzCea73XIe6Gt+gbZz2dencKOqMv4/HqFvecu4ZUhN3Smrxmi341bP52DVWE48RrlGoVkvq4BObvJIGaQdRZ6K/csc4/PDxj6R7Zf/XaUIcedu0KOiDcmVPyDZx2cWwmAzZuVPut1jeHj97zfG4+csbczHqlrdyq0eDzDc6t7OkUAYuC7FqWX9emAQ0MqeEtIkbmNb4t1WFsWhXm1IqbHI+OtbXKNd/FDLXtFhYtXv8bd79AsqRihDi3A4YJmBUTUhNPOp3V8V+zpkkA1TxeBb7hNPEkxLiJg1XNAWIQ1XdlUnrQeOc8LR8xxhRg1u6Zgv+8OpsV/l+3Wff1bgQq4zq25pombmdfXQBsITfKnPKN/8xAT//zzRPGlOMNHEnjep96mrMzClXfnlP5TuGGbED+tHP503ewHHlSEUIcV7IYYS4LKyCF0DEJzLyFcFfivNnrtq4Dbe8PDuS3T5IAMqaOO/ctPeLutrN4DKV8JB/x5EXE7bsaEEtH63ltNH8+csfn4K/jV2AhQGbHySJqlzCaOLa2CmCvS/nYijcd+KitXhqyjIhvWmO3c/3g3f6Kk+SujRh8ZrNno0n5Hc/ab8+Sl/4Qlx3C507m/bZejSMeRFzQiyOKpSKEOLcLBFKE5cmgIIqf5zygu+zGaSJ8wpzyE1v4u53FuQ0wzAELVnftC2cn3jUcjC5TLuqTmcSSlAVf23mSmyX6pNYljx0cVKxZnRQgOuliXzyq+s7WjK5d9vRkjEyp5gKNh5SwGzzluz/qtFobTqF+as2eTae8FvsI1KIOaWVMaPQBrp3fGlG1vvrrSJGxKwIIc7NKTOWb1AeV1EjCaugehWnJj59eROA4IlNefJGFVwrCLG+Pjphsee4bHcP0sSTnMxxyW3RJq7NS3zPlt/rp09+jGmfrQfgjv/O4UPyoHmNJFF9CyNXTh9zyoUPTsKZd+XNQnyyOQ4/8V8//6ln83Ad/PurOghxFC3OQ5jGDQ8bp59cv82iLOmKpBSbgVeEEOey+lfPuXc9qfURSLUhNfEkCGr/8kSaqQbx9bvH43uPTvHc4zphZp3Xsh2SEFfZxAuJO6G6h0jTlubcphQuX17XxKbmnjFaxf3eiysDYvhUP5ttkri+hYFdWH0P/bnxC9YEPjfKMznNrRmj9Pz7N6uEuOB6K85DmO5IVOg3M4l7r5MnYeI8xUVBQpyIuhLRU0Q0m4hmEdHIuDImPUd5vL4mrb1G9sEOM2MfF4sC7KlyZTMduX+4eF0ucJUu2/zWslai6vhcAZEMvHjueHOeKxznjpYMpi5dr0w/8pY3cejNb2avFY777ZHI/4zTT9d32b1TJmKIAi5kfh2wXVrcuOcNvOfDhGMOswmHv4uhedtIE7k6X9Wlf31jXi6QlxxT/9Yz98vFPZJR3UvVZvhoYN++OxnlWSwmBmamiWuO82JMFdEMV6gm/lcArzDG9gIwFMCswrPkJa2ojL061/uaUzxCPECKJ9Fxzl3pP7T8z5RlOE5wY4qy841qq7Hnpn2e259S1sRrFIHVxQYc1F6XrNmCP70+F5c+MiV37C+KoGCcLTvyAbj0mz+oCauJ+wlqv+/LLztscI98eueCt+c0hspDobCADtXITzxCXfY3p5jfZ92W5sD0YhA52Sb+zYN303pQKe+raDNXPJn1rPnekYMwtF8X/8zA2+7MbOLq40Gx3JMgshAnoi4AjgBwPwAwxnYwxtbHlC8Xqg0dhvbr4ttjykJ8RdO2XJQ3FWE8IUbHuGBm/iozG6IO2a5+xZMf48dPfIR5zn1l33pVAzHxFJHZsiOvtS5fb7YJNYM62NRMZw7Bkz6kMJLTL1u3BY1ObGu/9+JnRKWwVAs9gjTxMPvMhlEG/TtA87L4xj8muNIHmhQV99YLcW9a+R3FUBFNW5v1CoKYR5/8zdDVTc2d+W1VimdSFKKJDwTQCOBBIvqIiO4joo5yIiK6jIgmE9HkxsZoWo1aQ/UvJNkL4+pnpuO21/UaYxhtIylf6yifXW58//vYvWWXV4h7n6KzVatIKSYBTSssY0wIK5w/ftmjU5TpwwpSOf2Zd43Hl//yrvNs/3wB7oa5roB46oWwUJgYVAnWMEvaw8gRv84htKunkDzoUtXuVrrJd/XEpjvtGX8fj2P22hkAcMp+ffTzLT7HxXs++aF6Q3GtJp7rQCtDiNcAOBDAXYyxYQA2AxgjJ2KM3cMYG84YG96rV69omdQUiF85qeKS/Heqz75/IeppkNtZ1JgoUb77pyv8/VHlyiZ77QDZxpHJMLzx6UrjCRkxr6b2P8bC7aITVnbIHdDKDduxdvMObG9p1VzhPCfcYxJl2TohdoeiAKYtU2uGIq0RBInqWZu3t+BL17+CN2aFc5djmt8AsH6LO0SFqvPQtS9Tm/hbs1ehf/f26NqhTq8xi3/4FFOQxi2T89GvBHMKgGUAljHGJjp/P4WsUI8dlaaXPeRjE1cIKz/Xo1AREgM08a7to8VEidJ7X+sT6pbTt2v73G+VJr6wcTP+OXEJLnlksraj29bcilteno3NO7wbBJjmmjGzsK9c81OlmbJkLY7509vKjQp0t9zz2lcC8sV8rw/CZCebKESdpwmKJ65C9e6LVm/G5h2tuPWV2ZGeL+bhyQ+X4u05q3DpI5NdaVUeWWnNhrhNQjC3A5wNv3VNpmOdf5Rt39EFiT81HYq2cwg/qVwokYU4Y+wLAJ8R0Z7OoWMBRAzI7U+UNqLShv3KNYwQD/K1jrzYIMJ7qjRrme4d63K/VR3Q5Y9PwSpn2yndZhBPTFqKu99ZgJP++p6T1XxmTesrg9qcok/v5dZX5mBh42ZMW7becy6qHZtfFlUjb1/r9ZLq1629ImU4MhmGcfPCLwBr9VEH99qls/qaGOcAVLf65dPTceGDH3om+2XvFECtib8/fzUuf2wqAOCp743EM5ePAqAXsh3q0tq8AO76J95DTi9m5b73FiqvFxGvX7VxG8YWYdFPoZtC/AjAY0RUB2AhgIsKz5IXXa8W1pziJyXDVGGVh4dI2MUGhWCyolDsdJQTm5l8mofGLzZ+9sLGTZi8eF1wQgDvzG10mVN0QoN71QBqbYmPylSXR+07N24Lt/2YTIe6tGcHpbd+dhQmLlqDF6atwJOT1XbVIDKM4dz7JwYnlBAnNldu2IYUEXp1rgcA7NROPUpUxQCK2imK18l3kOufWhP31ukpS/L1jIjyMkGnidcHaOJCzmQ54lr8I5y88cW8813QPEGKstu8zV+1CQtuPjmx0RpQoIshY+xjx969P2PsNMaYWYsOiaoAgopEZU5ZvWm71nc7nDnF/+lRhbjfXV+Zkd29fnXA7vUqaoVOR5f3oNdXfYOTb38PVz79idEatwsemASGvMnouv/NUG7GfPY9H/jmiTe+N2etcnnIANGFDg93MGnR2kiLNDopBEZdTQqjh/TCtw7dLVKe2tWmIndKM4QVw4fe/KZrZ6AwRF/4pT8n19ebXvR6JavqtFj/XKc1z2rnjI50E7bMpYm7MXIx1BwXTVlLnY4xaE6mUCpqxaZIUP3STS6e8ff3lcfDtP9Ac0rE6IR+drQH318MAJgrBdbZu0/wgoYgTZyxYI9sOW8MDNuaM865wCw4z3E3UB5nQuTjz9bnIi+qF7tk/3/g/UUY87R7PoDFMAB6fNLS0Ne0r9MvOouqgdWmU6E7pSue/BhvzV6JhycsAQAUGiRTZeowwS/MsFwe4jqCXJqA9iXWRV3N5cqK+PhvCx2qadHq5ql0dY3fl4hyrtEqD5w4qQghHmWSQCfEda5jQR+1m7CBQ5A5JapN3O8tef5kTxATn3XRbq4SKhlmNjwU+Wytv284X2rvhrnyH+TzrMyTcGhB4ya8M7cRN734KT5bu8Ul9FYpnx+M6B1iit9Ed1RXsxRR6InWdVuaXaEpdnZMKJz73luISYqY6LqgaHKsIlP8QriadGoqTVysC+JpXRnxydHcytuv7IPj9u6dO+/ny24y37N683b85vmZHi1b3NUrF0cl4SX4FSHEo5hT6kO6+QVpPcMbuud+B5lTdARpzX454JVRLguT+iHHkYmCnzBSFd31z3r3pJQ18aCO45EJS1xp1m7e4RJCRFkzzb3vLcLo3491fcNDnKX+xcDPpBVVE09RNPOQeIns1XWjwnQB6EeWvEOIc92TiflPzve4eavxxKT8vELKpYn7P4eX4eFDeknL6/P4mQN1Z37/ymw8+P5ivDLjC9fxnCYuXJv0wrGKEOJR2kGQtiwTVMy//dqX8vfWaC6vXXGE9vo/f3MoDh3YXXse8BdqOt9fuYIM262r59ogQcLg3SdUxu8WYh52697BOaZOJ+YlaIT14vQV+ETwix7z9Cc+qeMJVjV+werQ9/Hzk9cp6d0CtuZLERX8PqbCI8ndnuQc6DqMgwZ0w53fGqa85tz7J2pXBes18exzjt4zu/BHLm/35Kvb/LNVmFzXVVFuSpRNJfyvf36wFJsdU1Gcnj8qKkSIe0syRf7TabVhNfGABtNOCLal0yb88mMyrDZZVSg/2qR+iI1UNQnHmN62eO+7WbcqP4ErFh1vPKrUDPIEVXCZiN4qsgeIN23hRvFPljXhjrfmhbrGT7vUveM5h/hPeBJRwfF8TC8PGlnG6fKsK49vH7obTt1/VwDB5shUCJv4VSfthQ+uOhY9OtVLoZDVv2VTkC6/uWiFUgPkf85ZmZ+7SnrD5coV4gE5D2vyCPTOEO6n0/L9Krto3jl/5ABlGv99Dt3/665RdUai9tOuNo0FN5/sOs+gf/+bXsoOwf1K8+mp+V1g/MqAMfdCDpMRlpgteZ5DFtrNMbWWuSvD7crCO6Y9enfSnpMJ6sDSqQjL3SVMrw8aqRUSB8T0FcRHBClUYvML0sRr0ins0qWdk1Y94er7OM2rk8berSpza06BWmCrNEPxUNiKF+SfId6vtkZ3b/0zj927N/buk11occI+u6CzRiPWwSuCR2hL18xTBNSSOx1Vo/Ub8mUyzHiCjqdTpc9q4t60fojvK7+HHDwsrtjfO1qC79O5Xf77cU188M5eIR4lZAS/Lkrjdy/bN7smyPSouo24gMyPbc2teNDZ8ccPsZyCNHHX4hxNmsB3EjVxn7Yf5D5rUsb3vLuw4A7Zj8oQ4ooa30NRicR0YSeUgj6GeD/dbL6uYd58+n6oTafwjeH98foVR+DwIT2Vaf2Xomf/l90X5WtULlsmoxI/7ac5kzEuT55s/ILVrmXSAA+AJZQdBWuL4umg94hj42nAzM//3BH50RR/J5ViobMBB5VmKg5zilB4ckhikaBvq+ocTVvX9pYMfvN88EJuseyCOmO3n7g6reqdxKQum7jP43RFw4+v3+qOBaO610PjF2Pm59E8fUyoECHu/vvCUQ246qS9fdOFDcoeJEzESqGbCNI9kTdkIsKQ3p21+fOruzwaoSp+eBDBmyP7az/NrWb7DgL5jnTDthZc+vBkxXl32qDsiw06KMRAXMNWEyHu8gJxsqVSNnQjwqBJXYronSIiftI9rn1Zmy7J1YQyulcScxAkxHVeJiKqeQqxjouP8GtD+s+UPfH7V+a4juq0+iRNKoUuuy8KcuM4f+QAtK9La/w7s4UV1pwSpPXUGAhxHcoAXsqU6kxMWbIuZzqQha2JtlaTSuGFHx2uXFoNOO5sPjdqac0Y++qL6WZ+3uQ6x5i8n2HIlbIBwqaQDXJF/LRWjsuc4tQHVfZ0HY+JOaXQdm9atsXcC1on5MQ2HuTNoZuUFFEpLoN65SNlm9rEdeYU3WS27l5JhqatEE3cXQAmE4thtYsgjVYUTtohsuZDqdKr0uoqwJl3jc+n8Qjx4IZamybs27cLTtm/j/J8/+4dfBsOY+YNXUwn75/IwFzvnUqFc7/yWxkJRF9hKBOkie/dZydcMnpg7m/eoFVFpDen+Bfo1uZWTFyo3g8zbsK64wLxh1oV601rgFlM7Kx17VYVCXHwzp1x7SnZEXzGoCMAgCWagHCifBHri3akkWBHWZFCXFfnTNzX5MPNrRk0bWnGVf8NDunK0drENelNFyuZCORImnjAyGH4gG6x7HYOSBNUrRnsLmg/jRu3u97bRNsUT6vcI0XisonvCLjPD48e7NrflW9CcNZB/T1payN4MgHZsvJb+WiC6XeLw5xy1kH9jNKZCLmgEZX4ncOYU4B8HRrxuzfxvhMzx6+cnp/2ufK4KLhd2xtqcmQSXygqlSHEpVxyzUEuGFGA6D6iLNzPunsChv72NUwWoqQFobWJa76TySo1ALjr7QV4beYXvmkWrZa8T0w0cZ/nt69N+7oYAtmGYtJZpFPkXhINoHuH/AT03JWb3D6+zEzQtGaym1a0ZBja1eqrbFyTR82tGd+NPeSGOqhXJyy+5RQcNKCbJ23Uic04MB2YxCHEg/zeObqvLY7QguqEOHoLcjGUEevfqwFtzQ+xo3HZ8JP1JlRSGULcUBMXk+kEqnx42mfrA58/1AlAz9F5Seh6W9WoQJW/mZ9v0G5Vxrn5JXeA/qiaeM9O9bl8ZDIscLWoyQSqaiGS5yohTYYxo/wPuvolXP7YVLS0ZtCuNq1d7fjbF+IJZ9/cmgkV74J/X9U31SoTRTBEm240bSrEH7zoYOEv9zWm6zJ09UhsI0ft6b8D2ABnVTCgl5naNioc5ms3okw6ipq4X+hdVZq4qUghrrPhiemixCA3JbQmHjHWigkmlUP1/Fd/OhqvX3FE1qQRcJ8z/j7eaJKNnHuJyI1W9kIIyv/jE5cAAF6Z+QVaMgw1KTKeZI3KjpaM0laviowH5IWgurOOpx6a7NouY9oPmQpx0Ywo5990sl+riQu/v3ZAX98QFd0E9+IwNnHA/Y24SewRJ+pjGESTjjji0eUnrjUMKipDiEu51AW3MqmLcdimwg4/1RUqHkFkFgDL+/weneoxpHfnnIeI332Wr99q1FmkyFtZ5atc7mEseHXeqzNX5n63tGZjryStw65o2qbstPbaJRvArI+zApDD64OuXrx35dH47pG7u46FfYt9+4YX4pMWeSMWqjCtzyN271HwPXRSXK6iQZs65G6n807RjoDyvzu1i+6c1yJIbrHD11XnJOOnVIYQl7p9LsTlCRATN54drRm8PSfklknSBwirWZvaxMOy93WvGAWc98svUfb1gjQFI5s4EW4/Z5jvdaLwahU6j84GDSqriZeuyv7fCXvgX5eNcEW0BPLKg+4z9+/eAZ2kPR/DauJJ+nKbuuOmU4SvDt0VVxy3h+ecafZ0yoA8YjE1P+iEo+6VRBmh2lZPhUrRECe/TbTsJFfeV6QQ5zbendrJDcOsJl344IcF5Ue/gEOd3tQmHpatza1Yu3lHYDq/oS4RgTHmqohXnrinJ91WxQbJMqkUYVAvaem5bE4h5CYnsyOA7PmGHh0RREsmU5Bp6uuGHhQqduveAcMHdFNqo7mgXz4fVbaBh5XJSfoZh+kgbj9nGH5y3BDFbjhm99BtkOCNzmmWH5Ode3Q0btyOhjEvBqZrzmQwfoF7r9MWjU1cR9Uvuxc/1OnD+uZ+P/ydQ1zpirVoQTcpFcZPPIjtLa24f9wiV2VRYbLAxW/SKUXZEa6o0aj8dIPc7gC1mUtlTnntp0cCyDZU3gBMJvq4TTwqpkN0Fe/84ih01uxPaRah0l0SXTvU+U7gvf3zo1x/J7pHY4R7y69s2sm0aFxm5KtNhZ7OHGcygTr7CzNvpuZWlttqjdOi0cT1E5tGj4pERQjxXp3r0b97dvfwboLLWn9hlhrQV6QDFTG2o8Bv36V9tjHLi2d01TjsphZ7XvsyzrtvEm544VM88aH/JrtBCyMA/8Uc5ARaEu+jcrcM6kwA4EfHDPEck9sSgdCxPjuMzWQYvnVvdiNgEznS2po1p0RVSlNE+MNZ+xunv/yoQbnffpqmSX52ap/vADrWpXHmgf1wxoH6kUFDz44uN0exDnXrUIuxkpAvhDjm3U1NMjpffrntmk4Eaned16SXXVxNyK5Ydh8TI2aa3KbqvVMA4KJRAwH4F4ZOW7lgVAN6djKLuuYHv3vndjWYfcOJ+MUJbrNDoX7inO0tmdwONhu3qbeT47xi4OvqF1s9xW3iQrmqbIUmGv8Foxo8x2Q3N6L8d2puzeTCCZhoci0hAnGpIMovzDGha8DGDRwx7z85dgie/v4oT5pvCX7UFx8+EOkUBWubwmnxGbt0aY+BPYPNT6bEoeWbdqy6kAZyFkxDKAzaWV0OuqIVn7PDcENzlQnIvUqTKX+LWCGOfEWTC+M3X83vuKOrSIVWUv5Ero2lidCuNu25b6F+4knhH3MkGy1P1Hx+cpxXo/7Dq3M8x0xQjZ55OYrbhZl8opYMc0xD0QqvJk3o0akeb//8KOwqeZioCBt+FwCuOH4PzaKfFEY69nRT+7HYAca1+U4vad9NIJq93bPQzrCNbdcITrlMTDVxvpGEjMkEqrjhiB8tmYznfV2rRg2yWtYTm0SUJqKPiOiFODKkg9cR+eOK2p9+F45ojf7Hxwx2/c3vwiusR4jrNHFV7BRDQfTiJ94d4cPit+w++wruic2OdTWx2WDlupsiUt7b5Bs1t3JNPHyLaF+bxjeGZ5fFN/TsiDd/dlTgNeZC3CwP3KoVpTqqzBXP/uAwXH3yXqHuIwaByt07wreWNWVTc4pOE5cvv/VMc7OXCl0nID5nqyTEzxDm20RaWhle+9Q94g27g325a+I/AaDegTVG9nI2GVZpOZyg2L9hOVbYHRvIVwBeYU3NJIVMxsWxlDzIxTCT8e7+HddAwbPYh9Tfw0SQLF+31RWzJAyzbjjR5TkTFEwLMK83xhEenVI17cDFolNpukP7d8VlRwzyHA/KwxOXjnAdizKxuV9f96bfhfb5coc5eOdOuO0bQyPfT2eOEZ+zYavb40pXDmPnrMIbs9xuyas3bc/9NpHP785tTMxDpSAhTkT9AJwC4L54sqPn4IbuGPfLo30ng/RBrwo0pzhlzxsf36pN/uj6iU1vMSdpTjntgF1xg7Cxsy5gF+AEoQJzDQ/TKe/Ky7ggqL+Tida7eM0WTFi4BnF1MTeetq/veVPhZi7sw6UXv0EhW6SJTFi4BiMHud0ko4xU7/jWgXjysnxnUGgbU5VJ2Hydc8hu+O4Ru/umEe+4VIpQqCvj65+d6XtP10bLmjT3vrcI97630Pc+USlUE/8LgCsBJLwVaJZ+3Tr4nvf30y68EfCPxTVrz0fX2eSLaQAH8PXh/XHeyIbc334jAUJ2hl+c2IzTnS3DWC5OC5Bt7Oo9U82eOWpQD8QVZWjUIP0KRCCaTdwE0+RMGh0lRRTvlE71Na5RcaFVRvV+pu/M6+tZB/XDD44ZjHMO2U05yQ74r5yMuo7MVMHeu89OwYkiEFmIE9GpAFYxxnwjNhHRZUQ0mYgmNzY2Rn2cEbwx/fDowdJxb1qTiRO5EvGPlYuVYTixmVbaxJNDFtp+NvHsYh+3v212FWc8gpIxt596VhP3pjMVAqcdoLZbRiHITinuV+lHeCFuOrHpvka1ETNQuAstr8dH7OEfeEpG7OwLrS2qMjEt19k3nIjZN5yIgwZ0w07tavG7M/bThi3W+ZWPHtIz8twZA7BpewuWr/evLx3qktmDpxBN/DAAXyWixQD+BeAYIvqnnIgxdg9jbDhjbHivXuEqSVj4RzhscE/Pce6bzBl09UuB95Pb+NUnZwPK81gksrCMy8WwUGSh7WdO4QJbtCGmiXDSvuoNJMLC4LbJiy6GImGWfsdlWgzyMFu3eQf+ddkI/OWbB/imI8NWJAuJQA9D6fy1p+zjHHefePTiQ80yoIGXfdhqKgreQr+J6tGmQrU2nUI7wyX0Olv56CE9I49AGWP47qOTcdgtb/mmS0oORBbijLGrGGP9GGMNAM4G8BZj7NzYchYB/s09q8lShPsvONh7QQD77LoTvvyl3vi9s0DkO4cPxOJbTtF7pwC45PCBnvuEiW4XB7LQ9pvYVEUxTBHhzz6Cq1+39sZ5YUyOd6KOQigea+ihN5vVpKPtAq8iKF5LhjGM2L0HTtN4LXBMhQ0PkRBV49Nd1rG+Bq9fcUSkewL5+lHI0v6gDTtETH3ck5B5uhF4SmPmM4EBeH9+8C5MSa26rRg/cRP4R5DbeIqys93HhljoAWR7+H+cN1xry5I/OhHhmlO8GzgXcyNawCu0/ZbdE2WFlVi5UynSborw+hVH4KWfjDbOC5Oer5+3EH/7dzpxsWvX9njhR4drz5sulTb9vNOXNwGAUdAyGcaYr1dL947RF7OlfDTxvXbJbuwdtHNP+7o0/v3dkUbP66DwDFKVdRIx13WaeHZDk6iauFm6pOLfxGKkYYy9DeDtOO5VCLqJCf7dTHaKH7xzp9wqwiCUy+kVHyrpic0eHeuwX78ueHtOds5BDnjl55aXouxiH9Fn1q/t9OvWIdA9L2uiyf5mzL3sX+/BEyzogeyQtEv7Wqzb4r+SlTNk507YuE0fvMsvxKvppgphGyfvMMNcFrTPaRwCQq67/7psBA7o3xUTFq7B0XsGK0BitetYl8bmHerOKh8wTKwn3rKeGmK3LVN0NvF0igpYUJW/p194iqT2FWhTmrhOWPKClb+f6nv++RsHYPiAbrjmZK9GLRN2kYdI3HL9rm8flPsta95+Q11Cdh/BhY2bc8d4I7v1zP286Q3y7Y5PwTw28aBr/ARSOkUYc5L5ApfX/+9IfHD1scbpRUw1rLDfUmcOumDkAO2oLcPgOxseR32S2w8BaFebNhLggPQNfRpHXvPPp1FpyMsCJgqjoPNOSRF58vzXsw8wuqd4S91iJv6MJGhTQlxnZ+YFKzcelX2MCHjq+6NwaYC/KX+eGA5Xv8tIspo4Q3Y429kR1nxik+8G4xe9T1VkvLL13sm7NN2kHopJGNwTOtpVtaaaeJpw4r59cNoB6uXWcZKUi6HOTFNfm8aUa4/DpGu8nU4mwJxSyFYZOf91SRqErbeunbV80uV3Qsofa1ZosOeNGBDq+SaEMacM2bmz0T3FO/rFY7E2cQN4GcnD4Gbnw8kyVqURhW2Qn/z6yzl7pEnkNE6SFhauid93wcH493dH+m766+faFXVRjhwprsZnWy+OOHggEO47fzi+Mdxrh+ULpwrZlcWUqwyXtIetMzoNnzGGrh3qsHNnb+fJ4D/yU3nIjB7SE7soOmKRbh1q84vZPHM8vpd6cH13n3RcmInloIpuuHuMQb449RqbSYq8IxHzfUPzv7c3+5hTrBA3R25UeXOKmSYeFRN7bxLwEQB/G+4C2atzPQ7x2asQgNL+77dnpInAEpNkGJP8xNXXiwKECDhun9646LCBnnS8IZjEBn/mcm80wTCIi5T8MP28fLONSD74jPmHw1Uce/TiQ3MhnHW8/fOjc79VE/VB1KQIhw3OLppytS+fV+TCUkzv2UwEybSbU/bvg7MP7u/xiVeZU/zWV4iISqOfJp7U5thtSojzDSPkHrxZJ8Rj0MTF++oqvcpWn8ROkdxlziQuiB+8rqnqnEmuZU3cFXbAOXXT6e4l7+J9+fUqzYU37HYGMVSG7dbNILeFY+oumvOe0pz3k+0M/gqGrt4G9RddhHC7suJp0hbm33wyHrsku/xeNFVce6p+TonPkfDk547YDbsp3EqT2IqvY30Nbjlzf09o6qw5RX5+eE3czyaelIND8mPSInLuiAE455DdPD3owJ7ZXl5WvCcv9m4kG6Wz/ONZQ/Gn1+fmNovw3LMINnEAePzSERg3f7XxwgcdOaGkEuKaV/nK0LyNWn5dMRQu5Y5JDVS4RrciFsg3rHpni7fRQ3qiviblClD0zOWjQvktF4ucuU8jWf3kbYYx4Xrved13CaPzm8YC0iGObM86qD927doe590/yfscKbO6vS5VK53jQhao6RR5jvmZIUXE76Gy7YvPSII2pYkTkXIIxE0KsnuRyvUsyiKc4/bpjZd/MjrUR4qzU+a3GtizY6yTQWEWKak0aUDlnZL9/ekKd3RGt3dK9n8TTTxFhO8f5Y7kt0fvzhjS22xSqpikcmaE7N9yWfrVn+w14Sc2w5huvOYU40sBuN3rUgSMGtQTP5LCOQPe99Rp/Em65srPTKcU5hRTTVzoKv1C1FohHgNeP3FvmiKvy8nx+hVHhF6MxElq9WcY05KYVGwMnzdtwxbBX5ifkeNMuMrdZ2KVD7H5aKNV4XsXtrGceWA/HNxQHNMLoHcx9BfiTLsiWXcMMNPEeZpC675oxiPKxo3/2QneTbdNbe9JTv5v2u5W4NLk3WnJ2CZuqolbF8PCkc0p6sZQHCkuP2VI784u+2Qh94qLqI1aLsIJC9Z4zskRBFWmKNXiCC7o1m3JLmEfN3+1J03YT/inbwzFf75X2CSoCbxuyTKc22dH7K6PqpjJMO2K5Oy91dfpFPGrT94LX/6SO15+oX7MpnMQpjGHknQImLtyo+vvHa0ZjxZt6p0i4ivE7WKf8IzYvbsrXKbc037RtM1zjem2UEkQd0yNQonrvimFTfzsg3dzpTlREXBLpblwwb5B2HtU1myTWlRRKHKuuHlv1KCe+OTXJ+BInyiCrRn/zlprTtGkv+yIQfjHecPd9yhSuflMh7gQv//lR4Xb/CIIPqfCWbpmCxat3uw6Zjqx6nIx9JnYtC6GEfjXZSNdm9bK8vl3L8/2XBPnNkp9u+rdu9T+2bE9OhaiNmr5qva16dymw1ygy1qOMrKhz7FLR+cXY8k+xoUWY79u7Y06ML9dplTwe3JlgisMNSnCTu38R2GiOUWFtu6EqM+y9SAuDyqvJ5LZfcXO/4Qv7RJLXnL3lgqzlTFs2eE2sRj7ibts4nohXm84URqW8pvCj8AhA7tj0iKvp4mMiYBWLTqIyvM/OhxrN29XnlNVD7/Kfcawvnj+k881Eyelt4n7UZtO4eyD++POsfNz9/RObnmvU2lCXJvhPtzH7rVz7Jr4098fhV4GPuKPX3ootvks7pDhueK57dM1uxBnz12CJ2Gz3imOOUWhX4sd7i9P3CsXuCqUd0qxTInk/7eKuBUc+V0zGeaJx0NEuOqkvZTKnutal01cX+JJjXTahBC/9cz9MU+ycakwMZWodgOPSveOdaGiy/mN3kStZM/enTFHeN+kNPgwt3XPS7qvrK9JeXzP5TTq3X68zxGF/0fXHY+O9TX4YKE7DGihbYXIzC20viYdas9P+Z1HDeqJp78/CsP6dw28NqjuitkVvXVkveW6U/fxXMsX2piGiA2LnAceoC2dIrRm/MMJcOLuYOTPO2JQDxw2uCeuema6K47QifvuEijEmTNKYqw05tg2IcQH9uxoVAFNRpZxCvGw+PXU2dlz57dUA/kkX9xErY7yW9SkydfjRD7Of6k18fyxbk4HKWvihWo8SSzEEhGza2qSCTKn6N5Z1tpVuwNdNKoBQ/t1KSicrR+HSquGLxk9EB3q0ujUrgb/eMds38m4hbjchoYP6I66mhTe+tlRaBjzYqjn3vHW/Ng2KolCm7aJywSZU0bs7r9E3ZRbztgP/7pshG+asEaRVCq/ebFcAVVLluOEB9LyI0hwNjkdzUdL12uu9x4L0sQ5cTegpEY2utg+JrQK3ilhyEjWHlUHlUoRhjd0T8wbZEjvzlh8yym5AG07tavFTafvh47OdmUmrxV33kx99E1GZG/NXqU9VwwLVZvQxE0JEuIPXXRILM85+5DdAtOEDb6VTmU1mvEL1ig2fSivvlh+DcaAKUuzsaHnaMxeqldXaeKqxhbnZHQ2L8m6+0QZcWdYNIHgnS/Qp41D2+3SvhZNW9Wx3mUlJMxnSxHwx68PxcCe/pulmyK/qVguZx3UL+cC61del44eiHvfW+T7nBSR7+bMcVBlQtz/fDF34Am70ChNhHvOH47l67bi6memu69LKN+xbZYMFmqhg9/iE/VGHBEzpiHpOYYoxZoxtB3LcK8gbn/2u0Uc9f+N/ztSL8SdF4/ynFSKAncXCoP8CcSO+49fH5p/rqZynbp/H4we0stAiAPh93EKR3mpcAnj5/4DJL8Dj4g4pOYxGvw0wFSK0Km+RunJkJT/Ke/0UikKOVcgz/xH62hU5aF61yP32BnfNYj/bvzchGzihVQvUZsL0wnccc6B+M1Xv4TBjsnN793iqEe9Otdj8M5q8x6vT1FGjqXy/RefO1SYgE6nyDC2fvL5riohrtrEWCTpQFUi919wMM4bMQDTrj8BU687HoB/Ixc7GFlDTqrz4c8hZDWsCVcdY3SdKjtBeTSt7Drf8asMdmIyJvFqEF4Vjzoo6tW5HheMasgpDb7mFMOVlFHhHZHsf23ymNjruGF5ikUyrH9XPH7JoQCy8XmM6mwRREpVCfELDxuIBTefXOpsAMhWghtO2xddOtTmIu4FbUumI4GInQAETZyy+1r26WK+y737Psy3gxw9pKfSa0JFMUxeyZlTwtuCc9dSPEI1yAMqSfgKVa6Jh5ngjV+Gmz1brG8pIowa3BNPXjYC3ztyUOhdrpKiqoQ4UPyd58MQ5J3CkatfUu/EJ8XCDmXl1Iz5C4ifn7Cn8WRiUqYjkaQmNrkGahriVCSuHPmu+hTKtq4mFbvfODdHeMwpBuWd1GrHIMS6wIvn0N17ZM0pBtfztnP8Pr0DUkanqiY2yx3/zWX116UTUsVzGmOBEoSB+Y4WZG8bv8cVI75HUk/46gG7Yu7KjfjRsUNCXbdb9w745Ul7KUMnm8Jyoyp9GlEZmHvjSZGfpeOBCw/G4tWbI3mnhFlUZYLps8Xy8lQ9Q9fI9648OtH1J1WniZczfo3UT5NNKna+iR1VhZzVDMv7K8vRC4G8K+ENX/sSgNKPlpKaRKuvSeOaU/YJjJMic9e5B0Y2ZXkpnTmlS/ta1+Qgx+SpcsCqYiHWRc8epIbdff/uHQreqMWPyCVDRP2JaCwRfUpEM4noJ3FmrBp5ZcYK7TmXOUXSIuIQevv23clzjAuOwwf3DHUvuXIzlp/U+rFCC+Wa+B7ORg6ltniVWxDEODs138nzIhd8mKmBUplT/Dp0k3oSl5uuH4WYU1oA/IwxNpWIOgOYQkSvM8Y+jSlvReOG0/ZFp/rkekpTfCc2fbxTCtEcT92/D174ZIVSCxvYsyPeH3MM+vjsmH5IQ3dMUmxzJ8IYy01qqQSFvPlx/27eBR379t0JM5Zv8BxPgnIT4vL3jSIW8r730SbPk8RogjDmj2JahuJj5XZXLtUkcvfGGFvBGJvq/N4IYBaAvnFlLEn+/M2hrr+H9uuC04fFt5AgKqaTTrtLy+wLWbF54agGz/1F+nZt72urP/uQ/p5j3ih1+VVrKiHChce+fbvgb986EDdKoUuBbFjhiVcfq81HnBTDtzcMuaBhMdzLd/K82K9dyoAjhojKjXdTmfKoJ7GMUYioAcAwABMV5y4joslENLmxsTGOxxVM1w7uQD/ls4mAmZYkx2c+eT/vhgqm8KhraSJcOKoh8iy637CRCAGaeL4anrJ/H3So8w4QO9XXoLfPiCBOyqY6OHj25oxwD35NlCBaSVNunaaIe79Y9zkjc0rM+VFRsHcKEXUC8DSAnzLGPONdxtg9AO4BgOHDh5dF1yvvtF5ujVaFqBGIQm7eTScVpIkP7JV1Izt3xACcNiz8QEpVdqpJfK6J++3WUy6UT6eeheeHrzj22/uxTxf/jq6cBGYphYGprdplTkF4c0oxSrsgIU5EtcgK8McYY/+NJ0vJM2pQD7SvTWNrczaqQbk0WlNzikihwa927twOi285paB7BEGU30OzncLLoBi+32Eor9zk6yf3ajlwt67KdG/83xG5zTJkct6iAS938n674KtDd42SzdB0bpcVP906RttbthhQgZp4MUY3kYU4ZXN3P4BZjLHb4stS8qRShDd/diRG3fJW9u8yEeJ+lJmyGgoC4a9nD8NL01dgSG9v7JdSuxTKlFt14PnZrUcHPPfDw7DXLl5PIgAYvHPwDkFB7/b3bx8UNnuRuXDUQLSrTeNbBlE/4ybKKMAbLbM8KkohatxhAM4DcAwRfez8K4817QaIq+bKpdH6ZaPcBJ2MWL13SFtU7dKlHXp2qsf5IxuU15ZfKN3yKmvx2+/fr2ukFZ+ccjKn1NWkcP7IBl/zUDnh3Xwk+JqyNqcwxsahXLqiCIiCo8zlI4DiBucKg0oofOuQ/rj9rfm5v+89f7gnjUi5d1ClJo6RIrcBJxVnJyme+t7IshHyHu8Ug2uKoQ+UR+mUgLq0qImXvxApZpjcQrni+D3wwo8OB5BdpBG05LjcbOLlRpzFU06auAnDG7rjAIM9SMOyc4hl8NwbzGsTDy7LYsiWqhXiYjjMSrCJl3sexQpORLkJTBPbYyV0oqUkzlGYLeosN5++Xy7MQxD56JMRvFOsJp4c7hCTJcyIgN/OQ2VrTtFki/t+F2PZcVsnzg68PGtR8enRqR7naeZoZHjT8251F1yaZx6Y/CLCqo1i6A4xWR5V20/glYlZMMeAHh2wi8/iG+77HWU/SYubWM0p5VHVKwouH/xcDFV7i/7hrP2LIsTLTDSUhnKp2N061mnPlUtHw3nnF0fjye+O1J7nmnjcmxhXI9bcVGJymrh0WPgs0351gueyzu1qijKCrlpNXKRcBOQDFxyMI/4wttTZiIQsqrkm7ifDbz9nGD793D+o1feOHIR1m3cUmLvKJg7vHduVRievics28aDvUhy5YoU4ykcT79tNHzO60hRaObSBiq8O3TVwdeCYk/YyfuZxe++MKUvWGaevFOJV5sqkslcQOpt4kNwollyxQhzlo4n7NdZKM0uUIh7KfRccXPRnFoNyqZ/VCi9+uQX6fZd9++6EgwZ0Sy5TAlaIo3w0cT/bZ4XJcLuAJ0ZiEeIVVn/KCTmKJEf3Wfp3b48XfjQ64VzlsRObqAxNp9w1cdleyFfEtk9wW6pqwfaHpYVyQlx2MVSnL3ZTtZo4KsNKWK4iXDd6SKcI156yN47co1eRc9T2qAQloxrwfgX1d7FCvARUwtC/EhfNXDJ691JnIRT3XzAcs1YUZwu4MMTiplb+Vbxs4W3Ps1GyVKYXjmrAQ+MXFylXeaw5BeXlhzv1uuNx7Sl7e46XUx5VVF4X4+XYvXvjh8d4N3JuE7SFD1QiMrmtBd3H5RES36qw2AqX1cRRXpp49451yoBQtWUaUDynpZQ4HxYzylwXKDo3nubdz1Umk91QySO05aLkQeqK3V9aIY7ymzhSLVXfu496I4BSw/e9LNf8WSx+nDtiQGCaYc5OSvL+sx6hXqIe0gpxlN/EkTwL/smvT8htzVVujNi9B57+/kgM618cn1hLNDJ2xBSZ3Xt1wqzfnoj2dW5PK1lslGpEb4U4yk+IyyY1lQBPEbDPruWh/R40oHups2AJILdRdbkNOysEWYCrKFXMfyvEUX4V28QnfMHNFbMTnqUMuOqkvfGL/0zLmb8shSN7DeVWdloXw+JTZjLcKHxruXurWMqLk/frg5P361PqbLQpPBObKT6xWVwpbl0MUX4CsdxXZ1osFtXEZonyUZrHlgd81tlisVjCUi66X1WbUx69+FCs3ri91NnwcMGoBixbtwVPTPqs1FmxlJB0itBqt0YqW7gM58K8VJtQV7UQ71Rfg0715VcEnepr8Lsz9rdCvMp578qjsXpT+SkZliw6M2yxraEFmVOI6EQimkNE84loTFyZslgswK5d22P/fl1LnQ2LBlmGd+tYi64danH9V/Ypaj4iq6FElAbwNwDHA1gG4EMieo4x9mlcmat2Lh09EH266Hf7sVgspUOe2KyvSePj6717bSZNIbaEQwDMZ4wtBAAi+heArwGwQjwmrjmluD26xWIxp0zmNQsyp/QFIBptlznHXBDRZUQ0mYgmNzY2FvA4i8ViKR/yE5qlJXEXQ8bYPYyx4Yyx4b162Q0CLBZL26Bc1pcUIsSXA+gv/N3POWaxWCxtnjKR4QUJ8Q8BDCGigURUB+BsAM/Fky2LxWIpb8olcF7kiU3GWAsR/RDAqwDSAB5gjM2MLWcWi8VSxpSHCC9wsQ9j7CUAL8WUF4vFYqkYchObJdbIqzp2isVisUSlXMwpVohbLBZLBWOFuMVisRRAqeMvlV/0J4vFYqkA2tWmMeakvXDc3r2DEyeIFeIWi8USke8dOajUWbDmFIvFYqlkrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCoYYY8V7GFEjgCURL+8JYHWM2akE7DtXB/adq4NC3nkAY0y5NVpRhXghENFkxtjwUuejmNh3rg7sO1cHSb2zNadYLBZLBWOFuMVisVQwlSTE7yl1BkqAfefqwL5zdZDIO1eMTdxisVgsXipJE7dYLBaLhBXiFovFUsFUhBAnohOJaA4RzSeiMaXOT1SIqD8RjSWiT4loJhH9xDnenYheJ6J5zv/dnONERLc77/0JER0o3OsCJ/08IrqgVO9kChGliegjInrB+XsgEU103u1JIqpzjtc7f893zjcI97jKOT6HiL5colcxgoi6EtFTRDSbiGYR0ci2/p2J6AqnXs8goieIqF1b+85E9AARrSKiGcKx2L4rER1ERNOda24nMtiNmTFW1v8ApAEsALA7gDoA0wDsU+p8RXyXPgAOdH53BjAXwD4Afg9gjHN8DIBbnd8nA3gZAAEYAWCic7w7gIXO/92c391K/X4B7/5/AB4H8ILz978BnO38vhvA953flwO42/l9NoAnnd/7ON++HsBAp06kS/1ePu/7MIBLnN91ALq25e8MoC+ARQDaC9/3wrb2nQEcAeBAADOEY7F9VwCTnLTkXHtSYJ5KXSgGhTYSwKvC31cBuKrU+Yrp3Z4FcDyAOQD6OMf6AJjj/P4HgHOE9HOc8+cA+Idw3JWu3P4B6AfgTQDHAHjBqaCrAdTI3xjAqwBGOr9rnHQkf3cxXbn9A9DFEWgkHW+z39kR4p85gqnG+c5fbovfGUCDJMRj+a7OudnCcVc63b9KMKfwysFZ5hyraJzh4zAAEwH0ZoytcE59AYDvvKp790ork78AuBJAxvm7B4D1jLEW528x/7l3c843Oekr6Z0HAmgE8KBjQrqPiDqiDX9nxthyAH8EsBTACmS/2xS07e/Mieu79nV+y8d9qQQh3uYgok4AngbwU8bYBvEcy3bBbcbvk4hOBbCKMTal1HkpIjXIDrnvYowNA7AZ2WF2jjb4nbsB+BqyHdiuADoCOLGkmSoBpfiulSDElwPoL/zdzzlWkRBRLbIC/DHG2H+dwyuJqI9zvg+AVc5x3btXUpkcBuCrRLQYwL+QNan8FUBXIqpx0oj5z72bc74LgDWorHdeBmAZY2yi8/dTyAr1tvydjwOwiDHWyBhrBvBfZL99W/7OnLi+63Lnt3zcl0oQ4h8CGOLMctchOwnyXInzFAlnpvl+ALMYY7cJp54DwGeoL0DWVs6Pn+/Mco8A0OQM214FcAIRdXM0oBOcY2UHY+wqxlg/xlgDst/uLcbYtwGMBXCWk0x+Z14WZznpmXP8bMerYSCAIchOApUdjLEvAHxGRHs6h44F8Cna8HdG1owygog6OPWcv3Ob/c4CsXxX59wGIhrhlOH5wr30lHqSwHAi4WRkPTkWALim1Pkp4D0OR3ao9QmAj51/JyNrC3wTwDwAbwDo7qQnAH9z3ns6gOHCvb4DYL7z76JSv5vh+x+FvHfK7sg2zvkA/gOg3jnezvl7vnN+d+H6a5yymAODWfsSv+sBACY73/p/yHohtOnvDOA3AGYDmAHgUWQ9TNrUdwbwBLI2/2ZkR1wXx/ldAQx3ym8BgDshTY6r/tll9xaLxVLBVII5xWKxWCwarBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlgrBC3WCyWCsYKcYvFYqlg/h8Nt2E/3DB5MwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate(spectrum)\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iii) Using pre-defined models" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One of the pre-defined spectrum models can also be used to simulate a light curve. In this case, model name and model parameters (as list iterable) need to be passed as function arguments.\n", + "\n", + "To read more about the models and what the different parameters mean, see `models` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB4XElEQVR4nO29eZgkR3km/kZmVlX3TPcc0owGnUhCAiHAIDGISwbEZQ4bDAYbr41ZH6ufF7wYe31wGGzDLvjgMF6zZmXAYDBgw2LDcoOQAIEM6Eb3jW7NjObqnu7qqsqM3x8RX8QXkZF1d1fXTLzPM890XZmRkRlfvPF+RwgpJSIiIiIipg/JpBsQERERETEcogGPiIiImFJEAx4RERExpYgGPCIiImJKEQ14RERExJQiW8uTbdu2TZ588slrecqIiIiIqcfll1++R0q53X9/TQ34ySefjMsuu2wtTxkREREx9RBC/CT0fpRQIiIiIqYU0YBHRERETCmiAY+IiIiYUkQDHhERETGliAY8IiIiYkoRDXhERETElCIa8IiIiIgpRTTgEVOD6+87iMt/sm/SzYiIWDdY00SeiIhR8KK//S4A4M6/ePGEWxIRsT4QGXhERETElCIa8IiIiIgpRU8DLoT4iBBilxDiWvbeUUKIbwghbtH/b13dZkZERERE+OiHgX8UwAu8994I4EIp5ekALtSvIyIiIiLWED0NuJTyOwD2em+/FMDH9N8fA/Dz421WREREREQvDKuB75BS3q//fgDAjqovCiHOF0JcJoS4bPfu3UOeLiIiIiLCx8hOTCmlBCC7fH6BlHKnlHLn9u2leuQREREREUNiWAP+oBDiWADQ/+8aX5MiIiIiIvrBsAb8CwBeo/9+DYDPj6c5ERERERH9op8wwk8BuBTAo4QQ9wghfhPAXwB4nhDiFgDP1a8jIiIiItYQPVPppZS/XPHRc8bcloiIiIiIARAzMSOmDkVR6TOPiDiiEA14xNShEw14RASAaMDXFd7w6Stx8hu/NOlmrHvk0YBHRACIBnxd4d+vum/STZgKtIti0k2IiFgXiAZ8gmjnBW7dtTjpZkwd8jwy8IgIIBrwieIdX7wez33vt/HAgeakmzJViAw8Yr3i3v3LuGPPoTU7XzTgE8Sltz0EADjYbE+4JdOFqIFHrFc8/S++hfPeffGanS8a8AmikMoQiQm3Y9rQiRJKRASAaMAnCm2/IUQ04YMghhFGRChEAz5BkBlKPPsdE1W6I48aeEQEgGjAJwqSUHxzHRlmd7SjhBKxzrFWJCwa8AmCDLh/s6OTrjti/0SsdzQ7+ZqcJxrwCYKUgFx6BlxGA9UN07JCaXUKyHgvj0gstaIBP+xBg9tnlDFRpTs6+frXwHcdbOKRf/IVfPw/fjLppkRMAEsr0YAf9iC77fvkIgPvjkkx8GY7x95Drb6+e/e+ZQDAv11572o2KWKd4lCrsybniQZ8giANvONZcP91hItJxYH/0v+5FGe/4xt9fZcii6ZE7YkYM5aiAT+8IKXEy/739/Cla+637+n/C18Dj6O+KyY1wV19z4G+v5vo2P6ogR+ZOBQllMMLhQSuvGs/XvfJK8x7VgN3vxsNeHdMQ/8Iw8DXf1sjxo/oxDzMEGKNZIdKTswpMFDjws0PLlTGzFa9Pw1x4EIXSKDbfueeQzjv3Rdj98LKmrWhKCT+/cp7j6jnab0gSiiHGUKDyMSBH6ESyiW37MHz3/cdfObyu0ufff/WPTj1zV/GjwOyxTT0j39vb921iDv2HMJde5fWrA3/94p78IZ/uQofueSONTvnkY6ZmjKphyIDP7wQipwghnmkMvBv3vAgAGDvoXI1xu/dtgcAcOGND5Y+mwYnL91vMuB5RcjoamL/kurXBw/GcsVrhUaWAgCWViIDP6wQiu0m4p1L6QzsaUlUGRXX3afY9XFbZkqfHbWxAQDYFwjbm4ZqhJaBq9d0f9dy8kl0KMyR8jytB9SzyMCHxs0PLqzbHW6CDJyl0reZJ/NIYeDX3nuw8rPNszUAwEMBAz5K/0gpccF3bsNDi6urRdMk4ydrreXkk2kDPk5H6v6lFm7bvT7H2HoA3e/IwIfA89/3HTz3vd923muvk6y9kNGhdzqFROsINODLbcVSQgaG3ntosWzAR9mR57r7DuKdX74Rb/iXqwb63aD3hL5Pl1ZMQEJZDQb+ovd/F895z7d7f/EIRcestGIxq5Fx84MLOP0tX8FXr31g0k0JZlc6DLxTdP3u4YyQPSamGsp8HMUIptqo7To4GAMfNLOOpBLfcK+lnJEKioQZ3znvO0y2//vARbfiwhvK/pVRkXu+j9XGYW3AL7tzHwDg4pt2TbglYQ3c6KNSOgP7SGHghNDDTiunkIQyShhhLVVGjdh/v1hsDmbA7UB2X69lLfNUj+5p1MA/+YO78Jsf/dFQv73mnv04+Y1fqtybstUp8Ndfuwm/+bHLRmliEFNlwIUQvyeEuE4Ica0Q4lNCiLI3aoKgWMwN9WzCLQk7r7g+2mIMfBqcdONEdwNeZsqjGEFSqgY14IcG1DT9KBT6fy1j2JNVYOBrhWvvO4DL79o31G8/d4WqP3PRjYq43bZ7EX/3rVvM5zc/uAAAqKfj5692oh77oYMY+gqEEMcDeD2AnVLKxwJIAbxqXA0bByiddWMjLX221qU+w3Hg9L/rxBx19t57qLVutP9+ELIvbeMELH82CqOkibQ5YJTAAjPg/Tw3vgZOt2MtV1d0pmmU5PJcDl2V00xc+rpf+cFL8e6v34xFfQ+v0bkFjzl+0xha6sJs0jINDBxABmBWCJEB2ADgvtGbND5UMfClVgeP/JOv4H3fvCX0s1VByOjwVHrOzEYxUAeW2jj7Hd/A+75x89DHWC1cfNMufPeW3aX3uzHwEEZZoZABHYWB93N7SnHgeuJYSznDssEpNOCerDgIEq+MAflRaLxdq8NXj98yO2Iry/Dv+2pjaAMupbwXwLsB3AXgfgAHpJRf978nhDhfCHGZEOKy3bvLg3dcCM14h4wBdxl4s60G04e/e/uqtcdHVwZeCiMcnj1/4Ro1h974wMLQx1gt/Od//BFe/eEfAnDvV5iBsxWJ/gINzFGMIE2Ugx6Da+AmVKzVwXIFk8+rnJhruDKic62GAV9tWSYv5NArB3JU+11Nw4ru5bivoCgkizoa88ErMIqEshXASwGcAuA4ABuFEL/qf09KeYGUcqeUcuf27duHb2kPhLRFKqrubxpMA3Ctgu2B7gajUzLgw5/n69epiJtHPWx++IOsAXh3hCZffj9pIJuwyxE6aFhjttLhEpf6/8y3fQ1nvaPEWQDYVYJ1VOv315ANd1aRga+2LJMXcuh2CxGOf889f8S4ZY7cISXrnIEDeC6AO6SUu6WUbQCfA/C08TRrcIT2oKOKYP6gmcSKshurzqV0DdYIDJx0vvXuuOKDM9RWP7FJSsn05NE18MF/Fx6ctJrzYTVwGyrK318L0CSyKgZ8LRi4vu+DgnyTVXvNrlZMPj/eWrkdRjHgdwF4ihBig1BT3nMA3DCeZg2OkFOKJBT/Ro1rdvzSNffjWX99UV8PQjfdtiyhDN8memjXe+hYMYCEkrOlqfpsdA18UBQDDk6rherzyrW/L4aBr4I1WQsDDgxHtkz8u/dbm3eB4Oejgj/TazVRj6KB/wDAZwFcAeDH+lgXjKldAyPEhKoZ+Hg696YHF3DnQ0tY6WMH6m43NPcM+CAs8cf3HMBnLrPV/MaxbP7kD+4ydUpWC0WP5aYvofT6fr8Y1gE66PLYdyAebhr4ak9EdsIbvL9IQsmlG56bexPauCWUqlXaamKkKBQp5Z9KKc+QUj5WSvlqKeXaFTv2EJJQKHJgtar9rbTDE0QI3b5TlCSU/tv3c393Cf7ws9eUfjvKNb75336MF//tJUP/vh/w5vWKQikK6TicRhl4/D7wwT3I7/oZnKU48AmsjExa9wgrlgcONPG/LrxFS1jdZa9xwjDwIeY7cmIWhXQyeUuy1rgZ+JRJKOsKzUBYmGHg3gPMH4rQ7wY9Zz/xqr5Bld5ya1zFrIoJLNWHgaOB95BQOoXLwEe5Mu5fGCQ5xxmcA3yfmr2aDsUqEHttjcD6f+eTV+A937gZNz244ByHrudzV9yDf1+FjZtHqd6YsiJee1jRMp/cjJslTx0DX08ISSiLhoG7n/HO7XeX8RCWB2Dg3VYBuRzdgPu1NibtxLx77xJ+71+uqpwgix4PO590eXhW1ff7Bb9XCwOkxzsOqj5sSlUm5iQY+CArDR8UqZUX0hlj1B+//69XD1wYrB+MwsAF21Cax/vnHvNeTQYeDfiACBmKZoWBzcdkwOmB7suJ6X3HqX2Sy5JBHxSmst+IS/VxMcT3fP0m/NuV91YWEnMYdeCUPtvr5fTsF/z6BmGm+YCDc33Egatz9uOj6QUprWQIrE0YITCkBg7LwEPRTr6sNS7kY3pGB8FhYcAvvmmXs9egX4O5m3wxysNtJ4jeD5nfBodxS+nc8GGMKCWU2J1fhjMU40rBpw0ZqnaDcR72vsII7Wej2A7uaxhES/edmL0Gf8djkJPYkYfOtTICA+cpFA4DX+WaLr7DcRBwA10EiFHVVoajwl81rgWm3oDvWmjiP//jj/DfP3O1ec/XG/2wM26jRnm4jYTSx8PsG3n/ZvMbPozTqWkYuHo97Pga1xL/mE3KgO8KbOJblkQC7cg9gymHM7w++MQ2yKX6mn0v9u4zyEk4MWkSXKmIVe8HJEdIT45Y7Z2FRpnwTPx7BTGq0sCvvns/3j9geY1v37wbv/3xyyHHGCk1CCZfpm9ENFvlB6mTS9RSbsjd7/CHYpSYYhoYg2rgUkpnU4JxhMkte6uBoRn4CBMax2xNlS8IMfBWXvSUjMoSiv1sXBr4IMbBv3+9jCKPA1dJKfr9NZRQLAMffpVpDDikI1OutoEaZQcjbvzdlZ7+v0IDf+kHvgcA+N3nnt73uV77ictxqJXjwYMrPR3zq4GpZ+DBELSicBmt15v8N6M4eCh0cVANPC+k82DmhWvE+He/ffNuRx6qgpFQRqx6N8puN85xdENo4wTOmlt5UWLUh1Y6OPcvv4Uf3P6Q83uAGHt3zbxfDKplh3/X2yi6JKGYSDGrttHAR5FQhDlW02Hgg1/Hj+7cawILemHQSJH7DyyzbFd1ve28CEsoXjhh1bn7wSOOmQMAXH//gaGfrVEw9QY8xN7yvPsGCbxzR9F8l1vDaeAdz4AXFUu9Tl7gNR/5IX71Qz+oPC7te0ghk6OmCY+rFjn1/64FxcD5SqfVKZzogkJK3PjAAu7Zt4x3feVG/X2XgfeSXDg+f9W9+NI19wc/czXwvi7FtNH8DtIxiiFDwPuxlRcT0sC1hDKKAacCYnnhSijec8L74KHFFfzTpXc67+1fauGVH7wUr//UlX2dd5AdjO7eu4Snvutb+F/futX5Tavjrmz9SaHq0IPYhNO0Ab/h/gXHFsU48D4RGhDtoigZTA7+chIMvJ0XroTiO1v03zRg7ngovLMIANR04QfjUM1HY3rDGnApJb5w9X2ldlCUjxP90SngR5VkpoKcXTqT8ciLwTTw3/30VXjdJ68IfuZq4P1fqxvj6zLwUF/z87Q7hZVQ1pKBM813VOmmU7hhhH7fccnrK9c+gLd9/jpn5UiTyI/v7S/D14YR9mHA9y0BAL5/2x71W/0M+1KdITfSfe1jkHvUyJRUeN19B0qkbC0w9QY8NFv62le3GOyRDPggGjhrZzv3JRTXQHU8A95t5xB/izBqyrBMb9ikj69c+wBe/6kr8SFdotf3LfAJq80YKaAe9tTbgLeVF5jRg8NfoQxyZb/1scvw4r/9rnk9bLKFE+PrGbPQM8jP02ET9Jpq4OweNId8zikKpZ0XXSct7ouiMcX7iI7TrwN6kNoxNDk0tN+Fftv2iEJVgTEfg9wjs3PUYmu6aqGsF4SckB1vNw//IfD12GHRbA3HwDu+E8930ukXNCjqWfVtqmsjt+y1pVeb/vbCW/DxS+8MtLP//njC279ujkG1U1qm3jbFQevjehKKr2nz9GdADYyZWqKP5aVxD2B4v3nDg7juvoPmdT4kS/IrzbW8Cbnb91udYiCDNC7we7k04KbMBnoZ1PFzFbzrCEWocINPX++3ywcpCUEO5YYeJzl7hkLjqlehrEFsAhl7KcvPyFpg6g14iEF3Cuk8vN2iUMYhofQjOzhOLY9x515cMQ3ypbYadJlf0JyBGPhSezAD/t5v3Iy3fv660vX3K6EUhcT+pTbe+vnrAAD37FsGAGzdUHOOE0pgWWGSAh3LZioW5vczmlH5tVBGsYFt9uNBjuMz95UBGHiLOdPWNpXenqtq44n+j1WUVo0c3MEZcp7aCb36+kMyYl8GXI9DMuB8FReKdqK3KiWUAWREutbcTxqKEkp/CA4eb4nu3xD+WZXD4sq79uGr14YdYXSOtsc2u8HRwH0NuAiHEdKgq3WVULQGXkrk6e8B+vbN7i5J/TpwfOfx3XuVDklMrO0ZcG4424GB5TutFANPzXurEgc+gDH17w9nl1UyHj+Pz8Cb7Ry37lrdXZP4c780pAG3Ekr3wICQg3MlUAmwqss/fMkdOPXNXy4VoOtLQjEMXEsopIFXSChFj7YMZsDtxETHTxMRDXi/CC13OkX35R7v2yoG/rL//X389ifCjjDA1RT7echchl2WUGiA19PEPEA0KBpdJBSugcuAIazCphmVAnDnHtdB2m9cvP+A3q0ZuB+ZYwwXu0/+wJLStrfDBh9dd+FJTKOMDd8Z2S+c5TE8dtlDQuH7O1I//Pn/ux7Pfe93nGJLIYxSbM2VUIY04GYbu8KZ/LoZcDJqfGzZTarLfVUUEu/44vUAgAd03sAgYYSGgddcBu4TBT8Ds4oItPIcn7vinr60cD/eH1Bjcq0WWlNvwEOJJx3PSViqheKxwWHAB1Y/acVuFIoXNihtmFwtFWag9MPACcvtfKBkF/rYZ9L9OnD8RceSZk5kKDgDl9Itl+vHgfPUdD4BzdatU2pchYLGo4G7YYQhElHycXgT6x17FgGoeu5V+NaND+KMt36163e6oZNL4wAfVUJpd7ozcL6hSjuggRsHYuDYt+1eNH8fWG6r75uJvx8Drs7Hnd5AYJx5ZQ2q7v/Hvv8T/P6/Xo1P/fCunuc2DJyRsFqSRAbeL0KMsV2El04E/tnKGAz4oJmYbd+AsRVDLUvMg0CsppZVa+Am5LCVu6GTPR78qnjxdp/UwTf89DNylvGJIPd8EiXnEmeoXELJUuc9Ap264yVq9ANfy77pgQU8+q1fxe3MiIRQSuTpEhOtzsOlmrKme+axmwGg68YZF96wCwBwxV37uratCp1CYl6vtIZ1YiaagodCc3nfhySUVkADlxL46rUPmL1b/d8aAz6QBk5RKJ4G3imCurohLxXHpnvSz7gOSSi1LBrwvtHKy8xCGQxXsuBwEnk6w3W0w8D7uNElBu4PBpq908QxyvReFWgCW27lA6Xj06e+8ek3lb4UmqnPF9oFKZfuiqjV8Ze27pKZGDtFoVT5CE57y1fw6x/9UV/tJTiGVQJfufZ+LLdzfPw/ftL1d37Y40rHnZBK3/euv/AY5VxDTU7X3nuw9FsCHaGLD7srOkWBTbPKqbw8pBRDp+7k5U1H+D3mIYM0eYc1cInf/sTlOP/jl5vPeP8d9A14PxKKF27LMzFDOyn5htzHffuVjLNtrtHz3HylScfNEjFUGdxhMFUGPC8kdnm1NUIGuOQkK0ko9u/QBOCfMwTnge0rE9N9wKuq29USUdLAuxlwnvTjxx5zHFhu44EDzdLnJQmlzyfP1w+lZ8D9aoL89UopjNDViOlvcmKWwizZ374TtgqhKJBCSuP4unXXAAy8QE8JxZcbrDTk+gbu0s7fEEwXiWoL3mzneOnfXYKr795fbkPOGfiIEkpe1sD5s+Jo4IwB299Xyxa8L/cv+Qy89/NI/iiflPhSnc/qq0gO6fBJl34nhMIIa2lk4EG89xs34Zx3XmjSs4Fq/bF7JqbLBrvhK9feH9QPR2Xg/P6SgUoTgTQVVkJp9U7k4VEN3Sat8959MZ7yrgvt78x+ie7100DrxfqqkqOWA7sg+U7ldu7Xabbt4MbeNeD8fHLg8E96Tni7pJSm2Na1gQzBqk02/CiUXk7MQkqT/WeNSPkcZWhD0+X5uuaeA7j6ngPGCcjRKSQ2zSgGProTs7yqdcIUuQHvdGPg5XPwe1mWUHq3kZ45f5L2JRTfedlr2PZDZvjEROetZ0mMAw/h4psU26ICSUBVGGH3KJTCMybd8DufvBJv/+J1pfeXR9DA/ZhRKmaVCLWjNmfVAJCl3TRwq8GF9D6CvzcgfVzeaEIdT/RgH7nHoOkwh0gD98L1SrVQHEZtJZYO+65JzJDlWij7l3pvxOHWfS/M8c01FDDp3ge93Xlu3bWA09/yFVNTxY+aafWQUEqZtp7GT8frljRCXXioi35N/ZwGZtycaeDLQ2rgVMzKTz4rpJssx52YdI1u5qa+mIENeG8juuSH0BonZngl3suJadrchwOV7n0urRMzi2GEYZCU4Cxf2d9JgC1kTJIgcOPRD5O7e+9y6b3Q9lLd4DjPAppuISWEEEgTZsBNgarex/UZUrc2+ZX+nM861Qx8uZXj5Dd+Cf/wndsdjY8/q8teFIptG79nrl7PJzSKWgHs/ebvAaq/9umldjf4kwa1hR+HVnP+Oa7RkR9fv1452xzmjv40cOrDgl2/n+DUzedAx13ssvUbdWtokm/nBWZrKbJE4L4DTZz7l98KrjT6gR8H3sndksjNHmGE3WQLfp9KUSh9jK1lnfDmM/ByFIrLvHvZ2EHyO3wJZbV3LCJMlQEnKWEl8LAAdsnN2UIjS0rGzMRcZ0lfabOhVHYnCqWPY+Q+I/O0OSkV+86Schx4iIXc9MACdi00HYPQby0Gv9Kf81kXBr5Xs96PfO+OkgEmLAUqNOaF68RUA8tltHwi4gPBXhuc7+/Tbem2UODX2QpIRlJKZ8OJ0GDnG+Ty7/mSkI9OUZjnRoVB2vf58bs9fws6NLPb5suWgZef0byQyFKB2XqKi27chXv2LeP9Fw62YYE1pIHcBfY6FBfvZmJqQ8eO/Zz3XIy7HloyfqiZWoIDy20nn6EfcrTklZHgUTAh57e/tVoV+smJoEkqd55bsWYSylRt6EADgtcUbrFOnqmlWGrljhFo1NJyFIr+bCZL+mLgIQ16UAnFj8pAoQyDCvqXhrE1aolJ0fdjqjl+5m++g5laworUu17wqjbxDFKgPEDo4e+mgQvvd4VjwDulNvtOzFCVOD8qBbDhk/7kVEhpJJS5uvsIcxbtnLNjGXAiyAi7clxeyJLBToVbJZE+cyekMAOvpwmabXWtfoaskVC6PH/EvBe6GHAz0QTuVzuXSJMEG+qpMSiDJgZ1mO/A3wbQkYlYv9N4awWMOr+Pt+0+hI987w48+th5AMAx8zM4sNQOTqTdUJJQmFTiS5W8Db2O3d/KuhxGmEUnZhiUdch3E3cYuKmFUJiOradlBk6dO1NL+0rkofhSjpUBnZh+CrcJ+teZl4WUSBKBWT0JAZyBh4/fbBfO0pw7Ueh8zXaOP2DbzTU7RaVzDrD9SdqnlBIf+u7teMjLGHTj2O37Phuiv/mEshIoJxuqElhLuIRiz6EYuFpqb2y4BpyftxUw4HkhDbM/tNLBcjvHZh1q565g1P9+lUR1/nJcu49OIU2hMT64/e3+ujNwdY3dJBSaKImBX3PPfmOk86JALRXYUM/MxBoy4A8ebFauIm1cftmvVCXZtQwD52PERmtwrHRyc2+2zdVxYLnd1X8VQsmJyQy0MxmUJtHux+3HNtgMU/bcplEDD4IGHmfgXEO0EopdsjZqSWUm5kwt7YuBh1LZ3TDCwRk413kp0zARAhsbmXkgm4GYah/0kZNIwCati27chc9efg9rd97DgLsM/Ad37MX/+NINePsXr/c8+vY3NDBma6nKCC3c+tMdj4GrPUD5NYQzLY2EIssMnCSUjTqemp/LvxbAGvB2Ic1KjgzMhno5YYgMTlIhoVSdx/5esup49vclDbzLMp0MdzcnJl1Dmqhx8ZK/+x5+55NXmnOlmhSQk9aPRnnwYBNPfueF+Fu9GULoOlQ7VdQJrUYVYQg/R3TvqerkroPNyme42S6Mwd+yoY7lQDTVUqtjau2EQJNTSDcP1b6hW9mrpg5Vwfz0D++qzGQ1Tkw2odXSBH3I52PBdBnwoIRie6rOqpERQwpp4HTfZmpJX7NsSANfHpCB85rXSi9T76ubbcMIZ+upeSAtm+3PmcK1fWoTpaObdrfykoPROY5uGMXAUuw4X0ILFilD1wYAczMZpFRVGktJH35YoRfFEqpRwiUUn4FTvHDmab+ONu3Eatu+JMNKhoNr7f5x/I0mAL2C4tdTwcBpxcj1UZ+B+1oyB600uzFwYtRZkphV4TdveJC1ITETFFBO6PnuLWoThJseCCcU0T3vFAXy3E5Khaxm4FwD/+j378Q577wQNz0QLtzFGfhsLXXkJkAZ5f/v45fjp//qokqDS2SKmuBsphGQC0NRKKF7kBcSl972EN74uR/j7YEwTX6tTi5HmoxUcG0QjGTAhRBbhBCfFULcKIS4QQjx1HE1LAjdJ5USSsCJWc8CDJxJKNzRstzKg3v21dO09F6zndvldT+1UFhdikJyCUWYEKREABtqqZntVwYoV8vT8evMC06bC/N2d41Codeagd+vDfhRG+uVujcNwPmGTRopOTG9nXCcqJIizJTqjhPTY+A6LNKfgP2djwgrTAOvGRapZTZWNMv+llYiZQMu9XkoUzREAgrG9PnqyMS7B7T6vJB42+evNWzTGPAuGjgZrzQRJTmmUxSGFJjve0zyh3eoPUgffeym4PH5SqFTSCddvaq8rK2FUuBbN6pyAFUJS812YZ6fRk0RD9/hT5NM1dZwRhKhSdIhC+5z5/5vjxG6h/w9ql1T9R2+KquxXI7VxqgM/P0AviqlPAPA4wHcMHqTqkEGbaFpQ8haLBOTbwBgo1DSag08S52H/lnvvgiP/dOvAbB6O/8+R7OtQrQSEWbI+5daTpGenA3ovIAjodCmvYkQ2FBPTW1vvz4IIbgHo3PNloH7xGLZM+BVDJwGw0/0dm6FLKdSm2Nqo0Axx4dWOs6E1SnKjlOuMeeyrJFT39D3eSsVy9fLdN9oBSJPgLAGzpe8QDiahq+a6JkotAZOk2MrMMF2nPvNGDgxtsD1Xv6TffinS3+CP/rsNYqZUhhhFwNucgUSUa7tXkhkiTD3hX+f0C2Vn46h2q38LXxSrcr85VEgVOo1rQgXarZztHJFhoh4+KWgqZ9pQnvdP1+BV3/Y7hNbcl4G2sLf545/QlUs/wZNSg4sl+8BXzmWnZjByx07hjbgQojNAJ4B4MMAIKVsSSn3j6ldQdCD7mjgQQbuGjN/iUuDp+FJKA+yiASevh5yNC23c8zUEhX2F7hbL3z/d/Gc93zbvO4ww+EUryIGXigDPlvPsLQSrqnNj+WDGwm+6vAjcHwJpcqJaavmKQN+sNkJshnAGjuqu7HQ7KBdFIat8WJOdE76fZYIJ2wMsLJArYKBS9jlqj/wqsL7uAZOhph+WyfDzCclf4MMadtDYY+zbMXng6JQqK98fZbbfD9uOkncLcoOrVRHjlBfJZ4BL7TslCbCZGMCZQ18pce+rmQA2wUxcJsd26lYydH1rHRyc/ykIqxJrQjVPUkT4cTMA6rvSAKicf+lH99vWDk/t5/Io9pSnmRsRiaC3+Pfp+9SjRYO/hvK5QDUynEaJJRTAOwG8I9CiCuFEB8SQmz0vySEOF8IcZkQ4rLdu/urW1EFms25Jsgf2oajgVtj5j+cRh+ucGIWzNgC4WSLlXaOmVqKtCJk7/4Dbs0W7tRSN1u9rxyOMBr4hrpaFXT0P6BspIJLdukacCl1Aon3YPoMvMqJSQ/jvftVEtPB5ba5TiH8yBN1PzYzA8531FEMXP0g04lK3IDz5Se1EbDJKdzpq9pm20ftXWp1cPIbv4T/853bg/3E48ApOoT6hjPya+89gLd9/lqTubjSsb/LmEMzZ9dXFUboTEAeO+QGz0wuuV15kBHbPFvDoVanp/6bF25yEcXsp0KYiZWuJ1RJs8qZyhl4ntvJr5xaHzLghWlTla+JJJR6mpjVGH+2eFnhxWYnGBNvNO0QAy8KkysQilLx2+xcO6t2GTLgZZnQkrJ1z8ChYsjPBvD3UsqzABwC8Eb/S1LKC6SUO6WUO7dv3z7C6Wzp1340cBrgjYAGTi9VGGG5p/cttRwJJXRzmx1lwEOZniGUEztcCaUo1C7sxDaWmKGtMrLu8d1NIeg8ftt9Dbwqld6EuekBeLDZroz7XfYY+OJKB+0Kh9dMLXWYDcXM8msklmiuw8uo49+nyZVWTx/53h2sn8oSSie30oZh4Ezq+NUP/wD/dOlPcJ+egK30Yg09TTiNLhJKLj0JxTDw8j1texM1X9XNNZRjuMrAkjFu5254KOnoaSqMb4LAjZGNiqnSl22/KUlGG9pSYk/5meKTRVX8uWLpalJNtHPc35CcxsTCShs3BpyhfJXErwmAZve8JIN1iPeqicQnqVAsPr8nRJiA6YkDvwfAPVJKEqM+C2XQVw3kZV+oiEKZyVIIAc1gyYB30cBrNpGHMxyenQeEB89yS0koKduAIQQ6ruPEZAaslgp0dP1yJaHYTYrtlm1hmcO5JsbyuOHwf9ts+3q0x+47xMBdje/gcrtU45tABnezMeBtdIrCkbTot40s0RKS+q1h4KxNxH7dgWe/r2Ju1Wu6/0Z2YVEpIQlFSRvC+bzGpA7qQ6qRQsfnqzLSwGupQD1LnHhnQlFIh7Fb3dXNA+Bto/bUM2Hu8Zw2vs3AOQArgbTzwjFCRsP3GDgAp+a7KfLVh4RCceXKgHvFvmT5Ny3GwHnYLQcx8EaWGAnFd2LO6mStxWYHN7JoGbpek1kZYuA5WzkV1Ts7hWP5w/Xmf3jHXnz4kjvMbxq6/rdZ9WtSthYY2oBLKR8AcLcQ4lH6recACMfajAl0w3hxet7xWSowV8+w0OyU9ODQruYztZQZAHucXQsrzkMQ0sDJidkt65H/dnGlg02z6kHkLKOmHR5cQlHXmAfZmn/NBF82ot/5311u58aYqiWre5y2vyzMiYF3zMAXwp3wyOlKWuuikVB4O9wVkWXgpIFzuUOa9im5xn4/1Zo5nb/tGXBeE8QNI7SGqsacq4CrtVMJAapS2KJIoKIwxybNPksEGlnibHBMKCSXUPxlvQw+X1z7JyNIce5VDJZXf3Sctuwe03NHCIVAVmrgTELpFCoUNuvBwEMSSjcG3s7ZxOA7MQuJDTWrge9dtEXMSBMPZWDytqTCHruqZn6wJHBeJkAA8Iv/51K844vXM5KYODJZmkyHhAIA/w3APwshrgHwBADvHLlFXcBDwQicZZHHfaHZMTfRLuPtceheUSKPlNIU0QFQSjzoJqHw4lMh0KSz0Oxg82xdnZ8xSEq6yaWSUGZrdgcVw358DdyrgV7PEpeBM03XXz0oZq+ON8MyNj9yyR24dddCZRnYg8ttVCVuLPsa+EoH7bywm8xqxpomwiwvzXIzcdmLuj5rfFIhHINPg4PvMJ4X0hgyYlt+v9F93nuoxSQUy3jpmkgvtQa8MOehY0u9YsiSRIeihjcVqTHJzJcFHAPuEROugc/pSTE0SQCWeLQ8Bt5ifcidmIA7SXcqVnm8rYBO5NHXTPekMg7cSCi5WTVXhQAaDTxLkAgRDCnlTkxuaCkajb4e1Lb1PVVVPt34ficKxRtT842slH0qpZtwZhh4TZUqyKWa1FWphrWx4CPVQpFSXgVg53ia0hs0UELhYYBKJ56fqWGhaR1ujcw60tLE3TPPOqE8A64ZOLFrvu/d927bg3NP24blVo5tcw1Hr2znBXYvrOBpf/Et1uYC81AP25YNNXMcq4GrCUBKiVRYBs4NbYmBe7IHsVqeyEPn8SMkltu5Ybiz9dQk6Lz9i9dj00yGc0/fZr5bSGlY90qnMNEQAm6cKw3ODXW1Illsdpw4aZpIskQYpy9dUqav33c8ASobNNHMiU6XCqGiULzlL8lqWUX00EqnwHu/cTMOLLdx9Ea10wr1DZdqyPz7Eo3rhFav0y4MXEq1OQfdB//63BA29fch0v4zroGnuv3qszv3HEKzk+OMh20CYKUVv1ZJ22HgrgF3CBCt8io0dvq8nUsISFOznjvIM4/E0ATc6pOBt3JlwNNET3YVTsyFZseZCMgX5jsxO/p4rY4KBEgTgSSh/AOYfukwo+0z8I2NrLTKOLjcwe7FcinrempJSJIINRFNgQa+5qCBEnpQAWUMDQMPOKgIppgVS8Tg9aX3HmohLyR+86dPwVNPPRrtjsQXrr4P/+lD/4FXf/iHuOTWPVjpFCUG/ooPXuoYb8Ayv8WVDrbogcSXctyJp1Lp1cN6qGV32OmlgZMGx2Uj+h0Z4P/05JMAqIFk9egUhZQmbPFgs+PE1RMDJ2a9j/URn0NM0ksiMDdjJSza0zLPpdE5E+FqwKSBu5KCPV6mdVEz8FLF0nwmRNEJqcPAbUnXVqfADfcvYOuGGt70ojOcfgxJKKYtTDvPmAbe1pKKnwxGyKUbheLHJgcZOF2DsI5xo4HrZ/9Z774YL/ib75rfcidmqMRtIgIMnDuxjcYd9qtQv1N9oSwVhtjwbGdnBcUSebhDM4S2fjbqaWJq4fthhLTyWVzpODWIDjbD26/lhTSTJ5UTSD0HKQ/p9fsEADY0UhM6STjUcjV4IwvWbDmMVAgIMT0SyprChCRVbGeVkoSy0jbabsNbLgP2RpOBaXUKh4FTJmcqBLJUZbi9/lNX4j9u36uPpbzrM1niaOChba1anQKHWmrHeGLgTsy2llAKCV3Myhbg9+tmEPzlHjlq+TEB7WzT/fOHz38UNtRTV0LRdWJ4rQ1npyFtaKjd+w6pPhLeEtFo6kJgrpEZQ09x4LmUJtJArVgKtgJJSqn0dH8TEZBQNLvxGSwZ8FriSiicSS802zh9x7xdeRX+YLZ7QBLcBKCwBh5il1xCIcmIS1uc0dP9ONSyert1YmoJpcKJ2WSkJiShZCENXF837/e8ULXR9zCG6Sfn0KrDRIsYIpSWJijeBtXO6lj2Vl6gliYmVtyR8XK7m9FCs+1JKJ3gJiYd1vdtPSknfvgqS8qi/uOoJYkTzUbXw31lbUaEpLSJU2nSu87KuDA1BjwvrJOmnZcfFoA08JpmgKRPuWnTgF0eNxgDdwy4nqkznR1Wmp3rGZbbOWbrqQmpqrphK53CaHWbNygNnDMbqlymilnBcWKa5W3hOmH95Z6RUIxsVE53zlJhik1xCSUvpOMU5gOYJkxKWOGREL6jCVCSx1wjM3VKDAMvGAPXEQwlTTugLabCLtfp+zTI/e+HJBTO1habHSw0O9g0k9mNP8wSmGKb3b1KeR9wRl1IYnaJklAC7JJLKMT8+GqwkDaOnH5P96HVkSUJJRTFsbjSMZmy7ZIT0/aXz8BNBcvCvYfn/M8LsfN/fLP0PXX8woQRkmRCzxbPteCTAp90qhg4XXc9S0y2ppunYCf7xWbHkau4r0udW/1fSF50yzoxfd+L+q7uL699WSpKTsyWF6rZMgbcFvhK2AS3FpgaA/6IN38ZgDJ4rdwaTG6YlQaulvC+Bu5LKIlwd/ghAz6rS8xKqY5XCxjwTi4VA6+lyNIE7VyasDMfrU5htDouoTjlZPWA5lEoiysdSOnKIbsONh0JhGCcmJ4Gnud215RaqhxuzbZNEJrRzJ1n+vEQSlOjQh+PWJRAOPMu0Ssgn4F39ORb1yuWUO3kkNM40c6nTuGGEXItk9pJDJwrINxoXHzzLhxstjE/UzP1TbgBAtTA9wtHcQ3cSeTRr1WfBhi4dOOP88KNP88Lm8lpGPiKlUPoPSqXG2Lg7/h/15uyuu28cFamfFW0wStoZsJT+aq0IreA/90hP0ZKUoclDJz9AurerfTJwBebHTO5Ay5B4TW9//2q+3D/gSaO3qiI0EIzXHrWiTTyJJSCPUeAJRL+BEkrayc6qlM4Y4/qyvCVlIqcihJKJUgTNN5x1lNZKowTkx7IWW+5DNjKgLzjeT0PevDSRFVA9CM5lIRSGAklLyRu230o2N5WnhsGTs4kbmwzE4WiqvxRcggZ/RnG2s5554V41QX/UWoPMfBQbQ+ebUg7EFkJRRtwxsD3HmrhuM0zAKzRoEkwtEktYA1BoiUUYuD0u6KQaHVy1PUymRvkmmHgYfaYkMGGPUchy6FiZHg5Q6NBecq2jbh77zLu2beM+ZnMGHlfQjm0kjtGC/A1cBuF0i4KpKmoZOCFZJq5vt+8jkgubaVIPwqFIj4AVeGRXwsHlTkA7CTptztLlUHZsamBc0/bZs6vrr9wfl+6Zi8eu6OvmSZVs8pluRZm4qlnziTb1YCv5NqJKZzz276yB7r09odw9Jwy4IvNjiNxkA4tJTOqOhMzKREHey9D7ct0JBDnSisdW/oWsCtSmphb5DDVz9dayChTYcA5A6YH2rII+xmFEbZzaWKTjaOy487qQggzcFt5YQYzea8BYuDlIkGU6t1gqfS0lPWx0i5MLeb5mYylC5NeTU46iVRYZrBi2u+ytKvu3l9aEdQrnJh5oRiDEEqqqKUC7Y5N5KGsyCWv1sbDjAF3ZShuHLmdI0OQJirsLcjAO4yBs0FJcd2u3mo1cJN6r09NceO+Br6or6HpLNvV3097xNHmvU0zNbNU96NQ9nvp0jsfvtVJFuGJPOQoCzFwyvYjaSYvKHOTa+BF6d5yBk730joxy+eYn8nwmOM24eVnH49Wx9XAuRMTAH7w5ufi9573SOezduD7AHD/AVU+wc8JoFUHPcO+E08dR/2/wavT3o2RLrU6qKVcQnEnjqKQeNSOefPexkaGmVqChZWOQyQKRmLIQPsMnIxqiYF7K5wsETqM0J0UeT8tt+wEZs4lhOnztWDhU2HA/QpqAEvMYDdbxbyqB37/UhtC2M71S6imQhhG1O4oZ18tVUadM/CQBk5ZbrXUJjVUVYxbya2EsmkmM/GoZilHFdgKFYVCLMToz0wTJ/Ad5gF1jdzRx6setgtpshPLDFxJL/6GAcduntVtcJeI9Fp4YVKcgTeyxLTVyleFDRUTNvNU9WE5ld6GwKlj+k5MKculQElC4YaOWOuxekIC1CRaJaH4O90/+thNTgIQ6aayhwbO5SG6fs4KlTEEZmuWQADudnR+JqZ/jlZu+7SmHcOOE5MlQxFqqXvdfNLkEUa0ibcvT1AiT5oIp2QzSSg3P7iAK36yD0B5p6RuWGrZ1RngbcWmJ/tGLcG2uYY5H620efAMl1tosnUSeQq7cuMRRUBAQvFkIoAyvMuykC+hUJevRSjhVOyJyWsY379fJViYCm6sQxOhJBRADcZMs0763kon16FzmpGapQ9lg6llnN3lJDEadSNL8MSHb8X3b3vIDDQqwEOaeAgt5sScn6mZeFS+lCu0Uy9hszcNWHIE8voVl+lBQmjo4lUmMYWXce3YDMJ6mhgWoRi5jkKpYuBtl2Hwh9yVUCzb47sXkQMuL2CcmFJaVkXXTwyVQNchdBQQT4FOtPEotDEh5/aiMeB88FupiDA/U2MSCjFw9QZF2fzizhNw1klbcduuRSsnSLecLLHRLCkzcGorDWa+ulPXp9pP7aJzUBQKOQwBawh930ezpcIGa2mCWqbY4gr7nCfyEGgCon7hxGQP833cvU/VUfEzDe01q9dtJqEcWsnx/Pd9xxxjY30w06Imd5TaRTH0VGpZfTfF/EyGg54Tk1cy5AXKEhYHXtLA9alKEkqSoJO7US4tT0Ih20Pjyxhwj92vJqaCgXP2+atPeTgAe5P5wBfC1qTet9QyRgoArrnnAB71J1/F1657AJRxZ3a517JCpuOOeQhWLU207FDgKO08MQw8S8xMXVXrYYU5MecNA1dLOaElk1xSGCEYA9cSin5oD7Ia6LsX3EqHDW9jAc70KLQJUA+1YuC2fKcfhQJYxmokFI+BA14t5cKyPb57EdWwyAubbackp4INJBVGmAcGRsrCCGk3jywRkPr8hvl0wisgU55VWFakNHCVot/xJjxaibz87BPwy+ec5MhproQCowfP1MoMnPqGpCuSKlwNXLJ64upzcqRzJyaPA1/iqwu9k00jUyWNlRMzsIphXl0jKxQqc/Uzl9mt9niCyn26AqVT0VNLJlmaoJYlaOX2nlEeAoe/1V0vVGngIQe/ZeCuhMJ9PjMs+oyc4Zw41DwGTpLld//oPFzyx+cpudGPQvEkFF58DFCrHgqzBNxcidXCVBhwklD+/lfOxmOP3wxADT6/jjRgH/j9S22kTOd+15fVXhM3PbCg9OZEmBRqWrLSQ0QDMkkEaplAs6PiuGnA8Wp5qc7EbLZzZ/eb7/zheQDUTb9r7xJqOoyP4lFzSZKJraPADQ2xX3JiHmQF5f2azmQY6MH3a6FQH5BBMqsN/VD7DHzHJs+JWbMTHaCjUAJx4FyyAmBqWHQKHQeul8m5LKc0V8WBk/OJs1piwGTAv3XjLlx77wH44PVA6N7QBJ8IWzCKVmIkw9BxKSOStFUeO0wTYyOQSs/lHn4emxUsHQbe7qhEL1tAyxoiHoXC92WkqpJ17Zxu54XZNg5wMzEJNJF3cok//3/X4f0X3sK+b/ufJhLHSan1YBVaqyYlE4US2Hc2xMD9aBgOLqHwlQQx/0RYObGRJZhvZEpC4U7Mwq6q6kY6leY54gl01C9WA1eT4YlHbcAJWzcYcuMmmLmrIBpvpr58Z+0llKky4LP11JFEQlUCa5k1NuS4A2AciVs31IzxpK3SVHiQjXHlDLye2igUE6OtB3o9S1DXmnmzkztbV5HRu333Ij5z2d34+SccD8HjUaVlmIBisRSClAjrVJkNMHDfJ2C84AED3smt4Wn4BjxV7JYz8C0baoxxu8yRx0RztwAZm1S4DHyjkVBcJybFzRNDLaSO3fUSW8wKpXAHXlEoHZoM4Beuvg+ztRSnHzPn9EuLTcTUjySxpdyA6+tb9rT7utcPNaOBK/aZJQlmsgTNtpsHQIOefBq07PbLy2YpfZ7jdrZ7U7vjbglYT9U5eC3s5Xbu9GlHZzSaYwQMONeFb9kV3iIMsHIdZeXO1hOzaxKtapXMU2hNvFx9L6SB+/HoHHQddP0EcmC7EooNF/admLxoGgDbRiFKG6kAVu6isGBCliZoe6n07Y5bW8jfOapTFJ4TM2rgAKwGPsv2i6QHiEPAGpvlVm6WexzKs6weCG4w2nlhBxTph4zBA1bOOMQY+Gw9xUo7N2GFf/WKn8Kp2zaadlxzzwG0c4lf0dIPX8opA6aOraJF1I1PE8EYeFkD93fI9uOJeQp3u7AMnAbe0kqOjY3UGFPuxNwxP2MMvo1C0WGEtNVb7hX1IYOVuBq4lVAoE1MZInImJVrKIEbbII2eSTKUFEFjwexRySSU5XaOuZnMZIyadjEZgQYnObmFYBKBJ6HQ5Evv0wTHQ8+IkTeYDGLDJmH6IxWCRRTZZT1l+tbTBFfdvR8fuOg2AMDpx8yp55G03ESgUVPZnksOA2dOTO3LUJq40OnpZScm3x4utDECAJx01AZDdogozDVq2KXrrZOseGilg6WWWnWmAiUGTnIjx+bZGh442Cy9T31N95ZWTlRjhEIwKUu5kalnt8TApVu2WPW1DQ7gceDUFzTxNvUOW4RaUk7kWdGOY4KRUAyptCQMiFEoBvTgztZT4z32Z0OCNT65ZtnuJZL+nCZ2FiajUU+VnmijUFwDToaSqu/VswSztQTL7dzM4L+480TsPPkoMzkYo6BfW0lAOg4P5S1X50mElXHooTrYrJZQZrx4Yp68xDfxpSiUhZUONtYzYxx5GOExmxolR6rPyP3Y3ConJjGmXEpt4FgYYWElBuXYtBteOKn0HgPPWP/NMElL1egoT9bqOMBZJ21V91C3KWH1Rui8S15iRsN7v6SBswmLs3Aroaj7TYaQZAWSUGiF+L1bHzJtPn3HnBMHnqUJGpmqt8JXXsut3NQQoed4qZWbCd8PI1THsqs97jOgZywRwPFbZo2E0jQGPGVRKIn2pagCcJtna0YG5OCRP+Y83SQUpoETeaFCb3kXDZxzOJeB24mVF5ji0U+ANbJU24jApU1Cq+MmS/GVOlCWUGIcuIaRUGquhBLai5AGcbOt9DpeHxqAWRZxBk7HIgZOhipLrQRD5weYBp4lJj2dGCaB/vbLnJqiOoWt9QFYpgDAiYQxEgpj4L7TkdpF2iHP3uywrcAoCmWx2cH8TGbkCc7Aj5mfMX244oVJGQZelOOwqd1BA84LFmknJkkoCTHwvCyhpNqpyxN/zATINPBWp0AtSZx7TddKv/nLX3gcPv6b5+CErRvUe6K8YvEllBnvfvPYYa6BA4ownPKmL+Ntn7/WTG6JDrmj53cDk5RIjqgzn8G2uQZma5kTRpgm2lHqM/COlVBqbKXgT+a8T0gC6uSuHEPPz2wtxZYNNfOsUX/MNTLDbjPtO2rnBQ4ud7BptlaqRgjYSCYOXurXB0WAAWpDEEDlfOQSxj9E7WxoCWWplTuMuJC232wJDZVf4Wva1JacM3B2L9RKpig5MUMJT1yaoslCtafycseG6TLg9dTGbjMNnG6GYIx7uZ2XGDQAsz0XZ+dcF85Sazy5kQesQaL21NIEM7pAVElD0zPxIbP8VseheFQVNmiXcsQUAGXkVzw27WjgHgOndlEUAk06PHIAoKxSFbEx18iYBp6bY7xy5wkgIuu3gXaC93cq4eVf3f6yjJNHoRTSlmPlhZF4DRcAns/A6uwUB84dplQlj9DQqw36zYZ6hp8+3W7plyRcA7cMFrCMlNpPYaCmvreeUDIdBw4ADx5QEsM/XfoT0zcUFkrHJQauimyp8LY6M7AX/+GzjHG0WbW6YFYnNys/QE2mRgPX93dxJS/JaSEG3sl9Bq4NYy3F5tmaYeBm5aC3dSskkZpEG/A2Ns9mJruWgxzhdC8AV87xQfXAVX9T1FbNJH2lzI9BDByw44I2B/cjizpFwZyYdnXEs2Rf+cHv42vXPehIKFkqSkRFhRHyWPvCOVZbT3Chej2rhakw4E3OwJm25WtQQriMI03KEkpb35QkgaeBK0PHNfDMmwDoQT+0wiUUvbxtuRqa0Maf5AkyLjYeVTqzdYeVPk24Bl4jBs4kFM+JacPRXMac5zZBCYBxuC6udDCnMxILqfTQJz58K+5414vwlFOPtgy8lImZm+NWpdJzozpTSwzDtjWfbRhhqgcWacq+M1b5IJSmS+MoS+0E0OCapY4IIjRqCUKOPIIjoXhaN12D3YvRrXTInzu6PzfoMqPb5uo2Zl2oynTLLXc1RROW7/TdUEutg5CFqM3UUqy0C4eBL7dzrOg+pUlgaaVjnsFW4NptHLgrP9I1zGQJNs3WjFG0GnjGjmFDaw8st7FpplbaHAGAqVcC2MifWtrdgFNbedgtX62a51gzcAA4sEQGPEFRsAJTJrRWOmWJTUav0cCBH925T/+GE7DE7EJEK8dWnneXUEwmJvSxowEH4GrgfLliWErizpzm7xADL6wDqeYzcH2jnTBCz4AL4YYR0sO/f7ntMHD63OxNWJJQpMkQo+uhvzMmoVgN3DJw/7kwep+JGrHaM8W3q+8lprjWXCMzBXsOrSgGbp2o6rjlTEwbe8/JBWd7joykfQotHVXRyFITRVJ4Eopf7ImOV9NSiKlGKOyWai4DTxwDwTNoRcBuJIKHnFmtWwhraPhu6HQOwDWO1Dc33r8AQGnItkyAut8hDZxWINbBLMzzxuOPa3qSaHZcCWW5pfeSTC0DJ6ciUDYuqv3uBETwGXizrZLemoyBE8IauCjJmXws0ASZJtXmpsEY+MFm20TfmDrbia1EKYTdqHn/ckv3U6J9Pu6qEbDRXo4vxYsD99tsi1lpsqefw94SCkoSyvdv3YNXfvD7uOuhpcrrHxZTYcCJwcxkYQ3c1z4JPIyQ0MmlyXqkgbtncQXNdu7ocABNADwMS6CWJCUNHFCZn1xDA9SAoMFLbbTxqFYioOshA5okwiQGzRoG3jZOQB/GC04PFNsiTEXXuFEoiyttXZdFZUYuaqem7Tdi3OX4ZTquEwfOoka4Bt6opUgSy+T8VHqSUEwUCovdVf2gBjZVh6R7IqElFC9qgN+7ht4uj9rlgzPwGjOAjSwx98Ew8KYbhUJSFVUjBIAb7lcMfMemGVdCSYR5frkGbmS8zN4bOgdtyk0RDWQ8uHRGOjHXwA+1OoZFBiUU3Q9+KQYiCY0sMVE6B5c7jgbOj1HX+jA34Op67DH5c5CmlphUgY+9hWYHG+s02VsJxejWhWQZ15aBU6ijf/4kUf94FVC/Fgpgcy4AXcwqp+zTxMmhINBEXmMTY5YkpTjwe/Yv40d37gsSiVExFQacQnw4I+YaOBkcAbceNE+XJ5CulbAH4h++eweuuGt/KZKBJ4AAMBo5T6Wnz/cttR0JhT4n0HEpHpVYBWfgxokphIkDNxJKs4ONjazklKV2ArYamknY0M4yvvQspHLwzjUyw7QPNttO8SFyrPpRKAQ/PtZGobgaOGUJ8hUL1QMnRzKV3syLwvFvqOMFGLherudSOhMmabMEkl749XAIIRjLtRKKk4hkDLg2EonbvoxNWCShFExnpWJcxolZt8Y1LygSSv2e+o1WDu3Crsgo85FHoZBOXeNRKCvWD8Mdy/ya00Q4dU8AG6raqKWmYubBZjsoodCqYanVwXI7twy8KJyxwp8D6reuGniamOdxodnGhrpb+I07/JUBtwl76vdqXPk1ugEbzURF4wBX9gi2ORW6GqE0zzXtO0qX4a9yqB64DSNUxyansL+13TgwFQZ8mWU5uhKKt0wUriMrTYQjrwDQdTRgtj7iqHsMXIUuMfahP+cMfIbpmr6E4rAQ0sDZUo4n8pC3nL67EmDgs7W0dD10TEA9UEqWsQ6ajpeJSVAGXL1WjMcdpEA5E5NAmjWBb6lGBjAR1pG7zPqLYs8LqcvFCrsJQDkKRZgsQzpbxgaiO+Ds6kRVzHOjUHxwZY0ycpVj1H5AceyUITk/Y52QAJCmCbbp0qZkSFq5ndwoTNQwcBYXn5MT02PgaocitfohzZ0YuAqNVW0jnwhn4K28MCyySv/P2PNLcBi4NjIHlpUBV05SV4bhJZY3b6iZCA8nkY1LGIm7ognBd2JubKRqdcYYOK8xQucyOzFliePE5Hq2cZazBDS6pgUmTbr76ypi8cVr7kOW2oS9TlEugcCltYz5tYjcH2x2VJmPAQp89YupMOAqSsJ1hKg4cNWBjz1+EwCVhFBzWG9AQinsDvA+/EgG5fl2Z+Ua07VrjIEDKGvg3owOEIO0JW3NNlKFDSNMkrLxPNhsq+Qb73ooWxGw2admUihIA3eNBKBCtLgRcycqn4GXB55br8I6HQ2T1FJEptkavWfiujWzMfW9C8kmZ4pCIdnH3ZFHSrvBAq/zwjNOs0SYAZYEbjZ/j3wGgDtZUSmA+w+o5JMtekelFca8qHKj7ZfcKbxVpYEXhd3xSbXBvUeUiKb6TUkWzbZiuTO1xBgensGo2u8aF9+A19j9IBgnZi3FNr3h84MHmljR53N09CRxnqPNFWGE/Nmn6+hWodB3YnIGTv4iLqEk7Bmn6yLJEAAarI2cgdt8grJviU9stMLZs9gy0iBJKH4RMi6hkOOa2nnZnXvx43v2Y76RBYnEqJgKA77MsqTMMruwEsqvP/0UfP51T8czH7ndCaQnpxkH1VAJLeeIYRN4Bh/gsjzA1cCBMlP1I2LU/3Z3bJWGbL/PwwhpPMyyJTHtAOScgzGTVkcxANIcqTobl1AI84yBA27xIbrGJmPOPng4lV9OFrBGn69YGiyMkFYgibBRGX5RLnI0r3R48SurgXMnIFXJAxRz5mGCaeAp5wacfAYAHFmGWN59uj42ZRdydrux4WaAug5X14DyKJSOF4Vimbj6/nI7d6KHiIHP1FI0stQkdtVTN9vY32fTl4+yVJRq3/D46tN3zKGWClxz7wEsa6do4hhwN/Rx02zNTMLtXGLbXAPf/P1nlnxJQHcGyuuBL7dzw8DzQseBs+c8Z+PX6tCJTuRxo1AAmBjye/c3jZxBY9OtMWT/fgYLOaX7RDXXfQPOt2dLHSemxH/71JW46KbdqyKfAFNiwJstW2fEsLRO4TihHn/iFvN9y1ySkkzCE3l81NPyctHXwDn7UKn09rXvxHRXA1YD5wV6eDvomecDxveM+2GRCWMmrVxVyHM0cBYHzlnJnE7kIXB2RO1uelEoHCtO2VbrdKwbA26v1zgxUxtGSCsQqi2eFzKogVsnptWzKZGHR4xwJ9hs3a1pE7rX/C1+n/jAV5ERtoTxURtrTvvo3MdvsSy8lVsDzutiAK4GrvpLsPa7k+xSKzfPDMlIzbbKZq1xP0yWOLKaeuZZKKa3YlMSisvAG8yAz9RSnPGwTbj67v1m31c/koX3F4URAuqcL3n8cTjNq0lDXbCxkeEffm2nkZ2cNmSJ89wrBg4roQhhjOpzzthhawgxFuxsMuHIl8BvnHsK9h5awfkfv1x/v8zA+cR23hnH4BfOPkH/Xji19Ok++uVkVf9am9MpJB7UpQO61YEZBVNhwF/xxBPw6087BQAPhbL1iH1ZgQxByPAo/TGsi9JuI4Q0SVxpIXEzO+tZ4hhYX0KhgSUYE+Op9EnpfJaBh46ZeRMMYCMdAKuBm3ohhXKGkZbKmeact6Tj+iSdw89M5OCV70Kp9GQIU6YBm0QezapSff0kifhVFcnAtTpFORNTugyWZ81uqGVOsaqqKBSCY8DZtQohsLGemfodJKH4zvPjtAHfsqFmQibp9/zcJKGYUg3CZmKa69DHXG53rBPTMHDF/rhjmAy6uRYt21Q5cPlvCWZ1q9vwUydsxo/vOaAyO2uplwzkkhj+HK108qCTvcmcoc87cwc+8J/OLn2HSyiqr1Imoaj7/tjjN+POv3gxzjnlKJNs1nYYOMJhhInAk04+Cn/+ksc47wE2wghAaWMT/gzzMEJ/KzzeH+TXAVSNdVo5bj6SGfgLH3csfuGJajbkDhvDwD3HXhaQDAhGQgnIUTUdNUFIhSh51k1KvDY+rgbuno8MpqOrMycmZ88AnGJWoWNyzdccj73X6rhRKH41Qq71Uhw4YaMzUWkGbsIIy/3Y7kjG/K3TjkdTANBRO3YisGGE0CsQm9iUpsIpMpUIyz55LRSpfQg8KilLbCLPrB78bSbt+OB9XHcMuHuttnaKZVGGeSUuAz/56I1KQinsOZxJskFp9yEG7kooS63cYeWtvECTORV5MhmX1Wo60sfUk/FuHb8f5hopQEB/+eSjN2JhpYM9iy3M1FzSUEvcyK4NjKGTrOWDniOKZuHfoT95MSvVV5lxYha6dhGHjd6yz0UupSmExu8jjavnnfkw5zoAl4G/8YVnOOdomEnVSijtTmFW2v5zQH/TdZDvBAA2za5O3cCpMOAcThRKYAkDWAMUMjydLhJKLXGXvGkiMFP3Dag70Ko877wdzgOb2D0e/SU2sSX+3qzHwP3EpES4YX9cEzdOzEAUytFzDaddPIyQrq1ZEYUC6NR/rWGTE1MI2wdGA+cSCtPAyQBTHLhJbPKYM1Xa45EdlNZNYYbq2IyB11PPSPSSUOwL/5mhlQk56wC7bKdznP3wrThh6ywefvQGRwNPEzhEYYPH3HjcPE0iZORu333I3jePgXNHej1N3XBVrSWvGONS9pn4lQhplUfjiCKr9i+1lAbuMXCugft9zY3Z2372THzsN86xDJxqsbPvmImrKwOXpZVEqXJhpioXms0zuISiv0tRRIBdPZEGfskfn4ef/anjnHNwP46tuS5L9WYcBi4sA+eVF/37MC6MfFQhRCqEuFII8cVxNKgXiPmqWFmbrcZBD5hvUOcamU3kCUkonkThp+LzSAd6vysDp4fTY/UUx8ylFcCyEZeBuxq4P1lRfwCagTMNnIr7GAmF/XbrhpozKDZ64ZKAdWKGJJSVTm52EOL1wEMSih+FAujKbU4cuA0V48yZ+pBXiCx0JmYi7DUpBi5Mn4WkKQ5/oqav+NdKoYRbNtTtVmyeBv6Sxx+HS/742dhQz9RONTIsoRBzM1v2OROQ+v9ZjzoG2+YaOLDcNvfRauC5ibBxGThfTQinUFfZiVneQWim5hINCkXce6ilo1D4BOFq4BQtwvuS8BvnnoJnPnJ7KaOTt4lH4fD3N9Tt7lXkxOSwJSisEZWS70rVPYzRODE1A58LOFjpWRYCLIywMHuZ+qU81Lls2x5gDNzf9GNcGMe08LsAbhjDcfpGLVVGg2bbEssIME5A3cBOQQXi1XuP3GEdLn4mJmXCEfhylbRLbmD9MCka4Kk3KdiStu4Sm/7m7zVKEornJGQGfKWTO4as0yUOnPabtG0PRKEwB5FPYlvMADtx257/gWqAAy5bazMGL6XNTOQMjmvqRnYQKgrFT0XnhqWW+uGgKIE+FsI1tP5qgzNw2orN18AJKtQsN5mYfIVFSUyk6QPQxaxcBj5bT/Gys44z/amuRyVgkSadpW42sOMs1+exPgP3ukPZkLwKJuAmj83UU6f/al4Y4UwtKUkIPug5CkkoXO50VoR1Ff3CnZgcvoRCY82v3wPY1RYfy2ajFx2VEgpxpGPkhdTJVFpCYVEoQrgTUppYKYgz8KotF0fFSAZcCHECgBcD+NB4mtMfaG9Hs4Fp5htwYuDu+xsbmYmAoAfg67/3TPzc44/TxxVdH8YsESy5onyOp5x6tNcOq6ER+JZiPLsMsAPJVlcEGimXNhIz0OmBKzkxmUHPc1tEKtQf7oApR6Ess3h3aic1t6WzzuyelTBx7bXUOuc4s3cNOJdQyCDD6w/bFiqkZeuBq/PxBBg6dj1zQ9+6xYGnnvGqklAoVDARIqh9qvMmOgrFnsM/bpp4xdK8RB4AOPEoVfKWYpHp/i00O8ZpyTejcMs9+OUgwqtCDrtLTXlVOVtLnYnKZ+A8l0FdX0Bu62LAa2zC9w14KpiE4vU13TceRghYpuuU1Ajcf+oX26fldvO6+mazkdwm8qwwEmOv306aDzIDzsNux4lRlfW/AfBHAOarviCEOB/A+QBw0kknjXg6BarpYWZffyDRQxFgU7wWij0eZzo2IaGUBMGWq3WzvLLf8T3NfHlvjilgdln3o1CMhKKP6de4TpmEQg+R48TMCze7U2vg3MiFzgOglIkphNXAaVKgLLSlVo6W3jAjEa4+DagHnwwW19ZpWUxtTQRsHHjixvrS8fxtzUgDp/bbPuZJPQKdvD8DzmPvgXIkETHdo3QEikB1liNp1WZLtQRsUrHO1pUQA2cTByUH7dIZoHTfFpqagbPzKu2fy3weKahw/nF0vPs348mCDgNP7V6yhF4MnEAaeMiAq4nHfpdi+XNd+Kwkoejv0r2gfmy2C2ecVF0zfb640qnMELUx9dI6MYvC+L1s/W/7G27Q9y21cPyWWTzl1KPx2vMeUdkvo2BoBi6E+FkAu6SUl3f7npTyAinlTinlzu3bt3f7at+gZah1YrqXQR3Ioy4AZaQoCy5U5CeUiemcly0f+YD79PlPwQ/e/JxyOwNOTJJQqB64EwduJBR7nf5y02a1UXSEXaa3cyvLcAPsJ4tQOFwoyYS3nReQ8nVEyvoMxbHXM1snu5qBF46E5FdnBFyGTasBf8LjBoBXXfQnAh/Ux6lnyH0G/lMnbAag9Fx1znIdcQLVmuH6s5FQGAPnGrifSg8Ax21RtbT9PU4XmrqgmZOL4GbnUhSKuXZv8gqVdO14RIjnNmysuwlffiYm9Yk5XzcDXrerRt4eIgj8fcXI4Ti4OfhzRNcNkIzoHsvPBaHrAGBqqodgyjLrMg/LrRxSusl1ifDHt5VQqObQe37x8XjE9rnyCcaAURj40wG8RAjxIgAzADYJIT4hpfzV8TStGptna9i/1DbMwXfsUdKHz8Bn6ikOLLdL4U70gNaSBB10YeDMoPKH2JdOzPcpjDDlRseNY/Y/4+fN0rK+SINsI1uO+slH9N1my11OCqjPtuiVwvZ5lTZdz5LSQ5wmAsitH4DadMz8DPYstnDlXfuxba4RlCo2NlKzXCaDTxEX3OHK61/QMpk+p8OSwdm71HLK9wLwaom4RszX0n34fe0zZcKfvPhM/PELzjDnFcJWI/SPS78lpx1fYTVYO20UCoIM/DgvPZ/kOsrGdcrmZokXhSI8TdZny/a7//bap+G23Ydw10OHTHtVW91wU348X0Kh90J/+yDS4TNwW27WM+DkxAzkbRjSQpuYZNZo1ryQxJAPxJafyEsyk2lDjapwqkJri9oZ72y9FpJQ9MtmK0dj8zjcjNUY2oBLKd8E4E0AIIR4FoA/WAvjDSjDs2dxhUkobieRDOKzKbVRqUoKcZY9+mvlcMTyrM+z43qBvuuzepuJ2T2MsMzArQHkhjE0YFX0R5iBP/nUowCofSK/98ZnIwmMuSwVQLts4J5+2tF45I45/PtV95l63v65/9cvn22y7TYyQ+6Uz+0UOkTN/p77BHzD99DiCuZnMvCm8iiVLE2YQ6vsjPZhSvfqj8gh7juz1KTCJg3GwKv0ZQqb5PeXM3Beo8Wmy9s2+psz82dNOQ0T5zM/DpxPgj775M/4E07cgrNO2oq//tqN+nqIgbuOeX6ZfjayuiYmEXZh4GZXKuE+06ZOEGfgOoW/UxFNY1edPgNXpSN4m4MaeMqew9nuEgoVWqMV6axHInwyyEsC+JnT48bqHn2VsH2ugd2LK5Vx4ORE8o1slrpJNOZ9fbelx8y5Yw+gJX2ZgVfBz64DyIlJrKJ7GCGl5fIqe7Q+2GCWo55Xn2m6fOs3ADhl20Z8+vyn4M9YRtrxW2ZLBZn4b/i56ZrOOFYVDyOnqW2/+vsJJ24xe08S6+ITDmBL3wpv8qHPhXD7ee+hFuZnMo/xcz+DcBxavjPUR+r19SE92fXKmEuE3QjCJ24+A1fX435GG1zQ5+Ts9R2DHH6mqM/A/Zr1Rh4Kab/sPpqUb7aBMuAyTJXwlTi/942SY5AD5/z1p5/s/Ib3W505vEMM3Eb8uMc0Ekrha+CqCFiVhEIhk5lj8HtIKLlb+bJRS4wzn8d9Uzt5Kn0/RG8UjCU9SEp5MYCLx3GsfrB9voHdCytOXWYOCuMKJdYY7TUQ/eFv0+XHdQP2xvdTGpJnbRJ4PfAs8wwNM77qXPb3ahPdxFzbRs7AA2wzTYQxJPwhqpJ7qtpu+5aYYmpYqio3ag1eyFDSRENaOGfg/n3g15J6zPWhxRZO3rbRCWfkYYS1NDH7PNZTT5oKaeCifG+A3jUr+EYQ/m8bxojY+ujcsUu/4Q7ZUKExAPjG7z3DGFJu/EoM3JOLuHwQdt4lpWMaKZIYuBca6zoxE9QyN6IiJEdy/OnPPQZ/+nPlNHY6XmjPTIrlN6uVkoSi/rf7wFqD7MeU8+NurGdotltMQing+9AIZoORwtXJs0T1ufE5eato3tRQMuE4sTr5nauM7fMNNNsF9i21dYyyz8B1iFUFA5cI63Y8vBAIOz9Igw7tul36LotRJqSGgZPD0X7fj4zgLHhFH4euzaZ4l40g/W8ZePWytnfb1f+8T+caNg6WuksEluuAnWgoGsVEoRgD7l5/WQPXDryVjpZQ3PvDy7Byp19ImuIwfe191qtqnBAsDryXBi7cOHBA3UNeZCvkxASA03fYwC632qDvtLQ+Cto9xshQoec3MGH4O7Vz4jI34zkxmQbuy2v8GN3ga+rUFt+J2c0ZK4SbsMTDTbM0PCYANSE9dKhlrlmVMQ63mceB++UWUm3Ay+PPbfdqM/DplFC08+3+A8tBBwRJKDT7PUzvkE2dTrWkCbx2SOgBfNLJW83flP153Jay7OCDHgy+h6Wq7wDkspyp57NPn8Greg90bDuI3AkiMf8vs4JHg4I7QwEeKyzckMMuxgJQNS0AVWCKHzfMwK3h9icxQLFjZ7kq3EmSD+Zu0USAjWcvM/DunEYItSEFbyPBGnBroMthhMKpJ84TnqrQKDHwsgxi3xMsmql83fR8cIP0uvNOw/PP3IGX63pDM44TM/UkEut0LK/Sumvgoe/UmAYeklC6HZczdHqumloSEaw7+aP5xIersexvBhICDyPkY2iGZacmwpWE+DOsjlG9icU4MJ0MfE4Z5PsPNINe77xwnZjf/O/PxEo7x1999SYWs1x2vKh9CMs38xO/9WQz6Pbo2Nxj+2DgxF6lE9kCm4kpXMPnG5XMY8FZmhjjweushDRIvvNKP3p9qe3e4CxYn/K0Y+sMDA9cMvYbWNgjAKzkbt0W+swycJIebNvnZ7JS2CVFHzjJLZm7Q32oacMy8ETAKR3AQYZtmWvg3nWkSYJDej9Lvq1fN2dXmYGr19ywU6o3Z+AhMkL1QLgB2z7fwAW/ttNeo8dYC6aY1FKBvHAngYEZOPvOMfN2HPH+JCemaVPFKsqPA19pqzBCx/izv9/18sfhl885qbTPZwjc+JYcyWzS8Rm4n729mphOA64Z+H37l4PGSXoSylwjU+FQqaqEJxGO986lu4M7QSWmqJu5e5EMeD8M3DpH+bkou4wbLIBFoSTWKAEwogHf+YR77gfRwPuFYfj6PNw4uruUU5vDxyHDXa2B2++qa3GNAr+/8zM1xxg7UShJgtc/+3QcWungl550It73jZtLbeQILf+B/jTwdlGOSQdCTkyYuiin6jjgWhqOA+92j5zley0JyiBmxZTaSTF03ZSQ1C3cj2NjPXOqF2ZpgtQ4Pcvn6YeBc8P8jp9/jJP4ROiXgROxqrGV3cZGVimhzNRSnHPKUbhR72EKVPc9twH1EgO3489fRaZraMCnUkLZqgvr71tqB7OorITiJ6cIU9nOkR2ME9NGVVR1PO2PSMkW3VAtoVRlYpIcoV6XUvlTYdgQl1CCUSiJu5HCoKD+ofOQIaqlrgGnU1dJKIaB18uRBmEnpnvcusfAObtJHA1cYOvGOv7qFY/XBZbYCivQtioJZb4PCcXsQNTDgAshcOuuRQB227+yEzOsgXP4USihUFaTYJYmrA8DBlzvKtT0SspWYX4mKz1f9Iyd8TB7TebzPiYGv2gV7TBfklC4fyhkwAUjNKzvS2GEgd+GEvl88IAGnhSoslMtcfFJiK/lryamkoFzljQfYEx5RRx4miQ2ZIr1+svOPh4f/f6deOUTT8QN9x8M/pZAS7ZBnJjMflsnZmBHHmtUwoOaah4DKprkwYNNvO680xwvuuPEJAllGA2camvriITCYeBuHCxQLaGQ4TYG3Hf48IefLX15LDxBSShgv0elAew1+K2E4r7vp9KXf8dSzyvC/YyEIgSu18/T445XGZ1cA+eJSF0ZeMXy3U2htzJbNwnlaB2fv+iVlK3CxkaGfUu2ZnYtTTCzMcVHf/1JOOukraXzhCRIH1Us3TV8voRS/j7vfnq+DrXKYYShvuXH6xWF4h+Da+B+9nCWuIXfooQSwExN1UBu5UXQ6SSrEnm0hCLgaqQnbN2Ay9/6PADAzQ8uAKhmrf9y/lNxya17+nJO0IMtGQVPNGugiJew/EHtdSeALElYFEqCv37l4wG4pSpdCcXVBweBqXeuDRpNHPUSA3dlHx8mkYcyR52VD0pM2dfAeds3zdSc7cB4qr0/CPlxw/opfa8/KSF0LN9WNTwGngi1E8wP79iLk3SBqkaW2jrSibuCqALvg21zjWA5B741WzcnJjHwfg14lUP4WY86xrznlzzuharJ3nVuVuvYoe9TuOpCs13aHCL0/Pf6HOguoaSsj8ulid2JaDUxlQYcUDtc7FlsBRl4lYSSJmr5KyArl3rddvMBgMedsBmP0/UxeiF0jDSxu4z4USjlVPqQhFJO464HGDhPbBmGBRDDoMFJc1AtS5woFGp+1bjdaDTwMAP3y7762rQvoTT5ZCVsBI5f0KzX4K9yYvYC/7p/XAq/I804SYAPv2YnDjY7RvrhIXqNWorjtszi2M0zpX0kOXgfnLh1Q9DxmbGViJ/NyrFVa+CFLH1UiV67qYd8It1Q9R3Xoe+NjS5+DMBKdYXUfgD29dBq2pFQqsIIuQFPXQPONXDnmUiSkpa/mpheAz5Tw57FVnCrorxwnZiELFW7uwhRVD9EA6TK9wLP8LTHtxKKvyOPL0eUd1NJDBP249VrqQqRzJKyYRpFA/clhUaadJ10fGyZreOUbRuNXuqHb/rHouNR87lMsG2+gT2HWvb7CY+v9u91NVNW7w1nwLsVbqK+WmKFt+Znag7J4KSikSU4amMdl76pXAiNg7PzTbNZsN49l5K63ZOjAxsK90KVf4MQqiXfDfSVMx7mFjGtqndS1Qb++QanDW4kSMi/EMrE9lEVTTLDavr4EkqaeNLLEGNvEEytAZ/X4V6hqIHKRB7d0e1clhib/52xGHByYsKVUIrC7h/oGjD1v43AKDNwKivsGx5VYjc3E5CT7DFCFIpfpdDvF2tww/1ZzxJc9AfPst/3WJWf5NSNgZ914hbc9MCCc26TSu/1Va/ICL+v//gFZ5S+E4ITBeMdl+Qm2i0nNDn48cT9wN+IoxboG15SwK+0yEESyiDoxarnBmTgQgh85refitN6VOjrdQ/5e912xgqNZVen7t7mJ59yVDkOXI8PX0JJhHBk3dB2hOPE1Bpw6qSwBq7+D0kQhCpnS0h7HRZ0jMKJQrElMoXwHlJvWW/iyNmGvo8+dh433H+wVLOjnqldWsbGwPVxZrLug8FPPur3uPS3P0h9DZy+//Kzji85pxJhN0ToVp+jWxQCGeH/+qz+6jV3Y4U02S12M+BcQulzYi1X/0tKv+e6eFWIpPpNf5PGN3//mU5Nl25w9m3tc+/HJ518VM/vhHarcj5nKw1nZyyvhlHQiek8h9VtvuKtz8OGeoq79i6Z93hFyESU5Ri+4ooMvALEvEMa+AWvfiI+8r07TP1hgmM8KnQvP4Z8FBgG7m0SkUtK5AnrfIaBew9tliZ458tUIgLt2kLw05udov9DOTHDDDy0qTI/by/4Btsv+2oNuHpPCIEb3/ECY6z4adxqhNUMvJsTa9AqA/z8JQklcyWUUJdwA9o3A0/JH+E6PB0NnN33XrLWppkML3zssV3PyTX5XvfWL0g2LvTrxEyFcFh3adUYuP9++eEq0IrF9zPx8eY/k37hq9XE9BpwrX2HNPCnnbYNTzttW+l9Z2ecigdtxdTTGN17HAojTITaUaYT2FLN33IqVN52ppYG2YufFecYsBFS6WdrYQnlzGM3YWMjNXVB+pWSa95A8DNi/VUI4Bo612Fk2ZbfTt9H4KMqDrwXQkXQzOtEpcYTAw8y4B7F0oLnTATe9fLHmUJkIZnP1FTpwcAB4Jo/+5m+zksYpI/6TRDq77zhvwnGgZ646f9+bkhIQuTPSz+1gqrk2KpaROZ36eh2pBum1oDPd2HgVXAKWFUa8OGTX3yYB8NzYgLagCduwgElkZQklB5tBtxaG/w8TjsGAP2+4Rtw3aYv/+5PAwB+4e+/XzpfN5S2iKtg4FXH48ZYCIHnPHo7PvirT8TDj94YbH/VffSlmn7hTiDl387WU+xfsqnyPlwnZv+D+5fPsdsRhpyYZjs5lko/6LVVoR/HJGGcDLzbZAmwFatwJRTfgDcCz4AT+jiEAa+zFaErx7jHWu0olNU9+irCauADGPA+GHgrD+/mMwyqEnkA2pUdFQxc/74koVQ/aH5BIC5FVCUqdANF8lQxcIJhQX1r4D4DF8HXVU5RX4OeqaV4wWMfFjiPnoAqBlAvmaEKbiZo+XOn2H/gGoh1J2K4iRUISyg2CsXGgQ9ieLthkIlgXOcE+nBiMj8Gv8+zfWjgfOOLfmoFhZLqqF2+hNLr3OPE9BrwWWLg/S8i3BKy4Ut//pk78LKzjsfbfvbM0RoIHkboRqEAdk9I/mCalOKSE9M9XghVDHyYQlaAzTac9T36JQ3c1ax7oeatglxGzsP7wr93BkuXS6PjzFRsWDu8hGL/D00y3ICHdFti3Y0srZykeqFbKr0jQ43JmE6KgfcbB54mblE0n4FXGdFsgDFSTgqkidiVUGyWbFnmWg1MrYRy/JZZpInAjk29U9oJ/eyePVNL8b5fesKozQNgw5NcBq7+7+hawnwQz5tdu21ML0c3Bs7LyAKjh0PSbkf9hhH2zcDZNSVCOJOSet1LQimfO3geMuAVK6lhE3l6MXd3z87y52QI+tW/Qwin0qusTiGsLDcsw/cxyETQbxRKX+ftMw7c/6ykgVcY6FpKFRz7kFDSagMeyotoZCnaeSdKKFV49hnH4OI/eFZfNUkIvgNttRFK5KEb3NFhhBzWgKvXpTjwLoPDbhFG/3fXgHuBasb4kRLlmiODSRE1bxItSSg94sp76aJ+u2YqdOZu2YrdQMaz6tx8wusWBz5KijXdA24csjQptW2+0b+8OC6sFgPvFgdeFY9PqCIxg6xS/XNwyZLf5i0605Um6MjAKyCEKIXS9QK/UePU6qpAN1ZW7HRfiiPWD57VMPtn4JYZutEoQzPwosqAu22gSxiKgXtOzFSwUqgVh+s3ZM0Y8IpQPeraQRm4378+ekko1J6RGHjg3vLNhqltg8iL48Ko4+rc07Zhp95AZRAnJoe/MXUVibESyuBtNgw8cSPJKLuUS2Wriak14MOAM5a1YOD00PGC+I4BLxlD94H048i7DQ7fcVUlw/SLjm60bwB9ZmwTYvo7rh8J5OucvSIo+LvdbG8vCeWhRZWSHwpD7YZahdEgVIU8EsbJwLlheuojjjZ1cqhtvTanGCcSobOLR5RtPvFbTzZ/D5pNS+gl+xFCUlS/MJmYIhzyam3NAEVnhsARZcD9jUkngV66HsCXdoNIKK4kQD8dloFTfHcvCWZQZ2nNi0IppdKTDFAxWfXTf/x7VQyc2vvaZ53WV7t5G7u1b4PZqzQsAzXGwcADDrKXPP44vOTxxwGwJmOQCK1RMVNLsdTKMZr5dtErDjytIA8lJ2YlA9f+oiEMeJ0kFCGCE/WTTz0at+85VIqIGTeOKAPuSChjTDiowjGbGthYT/GmF9k6G71YBcDTyAeQUBL3O6G9DwdBx9trcNtcA3v0bkRuW9X//TpresWB07K/6krdKJTq/qiqSEl4+0sfg9edd1rXKoAhhHah4SAJpdLJOQYGHopC4aBaLIOuLkbBB37lbPz9RbeZsq7jwLASCu2/SujNwPuzBfUswfMevUP/1kooQgi87WfPxLmn2+TBP3/JY/ArTz4Jx/exd+4oOKIMeCjxYTXRyFJc9/YXOO+lPR5KoMzA+0nkKZWi1f+HdizqB/5O5V97w0+b7eRC5+3XIJVrofAoFLsB9cFmuF61G4VSfR5KyKpiukfPNXD0XKOvNnPYzWwrDLju7yonLDHwUfIMeoWoHdI10wdJchsV5z3qGJzHaoSPA06xqsBzTGPJ74d+JZRBV483/48Xmr9rTEIBgN8495TSOR97fH9lp0fBEWXAax77mwSSfhg4GeFS8kD1g+aHVNExyCs+KEhCoQe1yuAlFYOoCk4ijO/EZGGhtHVd1993kVCoEFO/9Ub6hfUxhD+n81XJOzaMcAQGHtDAORZX1LWHCr1NE3gf+pElQLUB9klLFfGpeSG3g8BPnJsUpjaMcBg01oEG7up6FQzcSCieBt41DjzMwLduGI6FvfQJSk89tkeYpkm5H2rTiHIMLRnwkFxD3wn97YN2IxpFaw6hV/XFkKHhsE7M8UahcFgJZe3DCMcJTnZC/ZpU9IP/3arV0ChOzNCG5ZPAdE/RA4IXlpkYAw8YoDe/6AycvsMWt7dx4IOHEfoa7dYh6j8DwPnPOBWvedrJPZkiXc4wmi5P3AGIgXeXNXgPdLuH1A9HbRxcJukGHj4WwmxdfU67IfmwYYTDM/Djt8zixKNm8cgd88HPjQEfo4RyxsPmcW6gQNxqgt/fUEYtDYdShcw+x/YgmZg+zGbfg2xttAoY2oALIU4E8E8AdkDJtBdIKd8/roatBmqscPtaODFDcJ2Y6v/zn+HWovaNMfpIpbchVa4B2TIkAxdegaDq82oGPgTTzVJR2pD5mPnujJ93Qbcwwl/ceSIOLLfxG08/pfpLQ6BX4hJFHVQN7HEw8K0b6/juHz278nOqhjjOOPCvvuEZYztWv0j6lFBISjrvUdtx0U27+z4+PXvD2AKSUCZsv0di4B0A/11KeYUQYh7A5UKIb0gprx9T28aOUP3ktcZgTsxw1mO339DxF7QTcOuQGni/GEVCSZPy9my9tPR+E3lqaTJwiGA/yHpIKDvmuzP+xhgYeC9QPfJpl1Dciprl54KeBTKm//BrOytXPiHYTccHbxu1p5iwhjI0DZBS3i+lvEL/vQDgBgDHj6thq4F1EQfehxOzKg6863EpaUg/UAtNVdJ0WA28X5AdGybePA1IKIByvj3zkdvD52N/j6tc6iDoFQd+XI+wsZkxMPBeILY615huhbTXLk9+FEqWJgOFMRLz7hT9G33/t1MroXAIIU4GcBaAHwQ+Ox/A+QBw0kkn+R+vKda6FkoIvbb64u/TJPO+X3oC3n/hLV0HJB3WGnDFwIeNQukXg4YRcpTKyepjddtwoF8n5mqBlt1VxqWXAc/SBK9+ysNx3hnjDbnj+LfXPg0/vHPvxCMkRkUvjjVqxU0aX1T3ZxCsFwY+sgEXQswB+L8A3iClPOh/LqW8AMAFALBz586JXq0joawDDbxSQvE08OeeuQPPPXNHX8f1GfiwGni/IAYynITiJfL0cQjXgA98ypGR9WDg/ax43vHzjx1rm3ycvmPecYpPK3pNQCYKZUgDfvxWNdkO47+pHQ4MXAhRgzLe/yyl/Nx4mrR66Ee+WMs2VOnwyRDMgow+SYAHl8cfiRACaY7jCCPs557wOW8S99A6McOfD1vjO6KM3hKK+n9YBv7WF5+Js07cgqfqreoGwXqJQhlaiBPqSf0wgBuklO8dX5PWBuvCiVnRhmHCm4Sngb/8bOWOOGrIMMJ+0RnBgKeJWw+9n53t3UzMtb+HNVYDI2J10SscsCoOvF/M1lO8cueJQ026h4OE8nQArwbwYyHEVfq9N0spvzxyq9YAwxSwGQe4TFBlBJ5y6tH43eecjscct6nv49LlUEW6P/yZR+H1zzl9VaMdAJuxOawGztFP/G7SxwS4mqAwzW7n/i8/fQpufGBhrZp02KJfJ2YV0Xn9c05fNZlt6sMIpZSXoLrm0LrHemDgVRLAxkaG33veIwc6ro1CUa/7jeMeFW1i4EPoiP7198XA2d+T1MC7tfUtLx59O76IPjRwMuBZ+Hu/P+AYGgRTL6FMO9aDBj5OBnnsZuWQ2bzGsb+dfDQnJkdfDLwPJ/BqoteOPBHjQ98SygRW0xTBMs0SylRjUgy833rWg+K15z0CJx09ixc9rrxD+2qCYmjHIaH0M6nyr0xiEjbJH6tcqD+i//ExCQNO+91OmoEfsQZ8YnHggVT6caCWJnjZWSeM74B9okUbPwyZyNPtdRj2O1smkGlIGvikixgdCegVVkr+ntoq7zsZAjHwSRvwI1ZCGTb0aFT0k0o/TRg1CoWjvzhw+/ckHNHWeRUt+GqjV6li2rd1EmN5vUShHLEGfHIa+OTbME50RohC8ZOp+mHgk570UiOhRKw2TJZvhYEm41mfQFLeeknkOXIN+IQMgb+J77RjmCgU6vqShDJgIs8kMEoBpIjBQP6VKgaeT5CB09id2jDCacekjGe6Sk7MSaFNg2yQpCMoBusb7H4SKoiVrXW0DcFq4NGCrza2zzXwmqc+HK86J1xDiQz4sIk8o8BmPkcn5hGFflLppwntzuCOpEQIFFKOJCEdPbe6GaZVyNIooawVhBD485dW140hhj4JBu7XHpoUjlgJZVLoJ5V+mmAHUf/XYiSUIa7/oC7StW2IDYnHgSihrB9Q3Z+JSihRAz+yMGjxpvUOSqUfTEKhglCDX/9GXe/56Y9Y2+29CGmMA183IPY7CHkYF2jD6Of1qBK62ogSyhpj0pmE48Y//NpOfPT7dwxU9XAUBv74E7fg31/3dPzU8ZsH/u04YMLHBt8DIGLMoDDCSaxk52dq+NFbnrvqG6b0whFnwJ/76GPwzRt2Tez8/dRCmSacc8pROOeUowb6DXXBsLsiPeHELUP9bhyIYYTrByRfTCoYYHuP7fPWAkecAb/g1Tsn6njopxrh4Q4joUzh9VsNPJrwSYMiQA4HIjQsjjgDniQCyQSLKLpOzIk1Y6KgLpjG66fsz2i/J49owKMTc81xuDkxhwFp/9NoA2Mxq/UDioA6HMJxh8URx8AnDWdbtymUEMaBT/2Xp+BfL7sb81O4a3oawwjXDWgv4sMhHHdYTN8ImnIcbnHgw+BxJ2zG406YTBTJqMjWSQJHxOSdmOsBUUJZY6SRgU81jAY+4XZEAOeernIBjtk0+WiQSSEy8DVGcpiFEY4Dm2drOLDcnnQz+oLRW6MFnzj+4PmPwq88+SSzG9WRiGjA1xjRiVnGd/7oPCy38kk3oy/EOPD1gzQROGHrhkk3Y6KIBnyNMektwdYjNs/WJlZdcFDEDR0i1hOiBr7G4CVTD4dU+iMNcUu1iPWEaMAniMjApw+piHHgEesH0YBPEDEKZfpAtywWs4pYD4gGfIKYxlTyiIiI9YNoQiaIKKFMH5JYzCpiHWEkAy6EeIEQ4iYhxK1CiDeOq1FHCqITc/owo7eOO23H/IRbEhExQhihECIF8AEAzwNwD4AfCSG+IKW8flyNO9wRGfj04ei5Bv75t548taUAIg4vjMLAzwFwq5TydillC8CnAbx0PM06MhCdmNOJp5+2baAdiCIiVgujGPDjAdzNXt+j33MghDhfCHGZEOKy3bt3j3C6ww9HajGriIiI8WDVnZhSyguklDullDu3b9++2qeLiIiIOGIwigG/F8CJ7PUJ+r2IiIiIiDXAKAb8RwBOF0KcIoSoA3gVgC+Mp1kREREREb0wdBSKlLIjhPgdAF8DkAL4iJTyurG1LCIiIiKiK0aqRiil/DKAL4+pLRERERERAyBmYkZERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSUIhrwiIiIiClFNOARERERU4powCMiIiKmFNGAR0REREwpogGPiIiImFJEAx4RERExpRipFkrEcPjorz8Jh1bySTcjIiJiyhEN+ATwrEcdM+kmREREHAaIEkpERETElCIa8IiIiIgpRTTgEREREVOKaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiSiGklGt3MiF2A/jJkD/fBmDPGJszLqzXdgHrt22xXYMhtmtwrNe2Dduuh0spt/tvrqkBHwVCiMuklDsn3Q4f67VdwPptW2zXYIjtGhzrtW3jbleUUCIiIiKmFNGAR0REREwppsmAXzDpBlRgvbYLWL9ti+0aDLFdg2O9tm2s7ZoaDTwiIiIiwsU0MfCIiIiICIZowCMiIiKmFFNhwIUQLxBC3CSEuFUI8cYJt+VOIcSPhRBXCSEu0+8dJYT4hhDiFv3/1jVox0eEELuEENey94LtEAp/q/vvGiHE2Wvcrj8TQtyr++wqIcSL2Gdv0u26SQjxM6vYrhOFEBcJIa4XQlwnhPhd/f5E+6xLu9ZDn80IIX4ohLhat+3P9funCCF+oNvwL0KIun6/oV/fqj8/eY3b9VEhxB2sz56g31+z51+fLxVCXCmE+KJ+vXr9JaVc1/8ApABuA3AqgDqAqwGcOcH23Algm/feXwF4o/77jQD+cg3a8QwAZwO4tlc7ALwIwFcACABPAfCDNW7XnwH4g8B3z9T3swHgFH2f01Vq17EAztZ/zwO4WZ9/on3WpV3roc8EgDn9dw3AD3Rf/CuAV+n3Pwjgv+q/Xwvgg/rvVwH4lzVu10cBvCLw/TV7/vX5fh/AJwF8Ub9etf6aBgZ+DoBbpZS3SylbAD4N4KUTbpOPlwL4mP77YwB+frVPKKX8DoC9fbbjpQD+SSr8B4AtQohj17BdVXgpgE9LKVeklHcAuBXqfq9Gu+6XUl6h/14AcAOA4zHhPuvSriqsZZ9JKeWiflnT/ySAZwP4rH7f7zPqy88CeI4QQqxhu6qwZs+/EOIEAC8G8CH9WmAV+2saDPjxAO5mr+9B9wd8tSEBfF0IcbkQ4nz93g4p5f367wcA7JhM0yrbsR768Hf08vUjTGKaSLv0UvUsKOa2bvrMaxewDvpMywFXAdgF4BtQjH+/lLITOL9pm/78AICj16JdUkrqs/+p++x9QoiG365Am8eNvwHwRwAK/fporGJ/TYMBX284V0p5NoAXAnidEOIZ/EOp1kMTj81cL+3Q+HsAjwDwBAD3A3jPpBoihJgD8H8BvEFKeZB/Nsk+C7RrXfSZlDKXUj4BwAlQTP+MSbTDh98uIcRjAbwJqn1PAnAUgD9eyzYJIX4WwC4p5eVrdc5pMOD3AjiRvT5BvzcRSCnv1f/vAvBvUA/1g7Qk0//vmlDzqtox0T6UUj6oB1wB4B9gl/xr2i4hRA3KSP6zlPJz+u2J91moXeulzwhSyv0ALgLwVCgJIguc37RNf74ZwENr1K4XaDlKSilXAPwj1r7Png7gJUKIO6Gk3mcDeD9Wsb+mwYD/CMDp2pNbhxL7vzCJhgghNgoh5ulvAM8HcK1uz2v0114D4POTaF+XdnwBwK9pb/xTABxgssGqw9MbXwbVZ9SuV2lv/CkATgfww1VqgwDwYQA3SCnfyz6aaJ9VtWud9Nl2IcQW/fcsgOdBafQXAXiF/prfZ9SXrwDwLb2qWYt23cgmYgGlM/M+W/V7KaV8k5TyBCnlyVB26ltSyl/BavbXuD2wq/EPyot8M5T+9pYJtuNUqAiAqwFcR22B0q0uBHALgG8COGoN2vIpqKV1G0pX+82qdkB53z+g++/HAHaucbs+rs97jX5oj2Xff4tu100AXriK7ToXSh65BsBV+t+LJt1nXdq1HvrspwBcqdtwLYC3sXHwQygH6mcANPT7M/r1rfrzU9e4Xd/SfXYtgE/ARqqs2fPP2vgs2CiUVeuvmEofERERMaWYBgklIiIiIiKAaMAjIiIiphTRgEdERERMKaIBj4iIiJhSRAMeERERMaWIBjwiIiJiShENeERERMSU4v8H0t+PQeueM4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('generalized_lorentzian', [1.5, .2, 1.2, 1.4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABgmUlEQVR4nO19ebglRXn+W72cc+46d5Y7wzAzMDDsiywZVllEcAE0qNHEXRMjGjXRGDUQozGJRuMW9afRENx3RYwLEpEdhCADM8DAADPAMAuzb3c/53R3/f7o/qqrq6vPcu9Z79T7PPPMPWvX6a76+q332xjnHAYGBgYG3Qer3QMwMDAwMJgejAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLYQy4gYGBQZfCaeXBFixYwJcvX97KQxoYGBh0PR544IHdnPNh9fmWGvDly5dj1apVrTykgYGBQdeDMfas7nkjoRgYGBh0KYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwKeBNZv3Y+3WA+0ehoGBwUEOY8CngU/c8Bg+dePj7R6GgYHBQY6WZmLOFkyUfPiBaYRhYGDQXhgDPg2UvKDdQzAwMDAwEkqt8AOOd3x3FR7ctA8lP0DRGHGDgxSb905g5+hUu4dhAMPAa8Zz+yfx20d3YO3WEQScIzC9RA0OUpz/6dsAABs/dXmbR2JgDHiNIHvNGFAsB/AD1t4BGRgYHPQwBrxGcIQW3GIMJS+AbxkDbmBg0F4YA14jKOjEYqET0zLeA4ODEJ5vfD+dhKpmiDH2DcbYTsbYWum5eYyx3zHG1kf/z23uMNsP0rwZY8KJyY0ObnCQYazotXsIBhJq4ZHfAvBS5bmrANzCOT8awC3R41mNIKLgXhAyEM6Bsm8MuMHBhdEpY8A7CVUNOOf8TgB7laevAPDt6O9vA3hFY4fVeSBjXfZio130/HYNx8Cg5Vi79YCIQDHoDExXyV3EOd8W/b0dwKKsNzLGrmSMrWKMrdq1a9c0D9d+EPOm/wGYWHCDgwpfv/uZdg/BQMGMXXE8FIIztQTO+TWc85Wc85XDw6mmyl0DwcB9mYEbA25w8GB4IN/uIRgomK4B38EYWwwA0f87GzekzgTVPpG98MWykVAMDh7M78uJv13bhNF2AqZrwH8J4C3R328B8IvGDKdzQYbbMHCD2YSrr38E7/7Bg5goVXdOMslm97h2E0dlUCtqCSP8IYB7ARzLGNvCGHsbgE8BeBFjbD2AS6LHsxrliIGXjQZuMIvwwz9swg0Pb8P1D26t+t5iOZ7vvTmTQtIJqHoVOOevy3jp4gaPpaNBDFwO/TYSikG3ozdnY6Lk1xTfXZLkQ57t9jJoIUw+YY3QxXwbBm7Q7ZiMSEgt9e3l+W7q4XcGjAGvEboJawy4QTej7AdiRxnUYJBLXoA5PS7ecs7hJomtQ2AMeI2Q478JJpHHoJsxLskmfg1lIYqej5xjwbEtw8A7BMaA1withFI2DNygeyHr3rUw8KIXIO9YcCyGsilq1REwBrxG6KqwGQnFoJsxVicDL3lBxMCZYeAdgq4y4Lc+vqNtd35Pq4EbCcWgezEmFaaqZVmFDNyGbVnwAm6qcXYAusaA37JuB/7iW6vwX3c81ZbjGwZuMNuQkFDqYOBu1MzEsPD2o2sM+FO7xgAAe8fLbTm+loEbDdygi5GQUGrSwH3kbQt2lEavWxMGrUXXGPB9E6HhntvrtuX4+jhwI6EcDPj4rx/D/6yunqnYbZCjUO59ag8+9stHK76/5AXIuxbcqB2VMeDtR9cY8P0TJQDAkFRQp5XwlTDCvpxtJJSDBNfe/Qze9+M17R5Gw0HNGRgDHts2gm/ds7Girl30AuRsC3YkoZj2au1H1xjwfZF0kmtTFTSZgedsCwXXNgzcoKtBEspgId7VVkrQEQzcSCgdg64x4HsjBt6uSSMn8rg2Q96xjAZu0HaMTpVx3EduxJ1P1t8sZbzooce14dqxGahESmIGHkkoJhuz7egaA04SSi0JB82APFltiyHvZkso9zy1G8uvugF7xoqtGp5BhC37JvDbR7e3exgtw+PbRzFVDvDFW9bX/dmJko+enA3JfqNUQRYsRWGEjmDghsC0G11jwMmJSQx8suTjlw8917Ljy8zfta2QgWewlWvvCltPrd60vxVDM5BwxZd/j3d894F2D6PlmI6wGHAOx2KwpULflfw6IpVeaOCGgbcbXVPU90BkwCnc6eM3PIbv37cJh84pYOXyeU0/vuywsa1IQsmY7LQczPRuPfaMxzs1y5r9XWNmkkvj+Ry2xRLniea05wfgQEJeiTMxTRRKp6ArGDjnXNQipkmzdf8kAGC0hjrGjUA5xcDtTA2cCA159HeNFnHf03uaPkaDGKUGRUh0erYhjY9N417lB6EBtxMGPNxVvvgLd+K4j/xv4v1yLRTASCidgK4w4FPl7DrEreJYMgN3bIa8my2h0KhopH/y1XvwZ9f8X3MHaJBAo0I8u4VksmmsBJ9HBlyWUKK19vSu8cRa8wMOL+BGQukwdIUBlzPGaNK0mhjJ28WqEopg4OH/m/ZORI/NhG8VKjnj6kGns8yZzCgvyJZQVND5TDoxzXxuN7rOgNdSNa0ZkNmGa4USylRGS7V4PSTHaiZ869CoomezmWUGgc6JqZ/TZMBDBh6aDTW5zaD16A4DnqiaFvWmjB6z6Yh/04DMxKo7McMxqfba1FBuHRrBwJ/eNYarrn+kAaNpATTL4MrvrMKtj+/I/IgXcFgsycDV80YyStEPDbusgZuuPO1HVxjw0WJcwEplsa2KC5cnqys08NokFN13GDQXjXBivvsHq/GrFoaqTgdZG1I/4LjpsR1YtXFf5meDgMOxWSIOXJ3T46WQPJE2nnPiVHpTjbD96AoDPl6Mt3W+0MDD/xsVbVANSScmRaHot5tkwFX91DDw1kFmkvsnSjj/07fisedG6vqObvBZUBlYlYDTXKs057yAw2aVJRTa/VLz496cLcIIzXxuP7rCgI9VYOCtmkR1OTGj5aRuR2ezntppkK/N3Rt2Y/PeSXz5tvqzFTsdNC9VJbEkDHj2nAu4xomphMZSxcLJUmjAe1xbSCgHCwOfKvu496nODAPuDgM+la5bTOSoZQZclVAiA65laYzG1p6bjUHy5knJKCWvPoPTKv/KdHD/xr3wA57pSCxHv39ksozHt+t3HpTIo2ZiynOa8izIYd/jxlEoB4sk+MuHnsPrr/0/7I2SxDoJXWHAaRIN5J00A69zUU4XshziWBbyrg1AL+FYjCZ48rVWyT0GyXOdm2Vb/md2j+M1X7sXdzy5UxCL8aKPzVG4KhD//utXb8VLv3AXdo2m6/L42jBCP2GYBQOPDHghZ0tRKAeHAR8veuC8M+v/d4UBHy96cCyG3rwtnJYcrdXA5UntRBIKoI+bZeIz4WtCEz9IGEsnQMfA6zXgncq/D0yGkuLolCeM6CNbD+D8T98m3qMSm4c27099j885HMtKJfJMSYaKdr86Bt7pMfKNAq3bTrxhdYUBH5vy0F9w4ETNVGW0ilXJF8+xJQOuSaen9UA3lyxGbtA8yAa802+gG3eP4y+/fT8+d9MTNb2fnOeezzNzC1Ris3pzOhrFi+rFyKn0JT9I5DeMqQxc0sA79Xw2GmUKXZZ+7pdvXY+frtrcphHFmJEBZ4z9LWPsUcbYWsbYDxljhUYNTMZo0UN/3oFjszgOvMUauHwcJ0rkAfTbKsHAIxZkCU3cGPBWYXSqjE/+Zh3Gi54wcvXu1lQJvFlRKXet34Wb1+3EV2+vrWG3KDgVBJnNiNW59uCz+1PvoUQe+XcWvSBBSoQBL4XPhQz84JJQdAz8szc9iQ9e93C7hiQwbQPOGFsC4G8ArOScnwTABvDaRg1MxthUaMBti2kYeGsmUSkRRhjGgQN6CcVXbi4UlVLPWMeKnmjkbFA/vnPvs/ivO5/GV27bIEJAZaN2z4bd+MptG+r6zmbNNU/IgrWB5lzZ55ksWDXgu8eK4JyLqp50XIspxazKvmDbQFoDl6NQygeNhBL+znZlgVfCTCUUB0APY8wB0AugKVkPRyzow2mHDcFmTNwFiXk0quZFNUyV4kkdMvBsCYV2CaoGXg8Df/PX78PFn7tjusM9KCEzZLrhjkkMXD7/r7/2Pnzmt7VJFoRmab40p2tltLTr8/wg8zPqupgs+/jqHU/hlH+5CTtHpwDoU+m/fe+zuP2JneLx79btRFmSVQo566ALIyyLyLfO+73TNuCc860APgtgE4BtAA5wzm9S38cYu5IxtooxtmrXrvrbPgHA1Zcdj0++6nkJBk7Mo1WyhMxKQidmWkJ5ds841mzeL5jaTDTwB6NmEO3qQNSN0OnBJS+Q5kr69YlS7eWIm83AgdqMBJEGL6hdA58s+fjNI9sAAM/tn4o+H6SiUADg337zuPj7oc37cdvjOzFV9mGxMKKHolAOljBCwcCjU9pJhnwmEspcAFcAOALAoQD6GGNvVN/HOb+Gc76Sc75yeHh4+iNFKF0Eip5Zq1F86RfuxCdvXDftYycMuK2PQrnwM7fjFV/5fWrLbmXEhdcCE3pYO3S7sZIXCOasmyt7xmqP7W0WWZCZbC1zhKJEyn6FOHDleyZKvjC8E5EsIuqBZ8S7f+41pwAI0+knSz56XBuMMbjOweWULysaeKNKFTcCM5FQLgHwDOd8F+e8DOB6AOc2Zlh62FIUSknSAWvB49tH8V93PF3X8XaOTmH5VTfgJ/dvTtQkd6zKGrjYsgsnJnnt67/wnTRZOh2yASeWVPSDiru1PRWSM1S71qyoC3lcUzXEGhMD94Mgk4GXNRIKSR/0m31qqaYw8N5cuLuc0+OK402Ww/6ZQBxXX6t8+eP7N+Ed311V03s7EUQASLadKHVOPPhMWqptAnA2Y6wXwCSAiwE09So5VqyBEzNtJkPdsDN0In7vvmcBhBmYZZ/DkbaROqOcqkOhhBXWg1Zp/LMB8vmlG26xLDPwZCy/F3DsHa+98XQrGPhU2cdgwa34ftmJqerQnHMwxrRzjYz9+p1jWH7VDQCAs45ISyikdw+SAfdCA16Iktcc24LFap+bf/+zLqnomAG6cZMBH29RF7BaMG0Dzjm/jzF2HYAHAXgAVgO4plED0yHUwJPGUWUajQTtTmmi9uUd7J8ow7GZlBySZkBepgZeP4PrxOyvToXsUKYqeiU/EOddnis9ro3RoofdFSQUtctNswy4zKKz2vTJEE5MDQP3owqDurHSPF61ca94zrEYvOhn9rg2Jsu+KINMDLzkhU5MMuBA2Nhhts/NGx7ehpGpckpCmS0MHJzzfwLwTw0aS1XYLDbgsYTSPAPuK5EufbnQgNuMIVdBB1SjHojgTEdCMQy8dpT8dPhbyfNTuzYA6MmFBrye+hbNasihMvBqiBsPpxm4zzkc6OfNrrFwtyGn1VuSE/PlpyzGEzvGRNamkFA8X2jghJxjzfq5+e4fPAgAuOLUQwHE9f3H63B8NxtdkYlJcGwmGcf4/+se2JKq9XD7Eztxw8PbMr9rx8hU1QgPchAVBQMPJ7DFWMX0bHXLPp0oFDL6RgOvHfK5EpFAXqAtrUr69p6xbAlF1cCbxsClndlkLQa8nC2h0K5Rt9ujNbJTWityGKFtWSg4sUnoLziwWCyh9CQYeHY1zix0UvRGPVAllIli5zDwrjLgtiVFoUSTZ+v+SXzgpw/hL7+TlN+/+fuN+Ood+kSNqbKPs/7tFvzdTx+qeDzV+UUT2GKoWBNZ/RxVtSvVIaGQ0Z/tLKeR0BmUkh/LDLKto/KolZyYqr1plhNTjiSZmqGEQkZGnpd5J7nMqZYKgEQij2Mx4agEwvlOTHuyHKCQmxkD79awQ9q50c3SMPBpwpHiwOmk0qJ9bv9k4r1+wEUUiMq0aXv989VbK7KCQGkaQbHfjDG4FUpq0uKhCT4dCYW2tYaB146sMEKZpf7Dz0OHGhnK0ansxaiy21Zo4LKEkjU3p6Q4cDWMUJX9AGCoN9sp6kgSim0xFKI5TpnPodYdoFj20ePG5iLvWCjWeT66tfgVrdtAaODhnFGjd9qBrjLgdhSFwjlPaeCqcfQDLgyvylLkx0/sGM08Hn0lOb8odJCxyiVK0xr49CUUw8BrR5YBl8/7D+7bBM8P4rlR4Zqo16tZDFKngY8XPRxx9W+09VHkTMysFoOy3j/Uk8s8tm3LEkrMwPvzoXsslEr8RBQKAOQcuyaHq4xWlX5uBGTSp+7gxopxf9B2o/0jqANUjVCetLQVVre3fhAb+UpMaqwCAxMOU4WBqxr4hp1jiW2pmvkXp9LXL6HMZk//bx7Z1tB6L8SMHIkZjZf81NyQdeZKjsn0jb8FDDyas9tHwmzJn2gq3iWcmJp5DyTnODkjgZh4EGxJQrEtJoz0QCE04LlI6y55QeKzOceqOyy2ESG/6k67WRiVQgXpXPpCAw9fk29o7UJXGXBi4DLTokWrFtbxOY+dV8pr8oKuxHDjxRD+X4gYeKiBxxLKa6+5F/91R8yU1FBH3aKqBvsg0MA/dN3D+O69zzbs+ygkcPFQXBSTqhFaDDjriHlYNJhPGvAKN9VWtcSjjEggZuByCzMVIg5ck0rvazRwcr4DwCFzkgVDHYsJshAa8HCO9xdkBh6I8ERC3rEye8JmYaYS1D1P7ca5n7oVv364+Y2mRzSEjFj5eHRt1JthO9D+EdQBigOXJwItRpVlewGX5JVsJlWJFajfSXdcxhjcKJFnquxj91gJ+yZiZxgtMPpunWOpGtSa4rMNnHOMl7y6apEQfvvodqz4h9+kEiooJHDxnB7x3ETJR8kLUHBtHLWwH37AhXEEKrPqVnVU8gKOvki6IANOZVx7cxoDXo4llHQiT/i/vNvrzcfRwiceOph4f1gPPPzbZkzcMAaiZKJ8JJX4UeVCQn4aDHymBpwS6+5pQX9KeUddFhJKkoFnlfJtJbrOgPt+koFPSSFVMgKJqauLVO6NWAsDJ5DmxVg48R2LiSgG2SjQIhQ3EIXJ1wJiZPXqjN2CsPfi9JIiPvPbJ+AHPLWd3jtewkDBSWUybt43ASe6Xl7AEwy80jVJSShNjEIhzXnTnglwzgUDlI0vIVFOVpPIAyTndX8u/o5Tlw0l3p9m4KEB743+J6mE0u4J+WlFocxsLvdFv2OiBZmQSQae3EnT/OkEAz6jRJ5Ww7EYfM5riswIGXh4gisx8EoLuJwy4BEDjzL0XNvC3mjbLhsFcVOJbhS+n2bgG3ePY35/TjAdFUIDn6UMnAx3LYkrKmhBOcoWdvdYEQv684lQOAB4dOsBuLYFKyIAdGzGKpdEVbN8m6aB+xx9kaG+9u5nsGnvBF50wiIAsSGVkWjokGXAlaQlwvz+fOL9chq9bcUMnOQSkkp8nyfem5tGHPhMncC0G2lFJqTOp0UGmx43K7GrHnQfAw+4cOxV0qCCKAqF83SygzyR5Ow9FfICdm0mJjXNY8dmYtuum1QkD6glcAHgBZ+9Ha/6z3syjy3CCKdh4LoBdMOrJXFFBV0/Rwnj2jtewry+nAh3m9cXRl88d2AKtsTAqbb7QN6pyApV30kzo1DyUojeTY/twCNbDwDIkFC8WDbMjAPXtJQDIKQagmMx0UjCtpiI9SYnPRlqlYHn7MYw8Kt+9jDe+s0/1PU98s1/rElsPCmhkBQaPVYYeTvRdQzcC7hguAMFJzMRg9iSrIWL16THlUKb5M8V3LihMrHjnG1hd1QMSRdPPDLloRxtP9XvA8KiQlmwZrkGPlmiVl3TMeBJ3wJh73gJy+b1ChY51OuiP+9g094JuLYF27Lg85iBD/a4FVmUarCbVcTICzhsK0lGNkUd5vM6Bi5kwyAVB64aGSDcMb7vkqNxxvJ5qd8rH9e2GFwpqQcId517vJLon0mYTi0UnQH/0f2195WUm3TsGi3ijE/cDNtiWP3RF1UtAFYvRqZCA26xdEs1NbGnnegyBm7B97nYdlOokw7yRNY5OAmVJAo1m40+RozGtS1RT5ouOGHhQLhV3Tte0m5rq0FIKLNUA6cei9PZDmcxoN1jJczvywkWmbMtrBjuAxDulqiaJbH+/ryTGQceBMmdm20x0cmm0fADntpNbIuaLujqfcdx4BU0cKVswPsuOQbPP2oB+vPJG4LN4oQhhnhtuJG/J++GceCBMsbpZGKWZhgHTjfUiZKH7Qfo/HDxdyMR7/KsOJFHIWLGgNcJ24LCwLPvunLRK5VJyYa50iSUX7MtBg6K6440cIeJrdbIZJKdUbjWrtGiuND1OMGm24i30zEyVcaHrnsIH/vVowCmp4GXFU0SCA3uvokS5vfnBAO3LYb+aI7YUd1rP+CCSQ/1ukk5zQvw5VvXY6rsp+SThQN57BipvfRsPaDOOGcun4eVh88FADx3IHTQ/mTVFpz9b7ck3i8YeKCphSIyMfVzrTeXJD22JEMyFu9OiYnn7VBC8QKeaPzQDicmfX686CfqpssFyR54di+e2J6dnFcr5LWqRqGo1QnbiS4z4Bb8oEYGHs2Vko6ByxenwqSSa5c4liVCtIiIuNL2U/ZaA8CiwdiAq8eSHU9Z6dK0kLqZgX/0F2txzIdvTDz3izXP4SertuCBZ/cBmK4GTgwofm6s5MEPOIZ6YgPuS+F5rhX3cqSb7lBPLjE3fnT/Jnz2pifxtTueSt1sFw4WsGOkuQz8J+88B//+6ucBSEpy20emEvMkTuTRl5MFVAklRr8S1WIzlqj5Qt9H0kretQRhkuWWWpyYX7/7Gdy1Pm6j2CgDPlHyEjf+fZIB/5Ov3ouXfOHOGR0HSDYwVluqqYk97UTXaeA+5+LuW8mAyxUBU4k8QW0MXJ5wlhXfgWlBuBJ7UZnyIZEBlxe9aAMnHf/AZBlDvelU57imePc6Mb+jSdL59UPJJAxVA//yrevxP2uew83vvzDze3VbWLqOsjPQD7hgnI7NYEdO6P1kwHvdxFygsYwXvZSxWTSQx7N7JjLHNBN4AUfBDcemGlhC2efIOUw454GMcrIaAy5r16pTVJZFGBjOPnI+AODFJ4ZRMHnHlmp/xJ/LOVZUiyVOQpKx7cAk/vXXj6V+QxaoEUUl0DXeN1HGJ26I2yNWKkg2XZB05XOeSuShc8t5+JzaEKOV6DIGziIGXl1CERPZSzPwUo0MXH4twcCtWELJAkko8rb73qf24P+e3pMYT9a2nIx8NzNwFZxz3L9xr9ClgTQD/+xNT4qEjSzQ6ZMlFLpWrm2JWGY/4CILkeLAAWD/RBk9ro28YyWMCvkdOE8bm0WDBexogQauizoBpAJpsgNeU42QTonMUGUj3afcICwpCgUATloyBxs/dbkw5DnHEn4KmYFTSG0WAbr+wa0AgEGJZFVaa7VUYZR/++OSTLKvCQbck2STOAolnc/RbhbeVQacJiJpmCoDl7eZMhOpFIWim4BBwLHtwGSSxbC4qhsd160QxjjU6yLnWGLRv++So+Fzjt9v2J1YdFnbcrWrT7Px/h+vwT0bdjf1GH7AEXBg6dxe8VzZT0cJAbVp44lmwJHmm7MtIaF4EgOXIz1GJsvoLzhwbCsxF4gABjxtbBYN5rF/ojwtzb4aPD8em6pRE2ieyjd0P+DpOPBoDRyYLOOiY4fxxrMPwztfsEK8rhZgSjBwDR+R368ycHlcKh7esh9Aco1UMuC1ZORmRYztnWgCA4/Wn3wz10WTtVsH7yoDTlvgMWHAkwxc1uTISBa9IJ3Ik4gDT0+qnz6wGRd+5nbsGo0nhm0xvPuio/CvV5yIK05ZAiCpgatwLQsL+nLYGRnoOT1uGDvrB4kCRLrwQ87j6IJWMPAg4Lh+9Va8/tr7mvL9dGOlBTC/PykZ6Yyi6lMYnSrjwU37Es/J7IekJteRDLgfCEZb8oKYgU+WMJB3EuWJE+NFfFNhDFg6twcLI0lsZxMcmV4Qjy0s4ZqeV3H55GQdFzW5iAzKgckyFg/14OOvODkRYqfKFLbFUnXPZSQNuJV6vpgh8ZFjUZY3KhnwWnwhZT+AxYA3nn2YeK43Z9fVValWyPOCzqnai0B+rV3oLgPOkgx8UGHgsrGT9apUIk8VDfyep/ag5AXYsi/WPG0r3Jq/6ZzlNUkoOcfCvP6c6H7iWEwkP8iTQ5fdJ78+Ewa+Yeco1kYJIZVAx6siQU4b8QIIH8/vSxpw3eLdrxjwd33/QbzqP+9JMDWZfZYEA49LooYMPPy76AVCq90/UUZf3kl0eAJi4yazri/82am4++9fiCVDYX2VLfsbr4N7ARfkBNAbBZqnJDXkbEs7twMellveP1HGUE/12OhqNa1zsgFn6eezCIZOl67U0KSWfICyH8C1rcQuZfGcQlMMuC5NXudfaHc2ZncZcElCYSy93fzbn6zBl25ZDyBZfyQtoYSvhRpoegKuiXoCyhEkOrWkkoTi2haGenIiTty2LOSc9KLTLVZ5hzCTLfsln78TL/t/d1d9H43BapIFp2tBjHmuasA1i/eAYsBXb9oPIC0hEOg65hxVA3fE67YUhdKfd+BEUU20QyBbxnmc7UtMc+ncyIDvq72c6a7RIj5xw2OpWPPP/PZx0XeSxilLGTqjQLtLGldv3k6VVgbCm9pYVIExq5HDr95znshSlcNjdSCtG0iGHNJ5Kflhw+NP3rgOX7x5vXh973hJVDYkqKUJ5BtwLfkAJT9ATtphAcChQz2JQnKNgu4a0FPya9XaMjYbXWXAaZKPFX0UHDvBDgDg1sd34vO/exJAMug+qx54b85OMfA9Y0URbSCzCFtj3MiAu3b6tZxjYU6viz1RpqZthe8ve7zqHVzeIeybCA3ZLet24Bdrtqbe2wjQ8ZrlTBeZa1SW10k66mQGTobhwETSgNP1lON/kxJK7MRMauCxhJIw4AUn1VWJfn7AY2mL5IfFc3pgMWDL3toZ+Md++Sj++65ncNsTcSid5wf4ym1P4abHtkvP6SM5ZKMuNHCpwbZubvsR+wayGzmcvHSO2FHI81oXBSKTFDUOHAhvqGu3HsB/3fE0/uPmJzE6VUbZD7B/ooxjFw0kvitVVE5TVbQSyn5Yk1x29A4P5LFvvIwg4Imb4kyh1lkH9GUKDAOvA5RWvH+ihJ6crTWcNOnlRBi1KBW91ptzUtEGazImgW6B0fEXDhS0rw31uIkYWtdhqbj0agycmu5+656N+M/b0t1ZGgGarNXCuKYLT3ECqedSZuDEnlUGHkdXZDBwTzLguZiB0y6tKGngo1Ne1DIsnP5kWCyhkZfxzO5xAGG6PRDekA8ZLNTFwHWVAYsZzkg1ExOIs3mBmHQQAw+zSHnKvxMEUpx7hVZqoo2aXVkDl2uAq5mYQLS+pDGMF33BiI9RDLi61uRzoNuFcc7x5VvXY2N0LcoejySU2IAP5B2MFT188sZ1uOIrv8/+IXVCZ5jjLFcuObyNAa8ZFP2xe6yIgmMlilmRUThqYT+CgItJGfZEjCcK51xsaXtzdioZYc3m/VotWG/Aw+MvHMynXsvZVmIBCQ3cVzVwnQEPxzTU62LveCnc0peDlFGrFdUSKETyRpMMuBq3rcbNyuyrJ8OA00KRF3oiDlzLwAMtAwdCA0g3YOEDiF771UPP4errw96ZsgNw6bxePLNnHFd8+e5EgkoWHPH9GgOusDi1siIA4TiVfx8Zvf6CAy9IM/Cndo0J2UyXX0CgU5Fg4LrfIJ0ztRYKEJ5X2YiNlzyhSR+3eDDxXepuV3bI6iSU3WMlfPamJ/Gmb4TO9bIfwHUYeiTpdKDgYqzo4boHtmh/53ShM8x0qst+IHaRhoHXAYo62TVaRMG1E9u7tR97CV5+yqGichqhrDCEsFcmMXA75SRcvWk/jj9kMMXudfowHX+RhoHnHAtzpQVkWWEbNrXJrq8cPwg4roqMx6KBAryAY2TSQ9Hz6zLgsnauRnSoiDXwmr++LqgGXL1RyEaZEnFUJyZd0u/cu1E8l4wDj/0aPRoNvOQHcKQoir4oCgWIdwi6pTjYExuLpXN7sHrTfjy05QA+dN3DFX5xCJofMksmoyUbL1+KQpEhM/CUhJJ3Ig08OX/kbjWVGDhdA91xZTgJkhQ/L5yYnp8wYuNFT5RYPv4QlYGrBjx+rAsjHI3qC23eG+56SsKJGTPw/oIDP+BCamwU9Bp4LMuSvm808DpADHzXWBF51xYFd4A4/KpY9lPOLV9hvJ4fLpi8Y6ccK49sPYBTlg2l2IujkWuEAdcwcNe2Er0IHYsJJ6a86NSJsnO0iFsf3xl+b5QMtHu8iKlygMmyX3P9if3ShK5m+IWE0CIJxbEYfvD2s/Cxl58AICz3qr5XvenQ4pGr18n2oCRJKIUcSSM8UT5VZuADURx4eMw4s1GFnBkpX89azhQZxw27xkS8v2qIaZy6HZ58vJLixOzL2ZkJR4RKUSh0rWVWrbv8rvS6LoxQ3eGOF33hOxoeSK6LtAFPN0GRMaKE2JIGLtc3z8pczSpRUSt0RcTkKJSCW5mByzv9Wx/fgYs+ezue3TM+ozHp0FUGnMIGyz5HwbUSLNkhA64w3LLHE1EAQRRj7dgs1Zh1rOjhwGQZh8/vxVyFvegZePjcqYcNpV7LOVbiJmBHEkq1KBSZiSyKFsCesZJw3tXKwmXPfFUDrjRfbjTUGjCWxXDuigV4y7nLsXAgjz88s1e8tyj9zv9duw1v/86q8LMVwrrkY7g2E9Lah15yXKKjjZMhoZCPROePcBKRF7HhqMVfQDf9r97+FM76t1swMlWuSQP/xCtPwoXHDCcIyl3rd2PXaFH4AGhnoRo+WYqYU4GByxpuJWPnZDgxYwaezLMYj9YQEN6A5DWq3mxkf4ZOQlHnbdkPNfC+hISiN+AzlTZ0N3M6V2WfJ3Z5Onzrno046sM3Ys9YEfsnYp9Ko9FVBlxO3Ck4tlioFguNQsG1UxKKqjnfvG4nrrnzabhWeAOQWQGVpVw8p5Bi4JU08EWDBfzNxUenXlM1cJJQKmngcoF6SsffO14UC7VmAy5F0KhyhApPMqzNgFq9jWwCY2Htjfue3iOMCBm4kcky3vm9B/G7x3YgiDI4VQSaKJScY4Exho2fuhx/9YIViZAzOda6J2cLRik6JlXpuKNGPVWDoyR6/fzBrcJwJxJygmQ98DecdTi+/RdnJtjvN37/DM74xM3YGrWRI+apGj6aP6cdNpS44aiQywbQWdRq4LbMwCUDbscMXNXAPckfcehQ3J+0soRSOZlrMupt6tosKaFkMPCZNgPXauBS2Ga+igEnTf65/VNiLPXOn1rQZQY8vlghAw+HTywhZOB+IgSopDCEv/nh6ugzLFXTmAz4IYMFzFMllAoGfLDg4v0vOga/es954rW8YyW2sJbF4DoWSkrkgDoB5MxMcmLtHisJtlI7A4/fV6sG3mwnprhRSMc57bAh7Bwtio7ytKjl8zCV0ThAGweuOANlo6P2dIwZeDLMMQtyVmItp0qV3UYmy5IGXj0KRZdn8GBUxZFqvKgdaSjJ7YdvP7vi2Oh+EbLK8G9tGKHS8IFABkwlJOPFWBN3bIaTDp0jXqtXQpHn+pZ9E0IDr0VCqdeA37JuR4L0aKNQeBwCTF2fsgw4zfGAx8XHmtHFfkbfyBgbYoxdxxh7nDG2jjF2TqMGpkOPa4tJJDsxRe1ix04l7pQ1JTeBqPuInZRQtkU1mBfP6cGbzz0c5x+9QLymk1By0QKlSAW5Ep5rW4ktLEWhlL3KGrhsuBZJTSFoslczxoS6JJSA0sablcgTSShCA4/PE+2qJks+OI8bUY9Khmm8qDfgCQYuaeAq/vWKE/Gr95yXNECOJcbhCQY+fQM+JkkHBHUsk2U/FYVCLf+0ceCa30LzQy1KRZgo+WAsXfNERWxgYh+OmmAVjiEjjNCOnZiyEZsoebEBtyx86k9OxkdedgKWzetJhxFKRlbXGk1uknJgMowvzzlpJ6YO9WQwr9s2grd9exU+8Zu4wqHOMAc8rsdSqMLAaX5woKMZ+BcB/C/n/DgApwBYV+X9MwJjTLDwgmsj58T1I4DYgMrbsbIfaLuuFMtBJgNfOJjHuSsW4LtvOwunR/q2zolJC4wiFeRF6NoM8/tiJ45tMeS0ceDJsY1Kkzbc5jNMlX0tA9+wczSzo8xWqWO7mhSjotlRKJTmrkooQBw2OFn2E4tOPg9ZadZ+wHHzYzuw/KobRHy2q1kkbzpnOU5eOidx48g5lrimcZRM5UUvtzdjiuBw1iduxin/fFPiuVS8e9lPRaH4wthVTuQh0I1tbkaI4HjRQ49rV70ZCwMecLzzwhX44mtPxcuftzj1PlnDToQRurEGLs/nsaIX/yabYaDg4m3nHSFCaGXIfgCdAZfnetEL4kQeV9LA83qdvx4Gfsu6HQCSEpJWAw9iNi0MeIb/IC7LEDdh7ygDzhibA+ACAF8HAM55iXO+v0HjygQt+IWDeSkTMpZQgFCHI5R8rmVWE2VfOBUJ20amMK8vJy4OIHnrNQvitMOGcP7RCwQDVxMdktt3SxwvoYH72Qyc8/A75RsSsZKNu8dxyefvxGdvejI1LgBYvWkfnrd0Dnpzdu0aeJMZuC5lvyeKGJmS2CmQPA/jSojZW845XHzfd/7vWQDAI1sOAKi8TZVfyjtxIpiu6bQOlRj4uOYmo0pSU2U/1sDLSVnJ1hAEHUanymFlzIwIEzLg1UBzM+BhDPoVpy7RGn35pqdn4Mn5PFHyxZqSf78b7T5l0E2sx7UxpuspK3W5KnmBSOSRJZQsJ2a1ZhMybo8yZeVdjY5Z+1LYZkFIKPrj0KkKeDyWTpNQjgCwC8A3GWOrGWPXMsb61Dcxxq5kjK1ijK3atat68kM1UHGoExYPCsNtSxIKkGbgWSFBKgPfOTKViL0FpIw1DRs6/+hhfPdtZ4n3WMqEBYAjFoSnhDHEceCSoajkxByZKsO1rYQxIzZN5+H+jXuhwvMDPLT5AE4/bC56c07VNGUyXM1i4GpTWHk3QwkRk5Jxm9PjJs6DWu/5+UeF0lbAuTAKJKfosnMJakcZ4cQMksaUcPTC/sTjhAHPPEoMlZ1NltISSiUGrnOkjRU95B07UzoYL/kJApKF9158NBbPKWDl4fMqvk+e9/L8lp2YOgZOgQXi/Zq6Q3QO5vfn9E3BNQzcdawEk82Skuph4ERw5KbVOmatl1D035nQwL1AONcbjZkYcAfA6QC+yjk/DcA4gKvUN3HOr+Gcr+ScrxweHp7B4ULQZJENOP1f0EgoqhNTBlUHJIxMeqnkB2IR1aq2AUnDRBP8jOVzAYTMyXXSDDztxIwn7ZweF47NMFZMx3TLhZdUPLZtBJNlH6cdNoSCa1UtiNVsDVzUQuFpBk4NiGUJZX5/stXZbsWAU3q7H8Rjnyj5cG1W8TeoDJJ8J6TNynLUK09bgp++M+nSSTLw6udKvbZT5SAloagtzGTo5NXRKQ9518o0XAASDDULpywbwr1XX1wx1BBI6viOIqeomcW9OTvqZpTOLNWV7iUDvqA/n/B5EEamyoJhl/wgcmLGY7jo2OFMWaIeDZyu+3jJwz0bduOep3Zr/WayQ7IgZfvqQFOt7AcoeQHyTWDfwMwM+BYAWzjnVET6OoQGvSU4YkGfMJI0sQQDlyZDlhMTSPf1Gy166Fc0NVpXtURoJNhK9Pc/vfxEfPAlx+KCo4elcrKyE1PVwD0MD+Tx03eeg/OPHoZrWwknHhlw2Umi4ubHdsBiwHlHLUCPa1c14HGKe9WfOC2oLank80Tb/WLZRzEa54K+5C5o92iyBjdJVn4UkwuE9XEqVYdUjxtq4EknpjxPTloyJxVKmogDl56XoynGi55Is1eJg86JWYmB627OfsCRd6xE9IU6NWuRUGpFwmgrB8o5ForlQFzXwYKL8aKvzSx17XQTZHG9+3MJkgJQU5UpkQxULPtCAweARz72Ylzz5pWZ466HgdMcGiv6eP219+H1/31f5q49jkKxo3Hqv5N8JGU/rGzZDP0bmIEB55xvB7CZMXZs9NTFAB6r8JGG4FOvOhmvO/MwOLYl6nHHEkrtTkwgvAiedFHGiuWUpmbVwcB1Rr4v7+DdFx0Fx7ZE4lClRJ7RoofBgoMzlodbW9diCVYeO3biOF4VN67djjOPmIf5/Xn05OyqtZZnooH7AcfOKq3G1DBC+TwVJCemYGQDScO5e0wx4JHTOJA0yX0T5aqLRA0jdJQwQtng6qI4Es9Jp0rOev3I/6zFm77+Bzy9ayxlBCa1GnikF9cooYTjsBMMXA2lU8u4zgRuhgYejsNCyY/DBgd7nJiBW2ljr0ooRCyGB/IpCeX79z2LDTvH8PLnHQogLppFN+mBgiv+fvUfLcVbz12e+Hw9BpyuwZi0zjyfp+S4QAojpHOcxcBpipe9QEgozcBMv/WvAXyfMfYwgFMB/NuMR1QFrz3zMHzyVScDkMq5Sh20gWQ2Y8lL10wm9EjbdwAYi6rUybAraOAq1MQNFWHiUDIOXOfE7JcSlhzbSmwvqzHwoudj/c4xnLsi1IkLjl1VA/f96RvwD173EM78xC01NYeuxMD3jJWEBjlfYeBUU51AmXh+EJ/LybJfPwOPHvsaBq7TkfMZhlFuKPBsVG5291gp8X0DBSdy1MYSCoUQAlkauP53qAz8c685BZdLESS1aOC1IiuRB4gZON2o5vS4GC+FGrgqobi2lQojHJ3ykI9qBo1NeYkdx6PPjWBBf14Y5tCJGWiv8Wdfcwr+/PnLE88VM3IHdKA5JO90d4xMpZyOCQMe7caybrK0lsqR9NMsAz6jrvSc8zUAsvcxTYZjqQw8PKnjCgPPKthDpUYnS74oS6k6h+rRwKtFEuRsOyqmFbMunQYudxpybSbYSW/OFgZcTHZlApGTkwr2F3J21djxWAOv+DYtqHnteNFDztGHtqk9BXUG/ONSl3G15ZpasJ/Os7yggOpe/lQYoVJOVmZTegaejk4Ckk5W+j0TJS9xbef35RJOzIBTXZ70OSGoxoGx8HLnXStR4+Xw+X34+BUn4YaHtyXG0AhUMuB5J6mBD/XmsH7HaKJFHEHNegbCWicDBTeqrBg2K5dJVV/eToQrFqNqhDqoY6tPQqEduOQ4nyhjbq+bsCWhhJJ0Ymb512iqlUgD71AG3lYwFjpSXKGBRwy8mAw/ymbgseQSerl5ioGTs6oWdlpNJ6fJR5JG3rFSYxsveolaD65tiYm1aLAgjDFNJPWXyXUogDBjrLoTc3oMXK7Epob6Jb9fycTUxBPLWNCfZODq9prOsx/whDxUjeXIN1g5jLCsYeBVJRQJcuMPMnhyRiIQ3lAnlVBJOYZal2egkju6QfW4doLh9ubsxDmtxYlZK7IyMQGIKC6aBwv6c9g/WYankVDUpDkgJiuUzDUq6eBTZR89rp2IdpE1cBXq7rceJyZd/12Kr0WeTxYLneaqhJLFwGUNvJMllLbDtVmcSp+VyJOhU/W4VE/CkxolqxJK+H+1spvhe6sx8PDLSNLIO1aKgU+W/cQCdOw4DnzhQF4YaPqcOn8oJIqiaXrcGiSUaabSPyNVV6vUEqusODFVLVrFAoWBjyoOLjrPPueJGPdKIYS64wonptDA43mikyHkRSjfvOQdAp3DfROlxLWd15eP4sDj81Qs+5IGnj4PqhOTjq+OrTdnJ0JAW8XAKQiAblTz+nIYiTImdRKKTi4cKDgYiEiTfKOeLIcV/xzbgsXC+cV5dhtDdWz1xIHTNVCNvny9844dFbJSo1CyEnnC/8t+gKKXfeOZKbregDt2nDBT0EgoJT+7EQKl5E6VfZFIMDMNvIoBjyYEscaCa4vJ879rt2H5VTdg897JhBNKZhYLBwsYjxIlaCKp/QxJQiEGXnBjJ+a1dz2N25/YmRpXtWqEQcCxfsdo6nm5Q3tlA56dyKMLxxtW6qvLC3turys+XywHiePWpYHbsQauFtsCqksosoHYLLVZE119JpIa+IL+XBRGmGTglKXqauYOlROWxwzoDLiT+G2N1MCzWqoB4fmgOHDGwuzQgIfyQzUJ5SerNuPR5w5goOAK0iQn80yVfLEO8o4tolSyrrF6PJJQOOe4/YmdmXW7qbpgpWJ1QLh2fc7F9aqeSi9p4IaBZ8OVJRSNE7PsB9h+YCrBrF952hLc8DfnCaY7UfIFA8+UUGow4NXeQxNiopRm4D97MO53KRsK+c5NSUYjk2UtA99+YCpm4FE/xIIURvjxG9bhrd+8PzWuak2Nv3LbBrzoP+7Eum0j2s8BSdkqHJfsqE0m21S7Gc7vyyXeQwb8l+95PlZ/9MXiNbUbeTUDrnaXIXYZ13mu4sSUFqHM1h7ZekD8Ted630Q5EYUyN5JQZDmr6AUpyUvGlecfiS+//rTU71PHVnAtJbu1cQZcvg4pBm5boqGDYzHxG/aMF1PvdaWsZ88P8KHrHsbusRIGCo5Yc7IGPeX5YieRc+JQ2ixDqPqfyID/z5qteOs378ePV23G27+zCn/1vQeUZhqRfq85//Lao7VK169aOdk4Dpyj6AfIVagMORN0vQHP2UxsP4UTU7rYZZ9j52hRNHEFgIuOW4gTD50jOZx8YSTkkrVA7Z1LahurKqHYgqXJE1NeoPIWlooOhYV9Ilkimj+/WLMVZ3/yFtz8WFjXgRI0enJ2ou6yDqKpccZsWBVVwNt+IBkuKJdfVRl4st1ZUmOuZsB78zb+4bLjxWNiZnFZg/D5DTvHEp+rxnLUG2xczCq5QwD02rz8nBxZ8+jWESEDUBOCfeNJCaU/H3aOGZMiHdZuPYA7ngxjxnXtzxzbwsuiMDr59/UoY2OMaR3DjYBTwYDn3VgDty0mfsPu0ZJWQiGjOiHdxAZkDVypf1OQDDgZ91yGTKbuDojErd8RzpE9Y0X87rEduHHtdpE6D8RzUpfQJN+w864FzoF7ntqNgbyDI4bDDOtq1QjLxolZGa5jSdUIkwy8xw0zw/aOlxIGnCY4SSiTEgNPx4HT/zM34K6QUMJj5d2Ygct3+4SEIj1P3VY+fsM6vPN7DwCIme6qjaGRveep3WAMwqAUnLBtnKzvqk7NagycmLP6slwSQHVi+hoG7tdqwHMO3nbeEbj77y/CyUvmCLZLNzPGGCwGPLRlPwDguKh1V/UolPS2HoiZt7zF19XSlr+fjNGmvRMYLXo4/fC5AGIjpGrgNDcPTMa7hr/+4Wp87Y6wUfU8TSVAwqp/vAQP/OMlYry63UEiu7WBceCyxJWK7bZjDdyx4vr3e8aLGXHgUchnSTbgsYSS1MBjBp53LBFiWqsGTjsbWtdy3PzqTftxZ3TjpGsuM3D6LlUDL3oBfvfYDlx8/MLaGbgXdGYiT6cgjEIhBh7+Py40Zgtboyp1i4diPZFOvhyyRBpbVn3hWjTw6mNl4ng0drmTDEFeoDLjWBhpw9RyTTe+kSkPc3pcwTYp0kaOcd2otHbyaowDV/Vq2Tk8VvQSOqOuVreQUKoch67P0rm9ij8gyQYnSj4OGSzgsHm9AKo7MdNhcFEWqJdm4Doj6Ei6ORlwqvp4bHQToQJM+ybK8AKO4w4ZwJqPvkjMtf0ZlSEr9a9c0J/H/P682IarBARI1rGRm/42EuoOhqJQqPYJGcEwlT5bA5drjoQMPG3Ap8qBKLMgM/BaNXCqh0+7N5kIfe2Op/Dmb/wBQDz3j5caMJNUSceyWPj963eOYt9EGRceO5xwpOtAT3dyKn1H4KpLj8PbLzgSAES2I7GgHtcWSTByZxAyar0iCkVyYioMnC5PQwy4lClqsXCCkNGQJ2bBkY1W+DdjwPBAmqXRRJHHJ+uptNjlSAlVeqhWTlYU/FeelzXjD/98LY776P/iie2hs9NLGPBIQqkQ80zIa6o4EuQbDP190pJBId9Uqg+ifhdA2nFsUOSqlVmGgkiCF3C86/sPCMNCDJrm3oHIT9GbszHUmxPX4aldY2J3FP+W2hyPsa8nfO9dH7oId37wIgDJm2tvAyUUGelMTFuEQjqa+vfJz4Yhs5zzhNzWn3fEdUto4GVfBCXkpFBaXblgID2n6EZJ638yI8yVZMDjFg+KdUPXUm4YYzGGZ/eEzuqjhgdiA57BwGn+l0wYYWVcfPwi/FG0fQXCvpl08eRFIUsoBZWBlzxxoZvJwGlCTJX9kM3ZcYGfhAHXaOB5xxJFnGRQFIq8YOTtIC32vZIB3yRFTQDV48AzJRRl8pa8AOt3hgY8WXExycArOXtVI5xsKJCOSR4eyOOYRSH7feeFKzK/F0jfoBhj6IsSuMLfE+8o3AyHgLwQf/PIdnHjpw5OxOanyn4UDx3HbgOhz+JP/mhp4juzMi5V0Pmj75rfn8dh83tT76NuPY2GjoGThGJLTkwgfbOk81b2ebLqXxCViHXtpAZe9gXRykdSKJCtgau7w/3RfKfrkxWJRqTCtRju+vuL8It3Pz+hvdNr8vpfvqA3kYugAz3/5I5R7BwtGgNeKwYKrrh4sjf+EKlbN2VgunZ4YSbLPqYyOpkQ+2ykE3O86MOxGBwpEzOf4cSUIw90kQo6Bj6oYeCv+s97xHMkKxFIo84y4HQMdbKqmXXycwkGLho6hI8rnUvVAZeIgpBjkqOx5mwLH3rpsfjDP1yMk5bMyfxeQB+y2C8ZcM/nOGnJID7xypMyq/Sp2jhFwqga9lTZT3TaWTo3NLRLhnrwasWA1wo6f9U07mZJKNpaKF5cvCrv2OL66SQUIJwfshOTDHN/Ib4O1PhbaOC2JQxxtUgjIJSjaMdJ3ynXFpdBBtyxLQwWXJyybEisRTK6jm2Jm9fCgTwGCq6YizoDfu1dT+MPUZlnkjubFQfenCvdRgwUHMFoZGMgG7XDI82UMYZe18ZEyYcd/a0ucro8jXBiErs8MFmGbYXRMzSBklEo8d/CceXYyDt2VB42Npw6iUfO5NRFJMjdeoDY2Gb9RGL5ai0LXRJDWem+A0g9JzXlZIHwmpH+qd5AE6xbllDIce3aKET/poO+vCOMiBdwrBjuxxvOOjzz/Wp0ChXaUtuRFaOqk/lIpjt56Rys/eeXoMe1UzfQWkE+hmpRJr0NDCOUoV63vMTA6bW+fJg4pgsjBCIDLvljzo1qu8tzgHxEMhMmv1YtBnx+Xy7lxMxi4DQ3Zf8JrUXSrV2bid0b1fcXGaIaEiOXhSBk1dGZKWYhA9cbL5rUiwbzqbTjyZKfyoBUUauEcvWlx+Gbf36G9jUqg7p/opRi4LKhyickFGLg4f8qC+ea2OpeaQutGracbWHLvkkEAcff/ngNVm/aF8eUZ/wmssUq49YZ8JJg4PF7RaKMVANGxh0fvAhvjrrsqDeRrDA2ESkwQ2bTl3fw+w278aVb1sPzg6rXWY1S2jVWhMXS14W0Yfn7+vNhws10FzPdAKvdrBoZRihDZeBzel0UvQBjU16qpLMqobiSwaOIpds/8AKcfeR8AGHUFBnwqVLSgMs39ZoMeH8e+yfK4JwLWUburylDMPBE1UUy3JZ4TORhWUT+aEzFKiG6hJxt4sBrgtwjj7zYPa6NZXN78c4LV+D6dz0/8f6eXMjA5bhTGToDWQnvuHAFLjp2oX5s0eIfL/mwLQu2zVL6MBBnlAJxhh6NLWXAo/9ldiTr+KqxWLGwH1v3TWLPeAk/X70Vb/7GH4Qh1tWflg+SMuAa9qGLqaauOUTg1XM5ry+HoyMdW2V5dkIDj/+msc40vnYg72BkysPnf/ekNnpCxWdefQr++oVHice7x0royzkpWcOPijPp5CJ1zGrpgCwQA69mwKs5c6cL9bodOif0K23eN5nqS6sLOQTCmzklfcm7YllCoR2mqkWHf1dfhwv6c/ACjtGiJ/xhuoJunpTRrGveHEsoTJA+8i8xxpBzLEzVWPUwq5zHTDH7DLjEkMgQUrGfqy49LuHMBOJaIZNlX7v1bGQUihzhojJw2eDJOwE1RDKlg2uMa28FDfSohf2YLPuihvfolCecd1kOGbq5pCQUTSU2XWGoLftDp6munCyBIm8qMXB556STnqYD2eE3UfKq+jqOXzyYSLrZPVpEX97RjmO85Gl/q6yjH3fIAH75nvNqGmvMwCv/5mZJKKq8SJFdm/dOiPNGay6lgUeG15M0cHmcA3lXsOVJJdtRvuHVwmSpHPHOkaKYhzoJpexzbRgvkQbhxLStuGmFHCAQldOtBWoSXKMwCw245MDLJY2fDr05GxMlL5E4oEO9hZ50cG1LTFoncqDSBJPjSXWJPCSrDBb0DFzW4volo7Ty8Ll43yVHi8ek4VFIFIBUVqcKLt5Xu4RCN4MlQz14cscYPKnsqO5cEttKMXBLz8B1GazTgcxWR6c8bVEpFfuliJ7dY8Ww7Klc/kAKF9XViJfHfOGxw4kQ10rwa9TAG5lKXwmHRrkVY0VPXLcsBk7ngTRwSwkY6C84wlEp0tVzSWcigMxysjLIobztQOxrGJlKOzHlUri65s2CgVtM7A5kAlVw7VTd8axd7PYRY8BrQr+GgVeq091fcDE25WEiqxlsxrZ/uqAdQiUGnpBQlOw7lYHT1oych0CSgTPG8MazY6fc0shYPCc5Mv0qEkrMwAM8uGmfyHQluWRYagQd17sIP3PCoYMoeQE27pmQwgjTxyCjpLK8rHKm9Lt1GZP1QJabvCDdhUWHE6Skj91jRfTnnYQxoms0VtQzcNtiUgnk2sdfq4TSrDhwFYsGC8K559gqA8/QwD2O8VJYMlm+1lonppOWUGrRwOn8y52cdBJKOUNCoWsmx4GTbk/doAA9A88iQR948bH6F2aIWWfA5WYIxESyYnrp/SNTHqYyJZT6NPBqoB2CiEIJkkkuQEYYYTSJ1Vhwz+f4yf2b8dtHt4vn1DhgWVZaOjc04HIkCiVWZDLw6Pndo0W86j/vwft+tAZAnPhy5wcvwqP//JKwca1S2Y+M3RPbR7UOW/U3q6fZ1iwsYPoM/OpLj8M33xo7mVW9uJbrfOnJi3Ft1I8x4OF3yM5UmoMlL7uZCBnuejR82qVVY9iq8WwWXNsS5R1o51LI0sCdOIxwsuQnHO1A5MQsenj/j9fEBjxH50hf3C0LROL2jie72qsI2y3y1PeKDl9CQmEik1neAYcMXN2Vpo9zw9+ch1OWDVUd93Qw6wx4QgPPiElNvj/U3iZKlaNQaqlGWAsGBQO3FAYu16KWJZRk9p3KwMt+gA/97OGEQVaNkrwAKB5ZZuBUDjWrOD09S8lOD27aJ8ZsWww9ubBHoyOlS5OxWbGwHwCwZd9ExYxP+s2qhJKIQpFeo6HW68R8x4UrcNFxsZNZZau1MDwAWB5JUUB4vuX5MUdTV0OFiDWuw9iKOPAmVbabDg6JSt7SEstnaeBSGOF4yU+EugIQRb6uX71V1Ezv0Tgxa7k+lOm6d7yYek2Wn+QG4/JNj0gDzUXHYkLeUTVwta6Qzlepyp6NxCw04Okklkq9Kgd7HIxMehWiUML/G6GBy+Ozo+wuT4TdZTBwK8nA1YQRXesodXHIWDiYh20xPLc/1uR2RVvNbAYevkCTVd41yAZW7rpCNyRaTFPluGaGLqGGDGCKgUdPMKa/ic5UAy8rP7rWnZZ8s1ezdxMZiRnkgQx4PSGFQY1OzFaC5rOTYuDZYYQTRS9Fll4o3VTlcssAEu3japG4iIGrvVTD8cbXqhw1Sg7Hm/a1iCxnaV7PUZ2YNTBwY8DrwIBOQqlw0QcLrmj6oJVQovXdIPstxldwQwY+MuWFBecl9iuzSkfRwF9x2hL88SlxiVGdI7FSGFnesTCvL5dg4JTIUk0DJ5bkSZEmiaL3UtcV+j8fNQ+e8nz4XF84Xz62atxpMWVLETObwqoTStdYQQeZyZFktWxeKE8N1sLAiV3WxcCjtO8WSSS1gErbiqYq0e/KSuTxfI6xopdaa+cdvQAffdkJAOLWZnSO5PmcVQtFBt1Q94ynDbh8sy15cU/SROMKMuCcxh7/FlVCyarsmThmoTlhncAsNOCnLBvCH59yKP71ihPFha/EqkjSGCt6Fb37DbLfYoKfumyu2Kq99Zv3JzRw2YjFqfRxGOGrTl8iXtd1wqkURsYYw/y+XGJyxxq43oATyx+LwrzkFmSJKBFZQpFCBmmiU91oHSj066wj5iWep61t1udmysDVTi21LrakAQ8/c8bycOzyIs7a/anp2rXgS687DWcun6etidMukMNcrtkjPybIqfSb906kwnmBeHdJERt0c5N3lLXc8AYEAw9vBGS0846VON9yu0V5vLTmiFTI1zDlxPQCjBe92LGvMeCN8p/pMOsM+GDBxZdedxredM5yUfimklMnGXaYXrxqy7KZ4uldYSXAs4+cl2CVWTHYuhrQ1SZxtUQOtes7edizJBTaJo4rDLysRG3IEooIz7KZSP/3Ap4pRS1f0Ieb/vYCfPAlSW89naOsz82Ugb/rBUfh7CPjm4ausUK1486NPvPyaGckN2WupoHXE4Vy4THD+Mk7z2mqQagXtMslvVj4nTIY+J7xEp47MIVjovK7MqgcwQ4y4CShyAy8BgPeJzTwkKTI7QVlQy1LKLpoJx0Dl2/cYTVGHyf+029xyj/fBCBNCJqNWWfAZeQkL3IW5DuqjoE3WkI5ddlcAMCZR8xL3NnJSH78FScl3u8oHnGg+jayWjW6eX3Jru/0G6sy8GKSZfhKL8GwvjnH7zfsxpNRD03bssKJHhV3quQMPmbRQOpmawttvHI0x3Qxty+HL73uNPFY11pLB/l3UBz3RccuxI3vPR9vOOsw8Vq1KJRmValrFXoVg03zVI2nJ8P72HMjAIBjFqYNOFV0pKQXoYFL87m23rQWCq4ldpmxAbcSREBudKLLxCRbLK9TeXcs1yXSJbA9/6j5+MZbV1Yd70ww64pZyWAg/bRGBl7ROdQYC37VpcfhL88/AkO9yb6P+yZKWDHcl4jZBmJjXRcD1+wkvve2s7A1yoicl1FpLyuTngy42nWnHATJBAg7dMq+4dr74uesiIF7Pvq5U3dVx1obRc8E8o27VgYu41Cp+fDxiwexZV+cJJWtgVdPMqsXH3/FSTWn5deDz77mlFQNeQLJdXRDoxuwykRpzj763AEAcQMMGXP7wnlJBpw+k1XiOQu2xdCbc7QMXEbJC4QTWxcH7gVB2MzBZrjgmGHRxYdADFyGvJN+3tIhvPC4RXWNvV7MagMugvQrauCxMdOloDd6Q5RzLMHYZIO4d7ykvdGIdnGa2PAs6HYS5x29QPytK0sLVGfgch1nIJRSVAlFzdaMNfB0cadaQAYh6zo0wgDK171SZ5wsqJmU8q6gmvO1kQxcvfk3CpXK31KsNjHZ2PglrxhlUD6+fRR5x6qogW8bmQorAEbfVW9tF9tiyk05MuDKbm2qHOD+Z8Kyr7KEIhyu0Xx1bQvf+YszU05+tTIokDTgjYpcq4RZbcBr6cGYiBtvQRSKjL1SmNOe8RKG+/Op94hqhDUU9OnPO3jj2YdXjVnPcoJlGfCin5RQCKpBdu10WJUTGfCiF0kodZ7IVjBw+TfUKqHIWDiQvG5yaGDWtZhtEgr5PuiGrhY6I6M4OuXhyAV92vPS49rCMSjvMqfHwONoGLoBzOl1E1Ejn7vpCayPdhYyA18+P4zxP2xeLywWZ82qEVJ5TSq9fOPKWk+NRHfPnioo1xB2pWt+kEQU3tbQkYXYK0WC7BkramOG1TBCILugz2mHDeGqS4+retxMBq5JQuCcCwauso2yHyTOrWuzVM9Hy4qdmNNh4NXeP1MNXEVWI4dKUHX7Qh0MvFndylsF2r3QHCHtO8XAJYYr96eVwRgTDmH5xlY3A2exAe9xbfFdy+Ymuxetl2QheR5fdvIh+PGVZ+O1ZyyDbbHMIAhdHLjMwLMCExqJGc8expjNGFvNGPt1IwbUSFCrNdmppKIvZwsWvniOfmIB+uSTmUIO5Qu43lFHTCTpxNSPRVcdUIcsA66LA1crECaOF/BU+NVeJfY2Z1soOGEYYaU48CyIpIoMNtNoBtuIG0Kisl1WGGETNPB2gKJQyIDT9VKNV38hLrlLZWh1oBR7+TrU2yKOsoNpfDTllsztyfTzyAacMYazjpwPxhhsxjJzAwqunfo+OZGnFQa8ERLKewGsAzBY7Y2txpKhHmz81OUV38MYw4MfeRF2jxWxWDOxmrkL+pcrTsQHf/ownogiNnRsjSaiHJ+c5cSsdcLIBjwnhf7pPq7rOAJQDC1PGCjXthLNk+k5igOfHgOvrIE3q1VVLbjxvedrb7ryzb56LZTOSYufDmjXSkyUbugqA7cthqMW9mPt1pGK1ReJOcs35nrPkayB97i2yMikOkBZn9Hhry8+CqcfNlf7mu7mK+9idTHhjcaMZj9jbCmAywFc25jhtAeubWmNNxAbjmZIKM9bOoRf/XVcC1o3iU5bNoSvvuF0nH3EfPFcVhhhrUXjZZlAnoSk2d2/ca+IxS2W9QXr//3Gx3Hnk7sS7MS1rVRikWuHHWiEhFKvBl4ldbqW1Opm4fjFg9poCiD2mVSthdLlDJwMbkkJGNA1+6D4+Eo7XV39k3phsVja6XFt7IwyO5cO9dSd13HlBSuwcvk87WuqAf/J/Zvx8i/fLR53g4TyBQAfApBpORhjVzLGVjHGVu3atSvrbR2PZjmUc06yRnj6uAyXnrw44fSRWec3//wMnBpVOpsOA5cdbvTx13ztXlz2xbsAZDPwa+9+JjVmnTHNOZZwYga8chy4DrGEon+9GdJWIyBKAFSphdLOHUQjoEootGPSzUUiSZUS6yiZbibnhbGkhELNSw6pcOOYDvKKz+wff7E28djvZCcmY+xlAHZyzh+o9D7O+TWc85Wc85XDw8PTPdysxqAocFXb5ZD1uouOXYgPRdmLtW7ZZAMuf5fsNSd9vtpNwdGEX6ljDTXwkIHXGwfeqqzDBz/yIqz+yIsa9n3EzHXFxgCpVGoHFaaaDlQnpmDgmnnzgRcfgz9buQyXnnRI9ve5jTkvtNMb6nVx9aXHY0F/XlTibBRUBq5e61ZkZc5EA38+gD9mjF0GoABgkDH2Pc75GxsztM7AK05bglsf35m5VW4EiC3UqgaoRo2MQa0MXI62kUlCwHkqjruaKqOrISEj1MAtoYHXH0ZIGnhzF4Na5XGm+MCLj8Vbv3l/ppPyVactxSGDhYrt77oBqoRCgQOvPG1J6r3z+/P491c/r+L30VqY6c6E2rZdef6ROPeoBbjs5MXa973noqO0Ra9qQbXGGq3QwKc9ezjnVwO4GgAYYy8A8IHZZrwB4I9POTRR/a8ZyEo/rhVkkGs14LLsINqcWQxBwNPV1apsA5MMPGmcqWRuwbXhBRxFr3rX99T325UllE7FC45diN++7wLRwk7FIXMKeNXp2Qky3QIyYtSZZtm83qqBA5XQo3FiAsAP3362to58Fq669DhcdtIhOPeoBRXf944Lj0xkY9eDgSrhjZ3OwA0ahLxST6Je0GSfjtOE6nb3553IgKstoip/p0yUVAYeF+IKn58o+dMOI1TxpyuX4r4oi65T0cxdW6dAZeAzha6RMQCcs2K+7u2ZWDLUo832VKdzvUlCMg6bX1mS6WgGLoNzfjuA2xvxXQcjKMuyUu/OSqikO2bh+nedi4G8g1d99R4A4UTeP1HSdBihZCiGss9TpWjl2PO0AU/WcRkvetNKi9bh068+pa7vMWgOyOAev7gxNytdGGGtOGphf2bNlizMxAleKZ4dAFYu14cfNhKGgXcAiIHXG2JHWzhygtYzYSi2lVj7QCEs/kOpwTQUuicUHBtl30N/wUkY8CkplViVUEjHpMzEiZJfd3cSp0ocuEF7YVkM173zHKwY7m/I91XTlSvh5+86V9t9XkYjpbhKEVX//eaVuOT4hZmvNwrGgHcAiIHXI6Hc/P4LRZGeuX053PS3F+CwefV72YlB9+cdBDyWUIg9k4HPuxZGi2nn0mRJNuDJ14hF5YWE4mk70leCYODGgncssuKkp4NeURyr/gs+UHCnrWc3GofP721JiKsx4B0AwcDrMOBHLUwynmMWTW8LS8k//QUHnMd9LylBhzTwQ4d6sHuslNLEZc28moQyOuVVLO2rQzsTdQxaD5Jkml0I6iMvOyHRh3O6OHnJHDyy9UDq+VaFv3Z3EOosgWDgbTBWJJEQA6eUaMr2pIVEN4ytUi9NICmhqCDjS0y86AV1/0bRHcVQ8IMCPXWGxNaLC48Nc1EuP3lxZoRQPfjB28/CK05NR6m1opQsYAx4RyCvNIZtBwYKbiShhAaZmDKto6OjDipT5SDB/qckCYUaJVNMNTFwuRJdvQy83vcbdDdESGyT7tcfePGxuOeqFzYsK3Og4OLEQ+eknjcM/CACOfladdfWYaDgIOCxJEL9RIkJrRiO2cqPrzwb//FnYRSIXE5z096wEw0ZeEraqZZuXwlqf0KD2Y2CyGloTFiiCttiFYtpTQeVykA3G8aAdwBiBt6+y0HMZ5IYuNKZW84YnN+fx4XHhPqhHHb44cuPxwuOHca5SsxusrxqfRObPmvs98GBrHK0nQxd8EGryJhxYnYAiIG3Q+f91XvOw90bdosU+smozZurMHCLhWFa5OWnBAi5MuJJS+bgW39+Jq6962kAcShitXopldBJHdgNmg8KzWsSAW8KdMSrVfPWGPAOQKHOVPhG4uSlc3Dy0jn48q3rAUCUgxVhhBEDtyyG06S6yDnHwocvO144hWTQZ4UB13T8rhUiDtxoKAcFyPC1opJfo6Cb063y3RgD3gEgCaVS95tmg2JWVQNO60hXhOrtFxyp/S6VZSc719fJwE0Y4UGF4w4ZQF/OxnsvPrrdQ6kZOrbdqnlrDHgHgOo+6IrgtwpkoEkDtxQtsh67K5rAIu3ErJ+BGw38YMJAwcWj//LSdg+jLugcliaM8CCCk9EItpUguzoRaeBUA4XiwOvJKksl9CQYeGMbOhgYtBs6ucSEER5EyOoj2EpYioTiKwa8HkZRSQOv14lp4sANOh06Yz3dyqL1wqyODoBg4G2UUMjYThQVAx4NqZ5GDCrLdmYQRmg0cINOh85Y19s6cLowBrwDQAaunU5MMqzUyYSiAOIolNq/iwpe0RROhBE2qB64gUGnoJ0kwxjwDoArJJQOcGJGGjgxcArfaxQDrzsKxRhwgw5HO0mGMeAdgFhC6QQnZlJCIVWnHkMqdO7I6DfCifm8pel6EwYGnYB2+mlMGGEHIO6o004NPBzDWDHJwINpMPA4jDDETMIIGWO4/l3nYsWCxjQMMDBoNNpRRVQcu21HNhA4IioU9dITD2nbGMhAj0cG3AsCjE6VJQNez7cpEoolG/D62crpUgaogUGnoZ0yn5FQOgCL5/TgsX95Cd5y7vK2jYHm4GjUkmrHSBEnf+wm7BotApjeJCXSzhgTRtw0aDCYbTAauAF6c05LWjBlgRi4XB4WALbsm0y8XhvSWj7dAOp1YhoYdDoMAzdoO7LsMxn0euJaKWtS/gQ5Nk1UicFsQzudmMaAGwDIZtglMuB12N1Fg2G3kwuOiSsVkqPHSCgGsw3GiWnQdmSRCGrYUE8q/bJ5vbj36hdi0UDctopYikmNN5htMBq4QdshM/DeqLEsEIcV1qvPL57Tk5BdXMPADWYpjAZu0HbIBnqgEG/MKKxwppOUtpntbBtnYNAMGA3coO2Q7TO1TQNiBj5TkiEkFMPADWYZ2snAjQZuACApocgMXBjwmTJwigM3DNxglkHWwG/5uwsTjb6bfuzpfpAxtgzAdwAsQhj4ew3n/IuNGphBa1Gdgc9UQjFhhAazE/KucsVwa0s+zISBewD+jnP+IGNsAMADjLHfcc4fa9DYDFoIWQMf1GngMzTgxolpMFvRlRo453wb5/zB6O9RAOsALGnUwAxai6SEEjNwqlE+0yRRx2RiGsxSdH0UCmNsOYDTANynee1KxtgqxtiqXbt2NeJwBk2APAdlBk6YeRQKxYEbBm4wu9DVceCMsX4APwPwPs75iPo65/wazvlKzvnK4eHh9BcYdARkJ+WAxoDPWAMXDNwYcIPZBVo777vk6JYfe0ZRKIwxF6Hx/j7n/PrGDMmgHZAN9GCPq3l9Zt8fM3AjoRjMPmz81OVtOe60VxMLvV5fB7COc/75xg3JoB2QDbTaOd5i9WdiqnBNOVkDg4ZjJnTo+QDeBOCFjLE10b/LGjQugxaDGHiPa6f07pnKJ0AsnRgnpoFB4zBtCYVzfjfU1isGXQuy0cvm9aRCBmeaxAMYJ6aBQTNg6JABAGBkMoz3Xjq3N+VobITNFU5MY8ANDBoGY8ANAABFL0z/PfHQwZRkMtMkHkCuhWKmnIFBo2BqoRgAAC4/eTFGpjz82cpluGXdjsRrjdDATSamgUHjYQy4AYCQGb/p7MMBpDXvxmjgVE7WGHADg0bB7GcNUlB16sZo4OFUM9UIDQwaB7OaDFJQGXcjWLNrM1isMWzewMAghDHgBimoJnamSTwAcMicHhwyWKj+RgMDg5phNHCDFALOE4+Vh9PCW845HK89Y9nMv8jAwEDAGHCDFIJAedwAC+7YlgkhNDBoMMyKMkjBVwy2HzSAghsYGDQcxoAbpBAoBlt9bGBg0BkwBtwghRQDb4QIbmBg0HAYA26QgiqZGAnFwKAzYQy4QQorl88DAPzpyqUAGuPENDAwaDyMATdIYclQDzZ+6nJceMxCAIaBGxh0KowBN8gE1S8x9tvAoDNhDLhBJnImbtvAoKNhVqhBJtTemAYGBp0Fs0INMqF25jEwMOgsGANukAnDwA0MOhtmhRpkwmjgBgadDbNCDTJhJBQDg86GMeAGmTASioFBZ8OsUINMGAnFwKCzYVaoQSaMhGJg0NkwBtwgE0ZCMTDobJgVapAJI6EYGHQ2ZrRCGWMvZYw9wRjbwBi7qlGDMugMGAnFwKCzMW0DzhizAXwFwKUATgDwOsbYCY0amEH7YSQUA4POxkxW6JkANnDOn+aclwD8CMAVjRmWQSfANQzcwKCjMRMDvgTAZunxlui5BBhjVzLGVjHGVu3atWsGhzNoNRgzBtzAoJPR9D0y5/wazvlKzvnK4eHhZh/OwMDA4KDBTAz4VgDLpMdLo+cMDAwMDFqAmRjw+wEczRg7gjGWA/BaAL9szLAMDAwMDKrBme4HOeceY+w9AH4LwAbwDc75ow0bmYGBgYFBRUzbgAMA5/w3AH7ToLEYdCA+/SfPwxHDfe0ehoGBgQYzMuAGsx9/esay6m8yMDBoC0ymhoGBgUGXwhhwAwMDgy6FMeAGBgYGXQpjwA0MDAy6FMaAGxgYGHQpjAE3MDAw6FIYA25gYGDQpTAG3MDAwKBLwTjnrTsYY7sAPDvNjy8AsLuBw2kUOnVcQOeOzYyrPphx1Y9OHdt0x3U45zxVzrWlBnwmYIyt4pyvbPc4VHTquIDOHZsZV30w46ofnTq2Ro/LSCgGBgYGXQpjwA0MDAy6FN1kwK9p9wAy0KnjAjp3bGZc9cGMq3506tgaOq6u0cANDAwMDJLoJgZuYGBgYCDBGHADAwODLkVXGHDG2EsZY08wxjYwxq5q81g2MsYeYYytYYytip6bxxj7HWNsffT/3BaM4xuMsZ2MsbXSc9pxsBBfis7fw4yx01s8ro8xxrZG52wNY+wy6bWro3E9wRh7SRPHtYwxdhtj7DHG2KOMsfdGz7f1nFUYVyecswJj7A+MsYeisf1z9PwRjLH7ojH8OOqJC8ZYPnq8IXp9eYvH9S3G2DPSOTs1er5l8z86ns0YW80Y+3X0uHnni3Pe0f8Q9tt8CsCRAHIAHgJwQhvHsxHAAuW5TwO4Kvr7KgD/3oJxXADgdABrq40DwGUAbgTAAJwN4L4Wj+tjAD6gee8J0fXMAzgius52k8a1GMDp0d8DAJ6Mjt/Wc1ZhXJ1wzhiA/uhvF8B90bn4CYDXRs9/DcBfRX+/C8DXor9fC+DHLR7XtwC8WvP+ls3/6HjvB/ADAL+OHjftfHUDAz8TwAbO+dOc8xKAHwG4os1jUnEFgG9Hf38bwCuafUDO+Z0A9tY4jisAfIeH+D8AQ4yxxS0cVxauAPAjznmRc/4MgA0Ir3czxrWNc/5g9PcogHUAlqDN56zCuLLQynPGOedj0UM3+scBvBDAddHz6jmjc3kdgIsZY6yF48pCy+Y/Y2wpgMsBXBs9Zmji+eoGA74EwGbp8RZUnuDNBgdwE2PsAcbYldFzizjn26K/twNY1J6hZY6jE87he6Lt6zckiakt44q2qqchZG4dc86UcQEdcM4iOWANgJ0AfoeQ8e/nnHua44uxRa8fADC/FePinNM5+0R0zv6DMZZXx6UZc6PxBQAfAhBEj+ejieerGwx4p+E8zvnpAC4F8G7G2AXyizzcD7U9NrNTxhHhqwBWADgVwDYAn2vXQBhj/QB+BuB9nPMR+bV2njPNuDrinHHOfc75qQCWImT6x7VjHCrUcTHGTgJwNcLxnQFgHoC/b+WYGGMvA7CTc/5Aq47ZDQZ8KwC5NfrS6Lm2gHO+Nfp/J4CfI5zUO2hLFv2/s03DyxpHW88h53xHtOACAP+NeMvf0nExxlyERvL7nPPro6fbfs504+qUc0bgnO8HcBuAcxBKEI7m+GJs0etzAOxp0bheGslRnHNeBPBNtP6cPR/AHzPGNiKUel8I4Ito4vnqBgN+P4CjI09uDqHY/8t2DIQx1scYG6C/AbwYwNpoPG+J3vYWAL9ox/gqjOOXAN4ceePPBnBAkg2aDkVvfCXCc0bjem3kjT8CwNEA/tCkMTAAXwewjnP+eemltp6zrHF1yDkbZowNRX/3AHgRQo3+NgCvjt6mnjM6l68GcGu0q2nFuB6XbsQMoc4sn7OmX0vO+dWc86Wc8+UI7dStnPM3oJnnq9Ee2Gb8Q+hFfhKh/vbhNo7jSIQRAA8BeJTGglC3ugXAegA3A5jXgrH8EOHWuoxQV3tb1jgQet+/Ep2/RwCsbPG4vhsd9+Fo0i6W3v/haFxPALi0ieM6D6E88jCANdG/y9p9ziqMqxPO2fMArI7GsBbAR6V18AeEDtSfAshHzxeixxui149s8bhujc7ZWgDfQxyp0rL5L43xBYijUJp2vkwqvYGBgUGXohskFAMDAwMDDYwBNzAwMOhSGANuYGBg0KUwBtzAwMCgS2EMuIGBgUGXwhhwAwMDgy6FMeAGBgYGXYr/D7pqz+4kZMSJAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.simulate('smoothbknpo', [.6, 0.9, .2, 4])\n", + "plt.plot(lc.counts[1:400])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## (iv) Using impulse response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Before simulating a light curve through this approach, an appropriate impulse response needs to be constructed. There\n", + "are two helper functions available for that purpose. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`simple_ir()` allows to define an impulse response of constant height. It takes in starting time, width and intensity as arguments, all of whom are set by default." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAUqElEQVR4nO3df5BdZX3H8fcnuxIUWsCQasmPbhxiO0FpxW3EqbUOaTWxlNhpmAkyY5wyEztjWlvt2FBnEKn/0DrSdhptM4JS/BEo1XZHoykVZ5xxJGZBBUNIXUFJEMvyQyw6GO453/5xzg3Xy8Y9+yt37/1+XjOZvfec5959zjy7nz35nueeRxGBmZkNriW97oCZmS0sB72Z2YBz0JuZDTgHvZnZgHPQm5kNuOFed6Db2WefHSMjI73uhplZX7nzzjsfjYjlU+1bdEE/MjLC+Ph4r7thZtZXJH3vRPtcujEzG3AOejOzAeegNzMbcA56M7MB56A3MxtwjYJe0kZJhyVNSNo5xf7XSrpLUkvSlq592yR9u/63bb46bmZmzUwb9JKGgF3AJmAdcJmkdV3NHgTeCnyy67UvBN4LvApYD7xX0llz77aZmTXVZB79emAiIu4HkLQH2Azc224QEd+t95Vdr30DcFtEPF7vvw3YCHxqzj03szmZeOQpxr75ffCtyheNl774F7j4/HPm/X2bBP0K4EjH86NUZ+hNTPXaFd2NJG0HtgOsXr264Vub2Vx89CsP8In9DyL1uifWdvH55/Qs6BdcROwGdgOMjo769MLsJHimKHnxL57KHX+9odddsQXW5GLsQ8Cqjucr621NzOW1ZraAihKGlvh0PoMmQX8AWCtpjaRTgK3AWMP33we8XtJZ9UXY19fbzKzHirJkiSdYpzDtMEdEC9hBFdCHgFsi4qCkayRdAiDpNyUdBS4F/kXSwfq1jwN/Q/XH4gBwTfvCrJn1VhEw7KRPoVGNPiL2Anu7tl3V8fgAVVlmqtfeANwwhz6a2QIoy8CVmxz859wsqVZZukafhIPeLKnqYqwjIAOPsllSZQRDToAUPMxmSbXKYMiflkrBQW+WVFmGa/RJOOjNkioc9Gk46M2SKiJY4tJNCg56s6SKMhgectBn4KA3S6oofUafhYPeLKlqeqWDPgMHvVlSrcLTK7Nw0Jsl5TP6PBz0Zkl5emUeDnqzpIoyWOKgT8FBb5ZUEcGwgz4FB71ZUoXvdZOGg94sKZdu8nDQmyVVlC7dZOGgN0uqDJ/RZ+GgN0vKNfo8HPRmSbU8jz4NB71ZUl54JA8HvVlShW+BkIaD3iwp3wIhDwe9WVK+GJuHg94soYigDDy9MgkHvVlCRRkAPqNPwkFvllARVdB7zdgcHPRmCZVl9dVrxubgoDdLqFUn/ZATIAUPs1lC7TP6oSWOgAwajbKkjZIOS5qQtHOK/Usl3Vzv3y9ppN7+PEk3SrpH0iFJV85z/81sFto1epfoc5g26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19bbLwWWRsTLgVcCb2v/ETCz3nm2dOOkz6DJGf16YCIi7o+IY8AeYHNXm83AjfXjW4ENkgQEcJqkYeD5wDHgR/PSczObNZducmkyyiuAIx3Pj9bbpmwTES3gSWAZVej/GHgYeBD4QEQ83v0NJG2XNC5pfHJycsYHYWYzc7x045xPYaGHeT1QAOcAa4B3SXpJd6OI2B0RoxExunz58gXukpmV9QemPL0yhyZB/xCwquP5ynrblG3qMs0ZwGPAm4EvRMQzEfEI8BVgdK6dNrO5aZX+wFQmTYL+ALBW0hpJpwBbgbGuNmPAtvrxFuD2iAiqcs1FAJJOAy4E7puPjpvZ7BU+o09l2qCva+47gH3AIeCWiDgo6RpJl9TNrgeWSZoA3gm0p2DuAk6XdJDqD8ZHI+Lu+T4IM5uZ8niN3kGfwXCTRhGxF9jbte2qjsdPU02l7H7dU1NtN7PeahV16cZBn4KvuZsl1D6jd+kmBwe9WULHb1PsM/oUHPRmCbVn3XjhkRwc9GYJtUs3rtHn4KA3S8grTOXioDdLqHDpJhUHvVlC7aB36SYHB71ZQu2bmvmMPgcHvVlCReEafSYOerOECt8CIRUHvVlCpT8wlYqD3iwhn9Hn4qA3S8i3QMjFQW+WkD8wlYuD3iwhn9Hn4qA3S8ifjM3FQW+WUOGbmqXioDdLqPSasak46M0SarlGn4qD3iwhX4zNxUFvllDpD0yl4qA3S6jlefSpOOjNEvK9bnJx0JslVJTVVwd9Dg56s4SOLzzinE/BQW+WUFGWDC0Rco0+BQe9WUJF6QuxmTjozRIqI1ji3/40PNRmCbWKYNhJn4ZH2iyhMsIXYhNpFPSSNko6LGlC0s4p9i+VdHO9f7+kkY5950v6qqSDku6RdOo89t/MZqEow1MrE5k26CUNAbuATcA64DJJ67qaXQE8ERHnAtcB19avHQY+DvxJRJwHvA54Zt56b2az0nLQp9LkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGVfO2Xg/cHRHfBIiIxyKimJ+um9lslQ76VJoE/QrgSMfzo/W2KdtERAt4ElgGvBQISfsk3SXp3VN9A0nbJY1LGp+cnJzpMZjZDBURnl6ZyEJfjB0GXgNcXn/9Q0kbuhtFxO6IGI2I0eXLly9wl8ysKMPLCCbSJOgfAlZ1PF9Zb5uyTV2XPwN4jOrs/8sR8WhE/ATYC1ww106b2dwUZXgZwUSaBP0BYK2kNZJOAbYCY11txoBt9eMtwO0REcA+4OWSXlD/Afgd4N756bqZzVYRPqPPZHi6BhHRkrSDKrSHgBsi4qCka4DxiBgDrgdukjQBPE71x4CIeELSB6n+WASwNyI+t0DHYmYNFYVr9JlMG/QAEbGXquzSue2qjsdPA5ee4LUfp5piaWaLRBGedZOJPxlrlpCnV+bioDdLyGf0uTjozRLyLRBycdCbJVSUvhibiYPeLCF/YCoXB71ZQj6jz8VBb5ZQEcHwkIM+Cwe9WUJlGSzxGX0aDnqzhHw/+lwc9GYJeXplLg56s4RK348+FQe9WUIu3eTioDdLyPe6ycVBb5aQ73WTi4PeLKGyxNMrE3HQmyXUKksvJZiIg94soaLE97pJxEFvllAZwZB/+9PwUJsl1CpKhpf41z8Lj7RZQmX4YmwmDnqzhKpbIPS6F3ayeKjNEvLCI7k46M0SKiI8vTIRB71ZMhHhFaaScdCbJVNG9dWlmzwc9GbJFHXSu3STh4PeLJkyqqD3GX0eDnqzZFr1Gb1r9Hk46M2SaZdufJviPBz0ZsmUDvp0HPRmyRThoM+mUdBL2ijpsKQJSTun2L9U0s31/v2SRrr2r5b0lKS/nKd+m9ksuXSTz7RBL2kI2AVsAtYBl0la19XsCuCJiDgXuA64tmv/B4HPz727ZjZXhS/GptPkjH49MBER90fEMWAPsLmrzWbgxvrxrcAGqfopkvQm4AHg4Lz02MzmpB30nl6ZR5OgXwEc6Xh+tN42ZZuIaAFPAssknQ78FfC+n/cNJG2XNC5pfHJysmnfzWwW/IGpfBb6YuzVwHUR8dTPaxQRuyNiNCJGly9fvsBdMsvNF2PzGW7Q5iFgVcfzlfW2qdoclTQMnAE8BrwK2CLpb4EzgVLS0xHxT3PtuJnNTnt6pRceyaNJ0B8A1kpaQxXoW4E3d7UZA7YBXwW2ALdHRAC/3W4g6WrgKYe8WW+1POsmnWmDPiJaknYA+4Ah4IaIOCjpGmA8IsaA64GbJE0Aj1P9MTCzRcjTK/NpckZPROwF9nZtu6rj8dPApdO8x9Wz6J+ZzbP2Tc08vTIPfzLWLBmXbvJx0Jsl43vd5OOgN0vGNfp8HPRmyRSeXpmOg94smfYHpoaHHPRZOOjNkvEZfT4OerNkSt8CIR0HvVkyrcI3NcvGQW+WTPuM3qWbPBz0ZskUZfXVpZs8HPRmybTKKumH/NufhofaLJlnL8b61z8Lj7RZMsdLN67Rp+GgN0umqEs3PqHPw0Ntlkz7jH7YSZ+GR9osmfYtEJzzeXiozZIp6lN61+jzcNCbJVN/MNalm0Q80mbJtBcecc7n4aE2S6bwTc3ScdCbJeMVpvJx0JslczzofTE2DQe9WTI+o8/HQW+WTFEGSwTyGX0aDnqzZIoIn80n46A3S6Ysw4uOJOOgN0umVfqMPhsHvVkyhYM+HQe9WTKla/TpOOjNkmmV4Tn0yTQKekkbJR2WNCFp5xT7l0q6ud6/X9JIvf33JN0p6Z7660Xz3H8zm6HSpZt0pg16SUPALmATsA64TNK6rmZXAE9ExLnAdcC19fZHgT+IiJcD24Cb5qvjZjY7rtHn0+SMfj0wERH3R8QxYA+wuavNZuDG+vGtwAZJioivR8T36+0HgedLWjofHTez2Sk8vTKdJkG/AjjS8fxovW3KNhHRAp4ElnW1+SPgroj4afc3kLRd0rik8cnJyaZ9N7NZKCIYHnLQZ3JSLsZKOo+qnPO2qfZHxO6IGI2I0eXLl5+MLpmlVfhibDpNgv4hYFXH85X1tinbSBoGzgAeq5+vBD4DvCUivjPXDpvZ3JQRLHGNPpUmQX8AWCtpjaRTgK3AWFebMaqLrQBbgNsjIiSdCXwO2BkRX5mnPpvZHLSKYNhBn8q0QV/X3HcA+4BDwC0RcVDSNZIuqZtdDyyTNAG8E2hPwdwBnAtcJekb9b9fmvejMLPGyvDF2GyGmzSKiL3A3q5tV3U8fhq4dIrXvR94/xz7aGbzyNMr8/EnY82SaZWu0WfjoDdLpgzX6LNx0Jsl4+mV+TjozZIpymCJf/NT8XCbJVOUwbCTPhWPtlkyReCLsck46M2SKcoS3+omFwe9WTJFCUMu3aTi0TZLplp4pNe9sJPJw22WTOE1Y9Nx0JslU90Cwb/6mXi0zZKpPjDV617YyeSgN0um8L1u0nHQmyVTfWDKQZ+Jg94sGV+MzcdBb5ZMWXrhkWwc9GbJtLzwSDoOerNkSgd9Og56s2SK8P3os3HQmyXj0k0+DnqzZFy6ycdBb5aMp1fm46A3S6Qsgwg8vTIZB71ZIkUEgD8Zm4yD3iyRoqyC3ve6ycVBb5ZIWZ/Ru0afi4PeLJFW6dJNRg56s0TKdunGF2NTcdCbJdKu0bt0k4uD3iwRB31ODnqzRApfjE2pUdBL2ijpsKQJSTun2L9U0s31/v2SRjr2XVlvPyzpDfPYdzOboeNn9K7RpzJt0EsaAnYBm4B1wGWS1nU1uwJ4IiLOBa4Drq1fuw7YCpwHbAQ+VL+fmfWA59HnNNygzXpgIiLuB5C0B9gM3NvRZjNwdf34VuCfJKnevicifgo8IGmifr+vzk/3n3XfD37En37y6/P9tmYD5VhRAjDkom0qTYJ+BXCk4/lR4FUnahMRLUlPAsvq7Xd0vXZF9zeQtB3YDrB69eqmff8Zpw4PsfZFp8/qtWaZXLD6LF79krN73Q07iZoE/YKLiN3AboDR0dGYzXuMnH0aH7r8lfPaLzOzQdDkP3APAas6nq+st03ZRtIwcAbwWMPXmpnZAmoS9AeAtZLWSDqF6uLqWFebMWBb/XgLcHtERL19az0rZw2wFvja/HTdzMyamLZ0U9fcdwD7gCHghog4KOkaYDwixoDrgZvqi62PU/0xoG53C9WF2xbw9ogoFuhYzMxsCoqYVUl8wYyOjsb4+Hivu2Fm1lck3RkRo1Pt8yQrM7MB56A3MxtwDnozswHnoDczG3CL7mKspEnge3N4i7OBR+epO73mY1mcfCyLU/Zj+ZWIWD7VjkUX9HMlafxEV577jY9lcfKxLE4+lhNz6cbMbMA56M3MBtwgBv3uXndgHvlYFicfy+LkYzmBgavRm5nZzxrEM3ozM+vgoDczG3ADE/TTLWC+mElaJelLku6VdFDSO+rtL5R0m6Rv11/P6nVfm5I0JOnrkj5bP19TLxw/US8kf0qv+9iEpDMl3SrpPkmHJL26z8flL+qfsW9J+pSkU/tlbCTdIOkRSd/q2DblWKjyj/Ux3S3pgt71/LlOcCx/V/+c3S3pM5LO7Nh3ZX0shyW9YabfbyCCvuEC5otZC3hXRKwDLgTeXvd/J/DFiFgLfLF+3i/eARzqeH4tcF29gPwTVAvK94N/AL4QEb8G/DrVMfXluEhaAfwZMBoRL6O67fhW+mdsPgZs7Np2orHYRLX+xVqqZUo/fJL62NTHeO6x3Aa8LCLOB/4HuBKgzoKtwHn1az5UZ15jAxH0dCxgHhHHgPYC5n0hIh6OiLvqx/9HFSYrqI7hxrrZjcCbetLBGZK0Evh94CP1cwEXUS0cD31yLJLOAF5Ltd4CEXEsIn5In45LbRh4fr0S3AuAh+mTsYmIL1Otd9HpRGOxGfjXqNwBnCnpl09KRxuY6lgi4r8iolU/vYNqRT6ojmVPRPw0Ih4AJqgyr7FBCfqpFjB/ziLk/UDSCPAKYD/wooh4uN71A+BFverXDP098G6grJ8vA37Y8UPcL+OzBpgEPlqXoT4i6TT6dFwi4iHgA8CDVAH/JHAn/Tk2bScai37PhD8GPl8/nvOxDErQDwRJpwP/Dvx5RPyoc1+9NOOinwsr6WLgkYi4s9d9mQfDwAXAhyPiFcCP6SrT9Mu4ANT1681Uf8DOAU7jueWDvtVPY/HzSHoPVTn3E/P1noMS9H2/CLmk51GF/Cci4tP15v9t/3ez/vpIr/o3A78FXCLpu1QltIuo6txn1uUC6J/xOQocjYj99fNbqYK/H8cF4HeBByJiMiKeAT5NNV79ODZtJxqLvswESW8FLgYuj2c/5DTnYxmUoG+ygPmiVdewrwcORcQHO3Z1Lrq+DfjPk923mYqIKyNiZUSMUI3D7RFxOfAlqoXjoX+O5QfAEUm/Wm/aQLX+cd+NS+1B4EJJL6h/5trH03dj0+FEYzEGvKWefXMh8GRHiWdRkrSRquR5SUT8pGPXGLBV0lJJa6guMH9tRm8eEQPxD3gj1ZXq7wDv6XV/Ztj311D9l/Nu4Bv1vzdS1ba/CHwb+G/ghb3u6wyP63XAZ+vHL6l/OCeAfwOW9rp/DY/hN4Dxemz+Azirn8cFeB9wH/At4CZgab+MDfApqmsLz1D9b+uKE40FIKqZeN8B7qGaadTzY5jmWCaoavHtDPjnjvbvqY/lMLBppt/Pt0AwMxtwg1K6MTOzE3DQm5kNOAe9mdmAc9CbmQ04B72Z2YBz0JuZDTgHvZnZgPt/PP6JMlAe4GMAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = sim.simple_ir(10, 5, 0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using `relativistic_ir()`. Its arguments are: primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAAk/klEQVR4nO3deXhc9XX/8ffRaLTakmxLlhfJ+wICjGMLCGExCZshBLckJJC0TVoSkhSapCRtyC/5kTT5pVnakqQNSSBLeUIJhKx1CRQIOCwJi21278ZYRl5lebeW0YzO748ZmZElW2N7pHtn9Hk9jx7P3HulOWjmHL46997v19wdERHJfQVBByAiItmhgi4ikidU0EVE8oQKuohInlBBFxHJE4VBvXB1dbVPmTIlqJcXEclJy5cv3+nuNf3tC6ygT5kyhWXLlgX18iIiOcnMmo60Ty0XEZE8oYIuIpInVNBFRPKECrqISJ5QQRcRyRMDFnQz+4mZ7TCzVwc47gwzi5vZe7IXnoiIZCqTEfqdwMKjHWBmEeAbwMNZiElERI7DgAXd3Z8Adg1w2N8BvwJ2ZCMokY07D/L42pagwxDJKSfcQzezicCfA9/P4NjrzWyZmS1raVGyypF9d8l6PnXvC0GHIZJTsnFS9NvAZ929e6AD3f0Od29098aamn7vXBUBkiP0Pe1ddHdrARaRTGXj1v9G4F4zA6gGLjezuLv/Ngs/W4appl1tuMP+jjiVZdGgwxHJCSdc0N19as9jM7sTuF/FXE5EWyxOy/5OAPa2d6mgi2RowIJuZvcAFwDVZtYMfBGIArj7DwY1OhmW3tjVfujx3vauACMRyS0DFnR3vzbTH+buHzqhaESAptaDhx6roItkTneKSuhs2tV26PGe9liAkYjkFhV0CZ2m1jaS59g1Qhc5FiroEjqbdrUxo2YEoIIucixU0CV0Nu1qY1btSIoLC1TQRY6BCrqESqLbad7dRv3oMipLo+xtU0EXyZQKuoTKlj3tdCWcyWNSBV0jdJGMqaBLqPRc4TJ5tAq6yLFSQZdQ6Snok8aUUVWmgi5yLFTQJVSaWtuIRozxlaVUlEbZox66SMZU0CVUNu06SN2oMiIFRmVplH0aoYtkTAVdQqWptY1Jo8sAqCyNsr8zTkJT6IpkRAVdQsPd2dTaxuQxbxZ0QKN0kQypoEto7GnrYn9n/NAIvSo1be4eFXSRjKigS2g09VyyOKYceHOEritdRDKjgi6h0TNtbnoPHVTQRTKlgi6hsak1dQ26CrrIcVFBl9DYtKuNsSOLKS2KAFBZWgTA3jbNiS6SCRV0CY2mXW9e4QIaoYscKxV0CY1NrclZFnsUFRZQGo2ooItkaMCCbmY/MbMdZvbqEfZ/wMxeNrNXzOxPZnZ69sOUfNfRlWDbvg4mjy7vtV0TdIlkLpMR+p3AwqPsfx1Y4O6nAV8B7shCXDLMNO/uuWSxrNf2qjLN5yKSqcKBDnD3J8xsylH2/ynt6TNAXRbikmGmqfXNWRbTVWiELpKxbPfQrwMePNJOM7vezJaZ2bKWlpYsv7TkspVb9gEwrVotF5HjlbWCbmZvJ1nQP3ukY9z9DndvdPfGmpqabL205IEn1+/klAkVVJUV9dquGRdFMpeVgm5mc4AfAYvcvTUbP1OGj4OdcV7YtJtzZ1b32VdZGtVcLiIZOuGCbmaTgF8Df+nua088JBlunn29la6Ec96Mvn+1VZVGaYsl6Ep0BxCZSG4Z8KSomd0DXABUm1kz8EUgCuDuPwBuAcYA3zMzgLi7Nw5WwJJ/nly3k+LCAhqnjOqzr7LszZuLqkcUD3VoIjklk6tcrh1g/4eBD2ctIhl2nlq3kzOnjqYkGumzL/1uURV0kaPTnaISqG17O1i34wDnzujbP4fkZYuArkUXyYAKugTqqfU7Afo9IQrJHjpo1SKRTKigS6CeWtfCmPIiTh5X0e9+TdAlkjkVdAmMu/PU+lbOmVFNQYH1e4wKukjmVNAlMKu37Wfngc4jtltAPXSRY6GCLoF5al2yf37eUQp6NFLAiOJCjdBFMqCCLoF5cv1OpteUM76y9KjHaT4XkcyooEsgOroSPPd6K+fNHHhOH824KJIZFXQJxIOvbqWjq5sFswcu6JWlhext17qiIgNRQZch1xlP8G8Pr+WUCRUsyGCErpaLSGZU0GXI/ezZTTTvbucfF550xMsV01WVFqmgi2RABV2G1IHOON99bD1nTxvD+Ue5uiVdZZlG6CKZUEGXIfWjJzfQejDGZy87idTsnAOqLI3S0dVNR1dikKMTyW0q6DJkdh7o5IdPbOCyU8cxt74q4++r0HwuIhlRQZch893H1tMR7+Yzl84+pu+r0u3/IhlRQZch8evnm7nrmSbe21jH9JoRx/S9ms9FJDMq6DLo7np6Izfd9xJnTR3NF97ZcMzfX6n5XEQyMuCKRSIn4rYl6/mXh9Zw0clj+e775/W7KtFANEIXyYwKugyKHfs6+Paj6/jZs5tYNHcC/3r16UQjx/cHoQq6SGZU0CWrNrW2cfsTr/GL5c3EE938zTlT+cI7T87oBqIjOTSFrgq6yFENWNDN7CfAFcAOdz+1n/0GfAe4HGgDPuTuz2c7UAmn9liCF97YzdLXd7N04y6e3tBKxIx3z6/jo+dPY0p1+Qm/RqTAGFlSqMsWRQaQyQj9TuC7wE+PsP8yYGbq6yzg+6l/JQ90JbrZuqeD5j1tbN7dTvPudjbvaWfLnuS/m3e3E+92zGB27Ug+ct40/vqcKdRWlGQ1Ds3nIjKwAQu6uz9hZlOOcsgi4Kfu7sAzZlZlZuPdfWu2gpRgJLqdBd9cwpa9HYe2mcHYkcVMrCplTl0VV8wZz/zJo5g/efShXvdgqCqLsvNA56D9fJF8kI0e+kTgjbTnzaltfQq6mV0PXA8wadKkLLy0DKaOrgRb9nZw5ekTuOaMeiaOKmV8ZSlFhUN/tetpE6v4n5e20JXoPu6TqyL5bkgzw93vcPdGd2+sqRl42lQJVizeDcBbJlXxthnVTB5THkgxB1gwq5oDnXFe2LQnkNcXyQXZyM7NQH3a87rUNslxsUSyoAdVxNO9bUY1kQLjibUtQYciElrZyNTFwF9Z0luBveqf54eeEXpRCFocFSVR3lJfxeMq6CJHNGCmmtk9wNPAbDNrNrPrzOxjZvax1CEPABuA9cAPgb8dtGhlSHXGwzNCBzh/Vg2vbtlLq06OivQrk6tcrh1gvwM3ZC0iCY0wjdAhWdBvfWQtT63fyaK5E4MORyR0wpGpEkph6qEDnDaxklFlUbVdRI4gHJkqoRQLWcslUmCcO7OGJ9ftJPmHoYikC0emSiiFreUCcP7Malr2d7Jq6/6gQxEJnfBkqoROLJFcwzMsI3RI9tEBnlintovI4cKTqRI6sXiyrRGmgl5bUcJJ40bqenSRfoQnUyV0ek6KFoeooENylL5s427aYvGgQxEJlXBlqoTKmz30Y19laDCdP7OGWKKbZza0Bh2KSKiooMsRhe0qlx6NU0ZRGo2wZLXaLiLpwpWpEiqxePKkaDRy/KsNDYaSaITzZlbz6KrtunxRJI0KuhxR2G4sSndRQy1b9nawYsu+oEMRCY3wZaqERlhbLgAXnjSWAoNHVm4POhSR0AhfpkpohPHGoh5jRhQzf/IoFXSRNOHLVAmNzkQ3RZECkuuAh89FJ9eycus+Nu9pDzoUkVBQQZcjisW7Q9lu6XFxQy0Av9coXQRQQZej6EqEu6BPqxnB9JpytV1EUsKbrRK4WLw7lP3zdBc11PLMhlb2dXQFHYpI4MKdrRKosLdcAC5pqCXe7fxhjW4yEgl3tkqgYiFvuQDMrR9F9YgitV1EUEGXo4jFu4mGvOUSKTDecdJY/rBmx6HLLEWGq4yy1cwWmtkaM1tvZjf3s3+SmS0xsxfM7GUzuzz7ocpQ68yBlgvAxQ3j2N8R59nXNVmXDG8DZquZRYDbgMuABuBaM2s47LAvAPe5+1uAa4DvZTtQGXqxeDfFIR+hA5w3s5ryogi/e3lr0KGIBCqTbD0TWO/uG9w9BtwLLDrsGAcqUo8rgS3ZC1GCkgs9dEhO1nVRQy3/u2IbXQm1XWT4yiRbJwJvpD1vTm1L9yXgL8ysGXgA+Lv+fpCZXW9my8xsWUuLrkoIu1y4yqXHu+ZMYE9bF0+t3xl0KCKByVa2Xgvc6e51wOXAXWbW52e7+x3u3ujujTU1NVl6aRksuXAdeo/zZlUzsqSQ+19S20WGr0yydTNQn/a8LrUt3XXAfQDu/jRQAlRnI0AJTtjvFE1XXBjh0lPG8fDKbXSm5nEXGW4yydalwEwzm2pmRSRPei4+7JhNwIUAZnYyyYKunkqOy6WWC8AVc8azvyPOE2vVdpHhacBsdfc4cCPwELCK5NUsK8zsy2Z2ZeqwTwMfMbOXgHuAD7mWksl5uXJStMc5M6oZVRbl/pd1Tl6Gp8JMDnL3B0ie7Ezfdkva45XAOdkNTYLWmUM9dIBopICFp45n8YubaY8lKC0K1+LWIoMtd7JVhlyutVwA3jVnPAdjCZas2RF0KCJDLreyVYaMuydbLjk0Qgc4a9oYqkcUq+0iw1JuZasMmXi34x7O9USPJlJgXH7aOB5bvYMDnfGgwxEZUrmVrTJkwrxA9EAWzZ1AR1c3D76ia9JleMm9bJUhEeYFogcyb9IoplWX84vlzUGHIjKkci9bZUj0zImSiyN0M+Pd8+t47vVdNLUeDDockSGTe9kqQ6Izh1suAFfNm0iBwa80SpdhJDezVQZdLDVCL87Rgj6+spRzZ9bwq+c3092te9xkeMjNbJVBl8s99B7vmV/H5j3tPL1BC1/I8JC72SqDKpevculxSUMtI0sK+aXaLjJM5G62yqDqabmEfU3RoymJRrjy9Ak8+OpW9nV0BR2OyKDL3WyVQZUPI3SAqxvr6ejq1vJ0MizkdrbKoMmXgn56XSUzxo7gF8veGPhgkRyX29kqg6YzD06KQvKa9Pc11vP8pj2s3rYv6HBEBlVuZ6sMmly/bDHd1Y11FBcW8NOnm4IORWRQ5X62yqDoypOWC0BVWRFXnj6B376wWSdHJa/lfrbKoIjl8K3//fmrs6fQFkvozlHJa/mRrZJ1+XBjUbrT6iqZW1/FXc80odURJV/lR7ZK1uXLVS7p/ursyWxoOcifXtOdo5KfMspWM1toZmvMbL2Z3XyEY95rZivNbIWZ/Sy7YcpQy7eWC8Dlp41ndHkRP316Y9ChiAyKAbPVzCLAbcBlQANwrZk1HHbMTOBzwDnufgrwqeyHKkMpXy5bTFcSjfC+M+p5ZOV2tuxpDzockazLJFvPBNa7+wZ3jwH3AosOO+YjwG3uvhvA3bVCb46LxbuJRgwzCzqUrPrAWZMA+NmzmwKORCT7MinoE4H02+yaU9vSzQJmmdkfzewZM1vY3w8ys+vNbJmZLWtpaTm+iGVIxOK5t0B0JupGlXHRybXc/WwTbTGtOSr5JVsZWwjMBC4ArgV+aGZVhx/k7ne4e6O7N9bU1GTppWUwxBKJvOqfp/vogmnsbuviF8t0CaPkl0wydjNQn/a8LrUtXTOw2N273P11YC3JAi85KhbvztuCPn/yaBonj+KHT24gnjr5K5IPMsnYpcBMM5tqZkXANcDiw475LcnROWZWTbIFsyF7YcpQ60p43hZ0gI8umE7z7nZ+94pmYZT8MWDGunscuBF4CFgF3OfuK8zsy2Z2Zeqwh4BWM1sJLAH+wd11sW8Oy9ceeo8LTxrLjLEj+MHjG3SjkeSNjDLW3R9w91nuPt3dv5radou7L049dne/yd0b3P00d793MIOWwdcZ76aoMBJ0GIOmoMC4/vxprNq6jyfX7Qw6HJGsyN8hmJyQWCJ/e+g9Fs2dQG1FMbc/8VrQoYhkRX5nrBy3WDxBcR63XACKCyNcd+5U/ri+lVea9wYdjsgJy++MleOWz1e5pLv2zEmMLCnkPx5bF3QoIics/zNWjksskbxTNN+NLIny4XOn8fDK7RqlS85TQZd+DZcROsDfnDuFqrIotz6yJuhQRE7I8MhYOWaxPL/KJd3IkijXnz+NJWtaWN60O+hwRI6bCrr0K9+vQz/cB8+ewpjyIo3SJacNn4yVYxLL8ztFD1deXMjHL5jOH9e38swG3RMnuWn4ZKwck1g8QfEwKugAf/HWydRWFHPrw2t196jkpOGVsZKx4XBj0eFKohFuePsMntu4i8fXanpnyT3DK2MlY8Oth97jfWfUM2l0Gf/8wCrNxCg5Z/hlrAwonuim2/NrPdFMFRdG+D+Xn8Ta7Qe4d+kbA3+DSIgMv4yVAeXjAtHH4tJTxnHW1NF865G17OvoCjockYwNz4yVo4qlFoiODsOWC4CZ8X+vaGBXW4zbHlsfdDgiGRueGStH1VPQh+sIHeDUiZW8e14d//nHjWxqbQs6HJGMDN+MlSPqTBX0fJ9tcSD/cOlsCiPG1x5cFXQoIhkZ3hkr/RruPfQetRUlfHzBdB58dRtPaREMyQHDO2OlX10q6Id85PxpTK0u5/O/fYWOrkTQ4YgclTJW+jjUQx/mLRdI3mz01T87labWNs2ZLqGXUcaa2UIzW2Nm683s5qMc924zczNrzF6IMtR0UrS3t82o5qp5E7n98Q2s3b4/6HBEjmjAjDWzCHAbcBnQAFxrZg39HDcS+CTwbLaDlKGlgt7XF97ZwMiSQj7361fo7tY8LxJOmWTsmcB6d9/g7jHgXmBRP8d9BfgG0JHF+CQAneqh9zG6vIjPv7OB5U27uWfppqDDEelXJhk7EUi/B7o5te0QM5sH1Lv77472g8zsejNbZmbLWlo0+VFYqYfev3fPm8jbpo/h6w+sZvOe9qDDEenjhDPWzAqAW4FPD3Ssu9/h7o3u3lhTU3OiLy2DRC2X/pkZX79qDt3ufOa+l9R6kdDJJGM3A/Vpz+tS23qMBE4F/mBmG4G3Aot1YjR3aYR+ZJPGlPHFd53C0xta+ckfXw86HJFeMsnYpcBMM5tqZkXANcDinp3uvtfdq919irtPAZ4BrnT3ZYMSsQw63Vh0dFc31nFxQy3ffGgNa7bpqhcJjwEz1t3jwI3AQ8Aq4D53X2FmXzazKwc7QBl6arkcnZnxtatOo6KkkE/9/EU647rhSMIho4x19wfcfZa7T3f3r6a23eLui/s59gKNznOb7hQdWPWIYr5+1RxWbd3HrY+sDTocEUB3iko/OtVDz8hFDbW8/6xJ3P74Bn6/cnvQ4YiooEtfOimauVuuaODUiRXcdN+LmmZXAqeMlT5iiW6iEaOgwIIOJfRKohG+/4H5AHz87uWawEsCpYIufQzXBaKPV/3oMr71vrms2LKPLy1eEXQ4Mowpa6WPWLxbJ0SP0YUn13LD26dz79I3uPc5TQ0gwVDWSh+xePewXU/0RNx08WzOm1nNF377Kn96TQtiyNBT1kofsYRG6McjUmB89/3zmFpdzsf/63leazkQdEgyzChrpQ+1XI5fZWmUn3zoDAoLjL+5cym7DsaCDkmGEWWt9NGpk6InpH50GT/8YCNb93bw0buW6U5SGTLKWumjK9FNsUboJ2TepFHc+t7TWbpxN5+850XiqbtvRQaTslb6UMslO66YM4EvvquB/12xjX/81cuablcGXWHQAUj4xBLdlERV0LPhr8+ZyoGOOP/2yFrKiwr58qJTMNMNWzI4VNClj1i8m4oSfTSy5cZ3zOBAZ5zbn9hAeXEhn104W0VdBoWyVvpQyyW7zIybLzuJA51xfvD4a5jBP16qoi7Zp4IufSSvQ48EHUZeMTO+suhUHPj+H16jPZbglisaNF+OZJUKuvSRvFNUhSbbCgqMr/7ZqZRGI/z4qddpjyX456tOI6KiLlmigi59dMZ12eJgMTO+8M6TKS+K8O+PraetK8G/Xj2HYv1FJFmggi59xOIJ3Vg0iMyMmy6ZTVlxIV9/cDU79nVw+1/Op6qsKOjQJMcpa6WProTrpOgQ+NiC6Xznmrm8sGkPV33vTzS1Hgw6JMlxylrpQ5NzDZ1Fcydy90fOYldbjD//3p9Y3rQr6JAkh2WUtWa20MzWmNl6M7u5n/03mdlKM3vZzB41s8nZD1WGQqLbSXQ7RRH1dIfKGVNG85u/PYeKkkKuueMZ7nqmCXfdVSrHbsCCbmYR4DbgMqABuNbMGg477AWg0d3nAL8EvpntQGVoHFpPVCP0ITW1upz/vuFczp1Rzf/97at8+r6XaI9pUi85Nplk7ZnAenff4O4x4F5gUfoB7r7E3XtWyH0GqMtumDJUVNCDU1kW5ccfPIObLp7Fb17czJ9/74+8vlN9dclcJlk7EXgj7XlzatuRXAc82N8OM7vezJaZ2bKWlpbMo5Qh05lIjgpV0INRUGB84sKZ/OeHzmDbvg7e+e9P8vOlm9SCkYxkNWvN7C+ARuBf+tvv7ne4e6O7N9bU1GTzpSVLekboxbpsMVAXzB7Lg588j7n1VXz2V6/w0buW03qgM+iwJOQyydrNQH3a87rUtl7M7CLg88CV7q5PXo7qKejRQt29GLTxlaX813Vn8YV3nswf1rRw6bef5OEV24IOS0Isk4K+FJhpZlPNrAi4BlicfoCZvQW4nWQx35H9MGWoxFILMegql3AoKDA+fN40/vvGc6geUcT1dy3n4/+1nO37OoIOTUJowILu7nHgRuAhYBVwn7uvMLMvm9mVqcP+BRgB/MLMXjSzxUf4cRJyOikaTiePr+B//u5c/uHS2Ty6egcX3fo4dz/bpEUzpJeMbv139weABw7bdkva44uyHJcEpCuhgh5W0UgBN7x9BpefNp7P/+YVPv+bV7nnuU3ccsUpnDl1dNDhSQgoa6WXzp4Ruk6KhtbU6nLu/vBZfOeaubQeiPHe25/mhruf541dbQN/s+Q1Tc4lvajlkhvMjEVzJ3JJwzjueGID3398PY+s3M77z5rE3759OmNHlgQdogRAWSu9HLpsUQU9J5QWRfjkRTNZ8pkLuGreRO56pokF3/wDX39wNbsPxoIOT4aYslZ6iamHnpPGV5by9XfP4fc3LeCSU2q5/YnXOOcbj/GV+1eydW970OHJEFHWSi8x9dBz2tTqcr5zzVt46FPnc+kp47jzTxs5/5tL+MwvXmLNtv1BhyeDTD106UU99Pwwq3Yk33rfXG66eBY/fup17l26iV8ub+at00bzwbOncHFDLYX6n3beUUGXXtRyyS/1o8v40pWn8IkLZ3Lfsje46+kmPn7384yvLOHqxnqunl9H/eiyoMOULFFBl14O3fqv0VteGV1exMcWTOcj503jsdU7+OnTG/mPx9bx74+u423Tx3B1Yx2XNIyjvFglIZfp3ZNeOnWVS16LFBgXN9RycUMtm/e086vlzfxyeTN///OXKIm+woUn1/KuORO4YHYNJVFN/5BrVNCll0N3imqEnvcmVpXyiQtncuPbZ7CsaTf3v7yF3728ld+9vJXyoggXzB7LJafUcsHssVSWRoMOVzKggi69xOLdFBYYBQWabXG4KCgwzpw6mjOnjuaWKxp4ekMrD7yylUdW7uB3r2ylMLV/wawaFsyuYXbtSMz0+QgjFXTpJRbXAtHDWWGkgPNm1nDezBq++mfOi817eHjFdv6wZgdfe3A1X3twNbUVxZwzo5qzp43h7OljqBulk6phoYIuvcQSKuiSVFBgzJs0inmTRnHzZSexbW8HT6xt4fG1LSxZvYNfP59cFqF+dClnTB7N/CmjmD95FLPGjtRfeAFRQZdeYvFu9c+lX+MqS3jvGfW894x6urudtTv28/RrrTz9WiuPr23h1y8kC/zIkkLm1FVy2sQqTq+r5LS6SiZWlapNMwRU0KUXtVwkEwUFxknjKjhpXAV/fc5U3J2m1jaWN+1m+abdvNy8hx89uYF4ar72ytIoDeMrOHl8BSePH8ms2pHMrB1BWZFKUDbptym9dKrlIsfBzJhSXc6U6nLePb8OgI6uBKu37eeV5j2s3LqfVVv38bPnmujo6j70fXWjSpkxdgTTqkcwraacaTXlTBlTzriKErVtjoMKuvSilotkS0k0wtz6KubWVx3aluh2mloPsnb7AdZt38+a7ft5reUgz2xo7VXoiwoLqB9VyuQx5dSPKqVuVBkTR5UysaqU8VUlVJcXq+D3QwVdelHLRQZTpMCYVjOCaTUjWHjquEPbu7udbfs62NBykKZdB9nU2sbG1oM0tbax9PVd7O+M9/o50YhRW1HC+MoSxlaUUDuyhNqKYsZWFFM94s2v0eVFRIZR4VdBl140QpcgFBQYE6pKmVBVyrlU99m/t72Lzbvbad7dxrZ9HWzZ08G2ve1s3dvBqi37WLJvB22xRJ/vM4Oq0iijy4sYU15MVVnycVVZEaPKolSWvvlVURqloiRKRWkhI4oLc3LysowKupktBL4DRIAfufvXD9tfDPwUmA+0Au9z943ZDVWGQpd66BJCPUW3YULFEY/Z39FFy/5Odh6IsfNAJy37O2k9GGPXwU52HYzReiBGU2sbL7yxhz1tMboSR19gu6wowojiQkaUFDKyuJDynq+iyKHHpdEI5cURSosKKYtGKC2KUBqNUBKNUBItSP2belyYfFxcWDBo7aIBC7qZRYDbgIuBZmCpmS1295Vph10H7Hb3GWZ2DfAN4H2DEbAMrliimxEl+sNNcs/IkigjS6JMqxn4WHfnYCzB3vYu9rZ1sbe9i30dXezviLMv9fhAR5wDnXH2d8bZ3xHnYGecXQfbOBiLc7AzQVss3qvvfyw+tmA6N1920nF979FkkrlnAuvdfQOAmd0LLALSC/oi4Eupx78Evmtm5u5H/1/gcXh8bQv/7/6VAx8ox6VpVxsXzMogI0RymJklR9/FhUysKj3un9Pd7bR3JTgYi9MR66a9K1no27sSdHYln3d0JeiMdx/6t7Orm3mTq7L3H5Mmk4I+EXgj7XkzcNaRjnH3uJntBcYAO9MPMrPrgesBJk2adFwBjyguZGbtiOP6XhnYzNoRXD2/PugwRHJCQYEdar+EwZBG4e53AHcANDY2Htfoff7kUcyfPD+rcYmI5INMzn5tBtKHbHWpbf0eY2aFQCXJk6MiIjJEMinoS4GZZjbVzIqAa4DFhx2zGPhg6vF7gMcGo38uIiJHNmDLJdUTvxF4iORliz9x9xVm9mVgmbsvBn4M3GVm64FdJIu+iIgMoYx66O7+APDAYdtuSXvcAVyd3dBERORY6A4SEZE8oYIuIpInVNBFRPKECrqISJ6woK4uNLMWoOk4v72aw+5CDYmwxgXhjU1xHRvFdWzyMa7J7t7v/ByBFfQTYWbL3L0x6DgOF9a4ILyxKa5jo7iOzXCLSy0XEZE8oYIuIpIncrWg3xF0AEcQ1rggvLEprmOjuI7NsIorJ3voIiLSV66O0EVE5DAq6CIieSLnCrqZLTSzNWa23sxuDjCOn5jZDjN7NW3baDN7xMzWpf4dFUBc9Wa2xMxWmtkKM/tkGGIzsxIze87MXkrF9U+p7VPN7NnU+/nz1BTNQ87MImb2gpndH5a4zGyjmb1iZi+a2bLUtjB8xqrM7JdmttrMVpnZ2UHHZWazU7+nnq99ZvapoONKxfb3qc/8q2Z2TyoXBuXzlVMFPW3B6suABuBaM2sIKJw7gYWHbbsZeNTdZwKPpp4PtTjwaXdvAN4K3JD6HQUdWyfwDnc/HZgLLDSzt5JcUPxb7j4D2E1ywfEgfBJYlfY8LHG93d3npl2zHPT7CPAd4H/d/STgdJK/t0Djcvc1qd/TXGA+0Ab8Jui4zGwi8Amg0d1PJTkF+TUM1ufL3XPmCzgbeCjt+eeAzwUYzxTg1bTna4DxqcfjgTUh+J39N3BxmGIDyoDnSa5NuxMo7O/9HcJ46kgm+zuA+wELSVwbgerDtgX6PpJcjex1UhdUhCWuw2K5BPhjGOLizfWWR5Ocrvx+4NLB+nzl1Aid/hesnhhQLP2pdfetqcfbgNoggzGzKcBbgGcJQWyptsaLwA7gEeA1YI+7x1OHBPV+fhv4R6A79XxMSOJy4GEzW55aYB2Cfx+nAi3Af6ZaVD8ys/IQxJXuGuCe1ONA43L3zcC/ApuArcBeYDmD9PnKtYKeMzz5v97Argk1sxHAr4BPufu+9H1BxebuCU/+SVwHnAmcNNQxHM7MrgB2uPvyoGPpx7nuPo9ki/EGMzs/fWdA72MhMA/4vru/BTjIYW2MID/7qV70lcAvDt8XRFypnv0ikv8jnACU07dVmzW5VtAzWbA6SNvNbDxA6t8dQQRhZlGSxfxud/91mGIDcPc9wBKSf2pWpRYWh2Dez3OAK81sI3AvybbLd0IQV8/oDnffQbIffCbBv4/NQLO7P5t6/kuSBT7ouHpcBjzv7ttTz4OO6yLgdXdvcfcu4NckP3OD8vnKtYKeyYLVQUpfLPuDJPvXQ8rMjOQar6vc/dawxGZmNWZWlXpcSrKvv4pkYX9PUHG5++fcvc7dp5D8PD3m7h8IOi4zKzezkT2PSfaFXyXg99HdtwFvmNns1KYLgZVBx5XmWt5st0DwcW0C3mpmZanc7Pl9Dc7nK6gTFydwkuFyYC3J/uvnA4zjHpI9sS6So5brSPZeHwXWAb8HRgcQ17kk/6x8GXgx9XV50LEBc4AXUnG9CtyS2j4NeA5YT/LP5OIA39MLgPvDEFfq9V9Kfa3o+awH/T6mYpgLLEu9l78FRoUkrnKgFahM2xaGuP4JWJ363N8FFA/W50u3/ouI5Ilca7mIiMgRqKCLiOQJFXQRkTyhgi4ikidU0EVE8oQKuohInlBBFxHJE/8ftBDZCqJovU8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = sim.relativistic_ir()\n", + "r_ir = sim.relativistic_ir(t1=3, t2=4, t3=10, p1=1, p2=1.4, rise=0.6, decay=0.1)\n", + "plt.plot(r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "collapsed": true + }, + "source": [ + "Now, that the impulse response is ready, `simulate()` method can be called to produce a light curve." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Since, the new light curve is produced by the convolution of original light curve and impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter `full`." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'full')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, some times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to `filtered`." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "lc_new = sim.simulate(sample, r_ir, 'filtered')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To learn more about what the lags look like in practice, head to the `lag analysis` notebook." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Channel Simulation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we demonstrate simulator's functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where you can create a new channel for each energy range and simulate.\n", + "\n", + "In practical situations, different channels may have different impulse responses and hence, would react differently to incoming light curves. To account for this, there is an option to simulate light curves and add them to corresponding energy channels." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.simulate_channel('3.5-4.5', 2)\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Above command assigns a `light curve` of random-walk distribution to energy channel of range 3.5-4.5. Notice, that `simulate_channel()` has the same parameters as `simulate()` with the exception of first parameter that describes the energy range of channel.\n", + "\n", + "To get a `light curve` belonging to a specific channel, `get_channel()` is used." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAABLAklEQVR4nO2dd5hU5fXHv2dmtlCWvkuHpSNIERakKWBBEGvEqNEYjQlBiTGxG40xRn8SNcXEFmISjd0olohBIsUOuEiVzrJ0Yemd3Z15f3/c+8688869M3dm79Q9n+fhYebeuzPvzNx77nnPe873kBACDMMwTPbjSfcAGIZhGHdgg84wDJMjsEFnGIbJEdigMwzD5Ahs0BmGYXIEX7reuFWrVqK0tDRdb88wDJOVLF68eI8QothqX9oMemlpKcrLy9P19gzDMFkJEW2228chF4ZhmByBDTrDMEyOwAadYRgmR2CDzjAMkyOwQWcYhskR2KAzDMPkCGzQGYZhcgQ26AwTJ/PW7MbWfcfSPQyGiSBthUUMk22U3j0Tlwxsh3eW7kC+z4N1D01I95AYJgz20BkmDt5ZugMAUF0bSPNIGCYSNugMwzA5gqOQCxFVAjgMwA+gVghRpu1vCuAlAJ3M13xcCPFPd4fKMAzDRCOeGPpYIcQem31TAawSQlxIRMUA1hLRy0KI6roPkWGyB9mjl4jSPBKmPuJWyEUAKCLjLG4MYB+AWpdem2HSTo0/MmZu1WD9xQWb0eWeD7D3yMlUDIthwnBq0AWA2US0mIgmW+x/EsApAHYAWAHgFiFExBVARJOJqJyIyquqqhIeNMOkms82RE5OawORBv3VRVsBADsPnkj6mBhGx6lBHyWEGARgAoCpRHSmtv88AEsBtAMwEMCTRNREfxEhxHQhRJkQoqy42FKfnWEykv1HI6OHfguDvnrnIQCA18MhFyb1ODLoQojt5v+7AbwNYKh2yPUAZgiDDQA2Aejt5kAZJp1UHY4MoQQsQi4SHxt0Jg3ENOhE1IiIiuRjAOMArNQO2wLgbPOY1gB6Aahwd6gMkz4e+e+aiG3b9h9Pw0gYxh4nWS6tAbxtrtr7ALwihJhFRFMAQAjxLIDfAnieiFYAIAB3RcmIYZicYOmWA+jZushynz+K984wySKmQRdCVAAYYLH9WeXxDhieO8PUG7qVNLbdV+tng86kHq4UZZgEqdVSGQPKIum6XYdTPRyGYYPOMImiZ7ks2bo/+PihmatTPRyGYYPOMIly4HhN8PH+o9W47Jkvg8+tCpEYJtmwQWeYGMiK0DZNCsO23/Ty18HHm/YeDdtnlaPOMMmGDTrDxGD/McMTH9y5ue0xugFnD51JB2zQGSYGg377PwBAg3yv7TF6VstpneyNP8MkCzboDOOQBnn2Bl330Mf1aZ3s4TBMBGzQGcYh0Tx0vZCohvPQmTTABp3JanYcOI7Su2fiD7PXJv29okmc6y3p/AGOoTOphw06k9X8b9UuAMCf525I+nsdPWkv8a9ro7OHzqQDNuhMVtO+WYOkvr5a/WklxiVj57r55rRFRlLjD+B4tT8l78UGnclqpIRt+2YNcMtrS1zvFNT1lx8EHzdrkBd8fPu4ngCAWjO0ohr+fJ/HsvkFUz8Z89h8nHL/rJS8Vzw9RRkm45j84mIAwPYDx7F96XE0KczDby85NSnvpdroPK/hC0lPXF0U9XkoQueFqb9sP5A6mWX20JmcYtv+Y0l77VPahppwyY5EMlauhlh8HmIPnUkLbNCZnKJzy0ZJe+0+7UIGXXYkCsbQTfs997bROHSiFmu/ZbVFBvh9CrKvVNigMzlFMlu/je4Z6oPrNUMuMoYuDbv03L+s2Ju0cTDZw1+U7KtACmZtjgw6EVUS0QoiWkpE5TbHjDH3f0NEH7s7TIZxxvGa5GQTLPt1eP8W3UOXMXRPtGR1jbcWb0Pp3TMt+5UyuUcqwnDxLIqOtWsrR0TNADwNYLwQYgsRlbgxOIaJlx5RugjVhQJfuO8jDbrUcAloHroTXvtqCwCgouoIiosK3Bgmk8GkIpXVrZDL9wDMEEJsAQAhxG6XXpdh4iJZl4zuePu81h56PAadYBzL66f1g9oUVA87NegCwGwiWkxEky329wTQnIjmm8dca/UiRDSZiMqJqLyqqirRMTNMkDN6tAp77rYX5CGgecM8FPi82nbTQ9fy0OMJuSB54X4mA8kkD32UEGIQgAkAphLRmdp+H4DBACYCOA/Ar4iop/4iQojpQogyIURZcXGxvpth4ka/SNyOU7ZolI8J/dpGbP93+TYAwLtLd4SNQ/XQdTkAHXmoSNq8gskkUhFDd2TQhRDbzf93A3gbwFDtkG0APhRCHDXj7J8AGODmQBnGioBmNN32gmoDAnkWYZT9x6oBAJV7jbx3Kd3iVTz0WEORIRe25/WDjPDQiagRERXJxwDGAVipHfYugFFE5COihgBOB8BdcpmkIoTAgop9Ydv0RhN1xe8X8HpCl8miX56Nr+49B3dP6A0AGNChKY5V1wY7FOX7PPjZWd0BRN5s7GB7Xj/IlCyX1gDeJsPz8AF4RQgxi4imAIAQ4lkhxGoimgVgOYAAgOeEELrRZxhXOWoheOS2bG1NIBBcAAWAErOv6K5D+QCAh2auxrtLd+Cs3kZiV4HPgwb5xmVV6xeI0hMjuNDq1PAz2cXuQyfCnn+1aR/an9Y+qe8Z06ALISpgET4RQjyrPX8MwGPuDY1homOVvy29oBGPzEHbZg3w1o0j6vQe/oCwLFZSFz9XbD+IEd1aojDPA4+HkGfeAKr9ATSAvUWXL+H2rILJDOatDU/2+/nrS3FJkg06V4oyWcvjH0aWVcs45Y6DJ7B48/46v0etnUHXrpzjNf5gi7p8M2c9mkDXH2avxecbjGrSldsP1nmcTOYRV8aTW++Z8ndkGJeYuWJnxDY345T+gIAQCIuhS7zaxbpkywHsP1YDIKTEGK3JhdqQ4/f/W+fGcJkMo33zSK3+k7XJ1UVng85kLVaNmPVMggf/swpPzUusm5HMMVdj6BKP5rWvULxsX1CJkSV06zNWN/R5a5Jbf8MGnclaxvVtE7Ht+S8qw57/4/NNeMwiNOMEGdu2CrnoHrqKDLmwQa/f1NRG/v5TXlqc1Pdkg85kLYlkh8z4ehtmfL0t+Pzdpdux72h1xHEna/2Y8MSnAACfN/Iy0e356V1a4PQuLQA4C7no7HG50xKTfqrNG/oPhncO255M1UU26EzWIisxGxeEJ2ut2Ga/yHjrG8tw6xvLAAC7Dp3ALa8txZQXI72mXvfNwpZ9RtHQtwcjO87osfoTtaH0xkRCLieSpBLJpA/5+/doXRS2vTqJMzc26EzWIm1qg/zw1MBNe486/HvjBTbvi3786p2RzSp0L2vZ1gPwmYuneWbIJZ4Ll9KQEcEkl2oz5LJh95Gw7cksMGKDzmQduw6dwGXPfIFvDxqFGyO7tQzb76RR9MKKvcHS+12Hoh9vle9udU1Kz1we/8k6+wWwSwa2C3tuFW9lshsZcutWHN5FK5m/NRt0Juv4+2ebsHjzfjwxZz0A4M7xvcP2HzxeY/l3agbMFdMXhDV2lhw9WYsH/7MqbJvaek5ipbsuhblkXrm+QKuiqzcmsoC6dOsBLN68L/aBTFqoNlMUS1tpBp1DLgxjGOqqwyexX1vELPB5UDltYvB5w3zr6kw9B9hvsWj53Keb8I/PN4Vts9I419MWAWD2ql0AgK7mBXzgWA2enm+dMqnfTBKJq17y1Oe47Jkv4/47JjVID10/fziGzjAAhj8yB0Me/gj/XrwtbLtekdeikXX3Hz1MYtVw4P3lOyK2xdundFJZx+DjR2dZp0ye1KbdXP6fe0jD3bVV+GwunuyneGGDzmQNxyzEuICQtywLjaptYpS6R66GYPYdrcZdby7Hem0BS339WFw11DDkDaIpcplUa7OFeKfhs1ZGVskymYU8D0uKCsJmkBxyYZgoSHt781k9AEQaSwB4dNaaCI9czTaY8MQneL18q+XrTx3b3dE4Gpkqi07a0EmPvHUTYzYR7zR8yktfx3U8k3pq/AH4PBThENg5HG7ABp3JemTIRUqufLFxb8QxT8/fiE/Xh/c4Vz30aJku7ZtFanIAke3v9h2LLFCyoyYgMLBjMzx99SDjOYdcco7q2kCwalhFD7e5CRt0JuuRBl3mgcvFSZ2fv7407LldCMcpw7qGp0vO+Hq747+tqQ0gz0vBqtJoyoxMdqIqcALAL84xunI+OXd90t6TDTqTFUTrzynXRC0q9KNyrLq2DiMCfnxGVzx4cd+E/rY2EECe16PIBLBBzzVO1ARQqBj0/5rrHvPWJk+gy9ElQESVRLSCiJYSUXmU44YQUS0RTXJviAwTvbouGHKJs9ryeB099HyfB9cOLw0+10Mw0aj2C/i8HqUZBodcco0TNX4U5oVM7FVDOyX9PePxacYKIQYKIcqsdhKRF8DvAMx2ZWQMoxAtrc8T9NDjM+huC2K1bJRvuX3tt5HSAcu2HsBn66s45JLDzFyxExurQrISPxhRCgDIj3cqGQduvvLNAN4CsDvWgQwTL9GyQKRnHq9B/9W738Q8Ri/Rj4aVKiMA7LAQ9wKMvHhp0NftikyXZHKTan/AstuWGzg16ALAbCJaTEST9Z1E1B7ApQCeifYiRDSZiMqJqLyqKrlC70xuEc2DlWlh8Rr0WNx/QR88OiminW4EVw4x8s+njO5quf/6f34VUd0qkQqNz368EQBw6dOfY+rLnJKYC/RqXYTxFpr9APBkgk1XYuHUoI8SQgwCMAHAVCI6U9v/JwB3CSGizhuFENOFEGVCiLLi4uL4R8vUW5wo1Llt0EtbNbRMO9OZdll/VE6biO4lRbbHbD9g7aXr0+8lWw5YttaLRrQFYyZ91PgDQeXNVOHo3YQQ283/dwN4G8BQ7ZAyAK8RUSWASQCeJqJL3BsmU9/Rs0Ckgp0qkiULe5zSu429AQase4kmypKtB4KiXar0bp5NmGbD7si4ux2cw56ZVPsDwUVvnUtPa5+U94x5xhJRIyIqko8BjAOwUj1GCNFFCFEqhCgF8CaAm4QQ77g/XKa+ohuteyeeAgBo07QwuK1A8YZG9zRmgNF0WGJ5/fFquKg8f/2QsOe/emclLvjLZwCAGqVi1U4m4OWFW2xfW8/OOc7NMTKSGn8AeTZOwYUD2iblPZ24IK0BfEZEywAsAjBTCDGLiKYQ0ZSkjIphNHQjVlSYBwBo0yRk0NVFyXZKdefAjs3C/rZpA+Nv9cYDOp1bNkxorAAwplcJZv9Cj0waqJWCdjox0dqUPfdpRdhzzpDJTGr8Ank+6993YMfmSXnPmHNUIUQFgIiVISHEszbHX1f3YTFMOPe8vSLseVnn5nhsUn9M7G/t6by6yPBwA0LgzvN64XvPLQzue3RSf/zEou2cyvIHxqGJedNIlJIia9XHEzb572os/NT2TW1fV9d7T2IDHCYBHvzPKnQvaWxWA1v7zC1sUlzrSnxBR6beMGvltwCA8adar9KnmmVbD4Q9JyJcrsjU2vHTs3pEpBPGEkf61w+H1tmYA5Gt8SSHT1pXqFbuPRZ8HO2Cr9Ra7CXSLJtJHlJPv8DniVj0Lm3ZMOx3dhs26IwlU14yPFhV9jPbqJw2EUIIfL1lf9j2WCX/Z/Z0JwPLroDEriH02MfnBx9Hi+8fPRn+92zQM5Maf6SH/uEvzoSFDL9rsJYLExXpqWcrRIRDJ0IGPN/rwaTBsT17t97bCun93zm+l+3f+qMYdD0VLtqxTPpQC8ckBT6v7czNDdigMxGopeqvLLLPtshkwlISFXv3wS2j4HK6elTm3T4mYpv0vtuaGTqyMYZKNCOtZ9/Udwf94LEa+AMCizbtw7w16S1Uv/WNpWHPN2vhsWTDBp2J4PkvQj017cIDqaZDc2tNcjv+7zv9go/VkETrJoUgogijePngDnUboA1WecjSWMs898GdW9geY4VeQFWfPfSdB49jwIOzcfVzC/Ddv36J65//Kq3j0SWUZyxxLqnsBhxDZyJQY3yLNmVGV/lzTmmN57+odHy8qrzYuCB0mst0R5+Xgp6yXCe4eGD7uAp6nKDH0a+avgDXDu9sjMFDYf+rRDPS6ucBIhtO1yd2mBW4Cyoy4zzVOa1Ts5S+H3voTARCiVE0TGK8Lx5qAwFbNUOVf08Zjm7FjdCrdSjkMrRLpAfssyj4GNWjFa4b2aVuA9XQpQO+rNiLO99aDiCUW7/PQuclmkHv264JAOBXF/QBUL9L/wt8xvl5StsmaR6J9e8wZXS3lI6BDToTgXpeOtEySQU1tQI+L+Hs3iW4+Sz7Hp9DSltgzm1jwhaerBYnj9ikDrqNVR7yYXORdqmZiumzCMus22U9Uyi9eyYemrkaQKhAqj7XFcmQ4AGl/V/3X36QlrFYdcCqS7VxInDIhYlA9TP8GaITUhMIwOfx4O/XDYl9sAV3nNcLZ/ZIvSCcXWEJAFxmxu2tbjjPfbYJ95keuB3b9xvhhg27j6BXDF2aXOXzDUb/2J0HTwS31QYE/AHhulhbLP5qKmaqpHoMmeF+MRmF6qHbFcGkmqrDJ+uUbz11bHf062BffZks7MSZgJD2zA4bJcZYfLzOyOiY9U12p5bWhbJSo4T+1PbhIZd0LBTrFbyAdWgvmbBBZyI4EEf3+lTx6fo9YV5YtmCXiw6EvPerhiTWmuyu8b0BABMypJo3lbz+1RbMW7M7qMJJCP+e01FsZdVGMMX2nEMuTCSLKjMzYyDXkN57JwsRsAsHxO6U1LKxoRVTHxtM3/WWoe3z3LVGR0y9sjYdHrpVii976EzaqU9JE/MtCn9SRbT4eqGDxWjZgPhkTf0y6Kq65I/+ZfSs19Up05HKKcM/KhxDZ9JObTLFJjKMukjk1hWr7BaJlUHSjVahqaV+ojYzir9ShV68A4RrzAPR5YeThaz8ffDivsFtqc5yyQmDXusPYOzj8/FBnK27GGvqU+VhtBh3slGLjmbcNCJsn9VvoDeyCBr0DKnmTRVHLcTVdEnidJzD8h48sGOzoLwEe+gJcLTaj017juKuN5eneyg5QX0y6OlElfUd1Kk5Hr881HbA6jf40QvlYc/lDSGWHHCuYRVNqdG+r1SfwjsOHMeJmtACraxUjjYLSwaOFkXNXqGHAfgB1AohyrT9VwO4CwCZx90ohFjm7lDtkdMrJ42EmdgM6tQc5Zv3xz4wxYzs3jLdQ6gTXVs1QsWekFhTgRYnV2V9v7b4/r+s2Bv2XC6q1oeeorX+ALbtP47SVo1g9Wn1m1oqs1w27z2K0Y/NDz4nktITAt4UzwDj8dDHCiEG6sbcZBOA0UKIfgB+C2C6K6NziFzl596K7jCqRysA8QtiJZN8rwf92jdL9zDqxEe3jg57ri+Kvq0IOe2IkaL5u8v6gYjg9VC9WPN4+IPVGPP4fHxr873oOeCpnGXuOnQy7LmHKJiumJUhFyHEF0II6VIsAJAc6Tob9OkWUzf8AQEiYFT3VrZt1FKNXwhESQrJCtT+oU9fPShifzyhE3kz8HkItfXAQ/9s/R4AwIHj1Y60a1Jp0PWZFlEoLz5T0xYFgNlEtJiIJsc49gYA/7XaQUSTiaiciMqrqqriGWdUapQLofTumfj97LWuvXZ9pDYg4PNQmCJhuvEHUj99dYuiwsjIptrEWqJmRPQoaRz1NRvmG6+Z5/XUj5CLeR5WHT4ZFkNXm4SrpLOLk4cotCia4hi6U4M+SggxCMAEAFOJyLKdORGNhWHQ77LaL4SYLoQoE0KUFRe7p6uhF1b8Ze4G1167PhIwdTB8Hk9GFK1Ij8yT4umrW3zwszPw1PcMj1z2CpU55CptmoaMU6wb6Vm9SwAYi25HTtbgun8uQkXVEbeGnHHI2cv3/74I1co5afc9pdIP0d/KQyH55oxMWxRCbDf/3w3gbQBD9WOIqD+A5wBcLITYq+9PJvXBQ0kltaY3nOfNjOm8nD57stRD79iiISb2bwsAaGCmGhb6ImWJ/3LVIJQUFaBNk0Js2mPf6eaSge2CKpg+jwcfr6vC/LVV+O37q5Iw+sxANeJNlBnPniPh8evrR5YCSG3Ixa+tYRAZ/4DUn7MxDToRNSKiIvkYwDgAK7VjOgGYAeD7Qoh1yRhoNDLBi8wlpFKdz+vJiAU3WWTj5gLTp3eOxfs3j3Lt9Zwiv08rWeJ8nweL7j0H3x6yXviTAlSqZnuel4IOTbbe8JygGuhosxe5tpDKkIvu9BiLomQ+TtkwjPdzcExrAJ8R0TIAiwDMFELMIqIpRDTFPOZ+AC0BPE1ES4mo3O7FkoFudLrHiD/qLNt6AKV3z8QLX1Riv0WzgfqGPyDg83qQ5zGMRbobKOw2swjctFcdWzTEqe1Tr74ofQ8nNyf9e29SmIfBnZtjYMdmwW0+LwXDEekskko2arn/q1H63MqvIJUeun6DyfN6gjfXVF85MQ26EKJCCDHA/NdXCPGwuf1ZIcSz5uMfCSGam2mNdqmNSaO6Nvxr6x+nTOrFT30OAPj1e9/glteXujWsrKVW8dCB9Bca3fuOMSFcXJl5ufHxcvu4ngCAZg3zbI+RDa717726NhDR0i7P4wk268hhe45DJ0I5+ut22a8VbN13DEBqz9m3vt4W9tzrIVwzzGgzqLcLTDZZnghmoIdcdCnNeNi4O3cXlpzy6qItqDp8Mljllu5MFzlryoXemVcO7YTKaRODrdOsuGigobSof+81/kBEqEatRDxkocdd35AGNJWniq4t4yHCL87pgY3/d35QniFV5IRB10MuIo6Jjq6DsT3BZgO5SJ6ZQ5vuNQr5/rp3mqvYfe8nay0MupLnbKVxUt/o286Ynafz5t+maWGw6CvV5MQVoodc4vktv/vXL10eTe4Q9NDTkOny6qIt+GSdUasgY8R5GdLfNNnYfe/VFh66+p3U1Gb/DKauyHTQp+elJ3U51SEWnZy4Qir2hIdJ4lnhXr7toNvDyQoWVuy1LKNWqxVlDF2XJk0F98xYgWv/sQiA4ZkCqc/pTRfyc+ohl+raAAq0WYr6lew9Wm1bGl9f2FhlpHvOXrUr6e+18+Bx/G7WGkwd2y24LVrLwVSQEwb90VnhlaF1DfnOXbMLV01fkPbsjmRyxfQFGPbInIjtd88IKVbmedLnoavIMFgO/xxhyBupHkqstgi5qOw5chLDHpkTJvJV30hlmGP4I3PxzPyNqKgK1QxE+31SQU4Y9In92oY9r6u4/Q+fL8eXFXszpkFyKlEFooKGJY0GfaGiMFhP7HnIQ3cQcrG6yW0xMz1yhcMnoi/23nJ2j+DjZg1C2UMPpajQ6r8rQ026o3WhSgU5YdAHdQ5v/TRnjTvTLRnDrU+oBiIoz5rG4qIrpi8IPs7lGZNKXtBDj522aEWufU3Pf14Zse3cPq2DejdqQZXai/W5zzYlfWw66VgIVckJg6575Cfq0GOxUX4ozejvaTghUkG0GUx7RTRqg5nCmSmpnDlmp2zxBj302CGXHRZZWekUpkoGVllW/1u1C5cOag8gXDa7OM3qoJv3pnd2lN4lWZdwM0XpqNLKKlc7wege96/eWYmSogIcOlETlrYppXN1rem0kVt2yhbpoav6JYGAQG1ARBj03YfDtUwAoHLPsWD6nhssrNiLAR2bpTynWmInj9292PDQu7Qy+sI2zPfWm4VzO3LDoCep8OWbHYdcfb2NVUfQtVWjtJdo62JmLy7YbHncaZ2MUFbTBvZVjakknvqCbKYgL7K1nDTuThbdpr7yNSb2n+jKWDbtOYorpi/Ad8s64NFJRou8EzV+7D1aHTabc5tlWw+gW0ljNC7w4Zn5G4Pbe5Q0xvrdR/CT0V0xrm8bvDllOAZ1ao6zerdGvs+T0mtrTK9izF+bWWHZrA+5bN13LDjt/NGoLjGOTh9fbtyLs3//Mf69eFvsg5OMPpW3wuehoPGozhDxsyuGdEr3EFLCcXOWuF4pcZepm6kurpKzs7XKWG544SuMnDY3aWsax6prcfFTn+PGlxZH7Ovd1hAokze7stIW8HgIxUUFQcfjnFNaJ2VcOpmoz5/VBn3b/mM449F5eHmhIdbzy/NPCe5zcrL9wMxzTgVrvjW8/VUue/2J4ERueMn952ZcE+LRPd3T0M9kpM7L7sOhnHL5G+jdcZLFvqPVWLr1QDAev2zrgeC+zzcYmUcnk3ReyPPz0/V78PWW/cHfvWurRsGMl71H7EX0rhjSMSnj0kn3TNuKrDboK7eHFwV5PBSM++p9/qz4WMliuW/iKRjft03Mv3nxy0q8FkXtzQ65sJPuwgMgfJHJ7sZXVJgX8tAzxKDXF2QXno4tGga32YVcLh+cnG6Plzz1OS556vOoXmiyNH7Ut/zO018Er1MBYGiXFgCAtk2tOxUBqIOSU3SEEMHCrX4PfIiPVie/eClestqgT3np64htncyL4EicOeTjT20TJnRkx6/e/QZ3z1gR12sDIa8j3XmqQHh+c7SLMtNCLvUFX1DLJfTbyDaLukF/7PIBqJzmTrxcReayR0vDe+SD1aj1B7Cx6ggOHHNPdtpucj2sa0v4/bG18ZPlOL+yaAuGPTIH3+w4iMMnMrNGJf3WxWWuHmbEWePNB+3QvGFSje0f/2f0/cgEg65muUQrGmIPPT2EtFzUVmtyhpfa8yeaY/Tywi2Y9c23OPv3H2PCE5+69p52abW/uagvLhrYDgU+DyZFmZmoSpa7bJqFJMIKUyZkqRJ+0hnZvaVr75cI6bcuLiO9GycLfzr6TWB4V/d+HOkJp7vwYMeB43hK6bl6stZve6yMoT80c3XSx6WSbv31dOMLFnRFzqRSvRB3+7+XRd0vf6udLmrI2M0a830edG7ZCGsfmoCuxfZNbEZ0C123boaF5O8S7fzs2iq+5jpu4yhtkYgqARwG4AdQqzewIGN14AkA5wM4BuA6IURkPCQFBKsbEyhX1zUwvqxwvzVqurXFb3ihHKt3hhZmj9fENuiAsUBXUmQft3ST8sp9EduevnpQSt47E5Dyudv2h4pUah2EGpLBtv3R5aST0fbOao3q/H6x17ckajPxusqAhL2u7EIU5SVTtWhtRzzvPjZKN6IJAHqY/yYDeMaNwdmxZe8xjJw213KfV3rocZSry2nSByu+jdh3y2tLEhghsG7XYRyy0KBId073QS3Webw60qCXmVIK4RdGcselol8vw7u2xPmaXk8uIz3Bv35cEdwmvUK7dZ7BmvxFqkiGQa+0qLa0ujad4Obw5Ge1qsQ9r29rDOzYDD9Mc+q0W7eTiwH8SxgsANCMiJJ2Bb6yaIttIwqrLju/fX8VPvzG/oRQ0x113l26I6ExjvvjJ7jyrwsitjcuSE+1nUSvqrXy0Fs3SY0nbod+wdQn7xwIb1ohCYXsrC/ZVHxHWy1Ev5IxYdBbuiWCrBh9o9y9ug95c7By+kuKCvHO1JFol8RiKyc4NegCwGwiWkxEky32twewVXm+zdwWBhFNJqJyIiqvqkq8wiraXVdOV9WFvL9/tgk/eTG8SEFN1+vVuijq+72/fAceeO+bsG17j8ROi1ylhDYk6U4Y0dM59Y5NAPDrC/tEbEtVB5hafyBC01tWTtYXrKpBgx66jQVt3aQQj3ynH0Z2b4mOLeIzKjX+AJ79eKPluaBiJQERbYEwnTQxZ8J/nrMeizdHhvASQba2tEr1TffamMTplTJKCDEIRmhlKhGdmcibCSGmCyHKhBBlxcWJF4lE++6kh37l9EjvWEVNxfPFyBz46StL8PwXlWHbBj/0UdypkUB6hZOsxnu82vgefqZIkJZYeOj+FEnoPvzBatz6RvhCXCZkBqUSK+MgQ4jRDMdVQzuhXdMGccsdv7l4G6b9dw2eVkrsrZi/dnfEtveWJTaDjZdWjeMT3Xr4klODj19btDXKkc7xBD30LDfoQojt5v+7AbwNYKh2yHYAanlWB3NbUrCK20kv22nhTiKpeEc1g/jorDWWx+l3cDVOnU6DfvXfIm9yciG4T9vosxSr9YBkMGd1pNGo74JLQGwPXeLzUtwL73JGtCfGrPPx2esiz+0YXr1b3DW+V1zHt1VCH27JbXxlLtZbfb1ZY9CJqBERFcnHAMYBWKkd9h6Aa8lgGICDQoidro9Wjsli26ntDXU5q/ijZMPuw8HHMgvm3ijxc51Fm8Knbnblx3pa07X/WBh87Oaqe7wss2i3Jy/IPK8Hlw3qgOtGlFr+baKLw/FiJcCViSXWqcZp2qvP44k77fOJOesBWGeXqHRs0SDCmB045u6N/tP11qFYK1XJaCTDCZDXj+qUycXorDHoAFoD+IyIlgFYBGCmEGIWEU0hoinmMR8AqACwAcDfANyUlNGaqBd4c1P3YsnW/QCif7Hz1oROFumhN1Kauv5wpLFC/dldY3GRIpQv0bUrZq6wvmfp8eavKvcr+2yH5wpCCLy6aIvjNmQyburzevD77w7AAxf1tTxuo9Jmi0k+U8d2CzNKMuQVzWEBjPO/JsFCsFj3gatP7xxxs3D7Xvv9v1vrK1Xuie/8c1L1HXrPhSi9e6bj419eELrxSamRnTZJGqkmpkEXQlQIIQaY//oKIR42tz8rhHjWfCyEEFOFEN2EEP2EEOXJHLRadrvf9BBkX7/V2kKk6hGrJ19FlaEepy5A3X9hH1ROm4gOzRuitGVIR0Oih1js5EOjeUh62MZtPl5XhXtmrMAjH1iHg3RkOCjP5kY44VTn+b+Mexyr9qM2IILnr1MPvajQh6PVtXHNBK8fWerouCaFeRHndpeWjRy/Tyw2RTHa8fbqjHXjU/l0/R4A9rpGm/YcxUdK02k1w062n3snwWw4t8nK1abSViFj284U6blxjNF5W1/QU73lh2auDpbvfu85Iwxid6JcPaxzxLYK7YQb2KmZ5d9GM+h/MCUAksUh82a376gzbY3jZnenPJvvYWDHZq6Mi4mPf5pt19buMsKEsfLQJc0a5iMgYq95bNl7LJi10s2surxqaHSVQn8gEDH7bGV6qEWFdW+t8Pjstbb74l3oTUQEz2o9QAiBsY/Px4/+lVQf1TWy0qCrIRdZ/CKrGk/TjKxuXN8oD1/x1gttJK2bFOKO86IvxMxcvhM3vRyp2RwrhlnjDyRNSzrg0JOTHDdDM3Yxx1SHr3Ose1qdOWQaXSdZLgDwmRmDnr3KXgnw4PEanPnYPFzwF0N/RT8X7bz72oCIOLdPuijrO3N5eAhTFR0bH0elKBCeuXZuH2f66FbV5bGyeGQMPd0aLpKsNOjblXJkGfbo084QvlcN08laf8wVf6ntbMXUsd1jjuWDFd9GFC09q1T4WdHj3v/ipYXxS/A6QZ2a7zx4HJv3Ro89lm824vt2qYGUNDFSJho/P8dII5UzTqdZLmf1LgGAqO3ippg1GVv3HQ97bVkNbNcU3B8QWLLFOF9+MNyYwZ40vdpk34jH9iqJ63hV88bpIrGV/pNV1pXktxf3DSYRpLsCXJKVBv3Zj8PzZefdPgbnmVrmDZQTec+R6oj86X3HqvE9JX3PjbZmP3lxcZiXo4/PineXJCerU/XQhz8yF6Mfmx/1+C82Gjc0JxK5N7+a3EyXW15bElM7pL4gxaekMZIL67E89MZm6OPxD+3DF7LZikR3eqpsMkqq/QE8aQq7SUdAJhfsdRjiSxXq9zR3jb1RVrFy/qw8dHlTPa9vm+AMVlV4TCdZadBVigp96NIqtDCjhmOMxrpaZsrynUEjBrjX3cQuH9dO9bF8835LHZW6ImOc0VT5RnZviZ+as48zerQCEIqj6lyoZPv8J4lFJIdP1ETILJzZszjYvae+IY2GNOivmimFsRb7jpnn1BaLMn07ZNjEa8ad7W4aj85aGzTkMqShryu5RV0bwSQSKnSavy+vMZ/Xg3F92uC6EaW4b6Lz9OdkkvUGvUeUsn2/RcxPJ94KNDtesQmhRBPC/7JijyvvLZnx9bagQp8qrKUvkLZp0iAYV5Qelt1Uvk3TQssUTrcIBARmLt+Jfg/Mjtj3wvVD8PV95ybtvTMZaVSXbt1vud0OVSEzEBC4683lEZ299PRbGTaRr2y3AKmeIwUWITp1llrXQrS6NqBu2Sg/7r9xKrktP6bX7Lv7wEV90dIlO1JXst6gNymM9ODkQkVtIBDzrutWQYCdZni0d4935T4aJ2r8uPWNZXhqnhHuUS8+vQLwskHtg8URC81iqWjfQ8P85E0n3/x6G6a+Yq20TERhN6b6hPz97nprRTBurW63Q43lvl6+Fa+Xb8WPXgjP0DimzQxPmAZeOj81mmG7cEA7NMz3hl1LVh6w/PuP11Wh/wOz8cVGZw7L8m0HcOnTnwdrSgBggJld9e7UkXj/5lGOXkclkWK0eCW3M6GdpE7WG/TvDIrQAMPkM7sCAE7UBGJ66H3MLuLJ4vdRUrHcLJvWF6XUajZdKmFE91bYqsWqoxmKw0nMnd8WR2igPqHeYC99+ovQ9hhG5PQuRrbFz8/pgXvMVom6gdaRHro02PL/O87rhaICH+4Y1yviJmAl1LV6p5FiucDsIzD9k+jJAZL73/0GS7YcCNaUAMDdE3oDMAy7rAJPNnp4NlYmWqZUh6pkvUG3knotUHphRvPQ7zivV0J38tm/cK5N9nKUbBar2UWi6PnBNVr7Mv3Glq9NmaOdnHo6mZv8WemexISwyzqKpT8uQ+xPz9uobLP/m3tmrMC3Zps2GXKQ50634sZY8Zvz0MmiyK55w8iQhkwwkM7E/LXOFFWtFBv18zMZVFQdwRcbQrMIfcYcK6QeT/FSqsi8EbmALBbaf7Qa/iidGd5dmlimSddW7lTHuXmH17N5lm0NxU1rakWEl1aoSdI6vbEl07gzIezOjVj53vIsULOWVOOo39hfXbQFH36zK+xvaoMNze3PiZImkTFjmWGmNuZItKdnKrzfi578PFhgCETOZFZoaw86Geig56ZBlyf9DS+UR/XQLx8cO8Oli4XxdutkczN1V58uygpDwLhQ9bREmbcfL2o8l0kediGwWFLCjfKNtEU1O0i9V8+LksL3wYpv8bdPKvDHj4xq5miy0peeFhnq1BdbAeD+d3UdP2e4sXZy67k9g4+tQq+6nPRyTbzuMxuhMMD4fTJRNC7rDLrMsx7apQU++NkZlsfke0OLeNEWHts0jd2Z542fDMdz14Z33Uv0hzznlPDiCH1VfdOeo7j+n4scC2upWF1Mkhp/IOJ7SLQ/6Ovl7mhLM9FJ1Gnwegjdihvh9C4tgtu27T+OBRV7MXfNrpgl7A9/sDoYKrHT9wGAMRaFPla1DF9vORD1/WLF9+uCqvEfrRm65NdmE5udB49jz5GTeHy2vUxHunsD25F1Bn3ptgMAjHZYdl6mGtryKws8Ok4kNouLCjC6l7NmHNEWUV6bPCxY/CTRT+axj8/HvLVVCYU13oyi+bx137GoHZY6tYiMkaq8O3Vk8HG0NEzGPeoSn833eYNhFMmV0xfgh8/Hp0cSq/GLzsMWmV52RUoSOxG5aHUUiRBPzcfwR+ai7KGPXH3/VJF1Bv3vn20CAOw8aB+bU+2qvJNarZQ79YKcaivLm/Z5fSO1Iwp8nmAGgqTaZvZgdV9YvfMQHv9wreVN43i1P6ro1x1vLse5f/wEgPVnjlWEkomr+blOPPKvOm79XPGOYfHm+MNxX2shvHZNC/HGT4aHyVq7wdGTzgx6ojH/TCHrDLqTwLNaLBSqsIs8OZ0aKqchFjkbUON1coF2YMdmEdkCdrrVVtO5CU98iifnbYhIHwOAe99Z4Wh8APC7y/o7PlZyyCJFzQ2c5inXR6zO1z9eMcDR336zI7KXbSLk2cwSfnyG0TegVePYxTt9Y6zV6JdWs4b5GKqEi9xin40In87p/zfHcvv828dg/u1jXBxRcsg6g15synWe2t7+RFFj4zIUcbzaj+evHxJ2nFuep1Rak+laYQbd68HFA9tZ3hTs4ocyj9cKqzWBGV87z9ZJpJOL/M7dJtZ0vD5jdW4WplgvxM5Dl6J1TvRLYs3+9Hz2zhYpkm7wL60nsBVjbUKr828fg9JWjVDaqhGuHR4pq51JODboROQloiVE9L7Fvk5ENM/cv5yIznd3mCGkx3tB//jL0Vto5cBuGPSR3VvizB7GieDXCjMA4Gh1rW2qmZ1B1wWB1P6nJ/11K0ZKZCrfo3URXvnx6XV6XytidZmvz1idm/E2eagrdmmLUslRjvEWZfHxsme+CDv28IlazFm9C7+z6b9boXXCevDiUy2PqytORN+223QdalgQunHpYdNMI54z5BYA1vXtwH0A3hBCnAbgSgBP13VgdshYeK820Zsa63i9FFGUEY9B/9nZPTCiW0v87rJ+YdsfmzQg+Dp+Cw9diMiTVmIXQ9e58aWQ5vqXG+29dydYLbYNKW0e8+/kidyjxFrEKxGenMdFRXZYhd16RtEtSgbquaKe99Kgy9nesK4hI2cVR7/hhXI8Mz+2AikANCpIzizEqrJVZ92uI5bb1dCTrq2TaTgy6ETUAcBEAM/ZHCIAyBhIUwBJk+W7aEA7zL1tdNz6yIRI7zQere9bz+2JV348DFcM6RS2vZ0iIqS3C5OU2ywWzVrpLJtljpI7fMtrS2OK7kfjeE1klooTLWevh9C7TRFKYxRVfbKuCuuUHPhoSD1uSccWdRNkyiWsFsY7xshGchv1erFapJS54i0b56N/h9jl+U6ausSqhI2XK8qMWpMrY3Rjiob6PVw8MDL/PpNw6qH/CcCdAOySRh8AcA0RbYPRMPpmq4OIaDIRlRNReVWVs7JgK7raSL2q6LHiAp83YkHRrsO4E9776Uh8fMcYAMC/vtwMwCjMAJwL6n9VuR/7E9CR/pmiSx5P70gAmLsm8jMXOZQgyPN6YirSXfuPRRhnZtTEy/i+bcK61NRn6tK1Xq93SBS1tkEa2kaKUFtrs1rUQ+SoVD9arYTE7Yyqn4w2dJ30cKsVdo6NWsy1I0OaQdsR81cgogsA7BZCRPZaC3EVgOeFEB0AnA/gRSKKeG0hxHQhRJkQoqy42Flud6KM7R1+Uvfv0DQit7UutQH9OzRDZ7NBroy97Txo/B9P0UEiqV4qJxwUTKhcNyJyUcepbobPS0ktqIg37zmX6dyyYVAC9qzeJfibVtwWDbUf7oybRlgec/ngDnGNR145o0z9fAD485Wn4aFLTkX3ksaO1mbGxGi2Ariffy6NsV3YEwCGd22Jvu2a2IYeVYMulVwzFSdX0EgAFxFRJYDXAJxFRC9px9wA4A0AEEJ8CaAQQCukkf8pPRXH922DRgW+iLt/vkvyl/Jl/QGBldsPYpkmNnTV0FCY5p/XD8FbN4YuMqvKvXgaM3/vbwtjH6TQt13k1LjMQQwdMGKJ1Q68LDu+2LgnTAxJR3qlf/3+YLzxk+EJv08uQET46VlGNknH5g0c98UEwr37QZ2sf1v95nnX+N4Rx3RsHgrxSDurRk1aNi7ANebNI5YkAYCgCJiK3sDE7Wp6Oa4n5qwP235UKfvv2KIBfB6ylc9V7UaTDGk1Z0fMX0EIcY8QooMQohTGgudcIcQ12mFbAJwNAER0CgyDnng8w2VkR3v9ZCkrdSfftW1TI/ab5/XglUWR6oo3jekWfDy2V0nMu3yJliYYbbpopVQ3sV9b2+PVXpNrHxqP1ycPwySH3trSrQeC+umJ8L2/LQwTQ9KRi3Dn9W2TlFzkbEMaz3ilJmJ5ubed2xPXDOsUpnN/Zs9w/2tEt5ZaVo3xmnbzs0RDJS0b5WNi/9D56rY+itW4Jv+rPKIS1OMhR5IbTm5c6STh0RHRg0R0kfn0NgA/JqJlAF4FcJ1IVlv7BJCaFPqP65bReGySUazTtdh6wTCWQl6tPxBWoaaHNeL9KgMOjy/weXF615aOLyInfUfrQl2qI3MRKbgWr7GMJWz16fo96NuuKVY9OD64TZ+5PXPN4LDnVh66ip499fNzeqC7RUaUvr5U4xdJlcq1OrVnr9oV1ovA5/XA5yHHfVF/dnYPPPW9QW4N0VXi+iaFEPOFEBeYj+8XQrxnPl4lhBgphBgghBgohIjsJ5ZG5F1Vbzfn1okkT9J7315paXxj3dX3HavGyws2B5+r+enPfVoRJvzvhGzI77b6nlhiIJwTNcZ5oEsdx0J+j1YGFQAWVUafZf34jC5xd7HXF3FXbDuIKy369eoiWTX+QFI7/zjpOXDpae3hIYoaZ1e59dyeYbOKTCKz5w8ukeczTphWjQuw6N6zg3E7t9qbydTF9s0a4NVFkWqEebE0rEV4owe1GtSutZ0dkwZ3wPfNarZhXVvg0zvHBivgGrusj1EXVm6PLE+vS2ZHLvLdso7o1boIV58eX3Xilr1GdeaG3dZ51Sr/+ekoPHtNuLf5/WGlcb0fEDm7enRSf0tH5rP14WsohkFPnhnK93nQuWVDXDLQuhDx1R8Pw5DSFjkzO6wXBl2dDpYUFeL9m0fhr98fHOUv4kNKDay1yb+2mglMHRuKq+shEn9AQAiBj1bt0v8sDHWB8rFJ/fH89UPw+OUhvY8GeV50bNEQf7xioOX7xIuVNrwdsdIprXRc2EMPp03TQnz4izPDah2csPdodEmFAUrOeL8OTTH+1HBv00rCJfTLxG4gDRgLppbx6xfDk+X2HKlOqoQuYJxXNTbnozTkav57vLOTTCJnDfofvhsybHrJdIfmDSOkbOuClYehnstWU8pLTwstROpxxUWV+/BG+daY2tVqymKvNkVBjWrp4csLSmY01NWgn9W7JCwPORpVUeR6AWCQxcJwXVM4GYNYBqmPRaaTSpQmX7Yst+juE2vGJSWd3yjfhvdvHoVp3+kX9fhE8XkooqOXJHiNKGO9UUliyDZy1qCrFY3JnspbeSJv3xTSELdadGxSGAp/6NNQwOj2HgtVrfEUpdm1XPDRS7Q7NK9bpaHPa+/p6IyYNhezVn5rue/wiRrL4quPVkefkTDOuHxwR5R1bo5P7xwLAJhz22jM+nmoGcx9E0+J+vdFhZGhOVnMd1Zv6/RJNf4sBaxizbhU7ZRT2zfFlUM7RTk6cbwej239hM8iYaJBXmpF0NwkZw16M8VLSUWqUZ6XMLpncdA76tuuCc7o0cpWYrSkSWFQhvTuGc7lb1Vk3uwj3+kX9hllHvsV5qJUYZ4Xz1w9CK/8qG4CW6t2HEJ1bQDLzSYj0fAHBKa8ZF2L1u+B2ZbeeGEWX0iZhMdDePPGEUGpgG7FjdG7TeiGb6c1Xn7fOXjhh0PR3CJNtntJYyy7fxyuiqOEPlZcOlVVlz4P2fYWluFY1aBnYGc5x+SsQVflAZIdowOAHiVFyPN6giJAPq8HL95wOsrvO9f2b6yKfOy4QFlVlyEk+bn0G1bnlo1QOW0izugRqsad0K8tSpok1nZO8qk5k7jvHes+kfGkV0qD/uaUUAGR7IfJJIf3fjoyasVpq8YFGN3TvoK7acM82xTXlspNQNZ3xNJKkjNGmfabLLyeUIWzvrYjbzqqQe/QPLRm0bxhdsXTc9agq6RCdzvPS3HfOOLJsnlfaUsnF0OrgwY9tS7F0ZPWBRiHbbZb8c0OI+aqfgfJ0l1nDPp3aBZXxWk8qBWUFw0wMkqEzQLqi19W4uCxmuD1oqcTu02el4IhPr35hzTkm/aEdNvlLHti/7ZY8Muzkzo2t6kXBj0VU/k8r8dRI1qVeEP7Zyre0/YDx4MXRDILM1Rk79HrRpRa7v/Ne6scv9auQ8ZN1uchPHhxXwDA3RMiy8+Z7MDKcbdbXP3Vu99gwIOzg15zskOiqoe+aW94rrmMoa/eGTL0gzo1x7Tv9MO07/Rz1MQjk6gXBj1WGpcbHK32Y0FFfGXx8QoR/euHQ0Pvd7IWNbWpuSAkT19t5CtbxVgBYMNuZ7K5Kh4iXDu8FJXTJobpajPZhdW5HCurSs40kz3DXFCxD4tMyYqVWjaO1cItEeHKoZ0cq5BmEvUiaCllbZNJIn039Xhks4Z5OOCwKvSFLypx+IQR4ohVuOQWDcyURTt54GihLT2+Xta5Oco378+Zgo76jlzgfG3ysOC2WCsq/y43ivD2O+z3WVeOnqzF9E8qwrZlujZLvOTWp0kjaq776Q41YnTn4Pwoolo6Ly/cEmx0kaoYuvTC7Az6joORanoyLLREExGT2thuy6Uy6eGo2WtgvVpcp5wmlw2KFID7qtJYGLfqopUMrPTYc62YjQ26S6gnhtNKM/1kuus8+xiyXDiy6gyTqhh6sNWejUG3avArDfqRE+ELplJvJtcuqPrK780KZbXqVA25/Ozs7hF/c/UwI+98ZPfUKG1bJS3kmtxEThv0/95iFFMsSsFKtVqG79RIqeXGzRvmoWnDPNuu5zKf3SojIFXTRpmRYhcbtRJCCgigvHJfMFwjkeEiNui5wWWDO6By2sSwTCX1LLFqXiKrN1MVdiuvjKx9kOefk7662UBOG/RT2jZB5bSJdc6/dsKWfaG0J8cGXTlOKiq+f/OooJiWioy3/8AiwyRVF0Qo5GK9/8IBkSGjOat3YdKzX+LyZ78M2y6bHbBBz116m43c7zivV1DCWkVWHSfbS75+ZCkAYO23kYJw0hmS3ceynXqxKJpqnOqLW53HRYV5wfRAlT5maX/H5pFCTbsPn0Tf+IaYEDLU6bfx0K02PxxDLZINeu5yWqfmWPjLs1FSVGApAf3nOevh85DrTS10Xv/KWHxVFU0l8vzLlbWcnPbQ04Xegs4Ou5No3a5w2dPrRpTiEVO4SBcaA4B+7Z1XnNYFOd5f2VSKWull7NYyX966Mby1XK5cSIw1rZsUgohsb9ypuKHrzeHD3t88/247r2fSx5EKHBt0IvIS0RIiet9m/3eJaBURfUNEr7g3xOzDadaJ6pmcoTTf3ad1Tjmrd0nQkFsJbOWlKEtAvfgCAYHnP9+EI0p1qN1iqYqe0cAeev3A7ppId9qgDHuWFCU/LJsK4vk2bwFgOX8moh4A7gEwUgjRF8DP6z607MVpZerbS7YFH/dpFxJP0p1WPcb4xJUDw543TZHehBrzP/sPH+OB/6zCX5Tmu3aKdip6vD/Z020mM7DLxOI6BHdxZNCJqAOAiQCesznkxwCeEkLsBwAhxG53hpedWIVFrFDlQ2cqWi0H9SIl7ZxXe6G2j7P5QV1QwyOb9hgl1GohlD8QiLnAlaqcYyaz8Hk9WPmb83CVJpGbivOhdRNnWjGvTx6Gt28akeTRJBen3+afANwJwE59qieAnkT0OREtIKLxVgcR0WQiKiei8qqqqvhHm8GoqoFOmTQ4VGyhNpLeqRXotG0abrRbK9PDWA2o3cS6TNr4/0SNH0/N2xjTS9c9Mg651B8aF/jQsUX4uZyKCdrc28Y4Ou70ri1xWqfsTl+MaQ2I6AIAu4UQ1uLWBj4APQCMAXAVgL8RUTP9ICHEdCFEmRCirLjYXqYzGykrbYHnrx8CwL4zuo5qqK+waKgLAJ/cMTai9ZvHQ5h8ZlcAzmcDbmAVSpIX5PJtkR1rrNDj/dnc7ouJH11St9qietNtGhX44m60na04+ZQjAVxERJUAXgNwFhG9pB2zDcB7QogaIcQmAOtgGPh6hZw+OlUFH6R4A2onGNlR5uM7xqCTTaGRNKQFKW4K0a6pvnhkDMTphckx0/qN7pHXtS2iU1RHYrBF+8NcIaZBF0LcI4ToIIQoBXAlgLlCiGu0w96B4Z2DiFrBCMFUoJ4RNFYOT1J15V8NndwwqguWPzAuarGDjGenMuQCAF7NIMuGAVZNn61gg16/aahVDKfInoedt89FafKR7SRsDYjoQSK6yHz6IYC9RLQKwDwAdwgh9roxwGxCLgg6PUfVDA81dEJElmX0KlI24FsLQaxkoi9irTMlc5+ev9HR36cqxZLJTK4c0gm/OCeU850qD109b3WnJJeI6+oSQswXQlxgPr5fCPGe+VgIIW4VQvQRQvQTQryWjMFmOnKBL5G4YLwCWzKFUJUcSAX6GqaVaNhHt44ONq3QYQ+9fpPv8+CWc0LRWCe1C26gZl95ifDqj4fho1tHp+S9UwmX/ruIPDkrta4oToh3cXNhRXomQIdOWLeZu3JIJyzfZjS77l7SGIdOWOu6p7uQhMksrCRtk4HUDgKM2e3wbrnZTIWvLheRRuxETQIeerwGfVN83ZHcQm9iIReYdGnSZjbZKwU+D/7v0n7JGRzDOCCVmWGpJnc/WRqIphkRi0QV58rSvGIvQ6BS31zStbhxWMs8CVeGMoBRxJMucrn2gQ26i5xzipF6qJfmOyFRQ6frjKeaWtMzP2pxM1ObWqvInOBrhnWy3M/kPqlOt60vcAzdRQrzvKicNjEl7/XAhX3wwH9WoVlD64bNqaLaNOh/VjRdYjGxf1us2H4QN47plqxhMRlOqrps1TfYoKeZJb86N6xzkVOkIU/35FEa9KJCHw6fqMU7U0eG7S8pKoiQ0C3wefHrC1Oh4M5kKjKOnUotIiD3Z4V8m0wzzRvl10ktMd0h6ZpaI4g+plcJurZqhIEdm4Xt/+yus7D4vnPSMDImk5EFcSJVlUUmuS4Ol9ufLocRZvlSuuz5VUM7oUWjfFT7jdh5TW3AMiUx3+dBUYwiKab+4Y2zCM/t981V2KBnKdKxSVfWyCPf6Yd8ryfoodf4A8jz2TUxyO2LiImfRgVGtHdU91YxjnSXZPcvTTccQ89SUjxTtSTPR8EY+ucb90Qo6Uk4VZHRadogD3NvG42OFv1zk8mqnZGNonMJ9tCzFGnP02kqt+47jreXbAdgFFMdr0k8D5+pf3QtbpzyyuFP1zsTkctW2EPPUoKLSSm26Pdf0Acrtltrn+vNC1TWPzwh7Rk5DJPrsEHPUkIeemrN5A9HdbHc3qZJIYZ3tdfHYA0Xhkk+fJVlKX3aGk2lz+yZ2kUlO2oDAt4cTwljspd/mt3EnPYXzVbYQ89STm3fFMvuH1enHHY3qQ0EOJuFyVi6tWoMAOjZuijNI0kubNCzmEwx5nuOnMSBYzXYceB4uofCMJZ0atkQj18+AOecUpLuoSQVx3NkIvIS0RIiej/KMZcRkSCi3O3xxAQ5rVMzAMD7y3YAAD5avTuNo2GY6Ewa3CHt2kfJJp6g5y0AVtvtJKIi85iFdR0Ukx0M79qSwywMk0E4MuhE1AHARADPRTnstwB+ByC1TS6ZtOHzEGr8Av4MKHJiGMa5h/4nAHcCsGzFQ0SDAHQUQsyM9iJENJmIyomovKqqKq6BMpmHz0xF1JtbMAyTHmIadCK6AMBuIcRim/0eAH8AcFus1xJCTBdClAkhyoqLrZsfMNmDbPj8ysItaR4JwzCAMw99JICLiKgSwGsAziKil5T9RQBOBTDfPGYYgPd4YTT3kUJH283slhzXPWKYjCemQRdC3COE6CCEKAVwJYC5QohrlP0HhRCthBCl5jELAFwkhChP1qCZzECv/jyjB8+6GCadJFzaR0QPEtFFbg6GyS707um3j+uVppEwDAPEWVgkhJgPYL75+H6bY8bUdVBMdqD3hdQNPMMwqYWvQCZhdAPu45x0hkkrbNCZhCnQDHrnFDcrYBgmHDboTMJEeuh8OjFMOuErkEmYfK833UNgGEaBDTqTMBwzZ5jMgg06kzBeriRimIyCDTqTMB5ig84wmQQbdCZhgo2qAfRr3zSNI2EYBmCDztSBVTsPBR+/9KPT0zgShmEANuhMHRjRrWXwcdMGmdEOj2HqM2zQmYTpXpLbDXcZJtvgJtFMnXj7phFhoReGYdIHG3SmTpzWqTlO69Q83cNgGAYccmEYhskZ2KAzDMPkCGzQGYZhcgTHBp2IvES0hIjet9h3KxGtIqLlRDSHiDq7O0yGYRgmFvF46LcAWG2zbwmAMiFEfwBvAni0rgNjGIZh4sORQSeiDgAmAnjOar8QYp4Q4pj5dAGADu4Mj2EYhnGKUw/9TwDuBBBwcOwNAP5rtYOIJhNRORGVV1VVOXxrhmEYxgkxDToRXQBgtxBisYNjrwFQBuAxq/1CiOlCiDIhRFlxcXHcg2UYhmHsIVUxz/IAokcAfB9ALYBCAE0AzBBCXKMddw6AvwAYLYTYHfONiaoAbE5w3K0A7Enwb7MV/sz1A/7M9YO6fObOQghLjzimQQ87mGgMgNuFEBdo20+DsRg6XgixPsFBxjOOciFEWbLfJ5Pgz1w/4M9cP0jWZ044D52IHiSii8ynjwFoDODfRLSUiN5zZXQMwzCMY+LSchFCzAcw33x8v7L9HFdHxTAMw8RNtlaKTk/3ANIAf+b6AX/m+kFSPnNcMXSGYRgmc8lWD51hGIbRYIPOMAyTI2SdQSei8US0log2ENHd6R5PohBRRyKaZ4qafUNEt5jbWxDR/4hovfl/c3M7EdGfzc+9nIgGKa/1A/P49UT0g3R9JqfoQm9E1IWIFpqf7XUiyje3F5jPN5j7S5XXuMfcvpaIzkvTR3EEETUjojeJaA0RrSai4bn+OxPRL8zzeiURvUpEhbn2OxPRP4hoNxGtVLa59rsS0WAiWmH+zZ+JiGIOSgiRNf8AeAFsBNAVQD6AZQD6pHtcCX6WtgAGmY+LAKwD0AeGsNnd5va7AfzOfHw+DEkFAjAMwEJzewsAFeb/zc3HzdP9+WJ89lsBvALgffP5GwCuNB8/C+BG8/FNAJ41H18J4HXzcR/zty8A0MU8J7zp/lxRPu8LAH5kPs4H0CyXf2cA7QFsAtBA+X2vy7XfGcCZAAYBWKlsc+13BbDIPJbMv50Qc0zp/lLi/AKHA/hQeX4PgHvSPS6XPtu7AM4FsBZAW3NbWwBrzcd/BXCVcvxac/9VAP6qbA87LtP+wRBumwPgLADvmyfrHgA+/TcG8CGA4eZjn3kc6b+7elym/QPQ1DRupG3P2d/ZNOhbTSPlM3/n83LxdwZQqhl0V35Xc98aZXvYcXb/si3kIk8UyTZzW1ZjTjFPA7AQQGshxE5z17cAWpuP7T57tn0nf0K40FtLAAeEELXmc3X8wc9m7j9oHp9Nn7kLgCoA/zTDTM8RUSPk8O8shNgO4HEAWwDshPG7LUZu/84St37X9uZjfXtUss2g5xxE1BjAWwB+LoQ4pO4Txq05Z/JKKQ6htxzCB2Na/owQ4jQAR2FMxYPk4O/cHMDFMG5m7QA0AjA+rYNKA+n4XbPNoG8H0FF53sHclpUQUR4MY/6yEGKGuXkXEbU197cFIIXO7D57Nn0nIwFcRESVAF6DEXZ5AkAzIpJVy+r4g5/N3N8UwF5k12feBmCbEGKh+fxNGAY+l3/ncwBsEkJUCSFqAMyA8dvn8u8scet33Y7wvhKOPnu2GfSvAPQwV8vzYSygZKVujLli/XcAq4UQf1B2vQdArnT/AEZsXW6/1lwtHwbgoDm1+xDAOCJqbnpG48xtGYcQ4h4hRAchRCmM326uEOJqAPMATDIP0z+z/C4mmccLc/uVZnZEFwA9YCwgZRxCiG8BbCWiXuamswGsQg7/zjBCLcOIqKF5nsvPnLO/s4Irv6u57xARDTO/w2uV17In3YsKCSxCnA8jI2QjgHvTPZ46fI5RMKZjywEsNf+dDyN2OAfAegAfAWhhHk8AnjI/9woYLf/ka/0QwAbz3/Xp/mwOP/8YhLJcusK4UDcA+DeAAnN7ofl8g7m/q/L395rfxVo4WP1P82cdCKDc/K3fgZHNkNO/M4DfAFgDYCWAF2FkquTU7wzgVRhrBDUwZmI3uPm7wugtsdL8myehLaxb/ePSf4ZhmBwh20IuDMMwjA1s0BmGYXIENugMwzA5Aht0hmGYHIENOsMwTI7ABp1hGCZHYIPOMAyTI/w/oJW4yy6FpDoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "lc = sim.get_channel('3.5-4.5')\n", + "plt.plot(lc.counts)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A specific energy channel can also be deleted." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 21, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.delete_channel('3.5-4.5')\n", + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Alternatively, if there are multiple channels that need to be added or deleted, this can be done by a single command." + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "sim.simulate_channel('3.5-4.5', 1)\n", + "sim.simulate_channel('4.5-5.5', 'smoothbknpo', [.6, 0.9, .2, 4])" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "2" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [], + "source": [ + "sim.get_channels(['3.5-4.5', '4.5-5.5'])\n", + "sim.delete_channels(['3.5-4.5', '4.5-5.5'])" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.count_channels()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Reading/Writing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Simulator object can be saved or retrieved at any time using `pickle`." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "sim.write('data.pickle')" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sim.read('data.pickle')" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/Spectral Timing/Spectral Timing Exploration.html b/notebooks/Spectral Timing/Spectral Timing Exploration.html new file mode 100644 index 000000000..944463146 --- /dev/null +++ b/notebooks/Spectral Timing/Spectral Timing Exploration.html @@ -0,0 +1,1603 @@ + + + + + + + + Introduction — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Introduction

+

In this tutorial, we will run a quicklook spectrotemporal analysis of a NICER observation of one epoch of the 2018 outburst of the accreting black hole MAXI 1820+070, largely reproducing the results from, e.g., Wang et al. 2021, De Marco et al. 2021. We will not give a scientific interpretation, just pure exploration.

+

The dataset used for the analysis can be downloaded on Zenodo.

+

DISCLAIMER: this dataset was downloaded from the NICER archive and only run through barycorr to refer the photon arrival times to the solar system barycenter. We did not run the official NICER pipeline on these data, and some of the features appearing in the power spectrum are instrumental artifacts. Data are not science-ready and only good for demonstration purposes. For more information (thanks Paul Ray and Sara Motta for discussion):

+ +

See Uttley et al. 2014, Bachetti & Huppenkothen 2022 for reviews on most statistical concepts and terminology used here.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+%matplotlib inline
+
+import black
+# Uncomment and run this before releasing a new version of the docs
+# import jupyter_black
+
+# jupyter_black.load(
+#     lab=False,
+#     line_length=100,
+#     verbosity="DEBUG",
+#     target_version=black.TargetVersion.PY310,
+# )
+
+import copy
+import glob
+import numpy as np
+
+import matplotlib as mpl
+import matplotlib.pyplot as plt
+
+from astropy.table import Table
+from astropy.modeling import models
+
+from stingray.gti import create_gti_from_condition, gti_border_bins, time_intervals_from_gtis, cross_two_gtis
+from stingray.utils import show_progress
+from stingray.fourier import avg_cs_from_events, avg_pds_from_events, poisson_level, get_average_ctrate
+from stingray import AveragedPowerspectrum, AveragedCrossspectrum, EventList
+from stingray.modeling.parameterestimation import PSDLogLikelihood
+
+
+
+
+
+

Data loading and cleanup.

+

Let us take a look at the light curve. We load the NICER event list into a stingray.EventList object, and create a stingray.Lightcurve from it. Note that, for NICER, it is important to know how many detectors were on during the observation. In this tutorial, we make a rough check of how many detectors were on during the observation. In some cases, the number of detectors might change during the observation. The user is encouraged to plot the events.det_id attribute (that gets set +thanks to the additional_columns instruction below) and check the header of the event file for possible detectors that were switched off.

+
+
[2]:
+
+
+
# This dataset can be downloaded from the NICER archive at the HEASARC.
+# We do not include it because of the large size.
+fname = "ni1200120106_0mpu7_cl_bary.evt.gz"
+# Here we are also saving the information about the detector
+events = EventList.read(fname, "hea", additional_columns=["DET_ID"])
+events.fname = fname
+
+
+
+
+
[3]:
+
+
+
# Create light curve and apply GTIs
+lc_raw = events.to_lc(dt=1)
+
+lc_raw.plot()
+
+
+
+
+
[3]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='counts'>
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_5_1.png +
+
+

The red areas in the midst of the “good” data intervals are actually small intervals of missing data. For example,

+
+
[4]:
+
+
+
lc_raw.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])
+
+
+
+
+
[4]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='counts'>
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_7_1.png +
+
+

Let us get some statistics on these bad time intervals, in particular the very small ones.

+
+
[5]:
+
+
+
from stingray.gti import get_gti_lengths, get_btis, get_total_gti_length
+
+gti_lengths = get_gti_lengths(events.gti)
+btis = get_btis(events.gti)
+bti_lengths = get_gti_lengths(btis)
+
+plt.hist(bti_lengths, bins=np.geomspace(1e-3, 10000, 30))
+plt.xlabel("Length of bad time interval")
+plt.ylabel("Number of intervals")
+plt.loglog()
+
+print(f"Total exposure: {get_total_gti_length(events.gti)}")
+print(f"Total BTI length: {get_total_gti_length(btis)}")
+print(f"Total BTI length (short BTIs): {get_total_gti_length(btis[bti_lengths < 1])}")
+
+
+
+
+
+
+
+
+Total exposure: 5438.068227797747
+Total BTI length: 44846.231474906206
+Total BTI length (short BTIs): 33.45650801062584
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_9_1.png +
+
+

These short bad intervals \(\lesssim 1\,\)s represent a very small fraction of the total data, and can be filled with simulated data, without altering too much the statistical properties of the data themselves.

+
+
[6]:
+
+
+
# max_length is the longest bad time interval in seconds we want to fill with simulated data.
+# The buffer size is the region (in seconds) around the bad time interval that we use to
+# extract the distribution of the data to simulate
+ev_filled = events.fill_bad_time_intervals(max_length=1, buffer_size=4)
+lc_filled = ev_filled.to_lc(dt=1)
+lc_filled.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])
+
+
+
+
+
[6]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='counts'>
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_11_1.png +
+
+

Let us compare the raw light curve with the simulated data in the same interval above

+
+
[7]:
+
+
+
ax = lc_raw.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])
+ax.plot(lc_filled.time, lc_filled.counts, color="navy", drawstyle="steps-mid", zorder=20)
+
+
+
+
+
[7]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x175e813d0>]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_13_1.png +
+
+

The light curve seems reasonably clean, with no need for further cleaning. Otherwise, we would have to filter out, e.g. flares or intervals with zero counts, doing something along the lines of:

+
new_gti = create_gti_from_condition(lc_raw.time, lc_raw.counts > 0, safe_interval=1)
+lc = copy.deepcopy(lc_raw)
+lc.gti = new_gti
+lc.apply_gtis()
+
+plt.figure()
+plt.plot(lc_raw.time, lc_raw.counts, color="grey", alpha=0.5, label="Raw")
+plt.plot(lc.time, lc.counts, color="k", label="Cleaned")
+plt.title("Light curve")
+plt.xlabel(f"Time (s from {events.mjdref})")
+plt.ylabel(f"Counts/bin")
+plt.legend();
+
+events.gti = new_gti
+
+
+
+
[8]:
+
+
+
events = ev_filled
+
+
+
+
+
+

Hardness-intensity diagram

+

Just for the sake of consistency, we verify that the hardness-intensity diagram of the source tells the same story as the analysis done by Wang+2021. This observation was marked as Epoch 0 there, well into the hard state

+
+
[9]:
+
+
+
ndet = len(set(events.det_id))
+print(f"NICER was using {ndet} detectors")
+
+
+
+
+
+
+
+
+NICER was using 52 detectors
+
+
+
+
[10]:
+
+
+
# Using the same intervals as the Wang+ paper.
+# We use a segment size of 256 seconds, but we could make different choices depending
+# on the quality of the dataset and the count rate.
+
+h_starts, h_stops, colors, color_errs = events.get_color_evolution(
+    energy_ranges=[[2, 4], [4, 12]], segment_size=256
+)
+i_starts, i_stops, intensity, intensity_errs = events.get_intensity_evolution(
+    energy_range=[0.4, 12], segment_size=256
+)
+
+
+
+

We compare the colors with the hardness-intensity diagram from Wang et al. 2021. The grey and red data plotted here were kindly provided by Jingyi Wang. The red dots indicate the points in the Wang plot corresponding to this observation. The difference in scatter is probably due to slightly different intervals being used in the analysis. Epoch 0 data are rescaled for 50 PCUs (as different observations had different number of +working PCUs), while our data and the input data set from the complete outburst are rescaled to 52. We rescale everything to 50 for consistency with Wang+2021

+
+
[11]:
+
+
+
wang_data = Table.read("wang_data.csv", names=["H", "I"])
+epoch0_wang_data = Table.read("epoch_0_data.csv", names=["H", "I"])
+
+epoch_zero_i = epoch0_wang_data["I"]
+epoch_zero_h = epoch0_wang_data["H"]
+
+
+
+
+
[12]:
+
+
+
fig, ax = plt.subplots()
+(plotline, _, _) = ax.errorbar(
+    colors,
+    intensity / ndet * 50,
+    yerr=intensity_errs / ndet * 50,
+    xerr=color_errs,
+    fmt="o",
+    color="b",
+    alpha=0.5,
+    markersize=7,
+    label="Stingray analysis",
+    zorder=10,
+)
+plotline.set_markerfacecolor("none")
+plotline.set_markeredgewidth(0.5)
+ax.scatter(
+    wang_data["H"],
+    wang_data["I"] / 52 * 50,
+    alpha=0.5,
+    color="grey",
+    zorder=1,
+    s=3,
+    label="Wang+2021",
+)
+ax.set_xlim([0.01, 0.4])
+ax.set_ylim([2e2, 1e5])
+ax.set_xlabel("Hardness ratio (4-12 keV/2-4 keV)")
+ax.set_ylabel("Intensity (ct/s/50PCUs, 0.4-12 keV)")
+ax.semilogy()
+ax.scatter(
+    epoch_zero_h, epoch_zero_i, marker="*", color="red", zorder=2, s=40, label="EPOCH 0 from Wang"
+)
+
+axins = ax.inset_axes(
+    [0.05, 0.05, 0.47, 0.47], xlim=(0.30, 0.325), ylim=(1.5e4, 2.2e4), xticklabels=[], yticklabels=[]
+)
+
+axins.scatter(wang_data["H"], wang_data["I"] / 52 * 50, alpha=0.5, color="grey", zorder=1, s=3)
+axins.errorbar(
+    colors,
+    intensity / ndet * 52,
+    yerr=intensity_errs / ndet * 52,
+    xerr=color_errs,
+    fmt="o",
+    color="b",
+    alpha=0.5,
+    markersize=7,
+    zorder=10,
+)
+axins.scatter(epoch_zero_h, epoch_zero_i, marker="*", color="red", zorder=2, s=40)
+
+ax.indicate_inset_zoom(axins, edgecolor="black")
+ax.legend(loc="upper right")
+
+
+
+
+
[12]:
+
+
+
+
+<matplotlib.legend.Legend at 0x175d33190>
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_21_1.png +
+
+
+
+

Periodogram and cross spectrum

+

Let us now take a look at the periodogram and the cross spectrum. The periodogram will be obtained with Bartlett’s method: splitting the light curve into equal-length segments, calculating the periodogram in each, and then averaging them into the final periodogram.

+

We will use the fractional rms normalization (sometimes referred to as the Belloni, or Miyamoto, normalization, from the papers Belloni & Hasinger 1990, Miyamoto et al. 1992). The background contribution is negligible and will be ignored.

+

Note: since the fractional rms normalization uses the mean count rate, the final result changes slightly if the normalization is applied in the single periodograms from each light curve segment, with the count rate of each chunk, or on the averaged periodogram, using the average count rate of the full light curve. We choose the second option (note the use_common_mean=True).

+

We will first plot the periodogram as is, in units of \((\mathrm{rms/mean)^2\,Hz^{-1}}\).

+

Then, from the periodogram, we will subtract the theoretical Poisson noise level of \(2/\mu\), where \(\mu\) is the mean count rate in the observation, and we will multiply the powers by the frequency, to have the periodogram in units of \((\mathrm{rms/mean)^2}\).

+

In both cases, we will rebin the periodogram geometrically, averaging more bins at larger frequencies, in order to lower the noise level.

+
+
[13]:
+
+
+
# Calculate the periodogram in fractional rms normalization.
+# Length in seconds of each light curve segment
+segment_size = 256
+# Sampling time of the light curve: 1ms, this will give a Nyquist
+# frequency of 0.5 / dt = 500 Hz.
+dt = 0.001
+# Fractional rms normalization
+norm = "frac"
+
+pds = AveragedPowerspectrum.from_events(
+    events, segment_size=segment_size, dt=dt, norm=norm, use_common_mean=True
+)
+
+# Calculate the mean count rate
+ctrate = get_average_ctrate(events.time, events.gti, segment_size)
+# Calculate the Poisson noise level
+noise = poisson_level(norm, meanrate=ctrate)
+
+# Rebin the periodogam
+pds_reb = pds.rebin_log(0.02)
+
+
+
+
+
+
+
+
+14it [00:00, 24.41it/s]
+
+
+
+
[14]:
+
+
+
plt.figure()
+
+plt.plot(pds.freq, pds.power, drawstyle="steps-mid", color="grey", alpha=0.5, label="PDS")
+plt.plot(pds_reb.freq, pds_reb.power, drawstyle="steps-mid", color="k", label="Rebinned PDS")
+plt.axhline(noise, ls=":", label="Poisson noise level")
+plt.loglog()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2 Hz^{-1}}$")
+plt.legend()
+
+plt.figure()
+plt.plot(
+    pds.freq,
+    (pds.power - noise) * pds.freq,
+    drawstyle="steps-mid",
+    color="grey",
+    alpha=0.5,
+    label="PDS",
+)
+plt.plot(
+    pds_reb.freq,
+    (pds_reb.power - noise) * pds_reb.freq,
+    drawstyle="steps-mid",
+    color="k",
+    label="Rebinned PDS",
+)
+plt.loglog()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2}$")
+plt.legend();
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_0.png +
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_24_1.png +
+
+

We will now do the same with the cross spectrum between the bands 0.5-1 keV and 1.5-3 keV.

+

In this case, there is no need to subtract the Poisson noise level, as it is zero in the cross spectrum, provided that the energy bands do not overlap.

+
+
[15]:
+
+
+
ref_band = [1.5, 3]
+sub_band = [0.5, 1]
+events_ref = events.filter_energy_range(ref_band)
+events_sub = events.filter_energy_range(sub_band)
+
+cs = AveragedCrossspectrum.from_events(
+    events_sub, events_ref, segment_size=segment_size, dt=dt, norm=norm
+)
+cs_reb = cs.rebin_log(0.02)
+
+
+
+
+
+
+
+
+14it [00:00, 34.28it/s]
+
+
+
+
[16]:
+
+
+
plt.figure()
+plt.plot(cs.freq, cs.power * cs.freq, drawstyle="steps-mid", color="grey", alpha=0.5)
+plt.plot(cs_reb.freq, cs_reb.power * cs_reb.freq, drawstyle="steps-mid", color="k")
+plt.loglog()
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2}$");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_27_0.png +
+
+
+
+

Periodogram modeling

+

This periodogram has a number of broad components, that can be approximated by Lorentzian curves. Let us try to model it.

+
+
[17]:
+
+
+
pds = AveragedPowerspectrum.from_events(events, segment_size=segment_size, dt=dt, norm="leahy")
+pds_reb = pds.rebin_log(0.02)
+
+
+
+
+
+
+
+
+14it [00:00, 28.75it/s]
+
+
+

We will model the periodogram using the maximum likelihood estimation from Barret & Vaughan 2012.

+

For periodograms averaged over \(L\) independent segments and \(M\) independent neighbouring frequencies,

+
+\[\mathcal{L}_\mathrm{avg}(\theta) = -2ML \sum_{j=1}^{N/2} \left\{ \frac{P_j}{S_j(\theta)} + \ln{S_j(\theta) + \left( \frac{1}{ML} - 1 \right)\ln{P_j} + c(2ML) }\right\} \; ,\]
+

where \(\theta\) are the model parameters, \(P_j\) are the periodogram values, \(S_j\) the model of the underlying signal, \(c(2ML)\) is a factor independent of \(P_j\) or \(S_j\), and thus unimportant to the parameter estimation problem considered here (it only scales the likelihood, but does not change its shape).

+

For non-uniformly binned periodograms, the factor \(ML\) should go inside the sum:

+
+\[\mathcal{L}_\mathrm{avg}(\theta) = -2\sum_{j=1}^{N/2} M_j L_j \left\{ \frac{P_j}{S_j(\theta)} + \ln{S_j(\theta) + \left( \frac{1}{ M_j L_j } - 1 \right)\ln{P_j} + c(2 M_j L_j ) }\right\}\]
+

This is the formula that we will apply here.

+

Let us now create an initial model that more or less describes the periodogram

+
+
[18]:
+
+
+
fit_model = (
+    models.Lorentz1D(x_0=0.02, fwhm=0.15, amplitude=10000)
+    + models.Lorentz1D(x_0=0.2, fwhm=3, amplitude=300)
+    + models.Lorentz1D(x_0=15, fwhm=30, amplitude=10)
+)
+
+plt.figure()
+plt.plot(
+    pds_reb.freq,
+    (pds_reb.power - 2) * pds_reb.freq,
+    drawstyle="steps-mid",
+    color="k",
+    label="Rebinned PDS",
+)
+plt.plot(pds.freq, fit_model(pds.freq) * pds.freq, color="r", label="Starting Model")
+for mod in fit_model:
+    plt.plot(pds.freq, mod(pds.freq) * pds.freq, color="r", ls=":")
+
+plt.semilogx()
+plt.xlim([pds.freq[0], pds.freq[-1]])
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(r"$\mathrm{(rms / mean)^2}$")
+plt.legend()
+plt.ylim([0, None])
+
+
+
+
+
[18]:
+
+
+
+
+(0.0, 1042.102641366527)
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_31_1.png +
+
+

We will now add a constant at the Poisson noise level (2 in Leahy normalization) and fit using the Maximum Likelihood estimation in stingray

+
+
[19]:
+
+
+
from stingray.modeling import PSDParEst
+
+fit_model = models.Const1D(amplitude=2) + fit_model
+
+parest = PSDParEst(pds_reb, fitmethod="L-BFGS-B", max_post=False)
+loglike = PSDLogLikelihood(pds_reb.freq, pds_reb.power, fit_model, m=pds_reb.m)
+
+res = parest.fit(loglike, fit_model.parameters)
+
+fitmod = res.model
+
+# The Poisson noise level was the first parameter.
+poisson = fitmod.parameters[0]
+print(res.p_opt)
+
+
+
+
+
+
+
+
+[ 1.94796052e+00  1.00085414e+04  1.65798045e-02  1.98807131e-01
+  3.00810652e+02 -5.92867228e-01  4.70262505e+00  8.40235653e+00
+  1.54668594e+01  2.51297268e+01]
+
+
+
+
[20]:
+
+
+
plt.figure()
+gs = plt.GridSpec(2, 1, hspace=0)
+ax0 = plt.subplot(gs[0])
+ax1 = plt.subplot(gs[1], sharex=ax0)
+
+ax0.plot(
+    pds_reb.freq,
+    (pds_reb.power - poisson) * pds_reb.freq,
+    drawstyle="steps-mid",
+    color="k",
+    label="Rebinned PDS",
+)
+ax0.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color="r", label="Best Model")
+for mod in fitmod[1:]:
+    ax0.plot(pds.freq, mod(pds.freq) * pds.freq, color="r", ls=":")
+
+ax0.set_xlabel("Frequency (Hz)")
+ax0.set_ylabel(r"$\mathrm{(rms / mean)^2}$")
+ax0.legend()
+
+ax1.plot(
+    pds_reb.freq,
+    (pds_reb.power - poisson) * pds_reb.freq,
+    drawstyle="steps-mid",
+    color="k",
+    label="Rebinned PDS",
+)
+ax1.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color="r", label="Best Model")
+for mod in fitmod[1:]:
+    ax1.plot(pds.freq, mod(pds.freq) * pds.freq, color="r", ls=":")
+
+ax1.set_xlabel("Frequency (Hz)")
+ax1.set_ylabel(r"$\mathrm{(rms / mean)^2}$")
+ax1.loglog()
+ax1.set_ylim([1e-1, None])
+ax1.set_xlim([pds.freq[0], pds.freq[-1]]);
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_34_0.png +
+
+
+
+

Power colors

+

Power colors (Heil et al. 2015) are an alternative to spectral colors but in the timing regime. The power colors are the ratio of the variability at different timescale, basically they inform us on the slope of the power spectrum in different Fourier frequency regimes. They can be used to understand the spectral state of an accreting source. Stingray implements power colors both as a standalone function in the +stingray.power_colors module, to be applied to a single periodogram, and as a method of DynamicalCrossspectrum and its children (see the DynamicalPowerspectrum tutorial for more information). Here we show one possible way to calculate power colors in the observation we are analyzing.

+

We use the same frequency edges [1/256. 1/32, 1/4, 2, 16] from Heil et al. 2015. The colors are then calculated as

+
    +
  • PC1: the ratio of the variances in the intervals 0.25-2 Hz and 0.00390625-0.03125 Hz

  • +
  • PC2: the ratio of the variances in the intervals 2-16 Hz and 0.03125-0.25 Hz

  • +
+
+
[21]:
+
+
+
from stingray import DynamicalPowerspectrum
+from stingray.power_colors import hue_from_power_color, plot_power_colors, plot_hues, DEFAULT_COLOR_CONFIGURATION, power_color
+
+
+
+
+
[22]:
+
+
+
# We use a segment size of 256, corresponding to a minimum frequency of 0.00390625, and a time resolution
+# of 1/256 = 0.00390625 seconds, corresponding to a Nyquist frequency of 128 Hz (well above our needs for
+# the power colors).
+
+dynps = DynamicalPowerspectrum(events, segment_size=256, sample_time=1 / 256, norm="leahy")
+
+
+
+
+
+
+
+
+14it [00:00, 31.60it/s]
+
+
+

We slightly rebin the spectrum to gain some signal to noise

+
+
[23]:
+
+
+
dynps_reb = dynps.rebin_by_n_intervals(2, method="average")
+
+
+
+

We now calculate the power colors and the “hue”, or the angle of the measured colors and the point PC1=4.51920 and PC2=0.453724 in the logPC1 vs logPC2 plane.

+
+
[24]:
+
+
+
p1, p1e, p2, p2e = dynps_reb.power_colors(
+    freq_edges=[1 / 256, 1 / 32, 0.25, 2, 16], poisson_power=res.p_opt[0]
+)
+
+hues = hue_from_power_color(p1, p2)
+
+
+
+

It is useful to compare power colors with the fractional rms. This can be calculated as

+
+
[25]:
+
+
+
rms, rmse = dynps_reb.compute_rms(1 / 64, 16, poisson_noise_level=res.p_opt[0])
+
+
+
+

Once the colors are calculated, they can be plotted and compared to the ranges that can be associated with different spectral states. The configuration of the plots can be tweaked by modifying the entries of a configuration dictionary. All defaults are contained in the DEFAULT_COLOR_CONFIGURATION and are based on the original paper. The user can start a configuration by using the default, and then tweaking some of the entries. This will almost certainly be needed if the user selects +different frequency ranges for the colors.

+
+
[26]:
+
+
+
configuration=DEFAULT_COLOR_CONFIGURATION
+configuration
+
+
+
+
+
[26]:
+
+
+
+
+{'center': [4.5192, 0.453724],
+ 'ref_angle': 2.356194490192345,
+ 'state_definitions': {'HSS': {'hue_limits': [300, 360], 'color': 'red'},
+  'LHS': {'hue_limits': [-20, 140], 'color': 'blue'},
+  'HIMS': {'hue_limits': [140, 220], 'color': 'green'},
+  'SIMS': {'hue_limits': [220, 300], 'color': 'yellow'}},
+ 'rms_spans': {-20: [0.3, 0.7],
+  0: [0.3, 0.7],
+  10: [0.3, 0.6],
+  40: [0.25, 0.4],
+  100: [0.25, 0.35],
+  150: [0.2, 0.3],
+  170: [0.0, 0.3],
+  200: [0, 0.15],
+  370: [0, 0.15]}}
+
+
+

We can now plot the power colors and calculate the hue.

+
+
[27]:
+
+
+
plot_power_colors(p1, p1e, p2, p2e, plot_spans=True, configuration=configuration)
+
+
+
+
+
[27]:
+
+
+
+
+<AxesSubplot: xlabel='log$_{10}$PC1', ylabel='log$_{10}$PC2'>
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_48_1.png +
+
+

Here, acronyms indicate the spectral state (Low Hard State, Hard InterMediate State, Soft InterMediate State, High Soft State).

+

Comparing with the results from Heil et al. 2015, the source is right in the region of overlap between the soft state and the hard state. However, what distinguishes the states is the amount of fractional rms. We can plot the rms versus the hue, and it is immediately clear that the rms is far too high for a soft state. We overplot the approximate of rms in the various states from Heil et al. +2015

+
+
[28]:
+
+
+
plot_hues(rms, rmse, p1, p2, plot_spans=True, configuration=configuration)
+
+
+
+
+
[28]:
+
+
+
+
+<AxesSubplot: xlabel='Hue', ylabel='Fractional rms'>
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_50_1.png +
+
+

Another way to visualize the spectral state from the rms and hue together is by using a polar plot (here, intuitively, the radius is the rms and the hue is the angle):

+
+
[30]:
+
+
+
plot_hues(rms, rmse, p1, p2, polar=True, plot_spans=True, configuration=configuration)
+
+
+
+
+
[30]:
+
+
+
+
+<PolarAxesSubplot: >
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_52_1.png +
+
+
+
+

Lags and coherence

+

With the cross spectrum we can explore the time lags versus frequency

+
+
[31]:
+
+
+
# Use shorter segments, rebin a little more heavily
+cs = AveragedCrossspectrum.from_events(events_sub, events_ref, segment_size=2, dt=0.005, norm=norm)
+cs_reb = cs.rebin_log(0.4)
+
+lag, lag_e = cs_reb.time_lag()
+
+
+
+
+
+
+
+
+2729it [00:00, 6000.14it/s]
+
+
+
+
[32]:
+
+
+
plt.figure()
+plt.errorbar(cs_reb.freq, lag, yerr=lag_e, fmt="o", color="k", alpha=0.5)
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(
+    f"Time lag ({ref_band[0]:g}-{ref_band[1]:g} keV vs {sub_band[0]:g}-{sub_band[1]:g} keV, in seconds)"
+)
+plt.axhline(0, ls="--")
+plt.semilogx()
+
+
+
+
+
[32]:
+
+
+
+
+[]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_55_1.png +
+
+

Another interesting thing to measure is the coherence at different frequencies

+
+
[33]:
+
+
+
coh, coh_e = cs_reb.coherence()
+plt.figure()
+plt.errorbar(cs_reb.freq, coh, yerr=coh_e, fmt="o", color="k", alpha=0.5)
+plt.xlabel("Frequency (Hz)")
+plt.ylabel(
+    f"Coherence ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV)"
+)
+plt.axhline(0, ls="--")
+plt.loglog()
+
+
+
+
+
[33]:
+
+
+
+
+[]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_57_1.png +
+
+
+

Spectral timing

+

Now let us explore the spectral timing properties of this observation, with no physical interpretation, just for the sake of data exploration.

+
+
[34]:
+
+
+
from stingray.varenergyspectrum import CountSpectrum, CovarianceSpectrum, RmsSpectrum, LagSpectrum
+
+
+
+

Let us start with the lag spectrum with respect to energy, in different frequency bands. This might be confusing for people coming from other wavelengths, so let us specify that

+
    +
  • “frequency” refers to the frequency of the variability.

  • +
  • “energy” refers to the photon energy.

  • +
+

The photons at 0.3-12 keV are modulated by oscillations and other stochastic noise up to ~100 Hz (see section above). As an example, we will now analyze the spectral timing properties using the variability up to 1 Hz and between 4 and 10 Hz.

+

From Kara et al. 2019, figure 3

+
+
[35]:
+
+
+
energy_spec = np.geomspace(0.5, 10, 41)
+segment_size = 10
+bin_time = 0.001
+freq_interval = [3, 30]
+ref_band = [0.5, 10]
+
+# If not specified, the reference energy band is the whole band.
+
+lagspec_3_30 = LagSpectrum(
+    events,
+    freq_interval=freq_interval,
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    ref_band=ref_band,
+)
+energies = lagspec_3_30.energy
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:36<00:00,  1.08it/s]
+
+
+
+
[36]:
+
+
+
plt.figure()
+plt.errorbar(
+    energies,
+    lagspec_3_30.spectrum * 1e4,
+    yerr=lagspec_3_30.spectrum_error * 1e4,
+    fmt="o",
+    label="3-30 Hz",
+    color="k",
+)
+plt.xlabel("Energy (keV)")
+plt.ylabel("Time Lag ($10^{-4}$ s)")
+plt.xlim([0.5, 10])
+plt.semilogx()
+
+
+
+
+
[36]:
+
+
+
+
+[]
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_64_1.png +
+
+
+
[37]:
+
+
+
lagspec_01_1 = LagSpectrum(
+    events,
+    freq_interval=[0.1, 1],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    ref_band=ref_band,
+)
+energies = lagspec_01_1.energy
+energies_err = np.diff(lagspec_01_1.energy_intervals, axis=1).flatten() / 2
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:37<00:00,  1.06it/s]
+
+
+
+
[38]:
+
+
+
plt.figure()
+plt.errorbar(
+    energies,
+    lagspec_01_1.spectrum,
+    xerr=energies_err,
+    yerr=lagspec_01_1.spectrum_error,
+    fmt="o",
+    label="0.1-1 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    lagspec_3_30.spectrum,
+    xerr=energies_err,
+    yerr=lagspec_3_30.spectrum_error,
+    fmt="o",
+    label="3-30 Hz",
+    alpha=0.5,
+)
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Time lag (s)")
+
+
+
+
+
[38]:
+
+
+
+
+Text(0, 0.5, 'Time lag (s)')
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_66_1.png +
+
+
+
[39]:
+
+
+
freq_01_1 = (1 + 0.1) / 2 * 2 * np.pi
+freq_3_30 = (3 + 30) / 2 * 2 * np.pi
+plt.figure()
+plt.errorbar(
+    energies,
+    lagspec_01_1.spectrum * freq_01_1,
+    xerr=energies_err,
+    yerr=lagspec_01_1.spectrum_error * freq_01_1,
+    fmt="o",
+    label="0.1-1 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    lagspec_3_30.spectrum * freq_3_30,
+    xerr=energies_err,
+    yerr=lagspec_3_30.spectrum_error * freq_3_30,
+    fmt="o",
+    label="3-30 Hz",
+    alpha=0.5,
+)
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Phase lag (rad)")
+
+
+
+
+
[39]:
+
+
+
+
+Text(0, 0.5, 'Phase lag (rad)')
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_67_1.png +
+
+

Interesting: the low-frequency variability has much longer time lags than the high-frequency variability, but the phase lags are on the same order of magnitude.

+
+
+
+

Covariance and RMS spectrum

+
+
[40]:
+
+
+
covspec_3_30 = CovarianceSpectrum(
+    events,
+    freq_interval=[3, 30],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="abs",
+    ref_band=ref_band,
+)
+covspec_01_1 = CovarianceSpectrum(
+    events,
+    freq_interval=[0.1, 1],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="abs",
+    ref_band=ref_band,
+)
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:35<00:00,  1.13it/s]
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:35<00:00,  1.14it/s]
+
+
+
+
[41]:
+
+
+
plt.figure()
+plt.errorbar(
+    energies,
+    covspec_3_30.spectrum,
+    xerr=energies_err,
+    yerr=covspec_3_30.spectrum_error,
+    fmt="o",
+    label="3-30 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    covspec_01_1.spectrum,
+    xerr=energies_err,
+    yerr=covspec_01_1.spectrum_error,
+    fmt="o",
+    label="0.1-1 Hz",
+    alpha=0.5,
+)
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Absolute Covariance (counts / s)");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_71_0.png +
+
+

This covariance, plotted this way, mostly tracks the number of counts in each energy bin. To get an unfolded covariance, we need to use the response of the instrument. Another way is to plot the fractional covariance, normalizing by the number of counts in each bin.

+

To do this, we calculate the Count Spectrum and divide by it.

+
+
[42]:
+
+
+
countsp = CountSpectrum(events, energy_spec=energy_spec)
+
+
+
+
+
+
+
+
+40it [00:06,  6.00it/s]
+
+
+
+
[43]:
+
+
+
plt.figure()
+plt.errorbar(
+    energies,
+    covspec_3_30.spectrum / countsp.spectrum,
+    xerr=energies_err,
+    yerr=covspec_3_30.spectrum_error / countsp.spectrum,
+    fmt="o",
+    label="3-30 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    covspec_01_1.spectrum / countsp.spectrum,
+    xerr=energies_err,
+    yerr=covspec_01_1.spectrum_error / countsp.spectrum,
+    fmt="o",
+    label="0.1-1 Hz",
+    alpha=0.5,
+)
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Normalized Covariance (1 / s)");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_75_0.png +
+
+

Alternatively, we can calculate the Covariance Spectrum in fractional rms normalization

+
+
[44]:
+
+
+
covspec_01_1 = CovarianceSpectrum(
+    events,
+    freq_interval=[0.1, 1],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="frac",
+)
+covspec_3_30 = CovarianceSpectrum(
+    events,
+    freq_interval=[3, 30],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="frac",
+)
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:40<00:00,  1.01s/it]
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:38<00:00,  1.03it/s]
+
+
+
+
[45]:
+
+
+
plt.figure()
+plt.errorbar(
+    energies,
+    covspec_01_1.spectrum,
+    xerr=energies_err,
+    yerr=covspec_01_1.spectrum_error,
+    fmt="o",
+    label="0.1-1 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    covspec_3_30.spectrum,
+    xerr=energies_err,
+    yerr=covspec_3_30.spectrum_error,
+    fmt="o",
+    label="3-30 Hz",
+    alpha=0.5,
+)
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Fractional Covariance");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_78_0.png +
+
+

This should largely be equivalent to the RMS spectrum

+
+
[46]:
+
+
+
rmsspec_01_1 = RmsSpectrum(
+    events,
+    freq_interval=[0.1, 1],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="frac",
+)
+rmsspec_3_30 = RmsSpectrum(
+    events,
+    freq_interval=[3, 30],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="frac",
+)
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:09<00:00,  4.21it/s]
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:09<00:00,  4.33it/s]
+
+
+
+
[47]:
+
+
+
plt.figure()
+plt.errorbar(
+    energies,
+    covspec_3_30.spectrum,
+    xerr=energies_err,
+    yerr=covspec_3_30.spectrum_error,
+    fmt="o",
+    label="Cov. 3-30 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    covspec_01_1.spectrum,
+    xerr=energies_err,
+    yerr=covspec_01_1.spectrum_error,
+    fmt="o",
+    label="Cov. 0.1-1 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    rmsspec_3_30.spectrum,
+    xerr=energies_err,
+    yerr=rmsspec_3_30.spectrum_error,
+    fmt="o",
+    label="RMS 3-30 Hz",
+    alpha=0.5,
+)
+plt.errorbar(
+    energies,
+    rmsspec_01_1.spectrum,
+    xerr=energies_err,
+    yerr=rmsspec_01_1.spectrum_error,
+    fmt="o",
+    label="RMS 0.1-1 Hz",
+    alpha=0.5,
+)
+plt.legend()
+plt.semilogx()
+plt.xlabel("Energy (keV)")
+plt.ylabel("Fractional RMS");
+
+
+
+
+
+
+
+../../_images/notebooks_Spectral_Timing_Spectral_Timing_Exploration_81_0.png +
+
+

QED, except that the error bars in some points look underestimated. It is always recommended to test error bars with simulations, in any case, as analytic formulas are based on a series of assumptions (in particular, on the coherence) that might not be correct in real life.

+
+
[48]:
+
+
+
from stingray.varenergyspectrum import LagSpectrum
+
+covspec_3_30 = CovarianceSpectrum(
+    events,
+    freq_interval=[3, 30],
+    segment_size=segment_size,
+    bin_time=bin_time,
+    energy_spec=energy_spec,
+    norm="frac",
+)
+
+
+
+
+
+
+
+
+100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:36<00:00,  1.08it/s]
+
+
+
+
[49]:
+
+
+
def variable_for_value(value):
+    for n, v in globals().items():
+        if id(v) == id(value):
+            return n
+    return None
+
+
+for func in [lagspec_3_30, lagspec_01_1, covspec_01_1, covspec_3_30]:
+    name = variable_for_value(func)
+    func.write(name + ".csv", fmt="ascii")
+
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb b/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb new file mode 100644 index 000000000..5a9e0d54c --- /dev/null +++ b/notebooks/Spectral Timing/Spectral Timing Exploration.ipynb @@ -0,0 +1,2078 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "3588b39d-5f96-4443-9241-189418f21f01", + "metadata": {}, + "source": [ + "## Introduction" + ] + }, + { + "cell_type": "markdown", + "id": "7GoFZn8bp_6J", + "metadata": { + "id": "7GoFZn8bp_6J" + }, + "source": [ + "In this tutorial, we will run a quicklook spectrotemporal analysis of a NICER observation of one epoch of the 2018 outburst of the accreting black hole MAXI 1820+070, largely reproducing the results from, e.g., [Wang et al. 2021](https://ui.adsabs.harvard.edu/abs/2021ApJ...910L...3W/abstract), [De Marco et al. 2021](https://ui.adsabs.harvard.edu/abs/2021A%26A...654A..14D/abstract). We will not give a scientific interpretation, just pure exploration.\n", + "\n", + "The dataset used for the analysis can be downloaded [on Zenodo](https://zenodo.org/records/10683101). \n", + "\n", + "DISCLAIMER: this dataset was downloaded from the NICER archive and only run through `barycorr` to refer the photon arrival times to the solar system barycenter. We did not run the official NICER pipeline on these data, and some of the features appearing in the power spectrum are instrumental artifacts. Data are not science-ready and only good for demonstration purposes. For more information (thanks Paul Ray and Sara Motta for discussion): \n", + "\n", + "+ [Some Notes on Timing Analyses and NICER Data (using also MAXI J1820+070 as an example)](https://heasarc.gsfc.nasa.gov/docs/nicer/data_analysis/workshops/nicer_wkshp_timing_5_4_21.pdf)\n", + "+ [NICER Analysis Threads](https://heasarc.gsfc.nasa.gov/docs/nicer/analysis_threads/)\n", + "\n", + "See [Uttley et al. 2014](https://ui.adsabs.harvard.edu/abs/2014A%26ARv..22...72U/abstract), [Bachetti & Huppenkothen 2022](https://ui.adsabs.harvard.edu/abs/2022arXiv220907954B/abstract) for reviews on most statistical concepts and terminology used here." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "executionInfo": { + "elapsed": 3072, + "status": "ok", + "timestamp": 1642601518655, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "3a1a8c5a-f94c-4793-ac0a-a7ecce7615f6", + "outputId": "36746cbf-a295-43e0-f252-2203f73ea7ef" + }, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "%matplotlib inline\n", + "\n", + "import black\n", + "# Uncomment and run this before releasing a new version of the docs\n", + "# import jupyter_black\n", + "\n", + "# jupyter_black.load(\n", + "# lab=False,\n", + "# line_length=100,\n", + "# verbosity=\"DEBUG\",\n", + "# target_version=black.TargetVersion.PY310,\n", + "# )\n", + "\n", + "import copy\n", + "import glob\n", + "import numpy as np\n", + "\n", + "import matplotlib as mpl\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from astropy.table import Table\n", + "from astropy.modeling import models\n", + "\n", + "from stingray.gti import create_gti_from_condition, gti_border_bins, time_intervals_from_gtis, cross_two_gtis\n", + "from stingray.utils import show_progress\n", + "from stingray.fourier import avg_cs_from_events, avg_pds_from_events, poisson_level, get_average_ctrate\n", + "from stingray import AveragedPowerspectrum, AveragedCrossspectrum, EventList\n", + "from stingray.modeling.parameterestimation import PSDLogLikelihood\n" + ] + }, + { + "cell_type": "markdown", + "id": "90aece42-47bc-49af-981f-c12b81b0f729", + "metadata": { + "id": "90aece42-47bc-49af-981f-c12b81b0f729" + }, + "source": [ + "## Data loading and cleanup.\n", + "\n", + "Let us take a look at the light curve. We load the NICER event list into a `stingray.EventList` object, and create a `stingray.Lightcurve` from it. Note that, for NICER, it is important to know how many detectors were on during the observation. In this tutorial, we make a rough check of how many detectors were on during the observation. In some cases, the number of detectors might _change_ during the observation. The user is encouraged to plot the `events.det_id` attribute (that gets set thanks to the `additional_columns` instruction below) and check the header of the event file for possible detectors that were switched off." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fa9bf7ab", + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 358 + }, + "executionInfo": { + "elapsed": 256, + "status": "error", + "timestamp": 1642601523824, + "user": { + "displayName": "Matteo Bachetti", + "photoUrl": "https://lh3.googleusercontent.com/a-/AOh14GhxoUVaeEqqcjFzInzeE8D98rozP9u4SLjbe8Il=s64", + "userId": "03388608366583665389" + }, + "user_tz": -60 + }, + "id": "fa9bf7ab", + "outputId": "7be21b43-046a-4753-e2e1-da99ab63f3ef" + }, + "outputs": [], + "source": [ + "# This dataset can be downloaded from the NICER archive at the HEASARC.\n", + "# We do not include it because of the large size.\n", + "fname = \"ni1200120106_0mpu7_cl_bary.evt.gz\"\n", + "# Here we are also saving the information about the detector\n", + "events = EventList.read(fname, \"hea\", additional_columns=[\"DET_ID\"])\n", + "events.fname = fname" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "5d922d6d", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlEAAAGwCAYAAACJjDBkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOnUlEQVR4nO3dfXxMZ/4//tckZJKISQRJZHMjpW7iJiG2TG9sRCoha2nVoj6aqsaPTdolW2x2bSjbr1brrqRSVbRbinZLWzSkQVBxF1J3ZUtjo5igJEOQm8n5/WFzmiG3JzNzzpl5PR+PeTBzrjnzPlfOzLzmOtec0QiCIICIiIiIGsVJ7gKIiIiI1IghioiIiEgChigiIiIiCRiiiIiIiCRgiCIiIiKSgCGKiIiISAKGKCIiIiIJmsldgL2orKzE5cuX0bJlS2g0GrnLISIiogYQBAG3bt2Cv78/nJwaN7bEEGUhly9fRmBgoNxlEBERkQQXL15EQEBAo+7DEGUhLVu2BHD/j6DT6azzIPPmWWe9tpSSov7tSEm5/68jbEdVm+qUtN3V62vsdtR3H1t5sDYl1NRYSt9PGqrq9amh+5USKXlfb6jatsFKjEYjAgMDxffxxmCIspCqQ3g6nc56IUqrtc56bUmnU/92VP19HWE7atqXlbTd1etr7HbUdx9bebA2JdTUWErfTxqq6vWpofuVEil5X28oa72H1kPKVBxOLCciIiKSgCGKiIiISAKGKCIiIiIJGKKIiIiIJGCIIiIiIpKAIYqIiIhIAoYoIiIiIgkYooiIiIgkYIgiIiIikoAhioiIiEgChigiIiIiCRiiiIiIiCRgiCIiIod3V+DbITUe9xoiInJouZUe6FoagblbTstdCqkMQxQRETm0+eW/AQB8uC9f5kpIbRiiiIiIiCRgiCIiIiKSgCGKiIiISAKGKCIiIiIJGKKIiMgivsy7hCXf/ih3GUQ2wxBFREQW8ef1eVj07X9wtOCm3KWQnfjldime/+AANh+7JHcpNZI1RC1fvhw9e/aETqeDTqeDXq/HN998Iy6PjIyERqMxu0yaNMlsHQUFBYiLi4O7uzt8fHwwbdo0VFRUmLXZvXs3evfuDa1Wi44dO2LNmjUP1ZKWlob27dvD1dUVffv2xaFDh6yyzURE9q7oTpncJZCdeGfHf7D//C+YsiFP7lJqJGuICggIwJtvvonc3FwcOXIEUVFRGDZsGE6dOiW2SUhIwJUrV8TL/PnzxWUmkwlxcXEoKyvD/v378dFHH2HNmjVITU0V2+Tn5yMuLg4DBgxAXl4epkyZgpdffhnbt28X22zYsAHJycmYNWsWjh49irCwMMTExODq1au26QgiIiJ6SPFdZQdyWUPU0KFDMWTIEDz66KPo1KkT3njjDXh4eODAgQNiG3d3d/j5+YkXnU4nLtuxYwdOnz6NTz75BOHh4Rg8eDDmzp2LtLQ0lJXd7/j09HSEhIRgwYIF6Nq1K5KSkvDcc89h0aJF4noWLlyIhIQEjB8/HqGhoUhPT4e7uztWrVplu84g1bhZUoa9P15DpSB3JWQv3th6GlHv7Mate+Vyl0KkKBpo5C6hToqZE2UymbB+/XqUlJRAr9eLt69duxZt2rRB9+7dkZKSgjt37ojLcnJy0KNHD/j6+oq3xcTEwGg0iqNZOTk5iI6ONnusmJgY5OTkAADKysqQm5tr1sbJyQnR0dFim5qUlpbCaDSaXcgxDHl3L8Z9eAgbTG3kLoXsxAd78/HT9RJsOHxR7lKIqBGayV3AiRMnoNfrce/ePXh4eGDTpk0IDQ0FADz//PMIDg6Gv78/jh8/jhkzZuDs2bP44osvAAAGg8EsQAEQrxsMhjrbGI1G3L17Fzdv3oTJZKqxzZkzZ2qte968eXj99debtvGkSleK7wEAMipbYQyuy1wNqdltwQmf7vlJvC5wdJPInLIHouQPUZ07d0ZeXh6Ki4vx+eefIz4+HtnZ2QgNDcXEiRPFdj169EC7du0wcOBAnD9/Hh06dJCxaiAlJQXJycnidaPRiMDAQBkrInIs5ypdYTLcQme/lnKXItnciiBs2PaDeH3N/gsYUOmKjk73ZKyK1OxumQlXb91DcOsW+OV2KXacLsTQMH94yF2YnZL9cJ6Liws6duyIiIgIzJs3D2FhYViyZEmNbfv27QsAOHfuHADAz88PhYWFZm2qrvv5+dXZRqfTwc3NDW3atIGzs3ONbarWUROtVit+q7DqYi37fryOQYuycbSyhdUeg0hNygUNost6IGbxHtwpq6j/Dgq1v9I8AF4quovosh4yVUP2IHphNn739m4c/7kI4z48hJQvTuDvm07IXZZkCh+Ikj9EPaiyshKlpaU1LsvLywMAtGvXDgCg1+tx4sQJs2/RZWZmQqfTiYcE9Xo9srKyzNaTmZkpzrtycXFBRESEWZvKykpkZWWZzc2S0/99eBD/KbyNsWWd5S6F7MR2kxfe/OYMKlU6O7602ktr0R1OxlYatR2W1Cj9nboRLhXdBQBknDTg9BWj+H+10lT743ycc0G+Qmoh6+G8lJQUDB48GEFBQbh16xbWrVuH3bt3Y/v27Th//jzWrVuHIUOGoHXr1jh+/DimTp2K/v37o2fPngCAQYMGITQ0FOPGjcP8+fNhMBgwc+ZMJCYmQqvVAgAmTZqEZcuWYfr06XjppZewc+dObNy4EVu3bhXrSE5ORnx8PPr06YPHHnsMixcvRklJCcaPHy9Lv9TmLpzlLoHsxP9X/iiQfR49AzwxRO5iyO7sPHMVA+UuguxO6pen8IK+vdxlmJE1RF29ehUvvPACrly5Ak9PT/Ts2RPbt2/H008/jYsXL+Lbb78VA01gYCBGjBiBmTNnivd3dnbGli1bMHnyZOj1erRo0QLx8fGYM2eO2CYkJARbt27F1KlTsWTJEgQEBGDlypWIiYkR24waNQrXrl1DamoqDAYDwsPDkZGR8dBkcyJ7c9XIuTdkeWsPFuANV7mrILUSBEEcgVL6IKGsIerDDz+sdVlgYCCys7PrXUdwcDC2bdtWZ5vIyEgcO3aszjZJSUlISkqq9/GIqij9yU1kS8U8rKooFSo9VH9P0CDmnd3oHdQKi0aFy11OvRQ3J4qIbMck3L+o2Y2SMo6oKcCgxfV/6FWbe+UmuUuQ7GD+DblLkOTbSi/895c72PS/38pT+nw12U9xQETymbvlND7W9MBOlxNwVviLVW1+v3QfAOC01gnumkqZq2mci4J9HPOqMFWi0FjzF4LU6q//Po71hy8iw8UNXZzuyl2Ow1L6yxJHoogc3H8FV/yC5nKX0WRXBBe5S3BYVaMG1al9hHP9/84ev7yincyVNJ3K/xSKxhBFRERNouav0JOyaRR+PI8hioiIyA5Un0v+319K5CvEgpQdoRiiVKeC47JERDZTqvi38ZrxJLS2wRClMstM/nKXQP+jzpdWImqMjEpvuUsgBWOIUplPK9rKXQLZJQ5xkjQlghOyzlytv6GKnLt6W+4SJLlnB2/pd4Rff5njhytGfFHDlxaURP09TkQOh5FPOf5c/ojcJVhc/KpDcpcgiT18Q/V2tZ83W7HnJxkraRiGKCIikuzbylZyl9BkDx6ar/oRX3tRVqGe86fNqQgS/1+pgl+yZogikqi2p/dtwQnbTK1wR+DTy5ZyKlvKXQIRWdCXeZflLqFefJVXGeXncppS/gj+VN4R08vby11Kg9nDJPmZFe3lLoGIHAxDFJFEtQWPqsMbWypb264YqtfNkjKUlFbIXQYR2RGGKCKyeyWlFYh8Zzfi3t0rdymkcP8sD5S7BFIRhigiqtGKCj/8fuleFNvBSfvOXb2N4rvluPDLHeRdLJK7HFKwlSY/uUuQTMMJHzbHEKUyfIqQNdR0aPL/VQTi5CUj/nXggq3Lsarhad/JXYJDsId5dmozobyT3CU4HIYoIqpT8V31j0R9/b3yv+VD1BQ/Cy7IF1zlLsPhMEQRUZ0+2JuPPf+5JncZTbJyX77cJRBZFU+pIg/2OlEjrKrwFf/vSIcrXlDpGZxrs2DHWVy8cUfuMohI5ZrJXQA1jiO9cStR9bPpknot3XkOG49cxEG5C7FjnL9JjoAjUSpzk7mXyCIKjaVyl0BEKscQpTLl/JMRQWjEmKyJQyJEZCV8RyaS6JrQXO4SqAF2VXrKXQIpHKdJkFQMUUQSnRBayF0CNUAJnGtdtqyinQ0rcSyvlYfIXUKDGfiBiCRiiCKiBn0Sb//XrRi9IgeCHR0ee6ciAD8LLnKXYZc2VbaRu4QG+0lwk7sEUimGKCJqsAM/3cB/Ba3cZTTK56a638zv8fw6RCQRXz2IyK7t5ZwoIrIShigiIiIiCRiiiIjfTiIikoAhioiIiEgChigiIiIiCRiiFO7WvXK5SyAiIqIaMEQpXAV/s4JsQMOfiyUiajSGKCIiIiIJGKKIqFE/6HtJAWf45rgZESkBQxQRNcoRoaXcJRARKYKsIWr58uXo2bMndDoddDod9Ho9vvnmG3H5vXv3kJiYiNatW8PDwwMjRoxAYWGh2ToKCgoQFxcHd3d3+Pj4YNq0aaioqDBrs3v3bvTu3RtarRYdO3bEmjVrHqolLS0N7du3h6urK/r27YtDhw5ZZZvJvtyyk58M4ZwoIqLGk/UdICAgAG+++SZyc3Nx5MgRREVFYdiwYTh16hQAYOrUqfj666/x2WefITs7G5cvX8azzz4r3t9kMiEuLg5lZWXYv38/PvroI6xZswapqalim/z8fMTFxWHAgAHIy8vDlClT8PLLL2P79u1imw0bNiA5ORmzZs3C0aNHERYWhpiYGFy9etV2nUGqdLTSQ+4SiIhIJrKGqKFDh2LIkCF49NFH0alTJ7zxxhvw8PDAgQMHUFxcjA8//BALFy5EVFQUIiIisHr1auzfvx8HDhwAAOzYsQOnT5/GJ598gvDwcAwePBhz585FWloaysrKAADp6ekICQnBggUL0LVrVyQlJeG5557DokWLxDoWLlyIhIQEjB8/HqGhoUhPT4e7uztWrVpVa+2lpaUwGo1mFyIiInIcijkWYTKZsH79epSUlECv1yM3Nxfl5eWIjo4W23Tp0gVBQUHIyckBAOTk5KBHjx7w9fUV28TExMBoNIqjWTk5OWbrqGpTtY6ysjLk5uaatXFyckJ0dLTYpibz5s2Dp6eneAkMDGx6J9TgXoXJKuslIiKippE9RJ04cQIeHh7QarWYNGkSNm3ahNDQUBgMBri4uMDLy8usva+vLwwGAwDAYDCYBaiq5VXL6mpjNBpx9+5dXL9+HSaTqcY2VeuoSUpKCoqLi8XLxYsXJW1/fbYev2KV9crhnqDB3TKGQrW7JTjLXQIRkSI0k7uAzp07Iy8vD8XFxfj8888RHx+P7Oxsucuql1arhVartfrjVAr2MeHXJACxZd1RvjAbuwUNmmvsY7vUqKZdqjE/QLzS5IeZza3zoYGISE1kD1EuLi7o2LEjACAiIgKHDx/GkiVLMGrUKJSVlaGoqMhsNKqwsBB+fn4AAD8/v4e+RVf17b3qbR78Rl9hYSF0Oh3c3Nzg7OwMZ2fnGttUrYOargTOuCC4AkV3cV3bDO3An7ORyw+Cm9wlEClKJ80d/Edwl7sMUiHZD+c9qLKyEqWlpYiIiEDz5s2RlZUlLjt79iwKCgqg1+sBAHq9HidOnDD7Fl1mZiZ0Oh1CQ0PFNtXXUdWmah0uLi6IiIgwa1NZWYmsrCyxjZw0jRojIKpfmfKe9kSyckOl3CWQSsk6EpWSkoLBgwcjKCgIt27dwrp167B7925s374dnp6emDBhApKTk+Ht7Q2dTodXXnkFer0e/fr1AwAMGjQIoaGhGDduHObPnw+DwYCZM2ciMTFRPNQ2adIkLFu2DNOnT8dLL72EnTt3YuPGjdi6datYR3JyMuLj49GnTx889thjWLx4MUpKSjB+/HhZ+qU6wQ7P35NhaoXxzXj6CCIiSzHKf2DJIcna61evXsULL7yAK1euwNPTEz179sT27dvx9NNPAwAWLVoEJycnjBgxAqWlpYiJicF7770n3t/Z2RlbtmzB5MmTodfr0aJFC8THx2POnDlim5CQEGzduhVTp07FkiVLEBAQgJUrVyImJkZsM2rUKFy7dg2pqakwGAwIDw9HRkbGQ5PNyTJerwi2mxBlLxFXbeOdaquXyNr4lR15yBqiPvzwwzqXu7q6Ii0tDWlpabW2CQ4OxrZt2+pcT2RkJI4dO1Znm6SkJCQlJdXZRg48nEeWZi/Bj8hSLivg9yBJnTg5gmRRyXdyagLuPmRJd8DTdpA0DFEKZy9zoh7ciuxKT1nqICIishSGKLKJtIp2Ztdv85MfESkEJ02oR6nCfsWDIUrh7GVO1ApTu/obkU3Yx9gmETmiTw8WyF2CGYYoksVdgbseEZGlCHbygbs+v5SUyV2CGb6TkSx4OI+IlIKjsyQVQxRREzjKpz975sy3UCKSiCFK4ezl23n2arOptdwlNBr3KCIiy2CIIllo7OSt/JzgKncJREQkE4YoIiJyaPbxkc4xrD98Ue4SzDBEkSwuCVq5S3BgnMdVHd9AidTj2q1SuUswwxBFslhp8pO7BIdVwtNLEJmxhyAt2MNGqBBfTYkcDH9s1RzH5cgR7DLxp7asgSGKiIjIzv2jIljuEuwSQ5TC2cvPvtgrNY6gq7FmImuyh1dZjT1shAoxRBGRQ7vDl0GHx/xBUvHVg4gc2vIK/ji2o+PoLEnFEKVwHKIlsi6eboOIpGKIInIw/L0/IvtT3ykOrgnNbVOIg2GIUjie+4PIuvgUI0dQyrd7q2CvKhx/gJgszV5+t9BS2BtkDzj1Qx4MUURNwNctIlICHrWQB0MUUROo8XWLc6LMsT9Ijc9jUgaGKCJyaHwDJSKpGKIUjkO0yqbGMQzuUkRElsEQRUSqY8kgyFBJ9oD7sTwYoogcDF9szbE/iPsAScUQRUQO7ZTQQu4SiEilGKIUjp+QyNLUOI+LyJr4nCCpGKKIiMih3YWz3CWQSjFEETWBGkcK1VgzEdWNo2nyYIgicjAMUURElsEQpXA8TxQREdVHp6mQuwSHxBBFRESkcjqY5C7BITFEKZzAgy+KxnkIRKQE/A1IecgaoubNm4ff/va3aNmyJXx8fDB8+HCcPXvWrE1kZCQ0Go3ZZdKkSWZtCgoKEBcXB3d3d/j4+GDatGmoqDAf2ty9ezd69+4NrVaLjh07Ys2aNQ/Vk5aWhvbt28PV1RV9+/bFoUOHLL7NjWW8yyFaJePLFhGR45I1RGVnZyMxMREHDhxAZmYmysvLMWjQIJSUlJi1S0hIwJUrV8TL/PnzxWUmkwlxcXEoKyvD/v378dFHH2HNmjVITU0V2+Tn5yMuLg4DBgxAXl4epkyZgpdffhnbt28X22zYsAHJycmYNWsWjh49irCwMMTExODq1avW74g6nLt6W9bHJ8fA8U4iosZrJueDZ2RkmF1fs2YNfHx8kJubi/79+4u3u7u7w8/Pr8Z17NixA6dPn8a3334LX19fhIeHY+7cuZgxYwZmz54NFxcXpKenIyQkBAsWLAAAdO3aFfv27cOiRYsQExMDAFi4cCESEhIwfvx4AEB6ejq2bt2KVatW4a9//as1Np9IMS4IrgjXlNTfkIiIRIqaE1VcXAwA8Pb2Nrt97dq1aNOmDbp3746UlBTcuXNHXJaTk4MePXrA19dXvC0mJgZGoxGnTp0S20RHR5utMyYmBjk5OQCAsrIy5ObmmrVxcnJCdHS02OZBpaWlMBqNZhdyPGocwalp7sS/KnxkqEQ6NfY7EdkfWUeiqqusrMSUKVPwxBNPoHv37uLtzz//PIKDg+Hv74/jx49jxowZOHv2LL744gsAgMFgMAtQAMTrBoOhzjZGoxF3797FzZs3YTKZamxz5syZGuudN28eXn/99aZtNBEREamWYkJUYmIiTp48iX379pndPnHiRPH/PXr0QLt27TBw4ECcP38eHTp0sHWZopSUFCQnJ4vXjUYjAgMDZauH5PFfwVXuEoiISCaKCFFJSUnYsmUL9uzZg4CAgDrb9u3bFwBw7tw5dOjQAX5+fg99i66wsBAAxHlUfn5+4m3V2+h0Ori5ucHZ2RnOzs41tqltLpZWq4VWq234RkrGAxdKdpu/uUVE5LBknRMlCAKSkpKwadMm7Ny5EyEhIfXeJy8vDwDQrl07AIBer8eJEyfMvkWXmZkJnU6H0NBQsU1WVpbZejIzM6HX6wEALi4uiIiIMGtTWVmJrKwssQ2RvWAsJyKyDFlHohITE7Fu3Tp8+eWXaNmypTiHydPTE25ubjh//jzWrVuHIUOGoHXr1jh+/DimTp2K/v37o2fPngCAQYMGITQ0FOPGjcP8+fNhMBgwc+ZMJCYmiiNFkyZNwrJlyzB9+nS89NJL2LlzJzZu3IitW7eKtSQnJyM+Ph59+vTBY489hsWLF6OkpET8th4RERFRdbKGqOXLlwO4f0LN6lavXo0XX3wRLi4u+Pbbb8VAExgYiBEjRmDmzJliW2dnZ2zZsgWTJ0+GXq9HixYtEB8fjzlz5ohtQkJCsHXrVkydOhVLlixBQEAAVq5cKZ7eAABGjRqFa9euITU1FQaDAeHh4cjIyHhosrmt8bfzyNJ4glAiIsuQNUQJ9SSEwMBAZGdn17ue4OBgbNu2rc42kZGROHbsWJ1tkpKSkJSUVO/jEdkbI+d2ERE1mqLOE0VE1lfTR5fMylY2r4OILEfD2Y6yYIgiItXhCxeROf4AsTz4WqRw/GxBRESkTAxRRA6GwZyIyDIYohSuvsn3REREJA+GKCIiIiIJGKKIiIiIJGCIUjgezCMiIlImhigiB8NgTkRkGQxRCtexrYfcJRAREVENGKIUzs2FP8dBRESkRAxRRA7mhtBc7hKIiOwCQ5TC8UT+ZGlLTf5yl0BEZBcYooiIiIgkYIgiIrvBE/yTo+KuLw+GKCIiIiIJGKIUjp8uiBqOzxdyVJw/Kw+GKIXj4QkiIiJlYohSOBNTFNFD+KwgIiVgiFK4DYcvyl0CkWowXBGRLTFEKdyNkjK5SyAiIqIaMEQRERERScAQRUR2g4fziMiWGKKIiIiIJGCIIiK7IfBsOURkQwxRRERERBIwRBERERFJwBBFRHaDE8vJUXHflwdDFBEREZEEDFFEpDqcPk5ESsAQRUR2g4c0iMiWGKKISHUYlohICRiiiMhuMFyRo+IhbnkwRBERERFJwBBFREREJAFDFBEREZEEsoaoefPm4be//S1atmwJHx8fDB8+HGfPnjVrc+/ePSQmJqJ169bw8PDAiBEjUFhYaNamoKAAcXFxcHd3h4+PD6ZNm4aKigqzNrt370bv3r2h1WrRsWNHrFmz5qF60tLS0L59e7i6uqJv3744dOiQxbeZiIiI7IOkEHXx4kX8/PPP4vVDhw5hypQpWLFiRaPWk52djcTERBw4cACZmZkoLy/HoEGDUFJSIraZOnUqvv76a3z22WfIzs7G5cuX8eyzz4rLTSYT4uLiUFZWhv379+Ojjz7CmjVrkJqaKrbJz89HXFwcBgwYgLy8PEyZMgUvv/wytm/fLrbZsGEDkpOTMWvWLBw9ehRhYWGIiYnB1atXpXQRERER2TlJIer555/Hrl27AAAGgwFPP/00Dh06hL///e+YM2dOg9eTkZGBF198Ed26dUNYWBjWrFmDgoIC5ObmAgCKi4vx4YcfYuHChYiKikJERARWr16N/fv348CBAwCAHTt24PTp0/jkk08QHh6OwYMHY+7cuUhLS0NZWRkAID09HSEhIViwYAG6du2KpKQkPPfcc1i0aJFYy8KFC5GQkIDx48cjNDQU6enpcHd3x6pVq2qsvbS0FEaj0exCRPIS+B0lIrIhSSHq5MmTeOyxxwAAGzduRPfu3bF//36sXbu2xsNkDVVcXAwA8Pb2BgDk5uaivLwc0dHRYpsuXbogKCgIOTk5AICcnBz06NEDvr6+YpuYmBgYjUacOnVKbFN9HVVtqtZRVlaG3NxcszZOTk6Ijo4W2zxo3rx58PT0FC+BgYGSt5uIiIjUR1KIKi8vh1arBQB8++23+MMf/gDgfsC5cuWKpEIqKysxZcoUPPHEE+jevTuA+6NcLi4u8PLyMmvr6+sLg8EgtqkeoKqWVy2rq43RaMTdu3dx/fp1mEymGttUreNBKSkpKC4uFi8XL16UtN1ERERNxXOkyaOZlDt169YN6enpiIuLQ2ZmJubOnQsAuHz5Mlq3bi2pkMTERJw8eRL79u2TdH9b02q1YpAkImXgGwkR2ZKkkai33noL77//PiIjIzFmzBiEhYUBAL766ivxMF9jJCUlYcuWLdi1axcCAgLE2/38/FBWVoaioiKz9oWFhfDz8xPbPPhtvarr9bXR6XRwc3NDmzZt4OzsXGObqnUQERERVScpREVGRuL69eu4fv262cTriRMn4v3332/wegRBQFJSEjZt2oSdO3ciJCTEbHlERASaN2+OrKws8bazZ8+ioKAAer0eAKDX63HixAmzb9FlZmZCp9MhNDRUbFN9HVVtqtbh4uKCiIgIszaVlZXIysoS2xCR8nEkiohsSVKIioqKwq1bt9CqVSuz2729vTFq1KgGrycxMRGffPIJ1q1bh5YtW8JgMMBgMODu3bsAAE9PT0yYMAHJycnYtWsXcnNzMX78eOj1evTr1w8AMGjQIISGhmLcuHH4/vvvsX37dsycOROJiYni4bZJkybhp59+wvTp03HmzBm899572LhxI6ZOnSrWkpycjA8++AAfffQRfvjhB0yePBklJSUYP368lC4iIitiWCIiJZA0J2r37t3i6QOqu3fvHvbu3dvg9SxfvhzA/ZGt6lavXo0XX3wRALBo0SI4OTlhxIgRKC0tRUxMDN577z2xrbOzM7Zs2YLJkydDr9ejRYsWiI+PNzvVQkhICLZu3YqpU6diyZIlCAgIwMqVKxETEyO2GTVqFK5du4bU1FQYDAaEh4cjIyPjocnmREREREAjQ9Tx48fF/58+fdrsm2smkwkZGRn4zW9+0+D1CUL9nyddXV2RlpaGtLS0WtsEBwdj27Ztda4nMjISx44dq7NNUlISkpKS6q2JiJSJI1REZEuNClHh4eHQaDTQaDSIiop6aLmbmxuWLl1qseKIiIiIlKpRISo/Px+CIOCRRx7BoUOH0LZtW3GZi4sLfHx84OzsbPEiiYiIqHY8V788GhWigoODAdz/5hoRkdLwcB4R2ZKkieUA8OOPP2LXrl24evXqQ6Gq+o//EhEREdkjSSHqgw8+wOTJk9GmTRv4+flBo/l1IFGj0TBEEZEsHvwB4gZ8d4WISDJJIeqf//wn3njjDcyYMcPS9RARERGpgqSTbd68eRMjR460dC1EREREqiEpRI0cORI7duywdC1ERE3Co3fkqLjvy0PS4byOHTviH//4Bw4cOIAePXqgefPmZstfffVVixRHREREpFSSQtSKFSvg4eGB7OxsZGdnmy3TaDQMUVQvXzz8s0FETXVTaAZPjUnuMojIQUgKUfn5+ZaugxyMMwefyQrOCa5oj1K5yyAiByFpThQRERGRo5M0EvXSSy/VuXzVqlWSiiEiaooHzxNFRGRNkkLUzZs3za6Xl5fj5MmTKCoqqvGHiYmI5MCDxkRkTZJC1KZNmx66rbKyEpMnT0aHDh2aXBTZv3s8kkxERCpnsXcyJycnJCcnY9GiRZZaJdmxG2hefyOiRuLIExHZkkWHA86fP4+KigpLrpKIqMEYoojIliQdzktOTja7LggCrly5gq1btyI+Pt4ihRERNRZDFDkqfqVCHpJC1LFjx8yuOzk5oW3btliwYEG939wjIrIevpUQke1IClG7du2ydB1EREREqiIpRFW5du0azp49CwDo3Lkz2rZta5GiiIik4OE8clTc9+UhaWJ5SUkJXnrpJbRr1w79+/dH//794e/vjwkTJuDOnTuWrpGISBK+sRCRNUkKUcnJycjOzsbXX3+NoqIiFBUV4csvv0R2djb+8pe/WLpGIiIzPDM5ESmBpMN5//73v/H5558jMjJSvG3IkCFwc3PDH//4RyxfvtxS9RERNRhHnojIliSNRN25cwe+vr4P3e7j48PDeUQkG4YoIrIlSSFKr9dj1qxZuHfvnnjb3bt38frrr0Ov11usOCKixmCIIiJbknQ4b/HixYiNjUVAQADCwsIAAN9//z20Wi127Nhh0QIdXduWWly7VSp3GUSqwLlSRGRLkkJUjx498OOPP2Lt2rU4c+YMAGDMmDEYO3Ys3NzcLFqgo+NbAhERkTJJClHz5s2Dr68vEhISzG5ftWoVrl27hhkzZlikOCKixuDhPCKyJUlzot5//3106dLlodu7deuG9PT0JhdFRCQFQxQR2ZKkEGUwGNCuXbuHbm/bti2uXLnS5KLoV04aHtAjkoqhioisSVKICgwMxHfffffQ7d999x38/f2bXBT9yl4zVFuUyV0C2aEKziIkIhuSNCcqISEBU6ZMQXl5OaKiogAAWVlZmD59Os9YbmGCnX6UdtVUyl0C2SFGKCKyJUkhatq0afjll1/wpz/9CWVl90cUXF1dMWPGDKSkpFi0QCIiIiIlkhSiNBoN3nrrLfzjH//ADz/8ADc3Nzz66KPQarWWrs/h2evhPCIiIrWTNCeqioeHB37729+ie/fukgLUnj17MHToUPj7+0Oj0WDz5s1my1988UVoNBqzS2xsrFmbGzduYOzYsdDpdPDy8sKECRNw+/ZtszbHjx/HU089BVdXVwQGBmL+/PkP1fLZZ5+hS5cucHV1RY8ePbBt27ZGbw81HLMhNYWdHuUmIpVpUohqqpKSEoSFhSEtLa3WNrGxsbhy5Yp4+fTTT82Wjx07FqdOnUJmZia2bNmCPXv2YOLEieJyo9GIQYMGITg4GLm5uXj77bcxe/ZsrFixQmyzf/9+jBkzBhMmTMCxY8cwfPhwDB8+HCdPnrT8RjeSvYYNvgmSNXC/IiJbknQ4z1IGDx6MwYMH19lGq9XCz8+vxmU//PADMjIycPjwYfTp0wcAsHTpUgwZMgTvvPMO/P39sXbtWpSVlWHVqlVwcXFBt27dkJeXh4ULF4pha8mSJYiNjcW0adMAAHPnzkVmZiaWLVsm+3mvNDyeR0REpEiyjkQ1xO7du+Hj44POnTtj8uTJ+OWXX8RlOTk58PLyEgMUAERHR8PJyQkHDx4U2/Tv3x8uLi5im5iYGJw9exY3b94U20RHR5s9bkxMDHJycmqtq7S0FEaj0exCDSdreiciIrIARYeo2NhYfPzxx8jKysJbb72F7OxsDB48GCaTCcD9k376+PiY3adZs2bw9vaGwWAQ2/j6+pq1qbpeX5uq5TWZN28ePD09xUtgYGDTNtbBDHX6pf5GRE3EHyQmImtS9IDA6NGjxf/36NEDPXv2RIcOHbB7924MHDhQxsqAlJQUJCcni9eNRiODVCNoNZy9QpbHvYqIbEnRI1EPeuSRR9CmTRucO3cOAODn54erV6+atamoqMCNGzfEeVR+fn4oLCw0a1N1vb42tc3FAu7P1dLpdGYXIiIichyqClE///wzfvnlF/F3+/R6PYqKipCbmyu22blzJyorK9G3b1+xzZ49e1BeXi62yczMROfOndGqVSuxTVZWltljZWZmQq/XW3uTiMiC7PUM/0SkTLKGqNu3byMvLw95eXkAgPz8fOTl5aGgoAC3b9/GtGnTcODAAVy4cAFZWVkYNmwYOnbsiJiYGABA165dERsbi4SEBBw6dAjfffcdkpKSMHr0aPE3/J5//nm4uLhgwoQJOHXqFDZs2IAlS5aYHYr785//jIyMDCxYsABnzpzB7NmzceTIESQlJdm8T0hddKiQuwSqRsocKF/+jiMRSSRriDpy5Ah69eqFXr16AQCSk5PRq1cvpKamwtnZGcePH8cf/vAHdOrUCRMmTEBERAT27t1rdmLPtWvXokuXLhg4cCCGDBmCJ5980uwcUJ6entixYwfy8/MRERGBv/zlL0hNTTU7l9Tjjz+OdevWYcWKFQgLC8Pnn3+OzZs3o3v37rbrjFrwDAfK1krDEKV2IU735C6BiFRK1onlkZGREOoYf9++fXu96/D29sa6devqbNOzZ0/s3bu3zjYjR47EyJEj6308W7PXEMWjLkREpHaqmhNFpDR2mnGJSGX4wVQeDFEKp7HTt2k+4ckWuJ8R2ZcXH28vdwlmGKKISHUYjogc06yhoXKXYIYhSuH8vVzlLoHqYJ/jhESkNo7yWqS035NliFK4l54IkbsEq+BIAhERqR1DlMIN7OpbfyMikown6CQiqRiiFM7ZSVlDl2RurPPV+hsREVGD/AalcpfQKAxRRE3QmifbJCKyGGeV/Tg9QxQR2Q11vfwSkdoxRJEspPzGGVF9KuUuwAI0jII2F6a5LXcJ9D9q2/sZokgWanuikDo8GM65n1FD6J1uyV0CqRRDFBERWZwfyuQugcjqGKKIiMjieMCeHAFDlMq0gEnuEoiISGF46FoeDFEq85zzdblLsAie4JDIPjzhVCx3CUSyYYhSGVe7+P4RUdMwgyuHH8rlLqHJWmo4wq8Gfx/SVe4SHsIQpTLOfPtQFP411I9/Q3KqYy/w5QR5xQgL9JK7hIcwRKkM/2BEtWMgIinq2m84QV45Ar3d5C7hIXxPVoGYbvwRYiJ71FNTIncJRIpS24mYR/UJRDtPhiiSoLnzr38me/mkbS/bQcry4H6l9P3Mo4a5ODybP9HDIoJbyV1CjRiiiIiIiCRgiCIikonSR8qIfyOqG0MUERERkQQMUSrQyt1F7hLIjnTQ3JW7BCKiRhEUOibIEKUCyU93krsEi+PkWfk873wNANDKvbnMlRARqRtDlAq0auGCFx9vL3cZZCe0/zvr/WMh3jJXQvbgwfGBhX8Mk6UOIjkwRBE1grcd/MRFFQ1HA8kK3F2ayV2CRSwd00vuEhpFmQe77B9DFBERUTVd2+kQ0qaF3GWQCjBEEZHqWPZTN0fkmuLB3tPYSXfay3aojaCyITWGKLKJHg/8vIXKnidkx7gvWhazB1mDtpmz3CXUiCGKiOwGA5H8NHYwhDM9trPcJVjErKGhcpdgMUN6tJO7hBoxRBERyYShT1n+2CcAx7VHMaCzj3ibmv9G458IkbsEi3htUCe4NFNmXFFmVUREpEpqH4fS1fCj0CSfR308kBT1qNxl1IohiogcwqJRPH+RLajxaB5P/ktSMUSphBpfmOriramQu4Qm8fd0lbsEydR8eKIpBoX6yV2CXXpwf7K31yqiusgaovbs2YOhQ4fC398fGo0GmzdvNlsuCAJSU1PRrl07uLm5ITo6Gj/++KNZmxs3bmDs2LHQ6XTw8vLChAkTcPv2bbM2x48fx1NPPQVXV1cEBgZi/vz5D9Xy2WefoUuXLnB1dUWPHj2wbds2i28v/aol1B2iiIjI+pQeymUNUSUlJQgLC0NaWlqNy+fPn493330X6enpOHjwIFq0aIGYmBjcu3dPbDN27FicOnUKmZmZ2LJlC/bs2YOJEyeKy41GIwYNGoTg4GDk5ubi7bffxuzZs7FixQqxzf79+zFmzBhMmDABx44dw/DhwzF8+HCcPHnSehtPquRIozh+KBP/P7H/IzJWIh0P09gez4RPjkTWEDV48GD885//xDPPPPPQMkEQsHjxYsycORPDhg1Dz5498fHHH+Py5cviiNUPP/yAjIwMrFy5En379sWTTz6JpUuXYv369bh8+TIAYO3atSgrK8OqVavQrVs3jB49Gq+++ioWLlwoPtaSJUsQGxuLadOmoWvXrpg7dy569+6NZcuW2aQfiJTsn8O7Y0ZsF7nLqFXCU79+A6mhoal9a3drlePwlPotKiJrUOzenp+fD4PBgOjoaPE2T09P9O3bFzk5OQCAnJwceHl5oU+fPmKb6OhoODk54eDBg2Kb/v37w8XFRWwTExODs2fP4ubNm2Kb6o9T1abqcWpSWloKo9FodiGyR+GBXnB2Uu7owrDw3zT6Pn+OVu63fdRs9G8D4enWXO4yLIIjatQQig1RBoMBAODr62t2u6+vr7jMYDDAx8fHbHmzZs3g7e1t1qamdVR/jNraVC2vybx58+Dp6SleAgMDG7uJDs1eDrM40uE9pZIyZ8Kn5a9fDODf0HISVHrY1x7Y636s9DCr2BCldCkpKSguLhYvFy9elLskRbPXJzjJpeYX1obuZ0oZWVPb74TZO6W/YZPyKDZE+fnd/zpyYWGh2e2FhYXiMj8/P1y9etVseUVFBW7cuGHWpqZ1VH+M2tpULa+JVquFTqczu1Dtyu3sxckeftrCHtWXSV5+MgQDOrfFY+29bVKPI2im+bXXA1q5yViJdTDnUl0UG6JCQkLg5+eHrKws8Taj0YiDBw9Cr9cDAPR6PYqKipCbmyu22blzJyorK9G3b1+xzZ49e1BeXi62yczMROfOndGqVSuxTfXHqWpT9ThKotYnNCMHyU2jAWb+PhSrxz8GJ4WMRNmDqp58NaqjYn8klshaZA1Rt2/fRl5eHvLy8gDcn0yel5eHgoICaDQaTJkyBf/85z/x1Vdf4cSJE3jhhRfg7++P4cOHAwC6du2K2NhYJCQk4NChQ/juu++QlJSE0aNHw9/fHwDw/PPPw8XFBRMmTMCpU6ewYcMGLFmyBMnJyWIdf/7zn5GRkYEFCxbgzJkzmD17No4cOYKkpCRbdwkRNVL1QzBq/ZBhD7TNGaDI8pQ+6N9Mzgc/cuQIBgwYIF6vCjbx8fFYs2YNpk+fjpKSEkycOBFFRUV48sknkZGRAVfXXyeFrl27FklJSRg4cCCcnJwwYsQIvPvuu+JyT09P7NixA4mJiYiIiECbNm2Qmppqdi6pxx9/HOvWrcPMmTPxt7/9DY8++ig2b96M7t2726AXHEN7zT2cEfi1ciWp78XJHgKJPWwDESmXrCEqMjISQh0zKzUaDebMmYM5c+bU2sbb2xvr1q2r83F69uyJvXv31tlm5MiRGDlyZN0Fk2TdnO4go5LzUMjymjkr/KOqBIKg/E/gRKTgOVFESmQvp2awJ4/6eMhdQpM14xwtIgDqGz1miCIi1XJ20tjFNyXfGRmGD+P71N+QiBSFIYqISGbNnZ3QK6iV3GUQUSMxRBERyURthy4ciR0McJINMEQRkd2oa85abWejZpAhUq4+7ZU9Qivrt/OIiIiUTI1fJvHQNsNLT7QX/3+7tALNUSlvUY20ZHQ4Lhfdwwv6YLlLqRNDFBERkcpVhT2dazMcSx0k/j7k4lHhePnjIwjV3JGzvEYLadMCw8J/I3cZ9eLhPCJSndoOwT14Ow/VWR/7WHmq/8A253ZZF0MUEdWJL8JE6mEPp/wAap/DqDQMUURUIzWMMDz4MquGmu2VPbx328M2kG0xRBFJwBdbIiLLU9tEfoYookbgSAdZw4OhnPsZkTowRBGRQ1Dm6KGmhv8RkVowRKmEWibZERHZA2WGblIahigiIiIiCRiiiCTgp1T7obaJrESkHAxRRE2g5gnAjhAE1fz3ISLlY4giIofGoEWkPGr5kMcQpTJqPfTANyqyBe5nRGRLDFFEVCc1fTNUrR8ySF72EL7tYRsA9W0HQxQR1UjJL2ZKrk0KRj8idWKIImoEe3vzJnlxfyJLU8tcInvBEEVEqsU3DCKSE0MUERERkQQMUURkNx48PKbWw2VqrdueqOkLFSQfhigiCfgCq0xqDh88NCm/mv4Gat6nyPoYoojIofFNkoikYogicjA8lxJZEkMoOTKGKCIiajIe4iZLUFsoZ4giIrtR1wsw5xwRkaUxRJEs1PZpwxFVHfZj+LCequcB+5hInRiiiMhuMJwTkS0xRBE1At+kiYioCkMUkYNS80TghoZZfhORiKyJIYqIiOgBap2nptKyVYshikgCtb7A2hs1j6aROvAQPtVF0SFq9uzZ0Gg0ZpcuXbqIy+/du4fExES0bt0aHh4eGDFiBAoLC83WUVBQgLi4OLi7u8PHxwfTpk1DRUWFWZvdu3ejd+/e0Gq16NixI9asWWOLzSMV41s3kf2w56DED3zWpegQBQDdunXDlStXxMu+ffvEZVOnTsXXX3+Nzz77DNnZ2bh8+TKeffZZcbnJZEJcXBzKysqwf/9+fPTRR1izZg1SU1PFNvn5+YiLi8OAAQOQl5eHKVOm4OWXX8b27dttup314ROBqGlqG7VS4huoEmsisiW1vOc1k7uA+jRr1gx+fn4P3V5cXIwPP/wQ69atQ1RUFABg9erV6Nq1Kw4cOIB+/fphx44dOH36NL799lv4+voiPDwcc+fOxYwZMzB79my4uLggPT0dISEhWLBgAQCga9eu2LdvHxYtWoSYmJha6yotLUVpaal43Wg0WnjLiaix1DyRnIcmidT3AULxI1E//vgj/P398cgjj2Ds2LEoKCgAAOTm5qK8vBzR0dFi2y5duiAoKAg5OTkAgJycHPTo0QO+vr5im5iYGBiNRpw6dUpsU30dVW2q1lGbefPmwdPTU7wEBgZaZHtJXQS1PeNJUX7dfRigiNRI0SGqb9++WLNmDTIyMrB8+XLk5+fjqaeewq1bt2AwGODi4gIvLy+z+/j6+sJgMAAADAaDWYCqWl61rK42RqMRd+/erbW2lJQUFBcXi5eLFy82dXMbhO/ZRETWwjBLjaPow3mDBw8W/9+zZ0/07dsXwcHB2LhxI9zc3GSsDNBqtdBqtbLWQETmHvyQwQ8dRGRNih6JepCXlxc6deqEc+fOwc/PD2VlZSgqKjJrU1hYKM6h8vPze+jbelXX62uj0+lkD2pESqCWCZ5ERLamqhB1+/ZtnD9/Hu3atUNERASaN2+OrKwscfnZs2dRUFAAvV4PANDr9Thx4gSuXr0qtsnMzIROp0NoaKjYpvo6qtpUrYOIiIioJooOUa+99hqys7Nx4cIF7N+/H8888wycnZ0xZswYeHp6YsKECUhOTsauXbuQm5uL8ePHQ6/Xo1+/fgCAQYMGITQ0FOPGjcP333+P7du3Y+bMmUhMTBQPxU2aNAk//fQTpk+fjjNnzuC9997Dxo0bMXXqVDk3nYgk4OE7IrIlRc+J+vnnnzFmzBj88ssvaNu2LZ588kkcOHAAbdu2BQAsWrQITk5OGDFiBEpLSxETE4P33ntPvL+zszO2bNmCyZMnQ6/Xo0WLFoiPj8ecOXPENiEhIdi6dSumTp2KJUuWICAgACtXrqzz9AZEpD48LEmNUbW7qCWYq6VOe6PoELV+/fo6l7u6uiItLQ1paWm1tgkODsa2bdvqXE9kZCSOHTsmqUZyTBoVvyPbw4utms8HZW/sYX8ikkrRh/OIiIio4dT8AQ/4NZSr5eSzDFEkC356JYuwwOusnC+CVSNqKn/fA2Af20DUWAxRROTQopyL5C7hITxcSaQODFFE5JCGhvkDAFqgUuZK7tNUezU2yVcGETUCQxSRo7LDwY7GHCZW2rev7PDPQWT3GKKIqEZKCReN0ZjDYJzDQ1XUuK+TMjBEETWCI85VUcu3ZOpjH1tBRErCEEVEREQkAUMUEdkNHpYhS6k63OuIo8/UcAxRRBLwZZXI/nCenPzUFloZooiIZMKRM6KaqSXQMkQRkd0QVJpKVPJ+QQqm0l1f9RiiiEh1GvqGwTcWIrImhigiIiI7wVFN22KIIpKCr1SKwD8DEcmJIUol+GahTGr7Jokj06hlpioRqQZDlMpwjoe8HKn/1bitaqyZiNSLIYqI6sQBHCKimjFEETkYjtaQJQmCvabs+9vF5wvVhSGKSAJ7fdsg2+IbNJG6MUSRLPjmQbaglv3MHia9q38LSEnU8pRgiCIiIofGb9mSVAxRRA6KbxtERE3DEEVEdqOuEQWGRiKyNIYoIrIbapkDRcqk5qDNQ5LyYIgiItVhWCIiJWCIIiIishNq+VabvWCIImoERxoBUcO2PviGoYaaich+MEQRUZ34wdZ6GPqUj38j21JbfzNEEUlgDydHdAScbEtS8SlODcEQRUQkM75fE5nTqORZwRBFRHajrkMBHFkgIktjiCIiIiKSgCGKiIiISAKGKCIiIiIJGKIekJaWhvbt28PV1RV9+/bFoUOH5C6JiIiIFIghqpoNGzYgOTkZs2bNwtGjRxEWFoaYmBhcvXpV7tKIiIhIYZrJXYCSLFy4EAkJCRg/fjwAID09HVu3bsWqVavw17/+Vebq7rskuOBnwUXuMhrNKJjvapcErSq3o/KB6/X9PZS4jUW1PO0frNVUx1eM5d4uQy2PfxXNzWorEup/iZPzOVVWy+fYS4IW2of2NmW6U8s2XIF6XquMgnPty9BMFdtRKDSvc7laXnPret1RIoao/ykrK0Nubi5SUlLE25ycnBAdHY2cnJyH2peWlqK0tFS8bjQabVLnlsrW2FLa2iaPZU3LTP5YZvKXuwzJqp7mS0y/wRLTb2pt92RpmG0KsoDG1KrU7frc1Bafm9o26j6rTH5YZfKzUkXSDCzrIXcJFqHU/aSx7GE7rqO5XWyH0jBE/c/169dhMpng6+trdruvry/OnDnzUPt58+bh9ddft1V5iOzsg037/oPbqP0Tk9K5oRL67gHYd/LnWj+Bq0HP9q3xTK8AzNt0rMbtKK12m1JHE1xQiadDfbHl+BXxtppq7RLojeDWLQAAO//yO0QtyK61rRz+EBZgdt0ZAprVcLaoQWEBD51l/ulQX+zKKzD7e8nBv01LhAd5wUPbDFFdfPDdGYOs9UjhpXPDEx3bAAA6+nigm78O5y4XyVtUI7mhElFdfIDv718P8nZHryAvnC64IW9hjfT7nuYfTsMCvPBImxa4dP2WTBU1XpeAVghp00LuMhqEIUqilJQUJCcni9eNRiMCAwOt9nhPPtoGua55Vlu/zfzfMGD213JX0TSTZgMAnv9mlbx1NFX4MAwL/w0we3btbRJ/XfZIWw9ceDOu7va29txQAKi/rjFDH7rp9z398fsvjlmpsEZ4bbb431Uv/lZZ/dtQf5st/te1uTO2vvqUOrej6zDxv82dnbDpT0+obzv+YL6vt/bQYudrkerajqTZclfQYAxR/9OmTRs4OzujsLDQ7PbCwkL4+T081K/VaqHVam1VHhERESmMeo+pWJiLiwsiIiKQlZUl3lZZWYmsrCzo9XoZKyMiIiIl4khUNcnJyYiPj0efPn3w2GOPYfHixSgpKRG/rUdERERUhSGqmlGjRuHatWtITU2FwWBAeHg4MjIyHppsTkRERMQQ9YCkpCQkJSXJXQYREREpHOdEEREREUnAEEVEREQkAUMUERERkQQMUUREREQSMEQRERERScAQRURERCQBQxQRERGRBAxRRERERBIwRBERERFJwDOWW4ggCAAAo9FovQcpLbXeum3FaFT/dlT9jR1hO2ran5W03dXra+x21HcfW3mwNiXU1FhK308aqur1qaH7lRIpeV9vKGu+j9b4cPcfr+p9vDE0gpR70UN+/vlnBAYGyl0GERERSXDx4kUEBAQ06j4MURZSWVmJy5cvo2XLltBoNFZ/PKPRiMDAQFy8eBE6nc7qj+eo2M/Wxz62DfazbbCfrc/SfSwIAm7dugV/f384OTVulhMP51mIk5NToxOsJeh0Oj5RbYD9bH3sY9tgP9sG+9n6LNnHnp6eku7HieVEREREEjBEEREREUnAEKVSWq0Ws2bNglarlbsUu8Z+tj72sW2wn22D/Wx9SupjTiwnIiIikoAjUUREREQSMEQRERERScAQRURERCQBQxQRERGRBAxRVrZnzx4MHToU/v7+0Gg02Lx5c53t9+3bhyeeeAKtW7eGm5sbunTpgkWLFpm1Wb58OXr27CmeaEyv1+Obb74xa3Pv3j0kJiaidevW8PDwwIgRI1BYWGjWJisrC48//jhatmwJPz8/zJgxAxUVFRbZbluTq59XrFiByMhI6HQ6aDQaFBUVPfRYN27cwNixY6HT6eDl5YUJEybg9u3bTd1kWSi5n9944w08/vjjcHd3h5eXVxO3VD5K7eMLFy5gwoQJCAkJgZubGzp06IBZs2ahrKzMEpttc0rtZwD4wx/+gKCgILi6uqJdu3YYN24cLl++3NRNloWS+7lKaWkpwsPDodFokJeX16jtY4iyspKSEoSFhSEtLa1B7Vu0aIGkpCTs2bMHP/zwA2bOnImZM2dixYoVYpuAgAC8+eabyM3NxZEjRxAVFYVhw4bh1KlTYpupU6fi66+/xmeffYbs7GxcvnwZzz77rLj8+++/x5AhQxAbG4tjx45hw4YN+Oqrr/DXv/7VchtvQ3L18507dxAbG4u//e1vtT7W2LFjcerUKWRmZmLLli3Ys2cPJk6cKH1jZaTkfi4rK8PIkSMxefJk6RuoAErt4zNnzqCyshLvv/8+Tp06hUWLFiE9Pb3Ov4mSKbWfAWDAgAHYuHEjzp49i3//+984f/48nnvuOekbKyMl93OV6dOnw9/fv/EbBwAC2QwAYdOmTY2+3zPPPCP83//9X51tWrVqJaxcuVIQBEEoKioSmjdvLnz22Wfi8h9++EEAIOTk5AiCIAgpKSlCnz59zNbx1VdfCa6uroLRaGx0jUpiq36ubteuXQIA4ebNm2a3nz59WgAgHD58WLztm2++ETQajXDp0qVG16gkSurn6lavXi14eno2ui4lUmofV5k/f74QEhLS6PqURun9/OWXXwoajUYoKytrdI1KosR+3rZtm9ClSxfh1KlTAgDh2LFjjaqNI1EKd+zYMezfvx+/+93valxuMpmwfv16lJSUQK/XAwByc3NRXl6O6OhosV2XLl0QFBSEnJwcAPeHL11dXc3W5ebmhnv37iE3N9dKW6NcUvq5IXJycuDl5YU+ffqIt0VHR8PJyQkHDx5sct1qY61+pl/Zso+Li4vh7e3dpHWola36+caNG1i7di0ef/xxNG/eXPJ61Mqa/VxYWIiEhAT861//gru7u6T6+APEChUQEIBr166hoqICs2fPxssvv2y2/MSJE9Dr9bh37x48PDywadMmhIaGAgAMBgNcXFwemhfi6+sLg8EAAIiJicHixYvx6aef4o9//CMMBgPmzJkDALhy5Yr1N1AhmtLPDWEwGODj42N2W7NmzeDt7S3+LRyBtfuZbN/H586dw9KlS/HOO+80tXRVsVU/z5gxA8uWLcOdO3fQr18/bNmyxVKboArW7mdBEPDiiy9i0qRJ6NOnDy5cuCCpTo5EKdTevXtx5MgRpKeni2Gnus6dOyMvLw8HDx7E5MmTER8fj9OnTzd4/YMGDcLbb7+NSZMmQavVolOnThgyZAgAwMnJcXYLa/cz3cd+tj5b9vGlS5cQGxuLkSNHIiEhwRLlq4at+nnatGk4duwYduzYAWdnZ7zwwgsQHOgHRqzdz0uXLsWtW7eQkpLStEIbdfCPmgQSjwfPnTtX6NSpU51tBg4cKEycOFEQBEHIysqq8RhwUFCQsHDhQrPbKisrhUuXLgl37twR5+8cOnSo0TUqia36ubrajrt/+OGHgpeXl9lt5eXlgrOzs/DFF180ukYlUVI/V8c5Udbt40uXLgmPPvqoMG7cOMFkMjW6NiVSYj9Xd/HiRQGAsH///kbXqCRK6udhw4YJTk5OgrOzs3gBIDg7OwsvvPBCg2tznCEHFausrERpaWmD20RERKB58+bIysoSl589exYFBQUPHTPWaDTw9/eHm5sbPv30UwQGBqJ3796W3wgVaGw/N4Rer0dRUZHZPLOdO3eisrISffv2lVyrmlmjn8mctfr40qVLiIyMREREBFavXu1Qo9Y1sdW+XFlZCQAO+5ywRj+/++67+P7775GXl4e8vDxs27YNALBhwwa88cYbDV4P50RZ2e3bt3Hu3Dnxen5+PvLy8uDt7Y2goCCkpKTg0qVL+PjjjwEAaWlpCAoKQpcuXQDcP8fGO++8g1dffVVcR0pKCgYPHoygoCDcunUL69atw+7du7F9+3YAgKenJyZMmIDk5GR4e3tDp9PhlVdegV6vR79+/cT1vP3224iNjYWTkxO++OILvPnmm9i4cSOcnZ1t0TUWJUc/A/fnPBkMBvGxT5w4gZYtWyIoKAje3t7o2rUrYmNjkZCQgPT0dJSXlyMpKQmjR4+W/pVaGSm1nwGgoKAAN27cQEFBAUwmk3i+l44dO8LDw8Oq/WJJSu3jqgAVHByMd955B9euXRPv6+fnZ9U+sQal9vPBgwdx+PBhPPnkk2jVqhXOnz+Pf/zjH+jQoYMqv2yh1H4OCgoyq7PqNaJDhw4ICAho+AY2eMyKJKkaSnzwEh8fLwiCIMTHxwu/+93vxPbvvvuu0K1bN8Hd3V3Q6XRCr169hPfee89s2Pyll14SgoODBRcXF6Ft27bCwIEDhR07dpg97t27d4U//elPQqtWrQR3d3fhmWeeEa5cuWLWZsCAAYKnp6fg6uoq9O3bV9i2bZvV+sHa5OrnWbNm1fi4q1evFtv88ssvwpgxYwQPDw9Bp9MJ48ePF27dumXN7rAaJfdzfHx8jW127dplxR6xPKX28erVq2tcrta3EaX28/Hjx4UBAwYI3t7eglarFdq3by9MmjRJ+Pnnn63dJVah1H5+UH5+vqRTHGgEwYFmqhERERFZiGMf0CYiIiKSiCGKiIiISAKGKCIiIiIJGKKIiIiIJGCIIiIiIpKAIYqIiIhIAoYoIiIiIgkYooiIiEix9uzZg6FDh8Lf3x8ajQabN29u9Dq2b9+Ofv36oWXLlmjbti1GjBiBCxcuNLk2higislsvvvgihg8fLtvjjxs3Dv/v//2/BrUdPXo0FixYYOWKiNSnpKQEYWFhSEtLk3T//Px8DBs2DFFRUcjLy8P27dtx/fp1PPvss02ujWcsJyJV0mg0dS6fNWsWpk6dCkEQ4OXlZZuiqvn+++8RFRWF//73vw367b6TJ0+if//+yM/Ph6enpw0qJFIfjUaDTZs2mX04Ki0txd///nd8+umnKCoqQvfu3fHWW28hMjISAPD5559jzJgxKC0tFX80++uvv8awYcNQWlqK5s2bS66HI1FEpEpXrlwRL4sXL4ZOpzO77bXXXoOnp6csAQoAli5dipEjRzb4x4+7d++ODh064JNPPrFyZUT2JSkpCTk5OVi/fj2OHz+OkSNHIjY2Fj/++CMAICIiAk5OTli9ejVMJhOKi4vxr3/9C9HR0U0KUABDFBGplJ+fn3jx9PSERqMxu83Dw+Ohw3mRkZF45ZVXMGXKFLRq1Qq+vr744IMPUFJSgvHjx6Nly5bo2LEjvvnmG7PHOnnyJAYPHgwPDw/4+vpi3LhxuH79eq21mUwmfP755xg6dKjZ7e+99x4effRRuLq6wtfXF88995zZ8qFDh2L9+vVN7xwiB1FQUIDVq1fjs88+w1NPPYUOHTrgtddew5NPPonVq1cDAEJCQrBjxw787W9/g1arhZeXF37++Wds3LixyY/PEEVEDuWjjz5CmzZtcOjQIbzyyiuYPHkyRo4ciccffxxHjx7FoEGDMG7cONy5cwcAUFRUhKioKPTq1QtHjhxBRkYGCgsL8cc//rHWxzh+/DiKi4vRp08f8bYjR47g1VdfxZw5c3D27FlkZGSgf//+Zvd77LHHcOjQIZSWllpn44nszIkTJ2AymdCpUyd4eHiIl+zsbJw/fx4AYDAYkJCQgPj4eBw+fBjZ2dlwcXHBc889h6bOaGpmiY0gIlKLsLAwzJw5EwCQkpKCN998E23atEFCQgIAIDU1FcuXL8fx48fRr18/LFu2DL169TKbIL5q1SoEBgbiP//5Dzp16vTQY/z3v/+Fs7MzfHx8xNsKCgrQokUL/P73v0fLli0RHByMXr16md3P398fZWVlMBgMCA4OtsbmE9mV27dvw9nZGbm5uXB2djZbVnUoPS0tDZ6enpg/f7647JNPPkFgYCAOHjyIfv36SX58higicig9e/YU/+/s7IzWrVujR48e4m2+vr4AgKtXrwK4P0F8165dNc5tOn/+fI0h6u7du9BqtWaT359++mkEBwfjkUceQWxsLGJjY/HMM8/A3d1dbOPm5gYA4igYEdWtV69eMJlMuHr1Kp566qka29y5c0ecUF6lKnBVVlY26fF5OI+IHMqDE0k1Go3ZbVXBp+rF9fbt2xg6dCjy8vLMLj/++ONDh+OqtGnTBnfu3EFZWZl4W8uWLXH06FF8+umnaNeuHVJTUxEWFoaioiKxzY0bNwAAbdu2tci2EtmD27dvi8874P4pC/Ly8lBQUIBOnTph7NixeOGFF/DFF18gPz8fhw4dwrx587B161YAQFxcHA4fPow5c+bgxx9/xNGjRzF+/PgaR4MbiyGKiKgOvXv3xqlTp9C+fXt07NjR7NKiRYsa7xMeHg4AOH36tNntzZo1Q3R0NObPn4/jx4/jwoUL2Llzp7j85MmTCAgIQJs2bay2PURqc+TIEfTq1UsMPMnJyejVqxdSU1MBAKtXr8YLL7yAv/zlL+jcuTOGDx+Ow4cPIygoCAAQFRWFdevWYfPmzejVqxdiY2Oh1WqRkZEhjv5KxcN5RER1SExMxAcffIAxY8Zg+vTp8Pb2xrlz57B+/XqsXLnyoXkYwP2RpN69e2Pfvn1ioNqyZQt++ukn9O/fH61atcK2bdtQWVmJzp07i/fbu3cvBg0aZKtNI1KFyMjIOieAN2/eHK+//jpef/31WtuMHj0ao0ePtnhtHIkiIqqDv78/vvvuO5hMJgwaNAg9evTAlClT4OXl9dA8i+pefvllrF27Vrzu5eWFL774AlFRUejatSvS09Px6aefolu3bgCAe/fuYfPmzeIEdyJSPp6xnIjICu7evYvOnTtjw4YN0Ov19bZfvnw5Nm3ahB07dtigOiKyBI5EERFZgZubGz7++OM6T8pZXfPmzbF06VIrV0VElsSRKCIiIiIJOBJFREREJAFDFBEREZEEDFFEREREEjBEEREREUnAEEVEREQkAUMUERERkQQMUUREREQSMEQRERERScAQRURERCTB/w/zWFQLAwjxJgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create light curve and apply GTIs\n", + "lc_raw = events.to_lc(dt=1)\n", + "\n", + "lc_raw.plot()" + ] + }, + { + "cell_type": "markdown", + "id": "7e37946c", + "metadata": {}, + "source": [ + "The red areas in the midst of the \"good\" data intervals are actually small intervals of missing data. For example," + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "05e44199", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGwCAYAAAB4h2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/CklEQVR4nO3dd3xT5f4H8E/Skc50T1qgUFZZZVNAZFTKEEERcVxERLwgVaH3gnJ/CChXueoF5CrLgaCCDBVRwEIpG8oqlE2BApbRwerezfn9URsautL05Jwk/bxfr7xoc56c8z0kTb55zvN8H4UgCAKIiIiIyOiUcgdARERE1FAw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIolYyx2ApdBoNLh9+zacnZ2hUCjkDoeIiIj0IAgCsrOz4e/vD6XS+P1RTLxEcvv2bQQGBsodBhERERngxo0bCAgIMPpxmHiJxNnZGQBwY9o0qFUq4x9w5kxg/vyyf6Ui9fGIpDR/ftm/fI0T1U/5Z4VYnxnlf5tGklVYiMBFi7Sf48bGxEsk5ZcX1SqVNImXWg2oVGX/SkXq4xFJqfzvlq9xovop/6wQ6zNDis9UQLJhQhxcT0RERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRWROvZcuWoUOHDlCr1VCr1QgLC8Mff/yh3d6vXz8oFAqd26RJk3T2kZycjGHDhsHBwQHe3t6YPn06SkpKdNrs2bMHnTt3hkqlQnBwMFatWlUpliVLlqBp06aws7NDjx49cPToUaOcMxERETVcsiZeAQEB+M9//oP4+HgcP34cAwYMwIgRI3Du3Dltm4kTJyIlJUV7++STT7TbSktLMWzYMBQVFeHQoUNYvXo1Vq1ahdmzZ2vbXLt2DcOGDUP//v2RkJCAqVOn4rXXXsP27du1bdavX4+oqCjMmTMHJ06cQMeOHREREYH09HRp/iOIiIioQZA18Ro+fDiGDh2KFi1aoGXLlvjwww/h5OSEw4cPa9s4ODjA19dXe1Or1dptO3bswPnz5/HDDz8gNDQUQ4YMwbx587BkyRIUFRUBAJYvX46goCAsWLAAbdq0QWRkJJ599lksWrRIu5+FCxdi4sSJGD9+PEJCQrB8+XI4ODhg5cqV0v1nEBERkcUzmTFepaWlWLduHXJzcxEWFqa9f82aNfD09ES7du0wc+ZM5OXlabfFxcWhffv28PHx0d4XERGBrKwsba9ZXFwcwsPDdY4VERGBuLg4AEBRURHi4+N12iiVSoSHh2vbVKWwsBBZWVk6NyIiIqKaWMsdwJkzZxAWFoaCggI4OTlh06ZNCAkJAQC8+OKLaNKkCfz9/XH69Gm88847SExMxC+//AIASE1N1Um6AGh/T01NrbFNVlYW8vPz8eDBA5SWllbZ5uLFi9XGPX/+fLz//vv1O3kiIiJqUGRPvFq1aoWEhARkZmbip59+wrhx47B3716EhITg9ddf17Zr3749/Pz8MHDgQCQlJaF58+YyRg3MnDkTUVFR2t+zsrIQGBgoY0RERERk6mRPvGxtbREcHAwA6NKlC44dO4bFixdjxYoVldr26NEDAHDlyhU0b94cvr6+lWYfpqWlAQB8fX21/5bfV7GNWq2Gvb09rKysYGVlVWWb8n1URaVSQaVS1fFsiYiIqCEzmTFe5TQaDQoLC6vclpCQAADw8/MDAISFheHMmTM6sw9jYmKgVqu1lyvDwsIQGxurs5+YmBjtODJbW1t06dJFp41Go0FsbKzOWDMiIiKi+pK1x2vmzJkYMmQIGjdujOzsbKxduxZ79uzB9u3bkZSUhLVr12Lo0KHw8PDA6dOnMW3aNPTt2xcdOnQAAAwaNAghISEYO3YsPvnkE6SmpmLWrFmYMmWKtjdq0qRJ+OKLLzBjxgy8+uqr2LVrFzZs2ICtW7dq44iKisK4cePQtWtXdO/eHZ999hlyc3Mxfvx4Wf5fiIiIyDLJmnilp6fj5ZdfRkpKClxcXNChQwds374dTzzxBG7cuIGdO3dqk6DAwECMGjUKs2bN0j7eysoKW7ZsweTJkxEWFgZHR0eMGzcOH3zwgbZNUFAQtm7dimnTpmHx4sUICAjA119/jYiICG2bMWPG4M6dO5g9ezZSU1MRGhqK6OjoSgPuiYiIiOpD1sTrm2++qXZbYGAg9u7dW+s+mjRpgm3bttXYpl+/fjh58mSNbSIjIxEZGVnr8YiIiIgMZXJjvIiIiIgsFRMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SIiIiKSCBMvIiIiIokw8SKyMAXFpTh1IwNFJRq5QyEiokdYyx0AEYlr3MqjOHLtPsLbeOPrcd3kDoeIiCpgjxeRhTly7T4AYOeFdJkjMdzvp27j9e+OY0+i+Z4DEVFV2ONFJBNBEHA5PQdeTiq4OdrKHY5JefPHkwCAM7cyETdzoMzREBGJhz1eRDJZdeg6Bi3ahz4f70JeUYnc4Zik1KwCuUMgIhIVEy8imVy7mwsAyC0qxb2cIpmjabg0GgElpZyIQETS4KVGImqwMvOKMXjxPmTlF2M1nNBVmSN3SFSFI1fv4deE2xjewQ+9gj3lDoeoXtjjRUQNVmJaNlIyC5BbVIpjGie5w6FqRP54Ej8eTcbfv4+XOxSiemPiRUREJu1OdiEAILuQYyHJ/DHxIrNx8MpdjPjiAP695bzcoRARERmEiReZje/j/sSpm5n4+sA15BeVyh0OERFRnTHxIrNRonk480wjCDJG8tDVOzkYtewQXl11DAXFNSeDBcWlmPHTKby97iTu5RRKFCE1VCmZ+Vi65woOJd2VOxSyYD/H38SEVcdY7LgOOKuRqB5iL6Qj/s8HAIDTNzPRPci92rZHrt3HhuM3AQC9mntIEh9ZLkEQ8M7Pp5GYloM5w0PQubGbzrYZP53G/stlSdeVD4fA2orfs81VZl4xEtOyERroCltr03oe/7HxFADgcnoO9s3wljka82BazyCZjM92XkKnD3bg89jLcodi0ir2vNXWC1exVlRxqWn02JH5Ss0qwIbjN3HqRgZ+PXlLZ9trq49rky4AKDWRHmIyzND/7cdzK+Lwf5vOyB1KtdiLrz/2eFGVPttZlnAtiLmE30/fRjt/F8wTlHCUOS5LV1BcCjsbK7nDIDOgESr+rJtYxV7UveyTlV8CL2e+rszVrYx8AEDCjQx5AyFRsMeLanUpLQe/nLyFQxq13KFYjB3n0yrd93+bzqD1e9GYvfmsDBGRJft8F3uuxVJUokFGHleaIMMx8SK9lUAhdwj1IggCzt7KRGqm/Ov/7bt0ByUa3V6KNUeSAQDfxf0pR0hkwTLzi+UOwSIUlpSi/3/3IPSDGPwUf1PucMhMMfGiBmPNkWQ8+fkB9PpPrEl8Y9VoOO6GyJzczSmqcNnvgczRkLli4kUNxo37eQDKxsaUV8Kmhu3938/JHQIRNTAcXE9EDc6D3CLsupiOc7ez5A6FiBoY9ngRWbAxK+JYQLMKszaf1dYfIvNy/W6u3CEQ1QsTLyILduTafSzfe1XuMExOUnqO3CFQHTjYPiyFsfVMioyRPMQhmmQoJl5EFq62pYyITJ2/q732Z1OZlLL2SDJyCkvkDoPMEBMvMmuCIODllUfR8f0d+MNEvgmTabuVkY+Lqdlyh2EUGo2At348KXcYDQZ7TskQsiZey5YtQ4cOHaBWq6FWqxEWFoY//vhDu72goABTpkyBh4cHnJycMGrUKKSl6RaeTE5OxrBhw+Dg4ABvb29Mnz4dJSW630L27NmDzp07Q6VSITg4GKtWraoUy5IlS9C0aVPY2dmhR48eOHr0qFHOmcT1IK8Y+y7dQWZ+MWIuVC5Kasq4bJA8RnxxUO4QjOb6vVz8duq23GEQUQ1kTbwCAgLwn//8B/Hx8Th+/DgGDBiAESNG4Ny5sine06ZNw++//46NGzdi7969uH37Np555hnt40tLSzFs2DAUFRXh0KFDWL16NVatWoXZs2dr21y7dg3Dhg1D//79kZCQgKlTp+K1117D9u3btW3Wr1+PqKgozJkzBydOnEDHjh0RERGB9HSutm6qev1nl9mXhPj5BAswyuGuha4pp9EIyGChVCKTJ2viNXz4cAwdOhQtWrRAy5Yt8eGHH8LJyQmHDx9GZmYmvvnmGyxcuBADBgxAly5d8O233+LQoUM4fPgwAGDHjh04f/48fvjhB4SGhmLIkCGYN28elixZgqKisgKZy5cvR1BQEBYsWIA2bdogMjISzz77LBYtWqSNY+HChZg4cSLGjx+PkJAQLF++HA4ODli5cmW1sRcWFiIrK0vnRtLJzC/G2duZcodBZBIOXrmHUcsP4Zmlh+QOhYhqYTJjvEpLS7Fu3Trk5uYiLCwM8fHxKC4uRnh4uLZN69at0bhxY8TFxQEA4uLi0L59e/j4+GjbREREICsrS9trFhcXp7OP8jbl+ygqKkJ8fLxOG6VSifDwcG2bqsyfPx8uLi7aW2BgYP3/E4iIDHDtbi5OJmfIHQYZ2aPLjJF5kj3xOnPmDJycnKBSqTBp0iRs2rQJISEhSE1Nha2tLVxdXXXa+/j4IDU1FQCQmpqqk3SVby/fVlObrKws5Ofn4+7duygtLa2yTfk+qjJz5kxkZmZqbzdu3DDo/IkA4I+zxpsY4FhhKj4Rma9rd3NxjXXMzJ7sletbtWqFhIQEZGZm4qeffsK4ceOwd+9eucOqlUqlgkqlkjsMshAV30wbVZg6LwZrK9m/XxGRSE7fzECQp6PcYVA9yJ542draIjg4GADQpUsXHDt2DIsXL8aYMWNQVFSEjIwMnV6vtLQ0+Pr6AgB8fX0rzT4sn/VYsc2jMyHT0tKgVqthb28PKysrWFlZVdmmfB9EUlJZM1GihulCShbGfnMU9rZKbHqjNzyd+OUWAGysFJwFbUFM7h1eo9GgsLAQXbp0gY2NDWJjY7XbEhMTkZycjLCwMABAWFgYzpw5ozP7MCYmBmq1GiEhIdo2FfdR3qZ8H7a2tujSpYtOG41Gg9jYWG0bKjOvmOPYjIVvqkTAsev3cTenEDfu5+PMLU6eIcska4/XzJkzMWTIEDRu3BjZ2dlYu3Yt9uzZg+3bt8PFxQUTJkxAVFQU3N3doVar8eabbyIsLAw9e/YEAAwaNAghISEYO3YsPvnkE6SmpmLWrFmYMmWK9jLgpEmT8MUXX2DGjBl49dVXsWvXLmzYsAFbt27VxhEVFYVx48aha9eu6N69Oz777DPk5uZi/Pjxsvy/mKpM+TtI6yXpjukWO/wpnqUliIgaAlk/SdPT0/Hyyy8jJSUFLi4u6NChA7Zv344nnngCALBo0SIolUqMGjUKhYWFiIiIwNKlS7WPt7KywpYtWzB58mSEhYXB0dER48aNwwcffKBtExQUhK1bt2LatGlYvHgxAgIC8PXXXyMiIkLbZsyYMbhz5w5mz56N1NRUhIaGIjo6utKA+4bq+W6BWHfsBhRyB1KFklKNXu0e5BZh5wXWZSMyN6duZOAKK8STBZE18frmm29q3G5nZ4clS5ZgyZIl1bZp0qQJtm3bVuN++vXrh5Mna15GIzIyEpGRkTW2aagUpphx/eU/0Rf1ancvt8jIkYjn6t1cXL+bi6YcQEuEw1fvyR0CkahMbowXmS4BZT1HpiQz72GlboVJ9skZZvu56kuZEBGR+WLiRXrLhRU6zYvBnM1n5Q7FIlkpFejaxA0AUJ86ieXlKFi/i8xZFpc/IgvFxIvq7IcjyXKHYLHErM8zvKO/aPsiktqMn07LHQKRUTDxojrTCCx9QETG5WxnI3cIREZh3vUBiAh3sguRU1jCatZEJJkd51LxzYFrcodhlph4ERmgoLgUH0dfxLcHr8saR3pWAXrOj4VGAJa82BnDOvjJGg8RNQz/3noByffz5A7DLPFSI5EB4pLuyZ50AcDNjHztQPyrJlwglogsS0aeac1wNydMvIgMUFiiX+FWc3H2ViYW7EjEWS7TQkRkVEy8iAivrT6Oz3ddwd+/j5c7FKIaFddQa+WjbRfQZV4Mvj3IsUdkujjGi4iQmlUAALiVkS9zJFQfz3RqBDdHWwgCsNJCk4//xV6Gs8oaE/s2q7Tty31XAQCf77qC8b2DpA6twSgp1SCroETnvrziUny9/yqcVNYYI8CCylmLjz1eVMnc387JHYLRHUriMiRkeUL81XjvyRD0DvaQOxSj2hh/o8bthcWlEkXS8AiCgKe+OFjF/WUD7t/95QzmlwTIEJn5YOJFOu7mFGLVoetyh2F0G47X/MZNZEk2J9xGkQWNS5SjlGB6doEsCd3NB3koLjXOCV9Jz8GsX8/glxM39X5MqUbA+ZSsGtv8VOpZ39AsGi81kg5NfdaqMSPWVvzOQQ3LieQH6NnMsnvCjGXNkT/xf5vkWSpt5YHrRtv3F7su49eE2/jhcDKGtveDnY04y4yp0DA+RwzFTx8iogagxEi9JpZOEATZki4AyDdSL9uGYzfwa8Jt7e+lDeRLtylg4kUkoxe6B8odQoNyJZ21zixRqUbAudvGKYVS22U1czXjZ66FKRdeaiSycDHn01CqEWCl5DyjH49ygXdL9M+Np7Dp5C1R9xl7IQ0LdlyCsx0/Jo1p18U0fB/3J4Z39McznRvGoHy+oshsKBRMHOrC3vbheI1j1+9zfA+A4lLTG2CekVeED7ach5VCgblPtYWjqv5vyxWfe0vk5mCr83vshTTRj/HlvqsW29tlSmZtOovbmQXYnXinwSRevNRIBll18Bp6fLQT/92eWO99ZeYX4/u469h/+U6N7VTWfLnWxaAQX+3P2Y/U3DFl93IKJTtW58auGBTiI9nxqrI7MR2/nLiFjfE3RStz0r2pO94d0hrTwluisbuDKPuU2zOdGyGyfzAAQGVj/PeCIhNM0i3R3ZyGt/QQP8nIIAtjLiEtqxBf7L5S7319vf8q3tt8DmO/OYoHuQ3vj9BYHGyt0Kmxq9xh1Nm6Yw9LfTiJ0PtTk5d6NIGLvY1Rj1GbiqUCSkT6sLe2UmLS483xdngLOFhI75cCCjT3dpQ7DKJ6Y+JFBikoFu/bYGZ+sfbnnELz6ZkxJ3cl7EWqr/yih7O4LKW3RipKXo4nMnlMvIgsWPkU8X9tOiNzJGQsCgUwMtQf4W28EdHOt/YHNAC5RaUWVTC2obicli13CJJg4kVkwYa08wMA2S+nkfHYWinx2fOd8PW4bmjkai93OHVyJT0HC3Yk4ui1+6LvO+a8+APuSXyeTg8nSmyuUFfMkjHxIpKRsUs8PCHzwHGimsz85TQ+33UFz62IE33fD/I4XtQceDiptD+XyrEWlAyYeBHV4sb9PGTmFdfeUE8+ahWeCPHB050aoXNjN+39rBxNDU3y/Ty5QyCSHOt4EdVgc8ItvL0uAXY2ShyeORCuj9QPMoSviz2+erkrACD+T/EvsZBxxSXdw68nb2F4R3/0aWH+iwGX1zaz4fqlRpVdUIxRyw4hI68YX4/rig4BrnKHRDJh4kVUg8tpZUvMFBRrcCsjv16J1+q4PyvdV7HHi8zDW+tO4k52IbaeScHZ9yPkDqdeElOz8eyyQ7CyUuD3yD4INKFZpA/yijByyUEk3MiQOxRRbD+Xhkt/vZ8cvHKPiVcDxq84BKDsctrpmxlcU96ITv75AABQcVSXQqFAa19neQIig9zJLivNYQmlT07dzEB2YQky8opx9pZx1jo0VKlG0Em6BDN/d/o4+qLcIUiuQFBg08mb2JOYLncoJoU9XoT07AI89sluAMD0iFYyR2O5bKyVQCEw96m2codCFqCguLT2RmQyLKWQbV38UuqJf60/BQDY9Y/H0czLSeaITAN7vAhpmQ+La958wMGuxubYAN+AqXolpYb15Hy49ULZ4w2clHHjfh7+veW8QY9tCKy5qHy9PajQt8NZpg8x8aJaiTGgnIiqZmhx2/Ier1Y+hl2q/mr/VWSZ0RqeUlPbsfad3JLv5WHL6dvIFCzryyovNZKOH4+WrZNnpVRgxd+6ICO/GB0CXLBsT5Jox/gu7jp+S7iNV/sEYWh7P9H2S9QQ/f3xZgY9ruLSTESmaPgXB5CZX4wnlU3whe1VucMRDRMvqlb4X8U3xVq4t9zszecAACmZBUy8iAgA8OW+JKisy3o2hrX3w9YzKTJHVD21nXWdegvj/7yPP+81vGEcuYLhF9UKiku16/gmCqYz21YMvNRItbK2UiKyf7Do+83gNX8i+stH2y7i2t1cucOoVQtvJzjX8TLk4asNr15fYUkplpb6G/TYB7lF6Dk/VuSITAcTLyIyGVkFxYg+lyp3GCQTztQ0baUaAZ/uSNSrbX1W+7h2LxcZIq4WYmqYeBFZiP/tulzttoy8YlGXParNwh2JeGbpQey/fKdOj/vHhlO4kp5jpKhqFqdRy3LchszR1nijXW4+yMfqQ9eRdEee15MlSrjxACv2Ws5YK7nImnjNnz8f3bp1g7OzM7y9vTFy5EgkJupm0/369YNCodC5TZo0SadNcnIyhg0bBgcHB3h7e2P69OkoKdG9/r5nzx507twZKpUKwcHBWLVqVaV4lixZgqZNm8LOzg49evTA0aNHRT9nahi2nL6NCauOYef5NMmOWVwq4G5OYbXbw/4Ti6yC2pOvpDs5WLgjEUevGXZ5pKRUg//tuoITyRn4cl/d3qRP38ww6Jj1YWdTNq5on8alXmNSqO48KyyQLLble5Mw57dzePkb472Pr9gn3qQjc1BYLO5434ZK1neZvXv3YsqUKTh8+DBiYmJQXFyMQYMGITdX9zr/xIkTkZKSor198skn2m2lpaUYNmwYioqKcOjQIaxevRqrVq3C7NmztW2uXbuGYcOGoX///khISMDUqVPx2muvYfv27do269evR1RUFObMmYMTJ06gY8eOiIiIQHp6w6y4ywWb6ydy7UnEXkzHjJ9PS3rcmmpC5RWVIi2zoNL9MY8kh+/+fBr/23UFz62Iq3c8hSWm/0Y9oU+Q9ud8XgSwOLcy8kXfZ/n7o1y9s2TeZH2XiY6OxiuvvIK2bduiY8eOWLVqFZKTkxEfH6/TzsHBAb6+vtqbWv3wksCOHTtw/vx5/PDDDwgNDcWQIUMwb948LFmyBEVFZYO3ly9fjqCgICxYsABt2rRBZGQknn32WSxatEi7n4ULF2LixIkYP348QkJCsHz5cjg4OGDlypXS/GcQAGDj8RtyhyCq+7mmPYEgq6AYE787rnNf8n3Tmn0lCAKW7rmCWb+eQUqm+B+iTT0dRd9nQ5GZX4zwhXvR46OdOHdbvyWHElOzsWT3FVxKyzZydMbz6egOAAAFWGS1os6NXeUOwSyY1Ne7zMyyP1x3d3ed+9esWQNPT0+0a9cOM2fORF7eww+GuLg4tG/fHj4+Ptr7IiIikJWVhXPnzmnbhIeH6+wzIiICcXFl3+iLiooQHx+v00apVCI8PFzb5lGFhYXIysrSuVH9Ha7D5a0tp0x3urm5KDCDWk7X7+Xhk+hE/HA4GeuPWVZibu7O3crElfQcpGUVIi7pnl6PeXXVMXy6PbFSwl+bAFd7Q0I0CiuF/AnXPzacQvcPd2Jzwi25Q9FqaWAx34bGZBIvjUaDqVOnonfv3mjXrp32/hdffBE//PADdu/ejZkzZ+L777/H3/72N+321NRUnaQLgPb31NTUGttkZWUhPz8fd+/eRWlpaZVtyvfxqPnz58PFxUV7CwwMNPzkzVCRyLW9ytVllY4dnP3WIBSWlFb42fQvXVLNyi/91aWu1frXe+KtgS2MFZLZKSnV4OcTN5GeXYh1R/llxNyYTAHVKVOm4OzZszhw4IDO/a+//rr25/bt28PPzw8DBw5EUlISmjdvLnWYWjNnzkRUVJT296ysrAaTfAnVDCP6814u7G2t4O1sZ9TjD2ztjdiL6VDZiLOMxNojyYg5n4rXHmuG3sGeBu/nthHGkhA1dJ5OtujRzKPGNg62dStoaklKq3tDloGS61vqxSR6vCIjI7Flyxbs3r0bAQEBNbbt0aMHAODKlSsAAF9fX6Sl6Q4OLv/d19e3xjZqtRr29vbw9PSElZVVlW3K9/EolUoFtVqtc2uoxqyIQ/TZVDz+6R70+CjW6AmIt1rcmVD/2nQGuxPv4KNtF+q1H0Mf72wn3vefnvNjdQYTezmrYMU3Q7Jwfq7G/bJHZZJqKHDbxMMBA1t717qP3MIS/Hg0GbsvNsyJa4DMiZcgCIiMjMSmTZuwa9cuBAUF1fqYhIQEAICfX9lSM2FhYThz5ozO7MOYmBio1WqEhIRo28TG6lbBjYmJQVhYGADA1tYWXbp00Wmj0WgQGxurbWMpSjUCXlt9DIMW7cWJ5AfVtlv/ek+993nk2n3svVT2/y8Ipjc4W1/ly1MYyt62+h6487ezqh1o/49BrTCgtTc+GNG2Xseviou9DQ6+M6BOj8luoD0Hhpj/R/2SdX0UFJdi/h8XMG/LeWTrUQ7EFGxOuIUu82Lw5o8nDd6Hu6MtAKCNX8P9Umtq/ru9+uKpX7/cVa+rHT8eTcbMX85g/KpjuPnAPD8r6kvWS41TpkzB2rVrsXnzZjg7O2vHU7m4uMDe3h5JSUlYu3Ythg4dCg8PD5w+fRrTpk1D37590aFD2aySQYMGISQkBGPHjsUnn3yC1NRUzJo1C1OmTIFKVdYzMmnSJHzxxReYMWMGXn31VezatQsbNmzA1q1btbFERUVh3Lhx6Nq1K7p3747PPvsMubm5GD9+vPT/MUZ0/V4udl4oS5Kiz6aic2O3Sm0C3Oxr7dqvq9TMAvxjYwJsrUyik1Vyv526rf3Zy1m3x65nMw/0/Ov/e/rGU6If29fFDu6OtnrPsMwzgwH3pmLF3qt4rU+zSs+pmOKu3tMWrWzfyAUjOzUy2rHE8lP8TdzLLcLvp27jv6M7aNdgrNM+JoXh2PX76K9HLwpJw0llXe8vqBUr0td3X+ZK1sRr2bJlAMqKpFb07bff4pVXXoGtrS127typTYICAwMxatQozJo1S9vWysoKW7ZsweTJkxEWFgZHR0eMGzcOH3zwgbZNUFAQtm7dimnTpmHx4sUICAjA119/jYiICG2bMWPG4M6dO5g9ezZSU1MRGhqK6OjoSgPuzV3F4QCChGMD9iSm4+AV/WY9WaLy/+sh7Xzh6mArczQkJmPXvKtYtLLiRANTphHhvaWZlxOaeTmJEA2RaZE18artgz8wMBB79+6tdT9NmjTBtm3bamzTr18/nDxZc7d3ZGQkIiMjaz0elRnW3g/7Lt/R69KUMT6b7uYU6lWJXW4Vu9MD3ExnSjwRkaGaejjgeh1mptbHZcEeDwQruCnM44tHbRrmdR+yGMeuVz9OTWwXUrLxU/zNOq95uOOcdMsGERlbQXEpNFV8k7LkRY1J1+YpvfH1uG6SHvOAxkXS4xkTEy8iPf1z4yn8c+MpfLz9Yq1tG1Uo9ijGZRciU/DryVtoN2c7Bi/eh5JHavl9sfsKio1U38+cbDuTgv/8cRE3zHSSkamypFcWEy8ySYIg4OytTDwwwSV3TLFeV6C7PXo1F3dCBIkrJTMf529nSTq2UmxHrt1HiUbApbQc3M2p/LeZV2gZl4IMVVBcijfWnMDyvUn4fNflatt9HH0RW0+Ls/LGiT8fyPKaUhtYBielivViGxomXmSSlu5JwpOfH0DfT3ebzYDiG/fz8fyXcVVehqGG7U52IcLm78LQ/+3HzydMZ4kXElfFFT1qG/u68uA1UY5ZohFw5pZ+62RqHyNCz6S32g7B3nWb/JBdUIyfT9ys97HNHRMvMknX/yrUl11QYlZ1pQ5fvY/07EK5wyATcu1uLnrOf1gj0Fzr3JG4xLwsm5ZVt/ecH48mi3JcfQqmVqRvSRtLx8SLKnGooRAoUU0y84oxYEHtM5Ebkt0X041ecoKq5yPyShemKCOvCCOXHMSQxfvx573qq8uXq2uiRuJi4kU62jdyQdQTLeUOw+w807kRbKwsb2mekNnRWLL7it7tz93OZI/OI5hyGV9NC24rFZb3d/moE8kZSLiRgQspWThw5a5kx7Wu8J5nbUBx7O3n0rRXN6piqWNXmXg1YBvjda+1+7nY4fc3+2BwOz+ZIiJTk1dUWuMgYantv3xH7hAalMy8Yhy6chcFxaY7zvLQlbu8hFUhvZdynP2ozgEY3NYXr/UJQlMPhzo//n+xl5FdaD5DScQiawFVkldGXrHOgspSY0+AeSgs0X8syj0jfwCevZWFuzmF8HQy78tHS3ZfwfmULLw1oIXcodTo6WUHcfVOLoa298XSl7rIHU6VxCrimZZVgCvpOejW1B221uyT0EczLycsH2uarwtTxsSrgcuT8dtGXlEpLqZmyXZ8U1dcqsGBy3fh5axCu0Z1Lx4o9SWWHedS67Uosr6yC0rMOvF6kFuE7w//CQBwN/Hlo67eKbsMdPTafZkjMa5SjYDwBXuRXViCV3sHYfbwELlDktzX+6/h7XDT/iJgKZjWk6yOS1h53tz8eDQZ41cdw5OfH0BaVt1r37TxczZCVNU7n8IkWh8lmoc9iCw4ahqKSjTaS15X7+bIHI10XurRWPvzpbRsGSNpWJh4kVkoKC7FFpEKDhrb3745Isol3PQKM4/u5lSehXQhJQu/n7pddQw9Gxs02JWIGg4bKyU+GNFWkmONWhaHj7ZdqLHNsj1JDWIGMN+ZSXTPf3kYZ+tY0K82FXvGfNWmt9B0xSWCrqQb/xtzQXEphizej28PXjf6seR07naWqAOnSxrAm3pDFd7GB5un9Mb2qX3lDqVaTqqHo3vcTPwyszFs12Pd2oYwK5qJFxnF7ovpou6vtMJUnUFtfUTdd300crXH2ok98NZAccdGnL6ZUeP2vCLTnWVWkVKEYWbbz6bWfycAcgpLsPaIOIUjyfQoFEDHQFf4udrJHUq1nuzgh09GdQAgzt8GmScmXmRW2vqrYUplefxc7NCruSdsrJSidJHb/DWb6o+zqWaTXNXE2c6m3vsoEmkc1LU7tReWNCUlpRpMWHUMk36IlzsUiydIOcfahN6/SB5MvAjztp4HIG39F0skxlWsV3o11f6cX9zw6tvQQ0l3chErcs8xVW3ZniS92zYxoF4VUUUsJ0HIyi8GALg5NrwxB6ampY+0MxHN0Y37eQjydJQ7DKOTtBemgbtWoXq6o23VH4uzhrWBQqHAsPZ+uHqn4cx8JPGxx4u0/m9oG7lDIImZ44LeL688iiNX78kdBjUgXZu44cUejTGhTxB8XUx3DBmZByZe1KCJPQnA3CyKuSR3CAa5XstCwIIgID2rABozm8WYb8JL8xhqw7EbEMx4HMPHo9rjp8m94FBNT5gc5FxxpK6slAqM7hIgdxgmhYlXA5OSaZw/2B+P3tD5feXBa2j5f3/g7XXGr2ReH7sTHyZeXs76VUO3tqDpSMV6JCaCUDYGxpAirgCwOeEW/v79cUnXWXz/9/Po/lEsxq86JtkxDbHumO7fTdSGUzJFYjzvbT6H0zfFLS/T0C3fe1XuEKgemHg1MP/dIU0Px4O8YhSVarA5oeoCn6ZIpef6bCprqyrvnzWsDXo190DXJm5ihmUSPo6+iE+3Jxr02LfXJWD7uTS89+vZWttaiTRl9ZcTZQvA771kXotqV6zzZEmyCzhRREymvGg51Y6JVwMjV2fNgzzjLp5sCl57rBnWTuyJPi085Q7FKKqqnl8Xd/QYT9bI7WEh2mZelj+AnowvI69Y7hDMQmFJKTL5fyUJJl6kFwdV1b08+hAEweDeElN1/LplLxosF8VfRY6WvdQZIX5qmaOpmqtD/WuTicFYS6tsTriFOZvPIkmCmXtHDfw72n/5rt7j9/KLSxFzvvaK6Q3dzgvp6DRvB6LPPlya7eaDPMzbch4bHrkkTvXDxIv08kK3xphqfcugx9b0ATFLj8tPpqLigrJfH7gGQLeiPhnHwSumNYPR00m/sYDG9Pfvj+PINfGT/8KSUry9LgGr4/7EZzsvi77/+rKpsP7o4TrMbD0j8hJmlkojAKcqjMdbeeA6vjlwDTN+Po0HIi7d1dAx8SK9uDnaYqr1bTzZwU/0fReViFOZ3Jhe6dUUrXwf1thytisbi/P3vs3lCqnBMObabeZ6OVOfNe/qSgCgqfCnmF0g3WUnfZPZx1t6aX++U89L31S7irNsC83gfdpcMPEiqoeKyZi5WbAjEfvMbPC5GPxc7HDkXwNxeOZAdGpseRMhDDV1fYIsx+3fykvvsafOdjbo1dzDuAERGRkTLzIpuYWlSM8uwMb4m3KHYvE+33VF7hAktXzvw2VhfNR2LIT5CFsr8T4OrJXyfbQ42FjBn88tmTAmXmR0F1Ky9W575lYmun8Ya8RoyJTdeGC8y4rlg8WNNSi9Pl7oHmjwYzsFml6vnb2N4ZNx6svaSomd/3gcu//ZD2N7NpEtjoqS0uVZYiiroBhbTt9G8j3j/V1R3THxIqP7Lu66qPtzc+CakmJ7pnMj9GvlVXtDIzp2/T5SMsuKtIpUzqtK/x3d0Xg7r8LmBMMmpdTExqrsPyhu5gA05qLNlTjYWiPI09Gor6Pa/HE2FUv3XEFeUQl+OVn2GrAyUj2fRwtYl5u16Swi157EsM/31/sYuUUlZlUx35Qx8SKjKxG5h8FHbYeNk8Iq3X/qZoaox2lIejf3xLKXusgaQ8WFirsHGW8cj1LCT+P8olKjVm0vL79B8hMEARm5uhMSPolORE6F4rEvdG/86MOM6lJa2dWGmgrYKvT8e9hw/GFyZydjj6YlYOJFZqlbU/dK911Jz8FVCWoPmap7OQ+ne7vY173WlL2tabyZ9m/lBXdH3V7NYe3Fn00rheIK0wQHtvaWMRLTcNqCvxy9/n08+n66u9rtVkoF2jVykTAi/QzQ83WZlf8wqWzp42SscBoEJl5kUdL1qI5uqQpLHk79fv0xacpcbD+XinZztuPZZYcg9tApjYXVSNN3LVBLtv/yXblDMBpzLdLayNW+ThMr/tazsd69ZFQ1Jl4kqvoMEjaUp5Mtgr35DawiFyNUV6/qzXlP4h3kFJbg+J8PcCf74SLaHo71H4dXsb7bU6H+9d4f1SynsAQzfj4tdxgmIb+oFLEX0+UOo14KiktxMVX/iU0kHSZeRBbCWN9CyxcPt9HzW/HfejbGPwa1EjWGPsHVr3+ZX1SKPYnpeq0F2ZDp04P4+6nqF7UvKdXgx6PJYoZksuKuPuyZ83A0z57KA/XsXRTz+a7tralfKy9tUeqGgIkXkZH9e+sFXJZgOvmzXQIAAOFtxB1L9HSnRqLuz1CNXO2rvP+dn0/jlW+P4akvDkgckXmZ8VP9erPOp2SJFInpKyp5mKT2N9OxeQUVhh4Y4txt8Z7vEaGm8R5iKph4NRC7E9Mx4L97cDI5Q9T91jRbpq7eHBBc7yWJZv16Ft+LXL5CDLskuGwxpX8wLnwwGF+93NXox5LDpjd6VXl/+YDt8lIUpCvIs2xZpLp2iO5J1F3VQIzZyWeMOMPTGLo2cTNaCQgpGXIOYq5D2zvYE58820H7u5PKGj9VMTO9oZA18Zo/fz66desGZ2dneHt7Y+TIkUhMTNRpU1BQgClTpsDDwwNOTk4YNWoU0tJ0BzEmJydj2LBhcHBwgLe3N6ZPn46SEt2EYM+ePejcuTNUKhWCg4OxatWqSvEsWbIETZs2hZ2dHXr06IGjR4+Kfs5S2HTyJr7ef1VnrbVfT97C1QrT9cWy8LnaayJtOqlfHSOFQoE2fuoqt30eq9+CvVfSc/De5nO430AXdLW3tarXJceJjwUh2NvJJMfMeavtGvzMwH2X7tZ5bdM3+gUbKRrgq/1X9W6bW1iC6HOpRouFzEtbf9Ob4SkVgxKvGzdu4ObNh0u6HD16FFOnTsWXX35Zp/3s3bsXU6ZMweHDhxETE4Pi4mIMGjQIubkPE4Rp06bh999/x8aNG7F3717cvn0bzzzzjHZ7aWkphg0bhqKiIhw6dAirV6/GqlWrMHv2bG2ba9euYdiwYejfvz8SEhIwdepUvPbaa9i+fbu2zfr16xEVFYU5c+bgxIkT6NixIyIiIpCebl4DLC+nZWPa+lP499YL+LnCsjvGKtbtYCvNdfnrf1Vetq4wzqj8m3zXJpVLS5jKwtvPd5N+skF9/N+wEOyMelyn3pBrAypYe1lT9eVMU7H1TAr+p+eXECnUZVWK3ELxesfJMJl5xZi+8RS+2N2wlgszNQZ9ar744ot4/fXXMXbsWKSmpuKJJ55A27ZtsWbNGqSmpuokPTWJjo7W+X3VqlXw9vZGfHw8+vbti8zMTHzzzTdYu3YtBgwYAAD49ttv0aZNGxw+fBg9e/bEjh07cP78eezcuRM+Pj4IDQ3FvHnz8M4772Du3LmwtbXF8uXLERQUhAULFgAA2rRpgwMHDmDRokWIiIgAACxcuBATJ07E+PHjAQDLly/H1q1bsXLlSrz77ruVYi8sLERh4cPBvFlZpjH+IbvCm5uYlwHlVt5T/u8R7bT3/TK5F87cykS3pu4YzvE9ejmUdA8tfGpf2PvF7o3ham8DXxc77VI75ur7uOsoLNGgUI9k/OtSX5j6BZDbmeJWDx/VOQA/nzBsbVQ5L8N9F/cnxw7V0a7EtFrXwd19MR2hga6izEymqhnU43X27Fl0794dALBhwwa0a9cOhw4dwpo1a6q8hKevzMyy6//u7mU9GPHx8SguLkZ4eLi2TevWrdG4cWPExcUBAOLi4tC+fXv4+Pho20RERCArKwvnzp3Ttqm4j/I25fsoKipCfHy8ThulUonw8HBtm0fNnz8fLi4u2ltgoHn1bJirimvvujnaom9LL4MLf56/nYXv4v4UKTLTVl78sGL16ZrY21phVJcA9K5hNqG5eG/zOfx76wWdyviPKp+YYBr9pNKytZZ3DFPFzvisguJq25Urn117IvmBkSLSX2JaNjLzao+5KrsT7yBkdjRiL0hX/6u4tPZLHxdTs/H37+OxO9G8rvaYE4MSr+LiYqhUZVNsd+7ciaeeegpAWVKUkpJiUCAajQZTp05F79690a5dWa9GamoqbG1t4erqqtPWx8cHqamp2jYVk67y7eXbamqTlZWF/Px83L17F6WlpVW2Kd/Ho2bOnInMzEzt7cYN/T7QqLKEGxmyHDfyxxOyHFcO7w5pDUD3Uq3UcotKcfz6fdmOX5PuQZUvVz8qr6gEOSJcLqtuXb2GquJ4zG1nyt5vBVSfIMwcWvZarkvRT7GpK6wM8dvp6ktwAMDaGkoy5BWV1quorDHrJlZcCYPEZdArt23btli+fDn279+PmJgYDB48GABw+/ZteHgYtsbalClTcPbsWaxbt86gx0tNpVJBrVbr3BqCim+HYlUWl6vI39U74k82MJb6/leXj4eT27PL41BS+rBf6VZGPg5fvadznym6fjcXXebtROd5MbjySGmQCauP4eytTKw/loyUGi4DNvcyvQkL9bF0zxWjLZo8tIYlopztxC8OXFdt/dXay6yFxTWXbYj/s6xnrtRYA23J7BiUeH388cdYsWIF+vXrhxdeeAEdO5bNbPvtt9+0lyDrIjIyElu2bMHu3bsREBCgvd/X1xdFRUXIyMjQaZ+WlgZfX19tm0dnOZb/XlsbtVoNe3t7eHp6wsrKqso25fugMr2aP0ys82t5w6lNz2a19zLUh0YjYOmeK/g4+iIy8w27HGAqZv5yBr+cuIk/zqRAMPOldMqnqecXlaLfp7vx/JeHsXRPksxR1exiajbyi0urnLRx7nYWnvz8AN75+QzC5u9CflHVfxdjw5rUK4buf61PKtbC2PWty2XMy/T9W5n27FWFQoGnOuq3mkJ5j9YnozrU0pIaCoMSr379+uHu3bu4e/cuVq5cqb3/9ddfx4oVK/TejyAIiIyMxKZNm7Br1y4EBQXpbO/SpQtsbGwQGxurvS8xMRHJyckICysbAhsWFoYzZ87ozD6MiYmBWq1GSEiItk3FfZS3Kd+Hra0tunTpotNGo9EgNjZW24bKPNMpoPZGehKzF6aqHpOEmxn4JDoRy/YkYUstlwOMRaxqzGduZSJqwylMXnMCp8ysFlJ1sguKtWNObovcc9LIzUHU/dVFddXfFQrA3sbwhcibe4v39/LnvVxtgUwpBsjHXb1bY10oc/9ipI+Oga5yh0AmwqDEa8CAAcjOzoabm5vO/e7u7hgzZoze+5kyZQp++OEHrF27Fs7OzkhNTUVqairy88vehF1cXDBhwgRERUVh9+7diI+Px/jx4xEWFoaePXsCAAYNGoSQkBCMHTsWp06dwvbt2zFr1ixMmTJFOw5t0qRJuHr1KmbMmIGLFy9i6dKl2LBhA6ZNm6aNJSoqCl999RVWr16NCxcuYPLkycjNzdXOcrQkSgXgZuBaftZWD9+kvZ1VcH9k5sujv0vlo6fbV7qvoELPQ0E9e+cM9USI+D2mD/JMc+zFzgumMxjXzka+8T/6DBCXW1rWwxnZQ9rVr2ixPpbsTsKGY9XPptNnxqk569TYFa18a59NTA2DQV/H9+zZg6Kiym/+BQUF2L9/v977WbZsGYCyHrSKvv32W7zyyisAgEWLFkGpVGLUqFEoLCxEREQEli5dqm1rZWWFLVu2YPLkyQgLC4OjoyPGjRuHDz74QNsmKCgIW7duxbRp07B48WIEBATg66+/1paSAIAxY8bgzp07mD17NlJTUxEaGoro6OhKA+4tQdem7pXGqejLxkqJnyf3wtlbmRjWwa/SlONJjzfHkt3SXzayM3Bmo7GprJXo1NhV9BUDTJGUayWuPZKMiLa+ZldjrL6X58XWzNMRAW7S1C5btPOSUfabU1i3RHfvpTvIyCvC4Ha+UFkb533j+W6BWHfs4SSK8vVO9ZGZX4yp606iRCNgwejaC1ST+alT4nX69MO1vs6fP68z46+0tBTR0dFo1Ej/uir6jFWxs7PDkiVLsGTJkmrbNGnSBNu2batxP/369cPJkydrbBMZGYnIyMhaY7IkM385U+fB7V2auKFLk4e9nStf6YqFMZfweEsvONvZwMZKode0ZaK6Kk9cTt3MxBe7rmDWkyEyR0RyEgQBH227+NfPtbe/kp6NcSvLViT5ZFQHPGeCBY6PXL2H3X8t17Tn0p1aWtePVEk36apT4hUaGgqFQgGFQqEtaFqRvb09Pv/8c9GCI3GUlGp0xp30CHrY43X8z/rXwhnQ2gcDWj/sGTTFpItT+C1DxR6j+yZ6ydVSlYj0d/1ob1B9VJwpGNG29qsT93Mf9o7dM9FlxSpOfjTWRJrWvs6Y/0x7dAxwrbbNMSOWfhGjLIs5q9NAiGvXriEpKQmCIODo0aO4du2a9nbr1i1kZWXh1VdfNVasZKCKdbLeHtgCUU+0NOrxBoWYx+VZUymxUJ24pHtyh2B2zt6Sf+JB8v08uUMwind/OV17IxkNMsJ4SlMkRgLs52KHTo3doKxiYkV4m7L37ySRy+009TDt91sp1SnxatKkCZo2bQqNRoOuXbuiSZMm2pufnx+srExznE1DV3EK/Bv9m9drEWV9DGlvum+Ao7s8nJVZPu7CmEUI66N8fUoxCYKAY9fv49xt+RMUsbhUKGb5Uy3LoQBAiL9xa+59F/cnCkvqN5br0+0XMXpZ1atmyEVp5PcN0s8/Np4y6v5feyyo9kYG0KdIcbkTIlyJMWUGz3W/fPkydu/ejfT0dGg0ujNS9F2rkcRTXKpBwo0MZNcwo6qVj7PRBpOai4qzMqtTWFIq6//T2wNbYLGRFkI+fTMTo5eb1gd6fTmqHr6NlWhqnh33VEd/SWbeFhRpDH4NFRSXVpqg0ifYE4Hu9SuRUVyqgUYjVNnLYfEEAVPWnMDWM4atrGJK6jJQ3xAt9VjL1VA+apXOjNrqrDp0HQCqrYln7gxKvL766itMnjwZnp6e8PX11elBUSgUTLxk8P7v5/DD4eqXpjAXvmo7UfbzwleH0cyAS4nv/XoW3x/+E6/0aoq5T7UVJZa6alTLgNfsghJMWH1Momgsizl02jw6rMfTSYUfXuuBFXvrN1v4bk4RBi/eh61vPVav/dRGEAScvGFaPRZ3cooqJV1rjvyJyf2ayxRR3b3QPdBoY1WbejrgUloObI2c1OnL7q96d1P6ByPmvHRrWUrFoMTr3//+Nz788EO88847YsdDBiovhqivnALTHNz4dKdG8He1h5ujDQZ/pn9pkkddu5tb46LI1fn+cFk17lWHrsuWeNXm8NV7ZlOewhLfNM3ZpbQcpGYWGPUY525naXs1/jW0NVYdvI7bRj5mbS6nVZ65ffNBPjLzi3UuVTdUC58LxeaEWxjYxrTG57bxU1vke4hB6e2DBw8wevRosWMhAxQUl+osMquvV3o3FT8YESiVCoQ190Br34ax9qUhDJnp5O0sTk+ivkzlmzMBLXyc0DHApV77uJtThFw9Z6KlZT1Msp7uFIBwE5hsU93s7WITXyNUqtXB2jVywf8NC0HPZoattUx1Y9C74+jRo7Fjxw6xY6E6yhaUCJsfi87zYurcA9KjDgMdyfy1a6SGp5N0xUafkOCbs6WO/xCbnY0VNkf2qddyRQCQUsdeq46BrvByVtXrmHIw5Iussbz7yxkApleex1DWSn4hAwy81BgcHIz33nsPhw8fRvv27WFjo9tV+9Zbb4kSHNXslqDCgzzTW57E3dH83mwtnUKhQNcm7og+l1p7YxG4ONgYvWL/H2dTkZ5dt2TAxsqwN/57uboDgkeE+mNzgjzrf4qtrotuB7jZ4+YDw9fWbOHjDG9nFdIlXOmgLuKu3kP/1l5yhyG6/ZfvYMZPZSVB5ErlXnssCAt2XMJTofotMG6pDEq8vvzySzg5OWHv3r3Yu3evzjaFQsHEq4HrE+yJFWO74H+xl+s89kwqp25kINCdVZulIlbRzEdLGlytY62hV3sbNlX+/zad1fldzm/uBcWlohYpDnCzxxMhPjpjaUIDXXXq/1XUJ9izXs+lq70NDr07AMH/94fB+zC2uowP/ffWC5jQxzglGMRUsYj2A5l69cb3DsL4v/4GG3KPtUGJ17Vr18SOgwxwXZB23I6+rJQKRLT1xYWULJNLvNR2D3tnb9w3/Fu7qTH3c9l5IV37YV5TSjGmWyAupWUj28DJIc29DSvi6GxnbfAxxSZ2SQSlUoGvXu6K7h/u1PZCtfFzrjbxEoO1gT2PpiTET41NJ28BMN0q+BVVHC9mChcvbawUsLNRoqBYg6Yejoi38NpdFZn/q78B+6yk5u7aBTGXMG/LeeQ14G8Wj+pcYY3JhsZBZbo13O7mPLzsVNMYm+e6BuLM3AgEeztJERZRtcZXmKBkabXxpGBtpUTMtMex8pWueHdIa7nDkZRBPV61LQu0cuVKg4KhurHR43vLNweuocREZ+5U7H2SilKhwOC2vo+MdRK3uNPjLb2w8fhNeDqr0MrXeMUI62paeEv8cuJWldscbE03KauL+7lF9VrfbrfGFUMW78e/R7bTWQheLH9/vBlW7L0q+n5JelYVCtEaUrqmOkl3ckTbl6kLdHeod2Fgc2RwOYmKt/T0dOzatQu//PILMjIyRA6R6quwxPQSr2BvJ3iLVCy1vjoFuoq7v8ZuOPjuAGye0ht2NlbwMJHJBi4OVSe6Y7oGon9rb0ljySsqwZzfzom+321nUvGvR8Zj1dWFlCxsOW2cgfMzh7RBaxNKxhu63MISgxN1hUKBucND9Gpby4IKOj7dnmhQPGQ+DOrx2rRpU6X7NBoNJk+ejObNzacSMMmnfyvTmDU0ItTf6Jfg3h3SGjsvmG4RwMgBwdpK0VL4814ert3NxR9na55h2T3IHTsvpCPY26lOpRB+PJqMTo1d6xVjbZ/FdjbijNJo669GRl4xHmvhZbSq5FS9xz/dg/A2PgY/n7Z6Lgt1O1P/MZh1GU8ox1UDqj+D12p8lFKpRFRUFPr164cZM2aItVsiqkbXJm7VFoY0NRULqn617yoe1yPxfr1vc4zs1AhuDrYmt77ga481Q+9gT7yx5kS99lO+fM+f98S7VEV1Y8pfimrj5azCd692x62MfGw7k4L9l++axBWOFNgiNUve1QpMmaiD65OSklBSYhozf8hyCAJMtuYP6UdlrdT2chbVYcyht7OdwbW3jKmphwOGtvdDr+as9E0PlY/7GtLeT7JLyn1beuGF7o214zTnbTkPjUaeeYuuFYYzVDeelAzs8YqKitL5XRAEpKSkYOvWrRg3bpwogRGV23D84SWYR+s4VcXF3gaZ+aZXWLah69PCC7sT7wAATt/MFGWfZ2+Jsx8iAGjm5Yird3INuuzr6mCDXf/ohxKNBt7Odni8pReavrvVCFFW7fGW3th+rqz3rriWQWWtfIyTFAa6O6CphwOu38tDYQln01fHoK+SJ0+e1LmdPl1WDXfBggX47LPPxIyPCDcf5Gl/bqnHG8bQ9r7GDMfiOKlEG3Ggty/31W9mX0Fx2Zv68r1Jlbap7cQ9n8y8YpOp4UXG09ZfjVv1qMgPAO6OtnVeF3XVoetYuCMR2QX1+7L4ZEc/vdp1D3LHByPa1etYNenb0jTG75oyg96hdu/eLXYcJLHyddTumNElvFd6NdWZwk31t/rV7nBzlG4Nx3L2NlbILzb8G/GrvYPwwZbzsK9QBqP8m7afi3grEmTmF6Pn/FjR9tcQOcqQ2BtKqkWpH/W/XVcQ4OaA57oFGv1Y/Vt56/zdkPTqNXjizp07OHDgAA4cOIA7d+6IFRNJwNNJhT3/7Cfb8UMDTb+Q6WOf7MIXu6/IHYZRPW6m305Dq5i12LNZ2XirYo1GtDUiUzLz65UgfnfouihxmLOKhUapenlF7FVtKAxKvHJzc/Hqq6/Cz88Pffv2Rd++feHv748JEyYgLy+v9h2QSXBUWcPFXp7pyMM6+MHRSN+6xJpibe7L8Iht65kUXEnPljuMWtV1/UZjOnvr4ZJZtgZOEtDI1Q0jEm9nuzqVAyHTxHIn4jHonSAqKgp79+7F77//joyMDGRkZGDz5s3Yu3cv/vGPf4gdI9WRn4v+YwzeGtjCiJHU7MmO/hgU4iP6fp1U1hjWQb/xDlKoOIbKSWXedXee//KI3CGYpXkj20Hx18SQ0L8K9jZy1e+SaPnySF7O4hXivZ2h/5eK5yW4/EXmI8TPRe4QzJ5BidfPP/+Mb775BkOGDIFarYZarcbQoUPx1Vdf4aeffhI7RqqjMDOZ4u6kssabA2pP/Az5ptXChNby83Wxw+LnQzE9ohXGhjWp9/7yJV57s+IMqIprKlZkKgVxTVXFkYnzRrbDxklh2PZXDa/aTO5XVpT6qY41r82qrx3n0zB1fQIASDbGsz6Xa8m0vNijsdwhmD2DRj3m5eXBx6dyT4W3tzcvNRJVYURoI9H29WuCcZazqU6PZh5Y+1oPvPj1EVj/NblBEASUVKgV5FuHXtaGIrug+JE1QcvYWCnRral7nfdnLVI9s9gKBUOzC6UfV9TCx3S+FFHdqKxNr6aeOTLofzEsLAxz5sxBQcHDyrT5+fl4//33ERYWJlpwJI51xyz/2nzFy6sB7jVfwqn4xl9kAlWezYG7U9nMxxKNgK2nUzByyUGEzI7GppM3ZY6sbqz0qANnqBe6616SO3794aoCprAQcHmv06Gke0Y7xp/3czF1XULZL1WMTbO3sUKHAFejHd+clRcWNkbx01KNgH2XOQHOVBiUeH322Wc4ePAgAgICMHDgQAwcOBCBgYE4ePAgFi9eLHaMRLXyc7HHvun98XtkH4yspXdpYt9mEkVlOYI8HbU/7798B6duZqK4VEBBsXkkriND/fHt+G6i9Rrpo3xQvL2NldnOHq2rjcdvanvR/rxf+eqHh5O0pUt6B3tWuQ5jkKcjPhsTWun+8BBpF4sPb/PweB9tu4gd51KRa6ShBGlZ+l1WNuaXEypj0LtQ+/btcfnyZcyfPx+hoaEIDQ3Ff/7zH1y5cgVt27YVO0aqo4a6cGpjDwe0D3DRDmK2dE4iFwqticraCq/2DhJlX5sTbksy5qeRqz2e6xqAqCdaYtGYUPRvVbcP1eyCYvx3e2K942gp0dIxUnn076tiT19xheWgik2gNzmirS/Ovz+40vI9CqDKhdQXP98J3Zoat9RNaKAr1HbWcHOwwZzhbfHpsx2023ZdTDfqsfXh4mAj2iLwVDWD3rnnz58PHx8fTJw4Uef+lStX4s6dO3jnnXdECY7qrrG7A97o1xyrWD/I4s0aFoI9iXslP+71KhZ0trcxvSKZjdzs8cmzHQ1+/B9nU7HzgvwfhKamd7AHDiXdxZ/35B3PW1iiwQdbztfari4LrNtYKdG+kSuOXTfe4vMtfZxx4r0nAJSN2/N0UmH6T6d12jzbJQA/xct3GX9aeEvM/+OibMe3dAaltStWrEDr1q0r3d+2bVssX7683kFRzU5pHPH6d8dxRnCstG1K/+bwVpvmQGdPJxXsbJR4ibNi6m1yv+baMgNSO3z1fqX7RnWpfHm34gxIWzMclFvAmXhV8nRSYe3EnnKHAQD4Lu5PuUPQyqrD+rDWVsoaL3tb15AsCgA2J9S+APXltBy94yFpGfQ1NTU1FX5+leskeXl5ISUlpd5BUc2+LPHFjvNptTc0MZMeb4bXHuP4qvpo7uWIzPwSkxozFOhuD1eHymN3MvMefhA9362x0V+zwd5O9V6KiMhQUU+0rPc+Np2snFA9Wk6n4oQguxoK0y6OvVzveMg4DPoaWj6Q/lEHDx6Ev784tWaoeoVoGGOYqLLfIvvg+Kxw7fI4pqy8R87B1qpOs/oMKbUAlBUYPTYr3KDHmitjrblXMZF2l2EtT0PYWMv7vtjKV23Q4yqWaCisYVxcu0aVC5cO71D95y1XCzBdBvV4TZw4EVOnTkVxcTEGDBgAAIiNjcWMGTNYuZ4s3tYz7NXVx8LnQrHtbAoeC9a/d+6Zzo0wa1gbg49pJ+IlzaW7k0TblzGsfKWr0Zb88nFWYf3rPZGaVYBuTd2xdI/4/xeeTra4m1OEED81Tt/MrNe+QvzUcLDV/+OsWCP/wP9ySqUCs58M0Rmv9ui4NBd7G/R7ZHJIKx9nuDg0zIlU5s6gxGv69Om4d+8e3njjDRQVFQEA7Ozs8M4772DmzJmiBkhkCpwlnEFYFyNC/bE54TYGt/Wtta2dtRUUiirLK+mlrpUYmno64o1+wXV6TGtf5zrPSjXGpcXCEg1Sswpqb1iDWCPPUBvQWvzltirq8Vev6v3cIqPsP3pqXySmZqNrU7d61xp8pnPdChQ/1kKaS/VWSgVKNQKaelQej1uRtVXlREupAMpLeqntTfP9hwxj0NdDhUKBjz/+GHfu3MHhw4dx6tQp3L9/H7NnzxY7PiJRGXIxoq2/GuN6NRU7FL31CKr+0ttnY0Kxf0Z/LH2pc637sbVWYsfUvgbH8UznAIMfW+u+OzXCgNbeGNKubmts3rifj5PJGaLHI4iwMPXPf81KM0ZBTEvg6aRC72BPqKwrXxKzMXK9tVF1TNSqU3HSSFUTSH6e3AvvDmmN+c+0r/O+3xlceQIbWYZ6vbqdnJzQrVs3tGvXDipV3Rdw3bdvH4YPHw5/f38oFAr8+uuvOttfeeUVKBQKndvgwYN12ty/fx8vvfQS1Go1XF1dMWHCBOTk6M7mOH36NB577DHY2dkhMDAQn3zySaVYNm7ciNatW8POzg7t27fHtm3b6nw+VLMmtXzre1TXJuLX0+lqQI2eyP7B8HSq/Ppu5GpfpwXJDeGksq6xt02hUCDQ3UHvKfMtfJwNrtHTxs+wMSz6WDgmFCtf6VavCu+dGxu3/lJVdZ9q4vjX4ujTnpBvIXpjsa2QGFWVONXHL2/0MptZsE+E+GBcWBO81icIPZtV/oIUGuiKSY83N4mVC8xFQXEpMvKM08tqKmR9defm5qJjx45YsmRJtW0GDx6MlJQU7e3HH3/U2f7SSy/h3LlziImJwZYtW7Bv3z68/vrr2u1ZWVkYNGgQmjRpgvj4eHz66aeYO3cuvvzyS22bQ4cO4YUXXsCECRNw8uRJjBw5EiNHjsTZs2fFP+kGylqpwBMhdbs0suHvYWgp4rpu3YPcq5x9V66qMgnVsbexwt7p/WqcVWSq3h3cGgFu9vjnoPrPwjIVj7XwLEtAFQq4/jXupeLi3nIKdDP8QzfAzR6hJrjEjpezCu89GYIXugeKsvB7OYXC+Am0mFzsbfD+iHaY9WSI6AloQ5NdULbiwZDF+3E3x7ITL1kvHA8ZMgRDhgypsY1KpYKvb9XjVy5cuIDo6GgcO3YMXbt2BQB8/vnnGDp0KP773//C398fa9asQVFREVauXAlbW1u0bdsWCQkJWLhwoTZBW7x4MQYPHozp06cDAObNm4eYmBh88cUXFlWXTIB8lzyae9U9gVIqFXC1F39Glb2NFZxV1sguLEGQpyOcDaj076iylnT5GTG90jsIr4hUhd7UKJUK7JjWF5fTcgyeHSm3ivXDtk/tq+05MzUT+pS9hkpKTWegenWs9OgR5rqtJBWT/+TYs2cPvL290apVK0yePBn37j1c4DUuLg6urq7apAsAwsPDoVQqceTIEW2bvn37wtb24Qd4REQEEhMT8eDBA22b8HDdaegRERGIi4urNq7CwkJkZWXp3ExBTT0wfi41Lx5tTKUijJkRi42VErv+2Q8/TQrDPwa1Qu/mpluaIeevde9If97Odugd7Gk2l6setTDmkvZnpRkvf9XFSImvr9oOver4N/u3ng975ayViip7Id/o37zesZHhjDmUwdSY9DvT4MGD8d133yE2NhYff/wx9u7diyFDhqC0tOwbYWpqKry9dafYWltbw93dHampqdo2Pj66l7jKf6+tTfn2qsyfPx8uLi7aW2BgYLVtpTK0vS/C21R/OU+MAn91UXH805V006qi7OWsQtem7rBSKmBtpcT3E7rLHZJWY44HqZWtmfY26uPBX+NbPJ1sjVany9gC3Ozx+fOdjLJvK6UCayf2xNrXeuj9mBe6N8b1/wzD/hn9ceRfA6tc3aOliVyabqh+nhyG5l51Gwdsrkz63ev555/HU089hfbt22PkyJHYsmULjh07hj179sgdGmbOnInMzEzt7caN+k2HFsP0iNYmdVlidBf5k1F9mcp4IABmURxVbiEW+u1YEARtnbjI/nUrxVFfGXn6L3lTmyHtfA2qMeVv5F75QHcHeFQxUYbk52BrjV/e6N0ger5MOvF6VLNmzeDp6YkrV64AAHx9fZGerlsrp6SkBPfv39eOC/P19UVamu5SJeW/19amurFlQNnYM7VarXMzJT9O7Im3BrbA053EmTZtiLosTku6fNT8cKiJUqnAC90tb83P3KJSbZ01qSduFFUYqyX1h9+KsV0wItQfnz7bQdLjkmlxsbfByFDLX/3GrBKvmzdv4t69e9p1IsPCwpCRkYH4+Hhtm127dkGj0aBHjx7aNvv27UNx8cNvczExMWjVqhXc3Ny0bWJjY3WOFRMTg7CwMGOfktGENfdA1BMt0cSDl6304WBCPYVkeupaNmRXYlq9a4HVtaaZmHpI3Osa0dYXi5/vhF7BnpIetyIFl2IjiciaeOXk5CAhIQEJCQkAgGvXriEhIQHJycnIycnB9OnTcfjwYVy/fh2xsbEYMWIEgoODERERAQBo06YNBg8ejIkTJ+Lo0aM4ePAgIiMj8fzzz2vXjHzxxRdha2uLCRMm4Ny5c1i/fj0WL16MqKgobRxvv/02oqOjsWDBAly8eBFz587F8ePHERkZKfn/CcnDSWWNTW/0woLRHXH2/Qi5wyET8t6TIfhxYs86PWba+lN4UI9Ld2391bItB/PoeP5Hq6pbKjFL15iSZS91xt96mk/vcFhzD3g42iLI0xEh/qZ1JUkssn7NP378OPr376/9vTwZGjduHJYtW4bTp09j9erVyMjIgL+/PwYNGoR58+bpFGtds2YNIiMjMXDgQCiVSowaNQr/+9//tNtdXFywY8cOTJkyBV26dIGnpydmz56tU+urV69eWLt2LWbNmoV//etfaNGiBX799Ve0a9dOgv+Fhi3Q3R5OKmvkFJYgxE/ecVadGruhkxnVEDIVN+7nyx2CUT3fLdCkxk5KTW1ng0au9riVYVnPs6+LHRq7O+BWRj4WPx9qtuVhatOukQs8nFT44XCy3KHopUOAK+Lfe0LuMIxK1neTfv361dgdv3379lr34e7ujrVr19bYpkOHDti/f3+NbUaPHo3Ro0fXejxz4+H4sIyGu6P4NbHqy9XBFof/NRB5RSXwdhavCnywd9m31/qsTUj6q1hd38OR49MszcthTTD/j4tyhyEqlbUVdv3jcRSVauq0wLY5uPUgv15rmHZt6q5dNSMls35rllJllvVqo0pGdw2E2t4GXk4qk122wkllDSeRexSe7OCPDo1cYWerRPcPY2t/ANWJp5OtTnVptZ0NNk/pjT/v5yG8jXcNjyQyHdZWSpPt6apY9LWuvcrfxf2p/dmQ99YuTdyQMPsJKBUKtHrvDxSX8turmEzzFUeisbOxwojQRrIOWpVLYw8HuNewRBCJq2OgK57q6G9xvQf6slIq8OYAaUtAkHEFuMlXdDqibfWz6mtTvvpBxwAXuBl4pcPaSgmlUqFzxUDDyweiYOLVwHk6Pfyj9HLmJSJ9lWi4vAhV9o9Breq8mDaZrrfD5VvPtD5XKMrzo8db1b/3uUTzMNmqy7qjsRfSa2/UQDXMr6akNay9H5ztrOFoa41WvqZTRNQUudg/nGUmZrFJIrlM0XOZnPYBLrCxUsDexko7fpKk5VtFtf3qrD8uXkHvpzs1wqaTt2CtVGDTG731flx6dqFoMVgaJl4NnLWVEgNaV7/MkNxUNuJ1ytrUc1r8kHZ+eBsJ4gRTB+oKi3jrs9ivqTLj0C3S890CMT2itV5tezX3xMnZg2CtVNRY2PU2B2IbjZVSganhLfDZzstVbnc20szbRWNCsWhMqFH23VDxUiOZtIXPhWp/9jBgrIK1lRLjezdFsLcTXukVZFAMTT3L1g+ztVbKskbg2+Et8HrfZlj6UmfJq5mLaWBrH3QPMs7CyZamRILBzI1c6zZ+yUllXevrb9+lO/UJySTYVfiyZyfiFz9jUygUOPjuALnDID2wx8uCVLwUZim8nFX4aVIYbjzIM3iw6Zzhbet1/IrLpzT3dsKFlCzRZ2HWpImHI/41tI1kxzOWxh4O2PD3MMzefFZn1hVVToIGGnFmqPVfi0x3aSJOzTqlQgEXextk5lvG5fe/9WyCvKJSNPFwgJ+R146sTgsDL+c2crVHa19nXEzNFjkiEhMTLwvwTOdG+FvPJiZZp0sMXZu6o2tTeXpKHl0qZvHzodhyOgX9W3kZ9bht/NRIy7oDN5mql1NlxvxiY22lRGT/YHyxu2wd2mEdjLdckK+Lnag9j0qlAjum9UWPjyyjbIu/qz3mPmX4lzUxPNM5QNbjk3Ex8bIAwzv6ozMrrouqpY8TLqXlIKy5xyP3OyPqCeNPQvjv6I7YdTEd3WRKOKmyGRGt4eNsh7DmHlA8uq6OGVAqAI0ANPVwFH3fPmo7dGrsipPJGaLvu6GpWIyYLBOfYaIq/P5mH6RkFMi2yLinkwrPdQ2U5dhUtRB/NT5+toPcYRjs58m9EHf1HoZ38Jc7FHqEl9PDUj7ZBSXanzsGuuLUjQy05oxzi8LEi6gKKmsr7aB6IkvAtUhN16Bqxq9+M64r4pLuoUcz9nxbEiZeRESk5S/TgPKGzEqpgK2VEkWluoWZPZ1UGN6RPZSWxnzmyhKRSRndpWwA8FMm8MHApUzqb/nfOmNYBz98PMp8L6cSmQP2eBGRQT55tgNmDG6ts+yUlNr6PyzzMSK0kSwxWJLB7fwwuJ3xZlMSURkmXkRkEIVCIev6nn/r2QThbXzg6mAjW2FZdrQRUV3xUiNJwt6MK66T6fJ1sZO1mv/kfvqtdUgktkfHg2nvL6n6fjIdTLzIqOYOD0EbPzXel7kgIZExNJd4wejyy6vNvUxvxq2GvX+SmhHRqsr73xwYLHEkVFe81EhG9UrvILzS27A1EonkcuDKXdH25SLi6gPfjOuGfZfvoHewp2j7FEunv2pOVcXD0Rb3cosQUmH5LdI1uJ0vfjt1G931LJrsX81am8FerPll6ph4ERE94uaDfO3P1laGV6nvGOgKb2e72hvqydfFzmQL6/6tZxOsOnS9ym2/TumNhBsZ6NvCuEttmbNFY0LxRv/maOYpbS8qSY+JFxFRNcLbeENlbfgYsu5NWbAUAALdHRDoLs8qEObCSqlAa1/2CDYEHONFRFSNPgZc0ispbZiDnRq7O6BDgAtcHWzQtyV7tqhMKQf/VcLEi4gk9VgLLzjYWu4s11d6NZU7BFnYWivxW2QfJMwehMckuKRYcYxTo2rGOxGZIl5qJCJJPRHig/MfDMbgz/bhYmq23OHUSKmseXyXTYXt1sqy77EdA12NGRL9pamnI3ZGPY68ohK0b+QidzhEemPiRURUjYFtfGrc7q22Q2T/YFxKy8YL3RtLFBWVC5a4nAeRGJh4ERFVQaHQ7xLWP6upp0REVBWO8SIiIiKSCBMvIiIiIokw8SIiMgHl45VU1krO0iOyYBzjRUSy8HOxM/lZjVIa2akROjV2hdrOBq4OtnKHQ0RGwsSLiGQx96m26HDiFno0029tuoagiYfpLX5N5s/bWaX92ddFVUNLkgITLyKSRRMPR0x7oqXcYRBZvKaejtjyZh9k5hejZzMPucNp8Jh4ERERWQhb64dDt1UVfm7HIrMmg4kXEdWZ2s5G7hCIGhwftZ32Zy/nqi8ZtvRxwlsDW+BOdgFGdQ6QKjSqAyZeRKS3ucNDsO1MKib2bSZ3KEQNzuguAQhws4e7o63OWpUVKRQKRPESvklj4kVEenuldxBe6R0kdxhEDZK1lVKSBcjJuGSt47Vv3z4MHz4c/v7+UCgU+PXXX3W2C4KA2bNnw8/PD/b29ggPD8fly5d12ty/fx8vvfQS1Go1XF1dMWHCBOTk5Oi0OX36NB577DHY2dkhMDAQn3zySaVYNm7ciNatW8POzg7t27fHtm3bRD9fIiIiathkTbxyc3PRsWNHLFmypMrtn3zyCf73v/9h+fLlOHLkCBwdHREREYGCggJtm5deegnnzp1DTEwMtmzZgn379uH111/Xbs/KysKgQYPQpEkTxMfH49NPP8XcuXPx5ZdfatscOnQIL7zwAiZMmICTJ09i5MiRGDlyJM6ePWu8kyciIqIGR9ZLjUOGDMGQIUOq3CYIAj777DPMmjULI0aMAAB899138PHxwa+//ornn38eFy5cQHR0NI4dO4auXbsCAD7//HMMHToU//3vf+Hv7481a9agqKgIK1euhK2tLdq2bYuEhAQsXLhQm6AtXrwYgwcPxvTp0wEA8+bNQ0xMDL744gssX75cgv8JIpJTxdlf9aVUVPxZUX1DImqQTHbJoGvXriE1NRXh4eHa+1xcXNCjRw/ExcUBAOLi4uDq6qpNugAgPDwcSqUSR44c0bbp27cvbG0fVoKOiIhAYmIiHjx4oG1T8TjlbcqPU5XCwkJkZWXp3IjIPA1o7Y1XrVLxulVKvffV1MMRT3dqhK5N3DC8o78I0RGRJTHZwfWpqakAAB8fH537fXx8tNtSU1Ph7e2ts93a2hru7u46bYKCgirto3ybm5sbUlNTazxOVebPn4/333/fgDMjIlPjbGeD2TY3AABflvrVa19KpQKLxoSKEBURWSKT7fEydTNnzkRmZqb2duPGDblDIiIROdhYyR0CEVkgk028fH19AQBpaWk696elpWm3+fr6Ij09XWd7SUkJ7t+/r9Omqn1UPEZ1bcq3V0WlUkGtVuvciMj8vTUgGD5qFf4Z0UruUIjIApls4hUUFARfX1/ExsZq78vKysKRI0cQFhYGAAgLC0NGRgbi4+O1bXbt2gWNRoMePXpo2+zbtw/FxcXaNjExMWjVqhXc3Ny0bSoep7xN+XGIqOGIGtQKR/4VjvGsV0ZERiBr4pWTk4OEhAQkJCQAKBtQn5CQgOTkZCgUCkydOhX//ve/8dtvv+HMmTN4+eWX4e/vj5EjRwIA2rRpg8GDB2PixIk4evQoDh48iMjISDz//PPw9y8b1Priiy/C1tYWEyZMwLlz57B+/XosXrwYUVFR2jjefvttREdHY8GCBbh48SLmzp2L48ePIzIyUur/EiIiIrJgsg6uP378OPr376/9vTwZGjduHFatWoUZM2YgNzcXr7/+OjIyMtCnTx9ER0fDzu7helVr1qxBZGQkBg4cCKVSiVGjRuF///ufdruLiwt27NiBKVOmoEuXLvD09MTs2bN1an316tULa9euxaxZs/Cvf/0LLVq0wK+//op27dpJ8L9AREREDYWsiVe/fv0gCEK12xUKBT744AN88MEH1bZxd3fH2rVrazxOhw4dsH///hrbjB49GqNHj645YCIiIqJ6MNkxXkRERESWhokXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkUSYeBERERFJhIkXERERkURMOvGaO3cuFAqFzq1169ba7QUFBZgyZQo8PDzg5OSEUaNGIS0tTWcfycnJGDZsGBwcHODt7Y3p06ejpKREp82ePXvQuXNnqFQqBAcHY9WqVVKcHhERETUwJp14AUDbtm2RkpKivR04cEC7bdq0afj999+xceNG7N27F7dv38Yzzzyj3V5aWophw4ahqKgIhw4dwurVq7Fq1SrMnj1b2+batWsYNmwY+vfvj4SEBEydOhWvvfYatm/fLul5EhERkeWzljuA2lhbW8PX17fS/ZmZmfjmm2+wdu1aDBgwAADw7bffok2bNjh8+DB69uyJHTt24Pz589i5cyd8fHwQGhqKefPm4Z133sHcuXNha2uL5cuXIygoCAsWLAAAtGnTBgcOHMCiRYsQERFRbVyFhYUoLCzU/p6VlSXymRMREZGlMfker8uXL8Pf3x/NmjXDSy+9hOTkZABAfHw8iouLER4erm3bunVrNG7cGHFxcQCAuLg4tG/fHj4+Pto2ERERyMrKwrlz57RtKu6jvE35Pqozf/58uLi4aG+BgYGinC8RERFZLpNOvHr06IFVq1YhOjoay5Ytw7Vr1/DYY48hOzsbqampsLW1haurq85jfHx8kJqaCgBITU3VSbrKt5dvq6lNVlYW8vPzq41t5syZyMzM1N5u3LhR39MlIiIiC2fSlxqHDBmi/blDhw7o0aMHmjRpgg0bNsDe3l7GyACVSgWVSiVrDERERGReTLrH61Gurq5o2bIlrly5Al9fXxQVFSEjI0OnTVpamnZMmK+vb6VZjuW/19ZGrVbLntwRERGRZTGrxCsnJwdJSUnw8/NDly5dYGNjg9jYWO32xMREJCcnIywsDAAQFhaGM2fOID09XdsmJiYGarUaISEh2jYV91HepnwfRERERGIx6cTrn//8J/bu3Yvr16/j0KFDePrpp2FlZYUXXngBLi4umDBhAqKiorB7927Ex8dj/PjxCAsLQ8+ePQEAgwYNQkhICMaOHYtTp05h+/btmDVrFqZMmaK9TDhp0iRcvXoVM2bMwMWLF7F06VJs2LAB06ZNk/PUiYiIyAKZ9Bivmzdv4oUXXsC9e/fg5eWFPn364PDhw/Dy8gIALFq0CEqlEqNGjUJhYSEiIiKwdOlS7eOtrKywZcsWTJ48GWFhYXB0dMS4cePwwQcfaNsEBQVh69atmDZtGhYvXoyAgAB8/fXXNZaSICIiIjKESSde69atq3G7nZ0dlixZgiVLllTbpkmTJti2bVuN++nXrx9OnjxpUIxERERUpl8rL/wal4Qs004vZGXSlxqJiIjIfAxo7YPTdifR2tdZ7lBMFhMvIiIiIokw8SIiIiJRPdnBDwAQ1sxD5khMDxMvIiIiElXkgBY4pTqBtRN7yB2KyeHoNyIiIhKdi6IUUCjkDsPksMeLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiIgkwsSLiIiISCJMvIiIiMik3RNs5A5BNEy8iIiIyCSVagQAwAcljWWORDxMvIiIiMgkDevgBwBQQSNzJOJh4kVEREQmaWAbH7lDEB0TLyIiIiKJMPEiIiIikggTLyIiIiKJMPF6xJIlS9C0aVPY2dmhR48eOHr0qNwhERERkYVg4lXB+vXrERUVhTlz5uDEiRPo2LEjIiIikJ6eLndoOq4KdnKHQERERAawljsAU7Jw4UJMnDgR48ePBwAsX74cW7duxcqVK/Huu+/W+ngrtRduCypkCbZGizFJY4ergr3OfS72llNYjoiI6FECgJtG+mzNEYyy22ox8fpLUVER4uPjMXPmTO19SqUS4eHhiIuLq9S+sLAQhYWF2t+zsrIQMPlbDAaAwkrNjapToKu0ByQiIpJQEZToU9hR7jBEwUuNf7l79y5KS0vh46NbM8THxwepqamV2s+fPx8uLi7aW2BgIDTFhVChFCpojHqzRykAwBkl+GxMKBQKhST/R0RERFLyVduhuyLLyJ+rpZKeE3u8DDRz5kxERUVpf8/KykJgYCAy330XapXK+AHMnVt26zTC+MciIiKSgZVSgQ2qRKMeI6uwEC5GPYIuJl5/8fT0hJWVFdLS0nTuT0tLg6+vb6X2KpUKKikSLCIiIrIYvNT4F1tbW3Tp0gWxsbHa+zQaDWJjYxEWFiZjZERERGQp2ONVQVRUFMaNG4euXbuie/fu+Oyzz5Cbm6ud5UhERERUH0y8KhgzZgzu3LmD2bNnIzU1FaGhoYiOjq404J6IiIjIEEy8HhEZGYnIyEi5wyAiIiILxDFeRERERBJh4kVEREQkESZeRERERBJh4kVEREQkESZeRERERBJh4kVEREQkESZeRERERBJh4kVEREQkESZeRERERBJh5XqRCIIAAMgqLJTmgFlZQGFh2b9Skfp4RFIq/9vla5yofso/K8T6zDDy52r553b557ixKQSpjmThrl69iubNm8sdBhERERkgKSkJzZo1M/px2OMlEnd3dwBAcnIyXFxcZI5GOllZWQgMDMSNGzegVqvlDkcyPG+ed0PA8+Z5NwSZmZlo3Lix9nPc2Jh4iUSpLBsu5+Li0qBesOXUajXPuwHheTcsPO+GpaGed/nnuNGPI8lRiIiIiIiJFxEREZFUmHiJRKVSYc6cOVCpVHKHIimeN8+7IeB587wbAp63NOfNWY1EREREEmGPFxEREZFEmHgRERERSYSJFxEREZFEmHgRERERSYSJVwXz589Ht27d4OzsDG9vb4wcORKJiYmV2sXFxWHAgAFwdHSEWq1G3759kZ+fr91+//59vPTSS1Cr1XB1dcWECROQk5Ojs4/Tp0/jscceg52dHQIDA/HJJ58Y/fyqU9t5X79+HQqFosrbxo0bte2Sk5MxbNgwODg4wNvbG9OnT0dJSYnOsfbs2YPOnTtDpVIhODgYq1atkuo0K9Hn+U5NTcXYsWPh6+sLR0dHdO7cGT///LNOG0t7voGypTOefvppeHl5Qa1W47nnnkNaWppOG3M772XLlqFDhw7a4pBhYWH4448/tNsLCgowZcoUeHh4wMnJCaNGjap0zub2GgdqP+8vv/wS/fr1g1qthkKhQEZGRqV9mNtzDdR83vfv38ebb76JVq1awd7eHo0bN8Zbb72FzMxMnX1Y4vP997//Hc2bN4e9vT28vLwwYsQIXLx4UWcflnje5QRBwJAhQ6BQKPDrr7/qbJPsvAXSioiIEL799lvh7NmzQkJCgjB06FChcePGQk5OjrbNoUOHBLVaLcyfP184e/ascPHiRWH9+vVCQUGBts3gwYOFjh07CocPHxb2798vBAcHCy+88IJ2e2ZmpuDj4yO89NJLwtmzZ4Uff/xRsLe3F1asWCHp+Zar7bxLSkqElJQUndv7778vODk5CdnZ2do27dq1E8LDw4WTJ08K27ZtEzw9PYWZM2dqj3P16lXBwcFBiIqKEs6fPy98/vnngpWVlRAdHW2S5y0IgvDEE08I3bp1E44cOSIkJSUJ8+bNE5RKpXDixAltG0t7vnNycoRmzZoJTz/9tHD69Gnh9OnTwogRI4Ru3boJpaWl2v2Y23n/9ttvwtatW4VLly4JiYmJwr/+9S/BxsZGOHv2rCAIgjBp0iQhMDBQiI2NFY4fPy707NlT6NWrl/bx5vgaF4Taz3vRokXC/Pnzhfnz5wsAhAcPHlTah7k914JQ83mfOXNGeOaZZ4TffvtNuHLlihAbGyu0aNFCGDVqlPbxlvp8r1ixQti7d69w7do1IT4+Xhg+fLgQGBgolJSUCIJgueddbuHChcKQIUMEAMKmTZu090t53ky8apCeni4AEPbu3au9r0ePHsKsWbOqfcz58+cFAMKxY8e09/3xxx+CQqEQbt26JQiCICxdulRwc3MTCgsLtW3eeecdoVWrVkY4i7qr6rwfFRoaKrz66qva37dt2yYolUohNTVVe9+yZcsEtVqtPc8ZM2YIbdu21dnPmDFjhIiICJHPwDBVnbejo6Pw3Xff6bRzd3cXvvrqK0EQLPP53r59u6BUKoXMzExtm4yMDEGhUAgxMTGCIFjGeQuCILi5uQlff/21kJGRIdjY2AgbN27Ubrtw4YIAQIiLixMEwTJe4+XKz7ui3bt3V5l4WcpzLQhVn3e5DRs2CLa2tkJxcbEgCJb/fJc7deqUAEC4cuWKIAiWfd4nT54UGjVqJKSkpFRKvKQ8b15qrEF5t3P5wpnp6ek4cuQIvL290atXL/j4+ODxxx/HgQMHtI+Ji4uDq6srunbtqr0vPDwcSqUSR44c0bbp27cvbG1ttW0iIiKQmJiIBw8eSHFqNXr0vB8VHx+PhIQETJgwQXtfXFwc2rdvDx8fH+19ERERyMrKwrlz57RtwsPDdfYVERGBuLg4sU/BIFWdd69evbB+/Xrcv38fGo0G69atQ0FBAfr16wfAMp/vwsJCKBQKnWKCdnZ2UCqV2te6uZ93aWkp1q1bh9zcXISFhSE+Ph7FxcU6r8/WrVujcePG2tenJbzGHz1vfZj7cw3od96ZmZlQq9Wwti5bwrghPN+5ubn49ttvERQUhMDAQACWe955eXl48cUXsWTJEvj6+lZ6jJTnzcSrGhqNBlOnTkXv3r3Rrl07AMDVq1cBAHPnzsXEiRMRHR2Nzp07Y+DAgbh8+TKAsjFB3t7eOvuytraGu7s7UlNTtW0qPrkAtL+Xt5FLVef9qG+++QZt2rRBr169tPfpc07VtcnKytIZIyeH6s57w4YNKC4uhoeHB1QqFf7+979j06ZNCA4OBmCZz3fPnj3h6OiId955B3l5ecjNzcU///lPlJaWIiUlBYD5nveZM2fg5OQElUqFSZMmYdOmTQgJCUFqaipsbW3h6uqq097Hx6dO52Oqr/Hqzlsf5vpcA/qf9927dzFv3jy8/vrr2vss+fleunQpnJyc4OTkhD/++AMxMTHapNlSz3vatGno1asXRowYUeVjpTxvJl7VmDJlCs6ePYt169Zp79NoNADKBieOHz8enTp1wqJFi9CqVSusXLlSrlBFVdV5V5Sfn4+1a9fq9HZZgurO+7333kNGRgZ27tyJ48ePIyoqCs899xzOnDkjU6Tiquq8vby8sHHjRvz+++9wcnKCi4sLMjIy0LlzZyiV5v2W0apVKyQkJODIkSOYPHkyxo0bh/Pnz8sdltHxvKs/76ysLAwbNgwhISGYO3euPIGKrLbzfumll3Dy5Ens3bsXLVu2xHPPPYeCggIZIxZHdef922+/YdeuXfjss8/kDhEAYC13AKYoMjISW7Zswb59+xAQEKC938/PDwAqfWNq06YNkpOTAQC+vr5IT0/X2V5SUoL79+9ruzd9fX0rzZYq/72qLlCpVHfeFf3000/Iy8vDyy+/rHO/r68vjh49qnPfo+dU3Xmr1WrY29uLdRp1Vt15JyUl4YsvvsDZs2fRtm1bAEDHjh2xf/9+LFmyBMuXL7fY53vQoEFISkrC3bt3YW1tDVdXV/j6+qJZs2YAzPd1bmtrq+2t7NKlC44dO4bFixdjzJgxKCoqQkZGhk6vV1pams75mOtrvLrzXrFiRa2PNdfnGqj9vLOzszF48GA4Oztj06ZNsLGx0T7Wkp9vFxcXuLi4oEWLFujZsyfc3NywadMmvPDCCxZ53vb29khKSqrUoz1q1Cg89thj2LNnj6Tnbd5fX0UmCAIiIyOxadMm7Nq1C0FBQTrbmzZtCn9//0pT7y9duoQmTZoAAMLCwpCRkYH4+Hjt9l27dkGj0aBHjx7aNvv27UNxcbG2TUxMDFq1agU3NzdjnV61ajvvir755hs89dRT8PLy0rk/LCwMZ86c0XmDjomJgVqt1iaqYWFhiI2N1XlcTEyM3mNNxFbbeefl5QFApV4eKysrbe+npT/fnp6ecHV1xa5du5Ceno6nnnoKgHmed1U0Gg0KCwvRpUsX2NjY6Lw+ExMTkZycrH19muNrvDrl560PS3muAd3zzsrKwqBBg2Bra4vffvsNdnZ2Om0byvMtlE2y0263xPN+9913cfr0aSQkJGhvALBo0SJ8++23ACQ+7zoNxbdwkydPFlxcXIQ9e/bolE7Iy8vTtlm0aJGgVquFjRs3CpcvXxZmzZol2NnZaWeECELZ1OtOnToJR44cEQ4cOCC0aNFCZ+p1RkaG4OPjI4wdO1Y4e/assG7dOsHBwUG2qdf6nLcgCMLly5cFhUIh/PHHH5X2UT4Vd9CgQUJCQoIQHR0teHl5VTkVd/r06cKFCxeEJUuWyDoFubbzLioqEoKDg4XHHntMOHLkiHDlyhXhv//9r6BQKIStW7dq92OJz/fKlSuFuLg44cqVK8L3338vuLu7C1FRUTr7Mbfzfvfdd7XT6E+fPi28++67gkKhEHbs2CEIQlk5icaNGwu7du0Sjh8/LoSFhQlhYWHax5vja1wQaj/vlJQU4eTJk8JXX30lABD27dsnnDx5Urh37552H+b2XAtCzeedmZkp9OjRQ2jfvr1w5coVnb+DR8sqWNLznZSUJHz00UfC8ePHhT///FM4ePCgMHz4cMHd3V1IS0sTBMEyz7sqqKachBTnzcSrAgBV3r799luddvPnzxcCAgIEBwcHISwsTNi/f7/O9nv37gkvvPCC4OTkJKjVamH8+PHaelflTp06JfTp00dQqVRCo0aNhP/85z/GPr1q6XveM2fOFAIDA3VqOVV0/fp1YciQIYK9vb3g6ekp/OMf/9BOzS63e/duITQ0VLC1tRWaNWtW6RhS0ue8L126JDzzzDOCt7e34ODgIHTo0KFSeQlLfL7feecdwcfHR7CxsRFatGghLFiwQNBoNDr7MbfzfvXVV4UmTZoItra2gpeXlzBw4ECdN+X8/HzhjTfeENzc3AQHBwfh6aefFlJSUnT2YW6vcUGo/bznzJlT6+vB3J5rQaj5vMtLZ1R1u3btmnYflvZ837p1SxgyZIjg7e0t2NjYCAEBAcKLL74oXLx4UWcflnbeVXk08RIE6c5b8VcARERERGRkHONFREREJBEmXkREREQSYeJFREREJBEmXkREREQSYeJFREREJBEmXkREREQSYeJFREREJBEmXkRERA3Yhx9+iF69esHBwaHSeobVmTt3Llq3bg1HR0e4ubkhPDwcR44c0Wnz1FNPoXHjxrCzs4Ofnx/Gjh2L27dva7cXFBTglVdeQfv27WFtbY2RI0dWOk5KSgpefPFFtGzZEkqlElOnTjXoHC9duoQRI0bA09MTarUaffr0we7duw3aV30x8SIii/XKK69U+WYulbFjx+Kjjz7Sq+3zzz+PBQsWGDkiaqj69euHVatWVbmtqKgIo0ePxuTJk/XeX8uWLfHFF1/gzJkzOHDgAJo2bYpBgwbhzp072jb9+/fHhg0bkJiYiJ9//hlJSUl49tlntdtLS0thb2+Pt956C+Hh4VUep7CwEF5eXpg1axY6duyod3yPevLJJ1FSUoJdu3YhPj4eHTt2xJNPPonU1FSD92mwOte6JyIyAahmyZfy25w5c4SMjAzhwYMHssSXkJAguLu7V1papzpnzpwR3NzchIyMDCNHRg3R448/XuvyNt9++63g4uJi0P4zMzMFAMLOnTurbbN582ZBoVAIRUVFlbaNGzdOGDFiRI3HePzxx4W33367ym1fffWV0Lp1a0GlUgmtWrUSlixZot12584d7Tqk5bKysgQAQkxMTM0nZgTW0qd6RET1l5KSov15/fr1mD17NhITE7X3OTk5wcnJSY7QAACff/45Ro8erXcM7dq1Q/PmzfHDDz9gypQpRo6OSDxFRUX48ssv4eLiUm2v1P3797FmzRr06tULNjY2oh5/zZo1mD17Nr744gt06tQJJ0+exMSJE+Ho6Ihx48bBw8MDrVq1wnfffYfOnTtDpVJhxYoV8Pb2RpcuXUSNRR+81EhEZsnX11d7c3FxgUKh0LnPycmp0qXGfv364c0338TUqVPh5uYGHx8ffPXVV8jNzcX48ePh7OyM4OBg/PHHHzrHOnv2LIYMGQInJyf4+Phg7NixuHv3brWxlZaW4qeffsLw4cN17l+6dClatGgBOzs7+Pj46Fx2AYDhw4dj3bp19f/PIZLAli1b4OTkBDs7OyxatAgxMTHw9PTUafPOO+/A0dERHh4eSE5OxubNm0WPY86cOViwYAGeeeYZBAUF4ZlnnsG0adOwYsUKAIBCocDOnTtx8uRJODs7w87ODgsXLkR0dDTc3NxEj6c2TLyIqEFZvXo1PD09cfToUbz55puYPHkyRo8ejV69euHEiRMYNGgQxo4di7y8PABARkYGBgwYgE6dOuH48eOIjo5GWloannvuuWqPcfr0aWRmZqJr167a+44fP4633noLH3zwARITExEdHY2+ffvqPK579+44evQoCgsLjXPy1GB89NFH2l5fJycn7N+/H5MmTdK5Lzk5uV7H6N+/PxISEnDo0CEMHjwYzz33HNLT03XaTJ8+HSdPnsSOHTtgZWWFl19+GYIg1Ou4FeXm5iIpKQkTJkzQObd///vfSEpKAgAIgoApU6bA29sb+/fvx9GjRzFy5EgMHz5cp+dcMpJf3CQiEll1Y1MeHTfy+OOPC3369NH+XlJSIjg6Ogpjx47V3peSkiIAEOLi4gRBEIR58+YJgwYN0tnvjRs3BABCYmJilfFs2rRJsLKyEjQajfa+n3/+WVCr1UJWVla153Hq1CkBgHD9+vUaz5eoNvfu3RMuX76svXXv3l34+OOPde4rLi7WeUx9xngJgiAEBwcLH330UbXby/9uDh06VGmboWO8UlNTBQDCDz/8oHNuly9fFq5evSoIgiDs3LlTUCqVQmZmZqV458+fr9/JiYhjvIioQenQoYP2ZysrK3h4eKB9+/ba+3x8fABA+8391KlT2L17d5VjtZKSktCyZctK9+fn50OlUkGhUGjve+KJJ9CkSRM0a9YMgwcPxuDBg/H000/DwcFB28be3h4AtL1tRIZyd3eHu7u79nd7e3t4e3sjODjYaMfUaDQ19tZqNBoAELVH18fHB/7+/rh69SpeeumlKtuU/z0plboX+ZRKpTYmKTHxIqIG5dGBvQqFQue+8mSp/A05JycHw4cPx8cff1xpX35+flUew9PTE3l5eSgqKoKtrS0AwNnZGSdOnMCePXuwY8cOzJ49G3PnzsWxY8e0tZPu378PAPDy8qrfSRLVQXJyMu7fv4/k5GSUlpYiISEBABAcHKz9wtG6dWvMnz8fTz/9NHJzc/Hhhx/iqaeegp+fH+7evYslS5bg1q1bGD16NADgyJEjOHbsGPr06QM3NzckJSXhvffeQ/PmzREWFqY99vnz51FUVIT79+8jOztbe+zQ0FBtm/L7cnJycOfOHSQkJMDW1hYhISEAgPfffx9vvfUWXFxcMHjwYBQWFuL48eN48OABoqKiEBYWBjc3N4wbNw6zZ8+Gvb09vvrqK1y7dg3Dhg0z7n9uFZh4ERHVoHPnzvj555/RtGlTWFvr95ZZ/qFx/vx5nQ8Qa2trhIeHIzw8HHPmzIGrqyt27dqFZ555BkDZIP6AgIBKA5SJjGn27NlYvXq19vdOnToBAHbv3o1+/foBABITE5GZmQmgrKf44sWLWL16Ne7evQsPDw9069YN+/fvR9u2bQEADg4O+OWXXzBnzhzk5ubCz88PgwcPxqxZs6BSqbTHGjp0KP78889KxxYqjAMrvw8A4uPjsXbtWjRp0gTXr18HALz22mtwcHDAp59+iunTp8PR0RHt27fXFlv19PREdHQ0/u///g8DBgxAcXEx2rZti82bN9erNpihmHgREdVgypQp+Oqrr/DCCy9gxowZcHd3x5UrV7Bu3Tp8/fXXsLKyqvQYLy8vdO7cGQcOHNAmXlu2bMHVq1fRt29fuLm5Ydu2bdBoNGjVqpX2cfv378egQYOkOjVqQPbs2VPttlWrVlVbXLVcxUTIzs4Ov/zyS43t27dvj127dtUaV3nypO+xq/Piiy/ixRdfrHZ7165dsX379lr3IwXOaiQiqoG/vz8OHjyI0tJSDBo0SPtN2tXVtdKYkYpee+01rFmzRvu7q6srfvnlFwwYMABt2rTB8uXL8eOPP2p7CAoKCvDrr79i4sSJRj8nIpKPQtAnlSQiojrJz89Hq1atsH79ep0xLdVZtmwZNm3ahB07dkgQHRHJhT1eRERGYG9vj++++67GQqsV2djY4PPPPzdyVEQkN/Z4EREREUmEPV5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEmHiRURERCQRJl5EREREEvl/x2KH98R61VwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "lc_raw.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])" + ] + }, + { + "cell_type": "markdown", + "id": "3d1fecba", + "metadata": {}, + "source": [ + "Let us get some statistics on these bad time intervals, in particular the very small ones." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "9ab90390", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Total exposure: 5438.068227797747\n", + "Total BTI length: 44846.231474906206\n", + "Total BTI length (short BTIs): 33.45650801062584\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvzUlEQVR4nO3de1hU9aL/8c8AihdE8waiKG4zCy/gBcqyDipt08JLOzeVp9DK9tlNOxMr8WeJ2tlHa6tZnTldLNN6qm2WuZ8yr2w8ti0DTUw3ZmFYpIIZCYKJOazfH/txTgjqDLOGgTXv1/PwPM5aM2t9vmtuH9esNWMzDMMQAACABQX5OwAAAICvUHQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlUXQAAIBlhfg7gL9VV1fryJEjatOmjWw2m7/jAAAANxiGoZMnTyoqKkpBQRfebxPwRefIkSOKjo72dwwAAFAPRUVF6tat2wXnB3zRadOmjaR/bajw8HA/pwEAAO4oLy9XdHS06338QgK26DgcDjkcDjmdTklSeHg4RQcAgCbmUoed2AL9Rz3Ly8vVtm1blZWVUXQAAGgi3H3/5qwrAABgWRQdAABgWRQdAABgWRQdAABgWQFbdBwOh2JjY5WQkODvKAAAwEc464qzrgAAaHI46woAAAQ8ig4AALAsig4AALAsig4AALAsig4AALCsgC06nF4OAID1cXo5p5ebLiZjnVe3P7TwZpOSAACsitPLAQBAwKPoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAywrYosP36AAAYH0BW3Tsdrvy8/OVm5vr7ygAAMBHArboAAAA6wvxdwDgfN58szLfqgwA+DX26AAAAMui6AAAAMui6AAAAMui6AAAAMui6AAAAMsK2KLDFwYCAGB9AVt0+MJAAACsL2CLDgAAsD6KDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsKyALTr8BAQAANYXsEWHn4AAAMD6ArboAAAA66PoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAy6LoAAAAywrYouNwOBQbG6uEhAR/RwEAAD4SsEXHbrcrPz9fubm5/o4CAAB8JGCLDgAAsD6KDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsCyKDgAAsKwQfwcAzBSTsc6r2x9aeLNJSQAAjQF7dAAAgGVRdAAAgGVRdAAAgGVRdAAAgGVRdAAAgGUFbNFxOByKjY1VQkKCv6MAAAAfCdiiY7fblZ+fr9zcXH9HAQAAPhKwRQcAAFgfRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFgWRQcAAFhWky86RUVFSkpKUmxsrAYMGKDVq1f7OxIAAGgkQvwdwFshISFaunSp4uPjVVxcrMGDB2vMmDFq3bq1v6MBAAA/a/JFp0uXLurSpYskKTIyUh07dlRpaSlFBwAA+P+jq23btiklJUVRUVGy2Wxau3Ztres4HA7FxMSoRYsWuvrqq5WTk1Pnsnbt2iWn06no6GgfpwYAAE2B34tOZWWl4uLi5HA46py/atUqpaenKzMzU59//rni4uI0atQoHTt2rMb1SktLdffdd+vll19uiNgAAKAJ8PtHV6NHj9bo0aMvOH/JkiWaOnWqpkyZIkl68cUXtW7dOi1fvlwZGRmSpKqqKo0fP14ZGRm69tprL7q+qqoqVVVVuS6Xl5ebMAoAANAY+X2PzsWcOXNGu3btUnJysmtaUFCQkpOT9emnn0qSDMPQ5MmTNWLECN11112XXOaCBQvUtm1b1x8fcwEAYF2NuugcP35cTqdTERERNaZHRESouLhYkrR9+3atWrVKa9euVXx8vOLj47V3794LLnPWrFkqKytz/RUVFfl0DAAAwH88/uiqqKhINptN3bp1kyTl5OTorbfeUmxsrO6//37TA17KsGHDVF1d7fb1Q0NDFRoa6sNEAACgsfB4j86dd96p7OxsSVJxcbFuvPFG5eTkaPbs2Zo/f76p4Tp27Kjg4GCVlJTUmF5SUqLIyEhT1wUAAKzH46Kzb98+JSYmSpLeeecd9evXT5988onefPNNrVixwtRwzZs31+DBg5WVleWaVl1draysLA0dOtTUdQEAAOvx+KOrX375xfXRz5YtWzR27FhJ0pVXXqmjR496HKCiokIFBQWuy4WFhcrLy1P79u3VvXt3paenKy0tTUOGDFFiYqKWLl2qyspK11lY9eVwOORwOOR0Or1aDgAAaLw8Ljp9+/bViy++qJtvvlmbN2/Wk08+KUk6cuSIOnTo4HGAnTt3avjw4a7L6enpkqS0tDStWLFCqamp+uGHHzRnzhwVFxcrPj5eGzZsqHWAsqfsdrvsdrvKy8vVtm1br5YFAAAaJ5thGIYnN9i6dasmTJig8vJypaWlafny5ZKk//f//p++/PJLrVmzxidBfeVc0SkrK1N4eLi/41hCTMY6f0eot0MLb/Z3BACAG9x9//Z4j05SUpKOHz+u8vJyXXbZZa7p999/v1q1alW/tAAAAD5Qr29GDg4OrlFyJCkmJsaMPAAAAKZxq+gMHDhQNpvNrQV+/vnnXgUCAAAwi1tFZ/z48T6O0fA46woAAOvz+GBkq+FgZPNxMDIAwNfcff9u1L91BQAA4A2PD0Z2Op165pln9M477+i7777TmTNnaswvLS01LRwAAIA3PN6jM2/ePC1ZskSpqakqKytTenq6br31VgUFBWnu3Lk+iAgAAFA/HhedN998U8uWLdOMGTMUEhKiO+64Q6+88ormzJmjHTt2+CIjAABAvXhcdIqLi9W/f39JUlhYmMrKyiRJt9xyi9ata7oHoQIAAOvxuOh069bN9eOdvXr10qZNmyRJubm5rh/7bAocDodiY2OVkJDg7ygAAMBHPC46EyZMUFZWliTpT3/6k5544gn17t1bd999t+655x7TA/qK3W5Xfn6+cnNz/R0FAAD4iMdnXS1cuND179TUVPXo0UOffPKJevfurZSUFFPDAQAAeMPjonP69Gm1aNHCdfmaa67RNddcY2ooAAAAM3j80VXnzp2VlpamzZs3q7q62heZAAAATOFx0Vm5cqVOnTqlcePGqWvXrnr44Ye1c+dOX2QDAADwSr0ORl69erVKSkr0X//1X8rPz9c111yjK664QvPnz/dFRgAAgHqp929dtWnTRlOmTNGmTZv0xRdfqHXr1po3b56Z2QAAALxS76Jz+vRpvfPOOxo/frwGDRqk0tJSPfroo2Zm8ym+RwcAAOvz+KyrjRs36q233tLatWsVEhKi2267TZs2bdINN9zgi3w+Y7fbZbfbXT/zDgAArMfjojNhwgSlpKTo9ddf15gxY9SsWTNf5AIAAPCaR0Xn7NmzeuqppzRx4kRFRkb6KhMAAIApPDpGJyQkRDNnzlRVVZWv8gAAAJjG44ORExMTtXv3bl9kAQAAMJXHx+g88MADmjFjhr7//nsNHjxYrVu3rjF/wIABpoUDAADwhs0wDMOTGwQF1d4JZLPZZBiGbDabnE6naeEawrmzrsrKyhQeHu7vOJYQk7HO3xH85tDCm/0dAQACgrvv3x7v0SksLPQqGAAAQEPxuOj06NHDFzkAAABMV69vRn7jjTd03XXXKSoqSt9++60kaenSpfrb3/5majhf4puRAQCwPo+LzgsvvKD09HSNGTNGJ06ccB2T065dOy1dutTsfD5jt9uVn5+v3Nxcf0cBAAA+4nHRef7557Vs2TLNnj1bwcHBrulDhgzR3r17TQ0HAADgDY+LTmFhoQYOHFhremhoqCorK00JBQAAYAaPi07Pnj2Vl5dXa/qGDRt01VVXmZEJAADAFB6fdZWeni673a7Tp0/LMAzl5OTo7bff1oIFC/TKK6/4IiMAAEC9eFx07rvvPrVs2VKPP/64Tp06pTvvvFNRUVF69tlndfvtt/siIwAAQL14XHQkadKkSZo0aZJOnTqliooKde7c2excAAAAXvP4GJ0RI0boxIkTkqRWrVq5Sk55eblGjBhhajgAAABveFx0tm7dqjNnztSafvr0aX388cemhAIAADCD2x9dffHFF65/5+fnq7i42HXZ6XRqw4YN6tq1q7npAAAAvOB20YmPj5fNZpPNZqvzI6qWLVvq+eefNzWcLzkcDjkcjib3a+sAAMB9bhedwsJCGYah3/zmN8rJyVGnTp1c85o3b67OnTvX+Kbkxs5ut8tut7t+5h0AAFiP20Xn3K+WV1dX+ywMAACAmep1evnXX3+t7OxsHTt2rFbxmTNnjinBAAAAvOVx0Vm2bJn++Mc/qmPHjoqMjJTNZnPNs9lsFB0AANBoeFx0/vM//1N//vOfNXPmTF/kAQAAMI3H36Pz008/aeLEib7IAgAAYCqPi87EiRO1adMmX2QBAAAwlccfXV1++eV64okntGPHDvXv31/NmjWrMf+hhx4yLRwAAIA3bIZhGJ7coGfPnhdemM2mb775xutQDenc9+iUlZUpPDzc33EsISZjnb8j+M2hhTf7OwIABAR337893qNTWFjoVTAAAICG4vExOgAAAE2FW3t00tPT9eSTT6p169ZKT0+/6HWXLFliSjAAAABvuVV0du/erV9++cX17wv59ZcHAgAA+JtbRSc7O7vOfwMAADRmAXuMjsPhUGxsrBISEvwdBQAA+EjAFh273a78/Hzl5ub6OwoAAPCRgC06AADA+ig6AADAstwqOoMGDdJPP/0kSZo/f75OnTrl01AAAABmcKvo7N+/X5WVlZKkefPmqaKiwqehAAAAzODW6eXx8fGaMmWKhg0bJsMwtGjRIoWFhdV53Tlz5pgaEAAAoL7cKjorVqxQZmamPvzwQ9lsNq1fv14hIbVvarPZKDoAAKDRcKvo9OnTR3/9618lSUFBQcrKylLnzp19GgwAAMBbHv96eXV1tS9yAAAAmM7joiNJBw8e1NKlS7V//35JUmxsrKZNm6ZevXqZGg4AAMAbHn+PzsaNGxUbG6ucnBwNGDBAAwYM0Geffaa+fftq8+bNvsgIAABQLx7v0cnIyND06dO1cOHCWtNnzpypG2+80bRwAAAA3vB4j87+/ft177331pp+zz33KD8/35RQAAAAZvC46HTq1El5eXm1pufl5XEmFgAAaFQ8/uhq6tSpuv/++/XNN9/o2muvlSRt375dTz31lNLT000PCAAAUF8eF50nnnhCbdq00eLFizVr1ixJUlRUlObOnauHHnrI9IAAAAD15XHRsdlsmj59uqZPn66TJ09Kktq0aWN6MAAAAG/V63t0zqHgAACAxszjg5EBAACaCooOAACwrIAtOg6HQ7GxsUpISPB3FAAA4CMeFZ1ffvlFI0eO1Ndff+2rPA3GbrcrPz9fubm5/o4CAAB8xKOi06xZM33xxRe+ygIAAGAqjz+6+vd//3e9+uqrvsgCAABgKo9PLz979qyWL1+uLVu2aPDgwWrdunWN+UuWLDEtHAAAgDc8Ljr79u3ToEGDJElfffVVjXk2m82cVAAAACbwuOhkZ2f7IgcAAIDp6n16eUFBgTZu3Kiff/5ZkmQYhmmhAAAAzOBx0fnxxx81cuRIXXHFFRozZoyOHj0qSbr33ns1Y8YM0wMCAADUl8dFZ/r06WrWrJm+++47tWrVyjU9NTVVGzZsMDUcAACANzw+RmfTpk3auHGjunXrVmN679699e2335oWDAAAwFse79GprKyssSfnnNLSUoWGhpoSCgAAwAweF53rr79er7/+uuuyzWZTdXW1nn76aQ0fPtzUcAAAAN7w+KOrp59+WiNHjtTOnTt15swZPfbYY/rnP/+p0tJSbd++3RcZAQAA6sXjPTr9+vXTV199pWHDhmncuHGqrKzUrbfeqt27d6tXr16+yAgAAFAvHu/RkaS2bdtq9uzZZmcBAAAwVb2Kzk8//aRXX31V+/fvlyTFxsZqypQpat++vanhAAAAvOHxR1fbtm1TTEyMnnvuOf3000/66aef9Nxzz6lnz57atm2bLzICAADUi8d7dOx2u1JTU/XCCy8oODhYkuR0OvXAAw/Ibrdr7969pocEAACoD4/36BQUFGjGjBmukiNJwcHBSk9PV0FBganhAAAAvOFx0Rk0aJDr2Jxf279/v+Li4kwJBQAAYAa3Prr64osvXP9+6KGHNG3aNBUUFOiaa66RJO3YsUMOh0MLFy70TUoAAIB6sBmGYVzqSkFBQbLZbLrUVW02m5xOp2nhGkJ5ebnatm2rsrIyhYeH+zuOJcRkrPN3BL85tPBmf0cAgIDg7vu3W3t0CgsLTQsGAADQUNwqOj169PB1DgAAANPV6wsDjxw5on/84x86duyYqqura8x76KGHTAkGAADgLY+LzooVK/SHP/xBzZs3V4cOHWSz2VzzbDYbRQcAADQaHhedJ554QnPmzNGsWbMUFOTx2ekAAAANxuOmcurUKd1+++2UHAAA0Oh53FbuvfderV692hdZAAAATOXxR1cLFizQLbfcog0bNqh///5q1qxZjflLliwxLZy7JkyYoK1bt2rkyJF69913G3z9AACgcapX0dm4caP69OkjSbUORvaHadOm6Z577tHKlSv9sn4AANA4eVx0Fi9erOXLl2vy5Mk+iFM/SUlJ2rp1q79jAACARsbjY3RCQ0N13XXXmRZg27ZtSklJUVRUlGw2m9auXVvrOg6HQzExMWrRooWuvvpq5eTkmLZ+AABgXR4XnWnTpun55583LUBlZaXi4uLkcDjqnL9q1Sqlp6crMzNTn3/+ueLi4jRq1CgdO3bMtAwAAMCaPP7oKicnR3//+9/14Ycfqm/fvrUORl6zZo1Hyxs9erRGjx59wflLlizR1KlTNWXKFEnSiy++qHXr1mn58uXKyMjwNL6qqqpUVVXlulxeXu7xMgAAQNPgcdFp166dbr31Vl9kqeXMmTPatWuXZs2a5ZoWFBSk5ORkffrpp/Va5oIFCzRv3jyzIgIAgEbM46Lz2muv+SJHnY4fPy6n06mIiIga0yMiIvTll1+6LicnJ2vPnj2qrKxUt27dtHr1ag0dOrTOZc6aNUvp6emuy+Xl5YqOjvbNAAAAgF/V60c9G5stW7a4fd3Q0FCFhob6MA0AAGgsPC46PXv2vOj35XzzzTdeBfq1jh07Kjg4WCUlJTWml5SUKDIy0rT1AAAAa/K46Dz88MM1Lv/yyy/avXu3NmzYoEcffdSsXJKk5s2ba/DgwcrKytL48eMlSdXV1crKytKDDz5o6roAAID1eFx0pk2bVud0h8OhnTt3ehygoqJCBQUFrsuFhYXKy8tT+/bt1b17d6WnpystLU1DhgxRYmKili5dqsrKStdZWPXlcDjkcDjkdDq9Wg7wazEZ6+p920MLbzYxCQD8n0B+bbIZhmGYsaBvvvlG8fHxHp+uvXXrVg0fPrzW9LS0NK1YsUKS9N///d/6y1/+ouLiYsXHx+u5557T1VdfbUZslZeXq23btiorK1N4eLgpywx03jyhAllTfzEB0HhZsei4+/5t2sHI7777rtq3b+/x7ZKSknSprvXggw/yURUAAPCYx0Vn4MCBNQ5GNgxDxcXF+uGHH/Q///M/poYDAADwhsdF59xBwecEBQWpU6dOSkpK0pVXXmlWLgAAAK95XHQyMzN9kQMAAMB0Hv+op1U4HA7FxsYqISHB31EAAICPuF10goKCFBwcfNG/kJCm80XLdrtd+fn5ys3N9XcUAADgI243k/fff/+C8z799FM999xzqq6uNiUUAACAGdwuOuPGjas17cCBA8rIyNAHH3ygSZMmaf78+aaGAwAA8Ea9jtE5cuSIpk6dqv79++vs2bPKy8vTypUr1aNHD7PzAQAA1JtHRaesrEwzZ87U5Zdfrn/+85/KysrSBx98oH79+vkqHwAAQL25/dHV008/raeeekqRkZF6++236/woCwAAoDFxu+hkZGSoZcuWuvzyy7Vy5UqtXLmyzuutWbPGtHC+xI96AgBgfW4XnbvvvrvGTz80dXa7XXa73fWjYAAAwHrcLjrnfkkcAACgqQjYb0YGAADWR9EBAACWRdEBAACWRdEBAACWRdEBAACWFbBFx+FwKDY2VgkJCf6OAgAAfCRgi47dbld+fr5yc3P9HQUAAPhIwBYdAABgfRQdAABgWRQdAABgWRQdAABgWRQdAABgWRQdAABgWRQdAABgWQFbdPjCQAAArC9giw5fGAgAgPUFbNEBAADWR9EBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWFbBFh9+6AgDA+gK26PBbVwAAWF/AFh0AAGB9FB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZIf4O4C8Oh0MOh0NOp9PfUYCAFpOxzqvbH1p4s0lJgIvjsdo0BeweHbvdrvz8fOXm5vo7CgAA8JGALToAAMD6KDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyQvwdwF8cDoccDoecTqe/ozRKMRnr/B0BAACvBeweHbvdrvz8fOXm5vo7CgAA8JGALToAAMD6KDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyKDoAAMCyLFF0PvzwQ/Xp00e9e/fWK6+84u84AACgkQjxdwBvnT17Vunp6crOzlbbtm01ePBgTZgwQR06dPB3NAAA4GdNfo9OTk6O+vbtq65duyosLEyjR4/Wpk2b/B0LAAA0An4vOtu2bVNKSoqioqJks9m0du3aWtdxOByKiYlRixYtdPXVVysnJ8c178iRI+ratavrcteuXXX48OGGiA4AABo5vxedyspKxcXFyeFw1Dl/1apVSk9PV2Zmpj7//HPFxcVp1KhROnbsWL3WV1VVpfLy8hp/AADAmvx+jM7o0aM1evToC85fsmSJpk6dqilTpkiSXnzxRa1bt07Lly9XRkaGoqKiauzBOXz4sBITEy+4vAULFmjevHnmDQAwSUzGOq9uf2jhzSYlaVq82W6Bus2AQOL3PToXc+bMGe3atUvJycmuaUFBQUpOTtann34qSUpMTNS+fft0+PBhVVRUaP369Ro1atQFlzlr1iyVlZW5/oqKinw+DgAA4B9+36NzMcePH5fT6VRERESN6REREfryyy8lSSEhIVq8eLGGDx+u6upqPfbYYxc94yo0NFShoaE+zQ0AABqHRl103DV27FiNHTvW3zEAAEAj06g/uurYsaOCg4NVUlJSY3pJSYkiIyP9lAoAADQVjbroNG/eXIMHD1ZWVpZrWnV1tbKysjR06FA/JgMAAE2B3z+6qqioUEFBgetyYWGh8vLy1L59e3Xv3l3p6elKS0vTkCFDlJiYqKVLl6qystJ1FlZ9ORwOORwOOZ1Ob4cAAAAaKb8XnZ07d2r48OGuy+np6ZKktLQ0rVixQqmpqfrhhx80Z84cFRcXKz4+Xhs2bKh1gLKn7Ha77Ha7ysvL1bZtW6+WBQAAGie/F52kpCQZhnHR6zz44IN68MEHGygRAACwikZ9jA4AAIA3KDoAAMCyKDoAAMCyArboOBwOxcbGKiEhwd9RAACAjwRs0bHb7crPz1dubq6/owAAAB8J2KIDAACsj6IDAAAsy+/fo+Nv577Dp7y83M9JGpfqqlP+jgAPNdXHsD8fa011m8E/vH2s+vPx5k32xvo8OZfrUt/FZzMudQ2L+/777xUdHe3vGAAAoB6KiorUrVu3C84P+KJTXV2tI0eOqE2bNrLZbEpISKh1gPL50y52+dy/y8vLFR0draKiIoWHh5uSta5s9b3uhea7M/7zp11oe5i9DRpi/Bea1xgeA56M353re/MY4DnAY4DHAK+D/n4OGIahkydPKioqSkFBFz4SJ+A/ugoKCqrRBIODg2vdGedPu9jl8+eFh4eb9gSvK1t9r3uh+e6M//xpl9o+Zm2Dhhj/heY1hseAJ+N35/rePAZ4DvAY4DHA62BjeA6481uVHIx8HrvdfslpF7tc1+3N4smyL3XdC813Z/znT7vU9jFLQ4z/QvMaw2PA0+X68jHAc4DHAI8BXgebwnNA4qMrnzn3q+hlZWWm/U+mqQn0bcD4A3v8Etsg0McvsQ0aw/jZo+MjoaGhyszMVGhoqL+j+E2gbwPGH9jjl9gGgT5+iW3QGMbPHh0AAGBZ7NEBAACWRdEBAACWRdEBAACWRdEBAACWRdEBAACWRdHxsxMnTmjIkCGKj49Xv379tGzZMn9HanBFRUVKSkpSbGysBgwYoNWrV/s7UoObMGGCLrvsMt12223+jtJgPvzwQ/Xp00e9e/fWK6+84u84DS4Q7/NfC/TnPa/9/3Lq1Cn16NFDjzzyiM/WwenlfuZ0OlVVVaVWrVqpsrJS/fr1086dO9WhQwd/R2swR48eVUlJieLj41VcXKzBgwfrq6++UuvWrf0drcFs3bpVJ0+e1MqVK/Xuu+/6O47PnT17VrGxscrOzlbbtm01ePBgffLJJwH1uA+0+/x8gf6857X/X2bPnq2CggJFR0dr0aJFPlkHe3T8LDg4WK1atZIkVVVVyTCMS/7kvNV06dJF8fHxkqTIyEh17NhRpaWl/g3VwJKSktSmTRt/x2gwOTk56tu3r7p27aqwsDCNHj1amzZt8nesBhVo9/n5Av15z2u/9PXXX+vLL7/U6NGjfboeis4lbNu2TSkpKYqKipLNZtPatWtrXcfhcCgmJkYtWrTQ1VdfrZycHI/WceLECcXFxalbt2569NFH1bFjR5PSm6MhtsE5u3btktPpVHR0tJepzdOQ428qvN0mR44cUdeuXV2Xu3btqsOHDzdEdFPwmDB3GzTG5/2lmDH+xv7afzFmjP+RRx7RggULfJ6VonMJlZWViouLk8PhqHP+qlWrlJ6erszMTH3++eeKi4vTqFGjdOzYMdd1zn0Ge/7fkSNHJEnt2rXTnj17VFhYqLfeekslJSUNMjZ3NcQ2kKTS0lLdfffdevnll30+Jk801PibEjO2SVMW6OOXzNsGjfV5fylmjL+xv/ZfjLfj/9vf/qYrrrhCV1xxhe/DGnCbJOP999+vMS0xMdGw2+2uy06n04iKijIWLFhQr3X88Y9/NFavXu1NTJ/y1TY4ffq0cf311xuvv/66WVF9wpePgezsbON3v/udGTEbVH22yfbt243x48e75k+bNs148803GySv2bx5TDTV+/x89d0GTeV5fylmvC409tf+i6nP+DMyMoxu3boZPXr0MDp06GCEh4cb8+bN80k+9uh44cyZM9q1a5eSk5Nd04KCgpScnKxPP/3UrWWUlJTo5MmTkqSysjJt27ZNffr08UleXzBjGxiGocmTJ2vEiBG66667fBXVJ8wYv9W4s00SExO1b98+HT58WBUVFVq/fr1GjRrlr8im4jHh3jZoys/7S3Fn/E39tf9i3Bn/ggULVFRUpEOHDmnRokWaOnWq5syZ45M8FB0vHD9+XE6nUxERETWmR0REqLi42K1lfPvtt7r++usVFxen66+/Xn/605/Uv39/X8T1CTO2wfbt27Vq1SqtXbtW8fHxio+P1969e30R13RmjF+SkpOTNXHiRH300Ufq1q1bk35DdGebhISEaPHixRo+fLji4+M1Y8YMy5xt4u5jwkr3+fnc2QZN+Xl/Ke6Mv6m/9l+MWa+LZglp8DWihsTEROXl5fk7hl8NGzZM1dXV/o7hV1u2bPF3hAY3duxYjR071t8x/CYQ7/NfC/TnPa/9/2fy5Mk+XT57dLzQsWNHBQcH1zqArKSkRJGRkX5K1bACfRsE+vjrEujbJNDHL7ENGH/jGj9FxwvNmzfX4MGDlZWV5ZpWXV2trKwsDR061I/JGk6gb4NAH39dAn2bBPr4JbYB429c4+ejq0uoqKhQQUGB63JhYaHy8vLUvn17de/eXenp6UpLS9OQIUOUmJiopUuXqrKyUlOmTPFjanMF+jYI9PHXJdC3SaCPX2IbMP4mNH6fnMtlIdnZ2YakWn9paWmu6zz//PNG9+7djebNmxuJiYnGjh07/BfYBwJ9GwT6+OsS6Nsk0MdvGGwDxt90xs9vXQEAAMviGB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0AAGBZFB0Amjx5ssaPH2/6couLi3XjjTeqdevWateuXYOu+9ChQ7LZbB7/QvSKFSsumNWX6pu3sYmJidHSpUv9HQNwoegADcRXb+ieaOg302eeeUZHjx5VXl6evvrqqwZZpyfqelNOTU31S9bo6GgdPXpU/fr1c/s2c+fOVXx8vO9CARbAj3oC8JmDBw9q8ODB6t27t7+juK1ly5Zq2bJlg683ODhYkZGRDb5eSTpz5oyaN2/ul3UDvsYeHaCR2Ldvn0aPHq2wsDBFRETorrvu0vHjx13zk5KS9NBDD+mxxx5T+/btFRkZqblz59ZYxpdffqlhw4apRYsWio2N1ZYtW2Sz2bR27VpJUs+ePSVJAwcOlM1mU1JSUo3bL1q0SF26dFGHDh1kt9v1yy+/XDTzCy+8oF69eql58+bq06eP3njjDde8mJgYvffee3r99ddls9k0efLkiy5r3rx56tSpk8LDw/Uf//EfOnPmjGvehg0bNGzYMLVr104dOnTQLbfcooMHD9a4fU5OjgYOHKgWLVpoyJAh2r1790XXl5SUpG+//VbTp0+XzWaTzWaTVPujq3N7TZYvX67u3bsrLCxMDzzwgJxOp55++mlFRkaqc+fO+vOf/1xj+SdOnNB9993nGtOIESO0Z8+eC+Y5f2/b1q1bZbPZlJWVpSFDhqhVq1a69tprdeDAAVfOefPmac+ePa78K1ascGvd58b0yiuvqGfPnmrRooVefvllRUVFqbq6ukaucePG6Z577pH0r+I6btw4RUREKCwsTAkJCdqyZctFtzPgbxQdoBE4ceKERowYoYEDB2rnzp3asGGDSkpK9Pvf/77G9VauXKnWrVvrs88+09NPP6358+dr8+bNkiSn06nx48erVatW+uyzz/Tyyy9r9uzZNW6fk5MjSdqyZYuOHj2qNWvWuOZlZ2fr4MGDys7O1sqVK7VixQrXG2dd3n//fU2bNk0zZszQvn379Ic//EFTpkxRdna2JCk3N1c33XSTfv/73+vo0aN69tlnL7isrKws7d+/X1u3btXbb7+tNWvWaN68ea75lZWVSk9P186dO5WVlaWgoCBNmDDB9aZcUVGhW265RbGxsdq1a5fmzp2rRx555KLbfM2aNerWrZvmz5+vo0eP6ujRoxe87sGDB7V+/Xpt2LBBb7/9tl599VXdfPPN+v777/W///u/euqpp/T444/rs88+c91m4sSJOnbsmNavX69du3Zp0KBBGjlypEpLSy+a63yzZ8/W4sWLtXPnToWEhLhKR2pqqmbMmKG+ffu68qemprq97oKCAr333ntas2aN8vLyNHHiRP3444+u+0+SSktLtWHDBk2aNMm1nceMGaOsrCzt3r1bN910k1JSUvTdd995NCagQfnlN9OBAJSWlmaMGzeuznlPPvmk8dvf/rbGtKKiIkOSceDAAcMwDOPf/u3fjGHDhtW4TkJCgjFz5kzDMAxj/fr1RkhIiHH06FHX/M2bNxuSjPfff98wDMMoLCw0JBm7d++ula1Hjx7G2bNnXdMmTpxopKamXnA81157rTF16tQa0yZOnGiMGTPGdXncuHFGWlraBZdxbt3t27c3KisrXdNeeOEFIywszHA6nXXe5ocffjAkGXv37jUMwzBeeuklo0OHDsbPP/9cYxl1jfXXevToYTzzzDM1pr322mtG27ZtXZczMzONVq1aGeXl5a5po0aNMmJiYmrk69Onj7FgwQLDMAzj448/NsLDw43Tp0/XWHavXr2Ml156qc4s59832dnZhiRjy5YtruusW7fOkOQaZ2ZmphEXF1djOe6sOzMz02jWrJlx7NixGtcZN26ccc8997guv/TSS0ZUVNQF7wfDMIy+ffsazz//vOtyXdsU8Cf26ACNwJ49e5Sdna2wsDDX35VXXilJNT6iGTBgQI3bdenSRceOHZMkHThwQNHR0TWO80hMTHQ7Q9++fRUcHFznsuuyf/9+XXfddTWmXXfdddq/f7/b6zwnLi5OrVq1cl0eOnSoKioqVFRUJEn6+uuvdccdd+g3v/mNwsPDFRMTI0muPQn79+/XgAED1KJFixrLMEtMTIzatGnjuhwREaHY2FgFBQXVmHZue+3Zs0cVFRXq0KFDjfu0sLCw1kdul/Lr+7xLly6SdNH7xd119+jRQ506dapx20mTJum9995TVVWVJOnNN9/U7bff7hpnRUWFHnnkEV111VVq166dwsLCtH//fvbooFHjYGSgEaioqFBKSoqeeuqpWvPOvblJUrNmzWrMs9lstY6pqC9fLttbKSkp6tGjh5YtW+Y6jqRfv341juPxpbq2zcW2V0VFhbp06aKtW7fWWpanp67/ej3njiO62P3i7rpbt25da35KSooMw9C6deuUkJCgjz/+WM8884xr/iOPPKLNmzdr0aJFuvzyy9WyZUvddtttDXY/APVB0QEagUGDBum9995TTEyMQkLq97Ts06ePioqKVFJSooiICEn/Ok7m186dWeN0Or0LLOmqq67S9u3blZaW5pq2fft2xcbGerysPXv26Oeff3ad7bRjxw6FhYUpOjpaP/74ow4cOKBly5bp+uuvlyT94x//qJXljTfe0OnTp117dXbs2HHJ9TZv3tyUbXG+QYMGqbi4WCEhIa69T75QV35v1t2iRQvdeuutevPNN1VQUKA+ffpo0KBBrvnbt2/X5MmTNWHCBEn/KlWHDh3ydhiAT/HRFdCAysrKlJeXV+OvqKhIdrtdpaWluuOOO5Sbm6uDBw9q48aNmjJlittvxDfeeKN69eqltLQ0ffHFF9q+fbsef/xxSf+3J6Bz585q2bKl62DnsrKyeo/l0Ucf1YoVK/TCCy/o66+/1pIlS7RmzZpLHgRclzNnzujee+9Vfn6+PvroI2VmZurBBx9UUFCQLrvsMnXo0EEvv/yyCgoK9Pe//13p6ek1bn/nnXfKZrNp6tSprmUsWrTokuuNiYnRtm3bdPjw4RpnuHkrOTlZQ4cO1fjx47Vp0yYdOnRIn3zyiWbPnq2dO3eatp6YmBgVFhYqLy9Px48fV1VVldfrnjRpktatW6fly5e7DkI+p3fv3q6Dl/fs2aM777yz0ez1Ay6EogM0oK1bt2rgwIE1/ubNm6eoqCht375dTqdTv/3tb9W/f389/PDDateuXY3jQC4mODhYa9euVUVFhRISEnTfffe5zro6t5cjJCREzz33nF566SVFRUVp3Lhx9R7L+PHj9eyzz2rRokXq27evXnrpJb322mu1Tll3x8iRI9W7d2/dcMMNSk1N1dixY12nzgcFBemvf/2rdu3apX79+mn69On6y1/+UuP2YWFh+uCDD7R3714NHDhQs2fPrvNjwPPNnz9fhw4dUq9evWodr+INm82mjz76SDfccIOmTJmiK664Qrfffru+/fZb1942M/zud7/TTTfdpOHDh6tTp056++23vV73iBEj1L59ex04cEB33nlnjXlLlizRZZddpmuvvVYpKSkaNWpUjT0+QGNkMwzD8HcIAL6xfft2DRs2TAUFBerVq5e/4wBAg6PoABby/vvvKywsTL1791ZBQYGmTZumyy67rNYxLQAQKDgYGbCQkydPaubMmfruu+/UsWNHJScna/Hixf6OBQB+wx4dAABgWRyMDAAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALIuiAwAALOv/A4B2ZzqxPYIQAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from stingray.gti import get_gti_lengths, get_btis, get_total_gti_length\n", + "\n", + "gti_lengths = get_gti_lengths(events.gti)\n", + "btis = get_btis(events.gti)\n", + "bti_lengths = get_gti_lengths(btis)\n", + "\n", + "plt.hist(bti_lengths, bins=np.geomspace(1e-3, 10000, 30))\n", + "plt.xlabel(\"Length of bad time interval\")\n", + "plt.ylabel(\"Number of intervals\")\n", + "plt.loglog()\n", + "\n", + "print(f\"Total exposure: {get_total_gti_length(events.gti)}\")\n", + "print(f\"Total BTI length: {get_total_gti_length(btis)}\")\n", + "print(f\"Total BTI length (short BTIs): {get_total_gti_length(btis[bti_lengths < 1])}\")" + ] + }, + { + "cell_type": "markdown", + "id": "b884f27d", + "metadata": {}, + "source": [ + "These short bad intervals $\\lesssim 1\\,$s represent a very small fraction of the total data, and can be filled with simulated data, without altering too much the statistical properties of the data themselves." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "3737faa8", + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGwCAYAAAB4h2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABvZElEQVR4nO3dd3hTZfsH8G+696ITKHtDKRvKFiobWSJLQEVUXhCxP1HxRUBRcDEUUIaC8ooyVBAZhbJXoVAolFWgjCJ0QEub0tKZ8/ujJCRtkmaetOn3c11ctDlPznlOkzb3ec793I9EEAQBRERERGR2NpbuABEREVFVwcCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEYmfpDlgLmUyG+/fvw93dHRKJxNLdISIiIh0IgoDs7GxUr14dNjbmH49i4GUi9+/fR3BwsKW7QURERAa4e/cuatasafbjMPAyEXd3dwDA3XffhYejo/kPOGsWsHBhyf9ERETWauFCs+5emp+P4CVLFJ/j5sbAy0Tktxc9HB3FCbw8PABHx5L/iYiIrJUYn6mAaGlCTK4nIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIiEgkDLyIiIiKRMPAiIiIik3n4OB95hcWW7kaFxcCLiIiITGLLmbto99k+9Pz6EIMvDRh4ERERkUnE38sCAKRI8/AgO9/CvamYGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFILBp4FRcX4+OPP0bdunXh7OyM+vXrY/78+RAEQdFGEATMmTMHQUFBcHZ2Rnh4OK5fv66yn4yMDIwbNw4eHh7w8vLCpEmT8PjxY5U2Fy5cQLdu3eDk5ITg4GB89dVXZfqzZcsWNGnSBE5OTggJCcGuXbvMc+JERERUJVk08Pryyy/xww8/YPny5bhy5Qq+/PJLfPXVV1i2bJmizVdffYXvvvsOK1euxKlTp+Dq6oq+ffsiLy9P0WbcuHG4dOkSoqKisGPHDhw5cgRvvPGGYrtUKkWfPn1Qu3ZtxMbG4uuvv8a8efOwevVqRZsTJ05gzJgxmDRpEs6dO4ehQ4di6NChuHjxojg/DCIiIrJ6dpY8+IkTJzBkyBAMHDgQAFCnTh38/vvviImJAVAy2rV06VLMnj0bQ4YMAQCsX78eAQEB2LZtG0aPHo0rV64gMjISp0+fRrt27QAAy5Ytw4ABA/DNN9+gevXq2LBhAwoKCrB27Vo4ODigefPmiIuLw+LFixUB2rfffot+/fph5syZAID58+cjKioKy5cvx8qVK8v0PT8/H/n5zxYAlUql5vtBERERkVWw6IhX586dsX//fly7dg0AcP78eRw7dgz9+/cHANy6dQspKSkIDw9XPMfT0xMdO3ZEdHQ0ACA6OhpeXl6KoAsAwsPDYWNjg1OnTinadO/eHQ4ODoo2ffv2RUJCAh49eqRoo3wceRv5cUpbuHAhPD09Ff+Cg4ON/XEQERGRlbPoiNeHH34IqVSKJk2awNbWFsXFxfj8888xbtw4AEBKSgoAICAgQOV5AQEBim0pKSnw9/dX2W5nZwcfHx+VNnXr1i2zD/k2b29vpKSkaD1OabNmzUJERITie6lUyuCLiIiItLJo4LV582Zs2LABv/32m+L234wZM1C9enVMnDjRkl0rl6OjIxwdHS3dDSIiIqpELBp4zZw5Ex9++CFGjx4NAAgJCcGdO3ewcOFCTJw4EYGBgQCA1NRUBAUFKZ6XmpqKVq1aAQACAwORlpamst+ioiJkZGQonh8YGIjU1FSVNvLvy2sj305ERERkLIvmeOXm5sLGRrULtra2kMlkAIC6desiMDAQ+/fvV2yXSqU4deoUwsLCAABhYWHIzMxEbGysos2BAwcgk8nQsWNHRZsjR46gsLBQ0SYqKgqNGzeGt7e3oo3yceRt5MchIiIiMpZFA6/Bgwfj888/x86dO3H79m1s3boVixcvxrBhwwAAEokEM2bMwGeffYbt27cjPj4eEyZMQPXq1TF06FAAQNOmTdGvXz9MnjwZMTExOH78OKZNm4bRo0ejevXqAICxY8fCwcEBkyZNwqVLl7Bp0yZ8++23Kjla77zzDiIjI7Fo0SJcvXoV8+bNw5kzZzBt2jTRfy5ERERknSx6q3HZsmX4+OOP8Z///AdpaWmoXr063nzzTcyZM0fR5v3330dOTg7eeOMNZGZmomvXroiMjISTk5OizYYNGzBt2jT07t0bNjY2GDFiBL777jvFdk9PT+zduxdTp05F27Zt4evrizlz5qjU+urcuTN+++03zJ49Gx999BEaNmyIbdu2oUWLFuL8MIiIiMjqSQTlMvFkMKlUCk9PT2R9+CE8xEi6nzfv2T8iIqIKYM7fF7E++g4A4Oj7zyHYx8X4nZr5c06anw/PL75AVlYWPDw8zHosgGs1EhEREYmGgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4ERERkcmtOpKI2DuPLN2NCoeBFxEREZncryeTMOKHE5buRoXDwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJAy8iIiIiETCwIuIiIhIJHaW7gARkaUVFcuw62IKbCUS9G8RCBsbiaW7RERWiiNeRFTlHUx4gOm/n8PU387i1K0MS3eHiKwYAy8iqvIe5RYovs5U+pqIyNQYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBEREZFZ2HL5rTIYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgYeBERERGJhIEXERERkUgsHnjdu3cPL7/8MqpVqwZnZ2eEhITgzJkziu2CIGDOnDkICgqCs7MzwsPDcf36dZV9ZGRkYNy4cfDw8ICXlxcmTZqEx48fq7S5cOECunXrBicnJwQHB+Orr74q05ctW7agSZMmcHJyQkhICHbt2mWekyYiIqIqyaKB16NHj9ClSxfY29tj9+7duHz5MhYtWgRvb29Fm6+++grfffcdVq5ciVOnTsHV1RV9+/ZFXl6eos24ceNw6dIlREVFYceOHThy5AjeeOMNxXapVIo+ffqgdu3aiI2Nxddff4158+Zh9erVijYnTpzAmDFjMGnSJJw7dw5Dhw7F0KFDcfHiRXF+GERERJVYsUzA+ug7lu5GhWdnyYN/+eWXCA4Oxrp16xSP1a1bV/G1IAhYunQpZs+ejSFDhgAA1q9fj4CAAGzbtg2jR4/GlStXEBkZidOnT6Ndu3YAgGXLlmHAgAH45ptvUL16dWzYsAEFBQVYu3YtHBwc0Lx5c8TFxWHx4sWKAO3bb79Fv379MHPmTADA/PnzERUVheXLl2PlypVi/UiIiIgqpYSUbEt3oVKw6IjX9u3b0a5dO4wcORL+/v5o3bo11qxZo9h+69YtpKSkIDw8XPGYp6cnOnbsiOjoaABAdHQ0vLy8FEEXAISHh8PGxganTp1StOnevTscHBwUbfr27YuEhAQ8evRI0Ub5OPI28uOUlp+fD6lUqvKPiIioqiqWCZbuQqVg0cDr5s2b+OGHH9CwYUPs2bMHU6ZMwfTp0/HLL78AAFJSUgAAAQEBKs8LCAhQbEtJSYG/v7/Kdjs7O/j4+Ki0UbcP5WNoaiPfXtrChQvh6emp+BccHKz3+RMREVHVYtHASyaToU2bNliwYAFat26NN954A5MnT64Ut/ZmzZqFrKwsxb+7d+9auktERERUwVk08AoKCkKzZs1UHmvatCmSkpIAAIGBgQCA1NRUlTapqamKbYGBgUhLS1PZXlRUhIyMDJU26vahfAxNbeTbS3N0dISHh4fKPyIiIiJtLBp4denSBQkJCSqPXbt2DbVr1wZQkmgfGBiI/fv3K7ZLpVKcOnUKYWFhAICwsDBkZmYiNjZW0ebAgQOQyWTo2LGjos2RI0dQWFioaBMVFYXGjRsrZlCGhYWpHEfeRn4cIiIiImNZNPB69913cfLkSSxYsAA3btzAb7/9htWrV2Pq1KkAAIlEghkzZuCzzz7D9u3bER8fjwkTJqB69eoYOnQogJIRsn79+mHy5MmIiYnB8ePHMW3aNIwePRrVq1cHAIwdOxYODg6YNGkSLl26hE2bNuHbb79FRESEoi/vvPMOIiMjsWjRIly9ehXz5s3DmTNnMG3aNNF/LkRERGSdLFpOon379ti6dStmzZqFTz/9FHXr1sXSpUsxbtw4RZv3338fOTk5eOONN5CZmYmuXbsiMjISTk5OijYbNmzAtGnT0Lt3b9jY2GDEiBH47rvvFNs9PT2xd+9eTJ06FW3btoWvry/mzJmjUuurc+fO+O233zB79mx89NFHaNiwIbZt24YWLVqI88MgIiIiq2fRwAsABg0ahEGDBmncLpFI8Omnn+LTTz/V2MbHxwe//fab1uO0bNkSR48e1dpm5MiRGDlypPYOExERkUaBHk7Y/GYYun990NJdqZAsvmQQEZGlzd7GFSqITEUiAZzsGV5owp8MEVV5BUUyS3eBiKoIBl5EREREImHgRURERCQSBl5EREREImHgRURERCQSBl5ERErm/XPJ0l0gIivGwIuISMnjvCJLd4GIrBgDLyIiJRKJxNJdICIrxsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvIiIiIhEwsCLiIiISCQMvEgngiDg8n0pUrLyLN0VIiKiSouBF+lkS+y/GPDdUXT+Yj/SH+dbujtERESVEgMv0klSei4AQCYAKVKOehERERmCgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRERGRSBh4EREREYmEgRcRVWlbzty1dBeIqAph4EVEVVrMrQxLd4GIqhAGXkREAEa3D7Z0F4ioCmDgRUQEQCKxdA+IxFVYLEN+UbGlu1HlMPAiIiKqYtKkeei4YD9afxqFuLuZlu5OlcLAi4iIqIq5kpKNjJwC5BYUIy7pkaW7U6Uw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISiUGB1927d/Hvv/8qvo+JicGMGTOwevVqk3WMiIiIyNoYFHiNHTsWBw8eBACkpKTg+eefR0xMDP773//i008/NWkHyTJSsvKQ9aTQ0t0gIiKyKgYFXhcvXkSHDh0AAJs3b0aLFi1w4sQJbNiwAT///LMp+0cWEHU5FZ0W7kf7z/fhQXa+pbtDRERkNQwKvAoLC+Ho6AgA2LdvH1544QUAQJMmTZCcnGy63pFFXEvNBgAUFMmQlJFj4d4QERFZD4MCr+bNm2PlypU4evQooqKi0K9fPwDA/fv3Ua1aNZN2kIiIiMhaGBR4ffnll1i1ahV69uyJMWPGIDQ0FACwfft2xS1IIiJDPSkoxpRfYzFxbQzuZz6xdHeIiEzGzpAn9ezZEw8fPoRUKoW3t7fi8TfeeAOurq4m6xwRVU2xdx5h98UUAMD+K6kYH1bHsh0iIjIRg0a8evXqhezsbJWgCwB8fHwwatQok3SMiKquYkF49rVM0NKSiKhyMSjwOnToEAoKCso8npeXh6NHjxrdKSIiIiJrpNetxgsXLii+vnz5MlJSUhTfFxcXIzIyEjVq1DBd74iIiIisiF6BV6tWrSCRSCCRSNCrV68y252dnbFs2TKTdY6IiIjImugVeN26dQuCIKBevXqIiYmBn5+fYpuDgwP8/f1ha2tr8k4SERERWQO9Aq/atWsDAGQymVk6Q0RERJXTryfvWLoLlYJB5SQA4Pr16zh48CDS0tLKBGJz5swxumNUcVxPzcbygzcs3Q0iIqrAzt19BADIKyy2cE8qNoMCrzVr1mDKlCnw9fVFYGAgJBKJYptEImHgZWVm/RVv6S4QEVEFZ/M0Flj0UqiFe1KxGRR4ffbZZ/j888/xwQcfmLo/VAGlSPMs3QUiIqokHJjrrZVBdbwePXqEkSNHmrovVEFV93S2dBeIiIisgkGB18iRI7F3715T94WIiIjIqhl0q7FBgwb4+OOPcfLkSYSEhMDe3l5l+/Tp003SOSIiIiJrYlDgtXr1ari5ueHw4cM4fPiwyjaJRMLAi4iIiEgNgwKvW7dumbofRERERFbPoBwvqloSUrMt3QUiIiKrYNCI12uvvaZ1+9q1aw3qDFU80YnpyHpSaOluEBERWQWDy0ko/0tLS8OBAwfw119/ITMz06COfPHFF5BIJJgxY4bisby8PEydOhXVqlWDm5sbRowYgdTUVJXnJSUlYeDAgXBxcYG/vz9mzpyJoqIilTaHDh1CmzZt4OjoiAYNGuDnn38uc/wVK1agTp06cHJyQseOHRETE2PQeVibfx89UXztaMcBUiIiImMYNOK1devWMo/JZDJMmTIF9evX13t/p0+fxqpVq9CyZUuVx999913s3LkTW7ZsgaenJ6ZNm4bhw4fj+PHjAIDi4mIMHDgQgYGBOHHiBJKTkzFhwgTY29tjwYIFAEry0QYOHIi33noLGzZswP79+/H6668jKCgIffv2BQBs2rQJERERWLlyJTp27IilS5eib9++SEhIgL+/v97nY42ea+yHS/elSMvOt3RXiIiIKi2TDWHY2NggIiICS5Ys0et5jx8/xrhx47BmzRp4e3srHs/KysJPP/2ExYsXo1evXmjbti3WrVuHEydO4OTJkwCAvXv34vLly/j111/RqlUr9O/fH/Pnz8eKFStQUFAAAFi5ciXq1q2LRYsWoWnTppg2bRpefPFFlX4uXrwYkydPxquvvopmzZph5cqVcHFx4S1TIiIiMimT3jtKTEwsc5uvPFOnTsXAgQMRHh6u8nhsbCwKCwtVHm/SpAlq1aqF6OhoAEB0dDRCQkIQEBCgaNO3b19IpVJcunRJ0ab0vvv27avYR0FBAWJjY1Xa2NjYIDw8XNFGnfz8fEilUpV/RERERNoYdKsxIiJC5XtBEJCcnIydO3di4sSJOu9n48aNOHv2LE6fPl1mW0pKChwcHODl5aXyeEBAAFJSUhRtlIMu+Xb5Nm1tpFIpnjx5gkePHqG4uFhtm6tXr2rs+8KFC/HJJ5/odqJEREREMDDwOnfunMr3NjY28PPzw6JFi8qd8Sh39+5dvPPOO4iKioKTk5Mh3bCoWbNmqQSgUqkUwcHBFuwRERERVXQGBV4HDx40+sCxsbFIS0tDmzZtFI8VFxfjyJEjWL58Ofbs2YOCggJkZmaqjHqlpqYiMDAQABAYGFhm9qF81qNym9IzIVNTU+Hh4QFnZ2fY2trC1tZWbRv5PtRxdHSEo6Oj/idOREREVZZROV4PHjzAsWPHcOzYMTx48ECv5/bu3Rvx8fGIi4tT/GvXrh3GjRun+Nre3h779+9XPCchIQFJSUkICwsDAISFhSE+Ph5paWmKNlFRUfDw8ECzZs0UbZT3IW8j34eDgwPatm2r0kYmk2H//v2KNkRERESmYNCIV05ODt5++22sX78eMpkMAGBra4sJEyZg2bJlcHFxKXcf7u7uaNGihcpjrq6uqFatmuLxSZMmISIiAj4+PvDw8MDbb7+NsLAwdOrUCQDQp08fNGvWDOPHj8dXX32FlJQUzJ49G1OnTlWMRr311ltYvnw53n//fbz22ms4cOAANm/ejJ07dyqOGxERgYkTJ6Jdu3bo0KEDli5dipycHLz66quG/HiIiIiI1DJoxCsiIgKHDx/GP//8g8zMTGRmZuLvv//G4cOH8X//938m69ySJUswaNAgjBgxAt27d0dgYCD++usvxXZbW1vs2LEDtra2CAsLw8svv4wJEybg008/VbSpW7cudu7ciaioKISGhmLRokX48ccfFTW8AGDUqFH45ptvMGfOHLRq1QpxcXGIjIwsk3BPRFRRfbMnAUNXHMeRa/rdfSAicRk04vXnn3/ijz/+QM+ePRWPDRgwAM7OznjppZfwww8/GNSZQ4cOqXzv5OSEFStWYMWKFRqfU7t2bezatUvrfnv27FlmQkBp06ZNw7Rp03TuKxFRRVFULMPygzcAAGuO3kT3Rn4W7hERaWLQiFdubq7a0SB/f3/k5uYa3SkiIjJMfpHM0l0gIi0MCrzCwsIwd+5c5OXlKR578uQJPvnkEyakExEREWlg0K3GpUuXol+/fqhZsyZCQ0MBAOfPn4ejoyP27t1r0g4SERERWQuDAq+QkBBcv34dGzZsUFR3HzNmDMaNGwdnZ2eTdpCIiIjIWhgUeC1cuBABAQGYPHmyyuNr167FgwcP8MEHH5ikc0RERETWxKAcr1WrVqFJkyZlHm/evDlWrlxpdKeIiIiIrJFBgVdKSgqCgoLKPO7n54fk5GSjO0Wkzvm7mXhj/RmsPpJo6a5UCv/ZEIuQuXvwR+y/lu4KkdGKimWITkzHv484c54qN4MCr+DgYBw/frzM48ePH0f16tWN7hSROquP3sTey6lYsOsq8gqLLd2dCq2oWIZd8SnIzi/CH7F3Ld0dIqP9cCgRY9acRM+vDyG3oMjS3SEymEE5XpMnT8aMGTNQWFiIXr16AQD279+P999/36SV64mU5SsFW8UywYI9qVz4o6paBME6X/D7WSXli4pkAqRPiuDiYNDHF5HFGfTOnTlzJtLT0/Gf//wHBQUFAEqqzH/wwQeYNWuWSTtIlhV/L8vSXSAiPZy+/QgpWXkI9HSydFeISA2DAi+JRIIvv/wSH3/8Ma5cuQJnZ2c0bNhQsTA1WY9L96WW7oLVKiqW4cydR6jh5Yxgn/IXltfVyZvp2HHhvsn2R5VP/L0sBl5EFZRRY7Vubm5o3769qfpCZFaCIODiPSn83B0rxIfSj8du4YvdV2EjAS7M6ws3R9PcOnn9lzN4nM8cGCJTEQQBV1OyEejhBG9XB0t3hyo5g5LriSqjDaeSMHj5MXT+Yj8ycwss3R3cz3wCoCQHa/Vh083UZNBFZFprjt5E/2+PottXBzmxh4zGwIuqjLsZJdPQZQLwIDvfwr1RdfJWhqW7QEQa3HpY8rfjcX4RMnMLLdwbquwYeBFVADYSS/eAiIjEwMCL9PZn7D1Ld4GIqpg0aZ6lu0BkEgy8SCcFxTLkPM0dOpH40MK9IWv311nxqu1n5zEnrqJLleZh/9U0S3eDyCQYeJFOsvOK8PXIUACAbQW7L1ZQJMPDxxUrZ4uMcyjhgSjHSZPmIfJSiijHIsPdezoRhcgaMPAinbmaqNyBKRUVy/D8ksNo99k+rI++benukIk42onzp+l2+rN1/7o39BPlmERUtTHwokpNmleEO08/POPuZlq2M1Rp1fN1RbPqHpbuht4ycwuQkJIN61wkiMg6VbwhDCIrl5NfBBcHW0t3gyq5JwXF6PrlQTzOL8JHA5pYujtEpCMGXkQiWnf8Fj7dcRltanmjWZB5RlhqeDkzJ6YKyMgtUBTLvfUwx8K9ISJd8VYjkYj2XUmFIACxdx6hsFimsq2oWIZrqdkoKvU4ERFZDwZeRBXEm/+LRZ8lRzBlw1lLd4WoQkl/bPklvohMhYEXkREu3stC54X70W/pEWTnGbeUiLxOUdTlVFN0jchqfLrjkqW7QGQyDLxIJxWtdldFcfzGQ9zPysPVlGxcui8tt/3dDPW5V/czWZWbTC856wkKiir/rWtHO05GqaieFBTjXFLZ1AnSjMn1pJMJYbUt3YVK73pqNpIyctVuU36cQS4ZK/bOI7zxvzMQBKBRgBv2zOgOiYTvq8pqz6UUHL/xEGM61EJTM03KMdSo1dG48G8WBrYMsnRXKg2OeFG5PujXBMNa17R0Nyo9TUFXabV9XMzcE7J2Kw8nQnha3Ota6mMcu8FlvkwlPScfF+9lQRDEq5725v9isT76DubvuCzaMXV14d8sAMAhLumkM454EVGVVVWWmvoz9l90Y2V+kxj43THF19c/7w97W/HGLx5km+79+phrlFoMAy8iqnIu3svChlN38HvMXQBAvhXkQWnDyvbmcTU5GyE1PS3dDYPM/OO8pbtQZTHwIqIqZ8GuKziRmK74vk/zAAv2hiormYi3G03NzdEOuQXFlu5GlcQcL6qUElKzLd0Fox1MYE6EJXwZeVUl6AKAQUwMJiKRMPCiSmn49yeQkFK5g69UadXIL6pofjiUaOkumJz8lilZt8o7vkbKGHhRpXU/i+sR6sKO5SmoEsnKLVSsQUmqbqQ9RlK6brOjqeJi4EVk5VwdmcpJlcPp2xlo+1kU2n+2D/8+YoChzrm7jyzdBTISAy8ql7+7o6W7oNG9R7qNehUWy7DqyE0z98Y0bj7MgUxm/E2F0e2DTdCbqqGmN2unVQRXkqUokgl4UliM62mPAQC3H+bgxtOvLUEQBPwek2Sx4wOAvS1Hra0JAy/SqFGAG9a90h5DWlW3dFc0Wn7wuk7t7lSy4fnt5+9bugtVRnhTfwR4OFm6G1RKfmHJjDtLr116LdVyQZ81KJYJOJfEUTplDLxIoza1vPFcE3/YiVggUF9Fxc9GhiSwnqvC5Cyu3SgWX7eKO6JblUVsLqkzJS/Z0L6Ot0VGfnIKmG+mjiAISNaSZ+vuZK/4ekvsv2J0qdKouJ+oRBVYXmExPt95GQt3XzXZPm1tJBjZVr+lmfIKizFm9Un0XXIEl3VYpJuosnBxUM1NrOXjqvj6j1jO4rS0udsvIWzhAY3bnR1sMaZDSbqDKVInrAkDLyIDRN9Mx5qjtyzdDVxJliL6ZjoSUrNx4Krht2R2XkjGK+tisDs+2YS9IzKtwqcj3NE309Vuv3xfijVHbnLmnwi2nbtXbhvmTqrHwIvK2HnB+j98bz7MMer5+YUVY4kZ5etIY4poz9h0DocSHihu71DlVKeaC67O74efJrZTebywuGK8X4311YiWAAAbifpbjqNXR+PzXVcwY9M5MbtldkVmHjHSd++/nrwDaam1HnMKinG1ktdWFAsDL1KR9aQQl5NLbllZcxmCZQd0S8q3BrosBC0fSXhSyCVEKrOXO9WGk71tmcd3xacgTVr58wbt7bTneMmDgcpeXFnZjgv3jbqo0sUn/1yGoONBimUCZm+7qLVNsI+zKbpltRh4kYp8pQ/eN7rXs2BPzMvWpuq89c8lZVp0On5FcvFelqW7YDHWPDvvSrIUC3ddMek+M3ML8Efsv7hu4eXJjt9Qf1vV1HRdt7G8AK1DHR/UruaqtY2yRzkF2HkhGalWcGGgK+sd0iCj2NpItE6xv3gvC3/H3UPvpgHoVK+aUcfKKyzGwatpCPZxQYsanlpaWs+sRbl+zQMReSnFLPvu0sAXG0+XJCHfepiDBv5uZjmOqeUVFiMt2zzLKf2hZnaVjYUr+9/NyMXrv5yBrY0Ev7zWAX4mqJun6VactZr5x3lcvGfaySWf/HMZW3XIYyJVQV76lWaZ+ttZnEhMR51qLjg08zkz9apiqTqX/WRSEZvjsOboLUxYG2P0vlYfuYkpG85i0LJjyHpSqLGdk731vV29Xe3Lb6Sj0sus1PJxQetaXgCAa5VoUfENp8xXrFKm5mp9VDvLFpqVT464nCzFmdsZJtlnuzre6NHID53q+cDT2XTvsYqqdDJ9gQly2m6nG5cHSro5c7ukxtftKjQhwvo+yUgUtx+W/JIUFBn/B045B0mqJfAi7VYduYm8Ujla8jpni/YmWKJLBnmUUyDasRaNDEVosJdoxzO3ur4lt3jcnezxy2sdsPGNMAR5VtzisKdvZ2D67+dMXjC4sFhA/L9V97ZypaI0OLvlTNUoE8LAi0iL5Kwn+GhrPJbtv65z8qk+lIsMFptg5lJmrmrg+nKnWgAAjyow6iGWe5lP8HtMEu5mVIwrdEc7G5z6qDcOvdcTvZsG6P38h4/zRQ12lc3bfgnbz9/H9N/Vz0LMLyrWOfeotPP/ZhrRM9MTBAHro2/ju/3XIc3jBaZcfb9nKRDGzjavLJjjRQBKrjwfZOcjRGuOVdXzx5l/8dvTW1/9Q4KMypOa9Vc8gJKlmEa3rwU3Rzs0r+GB1WZcQ7JtbR+z7buqmvzLGVxOlqKenysO/F9PS3cHAAxe8uhc0iMM/+EEbCQS7H6nGxoFuJu4Z9ppm3H78HE+Gs+OFLE35jVjUxz+jisZ2fNysceEsDqW7ZCI9l5OxRcj1G+zs3COpSUw8CLcy3yCkSujAQDTnmtg4d5ULPlKt1Lzi4wrtSCvxdPQ3x2vda2reNzXzQEPH1tmxIH0Jy+3cvOBaa7OzyVlGvS8/0XfMeq4N9KyMez7EwCAYkFAYtpj0QMvfQh6V5uqWM4qrVeYk181yrY42pXcVMvIKcCNtMd6X7gWFcvw8HEBAs3ROQvirUZChtKH/vKDN8x+vCVR19D9q4PYGGO+JOqKbEZ4Q5XvuVZg1fa7gb8H5+9mAlC9ONDHuuO3DXqeuZytYAspm3JSgjSvEHczNK9raE2UMzKGtq6h+DrriX4Xl9l5hej5zSF0WrgfXxbqt5RaRcfAi0T37f7rSMrIxTd7r1m6K2Qm+UXFuJuRq3deXPrjfPx5lgvq6kJeMWLJqFCDnm+KiTGmNPz7E0ipQIvD22opyaFvtY6/rGSRaEEQ8Ptp7QnwvZr4K772dXNE7Wr6LxuU/jgfHT7fj38flQSr+2Reeu+jImPgRRbzpKCo/EaVVOTFFEz5NRYHE9Is3RUAJUn3r6yLQZGaafa5pV6H+H+zMHtbPPZfMWztR0EQMPC7Y+j21UEs2affCgHvbTmP5Ar04VsZVOaaXaWr7Gc8TfIfGBJk9L4XR11D/Y92Ye7f2qus66uhvxuqe5ZUZpfnbJUnx8AJAhVN/L0sfFxO1fr+IcbfGLyTkWvVq2gw8CK1TDHDzhBb9LgyvPeo4g7d/2dDLHZfTMHMLRVn7cNDCQ/K1CbKLypG968OqTw2e1s8fj2ZhEm/nDHoOMUyQVEp/6SGxYw1kedPKZMJwMwt5zHux5OVqh5ZVZCdV4jBy46h59cHdV6mR3lB9gB385W6yMgpQLFMwC9G5sKpk/P0YuXQNctdWJ2+nYHVRxJFrfj+OK/8i2W7KrQqiKH4EyK9PcopUClQmPWkEDKZgDO3M4z+YNTng3r+jstGHUvu1M10LN6bgJsPjFtSRfk2iTxuFTtp/l6m9hIHpe/8ZeUWlplZllLBlu5IfPAYW2L/xfEb6diu4wgDiSP+3yzE38vC7fRcHL3+QKfnvLspzqAF2evqsQyNuS0YFgIAsLdQkCGTCRi5MhoLdl3F5ztNu1SSMcZ1rAXbKjhLUV8MvKoYQRCwYNcVvPW/WCQaGGjcL3UrqMsXB7D5zF28uDIafZYcwR0NFZ8v35eWu2agLr+z8oKQyjWwjDFq9Ul8d+AGPtoab9R+PtupORC8k56juI1SmruT6SYXj/ghGvcyn40Euhmw0Lm21QMsQbnafLG5VwvW0+ojiWY/Rn5RMb7Zk4CFu6+UWZ2gooq5lYHxP53CCjWTdeQXbbreSnKws8GOt7tiWi/NM679DSynYSgvC9fFU/6dEPNC6cs92gsxK+d3aXLyZjrazI/CgG+Plin4XFUw8KpikjJysfrITUReSlG7bp3c8rGtdd7n4/wilWKF6nJ0jlx7gAHfHUX44sN69Vedno39AADpOfnIM7LEg7J/jbx16exgq/bxwmIZtpx59rP2cnFQ2f5en8bo3cQf84e2MOr46gR6Oun1WgJAXmHFSrquyBbsuop0LbWoTCE6MR3LD97AqsM3Dc67E9uqw4k4ev0hvt6TYHAS/7DWNWAjAd7p3RAtanhCoiWXzZQXL6TZAy1B3hfDQ3QKvI5df4iMnAJcTpbqfPF/XXCGhbJfzIKBVxVTWPzs3asu0RoAano7Y1DL6iY9rrFBjTqCABy/oV8OkTEW772Gl1ZGIzpRv2PuuHAfhU9/1m1re5dZBLljvWr46ZX2GN+ptsn6qmxQy+rwcXUovyEZRPl3yhyUA2FLjxDcfpiDWX/F45cTt8tsW6VUCFj5gsjQ+ltLRrXCjc8HYGolqy0YdzcTG2OSkJmrOc1AzLwsU9IW/Lat7a11u7GiZRW3xpy+GHiRwQaGBJntSjM6MR0Dvj2KD/64YJb9G2L/1TTE3M7A2uO31G6/m/FEsSaiv1Jwla6U59Xm6aLVVHUIQsm6gX2WHMbgZcdwRc0Egsri5xO38XtMEuZuv1Tm1vmD7HyT3wq1qWT5QvlFxRi64jg+/Csei6M0l8v5+cRtLDbR+qkxtzL0XvIpJ78IadmGj9T+NLEdDr7XU+/nyWSCwbUiH8J6lj1j4EUV0rZz93A5WYpNZ+5qzI2ylEINI4UAsOzADTzIzoe9rbi/WsE+zuhcv5rJ9/vLidv495HuaxLmFhRh7JpTJu9HZRZ1ORWDlx/DtdTHiL+XhciLKZbuksGUi7Wqu4VYbObRP02ydZhtJwbln8+DcgKbQ9d0m4ygi8PXHmD8T6fw0irVHE9N5MugGcrXzRF1fV11yslVVvrOR1J6rsVHcS2BgVcVtuboLcjU3Dgf2qqGmtamp622jXLyqKyCJVSXx1KlOMxh7vZLmPqb+gWM1dl27j5ibmeYrT8/HEo0y2Ll5nS31IeNAOBE4kP8L/q21ttRFcGfsf9i8vozOH7joaW7olHc3Uytk3YCPHRbGeJBdj5O3kzXemFVUcXczsDR6w8RcysDhxPKD+jUTaAx5Lfq//o0Vnyty2Sn0redp2w4i+vlTLiyRsxIrOKUV4MP9HBC5IxuZZK/zem0Hh/S2hbUtbThbWrgn/P3UVgsIFWap9NVZ3ku3svC+39cQJCnE1aNbwu7UqNogiBoDUJMVVjzgtLECW22n79v9MxQXdzNeIJaBlTDrige5z0bFfzXBO8Tc/q/p3Xo7qTnYO+7PSzcG/Uu39d+61aX34NimYDeiw5BmleESV3r4uNBzUzVPVEIBl6ojukQjN9jSirRf7f/Oj4a0FSv444Pqw0XB1vU8HJGoKf2maWX7kvRtYGv1jalc9+CfZwR7O2CE3rm1VZ0DLyqOOVfWImk7Iw7Q4xefRL7InrotCCqrkUX76Tn4ORNeZBW8fI+JEp9GrLiuNH7e1JYjD2XUnA5WYrLyVJcS32MZtU9FNtlMgEjV0Uj9o7m9e2aBombjGpsHTRdGVNSoiKsJPCk8NltsazcilW6Q5OKdrvf1AqKZJA+vV1paJkdfVWEFQcc7WwhkZRMVDKkILWHkz1e7VJXaxv5fuf8fanc/f119h7mvdBc735UNrzVSDh31/SL0+65ZNo8ltvpz/KMujfUftUktjrVXDA4NMiks9u+239dpUht6SH6zCeFWoOulzvVKjNCZgmOdpbvg9zdjNxKtVBxQZEML62Mxlu/xlq6K5VClwbVsHB4CFaMbaP3c8urL2gqTQKfXQx5u1SMZPFPzBzoFOmZepEuctFpS6g4fxXJYn4+fhsATDojSV3umCk0r+6Bun6mq2BtbL5Qu9reODTzOfRsXH79Gl0or3MmFaGQqTEzm3RRei0+U5i8/oxBt50zK8noktzNh4/Nmi8nFrFyHl0c7DCmQy10a6T/hZnyTOXyJsa0CvbSe//Kz/3qxZYGP5+sAwOvKubS/awyjzk8HZV4W0tlaED7DT55noDcnsspGLzsGJbt12+RZLH9dOzZH9yKMPTfq0mAqMdbomXKu5wgAPO2XzL4Fsz28/cx5ddYHLtumgTtG2mPcfCq9luGm8/cxXPfHMLSfeWfnyVtPK36e/NF5FUL9cR8Oi3YX6HzMwHVmcoOagKvjnV9ED2rFza90QmfP10uyJJ+L/W+qcg+M0Nh6MqOgVcV8+NR9TWoAKBZkKfW57ap7a3zcS7ekyL+XhYWPf1g33pOfZV8S89QS8p4dgszqJzkUDlne1s8UPNBUhlrdBXqOBrx84nbWLrPsCB6+u/nsPtiCj7++2K5bZ11HCErL4F48d5ruPUwx+A+W0p5JQjkZDIBj8w0gnfrYQ4iLyYjx0Qj4NK8IlxNVp/LaeiInj63BpOz8ozKUftyRAg2vRmGIE9ndKxXTXGhaklntaQZGGpnfDK+2ZOgEiTnFRYj6nIqrhuxBu/LnWpjZNuapuii1bD8O4hEZWdr+KiOm6MdBrUM0vt5xTIBp2+r/0Px8d+XyizcbCm6DnjZSCT4eFtJEKGcv7Dlrc449VFvzAhvaI7umVxhsQy3H6pfV1Od7DzjPujTdKjW7e9eEvzW93NFh7o+AMqOpuoit8B8dZ3MmZuj66jrmDUnTV6INTuvCEXFMvRZchhv/XoWX1bA0Tf5zyc5Kw9nk3QPPjafqTwjRJa0/OANbIx5VuPrh0OJmLz+DJ5fcsRkgTgx8CIRlJfjoTzMf/JmBi7ey8IWLetIWkJNb2e816eR4nt5xX7lQNTWRoIAkRfrNcaLK6NVRvwqAvlI1nt9GqtU/zeFHfH3FV97udjD09keocHaR3nVqeZm2n4Z4tQt0+d+vf/nBRQWC4pJImK+N9x1XMy9i1I5grt69C9XS81AMViytl/Wk0K97iwo11dUzgGtKEVqrQEDLzI7fZeIGLTsmNbtEg3ZZupu/5lKeNMAeDiXHeno3VTcnCxTOn8309JdUHEjLRtnzHALRW7f5ZIFpt2d7HDmv+GInR2OBv7mL7mxwsAlUnRV09s0Nc3cdAx+dOHqoPu+nmvsp3GB+dJ83RzLXaHB3dEOQ1tVR7CPM2p4OevcD2MJgoAMpRl5uy+m4IdDiSgqlmldPsgUNI0KLz9wHaGf7DXJahL3Mp+YpD4hMfAiEehzZaqL+n6uCFcT8By59qBK/2FQvhVgZ6Pfr3avJv6YXs7kCnWS0nMx5++L2HDqjt7PLe1sUqbia+WaZaYin632+bAQ2NnaiFJuIye/SKf8ojEdgvXar/3TlIH/TeqAtnrkXmrzOL9I7TJAhtB0y/TUTfMXwpRIJFg6ujWOvt8LvZsaPtu4QM8K9pPXn0HPbw6pPPZl5FWV17+ryKVw/jmfDACI1vJz99Ch4jwA/B13T/G1j6t4RbatkUUDr4ULF6J9+/Zwd3eHv78/hg4dioQE1YVD8/LyMHXqVFSrVg1ubm4YMWIEUlNTVdokJSVh4MCBcHFxgb+/P2bOnImiItVh0UOHDqFNmzZwdHREgwYN8PPPP5fpz4oVK1CnTh04OTmhY8eOiImJMfk5k/HsbG3w48R2areZOsgzhaSMXIOW49CX8jIgI9vpl8w6MCQIEUrLf6hjp2ZhtnUnbmF99B38d+tFvRfq1aRLg2qoXc1VZd07bcm59zOf4KdjtxD/b9kZu+r4iLgyg3Kx16Gtqpt8/w31GLG7r8NFSZcvD2jcJpMJ+D3GuDX+zDmiaUp3M3JxVM9ZuPuulF+cd1BL078HNElKz0WCDknx/VoEqn289OstTwlpHOCOYJ/Ku3JERWDRwOvw4cOYOnUqTp48iaioKBQWFqJPnz7IyXmW8Pvuu+/in3/+wZYtW3D48GHcv38fw4cPV2wvLi7GwIEDUVBQgBMnTuCXX37Bzz//jDlz5ija3Lp1CwMHDsRzzz2HuLg4zJgxA6+//jr27NmjaLNp0yZERERg7ty5OHv2LEJDQ9G3b1+kpVm+0rW+7mU+weX7UpX7+sdvPMSAb4/inNKogimUzl1Qd+Wu60wtbe6ka04C93VzUFTJn7z+DBbtTdDY1hLWR9/B6iM3zX6cFjVK8pUCPZzQvLr+uUvlcbQrezsor1Bp0WSlEYKpz9U3+Djy6fzK79/3+zVR5NWV9tHWeMzfcRnDvjd+xQBzMkVNs9KLDOtC/rrM33m53LbKtfwOlVrz77KaZH59+7PhpPEjo2K4pLQMUetaphlRtNV3RWkjXbiXqVM7J3tbtSU01L3eANC+rv4/jzq+5dde1DXPzxpYNPCKjIzEK6+8gubNmyM0NBQ///wzkpKSEBtbUqk5KysLP/30ExYvXoxevXqhbdu2WLduHU6cOIGTJ08CAPbu3YvLly/j119/RatWrdC/f3/Mnz8fK1asQEFByRX4ypUrUbduXSxatAhNmzbFtGnT8OKLL2LJkiWKvixevBiTJ0/Gq6++imbNmmHlypVwcXHB2rVrxf/BGCElKw9dvjiAAd8dxfbzz5KJN5+5q/EXyRiNAsq/4j6m4wK7r3Sug4YalhlauKtkhpW6BWy9lUYwsvOKsOzADZMEe5XNVy+2xLpX2mP72100tinvg1LdbatxHWvp1Y+XO9VCDS/TXhG7ONjizymd1W6Tz8zUVCH78LUH2HspxSoWL1924AZ+PKpfED8ktGTRe2NzuNTdevt81xWdn5+ZW4D7WeXPbNVVnAg5iq1reen0N84QOQXFoqVGyIO+fx/lYsC3R7Xm3cbeeYSTN9NVRpyN9Z+e9TExrLbie1cHWywb01rxfc/GfhVxJTizqVA5XllZJbcKfHxKppHHxsaisLAQ4eHhijZNmjRBrVq1EB0dDQCIjo5GSEgIAgKe5fz07dsXUqkUly5dUrRR3oe8jXwfBQUFiI2NVWljY2OD8PBwRZvS8vPzIZVKVf5VBPeznv0iJykts2Ouz5y3ehg+siF380HJB6eHsz2Gtq6hto18tGNk22cjal+/2BK9m/hj7uCyS17o8iG7/MB1rI827xX4MA3nYw4uDnZ4rom/oiSDMnn+V3lJvlveDMO5j5/Hvoge6NHID6PbB2sMhvWVU1CMEzoG4eo0CnBH7yb65+xMXBuDN/4Xi+tGLAsjCAJO387AicSHZWqIyT8884t0mzlnSHkMZfpeQPUy4Gemi+y8QrjqmBQPQGP+mHLAXLqgrDryn/+6pytumJNtOeU9ElKzy73FralWWcytDHT54gA2nTbu9q0+TiSml/v+ibmVgdGrT+LwtQda2+lDIpGgeQ1Ple/V5elWFRVmbE8mk2HGjBno0qULWrQoqXSbkpICBwcHeHl5qbQNCAhASkqKoo1y0CXfLt+mrY1UKsWTJ0/w6NEjFBcXq21z9ar6WjYLFy7EJ598YtjJVmISpT9E6kafDKFPEcXODZ7NaBrZLhgj22lOSi4qlmHBrqvIzivECDU5QmIU1zTVWoVLoq6hnp8bnOxtDUqCH96mJn6PSYJNObc7bGwk8HZ1gLerA355rQMAYH30bUO6rNbYH0/hxuf9YWdrA5lMwKjV0biSnI1vRlbsZVTi7mZi5Er1F2EjfjiBFjU8cPFeyQfa2Y+fV5t8XJESkgVBUJRsGdMh2KBg8PklR3Rum56TD0B9AJ/1pLBMDqSvm+af1aSu9XDyZoZF1wFtEPDsXE7dSkdITc239qf9dg6A5ovBKxqKy+qiVxN/HChnFQdD6VJ3jwxTYUa8pk6diosXL2Ljxo2W7opOZs2ahaysLMW/u3erRoE+5RwumVA2b0GfZXfq6XDfX1fqrqbP3c3E2uO3sCX2X+yKTy6zXd/FWw1hqg/bfVfSsPrITXy3/7rGYrTahBsxu0tXf8beK78RniWcP3ycj9O3H+FxflGZfKLyHEp4oHWEyd/E9dRSpdpvXcuDLgDYeeG+2jaTu9Uzqg/ymYyayqnoQzmHyZRlJDR5Z2MclmhZvql0aoC2iR6lZ7zqW9j3aooUp26mG7WerL+7EwaEqE9K12TRyFCd2hXLBGw+cxe/nUoqd5ZpgIfla8qR/ipE4DVt2jTs2LEDBw8eRM2az0YmAgMDUVBQgMzMTJX2qampCAwMVLQpPctR/n15bTw8PODs7AxfX1/Y2tqqbSPfR2mOjo7w8PBQ+VdRCYKAf5TyvRxsbRTVt59fcgRXU3S/4upc3xdvdq+H0GAvvNK5DjrW81Fss5EAL+qxNITyc42lbj2wQqU/WqZaJ1BfxtT50lTzME/HW1pi03f6vSHkeSe7L6bgOy3rgGpKxBeDptwYF0fjkuv1+d0qj3JBUU2390tLf2zcrFV9RtXUzaBVRxAELNx99enX5be/k56DfkuPYtTqkyo5sIZQN9lErvQFaQ0vZ7Wj7uqcupWO9/+4gI+2xmP/ldTyn2AEbfXTYs04A1XX2/LWyqKBlyAImDZtGrZu3YoDBw6gbt26Ktvbtm0Le3t77N+/X/FYQkICkpKSEBYWBgAICwtDfHy8yuzDqKgoeHh4oFmzZoo2yvuQt5Hvw8HBAW3btlVpI5PJsH//fkWbykCap75C8flSOQjzhzZXuWWor1kDmuLvqV3QtaEvPJzsce7j5/HViJbY9U43k80A0pdbOR+0N9UsjWPOpV/k7GwkaG3gGo665LvoKze/CKsOJ+LXSjK7rLQcpaWAktUkav9Ph/PSs8SZ3j7becXoNUhXHLyBV9aeNlGPNKvn66rziNenOy6Z5JhNg0x3kap8+05TWQS5a6nZ+J9STqe694+plC5/EuyjeyFX6ZNn73GpmtG8L3ebZimn17vWxQSlhPfSjMmJVMdLqQC1fHUETSx1oSwWiwZeU6dOxa+//orffvsN7u7uSElJQUpKCp48KUlW9fT0xKRJkxAREYGDBw8iNjYWr776KsLCwtCpUycAQJ8+fdCsWTOMHz8e58+fx549ezB79mxMnToVjo4lw7BvvfUWbt68iffffx9Xr17F999/j82bN+Pdd99V9CUiIgJr1qzBL7/8gitXrmDKlCnIycnBq6++Kv4PxgArDyei5by9GLXqZJltuUpTxC990hej2us3S6083q4OeKl9MJoElvxB/WJ4iMH70udWpTa9Fx3Cl3vKlpWQr/8HQLG8j3J164W7r6DR7N34yoLr1LmUk7D8KKcAww0snXA97TEW7r6K2dvKX7DaFK4ZsbiurgKVFjdPSCk/8byNCBcHyh+e+sorLMbXexKQopRj4+5oBz81kyb0kZyVh2HfHzd4dqe2ER5l+UXFiLyUonF7qJZ8KGM8r2V0+eK9LPRZcgQ/HruleKwirkWpi4dGjjwCJasFzB7UDEGeJX/7lEe+fp/cyej9q6PPJI8tsSUXnU8svNSTuVg08Prhhx+QlZWFnj17IigoSPFv06ZNijZLlizBoEGDMGLECHTv3h2BgYH466+/FNttbW2xY8cO2NraIiwsDC+//DImTJiATz/9VNGmbt262LlzJ6KiohAaGopFixbhxx9/RN++fRVtRo0ahW+++QZz5sxBq1atEBcXh8jIyDIJ9xWJIACf7biMET+cwBdPr4K05S01DnCH69OrW+Vim6bmaG/422pASCC6NfTFECOLTeYUFKtdEqe+X9m8su6NnlWTXnX4JgqKZPj+UKJRxzfGvBfKztJUdvr2I9xO169QrIPIicjyOy139OynPhKfzobVJ1gf0qq6SeppmZO6wbLjs3rpNYNQmfJt13NJmToVUi3t4eMClVnS2py6+WyyTL/m+uVBmYumBHR1qwpcuq9bIV4x/Hbq2YzHUU8nEhl6bSoIgqL0Smnv9WmEGl7OeKd3QzQONE/5DDtbG51z0uRB/sy+2os6V1YWndWoy3C8k5MTVqxYgRUrVmhsU7t2bezatUvrfnr27Ilz585pbTNt2jRMmzat3D5VFImCk8oVnD4WDGuBD/6MN3GPSrjosU5babWrueJ/kzoCAP6OMy4HQ5vzdzNFXcfNtMr+3pT3q6Q80ieG5/QsYZBXWKxYS1FX5+9mai2sq46+SynJLdyte70qU/N1c1RZ1uXo9Qfl3qpRVsfXFcvHtlbMritN18KeuubwKc92Xj62NT7dcVmlbEtFmt1ZujQIANxOz0WCHnmv3+xNwOtGTpzQ5Py/WYrJBMbeIv/x6C3FBWXp98/4sDoYH1YHgPpg1FRaVPdEqjQNvjouNF+7mukmYFUkFSK5ngzz30LN9+cBYFHUNUxefwaZaka3dH3jG6JnYz982L9JubfMLEF5oWtrWtexvMKojna26NtcvNHbAA8nldy2NuXkuW2Lu4+9TwMv5Wr4pYXWVN1P6TydNGm+1gu6V7vU0doPoKR6e+mZchmlbu+MaGO6RHd9pRlQHHhQy+pw1jDSV8PLGa90rqPymLZyDrrWpgsN9lK7HmZ9PzdseL2jTvuwlBRp+X8b/J+O3uQVyvDaz6bLx1NePcCUlG/7q8sdE8Oil0Lx7ehW2PqfzopZugAq8UWwYRh4VWK5KD+wibqcqnPleFNxtLPFWz3q443u2q8Cq7mKPxW6rZr8Hl0XidVVaLAX7Gwk8HVzQB1fVxTpMTphTv1bBGnc5udu3tdCufp3Rk4BUqV56LNUfR0o5QT60j4e1Azbp3VBoIZyEXsvp+JDLSO5DQM0F4NVzmFae+y26kYTVdU2pACsuUkkEsx7oTn8ld4DzzfTHKSbon5WlwbiLhatyTsbz2H7+fs6zYgsLeL5Roqvy6ulpc8I5XtbzuvfmUrCy8UBQ1rVQLCPC+xsbbBnRncsGRWKD/o3sXTXRMXAqwowpl6NufRq4g9vHW855OYXG3SVr45EIimTd9KihmmTfZ9r7I+4uX1w4sPe8HS2x6Sudct/kgh6aajltXB4CLqa+YPQTunqdvmBGzh1KwOZudqvusObBsDORoIOdXwUo6e2NhK0rOmlmMWq7gNz0xnDZoMGejopRoUe5Wq/3VLLxwW1DFgo+MeJ7VRmuDUJdEeQpxO6NvDTe19kvOM30jH993PYWarOny5r2jra2WLOoGZqt5UuVJyqRzFSfUqhBHg4lVnj0FSzHsXQONAdw1rXNPnFb0XHwIssQl2Suya/xTxLMNV1ZpWuhrSqbnCyqjZujnaKhHZTB3Zy7dSsq2iIrg18y61obyxne1s0eZq0+zi/CNN/155vCQCjO9TC5U/7YdObncqUP5HfTvzwrwsm7ae6IHnzmbvIzlMdhZvWqwF2TO+q9+iPRCKBq1IOZOSM7oie1RstalTcOoBVka61DUtP1GgS6I6G/m54rUtdnScW/HziNqb/fg5p2fqXt3BztMPxWb1w9P3n8HKnktnq2flF5RZeNeSigUyHgVcV1dDfPDNXdKXPzLKsJ89GH3QJ2JSr6xujzoc7tS4maw2ea+ync37Fzvhkg2bEySkv76Qp36g0BzsbtTXn5Em36pKjAd1GLHRxNyMX7/9RNrizkZTcola3qLiyX0RYT7CiM2c+qSk19HeDg5qcNF15udgjckZ3REX0QAN/N6wc31bn524/fx97LxlWLNXDyR7BPi54T6nav6BmAo5cnWou+KScmdPq/PF0iSkyHgOvKqpWNRfEz+tjseOP7VgLwd66feDLK16/0rmOToVfLZE7po3yqIgpyjrcfmi6Eg3rXu2g12jXmDVl68RZwjQ161WObm+agFuZtnwzXSjXs5J/qOu7nJE80V9blXF93HyYg1GrS9adFGO1AWOXShKL2CVXSisy8rXQ9fd4VPtaqGZAMCzPU3OvYrcFzYGBlxUqPcStqQK6u5M9PtaQo2BuQZ7O6NM8EF+/aJrFkZX/5DjZ2+BNLYn9yleDhhaT1EdNb2dEPN8II9vWxGgTFK+Nvplugl7prnP9ZwuT30nPReydDLyz8Rx6fn0QR66VrLHYzITVyK3FtdRsxZqInw9robhomDu4Gd7qUV+xCHl5Zj/9HR0SqttsQk2eFJYUo5y4NkaRG1febFhAv4A28eFjTF5/puSbpwcpHTD6mnkiR2V17MZDZOcVlrmtbQrFsmeLohvr9QqSs1qZMfCqpIqKZRoHk8tbPqcikVe7N1az6h7o2dgPLWt64vlmgVpHB4a1flYKQIzASyKRYHrvhvh6ZCiCTZhbYaoq/+Vp4O+OC0qjo9/suYa/4+7jdnquoiRHaLDueWx/x91XBAFi6ts8QK8cwbsZuWpXgtBkcKhq0d+7Gc9GJns0epY8X9/PDR/2b6LymDY1n44Me4qwxJWx/oz9F/JfqVsainV2M9FEjvwiGfZd0T6bsGGA+pQKJ3sbtUuGdWto/tmWymkWnkrlbfZdScPqIzfNfvzyaMtbdLSzMWi0jFQx8KqENhf5oumcSFwU1Oc7mXIxXXMoPQvHFBztbPHzqx2wfVrXcisvd25QTev2yuJlLeusmZqHkz1ealfyvlI34lbds+xtY+VZi7bmXiBRjWZBHpg/tAXWvtIOt78YiFXj2+n1/EPXHui1woObhkWwQ4O9UNPbepKZ29b2VpmQopxTqXwho+6ipqa3s0kncrz1a6zW7eM71caRmc8pgle56p7O2Da1S5n2K8a1MXgtSV2Xt+ndxB9v9aiPac81QMx/e+PPKc/WA1ZXlqL04uL5RTJsPXev3ON8FVl2yTRduDraIayedfyNrKgYeFVCe2VeGuvCfDkiBJ0q6C/NK53rYPbAptj0ZuVZeFydnfHJZrkdoIt2tb3R0N8N26Z2wQuhxi2rpC83R80jLsPalL0Nprz48gg12zXRd8aVPMG+eQ1PNPB/VqfLzckO4zvVRq8mhhWOXWnkslHmKoSpzMmI5bm0UX7tSpc3CPZxwbEPepnsWHYmCsTs7dTvp1Y1F50XAneytzU46BgQorlOnjJXRzt82L8J3uvbGI52tipFgeW3ptXd3lU3SUHTiB6gXwmL0no2ZnkTc2LgRaKp6e2M17vVUyyBUZl4u1SMZU5+ea0DoiJ6oFWwFwCgy9PRO11KSzjZ2RpVOkPTiE6wj7PaSQ9fj2yJt3rUx6Y3Omn9gFDWLMhDrxlXdzOe4OTTtQE9nOwQ+U43nZ+rTX6RzOiVDf5vc0khTHPV0ftuTGt4mel9WcPLGd+NaY1Z/ZtgbEfzjKyO71QbNb2d8UqXsjlD+r5PmwV56LVUmTkS6dUFXvKAr5GW97+drQ3GdVTN/VReYUOu9GoJXi72Wm9Xi5WKYGopWXm4p0PuYWVWeZKBqNLT9cNXrlWwF+LULHRtjBAtNbVOKi3uq6xnYz+81rVOmeH9AA9HBHnqN0PNEF0aVMPxG+oT6n+c0B5xdzN1yrFysLNB1LvdEb64pGK8purvmkzoXAffHdC9vEaTQA982F+3IHvBsBBkPinA+E61DZ411aKGp0oAaExRRl3WkS2Ph7M9MnIK0FXPvKHSyxVpOg9zj3jK969u7T4PpVEwP3fDfgfmD22h+Fq5rttrXerqvd7rcD1GVAHgM6VjG6Nz/Wpo4O8Ge1sbtctibZvaGadvP0J4U+2jrqXTI2xtJHivTyN8s/cagJKLG/tSwWKAgT/3ikp+F6GizJw2JwZeVkZbfSwxpo5ro2sysdyfUzrj+cWHcVNDkq6+2tfxRqCnE2QyAaHBXrh4Lws9GvmVW9NsVLvgMsGAva0ER95/zuQFXdXRVvPK2cEWYfV1vzXSwN8dh2f2xL4raejRSL+AwJz1mMZ2NG62Z4e6PqjvV3KbcemoVjh1Kx0TS60/aKzWtbwMqg82XMe1DeXm73y2IPfC4SHlrnNpCe5O9tgzozuSMnLRuX41fLf/epk29f01L8+kiUQCzBmsfaa1hwGThxoFuKsURVU3UmjIUkh1fF2xL6KHxu0N/N3RwMCaifZG1BSrjJztbS0y6cYSGHhZkfCmAeit5crqvwOaitgboGdjfyzdV/YPsq5sbSTwdXM0WeAlHw2xsZFg2386I79IpghUl4wKxbubdF8jzdPZwWxBV2c9AilD1K7mWmGWMTJUPV/ViSXKH5pDW9fAUD2DHVNLfPjYoOc9zi/CP+fvAygpdDmmg/HlR3SlvCyXusWtS2sc6I7Gge4a608tfilU52O7O9khO68IjXQIUuRB38bTSVinY4Haz4e1QI9GfridnoOQp7mAd9JV/658OsQ0o2BkmC1vheHdTXG4nmbY705lUrVCaiv334FNFTkFf0/tgtkDm6okaZp7IeTS5HlIFZFEIlEZHezfIsjiBRTlanq7IMCj8kzZLiwSfy1QLxcHvW8vGUPfmW7Dvz+h9hadPtZM0G8Wpin1VaoFaEju++RudfUa6fnfpI6Y3rshvhvTWqf2jQPd8Xw5t++UuTvZY0Tbmvi/Po3RR8NSPp5q8qoqs/yiyjV61KKGJ6IieqjcBtZ1UkRlY51nRQgN9kJosBdWH3k2M8vFRJWvTamenytq+bjgQXY+Otb1Mdl+9c3vcbK3xeGZPZGYloP2db3ReHakyfpi7VKkeSq3Q131zM8xlBi3eQFg9fi26FS/GiaujRHleADQvLqH3jmRpiKRqF6kmSuBX1mrYC/RL9SqezmjRQ0PXLwnxej2wSatsWdqufn6BVE7LyQr6qn98VYYYm5n6FVewtvVcpOJhraugZz8Ing426N5JZyIpQsGXlbuxbbBkD4pgp+7o8pUeznli1lLTIJxdbTDofd6QiYIOt3e0NVL7YNhayOBt6uDTgsyAyXV9IPU1KNSJ7+K5CJo4uPqoDKi4+PqgMUvheJG2mNMCKtjuY6ZQZcGvnDV4crbRiJBXV9XjYVDK7NZ/Ztg4e6rlu6GSdnb2mDH29pnwdqaefF4bRoGPPt7na7n6Omao7cUX4cGe0HfibVDW9WAs70tPJztMenn0yh6uoP8chbfNgU3Rzu82aO+2Y9jSQy8rJyPqwPe69tY4/ZeTfyx/fx9uDnaobWFknhtbCSwgfo/cEUyw37R3RztMLFzHRQVyzBdfhwj/4b6K80iyhahRpOcnVLx0YoyRVzdz3J4m4pduNfcJBJg9zvd0OHzfZBaqM6bvoa20m1mpLwcgr2tBHWqaV6oXtPyZJXV3MH6LyZtKqXrz/m6aR+FUl7g+0pyST2wt3s1MChJ38HORrESQ6tgL5y58wgA8F6fRnrvi8pi4GVFtM1+06SOr6vaCs4VxYzwRpjw9BZPeRXp1bGztcGw1jVw9PoDgxOV5fk9fZoZVojTEMoB1oSw2kiR5qFDXR+TLZRsCd0a+qKer6vJJktURE72tqjv76b37MfSt8bFWMpqeu+GeDe8oU5tn2vij+hZveBkZ1vmNpQuC9dXJvIq9zYSoKaPbiPgpla6aC1Qcmv9Pz3r43sNhX2d7G3x3wFN8fmuZ7NiTfHabH4zDOk5BfBysa9yMy3NhYGXFWjg74aJnesgUISaUmLr3sgP8fP6IDO30OAcjCWjWun9HPnU5gEhgajzdAadjY0Ev0/uhE2nk9BfxyrVhhrboRYW77uGASFB6NzAF9tMtL6dJTUKcMeB93pizt8XsT76jqW7o7duDf1wLinT4CVltPF2dUCHOj6IuV1SS668kgrGaF/HGz+83Fbv8iCabsPb2kjw44R2eF2+OHYl90rnOmhVywuBHk5G1YLTR+nwaFyHkqK1EolirXEA5Rd+ndy9Hv48+69K6Qxj2dhIRJ+YZe0YeFmB/w5siuca+1u6G2bj7mRvcFFNQ+16pxvin9b5UhZWv5pedbMM9XbvhnizR/0KM9OSgIjnG2F0+2D4uTuaZZSnQ91ngZc5Ztj98VYYTiSm44XQ6lqDLjcDJkeENwswuM5ZRWNjI0GbWuWvBGFK3Rqq/p2RL4j+8cBmWHfiFl420+oBZBkMvIjUqOvrirq+mnNZxFDRg65xHWthw6kkjLTQouzKhTTFmHkHlMyEq6za1fFBuzqaZw5HPN8Im8/cxZvd64nYKwJKUj4cbG3KFLl+rWtdvFbJa+5RWQy8yKxsJIBMKD8xlCqfz4eF4IP+TUS7HVPa693qwcfVAU72thjY0rS3fnWtoB2g57JLFdn03g0xvbduOV9keZrqdBWIMPOQjFOxL6mp0vt+XFv0bxGIr0fqXsWaKg9LBV1ASa2pN3vUx8TOdUy+nNHfcfcVX2u7q6htxrCcKWsizezbGD6uDninAgZI2tIB5K+PtdZlMgX5mp665hBOfa6B2sff7MERy4qOI15kVv1aBKJfC/WVookqmq4NfbH84LOFwB1sbfResLmo+Fk2dIe6PiYNCqc+10DjB66lff1iS3RcsB9A2YD872ldcP5uJrpYwSQRc1kxtg3OJT1Ci5rlL3gPPCvxUVqzIN2eT5bDwIuIRNWnWSD2X0nDvcwnlu5KGZ3qqU6cmPuC9tmF9rbPhsMcbEtKfQxqGYT4e1kAgFAdP0StQYCHE9ZMaId/H+WWqelWw8sZNUycH9c40B1+7o7IzS9Ca5GT4c3B2cEWnRmYVgkMvIhIVF0b+uL4h73Qb+kRk057N4e+Gtb1k/N3d8IH/Zrgelo2Xu5UUieud9MAq6vyrqvnRax1V83NESdn9YZMEFhfiioVBl5ERGpIJNDpNuGUnqZZ3kS5OK4hxZCrIlsbCWw1rHpBVFEx8CIii+hc3xdXU7LRKKDsGqJV0ch2NfEopwCBnk4WL2VC1sXV8Vkg76amKj6Ji68AEenNFGtGfjyoKcZ2DEZNb8NWJLA2/u5OmD3IfBXrqfJT/r3T9DuoEmQ9/bpZkAe+GB6CzCeFOq/PSebDwIuIdDakVXX8c/4+JoQZX0lbIpGggb/+628SVVX9WgTi8LUH8HNzRJMg9b879fzc8NWIlkjLzsOodiV5hxKJBKMNXKuWTI+BFxHp7NvRrbFoZCjsmMxMJLpGAe74c0rnctu91D5YhN6QofjXk4j0wqBLuwAPRzjZl/yM6vkxf42IVHHEi4hIiauDLXIKitHAwKDJ3cke0R/2RkZuAeoz8CKiUhh4EREpWT+pA/ZdScPgloYnIXu7Oph0qSAish4MvIiIlLSt7YO2tX0s3Q0islJM1iAiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiIpEw8CIiIiISCQMvIiIiqtAES3fAhBh4ERERUYUkPI24ZhTWt2xHTIiBVykrVqxAnTp14OTkhI4dOyImJsbSXSIiIqqSmlf3AAA4QmbhnpgOAy8lmzZtQkREBObOnYuzZ88iNDQUffv2RVpamqW7RkREVOW82rWupbtgcnaW7kBFsnjxYkyePBmvvvoqAGDlypXYuXMn1q5diw8//LDc59t6+OG+4Aip4GC2PhYLEuyTeZtt/0RERBWNAOBfM322PhY5gYyB11MFBQWIjY3FrFmzFI/Z2NggPDwc0dHRZdrn5+cjPz9f8b1UKkXNKevQDwDyyzQ3q0APJ3EPSEREJKIC2KBrfqilu2ESvNX41MOHD1FcXIyAgACVxwMCApCSklKm/cKFC+Hp6an4FxwcDFlhPhxRDEfIzPrPVml+x6SuddE0yMPsPx8iIiKxBXo4oYNEaubP1WJRz4kjXgaaNWsWIiIiFN9LpVIEBwcj68MP4eHoaP4OzJtX8m/QQPMfi4iIyAJsbSTY7Jhg1mNI8/PhadYjqGLg9ZSvry9sbW2Rmpqq8nhqaioCAwPLtHd0dISjGAEWERERWQ3eanzKwcEBbdu2xf79+xWPyWQy7N+/H2FhYRbsGREREVkLjngpiYiIwMSJE9GuXTt06NABS5cuRU5OjmKWIxEREZExGHgpGTVqFB48eIA5c+YgJSUFrVq1QmRkZJmEeyIiIiJDMPAqZdq0aZg2bZqlu0FERERWiDleRERERCJh4EVEREQkEgZeRERERCJh4EVEREQkEgZeRERERCJh4EVEREQkEgZeRERERCJh4EVEREQkEgZeRERERCJh5XoTEQQBACDNzxfngFIpkJ9f8j8REZG1MvPnqvxzW/45bm4SQawjWbmbN2+ifv36lu4GERERGSAxMRH16tUz+3E44mUiPj4+AICkpCR4enpauDfikUqlCA4Oxt27d+Hh4WHp7oiG583zrgp43jzvqiArKwu1atVSfI6bGwMvE7GxKUmX8/T0rFJvWDkPDw+edxXC865aeN5VS1U9b/nnuNmPI8pRiIiIiIiBFxEREZFYGHiZiKOjI+bOnQtHR0dLd0VUPG+ed1XA8+Z5VwU8b3HOm7MaiYiIiETCES8iIiIikTDwIiIiIhIJAy8iIiIikTDwIiIiIhIJAy8lCxcuRPv27eHu7g5/f38MHToUCQkJZdpFR0ejV69ecHV1hYeHB7p3744nT54otmdkZGDcuHHw8PCAl5cXJk2ahMePH6vs48KFC+jWrRucnJwQHByMr776yuznp0l553379m1IJBK1/7Zs2aJol5SUhIEDB8LFxQX+/v6YOXMmioqKVI516NAhtGnTBo6OjmjQoAF+/vlnsU6zDF1e75SUFIwfPx6BgYFwdXVFmzZt8Oeff6q0sbbXGyhZOmPYsGHw8/ODh4cHXnrpJaSmpqq0qWzn/cMPP6Bly5aK4pBhYWHYvXu3YnteXh6mTp2KatWqwc3NDSNGjChzzpXtPQ6Uf96rV69Gz5494eHhAYlEgszMzDL7qGyvNaD9vDMyMvD222+jcePGcHZ2Rq1atTB9+nRkZWWp7MMaX+8333wT9evXh7OzM/z8/DBkyBBcvXpVZR/WeN5ygiCgf//+kEgk2LZtm8o20c5bIIW+ffsK69atEy5evCjExcUJAwYMEGrVqiU8fvxY0ebEiROCh4eHsHDhQuHixYvC1atXhU2bNgl5eXmKNv369RNCQ0OFkydPCkePHhUaNGggjBkzRrE9KytLCAgIEMaNGydcvHhR+P333wVnZ2dh1apVop6vXHnnXVRUJCQnJ6v8++STTwQ3NzchOztb0aZFixZCeHi4cO7cOWHXrl2Cr6+vMGvWLMVxbt68Kbi4uAgRERHC5cuXhWXLlgm2trZCZGRkhTxvQRCE559/Xmjfvr1w6tQpITExUZg/f75gY2MjnD17VtHG2l7vx48fC/Xq1ROGDRsmXLhwQbhw4YIwZMgQoX379kJxcbFiP5XtvLdv3y7s3LlTuHbtmpCQkCB89NFHgr29vXDx4kVBEAThrbfeEoKDg4X9+/cLZ86cETp16iR07txZ8fzK+B4XhPLPe8mSJcLChQuFhQsXCgCER48eldlHZXutBUH7ecfHxwvDhw8Xtm/fLty4cUPYv3+/0LBhQ2HEiBGK51vr671q1Srh8OHDwq1bt4TY2Fhh8ODBQnBwsFBUVCQIgvWet9zixYuF/v37CwCErVu3Kh4X87wZeGmRlpYmABAOHz6seKxjx47C7NmzNT7n8uXLAgDh9OnTisd2794tSCQS4d69e4IgCML3338veHt7C/n5+Yo2H3zwgdC4cWMznIX+1J13aa1atRJee+01xfe7du0SbGxshJSUFMVjP/zwg+Dh4aE4z/fff19o3ry5yn5GjRol9O3b18RnYBh15+3q6iqsX79epZ2Pj4+wZs0aQRCs8/Xes2ePYGNjI2RlZSnaZGZmChKJRIiKihIEwTrOWxAEwdvbW/jxxx+FzMxMwd7eXtiyZYti25UrVwQAQnR0tCAI1vEel5Oft7KDBw+qDbys5bUWBPXnLbd582bBwcFBKCwsFATB+l9vufPnzwsAhBs3bgiCYN3nfe7cOaFGjRpCcnJymcBLzPPmrUYt5MPO8oUz09LScOrUKfj7+6Nz584ICAhAjx49cOzYMcVzoqOj4eXlhXbt2ikeCw8Ph42NDU6dOqVo0717dzg4OCja9O3bFwkJCXj06JEYp6ZV6fMuLTY2FnFxcZg0aZLisejoaISEhCAgIEDxWN++fSGVSnHp0iVFm/DwcJV99e3bF9HR0aY+BYOoO+/OnTtj06ZNyMjIgEwmw8aNG5GXl4eePXsCsM7XOz8/HxKJRKWYoJOTE2xsbBTv9cp+3sXFxdi4cSNycnIQFhaG2NhYFBYWqrw/mzRpglq1ainen9bwHi993rqo7K81oNt5Z2VlwcPDA3Z2JUsYV4XXOycnB+vWrUPdunURHBwMwHrPOzc3F2PHjsWKFSsQGBhY5jlinjcDLw1kMhlmzJiBLl26oEWLFgCAmzdvAgDmzZuHyZMnIzIyEm3atEHv3r1x/fp1ACU5Qf7+/ir7srOzg4+PD1JSUhRtlF9cAIrv5W0sRd15l/bTTz+hadOm6Ny5s+IxXc5JUxupVKqSI2cJms578+bNKCwsRLVq1eDo6Ig333wTW7duRYMGDQBY5+vdqVMnuLq64oMPPkBubi5ycnLw3nvvobi4GMnJyQAq73nHx8fDzc0Njo6OeOutt7B161Y0a9YMKSkpcHBwgJeXl0r7gIAAvc6nor7HNZ23Lirraw3oft4PHz7E/Pnz8cYbbyges+bX+/vvv4ebmxvc3Nywe/duREVFKYJmaz3vd999F507d8aQIUPUPlfM82bgpcHUqVNx8eJFbNy4UfGYTCYDUJKc+Oqrr6J169ZYsmQJGjdujLVr11qqqyal7ryVPXnyBL/99pvKaJc10HTeH3/8MTIzM7Fv3z6cOXMGEREReOmllxAfH2+hnpqWuvP28/PDli1b8M8//8DNzQ2enp7IzMxEmzZtYGNTuf9kNG7cGHFxcTh16hSmTJmCiRMn4vLly5bultnxvDWft1QqxcCBA9GsWTPMmzfPMh01sfLOe9y4cTh37hwOHz6MRo0a4aWXXkJeXp4Fe2wams57+/btOHDgAJYuXWrpLgIA7CzdgYpo2rRp2LFjB44cOYKaNWsqHg8KCgKAMldMTZs2RVJSEgAgMDAQaWlpKtuLioqQkZGhGN4MDAwsM1tK/r26IVCxaDpvZX/88Qdyc3MxYcIElccDAwMRExOj8ljpc9J03h4eHnB2djbVaehN03knJiZi+fLluHjxIpo3bw4ACA0NxdGjR7FixQqsXLnSal/vPn36IDExEQ8fPoSdnR28vLwQGBiIevXqAai873MHBwfFaGXbtm1x+vRpfPvttxg1ahQKCgqQmZmpMuqVmpqqcj6V9T2u6bxXrVpV7nMr62sNlH/e2dnZ6NevH9zd3bF161bY29srnmvNr7enpyc8PT3RsGFDdOrUCd7e3ti6dSvGjBljleft7OyMxMTEMiPaI0aMQLdu3XDo0CFRz7tyX76amCAImDZtGrZu3YoDBw6gbt26Ktvr1KmD6tWrl5l6f+3aNdSuXRsAEBYWhszMTMTGxiq2HzhwADKZDB07dlS0OXLkCAoLCxVtoqKi0LhxY3h7e5vr9DQq77yV/fTTT3jhhRfg5+en8nhYWBji4+NV/kBHRUXBw8NDEaiGhYVh//79Ks+LiorSOdfE1Mo779zcXAAoM8pja2urGP209tfb19cXXl5eOHDgANLS0vDCCy8AqJznrY5MJkN+fj7atm0Le3t7lfdnQkICkpKSFO/Pyvge10R+3rqwltcaUD1vqVSKPn36wMHBAdu3b4eTk5NK26ryegslk+wU263xvD/88ENcuHABcXFxin8AsGTJEqxbtw6AyOetVyq+lZsyZYrg6ekpHDp0SKV0Qm5urqLNkiVLBA8PD2HLli3C9evXhdmzZwtOTk6KGSGCUDL1unXr1sKpU6eEY8eOCQ0bNlSZep2ZmSkEBAQI48ePFy5evChs3LhRcHFxsdjUa13OWxAE4fr164JEIhF2795dZh/yqbh9+vQR4uLihMjISMHPz0/tVNyZM2cKV65cEVasWGHRKcjlnXdBQYHQoEEDoVu3bsKpU6eEGzduCN98840gkUiEnTt3KvZjja/32rVrhejoaOHGjRvC//73P8HHx0eIiIhQ2U9lO+8PP/xQMY3+woULwocffihIJBJh7969giCUlJOoVauWcODAAeHMmTNCWFiYEBYWpnh+ZXyPC0L5552cnCycO3dOWLNmjQBAOHLkiHDu3DkhPT1dsY/K9loLgvbzzsrKEjp27CiEhIQIN27cUPk9KF1WwZpe78TERGHBggXCmTNnhDt37gjHjx8XBg8eLPj4+AipqamCIFjneasDDeUkxDhvBl5KAKj9t27dOpV2CxcuFGrWrCm4uLgIYWFhwtGjR1W2p6enC2PGjBHc3NwEDw8P4dVXX1XUu5I7f/680LVrV8HR0VGoUaOG8MUXX5j79DTS9bxnzZolBAcHq9RyUnb79m2hf//+grOzs+Dr6yv83//9n2JqttzBgweFVq1aCQ4ODkK9evXKHENMupz3tWvXhOHDhwv+/v6Ci4uL0LJlyzLlJazx9f7ggw+EgIAAwd7eXmjYsKGwaNEiQSaTqeynsp33a6+9JtSuXVtwcHAQ/Pz8hN69e6v8UX7y5Inwn//8R/D29hZcXFyEYcOGCcnJySr7qGzvcUEo/7znzp1b7vuhsr3WgqD9vOWlM9T9u3XrlmIf1vZ637t3T+jfv7/g7+8v2NvbCzVr1hTGjh0rXL16VWUf1nbe6pQOvARBvPOWPO0AEREREZkZc7yIiIiIRMLAi4iIiEgkDLyIiIiIRMLAi4iIiEgkDLyIiIiIRMLAi4iIiEgkDLyIiIiIRMLAi4iIqAr7/PPP0blzZ7i4uJRZz1CTefPmoUmTJnB1dYW3tzfCw8Nx6tQplTYvvPACatWqBScnJwQFBWH8+PG4f/++YnteXh5eeeUVhISEwM7ODkOHDi1znOTkZIwdOxaNGjWCjY0NZsyYYdA5Xrt2DUOGDIGvry88PDzQtWtXHDx40KB9GYuBFxFZrVdeeUXtH3OxjB8/HgsWLNCp7ejRo7Fo0SIz94iqqp49e+Lnn39Wu62goAAjR47ElClTdN5fo0aNsHz5csTHx+PYsWOoU6cO+vTpgwcPHijaPPfcc9i8eTMSEhLw559/IjExES+++KJie3FxMZydnTF9+nSEh4erPU5+fj78/Pwwe/ZshIaG6ty/0gYNGoSioiIcOHAAsbGxCA0NxaBBg5CSkmLwPg2md617IqIKABqWfJH/mzt3rpCZmSk8evTIIv2Li4sTfHx8yiyto0l8fLzg7e0tZGZmmrlnVBX16NGj3OVt1q1bJ3h6ehq0/6ysLAGAsG/fPo1t/v77b0EikQgFBQVltk2cOFEYMmSI1mP06NFDeOedd9RuW7NmjdCkSRPB0dFRaNy4sbBixQrFtgcPHijWIZWTSqUCACEqKkr7iZmBnfihHhGR8ZKTkxVfb9q0CXPmzEFCQoLiMTc3N7i5uVmiawCAZcuWYeTIkTr3oUWLFqhfvz5+/fVXTJ061cy9IzKdgoICrF69Gp6enhpHpTIyMrBhwwZ07twZ9vb2Jj3+hg0bMGfOHCxfvhytW7fGuXPnMHnyZLi6umLixImoVq0aGjdujPXr16NNmzZwdHTEqlWr4O/vj7Zt25q0L7rgrUYiqpQCAwMV/zw9PSGRSFQec3NzK3OrsWfPnnj77bcxY8YMeHt7IyAgAGvWrEFOTg5effVVuLu7o0GDBti9e7fKsS5evIj+/fvDzc0NAQEBGD9+PB4+fKixb8XFxfjjjz8wePBglce///57NGzYEE5OTggICFC57QIAgwcPxsaNG43/4RCJYMeOHXBzc4OTkxOWLFmCqKgo+Pr6qrT54IMP4OrqimrVqiEpKQl///23yfsxd+5cLFq0CMOHD0fdunUxfPhwvPvuu1i1ahUAQCKRYN++fTh37hzc3d3h5OSExYsXIzIyEt7e3ibvT3kYeBFRlfLLL7/A19cXMTExePvttzFlyhSMHDkSnTt3xtmzZ9GnTx+MHz8eubm5AIDMzEz06tULrVu3xpkzZxAZGYnU1FS89NJLGo9x4cIFZGVloV27dorHzpw5g+nTp+PTTz9FQkICIiMj0b17d5XndejQATExMcjPzzfPyVOVsWDBAsWor5ubG44ePYq33npL5bGkpCSjjvHcc88hLi4OJ06cQL9+/fDSSy8hLS1Npc3MmTNx7tw57N27F7a2tpgwYQIEQTDquMpycnKQmJiISZMmqZzbZ599hsTERACAIAiYOnUq/P39cfToUcTExGDo0KEYPHiwysi5aES/uUlEZGKaclNK54306NFD6Nq1q+L7oqIiwdXVVRg/frziseTkZAGAEB0dLQiCIMyfP1/o06ePyn7v3r0rABASEhLU9mfr1q2Cra2tIJPJFI/9+eefgoeHhyCVSjWex/nz5wUAwu3bt7WeL1F50tPThevXryv+dejQQfjyyy9VHissLFR5jjE5XoIgCA0aNBAWLFigcbv89+bEiRNlthma45WSkiIAEH799VeVc7t+/bpw8+ZNQRAEYd++fYKNjY2QlZVVpr8LFy7U7eRMiDleRFSltGzZUvG1ra0tqlWrhpCQEMVjAQEBAKC4cj9//jwOHjyoNlcrMTERjRo1KvP4kydP4OjoCIlEonjs+eefR+3atVGvXj3069cP/fr1w7Bhw+Di4qJo4+zsDACK0TYiQ/n4+MDHx0fxvbOzM/z9/dGgQQOzHVMmk2kdrZXJZABg0hHdgIAAVK9eHTdv3sS4cePUtpH/PtnYqN7ks7GxUfRJTAy8iKhKKZ3YK5FIVB6TB0vyP8iPHz/G4MGD8eWXX5bZV1BQkNpj+Pr6Ijc3FwUFBXBwcAAAuLu74+zZszh06BD27t2LOXPmYN68eTh9+rSidlJGRgYAwM/Pz7iTJNJDUlISMjIykJSUhOLiYsTFxQEAGjRooLjgaNKkCRYuXIhhw4YhJycHn3/+OV544QUEBQXh4cOHWLFiBe7du4eRI0cCAE6dOoXTp0+ja9eu8Pb2RmJiIj7++GPUr18fYWFhimNfvnwZBQUFyMjIQHZ2tuLYrVq1UrSRP/b48WM8ePAAcXFxcHBwQLNmzQAAn3zyCaZPnw5PT0/069cP+fn5OHPmDB49eoSIiAiEhYXB29sbEydOxJw5c+Ds7Iw1a9bg1q1bGDhwoHl/uGow8CIi0qJNmzb4888/UadOHdjZ6fYnU/6hcfnyZZUPEDs7O4SHhyM8PBxz586Fl5cXDhw4gOHDhwMoSeKvWbNmmQRlInOaM2cOfvnlF8X3rVu3BgAcPHgQPXv2BAAkJCQgKysLQMlI8dWrV/HLL7/g4cOHqFatGtq3b4+jR4+iefPmAAAXFxf89ddfmDt3LnJychAUFIR+/fph9uzZcHR0VBxrwIABuHPnTpljC0p5YPLHACA2Nha//fYbateujdu3bwMAXn/9dbi4uODrr7/GzJkz4erqipCQEEWxVV9fX0RGRuK///0vevXqhcLCQjRv3hx///23UbXBDMXAi4hIi6lTp2LNmjUYM2YM3n//ffj4+ODGjRvYuHEjfvzxR9ja2pZ5jp+fH9q0aYNjx44pAq8dO3bg5s2b6N69O7y9vbFr1y7IZDI0btxY8byjR4+iT58+Yp0aVSGHDh3SuO3nn3/WWFxVTjkQcnJywl9//aW1fUhICA4cOFBuv+TBk67H1mTs2LEYO3asxu3t2rXDnj17yt2PGDirkYhIi+rVq+P48eMoLi5Gnz59FFfSXl5eZXJGlL3++uvYsGGD4nsvLy/89ddf6NWrF5o2bYqVK1fi999/V4wQ5OXlYdu2bZg8ebLZz4mILEci6BJKEhGRXp48eYLGjRtj06ZNKjktmvzwww/YunUr9u7dK0LviMhSOOJFRGQGzs7OWL9+vdZCq8rs7e2xbNkyM/eKiCyNI15EREREIuGIFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFIGHgRERERiYSBFxEREZFI/h/NP6qytwNV+QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# max_length is the longest bad time interval in seconds we want to fill with simulated data.\n", + "# The buffer size is the region (in seconds) around the bad time interval that we use to\n", + "# extract the distribution of the data to simulate\n", + "ev_filled = events.fill_bad_time_intervals(max_length=1, buffer_size=4)\n", + "lc_filled = ev_filled.to_lc(dt=1)\n", + "lc_filled.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])" + ] + }, + { + "cell_type": "markdown", + "id": "9de38fe3", + "metadata": {}, + "source": [ + "Let us compare the raw light curve with the simulated data in the same interval above" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9d336905", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAl4AAAGwCAYAAAB4h2vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACFdUlEQVR4nO3dd1wT5x8H8E8SIMywpyCiuFAExYVai0rFUeuqtWrVWqvVQlulVWvrT622pbV11eKou1XraNW6iiIqLlwobqkiioPlAGSP3O8P5CCyQnK5S8L3/XrlZXL35LnvkZh889wzRAzDMCCEEEIIIRonFjoAQgghhJD6ghIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPDEQOgB9IZfL8fjxY1hYWEAkEgkdDiGEEEKUwDAMXrx4ARcXF4jFmm+PosSLI48fP4abm5vQYXDkNQC9Xt6PBeAH4D8AzgAsAKwEkCJMaKSeaAJg9Mv7BwCc0+CxBgJoi/L3egGAMA0eTxPEAGa/vH8PwAbBIiG6QhP/xyYBcALwO4A0AF8AkAOYx0HdmvfgwQO4urpq/DgimrmeG5mZmbCyssKDqVMhk0o1f8CZM4GwsNJ/Ofbzz+cwf/4pAMCYMa3x++/X0Lu3B66cvouUbBFOnBiFNm0cOD8uIWUOH76HoUN3AQAWLAjARx+11dixgoMPYdOm6xjrU4yNlw1gYWGEhw+DNXY8TSgulsPWdikAoGvXBjhw4B2BIyLaThP/x7p2/QPXrj3B7ncL0fKbYDRvvhoSiQjPnk1Rr+Iwzf4QyioogNvixcjIyIClpaVGjwVQixdnyi4vyqRSfhIvmQyQSkv/5ZixcXn8RkaGAAADAwOUXUA1NzeHTAPHJaSMmZkpe9/Y2Fij7zdDw9L3uJFEwm7Ttfd3cbGcvS+RGOhc/IR/mvg/JhaX/h8yMzSEhYUFu13tuvn4TgV46yZEnesJIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRcheurhwyxERNxBfn6x0KEQQgh5iRIvojPOnXuEgQO34qefTgkditaTyxl4e69A376bMXVqhNDhEEIIeYkSL6Izfv75NPbsicf06YeRl1ckdDhaTS5nkJGRDwC4ceOJwNEQor5Ll5LRv/8WzJx5WOhQCFELJV5EZ1S8ZFZSwggYCSGEb2vWXMSBA7fxww+nkJqaLXQ4hKiMEi9CCCFar7hYXuV9QnQNJV6EEEIIITyhxIsQQgghhCeUeBFCiB45fvw+5HLqA0mItqLEi9To4cMXQodACKmjEyfuCx0CIaQalHiRGkVE3BE6BEJIHWVmFggdAiGkGgZCB0AI4VZRUQmuX08XOgxCCCFVoBYvQgSSnp6DBQtOYffuW5zW++abf6Jt21Wc1kkIIYQbgiZeK1asQJs2bSCTySCTyeDv749///2X3R8QEACRSKRwmzRpkkIdSUlJ6N+/P0xNTeHg4IBp06ahuFhxbbpjx46hXbt2kEql8PT0xIYNGyrFEh4ejkaNGsHY2BidOnXCuXPnNHLOhJRZsuQMZsw4jMGDt+HJk1zO6j10KIGzugghhHBL0MTL1dUVP/zwA2JjY3HhwgX07NkTAwcOxPXr19kyEyZMQHJyMntbsGABu6+kpAT9+/dHYWEhTp8+jY0bN2LDhg2YPXs2WyYxMRH9+/dHjx49EBcXhylTpuDDDz/EwYMH2TLbtm1DaGgo5syZg4sXL8LHxwdBQUFIS0vj5w9BeJORkY+CAu1YNLpiP5zs7EIBIyGE1KawsAQMQ6NFifoETbwGDBiAfv36oWnTpmjWrBm+++47mJub48yZM2wZU1NTODk5sTeZTMbuO3ToEG7cuIFNmzbB19cXffv2xfz58xEeHo7CwtIvspUrV8LDwwMLFy5Ey5YtERISgrfffhuLFy9m61m0aBEmTJiAcePGwcvLCytXroSpqSnWrVvH3x+DaNxff92Are0CeHgsRU6OdiU6L15QZ2hCtNXWrddgbv492rZdRbPmE7VpTR+vkpISbN26FTk5OfD392e3b968GXZ2dmjdujVmzpyJ3NzySzIxMTHw9vaGo6Mjuy0oKAhZWVlsq1lMTAwCAwMVjhUUFISYmBgAQGFhIWJjYxXKiMViBAYGsmWqUlBQgKysLIUb0W7nzj2CXM4gOTkb9+9nCh2Ogi++iBQ6BEJINY4eTURRkRyXL6fSOpFEbYKParx69Sr8/f2Rn58Pc3Nz7Nq1C15eXgCAkSNHwt3dHS4uLrhy5QpmzJiB+Ph47Ny5EwCQkpKikHQBYB+npKTUWCYrKwt5eXl4/vw5SkpKqixz61b1nZ7DwsLwzTffqHfyhLxUWFgidAiEEEJ4IHji1bx5c8TFxSEzMxN//fUXxo4di+joaHh5eWHixIlsOW9vbzg7O6NXr15ISEhAkyZNBIwamDlzJkJDQ9nHWVlZcHNzEzAiQgghhGg7wRMvIyMjeHp6AgD8/Pxw/vx5LF26FKtWVR4O36lTJwDAnTt30KRJEzg5OVUafZiamgoAcHJyYv8t21axjEwmg4mJCSQSCSQSSZVlyuqoilQqhVQqrePZEkIIIaQ+05o+XmXkcjkKCqruaBwXFwcAcHZ2BgD4+/vj6tWrCqMPIyMjIZPJ2MuV/v7+iIqKUqgnMjKS7UdmZGQEPz8/hTJyuRxRUVEKfc0IIYQQQtQlaIvXzJkz0bdvXzRs2BAvXrzAli1bcOzYMRw8eBAJCQnYsmUL+vXrB1tbW1y5cgVTp05F9+7d0aZNGwBA79694eXlhdGjR2PBggVISUnBrFmzEBwczLZGTZo0Cb/++iumT5+ODz74AEeOHMH27duxf/9+No7Q0FCMHTsW7du3R8eOHbFkyRLk5ORg3LhxgvxdCCGEEKKfBE280tLSMGbMGCQnJ8PS0hJt2rTBwYMH8cYbb+DBgwc4fPgwmwS5ublh6NChmDVrFvt8iUSCffv2YfLkyfD394eZmRnGjh2LefPmsWU8PDywf/9+TJ06FUuXLoWrqyvWrFmDoKAgtszw4cORnp6O2bNnIyUlBb6+voiIiKjU4Z6UKimh4dSEEEKIKgRNvNauXVvtPjc3N0RHR9dah7u7Ow4cOFBjmYCAAFy6dKnGMiEhIQgJCan1ePWZ/OXcgZMn78e5cxOEDYYQQgjRQVrXx4tor6a2pf/SBIKEED4VFZXgt98uCh0GIZygxIso5cmTXMx6TegoSH2xc+dNoUMgWuTSpRShQyCEM5R4EaXI5bRGGeHPtm3Xay/EkdjYZN6ORVRDnz9En1DiRQjROqamhrwc586dZ7hypXQOPwP6NCSE8IA+aggh9VZy8gv2/tteAgZCCKk3KPEiOo1hGLz11p9wcvoZ//xT/dqahNSkWTNbuFsKHQUhpD6gxIvotKdP87B3739ITc3Bzp2UeBFCCNFulHgRQgghhPCEEi9CCCGEEJ4IOnM9IYR7UqkEBQUlQodBeLB9+3XcvJmO8ePbCR0KIURJlHgRomccHc2RlJQpdBhEw548ycXw4X8BALKyCgSOhhCiLLrUSAghOig3t4i9/+JFoYCREELqghIvQni0e/ctNG26DJMm7dPYMRjQLN+EEKKtKPEihEcrV17AnTvPsGpVLAoKijVyjKfZ1PpBCCHaihIvQnhUXCzX+DEKeDiGpunDORBCSFUo8SJEIAxdEaxWZl5R7YUIIUQHUeJFiEBup5WvEyhnGFy48Bhffx2FixeTBYyKEEKIJtF0EoQI5EV+eR+vohI53nrrTyQnZ+OPP64gKWmqgJHVR9T8SAjhB7V4EaIlkpOzAQAPHmQJHEn9kf0y+b33JBdX5aYCR0Oqs2nXTaFDIIQzlHgRoobk5Bd4//3dmDo1gpeO84RbSc9yAQByMLjCUOKlrVb/Fit0CIRwhi41EqKG7duvY+PGywCAd95pBX9/N4EjIkT/MBKR0CEQwhlq8SI641mO9s1PVVhYUuV9QgghpCqUeBGldO0qfEvOw+d57P08PUty4m8+EToEQgghPKDEi9Rq5EhvLFoUJHQYYCpMfCXXkkmwKs4SX1hLH6/nWfmIikqsct+zp+VJpbm5ETfBkXot9kYaBk38B8s2xQkdCtFjn3xzFA19V2DBmgtCh6IzKPEitWrTxgFiMfWxqMqdtGz2fkJ6To1l1+y4rlSdLi4WasVE6oeKP0SeZBco7JPLGQwYth3/rI7Dp6P/Qb6Glqci/Lj/KAurtl1Fdq72TSz869zjeHA5DXNmRAkdis6gzvWEqKHigtS1tcJRHzDCpbQX5cnWvSeKSf/gwdsUHhcWl8BYSh/3uqp56+UoyCjArwENcfXoOKHDqVIhrRGrNPqfSGq15kQiUhuZ43WGWr0I0RYV8/zaLrw/SMlBqyZSjcZDNKcgozTJTqS+oHqBLjWSWj3JLsDOS49wg+Y54sWrl40IUdf7n+4XOgS9kZ1bhMSHmUKHQXQYJV5EaSXQ7RYvRks65JeRVxNOVr729eMguu1FJiXzXGnZIhyN3ZZg7NR/hQ6F6ChKvEi9cSO5fFHqrDzhkxttSwQJIbVjXv5i+n3JOaSl1TyghpCqUOJF6o0XFVqSnmvhZKyEf9O/OFR6h3JgooL79zOEDkFl3313QugQ6i3qXE8IqXcSkjKwZP0lZD0snQ5EYmYocESE8Cs+/qnQIdRblHgRoue04bKqtgl6ZwcSzj5mH1u97gogXbiACOGZhNa/FAxdaiREzz3OzKu9UD2T+oBGpekSEeUIRI9Q4kWInqtu9CQhusJAop1fVbk0KTJRgXa+mwlRUsWRgY+e5woYCdEV566mIvsxjUYj6ntInzlEBYImXitWrECbNm0gk8kgk8ng7++Pf/8tnxslPz8fwcHBsLW1hbm5OYYOHYrU1FSFOpKSktC/f3+YmprCwcEB06ZNQ3Gx4rpkx44dQ7t27SCVSuHp6YkNGzZUiiU8PByNGjWCsbExOnXqhHPnzmnknAm3MiqsXfY4M1/ASOquuJZFtYlmdO2yVugQCCH1mKCJl6urK3744QfExsbiwoUL6NmzJwYOHIjr10sXE546dSr27t2LHTt2IDo6Go8fP8aQIUPY55eUlKB///4oLCzE6dOnsXHjRmzYsAGzZ89myyQmJqJ///7o0aMH4uLiMGXKFHz44Yc4ePAgW2bbtm0IDQ3FnDlzcPHiRfj4+CAoKAhpaWn8/TFInTRwXYTrCc+EDkMtN6IfCB1CvVScTYMNCCHCETTxGjBgAPr164emTZuiWbNm+O6772Bubo4zZ84gMzMTa9euxaJFi9CzZ0/4+flh/fr1OH36NM6cOQMAOHToEG7cuIFNmzbB19cXffv2xfz58xEeHo7CwtJ5mlauXAkPDw8sXLgQLVu2REhICN5++20sXryYjWPRokWYMGECxo0bBy8vL6xcuRKmpqZYt25dtbEXFBQgKytL4Ub4U5Jfgr1HEoQOgxCtcCs2RegQCCFK0po+XiUlJdi6dStycnLg7++P2NhYFBUVITAwkC3TokULNGzYEDExMQCAmJgYeHt7w9HRkS0TFBSErKwsttUsJiZGoY6yMmV1FBYWIjY2VqGMWCxGYGAgW6YqYWFhsLS0ZG9ubm7q/xEIIUQF+c906zI7UY28hEbK6APBE6+rV6/C3NwcUqkUkyZNwq5du+Dl5YWUlBQYGRnByspKobyjoyNSUkp/3aWkpCgkXWX7y/bVVCYrKwt5eXl48uQJSkpKqixTVkdVZs6ciczMTPb24AFdNiLaydiEpusjRB/kPcnDkbMPhQ6DqEnwT+TmzZsjLi4OmZmZ+OuvvzB27FhER0cLHVatpFIppFKp0GEQPWQg5ub3kJGzGQqTcyAxEPz3FSGEI/uP3EXPTq5Ch0HUIPgnspGRETw9PeHn54ewsDD4+Phg6dKlcHJyQmFhITIyMhTKp6amwsnJCQDg5ORUaZRj2ePayshkMpiYmMDOzg4SiaTKMmV1EMInriaLNLI34aYiQniyOyoBhhbfw9j2R9xM1O3BM5wS0wyy+kTwxOtVcrkcBQUF8PPzg6GhIaKioth98fHxSEpKgr+/PwDA398fV69eVRh9GBkZCZlMBi8vL7ZMxTrKypTVYWRkBD8/P4UycrkcUVFRbBlSakuxvdAhEKIRIgP6YtMGO/+9jeLsIhQ8y8c/h2nwDNFPgl5qnDlzJvr27YuGDRvixYsX2LJlC44dO4aDBw/C0tIS48ePR2hoKGxsbCCTyfDJJ5/A398fnTt3BgD07t0bXl5eGD16NBYsWICUlBTMmjULwcHB7GXASZMm4ddff8X06dPxwQcf4MiRI9i+fTv279/PxhEaGoqxY8eiffv26NixI5YsWYKcnByMGzdOkL+LNhFLJTB2swAA5EAicDTquZ/wXOgQiJYycjQFsoWOghBSHwiaeKWlpWHMmDFITk6GpaUl2rRpg4MHD+KNN94AACxevBhisRhDhw5FQUEBgoKCsHz5cvb5EokE+/btw+TJk+Hv7w8zMzOMHTsW8+bNY8t4eHhg//79mDp1KpYuXQpXV1esWbMGQUFBbJnhw4cjPT0ds2fPRkpKCnx9fREREVGpw319Y97GDrZ9G+HdDm7Yev4BtLFNIL+guPZCABKSMpAUR/OykcrM29hBRIsBaq3N+24hN1XYGeKPH08S9PhEvwiaeK1dW/MM0sbGxggPD0d4eHi1Zdzd3XHgwIEa6wkICMClS5dqLBMSEoKQkJAay9RX2vydNHzCHqXK3dGhRZHz0vNw7NxDBHSkDrSE7Nz/n6DHT0h4hlu3nggaA9EvWtfHi2gvbZxBJjuzgL2vzQliXS1bf1HoEAjRKqYtrAXpZJ6eTusxqqOkhMG9exlCh6FVKPEiSst/+XZJ1rE1EXWGCLBtYgUAkKuxjKPk5ZeTgUSPMlFS76Q9UUx4RDQtik4xMzNi7y9eXP1k5PURvZNJnT3LKRQ6BL3l7CbjrK6GNqac1UUI35bM1v75HEn1ZDIpXmtYep0kN5fWR62IEi9CCCFaR2Is+PzeRE19PIWOQDtR4kWIjrue8IyWESH1Sn6+cqOZiebMXXYGDs1+EToMnUSJFyEqeJ6Vj85vbcbOlTWPltW0q/89Qeumy9Cr81rM/PmUoLEQonHy0ktXX3wRKXAg5Me50Ui/TXMjqoISL0JUsPLPqzi7947QYeDijTR2uOnV6zRPGQEs/Bwg66yfy50Z2hoDAHKon6ngCqnflsoo8SJEBbl6dqlje8RtvDFqB3YcvC10KERN1r3cIG1gLnQYGiHzdxY6BELURokXIQTvDf8Lh7fcwOh3/xY6FKIG6x6u9XoW/teGboWh+XcYOaXmSbUJERIlXoQQFGWVXropyCiopSTRZt6ulhjfzQNveOn3cmcPn+dVuf3kzngU5xRjx2ph+17qu/yCYsjzSxS2yQvluHIlFQDAaONs21qEEi9SyddfHxE6BI3bsvum0CEQwjlHmTH+96YXvJy5mw9OG6Vm1TyJs7xYjRmISY3kcjkcmiytsczfEgeeotFNlHgRBTcTn7H3JTKjGkrqtj07bggdAiG8iT/1CNnUGVonnbmSzI7m1JRfVl1QumxhkRwvHmXXWOasI/XFqwklXkRBcVH5L0VLPe7IKpbQW5/UL7//Q628umjq/45q/Bh3rj9BxgtuuhmYetnAuP52M1QKffuQqokAkQAL0hLu3b+YioIC/RqFSequsKCk9kKkEkbgDkv5eZppqcwvUnw/FBTS+4MvlHgRIiCfwEYaq9vEovxScXT0fY0dR5ccPEV/B31UWFSCvw9pZiqUxCc5GqlXaFl6NiWOLqHEixA95dm+/FIxLVJb6pufaHZ/feTTcwPeDtrCaZ3frTgHmetCTPn8EKf1EkXfrzwHN5/l+HS+5i+pagtKvIjOoEufdWNqYgAjFzMAwO20mjvD1hdFRZUvp4hNhF2MOfFhJrxeXwfvHuuR+jSXkzplFvo7MAYADF/po/nfhWTOj7F08Rm8eJRNy+Jo2DdfHsHDK+lYNvu40KHwhhIvopL3ph6AkSwMgSN2qF3X/eQXGPtFBBZtuFhjOUMjidrHqk86ediy9/N0qP9GfOJzlGTz00Jn42GJQWPb8HKs6izdcAk3jz/AtWNJWPXnVU7qnDCsNQZ/1BZ9xnjD2MaYkzqF5m5rijdals5PxsdvsGKakoIXRdn1b/knYX/qEZ3158qLkOeXIGrrDeBP9er68IsIHN5SOr3DwJ6N0aShlfoBEhgbimEmNYCufaxN+z6at2ONHOsDYztT4P6z2gtrSMVOzQWF3PS7MZYaYOfKtwAAFg1+5qRObeAokwodAiFqoxYvohKmiLtfgxkZ5ZMhpj6rekZqop4Hj7OEDkFpuTy1dukjCU2TQojWo/+lhOiJiE3XKm2Tl5QmyGvCTvMdDuFR864N0NDXAVM/9BM6FK0gL5TThLE66N/j94QOgReUeBGiJ0qK5UhLUxz63qOPJwBAInAHcqI5IgMRbp38EPcvTUZHb91ao/Hgqft4Y9QOrNrGTd+2ir5bfo7zOgn3DM3LB4IsXHFewEj4Q4kXIQKSGHDbS/jVUXuTxvhwWj8hXBo1djcOb7mBSe/u5LzuFBrJqxNMKixNV6LhpZG0BSVehNTidFwy7j/iro+UoYUR3Ns5okU3V3Tt4la+o3585hDCykrjZvoMQnQJJV6E1CA0LBpd2/4Gj0ZLkfgwk5M6zWyMcS92Em6eGA/fVg6c1En4E775Mtr02oAlGy4JHQoncvOLkJtP/aE07VFaNsydf4KR7Hv8uT9e6HCIgCjxIqQGV66kAQCYYjku3khTq67lyyv3X3h/UEu16iT8mzppP64euY/PP9ovdChq23ssERZWP0JmswCnLj0WOhwFxTlFsPFYjJ0r9SPBDVtxHjkpuSh6UYTteyjxqs8o8SIASi+n/bk/HnKBF4TVZykvZ8AWVejWJRaLYf5ydnmiG4peTnch16FJaatz4MhdyAtKUJJXjANHE4UORxEDPL9Xfolf1z+afvs5RugQeFfMlH7Y/bPvP4Ej0S401Ing2p0n6Nr2NwDAgPHUGVtTxBIR5AB++aWv0KEQPZCZXSB0CKQOJFIJm7TXF/FiUwC5SE/JQdSZJPTq3FDokLQCtXgRXP+vfNbupPvc9GMi1bO11I8lXAg3ilScjPiDyfsAAEyJak1Bpy49xm8/1b9WGGWJaW1YtbVqVd6af//xCwEj0S6UeJFaWZnq94K7hAhp7Q+qTW5bVFB6qdPCxVyl50+ZFQV5vu5fLtUUU3P63FOXpYUEBlaqL/N0MvYxZvx0Avfz9CtV0a+zIWq7fPgee3/NmPb4eZgPBrdtwOkxxnwRATvPpfhq4SlO6yWkPpoQ3EGl5+XncrMuJCEViUTctRQGdFuHBdOPIHCvKWd1agNKvEi1Ar0c8bafKxrbcdv5+4+FZ/E0IQMLvz3Bab2EEN319sd7wbycQLNJR2eBo6mZ2FhSp/Lrdl5H/tP82gvqAYu29uz9HEb1FCPjRQFKXrbIJqfr148ESrxIrQwkYoT08OS83mJaS40Q8tLfKy7ivwr9TbWVmaMpDIzrNi5t94HbGopG+xg5lrZOFRSXYHmJi0p1JCRlwM7xZy7D0iqUeBFCtMaD1BeIOXpP6DCIQPJpIletVlhUgqD3/lKqbKYaP6xPXnyMkjz9auWqiBIvQuqBkrxiTpc9qk3vUX/BtvESLNpwsU7Pe63fZuSmCrOMzCW5ap3UieoM6njJri4S72VgdOi/iIxJ0tgx6ptNe2/h+F80+au6BE28wsLC0KFDB1hYWMDBwQGDBg1CfLziixoQEACRSKRwmzRpkkKZpKQk9O/fH6ampnBwcMC0adNQXKyYLR87dgzt2rWDVCqFp6cnNmzYUCme8PBwNGrUCMbGxujUqRPOnaPV7YlqZvx0Ag19V2B++Flej/ssp7DafR4eS/EgtfYh3ZExSeg96i+s2nZVpRjyC4oRueU6niVm4uef6zZi7/HLSWb5ZGxY+uV/Tm7B+7HrOzNL1Ue81SZ6xy1sWnwOb/bborFjzJ5/XGN1a6OcHGqR5IKgiVd0dDSCg4Nx5swZREZGoqioCL1790ZOTo5CuQkTJiA5OZm9LViwgN1XUlKC/v37o7CwEKdPn8bGjRuxYcMGzJ49my2TmJiI/v37o0ePHoiLi8OUKVPw4Ycf4uDBg2yZbdu2ITQ0FHPmzMHFixfh4+ODoKAgpKWpt0yMztLxWaKFtmD6ETy4nIZ50w/zetziGuZ0YorkuBb/tNL2eb8qJocjRu9C5JbrmPTuTrXjKSpUbY4qPo3v5iF0CESDCjO4n2i2bBBAahLNe1gJzX9WK0ETr4iICLz//vto1aoVfHx8sGHDBiQlJSE2NlahnKmpKZycnNibTCZj9x06dAg3btzApk2b4Ovri759+2L+/PkIDw9HYWHpr/+VK1fCw8MDCxcuRMuWLRESEoK3334bixcvZutZtGgRJkyYgHHjxsHLywsrV66Eqakp1q1bx88fgwAA5v6kX1NMFGv5kP0HqS8w55MIhW1ZacJc6quOXM5g0MR/4Nf3d8SquV5mVRpxPGq3Prmf/AJmTj/BSBaGvw8p14F877FEvPXhbuyP1rIliurgh6VBAAARKMmoqPHrrhBR4lUrrerjlZlZ+uvBxsZGYfvmzZthZ2eH1q1bY+bMmcjNLf9iiImJgbe3NxwdHdltQUFByMrKwvXr19kygYGBCnUGBQUhJqZ01ubCwkLExsYqlBGLxQgMDGTLvKqgoABZWVkKN6K+S+eVX6j3j82qXQoj5TIytX/ZmUvX0vDP6jhcjEjE1z/SFCTaZM/hBOSm5qLoRSG2Kbnw87DB27B37WW8PXR7nY7l6iqrvRBPDCXCf3W2ClgHI9n3+DxMey53ejazEzoEnSD8u+cluVyOKVOmoGvXrmjdujW7feTIkdi0aROOHj2KmTNn4o8//sB7773H7k9JSVFIugCwj1NSUmosk5WVhby8PDx58gQlJSVVlimr41VhYWGwtLRkb25ubqqfvA5SdZmS2tTlx9KtM8onaUR35eaV9yspoJnWdV7By0t/dZnXasWfg7Fn3SANRaR78guKcSP6AYpeFGHTxstCh0PqSGsWyQ4ODsa1a9dw8uRJhe0TJ05k73t7e8PZ2Rm9evVCQkICmjRpwneYrJkzZyI0NJR9nJWVVW+Sr8JqRp0dv/AINlZStPbU7K8eNx8HPLicBrEhN78bPpwZiYMHbuOLz/3x2Zi2Ktdz607l/lOEEPUYmBli0rttaiwjMZLU2+WP5HLt6ZArMaDLjMrQihavkJAQ7Nu3D0ePHoWrq2uNZTt16gQAuHPnDgDAyckJqampCmXKHjs5OdVYRiaTwcTEBHZ2dpBIJFWWKavjVVKpFDKZTOFWXzk0+wX/WxqD1zusgXfTcJy/llr7k9RgY8/t8hFrfziNh1fSMfvrI2rVs+JH1RYclpoYqnXcitp5LVfoTNyisQ2oGwrRd+a2JkKHUC/EXq3+s93Y1hjvv9u62v1lUp/mYsJXkQhbdZ7L0HSKoIkXwzAICQnBrl27cOTIEXh41D66KC4uDgDg7Fy6pIS/vz+uXr2qMPowMjISMpkMXl5ebJmoqCiFeiIjI+Hv7w8AMDIygp+fn0IZuVyOqKgotoy+KCwqgXvbFTB3/gkbd9+ottyKPwcrXWf67efYu+8/9vH5Gv5zarMCNYdKS6TVz0m0MzKh2o728+b3gKuPPUZ/3kmt41fF3dkCF69/XKfnFOdr94AAbfL6sK0aP0bGiwK8Pmwrugzagkdp2Ro/HhdCw6JhaP4dmnVZo3IdBqalF2TsG9XfH7XaZtOy6pOlnTuHo2Vj21rr+GTOEawJO42vJh3AmSvJXIanMwRNvIKDg7Fp0yZs2bIFFhYWSElJQUpKCvLy8gAACQkJmD9/PmJjY3Hv3j3s2bMHY8aMQffu3dGmTWnTc+/eveHl5YXRo0fj8uXLOHjwIGbNmoXg4GBIpaVzxEyaNAl3797F9OnTcevWLSxfvhzbt2/H1KlT2VhCQ0OxevVqbNy4ETdv3sTkyZORk5ODcePG8f+H0aDoC4+QFJeGnJRcrPnjSpVlpNbSWpv26+rSzXQ4eS2Dm89yTuvVFb+svsDeb9HYWmHfxyPa4EHcx/j95z4aOXbblvbsl5gymCLtnwJCWxz/Kx7XEzS7zM3KrVdw/K94xPxzGz+vjq39CVpg66arKM4pxu2YR8jKUW0AR0TUaEz8uisO7X6X4+iIqiR1XCqpKs+e5rH3H6Xoxg8Jrgnax2vFihUASidJrWj9+vV4//33YWRkhMOHD2PJkiXIycmBm5sbhg4dilmzZrFlJRIJ9u3bh8mTJ8Pf3x9mZmYYO3Ys5s2bx5bx8PDA/v37MXXqVCxduhSurq5Ys2YNgoKC2DLDhw9Heno6Zs+ejZSUFPj6+iIiIqJSh3tdV7E/AMPw1zdgxabLSL2p/euwaUrZ371xByd4uFoKHA3hUmGhZvsW5VRoKa040ECbyTn4bOnVuSF6dW7IQTSEaBdBE6/avvjd3NwQHR1daz3u7u44cOBAjWUCAgJw6dKlGsuEhIQgJCSk1uORUk06OiPxchrkBbV/8WiiA2hxdhFys6ufqV1bVGxOd9aiIfGEEKIqE1tj5NVhZKo6cp4UICFHjCZm+tEarxWd6wlR1dOEDN6OdTTmIUK+OVrnNQ+Xrq054SdElzzPykdxceUvwIqXkIh+27R3OHb9w+8l4FUJ3A6qEhIlXoQoKXzucYTPPY7BH+yutayRVfkadCUl+vErjZCp30XDxnoBrNwWIr9AcRBG1NYbyM3XjUuhmvTVwlMIeGcbTl2ieQa5pKGpIwVBiRfRSnK5HDsO3kZCUobQoVSSlqx9HUKlNsZwbGFTe0EimNgbadgZmQC5XHcT8WPR9wA5g5yUXNy8W3lB8/R63ur1PCsfYV8cRvSOW5j8+cFqy+3+7RJm/szN8mhPEjIEeU+52Ku21FZy8guOI9E9lHgRrTRo4h6802cLmjX7VeVRUXwreJYPx+a/VHkZhtRv1xOeoX2rFRjaexM+nV97v1Wim7IrDH7IqaX/6W8rOJrHSs5g27/KrZNZJr+gGCXZ6rVOejezg6lj3S7/PUrLxo3oB2odVx9Q4kW0UmJC6a9peUEJHqXlCByN8tL+e46rt2kGe1LuyNmHaN10Gfv4vzv1d3QvKVfC4Q+024kZdSr/0deHOTmuX7e6rdaSkJTJyXF1HSVepBKDGiYCJaQm9x9lwdplodBhaJXVW64AetQ/RdcYWhgJHYLGpabnwMZjMWQNFuL4hUe1ln/0iC73CYkSL6LA0s0CU2d0FToMndOyu1vdVvjWEWKj+Xjrw91Kl99z5C7yn/EzxFxX8DlfXn31IrX6VnFRPfiWOx3zAM/vZeHF42xs+Ou60s8zb6PeurqGFdbLlUrrPjvVqj+u4EVa1Wv/Avrbd1VrFskm/DsTcVfhsZGlETKSQqspTeojpkiOfRuvAmsGCR0KAODi6YdCh1Cv3H+UhT1H7mL0oJawspDW/gQBLPsjrtrluOqLirk9w+Oi2V991hmJd57D2VWGgA4uuP64bi1pkZuuaSgy7UaJVz1WkleMcwKuq0gNAbqBqUNflAcaHrGU9fAFbiY+Q0sP3f4V/NaHu3HjWjoW/xAodCg18mq7ErnpeVjS8RwSzk4UOpwqXb6Rzk098ek4dvYhxr/dGuam3C1cr896dW6Iu+c/EjoMnVMPGmFJTZ4+F274N1Mkx56jd2svWE/l5hchbNV57DhYtxFLZQzE/P73nrvsDH6acUTjx0mu4dKELnj2JBd7115GwtnH+ObHk0KHU6Pc9NLPh6TrTwSORLMKi0rQzmcVpozdgzdG7BA6HEG8HxohdAj1BiVeRFC76jgMuj6ZNCsKX006gHf6bMHl+Lr/qh/Yq7EGoqreGSU69RIoTDdSVKTZdR6Jcl7kFLFLnz2o4whBXdaiwrqxt2/pd3KtTSjxIjrheVY+7pzRjZmgu/XYgMIM9ecee1xh5NGd+xmV9u+OSsCKdVUvR9SujweMVejsSgipP8RiEUZ/3kmjx5C/XER+/NC/MHbS3hrLHtt+E4X14McIJV6Ec8Ejd2F7BLctWRt33mTvO7tYcFo3Fxq4lseUm6r5S2HPs/IxOHATzu69o/FjCa2Aw/mOSoqpY6G+atjWEZv2Dseeo2OEDqVaYqPyqXrMZNo5WIFr8goDH+7F1t6n+OTFZE2GoxUo8SIa8fs2bkerFFVY7/CjMT6c1q0OIyspfvljIP5ZO4jTeq9cqvnD58lz3ZiygYsZNh4+4yaRTX6Sg0uHEjmpi2gfkQgY9WYL+LZUb4oETWr9mismzeoGoLS1idRPdC2C6BSZq7lWfWBZ2Jrgk/d8Sx9wMEzT8OUv4rvnU+DgrH0te3VlYq7+5JVcLY57/Jxu9UHLLyhGs06r8eBymtCh6D05w+MyX9rz8UUEQi1eBCFTSkez0PQOauLg7zf/q9fY+3m56q2lRnRbZMwDSrp4MjJkv9JlbZ3NNRgJqQ8o8SLIzyldzNWYg9YJop7+r3sIHYLWu3RduLnn+EQz3vPn3t0M9r6xSdUXgoYF+2H4J+2xe8vbPEWlJ6iFrxK61EhY877rKXQIhGe3Ep8LHUKdfTF+H8xMDTHp3TZCh0LqCdsmVgif3xP21qYAgJM0dYrS7N70wJO91LeyImrxIvVa2KrzQocgqM9nHBY6BJVculbzJTi5XI6r/z1RmDNLF7x42fqsTz6ZcxRyuW69DhVN/Lorntz5jE26tIGQK47Ulay1HVoHNBQ6DK1CiVc9c/32U5Wfa2hrXO2+y4fvKTyO2H4DYoN5aNFtjcrH48POPbfY+6ZW1Z9fRRKJ/rSdl5Qo94U4+KM9Kk3iCgChYdHwaL8SizZcVOn5qvAf+CfaNA+He9sVvB1TFVei7is8Xjb7uECRaM7vC8/izwP/CR2GXvnsK938wURKUeJVz8yfG63ycw0spTD2kClVtiS3GEwJg/hTutMkb2io3H8Hwwpz8VT0TogfHFvYwLaJFYdRaYfdv13CqEn7VHru4q+O4V5sKmZ9EVlrWRFHI1YvHC69tPH4mm7Nxi2u5r2l69KfCLc0mT7Kz6vfi4LrOkq86hl1v9jEUtW+GNLSc9Q6ri7YtuxNpNz8BO27ugodikZkPFXvy7PgRe2X0SzsTNj7pvYmNZQkRDlFuZSkKKOosAT3H2UJHUa9QIkXUYqpigkXUNrfZu/ayxxGI7wjx+4JHYJeEr38XfDVwkC4NLEWNphqSKoZ9cY3OVcTnL3i87Dj6Nh/EyJjkjRSf0VP7mSo9LzkG0+V7r/HFMkx79ezKh2nPkmKS0Mjt8X435LT7LYzV5LRZdAWTP5flICR6R9KvIhSRnRoiCkGql02LCyq/gNyw09nVA2Jd22Dyqd6OL27tM+KXE5D/jUt/mKK0CEokMqEn3bFo/1KpN/mfkRqVk4BFn11FOcPJCD480Oc168uaYUfgCv+vKL0806efaiJcPQPA5yMKf9bTf3fUcT8cxsrvz2JhKQM4eLSM5R4EaVYmxlhisFjuFhxf/mnsED7F0Xt+KYnWrd2YB+XXXIN/kyzC8wSIP+Z5pZH6uDrpLG6NUmZNe/qimGAoqLyHxK52fyNsDQwN1Sq3Kdj27L37z2ky2Kalp9XPolzVg5N6MwVSrwIUUOPzm5Ch6CyN0bt0LnO51wwsjRC3K2PcfHGxxgzsKXQ4WiNH2YIcznJtY09e4m5Ng0czOHYwkazARGiYdrRWYGQlwryinHtzhNcO6b5/iX13eEtN4QOgVdff3OMve/T3F64QLSUSMLd73AJh3XVlb2VCYwspSjMLBAsBkJqQi1eROP+ibqrdNnMBy/g3TRcg9EQbZaVnquxulMflF6aYrSwX55PYCOVnzu4tyd3gXBEaizcb3pjqQEeJn6KqDPj4densWBxVHTnP9XnT1THg9QXmPHTCZyMfSzI8UnVKPEiGvftT6c4rc/dxYLT+gjQsrsbGngL2wq0esc1FGaW9isSczSfl4KXVYYtCeK+7hpE/BPPfaUv/z4Xrk9GNz8X7uvXcfbWpujZyRUiAb/h7p5PwaCJ/yD9eS5unijtsC4x0ExAr05gXSZwyDYsmH4Er3ddp/YxnmTkoTCDWhG5QIkX0Tiul23xaW6P37YPrbT93i1hflXqg149PXD5+AeCxnCxwjIoYwZ7aew4EjF/H3tPM/KRmfRCY/WLle0cRTROLpfj/kPF1/qf1XFIqdCKO3OqP68xPb6XAQCQ1zCASdkfOd8uKp9mQmYuVSuu+o4SL6KTJgxrXWlbbmouos7U375hORV+jVopufxRRbYqPEcTXNvYo6m7lcK2Jh2dhQlGTbkF5SPB3HwcaihZP/y5XwOtf1qicYff8Fr71dUXEAHDgpryF5CSPh7tq1S5zAqfL/27u2somvqBEi+iV+ITM4QOQTAlReW/atf93IeXY875JQYS6bew81wKrtdB1rc50qztaCb+P3fdFDoEjbl/UXcWrq6oo7cjRHVYf7ZdHw+IeWw11kf01yOcUqeTsKoMzAxh6mjK+3G1mXsD5dbUrAuDKtay3LPvP8gLS/A0IQNpKdnlZc3U71xdXFieSI4a5a12faRm8sIS+PfbJHQYWuFpRj4eXE4TOgy1ZLwoQPZj/V+qTRdR4kWIvtBQfx+RQWm9Bkp2DG7XxwNjP+nIaQwfj/Kpdt/TjHwsWHMB1xOecXpMfVOiRJPk7ZjqV6fILyhGXOQ9DiPSXqu2ls+K7+qsm4N5lv0ep9bzuXy9a/toauBtr/I6wLqIEi9CNGxHeCwS72g+KQgc2AwA0NCX275E3q835LQ+VUmtqu7Q26X/JsyYsB/t/FbxHJGOeHnFduZU9ZYA2nU4gYNgdENehc7oMya2FzAS1WXnqrfywN+RdziKBBj/vi9ndekDSrzqiR9Wn4epwwI8T8zktN6aRsvUVeBIL3h2Vm9o/LSpBzH2iwiOIuLOw8vpGj/GnjWD8OT5DCTGfqTxYwnh/NkPq9z+IL50NGvZVBREkYNraYtNXRtEH11VfM8WFqn/f/3aZd3qB2XbxApGhnrQEqNCYziXo9E/G9MWk/7XjX0sNpJgzY7KI9PrC0ETr7CwMHTo0AEWFhZwcHDAoEGDEB+vOOolPz8fwcHBsLW1hbm5OYYOHYrUVMX/vElJSejfvz9MTU3h4OCAadOmobi4WKHMsWPH0K5dO0ilUnh6emLDhg2V4gkPD0ejRo1gbGyMTp064dy5c5yfMx+mfHsMwz/Zh0dp5X1uNmy8jLz0PM6P9cm87rWWuXVSuQVqRWIxWraqei6pH8NOKlVHbmoufl94FrfvZyhVXt/YWhmr1fG16+BmMHU01co+c97N7Or9yMCoyLvIzq3bmnnfz+2hoWiABT+frr3QS6lPc5F4QbsWPCfCGRSofRP/8kWlT+gHDx7g4cPyL9Nz585hypQp+O233+pUT3R0NIKDg3HmzBlERkaiqKgIvXv3Rk5OeYfAqVOnYu/evdixYweio6Px+PFjDBkyhN1fUlKC/v37o7CwEKdPn8bGjRuxYcMGzJ49my2TmJiI/v37o0ePHoiLi8OUKVPw4Ycf4uDBg2yZbdu2ITQ0FHPmzMHFixfh4+ODoKAgpKXpVgfLf4/fw9L/RWP7r7GYEXac3c71iLMyljJ+piDITC19T4grLEVi8nKUmFtL20rl6/rlpClteunWsOuTO0cgJ2UaBrxTPo+WtQ2NxtMWCeeSMWj8bqHDYKXeU74FPe2p5lYlIMq5/ygL3j3WI2pr/VouTNuolHiNHDkSR48eBQCkpKTgjTfewLlz5/D1119j3rx5StcTERGB999/H61atYKPjw82bNiApKQkxMbGAgAyMzOxdu1aLFq0CD179oSfnx/Wr1+P06dP48yZMwCAQ4cO4caNG9i0aRN8fX3Rt29fzJ8/H+Hh4SgsLL30sHLlSnh4eGDhwoVo2bIlQkJC8Pbbb2Px4sVsLIsWLcKECRMwbtw4eHl5YeXKlTA1NcW6dVXP+FtQUICsrCyFmzZIe1b+4ZahR7MMl10mWbm8P7vtauxE/Lz2TZyPHCtQVLpny27lhvOHz+uFkLndsWTjW2jY0FLDUWnW2C8i8E7IPpQUaujXB88eP+Z2Qlav11Vf6F2kiRUGlLRhzUXBjq2rFq+/WOs6uBdOJGHOLzGcT3xNyqmUeF27dg0dO5aOWtq+fTtat26N06dPY/PmzVVewlNWZmbprycbm9LV52NjY1FUVITAwEC2TIsWLdCwYUPExMQAAGJiYuDt7Q1HR0e2TFBQELKysnD9+nW2TMU6ysqU1VFYWIjY2FiFMmKxGIGBgWyZV4WFhcHS0pK9ubmp/uFFlGdgUP5B36ShFT7/wE/liT93RibgwgHl15HUZcX5pf1z9uxQ7peurZUxls3pgc/GtNVkWLz4feFZ7AiPRd6T6i+1v+3nymNE2sVQ4D5MTIXp2rJf1N5Pr2zZnWd3ue2vqorslBzcf6Taj+6HV9IhNpqP71bw16WloLD2fnrZyTmY99khbPmbWsU0RaXEq6ioCFJp6Qijw4cP46233gJQmhQlJyerFIhcLseUKVPQtWtXtG5dOit5SkoKjIyMYGVlpVDW0dERKSkpbJmKSVfZ/rJ9NZXJyspCXl4enjx5gpKSkirLlNXxqpkzZyIzM5O9PXjwQKXzJsDdG08EOe7oUX8LclwhvPNxOwCKl2r5Ji+UY+1f1wQ7fk06etjUWib9eS6Sn6g/L1J16+rVV9mZ+ez9u+dKvz9qmjp3xS99AZRPcyIER3sz9v6cpVX/OC8z7bvoavcxRXLsOXBb5Tg0OW/iEw0uWF/fqfQp3KpVK6xcuRInTpxAZGQk+vQpnSX78ePHsLWt3N9GGcHBwbh27Rq2bt2q0vP5JpVKIZPJFG71QcVfpwzDzczi2cnCTPKXq4HBBppSomarfxsv7eiU/uGwv5FfUD7w5dzVVCz/84rCNm107NxDODouRAOnhchNVfxCCuj9O7ZH3MZHsw4j9kb1fUKbNbfTdJi8mvhFhMYWTX777ZbV7nOyM6t2H1/e7t2EHSmYW0t/0isXXjZG6NdCDEQNKiVeP/74I1atWoWAgACMGDECPj6lkxvu2bOHvQRZFyEhIdi3bx+OHj0KV9fyJn8nJycUFhYiIyNDoXxqaiqcnJzYMq+Ocix7XFsZmUwGExMT2NnZQSKRVFmmrA5SqntAeWfxgnz1hpc7NLNWN5waFRfLMWjiP+gxfDsep+r2DM4TJ+7Fp/OP4utFpyDX1EgJnhQWl75vnmbko5PvKgSP3IWhk/YIHFXNomIegCmSgymp/O2Z9TAbw/tuwW/fnUL7VivwNCO/ihqA1T+8oVYMdp5WALibJzdJzbnlNHmZPvQDP43VzQWxWIwWXZW7PJ18o3S6k0mzutVSktQXKiVeAQEBePLkCZ48eaLQ+XzixIlYtUr5SQwZhkFISAh27dqFI0eOwMPDQ2G/n58fDA0NERUVxW6Lj49HUlIS/P1LV3n39/fH1atXFUYfRkZGQiaTwcvLiy1TsY6yMmV1GBkZwc/PT6GMXC5HVFQUW4aU+unL2qePUJYzh522mSo6gm7edwv/rI7Dse03sWrDJc6OVRcWsqon/ayrzAcvsGz2cXz/+WFs2f8fJ3UK7XFaNvByPcaHD7gdnGIm4EjMWQtPVbldLAZEVSy7pKwGjaxUfu6rjl94hKyHpdPNSHi4ZLf34G0U1tBZuzhPu1s8udCvV2OhQyBaQqVPgZ49e+LFixewtlZssbCxscHw4cOVric4OBibNm3Cli1bYGFhgZSUFKSkpCAvr/QSkKWlJcaPH4/Q0FAcPXoUsbGxGDduHPz9/dG5c2cAQO/eveHl5YXRo0fj8uXLOHjwIGbNmoXg4GC2H9qkSZNw9+5dTJ8+Hbdu3cLy5cuxfft2TJ06lY0lNDQUq1evxsaNG3Hz5k1MnjwZOTk5GDdunCp/Iu0mAiSmqq2lZ2Jc3hHXxs4Erk7mCvttBVoI+MfFQZW2ZVXoqJsv0Af76OGtOa/zYQq3o9q4cuNM9cvN8M1AwOVHnj7X/kvYNyssrzRmhObXwTyy9SZm/Vj9XHxMsX5fh7P2sMSAAI/aC5J6QaXE69ixY+xUDRXl5+fjxIkTStezYsUKZGZmIiAgAM7Ozuxt27ZtbJnFixfjzTffxNChQ9G9e3c4OTlh586d7H6JRIJ9+/ZBIpHA398f7733HsaMGaMwrYWHhwf279+PyMhI+Pj4YOHChVizZg2Cgsq/rIcPH46ff/4Zs2fPhq+vL+Li4hAREVGpw70+sPO0VmUiYwCAqbEh1v09DO9N7YhtawdiwrBWCvt/X9pP/QBVILMwEuS4tTE3M4S1h25Px6Csomz+5k7b/sdVJD4UflRbXTFF2nWZ2MTeBG156v8X8ftVjdSbkVn1pd3q/LQ2Fp+HHUdWjuam23l1/j7DOrR03k9+ATef5XBp9Suu/ifMwCOiWXVq9rhypXzh0Bs3biiM+CspKUFERAQaNGigdH3KdM42NjZGeHg4wsPDqy3j7u6OAwcO1FhPQEAALl2q+XJTSEgIQkJCao1Jn4z+4J86r2A/bogXxg0pn2DzuxV98eN3J9G+mysaOJgDYhF7CYkQLhW+7ISfkZSF9z45gFO7RggcERGSXC7H3ytK5/NSZqxPxMl7mP7hPgClneJXzO+lyfBUsv6v63h4pXS5puWbLmv0WI0a1Y8fhdqmTomXr68vRCIRRCIRevbsWWm/iYkJli1bxllwhBv5BcW4HVN+Gci3gzOOPSq9XPU0IUPt+r+a1BFfTaowqEILky4awq8fCiusDfr8mfZf0tMn+Ryty9qmlzuuRN3npK7CCi2Ibw5oVmv5+4/KL9OnpGnngJuSCp+fcg19lpq7mCF8eX+M7N+82jJ3rmpufVm5EvOJ6bM6XWpMTExEQkICGIbBuXPnkJiYyN4ePXqErKwsfPDBB5qKlaho895b7P3e77XGwT80uzipezvduDxrIlB/NGX9d4nWtaurHQdVnxOJK4mJz4UOQSNCP/lX6BBqNH1ie6FD4EUhB0mLlZ0pxgxsCQODyilAw7aln9+5adzO4+XbSjumtNEGdUq83N3d0ahRI8jlcrRv3x7u7u7szdnZGRKJHqzirodyK3Qs37HyTbUWUVbGoMEtNFq/OloHNGTvS4xK/w6anIRQHXlP69Z3RRkMw2D1jmv4+5DwCQpXpGbl/ft+Xlb7LOD9e2i2k/OFA3fV7j/Ua8R2DO67haOIOCLg8kCk3K9zj9deSA0zpnXRSL0fDVd+EMf+w/q9oohqQ9sA3L59G0ePHkVaWlqleYUqLlBN+JGbX4TNe+ORXsNCtOZOZpCZcTO9ga6SVPEL71VZOQWC/p16v9cahzZpZob3zKQXmPiOfs3YL60wQre4pObWgGZdGqCpu5WGIwKeZ6j+Hsp4UYAjWxXX1HRqaYtGHlZQp8ePvJhBcbG8ylYOvSdn4NnpNyScU21lFW2i6Rn73+jSsPZCKjK0MEKREstC7dlS+vlXwtHlbW2jUuK1evVqTJ48GXZ2dnBycoKowox+IpGIEi8BvDb4T1yMSBQ6DLW5u3HT2bNr9/Wwa2BR5+e17/sHYiPuouObnji7dxQnsdRVYw+rGvc/eZaPTj028BKLvuFq8lFNKnllklYDc0Mk3wjB0MnqTTJbnFMEK7eFSEucolY9tZHL5XgYr97krFxLT8+plHT9u+MGsOotgSKqO5/ARhrrq2pqb4KclFyIJNrxH0RiVHr1bNiHvjhyMEHgaLinUuL17bff4rvvvsOMGTO4joeoKLGOH3Ta+kti8devo4WnDdxcLDCw5x8q15P3JA8PalgUuTqxEaVN3Of23VH52Jp25EginifqxlQK9y+m1l6I8CYnJRdxtzQ7RcFfhxLYVo2hk9th75brKMzU3NQNynhwN6PStoLnBbif/ALuznX/gaZv1m8YhKWrLmDkK9MDCa1bJ1dKvMo8f/4cw4YN4zoWooLnWfl48rzufYG6DmyGkzvjNRCRegwMxAge5SN0GFpNlZFOnjxcXqvI2FjlXgyEY0GvucOqoQwZSaqvDlCcUwSxkpe4blcYXPDN511x/36GRpcXUkZ1o7dz8/mbe04VHC2HW6thQU0xLKgpAOD2/Qx+DlqPqXSxf9iwYTh06BDXsZA6epQvgr3zQjRrtLTOLSB9Amn5ivpkWB9PGJgZ8na8aR9qfq29gjzt/tLUFlYWUjy/P1Wt5YoAoDCz9r45Csd1l6FVExu1jimEFwK3zlW0+vtTvCVffBBryaVMoan0s9TT0xP/+9//cObMGXh7e8PQUPED/dNPP+UkOFKz2OdGKMmt24chHxpQ073WEYvFcGtpi8QL/ExR4d5ABmsPS41eEr17PgXX7tTtspmBoWojrx8lKy7T1LxrA8Sf0p4lktQhrmPHN6m1FAXPVU9OWnrZ4+a5xyh6oZ2Jc1r8M9yM178Z4xdtuIiV80uXbRIqmRsytg22rbgInwDNdeDXBSolXr/99hvMzc0RHR2N6OhohX0ikYgSr3ruszG+yM4pxJKfTrML8WqbjPtZkNoYCx1GvcHVpJmv5gjHzz+u0/PnfaXaIu/rf4xReKzM6FhNKcgr5nSS4s4+TnBv56jQH8+6kQzP71V9abJ5Oye1Xkt7W1NkpU+HifF3KtehaXduK99ndkd4LOS/CLNUWl1s+L18TGyOQK16W5b0w5YlpX+rpxncT5ejK1T69Kg4ceqrt7t39Xv+DW1y/pl29qMxMpTgm0/94d+zkdChVCKzLB/iX/BMf/7j6/q53Dj7WKlf4++M8oZYjQWwA7u4qvQ8dY7JNa6nRDAwEONe7CQYWpRfuWjoqdlLhMZS7fzsqovWbconio7XgX5RFf9fMRD++qWZiQFEL3/ANGhYv5YuqocTuuiPJdE1j0zcv+EKugzagows7emzILQe3d1rL6SnjE356+NVV8UVFtjOrmHR4xXzeqEkfxZMHU35CIuQav2xqA9736/jGgEj0U3GUgOcPP8hvlvRFxFbNLuairZR6WdHbcsCrVu3TqVgSN1IlOioGPPPbRQXyWstJ4SKrU98kYjF8GjvpNDXieu5nUYO8cLRPbdhailFv+6N8Am31ats9ZI+6NZudZX7ZBZGVW7XNRnP8itN6FxXL14UYv3OGwoLwXOl+9vNcfwv7RtNTOrOqMJghTwVpq6pzuWr9WcKli6+zuji6yx0GLxTqcXr+fPnCre0tDQcOXIEO3fuREZGBschEnUVFBTXXohnpo6mcHHRjk74nTupdvmpOmMGtkTB8y/x/N5UWMuMYWGlHX3JGlbz9/bu6Y4veBiFWFH681wMeo/7GfTvnkuGXx/V5n+TVGgRXLXhElchKYje8S7MXcw0Ujepu/SneSon6mKxGKOmdFCqbF2mgNm7Vp31CYguUKnFa9euXZW2yeVyTJ48GU2aNFE7KKL/2qrY14Zrzbs2gEym2dae35b1RZ9uGzR6DHWsXBgEaxl/yeGJC49x7nIK7p6veYRlB39XJMWlwdTRFLaWyscXF3kP1h517zMilkpg7mOH7MtPah31JeVonjKZqzkKsovQr4+nxmYlJ9V7vcMaNGzrCCMV+/AZGyt3+f7FU+VbxMRSCeRKTnAtxFUDoj7O+niJxWKEhoZi8eLFXFVJCKmBbRMroUNQWsUvti/nHkO+Eq2wfy0fgKu3g5F+bwpv6wuKlewH9/M3PTHz50C1j5f54HPkP/8SfV5vpHZdRDVJl1Jx50zdRsdqCycnc/y89k18OLMLnL1sAQB5+cJf4UiGEVKydHvAjyZx+mmWkJCA4mLhX3SiX+RyaO2cP0Q5UqkBXNvYAwCKipRfrqq1px1MlWxV4FNABxd8/3lXOLbQvQlCiQa97C/63ghvmDvzc0n58w/8sPr7NyA1KW2F3bbsAoqLhenXa1Xhh8vOi/oxz50mqNReHhoaqvCYYRgkJydj//79GDt2LCeBEVJm5g/H2fsSSe2/FSTGEpTka+dalPVZ19fdse1KOgDg9BluPpSjTydxUg8hQOli0bnpeSpd9pWYGODmzWAUFBWjtacdpo33g0j0DfdBVqPXG02wNra0Y35uQc0/VN0aW2skBjcbUzSyNcW9p7koKKbP4Oqo1OJ16dIlhduVK1cAAAsXLsSSJUu4jI8QJN0rn/28X/dGtZZv3c1Ng9HoH0cbE96Pqe46oSWFpR/qO9dfqbRPbMztnFv3H2Up3eeG6C6ZqznyVFj3tqKm7lZo7WlXp+ec23cHvUf9hUdp6k02PWdKZ6XK2TW1xrFdI9Q6Vk26N7PXWN36QqUWr6NHj3IdB+HZkD6e+MbcEEXZunMJr+ObnjBScckXUrUFa95Ek4ZWvB9XZCgGo8Y0J4NHt8HWX85DUqHvmImtMfKe5sOUw1Gk95NfwMNjKWf11Ufm5jrUAVygeUUjt1zHt42tsWJ+L40fq1uPRrDVkpHW9ZVafbzS09Nx8uRJnDx5Eunp6VzFRHjQ0sMGD+5NEez4r3XR/rW6jG1/RNTWG0KHoVHTxvM7jQRX+vRoVGlbU9/SmcTlJXLO1oi8fCtdrQTx468OcxKHLlv2XU+hQ9AJL7Jpouv6QqXEKycnBx988AGcnZ3RvXt3dO/eHS4uLhg/fjxyc3O5jpFoiKOtKSQcX5ZRVtgXXSGz0MwvYa6GWOv6MjxcSziXjIiT94QOo1a56dxNZqmu61fS2PvmJioOEuBwXUYhtPa0g8iQFknRdTTdCXdU+t8QGhqK6Oho7N27FxkZGcjIyMA///yD6OhofP7551zHSOrIyFL5eanentBWg5HU7Jup/nBv51h7wTqSWUjRpJML5/WqysGmfHkbCw0lm3wZ0HeL0CHopLHTOkMsLv24bdyytA+QkZVy7wWrBqUT3zbgcMLhW3eUXwS6Ta/6u8wWqaxtPZxpnmsqJV5///031q5di759+0Imk0Emk6Ffv35YvXo1/vrrL65jJHXUxIf7ZEYTnO3M8OP82i9DqPJLy7O59gzzb9vSHqHf98CAD33wyzz1L7vk5/HbL69L+/IktriaPoFlU0WQqlVclSpm3yj8tn0o/rv2sVLP/XyaPwBgwfTXOInll3UXsWTWMQBAQVYhJ3XWRp3LtUS7rAl7Q+gQdJ5Knetzc3Ph6Fj5y93BwYEuNRJShYUzu3NWV/wpfufHmfRuGxQVyfHpmH8AcWkKIZfLkV9YPtLP1sEMD0H9PCt6lJatsCZoGVNjQ0wY1rrO9RlLuZkt/1jkXfa+EKM1KybyRLeIDDhe2LaeUqnFy9/fH3PmzEF+fnkfmLy8PHzzzTfw9/fnLDjCjStR94UOQeNaNysfwu3ZpOY5apo0K28NKyqkaQKU4e4qK70jZzDz51Ow9VgKM7MwXD6qW/NoGRlork+jT2Ajhce/77rJ3vdqXrcpBjShrNUp9Zbylxnr6nRcMmZPPfTygJX3iwzFGNG/ucaOr8vyy5Lg2tarUgUDxMfWvEQX4Y9KideSJUtw6tQpuLq6olevXujVqxfc3Nxw6tQpLF1KQ68J//y8HHDiwgRs3T8Ci76quXVp3aI+PEWlPwI6NmDvH4i4jYykLEDOgBFohuy6at61AcJ+68dZq5EyyhZGFhmKdXb0aF0t/PUc24r2Ir3y1Q8jc35XIegX5AlRFctNmdiZYMq3AZW2e/g58RBVuYa+Duz9v1dcxNxlZyAv1Mz/qaIXyl1WNuJpea76TKW/sLe3N27fvo2wsDD4+vrC19cXP/zwA+7cuYNWrVpxHSOpI13vwK2qbn4uGN6vGduJWd8ZK7muIBdkZlJ0fqspJ3XFn3rES58fqZUU3j0aot/73rhx/AN8OaFDnZ7/KC0bn4QeVDsOSxdztevQJmKx4uWmii19FZeDYkqET8q/+dQfhXlfV16+RwQMDvKsVP5q9DiNr4H6Zq/GEBtLIDE1wJ/rB+Hj2eV993b9c0ujx1aGewNZlckq4Y5KP//CwsLg6OiICRMmKGxft24d0tPTMWPGDE6CI3VnbGOMNYuC0Gb/HaFDIRq2dkV/9Om2gffjpjzIqrTNhMckUFkW9qa4cmScys//9tezSIpLq71gPdP7jca4dTEF+U+FnW6FKWbw2pA/ay1nYCBWHN1QA1NjQzRtZY+nCRnqBVeD/q97ICfjSwCl/faaN7LG8nknFMq0CmiI68eEu4w/+EMf7Fx5SbDj6zuV0tpVq1ahRYsWlba3atUKK1euVDsoUrPND43RyG8lMlMqf/CNmewH72bC9yepioG5IUQGYrQN8hA6FJ0X8E5LBHUVZph/2n/PK237Irhya1JuZvmEkFKp7q04kJOrO6s68Mnd1RLRR98XOgwAwIUDd2svxJOS/GKlyxpLDWq87C2R1JApMsCtUw9rPUbcFfrRoK1USrxSUlLg7Fx5Lg97e3skJyerHRSp2ZzTBrh/MVXoMOps8Ng2kBf9Dxcjxggdis4ydTCFgbkhhg2q/MNHKFIbY7g5yyptL6qQuMyb3k3jcTRvQRN1EuG8Oa6N2nVcja7cyvXqdDpMCcMOXDCroaX50KZrasdDNEOlT6myjvSvOnXqFFxcaKiwphUV6fZM1kR1d28Eo+jFV/h4hPof8ppm5Vzat0lkKEbXtsp/Lni1Va2Ds1sDGR49DlXpubrKRkNr7llXWDjd1s60hpLaw9SUv4ETVelQh/d4RZbm5RNeM8XVf7a386vc2DH3s+pnEaAfIdpLpVdmwoQJmDJlCtavX4/79+/j/v37WLduHaZOnVqp3xch+ibhXLIg8x/pmr+3vo2BE3zx5+7hSj+nZXc3nNz5rsrHtOZwYMnW1drdx+W7FX3h7szdbPYVNXAxx4o/ByP0+x74cdbrGjmGgVlpa417U/UnO7ZoYA57a+UTRHmJ9vx4NTAQ491PFS/VSySKX80SYwkmjfJR2GbuZAb3BpVbmon2U+knwrRp0/D06VN8/PHHKCwsHaJqbGyMGTNmYObMmZwGSIg2kMmUX4aJT827NkD8qUfwaF97K5G1hXqtIzX2O6lCQEdXBHR0rdNzvFrZ13lUaqEGkuDCgmIUqTmr+9+7NTtC7atJHTVa/6R3S1tVb9/P0Ej9V65OwqET9zFuqBcszX9Qq64+g+o2N5hXe56WvREBYABrp5pHthq+0jplaWXMPhcADLRw8ApRnUotXiKRCD/++CPS09Nx5swZXL58Gc+ePcPs2bO5jo8QTolUmHhZ5mqOX77txX0wSrJvWv2EsDeOf4CTFyfgv5jaW5rNTQ1xIHqsynF8Eay5L/qWr7nC1cceoRPb1+l5Bc/y8Twxk/N45BwsTB135B4AgNHxRa41paWHDT4b0xYys8qtlGaqLiiupJCPuJlXzdi4vO3CxKRyO8Yf/wzH4I/a4u8tQ+tc95CPhFtHl2iWWheBzc3N0aFDB7Ru3RpSad2b+I8fP44BAwbAxcUFIpEIu3fvVtj//vvvQyQSKdz69FGc/PLZs2cYNWoUZDIZrKysMH78eGRnZyuUuXLlCl577TUYGxvDzc0NCxYsqBTLjh070KJFCxgbG8Pb2xsHDhyo8/mQmrVuUbf1/DQxn857A+veKT1kame09Kh8OURqJUU7L82uUSg2ksDErPovIbG4tP+UgZLz7vTt3kjlOXoG9Wqi0vOUceP4eDyI+xhd1FiAd0ifyvMyccnaw7JO5SVGpSM5p3+l+YEFfKvYqVvK8aS0G3YNg7mOtPBMm9geHfo1QZdBzfDRu5WXgXpvQAvsXPmWWu/r+iYruwCF1awJqy8E7X2Xk5MDHx8fhIeHV1umT58+SE5OZm9//qk4b8uoUaNw/fp1REZGYt++fTh+/DgmTpzI7s/KykLv3r3h7u6O2NhY/PTTT5g7dy5+++03tszp06cxYsQIjB8/HpcuXcKgQYMwaNAgXLtGo0I4IxZhdkinOj0l5dYnMHPirmOvXVNreLhW/+VZ1TQJ1REZipGR8gWsdHCy2pEhfpBaS/HmB9rfQV9Zzl62pQmoRAzJy5YH91qWjuJLWy+H2gtVQ2otxbAgbiau5VKrJjYY/kl7+AQ2wrdfc7N4d5mxg7w4rU+T3J0tcG7/ezi1a0SVLXdEeWX9ZgcHbkJxjn4nXoIOA+nbty/69u1bYxmpVAonp6r7r9y8eRMRERE4f/482rcvvUSxbNky9OvXDz///DNcXFywefNmFBYWYt26dTAyMkKrVq0QFxeHRYsWsQna0qVL0adPH0ybNg0AMH/+fERGRuLXX3/Vq3nJmKoWT+OJuUPdEygDAzFMzI2QA24XXre1NIZYKoG8oATuja1hZ1P32CRSCa/Lz3Bp0+J+2LS4n9BhaISBgRhxVz5C1OkHGP923Rei1gYZWeXz892//SkcbbVzVOHWX/oDAPILlJ+/SiivzrZflRIeVlMgBBC4xUsZx44dg4ODA5o3b47Jkyfj6dOn7L6YmBhYWVmxSRcABAYGQiwW4+zZs2yZ7t27w8iovHN0UFAQ4uPj8fz5c7ZMYGCgwnGDgoIQExNTbVwFBQXIyspSuGkDsxouS1kKOCxcromFX1VkamyIK9c/xpodQxHxx1B88p5P7U8SiJwW8a6z1p52+GxMW525XPWq4R/tZe8bSLT+I7paTs3UH61YFd8WdnBsUbe63xldoXVXLEKH1o6VynwYUrclpQi3LPRsaa2aaPX/6j59+uD3339HVFQUfvzxR0RHR6Nv374oKSn9MkpJSYGDg2IzvoGBAWxsbJCSksKWcXRU/E9W9ri2MmX7qxIWFgZLS0v25ubmpt7JcqBxR2fMmFj9h8eCMH47iLu7lV/Wy03lttVKXa2a2GD8261hZFjacrVw/QChQ2J5t9RsvzF9YGKsm0mVMjIzSlu8DMwMYauhebo0TWotxemI0Rqp28hQgpSbn+CX3wcq/ZzV378BhpmDkxcn4NadT6pc3eO1CgvBE/4lXJsMUxWujOgirU683n33Xbz11lvw9vbGoEGDsG/fPpw/fx7Hjh0TOjTMnDkTmZmZ7O3BgwdCh4TVv/TTqssS4XN7Ch2C0t7o0lDoEFi6MDmq0IYEaq6jv7AY3DnzGAAwfIIvr0cuzuXukmH7AHeV5piSWmm2n1TXti5o7qEdff+IIntrU9yIm1QvWr60OvF6VePGjWFnZ4c7d0oXgHZyckJamuJ6VMXFxXj27BnbL8zJyQmpqYrL65Q9rq1MdX3LgNK+ZzKZTOGmTX7dNAhvvNcaLbrVbR4lLik70o5UZmihnfOGaQsDAzF832gkdBickxeW9zMyNeX3PcBUmFS0Wyd+PzdmL+2N5l0b4Kdf+tRemOgtd2cLvPGW9g0m4ZpOfTM+fPgQT58+ZdeJ9Pf3R0ZGBmJjY9kyR44cgVwuR6dOndgyx48fR1FR+SiJyMhING/eHNbW1myZqKgohWNFRkbC37/65Ri0XfAoHxz6YyjcG1sJHYpOsKuwRAohrzKyrFsStHj9RbWHsnz9sWYnSK1J2eSpfPnmU3/cOvkhPhnty+txKxKJdOrrkOgwQd9p2dnZiIuLQ1xcHAAgMTERcXFxSEpKQnZ2NqZNm4YzZ87g3r17iIqKwsCBA+Hp6YmgoCAAQMuWLdGnTx9MmDAB586dw6lTpxASEoJ3332XXTNy5MiRMDIywvjx43H9+nVs27YNS5cuRWho+Zpun332GSIiIrBw4ULcunULc+fOxYULFxASEsL734QIw9nODBt3v4OQud3xOP0LocMhWmT4J+1x8FDd+ist/V80StS4dCdzNdea5WCMjSVCh8CLft3dhQ5BI75aGIh2fTyEDkNpb7/ZHAZmBjCxM8GAnroTd10IOh7+woUL6NGjB/u4LBkaO3YsVqxYgStXrmDjxo3IyMiAi4sLevfujfnz5ytM1rp582aEhISgV69eEIvFGDp0KH755Rd2v6WlJQ4dOoTg4GD4+fnBzs4Os2fPVpjrq0uXLtiyZQtmzZqFr776Ck2bNsXu3bvRurVuDkfXJR3bOEJsJIG8sASdqlgElk9jBrbEmIEtBY1BFxU8y6+9kA5bOqeHVvWd5JubowWkVlIUZBQIHQqnfFvawdjGGPnP8zH9x546Oz1Mbfr3bIyGDWSYFJEodChKGdG/OUZkfy10GBol6DstICAATA3TDBw8eLDWOmxsbLBly5Yay7Rp0wYnTpyoscywYcMwbNiwWo+naxztzdj7jbTkF3RFHq6WePhoKp5m5KG1Z+WRRqryae2A2t89hCvOFUYj2dmZ1VCS6KL+73ph50rtXjS8rmRmUjx//Dle5BbWaYFtXXD+aioYNeYle/MNT+xedwUGJhIUZqq3ZimpTD9TfMJaOqcH7GxN0chVhq5tXYQOp0rOdmZw5vjL+sdpr2FAzyawsjSCd9PqV0YgqjEwM1SYXdrN0QKb9g7HpevpmDGRm3XwCNE0Y6mB1rZ0SSrM4VbXVuWvvi1vaHC0McHVOh573BAvjMhqBgOJGIbSbwFab5RT1JtQz1lZSLFwZndBO60KpZufCzzdrIQOo94Y9WYL/DzjNb1rPVCWxECEwJG6s9wNqZ2dk3Ctt5+Nb6fyc/PzS38UWTWUoUlDK5XqMJYaVBqZztDk/pygxKuea+Bswd5v0shKuEB0TMWh94SUidw8rM6LaRPttXyhcNNbqHOFoqwHT4fuHMxPWKG1y8RW+Ql9o26m1V6ontLONlbCm+9Cu8DW2hg2VsYYEKCfI0i4Yl+hg3VJnvavT0dIbXq+q9xgkoCuDbHztziIjcTo0Vm4uQHrM98WyveBvXrkPmfHbdHNFbdOPgTEIty8NEnp56W90K/BGFyixKueM5Ya4KtJws0XVBtDKXdD2SUGtS+UW5NvPvPHoq+OchSN8swqTKYqNdLdof3KLFRM+NOmlzui/nxHqbKfvOeLt/s0hYnUAFYW1c8u/yQ1h6vwyCuMDCUIGtMaB3+/VuX+BvaauSx688R4jdRbn9GlRqLVIv8Zyd63V2GRb2OpAToN8ISpoyk+VnFCyg4+pSsYmJsaQiThP3lYuagPug1pjpk/B9b4paftPh7tC7umtFyLMuTFmr+U7eZWt0uiznZmtb7/Hl97ok5IWsHEpLw9wlKHVpAQi8U4e0X5FikiHGrx0iNuTvq3xlWrJjZYs2Mort56gq+DVUuczuwZpfLxDc0NMahX+bqA5o5mePE4G2IeW566t2+AE3+/y9vxNKWbnwvS//sUHfr/gQsH7godjlbp6O2o8LjD6xpcO1QswsotgzFuCDcDAQwkYkiMJSjJL+GkPqH9OOt1hGQXoYmnNfy8HASJwbu1vUrP6+jtCHMXM2Q/ppZHbUaJlx5o2d0NM6Z2RlN3K6FD0Yjxbws3ka2pjWJn0j+3DMHSNRfx3tuaHb3m0MgSj66mQ2JK/0W1ham5EZ5rqG5jqQF6veuFqK03AADBH7TV0JEAqaURPhruzVl9BgZixMZ9BN8WyzmrU0gdWjvi7D7Vf6xx4Zf/9ai9ENFZ9KmuB8a8542xg2gYO5fMnEyRk5ILn46KI4v6v+6B/q9rfhBC5D/v4pf1lzCsf3ONH4so55eFQZj7wwn06ukBsVgHe2mIADCAtQZaxn2a28PawxLPEzM5r7u+EXPYr5VoJ0q8CKnC4zuf4uL1dHRvL8yksy09bLBiXi9Bjk2qNuSNJhjyRpPaC2qpjbvewc79/2Ha5A5Ch0Je4eZSPq2PvKD8kq2VuwwZ97Ng7kKrQegTHfzZRojmycykCOjoqpstG4RUYczAltj920CtXcGiPpvzSecqt58+OhbTfuyJmOj3+Q2IaBS1eBFCCGEZWenuyFldZWQogUgiqjQxc0sPGyyY/ppAURFNoZ/zhBCVtA4oHXnXrEsDgSMB5AytJKCuWYvfQJNOLvhxcZDQoRCi16jFixCikstRY3EzMQMtPawEOb6vrxPiIu8BAAZreJRpfTB/ShfMn9JF6DAI0XuUeBFCVCIWi9GqiY1gx1+/IAifjmuHRg0sYC1Tfg05LlFDGyGkruhSI+GFyJDeaoR7bVvaC5Z0AcD06dRCRIRRUiyventR1duJ9qBvQ6JRo6Z0gIWLOT6aQV9QRP+81oHfBaNlrqVzcJk61H35LE1j5NT8x6epM7tWuX3ip9q79i4pRYkX0ahNi/sh69HnWDGf5qQiuiP+Ygpndbm5cDdh6bFDYzDpf91w9PAYzurkSjPv6pfXMTAr7dXiJFB/QF3QtFPpNB92nlZKlfdqZlvldv92NF2ItqM+XoQQ8pLo5RroBc8L2G0mxqrPJG7lLkNrTzt1w2K1bWmvtRPrzvuyG/rsu1PlvuiTH2D3oTsIHuXDc1S64+qxcYg4eR89O7kJHQrRMEq8CCHkJdMW1sg8ncw+bujrAJmZ6vNatWrnxEVYOq+LrzO6+DoLHYZWMzKU4K0ejYUOg/CALjUSQshLRvamkJgbso9fC3Cvcx3yajo967uubV1g2dACEhMDDHmL1hglpUqo718llHgRQng1oG8zvR7lOnp8W6FDEIS5qSEy7oeiOPdrhL7fTuPH825efgm3aWNrjR+PEK7o76cfIUQrzQ7pBHnh/7R24d+S7CL2vlhS80ekibS8/5eBQen9NwPpchEfAjq6IuLk+9iy713Mn+IvdDiEKI36eBFCSDVCxtbceuXdzA693vXCnf+eYtbnNGUK34K61v1SMCFCo8SLEEKq0dHbsdYyh/8cxkMkhBB9QZcaCSGEEEJ4QokXIYQQQghPKPEihBAt4N26dOZ3kYEI7byqnwWeEKLbqI8XIUQQVnamyH6cI3QYWmPx169jcJAnGjiYwcPVUuhwCCEaQokXIUQQm9cOxHdLz+DNoCZCh6I1urdvIHQIRA819yif58zdTSZgJASgxIsQIpDu7Rug+x9DhQ6DEL0X0NEV2/4dieS0bEwe0UbocOo9SrwIIYQQPWFqWr7klXGFCX7f6dNUiHBIFSjxIoTUmaEpfXQQwje3BuWXCZs1qnqZpP7d3fHGe62RlpKNbz7vyldopA7o05MQorRRUzrg4L7b+OSzzkKHQki9s2xOD7RsZgt3Fwt0aF315L5isRiH6BK+VqPEixCitE2L+wGLhY6CkPrJWGrAywLkRLMEncfr+PHjGDBgAFxcXCASibB7926F/QzDYPbs2XB2doaJiQkCAwNx+/ZthTLPnj3DqFGjIJPJYGVlhfHjxyM7O1uhzJUrV/Daa6/B2NgYbm5uWLBgQaVYduzYgRYtWsDY2Bje3t44cOAA5+dLCCGEkPpN0MQrJycHPj4+CA8Pr3L/ggUL8Msvv2DlypU4e/YszMzMEBQUhPz8fLbMqFGjcP36dURGRmLfvn04fvw4Jk6cyO7PyspC79694e7ujtjYWPz000+YO3cufvvtN7bM6dOnMWLECIwfPx6XLl3CoEGDMGjQIFy7dk1zJ08IIYSQekfQS419+/ZF3759q9zHMAyWLFmCWbNmYeDAgQCA33//HY6Ojti9ezfeffdd3Lx5ExERETh//jzat28PAFi2bBn69euHn3/+GS4uLti8eTMKCwuxbt06GBkZoVWrVoiLi8OiRYvYBG3p0qXo06cPpk2bBgCYP38+IiMj8euvv2LlypU8/CUIIUKSGnD3G9RAImLvi8WiGkoSQuojrV0yKDExESkpKQgMDGS3WVpaolOnToiJiQEAxMTEwMrKik26ACAwMBBisRhnz55ly3Tv3h1GRkZsmaCgIMTHx+P58+dsmYrHKStTdpyqFBQUICsrS+FGCNFNPVs44ANJCiZKktWu6/X2rmjRzRW2TazwyQQ/DqIjhOgTre1cn5KSAgBwdFQcueHo6MjuS0lJgYOD4ppmBgYGsLGxUSjj4eFRqY6yfdbW1khJSanxOFUJCwvDN998o8KZEUK0jYWxIWYbPgAAfA31WqkMDMS4eWI8F2ERQvSQ1rZ4abuZM2ciMzOTvT148EDokAghHBIb0ccjIYR7WvvJ4uTkBABITU1V2J6amsruc3JyQlpamsL+4uJiPHv2TKFMVXVUPEZ1Zcr2V0UqlUImkyncCCG6742RrWBoYYThk+kyISGEe1qbeHl4eMDJyQlRUVHstqysLJw9exb+/v4AAH9/f2RkZCA2NpYtc+TIEcjlcnTq1Iktc/z4cRQVFbFlIiMj0bx5c1hbW7NlKh6nrEzZcQgh9cehzW+jMGsmtizpJ3QohBA9JGjilZ2djbi4OMTFxQEo7VAfFxeHpKQkiEQiTJkyBd9++y327NmDq1evYsyYMXBxccGgQYMAAC1btkSfPn0wYcIEnDt3DqdOnUJISAjeffdduLi4AABGjhwJIyMjjB8/HtevX8e2bduwdOlShIaGsnF89tlniIiIwMKFC3Hr1i3MnTsXFy5cQEhICN9/EkIIIYToMUE711+4cAE9evRgH5clQ2PHjsWGDRswffp05OTkYOLEicjIyEC3bt0QEREBY2Nj9jmbN29GSEgIevXqBbFYjKFDh+KXX35h91taWuLQoUMIDg6Gn58f7OzsMHv2bIW5vrp06YItW7Zg1qxZ+Oqrr9C0aVPs3r0brVu35uGvQAghhJD6QtDEKyAgAAzDVLtfJBJh3rx5mDdvXrVlbGxssGXLlhqP06ZNG5w4caLGMsOGDcOwYcNqDpgQQgghRA1a28eLEEIIIUTfUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE+0OvGaO3cuRCKRwq1Fixbs/vz8fAQHB8PW1hbm5uYYOnQoUlNTFepISkpC//79YWpqCgcHB0ybNg3FxcUKZY4dO4Z27dpBKpXC09MTGzZs4OP0CCGEEFLPaHXiBQCtWrVCcnIyezt58iS7b+rUqdi7dy927NiB6OhoPH78GEOGDGH3l5SUoH///igsLMTp06exceNGbNiwAbNnz2bLJCYmon///ujRowfi4uIwZcoUfPjhhzh48CCv50kIIYQQ/WcgdAC1MTAwgJOTU6XtmZmZWLt2LbZs2YKePXsCANavX4+WLVvizJkz6Ny5Mw4dOoQbN27g8OHDcHR0hK+vL+bPn48ZM2Zg7ty5MDIywsqVK+Hh4YGFCxcCAFq2bImTJ09i8eLFCAoKqjaugoICFBQUsI+zsrI4PnNCCCGE6Butb/G6ffs2XFxc0LhxY4waNQpJSUkAgNjYWBQVFSEwMJAt26JFCzRs2BAxMTEAgJiYGHh7e8PR0ZEtExQUhKysLFy/fp0tU7GOsjJldVQnLCwMlpaW7M3NzY2T8yWEEEKI/tLqxKtTp07YsGEDIiIisGLFCiQmJuK1117DixcvkJKSAiMjI1hZWSk8x9HRESkpKQCAlJQUhaSrbH/ZvprKZGVlIS8vr9rYZs6ciczMTPb24MEDdU+XEEIIIXpOqy819u3bl73fpk0bdOrUCe7u7ti+fTtMTEwEjAyQSqWQSqWCxkAIIYQQ3aLVLV6vsrKyQrNmzXDnzh04OTmhsLAQGRkZCmVSU1PZPmFOTk6VRjmWPa6tjEwmEzy5I4QQQoh+0anEKzs7GwkJCXB2doafnx8MDQ0RFRXF7o+Pj0dSUhL8/f0BAP7+/rh69SrS0tLYMpGRkZDJZPDy8mLLVKyjrExZHYQQQgghXNHqxOuLL75AdHQ07t27h9OnT2Pw4MGQSCQYMWIELC0tMX78eISGhuLo0aOIjY3FuHHj4O/vj86dOwMAevfuDS8vL4wePRqXL1/GwYMHMWvWLAQHB7OXCSdNmoS7d+9i+vTpuHXrFpYvX47t27dj6tSpQp46IYQQQvSQVvfxevjwIUaMGIGnT5/C3t4e3bp1w5kzZ2Bvbw8AWLx4McRiMYYOHYqCggIEBQVh+fLl7PMlEgn27duHyZMnw9/fH2ZmZhg7dizmzZvHlvHw8MD+/fsxdepULF26FK6urlizZk2NU0kQQgghhKhCqxOvrVu31rjf2NgY4eHhCA8Pr7aMu7s7Dhw4UGM9AQEBuHTpkkoxEkIIIaRUQHN77I5JQJZ2pxeC0upLjYQQQgjRHT1bOOKK8SW0cLIQOhStRYkXIYQQQghPKPEihBBCCKfebOMMAPBvbCtwJNqHEi9CCCGEcCqkZ1Ncll7ElgmdhA5F61DvN0IIIYRwzlJUAohEQoehdajFixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgjRao9zREKHwBlKvAghhBCileQlDABga2S2wJFwhxIvQgghhGilPm81AwCIDKjFixBCCCFEo0LGthU6BM5R4kUIIYQQwhNKvAghhBBCeEKJFyGEEEIITyjxekV4eDgaNWoEY2NjdOrUCefOnRM6JEIIIYToCUq8Kti2bRtCQ0MxZ84cXLx4ET4+PggKCkJaWprQoSl48qxY6BAIIYQQogIDoQPQJosWLcKECRMwbtw4AMDKlSuxf/9+rFu3Dl9++WWtzxebN8b5DCnMjAw1FuOJdEPkPstT2OZsb6ax4xFCCCGCY4AzzzXz3ZpTqJFqq0WJ10uFhYWIjY3FzJkz2W1isRiBgYGIiYmpVL6goAAFBQXs46ysLMizxyBwJQBoskWqct2j32qhweMRQgghwmJKGPj/oqnvVn7nCKNLjS89efIEJSUlcHR0VNju6OiIlJSUSuXDwsJgaWnJ3tzc3CCSiCAy4OFmWPqyiaViTPk2AGIxvYyEEEL0j28LO9i5mWj8e5VP1OKlopkzZyI0NJR9nJWVBTc3N2R++SVkUqnmA5g7t/T29euaPxYhhBAiACNDCdI/yNXoMbIKCmD5g0YPoYASr5fs7OwgkUiQmpqqsD01NRVOTk6VykulUkj5SLAIIYQQojfoGtVLRkZG8PPzQ1RUFLtNLpcjKioK/v7+AkZGCCGEEH1BLV4VhIaGYuzYsWjfvj06duyIJUuWICcnhx3lSAghhBCiDkq8Khg+fDjS09Mxe/ZspKSkwNfXFxEREZU63BNCCCGEqIISr1eEhIQgJCRE6DAIIYQQooeojxchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE9o5nqOMAwDAMgqKODngFlZQEFB6b984ft4hPCp7P8uvccJUU/ZdwVX3xka/l4t+94u+x7XNBHD15H03N27d9GkSROhwyCEEEKIChISEtC4cWONH4davDhiY2MDAEhKSoKlpaXA0fAnKysLbm5uePDgAWQymdDh8IbOm867PqDzpvOuDzIzM9GwYUP2e1zTKPHiiFhc2l3O0tKyXr1hy8hkMjrveoTOu36h865f6ut5l32Pa/w4vByFEEIIIYRQ4kUIIYQQwhdKvDgilUoxZ84cSKVSoUPhFZ03nXd9QOdN510f0Hnzc940qpEQQgghhCfU4kUIIYQQwhNKvAghhBBCeEKJFyGEEEIITyjxIoQQQgjhCSVeFYSFhaFDhw6wsLCAg4MDBg0ahPj4+ErlYmJi0LNnT5iZmUEmk6F79+7Iy8tj9z979gyjRo2CTCaDlZUVxo8fj+zsbIU6rly5gtdeew3GxsZwc3PDggULNH5+1antvO/duweRSFTlbceOHWy5pKQk9O/fH6ampnBwcMC0adNQXFyscKxjx46hXbt2kEql8PT0xIYNG/g6zUqUeb1TUlIwevRoODk5wczMDO3atcPff/+tUEbfXm+gdOmMwYMHw97eHjKZDO+88w5SU1MVyujaea9YsQJt2rRhJ4f09/fHv//+y+7Pz89HcHAwbG1tYW5ujqFDh1Y6Z117jwO1n/dvv/2GgIAAyGQyiEQiZGRkVKpD115roObzfvbsGT755BM0b94cJiYmaNiwIT799FNkZmYq1KGPr/dHH32EJk2awMTEBPb29hg4cCBu3bqlUIc+nncZhmHQt29fiEQi7N69W2Efb+fNEFZQUBCzfv165tq1a0xcXBzTr18/pmHDhkx2djZb5vTp04xMJmPCwsKYa9euMbdu3WK2bdvG5Ofns2X69OnD+Pj4MGfOnGFOnDjBeHp6MiNGjGD3Z2ZmMo6OjsyoUaOYa9euMX/++SdjYmLCrFq1itfzLVPbeRcXFzPJyckKt2+++YYxNzdnXrx4wZZp3bo1ExgYyFy6dIk5cOAAY2dnx8ycOZM9zt27dxlTU1MmNDSUuXHjBrNs2TJGIpEwERERWnneDMMwb7zxBtOhQwfm7NmzTEJCAjN//nxGLBYzFy9eZMvo2+udnZ3NNG7cmBk8eDBz5coV5sqVK8zAgQOZDh06MCUlJWw9unbee/bsYfbv38/8999/THx8PPPVV18xhoaGzLVr1xiGYZhJkyYxbm5uTFRUFHPhwgWmc+fOTJcuXdjn6+J7nGFqP+/FixczYWFhTFhYGAOAef78eaU6dO21Zpiaz/vq1avMkCFDmD179jB37txhoqKimKZNmzJDhw5ln6+vr/eqVauY6OhoJjExkYmNjWUGDBjAuLm5McXFxQzD6O95l1m0aBHTt29fBgCza9cudjuf502JVw3S0tIYAEx0dDS7rVOnTsysWbOqfc6NGzcYAMz58+fZbf/++y8jEomYR48eMQzDMMuXL2esra2ZgoICtsyMGTOY5s2ba+As6q6q836Vr68v88EHH7CPDxw4wIjFYiYlJYXdtmLFCkYmk7HnOX36dKZVq1YK9QwfPpwJCgri+AxUU9V5m5mZMb///rtCORsbG2b16tUMw+jn633w4EFGLBYzmZmZbJmMjAxGJBIxkZGRDMPox3kzDMNYW1sza9asYTIyMhhDQ0Nmx44d7L6bN28yAJiYmBiGYfTjPV6m7LwrOnr0aJWJl7681gxT9XmX2b59O2NkZMQUFRUxDKP/r3eZy5cvMwCYO3fuMAyj3+d96dIlpkGDBkxycnKlxIvP86ZLjTUoa3YuWzgzLS0NZ8+ehYODA7p06QJHR0e8/vrrOHnyJPucmJgYWFlZoX379uy2wMBAiMVinD17li3TvXt3GBkZsWWCgoIQHx+P58+f83FqNXr1vF8VGxuLuLg4jB8/nt0WExMDb29vODo6stuCgoKQlZWF69evs2UCAwMV6goKCkJMTAzXp6CSqs67S5cu2LZtG549ewa5XI6tW7ciPz8fAQEBAPTz9S4oKIBIJFKYTNDY2BhisZh9r+v6eZeUlGDr1q3IycmBv78/YmNjUVRUpPD+bNGiBRo2bMi+P/XhPf7qeStD119rQLnzzszMhEwmg4FB6RLG9eH1zsnJwfr16+Hh4QE3NzcA+nveubm5GDlyJMLDw+Hk5FTpOXyeNyVe1ZDL5ZgyZQq6du2K1q1bAwDu3r0LAJg7dy4mTJiAiIgItGvXDr169cLt27cBlPYJcnBwUKjLwMAANjY2SElJYctUfHEBsI/LygilqvN+1dq1a9GyZUt06dKF3abMOVVXJisrS6GPnBCqO+/t27ejqKgItra2kEql+Oijj7Br1y54enoC0M/Xu3PnzjAzM8OMGTOQm5uLnJwcfPHFFygpKUFycjIA3T3vq1evwtzcHFKpFJMmTcKuXbvg5eWFlJQUGBkZwcrKSqG8o6Njnc5HW9/j1Z23MnT1tQaUP+8nT55g/vz5mDhxIrtNn1/v5cuXw9zcHObm5vj3338RGRnJJs36et5Tp05Fly5dMHDgwCqfy+d5U+JVjeDgYFy7dg1bt25lt8nlcgClnRPHjRuHtm3bYvHixWjevDnWrVsnVKicquq8K8rLy8OWLVsUWrv0QXXn/b///Q8ZGRk4fPgwLly4gNDQULzzzju4evWqQJFyq6rztre3x44dO7B3716Ym5vD0tISGRkZaNeuHcRi3f7IaN68OeLi4nD27FlMnjwZY8eOxY0bN4QOS+PovKs/76ysLPTv3x9eXl6YO3euMIFyrLbzHjVqFC5duoTo6Gg0a9YM77zzDvLz8wWMmBvVnfeePXtw5MgRLFmyROgQAQAGQgegjUJCQrBv3z4cP34crq6u7HZnZ2cAqPSLqWXLlkhKSgIAODk5IS0tTWF/cXExnj17xjZvOjk5VRotVfa4qiZQvlR33hX99ddfyM3NxZgxYxS2Ozk54dy5cwrbXj2n6s5bJpPBxMSEq9Oos+rOOyEhAb/++iuuXbuGVq1aAQB8fHxw4sQJhIeHY+XKlXr7evfu3RsJCQl48uQJDAwMYGVlBScnJzRu3BiA7r7PjYyM2NZKPz8/nD9/HkuXLsXw4cNRWFiIjIwMhVav1NRUhfPR1fd4dee9atWqWp+rq681UPt5v3jxAn369IGFhQV27doFQ0ND9rn6/HpbWlrC0tISTZs2RefOnWFtbY1du3ZhxIgRenneJiYmSEhIqNSiPXToULz22ms4duwYr+et2z9fOcYwDEJCQrBr1y4cOXIEHh4eCvsbNWoEFxeXSkPv//vvP7i7uwMA/P39kZGRgdjYWHb/kSNHIJfL0alTJ7bM8ePHUVRUxJaJjIxE8+bNYW1tranTq1Zt513R2rVr8dZbb8He3l5hu7+/P65evarwAR0ZGQmZTMYmqv7+/oiKilJ4XmRkpNJ9TbhW23nn5uYCQKVWHolEwrZ+6vvrbWdnBysrKxw5cgRpaWl46623AOjmeVdFLpejoKAAfn5+MDQ0VHh/xsfHIykpiX1/6uJ7vDpl560MfXmtAcXzzsrKQu/evWFkZIQ9e/bA2NhYoWx9eb2Z0kF27H59PO8vv/wSV65cQVxcHHsDgMWLF2P9+vUAeD7vOnXF13OTJ09mLC0tmWPHjilMnZCbm8uWWbx4MSOTyZgdO3Ywt2/fZmbNmsUYGxuzI0IYpnToddu2bZmzZ88yJ0+eZJo2baow9DojI4NxdHRkRo8ezVy7do3ZunUrY2pqKtjQa2XOm2EY5vbt24xIJGL+/fffSnWUDcXt3bs3ExcXx0RERDD29vZVDsWdNm0ac/PmTSY8PFzQIci1nXdhYSHj6enJvPbaa8zZs2eZO3fuMD///DMjEomY/fv3s/Xo4+u9bt06JiYmhrlz5w7zxx9/MDY2NkxoaKhCPbp23l9++SU7jP7KlSvMl19+yYhEIubQoUMMw5ROJ9GwYUPmyJEjzIULFxh/f3/G39+ffb4uvscZpvbzTk5OZi5dusSsXr2aAcAcP36cuXTpEvP06VO2Dl17rRmm5vPOzMxkOnXqxHh7ezN37txR+H/w6rQK+vR6JyQkMN9//z1z4cIF5v79+8ypU6eYAQMGMDY2NkxqairDMPp53lVBNdNJ8HHelHhVAKDK2/r16xXKhYWFMa6uroypqSnj7+/PnDhxQmH/06dPmREjRjDm5uaMTCZjxo0bx853Veby5ctMt27dGKlUyjRo0ID54YcfNH161VL2vGfOnMm4ubkpzOVU0b1795i+ffsyJiYmjJ2dHfP555+zQ7PLHD16lPH19WWMjIyYxo0bVzoGn5Q57//++48ZMmQI4+DgwJiamjJt2rSpNL2EPr7eM2bMYBwdHRlDQ0OmadOmzMKFCxm5XK5Qj66d9wcffMC4u7szRkZGjL29PdOrVy+FD+W8vDzm448/ZqytrRlTU1Nm8ODBTHJyskIduvYeZ5jaz3vOnDm1vh907bVmmJrPu2zqjKpuiYmJbB369no/evSI6du3L+Pg4MAYGhoyrq6uzMiRI5lbt24p1KFv512VVxMvhuHvvEUvAyCEEEIIIRpGfbwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTwhBIvQgghhBCeUOJFCCGE1GPfffcdunTpAlNT00rrGVZn7ty5aNGiBczMzGBtbY3AwECcPXtWocxbb72Fhg0bwtjYGM7Ozhg9ejQeP37M7s/Pz8f7778Pb29vGBgYYNCgQZWOk5ycjJEjR6JZs2YQi8WYMmWKSuf433//YeDAgbCzs4NMJkO3bt1w9OhRlepSFyVehBC99f7771f5Yc6X0aNH4/vvv1eq7LvvvouFCxdqOCJSXwUEBGDDhg1V7issLMSwYcMwefJkpetr1qwZfv31V1y9ehUnT55Eo0aN0Lt3b6Snp7NlevToge3btyM+Ph5///03EhIS8Pbbb7P7S0pKYGJigk8//RSBgYFVHqegoAD29vaYNWsWfHx8lI7vVW+++SaKi4tx5MgRxMbGwsfHB2+++SZSUlJUrlNldZ7rnhBCtACqWfKl7DZnzhwmIyODef78uSDxxcXFMTY2NpWW1qnO1atXGWtrayYjI0PDkZH66PXXX691eZv169czlpaWKtWfmZnJAGAOHz5cbZl//vmHEYlETGFhYaV9Y8eOZQYOHFjjMV5//XXms88+q3Lf6tWrmRYtWjBSqZRp3rw5Ex4ezu5LT09n1yEtk5WVxQBgIiMjaz4xDTDgP9UjhBD1JScns/e3bduG2bNnIz4+nt1mbm4Oc3NzIUIDACxbtgzDhg1TOobWrVujSZMm2LRpE4KDgzUcHSHcKSwsxG+//QZLS8tqW6WePXuGzZs3o0uXLjA0NOT0+Js3b8bs2bPx66+/om3btrh06RImTJgAMzMzjB07Fra2tmjevDl+//13tGvXDlKpFKtWrYKDgwP8/Pw4jUUZdKmREKKTnJyc2JulpSVEIpHCNnNz80qXGgMCAvDJJ59gypQpsLa2hqOjI1avXo2cnByMGzcOFhYW8PT0xL///qtwrGvXrqFv374wNzeHo6MjRo8ejSdPnlQbW0lJCf766y8MGDBAYfvy5cvRtGlTGBsbw9HRUeGyCwAMGDAAW7duVf+PQwgP9u3bB3NzcxgbG2Px4sWIjIyEnZ2dQpkZM2bAzMwMtra2SEpKwj///MN5HHPmzMHChQsxZMgQeHh4YMiQIZg6dSpWrVoFABCJRDh8+DAuXboECwsLGBsbY9GiRYiIiIC1tTXn8dSGEi9CSL2yceNG2NnZ4dy5c/jkk08wefJkDBs2DF26dMHFixfRu3dvjB49Grm5uQCAjIwM9OzZE23btsWFCxcQERGB1NRUvPPOO9Ue48qVK8jMzET79u3ZbRcuXMCnn36KefPmIT4+HhEREejevbvC8zp27Ihz586hoKBAMydP6o3vv/+ebfU1NzfHiRMnMGnSJIVtSUlJah2jR48eiIuLw+nTp9GnTx+88847SEtLUygzbdo0XLp0CYcOHYJEIsGYMWPAMIxax60oJycHCQkJGD9+vMK5ffvtt0hISAAAMAyD4OBgODg44MSJEzh37hwGDRqEAQMGKLSc84b3i5uEEMKx6vqmvNpv5PXXX2e6devGPi4uLmbMzMyY0aNHs9uSk5MZAExMTAzDMAwzf/58pnfv3gr1PnjwgAHAxMfHVxnPrl27GIlEwsjlcnbb33//zchkMiYrK6va87h8+TIDgLl3716N50tIbZ4+fcrcvn2bvXXs2JH58ccfFbYVFRUpPEedPl4MwzCenp7M999/X+3+sv83p0+frrRP1T5eKSkpDABm06ZNCud2+/Zt5u7duwzDMMzhw4cZsVjMZGZmVoo3LCxMuZPjEPXxIoTUK23atGHvSyQS2Nrawtvbm93m6OgIAOwv98uXL+Po0aNV9tVKSEhAs2bNKm3Py8uDVCqFSCRit73xxhtwd3dH48aN0adPH/Tp0weDBw+GqakpW8bExAQA2NY2QlRlY2MDGxsb9rGJiQkcHBzg6empsWPK5fIaW2vlcjkAcNqi6+joCBcXF9y9exejRo2qskzZ/yexWPEin1gsZmPiEyVehJB65dWOvSKRSGFbWbJU9oGcnZ2NAQMG4Mcff6xUl7Ozc5XHsLOzQ25uLgoLC2FkZAQAsLCwwMWLF3Hs2DEcOnQIs2fPxty5c3H+/Hl27qRnz54BAOzt7dU7SULqICkpCc+ePUNSUhJKSkoQFxcHAPD09GR/cLRo0QJhYWEYPHgwcnJy8N133+Gtt96Cs7Mznjx5gvDwcDx69AjDhg0DAJw9exbnz59Ht27dYG1tjYSEBPzvf/9DkyZN4O/vzx77xo0bKCwsxLNnz/DixQv22L6+vmyZsm3Z2dlIT09HXFwcjIyM4OXlBQD45ptv8Omnn8LS0hJ9+vRBQUEBLly4gOfPnyM0NBT+/v6wtrbG2LFjMXv2bJiYmGD16tVITExE//79NfvHrQIlXoQQUoN27drh77//RqNGjWBgoNxHZtmXxo0bNxS+QAwMDBAYGIjAwEDMmTMHVlZWOHLkCIYMGQKgtBO/q6trpQ7KhGjS7NmzsXHjRvZx27ZtAQBHjx5FQEAAACA+Ph6ZmZkASluKb926hY0bN+LJkyewtbVFhw4dcOLECbRq1QoAYGpqip07d2LOnDnIycmBs7Mz+vTpg1mzZkEqlbLH6tevH+7fv1/p2EyFfmBl2wAgNjYWW7Zsgbu7O+7duwcA+PDDD2FqaoqffvoJ06ZNg5mZGby9vdnJVu3s7BAREYGvv/4aPXv2RFFREVq1aoV//vlHrbnBVEWJFyGE1CA4OBirV6/GiBEjMH36dNjY2ODOnTvYunUr1qxZA4lEUuk59vb2aNeuHU6ePMkmXvv27cPdu3fRvXt3WFtb48CBA5DL5WjevDn7vBMnTqB37958nRqpR44dO1btvg0bNlQ7uWqZiomQsbExdu7cWWN5b29vHDlypNa4ypInZY9dnZEjR2LkyJHV7m/fvj0OHjxYaz18oFGNhBBSAxcXF5w6dQolJSXo3bs3+0vaysqqUp+Rij788ENs3ryZfWxlZYWdO3eiZ8+eaNmyJVauXIk///yTbSHIz8/H7t27MWHCBI2fEyFEOCJGmVSSEEJIneTl5aF58+bYtm2bQp+W6qxYsQK7du3CoUOHeIiOECIUavEihBANMDExwe+//17jRKsVGRoaYtmyZRqOihAiNGrxIoQQQgjhCbV4EUIIIYTwhBIvQgghhBCeUOJFCCGEEMITSrwIIYQQQnhCiRchhBBCCE8o8SKEEEII4QklXoQQQgghPKHEixBCCCGEJ5R4EUIIIYTw5P+oe0g2WCE8+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = lc_raw.plot(axis_limits=[1.331126e8, 1.331134e8, None, None])\n", + "ax.plot(lc_filled.time, lc_filled.counts, color=\"navy\", drawstyle=\"steps-mid\", zorder=20)" + ] + }, + { + "cell_type": "markdown", + "id": "cbfb45d0", + "metadata": { + "id": "cbfb45d0" + }, + "source": [ + "The light curve seems reasonably clean, with no need for further cleaning. Otherwise, we would have to filter out, e.g. flares or intervals with zero counts, doing something along the lines of:\n", + "\n", + "```\n", + "new_gti = create_gti_from_condition(lc_raw.time, lc_raw.counts > 0, safe_interval=1)\n", + "lc = copy.deepcopy(lc_raw)\n", + "lc.gti = new_gti\n", + "lc.apply_gtis()\n", + "\n", + "plt.figure()\n", + "plt.plot(lc_raw.time, lc_raw.counts, color=\"grey\", alpha=0.5, label=\"Raw\")\n", + "plt.plot(lc.time, lc.counts, color=\"k\", label=\"Cleaned\")\n", + "plt.title(\"Light curve\")\n", + "plt.xlabel(f\"Time (s from {events.mjdref})\")\n", + "plt.ylabel(f\"Counts/bin\")\n", + "plt.legend();\n", + "\n", + "events.gti = new_gti\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "05aee649", + "metadata": {}, + "outputs": [], + "source": [ + "events = ev_filled" + ] + }, + { + "cell_type": "markdown", + "id": "53598bba", + "metadata": {}, + "source": [ + "## Hardness-intensity diagram\n", + "\n", + "Just for the sake of consistency, we verify that the hardness-intensity diagram of the source tells the same story as the analysis done by Wang+2021. This observation was marked as Epoch 0 there, well into the hard state" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "d5e09beb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "NICER was using 52 detectors\n" + ] + } + ], + "source": [ + "ndet = len(set(events.det_id))\n", + "print(f\"NICER was using {ndet} detectors\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "5ab316f8", + "metadata": {}, + "outputs": [], + "source": [ + "# Using the same intervals as the Wang+ paper.\n", + "# We use a segment size of 256 seconds, but we could make different choices depending\n", + "# on the quality of the dataset and the count rate.\n", + "\n", + "h_starts, h_stops, colors, color_errs = events.get_color_evolution(\n", + " energy_ranges=[[2, 4], [4, 12]], segment_size=256\n", + ")\n", + "i_starts, i_stops, intensity, intensity_errs = events.get_intensity_evolution(\n", + " energy_range=[0.4, 12], segment_size=256\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "054ca77b", + "metadata": {}, + "source": [ + "We compare the colors with the hardness-intensity diagram from [Wang et al. 2021](https://ui.adsabs.harvard.edu/abs/2021ApJ...910L...3W/abstract). The grey and red data plotted here were kindly provided by Jingyi Wang. The red dots indicate the points in the Wang plot corresponding to this observation. The difference in scatter is probably due to slightly different intervals being used in the analysis. Epoch 0 data are rescaled for 50 PCUs (as different observations had different number of working PCUs), while our data and the input data set from the complete outburst are rescaled to 52. We rescale everything to 50 for consistency with Wang+2021\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "03c5f5eb", + "metadata": {}, + "outputs": [], + "source": [ + "wang_data = Table.read(\"wang_data.csv\", names=[\"H\", \"I\"])\n", + "epoch0_wang_data = Table.read(\"epoch_0_data.csv\", names=[\"H\", \"I\"])\n", + "\n", + "epoch_zero_i = epoch0_wang_data[\"I\"]\n", + "epoch_zero_h = epoch0_wang_data[\"H\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e2cf5fce", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAG4CAYAAABRpnMVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD5cUlEQVR4nOzdd3xb1fn48Y+25SGPxHvJjrM32STEcQaGhgTCKqOQlDBKw/qFUSgtsxQoK1ACfGkLoWVT9sqeZOOQkJDpxI6XZCsekoeWpfv7Q+jWip1gJ/I+79fLL8dXV1ePHFt6fM5znqOQJElCEARBEARBCKDs7AAEQRAEQRC6IpEkCYIgCIIgtEAkSYIgCIIgCC0QSZIgCIIgCEILRJIkCIIgCILQApEkCYIgCIIgtEAkSYIgCIIgCC0QSZIgCIIgCEILRJIkCIIgCILQApEkCYIgCIIgtEAkSYIgCIIgCC1Qd3YAwWA0GjEYDCiVSqKjo1m3bl1nhyQIgiAIQjfXI5IkgC1bthAeHt7ZYQiCIAiC0EOI6TZBEARBEIQWdHqStHHjRubMmUNSUhIKhYLPPvus2TlLly7FaDQSEhLChAkT2LFjR8DtCoWC7Oxsxo0bxzvvvNNBkQuCIAiC0JN1+nRbfX09I0eO5IYbbuDSSy9tdvsHH3zA4sWLee2115gwYQJLliwhNzeXQ4cOERcXB8B3331HcnIyJpOJmTNnMnz4cEaMGNHi4zmdTpxOp/y11+ulqqqKPn36oFAo2udJCoIgCIIQVJIkUVtbS1JSEkplO435SF0IIH366acBx8aPHy8tWrRI/trj8UhJSUnSk08+2eI17rnnHunNN9885WM8/PDDEiA+xIf4EB/iQ3yIjx7wUVxcHIwUpEWdPpJ0Oi6Xi7y8PB544AH5mFKpZObMmWzduhXwjUR5vV4iIiKoq6tj7dq1XHnllae85gMPPMDixYvlr61WK2lpaRQXF2MwGNrvyQiCIAiCEDQ2m43U1FQiIiLa7TG6dJJ04sQJPB4P8fHxAcfj4+M5ePAgAOXl5cybNw8Aj8fDTTfdxLhx4055TZ1Oh06na3bcYDCIJEkQBEEQupn2LJXp0klSa2RmZrJnz57ODkMQBEEQhB6m01e3nU7fvn1RqVSUl5cHHC8vLychIaGTohIEQRAEoTfo0kmSVqtlzJgxrFmzRj7m9XpZs2YNkyZN6sTIBEEQBEHo6Tp9uq2uro78/Hz564KCAnbv3k1MTAxpaWksXryY+fPnM3bsWMaPH8+SJUuor6/nt7/97Vk97tKlS1m6dCkej+dsn4IgCEKH8Hg8uN3uzg5DEDqERqNBpVJ1agwKSZKkzgxg/fr15OTkNDs+f/58li1bBsDLL7/MM888g9lsZtSoUbz00ktMmDAhKI9vs9mIjIzEarWKwm1BELokSZIwm83U1NR0diiC0KGioqJISEhosTi7I96/Oz1J6mwiSRIEoaszmUzU1NQQFxdHaGioaHwr9HiSJNHQ0EBFRQVRUVEkJiY2O6cj3r87fbpNEARBODWPxyMnSH369OnscAShw+j1egAqKiqIi4vrlKm3Ll24LQiC0Nv5a5BCQ0M7ORJB6Hj+n/vOqsUTSZIgCEI3IKbYhN6os3/uRZIkCIIgCILQgl6bJC1dupQhQ4acdgsTQRAEQRB6r16bJC1atIj9+/ezc+fOzg5FEAShx3nttdeIiIigsbFRPlZXV4dGo2HatGkB565fvx6FQsHRo0c7OMpfVlVVxe23387AgQPR6/WkpaVxxx13YLVaA84rKipi9uzZhIaGEhcXx7333hvw3D/55BNmzZpFbGwsBoOBSZMmsWLFioBrbNy4kTlz5pCUlIRCoeCzzz7riKconEavTZIEQRCE9pOTk0NdXR3ff/+9fGzTpk0kJCSwfft2HA6HfHzdunWkpaXRr1+/zgiVBQsW8Mgjj7R4W1lZGWVlZTz77LPs27ePZcuWsXz5chYuXCif4/F4mD17Ni6Xiy1btvDWW2+xbNkyHnroIfmcjRs3MmvWLL755hvy8vLIyclhzpw5/PDDD/I59fX1jBw5kqVLl7bbcxXaSOrlrFarBEhWq7WzQxEEQWjGbrdL+/fvl+x2e2eH0maJiYnSk08+KX993333SYsWLZIGDx4srVu3Tj4+depUaf78+dK///1vacyYMVJ4eLgUHx8vXX311VJ5ebl83rp16yRAWr16tTRmzBhJr9dLkyZNkg4ePBjwuI8//rgUGxsrhYeHSwsXLpT+8Ic/SCNHjjxlnPPnz5cefvjhVj+vDz/8UNJqtZLb7ZYkSZK++eYbSalUSmazWT7n1VdflQwGg+R0Ok95nSFDhkiPPvpoi7cB0qefftrqmHqq0/38d8T7txhJEgRBENpFTk4O69atk79et24d06ZNIzs7Wz5ut9vZvn07OTk5uN1uHn/8cfbs2cNnn31GYWEhCxYsaHbdBx98kOeee47vv/8etVrNDTfcIN/2zjvv8MQTT/D000+Tl5dHWloar776alCfl795oVrtazW4detWhg8fTnx8vHxObm4uNpuNn376qcVreL1eamtriYmJCWpsQnCJZpKCIAi9iN1ux2q1EhkZKTfray85OTncddddNDY2Yrfb+eGHH8jOzsbtdvPaa68BvgTD6XSSk5NDWlqafN/MzExeeuklxo0bR11dHeHh4fJtTzzxBNnZ2QDcf//9zJ49G4fDQUhICH//+99ZuHChvL/nQw89xMqVK6mrqwvKczpx4gSPP/44N998s3zMbDYHJEiA/LXZbG7xOs8++yx1dXVceeWVQYlLaB9iJEkQBKGXsNvtbN68mY0bN7J582bsdnu7Pt60adOor69n586dbNq0iQEDBhAbG0t2drZcl7R+/XoyMzNJS0sjLy+POXPmkJaWRkREhJwIFRUVBVx3xIgR8r/921VUVFQAcOjQIcaPHx9w/slfv/POO4SHh8sf77zzDn/9618Djm3atKnZ87HZbMyePZshQ4acsoapNd59910effRRPvzwQ+Li4s74OkL7EyNJgiAIvYTVaqWqqgqDwUBVVRVWq7VdR5OysrJISUlh3bp1VFdXy0lPUlISqampbNmyhXXr1jF9+nTq6+vJzc0lNzeXd955h9jYWIqKisjNzcXlcgVcV6PRyP/2Nxv0er2tjmvu3LkBm6T/4Q9/IDk5mTvuuEM+lpycHHCf2tpaLrjgAiIiIvj0008DYkhISGDHjh0B55eXl8u3NfX+++9z44038tFHHzFz5sxWxyx0jl47kiT6JAmC0NtERkYSExODzWYjJiaGyMjIdn/MnJwc1q9fz/r16wOW/k+dOpVvv/2WHTt2kJOTw8GDB6msrOSpp57ivPPOY9CgQfLoUFsMHDiwWWuXk7+OiIggKytL/oiIiCAmJibgWNPk0Wazcf7556PVavniiy8ICQkJuN6kSZPYu3dvQLyrVq3CYDAwZMgQ+dh7773Hb3/7W9577z1mz57d5ucmdLxeO5K0aNEiFi1aJO8iLAiC0NPp9XomT57cYTVJ4EuSFi1ahNvtlkeSALKzs7nttttwuVzk5OSgVqvRarX8/e9/53e/+x379u3j8ccfb/Pj3X777dx0002MHTuWc889lw8++IAff/yRzMzMM4rfnyA1NDTw9ttvY7PZsNlsAMTGxqJSqTj//PMZMmQI1113HX/7298wm8386U9/YtGiReh0OsA3xTZ//nxefPFFJkyYINcq6fV6+T2orq6O/Px8+bELCgrYvXs3MTExAfVaQsfptUmS0HGqq6vZvXs3xcXF6HQ6JkyYQHx8vPxCDb6ag/r6ejIyMoiOju7kiAWh59Lr9R2SHPnl5ORgt9sZNGhQQHFzdnY2tbW1DBw4UK4rWrZsGX/84x956aWXOOecc3j22WeZO3dumx7v2muv5dixY9xzzz04HA6uvPJKFixY0Gw6rLV27drF9u3bAd/0YVMFBQUYjUZUKhVfffUVt956K5MmTSIsLIz58+fz2GOPyee+/vrrNDY2yn+g+82fP59ly5YB8P3335OTkyPftnjx4mbnCB1LIUmS1NlBdCb/SJJ/SadwdgoLC9m+fTsNDQ3yC/Hx48cDGscpFAoGDhyIQqHAYDDgcDg4dOgQjY2NhISEMG3aNHQ6HcnJyV0iYbLb7ezZs4djx46RmZnJyJEjO/RNRujdHA4HBQUFZGRkNJvmEVpn1qxZJCQk8J///KezQxHa6HQ//x3x/i1GkoSzUl1dzQ8//IDFYkGj0bB3795fvI8kSRw7dozhw4dTUVFBXV0dbrcbj8dDXV0dX331FWq1GoPBwJw5c6irq6OsrIzExERSUlJwOp1BnSo43ZJou93Ol19+yYEDBwA4cuQI27Zt49e//jVRUVEdOm0hCMIva2ho4LXXXiM3NxeVSsV7773H6tWrWbVqVWeHJnRDIkkSzlh1dTX//Oc/aWhoaPN91Wo1VVVVxMXFYTAYqK6uDri9sbGRqqoqPvroIxwOB16vF4VCQUxMDH369CE2NpbJkye3KTnxJ0M6nQ6n04lOp8NqtXLw4EG5kPXka1qtVkpKSgKuY7Vaee+99xgwYAANDQ0YDAYGDx6MVqvl+PHj2O12NBoNsbGxpKWliQRKEDqQQqHgm2++4YknnsDhcDBw4EA+/vhjsZJMOCMiSRLarLCwkB9++IHi4uIzSpD0ej2DBw9m+PDhco+Q+Ph41q5dG7AhJBBwfUmSqK6uxmAwYLFY2rR82d8fxmKxUF9fT0hICA6HA7VaTW1tLRkZGS0uiY6MjCQlJUUeSfKrr6/HZDKRkJBAfn4+paWlVFVVBcSr1WoZPHgwo0ePJi4uTiRLgtAB9Ho9q1ev7uwwhB5CJElCmxQWFvL222/j8Xhadb5er2fo0KFERERQVVVFQkICiYmJzZKGSZMmERMTw5dffkl9fT3g+4tQrVbjdrvl8yRJwmw2ExMTg06no7CwkM2bN1NRUYHL5SIxMZFZs2aRmJgYMI3m7w+j1WoxmUyEhIRgs9lISUmhrq6OqqoqkpKSmq101Ov1zJkzB51Ox+7du+XjBoOBxMREqqqqkCQJjUYTUHcFvtGwo0ePYrPZSEpKavPIlyAIgtC5RJIktMmBAwdalSAlJSUxZsyYNq1WGzhwIHFxcRw6dAi32010dDSFhYWUlJRQV1dHSEgIbreb5ORkPB4PBQUFfPPNNwHxFBQU8MYbb3DttdeSn59PVVUVMTExjBkzhpiYGCwWi1zgZzAY8Hg8ZGVlMXjw4FOO9uj1ei6++GIGDRpEXl4effv2Zdy4cYSEhFBeXs7Bgwc5ceIEISEhASNJKpUKlUpFTExMhzTuEwRBEIJLJElCq9jtdoqKigJGdVqi0+mYNm3aGa8Ai46OZuLEifLX/fr1k+uImtYPxcbGUlpa2mLC1tjYyIEDB6itrZU7CzudTrk/TNOapLYUgQ8cOJCBAwcGHDMajXI7A0mSAmqS9Ho9BQUF1NbWEhsbK/pxCYIgdDO9NklaunQpS5cubfW0UW9mt9tZs2YN+/btO22SlJqayrx584K6bL9pT5fo6OiA/krl5eXs2bOn2f+hWq1m8ODBASNJ/kSoPUZyml7X3+/FXwPldrvR6/WMGTNGjCIJgiB0M702SRIdt0/v5Hqe0tJS3G43/rZaGo0GpVKJSqUiNDSUiRMnMmTIkHZPBJomJEajkd/85jenrElqmlB1dILir4GKjo7GZrPhdDo79PEFQRCEs9drkyShZdXV1ezbt49jx46hUqlISEhgzJgxREdHy/sSabVaxowZw/Dhw1EoFJ3aJ8hoNGI0Glu8raM7Czfl3yOr6UiWIAiC0L2IJEmQmUwmPvroI7lnkT/BcDqdzJo1C4CamhqSkpI477zzxPTRaXTGHlmCIHRNBw8eZMGCBezevZtBgwYFrJQVujZlZwcgdA12u52VK1cGNHW02+2oVCoiIyOJjo5mzpw5zJ07lxkzZog3/VbQ6/UkJCQAYDabsdvtnRyRIHSsBQsWoFAomn1ccMEF8jlGo1E+HhYWxjnnnMNHH30UcJ2qqiruuusu0tPT0Wq1JCUlccMNN1BUVNTsMc1mM7fffjuZmZnodDpSU1OZM2cOa9asCXjMJUuWNLvvI488wqhRo077nIqKipg9ezahoaHExcVx7733NuvvdrKHH36YsLAwDh06FBBHZ0lMTOSpp54KOHb//fejUChYv359wPFp06Zx3XXXdWB0XYtIkgQAiouLMZlMAcfUajWTJk2SEyL/m75IkFrPX8C9ceNGNm/eTHV1tUiYhM5lt8Nf/+r73AEuuOACTCZTwMd7770XcM5jjz2GyWTihx9+YNy4cfz6179my5YtgC9BmjhxIqtXr+a1114jPz+f999/n/z8fMaNG8exY8fk6xQWFjJmzBjWrl3LM888w969e1m+fDk5OTkBm8qeKY/Hw+zZs3G5XGzZsoW33nqLZcuW8dBDD532fkePHmXKlCmkp6fTp0+fFs/5pZXDwTRt2rRmydC6detITU0NOO5wONi2bRvTp0/vsNi6GpEkCdjtdvLy8poVF/ft21dsqHmW/AXc/i7hGzZskBMmkSgJneLjj+HBB+GTTzrk4XQ6HQkJCQEfJ6+AjYiIICEhgQEDBrB06VL0ej1ffvklAA8++CBlZWWsXr2aCy+8kLS0NKZOncqKFSvQaDQByc/vf/97FAoFO3bs4LLLLmPAgAEMHTqUxYsXs23btrN+LitXrmT//v28/fbbjBo1igsvvJDHH3+cpUuX4nK5WryPQqEgLy+Pxx57DIVCwSOPPEJhYSEKhYIPPviA7OxsQkJCeOedd/B6vTz22GOkpKSg0+kYNWoUy5cvl6/lv9+HH34olzyMGzeOw4cPs3PnTsaOHUt4eDgXXnghFovllM8jJyeHzZs3yyNgtbW1/PDDD/zhD38ISJK2bt2K0+kkJyeHyspKrr76apKTkwkNDWX48OHNkt1p06Zxxx13cN999xETE0NCQgKPPPJIwDkHDx5kypQphISEMGTIEFavXo1CoeCzzz5r239GBxFJkoDVaqW8vLzZ8ejoaFFwfJb8Bdw2mw29Xo/dbpd7N1mtVux2uxhZEjrWhx/6Pp80pdVVqNVqNBoNLpcLr9fL+++/z7XXXitPXfvp9Xp+//vfs2LFCqqqqqiqqmL58uUsWrSIsLCwZteNioo669i2bt3K8OHDiY+Pl4/l5uZis9n46aefWryPyWRi6NCh3H333ZhMJu655x75tvvvv58777yTAwcOkJuby4svvshzzz3Hs88+y48//khubi5z587lyJEjAdd8+OGH+dOf/sSuXbtQq9Vcc8013Hfffbz44ots2rSJ/Pz8045u5eTkUFdXx86dOwHYtGkTAwYM4LLLLmP79u3y7gHr1q2TF8c4HA7GjBnD119/zb59+7j55pu57rrr2LFjR8C133rrLcLCwti+fTt/+9vfeOyxx+TNhT0eD5dccgmhoaFs376d119/nQcffLAN/wMdTxRu93LV1dX8+OOPWK3WgONarZZRo0aJqbWz1LSAW6fTkZeXJ6940+l0bNiwgYqKCuLi4pgwYUKbmlsKQquUl8MLL4B/OmfFCt/nb7+Fu+/2/VujgcWL4ee9FIPpq6++Ijw8PODYH//4R/74xz82O9flcvHcc89htVqZPn06FouFmpoaBg8e3OK1Bw8ejCRJ5OfnA75tiwYNGtSquP7whz/wpz/9qdnjDxky5JT3MZvNAQkSIH9tNptbvE9CQgJqtZrw8HA50Ttx4gQAd911F5deeql87rPPPssf/vAHrrrqKgCefvpp1q1bx5IlS1i6dKl83j333ENubi4Ad955J1dffTVr1qxh8uTJACxcuJBly5ad8nn079+f5ORk1q9fz6RJk1i/fj3Z2dkkJCSQlpbG1q1bycnJYf369eTk5ACQnJwckODdfvvtrFixgg8//JDx48fLx0eMGMHDDz8sP87LL7/MmjVrmDVrFqtWreLo0aOsX79e/l488cQT8sKgrkgkSb2U3W5nz549bNq0qcVNao1GI6mpqZ0QWc/TtBVB0xVv5eXl5Ofn4/V6qampob6+HpfLhV6vJzs7O6hNOYVezGSCJUvA6QSlEhQK33GPx3fc6wWdDq66ql2SpJycHF599dWAYzExMQFf+xMWh8NBeHg4Tz31FLNnz5ZHuP392U6nNec0de+997JgwYKAYy+99BIbN25s03XOxtixY+V/22w2ysrK5ETHb/LkyezZsyfg2IgRI+R/+5O04cOHBxzzt2w5FX9d0gMPPMD69eu59957AcjOzmb9+vVMnDiR7du3c9NNNwG+UaC//vWvfPjhh5SWluJyuXA6nYSGhp4yNvAViftjOXToEKmpqQGjgk0TrK6o1yZJvbnjtt1uZ8WKFc1+8fyMRiMXXHCBGM1oB00TJoVCIb+w+xMlj8cjF9BnZ2fLjSh1Ot0p95YThNMaNQry8uDyy+HwYV9yBL7PSiUMGgT//S8MHdouDx8WFkZWVtZpz/EnLOHh4cTHx6P4OZGLjY0lKiqKAwcOtHi/AwcOoFAo5OsrFAoOHjzYqrj69u3bLK6Tk7eTJSQkNJte8idyJ08HtkZL04KtodFo5H/7v1cnH/N6vae9Rk5ODnfeeSeVlZX88MMPZGdnA77Xnf/7v/9j6tSpuFwuuWj7mWee4cUXX2TJkiUMHz6csLAw7rrrrma1WE3jaG0sXVmvrUlatGgR+/fvl+dkexOr1UpBQUGz4wqFgtGjR3PllVeKUYwOEBcXR//+/YmKiiIrK4vIyEjq6uoIDw+nrq6OlStX8vHHH/PJJ5/w+eefs2HDBrE6TjgzQ4fCz6vFmtmypd0SpNbyJywJCQnymz6AUqnkyiuv5N133202nWW323nllVfIzc0lJiaGmJgYcnNzWbp0KfX19c0eo6am5qzjnDRpEnv37g0YpVm1ahUGg+G003StYTAYSEpKYvPmzQHHN2/efNbXbklOTg719fU8//zz9O/fn7ifRxGnTp3Kjh07+Pbbb+VpOX8cF198Mb/5zW8YOXIkmZmZHD58uE2POXDgQIqLiwNqYLv6e3CvTZJ6M4fD0eIUW1xcnGgS2YH802rnn38+M2bMYMaMGWRmZhIREUFISAilpaXY7XbcbjeNjY2YTCZWrVrFV199xZo1a0SiJLTNxo2+qTV/EqJQ+L7etKldH9bpdGI2mwM+/DU5rfHXv/6VhIQEZs2axbfffktxcTEbN24kNzcXt9sdUKvjnx0YP348H3/8MUeOHOHAgQO89NJLTJo06ayfy/nnn8+QIUO47rrr2LNnDytWrOBPf/oTixYtQqfTnfX17733Xp5++mk++OADDh06xP3338/u3bu58847z/raJ8vMzCQtLY2///3v8igS+PbgTEpK4vXXX5frkcBXX7Rq1Sq2bNnCgQMHuOWWW1pc8HM6s2bNol+/fsyfP58ff/yRzZs3y3VhTZPjrkQkSb1MdXU1n3/+ebPmZwaDgYsvvliMIHWwpr2noqOjyc3NJScnhxEjRqBWq1GpVPK5ISEhHDt2jIqKCn766SeKi4ux2+0cP36cwsJCkTQJp+df8j95MmzdCueeG3i8nSxfvpzExMSAjylTprT6/n369GHbtm3k5ORwyy230K9fP6688kr69evHzp07yczMlM/NzMxk165d5OTkcPfddzNs2DBmzZrFmjVrmtVFnQmVSsVXX32FSqVi0qRJ/OY3v+H666/nscceO+trA9xxxx0sXryYu+++m+HDh7N8+XK++OIL+vfvH5TrnywnJ4fa2lqmTZsWcDw7O5va2tqAJOlPf/oT55xzDrm5uUybNo2EhAQuueSSNj2eSqXis88+o66ujnHjxnHjjTfKq9u6arsZhdTWarcexr/BrdVqxWAwdHY47cput7Np0ya2bt3a7Lbo6GiuvPLKM5pXF4LPbrezYcMGzGYzoaGhjBo1iqqqKtauXYtSqcTr9TJ9+nRqamo4cuSIXJeRnZ0tRgJ7GIfDQUFBARkZGWf3RvLSS+Bw+Fa0qVS+mqTnnoOQELjjjuAFLAhtsHnzZqZMmUJ+fj79+vVrdvvpfv474v271xZu9yZ2u53y8nIOHjxIYWFhi+f07dtX9ETqQvxTcU33fmvarsFfg3H48GEkSUKSJCoqKrBarXKSZLfbxd5xwv+cnAipVHDffZ0Ti9Brffrpp4SHh9O/f3/y8/O58847mTx5cosJUlcgkqQezj8iUVxcTENDA8nJydTU1OD1elEoFISEhJCQkCBWs3VBTVfCgW+074orrqC0tJTk5GR5+s1qtaJQKIiLi5MTXf92KP6eTJMnTxb/v4IgdLra2lr+8Ic/UFRURN++fZk5cybPPfdcZ4d1SiJJ6uGKi4vl5bMul4va2lqGDRtGUlISiYmJKBQKMdLQjURHRwfUjWVnZ8sN9eLj4+X/x6bbofi7e4v/Y0EQOtv111/P9ddf39lhtJpIknowk8nEunXrsNlsKBQKdDod6enpZGZmBryhCt2XXq8nPT292XH/dij+kaSWplL907D+USjx8yAIghBIJEk9lMlk4v3338dmswG+brQOh4Pvv/+esrIyEhISxBRMD9Z0O5SWRgr907D5+flIkkT//v3FtiiCIAgnEUlSD1RdXc0333wjJ0hNOZ1OADEF0wucXNPUlNVqpaKiQu6EazKZ2LBhAy6XS9QwCYIg/Ez0Seph7HY7a9askbe2OJl/CeWppmCE3iEyMpK4uDiUSiUKhYKIiAjsdntADZMgCEJvJ0aSehir1UptbS1KpVLel06lUtGnTx+GDRtGVlaWKNYW5BYDgwYNQqFQYDAYyMvLO20NkyAIQm8jkqQeJjIyksTERKxWK3a7Hb1eT2pqKtOnTxfdtIUAer0eo9Eof326GqaTiR5M3ZPLBX/9q+/ff/wjaLWdG48gdHW9NklaunSpvM9PT+IfIRg8eDAOhwOdTidWsgmtcroapqZEDyahvT3yyCN89tln7N69u7ND6fIUCgWffvppm7cIacm0adMYNWoUS5YsOetr9RS9tiZp0aJF7N+/v8vvQNxadrtd3h3evyx84MCBGI1G8QYmBFVLPZiErk+SoLAQDh2CvXvhyy/h+HHf8fZisVi49dZbSUtLQ6fTkZCQQG5ubsBO9wqFgs8++yzgfvfccw9r1qxpv8CEFn3yySc8/vjjnR1Gl9JrR5J6kurqajZs2IDdbic2Nlb8ZS+0q9b0YBK6FrsdPvsM+vSB9HTQ6eC88+Cnn2DLFpg3z7eFW7BddtlluFwu3nrrLTIzMykvL2fNmjVUVlae9n7h4eGEh4cHP6CTuN1uNBpNuz9OdxETE9PZIXQ5vXYkqSew2+0cPnyYr7/+mvz8fKqqqjCbzeIve6Fd+XswTZ06VSTk3YAk+RKkqVNh2jRfMqRQQFQU5OT4jn/6afBHlGpqati0aRNPP/00OTk5pKenM378eB544AHmzp0LINfEzZs3D4VCIX/9yCOPMGrUKPlaCxYs4JJLLuHZZ58lMTGRPn36sGjRItxut3yOyWRi9uzZ6PV6MjIyePfddzEajQFTRwqFgldffZW5c+cSFhbGE088gcfjYeHChWRkZKDX6xk4cCAvvviifJ+NGzei0Wgwm80Bz++uu+7ivPPOO+Xzf/755xk+fDhhYWGkpqby+9//nrq6Ovn2ZcuWERUVxYoVKxg8eDDh4eFccMEFASuTd+7cyaxZs+S9NbOzs9m1a9cpH3P69OncdtttAccsFgtarVYemXvllVfo378/ISEhxMfHc/nll8vnTps2jbvuukv++nTn9hYiSeqm/M0Av/76awoLC2loaKCqqoqamhp0Ol1nhyf0cHq9noSEBJEgdWEul+8jP983ghQb6/va4/F9+G+PjYWYGN95weQfDfrss8/k/mwn85c7vPnmm5hMptOWP6xbt46jR4+ybt063nrrLZYtW8ayZcvk26+//nrKyspYv349H3/8Ma+//joVFRXNrvPII48wb9489u7dyw033IDX6yUlJYWPPvqI/fv389BDD/HHP/6RDz/8EICpU6eSmZnJf/7zH/kabrebd955hxtuuOGU8SqVSl566SV++ukn3nrrLdauXct9J20o3NDQwLPPPst//vMfNm7cSFFREffcc498e21tLfPnz+e7775j27Zt9O/fn1/96lfU1ta2+Jg33ngj7777bsD3++233yY5OZnp06fz/fffc8cdd/DYY49x6NAhli9fztSpU1u8VlvO7cnEdFs3ZbVaMZlMOBwOvF4vkiShUChwOp1YLBaxkk0Qejn/KrZDh3xTbFu2+JKjTZv+d45K5fvscMCyZfDee8F7fLVazbJly7jpppt47bXXOOecc8jOzuaqq65ixIgRAMTGxgIQFRVFQkLCaa8XHR3Nyy+/jEqlYtCgQcyePZs1a9Zw0003cfDgQVavXs3OnTsZO3YsAP/85z/p379/s+tcc801/Pa3vw049uijj8r/zsjIYOvWrXz44YdceeWVACxcuJA333yTe++9F4Avv/wSh8Mh396SpiMyRqORv/zlL/zud7/jlVdekY+73W5ee+01+vXrB8Btt93GY489Jt8+ffr0gGu+/vrrREVFsWHDBi666KJmj3nppZdy22238fnnn8uxLVu2jAULFqBQKCgqKiIsLIyLLrqIiIgI0tPTGT16dIvxt+XcnkyMJHVDdrtd7qbd2NiIQqEAfH+5OJ1O9u7di91u78wQBUHoIlwuXw3S6eh0vvOC7bLLLqOsrIwvvviCCy64gPXr13POOecEjAC11tChQ1H5szogMTFRHik6dOgQarWac845R749KyurxT8W/UlUU0uXLmXMmDHExsYSHh7O66+/TlFRkXz7ggULyM/PZ9u2bYAv8bjyyisJCws7ZbyrV69mxowZJCcnExERwXXXXUdlZSUNDQ3yOaGhoXKCdPJzAigvL+emm26if//+REZGYjAYqKurC4itqZCQEK677jreeOMNAHbt2sW+fftYsGABALNmzZL377zuuut45513AuJpqi3n9mRiJKkb8W9Iunv3bvLz87Hb7Xi9XhQKBVqtFqVSSWRkJC6XS2w5Igi93B//6Pv85Ze+Iu2oqMBE6A9/+F+fpJqawBGmYAoJCWHWrFnMmjWLP//5z9x44408/PDD8ht3a51cYK1QKORtddri5MTm/fff55577uG5555j0qRJRERE8Mwzz7B9+3b5nLi4OObMmcObb75JRkYG3377LevXrz/lYxQWFnLRRRdx66238sQTTxATE8N3333HwoULcblchIaGnvI5SU2Kw+bPn09lZSUvvvgi6enp6HQ6Jk2ahOs0Ge2NN97IqFGjKCkp4c0332T69OnyJtgRERHs2rWL9evXs3LlSh566CEeeeQRdu7cSVRUVMB12nJuTyZGkroJf2+a9evXs3//furr6+UXCEmS0Gg0JCcnExkZSWxsrFhxJAi9nFbr+xg71reKzf+1SuX78H+t1cK+fb7zOsKQIUOor6+Xv9ZoNGfdr27gwIE0Njbyww8/yMfy8/Oprq7+xftu3ryZc889l9///veMHj2arKwsjh492uy8G2+8kQ8++IDXX3+dfv36MXny5FNeMy8vD6/Xy3PPPcfEiRMZMGAAZWVlbX5emzdv5o477uBXv/oVQ4cORafTceLEidPeZ/jw4YwdO5Z//OMfvPvuu83qptRqNTNnzuRvf/sbP/74I4WFhaxdu7bFa7Xl3J5KjCR1ExUVFZSVlaHT6Vr860mlUjF+/HgMBoPogiwIgiwtzVePVFrqK9I+WWkplJf7VroFU2VlJVdccQU33HADI0aMICIigu+//56//e1vXHzxxfJ5RqORNWvWMHnyZHQ63RnVUw4aNIiZM2dy88038+qrr6LRaLj77rvR6/VyOcKp9O/fn3//+9+sWLGCjIwM/vOf/7Bz504yMjICzsvNzcVgMPCXv/wloG6oJVlZWbjdbv7+978zZ84cNm/ezGuvvdbm59W/f3/+85//MHbsWGw2G/fee2+rXttvvPFGbrvtNsLCwpg3b558/KuvvuLYsWNMnTqV6OhovvnmG7xeLwMHDmx2jbac25OJkaRuwG63c+DAAWw2GxaLhaioKNRqX36rVCoJDw+nf//+pKamihVHgiAEUCh8fZA2boR163xF2pLkm2Jbu9Z3fN4833nBFB4ezoQJE3jhhReYOnUqw4YN489//jM33XQTL7/8snzec889x6pVq0hNTT2rwuB///vfxMfHM3XqVObNm8dNN91ERESEvKn3qdxyyy1ceuml/PrXv2bChAlUVlby+9//vtl5SqWSBQsW4PF4uP766097zZEjR/L888/z9NNPM2zYMN555x2efPLJNj+nf/3rX1RXV3POOedw3XXXcccddxAXF/eL97v66qtRq9VcffXVAc8/KiqKTz75hOnTpzN48GBee+013nvvPYYOHdrsGm05tydTSFJ79lvt+mw2G5GRkVitVgwGQ2eH0yKz2czGjRvR6/VUV1czceJEJEnCYrEgSRJxcXGkpaWJ5EgQeiCHw0FBQQEZGRm/+IZ/OpLkW+b/0EO+2qRrrvFNsaWlBT9B6gpKSkpITU2VC6iDYeHChVgsFr744ougXK+9FBYW0q9fP3bu3BlQzN4dne7nvyPev9s03VZTU8Onn37Kpk2bOH78OA0NDcTGxjJ69Ghyc3M599xz2yXI3sxut+NwODAYDFRXV2MwGIiNjSUkJITi4mKqqqpwOp2kpaV1dqiCIHRhCoWvFYB/tmTOnJ61we3atWupq6tj+PDhmEwm7rvvPoxGY1B6+1itVvbu3cu7777bpRMkt9tNZWUlf/rTn5g4cWK3T5C6glZNt5WVlXHjjTeSmJjIX/7yF+x2O6NGjWLGjBmkpKSwbt06Zs2axZAhQ/jggw/aO+Zew1+svWPHDhobG9FqtdjtdvLy8iguLqasrIzQ0FCxf5YgCK2i1cIjj/g+elKCBL4E4Y9//CNDhw5l3rx5xMbGsn79+qBsO3LxxRdz/vnn87vf/Y5Zs2YFIdr2sXnzZhITE9m5c+cZ1UAJzbVqJGn06NHMnz+fvLw8hgwZ0uI5drudzz77jCVLllBcXBzQNVQ4M003EvX3zoiLi8NisWC1WrHZbFitVrmHhiAIQm+Vm5tLbm5uu1z7dMv9u5Jp06bRyytogq5VSdL+/fvp06fPac/R6/VcffXVXH311b+4eaHwy+x2O1arFY/Hw/Hjx4mPjyckJASbzYZer8dut5Oenk51dTWDBg0S9UiCIAiCEGStSpL69OnDV199xa9+9SuUyl+eofulhEo4Pf++bIcOHaK2tlZuMHbxxRejUCjQ6XTk5eVRVVVFUlIS8fHxnR2yIAjtTIwQCL1RZ//ct7oFwCWXXEJqaioPPvgg+cHeCbETLF26lCFDhjBu3LjODqWZiooKiouLcTqdcpO12tpaKisrSUhIIDo6WuzCLgi9hL+mpjduCSEI/p/7YNSWnYlWtwAoLi7mzTff5K233qKwsJApU6Zw4403cvnll3frN+mu1gLAP4p08OBBamtr5W1H4uLi5JEk0SxSELoG/7R4e/9OmkwmampqiIuLIzQ09BcbJApCdydJEg0NDVRUVBAVFUViYmKzczri/fuM+iStW7eOZcuW8fHHH6NWq7nqqqtYuHBhlxyV+SVdLUny90RqbGzk2LFjqFQq1Go1M2bMoKqqiqqqKmJiYsQIkiB0Mv/q0474nZQkCbPZTE1NTbtcXxC6qqioKBISElr8w6DL9Unyy8nJIScnh5dffpn333+fZcuWMXHiRIYNG8aePXuCHWOvEhkZSUxMDMePH0eSJDweDwqFApfLJa908y/5F0mSIHSepqtP2/t3UqFQkJiYSFxcHG63u10eQxC6Go1Gg0ql6tQYzmrvtoiICGbMmMHx48c5ePAg+/fvD1ZcvZZer2fy5MmEh4djsVjkmqTw8HBiYmLkv1rFkn9B6Fz+P2g68ndSpVJ1+puGIPQmZ5Qk2e12PvroI9544w02bdpERkYGixcvZsGCBUEOr3fS6/UkJCQQGhqKx+NBpVIRHh7O5MmTO6T+QRCEX+b/g0b8TgpCz9WmJGnbtm288cYbfPjhh7hcLi699FJWr15NTrC3jxaIj49nwIABVFRUEBcXR3x8PHq9XrwQC0IXIn4nBaFna3WSNGTIEA4dOsTo0aN58sknueaaa8SUTzvS6/VkZ2eLv1IFQRAEoZO0OkmaOXMm7733HiNHjmzPeIQmxF+pgiAIgtB5Wp0kvfTSS/K/GxsbWb9+PUePHuWaa64hIiKCsrIyDAYD4eHh7RKoIAiCIAhCR2pz4fbx48e54IILKCoqwul0MmvWLCIiInj66adxOp1i52FBEIQg66imlYIgBGr1tiR+d955J2PHjqW6ujrgl3XevHmsWbMmqMEJgiD0dv6mlRs3bmTz5s3Y7fbODkkQeo02jyRt2rSJLVu2oNVqA44bjUZKS0uDFpggCILQsU0rBUEI1OaRJK/XKzc4bKqkpISIiIigBCUIgiD4+JtW2mw20UhWEDpYm5Ok888/nyVLlshfKxQK6urqePjhh/nVr34VzNgEQRB6PX/TyqlTp4o9GzuK3Q5//avvs9CrtTlJeu6559i8eTNDhgzB4XBwzTXXyFNtTz/9dHvEKAiC0Kv5u/CLBKmdnJwUffwxPPggfPJJ58YldLo21ySlpKSwZ88ePvjgA/bs2UNdXR0LFy7k2muvFb/AgiAIQvfjT4oSE8Fkgi1bfMc/+giuvbZzYxM6lUKSJKktd3jvvfe4+uqrW7zt3nvv5ZlnnglKYB3FZrMRGRmJ1WrFYDB0djjCGRJLpAWhd3E4HBw/fpzS0lIGDRqEQqE4o+vY7XYU115LyLZtoFZDYyMoleD1gkIB55wDo0ZBSAjccgv07Rtw/9DQUFEn1kk64v27zSNJt956K1FRUVx44YUBx//f//t/vP/++90uSRK6P/8Saf9u7KJuQxB6HqfTSVFREQUFBRQWFmIymbDb7ezfv5+RI0eiUqladR23242rqgrNzp1IJSXUhYcTffSor/aksREJqPGmUsEIXFIY2rx64vNWEaksRdHYCAkJAdfTaDTcdtttIlHqodqcJL3zzjtcffXVfPXVV0yZMgWA22+/nU8++YR169YFPUBB+CViibQg9Dwul4vi4mI5KSorK8Pr9WIwGDAajYwbN46QkBA++OADLr30UmJjY3/xmna7nZ07d+L64Qdydu1CJUlI5eVI+Ap07YTwLZcQh0RfYiklHRc6nKoc1LdexLX/L5ymLy0Wi4VPPvmEhoYGkST1UG1OkmbPns0rr7zC3LlzWbVqFf/617/4/PPPWbduHQMGDGiPGAXhtPxLpP0jSa15sRLTc4LQtbjdbkpKSuSkqLS0FI/HQ3h4OEajkdGjR2M0GomJiZGn1kwmEwCxsbEkJib+4mMcP34cp9OJNHgwJCSQaDIhAQpAAv7NFTiJ5hhZSEiUk8Rx0nB7tChfcZL3VhHvXPUVYX95AOLi2u+bIXQZbU6SAK655hpqamqYPHkysbGxbNiwgaysrGDHJgit4l8i3dqkR0zPCULna2xspLS0VE6KSkpKaGxsJDQ0FKPRyAUXXIDRaKRv375nXG/UlL2wEM999zH8xAkkSSLBbAZ8CRJAIWlsYSJ7GEU1UdQQTQolzOYLUillq/dcNtdO5vx/XMZX15qJFklSr9CqJGnx4sUtHo+NjeWcc87hlVdekY89//zzwYlMENpAr9e3OtER03OC0PE8Hg9lZWVyUlRcXIzb7Uav15Oens6sWbMwGo3ExcUFJSk6WfX+/aR/+imqxkYkhQKvQgE/r1uyE8JjPMQuzkGBhxoMhFFLKUm8y/WkUswUNjCFTRzSjOTO51JZdl7QQxS6oFYlST/88EOLx7OysrDZbPLt7fGDLQjBdibTc4IgtI3X68VkMslJUVFRES6XC51OR3p6OtOnT8doNBIfH49S2eaWfW1it9v5Uamk6r77uOCf/yTKYkHl9QK+abZPuIRDDCSUOhyEUI8BFyGARAZHqSGCj/g1qRwnxF2DvdDM1q3RZGa2a9hCF9CqJKknFmQvXbqUpUuXtrjFitCztXV6ThCEX+b1eikvL5eTIn/9j1arJS0tjezsbIxGI4mJie2SFLVUZ+g/5nQ6OXHiBM7MTN763e+48/HH5fsVkYYSCSdaLPQlERMj2c1hBlBDFLsYjwErKRRzjH5ocJPRV8M338BttwX9aQhdzBnVJPUEixYtYtGiRXKfBaF3acv03MlE0bcggCRJVFRUyElRYWEhDocDjUZDamoqU6ZMwWg0kpSU1Orl+WfKbrfz008/yaPDY8aMwWq1cvDgQU6cOEFDQwMWi4XGxkYGHj6MUpLkgu3djERCgRcFGtwUkoESL05CANDiIAQnmRRSQhL5usFIGdHYbO36lIQuotcmSYJwJkTRt9BbSZLEiRMnApKihoYGVCoVqampTJo0CaPRSHJyMmp1x7611NbWUlVVRWhoKMXFxVRWVsr1hh6Ph8bGRvncQQcOAFCUlsaqWbNQ/duNzu3CixIlEko8VBKLBzUqGhnKT0xlE4mY+FRxCV6Ph6qNe0iY3a9Dn6PQOUSSJAhtIIq+hd5CkiSqqqoCkqK6ujpUKhXJycmMHTuWjIwMUlJS0Gg0HR6f3W6noqICu91OZWUltbW1FBQUIEkSjY2NpyylMCUmYomNZeu55yIplRz/VSoTV20hvKEeN2oSqCWGasKp4wBDKCOVYtKoIA6N5CKssZ6yfDv3jCoDIjr2SQsdTiRJgtAGouhb6KkkSaKmpiYgKbLZbCiVSpKSkhg1ahQZGRmkpqai1WrP+vGaTls7HA5KS0tJTk4mOjr6tOfq9Xqqq6tZs2YNx48fZ9++fSgUilb/sbJj4sSAr/uF5RPWUE8sJ6glgv4c4UdGMYDDRFGNDhfxmDjAEKxEEU0VdZlDmHS9gfJy01l/H7qz3lB6IJIkQWgDUfQt9CRWq1VOigoKCrBarSgUChITExk2bBgZGRmkpaWh0+nO+rHsdjvl5eU4nU5cLhf79u2jpqYGrVZLVVUVjY2NhISEMHLkSEaPHi0nS9XV1WzYsAG73U5sbCxDhw5l+fLllJSUUF9fT0NDQ8B0Wlu5++vYNmEiGduPUUg6EdQyhU1sZwLh1JGAiTzOwUkI5cShzwjl5lt1+GvP3W43FRUVREVFnfXrQXdKOnpL6UGbk6SSkhKioqIIDw8POO52u9m6dStTp04NWnCC0BWdTdG3IHQm/5SUPymqrq4GICEhgSFDhmA0GklPTyckJCSoj2u329mwYQMHDx6kvr4er9eL9+cl+E25XC42bdrEjh07GDx4MBqNhkOHDmGz2QgJCaG2tpYjR45QUVEB+BpStnGP9mYUCoicWUuJJgHXdxq2MZHr+TeZHOUbZrONyWh+Hk0azH5GDEvn8svj5edVXFzMtm3bsFgsZ5UodLeko7eUHrQ6STKZTFx88cXk5eWhUCi45ppreOWVV+RkqaqqipycHLGkXhAEoYuoq6uTp84KCgqorKwEIC4ujv79+5ORkUF6ejqhoaHtGofVasVkMrV61MfpdLJ79+6AYw6HQ96GJNg0Gg+5yWu4iyVcxQe8yiL6coLB/MSv+JqNA7ORjquY6VhLXNVA0tOHAb6k0263ExERcdaJQndLOnpL6UGrk6T7778fpVLJ9u3bqamp4f777ycnJ4eVK1fKw6Jnm9ELgiAIZ66hoSEgKbJYLAD07duXjIwMuYFjWFhYh8YVGRmJwWCgrKysQx+3LQYfPMAofmIXY3iaP7CHUVSQiI0oovVukm+NJ754CldOLMPfNzkiIgK9Xk9tbS39+vU7q0ShuyUdvaX0oNVJ0urVq/n0008ZO3YsAJs3b+aKK65g+vTprFmzBhAdtwVBEDqSw+EISIrKy8sBiImJwWg0MnXqVIxGIxERnbsKS6/XM336dDweD8XFxTgcjrOqIwLQaDSEhYUFbWWdKTGRuPJyksxmfpu6jA8n/ZqUr4pRNIBHPYRxt1zAgAFjafo2p9frSU1NZeLEiQwYMOCsEoXumHT0htKDVidJVqs1YNWBTqfjk08+4YorriAnJ4e33367XQIUBCFQdyruFILL6XRy/PhxOSkym81IkkRUVBRGo5Fzzz0Xo9HY7qMQ/p9BSZI4fvw4CoWCAQMGtLgyzS86Opo5c+ZQXFxMdXU1NTU17Ny5Uy7RSE9PJz09nZqaGk6cOHHaUaepU6cyaNAgiouLqaiowGAwnHImQ6fT0djYiEKhQK1W4/F4UCqVREdHU1dXR11dHfC/VW8/NTbK7QGODh7I3CNHGHxOKNqBLddpaTQa4uLigvK72BuSju6m1UlSZmYmP/74I/379//fndVqPvroI6644gouuuiidglQEIT/6W7FncLZcblcFBUVyUmRyWTC6/ViMBgwGo2MHz8eo9F42uQk2Pw/g2azGZPJhMPhQJIkduzYweWXX05iYmKL97FarTgcDrZt20Z9fT2xsbGkpqbKP8sTJ04kLS0NvV6P3W7n66+/pqioiNraWvk6Op2OefPmMXDgQPmYQqHA6/USFxeHzWZDp9OhUCiIj4/nggsuAKCgoIDw8HBiY2Ox2WxIkoRCoWDt2rVIkoTb7UaSJIouuQS3242uvh6lUkl6ejppd96JtgO/v0LX0uok6cILL+T111/nsssuC7zAz4nSZZddRklJSdADFAThf7pbcafQNm63m+LiYjkpKi0txev1Eh4ejtFo5JxzzsFoNBITE9Np5Q3+n0HwJT/+EZyamhrWr1/PJZdcEvAz2TSpKioqwu12A8gr1JRKJQ0NDXz33Xekp6fLif/s2bPl0aqioiIkSWLgwIHNEsKIiAjCw8NxOBz07duX2bNno1AoAkZam97H/2+73U5iYiJ1dXWEhIRgNBoZPnw4BoNBboUQrBEioftqdZL0xBNP0NDQ0PJF1Go+/vhjSktLgxaYIAjNdbfiTuH0GhsbKSkpkZOikpISPB4PoaGhGI1GLrzwQoxGI3379u0yNZ/+n0Gz2SyP+kiShE6nw+PxNEvc/UmV0+mUE6Sm/O0A6uvrsVgs8v2bTj21NDrl50+oPB7PKZtRnup+2dnZDB48GEmSiI+PbzGpEnq3VidJarUag8Fw2tvT09ODEpQgCC3rjsWdwv94PB5KS0vlpKi4uJjGxkb0ej3p6emcf/75GI1G4uLiukxSdLKmP4OSJJGfn09BQQFKpZKEhIRmiXvTpOp07HY7er3+jBL/qKio0yZSp+L/vgvCqQSt43ZxcTEPP/wwb7zxRrAuKQhCC9pa3OmvB9HpdDidzoDkShSBty+v10tZWZmcFPmnm3Q6Henp6cyYMQOj0UhCQkKXTYpacvIoz9ixY+WfMavVKp/j/zx58mQSEhL4+uuvcTgcza6nVCpJTk4mOztb/BwKXUrQkqSqqireeustkSQJQhfirwexWCzU19cTFhZGbGwskydPBhBF4EHm9Xoxm80BSZHT6USr1ZKWlsa0adMwGo0kJiai9O9r0QP4f25O9fOk1+sZNmwYkiSxadMmtFot5eXlaDQaJEkiISGBkSNHYrPZAJol87/E3w+qo+3du5eCgoJOeWyhY7Q6Sfriiy9Oe/uxY8fOOhhBEILLXw+i1WoxmUxER0fLBd+AKAI/S5IkUV5eLidFx48fx+FwoNFoSE1NZcqUKRiNRpKSklCpVJ0dbrtqzaKCrKwsysvLsVgsxMfHExISQkhICGq1mlWrVuF0OlGr1eh0OtLS0sjNzT3tz2RoaCgajYZPPvmkvZ9eM16vlx07dmAwGNq9Y7nQeVqdJF1yySUoFIrTdtXuTsPFgtAb+OtBLBYLBoMBl8tFbGysXPchisDbRpIkLBZLQFLU0NCAWq0mJSWFSZMmYTQaSU5ORq3uXfuHt7So4OTp3Kb1TP7pX4fDwYoVK+Sl/i6Xi4aGBmw2G1lZWQwbNuy0j3nbbbedclFRe9q6dSsOh4Pf/e534nenB2v1b3FiYiKvvPIKF198cYu37969mzFjxgQtMEEQzl5Lb0pNpzFEEfjpSZJEZWWlnBQVFhZSX1+PSqUiOTmZcePGYTQaSU1N7XVJ0cn8P2vl5eUoFAocDgd5eXlYLBZ5JVl0dHSzmjq73d7iZrcej6dV02iRkZEdnqTU1NSwf/9+zj//fDIzMzv0sYWO1erf6jFjxpCXl3fKJOmXRpkEQegcpyv0Fh1+A0mSRHV1dUBSVFtbi1KpJCkpSe5TlJqailar7exwu6T8/Hx5ireuro6GhgZ5Y9qWps/8W5Z89NFHARukazQaQkJCqK6ubnONUntbvnw5oaGhTJ06tbNDEdpZq5Oke++9l/r6+lPenpWVxbp164ISlCAIQkexWq1yQlRQUCA3EkxMTGTEiBEYjUbS0tLQ6XSdHWqX17Quqbq6GpVKRV1dHeHh4fLUW0uJzsCBA7niiivYvXs3arWa/Px8XC4X69evZ8+ePURGRsoLDjo7UTpy5AgHDx7kiiuuEIlyL9DqJOm888477e1hYWFkZ2efdUCCIHQf3bGFQG1tbUBSVF1dLW9jMWTIEIxGI+np6YSEtLxXl3BqTeuSYmNjGTp0KNu3b8dutwfUwp3MbrdTXFyM1+ulpKREbhPgcrk4ceIEOp0uoNFkZ2lsbOTbb78lMzOTIUOGdFocQsc5q0n09957j7lz5xIWFhaseARB6Ca6yz5ydXV1FBYWyklRZWUlAHFxcQwYMACj0YjRaOySsXc3LTU7zc3NPWUi7U+ynU4nZrMZp9PZrAjb4/FQUlJCbGxsp4/mbdmyhZqaGq6++mqxUKmXOKsk6ZZbbmHChAmicE0QeqGuuo9cQ0NDQE2Rv/i3b9++ZGZmMn36dIxGo/jjrp2cXOd2qrq3pkm2v0VFS40mwVfzqlQqcTqdAffvyFHMmpoaNm3axKRJk4iNjW33xxO6hrNKkkShtiD0Xl1lHzm73c7x48flxKi8vBzwtTfIyMhg6tSpGI1GIiIiOiU+oWVNk+yjR4/S0NBwygVAHo8nYBVbZ4xirlixgpCQEFGs3cv07jWrgiCcsc7aR87pdAYkRWazGUmSiIqKIiMjg3PPPRej0Sh613Rx/iS7tLRUbm56uj+8jx07xp49e9BqtYSHh3foKGZ+fj4HDhzg8ssv7/QpP6FjnVWS9O2335KcnBysWARB6GY6ooWAy+WiqKhITopMJhNerxeDwUBGRgbjx48nIyODqKiodo1DCC69Xs+YMWMoKSkJWPp/Ki6Xi5UrV6JWq4mJiSElJQWbzdbuo5iNjY188803ZGRkMHTo0HZ7HKFrOqskacqUKSxbtox58+aJv9oEQQgKt9tNcXGxnBSVlpbi9XoJDw8nIyODc845h4yMDKKjo0XxbDfn34ZEo9EE1Budin+kqba2lqSkJJKSkuRRzPaqUdq6daso1u7Fznq67eabb2bChAkiSRIEoc3sdjuVlZVUVlZy9OhRysrKKCoqQqPREBUVhdFoZMSIEWRkZNCnTx/xJtXDREZGkpCQgNfrlVsxOJ1OXC4XjY2NLd7H6/USGRkpJ8rQfjVKVquVjRs3MnHiRFGs3Uu1OkmKiYlp8XhjYyOTJk2Sd7SuqqoKTmSCIPRIHo+H0tJSDh06xKpVqygsLMThcBAaGkpkZCQpKSkMGjSI2bNni41De7imdW2SJLF9+3Y5aW4pSYqIiGDUqFGkpKQAYDabiYyMbLeVlsuXLyckJET0AOzFWp0kud1usrOzueKKK+RjkiRx4403ct9994naJEEQWuT1eikrK5Onz4qKinC73bhcLpxOJ6NGjcLlctGvXz8sFgvp6el4PB5sNptIknoBf12b2WzG5XLRp08fqqurm50XEhJCeno6LpeLvLw86uvrCQsLIzY2ljFjxgR9peXRo0c5cOAAl112mSjW7sVanST98MMPXHPNNaxdu5alS5cSHh4OwE033cQll1wiuo8KggD4kiKz2RyQFDmdTrRaLenp6UybNo2MjAwiIyPZunUrFouF+vp6FAoFBoMBl8t12u7MQvfnrx9quulyZGQkBoOBI0eOoNFoiIiIoK6uTq5DUqlUVFRUEBISgsFgwGQyER0dTVVVFU6nM6grLf3F2kajkWHDhgXjKQvdVKuTpKysLLZs2cKDDz7IqFGjeOutt5g8eXJ7xiYIQjcgSRLl5eVyUnT8+HEcDgcajYa0tDSmTJlCRkYGiYmJqFSqgPv639j8b5ZN3zS7QmNKIfj89UP+5Ng/GjR58mQGDRpERUUF0dHRlJeXY7fb5Wm3+vp6nE4n0dHRaDSaZgl1MFdabt26lerqan7961+LOrherk2F22q1mqeffprc3FyuueYarr32WvEDJAi9jCRJWCyWgKSooaEBtVpNamoqkyZNIiMjg+Tk5GZJ0ck6ooWA0LX464f8Xbb9o0FWq5X4+HiSkpKoqqoiOjqa2tpaGhoaaGxslN9rHA4HEydOJCMjo10San+x9oQJE4iLiwvadYXu6YxWt02fPp1du3Zx0003ERYW9osvhIIgdF+SJFFZWRmw1Ud9fT0qlYqUlBTGjRtHRkYGKSkpqNWiP61wev4mkhaLpcXRoKaji9u3b6e0tBSbzUZDQwMqlUruk+Rf2RZsK1asQKfTMW3atHa5vtC9nPErWp8+ffjkk0+CGctZaWhoYPDgwVxxxRU8++yznR2OIHRbkiRRXV0dkBTV1taiVCpJTk6W+xSlpqai0Wg6O9wALdW6iJGqruXkROjk/6emo4vZ2dnyyrdNmzZRU1NDUlIS8fHx7RLb0aNH2b9/vyjWFmQ95s++J554gokTJ3Z2GILQLdXU1AQkRVarFYVCQVJSktynKC0tDa1W29mhntLpal1EotS1nDzN6t9/z1+XFhcXF3BORUUFWq1WbjXTHjweD99++60o1hYCBC1JmjlzJseOHePYsWPBumSrHTlyhIMHDzJnzhz27dvX4Y8vCN2NzWYLSIr8jfwSEhIYMmSInBSFhIR0dqitdrpaF5EkdV3V1dWsWrWK4uJi3G43oaGhZGZmMnz4cLRaLVu2bMFkMmG1WtFqtdTX1xMbG0tCQoKcTAXD1q1bqaqq4sorrxS1toIsaEnSvHnzOHHiRJvvt3HjRp555hny8vIwmUx8+umnXHLJJQHnLF26lGeeeQaz2czIkSP5+9//zvjx4+Xb77nnHp555hm2bNlytk9DEHqkurq6gKSosrISgLi4OAYMGIDRaMRoNHbrZOJ0tS5+7bV1hXBm7HY7a9eu5ciRI3g8HiRJQq1Wc/jwYcrKyrDb7dhsNrxeL+Bbmu9wOPjuu+9QqVRkZWUxY8YMgLP6fxXF2sKpBC1JWrRo0Rndr76+npEjR3LDDTdw6aWXNrv9gw8+YPHixbz22mtMmDCBJUuWkJuby6FDh4iLi+Pzzz9nwIABDBgwoFVJktPpDNgjyGaznVHcgtCVNTQ0BCRFFosFgL59+5KZmcn06dMxGo2EhYV1cqTB80u1Lu21dYVw5qxWKzabDaVSKS/1dzqdKJVK3G43Doej2X28Xq98/PDhw/Tv35/i4uKz+n9duXIlWq1WFGsLzZxxkuRPNM62uO3CCy/kwgsvPOXtzz//PDfddBO//e1vAXjttdf4+uuveeONN7j//vvZtm0b77//Ph999BF1dXW43W4MBgMPPfRQi9d78sknefTRR88qZkHoavw1Hf6kqLy8HPBtJ5SRkcHUqVMxGo1ERER0cqTt63QtBdpr6wrhzEVGRpKYmEhNTQ0ej4fw8HDUajU2m63FDW8VCgWhoaE0NDSgUChwuVxUV1ef1f/rsWPH+Omnn7j00ktFsbbQTJuSpFWrVvHCCy+wdetWeQTGYDAwadIkFi9ezMyZM4ManL/9/AMPPCAfUyqVzJw5k61btwK+pOfJJ58EYNmyZezbt++UCRLAAw88wOLFi+WvbTYbqampQY1bENqbw+GgqKhITorMZjOSJBEVFUVGRgbnnnsuGRkZGAyGzg61y/BPxwVz6wrh7Oj1erKzs8nIyGDfvn24XC40Gg0OhwO32x1wrn9vv759+3Lo0CHUajVarZaYmBjq6urO6P/V4/HwzTffkJ6ezvDhw4P99IQeoNVJ0ltvvcWNN97I5ZdfzgsvvCAvwSwvL2flypX86le/4l//+hfXXXdd0II7ceIEHo+n2XLP+Ph4Dh48eEbX1Ol04q8FodtxuVwBSVFZWRmSJGEwGMjIyGD8+PFkZGQQFRXV2aF2WU2n40RNUteh1+sZOHAgaWlp8lTpBx98QH19fcB5SqWSiooK+Q8CgP79+5OamkpqauoZ/b9u27aNqqoqrrjiClGsLbSo1UnSE088wZIlS1qsPVqwYAFTpkzhscceC2qS1FYLFizotMcWhGByu90UFxfLSVFpaSler5fw8HAyMjLkXkXR0dHixb0NRIfvrqvp/01OTg4fffQRHo8H8P1hbLPZUCgUSJKESqVCqVSSlpYW0F+pLWw2Gxs2bGD8+PHt1ndJ6P5anSQVFRWddjptxowZ3H333UEJyq9v376oVCq5vsKvvLychISEoD6WIHSmxsZGSkpK5KSopKQEj8dDWFgYRqNR7lXUp08fkRR1MrFCrv0NHDiQ3/zmN+zdu5fk5GQSExP58ssvsVgs8s9/dHQ0GRkZZ/wYolhbaI1WJ0lDhw7lX//6F3/7299avP2NN95gyJAhQQsMQKvVMmbMGNasWSO3BfB6vaxZs4bbbrstqI8lCB3J4/FQWloqJ0XFxcU0Njai1+sxGo2cf/75ZGRkEBsbK5KiLkSskOs4/rYUfnPmzOHgwYOEhISg0+nkkdQzcezYMfbt28e8efO6VS8woeO1Okl67rnnuOiii1i+fDkzZ84MqElas2YNx44d4+uvv25zAHV1deTn58tfFxQUsHv3bmJiYkhLS2Px4sXMnz+fsWPHMn78eJYsWUJ9fb282u1MLV26lKVLl8rDuYLQnrxeL2VlZXJSVFRUhNvtJiQkhPT0dGbMmEFGRgbx8fEiKerCxAq5zmG32/npp5/k5HTUqFHo9fozGtXzd9ZOS0tjxIgR7Ry50N0pJH8FXCsUFhby6quvsm3bNsxmMwAJCQlMmjSJ3/3udwFZf2utX7+enJycZsfnz5/PsmXLAHj55ZflZpKjRo3ipZdeYsKECW1+rJbYbDYiIyOxWq1iJZAQNF6vF7PZLCdFx48fx+VyodVqSU9Px2g0kpGRQUJCQrtutSAElxhJ6hxms5mNGzdiMBiw2WxMnToVnU7Hhg0bsNvtbdp+ZsuWLaxatYpbbrlFlG10cx3x/t2mJKknEkmSEAySJFFeXh6QFDkcDjQaDWlpaXJSlJiYiEql6uxwhbMgapI63snJ6ZgxY9iwYQPHjh0jPDyciIgIcnJyfjHpsdlsvPzyy4wePfq0/fmE7qEj3r97zAa3gtCRJEnCYrHISVFhYSF2ux21Wk1qaiqTJk0iIyOD5ORkkRT1MKdaISeSp/ZzcvsGq9WK3W4nPDycuro64uLiWtUfaeXKlWg0mhZnLwShJSJJEoRWkCSJysrKgKSovr4elUpFSkqK3KcoJSUFtVr8WvU2Yhqu/Z2cnMbGxsrNJ/01SqdTUFDAvn37uOSSS0SxttBq4tVcEFogSRLV1dUBSVFtbS1KpZLk5GS5T1FqaioajaazwxU6mSjo7lh6vZ6hQ4dy+PBh7HY7q1ev5rLLLjvlajd/Z+3U1FRGjhzZwdEK3ZlIkgThZzU1NXJSVFBQIDevS0pKkvsUpaWlodVqOztUoYsRW550vMrKShwOB2FhYdhsNkpLS0+ZJG3fvp0TJ05wyy23iNWjQpv02iRJtAAQbDZbQFJUU1ODQqEgISGBoUOHykmRGJoXfklrtzwRdUvBk5ycLK92Cw8PR6vVYrfbm31fa2trWb9+PePGjROr2YQ2C+rqtscee4ycnBzOO++8YF2y3YnVbb1HXV1dQFJUVVUF+LY88K8+S09PF29eQrvw1y1ZLBZ5Y9czbYYo+FRXV3Po0CEKCgpoaGggMjKSGTNmBHxfP/74Y44dO8btt98u/uDpYbrd6rY333yTp556ihkzZvDll18G89KC0Gb19fVyPVFBQQEnTpwAfAWf/fr1Y+bMmaSnpxMWFtbJkQq9gdVqxWKxUFtbi8lkAiA3N1ck5WchJCRE7lzv700GMHv2bPR6PYWFhezdu1cUawtnLKhJUkFBAXa7nXXr1gXzsoLQKna7PSApqqioAKBPnz4YjUamTZuG0WgkPDy8kyMVeiP/FJvJZCI8PFyeehNJ0pkrLy/HYrEgSRIejweVSkV1dTVWqxWtViuKtYWzFvSaJL1ez69+9atgX1YQmnE4HBw/flxOisrLy5EkiejoaIxGI1OmTMFoNIppVKFL8E+xAXKX6FMVeIvapV9mt9vZt28fNTU1cm2px+PBarUiSRI7duzAYrFw8803i2Jt4Yy1OUlavnw54eHhTJkyBfAVQP/jH/9gyJAhLF26VMyxC+3G6XRSVFQkJ0UmkwlJkoiMjMRoNDJx4kSMRiNRUVGdHaogtCg6Oprc3NzTJkB2u50NGzZQUVFBXFwc2dnZIlFqgb/tgk6nw+12I0mS3I6jqKhILtZOTEzs5EiF7qzNSdK9997L008/DcDevXu5++67Wbx4MevWrWPx4sW8+eabQQ9S6J3cbndAUlRWVobX6yUiIgKj0cjYsWMxGo1ER0eLvxSFbuNUHbv9KioqOHLkCJIkYbVaGTx4MOnp6R0YYfeg0+kICwujsrIShUKBSqWisbGRqKgoDh06hFqt7tKdtcVoYffQ5iSpoKCAIUOGAL5VAxdddBF//etf2bVrl5hmE85KY2MjxcXFclJUWlqKx+MhLCwMo9HIqFGjMBqN9OnTRyRFQo8lSRIKhSLgsxDIbreTl5eH3W4nKioKpVKJy+VCp9MxYsQIVq9ezcUXX9xlkw/Rob37aHOSpNVqaWhoAGD16tVcf/31AMTExGCz2YIbXTsSfZI6n8fjoaSkRE6KSkpKaGxsRK/XYzQayc3NxWg0EhsbK5IiodeIj48nKytLnm6Lj4/v7JC6HP9KwYaGBrm/WUpKCm63m+XLl5OUlMSoUaM6O8xTEh3au482J0lTpkxh8eLFTJ48mR07dvDBBx8AcPjwYVJSUoIeYHtZtGgRixYtkvssCO3P4/FQVlYmJ0XFxcW43W5CQkJIT09n5syZGI1G4uPjRVIk9Fr+Au9TTcWIaZr/rRQsKytDoVDgdrsxmUxUVFSQn5/P8OHDcTgcXfb7Izq0dx9tTpJefvllfv/73/Pf//6XV199leTkZAC+/fZbLrjggqAHKHRfXq8Xk8kkJ0VFRUW4XC60Wi3p6enk5ORgNBpJSEhAqVR2driC0GWcqm5JTNP4+BNJu91OWVkZMTExuFwu8vPzGTFiBF6vl6NHj9KvX78u+f1pbYd2ofMFteN2dyQ6bgePJEmYzWY5KTp+/DhOpxONRkNaWhoZGRkYjUaSkpJEUiQIZ8BsNrNx40Z5O46pU6f26q02qqur2bBhA3V1dfz444+YTCbGjh2LQqEgJiaGhISELp1IilHBs9OlOm7/+OOPLR6PjIwkLS1NTI/0QpIkUVFREZAU2e121Go1qampTJ48GaPRSHJyMiqVqrPDFYRuT0zTBIqOjiY7O5sPPviA/fv3YzQasVqtAKjValQqVZet9xGjgt1Dq5OkUaNGtbjSQqFQEBISwl133cVjjz0m3gx7MEmSOHHihJwUFRYW0tDQgEqlIiUlhQkTJmA0GklJSUGt7rV7JwtCuxHTNM3V1NSwdu1a1Go1ffv2ld+jbDYbSUlJXTaRFMXb3UOr38kKCgpaPF5TU0NeXh5//vOfiY6O5p577glacELnkiSJqqqqgKSorq4OpVJJcnKy3KcoNTVVbuImCEL7+qU+S369ZSpn9+7d2Gw2hg4dGjCjERYWxqhRo7rscxejgt1D0GqS/vvf//Loo4+yd+/eYFyuw4iapEA1NTUUFBTISZHNZkOhUJCUlCTXFKWlpaHVajs7VEEQTqG3TOXU1dXx/PPPU19fT0REREBLF7VaTWxsLFdccQUhISFdMmHsLYlse+lSNUm/ZMyYMaccbRK6LqvVGjBS5O85kpCQwLBhwzAajaSnp6PT6To7VEEQWqm3TOWsWrWKkJAQFi5cyLp16yguLsbj8cjJUnV1NYcOHaKurg6LxSKviusq22e1dlRQ6DxBS5LMZjOxsbHBuly7663NJGtrawOSoqqqKsDXwG7gwIFkZGSQnp4ufnEFoRvrDVM5RUVF7Nmzhzlz5pCcnMzs2bNZs2YNxcXF1NfX4/V6kSRJbj3S0NCAyWQCIDc3V7zGCa0SlOk2i8XC1VdfTVpaGm+88UYw4uowPX26rb6+PiApOnHiBACxsbHy9JnRaCQ0NLSTIxUEIZhON5XT3ad5vF4vr7/+OiqVihtvvFGuRbLb7VRUVFBUVMSBAweIi4vDbrcDYDKZCA8PJyIigpycnF7dOqGn6FLTbaNHj25xmb/VaqWkpISBAwfy9ttvBzU4oe3sdntAUlRRUQFAnz59yMjIYNq0aRiNRsLDwzs5UkEQ2lNPbki5c+dOysvLAxIk8D3n9PR04uLicDqdVFVVERsby9ChQ9m+fTt1dXVotdpukSB290S2p2h1knTJJZe0eNxgMDBw4EByc3PF8v9O4HA4OH78uJwYlZeXI0kS0dHRZGRkMGXKFIxGY48cJRMEoe26e71SXV0d69at45xzzpF3fDhZS60SsrOzWbt2LSUlJZhMJrKyssjOzu6Sz70nJLI9RauTpIcffrg94xBayel0UlRUJCdFJpMJSZKIjIzEaDQyceJEjEYjUVFRnR2qIAhdUHevV1q9ejUKhYIZM2ac9ryTR9KcTif19fUoFAq8Xi8VFRVdNkH0b+CrUqkoKSmhvLwco9HY2WH1Sq1Okqqrq3n77beZP39+s1EJq9XKv//97xZvE86Oy+WiuLhYTorKysrwer1ERERgNBrlXkXR0dGi67kgCL+oOzekLC4uZvfu3cyZM+e0dZQnT1XZ7XZKS0txOBw0NjaiVqsJCwvrsqt2dTodtbW1nDhxApVKxb59+4iPj+9W/1c9RauTpJdffpkff/yR22+/vdltkZGRbNq0CZvNxoMPPhjUAHubxsZGiouL5Zqi0tJSPB4PYWFhGI1GRo0ahdFopE+fPiIpEgThjDQdZekutS9er5evv/6apKQkRo8efcrzTp6qGjNmDBs2bGDfvn14PB40Gg3Jycm4XC7y8vK65FSWf8/LkJAQlEplt5wW7SlanSR9/PHHPPfcc6e8/ZZbbuGee+4RSVIbNTY2UlpaKo8UlZSU0NjYiF6vx2g0kpubi9FoJDY2ViRFgiAEVXeqffn+++/lYu3TbZB9cs1VaWkpZWVlcrsXt9tNeXk5Q4YM6bLJh06nkzcxVqlUxMXFdbtp0Z6i1UnS0aNH6d+//ylv79+/P0ePHg1KUD2Zx+OhrKxMToqKi4txu92EhISQnp7OzJkzMRqNxMfHi6RIEIR21V2KuOvr61m7di2jR48+ZbG238k1V8nJycTFxWGxWORzlEolFouF1NTULpd82O12tm/fTm1tLYmJiYwcOZK0tLQu+f/SG7Q6SVKpVJSVlZGWltbi7WVlZafN7nszs9nM0aNHKSgokBub6XQ60tLSyMnJwWg0kpCQIL5/giB0qO5SxO0v1p45c+YvnttSzdXYsWOpqqrCZrPhdDpRKpVEREQwZsyYLpd8lJeXk5+fj9frxWazkZWVBXSfadGepk19kj777DMmTpzY4u2ffvrpaeeJewun04nT6ZS/rqys5IUXXsBgMJCWlsaYMWNIS0sjMTExICmqq6vrjHAFQcC3mXNtbS1JSUm96o+VthRxd9abdHFxMT/88AMXXXRRq5venryyLT4+nszMTI4fP05NTQ2pqal4vd6A1+quQqFQIEkSkiThcDjYs2eP3O/OZrN1+WnRnqbVSdJtt93GVVddRUpKCrfeeqvcE8nj8fDKK6/wwgsv8O6777ZboMHWXtuSPPnkkzz66KNBvaYgCB2juLiYlJSUzg6jQ7Vm/7DOql3yer188803JCYmcs4555zxdfR6PWPGjMFqtVJXV0d5eTlZWVldcuQsLi6O/v37U1xcDPh2R/AnSXFxcV16WrQnatO2JA8++CBPPvkkERERZGZmAnDs2DHq6uq49957eeqpp9ot0PYS7LbmJ48kWa1W0tLSKC4uFu0RBKGLstlspKamUlNT0yXfODub2Wxm48aNcjHx1KlTO2Rbj507d/L1119z4403nnXy6n8OoaGhVFVVkZ2dTXp6epAiDS673U55eTkHDx7EZrPJ7x1iJClQl9qWBOCJJ57g4osv5p133iE/Px9JksjOzuaaa65h/Pjx7RJgd6PT6VrsvWEwGESSJAhdnFgs0bLIyEgMBgMVFRUdttKqvr6eNWvWcM455wRldK9p/VVSUhJxcXFBiLJ9+Fc3x8fHy1OcgKhJ6gRtSpIAxo8fLxIiQehO7HZ44QX4f/8PxIurcJYaGxspKipCp9O1a4PDNWvWAPxiZ+3W6o5NNE/uZyV0vFZXKNbX13PrrbeSnJxMbGwsV111VcCSSkHoTex2O2azuXu8cH38MTz4IHzySWdHInRTVqtVnuo5evQo3377LV999RUbNmxol9+BkpISdu3axYwZMwgLCwvadfV6PQkJCd0iQWrKXxO2ceNGNm/e3D1ed3qIVidJf/7zn/nPf/7DRRddxDXXXMPatWu5+eab2zM2QeiSut0L1ocf+j5/9FHnxiF0W02nqiRJarb/WTD5O2snJiYyZsyYoF67u2qpn5XQMVo93fbpp5/y5ptvcsUVVwBw/fXXM3HiRHkfHEHoLbp8A77yct/0mtvt+3rFCt/nb7+Fu+/2/VujgcWLoQvXZQhdh3+qqqKigr1791JQUIBCoWiX+qRdu3ZhMplYuHBhr2rHcDrdpZ9VT9Tq7KakpITJkyfLX48ZMwaNRnPaBpOC0BN1+RcskwmWLAGnE5RK8Bcjezy+414v6HRw1VUiSRJaTa/Xk56eTlxcHBUVFUiSFPSapIaGBtasWcPo0aNJTU0N2nW7O3+SWl5eLhYXdLBWJ0lerxeNRhN4Z7U66H2GBKGr6/IFoKNGQV4eXH45HD7sS47A91mphEGD4L//haFDOzVMoXvyJ0vtYfXq1UiS1KrO2r1Rfn5+t9hnrydpdZIkSRIzZswImFpraGhgzpw5aLVa+diuXbuCG6EgdEGtacAHdN7KsqFDYcsW6Nu3+W1btkB0dMfFIgitUFpayg8//MCFF14Y1GLtnqLLT/P3UK1Okh5++OFmxy6++OKgBiMIXUXQtmDwryxLT4drrw1egK2xcaNvak2hAEnyffZ6YdMmmDu3Y2MRhNPwF2vHx8czduzYzg6nS+ry0/w91FklSYLQEwV1C4amK8s6Okn6ecm/Z9Ikav74R6KeeALV1q2+4yJJErqQXbt2UVZWJoq1T6PLT/P3UGe0LM1qtWI2mwFISEgQGa3Qo5zVsPYpVpZJ33xD4513olGrO25l2ZgxuAcMYMPYsVRZrcQ8/DDZ33+PJiKifR9XENrAX6w9atSooBVrd9ZmvO2t1dP8QtC0KUn65z//yfPPP8+hQ4cA5H4ZAwcO5O6772bhwoXtEqQgdKSzGtY+aWWZpFCgACSPB/Xf/+6b9uqolWV33EGl2UzVz3tuVVmtVC5c2CF7bglCa61ZswZJkpg1a1ZQrtdZm/EKPVOrk6RnnnmGRx55hDvuuIPc3Fzi4+MBKC8vZ+XKldx5551UV1dzzz33tFuwwbR06VKWLl0qVucJzbRlWLvpX6wA1oQEojZvJuQ3v4HDh1H8/POl9HqRFAoas7JQf/ZZh60sE3UMQldWWlrKrl27uOCCC4JWrC0KnIVgUkiSJLXmxPT0dJ555hmuvPLKFm//4IMPuPfeeykqKgpqgO2tvXcR7ohdioXga81wvf8vVovFgkajISQkhIaGBt9fr0OGoE9N9RVK/0xSKHCUlKBPSurwOHvi1EMwid/TjidJEv/85z/xeDzcfPPNQatFEiNJvUdH/N62eiSpoqKC4cOHn/L24cOHc+LEiaAEJQidqbUvslarFYvFQm1tLVarFY1GQ79+/aiqqsKxciX6JivLJEAhSei//75Z0fSZJjGtjVPUMQhd0a5duygtLeWGG24IarG2KHAWgqnVP5njxo3jqaeeorGxsdltHo+Hp59+mnHjxgU1OEHoDK3dJ8n/AlxXV0dERARKpZLq6mpiYmKIWLXKd9LkybB1Kwp/t/qTNpm12+1s2LCBlStXsmbNGgoLC1u9F5zYz0norvzF2iNHjmyXHRu660a2bdGtNtnuxlo9kvTyyy+Tm5tLQkICU6dODahJ2rhxI1qtlpUrV7ZboILwS4I1rdTaOh69Xk92drb82NHR0QwaNIj4+HjU+/fDyJG+vdJUKtiwAZ57DkJCAq5RUVHBkSNH8Hq9mEwmLBYLqamprZoiaGu9kST5Ft1pNP/bqUQQOsPatWvxeDxBK9bubcSUYsdpdZI0YsQIDh8+zNtvv822bds4duwY4GsB8Je//IVrrrlGzOULnSaYLxptGa6Pjo4mNze3+bl33BF4okoF993X7P5Nd1T3eDyEhoa2WGzaUgLY2jjNZti61ddou74ewsLg3HNh0iQQC92EjlZWVkZeXh4XXHAB4eHhnR1OtySK0ztOm1oAREREcOutt3Lrrbe2VzyCcEaC/aLRljqes6n5iY+PJysrC7PZTFhYGF6vl9jY2IBRodMlgL/02Hv3wuuvQ2kpGAy+nVEsFvjPf2DtWrj5ZjhNqaEgBJUkSXz99dfExcWJ8oyzcPIosk6nw2w2ixqsdnBGzST93G43hYWFxMXFiaXFQqfqrkvd/VN2VqsVnU6H0+ls9kJ3pgmg2exLkCwWGDbMt7etn9fr2/v29dd9u6aIESWhI/zwww+Ulpby29/+VnTWPgtNR5F1Oh15eXli6q2dtPqn9G9/+5tcIObxeLjnnnsIDw9n0KBB9O3blxtuuAG3v8uwIHQw/4vG1KlTu92LhL/INDo6usViU51Oh1arlYvCW0oAXa7mH5s2QXEx9Ovnq0fyeP73IUm+40VF8N13Ld9fEILJbrezevVqRo4cSXp6eoc+bk8scPa/bjidTrGAox21eiTpgQceYMGCBej1el544QXeeOMNXnvtNSZMmMAPP/zA4sWLeeGFF7ivhboLQegInb3U/WwKx091X7vdzg9btpDx3nscv/RSxowZI9/e9D5PPx34eJIEq1ZBQwPU1Jz6cWtq4PnnfdNyJxdzP/JIm56CIJxWZxRr94YCZ/8ousViQa/Xo9PpOjukHqXVSVLTnpPvvvsuTz31FL/97W8BGDJkCABPPvmkSJKEXulsXoxPd1+r1Uro8uWM/PBD7HFxOJuspmt6H7c7G41GI1/T6/WtZFOr8Q0dlZRASoqvgLwJtdp3ntfb7CZBCJqysjK+//57cnNzO7RYuzcUOOv1esaMGcOGDRuw2+3k5eX1yGSws7SpJknx85+aRUVFnHvuuQG3nXvuuRQUFAQvMkHoRs7mxfh0942MjKRfXh4Ambt2EeHf/uSk+9xyS2XAnmyS5FvJduIEpNv2w3efwchLmlVpHz8OffvCn/4k2gII7UOSJL755hvi4uIYP358hz52d61VbCun04nL5SI6OrrHJoOdpU1J0j/+8Q/Cw8PRarVUVVUF3FZbWyuG+YRe62xWmzR7IXc44P77we1GD4T8nCTFfv89ij/9CYA+CgXxEyZQbrMRExNDbGwkWm3gdc87z7eKTbH/J5R44OBPMOp/SZLXC7W1cOmloNWKHkpC+9i9ezclJSWdUqzdW7pv95ZksDO0OklKS0vjH//4B+ArJN21axdTp06Vb1+3bh0DBw4MfoSC0A2c0WoTux1eeAF+9zv69++PJEnEx8ejP3QIliwBpxOUSnkEV+Hx+I57vWh0OiZcfjk1RmPzF//ycnjhBSbVhLC2YAaHjioYiALFkSOwfAVeSQEqJUfiJhMdo6eqytfCSfRQEoLNbrezatUqRowY0aHF2k11dq1iR/C//pSXl+N0OqmoqCAuLq7HP++O0OokqbCw8LS3T5gwISBpEoTexv9ibDabWzf19vHH8OCDHK2tZf/o0cTExPg62Y8aBXl5cPnlvnX6Ho/vfI/Ht45/0CD4738JGToUfx4TUPhtMsGSJSQ4ndyk+JTXpZvYyVjsXj3V26NxEIIXNQmjGumrgK++Ej2UhPYhOmt3HIfDQV5eHqWlpSgUCvr37092drZIlM5Sq8c+H3roIfJ+HvZvycSJExk9enRQghKE7sw/9G37eSqs2dC33Q5//Su89x4A0atXYzAYsFgsHD161LdUeehQX4vsk0iAfc0a3+3y5XxF3Bs3bmTz5s3YBw70JVmDBjFcsY/L+C8KJMpIwYGeEK1E3Kgkiqoi2LcPYmPBaIT4eN/nYcN8ydLrr7gxP/CiL15BaCOTycT333/PtGnTiIiI6OxwejT/HpDHjh2joaEBr9dLRUWFaAcQBK0eSSopKeHCCy9Eq9UyZ84c5s6dy4wZM9CeXAghCL1MdXU1paWlJCcnEx0dfeo6iJ+nwdizB5Yvl5eTJe7ejfWll0hwOiE0lK3XXkvy6NFEbdhAvNfrKxKSJCRA4fVy6J//ZOC99wasgGs2cvVzkmXuM5SPuIJw6rmcD5FQIv3udo6WhXHiR18Iu3bBlCnQdNFRv36wb7mZTbs2cmFWAprf/FquVRK/8sIv8Rdrx8bGdnixdm9ktVqx2+2EhYVRXV2Nx+MRTZ6DpNVJ0htvvIHX62Xz5s18+eWX3HXXXZhMJmbNmsXFF1/MRRddRExMTHvGGlRLly5l6dKlePxTGYJwBqqrq/n444+x2WwYDAYuu+wyOVE6eZjbdugQ4S+8gNLfqfHnnz2FJDF4+XIUkkSjWs3ugQP50WzmgvfeIx7wTJpEzR//iPfuu4k9dIjINWuw3nxzwAq4mJgYKipqiI7ug14f6WsGuWYT30nnspbpxFKB+efJudpPq6jwhNHYqESng4pyifrjJ+g7IAaUvsTN5QLzAQ07eYmnFzeg/Rekpvo+nn22Q761Qje2e/duiouLWbBgASrRW6LdRUZGEh0dTUVFBXq9npSUFCZMmCCm2oJAITVtgNRGBw4c4Msvv+Tzzz8nLy+P8ePHM3fuXK6++mqSk5ODGWe7sdlsREZGYrVa22WD3va+vtCxTm76uG/fPlauXEloaCgNDQ2cf/75DBs2LOD82vx8Qv/v/yg4fBhldTVDvv+ekxeQSYA1NpaPf/MbqpOS0Gg0jNq4kXC1muTnnycyJobNGzcS++9/ExIVRdqzzzZrOvnnP3vQ6XRyvyTpk09ZtTeOY+pBaKL1UF2NqtGNS6PDpo1HoVCiUoHb7qbR5SFEpyBK24Dbo6TWrUPlbkCFByNFePrG4/SoidC5+Nd7YQyf1qcDvtsdR/yeBo/dbufll18mMzOTyy67rLPD6TUKCwvZuHEj0dHR2O12pk6dGtAWpCfqiN/bs9q7bfDgwQwePJj77rsPi8XCF198wRdffAHAPffcE5QABaGraKnpY3JyMgaDQR5JavrHgf98765dzPi//2N4YyOSQoGkVKLweptdf/VVV2FLTSVUp8PtdrM3J4esrCyGxMT4pvCmTsU6cmTAFF7TpM3fpM/tduN0OtHGJeBONpIcF4M+1EtNtZ7KAi0olBgMvoEsnc6Ls74GJW7SVSaodVNEKiE4ScREGPVMZy3SCSXgJV85iNdfy+bBQWL1m9CydevW4Xa7Of/88zs7lF4lPj6epKQk0QYgyM4qSQJfJrd27VoGDRrEwoULWbhwYTDiEoQup6Xan4SEBC677LKAmqRm548YwVePPsp5L75IlMWC8qQESQIUQKQkEdK/P7W1tQwcOFBe7XaqIfOTk7b/9/8mA7Blyxaqq6uJmh5N7bd9sVoVpKercLsjcDqd6BobObpyLz9WJBIlWWlotBNKPdMa1nMwaRrV5gb6es2Uk0A4taxlOi60aEPUJJ+XwZGaSL77DubODYxH1CoJZrOZnTt3MmvWLFGs3cF6S0+ojtbmJOnKK69k6tSp3HbbbdjtdsaOHUthYSGSJPH++++L4VWh3ZzN3mjBcKqGbdHR0QHJ0cnnWywW6uPiWPHww1x1220B50gKBRVGI/EFBSRu3cquceMwGAxkZGQEXLOlUaymSZvVbEb51GPU33wztbWVxMQYqK6uICurjLVrk1Eo1ISEaAgJ0VB3rALn4eOUkkER4UhALBY2kE1JWTIuNFgYghMtVUSjxY0SL96IRI7s8i2INZub7/cm9nrr3SRJ4uuvv6Zv375MmDChs8PplZou5vB/3dmvm91dm5OkjRs38uCDDwLw6aefIkkSNTU1vPXWW/zlL38RSZLQLrrCRpX+PZL8o0Yn1wSd/ELk/8vu6NGj7N27l4HFxSj8q9QAFAoUksS27GziR42i3uvF7XZTXV3N9u3bA3qcnDyKVVFRAYDBYKC6upr+339PxIsv4oiPxzBoECdOnMBms6FS7UShULB/fxJDhqixWGDn/j5YEs5DY3bTiAYvCmqIwkEIbrR4UeJBiQ4XEdQ1qZ9yIIWFUlsLZWVgs4EY0Rf89uzZI4q1O5n/ddK/2e2ECRP46aefevQGv+2tzUmS1WqVV7EtX76cyy67jNDQUGbPns29994b9AAFAbrGRpX+zSOrqqowm83yC84vJXARERG+0aZ16wBwjx9P7UMPEfXEE6i2bmXwoUN8dfnlaDQaHFVVKJVKbDYbgwcPlrsUNx3FMhgMHDhwgOrqalQqFSqViviNGwFwvv02jT8P6djtdiIiqpg0aR+HDvXh++/VHDsGDocXtBAaryK1/CBxVGDDwAliqSWCcK0dpctNYngDiswMKCiAWivghLSBVFdDQwOMGxc45eZyiSm33srhcLBq1SqGDRuG0Wjs7HB6LavVisVioba2FpPJhN1ux+PxoNfrsVgsYk+3M9DmJCk1NZWtW7cSExPD8uXLef/99wHfUuiQkJCgBygI0Ll7E9ntdsrLy6mqqsJisTTbRPJUCZy/wVtFRYVvSiwri11JSfwwfTq66mrC776b8/ftI0WnY9q0aezfv1/eJFqtVmMymeStBZrWGzgcDn5YvpzBn32Gu6EBpUpF0t69ACTu2UPNyy/jalSSBeyYNInMEfHMm6fkH//wNfCOilLidCqI0xbgLLfjIgQdLhIpw0EGFY1xhIV6aYwOgxoFRI0ApQ2vS4n9gG/7EpUK7rkHPvsM0tL+12NJTLn1TqJYu2vwj2SbTCbCw8Nxu93U1dVRUVFBeHi4vBpMJEqt1+Yk6a677uLaa68lPDyc9PR0pk2bBvim4YaLPQyEdtJZRYn+RCc/Px+v1yv/IRAbGysnaqfa3NZms3HkyBEkSaKqqorq887DYDBQU1hIiNtNeXk5nw8YwAUXXECS08nu3btRqVR4vV4kSeLgwYPU1dU1G5mKjIwkym5n2Jo1qBsb8SoUcnGQwutl6MqVPCo9hFehZL9jEukNE9i3T8/mzb692QwGFV5vBI0H1JhJwqPW4AoLI6ShAZdbhUvS4vWqcVr9l1Xg8UQiSeC2+xIknc63tdyPP0JhIYwZ4+vYLfQ+ZrOZHTt2MGvWLNE+oZPp9Xqys7MB32uXXq9HqVTSt29fzGYz27Zto6ioSEy7tUGbk6Tf//73jB8/nuLiYmbNmiXv6pyZmclf/vKXoAcoCH4dsVGl3W6nqKiI+vp6MjIy5M0ivT+vSNNoNAwfPpx+/fo1qz06eXNbf8LT9L41NTV4PB6sVitKpZLS0lI2bNjAhAkTcLlceL1eFAoFer2ePn36YDWbaXzsMez33svmXbvkRCxr3jw+qqwk9/XXibZYUPzc7kzp9SIpFDjCIyidPBkpLAyFQoHXCw6HB/AiSUrUahXeqChiNXbqokNRqyUiDfHYCy0UVrtA73tpUP/8ClFbCyqVl6goL0lJCrxeFaGhkJMD+fm+ZOqGG9r1v0bogvydtUWxdtcRHR1Nbm5uwOtRWVkZSqWy2Si48MtanSSdd955XHzxxVx88cWMHTuWsWPHBtw+e/bsoAcnCB3JbrezZs0aDu3ezZiNG/lk7lx+ddllxMXFYbPZkCSJxMTEgATJ7+TNbUNDQykvL0epVOJ0OlEoFNhsNqqqqgK6vKtUKurq6jCZTDidTvm6ycnJ2O12huzbR8TTT1OTkkJVbKw8pVdXVwdDh1Iwbx4xr78e+EQkiezX06mWSoiOjubcc7OQJDv791dgsUikpnpJTU1FMzEBz5Yt2EfEogsPR6NRUVCQQGKNb5QoIgJKS337uLlcXiIiGtDpHLjdKlyuSAYO9DWj7N8f9u2DHTta7p0k6pR6rh9//JGioiLmz58virW7kKZ/UE6ePJmKigoOHDhw6v0khVNqdZJ000038fnnn/Poo4+SkpLC3LlzmTt3Lueeey4Kxcn9gwWh+7FarZhMJrJ+/JFpq1ZR16cPldOmkZ2dzaBBg1AoFHKN0KlERkZiMBg4cuSInAzFxsZiMpmwWq0BCZJSqUSSJMLDwwkPD0elUsm/S2lpaSQkJJD6738DELF8OTF33imPJCUnJ2M2m0lbtQoJcKFBixsFvpVz09US1eedJ09Nms1mMjKKMZuzcDgqff2SCo+h2rQObd9oGDECrxfydnoZoDyCNSwLk0lFdLSvIFutlrDbFdjtYdhsajQaiImBnxfZUVMDzz/fvC0AiDqlnqppsXZGRkZnhyOcgl6vJz09nbi4ONEK4Ay0Okm6/vrruf7663E6naxZs4bPP/+cK664Ao/Hw+zZs5k7dy65ubnimy90W5GRkSQmJjJw3z4Ahh04QOTPS/1/acWOv7hboVCQkZFBRUUFERERlJSU4Ha7UalUKJVKXP592wCtVkt6ejrZ2dmEhISQlZVFzaFDDPr2W0JWrECh16NctQoA5YoVTElLw1NbS8jBg6jGjCHNqmdTwQi2cit1hKHRNpLjWssktpHw3/+ScMUV8mPpdDpSUpzU13vYsSOdgoJQQgo0pDKI1B+PETpsBIcPQ4S7iv4FX5I0fS55ygFYLGC3g0KhwONR09gIEREe0tKUNF2noVaD2w1er7xvr9DDrV+/HpfLJYq1uwn/6JLdbsdsNotkqZXOau82gO3bt8vbkRw9epTp06fzwAMPMHny5GDF2K7E3m0C5eXwwgvgduNubET16qso3W4krRaFv/mjRgOLF0NcXLO7Ny3uliSJjIwM1Gq1vFVJZmYmhw8f9jWVrK+nsbERr9eLRqMhMTGRESNGoNVqiYyMxLx8OQOuvx6VfwsThQKl14tXqUQhSXLt0V6G8X/cTCnJRGIlBDt29NQSSRKl3BL3OYMuH4hTqaTx9tv5aEMln74TTvVPXqob43B6tahsVXhQocNJcoqKIX3L+e2JZxlW8i3MmYv55f+yfTs8/bSvJ1JUlIf4eBdGo5qoKE3A9+D4cejbF558svlIUneYbhO/p21TXl7Oa6+9xsyZM7vNa31v01Lvtq7Qby6YuvzebQATJkxgwoQJPPHEExw7dozPP/8ck8kUjNgEAeiATtsmEyxZAk4nGqXyfyvFPB7fca/Xt5zrqqtaTJKsVmtAcXdVVRVTp04lJCREjjk1NVUupDx06BDr16+Xn9exY8cICQkhLS0Nl0rFzsWL+dWbbxJz4oS8hYlckJ2RQfn9S3jtvhpOWDUMZy9KfImTBEgoOMxAXq+4mAdfeYJYdSWf9R3Gx5umojlsYcaJDTjQU0IKRaTiQksd4ehKDnNTyQMMZx8KQFrxJWkv3k0aoEodyb8dVzJ8bAgqVfPvv9frK+y+9FLft0no2fydtfv06cPEiRM7OxyhBadKhrpCv7nups1JUmZmJjt37qRPn8BdwGtqapg5cybHjh0LWnCC0CF/+YwaBXl5cPnlvkZC/rohjweUShg0CP77Xxg6tMX4nE4nMTExcnF3XFxcwJ5rJyd5Wq1WXsXW2NiIw+HA4/H8r44pOpo3Fi7k3qefxsX/RmwkScFHd93Hj0fiOTJ6KmPXv4yEEn+VkwffSlMjx/iJoaxWziD88UmsPj6EuqMeJpu+o2rkKGKOHKF/wxGyOIIXJSDxE8M4xAAGKI6glLx43QoULyxFJzk5V5vGunkXcuRICAMG+L4lfl6v71uWkgLi/bJ32Lt3L0VFRVx//fWiWLuLOlUy1Jn95rqrNidJhYWFAcWnfk6nk9LS0qAEJQh+HfaXz9ChsGWLb87oZFu2QAt7szVtFhkTE8P555+PTqcLKO5umuQZDAYGDx5MYmIiffv2pern7toqlQqPx4N/5tvtdjPk5y1MnuCPvpEdfAXZ+/+VwA5rCqr6OlxMwYuCItLxz5n7Z7oc6MjzjkH7iIuKxngkj4K9/J7kn8qJIAE99cD/Rp+sGHiBxeyThvuuIfmOPzzwPRI+/pibvbG8/rqvMDsyEvR6X62S1epLkG6+ueWVbULP4nA4WLlyJUOHDiUzM7OzwxFO4VTJkNgEt+1anSR98cUX8r9XrFgRkIF6PB7WrFkj2tHjSxadTqf8tc1m68Rour8O/ctn40bf0IhCAZLk++z1Uv3FF4RceSVAwItLRUWF3CzSarUyfPhweRsRP3+Sp9VqOXjwICaTicTERM4991zq6+sxmUxUV1ejVCqpqqqisbGRxsZGBv70EwA2QyRH+/Uj69gxDNYaIs0VeHVqwhsqAXDpdMRoqzDU2ijECPgSHw9KaokgxGkHQIEXDyoqGmOwEkZfTtCIGhsGPKjwoCSCOmwYiOR/P7Mbn3ySCZmZDNfDgw/Ctm2webOv63ZsLFxyiW8EKTLSjtksXnh7On+xdm5ubmeHIpzG6ZKhjug315O0Okm65JJLAN8ql/nz5wfcptFoMBqNPPfcc0ENrjt68sknefTRRzs7jB6jQ//y+eQT3+fJk+GZZ/AsXoxq61Zq3niDQ/HxNDY2UlVVRVxcHNnZ2UiShEKhCPh8Mn9LgIMHD9LQ0IBWq+Xw4cNUVFSQlJREdnY2TqcTSZL48ssvqa6uRqPRYM3KYlXfvkSf28Ao6UfUCgXjt+zEq9VR7JmMJt9KH2U5xSkpjD60m761pUxkCwok6gljBblEU8M8PmY9OTQQShRWQKKMZEwkYMBGDFWoaaSGSEDCgY7r+IKhP9cm7dh6F9ZJk9Dr9SQk+JKiiy/2rWTTaHx5ZE8rBhVaVl5ezo4dO5g+fboobu8GRDIUHK1OkvxFqRkZGezcuZO+LU1LCDzwwAMsXrxY/tpms5GamtqJEXV/HfbLPmaMb9rt7rtBpcLy0UeU33cfWoNB7nOkVCqxWq0MHjyY+Ph4srKyqKiokOuQWop98ODBmEwmQkJCqK2tRaPRYDAYKC4uJiYmhsGDB2O1WomIiCAqKgqTycSOiROx2+0okYjU69FoNJiuuRylUsmsEyF8UtsHdVw4BpSEZ2XhzMhgv1bLqHVrKSMJG5FM4Tu0eEijmL34tgxyo6UBPXb09KGSSKxIQD1hDGMvJkM/Hh30Go9X3MmIwm1k7t7dbPROoQhcsSaKQXs+f2ftmJgYJk2a1NnhCEKHaXNNkn8DTqFlOp0OnVji0z3dcUfAl5ExMez77W99CYBKRW1tLYA8auTfJ8k/ygUE9B/xF2xLkoRGo8HpdNKnTx80Gg2FhYU4nU6+++47KioqmDBhAtHR0ZjNZqKjo3G73aSkpFBUVITX68VqtVJbW0tYWBiDBtUQGurixIkYKirUmKKzCAkJwVlYxEbOYz9DAYliUiknHhdabBiopI+cECnwUkoydYThIBQNbkpIQanrQ0y5nX2DbyR6xmhqNFrqS2pIS9OfcuWaKAbt+fbu3cvx48e57rrrRLG20Ku0OUm64447yMrK4o6T3lBefvll8vPzWbJkSbBiE4ROdfKebNu3b282atS0QVvTKacxY8aQl5eH2WzGbDZjt9vl3kg6nY7GxkY0Gt/KNZPJxKFDh6iurqaqqgqFQkFYWBh1dXVIkiTv6eb1erHZbOzbt5rRo5P47rvBVFdn4HDY0elchFQ4cRGPEi+xWDCRKBdye1BSRzhOdD8XgfumBl1o0dCIBjdmkpAs0EADzx8fwZL+52B29EX6SkF8vJMHH9QxaVLzAm1RDNqzOZ1OVq5cyZAhQ+jXr19nhyO0Ubu3UOnh2pwkffzxxwFF3H7nnnsuTz31lEiShB6l6VRf01Gjk19sTp5yKi0tlROehoYG+Ty3240kSXi9XjweD2FhYTidTrZs2YLdbkelUqHX61GpVKjVatxud8BqUkmScDgcpKbWMHXqd2RmFnP0aAJut5Z0TwmzU4rZursPDpub4/iKyOsJw0QiITjwoMKLEgkFCiT02Eml+Od6JZ8T6kSK9KmoquqIdNpwhCuwWt385z861q71rWQbPvzU3yehZ1m/fj1Op1MUa3dD/j/eLBaLPPId3cJKXeHU2pwkVVZWtjicbjAYOHHiRFCCEoSu6HSJwMlTTv691cxmMzqdDofDAfi39/Cg0WjQarUMHjyY0tJSHA4HSqVSXt0WGhqKxWKRawFPLgyvqqoiPFzF4MH7ycr6Ea9XhVLpQZGexkxvLh/cuJ7z2EQDoXzHFKKpJimsHJM9AbdXiUepo29YA6raanS4GEMe4dRTSxhfh15FtFTNLOkLYussHE4bStz06URH+3oivf66b6WbWPLf81VUVLB9+3ZycnLENGo3ZLVasVgs1NbWyk2exfZhbdPmJCkrK4vly5dzm3+7hp99++233apvxtKlS1m6dGmLPZ8E4ZecPITd0pST/2uHw8G6deuora1Fr9djs9nkkSKj0ShPo2m1WjQaDaGhoZw4cYLq6mr58XQ6HWq1mrq6OvmY/2dXoQCVyoMkafB61WRVfEsCNRymP9LPrQBiseC1qzB4qykhhQhvHVG1xWhwUUEcRaQykMMUkUadDc5lM32xABBfWUllVRVhYWH066dh3z747juYO7f596U7bEEitI6/WDs6OloUa3dT/tcik8lEeHi4/LrVUpIkpuVa1uYkafHixdx2221YLBamT58OwJo1a3juuee61VTbokWLWLRokbz3iyC01qmWvJ880uT/2mQyUV9fj8PhQKvV0q9fP2w2G3FxcaSmphIbG0t9fT2VlZU4HA4MBgMWiyXgMWNiYoiOjubAgQPy6JKfWq2msbGRTZvOIzw8nJ927UJCwTFlP46ShcLr8fVD8iqxEYkHFWoaOcggFIAbFeUksINxVBILwHYmcYI4FEhI5Qrsy+sp0hWgUqupiUjl+ec17N37v33a3G43TqeTxx9XiRfYHmLfvn0UFhZy3XXXoVaf9Q5WQifwT7GB73UrNja2xfc70cbj1Nr8k3/DDTfgdDp54oknePzxxwEwGo28+uqrXH/99UEPUBC6mrYsebfb7axfv56amhp0Oh319fWkpaWRlJQk/8VmtVpxuVxERUVhNptpaGggMjKSyspKeWXcxIkTUSgUKJVKCgoKAkaUGhsbUSqVeDwebDYbNqWSZCxM9W6khkjqCAdAi5tMjqKmkRPEUk00SrxI/7+9946Po7z2/z+zbXZXqy2SdtUsyZIlWXLHcixjY2TAxAYCBkwJxZhQknAJ3IQkJPmFQELuJQQS4nwvzuVCLiW5EALBlARiY1xkI9yQCy6yrGarbpG02t73+f0h5snualVWvTzv18sv0OzszPPM7MycOedzzgGHAKRfZr0RKOGCGEGA1vEmUHR39YrAOREkJRnwekWw2z1QKntT3lpaWr680XawG+w0QBBrl5aWMrH2FEen02HdunUDeolYGY/+GdbrwQMPPIAHHniAisFUKtVoj4vBGDLj7SYeSsq7MCafz4dQKAS5XA6v14uUlBTk5+dHiScJIejq6oLb7YZKpUJpaSlyc3PR0dGBY8eOgeM4VFVVoaenB+FwGHK5PGpfIpEIhBCsXr0fAMCt5pBlc+Jbb7wEdAKdSEUOWiFCmGa7OZGEFuSgBbPQjRQkw4Ef4Bnsxlp4oUAOWiBBhGAcHLjUVOCmm3DOKobH04iLLjoKvT4NhYWFOHLkKJKTk2E0WlBdXY358+czgegUprKyEl6vF+vXr5/ooTBGgcgs3MgyJQKsjEf/jMiHqtfrR2scDMawmAg38WAp77H92oTCq2KxGGvWrKHGg8fjocJYoX2N3W5HTU0NLBYLbYTL8zzMZjNCoRBEIhFcLlfU/gghIIRAIun1/IhEInRnpOCfP/ouVv9wP/4PmyBBECIQ2gNODTsW4DRKcQZfYDHuxiu4AR9AjgD+jE3gEIYIIWpUARxw793wiSS4cNyC0tIz8Hpt6OkJQyqdA4Oh1wtmMplgMplw9uxZbNy4kRlKUxCLxYKDBw8ysfY0Y6B7JSvj0T9DMpLWr1+Pn//851gxSJtvh8OBP/zhD1CpVHjwwQdHZYAMxkAMxU1stVrR1taG7OzsUXtoD5TpFjkmu92OJUuWYNasWVH7F25Y7e3t6OzspOGyUCgEiUSCU6dO0XIBHMdRTUggEIBYLIZcLqelBQghtEkux3G0ppL6+HGsxAHsxuU4h2IU4xxEIAhIZZAE/AiDQx2KkYsWrOCOoCFzKfZdfB9q/zkHJ90LoYcZuWhBDlqhghPh882o8eVCo3Fg3jw7nE4nrRmVnp6O6upqmEwmJCUlwW63o62tjRlJUwwm1p6+DHav7O+eNtMF3UMykm6++WZs3LgRGo0G1157LZYtW4asrCzI5XJYrVacOXMGn376KT766CNcc801ePbZZ8d63AwGgMHdxFarFe+88w7sdjvUavW4eDeEfm1msxlqtRonT56E3++H0Wikb29msxnt7e1Qq9WwWq3geZ7qj+x2O/x+P035F8oGAL3eKI7jEAgEovrGCQaSYGwRQjDv7FlkwIR7FhzAc46v41jHMqT6zfBpkiHrdMAODWahDd/Ei7CQNDy+8E3Yu9OQJT8Fk1uDFvFstKRcBK2zA3M8JyE66EDm1RIsXdoNlUoChaIAFRUV9MY5f/58nD17lh7r7OzsMT3OjNHn9OnTaGpqwp133snE2tOM4YTUmKB7iEbSvffeizvvvBNvv/02/vrXv+LFF1+EzdZbfI7jOMybNw/r1q3DkSNHUFpaOqYDZjAiiXUTA9GtQdra2mC326FUKsfduxEKhWgNpOTkZACgJQEOHTqEzs5O9PT0YM6cOcjLy8O5c+doZe6enh4Eg0EaShNqKHEcB6lUCkII9Ho9bDYbwuEwkpKSaIaZsO+u2bPhvvZalH7/+7juo6M4dIDA+GEQcIRhQCeux3u4GIdAADyFn8Jx3oUFX9Uj7LAjS29Dc7oeHi+Prq4CNLuT8PCqL3DVE1JoNEtgs+X3ebPU6XTYuHHjqHvtGOODz+fDjh07UFpaisLCwokeDmMUEbxBZWVlsNls4Dhu8C+BCbqBBDRJPM/jzjvvxJ133gmg9+B5PB7ai4rBGE0ScfH21xpk1apVyM7OpmGvoXo3+tv3UMdks9no/rq7uyGXy2loiud57N69G/X19RCJRACA4uJiqNVq1NTUIC0tDVarFfn5+bBYLPD5fAgGg/D7/QBA25QAQGdnJ6RSKSQSCQghSE9Px4ULFwD0epxqrrwSeevXI0+lwrXXfgVFRY04Unoei5//Hywxfo6Ogjno+fGv8fn396HFMQvzfWegVM4HrvgqpD4fsngeEokYwSBw5kwGkm/MQEoKACiQkhJ//jqdjhlHU5R9+/bB6/XOqMra0zmUJMyN53lUV1dTYwfo1T4OxTPEBN0jEG5rNJoZecAYY4/H40FlZSXtkxYZ0hmIeG89GRkZCXk34hlaQG/l4ZqamiHdXIRwW1tbG+RyOZKTk5GdnU3bmnR1ddEQmRBSE25GgmCbEAKfzxfV0iSWcDgMv98Pnufh8/nQ0tJCw3JCOYCamhoYDAYAwMsvZ+DcuWJUuv8N4gKCttxcZG/tQb3jHjhUGegWyUCqesN1YrEiqpFpTw/w3HOIqo0EAD//+b+O23R92MwELBYLDhw4gDVr1kCr1U70cMaF6RxKipybTCaDx+OBTqeD2WwGABgMhiF5hpige4TZbYyZy1g+FM1mM+rq6kAIgc1mQ2lpKfLy8gb9Xn9vPUPxbkSm7AuGlsViQU1NDcxmM8xmM+x2O/Ly8oZ0cwkGg7DZbDQsVlFRAa/Xi8rKStjt9ihBdmNjI3JyclBWVobKykpYrVb09PRQj9FACL3c4qHX62G1WukcWloyEAwG0Z6T0xvC4zio240IIAuikBehjFw47XYEAgFIpVL61tmbVSdGICBGOAxENoH3eDw0m22ob6eMyYUg1tZqtVi5cuVED2fcmM6hpMi5Wa1WWulfeGESrtWBHB2R9/iMGdyDiBlJU4zJ8MY+1m9gggER+d+hMNy3ntiUfeHG4nK58MUXX8DhcCAnJwc2mw1Wq5UWguxvWw0NDTCZTPD7/QiHw2hvb0draysqKytp01ue56FSqaBWq3H+/HmoVCoolUpaFddqtUZV1pZIJEhKSkIoFKL93Qgh/bbV4TgO3d3d4Hkex44dg8fjwcaNNphPncKyqipwoRCkEgkWdX6Gn+E/YPYYkGKtgc/rg4TnYZlVgPSCAnR3d8Pr9cJm06K0VI/HHpNST1Jkhp7NZkN+fv60e9jMBM6cOYOmpibccccdM0qsPZ1DSZFz0+v1KCsrg8/no3Mc7B45nb1siTJzrohpwGT54Y71G1h6ejoKCwtpuC09PR3A0AzE4XSjj03ZX758OZxOJ06ePAmVSgWn0wm73Y6ioiKUlJQgPT09rlZJiP1bLBZ4vd4vw1ZiiEQidHZ2wu120xR9APB6vejs7AQhBBaLBSqVCklJSQCA3Nxc1NfXw+fzQSQSobCwEEVFRaitrUVycjJaWlrg9XppfaVIhCw3p9MJv98PsViMcDiMUMiDWaIgVh3cB0kohDDHARyH1WQ//oS7kF9zCmKEEeZEcM/OgVgM+P0e8DwPuz2MpUud4Pl/eeS6u3uPm06ng91uR3d394AGJGPy4ff7sWPHDpSUlKCoqGiihzOuTOdQ0mBzG2yu09nLlijMSJpCTJYf7li/gQn9hiIv8LE0EGPnI9T9MRqN6O7uRmFhIUpLS2EwGAYsHBkZ+w+FQlCr1QgGg8jMzERJSQnq6urQ2dkJiUQCuVwOl8tFvWThcBjBYBAAMHfuXAQCATQ2NkKj0cDn88FgMFBPjcViocaWUB8pci5Op5N64CQSCVwuF3JyclBYWAhpWRle8/lw3Z//jNSuLojCYVyMg9iNK3AOxZglb0Hd4oWQJyfDwPPgeQUaG8XIygpjzZroSt+Rx62wsBAFBQWQsQ63U4rKykq43e4ZW1l7OC9VU4WRzC32nsjzfNxK3TOBhI2kzZs3495778Wll146FuNhDMBkcQ+PxxtY7AU+lgZif/MZyhz7i/1nZGREubgVCgVuvvlm1NbWwuFwoL29nQqvBYQGuO3t7TSc5nK5wPM82tra4PP5oNfr4XA4YDQaaS0luVwOqVSK1NRUqFQq1NXVIRgMQiwWw+/3Q6VSQSaTUc9Uu06Hl++9Fz985hkAQAZM+CZexP/gm9iRczWSCIfkbik4jsDrzUVJiQ8PPCBGfn60kRR53CIzaGa6e36q0NnZiQMHDqCiomLGiLUZQ4Nd2/8iYSPJZrNh7dq1yMvLwze+8Q1s3ryZFY0bJyaTe3i8q7NGZn8pFArwPD8q2x1InBhvjrHzGyj2H/tduVyOnp4eauDE1ioRPENCBe65c+eitbWVep7OnDlDe8GFw2HqhfJ6vQgGg+ju7gYAFBYWoqWlBS6XC+FwGA6HAx0dHVRXRQhB3oULEJF/tSlZgFN4DP8JzWwRqkWrIZGokJUlRUWFBCtWSNCfblM4RoLXbaK9nIyhESnWFjI4GYxI2LXdS8JG0nvvvQeLxYI///nPeO211/DEE09g7dq1uPfee7FhwwZWM2mMmczu4eGExIZqVCkUCpr95fF4UF1dPeI3mv7S/YfSky1yfrHFLO12O1paWsDzfFSIzmQy4dy5cwgGgxCJRJgzZw6OHz8eJdC22WwwGAzUMyWTyeB0OnH27NmIHm2SPoJtIeWf4zjYbDYEg8GodZxOJ5qampCeng673Y7SmhoAQEtuLnZddRW+umMHss+fx/3+t1H8jWSkpKTjiiv0UCqHdj1PFi8nY2icOXMGjY2NuP3222eUWJsRzVDuvzP92h7W1aHX6/HII4/gkUcewdGjR/HKK69g06ZNUKlUuPPOO/Fv//ZvM04EyEg8JJaoUeXz+eD3+6HT6fpsf6jGVuR6seM1mUyor6/vdzz9zS+ymGVlZSWtnK1QKFBcXEzrPPn9fng8HtqoVqvVori4GI2NjfD7/ZDJZJDL5ViyZAlycnLQ0NBA3dxC2xGg1+MklUppSA4Arcotk8kglUqRkpKCxsZGOnaNRgNCCEpLS3urjxcVoTI7G4cuuQQhAP93//1Y/umn4ORypKamwO22wW63QakcmhE6mbycjIERxNpz585FcXHxRA+HMUEM9f4706/tEb1CdHR0YOfOndi5cyfEYjGuvvpqnDx5EvPmzcMzzzyD733ve6M1TsYUINE3jkSNqv62P9SLPXa9srKyqO35fD60t7fHNcKGMj+bzQaz2Uwb1YZCIZjNZphMJsjlvXoewVjy+/04d+4csrOzsW7dOtrQNjs7Gzk5OVAoFMjOzsahQ4doqxFCCDIyMjB//nzU1taitbWV7ltoV5Kenk5rJxkMBoTDYTidTlgsFohEItR86UGyXH01dDodcjwetLa2wu/344t160AIQdKXoblE3xgjvZyToVQFIz779u2b0WJtRi82m40Wr7VYLLTVWGzCzEyvlZSwkRQIBPDBBx/glVdewccff4xFixbhu9/9Lm6//XZafO7dd9/FPffcw4ykGUaibxyJGlX9bb8/Yyv2QR27ns/nixInHjp0iLYUKSws7DOewean0WhoJVvB6yOXy3Hq1Ck4HA5IpVJkZWXhwoULIITA7XbDZDJR7ZBWq0V5eTkde3V1Nc14A3oNoeLiYsyfPx/nz5+PqiWVnZ2NUCgEh8OBUCgErVaLK664Al1dXfjss8/Q1dWFUCiEuro6iMViaLVaOJ1OWhHcarXScgNCu5Te+kiJGzqTpVQFoy+CWHv16tWsfcwMh+d5uFwudHR0QK1Ww+v14uDBg7RWW1lZ2YwWbAskbCRlZmYiHA7jtttuw+HDh7FkyZI+61x22WUsW4IxKMNx48bTZMUztqxWK9Uv6fV6rFq1Ku56keJEu91O0+xLS0v7dT33J+bmeR75+fmw2+2w2Wzw+/2w2WxobW2FXC6H1+uFXq+HWq1GKBSiTWx7enrAcRycTidsNht0Oh016HQ6HTo7OyEWi0EIwYULF2gZAEGbpFarwfM8bDYbFX0LNZLmzJmDM2fO0LIBQtiuu7sbKpWK1nMKhUK0HYpWq6XHz+/3J3yDNJvNaG9vp8d6pgk9JyuEEPzzn/+EWq1mYm0GfD4fkpKSoNPp4PF4cODAAXR0dEClUgEA2tra0N3dDYVCgfb2dphMJsyePXtiBz0BJGwk/e53v8PNN99Mwwfx0Gq1aGpqGtHAGOPPSEMkw/EgROp5hluHI554urKyEo2NjfSCN5vN4Hm+3+yzSAMqKyuLlu8f6pwtFgtcLhfEYjFcLhcMBgNaWloQDofh8Xho/SS/3w+JREKLPAoGilQqpc1rjUYjeJ6n2Xx6vZ72ctNqtTAajQgGg1AoFOA4Dpdccgk8Hg9qamogEoloVW6HwwFCCNU6BQIBWu2b4ziUlpbi3LlzcLvdkEqlCIVCkMvl8Hg8UKlUdMyD6b8i/wZAe9zZbDYUFRXF9RCycNz4U1NTg4aGBtx+++0swYYBjUYDvV5PX5icTif9r8FgQHZ2NlpbW1FfXw9CCM6ePdunkO5MIGEjac+ePbj++uv7GEkulwsPPfQQXn755VEbHGP8GMzAGcpDbbi1jEYjPBPp4TEajfRB73Q6kZqaOqTmtIWFheA4jhpIQzHahDnLZDJ0dHQgMzMTNpsNTqeTGhA6nQ5erxderxeBQAAAaDjO7/dTEXZeXh4aGxvpOAsLCyGXyzFr1ixwHIeTJ0+ioaEBLpeL9n2bPXs2WlpaYDKZoowckUiEzz77DDKZDHa7HQqFAsFgEBzHIRAIQK1Wo6Ojg9ZaEsajUqmgUqlQXl6O06dPD6r/inXJFxYW0h53VqsVJSUlQ84SZIwdgli7uLiYibUZAOLXQrJYLLSpuE6nQ2lpKcxmM1JSUuiLz0y7VhM2kl577TU8/fTTSE5Ojlru8Xjwpz/9iRlJU5SBDJyBHmqRxtNwU0UTMa6GmrKq1+sB9Ha7njNnDo4dO9Zv+Cd2fmq1mj741Wo1CgoK+qTzR+4rJSUFRqMRUqkUHR0dEIlEUKlUWLJkCRobGxEIBKixIpFI0NbWBqVSCZfLBQC0B5vH44HX64VCoUBbWxvOnTsHr9eLU6dOYf78+UhKSqLhMZFIBIVCgbS0NFRVVdFl8+fPp+G9rq4uGAwGhEIh+Hy+3qw2ux08z8Pn88FisUCtVqOzsxNarRY9PT3QaDTweDzo6uqK63WLPVeCS174m+O4KI+c0FJmuOebMTrs378fLpcLV1111UQPhTGJiHy5jPXGG41GqNVqZGVlzdj0fyABI0noXE4IgcPhiPIkhUIhfPTRR0MOUTAmHwMZOAMJo2ONp6FqjIZjXA0nZVUQZA8U/unvwa9UKnHu3Dlao0iv1+OKK65AZmZm1L7Kysqwe/dumEwmeL1eaDQaGI1GmmFWWloKtVqNqqoqmsUmaICkUilcLhd0Oh3C4TBcLhfMZjMNySkUCpjNZqo1EtL+w+EwAoEA/H4/DaMFg0F0dnbCbrejq6sLHMfBbDZDpVJBp9PB6XTC7XZDIpFAJBJBrVbD7/dDo9GA53lqIHm9Xpw8eRJGo7HPMdbIZFi6fTtOXH45UjIykJ2dTYvNpaSkwGAwwGAwDPgbmOl1V8YbQbzPxNqMgYiUPsR6i/srkDsTGLKRpNVqwXEczbCJheM4/OIXvxjVwTEGZiS6jtjvDiSi7u+hFs94ysjIGFIByf6MK0GADPRtwpiIByJWkJ2Xl4euri5otVq0tLRAJpPR+Hrk/NRqNaRSKdRqNcxmM8LhMMLhMNxuN5xOJ959913cdtttUQ8bn89HG82KRCLaSkRo/MrzPORyOe1rplKpaMhMqJek0WigUqkgFotpwUeHwwGHw0G3GwqFaF0koSaSyWQCAASDQcjlcgSDQfA8T/VOmZmZEIlEKC8vpyG77u5uGAwGlJeXw+fzUc+S0P7k5MmTSE5ORnt7O8xmM/Ly8uh5873xBgpfeQVpZWXgN27s93czWGHQmVx3ZTwRKmszsTZjqMTLAp6p6f9AAkbSnj17QAjB5ZdfjnfeeQcpKSn0M5lMhry8PGRlZY3JIBl9GYmuo7/v9lfNu7+H2kAegYEMOOEiVCqVfR7EA80pXmuSWNFwf2O0WCzw+/04ePAgfD5fn0KPq1atgslkwtmzZ3HixAmo1WqsWLEC586dQ01NTZTep62tLcpI4nkegUCAptDn5uYiOTkZbrebNoesrKxEbW0tgsEgfD4fOI6DUqlEUlISVq5cSTPUBF1AKBSCRqOBVquF3W6noTrBSAJAw28qlQrBYBBarRY6nY5uX6VSIRAIICMjgzbKXbVqVdy3QuE4CmLNuro6cByHmpoa6iGuqqpC6auvQgtA+eGH6N64kf4+RqIhY4wdZ8+eRUNDA2677TYm1mYMCebpjWbIRlJFRQUAoKmpCbm5uX36TjHGl5HoOobz3XgPtXjGk8fjocZGpFBa2K8QXlOr1X0exPHGFfk9hUKB+fPnY+/evXA6nTh06BCA3lCwUKNLaDIrCA8BoKioCCkpKThx4gTC4XBUocfIqtlyuZxuS/jvqlWr4HA40NTUhFAoBJ1Oh+zs7CjjzOfzITk5GVqtFm63GxdffDE0Gg3a2tqQnZ0Nn88Hs9kMjuOgUCho6q3b7UZGRgYtHgn06gJqampw4sQJpKamwu12Y8WKFXA6nZBKpbhw4QI6OzuRnJyMlStX4sSJE3A6nZBIJJg1axbKy8tp+YFz587BYrHAbrejqqqKGm2xmrLY8zVr1iy0tLQgLS0NvuZmhB59FFwggJzWVmSeOAEAEO/cCdt998EnlyNr9mxIH30U6CfczjLZJoZAIIDt27czsTYjIZinN5ohGUlffPEFFixYAJFIBJvNhpMnT/a77qJFi0ZtcIz+GYm1P5pvCrFVlquqqtDS0oKenh5ac8hsNqOuri7KQ1RSUgKz2UxDUsIFGTkunuejPEuCgdTe3o7k5GR0dHRALBZDp9OhpaWFhqQ6OjoA9Br2kQJsvV4Ph8MBsVgMsVgMg8EQNfd4x8VsNiMQCGDOnDmwWCwoLS0FgD4xeyGVdtasWdBoNHS/RqMRZWVlMBgMtB6SVquNKgEgiLWB3gKOTU1NcDgccDqdKCoqijKiCgsLe4+VTAbFCy9A++1vo7S0FIQQGj6Uy+VoaGhAT08PAoEALly4AKlUiry8vCjPnXC+2tvbYbPZkJ+fTyvv+nw+tLa2YqlIhKSXXgLn86GY40C+fDniwmEUf/QROEJAZDLgzjvjGkksk23iEMTa69evZy+1jIRgnt5/MSQjacmSJTAajTAYDFiyZAmt9BuLUKyOMfaMxNpP5LuJeAGEMvc+nw8ejwfnz59HSUkJCCFRHiLBq2IwGKj3QtAiRYoEIz1LFouFGkhC8sDs2bPB8zzOnz+PUCgEiUQCr9eL5ORkGhYTvm+321FeXo4FCxbQPmmCURE5x9gMj5MnT6KrqwterxeEEBw9ehQmkwmBQCCqhlBRURE1VGLL/ft8PpSXl8Nut8NqtUKtVsPtdiMQCKC1tRWVlZVYt24dgN76ThcuXIBSqYRcLkdBQUGURks4B77//V8ofvpTKPLykHfHHVHnq6qqCkajkY47OTkZPp8PTU1NEIlEOHnyJPXcWSwWyOVyWK1WdHR0ICUlBX6/n2q4FIsWwVdVBfmddwLnzkH0ZTNeUTgMwnFw5uRA8u67kMcpKiv8Jlgm2/jT1dWFqqoqXHLJJVHSCAaDkRhDMpKamppoSjUrEjl+DGagjMTaH8p3Iwslxoaw4iGMs6OjA1qtFhKJBPn5+UhPT48SRgs1i9RqNZYvXx7leVGr1dRbE+nZUSgUcDqdSE5OhsPhQFZWFi6//HLY7Xbqpejp6aEPBL1eHzfzCujbmyjW0yGIFC9cuICmpiaaScZxHD0nqampdA5CqEoI+QG9YT+Px0Mzx+x2O0wmE81gS01NRU9PD2QyGbq6umh/t8j6Tnq9ntZNEo6LUJ5A0AaF3nwT4ggjSTB8nE4nnE4nOI6Dz+dDWloaTCYTOI7D+fPnYTKZoNFo4HK50NPTg1AoBKVSCZ7nkZSUBKvVimAwiNraWnTr9Vi1axcUOTnRJ5zjID54EPIBtIhM3zD+CJW1k5OTcckll0z0cBiMKc2QjCRBVBv7/4yxYyzCFIlqQ4QHrsPhoCGsdevWxf2usO3y8nIEg0G0t7cjHA5TDZvgofF6vTh8+DD17sjlcvh8PmoI1dfXw2w2Iysrq0/WW7xiZ3K5nNbxyMjI6JOuGusZijX6bDZbv01thSKLwj+xWIxwOAyNRoOKigr4fD74fD589tlnEIvFqK2thdFohMvlon3ROI6LKp/hdrsR/tIbI9ROcrvdOHXqFMrKyqBQKBAKhWjpgBMnTvTWTTp6FLOefx4+kQjpXi8yvtQGiXbsAL7//d6TIJVCfs89AHp1WmKxGHK5HEqlEuFwGH6/HyKRCGKxmBpPcrkcYrEYbrcbXq8XDocDK1euhMPhwPHjx6k3zPvxx1CEwwDHAYQAHAcuHIbi88+B667r9zfE9A3jT21tLerr6/H1r3+dibUZjBEyrGKSaWlpuOaaawAAjz76KF588UXMmzcPf/nLX5gRNUqMpHp1vAfScIyuSM+Q0KYi3jhitz137lx0d3fTxqmRpQE8Hk9cz0JKSgoNpanV6ijtTLxiZ5Gp5pGGVGzmVmwl7kijLxQKQSwWo7OzE52dncjNzUV7eztN309PT0dhYSGMRiOUSiWkUikNyQn76enpgdVqhdPpjOp7BvRWOQ6Hw6ipqUF5eTkyMjJog9nu7m7wPE9rJZlMJuzduxehUAgqlQoVFRWQy+VoaWlBe3s7lDYbSj/+GOJAAOEIbRDCYWDLFiAcBuF5nJ09G36FAjKZjBaYTElJgdfrRUpKCvXCCV41uVwOt9sNkUgU9ZlarcbBgwdhNpuhVquh/OQTfHkSgGefBX7wA6CqCti2bUAjKfYcMMYWQaxdVFSEuXPnTvRwGIwpT8JG0lNPPYX//u//BgAcOHAAzz//PLZs2YJ//OMf+N73vodt27aN+iCnM/0ZNYOFKeJ9byBDaLgZbeXl5fB4PAiFQtDr9VHtKYT9x2qHuru7YbVa0dnZibS0NPA8H7XNeMaOkIJ/6tQpNDU10aw3tVodZfhEzjV2G4MZgbFGX09PDxUpB4NBNDQ04MKFCzh69Cg2btwInU6HiooKmEwm2jA2MzMTJ06coKX6Bf2VQtHb9sNisYAQApFIBADIyMiA3W6Hz+fD4sWLqSFICEEwGKSFJcViMXp6epCcnAyxWAyfzwedTodVq1ahubkZp5KS8MHjj+PS//ov6CwWiL/0RnGhECASASUl6HrhBTS1t8Njs8HlckEmkyEjIwOrVq3C6dOnYbFYkJGRQcseAL2JFq2trdRrtmDBAigUCthsNiQlJUGtVsPlcsFVUgL+17/u9VqJxUBlJfDb3wID9HBkjD/79++Hw+HAXXfdxcTaDMYokLCR1NLSgsLCQgDAe++9h5tuugnf/OY3sWrVKqxZs2a0xzetGcioiRcqEnqJAfENgoEMoeFoQzweD06fPg2gtwCiEA6KV5FV2LZYLIbFYoFUKoVUKoVYLEZbWxvkcnmUSJoQgoaGBmRnZ0On00GhUNAO093d3dDpdP12oo933AYzAiPDgQCo5wcANWr8fj+USiVsNhtOnz6NsrIyAL21ZoQmj+np6ejo6ADHcdRbJuiktFotCCFQKpVwOp1ISkoCACpMl8vlmD17Ns6fPw8ACIfDmD17NhwOByQSCXiep73mBOML6L3m/H4/xMXF2PXkk7jpgQeizhMB4N21C0k6HRQ7dqC1tRVisRgSiYSWA4hnmHo8HvA8j8LCQtqiRPAwaTQa6HQ6Wqbh8IoVvcaVWNy7U7EYePTRQX9DjPGju7sbVVVVWLVqFRNrMxijRMJGkkqlQldXF3Jzc/Hxxx/jkUceAQAqOh1venp6sHbtWgSDQQSDQfz7v/877r///nEfx3AY7MHeX5n4oqKiuN8byBAaTBsSzzMjjE9I0/f5fHHHLRQpbG5uxp49e2Cz2RAOh2nneaHFhdAM1Wg00krRGo2Gem0AID09nWqMhLnH6oWE/SsUCrS3t6O5uRk8z0OpVMJsNvdJ7ReMLY/HA71ej/Lychw6dIjqhsLhMEQiEcLhMC3E2NDQgM7OTtrgUWgH0t3dTb0uQrVsp9MJr9dLszvlcjnS09OxcuVKcBxH9VTd3d0AAKVSSfu9CY1thXGmpqZCLBZj9+7dUKvVWLhwIbq7e7t0X7hwAUVnzkBECAgADr0GEhcOo/aPf8TcH/4QFRUVCIVCaG5uht/vh8fjoXWoIqvmRv6mlEolbVFSXV1NjdF4ZRpY2GxyEinWXr169UQPh8GYNiRsJF155ZW47777cNFFF+HcuXO4+uqrAQCnT5+mnoDxJDk5Gfv27aMNQxcsWIAbb7wRqamp4z6WRBmqdyfWKCGExP3eQIbQQKLt/nr18DzfZz9Cby+1Wk0LN/I8D4VCgUAgALfbDY1GA6vVSvuPJScnR/VEE9p8qFQqWK1WNDU1USMpcg6EEBw6dAhWqzUq1CcUo6yvr0coFEJlZSWUSiXcbncfoarH40FlZSUaGxuhUqkA9KZH+/1+aLVaelxTU1NRVlaG1tZWnDt3Dk6nE52dnQiFQlCr1VTDJBRtFAoz5uXl4cSJE/D7/XC5XAgGg1CpVEhKSoJWq4VCoaAZdgqFAg0NDbQ2UkFBARYuXEi9NyaTCUajEQcPHoTX66X7FFqkEEJQWlMDADAXF+PsPfdg3ssvQ3/uHDS7dsH2zW8iIyMDV199NWpqavDFF1/QLLxYAyfyN9XR0YFgMIjMzMwoYzTSYGWZaZOb2tpa1NXV4dZbb2VibQZjFEnYSNq6dSsee+wxtLS04J133qHGSHV1NW677bZRH+BgiMViKJVKAL09tAS9x2TD4/FQA6K/kFp/b+mxxlR6ejqtxxP7vXgi2cFE27GaIsHrImiSOI7rE+YThMwej4d6H7Kzs6nxJJVKMWvWLGogZGVl0ZYXQqacUEW6vb2dpv1HVuWuqqqi4xBCfQJarRZSqRSpqano6OhAUlISnE4n8vLyqFEAAA0NDXA6nTSt3mAw0NIA7e3tEIlEyMzMhMfjgVwux/z58/HFF1/AarVCLpfD4XAgNTUVGo2GNpQFgBUrVqCxsRHHjh2D1WoFIQQ9PT0QiUTIysqC2WymwnPBqGtubobX6wXP8wiHwygqKorqi1ZfX48LFy7A5XJR75bJZMK8efNQUlKCs2fPomv2bHjuuQfyn/4Ui3Q6VC9ZAv2f/gS5VouMCGO5tLQU3d3d9LxGaqcif1MWiwWBQIAWsYxsADzU3yerqD2xCGLtwsJClJSUTPRwGIxpRcJGklarxfPPP99n+XCb2+7btw/PPvssqqur0dHRgXfffRfXX3991Dpbt27Fs88+C6PRiMWLF+O//uu/sHz5cvp5T08PKioqUFdXh2effRZpaWnDGstYIvQMi6c9GkiMLKyTaBNRAY/Hg4aGBlgslrhp7kD8ekRut7tP2r9g8AieDQAwGAxRzW03btyIpqYmtLe3w+12Y/bs2cjKykJ+fj50Oh1KSkpgNBqhUqlgsViQl5cHh8OBmpoamM1mWlyysLAwbqhP8AydO3cOHo+H1hUSsuL8fj/0ej2t1m2xWOB2uyEWi5Gbm0tLB6xatQpms5nWbBI8JTabDWq1mqbrC96dUCgEqVQKrVYLr9cLs9kMq9VKj1s4HIZMJkMgEEBjYyOkUikqKytx5ZVXQqvVRp0ToZyAPEL0bLPZaPkAoZFtOBxGd3c3Pv30U2zYsKG3svYTT9AimABQtnw52rKzYcjOjvubaWlpwfHjx7F7925kZmZS0bbweUNDA06ePInMzExYrVaUlJT0KbA5UHNLVlF74vn000/hcDiwadMmJtZmMEaZhI0koNcoOXz4MO2SLsBxHDZt2pTQtlwuFxYvXox77rkHN954Y5/P//rXv+KRRx7BCy+8gPLycmzZsgXr1q1DbW0tDVNotVqcOHECJpMJN954I2666Sakp6cPZ2pjhtVqRUZGRr+ZZYM9bIaTRh1ZDNLlcgFAVNgqctuRafSVlZUwm8190v4jjSnh2EcaGACg0+mg0+lQWlpKe4LV19eju7sbq1atAs/zcLvdcLvdkEgkVEB94sQJuFwu5OXlobu7GxzHUWMsUmNkMpnQ0tICQgh4nodKpcLq1atp0UYhE85kMtH2JRaLBUqlEiqVimrnhMKK5eXlfcoGaLVauFwuJCcn05AbAOqhdLvdOH/+PLxeL0KhEDIzM2l/NolEArfbDb/fj/Pnz2Pbtm249NJL6TyEFiQ5OTn0GAKgBScFD5hQ1V4ikcBut2Pv3r30XAmGjuDF6+7uRmtrK0pLS6MKZvI8j9Offw7Dq6/i89WrYbfb6TqCAZSdnY36+no4nU5kZWUhPT2dGqLCmCOz4WJhFbUnFkGsvXLlyikhMWAwphoJG0l///vfcccdd8DpdEKtVke9uQzHSLrqqqtw1VVX9fv5c889h/vvvx/f+MY3AAAvvPACPvzwQ7z88sv48Y9/HLVueno6Fi9ejP379+Omm26Kuz2hAKCA3W5PaLzDRfCI9KftSPRhM5jGSEhtF7wxALBw4ULMmTNn0OrdQjNjQTTt9XppqCY24y7eGKxWK9ra2iCVSmm16O7ubphMJhw/fpxmVQkp8MFgEAaDAU6nE1arFVlZWbR6dSgUgsvlgtfrBQCcOnUKdrsdgUAASqUSs2bNQm5ubp/9V1dXw2q1oru7GyKRCOnp6bTqdWS2WlFRUZQR4PV6aS8zoXhk7LEVij0CoOuo1WrYbDb09PREfcfpdOLEiROw2Wyw2+1ROqTYkCfP89BoNHA4HAiHwyCEUE2SIMJubW1FKBTC1VdfHSVgF4pwRhqvMpkMut27sWbnTti0WjStXAmv10uNceEYx4Y0L1y4gLq6OhBCYLPZUFpa2m/9M1ZRe2LZvn07kpKSmFibwRgjEjaSvv/97+Oee+7BU089RbVAY4WQbfOTn/yELhOJRFi7di0OHDgAoNezoFQqkZycDJvNhn379uGBmBTpSH71q18NOzQ4ElasWAFCSL+6jUiNiCCG7o+BvE6xWUsikYgKn+MZSPGMLZ1Oh3Xr1tFw1IEDB6gHQ0jXF4g1Tmpra3H8+HEqzM7KyqICb+FBL5wrqVSKrKwstLa2wm63o6ioCCUlJVRvZbVaaYPWyspKzJs3D01NTZBIen+2JSUlWLhwYVRvM8ELIvQ/E0JkQhFLjuPQ0dFBq0+bzWb6faH6tt1uRzgc7pOtKeiEXC4X6uvrkZ2dHSVAFwTsbrebauOEkJrQ7HfhwoV9DA6Px4OzZ8/C7XYDALKysuB2u5GUlASfz4eVK1fi3LlzaGtrg0gkQmtrK2pqapCfnx9VhDMlJSUqDNrZ2Ymyo0cBAPNraiC+6y7wPE/7yhmNRohEItpDT3h5ELL3Iv/b329lqLolxuhTW1uLc+fO4dZbb4VMJpvo4TAY05KEjaS2tjY8/PDDY24gAaChjtjQWXp6Os6ePQugt7/WN7/5TfpQeuihh7Bw4cJ+t/mTn/yEli0Aet+4c2J7Uo0BCoUiqrdXvM/LysqoaDoyFRvov3hjrNcp0rtw/vx5JCUlQafT9RE+C9uMl9UmPOx4nofVah1SWxKr1Yp33nmHZo7pdDrafywYDMLj8aCxsRE6nY72CRPCeZmZmVi4cCE9D4JXJbLwo8fjob3IQqEQfD4fGhsb0dzcjKSkJOj1epSVlaGtrS1KqF1QUIDy8nJ0dXUhOzsbAKhQWSwWIyUlBYQQ7NixAx6PB1KpFMFgMMrbKCASiWgGXSgUononk8mElJQU2j8usvWH4DEyGo1IS0sDISRKQC1oxqxWK/Lz82nD2Z6eHvh8PhQXF9O6ZA0NDbT327Fjx9Dd3Y358+dTQ8ntdmOWVIrZ774Lv8uF7EAAWSdPAgDm1NYib+dOhP75T8xrbMRnK1ZAnJmJrKysPh5OodK44JkSQnAD1fRixtH4Ioi158yZw8TaDMYYkrCRtG7dOnz++ecoKCgYi/EkzPLly3H8+PEhr8/z/IBempEyknCez+ejBkak8dNf8UahaKPdbqeGjeCRErwLer0ebrebegri1UGKzGqLLNw41LYkQK/xHNkaRBiTUqmkc7Lb7ViyZAkN30kkEshkMvj9fjQ3N0Ov1+PQoUP04SwUfhTqG+Xn56O5uRlnzpxBIBBAd3c3pFIpdDodjEYjtm/fTtPrlUolUlNTMWfOHJw4cQJ2ux1GoxGFhYVITk6GVquF2+1GcXExDh06hMbGRlpGIhwOU2MJ+FexychwmFAwUiQSQSKRIBwO01R6odebUqmEw+FAZ2cnPB4Penp64HQ6aRVsr9eLyspK2L6skC2E1lpaWuD1emmphJ6eHpw8eRI+n4+G8txuN4xGI5xOJzweD2QyGUpLS5Ha0oLM998H5/eDxLQvkTz/PKThMBZIJLBccQUsyclYsGAB5HJ5H++Q0NdOWB4p2mfao4mnqqoKdrsdd955JxNrMxhjSMJG0jXXXIMf/vCHOHPmDBYuXNinJsd1g/RxSoS0tDSIxWJaeFDAZDINmHEzkYwknNefviNe8caysjLs2rUL7e3taG9vR3Z2Ni6//HKauSVobwRNUGQWl+AFEHqHCeGwyMKNZrMZPp+PVn8Oh8N9RN+R3i1BNOp0OiEWiyEWi+H1enHq1CkkJyfTcQgPdZ1O1ydDrqmpCXV1dTSrKz8/H+vWrYt6WOfm5qK2thaEEAQCAYhEIjidTrhcLhrKUyqVmDdvHsxmM44dOwa73U4F4X6/n8511qxZ4HkeHo8HSqWS6omEwpJ5eXkoLi7G2bNnqUFmMBiQkpJC9yeUnYgsDwCAeqMkEgkIIVCpVLDb7ejq6kI4HKb6rIaGBhrO0ul0KC4uRnNzMwghEIvFcDgc2Lt3L1paWqK0TjabDUqlknrVHA4HTCYTdDodZm/diuXPPANRfT1EEe1LCMfBnp2Noz/5Cbr1eui/LCcxmEZtoN8mY/yxWq349NNPmVibwRgHEjaShGrWTz75ZJ/PhFDIaCGTyagxIJQFCIfD2LVrF77zne+M2n5Gk5GE8/rTd8R7QNlsNqp9cbvdqK+vBwBcffXVUCh6W3wI2h6v14vDhw/TCtUmkwnp6emorq6OqocU2ZPs2LFjqK2tRSgUQkpKCi6//HLk5OREhYkiM6AELZHf74fZbEYoFILf70djYyOKioqwePFiNDU1oba2lmbaCSJjwUiTyWQ0HBUOh3Hq1Cnk5uZGGcT5+fm0OKVQ2To3NxeNjY3UYDIYDEhNTUV9fT1SUlJgtVphNBqRmZmJxsbGKKGyXC6HTqeDxWKhImyZTAaO41BSUoJFixYhMzMT+/btg06ng8fjwfLly+F0OnH8+HH4fD60t7dTr1MsYrEYoVAIdrud1lJyOp3o7u6mHqCenh5qRHEch6KiItTX10MkEtGWJ4I+KbLaNyGEGmtCo1qNRoPzSUnIfvtt5Fx0UZ/x/Pnb30ZGRgbKly3rIx4fym9TyApkTBxMrM1gjB8JG0mx2T4jxel00gc8ADQ1NeH48eNISUlBbm4uHnnkEWzevBnLli3D8uXLsWXLFrhcLprtNtkYaTgvnr6jP+NJEOcGg0FIpVK0traipaUFarU6qiGsx+OhFaoJITh79iztPSaEwex2Ow01+Xw+qgcTiUSw2WxoaGiAXq+n+zabzVEZUAUFBcjIyIDFYoFKpaIVs8ViMdxuNwKBAKxWK+1OL2TaCSEnp9OJs2fPQq/Xo7W1FVqtFn6/P0pULfQTu+GGG7B3716EQiGkpaVRQyEcDtNaSHK5PEoIL5VKqcclsvaSULupra0NhBD4/X6Ew2GoVCo0NjbC4XCgrKwMWVlZdFsajQbp6elobW3FmTNnqB4uUuQs4PP5oNVqEQgE4HK56IuEzWaj3jSRSASHwwGXy4XPPvsM1157LRYuXAiv14u6ujpaaqOgoAB+vx8+nw+BQADp6elUoE8Igdfrpf39xFVV4GLblxCCwo4OdM+ZQzVfiSKUc2A1kSaGc+fOoba2FrfccgsTazPGHFYodph1kgS8Xm9UQbzh8Pnnn+Oyyy6jfwtemM2bN+PVV1/FrbfeCovFgscffxxGoxFLlizB9u3bR1wHaevWrdi6deuoer7GkkiDR3gQVlRUQKvV4rPPPoNIJALHcTh58iT1/kQKsQsKCtDS0gK9Xg+r1Yquri6o1WoaBjt16hQuXLhAtUc6nQ49PT3UQ3L69Gm0tbVh48aNkMvl6OrqogYBx3HU69fW1gaVSoVDhw6hra0NEokEGRkZSE1NhcvlQkdHB9RqNbK/LH5os9loNXKz2YzMzExkZGSA47ioopBCuFHwWF1//fVRXrK8vDxYrVYsW7aMljyILJYoNMxVKBR0zna7nVbAFgwoofYSz/M09CiEN2NF9QUFBbhw4QIkEgkcDgdkMhnC4TA1tIBeT5JUKqUtXcLhMJKSkmi2W1tbG0KhEG1y63A40NXVhQULFsBoNMLtdtO5XXLJJUhPT0dLSwtOnjwJm82GQCAAuVwOsViMtLQ0qFQq+P1+aP75TwBAZ0kJmh54AEv+7/8gO3IERSdPovGGG4YVLmM1kSaWYDCIf/7zn5gzZw6tUM9gjAbxjCFWKLaXhI2kUCiEp556Ci+88AJMJhPOnTuHgoIC/OxnP8Ps2bNx7733JrS9NWvWDNpG5Dvf+c6oh9cefPBBPPjgg1RgPBWI96NdvHgxenp6YDabkZSUREXSFosFu3fvhsvliqqzc+HCBSgUCtTW1kKn06G8vBxerxeffvoppFIpHA4HLSBosVhQW1uLs2fPgud52Gw2NDU1obu7m2ZhyWQyZGRkQKPR0MKGKSkp+OpXv0pDTOnp6TCbzRCLxZg1axbV0QCIEocrlUpYLBYkJydDp9Nh/vz5aGtro8sEr0pWVhZWrVqFjIwMmtovtD6JNJ4VCgXmzJlDRcdCBpzNZsOpU6ewfft2hMNhZGVlISkpCaFQiG5PMKJSUlLA8zza2tqiNFsmkwmNjY0IBAIghFDNk1A+QCAUCsHpdCIYDCI1NRUikQirVq1CfX09LBYLfD4f7QkXDAaRnJwMmUwGj8dD25lEZpkBoM1rhardaWlpsFqt0Gg0tOK4bOVKBJYuRejuu7EwJQWyBx9E4OmnkUYIMod5s2O6pIlFEGvfcccdLOTJGDX6M4bYS1EvCRtJ//mf/4nXXnsNzzzzDNUnAcCCBQuwZcuWhI2kmU4i7sx4P9qMjAyaiRTZbV4mk6G1tRVAb+aZWCyGWq2GSCTqLTL4ZciJEIK6ujoattNqtSgvL6eVs5OTk3Hu3Dl6gUil0qgClXPnzkVKSkpccXlkX7Kamhq4XC44nc4+/cGE4pU9PT0IBALQ6/VwOBw4dOgQPB4PLSbJcVyfzL/BtDKx1cR9Ph84jqPp++FwGG1tbcjOzqa1m5RKJa3ELRzT2KrlHMdRQbjVakV2djba29vjjkHom8bzPKRSKU6dOgWgV6jt9/vB8zxteyKXy1FdXY3m5maUlZX1+xtQqVTo6uqioni9Xo/58+fTPnahL290mi9/X9BooPjpTzGS1qeCjks4XjPxhjlRWK1W7N+/HxdffPGkbLvEmLr0Zwyxl6JeEjaS/vSnP+HFF1/EFVdcgW9/+9t0+eLFi2ntIkZfBF1Q7LJE3JmRP1qlUon29nYaFhK+JxgENpsNHR0dCAQCVGPjdrsxa9YsAIDRaKRhLUEELYSCYquop6enUy2Ny+WCWCyG1Wqlmpr6+nqo1eoo70vkBWUymWA2mzFr1izY7XbaH0xAKF4ZmZEXmW0H9Bpjkb3dYi/YgbQywv8LQvOUlBTI5XKEQiEqgs7KyoLNZqMlE3w+HzIyMqgXSqjvlJOTg/nz51PNk+DBys/PR3V1NQ1PisViiEQievyB3to2ycnJCIVCtAClz+ejxppggCYnJwPo1ecJ4xValgjeJUFflpaWhgULFoDneXz22WdobW2FWCxGYWEhysvLo7x7I3WXR7ZBMRqNM9b9PhFs374dSqUSl1566UQPhTHN6M8YYoViexlWMUmhuF0k4XAYgUBgVAY1HTl48CC++tWv9mlFMZg7U+gz5vf7qe7HYrFg7969OHfuHI4ePYqNGzdSY0Lwrmg0GhQWFsJoNCIpKQlKpRIKhQJisRjNzc1U9KxWq2kvL0HXEtmGRGhwKnhSDh06BKC3v1lSUhJaW1upV6q8vJzWEgJ6DTGe53H27FnalqOwsDCuniw2Iy/SK6bX61FaWorS0tK4F+xQjqPJZEJ9fT3C4TB6enro8QqHwxCLxejs7ITP50NLS0uUp0u4gRiNRtjtdpw/fx5OpxOlpaVRmi+bzQatVotQKIRAIEC9Q0I5ASFTTTiegkfmyJEjdB3hmAvbam9vR09PDzo7O2m5AqBXsN/R0UENOo7jaK2nUCgEuVwOs9mMtra2UXWXM/f7xFBXV4fa2lrcfPPNTKzNGHWYMTQwCRtJ8+bNw/79+/u0Vvjb3/6Gi+KkHDN6sVqtfR4qg7kzrVYrdu7ciZaWFtqrrLi4mPY5UyqVsNvtaGtrow/9SEpKSlBaWgqZTEa9SmfOnAHQ6+kQwmLl5eUwGAyQSqVoa2vD4cOHo4TfkQ90QWTtcDhoJhvQG4ISUsojPWQymQxOpxPp6elwuVwoLS3t9yKMDT3Gu3AHaukS7zgK2/T7/VT7Fg6HaT0nofik1WqlobNIT5cQYtq+fTs8Hg9EIhG6u7vR0dEBnU5H+7719PSgu7ub9pgLBoOQy+XgeR6EEMyaNQurV68Gx3F0PnK5HK2trXA4HOA4DiqVCoFAgNYe6+npoWLu1tZWVFVVAQAsFgsCgQAcDgf0ej0tmyCURgB6Dans7GzqCRvIXT7UkC9zv48/gli7oKAA8+bNm+jhMKY4/V3r8bKqmXC7l4SNpMcffxybN29GW1sbwuEwtm3bhtraWvzpT3/CP/7xj7EY47RAp9P1eaj0Zwh4PB6YzWYcOnQIdXV1NANPJBLBaDQiPz8/KjNNaLchEPnjVqvVCAaDaGpqAiGEvokKLTNidUxCiCu2AndZWRnOnz+P7u5uOh6fzwexWIwlS5YgMzOT7j/S49DZ2UmzyISQXOQ4I5vlxrsgh9JrbqDjGHkchIyylJQUuN1uWK1Wmn0mFLoUyidEIojMhZ5zYrEYPp8PDQ0NcDqdtG6SSCSCVCqlITaRSISlS5fSbLZ4hmx+fj6sVis9l263G8nJyVSY7XK5aE2k1tZWeL1eiEQiAMCyZctolpNer6dhvMWLF6OwsHBIb4iJ3AjZG+f4U1VVBZvNhttvv52JtRkjIlGjh3mOe0nYSNqwYQP+/ve/48knn0RSUhIef/xxLF26FH//+99x5ZVXjsUYx4TxLgGwYsWKIVU2Fn7I7e3t6OzshEgkojoXoecYx3G45ppraD+y2Idv5I9bqJwteFHkcjmWL1+O1NRUGmYT1hVS5K1WK4DeGlZpaWmwWCxoamoC0BtmE3qYCbqbtrY2NDc3R7UzETwOgqdJKDQpGByxF2xRUdGAF6RgOMarHB7vOMYeB7vdjuXLl9MWHD09PfD7/fD7/cjKysLixYupUDy2b55Go4FerwcApKamIhQK0QrYzc3NMJvNyMjIoPWhQqEQFAoFbabr9XphNpupGFyj0cDr9WL37t2wWCy0fpTL5aJZhGq1GmvXrsXhw4fR2NgIn89Hi1zG+w1FligwmUw0JB6vdESiocqBfq+MsaOnpwf79+/HihUrmFibMWISvdYH8xzPlBpKw6qTtHr1auzcuXO0xzKujHcJgIFCTEJmVqTRIlSK5nmetrYQ9DpVVVU01BPPOxH54zYYDNSTxHEcMjIy+oS8hKKLMpkMubm5aGpqgsfjgdfrRWdnJ7xeL7744gs4HA5aPTw1NRXhcJh6PSKzzoTeZPG0Rf21WhG62AvLhIywyPBde3t7VIuRRC9yoQWHx+PB6dOnaYNbwXiJ1zdPOHeRHpSenh5s374dFosFIpEIfr8fra2tSE9PR3FxMUwmE3w+HxXXC21WIvuz2e12Kr4OBoMIhUIQi8VITk5GRkYG/H4/NWjdbjftgadQKOBwOOD1emmF9IqKigHHP9AbJAuhTV4EsbaQ/clgJEKsEZPotT6Q53gmheISNpIKCgpw5MiRPj2Denp6sHTpUjQ2No7a4KY7QmsP4WFZVFSE8vJy+kOeM2cONBoNWlpaYLFYqGfJ5/PR47xu3bqoh6Hwg478cQO9FbIJIVRkDPzLK1BWVobdu3fTit0ikQgFBQXUKGppaYFCoUB3dzcaGxshk8mQnp6OBQsW9KmPFJkZEZtxN1CrlfT0dKSnp9MMt0OHDtGLL9JwtNlssFqtyMrKGtJFHi9lXdheZOXtwW4gkR6Z06dPQyqV0lYhXq8XYrGYitvVajW0Wi1ycnLQ1NREs+hsNhuysrJgNptp2EzwEgrGsEKhoLWONBoNeJ6HVquFx+NBWloaCgoK0N3djUOHDsHr9aKnpwcFBQXIycnpd/wDvUGyENrkpK6uDmfPnmVibcaw6M+ISfRa789zPJNCcQkbSefPn48bovL5fGhraxuVQc0UbDYbbTkBgIbGIhvUNjU1oaenh7bVkEgkcLlcSE5OpkZRrFha0BABvVXRfT4f7ZMWu47P56M/eIFwOAyLxQKdTodZs2bBZDKhubkZAEAIQWpqKhwOB+17NtiFF+9Ci1ffSBAzC+Eni8VCtysYAEVFRbTqdjzjMPZtJ17KejyDaKg3EOFYCc2XCwoKUFdXB6PRCKlUCrfbTUOLHMdBoVDQ60VoJix497xeL0KhEG1lI6wnGHcAcOjQIVitViQlJSEYDOL48eMQi8W0DUk4HMbhw4eh1+v7Hf9QDUDG5EAQa+fn5zOxNmNIxN4D+zNiRutan0ke6CEbSR988AH9/x07dkQdlFAohF27dmH27NmjOrjpjkajgcFgoEUdDQZDVOaToL0RQjVarRY8z9M3y/7CV4LoWijEmJSUBL1ej8LCwqh1du/eTT0pXq8XXq+Xhtw4joPT6cQnn3xCU9Szs7Nx/vx5mvYvpKSP5MKLrW/E83xU+xKhx9hw3L4D3Sj6y5wbbB6RNwe9Xo9FixYhNzcX7777Lk3H93g8yMjIQH5+PsxmM80sFPZRXl4OuVyOBQsWgOM4qNVqtLW10fYpwjmx2+1R/fE0Gg3S0tLQ2dlJyxIAvaUWKisrsW7duqhmwALMWzS1+Oyzz9DT04PbbruNibUZgxLvHjjWRsxMuqcM2Ui6/vrrAfRmRW3evDnqM6lUitmzZ+O3v/3tqA5uuqNQ9FabLikpoZqkeOGowsJCuN1uuFwupKenRwmA460veJaE1H9Bp8JxHF1HLBbTjDe/34+8vDyYTCbwPI9wOEzFx0IRSLfbTYs8pqen00a4IyGeEQMASUlJtBq1sI/+DBiz2Yz29nY6r0i370A3iuEadvFuDkKz2rS0NDgcDsybN4/qvioqKqL6x0U21o18qZDL5X3S9U0mEwghtN5SUlISLly4AEIIMjMzwfM87fnmdDr7rbMljDWeAcWYXESKtYVkAQZjIPrrxLBq1SoqsxgLZooHeshGkhASys/Px5EjR1i2xSihUCjieuAiH8Y8z1MNCgAa5oq3vhCya2xsRGdnJ+RyOfVsGAwGGAwGmM1mVFVVwePx0O71NpsNwWAQgUAARqMR2dnZ8Pv9UKvVCIVCKCwsREFBARobG2kbjHhvJ4lkPPRnxOj1+j5C73j74HmeZrvZbLaoIpCxx3Akbzuxc4q9OWg0Guh0OqotM5vNyM/Pp9+J7B/X31tdvLFqNBrI5XK6bN68efB6vVGZgxKJBF6vFyqVChqNZkhlFRiTlx07dkAulzOxNmPIDPQyWFdXx67/EZKwJklIBWeMPcLDWKj2LITm+hPJeb1eHDt2jBYWlMvlAACVSoX58+fThyfP8/D7/ZBKpbRCc1FREW0rw3EcFWUL/c6EB3dOTk6/RkeiGQ/9GTEDGTaxhSo9Hk9UEUgAUanuI33bGcqcFAoFSktLaQsRq9UaVWNq1apVQzLWYsfq8/mQnJyM1NRU+P1+qFQqZGVl0axFADT0Vl5eDgBDKqswU1J3pxr19fWoqanBTTfdREPZDMZg9HcfnUni6rFkWCUAdu3ahV27dkWJjgVefvnlURnYWDPedZJGwlDiy0KmXGNjI1QqFXw+H0QiEQwGA6xWKw4dOhRVGDIjI4N2rC8sLMRXvvIVhMNh2nE+Nzd3yCJsgeFclP2JuoeyD6Guk8fjodluo+05GeqcIr10SqWSFuWMdH8LY41XrygeQn0mwasmZAAKN0Ov10u1Z6dPn+5jFEWWVRB+NzMpdXcqESnWnj9//kQPhzHFiHfPnEni6rEkYSPpF7/4BZ588kksW7YMmZmZU1ZYON51kkZCf6nskdhsNng8HqhUKjidTuTl5SEpKalPs1ihFUk8LVRFRcWIPAzjcVHGCqdj+6eN9pvTcOYkl8uhUqn6NOMdLU9b5JtiZG2kWKMo1qgSvJLs7XLyceDAAVitVtx6661T9p7KmFzMJHH1WJKwkfTCCy/g1VdfxaZNm8ZiPIw4DKX7upAFFgqFYDAYUFFRQfUsQkFHi8UChUJB143VQo00NDUeF+Vg+xhtIy2R0gCRIdHI6t4jcX8PdE76qzU1UL879nY5+bDZbNi3bx9WrFhBw6gMxmgwU8TVY0nCRpLf78fKlSvHYiyMfhjs4SoYUYInKbISt7BeZNuK2LYbo8lgF+Vo6GH628dYGWlDmZPP56OVtCOrewufC8bqSA2UyG0JzYdjMx2H451iTBxMrM1gTF4SNpLuu+8+vPHGG/jZz342FuNhxGGwt/94FaRjGahtxXggtF85e/Zs3N5ro8V4vznFNtFdvnx5HwMpXgHP4RgowraEyt5C/atEjyN7u5w8NDQ04MyZM9i4cSMTazMYk5CEjSSv14sXX3wRn3zyCRYtWgSpVBr1+XPPPTdqg2P0Mtjb/1BCKBMZZonsvWaz2ZCfnz9t9DCxTXTlcnnUnGK9gD6fb9j1ioRtxda/mg7HcSYSDAbx0UcfYfbs2ViwYMFED4fBGJSZmBmbsJH0xRdfYMmSJQCAU6dORX3GBIdjx0Bv/0MJoUxkmCXW09Xd3T2k3mtTgcGMz4E+T/SGI2zLYrFArVZTz6DX641qBjzTbmJTlYMHDzKxNmPKMFMzYxM2kvbs2TMW42CMkKGEUIR1EklDHw1iq4eXlpZGVRefygxmfPb3+XBuOJHb4nkedrsdNTU1OHz4MA3lRTYbnik3samIzWZDZWUlysvLmVibMSWYqXWXhlUniTF1mYi3gekuFh7MQI33+XBvOJHbEvq7Cdtoa2ubkTexqciOHTvA8zzWrFkz0UNhMIbETM2MHbKRdOONNw5pvW3btg17MOPJVComOZpM1NsAEwtHMxo3nNhtZGdnD9r+hDHxNDY24syZM7jxxhuZWHsKM9NC29P9Zbc/hmwkTbcb7lQqJjmazNS3gcnGaNxw4m1jJt7EphKhUAgfffQR8vLysHDhwokeDmOYzFR9zkx82R2ykfTKK6+M5TgY4wR7kE4eRuOGE7uNmXgTm0ocOHAA3d3duPnmm5lYewozU/U5MxGmSZqBsAfp0JlpLnXG2GG327Fv3z5aS4sxdWEe+ZkDM5ImIezBPDmYqS51xtiwY8cOyGQyJtaexAz13ss88jMHZiRNMtiDefLAXOqM0aKxsRGnT5/GjTfeCLlcPtHDYcRhOA2o2f1g+iOa6AEw/oXH40FDQwMtFig8mBkTg+BSF9qoMJc6YzgwsfbUIN5LEYPBPEmThNi+XACg1+vZg3kCGa5LnYVLGZEcPHiQibWnAExnxIgHM5ImCZGtOwBg4cKFmDNnDnvITjCJutRZuJQRid1uR2VlJb7yla8wsfYkh+mMGPFgRtIkIfItRq/XMwNpisJ0TIxIPv74Y8hkMlx22WUTPRTGEGA6I0YszEiaJLC3mOkBc9kzBJqamnDq1CnccMMNTKw9Q2Gh96nPjDWSJmNbEvYWM/Vhxi4D+JdYOzc3F4sWLZro4TAmABZ6nx7M2Oy2Bx98EGfOnMGRI0cmeiiMaYZCoUBGRga7Ic5gDh06hM7OTlx99dVMrD1DYdly04MZayQxGAzGWOBwOLB3714sX74cGRkZEz0cxgTBSohMD2ZsuI3BYDDGgo8//hhSqZSJtacxQ9EasdD79IAZSQwGgzFKnD9/HidPnsT111/PxNrTlIG0RrHGE9OZTn2YkcRgMBijQCgUwocffoicnBwsXrx4oofDGCNitUZmsxk8z4PneVRXVzOh9jSDGUkMBoMxChw+fBidnZ341re+xcTa05jIMh9qtRo1NTWw2+2QyWTweDzQ6XSsRto0ghlJDAaDMUIEsfZXvvIVJtae5kRqjbxeLw4fPgy1Wg2r1QqFQsGE2tMMZiQxGAzGCPn4448hkUiYWHuGIGiNPB5PVKeEsrIy+Hw+JtSeRjAjicFgMEaAINbesGEDezDOMASvktlsBiEEcrmc9t9kTA+YkTTK+Hw++Hw++rfdbp/A0TAYjLFEqKw9a9YsLFmyZKKHw5gg6urqmGB7msKKSY4yv/rVr6DRaOi/nJyciR4Sg8EYI44cOQKLxYJrrrmGibVnKKyy9vSGGUmjzE9+8hPYbDb6r6WlZaKHxGAwxgCHw4E9e/Zg2bJlyMzMnOjhMCYIVll7ejNjw21j1eBWqJfBYDCmNzt37oRYLMbll18+0UNhTCCssvb0ZsZ6kliDWwaDMVwuXLiAL774AldeeSV7KDISbmrt8XhgNBrh8XjGeGSMkTJjPUkMBoMxHMLhMBNrz2CG0rdtsO/319aEMflgRhKDwWAkwOHDh2E2m3H//fczsfYMI56BAyAhoyme0JsZSZMXZiQxGAzGEHE6ndizZw/KysqQlZU10cNhjDPx+rYlmv4f2dYkUaH3SL1YjMRhRhKDwWAMEUGsfcUVV0z0UBgTQKyBQwhJ2Cs0XKE3C9NNDMxIYjAYjCHQ3NyMEydO4LrrrmMPpxlErPcm0sABMCyvkNDWJBFYmG5iYEYSg8FgDEI4HMaHH36I7OxsXHTRRRM9HMY40Z/3JtI4Ga/0fxammxiYkcRgMBiDcOTIESbWnoEMxXsTazTFGiSjZaCwMN3EwIwkBoPBGACn04ndu3czsfYMJFHvTaxBUlZWhurq6lEzUFiYbvxhRhKDwWAMwCeffAKRSMQqa09j+vP2RHpveJ6nfdn6MzJiDZK2trYJN1BGEqZjMCOJwWAw+qW5uRnHjx/HtddeC6VSOdHDYYwBg4WjFAoFvF4vKisr4fF4oNfr+6wjGFk8z0cZJNnZ2TAajRNqoLC2KSODGUkMBoMRB6GydnZ2NpYuXTrRw2GMEYOFozweDyorK9HY2AiVSkW/I6wTL8Tm8/n6ZMMNxRM1VgwnTMfoZcb2bmMwGIyB+Pzzz2EymXD11VczsfY0RghH2e32uN4em80Gj8cDlUoFp9MJhUJB1/F4PGhoaIDFYoFSqUR7ezvsdntUHzeFQgGe51FZWYk9e/agqqoqqmdbZB831tNt8sE8SQwGgxGDy+XC7t27sXTpUmRnZ0/0cBhjyGDhKI1GA71eDwAwGAyoqKigWWtVVVWwWCxwOBywWCwQiUSoqamBwWCAQqGA1WpFU1MTamtr0draiuTkZAD/8kRFeqHUajUAUGONZaFNDpiRxGAwGDF88skn4DiOVdaeIQwUjurPiBLCdDqdDl6vFyKRCOnp6bBarWhoaIBKpcKHH34Iu92OYDAIiUSC7u5u6PV68DwPo9EIr9dLDSSz2Qyg1xBjWWiTB2YkMRgMRgQtLS04duwYvva1rzGxNgNAfCMqMmssMzMTAGC1WuFwOHDo0CHYbDY4nU4QQgAAHMeB53kUFxfTsgBqtRpqtRp2ux0Gg4FuQwjRMSYeZiQxGAzGlwhi7aysLCbWZgxIvBYlNTU12L9/P8LhMFwuV9T6hBCoVCrwPE8NJLvdjvLycvA8D41GE5VFV11dzUJuk4AZayRt3boVW7duRSgUmuihMBiMScKxY8dgNBpx3333QSRieS2MgYn1MKWkpEAsFiMcDtNlYrEYCoUCOTk5CIVCkMlkUWUCBP0S0BvC8/v90Ol0LOQ2SZixRtKDDz6IBx98EHa7nRXXYjAYAIDKykom1mYMu5VIeno6Zs+ejdraWnAcB6lUCgCQy+UIhULQ6XQA0KdMgEBkCE+tVsPr9cLj8TBDaQJhr0oMBoPxJRzHYe3atRM9DMYEImSc7du3r0+6/mAoFAosXLgQWq0WSUlJCAQCSE5Ohkajwdy5cwEAhw8fRnV1dVwDTAjhlZeX03UTHQNjdGFGEoPBYHxJRUUFE2vPcOIVl0wEtVqNUCgEv98PmUwGlUqFjIwMWotpsO0Kou2hrMsYe2ZsuG28EDIb7Hb7BI+EwWD0h3B9Ll68eIJHwphoBup11l8YLnK53W6H1+uFTCYDAOTm5mLJkiWQy+UD9lCL3AbrtzZ5YEbSGNPV1QUAyMnJmeCRMBiMwXC5XFQ3wpiZ9FcXqb8eb7HL09PTEQwGEQ6HEQwG0djYCJvNhoqKin6LVsbb9kj6rQ1XU8XoCzOSxpiUlBQAvY0y2dvA+GG325GTk4OWlhZayZYxtkzlY04IgcPhQFZW1kQPhTEJiM1ai2w/kpycjPb2dpjNZuTl5cFms8FisUAmk8FoNKKrqwt+vx/BYBAikQgulwtWqxUejwfr169HRkZGn/3FC/FFtjZJhMEa9jISgxlJY4yQRqzRaKbcg2M6IBRrY4wfU/WYs5eYmYfgceF5Pm62mbBOVVUVjEYjenp6YDabIRaLafsRnufhcDjQ09MDnuehVCohl8sRDAbh8/lgs9kgEonQ0tKC9957D+vXr6fFJwWE54PZbIbBYBjRb3Gwhr2MxGBGEoPBYDBmHJG911wuF5KSkqDX6/t4XgRPkdvthtvthlgsRl5eHm0/IpPJ4HK5EAgE4Pf7IRKJwHEcJBIJRCIRwuEw3G43CCFoa2vDu+++ixtuuAEcx4EQgo6ODshkMgSDQYRCIbhcLni93mEbNkzPNLowI4nBYDAYMw7B4yKTydDR0dFvAUeNRgOpVAqbzQaVSoVgMIienh4Eg0GcPHkSIpEIHo+HhtcUCgWWLl0KqVSKAwcOwG63QyKRIBQKQS6Xw+12Y+/evQiFQjAajfD5fBCJRJDL5VAoFLhw4QJ27dqFZcuWIT09PWFjabCGvYzEYCUAxhie5/HEE0+wPjzjDDvu4w875oyphOBx8fv9UKvV8Pv9/Xpe5HI5pFIpgsEgCgoKsGjRIiQlJUGn08HpdNL1CCGQyWTIzMwEx3FQKpXIyclBamoq1Go1NaLcbjfC4TA8Hg84jkM4HEYgEIDD4YBSqUR7e/uw6jQJKBSKYWuaGNFwRMhRn6EIFbdtNtuU1FEwGAwGY3gMRZNkNBqxb98+KBQKWK1WXHrppUhPT6fiaJFIhLa2NgSDQfj9fqSlpYHjOOo18nq94DgOOTk5yMjIgNFoREtLC8LhMPx+P/x+PyQSCebMmQOO42C32+FyuZCXlwePx4NLL700rth7LI7DVPM8jcfzm4XbGAwGgzEjic1ii0ekxicrK4uGwISQFs/zOHToEFpaWuB2u6HRaNDa2gqdTgefzweJRIKsrCz4/X4AgMViQWZmJtxuNy666CIEAgEkJSUhNzcXAGA2m1FTUwO73T4sTVGiBg/LhhsYZiQxGAwGg9EP/Wl8Ig2s8vJyaLVaNDc30/Cdx+NBKBRCMBhES0sLMjMzceTIETgcDnR3d2P+/PmYNWtWHw9WXl4eDAZD1P6GavgMx+Bh2XADw4wkBoPBYDAGYCCPk8fjwaFDh1BXVwdCCDIyMrB48WIEAgGcOXMGWq0WDocDNpsNNpsNUqkUhBBotVpUV1fHNWgi92e1WlFZWQmPx0Oz77xeL9ra2pCdnQ2dTkeNKJ/Pl7DBw7LhBoYZSQwGg8FgRJCI56ahoQEdHR0ghCAcDqO9vR1erxcpKSlwu90wm82Qy+WQy+XgeR4ejwdSqRTt7e0IhUL9ZtUJ26+srERjYyNUKhWA3sLE+/fvp73drrnmGpw+fZoaR2q1GlarlfaAG8o8y8rK+tVkzXRYdhuDwWAwGF8ihKwGyy4T1jt58iQCgQBdLoi2LRYLpFIp8vLyoFarkZKSgpSUFCQlJaGoqAihUAgKhaJf7ZFggDmdTqhUKjidTigUCrhcLtjtdiiVStjtdjQ0NFADyW63o6CggIboqqurBx3/vn37UF1dzQykfmCeJAaDwWAwvmSoGh1hPaHX37Jly2htpNbWVqhUKmRlZcHtdiMjIwNlZWWw2+2oqamhnp7y8nL4/X74fD5abRvoFW+fPHkSnZ2d8Pv9UCqVMBgMqKioAAAcPXqUepLmzJkDr9dLw2U8z8Pv98f1UEV6yJgWaWgwI4nBYDAYjC/heR4ymQydnZ1QqVT9hqwitTx6vR6lpaW0ZUlaWhpEIhEWLFgAuVxOvTQ6nQ5qtZpqjE6cOIFgMIjz58+DEIL8/HxIJBJ0dHTAbDaD53mIRCIsW7YMpaWl1IjZuHFjlCZJq9VS4wdAXI1RrKi7rKyMaZGGADOSGAwGg8EAaIjK6XTCbrcDAKqrq+NmicWWATCZTDh+/Dg6OzsRCoWQlpYGjUZDPU0CPp+PenrMZjP8fj/C4TAAoKOjAzzPIykpCaFQCIQQcByH1NTUqP3rdDrI5XKYTCbY7XYYDIaoWkrxsvFiPUc+n49V5h4CzEhiMBgMxrRhJIURBUNCoVDAbDYjPT19wFCUsKyqqgrt7e20zQkAyGQy+Hy+Pt+J9EAZDAbqSQqHw9BoNFAqlXA4HEhLS4NUKoVerwchBB6PJypsVllZifr6ehBCUFRURENxwtxjC1DGy2IbSp2omQ4zkhgMBoMxLRhpYUTBkLBYLLRViV6vjwpFxRphkdqknp4ehEIhSKVSZGRkxA1hxdZdAoCWlhZ88cUXCAQCkEgkWLlyJRVi19TU4PDhw1HzsdlsMJvN1ANlNpthMplQX1/f79xZT7fhwYwkBoPBYEwLRipGjg2hxabFxzPCIj00xcXFKCgogEwmG7A5bawHR61WIxwOQ6fTwW63g+d5WrFbEGhHzkej0cBgMMBut4MQAoPBAI7j+p27x+OB2WwGIWRYTXNnMjPeSBJa1wnxZwaDwWBMTTiOA8/zMBqN0Ol0tBdaoiiVSvrfQCBAU/xNJhNaW1uRnJyM1tZWtLa2Ij09HQsXLqTGjGCARH5PwOPxRK0n/C2TycDzPNra2qBQKKhx1N98PB4PZs2aBYPBAJlMBr1eDwD9rvvpp5+ioaEBHMehoKAAl1xyybQwlIRzO5YtaGeskbR161Zs3bqV9tPJycmZ4BExGAwGg8FIlK6urjHLzuPIWJpgUwChQmpycjI4jpvo4YwIu92OnJwctLS0jFlH5MnKTJ47MLPnP5PnDszs+c/kuQNs/jabDbm5ubBardBqtWOyjxnrSRIQiUSYNWvWRA9jVBFK089EZvLcgZk9/5k8d2Bmz38mzx1g8xeJxq55CGtLwmAwGAwGgxEHZiQxGAwGg8FgxIEZSdMInufxxBNPDNr5eToyk+cOzOz5z+S5AzN7/jN57gCb/3jMf8YLtxkMBoPBYDDiwTxJDAaDwWAwGHFgRhKDwWAwGAxGHJiRxGAwGAwGgxEHZiQxGAwGg8FgxIEZSZOYrVu3Yvbs2ZDL5SgvL8fhw4cHXP/tt99GSUkJ5HI5Fi5ciI8++ijq87vvvhscx0X9W79+/VhOYUQkMv/Tp09j48aNmD17NjiOw5YtW0a8zYlktOf+85//vM+5LykpGcMZjIxE5v/SSy9h9erV0Ol00Ol0WLt2bZ/1CSF4/PHHkZmZCYVCgbVr16Kurm6spzEsRnvu0/m637ZtG5YtWwatVoukpCQsWbIEf/7zn6PWmUrnHhj9+U+l8z/c+/Obb74JjuNw/fXXRy0flXNPGJOSN998k8hkMvLyyy+T06dPk/vvv59otVpiMpnirl9VVUXEYjF55plnyJkzZ8hjjz1GpFIpOXnyJF1n8+bNZP369aSjo4P+6+7uHq8pJUSi8z98+DD5wQ9+QP7yl7+QjIwM8rvf/W7E25woxmLuTzzxBJk/f37UubdYLGM8k+GR6Pxvv/12snXrVnLs2DFSU1ND7r77bqLRaEhraytd5+mnnyYajYa899575MSJE+S6664j+fn5xOPxjNe0hsRYzH06X/d79uwh27ZtI2fOnCH19fVky5YtRCwWk+3bt9N1psq5J2Rs5j9Vzv9w789NTU0kOzubrF69mmzYsCHqs9E498xImqQsX76cPPjgg/TvUChEsrKyyK9+9au4699yyy3kmmuuiVpWXl5OvvWtb9G/N2/e3OdHNFlJdP6R5OXlxTUURrLN8WQs5v7EE0+QxYsXj+Iox46RnqdgMEiSk5PJa6+9RgghJBwOk4yMDPLss8/SdXp6egjP8+Qvf/nL6A5+hIz23AmZOde9wEUXXUQee+wxQsjUOveEjP78CZk65384cw8Gg2TlypXkj3/8Y595jta5Z+G2SYjf70d1dTXWrl1Ll4lEIqxduxYHDhyI+50DBw5ErQ8A69at67P+3r17YTAYMHfuXDzwwAPo6uoa/QmMkOHMfyK2ORaM5Tjr6uqQlZWFgoIC3HHHHWhubh7pcEed0Zi/2+1GIBBASkoKAKCpqQlGozFqmxqNBuXl5dPu3MfOXWAmXPeEEOzatQu1tbW49NJLAUydcw+MzfwFJvv5H+7cn3zySRgMBtx77719Phutcz/jG9xORjo7OxEKhZCenh61PD09HWfPno37HaPRGHd9o9FI/16/fj1uvPFG5Ofno6GhAf/f//f/4aqrrsKBAwcgFotHfyLDZDjzn4htjgVjNc7y8nK8+uqrmDt3Ljo6OvCLX/wCq1evxqlTp5CcnDzSYY8aozH/H/3oR8jKyqI3R+EaGOz6mGjGYu7A9L/ubTYbsrOz4fP5IBaL8Yc//AFXXnklgKlz7oGxmT8wNc7/cOb+6aef4n//939x/PjxuJ+P1rlnRtIM4utf/zr9/4ULF2LRokWYM2cO9u7diyuuuGICR8YYa6666ir6/4sWLUJ5eTny8vLw1ltvxX0Lm6o8/fTTePPNN7F3717I5fKJHs640t/cp/t1n5ycjOPHj8PpdGLXrl145JFHUFBQgDVr1kz00MaFweY/Hc+/w+HApk2b8NJLLyEtLW1M98WMpElIWloaxGIxTCZT1HKTyYSMjIy438nIyEhofQAoKChAWloa6uvrJ9XFMpz5T8Q2x4LxGqdWq0VxcTHq6+tHbZujwUjm/5vf/AZPP/00PvnkEyxatIguF75nMpmQmZkZtc0lS5aM3uBHyFjMPR7T7boXiUQoLCwEACxZsgQ1NTX41a9+hTVr1kyZcw+MzfzjMRnPf6Jzb2howPnz53HttdfSZeFwGAAgkUhQW1s7aueeaZImITKZDGVlZdi1axddFg6HsWvXLlx88cVxv3PxxRdHrQ8AO3fu7Hd9AGhtbUVXV1fUD2gyMJz5T8Q2x4LxGqfT6URDQ8O0OffPPPMMfvnLX2L79u1YtmxZ1Gf5+fnIyMiI2qbdbsehQ4emxbkfaO7xmO7XfTgchs/nAzB1zj0wNvOPx2Q8/4nOvaSkBCdPnsTx48fpv+uuuw6XXXYZjh8/jpycnNE794mozxnjx5tvvkl4nievvvoqOXPmDPnmN79JtFotMRqNhBBCNm3aRH784x/T9auqqohEIiG/+c1vSE1NDXniiSeiSgA4HA7ygx/8gBw4cIA0NTWRTz75hCxdupQUFRURr9c7IXMciETn7/P5yLFjx8ixY8dIZmYm+cEPfkCOHTtG6urqhrzNycJYzP373/8+2bt3L2lqaiJVVVVk7dq1JC0tjZjN5nGf32AkOv+nn36ayGQy8re//S0qzdnhcESto9Vqyfvvv0+++OILsmHDhkmZBj7ac5/u1/1TTz1FPv74Y9LQ0EDOnDlDfvOb3xCJREJeeuklus5UOfeEjP78p9L5T3TuscTL4huNc8+MpEnMf/3Xf5Hc3Fwik8nI8uXLycGDB+lnFRUVZPPmzVHrv/XWW6S4uJjIZDIyf/588uGHH9LP3G43+epXv0r0ej2RSqUkLy+P3H///ZPOQIgkkfk3NTURAH3+VVRUDHmbk4nRnvutt95KMjMziUwmI9nZ2eTWW28l9fX14zijxEhk/nl5eXHn/8QTT9B1wuEw+dnPfkbS09MJz/PkiiuuILW1teM4o6EzmnOf7tf9T3/6U1JYWEjkcjnR6XTk4osvJm+++WbU9qbSuSdkdOc/1c5/os+8SOIZSaNx7jlCCBm634nBYDAYDAZjZsA0SQwGg8FgMBhxYEYSg8FgMBgMRhyYkcRgMBgMBoMRB2YkMRgMBoPBYMSBGUkMBoPBYDAYcWBGEoPBYDAYDEYcmJHEYDAYDAaDEQdmJDEYDAaDwWDEgRlJDMYEs3fvXnAch56enokeyrhw99134/rrrx/xdoQmlg6HY+SDGgPWrFmD7373uxM9jDFlPObY2dkJg8GA1tbWMd0PgxEPZiQxGBH09wCfaYbMaHD+/HlwHIfjx49HLf/973+PV199dcTb/8lPfoKHHnoIycnJfT6rr69HcnIytFrtoNvZt28frr32WmRlZYHjOLz33ntRnwcCAfzoRz/CwoULkZSUhKysLNx1111ob28f8Rz646GHHkJpaWncz5qbmyEWi/HBBx/QZR6PB0lJSaivr8e2bdtw5ZVXQq/XQ61W4+KLL8aOHTsS2v+3v/1tcByHLVu2jGQaAzLUOaalpeGuu+7CE088MWZjYTD6gxlJDMY44ff7J3oIo8JI56HRaIZkvAxEc3Mz/vGPf+Duu+/u81kgEMBtt92G1atXD2lbLpcLixcvxtatW+N+7na7cfToUfzsZz/D0aNHsW3bNtTW1uK6664byRQG5N5778XZs2fx2Wef9fns1VdfhcFgwNVXX02X7dy5E3l5eSgsLMS+fftw5ZVX4qOPPkJ1dTUuu+wyXHvttTh27NiQ9v3uu+/i4MGDyMrKGrX5xCOROX7jG9/A66+/ju7u7jEdE4MRCzOSGIxh0NXVhdtuuw3Z2dlQKpVYuHAh/vKXv0Sts2bNGnznO9/Bd7/7XaSlpWHdunUAgI8++gjFxcVQKBS47LLLcP78+ajvvfrqq9BqtdixYwdKS0uhUqmwfv16dHR0RK33xz/+EaWlpZDL5SgpKcEf/vAH+pnf78d3vvMdZGZmQi6XIy8vD7/61a8AAIQQ/PznP0dubi54nkdWVhYefvjhfuf685//HEuWLMEf//hH5OfnQy6XAwC2b9+OSy65BFqtFqmpqfja176GhoYG+r38/HwAwEUXXQSO47BmzRoAfb11Pp8PDz/8MAwGA+RyOS655BIcOXJkwOP/1ltvYfHixcjOzu7z2WOPPYaSkhLccsstA25D4KqrrsJ//Md/4IYbboj7uUajwc6dO3HLLbdg7ty5WLFiBZ5//nlUV1ejubl5SPsAgA8//BAajQavv/46AKClpQW33HILtFotUlJSsGHDBvpbWLJkCZYuXYqXX345ahuEELz66qvYvHkzJBIJXf7+++9To23Lli149NFH8ZWvfAVFRUV46qmnUFRUhL///e+DjrGtrQ0PPfQQXn/9dUil0iHPbaznOH/+fGRlZeHdd99NeEwMxkhgRhKDMQy8Xi/Kysrw4Ycf4tSpU/jmN7+JTZs24fDhw1Hrvfbaa5DJZKiqqsILL7yAlpYW3Hjjjbj22mtx/Phx3Hffffjxj3/cZ/tutxu/+c1v8Oc//xn79u1Dc3MzfvCDH9DPX3/9dTz++OP4z//8T9TU1OCpp57Cz372M7z22msAgP/3//4fPvjgA7z11luora3F66+/jtmzZwMA3nnnHfzud7/D//zP/6Curg7vvfceFi5cOOB86+vr8c4772Dbtm00fOZyufDII4/g888/x65duyASiXDDDTcgHA4DAD0Wn3zyCTo6OrBt27a423700Ufxzjvv4LXXXsPRo0dRWFiIdevWDeg12L9/P5YtW9Zn+e7du/H222/36xUaLWw2GziOG7JH7I033sBtt92G119/HXfccQcCgQDWrVuH5ORk7N+/H1VVVdQYFjx19957L9566y24XC66nb1796KpqQn33HMPXRYOh/GPf/wDGzZsiLvvcDgMh8OBlJSUAccYDoexadMm/PCHP8T8+fOHNK/xmiMALF++HPv37094XAzGiCAMBoOyefNmIhaLSVJSUtQ/uVxOABCr1drvd6+55hry/e9/n/5dUVFBLrrooqh1fvKTn5B58+ZFLfvRj34Ute1XXnmFACD19fV0na1bt5L09HT695w5c8gbb7wRtZ1f/vKX5OKLLyaEEPLQQw+Ryy+/nITD4T7j/O1vf0uKi4uJ3+8f+GB8yRNPPEGkUikxm80DrmexWAgAcvLkSUIIIU1NTQQAOXbsWNR6mzdvJhs2bCCEEOJ0OolUKiWvv/46/dzv95OsrCzyzDPP9LuvxYsXkyeffDJqWWdnJ8nJySGVlZWEkN7jqNFohjRHAQDk3XffHXAdj8dDli5dSm6//fYB16uoqCD//u//Tp5//nmi0WjI3r176Wd//vOfydy5c6POj8/nIwqFguzYsYMQQojVaiVyuZy88sordJ1NmzaRSy65JGo/VVVVxGAwkFAoFHccv/71r4lOpyMmk2nA8T711FPkyiuvpGPKy8sjv/vd7ybFHAkh5Hvf+x5Zs2bNgONhMEYb5kliMGK47LLLcPz48ah/f/zjH6PWCYVC+OUvf4mFCxciJSUFKpUKO3bs6BN+KSsri/q7pqYG5eXlUcsuvvjiPmNQKpWYM2cO/TszMxNmsxlArwenoaEB9957L1QqFf33H//xHzTcdffdd+P48eOYO3cuHn74YXz88cd0WzfffDM8Hg8KCgpw//33491330UwGBzwmOTl5UGv10ctq6urw2233YaCggKo1WrqqUokBNXQ0IBAIIBVq1bRZVKpFMuXL0dNTU2/3/N4PDTsJ3D//ffj9ttvx6WXXhr3O/v37486XkJIKBECgQBuueUWEELw3//934Ou/7e//Q3f+973sHPnTlRUVNDlJ06coOJyYTwpKSnwer30HGq1Wtx44400HGW32/HOO+/g3nvvjdrH+++/j6997WsQifrezt944w384he/wFtvvQWDwQCg1wsZeRz279+P6upqKqjnOC6hYzIecwQAhUIBt9ud0NgYjJEiGXwVBmNmkZSUhMLCwqhlsenHzz77LH7/+99jy5YtNOvpu9/9bh9Rc1JS0rDGEKsH4TgOhBAAgNPpBAC89NJLfQwusVgMAFi6dCmamprwz3/+E5988gluueUWrF27Fn/729+Qk5OD2tpafPLJJ9i5cyf+7d/+Dc8++ywqKyv71aHEm8e1116LvLw8vPTSS8jKykI4HMaCBQvGRaCelpYGq9UatWz37t344IMP8Jvf/AZAr7YlHA5DIpHgxRdfxG233RaVaZeenp7QPgUD6cKFC9i9ezfUavWg37noootw9OhRvPzyy1i2bBk1QJxOJ8rKyuIaapHG6L333osrrrgC9fX12LNnD8RiMW6++eao9T/44AM8/fTTfbbz5ptv4r777sPbb7+NtWvX0uXXXXdd1O8mOzsb//M//wOz2Yzc3Fy6PBQK4fvf/z62bNnSRzc33nMEgO7u7j6GOoMx1jAjicEYBlVVVdiwYQPuvPNOAL16jnPnzmHevHkDfq+0tDQqdRsADh48mNC+09PTkZWVhcbGRtxxxx39rqdWq3Hrrbfi1ltvxU033YT169eju7sbKSkpUCgUuPbaa3HttdfiwQcfRElJCU6ePImlS5cOaQxdXV2ora3FSy+9RLPIPv3006h1ZDIZgN6HbX/MmTOHarby8vIA9BojR44cGbD+zkUXXYQzZ85ELTtw4EDUvt5//338+te/xmeffYbs7GwoFIo+xu9QEQykuro67NmzB6mpqUP63pw5c/Db3/4Wa9asgVgsxvPPPw+g14j961//CoPBMKCxddlllyE/Px+vvPIK9uzZg69//etRBmtdXR0uXLiAK6+8Mup7f/nLX3DPPffgzTffxDXXXBP1WXJycp+yCZs2bYoypABg3bp12LRpE77xjW9M6BwFTp06RcX/DMZ4wYwkBmMYFBUV4W9/+xs+++wz6HQ6PPfcczCZTIMaSd/+9rfx29/+Fj/84Q9x3333obq6elg1g37xi1/g4Ycfhkajwfr16+Hz+fD555/DarXikUcewXPPPYfMzExcdNFFEIlEePvtt5GRkQGtVotXX30VoVAI5eXlUCqV+L//+z8oFApqpAwFnU6H1NRUvPjii8jMzERzc3MfAbrBYIBCocD27dsxa9YsyOVyaDSaqHWSkpLwwAMP4Ic//CFSUlKQm5uLZ555Bm63O27IRWDdunW47777EAqFqPcstubO559/DpFIhAULFgw4F6fTifr6evp3U1MTjh8/TscTCARw00034ejRo/jHP/6BUCgEo9EIAEhJSaHGYH8UFxdjz549WLNmDSQSCbZs2YI77rgDzz77LDZs2IAnn3wSs2bNwoULF7Bt2zY8+uijmDVrFoBeD+I999yD5557DlarFb/73e+itv3+++9j7dq1UCqVdNkbb7yBzZs34/e//z3Ky8vpWBUKRZ/jL5CamtrH8JNKpcjIyMDcuXMHnN9YzxHoTWSorq7GU089NehYGIxRZYI1UQzGpCJSVBzJnj17osTVXV1dZMOGDUSlUhGDwUAee+wxctddd0V9VxC1xvL3v/+dFBYWEp7nyerVq8nLL7/cR7gdKzh+9913Sezl+vrrr5MlS5YQmUxGdDodufTSS8m2bdsIIYS8+OKLZMmSJSQpKYmo1WpyxRVXkKNHj9JtlZeXE7VaTZKSksiKFSvIJ5980u8xeeKJJ8jixYv7LN+5cycpLS0lPM+TRYsWkb179/YRPr/00kskJyeHiEQiUlFREfcYezwe8tBDD5G0tDTC8zxZtWoVOXz4cL/jIYSQQCBAsrKyyPbt2/tdZ6jCbeHcxv7bvHkzIeRfAvR4//bs2dPvdmPP/5kzZ4jBYCCPPPIIIYSQjo4Octddd9F5FxQUkPvvv5/YbLao7bS0tBCRSETmz5/fZx+XXHIJeemll/rsd6D5DJVEhNtjOUdCCHnjjTfI3LlzExo/gzEacIR8KXRgMBiMKcTWrVvxwQcfJFxNerrQ2dmJzMxMtLa2JqyvmmqsWLECDz/8MG6//faJHgpjhsHCbQwGY0ryrW99Cz09PXA4HHFbk0x3uru78dxzz017A6mzsxM33ngjbrvttokeCmMGwjxJDAaDwWAwGHFgdZIYDAaDwWAw4sCMJAaDwWAwGIw4MCOJwWAwGAwGIw7MSGIwGAwGg8GIAzOSGAwGg8FgMOLAjCQGg8FgMBiMODAjicFgMBgMBiMOzEhiMBgMBoPBiAMzkhgMBoPBYDDi8P8DQeBVDq7HbqkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, ax = plt.subplots()\n", + "(plotline, _, _) = ax.errorbar(\n", + " colors,\n", + " intensity / ndet * 50,\n", + " yerr=intensity_errs / ndet * 50,\n", + " xerr=color_errs,\n", + " fmt=\"o\",\n", + " color=\"b\",\n", + " alpha=0.5,\n", + " markersize=7,\n", + " label=\"Stingray analysis\",\n", + " zorder=10,\n", + ")\n", + "plotline.set_markerfacecolor(\"none\")\n", + "plotline.set_markeredgewidth(0.5)\n", + "ax.scatter(\n", + " wang_data[\"H\"],\n", + " wang_data[\"I\"] / 52 * 50,\n", + " alpha=0.5,\n", + " color=\"grey\",\n", + " zorder=1,\n", + " s=3,\n", + " label=\"Wang+2021\",\n", + ")\n", + "ax.set_xlim([0.01, 0.4])\n", + "ax.set_ylim([2e2, 1e5])\n", + "ax.set_xlabel(\"Hardness ratio (4-12 keV/2-4 keV)\")\n", + "ax.set_ylabel(\"Intensity (ct/s/50PCUs, 0.4-12 keV)\")\n", + "ax.semilogy()\n", + "ax.scatter(\n", + " epoch_zero_h, epoch_zero_i, marker=\"*\", color=\"red\", zorder=2, s=40, label=\"EPOCH 0 from Wang\"\n", + ")\n", + "\n", + "axins = ax.inset_axes(\n", + " [0.05, 0.05, 0.47, 0.47], xlim=(0.30, 0.325), ylim=(1.5e4, 2.2e4), xticklabels=[], yticklabels=[]\n", + ")\n", + "\n", + "axins.scatter(wang_data[\"H\"], wang_data[\"I\"] / 52 * 50, alpha=0.5, color=\"grey\", zorder=1, s=3)\n", + "axins.errorbar(\n", + " colors,\n", + " intensity / ndet * 52,\n", + " yerr=intensity_errs / ndet * 52,\n", + " xerr=color_errs,\n", + " fmt=\"o\",\n", + " color=\"b\",\n", + " alpha=0.5,\n", + " markersize=7,\n", + " zorder=10,\n", + ")\n", + "axins.scatter(epoch_zero_h, epoch_zero_i, marker=\"*\", color=\"red\", zorder=2, s=40)\n", + "\n", + "ax.indicate_inset_zoom(axins, edgecolor=\"black\")\n", + "ax.legend(loc=\"upper right\")" + ] + }, + { + "cell_type": "markdown", + "id": "17c0427c", + "metadata": {}, + "source": [ + "## Periodogram and cross spectrum\n", + "\n", + "Let us now take a look at the periodogram and the cross spectrum. \n", + "The periodogram will be obtained with Bartlett's method: splitting the light curve into equal-length segments, calculating the periodogram in each, and then averaging them into the final periodogram.\n", + "\n", + "We will use the fractional rms normalization (sometimes referred to as the _Belloni_, or _Miyamoto_, normalization, from the papers [Belloni & Hasinger 1990](https://ui.adsabs.harvard.edu/abs/1990A%26A...230..103B/abstract), [Miyamoto et al. 1992](https://ui.adsabs.harvard.edu/abs/1992ApJ...391L..21M/abstract)). The background contribution is negligible and will be ignored.\n", + "\n", + "Note: since the fractional rms normalization uses the mean count rate, the final result changes slightly if the normalization is applied in the single periodograms from each light curve segment, with the count rate of each chunk, or on the averaged periodogram, using the average count rate of the full light curve. We choose the second option (note the `use_common_mean=True`).\n", + "\n", + "We will first plot the periodogram as is, in units of $(\\mathrm{rms/mean)^2\\,Hz^{-1}}$.\n", + "\n", + "Then, from the periodogram, we will subtract the theoretical Poisson noise level of $2/\\mu$, where $\\mu$ is the mean count rate in the observation, and we will multiply the powers by the frequency, to have the periodogram in units of $(\\mathrm{rms/mean)^2}$. \n", + "\n", + "In both cases, we will rebin the periodogram geometrically, averaging more bins at larger frequencies, in order to lower the noise level." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "a1ce6955", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 24.41it/s]\n" + ] + } + ], + "source": [ + "# Calculate the periodogram in fractional rms normalization.\n", + "# Length in seconds of each light curve segment\n", + "segment_size = 256\n", + "# Sampling time of the light curve: 1ms, this will give a Nyquist\n", + "# frequency of 0.5 / dt = 500 Hz.\n", + "dt = 0.001\n", + "# Fractional rms normalization\n", + "norm = \"frac\"\n", + "\n", + "pds = AveragedPowerspectrum.from_events(\n", + " events, segment_size=segment_size, dt=dt, norm=norm, use_common_mean=True\n", + ")\n", + "\n", + "# Calculate the mean count rate\n", + "ctrate = get_average_ctrate(events.time, events.gti, segment_size)\n", + "# Calculate the Poisson noise level\n", + "noise = poisson_level(norm, meanrate=ctrate)\n", + "\n", + "# Rebin the periodogam\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "87f5cb03", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG1CAYAAAAC+gv1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6PElEQVR4nO3deVxTV94/8M9NICTs+ybgAmIFFBQU92p1qqWPbbW1/p52WrW22j5W7djFtjOjXZxx2umK5Wm1M1U7Uzt2uth5Ki1WRsV9QVHBBUFcUAFRdhKW5P7+YHJLSFhCEsLyeb9evJqce3LvyS2Gb875nnMEURRFEBEREZFEZu8GEBEREXU3DJCIiIiIWmCARERERNQCAyQiIiKiFhggEREREbXAAImIiIioBQZIRERERC0wQCIiIiJqwcHeDeiJdDodrl+/Djc3NwiCYO/mEBERUQeIooiqqioEBwdDJmu7j4gBUidcv34doaGh9m4GERERdcLVq1cREhLSZh0GSJ3g5uYGoOkGu7u727k1RERE1BGVlZUIDQ2V/o63hQFSJ+iH1dzd3RkgERER9TAdSY9hkjYRERFRCwyQzJCSkoKoqCiMGjXK3k0hIiIiGxJEURTt3YieprKyEh4eHqioqOAQGxH1KlqtFg0NDfZuBlGnKRSKVmeomfP3mzlIREQEURRRVFSE8vJyezeFyCIymQwDBw6EQqGw6DwMkIiISAqO/P394ezszDXeqEfSr1N448YNhIWFWfR7zACJiKiP02q1UnDk4+Nj7+YQWcTPzw/Xr19HY2MjHB0dO30eJmkTEfVx+pwjZ2dnO7eEyHL6oTWtVmvReRggERERgI6tDUPU3Vnr95gBEhEREVELDJCIiIiIWmCARERERNQCAyQiIuqx5s+fD0EQIAgCFAoFIiIi8MYbb6CxsRG7d++WjslkMnh4eGDEiBF46aWXcOPGDYPz1NbW4pVXXkF4eDiUSiX8/Pxw55134vvvv7fTOyN74zR/6pUuX76MiooKgzInJycMHjy41RVWiahnmjFjBjZu3Ii6ujqkpqZiyZIlcHR0xNixYwEA58+fh7u7OyorK3H8+HG8/fbb+Otf/4rdu3dj2LBhAICnn34ahw8fxrp16xAVFYVbt27hwIEDuHXrlj3fGtkRAyTqdRobG1FQUGDymL+/P7y8vLq4RUQ9jyiK0Ol0drm2TCYzayaSk5MTAgMDAQDPPPMMvvvuO/zrX/+SAiR/f394enoiMDAQkZGRuP/++zFixAg888wz2LdvHwDgX//6Fz788EMkJSUBAAYMGID4+HgrvzPqSRggUa/TfHvBIUOGQBAEXLp0CRqNBtx6kKhjdDod9u7da5drT5w4EXK5vNOvV6lUbfb8qFQqPP300/jNb36DkpIS+Pv7IzAwEKmpqZg9ezbc3Nw6fW3qPTjWQL1aQEAAAgMD4eDA7wJEvZ0oiti5cyfS0tJw1113tVn3jjvuAABcunQJALBhwwYcOHAAPj4+GDVqFH7zm99g//79tm4ydWN99q/GDz/8gOeffx46nQ4rV67Ek08+ae8mERF1GzKZDBMnTrTbtc3xww8/wNXVFQ0NDdDpdHjkkUfw2muv4ejRo62+Rt+brB/KmzRpEi5evIhDhw7hwIEDSE9Px4cffojXX38dv//97zv/ZqjH6pMBUmNjI1asWIFdu3bBw8MD8fHxmDVrFvcgIiL6D0EQLBrm6kpTpkzBxx9/DIVCgeDg4A71GJ89exZAU66RnqOjIyZOnIiJEydi5cqVWLNmDd544w2sXLnS4p3hqefpk0NsR44cQXR0NPr16wdXV1fcc8892LFjh72bRUREneDi4oKIiAiEhYV1KDhSq9XYsGEDJk2aBD8/v1brRUVFobGxERqNxprNpR6iRwZIGRkZmDlzJoKDgyEIArZt22ZUJyUlBQMGDIBSqURiYiKOHDkiHbt+/Tr69esnPe/Xrx+uXbvWFU0nIqIuVlJSgqKiIly4cAH/+Mc/MH78eJSWluLjjz+W6kyePBnr169HZmYmLl26hNTUVLz66quYMmUK3N3d7dh6spceGSDV1NQgNjYWKSkpJo9v3boVK1aswOrVq3H8+HHExsZi+vTpKCkp6eKWUlcRRRE1NTXSj1qthlqtlp5z9hpR3zVkyBAEBwcjPj4ef/rTnzBt2jRkZ2cjKipKqjN9+nRs3rwZd999N4YOHYqlS5di+vTp+Oqrr+zYcrKnHpmDdM899+Cee+5p9fh7772Hp556CgsWLAAAfPLJJ9i+fTs+++wzvPzyywgODjboMbp27RpGjx7d6vnq6upQV1cnPa+srLTCuyBrEUUREyZMwIEDB1qtExsbi/fff78LW0VEXWHTpk2tHps8eXKHvxy98soreOWVV6zUKuoNemSA1Jb6+npkZmYa/KLLZDJMmzYNBw8eBACMHj0a2dnZuHbtGjw8PPDjjz+2OUth7dq1eP31123e9u5Gp9OhurrarNc0NDR0aLxeJpMhICDAKqta19bWthkcAcDJkyeZR0BERB3W6wKk0tJSaLVaBAQEGJQHBATg3LlzAAAHBwe8++67mDJlCnQ6HV566aU2Z7C98sorWLFihfS8srISoaGhtnkD3YQoioiPj0dWVpbNrpGQkIAjR46YtWJue4qLi6FQKKRgeMSIEQgKCrLa+YmIqG/odQFSR91333247777OlTXyckJTk5ONm5R91JbW2vT4AgAjh07htraWri4uFjtnC4uLlAoFFCpVNJzIiIic/W6AMnX1xdyuRzFxcUG5cXFxdJePZ2VkpKClJQUaLVai87T01y6dMms/cva20cpNzcXI0eOtEbTuhWtVouTJ09CrVZDEAT069cP/fv3t3eziIioE3pdgKRQKBAfH4/09HQ88MADAJpyadLT0/Hss89adO4lS5ZgyZIlqKyshIeHhxVa2zO4u7tbdZqrs7Oz1c7VnVRVVRkk8BcVFTFAIiLqoXpkgFRdXY28vDzpeUFBAbKysuDt7Y2wsDCsWLEC8+bNQ0JCAkaPHo0PPvgANTU10qw2oo7Q6XS4fPmyNIPRwcEBYWFhXFGXiKgP6JEB0rFjxzBlyhTpuT6Bet68edi0aRPmzp2LmzdvYtWqVSgqKkJcXBx++ukno8RtoraUlZXh8uXLBmUKhQJhYWF2ahEREXWVHhkgdWRti2effdbiIbWW+moOUnciiiJqa2sNympqaqx+XmdnZ+h0OgCAUqmEQqFAZWWlVEZERL1bjwyQ7KW75yDV1dXh4sWLVvkj3jII6UqmgiCgaZPhsWPHSptMWktlZSUmTJiA06dPS2UJCQnYvn07gKZZjC4uLlwglKiX2r17N6ZMmYKysjJ4enqarLNp0yY899xzKC8v79K2mfLaa69h27ZtNp9p3NcxQOolRFHEuHHjcPz4cauf2xqLOXaUKIoYPXo0jh07ZvZrx4wZA2dnZzQ2Npr1umvXrhkER8AvSxAQUfc2f/58bN68GUBTnmBISAjmzJmDN954A0ql0mrXmTt3LpKSkqx2Plu6dOkSBg4cKD339vZGfHw83nrrLYwYMQJA00jMnj17ADSlDvj6+mLkyJFYsGABZs+ebXC+PXv24PXXX0dWVhY0Gg369euHcePG4dNPP+3VOZk9ci82MlZbW2uT4Gj06NFdulFjbW1tu8FRREQEzp49i3PnzuHcuXPYsWMHUlNT8dNPP1m86OShQ4csej0Rdb0ZM2bgxo0buHjxIt5//32sX78eq1evtuo1VCoV/P39rXpOW9u5cydu3LiBtLQ0VFdX45577jHoAXvqqadw48YN5Ofn45tvvkFUVBT+3//7f1i0aJFU58yZM5gxYwYSEhKQkZGB06dPY926dVAoFL0+3YQBkhlSUlIQFRWFUaNG2bspbTpy5Aiqq6ut8nPo0CGrrnRtjhMnTqCkpMTg5+bNmzh//jzuuOMODBkyBEOGDIGbmxtUKpVV2tmye10URajVatTW1kr/NZX/pt8sV79JLjfHJeo6Tk5OCAwMRGhoKB544AFMmzYNP//8s3Rcp9Nh7dq1GDhwIFQqFWJjY/H1118bnWf//v0YPnw4lEolxowZg+zsbOnYpk2bDD4fXnvtNcTFxeFvf/sbBgwYAA8PD/y///f/UFVVJdWZPHkyli1bhpdeegne3t4IDAzEa6+9ZnDN8vJyPPnkk/Dz84O7uzvuuusunDx50qDOn/70JwQEBMDNzQ0LFy7s8LZJPj4+CAwMREJCAt555x0UFxfj8OHD0nFnZ2cEBgYiJCQEY8aMwVtvvYX169fj008/xc6dOwEAO3bsQGBgIN5++23ExMQgPDwcM2bMwKeffiotyNtbcYjNDN09B0nP2dm5V6wg7enpCT8/vw7Xz8/Ph4ODg9USqUVRxNKlS5GTk2NQPn78eOzdu1cKyExtlhsTE4NPP/3UKu0gsofWcgG7grOzc6e/8GRnZ+PAgQMGa5CtXbsWf//73/HJJ59g8ODByMjIwK9//Wv4+fnhzjvvlOq9+OKL+PDDDxEYGIhXX30VM2fORG5uLhwdHU1eKz8/H9u2bcMPP/yAsrIyPPzww/jTn/6EP/zhD1KdzZs3Y8WKFTh8+DAOHjyI+fPnY/z48fjVr34FAJgzZw5UKhV+/PFHeHh4YP369Zg6dSpyc3Ph7e2Nr776Cq+99hpSUlIwYcIE/O1vf0NycjIGDRpk1n3RBzP19fVt1ps3bx6ef/55fPvtt5g2bRoCAwNx48YNZGRkYNKkSWZds6djgEQ9nkKhgEajQUVFhUG5g4ODRb1Kt27dMgqOgKZvmc23SDG1WW52djY3x6Uerba2Fq6urna5dnV1tVlf8n744Qe4urqisbERdXV1kMlk+OijjwA0TV754x//iJ07d2Ls2LEAgEGDBmHfvn1Yv369QYC0evVqKXDZvHkzQkJC8N133+Hhhx82eV2dTodNmzbBzc0NAPDYY48hPT3dIEAaPny4NNw3ePBgfPTRR0hPT8evfvUr7Nu3D0eOHEFJSYm0ndU777yDbdu24euvv8aiRYvwwQcfYOHChVi4cCEAYM2aNdi5c6dZny/l5eV488034erqitGjR7dZVyaTITIyEpcuXQLQFMClpaXhzjvvRGBgIMaMGYOpU6fi8ccf79L0C3tggEQ9XlRUFMrKyozKLf3H23wo9cCBAygqKjJKXmxpy5YteOSRRyy6LhGZZ8qUKfj4449RU1OD999/Hw4ODnjwwQcBAHl5eaitrZUCH736+nopYVlPH0ABTYnNQ4YMaXPW7IABA6TgCACCgoJQUlJiUGf48OEGz5vXOXnyJKqrq402S1er1cjPzwcAnD17Fk8//bRRO3ft2tVqu/TGjRsHmUyGmpoaDBo0CFu3bu3QeoCiKEpfLuVyOTZu3Ig1a9bg3//+Nw4fPow//vGPeOutt3DkyJFevRk4AyTq8ZRKZav/SM1dI8nV1RUxMTEGuQdxcXHw9vbu0PRea86aIbInZ2dnVFdX2+3a5nBxcUFERAQA4LPPPkNsbCz++te/YuHChdJ72L59O/r162fwOks3IW859CYIgtEQf1t1qqurERQUhN27dxudu7XlBsyxdetWREVFwcfHp8Pn02q1uHDhglGubb9+/fDYY4/hsccew5tvvonIyEh88skneP311y1uZ3fFAMkMXCiy92ieX9E8z8LDwwM//vij1CMlCAIGDBiA69ev26WdRPYiCEKPzGWUyWR49dVXsWLFCjzyyCOIioqCk5MTrly5YjCcZsqhQ4eklfLLysqQm5uLoUOH2qytI0eORFFRERwcHDBgwACTdYYOHYrDhw/j8ccfN2hnR4SGhiI8PNysNm3evBllZWVSD5wpXl5eCAoKssoivd0ZAyQz9JQkbTJNo9Hg1q1bqKurw1133YVz584Z1REEASEhIQgJCbFDC4nIGubMmYMXX3wRKSkpeOGFF/DCCy/gN7/5DXQ6HSZMmICKigrs378f7u7umDdvnvS6N954Az4+PggICMBvf/tb+Pr6Spue28K0adMwduxYPPDAA3j77bcRGRmJ69evY/v27Zg1axYSEhKwfPlyzJ8/HwkJCRg/fjy++OIL5OTkmJ2kbUptbS2KiorQ2NiIwsJCfPfdd3j//ffxzDPPSNt5rV+/HllZWZg1axbCw8Oh0Wjw+eefIycnB+vWrbO4Dd0ZAySyqwsXLhh0p9ty1kx7+UMJCQlmd+0TUffj4OCAZ599Fm+//TaeeeYZvPnmm/Dz88PatWtx8eJFeHp6YuTIkXj11VcNXvenP/0Jy5cvx4ULFxAXF4f/+7//s+lCiIIgIDU1Fb/97W+xYMEC3Lx5E4GBgZg0aZKUKzR37lzk5+fjpZdegkajwYMPPohnnnkGaWlpFl//008/lRZ79PHxQXx8PLZu3YpZs2ZJdUaPHo19+/bh6aefxvXr1+Hq6oro6Ghs27at3R65nk4QuWCL2fQ9SBUVFd0mi7+mpkaacZKdnY3o6Gg7t6h1ubm5GDJkSLv1Ll++bPHGsKIoYuLEidi/f7/RscGDB2Pnzp0QBAEymQxBQUGtrhqem5uL/Px8aSXd5rNsmt/7b7/9VgrEdu3ahTvvvFMK+iyZukxkSxqNBgUFBRg4cCDz6KjHa+v32Zy/3+xBoi7Xv39/jBw5ss2Vv+Pj4xEcHGzxtQRBwN69e032TNk6YNHpdBg1ahQyMzMBNM082b9/P4MkIqIegAGSGZikbR1OTk7t7nVmzeDFFsmmhYWF7faCVVRUSMERABw8eNBg/SQiIuq+GCCZgUna1tPTZsi0zEO4ePEiwsPDUVpaarep0EREZDsMkIg6IDQ01Gh/tcTERJtsEExERPbHAKkbsWTvo96+HoW9yeVyg528NRqNUXAUExPDBFciol6CAVI3Ul5eDm9vb3s3g8x0+PBhyGQyyOXydvdHOn78OJRKJXx8fKyyjgkREdkGA6RuxBq70MfExDA/qot5eHhICdvt9eRVV1dDq9WipqYGAwcO5Iw2IqJuigFSN+Lu7o4LFy5YdA43Nzf4+flZqUVERER9EwMkM9h6mr+jo6O04SJ1b+0NpRERUc9metlgMmnJkiU4c+YMjh49au+mkJ098sgj9m4CEVnBpk2bOrzTfU9l6/f42muvIS4uzmbnN6Ur/r8xQCLqIGdnZ4wfP96gLCYmxqztZjQaDdRqtdGSAa3R6XSoqKjgLEWiVsyfPx+CIEAQBCgUCkREROCNN95AY2Njh14/d+5c5Obm2riV9tUX3qMtcIiNqIP025aUlJSgqqoKQFPemK+vb4fPod+nLSYmBidPnmw3STs7Oxu3b9+WXmPOtYj6ihkzZmDjxo2oq6tDamoqlixZAkdHR7zyyivtvlalUkGlUnVBK+2nL7xHW2APEpEZBEFAQEAAIiIiEBERAX9//1Y3uG2uZW5ZdnZ2h9a8ap7rpFarzW8wUR/g5OSEwMBA9O/fH8888wymTZuGf/3rXwCAsrIyPP744/Dy8oKzszPuueceg8kwLYdqTp48iSlTpsDNzQ3u7u6Ij4/HsWPHADRtoD1z5kx4eXnBxcUF0dHRSE1NlV67Z88ejB49Gk5OTggKCsLLL79s0JM1efJkLFu2DC+99BK8vb0RGBiI1157rc33Nn/+fDzwwAN45513EBQUBB8fHyxZsgQNDQ1SHWu+RwDYt28fJk6cCJVKhdDQUCxbtszsXuy//OUvGDp0KJRKJe644w787//+r3Rs3LhxWLlypUH9mzdvwtHRERkZGQCAuro6vPDCC+jXrx9cXFyQmJiI3bt3m9UGSzFAIrKR5sFNcnIyUlNT8e2339qxRUTmq61vRG19o8GwcH2jDrX1jahr1Jqsq9P9UrdB21RX09CxutagUqlQX18PoCnAOHbsGP71r3/h4MGDEEURSUlJBgFGc48++ihCQkJw9OhRZGZm4uWXX4ajoyOApjzUuro6ZGRk4PTp03jrrbfg6uoKALh27RqSkpIwatQonDx5Eh9//DH++te/Ys2aNQbn37x5M1xcXHD48GG8/fbbeOONN/Dzzz+3+X527dqF/Px87Nq1C5s3b8amTZuwadMm6bg132N+fj5mzJiBBx98EKdOncLWrVuxb98+PPvss+3f+P/44osvsGrVKvzhD3/A2bNn8cc//hG///3vsXnzZun6//jHPwx+p7Zu3Yrg4GBMnDgRAPDss8/i4MGD+Mc//oFTp05hzpw5mDFjhsUzvc0iktkqKipEAGJFRYW9m0LdTHV1tQjA6Cc1NVXctWuXmJqaKpVVVVW1e77Dhw+Lu3btEnft2iVeuXKlC94B9UVqtVo8c+aMqFarjY71X/mD2H/lD2JplUYqW5eeK/Zf+YO48uuTBnXv+N2PYv+VP4hXbtVIZX/Ze1Hsv/IHcdmXxw3qjnhjh9h/5Q/i+aJKqWzL4ctmt33evHni/fffL4qiKOp0OvHnn38WnZycxBdeeEHMzc0VAYj79++X6peWlooqlUr86quvRFEUxY0bN4oeHh7ScTc3N3HTpk0mrzVs2DDxtddeM3ns1VdfFYcMGSLqdDqpLCUlRXR1dRW1Wq0oiqJ45513ihMmTDB43ahRo8SVK1e2+f769+8vNjY2SmVz5swR586dK4qiaPX3uHDhQnHRokUGZXv37hVlMpnJ3w9RFMXVq1eLsbGx0vPw8HBxy5YtBnXefPNNcezYsaIoimJJSYno4OAgZmRkSMfHjh0r3YfLly+LcrlcvHbtmsE5pk6dKr7yyism31Nzbf0+m/P3mz1IRFbk7OyMsWPHGpRxCxIi2/rhhx/g6uoKpVKJe+65B3PnzsVrr72Gs2fPwsHBAYmJiVJdHx8fDBkyBGfPnjV5rhUrVuDJJ5/EtGnT8Kc//Qn5+fnSsWXLlmHNmjUYP348Vq9ejVOnTknHzp49i7FjxxrkFY4fPx7V1dUoLCyUyoYPH25wvaCgIJSUlLT5/qKjoyGXy02+xtrv8eTJk9i0aRNcXV2ln+nTp0On06GgoKDNdgJNi+Xm5+dj4cKFBudYs2aNdB0/Pz/cfffd+OKLLwAABQUFOHjwIB599FEAwOnTp6HVahEZGWlwjj179hi01daYpE1kRYIgYN++fbh06ZKUMyQIQrsfgETd1Zk3pgMAVI6//IFeNCkcT0wYCLnMcJJB5u+nAQCUDr/UfXxsf/z36FDIWkxI2LdyilHdh+JDOtXGKVOm4OOPP4ZCoUBwcDAcHDr/p+21117DI488gu3bt+PHH3/E6tWr8Y9//AOzZs3Ck08+ienTp2P79u3YsWMH1q5di3fffRdLly7t8Pn1Q1l6giC0u4tCZ17TlrbeY3V1NRYvXoxly5YZvS4sLKzdc1dXVwMAPv30U4OgDYBBkPfoo49i2bJlWLduHbZs2YJhw4Zh2LBh0jnkcjkyMzMNXgNAGtLsCuxBMkNKSgqioqIwatQoezeFujGZTIZBgwYhOjoa0dHRcHFxMev1oiiiqqoKFRUVHV4OgMhWnBUOcFY4GPSMKBxkcFY4wMlBbrKurFng5Chvqqt07FjdznBxcUFERATCwsIMgqOhQ4eisbERhw8flspu3bqF8+fPIyoqqtXzRUZG4je/+Q127NiB2bNnY+PGjdKx0NBQPP300/j222/x/PPP49NPP5Wupc//0du/fz/c3NwQEtK5wK8jrP0eR44ciTNnzkgTUZr/KBSKdtsTEBCA4OBgXLx40ej1AwcOlOrdf//90Gg0+Omnn7Blyxap9wgARowYAa1Wi5KSEqNzBAYGduY2dQoDJDNwoUjqDC8vLzg5OUEulxt8eNfU1BgFQKIoYty4cXB3d4enpyd+/etfm7VuEhH9YvDgwbj//vvx1FNPYd++fTh58iR+/etfo1+/frj//vuN6qvVajz77LPYvXs3Ll++jP379+Po0aMYOnQoAOC5555DWloaCgoKcPz4cezatUs69j//8z+4evUqli5dinPnzuH777/H6tWrsWLFig7NdO0u73HlypU4cOAAnn32WWRlZeHChQv4/vvvzUrSfv3117F27VokJycjNzcXp0+fxsaNG/Hee+9JdVxcXPDAAw/g97//Pc6ePYv//u//lo5FRkbi0UcfxeOPP45vv/0WBQUFOHLkCNauXYvt27dbcLfMwyE2Ihtzd3eX8pLKy8ul8sDAQMTFxeHHH3+UvhXV1tbi0KFDUp28vDwkJSUhJiamSz8YiHqLjRs3Yvny5fiv//ov1NfXY9KkSUhNTTUatgKahoBu3bqFxx9/HMXFxfD19cXs2bPx+uuvAwC0Wi2WLFmCwsJCuLu7Y8aMGXj//fcBAP369UNqaipefPFFxMbGwtvbGwsXLsTvfve7HvUehw8fjj179uC3v/0tJk6cCFEUER4ejrlz53a4PU8++SScnZ3x5z//GS+++CJcXFwwbNgwPPfccwb1Hn30USQlJWHSpElGw3cbN27EmjVr8Pzzz+PatWvw9fXFmDFj8F//9V/m36BOEkR+NTVbZWUlPDw8UFFRYdYqykRarRYjRozA6dOnpbLU1FTcddddcHJywqVLl6Ru6JCQEIPkzrNnz8LJyQkNDQ0ICQmBs7Nzl7efeieNRoOCggIMHDiQEwqox2vr99mcv98cYiPqQnK5HAcOHEBWVpZUptFoUFVVhZqaGly5ckUq37Bhg8G6Sffffz8GDRqEIUOGYPz48Rx2IyKyIQ6xEXUxV1dXg5W19duPmNL820/zvZSysrJQW1trdgI4ERF1DHuQiOzA1Ma3zSUkJHR6qKO2trZD25gQEVHr2INEZAf6jW9//vlnaLVao+PDhw/v1JL6JSUlyMzMhFKpRHR0NPz9/a3RXCKiPocBEpGdCIIAlUolBUguLi4ICgqCo6MjvLy8zAqQGhoaoNFokJSUhMzMTMTExEibdRIRkfk4xEZkR8HBwVAoFFAqlQgPD0dISAgCAgKkRfmUSiViYmKk+s1zl/Tq6+tx4MAB7Nu3D5mZmQCA7OxsaSVvoo6yZHVmou7CWhNY2INEZEfh4eEIDw9v9bggCEhOToZKpUJZWRkAICkpyaBOXV0dZ7SRRRQKBWQyGa5fvw4/Pz8oFAqDlbOJegpRFHHz5k0IgmByHShzMEAi6uYEQYCrqys0Gg17hcgmZDIZBg4ciBs3buD69ev2bg6RRQRBQEhIiNE+buZigGSGlJQUpKSkmEyqJbKlgIAAKJVKg4Uj9URRhFqthkajsUPLqLdQKBQICwtDY2MjP+OoR3N0dLQ4OAIYIJllyZIlWLJkibQSJ5GtyOVyyOVygwRuPz8/g6n/Op0OR48exYIFC5CTk2OvplIvoh+WsHRogqg3YIBE1A3JZDIkJCSguroaSqXS5LYiarUapaWlbQZHJSUlqKqqQkBAAFxdXW3ZZCKiXoUBElE3pVKpoFKpWj1+7NixNhNpGxsbcebMGQBAVVUV4uLirN1EIqJeiwESUQ/i5uYmPb733nsREhLSat3mU7aZU0JEZB6ug0TUg7i7u2PMmDHSc1NJ20REZDkGSEQ9iCAI2L17N1JTUw0WjTS1gCQREXUeh9iIehgnJyeMGjUKGzZsMJja33IBSSIi6jwGSEQ9kLOzs7SXG8AcIyIia2OARNTDOTg4mBxi0y8gCYBT/ImIzMQAiaiXeuSRR3Du3DkAQGxsLE6cOMH9tYiIOohJ2kQ9UPOVjhUKhck6+uAIAE6ePIna2lqbt4uIqLdgDxJRD+To6IiEhATU1tbCw8MDN2/etHeTiIh6FQZIRD2Uq6src4uIiGyEQ2xERERELTBAIiIiImqhzwZIs2bNgpeXFx566CF7N4WIiIi6mT4bIC1fvhyff/65vZtBZFPcgoSIqHP6bJL25MmTsXv3bns3g8gmjh8/jqKiIgDGW5CIooj8/HzU1NRgwIAB8PDwsEcTiYi6tW7Zg5SRkYGZM2ciODgYgiBg27ZtRnVSUlIwYMAAKJVKJCYm4siRI13fUKJuKjIyUtqGpKX6+noUFhairKwM169f7+KWERH1DN0yQKqpqUFsbCxSUlJMHt+6dStWrFiB1atX4/jx44iNjcX06dNRUlIi1YmLi0NMTIzRT2f+INTV1aGystLgh6g78fb2RkxMDABg5MiRcHZ2NqpTUFCAmzdvQhRFqaz5YyIi+kW3HGK75557cM8997R6/L333sNTTz2FBQsWAAA++eQTbN++HZ999hlefvllAEBWVpbV2rN27Vq8/vrrVjsfkbU5Ozvj2LFjqKiogK+vLwRBQHBwMPLz86U6V69eRWlpKRISEuzYUiKinqFb9iC1pb6+HpmZmZg2bZpUJpPJMG3aNBw8eNAm13zllVdQUVEh/Vy9etUm1yGyhJOTE/z9/SGTNf2zjoyMRHR0tFE9nU7X1U0jIupxumUPUltKS0uh1WoREBBgUB4QEGCw91R7pk2bhpMnT6KmpgYhISH45z//ibFjx5qs6+TkBCcnJ4vaTdRdNO9VIiIi03pcgGQtO3futHcTiGzO1FYkFRUVBs+vXLmCK1euwM/PDw0NDRAEAUOGDIGDQ5/9eCAi6nkBkq+vL+RyOYqLiw3Ki4uLERgYaNNrp6SkICUlBVqt1qbXIbKW5j2fGo0GAKBUKiEIglR+6dIl6HQ63LhxQyoLCAiAt7e3NFxHRNTX9LgASaFQID4+Hunp6XjggQcANOVUpKen49lnn7XptZcsWYIlS5agsrKSa8dQjzN79mwAQHR0NP785z8DaJrFZionKTs7Wzqu0WigVCrh4OCAgQMHIiQkpOsaTURkJ93y62F1dTWysrKkmWgFBQXIysrClStXAAArVqzAp59+is2bN+Ps2bN45plnUFNTI81qI6Imzs7OiI+PNyjLyclBUlISkpKS8Nhjj0Gn00GtVkOtVhstAbB06VIkJSVh2bJlaGxsZP4SEfUZ3bIH6dixY5gyZYr0fMWKFQCAefPmYdOmTZg7dy5u3ryJVatWoaioCHFxcfjpp5+MEretjUNs1NMIgoCvvvoK58+fh0ajkXqR9E6cOIFFixZJgU9MTAySk5MhCAI0Gg1ycnIANPUoaTSaVhefJCLqbQSRK8WZTT/EVlFRAXd3d3s3h6hNBQUFuHz5MtRqtdG2I6akpqZCpVIZ1deXT5482YatJSKyHXP+fnfLITYiIiIie2KARNTLubm5WeU8Go0GoiiiqqoK58+fR2FhoVXOS0TUHTFAMkNKSgqioqIwatQoezeFqMN8fX0xfvx4KJVKab+26OhohIeHm6y/bNky6HQ6aVkAvdmzZ2PZsmUoKCjAjRs3kJeXh8bGRpu3n4jIHpiD1AnMQaKe6Ny5c7hx44Y0bV+j0RjkGIWEhEi9Qs0ft7Rv3z40NDQAAMaNGweFQmH7xhMRWQFzkIjISGBgIARBgEqlMlgoUu/DDz+UHjcPjqKjo/HNN99Iz+fPnw9+ryKi3o4BEhEBAFQqlTQEBwARERFITU3FunXr4OXlhYiICABAXl6e0fBbc7W1taivr7d5e4mIbKlbroNERLanz0nKzs5GTEwMlEolkpOTW92SJDk52eQyAbW1tcjPz4e3tzfc3Nxw/PhxyGQyjB8/HnK5vMveDxGRNbEHyQxM0qbeRBAEJCcnIzU1FZs2bYIgCNIQXGvDcHrLli2ThtmuXr2KW7du4cKFC1Cr1QCatv9pnsBdXl6O69evm9zWhIioO2KAZIYlS5bgzJkzOHr0qL2bQmQV+oDI2dm51TrOzs4YOHAgAgMDTQ6ztbeyvCiKyMrKQm5uLm7evGm9xhMR2RADJKI+qqMbLstkMvTv3x8jRozAjz/+2GZdURSlPd1yc3ORn59v0GtUV1dnUZuJiLoKc5CI+qB+/fohLCwMBw8eNOt1LYfdGhoapF4hURRx33334ejRowZ7ul29etVq7SYi6irsQSLqg9rKL2pJJjP9MbFs2TLk5ORIuUgajUYaftZvbktE1FMxQCLqI9zc3ODl5QVXV1f4+/vD0dERDg5NncjOzs7w9PQ0eo1KpUL//v2l587OzgZ5SLdu3TKrDdXV1Th48CByc3M7/0aIiLoAAyQzcBYb9WRyuRyxsbFISEiAu7s7ZDIZEhMTMWrUKISFhSE2NtYoSBo1ahR8fHyk576+vkhOTjaoo887akm/d1tzJSUlqKurw/Xr1633xoiIbIABkhk4i416G0dHR7i4uEhT/IcPH97m1iGOjo4Gz9VqNRYtWoSkpCQsW7bM4Jh+7zauuk1EPRGTtIlIIpPJ4OHh0eHp+A8++KD0OC8vz+h481yklgtPEhF1Z+xBIiKr27Jli/R46dKlUg8Te5OIqKdggEREZmm5fUjzYEhPqVRKj/Pz8wG0P7NNPwvOVE8UEVFXY4BERAa8vLwAAK6uriaHxGJjYw2eNw+G2tNWL1JxcTFqampQWFjIniYisjvmIJkhJSUFKSkp7W6tQNSTBQcHw8/PDw4ODiYDJFdX106fW79FiUqlMjrWfMXtffv2Yfjw4R1e7ZuIyNrYg2QGzmKjvsLR0dGihOqQkBBpvaTO0Gq1KCws7PTriYgsZbUA6fDhw9Y6FRF1Y87Ozhg3bhwAICYmxuQQm1wuN1ovqaWamhqIooiysjLU1tYaHecwGxHZk9WG2ObMmYMrV65Y63RE1E0JgoB9+/YhJycHN2/ehL+/f6fOc/ToUURHRyMnJweCICA0NNTgeG1tLY4fP46AgAAEBwfj9OnT0Gq1iI2NbXX7EyIiazErQHr44YdNlouiiNu3b1ulQUTU/QmCgJiYGABNPUHmWLRoETZv3gyZTIbKykoATZ8hLVfX1vcqVVZWGnzGVFRUSInkLel7nbjeEhFZyqwAaefOnfjb3/5mlKQpiiIyMjKs2jAi6hmcnZ0RExOD7OxsAE3DbmFhYSguLjaoFxISgsLCQhQWFmLx4sXYsGED6urqpOONjY2tXqP51P+TJ08iISHB6HOosbERR48ehUKhwMiRIxkkEZFFzAqQJk+eDDc3N0yaNMno2PDhw63WKCLqOQRBQHJyssGK2b6+vkb11q9fj8WLF6OwsFCazVZSUtKpa168eBHDhg0zCIJqampQV1eHuro6aLVaaSNeIqLOMGsg/9tvvzUZHAHAzz//bJUGEVHPIwgCVCoVVCpVqz03giBgw4YNrZ5Dv+mtTqeDWq1uM0n79u3byMnJsbjdRESt4VcsIrI7URSxdOlSg6AnJiYGycnJrQZcpaWlAIAbN25ArVbD29u7S9pKRH2DRVNBioqKrNWOHiElJQVRUVEYNWqUvZtC1O0plUopkTsuLq7NFbc1Go1Rj1B7W5PoX3f+/HlcuXIF5eXlBse4oCsRWcKiAOnuu++2Vjt6BC4USWSaQqEwKvPy8kJycjJSU1OxceNGo56gjm5eqx9u0w/BNX9N8xl0zZO8z549i71793KxSSLqNIuG2LiQGxEBQGRkpDSLTW/o0KE4ePCgQV6SUqlEREQE8vLy2tx2RG/p0qXIz89HdHQ0NBoN8vPzDYbeqqqqTL7u1q1bAJpmv+l0OoSFhVnpnRJRX2FRDxKn0RIRAPj6+iI8PBzAL71JphZz1M9409NoNG0mZOfn5wMAcnJypMfNh94uXbrUbtsuXrzY8TdCRPQfTNImIqvo168fnJ2d4eLi0uHXzJ49u1PX0mg0UCqVBl/SGhoaOnUuIiJTuF4/EVmFTCaDj49Pm8nYgGHydmfNnj3bKIep5cKURESWsKgHSS6XW6sdRNTL6XOPmi8sqdFoDHqRtm/fDkEQIIoi7r333jbPpx9qayuHSU+n06Gqqgru7u5MDSCiDrGoB+nEiRPWagcR9XIhISHSY/3Ckp6enlJvUkxMjLTYpEqlMuplioiI6PS1s7OzceLECRw6dKjT5yCivsXiHKS77roLd955J1avXm1QXlZWhgcffBD//ve/Lb0EEfUSAwcOREFBgfS8eW9S85yi5uVOTk7Snm1JSUmduq5+o9vme78REbXF4hyk3bt346OPPsIDDzxgsCZJfX099uzZY+npiagX6d+/v9FCq/repJZDX/pymUwGlUplVu6SqTWTiIjMYZUk7Z07d6KoqAhjxozp0LRbIuq7XFxcTC4B0B59r9K3335rUN48GNI/Xrp0KZKSktpcjLKyshIajQYNDQ3Q6XSdei9E1HtZZZp/UFAQ9uzZgwULFmDUqFH45z//iaFDh1rj1ETUC1grABEEwWCW3NKlS6FUKpGTk4Pw8HDpsV5ridw1NTU4fvw4gKbZdy4uLoiPjze6nn67Ek5IIep7LA6Q9N3iTk5O2LJlC9asWYMZM2Zg5cqVFjeOiHqu5r1EFRUVRsc6GzQ1X41bv3gkAIPH7WmeDqCf4daSTqfD4cOHIQgCEhMTO9XrRUQ9l8X/4lt2X//ud7/DF198gXfffdfSU3c73KyWqOPa6nUZOHBgq8f69evXZjDScjXujmg+DKfRaHDmzBmT9bRarfSZVl9fj/r6etTV1aGqqspoM1wi6t0sDpAKCgrg6+trUPbggw/i0KFD+Oyzzyw9fbfCzWqJOqdlAna/fv0wYcIEODo6GtUdPHgwxo8fb7Vri6JokJN06tQpk/Xq6+tx8OBBnDx50ujYiRMnkJWVZdDzRES9W6cDpMrKSlRWVsLLywvV1dXSc/1PWFgYZs2aZc22ElEPExkZCUdHR0RGRhodc3BwaHVto/ZyfvTDbB2xePFiKS8pOztb2si2pbKyMjQ2NrbZU3T69OkOXZOIer5O5yB5enq2uSKtKIoQBEFKciSivic4OBjBwcGtHvfx8enUefXDbM3XRdLnJbVUWFjYqWuYot8kl4h6v04HSLt27ZIei6KIpKQk/OUvf0G/fv2s0jAi6nvCw8Olx15eXigrKwMAxMfHo66uDtnZ2a2+Vp+X9OKLL0qz2sxJ3D579qz0uKKiAgqFwtzmE1Ev0ukA6c477zR4LpfLMWbMGAwaNMjiRhFR3+Tn5yc9vuOOO1BaWgo/Pz8oFAqjqfr6hSOzs7MRExMjrcS9bt06aQXuxYsXG/UqLV26FOvWrTNYubuloqIihIWFWf8NElGPYZV1kIiIOqOt2WpOTk5t9ki3tU2JPphav369UZCUn5+PpKQkREREYP369SbboNPpWk0P0KcPEFHvxoU9iMhuZDKZwZR/cxdkbG2bkubn37BhA1JTU7F9+3aDY3l5eVi8eHGrK223tivAjRs3zGojEfVMVu1B4rcqIjJXWFgYHB0d4eDgYHLav6X0QZRarTY6lpeXZ7DStn6dpKKiolY/z+rr602W63Q6LiZJ1It0OkCaPXu2wXONRoOnn34aLi4uBuUt900iImpOEIQ2Z7rpyeVyODk52WzvNP16STk5OYiJiUFycnKHv/Tdvn0b2dnZGDRoEEJCQqzeNiLqep0OkDw8PAye//rXv7a4MURErREEAaNHj4ZOp8P+/futfn6NRmOwXpKpPdxak5eXB51Oh7y8PAZIRL1EpwOkjRs3WrMdRETtksvlJvOUYmNj4ebmhn379rX62uaz3qytoaHB6uckIvvigDkR9XhOTk5wcDD8vhcaGmrwXD/rbcuWLZ26hk6ng06nQ2lpKRobGwEAtbW1yMzMZIBE1AuZHSCp1Wpcu3bNqFzfNU1E1NVM9SoNGjTIaIhMEAQolUqjuqIoYtmyZUbl+g1udTodpk6diqlTp6KyshJZWVnSprdVVVXWeyNE1G2YNcT29ddf47nnnoOvry90Oh0+/fRTJCYmAgAee+wxHD9+3CaNJCJqTUhICJycnIzKBUFAXFwcDh482Obr9duHmFpQMj8/H9HR0Qb7s1VUVEAmk+HQoUOWN56Iui2zepDWrFmDzMxMZGVlYePGjVi4cKHUXd3aWiLd0dWrVzF58mRERUVh+PDh+Oc//2nvJhFRJzVffbslJycn+Pv7G5S1nGAye/Zsk71H+m1KcnJyDHrNTfVAEVHvY1aA1NDQgICAAABNeyNlZGRg/fr1eOONN3rUGkgODg744IMPcObMGezYsQPPPfccampq7N0sIuqE9tYe8vLyAgA4OztL9dPT0xEdHS3VMbXJLRH1bWYFSP7+/jh16pT03NvbGz///DPOnj1rUN7dBQUFIS4uDgAQGBgIX19f3L59276NIqIOi4iIAAD4+vrC1dW1zboBAQGIiorCsGHDpC94MpkM69ats9k6bQ0NDUzcJurhzAqQ/va3vxl1VysUCnz55ZfYs2eP1RqVkZGBmTNnIjg4GIIgYNu2bUZ1UlJSMGDAACiVSiQmJuLIkSOdulZmZia0Wq3RjBci6r5CQkIwefJkxMTEtNt7LZPJ4O/vD5VKhaFDhyI2NhZA6wnbltKv07R//36bLGhJRF3DrAApJCQEgYGBJo+NHz/eKg0CgJqaGsTGxiIlJcXk8a1bt2LFihVYvXo1jh8/jtjYWEyfPh0lJSVSnbi4OMTExBj9XL9+Xapz+/ZtPP7449iwYYPV2k5EPYdSqZR6o6ylefJ289ylxsZG5Ofno7S0tNXtSoio+xBEK2RXNzQ0oKioCLW1tfDz84O3t7c12gag6Vved999hwceeEAqS0xMxKhRo/DRRx8BaPrGFhoaiqVLl+Lll1/u0Hnr6urwq1/9Ck899RQee+yxduvW1dVJzysrKxEaGoqKigq4u7ub/6aIyCZ2794tPZ48ebLJOmVlZTh58qT0XKfTYfHixcjLy0NERES7+UgRERHYsGFDh/Muhw4dioCAABQUFODy5ctS+aRJk7h3G1EXq6yshIeHR4f+fnf6X2dVVRU+/vhj3HnnnXB3d8eAAQMwdOhQ+Pn5oX///njqqadw9OjRzp6+VfX19cjMzMS0adOkMplMhmnTprU7nVdPFEXMnz8fd911V7vBEQCsXbsWHh4e0g+H44h6D5lMhg0bNiA1NRXJycmt1tNvIZKXl4fy8nJpjaT2nD17FocPHzYIjgBIi00SUffUqQDpvffew4ABA7Bx40ZMmzYN27ZtQ1ZWFnJzc3Hw4EGsXr0ajY2NuPvuuzFjxgxcuHDBag0uLS2FVquVki31AgICUFRU1KFz7N+/H1u3bsW2bdsQFxeHuLg4nD59utX6r7zyCioqKqSfq1evWvQeiKh7EQQBKpVK2o4EAKKjo6WZbjExMVi/fr1Uf/bs2UhKSsLSpUs7FCip1WrbNZ6IbKJTe7EdPXoUGRkZBtNkmxs9ejSeeOIJfPzxx9i0aRP27t2LwYMHW9RQa5owYYJZyZNOTk4mF6Ijou5FJpO1+2+7rWBGvx2JRqORErj1j/ULSjaXk5ODpKQkxMTEIDk52aLlTmpra1FcXIzQ0FCjbVOIqOt16l/hl19+2aF6SqUSTz/9dGcu0SpfX1/I5XIUFxcblBcXF7eaQG4tKSkpSElJgVartel1iKhzhg8fjnPnziEsLKzVOu192dH3JunpHzff7DYkJASFhYVSnezsbGg0GqOtTcyhn4lbV1eHO+64o9PnISLrsMrXlPT0dKSnp6OkpMTo29tnn31mjUtIFAoF4uPjkZ6eLiVu63Q6pKen49lnn7XqtVpasmQJlixZIiV5EVH34unpiTFjxrRZp73E6PDwcGkV7eaa9y4BQFJSksFxU71OnelRqqysNPs1RGR9FgdIr7/+Ot544w0kJCQgKCjIKitqV1dXG8wkKSgoQFZWFry9vREWFoYVK1Zg3rx5SEhIwOjRo/HBBx+gpqYGCxYssPjaRNS3tfUZpu9dMpVTNHv2bCntICcnp91ht+ZDfRUVFRa2moiszeIA6ZNPPsGmTZs6NBuso44dO4YpU6ZIz1esWAEAmDdvHjZt2oS5c+fi5s2bWLVqFYqKihAXF4effvrJKHGbiMhcfn5+7U71bz7c1lxOTo70uL1ht+ZD9SdOnLCgxURkCxYvwlFfX49x48ZZoy2SyZMnQxRFo59NmzZJdZ599llcvnwZdXV1OHz4MBITE63aBlNSUlIQFRWFUaNG2fxaRGQbbfUQ6SdktJdLpB9uS01NbXWyCtA01NZaUnhry6DU1tYarLtGRPZhcYD05JNPYsuWLdZoS7e3ZMkSnDlzxibrOxFR13BycoKfn5/JHuf+/fsDACIjI9s9j364ra093WbPno1ly5aZDJLamk138eLFdq9PRLZl8RCbRqPBhg0bsHPnTgwfPhyOjo4Gx9977z1LL0FEZDWCIEi9Pi1nw+p5eXlh4sSJ2Lt3r1Tm4+ODsrIyo4ko7e3plp2dDbVaDaVSaZQgfuPGDVy5csXoNcXFxRg6dGiH3xMRWZ/FAdKpU6cQFxcHAEbj8dZI2CYisoeWwcywYcOg0+mQkZHRoddv2bIFjzzyCADg3nvvBdA047f5ec+fP2+l1hKRtVkcIO3atcsa7egRuA4SUd9mzt5pptZb0q/Xxi+PRN0fd0o0A3OQiHqXwYMHIzg42CbnNpVo/cgjj7Sak2TKnj17sHv3bm5VQmQHVlvP/syZM7hy5Qrq6+sNyu+77z5rXYKIyKr69esHALh+/bpF5zE17b+1xWQ7uup2Y2OjFEgdPnwYEyZM4BYkRF3I4n9tFy9exKxZs3D69GkIgiD9g9Z3IXM4ioh6u+arbOuH1gRBQERERLtrKrVm3759Rs8TEhLg6uoqJX1zqI7IdiweYlu+fDkGDhyIkpISODs7IycnBxkZGUhISMDu3but0MTug+sgEfVurc1Gaz7tv3lQ4urqalCuUqkgk8kgk8kgCALWr1+PiIgIAEBISIhUt631kdpy7NgxXLp0CYcPHzZYlJKIrE8QO/OvtBlfX1/8+9//xvDhw+Hh4YEjR45gyJAh+Pe//43nn3++V64Qq9+LraKiAu7u7vZuDhFZqKysDDU1NejXr58UAImiiD179gAARo0aBRcXFwBNw136nKCWm9aaIoqiyf3b2tuKpCMmT57c6dcS9UXm/P22uAdJq9XCzc0NQFOwpB/L79+/P6ewElGP4OXlhZCQEKNgRf+8vXyhtuh7lvR5Snr6XCSgKYhSq9Wd6lUiItuwOAcpJiYGJ0+exMCBA5GYmIi3334bCoUCGzZswKBBg6zRRiKiLicIAiZMmABRFA2m93t6ekKtVpudMK3PUyovL8fs2bOlcp1Oh8WLFyMvL88qvUpEZB0WB0i/+93vUFNTAwB4/fXXMXPmTEycOBE+Pj7YunWrxQ0kIrIXuVxuVBYeHg5nZ2f4+fm1O7zWUstVt5cuXQoAyM/PB9DUq1ReXg5PT88OBUn64buioiKEhIQY7WRARJ1ncQ6SKbdv34aXl1ev/RbEHCQiAoCSkhKcOXPGrNeIoohFixa1Obutoz1Jd9xxB86fPw9RFOHr62swhEdExro0BwkA9u7di1//+tcYO3Ysrl27Bm9vb/z97383mqba03EWGxE15+fnB29vb7Neox9qa0vz/KS2nDt3TspbKi8vN6sdRNQ2iwOkb775BtOnT4dKpcKJEyek1WMrKirwxz/+0eIGdidcSZuImhMEwWD6fmeZOodGo4FOpzMrebvlRrpE1HkWB0hr1qzBJ598gk8//dRg/Hv8+PE4fvy4pacnIurWvLy8EBYWZtE5PvzwQ6Oy2bNnY+rUqUhKSsKiRYvaDX4aGxuRkZGB27dvW9QWImpicYB0/vx5TJo0yajcw8ODXb5E1OsJgtDmjN2O5GKqVKo284fy8vKwePHiDvUknT17FmfPnsWePXtQVlbWbn0iMs3iACkwMNBksuG+ffs4zZ+I+jxTq3M3XxMpJiYGSqUSycnJ+Pbbb1s9T15eXofykhoaGlBcXAxRFHHy5MnON5yoj7M4QHrqqaewfPlyHD58GIIg4Pr16/jiiy/wwgsv4JlnnrFGG4mIeoygoKB26+gTtVNTU6XZaoIgwNPTUwqcoqOjkZqaiu3bt0uvs3Qxydu3byMzM1NamoWIWmfxNH9RFPHHP/4Ra9euRW1tLQDAyckJL7zwAt58802rNLK74TR/ImqprKwM9fX1CAgIMNiHUqVSSVuTdIR+bSP9ZrRqtdpgi5Lw8HBs2LDBYPHKtvj7+6O8vBwBAQG4evWq1KbExMQOt4motzDn77fV1kGqr69HXl4eqqurERUVZbCJY2+RkpKClJQUaLVa5ObmMkAiIpMsCZBaEkURjz/+uMGilBEREdiwYUOn15pzdHTE+PHjO90mop7KLgFSX8IeJCJqS/MAKSgoCDdu3LDofLdv38aDDz5oUJaamtrpPeIYIFFfZc7fb4u3GgGa1us4deoUSkpKjKai3nfffda4BBFRjyOTyRAREQEXF5c2V85uj6meomXLlnW6F6mhoQFarRZVVVXw8PDotbseEFnC4gDpp59+wuOPP47S0lKjY4IgQKvVWnoJIqIeZdCgQbh48SKioqIgl8ulhSAtCZL0fH19UVpaKs1q62wv0tGjR6HRaBAWFsYZx0QmWDyLbenSpZgzZw5u3LgBnU5n8MPgiIj6orCwMEycOBG+vr5SWUhICIKDgy0+t6lFJTtDv2TAlStXTB5vbGxEeXm5RbPmiHoyiwOk4uJirFixAgEBAdZoDxFRryCXy43KIiMjLT5v8+GwZcuW2SyAOXbsGLKyslBcXGyT8xN1dxYHSA899JBBQiIREVmXh4eH9DggIAAREREAOr54ZGfoz1tSUmKT8xN1dxbnIH300UeYM2cO9u7di2HDhhnsxwY0fcMhIqLOk8lkSE9Plx4nJycbrI1kKZ1Oh4aGBjg5OVntnEQ9ncUB0pdffokdO3ZAqVRi9+7dBt2/giAwQCIisoKOLgzZGSdOnEBVVRUSEhKM1rDj5rfUV1n8L+63v/0tXn/9dVRUVODSpUsoKCiQfi5evGiNNnYbKSkpiIqKwqhRo+zdFCIiAE299DqdzmAbElEUzdqWpKqqCgBw48YNHD9+HLm5uTZrL1FPYfFCkd7e3jh69CjCw8Ot1aZujwtFElFn3b59G2fOnEFISAguXboklSckJEAURVy5cgU3b95s8xyiKGLRokXSsgHh4eHIz89HTEwMPvzwQyxevBh5eXmIiYmR9nrriNZW/Z48eXKH3x9Rd2bO32+Le5DmzZuHrVu3WnoaIqI+wdvbGxMmTEBgYKBBuaurK9zc3BAdHY3Q0FD4+fm1eg79Zrd6+fn5AIDs7GzMmzdPCpyys7PNSuJua0uUmpoaZGZmcsiN+gyLc5C0Wi3efvttpKWlYfjw4UZJ2u+9956llyAi6nWUSmWrPTbh4eG4efNmmz1JSqUSERERRotPNt+zDQAWLVqEzZs3QyaTSRvh6l9vzgrap06dQl1dHU6dOsUeJeoTLA6QTp8+jREjRgBo+rbSHJevJyJqnZubW6c3shUEAevXr5eG01pTWFiIxYsXY/369Vi2bBlycnIAwOzht7q6uk61k6insjhA2rVrlzXaQUREzbTsjTdFJpNhw4YN0Gg0WLp0qTTU1lJeXh7Ky8ul4Aj4ZfitI1uVtExVraurk5YEqKurg0KhgFarhYODA3Q6Herq6jq9BQpRd9HpHKRVq1YhMzPTmm0hIupT2poj4+HhgZCQEAwZMqTNcwiCAJVKhQ0bNkgLSOr3fmtu+fLlnW7noUOHDJ4fPHgQQFPC+cGDB7Fnzx7s27cP+fn5yMjIwOHDh9tNNCfq7jodIBUWFuKee+5BSEgInnnmGfz444+or6+3ZtuIiPosQRAQERGBoKCgDtXX9yalpqYa7Nem3w+uZW6SOVobXmt5zqtXr0qPm/dWEfVEnQ6QPvvsMxQVFeHLL7+Em5sbnnvuOfj6+uLBBx/E559/zpkORETtsPY+avreJE9PT6ls8+bNVr1Gcw0NDTY7N5G9WTTNXyaTYeLEiXj77bdx/vx5HD58GImJiVi/fj2Cg4MxadIkvPPOO7h27Zq12ktE1OckJiaaVV+/NUl6ejpUKhViYmKkY/phOGvQLzBJ1BtZnKTd3NChQzF06FC89NJLuHnzJv71r3/hX//6FwDghRdesOaliIj6jM4kPDffmiQ5OdlgPST9Pm7NlwAgIkMW/6tQq9Wora2Vnl++fBkffPABTpw4gYULF+L7779ncEREZEJXBSb6oTeVSiWtnwQ05RAtWrQIarXaaGuS9rYrMTenSRRF5OTk4MqVK51/I0RdyOJ/nffffz8+//xzAEB5eTlGjx6Nd999F/fffz8+/vhjixvYnXAvNiKypvDwcLi5ubU7U82a9Osn6We65efnIykpCUlJSVi2bBlEUYQoili6dKlBWUttrb1kyu3bt3Hz5s1et0cn9V4WB0jHjx/HxIkTAQBff/01AgMDcfnyZXz++ecGS+H3BkuWLMGZM2dw9OhRezeFiHoBJycnxMfHd3immrXoZ7y1pF8bSaPRSLPQzN2upDVardbicxB1JYsDpNraWri5uQEAduzYgdmzZ0Mmk2HMmDG4fPmyxQ0kIqKeqbGx0WR5RUVFF7eEyHwWB0gRERHYtm0brl69irS0NNx9990AgJKSEu50T0TUTSmVSml2mzVntjW3b98+6HQ6AE1/E/Rqampscj0ia7J4FtuqVavwyCOP4De/+Q3uuusujB07FkBTb5J+jzYiIupeBEEwmN2mn9nWFn2wY05yeX19PZRKJUpLS6Wy6upqM1tL1PUsDpAeeughTJgwATdu3EBsbKxUPnXqVMyaNcvS0xMRkY3oZ7d1ZMNcnU6HqVOnAgDS09M7HCTpgyqinsYq6yB5enriypUrSE1NNfjHUFRUhDvuuMMalyAioi6gVqvx0ksvGZRpNBqDIKqiogJeXl4mXy+KIjQaDZRKJQRBwJEjR6BUKg3qCIJg8Ly2thYNDQ3w8PCw0rsgspzFAdJPP/2Exx57DLdu3TI6JggCZy4QEfUgDz74oFHZ7NmzpT3dWmoeEAHA0qVLkZOTg5iYGCQnJ0MQBKNZcLdv34YoilKgdOTIEQDAmDFjjIIpInuxOEl76dKlePjhh3Hjxg3odDqDHwZHRES9Q/McIr2W6yV1dHkAtVqN/Px8VFZWIisrSyqvqKhAcXExh+WoW7A4QCouLsaKFSsQEBBgjfYQEZEJo0ePRkREBBwdHQ3K/f39LT538xlt5mgZEHUkl0mvsLAQx48fR3l5uVR27tw5nD17Fjdu3DC7LUTWZnGA9NBDD2H37t1WaAoREbXG2dkZISEhiIyMNCgfPHgwQkJC4Orq2ulz62e0paamIjo6GgAQHR2Nfv36SXVcXFykx60Ngy1evLjTbQAgrdhdVFRk0XmIrMHiHKSPPvoIc+bMwd69ezFs2DCjbzfLli2z9BJERPQffn5+iImJQXZ2NgDA0dEREREROHv2rEXT5/Uz2tatWyflFJWVlUk5SRs2bMCjjz4q1RdF0ejz3dQwHFFPZXGA9OWXX2LHjh1QKpXYvXu3wewEQRAYIBERWZmPjw9CQkLg7Oxs9XPrAyX94+blzWk0GpP7sfn6+locKFVVVWH37t2YMGECHBysMtmayGwWD7H99re/xeuvv46KigpcunQJBQUF0g83JSQisj5BEBAREYHg4GCDMmtrPu2+o1Pw169fb7Xr79u3D6WlpSgrK0NBQYHJTXOJbMXi0Ly+vh5z5841a2VVIiKyrgEDBrSauzN06FC4u7ujoaEBx48f7/A5ZTIZ0tPTAQB1dXVSuSiKBs8jIiKQl5eHmJgYqffJWvRDiUDT5r7Ng0IiW7I4QJo3bx62bt2KV1991RrtISKiTlAqlRg7diwyMzPh5uYmrU0XFxcHT09PAIBKpTJ7CMzUl997773X4PmHH34IQRCgVCpbndpvDbY8N1FLFgdIWq0Wb7/9NtLS0jB8+HCjJO333nvP0ktYXXl5OaZNm4bGxkY0NjZi+fLleOqpp+zdLCIiizg5OWHcuHHQarU4ffo0fHx8pOBIT6FQdOrcSqVS6ilqqa6urtWVta3pypUrCA4O5mKS1CUsDpBOnz4tbUrbvCsUsM2YuDW4ubkhIyMDzs7OqKmpQUxMDGbPng0fHx97N42IyGJyuRxxcXEmj4WFhaGkpARBQUG4evVqh8+pXwqgI5va2tKhQ4cQHh6OmpoayGQyo2UPiKzF4gBp165d1mhHl5LL5dLsj7q6OoiiyOQ/IuoTlEolxo8fD0EQzAqQ2tJeArd+O5LmbbDkC3R+fr70ODw8HHK5vNPnImqNRZnVDQ0NmDp1Ki5cuGCt9gAAMjIyMHPmTAQHB0MQBGzbts2oTkpKCgYMGAClUonExERpL5+OKi8vR2xsLEJCQvDiiy+2us8QEVFvY63e/e3btyM9Pb3NSTrNtyPR/yxbtsxqX0otWfuJqC0WBUiOjo44deqUtdoiqampQWxsLFJSUkwe37p1K1asWIHVq1fj+PHjiI2NxfTp01FSUiLViYuLQ0xMjNHP9evXAQCenp44efIkCgoKsGXLFhQXF7fanrq6OlRWVhr8EBH1dYIgtBkcaTQag+1I9Nrap81cJ06csMp5iFqyeG7+r3/9a/z1r3+1Rlsk99xzD9asWYNZs2aZPP7ee+/hqaeewoIFCxAVFYVPPvkEzs7O+Oyzz6Q6WVlZyM7ONvppOUU0ICAAsbGx2Lt3b6vtWbt2LTw8PKSf0NBQ67xRIiI7GjJkiE3PP3v2bCxatEh6vmXLFptcp76+HmfOnDHY143IUhbnIDU2NuKzzz7Dzp07ER8fb7BfD2D9WWz19fXIzMzEK6+8IpXJZDJMmzYNBw8e7NA5iouL4ezsDDc3N1RUVCAjIwPPPPNMq/VfeeUVrFixQnpeWVnJIImIerygoCC4ublZtUenpcLCQumxrWaf5ebmorS0FCUlJZg8ebJNrkF9j8UBUnZ2NkaOHAmg6Ze0OVvMYistLYVWq0VAQIBBeUBAAM6dO9ehc1y+fBmLFi2SkrOXLl2KYcOGtVrfyckJTk5OFrWbiKg7cnV1xZgxY+y66bg+idvJyQl1dXVmJ3FzDziyhT45i2306NHIysoy+3UpKSlISUmBVqu1fqOIiLo5pVIpbZQbExNjskeoeZ3w8HCDGWct6XQ6iKKIp59+2mB9pZiYGCQnJ1v0JVsURTQ0NHR63SeiTgVIV65cQVhYWIfrX7t2Df369evMpYz4+vpCLpcbJVUXFxcjMDDQKtdozZIlS7BkyRJUVlZ2eF8iIqLeQr8WkkajabWXp3kdJycnLF++3GRAJYoipk6davI6+iG/zmxbUlpaCl9fX+Tl5eHatWsYOnSo0YgDUUd0Kkl71KhRWLx4MY4ePdpqnYqKCnz66aeIiYnBN9980+kGtqRQKBAfHy/tDwQ0fQtJT0/H2LFjrXYdIiIyJggCVCpVm707+joymQzJyclITU1FcnKyQZ22Zg5bQr9g8bVr1wCAm6ZTp3WqB+nMmTP4wx/+gF/96ldQKpWIj4+Xln8vKyvDmTNnkJOTg5EjR+Ltt982e+XV6upqg+7WgoICZGVlwdvbG2FhYVixYgXmzZuHhIQEjB49Gh988AFqamqwYMGCzrwdIiKyEX2w1NITTzxhs2s2Njba7NzUd3QqQPLx8cF7772HP/zhD9i+fTv27duHy5cvQ61Ww9fXF48++iimT5+OmJiYTjXq2LFjmDJlivRcP4Ns3rx52LRpE+bOnYubN29i1apVKCoqQlxcHH766Sebd6MyB4mIyPpCQkIMZrtZat++fdJj7pJAnSWI/O0xmz4HqaKiAu7u7vZuDhGRxbpiFptarTY5ovDNN9/gwQcfNChLTU2FSqWSZrhZsj3J2LFj4eTkBI1GAwcHBzg4WDw/iXooc/5+W7xQJBERUUfoZ7i1pFKpTJY336bEku1JsrKyUFpaikOHDmHfvn0QRREVFRXQ6XSdOh/1DQyQiIgI3t7eNr+GfoZbamoqoqOjAUCa3ZacnIxvv/1WqqtWq1FWViZtU2LJYpZqtVpK3gaaErdPnDjR4bXzqG/iEJsZmucg5ebmcoiNiHoNURRRX1+PsrIynDt3Dt7e3rh9+7ZNr9dy6Ky1ITi9b7/9Fp6enlZfhHj8+PFwdHS06jmpezJniI0BUicwB4mIejP9n4U9e/Z06XXbC5AA6ywiKQiCwXBdQEAAhg4d2unzUc/BHCQiIuo0QRBsslVUe1rLUWouOzsbarXaovyhlv0CtlqTiXo2BkhERGQ1ERERnX6tPkdpy5Ytbda79957MXXqVKsmWXMwhVpigERERFYhk8kQEhJi0TkEQTDYkuSzzz5rtW5FRYVF12quq4cTqftjgGSGlJQUREVFYdSoUfZuChFRlxo5cmS7n30ymfX/pHh4eLQ67GbtXp+ysjKrno96NgZIZliyZAnOnDnT5h50RES9kbu7O1xcXLrkWs03A/f09DRaGkDvpZdesmqQdPPmTVRXV3O4jQB0cqsRIiKilqwVWMhkMmlDcn2vlEqlwrp166DRaLBo0SIUFhYiPz8fGo3G5F5vnXH9+nVcv34dADBixAiDQI36HvYgERFRtyOTyYyG7PQb327YsEEqW7p0KbRaLdRqtVV7fs6fP2+1c1HPxACJiIg6zFRvjX5JAH9//y5pg1KplGbL5efnY9q0aRZvR9JSbW0tbt68aZVzUc/EAMkMTNImor7E1dXVqEwulxuVxcfHY+jQoVLQMnHiRJu2S78cQEuWbEdiSk5ODvdr68MYIJmBSdpE1Jc0n26v5+BgnLrq5OSEgIAAKXgyFUT1VIWFhfZuAtkJAyQiIjJp8ODB8PHxwfDhw6UyU0NY9tjHrPmq283XXlq6dKlV85Fqa2utch7qeTiLjYiITHJycsKwYcMMypoHHkOHDu2yvKOW9MNsGo0GTk5OWLx4MfLy8pCfn4+kpCSr7NkGcIXtvow9SERE1CkBAQHtBiCmhumsRT+rTSaTGeUk6fdss1RxcTHq6+stPg/1PAyQiIiowzrao+Ll5QXAsr3ZLHXvvfeitrbW4l6gAwcOoLq62kqtop6CARIREXVYR4ON4cOHIzExEb6+vlKZl5cX7rjjDpu0q3lOUnP33nsvFi1aZPFstGPHjuH69eu4deuWdA9EUURdXZ1F56XuiwGSGTjNn4ioY/TDX8AvvUlDhw616fX0W5KEh4cbHMvLy8OiRYssTt7Ozc3F6dOnpfWRzp8/j4MHD6K4uNiitlP3JIjMQDNbZWUlPDw8UFFRAXd3d3s3h4ioy9y6dQunT59GcHAwIiMjO/QaURQhiiJkMhmKiopw7tw5m7ZRp9NJSdstxcTE4MMPP0RdXR2USmWnkrh9fX0RHR2NPXv2AGhaPDMxMdHidpPtmfP3mwFSJzBAIqK+rKGhAQ4ODp0KLroiQAKagjKNRgNRFHHvvfcaHAsPD0d+fr5FM918fX1RWloqPTcnYCT7MefvN4fYiIjILI6OjhZPn28uICDAaufS0w/xmWpnfn4+AMtW3m4eHAFNG92yv6F3YYBERER24+7ubrQprTUplUqDhSRbEkWR24mQSQyQiIjIbuLi4qzaG9WSIAjYvHlzq8fvvfdeTJ06lUESGWGAREREduHi4gKZTIYBAwZApVJh0KBBNrmOTCZDeno6oqOjW60zb948i4fIqqqqLHo9dS8MkIiIyK4UCgUSExMRFhZms2vIZDKsW7cOW7Zskcp8fHykx4WFhVCr1Rb1JB0/fpyrbvciDJCIiMgubNVj1BpBEAy2PtmwYQO++eYb6bk1httaJm9Tz8UAyQxcKJKIyHr0C0l2JQ8PD+mxp6cnvLy8jLZDKS8v7+JWmabValFSUoLGxkZ7N6VPYoBkhiVLluDMmTM4evSovZtCRNTjyeXyLr+mPh8pPT0dMplMWoG7ueXLl3c6H0mn06GhocEaTcW5c+dw5swZnD171irnI/MwQCIioi7TfMaak5OTXdogk8kMlhZQKpUGCdyFhYWdXh8pLy8P+/fvt0qQpN/S5NatWxafi8zHAImIiLqN/v37d/k1BUHAunXrDPKRLFVdXQ21Wo1Lly5Bo9GgpqYGubm5UKvVHRoy6y7DfH2Zg70bQEREpOfl5YXLly+3ejwiIgJyuRznz5+36nWbb65rDRcuXEBtbS0A4NKlS1L59evXAQDjxo2DQqEAADQ2NqKurg4uLi5SvZycHKu1hTqHARIREfUYISEhuH37ts2vo9FoOr2ZLQApOGrN1atXMWjQIBQVFUnBnkqlgp+fH6qrq62Wx2Rt+twsWy3uqdVq7ZKbZgqH2IiIqMt4enpCEAS4urp2+hxeXl5WbJFps2fPxrJly2y2v9rVq1cNgiMAUKvVuHLliskAMDc3FydOnDDZnsbGxi5bCTw7OxvHjh2zyX0pLi7G3r17UVhYaPVzdwYDJCIi6jJOTk5ITExEXFycyePNeyYiIyPbrWNNSqUSMTEx0nNLNrPtCP1wW0frVlRU4NSpUwbl9fX12L9/P7KysnDhwgWT6zCVlZXh0KFDVul5u3XrFmpqalBZWWm1oKyqqgqXLl2SZuvl5eVZ5byWYoBERERdSqlUwsGh/QwPf3//Lh1u0U/5//bbb6WyRYsWQa1W26THpDNbk5SVlRk8P3DgAERRRGVlJa5du4bs7Gzp3FeuXIEoijh58iQ0Go1BcNVacCOKIgoKCnDjxo0223HixAkcOHAAtbW1KCsrw4kTJ1BTU2P2+xFFEZmZmQZ5Wt0Fc5CIiKhbcnBwwIQJE5CRkWGzoa6WBEGAp6cnIiIikJeXh8LCQiQlJSE6OhrJyckGywPYy+HDh+Hp6YnKykqTx6urq5GZmQkARu3NysqCRqOBRqNBQkKC0VBnVVWVlCQfFBSE+vp6lJWVQavVIjg42KBuY2Mjjhw5Ij0/ffo0xowZA6BpqYTCwkLExsZKye+iKBr1/uXm5pr79rsMAyQiIuq2bDWc1t41169fj8WLF0vDPTk5OZg6daq0wKQ9qdVqqNXqVo8fO3ZMetyyV6f58gHHjh3D6NGjUVVVBX9/f9TV1RkkhxcVFeHcuXPS8/aCmebDkfr7dvjwYQwaNAhqtRpFRUXo378/tFotGhsb4e3t3W5PlT0xQCIiom5NLpd3+XYbMpkMGzZsQHl5OWbPni2VV1RUdEmSuLW0F4Doe4CuXLmCmpoauLu7S8eaB0cdVVpaahRIXbx4UXrcfCitrbZVV1dDpVLZdUab/fsKiYiI/kO/NlBzw4cPh0qlwrBhw7q0LS03twWaekm6arivK+l7mlobtuuo7Oxs1NfXW9yeY8eOGfSE2QMDJDNws1oiIttSqVQYOnSoQTDk7u6OxMRE+Pj4GJR1BaVSabCZ7SOPPIJFixZ12bT6vqytYcSuIIi9MRS2scrKSnh4eKCioqLL/pESEdEvRFGEVqvFvn37bH4ttVqNpKQkg7KIiAhs2LDBLjlSfcnkyZOtej5z/n6zB4mIiHocQRDg4OCAqKgou1w/Ly/Ppmskkf0xQCIioh7L39/fbte25UrbZH8MkIiIqNfy9PS0+BzNV9gOCQmRyvW9SLZaSJLsi9P8iYioV1EqldLwlzWmietX2NZoNHBycsLUqVOlY4sWLUJhYSFiYmKQnJzMnKRehD1IRETUqyiVSgQHByMkJMRqizoKggCVSgWZTIbt27dL5fqNVW29bxt1PQZIRETU60RGRhpMz7cmlUplsKmtHnOSehcOsRERUa/SfJjLFgFL8yE3AFi6dCny8/OlnCT93mPUs7EHiYiIyEz6ITeVSoV169ZJ5VxEsvdggERERD3amDFjEB0dLT3vSA9O89lollIqlQgPDwfQlJM0b948Bkm9AAMkIiLq0ZRKJfz8/BAXF4egoCAMGjRIOtZ8iC0yMlJ63LyOpQRBwNtvvy09LywsxOLFi5mP1MMxB4mIiHoFT0/PNtc9CgoKgru7uzQbLTExEUVFRbh8+bJVrt1cXl4eysvLoVQqoVQqOf2/B2KAREREfYIgCHB1dZWe63OIrEEmkyE9PR0ajQb33nsvAGD27NkAgOjoaLz99tsQBMEoWNIPxVlrOQKyHgZIREREViCTyaQlALKzs6XynJwcKWgKDw/HunXroFQqIYqitOjk9u3bW+1lcnJyQl1dHXuiulifDpBqa2sxdOhQzJkzB++88469m0NERFbW1XlAzZcA0Gg0Ui+SXn5+PpKSkhAeHo7y8nKpXB9AtSU6Ohp//vOfAYDBUhfo0wHSH/7wB4wZM8bezSAiIjux1TpJKpVK2sOteW+SXn5+vtnnzcnJQVJSEoBfgiUGSrbTZwOkCxcu4Ny5c5g5c6bJX14iIiJLtNzDDQDq6uqwbNky5OXlAWgacktOTgbwSy9S8+G25nWb0wdLERERSE5OZqBkA90yKywjIwMzZ85EcHAwBEHAtm3bjOqkpKRgwIABUCqVSExMxJEjR8y6xgsvvIC1a9daqcVERNQd+fj4AAAcHEz3B7i4uNj0+s33cNPnKG3YsAGpqalITU3Fp59+CmdnZzg7OyM9PR3p6elwdnaWEsj1dfXrPLVcvykvLw9JSUlYtGgR1Go11Gq11CsmiqJUptPpDP7bsi4Z65Y9SDU1NYiNjcUTTzxhNH4LAFu3bsWKFSvwySefIDExER988AGmT5+O8+fPw9/fHwAQFxeHxsZGo9fu2LEDR48eRWRkJCIjI3HgwAGbvx8iIrKP4OBgKBQKuLu7mzzu7u6O6Oho5OTkdFmb9EFTS6Zmsunrrlu3TuqJWr58udHIhz5QAoCIiAh8+OGHWL58ucnep+b0PVBAU14TAGkLlb7eKyWI3Tx8FAQB3333HR544AGpLDExEaNGjcJHH30EoGmaZGhoKJYuXYqXX3653XO+8sor+Pvf/w65XI7q6mo0NDTg+eefx6pVq0zWr6urQ11dnfS8srISoaGhuHHzFgJ8vKRfoPpGHRp1OshlApwc5FL92vqmQE3pIIdM1lS3QatDg1YHmSBA6di5uup6LUSIcHKQQ/6fuo1aHeotrKtp0EInilDIZXCQN/2D1epE1DVqzaorQIBKYVzXUS6DYyfq6nQiNI1aAICz4pfYvq5RC61OhINMBoWD+XVFUYS6oamuylFu9P/TnLod+X9vjd8TU/8/rfF7or/vlv6etPb/s7O/J639/7T096T5/09Lf09a+//Z2d8TfkZ07WdERUUF8vLy4OCkQlFRMeQywOE/90EURdQ3VYVC/steb406EVodzKorkwGOsl+CjrrGpj/BjnJA1sG6DjIR9XV1cHJyQq1ag+eefxH5eRcAbYNUV3BwAgRAbGwAxP+s6i2TQ5A7QNTpTNYdGBYKAWJTfpQgQ3jkHXj3nT9DIf+lDfVaESIAR9kv7dWKIhp1gACYrOsgA+SCACcnJ6g1GjT8p66bs1L62ypzdIJOJzbV1b9nQcCY8ROt+hlRWVkJDw8PVFRUtBo063XLIba21NfXIzMzE9OmTZPKZDIZpk2bhoMHD3boHGvXrsXVq1dx6dIlvPPOO3jqqadaDY709T08PKSf0NBQAMDoP6Tjdk29VG9DRj6iVqVh9feG30Ti39yJqFVpuFaulso+P3gZUavSsPKbUwZ1J7y1C1Gr0pB3s1oq+zqzEFGr0rD0yxMGdae9twdRq9KQfa1CKvvh1A1ErUrDk5uPGdS976N9iFqVhiMFt6Wy9HMliFqVhkf/ctig7sPrDyJqVRoyLtyUyg7klyJqVRpm/a9hj9u8z44galUa0nKKpbITV8oQtSoN93yYYVD3mb9nImpVGraduCaVnSuqRNSqNEx+Z5dB3RVfZSFqVRq+PHJFKrt8uxZRq9KQ+Md0g7qvfpuNqFVp2Li/QCorqapD1Ko0DH9th0HdNT+cRdSqNKTs+uVbVaWmEVGr0hC1Kg2Nul++L7yz4zyiVqXhnR3npbJGnSjVrdT80kOZsisPUavSsOaHswbXG/7aDkStSkNJ1S8B9sb9BYhalYZXvzX8Bpj4x3RErUrD5du1UtmXR64galUaVnyVZVB38jtNvyfniiqlsm0nriFqVRqe+XumQd17PsxA1Ko0nLhSJpWl5RQjalUa5n1mODQ9638PIGpVGg7kl0plGRduImpVGh5eb/jv69G/HEbUqjSknyuRyo4U3EbUqjTc99E+g7pPbj6GqFVp+OHUDaks+1oFolalYdp7ewzqLv3yBKJWpeHrzEKpLO9mNaJWpWHCW4a/Jyu/OYWoVWn4/OAvC/1dK1cjalUa4t/caVB39fc5iFqVhg0ZvyTH3q6pl/5/NvenH88halUaPkzPlcrUDVqprj5QAoAP03MRtSoNf/rxnME59HX5GdEzPiM8PDwQHx+PzSersHhnLf4v/5cAorYRWLyzFot31kLbrEvh69wGLN5Zi69zf6mrFX+pW9tsEOP/8pvqfnnul98HAPif9Ka6FXW/nHjH5aa6m7IN6z63u6nuTTWkYbtDpY5ofOBtzPrTd0hNTUVERAQAIHjRBoSt+AaDRkyQtkFxiZqMsBXfwG/WqwAglQctWIewFd/gmsZRSh53jhyLxgfexuItp5CUlCT9PPNNPp7bJ+KhJb+Vyh5euhrP7RPx9D/PG9Rd/I8cPLdPxMPPvYmkpCRMnToVDz79Mp7bJ+KZbZcwderUX+p+cQLP/FuDWcvXYOrUqZg6dSrOldTa5DOio7rlEFtbSktLodVqERAQYFAeEBCAc+fOtfIqy7zyyitYsWKF9Fzfg0RERNQdyORyqFRKbNiwARqNBi8f1KGiHli1ahXC3GXQaDQ4WirHZzkNGJOYiOeeSYcgCNBoNFh1RIebv8TmCA8Phy4gEF25m5xarUbLQcffPPcbBM17vwtbYajHDbFdv34d/fr1w4EDBzB27Fip3ksvvYQ9e/bg8OHDrZzJevRddBxi6znd523V5RAbh9jMrcshtt77GXHpSiHO517o1kNspuoKguHwVp1WBMSO1xV1IrQNmqb/f0oltDoR1WpNq8Nm5g6x/eY/+VDhEYPx5/fex4svvoj887/0uAsOCkAQDIcEBRlKbpXB1cXFLkNsPS5Aqq+vh7OzM77++muDvKR58+ahvLwc33//vc3akpKSgpSUFGi1WuTm5nboBhMRUc9x/fp15Obmtl+RzCKKIjQajZT4rX/efPkDU2bMmGHVRPFenYOkUCgQHx+P9PRfxph1Oh3S09MNepRsYcmSJThz5gyOHj1q0+sQEZF9cE8029DPxtMHO6aWPzD1Y89ZdN0yB6m6utpgamJBQQGysrLg7e2NsLAwrFixAvPmzUNCQgJGjx6NDz74ADU1NViwYIEdW01ERD2dv7+/zfJZqWfplgHSsWPHMGXKFOm5PkF63rx52LRpE+bOnYubN29i1apVKCoqQlxcHH766SejxG0iIiJzyGQyhIeHIz8/H97e3rh9+3b7L6JeqdvnIHUnzEEiIur9RFFEVVUVXF1dkZGR0f4LyGYmT55s1fP16hwke2IOEhFR7ycIAtzd3ZmP1Mfx/z4RERFRCwyQiIiIiFpggGSGlJQUREVFYdSoUfZuChER2cmgQYPs3QTqAgyQzMAcJCKivi00NBQhISH2bgZ1gW45zZ+IiKg7iYyMBNC076dMJpNmQlHvxQCJiIioHUqlEt7e3tLzuLg4VFVVwcXFBTdu3DBY3Jh6Bw6xmYE5SEREBPyyFIBcLm+/MvVIDJDMwBwkIiKivoEBEhERkQXsuaEq2Q4DJCIiIqIWGCARERG1g71EfQ8DJCIiIqIWGCCZgbPYiIj6JoVC0aF6o0ePtnFLqKswQDIDZ7EREfUtw4YNQ2RkJFxcXOzdFOpiXCiSiIioFT4+PvZuAtkJe5CIiIhsJCYmplOv8/f3R2JiIjw8PKzcIuooBkhEREQWkMl++VNq7my3SZMmmSwPCQmBSqVCXFwcvLy8LGofdQ4DJCIiIgsEBATAw8MDAwYMgFKp7HCvT79+/QyCq+b05VxewH4YIBEREVlAJpNhxIgRGDBgAARBQFxcXIde19o+bv7+/kwK7wYYIJmB0/yJiKg9zXt9HB0dERcXh9DQUKN6psoAICoqyuAc7EWyDwZIZuA0fyIi6oioqCgMHDgQHh4e8PT0RHh4uNFwmqOjo9nnDQkJsVYTqR0MkIiIiKzM398f/fv371DdIUOGSI/bW1YgIiICI0eONChrLY+JLMN1kIiIiLpY82GzoKAgBAYGora2FiqVqt3XNu95SkhIgFKpxL59+6Qyd3d3DBw4EFqtFtnZ2dZteB/CAImIiKiLtewFEgShw4nZKpUK/fr1g1wuh6urq8Exf39/REREQKFQoLa21mrtbY+3tzdu377dZdfrCgyQiIiIupibm1uH65pK0h48eLDB8zFjxqC+vh7u7u4dPq9CoYBCoUB1dXWHX9Oa/v37M0AiIiIi84WGhuLy5cvw9fW1+rmVSiWUSmWbdRITE6FQKFBcXAxvb28olUpUVVUhMzPT4uu7u7vD1dW11WDLxcUFNTU1Fl+nKzGzi4iIqAsMGDAAI0aMQFRUlFmvCwsLA9C0IKU5WuYzqVQqyOVyBAcHtxtMtcXZ2dmoTBAExMfHG5SNGzcOvr6+iIyMRGBgYKevZy8MkIiIiLqAIAjw8PAwe9aZh4cHJkyYgDvuuMPs65kbjAFNQ29tGTVqlMEec/rZeoIgICEhQSqXy+WIiYlBcHCw2W3oDjjEZoaUlBSkpKRAq9XauylERNSHODh07s+1n58f7rjjDrNynjw9PVFSUtLqcUEQ4Ovri3HjxqGystJgaYKOttPX1xelpaUAmhLL27qevbAHyQxcKJKIiHoSQRAQGBho8dYlkZGRAAyTyxUKBXx9fS1e6XvQoEFwdnY2mpFnb+xBIiIi6qPay0VydnZGXFwcFAoF/P39W90/Tk+hUEAmk0k/em1t4KtUKjF69Gio1WocPnzYvDdgQ+xBIiIi6qMcHR2RmJiIsWPHSknd/v7+0nGVSiXlJDk4OLTbWySTyTBhwgSMGzfOoK67u7vBJr7+/v5QKBQGieed2XrFltiDRERE1IfpA6OEhASo1Wq4uLhgxIgRuH79OsLDw80+X2tJ6J6entJjBwcHjB071iCIapm/1HJWXFdjgEREREQGK3N7eHi0OSxmDW31Rrm7u5uVWG4LHGIjIiKibsXWwVlHsAeJiIiIuoXExETcunULQUFB9m4KAyQiIiLqWqZW4waa8qFCQkK6uDWmMUAiIiKiLjFmzBg0NDRYtNVJV2GARERERF2iI5vqdhdM0iYiIiJqgQGSGVJSUhAVFYVRo0bZuylERERkQ4IoiqK9G9HTVFZWwsPDAxUVFXB3d7d3c4iIiKgDzPn7zR4kIiIiohYYIBERERG1wACJiIiIqAUGSEREREQtMEAiIiIiaoEBEhEREVELDJCIiIiIWmCARERERNQCAyQiIiKiFhggEREREbXgYO8G9ET63VkqKyvt3BIiIiLqKP3f7Y7sssYAqROqqqoAAKGhoXZuCREREZmrqqoKHh4ebdbhZrWdoNPpcP36dbi5uUEQhA6/btSoUTh69KhV6rZ1vLVjpsrbK6usrERoaCiuXr3aJRvzmnOPLHltR+ra6h7z/rZfx1r3F+jae2zJ/TX39X3xM6I73d/26nT0Xpoq52dE+3U6+zssiiLi4+ORm5sLmaztLCP2IHWCTCZDSEiI2a+Ty+Ud/gVvr25bx1s7Zqq8o2Xu7u5d8o/TnHtkyWs7UtdW95j3t/061r6/QNfcY0vur7mv74ufEd3p/rZXp6P3zVQ5PyPar2PJ77BCoWg3OAKYpN2llixZYrW6bR1v7Zip8o6WdRVLrm3N+9teHUvuMe9v+3X64v019/V98TOiO93f9uqYc996y++wve9va+Wdvb8cYqM2VVZWwsPDAxUVFV3y7aWv4f21Pd5j2+L9tS3eX/thDxK1ycnJCatXr4aTk5O9m9Ir8f7aHu+xbfH+2hbvr/2wB4mIiIioBfYgEREREbXAAImIiIioBQZIRERERC0wQCIiIiJqgQESERERUQsMkMgqrl69ismTJyMqKgrDhw/HP//5T3s3qVeaNWsWvLy88NBDD9m7Kb3CDz/8gCFDhmDw4MH4y1/+Yu/m9Dr8fbUtfu7aFqf5k1XcuHEDxcXFiIuLQ1FRkbTXjYuLi72b1qvs3r0bVVVV2Lx5M77++mt7N6dHa2xsRFRUFHbt2gUPDw/Ex8fjwIED8PHxsXfTeg3+vtoWP3dtiz1IZBVBQUGIi4sDAAQGBsLX1xe3b9+2b6N6ocmTJ8PNzc3ezegVjhw5gujoaPTr1w+urq645557sGPHDns3q1fh76tt8XPXthgg9REZGRmYOXMmgoODIQgCtm3bZlQnJSUFAwYMgFKpRGJiIo4cOdKpa2VmZkKr1SI0NNTCVvcsXXmPyfL7ff36dfTr10963q9fP1y7dq0rmt4j8PfZ9qx5j/vq564tMUDqI2pqahAbG4uUlBSTx7du3YoVK1Zg9erVOH78OGJjYzF9+nSUlJRIdeLi4hATE2P0c/36danO7du38fjjj2PDhg02f0/dTVfdY2pijftNreP9tT1r3eO+/LlrUyL1OQDE7777zqBs9OjR4pIlS6TnWq1WDA4OFteuXdvh82o0GnHixIni559/bq2m9li2useiKIq7du0SH3zwQWs0s9fozP3ev3+/+MADD0jHly9fLn7xxRdd0t6expLfZ/6+dkxn7zE/d22HPUiE+vp6ZGZmYtq0aVKZTCbDtGnTcPDgwQ6dQxRFzJ8/H3fddRcee+wxWzW1x7LGPaaO68j9Hj16NLKzs3Ht2jVUV1fjxx9/xPTp0+3V5B6Fv8+215F7zM9d22KARCgtLYVWq0VAQIBBeUBAAIqKijp0jv3792Pr1q3Ytm0b4uLiEBcXh9OnT9uiuT2SNe4xAEybNg1z5sxBamoqQkJC+MeoFR253w4ODnj33XcxZcoUxMXF4fnnn+cMtg7q6O8zf187ryP3mJ+7tuVg7wZQ7zBhwgTodDp7N6PX27lzp72b0Kvcd999uO++++zdjF6Lv6+2xc9d22IPEsHX1xdyuRzFxcUG5cXFxQgMDLRTq3oX3uOuxfttW7y/tsd7bH8MkAgKhQLx8fFIT0+XynQ6HdLT0zF27Fg7tqz34D3uWrzftsX7a3u8x/bHIbY+orq6Gnl5edLzgoICZGVlwdvbG2FhYVixYgXmzZuHhIQEjB49Gh988AFqamqwYMECO7a6Z+E97lq837bF+2t7vMfdnL2n0VHX2LVrlwjA6GfevHlSnXXr1olhYWGiQqEQR48eLR46dMh+De6BeI+7Fu+3bfH+2h7vcffGvdiIiIiIWmAOEhEREVELDJCIiIiIWmCARERERNQCAyQiIiKiFhggEREREbXAAImIiIioBQZIRERERC0wQCIiIiJqgQESEZGd1NfXIyIiAgcOHLDqeX/66SfExcVxp3ciCzBAIiKrmD9/PgRBMPppvtcUGfrkk08wcOBAjBs3TioTBAHbtm0zqjt//nw88MADHTrvjBkz4OjoiC+++MJKLSXqexggEZHVzJgxAzdu3DD4GThwoFG9+vp6O7SuexFFER999BEWLlxok/PPnz8fycnJNjk3UV/AAImIrMbJyQmBgYEGP3K5HJMnT8azzz6L5557Dr6+vpg+fToAIDs7G/fccw9cXV0REBCAxx57DKWlpdL5ampq8Pjjj8PV1RVBQUF49913MXnyZDz33HNSHVM9Lp6enti0aZP0/OrVq3j44Yfh6ekJb29v3H///bh06ZJ0XN8788477yAoKAg+Pj5YsmQJGhoapDp1dXVYuXIlQkND4eTkhIiICPz1r3+FKIqIiIjAO++8Y9CGrKysNnvQMjMzkZ+fj3vvvdfMuwxcunTJZG/d5MmTpTozZ87EsWPHkJ+fb/b5iYgBEhF1kc2bN0OhUGD//v345JNPUF5ejrvuugsjRozAsWPH8NNPP6G4uBgPP/yw9JoXX3wRe/bswffff48dO3Zg9+7dOH78uFnXbWhowPTp0+Hm5oa9e/di//79cHV1xYwZMwx6snbt2oX8/Hzs2rULmzdvxqZNmwyCrMcffxxffvklkpOTcfbsWaxfvx6urq4QBAFPPPEENm7caHDdjRs3YtKkSYiIiDDZrr179yIyMhJubm5mvR8ACA0NNeilO3HiBHx8fDBp0iSpTlhYGAICArB3716zz09EAEQiIiuYN2+eKJfLRRcXF+nnoYceEkVRFO+8805xxIgRBvXffPNN8e677zYou3r1qghAPH/+vFhVVSUqFArxq6++ko7funVLVKlU4vLly6UyAOJ3331ncB4PDw9x48aNoiiK4t/+9jdxyJAhok6nk47X1dWJKpVKTEtLk9rev39/sbGxUaozZ84cce7cuaIoiuL58+dFAOLPP/9s8r1fu3ZNlMvl4uHDh0VRFMX6+nrR19dX3LRpU6v3a/ny5eJdd91lVA5AVCqVBvfRxcVFdHBwEO+//36j+mq1WkxMTBT/67/+S9RqtQbHRowYIb722muttoGIWudg3/CMiHqTKVOm4OOPP5aeu7i4SI/j4+MN6p48eRK7du2Cq6ur0Xny8/OhVqtRX1+PxMREqdzb2xtDhgwxq00nT55EXl6eUU+NRqMxGH6Kjo6GXC6XngcFBeH06dMAmobL5HI57rzzTpPXCA4Oxr333ovPPvsMo0ePxv/93/+hrq4Oc+bMabVdarUaSqXS5LH3338f06ZNMyhbuXIltFqtUd0nnngCVVVV+PnnnyGTGQ4KqFQq1NbWttoGImodAyQishoXF5dWh5SaB0sAUF1djZkzZ+Ktt94yqhsUFNTh2W+CIEAURYOy5rlD1dXViI+PNzmjy8/PT3rs6OhodF79NHmVStVuO5588kk89thjeP/997Fx40bMnTsXzs7Ordb39fWVArCWAgMDje6jm5sbysvLDcrWrFmDtLQ0HDlyxORQ3e3btw3eIxF1HAMkIrKLkSNH4ptvvsGAAQPg4GD8URQeHg5HR0ccPnwYYWFhAICysjLk5uYa9OT4+fnhxo0b0vMLFy4Y9JqMHDkSW7duhb+/P9zd3TvV1mHDhkGn02HPnj1GPTt6SUlJcHFxwccff4yffvoJGRkZbZ5zxIgR+PjjjyGKIgRBMLtN33zzDd544w38+OOPCA8PNzqu7yEbMWKE2ecmIiZpE5GdLFmyBLdv38Z///d/4+jRo8jPz0daWhoWLFgArVYLV1dXLFy4EC+++CL+/e9/Izs7G/PnzzcaRrrrrrvw0Ucf4cSJEzh27Biefvppg96gRx99FL6+vrj//vuxd+9eFBQUYPfu3Vi2bBkKCws71NYBAwZg3rx5eOKJJ7Bt2zbpHF999ZVURy6XY/78+XjllVcwePBgjB07ts1zTpkyBdXV1cjJyTHjrjXJzs7G448/jpUrVyI6OhpFRUUoKirC7du3pTqHDh2Ck5NTu+0gItMYIBGRXQQHB2P//v3QarW4++67MWzYMDz33HPw9PSUgqA///nPmDhxImbOnIlp06ZhwoQJRrlM7777LkJDQzFx4kQ88sgjeOGFFwyGtpydnZGRkYGwsDDMnj0bQ4cOxcKFC6HRaMzqUfr444/x0EMP4X/+539wxx134KmnnkJNTY1BnYULF6K+vh4LFixo93w+Pj6YNWtWpxZzPHbsGGpra7FmzRoEBQVJP7Nnz5bqfPnll3j00UfbHOYjotYJYsvBeyKibmzy5MmIi4vDBx98YO+mGNm7dy+mTp2Kq1evIiAgoN36p06dwq9+9Svk5+ebTFbvrNLSUgwZMgTHjh0zuVAnEbWPPUhERBaqq6tDYWEhXnvtNcyZM6dDwREADB8+HG+99RYKCgqs2p5Lly7hf//3fxkcEVmASdpERBb68ssvsXDhQsTFxeHzzz8367Xz58+3ensSEhKQkJBg9fMS9SUcYiMiIiJqgUNsRERERC0wQCIiIiJqgQESERERUQsMkIiIiIhaYIBERERE1AIDJCIiIqIWGCARERERtcAAiYiIiKgFBkhERERELfx//0Qmw6nndeMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG3CAYAAABPMqr+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABliklEQVR4nO3deVwUZ7ov8F81W7MjIJugoKhRQFBQ4hqNJEYzThKj4znJJGgcs1xEM9xsztybbTJxxpNxjAknau4Yk7mTXOfExFl0jAmjcd9QTIC4gCaCsojI1s3aXfcPT9X0TjfdTTf07/v58AldVV31dNnpfnjf531fQRRFEUREREQkU7g6ACIiIiJ3wwSJiIiIyAATJCIiIiIDTJCIiIiIDDBBIiIiIjLABImIiIjIABMkIiIiIgNMkIiIiIgMMEEiIiIiMsAEiYiIiMiAt6sDGIi0Wi2uX7+O4OBgCILg6nCIiIjICqIoorW1FXFxcVAoLLcReWyC9NBDD+HAgQOYO3cuPv30U5uee/36dSQkJDgpMiIiInKmqqoqxMfHWzxG8NTFag8cOIDW1lZ8+OGHNidIzc3NCAsLQ1VVFUJCQpwUIRERETlSS0sLEhIS0NTUhNDQUIvHemwL0uzZs3HgwIE+PVfqVgsJCWGCRERENMBYUx7jlkXaBw8exMKFCxEXFwdBELBr1y6jYwoLC5GYmAilUons7GycPHmy/wMlIiKiQcktEySVSoX09HQUFhaa3L9jxw4UFBTglVdewZkzZ5Ceno558+ahvr5ePiYjIwOpqalGP9evX++vl0FEREQDlFt2sc2fPx/z5883u3/Dhg1YuXIlli9fDgDYvHkzdu/ejW3btuGll14CAJSUlDgsns7OTnR2dsqPW1paHHZuIiIicj9u2YJkSVdXF4qLi5GTkyNvUygUyMnJwbFjx5xyzXXr1iE0NFT+4Qg2IiKiwW3AJUgNDQ3QaDSIjo7W2x4dHY3a2lqrz5OTk4MlS5Zgz549iI+Pt5hcrV27Fs3NzfJPVVVVn+MnIiIi9+eWXWz94auvvrL6WD8/P/j5+TkxGiIiInInA64FKTIyEl5eXqirq9PbXldXh5iYGKdeu7CwEOPHj8fkyZOdeh0iIiJyrQGXIPn6+iIzMxNFRUXyNq1Wi6KiIkydOtWp187Ly0N5eTlOnTrl1OsQERGRa7llF1tbWxsqKirkx1euXEFJSQnCw8MxfPhwFBQUIDc3F1lZWZgyZQo2btwIlUolj2ojIiIisodbJkinT5/GnDlz5McFBQUAgNzcXGzfvh1Lly7FjRs38PLLL6O2thYZGRnYu3evUeG2oxUWFqKwsBAajcap1yEiIiLX8ti12OzR0tKC0NBQNDc3c6kRIiKiAcKW7+8BV4NERERE5GxMkGzAUWxERETO0dHRgfPnz0OlUrk6FADsYusTdrGROQ0NDWhvbwcAREREICAgwMURERENDKdOnYJKpYJCocCsWbOccg1bvr/dskibaCBqa2tDaWmp/PjGjRuYNGmSCyMiIho4pJYjrVbr4khuYxcbkYP09PToPe7u7nZRJEREZC+2IBEREZHLNDQ0GK2O4Q6YINmA8yARERE5lm5pgjthF5sNuNQIERGRZ2CCRERERC7R0NDg6hDMYoJERERELmGue624uBjXr1/v52j0sQaJyAFEUYRKpZLnQFIqlS6OiIho4GptbUVrayvi4uJcFgMTJBuwSHvgaGlpQWtrq942pVKJ8PBwCILg0GuJoogZM2bg6NGj8rbU1FS8//77Dr0OEdFg4u7fpZxJuw84k7Z702q1OHz4sMnJxjIzMxEcHOzQ66lUKgQFBRlt379/P2bPnu3QaxERDXRarRYdHR04efJkr8c6+jOUM2mTR9NoNHJyFBkZCUEQcOvWLfT09Ng0eWNHRwfOnj2Lrq4uAICXlxfS0tIQGhpq9jkff/wxHnnkEftegI6rV6+iuroa3t7eSElJQWBgoMPOTUTkCmfOnEFbW5urw+gVEyQa1MaPHw+FQoHTp0/b/D9ka2srOjs75cc9PT24deuWxQTJsPZIFEWo1WoAQEBAgM3de7W1tejq6kJXVxdu3brFBImIBiS1Wo3z58/D29t7QCRHAEexEfUqODgY0dHRNj9Po9Fg8uTJCAoKQlBQEKZPnw57erTZG05EA0VPTw+ampogiiK0Wi2+++47tLS0oLGx0dWhWY0tSES9UCgU8PLysvl5LS0tKC4ulh8fO3YMarXaqa1Ara2t8rDZlJQU1sgRkUucPn0aHR0dGDNmDC5fvmy0VuVAwATJBhzF5nlEUUR7ezsEQUB7ezvUajVEUezzSLji4mIolUpERERg1KhRDo4WaGxsRFNTE5RKJRobG5kgEZHTSZ+T/v7+8mdjR0cHAODixYuuDM0uTJBskJeXh7y8PLkKngY3URSRn5+PsrIyve3Tp0/HoUOH+pQkqVQqaLVaqNVqjBw50qZzSHMtAabrmURRxMMPP4zi4mKkpqbir3/9q83xERFZUl1djc7OTr0/8C5evIiamhqMGjUKCQkJLozOsViDRB5PFEXcvHkTV65cwZUrV/D999+jq6sLarXaKDkCgCNHjsiF1/0Z46JFi+R6pmnTpunVJHV3d6Ompkbu0istLZUnrSQicpSKigpUVVWhublZHhVcU1MDAPj+++9dGJnjsQWJBgXd0WLd3d1ycqBSqaBQKCwWONfW1uKee+7RS4YmTpyInTt3yo+PHj2K2tpaLFq0yEmv4F90X0t7e7v8WnTrmY4fPy7XM3V1deH48eNy65KupqYmtLa2IjIyEv7+/k6PnYg8w9mzZwEAPj4+RvsGYr2RKUyQaMAzNZO1ofT0dPz+9783ua+pqcmopejs2bN6LTD+/v79snyIKIqYPn06jh07prc9OTnZ7HM6OztNToqp0WhQUlIC4HZtUnp6ukNjJSLSnVtOo9GgrKwMN27ccGFEjsMuNhrw1Gq1xeQIAM6dOycXDVpy5swZvfNaItUEGS5pYklHRwfa29vNtmip1Wqj5Ai43axtK93BBIPlLzoicm+DJTkC2IJEg0xdXR18fX3lJGPixImIjY21+vkBAQHy75MnTzZ7nCiKmDp1Kk6cOGFTfFIXXWpqKs6dO2exSPuzzz7Te46lWNrb261KAImIyDpMkGhQCQwMhK+vr1xvY+ucQ2FhYUhNTZXnEgJuJ1mG9TtqtdooOUpNTcXw4cNNnjc5OVmvFai0tBRqtdpoDbdbt27Jv1vTpafVanHvvffanKgNRqIoory8HH5+fha7JG053/nz5+Hn5wdvb290dHRg9OjRDl/smIjcExMkG3AepMEvKCgIR48elRMVQRAQGxuLy5cv6x2n24z89ddfIz4+HvHx8WbXetu0aROA211s5lqERFE0uo5SqdRL2HQTLa1Wi0OHDjE5+m+tra3yv0tSUlKfJvfUpVKpUFdXp7etvb3dZC2XVquVF7+097pE7qa7u1uensSTMEGyAedB8gzBwcEIDg7W2+btrf+/yqVLl+Tfo6OjMXLkSACwuBiupVFk5grNBUHApk2b4O/vLydtCxYsAHA72fK0DyxLdOu6pG5HpVLZ5xYfU4Xvui18uq5du4bKykrExMTgjjvu6PP1pJGJbKUiV9KdDFcURRw5csTFEbkGEyQiK8THx6Orq0t+7Ih10Zqbm9HZ2Ql/f380NTXpJUdZWVlyF5sgCAgKCpILvK0lJQkAjLry+ptWq0VPTw98fX375XrffPMNWlpaAAAjR4402/XpKFVVVQBuTxnRW4IkvXcMk6DS0lI0NjZi9OjRGDZsmHMCJeqFVqtFcXExAgMDcccdd+C7775zdUguwwSJyAq+vr42zxDbW9H0yZMnERoaitWrV+tNM/DZZ59h4sSJepOuRUdHIyAgANXV1fI2rVZr8RqPPPIIzp8/D+D2NAdnz561qzWlr60boiji9OnTUKvVmDhxYp9bX7VaLURRtKoLS0qOAODy5ctmEyRRFHHlyhUEBQUhKipKL3kx9zpNLTVjTcIsiiIaGxtRWVkJhUKBzMxMvfNIi3hWV1e7RYLU09MDlUqFkJAQm/7Ni4uL0draiqlTp8LPz09v3/Xr1+Hv748hQ4Y4OlxykKamJqhUKqhUKnR3d5ttNfUETJDII+lOxuisbqpHHnnE4v5FixYhPj5eL+lJTU1FWFiYUXG5j48PRo4cqfeFM3nyZLnlwhQpOQJuT3Ngz0K55eXlaGhoQHR0NMaNG2fTc3XvdXNzs9kESRRFNDQ0ICAgwChOrVaLEydOoLOzE5MmTdJbY66qqgoqlQoxMTFmY7h58ya+/fZbjBkzBnFxcQBud5e1tbXh6tWrAIAhQ4bg1KlTCA4ORlpamtlzGXaxi6JosWtVN07dGrOOjg6529URLZKOdubMGajVaowbNw7R0dFWP0+a9uLYsWOYPXu23nZpXS7d7eRedN+LnpwcAZwHiTyQKIqYMmWKvGxHVlaWzecw13ITEBCAqVOn6m1LS0tDcHAwBEFAWFgYJk2aJO/TTY4OHjyIY8eOYdq0aQgLCzN5ft3aKN3kyNZRWzdv3kRVVZVet6Epzc3N+PLLL+XiZ8OiZUMdHR04deoUvvnmG5Nf+iqVCidPnkRlZaXRvhs3bqCsrAynTp1CSUmJXndiV1cXOjs7Adz+4j527BgaGxshiiIqKytRW1tr8cP822+/BfCvhTPb2tpw7tw5vThu3bqFrq4u3Lx50+Jr1J2xvKmpCQcPHrR4vOT69etm9/3www/y7+3t7RYHgoiiiFu3bvVpbquOjg5UVVVZ9Vwpqe3t3xz417/rlStXLF6baCBhCxJ5HLVajdOnTxttz8zM1JsHyRJzrUOCIODIkSOorq5GR0cHBEFAfHy83pD906dPQ6VSYebMmfJM16mpqYiMjJRrhQy/wBSK23/LBAcHY9q0aXK9UnJyMjZt2oTo6GhkZmZaFXt3d7ecMLS3t2PMmDHyvs7OTrk7paamBvfffz/KysqQmpqKTZs2QRAEqNVqnD9/HoGBgRg7dqzeuZubm+Xm+dbWVnR2duq1tkhftmq1Wm+xS8A48aisrISPjw8UCoXRXFadnZ345ptvcNddd8nbbBldaqrVUDeh02g0vSaPwO1WOlOJ4MWLF9HV1YXU1FSIooiqqiqLCYLhGlYXL14021JXXV2NyspKBAYGWpyry5QzZ86gq6sLra2tGD9+vFXPkV6fqZF6Go0GVVVVcvy6iZ4lTU1Nen8EXLhwAWq1GklJSaitrcWoUaP0lrDQaDTo7Oy0+v9PIkdggkQeo6OjAyqVSi/5OHv2LEJDQ6FQKBAfH2+x1iIgIADTp0/XG9ExYcIEuctGIgiCxXolqej6zJkz2L9/Pzo7O6FUKvVGynl7eyM5ORnNzc1QKpVyy5EgCDh8+DCqqqpQVlYGpVIJHx8fREVFWX0fzM2w3dLSojeTeHt7u1wbVVpaKncJNTQ0oKWlBS0tLRg5ciS8vb2hVquhVCr1Ro/pnqsvGhoa5N+lxTANSa1KgHHRsyVNTU1G25qbm+Xfr169arH70pLu7m65tejAgQOIiYlBbW2tTee4ceMGxo0bh6+//hqiKGLIkCEIDAzEkCFD5FYvKaG8desWfvjhB4wZM0Yvgejq6oKPj4/efZGSPqm17MaNG4iOjjYapalLapn7/vvv5e5IqYvshx9+kLfZQqVS6SVI0r+v9AeDl5cXRo8eLe8/efKkXveqKIo4d+4cFAoF0tLSOOrPAURR1Pv/iZggkQcxNf9QQkICIiIirHq+IAg4dOiQXutDQEBAnz+cBUHApEmT0NjYaLKVRJpbydTzHLn4bHNzM6qrq3tdIqCjowNKpVKvJUQURdTU1ODixYsICAjAqlWrcOrUKb0WJ0cwNeQegN4cUNYmNE1NTSa7u3S3tbe3m73mxYsX5YJqU61ChiMNbU2OdEmtN7du3cKtW7f0umQl586dAwCUlZUhKysLgiDg4sWLuH79OkaMGIERI0agrKzMaDHjkpISqNVq3Lx5ExMmTOg1FlOJkC3L7OgORJBi0Wq1JpPVa9euQaVSwd/fH/Hx8fIXd1VVFYYNGwaNRiM/r6enBwqFAjU1NYiIiJD/v9BoNGhpaUFYWJjHJ1BtbW24fPkykpKSEBwcjLa2Nty8eRMJCQnyYt5Xr17FlStXjKY48WRMkGhAUalURh+ourUntbW1et1Zplp9JKmpqTZ/GAiC0OdCZ1PCwsLM1hv1l/Pnz1s1fcCiRYuQnJyMLVu2yF1+wL9aY27evIlTp04B0G9xciZzxc2iKMoJnanh9L2pr6832iYlTAqFQq91y5CtLWfmElNrBg/o1kupVCocOXIEI0aMkJO9H374wWS3V3d3t1xYLiV7uvEYjj4zVFlZiVGjRtldxFtZWYlr166Z3NfU1ISmpia91sMbN24Y3a9z584hLCwM1dXVuHz5MmbNmgXg9lQPzc3NSExMRGJiot5zenp6cOPGDURGRkKhUAz6yT3Pnj0LjUaDW7du4a677pJLDLRaLTQaDerq6uT3gy1J72DHBIkGjKamJsyYMUPvL1FDFy9elL+UBUGAQqHAoUOH5A9W3S/UqKiofpuXx9H8/Pzg5+dnVONjSHfm7ePHjyM6OtqooFutVsstIb1NrFhRUYGnnnoKW7dutfqvckvJCnC7FcZSF4+159E9Lj8/X692SrqOUqm0WKBs7hparRZz584FABQVFekliH31ww8/ID4+3uT7WavV4uTJk72eQ6olk/T09JgsgO9NfX09GhoakJCQgLKysl7/bauqqoxqyEy5fv26URe0tN3f399scmSLtrY2tLW1AdBvaZS6TGtqauQEqa6uDgEBAaiqqkJ9fT0uXLgAAHZNPzEQSN3qoijqtUJaWzPmqZgg2YBLjbhWY2OjxeQoIyMDw4YNkz/chwwZIv8eFRVlU52Ou/Py8kJ2djZ6enrg4+Nj9EVTVlYmf/hJM293dXWhoaFBr/VDN5kAYLZrbOfOnVizZg2qq6tRUVFhVetQR0cH/Pz85HmeTLU+tba2ori4GADkoeSmkhTdOFNSUvAf//EfFhMuw9qp559/3qjY3JCpxEoQBIiiiNzcXPm45uZmh8zjU1tba1f3myOVl5cD+FeXoWHLXF/jvHjxIiIjI00mQn1J5KzR09NjMuG+efOm2UkPz54965ZTD0h1QX5+fg7rJtRdE5Is4zB/G+Tl5aG8vFzuRiDXqaurk/9ylH7OnDmDCRMmIC0tDWlpaSbrdwYThUIBX19fkx+cI0aMMDviRyqkbm9vh1qt1ks6pYRCq9XiySeflLf7+/tj69atRufq7u4220W0aNEiPPXUU/L5pdYn3VFR0l/+wO0v4fb2duTn52PBggVYvXo1tFqtHKt0nrKyMnm/4Re5lFzpMlVsLt0D3eebSqyka+v+1W3NIsIDle4Em7p059SyVWVlZb+2VEgF3ZLOzk40NTXptbaZ+n/GHf/wvXr1Ko4fP240ytEaPT09aGlpccs5tgYKtiDRgBQYGOjQWqDBKCEhQe5CAP7VOiC1pgAwuSyGKIp46qmn5KQgOTnZqDh79erV2Lp1K8rKyix+ABv+tarb+nTixAl5tJ9hSxZwO0l58sknzbY0GNY5mToHAKxZs8bo9a1cuRKVlZUWW5Ty8/P71MphbVfgQCeNOOuNNfMoOVJXVxeOHTumt80wVlPv2UOHDmHmzJno7OxEfX094uPjrer6dSZpXqkffvgBSUlJFo+VppMIDQ1FaGgoTp48ia6uLouTnpJlTJDI7XR1dZkcrdPfH7QDneHM26ZG8ZlqGcjNzZW74eLj47FlyxYIggClUinXNEmJjtQFZdhq8/HHH/c6k3hnZ6ecQOm23uiyJkGRrm/uHIbvpfvvv1/+3VIxuS3XlpIhc12B0heyI2qX3IWp0WfAwE4QDx06JP/e0dHR54WH+5M05YG0NAhwexoGaUoHSwMKyDImSORWRFFEdna21X+d0m1DhgxBamoqSktLMWnSJLl7zZbCU2nZE90P1K1btyIoKAgRERFQKBTYs2ePPLHk6tWrsWXLFr0aI4mlbihHf3maajWylSiKWL16tdXXe+eddwD8qzVOSoYAGHUFpqSkyNt2794Nf39/hxW4uxtzdVwDUW1tLQRBMJoM1d00NjaaTVYB9+w6HCgGz58zNCio1epek6Ps7GzOqGsgMDAQR48exdWrV3HixAn5S8mWL6ctW7boJTmpqalQKpVQKBQYNWoUkpKSEBgYKB9TUVGBuro6vRojayxatMhk/ZA1DEfg6dYX9Xa8pVFXHR0dvcYv1bRVVlZiwYIFWLBggcm6KEO68d1///1ma6ekuZek2igp2ViwYAGefPJJs/MyuRNTdVwDWU1NjV6dnCGpjs4ZdT7m6sEMmVre5cCBA/LvpqasIOuwBYkcSndh0t70NsliWVkZRowYYfPzPFVwcLDRvE4BAQHIzMxEcXGx3pB/AEYL5QqCgK1bt1oc8h8UFIRNmzbJI+PMdaPpdsdJdB/3ZZ6k1NRUvP3222hubpa7Cw3ri0wdr1uwK8XdF2+//TYefvhhi8dYkyRaUzuVkpKC119/XS/5fPLJJ/HOO+8MmNakwaK6utpsV1tZWRlu3ryJ0aNHY9iwYQ69ruF8Wj09Pejp6TFqnbWUwJF92IJEDiOKIiZPniwvAtvbz7Rp0yz+5SWt6m74wy8H6wmCgD//+c/Ys2ePPB+Q5O233zZ5vL+/v9luoJCQEKuuO3ToUKPrbdq0CZ999pnVsUstNikpKXL8CoUCYWFhcsuQboInbTM8Xno95ljbymHr++7jjz+2eE3pvW+qdqqsrMwoGZNaruxpTdIdwdhbq4epkX72HDcYSRN1Xrp0yektNYcPH8bx48cHfKvcQMIEiRymublZntPGGsePH7e6tYn6Tkp6lEolUlNTAdxuXXHULNemEgFzxcimapNM1f+kpqbiww8/xJ49e/DOO+/oJWyCIBglX8DtBMzU8brXll6/LqnLrze6z09JSUFKSor8+86dO616rYbX1Gq1Vtc+SSoqKpCbm2tzkqTbZWdumgRTx+oep9Vq9a6re1x+fj7y8/NtimkgqK2tlYuf29raUF1dbfK+SXNJOdvx48cB3O5e1l0/kByPXWzkMLofGt98843ZOqFr167prcJOziWNZJMSC6noF4Bc2D1x4kSzX+hBQUEWz2/qeUFBQb2OOpSKnXXrf0aNGqXXjWQuiTPVhQfAYtInvf7a2lqjrkFzXWPSNaR6LMP7Z2p9Oonhl+ioUaOgVCr1anSampp67ZZLSUlBU1OT3mSL1dXVFmc0N1XcbdhSZamb01QtkZ+fn9Fs4rrH2Vsoby5ud2C4VJEgCA7vUpNoNBqjdfMMiaKotw4hOQcTJHKKkSNHmp2nyNJSD+R4sbGxUCqVqKiogFqt1vtClL7wR4wYYbKLYNy4cYiMjNTbZs0s0rGxsSaHyesmNlKXkS6p9ac3UrJja02RIAjyjN3m6CZFUg2T7he2bny9xSoloNIs4oIgoKmpSa6h0u1GGzVqlNE9++yzzxAWFoZbt27JxwYGBkKlUpmd0Vyr1eKpp55CRUUFkpOTsWnTJodMbqnbWtHX2cQtJUADaQTcpUuXnDJlgyiKelMNmPP11187/NpkjF1sRIOcIAgIDw+Xh+cb7rM07Hzo0KFGC3ma6qYyZO7Lw1z3WF8YdhlamwQoFAoUFRWhqKgIe/bskbvKpPNs2bLFqIapL1/UYWFhcrff1q1boVAoIAiCXg2VJDk5GVu3btWLJzU1VV6JXvf6ujOaG3aTSZN8Sq1SFRUVFrvTpFnTra1L0mVuagRTM9hLdUpPPvmkyXhEUURTU9OAGgGnOwmrvaqrq3HgwAGHtMKR47AFiYgA3E4crKlrCQwMxLRp03D06FGkpqYiNDRUbikBbn+xBwQEyAlMaWkpMjIy5ARGd7s09F6a1dqWlg7DLkNbkhgpgfP395e7+aTYLHXtmaP7mlJSUuTkSrqGqbh1W790kzEpHnOvydSEnbrdfKa67EpLS/H4448bbTecPFR3cV9d0kSchttMXctwtJ+5WdKl1i9zM6APRFevXsXw4cNteo4oivJ95KSO7sUjE6Sqqio89thjqK+vh7e3N/73//7fWLJkiavDInKpSZMmoaqqqtfaIUEQcPjwYfkv6FGjRsmJCvCvJMPPz0/eHhsbK09mZ6oWqq91J5aSmbvuuguNjY16a3CFhIQYzS/Tl4TIVBx9TdZMnau3Wqq3335bnhE8Pz9frm0ybJnSJY24MpzeQZe5lhtTs7Bbik+XuRnOgdvdgZb2A+5bl2TK5cuX5aU+TBFFEW1tbWhvb0dUVBREUeSkuG7MI7vYvL29sXHjRpSXl2Pfvn149tlney2K80SiKEKlUtn0QwOHbpGpIAgICgrCuHHjMHTo0F6fKwgC7rjjDtxxxx3w8fExOT1ASkqKXheebreb7vbeuvkkpubE6i3GiIgIeQ6boKAgTJo0Cenp6RafZ2mR47CwMIvXs7Y7ztbuQd0v3NDQUL25nSorKy1O1qlbCxgZGYkPP/zQqm7S3uLXJSVmvb0W3RGPoihi7ty5eku/GDIcJSd1AxqOpnMn5j4H6+vrcfjwYRQXF6O8vBytra3o6OjgSDQ35pEtSLGxsYiNjQUAxMTEIDIyEo2NjVz8VIe05MepU6dcHQo5QXx8PJKTk6FQKNDW1oa4uDiHX8NwFOPYsWPx3Xff9fq8lJQUhIWF6Y0cSkpKwrBhw8yuCj9q1CiEh4ebfL9GR0fD29vbaBJNc8LDw022sAQFBSE9PR1Hjx6Vh333la0tTlLdlPS7LUvIfPTRR3KX144dO6BQKORrS0ul6I4IbG9vxwsvvGB0Hkvr60ndcuZG9El0kydrEgPduiRTS7dIo+ncnUajMZoG4LvvvtOrfyP345bvrIMHD2LhwoWIi4uDIAjYtWuX0TGFhYVITEyEUqlEdnY2Tp482adrFRcXQ6PRyKuK021qtbrPyVFaWprVS4GwFcq1Ro0ahfT0dL0JIKXfHd2lER0djcTExF6PGzp0KHx8fPS6mXqr64iIiDD7B44gCIiMjNRbuNcShUKBqKgoo+1ZWVkQBMGoaL2vbGlxkuKSkgEpYTL3Bau7PSwsTC5Kl54vXfudd94xmkT04YcfNjkC0fD+GSZCpl6Lqdolc883lJ+fb7JrT7c7ztIaZK5y8+ZNeUqG1tZWfPPNNyZHpqnVarNdneQe3LIFSaVSIT09HU888YTJ/0F27NiBgoICbN68GdnZ2di4cSPmzZuHCxcuyB9sGRkZJoeT79u3T/5rubGxEY8//jjef/99576gAe7EiRNW//UN3G6hs/ZDv7ch1+Q4Pj4+Jn83lJCQgMjISPj6+lr972iqtseUxMREjBgxAocOHeq1i2T8+PG4fv064uPjjUZyOZOPjw9Gjx4NX1/fXr/AIiMjXVZYq1Ao9ArM/fz85K43pVIpjxKz1MIiJUrt7e0m90dERMi1S7rdevn5+SaTKEOWapeeeOIJ+XdTdVHWnH/NmjX46KOPADh+EeS+unnzJm7evInQ0NBeJ851xwSP/sUtE6T58+dj/vz5Zvdv2LABK1euxPLlywEAmzdvxu7du7Ft2za89NJLANBr4VtnZycefPBBvPTSS5g2bVqvx+p+OFi7iOBgMXr06D7NeWKO7srz5qSmpiI8PNxh16TbtSgTJkxAd3e30dxGhmwtWr7jjjtQXl6Otra2Xv/dpHqk3hKk4OBgvZXUvby8MG7cOHR1dRl9edrypdhbC5DUEjVy5EiTCZK3978+NkNCQnpNkHQTF0czLOjW/d0RicKmTZvw6KOPGm03vP+2rqtnaMuWLXjxxRctfiaYUl1dLXcJutv8SdaskWYuMSX34JYJkiVdXV0oLi7G2rVr5W0KhQI5OTk4duyYVecQRRHLli3D3Xffjccee6zX49etW4fXXnutzzGTvqFDh+LIkSMWaxCGDBnS6wzOZDtnJZ0BAQHIysqCRqOxqiYkKSkJly5dMtreW/IitTjqfkGHhYXZND2ApdazpKSkXp+v+/qs6W4bCDUyutMUSAwLrv38/EzOXg7AYk2U1DpkqYBbqsnSnUTTWrpF3n1ZBNlZzp8/7+oQyE4DLkFqaGiARqMx6pqJjo62+g155MgR7NixAxMmTJDrm/74xz8iLS3N5PFr165FQUGB/LilpYU1S3YQBAEhISFWL3xKA4e19TnDhg1DdHQ0RFHUK8bWbTGyVlJSksNaDHSTJ3Pn1E14HDFDtTvQLRqXWrx0u+mAf018qTt/0+7du6FUKo3uiZRsGc5GbqnuSJpE0zBR+/jjjxEdHY3Ozk45to6ODrOJlDQppaXutoE0dQC5zoBLkBxhxowZNg0R9fPzs7rAk4is4+3tbVQn6K5Js24CMGLECDQ1NSE+Ph7h4eHy0h8DnW53nfRfQRD0Rs+Zeo7hdlMj9KTz9dZSZWq9PCkB043N3Fp8wL9alFJSUvD222+jq6tLb74tPz8/rF692u265Mj9DLgEKTIyEl5eXkaT2dXV1SEmJsap1y4sLERhYSE0Go1Tr0M02HR1dTnt3La24vSly2v06NHy70OGDMGMGTPg5eUFQRCQmZmJb7/9Frdu3TL53ODgYJtqTUaMGGF2OgNX6Mv9MjfZpbmWKt0ERRCEXv9NTc1GPmzYML0FfcvKypCTkwNAf6Fg3cRKd2JMtiaRIffvHDfg6+uLzMxM+a8a4PZsrEVFRZg6dapTr52Xl4fy8nLODURkBd3uNnMtLF5eXnpfwLoF0JYMHz4cgiAgNTXV5tZdqZbG1Np05hh+2Xt7e8tfpgqFQm/yScOEYvTo0UhISLBqigPg9ki/rKwseRmWwUZKniytc2c4MaYphpNt6q5RZ8jSZJrSRJSrV6926wkoqf+5ZQtSW1ub3pv4ypUrKCkpQXh4OIYPH46CggLk5uYiKysLU6ZMwcaNG6FSqeRRbUTketa0PAiCgJkzZ+LWrVvw9va2OkEaOXIkRo4c2efYpNmyL168aDG2uLg4tLe329T1l5WVpTcvm4+Pj5zsjBgxwuxK7DNnzpSvGxQUZPdklAOZ4cSYphh25fV1cVup4L+0tBRz584FMHAmoCTncssE6fTp05gzZ478WCqQzs3Nxfbt27F06VLcuHEDL7/8Mmpra5GRkYG9e/c6fU4ddrER2UbqLrK0TIggCA4bXTdp0iRcuHDB6gVDU1JSoFarceXKFZP7bWllmjBhArq6uixOkmqpC8ewwD0sLAyJiYkIDAwcFAu52sraBNtUfVNKSgrWr18PQRAgiqLF5UxMaW5udujUJjQwCaLuMAWySktLC0JDQ9Hc3Oy2RaX2UqlU8jD7xsZGflhQn3V1dcHX19fVYVh04MABALe7anqbI8oa5eXlqK+vR1JSklFyKF3L0OzZs82er7u7W2+0n6u0t7fr1f3s2bPHLYbUS0yNTjOMWZe5iT537tzJedjchKX/L/rClu9vtiESkVO5e3IE3J61e/jw4YiIiHDI+UaPHo2UlBSHTQdiae6m/mTrIrv9zdTyLUql0uwCxFu2bMGePXuwe/duve1r1qwB2w7ILbvYiIj6U1RUlMn11/rKx8cHQ4cONblvypQpqK2tRUJCAs6dO2fVjMvuwtZFdt2BIAj48MMP5foiw32mllqprq52mwknyXXYgmSDwsJCjB8/HpMnT3Z1KEQ0QAUEBGDkyJHw8fHp9/nVHNHiY+siu+5AKvouKirCxx9/bLRft2WMSMIEyQYc5k9EA1l2dra8WLenUSgUUCgUeoN5pCkEpJaxzz77zFXhkRtiFxsR0SAXHx+P2NhYCIKA6OhoXL9+HQEBAVCr1a4Ord+Zm0LAmgkqybMwQRpERFF02AfeYFg6gcgTRERE4ObNmxaPGTp0KAIDAwHcbjXJzs6Gn58fDh482B8huh1rphAYSHVW5BxMkGzgzvMgiaKIadOm4fjx464OhYj60ZgxY1BRUYG2tjaTS5oMHz7caDizVHwsLfdBxhYtWsS12jwca5Bs4M41SGq12inJUVpaGoKDgx1+XiJyDD8/P6SkpCAsLMzk/pEjR5r9gs/Ozsa0adOQkZHhsHjS0tIcdi5XKy0tRXt7O9rb2zns3wOxBWkQ2r9/v9l5P2wVFRVl9fIPRGSboKCgXrvHrDVkyBDU1NTIj729vXud7FChUMDX19dhc1V5e3s7bC4pV9CdjVsizcKdkpKCTZs2cQkSD8JvvkFo6NChSE5OdnUYRNQLaUkUa2bvlmqNEhISUFVVZbR/6NChGDNmDJqbmzFq1Ci9BXXJOrrzPOXn58vrtAFAWVkZ5s6dy3XaPAgTJCIiF/Hy8kJSUpJVx6ampqKrqwt+fn7yGne6675Ji+t66jB+R5Hmedq6dSueeuopvYXTAa7T5kmYBtuAE0USkasIgiBPLOnt7Y1Ro0YhNjbWxVENXgqFAlu3buXcSB6MCZIN3LlIm4jI1aRC5kmTJrk4Esfg3EiejQkSERE5VG+rpA9kHR0dHNHmIZggERGRLCQkBD4+PkhPT7f5udLSHZaMGTOmL2G5jUceeQRPPvkktFqtq0MhJ2OCREREmDJlCsaMGYOMjAxMnz7dqBA5LS0NEydONPncYcOGYcSIEbjjjjuM9hlOIWBqBNjQoUPtiNy5lEql0ajgiooK5ObmMkka5JggERERAgICEBcXZ3YIe0REhNkWooSEBCQlJZmcT0la4kS6hinuPNeaNPTfUHV1NZ566il2tw1iTJBswFFsRES20U2QEhMTXReIE1RUVKCjo4MzbQ9STJBswFFsROTpTC09ZKrVKTMzE8OHD0dSUhLGjBmD6Ohos11pPj4+Do+zv+Tn52PBggVYvXo1k6RBxn3bNYmIyO2YSoZMda0FBwfLyZSlCSzHjRuHiIgIqNVqREVFoby83LEBO5k023ZpaSk6OjrkhYBp4GMLEhERWc1w+ZIJEyb0+VyBgYGIjo6Gt7c3UlNTERUVZW94TiGt0QbAYetckvtjCxIREVlNtxvpzjvv7PeJFKWRcufPn++3a+qu0ebn54e5c+f227XJddiCREREJklLm+jSTZBcMct0TEyMVYv7Opq0RptCocDu3bv7/frU/5ggERGRSaYSJHfg6mkB/P395S43XSzUHlyYIBERkUkJCQkAbs+BJHFkAmBuXiR3J3W5GbYkScP+aXBggmQDzoNERJ5k6NChyM7ONtla4ggjRoww2jZ27FinXMvRBEFAQEAAioqK2OU2SDFBsgHnQSIiT+Pv7683cs2RLUimpgwYaMPkFQqF0cg+GhyYIBEREREZYIJERERWu+OOO+Dj44MxY8b06fm6rS2mJpjUNWzYsD5dw5VYqD14MEEiIiKrBQUFYdq0aWZnxrZFb6PRhgwZYvc1+oNSqURycjIAFmoPJkyQiIjIJv1VcxMREYHY2Nh+uZY9pFFtko6ODrYiDQJMkIiIyC0JgoCxY8cOuCLoRYsWsattEGCCREREbmOgJUMSw241afFaGriYIBEREdkpNDTUYecSRRHt7e1sgXIxJkhERNRvvLy8bH6OqTXfJk2ahNGjR/f63MDAQJuv1xcKhcLuSSOlxCg/Px8LFixAfn4+tFqtA6MkW7h2QRsiIvIo4eHhCAsLQ0hIiNXPSUtLQ2Vlpd7M2yEhIQgJCUFHRweqqqrMPjcgIAAqlcqumK1lz6SRoigiPz8fZWVl8raysjLMnTsXX331Fbq6uqBUKgdsF+RAxATJBoWFhSgsLIRGo3F1KEREA5JCoUBGRoZNzwkICEBaWprJfaNGjTJKkBQKhVu0vHR0dPSa1EhxdnZ26iVHunJycgAAqamp2LRpE5OkfsIuNhtwqREiIvfX2/xK/aW30WxarRZz587F3Llz0d7e3uv5pMJv1if1DyZIRETkNgZb64iU1JgqvG5ubpZ/f/jhh606n1SfxGkEnI8JEhERuQ2pqNrHx6fP51AqlfD19TVaaLc/KJVKpKam6m3Lz8+3KbHZuXMnUlJSAAApKSnYuXOnvK+yshIApxHoD+7RDkkAgO7ubly6dKlPz1Wr1Q6Ohoio/3l5eWHmzJl2JTaCIODOO++EIAg4f/68A6Oz7tqbNm1CR0cH8vPzUVlZKSc1wL8SG39/f4vneOedd+QaJiZCrsEEyY20tLTIfzXYoy/DaImI3IUjPsMUitsdJK7ohhIEAf7+/njnnXewYMECu85BrsMuNjfiiA+FzMxMJCUlOSAaIiJyBqkmiTVE7o0tSG4kNDQUbW1tdp0jICBg0BU5EhHZwt0/AxctWoSUlBS9rrPIyEg0NDS4MCoyxATJjQiC0G+zvhIRkevoznkUHx+Pt99+2+qRbBJr5lmivmMXGxEReZywsDBXhyDbunWrxSRHd2RccnKyvL23eZbIPmxBIiIijzNu3DgcO3asX685cuRIXL582eQ+3cVuDRe+1R0ZB0Cv8NuaUXHUN0yQiIjI4/j5+SE5ORm1tbV2135a691330VTUxMeeeQRo33SYrfS74akUW3WzLhNjsEuNiIi8gjh4eF6j+Pj45GQkNCvMSiVSrP7FAqFyeSIXMMj/yWampqQlZWFjIwMpKam4v3333d1SERE5CDm6nlGjx4ttxz1B93aodTUVJPJkbnttmANknN4ZBdbcHAwDh48iICAAKhUKqSmpmLRokWIiIhwdWhEROQk/v7+mDp1ar9dT7d2yNRos48//hgxMTE2jUKTkq7S0lJ52/3334+ioiK2PjmYR95NLy8vBAQEAAA6Ozs5YRcR0QBmaUSaqz/bpdohU0lQX4boS0nXZ599pre9qanJnjDJBLdMkA4ePIiFCxciLi4OgiBg165dRscUFhYiMTERSqUS2dnZOHnypE3XaGpqQnp6OuLj4/H8888jMjLSQdETEVF/Sk9Px/Tp010dhlUsjVazliAICAsL0+sqfOGFF1yeDA42bpkgqVQqpKeno7Cw0OT+HTt2oKCgAK+88grOnDmD9PR0zJs3D/X19fIxUn2R4c/169cB3P6L49y5c7hy5Qo+/vhj1NXV9ctrIyIixxIEAT4+PnJL0rBhw1wbkAXSaDV7u8QEQcCWLVsQHx8PAKisrOSitg7mljVI8+fPx/z5883u37BhA1auXInly5cDADZv3ozdu3dj27ZteOmllwAAJSUlVl0rOjoa6enpOHToEBYvXmzymM7OTnR2dsqPW1parHwlRETUXyZMmIDOzk63nxPIUbVCCoUCW7du7fOCuGSZW7YgWdLV1YXi4mLk5OTI2xQKBXJycqye9Kuurg6tra0AgObmZhw8eBBjx441e/y6desQGhoq//T3sFAiIuqdQqFw++SIBo4BlyA1NDRAo9EgOjpab3t0dDRqa2utOscPP/yAmTNnIj09HTNnzkR+fj7S0tLMHr927Vo0NzfLP1VVVXa9BiIicg+DqW5HFEVotVq9x+3t7Uav0dx20ueWXWzONmXKFKu74IDbM676+fk5LyAiIiI73X///QCAoqIiCIKA/Px8lJWVITU1FZs2bYIgCBBF0eR2MjbgWpAiIyPh5eVlVFRdV1eHmJgYp167sLAQ48ePx+TJk516HSIior5qbm5GR0cHysrKAPxrvbb29naT28m0AZcg+fr6IjMzU16zBgC0Wi2KioqcPgFYXl4eysvLcerUKadeh4iIyJHy8/OxYMECrF69Wm/76tWr2dVmhlt2sbW1taGiokJ+fOXKFZSUlCA8PBzDhw9HQUEBcnNzkZWVhSlTpmDjxo1QqVTyqDYiIiJPZSrhqaysBAC971bpcUdHB4vbTXDLBOn06dOYM2eO/LigoAAAkJubi+3bt2Pp0qW4ceMGXn75ZdTW1iIjIwN79+41Ktx2tMLCQhQWFkKj0Tj1OkRE5Bie2DqyZs0abN261dVhDHhumSDNnj271zf1qlWrsGrVqn6K6La8vDzk5eWhpaWlzzOgEhEROVN1dTVrixxgwNUgERERETkbEyQiIiIiAzYnSO3t7bh27ZrRdmnY4GDGYf5ERDSQffbZZygqKsLu3btdHYrbsylB+vTTTzF69Gjcf//9mDBhAk6cOCHve+yxxxwenLvhMH8iInInSqUSqampAIDk5GR5u7k6XqVSCYVCwckhrWBTkfYbb7yB4uJiREdHo7i4GLm5ufjFL36BRx55xCNHChAREbmSIAjYtGmTXJQtLVy7Zs0aV4Y1KNiUIHV3d8tD6TMzM3Hw4EE89NBDqKioYDZKRETkAoIgwN/fH6IoIjk5GRUVFaiurpb3R0ZGoqGhAQA455ENbOpii4qKwjfffCM/Dg8Px5dffonvvvtOb/tgxRokIqKBxZN6N6TWJENvv/22C6IZ+GxKkP74xz8iKipKb5uvry8++eQTfP311w4NzB2xBomIiAaS5ORkKJVKV4cxINnUxRYfH2923/Tp0+0OhoiIiBxHtz6JbOOQmbS7u7tRW1sLtVqNoUOHIjw83BGnJSIiInKJPk8U2draivfeew933XUXQkJCkJiYiHHjxmHo0KEYMWIEVq5cya4oIiIiN7d69WqPqtWyVp8SpA0bNiAxMREffPABcnJysGvXLpSUlODixYs4duwYXnnlFfT09ODee+/Ffffdh0uXLjk6bpdgkTYREQ0GSqVSnjepoqKC3XAm9KmL7dSpUzh48CBSUlJM7p8yZQqeeOIJvPfee9i+fTsOHTqE0aNH2xWoO+BitUREg4untpxII96keZPIWJ8SpE8++cSq45RKJZ5++um+XIKIiIjIZRxSpF1UVISioiLU19dDq9Xq7du2bZsjLkFERET9QBRFdHR0QKlUevQk0HYnSK+99hpef/11ZGVlITY21qNvJhERuRdP7ULrK1EUkZ+fj7KyMqSmpmLTpk0e+71ud4K0efNmbN++3SMWqyUiosElJCTE1SE4nW7NrLn6WanFqKOjA2VlZQCA0tJSj16apM/D/CVdXV2YNm2aI2JxexzFRkQ0uAQGBiIzM9PVYTiVQqGQS2EUCtNf+4sWLcLq1av7OTL3ZneC9LOf/Qwff/yxI2Jxe1xqhIho8AkODnZ1CE6nUCjMJkcSqcWIbrO7i62jowNbt27FV199hQkTJsDHx0dv/4YNG+y9BBEREVG/sjtB+uabb5CRkQHgdvapy1MLu4iIiNydUqlEamqq0Xc33WZ3grR//35HxEFERORwvr6+rg7BbUmTRTY1NWHRokWuDsftOGQeJCIiInc0cuRIdHd3IzY21tWhuCVBEKBUKuXHnBbhXxyWIJWXl+Pq1avo6urS2/7jH//YUZcgIiKyia+vL9LS0lwdxoCxZs0aV4fgNuxOkC5fvoyHHnoI3377LQRBkLNPqf5Io9HYewkiIiLqB9XV1Wb3STNsA/CIWbbtHua/Zs0aJCUlob6+HgEBASgrK8PBgweRlZWFAwcOOCBE98F5kIiIyJ1JhdcAkJqaqtd9Zg9phu0FCxZgwYIFWL169aDvjrO7BenYsWP45z//icjISHmehRkzZmDdunVYvXo1zp4964g43UJeXh7y8vLQ0tJidjZSIiIiV5EKrx29lpruDNuAZ8yybXcLkkajkSfZioyMxPXr1wEAI0aMwIULF+w9PREREdlAEAT4+/sP+i4wZ7O7BSk1NRXnzp1DUlISsrOzsX79evj6+mLr1q0YOXKkI2IkIiIi6ld2J0j/63/9L6hUKgDAa6+9hoULF2LmzJmIiIjAjh077A6QiIiIXEer1Q76eiNT7E6Q5s2bJ/8+evRonD9/Ho2NjRgyZAib94iIaEBITk5GRUUFgoKC0NbW5upw3IYoipg7d66rw3AJu2uQAODQoUP46U9/iqlTp+LatWsIDw/H//2//xeHDx92xOmJiIicKj4+HtOnT0d8fLyrQ+l3SqUSycnJJvc1Nzf3czTuw+4EaefOnZg3bx78/f1x9uxZdHZ2Arh9U9988027AyQiIuoPhoutewpBELBlyxY5STKXLHkauxOkN954A5s3b8b777+v9+aaPn06zpw5Y+/piYiIyMkUCgW2bt2KPXv2YNOmTVY9Z7DPhWR3gnThwgXMmjXLaHtoaCiamprsPT0RERH1A2l6AGtVVFTIM2sPRnYnSDExMaioqDDafvjwYQ7zJyIiogHJ7gRp5cqVWLNmDU6cOAFBEHD9+nX86U9/wnPPPYdnnnnGETESERER9Su7h/m/9NJL0Gq1mDt3LtRqNWbNmgU/Pz8899xzyM/Pd0SMbqOwsBCFhYVcgJeIiGiQsztBEgQBv/zlL/H888+joqICbW1tGD9+PIKCghwRn1vhWmxERESewe4ESeLr64vx48c76nRERERELuOQBKmjowPffPMN6uvrodVq9fb9+Mc/dsQliIiIiPqN3QnS3r178fjjj6OhocFonyAIrNchIiKiAcfuUWz5+flYsmQJampqoNVq9X6YHBEREdFAZHeCVFdXh4KCAkRHRzsiHiIiIiKXsztBWrx4MQ4cOOCAUIiIiIjcg901SO+++y6WLFmCQ4cOIS0tzWixv9WrV9t7CSIiIqJ+ZXeC9Mknn2Dfvn1QKpU4cOAABEGQ9wmCwASJiIiIBhy7E6Rf/vKXeO211/DSSy9BobC7x46IiIjI5ezOaLq6urB06VImR0RERDRo2J3V5ObmYseOHY6IhYiIiNxIR0eHq0NwGbu72DQaDdavX48vvvgCEyZMMCrS3rBhg72XcBq1Wo1x48ZhyZIleOutt1wdDhERkVt54oknXB2Cy9idIH377beYOHEiAKC0tFRvn27Btjv69a9/jTvvvNPVYRAREZGbsTtB2r9/vyPi6HeXLl3C+fPnsXDhQqPEjoiIiDxbn2uQXn75ZRQXFzsyFtnBgwexcOFCxMXFQRAE7Nq1y+iYwsJCJCYmQqlUIjs7GydPnrTpGs899xzWrVvnoIiJiIhoMOlzglRdXY358+cjPj4ezzzzDP7xj3+gq6vLIUGpVCqkp6ejsLDQ5P4dO3agoKAAr7zyCs6cOYP09HTMmzcP9fX18jEZGRlITU01+rl+/Tr+8pe/YMyYMRgzZoxD4iUiIqLBpc9dbNu2bYNWq8WRI0fwt7/9Dc8++yxqampwzz334IEHHsCPfvQjhIeH9+nc8+fPx/z5883u37BhA1auXInly5cDADZv3ozdu3dj27ZteOmllwAAJSUlZp9//Phx/L//9//wX//1X2hra0N3dzdCQkLw8ssvmzy+s7MTnZ2d8uOWlpY+vCoiIiIaKOwa5q9QKDBz5kysX78eFy5cwIkTJ5CdnY0tW7YgLi4Os2bNwltvvYVr1645Kl50dXWhuLgYOTk5enHk5OTg2LFjVp1j3bp1qKqqwvfff4+33noLK1euNJscSceHhobKPwkJCXa/DiIiInfkyUP7dTl0dsdx48bhhRdewJEjR1BVVYXc3FwcOnQIn3zyicOu0dDQAI1Gg+joaL3t0dHRqK2tddh1dK1duxbNzc3yT1VVlVOuQ0RERO7B7lFs7e3tEEURAQEBAIAffvgBn3/+OcaPH48VK1ZgxYoVdgfpTMuWLev1GD8/P/j5+Tk/GCIiInILdrcgPfDAA/joo48AAE1NTZgyZQp+97vf4YEHHsB7771nd4CGIiMj4eXlhbq6Or3tdXV1iImJcfj1dBUWFmL8+PGYPHmyU69DREQ0kGm1Wmi1WleHYRe7E6QzZ85g5syZAIBPP/0UMTEx+OGHH/DRRx9h06ZNdgdoyNfXF5mZmSgqKpK3abVaFBUVYerUqQ6/nq68vDyUl5fj1KlTTr0OERHRQKXVajF37lzMnTt3QCdJdnexqdVqBAcHAwD27duHRYsWQaFQ4M4778QPP/zQp3O2tbWhoqJCfnzlyhWUlJQgPDwcw4cPR0FBAXJzc5GVlYUpU6Zg48aNUKlU8qg2IiIico3m5ma934cMGeLCaPrO7gQpOTkZu3btwkMPPYQvvvgCP//5zwEA9fX1CAkJ6dM5T58+jTlz5siPCwoKANxeGHf79u1YunQpbty4gZdffhm1tbXIyMjA3r17jQq3Ha2wsBCFhYXQaDROvQ4RERG5lt0J0ssvv4xHHnkEP//5z3H33XfL3Vz79u2T12iz1ezZsyGKosVjVq1ahVWrVvXp/H2Vl5eHvLw8tLS0IDQ0tF+vTURERP3H7gRp8eLFmDFjBmpqapCeni5vnzt3Lh566CF7T09ERETU7+xOkAAgLCwMV69exZ49e/QKsmpra3HHHXc44hJugV1sREREnsHuBGnv3r147LHHcPPmTaN9giAMqmSCXWxERESewe5h/vn5+fjJT36Cmpoaed4D6WcwJUdERETkOexOkOrq6lBQUOD0EWRERERE/cXuBGnx4sU4cOCAA0IhIiIicg921yC9++67WLJkCQ4dOoS0tDT4+Pjo7V+9erW9l3AbLNImIiLyDHYnSJ988gn27dsHpVKJAwcOQBAEeZ8gCIMqQWKRNhERkWewO0H65S9/iddeew0vvfQSFAq7e+yIiIiIXM7ujKarqwtLly5lckRERESDht1ZTW5uLnbs2OGIWIiIiIjcgt1dbBqNBuvXr8cXX3yBCRMmGBVpb9iwwd5LuA0WaRMREXkGuxOkb7/9Vl6UtrS0VG+fbsH2YMAibSIiIs9gd4K0f/9+R8RBRERE5DbsqkHq7u7G3LlzcenSJUfFQ0RERORydiVIPj4++OabbxwVCxEREbmRyMhIV4fgMnaPYvvpT3+KP/zhD46IhYiIiNzI22+/7eoQXMbuGqSenh5s27YNX331FTIzMxEYGKi3n6PYiIiIBqbBNtjKFnYnSKWlpZg0aRIA4OLFi3r7BtuN5Sg2IiIiz8BRbEREREQG+lSDdPXqVZuOv3btWl8uQ0REROQSfUqQJk+ejKeeegqnTp0ye0xzczPef/99pKamYufOnX0OkIiIiKi/9amLrby8HL/+9a9xzz33QKlUIjMzE3FxcVAqlbh16xbKy8tRVlaGSZMmYf369ViwYIGj4yYiIiJymj61IEVERGDDhg2oqanBu+++i9GjR6OhoUGeMPLRRx9FcXExjh07xuSIiIiIBhy7irT9/f2xePFiLF682FHxEBEREbmc3RNFepLCwkKMHz8ekydPdnUoRERE5ERMkGyQl5eH8vJyi8XpRERENPAxQSIiIiIywASJiIiIyAATJCIiIiIDTJCIiIiIDDBBIiIiIjLABImIiIisEhkZ6eoQ+g0TJCIiIrLK22+/7eoQ+g0TJCIiIrKKIAiuDqHfMEEiIiIiMsAEyQZcaoSIiMgzMEGyAZcaISIi8gxMkIiIiIgMMEEiIiIiMsAEiYiIiMgAEyQiIiIiA0yQiIiIiAwwQSIiIiKT/Pz8kJqaCgBITU2Fn5+fiyPqP96uDoCIiIjckyAI2LRpEzo6OqBUKtHU1OTqkPoNEyQiIiIySxAE+Pv7uzqMfscuNiIiIiIDTJCIiIiIDDBBIiIiIjLgsTVIiYmJCAkJgUKhwJAhQ7B//35Xh0RERERuwmMTJAA4evQogoKCXB0GERERuRl2sREREREZcMsE6eDBg1i4cCHi4uIgCAJ27dpldExhYSESExOhVCqRnZ2NkydP2nQNQRBw1113YfLkyfjTn/7koMiJiIhoMHDLLjaVSoX09HQ88cQTWLRokdH+HTt2oKCgAJs3b0Z2djY2btyIefPm4cKFC4iKigIAZGRkoKenx+i5+/btQ1xcHA4fPoxhw4ahpqYGOTk5SEtLw4QJE5z+2oiIiMj9uWWCNH/+fMyfP9/s/g0bNmDlypVYvnw5AGDz5s3YvXs3tm3bhpdeegkAUFJSYvEaw4YNAwDExsZiwYIFOHPmjNkEqbOzE52dnfLjlpYWW14OERERDTBu2cVmSVdXF4qLi5GTkyNvUygUyMnJwbFjx6w6h0qlQmtrKwCgra0N//znP5GSkmL2+HXr1iE0NFT+SUhIsO9FEBERkVsbcAlSQ0MDNBoNoqOj9bZHR0ejtrbWqnPU1dVhxowZSE9Px5133onHH38ckydPNnv82rVr0dzcLP9UVVXZ9RqIiIjIvbllF5uzjRw5EufOnbP6eD8/P49awZiIiMjTDbgWpMjISHh5eaGurk5ve11dHWJiYpx67cLCQowfP95iaxMRERENfAMuQfL19UVmZiaKiorkbVqtFkVFRZg6dapTr52Xl4fy8nKcOnXKqdchIiIi13LLLra2tjZUVFTIj69cuYKSkhKEh4dj+PDhKCgoQG5uLrKysjBlyhRs3LgRKpVKHtVGREREZA+3TJBOnz6NOXPmyI8LCgoAALm5udi+fTuWLl2KGzdu4OWXX0ZtbS0yMjKwd+9eo8JtRyssLERhYSE0Go1Tr0NERESu5ZYJ0uzZsyGKosVjVq1ahVWrVvVTRLfl5eUhLy8PLS0tCA0N7ddrExERUf8ZcDVIRERERM7GBImIiIjIABMkG3CYPxERkWdggmQDDvMnIiLyDEyQiIiIiAwwQSIiIiIywATJBqxBIiIi8gxMkGzAGiQiIiLPwASJiIiIyAATJCIiIiIDTJCIiIiIDDBBsgGLtImIiDwDEyQbsEibiIjIMzBBIiIiIjLABImIiIjIABMkIiIiIgNMkIiIiIgMMEGyAUexEREReQYmSDbgKDYiIiLPwASJiIiIyAATJCIiIiIDTJCIiIiIDDBBIiIiIjLABImIiIjIABMkIiKi/yaKoqtDIDfBBMkGnAeJiIjIMzBBsgHnQSIiGtwEQXB1COQmmCARERERGWCCRERERGSACRIRERGRASZIRERERAaYIBEREREZYIJEREREZIAJEhEREZEBJkhEREREBpggERERERlggmQDLjVCRETkGZgg2YBLjRAREXkGJkhEREREBpggERERERlggkRERERkgAkSERERkQEmSEREREQGmCARERH9N1EUXR0CuQkmSEREREQGmCARERERGWCCRERERGSACRIRERGRAW9XBzCYaTQadHd3uzoMGqB8fHzg5eXl6jCIiDySxyZIV65cwRNPPIG6ujp4eXnh+PHjCAwMdMi5RVFEbW0tmpqaHHI+8lxhYWGIiYmBIAiuDoWIyKN4bIK0bNkyvPHGG5g5cyYaGxvh5+fnsHNLyVFUVBQCAgL45UY2E0URarUa9fX1AIDY2FgXR0RE5Fk8MkEqKyuDj48PZs6cCQAIDw932Lk1Go2cHEVERDjsvOR5/P39AQD19fWIiopidxsRUT9yyyLtgwcPYuHChYiLi4MgCNi1a5fRMYWFhUhMTIRSqUR2djZOnjxp9fkvXbqEoKAgLFy4EJMmTcKbb77psNilmqOAgACHnZM8l/Q+Yi0bEVH/cssWJJVKhfT0dDzxxBNYtGiR0f4dO3agoKAAmzdvRnZ2NjZu3Ih58+bhwoULiIqKAgBkZGSgp6fH6Ln79u1DT08PDh06hJKSEkRFReG+++7D5MmTcc899zjsNbBbjRyB7yMiItdwywRp/vz5mD9/vtn9GzZswMqVK7F8+XIAwObNm7F7925s27YNL730EgCgpKTE7POHDRuGrKwsJCQkAAAWLFiAkpISswlSZ2cnOjs75cctLS22viQiIiIaQNyyi82Srq4uFBcXIycnR96mUCiQk5ODY8eOWXWOyZMno76+Hrdu3YJWq8XBgwcxbtw4s8evW7cOoaGh8o+UWBEREdHgNOASpIaGBmg0GkRHR+ttj46ORm1trVXn8Pb2xptvvolZs2ZhwoQJGD16NH70ox+ZPX7t2rVobm6Wf6qqqux6De5q2bJlEAQBgiDA19cXycnJeP3119HT04MDBw7I+xQKBUJDQzFx4kS88MILqKmp0TuPWq3G2rVrMWrUKCiVSgwdOhR33XUX/vKXv7jolREREdnGLbvY+kNv3Xi6/Pz8HDoNgDu777778MEHH6CzsxN79uxBXl4efHx8MHXqVADAhQsXEBISgpaWFpw5cwbr16/HH/7wBxw4cABpaWkAgKeffhonTpzAO++8g/Hjx+PmzZs4evQobt686cqXRkREZLUBlyBFRkbCy8sLdXV1etvr6uoQExPj1GsXFhaisLAQGo3GqddxJT8/P/k+PvPMM/j888/x17/+VU6QoqKi5MkLx4wZgwceeAATJ07EM888g8OHDwMA/vrXv+Ltt9/GggULAACJiYnIzMx0zQsiIiLqgwHXxebr64vMzEwUFRXJ27RaLYqKiuQvcWfJy8tDeXk5Tp06ZdPzRFGERqNxyY8oina9Zn9/f3R1dVnc//TTT+PIkSPypIYxMTHYs2cPWltb7bo2ERGRq7hlC1JbWxsqKirkx1euXEFJSQnCw8MxfPhwFBQUIDc3F1lZWZgyZQo2btwIlUolj2pzN1qtFocOHXLJtWfOnNmnCQZFUURRURG++OIL5OfnWzz2jjvuAAB8//33iIqKwtatW/Hoo48iIiIC6enpmDFjBhYvXozp06f36TUQERH1N7dsQTp9+jQmTpyIiRMnAgAKCgowceJEvPzyywCApUuX4q233sLLL7+MjIwMlJSUYO/evUaF245WWFiI8ePHY/LkyU69jiv9/e9/R1BQEJRKJebPn4+lS5fi1VdftfgcqZVKmrNn1qxZuHz5MoqKirB48WKUlZVh5syZ+NWvfuXs8ImIiBzCLVuQZs+e3WvX0KpVq7Bq1ap+iui2vLw85OXloaWlBaGhoVY/T6FQyMua9DeFwrYceM6cOXjvvffg6+uLuLg4eHv3/hb57rvvANyuNZJIS7nMnDkTL774It544w28/vrrePHFF+Hr62tTTERERP3NLROkwUYQhAGzjlZgYCCSk5OtPr69vR1bt27FrFmzMHToULPHjR8/Hj09Pejo6GCCREREbo8JEtmkvr4eHR0daG1tRXFxMdavX4+GhgZ89tln8jGzZ8/Gv//7vyMrKwsREREoLy/HL37xC8yZMwchISEujJ6IiMg6TJBs4AnD/HszduxYCIKAoKAgjBw5Evfeey8KCgr0pliYN28ePvzwQ/ziF7+AWq1GXFwcfvSjH8k1ZERERO6OCZIN+lqDNFBs377d7D5r6sIka9euxdq1ax0UFRERUf9zy1FsRERERK7EBImIiIjIABMkG3jCPEhERETEBMkmfV1qhIiIiAYWJkhEREREBpggERERERlggkRERERkgAmSDVikTURE5BmYINmARdpERESegQkSOdSBAwcgCAKamprMHrN9+3aEhYX1W0yWvPrqq8jIyHB1GERE5GaYIJFs2bJlEAQBgiDAx8cHSUlJeOGFF9DR0eHQ6yxduhQXL1506Dmd5fvvv5fviSAIiIiIwL333ouzZ8/Kx8yePVve7+fnh2HDhmHhwoV6C/hKvv76a9x9990IDw9HQEAARo8ejdzcXHR1dfXnyyIiol4wQSI99913H2pqanD58mX8/ve/x5YtW/DKK6849Br+/v6Iiopy6Dmd7auvvkJNTQ2++OILtLW1Yf78+XqtZCtXrkRNTQ0qKyuxc+dOjB8/Hv/2b/+GJ598Uj6mvLwc9913H7KysnDw4EF8++23eOedd+Dr6+vRCyATEbkjJkikx8/PDzExMUhISMCDDz6InJwcfPnll/J+rVaLdevWISkpCf7+/khPT8enn35qdJ4jR45gwoQJUCqVuPPOO1FaWirvM+xik7q5/vjHPyIxMRGhoaH4t3/7N7S2tsrHzJ49G6tXr8YLL7yA8PBwxMTE4NVXX9W7ZlNTE372s59h6NChCAkJwd13341z587pHfOb3/wG0dHRCA4OxooVK6xuHYuIiEBMTAyysrLw1ltvoa6uDidOnJD3BwQEICYmBvHx8bjzzjvx29/+Flu2bMH777+Pr776CgCwb98+xMTEYP369UhNTcWoUaNw33334f3334e/v79VcRARUf9ggmSDvo5iE0URKpXKJT+iKPb59ZaWluLo0aPw9fWVt61btw4fffQRNm/ejLKyMvz85z/HT3/6U3z99dd6z33++efxu9/9DqdOncLQoUOxcOFCdHd3m71WZWUldu3ahb///e/4+9//jq+//hq/+c1v9I758MMPERgYiBMnTmD9+vV4/fXX9ZK3JUuWoL6+Hv/4xz9QXFyMSZMmYe7cuWhsbAQA/PnPf8arr76KN998E6dPn0ZsbCz+8z//0+b7IiUzvXWL5ebmYsiQIXJXW0xMDGpqanDw4EGbr0lERP3L29UBDCR5eXnIy8tDS0sLQkNDrX6eWq1GUFCQEyMzr62tDYGBgVYf//e//x1BQUHo6elBZ2cnFAoF3n33XQBAZ2cn3nzzTXz11VeYOnUqAGDkyJE4fPgwtmzZgrvuuks+zyuvvIJ77rkHwO3EJj4+Hp9//jl+8pOfmLyuVqvF9u3bERwcDAB47LHHUFRUhF//+tfyMRMmTJC7+0aPHo13330XRUVFuOeee3D48GGcPHkS9fX18PPzAwC89dZb2LVrFz799FM8+eST2LhxI1asWIEVK1YAAN544w189dVXNtVYNTU14Ve/+hWCgoIwZcoUi8cqFAqMGTMG33//PYDbCdwXX3yBu+66CzExMbjzzjsxd+5cPP744wgJCbE6BiIicj62IJGeOXPmoKSkBCdOnEBubi6WL1+Ohx9+GABQUVEBtVqNe+65B0FBQfLPRx99hMrKSr3zSAkUAISHh2Ps2LH47rvvzF43MTFRTo4AIDY2FvX19XrHTJgwQe+x7jHnzp1DW1sbIiIi9GK7cuWKHNt3332H7Oxss3FaMm3aNAQFBWHIkCE4d+4cduzYgejo6F6fJ4oiBEEAAHh5eeGDDz5AdXU11q9fj2HDhuHNN99ESkoKampqrIqDiIj6B1uQ+kFAQADa2tpcdm1bBAYGIjk5GQCwbds2pKen4w9/+ANWrFghv4bdu3dj2LBhes+TWm36ysfHR++xIAjQarVWH9PW1obY2FgcOHDA6NyOmFJgx44dGD9+PCIiIqw+n0ajwaVLl4y6ZIcNG4bHHnsMjz32GH71q19hzJgx2Lx5M1577TW74yQiIsdggtQPBEGwqZvLXSgUCvziF79AQUEBHnnkEYwfPx5+fn64evWqXneaKcePH8fw4cMBALdu3cLFixcxbtw4p8U6adIk1NbWwtvbG4mJiSaPGTduHE6cOIHHH39cL05rJCQkYNSoUTbF9OGHH+LWrVtyC5wpQ4YMQWxsLFQqlU3nJiIi52KCRBYtWbIEzz//PAoLC/Hcc8/hueeew89//nNotVrMmDEDzc3NOHLkCEJCQpCbmys/7/XXX0dERASio6Pxy1/+EpGRkXjwwQedFmdOTg6mTp2KBx98EOvXr8eYMWNw/fp17N69Gw899BCysrKwZs0aLFu2DFlZWZg+fTr+9Kc/oaysDCNHjrT7+mq1GrW1tejp6UF1dTU+//xz/P73v8czzzyDOXPmAAC2bNmCkpISPPTQQxg1ahQ6Ojrw0UcfoaysDO+8847dMRARkeMwQSKLvL29sWrVKqxfvx7PPPMMfvWrX2Ho0KFYt24dLl++jLCwMEyaNAm/+MUv9J73m9/8BmvWrMGlS5eQkZGBv/3tb3qj4RxNEATs2bMHv/zlL7F8+XLcuHEDMTExmDVrllwrtHTpUlRWVsqTXz788MN45pln8MUXX9h9/ffffx/vv/8+fH19ERERgczMTOzYsQMPPfSQfMyUKVNw+PBhPP3007h+/TqCgoKQkpKCXbt29doiR0RE/UsQ7RkH7qGkUWzNzc1Go486Ojpw5coVJCUlQalUuihCGiz4fiLqXzU1Nbhw4YKrw3CpW7duYdGiRQCAzz77DEOGDDG5DwD27NljNI+bpefbavbs2X1+rimWvr8NcRSbDfo6DxIRERENLEyQbJCXl4fy8nKcOnXK1aEQERGREzFBIiIiIjLABImIiIjIABMkJ2HtOzkC30dERK7BBMnBpNme1Wq1iyOhwUB6HxnOIk5ERM7FeZAczMvLC2FhYfIaYQEBAfJaXETWEkURarUa9fX1CAsLg5eXl6tDIiLyKEyQnCAmJgYAjBZbJbJVWFiY/H4iIqL+wwTJCQRBQGxsLKKiotDd3e3qcGiA8vHxYcsREZGLMEFyIi8vL37BERERDUAs0iYiIiIywASJiIiIyAATJBtwLTYiIiLPwBokG+Tl5SEvLw/Nzc0ICwtDS0uLq0MiIiIHam1thUqlcnUYLqU7j59arYavr6/JfdJjrVZr9fNt5ejvWel81kzCK4icqtdm1dXVSEhIcHUYRERE1AdVVVWIj4+3eAwTpD7QarW4fv06goODbZoEcvLkyTh16pRDjrW039w+U9t729bS0oKEhARUVVUhJCTEqtjtYcs9sue51hzrrHvM+9v7MY66v0D/3mN77q+tz/fEzwh3ur+9HWPtvTS1nZ8RvR/T1/ewKIrIzMzExYsXoVBYrjJiF1sfKBSKXjNPU7y8vKx+g/d2rKX95vaZ2m7ttpCQkH75n9OWe2TPc6051ln3mPe392McfX+B/rnH9txfW5/viZ8R7nR/ezvG2vtmajs/I3o/xp73sK+vb6/JEcAi7X6Vl5fnsGMt7Te3z9R2a7f1F3uu7cj729sx9txj3t/ej/HE+2vr8z3xM8Kd7m9vx9hy3wbLe9jV99fc9r7eX3axkUUtLS0IDQ1Fc3Nzv/z14ml4f52P99i5eH+di/fXddiCRBb5+fnhlVdegZ+fn6tDGZR4f52P99i5eH+di/fXddiCRERERGSALUhEREREBpggERERERlggkRERERkgAkSERERkQEmSEREREQGmCCRQ1RVVWH27NkYP348JkyYgP/6r/9ydUiD0kMPPYQhQ4Zg8eLFrg5lUPj73/+OsWPHYvTo0fg//+f/uDqcQYfvV+fi565zcZg/OURNTQ3q6uqQkZGB2tpaea2bwMBAV4c2qBw4cACtra348MMP8emnn7o6nAGtp6cH48ePx/79+xEaGorMzEwcPXoUERERrg5t0OD71bn4uetcbEEih4iNjUVGRgYAICYmBpGRkWhsbHRtUIPQ7NmzERwc7OowBoWTJ08iJSUFw4YNQ1BQEObPn499+/a5OqxBhe9X5+LnrnMxQfIQBw8exMKFCxEXFwdBELBr1y6jYwoLC5GYmAilUons7GycPHmyT9cqLi6GRqNBQkKCnVEPLP15j8n++339+nUMGzZMfjxs2DBcu3atP0IfEPh+dj5H3mNP/dx1JiZIHkKlUiE9PR2FhYUm9+/YsQMFBQV45ZVXcObMGaSnp2PevHmor6+Xj8nIyEBqaqrRz/Xr1+VjGhsb8fjjj2Pr1q1Of03upr/uMd3miPtN5vH+Op+j7rEnf+46lUgeB4D4+eef622bMmWKmJeXJz/WaDRiXFycuG7dOqvP29HRIc6cOVP86KOPHBXqgOWseyyKorh//37x4YcfdkSYg0Zf7veRI0fEBx98UN6/Zs0a8U9/+lO/xDvQ2PN+5vvVOn29x/zcdR62IBG6urpQXFyMnJwceZtCoUBOTg6OHTtm1TlEUcSyZctw991347HHHnNWqAOWI+4xWc+a+z1lyhSUlpbi2rVraGtrwz/+8Q/MmzfPVSEPKHw/O58195ifu87FBInQ0NAAjUaD6Ohove3R0dGora216hxHjhzBjh07sGvXLmRkZCAjIwPffvutM8IdkBxxjwEgJycHS5YswZ49exAfH88vIzOsud/e3t743e9+hzlz5iAjIwP/83/+T45gs5K172e+X/vOmnvMz13n8nZ1ADQ4zJgxA1qt1tVhDHpfffWVq0MYVH784x/jxz/+savDGLT4fnUufu46F1uQCJGRkfDy8kJdXZ3e9rq6OsTExLgoqsGF97h/8X47F++v8/Eeux4TJIKvry8yMzNRVFQkb9NqtSgqKsLUqVNdGNngwXvcv3i/nYv31/l4j12PXWweoq2tDRUVFfLjK1euoKSkBOHh4Rg+fDgKCgqQm5uLrKwsTJkyBRs3boRKpcLy5ctdGPXAwnvcv3i/nYv31/l4j92cq4fRUf/Yv3+/CMDoJzc3Vz7mnXfeEYcPHy76+vqKU6ZMEY8fP+66gAcg3uP+xfvtXLy/zsd77N64FhsRERGRAdYgERERERlggkRERERkgAkSERERkQEmSEREREQGmCARERERGWCCRERERGSACRIRERGRASZIRERERAaYIBERuUhXVxeSk5Nx9OhRh5537969yMjI4ErvRHZggkREDrFs2TIIgmD0o7vWFOnbvHkzkpKSMG3aNHmbIAjYtWuX0bHLli3Dgw8+aNV577vvPvj4+OBPf/qTgyIl8jxMkIjIYe677z7U1NTo/SQlJRkd19XV5YLo3Isoinj33XexYsUKp5x/2bJl2LRpk1POTeQJmCARkcP4+fkhJiZG78fLywuzZ8/GqlWr8OyzzyIyMhLz5s0DAJSWlmL+/PkICgpCdHQ0HnvsMTQ0NMjnU6lUePzxxxEUFITY2Fj87ne/w+zZs/Hss8/Kx5hqcQkLC8P27dvlx1VVVfjJT36CsLAwhIeH44EHHsD3338v75daZ9566y3ExsYiIiICeXl56O7ulo/p7OzEiy++iISEBPj5+SE5ORl/+MMfIIoikpOT8dZbb+nFUFJSYrEFrbi4GJWVlbj//vttvMvA999/b7K1bvbs2fIxCxcuxOnTp1FZWWnz+YmICRIR9ZMPP/wQvr6+OHLkCDZv3oympibcfffdmDhxIk6fPo29e/eirq4OP/nJT+TnPP/88/j666/xl7/8Bfv27cOBAwdw5swZm67b3d2NefPmITg4GIcOHcKRI0cQFBSE++67T68la//+/aisrMT+/fvx4YcfYvv27XpJ1uOPP45PPvkEmzZtwnfffYctW7YgKCgIgiDgiSeewAcffKB33Q8++ACzZs1CcnKyybgOHTqEMWPGIDg42KbXAwAJCQl6rXRnz55FREQEZs2aJR8zfPhwREdH49ChQzafn4gAiEREDpCbmyt6eXmJgYGB8s/ixYtFURTFu+66S5w4caLe8b/61a/Ee++9V29bVVWVCEC8cOGC2NraKvr6+op//vOf5f03b94U/f39xTVr1sjbAIiff/653nlCQ0PFDz74QBRFUfzjH/8ojh07VtRqtfL+zs5O0d/fX/ziiy/k2EeMGCH29PTIxyxZskRcunSpKIqieOHCBRGA+OWXX5p87deuXRO9vLzEEydOiKIoil1dXWJkZKS4fft2s/drzZo14t133220HYCoVCr17mNgYKDo7e0tPvDAA0bHt7e3i9nZ2eKPfvQjUaPR6O2bOHGi+Oqrr5qNgYjM83ZtekZEg8mcOXPw3nvvyY8DAwPl3zMzM/WOPXfuHPbv34+goCCj81RWVqK9vR1dXV3Izs6Wt4eHh2Ps2LE2xXTu3DlUVFQYtdR0dHTodT+lpKTAy8tLfhwbG4tvv/0WwO3uMi8vL9x1110mrxEXF4f7778f27Ztw5QpU/C3v/0NnZ2dWLJkidm42tvboVQqTe77/e9/j5ycHL1tL774IjQajdGxTzzxBFpbW/Hll19CodDvFPD394darTYbAxGZxwSJiBwmMDDQbJeSbrIEAG1tbVi4cCF++9vfGh0bGxtr9eg3QRAgiqLeNt3aoba2NmRmZpoc0TV06FD5dx8fH6PzSsPk/f39e43jZz/7GR577DH8/ve/xwcffIClS5ciICDA7PGRkZFyAmYoJibG6D4GBwejqalJb9sbb7yBL774AidPnjTZVdfY2Kj3GonIekyQiMglJk2ahJ07dyIxMRHe3sYfRaNGjYKPjw9OnDiB4cOHAwBu3bqFixcv6rXkDB06FDU1NfLjS5cu6bWaTJo0CTt27EBUVBRCQkL6FGtaWhq0Wi2+/vpro5YdyYIFCxAYGIj33nsPe/fuxcGDBy2ec+LEiXjvvfcgiiIEQbA5pp07d+L111/HP/7xD4waNcpov9RCNnHiRJvPTUQs0iYiF8nLy0NjYyP+/d//HadOnUJlZSW++OILLF++HBqNBkFBQVixYgWef/55/POf/0RpaSmWLVtm1I109913491338XZs2dx+vRpPP3003qtQY8++igiIyPxwAMP4NChQ7hy5QoOHDiA1atXo7q62qpYExMTkZubiyeeeAK7du2Sz/HnP/9ZPsbLywvLli3D2rVrMXr0aEydOtXiOefMmYO2tjaUlZXZcNduKy0txeOPP44XX3wRKSkpqK2tRW1tLRobG+Vjjh8/Dj8/v17jICLTmCARkUvExcXhyJEj0Gg0uPfee5GWloZnn30WYWFhchL0H//xH5g5cyYWLlyInJwczJgxw6iW6Xe/+x0SEhIwc+ZMPPLII3juuef0urYCAgJw8OBBDB8+HIsWLcK4ceOwYsUKdHR02NSi9N5772Hx4sX4H//jf+COO+7AypUroVKp9I5ZsWIFurq6sHz58l7PFxERgYceeqhPkzmePn0aarUab7zxBmJjY+WfRYsWycd88sknePTRRy128xGReYJo2HlPROTGZs+ejYyMDGzcuNHVoRg5dOgQ5s6di6qqKkRHR/d6/DfffIN77rkHlZWVJovV+6qhoQFjx47F6dOnTU7USUS9YwsSEZGdOjs7UV1djVdffRVLliyxKjkCgAkTJuC3v/0trly54tB4vv/+e/znf/4nkyMiO7BIm4jITp988glWrFiBjIwMfPTRRzY9d9myZQ6PJysrC1lZWQ4/L5EnYRcbERERkQF2sREREREZYIJEREREZIAJEhEREZEBJkhEREREBpggERERERlggkRERERkgAkSERERkQEmSEREREQGmCARERERGfj/1nnlEHez6dgAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "\n", + "plt.plot(pds.freq, pds.power, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5, label=\"PDS\")\n", + "plt.plot(pds_reb.freq, pds_reb.power, drawstyle=\"steps-mid\", color=\"k\", label=\"Rebinned PDS\")\n", + "plt.axhline(noise, ls=\":\", label=\"Poisson noise level\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2 Hz^{-1}}$\")\n", + "plt.legend()\n", + "\n", + "plt.figure()\n", + "plt.plot(\n", + " pds.freq,\n", + " (pds.power - noise) * pds.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"grey\",\n", + " alpha=0.5,\n", + " label=\"PDS\",\n", + ")\n", + "plt.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - noise) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "plt.legend();" + ] + }, + { + "cell_type": "markdown", + "id": "3cb801af", + "metadata": {}, + "source": [ + "We will now do the same with the cross spectrum between the bands 0.5-1 keV and 1.5-3 keV.\n", + "\n", + "In this case, there is no need to subtract the Poisson noise level, as it is zero in the cross spectrum, provided that the energy bands do not overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "84a1cd9c", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 34.28it/s]\n" + ] + } + ], + "source": [ + "ref_band = [1.5, 3]\n", + "sub_band = [0.5, 1]\n", + "events_ref = events.filter_energy_range(ref_band)\n", + "events_sub = events.filter_energy_range(sub_band)\n", + "\n", + "cs = AveragedCrossspectrum.from_events(\n", + " events_sub, events_ref, segment_size=segment_size, dt=dt, norm=norm\n", + ")\n", + "cs_reb = cs.rebin_log(0.02)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "6d8aa019", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG1CAYAAAAC+gv1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABavUlEQVR4nO3de1hTd4I38G/CJeGuiHIREBWvoARB8F6tTC06tlOr4/N2puJlbXcXL/Pwdrb6zK7d7nbGZzszjqVlq3bHWmdb1+604+776lhnWK3W+w0VrCgUFVBA5A4JSHLeP3xzJjm5kJCEJOT7eR6eh5xzcs4vR0y++V1lgiAIICIiIiKR3N0FICIiIvI0DEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEv7uLoA30ul0ePDgAcLCwiCTydxdHCIiIrKBIAhob29HXFwc5HLrdUQMSP3w4MEDJCQkuLsYRERE1A/V1dWIj4+3egwDUj+EhYUBeHqDw8PD3VwaIiIiskVbWxsSEhLEz3FrGJD6Qd+sFh4ezoBERETkZWzpHsNO2kREREQSDEhEREREEgxIRERERBIMSEREREQSDEh2KCoqwuTJkzF9+nR3F4WIiIhcSCYIguDuQnibtrY2REREoLW1laPYiIiIvIQ9n9+sQSIiIiKSYEAiIiIikmBAIiIiIpJgQCIiIiKSYEAiIiIikmBAIiIiIpJgQCIiIiKP0d7ejlu3bqG7u9ut5fB369WJiIiIDFy+fBkAoNFooFKp3FYOn61BeumllzB06FAsX77c3UUhIiIiAF1dXWZ/dwefDUibN2/G/v373V0MIiIi+v/u3Lnj7iKIfDYgzZ8/H2FhYe4uBhEREf1/zc3N7i6CyCMD0smTJ7F06VLExcVBJpPh0KFDJscUFRUhKSkJSqUS2dnZuHDhwsAXlIiIiJzC3U1qUh4ZkDo7O5GWloaioiKz+w8ePIiCggK89dZbuHLlCtLS0rBo0SI0NDSIx6hUKqSmppr8PHjwYKBeBhERkc/T6XS4f/8+2tvbze4XBAHd3d0eV9HhkaPYcnNzkZuba3H/jh07sH79eqxZswYAsGvXLhw+fBh79+7Fli1bAAAlJSVOK093d7fRcMO2tjannZuIiGgwKy8vR319PYCn3VsM6XQ6nDx50uzzenp6XF00qzyyBsmanp4eXL58GTk5OeI2uVyOnJwcnD171iXX3L59OyIiIsSfhIQEl1yHiIhosNGHIwC4e/cuzp07h56eHuh0Onz33XduLJl1XheQGhsbodVqER0dbbQ9OjoadXV1Np8nJycHK1aswJEjRxAfH281XG3duhWtra3iT3V1db/LT0RE5CvUarXR47t370Kj0aCsrAwnT55ETU2Nm0rWN49sYhsIf/7zn20+VqFQQKFQuLA0RERE3kkQBJSWliIgIAATJ0402tfb22v2Oa2trQNRNId4XQ1SVFQU/Pz8jKrsgKdVeDExMS69dlFRESZPnozp06e79DpERETeQq1W4/Hjx3a14ngDrwtIgYGByMjIQHFxsbhNp9OhuLgYM2fOdOm18/PzcfPmTVy8eNGl1yEiIvIWgiC4uwgu4ZFNbB0dHaioqBAfV1VVoaSkBJGRkUhMTERBQQHy8vKQmZmJrKws7Ny5E52dneKoNlcpKipCUVERtFqtS69DRETkDQRBcPtoM1eRCR4Y/U6cOIEFCxaYbM/Ly8O+ffsAAB988AF++ctfoq6uDiqVCoWFhcjOzh6Q8rW1tSEiIgKtra0IDw8fkGsSERF5moqKCqOO1pMmTcK3336LGTNm4Nq1ayadtO0lnRbAUfZ8fntkQPJ0DEhERERPKzRcyZ0BySOb2DwVm9ioL01NTVCr1ZDJZIiMjIRSqXR3kYiInEoQBMhkMncXw+W8rpO2O7GTNlnT2dmJ69ev486dO7h9+zZu3rzp7iIRETnVd999h1OnTnncummuwBokIid58uSJ1cdERN5Mv6YaAFRWVuLx48duLpFrsQaJiIiI+mS4isRgD0cAA5JdOFEkERENJvYM029vb3dxaTwLA5Id2AeJiIgGk9u3b+PMmTNoaGiATqezOOljb28vGhsbB7h07sU+SERERIOcVqvFlStXMGTIEIwbN07c/vDhQwBP+xR9++23UCqVJnMKtrW14cqVKwNaXk/AGiQalHQ6Hbq6uox+LC2a6AyCIKCzsxNqtRpqtXrQTr1PRN6poaEBnZ2dqK2tNbu/u7sbgiBArVajo6PDaJ8vhiOANUh24TxI3kEQBFy4cAEajcZou1wuR1ZWltPnJhIEAXPmzMGZM2fEbampqfjoo4+ceh0iooFw6dIlTJ06FaGhobh+/bq7i+M2DEh2yM/PR35+vjgTJ3mm3t5eMRz5+fkBeFq9rK9VsjUg6XQ61NbWoru7GwDg7++PkSNHIiAgwOi4rq4uo3AEAKWlpSYBrT86Ojrw6NEj+Pv7Iy4uTnw9RESOsjYVyfXr1zF06FCT2iRfwoBEg9rs2bMhl8tx6dIlu/+jt7S0oLKy0mibn58fEhISLD7ns88+wyuvvNKvsppTXl4ujhzx9/dHbGys085NRL7pyZMnuHPnDhoaGqwe19zcPEAl8kzsg0Rkgb4pVaFQIDQ01GibJdLaKZ1Oh46ODnR0dPSrX5Lh9WzpQyUIAlpaWtDc3Mx+UEQE4GkgMpz5uqqqqs9wRAxIRH1SKpX9WpRYo9FApVIhLCwMYWFhmDFjhstDS319Pc6ePYuSkhLU1dW59FpE5B1Onz5tNMnjgwcP3Fga78EmNjuwk7bv0Y/qkMlkUKvV6OrqsnmhRrVajRs3boiPL1y4gOPHj0OpVGLYsGGYMGGC08v6/e9/H5cvX0Zqair++7//26nnJyLP5iuLyA4UBiQ7sJP24NXT0yP29ZHJZBgyZAgEQcDGjRtRVlZmdOzs2bNx6tSpfr0RdXd3Qy6X4+HDhxg/frxd5xAEAQ8fPkRPTw/i4uKMOov39PTg8ePHuHz5MoCnncTVarXd5SMi71RVVYX6+npkZGSgrq4Ozc3NCA0NtXmWbDLFgESDgiAIYhv7kydPxHDQ2dkJuVxutWnr8ePHmD9/PkpLS8Vt06ZNw+9//3uTcAQ8ra7u6upCSEiIk1/FU4avRT+vkkKhwIsvvoiSkhIAgEqlwpUrVyCTydDT04OzZ8+aXV27vb0dHR0dGDZsGAIDA11SXiJyj56eHmg0GoSHh+PevXsAnq6Xpl9QtqmpyZ3F83oMSOT1zM1DJJWWlobf/OY3Zvc1NDQYhSPg6cRohjUwZ86cQV1dHZYtW+ZQWfVD/y1NNSAIAmbPno2zZ88abU9OTkZFRYX4uKSkRAxp+gnepLRarVijFBkZialTpzpUdiLyLPr3vGnTprm5JIMTAxJ5PXPzEEldu3bNpnmJrly5Ir7ZGC7MGBQUZBJq9DU9ra2tNpdVH7BSU1Nx7do1kya2rq4uk3AEwCgc2cqwr5y1+U6IyLsZDsfX6XRuLMngwlFsNKjU19ejubkZR44cwZEjR8R1hmwVHBws/j5jxgyLxwmCgOzsbISGhmLkyJF9njc5OdnocWlpqcUmMb0vv/wSX375ZZ/n1nckd8bElN6ura3N7H11lL6pk8jT1dTUuLsIgwZrkGhQCQkJQWBgIIKCgsTH9hg+fDimTp1qNL1+ZmameD69qqoqXLx40WjblClTkJKSYva8hYWFAJ42sVlqphMEAXfu3BEf2zLj98OHD5Gbm4tr1671eexgp9FoxDWj5s2bB7nc8e9/zc3N6OjoECcMnTFjhtOXqiHqD8NmdXu/CJJtGJDswGH+g59CoRD79+gFBwfj7t27RscZzrB9/vx5jBkzBpGRkVZrGaQhy5ClflRKpRKpqaliHynDvkjd3d0oKSlhOPr/9EvCAE+bKh89eoTe3l7ExcX1q0N9b2+vyb29ffu22b5c3d3duH//PkaOHGlUC2kvrVbr9cvJdHR0oLe3F0OGDLH5OYIgQBAEp4RaT9XXEPyGhgYEBARg6NChfZ7n6tWraGtrE7ex9tg1GJDswGH+vkEmk5l8oCYkJBgFY8NvbxEREYiKirL7Oq2trfD390dAQADq6uqMwlFmZiaUSiVkMhkKCwsRHh4uzny7ePFiAH3P6q1vegMgzgTuzez5EC0rKxNfe0tLC6ZPn27x2CdPnsDPz8/kvOZmLrc0KqisrAxtbW2oq6vD3Llz+yyfOdXV1fjuu+8wZcoUREZG9uscnuDKlSvQ6XR21bZduXIFXV1dmDVrlksDorvmCSovL0d9fT2ys7OhUChM9qvVaty8eRMAMH/+fABP//6ePHli8sXq8ePHRuGIXIcBicgG/VkHra9vdfHx8Rg7diwA4xqpL7/8Eunp6WKtlUwmw+jRo5GQkGAyG661a7zyyiu4desWgKej+K5evdrvD4fe3l60trZiyJAh/foAq6ysRHt7OyZNmmT2A6IvOp0O586dQ09PD2bNmtXnlAWGNXmdnZ3Q6XTo7OxEaGio0T3QaDS4cOECQkJCkJGRgaamJigUCqs1Tr29vfD3N37r1H9gWQutWq0WDx48QGRkpNnz6/8GKisrvTog6TsJq9VqmwOSvu+d/sunLSG4u7sbN27cwMiRIxEeHo4bN24gKSkJMTExZo9/8uQJLl68iBEjRhj1Cezs7IS/v3+//i5tpW8Cq62txZgxY0z2G9Z+6p05cwY6nQ7Z2dkICgpCe3s7qqqqOHR/ADEgkU8ynGvIFZ16AZhdtFbaZCZdDHfKlCmIjo7G0KFDjZr15HI5RowYYTRCRaVSWb2+PhwBT0fx9WfuJp1Oh7t37+LevXuQyWQYNmwYpkyZYvX4Bw8eQKFQYPjw4eI2fbCrqamBRqPB0KFDERcXZ/Tc3t5eVFVVQalUIjg4GJGRkWKY6enpESe8O3PmDBITExEVFYXw8HDU1taiq6tLvJ45FRUVePDgARITEzFmzBjodDqUlpaivb0dOp0O7e3taG9vx/Xr1yGXyzFv3jyLc2fpz2MPQRBQW1uL7777DpWVlZgwYYJR4O7s7BR/98YRhy0tLeju7u5XADdcRFrfpDly5Eg8efIE48aNM5oQ1dC9e/fQ0dGB8vJyhIWFQaPR4NatWxYDUk1NDXp6elBTUyMGJI1GI/Yl1NfceILe3l7x/3pzczP8/PzEKTto4DAgkc8RBAEZGRm4evVqv89hqeYmODgYM2fONBqqr1KpMHbsWGi1WgQGBuLMmTNobGzECy+8YNS36D/+4z8wbdo0yGQyix+SI0aMQEZGhsmbpXSeJGv0ncE7OzsxevRosa+IIAhobGyETCZDaGgo2tvbkZOTg+vXryM1NRWFhYV4/Pgxenp6UFVVhZCQEMTHxxudu6mpSSzH7NmzodVqjaZBqKmpgSAIePTokUlAqqurQ21trfg4KSkJHR0daG5uRlJSktGx9+/fR21tLebMmSN2bJfW6hjSrz11//59jBkzBk1NTSbfxPVBWafTQRAEow9uQ4YhVafT4fHjxybH3Lx5E2q1GhkZGeju7saVK1eMagnKy8sxfPhwscz6zuVA302nlgiCAI1GY7WvW3NzM65du4ZJkyYhOjra6vkaGhpQWVmJ1NRUhIWFidcwF4L0E5gaamxsNOlPU1VVhZaWFqSlpYm1RJcuXTJ5rv7voKGhATNnzjSp3amurjZaT8yWoe2G91WtVqO2ttbqvXKnb775Rvy9qamJnbDdhAGJfE5XV5fZcDR9+nSbO9ga1g4ZfmDIZDKcPn0aTU1N0Gg0kMlkiI6ONmmWCgsLw/Xr1/GnP/0JWq0WSqUSISEh4rnkcjnkcrn4xq//Fi2Xy3Hu3DkUFxeL+2QyGcaOHYvx48fbVPaenh7xw+Xhw4diQGpubjaaOVytVouj+UpLS8UP34aGBvENOyYmBv7+/tBoNAgMDERvb6/YtHLx4kWTZQ6szWguDYWGNWjSmjbg6Qee4XPsWQjY3Aeq4fDox48f2xQ4Hzx4YHLckydPxP5iFy9ehFKpNNuEYlgGww9vrVaLR48eYfjw4dBqtWhsbERYWBiam5vR1dWF4OBgPHr0CPHx8Whra0N4eDiioqJQXl6Ouro6jB8/HrGxsZDJZBAEAT09PWLA0NfQfPvtt/D398eNGzeQkJAgNvUa0veJuXz5MubPn4+WlhZcu3YNgiAgKSkJSUlJ0Gg0OHfunNl7U1tbi3Hjxhlt08/23NDQYLGmR+rs2bMmzarm/h76Ytjsev78eZP9paWlmDx5ssd1FG9sbHR3EXwWAxJ5FcOmMT3D5gl7VVZWYujQoZDL5QgPD7faRBAcHIzZs2fj9OnT4rb09HQkJCQYHadviuqLTCZDXFycWGtjOOrHz88P06ZNQ3t7uxie9Pz9/TF37lxcuHBBfGzPN2HDICEIAmpqamwKA/paM8OaFZ1Oh7q6Oty6dQuhoaH427/9W1y8eFGscdJ/SGs0GrHTuTMZdmzXL68AwOo1e3t7zfbjMJyD6u7duyahRh9o7t69i7t372Ls2LFmP6gN729nZ2eff5/mgl1ZWRkSExONXpNUS0uL+PuIESPEUHb79m3cvn3b6NixY8ea1PbpF1Kurq42G5AMtbe3G9US3b17F0lJSRbDkTmGAdSeMAs8/XeOjY1FSEiI2b6A5jrU23utxsZGlJaWYsqUKUZ/M01NTairq0NCQoJJHzZn0De/kudhQCKv8eTJE2RlZZmtzreFRqNBXV2d0TfEiIiIPofV6slkMpw6dcpkCgBH3jBTUlKg1Wohk8lMaplCQ0MHZPRZVVWVTccZzgKuDz/AX0Z2PXr0SOzPoa9xUiqV4oK/0ufZy9agZbjIsP6aAMTnlpWVGc08bO4a0qYknU6HhQsXAgCKi4shl8st1mJIp4Sw5MyZM5g8ebJYUyNlLRxJ6cORJZWVlX3Wuuh0OshkMty7d8+kJtXR/i9ardYohJurUeuLvtbSXJg3d77m5mYEBgaazFdmjb45y7D5V1+L2tDQgLFjx5p8IbJnZNz9+/cRHx9vVBtWVlZmVEukD67kfgxI5DVqamqshqMpU6agvLzc4n5zEzTa+2FtbgoAR8hkMqt9ZyxRKBQIDAxET0+P2D/EHMO+STU1NYiMjDSpPent7TVaI66ve2LY3GaN/pz6Zjtzz+vt7cXNmzeNps4wF4R0Oh1ef/11VFRUICUlBb/85S8tllWj0Zhc86c//WmfIc1csNLXgOXl5YnHtba2Wg3Vhn1j+mIpHA20W7duoa6uDhMnTrQ54NlDGkjv3r2LUaNGuWzIfWdnZ7/nB2tqahIDkrSvYWVlpVFAqq6uRmVlJdLT022e+uX27dtITk5GYGAg5HK5SROauT5t5B4MSHbgRJHuZVhVXlpaKn7L1Y/WUiqVRvODBAYGIiQkxKRZTG/atGl2TWbnSfz8/DBjxgyxf4m0ir68vFysMdDPm/Tdd9/h4cOHYgABngYPfSgAngaq3bt3AwBee+018Xz6JU/0IXPTpk3Ys2eP1TIuW7bMZIkVqcePH4uB7fHjxyYh5b333kN3dzc2btwovp6ysjIsXrzYbNgxfG16arXaJDAplUqTEGYuWOkZNg8Nxpm06+rqAMBoJve+2NIP6Ntvv8WkSZPw6NEjk33nzp3r8++jP06cOOHQ8w0Di7nBEq2trbh79y5Gjx4t3oOrV6/imWeesSnwNTY2orGxESEhIQgPD3eorORaDEh24ESRniMpKUmsyYmPj0dra6tJX4OwsDDI5XKTZjE9R5vH3E0ul1v8sB45ciQeP35s1E8FMK4lAYCJEycaTQdQUVGBVatWAfjLSKLk5GQxSOprpCoqKqDRaFBTU2O1eUfaHKIPVoY1Q4Zla2lpMQopr732msUPYmmNlPS16W3evNnkHqxfv14coWWpRkkfyvrqnyPlyj5XrmbPlz/DObksqa+vR3d3t8nfIfC0WUz6b+Up9P9+5mrT9AM8pLViX3/9NRITEzF69Gib/t1t6Z9G7sWARB7HXEdswPJ8RQEBAVZnsnZ2s5i3SE1NNfoA0mg0RrUkgPFcSVFRUWhsbDSqjYqPj8fu3bvFN/zf/va3eOaZZwAY1yJJa20+++wzs/NA6YNVUFAQLl26JI7OsxRubKml0AcS6WvTky7euWTJEvF3a82FhhM39nVthUKB7u5uKBQKbNq0CWVlZUZNgfrw7mkjpAaCuXDk6ezpfG7o/v374qhC8n4MSORRBEFAVlaW2blRyLKYmBikp6fj6tWryM7OFmvHUlNTxWMsLZKr98knn2Dz5s1irY++uS00NFQcNi6TyYxqkZqbm/Hmm2+ioqLCqLnEWjOU/tu54Wg4S+HGFuaClb0EQcCmTZtsvt77778PAGLfJj3DPl/6psCUlBTxmMOHDyMoKMjmmiXDJkNvqZHy5ho0Z+ju7sbt27cRGRnJoOTlGJDIo3R1dfUZjjIyMhxaEHQw8vf3x+XLl8V5cvQfTPZ8QMlkMuzZs8fkA1kul4sdU9vb21FYWCj2a3r55ZfF5xs2pymVSouTVy5btqxfI9pSUlIAwGSuJmvhyLAMloblA08DWl9THYwcORK1tbWorKwUX7+UuXMYlm/JkiVW+04Z1kR1d3cbBbC+Oqd7Aksd3X2Jvh/XgwcPMHHiRJum/CDPxIBETmWpecycvvoAXb16FSNHjjTaJpPJjJagoL8w15QYHBwszrwdHx9v1Nwkfaw/h7XRadZGzBkaOnSoUZACjMOKrSPh9L788kuxH1RLS4tYG/b6669bfD2Gnbz1zAUbfW1HXwoLC40CYX+VlpaipaUFQ4YMgUwmMxqhZ42+Rkpfs9ff5jpX1vCY6+juqbNVDwTDJmzyPgxI5DSCIGD69Ok2z5kyY8YMnDlzxuKb9JAhQ6yur0V9k8lk+Pzzz8XpDwwDwnvvveeUD3xz/Y3MLSZbWFgIjUZj0tRnrnnLsLYoNTVVDBPA078LfdgyHHGk7w+lr33RBwD9B7ThTMqGbBltBwBBQUHiOnrmwqWUpX5YhtfcvXu3TeHIUEVFBfLy8vDJJ5/YHZIMw1hfNTz2zDtla8gk8ia+12OQXKa1tdWuCeXOnTvnsoVi6S/8/PwQFBQkLpQLPK1dsfWbfV+1RuY+GC01gRoe+9prr0GtVqOlpcWoGezIkSN4//338f777+PIkSMmH+IymQy7d+82mRkaeBpi5HK52X4+hq9fylJA0Qen1NRUKJVKFBYW4siRI/jkk0/Ec6WkpOCLL74wee6QIUOMrjd27Fgx+OmvuWrVqj7DUUpKiklNak1NDV5//XWLs0QLggC1Wm0ya7phGJNOZSB9/saNG7F48WJs2rRJPI9OpzMZeag/buPGjVi/fr3V10LkTViDRE5jaZ4iqZqaGsybN2+giuXzYmJi0NPTg9raWrEWRx9U9DUi06ZNMxt0UlJSEBkZabTNlmaZuLg4szN0G/ZNqqmpMWnyev/9942Cm6UQJ5fLsWfPHot9gcyRyWQoLCyEWq02GskmpS+fYROdYS2KvkyG99JS0NAfo3/twNNmqNdeew01NTVGIwbN9ZHSNy02NzeLtX0hISHo7Ow0GhFoyLCWKDk5GYWFhWIZba2pMtdUplAoTGYTNzzOlo7yfdVK+XoHb/IsrEEil0hKSsLo0aPN/owYMcLdxfMpCoUC48aNQ1pamtjkpB+Rpq8R+d3vfmf2A2nYsGEmS6BMnTq1z2v6+fkZ1dioVCrxQ2/37t1mm7T0tTS2ktaI2fJcmUyG4OBgFBcXo7i4GEeOHDGq1UlNTcXu3bvFmitLtVH6c1nal5ycbNTEZ3jPg4KCTCbZTE5Oxp49e4zKY9i0aHgNw+fqa3f0NUbS/kwVFRVYvHgxXnvtNbO1TRqNBjqdDmq12qTGSaq1tdXs71LmRm7py2euVsqW/UTu4JM1SNXV1Xj11VfR0NAAf39//MM//ANWrFjh7mIRuVRfH/ITJ05ERUWF1YU/ASA2NhazZs3CmTNnkJqaiunTp4s1UcDTD/bg4GDExcWJNSixsbHifDj62h9prYu9tQb6gGepxsGwTFL6vjtBQUF4//33TUbu2duxWB/WSktLxb5F9rwWwzCmL4+l+2FYC1dRUQG1Wo2/+7u/Q1lZmcWRehUVFWZrzaT9wVJSUsQpDAzp55kyZGlqhN27dxv1bTM3x5VhB25zndSlHbz1zXq+OI8UuY9PBiR/f3/s3LkTKpUKdXV1yMjIwOLFi31yMkHyXXFxcUbrhsXExCAmJgZlZWVml4bQk8lk+Oabb9DQ0AA/Pz8MGzbMpClJJpNhzJgxePjwoRjADJui7A0hoaGhGDp0qMnszdbOExUVhfDwcKPlZyy9HkdHWvUV1qQMA5W09quv8shkMrz33nti4Hn99dfFDuPmwpG+SU7PWgfzsrIys82F5ubQMtdkZ65vm7U5rnQ6ndXZ0vXHSJv2GJhoIPhkQIqNjUVsbCyApx8KUVFRaGpqYkCSsGfIPgBOm+9F4uPjkZiYKAYkww8aWxbPlclkiI6ONnrcV8iYNGmSuEyDNeHh4UhMTDSq/ZkwYQKCgoJsWt7C0Pjx41FSUoLe3l4MGzYMKSkpuH37trj2mDnTpk3DlStXTLbrm/Ms1UrZE7TsDVSGSxtFREQYNXGZCzv6WdGBp7VT69atE7frJwS19DpsIW3OPHz4sEkI7osgCGLwsUStVht1/K6vr0d0dLRJYCJyBY/8yzp58iSWLl2KuLg4yGQyHDp0yOSYoqIiJCUlQalUIjs7GxcuXOjXtS5fvgytVmu0QjM9ffPKyMhAaGiozT+8h94lMDAQSUlJiIqKElcvB4BRo0YhPj4ekydPtvnDx5YvFxEREUhOTu7znNOmTTPpx2Lr/EtSoaGhmDNnDmbMmIGUlBTI5XKjYGdOeHi4yagx4Gm4cObMyNb6MEnJ5XKx35RcLu9zLchPPvlE/H3UqFHi7wcPHoRcLhf7nun7OxmuN6fvCyT16aefGj02PMbW1/LZZ5+Jv1vrx6Q//+LFi406sr/yyivIy8szOYe5UXtEjvLIGqTOzk6kpaVh7dq1Zqt2Dx48iIKCAuzatQvZ2dnYuXMnFi1ahPLycrEDsEqlMtuX4tixY+KHQVNTE1atWoWPPvrItS/IC3V1ddn0bd+ctLQ0m2e6bmlpMVoxm7VQrmP44aUPKUlJSSbH6fu42GPixIk2TfEQHx+P+Ph4fPPNN332dQoNDUVHRweGDh0KwProuaFDh2LEiBHifE9S9s7RM3bsWAwdOtRsLYthE09SUpLZBU1dwTBY6gOTft03Q/pmruLiYqNjDc+hDzSG/a/MzY5uyPD+q9Vqo2YxSxNCmutnpmcYZsw1+1lqdpMex9m7yVU8MiDl5uYiNzfX4v4dO3Zg/fr1WLNmDQBg165dOHz4MPbu3YstW7YAAEpKSqxeo7u7Gz/4wQ+wZcsWzJo1q89jDWfj7atPw2Bz+/btPr+xGho2bJjNb1Dm5rIh1wgPD0d8fDyePHkiNjE7S1hYmE2TJ+qNGTMGt2/fNtluOMHkpEmTUFdXJ36h8fPzw5gxY9Dd3W1UqwA8DWgKhcJiQDJkSy2DXC63uESEQqGwOOnkQJLL5UYBRzpBprlALKUPSpZez7//+7/jxz/+scl2W9ets7b+349+9CPx9927d+PNN9+0u9lPo9EYLTfD2bvJmTwyIFnT09ODy5cvY+vWreI2uVyOnJwcnD171qZzCIKA1atX49lnn8Wrr77a5/Hbt2/H22+/3e8ye7uoqCjxW7wzxMTEYMqUKbhx44bFY6ZOndpnUwjZR7/QrKskJCRAp9OJS4JYExcXh+joaPT09OD8+fPi9gkTJoi/h4SEGDX9AEBiYiIAGAWk+Ph4KBQKm8tprTbJlr85pVJpV0CKjY3Fw4cPbT7eHtJ+T84OBpaClTSg2vMFyhzDPlnSBYCtsTRTeV843xLZwiP7IFnT2NgIrVZr8kYWHR1tteOlodOnT+PgwYM4dOgQVCoVVCqV1Q/rrVu3orW1Vfyxt6MoGYuIiEBJSQna29st/ly9epXfAr2MQqHA+PHjbZ7nys/PDwEBAUbb+jNQwt7laJRKJUJCQsz2a7Llg37ixIkYPnw40tPTxS8O1srtylDqLOZmGU9NTTV6n42OjjZ5LYcPH+6zo7S+lrivuaoMm/0M+yp9+umnYl+plJQUk9AstXHjRnFOKMNZv/UszRJOJOV1NUjOMGfOHLP/cSxRKBRQKBQoKipCUVERtFqtC0vnG+RyOUJDQ91dDHIhw2/mntQsLZfLkZmZCQD4+uuvbXrO+PHjxd8VCoXR5JLp6ekICgrCmTNnzD5XPxXC48ePERgYiJ6eHgdK7xqGNTjSpjrD/kvSBYhlMplJOJJOYWA4GzlgOj+VuWkODB9L54YC/tK0Zq6/VGVlpVEZDx8+LH7Z0jdHSpvk9OVmbRIZ8rqAFBUVBT8/P9TX1xttr6+vR0xMjEuvnZ+fj/z8fLS1tTlcpUw02BlOF2DpS4V0lu6BGrJt7wehtf/v1vbp+1SlpqZCq9XC398fJ06cMHusv79/nx3XXcmwuc6w9tbefxNzUxgYns9SELO1bNLy6X3xxRdmA9OSJUswduxYKJVKcTJNQxs3bkRlZaUY5vrzmmlw8rq/gsDAQGRkZIjfaoCnE4kVFxdj5syZbiwZEUnpRzNaaoKSyWSYNWsWhg8fjrFjxxp10rZGP/ouICDAqKls5syZiI2NRVZWlmMFl7Blbig9c9NdyGSyPs8xZ84czJs3z+wXvUmTJtl8fU9gbdi/fp+1ZVyk8z6ZI11qRro4sKHKykqx1kg6Ok7/uLS0FAsXLsTChQvtamGgwcsja5A6OjqMZmitqqpCSUkJIiMjkZiYiIKCAuTl5SEzMxNZWVnYuXMnOjs7xVFtrsImNiL7TJo0CQ8fPjSaZ0kqMDDQqMnKFklJSWanKFAoFEYdvfuSnp4OtVqNW7duATCuWZLJZEhJSYFWq7WrE3hERITYT9He/i1yuRyjRo0y6U9pS8f3wcTc1ARS5mqqDGunpMuX2KO1tdWpA1PIO3lkQLp06RIWLFggPi4oKAAA5OXlYd++fVi5ciUePXqEbdu2oa6uDiqVCkePHnX5qCc2sRHZJywsrN+TPA6EiIgIREREoKWlBS0tLSYTQdrTAXzEiBHivE1DhgxBS0uL2Q7rfS1/EhQUBJVKhaamJty/fx8A7Apog4UtzVzSpjfDx/r1/gRBMLsOnTXsuE2Ahwak+fPn9/kHumHDBmzYsGGASkREg9nEiRMdPsfkyZPF3ydMmIBHjx71e76pIUOG2Lxkx0Cytoacp+lrjifA8rp0mzdvxv79+9lp28d5ZEDyVGxiIyJbBAUFiXM2SUVERKCtrQ0KhQIRERFoaGgwe5y0A7snsHcNOU9gGOqkPvnkE3R3d5vUMtXU1HDCSWJAsgeb2IjIUYmJiRAEASNGjLA6p1pUVBSGDx/ucU2U9izK6wnMTWGgb7LUdxT3hJnRyfN43Sg2IiJvFhAQgOTkZISHh1s9Tt9J3FJNlLPYOrGnN5OOnJPL5UZ9nMxNlEnEGiQ7eHoTmyAI6OjocEoHQy4aS+R6A9EZeOTIkSZLgxgaN24clEql2CHcF+lrmVpaWsT147ypGZFcgwHJDp7cxCYIArKzs3Hx4kV3F4WIPEhUVJTVgBQQEIAxY8b4dEACTGfwXrZsmclM4AxLvoUBaZDo6upySThKS0vzuDBINFgMRA1SREQEgoKCEBISgtjYWCgUCly6dMnl1x0MSktL8dprr6GyshIpKSkoLCzkLNs+hAFpEDp//rxThi0DQGhoKN8QiFxEv0abdNFec/z8/Mw27wcGBiI8PByjR49GRUUFmpubjfbL5XJxZnF9DUhYWBja29ud8AoGP/1M22VlZVi4cGGfi/PS4MGAZAdP74OkFxIS0mcHUCJyP32Nji0j1aZPn46mpibcu3cP3d3d4vZZs2aJvycnJ+PWrVsm4UfaNBQUFMSA1E+cZdt3MAbbIT8/Hzdv3mQ/HyJyCplMhmHDhtm0Bp1SqURcXBzi4+MtHhMSEoKMjAyTBVml2GxunuFotr7uIQ1+rEEiIvIiI0eONFlwVaqvJqC4uDjI5XIGJQnpnEmbN282mWBSEASo1Wp22vYBrEEiIvIicrkcSUlJCA4OxuzZs80eExMTg9DQUCQkJJjdL5PJEBsbi+DgYJeU0dXrYrqS4ZxJhYWF+PLLL432v/7661i8eDE2bdrENdsGOdYgERF5maSkJCQlJVnc7+fnh8zMzIErkMSkSZNQX1/vtus7i3ToPwA0NjYCeDrCTT9XEudMGpxYg2SHoqIiTJ48GdOnT3d3UYiIPNJga7ZTKpVITk62uH/jxo2sURqkGJDswE7aRETWTZkyxd1FcCp9vyRz1Go1ysrKAPylRokGDwYkIiJyCj8/P/j7+07Pjc2bN7u7CORCDEhERET9UFNT4+4ikAsxIBERkVkhISEOn0OhUIi/6+cYIvIGDEhERITMzEyMHj3aaJufn59Nz9XPu9TXjOCRkZFGgclbGE4gaW2iThpcfKexmIiILAoNDUVoaCiqqqoAwKQvUWpqKvz9/VFSUmK0ffjw4Rg9ejQePHhgcd4lQ0lJSSgvL7e4Pzg4GF1dXfa/ABcynEBSrVbj5ZdfdneRaACwBskOHOZPRIOdft6fyMhIo+1RUVEYMmSI2ecEBwcjOTnZptohb50rSD+BpGH5ba1hI+/EgGQHDvMnosEuPT0dycnJGD9+vEvOLw1eUq6a3dtZDOd5+vzzz432cS6kwYVNbEREJFIoFFb72QQEBODJkyf9Pn9f0wAkJiaKs1V7IrlcjuLiYgBAa2ur0b6KigpoNBoEBQU5dA1BEDg7twdgDRIREdnM3k7W0g94cx/4cXFx4u99LbTrCeRyucvKKQgCZ+f2EJ7/l0hERIOGTCbDrFmzEBgY6O6ieCSNRsPZuT0EAxIREQ2owMBAo0VgB1MtCWt9Bg8GJCIi6re+JpM07HM02PrTGHbYHjt2LIC/9EOylU6ng06nc3rZyHHspE1ERP2SlJSExMREs/vCw8PR1tYm7pfL5YMuIBl22O7u7sbixYsBPK1F2rNnT5+vV6fTYeHChQCA4uJir+h/5UsYkIiIqF+SkpIs7lOpVFCr1U5ZrsST6UONUqlEcnIyKioqbB7NZjgKrrW1FUOHDjU5hs117sO4agdOFElEviQgIKDfz5XL5VbD0WCrTdLPtq3nrL5IS5YsYROcmzAg2YETRRKRLxk3bhwiIiKQkpLi7qJ4BX0tEvC0L5JarbYr3AiCgE2bNplsb2lpEc+lVqtZqzRA2MRGRERmKZVKpKenG23jh7Nl+lokfV+kJUuWAPhL/6K+JoDUaDSoqKgw2b5p0ybU1taKj1NSUlBYWMg+Sy7Gu0tERAPO0rpujs5C7W6GtUh6ra2tZieANAyb1ka+GYYjACgrK8PChQvZ9OZirEHyIIIg9HsV687OTieXhojIdUaNGoXAwEBERkbi/v374nZvXwBWWosE/GXpEOkEkJs3bxaPeeWVV6wu8WKOpY7d5BwMSB6Ef+xE5OnCw8Od8oVMLpdj5MiRTiiR59u8eTP27NljtE2j0aCmpsZom+Fj/Yi4vuhrkdjc5nwMSB5Eq9U6fI7U1FSEhYU5oTRERKbGjh0LhUKB4cOHu7soXqOmpgZqtdqu5xQWFkKj0WDZsmUWjxEEgfMouRADkgcJDw9HaWmpQ+cIDQ01WviRiMiZ/P39rc5/5ExBQUF2BwtPoFQqkZqaavR+/vLLLxsdY0tnd8PlWMxpaWkRf2cLhPMxIHmQgIAADqclIvJy+n5ILS0tFmuADPsf9Ze5KQHIeVgfR0RE5GQymcxqDZC0/5F+LTd7GPYF66u2ieznkwGppaUFmZmZUKlUSE1NxUcffeTuIhER+SxvH9rvqC+//BLvvvuu+Dg+Pp6BxwP4ZBNbWFgYTp48ieDgYHR2diI1NRXLli3DsGHD3F00IiKfEx8fj97eXkRGRrq7KC4XHx9vUnukVCqN5kF67733Bt1SLN7IJ2uQ/Pz8EBwcDODpCszSCbuIiGjgyOVyjBkzxuLkkYPJe++91+cx+nCk7+xN7uGRAenkyZNYunQp4uLiIJPJcOjQIZNjioqKkJSUBKVSiezsbFy4cMGua7S0tCAtLQ3x8fH46U9/iqioKCeVnoiIHBEXFwd/f/9BN09ScnKyXc2J+s7eX375pQtLRZZ4ZEDq7OxEWloaioqKzO4/ePAgCgoK8NZbb+HKlStIS0vDokWL0NDQIB6j718k/Xnw4AGAp9PcX7t2DVVVVfjss89QX18/IK+NiIisGz9+PGbPno3AwEB3F8WpCgsLLe6LiIgw+3tfnb3JdTyyD1Jubi5yc3Mt7t+xYwfWr1+PNWvWAAB27dqFw4cPY+/evdiyZQsAoKSkxKZrRUdHIy0tDadOncLy5cvNHtPd3Y3u7m7xcVtbm42vhIiI+mMw9MExnA8pNTVVDDrmZsmWy+UoLi4Wfx8ofS2g68s8sgbJmp6eHly+fBk5OTniNrlcjpycHJw9e9amc9TX16O9vR3A08m1Tp48iQkTJlg8fvv27YiIiBB/EhISHHsRREQ06OmbyI4cOYLCwkLIZDJxmzlyudxsODLsiyRdCNeQTqezawFbcwvo0l94ZA2SNY2NjdBqtYiOjjbaHh0djVu3btl0jnv37uG1114TO2dv3LgRU6ZMsXj81q1bUVBQID5ua2tjSCIioj7JZDKTfkeWapasnUO/9AgAo4Vw9fqz7Ii5BXR9fcoFQ14XkJwhKyvL5iY4AFAoFFAoFCgqKkJRUZFT1kwjIiLfZBh4bG3a0gctS0uvtLa2Gv1uuOyItBnNnlomZ/OmxXU9v4QSUVFR8PPzM+lUXV9fj5iYGJdeOz8/Hzdv3sTFixddeh0iIhrc9IHH1f1+pM1oOp0OCxcuxMKFCwe8Sc3w2u4MabbyuoAUGBiIjIwMsTMb8PSmFxcXY+bMmW4sGRERkWeRNqMZVi6sWrVqQMsireXydB7ZxNbR0WHUw7+qqgolJSWIjIxEYmIiCgoKkJeXh8zMTGRlZWHnzp3o7OwUR7W5CpvYiIjcKyoqCk+ePPGKD1hXUCqVZkfB9cfjx49tPtYXR7t5ZA3SpUuXkJ6ejvT0dABAQUEB0tPTsW3bNgDAypUr8atf/Qrbtm2DSqVCSUkJjh49atJx29nYxEZE5F6pqakICAhwdzHcxtooOD2NRmOx+cxwSRNb6XQ6vPbaaz432s0ja5Dmz5/f5z/Ahg0bsGHDhgEqERERkecy7NPzyiuvIDU1Fe+99x42bdpkdNzatWvtOq8gCHj99dfFGitfGu3mkTVInqqoqAiTJ0/G9OnT3V0UIiIi0Y9//GOjx6WlpWhpaXG4KU6j0TilOc8bMSDZgU1sRETkLV5++WV3F8GrMSARERF5EcOZtceOHdvn8fHx8UaPP/vsM5eUa7DxyD5IREREZJ4tM2sbeu+994xqk7j4rW1Yg2QH9kEiIiJPYG4JE2vHkv0YkOzAPkhERJ5lyJAh7i4CDVJ2ByS1Wo3a2lqT7fqZOomIiAZKWlqau4vg0ZKTkxERESH2WbJlcVx6yq6A9Pvf/x7jxo3DkiVLMHXqVJw/f17c9+qrrzq9cERERNb4evORYYdtcwoLCyGXy1FYWIgjR470Ockk/YVdAemdd97B5cuXUVJSgo8//hjr1q0Te8P7wsya7INERESeRN9h+8svv+zzuIFYHHcwsWsU25MnT8TlPDIyMnDy5Em89NJLqKio8Imbnp+fj/z8fLS1tSEiIsLdxSEiIoJMJmOzmQvYVYM0YsQIXL9+XXwcGRmJP/3pT/j222+NthMRERF5M7sC0u9+9zuMGDHCaFtgYCAOHDiAr7/+2qkFIyIiInIXu5rYpLNxGpo9e7bDhSEiIiLyBE6ZB+nJkyeorq5GeXk5mpqanHFKj8RO2kRERKYEQYBarR5UA7b6HZDa29vx4Ycf4plnnkF4eDiSkpIwadIkDB8+HKNGjcL69esH3YSKnCiSiIgGs/4EHUEQsHHjRixevBibNm0aNCGpXwFpx44dSEpKwscff4ycnBwcOnQIJSUluH37Ns6ePYu33noLvb29eO655/D888/jzp07zi43EREROVl/go5GoxEniy4tLRXXiPN2/Vqs9uLFizh58iRSUlLM7s/KysLatWvx4YcfYt++fTh16hTGjRvnUEGJiIjIdVpaWuwOOjqdbtDUGEn1KyAdOHDApuOUSiX++q//uj+XICIiogH0yiuv2HW8TqfDwoUL+3UtbwhV/QpIUsXFxSguLkZDQwN0Op3Rvr179zrjEkRERORBWltb+/3czZs3Y//+/R49ybTDo9jefvttPPfccyguLkZjYyOam5uNfgYTjmIjIiJP1NeabJ7AcLbvmpoaj++r5HAN0q5du7Bv3z6fWKyWS40QEZEn0q/J1tLSgmXLlrm7OIOCwzVIPT09mDVrljPKQkRERP3ENdmcy+GA9Fd/9Vf47LPPnFEWIiIi8iGePMGkw01sGo0Ge/bswZ///GdMnToVAQEBRvt37Njh6CWIiIjIBvq+SKWlpUhNTfX4GqWNGzeirKwMqampKCws9KhO2w4HpOvXr0OlUgF4Om+CIU96oURERIOdvi+SRqOBUql06HNYEASXfo6bm2AyKCjIZdezl8MB6fjx484oBxERETmBTCZzStBYsmQJDh8+bHG/p9dOOcopi9USERHR4OPIXEfezikTRQLAzZs3cf/+ffT09Bhtf+GFF5x1CSIiInKzTZs2Yc+ePe4uhss5HJC+++47vPTSS7hx4wZkMpnYE13fbqnVah29BBERkcgTRzx5E8OO3PaIj49HTU0NKioqPH6SR2dwuIlt8+bNGD16NBoaGhAcHIyysjKcPHkSmZmZOHHihBOK6Dk4kzYREXk7fUdue6foee+991xUIs/kcEA6e/Ys/umf/glRUVGQy+WQy+WYM2cOtm/fjk2bNjmjjB4jPz8fN2/exMWLF91dFCIion7rz6SSvjYy3eGApNVqERYWBgCIiorCgwcPAACjRo1CeXm5o6cnIiIiGnAO90FKTU3FtWvXMHr0aGRnZ+Pdd99FYGAg9uzZgzFjxjijjERERORFdDodAEAu997B8g4HpL//+79HZ2cnAODtt9/G0qVLMXfuXAwbNgwHDx50uIBERETkPQRBwMKFCwEAxcXFXhuSHA5IixYtEn8fN24cbt26haamJgwdOtTn2iuJiIh8neHcSa2trRg6dKgbS9N/Tol1p06dwo9//GPMnDkTtbW1iIyMxL//+7/jm2++ccbpiYiIyMMM9qH+DgekL774AosWLUJQUBCuXr2K7u5uAE9T4y9+8QuHC0hERESeZePGjVi2bJm7i+FSDgekd955B7t27cJHH32EgIAAcfvs2bNx5coVR09PREREHqaystLdRXA5hwNSeXk55s2bZ7I9IiICLS0tjp6eiIiIaMA5HJBiYmJQUVFhsv2bb77x+GH+XV1dGDVqFN544w13F4WIiIg8iMMBaf369di8eTPOnz8PmUyGBw8e4NNPP8Ubb7yBv/mbv3FGGV3m5z//OWbMmOHuYhAREZGHcXiY/5YtW6DT6bBw4UJ0dXVh3rx5UCgUeOONN7Bx40ZnlNEl7ty5g1u3bmHp0qV2L9hHREREg5vDNUgymQw/+9nP0NTUhNLSUpw7dw6PHj3CP//zP/f7nCdPnsTSpUsRFxcHmUyGQ4cOmRxTVFSEpKQkKJVKZGdn48KFC3Zd44033sD27dv7XUYiIiIavByuQdILDAzE5MmTnXKuzs5OpKWlYe3atWaHER48eBAFBQXYtWsXsrOzsXPnTixatAjl5eUYMWIEAEClUqG3t9fkuceOHcPFixcxfvx4jB8/HmfOnOmzPN3d3eL0BQDQ1tbmwKsjIiIiT+eUgKTRaHD9+nU0NDSI66/ovfDCC3afLzc3F7m5uRb379ixA+vXr8eaNWsAALt27cLhw4exd+9ebNmyBQBQUlJi8fnnzp3Df/zHf+A///M/0dHRgSdPniA8PBzbtm0ze/z27dvx9ttv2/06iIjI+fz8/NxdBPIBDgeko0ePYtWqVWhsbDTZJ5PJoNVqHb2EkZ6eHly+fBlbt24Vt8nlcuTk5ODs2bM2nWP79u1i89q+fftQWlpqMRwBwNatW1FQUCA+bmtrQ0JCQj9fAREROWLs2LHo6urCyJEj3V0UGsQc7oO0ceNGrFixAg8fPoROpzP6cXY4AoDGxkZotVpER0cbbY+OjkZdXZ3TrwcACoUC4eHhRj9EROQeCoUCmZmZiI2NdXdRaBBzuAapvr4eBQUFJoHFW6xevdrmY4uKilBUVOSS4EdERESew+EapOXLl+PEiRNOKIptoqKi4Ofnh/r6eqPt9fX1iImJcem18/PzcfPmTVy8eNGl1yEiIiL3crgG6YMPPsCKFStw6tQpTJkyxWg9NgDYtGmTo5cwEhgYiIyMDBQXF+MHP/gBAECn06G4uBgbNmxw6rWkWINERETkGxwOSAcOHMCxY8egVCpx4sQJyGQycZ9MJutXQOro6DBavqSqqgolJSWIjIxEYmIiCgoKkJeXh8zMTGRlZWHnzp3o7OwUR7W5Sn5+PvLz89HW1oaIiAiXXouIiMjbCYLg7iL0m8MB6Wc/+xnefvttbNmyBXK5wy12AIBLly5hwYIF4mP9CLK8vDzs27cPK1euxKNHj7Bt2zbU1dVBpVLh6NGjXtsPioiIyBM5GnA2b96M/fv3G1WeeAuHA1JPTw9WrlzptHAEAPPnz+/zH2XDhg0ub1IjIiLyZZs3b7b7OQqFQvy9pqYGGo0GQUFBzizWgHA41eTl5eHgwYPOKIvHKyoqwuTJkzF9+nR3F4WIiMjlzM1x2BdvrC0yx+EaJK1Wi3fffRdfffUVpk6datJJe8eOHY5ewmOwDxIREZFvcDgg3bhxA+np6QCA0tJSo32DJUUSERGRb3E4IB0/ftwZ5fAKHOZPRETkG/rdB2nbtm24fPmyM8vi8ThRJBERkW/od0CqqalBbm4u4uPj8Td/8zf44x//iJ6eHmeWjYiIiMgt+h2Q9u7di7q6Ohw4cABhYWH4yU9+gqioKLz88svYv38/mpqanFlOIiIiogHj0DB/uVyOuXPn4t1330V5eTnOnz+P7Oxs7N69G3FxcZg3bx5+9atfoba21lnldSsO8yciIvINzpvdEcCkSZPwd3/3dzh9+jSqq6uRl5eHU6dO4cCBA868jNuwDxIREZFvcHgUm1qthiAICA4OBgDcu3cPf/jDHzB58mSsW7cO69atc7iQRERERAPJ4RqkF198Efv37wcAtLS0ICsrC7/+9a/x4osv4sMPP3S4gEREREQDzeGAdOXKFcydOxcA8Pvf/x4xMTG4d+8e9u/fj8LCQocLSERERDTQHA5IXV1dCAsLAwAcO3YMy5Ytg1wux4wZM3Dv3j2HC+hJ2EmbiIjINzgckJKTk3Ho0CFUV1fjq6++wnPPPQcAaGhoQHh4uMMF9CTspE1EROQbHA5I27ZtwxtvvIGkpCRkZWVh5syZAJ7WJunXaCMiIiLyJg6PYlu+fDnmzJmDhw8fIi0tTdy+cOFCvPTSS46enoiIiGjAORyQAGDIkCG4f/8+jhw5Ap1OJ26vq6vDxIkTnXEJIiIiogHjcEA6evQoXn31VTx+/Nhkn0wm48r3RERE5HUc7oO0ceNG/PCHP8TDhw+h0+mMfhiOiIiIyBs5HJDq6+tRUFCA6OhoZ5THo3GYPxERkW9wOCAtX74cJ06ccEJRPB+H+RMREfkGh/sgffDBB1ixYgVOnTqFKVOmICAgwGj/pk2bHL0EERER0YByOCAdOHAAx44dg1KpxIkTJyCTycR9MpmMAYmIiIi8jsMB6Wc/+xnefvttbNmyBXK5wy12RERERG7ncKLp6enBypUrGY6IiIho0HA41eTl5eHgwYPOKAsRERGRR3C4iU2r1eLdd9/FV199halTp5p00t6xY4ejlyAiIiIaUA4HpBs3boiL0paWlhrtM+ywTUREROQtHA5Ix48fd0Y5vEJRURGKioo4QzgREdEg51AfpCdPnmDhwoW4c+eOs8rj0ThRJBERkW9wKCAFBATg+vXrzioLERERkUdweBTbj3/8Y/z2t791RlmIiIiIPILDfZB6e3uxd+9e/PnPf0ZGRgZCQkKM9nMUGxEREXkbhwNSaWkppk2bBgC4ffu20T6OYiMiIiJvxFFsRERERBL96oN0//59u46vra3tz2WIiIiI3KJfAWn69Ol4/fXXrQ53b21txUcffYTU1FR88cUX/S4gERER0UDrVxPbzZs38fOf/xzf+973oFQqkZGRgbi4OCiVSjQ3N+PmzZsoKyvDtGnT8O6772Lx4sXOLjcRERGRy/QrIA0bNgw7duzAz3/+cxw+fBjffPMN7t27B7VajaioKPzoRz/CokWLkJqa6uzyOk1SUhLCw8Mhl8sxdOhQ9qUiIiIikUOdtIOCgrB8+XIsX77cWeUZUGfOnEFoaKi7i0FEREQexuGJIomIiIgGG48MSCdPnsTSpUsRFxcHmUyGQ4cOmRxTVFSEpKQkKJVKZGdn48KFC3ZdQyaT4ZlnnsH06dPx6aefOqnkRERENBg4PA+SK3R2diItLQ1r167FsmXLTPYfPHgQBQUF2LVrF7Kzs7Fz504sWrQI5eXlGDFiBABApVKht7fX5LnHjh1DXFwcvvnmG4wcORIPHz5ETk4OpkyZgqlTp7r8tREREZHn88iAlJubi9zcXIv7d+zYgfXr12PNmjUAgF27duHw4cPYu3cvtmzZAgAoKSmxeo2RI0cCAGJjY7F48WJcuXLFYkDq7u5Gd3e3+Litrc2el0NERERexiOb2Kzp6enB5cuXkZOTI26Ty+XIycnB2bNnbTpHZ2cn2tvbAQAdHR34n//5H6SkpFg8fvv27YiIiBB/EhISHHsRRERE5NG8LiA1NjZCq9UiOjraaHt0dDTq6upsOkd9fT3mzJmDtLQ0zJgxA6tWrcL06dMtHr9161a0traKP9XV1Q69BiIiIvJsHtnE5mpjxozBtWvXbD5eoVBAoVCgqKgIRUVF0Gq1LiwdERERuZvX1SBFRUXBz88P9fX1Rtvr6+sRExPj0mvn5+fj5s2bVpdYISIiIu/ndQEpMDAQGRkZKC4uFrfpdDoUFxdj5syZbiwZERERDRYe2cTW0dGBiooK8XFVVRVKSkoQGRmJxMREFBQUIC8vD5mZmcjKysLOnTvR2dkpjmpzFTaxERER+QaPDEiXLl3CggULxMcFBQUAgLy8POzbtw8rV67Eo0ePsG3bNtTV1UGlUuHo0aMmHbedLT8/H/n5+Whra0NERIRLr0VERETu45EBaf78+RAEweoxGzZswIYNGwaoRERERORLvK4PkjsVFRVh8uTJVqcEICIiIu/HgGQHjmIjIiLyDQxIRERERBIMSHZgExsREZFvYECyA5vYiIiIfAMDEhEREZEEAxIRERGRBAMSERERkQQDkh3YSZuIiMg3MCDZgZ20iYiIfAMDEhEREZEEAxIRERGRBAMSERERkQQDkh3YSZuIiMg3MCDZgZ20iYiIfAMDEhEREZEEAxIRERGRBAMSERERkQQDEhEREZEEA5IdOIqNiIjINzAg2YGj2IiIiHwDAxIRERGRBAMSERERkQQDEhEREZEEAxIRERGRBAMSERERkQQDEhEREZEEAxIRERGRBAOSHThRJBERkW9gQLIDJ4okIiLyDQxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEj4bkKqqqrBgwQJMnjwZU6ZMQWdnp7uLRERERB7C390FcJfVq1fjnXfewdy5c9HU1ASFQuHuIhEREZGH8MmAVFZWhoCAAMydOxcAEBkZ6eYSERERkSfxyCa2kydPYunSpYiLi4NMJsOhQ4dMjikqKkJSUhKUSiWys7Nx4cIFm89/584dhIaGYunSpZg2bRp+8YtfOLH0RERE5O08sgaps7MTaWlpWLt2LZYtW2ay/+DBgygoKMCuXbuQnZ2NnTt3YtGiRSgvL8eIESMAACqVCr29vSbPPXbsGHp7e3Hq1CmUlJRgxIgReP755zF9+nR873vfM1ue7u5udHd3i4/b2tqc9EqJiIjIE3lkQMrNzUVubq7F/Tt27MD69euxZs0aAMCuXbtw+PBh7N27F1u2bAEAlJSUWHz+yJEjkZmZiYSEBADA4sWLUVJSYjEgbd++HW+//XY/Xw0RERF5G49sYrOmp6cHly9fRk5OjrhNLpcjJycHZ8+etekc06dPR0NDA5qbm6HT6XDy5ElMmjTJ4vFbt25Fa2ur+FNdXe3w6yAiIiLP5ZE1SNY0NjZCq9UiOjraaHt0dDRu3bpl0zn8/f3xi1/8AvPmzYMgCHjuuefw/e9/3+LxCoWCo9yIiIh8iNcFJGfpqxnPnKKiIhQVFUGr1bqoVEREROQJvK6JLSoqCn5+fqivrzfaXl9fj5iYGJdeOz8/Hzdv3sTFixddeh0iIiJyL68LSIGBgcjIyEBxcbG4TafTobi4GDNnznTptYuKijB58mRMnz7dpdchIiIi9/LIJraOjg5UVFSIj6uqqlBSUoLIyEgkJiaioKAAeXl5yMzMRFZWFnbu3InOzk5xVJur5OfnIz8/H21tbYiIiHDptYiIiMh9PDIgXbp0CQsWLBAfFxQUAADy8vKwb98+rFy5Eo8ePcK2bdtQV1cHlUqFo0ePmnTcJiIiIuoPjwxI8+fPhyAIVo/ZsGEDNmzYMEAleoqdtImIiHyD1/VBcid20iYiIvINDEhEREREEgxIRERERBIMSHbgMH8iIiLfwIBkB/ZBIiIi8g0MSEREREQSDEhEREREEgxIdmAfJCIiIt/AgGQH9kEiIiLyDQxIRERERBIMSEREREQSDEhEREREEgxIdmAnbSIiIt/AgGQHdtImIiLyDQxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEh24DB/IiIi38CAZAcO8yciIvINDEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIRERERBIMSEREREQSDEhEREREEgxIduBEkURERL6BAckOnCiSiIjINzAgEREREUkwIBERERFJMCARERERSTAgEREREUkwIBERERFJMCARERERSTAgEREREUkwIBERERFJ+GRAKi8vh0qlEn+CgoJw6NAhdxeLiIiIPIS/uwvgDhMmTEBJSQkAoKOjA0lJSfje977n3kIRERGRx/DJGiRD//3f/42FCxciJCTE3UUhIiIiD+GRAenkyZNYunQp4uLiIJPJzDZ/FRUVISkpCUqlEtnZ2bhw4UK/rvX5559j5cqVDpaYiIiIBhOPDEidnZ1IS0tDUVGR2f0HDx5EQUEB3nrrLVy5cgVpaWlYtGgRGhoaxGNUKhVSU1NNfh48eCAe09bWhjNnzmDx4sUuf01ERETkPTyyD1Jubi5yc3Mt7t+xYwfWr1+PNWvWAAB27dqFw4cPY+/evdiyZQsAiH2MrPmv//ovPPfcc1AqlVaP6+7uRnd3t/i4ra3NhldBRERE3soja5Cs6enpweXLl5GTkyNuk8vlyMnJwdmzZ+06l63Na9u3b0dERIT4k5CQYHe5iYiIyHt4XUBqbGyEVqtFdHS00fbo6GjU1dXZfJ7W1lZcuHABixYt6vPYrVu3orW1Vfyprq62u9xERETkPTyyiW0gREREoL6+3qZjFQoFFAoFioqKUFRUBK1W6+LSERERkTt5XQ1SVFQU/Pz8TMJNfX09YmJiXHrt/Px83Lx5ExcvXnTpdYiIiMi9vC4gBQYGIiMjA8XFxeI2nU6H4uJizJw5040lIyIiosHCI5vYOjo6UFFRIT6uqqpCSUkJIiMjkZiYiIKCAuTl5SEzMxNZWVnYuXMnOjs7xVFtrsImNiIiIt/gkQHp0qVLWLBggfi4oKAAAJCXl4d9+/Zh5cqVePToEbZt24a6ujqoVCocPXrUpOO2s+Xn5yM/Px9tbW2IiIhw6bWIiIjIfTwyIM2fPx+CIFg9ZsOGDdiwYcMAlYiIiIh8idf1QXKnoqIiTJ48GdOnT3d3UYiIiMiFGJDswFFsREREvoEBiYiIiEiCAckObGIjIiLyDQxIdmATGxERkW9gQCIiIiKSYEAiIiIikmBAsgP7IBEREfkGBiQ7sA8SERGRb2BAIiIiIpJgQCIiIiKSYEAiIiIikmBAIiIiIpJgQLIDR7ERERH5BgYkO3AUGxERkW9gQCIiIiKSYEAiIiIikmBAIiIiIpJgQCIiIiKSYECyA0exERER+QYGJDtwFBsREZFvYEAiIiIikvB3dwG8kSAIAIC2tjY3l4SIaPBqb29HZ2en0TZz77vSY8g2XV1dLjleelxXVxd0Oh00Go1Nxxly9ues/nz6z3FrZIItR5GRmpoaJCQkuLsYRERE1A/V1dWIj4+3egwDUj/odDo8ePAAYWFhkMlkNj9v+vTpNvdf6utYa/st7TO3va9tbW1tSEhIQHV1NcLDw20quyPsuUeOPNeWY111j3l/+z7GWfcXGNh77Mj9tff5vvge4Un3t69jbL2X5rbzPaLvY/r7NywIAjIyMnD79m3I5dZ7GbGJrR/kcnmfydMcPz8/m//A+zrW2n5L+8xtt3VbeHj4gPzntOceOfJcW4511T3m/e37GGffX2Bg7rEj99fe5/vie4Qn3d++jrH1vpnbzveIvo9x5G84MDCwz3AEsJP2gMrPz3fasdb2W9pnbrut2waKI9d25v3t6xhH7jHvb9/H+OL9tff5vvge4Un3t69j7Llvg+Vv2N3319L2/t5fNrGRVW1tbYiIiEBra+uAfHvxNby/rsd77Fq8v67F++s+rEEiqxQKBd566y0oFAp3F2VQ4v11Pd5j1+L9dS3eX/dhDRIRERGRBGuQiIiIiCQYkIiIiIgkGJCIiIiIJBiQiIiIiCQYkIiIiIgkGJDIKaqrqzF//nxMnjwZU6dOxX/+53+6u0iD0ksvvYShQ4di+fLl7i7KoPB//+//xYQJEzBu3Dj827/9m7uLM+jw79W1+L7rWhzmT07x8OFD1NfXQ6VSoa6uTlzrJiQkxN1FG1ROnDiB9vZ2fPLJJ/j973/v7uJ4td7eXkyePBnHjx9HREQEMjIycObMGQwbNszdRRs0+PfqWnzfdS3WIJFTxMbGQqVSAQBiYmIQFRWFpqYm9xZqEJo/fz7CwsLcXYxB4cKFC0hJScHIkSMRGhqK3NxcHDt2zN3FGlT49+pafN91LQYkH3Hy5EksXboUcXFxkMlkOHTokMkxRUVFSEpKglKpRHZ2Ni5cuNCva12+fBlarRYJCQkOltq7DOQ9Jsfv94MHDzBy5Ejx8ciRI1FbWzsQRfcK/Ht2PWfeY19933UlBiQf0dnZibS0NBQVFZndf/DgQRQUFOCtt97ClStXkJaWhkWLFqGhoUE8RqVSITU11eTnwYMH4jFNTU1YtWoV9uzZ4/LX5GkG6h7TU86432QZ76/rOese+/L7rksJ5HMACH/4wx+MtmVlZQn5+fniY61WK8TFxQnbt2+3+bwajUaYO3eusH//fmcV1Wu56h4LgiAcP35cePnll51RzEGjP/f79OnTwg9+8ANx/+bNm4VPP/10QMrrbRz5e+bfq236e4/5vus6rEEi9PT04PLly8jJyRG3yeVy5OTk4OzZszadQxAErF69Gs8++yxeffVVVxXVaznjHpPtbLnfWVlZKC0tRW1tLTo6OvDHP/4RixYtcleRvQr/nl3PlnvM913XYkAiNDY2QqvVIjo62mh7dHQ06urqbDrH6dOncfDgQRw6dAgqlQoqlQo3btxwRXG9kjPuMQDk5ORgxYoVOHLkCOLj4/lhZIEt99vf3x+//vWvsWDBAqhUKvzv//2/OYLNRrb+PfPvtf9sucd833Utf3cXgAaHOXPmQKfTubsYg96f//xndxdhUHnhhRfwwgsvuLsYgxb/Xl2L77uuxRokQlRUFPz8/FBfX2+0vb6+HjExMW4q1eDCezyweL9di/fX9XiP3Y8BiRAYGIiMjAwUFxeL23Q6HYqLizFz5kw3lmzw4D0eWLzfrsX763q8x+7HJjYf0dHRgYqKCvFxVVUVSkpKEBkZicTERBQUFCAvLw+ZmZnIysrCzp070dnZiTVr1rix1N6F93hg8X67Fu+v6/Eeezh3D6OjgXH8+HEBgMlPXl6eeMz7778vJCYmCoGBgUJWVpZw7tw59xXYC/EeDyzeb9fi/XU93mPPxrXYiIiIiCTYB4mIiIhIggGJiIiISIIBiYiIiEiCAYmIiIhIggGJiIiISIIBiYiIiEiCAYmIiIhIggGJiIiISIIBiYjITXp6epCcnIwzZ8449bxHjx6FSqXiSu9EDmBAIiKnWL16NWQymcmP4VpTZGzXrl0YPXo0Zs2aJW6TyWQ4dOiQybGrV6/GD37wA5vO+/zzzyMgIACffvqpk0pK5HsYkIjIaZ5//nk8fPjQ6Gf06NEmx/X09LihdJ5FEAR88MEHWLdunUvOv3r1ahQWFrrk3ES+gAGJiJxGoVAgJibG6MfPzw/z58/Hhg0b8JOf/ARRUVFYtGgRAKC0tBS5ubkIDQ1FdHQ0Xn31VTQ2Norn6+zsxKpVqxAaGorY2Fj8+te/xvz58/GTn/xEPMZcjcuQIUOwb98+8XF1dTV++MMfYsiQIYiMjMSLL76Iu3fvivv1tTO/+tWvEBsbi2HDhiE/Px9PnjwRj+nu7sabb76JhIQEKBQKJCcn47e//S0EQUBycjJ+9atfGZWhpKTEag3a5cuXUVlZiSVLlth5l4G7d++ara2bP3++eMzSpUtx6dIlVFZW2n1+ImJAIqIB8sknnyAwMBCnT5/Grl270NLSgmeffRbp6em4dOkSjh49ivr6evzwhz8Un/PTn/4UX3/9Nf7rv/4Lx44dw4kTJ3DlyhW7rvvkyRMsWrQIYWFhOHXqFE6fPo3Q0FA8//zzRjVZx48fR2VlJY4fP45PPvkE+/btMwpZq1atwoEDB1BYWIhvv/0Wu3fvRmhoKGQyGdauXYuPP/7Y6Loff/wx5s2bh+TkZLPlOnXqFMaPH4+wsDC7Xg8AJCQkGNXSXb16FcOGDcO8efPEYxITExEdHY1Tp07ZfX4iAiAQETlBXl6e4OfnJ4SEhIg/y5cvFwRBEJ555hkhPT3d6Ph//ud/Fp577jmjbdXV1QIAoby8XGhvbxcCAwOFzz//XNz/+PFjISgoSNi8ebO4DYDwhz/8weg8ERERwscffywIgiD87ne/EyZMmCDodDpxf3d3txAUFCR89dVXYtlHjRol9Pb2isesWLFCWLlypSAIglBeXi4AEP70pz+Zfe21tbWCn5+fcP78eUEQBKGnp0eIiooS9u3bZ/F+bd68WXj22WdNtgMQlEql0X0MCQkR/P39hRdffNHkeLVaLWRnZwvf//73Ba1Wa7QvPT1d+Md//EeLZSAiy/zdG8+IaDBZsGABPvzwQ/FxSEiI+HtGRobRsdeuXcPx48cRGhpqcp7Kykqo1Wr09PQgOztb3B4ZGYkJEybYVaZr166hoqLCpKZGo9EYNT+lpKTAz89PfBwbG4sbN24AeNpc5ufnh2eeecbsNeLi4rBkyRLs3bsXWVlZ+D//5/+gu7sbK1assFgutVoNpVJpdt9vfvMb5OTkGG178803odVqTY5du3Yt2tvb8ac//QlyuXGjQFBQELq6uiyWgYgsY0AiIqcJCQmx2KRkGJYAoKOjA0uXLsW//Mu/mBwbGxtr8+g3mUwGQRCMthn2Hero6EBGRobZEV3Dhw8Xfw8ICDA5r36YfFBQUJ/l+Ku/+iu8+uqr+M1vfoOPP/4YK1euRHBwsMXjo6KixAAmFRMTY3Ifw8LC0NLSYrTtnXfewVdffYULFy6Ybapramoyeo1EZDsGJCJyi2nTpuGLL75AUlIS/P1N34rGjh2LgIAAnD9/HomJiQCA5uZm3L5926gmZ/jw4Xj48KH4+M6dO0a1JtOmTcPBgwcxYsQIhIeH96usU6ZMgU6nw9dff21Ss6O3ePFihISE4MMPP8TRo0dx8uRJq+dMT0/Hhx9+CEEQIJPJ7C7TF198gX/6p3/CH//4R4wdO9Zkv76GLD093e5zExE7aRORm+Tn56OpqQn/63/9L1y8eBGVlZX46quvsGbNGmi1WoSGhmLdunX46U9/iv/5n/9BaWkpVq9ebdKM9Oyzz+KDDz7A1atXcenSJfz1X/+1UW3Qj370I0RFReHFF1/EqVOnUFVVhRMnTmDTpk2oqamxqaxJSUnIy8vD2rVrcejQIfEcn3/+uXiMn58fVq9eja1bt2LcuHGYOXOm1XMuWLAAHR0dKCsrs+OuPVVaWopVq1bhzTffREpKCurq6lBXV4empibxmHPnzkGhUPRZDiIyjwGJiNwiLi4Op0+fhlarxXPPPYcpU6bgJz/5CYYMGSKGoF/+8peYO3culi5dipycHMyZM8ekL9Ovf/1rJCQkYO7cuXjllVfwxhtvGDVtBQcH4+TJk0hMTMSyZcswadIkrFu3DhqNxq4apQ8//BDLly/H3/7t32LixIlYv349Ojs7jY5Zt24denp6sGbNmj7PN2zYMLz00kv9mszx0qVL6OrqwjvvvIPY2FjxZ9myZeIxBw4cwI9+9COrzXxEZJlMkDbeExF5sPnz50OlUmHnzp3uLoqJU6dOYeHChaiurkZ0dHSfx1+/fh3f+973UFlZabazen81NjZiwoQJuHTpktmJOomob6xBIiJyUHd3N2pqavCP//iPWLFihU3hCACmTp2Kf/mXf0FVVZVTy3P37l3867/+K8MRkQPYSZuIyEEHDhzAunXroFKpsH//frueu3r1aqeXJzMzE5mZmU4/L5EvYRMbERERkQSb2IiIiIgkGJCIiIiIJBiQiIiIiCQYkIiIiIgkGJCIiIiIJBiQiIiIiCQYkIiIiIgkGJCIiIiIJBiQiIiIiCT+H3vHnlPZJxjuAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.plot(cs.freq, cs.power * cs.freq, drawstyle=\"steps-mid\", color=\"grey\", alpha=0.5)\n", + "plt.plot(cs_reb.freq, cs_reb.power * cs_reb.freq, drawstyle=\"steps-mid\", color=\"k\")\n", + "plt.loglog()\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\");" + ] + }, + { + "cell_type": "markdown", + "id": "65989f28", + "metadata": {}, + "source": [ + "## Periodogram modeling\n", + "\n", + "This periodogram has a number of broad components, that can be approximated by Lorentzian curves.\n", + "Let us try to model it.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "d3470baa", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 28.75it/s]\n" + ] + } + ], + "source": [ + "pds = AveragedPowerspectrum.from_events(events, segment_size=segment_size, dt=dt, norm=\"leahy\")\n", + "pds_reb = pds.rebin_log(0.02)" + ] + }, + { + "cell_type": "markdown", + "id": "9f39a4f5", + "metadata": {}, + "source": [ + "We will model the periodogram using the maximum likelihood estimation from [Barret & Vaughan 2012](https://ui.adsabs.harvard.edu/abs/2012ApJ...746..131B/abstract).\n", + "\n", + "For periodograms averaged over $L$ independent segments and $M$ independent neighbouring frequencies,\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2ML \\sum_{j=1}^{N/2} \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ML} - 1 \\right)\\ln{P_j} + c(2ML) }\\right\\} \\; ,\n", + "$$\n", + "where $\\theta$ are the model parameters, $P_j$ are the periodogram values, $S_j$ the model of the underlying signal, $c(2ML)$ is a factor independent of $P_j$ or $S_j$, and thus unimportant to the parameter estimation problem considered here (it only scales the likelihood, but does not change its shape). \n", + "\n", + "For non-uniformly binned periodograms, the factor $ML$ should go inside the sum:\n", + "$$\n", + "\\mathcal{L}_\\mathrm{avg}(\\theta) = -2\\sum_{j=1}^{N/2} M_j L_j \\left\\{ \\frac{P_j}{S_j(\\theta)} + \\ln{S_j(\\theta) + \\left( \\frac{1}{ M_j L_j } - 1 \\right)\\ln{P_j} + c(2 M_j L_j ) }\\right\\} \n", + "$$\n", + "\n", + "This is the formula that we will apply here.\n", + "\n", + "Let us now create an initial model that more or less describes the periodogram" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "fd07a563", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(0.0, 1042.102641366527)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG1CAYAAAAGD9vIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACSgElEQVR4nO3dd3iT1dvA8W866aBsWlCWgAgIlCEILYiCgCIKIoqDoSiCIKAy5KeyHAiK+IIKToYiICqoqOxV9ixLRDYIbQGhG7py3j8OSZO2KWmTNml7f64rV5MnJ89zMprnzhn3MSilFEIIIYQQIhsPV1dACCGEEMJdSaAkhBBCCGGDBEpCCCGEEDZIoCSEEEIIYYMESkIIIYQQNkigJIQQQghhgwRKQgghhBA2SKAkhBBCCGGDl6srUJQZjUYuXLhA6dKlMRgMrq6OEEIIIeyglCIhIYGqVavi4ZF7m5EESg64cOEC1apVc3U1hBBCCJEP586d49Zbb821jARKDihdujSgX+igoCAX10YIIYQQ9oiPj6datWrm83huJFBygKm7LSgoSAIlIYQQooixZ9iMDOYWQgghhLBBAiUhhBBCCBuk600IIYTLZWRkkJaW5upqiGLC29sbT09Pp+xLAiUhhBAuo5QiOjqa2NhYV1dFFDNly5YlJCTE4fQ9EigJIYRwGVOQVLlyZfz9/SUnnXCYUork5GQuXrwIQJUqVRzanwRKQgghXCIjI8McJFWoUMHV1RHFiJ+fHwAXL16kcuXKDnXDyWBuIYQQLmEak+Tv7+/imojiyPS5cnTsm1sGSps2baJbt25UrVoVg8HAsmXLrO5XSjFu3DiqVKmCn58fHTt25NixY1Zlrly5wtNPP01QUBBly5ZlwIABJCYmWpU5cOAAbdu2pVSpUlSrVo2pU6cW9FMTQgiRhXS3iYLgrM+VWwZKSUlJNGnShE8//TTH+6dOncqMGTOYPXs2O3bsICAggM6dO3P9+nVzmaeffprDhw+zevVqli9fzqZNmxg4cKD5/vj4eDp16kSNGjXYs2cPH3zwARMmTOCLL74o8OcnhBBCiCJCuTlALV261HzbaDSqkJAQ9cEHH5i3xcbGKl9fX7Vw4UKllFJ//fWXAtSuXbvMZf78809lMBjU+fPnlVJKffbZZ6pcuXIqJSXFXGbMmDGqXr16dtctLi5OASouLi6/T08IIUqsa9euqb/++ktdu3bN1VURxVBun6+8nL/dskUpN6dOnSI6OpqOHTuat5UpU4ZWrVqxbds2ALZt20bZsmVp0aKFuUzHjh3x8PBgx44d5jLt2rXDx8fHXKZz584cPXqUq1ev5njslJQU4uPjrS5CCCFEfmzYsAGDwZBraoS5c+dStmzZQqtTbiZMmEBoaKirq1HoilygFB0dDUBwcLDV9uDgYPN90dHRVK5c2ep+Ly8vypcvb1Ump31YHiOryZMnU6ZMGfOlWrVqjj8hIYQQRU7//v0xGAwYDAa8vb2pVasWo0ePthoC4gxPPPEE//zzj1P3WVBOnz5tfk0MBgMVKlSgU6dO7Nu3z1ymffv25vt9fX255ZZb6NatGz///HO2/W3cuJH77ruP8uXL4+/vT926denXrx+pqamF+bSKXqDkSmPHjiUuLs58OXfunKurJIQQwkW6dOlCVFQUJ0+eZPr06Xz++eeMHz/eqcfw8/PL9sPf3a1Zs4aoqChWrlxJYmIiDzzwgFWr2QsvvEBUVBQnTpzgp59+okGDBvTu3dtqHPFff/1Fly5daNGiBZs2beLgwYPMnDkTHx8fMjIyCvX5FLlAKSQkBICYmBir7TExMeb7QkJCzImmTNLT07ly5YpVmZz2YXmMrHx9fQkKCrK6iOJNKUVSUpLVRSnl6moJUWzl9D9XWJe8/m/7+voSEhJCtWrV6N69Ox07dmT16tXm+41GI5MnT6ZWrVr4+fnRpEkTfvzxx2z72bJlC40bN6ZUqVLcfffdHDp0yHxf1q43U/fXt99+S82aNSlTpgy9e/cmISHBXKZ9+/YMGzaM0aNHU758eUJCQpgwYYLVMWNjY3n++eepVKkSQUFB3Hfffezfv9+qzPvvv09wcDClS5dmwIABdreWVahQgZCQEFq0aMGHH35ITEyMedgL6Gn7ISEh3Hrrrdx9991MmTKFzz//nC+//JI1a9YAsGrVKkJCQpg6dSp33nkntWvXpkuXLnz55ZfmHEmFpcgFSrVq1SIkJIS1a9eat8XHx7Njxw5at24NQOvWrYmNjWXPnj3mMuvWrcNoNNKqVStzmU2bNlnlV1i9ejX16tWjXLlyhfRshDtTShEeHk5gYKDVpW3bthIsCVFAkpOTs/3PFdYlOTk53/U+dOgQW7dutRr3OnnyZObPn8/s2bM5fPgwr7zyCs888wwbN260euyoUaOYNm0au3btolKlSnTr1i3X3D8nTpxg2bJlLF++nOXLl7Nx40bef/99qzLz5s0jICCAHTt2MHXqVCZNmmQVxPXq1YuLFy/y559/smfPHpo1a0aHDh24cuUKAD/88AMTJkzgvffeY/fu3VSpUoXPPvssz6+LKai5WXdZv379KFeunLkLLiQkhKioKDZt2pTnYzqdc8eYO0dCQoLat2+f2rdvnwLURx99pPbt26fOnDmjlFLq/fffV2XLllW//PKLOnDggHrkkUdUrVq1rEa2d+nSRTVt2lTt2LFDbd68WdWtW1c9+eST5vtjY2NVcHCw6tOnjzp06JBatGiR8vf3V59//rnd9ZRZb8VbYmKiAnK8JCYmurp6QhR5Oc1Kyu3/rqAvefm/7tevn/L09FQBAQHK19dXAcrDw0P9+OOPSimlrl+/rvz9/dXWrVutHjdgwADzuWj9+vUKUIsWLTLf/99//yk/Pz+1ePFipZRSc+bMUWXKlDHfP378eOXv76/i4+PN20aNGqVatWplvn3PPfeo8PBwq+PeddddasyYMUoppSIiIlRQUJC6fv26VZnatWubz4GtW7dWL730ktX9rVq1Uk2aNLH5mpw6dUoBat++fUoppa5evap69OihAgMDVXR0tLluw4cPz/HxrVq1Ug888IBSSqn09HTVv39/BaiQkBDVvXt3NXPmzDydb501680tlzDZvXs39957r/n2q6++CuiIc+7cuYwePZqkpCQGDhxIbGws4eHhrFixglKlSpkfs2DBAoYOHUqHDh3w8PCgZ8+ezJgxw3x/mTJlWLVqFUOGDKF58+ZUrFiRcePGWfWRCmFi6pbNOgFACOFc/v7+2ZIDF+ax8+Lee+9l1qxZJCUlMX36dLy8vOjZsycAx48fJzk5mfvvv9/qMampqTRt2tRqm6k3BKB8+fLUq1ePI0eO2DxuzZo1KV26tPl2lSpVsg03ady4sdVtyzL79+8nMTEx27Ix165d48SJEwAcOXKEQYMGZavn+vXrbdbLpE2bNnh4eJCUlMRtt93G4sWL7fruVEqZk0R6enoyZ84c3nnnHdatW8eOHTt47733mDJlCjt37nR4/ba8cMtAqX379rl2bRgMBiZNmsSkSZNslilfvjzff/99rsdp3LgxERER+a6nKDkCAgJcXQUhSgSDwVBk/t8CAgKoU6cOAN988w1NmjTh66+/tloJ4vfff+eWW26xepyvr69Dx/X29ra6bTAYMBqNdpdJTEykSpUqbNiwIdu+nZGKYPHixTRo0IAKFSrYvb+MjAyOHTvGXXfdZbX9lltuoU+fPvTp04e3336b22+/ndmzZzNx4kSH62kvtwyUhBBCiKLEw8OD//3vf7z66qs89dRTNGjQAF9fX86ePcs999yT62O3b99O9erVAbh69Sr//PMP9evXL7C6NmvWjOjoaLy8vKhZs2aOZerXr8+OHTvo27evVT3tUa1aNWrXrp2nOs2bN4+rV6+aW+RyUq5cOapUqUJSUlKe9u0oCZSEEEIIJ+jVqxejRo3i008/ZeTIkYwcOZJXXnkFo9FIeHg4cXFxbNmyhaCgIPr162d+3KRJk6hQoQLBwcG88cYbVKxYke7duxdYPTt27Ejr1q3p3r07U6dO5fbbb+fChQv8/vvv9OjRgxYtWjB8+HD69+9PixYtCAsLY8GCBRw+fJjbbrvN4eMnJycTHR1Neno6//77L0uXLmX69OkMHjzYPOzm888/JzIykh49elC7dm2uX7/O/PnzOXz4MDNnznS4DnkhgZIQQgjhBF5eXgwdOpSpU6cyePBg3n77bSpVqsTkyZM5efIkZcuWpVmzZvzvf/+zetz777/P8OHDOXbsGKGhofz2229Ws+eczWAw8Mcff/DGG2/w7LPPcunSJUJCQmjXrp15LNETTzzBiRMnzEk0e/bsyeDBg1m5cqXDx//yyy/58ssv8fHxoUKFCjRv3pzFixfTo0cPc5mWLVuyefNmBg0axIULFwgMDKRhw4YsW7bspi10zmZQuQ0GErmKj4+nTJkyxMXFSU6lYigpKYnAwEAA83gDy9tFZRyFEO7q+vXrnDp1ilq1allNxhHCGXL7fOXl/F3k8igJIYQQQhQWCZSEEEIIIWyQQEkIIYQQwgYJlIQQQgghbJBASQghhBDCBgmUhBBCCCFskEBJCCGEEMIGCZSEEEIIIWyQQEkIIYQoovr371+gy50Upg0bNmAwGIiNjbX7MTVr1uTjjz8usDqBBEpCCCFEnl26dInBgwdTvXp1fH19CQkJoXPnzmzZssVcxmAwsGzZMqcc7/Tp0xgMBiIjI622/9///R9z5851yjFy079/fwwGA4MGDcp235AhQzAYDPTv37/A6+EKstabEEIIkUc9e/YkNTWVefPmcdtttxETE8PatWv577//nH6s1NRUm/eVKVPG6cezpVq1aixatIjp06fj5+cH6GVCvv/+e6pXr15o9Shs0qIkhBBC5EFsbCwRERFMmTKFe++9lxo1atCyZUvGjh3Lww8/DOguIYAePXpgMBjMt0+cOMEjjzxCcHAwgYGB3HXXXaxZs8Zq/zVr1uTtt9+mb9++BAUFMXDgQGrVqgVA06ZNMRgMtG/fHsje9da+fXuGDRvG6NGjKV++PCEhIUyYMMFq/3///Tfh4eGUKlWKBg0asGbNGrtav5o1a0a1atX4+eefzdt+/vlnqlevTtOmTa3KpqSkMGzYMCpXrkypUqUIDw9n165dVmX++OMPbr/9dvz8/Lj33ns5ffp0tmNu3ryZtm3b4ufnR7Vq1Rg2bBhJSUm51tPZJFASQgjhPpSCpCTXXOxcIz4wMJDAwECWLVtGSkpKjmVMQcGcOXOIiooy305MTOTBBx9k7dq17Nu3jy5dutCtWzfOnj1r9fgPP/yQJk2asG/fPt566y127twJwJo1a4iKirIKVrKaN28eAQEB7Nixg6lTpzJp0iRWr14NQEZGBt27d8ff358dO3bwxRdf8MYbb9j1vAGee+455syZY779zTff8Oyzz2YrN3r0aH766SfmzZvH3r17qVOnDp07d+bKlSsAnDt3jkcffZRu3boRGRnJ888/z+uvv261jxMnTtClSxd69uzJgQMHWLx4MZs3b2bo0KF219cplMi3uLg4Bai4uDhXV0UUgMTERAUoQCUmJma7LYRwzLVr19Rff/2lrl27lrkxMVEpHbIU/iUP/9c//vijKleunCpVqpRq06aNGjt2rNq/f79VGUAtXbr0pvtq2LChmjlzpvl2jRo1VPfu3a3KnDp1SgFq3759Vtv79eunHnnkEfPte+65R4WHh1uVueuuu9SYMWOUUkr9+eefysvLS0VFRZnvX7169U3rajrOxYsXla+vrzp9+rQ6ffq0KlWqlLp06ZJ65JFHVL9+/ZRS+rvT29tbLViwwPz41NRUVbVqVTV16lSllFJjx45VDRo0sDrGmDFjFKCuXr2qlFJqwIABauDAgVZlIiIilIeHh/kzU6NGDTV9+vQc65zj5+uGvJy/pUVJCCGEyKOePXty4cIFfv31V7p06cKGDRto1qzZTQdWJyYmMnLkSOrXr0/ZsmUJDAzkyJEj2VqUWrRoke+6NW7c2Op2lSpVuHjxIgBHjx6lWrVqhISEmO9v2bKl3fuuVKkSXbt2Ze7cucyZM4euXbtSsWJFqzInTpwgLS2NsLAw8zZvb29atmzJkSNHADhy5AitWrWyelzr1q2tbu/fv5+5c+eaW/ACAwPp3LkzRqORU6dO2V1nR8lgbiGEEO7D3x8SE1137DwoVaoU999/P/fffz9vvfUWzz//POPHj8919tfIkSNZvXo1H374IXXq1MHPz4/HHnss24DtgICA/DwDQAcllgwGA0ajMd/7y+q5554zd399+umnTttvVomJibz44osMGzYs232FOXhcAiUhhBDuw2AAB4IEV2rQoIHVgGhvb28yMjKsymzZsoX+/fvTo0cPQAcDOQ1izsrHxwcg2/7yql69epw7d46YmBiCg4MBsg2yvpkuXbqQmpqKwWCgc+fO2e6vXbs2Pj4+bNmyhRo1agCQlpbGrl27GDFiBAD169fn119/tXrc9u3brW43a9aMv/76izp16uSpfs4mXW9CCCFEHvz333/cd999fPfddxw4cIBTp06xZMkSpk6dyiOPPGIuV7NmTdauXUt0dDRXr14FoG7duvz8889ERkayf/9+nnrqKbtaeypXroyfnx8rVqwgJiaGuLi4fNX9/vvvp3bt2vTr148DBw6wZcsW3nzzTUC3PNnD09OTI0eO8Ndff+Hp6Znt/oCAAAYPHsyoUaNYsWIFf/31Fy+88ALJyckMGDAAgEGDBnHs2DFGjRrF0aNH+f7777N1W44ZM4atW7cydOhQIiMjOXbsGL/88kuhD+aWQEkIIYTIg8DAQFq1asX06dNp164dd955J2+99RYvvPACn3zyibnctGnTWL16NdWqVTNPn//oo48oV64cbdq0oVu3bnTu3JlmzZrd9JheXl7MmDGDzz//nKpVq1oFZHnh6enJsmXLSExM5K677uL55583z3orVaqU3fsJCgoiKCjI5v3vv/8+PXv2pE+fPjRr1ozjx4+zcuVKypUrB+ius59++olly5bRpEkTZs+ezXvvvWe1j8aNG7Nx40b++ecf2rZtS9OmTRk3bhxVq1bNxzPPP4NSds6HFNnEx8dTpkwZ4uLicv3AiKIpKSmJwMBAQDePA1a3HRlDIITQyQpPnTpFrVq18nSSFs61ZcsWwsPDOX78OLVr13Z1dZwmt89XXs7fMkZJCCGEKEGWLl1KYGAgdevW5fjx4wwfPpywsLBiFSQ5kwRKQgghRAmSkJDAmDFjOHv2LBUrVqRjx45MmzbN1dVyWxIoCSGEECVI37596du3r6urUWTIYG4hhBBCCBskUBJCCCGEsEECJSGEEC4lk69FQXDW50oCJSGEEC5hWmojOTnZxTURxZHpc5V1SZe8ksHcQgghXMLT05OyZcuaF2z19/e3Ozu0ELYopUhOTubixYuULVs2x+zheSGBkhBCCJcxrWJvCpaEcJayZcuaP1+OkEBJCCGEyxgMBqpUqULlypVJS0tzdXVEMeHt7e1wS5KJBEpCCCFcztPT02knNiGcSQZzCyGEEELYIIGSEEIIIYQNEigJIYQQQtgggZIQQgghhA0SKAkhhBBC2CCBkhBCCCGEDRIoCSGEEELYIIGSEEIIIYQNEigJIYQQQtgggZIQQgghhA0SKAkhhBBC2CBrvQmRD0opkpKSzLf9/f0xGAwurJEQQoiCIC1KQuRDeHg4gYGB5kvbtm1RSrm6WkIIIZxMAiUh8mH//v1Wt7ds2UJycrKLaiOEEKKgSKAkhANOnjzp6ioIIYQoQBIoCeGAgIAAV1dBCCFEAZJASQghhBDCBgmUhBBCCCFskEBJCCGEEMIGCZSEEEIIIWyQQEkIIYQQwgYJlIQQQgghbJBASQghhBDCBgmUhBBCCCFskEBJCCGEEMKGIhkoZWRk8NZbb1GrVi38/PyoXbs2b7/9ttWipEopxo0bR5UqVfDz86Njx44cO3bMaj9Xrlzh6aefJigoiLJlyzJgwAASExML++kIIYQQwk0VyUBpypQpzJo1i08++YQjR44wZcoUpk6dysyZM81lpk6dyowZM5g9ezY7duwgICCAzp07c/36dXOZp59+msOHD7N69WqWL1/Opk2bGDhwoCuekhBCCCHckEFZNsMUEQ899BDBwcF8/fXX5m09e/bEz8+P7777DqUUVatW5bXXXmPkyJEAxMXFERwczNy5c+nduzdHjhyhQYMG7Nq1ixYtWgCwYsUKHnzwQf7991+qVq1603rEx8dTpkwZ4uLiCAoKKpgnK1wmKSmJwMBAAHNLo+m2SUxMDMHBweYysvabEEK4v7ycv4tki1KbNm1Yu3Yt//zzDwD79+9n8+bNPPDAAwCcOnWK6OhoOnbsaH5MmTJlaNWqFdu2bQNg27ZtlC1b1hwkAXTs2BEPDw927NiR43FTUlKIj4+3ugghhBCi+PJydQXy4/XXXyc+Pp477rgDT09PMjIyePfdd3n66acBiI6OBjD/0jcJDg423xcdHU3lypWt7vfy8qJ8+fLmMllNnjyZiRMnOvvpCCGEEMJNFckWpR9++IEFCxbw/fffs3fvXubNm8eHH37IvHnzCvS4Y8eOJS4uznw5d+5cgR5PCCGEEK5VJFuURo0axeuvv07v3r0BaNSoEWfOnGHy5Mn069ePkJAQQI8fqVKlivlxMTExhIaGAhASEsLFixet9puens6VK1fMj8/K19cXX1/fAnhGQgghhHBHRbJFKTk5GQ8P66p7enpiNBoBqFWrFiEhIaxdu9Z8f3x8PDt27KB169YAtG7dmtjYWPbs2WMus27dOoxGI61atSqEZyGEEEIId1ckW5S6devGu+++S/Xq1WnYsCH79u3jo48+4rnnngPAYDAwYsQI3nnnHerWrUutWrV46623qFq1Kt27dwegfv36dOnShRdeeIHZs2eTlpbG0KFD6d27t10z3oQQQghR/BXJQGnmzJm89dZbvPTSS1y8eJGqVavy4osvMm7cOHOZ0aNHk5SUxMCBA4mNjSU8PJwVK1ZQqlQpc5kFCxYwdOhQOnTogIeHBz179mTGjBmueEpCCCGEcENFMo+Su5A8SsWbu+ZRUkqRnJwMgL+/PwaDocCPKYQQxUmxz6MkREmllCI8PJzAwEACAwNp27Yt8ltHCCEKjgRKQhQhycnJbN261Xx7y5Yt5tYlIYQQzieBkhBCCCGEDRIoCSGEEELYIIGSEEIIIYQNRTI9gBCOspw5ZiIzyIQQQmQlLUqixMk6c0xmkAkhhLBFAiVR4mSdOWYiM8iEEEJkJYGSKNFiYmKIiYlxdTWEEEK4KRmjJEq0wsikLYQQouiSFiUhhBBCCBskUBJCCCGEsEECJSGEEEIIGyRQEkIIIYSwQQIlIYQQQggbJFASQgghhLBB0gMI4UYsl1aRJVWEEML1pEVJCDeRdWkVWVJFCCFcT1qURLFUFBe9zbq0imlJFUmKKYQQriMtSqLYkUVvhRBCOIsESqLYkUVvhRBCOIsESqJYk0VvhRBCOELGKIliTcb3CCGEcIS0KAkhhBBC2CCBkhBCCCGEDRIoCSGEEELYIIGSEEIIIYQNMphbCBfJmhRTcjwJIYT7kRYlIVwgp6SYbdu2dXW1hBBCZCGBkhAukFNSzMjISNdURgghhE0SKAnhYidPnnR1FYQQQtgggZIQLiZJMYUQwn1JoCSEEEIIYYPMehNuJ+tssJz4+/tjMBgKqUZCCCFKKmlREm4lp9lgOV3atm1bZKfTK6VISkpydTWEEELYQQIl4VZymg2Wky1btty01ckdmQLB4OBgV1dFCCGEHaTrTbitmJiYbAOdk5KSinSQkTUQDAsLw9/f34U1EkIIkRsJlITbCggIKNYzwmJiYqhUqVKRbBkTQoiSQrrehHCRgIAAGZAuhBBuTgIlIYQQQggbJFASQgghhLBBAiUhhBBCCBskUBJCCCGEsEECJSGEEEIIGyQ9gBBOYsq2LcurCCFE8SEtSkI4SXBwcJFfXkUIIYQ1CZSEcIC/vz9hYWFW24rq8ipCCCGyk0BJCAcYDAYiIiJITEwkJibG1dURQgjhZDJGSQgHGQyGYr3UihBClGTSoiSEEEIIYUOeA6Vr165x/vz5bNsPHz7slAoJUZCSkpLMs9NsUUrZVU4IIUTxl6dA6ccff6Ru3bp07dqVxo0bs2PHDvN9ffr0cXrlhHC24OBggoODbd6vlCI8PJzAwMBcywkhhCgZ8hQovfPOO+zZs4fIyEjmzJnDgAED+P777wFkOrRwWznNTAMICwvD39/faltycjJbt269aTkhhBAlQ54Gc6elpZl/ZTdv3pxNmzbRo0cPjh8/Lgn2hNsyzUzLOmX/ZokhY2JiCAgIkASSQghRguWpRaly5cocOHDAfLt8+fKsXr2aI0eOWG0Xwt2YZqZZXm4W/NhbTgghRPGVp0Dp22+/pXLlylbbfHx8WLhwIRs3bnRqxYQQQgghXC1PXW+33nqrzftyGgMihBBCCFGUOSXhZFpaGtHR0SQnJ1OpUiXKly/vjN0KIW5QSpGcnCwpC4QQopDlO+FkQkICs2bN4p577iEoKIiaNWtSv359KlWqRI0aNXjhhRfYtWuXM+sqRIkkKQuEEMJ18hUoffTRR9SsWZM5c+bQsWNHli1bRmRkJP/88w/btm1j/PjxpKen06lTJ7p06cKxY8ecXW8hSoycUhYIIYQoHPkKlHbt2sWmTZvYuXMnb731Fp07d6ZRo0bUqVOHli1b8txzzzFnzhyioqLo3r07ERERzq4358+f55lnnqFChQr4+fnRqFEjdu/ebb5fKcW4ceOoUqUKfn5+dOzYMVvAduXKFZ5++mmCgoIoW7YsAwYMIDEx0el1FUIIIUTRlK9AaeHChTRs2PCm5UqVKsWgQYN47rnn8nMYm65evUpYWBje3t78+eef/PXXX0ybNo1y5cqZy0ydOpUZM2Ywe/ZsduzYQUBAAJ07d+b69evmMk8//TSHDx9m9erVLF++nE2bNjFw4ECn1lWIm8maEDM0NNR1lRFCCGHFKYO5165dy9q1a7l48SJGo9Hqvm+++cYZh7AyZcoUqlWrxpw5c8zbatWqZb6ulOLjjz/mzTff5JFHHgFg/vz5BAcHs2zZMnr37s2RI0dYsWIFu3btokWLFgDMnDmTBx98kA8//JCqVas6vd5C5CRrQkylFKVLl3ZxrYQQQoADg7lNJk6cSKdOnVi7di2XL1/m6tWrVpeC8Ouvv9KiRQt69epF5cqVadq0KV9++aX5/lOnThEdHU3Hjh3N28qUKUOrVq3Ytm0bANu2baNs2bLmIAmgY8eOeHh4WK1hZyklJYX4+HirixDOYJkQUxJcCiGE+3C4RWn27NnMnTu3UBfFPXnyJLNmzeLVV1/lf//7H7t27WLYsGH4+PjQr18/oqOjAbLNEAoODjbfFx0dnS15ppeXF+XLlzeXyWry5MlMnDixAJ6REEIIIdyRwy1KqamptGnTxhl1sZvRaKRZs2a89957NG3alIEDB/LCCy8we/bsAj3u2LFjiYuLM1/OnTtXoMcTQgghhGs5HCg9//zzfP/9986oi92qVKlCgwYNrLbVr1+fs2fPAhASEgLoRU0txcTEmO8LCQnh4sWLVvenp6dz5coVc5msfH19CQoKsroIIYQQovhyuOvt+vXrfPHFF6xZs4bGjRvj7e1tdf9HH33k6CGyCQsL4+jRo1bb/vnnH2rUqAHogd0hISGsXbvWPIMoPj6eHTt2MHjwYABat25NbGwse/bsoXnz5gCsW7cOo9FIq1atnF5nIYQQQhQ9DgdKBw4cMAcjhw4dsrqvoAalvvLKK7Rp04b33nuPxx9/nJ07d/LFF1/wxRdfmI87YsQI3nnnHerWrUutWrV46623qFq1Kt27dwd0C1SXLl3MXXZpaWkMHTqU3r17y4w3IYQQQgBOCJTWr1/vjHrkyV133cXSpUsZO3YskyZNolatWnz88cc8/fTT5jKjR48mKSmJgQMHEhsbS3h4OCtWrKBUqVLmMgsWLGDo0KF06NABDw8PevbsyYwZMwr9+QghhBDCPTklj5IrPPTQQzz00EM27zcYDEyaNIlJkybZLFO+fPlCH18lhBBCiKLDaYHSX3/9xdmzZ0lNTbXa/vDDDzvrEEIIIYQQhcrhQOnkyZP06NGDgwcPYjAYUEoBmeOTMjIyHD2EEMWCUoqkpCRXV0MIIUQeOJweYPjw4dSqVYuLFy/i7+/P4cOH2bRpEy1atGDDhg1OqKIQRZ9SivDw8GxJUIUQQrg3h1uUtm3bxrp166hYsSIeHh54eHgQHh7O5MmTGTZsGPv27XNGPYUo0pKTk9m6dav5dlhYGP7+/i6skRBCCHs4HChlZGSYF/CsWLEiFy5coF69etSoUSNbriMhhE58WqlSJVnTTQghigCHA6U777yT/fv3U6tWLVq1asXUqVPx8fHhiy++4LbbbnNGHYUoVmThWyGEKDocDpTefPNN8wDViRMn0q1bN9q2bUuFChVYvHixwxUUQgghhHAVhwOlzp07m6/XrVuXv//+mytXrlCuXDn51SyEEEKIIs3hWW8AERERPPPMM7Ru3Zrz589Tvnx5vvvuOzZv3uyM3QshhBBCuITDgdJPP/1E586d8fPzY9++faSkpAAQFxfHe++953AFhRBCCCFcxeFA6Z133mH27Nl8+eWXeHt7m7eHhYWxd+9eR3cvhBBCCOEyDgdKR48epV27dtm2lylThtjYWEd3L4QQQgjhMg4HSiEhIRw/fjzb9s2bN0t6ACEKgWlplKSkJPMSQkIIIZzD4UDphRdeYPjw4ezYsQODwcCFCxdYsGABI0eOZPDgwc6ooxAiF+Hh4QQGBhIYGEjbtm0lWBJCCCdyOD3A66+/jtFopEOHDiQnJ9OuXTt8fX0ZOXIkL7/8sjPqKESRVtCL4e7fv998fcuWLSQnJxMQEFBgxxNCiJLE4UDJYDDwxhtvMGrUKI4fP05iYiINGjQgMDDQGfUTokgzLYZruc6bEEKIosPhQMnEx8eHBg0aOGt3QhQLshiuEEIUbU4JlK5fv86BAwe4ePEiRqPR6r6HH37YGYcQosiTxXCFEKLocThQWrFiBX379uXy5cvZ7jMYDGRkZDh6CCGKBVkMVwghih6HZ729/PLL9OrVi6ioKIxGo9VFgiRRUslUfSGEKB4cDpRiYmJ49dVXCQ4OdkZ9hCgWgoODZaq+EEIUAw4HSo899hgbNmxwQlWEKNr8/f0JCwsz3zZN1RdCCFF0OTxG6ZNPPqFXr15ERETQqFEjq/XeAIYNG+boIYQoEgwGAxEREVy6dMlpLaxKKQm2hBDChRwOlBYuXMiqVasoVaoUGzZssBqsajAYJFASxYoBaHnjEgB4f/ghtGgBrVpBxYoYDAanJnsMDw+3SigphBCicDkcKL3xxhtMnDiR119/HQ8Ph3vyhHBP8fF4T5xIFGDVVjRhgv5rMED37jBqFDRubL7b0YzclkFSaGgokZGRDu1PCCFE3jgcKKWmpvLEE09IkCSKr2+/hVGj8ImJIRiIAzYA/wF9n3gCr/374e+/YelSWLoUn2eeoSwQC05bGDomJgZ/f39Kly7tlP0JIYSwj8PRTb9+/Vi8eLEz6iKEe8nIgGHDoG9fiIlB1a3L/+64g0pAd+CbsDA8Fy6EI0fg0CF49lkwGPD+7juO+vjQ1GJXjmbklhxMQgjhGg63KGVkZDB16lRWrlxJ48aNsw3m/uijjxw9hBCFzh/wffJJ+OMPvWHiRAyvv8673t68cWNwtb+/f2bw0rAhfPMNPP889O9P5WPH2OPvT8r8+WR06WJd9mbHvjF7bsuWLUBmkCWDuoUQovA5HCgdPHiQpk31b+dDhw5Z3Se/gEVR5AksAbz++AN8fXXXW69egB7Mnetg7TZtYOdOePxxDKtXU+rJJ3WXXNeudh/fNHsuOaeATAghRKFyOFBav369M+ohhHtQik+ABwHl54dh1SoID8/bPsqWhd9/hz59YPFiePRR+PNPuO8+u3fh7NlzQggh8iffY5TGjRvHnj17nFkXIfJNKUVSUpL5kl/+n37KIMAIpMyZk/cgycTbW7dE9egBqanQs6ce8C2EEKJIyXeg9O+///LAAw9w6623MnjwYP78809SU1OdWTch7KKUIjw8nMDAQAIDA/Od7PEeIOCddwAYAWQ89JDtwvasY+jtDd9/r7vjYmPhoYcgLi5fdSsspoBTll4RQggt34HSN998Q3R0NAsXLqR06dKMGDGCihUr0rNnT+bPn8+VK1ecWU8hbEpOTmbr1q3ZtudlplkQMA8wKMXXwExbBX//HUqXhho17KtcqVKwbJkuf+IEDBoEbhqEWAacsk6dEEJoDqUH8PDwoG3btkydOpWjR4+yY8cOWrVqxeeff07VqlVp164dH374IefPn3dWfYXIVUxMDImJiSQmJhIREWH3IOhPgBpAWo0aDLe84+BB61agMmUgMREaNLDewbBhOojKSaVKsHAheHrCokUwd679T6gQWQacsk6dEEJoTs0SWb9+fUaPHs2WLVs4d+4c/fr1IyIigoULFzrzMELYFBAQYL7YGyR5/vQTfYAMoN2ZM5hGOHnNmwfNm8OIEZmFmzWDo0fhxx8zt506BZ98orvWDhzI+SCtW8Pbb+vrQ4fKeCUhhCgiHJ71du3aNZRS5i6OM2fOsHTpUho0aMCAAQMYMGCAw5UUosDExuI7ciQA7wHbb2wOCwvDp1EjSE+HK1f0gGwfH/D3h9tvt95HcDC89poeh2SxfEk2o0fDmjWwbh307q3TCPj4FMSzEkII4SQOtyg98sgjzJ8/H4DY2FhatmzJtGnTeOSRR5g1a5bDFRSiQE2ciOHSJdQdd/DqlSvW3XZt2+pgZtmy3AMaf3/44AP44ovMbUYjxMdbl/P01DPhKlSA/fv1Y4QQQrg1hwOlvXv30rZtWwB+/PFHQkJCOHPmDPPnz2fGjBkOV1CIAnP4MMzUw7YNM2YQEBREwMSJBCQlZXbbtWihF7y1h6lcWhr06wcdOujxTJaqVoWPP9bX334b/vnH8echhBCiwDgcKCUnJ5sX6ly1ahWPPvooHh4e3H333Zw5c8bhCgpRIJSC4cP1NP/u3eH+++Gdd3Qrz0MP6Rah/Pr3X51gct8+3dWW1dNP6+OlpMCLL7rtLDghhBBOCJTq1KnDsmXLOHfuHCtXrqRTp04AXLx4kaCgIIcrKESB+PlnWLtWL1FiWo+wRw+oXVsHUB4O/GvUqqXXiFuzRgdhWRkMMHs2+PnBhg0wZ07+jyWEEKJAORwojRs3jpEjR1KzZk1atmxJ69atAd26ZFoDTgi3kpYGY8bo66NH68AG9EDsgwd1i4+jWraE9u1t33/bbTBpkr4+ahRcver4MYUQQjidw4HSY489xtmzZ9m9ezcrV640b+/QoQPTp093dPdCON+8eTr5Y+XKerbapUuZ9/n5Of940dHw7LPw33/W20eMgIYN9ay6iROdf1whhBAOc0oepbJly5KWlsYff/zBr7/+yq+//kp0dDT/yEBV4W5SUjJbcsaO1TPV7rhDL15bUJ54QieZHDLEeruXF5h+THz6qeRWEkIIN+RwHqUVK1bQp08f/sv6axm9AnqGPWtiCVFYvvwSzp2DW26BgQP1oOorV6Ags1B/9BG88oru5svq/vv14PHly2HkSP1XCCGE23C4Renll1/m8ccfJyoqCqPRaHWRIEm4leRkePddff3NN3X+ow0b4LvvoH//gjtu8+awaZPO6p2TadN069Lvv4NF97UQQgjXczhQiomJ4dVXX833iu1CFJrPPtPjhWrWhOee09u8vfXgbXtzJTlDSor17dtvh5df1tdfeUVnAxdCCOEWnDKYe8OGDU6oihAF6No1mDpVXx85En79tfDzFykFs2bpQO34cev73npLZ+w+ckSnDhBCCOEWHB6j9Mknn9CrVy8iIiJo1KgR3t7eVvcPGzbM0UMI4bg5c/Tstpo19RiloUOhTx+4sfxOofnlF92qNWOGvpiUK6czdb/0kp4B17cvSB4yIYRwOYcDpYULF7Jq1SpKlSrFhg0brFZsNxgMEigJ10tPz1xXbeRIvayIvz889ljh1sNg0Eum/PmnDoiyeuEFvbzJP//oAeATJhRu/YQQQmRjUMqx/oeQkBCGDRvG66+/jocj2YyLoPj4eMqUKUNcXJxkIXeSpKQkAgMDAUhMTCQgIMDm/TExMQQEBJCUlGQeI5fTY1i4EJ56CipWhDNndJB06ZK+XZhjk+zx44/QqxcEBmbmerrB8rnnJsfXwA5Z92/vfpRSJCcn4+/vb/VDSQgh3FVezt8ORzapqak88cQTJS5IEq4XHBxMYGBg7hMJlIIpU/T14cN1kARQqZLrgySlICrKelvPnnqWXGJi5gw9N6aUIjw8nMDAQNq2bYuDv7uEEMLtOBzd9OvXj8UFmaxPCAv+/v6EhYXleF9YWBj+pkDIZOVK2L8fAgIgKUl3a7mDkyehTRto104vqWJiMMD77+vrs2bB6dMuqZ69kpOT2bp1KwBbtmwhuSDzUQkhhAs4PEYpIyODqVOnsnLlSho3bpxtMPdHpgVHhXACg8FAREREjifkHLt+TK1JXbvqAGTGDLhwAcqUKYTa5qJyZd21lpQE+/bpteFMOnbUlzVrYPx4veSKEEIIl3A4UDp48KB58dtDhw5Z3SfjFURBMBgM9o3B2bVLJ5T09oYXX4Tr16FKFdcHSaDHIP3wA9Srp+uU1Xvv6UDp22/1APRGjQq9itKNJoQQTgiU1q9f74x6COF8n3yi//buDffdpy/ulC2+fXvb9911l56V9+OP8MYbOu9TIWvbti179+6VHzxCiBLNoTFKaWlpdOjQgWPHjjmrPkI4x6VLsGiRvj50aOZ2T0/X1OdmzpyB1FTrbe+8o+v722+wZUu2h4SGhuZ43VkiIyNlzJEQosRzKFDy9vbmwIEDzqqLKEGUUiQlJeV4cYqvv9aBR/36sG4dJCQ4Z78FYexYqFMn+1ikevUyl1oZOzZbJvGIiAgSExNJTEwkIiKikCpbNJg+XwXRfViQ+xZCuB+HZ70988wzfP31186oiyghLKeUZ704Zc3A9HQ9Ywz0YrNjx+qLu6pcWdd5x47s940bB6VKQUQEnqtXW91lGqsVEBBQYN1jRTEgKMiUBZIOQYiSx+ExSunp6XzzzTesWbOG5s2bZxtkK7PeRFaWU8ptyXGqv72WL4ezZ/XaaSNGwLRp8Oqr+dtXYXjxRbj7bmjdOvt9t96quw4//BDv8eMxAIV5ag4ODiYsLIyIiIgiM1Ypp5QF+UnAWdj7FkK4J4cDpUOHDtGsWTMA/smSo6aofLEK1zFl187KoSzPpkHcAwfqrqtnn3V9csnc+PvnHCSZvP46fPEFngcP8jhQGFnLQkNDiYyMBCQgEEKUbA53va1fv97mZd26dc6o4029//77GAwGRowYYd52/fp1hgwZQoUKFQgMDKRnz57ExMRYPe7s2bN07doVf39/KleuzKhRo0hPTy+UOgvN1HWU9ZLvIOnIEVi7Fjw8YNAgvc2dg6Ssrl/XrWGWKlSAUaMAeBsn/LqxQ0RERLb/l6JMxhUJIfIrX4HS2axf5Ddx/vz5/BzGLrt27eLzzz+ncePGVttfeeUVfvvtN5YsWcLGjRu5cOECjz76qPn+jIwMunbtSmpqKlu3bmXevHnMnTuXcePGFVhdRSH47DP9t2FDnZHbaHRtffJi7VqoWRP69ct+34gRqEqVqAs8WwhVsTtXlQ3ODkwc2V9exxVJUCWEsKLyoXLlymrgwIFq586dNsvExsaqL774QjVs2FD93//9X34Oc1MJCQmqbt26avXq1eqee+5Rw4cPNx/b29tbLVmyxFz2yJEjClDbtm1TSin1xx9/KA8PDxUdHW0uM2vWLBUUFKRSUlLsOn5cXJwCVFxcnPOeVAmQmJio0ENtVGJiovN2HBenVGCgUqCUr6/+GxHhvP0XtLNnlfLyUqpaNaUuX8529/WpU5UC9S+oUlleO2e8pln3Yc8+LcuYyhmNRtWmTRsFqLCwMGU0GvNVH5O87i9rnWJiYrLVMb/HSkhIsHtfQgj3lZfzd75alP766y8CAgK4//77CQkJoWvXrrzwwgu8/PLLPPPMMzRr1ozKlSvzzTffMHXqVIYNG5a/KO4mhgwZQteuXenYsaPV9j179pCWlma1/Y477qB69eps27YNgG3bttGoUSOrWVadO3cmPj6ew4cP53i8lJQU4uPjrS7CjXz7rV5Mtm5dGDYMOnQAG+vCuaVq1XQm8RMndHdbFukDBnAauAUYmu1e9+Hs9d8Kcz253I6llKJt27YFdmwhhHvK13CHChUq8NFHH/Huu+/y+++/s3nzZs6cOcO1a9eoWLEiTz/9NJ07d+bOO+90dn3NFi1axN69e9m1a1e2+6Kjo/Hx8aFs2bJW24ODg4mOjjaXyToV3XTbVCaryZMnM3HiRCfUXjidUvDpp/r6sGF6pphSRWt8EuQe2Pn6Mh6YB4wFiI3Vi/3mgVLKfPJ3aMB8CZScnGwe4C6EKDkcGhfq5+fHY489xmOPPeas+tjl3LlzDB8+nNWrV1OqVKlCO+7YsWN51WKaeXx8PNWqVSu044tcrF+vB3IHBkLfvnpbUQ4ClNLZumvWtNr8HTAaaAik/t//wdSpedilHqtjajEpiGn/SikJvoQQxYrDs95cYc+ePVy8eJFmzZrh5eWFl5cXGzduZMaMGXh5eREcHExqaiqxsbFWj4uJiSEkJASAkJCQbLN6TLdNZbLy9fUlKCjI6iLchCklwO23Q1SUa+viqCtXoE0baNAA/vvP6i4j8MaN696ffQZ5mJmWNX+VZdeSujGA2VGShFEIUdwUyUCpQ4cOHDx4kMjISPOlRYsWPP300+br3t7erF271vyYo0ePcvbsWVrfyFfTunVrDh48yMWLF81lVq9eTVBQEA0aNCj05yQccPYs/PKLvr53r+6+yrpuWlFSrhykpOgFfG+MqbP0C7AdMCQlwbvvOnw4U0uTM7KiO7o+nJIZZ0IIN1MYKVmcrnTp0tnGPwUEBFChQgXz9gEDBvDqq69Svnx5goKCePnll2ndujV33303AJ06daJBgwb06dOHqVOnEh0dzZtvvsmQIUPw9fUt9OckHDB7tk4DcNddULWqbonx8XF1rfLPYIBvvoEqVcBG8PI/YB3o5/7qq1CpUr4Pl7WlyZQVvbAXxLXsGsytWzApKUnGVwkhCk2RbFGyx/Tp03nooYfo2bMn7dq1IyQkhJ9//tl8v6enJ8uXL8fT05PWrVvzzDPP0LdvXyZNmuTCWos8u34dvvxSXx87FpYtc0ori8uFhtoMkgDWAxn33QdpaTB+vNMOGxMTUyDjluxh7+y24OBg6eITQhSaItmilJMNGzZY3S5VqhSffvopn5pmQuWgRo0a/PHHHwVcM1GgliyBy5f11Ppu3fS24tbS8N9/OaYLSJ0wAb916+DbbzEMdU7CAFtZ0R0JStq2bcvevXvzHXzldGxZVkUIUViKbYuSKCFMg7gbN4ZC7ioqcErBCy/oLrgc0mAYmzWDnj1BKXwKuCXUkRYcR8YtSe4iIYSrSaAkiq6dO/XF0xN+/x0eftjVNXIug0EP6k5L088vJ++8Ax4eeC1fTisnH97f35/Q0FDA8UHa+ZWX3EWmgeD2zt6TgeNCCHtIoCSKLlO3aps2UL8+DBjg2voUhDff1MHghAk533/HHfCsXv3toxzuticYsHWfwWAgIiIijxV2nrykLDANBA8MDLRr9p5l+Zu1lklAJUTJJoGSKJouXYLFi/X1Dz+Ew4fhqadcW6eCcPvtejZfbiZNQgUE0AZ4wmKzPcHAzbq2CmNmma1AJC8pC7LO3Mu6/9zK5zZw3PI1DA8Pt6suQojiRQIlUTR9/bXulrrrLmjZUndTeXq6ulYFKzU159kXVauS9tprAEwFuHYNsC8YSEpKMndthYaG4u/v7/x65yJrMGdp//79TjmGI2OcLF/D/NZHWqSEKNokUBJFT3o6zJqlr7dtq3MoFXeff45fw4Y8Y+PutJdf5gxQHfCeMcPu3VoGEc5OC2APy0CkoNZRO3bsmNVto9HoUBbyunXr2l02L118Qgj3JIGSKHqWL9fZuH194aOP4PXXXV2jghcbi0dUFL1t3e/nx5gbV72nTYMLF3LdnelkbxlElJQEjkFBQQ5lIc/LuC17u/iEEO5LAiVR9JhSAjRtCkFB8OSTrq1PYXjhBa5/9RXdcimyGNgKGJKT4Y03cimZt5O9sFZSAkohhCaBkihajhyBtWvBwwMWLdIL4DZt6upaFbzy5cno3Zu0mxQbYboydy6GvXttlpOTvRBC2EcCJVFgLPPaZL3k22ef6b8PPww1akAhDz52JX9/f8LCwgBo16ZNjgOvdwHzb1w/3qULzgyHTAOSZXCyEKIkkUBJFAjLQaxZL/keHxIfD3Pn6uvduzurqkWGwWAg4t13SW/dmg2tWtlsFRoLJACNk5NxZmap4OBgwsPD3Wpwcl6TTAohRF5JoCQKRG55bUxMq9Tb7dtvITFRD+J+9ln48UcHa1n0GJKS8Ny2DcN33+mM3Tm4ALx14/oUoGIOZSxbp8D2e5G13NatW91mcHJek0zau8/8lJdWNiGKLwmURIGLiYkhMTEx2yVP09GVyszEXbs2BARAhw4FV2l31aULfPAB7N8P3t42i30C7APKcyO3UhamrNs3ey9M5WJiYpz1DJzGnmDctARL1us5yc+6cm3btsVoNNrdymY0GiWoEqKIkUBJFLiAgIAcL3kaULx+vR7IHRgI27bB6dNQrlyB1dlteXjAyJF6odxcZACDASPwLJDT6d9gMNj1XpjK2augusFuFujkJGswmJuc1pXLKZjJugbe5cuX7W5lCwoKIiwszG26Ll1FgkVRlEigJIoGU0qAfv10SoAKFVxbH3eRy4lmB/DljeufA1y/XggVgttuuy3bNtM4IkdOjPlp2bI3GLQlp2VLsq6BlzUwvFkQsG3bNsD1XZeuIkk4RVEjgZJwf2fPwi+/6Ov9+7u0Km7jzBm9CPBNBrW/DkQB9YGADz4o0Crl1uITHBzs0IkxLCzMHPAUBlNCzuPHj+d4v2XQlTUwlCAgd5KEUxQ1EigJ9zd7tl6mxNMTOnaEo0ddXSPXMxr1DMBffwUbJ3OAWGDQjev+n33GTZbXdYg9LT75OTHGxMTkaTybKWDL82QBC44k5DStCWfPc5XuJyHcnwRKwr1dvw5f3uhAqlwZgoMhD2ttFVu1aulB3Vu36sHtufgVWAAYjEbmAL4FVKW8jmWyV167zUzjkhxZu66wEnIGBwfnueVJxvcIUbgkUBLubckSuHwZqlXTA7jXrNEDmgW8+iq0bg0Gg9U0/py6wIYB0UBDYGIhVtFUl/wMxL4ZW4GCKWArKtnHbbU85RQQWY7vadasGcaSsCC0EC4mZxzh3kyDuAcPBh8fHTCJbCyn++fUbbT75ElzF9wowGPDhkKpV251clRep/IXJbYGPFuO74mMjKR58+bSsiREAZNASbivXbtg507w8tIDl0V2SUkwZQq0bYshI8NmS0pAQAC/AF+g/+l9n39et9QVMGe37lhOzT927Jh5uzPGJbmTpKQkqwHPly5dyjEgioyMlMHQQhQwCZSE+zIlmExP14O4U1JcWx935OkJ06bB5s2ZMwNzMQL4C/CIjtbZzd20NcJW4JN1ar6JM8YluYucEl/mZyyTEMI5vFxdASFydPkyLFqkr/v7Q506eukSYa1UKXjvPd3q1rXrTYtfA54EIn18MCxfDh99BK+9VuDVzCtTwOPv758t8LGVQbywUgcUtJwSX8LNxzLl9FoJIRwnLUrCPX3+uW5BatECLlyAjz92dY3c1/PP6/xSpUrZVfwAkDp5sr4xZgysW1dgVcuvojYg2yQvg9ZPnjyZ5/3nlPVc8jYJUbCkRUlYUUrZPeahwH7BpqZmdruNGAFlyuiLcJr0gQPx3b8f5s+HJ56A3buhRg1XVwso2uOMIiIiSE5OtmuR3vy0gOWU9Txr3qbi0rImhLuQFiVhZjnTxp5Lgf2CXbwYoqJ03qRevZy//+JIKVi6FO6/H0N09M3LGww6kWezZrqbs0cPSEws+HrmwrR4ckGNM7JMoZCj1FSqA/UAzyNHqAHYaqOzta/i1AUohNAkUBJm9qzGbqlAlh9QCqZP19cvXYKXX3bu/osrgwE+/BDWrMFv7lyrk7jNFho/Px1cVaoE+/bplqX09EKstHUuJEfWZLOHaSB4TEwMfkBX4B1gJeBXuzYB5ctzBvgbqNC+PafRY7ouAauA97ixuHB6unlfCQkJtGnTBnCsJcwyX5J0nwnhXiRQEjky/brP6ZLXhUnzZONGfdL28tJBU0hIwR2ruHn9dXj9dQwDB5pngd20haZ6dfjtNx00/fEHvPRSoc2Ey2l2lz0sUwTkSUIChrlzKd+vH/8By4E3gE6Ax43P9HXgCmCsUAHTEsIVgfuBscAmwP+222D4cAxHjhAYGMjmzZsdbgkzzWozGo12vSZVq1bNcbujQZZk/RYiB0rkW1xcnAJUXFycq6viFImJiQpQgEpMTHSonL37yubhh5UCpQYNUurgQaUuX87r0xA5MBqNKiwsTAEqLCxMGY1G6wLLlinl4aFf+zFjlMpyv+X7aXmJiYmxep+zljO99zl9Hiy3hYaGZq9TLhISEnI8To62blXq2WeVCgjQz+/G5TSor0C9COouUPfeeWe25xUEqhmoAaDmg7pk8XgFSnXpotSuXTZfK8vXJ+slISHB/J7kVL5u3bo2H3vixIkct+f1dbSUkZGhQkNDbX9GsjAajSoxMdGu41mWtfUZEaIw5eX8LYGSAyRQcnKgdOyYUgaDPgH9/Xd+noLIxU1PbLNmZQYAY8daBUvODJQSEhJsbrPXTU+2RqNSq1Yp1a6ddWBz++0q5a231J02ApCbBTgeoK4tW6ZUjx5KeXpm7vfRR5U6cyZb3XILlEzvhWUZy+vR0dE2H3vy5Mlc95tXRqPRHCTZsx+j0ajatGljV1CVtWyeglwhCkhezt/S9Sbcx//9nz7tdOoE9eq5ujZF19Gj8MILsHy51eabTrkfNEi/BwCTJ8Nbb1EQ3XA5TQJw2rgkoxF+/RVatdKfo02bwNsb+vWDiAj4+2/SxozhUB53a+rqax0Whu/DD8PPP+vXuW9fvfbgzz9DgwY6+acd47xCQ0PNs0ZtDf7O7TWpWLFiHp9B7mzlbsqtvGXm8NzGKualrBDuSAIl4R5iY2HOHH192zY9803kz9y58NVX8P77eX/ssGGZOavefVePWXLCAG/LcUUFsuxGRoZOUBoaCo88ope/8fOD4cPh5En9moSH60Hv+ZBj5u/atWHePNi/H8LC9HIyI0dS6oEHqJ7DPiwXCN6zZ0++g8P4+HgCAwMLZKFhIUR2EigJ9/Dll/pE4+sLCQluk9OnSBo2DB59VK8Blx/Dh8PMmZkpBLp3dzh1gK2lRxzlBfQD/Fq0gCefhIMHoXRpPbD99Gkd9N16q9VjLKf2t2nThmg70ink2hp355265erLL6F0aTy3bSMSeBTrBJGmYGvv3r14eOT/q9fDw6PAXk9HKRkMLoohCZSE66Wn6xMzwCefwNq1cPfdrq1TUValCvz0k27lyK+hQ/U+SpWC33+nVMeO3O5gtSyDDNMJNd+uX2cQcAyYC3gcOwbly8PEiXDmjO46rFzZZj1MQcvmzZsJDAzMfz1MPDx0hvR9+8ho0YJywE/Ad7fdhulZ25NtPC+vSX5apAoykFEWedhyy7EmQZQoaiRQEq73009w7pw+sT3zDNx3n6trJEAnodywASpXxvPQIfYAzzhp1+Hh4XZlr84mPh4++AC/O+9kFlATiAZS3n1XtyCNGwflyt10NzcLWixbnfKUH6l2ba6vXs2HN26+BfwI2JuC0jLz9k0TZOaRvYFMftk7Fik/KSFyIq1XorBIoCRcSym9MCvowcR2rlcm7BAfrwcXjx+f/320agWRkWS0a0cg8C3wM3DrTR52M6ZlN+x28SK88YbO+zR6NB7R0ZwFhgC1gPThw3WXm5NYtjrlOT+Stzej0F2CKeguuE2m55CD3LJ8OzOppbsMqj527JjD+yjooE8ISxIoCddavx527tTXf/oJjh93bX2Kk8hIGDlSj1VyJElolSpc/+03xgFpQA/gL2AM6HFlBUUp/dl49lk9Zu299yAuDu64g5TZs6kDfAbmxJDO5ujCvPOB9sBFoBng36mTbvXK4TgRERFWi+TWrVvXPCvOWUktixN3CfpEySCBknCtd9/Vf7289JpjtzraViHM2rbVXZmffgplyzq2L09P3gaaAluA0sD7QIWWLRkJlHewqlaio3WdmzfXLVpz58L169CypV5y5fBhfAYOpGV+usZykO9M33bYDnhu3YqqUQPD8ePQpg0cyp6cIGuagKwBkaNBmxAi/7xcXQFRgm3fDuvW6SBp9249s0q63pzHYIBvv3XqLg+j1zt7GpgA1L58mQ+AtwGv554jvVs3AoGc5siZupi2bNliXU3A48AB/Xn49Vc9g8xo1Hf6+uo16F58EVq3Nk/vN6CDieTkZHPLS34ZDAb27NlD8+bNiYyMdDjwyqpU48YYtmyBzp3h8GG45x79uW/SJNc65Ze93VCmgePOfK5CFEcSKAnXMbUmPfNMricN4XqWQU6T0FC+i4xkEdAHeBnd0sQPP+D1ww9cMRiIVIp/Q0Lw//xzqFYNypTB4OVFxPjxpFy4gOHyZX6ZNo3yUVHc5eWF340xOGatWukAqW9fqFAhxzrllqwxrzw8PNi7d69TAi/L18ocdAUE6ADwgQd0d2KHDnp2ZwF87tu2bcvevXuzPYesAZRpMH1YWBgrVqxwej1sHRd012JuY5WUUk55L4RwCmenBS9JZAkTB5YwiYzMXP5BlispWEajUn/8odRDDynlwHIRpiVQsi5BAaikdeuUeu01perUsV4yxN5LYKBSDzyg1LRpSp065bzn7iI2l4u5elWpu+7Sz7lCBaX27zfflXUpk5vJuoyL5dpwWf/nclqixPKS01IrlvvI+nxyWkImp222jmu5PEtOdb3Z8iiyXpxwVF7O39KiJFzjvff0X4MBpk/XiQ1FwcjI0HmRTp6EL76AV17J125MLThKKasutLCwMPzat4d774UPPoBTp3RX6p49OqfRv//qblVThu+KFfWlenWdrLFRI51R29vbOc/XDdhs7SpbFlat0sur7NqlW5bWrdOvgYMiIiIICQnJ8b68LlFiSd2YYbZ161bCwsLylOjS1nFvlksq60BtZ7UcCpEfEiiJwnf0KCxZoq8r5fhAY5E7Ly+dIuDAAejd2+HdmWZpmWYaWXWPGAxw22368vjjDh/L7WRkgKenY/swBUv3368Dyk6d9Dp0QUEO7dbZ45qMRiNGo5HLly8X2gwzo9FIs2bNci2jHE1WKkQeyaw3UfimTNEBUrduutXhtddcXaPir29f+PBDnbXbCUwtJsV2Jtbhw3oh3SeesN7eowcEB+s13hxhCpaaNNGz/O6/H4+oKMf26YCckkAGBQXh6emZv8Sg+aCUonnz5jcdu5TvZKVC5JMESqJwnTmTORPrjTegWTOoVMm1dRIiPR0sW0rS0mD+fNi40bpcRoZOHOnnl7ntwgV4+mm9mHNelCsHK1dCnTpw+jRln3jCuWkWsD97tSk4adKkCU3yMcDcGa08lt10VatWtVnG1LolRGGRQEkUrg8+0Cele+7RM5tE4Tp5EgYOdHragCJt4UIdrEyblrntzjt1d+WcOdZlFyyAffugY8fMbYsWwfffw+DBuqU0L4KDYc0auOUWvI4e5U/ACSvPAdmzV9tj8+bN7N27l7p161ptt0yGmRNnt/Ls3bvXafsSwlESKInCEx2tV1gHfbJZu9a19SmJfvpJvweTJmXmKirp0tN1S+cPP2QGOl5eMGGCns5vqWxZPfC8vEXbT8eOMGCAbiE1dUMqpVua7FGjBqxejbF8eVoCv4BOsOmApKQkq0HRtgZy16lTx+q2wWAwp0qwdLPB1PYsSWNK6mlPnipHunNNY6uEcBYJlETh+egjSE3VSSVTU/WvdlG4Bg+GRx/V3UoeJfTfPzHReimRp5/WLWw7d2YGOnnRuDF89RX06pW57eef4fbb9XZ71K9P7MKFxAP3AWVefDFzlmA+BAcH29WKtHLlSvN107Ip4FigYku+186zcLMuRKPRiKenJ56enhIsCacpod+UotBduQKzZunrixfD5s2620EUrsBA3arUurWra+IakZG6Rah7dx2sgw4Yn3nGetyRo5Yu1evgnThh90PKduzIw8A1wHfFCnj++Vxb/SwX082plcaedACWAUtBryPn6DIsSqmbBn+XL182X7906VK+jiNEVhIoicLx4Yf6l3xoqJ7t1ry5q2skIO9jaoq6ChUgPl4H7jksUOs08+fD11/r7js7eXh4sC4jA99ly3QKgnnz9KLGNt4jU5oGZy2W64wg6WZjmfJLKcWlS5fylAuqbdu2di/nIkRuJFASBc5w/rzudgM9QLY4TicvalJTYcYMaNECrl1zdW0KT7Vqelr+gQO6a6ygeHjAc8/ptepABzsDBtx0EL2HhwcejzySOYh8+vTM5Kw5sGylsWxhslfFihVzvH4ztgKQgkgMmZeUAJataseOHePSpUsopWTcknCIBEqiwHm/+y6kpOgbH34og4jdgVJ6ltfevY7nBHJnCQnQs6d+niahoYWf5HTpUvjmG3j2WTh+/Obl+/SBjz/W1998M7PbOhemFqaYmBi7q+Xh4UFGRgYZGRl4WIxZy61bz54uMGfKS0qArK1iwcHBhIWFybgl4RDJzF1MqRuLSuZFQWS7bQh4ffedvlGqFDRtWnIHEbsTX18dtF69qk/exdUbb+iB1ZGR8PffrlsmpXt3eP11qF1bpyKwx/Dh8N9/8PbbMGSIzrt0k8zqtpZOCQ0NJTIykjY3Fh82LUdia9FZy+zr/v7+Vt8ljiyH4grbLPJbXb58mcqVK7uwNqIokkCpGLJcm8nV3gcMRqP+VT9jRmZXhHA9y1laxdXbb+sA6Z13XLuWnIcHTJ5svS0pSdfJx8f24yZO1OOpPv1UtzKVLQtduuR6KFNrkOVafJs2beLatWvmliFTAJTbuCSb69UJUcJIoFQMOZq91p48J/a4B3gIUJ6eGN57D2xk2xVuQCndPVqqlKtr4riUlMyAvEwZPSbJ3SQlQdeuen23JUts/4AwGPQPjCtXdGLMRx+F1ashl7FIttbiswx63CkActaAa1kDThQU6QMp5mJiYkhMTMzTxSnThI1GPrhxNf3RRwt24KxwzJ49+sT7+uuuronjTp2CBg3gxx9dXZPcHTwIO3boJVJuNmbJw0OPI3vgAT3w/qGH9GD0XBTkWnyWwUjWDN754YzZabIGnChIEigVc6Yvy7xcnPHF6vnzz9wFKMBr6VI9RkS4p6tX9Tpl8+bpwc9F2axZepmWiRMdSthY4O6+G377Ta/11rDhzct7e+vgLywMYmOhU6c85Whypttuu818PSIiIl/78Pf3N2fqjoyMNM9Oyy9ZA04UJOl6Ew7Jsak7NZVS48cD8A9Qp3lzPPOx0KYoJB076hlWjz8OpUu7ujaOmTxZj/kZMkQvQ+LOLNeLA7h0SQ/YtlVvf39Yvlyvk3jgANx/v07c6sIu7Zv9qLIV/Ji6B0vf+LwFBwfb3TplGpiebZ/o7v4HgFbAreiWgMvAXmA5oExJRoXIA2lREg4JDg4mMDDQ6jK2fHk8z5whCmgOXP/lF8md5O6GD4cqVVxdi/xJS8u87umpB24Xtedy6pRuZbpJNm7KltWtULVr68d07qzHL7kho9FIs2bNzLezBk1Zg6xjx47Z3I9JTEwMe/bsscoX5Ql4fPEFfwPrgdHogKk2UAu4C3gR+A1QtWqhvvjCvVsbhduRQEnkWW6J7YKAcTeuTwBCw8Lwl+m4RcupU0UnY/f169Chg+5qKyp1zslff+mFeSMiwGIZjhyFhOgB3VWrwqFDeuxSXFzh1DMPmjdvbhX85DVdiUkVi6DX398fDw8Pc76oDsABoOJbb3E7EAfMAfoC4eiWpZ7A/wExQEh6OoYXX4R27TAeOyZ5lYRdimSgNHnyZO666y5Kly5N5cqV6d69O0ePHrUqc/36dYYMGUKFChUIDAykZ8+e2RKxnT17lq5du+Lv70/lypUZNWoU6fJL46Ysl07Ierk0ciQVAWOFCnwUFVXg60cJJxs7Vg+8/+EHV9fEPr/8ooOLjz6Cf/91dW3yr2tXvQbf5s1gzw+LWrV0y1L58nox306d9NglN2KrhcgelmOYLJmCLcO1a5QbP541QAPgEjAMuAV4DvgW2ALsBH4GRgDVb/xVQUGwbRuJt99OF0lCKexQJAOljRs3MmTIELZv387q1atJS0ujU6dOVuNlXnnlFX777TeWLFnCxo0buXDhAo8++qj5/oyMDLp27Upqaipbt25l3rx5zJ07l3HjxuV0SJGF5awa8+XqVXxmzgTA47//CPjqKwmSiho/P90tkc9BuoXuiSdg9mxYtkwvT1KUPfKIdZfhzQKfO++EtWv1+nU7d+oxS1evFmgVLeU1jUhelkgx/RjL0bFj0KIF3rNnA/AJUAeYCSQB0dHR5sSaJnXr1iUV3bJ0bft2Ulu2JAj4HUj89FO76yVKKFUMXLx4UQFq48aNSimlYmNjlbe3t1qyZIm5zJEjRxSgtm3bppRS6o8//lAeHh4qOjraXGbWrFkqKChIpaSk2HXcuLg4Bai4uDgnPhvHJSYmKvSEM5WYmFh4B37uOaVAqdtvV6pFC6Xc7HURdkhOVmrVKlfX4uaMRlfXoGCtW6dUuXJK/fTTzcvu369UxYr6f69ZM6X++8/p1bH8TgFUTEyMMhqN2bYnJCSo0NBQq23x8fEqIyPjpvs0PS4sLCzHfQPqyo8/6tcFVEZIiOqU5X7Td57p8RkZGSoxMVElJCRY1fHkkSPqO91Zq4wGg1Lffef010y4t7ycv4tki1JWcTf658uXLw/Anj17SEtLo6PFrJI77riD6tWrm9PZb9u2jUaNGlnl3ejcuTPx8fEcPnw4x+OkpKQQHx9vdRE37NkDc+fq63Pn6l+4QUGurJHIDz8/3TLhzr77Dp58Uo9PKq6WLtWtQ59/fvOxV40bw7p1UKmSXtOuQwe4eNGp1cm69lulSpWyLcQbFhZGQEBAtpYgDw8Pq3XkbO1zz549ueZxex4o27u3fl3uvpvrW7ZgK5WoqcXbw8MjW8qT8PBwbqtfn2eATwGDUtCvn37NhchBkQ+UjEYjI0aMICwsjDvvvBPQTa8+Pj6UzbLwZXBwMNHR0eYyWZOTmW6bymQ1efJkypQpY75UK+pN/c6SmqpXSjca9VpUrVvLLLfiIDlZr2LvToOkL1+GQYNg8WJdt+Lqo4/0Wnz2zhht1AjWr9fjmyIjdb6lkyedVh3LcYmWgUxO2+3tbs/62JyCGtAnqWnAl4AhPV0HyevXo/KZXHL//v3m6y8D1558EjIy4Omn9Q8+IbIo8oHSkCFDOHToEIsWLSrwY40dO5a4uDjz5dy5cwV+zCJhyhSd18XTE3r0cHVthDOkpkJoqA6Af/nF1bXJVLEi/PorvPACvPiiq2tTcLy84LXXrJeUudlEk4YN9diymjV1tu82bZya6NXUSpM1kLG13ZF9mpQGfgFevXE7ccwYWLAASpXKdfatvRSQ8OGHmVnPH34YLlxwaJ+i+CnSgdLQoUNZvnw569ev59ZbbzVvDwkJITU1ldgsgyFjYmIICQkxl8k6C85021QmK19fX4KCgqwuJd5ff+mFR0H/Kvv2W9fWRziHj49eNLd6dfdb/+2+++CLL/TSHiXFl1/qwOdmmdNvvx22btXdcTEx0K6d7pYrggxnzrAFvV7kNeBxwP+998wtbKYWqazf4zmxNYsO0EHpwoV66ZsLF/R6epKYUlgokt80SimGDh3K0qVLWbduHbVq1bK6v3nz5nh7e7N27VrztqNHj3L27Flat24NQOvWrTl48CAXLfryV69eTVBQEA0aNCicJ1LUZWToFoe0NJ34bsgQPQNJFA9vvglHjtx0tfoC999/ulvEyeNuiozYWP1e7NoFX3998/JVqsCmTTqDd0KC/t+cNavAq+lUW7fi1749jYALwNBGjViUkZFtrFPWxX5tyW0WnVIKY+nSJC9ejCpbVq/B97//Of4cRPFR4EPLC8DgwYNVmTJl1IYNG1RUVJT5kpycbC4zaNAgVb16dbVu3Tq1e/du1bp1a9W6dWvz/enp6erOO+9UnTp1UpGRkWrFihWqUqVKauzYsXbXo8TPevvoIz3TJihIqXPnCu44omR7+GH9Obv3XlfXxHV27lRq4sS8zfa7dk2pJ5/Urx0oNWiQUnbO6HVE1tlqef4OmjNHKR8fPSOtaVOVdPSoMubyvO09Xk6z6LJeXr/jDvPrZfz112z7MM2my60+omjIy/m7SAZKtj7kc+bMMZe5du2aeumll1S5cuWUv7+/6tGjh4qKirLaz+nTp9UDDzyg/Pz8VMWKFdVrr72m0tLS7K5HiQ6UTpxQqlQp/aXy+ecFcwzhPlauVOrRR5XKw/+H0xw9qlTz5kodPlz4xy7qjEal3n9fKYNB/6+2bavUv/8W6CHzHSilpys1cmRmYNezp1J2PNaZgRKg5pYpoxSoWC8vZTx71vx4o9Go2rRpY5XCQBRdxT5QchclNlAyGpW6777ML7RRo5x/DOE+4uPNuWvUjBmuqYOclDJlZCg1YkTefqAsX65bfkGpChWUyqG1xFnyFShduqRUly6Z3ynjxunnmd/jXb6s1GuvKVW3rlI3fiAnJiaqjqB+AdUbVGiTJjkGSj6gdt6oR/q99ypjenq2XEwF3lovClyJy6MkCtlXX+kBoqZVzps0cW19RMEqXRqmT9cL5z77bOEc85NP4ODBzNuSbiLTkiXw8cd6TOCpU/Y9pmtX2L0bmjXTY74efhiGDgWL1QxcZvNmPcNyxQo9cWDRIr12n52D9bPmY/L399c53H7+WWfxvpEXz9/fn0dr1OBhYETZsuzZuzfHgeCpwDNAMuC5fj0f1a1LYGAgbdu2tSpnNBpl+ZOSohACt2KrRLYo/ftv5i/TadOUioyUX/vCuZYs0Z+vMmUKvJuoSDIalXrxRaW+/z7vj71+XalXX81sualRQ6k//3Rq9exuUUpJUWrCBKU8PXVd6tXTWcbzwWg0quQNG6y7w1at0pnNExIyyx07plLGjFHGGys0mOpaKoeWpaE3XqMkUHVy6arLKeu4cH/S9VZISlygZDQq1a2b/lJr2VKPKRAl04kTBbfvK1f0WJoxYwruGCXdihVKVa+eGTA98YRSp045Zdd2BUq7dinVqFHm8Z95xiqgyROjUan//U/v55df8lzXl0EdAlU7SwBkALX6Rv22gvK0ESjVrVtXxisVQdL1JgrGokXw22+6G2T6dJ1gUpQsKSl6uYcGDeDQoYI5RrlysHo1vPdewey/uElMhMGD4dIl+x/TubPuknrlFd3FtXgx1Kunb+dlP3l1/jw8/zy0aqW7VitWhO+/h/nzITAwf/s0GDK7EG0sP2XTtWu8BjQEemW5SwHPAnFAa2C0jV0cO3aMpKQkkpKSUO6UxV44jQRKwj6XLsHLL+vrSsG8ea6tj3ANHx+4ckXnzrK1unt+HD8Oy5dn3vb1LVkJJR3Rv7/OX9a7N3labiYwUC+Vsnu3Xh8uNVWPfapeXS8T8/ffzqvjmTM603jdujoXlNEITz2lE9Y++aTjY9CmTYOVK2Hs2Lw9zs+Pu4HhwPvopMMZGRnmdTz/RS9zAjABaGRjN+Hh4eZxTBIsFUMF3r5VjJWorjdTPpbbblOqTRulYmKcs19R9ERFKbV5s/P2d+mS/lx5eCj144/O229JceSIHt+zfbtj+1m1SqkWLTK7w0D/r8+cqdT583bvxvT94wfqMVBpDz2UOQ7JtM+tWx2ra0aGUgsXOjw+0mg0qrCwMOsp/0ajSjxxwqp7bemNuu8D5X2T9AIyG65oyMv526CUhL/5FR8fT5kyZYiLi3Or5UySkpIIvNGMnZiYaFfm2lwtW6bXcPPwgO3b4a67HK+kECbp6Xrdtg0b9PIb+VzstETLyHBOV7hSuqVw+nS9xp/l6aFePZ3tu1EjfT0kBMqU0bNfk5N1S+OJE6RGRrJl6lTuBvws992xI7z6qs707mgL0ujR8MEHMGYMvP++Q7tSSpGcnIy/vz+GjAwYNAjjypVU+/dfTKu+VQYOAxWBScD4XPbnlO9cUeDycv72KqQ6iaLq8GHo00dff+01CZKEtcuXYeRImDpVr1yfH15eOuXE5ctQqZJz61dSWAZJZ8/qbqgXXsj7fgwGvT5cu3Z63bMfftBjE3fuhKNH9eUmfIB7b1w/Bdzy6qv49O+vAyxnqVpV/3Bzwj6tlkFJSIDNmzFcuEAYsORGmYvAS8APwP+AX4E9Dh9ZFBXSouSAYt+idPkytGypc7V4e+svzEcfdWJNRZHXqZMeeP3II7rl0V5Gox6T1K2b5Ehypv/+08FDVJRe6LV3b+fs98oV3dK0bZseu3T0qD5WXJxuEQwI0K1Lt91GWs2aDJk/n03AUQqwheWff/QiwM525gzqwAGajRtHZGSk1V0Lgd7ASV9fGqSkkJLDw6VFqWjIy/lbRkuKnKWmQs+eOkjy9dWDd2WWm8jqo4+gaVN4++28Pe6113RwNdrWXCKRLxUqwDPPQMOGcCMJo1OUL6/fr/ff1wHxkSN6keKUFB0oxcfDuXOwcSNec+fyV1gYR7FIAOkMFy/qLkaTggiSAGrUwNCtW46L6A4BooHbUlKIHzHCPOjbkrQ9FD8SKInslIKXXtIrkAcF6XEjy5bpL0ohLN15J+zZk/cukGrVdNdJaGiBVKtEe/993fJTrVrhHC9Li6DBYCAiIoLExEQiIiIwOKPF8No13XrZuXPBpi+wYDAYKA+sBkzt6FeAgTeu+/zf/+G1c2e2x8nMt+JHAiWR3ccf6ym8Hh66u61ZMwmShG2WJ8KjR+Hff2/+mFdf1VPDn3664OpVUnl46GVnTCIi9BijQmQa9+OUIAkgMlIvR3LggG7tLgT+/v68X706HYFZZA5M/w1Ie+opUArfF18ka3tZZGQkycnJhVJHUTgkUBLW/vxTd4sAPPEEPPCAa+sjio4NG/SYtu7d9SyorNassT7J1atXWDUrubZt060wXbrYNRDbbbVurYO9n3+GW24plEMaDAaeP36ctP79Cdi+nWsW96VOnQq33ILHiRNMLpTaCFeSQElk+usv66R1kZF6DIIQ9qhZUyekLFUqe6C0aJHuOuneXT5ThalRI71odevWOpFkUdawIYSHF+ohDd7eeM+Zo7uYLZUtq1vdgWFA+0KtlShsEigJ7fJlPQMpPh7attWrd//+ux7ILYQ9ataEjRth3Tq9NIWl8uV1AFWjhg6mROEIDIQVK2DpUvDzu3l5d3LlCjz8sO5ycxO3AT1MNzp3Rt1IwTAHCHNm+gPhViRQEro75LHH4ORJqFVLN2+PG6evC5EXDRpYB0KXL+u/nTrppTI+/VTSARS2MmWs35P583WuJXf3yit6bcknnsjb0iwFwN/fn95Nm7IXWGgw4H+jG9MwbRqqZk1qAuubN3dlFUUBkkCppFMKhg7VLQE+Pjobb9bWACHy45VXdAvS9u36doMGsn6bq337rV7UuH173WLjziZPhvvvh2++cXlwbTAY+H7XLgIeeACfNm0wmLLHly6NYc4cALznzqWzC+soCo58a5V0M2bAl1/q66mpOombEI5avhz+7//0WCVZQNl93Hsv1K6tE8eWK+fq2uSualVYtcptUkgYPD3xWrQIw/r11gPK27eHYcMA+Boo64rKiQIlS5iUZCtW6GnaoFfwLlNGMm8L57jjDqhSRa8H9n//5+raCJNbb4Vdu/RgZHfsAj1/XieuvPtuV9ckZ1kzOF+8qJfumTwZ4x9/cMvx48wCl3cVCueSFqWS6sgR3fdvNMKzz8KCBTBrlnt+eYqip04d3eW2Y0fm+Bilck4bIApXuXKZ/+dGI7z1lnu0JKelweOP68kkixa5uja5U0qPtzNNYPD3J+WLL0hHL3Hi9c03Lq6gcCYJlFxMKUVSUpLTL7n67z/o2lXPcGvdWgIk4RzffKNbK0yqVdML3oI+sQwfrleQT0hwTf1Edu++C++8o7vkbva9UdBSU3WXVkBA0Vh8e/t2nTF88WIAjC1bMvbGXT6jR+v0KqJYkK43F1JKER4eztatWwvvoOfP6zQAp07p2wEBkgJAOG7RIhgwQK81duCAHl9i6dw5+O47uHpVpw+QTO/u4cUX9QSO4cP1d4ErBQTooOPkST2Oyp0ZDPD55zrAfPZZ8+ZpQDugW0oK6vHHMezenb27ThQ5BiWL0uRbXlYfzklSUhKBgYEFUDMtLCzMeq2lPXt0XpILF/QYBR8fnV+lTZsCq4MoIRIS4L779Cyld9/NuYVy927d5dunT+HXT9iWnp7Z8ge6O64wZycmJup8T0WcUopmzZpxNjKSfUB10MMbFi6UFns3lJfztwRKDnBmoBQTE0OAk3/R+fv7ZwZJS5fqdbWuXdMZbpcv14NtpTVJ5JdS1ieAa9fyltQwMVE/3tUtGSJTUhI8+KBOIfDccwV/vLg4PXC7WzedDsDTs+CPWRDS0+HNN7lerx5+zz3H3cAmwBtImTwZnzFjnLfunXCKvJy/ZYySmwgICHD6xWAw6JPZ1Kl6Ntu1a3qg5JYtehCiBEkiv65e1WuIWQ66zUuQdP267n7r3FmfLIV7+Oor2LQJRo8unDxLv/0Gf/+tW13cPa9TbubNgylT8H35ZdrfeSfbgRsrZuI1diyvNmyI0Wh0ZQ2FA2SMUnGWmgqDB+tBtiblyuk0AEI44quvYPVq3Z3bpYvuys2L48dh7179S/zkSWjatECqKfLo5Zd1wNKxo152pqA984zu9qtbFypVKvjjFZT+/eG33zA89RRrH3uMO+64g5nHjtEYeB4Yf+QId3h68ndGBh6SdLXIka43Bziz6y0xMdG5XW9XrkDPnnpFdw8PmDBBrx4+Y0bhfAGK4s1o1BndX3xRL7qaH/v3Q2ws3HOPU6smnOyvv3S2/sqVXV0T92bRFW00GmnevDl/RUayDggD/gYq/PMPlerWdWUtxQ3S9VbSHTsGLVvqIKl0ad28/dZbetaRBEkiv1at0gES6OD7s8/yHySBfqxlkHTsmG6hEu4jKkq3GLZsqbvInGHLFj1eMjHROftzFxZjkDySktjbpw/noqN5FDgH3AGU6d9fdzuLIkUCpeJmwwadg+TECX3700/14EwhHPHKK3o80XvvFcz+L1/Wn9N27WD9+oI5hsi7pCQ9lrFUqewpH/IjJUXPBPv+exg/3vH9uaOMDLjvPgyvvUbZmTO5CDwExAM+W7fqWZ8ZGS6upMgLCZSKkzlz9CrtcXF6LFKFCnDbba6ulSgOmjTRv5gLauaOj4/+rFaurBfPFe6hTh2dRPT3363zAeV3YLKvL/zwg054+/bbzqmju/H0hEGDICSEjPvvB+AA0B1Q3t7w448wYoQsc1KEyBglB7jNGCWjEcaO1bPbQP9imzlTz3KrXj1/+xQiJcV6ZuThwzq1REFJS4PoaJ3R26Swc/qIm/vlF5gyRc9Uq1HD1bVxX3FxJHl5WeXKi5kxg0rDh2NQSo8bLa6takWAjFEqSZKS9NR/U5D01lu6WbtSJQmSRP6kpurp4a1b62DJpCCDJABvb+sgae1anWPn9OmCPa6wX1qazuK9bRt8/bV9j0lK0tmrz50r2Lq5G4vZxbWAe4DgYcP4wNSFOWGCXj5GuD0JlIqyCxf0YNhfftG3DQbdmiS/wIUjrl6FuXNh3z749VfX1MFo1FPVd+2Cjz5yTR1Edt7eegzZiy/qH2X2ePll/Xl6+OH8d9kVUf7+/nStX5/NwHLgLmDM+fN8XKWKLvDWWzqTvXBrckYtqvbt0zNR9uzRU3f79dN9/wX9q18Uf8HBMH++zubeq5dr6uDhAStX6vXjpkxxTR1EzmrVgtmzddAEeqzNyJHWCyJbmjBB58n67LMS9yPOYDCwKCKCQ8Bp4MYKm7wSFUXiG2/oG2++CZMmyZglNyZjlBzgsjFKv/4Kjz+uu0Xq19fLkcigbZFf587pxKRjx0JYmKtrk7t33tFdzTLg233Mnau71vz94exZPYkkqxI81iwpKYlKgYEEAJez3De7enVePHtW3xg6FD7+uOgu41LEyBil4uq//+D11/XSDykp+pf/li0SJAnHTJ6sZzW99JJ7/6pdskR3VbRqBZcuubo2wqRbN3jySd0yUqGCTiLauTNs3ZpZpoQGSSbXsA6S7gc6A4POniVl6lSUwQCffKJfR8txgcItyBImRUF0tB6n8dlnemAk6C+eBx4oFqtuCxewXND23Xf1Z+y999x7lfPwcJ3+4u67i/ZyF8VNhQp6AokpyJ44UScn3b5d53OrWNG19XMzzYBf0AvmtgdaLVjAHUrxrcGA95IlcPGiTiEgr5vbkK43BxR419u5c3o22+ef69kmoPv633pL5ze58073PrEJ95OUpAOj2FgdeBc1RqM+IZu6Jy5c0BnnX3klc8yMcK2kJN3KffGibiH5/ntX18ilLL/nQQdI3wDlgEcAU+rJDsDqwEAMiYl60fJffoHGjQu7uiWGdL0VdSdPwsCBULu2bo5NS9MnhiVL9ODtHj2gUSMJkkTeHTigu9pmzdJreBU1Hh6ZQZJSurtwzBg9xkq4zrFjmdcDAuDbb/UPuQkTXFYld+Hv70/YjbF/oaGhpAF9gZ5kBkkAEcC1dev09/7p0zo9x08/FXp9RXYSKLmTI0f0Gkh168KXX+oA6Z574PbbYcgQuPdeCY5E3l22GB3RujX873/612r9+q6rk7M89pjO5v3yy66uScn18cdwxx16pqRJp046KL/99sxtH36ofwBeuFDoVXQlg8FAREQEiYmJ7Nmzh7CwMBRgORJpLDpQUqVLw86d0LEjJCfrz/fLL8v6cC4mgZIbaAz49umjZ/J8/73uXujSBTZv1mu3HTkC//d/Oc8mEcKWq1f1F+0dd+hlbUzefVfntCnqQbfBAM88A2fOWC/OO3s2jBsH8fGuq1tJEhurv7O2b7febvn5unxZZ6H+8kv9vVbCGAwGAgIC8PDwICIigpMnT5rvKwOMAFoCUzt1QpUrB3/+qVMugO5VaNVKnweES8gYJQc4Okbp2saNrG7fnoctN3p56XXadu7U/dRC5Fd6uh7jcPSozrHVs6era1Tw/vtPd13Exenun2eecXWNiifL6f4ZGbBsmU7bkFvwvXmzHk82a1ZmuSNH9AoC+V2+qYgyGo14WqQBqAH0BqaQZbzqn3/qHHmXLoGfn55w8fLLkkLACWSMkrvbtAnuuQe/G0GSEUh/7DHdVL11qx7ELUGSyKvjx/VAf1P2Yy8v+Oor2L+/ZARJAOXLwzff6HF8Tz6Zuf3cOb00i3BMaqpuGXroocxZbp6e+vN1sxbK8HDd2mcqZzTqx9WqpZdEKUE8PDzIyMggIyODxMREDsbHY5VW9fp16NNHD4o/cADuv1+v3fnKKzrX2eHDrqp6iSQtSg7IU4uSUrBmjV4xOyIiczPQEfjVkUVxhbh+HW65Ba5c0Rm1u3d3dY3ch9EId92lZ2EtWaLTC4j8OXFCD9K+fh1WrND5kvLrzBm47z79mT1zBkzfoZapK0oIy5lxCQkJBL77Lrz/vh7jZepy+/JLvQZjfLye4Tl6tE4SK+eNfJEWJXeiFPz2m/5y6dRJB0k+PjBoEGmDB3M/sM7VdRRFj9Gou2dNSpXSM78efFAWQ87q1CmIitJjturWzdwuvxHtk56eeb12bZgxAxYvdixIAqhRQ3cLb9yYGSQB9O6tP8slbRHdG9q2bYsaMkQP6J4yRXdxenjo9fUOH9ateWlpeqzh7bfrLuYStoZeoVMi3+Li4hSg4uList+Znq7UDz8o1aSJUvorWV8GD1bq33+VUkolJiYqdKOSSkxMLNzKi6Lr2jWlGjbUn6e//srcnpHhujq5u+vXldq2zXrbM88o9dxzSp044Zo6uTujUan585WqUUOpo0cL55gnT2Z+VxbWMd2A0WhUoaGh5vNBTEyMMmb9f16zRqkBA5Q6f16pH39UqmbNzNeqZUt9v9HomidQBOV6/s5CWpScLT0d5s2DevX0emz79+um0YoV9S+l8eN1F4kQ9lJKt4qYlCqlE46WLm09VqGELxORK19f6y63qChYuFCPZ7p2zXX1cncLF+pusQ8/LJzj1aypZ/qaWktM3n1XLxwbFVU49ShkBoOBTZs2mW8HBwfTtl07lKnVMz1dt7J9/bWeBdezp+6SmzxZr85gSinQvr1+/YRTyRglB1j1cfr66jwiEyfC+fO6QJkyMGIEDBumT2pZMgfne1FcUXJcvKjHcZw8qU8SZcro7WfP6tmRpUu7tn5FlVJ64sS6dXoAvMmkSXo5l5dfLh55pvJq61adzNb0uTp2TCc9fOUVHWy6wrVrUKWKnsm4apUe2FwMXbx4keDgYKttVueFrVv1rLcFCzK/B6KidL6l//s/vYLDjQkL6p57SBk6FJ/u3Um+kYMpICAAQwkb+5WbPI4xFvllbrqbMkWpW2/NbAY1GJTy81Nq375cHy9dbyKb2Fil9uzJvG00KlW/vlKlSim1dq3r6lUSpKYqVbmy/h/+7bfM7SWlO+Oll/Rzf/ttV9fEWkqKUt9+q1Tv3tbdy599plT//krt2OG6ujlRRkaG+XyARRdcYmKiMtr6DD7xhFLlyyvjjz+qpKNHlXHwYGX08TGfi/4GNQiUP6gmTZqojIwMlZiYmPs+SwjpeitsY8bAv//qXz3Tp+vcFxcvQmioq2smipItW3SW6UcfzRxobDDAokW6leO++1xbv+LO01Pn+Rk40Hqg8qefQsuWuhuqOElKsk6ZEBamU0pYJid1Bz4+Oh/WwoXW3ctffQVz58K+fZnb0tIy18UsYkwpA+ItEqUGBwcTGBioB3grhVKKpKQk3SV3/boe2nHlCv3efpuAevVotm0blzdv5gMgFqgHzAL+BZ7fv5/mnp4EBgYSGBhIeHg4iYmJmd17wrYCDtqKNVNEGgvq+ptvqsTLl83Ruj2XmJgYaVEqqU6fVmr6dKV++SVzW1KSUgEBugUpKsplVRNZ3HOP/oU+fXrmtmvXlNq9u+gOoB8/XqmgIKUWLszclpqq1NmzLqtSnm3cqCfHXLqUuW3JEqXKlFFq5EiXVctRlj0Nlpfo6GjVpk0bBaiwsDDdIpSerpL/+MOq3DugNoDqBOplUMctJxOB2gtqCKhKN8qHhoaqjKL6OXZAXlqUJFBygOmF7g7KI4cPdl4uEigVcwkJ+kRkMnWq/uLq0sW63I0ZkcKNREUpNWuW9Xvz55/6/Wve3HX1youzZ627EMeN0/V/5hnX1akgDB6sn9err2ZuMxqVmjZNqe3b9WxkN2c0GlVYWJgCVN26dW2eM+Lj45VSSiUkJJi3eYD690ZA9AioqKgo5QGqC6g/y5RR1y0CpnRQa0G9COrehg1LXFecdL0VsmXo7Nr5FRYWhr+/v5NqI9zO44/rgdcbN2Zue+gh6NABunWzLiszIt1PSAgMGmT93vz7r55t1LSpddlevWDUKN317g6U0vnbqleHXbsytw8cCGvX6hm6xcnMmXrQ8+DBmdv+/htee03PCLPslouNdctcWpaL6O7du9dmuaCgIBISEggPDzdvM6LXjHsT+AMoXbo0aRkZ/D5rFp0DAmDcOOLfeYddgCdwHzAbWH34MGnh4agpU+DgQbd8XVzJy9UVKA4uXLiQr7XeTPz9/WU2QnFw8SJMm6ZPogsWZG7389PTe01TeEHPqFqzxjX1FI57/nno2xcSEjK3RUXBjz/qcWVvvJG5fcsWiInRY4CyzGpyqrQ0vZ7aoUN61h7oulSooP/u3KnHWoEO+opjUO7pCa1bW29LT9dL2nh66tQaJk8+qV+TefP0Dxc3YlpENykpKddyluedJk2aEBERQVBQEO9alPHw8IBff4ULF/ANCCCuf39avvkmtYF9Dz3EieXLCQU8t27VQebrr8Ott+qF2Tt3hnbt9NjJkqwQWriKrbw03Yli5uBBpT74QHfBmPz3X+ZYgMuXM7f/849OpCeKt/h4PTtr/Hjr7U88oT8T772Xue3aNaVWrVLq6tX8Hy811fpzdvasPo6Hh/4smhw/rtSFC/k/TnGUnq5UxYr69YqMzNz+55+6O/X9911XNwtZxytFR0erJk2a5NgVl5CQYNVtZx7HpJROuPr770qdO2eeXdf+xnfVeVA1QQ0F9Tsoo6+vdZJkUOqOO5QaOFCp774rWuPYciFjlAqJBEolQEaGUkuXKjVhgh5sbTJhQs5jPN54Q6lvvtEnTSGUUurNN3WG/nXrMrdt3ao/P9WqWZfduVOpv//OeSyN5RiSL75Qyt9fqWeftS7ToYNSffsqdeaM06pfbKWk6Nfb8rX+3//0+5L1de3SRW8r5IAzp8DHckyS6WIZFBmNxptO/8/IyFAZv/yijM2bqz8qVbLa1wFQ0T4+yti7t8owrQCQ5WKsWlWphx9WatIkpf74QxlvlsbADUmgVEgkUCpmDh3S//iff565zWjM/OW5c2fm9o0blereXamvvir8eoqi748/lLrtNqUefNB6e7Nm+rP200+Z2x57TKly5ZRavDhz2++/63ItWhROfUuK8+eVWrRIqc2bM7ddupQZJFh+18+cqVR4uFJff229DyfPIMsa+FgGT23atDG3JOV7/+npKiEhQbVp00YFgsq48VzbN2igANWlZUtlHDpUGatUURd8fVVaDoGTAnUa1MagIGUcPVovfbNnj1LJyc56GZwuL+dvycztgDxl9hSuk5Ghx5KULZu57Y039ODWjz+GBg30th9+gCee0GMctm7NLPvSSzr77ciRenFjIZwhOVnnMTJ9Lnfu1Lmyrl2Df/7RC9CC/swdPqyXRfr7b70tKUl/hoODoX9/ncNNFIzkZJ0R/ORJePXVzO19++oFad99F/73P70tLk6/JzVr6hxHpmzmx45BSop+T/38HK6SUork5GSnjm9VSnHp0iUaBAfTFLAcQZnavz/ec+fyLvAeEAr0qFKF56Oi8AQCgBxnhnl4wG236e/Y2rX10ku1a+tLjRrZVqsoTJKZu5BIi5Kb2bBBqS+/VOrcucxty5cr5e2tVJs21mXbtNG/hBYtytx29KjO9DtzZuHUVxR/SUk6o7plC5FSSvXqpT9/c+ZkbvvrL70tIMC6O+idd5S6887sU96DgrIvjPzdd0rVqaPUmDHWx1u3Tud9unbNaU+txDtyRKkFC5Q6fDhz2969+j2pVMm67LPPZs96Hhur1Isv6m2WLUJpaQVb71zYyuGUEBmpYj/7TDW22NbwRktSPKjSoNqCGgxqPyijh4cyBgTk2PJkvnh66lbV++/Xi/2OH69b6Fes0K9pAZ9XpeutkEigVACyNiFv2KBPJqdPZ27btk2ppk2V6trVumxYmP4H/OGHzG07duht1atbl12yRDeZW+5XCHukpOgv8u3brbdPm6bHCP34Y+a2v//Wn78yZazLDhyot0+alLktNVUnID127ObLpqSk6PFwzzyjlGUOtvHj9X5feMG6fOnSevvff2duW7pUd/3NmGFdds0a/dwkqMq79HSlTp2y7qZXSr8fZcoo9f33mdsiI/V7UrGiddm+ffX4s9mzM7dduaLU2LHZf8TFxTm1e8uyW+9mF39Q94LqlWX7ihuB0MRbb1UZFy7oz9ONvF1GT09lbNBAL/GVWxBlugQFKdWggVIdOyr11FNKjRihJ0V8/bVeZmjHDv165+M1kEApDz755BNVo0YN5evrq1q2bKl25GHdIAmUbuLKFT2WZ+tW6+0zZujEcJazTTZuVCo4WKlWrazLtmun/2Esx2eYgp+sA2FHj1bqgQf0LxKT69f1wFYX/koTbub6daUuXrQecB8bq8dVZB1v8u67+jO5YEHmtmPHMlt+LL3wgt4+cWLmtvh4pW6/XQ8Gtgw8oqP1zDRnD36NidE/Lvbvz9yWkqLHPlWpYv0rfeLEnIMqU0vAsWOZ2+bOVaphw+wz+iZPVmrKFOvZdxcv6lmhMTFOe1rFhuX4pbNn9euZ9TW97z79+s+bl7nNFFRVrmxdtndvvf3jjzO3RUUp1a2bUs8/b11261alfv7ZegZuerqeeWnx/WgaE5WQkJDjDLus22JiYvTg8IwMFRYWprxB1QNVEZ0wMyEhQSVt364i/f3VWtPA84wMZfz3X5XesqVSoNK6dlWpzz6rjF26qIw6dewLorJeAgL0OaFxY/2j+cEHlerXT6lXXtE/SGbO1C2uv/+u1NatKm77dgmU7LFo0SLl4+OjvvnmG3X48GH1wgsvqLJly6oYO//Bi0SglPWLOCpK/6NYfmmfP6/UsmVKrV9vXXbmTKVGjbL+wty6VUf3gwZZl+3YUX9QV67M3GbKXhwaal3WtCSEZbeXKfipUcO67OjR+iSzalXmtvh43aV2k0WHRRGSkaEDGEsXLujujStXMrdduaKDZstWG6X0SWXYMKUiIjK3nTqlVNu2SnXubF328cf1Z82yJeXECb3N39+6rKnlxzL4uXpVqfLllapbVwchJhEROj2AZVeYOztwQHdVb9iQuS0tTU+Pr1HDOnXBzYKqEycyt82Yobf16mVdtkED3bJ75EjmttWrdbmPPrIu+9VXSn36qXWwdf68Ln/ggHXZCxd04GmZ+b4oS0jQKR0sX/+TJ5V6+WWlXnvNuuwDD+jXeu7czG2moCo42LqsKU2FZVB18qTe5udnXXbSJKXCwtS1r782B0SlQSU995wyjhqlwiyXUtmyRX/uDx40z8qrV6eOagSqbpYgyweUL6joCxdUmzZt1H3o5VTqWZRpDuqij48y1qunPyurVun916+v69qmjQ6CWrTQwX9+gipQcTeOJ4HSTbRs2VINGTLEfDsjI0NVrVpVTZ482a7HmwOlL7+0/pLftUsHGVlXe3/nHaXeesv6H2DdOqWGDrUeq6CU/oJ+/HHrZROWL9cBSdZfIPfco/t6Dx3K3DZ/vu4DfuAB67J16+oPiuUJ5Ycf9LZ27azLhobq7ZYtNKbgp2lT67Jt22Zv+dm1S4+XePhh67JffKFfB8sWpcREXT5rV1hamj4ZWY7ZyMjQgV7WroGUFN0Ea/mFmZGh9511iZjr1/UXkuWJzmjUv7jj4qwDzORk3eJg2bxrNOqT9n//Wf9KTEjQX9xZ8+OcPKm//Cxbti5f1l04lmOqlNIB4K5d1s/vwgX9nmU9CW/apL9ILFtHzp5V6tdfs3cN/f67bvq3XBvr2DGlPvlE/9K0NHu2/pxZngAPHtRf1lOnWpcdN05/Ce/enbltzx7dDZV1mvVTT+lffb/+mrltyxb92alTx7rsgw/q7d98k7lt3z69rUoV67I5BT/Hj+fc8vP883q7Za6cq1f1WInHHrN+P3ft0j8ijh9XJdq5c/r7zPJ/1mjUwWnfvvr/w2TmTKUqVNCtxpYCA7O3VM2cqbc99ph1WdMJ0PLH0Jw5elvWZX9uvz37d9rPP+vuxqzfPT166PFelq3c27fr79Vhw6zLTpyoxyzu3Zu57fhxpV5/PXt35fff65Y1y//P6GilPvvMujVSKf2DdMEC6/+tuDjdlbR6tXXZv/7S/+Pnz2duu3ZNd+3t3Zv5nZWcrP/v9+/Xj/niCx0Ep6XpYOPvv3WaitatdZfrpUv6O2nz5syWqowMfb45f16pJ5/UXWUffaQ63n23qgjqyaZNdVlfX2XMyFCJ588rY2xsZkvqpEn6eNeuqYzz580BiQco7xuXaTe2vQfKcOO+UqBiQJ0DFWARMF2bPl2l3323MpoCu23blFqwQBm7dFFpjz6qjFev6ufVpYtSd9+tv1veflv/WL/rLn38O+7QgVWfPvr/G3SesfLlVVxgoN2BUonNzJ2amsqePXsYO3aseZuHhwcdO3Zk27ZtOT4mJSWFlJQU8+24G6tsx7/wAjRpomelAIwdq7Mu33EH7NiRuYM339R/w8Iys8d+/LHOmlqzpl413uTLL/VHqkcPePBBvW3BAr3fQ4esZ19s3qxndm3cCNWqWW/bvh0sVqPm7Fn9d8sWaNxYXz94UP/9+2/rspcv67+HD2fW98IF/ffqVeuyycn6b2xs5varV+H4cTAarcsuWQKrV+ulIWrV0tsOHIC2bfWMkX/+ySzbrx8sWwYffKCXXQA4cQKaNYPSpXUWbJNBg/QK4xMnwogReltUlH4fPD3hypXMsq+9plcfHzMmc8ZKbKyeiQFw6ZJetRzgrbdgxgyd7fidd/S2tDSoWFFfP3Mmc+bS5Mnw/vs6c/O0aZnHq1tXvx9HjkDVqnrbp5/C+PE6Q/Ds2Zll77lHv15792bOfFqwQC+N8cgjMH9+ZtnHH4foaIiIyHw/ly/XM/Xuv19nijZ5+WU9c2fVKmjVSm/bvBmGDtWfyQ4dMsvOnKnf99DQzOd55Ije3rQpvPhiZtkVK/SMrYcf1s/T9LqvXatvW773UVFw7pyus2m7aQX7a9esywYE6KVfUlMzt3t5QZs2uk6WZe+/X3/277gjc3tAgH6t/P2ty777Lkydqj8Tpu0eHpmvVWJiZtnbb9cXsN5HSRMUBC1a6OuWr8Pbb2deN23v21dfspZdu1a/tmXKZG5v1gymTNHfA5Zlu3SB//7T/4OW732DBjprtGXZ9HT9Ny0tc/vly3qma1ycddkjR/T33H//ZW4/eVJ/r1p+d4H+Xt6zBx54IPP/8PBh/f/doIH+bjKZNUv/D1aqlJnx/OBB/X9Ys6Z15u/334eVK+GTT6BPH73t0CG9nFGlSvo70+TNN+Hnn/VrNGiQ3nbihM6wHhgI589nPvexY/X3xIQJ8Mormc+tfn2dmT02Vn+HgJ7B++WXMHq0/q5LTtbf7abzx9q1+nk3bMiPp09j2L4d1bQp8R066PNSbCzccgsJoL8f771Xf6+NG6e/A3v3RlWqBOnp/Hv4MP41amBIS2MBEA8kAEOAd4ElQKkblzTgFFAeWDhuHD0TElh87Bi90tLwGDUK9dBDGFasAOCxM2dYcvEihvPn9czPb76B/v1RlSvr786OHTFs3Kjf788/h5499f/8vffCmjXE9+gBS5ei7Jn4f9NQqpg6f/68AtTWLONnRo0apVq2bJnjY8aPH5+tv1YucpGLXOQiF7kUzcu5rC36OSixLUr5MXbsWF61aMkxGo1cuXKFLl26sHv37lwfe9ddd7HLclHKPNyf0332bIuPj6datWqcO3euUPM83ey5FsQ+7C2f19c5t/vkPchfeXkPCm4frngPbG233CbvQd7L5eW1trW9pL4H9jxGKUVCQgJVTS38uSixgVLFihXx9PQkJibGantMTAwhISE5PsbX1xdfUwKxG8qWLYuXl9dNP3ienp65lsnt/pzus3cb6IUTC/Mf42bPtSD2YW/5vL7Oud0n70H+yst7UHD7cMV7YGt7TtvkPbC/XF5ea1vbS+p7YO9jypQpY9e+ckymWRL4+PjQvHlz1q5da95mNBpZu3YtrbOuPn0TQ4YMcbhMbvfndJ+921zBGfXI6z7sLZ/X1zm3++Q9yF95eQ8Kbh+ueA9sbXeH96Govge53S/vQeEd16REL2GyePFi+vXrx+eff07Lli35+OOP+eGHH/j7778JDg52dfUcJkusuJ68B64n74HryXvgevIe5F+J7XoDeOKJJ7h06RLjxo0jOjqa0NBQVqxYUSyCJNBdhePHj8/WXSgKj7wHrifvgevJe+B68h7kX4luURJCCCGEyE2JHaMkhBBCCHEzEigJIYQQQtgggZIQQgghhA0SKAkhhBBC2CCBkhBCCCGEDRIoCc6dO0f79u1p0KABjRs3ZsmSJa6uUonUo0cPypUrx2OPPebqqpQYy5cvp169etStW5evvvrK1dUpkeRz73pyDsidpAcQREVFERMTQ2hoKNHR0TRv3px//vmHgIAAV1etRNmwYQMJCQnMmzePH00r2YsCk56eToMGDVi/fj1lypShefPmbN26lQoVKri6aiWKfO5dT84BuZMWJUGVKlUIDQ0FICQkhIoVK3LlyhXXVqoEat++PaVLl3Z1NUqMnTt30rBhQ2655RYCAwN54IEHWLVqlaurVeLI59715ByQOwmUioBNmzbRrVs3qlatisFgYNmyZdnKfPrpp9SsWZNSpUrRqlUrdu7cma9j7dmzh4yMDKpVq+ZgrYuXwnwPhH0cfU8uXLjALbfcYr59yy23cP78+cKoerEh/xfuwZnvg5wDspNAqQhISkqiSZMmfPrppznev3jxYl599VXGjx/P3r17adKkCZ07d+bixYvmMqGhodx5553ZLhcuXDCXuXLlCn379uWLL74o8OdU1BTWeyDs54z3RDhG3gP34Kz3Qc4BNihRpABq6dKlVttatmyphgwZYr6dkZGhqlatqiZPnmz3fq9fv67atm2r5s+f76yqFlsF9R4opdT69etVz549nVHNEiU/78mWLVtU9+7dzfcPHz5cLViwoFDqWxw58n8hn3vnye/7IOcA26RFqYhLTU1lz549dOzY0bzNw8ODjh07sm3bNrv2oZSif//+3HffffTp06egqlpsOeM9EM5lz3vSsmVLDh06xPnz50lMTOTPP/+kc+fOrqpysSP/F+7BnvdBzgG5k0CpiLt8+TIZGRkEBwdbbQ8ODiY6OtqufWzZsoXFixezbNkyQkNDCQ0N5eDBgwVR3WLJGe8BQMeOHenVqxd//PEHt956q5xMHGDPe+Ll5cW0adO49957CQ0N5bXXXpMZb05k7/+FfO4Llj3vg5wDcufl6goI1wsPD8doNLq6GiXemjVrXF2FEufhhx/m4YcfdnU1SjT53LuenANyJy1KRVzFihXx9PQkJibGantMTAwhISEuqlXJIu+B+5H3xPXkPXAP8j44TgKlIs7Hx4fmzZuzdu1a8zaj0cjatWtp3bq1C2tWcsh74H7kPXE9eQ/cg7wPjpOutyIgMTGR48ePm2+fOnWKyMhIypcvT/Xq1Xn11Vfp168fLVq0oGXLlnz88cckJSXx7LPPurDWxYu8B+5H3hPXk/fAPcj7UMBcPe1O3Nz69esVkO3Sr18/c5mZM2eq6tWrKx8fH9WyZUu1fft211W4GJL3wP3Ie+J68h64B3kfCpas9SaEEEIIYYOMURJCCCGEsEECJSGEEEIIGyRQEkIIIYSwQQIlIYQQQggbJFASQgghhLBBAiUhhBBCCBskUBJCCCGEsEECJSGEEEIIGyRQEkIIF0tNTaVOnTps3brVqftdsWIFoaGhsjK8EA6QQEkI4VT9+/fHYDBku1iuRSWszZ49m1q1atGmTRvzNoPBwLJly7KV7d+/P927d7drv126dMHb25sFCxY4qaZClDwSKAkhnK5Lly5ERUVZXWrVqpWtXGpqqgtq516UUnzyyScMGDCgQPbfv39/ZsyYUSD7FqIkkEBJCOF0vr6+hISEWF08PT1p3749Q4cOZcSIEVSsWJHOnTsDcOjQIR544AECAwMJDg6mT58+XL582by/pKQk+vbtS2BgIFWqVGHatGm0b9+eESNGmMvk1AJTtmxZ5s6da7597tw5Hn/8ccqWLUv58uV55JFHOH36tPl+U2vNhx9+SJUqVahQoQJDhgwhLS3NXCYlJYUxY8ZQrVo1fH19qVOnDl9//TVKKerUqcOHH35oVYfIyMhcW9T27NnDiRMn6Nq1ax5fZTh9+nSOrXft27c3l+nWrRu7d+/mxIkTed6/EEICJSFEIZs3bx4+Pj5s2bKF2bNnExsby3333UfTpk3ZvXs3K1asICYmhscff9z8mFGjRrFx40Z++eUXVq1axYYNG9i7d2+ejpuWlkbnzp0pXbo0ERERbNmyhcDAQLp06WLVsrV+/XpOnDjB+vXrmTdvHnPnzrUKtvr27cvChQuZMWMGR44c4fPPPycwMBCDwcBzzz3HnDlzrI47Z84c2rVrR506dXKsV0REBLfffjulS5fO0/MBqFatmlWr3b59+6hQoQLt2rUzl6levTrBwcFERETkef9CCEAJIYQT9evXT3l6eqqAgADz5bHHHlNKKXXPPfeopk2bWpV/++23VadOnay2nTt3TgHq6NGjKiEhQfn4+KgffvjBfP9///2n/Pz81PDhw83bALV06VKr/ZQpU0bNmTNHKaXUt99+q+rVq6eMRqP5/pSUFOXn56dWrlxprnuNGjVUenq6uUyvXr3UE088oZRS6ujRowpQq1evzvG5nz9/Xnl6eqodO3YopZRKTU1VFStWVHPnzrX5eg0fPlzdd9992bYDqlSpUlavY0BAgPLy8lKPPPJItvLXrl1TrVq1Ug899JDKyMiwuq9p06ZqwoQJNusghLDNy7VhmhCiOLr33nuZNWuW+XZAQID5evPmza3K7t+/n/Xr1xMYGJhtPydOnODatWukpqbSqlUr8/by5ctTr169PNVp//79HD9+PFvLzfXr1626pRo2bIinp6f5dpUqVTh48CCgu9E8PT255557cjxG1apV6dq1K9988w0tW7bkt99+IyUlhV69etms17Vr1yhVqlSO902fPp2OHTtabRszZgwZGRnZyj733HMkJCSwevVqPDysOwv8/PxITk62WQchhG0SKAkhnC4gIMBmV5Nl0ASQmJhIt27dmDJlSrayVapUsXu2nMFgQClltc1ybFFiYiLNmzfPcQZYpUqVzNe9vb2z7dc0vd7Pz++m9Xj++efp06cP06dPZ86cOTzxxBP4+/vbLF+xYkVzIJZVSEhIttexdOnSxMbGWm175513WLlyJTt37syxC+/KlStWz1EIYT8JlIQQLtWsWTN++uknatasiZdX9q+k2rVr4+3tzY4dO6hevToAV69e5Z9//rFq2alUqRJRUVHm28eOHbNqRWnWrBmLFy+mcuXKBAUF5auujRo1wmg0snHjxmwtPSYPPvggAQEBzJo1ixUrVrBp06Zc99m0aVNmzZqFUgqDwZDnOv30009MmjSJP//8k9q1a2e739Ri1rRp0zzvWwghg7mFEC42ZMgQrly5wpNPPsmuXbs4ceIEK1eu5NlnnyUjI4PAwEAGDBjAqFGjWLduHYcOHaJ///7Zupfuu+8+PvnkE/bt28fu3bsZNGiQVevQ008/TcWKFXnkkUeIiIjg1KlTbNiwgWHDhvHvv//aVdeaNWvSr18/nnvuOZYtW2bexw8//GAu4+npSf/+/Rk7dix169aldevWue7z3nvvJTExkcOHD+fhVdMOHTpE3759GTNmDA0bNiQ6Opro6GiuXLliLrN9+3Z8fX1vWg8hRM4kUBJCuFTVqlXZsmULGRkZdOrUiUaNGjFixAjKli1rDoY++OAD2rZtS7du3ejYsSPh4eHZxjpNmzaNatWq0bZtW5566ilGjhxp1eXl7+/Ppk2bqF69Oo8++ij169dnwIABXL9+PU8tTLNmzeKxxx7jpZde4o477uCFF14gKSnJqsyAAQNITU3l2Wefven+KlSoQI8ePfKVFHL37t0kJyfzzjvvUKVKFfPl0UcfNZdZuHAhTz/9dK7df0II2wwqa6e+EEIUAe3btyc0NJSPP/7Y1VXJJiIigg4dOnDu3DmCg4NvWv7AgQPcf//9nDhxIsdB7fl1+fJl6tWrx+7du3NM+CmEuDlpURJCCCdJSUnh33//ZcKECfTq1cuuIAmgcePGTJkyhVOnTjm1PqdPn+azzz6TIEkIB8hgbiGEcJKFCxcyYMAAQkNDmT9/fp4e279/f6fXp0WLFrRo0cLp+xWiJJGuNyGEEEIIG6TrTQghhBDCBgmUhBBCCCFskEBJCCGEEMIGCZSEEEIIIWyQQEkIIYQQwgYJlIQQQgghbJBASQghhBDCBgmUhBBCCCFskEBJCCGEEMKG/wdSuDqXKJooegAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fit_model = (\n", + " models.Lorentz1D(x_0=0.02, fwhm=0.15, amplitude=10000)\n", + " + models.Lorentz1D(x_0=0.2, fwhm=3, amplitude=300)\n", + " + models.Lorentz1D(x_0=15, fwhm=30, amplitude=10)\n", + ")\n", + "\n", + "plt.figure()\n", + "plt.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - 2) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "plt.plot(pds.freq, fit_model(pds.freq) * pds.freq, color=\"r\", label=\"Starting Model\")\n", + "for mod in fit_model:\n", + " plt.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + "\n", + "plt.semilogx()\n", + "plt.xlim([pds.freq[0], pds.freq[-1]])\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "plt.legend()\n", + "plt.ylim([0, None])" + ] + }, + { + "cell_type": "markdown", + "id": "2438911a", + "metadata": {}, + "source": [ + "We will now add a constant at the Poisson noise level (2 in Leahy normalization) and fit using the Maximum Likelihood estimation in `stingray`" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "2003fbfb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 1.94796052e+00 1.00085414e+04 1.65798045e-02 1.98807131e-01\n", + " 3.00810652e+02 -5.92867228e-01 4.70262505e+00 8.40235653e+00\n", + " 1.54668594e+01 2.51297268e+01]\n" + ] + } + ], + "source": [ + "from stingray.modeling import PSDParEst\n", + "\n", + "fit_model = models.Const1D(amplitude=2) + fit_model\n", + "\n", + "parest = PSDParEst(pds_reb, fitmethod=\"L-BFGS-B\", max_post=False)\n", + "loglike = PSDLogLikelihood(pds_reb.freq, pds_reb.power, fit_model, m=pds_reb.m)\n", + "\n", + "res = parest.fit(loglike, fit_model.parameters)\n", + "\n", + "fitmod = res.model\n", + "\n", + "# The Poisson noise level was the first parameter.\n", + "poisson = fitmod.parameters[0]\n", + "print(res.p_opt)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "502706d3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkoAAAG1CAYAAAAGD9vIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADUFUlEQVR4nOydZ3gUVReA300CIZVQQgKCdOkkdEJAQJFi76KoYAELCnZFPxWxIGBXBEVRUUSwYQcVKSFgqAEp0kFKsqEmu2kku+f7cbM1m5Bk03Pf55kn2Tt37pyZnZ05c+4pBhERNBqNRqPRaDT58KloATQajUaj0WgqK1pR0mg0Go1GoykArShpNBqNRqPRFIBWlDQajUaj0WgKQCtKGo1Go9FoNAWgFSWNRqPRaDSaAtCKkkaj0Wg0Gk0BaEVJo9FoNBqNpgD8KlqAqozVauXYsWOEhIRgMBgqWhyNRqPRaDRFQEQwmUw0adIEH5/CbUZaUfKCY8eO0axZs4oWQ6PRaDQaTQk4fPgwTZs2LbSPVpS8ICQkBFAnOjQ0tIKl0Wg0Go1GUxTS0tJo1qyZ/TleGJVSUVq1ahUzZsxg48aNJCUl8f3333P11Vfb14sIzz//PHPmzOHMmTPExsYya9Ys2rZta+9z6tQpHnzwQX766Sd8fHy47rrrePvttwkODrb32bp1K+PHj2f9+vWEh4fz4IMP8sQTTxRZTtt0W2hoqFaUNBqNRqOpYhTFbaZSOnOnp6cTFRXFzJkzPa6fPn0677zzDrNnzyYhIYGgoCCGDRtGVlaWvc+oUaPYvn07f/zxBz///DOrVq1i3Lhx9vVpaWkMHTqU5s2bs3HjRmbMmMHkyZP58MMPy/z4NBqNRqPRVBGkkgPI999/b/9stVolMjJSZsyYYW87c+aM+Pv7y4IFC0REZMeOHQLI+vXr7X1+++03MRgMcvToURERef/996VevXqSnZ1t7/Pkk09Ku3btiixbamqqAJKamlrSw9NoNBqNRlPOFOf5XSmn3grjwIEDJCcnM2TIEHtb3bp16dOnD2vXrmXkyJGsXbuWsLAwevbsae8zZMgQfHx8SEhI4JprrmHt2rVceOGF1K5d295n2LBhTJs2jdOnT1OvXr18+87OziY7O9v+OS0trYyOUqPRaGo2VquVs2fPVrQYmipKrVq18PX1LZWxqpyilJycDEBERIRLe0REhH1dcnIyjRo1clnv5+dH/fr1Xfq0bNky3xi2dZ4UpalTp/LCCy+UzoFoqgQiQkZGhktbYGCgTgeh0ZQhZ8+e5cCBA1it1ooWRVOFCQsLIzIy0uv7dZVTlCqSSZMm8cgjj9g/27zmNdUTEaF///6sWbPGpT02Npa4uDitLGk0ZYCIkJSUhK+vL82aNTtnjhuNxh3bC25KSgoAjRs39mq8KqcoRUZGAmA0Gl0O3mg0Eh0dbe9jO0E2cnNzOXXqlH37yMhIjEajSx/bZ1sfd/z9/fH39y+V49BUfjIyMvIpSQDx8fFkZGQQFBRUAVJpNNWb3NxcMjIyaNKkCYGBgRUtjqaKEhAQAEBKSgqNGjXyahquyqnqLVu2JDIykmXLltnb0tLSSEhIICYmBoCYmBjOnDnDxo0b7X3++usvrFYrffr0sfdZtWoVOTk59j5//PEH7dq18zjtpqnZGI3GfIq1RqMpfSwWC4CL/6hGUxJsirbzc74kVEpFyWw2k5iYSGJiIqAcuBMTE/nvv/8wGAw89NBDvPTSS/z444/8888/3H777TRp0sSea6lDhw4MHz6csWPHsm7dOuLj43nggQcYOXIkTZo0AeCWW26hdu3a3HXXXWzfvp2FCxfy9ttvu0ytaTQ2goKCtAVJoylH9NS2xltK6xqqlFNvGzZsYPDgwfbPNuVl9OjRfPrppzzxxBOkp6czbtw4zpw5Q//+/VmyZAl16tSxbzN//nweeOABLr74YnvCyXfeece+vm7duvz++++MHz+eHj160LBhQ5577jmXXEsajUaj0WhqNgYRkYoWoqqSlpZG3bp1SU1N1Zm5qyHp6en2TO5msxnA5bO2MGk0pU9WVhYHDhygZcuWLi+/Gk1xKexaKs7zu1JOvWk0Go1GU9NYsWIFBoOBM2fOFNjn008/JSwsrNxkKozJkyfbg6iqM1pR0mg0Go3GS8aMGYPBYMBgMFCrVi1atmzJE0884VJaqzS46aab2L17d6mOWVYcPHjQfk4MBgMNGjRg6NChbN682d5n0KBB9vX+/v6cd955XHHFFXz33Xf5xlu5ciUXXXQR9evXJzAwkLZt2zJ69OgyT0yqFSWNRqPRaEqB4cOHk5SUxP79+3nzzTf54IMPeP7550t1HwEBAfkSKld2/vzzT5KSkli6dClms5kRI0a4WM3Gjh1LUlIS+/bt49tvv6Vjx46MHDnSxWd4x44dDB8+nJ49e7Jq1Sr++ecf3n33XWrXrm2PlCwrtKKk0Wg0mkqLiJCenl4hS3FdeP39/YmMjKRZs2ZcffXVDBkyhD/++MO+3mq1MnXqVFq2bElAQABRUVF88803+caJj4+na9eu1KlTh759+7Jt2zb7OvepN9v01+eff06LFi2oW7cuI0eOxGQy2fsMGjSICRMm8MQTT1C/fn0iIyOZPHmyyz7PnDnD3XffTXh4OKGhoVx00UVs2bLFpc+rr75KREQEISEh3HXXXUW2ljVo0IDIyEh69uzJa6+9htFoJCEhwb4+MDCQyMhImjZtSt++fZk2bRoffPABc+bM4c8//wTg999/JzIykunTp9O5c2dat27N8OHDmTNnjj1nUlmhFSWNRqPRVFoyMjIIDg6ukMW9fFFx2LZtG2vWrHHJBzV16lTmzZvH7Nmz2b59Ow8//DC33norK1eudNn28ccf5/XXX2f9+vWEh4dzxRVXFJoLaN++fSxevJiff/6Zn3/+mZUrV/Lqq6+69Pnss88ICgoiISGB6dOnM2XKFBcl7oYbbiAlJYXffvuNjRs30r17dy6++GJOnToFwKJFi5g8eTKvvPIKGzZsoHHjxrz//vvFPi82peZc02WjR4+mXr169im4yMhIkpKSWLVqVbH36TVlWJy32lOc6sOaqofZbBZAADGbzfk+azSa0iczM1N27NghmZmZIuL6OyzvpTi/89GjR4uvr68EBQWJv7+/AOLj4yPffPONiIhkZWVJYGCgrFmzxmW7u+66S26++WYREVm+fLkA8tVXX9nXnzx5UgICAmThwoUiIvLJJ59I3bp17euff/55CQwMlLS0NHvb448/Ln369LF/HjhwoPTv399lv7169ZInn3xSRETi4uIkNDRUsrKyXPq0bt1aPvjgAxERiYmJkfvvv99lfZ8+fSQqKqrAc3LgwAEBZPPmzSIicvr0abnmmmskODhYkpOT7bJNnDjR4/Z9+vSRESNGiIhIbm6ujBkzRgCJjIyUq6++Wt59991Cn7/u15IzxXl+V8o8ShqNRqPRgJqWsaXnqIh9F4fBgwcza9Ys0tPTefPNN/Hz8+O6664DYO/evWRkZHDJJZe4bHP27Fm6devm0marMgFQv3592rVrx86dOwvcb4sWLQgJCbF/bty4cb4yXl27dnX57Nxny5YtmM1mGjRo4NInMzOTffv2AbBz507uvffefHIuX768QLls9OvXDx8fH9LT02nVqhULFy7MV9jeEyJiTxrp6+vLJ598wksvvcRff/1FQkICr7zyCtOmTWPdunVe13MrDK0oaTQajabSYjAYqkzOsqCgINq0aQPA3LlziYqK4uOPP+auu+6yK3u//PIL5513nst23tYQrVWrlstng8GA1Wotch+z2Uzjxo1ZsWJFvrFLIxXBwoUL6dixIw0aNCjyeBaLhT179tCrVy+X9vPOO4/bbruN2267jRdffJELLriA2bNn88ILL3gtZ0FoRUmj0Wg0mlLGx8eHp59+mkceeYRbbrmFjh074u/vz3///cfAgQML3fbvv//m/PPPB+D06dPs3r2bDh06lJms3bt3Jzk5GT8/P1q0aOGxT4cOHUhISOD22293kbMoNGvWjNatWxdLps8++4zTp0/bLXKeqFevHo0bNyY9Pb1YYxcXrShpNBqNRlMG3HDDDTz++OPMnDmTxx57jMcee4yHH34Yq9VK//79SU1NJT4+ntDQUEaPHm3fbsqUKTRo0ICIiAieeeYZGjZsaK9lWhYMGTKEmJgYrr76aqZPn84FF1zAsWPH+OWXX7jmmmvo2bMnEydOZMyYMfTs2ZPY2Fjmz5/P9u3badWqldf7z8jIIDk5mdzcXI4cOcL333/Pm2++yX333WcvZ/bBBx+QmJjINddcQ+vWrcnKymLevHls376dd99912sZCkMrShqNRqPRlAF+fn488MADTJ8+nfvuu48XX3yR8PBwpk6dyv79+wkLC6N79+48/fTTLtu9+uqrTJw4kT179hAdHc1PP/3kEj1X2hgMBn799VeeeeYZ7rjjDo4fP05kZCQXXnih3ZfopptuYt++ffYkmtdddx333XcfS5cu9Xr/c+bMYc6cOdSuXZsGDRrQo0cPFi5cyDXXXGPv07t3b1avXs29997LsWPHCA4OplOnTixevPicFjpv0bXevEDXeqve6FpvGk35o2u9aUoLXetNo9FoNBqNpozRipJGo9FoNBpNAWhFSaPRaDQajaYAtKKk0Wg0Go1GUwBaUdJoNBqNRqMpAK0oaTQajUaj0RSAzqOk0ZQAEXHJBhsYGGivSaTRaDSa6oO2KGk0JaB///4EBwfblwEDBqBTkmk0Gk31QytKGk0J2LJli8vn+Ph4MjIyKkgajUajKV8OHjyIwWAgMTGxyNsMGjSIhx56qMxkKiu0oqTReMH+/fsrWgSNRlMJGDNmDAaDwb40aNCA4cOHs3Xr1lLbx+TJk4mOji5SP4PBwPDhw/OtmzFjBgaDgUGDBpWaXNUdrShpNF6gy5hoNBobw4cPJykpiaSkJJYtW4afnx+XX355hcjSuHFjli9fzpEjR1za586dy/nnn18hMlVVqqSiZLFYePbZZ2nZsiUBAQG0bt2aF1980cVHRER47rnnaNy4MQEBAQwZMoQ9e/a4jHPq1ClGjRpFaGgoYWFh3HXXXfaaXhqNRqPRFAd/f38iIyOJjIwkOjqap556isOHD3P8+HF7n8OHD3PjjTcSFhZG/fr1ueqqqzh48KB9/YoVK+jduzdBQUGEhYURGxvLoUOH+PTTT3nhhRfYsmWL3Wr16aefFihLo0aNGDp0KJ999pm9bc2aNZw4cYLLLrvMpa/VamXKlCk0bdoUf39/oqOjWbJkiUufdevW0a1bN+rUqUPPnj3ZvHlzvn1u27aNESNGEBwcTEREBLfddhsnTpwo5lmsfFRJRWnatGnMmjWL9957j507dzJt2jSmT5/Ou+++a+8zffp03nnnHWbPnk1CQgJBQUEMGzaMrKwse59Ro0axfft2/vjjD37++WdWrVrFuHHjKuKQNBqNRuMJEUhPr5jFiwANs9nMF198QZs2bWjQoAEAOTk5DBs2jJCQEOLi4oiPjyc4OJjhw4dz9uxZcnNzufrqqxk4cCBbt25l7dq1jBs3DoPBwE033cSjjz5Kp06d7Farm266qVAZ7rzzThdlau7cuYwaNYratWu79Hv77bd5/fXXee2119i6dSvDhg3jyiuvtBsXzGYzl19+OR07dmTjxo1MnjyZxx57zGWMM2fOcNFFF9GtWzc2bNjAkiVLMBqN3HjjjSU+h5UGqYJcdtllcuedd7q0XXvttTJq1CgREbFarRIZGSkzZsywrz9z5oz4+/vLggULRERkx44dAsj69evtfX777TcxGAxy9OjRIsmRmpoqgKSmpnp7SJpKiNlsFkAAMZvNLp9ti9FodOmj0Wi8IzMzU3bs2CGZmZmqwWwWUSpL+S/F+E2PHj1afH19JSgoSIKCggSQxo0by8aNG+19Pv/8c2nXrp1YrVZ7W3Z2tgQEBMjSpUvl5MmTAsiKFSs87uP555+XqKioc8pi63f27Flp1KiRrFy5Usxms4SEhMiWLVtk4sSJMnDgQHv/Jk2ayMsvv+wyRq9eveT+++8XEZEPPvhAGjRo4PhORGTWrFkCyObNm0VE5MUXX5ShQ4e6jHH48GEBZNeuXSIiMnDgQJk4ceI55S8t8l1LThTn+V0lLUr9+vVj2bJl7N69G1ARSKtXr2bEiBEAHDhwgOTkZIYMGWLfpm7duvTp04e1a9cCsHbtWsLCwujZs6e9z5AhQ/Dx8SEhIcHjfrOzs0lLS3NZNBqNRqMBGDx4MImJiSQmJrJu3TqGDRvGiBEjOHToEKCeVXv37iUkJMSeWqR+/fpkZWWxb98+6tevz5gxYxg2bBhXXHEFb7/9NklJSSWWp1atWtx666188sknfP3111xwwQV07drVpU9aWhrHjh0jNjbWpT02NpadO3cCsHPnTrp27UqdOnXs62NiYlz6b9myheXLl7ukTWnfvj0A+/btK/ExVAaqZMLJp556irS0NNq3b4+vry8Wi4WXX36ZUaNGAZCcnAxARESEy3YRERH2dcnJyTRq1MhlvZ+fH/Xr17f3cWfq1Km88MILpX04Go1GoymIwECoKN/RwMBidQ8KCqJNmzb2zx999BF169Zlzpw5vPTSS5jNZnr06MH8+fPzbRseHg7AJ598woQJE1iyZAkLFy7kf//7H3/88Qd9+/Yt0SHceeed9OnTh23btnHnnXeWaIyiYDabueKKK5g2bVq+dY0bNy6z/ZYHVVJRWrRoEfPnz+fLL7+kU6dOJCYm8tBDD9GkSRNGjx5dZvudNGkSjzzyiP1zWloazZo1K7P9aTQaTY3HYIAqGl1qMBjw8fEhMzMTgO7du7Nw4UIaNWpEaGhogdt169aNbt26MWnSJGJiYvjyyy/p27cvtWvXxmKxFEuGTp060alTJ7Zu3cott9ySb31oaChNmjQhPj6egQMH2tvj4+Pp3bs3AB06dODzzz8nKyvLblX6+++/Xcbp3r073377LS1atMDPr0qqFgVSJafeHn/8cZ566ilGjhxJly5duO2223j44YeZOnUqAJGRkQAYjUaX7YxGo31dZGQkKSkpLutzc3M5deqUvY87/v7+hIaGuiwaTXkjeeVT0tPTdTZwjaYSkZ2dTXJyMsnJyezcuZMHH3zQbmkBFUDUsGFDrrrqKuLi4jhw4AArVqxgwoQJHDlyhAMHDjBp0iTWrl3LoUOH+P3339mzZw8dOnQAoEWLFhw4cIDExEROnDhBdnZ2keT666+/SEpKIiwszOP6xx9/nGnTprFw4UJ27drFU089RWJiIhMnTgTglltuwWAwMHbsWHbs2MGvv/7Ka6+95jLG+PHjOXXqFDfffDPr169n3759LF26lDvuuKPYyl1lo0oqShkZGfj4uIru6+uL1WoFoGXLlkRGRrJs2TL7+rS0NBISEuzzqjExMZw5c4aNGzfa+/z1119YrVb69OlTDkeh0RQfEXEpn6JLp2g0lYclS5bQuHFjGjduTJ8+fVi/fj1ff/21PbljYGAgq1at4vzzz+faa6+lQ4cO3HXXXWRlZREaGkpgYCD//vsv1113HRdccAHjxo1j/Pjx3HPPPQBcd911DB8+nMGDBxMeHs6CBQuKJJct1UBBTJgwgUceeYRHH32ULl26sGTJEn788Ufatm0LQHBwMD/99BP//PMP3bp145lnnsk3xWazSlksFoYOHUqXLl146KGHCAsLy/e8rmoYpAreZceMGcOff/7JBx98QKdOndi8eTPjxo3jzjvvtH9506ZN49VXX+Wzzz6jZcuWPPvss2zdupUdO3bYTYcjRozAaDQye/ZscnJyuOOOO+jZsydffvllkeRIS0ujbt26pKamautSNSQ9PZ3g4GAAe34t22cbRqPR7gtnNpvLPAGls0w2ymO/Gk15kZWVxYEDB2jZsqWL87BGU1wKu5aK8/yukhOJ7777Ls8++yz3338/KSkpNGnShHvuuYfnnnvO3ueJJ54gPT2dcePGcebMGfr378+SJUtcTtb8+fN54IEHuPjii/Hx8eG6667jnXfeqYhD0pQzIpKvNltgYCAGg6GCJNJoNBpNZaRKWpQqC9qiVDWxTV+tWbPGpT02Npa4uDi7sqQtShpN+aMtSprSorQsSlV74lCjKQEZGRn5lCRQUR7uViaNRqPR1Gy0oqSp0RiNxnzRkRqNRqPR2KiSPkoaTWmhp6w0Go1GUxjFtihlZmZy9OjRfO3bt28vFYE0mpqMzpGk0Sj09a/xltK6hoqlKH3zzTe0bduWyy67jK5du7rURLvttttKRSCNpjRwVjiqiuKhcyRpNConHsDZs2crWBJNVcfmc1qrVi2vxinW1NtLL73Exo0biYiIYOPGjYwePZqnn36aW265Rd/QNZWGc0W1VVbcncxtzuV6elBTk/Dz8yMwMJDjx49Tq1atKp+sUFP+2NK/pKSkEBYWZle+S0qxFKWcnBx7KHSPHj1YtWoV11xzDXv37tX5ZzSVBh3VptFUXQwGA40bN+bAgQMcOnSoosXRVGHCwsIKLElWHIqlKDVq1IitW7fStWtXAOrXr88ff/zB6NGj2bp1q9fCaDSljS2izabgazSayk/t2rVp27atnn7TlJhatWp5bUmyUSxF6fPPP89XFbh27dosWLCABx54oFQE0mhKk8o8beWeHVxPX2s0Dnx8fHTCSU2loFiKUtOmTQtcFxsb67UwGk1NwZMfVXR0dMUJpNFoNBqPlEoepZycHJKTk8nIyCA8PJz69euXxrAaTbXFkx9VYmJixQij0Wg0mgIpcTiByWRi1qxZDBw4kNDQUFq0aEGHDh0IDw+nefPmjB07lvXr15emrJoagqfQ/qoW6l8c9u/fX9EiaDQajaYASqQovfHGG7Ro0YJPPvmEIUOGsHjxYhITE9m9ezdr167l+eefJzc3l6FDhzJ8+HD27NlT2nJrqinuuYQKWqpyjiGbImijMvtRaTQaTU2nRFNv69evZ9WqVXTq1Mnj+t69e3PnnXcya9YsPv30U+Li4mjbtq1XgmpqBgWF9rtTVXMMFZTjSaPRaDSVkxIpSgsWLChSvzp16nDvvfeWZBcaDUajMZ8ilJ6eXqVD/d0VwdjYWAIDAytQIo1Go9EURqk4cy9btoxly5aRkpKC1Wp1WTd37tzS2IWmBhIUFFTlLEbFwWg0Eh4erpNgajQaTSXGa0XphRdeYMqUKfTs2ZPGjRvrDN2aGovN7ygwMLBIv4OgoCD9e9FoNJpKjteK0uzZs/n00091UVxNjcc2JWirKaeVII1Go6n6eF1t8OzZs/Tr1680ZNFoqhyBgYH5kq3qmnIajUZTffBaUbr77rv58ssvS0MWjabMseVhKgznPE7nwmAwEBcXh9lstteV02g0Gk31weupt6ysLD788EP+/PNPunbtSq1atVzWv/HGG97uQqMpNc4VMVeS8H2DwVCtnc41Go2mJuO1orR161Z7japt27a5rNM+GprKgG16LD4+3qXdFprvPE3mKY+Tp34ajUajqRl4rSgtX768NOTQaMoM2/SYu6Jzrug0Wx6nokaxaTQajab64bWPUkVx9OhRbr31Vho0aEBAQABdunRhw4YN9vUiwnPPPUfjxo0JCAhgyJAh+UqpnDp1ilGjRhEaGkpYWBh33XUXZrO5vA9FUw7Ypsecl3MpP0Xt5xGLBRITYcECmDYNnn0WJk/Gb+ZMLgeaFXO44vhNaTQajab0KJWEkwA7duzgv//+4+zZsy7tV155ZWntws7p06eJjY1l8ODB/Pbbb4SHh7Nnzx7q1atn7zN9+nTeeecdPvvsM1q2bMmzzz7LsGHD2LFjB3Xq1AFg1KhRJCUl8ccff5CTk8Mdd9zBuHHjtHO6pmTk5HAFcCsQeP75kJqar4s/8FPe/9ZOneCmmzBcf32hw+qyJxqNRlOBiJfs27dPunbtKgaDQXx8fMRgMNj/9/Hx8XZ4jzz55JPSv3//AtdbrVaJjIyUGTNm2NvOnDkj/v7+smDBAhER2bFjhwCyfv16e5/ffvtNDAaDHD16tEhypKamCiCpqaklPBKNO2azWQABxGw2F3t9UfsU1N9oNBa4rXM/lz4ZGSLvvCOWpk1FwLGEhooMGCBy++0i48eL3Huv5FxzjWwGyXHuB7I9OFiuyBszOjraZXxP+80ng0aj0WiKTHGe315PvU2cOJGWLVuSkpJCYGAg27dvZ9WqVfTs2ZMVK1Z4O7xHfvzxR3r27MkNN9xAo0aN6NatG3PmzLGvP3DgAMnJyQwZMsTeVrduXfr06cPatWsBWLt2LWFhYfTs2dPeZ8iQIfj4+JCQkOBxv9nZ2aSlpbksmpqN748/QseOMGECPkeOYAReBzKXL4eTJ2HVKvjsM3jvPZg1i+zPP6cbEAZkzZ8PV18NtWrR0WzmRyC3Rw/WvPJKBR6RRqPRaJzxWlFau3YtU6ZMoWHDhvj4+ODj40P//v2ZOnUqEyZMKA0Z87F//35mzZpF27ZtWbp0Kffddx8TJkzgs88+AyA5ORnIHwoeERFhX5ecnEyjRo1c1vv5+VG/fn17H3emTp1K3bp17UuzZsX1NNFUFxoA3wF1brkFDh6Epk3JfustmgOPAdZevcCv4JntdMBy1VXw/fdw9Cg89RQEBuK7cSMBl17Kx0C9ArfWaDQaTXnhtaJksVgICQkBoGHDhhw7dgyA5s2bs2vXLm+H94jVaqV79+688sordOvWjXHjxjF27Fhmz55dJvuzMWnSJFJTU+3L4cOHy3R/msrJYOAf4BpAatWCp5+Gf/8l9+67sQB13TcYPRomTID9+z0PGB4OU6fCgQNw770A3AnsAHz++quMjkKj0Wg0RcFrRalz585s2bIFgD59+jB9+nTi4+OZMmUKrVq18lpATzRu3JiOHTu6tHXo0IH//vsPgMjISIB8mZKNRqN9XWRkJCkpKS7rc3NzOXXqlL2PO/7+/oSGhrosmhqECBOA34HGwHYga8UKePllCAqi1ltvcRp41n27RYvg3XddLExRgN+CBZCd7ejXqBHMmkXmH3+wA4gE6lx1FbUmT8a3LI9Lo9FoNAXitaL0v//9D6vVCsALL7zAgQMHGDBgAL/++ivvvPOO1wJ6IjY2Np+1avfu3TRv3hyAli1bEhkZybJly+zr09LSSEhIICYmBoCYmBjOnDnDxo0b7X3++usvrFYrffr0KRO5NVWY3FxqP/ggb6NCRT8FegPWzp3tXazNmxMMdHffdvp0ePZZpGlTe3j/g4D/2LFw3335dmWNiaEHMAswiFD7tdf4DQ+WKo1Go9GUPWXhTX7y5EmxWq1lMbSIiKxbt078/Pzk5Zdflj179sj8+fMlMDBQvvjiC3ufV199VcLCwuSHH36QrVu3ylVXXSUtW7aUzMxMe5/hw4dLt27dJCEhQVavXi1t27aVm2++uchy6Ki30qdSRr1lZopcfbUISC7IQyDdQdaBZM6d6xjn5EnpAWLwsF+r1Sr9+vWzj/0QiKVJE5ENG5w75ZMnc948sQYGioDsBGmto940Go3Ga4rz/C4VRWnVqlUyatQo6du3rxw5ckRERObNmydxcXGlMbxHfvrpJ+ncubP4+/tL+/bt5cMPP3RZb7Va5dlnn5WIiAjx9/eXiy++WHbt2uXS5+TJk3LzzTdLcHCwhIaGyh133CEmk6nIMmhFqfSpdIqS2SwyeLAIiNXfX67KW/dSXlh/bq9eRdqve4h/bGysWLOzXQV5912RUaPEfPCgyzgZa9bIf3n7OwkyQCtKGo1G4xXlqih98803EhAQIHfffbf4+/vLvn37RETk3XfflREjRng7fKVGK0qlT6VSlFJS7EqShIRIxi+/2NcFgLwJkp53vZ9rv+77yGdxTU1VeZdAsl59NV8epQiQv/OUpQyQS7WipNFoNCWmXPMovfTSS8yePZs5c+ZQq1Yte3tsbCybNm3ydniNpkKoA9S56SZYvhxCQmDqVHz/+MO+PhN4GBC3FBRFwWNZlNBQ+OMPmDCB3Pvvz7eNERgE/AgEAIuBm4q9Z41Go9EUF69LmOzatYsLL7wwX3vdunU5c+aMt8NrNOWOL/AV4Lt8OQQFwbx5MHIktbOzuQUoswI3vXurJc/h2wD4LlqEJa/ESRZwHfAJqkzKl0Ao2OvAwbkL/Wo0Go2meHhtUYqMjGTv3r352levXl1m6QE0mjJDhFnAVYD4+8PPP6vs2a+8Qu4NN/BdiYaUEhWzfRWoc+ed1HayMOUCtwPvo368HwKz2rUjODiY4OBgBgwYgIiUQEqNRqPReMJrRWns2LFMnDiRhIQEDAYDx44dY/78+Tz22GPc5yH0WaOpzATNmMFYwAJkf/ghDBqkVjz8MNlz55JVzPEkr6Cte5b4orANldDSOnCg65jAeGBq3ufHjx1jfN7/8fHxZGRkFHtfGo1Go/GM11NvTz31FFarlYsvvpiMjAwuvPBC/P39eeyxx3jwwQdLQ0aNplwYBQS9/joAy4FB8+bBTTeBvz8YDGopJhkZGaxZs8b+OTY2lsDAwCJt+zkwOzERad4cxo7Nt/5pwAo8A7yHsjZ9UGwJNRqNRlMYXitKBoOBZ555hscff5y9e/diNpvp2LEjwcHBpSGfRlMu9AI+yvt/Nmp6y2/ZMlixAoYNK/Z46enp+RQio9FIeHh4sXyIJC+JKign7sdQU3I5eW3/Q/2In8yTO7fYkmo0Go2mMLyeerNRu3ZtOnbsSO/evbWSpKlSGJKSWIyKdMseOpT7gRFA9jvvlEhJAlWA2d1fyGO02zlw9m9aBEwBPnbr8xTwRt7/HwJ+X3xRIpk1Go1Gkx+vLUoAWVlZbN26lZSUFHs5ExtXXnllaexCoykbMjPxHzmSJiifoIj330fatGEVkHvnnfgXY6jAwEBiY2OJj48HlL/Q8ePHvRKve/fu7NmzB4B3UZavOR76PYr6MU8Aat93n4rWu/VWr/at0Wg0mlJQlJYsWcLtt9/OiRMn8q0zGAxYLBZvd6HRlA0iMG4cvhs3YkKZVw1mc4mHMxgMxMXFcfz4cbvztreRnzYlCSAlOppWiYkU5Ko9EfWDvl8ERo+G2rXhxhu92r9Go9HUdLyeenvwwQe54YYbSEpKwmq1uixaSdJUal57Db74AvHxwQR0BALmzi2wu81iZMOTY7bBYCA8PNylX0F9i7qf6OhoTCYTcXFxLkpSJHCF27YPADljxoDVCrfcAosXF2mfGo1Go/GMQbxMuhIaGsrmzZtp3bp1aclUZUhLS6Nu3bqkpqYSGhpa0eJUC9LT0+0+bmazmaCgoCKtFxF7WHx6errdouNpDAB++w0uuwxEyH79ddo9+igPAzcfPUrEeecVuK3zfgpL7ujc71x9z7W9bVvnY48A1gJNgUuBP522NaemEvTAA/D551CrllKWLr20WPvViSs1Gk11pjjPb68tStdffz0rVqzwdhiNpsTYchXZki6eM2fRwYMwapSaervnHnLHjeMQ8BCQnp1d6KYGg4GgoKBzOmY79yuJE/e59pOCUpT2A/+5r/T1hblz1bRbTg5cey38+We+MdxxPo86caVGo9EovLYoZWRkcMMNNxAeHk6XLl1c6r0BTJgwwSsBKzPaolT6lMSi5NzmTGxsLHFxca6KRnY29O8PGzZAgwbw00+kd+3qcfsCrVEVhPtx1kalDEh162eXOydHKUuLF0NAACxZAh7KDRU0fmU7fo1GoyktivP89tqZe8GCBfz+++/UqVOHFStWuDyUDAZDtVaUNJUPo9Fof7h7nD569FGlJAUEwMmTcNVVBO7f7xKtBsXzKaoozuYtNloDB5071KoFX32lLEq//qqmGn//HWJiylNMjUajqdJ4rSg988wzvPDCCzz11FP4+JRaWiaNpkTYpqs88tVXMHOm+n/ePPjiC7jzTgzBwcpR2gufoormUmABqmCuC/7+8O23cMUVavpt+HBYtgx69ix/ITUajaYK4rVmc/bsWW666SatJGkqN//+C3ffrf5/5hm4/nr4/nvIy/PlrU9RRVMbCAWiQE0vOlOnDvzwg5p2S0uDoUNhy5byF1Kj0WiqIF5rN6NHj2bhwoWlIYtGUzakpyvFKD0dunaFF15Q7VVMGSqMxahs4kNBWZHcCQyEn39W026nT8OQIbBjR7nKqNFoNFURr6feLBYL06dPZ+nSpXTt2jWfM/cbb7xRwJYaTTkgAvffD9u3K5+drVvhww/hvvsqWrJSZ4l7g9UKzpbekBCVFmHIEOWndfHFsHIlXHBBeYqp0Wg0VQqvFaV//vmHbt26AbBt2zaXdVVt+kJTDfn4Y+WPZDAoP50//oDBgytaqrJFBN55R00tLl2qMnTbqFtXtQ0erJTGiy6CVavAywziGo1GU13xWlFavnx5acih0RQbW7FY2998JCbCAw+o/195BZ56Co4cgaZNy0fACsJgNMKzzyp/pAULVDkTZ+rXV47dgwap6beBA9XnEp4XnaRSo9FUZ0rso/Tcc8+xcePG0pRFoykWERERBSeYTE1VfknZ2Sos/oknVHs1V5IAJDJSRfS9+SbcfrvnTuHhKvqtQwelPF54IQY3i3CR9qWTVGo0mmpOiRWlI0eOMGLECJo2bcp9993Hb7/9xtmzZ8+9oUbjBe510Jyx5z4SgTvvhH37VJbq4OD8kWDVnSuugIceKtxhPTJS+Sh16wYpKQSMGEEvp9VFUXoyMjJYs2YNAPHx8S4pFjQajaY6UGJFae7cuSQnJ7NgwQJCQkJ46KGHaNiwIddddx3z5s3j1KlTpSmnppohIqSnp3tcCsNgMBAXF4fZbM632LNwv/UWfPedUpJAOS5nZZX9QVVWcnJgyhSVYNOd8HD46y+IicFw+jTLAFvu7qpsIbJdX2Uhf1mOrdFoKh9epQfw8fFhwIABTJ8+nV27dpGQkECfPn344IMPaNKkCRdeeCGvvfYaR48eLS15PfLqq69iMBh46KGH7G1ZWVmMHz+eBg0aEBwczHXXXYfRaHTZ7r///uOyyy4jMDCQRo0a8fjjj5Obm1umsmry12ZzXs5Zp438OY9cch+tWeOYZnvrLeW8/f33UK9e2R5UBRAdHe3x/3yMGwfPPw+33KKsbe6EhcHvv2O58EJCUNFz1wCJiYkcP368yikEZTkdqKcaNZoaiJQRKSkp8tFHH8mVV14pM2bMKKvdyLp166RFixbStWtXmThxor393nvvlWbNmsmyZctkw4YN0rdvX+nXr599fW5urnTu3FmGDBkimzdvll9//VUaNmwokyZNKvK+U1NTBZDU1NTSPKRqj9lsFqDQJTY2VqxWa/EGNhpFmjYVAZEbbxQp7vaVHPfzZjKZxGw2i9lsFpPJZG83m82uG27dKhIZKfLtt4WPf/y4/KBUKbGATCjCd+EuU759lxJWq1XMZnORrglPMhVn+8L6ltfxajSasqU4z2+vFaWMjAxJT0+3fz548KC8+eabsnTpUm+HPicmk0natm0rf/zxhwwcONCuKJ05c0Zq1aolX3/9tb3vzp07BZC1a9eKiMivv/4qPj4+kpycbO8za9YsCQ0Nlezs7CLtXytKJcP5YWM0Gu0Pe+el2EpSTo7I4MFKSQoKEtm/v2yEr0AKe0g7r/P48M7IKNL4viAz85QlAXkdxFCIQlCQTMVRTM6F1WqVfv36FVmB9qRQFnX7c+3LWSHVipJGU3UpzvPb68zcV111FfPmzQPgzJkz9O7dm9dff52rrrqKWbNmeTt8oYwfP57LLruMIUOGuLRv3LiRnJwcl/b27dtz/vnns3btWgDWrl1Lly5dXKZ6hg0bRlpaGtu3b/e4v+zsbNLS0lwWjXd4mkIrUQmR//0Pli9XCRbT0x3ZtzWKgAAgz78mKYmMbds8ThtZgPFAdt75ewT4GsBsLvKupJSnp7x1GC/O9oX1FREGDBhQXPE1Gk0Vx2tFadOmTfabxzfffENkZCSHDh1i3rx5vPPOO14LWBBfffUVmzZtYurUqfnWJScnU7t2bcLCwlzaIyIiSE5Otvdx94exfbb1cWfq1KnUrVvXvjRr1qwUjkTjNd99B9Omqf9nzFC1zF5/vWJlqoSICDf17Ml/TZpwuEsXhsfE2JUYyXNQtpH76KNkzZ1LNnAdEHDRRbB3b5H24Y1iI5XYUTojI4PExMSKFkOj0ZQzXitKGRkZhISEAPD7779z7bXX4uPjQ9++fTl06JDXAnri8OHDTJw4kfnz51OnTp0y2YcnJk2aRGpqqn05fPhwue1bUwC7dsGYMer/Rx5Ry9Kl0KBBhYpVGcnIyGDFpk0EA0HA4YQEMjIy7BYg9xcHy403Mgg4Bvjs2AG9esGSfIVSXPBkQSqq0lNUS1RlVaQ0Gk31xGtFqU2bNixevJjDhw+zdOlShg4dCkBKSgqhoaFeC+iJjRs3kpKSQvfu3fHz88PPz4+VK1fyzjvv4OfnR0REBGfPnuXMmTMu2xmNRiIjIwGIjIzMFwVn+2zr446/vz+hoaEui6YCMZvh2mvBZIKePeHVVytaokrPceAyoCewM6/N2QIETvmogL/z+lp694YzZ+DSS1XW7wKiQxMTE/NZkIo6/VaQJcp924iICB1xptFoyg2vFaXnnnuOxx57jBYtWtC7d29iYmIAZV2y1YArbS6++GL++ecfEhMT7UvPnj0ZNWqU/f9atWqxbNky+za7du3iv//+s8sXExPDP//8Q0pKir3PH3/8QWhoKB07diwTuTWliAjcfbcqwQHKslSEqaGahqeprH8A51cEcUoUazQaHfmo8kgCYrKykLvvVuf9pZfgwgvhwIEiyeBJeSqq7Gazmf79++db52lKz3as58rF5d7/XApXZZ4O1Gg05UBpeI8nJSXJpk2bxGKx2NsSEhJk586dpTF8kXCOehNR6QHOP/98+euvv2TDhg0SExMjMTEx9vW29ABDhw6VxMREWbJkiYSHh+v0AOXAOSO0isJbb6nILF9fka5dRS6/XMTp+quOFDfqzT2Cyz1iC5D0JUvkcO3a0tnDmFarVaKjo13HXbBAJDRUnfvQUMmcOzffmEajMV9bYd+zLULOXb6oqKhCU0i4y2o7VvclOTnZY7oAT9FthUXMeZKnKNdvaUYAajSa0qFc0wOIiGRmZkpCQoL89NNP8sMPP7gs5YW7opSZmSn333+/1KtXTwIDA+Waa66RpKQkl20OHjwoI0aMkICAAGnYsKE8+uijkpOTU+R9akWpZHitKK1aJeLnpx7W77wjkp0tkpZW+oJWMoqrKLn396TArAgMFAH5FiQ6OrrQcHj7/g4cEOnXz55C4EeQpiVUlJwVFmelrChLQcfvvrRt29blc1paWj4Zi3POiqMoFTe1gUajKR/KVVH67bffpGHDhmIwGPItPj4+3g5fqdGKUsnwSlE6dkwlTwSRW26pdkklC6OoipItN5W7hcb5oW9THuqjciUF5FlPCtuny3eVkyPywgtirVVLBCQN5AEQn2IqSkVJPuqtolScsYqiKDkrXue6fnWCSo2mclKueZQefPBBbrzxRpKSkrBarS6LxWLxdnhNFUZKWM+tQHJy4MYbwZa+oWfPwou+1lAiIiLskWMFERcXB8Ap4FEgE86Zu8rmpyMipGdnI88+S+aaNcQDIcC7wCag1sqVpXMgRUCK6ZdUGtjOnUajqRl4rSgZjUYeeeSRItXo0tQcxMt6bh4GhAcfhNWroVYt1VbDCt0GBgYSGxsLuEamFURhOX8KVIrmz4fPP/e4KiIigv79+7uE8Fvbt2cAcB9wGogC6t14I7/k/V+WOF9jpXX/kSI4bDufO1t/KaLDt9Vq1c7hFP18aTSVAa8Vpeuvv54VK1aUgiia6oR7yLknivKwt/Puu/DBB8qC9M03qtDtU0+VgqRVB4PBQFxcHGazOV9kWnFxVrog77uIi4Nbb4W77oKtWz32W7NmTb4QfgFmA22AN4GzwKVAIvAT0BfsVh9vHozuhX+Lco0VuXAweMy8bbVaC92mf//+mEwmV+XRai3wWENDQ4mNja3RRXWdFdyaeg40VQuDeHmVZmRkcMMNNxAeHk6XLl2oZXvbz2PChAleCViZSUtLo27duqSmpuqcSm6kp6cTHBwMKKtjUFBQvj6BgYFFe9j/9htcdpmyKs2YAY89VtriVnmcz3dB7N+/n1atWgFgNpsJDAy0h9gHBgZiEIGbb4bWrVUKAB/1HiUiHD9+3KPVxmg02tujo6NJTEykNTAFuAnwzeu3EqVMJcfE8Fd8vP17L4rcoBS5VatWceLECfv+nPddECaTyb4vEbEnx3XHnFeipSiymEwmBgwYUKDFLioqii1bthAbG8uSJUsK3KftGMLDw4ul9Epe9vMi/34qGe7fudls9nh/0GjKkuI8v71WlD7++GPuvfde6tSpQ4MGDVx+uAaDgf3793szfKVGK0oF43wz9OpGuH079O2rkkt27AhbtoCfXylKWj0oqsJho8DvxGIBX998zQWN76ysmEwmMjIy7J/bAE8BtwO216fjQNiECdS6/Xbo3p30jIxzyu2sTDjLkZyc7DE5rE1hi42NdbG8FXaO3BWlNm3asNcpL1dtoAXQClj89ttw/DgfvvQSjYBwoD4QCNQBAvL+WoDQBg1IOnmSsyh/sBPASSAFOADsA+p268YXa9ZgcKsy4Ekhsllj1qxZQ3R0NBs3bsTHx+uJgXJFK0qaykCxnt/eeo5HRETIyy+/7JJDqaago94KplRyJaWkiLRsaQ9Dl8BAkX//LV1BqwlWq1ViY2OLHGZfpO/EYhH58EORrKwCo8qco8LMZnO+ftHR0XIeyNv168th2/doW1q2lOyJE+UikDoliG5zD/u3LSaTyWPeosIi48wmk5gPHJA+IDeDmJ58Uj4GWQ5yCMTiLnspL1ZbPrAxY0TeeUcsa9ZIz7y8Tf369ROTyWTPx+R+fqtaygEdCaipDBTn+e21Ral+/fqsX7+e1q1bezNMlURblArGa4tSdjZccgnExUGrVsofKSICrryyDKStHkieBUI8TDE5T7tBEb+TceNgzhy47TbS33+fYA9TSM4WJU/TV7apLxEhLCSES4Hvrr4av6VLITPT3i8LiAcSgM2o6LkDqCeps6wiQvfu3fNNexVkRXIm/eRJejRsSCuUZahl3t9WQNfgYAx58heEGWUB6nTppUijRkz/9FNSUFayk0AGKnowK2/xAdauWMGQQYOoA9QDGuYtkXn7bZ23eLp7mIA4YDnwJxAYE8N333+fz4pmO8dVZSpOW5Q0lYFynXp7+OGHCQ8P5+mnn/ZmmCpJdVSUbA/bolDYjdkrRclqVb4yixZBaCisXaum3TRFwtMUk7s/T5G+k99/h6uvhlmzSL/++nNOvXlSlGz7yXc9APz2GznffUfKggWc52H3GYAxIIAWgwdjaN4cGjaEevXIqlOH2+6/HysOs8SX8+bhk55O7exspfCkpoLRCElJKp1EUhKcOFHo4YrBwBER9gO9R47k5a++Yj/Yl+NOx+R+nDZsCpun81MY6f/+S+CuXbBpE7nr1pH622+4l3U+DPwI/ACsAHLy2p19orx18i8PtKKkqQyUq6I0YcIE5s2bR1RUFF27ds3nzP3GG294M3ylpropSuLk/1AUCn17L6miJAITJ6ooN4MBFi/WVqRiUmqKEkBKCjRqVCQfpWIpSnn7NpvNhISE0A4YBHQHBgQH0z4nB0N2dtEPuohk+Piwx2p1UYD2A1+sXo1/u3aEhIfnOy53bI7wAwYMID4+3mWdu59WYeM4W/mc/bDMZjOhISF0RZ2Ti/IW57OfCnwHfIFSmmyxeSaTqVi+au7YXpSKYp0qad8MN780rShpKoLiPL+99or9559/7MVvt23b5rKusr/ZaFwpSri1M7bw8FK9yb36qlKSQClN8fFaUSomtpB+20O8WGkY3GnUyDEu0Bv1YPYG27uZOIXj7wJW5UVHBgYGYsjNhUOH4OBBVXz3v//g1Ck4cwY5fZrNq1aRnp6OATAAffv1wzcsDEJCIDhYWSIjIqBxY4iMVH8bNyagfn0anzhBtJvy0rB//3OmD3DGlqohPT2dYcOGsWbNGmJjYwkKCiryfc/5dxMREWGP7BswYAACbMlb3gb8gYuBq4ArUVN3d+QtR4GvUErTgAED2LRpU4nuvVarlR49epxzChNcX6qK23fJkiXFlk2jqVBK20GqJlHdnLk9lcHwtLg78J5rrCI7a378scPB9aGHRK69ViQzsxSPsOZgc/y1OTU7O3uXpOaY+ehRWQuSDXJxMZy5PZUGsTkge2orKu7lWYrjEFyUcifupUtsDvKezp170Vv331FB+zCZTPbvxFP/gpzVDSBHv/pKZoGcdHMK3wCS9dZbIsW8J7kXQD7XOS3oe/ZUAPhcZWG0M7emIii3EiY5OTlcfPHF7Nmzx5thNJWQoKCgQpdS56eflPMwwJNPwptvwrffglvItKZoGAwG+3dlMBi8T1YZHMxhlENzSYqFBAYG2i02iYmJ+cqOFFem8rZWF3bubOe6oCloG84WK5v1KS4uDqPR6LF/QaVSBIi84QY+iI4mEmVl+hrIBnoA/g89pCxod90FCQlKhbJtW0BG7IyMjEIzuRcFKWIiyYLaS7I/nd1bUx54pSjVqlWLrXkZfDWaErNmDdxwg8rhc911MHVqRUtULSnsgX5OfH25FTX19ncJ9+384O/evbuL7055Kj7O2cb79etHsq12YCGU9Nw5RxralC1nhcs2rqf+QUFBLlnRbaSlpeHj40NcXBw5KAfvG4EmwEOAtV07yMiAuXNVDrKoKHjvPeT06TLNiO08dW+blvdEYTUIi0pRlTKNpjTwOlPZrbfeyscff1wasmhqIuvXq6zbNsddp7drTeXiLCo83kYLwGf37iJv76xkVKQV2tm6tnr1ao/Oz8Wtq+dObaAbcInbfoPeeYegSy7B8Mknjn0ZDKysX58PcSTmBDBkZxO3ahUmk4l+/frZZbHJ6660nUL5M2WsX6/Satx+u7LI/vOPqpN43nnctWYNvVGKzPHjxyvEIlMa331RlTKNpjTw2pk7NzeXuXPn8ueff9KjR4980zLVOepN4yXr1sHQoSqUu1cvCAiAjz9W0W6aSk0rlFN37sCBtAH2Ft691HF2WC+JIuNsybFNCzpPPdmUqSJFdYnAv/8qR/KmTQHogMoFlQbUxUnZ2r9fpbu46irHvk6e5MJTpxjg58e43FwA2rZtS+DLL2P45BOCn3uO1atXFznCbMCFFyqH7v794a234Isv4IMPMGzfzp3AnSgn8ckREcwHupSxg3VJFDGp4mVaNNULry1K27Zto3v37oSEhLB79242b95sX7yd89ZUYxISYMgQpSQNGADLlsHKldCmTUVLpvGAs4UlOjqaVOA0cNpqxZzXFhgYWKglxnldVFQUMTExHvsVhdIsEGwwGNi4caPdh8gmT5Gn2+69V+X5+ugjQB1nWEwMh4FDISGYjEaHjOPGwXffqalmGyEhMGsW5meftTfFxcVh2LcPzpyB4GCHLKdPw4UXwosvqnxjTrRt2xZQPmB2C0u9evDgg8jWrYxp25bPUEkxo4D3gWPAmPh4sj34Q1mtVqxWq90XqCTWJ/FQaNhZVk/9zWYz3bt3L3BazSaPRlNulLYneU2iOke9FTXipURRb2vXigQHq0idqCgRk6kUj0JTVtgimiwWi8TGxko4SKO8iDDnEkaeIp88rSusX0VwTnnOnhWZO1fkqqtE0tIc7R9+KFKnjsjDDxd9LA84R4MZjUaR7GyRjRtFjEZHp0WL1O+mUyeX31gESHJSUoFRaM5RgvVAJoBsd4uY2wRyD0iIW5RdVF4pFZyi/twj2Uwmk8dotoIiDJOTkz3K2q9fv3x9ne8fRemj0RSF4jy/S6QoHTp0qFj9jxw5UpLdVHq0olQCRWnNGpGQEMcNuk0bkZyc0j4UTRnjnn5ARET+/FNkx46KFawssVhEWrVS1+1XXzna09NLJY1FPkXJE8eOicyeLfLJJy6/sf0gOa1bSyen7S0Wi12pKKj+XyzIPJBMJ4Up3cdHPgTp6aF/QQqQszJVFEXJU4qRgvoWVOuvoD4Wi6VG1h7VFI8yTw/Qq1cv7rnnHtavX19gn9TUVObMmUPnzp359ttvS7IbTXVjzRoYNgxMJjXddtNN8Msv4Oe1q5ymnHFPP0BCAlxxhZoWKoaDd6Xl9Gl44QUYPhx7eL2PDzz9NEyZAr17O/oGBpZfGovGjeGee2DMGHtTSyAC8DEaOZjXFhERwZCuXVmb5/BckBuEsU0bbgfOAx4GrBdcQKDVylhgPbAbmAIMdko86oktW7acU3T3qc3C2L9/v8tnyZtus7pNN7pjtVrx9fXF19f3nH01miJTEk3sxIkT8vDDD0vdunUlIiJCLr30Urn77rvlgQcekFGjRkm3bt2kdu3a0rdvX/nll19KsosqgbYoFcOitHy5SFCQemsdPFhEm8qrFydOiPTsKTJihJoyquqcPCkSEKCu17Vry2WXFovF/pspikXEOYnokD59JH3pUhcryy8gu0EuLMAyBMi+ffvs/7dt21asFovIypVy9sYbJd1tau4fkOdAMlatElPeva+wxd2iZDKZ7BZIT/eQghJ1mkwmj9NttUEag3QASd+4UWTfPknZv9++vk2bNmIymcRqtWorkyYfxXl+e1XrLTMzk19++YXVq1dz6NAhMjMzadiwId26dWPYsGF07ty5pENXCSpzrTcpRnFbG+np6S51uwpKLFmUOm7OfbLmzMH/vvsgNxfat4eNG9VbuKZ6kZamrINV7bu1WOD772HnTnByqOatt1QJl2uuURGZ5YDNCuLjUzRjvzhFhwH2+nNBwCGgHtCOgqMS09LS7Pcui8Vi3296ejoRwcFcAYwErqxVC0NOjn27k35+/JKby1IgPm9f4Fq/zr32n/O9wtM9xLnNuUbe8cREbomOpiPQEeiEiiqsX8AxnQD+AeKApQB9+7Lm77/zHaOmZlOs53cZK23VmspqUSrI4bE4S2lZlJ5zeyuVzp2VU6ym+vP66yIffVTRUpybjRvVtenrK/LffxUtjVdYrVYxmUwSFRUlQSCXO1mLAJl33nnya3i4tMHhmO3J2uJe8sb0338yBuQbEIstEMNpOZa3zvTkk3ItSEcQ88mTBd4r3C1NkpUl6Vu3ysUoR/OMW2+V1SCn3e8fbksuyAkQa716Yg0M9NjnIMjzIA0oxPdLU+MoN4tSTaeyWpQKqvReVM5V5LJIFqXTp/mmfn1G2xqeeEKFQd97LzRsWGLZNFWEtWshL0kia9ZAXiqASkFmprIede/uaBs1Clq1gokTq8X16V7gdtWqVWSeOkVg69YY0tLIWrQI/+uvLzT1gThZqzIyMuy/+f3//ssd7dszAhjm70/H7GxqFzRGvXrsOH2a40D/IUPwq1MH/PzITU/n7z/+IBho6udHw7z8UR7H8PXlX4uFHcAOYDuwE/gPSEVpWyaTiWHDhvHPmjW0RGWQHwRcAdjuzBmAjBtH0NSpUL8ge5SmplDtLUqvvPKK9OzZU4KDgyU8PFyuuuoq+ffff136ZGZmyv333y/169eXoKAgufbaayU5Odmlz6FDh+TSSy+VgIAACQ8Pl8cee0xyihGBVVktSkUtblvQcq6Q5nOOf+SIZPfrJwKSA5L1zjvldOSaSoPVKvK//4lMmFDRkriybZtIo0ZqycioaGnKFI8pCtatE5k4UX0/Nv78UyQ+vtCxCgvzr4OKnnsMJOPGGyUBJPUcliBPSwbITpDvQMwPPyw3gXQGSTp40GWfniL49jv5JjkvdUBuAlnvtB9r/foiM2eK5exZ7bdUg6n2FqXhw4czcuRIevXqRW5uLk8//TTbtm1jx44dduvGfffdxy+//MKnn35K3bp1eeCBB/Dx8SE+Ph5Qc9XR0dFERkYyY8YMkpKSuP322xk7diyvvPJKkeSoChalwnyNSmN8d5oDv6J8CQAWApeXgQyaKoKII9N6VpaKeAwPrzh5cnLggguUXD/9BF26VJwslQGLBTp1gl27YN48uO02j90K+s07+xK5f+7VsiXpBw4QAYQDc959l9CAAPUd1KlDZq1aXH3rraQAh4GThYxrIzk5mfDwcC688EL7vbyoDAVeB2yes3HAGGCP9luqkVR7i5I7KSkpAsjKlStFROTMmTNSq1Yt+frrr+19du7cKYCszYtg+fXXX8XHx8fFyjRr1iwJDQ2V7CJG7VQFi1JZJGJz9l9wXnqBJOe9tZ0ASQd5qn37SpNQUFOBWK0iY8aINGsmsn59+ewzLU1kyhSRSy91taDs2qX95GykporcdZdIRIT634bJ5HLOipIPydNn93XOFDQmeX5LnixHtjGsVmuh+ypo8QXJfO01seRF4JpBUmfMcL0+NDWCMs+jVNlITU0FoH7evPPGjRvJyclhyJAh9j7t27fn/PPPZ+3atQCsXbuWLl26uLy1DBs2jLS0NLZv3+5xP9nZ2aSlpbksNRHn8hFmsxmzyUTWm2+S4O9PBGDp2pWA3buRfft4ZccOXatJo0pxrF0LR4+q/8sDsxleeQV+/RVWrHC0X3AB1KpV4GY1itBQVXpl/371v43bb1c+Zps2Aa7lZ2zExsbSsGFDl5I1DRs2tOdLcqehm++X85j9+vVzKfwbFBREnIeyKjaca/W5YzQasVgsmM1m+19jXrFtCxDw2GO0Sk/nLyAICH38ceWjlhelp9G4U+Uz/VmtVh566CFiY2Pt6QiSk5OpXbs2YWFhLn0jIiJITk6293E37do+2/q4M3XqVF544YVSPoKqif1GdfIk3HUX/PCDWjFsGL5ff01gSEjFCqipXNSrp5JSLl+uavyVBSYTxMXBpZeqz40bK0WpcWOVCFNTMM4pHVJSYMkSNVWalxbBuUhwQEAAmZmZ9np47sWD4+LiCHH6/aelpREUFJRvest9W8BlnHO9YDkXRnbGti+bIhUUFJSv8PEhYAgqyeZrvr4YFizAunEjhm+/xVBIWhvRxXprJFXeojR+/Hi2bdvGV199Veb7mjRpEqmpqfbl8OHDZb7PSs3y5dC1q0NJAvWQ0kqSxhN168LVVzs+Hz8Ol11WOpm8k5OhZUu46io4eNDR/vDDMHIk+Pp6v4+aQqNGysL02WfQoYO92TBnDkFLl+IDLsWC3YsHuysQPj4+BfoAOW/rPo4nK5azVcqmaNmsRYVh6+uMAG8A/S0WjgA+u3eTFRVF5ty5mM1mj8V4+/fvX2CxXk31pUorSg888AA///wzy5cvp2nTpvb2yMhIzp49yxk3E7/RaCQyMtLex/0HZvts6+OOv78/oaGhLkuNJCdHlXK4+GI4dgzatYP331c31gcfrGjpNFWFRx5R02K33goleeg4bxMZCd26qRD/pKTSk7GmEhnp6th9+jQ8/jhcdx0sXVouIjhP8VssFo/JIgubgvM0nifWAN2A34EAq5WAu+7i45AQekVFYbVa7eVT0tPTWZNXEiY+Ph6z2azLpNQUytZdqmywWq0yfvx4adKkiezevTvfepsz9zfffGNv+/fffz06czs7GH7wwQcSGhoqWVlZRZKjRjpz790r0q2bI6z37rt1ORJNyTh6VDlab9lSvO0yM0WmTRPp2tU1xN9oFMnNLV0ZNYrUVJFnnxUZMEAVB7Zx8GC+otbuTtplEVDijHtyzIKCR5z79evXL19SXh+QF53SCMSBDOnY8ZyFhS0Wi+dUDJpKTXGe31VSUbrvvvukbt26smLFCklKSrIvGU43zXvvvVfOP/98+euvv2TDhg0SExMjMTEx9vW5ubnSuXNnGTp0qCQmJsqSJUskPDxcJk2aVGQ5apyi9PnnIiEhDiUpMjLfTVKj8YpFi0R+/rnwPtnZKnoORD78sHzk0iicFQGLRaRjR5HWrUU2b7Y3l7eipMQqmqLi3K+gyLkrQM7k3eOSQAacI5KuTZs2dmWqMEVNU7mo9opSQRfsJ598Yu9jSzhZr149CQwMlGuuuUaSkpJcxjl48KCMGDFCAgICpGHDhvLoo49Wu4STpXKTOn1aZNQoh4IUEyNy0UWq9INGU1ocPSpSt666xn780dF+8qTIBx+4PqQXLRL55BOtqFcku3aJNGigvrMzZ+zNFaEolRR3K1NaWppSfkC25t3vckAeKkYKgsp8vBoH1T7hZGWh2ieczM2FDz5Q/khpacoh9vnn1WftHKspbTIz4bnnID4eVq1SBXazsuD885Xj919/weDBFS2lxhmzGbZsASen65zx45n4/vvMBbIpm6S3pYm4RbJZrVbS09OJDA3lQ2BUXr+vgLuB9HOMZzKZvCohpSkfivP8rtLO3JoyQkQ52XbtCg88oJQkgFdfVdXVtZKkKQsCAmDGDPjxR6UkAdSuDU2aqIABTeUjONhFSWLHDvxmzeJ9oDUqJ1Kgc+qB8iQ3V2VfX70asrML7OYebefj40NwcDAXREdzK/AgkAOMBBKAC4C2bdsWOJ6OiKt+aEVJ48q2bTB0qArb3rlTFQgdMADuvhvGjKlo6TTVmZwcFWnVvDnYUm989pmyWBw/Dn36VKx8mnPTqhWGd99FHniAdWazo7j2mjWQfi5bjBcsWgTXXqvKsNjIzYUrr1T3L+cI6P/+U+kPCsFgMLBx40aio6N5D1Vg9xjQCVgPbJk8GbPZ7DHpcGJiIhkZGV4fkqbyoBUljSIlBcaOVVakP/9Ub/SPPQZ79sDKlTBnTrWoqq6pxNSqpdJNZGTA99+rtgEDYMQINd3rbJnQb+yVkzp1YPx4DO++67DSpKaq/GotWsCBA2Wz3+3b1TXz44+Ottq1oVcvaNvW9d71xhvQujVMmlTokD4+PmzatAmz2cyStDS6AyuBUCBg1CiCXnwRH50eoEagFaWaTnY2TJ+ubiYffeR4AD30kJoGCQtzFDXVaEqLs2fhww9VxuzMTEf79Omwfj1MmKA+t2kDv/yiEkfa+OcfiI5W7ZrKz4EDSlFp0EBZC22UpJSNCCxeDH37Kuu3jTvugJdfVgq1DR8fWLdOJTR1dhc4fVqtc87WnpurLJpu2KblgoODaRMbyxDgqyZN1Mpp0wi89lou79ULoMDSLZpqQBk7lldrqnTUm9WqIociIx3RbD16iMycKbJggWuuFI2mtMnJETn/fHXdzZlTvG1vvFFtd8MNZSObpvTJyRHZs8fx2WoV6dBBpH9/EQ+58Arl0kvV9z96dMnlOXzY9R730UcirVqJOOXec8clBcHChSJ5hXWtDRpI5qefiikvYg5UUV9N5aY4z+8qX+utqiN5ERelSXphvgBWqyo9MnmycnIEZTV66y3lH1JAqQGNpsTk5sLPP8Pvv8PMmcpC6ecHU6aot/ubbireeLNnK8vE2LGOtpMnITERLrpIW0ArI35+yjpoY9s2Na1/5Ag419y0WPIHixw+rCxSeXXneP11iIpSVu+S4lTJAVDWzf37Yd++AjdxyQJ+443QuTOMGoUhMZE6Y8aQ+/33hAPHUQ7dmzZt0vXgqgtlr7dVX7y1KFmt1nzZYUt7sVuUjEaRV15RyeFsFiQ/PxFfX5EpU0rxrGg0bpw6JRIQoK65+Piy2cezzzoyxWuqBkePivzyi2vbFVcoi9HWrerzu++qa+ell8pWFrNZ5K23RJyrMuzbJ3LkSOHbZWeLPP+8upeCpIDcAWIAMRqNYjabxWw2i8ViEYu20lcqtEWpipCRkWGvHVQWxPbrR2BCgnpb+vprZU0CCA1V9bUefli96bVoUWYyaGoYNkfsPXuU1RKgXj0YP15ZK88/v2z2a7UqR+Lhwx1tOTnKF6oS5/Cp0TRpohYbKSkqLYnFoizcoPyaMjNVbi2RsrMWBgXBxImOzyJwzz0qWu/zz1VEnSdq11bX+VVXIWPGEL51K3OBscDwiAg2u3X3VK9OU/nRCSe9wNuEk86JIY1GY+klZTtxAr/PP6f2559jcK/MfuGF6makHx6asuDff1XFeV9fOHrUdVqlrDEaITzcMX38xReqSPOkSfDEE+Unh6bkLFoEGzYop35QCstVV6lCxy+9BMOGlY8cqakq2nLjRpUmpVWrc29z9izWt98m86mnCLJasQJzgBcAW5lmo9FIo0aNyk5uTZEpzvNbW5QqCUFBQd4pSiIqm/Hs2epmY7MeBQcr69GQIept7PLL1VuQRuMte/Yoa2VYGDzzjGpr3175b3TsWP6JSd2VssWLVWSVczSTiLIy+fuXp2SaojBvHowerXx/XnlFWbtFVBRkcrJrSgizWf0tqwzYdesqK9bWra5K0qefQpcu0KNH/m1q18bn8ccJvOUWch9+GL+vv+Ye4DbgXWAa6uVYRLTvUlWjrOcBqzPe+iiVSk22EydEZswQad/e4XtkW669VkRHX2hKC6tV5OxZx+dffnEUR87NrTi5CiI3V9WMO37c0RYfL1K/vkgxil9ryomTJ0UaNhS5806RtDRHe3KyisZ1ruv3zjsideqI/O9/5SffwYNqnwaDyIYN5+6/apXk9u1rvx+fBnkeZFDnzmKxWIpUxFdTdhTn+a0nS6siIhAXp97cGzWCxx9XUx5BQTBunMqHtHSp8kvSNYc0pcGsWerN+oMPHG1DhigLwMyZlTMBpK8vXHGFa7LBr7+GU6fUVI4ztkzgmvIhKwveftvVL6h+fWWl/PhjCAlxtEdEwP33O8ragLr/ZWWpqVYbZ88qi/qxY2Ujc+3acP31qt5g9+6O9oKSTg4YgE98PBNatmQLEAZMBn7Zto2Zvr50Cg5mwIAB9tpyUhl/QxpF2ett1ZdytSilpoosWSLy2GMq/4i79eiee1zfwjSakpKSIvLpp64RQG++qa6zIUMqTKxSITdXWcL++cfRduSIshJER4tkZFScbDWJzZvV9WQwuH4XRcVqVZFxztbCJUvUmM2aqfVlRXa26/9RUSryrYB7uMlkEgPI9SDrne7ZOSDfgtzXsqUYQGJjY7WFqRzRUW/VgaNHVZ6j+Hj1NzHR9a09MBBuvlk5zvbtC/366fwxmpJhtbrmz+rVCw4dgsaNVd0/gBtugJYtlRWpKuPrq8ppOLNunWoPDHTk6gEV7dSkiSqjov36vCMtTdXsGzBAfY6OVtakTp1KVvDYYFC+Qu5tMTGq3fleeOGFyio1fbq6hr3F+Vr45ht1XEYjPPlkAaIaEOCbvGUw8CQwDLgWuPbAAR4H5sTHk7FrF0Ht23svo6ZU0VFvXlBaUW8GwJyQQOCmTUopWrJEJdDzhI+PSrh2xx3K4VCjKSn//gv33aceYhs3OtrvuEPd/F96Kb9SUV05eVI5DHfqpD7n5qpp7dOnVZCE7QF/9qyqSadfSorOzp3qZc5gUFOcztNqZYFz0sojR6BZM3XfTElR6QYAVqxQxXEvvhjOO6/k+7Ja4dtv1fVy882O9ilT1LRvt26ICAMGDCA+Pp5+/foBsGbNGjoA44DRQD2nIWXAAAw336ym+ZynFjWlSrGe32Vt3qrOlHjqLSNDZOVKyX72WdkKkuU+jWZbwsJEHnxQpcs/ckQ5EOqpAU1JWLNG5MknRRYvdrSdOKGmPkAkKcnR7uw0W1M5dUo5FXfs6Ho+Jk8WOe885Vys8Ux2tmu5EotFpF075TJQkmk2b8jNFfn7b5EPPnBtHzlSXfeTJzvasrPVdJ63gQl//63G9ve3u0M4lz+xWq1iMpnsyYbrgNwGstL9/u/rq6a6335bZO9e72TS5ENPvVU2TpyAP/9Ubx7btqk0+Tk51AZsxmPx98fQvz/076+S8uXkwCWXuIamevPmo6kZiKippE2blGWoTh3VvnQpTJsGo0apvDSg3q6//FI5pjqH1vvp2wL16imnYndWrVLT4s7n6MQJZZmLjVXTSTXZ2rRhg7JCNmgAO3aoc+Hjo+5/TZqUf4kkX1/o00ctznTrpor1Dh7saNu4UbkwtGrlWsokI0NNyxaVunVh5EhlecyznhkMBoLmzoXWrWHIEIKDg1m9erW9fJXVaiU0NJSmwPiGDXm8aVN8ExPVefvzT3VdtW8Pl12mpsP79dOBOuWInnrzAo+mOxHYuxe++04pRRs2qCkOdyIjye3bl6WLF3MUuHXTJgK7dStX+TVVnPR0pRDl5jpu+CJqyujECaUw5VU2Z80a+OQTlUSvoCzDmnNjyxLdpYtDufzpJ7jySuUvuGOHo+9HHynF4NJLITKyYuQtS7KyVPRZ3brQu7dqM5nU9VevHiQkqGmvqsI338Cdd8LAgeo7tdGnj5oyXLRIvciCmoL19S08V5hzJvETJ5SimJMDu3bBBRe49BERunXrxpYtW+yb39S9OwtuuQXDL7+o85yb6xjbz0/9tgcNUktMjMuUpuTVEA0ICLArYwaDgYCAADIzMwEIDAys0fmc9NRbOWE33f35p8gbb6i8RRERnqfR2rQRCQlR1bL37hXJM8XibR4lTc1gwwaRjz9WVc9tfPmlurZiYlz73nKLyIgRIgkJ5StjTWXvXpGpU1VdMmdatlTfz19/Odp27FA1xdauLV8ZSwOrVU2j2Xj1VXV8l1/u2m/TJtd8W1WJ3Fw1JW0jO1vlTgJV+83Gp5+qGnT33ee6/dGjnqfujhwRGT9eZOhQ1/YJE0QGDRL5/XdJTk7OV6vTVi/OeuqUyMKFYh09WizNmuV7vlgNBslt317OjholmW++KXd27Sq1zlEHNDo6WkwmU43N51ScqTetKHmB/US7X7Q+PmI1GCSnf3/JXLRIzIcO2YsjOi9Go1ErShpXjh1TSveMGa7tsbHq+vryS0fbv/+KNG2q/C00lQuLRaXyuOgilUjRhi3NwrXXuvZ/4gmlbKWklKuYReb++0XCw0X++MPRlpgo0rixSk1SnR+0JpPy8XNWEh97TH2PEyY42qxWkeBgpVg5K1V79yrF2FkBs9GqlRrnp5/EYrEIIK1BngUZ4KTU9OvXT9LS0iQ6OloAGdGhg1g+/ljOjhol1ubNPb6cZ4FsBvkc5EmQS0HOL0Bp6tevn5hMphqlMGlFqZxwVpT+AnkCJBYkAqT2ObR590UrStWc9HSRQ4dc26ZOVRbGH390tNnyyzRs6Nr3qaeUY+fPP5e5qJoy5PvvRa6+Wjno2sjOVo674Fqtfu5cdX24W6qSk8suE/rhwyKjR4tcdplr+6hRSr7nn3e0Wa3VW0EqjNxckV27RPbvd7QZjcqB28/P1aL21FPq3I0f72izWkUeeUTk6aeV8pzn9G2xWMTy3nsiIEvdnhF3gIwACfTw/IgAuRzkBZDfQE4WFCAEkmYwyDqQL0Gm5DmSx4CEg0RHRRWqMLk7pbv/X5WsU1pRKidsJ7pFMZUi90UnGqvCuEeILVkiMmWK69TKP/94Vn5Gj1btL73kaEtNFbnhBnVzrYxlQTSlj8kk8uKLImPGuCoeEyao6+Pxxx1tOTlKqfL1dbU+LVsmMm2aKtHijPN46emu6z78UGTAAJFZsxxtJ044HqpnzjjaN29WYzsnIdXkJzc3/wvR5MkqCeYbbzjajEZHwk3nBJbPPisSGSnW7t0la8YMMRqNYgC5EUd0dGunZ8cgkP+5WZ+ioqIEkOu6d5eMr74Sy0sviXXkSLF26SLWWrUKVKAk76V/C8iq0FA5e+edkv3cc2L99FORv/4S665dMqhPH/s+YmJi7P/b9lmVnmfFUZS0M7cX2JzBjh07VqI8SjZqulNdpcFqVfl0zGbXxHRLlijH1EsuUdEmoKJievZUzpqnTjn6jhkDn32minpOmqTaTp1SUUDBwWp8W8K61atVnpdevVQ0jEbjzK5dsHmzcvy1lcw4fFhdmz4+ypnaFkX20EOqJMjddytn5JYt1fUZFqauvYwMlRPKbFbX8saNKr/RJ5+obebMgePHVf+334a2bVV0lXMCTk3pkZKi8uGdOeNaFujWW2H+fJgxAx57DBHhyj59+Gn9egSwRkdjWL+eHr16cVliIg8CEcD8hg0ZmZyMwWLBMG8e8tJLGNq3x7BwoXK2z81VpV1OnICsLKzJybBvH4Y9e9i4aBHhqak0A4oSk3gSMAIphfz9OSGBOo0bq327ObzbHMrd/zqvC8yLMszIyMj3fJQ8R3Vb+7k+F4R25i4G7733njRv3lz8/f2ld+/eklAMB1hvS5hoShmjUWT7dteyBqdOicyeLfL++659X31VZOBAkUWLHG27dqk3q9BQ17533qnaX37Z0eb85u38RvjZZyJ33eU6RWa1ipw+XXOnKTRFw2pV1+6ePa7+MOvWqemZpUvV59xckf/+E+nUSaRRI3VtffGFmh676SZ1TY4bp6bxyMvHExKi/t+5U2TiRPX/nXcqn7edO0UyMz1bkj75ROTKK5XzsrOcH3wgMn++2s7GyZNq6k67EZScY8dEVq92sUpZ9+2T3JgYsfbo4WizWiUnLxdUbvfuYv32W8f2tu/R19dhlZ4wQcTHx9VCmZkpMnKkWJs0kZwrrxRLSoqY16+XqeedJ1/nTeF9C/IHyL8g6YVYogpaLCCnQPaBbMgbaxHIByCvonyn7gG5BeQKkMEgPUGubtdOLunQQeqC9MibDrRYLGIymex+WtHR0S5+W+5+XDa/K1sBYudCxFarVY4dO6an3orCV199JbVr15a5c+fK9u3bZezYsRIWFiZGo7FI22tFyYnUVKWoON84zWbl8Lltm2vf+HiVRPPgQUfbkSPKRO3uxPzqqyJXXeV4SIgoZej880U6d3bte/316gf63nuOtj17VFtIiGtfT8rP8eOqrW5d12mvzz5TD55ffnG0WSwqgunECa0AVWcyM5Wy7fzwz8lRkV1//+363W/eLDJvnlJsbGRnq4fU3Xe7TlvNmqVqy73yiuu4toeMs+PvSy+ptrvvdpUtOFi1797taPvqK5HBg0Vee02Nt3+/ipjctcuhrH/+ucitt4rYHq4iKuEoqIeps5Jmm/6bNMnRlpHhkNP53vfss559cdq2VUqd8wvMt98qpe6jj1yPafp0Jfvp0462fftEfv01f7LKnTvVcbnXXktPrxlJU//9V72QOSf3PHxY5JJL1LU1f76j/bbb1HcTFKTOr4iK0LN9j07fu/WBB+zts+vVE1B+Uba2LINBxrdoITeBrKhXTyzBwWINCRFrly6yPThY9qPq2BVXqSpsyQAxguwHSQRZA7IM5GeQr1EO6x+CvA0yDWRynhI2AWQcyg/repQf14SOHeW+zp2lW95UoVaUzkHv3r1lvNOP2mKxSJMmTWTq1KlF2t6uKL35puv8f3y8mo/+7TfXDV59VfkiOEfBrFihHPq++MK179NPq5uUs3Pnn3+KjB2rwoudeeABkZtvVj8cG3/8oZxGnW9wIiJ33KFCVNevd7T9+qtI9+7qjdSZiy8WadJErbexeLFIrVoiXbq49u3RQ13Un33maFu6VLW1bOnad8AA1e5s5Vm9WrVFRLj2HTZMtU+f7miz+fwEB7v2vflmpeQ4P3yOHVPht+7Oqd99p5SklSsdbWfPquiWdetcHxb//adC7Z19DywW9aD8+2/Xm/Lhw8o/ydnJU0S1rVnj+rA8ckRdK84POhE15urVrlnYjx0TiYtTypl731WrlJ+LjeRkdVxbt+aX4c8/XR9Cx44pBdA9XP3PP0W++UaN5Szv/Pn5r+ufflIPPHfF9/33RRYscO37zTcir7/uehxHj6rvzD3b9RdfqOvXWfE4ckTk3nuVI6wzb70lct11rpa8Y8dU1NmIEa59J09W1++cOY62pCTlQ1a/vmvf8ePVtfbcc4621FTHTdz5+3z8cdX26KOOtoKUnylTHJYfZ4KD1eJ8Ln/6SUU2fviha9+4OJEtW0rPbyg3VymFziQkKOvR33872tLS1MvLRRe5vlBMmqQcmZ980tGWleU4fufr7vnnVZt7eL3Nh8Y5DcaMGart9ttd+4aFqXbn+97773uOKuzcWVnfnH8Tixer68BZsRNR98HBg10Vs/h4NaazM7uIupbGjVMvbzZ27lTnwN2KPXeu+t6d5T10SN3bPvnEte/ixeqFb9cuR1tKivqdOVvBRdQz5MsvXbN3p6aqe5zt3m02q32tWKHaDhxQ38crr6jfzUMPqd+8iHp2tWwp0ry5WB55REZ06CCNnJQWq8Eg1j//VNYZm3USRG65Raz794s5JcVFycmcOVMyfv9dzl53nb1tG8gckE9ArE59D4AcomTWq+IuqVpROjfZ2dni6+sr33//vUv77bffLldeeaXHbbKysiQ1NdW+HD58WJ1ocP2hDBmivox27VwHsH1Jq1Y52q6+WrU1b+7a11Za4ocfHG233qraIiNd+9oiZubOdbTdf79qc7/x+/urdmfHQltUhrviERSU/yExdapqq1PHta/tpjVxoqPto48897Xll3noIUfb7797lsGmVD3zjKNt2zbPfceMUe3TpjnabG9Nfn6ufW3nx/nYzpxxfEfOb6m2B+Bjjznazp519HV+uEyeXPgDwFnxnT698AeA801y5kzVdv31rn2bNFHtmzY52j79VLW5Kwht2qj21asdbQsXqraBA137du2q2n//3dH200+qrWdP174xMard+be0fLlq69jRta/tt+H8YrBuneffwFVXqXZnBcH23bs7xt98c/7r+sAB1RYQ4Np37FjV7uxEb7MmgquS/PDDqs354Z+ZqcqYtGzpqqDOnateQpydo0VE/vc/ta+8yCYRUcrxb7+ph6oz1cGB3/n85eY6FHTnY/v7b6Xc2h7OIsr6NHasus85P7w++US9yLkrKS1aqN/KgQOOtrfeUt+Xe8qMRo1Uu7OiZLs/ueeBsoXsr1njaFuwQLUNHuzat3Nn1e58HD/+qNp693bt27dv/nv6smWqzd06ftFFqt05HYitNEqLFq59r7hCtTsr/lu3qrZGjVz72qZmnaMu9+3zfD/Ns7pbX3lFKUXZ2eoFG9TzSURZs2bNcqQv+d//lHL86qsiffo4flOZmSoPVM+eYq1bVwTk7AMPiCUnR3KjosRqe4aBWFJSJOuVV8Rqy18F8ktYmHQCybY9F/OWrJdekrNXXunSltuunXwbESGZborRujxFrCSKUo2tVXDixAksFgsRzqUbgIiICP71lEkbmDp1Ki+88EL+FQaDq8NaeLhysmzY0LWfv79yqrOVlQBVlsTPT1VqdyY0VDlgOjuZtWihHIHPP9+1b6NGymHY+VjatFGOmM4lUEBte/QoNG/uaOvYUTkad+zo2rdLF+XwGRXlaOveHerXV+n0nRk4UGV/di4J0LWrks29Yne/furYnMsKNGmishe7fR906KAynTs7OwcGqv7uxTXr1VPn0zm1v48PNG2aP4NuvXoqa7BzYWGDIf+5tfVt3lw5ujr3bdHCsQ8bYWHqeG3FN220aqWy8jrLERamjqtRo/x909JUCQQbdesqB1v3DM+tW6vz4O/v2rd9+/xZkdu1U9ees4Nu/frQo0f+Cu7du6trz/n8hIfDRRfl7xsbq8Zx/u7Cw1UGcHcZLr5Y9bOdO1vfO+/M/3u5/HLVz1aoFtS5mjw5f/mGMWNU1uTYWNdxv/zStdo7qHIQN97oek3Vqwfbt6u+zg6g06apqvPO31udOsoJ35077lCLOy++mL+tbVu1uFNYpueqgvPvwddXFcR1x1NZEYMBPvwwf98xY9TizoED+dvGj1fO6e7ExSnn9zZtHG0jRsAff+T/rb77rvr9OX8/PXvC+++r+44zDz4IRqPrfbZlS3j44fzX/tVXq3ui8703MhJuvz1/eaqBA9Vvyvl+VLeu+k243y+iolSWfmfZAgPVfbZePde+rVqp37vzGLVrQ3R0/jItTZtCly4YGjUiKChItbVooe7Jtt9ImzZqOXFCBQM0aKDuRU8+qb6L6GjVz2CAG2/EcOON6jc1eza1IiLUsy8xUQXS5N0TfPz88J80SZ3D116DmTMZcdttDHz+eWrl5qqC3TfeCCL4jx4N48Yh69aR88UX1FqyBN+LLuKamTPJ+u03Ph87lmHHjuEH3ApYgRuBIUAHg0GpTEWgxka9HTt2jPPOO481a9YQExNjb3/iiSdYuXIlCQkJ+bbJzs4mOzvb/jktLY1mzZoVzWteo9FoNBpNuSHiKOXiHmGXm5tLWFhYkZ7fNdai1LBhQ3x9fTEajS7tRqORyALqMvn7++Pv/Oau0Wg0Go2mUmIwGOzWMPe/aWlpRR6nnEs5Vx5q165Njx49WLZsmb3NarWybNkyFwuTRqPRaDSamkuNtSgBPPLII4wePZqePXvSu3dv3nrrLdLT07nDk5+BRqPRaDSaGkeNVpRuuukmjh8/znPPPUdycjLR0dEsWbIkn4O3RqPRaDSamkmNdeYuDYqVAl2j0Wg0Gk2loDjP7xptUfIWi8UCwJEjR7SipNFoNBpNFcHmzG17jheGVpS8YO/evQB0cs7zotFoNBqNpkqwd+9eevXqVWgfPfXmBadPn6Z+/focPnxYW5Q0Go1Go6ki2PIgnjp1inruiTnd0BYlL/DNy6IbGhqqFSWNRqPRaKoYvkXIhl9j8yhpNBqNRqPRnAutKGk0Go1Go9EUQI1WlM6cOUPPnj2Jjo6mc+fOzJkzp6JF0mg0Go1GU4mo0T5KISEhrFq1isDAQNLT0+ncuTPXXnstDdyrSWs0Go1Go6mR1GiLkq+vL4GBgQBkZ2cjIuggQI1Go9FoNDaqtKK0atUqrrjiCpo0aYLBYGDx4sX5+sycOZMWLVpQp04d+vTpw7p161zWnzlzhqioKJo2bcrjjz9Ow4YNy0l6jUaj0Wg0lZ0qrSilp6cTFRXFzJkzPa5fuHAhjzzyCM8//zybNm0iKiqKYcOGkZKSYu8TFhbGli1bOHDgAF9++SVGo7G8xNdUAUSE9PR0l0VbHTUajabmUKUVpREjRvDSSy9xzTXXeFz/xhtvMHbsWO644w46duzI7NmzCQwMZO7cufn6RkREEBUVRVxcXIH7y87OJi0tzWXRVF9EhP79+xMcHOyyDBgwQCtLGo1GU0Oo0opSYZw9e5aNGzcyZMgQe5uPjw9Dhgxh7dq1ABiNRkwmEwCpqamsWrWKdu3aFTjm1KlTqVu3rn1p1qxZ2R6EpkLJyMhgzZo1+drj4+PJyMioAIk0Go1GU95UW0XpxIkTWCwWIiIiXNojIiJITk4G4NChQwwYMICoqCgGDBjAgw8+SJcuXQocc9KkSaSmptqXw4cPl+kxaCoPRqPRZVrWfUpOW5g0Go2melKj0wP07t2bxMTEIvf39/fH39+fmTNnMnPmzCJVHdZUD4KCglw+9+/fny1bttg/x8bGEhcXh8FgKG/RNBqNRlOGVFuLUsOGDfH19c3nnG00GomMjPRq7PHjx7Njxw7Wr1/v1TiaisNbJ21nJQnKdzrOWXZtydJoNJqypdoqSrVr16ZHjx4sW7bM3ma1Wlm2bBkxMTFejT1z5kw6duxIr169vBVTU0YUpgiVppP2/v37y0xuT7K4y64dyzUajaZsqdKKktlsJjEx0T59duDAARITE/nvv/8AeOSRR5gzZw6fffYZO3fu5L777iM9PZ077rjDq/1qi1LZ4knJKY7151yKUGk6abtPyXlzfFar9ZxKkLvs2rFco9FoypYq7aO0YcMGBg8ebP/8yCOPADB69Gg+/fRTbrrpJo4fP85zzz1HcnIy0dHRLFmyJJ+Dt6byYFNyPCkyzhTmE1SYInT8+HGXNtvUrPM1YVOm0tPTiyW7rX9gYGCBvkqFHV90dLSLz5xNCSqJMqbRaDSa0sEg2m5fbJyduXfv3k1qaiqhoaEVLVa1ID09neDg4CL1NZvNHpUI5zE8KULuYwD2/iaTiWHDhuVTZNz72TAajfnGtitxANnZkJkJBgP4+pKemUmDiAjOAkX54dmO0Vl5c99fQedBo9FoNJ5JS0ujbt26RXp+V2mLUkUxfvx4xo8fbz/RmrLBaDTmUwA8KQqFERQURGBgILGxscTHx7usi42NJTAw0GXqypM1yr1fINAGuACoO3s2ixo3RpKSaAI0BELi46FuXUhPB6vVVR4gC7AChIRAWBjW4GDidu7kKHAUOJL39z8AkwkJDCySlU2j0Wg0pY9WlEqATg9QPgQFBZWKpcRgMBAXF5fPl6ewKTIAY1ISwUYjAf/+i2HSJPwTEjgKNHHu9Pzz3OBp47xEpgXhY+tjMuEDDC6oY+PGWBs35sWkJP4FdgFbgEQgNa+LzeepKMek0Wg0muKhp968oDimO03RcJ428zSldK71Re3jqb8/kPTDD7x21VUMBC4JCcFQgMJzEmX16QoQFAQvv0xWvXoMHz2aZ4GLDAaYOhXDffchdepwauVKQoYO5QTQARjYqxc/zJuH4Z57YNUq5M47Odu6NT5Hj2LYswe/P/7AAvgWIvdeYBOQFBnJL8nJJABddD4njUajOSfFeX5rRckLtKJU+pRUUbL58Nj62KbnClWUrFbYtImzixez9uWX6QPUce9Tpw507QppafDvv7wHPAecBgKA0zNn4t+yJYwYYZfNBzW1Fh0dzapVq7jwwgvtTto+QJLRSHh4uFJm/v4bdu2CAQOgVSsAMn/9lYDLLmMrcEerVvjt3097YBLQHDABjTwdDrAN6HDnndQaNAj69VNjFkNpsp1HbZnSaDTVGa0olRNaUSp9SqIoFRZJlm+MM2fg99/h11/hhx/UZydyGzbE58QJfIDMH34g4NJLwc8Pjhwh/exZglu3LnB8EWHAgAH5fKGcKUoG7/T0dJoEB9MQcM7SdNDfn+bZ2QxEKUTdgEuB6wB/wGMa1YgIpTDFxiplrFs3qFXL436dz6PONK7RaKozxXl+V+k8ShWFTjhZObDlHzp+/LhHJcnmhE1KCsyeDX37QoMGcNNN8NlndiXJGhHBWKAtUOvECS5COWVbL75YKUkATZsS2LIlsbGx+cfPw+YLZTKZiI6OdpElOjoak8lUJOUjMDCQLrGxdiXJtm2Dw4cZBCQAp4BlwAmUlWkdSlG6FsiZMAGiopTsRiN8/z089hj06QNhYXDxxTB5MixbBnnRfODqyF6c/Ew2Hyn9zqXRaKoj2qLkBdqiVHKcp8qcOde02bnSB9gj5VJSCFyyBMM338Dy5eB8mXfsCJdeCp06QUICcvXVDHjxRRdLUEEWFWe5z5Uvyfn4ijuV5Wk/no69C3ADyldpcV6bOSmJoBYtIDwcZs6EnTth9WqIj4fTp1135OsL3btD//5k9epFs1tu4UTeKtu5LGpeqMpkhSrLKUQ9PanRVH301Fs5oRWlklHUpJKeFKXCprcu6dOHpXffjeGjj2DdOlflqEEDpSS89BJMmuRRJm8Um/KgqDmmMv78k4Crr4bISNi92+GjtHgxcvo0Z8+cwffvv/FduxbD4cP5tv8XiANW5/1t0q8fcatXezwf7jK5530qrfNYnPE8KW9AsbYvqK/VaqVHjx4kJiZWKsVQo9EUj2I9v0VTYlJTUwWQ1NTUihalSmE2mwWVb7HAJTY2VqxWq8ftrVarmM1mtaSlScZPP0nOyJFiDQgQUeqRWrp2FZk2TWT/fpH//hM5daqcj7R0cT9v0dHRHv83m80iGRkiO3Y4NrZaxdq6tQjIDc7n+OBBkS++EOs990hOu3au5y9vOQJy9tprRd59VyQxUSQ3t0CZTCaTWK1W6devn10ui8VS5GO0fbfO373FYrEfX79+/ez7KOp5MplMdnkKu65s+y+or9VqdTnP9nOt0WiqHMV5fmtFqQS899570qFDB7ngggu0olQCnB9kRqPRofQ4LYU9zEREZM8ekaeeEmnY0PXB3r69SOvWIhddJLJzZ/kcUDnhSQGwnS+TyZTvnFqtVofiYTbL2VtvlSMggU5jZCxeLJZ33pFBnTsLIPVBLgcxjx8vZ3v2lGwPipPUrSsyYoTIyy9Lxq+/Sl035c1ZFlvbuZQTs9ksFovFRUmxWCxiMpkkKiqqSIq0bRyj0ejSNzk52eVzWlqafX/u15r7ObatN5vNkpaWlk+OoihKnpQ/jUZTsWhFqZzQFqXCcbH8OC3OD7JivZGbzSIffyzSv7/rg9tgEBk3TiQhQcRqFSmGBaMq4ekhXtA6m/XFWfEwmUzi49ZnRWCgCMgLHpQQq9Uqfbt2lYEgz4BkDRok1uBgj1an/SDfgTwHkvzBB3J+ERUKd+uT8zaeFKSClBhnq5H7ct555xXZeumu5KWlpeWT61xKl7Ni5Hx8MTExYrFYtOIkWnnUVDxaUSontKJUMM4PiHM97M7Jtm0id98t4u/veDj7+IgMG6asR48/LlIDvgOr1SqxsbEeLSpFmc7cv3+//f+2bdsKIPeDrAdpk9dmMpnE+s8/Ii+8IPLff/kUh/59+8pNbdvKgyB/NWgglubNPSpOAmIG2QTyFYj54Ycla84csa5dK5KcbFdmiyJ3YUpKUa6xoiy2h3ZhSpH7uTOgrHPhIM1BOoDc3LatjO3cWfqA3N21q6SvXCndQKJBuub1uaZ7d2kA0rdrVzGlpXlUFpxfMtwtX87rqqKiUdj0pkZTXhTn+a2dub2gOjpzSwHRaJ4ozDG2KI7HhTrDZmfDd9+psP5Vqxzt/v4qtP222+C884okZ3XC9v24n/viFBMGde06J8KMjo5m48aN+Pj4wAMPqGi5G25AFi4sNDeU0WikXUQEUcBlTZoQfuwY0UAnwHO2pjxq1YImTbA0bszXf//NUVSqg9Oo1Aen8v5PRdXG69qrF2d9fFiRkICtcFCTJk04duxYvqE7tm7NkX37uLBnTyzp6ezfuZMAoEubNhzZu5dAyLe88swzkJnJ7DfesLcFeegXCDStV4/sM2eoUwq3TiuQ5eNDnQYNMDRogKFhQ6RBA76Pi2P3qVOcAJJR9f8adevGx0uXMuCSS9iyZQugfkOrVq0iMzOzUgYgeKKgAACNpjzRUW/lRHVTlKSI0Wg2ClN0nG+GnorbQgGK1oED8N578OGHjhw/vr4wfDjs2wcPPgj33gs+OgWYM+IUDRgdHW1XgArCbDa7Fvp1/i6++w7efReeeQaGDEFEOLF3L+9dcAFzgCSncYxGoz2dg8lkIiMjg4iICPyAlsDwli2pdeAAF6CKCLcFzjMYMHhx28kFLIDBaSHvb2ElX8qSTCAjbzmbJ4sP0Oy880g6ehSfvDZ/lLKVLwN8MTiOUpwOA/uArPPOY8XRo9Tq0IEfExPxqV27ROM6vySVNDqwIEXeuT0jI0MrSpoKR0e9lRPVbeqtJNMgBU2dOY91zum13FyRH39UDsIGg2P6JiBAZPJkkSNHyuBoqx/OTtG2KTpQvkrOvjYlme7ImjZNJG8qzfn7d/c3K8jh3LlfhzZtxLxzp5z8+We5HuQhkOkgH6H8nDaGhkpup05iadJErCEhIrVrFzi9V+hiMKhrqF49kSZNxNqqlewPCJAEkOUgv4B8DfIZyCyQuWFh8iLIJJC0KVNkLMgtIFeDDAXpD9IdJH3DBrEeOCCX9e4tgXlTcLbz7O5X5Tzd6bz4ghj37pWLO3WSVnnTcoNAkt99V+5B+YTNCQqSz0H+BPkXJL0Ix3zWYBDrBReIXHqpyMMPi3z0kciaNSJnzrhcI54c4Z2nMUsSHVjQlJpze79+/fI515c0clD7OWm8QfsolTHVNeqtKNFoRXXGLpKidPq0yNSp+SPXYmJEGjcWeeONsjvYao4nPxZvHiyZ338vK0HucXrAGUBSZsyQoEIUJdt3fy7/H5tTdIHyWSwi6ekiJ0+KHDki5p07pSnIeSBNQNL37BE5dkz5P505I5KVpRz7PZyXwhy/PSmAgEcl066Y5uY6nLePHpW0F16QR9zGexnkn8BAud5ZEdm/X6zt2snZbt1c+o4D+Rgk/euvXRTeXiDtQLqA5P74o7zUtKnMAPke5B+QzHMoUdamTWV1SIi8DvJK69aSvmyZmI8etR+Hp+/EltrB/drx9D0X9N27+7kV9rLlHgBSkP9WcVI+aDSe0IpSOVGdLUqFveUVpV+hff79V+T++0WCghw38jp1RB57TIX9i3h8yGkqDk8P0uE4It4MOByiC3I4d86H5LyU5EFX2H6Kur3N+mYymVzksqUmcB7fcvy4pP/9t+t+7rpLJDRUZN48R9vmzSIgyW7H+Hvey0DWjBkOBWDvXqXAhIW5KESf2BSbadPsSsGlPXuKgFhALJmZIqIUkMtAHkFZpAwgTUHubtVKMt9+W6wTJ4r1kkvE0qRJoQpUUq1akjVokLwJMhYkFpUmwllhclcUPVkO3ZXLojrIOyvT7gqsp1xWnpRc53uMxWIpVu4uTc1EK0rlhFaUiqEoWa0iS5aIxMa63qjPP1/l5Xn99TI6Kk1p4KyY2NIOXAGyG+R1tweadd06MRchmsvbyK3SnHqxy5WWJtadO0WOHXOMn5CgrtWICNeNxoxR7dOmOdpOnhTrzTfL/CZN7JYok8kk1nXr1PTy/v2OvpmZIitWiCxfLlar1T5NNwQkbdIkle7CJt+OHWoqsmlTe5vZbJb5eb+jx3FE4wXkKVuvNmkisX37CiDdW7WSGJC7Qd4AWYpKJFqYApUM8hfIeyDjQQaDRICYTaZ8ViJPqRw8WZlsi/OUpO0eUlDfc+Wych7DYrHY23KdLH1aedK4o6PeyonK7MwtxYhes3GuOmvO/WzOmAX1s/UJBE69+Sb+H3wA//7r6HDllfDQQ6qivdUKJXRA1ZQftmvKVgg4IyNDfXeZmQSGhyvn3T174IILVD299evBqWhwpSQ9HZyv31tvhfnzYepUeOop1WY2Q9260KyZuobr5Lli79kDOTnQokW+43Q+V0WNRLNarfj6Knd0i8WiIhDdsVhUcEPePma0bUvzfftY3bkzr6xZQ2hoKDHAGpTTfROnTW9BOZL/CthiBZuHhtI4LY2OQEcgNiyMPnXrYjh0qGA5g4LYZ7Hwb1YWB4FDwMG8MU+gnM1TAVNeMIbtXhEVFcWWLVuIjY1lyZIlhISEACoIIDg4mHSzmfCQEMKAdUuWcMvw4dQHvpo5k4+nTyft0CEaAPXzFtv/oUBovXpQqxYWHx+2JyeTnHf8u4Cc9u1Z9O+/HC7svGpqHNqZu5yorBalouYwKmwpqkWpIF+m4xs2yJsgp5zfUmvXVg6248eX49nQlCvffaemoy6/3LU9Pb1i5CmIkydFOnUSqVVLJTK1MWOGcgB/5hnX/iZTuYhVXMuHe3LL2NhYaQnyPMizbr/pDXm/w2fzfCtjY2Ml12iUXijn8jQnK6AlNVVuueACuQ3k40aNJHPYMNkNknsOK5RtyQGxNGokOS1bylaQBJDcfv0kd9AgsQ4cKLkxMfJ3nkwH/P3FEh4u1pI67RdxOQCScdNNIvPni6SmaitTDUdblMqJympRKm5OHXfOVeyzsPH7AxOBa1Hh0QDWVq3wmTgRrr5aFWht1qzEsmmqAGlpqgBx8+bqs8kErVrBJZfA++9DWFj5yrNtG3z6KTRuDI8+qtpElHyHD0N8PPTrp9ozMlSOp1qFZoGqtEieJSsgIMBevLdfv34sXbKE2lOnUmvtWvj8czLq1VPWri++gNtvRwYOxLBihcexnEP6/YHmeUsLoFu9etQ9fZrmQCTQMjgYH1tajxJiAQz167Pn1Cl7Tq2TOPJr+YaH8+/x4/Z2E+pe4wfUBhrmydIUZSXrAnTANa+X+PvzQ3Y2XwJfZWbiU8ebhA2aqkhxnt9+5SSTpoIoKIdRYZxruiAwMJDY2Fh7EkI/4HrgUaCnW99V9eszYNcu8NOXWo0hNFQtNpYsgRMnYONG1/ayYs8eaNRITZcB7NoFr78OnTo5FCWDAb7/XintjRo5tq3sU4XnwGAw2H/vmzZtcp3+e+UVez/7HcFkgrAwDDExjkFEIDYWQ9euBE2Z4jI1mQ3szlsAknfuJDIy0r7euG8fzSIiaAiE5+2nDtC9QwemT5mC4exZdS/w8yMzN5drb7qJdOAMKsHoGcAMmA4dYuSAAfnyge3fv5/mzZtz4YUXFpgE1RNBQCxwEXAV0D47m6uBq4HcZs0wjBtH5m23EdCuXZVI2qkpZ8rYulUtqezpAYqVw6iEWK1WMSclSdbUqWKpX98RglynjpwdM0YyFi6UjB9/FKs2bWtERDZuFPnzT8dnq1Vk+HA11VWa01rXX6+uxblzHW0nTqgItfnzdTSlJ3JzXb+DLVvUOQwKUg7non7vt3brJo2dpvI8Rgd6iGw0Go0FOvbbto2KirI7hNsCAzylFTAajfZtC0rzYDQa7WVfbH/T0tKkTZs29j6dQV4COeo2XfhLeLiYNm605//yVLtPO4hXD3TUWzlRWX2UylxROnxY1VerW9fVD2DgQJHjx0t/f5rqx9Kl6poJDrYnQywW2dki334rcu+9rkWQn39exM9P/dWUjPR0kZ9+EvnwQ5dm65AhKkXB3LmF5udyV3AKuwcVpITY1jmnTQDyKSZWq9VjWgJPeFK8/ECuA1nmdB+zoOoTdsS1sLTz/zExMQXKpKkaaB+lcqIq+CiVanmALVtgyhQ1ZWG7bNq1g6FDoWFDVSOsfv3S2ZemepOZCV9+Camp8MgjjvY33oDYWOjTJ/82ImrKDFQtwPBwNXW0Zg3Ypo5OnVJTO5Xo91gtsFph0CCIi4Pdu6FtW9W+YQP88AOMHKmmNindWm7i5HMFeIxYE3GU7ynMv9K5X79+/UhPT7fXzAPlNvAMajoOlK/UZ8BzwNFCZGzSpAmHDx+uUvX2NLrWW7lRIxQlEfjjD3jtNfXXRrt2MGMGXHaZrrumKR327VMPYBHYuxdat1bt27fD009Dbi788ouj/+OPqwf4/fc7+mrKlpQUV5+uBx9UtRlHj1YO81RM0VuRoqVjcO5nk3XYsGEu9S27AM8D1+V9zgTeAaai0h4UhktxaU2lRjtza7zn7FlYsEBZkPbvV20+Pio/Tp068Oab0L9/xcqoqV74+qoH7smTUK+eo33PHvjxR3X9nTihrJegFHVN+eKsJIGKZDx8GG6+2d5kSEpiO7AImFJOYjk7sbtgscCRIxAZCf7++foFBwezevVqu9UqMzOTgIAA0tPT6RsaynTgQuBJ4G6UxWkOYC1AjsTERHr06MGmTZu0ZakaodVejStnzsD06SqJ3pgxSkmqUwcmTlRv+Vu2qESCWknSlDYtWsDAgbB6NTz3nGpLT4c771SRV99/Dw0aVKiIGjeuvBIWL4Zhw+xNAb/+SkdgGNAvNtZuvSErq2xlmTwZWraEd95xtJ06pa6rOnXUNK2N1FRlocShZPn4+Nj/BgcH4xcby0DgcmA7KsHlbGAjcOqHHzCbzaSlpeUTIzExsdjJfjWVG60oaRSHDillqFkzePJJSEqCgADw94e334a33lI3IW1S1pQWIkrxPnnS0da4scrBtHq1Wr9vnwrzb9xYTfPa3tLL+qGrKTGGMWOQefPo9vXXDn+hnBw1PXrZZZCc7P1Odu5U7gDOmExw8CAYjY42i0Xdw+rWhbxM4IBSxCMi4OOPPR+DwUBcXBxms5mFZjPnnzrFA6gUBtFAvauuImjsWILPnCE2NhZQmcc11ZSy8ymv/lSLqLcNG0RuvFFlzLZFfnTqJPLJJ6ouVUkikjSaojBqlLre3n7b0ZaTI/LXXypk3blt3z7HZ6tVJDpa5IorRA4cKDdxNV6wcqX6rsPD1fdpIynJNWqxKKSmivj7q/E2bXK079ghsny5yKlTrv2tVpHTp13bundX2//wg6MtJ0dFU3rAFoHXEOT7iAix2u6XgYFifeklMZ886RJVV1ZpWTSlR3Ge3zXaPHD48GEGDRpEx44d6dq1K19//XW5yyAipKenl/pSKFYr/PorXHQR9OwJixY5otjuvRf++UdNu7Vs6Ujap9F4Q26uuuYsFkdb376qxl9KiqPNzw8GD7bXM7O3tWrl+JyYqCxRf/2lr8+qwoUXqjp5n3zimnz22mvVd+vkTJ0Pm+XRRmgoXH+9mvZztnB36KAi85z920BZId2zwSckwPLlysfKxuefq2CC+fPziWCzMB00m7kqKQnDhg0qOjMjA8P//kdQnz74/f67k8g6RqpaUeZqWyXm2LFjsnnzZhERSUpKkiZNmhTrTcBbi1Jp1GQ71+JyPFlZInPmiDRr5rAe+fqqN/s5c0R+/10n5NOUPlarslKCyK+/OtpNpvxv/0Vl1y6RhQtd2x5+WOTNN0XS0kosqqYcOX5c5WLz9VWWJRvJySIZGY4+ffuK1Kmj2m2URe6iAQPUNTpjRtH6W60iX3wh0rix/X76A0grkLZt24rJZLInvPSUcFNTsZRLwsmMjAw5cuRIvvZt27aVdMgKp2vXrvLff/8Vub+3ipLzFFlZLLYMt3LypMjLL4tERLgmiLzsMpFiHK9GUyROn1bJIJ158EE17TJvXtnsc/9+ER8fdV1v3Vo2+9CUPhkZarrMmdtvFwkLc2RS79tXZQlfurTsZXnvPdciybt3iyQmFr5dWprI44+L1c9PBCQT5AWQAKd7cUxMjE5MWckoc0Xp66+/lvPOO0+ioqKkS5cu8vfff9vXdevWrSRDloiVK1fK5ZdfLo0bNxZAvv/++3x93nvvPWnevLn4+/tL7969JSEhweNYGzZskE6dOhVr/6WpKBmNRjGbzaW6WPfuVaUbnKtyN22qfDsmThTxoOhqNF5x+rR6qIHInj2u7WfPlt1+MzJEZs8Wue8+1/bvvlMlOTRVg+xskSZN1PWzdq1q27lTZPt2VYqmPLFaRYYOVRavjz46d/+dO8V68cX2e+1BkGvcXl61slR5KHNFKSoqSpLzzKA2BWP+/PkiIhIdHV2SIUvEr7/+Ks8884x89913HhWlr776SmrXri1z586V7du3y9ixYyUsLMxeL8jGyZMnpWPHjhIfH1/o/rKysiQ1NdW+HD58uNQUpVJ1/vv7b1XzytlB+4ILlJm4LB9WmprHqVMiy5a5tl16qUjnziKrV1eMTDbS00VsdQjdrRaayodNMQGRhx5ydQN48UXlwP3yy+UnT0aGuo/WqaMsS0XBahXrN9+Ixcm9YQnIBU4vxJrKQZkrSh07dnT5fPLkSbnwwgvlhRdeKFeLkjOeFKXevXvL+PHj7Z8tFos0adJEpk6dam/LysqSAQMGyLwiTAk8//zzHqe4KoWiZLGILF4s0rOn6/Ra48YibduKxMV5N75G487OneohEhzsWlQ1La1y+LodO6YiOtu2dY2iO3CgwOgmTQXz3nsiISEiH3/s2n7ttep+5nyfPnu25D5uxWH/ftfPv/2WP4rOnfR0sT7zjFjzrPnZIK+CHNi6VfssVRLKXFEaNGiQbHEzZ2dnZ8vIkSPF19e3JEN6jbuilJ2dLb6+vvmUp9tvv12uvPJKEVHO1CNHjpTni1hAs1JalGxTDq1bO5QjPz+RMWOUr4bZXDkeWpqqz6lTruHYVqtSQrp2VVMjlZXMTMf/VqtIt24i550nsmZNxcmkUWzfLrJ3r+OzxaIUXHesVpF16xxO3iIiixYpRf3xx8teThv79okEBCgXhoMHz9k9fcsW+dHpxfUIyEiQfjExYjKZtMJUgZR5eoDPP/+cRm6p7GvXrs2CBQtYuXJlSYYsdU6cOIHFYiEiIsKlPSIiguS8hGfx8fEsXLiQxYsXEx0dTXR0NP/880+BY/r7+xMaGsrnn39O3759ufjii8v0GArl+HGVifb881VI/759KlTW1xfmzFFhuF26qIzGOpW+xluWL4cmTVSpClvos8GgEkMmJqrSNpWVOnUc/x89qpKpnjoFF1zgaNfh3OXP4sXQoweMGmXPko2Pj0ou6o7BAL16qSS4Nv78UyUe9fd37Ws2l5nImExw3nmq1mWzZufsHtClC89FR3M5sBc4D1gAvLJ2LTEhIQwYMECnEqgClKjWW9OmTQtcZ8tSWhXo378/VmtBVXsKZvz48YwfP95eVK9c2b0bpk2Dzz5z5KRp3hwefljlRGrdWtU10mi8IS3NUf4B1LXl56fyHhmNjmvMvfZXZadpU5W9edMm13Ioo0er39PkySqXjqbs6dFDKTlhYUoBcc9/dC5mz4Y77lD3PxuJidCvH9x+O8yaVfoviVFRah9msyOHk8WiCjd37Zqvuy3/UkhICH8Cj6LqxQ0ENgMz4+NJP3oUQ7165yzoq6k4SjXhZE5ODocPH2bXrl2cOnWqNIcuNg0bNsTX1xejczp7wGg0ElnVFAkRiI+Ha66B9u1h7lyHkvTYY6oG28SJKgFaVTs2TeXjm2/UW/ODDzraQkJg2zaV+K+qX2P+/hAT4/hsNMKXX6rlXMlaNd6xd6/j/2bNYN06+O234itJoJSgvn1dLVCLF0NmpqpZ6ax0OCc69ZagIFX+xMZrr0H37uoF1qOYSo5s4BWgPfA1ykoxEchu2ZLxwcFc2L+/ti5VUrxWlEwmE7NmzWLgwIGEhobSokULOnToQHh4OM2bN2fs2LGsX7++NGQtFrVr16ZHjx4sW7bM3ma1Wlm2bBkxzjfJEjBz5kw6duxIr169vBWzcCwW9dDq3FkVoV28WClNV1yh6rEtWgSvvuqa6VajKS45OcqCZKNrV/XGfOCAa0215s2r5zRuRIQq9PzKKxAd7Wi3TWFnZ1eYaNWG7GxltevYUVlkbFxwQeleU88/r6aD//c/R9vJk+rafeyx0v8uRVTdOYulQOtqYGCgfaYlOjqaw8CNwBBgJ9AgN5dPgelr1pC5enXpyqcpHbxxhnr99delfv360qtXL5kyZYosWbJEtm7dKnv27JGEhAT5+OOPZcyYMRIWFibDhg2T3UUNsSwiJpNJNm/eLJs3bxZA3njjDdm8ebMcOnRIRFR6AH9/f/n0009lx44dMm7cOAkLC7OnNvCW0syj5OLMbTar6I9WrVwj2K69VtUz0mhKiwULVN6aRx5xbd+4sWYHAWRkiDRsqH53ixZVtDRVH6tV5OqrVVLQmTPLd9/vvae+x+josrumV6xwHfvECZfPVqtVzGazWCwWiY2Ntd/3a4E8CpKWd4+3gFjHjSv/nFE1kHLJzC0iMnLkyCJl4s7MzJRZs2bJx+4hn16yfPlyj+H6o0ePtvd599135fzzz5fatWtL7969XZJjlpT33ntPOnToIBdccEHpKkpJSSqCIyTEoRzVr6+iim6/vUhRFhpNoVitrkVJf/lFXWft29dsxcid9HRVyqJ/f9fztWFD/nBxjWeys13TMKSkVExurdxckZ9+ElmyxLVt8GD1HZd2AdvsbKWUjRjhWnYlD6vVKiaTSaKiouz3/8Ygnzu/FNerJ/LWWzqNRRlSbopSTae0LEodQM6OHi1Sq5bjh9KihXrz0uH9mtJi4UKVCHLWLEdbbq7IN9/oG3JRsFpVnjIfn/x15jSubN+ulIWnn65oSTzzww/qPtuggWvKgdJg9WqVHLNBA8+pDvKwWCwSHR0tgF1pGgCS27mz4znQpo3KLq+fAaVOcZ7fpercsmzZMpYtW0ZKSkq+aLK5c+eW5q6qPiL4rFrFr8AIUFFsAIGBqiL6okUqHFajKS2OHlUO2Z9+qlJKgEoncd11FSpWlcFkgvr1lTP44MGO9tRU5ezuU6qxMVWbHTuUL1JSkvKnDA2taIlcufhi5YN29qxryoGHHlIRnjfckD/tQFGJjYWNG+HYMVdH89xcF39SHx8fNm3aREZGBiJCSEgIcUBmXBzBixbBs88q5/drr4UBA+D11/UzoYIotV/2Cy+8wNChQ1m2bBknTpzg9OnTLkt1witn7txc+OoriIoi4NJLGQFYgdwrr1SRbbt3w+HD+geh8Y5fflEPg+XLHW1jxsBbb8GSJRUlVdUmNBSWLoX9+yE83NH+wAPKSfmvvypOtsqAc8TW9dera23z5sqnJIGKXLv7brj/fkfbjh3w9tvK6dwtWrrYdOoEl1zi+Lzu/+3deVxU1fsH8M+A7CCIKIj7loUpKIopkBtu5VpaX+uruGQb5YKVWX21xbI0l1TSct/yq+ZPWxXTLwruu2kuCKLiAogoMMM+8/z+OM7GOsCFOwPP+/Wal86Zy71H7jj3mXOf85wT4j0SE2O0mUKhgJOTk1FZgODevUGTJokg6eOPRR2wmBggIEDUnLp5s3J9Y+Un1TCWl5eXScuA1CTluvWWkUG0aBFR8+a6YVXN48dIqdd6Y+zNN8X77MUX5e5JzaZU6pO+T52Suzfy2b6dKDBQ5HZZqtRUojlziN5+27h9zRpxO60yt7+0a9iNHl3syxqNRncbDo/XhNNV7U5MFDmq2ttxdnZEH35I9OhRxfvD5MlRcnd3pzjDUvS1gEm/6Nu3xQKP9vb6N3qDBkSff07Zq1dTq6pYFJfVLpcuEb31FtHj2Z66thkzjNtY1UhPF7MHDX37rbjgxsfL06fqpFSKmZMAkcE6mjXCw4dETk7i31aZJW/S08V14MGDEjfJyMgwmpQUGBhovMTJ6dNEvXoZX0eWLSs1v1A7246XSilKlkDpgw8+oM8//1yq3Zk1k2a9/f03UeEEbYBo9mxd8qCki+Ky2qtPH/HemjFD7p4wIqKcHKKGDcU52bxZ7t5Uj8hIopkza96kgHv3iCZOJOra1XhE6cgRojt3Krfvjz4SM9vUaiIiSk5OLjKDu8h1QaMh+vVXonbt9NeUVq3E++zxfsRmYmZdjx49CAD5+flRZmYmqdVqUiqVHDxR+QIlBZE0pUCnTJmCDRs2oGPHjujYsSNsbGyMXl+4cKEUhzEr2iVM0tPTUbduXfG23b8fmDULOHpUv+GzzwIeHsDAgcCYMbq1p1QqFZydnQEASqUSTk5OcvwzmCXJyAA2bgQmTNAnof72m6jWPn26KEzK5EUEHDwokuZXrgS0n4VRUaJi9NChIoneUuXlAZ99JnJwevWSuzfVQ6PRJ+trNGKttxs3gD//NM5FMtWZM2IJF0DkHz1eTsu60PuixOtCfr54b33+uS6fSt2hA6y+/hoYOBBBwcE4cuRIqV3o0aMHIiMji+RI1RZFrt+lkCxQ6m04C6TwQRQK/K8GJjrqftGpqai7e7coZX/+vH6D4cOBmTNFEl4xOFBi5UIkqmZfvCgCo/Hj5e4RMxWRWDbl+HFg3jzg/ffl7lHFffGF+DLYtClw5YqYqVubJCeLWXEXLgC3b4vEcEDMcvPwEOshloVIrEV37RqwaJGuWaPRQKVS6S7cycnJcHJyKnkdOJUKtGgRVJ9+CufHy7Tkde+OnkeP4piJ/5zAwEDExMTUumCpPIES11GqBN3QXYMG+mFQR0eR3Dl4sEjCKwXfemOlUquJDh40HvL/5huip54i2rFDvn6x8svLE7daGjUyLkKYmEiUnCxfvyoiM5MoIEAkcNdmhYtJDhxI5OVlXNiyPDIyiMLDSXn7dpFbcNp8peJyjpRKJbkDNB+gbIM0j52Pa/Rp96Gt1dS2bdsi+8/MzKzEL8IyccHJaqL7RQNEnp4ikTEtzeT79BwosRIVFBB16iQ+9AyrGefmcvE5S2ZY5ZtI5DHa2RGtXClLd0xy+TLR118bt/F70Fh6OlHjxkQKBZHhpKa8PNP38dprYjZ0cLDRMifaR1JSki7nyDDR2/A60gSglQAVaGdWW1mRJjSU1AkJuiArKSmpyL79/PxqXc6SbAUnAeDSpUu4desW8vLyjNqHDh0q9aFkExERgYiICKi1K1K7uooaKj4+8naMWbYHD4D69cXfra3FiuRxcUB8vChiB5g2rM/Ml+EC1mq1OLe5uYCvr769oECcf3O4FZKcLHJpsrLE4tzPPy/azaFv5qRuXbGI9JEjQOvW+vb33hMLLs+dC/TsWfo+Jk4EoqOhmDMHMcHByMrKgkqlgqenJwDAy8tLt+nhw4ehVCrh4uICMsieuQ1gEoAFAOYAeFGjAdavh2LLFuCNN+A0cyZUBnlQjRo1wr1793Du3Dncv38fDRo0qHW34EwiVXQWHx9PHTt2JIVCQVZWVqRQKHR/t7KykuowZkUbkd69cUM3k6A8D8NZDjyiVItlZxMNGyZGFgxn0iQlieF4VnNpNERnzhi3ffWVuLX111/y9Kmw8HCiAQPKTCVgheTm6mtsRUaa9jOFRhyzfvuNehQa/TF8ZGRkGK0ZV/iRFRUl1rTT3pKztyfVW29Rg8evx8fHl16SoAaT5dbb4MGDadiwYXT//n1ydnamS5cuUUxMDAUEBFB0dLRUhzEr2l+0FA8OlGqZwh9GQUHig2zNGnn6w8yDWk3UsqV4L8hRwLegQKwxef++vi0vj2+1VdS9e6LQsMHUfVq9mmjSJHFLszQPH5Lay4vUAA024Rri6+tbpBaTUrtW6L59RN276wKmTIC+Aijjxo1aey2SJVCqX78+nT9/noiI6tatS1euXCEiov3795Ofn59UhzErUgVKtSmKr/UyM0VSb/v2ot6O1qlTokgkY8nJIt/RMNfxjz/E+6aURVYlMXGiuJi+/HLVHqe2Uqv1NZC++670bR8+pLx//5suA2RvwnUkMzOTNBqNLr+pyHVFoyHavVss7KzNYXJxoU8Bcq2Fid2yBEpubm50/fp1IiJq1aoV/e9//yMiori4OHJwcJDqMGZFd+vt7t0K3Xrjwl+1UF6eSPoEiH76Se7eMEvRo4d4z3z0UdUe58QJIjc3ouXLeRSpKmg0RDExRK+8Ynxb/ehR8TsvtASMUqkkZ4MgJjk5mbIXLiS3Uu5KlFmNW6Mh+uUXIl9fXcCUBtBHADlDzIpTG46AmfTPsrwK4LIESkFBQbRz504iIho9ejQNHDiQDh06RGPHjqX27dtLdRizYFJlbsYKCoh27iQKCzNu/+knMb2/oECWbjELo9EQ/d//EfXsaTyidO0a0f/+V7mAJiaGaNcu4zbOi6t+gweLoGXaNKPmIiNE27cTAXSj0ChThe5KqNVE27eTxsdHFzDdB+g9gJ7p0KHY/RUXEGk0GqMK4OUNsuQiS6C0Z88e2vG4tktsbCy1a9eOFAoFeXh40P79+6U6jFkp16K4rPZJSiKytRUfQkePyt0bVtNMmCDeW++9V7Gf37NH/Ly7u+XVcqpJNBqiJUuI2rQhunpV3377NtHx48bByZEjpG7blj4vNMpUqZGcggKizZtJ07atLmBKAijnyy9JabBvw4AoMDBQtxxK4bwoSyk1YDZ1lB48eGARv7CK4kCJGUlIKLo46rRpYqXve/dk6RKrwaZNI3JwMA7CMzNNHxHKyxO1uiZOFPXfmLwKXyunTxeBy9SpxptlZVGv7t31I0m3bol8p8qOUOfnU/aKFRQPfdHKFIC+b96cNOnpRvWatMnjljw5SbZAKTo6ml599VV65pln6Pbt20REtGHDBoqJiZHyMGaDAyWmc+0akZWVGEHioIhVl4cPjZ9/8w2RqyvR0qVFt71xg+iTT4wvyIVyYpgZefddsaj677/r27KziR4+NB5lGjFCBDavv17pQyqVSqoD0DiArhkETBp3d8qdNYvqmjhBqaYFSo9X+au8HTt2YMCAAXBwcMDZs2eRm5sLAEhPT8dXX30l1WEYMw/5+WKdK602bYBnngGCg8XCp4xVBzc34+d79wLp6cDjNSR1srOBrl2BOXPEospatW2dNkuyZAlw6xYwaJC+beNGoEkTKObOFYvZAsCAAUCDBsA770hy2AIA6wA8CWAsgFgAirQ02H7+OW4A+A8AV0mOZDkkC5TmzJmDFStWYOXKlbDRrpYNseDemTNnpDoMY/K7dAlo1Qro21cETFp//QXs2wc8+aR8fWO12969wO+/A6NH69t++00s0D18uAjkO3eWq3esvLy8ACuDy3RkJKBSAQ4O4rlCAbz+OnDjBtChg3679euB7dvFeFAFqQFsBPAUgJw1a6B54gnUA/A5gJsAPgNQ7/G2PXr0QEZGRoWPZe4kC5SuXr2KZ599tki7q6srHvE3bGbpDJfkad1aLDNRUABcvapv52/nTG5WVmKZkbQ0YOxYIDYWWLhQBFBubsDBg2IpEmaZtm8XX8gmTNC3RUcDPXoAW7aI53fvAu++C7z0EvDHH5U+pAZA/siRSD1wAC8BuAAxojQLImBSTp6MQ7t2wcogoFOpVEZLqwAAERXbXtZr5kCyQMnLywtxcXFF2g8dOoRWrVpJdRjGqte1a8CQIUC/fvo2Ozvxze7WLb7oMPM0ebK4TTN5MrBmjfhzyhT9Gm1XrwLz54vbdMxyKBRASIhYX1Tr+++B8+dFEAwA7u5AeDgQFAQ891y5du/o6IjAx+tKtm3bVtdet25deHp7YzsAXwAvAjgPwAWA05IlULRsCZv//AcNHm/v6emJ4OBgXeBDRAgKCoKzs7NROwBoNBp07twZzs7OCAoKglKpLDVgKiuoqpKgS6rEqK+++op8fHzo2LFj5OLiQjExMbRp0yZq0KABLVmyRKrDmAWuo1SL3LkjEioVCqLYWLl7w1jJDJO0r10jCg4WFd+LM2kSV+CuKR48EEn8hkui3LpFNG4c0blz4nlBAdGQIUSbNpVZd0ubKK5Wq8nPz6/YpVIAkAKgoQAV+Pnpkr6zraxoEUCNC1X5zszMLJLsrdFoKDMzs9jZcyXVhSpcoqDwNmW9bkiWWW8ajYbmzJlDTk5OugVx7e3t6ZNPPpHqEGaHZ73VMPfvE332mZjOb2jdOuP6JoyZk5s3iV56iejzz03/mU2bxDI6hw7p29LTiU6flr5/rPrNmCGCl549xfONG8XzunWN1/ErQ+EAJzk5uWjQk5kpZuYFBOgCplyAfgRoyFNPFRtwZWZm6gKakh7FzZwrXKKg8DZlvW6oPNdvBZG0NwXz8vIQFxcHpVIJHx8fOBeefVGDZGRkwNXVFenp6ahbt67c3WGVdfiwGK62sxO31Ro2lLtHjJVt2zbg5ZfFTLfbt41vy5RG+9GvvR23YAHw3nsiOfiHH6qmr6x6nDghzue//y1SB3JzgXnzxC3XH3/U51Pm5AD29iXuRqVSGV3DlUolABRpc3JyEu+nfftAX34JxePbgGoA+SNGoOvOnbhosN/k5GR4enqW+k/Q7beM/hhuU9brhspz/ZYsR0nL1tYWPj4+CAgIqNFBErNwGg2wezewY4e+rUcPYOJEYO1aoF69kn+WMTkRAUlJ+uejRomclEOHTA+SABEgaYMkQOzT2hoICNC3aTTiIsssS0AAsHWrCJIA8eWvcWNg82bxZZAIuHABaN5c5DiVY7zEMI8pMDAQjtqgS6EA+vWD4sABZO3di98BWAOw37kTFwD8AiCghH2auzpS7iwnJwd///03UlJSoNFojF4bOnSolIdirHK2bRNTqJs2BYYNA+rUEf/RV62Su2eMlez6dTGbLS1NJPDa2Ij37YIFld/3/PlitpThSOru3cBrrwEzZ4qEcGa5HB2BFi2AV14R75lly4CUFFFO4u23Td6NQqFATEwMsrKy4OjoCIVhsP0Y9eiBIRCJ3zMBjAIw9PFjPwD13r1lHoceJ2WXdAzD7bR9Kev10vZTVmcksXv3bmrQoIEuP8nwYWVlJdVhzArnKFmQ27eJLl7UP8/OJmrblig8nBcBZZYjLY3Iw4PI0ZHo+PGqP95LL1VuPTlmXgoKxGcfEVF+vn6ZlMGDRZJ3RgbR+fO6zcuT82PIcDFfANQWoJ3u7pRnUO37KEBDHieFo5iHNsnbcKHdwvlRhrlOgYGBZb5umNwtS2Xud999F6NGjcK9e/eg0WiMHmq1WqrDMFZ+W7aIb1KGlWvt7UVl7QULABcX2brGWKmUSuDnn/XP69UD/vtfkWsSUA03MjZuBDZsEKUFtK5eBUaOBI4erfrjM2lZW+tzkurUEbfjrKwAT08xyvT110CnTsBnn1XqMNpRJ6VSCaVSibNKJfreuIHWAJYAyAbwDIBfIcoM/AviNp2h8+fPAwDOnTsHf39/aDQaBAcHG22jUqlw5MgRAMDhw4eRlZVl9HpWVlapr5tKskApOTkZ4eHhZSZomZsRI0agXr16GDlypNxdYVLRaIDMTP3zoCB9u0qlb7eSPEWPMelkZooq76NGASdP6tv79gWaNKmePtjaAmPGGB9v8WKR2zd3bvX0gVWdadPE7dxZs8Q4z+3b4nPyu++AWbPgaGdXfD6SCRQKBZycnHSP7OxsJAKYAqAFgLkAMgB0ALAFwBUAEwHYFrOvc+fOITU1FefOnTNqLxw4FaYy/LyvBMmuFCNHjsSBAwek2l21mTJlCjZs2CB3N5hUdu8WF5cPPtC3NW0qCkcePAiUMAOCMbPj4iKKC7ZqJUaWzMU774jK0O+/r2/LzAQiIsyrn8w0zZsDzZqJEaX168X5ffgQiIqCok4dxHzyCbJXr0bMwYMVz/EppG6bNvgIQHMAnwB4VKcO2gBYBSAewFQApX1St2nTBgBw7dq1Uo9TUrFrepz/ZCrJygNkZWVh1KhRaNCgATp06GC03hsATDbjRMADBw5g2bJl+NlwiNsEXB7ADB08CPTqBXh7AwkJ4hsxY5bgzBng88+B1auB+vVF26NHIgnX3N/HixeL0YlnnuFbcpauoADYuVMstNujB9C+PRAXJ9YI/PJLsQhvBQKmlJQU3R2npKQkODs7w8HBAdnZ2XAkAlauhGbePFg/ntGZBmAZgKUAUmFcUiApKQleXl5FjlFW2QGlUglHR0cEBQXpbsmZdP02NQesLKtWraI6deqQs7MzNW/enFq0aKF7tGzZUqrDGDl48CANHjyYGjVqRABo586dRbZZtmwZNW/enOzs7CggIICOF5MAGRUVRS+++GK5j8/J3DL75x9RfTYiQt+m0Yhieo8rwjJmETQaIl9fkegaHi53b8pvyxYxOeKHH/RtGo3xBApmeXJyiL78ksjTU7w3vb2JcnNFIng5JScnGxWuLI7ywQN6DaCrBknfKoCWAJRy4oTRz6OYBPCkpKQyi1gWTlCv1mTujz/+GJ999hnS09Nx48YNJCQk6B7Xr1+X6jBGVCoVfH19ERERUezrW7duRXh4OGbPno0zZ87A19cXAwYMQEpKSpX0h1WzQ4eAdetEITXthAGFAnj1VVF8jzFzlpZm/L6dN09M3X73XXn7VRH/+hdw+TIwfry+LTJSrIX44ovlqtPDzIidHfDRR8CRI2LE8MMPxejmv/4lHnPnihIDEnGsVw+n/PzwFMR6cicBOAJ4F0C9gABshMhpohLeT6bkLJX0s6Uqd1hYgnr16lFcXJxUuys3FDOiFBAQQGFhYbrnarWavL29ae7cuUbbmTqilJOTQ+np6bpHYmIijyhVl+xsolWriKKj9W1ZWUTjxxMdPSpfvxiriMWLxXISmzbJ3ZOq89VXRFZWRNOmGbcXFMjTHyaN+Hix9qWVlX5ZFBNG8E0ZUSIioyVPenTvTq+1akV7DEaYCCBVz54UXMrIUWmPwsupVOuIUmhoKLZu3SrV7iotLy8Pp0+fRkhIiK7NysoKISEhOFrBe+hz586Fq6ur7tG0aVOpusvK8sUXovCd4bRVBwexMvozz8jXL8YqIisLyMgwnvpf08ycCcTHG0+siIsTicNffcWjTJaqVSvg7FlRgDQgAHjhBTGCHx0tkvr/+adS59bKygpnzpyBUqnEocOHsej8eQwE0BnAfyGWRXE8eBDRAI4AGAagPBlThWfOmUKyytxqtRrz5s1DZGQkOnbsWCSZe+HChVIdyiSpqalQq9VFErs8PT1x5coV3fOQkBCcP38eKpUKTZo0wfbt29G9e/di9zlz5kyEh4frnmdkZHCwVFUuXxazfrTTkl9/XdRDGjRI/CeUaPYFY1VOrQY2bQL8/cWtKEBcZFq1ElP/a7IWLYyfr1oF3L0r1lXk/8OWy9cXWLRIfBbn5gKpqWK5FBsb8QXgiSdE4OTurvsRDw+PYv9eHG1pAe3fAeAsgNEAPgZw9pVXYPvTT+gOYBeAywDmAdgMIF+6f6WOZIHShQsX0KlTJwDAxYsXjV6TakphVdi3b5/J29rZ2cHOzg4RERGIiIjgQppV5YsvRF2PsDBRZh8QU1jj4rj2EbM8H3wALFwoLiS//iranJzEQra1zRdfAB06AI+ndwMQJQXeeAN46y0gMJADKEuiUIgClpcvA15e4ktBTo74kmsQJCE/H1Y2NrprplUlPsevA1CsWIHmP/2EKQDeBvAUgLUAvgCw0cMDX6WmQspCFZIFSlFRUVLtShIeHh6wtrZGcnKyUXtycnKx0wrLIywsDGFhYbryAKyS8h4XtrezE8+1H5aPHhmPHnGQxCyFWi2qIAMiCNi0CQgO5tFQGxsx2cLQ2rXATz+JFe+vXq3dvx9L1akTcPGiWFjZxUX8qVaL23IjRogAuU8fWH39tb70RQVlZGTA2dkZbQMD8fHhw/izQwd0v3AB0wA0ATAzNRVvAIiAqAKeWvl/XeULTs6aNQunT5+WoCvSsrW1hb+/P/bv369r02g02L9/f4m31kwVEREBHx8fdO3atbLdZGvXAi1bAj/+qG/r3VvkNmzaxB+azLKcPSuKRH76qb7tiSeAW7dEgUZ+PxfVr5/IP/zwQ/2XISIxo9Wwwj4zbzY2orivm5so+rt9uxhBfecdUf37t98kmY1sZWVltETKniNH8C2AlgBeA1DQujXcAfwHwC2IOkwtKnvQcmW7F2P8+PHUoEEDaty4Mb355pv0559/Um5ubmV3a5LMzEw6e/YsnT17lgDQwoUL6ezZs3Tz5k0iIvrvf/9LdnZ2tG7dOrp06RK9/vrr5ObmRklJSZIcn+soSeD778VMhqAguXvCWOXt3Cnez+7uYlYmq5i9e8XvsUkTorw8uXvDKiIzk2juXKLvviOKiSH6+WfRfuaMqLE1aRLRmjWiVlMpDBfYLbywLVHRhXuT796lEQAdN5gllw/QZoA6FjMLzpTrtyTlAdRqNUVHR9P7779PTzzxBLm4uNALL7xA69evpwcPHkhxiGJFRUUVO/0vNDRUt83SpUupWbNmZGtrSwEBAXTs2DHJjs+BUjkdOUI0fLj4ENRSqYg2bBBFzBizNGfOEB08qH+u0RDNmkWUkCBbl2qEP/8keuIJosmTjdtv3JCnP0wa58+L4KVjR/FnnTpEt2+X+WMajYaUSmWRIImomEDJoAxBL4B2FyotsBug3uUMlCRbwsTQ5cuX8dtvv+GXX37B6dOnERAQgKFDh2L06NFo3Lix1IerdobJ3LGxsbyEiammTAGWLAH69xfF6BizZNu2iYTsJ58U+RnWhdc/Z5Wi0QDZ2fr1GRMSRBJ4797A77+LJGJmWTZuFDl7AweK5VFSUkShVS3t7NCnnjJ5lyqVCs4Gt/SKW8bED8AHAF4CoP1fGgWgD0xbwqRKAiVD9+/fx6+//opff/0VwcHBeO+996rycNWK13orRUaGmAo8fLiYBg2ID7qvvhIVXn18ZO0eYxVimKSdkQG0bi1ybL7/XuRmsKqzfj0wcaLIAduzR99e2xPkLc29e2I9OW1pnUePxCLLr70mkr9zc4ELF/SlNMpgSqCk1QLAdAATABQAcEU1B0rZ2dkgIjg6OgIAbt68iZ07d8LHxwf9+/eX4hBmhwOlUrzwglhYcfJk4Lvv5O4NY5WTkAB8/LH4gN+2Td+eng7wzNfqc/MmoFLpv2ipVKLo4b/+Bbz3nihCyyzLp5+KQsJt24rzmpQkFlbWBr+XLokvJNpZ0YWUJ1DS8oBI/P4apgVKks23HjZsGDZs2AAAePToEQICArBgwQIMGzYMy5cvl+owZoFnvRXj5EnxoaX11lvilkSXLvL1iTGpZGUB//2vqKR944a+nYOk6tW8ufFo9JYt4kK6bp1Yg4xZntBQMZo0dy6waxdw8KAYJTxxAsjPF7fpWrYEzp+X7JCpEEGSqSQbUfLw8MDBgwfRvn17rFq1CkuXLsXZs2exY8cOzJo1C5cvX5biMGaFR5QeGztW3HuOiADeflu0aVPnuPYRs0RxceICPHSovm3RIpEf4+cnW7dYIfn5Ini1sQFGjhRtREB4uKjfExzMt+Us0c8/i6r1/fuL/L+CAjGaqM1Ly88X5xwVG1EyVK0jSllZWXBxcQEA7N27Fy+88AKsrKzwzDPP4ObNm1IdhpkDlcp4LZ+AAPGmvXdP36ZQcJDELNPJk0C7duILwMOH+vZp0zhIMjc2NsDo0fogCQCiooDFi8VyR+npsnWNVcK1a0CdOkD37uK29759xsn7gwaJ/Ndr14r8qKOjIwIDAyXtjmRXsjZt2mDXrl1ITExEZGSkLi8pJSWlxo221Opbb3PmiCQ8w0rs48eL2xFffCFbtxirlKws/d/9/cXtncBAvtBaohYtxNqQb71lnGD/++8iAZ+Zv5kzRRA0daq4pdqhg1hst18/YOtWYP9+4I8/ip35qC1GWXhVjsqQbAmTWbNm4ZVXXsG0adPQp08fXfXrvXv36taAqylq9RImSUniW/ZPPwF9+og2Jyf9FF7GLElioihbce2ayIGwshKPo0clqSLMZNCqFfDDD8ZtN2+KEQhnZyA2FmjYUJausXIovKDyl1+KkSVXV7G23OHD4kv749zYWQBUAJCeDoWTk25RXSlIFiiNHDkSQUFBuHfvHnx9fXXtffv2xYgRI6Q6DKtOf/4phrB//FH/pp0+XUzPHTJEzp4xJg0XF/HtNDNTJI8+84xo5yCpZrl7V8yqatzYOEi6fx9o0EC+fjHTff21CJK0E4WefBJ49AiOJ07gua5dMePkSTgCoNhYwNtb0kNLWkcpJycHf//9N1JSUqDRaIxeG2qYFFlD1Phk7n79RAQ/bZpY/ZwxS3fokHh8+KG+bccOUeCOa3vVbBoNkJYGeHiI59nZQLNmol7P5s2SX1xZNfjyS+CTT0CvvIK8oCDYxsRAsXkzoFBApVJhpLMz0gCcKGUXply/JRtR2rNnD8aMGYMHDx4UeU2hUECtVkt1KNkZVuauMVJSgJUrxWwRbS2SDz8Uyavvvitr1xiTRHy8fhbU0KH6wOjFF+XtF6seVlb6IAkAjhwRaQQJCXwrzlIVFAAODlAMHgy70aPFaJNGIx4FBfgeYrHcFwH8XyUOI9mIUtu2bdG/f3/MmjWrXFPzLFmNGVEiEheNK1eAFStEiXnGLB2RmGTQsqW+bfRooG5d4D//AZo0ka1rzEwkJor3SHCweE4EPP+8mMk7dSpXW7cEKSmAu7uYJQcA//d/wEcfIWfKFGx5+230B9AGQM7jzZtD1FHSVv2r1vIAycnJCA8PrzVBkkUjEolw2hhZoRDBUUBA0QQ6xixRUpLIN+rc2Xim008/iURfDpIYIJKBtUESIG7L7t4NfPONqNXDzF/DhvogCRDLCV29CquEBEwA0Br6IAkAVgJIBFCe9UIkC5RGjhyJAwcOSLU7VlU0GrEYYVAQEB2tb3/3XeDYMWDAAPn6xphUGjYUCdq5uSJJW4uLD7LSdO8uKrDPmWOc5L1oEXDggHH9OGaedu4E5s1DflgYACAXQDsAUwB4AmgGoC6A8pTAluzWW1ZWFkaNGoUGDRqgQ4cOsHlcNVNr8uTJUhzGrFjMrbfsbOM1kN56S1TSXrxYlI5nzJLl5ooFU//8Uwy7awudnjkjRo44/4RVRmKiKDlQUFCuxVqZvAwrdq8HMPbxn+MB+AM49Xi7al0Ud/Xq1XjzzTdhb2+P+vXrQ2HwzU2hUOD69etSHMasmH2gVFAgasRs2iTKwGtXa05OFkW86tWTt3+MSeHRIzF7KTMT+PVXLl3BpHX3rhhhunlTFDnUOnpU5HbWtlp6FsIwUBoH4GMALwM48/h1RwBZqOZAycvLC5MnT8aHH34Iqxq+dIXhrLfY2FjzDZQAURQyKgqYP1+srs2YpXvwQJStePllfduCBSJP4bXXuPgpqxpE+lu3OTligd7sbLGIaw0rqlwTFF4DTgHAMNiZAuA7VHOg5O7ujpMnT6J169ZS7M4imNWIUkEBsH07sGGDuEerLe1+/Lj4z9yzJ+dnMMt3/764DaJSieq87drJ3SNWG127Jip9Z2aKshPaVJPMTFHElMmucKBUWHkCJcmGfkJDQ7F161apdsfKiwiYMQPYs0fcatPq1g3o1YuDJGa5MjP1f2/QAOjdG/D1FbfcGJND27YineHQIX2QRCRWLejZE7h0Sd7+sTJ9V45tJSs4qVarMW/ePERGRqJjx45FkrkXcmVnaSUkiIrC06eLIMjGBpg1C7h3T3zTYczSPXwIvP22uM12/br+m/rGjaIWEgf/TE4KhciN04qLExMIrK2NC1syiydZoHThwgXd4rcXL140ek3BH2jSUirFasoqlagVExQk2nkGG6tJ6tYVF57UVDFSOmqUaOfkWWaO2rYVxSuPHTOeaTltmgjy332X15WzUJIFSlFRUVLtihWmVgOnT4uCkIBYsPOVV8QsDMNp/4xZKiJg717g55/FIswKhfhmvmKFmJ3p5yd3DxkrW+PGxkvi3L0LLFsmckiHDOFAyUJJksydn5+PgQMHYsWKFWjbtq0U/bII1ZLMnZYGdOmiL7XfuLFoLygwrkbKmCV79EiUr1AqxRTs556Tu0eMVZ5aLSbXHDwILF2qb//5Z7HsRu/efAu5ipSVzK1VbcncNjY2+Pvvv6XYlUWIiIiAj48PunbtWjUHyDEouO7uLi4gdesC//yjb+cgiVmynBwgMlL/3M1N5NtNmyYStRmrCaytgZEjjYOk3FxxG65vX+CXX+TrGzOZZOUBpk2bBjs7O3z99ddS7M4iSD6i9OCBKBAZHS2mn9rZifaEBMDTE3B0rPwxGJPbo0fAk0+KxSxjY4E2beTuEWPV59Ej4JNPgL/+EjPntBOfrl4Vn/O8EK8kpBxRkmxYoqCgAGvWrMG+ffvg7+8Pp0JF33jWmwlcXMR6QnfuiP9EgweLdsPVzxmzRIbL6Li5Af7+4iJx6xYHSqx2cXMTeUtqtRhx0powAfj7b2DrVr71bGYkC5QuXryIzp07AwBiY2ONXuNZb8XIzhbrUx0+LKY7A2JZkRUrgEaNxIWEMUuXni5GSSMjxfRp7ReoNWvEbeVCZUQYqzUMg6SHD4GMDCAvD3h8HQUgbtNp7yww2Uh26602qtStt6QkUQI/Lw84ckSsWs1YTaNWi9tscXFiVXbDZUcYY3pEolBl+/b6tgkTRBrG/PmiFAwzmdkkc9+6datc29+5c6cyh7NsFy6Ib9FaXl7ABx8AixfzatSsZtBoRHLqxIniQx8Q35q//17UluEgibGSKRTGQZJSKZalOnRIvj4xAJUMlLp27Yo33ngDJ0+eLHGb9PR0rFy5Ek8//TR27NhRmcNZrsuXgY4dgTffFJWztb74QtyW4LWBWE3w6BHw6qviC8Fff+nb+/UTS+kwxkzn7CwSvJctMx5NWr5cJIMnJcnXt1qmUjlKly5dwpdffol+/frB3t4e/v7+8Pb2hr29PR4+fIhLly7hn3/+QefOnTFv3jw8V1sS1HJzxWyeDh3E86eeAoKDxYwGw6n/jFmyjAwx+WDoUPHc3V1M8c/LE18MGGOV4+0NhIXpn+flAXPmiEKWbdsCoaHy9a0WkSRHKTs7G3/88QcOHTqEmzdvIjs7Gx4eHujUqRMGDBiAp8341tLvv/+O6dOnQ6PRYMaMGXitHMuAFJujdOGC+AZtbS2m9dvaivb8fE5cZTVHaqr4oM7IEF8KWreWu0eM1Xxqtbi9vWEDsG2b/vpy+LBY0qpfPy5g+ZiUOUq1Opm7oKAAPj4+iIqKgqurK/z9/XHkyBHUr1/fpJ/XBUopKairLU2flwe0aCECpchIwMen6v4BjFWnjAxR+FRr0CBRLX71aqBHD9m6xVitFxwscpm+/VaM6jLzSea2dCdOnED79u3RuHFjODs7Y9CgQdi7d2/5dzRsmP7vtrb61c45SGI1wYMHYv2qNm3Et1atTZtEtXgOkhiTT36+KClQrx4werS+PSlJLIHFAADXr1+v8M9adKAUHR2NIUOGwNvbGwqFArt27SqyTUREBFq0aAF7e3t069YNJ06c0L129+5dNNaunQagcePGFZuZd/SouP2g5ePDt9lYzeHqCpw7B9y/D+zfr2+vXx+wsuiPEMYsn40N8N13Im/J21vf/p//iOWvVq+Wr29mpHAR7PKw6E85lUoFX19fREREFPv61q1bER4ejtmzZ+PMmTPw9fXFgAEDkJKSIm1HTp8GnnhC2n0yJof8fDFSNGaMfop/nTrAypWikrY2cZsxZl7s7fV/12jE/9esLFHHTEut1v+/Ziaz6EBp0KBBmDNnDkaMGFHs6wsXLsSkSZMwfvx4+Pj4YMWKFXB0dMSax/WMvL29jUaQ7ty5A2/DiLyQ3NxcZGRkGD0A8BIMrObIyADeeEMES4ajR336GNd4YYyZLysrUcj46FHjW+OLF4vixhVJManFLDpQKk1eXh5Onz6NkJAQXZuVlRVCQkJw9OhRAEBAQAAuXryIO3fuQKlUYvfu3RgwYECJ+5w7dy5cXV11j6ZNm1b5v4OxKnXnDrB5s/55/fqiEOqcObyMDmOWTKEQ9Ze0s+CIgB9+AI4fBxIT5e2bhZFsrTdzk5qaCrVaDU9PT6N2T09PXLlyBQBQp04dLFiwAL1794ZGo8EHH3xQ6oy3mTNnIjw8XPc8IyODgyVmuW7fBlq1EsP0gYFitiYAzJ4ta7cYY1VAoQBiYoBVq0RhWK29e8UEpMmTgSZN5OufGauxgZKphg4diqEm5l3Y2dnBzs4OERERiIiIgFqtruLeMSYhIvFNslkz8bxJE6BnT1HSQnsbmTFWc3l6Ah9/bNw2d64oHAsA8+ZVe5csQY0NlDw8PGBtbY3k5GSj9uTkZHh5eVVq32FhYQgLC9PVUWLM7N26BQwfLgKlW7cABwfRvmsXUInZIIwxCzd9uqj7N3myvi0+HrhyRdRK45mtNTdHydbWFv7+/thvkJCq0Wiwf/9+dO/evVL7joiIgI+PD7p27VrZbjJWdQxnt3h7Aw8filkwp0/r2zlIYqx2GzxY3HozvO02f75of+cd+fplRix6REmpVCIuLk73PCEhAefOnYO7uzuaNWuG8PBwhIaGokuXLggICMDixYuhUqkwfvz4Sh2XR5SYWUtLE0Pop0+L/AOFQkzx37pVLDViYuV5xlgt1bChqML/8sv6NpVKPBo2lK9fMrHoJUwOHDiA3r17F2kPDQ3FunXrAADLli3D/PnzkZSUBD8/PyxZsgTdKrmSuWGOUmxsrEkl0BmrNqmpotBcTo5I3gwKkrtHjDFLo1SKEWftrLlFi4CZM0Uhy8J5Tmao8BImycnJRSZ3AbzWW5UrdlFcxqoTERAVBZw9a7zG05IlYhbb4MGcY8AYq7xRo4CffxYlBl5/XbRpwwczXIhXykCJP0EZs2T//AP07QvMmGFcG2XyZFFFm4MkxpgUtm0DoqNF1X6tPXuALl2AHTvk61c14E/RCuBkbiYbpRIwWK8QTz8NPP888OabYuYKY4xVBYUCCA7Wz5gFgGXLgDNnRBXwGoxvvVUC33pj1ervv0XdI1tb4OZN/dpORGY59M0Yq+EePABWrAD+/W+geXPRFhcnAqipU/VFbGXAt94Yqy1ycvR/f+opwMUFcHMDbtzQt3OQxBiTQ/36IrFbGyQBIun7u++Ad9+Vr18S40CJMXMUFyduqfXqpU+YtLEBDh4ELl82XhGcMcbMxQsvAP37A9Om6duUSmDnTsBCV7PgQKkCOEeJVbm6dYH9+0U+0uXL+vaWLTlBmzFmvvr2BSIjgT599G1r14oAavBg+fpVCfyJWwFhYWG4dOkSTp48KXdXWE2gVAJLlwIffaRva9gQWLMGuHoV8PGRr2+MMVZZREC9emImrmFboSXGzBUnc1cCJ3MzSZw8CQQEiOrZCQm8gjdjrOZRqcTMXO0klL17xQjTG2+IL4qSH066ZG6LXsKEMYt0+bJIxh40SDzv2hUYNw7o1o2XF2GM1UyF15XcuxfIz7eIsiYcKFWA4RImjJXL/v1ASAjg5SWCJTs70b52razdYoyxavXtt6Lat7e3vu36dZHLNHUqEBpqNjN6OUepAjhHiZlMrQbu3tU/f/ZZoFkzoHt34OFD+frFGGNy69ZNrEuptWwZcP68WMDbTIIkgEeUGKs6R48Cr74qRo+0lWttbIBLl4oOQzPGWG03a5b4vHzmGX2bSgV88gnw9ttA27aydIsDJcakZFglu2VL4M4dICNDjCpph5g5SGKMsaLc3IAPPjBuW78eWLwY+OMPMQtYhpEmvvXGmBSuXQPGjhVrrml5eYlFI2/dMr4PzxhjzDSdOoniu1On6oMkIuD334GCghJ/zNHREYGBgQCAwMBAODo6VrgLXB6gAgyTuWNjY7k8AAOOHxfDxTY2YvTIw0PuHjHGWM1hOFqvnRTj4yPWwCxh5hwRISsrC46OjsjKyjIqF6DFa71VEU7mruVyc0UxyA0b9G3duon764cPc5DEGGNSM7zllpIiPmf79DEOkgpNkFEoFHBycoKikrfreESpErjgZC21aRMwZoy4nZaQANjayt0jxhirXbKzxcPdXTy/cUOsgfnii8C6dWJ030DhApRaPKLEmBTi4oCzZ/XPX3pJjCBNm2axizwyxphFc3DQB0mASPbOzRWjTYWCpMriWW+MlWbjRlH4LDAQiIkRbba2wLFj8vaLMcaYXliYqE9neJstOxvo10/cAXj55QrvmgMlxgwVFIhFat3cxPO+fUVg5OoKZGUBlZg5wRhjrAp17mz8fONGkTd65w7wr39VeLccKDGm9ccfwDvviNkUK1eKNm9v4OZNoJjFFBljjJmx0aP1eUx19OHOLAD/BRBr4m44mbsSOJm7hjl8GAgKApo0AeLjOUmbMcZqCG0yd08ABwDcA+ANTuauMhEREfDx8UHXrl3l7gqrqIsXxX3r777Tt/XoAWzbBsTGcpDEGGM10AMA/wdgUzl+hkeUKoFHlCzYmjXAxIli9CghwWhYljHGWM3C5QEYK01ODrB6NXDggL7t1VeBSZOAnTs5SGKMMVYivkKwmu+rr4AvvgB69RIPALCzA378Uc5eMcYYswA8osRqnmvXgMRE/fPXXwdatwYGDwY0Gvn6xRhjzOJwoMRqlq+/Btq1A+bM0bc1aSKCp+nTASt+yzPGGDMdXzWYZSsoEGXrtXr0EKtMP3wo/tSq5KKIjDHGLJejoyP8/Pwq9LO1PlAaMWIE6tWrh5EjR8rdFVZemzcDbdoA33+vbwsOFmuzbdvGwRFjjDEAgEKhQIx2GapyqvWB0pQpU7Bhwwa5u8EqQqUSVbN/+knfplCIfCTGGGPMgKKCX55rfaDUq1cvuLi4yN0NVpZz54B//xvYs0ffNmYMsGoVEB0tW7cYY4xZBkdHRwQGBgIAunXrZvLPmXWgFB0djSFDhsDb2xsKhQK7du0qsk1ERARatGgBe3t7dOvWDSdOnKj+jrKqt3GjuNU2f76+zcFBFI10cJCvX4wxxiyC9vabUqlEZGSkyT9n1oGSSqWCr68vIiIiin1969atCA8Px+zZs3HmzBn4+vpiwIABSElJ0W3j5+eHp59+usjj7t271fXPYOWVkyNGiuLi9G1TpgCvvALMmydfvxhjjFk0hUIBJyenct2GM+uCk4MGDcKgQYNKfH3hwoWYNGkSxo8fDwBYsWIF/vjjD6xZswYffvghAODcuXOS9Sc3Nxe5BjOs0tPTAYilTJiEXnsN2L5djBYtXCja3NyA5cvF3/n3zRhjrBK0121TVnEz60CpNHl5eTh9+jRmzpypa7OyskJISAiOHj1aJcecO3cuPvvssyLtTZs2rZLj1XqrV4sHY4wxVgUyMzPh6upa6jYWGyilpqZCrVbD09PTqN3T0xNXrlwxeT8hISE4f/48VCoVmjRpgu3bt6N79+7Fbjtz5kyEh4frnms0GqSlpWHgwIE4depUqcfp2rUrTp48WaHXi3vNlLaMjAw0bdoUiYmJ1bpob1n/1qrYh6nbl/f3XNprfA4qtj2fg6rbhxznoKR2wzY+B+Xfrjy/65Laa+s5MOVniAiZmZnw9vYuc18WGyhJZd++fSZva2dnBzs7O6M2Nzc31KlTp8w3nrW1danblPZ6ca+Z2gYAdevWrdb/GGX9W6tiH6ZuX97fc2mv8Tmo2PZ8DqpuH3Kcg5Lai2vjc2D6duX5XZfUXlvPgak/U9ZIkpZZJ3OXxsPDA9bW1khOTjZqT05OhpeXV7X2JSwsrNLblPZ6ca+Z2iYHKfpR3n2Yun15f8+lvcbnoGLb8zmoun3IcQ5KajeH82Cp56C01/kcVN9xtRRkSiaTGVAoFNi5cyeGDx+ua+vWrRsCAgKwdOlSAOJWWLNmzfDOO+/okrlrs4yMDLi6uiI9Pb1av0EwPT4H8uNzID8+B/Ljc1BxZn3rTalUIs5ginhCQgLOnTsHd3d3NGvWDOHh4QgNDUWXLl0QEBCAxYsXQ6VS6WbB1XZ2dnaYPXt2kduFrPrwOZAfnwP58TmQH5+DijPrEaUDBw6gd+/eRdpDQ0Oxbt06AMCyZcswf/58JCUlwc/PD0uWLClXxU3GGGOMsZKYdaDEGGOMMSYni03mZowxxhirahwoMcYYY4yVgAMlxhhjjLEScKDEGGOMMVYCDpQYEhMT0atXL/j4+KBjx47Yvn273F2qlUaMGIF69eph5MiRcnel1vj999/Rrl07tG3bFqtWrZK7O7USv+/lx9eA0vGsN4Z79+4hOTkZfn5+SEpKgr+/P2JjY+Hk5CR312qVAwcOIDMzE+vXr8fPP/8sd3dqvIKCAvj4+CAqKgqurq7w9/fHkSNHUL9+fbm7Vqvw+15+fA0oHY8oMTRq1Ah+fn4AAC8vL3h4eCAtLU3eTtVCvXr1gouLi9zdqDVOnDiB9u3bo3HjxnB2dsagQYOwd+9eubtV6/D7Xn58DSgdB0oWIDo6GkOGDIG3tzcUCgV27dpVZJuIiAi0aNEC9vb26NatG06cOFGhY50+fRpqtRpNmzatZK9rluo8B8w0lT0nd+/eRePGjXXPGzdujDt37lRH12sM/n9hHqQ8D3wNKIoDJQugUqng6+uLiIiIYl/funUrwsPDMXv2bJw5cwa+vr4YMGAAUlJSdNv4+fnh6aefLvK4e/eubpu0tDSMHTsWP/74Y5X/myxNdZ0DZjopzgmrHD4H5kGq88DXgBIQsygAaOfOnUZtAQEBFBYWpnuuVqvJ29ub5s6da/J+c3JyKDg4mDZs2CBVV2usqjoHRERRUVH04osvStHNWqUi5+Tw4cM0fPhw3etTpkyhzZs3V0t/a6LK/L/g9710Knoe+BpQMh5RsnB5eXk4ffo0QkJCdG1WVlYICQnB0aNHTdoHEWHcuHHo06cPxowZU1VdrbGkOAdMWqack4CAAFy8eBF37tyBUqnE7t27MWDAALm6XOPw/wvzYMp54GtA6ThQsnCpqalQq9Xw9PQ0avf09ERSUpJJ+zh8+DC2bt2KXbt2wc/PD35+frhw4UJVdLdGkuIcAEBISAhGjRqFP//8E02aNOGLSSWYck7q1KmDBQsWoHfv3vDz88P06dN5xpuETP1/we/7qmXKeeBrQOnqyN0BJr+goCBoNBq5u1Hr7du3T+4u1DpDhw7F0KFD5e5Grcbve/nxNaB0PKJk4Tw8PGBtbY3k5GSj9uTkZHh5ecnUq9qFz4H54XMiPz4H5oHPQ+VxoGThbG1t4e/vj/379+vaNBoN9u/fj+7du8vYs9qDz4H54XMiPz4H5oHPQ+XxrTcLoFQqERcXp3uekJCAc+fOwd3dHc2aNUN4eDhCQ0PRpUsXBAQEYPHixVCpVBg/fryMva5Z+ByYHz4n8uNzYB74PFQxuafdsbJFRUURgCKP0NBQ3TZLly6lZs2aka2tLQUEBNCxY8fk63ANxOfA/PA5kR+fA/PA56Fq8VpvjDHGGGMl4BwlxhhjjLEScKDEGGOMMVYCDpQYY4wxxkrAgRJjjDHGWAk4UGKMMcYYKwEHSowxxhhjJeBAiTHGGGOsBBwoMcYYY4yVgAMlxhiTWV5eHtq0aYMjR45Iut89e/bAz8+PV4ZnrBI4UGKMSWrcuHFQKBRFHoZrUTFjK1asQMuWLdGjRw9dm0KhwK5du4psO27cOAwfPtyk/Q4cOBA2NjbYvHmzRD1lrPbhQIkxJrmBAwfi3r17Ro+WLVsW2S4vL0+G3pkXIsKyZcswceLEKtn/uHHjsGTJkirZN2O1AQdKjDHJ2dnZwcvLy+hhbW2NXr164Z133sHUqVPh4eGBAQMGAAAuXryIQYMGwdnZGZ6enhgzZgxSU1N1+1OpVBg7diycnZ3RqFEjLFiwAL169cLUqVN12xQ3AuPm5oZ169bpnicmJuKll16Cm5sb3N3dMWzYMNy4cUP3una05ttvv0WjRo1Qv359hIWFIT8/X7dNbm4uZsyYgaZNm8LOzg5t2rTB6tWrQURo06YNvv32W6M+nDt3rtQRtdOnTyM+Ph7PP/98OX/LwI0bN4odvevVq5dumyFDhuDUqVOIj48v9/4ZYxwoMcaq2fr162Fra4vDhw9jxYoVePToEfr06YNOnTrh1KlT2LNnD5KTk/HSSy/pfub999/HwYMH8csvv2Dv3r04cOAAzpw5U67j5ufnY8CAAXBxcUFMTAwOHz4MZ2dnDBw40GhkKyoqCvHx8YiKisL69euxbt06o2Br7Nix2LJlC5YsWYLLly/jhx9+gLOzMxQKBSZMmIC1a9caHXft2rV49tln0aZNm2L7FRMTgyeeeAIuLi7l+vcAQNOmTY1G7c6ePYv69evj2Wef1W3TrFkzeHp6IiYmptz7Z4wBIMYYk1BoaChZW1uTk5OT7jFy5EgiIurZsyd16tTJaPsvvviC+vfvb9SWmJhIAOjq1auUmZlJtra2tG3bNt3rDx48IAcHB5oyZYquDQDt3LnTaD+urq60du1aIiLauHEjtWvXjjQaje713NxccnBwoMjISF3fmzdvTgUFBbptRo0aRS+//DIREV29epUA0F9//VXsv/3OnTtkbW1Nx48fJyKivLw88vDwoHXr1pX4+5oyZQr16dOnSDsAsre3N/o9Ojk5UZ06dWjYsGFFts/OzqZu3brR4MGDSa1WG73WqVMn+vTTT0vsA2OsZHXkDdMYYzVR7969sXz5ct1zJycn3d/9/f2Ntj1//jyioqLg7OxcZD/x8fHIzs5GXl4eunXrpmt3d3dHu3btytWn8+fPIy4ursjITU5OjtFtqfbt28Pa2lr3vFGjRrhw4QIAcRvN2toaPXv2LPYY3t7eeP7557FmzRoEBATgt99+Q25uLkaNGlViv7Kzs2Fvb1/sa4sWLUJISIhR24wZM6BWq4tsO2HCBGRmZuKvv/6ClZXxzQIHBwdkZWWV2AfGWMk4UGKMSc7JyanEW02GQRMAKJVKDBkyBN98802RbRs1amTybDmFQgEiMmozzC1SKpXw9/cvdgZYgwYNdH+3sbEpsl/t9HoHB4cy+/Haa69hzJgxWLRoEdauXYuXX34Zjo6OJW7v4eGhC8QK8/LyKvJ7dHFxwaNHj4za5syZg8jISJw4caLYW3hpaWlG/0bGmOk4UGKMyapz587YsWMHWrRogTp1in4ktW7dGjY2Njh+/DiaNWsGAHj48CFiY2ONRnYaNGiAe/fu6Z5fu3bNaBSlc+fO2Lp1Kxo2bIi6detWqK8dOnSARqPBwYMHi4z0aD333HNwcnLC8uXLsWfPHkRHR5e6z06dOmH58uUgIigUinL3aceOHfj888+xe/dutG7dusjr2hGzTp06lXvfjDFO5maMySwsLAxpaWkYPXo0Tp48ifj4eERGRmL8+PFQq9VwdnbGxIkT8f777+N///sfLl68iHHjxhW5vdSnTx8sW7YMZ8+exalTp/Dmm28ajQ69+uqr8PDwwLBhwxATE4OEhAQcOHAAkydPxu3bt03qa4sWLRAaGooJEyZg165dun1s27ZNt421tTXGjRuHmTNnom3btujevXup++zduzeUSiX++eefcvzWhIsXL2Ls2LGYMWMG2rdvj6SkJCQlJSEtLU23zbFjx2BnZ1dmPxhjxeNAiTEmK29vbxw+fBhqtRr9+/dHhw4dMHXqVLi5uemCofnz5yM4OBhDhgxBSEgIgoKCiuQ6LViwAE2bNkVwcDBeeeUVvPfee0a3vBwdHREdHY1mzZrhhRdewFNPPYWJEyciJyenXCNMy5cvx8iRI/H222/jySefxKRJk6BSqYy2mThxIvLy8jB+/Pgy91e/fn2MGDGiQkUhT506haysLMyZMweNGjXSPV544QXdNlu2bMGrr75a6u0/xljJFFT4pj5jjFmAXr16wc/PD4sXL5a7K0XExMSgb9++SExMhKenZ5nb//333+jXrx/i4+OLTWqvqNTUVLRr1w6nTp0qtuAnY6xsPKLEGGMSyc3Nxe3bt/Hpp59i1KhRJgVJANCxY0d88803SEhIkLQ/N27cwPfff89BEmOVwMncjDEmkS1btmDixInw8/PDhg0byvWz48aNk7w/Xbp0QZcuXSTfL2O1Cd96Y4wxxhgrAd96Y4wxxhgrAQdKjDHGGGMl4ECJMcYYY6wEHCgxxhhjjJWAAyXGGGOMsRJwoMQYY4wxVgIOlBhjjDHGSsCBEmOMMcZYCThQYowxxhgrwf8DvUxiS//ARfwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "gs = plt.GridSpec(2, 1, hspace=0)\n", + "ax0 = plt.subplot(gs[0])\n", + "ax1 = plt.subplot(gs[1], sharex=ax0)\n", + "\n", + "ax0.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - poisson) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "ax0.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax0.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + "\n", + "ax0.set_xlabel(\"Frequency (Hz)\")\n", + "ax0.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "ax0.legend()\n", + "\n", + "ax1.plot(\n", + " pds_reb.freq,\n", + " (pds_reb.power - poisson) * pds_reb.freq,\n", + " drawstyle=\"steps-mid\",\n", + " color=\"k\",\n", + " label=\"Rebinned PDS\",\n", + ")\n", + "ax1.plot(pds.freq, (fitmod(pds.freq) - poisson) * pds.freq, color=\"r\", label=\"Best Model\")\n", + "for mod in fitmod[1:]:\n", + " ax1.plot(pds.freq, mod(pds.freq) * pds.freq, color=\"r\", ls=\":\")\n", + "\n", + "ax1.set_xlabel(\"Frequency (Hz)\")\n", + "ax1.set_ylabel(r\"$\\mathrm{(rms / mean)^2}$\")\n", + "ax1.loglog()\n", + "ax1.set_ylim([1e-1, None])\n", + "ax1.set_xlim([pds.freq[0], pds.freq[-1]]);" + ] + }, + { + "cell_type": "markdown", + "id": "10de5eef", + "metadata": {}, + "source": [ + "## Power colors\n", + "\n", + "Power colors ([Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract)) are an alternative to spectral colors but in the timing regime. The power colors are the ratio of the variability at different timescale, basically they inform us on the slope of the power spectrum in different Fourier frequency regimes. They can be used to understand the spectral state of an accreting source.\n", + "Stingray implements power colors both as a standalone function in the `stingray.power_colors` module, to be applied to a single periodogram, and as a method of `DynamicalCrossspectrum` and its children (see the `DynamicalPowerspectrum` tutorial for more information). Here we show one possible way to calculate power colors in the observation we are analyzing." + ] + }, + { + "cell_type": "markdown", + "id": "39e27093", + "metadata": {}, + "source": [ + "We use the same frequency edges `[1/256. 1/32, 1/4, 2, 16]` from [Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract). The colors are then calculated as \n", + "\n", + "+ PC1: the ratio of the variances in the intervals 0.25-2 Hz and 0.00390625-0.03125 Hz\n", + "+ PC2: the ratio of the variances in the intervals 2-16 Hz and 0.03125-0.25 Hz" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "ab95c32f", + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import DynamicalPowerspectrum\n", + "from stingray.power_colors import hue_from_power_color, plot_power_colors, plot_hues, DEFAULT_COLOR_CONFIGURATION, power_color" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "4d47264a-964d-4c32-9ccc-533e449e2d12", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "14it [00:00, 31.60it/s]\n" + ] + } + ], + "source": [ + "# We use a segment size of 256, corresponding to a minimum frequency of 0.00390625, and a time resolution\n", + "# of 1/256 = 0.00390625 seconds, corresponding to a Nyquist frequency of 128 Hz (well above our needs for\n", + "# the power colors).\n", + "\n", + "dynps = DynamicalPowerspectrum(events, segment_size=256, sample_time=1 / 256, norm=\"leahy\")" + ] + }, + { + "cell_type": "markdown", + "id": "ff26febf", + "metadata": {}, + "source": [ + "We slightly rebin the spectrum to gain some signal to noise" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "a72489d0", + "metadata": {}, + "outputs": [], + "source": [ + "dynps_reb = dynps.rebin_by_n_intervals(2, method=\"average\")" + ] + }, + { + "cell_type": "markdown", + "id": "bf53bfed", + "metadata": {}, + "source": [ + "We now calculate the power colors and the \"hue\", or the angle of the measured colors and the point PC1=4.51920 and PC2=0.453724 in the logPC1 vs logPC2 plane." + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "7a8ea778", + "metadata": {}, + "outputs": [], + "source": [ + "p1, p1e, p2, p2e = dynps_reb.power_colors(\n", + " freq_edges=[1 / 256, 1 / 32, 0.25, 2, 16], poisson_power=res.p_opt[0]\n", + ")\n", + "\n", + "hues = hue_from_power_color(p1, p2)" + ] + }, + { + "cell_type": "markdown", + "id": "40e5a557", + "metadata": {}, + "source": [ + "It is useful to compare power colors with the fractional rms. This can be calculated as" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "55574e17", + "metadata": {}, + "outputs": [], + "source": [ + "rms, rmse = dynps_reb.compute_rms(1 / 64, 16, poisson_noise_level=res.p_opt[0])" + ] + }, + { + "cell_type": "markdown", + "id": "c7479416-c48b-41d2-9f9e-37b02b61fa21", + "metadata": {}, + "source": [ + "Once the colors are calculated, they can be plotted and compared to the ranges that can be associated with different spectral states. The configuration of the plots can be tweaked by modifying the entries of a configuration dictionary. All defaults are contained in the `DEFAULT_COLOR_CONFIGURATION` and are based on the original paper. The user can start a configuration by using the default, and then tweaking some of the entries. This will almost certainly be needed if the user selects different frequency ranges for the colors." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "ac7125ff-709c-4367-8f76-e1c26d96ce7a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'center': [4.5192, 0.453724],\n", + " 'ref_angle': 2.356194490192345,\n", + " 'state_definitions': {'HSS': {'hue_limits': [300, 360], 'color': 'red'},\n", + " 'LHS': {'hue_limits': [-20, 140], 'color': 'blue'},\n", + " 'HIMS': {'hue_limits': [140, 220], 'color': 'green'},\n", + " 'SIMS': {'hue_limits': [220, 300], 'color': 'yellow'}},\n", + " 'rms_spans': {-20: [0.3, 0.7],\n", + " 0: [0.3, 0.7],\n", + " 10: [0.3, 0.6],\n", + " 40: [0.25, 0.4],\n", + " 100: [0.25, 0.35],\n", + " 150: [0.2, 0.3],\n", + " 170: [0.0, 0.3],\n", + " 200: [0, 0.15],\n", + " 370: [0, 0.15]}}" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "configuration=DEFAULT_COLOR_CONFIGURATION\n", + "configuration" + ] + }, + { + "cell_type": "markdown", + "id": "206c3938", + "metadata": {}, + "source": [ + "We can now plot the power colors and calculate the hue." + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "1867b978", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAG0CAYAAAC2QbdQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAADK00lEQVR4nOxdd5zU1Np+UqfssruUpS+CgBSpAqJgAUEBO3pV7Irdq1eQe1W8iv1iveqnXjv2gl1UVJoNRRCRa8eLjbp0tsykJ98f2ZmdPkkmyWSWPL/fKDuTnHNykpz3vO15CU3TNPjw4cOHDx8+kkAWewA+fPjw4cOHF+ELSB8+fPjw4SMDfAHpw4cPHz58ZIAvIH348OHDh48M8AWkDx8+fPjwkQG+gPThw4cPHz4ywBeQPnz48OHDRwbQxR5AqUFVVWzatAmtWrUCQRDFHo4PHz58+DAJTdPQ0NCAzp07gySz64m+gDSJTZs2oaamptjD8OHDhw8fBWL9+vXo2rVr1t99AWkSrVq1AgA8dN8zoIIhjBkzocgj2nOhaRoEQUAwGLSpPaAlGAVEUQTLskXr3wvzKIoCGIb1rTwWoGkaJEkEywaKPRTH0NhYj+HDa+LreTb4AtIkYi/c/HdfRUQUcfTRf3H1JfTC4uMlcByHUChU7GF4CtFoBOFwWbGHYRl2POMcF0UoFLZnQB6Ek+tANBpBRUWlM403IUZwWuy1LN/a7QtIi5h9ze1gGRZCQx2oUBkYhnGlX7ceKKdeQLvbZdkABEFAIFD4btcrm49Cx0GSlH2DKQLsuAcU1bKXNieFoxsbCy+8Z0bgR7FaBMuwaFXeCjt+/w2Hjd0Xn366sNhDshUE0bzLs7tdO0FRJFRVtaUtr7y0hY6DoijsyTUIZFmGqhZ+/V6eQifGpiiKb5ZOgS8gC0R1m3Y4dP+D0aW6Y7GHUlKw8wVnGAaSJNnXYIlD9yEVbz6KLVgURUEwWLhFwS45Yfd8OGXpEATeUUtYsZ8LK/AFZIFgGRa3XnUb9m5dje0b12HFiqWu9u/kQ+fkRtLOtmmahizL9jVY4mAYpqhaQLEVkJasPTslHCMR5/3WxX4urMAXkDaBAPDskw9i6rnHobGxodjD2ePgC8lmEAQBWVaKPYyiQdPsMbnbBTs1USeEjCRJCAb9QLdMaNmebJdx2bmXYeLYSSAl0bU+3diVeSV4JRcYhgHHcaDplvFIFz7nxRMSxXxedD9aYebVUnje7YKqqpAksaSjnp2Er0HaCJZh0b93PwR5Ef+85mIsWvResYdkC0plsaAoqsVoToUH6hRvo1DI2Au1jvI8B5ouLIrXq8+7E+Piec5x4VjKFm9fQDoARZaxZcN6bPhjbbGHskeBZVmIonvaey5oWmELQ6GLSqluFArfGLiTbuU2nBAyoig6blotdW28pAXkp59+imOOOQadO3cGQRB46623ch7/8ccfgyCItE9tba2t42IYBo/f9QTOOupkcHW7sHnzRlvb95EddqZ9FAKCKGxhKHRRKeVFySr04JwSVldywO77qafCqDl5SO1AqT+HJS0gI5EIBg8ejIceesjUeWvWrMHmzZvjn/bt29s+NoIgQBIEli16H6NH98KPP35rex+ZUIrmDDvHzLIsBEGwpa1SnMsYKKo4ZAHFnDNBKC7FXgxOpHXY255OJWcXRWNLRklHNEyaNAmTJk0yfV779u1RVVVl/4Ay4KD9D8KNV96EHp3dITgvxaAde9vSrQJ27I5Lefcry1JRhEUx54wgCMc1ImPjsK8tJ0yUkiQhEPCFoxEU/2kqAoYMGYJOnTrh8MMPx+eff57zWEEQUF9fn/QxA5ZhcdZfzgLdGMEXnyzA4sXzCxm6J+AUy45dsMsXWeg1FnOOCKL06OYKnS/JxejxXLDzvtstHGPvhRc2EqWAPWqWOnXqhEceeQSvv/46Xn/9ddTU1GDMmDFYtWpV1nNmz56NysrK+MdqqSuGpvHSc4/h8UfvadGJzF5A7OUvdJ5L2Q9IUaX3ahcW/aoVzMdr12vpVQYeVVWhKKonzNClAkJrIas1QRB48803cfzxx5s679BDD0W3bt3w3HPPZfxdEIQkn1Z9fT1qamrw8ye/oFV57lIpqRAlEbwggG1fDTpc3mJy9rwIPb9LsmXRLJagK6RvQRBAkqRrJPrFBsdxCAaDPo9oDvC8gEDA51oFgIaGevTtW4m6ujpUVFRkPa70tpk2Y//998fatdnTMQKBACoqKpI+VsEyLCrKW2HXH39g3GED8PHHH1puy0dukCQJRSk8mrW4PjXr5+4pgjER/sKfHaIoxv3zPoxjjxeQq1evRqdOnVzts23rNhi13wHoUt3BtT6dshN42f7gFV9kMaBvEEozF9IKfJ9adiiK0mSC9k2rZlHSNr7GxsYk7e/333/H6tWr0aZNG3Tr1g0zZ87Exo0b8eyzzwIA7rvvPvTo0QP77rsveJ7HE088gSVLlmDBggWujptlWMy+5nZoAHZu3oBfN/yJESNGO9pnLLDG7g2klzekNE2B4woXkF6+xlwoBidpMUzSotiyKrnYPYc616oftWoFJS0gV65cibFjx8b/vvLKKwEAZ599Np5++mls3rwZ69ati/8uiiJmzJiBjRs3IhwOY9CgQVi0aFFSG25CJzh/AI+98BiWr/gTrVpZN98a6q9EF/pCwDAMRNEb+XFWUMhiWQy6ueI8Y4UH6HgFdgtHnudbfPFoJ9FignTcQn19PSorKy0F6WSCKIn45bdfsPegoQi3bmvDCH2kguM4hEJ7XrWCaJRDONzyr5vjogiFwkUdgxcp1RRFgaIojmwOvXi9ZuAH6ZQIWIbFgD4DEORF3Hj931oMwbmXsKeWwirlBcwMCKK4y5hXhUUpW068Al9AegSqomD972vxx68/O96XkzYDL9ojGIaBJLUsP5URuE03V4x7L0ly0SN2vSgco9GIo2ZnL16zE/CN0x4BTdN44q4noWoa+PrdqOd5tG/f0ZG+nHy4vfrikCQJWVYKLoVUSnCbbq7QMldWzpckoaByTV7V/gqBLMtgGNaP7LUB/gx6CARBgCJJLF+yAAceuDe+/351sYdkCV7UIgOBgGeoyNxCKdHNWRVSNF2Y9tjShCOgm1aLrVW3FPgC0oM4cNgBuO6K69Gz616O91Vo3cJM8O6iQxSV5s/trkuFbs7qvOjUaXtOrqcRNDY2Ihy2P2DJi5teN1Aab9AeBpZhce7J54JujGDF0iWOEpwXWrewlBAKBcHzfEFtFGOhsNpnLIrR67D6/BUzv8+LAsPJAsh7yhqRCt8H6WEwNI3nn30Ym7ZvwWGHTSo5mqiW6N8pxvVY7ZNlWaiqhiKVhnQcmqZZficKfTa9+FwriuxHrdoMX0B6HHdffw+iHAehoQ5MWauiFcK1AicWkUIXtlAoBJ7nC9I8rI7B7UVVD0wS0VJfc1W1rh0Xei+8tvmLRBpRVlZua5teu8ZiwDexehwsw6KqohJ169bhiMMHO05w7kXTUSLseGELpWArlUVDLxztnonVzWdH0zQwTHG0JbsEh13zxfM8QiHrkbw+ssMXkFbh8iLZurIKwwcMQ4fWbRztp1QW/0IQDIYK9kWWCtykGbPy7FgVEjzPFa1cnF3viB3tqKq+2SNJ+1/cPWEtyAdfQFpF04utqe5sm1mGxR3X3oG+HWqwq3YjVq5c5kq/dsFLmilBEEUh8i4EVudPlr0dpGN1ESZJqiD/Y0sBx0VtD1RqSfNTKHwBWSAIkkBcWrrRH4Dnn/oPzjhjIurqdrvWb6GIVRPxClg2aEspLDdhZf68rgVYfSYKSdcp5pzY+Q7wPG+739FHMlqm9951ELrkckkAXHTGRTjkgEPAOOxfsttJb/fCVFilCxKCUDpRf1Y3GG4FdbkZuCRJUkkFqyXCrndAkiTHmHK8vqlyE74GaRc0/T9umFxZhsXgfoMR5EX86+a/O0Zw7jWtLxWFvsgsy5YUR6uV65Vld67PzUVVD9CxxhRT7OfZjv5VVfWJyA3ADhIUX0DaCsLV4B1VUbB2zQ9Y+/N3jvXRkneTepWP0hGQVkCSpalp5UIh96xQvthCYcf7JEmSrWw5xd40OAU7SFB8E6vNcDOZP0ZwrgHg63ejURTRrl171/pvCaBpBoqilITJzooZ0y3Cajdz5opVANgLm0VRFEEQZMmRhriFmLC3a3p8DdJROL81I0kSFEli5SeLcMABPfDtt1873qcdsHPXWkhbDMNAFAX7BuMgrLz0iiLHUwGchFspHqIoFi29o9iQZf1esqy9ROQtSdbaTZ3pC0gHoalwzeS6/5D9cc1fZ6JXTQ/H+rBTqHkp+IeiaChKaaV9GAXLBopK0J4LVgW+FW3fo1NgCoqi2JrS0RLmxGn4AtJBECThWmQry7A4/9TzwUSi+HrZJ44QnHs9aMcqWJaFKFonDvDynBAEURKE5UZBkta0x1LXkgRBAEH4y7Xb2DNtFUWBBk2N5U06B4am8exTD+HP2g2OEJx7daEp1AdGkhRUVbXks/PqnAAxASkDcDbi0cr8mz1HVVWoqvPX4jVIkgSCIHzTahY46f/2BaRrIECQOvOO00LyruvvRiQaBV+/G2x5hecDUOx4wO1I+eA4HuGw+XJBXiZ1JgjClaAWN3IgJUlGKGR/rcNs8MJ91TQNqqoiEAgUdyAeROz+OHmPfJ3dZTgtHAHd3Nq6sgqRTRsxaeIwfPTRB473WQjsNN1abUcXJKQlf12xF9F88DrdnFFYNRVbfyasnWcneJ63NSjJy+4AM3Br8+ILyGLBhZtbUV6BIX0GorqyypH2vRi0U0g7DMNAELwd0epFujmvL7peEHRWoLPlULZagEp1LhLhpmbvC8hiwYVFhWVY3HndXdi3c3fs3roZq1Ytt7V9r75sVhfsmP/Rq1GfgLU597qJ3QhUVQXD7DkeIU3ToCgqAoE9y99qBG6uO76ALDqcX4wJAC8+/TBOPfVw7Nq10/H+io1CtchSIzHPB6fZgtxYsDjOWnkr62To1s6zCxwX9YVjAop1P/acLZln4c526PxTz8cB+x2IgIuVR0oRFEWVFD+rEbQEujmGYSxFZFsV3oVS0hVyviAIYNmALRHoXgg0sgPFugZfg/QInCY5ZxkW+w0YiiAv4s5/zcTChe/a2r4dxMCJbRUTNE23KC3SLbo5J1FKuZx2LOZ7KluQ11D6b04LQXN0q7PSQVNV/PzDavz8/Spb27Uz3LrYO16apl2hZ7MKsxsIWZY87VfNB0mSLFfvKDVEIo22pnQU+10qdfjbFM/B2SeaoqgkgvOIJKFt22pH+yxFUBTl6ZJCZkxnDKPTzXmF4NoKQcCekAfIcRyCQffyPL0Mr5iGfQ3Ss3Buxx8jOP/ms49wwAE98N//rrS9jxJWWADoPi+3tEizc2W+ooe36ObMjl9nAmrZ0DRNfy8pf0kGvCEcAV9AehgENM3ZAszDBg3D3y/6hyME53Y94HYI2kLSPmTZ+cXZaRYap6/D6c0QTbd882o0GtkjtORSgy8gPQyCIBxl3mEZFhedcRHYKIfVX32OJUved6wvq7BD0Fptg2VZS4LFa9qzzhLkXCSrk7t9QRBaRB5nLnBcFGVl5ba05bVnr9Th+yBLBhqc8k8yNI1nnnwA/1v3G8aMmdAioh5TUYhPw2xBZa+YhxIhywo86k7NCU3TXBGQxfJ5ybIMirJPQ/bis1fKaHkrYYsF4Wj8zh3/vBPP3vsMhIY6W31vXtnRWuV7DQaDlvIivXLdMXhh4Zw27RxMnXp8xt9GjuyOxx+/L+37+++/FYcfPiT+N8dFMXv2TIwa1RN77x3EwIHVOPHEQ/Hhh28XNLZizQ/P87ZX6fCRG6qqIhqNGDrW1yAtowgroBb7j/1vM8uwaFPJYsfmzTjh5HH4x9W34bDDJhXcbkwweWGBtjoGTdNMR4Fa6cvsPJk5vhTNlKqqpqWnXH31xfjmm+W45ZYHsM8+/bFr1w6sXPkFdu3aAcD9Z62Q/jguivJye0yrPoxBFEUoioxwuMzQ8SWtQX766ac45phj0LlzZxAEgbfeeivvOR9//DH2228/BAIB9OrVC08//bTF3gkURUg6rEm2KivHgN790bZVhW1t2rlgFaKZWT03FAp5ksTczLw6TTfnBGRZTst/XLhwHi6//FqMG3ckamq6Y9CgYZg69XJMmTIVgPsbMav96SlEflCOm4hGI6Bp2lTJtJIWkJFIBIMHD8ZDDz1k6Pjff/8dRx11FMaOHYvVq1dj2rRpOP/88/Hhhx9aHIE7yf1pcLA7lmFx13V3Y1BNT9RtrcXq1V8515nLKKSslpeJA4zAjZqQdiOTUK+u7oglS+ajsbEh7TevmbWzQVVVKIpcklp9ISjW/VEUBdFoBOFwmen4itJ7axIwadIkTJpk3Az4yCOPoEePHrjnnnsAAP369cPSpUtx7733YsKECQWMpDj2w1gKiBORrgSAl599BPc8eje+XP4H2rRpZ3sfVmBHYWUrZrFwOAye5xEMBg2fY7YfL5mji4F//etq3HnndfG/NU2DLEvo3bt//Ls773wMl112OgYMaIv+/QdjxIiDcPTRf8GIEaNLxrQqCELBhZ9L8Tkpxnh1rZE1bFJNRUkLSLNYtmwZxo8fn/TdhAkTMG3atKznCIKQZF6rr6/Peqymaq4URI4h3pdD1t5zT5mKYYOGI1hqb2IeWBVEmmZOi3Q6v9EMZFnyfJ7dxRf/AyeffA4APepW01Q899zD+PLLT+PHHHDAIVi27DesWvUlVq78AkuXLsbkyfdjxoybMH369a6NtRDTKsMUFk5cisLRfd+wBo6LWhaMMZS0idUsamtr0aFDh6TvOnTogPr6enAcl/Gc2bNno7KyMv6pqanJ2n6SwHITmi6c7SYVYBkWwwcNR5AXce9ds7Bo0Xu2tl9qCAa96Ys0ghjdnJfRpk079OjRCz169ELXrjXo3bsvqqrapB3HMAxGjjwYf/3r1XjppQX4+99vxv333+J5gnlJ0jlxabow06ovHHOD4zhIklSwcAT2MAFpBTNnzkRdXV38s379+vwnae4X3SVIAoRDd1NTVXy3+it8+82X9rZb4BQVcr417Y6AqnqHss0MCMJbdHP5QFG04ajhffbpD1mWIQi84fbd3ivoBZAVz2vxTsAt4ahpGqLRCBiGtY1DeY8ysXbs2BFbtmxJ+m7Lli2oqKhAKBTKeE4gELD0UDe/3M4l+Gfo1ZFWKYrC43c+ESc4j8oK2rRpW3C7dvgTC4GVnW0gEPQUibnRa6AoEqIoFr2MUn19Hb7/fnXSd61bpz9LsixlnOO//GUMjjvuVAwePBytW7fFL7/8iNtvvxajRo1FKxOR125rYV56ZpxGMUzAgiCAIAhbtMZE7FEC8sADD8T8+fOTvlu4cCEOPPBAB3uNOQiLYHe1sc9YxN3Xn3+KM/92Oua+shhDh+5vW/vFgJWXmCTJJvJsbyx2Rq+BJElPMCQtW/YxJkwYmvTdqaeel/S3JElg2czBUIceOgGvvvoMbr/9WvB8FB06dMb48Udj2rRZjo25UOimX6Lg+S8F32MxfI08z4GmGUdKohGa1x0TOdDY2Ii1a9cCAIYOHYp///vfGDt2LNq0aYNu3bph5syZ2LhxI5599lkAeprHgAED8Ne//hVTp07FkiVL8Le//Q3vvfee4SjW+vp6VFZW4udPfkGr8lYmR+yeoNRUTU+ZtPlpFSURT770BM48728ob+uNyNZCYOWFjvGzFlsbM4tolEM4nNlS4iWYjRb2MlRVhSR5P0DKDrgtHEVRhKpqCARY0+tcQ0M9+vatRF1dHSoqslseir+lLAArV67E0KFDMXSoviO98sorMXToUMyape8mN2/ejHXr1sWP79GjB9577z0sXLgQgwcPxj333IMnnniiwBQPM3A3wtWJ+n8sw+KSsy5FgOPx/arl+OijD2zvw01YyY2kadp0QIjZPoweb6Zdr2sfMZiNFvYy9hTTqpvCUdcaeWgaEAwGHK1zWtIaZDFQmAapw+10EE3TAM3+fMkZN1+JH39bg/fmf2WL+a7Ql8zNl1SSJFAUVXSzZeztNXLdxVyszdwbM+P0stkx5hezOudm7m2x4dZ9kCQJiqKAYZiCiBaMapClZSNqIXA6fzGtP8IZerrZM29HQ2MDhIY6BCuqPFOx3g0wDAOOi5pK+HZiETGjAWcLfHEDRq+b47gWIRxVVS1IOALevbZMcGOsoihC0zRXze8lbWItecTJx0sTLMOibeu24LdswbFHH4DFi+fnPykHih3VahYkSZuioHNqfMYDdYpHbWZUiJMk2SIo2PQqHS3ftOoGFEUBz/MgCNJ1X64vIIsO9/lc7baql4XC6L1XT1TZHGLtdQQCrGO5d5pmf66e3Rq+E/5PL2w4CoWuBbf8oBw3IIoiRFFEMBgEw7hv8PRNrJ6Be+kgdi+ULMPi37P+DQ1A/bYt+H3TegwePNzWPszCLfMbRelapBFfpFleVrthN92c3WPUhaOxRr1qXlVVFRRFWWbL8ep1uQ1N0yAIAiiKRihUPE3c1yA9Bbe1SXv7IQDMfe4x/OXEMdixY5utbbsFs1obwzAlQz9H0942+UmSjFDImH/JPI+uhQFZgCAUZlr1haOeRhWNRoumNSbC1yA9idJl3jn7pLMxqN8ghIvsR7K60Jg9jyD0BHCzBZXthhHNgyR1ujmv+vgkSUQg4IwQd6oQdSKi0UjBVTr2dHAcB5qmUVbmDXeNr0F6GE4QkDvdD8uwGDl0JAKcgAfuu6UkCc6taJE8X1wt0siCThBEnOTAiyi0yoVdsCIcFUUBTZtPWPehQ1VVRCKNCIVCjjDiWIUvID0MnYDcmRSNjP3YaXLVNHzz1RdY9dVSu5pz7VyzaxxJkk3pFt6OSKZp4wTgdsLItMiyDNLF3OBcsHIbddOqtYXd44+N4+B5HqIooqysvNhDSYNvYi0FxNNBnF5A7GufJEk8fucTUDUNQn0dOFVFVVVr29o3A6sywYypjWEYiKLoeUqxYlT0MDKHkiRlLRjgNsw+L5FIo+XFfU8PytG1xjLPbI5S4WuQJQM3A3js6YOiKDA0je++/AwjR3bH119bL5dlR+UOJ/ukKMrzGqTdsPNynfCLunE7RFEsyO+4pwpHURTB8zzKyso9KxwBX0Bahhu+wcxwg37HXrPuoH6DcPk5l2OfvXoW3JaXZZAVjla34dUAHVmWitq/ledKr/EoF51u0E648X41NjaCIMiSIKRvOXfWZdjuszPXe9P/HezfxqZZhsVl516GIC/gp/+uLArBeSFmVqOgaXPMOsUQ9nYKIiNzauQaJUlCMJjfvOqkL9la1Ko5qkGvw2lzryRJ4Dge5eXlRU/fMApfQBaEYgrJWP9uwJ5rZGgaTz1+P/5121WWfWFum6TM9kdRFCTJmBCy+1qMCBC36eaMXKMsS7YTLTgNQRAsC0evWkGcnF+Oi0LTNMN5rl5BaYhxT8Mbb62zFUII2/YCt159G+ob6yE21CFY2bpoUZVOdaunfPCGQtXtHoeRtuwyB9o5doKwd5/utCYkyzI0TbPkO/NaUI4bWqOiKAgEgiVpii69EXsdRXr4HU8HaYqkLdT3yjIs2rVuB3Hbdkw+fnTBBOde3I2TJGko37AYC6Uk2eMjtWvsuqDJvww5VffSyvMjioJl/5mXhCPg7HgEQYhX3yhF4Qj4AtJ+FHPBdrw6CAGCsueNCgWD6NGpGyqK4Ki3siiYWUhZljWckO+2gPdKMn4MPM8bChwyes/MkrybfRZ43rpp1Utw8rmTZRk8z4MkyZKvaOKbWB2FO+TjyUgM4HGgb80ecy7LsLj3xvugAWjYvhV/bN6AgQP3M92OWztyK9yfRmjdnPBD5mvTKLm6G6AoypCANGoKdPJ5EEURBEGUNFtObB6duoRi1Gx0Et54S1osivkiORdARJBEk6m18PYJAK+9+CSOP/4gbNu2xXI7VnfETu2kQ6Gg4WAdO5Fv4SMIwhayALvmTVGMadpmNEgnoKpqky/NvEbkJTeAU4JRVVXwvABNQ1HIMpyaY1+DdBVua5TOaZNxDdIGOXz65NPRp2cflBeBg9FJZUDTNFtJzO0IqKBp2hY+VqMpHrmO00tD5V+CjF63kwEneipKy/A72g1JkuKVWNzUrhPvt1Pd+hqkq3CeVzVrv06hSTgWErzDMixGDRuFACfg0YfusERw7sVFKBQKea4UFkEQkCR3CMvz3RNJkgz5qIzeW6e0TEEofdOqU4gF4oTDIdfnx43ufAHpNrS0f7jbvUMMQLZE6msaln/xMb78YokNjZnq1rHjVdV97tN8sGNhscOkZdS8ajfMXL+ubWslHWzihPlRURREoxGwLOv63LhpsvZNrEWD7scjKMJVWRlPB7G9z8JXXZIk8dgdj8cJznlNQ2Vllel2zJrazNeANH5sOFwGnufzmueMjNmuHbMddHN2jIWm3Tepm302zBRxTuwD8I5Vw+5xNGuNxanZ6Oa8+hpkEUGQRHE0SofTQQrRUmmaBssw+HHFFxg5ci989dUXptvwysIUg5GgGDvNg/mOKUbwUKYx5DPJOaEpmHk2BEGwtJlwMkrUCJzSsDRNi2uNLSVKNR98AekZuE1b5zCfa4ELxL599sXFZ1yCPt0LJzg3AycWl3A4bJsv0o5UB5p23nCUbx4VRcnLNlRMIRMT4FZrPBYTTsybzqMaRThctkf5Yn0B6SkQRagSYr9gTtaMrYFlWEw7fxrCoow133+Djz/+0J7BFQF6akV+f5tdwtlpH02+9r2U1mAViqKY8q21hGvOhsbGRpAkVTSTajHh+yA9hqQEfNeUSr1PZ/hcC0sxoSkKTz12H1Z8txIHH/ytJZOXGb+TU5vjYDAEUZRyaiT2cZvm/l2WpYJy1ezQYjUtd9WTYnKWRqNR0ybElqhUKYoCQdCrb+yp8AWklxFnrQHcyA9xhuy88DZv/sct2F1fV1SC80Kh87NyeU12bggGmnY26tBIekcgkFsAFesWS5IEiqI9wzRULESjETAMu0dqjYnYs5+CEoAutHRV0k3za/EKQqeDZVi0b1sNZecunHTioaYJzt2oBWkEDBOALOcO2HFHMOgEBsWCJIl5BZAdwUhmjwNgmS2npUBVVXCcXufSSEWaQhC7L142T/sCsmRAOFjOKkNvjlUH0d8GWZbx/BvP4fk3njPM7MIyDLpWd0LIhSATwH5hxTA0RJHPe5zTC4ZddHPZkG/8Rthz8pto7WfXiUQaTZtWvby4mwXP85BlGaFQ2BUrjdMsOHbAN7GWIFzLn4yng9j5BBOWtReWYXHfTfdDA9C4Yxv+rN2EffcdbOPYnAdNs3nJwu1K5M/WDk3TUNXcPsBCkGv8Ru69nTmhRo/jeQHBYMjYwU0olp/U7jxLVVUhCDwYhnUlwrmU4GuQFvHjLz8Wre9YlKg7ZjL700EIgoBmcIHOpGkSAN54aQ6OOeYAbNmy2bZxZYLZ8kn5wLIMOI4z1G8hyLV46nRzxcmFFASh4PQOo/fE3BxqpgPAiqX52JlnKYpiXGv0QvqPWzA6Dn+7YBEUzUNRJGzfuRNtW7ctys6r2QziBgl6zA9qTzAPUWAQxJTjTkX3mh6ocLhygBOLIMMwrmiR2dsurPFCNCeSJHNedzG0x0ikEWVle1akpq416r5gN32uXjCnmnl+fQ3SIsYcOASdOxK4ZOb5+Os/LynyaNx66oiEUlfFBcuwOGTkIQhwAuY8fq8lgvNigWVZ8HxuLdLpnXYhdHOFLHKynFtzNepXtOMYAOA4DqHQnhWpKYpiUyQxu0cGJJl5fn0NsgBQFIn/zL4VoiiCoRvw7U9/YMEni3HhGRchZNKfYS+c1SidCBbSVNWSVkkA+OyjDxFd8A5qazdiypSpjmnzdvqcaJrJWQrLaT+k0UoadkJVVbBsdo3f7aLIMS2edDH4zSzs9DdqmhYv+lyMmo2lCF+DLBD7DRyIA4YNQ3W7Mmyo/RGvz38FNK1CVVVEuWiRRuVeWS27tEmCJC35VAmCwH/+9TAmHXwEZD6KhoZ6W8aTuS/72mIYJq8WWShyjbcYLgGeF3L2a9f8GhW0HBf1vKCwy98oSRJ4nte5jku4MonbKHkB+dBDD6F79+4IBoMYOXIkVqxYkfXYp59+Ol7XLfaxk3T37JNOwk+ffIRuXYLghQ0YPmko3l9iLmfPNrhEgk6Q1qNSY4gF4rzw5vN5TXCZwNAMaJpC7R+/Y/Sonvjqq88LGo8bIAgCJEnlnDuvBDQkojCaucIuyKhp1YhAiUY5w35HL94HMxBFEaqqIhQK2VLJJRuKPU9O9F/SAnLu3Lm48sorccMNN2DVqlUYPHgwJkyYgK1bt2Y9p6KiAps3b45//vzzT1vHxDAMCIJAx/at8c8r/obxBw8GTQl4f8l8rPpula19GUOTz5BwsBYkYScnnnXtt2OHjph6ylT07ra3qfOK9WLTNJ2TxLxQzSHXdVnZiACFBdDkyn80cg/syo2UJMmUBu2FwBIr0JP+OVAU5aim7JXyXk70X9IC8t///jcuuOACnHvuuejfvz8eeeQRhMNhzJkzJ+s5BEGgY8eO8U+HDh0cGVt5WRn+cckl2KumE9pXM3jujSfw/BtzIMkiNM1dJpNYWojuO3SqXxvTQWIMGyYFOk3RmHb+dJTLKn7+bhVmzZqG559/LC8RQezFMnNL7GBxoSjK0YTs3CZWd81sgiDk9PXZMQ3GAnw0SJJYklU6zECSJAgC77jWCBRfMDqJkhWQoiji66+/xvjx4+PfkSSJ8ePHY9myZVnPa2xsxF577YWamhocd9xx+OGHH3L2IwgC6uvrkz5WsHjuXDx6x63o0E7F4qXzcPip41DvoL8sOwo3ieZr3y5aPKsCnaYoPP34/Zj39sumGGMIwrjgsyvVgKIo20phmUE+snC7QRCEa9RluSAIQovnF+W4KAiCRCgULvZQHIHducm5ULICcvv27VAUJU0D7NChA2prazOe06dPH8yZMwdvv/02nn/+eaiqilGjRmHDhg1Z+5k9ezYqKyvjn5qaGkvjpSgKlRUVCAZZ9OtdgyMPOwTt27GQZB4ffPQ+OBcDevREfSe5Xe1LB1EUFWv/+BWrf/gGy75eZljgzZp+Ay447QIoAm9qQ+D2blhntck9vlzDL2ShcJJuzu2+jJhXBUFs0UwxiqIgEmlsSvq3X2ssto8xBjcLUpesgLSCAw88EGeddRaGDBmCQw89FG+88Qaqq6vx6KOPZj1n5syZqKuri3/Wr19f8DhGDBmCu2fNQpvWLGR5Ey68+gLM/+idgts1A4JM4HZ16GErNB1k/pL3MPr4A/H4C4/ipbdewpRLT8bIo0dg/pL8OY8sw6KyVQW0SBSnn3qEaYJzI7BrJ0vTFARBzPp7blYca33qZAX2rnjZ5kJ3KdjaVRryl/iSoWmqIQHptiCwoz+Oi0JVVccID4pNq1e0OIHidFs42rVrB4qisGXLlqTvt2zZgo4dOxpqg2EYDB06FGvXrs16TCAQcNTB3bN7d/zy2Wfo2qkTBIHH32+5DVWVbXHFedMc6zMNCT4/pwjRU9tWFAW//vkrGhrr0bVjTRqzzPwl7+HCf1wALcXEWru1Fhf+4wI8dtfjOPKwo/L2S9EkOlS1hRMeNzMLRq4FhmGYvGZWqwtUtvNIkoQkCWAYe5aA3AFBMoJBZ4NEjAhIOyPW7UQhgkfTNEQiEcdqNsbmtth+xmL1X7ICkmVZDBs2DIsXL8bxxx8PQI/aWrx4MS677DJDbSiKgu+++w5HHnmkgyPNj7332gsAwLJAl05VCAWCkJVGcJyG2m2b0bvHPq6MQzeLJifsG620YQSaoifGv//R+7jxnlmo3aabwl966yVUtqrE0eOPwV+OPAmKomDWXdenCUcA0KCBAIFZd8/CuNHjQVEUZFmGqqhJ4419R4LEXdfdDYqmUbe1Fuu3bkbfvgPzjzUP2bdZ5I/+JCEIYlZmE6sLRLbzCMKaLzrXvGT7XhSFrJpNPuFmB/WcIIiGKogYba9Q2KWNcRwHkiRtF46JUaluC6bUiNhiC+aSFZAAcOWVV+Lss8/G8OHDsf/+++O+++5DJBLBueeeCwA466yz0KVLF8yePRsAcPPNN+OAAw5Ar169sHv3btx11134888/cf755xfzMpIwa/r0+L/vfOgRzLrnTqz64BtUVbR2pf+YcIyxvLw87yVb2//+5+/w3OvPpX1f11CHF958HhqhoTxcjs1bs5OQa9CwecsmnD3tTFS3rcbgAUOw6JOF4AUev677FT336gkNGlb+9yv9eEIDRVJY/s1yzPvwbVx19a2orLQ+n2eccaHlc7OBZXNrkbkWVasLrpXoRrPCEQAYJrv+bhfvajbozDGwTVO2A3Ys+jFfoxOFnYsplIotEFPhnafGAk455RRs27YNs2bNQm1tLYYMGYIPPvggHrizbt26pAdo165duOCCC1BbW4vWrVtj2LBh+OKLL9C/f/9iXUJOXHH+uRg1Yj/s3S2MbTvqcMWsmbjg9AsxuP8QW/vJpSWqigK7nJSqqmLegnk5j3lv4buYcOhEQ+1xPIcNmzdg0WeLUN+oRwR/9d+vUNmqEkeOOyquIamKCkIjMHTfoagob4UgRUFVFZCks+HvqTCiLcmynFFDdcIP6QbdnKqqWUtrOe3XiqVTeZ0txwz0pH/NEV9jsfyMXgahFbO0eAmivr4elZWVqPv5Z1S0auVav5tqazH5vPNx04zrsG+fEbZWEXn+jXSNLgZF1aMP9SoehfXz25+/4YkXH8973KSxR+L9j/IH1fTt2Rc///pz1t/3H7I/OnfsgmGDh4FKEIaqquGrH1fjuMmnY9y4/Ob1VLOPk5GQgiC4tqC70RfP8wgEAqbzPe1IPuc4HizLOJ4H6AY0TQPHRUHTrK05nDGhuKcJx4aGevTtW4m6ujpUVFRkPa6kNcg9CZ07dsTy994FoKc+nPrXi9GqrBJP3vO0o/3GBQupC0kgt6CM+QIzoaGxwVCfiz5bCJZhIUrZIzsrWlXi9/W/52znu5+/Q+cOnUFoBAit+e0nAfxvzQ/4ZMl8QwIydeHIpHGbEZq5zaUaFEXJuKjbvYhZEVpm+49ROpqFHaZViiI9IxwLuXeSJDVRxYVtJZZIHNOeJBzNwBeQJQiKIvHgrTeB43kwdAN+WrsB7yx8HxedcTHCFpKDpxx7qrkTcuTvv/DW81lPa1VuTOOWDNCgDR88DEuWLsl5DMdz+PF/P6JNmzbYu1vPZnM7AZx6/KkgCQrPP/0gFIJEIFBYhGOiXzLfYpjrt2AwCJ4XMi7sdi9iOqOMcROrFR+oosgAzGuphQiUmFHMC6TchUSBaprWxEBE2qrpux2ZWspa6h6VB9mSMGTAABw4fLheRWTzj3j9vbmgadlSFRGaps2ZDS0SoXev6Y6KVpWGj2cZNq1sWGWrSpx2wulo27qtoTZ++e0XzHlpDu78z534fs338e8pigJBApv/+B23334t1q5dk7ctRVGwfPmnWL7805yJ74VzqCqWI0zNIFfwjBlkF465y1tZaRPIf508z+Vl7XHLsVSI1igIIhiGsV3QuykYi9GvnfA1yBaA0yZPxklHHw2GYfD7H5sw4sjxmD3zThx7xLGm2rEjYjXRlJkKiqBwzPhj8MKb2bXMRIiSiFGDRmHLji2QZRn77N0Hg/oORJvWbfHrn7+aGld9Qx1efOMFnD75DAzoMyD+fYd27XHA0JHo0KYtpkyZmrMNWZbjO+FTTjnXMV9kKBR2xT+YLXgmG8xqAKLIO0J3lmsMekktxlGOWyMoRFvSo5kJR3NH3UBLMN/6GmQLQWzH3L59Fa6fdgUmHDoENCVgwScfYuW3K10ZQy7/YwwD+gzA6ZPPMFxQuqqyCu3btkfrytYIB0P4bd1vWP39N6BICkELZtF3F72TJBhoisbhBx+BIIDff/kBn322KG8bmV54WZaTPpKkf1K/j33yQTdN2odMGpNZ0nzz/kfzy0sh5bT01CQY4nx1etG20r4sywkm1eKbh1sarLDy+BqknfCAkb0sHMaVF10U//vFt55CRXkVBvcfBJrSF45su2vTvsgUxPyP+SJe9+27LxiWwdNzn8rbpqwoqG7bHoqqoGPHTti5ayckScKWHVvQsX1H/LH+D1NjrGuow+8bfsfeeyWXxCIJEjNnXopffv8fZsy4KaMPUFEUrFyp15rUNGt5hDHky6UMh8tMa5Fm/Z463ZzqWCCLE1pcriY5LpqXiNwDr2hGiKIIRVERCtnD9uPV6ywGUn2uZubFF5B2IrFukkeezg9eeB4NjY0IsCrefP993HzfXXjtsTfQOkOifKEmw8SI13zo1b0XQsEQOJ7LekwoGEIoGMK6DX+iS6eu2KvLXujetTt21+3Glm21aF3ZGgQIbN66GbzAGx5nQ6QhKe0jhqPHH42GSCMUgQMZKiu6mc5KgIuZR48gCMiy7IiAzBZolH9Mmb/Pd13RaBSBgDGrhJegaVoTmQFpi3D0CjWcl1DIXPgC0gl46OkkSRKVTXk++/TsjIljDkan9iE0NHJY8vknOGTkIbb5idI1UA3ZSAZkWcZPv/yEF958HgSIJFq52N8nTDoR/Xr3A9k0nwcPPwTdunYDoPtpbnvgVmzesglHHDIB36/5Dtt3bsea3/IH23Ru3xnjRo9HddvqjL9zPIeLrrsUZ597eVIaSMwHCQAnn6z7IJ3cC+m+yOz0c5lgRsBQFAVJMl442cy1kiRhK3tNrn5VVSchp6j8OzMPvZqQJAmSJNqavuHG9Xlo/58Rdo7PF5BuoshP1rBBgzBs0CAAQENkAy68+gLc+c/bccqxp9vSfiYNNEZSnokIfVD/QSDJM7Hw04VxXlYA6NShE276+804bPQ4LPpsYXzxWPrVZ+hfvy+2bt+CWXddn0RH16q8FYYPHoHabbWoa6jLOsaqiiq0b9ceiz9fhJ579cSQfYem+UMDgQDalFeAhZZ2TTH2ncTIX6duK0EQUBQJMEm1nmk82cZnhqosUxvZrl2WnWfpiYHnuZKr8cjzPEiStG3czrMSeTtVw6mcTl9AuonEO1fkJ22vrl3xv6VL0al9e4gij2v+dTtCoVa48sIZtvYTE4oESWTMnxzQdyCuv+IG3P3YXWhorMdxR0zGqOGj4ua5iWMmYc2va/BHEynAa+++kpHLtaGxAR99vgTnTTkPT778ZNbx3PKPW9G5Y2es/WMtfv3zV6zbuB5DBwxB7x77xAUxy7B48NaHoAGI7NyODdu2oE+ffbNfo4O3MRAIQpIkU8WGzYynULq5zEJTy0gObndFEgCIRiM5hYzXFnRVVRGNRm0hGHcj0T91/rwyl26Ny49iLRYS/ZVFQveaGgQCAbRqxaJr59aobhOELDcgEo1gza/5TZVAevRmzk9KVKeqqFAVFZqmoUfXHhjUdzBGDB4BTdOSjqtuU42BfQdBkqW8XK7zl8zHf/71CDpWJ5c8q2xVidMnnwGO56AoCobuOxSVraogCDy+/PpLvLvoXdRurU3qV5FlvP3Ks5g4cRjWrftdH7OqQFUVW6uc5IJuBs3MKGRPLUpje2QzfWUT6LnMv7mQ7TxZli3nWRYCq/PO8zwEQbSt+oYbwsprqRp2UBCagc/FahKOcbF6aKt73+NP4urbbsHX769Cm9btch6bi8c1FxRVwcrVerWNoYP2wzffrgIADB8yIimAJvG4qqrWmPNSdu0whgvPuAjdunTDhx99AF7gsW/fAagoq8D2XdvA83owjwYgFAgDhAY+IVCoul171HSuAUPrC7ysyPjlt/+hd/+BINlgPIp1+PDROPvsSyxdu1lIkgyCINKqxNvxyBiNlM3WV6bvOS6a0a9t9yNeStpjJNKIcLiwwC83rsdtAWQUdl+7z8VaakiNgC3i233p2Wdi2KAB6NW9HNt31WParGtx7pTzMHTAUNfHQpEURu53AABg9Q/fGDqnobEeJEnGg3D22XsfUCSFLp26oL6hHtt2bMWO3TvBC+mMQ9u2b8Wu3TvRtXMN2rdtD5qi0b93P6iChBWrlmPN2p9RVlaONm2qM3KmFnrbMp3PMDSi0QhoOlkY5GObSf0903eyLBkSkNmEYyZkq724JwpHPRBHsqX6hpsaoxfgBa5YX0B6DZmeCJffdpZlcfDIkQAAprEOG7f8Dk1rhCKL2L5rF9pUtYmb0KzmTsqyHGfdOWHSiaAJCgCBk48+JavZb68u3fHSW/nZfo47YjJGDB4Rbz9Tm4Io4I/1v2PtH7+irn4XMkXbtq5sjRGD90fb1m3x/pL5mP/BWxBEvWbjV199jvfeew0333w/jjzyhPg5he5tsp3HMCxUVTUcVJOpncy5kIUF0qS2qShKRoYeMxpovt8EQUTQINFEMRGJNCIQCCEctp9NaE+AF4S1LyBLAUV8UjpUV2PZO+8A0Lk1z55+OUiSwbP3vwCgsNxJsiksn6ZpkFR6dGgqRg0fhU7tO6F2a21SWkgiOnXojFHDR0HTtKT2U9ukaRr79hmAffsMwPad2/G/P37Bn+v/hJzAYLO7fjcWfrYAO3buwF0P35nWZ23tRlx44V/w2GOvpQnJXMhlxsomFBiGyas15UOmts3SzSUiG6NQJo0025yYJTfQ60vKIMncgr2Yi6uiKBBFsSCt0S1zqheEkFfGkQl+kE4pokhuY4oicf/NN+DGGZeDoRvw+/r/4e5H7kIkGrG5Jw2amn6NmqbhhitvAqDnSmbC9X+7Ph7kEwsCyhc8VFVRhRGD9sexRxyL/QYMQ2WrquZzJRmPPv9IRoEcc9/PmnUFBEEwHKykKPon22/Z6ekISJJkmK4uFZkFsmqJGD0bdLo351Y7nucc4Xe1CxwXbSpNVZiG62RUqtN9GB2DV/2difA1yFJEEf2VA/v1i//7oy9+wOvzX8Fl514IVVXBC7ylclvpIHSqupS0kBiZ+hknnoG3F8xDfUK+Y2VFJY49/Fg0RBvw8ryX9OCe/+rBPRqhZWTOyQVO4LB1+1b8+L8fc+ZVapqGzZs34Pbbr0XPnn1M9WHltomiEI/czEdXZwQ0zdoq1DTNukaaDzppQnbBU0xNJKY1BgJBU7mlbqOYwqgQyrdiwReQpYwi+ytPPvZYTJ40CQzDYN3GrRh59GG4acYtOOHIE+3pQIsRDQCJPsIBfQeiT6++8SjVwfsOQc+9etq6MJWFy9CjWw/sqttp6PiGLEI01+0wYopNT/inbBVoBBFLlyg8qV9VVdtKaKVCZ/zRcrLl2DElVl4fnuehU8V53y9aTJSCQEyFLyBbGlx+CmPBOu3atMKs6dMw4dD9QJM8PvjkM1SUV2D/oSMznkfTNM444cz434n/TkQz+46WFBAkyzIoQtcKTz4mPQgnMQhID9LRg4CMImbi3atLd8ydNzfv8Ucd9RccfPB4w+1bhaqqEAT7ykhRFGXIXJsqODIJEjsS4DNH32qQZclzplVFUSBJEiiKMkXk4DS87NMrNfgC0octCIdCuOL88+N/z533DCgqgKEDhsTNeIVpeEQ67VuOIJzsv2fnh82EUSNyBwYRINC+XXsMH7ifY/UhM8EqwXg6Awlh6L4Yoa6j6cKFRKZ2JUlCwEJpM7MwI1hEUYSqaggGnR+XGRRLOHogO80ReNdY7qOk8c4zT+PZ++9Gh3Yqvvx6EQ47eQy279xuXweEXlbLyomamjkIKBMoksJNM25pOjP5zSdAAARw69W3gY5Ecc6ZR2HRovesDMoUKIpqKqprHtkEUKHIVFsyW+yPmZggUdRZhDIJcbtj1Yws7LoGr8+9Fwsauy2cUgNtWpJwBHwBuefC4UhYkiRRVVmJYCiAnt07YNJhh6CmczlkhceCTz4sPPJVQ86akzET7hknnJmm2REkkUacngtHjT8Kj931ODq2T6av69ShEx6783EcedhRoEgSYSYATcwuuDTNnmmnKCqjD9Jo26nH2aH56pyuyRqk2bzHVOgpHWpW/6hdi7HReRNFEaIogmEY14jY86FYPGilEIGaCk3TIEkSolEuiT0rF3yqOZNIoppL9beU0tMSg8s2kY2bN2PvA0fhlqtuwhknnGO5HVmW41GtU46dAoqkTQk9KxAEAbf/Z3ZGUvUYNABRlsamHdvQu3e/zA3ZAD3VQ7FFizFbmDkTRFFMExqFPlqCIIBlWUfTRowipsl6QTC2NDOmk5BlOe4nliQJoVAIJEn6VHOuoCU8pS5fQ5dOnfDL0s/Qvm1byDKP6+68BwRB46pLry6gVXMaoVVQFIWee/UEABw47MCMfkACwPw3XsI/bv07li79BV277uXIWGiahqIoad9bWTyN0s3lgiSlC8hCHi29iDDhiHA0M0f6Auut9I2WsOw4BUVRoCgKZFkCRdEgyeboYiubG19AOgV/m5cVe3XtGv93185VEEUZitIIQSTw54Z16Feo5pWSP2n3eZqKnHE+x004Dq3KW6FdRWXudrLwpQLGHh2SJNM0NyPnpfZbaGqGpmlpbRTy+McEvxPamtlAHEVRPRc96zRKbeniOA4kScZ94MFg0LZnxxeQTsEIU3SpwMGx/+OSS5q60PDQnGcw/aYb8NX8lWjfroP1Rq06DbTYf3JfK0EiIUcz/ViWYTFxzETIDRG8Nv8NVLXrgPHjj0pvxyBfajYwDAOeNx+sUyjdXOrjEDOF5urDzCMkSZJj0aHGNhAaOC6KYDAEljWvNZbaq54agerlset+RL3snKapoCgagUDAMe3eGzaDPQFefuryIfb2OOiuJggCF511Opa8+gr69a6Cqtbjiusvx1dNbDjWYXbMzXmXeY8kiZw0bRRJ4sP33sD7775qcgzGp5okiYKjUM2y32TKU0xcoDKN3ejjz3F81mogbkCSJHBcFOFwmeVFt9BqLm5HhXg9AlWWFUSjEYiiCJ7XtcVgMIhQKAyWZR01ffsapA9jcOHtYRgmXkUkEKjH5q1/QlUboMgiduzejarKKrCmzYFWx03EU0Fy+TcJgsiqSRIEgYf+9R+oqgahvg4qwxg21xmtcMGyrOWUjxgoiimInSfVF1uIaZWiSDBMcZalaDSCYDAEhjFHCG+nxuhVIeUmYn5ERZFBECQoikog6Xc3SMoXkD48ieq2bbH07bcA6FVEzvvHNAiigpce0lltUpl4jMM4UYDRwJ9cx8UE+s/frcaUS0/Bfx5+GaNGjUkekYkFNttxsiwXlK4hy7IlNhhZlvOaaI1enyCICIfdp2tTVRU8z5mqlOKFWoUtCbqrQN+kNZO9Fz9i2BeQPjwPiiJx743XY+fu3WCZBqz9Ywtefvt1XHLWpWhV3spka4T1IB4DyKaJ7d2tB04++mT06tYjfUQFMpAEAgEIgmBZQNI0ZdhMmzpOVVXz+guNXFc0GilKMEw0GgHDsKbLiHldKHrdDypJElRVgySJYBgWLMt4Jko4Ed4bkY/8iDkqvJrC6sC49u3TBwePHIl2bcuwacvPeH3+K6BpXXuJclGT40v7h23IZqZkGRbXXn4t2pIM1v+6Bp99tjjlvML6VVU1Y9qHEZAkadi8mnqYopgvu5UKXXt1N99R07S4UDajORf6aLv1ynpNOKqqGvcjRqMcCIJAIMCivLwcgYCzfsRC4M1R+ciNWKhZYtkrLyGV1dpmnHDkkfht2Rfo2b0SBLEdBxyzP14xQCiejiY/oyOLSebrpkgSTz56L/4+Y2rBvsNEhEKhvKTjibci9bZYDfQhctEZGYQkSRmFlFOPNcfxTebcMtNCudAAHK8JLqcQK//F8zw4joOiKPGgmnA45CpvcSHwBWRLgIm37pxp03D81Klp33/8xRcgunTB7ro6AMDjL7yAwePHo7x3b1T164ehRxyB2Q88ED8+ynGYOXs2eo4aheDee6N64EAceuKJePvDD3OPzaZVL7agtm1djhtnTMfEMfuBoQV89PlifLlqmeF2CJKwqFHmOzb7Pbn28mvx2qOvQYk2mugvfepS/9ZD37OPK5mkPPk3KwuWoigFL3SRSGNamSinaMxiWiPLMkXhUW3pwlEURXBcNImST482DYFhGE8wIplFaYhxH65izssvY9oNN+D/brkFhx5wAARRxLc//YTvf/45fszFV1+N5d98gwduuQX999kHO3btwhcrV2LHrl25G7f5JQkGg7js3HPjf7/23vMQRAXDBw8DRTImq4jEnJOZx5gpMEhTVRA52s8U4coyLGo61UBojOD8GedhymkXZMyTTBsdkfvvUCgMnheSFv9ErcVuDUYQeNO+u+TzhTS/o1NaliiK0DStoPEahVPX4DUNVJKkeCkyiqI9xVFrF3wBuScjyxs3b8ECnHzMMTjv1Ob6i/v26ZN8zMKFuP+mm3DkuHEAgO41NRg2aJBtY7CKN558AnX19QgFVXzw8ceYcfP1ePWR19Gh2ijxQPa0jYxHk2TOdJDEepapgpcAwIKAZFCTzKRZpQfNyAAya0e5ptkK3Vwh5a00TYOqqmmbF7OPQj5tU9M08DwPmqYdXbydLPfklQT+WC3SmFmdoiiwLNvihGIifBOrjzR0rK7Gl6tW4c8NG3IeM3/JEjQ0mjMTpsFmfyVBEKiqrEQgwGLvbu0xaewh6F5TqVcR+XQBGiP5x5sk6AwsSsaqg2Rm3PnPvx7GxP0PRXTXDvz66y9pxyROSaZFMrYoxxAOlyX5No1auI3QzSX7MDXDQUGZ+tQDZApP6cglOGKmvkAg4HhBYztTPmLzVeyKGbHSXoIgIBqNQFEUBIMhBINBBINBTxWJdgolLyAfeughdO/eHcFgECNHjsSKFStyHv/qq6+ib9++CAaDGDhwIObPn+/SSL2DdxctQnnv3ijfZx/9/717Y9KZzabDG668ElUVFeg+ciT6HHwwzpk2Da/Mm5eU7/bYnXfii5Ur0XbAAIw48khMv+EGfP5Vgaw3NvsrB/brhwduvRWtq1gE2DpcfPUFeO29l8010kQpZ8Y/mbvWZKaiy8CHb7+CceMG4s8/f0v+LcPimDot+SJLjdRlzJbLmCqgY9CLGGfWOPONj+N4hMMplXBsRmyT4CQNmVMoZn6lLMvxaNMYz28gEEA4XFayfsRCUFpPTgrmzp2LK6+8EjfccANWrVqFwYMHY8KECdi6dWvG47/44guceuqpOO+88/DNN9/g+OOPx/HHH4/vv//e5ZEXF2NHjcLqBQuSPk/cdVf8904dOmDZO+/gu8WLccV550FWFJw9bRomnn56fCE95IAD8NuyZVg8dy7+ctRR+OGXX3Dw5Mm45d577RuojS9jh+pq/G/pUlxx3iloFeZw9yOz8a//u83YMEgCMf+kkULLubVJIqNWetS4o/DgrQ+hQ+s2+dvPMy2hUDhenin1+Gz/zkY3l03BT/TtmtnHKIoCkiScit2CJEmGTKqpWpoZeC1ovBBIkgRBEBGNRhGN6jRu4XAZWJZFMBjc4wRiKkq6HuTIkSMxYsQIPPjggwD0XXBNTQ0uv/xyXHPNNWnHn3LKKYhEInj33Xfj3x1wwAEYMmQIHnnkkYx9xEwMMdTX16OmpkavB9nKbJJ68XHOtGnYXV+Pt+bMSfr+4y++wNiTTsKuH39EVWV6FYqlK1bg4MmTsWTuXIwdPTrjKn3rfffh5vvuQ+Mvvzjjl7DRwXPv44+jvj6CqVMuhChR+G3db9h3n31taTsOC4QEsqLgvWVLUFbVxlDgTjZEoxFTASmCICIQMH7PzLYfQ2NjI8pT66iaQK5HQBBEAFrBpbus9l+MdsxCZw0SQBC6D1HTnJ0vLyFxzo3WgyxZDVIURXz99dcYP358/DuSJDF+/HgsW5Y5zH/ZsmVJxwPAhAkTsh4PALNnz0ZlZWX8U1NTY88FlBj69+4NAIhwXNb8y/777ANZlsHbmN+XBBtXlOkXXIAbZkxDTZcwlnz+BiaefgQ2bdlo+HxD+ZPx6iB5D4qDpii8N+8VzHvzBcNjibeU0FQwmD8vMhEEARM+Rc1QgE7q1pvn+YKEI5D5EdAXfR4URTq+2Ft9BIvlV4wFKYmiiEiksSkfUU+9iJlPWyIKIcxPRMlGsW7fvh2KoqBDh+ToxA4dOuDnhHSERNTW1mY8vra2Nms/M2fOxJVXXhn/O6ZBmoLX4rPz4JJrrkHnDh1w2EEHoWunTti8ZQtuvf9+VLdtiwOHDQMAjPnLX3Dqccdh+ODBaNu6NX785Rdce/vtGDtqVMlp1ueechL69OyBgX3bYceuBlx54/WYctyp2H/oyKznxPIn85N8679lTwdJp7578LaHoChqE8E5mxTMkvooZXu0SJIEz3OG8xQpimoiC08vAp0KnucNLaypPsvEts0Iilyvj16zUTZEU1fM19BNv6IsyxBFARRFQ9O0eMWLlhxtGoPdEb8lKyDdQiAQKHyXlS3Swqm48AIx/uCDMefll/Hwc89hx65daNemDQ7cbz8snjsXbdvoPrIJhx6KZ159FdfefjuiPI/OHTrg6PHjMWvatOIO3sJ80jSNQw44AAAQDDRi87Y/Icl1UFUJO3btRkWrCgTYbKkT2dM4ko4j9SKSmprBR9mkacZ+YxkWYID//fAtTrn0FDzw4AsYPXpslv4z/xsAWDZgWOjFBKQRkCRpKvBFVVXIspQkxIzeomy3U9O0OP8syxZWISWxL7Pj8wKa6yNq0DQVDBNwJd/TTRh9re2+byUrINu1aweKorBly5ak77ds2YKOHTtmPKdjx46mjncUubaUDgrNp++7L+P3Y0aNgrZRNzGeeNRROPGo3P6vmZdfjpmXX2738ApHpugPE3PZpnVrfPL66wD0KiIXX/N37Nxdj9ceezNfx0YGh+zMbAQICkma5F5d98IJEyejZ0335qOy5vtlZscx4yuUZSmrlpFMOJDfsZp4vCRJlojIs906WZYhCDzKyuyNhC0VoaiqKiRJgqLIoGkGqqoVhRnITRTr3ljyQXIch6VLl+LHH39M+43neTz77LMFDywfWJbFsGHDsHhxM+mzqqpYvHgxDjzwwIznHHjggUnHA8DChQuzHl80GInt92EMBeRZUhSJu2f9E7df+w+wTAM2bf0Ttz84G/UN9QbONiBEUiNiteTvWIbFdVdcj2o6gI2//w9Lly7J2la2qFCaZnIKtMSfchUqjrWv+zXzr1ax40VRNJ1mEePhz/QacBwHVVVtF45W4NYrmehHjEYjkGW5idM0Fm3aMoSjF5c40wLyl19+Qb9+/XDIIYdg4MCBOPTQQ7F58+b473V1dTg3gfrLSVx55ZV4/PHH8cwzz+Cnn37CJZdcgkgkEu//rLPOwsyZM+PHX3HFFfjggw9wzz334Oeff8aNN96IlStX4rLLLnNlvAUh1xbKi0+WF2FhG9q3Vy8ccsABehWR2p/w+vuvgCRFqKqKSDSSq7O8mlY25p3UvEuKJDHn0Xsx7YqzwPN8xray5R6yLAsuodpJvhzFfO3q5a2yL8iJx+umPzWeUG70Mc3kQ9I0Lc7bmkvLdQNuBNrIsgyOi8YFY4zGLSYUSzX9Itc98uIlmRaQV199NQYMGICtW7dizZo1aNWqFUaPHo1169Y5Mb6cOOWUU3D33Xdj1qxZGDJkCFavXo0PPvggHoizbt26JOE9atQovPjii3jssccwePBgvPbaa3jrrbcwYMAA18duK3yN0xpMztGxRxyBP778Evv0bAOK2omDJh+IF954PuvxsUUsb+5kKjtOLO8y4fur/3oNXnv0dahcZqGcK68wUYvMtQhlKl2Verwsp1f9yOa7UxQ5qVak1QVQr74hZNUajQosu6rEObGQK4oCjuPB8wIaGxtBEARCoTCCwSACgYAhP7LXYFckaTFhOg+yQ4cOWLRoEQYOHAhA39ldeumlmD9/Pj766COUlZWhc+fOlmvTeR319fWorKws2TxIAJ4MDMoJt6InTMyLIAh48qWXcOgBo9G+XXcs/OwLMDSL0SNGZ25a1UBQBDQlG89rlgCe2LlN34uShCtuuRInnnxOxjzJbJdgxBcZY07J1aYgCElBa9n643kBFEWBYeyo9hEuChuOk6+JHrgkxwsGx6JNS1UzLDUYzYM0/fRyXHLoOEEQePjhh3HZZZfh0EMPxYsvvmhtxD7cg8uBQQUjW+CN3WM2kj/RhEAggEvPOSf+91sfvIhduxsxcr8RoCk2jYg7lhYSM6GmC0I9gCdTOoj+fewcDZoogqvflfcSEhHTIgmCyHppqXRzqSHzkiSBJJM1mUzt6McRhoVjJg1QkiTIspxTa3TicU1s1+72eZ4HSZJQFAV6weBASaVeeHmJcAqmBWTfvn2xcuVK9OvXL+n7GJvNsccea8/IfLiLxOR/r78FiSuYU+M12ebcRx6JVxFZ/NlnuPz6a/Dyw6+gS8cu6U2TRNb8yczpIERcSLIMi0dufxQaAG73TtTu2okePXoByD0VNE2D5zmEQuEc+41kAZl6nCRJCIdzR6PqJOa5/ZSpSO1Hr9kYyEhmni/Pzap/0ImKGbIsQ5ZlaJoKiqJB03TJFArO9Cx5fVlwAqbtFpMnT8ZLL72U8bcHH3wQp556qqEwcB8ehZkENS/AI29tYhWRvWraYdJhh6DnXm0gKzwWfroQDY0Nacdrqhb/pLSWJ4BHd08ufOc1jB27L37/fW3e8em5i3TSu5kaLUqSmRfv2Cm5olxj4HkeLJs/KCeTL1CSZPA8j1AonCZIjAo+s0LOzoAbVVXBcVw82pQgiKaCwWGwLOs54VhqATPFQElzsRYDLcIHuafAKO2Mg9ixcye67b8/rrr07zj/1Euy+phyMfIkmmRjvkxogCiJeP+j9zHh+FMQrKjK0GZq0IwCURSzamaCwMdZV1IRo3MLh8NZpzFWQNeK2TAa5UDTVF4faKGw0zof8yPGCgYTBOHZihelYBhyE475IH34yAuvvI1ujCHPtbZt0wa/fPYZKlq1AgEBN9/7AOobI5g1/cak4xIjXlO1x8S/Y75MQM+TPO6I4yA3RPDekvcRKK/A+PFHZTUXUhQVj4ZMHTZBNLPpJFbpaPY/ynHBmo3ZRlVV06xTMTNkIMBmjdQs9DZm8itabZPnBcRugKZpCAaDnvEj5hL+XngdSxGmTaxLlixB//79UV+fnixdV1eHfffdF59++qktg/NRovCqmbZIvsounTqhVXk5ystZdO1cheo2YahqBDzP4bufvk1ujiSgZanNmJ6fr88fTVF4+80X8fqrz6SdkmrK1Dla+YzDTjUBxhZbAFBVJUkzSr110WjUtKDgeaEprzKYJLjzmWYz9Z8Lhdx2SZLjBYNFUQRNU/GCwaFQqGjaYq4UCl8Y2gfTJtZjjz0WY8eOxfTp0zP+/n//93/46KOP8Oab+ai5ShO+idUBeEXjdBlPvfwKzvv7lVg270vUdO5m8KzM6SCiJEJWFFBt2kBjA0n5h6lITNVI1ToikQjKytLTQaJRDuFwKOmcxPYoigJN04ZupW7qlUDTlCNV6Qt5nDRNA8dxoCgaiiKDYRhHxuijuHCs3NV///tfTJw4MevvRxxxBL7++muzzZYceFmGJMtZK7H7MAGvEh3YlVmeBWf+5QR8/NprGLJvBxBEI2bcPB1frPwi00AS/k1k1DJZhkU4GMKGn77HQQf1SqKlSx0+SZLxgsqpWkeiFtl8+Rpoutn8mXi71KagIaPCURRFSJKEYDBgm+BJ1SrNCEdVVSGKIjiOawqwkZqS81mEw2HXhKMXHncf6TDtg9yyZUvOh4amaWzbtq2gQZUCAiwLgmWhaBo4UdQXFk2DrChgGAaqqkJVVdA0DUWSQEGnDCNJ0pNOfM8h1xy5pXHmyiWw0n/KeYlVRMIhDlu2rYMk74aqSti5uw7lZeUIBoJAE6tOIslALB0k2e6qoaZzDY4ddwx6dM2skWoawDBMvAh4rkuJfc9xHAKBZo008RyOi8RzFXNNSYxgOxbZmdiOlViqQvyKsRxLiqLiVUbc8CP6PkJ3YUeMnmkB2aVLF3z//ffo1atXxt+//fZbdOrUyWyzJQdCVUE37eLjGwaCQCAWAUiS+geAxrJQoS9nXKwunqZBlmUwrJ5UrioKaIaB3CRM6SZBWgwGEc+j2EQHVvtJdOqltFFZUYElr74KAFBkBZdfdw02bK7F20+9qx+goZkoIG5iTR2HXipr1vQboGoaav/8Db9u+BOjRo1NGzpBEBmZc/SAmeRAG4qiMz6HHBdFKJSZnSfxMkVRgqJICAaTfXaZBJvR22jmFkiSnosYY60hCDIecOSUYMwlBH1hmBu5ngEzr7kdmxDTq++RRx6J66+/PiNpMsdxuOGGG3D00UebH0kLBqFpoDQNtKYhTNMINAnSMpYFCyBIkggzDFgAYZYFw7IAw0BQVQiaBkFVERFFiAB4VUVUkiBqGqKSBF6SICuKqerxLRKlsuoYSNSjaAp3/PNq3HX9NQiwjajdth7/euA27K7fjXiOZKY9QjyfUgNJEJjz2L24/LLTwPNckglP03TBkMmsl8k6lEobSRC6RqgLzszXErvMWNSnTlCQ/x7ZcRt1P2IUgiCA53moqgqWZVFWVg6WZQumv0vvL/27Unkc3YDRwKsYcs2d2/NqOkhny5Yt2G+//UBRFC677DL06dMHAPDzzz/joYcegqIoWLVqVZwwvKXBa0E6GkFAIwiITeYrQNcCGIaBqihQNQ00TUOWZZAEAUpf3UDT9J5t6i2hwKD3lyzBeX//O5a8sgDl4XbgeA5lcV7VVDNrM0RJxIbajejYax+EW7dNu2Se50FRdJLA4HkewWAwfqwkyQC0JMGpaTpHanl5eU7aumbmHmfnWdM0SJIEVVWTWGvstL6U0OPiGuzS9IoBo0E6logC/vjjD1x66aX48MMP0VwlgMCECRPw0EMPoUePHtZH7nF4TUCaQpMwlZo0Ak1Vm32miqL7TBkmLkxJgoCmKGBsXmw8CzuzyG2GLMugaRpbtu7CkCPG4W9Tr8DZJ5/b9GtKZKtuiY1DkmVcOfsqHDf59CSCc00DRDGZfFw3mzbTyaWSk2c6JhU8L0DT1IyEBInINM1Gp16WZYiiAJpmoCgyAoGgbc+oB2+/a9hTrt1RooDu3btj/vz52LVrF9auXQtN09C7d2+0bt3a8oB9uABNA6FpYGNvAEUhEEvOToheZBN8qhJJQmkSqnGfaUyY0jRkRdGFKUlClWUwFFW6gUi5nESJK4cT1C7ZfmsaTyy6tHVVGW6cMR0HDhsBmubx0ecroAE4ZOQhCefp/4kLTU2F2NiI+p3bkpqOmUoVRQFFUdC0dLo5WZYQCATix+vWiWS/XfO+QkM0GkU4nF1rzBRck/h9tqmQZRmKokJVZRAECZqmE6qTmPcjGglOainIFaySiTDCRzNMa5CqquKuu+7CvHnzIIoixo0bhxtuuCHvbrGloKQ1SIehaBo0gohHLKZG88qy3MQJSkKWJLA0DZIgQDR9fCD7yp1Fuz3jssuxYfMWPPt/LzZXEaHIeMRrrDqIqqoAQUAIBbC1bjf22mvveBuJwTocxyEYDMbvh16sNyaAdN9eprJZkiRBksS8JbWMT4PW5L9E01i0nLmdudtqeQu/GaHnIx2O5UHedtttuPbaa1FeXo4uXbrg/vvvx1//+teCBuujZYAiCNAAWJJEWSAAliQRpGmEWRYsSSLMsgjStP49y4KgKCgEgagoQlRV8JIU/3dUFMFLEkRVRUQQIMkyFEVByVAHWx1nTAimRjZk0W6fe+D/8Nacx9GxWsMPv3yJg08YjfUb18cjXmPpICRJgiSAJe++iTGH9sPatWviw5RlCaqqQdP0iNVYbq8giCAIMq7ZcRyHUKgs7dIikUaQJJkU0Wr28jVNgyiKEEURjY2NkCQJgQCLUCiIYDA38UH2NvX/txRhkelxyPR3S7leL8C0ifXZZ5/Ff/7zH1x00UUAgEWLFuGoo47CE088sWf4qXzYArLpLaYIAkzMx5Xw/CSG3zMsq2ummgZOkkDTdGafKUlCipl5gbi2WhQUYqbNpBpkOT5WRQQAajq3wZGHHYqe3VojynP4eNlS7D9kf1S0qowdjcPHHI67Z/0bXarbx7sKh8viWiRNU03BLoCmqXHtURDEJs2yue9YIE6mmo1GUjcURQHPc2AYFoqigGV1PtZ8qRdOpIK4hUK0Oy9eT0uHaRNrIBDA2rVrUVNTE/8uGAxi7dq16Nq1q+0D9Bp8E6v3oQFQoZsHqURhmuIzlSQJNEXpZl6kc5G6O+gC7WIp5++uq0O3Efvjb+dfjkvOvDzNhC1KEj7+dgWoYBDjxh0Vp5iLUa2Fw2EIggCWDcSrgMSo5gCdkk5PmWByWoWB5t/kJuapWNoIwzCeKwGVCfk0Ud+kWXpwLEhHluU0cwfDMJAkyfwoffhwAAQACkAopokkaqYJFSNYioLW5DeVZDkuSOPCVJJANgUdxYQpQRAgmlJnbPWbmvA7pv2eer6moaqyEms+/QRlZWUgCQH/euBhbNm+A7dcdSug6YFYb7z6LBSKxLhxR6GsrCzub9SreuiCjCCQJByb0zdCce08+zToZlNVVeKmW6OmUjeEjtE0hXzj8IVjy4VpAalpGs4555yk0G+e53HxxRcnkRy/8cYb9ozQhw8HQTRpj4GYJpMiQFP/rWoaZFWFrGlQJKk5z1SSdJMuRcWFKQBA06ynyRhdoWNICQXt1LFj/PuaLq0B8FDlRsgKg59//Rn/d+sDEEUJQl0dEAxBUZoDchRFL28lCIkBPDwoikwKxInJb70bDYIggiSJeI1EhmFAkoG0IRq9dLMwk5uXqw9f6PkALAjIs88+O+27M844w5bB+PDhdZAEEReWTIKvLJMw1TQNiqZBAZo0KTVOJxjzj0qyHBemmqaZS5MxuooTBC4566z4ny+8/ibO+Ntl+OzNz7B3t574fc2POPXyU3HnXU9g4MDhGDCgDwANP/zwS5OmSMTLWemFgZuFoqLoGiVJ6tdA03qSfqofMV8aRy74Qs9HsWBaQD711FNOjMOHjxYHgiBAN63KWYVpgg9OURSdFakpYjc1NSZRmCqKohPmA83aqUEJMOX4Y9G1c0eMGFyDXXVRPPTMAxi4zwD06FwDWY4VBFbiNSBlWY7XPtRNrFLTGGSwbCAttSMXD2m2Y6zm5vlCz4eT8L6H3IePPQSxosE0SQJNZA2JAjTx3ypFQQMgK4peLYaikn2msqy3QxCQY8JU09M9KIrCoQceCGgaysMCtu3YgJOP+QtaqRK+/e83ABoABFBX1wCAAEGQYFkGNM1A09Qm9woBggikcbxm0xJTA138NAUfpQBLVHOp2LVrFxYsWICNGzcCADp37owJEya0SGadeBTrjz/6Uaw+SgKapunmXlXVyzwlcPPGhGn3ffaBAmBX0pllAIIAZDz33Atxmrrt27ehqqp1SUSg+vCRCQ0N9dhnHweIAlLx5JNP4sADD8Ty5cvjEYDLly/HqFGj8OSTTxbavHcRK2flf/yPxz8EqQcPMSyLUFivfRgOhxEMhfDrunU464oroFEAGQIYKuEZZyJAcAdA1uM/D89GRNmCiLwdI0bshUefuBsRvgGffLYQkyePQW1tLRRFw5IlH+Kdd16HqgKqCqxfvw7RKB//2//4H698jKDgLeCdd96JVatWJUWwAsAtt9yC/fbbD+edd16hXfjw4SMTcjnucuQp/OPmm9Glayecf+5pIKoI1O7ehg+Xv4euXTshGo1i3wEHgZOBZauWoVV5K0iyhNZVrcEwCjRNxiPPPIzefXoj1KYB5dUi2neuBNt6NziSx9vvPYON6zfgsCNHgwCFgw/ug39ccwPOnXopVny5DHfMnoU5c95CdXUHLFr0HiKRBkyefBoAYO3aNejYsTPKy33LjA9vgCy0AYIg0NDQkPZ9Q0ODz6/pw4dZWC2clyPM86PPP8dBxx+PRqURfJCHFJBBtCJQ3iWMvoN7YfGSudh33z5o3boKlZUViNEqh0NhhENhVFdXQ4OGxsZGAMDhEw9H9x7dAQIYut9QPPzUw6hs3QrhMhb3PnI35r77EkKtVARaiXjm1adxzEmHIdi6EW26EOgzoAfC7RsgMOuw6ONX8fpbc8BhM3hsxeGHD8bzLz0EXq7DR5+8i8MOG4hNmzZAURS8997rePnlOfHL+v771di1a6eFCfbhwzgK1iDvvvtuHHrooRgwYAC6dOkCANiwYQN++OEH3HPPPQUP0IePkocTeQo5tEdN03D0WWfh6InjcfbZJ6O8axn26t0VfEhAuzbluO/+m+PHNjZGEA7r5OQcJwAgoDTV3qZICiRFxmnoGFqn9RMEAaFQSA8qiimpGoFYma34xlgDDh5zsB4UqwEDBg3APQ/dE//9zgduj40Ymibh1fdeQZeaLgi2jqBjjxAOPHQ4KrtykMj1WLbyfWzeuBnHTZkIAhSOPmYkZl53E84+52Is/eRjzLpuBl55dQk6tO+Md999FfX1dTj77EsAACtXLkP37j3Rrl377HPrw0cG2BKkoygKVqxYgU2bNgHQg3T233//eFReS4JPNecDQPHKKWQQhgRB4Km5c/HQM0/j84VvQaYU3Pive3DwISNx7LFHZGxGkiQoioJgUI9IbWyMoLw8DJ7n8be/3YBvf/gfXnzzJTAsA03RIKs6gxYBApqmQVZkCJyAQCgAiqJAgEBS3eamOs6x8SVfA5qP1QANzTVljU2Bhh+++wHtO7RH+w7t8cvPv+CVF17BlTOvBE0zuP3G27F5Uy3+/eCDIECh717d8M9Zt+DMsy/Epx8twTVXXY557yxFdbsueOutF1FfX4cLLpgGAFi6dAl69eqLjh07GxqLj9KEowWTjWL58uUYOXKkU80XBb6AbMEwWJuxmOOIFU6ub2jA8CMnYdZV0/GXk4/C8tXfYMGiT3HDDdMTkvQTJVEzIpEoWJYBw+gGJJ4X4hRw0SiHYJDFuu0C2KAuMIPBIBRFgSAKCIfDzU2jiXCc48EGWNCMTr+naZo5gQk0F15PPC/z8E1B0zT8tvY3tG7TGm3atsHa/63F26++jb9e+VfQNI27br0btZu24I577wE0Cn26dcP1N92GM88+Hx8tXITpV1yEBYtWon11Z7z6yrPYtWsnLr98JgBg0aL30LfvAHTtuhdUVYVftq104AkB2a1bN6xbt86p5osCX0CWGLzIJG1C2xRFESSpFwi+9o7bsXjpZ/h04etQaBV33PMfHHvsERg2bJChbmNaYyAQiC/kchMpQSDAQpYVxEgJNu7kQTBBcBEOwVAwThIgCAJC4VCaFqhqKrgIB4ZlwAZyVOOInWdQ+MUFamyVcvBWapqGTRs3oaysDFWtq/D7r7/j/Xfex/mXng+KonDfHfdhS+1W3Dz7XwBI9Knpjlk334YzzjoPixcswF8vOReffPod2ld3xgvPP4ndu3dixowbAQDvvvsaBgwYiu7de0KWdRu2nyZTPLgmIE8++eSM32uahvfffz/u2G8p8AVkEZBPyHlRCCbCxPg0TUNdfT2qKivxy2+/Yb8JE/Dqc49i3BGj8dnyr/DHH+tx3nmnmh0AeF4ASZJN2mWzdIpEoigr06NydDNrGb74YiWu/PuteHruc6ioqgDP6VokCEBVVfAcj3BZOM08GhNmjQ2NukYZ46DNJdya2iBA6P83zDuL5uMTVzCXHgNN07Br5y6wLIvyVuVY98c6LPpgEc6YegZomsaD/34Q27Zsxz9vmgVoJPrU9MANt/4Lp595LpYsWIjzzz0Ny1asQXW7TnjmqUewc+cOzJw5GwRB4LXXnsOQISPQq1dfCIIAWZYQDpf52qmNcKyaRyoWLVqE5557DuXlyTXhNE3Dp59+WmjzPloyLKYppMELC0euyht5xrepthadOnQAAJxwwfngJQFvvPo49hreBTfdPAP7Du8DtjyAceMOSuwQGW2YKYhpjTpHaiwmQD9OEASEw8H43yzLACBQXl6GrjVdIMkSNFVDrICy1sTEEwwFEY1EEQ6HdZNovFX93+Xl5QABRCNR0AwNiqKS4xESh0o0nxfzbya1l23qEs5D/BFqMu2maLdOCE2CINCmbZv43926d8PUi6fG//7b3/+WdPzPG34GCCAQEjFo/164+8G70alnADRdDwQaoNENEOh1gEbi7/84H7NuvgU1vdpi8ccLcMHUM/DFip/Qvm0nPP7YA9ixYwduuOEekCSJ5557FCNGjEbfvgPAcRyi0Ua0bt0Wfm1ee1CwBnnCCSdg2rRpOOSQQ9J+O/zww7Fw4cJCmvccfA0yD8xEbJYibAjGaWhsRENjIzq2b4+Pvvwc40+agq8/fx8Dh/XDZ58vB0mSGDNmVGrHMLvSi6IIAGlaY+w3giDANFHaqaoKUYz5IgnsbBTBa6yuqWkahNhvCZU7OI7Tza1IFlapfkaO4+ICMuYfjR2T0V8Zu+JE82oBj42RvrwERVHiBaRrN9fiy6Vf4ujJR4Omacx5dA52bN+Bv82YBk0lMKhnf1x7wyycesY5WPTBh7hw6ln48quf0K5tRzz04D3YsX07br31QVAUhSeeuB8HHHAoBgwYgkikEbt27UCnTl1bZDBlPnjCB9kSsUcKyJYu9HLBhuuTZRnf//wzhgwYAEkWsf/RR2PggL545JE7oFEa3n13ISZNOgwVFanPkxXJoEFR1DjJeUwAJv6uqlo8VSMGnufBsixIkoSmafh9/VYodDnKWukEIDGNEUDch5hYXDn2fTzYJoNg4zkeJKWbXFP9lNmCd7Jcoj1CrshmWjugabqGT1EUtm3dhq9XfI3xE8eDpmk8N+c57Nq5CxdffglUBRix7zD8feY1OPX0M/Hhex/g4vPPwfKvf0Lbth1w792zsW3rVtx99xMgSQoPPng7DjnkcAwePBwNDfWord2IHj16txi/qVEBWbJ6+M6dO3H66aejoqICVVVVOO+88/L6O8eMGROPNIt9Lr74YpdG7DFYTUhPRUsQjrnmwsL1aZqGNWvXYt3GjZBlCc+//TqGTpiA9fxGkJ1JPPTIbbjhlisRrgihrCyMU045LoNwBLI67XJAFCVIkqTnLaYJRx2SJKUVLiZJIm6W0zQNfXruj9defi0uCIPBoK6RNgnBmGAJBoPgeC4pBzIu6BLNnBoQDAV1DZIAREGEIAjNV9p0jqZp+S4xud38U5KznaSxEs0+1dh1F9S+CyAIIq4BVrevxsSjJ8aF2JlTz8Tf/v43sAEGwTCD737/FmdfeBrYMgWjxw3Di2++iI49wgi14dBr387oN6Q71LKNkAPr8dzzD+H7NZ9BpGrx0dLXMWZMf9TuWAtO2ombbp6Gv152GmRZL+F2112z8PXXXwIAdu/ehe++WwVJkoo2J3bCsgZ55ZVXZm6w6aXp1asXjjvuOLRp0ybjcYVi0qRJ2Lx5Mx599FFIkoRzzz0XI0aMwIsvvpj1nDFjxmCfffbBzTc3J0qHw+GcO4hUeFqD9EqaglfhoLa7fedOfPvjjxg7ejSiIodeB4zCaVMm4193XIMox+GXX37D8OGD85izrGmMaPLdxSJedcGYua1m0yqd9HtjYyPKy8vi373y6nvYq98g1OxVE+8mGokiXB5uNrM2BdcoigJJlpJMsGk+wAwamiRKcQ0oGEoW2CmXZ2YqnIl4TUxTKQEzrZ3YvWs31vy0BsNHDgdFUXjzlTdRX1eP0889HaqiYfyB43DptMtxwl9Oxgfvvo9Lzj8PX/33Z7SpqsatN12HLVu24D//eQEUyeDWW6/GhAnHYeTIg7Fz5w6sXfsTBg8e0VQhxj04bmIdO3YsVq1aBUVR0KdPHwDAL7/8Aoqi0LdvX6xZswYEQWDp0qXo37+/tavIgp9++gn9+/fHV199heHDhwMAPvjgAxx55JHYsGEDOnfOnOQ7ZswYDBkyBPfdd5/hvgRBSNrp1tfXo6amxj0BuSebNwuFg/MjSRKWfP45+vXujY4d2uG+OU/gxjv/ja2b/4uyijJ8++2P6Nmze5PQyTpA5F5ps+VEJP8tSSJEUdKDZnJcryTpO/5AIIhEKRIrMpBoPotEeeyWA01HNKeEgEhOT4iZRmVJhqLqKSSJZtY002kG4SXLMlRFhaIocZ9mxmlIv/TsSOzHoUCdjP0g4e89EI0Njfht7W8YMHgASJLEe2+/h/q6epxyxilQZAVHjT0KF/31Ehxz/GS8/858XHrBBfjqvz+hTetq3PDPq1G7eRMef+I10BSLf/7zbzj66JMwevRYbN++FT/8sBojRx6CYDBoziSfAY6bWI877jiMHz8emzZtwtdff42vv/4aGzZswOGHH45TTz0VGzduxCGHHILp06db7SIrli1bhqqqqrhwBIDx48eDJEksX74857kvvPAC2rVrhwEDBmDmzJmIRqM5j589ezYqKyvjn5qaGvMDLsTN29LNm4XCZvNoLvywZg3e/vBDyIqMBrERk88/D699/A7orgzOu/xU/PrrFyivLAdBEBg8eN8swtHIKpp6TanHNf8tCAJUVUNZWf40AEWJCcf0NlJ9S598/AXmz5ufpC3RNA2RF5MCdWKRpzRDgyRICIKgm1mbokkTTaeapsVNmYmXSdM02AALNsBCFEREGiPZLz/Bz5kTif3YZZI10k8JmmntRHmrcgwaOihurj/quKNw6lmn6pYNlsGCzxfgxNMmgw0DRxwzFh9/9TE67lWOYJWA8UcfjONOORJ01U4o4Y344acV2N6wBiK9EZ9/9TZOO20Cdkf/AKdsw/QZZ2HKqeMhyo1QVQnTp5+DTz/VA0K3bNmMDz98GxzHAdA3s1ZDbSx7XO+66y4sXLgwSfpWVlbixhtvxBFHHIErrrgCs2bNwhFHZKa6KgS1tbVo3z6ZV5GmabRp0wa1tbVZzzvttNOw1157oXPnzvj2229x9dVXY82aNXjjjTeynjNz5swkc3JMgwRgX5qCj/zIZiJ2cG7rGxrw0ltv4ejx41HdqS2eenMu3nrvAxx95ni0oVvj558/RU1NZxAEgbZtjboS8o03JQciy2+qqoLjeITDIUM76UxCMNdYXnrpLWzYvB1HHXdU0pCYAANFUUDRVLzfRCEpSzpXayAQSBIKaYEwGbqPpYMwLANRFCGJEsoybDISha6p/MmEaXXSVJro10xKRUkx05rK+2yBCIVD6N2nd/zvwycdHv83SZKYt3he/O+Jx43HlyO/RPuacpCkhMlTjkRDQwOYqjooioKNtWtRL/4BidmAL7+ej0svuAirvv8JZLAtrrrqCmxYvwEvvfweKJLFXy89E0cfnTl/PxWWBWRdXR22bt2aZj7dtm0b6uvrAQBVVVXxUHMjuOaaa3DHHXfkPOann34yP9gmXHjhhfF/Dxw4EJ06dcK4cePw66+/omfPnhnPCQQC2e3juUim9+AH3xa4xW2agg8++gj1jY04dtLh2C3V4bLrrkP73u0wedgkXH/LNPzr7mtANeUTduvWxYERZAvMaVZVdK1RRVlZOOX3zJAkCQSBhDzIZCTnzOltPfPMffhzO588JA1gGAbRxgRfZHwPqP+DYRlIohSnqEu7tAwm1qQ0jKYgH5ZlwbJsXFCGw2EQZPI1JgpoA9OQ8dzEMTQP0yEfY8pcJY276fe44E443oe+Dsf94QAOHXdo/N80TeOVd1+J/330XyZh9GH/Rdt2rUAQEk45+wQ0NjaCbd0ARVEQFXdCprca6teygDzuuOMwdepU3HPPPRgxYgQA4KuvvsLf//53HH/88QCAFStWYJ999jHc5owZM3DOOefkPGbvvfdGx44dsXVr8gXKsoydO3eiY8eOhvuL8cSuXbs2q4D04SByCb5cmw8bsW7jRjz87LP4x6UXo7xNGV54903sbqjDSRcejW5EV+za9WPcVFpZaSSYywmHV2IwTQRlZam+xuz9xYJgsm3yYkE7qW2RJAmGJtPdoBpAM7SuRVJURl8QwzIgJCJdSCZMTaKfMi4wMtznmKCURAmiKCIYDMY3KGlI9TdaFZga0q/bSSQ96snacVoqii8084KiKLSrbhf/e9TBo5J+e/bVZ9FQn16iMRMsC8hHH30U06dPx5QpU5K4Bc8++2zce++9AIC+ffviiSeeMNxmdXU1qqur8x534IEHYvfu3fj6668xbNgwAMCSJUugqqopcvTVq1cDADp16mT4HB8WUATzaC48/MwzaF1ViWOOOgK75N2YM/clnHTu0divw0DMefaepPSI3EE2iUjW8uyGJEkQRcngeJpXUo7jmyp2JH/f/DcSyM2b8dFHn+Oaf96Jl96aq0eYJpgn2QCLSGMEZeVlcW0nVVDSjE4zx0WbyQQyCYI8w4+DYRkwrF5uq7GhEcFQMHNOXqqstyJUMu093BSYyG+mjY1pTzfTOg3LQTrl5eV4/PHHsWPHDnzzzTf45ptvsGPHDjz22GMoK9Nf4iFDhmDIkCF2jTWOfv36YeLEibjggguwYsUKfP7557jsssswZcqUeATrxo0b0bdvX6xYsQIA8Ouvv+KWW27B119/jT/++APz5s3DWWedhUMOOQSDBhkje/ZhAR5IL1n13Xc4b8YMcDIHnuaxeMVSrPr9e5R1C2PQAf2xuXY19ttvIABkzR3MDyPXZy1QoLExApIkU0yq+cciSRKYJkGVeYwEZFlJaLO53fLyMtTUdElzkcQ0P5qhdQq6RLNhQhCMpmkgKRKBQADRSEIgXLahp8QuZcuHpGka5a3KQRIkIg2RpAjzjEjZD1jmRXEj4MfMOJr+nVh7MzF4KuV2+rCIgmkRysvLiyJgXnjhBVx22WUYN24cSJLEiSeeiP/7v/+L/y5JEtasWROPUmVZFosWLcJ9992HSCSCmpoanHjiibjuuutcH3uLQCbzqAUeUiegaRqumDULB40cgaOOGo86rR7//d+P2M3Uo1P7Dnj1jceSzHrO7sCtqx6KIkMQRBNabPr5wWBi2kS6/ZEkE1f+5hV1xIghePSJ+yCATdIOY4KQZVnwHJ9e2aOpKUJrMtVSJEKhkJ5DWRbOGiATy6mMN5Fq8kyZOpIiUdaqDJqmIdIQyV9FJDYuC/7KbG0ljTsxAKcYm8E8ZtrYMUUbX4miIAG5e/duPPnkk/HAmf79++O8885DZWWlLYPLhTZt2uQkBejevXvSbrGmpgaffPKJ4+NqcUjVAGNCMNNLVsQXb96CBXj+jdfx/GMPQCJlbNpVi3qyEWVdwhjbZTRWTnw/YZhujDOD1DCBaJQDTVPNNG5JyNZWc5+xyhzZzyPijDuZftc0Dbt27ASCFfExxBfXJkFDUmRagE0S1VzTkAiSSBKSSVpPSuBKRrNhFqEaOy9GhxcTlHSS1pwFBfgrU/uPtwcbBbANSGM0in3nm2kNw7KJdeXKlejZsyfuvfde7Ny5Ezt37sS9996Lnj17YtWqVXaO0UexkMk86pEXKRKN4qizzsTbiz8Ez3BQyxSorAqttYay9mG89sbjOP/80wrspRAbVapNLlO76e2rqtpUtDiQ0TdoBDrPaiZmmuR+RVHKKkgkSULvHsPwzlvvpF1CTAgyDAOe1yNd4xU5YjmQKUgUks1fIt3smajlJZ5PEMnCLAPKWpWBDbDgohxEUYSiKJkPTOw/ZSwFwyum2FzIYqZNNGv7ZlodljXI6dOn49hjj8Xjjz8ed5bLsozzzz8f06ZN80tdlRo8Yh7NhQfmzMHHX36BF596CGitoaK6FcIdQwhWh3D8SZNw/EmTbOrJasCNUbUhs/CMJdmHM7HJGGpbX+U1Tc1CaZfcr043lxksy+LFlx9Fr4FDE87WtY+YFhIrrpxmtssSKBMTkqmBOzFzbNo5qW2lIsuUxHInY1VECBBgWAO+5VR/pR2aVSaBafT6XEbitaZd9x5qpi1Ig7z66quTIslomsZVV12FlStX2jI4HzbDRdaZQhDTKP7csAEDDjsMS1Z+DrFMRPXebdBnUC+w7ViUtS3DSy/9B4cfnl5mrXBYnYt852Wefz3pn0soaGx9TI2N0RS/Y2bE6OVyjevoo8ehc9fOzYcQaGaJaQJN0/FAmYwaSNPQ46ZXkkAgEIiznMR+TwORfF7ab0gfSypCoRBYlm0q5SVCFIznZKdpVnYhRWDGGIY8X1QpYb+YRvrQgjVNyxpkRUUF1q1bh759+yZ9v379erTyGon3nopUrdBDQjARsZw6APjrtddie91OPP34vWi7TxUOGrM/2u/dFmwliymnHY8pRR6rNWRXF0RRjFfLSN6VG9EYk4/hOC4h0jU3JElKyI3M3M9HSz7DjoiGCUdNiAejpAbPUBQVr9yQSwNJDGQhKRIsw2YmE0i57FyaSlIwSo7jAk1pLqIoxufbDDl2qt/ONg0qiznZC/7LvMjiXk/zFXtQUzYDyxrkKaecgvPOOw9z587F+vXrsX79erz88ss4//zzceqpp9o5Rh/5kG336VGBqGla3He17OuVaDtgX/ywYQ3EChGjDh+OSceNRahdCOVV5XjkkdsxYEDfPC26DbPb5XRzraZpEAR9DgKBgAXhmAy9JiBpYOHW4v3rx2a/lmefeRVzn5+rX0GqNpVwSRRFQeCFePO5tL5YdxRNgabotDSNfFphpp8zpTpkQox0gCRIiIKYrMXmQ6ZAF6fgZf9lHiT5ioHkRz81FaUEYFmDvPvuu0EQBM466yzIsgxN08CyLC655BLcfvvtdo7RB5DZRxiDRwVhInbX1aGqshKqqmLcKSejV68euO/fN2GfA3pgxt8vQpuaKrDlLE4//QSHRlDIVtZsRGpuASeKOlUcywayBMkYGWNyH9EoZzAdRD9HUdSkvzO1OXfuI1i3Q0z6KVP6BcMw4GQu3lyqVpQY/RpfJAk9l1ITtWbuVuTXClPTQdIuLVFIZjks5o+UZRmiIGavIpILqdOWoz/LKCH/pSFk2GSkFaz22DVZLncVQzQaxa+//goA6NmzZ5aw9JYDR+tBFol/1AlwHAdBFFFZUYG578zDmZf/DRv+txJV7Svw9rsL0L59W4wZMyp/Q5ZhPf/Q3jaSEUu8txqhqiNdOGYO7MkM3f+ogKbzB66s38GDYoPZUyKa/i2JEjRo8etKFHCpwi71b0mUoGrpdHg5CcXzBdGYCLJRFAWKrECWZITKjJG/Z4NrASyJAqUUTLIm4IaZtqG+AX279s1b7sqUBpmtSHIm/Pvf/zbT9J6HmADMVvWjxISjqqr4fd069OzeHYIooOfo0Tj3zJPxz+uuwCHHjsST4btRXl2GQDiAk08+xoURpW6/nW4j9yolyxIkSUYgkE1rNIrkfvRcxlyCLl2acRxvyFf54Ycf44ab7sNr77+RPOYMyjTDMs1mVmTwR6bkPCYKkmwE5/HjtAxCMrd1OK7JGqnakVhFRBIlSJKUnK9pAqmakWMCM5NBw/79XFGQNl+5fJwOw5SA/Oabbwwdt6eEABtGrhSKEp6r39etQ0V5OaoqK3Hnow9h9v0PYvOfq8C2C+CxJ+5Anz49Ea4MIVwZwllnnVTs4RqAlZUlf0qIKOqFikMhk2a8jEjWxERRjFM7Jo8n9d/N52ar6pGKGN2cnleZMPYs00SQBCRRak6pyDGdqUKTYRmQMgmO45L6yhukk0e7MBrIEzs2XpeyqYpIKBQCSZnc0CSYmV0lGc9ikm1JaRmZ0k+cNNMWbGLd05DVxNqCzKPZsGv3bvy+fj2GDhiAnfU70WnwMNx+y0xcPm0qNm/Zij/+WI/Ro0dkycFzCt7dLmuaFicLL0xrzIxUYZJnNIjNU7Kmlnv+tjeIEMHmPjThe57jdXLz2PdA0oKdZPbM0J6qqLpATjUZ51n8jAqBNKafPIgJykAwkJkc3SyK6WtrIRqmYaTuFdH8tyMmVh85UMLm0WwQRRFfrFyJIfvui7LyMK77911458MF+N+apWjdqTUWLXoZgwf3BxNg0K1bF4fqIyYi0xtezJUmO2LVN4ymXZjtUxTFFD9mvjER8fOSNcjs52iahp07doAKVekCKzUwJS7nkgNnZFnWhUmqGZRAMilABkWXpEgEg8Fm7tb8w9R/NvjOmdEogYRyW5KESGMT52sh/uNiLg0ppsr41y1kvUpDJjM0kJUIPxPs39b6KGn8+MsvWLpiBSRZwp/bNmDsSSfh3RWLQHWhcPWsS7H087cQCOsa0SGHHGCwRmKhSN122/FCF2I4yd1/NBpNqb5hBxIFkARVVVI09VxjSr5WI8E5AFBf34A+PYZj4QcLcw0naYENhoKQJTl79xmGqSF5wcpIS5d+Um7k+T2RN9YIGIZBWXkZaIpGY0OjqULwOZGQFuOaMY9AnKQ/Pg8lmFJiFWmpKDnga5B7OHbu2oV5Cxbg5GOOAR2iceP992DD5s345NPX0bvb3vj++yXo1683SJJ0QUPMBrt2uM5qnqqqIBrlLVffMApJkk36MxODemTDGlBFRSs898J/0G+YXhA91WSVaC5N1MhUTWfpIUkyYzBNaqBFJg0mleA8I3IozTnTQWJ9pJCsG9GkSIpEeavyeBURmqHjRASWkMFf6TZ5eEaawD3NHJsFvg/SJBxN83AJ7y9ZgmAggANG7Idv1/6EA484Fp9+/AYOOmR/1NZuRVVVRTrDiasovbcyVn2jsPSN/BBFMR512YxcgTnJfyfmHBpBfSOHRi2UuelEpPyWkSXHAjRVA8dxmYWkEX+eCYFjNZgl2hgFRetRsLb6mj2QGxifkxYW8GPUB+mbWPcA/PrHH5j9wAMQJQE8eNz1+CN4et4rCHQLYMRhQ7Bt27c46JD9AQAdO7YvknDMY4fzKDRNRWNjBKFQMIdwTMxeN9xy2je6WU/LEASVxdmS8rcgCCkFofOP6cMPFmPxgsWZm049PeFvVVGTTYYWt+EESSAYDIKLZmC9icfE5WjcxKMU1+BM6gzh8jACwQAEToDAC/mriBgeELL6Dd1CppJZ+mBcH0pR4AvIFghN0/DAnDlYvPQzRKQoft60Fnc+/B9sIbcj2DmIee89hWeeuz9ejaFt2zbFGGXK314Qiubeep7nIYoSysvL8uyqU1Y6Q0g+XtO0OPuOOTRfk6IoKRpO/jE9NedlvPHyG0njyHh6yiWGy8LJfroc0aepf6d+R1IkAoFAnJ4wCURKukcGxH83cnsJk8cnIFQWQiAYgCTpOZ2SKJlrIO/Qmq+zWIa/NIHZwn2XvoBsIfjiq69w7e23Q1QFcCSHZ958FV/+bxXK9gpj4uSx2L7je9TU6D5Ep31kueGk3ajQt9TYmDRNQyQSBcMwpsyVhUAQBAPm20zX33xNydGrOdS/BMyb9zTuffiehNaa20sTZilNKHK6JpVvYY8FjqSCpEjQFJ1ZSOoDyy3UzO5REgWAyccqGAwiGAxCURUIgpDGN2sZCddgVdu1Haku/USB2QKEpi8gSxQcx2HGTTfh4y+/AE9w+GXLb5j/ySKo7TSEO4Wx4qv38M9/XgEAGXxWxYAbDhXntVBRFJqS88OuzakoCnFtPxnGtXBFUVJMf9lNsYmgaRoUmSGIAxmEWUpATigcShMOaVU+TBB/0wwNiqSyCxwrinouJLZnYbEPBoPxDZQgCNmFu1UQSAqS8oRAyiIwiy7ILcIXkCWEV+bNw4ybb4ZACJDLFHy2ajlqxW0Idgrh7AtOxur/Lor7D51ITDcPL/sVzdmGNE1DNBoFQZAGtEb7FoNYzcbM2mO+OU02r4ZC5tNO3n77Q5x2whlGukgbEkEQaVqkqYUyg4bEsAxIgsytlZnRXgyaXQ35O7MgEAggEAjEhbvtghLNqQuup4zkQqrGi2argyfGZwBeWEV9ZMHmLVsw+bzzsPy7byAGRGzht2PDzo1gO7Jo1bEcK76ajylTjgPg1WRfL44pBuPpHnrSv4hgMJgS5JKv7cKhB9ZYjYxtHoeipOQmGpQgrVqVoWPHDsnap4l9TyAYSPLFZXxOmzTPtEUzIQUiEXmFpInpz1teK7XpAoooM6xuko8VmeainO2CIjY+L/grMyEx/zJ+z70zvDT4eZAew23334/tu3fiXzddg1CnAOr4eiitZLBtWVw+bSounza12EPMgNJLyzAKQRBAEIRrvsbUvmmatmnzY8ykmorDDjsIA4fvD4loNien5RjmyCyhKAo8xzfzs8YOSU0XIJDMspM4zAyPF8MykCU5ezqJwSlLpL0zk38Yv34Ljz5N06BpGqqqQhIlW6qIZBhg8z+9Wk4qdQOUmHvZ9Hux4WuQRca3P/6I/SZMwNpNv0MMiwi2C6CqcyVCHUOo6liFJR+9ilGjRhR7mClINU964Em2GZIkgud5UJSR3Eb7IxJUVQFBEAY11vxtWW1H0zTs2L49qbhwrmoLmRAIBCDLyRpsRiabbO2k+DZjoBkaDM0YKnycV4uyGGRsVgNNBEmSYAMsQmUhSKKEaGPUOW0v1UzsRa0tV8BPkeALSJeQ+OCfdcXfcPXttyFCRdG2V2v0G9QbRGsCbBWLGf+4GDfcYLysWHFg3DxZitCrb2gIBoMGCKpj215754LjskWtml8tolHeMtF2be1W9Os5Aks/Xto8gtRFPIMfMvEYmqEh8unUbJnMp9kW72yCiKIpBNhA5jxJk7CS3pGkgVoUbrEqIuFyPTUm2hiFGi9obT886a9MReIrVUSB6QtIBxHz28xfvBhdhw/DDmEn+DIeQw8cgEEj+6GsQxhdunfCCy88iJ49uxd3sJ5AcV9UVVXB87xBk2psJbV/kxCNcgiFspE1mO8vd73I3KiubovnX3oEg/cbnDACcxokADABJn3Rz2RRzcKTmYs7NZHgPBsMc69a3esYyMc0gkAggHB5GIqqIBqJpmnedsLr/so0FCFC1vdB2oiYP0RRFOx/1JE4/piJuHL6heg5vDumnj8FRCWBYGUQ06+8sNhD9SiKp5GKogBFMVOz0ZmxqqoKms6U0mEUyUJb07SCmF1omsbRR49HREuYl0yXnrJXSBWiDMMg2hhFuDyc87xcyFUmywh3a67zbUPC4l0IpyrDMGAY3c8abcq5TfXj2oZS8FdmQkqErBN0eL4GWQBEUYz7Px56+il0G7k/+AAHqbWIqRedirGTRqOsXRn69OuJW265Cm3atC7yiHPBAwb/gmB93DzPgSBImwoaG0Xm8XIcb4EtJxHJC4MkpZbFMo/33l2AT5d8aqZbAOk7e5qh42krSedluXVZNYMsa5+hKiBoMteafVzMHm+TRkkzNMJNObfRSNS+KiK5kKpFl8qSEBOYiQFUBcIXkBZR39iA6kGD8PS8V8C34nHIMQfgX7OvAdmKQrA8hL/+9RwcdND+xR6mAaRuF72+bcwG8+OWZRmNjREEgyFbgmGMIfv2PBKJ2lAiK3lV0DRkIDQwt3I89sizePv1t3M3kcEPmbqLZwMs+Gh6DmAhgS6pMCIk42ZcM91afS1sep1IikS4LKxr4pGoI7mUWZE4V6UgLDOYYq3mX/rVPEwiVs1j29Zv8d78xRg9egR69epR7GFZQDFSM5zo01qbxn2Nif3AUl/JbWQ+X5YlAIQ9VesT0NgYKZhaUBRFbKrXwCbMVZoZK9P0ZLhcURDBsIxxE5jFR0ZVVAiikN8qYNYUatV06oD5z7EqIrkQ8/s1/cOb+df5UV9Xj341/fJW8/B9kBbBBlicffbJxR5GAWgJwhGm29Q0FZEIZ0FoOJGL2AxBEFFWVihHbvocFxKgEwPDMCCJZNNeplSPeJ3HhO9Sh8SwDLhohvJVVvYfOc4hKRIsw+Yvu9WUi2dYcJnVPBPPg70CJebP5SKczlXL0M7TH2YzY5aYnDR6H3wTqw+XUPw3SKf5EkwIR/vzGzNBN63aTyDP89bTOxLx6qvv4Jwp5yZ/aXRaUuUoQYCiqYw5kBlNrU0CKaOhKzGvLwMomgJN0YbIwg1HucJaOkgabHysYlVERFGEwAu2VxHJiVL1VxqELyBbJFrYU2rD9TQ2RsAwjMlAHPvzG1MhiiLCYbuCg9LHaofpraKiFarbV9sWTs8wTEYfWmK6QcoP2ZEnGIZm6PzcrVZQ6KORmKpg0+saCumCUtXUplJsLgT0pKLU/JV54JtYWxScSVo33q83zKiJkCQRsqx4oMRX+jWoqgJZVgqOMs0G4+a83Pdt4sSx2G/UaMiplTuM9pfSfKwySSa6uTQzbb62DYBhGUiiBEEQcvqci+JPi702NpoqY9cYu2ZoOieua0jRKAtJdyk2fA2yRaFYD6E3I2AjkaiF9A27t73ZhQ/HCRa0R2PjUxTFhMaX+76pqort27bZGjkZI+xOG0mOhTQnRVoe32CM4NzUNVh5FKz6JxM1SpsQI0cnSTJeRcTVmMym6/JcSS4T8AWkjxYHRVHAcRzC4ZAFH5ydQj67cBQEK8IRWdtLhaIoGYJTrK1Of/yxHvv22h9ffflV/uaymEhTF2aKokxrFdlYdhL7ySckcxZdzgQL+Y+W4bCgpGk6nrtdjOSFtPtXAsLSF5A+WhQ4jmuqfWhzdQRTyE1DJ0kSkNXsZM+qIUmZKMqs9delS0c8/9Kj6D+gf97msuU0ZrpWkiAh8Jl9g4Us4LnOjROcG+FuLcRbkS2wyCgceHRpmo7XphRFEVykOIIyjhLwV5asgLztttswatQohMNhVFVVGTpH0zTMmjULnTp1QigUwvjx4/G///3P2YFahteeHHciOq1CliXwPAeWZR3z6RlH9pVV0zRIkoxAwD6u1UygKKOvdv7+AoEAjjpqHNq2a5u/tWwBMxm+Y1gma/dZA3ZizeVj2clxLkVTCAQCeRl3mjvL3V7OcRQKB5YBktSLfgfDQeeriORDqkbpsSWmZAWkKIo46aSTcMkllxg+584778T//d//4ZFHHsHy5ctRVlaGCRMmuMtKYRhe8+sVI/jHGARBaKq+ETKZB+b+GymKYg4icnsgy7LthANvvzUfX3z2RfoPJqJOMy3CJEFmjrbMlvZhAEncnFlAUqQhWrrYWKzkPyYVBbYKB5eBxCoiMUHpZBWR3INp/sQZbzwgLEtWQN50002YPn06Bg4caOh4TdNw33334brrrsNxxx2HQYMG4dlnn8WmTZvw1ltvOTtYH45AURTwPK/X1bOkNbor9EVRaK6m7iAEQbRdQD780FN47+33jB2cRWhmum6GZdL5WeOnZNci8/KcGri1Rrlbk9o0u6fKct2W4ZDQiAlKRVUQbXS2ikg+xN+RRN91kYTlHpPm8fvvv6O2thbjx4+Pf1dZWYmRI0di2bJlmDJlSsbzBEFIirarr693fKzFQeIT6E1NMRGiKEDTdPNfKYSQK4oCVVURDDpPiM4wZl5rY6k5n3zyOmojGfbTmU7NoUFmulcEQUASpfRqFS7cViNVQNLGlNvF7CwSU2Ec6N/VKiIGEH9eErPIXJz7ktUgzaK2thYA0KFDh6TvO3ToEP8tE2bPno3Kysr4p6ampoBReMBmkBUJNg4PQ9O0pg0LUTLCEdDNntn9jlafi/TzNE2DLJspb2Vs/hiGAZGlP4NDy6r1BQKBrFpktrb0BlG4CRPNQtJw0WU7Ik0LsbomRoM6tKTEqoiQFIloJGo/0YIVFMFf6SkBec0118TV62yfn3/+2dUxzZw5E3V1dfHP+vXrLbRSooSFHoMkSeB5HgzDWDCpFm9zIopiHtNqrucinx0xGbIsI+hAUvgLL7yBC8+6KMMIskbZZEQ2v6LlupVGXikDt54g9Q1XrHydLf06eX5CO0766yiKQrgsDJZlvSUoE/yVAJzbKDjTrDXMmDED55xzTs5j9t57b0ttd+zYEQCwZcsWdOrUKf79li1bMGTIkKznxcKizSHVBrAnC0Z77CGiKELTtAJqNhbnHuhVOlBAZG22cWeeV0VRTJbuMnZ/KisrUF3drtDhZd0kBENBCLyQOcgqj1ktrxUhUdvKcahhgvOUdq1W6IiZSgtlmkk8185qIal9xEzQ0UhUnyuWda+KSI5x6f9IuHYbTbCeEpDV1dWorq52pO0ePXqgY8eOWLx4cVwg1tfXY/ny5aYiYY3BiwKxWD7GwvpSVQUcxyMUChX9ZbQCXaNzwu+YeV5V1Zl8hGOPPQIjDx0DUzpetoUqy/eqokJV1cz3Od8wjRhpiPwCJEakno+WLqnZJqJzs35BI9G2ZpFUZcOh1zwmKLkoB5IkdVJ4m4PCrCDVX6mhcF9t6a04TVi3bh1Wr16NdevWQVEUrF69GqtXr0ZjY2P8mL59++LNN98EoE/etGnTcOutt2LevHn47rvvcNZZZ6Fz5844/vjji3QVbqI0fIyJEEUxXgaqFIWjXk0jlzaXb2U0v3LSdLY0l8JWYVVVsW3r1swmNhOpHrkQKgvlrkRRYNSqflj+g6wQnOdl+cl3rg2+VL0x/X92FqHOhlBYJ0eXJRk8x7tbRSQfiJQNiMXpKL7Yt4hZs2bhmWeeif89dOhQAMBHH32EMWPGAADWrFmDurq6+DFXXXUVIpEILrzwQuzevRsHHXQQPvjgA2PmlDR4OeCmWLBv2xqJRBEKBT2Q9G8NsiyDJPMVQM43V+bmMhqN5niWC7svP/74CwYOHIe3F76N4SOHJ/0W36kb7TKHJifLMgLIrLll7ccMDEZBGiU4T0NMczFr5iSMCW/DzSUKB4f3xMGmvN5YuS2CJLzz3iZce5IJ1ujpWlG5hkoP9fX1qKysRF3dz6ioaFXs4aSgWLHn9kGWJZuKBxcXhv1YNiL7Ym7S1pkBkUgUb7+7BINGjkKbtm2MDcji45hz7gy0acQPZ9RXJ4kSFDUTr22uxi0KSSfhYpygJEqQFRkkQbpbRcQEGuoa0LemL+rq6lBRUZH1uNKzW/nIgmIIR3v3VrHqG4UJx+Lv9yKRqAGtw/5xalq2VAkr0bPJKCsLY9KR4zILx1xpGNmQ4/JzsrnYZEbNN4YYGJbRuVuNRrfqAzBVgDkbbI1OTQxUcvgVYVi97ipJ6dVTXK8iYgQGHxFfQLYYuCUc7Q/2UVUVkUgUZWVhk1RxqXB6k5D/JZckESzLGNAe7B2noiggCGdf5zdem4cVy1aYO8kCn2ooHMpb7Dfnghszo+aAGZ8hRVMIsAHjeZIJfcRp0yygEL9m5gbheP5kIhiGQTAYBMMwRa0iUgh8AenDJOxd2KNRDrIsocwIi0leOC0c87evKGqeNAv7A3P0fmUL6UjmcP+9j2Hh+wvTf8gTOZrt+2ybCIIgIGesRpJ8jJsgKRLBYNA4LV0TCIIo2LcY0yRtEy4uC0qKopKriES53MQQHkLJBunsmSgC11Ja3za1pqmIRrkC0zfcmgdj/TQ2RlBens887IxmKYoSWLbQfN3c+PLLd7FdMEk7ZvEWBYPBzPRzsWbz+RATQ/3zCVODx5mmpUscSwGIjcvOIJ7mxu1vMhtiVUQ0TYMoilAkBYFQoECrkbPwNciSQeJK46ZwtN+7z/M8RFGyIX3DrXnI34+xAsjObdezRw2aY+LJhWAwAJigljPURZbzSIpsqpuZpVkjGqTRyzOTu2iW4DwVhT4CDj1CMe3UDRMoQeisReHyMBRZJ0dXTNEjugdfQJYMihURZ1+/qqprjbHCrS0FmqZC0zQDwr6Qucy+cEmSlKNv++7fnDkv47LzL8v4W868u5w/Zf+RZdn89HNGfI0GYCaophAhqaHAwBuHloG4luqy6TpWRUTV1KJXEckEX0B6DqXlxDYKURQgyxJCoWCBrBtuzo+xviKRXPmHzsN6/Udzc1lZ2QrtshRNzmvuzPZTjvNohgbP5anVamQ9Nxi5aVZIBoNBS4E7RoKIig6Xx8cwDMLlYUADoo1RiELuIC234OdBmoSzeZCln8eYihhtl/WajWktwktzxHFcAfyw9kAURdcSs2vrRKhklr6y3Jp8/sJcv0uSBIqkQFI59vJ2PhImcxhVRYUgCtaeAZvyJZ0qf+VkWa18UBRF5+alKUesTQ31Dejb1c+DLDEUa+F3Zo8kimJ88bZvAXcrKCc/FEUpeoCBpmmQ8kR82gVFUbBty5acvsFMyBv8kuOeMgyTX4sEbM0XNBMMQ1IkGJoBzxsYY6a+TDK7ZGwmtbiwTXCjrFY2JFYR4aKctfm1Ab6A9AEnhI7OY6khEAiUII+qsfngOL7olFqyLBsIDrIHX3/9LQb1OQBrflqT+QCLxAD5FneKofLnPRqEISFiUijQDA2KpKyXgrLz9XNKkMXMwi4LSoIgEAqH4uZsnuddTREptZWrBaFYlm0t5f/2Qpb1mo0URVlIO8gEt+fJWH88zxtI6XAekiRbNNGZn9e+fXvh+ZceRU23zEXDCxFiua4hEAiAixjw9RmSfcbnygzhN8MypgnOUzorGLYTC6R1gKJplADigpLneXAc50pAj58H6RpSHSXFMKc6myoiiiJUVbU5YMXteTLAzymJRTetxpBbNuZyzpmf14qKVph05DjwRGaNNZfwyevPyuNHpBk6ty/TaOCLiTRisxsPywTnsXHZCRdc9cXyUYbDeg6qwAuQJRkURWXNly0UvgbpGoodWOLcG6OqKnieB0mSRY3mdAOqqkKSzBYlzgXrW3FN0/IIavvv9ysvv4lVX60y3R1BEHk1slwaKMMy+bXIYr9i0MdJkVThPrNCNTSn5yKBCalYcZ6BYADBUBAaNPAcn5ee0Ap8AdniEXMcOPPGSJIEjuMQDBaavhGDN02qMYiiaLPPz/p94Tje9UK199z1ED5a+JH9DeegngP032JaZE6Y0CINL+wmfW80Q5snOM/Wr9eR5765AZZlEQwFQYAAz/EQeItm7gzwTawtFjGh6NzDy3EcGIaxsTRVMVI4jPcniqJBgeTOddA05XoA1DerF2KXlMN86OCl0wwNjuPiJraMMMGeY9gfmSBQjQoDiqYQIHSC85CVDVUscEmzTwC5YhK1n3jLMBiWAQMmvmkHdMrCQubP1yBtg1e2e84/oaqqorExglAoZLMG4wEbWRZIku5fNXa97lyHXAR6rlAwkKOsVm4YSsTP8TNJkoZ8v7aWiYohJlBNtGuV4DzeZYzo3C6OcofSQZI70f/nyD0wCIbRy22xLAtBEAoqt+ULSNvghcXdec1Fjx6TPBHB6SYUxUzRXDtWhtxtKIoMhsklLJxZnR5++FnMuPTK7Afki1Yt8PmkqPz+PVPRnGbMpxaGXjB3a8wIZPftdFJ4ecA/CejPSjAYBMuylquI+AKyRcANu4aGxsZI0wNnF7NFMbVu430LggCaNhOUY8d9yN2GLCtgmFw5mM48C23aVKFN28x0c0D+BTFv6kSeYdM0bcxkZtTHaNYLYUFYFSwkE/sthXSQeEcJVoMivuqxKiLBUBCyLIOLcvk5fmPnOjw2H67A2ac9ZqYoLy+z0SFfTMo4432LoqgHiBj2PRrtvzAUw7wKAKedNhk33npt1t/zaYhGNMh8go0kyPyBGCaDR0xpOilCctrF0zD11Klph33x2RfoUtEFdbvrsOzzZejdqTc2b9qc9Fv/bv3TNOLVX69Gl4ou6FLRJen7F555AeNHj0fvTr3Rr6YfjjjoCDxwzwPGx50JLggur/DPEgQBlmURCocMVw/xBWRJwr0nrbExApqmEQzazdZSTJO0sb5j1eCNseWYEfj5jst/fxmmOPF1Ot3c1uxJ2vkuzUj+YZ6DGJYxZ0I1ADNE5YUgGAgmRbeWlZfhg3c+SDrmpedeQpeaZOH48nMv44ZrbsB5F5+HBZ8twFsfvoVLr7gUkUiksAG5+Rom+CeLTQHOBowxYPkCsqTgbMpGIiRJAs9zKC8v80xSvNvged7GfEczyH1/dfL34mwwli5dgcF9R+LP3/+03ki+tdFgIIkR1hozbDim/KMWGWVIigTLsPGcvZNOPQkvP/9y/HeO4zDv9Xk46dSTks5bMH8Bjpl8DE4961T06NUDffr1wfEnHY9rZl1jbgAeAEEQtnDQugFfQJYUnE3biCHS5CuxV2ssgbchAaIogKLMpFEYuS/2zIGmaSZ9ovaNY9Cgfnj+5cfQvkN7683bwGJjlKnG1ELskhmQoilQpL7pPHHKiVjxxQpsXL8RADD/7fno2q0rBg4ZmHROdYdqrPpqFTas29A8Vofgms/QC3GNeeDnQfqIQ5IkKIqCUCjoQH5dCbwNTdBNQEDAoBnGOLwyB9bH0bp1FSZOOgxCFro5oKmEU64+DJR5MppzKIlSfpoxJ6e9qe1FHyxC7069k35SlewRkxStC8iKigqMPXwsXnnhFUy/Zjpefv5lTDljStrxV15zJc4//XyMHDASe/faG8P2H4bDjjgMRx9/tP6u2mhYSoxAdYMEINaPW/2Zga9Behbualx6rpDOo1p61TfsRTTKOVClw2gIYn46NlUtrjb+0guv4ttvvs36e95FzkAAjRFzZyAQgKIaDFYyqUWa9ZGNOmQUFixdkPS564G78ndHEDhhygl45cVX8Ofvf2LVilWYfPLktOM6dOyAdxa/g8VfLsZ5l5wHRVYw/eLpOH3y6XrqglNyxa0gHhh4boqAPXsl9DTcSjbXq2/QNG1j+gbgDZOq+THwPI9AgDXxsppZeY20mS+9Q0YoVFy+29tv+z989vFnuQ/KNy02mGEBXZAZCdk344u0Qp8WDofRo2ePpE/Hzh3znsewDA4bfxi4KIcZl83A+Enj0aZtm6zH9+3fF+dccA4eeOIBvPT2S/j0o0+xbOkyAPbnHCamg7gaVOOFpaMJvonVM3A/7UEUxbjW6APQNNVESgdg7p7Zc39FUSpS4FAzfvjxEzQiB92bEdj0qIdCIb3yfJ5Asrgv0mHfnRUtKBQO4cRTTsQjDzyC519/3vB5vfvoJt1YfmXcTOkAnVyhBA8mO9NRRNq6GHwB6Rm49xQoigJZlkGSJFjWKeHoBXOJuTFEozzKysws/O4KR0DnXy02QkEW9VE1t1AykstvRKAYmDpVUaGqan7XgNlbYMBXmtR8Ab67q2+4Ghf/7WKUtcrMUHXN9GvQoWMHHHToQejUuRO21G7B/Xfdj7bt2mLY/sPSxmD7ZqAYr3MqOUIRxuALyD0MsZqNgUDAkzb/YiEa5UxW6bAz79FYezpNVvHtTw888CS+/nYt7n7w7oLasev5C5XpWmQgaNBFYPTWEdY0Jys5lSzLorpDNVRFzci4c/CYg/Hycy/juSefw66du9CmbRvst/9+mPvO3Mwm2Zgv1YSA9yQStckicIsQWrEzNksM9fX1qKysRF3dz6ioaGWxldiddu+Oa5oWZ4WxPwAl3gu8oTmag6qqkGXZwXmxBxwXRTAYyrPgGbkHhd2nOXNexjff/4qZN/2zmMNIQrQxilBZvrmxBkum0wKuTVM1vWqJKWuG/eMw1DYcbD9btzZEuzbUN6Bv176oq6tDRUVF1uN8DbIoIFL+7yxkWYYg6HUMnd1NFls4WlsNOM6sabU4oCjKwP0rPBAoH6ZOnYJNu/MUp3V+GEkIl4eNa5EmHxNLKQgF7H8TuVsLFpIuvO5up2e4mYbiR7G2cAiCAEWRUVYWduBhKn3jQyQS8YBwNDaPkpSF3s1lKIqCrbVbDBM+50ThmS9xZKW/S4UVoWXtJMuviC0E56lw8nUtwlIQvycO9u0LyBYKVVUQiUTBsiwCAScCcbxoTjU3HkkSPRLBm3/ciqIYZo/JjcJXkwULPsHQfgdgS+2WwrsyqGka8QSFy8JxCjdDMDMVFoWdBuusNDEhyUW5/AcbHYsDKFo6SFw+OtenLyBbIERRBM8LDmmNMXhNOJqD7pOVTfLMFk9jliTR5uLU1jF8+GA8P/dxVFVVFd6YCTJxI8dIomS8bxceYYIgClrACZJAIBBIIjgvZCyAs0LM1XSQWJ8Jkbt2X5svIFsYYtU3wuFimw2dw7ZtO3DJJdegW7cRCAR6oGPHIZgw4TR8/vlXAIDu3Ufivvsejx/fvftIEEQXvPzy2/HvolEOZWVh7LvvWBBEFzz99Nz4b//97w849thz0L79IASDe6N795E45ZSLsXXrDvcuMgXG6rzapbLlRnV1W0yYMDa/f8xGP6TRhS8UCjmuRZpdhAutFBIjOM9XKNrMeAA4s98r5r45RvBg43X5ArKFQJZlRCJRlJeXtXiquBNPvADffPM9nnnmPvzyy2eYN+8pjBlzIHbs2JX1nJqaznjqKV0IiqKIUCiIL7/8GrW1W5N8kNu27cC4caegTZsqfPjhi/jpp4/x1FP/RufOHeIk7vbC2NtsLP/RvYjo555+CT9890Pe44w1mP8Qo5oJSZGQzfpqTQpJK1aZmJC0KigpmgJN0YYqmBhFIeZfw30UI0kiITWk0P5LdiW97bbbMGrUKITDYcOmnnPOOSdeaiX2mThxog2jKW6wSmzhLn6wifPYvbsOn322HHfc8U+MHTsae+3VFfvvPxQzZ16OY489Iut5p59+Aj755Ev88cc6KIoCkiQxZ85cnH76CUmmy88//wp1dQ144om7MXToAPTo0Q1jx47GvffehB49uhkcpVm1JDd4nje46XHnOSQIArfcfA+Wf74893FGBbaNfkhAp29zMmDHKuJlniyCZmi9WLRNQjLRd+gU4hpdMZZIGzTKkhWQoijipJNOwiWXXGLqvIkTJ2Lz5s3xz0svvWTDaIpjV1BVNW4q9Ip/ymmUl5ehvLwMb731gamFokOHdpgw4VDMmTNXjw6Mcpg7dx6mTj0l6biOHashyzLefPN9i7tP+4OXSJI0eH/dew5/+30Fzr3o3NwHGRVqNvohAYBhGAi8SSFi9lY74O8yAoZlbBWSAJwXYARMbXAc6d8iSlZA3nTTTZg+fToGDhyY/+AEBAIBdOzYMf5p3bq1QyN0FtEoB1mWTbK/lD5omsLTT9+LZ555DVVV/TF69HG49trZ+PbbH/Oee+aZf8ELL7wJTdPw2mvvomfPvTBkyICkYw44YBiuvfZynHbaZWjXbgAmTToDd931MLZs2WZwhPYLKVvSKWxGKMgaWvAMa0xGrbEmtMhc5aaSYOWWWTS12oGYkLTLJ+mqACumsa2pbzPXWbIC0io+/vhjtG/fHn369MEll1yCHTtyB14IgoD6+vqkTzGhqgqiUQ6BAOt55hdnQODEE4/Cpk1fY968pzBx4hh8/PEy7LffxKRAm1QoioJJk8YgEoni00+/xJw5czF1anrdPQC47bZrUFv7DR555Hbsu+8+eOSR59C376H47ruf8ozN/q24F2vkAcBdd/4H1191ff4DbY4bMmq2ZVkW0agJn7FV1hurQqXAR4VhGdAUbUt0awzxYCKHhFjR0kHiA0gYh0HsUQJy4sSJePbZZ7F48WLccccd+OSTTzBp0qScO/TZs2ejsrIy/qmpqXFxxMkQBCGuNZpLT2h5CAaDOPzwQ3D99dPxxRfzcM45J+OGG+7JeKxeEklFWVkZzjzzRNxwwz1YvvwbnH765Kztt23bBieddAzuvnsWfvrpY3Tu3AF33/1InlE1bcVthCRJNuU/xmDPwtSuXRu0bl1loDej9lODHZuYXjZgTMuNw8LUWPZx2fCY0AyNABuwLU8ScDjCNbGfEkkT85SAvOaaa9KCaFI/P//8s+X2p0yZgmOPPRYDBw7E8ccfj3fffRdfffUVPv7446znzJw5E3V1dfHP+vXrLfdvFaqqguO4puobdi6WLQf9+/fOGWUaiwKdOnUKPvlkGY477ghDCzygayM9e+5lIIrV/lVFFCWDO14zdSkLx8UXn4kZV1+RvzebTaxmwLIsoo3Oa5GWkUjEbREkRSIQCNjLuGPDuAz34XF4KrJjxowZOOecc3Ies/fee9vW395774127dph7dq1GDduXMZjAoGAzTt4c9BrNmoIBoMOm9o8UHwtJ/Tglx07duKkky7C1KlTMGhQP7RqVY6VK/+LO+98GMcdNyHtLFHUgxliUaD9+vXG9u3fZfXdvvvuQrz88jxMmXIs9tlnb2iahnfeWYT585fgqaf+nWeM9s8dyxqt/ejufZNlGVs2b0aHrt1sKVllavgm4qAYljFtpnaTd9UOkBRpH3drDAk5n06b+GNavhddCZ4SkNXV1aiurnatvw0bNmDHjh3o1KmTa30aRWL1DXcEtPcezmTo4ysvL8PIkfvh3nsfx6+//glJklBT0xkXXHAarr328qQzFEWBpqW/eG1zVGzv338fhMMhzJhxM9av34RAIIDevXvgiSfuwpln/sX+y8oBffze5Lt9++0P8Ze/XIjvfv8uc7klCzC8GBPGj2VYBlyEQ7jcuOBwfaG2QcDaSnCeMC4ChOPCP82s66GlqGTLXa1btw47d+7EvHnzcNddd+Gzzz4DAPTq1Qvl5eUAgL59+2L27NmYPHkyGhsbcdNNN+HEE09Ex44d8euvv+Kqq65CQ0MDvvvuO8NCyJ5yV7khSRIURQHLsi0+6d9J8DzvUt1LsyuIsePtH799K11t7VYs+fRrjBwzBqGQPZHUTmkroiCCYRlz5l4rwyi0/qINt8fWUllJDTf93w3h5YI23uLLXc2aNQvPPPNM/O+hQ4cCAD766COMGTMGALBmzRrU1dUB0EsFffvtt3jmmWewe/dudO7cGUcccQRuueWWoppQU5FoUt2zUdhbIgiCwfJQdsBsH8aOLzSx3Gq/RtCxY3scPmEMJNL7aUY0Q4PneISMpkRZnaaYxlUIbNIkuShn/HoNNWxfU/mgQQOhOU9iYAQlq0EWC05pkIoiQxQlsCy7x0eoFgpFkaEoqoU0GG9VKIlEogbZkdwft6IouO//nsZ+ow9Cn359ch9sZnhGjzV5yaIggg2YfB6K8TjYpKmpigpBFGzT7uMoVEs2251DVgWjGqRvv/MARFFs4gf10zd0FLZni200zMM7wlFRFASNFP8FUIxxkySJWdfNxsrlK/Mea6aahZm0EFMJ35SFxHqryfOFsOzYFEFqN8F5HHZoyaa6K+47WbIm1pYATdP9BYFAYA9N+s8G6y9FjETBGpxWGYy3Lwiip1mSCILA+o2rwVPlho51agxGQdO0JUYitwslx87XNK1g4UDRFFRVhSAI9rqR3JRZRd6z+hpkkSDLMqJRDuFw2CWtsViMwWZQ2PgURQZNUwXMp9NvowkGD9I72mw2hIKMrRU7APPC1JQWaYWezeJtKLTEVaHnx+AId2sK3PLSFVINxSp8AVkERJuYL9yrvhHTXLy+6BY2PuumVStw7kX1Kr1cKm679T7c/M+b7W/YxNSa0bIYlrEWFW7VWlpgJQm7ahu6ISTdQDxozcW9vi8gXYSqqmhsjCAcDrlUfSP2JHl/sS0UjY2NLkf+OjengiA49HzYu6pUV7c1zEZkarqcOhb65sO0oLDqi/QQGJYBRVL2+yRRpLzRQs3YBuH7IF1CNMqBpimUl5e52GvLF4yAnjfqPNNQoTC+USFJ0iGzu73zc8UV52PDLtHWNgE4uqcLBAIQRfNjtuwPLJQEIDFop8A5oRkaBEGA4zj7o1tjcHE/7kY6iK9BOg4NjY0RhEJ+IE5mFL4NlCS5BOphGn+LJclgsV8AxfQrS5KE2k2bjB1sod6iI8dCt+RIomTupCLvvTTYU2WDov+/vXOPjqq6/vj3zsy9M3mQxCCQ8CwBTBCoDzQ00CWJpgZq/YmitZa6UPFFYyuNP1jQ/hSl5QcKmt+qRbSKAdG21loftVaKAlqRh0KogpASRIRAgoIkYTKPO3PP748wYwYmYe6959y5k+zPWrMWGc45d98z5959zj5n7+3kHuC8I7zkTAQrsoOQghRIIBBAIBBAZmYGJIm6Oj7m3jwRk7V1iN0AYYxFA6snRvLe3C+++DouHT0hsZetHjOlkbgLOn4Sj8ejy/UkguFUUB3imhqlozIwi8PpgMfj4Rvg/BRROS2et4lyB6G3tgAYY/B6vXA6nXC7rdwXS4WTqvwIBAIWHnSKYOSwU+K/STAYTBlLQ1nZeLzw5xVwJqjQdQcA14PO8uFwWLfbhyklJdkrGHfH2K1iLgDTkwLd1xOA3e1SKYeqqtC09tyD1mOfB1A0mhaGpmlJeOkY2WRJvHwoFIbbnRq/44AB+Sj/Xg5CzgQVuoiIOgZJS0uLhiPUhcWRZEQiJMB5zAXaV3ZWn8rmmR2EVpCciDj9M8Ysju3as1aNEdra/OIOGnSJ2AddllNnzhoIBLDq2edRv7eef+PiFulRtJAGTdP0VTK7EuSwquLpDyh8JQnrV8483UFIQXJAVVUEg4EkRcRJBf/Gjph/sP1+v8Wnga0hFArpfPEld2LkcDjwq7kL8fH2jxOrIFLpGdj3SstIQ0jXgahvMB1KzgS8g9hLDgkej0fYwR0AyRmqHNxBUme6alMCgcCpnI09PftGoph7sEMhNYXMW/rshOFwWKf1Ibn9IMsyjhzdiUAC4eai6OkSwfuQABBSQ/qDmMPcqii6urHRMHY4HVCU9titQvyJk3ivkZO1Rn4zWkEaJBRS4ff74Tw1sKyl55lUgYiTd9CkCdto3xk9vqjjCkynuc8GeNwucQcxjMQJ1ylLemY6ggGDvpwm461yeYw5HoRxupxwOV1CggmcgYWvsI4rbr19RQrSIOFwe85Gl0tOwtVtNPW0kGAwgPR0s4cJzHpsi0PTUm/i8+ADS/Dwrx9OvILAKDntVfRX0u0T2ZFk/2Scs2u4ZBecDqc1YemS0Hd6+4oUpEGMZ4wgjBAMBuFwmEmAnOw3WdfoN6/qRcz99+3bG9nZ2ULaBqBbbCP+jemZ6cYUglm9xGsVydnv0JLYrck6OqHzmrQHSQjG/GZLxGfN3KlVe7uD+P2ifTrF3P/s2T/FweM6TJR6h4NOsY1MoCRJQigYMj5BscN+otmQdqchKzLUoMo/VdbpcEoQLQpaQdqeVHfjMD/yQ6GQxYHIeaDvvvVFz7EPqqqi6ciRhMvrXeEZTVisl7T0NKiqAVMrr1Ukh0fcyOq5K0QGOI9iYeBxI5CCtD2p5sbBl3bTqiNJJ1etzHOn94COPd4oNTUvYty3v5twVBq9v6Oh393AC9fhdBg/rGM22wenR5xXDsmOuGQXZJcMn0+gCwjAdaLAE1KQhG1RVRWMMchyMg5CAcbfWvqe8vbwcnrNWBZ40idARUUpVr/4jK4Xs+6XuPgDxAAAt8eNcEhf+LlvLmePSWx0QsHx544EOBcZTABA+0QD1idF7gragyQ4w29TQdM0i6MS8UL/KslQIl99VxHS6pAhA+HJ7o2wM/FXiW5lYpHucblc8J70IsNIEAqJQ6JrnmHsOPeZw+kQG5buFDERcGww56AVJMGRyKg2P7LbfUyTuS9n3Sw2aMbNIMm0tfmwasXzOLD/QOKVdA4PQ1k0DP58iqKAGXS3MW3itIFC6AorwtK1X0hs83ogBUlwhM/IVtX2fUfzOR7NenKLpz12b+q6DIXDYfxq7m/w6c5PhV3DUBYNgwc/ZEVGW5txBWB29RddQdmUnqYkycRKcICfPYQxdsq0yuPUqk2esi4wdozeJvYnAJmZGThydBeCLkHh5szUMdhFsmJ8z5tL5gqeLhsC3CgiStLX5kOaBblYGWPtZvkkDHlaQRIc4DdyfT4/ZDl1V1R6MfZCtYdyBNpXPG5FpyncyKlPC29ZURR4T3oN1RVxktQUkTM7nGWSHBLcbrf4060waEHgBClIwjYEg0HIssuCAyv2Ibn7rHz41bz/RfXD1brqGFplGXnHG9QLLhNpx7goSZ6+gZIY063D6YAiK9bEbgWSYnruOW8iwvYk16XDelQ1aNFqQ+w1+vTJRVZ2lr5Khvz/9Vcy6jyvKAraTprbi7TVSlIQkQDnlsRulfjmwkwE2oNMCvbZQzIHv/s4edLbLXM8dgVjsMiNRexY+5//mYVDJ4zlVRSN0f1ASZJMrSK50HEVyeMn5ByOLoJLdoEFmfiwdEBMVg4rgofQCtJySDmejt/vR1paqoWSM0/IkFO6/VYlqqqi8fBhfZUsfASMrjicLqepJMLc/Bl59pWgsG6WBDjvQGSFLno1SQrSclJdOfL14o0M8OTvxZl50IzVdTiM9KH9xs8TT6zCZZdeLjxCjpnVoJGfyOl0mh6XdjWzipAroiSt2pOUJEl4BCMysQqnu6wYI/C9F6+3zSamVWt/o1BIhWzIhGe/8fRf/3Ul+g4cYsm1DJvWDHaZw+mAz+cznEkmqpzN/mS8o+wIilYjKzIkVYLf77cmwYDgR4EUpHDs9TKzE21tPsEpnqxC/28cCKgG791+46mgYAjSz+kLTefLm4HpXgFYHbTe5XJBC+sNJB+Lkfs8AwmQGL97FxnSzXXqJLpVfpJRBNwLmViJpKBpYbhcZhIgpzbGVo/2pKWlFauefR4NBxt01TPq6mHEPGjGpChJkqm9NW4nWnnvHwpMFORwOuB2WxDgvAMiAp2TghSCPfcd7ERbmw+K0nMCAnRE07SE00OZR/xY9PsDuH/eQtTtrtNX0WCWDqNJkY12hZnIOtHrg5Mfoo1zJ55OxwDnViBJEnd/z+4zjSVShrY2HzIzdYQm62aoqmphlhLxK/Q+fXrj8NFdCDot2ks2akoz0RWSJCEYCEIxGjc3hRQbTzrGbhWZBST2ot9YDMxaqFJyBfn5559jxowZGDp0KNLS0jBs2DDMnz8fwWDXCU/9fj8qKyvRu3dvZGZmYurUqWhqahIgYc80GyZCu3LomSvHjhiLFmTPN6wkSVBkA/dj9DFJwuOlKArf2KhmEKFsBQ4tywKcd7wmp9VkSirIPXv2QNM0PPXUU9i1axeqq6vx5JNP4pe//GWX9X7xi1/gb3/7G1566SW8++67OHz4MK677jqLpCY0TUMwqNrApSO5GPN/BOw88frvqgfxxP89obue0T0jw3tNJl6YTGNQzaQms+/P941sghRlxwDnlmKyz1PSxDpp0iRMmjQp+ndBQQHq6uqwfPlyLF26NG6d5uZmrFixAn/4wx9w+eWXAwBqamowcuRIbN68Gd/5zndMSGS/o/d2JBAIdJNTq8ZhjEHhsKel44qwYmz27dMbvbJ66a5n9HRnMg53uT3us1qpzgovsXlH2enQrqgoNR0DnBt1mzGECReZlFSQ8WhubkZubm6n/79t2zaoqory8vLod0VFRRg8eDA2bdrUqYIMBAIxJ9haWlrilCLleDaCwWCPPZTTEZ/P6qhB1ozNBQv+G4dOGFgZGxUvCfuQQHv+y3A4bMoKwk0BCfppRTrfdwxwbomfJNB+sMvgPaWkifV06uvr8fjjj+Ouu+7qtExjYyMURUFOTk7M9/369UNjY2On9RYtWoTs7OzoZ9CgQbzE7jGEQiFomsbJtGrPfbhEcTikbunaEgwG0aQ33JwZTHShGVeAtLQ00yeQef/+3KPiCD5Q5HQ54XQ4LQtLdwY67s1WCnLu3LnRzdXOPnv27Imp09DQgEmTJuGGG27AHXfcwV2mefPmobm5Ofo5ePAg92t0d1RV5ThbtINySSUlbY2s1dVPo2LiVforWh/hz/ThjZDaPuEzA2OM208jQUDmECM5O3VgdezWM0jw1mxlYr3vvvtwyy23dFmmoKAg+u/Dhw+jrKwM48ePx+9///su6+Xl5SEYDOLEiRMxq8impibk5eV1Ws/tdlt4JL/7EQgEuqFp1ZiSVlU1CbkurZlQXH/9VRhyXpH+imYyTJhZRZqIbpOekW46cwXXVSTnKDsxCNzClhUZalC1JAtIDFLiadBspSD79OmDPn36JFS2oaEBZWVlGDt2LGpqas764hk7dixkWcY777yDqVOnAgDq6urwxRdfoKSkxLTsxJkEgwFIktTNTq0af2MwpkFRuudka8SIAmSem29sUWT1PiTMK6hQMARFUcy1Y/NUVlZsBciKjJAasnZPEonfm61MrInS0NCA0tJSDB48GEuXLsWXX36JxsbGmL3EhoYGFBUVYevWrQCA7OxszJgxA1VVVVi/fj22bduGW2+9FSUlJSZPsBLx0DQNjIFWjx1QVXvmTOTB8eNfY9Uzq9HUaMCv2KglL0n7kACQ0SvDnMsHkDKprETjkl2QXTJ8PotdQBLAVivIRFm7di3q6+tRX1+PgQMHxvxfZOCrqoq6ujq0tX3jnFpdXQ2Hw4GpU6ciEAigoqICTzyh33ereyHGhsL31Kpd3GjMyeFydaeVdCwtLSfxwK/+F8NHjUa/vH7WXdjgT8Ijy4YaVI1H1umIXYZ3V/DMJhIHp8sJt+S2PsD5WZCYXROW2ZSWlhZkZ2ejuXkPsgz4ffUEIr5i9ls9Ju9NFNl/7F7m5m9gjOGrE21QXXZIXWYNjDEuSpK336EoP0ZR7cZcQ2Pw+XzCw9K1trSiaGARmpubkZWV1Wm5lDSxEvYlcrrPfsoRSOY0XVVD3VY5AibCzcHkic4kTu8lSTJvZoX5U7VntCdonHPLStLVNZIQlq4rSEH2WMQMdL8/AFm2MlJMamDOvJoaRp6fVc7DiuUrdNczvSpJgqtIhLT0NIRCHPaWRexFChg2PU1JkoLskYgxNfr9fiiKzNEMkxqK4WxommYi/ipg7pindfTr2xuZWcaytCR67P4Mkrx353A6EPBx8uVLkVyPQvwuT7+GTZRkSh7SIcwgRjlqmgaHwwGXi+eQsvvJhcQIhUIWh5eLYG3/LV78SzS0GHOgNzWpMnObHLrIneZGOBSG0+QhLDO+mZ22KWLfUKTfZcfLOCR4PJ6kHtyhFWSPQ8zA9vu7Y0AAPoTD4W4ZXu50VFVF05HOwzZ2SRLNpGZxuVzw+/2m2+G9FwkIXO0Jzv4RweF0wO12c+lfQ9dPylWJJCFmNHu9Xng8vB3gu4d5tSexcOFvMeXKa62/sA3yNCqKYjr8HAD+81cTgboTwbBpXAcOpwMuJ59JiF7IxNqjEGFaDUNRFAEh1Oyy4jJnkmaMmTQ7p4KTXDvTpl2H0WMvMVbZ7C2a7Caz5k1ZkeE96UVGJh83F66mUQFRdqJNW2QZcckuMMYsD0tHCpIwhc/HO8cjzyc5+cqlrc2HdFP7J6mhHAGgqGg4svoOMFzflFIw2U08XvQyxzyfIvYNbfA4mCIZsVvJxNqtEWv+OHnSKyABst2Uo7k2ZNnVI/YfAeDLL49h5TPP4dhXxwzVN2UKNDnUeezTKYoC70mv6XYAsZk0hCDIreR0rM4CQgqSMISqqgJOZvI+524W8/KYzR1oHOtfsF9+eQwP3b8YB/YfMFTf1H6WyfRMvA7I8FpFCplUiUxhdUpcKxS7rMhwOpyW7EmSibVbI27lEgyqNl498sKcPKqqcnZ70YP1fTly5AgcbNyJkMFwc2aVgtnDKDzcLGRZRpu3jV+oNN4ZOk6dahWlgCVmPsZtIrhOWWZ8Ph/S0sS5gNAKktCN1yvCtGpHzM2GGWM9KqqQmXBzAMybSU02wENpSJJk2h8ytkF+TUXak8DfnaRj+1bhdDnhVtoDnIuCFGS3RJyZIxAIID29JyhHwOzTHuQQpzPVuHNGFVY/u9pYZZPpmrisiniYWWUZPi/Hlzbvx1lglJ1o+xZZ+B1OBzwej7CIO6QguyViRr+madA0rcccOjGLYno/KsUOagDI69cHmb2MhZsDYHro2uFwi8Ph4LuKBIQMBaF9ZaGSFBmWjvYgiYTx+fw9xLRqnkAgwGH/MfUmIo8++gAaveb8RpM6AePleuiQ4Pf54eFxkE2QshG6H2kxHZUkz1RZtIIkEiIQ8Jv057OC5K8eIjDGunV6q85Q1SCONhoMNwfzB21ERo3RgyzL/INnCDC1Cu0vi8LRRS93Skny3JMkBUmcFVUNQpIcAmaaIjZX7EF3mJUb4f77l+KGH9xovAEbeOeYyk/ZAUmS+PnriRpOVplCLVSSbrcbPh8fJUkmVqJLNE2DqoYFrR5FKNwkxyzDN3u1PZHbbrsR3ymdaLg+Y6dcLYz+BBxe+Dx9IoOBoPmGIohWkiLbtxCH0wFFVuD3++HxmDNxk4IkukRMQABAzBOZ/Mg5QCS9ldkJRWrGBRs1qhA5+YMN1+einOwxDKLtBANBKG5OmW5Sc1hYjtPl5BK7lUysKYt4m0UwGIQkSYJMq933KTeXHDmCmf5J3l7skSNNWPn0czjx9QnDbZjOEMHh9nmd8FQUhW/GC4GrPDucAOaJS3aZDktHCpKISzgchqZpgnI82lU58nlBOBw8zLypyeHDTVjwwGIcbjhsuA3TEzIOw4tnbkamMQSD/EytvPZIT0dY7sgOWK2EzcZuJRNryiJWyYRCqsCI+XZdQZqXSdM0OJ1m551m5Uhe31588Rh8cWQnwrKJtE/22ErmEnoOADxpHq4KUtgBMAtCxUVkt9K9JJIFxMieJK0giTMIBPxwOJyCBrBdlSPAY1ru8/nhcvWc8HKnYzrcHDdBODTBcfyHw2G+getFhoqz4PGUJPGr1Y7Iimwo6bINRjJhJ0KhECTJISiGKG/laD83kZ6U3qozpv+kEi++8KLxBmzg6hFthtNLPC0tja+CFDzErFBeVvusumQXFFnR5SdJJladRAZOS8tJq68MK6Z2fn8AHo8bfj/vfGsi5LdfcmWvt63HRxvq3fscOJ1OtLa0JlsU83AcYm1tbfB4PHwDCIh6LVhl6EmCQUkLa9GcpWebCEisux1dEsyhQ4cwaNCgZItBEARBmOTgwYMYOHBgp/9PClInmqbh8OHD6NWrV1JMaS0tLRg0aBAOHjyIrKwsy69vFJLbWlJVbiB1ZSe5rcWM3IwxtLa2on///l2u6MnEqhOHw9HljMMqsrKyUmowRyC5rSVV5QZSV3aS21qMyp2dnX3WMnRIhyAIgiDiQAqSIAiCIOJACjLFcLvdmD9/vkAnfjGQ3NaSqnIDqSs7yW0tVshNh3QIgiAIIg60giQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIgiCIOJCCtDkLFy7E+PHjkZ6ejpycnITqMMbwwAMPID8/H2lpaSgvL8fevXvFChqH48ePY9q0acjKykJOTg5mzJiBkye7jmFbWloaTdIc+dx9991C5Vy2bBm+9a1vwePxYNy4cdi6dWuX5V966SUUFRXB4/FgzJgxePPNN4XK1xl65F65cuUZ/ao39Q8P3nvvPVx99dXo378/JEnCq6++etY6GzZswMUXXwy3243hw4dj5cqVwuU8Hb1yb9iw4Yz+liQJjY2N1gh8ikWLFuHSSy9Fr1690LdvX0yZMgV1dXVnrZfsMW5EbhFjnBSkzQkGg7jhhhswc+bMhOs88sgj+O1vf4snn3wSW7ZsQUZGBioqKnSnejHLtGnTsGvXLqxduxZvvPEG3nvvPdx5551nrXfHHXfgyJEj0c8jjzwiTMYXX3wRVVVVmD9/PrZv344LLrgAFRUVOHr0aNzyH3zwAW666SbMmDEDtbW1mDJlCqZMmYKdO3cKk5GH3EB7xJGO/XrgwAELJW7H6/XiggsuwLJlyxIqv3//flx11VUoKyvDjh07MGvWLNx+++1Ys2aNYElj0St3hLq6upg+79u3ryAJ4/Puu++isrISmzdvxtq1a6GqKq688kp4vd5O69hhjBuRGxAwxhmREtTU1LDs7OyzltM0jeXl5bElS5ZEvztx4gRzu93sj3/8o0AJY/n0008ZAPbhhx9Gv/vHP/7BJEliDQ0NndabOHEiu/feey2QsJ3i4mJWWVkZ/TscDrP+/fuzRYsWxS3/wx/+kF111VUx340bN47dddddQuU8Hb1yJzp+rAQAe+WVV7osM2fOHDZq1KiY72688UZWUVEhULKuSUTu9evXMwDs66+/tkSmRDl69CgDwN59991Oy9hljHckEblFjHFaQXYz9u/fj8bGRpSXl0e/y87Oxrhx47Bp0ybL5Ni0aRNycnJwySWXRL8rLy+Hw+HAli1buqz7wgsv4Nxzz8Xo0aMxb948tLW1CZExGAxi27ZtMX3lcDhQXl7eaV9t2rQppjwAVFRUWNq3RuQGgJMnT2LIkCEYNGgQrrnmGuzatcsKcU1hh/42w4UXXoj8/Hx873vfw8aNG5MtDpqbmwEAubm5nZaxY58nIjfAf4yTguxmRPY4+vXrF/N9v379LN3/aGxsPMOc5HK5kJub26UcP/7xj/H8889j/fr1mDdvHlavXo2f/OQnQmT86quvEA6HdfVVY2Nj0vvWiNyFhYV49tln8dprr+H555+HpmkYP348Dh06ZIXIhumsv1taWuDzJZ741mry8/Px5JNP4uWXX8bLL7+MQYMGobS0FNu3b0+aTJqmYdasWZgwYQJGjx7daTk7jPGOJCq3iDFO2TySwNy5c/Hwww93WWb37t0oKiqySKLESVR2o3TcoxwzZgzy8/NxxRVXYN++fRg2bJjhdns6JSUlKCkpif49fvx4jBw5Ek899RR+/etfJ1Gy7klhYSEKCwujf48fPx779u1DdXU1Vq9enRSZKisrsXPnTrz//vtJub5REpVbxBgnBZkE7rvvPtxyyy1dlikoKDDUdl5eHgCgqakJ+fn50e+bmppw4YUXGmqzI4nKnpeXd8aBkVAohOPHj0dlTIRx48YBAOrr67kryHPPPRdOpxNNTU0x3zc1NXUqY15enq7yIjAi9+nIsoyLLroI9fX1IkTkRmf9nZWVhbS0tCRJZYzi4uKkKad77rknelDubOn67DDGI+iR+3R4jHEysSaBPn36oKioqMuPoiiG2h46dCjy8vLwzjvvRL9raWnBli1bYmZXomUvKSnBiRMnsG3btmjddevWQdO0qNJLhB07dgBAjLLnhaIoGDt2bExfaZqGd955p9O+KikpiSkPAGvXruXSt4liRO7TCYfD+OSTT4T0K0/s0N+82LFjh+X9zRjDPffcg1deeQXr1q3D0KFDz1rHDn1uRO7T4TLGuR75Ibhz4MABVltbyx566CGWmZnJamtrWW1tLWttbY2WKSwsZH/961+jfy9evJjl5OSw1157jX388cfsmmuuYUOHDmU+n89S2SdNmsQuuugitmXLFvb++++zESNGsJtuuin6/4cOHWKFhYVsy5YtjDHG6uvr2YIFC9hHH33E9u/fz1577TVWUFDALrvsMmEy/ulPf2Jut5utXLmSffrpp+zOO+9kOTk5rLGxkTHG2M0338zmzp0bLb9x40bmcrnY0qVL2e7du9n8+fOZLMvsk08+ESYjD7kfeughtmbNGrZv3z62bds29qMf/Yh5PB62a9cuS+VubW2NjmEA7LHHHmO1tbXswIEDjDHG5s6dy26++eZo+c8++4ylp6ez2bNns927d7Nly5Yxp9PJ3nrrLVvLXV1dzV599VW2d+9e9sknn7B7772XORwO9vbbb1sq98yZM1l2djbbsGEDO3LkSPTT1tYWLWPHMW5EbhFjnBSkzZk+fToDcMZn/fr10TIAWE1NTfRvTdPY/fffz/r168fcbje74oorWF1dneWyHzt2jN10000sMzOTZWVlsVtvvTVGse/fvz/mXr744gt22WWXsdzcXOZ2u9nw4cPZ7NmzWXNzs1A5H3/8cTZ48GCmKAorLi5mmzdvjv7fxIkT2fTp02PK//nPf2bnnXceUxSFjRo1iv39738XKl9n6JF71qxZ0bL9+vVj3//+99n27dstlzni/nD6JyLr9OnT2cSJE8+oc+GFFzJFUVhBQUHMWLer3A8//DAbNmwY83g8LDc3l5WWlrJ169ZZLnc8mU9/X9hxjBuRW8QYp3RXBEEQBBEH2oMkCIIgiDiQgiQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIgiCIOJCCJAiCIIg4kIIkCIIgiDiQgiQIm1NaWopZs2YlWwyC6HGQgiQIIiFuueUWSJIESZKgKAqGDx+OBQsWIBQKRcs0NjbiZz/7GQoKCuB2uzFo0CBcffXVMemT3nvvPVx99dXo378/JEnCq6++moS7IYizQwmTCYJImEmTJqGmpgaBQABvvvkmKisrIcsy5s2bh88//xwTJkxATk4OlixZgjFjxkBVVaxZswaVlZXYs2cPAMDr9eKCCy7Abbfdhuuuuy7Jd0QQnUMrSIJIIQKBAH7+85+jb9++8Hg8+O53v4sPP/wwpkxrayumTZuGjIwM5Ofno7q6mpuZ1u12Iy8vD0OGDMHMmTNRXl6O119/HQDw05/+FJIkYevWrZg6dSrOO+88jBo1ClVVVdi8eXO0jcmTJ+M3v/kNrr32WtPyEIRISEESRAoxZ84cvPzyy1i1ahW2b9+O4cOHo6KiAsePH4+WqaqqwsaNG/H6669j7dq1+Ne//oXt27cLkSctLQ3BYBDHjx/HW2+9hcrKSmRkZJxRLicnR8j1CUIkpCAJIkXwer1Yvnw5lixZgsmTJ+P888/H008/jbS0NKxYsQJA++px1apVWLp0Ka644gqMHj0aNTU1CIfDMW1de+21OOecc3D99dfHfP/GG2+gsLAQI0aMwDPPPNOpLIwxvP3221izZg0uv/xy1NfXgzGGoqIi/jdOEEmCFCRBpAj79u2DqqqYMGFC9DtZllFcXIzdu3cDAD777DOoqori4uJomezsbBQWFsa0de+99+K5556L+S4UCqGqqgrr1q1DbW0tlixZgmPHjsWUeeONN5CZmQmPx4PJkyfjxhtvxIMPPgjKu050R0hBEkQPpLS0FL169Yr5buvWrRg1ahQGDBiAzMxMTJ48Gf/85z9jypSVlWHHjh3Yu3cvfD4fVq1ahYyMDIwYMQKSJEUP4hBEd4AUJEGkCMOGDYOiKNi4cWP0O1VV8eGHH+L8888HABQUFECW5ZiDO83NzfjPf/5z1vYPHz6MAQMGRP8eMGAAGhoaYspkZGRg+PDhGDx4MFyubw7B5+bmoqKiAsuWLYPX6z2j7RMnTiR8nwRhF8jNgyBShIyMDMycOROzZ89Gbm4uBg8ejEceeQRtbW2YMWMGAKBXr16YPn16tEzfvn0xf/58OBwOSJIkVL5ly5ZhwoQJKC4uxoIFC/Dtb38boVAIa9euxfLly6Nm4JMnT6K+vj5ab//+/dixY0f0ngjCLpCCJIgUYvHixdA0DTfffDNaW1txySWXYM2aNTjnnHOiZR577DHcfffd+MEPfoCsrCzMmTMHBw8ehMfj6bLt/v37x6wYGxoaYvYyz0ZBQQG2b9+OhQsX4r777sORI0fQp08fjB07FsuXL4+W++ijj1BWVhb9u6qqCgAwffp0rFy5MuHrEYRoJEa76wTRrfF6vRgwYAAeffTR6EoTADZs2IDf/e53+Mtf/gKg/ZDOyJEjsWHDBmRnZ2Ps2LH44IMP0Lt372SJThBJhVaQBNHNqK2txZ49e1BcXIzm5mYsWLAAAHDNNddEy5SXl+Pf//43vF4vBg4ciJdeegklJSV49NFHUVZWBk3TMGfOHFKORI+GVpAE0c2ora3F7bffjrq6OiiKgrFjx+Kxxx7DmDFjki0aQaQUpCAJgiAIIg7k5kEQBEEQcSAFSRAEQRBxIAVJEARBEHEgBUkQBEEQcSAFSRAEQRBxIAVJEARBEHEgBUkQBEEQcSAFSRAEQRBxIAVJEARBEHEgBUkQBEEQcfh/L5i40xqjZ9UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_power_colors(p1, p1e, p2, p2e, plot_spans=True, configuration=configuration)" + ] + }, + { + "cell_type": "markdown", + "id": "848abff8", + "metadata": {}, + "source": [ + "Here, acronyms indicate the spectral state (Low Hard State, Hard InterMediate State, Soft InterMediate State, High Soft State).\n", + "\n", + "Comparing with the results from [Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract), the source is right in the region of overlap between the soft state and the hard state. However, what distinguishes the states is the amount of fractional rms. We can plot the rms versus the hue, and it is immediately clear that the rms is far too high for a soft state. We overplot the approximate of rms in the various states from [Heil et al. 2015](https://ui.adsabs.harvard.edu/abs/2015MNRAS.448.3339H/abstract)" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "8c229dd5", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG2CAYAAACDLKdOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMVUlEQVR4nO3de3RU5b0//ve+zN57JpNMEgIJYCBcrJcaCA2SRr8Wz88oth5bq7XRaqE5li6tWo+prVCPIOpprLaUrkqlKmgvnoLtUdtTKbWNYLWNUkGqqIAXIGCTkGQyM7nNff/+2J2BIRcyyczsubxfa82SzOyZ+WQ7JG+e/XmeR9B1XQcRERFRlhDNLoCIiIgokRhuiIiIKKsw3BAREVFWYbghIiKirMJwQ0RERFmF4YaIiIiyCsMNERERZRWGGyIiIsoqDDdERESUVRhuiIiIKKukRbhZv349KioqoGkaampqsHPnzhGPvfDCCyEIwpDbZZddlsKKiYiIKF2ZHm62bNmCxsZGrF69Grt378b8+fOxZMkSHDt2bNjjn3nmGbS1tUVve/fuhSRJuPrqq1NcOREREaUjweyNM2tqanDuuefi4YcfBgCEw2GUl5fj1ltvxYoVK075/HXr1mHVqlVoa2tDXl5essslIiKiNCeb+eZ+vx+7du3CypUro/eJooi6ujq0tLSM6TU2btyIa665ZsRg4/P54PP5ol+Hw2E4nU5MmjQJgiBM7BsgIiKilNB1Hb29vZg2bRpEcfQLT6aGm66uLoRCIZSWlsbcX1pain379p3y+Tt37sTevXuxcePGEY9pamrCmjVrJlwrERERme/IkSM47bTTRj3G1HAzURs3bkRlZSUWLVo04jErV65EY2Nj9Gu3240ZM2bgyJEjKCgoSEWZREREWSkQAA4fBkQRkJOcKFwuDy64oBz5+fmnPNbUcFNSUgJJktDR0RFzf0dHB8rKykZ9bn9/PzZv3ox777131ONUVYWqqkPuLygoYLghIiKagEAAsNsBVQUsltS851haSkydLaUoCqqrq9Hc3By9LxwOo7m5GbW1taM+99e//jV8Ph+uv/76ZJdJREREGcT0y1KNjY1YtmwZFi5ciEWLFmHdunXo7+9HQ0MDAGDp0qWYPn06mpqaYp63ceNGXHHFFZg0aZIZZRMREVGaMj3c1NfXo7OzE6tWrUJ7ezuqqqqwbdu2aJNxa2vrkK7o/fv345VXXsELL7xgRslERESUxkxf5ybVPB4PHA4H3G43e26IiIgmIBAADh5MTc+N0+lBZeXYfn+bvkIxERERUSIx3BAREVFWYbghIiKirJKz4cbrNbsCIiIiSoacDTf9/WZXQERERMmQs+HG7QaCQbOrICIiokTL2XDj9QIDA2ZXQURERImWs+HGYgFcLiC3VvkhIiLKfjkbbqxWoK8PGBw0uxIiIiJKpJwNN5Jk/Le319w6iIiIKLFyNtwAxuiNxwP4/WZXQkRERImS0+FGVQGfj9PCiYiIsklOhxvACDguFxAOm10JERERJULOhxur1ZgSztEbIiKi7JDz4UYUjZvHY3YlRERElAg5H24AwGYzpoVzvykiIqLMx3ADY0G/YNAIOERERJTZGG7+RdO43xQREVE2YLj5F00zVitmYzEREVFmY7j5F0HgflNERETZgOHmBDabMXLD3cKJiIgyF8PNCSL7TfHSFBERUeZiuDmJqhqbaYZCZldCRERE48Fwc5LIflM+n9mVEBER0Xgw3JxEFI19pgYHza6EiIiIxoPhZhiRS1OcNUVERJR5GG6GoarGVgy8NEVERJR5GG6GIcvGSsXca4qIiCjzMNyMwGIxLk0RERFRZmG4GYGqGk3Ffr/ZlRAREVE8GG5GoChGsOGlKSIioszCcDMKSeJqxURERJmG4WYUqmqEm2DQ7EqIiIhorBhuRhFZrZiXpoiIiDIHw80oBMG4cbViIiKizMFwcwqqCng8xpYMRERElP4Ybk5BUbiRJhERUSZhuDkFSTL2mOKlKSIioszAcDMGisKNNImIiDIFw80YRDbS5GrFRERE6Y/hZgxkGQgEOCWciIgoEzDcjJEsA319ZldBREREp2J6uFm/fj0qKiqgaRpqamqwc+fOUY93uVy4+eabMXXqVKiqio997GPYunVr0utUVWBgwBjBISIiovQlm/nmW7ZsQWNjIzZs2ICamhqsW7cOS5Yswf79+zFlypQhx/v9flx88cWYMmUKfvOb32D69Ok4fPgwCgsLk16rohjhxusFLJakvx0RERGNk6nhZu3atVi+fDkaGhoAABs2bMDzzz+PTZs2YcWKFUOO37RpE5xOJ/72t7/B8q+EUVFRkZJaI6sVDwwA+fkpeUsiIiIaB9MuS/n9fuzatQt1dXXHixFF1NXVoaWlZdjn/O53v0NtbS1uvvlmlJaW4pxzzsF3v/tdhEKhEd/H5/PB4/HE3MZLVY2+m1HejoiIiExmWrjp6upCKBRCaWlpzP2lpaVob28f9jkffvghfvOb3yAUCmHr1q24++678YMf/AD333//iO/T1NQEh8MRvZWXl4+7Zm6kSURElP5MbyiORzgcxpQpU/Doo4+iuroa9fX1uOuuu7Bhw4YRn7Ny5Uq43e7o7ciRI+N+f1HkasVERETpzrSem5KSEkiShI6Ojpj7Ozo6UFZWNuxzpk6dCovFAkmSovedddZZaG9vh9/vh6IoQ56jqipUVU1Y3apqrFZcXGyEHSIiIkovpv16VhQF1dXVaG5ujt4XDofR3NyM2traYZ9z/vnn4/3330f4hC26Dxw4gKlTpw4bbJIhsloxN9IkIiJKT6aOPTQ2NuKxxx7Dz372M7z77ru46aab0N/fH509tXTpUqxcuTJ6/E033QSn04nbbrsNBw4cwPPPP4/vfve7uPnmm1NWsyQZDcXsuyEiIkpPpk4Fr6+vR2dnJ1atWoX29nZUVVVh27Zt0Sbj1tZWiCdc+ykvL8cf//hH3H777Zg3bx6mT5+O2267DXfeeWdK645spFlYaEwPJyIiovQh6Hpu7XXt8XjgcDiwb58b+fkF43qNyD5TFRXGZSoiIqJcFAgABw8avwuTvcCt0+lBZaUDbrcbBQWj//5mS+w4WCzcSJOIiChdMdyMEzfSJCIiSk8MN+MU2UgzGDS7EiIiIjoRw804KQrg9/PSFBERUbphuBmnyCypgQFz6yAiIqJYDDcToGnGlPAT1hQkIiIikzHcTEBktWLuNUVERJQ+GG4mQBSNy1OcNUVERJQ+GG4mSNMAj8dY94aIiIjMx3AzQZpmbKLJxmIiIqL0wHCTAIoCuFxAbm1kQURElJ4YbhLAajVGbthYTEREZD6GmwSQJGM6OBuLiYiIzMdwkyCRxmJux0BERGQuhpsE0TRjzRs2FhMREZmL4SZBBAGwWAC3m43FREREZmK4SSCrFejv52aaREREZmK4SSBZBkIhI+AQERGRORhuEkzTjEtToZDZlRAREeUmhpsE0zRjvRs2FhMREZmD4SbBBMG4POXxmF0JERFRbmK4SQKr1VjQj43FREREqcdwkwQWi7FLOBuLiYiIUo/hJkk0zdhMMxw2uxIiIqLcwnCTJFyxmIiIyBwMN0kiikZzcW+v2ZUQERHlFoabJLLZjHDj95tdCRERUe5guEkiRTGCDRuLiYiIUofhJslU1VixmI3FREREqcFwk2SRzTQHB82uhIiIKDcw3CRZpLG4r8/sSoiIiHIDw00KaJqxHUMgYHYlRERE2Y/hJgU0DfD5uOYNERFRKjDcpIiiGCsW67rZlRAREWU3hpsUYWMxERFRajDcpIgkGaM2bCwmIiJKLoabFIo0FgeDZldCRESUvRhuUoibaRIRESUfw00KCQJgsRgrFrOxmIiIKDkYblIs0ljs9ZpdCRERUXZiuEkxWQZCIW6mSURElCwMNybQNOPSVChkdiVERETZJy3Czfr161FRUQFN01BTU4OdO3eOeOyTTz4JQRBibpqmpbDaidM0Y70bNhYTERElnunhZsuWLWhsbMTq1auxe/duzJ8/H0uWLMGxY8dGfE5BQQHa2tqit8OHD6ew4okTBOPylMdjdiVERETZx/Rws3btWixfvhwNDQ04++yzsWHDBthsNmzatGnE5wiCgLKysuittLQ0hRUnhtVqLOjHxmIiIqLEMjXc+P1+7Nq1C3V1ddH7RFFEXV0dWlpaRnxeX18fZs6cifLycnzuc5/D22+/PeKxPp8PHo8n5pYOLBZjl3A2FhMRESWWqeGmq6sLoVBoyMhLaWkp2tvbh33OGWecgU2bNuG3v/0tfvnLXyIcDuO8887D0aNHhz2+qakJDocjeisvL0/49zFemmZsphkOm10JERFR9jD9slS8amtrsXTpUlRVVWHx4sV45plnMHnyZPz0pz8d9viVK1fC7XZHb0eOHElxxSPjisVERESJJ5v55iUlJZAkCR0dHTH3d3R0oKysbEyvYbFYsGDBArz//vvDPq6qKlRVnXCtySCKRnNxby9gt5tdDRERUXYwdeRGURRUV1ejubk5el84HEZzczNqa2vH9BqhUAhvvfUWpk6dmqwyk8pmM8KNz2d2JURERNnB1JEbAGhsbMSyZcuwcOFCLFq0COvWrUN/fz8aGhoAAEuXLsX06dPR1NQEALj33nvxyU9+EnPnzoXL5cJDDz2Ew4cP46tf/aqZ38a4KYoxa2pgAEjTASYiIqKMYnq4qa+vR2dnJ1atWoX29nZUVVVh27Zt0Sbj1tZWiOLxAaaenh4sX74c7e3tKCoqQnV1Nf72t7/h7LPPNutbmDBVNVYsdjiMS1VEREQ0foKu59b+1B6PBw6HA/v2uZGfX2B2OQCM2VJuN1BRAeTlmV0NERHR2AQCwMGDxj/SLZbkvpfT6UFlpQNutxsFBaP//uY4QRqINBb39ZldCRERUeZjuEkTVquxHUMgYHYlREREmY3hJk2oqjFjiisWExERTQzDTRpRFKP3Jre6oIiIiBKL4SaNWK3GyM3goNmVEBERZS6GmzQiScaoDRuLiYiIxo/hJs1omtFYHAyaXQkREVFmYrhJM9xMk4iIaGIYbtKMIBgLIbGxmIiIaHwYbtJQpLHY6zW7EiIioszDcJOGZNnoueGaN0RERPFjuElTVqtxaSoUMrsSIiKizMJwk6Y0zVjvho3FRERE8WG4SVOCYFye8njMroSIiCizMNykMavVWNCPjcVERERjx3CTxiwWY5dwNhYTERGNHcNNmtM0wOViYzEREdFYMdykuciKxdxMk4iIaGwYbtKcKBq33l6zKyEiIsoMDDcZwGo1wo3PZ3YlRERE6Y/hJgMoCuD3c80bIiKisWC4yRCqajQWh8NmV0JERJTeGG4yhNVqjNywsZiIiGh0DDcZQhSNVYv7+syuhIiIKL0x3GQQq9XYjsHvN7sSIiKi9BV3uPnZz36G559/Pvr1t7/9bRQWFuK8887D4cOHE1ocxVJVY8YUG4uJiIhGFne4+e53vwur1QoAaGlpwfr16/Hggw+ipKQEt99+e8ILpFiKArjdgK6bXQkREVF6kuN9wpEjRzB37lwAwHPPPYerrroKX/va13D++efjwgsvTHR9dJLImjeDg4DNZnY1RERE6SfukRu73Y7u7m4AwAsvvICLL74YAKBpGgY5lSfpJMkYtWFjMRER0fDiHrm5+OKL8dWvfhULFizAgQMH8JnPfAYA8Pbbb6OioiLR9dEwIo3FxcWAHPf/QSIiouwW98jN+vXrUVtbi87OTvzv//4vJk2aBADYtWsXrr322oQXSEOpqrGZZn+/2ZUQERGlH0HXc6s11ePxwOFwYN8+N/LzC8wuZ9x6e42em9NOM9a/ISIiSrVAADh40PhHt8WS3PdyOj2orHTA7XajoGD039/juqjh9Xrx5ptv4tixYwifsB+AIAi4/PLLx/OSFCer1Ri58XqNPxMREZEh7nCzbds2fPnLX442FZ9IEASEQqGEFEajk2UgGDQCDsMNERHRcXH33Nx666344he/iLa2NoTD4Zgbg01qWa3Gmjc87URERMfFPXLT0dGBxsZGlJaWJqMeioOmAT09xorF+flmV0NERJRYgVAYP/v7+wCAy+dMGfPz4h65+cIXvoAdO3bE+zRKAkEwLk95PGZXQkRElD7iHrl5+OGHcfXVV+Pll19GZWUlLCe1R3/jG99IWHF0alarsaCf12uM5BAREeW6uMPNr371K7zwwgvQNA07duyAcMI8ZEEQGG5SzGIxpoX39zPcEBERAeMIN3fddRfWrFmDFStWQBTjvqpFSaBpgMsFFBYa2zMQERFlg7Cuo9cXQCAUxrG+gTE/L+5w4/f7UV9fz2CTRjTNmDU1OAjY7WZXQ0RENHGHnL3Y/l47dh/tRigchtPlGvNz404oy5Ytw5YtW+J92qjWr1+PiooKaJqGmpoa7Ny5c0zP27x5MwRBwBVXXJHQejKNKBo3j8fYVJOIiCgdBUJhPP7qATz+6gEEQuERjzvk7MXTew7hQJcbqiyhQFOQrypjfp+4R25CoRAefPBB/PGPf8S8efOGNBSvXbs2rtfbsmULGhsbsWHDBtTU1GDdunVYsmQJ9u/fjylTRp72dejQIdxxxx244IIL4v0WspLVakwLFwRjQ01VNbsiIiKi+IV1HS990AH3oB8VRXa4BwMAgDzL2CNL3OHmrbfewoIFCwAAe/fujXlMGMcmR2vXrsXy5cvR0NAAANiwYQOef/55bNq0CStWrBj2OaFQCNdddx3WrFmDl19+Ga44hqqylaIYwaa725g9VVICFBSwB4eIiDJLR+8gDvf0YUq+Nq5cAcQZbkKhENasWYPKykoUFRWN6w1P5Pf7sWvXLqxcuTJ6nyiKqKurQ0tLy4jPu/feezFlyhTccMMNePnllydcR7awWIxRm8FB4KOPjD6ckhIgL4+baxIRUWYY8AfhC4agyePfWyiucCNJEi655BK8++67CQk3XV1dCIVCQ1Y7Li0txb59+4Z9ziuvvIKNGzdiz549Y3oPn88Hn88X/dqTAyveWa3GZam+PqC1FSgq4qUqIiLKDDZFhipL8AaDsMZxKepEcTcUn3POOfjwww/H9WYT1dvbiy9/+ct47LHHUFJSMqbnNDU1weFwRG/l5eVJrjI9iKJxWSovz7hU1dpq9ORwHyoiIjJLZGq3c8CHNs8AwsPMginNt2JmkR3Her3QxzlLJu5IdP/99+OOO+7Afffdh+rqauTl5cU8XlBQMObXKikpgSRJ6OjoiLm/o6MDZWVlQ47/4IMPcOjQIVx++eXR+8Jho9talmXs378fc+bMiXnOypUr0djYGP3a4/HkTMABeKmKiIjSw8lTuwf8QcyalI/Fc0pRUXx8g0RRELB4Tik6egdxqKcP/lAIsiiiPxAY83vFHW4+85nPAAA++9nPxjT66LoOQRDi2hlcURRUV1ejubk5Op07HA6jubkZt9xyy5DjzzzzTLz11lsx9/3Xf/0Xent78aMf/WjY0KKqKlRej4HVaqyHc+KlqsJC4z6GHCIiSqbI1O6eQR9UWYIsynBYFRw45kZH7yC+WFURE3AqivPxxaoKbH+vHUddAxgIB9EbxwyZuMPN9u3b433KqBobG7Fs2TIsXLgQixYtwrp169Df3x+dPbV06VJMnz4dTU1N0DQN55xzTszzCwsLAWDI/TSUIBi7hweDgNNpjOJomnH5KtKnw7UZiYgokUac2q3IsBfbccjZh7980IEZRXaIJ/xru6I4H1+qtsHl9SMQCuPTsybhF2N8z7jDzeLFi+N9yqjq6+vR2dmJVatWob29HVVVVdi2bVu0ybi1tZWrISeYLBsjN8Eg4PMBbW1G8Dkx6FitDDpERDRxo03tFgQBk+0aDvX0oaN3EFMLbDGPi4KAfNVYT2+KPfax0YyvDTnBbrnllmEvQwHAjh07Rn3uk08+mfiCcoQsG7e8PKPR2OcDIu1PmmaM8thsRtDhejlERDQep5rabbVI6Or3YsAfTNh7pkW4IfNJkhFkbDYgHDaCTleXsZ2Dphl7VkWCjsxPDRERjdGppnYPBkJQZAk2JXG/XPhrioYQxeOXpnQd8HqN6eSdnUZfjt1ujPZomrEyMhER0UgiU7sPHHNjRlHsDGtd19HZ58UZUxwotql4/NUDAIBl586FRRp/bwTDDY1KEGKDjs8HuFxG2FEUI+TY7UbQ4aQ0IiI62YhTu30BdPX74LAq+NSc0phm4giLJOKrn/wYAMDpHPsivAw3NGaRpmNNM772+4HeXmNxQIvFuGyVn3886HCKORERAcNP7XZ7AzhjigOf+tc6N6PtEh6vMYWbBQsWjHnzqt27d0+oIMocinL8slQgAAwMGNPLZdkY6SkoOB6GGHSIiHLbyVO7r1kwC6cV5kVHbCKrFwdCYbR5BmIei9eYwk1kgT2ikVgsxg0wpph7vcaKyJJkBJ38/OMLCXKKORFRbjpxavfUAls0vIx19eKxGlO4Wb16ddwvTLlLlo0+HMCYYu71GmvpiKJxucrhOB50OMWciCh3BEJh7D7aDQD40idmwyKJca9ePBbsuaGkkiSj6Tgv7/gU8+HW0tE0TjEnIsp2YV2HLxhCWNfR7hnEjOK8Ma9eHI+4f52EQiH88Ic/xNNPP43W1lb4/f6Yx51OZ7wvSTnixCnmkaDT2Wk8pqqxM68il7iIiCg7RC49+UNhhMJh/Pz191GSp6LV1Y/pDtspVy+OZ0Ju3N0Pa9aswdq1a1FfXw+3243GxkZceeWVEEUR99xzT7wvRzkqEnQiG3iKojHrqrUVOHQI+Oc/AY/HmJFFRESZLXLp6UCXG6osoUBT4LAqeK/Lgw+7e+ENDD9TymqR4A+G4l69OO5w89RTT+Gxxx7DN7/5TciyjGuvvRaPP/44Vq1ahVdffTXelyOKTjEvLDRusmwEm0jQOXrUmIXl8xlr7RARUeaIbJzZM+hDT78P3f1eCIJx6amiyI6QruPDbg/0YX7Aj3f14rjDTXt7OyorKwEAdrsdbrcbAPDv//7veP755+N9OaIYgmBcoiooAIqLjanm/f3AkSNG0DlyxFhE0Otl0CEiygSRjTMn52kIhHUEw2H4g2Houg67ZsGUPA3H+rzo8wVinhdZvbiiyI7S/OH3pRpJ3OHmtNNOQ1tbGwBgzpw5eOGFFwAAf//736FyiVpKMEUxmo6Li43RHa/XGMk5dAg4fBhwOoHBQaOHh4iI0s+AP4ieAR/e7/KgzTOAPl8Qbb0DeKutB+5BP2ZPyockCjjo7MNRVz/+6e6HxxvAIWffqKsXjybuhuLPf/7zaG5uRk1NDW699VZcf/312LhxI1pbW3H77bfH+3JEY3byWjo+n9GbI0lDZ15xLR0iovTgHPDhn+4BhKFDFkVIYhiyKKJ7wId+fxCziu2YPSkfUwtsOOjsQyCsw+P1x6xeHK+4w80DDzwQ/XN9fT1mzJiBlpYWnH766bj88svjLoBoPGTZuOXlGWvpRKaYn3hZKxJ0uJYOEZE5wrqOt9tdkEURYV1HQAhDACAJAgo1Ba5BH/Z3enDxGdNxZeUM7G3rQVjX8ZVzT0fFJHtyVygeTW1tLWprayf6MkTjJklGkLHZhp9ifuIu5lxLh4godTp6B9Hq6seZpQX4oLsPPYN+hHUduq7DHw4jFAbC0PHxUse4g8xwxvWj/r333sP27dtx7NgxhE9qdli1alVCCiMajxPX0tF1o0enu9sIO5p2fEFBq5Vr6RARJduAPwhfMIQZhXaosgzPoB89wRB8oTB8wRAm52tQJBGDgRB+vedQzBo4Sd9+4USPPfYYbrrpJpSUlKCsrCxm0R1BEBhuKG0IQmzQ8fmMmVbd3caIjs1mjOpYrcc3ACUiosSxKTJUWYI3GEShVcEUu4ZgOIziPA2VU4sgAmjrHUTze23wh0Lmbb9w//3347//+79x5513xvtUItNE1tLRNONrnw/o7TUWDlSU2M09FYW7mBMRJUJpvhUzi+w4cMyNGUV5EAQBkijCapFgV2Qc7umHPxiGLIRQUWzi9gs9PT24+uqr430aUVpRVeMGGKsgDwwYCwVaLMaITqQhmZeuiIjGTxQELJ5Tio7eQRzq6UMgHEZpvhUfKylAa08/FFlEMCyitMBq7vYLV199dXRtG6JscPJaOgMDxxcNbGsD+vqMGVlERBS/iuJ8fLGqAh8rccAXDMPj9cPtDeCMKQ78f3OnwiKJ0EaY7THe7RfiHrmZO3cu7r77brz66quorKyE5aR/2n7jG9+I9yWJ0saJa+n4fMZlK6fTCD0Ox/FZV7xsRUQ0dhXF+fhStQ0urx+BUBjXLJiF0wrz0NE7iB0ftMMbDMJqGRpJYrZfCI494MQdbh599FHY7Xa89NJLeOmll2IeEwSB4YayRuTSVWTWVXu7Me3cajX2wLJaj1/aIiKi0YmCgHzV+Nfj1AIbREEY0pNzosj2C2dMcaA03wpXT++Y3yvucHPw4MF4n0KU0U6cdRUKGds9HD1qjPDY7UZ/jtXKNXSIiEZjkUR89ZMfi7nv5J4cfygEWRTR7wugq9+Xuu0XThTZwfPkJiCibCVJRqABjEbkyIwrq5WXrYiIxiPSk7P9vXYcdQ1gIByM9uSMd/uFce3A8/Of/xyVlZWwWq2wWq2YN28efvGLX4znpYgylqIYozZFRcbXHR1GE3Jrq7Gejt9vZnVERJnD6MmZjU+cNglV0yfhP2pOx/UL54wr2ADjGLlZu3Yt7r77btxyyy04//zzAQCvvPIKbrzxRnR1dXHzTMo5I122imz9ENnQk5t5EhGNbLienPGKO9z8+Mc/xiOPPIKlS5dG7/vsZz+Lj3/847jnnnsYbiinnXjZKjLbqqdn6GwrIiJKnrjDTVtbG84777wh95933nloa2tLSFFE2SAy2yocNmZbtbUZTch5eccXCWQTMhGRYbiG4/GKe6B87ty5ePrpp4fcv2XLFpx++ukJKYoom4iiEWQiiwT29R1fJLCz01g08F+9+URElABx/7txzZo1qK+vx1/+8pdoz81f//pXNDc3Dxt6iOi4yCKBkbVzjh0zenZsNmPtHJuNm3gSEU1U3OHmqquuwmuvvYYf/vCHeO655wAAZ511Fnbu3IkFCxYkuj6irDRSE3JkK4jIJp6SZHalRESZZ1xX/Kurq/HLX/4y0bUQ5aThmpAjWz4UFho9OqrKtXOIiMZqTOHG4/GgoKAg+ufRRI4jovgN14Qsy0bAcTjYhExE2ScQCuNnf38fALDs3LmwSBNfN2NMPyaLiorQ1taGKVOmoLCwcNgViXVdhyAICHH7ZKIJizQh22xAIGA0HbvdxmhOQYEx0qNpXDuHiDJfWNfR6wsgEAqjzTOA0wrzJrTGDTDGcPPiiy+iuLgYALB9+/YJvSERxefEJmSfD+jqMm422/G1c9iETESZ6JCzF9vfa8fuo90IhcMY8Acxa1I+Fo9z24WIMYWbxYsXR/88a9YslJeXDxm90XUdR44cGXchRDQ6QTBGazTNaEL2eoGPPjrehGy3G4GHTchElAkOOXvx9J5D6Bn0QZUlyKIMh1XBgWNudPQO4otVFeMOOHEPas+aNQudnZ1D7nc6nZg1a9a4iiCi+EiSMWJTXGyEG5fL2NPq0CFjVGdwkGvnEFH6Cus6XvqgA+5BPyqK7FAkEaIgIE+RUVFsh3vQj7980IHwOH+Qxd2aGOmtOVlfXx80ritPlHKKYtwia+d0dBwPP5GVkC0Ws6skIjquo3cQh3v6MCVfG5IpBEHAZLuGQz196OgdxNQCW9yvP+Zw09jYGH3Tu+++Gzbb8TcLhUJ47bXXUFVVFXcBRJQYJ66dEwzGNiFHLltZrWxCJiLzDfiD8AVD0GTrsI9bLRK6+r0Y8AfH9fpjDjdvvPEGAGPk5q233oJyQgejoiiYP38+7rjjjnEVQUSJJctGoIk0IXd3H29CLiwErFYdmsaFc4jIHDZFhipL8AaDsFqGRpHBQAiKLMGmjG/tizE/KzJLqqGhAT/60Y+4ng1RBjixCTkcNnpxPvoIcIU/wrSpAiYXFMBmsUES2YVMRKlTmm/FzCI7DhxzY0ZRXsxjuq6js8+LM6Y4UJo//MjOqcQ9QL1u3ToEg0OHiZxO5ykX+BvJ+vXrUVFRAU3TUFNTg507d4547DPPPIOFCxeisLAQeXl5qKqqwi9+8YtxvS9RLhFFow+nsFBHv9eHrgEnDrsP45DrELr6uzAYGITOLmQiSgFRELB4TikcVgWHevrgD4UQ1nX0+wI45OyDw6rgU3NKx73eTdzh5pprrsHmzZuH3P/000/jmmuuibuALVu2oLGxEatXr8bu3bsxf/58LFmyBMeOHRv2+OLiYtx1111oaWnBm2++iYaGBjQ0NOCPf/xj3O9NlMvyLDYUaUUAgPb+dhxyHcIRzxG4vW4EQgGTqyOibFdRnI8vVlXgYyUO+IJheLx+uL0BnDHFMaFp4AAg6HH+U624uBh//etfcdZZZ8Xcv2/fPpx//vno7u6Oq4Camhqce+65ePjhhwEA4XAY5eXluPXWW7FixYoxvcYnPvEJXHbZZbjvvvtOeazH44HD4cC+fW7k5/PSGuWecFjH2//8EKedBhSdMOQbDAcxGBhEIByAKqkoUAtgV+ywWqwQBXYhE9FQgQBw8KCxbcx4Z2X6giH85K/7EAiFcc2CWSOuUOx0elBZ6YDb7T5la0zcnTo+n2/Yy1KBQACDg4NxvZbf78euXbuwcuXK6H2iKKKurg4tLS2nfL6u63jxxRexf/9+fO973xuxXp/PF/16vJfOiLKdLMrIV41/KXmDXnQNdKF7sBtW2QqH5oAsypBFGZJgLLbFPh0iihgmFoyZCAm3nPfx6NehIDDcRk7xvEfc4WbRokV49NFH8eMf/zjm/g0bNqC6ujqu1+rq6kIoFEJpaWnM/aWlpdi3b9+Iz3O73Zg+fTp8Ph8kScJPfvITXHzxxcMe29TUhDVr1gy53+Ua/URZLMfXDyHKNZqsQZM1hPUwvEEv2nrboEOHACEm4Mhi8nbxVGUVJbaSYdfVIqL0IAjG78tAwFg5PZnC4bEfG/dPpvvvvx91dXX4xz/+gYsuuggA0NzcjL///e944YUX4n25ccnPz8eePXvQ19eH5uZmNDY2Yvbs2bjwwguHHLty5croGj2AMXJTXl6O004zFjg7ma4boae315hC29dnNGKqqhF0uLQ95RJREGGz2GCzGOta6bqOkB5CMBxEIByAP+xPyvvqug63zw1N1qKjSUSUfmQZKC9PzYro8Vx4iTvcnH/++WhpacFDDz2Ep59+GlarFfPmzcPGjRtx+umnx/VaJSUlkCQJHR0dMfd3dHSgrKxsxOeJooi5c+cCAKqqqvDuu++iqalp2HCjqipUVR1yf36+cRtJUZGRRH0+YzG0vj7jFgrFjurwH5WUSwRBgCwkd8QmotfXi+6Bbk5VJ0pzcvJ/HACIr6dnXCVVVVXhqaeeGs9TYyiKgurqajQ3N+OKK64AYDQUNzc345Zbbhnz64TD4Zi+mkQQhOMBJj8fmDzZCDperxFyvF4j9AiCsTAaL18RJZZdsaPH2wOX14VJtklml0NEGWRCecvr9cLvjx2Wjndxv8bGRixbtgwLFy7EokWLsG7dOvT396OhoQEAsHTpUkyfPh1NTU0AjB6ahQsXYs6cOfD5fNi6dSt+8Ytf4JFHHpnIt3JKonh8afsTR3X6+wGn0wg7+fkcySFKFEEQYJWtcA46YVfsUOWhI7BERMOJO9wMDAzg29/+Np5++ulhp32H4uwoqq+vR2dnJ1atWoX29nZUVVVh27Zt0Sbj1tZWiCdshtPf34+vf/3rOHr0KKxWK84880z88pe/RH19fbzfyoRYLMbNbjcWRuvqAnp6jFEc7h9KlBhWixU9gz1wDjpRZi9jczERjUnc69zcfPPN2L59O+677z58+ctfxvr16/HRRx/hpz/9KR544AFcd911yao1ISLr3Ixlnnw8QiEj3HR3G38uKOAGhZSeRlrnJl0Fw0H0+fowo3AG7Ird7HKIyCTx/P6Oe+Tm//7v//Dzn/8cF154IRoaGnDBBRdg7ty5mDlzJp566qm0DzfJIklAScnxURyX6/hlLCIav8iaOl39XbDKVjYXE9EpxT224HQ6MXv2bABGf43T6QQA/L//9//wl7/8JbHVZSCrFZg+3biFw8ZozkQWNyIio7m4L9AHj4+LcBLRqcUdbmbPno2DBw8CAM4880w8/fTTAIwRncLCwoQWl6lE0Wg6njHD+G9vr9F4TETjE2ku7hrogi+Y2JmRRJR94g43DQ0N+Mc//gEAWLFiBdavXw9N03D77bfjW9/6VsILzGSqCkydaixwJIrGrKoA9yMkGherxQpfyIceb4/ZpRBRmou7ofhkhw8fxq5duzB37lzMmzcvUXUlTbIaik8lEDDCTXe30Z9jt3PaOJkj0xqKT+QP+eENeDGzcCaslsyqnYgmJp7f33GN3AQCAVx00UV47733ovfNnDkTV155ZUYEGzNZLMCUKcalKlU1enESvO4gUdZTJAVhPQyX14UJ/ruMiLJYXOHGYrHgzTffTFYtWU8QjBGb004DysqMcON2x7cZGFGuy1Py4PK6MBgcNLsUIkpTcffcXH/99di4cWMyaskZsmxMG58xw5g67nIBg/w5TTQmFskCHTp6Bns4ekNEw4p7nZtgMIhNmzbhz3/+M6qrq5GXlxfz+Nq1axNWXLaz2YxRHJfL6MXp6TEW/+PO40Sjsyt2uL1uODQHF/YjoiHiDjd79+7FJz7xCQDAgQMHYh7j0ujxE0WguNgIOpGAo2nG10Q0PFmUIQgCegZ7kGfJ488eIoox5nDz4YcfYtasWdi+fXsy68lZmgZMm2b05ET2qbLb49vinSiX2BU7ev296PP3IV/NN7scIkojY+65Of3009HZ2Rn9ur6+Hh0dHUkpKlcJAuBwGOviTJpkLPzX1wewrYBoKEmUIAoinINOhHV25RPRcWMONyc37m3duhX9XHY3KRQFKC01Qo7FYozi+P1mV0WUfuyKHX3+PvT5+8wuhYjSCPetTlOCAOTnGwGntBTwejltnOhkoiDCIlngHODoDREdN+ZwIwjCkKY9NvElnywDkycbIcdmM2ZWeb1mV0WUPmwWG/oCfej19ZpdChGliTE3FOu6jq985StQVRUA4PV6ceONNw6ZCv7MM88ktkICYKyHo2nHp427XMbIDqeNU64TBRGqpMI56IRdsUMS+ZeCKNeNOdwsW7Ys5uvrr78+4cXQ6CTJaDTOyzNmVLlcnDZOBBijNz3eHvT6e1GoFZpdDhGZbMzh5oknnkhmHRSHk6eNO53G4n9y3KsWEWUHQRCgyRq6B7phV+yQRf5lIMpl/AmQoUQRKCwErFYj3PT0GCM7Fovx2Ik3olxgla3G6I2vF0XWIrPLISITMdxkOFU1NuHMyzMCTjAIBALGrKrI7WQMPqOTZWM6PvvlM4sgCLDK1mjvjUXiCphEuYrhJgsIgnFZqqAgNtScfAuFjFswaNw4rXwoXTfWFOrvN86rphlBh43bmcFqMcKNx+fBJNsks8shIpMw3GQZjshMXCAA+HzAwICxQnRfnxEEZdkYKbNYOKqTziKjN/lqPhRJMbscIjIBww3RSSwW42a3AyUlRtDx+YDeXmONob4+juqks8jojdvrxuS8yWaXQ0QmYLghGoUoGk3bVqvRwB0IGAFncNAIO729xqUsTTNuHNFJDzaLDT2DPShQC6DKqtnlEFGKMdwQxSEyqpOfb4zqREZyPB6joVuWjSDE3dzNpckaegI9cHldKLWXml0OEaUYww3ROImisYCizQYUFxs9Om630Yzc23t8NIc9UOawWWxweV1waA5osmZ2OUSUQgw3RAkgy8Zstfx8oz+nv99YQdrtNi5VWa1GMzKljiqrGAgMwOV1ocxeZnY5RJRCDDdECRRpNNY0oKjIGM2J9Ob09xsNyFYrm5BTJU/Jg2vQBYfqgNViNbscIkoRhhuiJBFFY8aV3W7sCRa5bBWZWs4m5ORTJAUD/gH0DPZAkzUIPNlEOYHhhigFFMW4ORzGTKv+fqMJ2eUyRnHYhJw8eUoe3D43HJoDeUqe2eUQUQow3BClkCAcb0I+8bJVXx+bkJPFIlmgB3S4vC7YLDaO3hDlAIYbIpNEmpALCowp5ZHRHI/HeJxNyIljV+xwe43RG7tiN7scIkoyhhuiNHByE3JkJCfShKxpRhii8ZFFGYIgoGewB3mWPI7eEGU5/rgkSiPDNSG7XEbICYWM0Rw2IY+PXbGj19+LPn8f8tV8s8shoiRiuCFKUxaL0YB84mUrt9tYCTnShKxwX8gxk0QJoiDCOehEnpIHUWBjE1G2YrghSnORRQCt1uOXrTye4zuWq6rxGJuQT82u2OHyutDn70OBWmB2OUSUJAw3RBlEkoxVkCMrIUcuW0VWQo707tDwREGEIilwDjiRZ8mDJHI1RaJsxHBDlKFU1bhF1s6JbODpdBqXtKxWNiEPJ7LnVJ+/Dw7NYXY5RJQE/NFHlOFEEcjLM24nbuA5MGA0IXMl5FiiIEKVVDgHnbArdo7eEGUhhhuiLDJSE7LLZYQgjuYYbBYberw96PX3olArNLscIkow/pgjykLDNSGfuBIyAOi6uTWaSRAEaLKG7oFu2BU7ZJE/ComyCf9GE2W5oU3IArwdGkJwwzXog2bRoEpqzi1sZ5WtxuiNrxdF1iKzyyGiBEqLyaPr169HRUUFNE1DTU0Ndu7cOeKxjz32GC644AIUFRWhqKgIdXV1ox5PRMepqjGSU33GVMydPBOTbJMQDoejv+SD4aDZJaaMIAiwylZ0D3QjEAqYXQ4RJZDp4WbLli1obGzE6tWrsXv3bsyfPx9LlizBsWPHhj1+x44duPbaa7F9+3a0tLSgvLwcl1xyCT766KMUV06UuURBRJ6Sh1J7KWYWzsQMxwzYLDYM+AfQM9iDwcAgwnrY7DKTzmqxwhvywuPzmF0KESWQoOvmXnmvqanBueeei4cffhgAEA6HUV5ejltvvRUrVqw45fNDoRCKiorw8MMPY+nSpac83uPxwOFwwO12o6CAi3gRRei6Dl/Ih35/P1xeF7xBb3R0Q5WzdwfPSJCbWTgTisQln4nSVTy/v00dufH7/di1axfq6uqi94miiLq6OrS0tIzpNQYGBhAIBFBcXDzs4z6fDx6PJ+ZGRENFmmwn2SahorACMwtnokgrQiAUQM9gj9nlJY3VYoUv5IPb6za7FCJKEFPDTVdXF0KhEEpLS2PuLy0tRXt7+5he484778S0adNiAtKJmpqa4HA4orfy8vIJ102U7SRRgl2xY2r+VMwonAFFUuANes0uK2lsFht6BnvgC/rMLoWIEsD0npuJeOCBB7B582Y8++yz0EZYc37lypVwu93R25EjR1JcJVFm02QNBWoBvIHsDTearCEQDsDldZldChElgKlTwUtKSiBJEjo6OmLu7+joQFlZ2ajP/f73v48HHngAf/7znzFv3rwRj1NVFaqavf0CRKlgV+zoHuhGKBzK2hV9I9syODQHNJkbdBFlMlNHbhRFQXV1NZqbm6P3hcNhNDc3o7a2dsTnPfjgg7jvvvuwbds2LFy4MBWlEuU0q8UKm8WW1ZemVFlFMBzk6A1RFjD9slRjYyMee+wx/OxnP8O7776Lm266Cf39/WhoaAAALF26FCtXrowe/73vfQ933303Nm3ahIqKCrS3t6O9vR19fX1mfQtEWU8URBRaC7O+JyVPyYNr0IXBwKDZpRDRBJi+QnF9fT06OzuxatUqtLe3o6qqCtu2bYs2Gbe2tkIUj2ewRx55BH6/H1/4whdiXmf16tW45557Ulk6UU6xWWxQJAW+oC9rp4YrkhJd60eTtZxbtZkoW5i+zk2qcZ0bovFr621Dj7cnqzebDIaD6Pf3Y4ZjBvKUPLPLIaJ/yZh1bogos+Sr+QCQ1asXy6IMHTpcXhdy7N9+RFmD4YaIxsxmscEqW7O+J8Wu2OH2utEf6De7FCIaB4YbIhozURBRqBXCF8ruxmJZlCEIAnoGezh6Q5SBGG6IKC42iw2KqMAf8ptdSlLZFTt6/b3o83MmJlGmYbghoriosgq7Ys/6S1OSKEESJDgHnVndY0SUjRhuiChuBVoBwno463/p5yl5HL0hykAMN0QUN6tshSZrWb1iMWD0GCmSAueAE6FwyOxyiGiMGG6IKG6SKBmNxVm+YjFg9Bj1Bfo4ekOUQRhuiGhcrBYrgOxe8wYwRm9USYVzkKM3RJmC4YaIxkWVVKiSmvWzpgBj9KY/0I9ef6/ZpRDRGDDcENG4SKIEq8WaE+FGEARosobugW4Ew0GzyyGiU2C4IaJxy1PycuaXvVW2YjA4CI/XY3YpRHQKDDdENG6qpEISpKzvuwGM0RurbIVz0IlAKGB2OUQ0CoYbIho3VVahSEpOzJoCjCZqb8gLt9dtdilENAqGGyIaN1EQYbPYcqLvJsIqW9Hj7cmp75ko0zDcENGE2Cw2hPTcmSJttVjhC/k4ekOUxhhuiGhCVFmFLMg5tQaMzWJDz2BP1u+vRZSpGG6IaEIUSYEiZ/8u4SfSZA2BcABHPUfR2d+ZMz1HRJmC4YaIJkQURNgVO3yh3PoFX2QtgiRK6OjvwGHXYXT0dWT9XltEmUI2uwAiynyarOXEdPCTabIGTdbgC/rQNdAFl9cFh+aAIilJescg8iw2qLKapNenpAmGAF0yu4rMFhj7EgwMN0Q0YaqkwiJaEAgFYJEsZpeTcqqsQpWNrSicg07oup6EdwlCxD8xvWAyVLkgCa9PSRMMAv/sArwl4K/dCegb++a1PMtENGGKpECVVATCuRluIhRJSeKoTQD9/qMwfmxz5Caj6DoQHAQkEeCo2/gNDIz5UIYbIpowQRBgV+w41n8MNovN7HKynAQgdwNkZvrX5RRZBiz8fzdu8tgjCxuKiSghVFlFGLnXd0NE6YfhhogSQpVVKGJuTQknovTEcENECaFISrSplojITAw3RJQwdsXOHbOJyHQMN0SUMJqsAUCSpkITEY0Nww0RJUxkKjQvTRGRmRhuiChhLJIFmqwx3BCRqRhuiCih7IodwXDQ7DKIKIcx3BBRQkX2PcrFvaaIKD0w3BBRQqmSClXilHAiMg/DDREllCRKsFqsDDdEZBqGGyJKuDwlj303RGQahhsiSjhVUiEJEvtuiMgUDDdElHCqrEKRFPiCPrNLIaIcxHBDRAknCiJsFhv7bojIFAw3RJQUNosNIT1kdhlElIMYbogoKVRZhSzICIUZcIgotRhuiCgpFEmBInOfKSJKPYYbIkoKURBhV+zwhdhUTESpZXq4Wb9+PSoqKqBpGmpqarBz584Rj3377bdx1VVXoaKiAoIgYN26dakrlIjipskap4MTUcqZGm62bNmCxsZGrF69Grt378b8+fOxZMkSHDt2bNjjBwYGMHv2bDzwwAMoKytLcbVEFC9VUmERLQiEAmaXQkQ5xNRws3btWixfvhwNDQ04++yzsWHDBthsNmzatGnY488991w89NBDuOaaa6CqaoqrJaJ4KZICVVIRCDPcEFHqmBZu/H4/du3ahbq6uuPFiCLq6urQ0tKSsPfx+XzweDwxNyJKDUEQYFfs8AfZVExEqWNauOnq6kIoFEJpaWnM/aWlpWhvb0/Y+zQ1NcHhcERv5eXlCXttIjo1VVYRBvtuiCh1TG8oTraVK1fC7XZHb0eOHDG7JKKcosoqFJFTwokodWSz3rikpASSJKGjoyPm/o6OjoQ2C6uqyv4cIhMpkgJVVuEL+aBIitnlEFEOMG3kRlEUVFdXo7m5OXpfOBxGc3MzamtrzSqLiJLArtg5Y4qIUsa0kRsAaGxsxLJly7Bw4UIsWrQI69atQ39/PxoaGgAAS5cuxfTp09HU1ATAaEJ+5513on/+6KOPsGfPHtjtdsydO9e074OIRqfJGgBA13UIgmByNUSU7UwNN/X19ejs7MSqVavQ3t6OqqoqbNu2Ldpk3NraClE8Prj0z3/+EwsWLIh+/f3vfx/f//73sXjxYuzYsSPV5RPRGCmSAkUy+m5UmZeJiSi5BF3XdbOLSCWPxwOHwwG3242CggKzyyHKGUfcRzAQGEC+mm92KRkqgH7/XpTmzUCBNsnsYigegQHgyAeANAew2MyuJmN5nE44KivH9Ps762dLEVF6sCt2BMNBs8sgohzAcENEKRG5HMW9pogo2RhuiCglVEmFKqlc74aIko7hhohSQhIlWC1WhhsiSjqGGyJKmTwlj303RJR0DDdElDKqpEISJPbdEFFSMdwQUcqosgpFUuAL+swuhYiyGMMNEaWMKIiwWWzsuyGipGK4IaKUsllsCOkhs8sgoizGcENEKaXKKmRBRijMgENEycFwQ0QppUgKFFnhpSkiShqGGyJKKVEQYVfs8IXYVExEycFwQ0Qpp8kap4MTUdIw3BBRyqmSCotoQSAUMLsUIspCDDdElHKKpECVVATCDDdElHgMN0SUcoIgwK7Y4Q+yqZiIEo/hhohMoVk0hMG+GyJKPIYbIjKFIilQRE4JJ6LEY7ghIlMokgJVVhluiCjhGG6IyDR2xc4ZU0SUcAw3RGQaTdYAALqum1wJEWUThhsiMo0qq1Ak9t0QUWIx3BCRaWRRhiZrDDdElFAMN0RkKrti52J+RJRQDDdEZCpVViFC5F5TRJQwDDdEZCpVYt8NESUWww0RmUoSJVgtVoYbIkoYhhsiMl2ekodgOGh2GUSUJRhuiMh0qqRCEiSEwiGzSyGiLMBwQ0Sm43o3RJRIDDdEZDpREGGz2BhuiCghGG6IKC3YLDaEdF6WIqKJY7ghorSgyipkQWZjMRFNGMMNEaUFRVKgyAp3CSeiCWO4IaK0IAoi7IodvpDP7FKIKMMx3BBR2tBkjdswENGEMdwQUdpQJRUW0cJLU0Q0IQw3RJQ2FEmBKqmcEk5EE8JwQ0RpQxAE2BU7R26IaEIYbogorWgWDWGEoeu62aUQUYZiuCGitKJIChRRQSDM0RsiGh+GGyJKK4qkQJXZd0NE45cW4Wb9+vWoqKiApmmoqanBzp07Rz3+17/+Nc4880xomobKykps3bo1RZUSUSrYFTvDDRGNm+nhZsuWLWhsbMTq1auxe/duzJ8/H0uWLMGxY8eGPf5vf/sbrr32Wtxwww144403cMUVV+CKK67A3r17U1w5ESWL1WKFKqnoGeyBL8hF/YgoPoJuctdeTU0Nzj33XDz88MMAgHA4jPLyctx6661YsWLFkOPr6+vR39+P3//+99H7PvnJT6KqqgobNmw45ft5PB44HA643W4UFBQk7hshooTyBr1we91we90IhAOwWqzQZM3sskwUQL9/L0rzZqBAm2R2MRSPwABw5ANAmgNYbGZXk7E8TicclZVj+v0tp6imYfn9fuzatQsrV66M3ieKIurq6tDS0jLsc1paWtDY2Bhz35IlS/Dcc88Ne7zP54PPd/xffm63G4ARcogovVlhhSiK6A30wj3gxrHQMSiSAgGC2aWZIABd74c15Ab8ufj9Z7CAD+jtB3QXIHvNriZjeVwuABjTTEpTw01XVxdCoRBKS0tj7i8tLcW+ffuGfU57e/uwx7e3tw97fFNTE9asWTPk/vLy8nFWTURERGbp7e2Fw+EY9RhTw00qrFy5Mmakx+VyYebMmWhtbT3lyckVHo8H5eXlOHLkCC/V/QvPyVA8J0PxnAzFczIUz8lQ4zknuq6jt7cX06ZNO+WxpoabkpISSJKEjo6OmPs7OjpQVlY27HPKysriOl5VVaiqOuR+h8PBD9lJCgoKeE5OwnMyFM/JUDwnQ/GcDMVzMlS852SsgxKmzpZSFAXV1dVobm6O3hcOh9Hc3Iza2tphn1NbWxtzPAD86U9/GvF4IiIiyi2mX5ZqbGzEsmXLsHDhQixatAjr1q1Df38/GhoaAABLly7F9OnT0dTUBAC47bbbsHjxYvzgBz/AZZddhs2bN+P111/Ho48+aua3QURERGnC9HBTX1+Pzs5OrFq1Cu3t7aiqqsK2bduiTcOtra0QxeMDTOeddx7+53/+B//1X/+F73znOzj99NPx3HPP4ZxzzhnT+6mqitWrVw97qSpX8ZwMxXMyFM/JUDwnQ/GcDMVzMlSyz4np69wQERERJZLpKxQTERERJRLDDREREWUVhhsiIiLKKgw3RERElFVyLtysX78eFRUV0DQNNTU12Llzp9klpcQ999wDQRBibmeeeWb0ca/Xi5tvvhmTJk2C3W7HVVddNWSxxEz3l7/8BZdffjmmTZsGQRCG7Eem6zpWrVqFqVOnwmq1oq6uDu+9917MMU6nE9dddx0KCgpQWFiIG264AX19fSn8LhLrVOfkK1/5ypDPzaWXXhpzTLadk6amJpx77rnIz8/HlClTcMUVV2D//v0xx4zl70traysuu+wy2Gw2TJkyBd/61rcQDAZT+a0kzFjOyYUXXjjks3LjjTfGHJNN5+SRRx7BvHnzoovQ1dbW4g9/+EP08Vz7jJzqfKT886HnkM2bN+uKouibNm3S3377bX358uV6YWGh3tHRYXZpSbd69Wr94x//uN7W1ha9dXZ2Rh+/8cYb9fLycr25uVl//fXX9U9+8pP6eeedZ2LFibd161b9rrvu0p955hkdgP7ss8/GPP7AAw/oDodDf+655/R//OMf+mc/+1l91qxZ+uDgYPSYSy+9VJ8/f77+6quv6i+//LI+d+5c/dprr03xd5I4pzony5Yt0y+99NKYz43T6Yw5JtvOyZIlS/QnnnhC37t3r75nzx79M5/5jD5jxgy9r68vesyp/r4Eg0H9nHPO0evq6vQ33nhD37p1q15SUqKvXLnSjG9pwsZyThYvXqwvX7485rPidrujj2fbOfnd736nP//88/qBAwf0/fv369/5znd0i8Wi7927V9f13PuMnOp8pPrzkVPhZtGiRfrNN98c/ToUCunTpk3Tm5qaTKwqNVavXq3Pnz9/2MdcLpdusVj0X//619H73n33XR2A3tLSkqIKU+vkX+ThcFgvKyvTH3rooeh9LpdLV1VV/9WvfqXruq6/8847OgD973//e/SYP/zhD7ogCPpHH32UstqTZaRw87nPfW7E52T7OdF1XT927JgOQH/ppZd0XR/b35etW7fqoijq7e3t0WMeeeQRvaCgQPf5fKn9BpLg5HOi68Yvr9tuu23E52T7OdF1XS8qKtIff/xxfkb+JXI+dD31n4+cuSzl9/uxa9cu1NXVRe8TRRF1dXVoaWkxsbLUee+99zBt2jTMnj0b1113HVpbWwEAu3btQiAQiDk3Z555JmbMmJEz5+bgwYNob2+POQcOhwM1NTXRc9DS0oLCwkIsXLgwekxdXR1EUcRrr72W8ppTZceOHZgyZQrOOOMM3HTTTeju7o4+lgvnxO12AwCKi4sBjO3vS0tLCyorK6OLkQLAkiVL4PF48Pbbb6ew+uQ4+ZxEPPXUUygpKcE555yDlStXYmBgIPpYNp+TUCiEzZs3o7+/H7W1tTn/GTn5fESk8vNh+grFqdLV1YVQKBRz4gCgtLQU+/btM6mq1KmpqcGTTz6JM844A21tbVizZg0uuOAC7N27F+3t7VAUBYWFhTHPKS0tRXt7uzkFp1jk+xzu8xF5rL29HVOmTIl5XJZlFBcXZ+15uvTSS3HllVdi1qxZ+OCDD/Cd73wHn/70p9HS0gJJkrL+nITDYfznf/4nzj///Ogq6GP5+9Le3j7sZynyWCYb7pwAwJe+9CXMnDkT06ZNw5tvvok777wT+/fvxzPPPAMgO8/JW2+9hdraWni9Xtjtdjz77LM4++yzsWfPnpz8jIx0PoDUfz5yJtzkuk9/+tPRP8+bNw81NTWYOXMmnn76aVitVhMro3R2zTXXRP9cWVmJefPmYc6cOdixYwcuuugiEytLjZtvvhl79+7FK6+8YnYpaWOkc/K1r30t+ufKykpMnToVF110ET744APMmTMn1WWmxBlnnIE9e/bA7XbjN7/5DZYtW4aXXnrJ7LJMM9L5OPvss1P++ciZy1IlJSWQJGlIt3pHRwfKyspMqso8hYWF+NjHPob3338fZWVl8Pv9cLlcMcfk0rmJfJ+jfT7Kyspw7NixmMeDwSCcTmfOnKfZs2ejpKQE77//PoDsPie33HILfv/732P79u047bTToveP5e9LWVnZsJ+lyGOZaqRzMpyamhoAiPmsZNs5URQFc+fORXV1NZqamjB//nz86Ec/ytnPyEjnYzjJ/nzkTLhRFAXV1dVobm6O3hcOh9Hc3BxzTTBX9PX14YMPPsDUqVNRXV0Ni8USc27279+P1tbWnDk3s2bNQllZWcw58Hg8eO2116LnoLa2Fi6XC7t27Yoe8+KLLyIcDkf/oma7o0ePoru7G1OnTgWQnedE13XccsstePbZZ/Hiiy9i1qxZMY+P5e9LbW0t3nrrrZjg96c//QkFBQXRYfpMcqpzMpw9e/YAQMxnJZvOyXDC4TB8Pl9OfkaGEzkfw0n65yPuFuQMtnnzZl1VVf3JJ5/U33nnHf1rX/uaXlhYGNOdna2++c1v6jt27NAPHjyo//Wvf9Xr6ur0kpIS/dixY7quG9MWZ8yYob/44ov666+/rtfW1uq1tbUmV51Yvb29+htvvKG/8cYbOgB97dq1+htvvKEfPnxY13VjKnhhYaH+29/+Vn/zzTf1z33uc8NOBV+wYIH+2muv6a+88op++umnZ/S059HOSW9vr37HHXfoLS0t+sGDB/U///nP+ic+8Qn99NNP171eb/Q1su2c3HTTTbrD4dB37NgRM211YGAgesyp/r5EprVecskl+p49e/Rt27bpkydPzthpvqc6J++//75+77336q+//rp+8OBB/be//a0+e/Zs/VOf+lT0NbLtnKxYsUJ/6aWX9IMHD+pvvvmmvmLFCl0QBP2FF17QdT33PiOjnQ8zPh85FW50Xdd//OMf6zNmzNAVRdEXLVqkv/rqq2aXlBL19fX61KlTdUVR9OnTp+v19fX6+++/H318cHBQ//rXv64XFRXpNptN//znP6+3tbWZWHHibd++XQcw5LZs2TJd143p4HfffbdeWlqqq6qqX3TRRfr+/ftjXqO7u1u/9tprdbvdrhcUFOgNDQ16b2+vCd9NYox2TgYGBvRLLrlEnzx5sm6xWPSZM2fqy5cvH/KPgWw7J8OdDwD6E088ET1mLH9fDh06pH/605/WrVarXlJSon/zm9/UA4FAir+bxDjVOWltbdU/9alP6cXFxbqqqvrcuXP1b33rWzHrmOh6dp2T//iP/9BnzpypK4qiT548Wb/ooouiwUbXc+8zMtr5MOPzIei6rsc/3kNERESUnnKm54aIiIhyA8MNERERZRWGGyIiIsoqDDdERESUVRhuiIiIKKsw3BAREVFWYbghIiKirMJwQ0RERFmF4YaI0tpXvvIVXHHFFUPu37FjBwRBGLI5IRERww0RERFlFYYbIsp499xzD6qqqmLuW7duHSoqKmLue/zxx3HWWWdB0zSceeaZ+MlPfpK6IokoZWSzCyAiSoWnnnoKq1atwsMPP4wFCxbgjTfewPLly5GXl4dly5aZXR4RJRDDDRGlvd///vew2+0x94VCobheY/Xq1fjBD36AK6+8EgAwa9YsvPPOO/jpT3/KcEOUZRhuiCjt/du//RseeeSRmPtee+01XH/99WN6fn9/Pz744APccMMNWL58efT+YDAIh8OR0FqJyHwMN0SU9vLy8jB37tyY+44ePRr9syiK0HU95vFAIBD9c19fHwDgscceQ01NTcxxkiQlulwiMhnDDRFlvMmTJ6O9vR26rkMQBADAnj17oo+XlpZi2rRp+PDDD3HdddeZVCURpQrDDRFlvAsvvBCdnZ148MEH8YUvfAHbtm3DH/7wBxQUFESPWbNmDb7xjW/A4XDg0ksvhc/nw+uvv46enh40NjaaWD0RJRqnghNRxjvrrLPwk5/8BOvXr8f8+fOxc+dO3HHHHTHHfPWrX8Xjjz+OJ554ApWVlVi8eDGefPJJzJo1y6SqiShZBP3kC9VEREREGYwjN0RERJRVGG6IiIgoqzDcEBERUVZhuCEiIqKswnBDREREWYXhhoiIiLIKww0RERFlFYYbIiIiyioMN0RERJRVGG6IiIgoqzDcEBERUVZhuCEiIqKs8v8DbxRKdtkawmQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_hues(rms, rmse, p1, p2, plot_spans=True, configuration=configuration)" + ] + }, + { + "cell_type": "markdown", + "id": "5ccf464a", + "metadata": {}, + "source": [ + "Another way to visualize the spectral state from the rms and hue together is by using a polar plot (here, intuitively, the radius is the rms and the hue is the angle):" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "de4215f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcUAAAG6CAYAAAB5tV2QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACodklEQVR4nOydd3zTdf7HX9mrSbqb7gUtLbNlFCiUISeKA9TzcB2enucdP/VUlLvTc53r3OvAcR6K41TUOwE9RAHZIGWV2b1XOtJm7+T7++NLQgttadok34zP8/HIg5LvN9/vO2n6fX3f88OiKIoCgUAgEAgEsJk2gEAgEAiEQIGIIoFAIBAI5yCiSCAQCATCOYgoEggEAoFwDiKKBAKBQCCcg4gigUAgEAjnIKJIIBAIBMI5iCgSCAQCgXAOIooEAoFAIJyDiCKBQCAQCOcgokgg+BmdTocHHngA6enpEIlEmD17Ng4fPuzeTlEUnnjiCSQmJkIkEmHRokWorq7ud4yDBw9iypQpyMjIwLp16/z9FgiEkIWIIoHgZ+666y5s27YNn3zyCU6dOoXLL78cixYtQmtrKwDgpZdewltvvYV3330Xhw4dgkQiweLFi2E2m93H+O1vf4vHH38cn332Gf7+97+jubmZqbdDIIQULDIQnEDwHyaTCVKpFJs2bcJVV13lfn7q1Km48sor8cwzzyApKQkPPfQQHn74YQCARqNBQkIC1q9fj5tuugkAkJ6ejl27diE+Ph7z58/HRx99hPz8fEbeE4EQShBPkUDwI3a7HQ6HA0KhsN/zIpEI+/btQ319PZRKJRYtWuTeJpfLUVRUhIMHD7qfe+KJJ5CXlwe5XI6ZM2cSQSQQvAQRRQLBj0ilUsyaNQvPPPMM2tra4HA48Omnn+LgwYNob2+HUqkEACQkJPR7XUJCgnsbQIdPVSoVurq68I9//MOv74FACGWIKBIIfuaTTz4BRVFITk6GQCDAW2+9hZtvvhlstmd/jhKJBFFRUT6ykkAIT4goEgh+Jjs7G7t374Zer0dzczNKS0ths9mQlZUFhUIBAOjo6Oj3mo6ODvc2AoHgO4goEggMIZFIkJiYiN7eXvzwww9YunQpMjMzoVAosGPHDvd+Wq0Whw4dwqxZsxi0lkAID0j1KYHgZ3744QdQFIXc3FzU1NRg9erVEAqF2Lt3L3g8Hl588UW88MIL+Oijj5CZmYnHH38cJ0+exNmzZy8q0CEQCN6Fy7QBBEK4odFo8Mgjj6ClpQXR0dG44YYb8Nxzz4HH4wEA/vSnP8FgMODuu++GWq3GnDlzsHXrViKIBIIfIJ4igUAgEAjnIDlFAoFAIBDOQUSRQCAQCIRzEFEkEAgEAuEcRBQJBAKBQDgHEUUCgUAgEM5BRJFAIBAIhHMQUSQQCAQC4RxEFAkEAoFAOAcRRQKBQCAQzkFEkUAgEAiEcxBRJBAIBALhHEQUCQQCgUA4BxFFAoFAIBDOQZaOIhB8iMlkQmdnJ7RaLfR6PXQ6nfvfvj/r9Xo4HA44nU44nU7Y7Xaw2ex+Dw6Hg4iICEilUve/F/4slUoRHx8PkUjE9FsnEIISsnQUgTACKIpCa2sramtr0dbWhvb2drS1tbkf7e3tUCqV0Gq1YLPZEIvFEIvFkEgkEIvFEIlE7p9d/3K5XLcAUhQFtVqNyMhIUBTlFkqj0QiDwQCj0djv0fc5p9MJuVyOhIQEJCYmIikpCUlJSUhOTnb/Pzs7G0lJSWCxWEx/lARCQEFEkUAYgt7eXlRVVaGqqgqVlZWoqKhAZWUlamtrYTabkZCQgPj4eMTHxyMuLg4KhQKJiYlIS0tDSkoK0tPTkZiYCA6H49F5bTYbtmzZgiVLlrgXHx4ODocD7e3taGhoQHNzM1paWtwC3dHRge7ubnR2dqKjowMikQjZ2dnIzc3FuHHjkJOT435ERUV5+lERCCEBCZ8SCKA9v7q6Ohw9ehRHjhzBkSNHcOLECfT09CAmJgZpaWnIyMjAmDFjsGTJEkyYMAETJkyAWCxm2vR+cDgcpKSkICUlZcj9DAYDzpw5g9OnT6OiogJnzpzB//73PzQ1NUGlUiE6OhqTJ0/G9OnTMW3aNEydOhWZmZnEsySEPMRTJIQdFEWhtrYWR44cwdGjR3H48GGUlZXBYDBgzJgxGD9+PAoLCzFjxgxMmTIFsbGxfrdxpJ6iN+ju7saxY8dQWlqK48eP4+zZs6ipqYFEIsGUKVPcQjlt2jRkZWURoSSEFEQUCSEPRVGorq7Grl278NNPP2HXrl1QqVQYO3Ys8vPzUVhYiNmzZ2PGjBkB4/kxKYoDYTQaUVpaigMHDuDYsWM4e/YsqqurERsbi/nz52PhwoWYP38+xowZQ0SSENQQUSSEHBRFoaam5iIRnDRpEmbOnIlf/OIXuOyyyxAREcG0qYMSaKI4EHq9Htu2bcP27dvx888/49SpUxeJZHZ2NhFJQlBBRJEQEpjNZuzcuRObNm3Ct99+i66uLkycOBEzZ87E5ZdfHvAieCHBIIoX4hLJbdu2uUUyISEB1157La699losWLAAAoGAaTMJhCEhokgIWrq6uvC///0PGzduxLZt2yCTyTB//nwsW7YMV111VVCJ4IUEoyheiFarxf/+9z9s2rQJu3btgl6vx+WXX46lS5fiqquuYiRXSyBcCiKKhKCipqYG//nPf/DNN9/gyJEjGDduHBYtWoRf/vKXmD17Ntjs0BjSFAqi2Ben04n9+/fj66+/xvbt21FZWYkZM2Zg2bJluOGGG5Cdnc20iQQCACKKhCCgs7MTGzZswEcffYSTJ0+iqKgIS5YswU033YTMzEymzfMJoSaKF1JbW4sNGzZgy5YtKC0txZQpU7BixQosX74ccXFxTJtHCGOIKBICEoPBgE2bNuHjjz/Gjh07MGnSJNxwww248847oVAomDbP54S6KPZFqVTigw8+wFdffYUzZ87gsssuw4oVK7B06dKAqQYmhA9EFAkBg8PhwPbt2/Hxxx9j48aNUCgUuO6663DXXXdh3LhxTJvnV8JJFPtSXl6O999/Hxs3bkRHRweuu+46rFixApdddpnHU4EIhJEQGgkYQlDT3t6OZ599FhkZGbjtttvA5/OxdetWVFdX45VXXgk7QQxn8vLy8Nprr6Gmpgbff/89uFwubr31VmRlZeG5556DUqlk2kRCiENEkcAIFEXhp59+wvXXX4/09HRs2bIFTz31FFpaWvDhhx9i7ty5IVM0Q/AcNpuNkpISrF+/Hi0tLXj88cfx7bffIi0tDTfccAN27doFEuQi+AJy1SH4Fb1ej3feeQf5+fm44YYbEB0djWPHjuHAgQP47W9/S/rYCBchEAhw11134eeff8bhw4chl8uxbNkyTJgwAe+99x4MBgPTJhJCCCKKBL/Q1taGhx9+GElJSXjrrbdw1113obm5Gf/6178wYcIEps0jBAmTJ0/GBx98gJaWFvzmN7/Ba6+9hqSkJKxevRrt7e1Mm0cIAYgoEnxKbW0t7r77bmRlZeHIkSP48ssvcebMGTz00ENB3VxPYJaIiAisXr0a5eXl+Oyzz1BaWorMzEz84Q9/QF1dHdPmEYIYIooEn3DixAksX74c+fn5aG9vx+7du7Fr1y5cccUVJFdI8BpsNhtXXXUVdu/ejZ07d6K5uRl5eXm4+eabcerUKabNIwQh5OpE8Cr79u3DlVdeiZkzZ4LFYqGsrAzffvstioqKmDaNEOLMmjUL//vf/3D06FE4nU5Mnz4dV111FQ4cOMC0aYQggogiwSv8/PPPmDdvHq688kqkpKSgoqICX3zxBfLy8pg2jRBmTJgwARs2bEBFRQUUCgUuv/xyzJ8/H6WlpUybRggCiCgSRkV5eTmWLl2KhQsXIj8/H3V1dXj//feRnp7OtGmEMCcjIwPr1q1DbW0tcnNzMX/+fFx//fWoqKhg2jRCAENEkTAimpubceedd6KgoAAikQhnz57FO++8Q+ZWEgKOhIQEvPfeezhz5gy4XC4mT56Mu+66C62trUybRghAiCgSPEKlUuHhhx9GTk4O2tracOjQIXzxxRfIyMhg2jQCYUgyMzPx5Zdf4tChQ2hqasKYMWPwpz/9Cb29vUybRgggiCgShoXVasWLL76IrKws7N+/H1u3bsXWrVsxefJkpk0jEDxiypQp+PHHH/H9999j9+7dyMzMxEsvvQSr1cq0aYQAgIgi4ZL8+OOPGD9+PP71r3/hgw8+wMGDBzFv3jymzSIQRsX8+fNx6NAhvP/++3jvvfcwceJE7Nixg2mzCAxDRJEwKE1NTbj++utxww034KabbsKZM2dwww03MG0WgeBVbrzxRpw9exa//OUvsXTpUtx4441oaWlh2iwCQxBRJFyExWLB888/j7y8PNhsNpw6dQrPPPMM+Hw+06YRCD5BIBDgueeew6lTp2A0GjFu3Di8+OKLJKQahhBRJPTjxx9/xIQJE/Dhhx9iw4YN+Pbbb0kRDSFsyMzMxP/+9z/8+9//xvvvv4+JEydi+/btTJtF8CNEFAkA6KrSm266CTfccANuvvlmnDlzBldffTXTZhEIjLB06VKcOXMGN954I6677jrccsst6OnpYdosgh8gokjAN998g3HjxqGtrQ0nT57E008/TUKlhLBHIBDg2WefRVlZGVpaWpCXl4fNmzczbRbBxxBRDGNUKhVuvvlm/OY3v8Fjjz2GXbt2ITMzk2mzCISAIjs7G7t27cJf/vIX3Hbbbbj11luJ1xjCEFEMUzZt2oS8vDy0tbWhrKwM999/P1m9gkAYBDabjQcffBDHjh1DU1MT8vPz8e233zJtFsEHkKtgmNHT04NbbrkFv/71r/Hoo49i586dxDskEIbJmDFjsHv3bqxevdr9d0Qm4oQWRBTDiJ9++gn5+floaWnB8ePH8cADDxDvkEDwEDabjYceegjHjx9HfX098vPzsWvXLqbNIngJckUMA+x2Ox5//HFcffXV+OMf/4hdu3YhOzubabMIhKBmzJgx2LNnD+655x4sWbIETz31FBwOB9NmEUYJEcUh2LNnD6655hokJSWBxWJh48aN/bY/9dRTGDduHCQSCaKiorBo0SIcOnSo3z4ZGRlgsVj9Hi+88EK/fVxLLRUUFFz0+tHS2tqKBQsW4N///jd27NiBRx99lHiHBIKXYLPZeOyxx/Djjz9i/fr1uOyyy9DW1ua387/wwgtgsVh44IEH3M/Nnz//omvOH/7wh36v27x5M3JycpCbm4vvvvvOb/YGA+TqOAQGgwGTJ0/G2rVrB9yek5ODNWvW4NSpU9i3bx8yMjJw+eWXo6urq99+Tz/9NNrb292P++67z72tqakJL730Er744gv89a9/xR133OE1+7ds2YJJkyYhJiYGx48fx6xZs7x2bAKBcJ45c+agrKwMUqkUkyZNwg8//ODzcx4+fBjvvfceJk2adNG23/3ud/2uOS+99JJ7m8ViwT333IO3334ba9aswcqVK8nknj5wmTYgkLnyyitx5ZVXDrr9lltu6ff/1157DevWrcPJkydx2WWXuZ+XSqVQKBQDHkOr1SIyMhKTJk2CQqGAyWQatd02mw2PPvoo3n77bTz33HP97iIJBIJviIyMxLfffovXXnsN119/Pe677z4888wz4PF4Xj+XXq/Hrbfeivfffx/PPvvsRdvFYvGg1xyLxQIOh4MpU6YAALhcLiwWC+lNPgfxFL2E1WrFP//5T8jl8ouWU3rhhRcQExODgoICvPzyy7Db7e5tEyZMwKRJkyCXyzF+/PgBv+Ce0NzcjDlz5mDjxo3Yu3cvEUQCwc+sWrUKu3fvxtdff42SkhKfDBe/5557cNVVV2HRokUDbv/3v/+N2NhYTJgwAY888giMRqN7m0wmwx133IHExEQkJSVh5cqVkEqlXrcxaKEIwwIA9c0331z0/LfffktJJBKKxWJRSUlJVGlpab/tr776KrVz507qxIkT1DvvvENFRkZSDz744EXH6e7upoxG46hs3L9/PxUbG0tdf/31lF6vH9WxCMxitVqpjRs3UlarlWlTCCNEp9NRy5Yto+Lj46mDBw967biff/45NWHCBMpkMlEURVHz5s2j7r//fvf29957j9q6dSt18uRJ6tNPP6WSk5Op66677qLjqNVqSqvVes2uUIGI4jAZTBT1ej1VXV1NHTx4kLrzzjupjIwMqqOjY9DjrFu3juJyuZTZbPaqfevWraNEIhH1t7/9jXI4HF49NsH/EFEMDRwOB/XEE09QIpGIWr9+/aiP19TURMXHx1MnTpxwP3ehKF7Ijh07KABUTU3NqM8fDhBRHCaDieKFjBkzhnr++ecH3X769GkKAFVRUeEVu2w2G3X//fdTcrmc+s9//uOVYxKYh4hiaPHll19SMpmMWrVqFWW320d8nG+++YYCQHE4HPcDAMVisSgOhzPgsfV6PQWA2rp162jeQthACm28jNPphMViGXR7WVkZ2Gw24uPjR32u3t5e3Hjjjaivr8e+ffswYcKEUR+TQCB4nxtvvBFjx47F9ddfj9OnT2PDhg2IjIz0+DiXXXYZTp061e+5O+64A+PGjcOf//xncDici15TVlYGAEhMTByJ6WEHEcUh0Ov1qKmpcf+/vr4eZWVliI6ORkxMDJ577jlce+21SExMRHd3N9auXYvW1lbceOONAICDBw/i0KFDWLBgAaRSKQ4ePIgHH3wQt912G6KiokZlW3l5Oa6++mokJyejtLQUMTExozoegUDwLVOmTEFpaSmWLVuG6dOn47vvvkNubq5Hx5BKpRfd/EokEsTExGDChAmora3FZ599hiVLliAmJgYnT57Egw8+iJKSkgFbNwgDwLSrGsjs3LmTAnDR4/bbb6dMJhN13XXXUUlJSRSfz6cSExOpa6+9tl+hzdGjR6mioiJKLpdTQqGQysvLo55//vlR5xO3bdtGyWQy6u677x5VKIYQuJDwaehis9moO++8k5LL5dRPP/006uP1zSk2NTVRJSUlVHR0NCUQCKgxY8ZQq1evpjQazajPEy6wKIqiGFVlgkd88cUXuPPOO/Hcc8/hwQcfZNocgo+w2WzYsmULlixZ4pM+NwLzvPrqq3j88cfx0UcfuaNLBOYh4dMg4s0338Sjjz6KdevW4eabb2baHAKBMAoeeughJCQk4De/+Q06Oztxzz33MG0SAUQUgwKKovDoo4/i3XffxTfffIPLL7+caZMIBIIXuO222xAXF4fly5dDqVTi6aefBovFYtqssIaIYoBjt9tx99134/vvv8eOHTtQWFjItEkEAsGLLF68GD/++COuueYaKJVKvPPOO+ByyaWZKciYtwDGaDRi2bJl2LNnD/bu3UsEkUAIUWbMmIF9+/Zhx44duOGGG7wyA5kwMogoBigajQaLFi1CW1sb9u/fjzFjxjBtEoFA8CFjx47FgQMH0NDQgF/84hfQarVMmxSWEFEMQNRqNS677DKwWCzs2bMHCQkJTJtEIBD8gEKhwN69e+FwOLBo0SJoNBqmTQo7iCgGGD09PVi4cCHEYjG2bduGiIgIpk0iEAh+RCaTYfv27eDxeLjsssvQ29vLtElhBRHFAEKlUmH+/PmQy+X48ccfIRaLmTaJQCAwgEQiwbZt2yAWi7FgwQL09PQwbVLYQEQxQOjp6XGPg3v99dchEAiYNolAIDCISCTCm2++CZFIRDxGP0JEMQBQq9VYtGgRoqOjsXHjRiiVSpSXl4MMGyIQwhOKonD27Fl0dnbi22+/hVQqxS9+8QuSY/QDRBQZRqPR4Be/+AUiIiKwdetWxMXFobi4GE1NTUQYCYQwxCWILS0tKC4uRmxsLLZu3QqBQIDLL7+cVKX6GCKKDGI2m3H11VeDz+dj69atEAqFAOhJ+EQYCYTw40JBdBXaicVi/Pjjj2CxWLj22muHXJ6OMDqIKDKEw+HATTfdBLVajS1btlxUVEOEkUAILwYTRBcSiQRbt25FV1cXbrnlFjgcDoYsDW2IKDIARVFYuXIlTpw4gR9//BFyuXzA/YgwEgjhwaUE0UVkZCR++OEHHDlyBH/84x/JNcEHEFFkgKeeegqbNm3C1q1bL7kaNhFGAiG0Ga4gukhJScHWrVvx5Zdf4tlnn/WTleEDWU/Rz7zzzjv4y1/+gh9//BFFRUXDfp1Op8P+/fuRlpaGvLw8Mkk/CKAoCjabDWazud/DYrH0+7/D4YDT6QRFUaAoyv0zALBYLLDZbLBYLPfPHA4HQqHQ/RAIBP3+LxQKwePxyHckCPBUEPuyf/9+XHnllXj11Vfxu9/9zodWhhdEFP3If/7zH/z617/Gf//7X1xxxRUev54IY2Bis9mg0WigVquh0WhgMBjc4ud0OsHlcgcULtdzLgHrK4AOhwM7d+7E/PnzweFw+ommS2gvFFfXc3a7HWw22318iUQCuVyOyMhIyOVysmhxgDAaQXTx3Xff4Ve/+hU+//xzLF261AdWhh9kfRI/sWfPHqxYsQLvvvvuiAQROB9K3b9/PwAQYWQAm80GtVrtFkC1Wg2DwQCRSOQWHoVC0U8ER7IMkM1mA0BXHXoqYna7vZ9I6vV6qFQq1NbWwmw2QyKRIDIy0i2SkZGRRCj9jDcEEQCuvvpqrFmzBrfccgt++OEHzJkzx8uWhh9EFP1AXV0dli1bhsceewwrVqwY1bGIMPoPiqLQ29sLlUrVzwsUiURuQUlNTUVkZGRATSDicrmIiIgY8EJrsVjcoq5SqVBXVweTyeQWSrlcjpiYGERFRZHvlY/wliC6uPPOO9HW1oalS5fi2LFjSE9P95Kl4QkJn/oYnU6HmTNnorCwEJ988olXj0tCqd7Hbrejq6sLSqUSHR0dcDqdiI2N7edZ+UMAbTYbtmzZgiVLlvjci+srlC6xZLPZSEhIgEKhQFxcHFn01kt4WxD7cvPNN+P06dM4ePAgWUhgFBBR9CFOpxPLli1DR0cH9u7dCz6f79XjE2H0DiaTCR0dHVAqlejq6oJIJIJCoYBCoUB0dDTYbP8XaftTFC/E6XRCpVJBqVRCqVTCbDYjLi7O/Zm4hkwQPMOXggjQNzdz5sxBSkoK/vOf/zDyvQ0FiCj6kL/+9a/45JNPUFpaCoVC4ZNzEGH0HIqioNVq3Rd9jUaDqKgo90U/IiKC8c+RSVHsC0VR0Ol07puG3t5eyOVy92clk8kY/6yCAV8Loov29nZMmzYNd911F/72t7/55ByhDomJ+IgNGzbgrbfews6dO30miADJMXqC0WhEU1MTmpqaYLVaER8fj8zMTCQkJARUTjCQYLFYkMlkkMlkGDt2LCwWi1sgq6urIRAIkJqairS0NLLU2SD4SxABIDExEf/5z3+waNEiTJw4Eb/85S99dq5QhXiKPuDo0aMoKSnBe++9h9tuu80v5yQe48A4nU4olUo0Njaiq6sLCQkJSEtLQ3x8PDgcDtPmDUqgeIpD4XA40NnZiaamJnR0dCAuLg4ZGRlISEggobtz+FMQ+7J+/Xrce++92LdvH6ZMmeKXc4YKRBS9TEdHBwoLC3HrrbfipZde8uu5iTCex2Qyob6+Hk1NTeBwOEhLS0NaWhpEIhHTpg2LYBDFvphMJjQ1NaGxsRFOpxPp6enIyMgIms/bFzAliC5WrVqFr776CseOHUNcXJxfzx3MEFH0Ik6nE7/4xS/A5XLx/fffM3K3HM7C6GqhqKurQ3t7uzs8GhcXF3SfQ7CJoguKotDV1YX6+np0dnYiMTERWVlZiI6OZto0v8K0IAL09Wjx4sVgs9mMXY+CEZJT9CJ///vfUV1djePHjzP2BQzHHKPT6URrayvq6uqg1+uRnp6OhQsXQiKRMG1a2MFisRAfH4/4+Hjo9XrU19e7WwSys7ORlJQU8hfnQBBEAGCz2fj8888xefJkvPzyy/jzn//MiB3BBvEUvcTevXuxePFifP/995g3bx7T5oSFx0hRFNra2lBeXg4AyMrKQmpqalB5VoMRrJ7iQNhsNjQ1NaGurg4sFgv5+flITEwM2e9kIAhiX3bs2IFrrrkG27dvx+zZs5k2J+AhougFuru7MWnSJNx999146qmnmDbHTSgLY2dnJ86ePQuLxYLc3FykpaWFlAcSSqLowul0orGxEZWVlRCJRMjPzw+pXFcgCqKLxx57DB999BFOnDgRdqFsTyGiOEooisLVV18Nk8mE7du3B9yFOdSEUa1W4+zZs1Cr1Rg7diwyMzNDctpKKIqiC7vdjrq6OlRXVyMqKgr5+fmIjIxk2qxREciCCNA3JAsXLoRcLsfGjRuD/jrgSwLrCh6EvP766zh+/Dg+//zzgBNEIHTWY9Tr9Th8+DD27dsHuVyORYsWYezYsSEpiKEOl8tFTk4OfvGLX0Aul2Pfvn04cuQI9Ho906aNiEAXROB8fvHQoUP4xz/+wbQ5AQ3xFEdBaWkp5s+fj2+++QaLFy9m2pwhCVaP0Ww2o7KyEk1NTUhNTUVubm5YlPmHsqd4ISaTCRUVFWhpaUFaWhpyc3ODZpRcMAhiX/73v//hxhtvxN69ezF16lSmzQlIiCiOEKPRiIkTJ+L666/Hyy+/zLQ5wyKYhNHhcKCqqgq1tbWIj49HXl4epFIp02b5jXASRRc6nQ7l5eXo7OxEdnY2cnJyAnrAQrAJootVq1bhu+++w4kTJ8LiBtNTiCiOkPvvvx+7d+/GkSNHgiqEFwzC2NPTg+PHj4PL5WLSpEmIiopi2iS/E46i6KKnpwenTp2C3W5HYWFhQP7+g1UQATqnW1BQgMsvvxyvvvoq0+YEHEQUR4Cr/WL//v0oKChg2hyPCVRhdDgcqKioQH19PXJzc5GdnR2QeVp/EM6iCNCFITU1NaiqqkJWVhZyc3MDxmsMZkF0cfToUcydO5e0aQxAeF5xRoHBYMDtt9+OBx98MCgFEQjM4puenh7s2rUL3d3dKCkpwdixY8NWEAl0YUhOTg5KSkrQ2dmJ3bt3o7e3l2mzQkIQAWDq1Km47777cPvtt8NkMjFtTkBBPEUP+eMf/4g9e/YEXdh0IALBY+zrHebk5GDMmDFEDEE8xb44nU5UV1ejurqaUa8xVATRhSs8vWjRIrz22mtMmxMwEFH0gD179uCKK67AgQMHQmbyPJPC2Nvbi2PHjoHL5aKgoAAymcxv5w50iChejFarxbFjx+B0OlFQUODXXGOoCaILVxh127ZtKC4uZtqcgIDckg8TV9h01apVISOIADOhVIfDgTNnzmD//v1ITU3F3LlziSASLolMJkNJSQmSk5Oxf/9+nD17Fg6Hw+fnDVVBBOgw6h//+EfcfvvtMBqNTJsTEBBPcZjcf//97rBpoCT8vYm/PEa9Xo/S0lKw2WwUFhYSMRwE4ikOjUajwfHjx0FRFKZPn+4zoQplQXRBwqj9IZ7iMCgrK8N7772HdevWhaQgAv7xGDs7O7Fnzx4kJCSgpKSECCJhxMjlcpSUlCAuLg579uxBZ2en188RDoII0BOG/vWvf+Htt9/GqVOnmDaHcYgoXgKn04mVK1dixYoVKCwsZNocn+IrYaQoCrW1tSgtLcXEiRMxfvx4UkxDGDVsNhsTJkzA+PHjUVpaitraWq9+Z8NBEF3MmDEDt9xyC1auXBkQ1ehMQq5Ml+Djjz9GfX190EytGS3eFkaHw4GysjJUV1dj9uzZSE1N9ZKlBAJNeno6Zs+ejerqapSVlY06zxhugujilVdeQVVVFf79738zbQqjEFEcArVajYcffhhPP/005HI50+b4DW8Jo9lsxv79+6HVajFv3jyyZA3BZ0RHR2PevHnQaDQ4cOAALBbLiI4TroII0J/hk08+iYceeggajYZpcxiDiOIQPPbYYxgzZgzuuusupk3xO6MVRrVajd27d0MikWDOnDlkxiLB54hEIvd3bffu3R5f2MNZEF2sXLkSaWlpePLJJ5k2hTGIKA5CWVmZO/kcrvmvkQpja2sr9u3bh6ysLBQWFoZscRIh8OByuZg6dSoyMjKwd+9etLa2Dut1RBBp2Gw21q5di3fffTdsi27C82p/CVzFNb/+9a9DvrjmUngijBRFoby8HGVlZZg2bRrGjh0bMHNVCeEDi8VCTk4Opk6dirKyMlRUVFzye0sE8TzhXnRDRHEAPvvsM9TX1+OVV15h2pSAYDjC6HQ6cezYMbS0tGDu3LlQKBQMWEognCcxMRFz585Fc3Ozu6fxQoggDoyr6GbDhg1Mm+J3iChegMViwaOPPoo///nPYVVccymGEkan04mjR49Co9GQ6TSEgEImk2HOnDno7e3F0aNH4XQ63duIIA5OdHQ0Vq9ejUceeQRWq5Vpc/wKEcULeOedd8Dn83HfffcxbUrAMZAwOhwOHD58GAaDAcXFxUGzYnqwQlGA0wnY7YDNBlitgMUCmEyA0QgYDIBeT/9ssdD79dGBsMRVgKPT6XDkyBE4nU4iiMPg/vvvB4vFwvvvv8+0KX6FjHnrg1arRWZmJl5//XWsWLGCaXMCFtdIuJSUFOh0OlitVsyaNQt8Pp9p04Iep5MWOpPJhj17tqCwcAlYLJ5b3Fx/ra6fXY++21xwOPSDzab/5fHOP1zP9d3O4QChnAK2Wq04cOAAhEIhJBIJ2traiCBegg8++AB//vOfUV9fHzafExHFPjz55JPYtGkTjh07FrYVp8NFrVZjz549EAgEWLBgARHEEeASQJfHZzLR3p3NRs8+ravbgjFj6NmnLBYtXgAtXK7/u37uux04L5QOB/3vhT9TVP/XuUQzIgIQCgE+n36EGlarFTt37oTVakVJSQlJkVwCp9OJKVOm4MYbb8Tjjz/OtDl+gYjiOTo7O5GVlYUvv/wSS5YsYdqcgMYVMjWZTDCbzUhPT2dsPcZggaJo4XOJoCu8abPRYgUAXC79oMXIhmPHaE+Rw/HdQHCKOi+WtBjTP/P5gEBAi6RAQD+CfS65K2Ta3NwMgUAAsViM6dOnkxvgS7B582bcdtttqKurQ2xsLNPm+Bwiiue47777cPLkSezevZtpUwIap9OJw4cPw2w2Y/bs2e6pNUwuVBzI2O20AGo09L92O/18XwEcqI3T4fCPKA4ERZ0XSFeNxUAiGUxrbF+YQxQIBNi/fz/EYjGmTZtGhPESzJkzB9OnT8frr7/OtCk+h4gigLq6OuTn52PXrl2YOXMm0+YELK4qU71ej+LiYnfIlMmFigMRiqJDoXo9oNUCZjMtICLR8L0tJkXxQlwi6fJ02Wz6fQiFgFQKiMWBHWodrKjGarVi3759kMvlKCwsDPvv7VDs378fl112GSorK5Gens60OT6FiCKAX//611Cr1fj222+ZNiVgoSgKx48fh1qtdt9p94UIIy0YRiOgVtP/UhQtHEKh5wUsgSSKF3JhKFggAGQyWiBFosAq1rlUlakr0hEdHY0pU6aE5fd2uFx99dWIi4vDhx9+yLQpPiXsYwYNDQ3YsGEDnn32WaZNCWiqq6vR3d2N2bNnXySIgH/WYwxEnE7aI2xvBxoagJYWWiykUiAqKvBEwhuwWLQQSqVAdDQd/u3uBhob6fev1Z7PkzLJcNouhEIhZs+ejc7OTtTU1DBgZfDw9NNP47PPPkNzc/OQ+61duxYZGRkQCoUoKipCaWnpoPvOnz8fLBbrosdVV13l3uc3v/nNRduvuOIKr72vCwl7UXz55ZexYMECTJ48mWlTApb29nZUVVVhxowZQ/YhhpMw2u1ATw9QX0+LQW8vHVKMjqbzbuE07lUopG8AJBLaQ25upm8QVCq6mIgJPOlDFIlEmDFjBiorK9HR0eFHK4OLwsJClJSUDDnpa8OGDVi1ahWefPJJHDt2DJMnT8bixYsHXQT6v//9L9rb292P06dPg8Ph4MYbb+y33xVXXNFvv88//9yr760vYR0+7ejoQEZGBn788UfMnTuXaXMCEq1Wi71792LKlClITk4e1mtCOZTq8gxVKrpR3hUe9XadRiCHTy+FK6dqNtO5RqmUDq+Kxf7xmkfamN/S0oITJ06gpKQEUqnUx1YGJ7t378aVV16JxsZGxMXFXbS9qKgI06dPx5o1awDQdQipqam477778Je//OWSx3/jjTfwxBNPoL29HRKJBADtKarVamzcuNGr72UwwtpTfOONNzB16lQiiINgtVpx6NAhZGVlDVsQgdD1GI1GoLWV9oTsdto7Eou9L4jBDotFfy7R0bQo9vbS3nRTE12F66rA9QWjmVSTkpKCzMxMHDp0KOxGmw2XefPmYfLkyXjzzTcv2ma1WnH06FEsWrTI/RybzcaiRYtw8ODBYR1/3bp1uOmmm9yC6GLXrl2Ij49Hbm4uVq5cCZVKNbo3MgRh++es0Wiwdu1aPPLII0ybEpC4Wi9kMhnGjRvn8etDSRitVqCjg76o63S01yORhF6u0Bfw+UBkJO0tWiz0DUVzM5139PZXwhuj2/Ly8iCVSt3j4AgX85e//AVr1qyBVqvt93x3dzccDgcSEhL6PZ+QkAClUnnJ45aWluL06dMXrV97xRVX4OOPP8aOHTvw4osvur1Vh48S12Erim+//Tays7P7JXQJ5zl9+jSsViumTp064vBnsAujw0HnDZuagK4uOkwaGRle+UJvweHQudaoKLpitaWFLk4ym71zfG/NMmWxWCgsLITZbMaZM2e8Y1yIcc011yAtLQ3vvvuuV4+7bt06TJw4ETNmzOj3/E033YRrr70WEydOxLJly/Ddd9/h8OHD2LVrl1fP7yIsRdFkMuG1117Dww8/zLQpAUlDQwNaW1tRVFQE7ig7tINRGCmK9gibm4G2NtojdIUCCaODxaLFMSKCDqs2NdH52dHc9Ht7uDePx0NRURGam5vR2Ng4qmOFImw2G6tWrcKrr74Kc5+7mtjYWHA4nIuKlTo6Oi65lJzBYMAXX3yB3/72t5c8f1ZWFmJjY31WLRyWorh+/XpERUXh5ptvZtqUgEOlUuH06dOYPn06xGKxV44ZTMJoNtNC2NxMh/tcbRUE78Ll0p8th0N7jM3NdAGTp18NX612IZFIMH36dJw6dcqn+atg5de//jWkUik++ugj93N8Ph9Tp07Fjh073M85nU7s2LEDs2bNGvJ4X331FSwWC2677bZLnrulpQUqlQqJiYkjfwNDEHaiSFEUXn/9dfzf//0fGe10AUajEaWlpZgwYYLXZxwGgzBqtXRYT6OhPRmplOQNfY1IRIuj2Ux7jUrl+dFyl8LXyz/FxcUhPz8fhw8fhtFo9Oqxgx0Oh4Pf//73eOONN/r9La9atQrvv/8+PvroI5SXl2PlypUwGAy44447AAArVqwYsI5j3bp1WLZsGWJiYvo9r9frsXr1avz8889oaGjAjh07sHTpUowZMwaLFy/2yXsLO1XYvn07uru7cffddzNtSkBBURSOHDmCpKQkZGRk+OQcgSqMTifdfN7SQnsqkZHBNdcz2GGxzhcvqVS0OKrVQ68D6a/1EDMzM6FQKHD06NGA+b4GCitXroRSqcTOnTvdzy1fvhyvvPIKnnjiCUyZMgVlZWXYunWru/imqakJ7e3t/Y5TWVmJffv2DRg65XA4OHnyJK699lrk5OTgt7/9LaZOnYq9e/cOOETEG4Rdn+I111yD5ORkryeJg52amho0NDRg/vz5o84jXopA6mO02+kiGpWKvij76O/MY4K5T3G0mEz0QyYDYmLo30tf/L1AsN1ux86dO5GVlYXs7GyfnivYuOuuu9Dd3e23HkJ/EFb3ww0NDfjhhx9IVdkF6HQ6VFRUYNasWT4XROC8x7h//34AYEwYzWa61cLVZkG8w8BAJKJvTnQ6ujc0Opp+cLn+F0QA4HK5KCgowM8//4yEhISwWWx3ODz88MOYNGkSGhsbQ2ZQeFiFT999913MnTsXY8eOZdqUgME16DsjI+OieL4vYTqUqtPR4VKDgc5pEUEMLNhsQC6n22A6O+nflV7vf0F0ERsbi7S0NBw/fpyEUfswbtw4FBcX45///CfTpniNsBFFq9WKdevW4Q9/+APTpgQUNTU1sFqtI2rQHy1MCKPTSYdK++YPSTFN4MLn0zctJhOFY8fOoqmpBTNn+lcQXeTn58NisaCurs7v5w5k7r77bvzrX/+CzWZj2hSvEDaiuHHjRgiFQlx//fVMmxIw6HQ6VFZWoqCgwC9h04HwpzDa7XS4tL2d9kAuzFURAhUKWu1Z6HQtSEgohlodASaKQblcLqZMmYLy8nLo9Xr/GxCg/OpXvwKXy8XmzZuZNsUrhI0ovv3227jlllvAIeNIADAXNh0Ifwij1UrPLVWp6PxhoBTUEIaGoii0tJyFStWCvLxiJCREuFfiGG3T/0iIjY1Feno6CaP2gcPh4KabbsI777zDtCleISxEsa6uDvv378d9993HtCkBgytsmpeXx7QpAHwrjDYb3f+m05H8YTDRVxDHjSuGUBgBFovONfJ4tMff1kZXqvqTvLw8WCwW1NbW+vfEAcx9992H3bt3h8QEoLAQxX//+9+YPXs2UlJSmDYlIHCFTQsLCwPKc/aFMDocdMhUq6UFkeQPg4OBBLEvrjm0rnF8PT1D9zV6E1c1akVFBXQ6nX9OGuBkZGSgqKgIn332GdOmjJqQF0WKovDJJ5/gpptuYtqUgMDpdOLYsWPIzMxEdHQ00+ZchDeF0emkKxfValJQE0xcShBdsNnnB7S3tdEPbw0YvxQxMTEkjHoBv/rVr/Dxxx8H/ecR8qJ47NgxtLW14dZbb2XalICgsbERNpuNkWrT4eINYXQ6zzfly+VkzcNgYbiC2BeRiBZHrZb2Gnt76bm1vr425+XlwWq1hkTI0BvcfvvtaGxsxMmTJ5k2ZVSEfHblk08+wcKFCyGTyZg2hXHsdjsqKysxadKkgAqbDsRoGvwpihbDri66qCaQ36rT6YTNZoHNZoLNZoHDYQdFOeF00ivxqlTNYLN54HC44PGE5x6CkJzbOxJBdOHyGk0muqCKx6OLqSQSOtTK59MPb0YLuFwu8vLycOrUKaSkpDBWwR0oyOVyLFiwAJ988gkmT57MtDkjJqTHvNntdiQnJ2PNmjW48cYbmTaHcSorK9HR0YG5c+cyOlrNE0YyEk6logtrJJLAWe7JZrPAYFDDaFTDYNDAbDbAZjPD4aCnX3M4AnA4ArDZPPd7NJm6IRLFgKIAp9MGh8MCh8Nybn8+uFwhBAIJxGI5pNJISCSR4PGCs6x2NII4EDYb/bDQHxe4XN+IJEVR2L17N5KTk8lQEACff/45HnroITQ3Nwf8jfdghLQo/vjjj7j11lvR3t4e9ndxVqsV27ZtQ1FRkddXwPA1ngijWk17CmIxs20XZrMearUSOp0KBoMaNpsZAoEEAkEkeLxIiMUREIsFEAqFEIkE4HDY4HBoj4fFokVw9+4tWLBgCdhsHhwOOiRsszlhNltgMplhNpthNhtgNKphMqlhsxnA5YogFsshk8UiKiph1OLiD7wtiAPhS5Hs7OzEkSNHsGjRIvAD5S6MIaxWKxITE/HVV19h4cKFTJszIkJaKT755BNcddVVYS+IAFBVVYXo6OigE0Rg+KFUrfZ8Y76/BZGiKOj1PVCrlVCrlbBYjJDJYiGTxSE6OhsUJQeXy4NYTIf5JBI6xDcYruEgItGF+7EBiM496FCxzUb3YRoMNqhUGmi1avT0dKKl5Sz4fDFkMgViYhSQSqMDLkLgD0EE6M+Qx6NvloDzItnZSf9/NCIZHx+PyMhIVFdXY/z48UPuu3btWrz88stQKpWYPHky/vGPf1y00ryL9evXu5dcciEQCPot7EtRFJ588km8//77UKvVKC4uxjvvvMOY18rn83HllVfi008/JaIYaJhMJnzzzTf43//+x7QpjGM0GlFfX4+SkhKmTRkxlxJGo5EOmfJ4/l0U2GjUoKurET09rQCAyMgEJCfnQSqNg9XKg8VCX2xlMnqNRpHIu0U/LNb5C3hEBA8JCbGw22NhtY6B0WiDUtkFlUqJ6upSsFhAZGQyFIoMiMXM59j9JYgD4alIikRD97fm5+dj3759yMrKgmiQL+CGDRuwatUqvPvuuygqKsIbb7yBxYsXo7KyEvHx8QO+RiaTobKy0v3/C29qXnrpJbz11lv46KOPkJmZiccffxyLFy/G2bNnIRQKh/+BeJE77rgD1113Hd5++23GbBgNIRs+/e6777By5Uo0NjaGZFGCJxw/fhxOpxNTp05l2pRRM1Ao1eGgQ6Z6Pe2F+Rqn04GenlZ0dtbDZNIhOjoZsbFpiIigPTGDgfbcJBLaHrHY89ymzWbDli1bsGTJEvCGcimHgcMBGI0U2tpUaG9vglbbBqFQhoSETMTEJDPy98GkIA6HC8OtQiHd5yqVDu7hHz58GDweD1OmTBlwe1FREaZPn441a9YAoIusUlNTcd999+Evf/nLRfuvX78eDzzwANRq9YDHoygKSUlJeOihh/Dwww8DADQaDRISErB+/XrG2tCcTieSk5Px4Ycf4oorrmDEhtEQsmqxadMmzJ8/P+wFUavVoqWlJaBbMDxhoHaN3l46dOrrAmOHw4a2tkqcOLEN7e1ViIlJxeTJi5GZWQCpNAYOBws9PbQnmJoKpKXRosh0monDAaRSFnJzYzF7diFmzVqMqKgUtLZWoqzsRzQ1VcLh8N8w50AXROC8FxkVdf5Gq60NaGykC7kGmn2dl5eH5ubmARv6rVYrjh49ikWLFrmfY7PZWLRoEQ4ePDioHXq9Hunp6UhNTcXSpUv7LXtXX18PpVLZ75hyuRxFRUVDHtPXsNlszJ8/H5s2bWLMhtEQkorhdDrx7bff4rrrrmPaFMYpLy9Heno6JCE0/bqvMJ48WY7ubgpise96EZ1OB5TKWpw8uR0aTReysgowYcJlSEjIApdLuw1GIz1dJSaGFkSZLDB7I/l8IC6Oh6lTs1BSchmyswug1XairGw7Wlpq4XT6dphoMAjihbBYdPjUNRGpvZ0Wx+5uOiLgIiIiAmlpaSgvL7/oGN3d3XA4HO4V6F0kJCRAqVQOeN7c3Fx88MEH2LRpEz799FM4nU7Mnj0bLS0tAOB+nSfH9BfXXXcdNm/eHJSN/AH4Zzt6jh49CoPBgKuuuoppUxilp6cHXV1dyMnJYdoUryOVSjFrVjFaWprQ1VUOgcD7f3wURaG7uwmnTu1Ad3cTMjMLMW5cMeTyBHdux+GgR4wBQEoKoFAw7xkOBzYbiIhgIS8vAfPmzUFubgF6ehpx4sRP6Oho9snFLBgFsS8ucYyOpn9WKmlx7Oo6H2bNyclBZ2cnent7R32+WbNmYcWKFZgyZQrmzZuH//73v4iLi8N777036mP7mquvvhoajQZlZWVMm+IxISmKmzZtQnFxMQRhvBSCa4Xy7OzsoEx2DwebTYrExGLodE1obfXuEHGdToUzZ3aitbUSycl5GD9+PiIjEy4q7tFo6Itkaio9OSfAijuHhUDAQk6OAvPmLUBaWi7a2spx8uQuaLUqr50j2AXxQlziyOHQs3UbG+kiHRZLhKysLJw9e7bf/rGxseBwOOjo6Oj3fEdHBxQKxbDOyePxUFBQgJqaGgBwv240x/QVYrEYs2bNCsoQasiK4tVXX820GYzS29sLjUaDMWPGMG2KTzAY6PBVVJQUubnF6O72jjA6HHY0Np5CVdVBxMSkYeLEhYiNTe0nhhRF90MCtBgmJobGUlQiEQsTJqRh7tzLEBOTgqqqg6irOw273T6q44aaIPZFKKTFkcejRbGxEZDLx6K3t7eft8jn8zF16lTs2LHD/ZzT6cSOHTswa9asYZ3L4XDg1KlTSExMBABkZmZCoVD0O6ZWq8WhQ4eGfUxfctVVV2Hjxo1Mm+ExISeKjY2NqKioCPsJNnV1dUhLSxt15WIg4nDQgkhRtBiJRN4RRto73AWjUY3x4+cjMXEM2Oz+UzlcgigSAcnJwesdDgaLBchkHEybNhbTps2D0diD06d3occVI/aQUBbEvggEtDjy+YBazYNUmoYzZ+r6LWu1atUqvP/++/joo49QXl6OlStXwmAwuHsRV6xYgUceecS9/9NPP40ff/wRdXV1OHbsGG677TY0NjbirrvuAkC3ZzzwwAN49tlnsXnzZpw6dQorVqxAUlISli1b5s+3PyDLly/H6dOn3TnQYCHk+hS/++47TJky5aLkczhhMpnQ3t4etM2zl6K39/zaiC5cwlhZSfcxJicPf1aq0+lAS8tZdHU1Ijl5HBISsgd8rdNJC2JEROh4h4PBZgNJSVLExs7F2bM1qKs7gN7eDGRm5l10ozAY4SKIfREI6AeXm4XKyp2orR2PmBgh5HLgV79ajq6uLjzxxBNQKpWYMmUKtm7d6r5WNTU19auW7+3txe9+9zsolUpERUVh6tSpOHDgAPLz8937/OlPf4LBYMDdd98NtVqNOXPmYOvWrQGRMklMTMSkSZPw3Xff4Q9/+APT5gybkOtTvOKKK1BYWIjnn3+eaVMY4+zZs9DpdCgqKmLaFK/To7GgpQWQigUDipLJpENl5X7ExqYNSxitVhNqakoBAJmZhRCJpAPu5xJEuRxISPB9MY03+xS9gVKpw4kTxwCwkJMzAwLB0BfdcBTEC6mq+hlCoRxSaR7YbLoi2dW3GkrRhaH405/+hDNnzgTVEJWQCp/abDbs27cPS5YsYdoUxnA4HGhsbERWVhbTpngdJ+VEh74T7cZmaEz6AffxJJSq1/fi7NndEImkGDduzqCC6HDQghgVRXuIwVBd6m0UCinmzJkDkUiCM2d2Q6sdvLqSCCJNQkIWVKoGyOUOSCR0UVZjIz1owmBg2jr/sGTJEuzduxcOh29bfbxJSInisWPHwOVyAyLJzBQtLS0QCARBOeP0UhisBjh5WsTFO9BpakFjZy+czotFbzjC2N3djMrK/VAoxiIjo2DQkKDdTl/MYmLodotwHqMrkXAwa1YhkpOzUVW1H0rlxbkiIojnkcniwOXy0dPTCi6X9hIjIujQf0sL3coTWnG6i5kzZw4oigqq1oyQEsVdu3Zh6tSpQbtkiTdobGxERkZGwA1+Hi1OyokeUw+4bC4U0VIkJ/Kgo9pQq+yC3eG8aP/BhJGiKDQ3n0FT0ymMGTMDCsXA+UOADplqtUBcHB0yDeOvlRsej4UpU8YgP386WltPoK7ubL/PlgjieVgsFuLjM9DVdX4RYi6XDsFzufSEHKVy4Ok4oQKXy0VhYSF27tzJtCnDJqREcceOHSguLmbaDMbQarXQarVITU1l2hSvo7fqobPqIOHTk3mipCJkJEtg43eiRqmE2Xpx28CFwuh0OtHYeAK9vW3Izy+BXD7wEGbgfJVpVBQtioE4nYYpWCxgzJgEzJhRAq22BdXVJ+FwOIkgDkBMTCoMBjVMJm2/50UiOseoUtHhVKORIQP9QHFxMX766SemzRg2IfOnbrPZcODAASxevJhpUxijoaEBSUlJAVGY4U2clBM9xh7wOXywWee/shEiPsakyMGJ6EFNZys0BvNFr3UJY1dXI86e3QWtthvjxs255EVbp6MHehNBHJyEBClmz54Dk6kLp0/vQnd3MxHEC+By+YiKSkJXV9MA2+ibLpOJDqeq1aEZTl28eDH27ds36n5XfxEyf+5Hjx4Fl8vFzJkzmTaFERwOB1paWpCens60KV7HYDVAb9NDzBNftI3P4yA7KQoRUQY09baiU31xAY5QGIGIiGiYTHrI5fHg8YaunDSZaG8oPj48i2o8QS4XISEhDlarHgJBNHi80Jmx6y3i4tKhUjUPOFeWxaLDqRwO7TF2dNB57FCiuLg4qPKKISOK4Z5PbGtrg0AgQHR0NNOmeBWKoqA2q8Flc/t5iX1hs1nIUEQiNt6OTlMrmrvU7gIciqLQ2HgCJpMOubmz0dvbNmRVqs0GmM10DjGEZqj7BNcowa4uJYqKZsNm06Km5iQcjhB0d0aBVBoDLpeH3t72QfcRiehlqbq7aXHs2/Qf7Ljyirt27WLalGERMqIY7vnElpYWpKWlhVyBjdluht46sJd4IYkxUiQpuNA429DQoYLd4URbWxU0mk7k5hZDJosdsirV6aTDprGx9N07YXBcgtjS0oLi4mIoFLEoLp4Nk6kDDQ1VcF5c+xS2sFgsxMamQaUaerKLK5xqMNDhVI0mdMKpwZRXDAlRdDqd+Pnnn/utKxZO2Gw2dHd3u2cihhI6qw5Oygkue3i9ENEyETKSxTBzlaioL4dSWYOxY2dCIKBXQx+qXUOrpcUwNjZ8mqtHwoWCGBFB5xBlMjFmziyCWl2N1tZ2Iox9iIxMhFbbBYdj6Ngoi0W3brBYtMfY2Un3yQY7ixYtwoEDB4JiKamQEMXq6mpYrdaQnOAyHLq6uiAWi90Xp1DB6rBCY9ZAxBN59LoIER/JUTyY1LXgylNhR//RNwMJo9lM36nHxZHWi6EYTBBdREfLMWVKITo7j6GjQxsSF3RvIBRGgM8XQavtGtb+YjEdvu/qosXRfHENWVAxc+ZMGAwG1NXVMW3KJQkJUTx69CjGjh0btktFKZVKxpeK8QV6ix4WuwVCrmdzHG1WGxrK65CYnghpAgeNPS3o1vYfIdJXGFtaymEwUIiOplc9IAzMpQTRRWpqErKzs9HVdQi9vZaQyo+NFBaLhchIBdTq4S/+y+PRXqNeT4dTtdrgDaeKxWKMGTMGR48eZdqUSxIyoth3SG44QVFUQKyf5m3sTjt6zb0QXqJS9EIoJ4Xa07WQyCRIzkxCVlIUouNsaNe3orVb02/fvsKo1ZZDJgvSK44fGK4gusjLy0VUlBw9PUdgtzuhViPsw6m0KHZ4FEJks2lhpChaGLu7gzecmp+fT0TRXxw+fBhTp05l2gxGcC3pE2pVp3qrHia7CSKuZ6HT9qZ22Kw2ZOZluouOkmNlSFSw0WNrRV17d78JOAIBvVCxVtuEmhrvLlQcKngqiADtGU2dWgiHwwyHoxYREXQfnmuF+nAkIiIaFOWEwTD43NjBkEjokGpHBz0JJxg/x4KCAhw+fJhpMy5J0Iui0+lEWVlZ2M47VSqVSEhICKmqU4fTgV5TLwQcgUfvy6g3or2hHZn5mRe15sTKxUhPEcHEVaJW2QGrjb7dNhiA6GgpZs8uRlNTE8rLiTD2ZSSC6ILL5aKgoAB1dZWQybRQKOjcmE43cBhw/fq1KCrKQFaWEFdfXYTjx0sHPfa///0+rrtuLvLzo5CfH4XlyxddtP8DD/wGycmsfo9bb71i2PZ7GzabDbk8waMQal/4fNpr1Gppr1Gn8659vmbWrFk4duxYwP99Bb0o1tbWwmw2Y8aMGUybwgihmE/UW/Uw2AzDasNw4XQ6UV9ej/jUeETIBr5wy8QCZKfIALEK1R1t0OitcDjoYd9yuRTFxUQY+zIaQXQRHR2NzMxMnDhxHNHRTqSm0hf33t7+Mz83bdqAv/1tFVatehJbtx5Dfv5k3HrrYnR3dw543IMHd2Hp0pvx5Zc7sXnzQSQlpeKWWy5He3trv/0WLLgCx4+3ux9r137u8XvwJp7mFS+EzabbNhyO8+HUYAlLu4ptGhoamDZlSIJeFF1FNoGwqKa/0ev1MBqNiIuLY9oUr+GknOg19YLP4XvkJSqblKCcFJIzk4fcT8jnIjs5EiK5Fk3qVggjLHBd66VSIowuvCGILsaNGwe73Y6amhpERAApKXTbi8Fwvkn9/fdfwy23/A7Ll9+BnJx8vPDCuxCJxPjiiw8GPOaaNf/Gb37zf5gwYQrGjBmHV175F5xOJ/bt29FvPz5fgPh4hfsRGRk14PH8hVweD7NZD4tldGtHRUTQRWFKJdDeHhxTcCQSCbKzswM+rxj0onjkyJGwLbLp6OhAbGxsSM06NVgNHnuJ7rBpXma/lcsHg8thIzVBiuh4E6KiHf16EokwelcQAYDD4aCgoABVVVXQarXg8eiJQUlJtLeoVltx8uRRzJ17vs+YzWZjzpxFOHr04LDOYTIZYbfbEBnZP7d+8OAuTJoUj7lzc/GXv6xET49qVO9ltHC5PEilMaPyFl0IBHRfbW8vnWe0Wr1goI/Jz8/HkSNHmDZjSIJeFE+ePIlJkyYxbQYjhFro1DXSjcPmDDrSbSCaa5oRlxwHiWz4c9nMdhPiIyWIlFxcyBPOwuhtQXQRHR2N9PR0nD17FsD5JvWkJKC7uxsOhwOxsQn9XhMXl4CuruGJx3PP/RkJCUn9hHXBgivw5psfY8OGHfjrX1/Ezz/vxq9/fSXjC96ONoTaFw6H/hx1uuDoZ5w4cSJOnjzJtBlDEvSiWFVVhfHjxzNtht+x2WxQqVRISEi49M5BgsFmgNaihcSDodLaHi0MWgOSMpKG/RqKomBz2hApjBw0RBuOwugrQXSRk5MDlUqF7u5u93MyGe01AiO/oK9Z8wI2b/4C//rXN/3SKEuX3oTLL78WeXkTccUVy/DRR9+hrOwwDhzYNYp3MXoiIxXQ6VRwOLyzkKKrbcNkooXRMLrIrE8ZP348qqqqmDZjSIJaFC0WC5qbmzFx4kSmTfE7vb29EIlEEIuHH2YMZCiKgsasAZvFBoc9vJEyFEWhpbYFiWmJ4PKGNwYOoOepCjlC99qMgxFOwuhrQQQAgUCAMWPG4OzZs/0+y8zMWHA4HHR3d0DfZ5GTrq4OxMUNHQl5991XsHbtC/jssx+Rnz90xCg9PQvR0bFoaKgZ1fsYLQKBBDyeEAaD2mvHdHneNhstjFrtJV/CCBMnTkRjYyNsAbyyclCLYm1tLfh8PrKyspg2xe+o1WpERkYybYbXMNvN0Fl0lxSqvvR29cJqsSI+dfDFggfC4rBAKpAOa55qOAijPwTRRXZ2NoxGI5TK8+FDPp+PqVOn4sQJukhGr4e7aGbq1MFbrd5++yW88cYz+PTTrZg8edolz93W1oLeXhUSEpifESwWy2EwaC69o4fIZLRAtrUF5vqMY8eOBZvNRn19PdOmDEpQi2JVVRXS0tLCcrkojUYDeQgt5WCwGmCn7MMe/E05KbTWtSIpM8mj3z9FUaAoyiPxDWVh9KcgAnTvYk5ODs6ePQtnn16CVatW4aOP3sfOnR+htrYcDz20EiaTAcuX3wEA+OMfV+Dvf3/Evf/atS/i5Zcfx6uvfoDU1Ax0dirR2amEwUC7mgaDHs88sxpHj/6M5uYG7N27A3feuRQZGWMwbx7zC5FLJJEwGtU+OjY9Iq61FejpCSxh5HK5SE1NDegQ6vBjTgFIVVVVSC6qOxzUanXIvHeH0wGNRePR9BpVpwoURSE2Mdajc1kcFgg4Ao/nqbqEcf/+/QCAvLy8oB+Y4G9BdJGRkYHa2lq0tbUhJSUFALB8+XJ0dXXh+eefgFKpxLhxU/DPf25FXBydcGxra+pXWfzxx+/AarXi7rt/2e/Yq1Y9iYceegpsNgfl5Sfx1VcfQatVIyEhCfPmXY7Vq58JiBnJYnEkurubfXZ8kYjONba30z2NsbH0/wOB9PR0Ioq+orKyMixDp1arFUajMWTCp0abESa7CVHC4fWQURSFjuYOJKQmDKsF48LXslgsOCnPO55DSRiZEkSAbrfIyspCXV2dWxQB4N5778W9994LgC4WcS22KxIBX3+9q98xDh1qGPIcIpEIn332g7dN9xoSSSQsFgPsdhu4XN+0VAkEtBC6lp+Kjw+MFWAyMzNRWVnJtBmDEiD3DiOjoqICubm5TJvhd9RqNcRiMfh8PtOmeAWtRQsOizNsgdFr9LCYLIhVeOYlAoCQK4TJboLKqBpRGDQUQqlMCqKLtLQ06HQ69+zeC5FI6Iu42RwcjemewuMJwOMJYTR6P6/Y/zx0nlGlor3GQKhvyc3NRUVFBdNmDEpQi2J1dXVYNu6HUj7R6rDCYDV4tGZiZ2snYhNjweF6ftvLYrEgE8jQY+qBzjqy4ZHBLIyBIIgAwOPxkJqaOuTIL7kciI4O7iWThsKXecW+cLl0ZapaHRjDxMePH4/q6mpmjRiCoBVFk8mErq4ujBs3jmlT/E4oVZ6a7WZYnVbwOcPzeu02O3q7ehGXNPLRdlw2F3wOH12GLlgdIxsDEozCGCiC6CIjIwNtbW2DluezWHQuTCIJvuHXw0EiifRqW8ZQuGam6vW0MDK5xmVubi7a29thDdARPEEriu3t7eBwOP1yEuGCRqMJGVE0WA3gsIbv8amUKkikEogGmETjCRK+BCa7Cd2G7hELWjAJY6AJIgDIZDLIZDI0Nw9ecMLj0WFUFivwp7V4ilgc6fPwaV9cvYxmM52v7dsT6k9SU1PBYrH6teUEEkEtijExMWHXjmGz2WAwGEJCFB1OBwxWAwTc4VcD9nT2IEYR45XzywQy9Jp7obWMvNM5GIQxEAXRRWpqKtrb24fcRyKhPUajMXgX2B0IiUQOs1nvtck2w4HFosPSDgftMTLR5M/n8xETE3PJ3ztTBLUoxsZ6XmgR7KjVaohEopAosnGFTgWc4YmizWqDXqtHZGykV87PZXMh4ArQaeiE3jry2+ZAFsZAFkQAUCgUUKlUlwylRUXRD43/HCufw+MJ/VJsMxBSKR1SbW2lB4r7+ysbGxtLRNHbhKsohlLo1GQzuVskhoNGpYE4Qgy+wHs3BGKeGBQotGhaoDarQyqUGuiCCNCtEzKZDB0dHUPux2YDcXF0ewZTYT9fQOcVmVF6sZhe27K9na5O9edXloiiD2hvbw+pdQSHi8lkCpl5p0a7ETzO8Hu01N1qRMV6fz28CH4EeBwe2nRt6DZ2j6iHEQgsYQwGQXShUCiGlV/i8+nh4Q4H8xWU3oLPF8FqZa7qRSSiH0ol3c/orwWL4+LiiCh6m9bWViQmMj/D0N+YzeaAmMgxWuxOOyx2C3js4Ymi0+GEpkfjtdDphYh4Ioh5YnQYOqDUKWF3jqw5LhCEMZgEEaBFsbOzs9/Yt8GIiKDbNJisnvQmPJ4QNhuzFUQCAR1O7eqixdEffaEKhQJtbW2+P9EIIKIYZJjN5n7L4wQrVocVVsfwWzF0ah24XC5EEaOrOh0KPocPuUCOHnMP2nRtsNhH5o4wKYzBJogAIJfLweVyoVINbwFgiYQO9QVAhHrU8PlC2GzMu708Hl2A09Pjnyb/xMREtLS0+PYkIyRoRbG9vT0s2zEsFkvIiCKF4ecT9Vo9IiIjfD5WjcPmIEoYBZ1FhxZtCwzWkS1Ox4QwBqMgAvRAhZiYmEGn21yIUEh7N6EQQg0ET9GFa8FijYauTPVlpW9ycjIJn3qbUFtgdzhQFBUynqLZZgabNfyvn1FnhEQ6/JUtRgOLxUKUKAo2pw2t2lZozCMrhPCnMAarILqQy+XQDLO0lMulvcVQ6FsMJFEEzi9YrNP5dmCCQqHot9h0IBG0oqjX60OmCnO42O12OByOkBBFMZ8uFhpu7s6gNfhNFF3IBDKw2Wy0alvRoe+AbQT9ZN4SxrVr1yIjIwNCoRBFRUUoLS11bxtIEL/66iuMGzcOQqEQEydOxJYtW/odj6IoPPHEE0hMTIRIJMKiRYsYHb0VGRkJtVo97P0jIkIjhMrjCeBw2OFwBM6AVzab9sZVKt+FUeVyOQyGkUVhfE1QiqLT6YTRaAyZ+Z/DxWw2g81mg8sN6sVNAABSvhSRgkjoLJe+HbVZbLBZbRBL/V91K+aJIeaL0WXsQpOmCRqzxmNhG60wbtiwAatWrcKTTz6JY8eOYfLkyVi8eDE6OzsHFMQDBw7g5ptvxm9/+1scP34cy5Ytw7Jly3D69Gn3MV966SW89dZbePfdd3Ho0CFIJBIsXrwYZobcr8jISJhMJliGGRMVCulq1ACdFDZsuFw+WCxWQHmLAF2RajL5ri/UJYqB0Lp0IUEpikajERRFhZ2n6AqdButyRX1hsViIEceAz+HDZBu6lNCgM0AoFo5oALg34HP4iBJGwUk50aJtQZuuDWa7Zxex0Qjja6+9ht/97ne44447kJ+fj3fffRdisRjr1q0bMGT65ptv4oorrsDq1auRl5eHZ555BoWFhVizZg0A2kt844038Nhjj2Hp0qWYNGkSPv74Y7S1tWHjxo0evS9vwePxIJFIhh1C5fHoPrtgzyuyWKxzIdTAeiMsFv359vb65jOOjIyE3W4f9k2QPwlKUdSf694NN1EMlSIbFwKuALHiWJjspiF7A406IyNeYl9YLBYkfAlkAhk0Zg2a1E1QGVVwOIdfjTASYbRarTh69CgWLVrkfo7NZmPRokXYtm3bgDnEgwcP9tsfABYvXoyDBw8CAOrr66FUKvvtI5fLUVRU5N6HCeRyucch1FBYVirQ8oouhEJaEHt7vX/sqCi631gfgJMYglIUdTodeDxeSAnEcAiVIpu+yIVyyAXyIeePWi1WCISB0ZvJYXMQKYoEh81Bu77d4wpVT4Wxu7sbDoejX1EZRVHgcDhoa2sbsKhGqVReVISWkJDgbpB3/TvUPkwgFoth8qABUSikPcZAWCNwNPB4AlitgSeKAH3joVbTc2e9iUgkAofDgS4Alz8JWlGUSPxbdBEIhErjfl/YLDZixDHgsDiDhlGtFit4At+sTj5SRDwRIoWRMNlNaNI0oUPfMeyQ6mhCqa4cok6ng1QqDboq06EQCoUe5TQFAjrEF+xVqIHqKQJ03tbp9P58VDabDbFYTETRW+j1eohEvmviDlRCLXzqQswTIyEiARa7ZUBhsVlt4PEDSxQBWtBlAhlEPBG6jd1oVDeiXdcOg/XSBQTDFcbY2FhwOBx0dHT0K6rh8XhISkoa8DUKheKiWaIdHR1QKBTu7a7nBtuHCTwVRSA0QqiB0sA/GFIpXXDj7UinWCwOjfDpnj17cM011yApKQksFuuixLxer8e9996LlJQUiEQid2FAX8xmM+655x7ExMQgIiICN9xww0V/oJs3b0ZOTg5yc3Px3Xff9dsWrp6iw+EI2aWyIoWRSIhIgMlmumjhX5vF5tUh4N6Gz+EjShQFAVeAXnMvGtWNaNY2Q2vRDplzHI4w8vl8TJ06Fdu3b3cL4qxZs7Bnzx7MmjVrwOPOmjULO3bs6Pfctm3b3PtnZmZCoVD020er1eLQoUODHtMfCIVCjwsv2EF5W98fNpsDpwe5aX/D4dAPlcq7Df2j8RSHalGqrKxEcXExUlJS8Oyzz3p8bI+/UgaDAZMnT8batWsH3L5q1Sps3boVn376KcrLy/HAAw/g3nvvxebNm937PPjgg/j222/x1VdfYffu3Whra8P111/v3m6xWHDPPffg7bffxpo1a7By5cp+S8uYTKaQCyMOB09WlAhGokXRiJfEQ2/Vu/sXKYoKWE/xQvgcPiKFkZAKpDDZTGjWNKNB3YAeY89FQu9iOML44IMP4v3338eHH36ImJgYrF69GgaDAXfccQcAYMWKFXjkkUfc+99///3YunUrXn31VVRUVOCpp57CkSNHcO+99wKgi4YeeOABPPvss9i8eTNOnTqFFStWICkpCcuWLfP+BzNMBAIBzGazx2X6AVjV7yEsAIH9JiQS2lP0ZrRTKBTCOIJk5VAtSgBw77334rbbbsOmTZuwadMmHDhwwKPjeyyKV155JZ599llcd911A24/cOAAbr/9dsyfPx8ZGRm4++67MXnyZLeSazQarFu3Dq+99hoWLlyIqVOn4sMPP8SBAwfw888/A6BFkcPhYMqUKSgoKACXy+13B+l0OsEOhVtEDwn19+1q04gTx7m9LLuNFsdgEEUXHDYHUoEUkcJIUKDQpm9Do7oRnYZOGG3GiypthxJGiqIwceJE3HXXXfjyyy9RXFyMsrIybN261V0o09TU1G9k1uzZs/HZZ5/hn//8JyZPnoyvv/4aGzduxIQJE9z7/OlPf8J9992Hu+++G9OnT4der8fWrVsZDc8LhUJQFHXJtRX7wmLRj2CGxWIFZL9eX/o29HsrXM1ms0f0vgdrUfrggw8AAL29vZg6dSomTZqEpKQkjyqaAR/kFGfPno3NmzejtbUVFEVh586dqKqqwuWXXw4AOHr0KGw2W79y8HHjxiEtLc1dDi6TyXDHHXcgMTERSUlJWLlyJaRSqXv/UBeHwQh1TxGg83Sx4lhEC6OhsWhgs9kAFsDmBN/vm8ViQcwTI1oUDQ6bgy5DFxp6G1DfW48OfQe0Fi0sdgsoihpUGCsrK9HS0oIXX3wRTU1NsFgsOHToEIqKitzn2bVrF9avX9/v3DfeeCMqKythsVhw+vRpLFmy5CLbnn76aSiVSpjNZmzfvh05OTk+/0yGwpUaGM5qGX0JcD25JCwWG9QIlyvzJ66Gfg81ZlDYbDYcHsZjh2pRcunH008/jUWLFkEsFoPNZmPx4sUencPro1H+8Y9/4O6770ZKSgq4XC7YbDbef/99lJSUAKDLwfl8/kU9hheWgz/55JN44IEHwGaz+wkiQEQx1OGwOYiPiAcAdPR2gIXgf89CrhBCrhBOygmL3QKVSQWn0QkemwcBR4AIfgSEAiFmzp6Jnw/8TN8MgF4NZs6cOSFVZToYLBYLLBbLI1H0tafopCh06EwwWu0Q87lIkIrA9vIJg8FTBPo39EuldPXv6I7n2e8aGLhFCaD1o6KiAgCwZMkSdHV1QavVjmjNXZ+I4s8//4zNmzcjPT0de/bswT333IOkpKSLGoovxWBj3JxO57nRSEHeoOQhDocDTqczbN53jDAGRp4RYAFGsxECbmjkkfksPvhcunDI5rDBbDVDZ6KTNTwODxnjM1B5rBIAUJCaCkFvL2y+6KAeCXI57TL4CIqioNVqwecPr7DKbqeLP3yxokNDjx576zrR2GuAxeGAgMNBepQEc7PikRHtvZsUtboDWm0XHCOYretveDw6t9jdDcTHj+5YJ0+exJYtW7B8+XLvGNcHgUAw4kXovSqKJpMJjz76KL755htcddVVAIBJkyahrKwMr7zyChYtWgSFQgGr1Qq1Wt3PW/SkHJzFYsFqtV405Dgc6O3txYkTJ5g2w++cOXCGaRMY4eeaGqZN8Dt9KwmHS329d21QGoHdShYMNhai+ACfA1gcwKFu4HRDJeYpKCi8PGTp2LHguZ556/OeOHGiR/v3bVHqizfbibwqijabDTab7aLQJofDcbvJU6dOBY/Hw44dO3DDDTcAoPMmTU1Nwy4Hdw3FvjBPEuocOnQISUlJSE1NZdoUv2E0GrF7924ULyxGh57+Q5AKpJd4VXBCURSa6xrR29mLsRP4qDhuAZ8DpMbEISc5hfnQucVCu2Tp6XSNvg/YsmULFixYMOw+ZIMBaGoCzk0N8woWuwPHjtaBI9ZjUpQEHDbbHaLNoCjU9xqgEspwRUGmV0Kp3d3NUKvbMWbMjFEfy1+o1XTQQKEYefh64sSJSEtL8+g1rhalHTt2uCulnU4nduzY4a6uHi0ei6Jer0dNn7vX+vp6lJWVITo6GmlpaZg3bx5Wr14NkUiE9PR07N69Gx9//DFee+01AHRI9Le//S1WrVqF6OhoyGQy3HfffZg1axZmzpw5LBvYbDacTid4vOCpSPQGHA4HbDY7rN43j8cDRVGIlkRDwBfQBSo2LWQCGTjs0OnZpCgKjdW1UHf1YvJ0KeJk6ajAaczMFeBQlQpsDhd5ycnMCiObTV8B+XyfNAi68mo8Hm/Y33Ee73wf3aUYbn7wdIsa++q7IeByoDs3fpDFAtgsFtgswOpw4pRSg26jHYmy0buLdC6VAw4neP6uXWsuWix0fnEkuMYVesqqVatw++23Y9q0aZgxYwbeeOONfi1Ko8VjUTxy5AgWLFjQz0AAuP3227F+/Xp88cUXeOSRR3Drrbeip6cH6enpeO655/CHP/zB/ZrXX38dbDYbN9xwAywWCxYvXoy333572Da4RDHcCJaEvDdx5ZZsNhsi+BHgyXjoNnaj19wLEVcEES/4JxtRFIX6qipourQomB6FxJgs2O307zkiQYFiSxv2N3YBALPC6HTSYuijIjdX29Vw84kuKOrSgtfQo8Pu2g409uphsTsg4HKQHhWBuVnxEPG4/V5ntDngpChw2ax+53BQFBznfrbYHTBavdObEIwFdK4bkZ4euodxJF+JkRZMLl++HF1dXXjiiSegVCoxZcqUfi1Ko8VjUZw/f/6QF2aFQoEPP/xwyGMIhUKsXbt20AEAl4LL5cIe7LOdRkA4iiKXywWHw4HZbAafz4eAK0CiNBESvgRdhi6oTWrIhDKwWcFZjex0OlBfXQltlwHTixSIj3aFxs9VjgijII3vRbGTjf0t9ErljAmj0zn6ksMhsFgs4PF4HnsPzVodvh1A8OZlJyAjWoqGHh2+LGuAxmRFvFQIIVcEs92O4y0q7KlTIkYsAI/Ddr8uP0GO3Hg5ZEIexDwunBQFiqLgPCe+eosdJhstot6AFsXg+/5KJHQYVaejQ6meYrfbR7w27L333uu1cOmFBOVqtRERER5N0w8VwtVDds3ElMlkAOhexkhhJIRcIS2MZnVQeo0Opw31VeXQd1tQNCsNsZED3Omy2IA8EVJjE4ozk7G/vhUAQ8Jot/tUFEcy8L66Q4fN5Q0wO/sLXlWnBh06E345OQO7a5RQm6zIjI5wf2Y2BwWN2QqV0QIui4WClBhY7A5UdWqg1BohE/DQpTMjIzoC3D7eDEVRUGpNyI2XI0Hqne8bRTmDzlMEaO9QIKArUSUSwFN9M5lMAdlqFJSiKJVKRzQeKNjh8XgeTfsIFQYbFC3kCpEsS4bEJEGPqQc9ph6IeWIIuYE/NN3mMKGxugr6bhtmzc5GlDx68J0FMkAeAalJheLcHOyvrALAgDA6nXQ+0Ud4ujSa00lhW3kHtBYrchLOC56Ez0NGNBcNPXp8X96MM0o1bE4KeqsNPDYbHBbQojFCb7VDyufCaLPDbHMgQnD+dfERHMhEfDT06BEXIYSIx4HJ5kCX3gy5iI+S7ASv9Sva7VZwucGTT+yLq29RowFiYjx7rcFguKgHPRAISlGMiIgIS1EUCoVh6SEPNSiazWIjWhyNCEEEtGYtekw96LX1QswTB2xfo9mmQWtdHQwqB4qLcyGXDePCIFUA+mpILXoU5+ZifyXdx+g3YaQoutrEh0Venopiq9qE2i4dNBYLKrsc4HM44HHY4HPYEPO5iIsQoqFHD72FDnXaHRTsDgcsdgdUBgvsTifsDjrycqZDDbmQBy6bDSGXDY3FhivHJeNshwaNvXp0G8zgcznIjZej5FxY1lvYbGYIhYHnMQ0HFotuW+3poVcs8cTRNxqNxFP0Fi5PMdwm2wiFQvQGShO3HxnOzQCfw0esJBZSgRQaiwa9pl4YbUaIeCIIOIKACU8ZrV1Q1jdD301hTnE+pNJhVi9yhUBkLNDeCako0v/CaLfTghhAomiw2qE307lXo9UBI8538MdIBEiRi+GkgHipEAqpGAIuG3YnBZXBjE69CVyKBZyblkRRFIxWBwAHhBFCWO0ORIsF+PW0bJ9PtLHZLJBKY716TH8iEtHeoloNDLfWxW63w2w2E0/RW0ilUlAUBZ1ON+jUm1DEtYpAuBEREYHW1tZh7SvgChDPjYdMIIPGrIHWokWvrRc8Ng9CrhA8hsreKcoJvbUNqsYu6LopzJ0zHhERHoZ5JXGAtBfQtEMqS/evMFqtdOjUh6Ko0+k86sEV87gQniuOEfLZsDqcsDmcsNodiBBwYbI5IBPyECMWol1rREafnGKkSAABlw2D1Y4oER+58XI4nBRsDiecANgOFsR8LtgsllfaLobCajWDxwv8kP9QuIpu5HJ6cPil0Gg0ABCQohiUbpbL5Q43r2kki7CGApGRkVCr1R5V3gq5QiREJCAjMgOpslSIeWKYbCb0mHpgtBndS1P5Aydlh9Zcj96mTmi7RiiIAMDmApEKgKsFrHpIRSIU5+aiqbsb5ecG8PsMq5WOj/lIeCmKumjK1aVIiBAhVS6F3mqDTMBDnESIJJkYGdFSRIsE6NKbkRktxZL8ZMjP5Qf1FhtEXDZEPA469WYIOGxkxUgh4fMgE/IRLRZAb7YhIyrCa4U0l8JmM4PHC8xQ/3DhcumU83BxXbsDcV3coPQU+Xw++Hy+x0uCBDtCoRBWqzXswsYymQxOpxMGg8HjHASPw4OcI4dMIIPFYYHBaoDWooXJZnILI5/DB4/DA4/N87q3ZXeaobc0QN9qhrqThTlz8kYmiC5E0UCkCuhWAvwxbmH0qcfoutr5cOapXq93rxYyXJxOFmamJKDHbBqyICYjWopfTcnArholKjo1MFltYAGQCrgQ8bjgsFhwOJ0+K6QZ+j044HDYwOcHt6dotw9/iAJAe4oikSggF00PSlEE6DsMrVbLtBl+xVWubrFYhj0GKxRwrZSi0WhGnJhnsVjulSqiRdGwOqywOqyw2C3QW/Ww2q3QO/WQ8qVeC7Fa7FqY7U0wtDnQ00mNXhBdyBIBQwNg7qX7GH0tjBYLHRPz4VqLGo0Gcrnco5s9hwNIlkqxvCDD3Zh/qYIYo9UOpc4Eq8MJPocDtcmKsrZeRIv5iBILkBMnQ74iEg4nhXat0Sc5xL7YbBYALHADtChsuDgcnotiIBbZAEEsilKpFCqVimkz/AqbzXbnFcNJFIHzIdTk5ORRH4vFYkHAFUDAFUAqkCJWEgubw4Zecy86DZ2I4EeAzxld64HZ1gO7owXGNhZ6OijMKfaSIAIAPwKQRwDtSkAgB1hs3wqjyUQPufThXb1arfa4PsDhoKO5GVFSpEVFDFoQ42reb9MY0WuygMNiI1LIhcXuAIfNgpjPgYTPRUFyNFQGC76vaB1wCIAvcIVOA6UQbKS45joM955GpVIFZD4RCNKcIkBPzhlu8UUoEa7FNi5R9BU8Dg9x4jgkSBKgt+pHlXPUW1tBUS0wtPHQrXSguHic9wTRhTQJkDoA4/nVAnySY7Tb6YSRj3M/nuYTAaDvCmqugpjsWBkSZWK3IDopCrtrO9ChM8Jks8PqcCJSxIOYz0OUWOCeVqMxW7HxdBOqOjWQC3lIi4yAXMhDVacGX5Y1oKFH58V3ex66yCa4vUSA/pp40sLa1tbmtVUtvE3QimJycnJYimK4FtvExcVBpVL5dC1JFouFWHEsooRRMFgNHr+eopzQmhsgYKugbxWiU2nxjSACAIdPt2hABTjOD3TwujAaDPTEZx+GTq1WK3p6ejxe/85kunQxbIfOhMZePUx2B1o0RvQaLajv0aNZrUeHzgwnBbRqjKjr1qO51wCD1Y5ekxVqkwUssJAWJYHGZMWe2g44fVDIZLOZwecHf9TH07kOra2tXon6+IKgDZ8mJSWhvb2daTP8zlCN7KGMRCJBREQEOjs7ffrHxGKxIBfKobFo4HA6hr0Sh8Nphd5aDynfip4mCZTtOt8JogtJPCBTA72tgCzT/bTXQqkOB920L5f7dHn7zs5OSKVSiMXDb32wWmlRvNSF2Gi1w2J3gHtubrB7sLfTAbPNAT6XA5PVDg6bBTabBa3FBpvzvPi53nZNtxYdOpPX2zNCofIUoL8mnox5a29vR1JSku8MGgVB6ykmJSWhs7OTaTP8Trh6igAdMlcqlT4/j4QngZQvhd6qH9b+VoceBls1ooVO9DZHoL3ND4II0HNRZQkATw9Y+hedecVj1OtpL9HHoVOlUulxKM1iocOnlxJFMZ8LAZcDhVSEGIkAqZESJMnFiJEIECHgQchlQ8DjIELARZRIgLRICeIjhJAKeeByWO4VOBxOymurYvSFFsXgrjx14UnKuauri4iit0lMTERXVxfTZvidiIiIsKu6daFQKNDR0eHzoegsFgvRInoWqc0xdLjWbOuFzdGAOJEAXU1itLVq/COILkRRQKQIMF98szAqYXSFqaOjfeolOp3OEa2abjINz6wEqQjpURHQW+yQC/kw2R0Q87iIFguRKBNBwOUgVS4GBRbkQh5SIiVIiZRgbKwMkxKjMDExCqmREgh4HK+titH/feiCdsSbC4eD9hI98RS7urqQmJjoO6NGQVCLYnd3N9Nm+J3IyEhotdqwXC0jKioKbDYbPT09Pj+XmCdGpDASOuvgBRYGazsotCBOLIOygY/Wll7/CqILWRIgsQKmi/8eRiyMOh29kqyPvUSVSgUOh+NRkY3TSZs3nDmbbBYL87ITECkWgMtmg8NmQW2ywmC1oddoAZvFgpjPQ6xEABHvwqs6C1w2CwaL3SfN/E6nE0ajFhJJpFeP62887VEEiCj6hKSkpLAURVdvj14/vNBeKMFisZCQkIC2tja/nCtGHAMhRwijrf/webqgph4CjgoJkni01rHQ0tLDjCACAE9M5/1sHcAAVbMeC6PRSDfqe7rswQhwVSF6kvO0WM5PnRsOrub9gpQYJMnE4LBZMFjt4LDZSJKLUZgSgztmjEWSXOyeeuNwOqG32NDQo/dZM7/ZrDvXZhV4U108wen0XBS7u7sDNnwatIU2iYmJ0Ov10Gq17nX2wgEWiwW5XA61Wh1W79tFWloaDh06hPHjx/t8Ggafw0ecJA4t2hbwOXxw2dxzBTUNkAmsiBaloK5Kh5YWFXOC6CIiAZBqAEMHEHFxIdKwi2/sdlp1UlJ8ukwUfSo7WlpaMGvWLI9eZ7GcbxYfLhnR53sZ9Rabu58xQsBz9zQmy8XDHgLgDQwGNcRiedD3KDoc9BJSw30bPT09MJlMAespBq0oxsTEgM/no7a2FgUFBUyb41dcPXtpaWlMm+J3oqOjIRAI0NbW5tHw6JEiE8gQLYqGyqSChMeH2d6MaBEQJcxEdWVPYAgicK5FI57uW7TH0KtqXMAlhZGiAK0WiI0F/HDD1dbWBpFIhKioKI9ep9ONbC75pYZ79xVOX66K4YIWxUifHNufeNqjWFdXB6FQ6HFfqr8I2vApm81GZmYmzpw5w7Qpfkcul7unzIcbLBYL6enpaGho8Nv54iRxkPIFsDkaEC/hIVY8JrAE0YU4FpDzAOPg4eUhQ6kaDV1tGhvr0+IaFw0NDUhPT/fIU7LZALPZd07sYEMAfIHRqA76fCJA30t5cpNy+vRpZGdnB6yHHLSiCAC5ubkoLy9n2gy/ExkZCY1G49tVEQKYtLQ0aDQavw2E57K5UEQkIFEajyhhLCrKlYEniMC5Fo1EgG8ALIPfNA0ojK7KlYQEz8oIR0hvby+0Wq3H0Q6LhX74OLLrc1xFNmJxaCx958lXpqKiArm5ub4zZpQEvShWV1czbYbfcc0M1Ol8M3oq0OHz+UhNTUVtba3fzingyhDBH4Py8h60tHQHniC6EMqBSAndokENXqHcTxjr60GxWPR8Ux9OrulLXV0d0tLSwPMwDmqz0U6sRkOLY7BiNuvAYrGDvh3DdV/uSX63pqaGiKKvyM3N9VsYLZDoW2wTrmRnZ6Otrc1vVbgUReHs2Ua0tOhQXJyOiAj/rcfoMbLEQVs0+iIViVCcmoomjQblRiMoDybKjAadToe2tjZkZ2d7/Fq5HEhPB6Ki6FxWTw/t5Ppw+p9PMBjUkEhCo8jG0x7FhoYGIoq+IicnB01NTUybwQjhnFcE6NaU1NRUv4TPaUE8i5aWFhQXz0VERAYAFoAAHaLAFQGR0YCjc8AWDTdaLaRCIYqnTUOTUony8nK/hOTLy8uRlpY2ogVm2Wx6rePERCAjA0hNpSsfTSZaIA0G+kId6BiNoVFk4+mSUQDQ1NSEnJwc3xk1SoJeFDs6OsJSHHy9akQwkJubi46ODp9+Dv0Fsfhcn2gEgCQAPAC9AAJwkEJEAiBlAYYB5gM7nUBvL10dkZwMaUICiouL0dTU5HNh7OnpQWdnp1c8BR6P9hxTUmiBTE6mn9Pp6LdnMp0P7wUaBoMGEknw5xM9FcWenh50dXURUfQV8fHxkEqlOHXqFNOm+B1XsU04TrZxIRKJkJmZibNnz/rk+AMLogsJgBQAMgBqANaBDsEcbC4QmQBw1EDf4QNWK6BW0y0XKSm0mwU6T+1rYaQoCuXl5cjOzobQi7lLFotOhUZFAWlptEDGx9Pb1Gr6EUj5R6fTAaNREzKe4nAmC7k4deoUIiMjEeOHwRAjJahFkcViYcyYMT67KAYyUqkUXC437BZavpCxY8dCrVZ7fTj80ILoQgDaY4wHYASgBxBArokoGpDx6RYNiqIHfBuNtGIkJV10NfO1MHZ2dkKj0WDMmDFePW5f2Gxa5+PiaHFMSwu8/KNOpwKXyw/6IhvA8x7F06dPY+zYsb4zyAsEtSgCQF5eXlh6iiwWy2+rRgQyfD4fY8eOxenTp+HwUjJpeILoggNaFFPP/dwLIEDcEhYbkCcCIjPQ20ZXQ6Sm0qI4SLzLV8LocDhw+vRp5OTkeFxxOlI4HLrtMtDyj2q1EpGRno22C1Q8XTLqzJkzGDdunO8M8gJBL4pTp04NS1EEzi+lFK79ii6ys7PBZrNRVVU16mN5Joh9kQJIB6AAHUrtBfMhVSsgcACRUUBiHO02SS89rswXwlhRUQEOh4OsrKxRH2skDJR/5HL9n3+kKApqtRJRUYG56rynsFieieKpU6cwbdo03xnkBUJCFMOxgR+gV6O3WCxh26/ogs1mo6CgALW1tejt7R3xcUYuiC64AGJBi2MMaI+xF4C/1780A+g5928sEDkRiMnw6OrlTWHs6elBfX09CgsLwWYze8npm39MT/d//tFk0sJut0IqjfXdSfyE00l/nsMtsnE6nSgvL8fUqVN9a9goCXpRLCgoQFdXFxobG5k2xe9wOBzExcWFfQgVoFtUxo4di+PHj48ojDp6QeyLELTHmAYgDnR1ag8AHXznPdrOHb8HgAN0SDcDQMI5ezzHG8LocDhw/Phx5OTkBNwAeybyj2q1EnJ5PNhs3w6z9weuHsXhimJdXR16e3sxZcoUn9o1WoJeFGUyGbKysrBv3z6mTWEEklc8z9ixY8Fms1F5buD1cPGuIPZFBFqc0kHnHMWgvcce0BWrJtBi5qnYUOdeZzp3HJdXKD53noxz5x19hedohbGiogJcLtenxTXeoG/+MT3dd/nH3l46nxgK2Gx0kc1wU8T79u3D2LFjR9Sf6k+CXhQBYNq0aSgtLWXaDEZISEiAWq2G2ezvEF3gwWazUVhYiLq6OnR1dQ3rNb4TxL7wAMhxXrDSQIdXAVrM1KCFrReABrTH5wqJ60EPCdCc2957bn/X7zvm3PEyzh1ffu583mOkwtjZ2Yn6+noUFBQwHjb1BD6/f/4xKck7+Uer1QSjUQO5PMHrNjOBxUIPUhhuvdDhw4cDPp8IhIgoTp8+PWyLbVxLsHR0dDBtSkAgk8kwadIkHD58GAaDYch9/SOIFyIA3duYACDz3CMDtKAlghY5Keg+SID2/mTnnk/EeWHNBJB17jiyc8f1HZ4Ko16vx5EjRzB58uSAC5sOF1f+MTr6fP4xLo7eNpL8o1rdgYiIKPB4vv1d+QPXr9+TdtNTp05h+vTpvjHIi4SEKBYWFoZtsQ1AQqgXkpaW5l6M2DZIUogZQbwQNgA+aAGUA4gGHfZMOvdAn5/jz22XndufD3rUnP8YrjDabDYcOnQI6enpflnz0h+48o/x8SPPP7paMUIBq5Vuc/VEFMvLy1FYWOg7o7xEyIiiUqlES0sL06YwgkKhQFdXl9f69EKB/Px8iEQiHD169KKLd2AIYnByKWGkKApHjhyBWCxGfn4+Q1b6lpHkHx0OO7TarpARRYsFEImGX9BcX18PlUoVFAvCh4QoyuVyjBkzBtu3b2faFEaQSqUQCATDzqOFA2w2G9OmTYNer+838YgI4ugZShjPnj0Lo9GIadOmhURz+qUYbv5Rq+0Cny8KiSk2AO0he/Kn89NPPyEnJyco/t5CQhQBYMGCBdi1axfTZjACi8VCYmIiWltbmTYloODxeCgqKkJTUxNqamqIIHqRgYSxqqoKTU1NKCoq8tvUmkBhqPxjby/Q0dEKmSwxJG4U7HZa+D2Zebpz504sXLjQd0Z5kZARxYULF+LQoUNMm8EYaWlpaGtrg9XK9BSVwEIqlWLWrFmoqqrCgQMHiCB6kb7CeODAAdTU1GD27Nlh/9lemH9MSrJCr2+HVJrmzj/aA3g5zkthtdIesieiWFpaigULFvjOKC8SMqI4b948VFVVhW0IUSaTQS6Xh21edSjkcjkSEhLQ3d2NtLS0sL9oexOpVIrU1FR0d3dDoVAEbaWpr+BwgN7eZkRHRyE3V+rOPxqN5/OPwbbQjdVKL7IyXKe3vb0dNTU1mDdvnm8N8xIhI4qJiYnIysrC999/z7QpjJGeno7Gxsawn4XaF1fItLu7G9OmTUN9fT2qq6uZNitkqKqqQmNjI6ZNm4bOzk6/LVQcLFAUhcbGRqSnp1+Uf0xMpMOQWm3gr//ogqLohydVp1u2bEFubi7iXfP0ApyQEUWADqHu2LGDaTMYIzk5GUajcVTzP0OJC3OIycnJKC4uRk1NDU6ePBnWa1GOFqfTiRMnTqCurq7fZ+uPhYqDiZ6eHpjNZiQlJbmfc+UfY2Lo/GN6ev/8o0YTWOs/9mUkodOffvopaPKJQIiJ4oIFC8I6r8jlcpGSkhKWc2AvZLCiGrlcjpKSEqhUKhw8eJDkYEeAxWLBwYMH0dPTg5KSEsjl9Ary/lioONhobGxESkoKOIMMCGWzAYnkfP4xPR2IjKR7HgMx/2i10q0YntRRBVM+EQgxUZw/fz6qq6vDerpLZmYmWltbYQnUW00/cKkqU4lEgrlz54LH42HPnj3QarUMWRp8aLVa7NmzBzweD3PnzoVYLO63nQjjeSwWC1pbW5GRkTGs/Qda/1EkCqz8o83mWStGa2sramtrUVJS4jujvExIiaJCoUB2dja2bNnCtCmMIZPJEBUVFbbe4nDbLrhcLqZPn46UlBTs3bsX7e3tfrY0+Ghra8PevXuRmpqK6dOngztI5zYRRpqGhgbExMSMqPjIlX9MTQ2c/KPDQQu3J6HT77//PqjyiUCIiSIAXH755WFdbAMAWVlZqK+vD7ucmad9iCwWC+PGjcOUKVNw7NgxlJWVDToWLpyx2Ww4fvw4jh8/joKCAowbN+6S/XbhLoxOpxP19fWjXlQ5kPKPI8knfv/997j88st9Z5QPCDlRXLp0KXbv3h12gtAXhUIBNpsdVt7PaBrzk5OTsWDBAhiNRuzcuROdnZ0+tDS46OjowE8//QSTyYQFCxb0Kxi5FOEsjG1tbeByuUhI8N6KGH3zjy6B9Gf+0Wymw7vDXfDE4XBgz549WLp0qe+M8gEhJ4rz5s2D0WjE3r17mTaFMVgsFjIzM1FbW8u0KX7BG5NqxGIxZs2ahZycHBw+fDjsvUaXd3jkyBGMGzcOs2bNuih/OBzCURgpikJtbS0yMzN9NsGGyx06/2g0ejf/6GrFEImG/5qdO3fCarVi7ty53jPED4ScKPL5fCxevBhff/0106YwSnp6OnQ6HVQqFdOm+BRvjm5jsVjIyMjAggULYDAY8NNPP6GxsTGsog5OpxMNDQ39vMP09PRRXdzDTRhVKhX0ej3S0tL8cr6B8o8cDp1/VKu9k390LSjsSX/if/7zH1xxxRVBN/Iv5EQRoEOo4Toc3AWPx0N2djbOnj0bshchX80yFYvFmD17NsaPH4/q6mrs3LkTbW1tIfs5AvRn2dbWhp07d6KmpgYTJkwYsXc4EOEijBRF4cyZMxgzZozfxWCg/GNsLL1ttPlH16oYnrylHTt2YNmyZSM7IYOEpCguWbIE1dXVYT+5JDs7G3q9PiTXWvT1cG8Wi4WUlBQsXLgQWVlZOHnyJPbu3Yvu7m6vnicQ6Orqwp49e3Dy5ElkZWVh4cKFSE5O9nroLxyEsb29HSaTCdnZ2YzaMVD+US4fef7R01aMiooK1NfX44orrvDceIYZ5mpYwUVMTAyKioqwYcMGPPbYY0ybwxg8Hg+5ubkoLy+HQqEIiQn9gH+Xf2Kz2cjMzERqaipqa2tx6NAhSKVSZGdnIzExEezhVh0EGE6nE21tbairq4NOp8PYsWORlZU1aJuFt3AJ4/79+wEAeXl5IfO9dDqdKC8vR25urs8/R09w5R+lUrqC1GSivUajkRZGoZB+DPZVdjjobZ6ETr/44gvMnj0bUVFR3nkTfiRwfnNe5rrrrsOmTZvCWhQBICMjA7W1tWhubvZbjsOXMLX8E5fLRW5uLrKystDU1ISzZ8/i9OnTSEtLQ3p6utfCjL7GYDCgqakJjY2N4HK5yMzMRFpaml9DfaEqjM3NzaAoCunp6UybMih8Pv2QyeiQqMFA5x41Gjr8KhDQ4tf312G10s970orxww8/YPny5d5/A36ARYViDAP0oOKJEyeivb0d0dHRTJvDKM3NzSgvL8dll1026LipYCCQ1kOkKAodHR1obGxER0cHYmJikJiYCIVC4RWBtNls2LJlC5YsWTJqwTIajVAqlWhvb4dKpUJCQgIyMjIQHx/PqBjpdDrs378faWlpQS+MDocD27dvx/jx45GSksK0OR7hdNLeo8FAh1VNJrpQRyikhVCtpvOUw+0u6e7uRmJiIioqKhgPI4+EkPUUc3JykJOTg48++ggPPvgg0+YwSkpKCmpqatDQ0BCUX1IgsAQRoHOOCoUCCoUCJpMJbW1taG9vx+nTpyGVSt3bIiMj/X6xpygKarUaSqUSSqUSOp0OMTExUCgUmDp1KoSexMF8SCh5jHV1dRAIBEhOTmbaFI9x5R8lEnqRZJOJFke9nhZKgF7uarh8+OGHmDBhQtBea0JWFAFgxYoV2LBhQ9iLIovFQn5+Po4dO+b3UJk3CDRBvBCRSITs7GxkZ2fDarWis7MTSqUSBw4cAABERkYiMjIScrkckZGRkEgkXrv4UxQFg8EAtVoNtVoNjUYDtVoNFouF+Ph4jB07FgkJCQH7Ow8FYbTZbKiursa0adOCzvYLGSj/aDJ51p/45ZdfYsWKFb4z0seEbPgUAFpaWpCZmYmqqipkZmYybQ6jUBSF/fv3IyYmBnl5eUybM2wCXRCHwul0QqvV9hMrrVYLNpuNiIgICIVCCAQCCIVC94PL5YLNZsPhcODAgQOYNWsW2Gw2bDYbLBYLzGYzzGaz+2e9Xg+n0wmZTNZPfGUyWVAVAQVzKPXs2bPo7e3F7Nmzg8puX1BdXY38/Hw0NTUhMTGRaXNGREiLIkCvnFFcXIznnnuOaVMYp6enBwcOHMCiRYsCJoQ2FMEsiIPhEkqj0egWuL4iZ7fbQVEUnE4nLBYLhEIh2Gw2uFyuWzj7CqlEIoFUKg0qARyMYBRGk8mEHTt2oLi4OCgrLb3Nn//8Zxw9ejSo+8RDXhQ/+OADvPLKKzh79izTpgQEpaWlEAgEmDx5MtOmDEkoCqIneLPQJpgINmF0jQOcPn0606YEBLm5ufjrX/8a1OHT4L+9vAQ33HADamtrceTIEaZNCQjy8vLQ3NyMnp4epk0ZlHAXxHAmmBr8VSoVWlpagiod4UsOHjyIpqYmXHfddUybMipCXhTlcjmuvvpq/Otf/2LalIBAKpUiJycHx48fh8PhYNqciyCCSAgGYbTb7Th+/DjGjRtHvqPnWLduHa699lpIpVKmTRkVIS+KAF2F+u2334bVYOehGDNmDLhcLioqKpg2pR9EEAkuAl0YKyoqwOfzg7btwNs4HA589913QR02dREWonjllVfCZDJh06ZNTJsSELDZbBQUFKC+vj5gwqhEEAkXEqjCqFKp0NDQgIKCgoDPefqL//73v7Db7UG3oPBAhIUo8vl83HnnnXj33XeZNiVgkMlkyM3NDYgwKhFEwmAEmjD2DZsGe5jQm7z33nv47W9/GxJFYWEhigDw+9//Hjt37kRzczPTpgQM2dnZjIdRiSASLkUgCWN5eTkEAgEJm/ahvr4ee/bswe9//3umTfEKYSOKY8eOxZw5c/DWW28xbUrAwGazUVhYyFgYlQgiYbgEgjCqVCo0NjaSsOkFvPXWW5g3bx6ysrKYNsUrhI0oAsD//d//4fPPP4fdk4XEQhypVIrc3FwcO3bMr2FUIogET2FSGEm16cBYrVZ88cUXWLlyJdOmeI2wEsWlS5fC6XTi888/Z9qUgGLMmDHg8/koLy/3y/mIIBJGClPCSMKmA/Ppp5+Cw+Hg2muvZdoUrxFWosjj8bBy5Uq8/fbbTJsSULBYLBQUFKChoQEqlcqn5yKCSBgt/hbG7u5uEjYdhHfffRf/93//F1CLKo+WsBJFALj77rtx7NgxHDt2jGlTAgqpVIq8vDwcOXIEZrPZJ+cggkjwFv4SRpPJhCNHjiA/P598Xy+gtLQUJ06cwO9+9zumTfEqYSeKCQkJ+OUvf4mXX36ZaVMCjqysLMTGxqK0tNTr+UUiiARv42thdDgcKC0tRXx8fNivsjMQr7zyCpYvX464uDimTfEqYSeKALB69Wps3LiRtGdcAIvFwpQpU0BRFE6cOOG1iwwRRIKv8JUwUhSFsrIysFgsTJ48mYRNL6ChoQGbN2/G6tWrmTbF64SlKE6ZMgXz5s3Ds88+y7QpAQeHw8GMGTPQ1dWF2traUR+PCCLB1/hCGGtqatDd3Y0ZM2aAw+F4wcrQ4plnnsFll12GiRMnMm2K1wlLUQSAv/71r/jss898XlgSjIhEIsyYMQMVFRXo6OgY8XGIIBL8hTeFUalUorKyEkVFRUGx7qi/6erqwoYNG/DXv/6VaVN8QtiK4ty5czFx4kS88MILTJsSkERFRWHy5Mk4cuQIdDqdx68ngkjwN94QRp1Oh6NHj6KgoACRkZHeNzIEeP7551FQUIDZs2czbYpPCFtRBGhv8YMPPoBer2falIAkNTUVGRkZOHToEGw227BfRwSRwBSjEUar1YpDhw4hKysLycnJPrQyeNFqtVi/fn3IeolAmIvikiVLkJSUhNdee41pUwIWVyn6kSNHhnWBIYJIYJqRCKPT6cSRI0cglUoxbtw4P1gZnLz66qtIT0/H4sWLmTbFZ4S1KLJYLDz66KN47733YLVamTYnIGGxWJg6dSqMRiPOnDkz5L5EEAmBgqfCeObMGZjNZhQWFpJK00GwWCz45z//ib/+9a8h/RmFtSgCwI033gg+n4+1a9cybUrAwuPxUFRUhKamJtTV1Q24DxFEQqAxXGGsra1FS0sLioqKQmLpI1+xZs0aRERE4Prrr2faFJ8S9qLI5XLxxBNP4NVXX/XZJJdQICIiAjNnzkR5eTkaGhr6bSOCSAhULiWM9fX1qKiowMyZMyGRSBiyMvAxGo149dVX8cQTT4R8i0rYiyIArFixAlKplFSiXoLo6GjMnDkTp0+fRlNTEwAiiITAZzBhbGxsxNmzZzFr1ixERUUxbGVg8/e//x3R0dG45ZZbmDbF5xBRBN2w/sILL+Af//gH1Go10+YENDExMSgqKsLJkyfR0tJCBJEQFFwojM3NzTh16hSKiooQHR3NtHkBjUqlwpo1a/Diiy+GvJcIACyKyWWsAwiKojBr1izMmDGDLEQ8DJRKJUpLS8HlclFSUkIE0cvYbDZs2bIFS5YsIXkuL6LT6bBnzx44HA4UFRUhISGBaZMCnnvuuQdlZWXYt29fSBfYuCCe4jlYLBZeeuklfPDBB2hpaWHanICGoiioVCpwuVw4HA7iXROCBrVaDYqiwOFwoFKp/LpQcTDS2NiI9evX4+WXXw4LQQSIKPajpKQEc+fOxaOPPsq0KQFL3xxiSUkJioqKUFZW5s4xEgiBSmNjI06cOIEZM2agpKTE7wsVByOPPPIIFi5cGLLTawaCiOIFvPjii/jyyy9RUVHBtCkBx0BFNfHx8e4c44VVqQRCoFBXV4fTp09j5syZiI+P9/tCxcHI6dOn8d///jfsChCJKF7ApEmTcMMNN+Dhhx9m2pSAYqgq07i4OMyaNQtnzpxBTU0NucAQAgaKolBdXY3y8nLMmjULsbGx7m1EGIdm9erVWL58OcaPH8+0KX6FiOIA/P3vf8dPP/2ErVu3Mm1KQDCctouYmBjMnj0bNTU1OHnyJJxOJwOWEgjncTgcKCsrQ21tLWbPnj1glSkRxoHZvHkz9uzZg+eee45pU/wOEcUBSEtLw6OPPor7778/7Me/edKHGBUVhZKSEvT29uLAgQOwWCx+tJRAOI/FYsGBAweg0Wgwb968IfsQiTD2x2KxYNWqVXj88ceRkpLCtDl+h4jiIKxevRp2ux3PP/8806Ywxkga88ViMebMmQOBQIDdu3dDo9H4wVIC4TwajQa7d++GSCTCnDlzIBKJLvkaIozneeaZZ8Bms7Fq1SqmTWEEIoqDIBAIsHbtWrz66qtobm5m2hy/M5pJNVwuF9OmTUN6ejr27t2LtrY2H1pKIJyntbUVe/fuRUZGBqZOnQoulzvs1xJhpMfevfnmm3j77bfB5/OZNocRSPP+JVi2bBkoisKmTZuYNsVveHN0W3t7O44dO4YxY8YgJycnbHqdRgtp3vcMiqJQWVmJ2tpaFBYWIjExccTH0ul02L9/P9LS0pCXlxdW39mrr74aQqEQX3/9NdOmMAbxFC/Bm2++iW3btoVN0Y23Z5kmJiZi7ty5aGpqwpEjR2C3271kKYFAY7fbcfjwYTQ3N2Pu3LmjEkQgfD3GzZs3Y+fOnXj99deZNoVRiChegvT0dHfRTahf0H013Fsmk6GkpAQWiwV79+6F0Wj0ynEJBKPRiL1798Jms2HevHmQyWReOW64CaPVasVDDz2Exx9/HKmpqUybwyhEFIeBq+jmb3/7G9Om+Axfr3YhEAjcZfG7d+9Ge3u7V49PCD/a29uxe/duxMTEYNasWV7PgYWTMD755JNgsVhhW1zTl+FnocMYgUCAdevWYcmSJfjlL3+JyZMnM22SV/HX8k9sNhuTJ09GVFQUjh8/jra2NkycODFsE/qEkWG1WnHq1Cl0dHRg4sSJPvVsXMK4f/9+AAjJHOOxY8fw5ptv4ocffiB/iyCFNh5xzz334ODBgzh8+HDILKHC1HqIJpMJJ06cgFqtxpQpU6BQKPxy3mCBFNoMTHt7O06cOIGoqChMnjwZQqHQL+cN1eIbu92OwsJCLFiwAG+++SbT5gQEJHzqAS+++CJ6e3vx1FNPMW2KV2BygWCRSISioiLk5+fj6NGjOHbsWNgPSiAMjtVqxdGjR3H8+HHk5+djxowZfhNEIHRDqY8//jgMBgP+/ve/M21KwEBE0QMiIiKwfv16vPrqqygrK2PanFHBpCC6YLFYSEtLw8KFC2GxWLBz504olUq/20EIbNrb2/HTTz/BZrNhwYIFSEtLY8RTCzVhdIVNP/74Y4jFYqbNCRhI+HQE3Hfffdi3bx+OHDkSlGHUQBDEgWxqamrC6dOnkZiYiIkTJ4Z12JCET/vnDidMmIDU1NSACFuGQijVFTa97LLLwr4F40KIpzgCXnjhBWg0Gjz55JNMm+IxgSiIAO01pqenu73Gn376CR0dHUybRWAIpVIZEN7hQISCx/jYY4/BaDSG5cDvS0E8xRGyZ88eXHHFFdi/fz8KCgqYNmdYBKogXkhfrzEmJgb5+fle6z8LFsLVU9RoNCgvL4dKpXJXlgaKGF5IsHqMR48exdy5c7Ft2zYUFxczbU7AQURxFDz44IPYunUrjh49GvAx+WARxL5YLBZUVVWhoaEBycnJGDduXMB/zt4i3ETRYDCgoqICbW1tyMzMxNixYyEQCJg265IEmzAaDAYUFhbimmuuwSuvvMK0OQEJEcVRYLFYMHPmTEyYMAGffPIJ0+YMSjAKYl+MRiPKy8vR1taGjIwM5OTkBMUFczSEiyhaLBZUVlaisbExaG98gkkYb775ZtTU1GD//v2kJ3EQSE5xFAgEAnz11VfYtGkT1q9fz7Q5AxLsggjQy1FNnToVJSUlMBgM2L59OyorK0N+7F4oY7PZUFFRgW3btsFkMmHevHkoLCwMOkEEgifH+K9//QtbtmzBl19+SQRxCIin6AW++OIL/P73v0dpaSlyc3OZNsdNKAjiQKhUKpw5cwZGoxE5OTnIyMgAmx1a93eh6ik6HA40NDSgqqoKERERyM/PR0xMDNNmeYVA9hjPnDmDWbNm4YMPPsAvf/lLps0JaIgoeom7774bhw4dQmlpaUCE9kJVEF1QFAWlUony8nI4HA6MGzcOycnJISOOoSaKTqcTLS0tqKysBIfDQX5+PhISEgJKOLxBIAqj2WzGtGnTUFJSgrfffptpcwIeIopewmQyYdq0aZg9ezbef/99Rm0JdUHsi6tStbq6Gna7HZmZmcjIyAiIG5PRECqiaLFY0NDQgPr6enC5XOTk5AR0Rak3CDRhvPPOO3HkyBGUlpb6dQpQsEIGgnsJkUiEr7/+GtOnT8eiRYuwfPlyRuwIJ0EEzvc3pqWloaOjA7W1taiqqkJKSgqysrIgl8uZNjEsUavVqKurQ2trK2JiYjBlypSQ9AwHIpCGiH/66af46quvcPToUSKIw4R4il7mo48+wgMPPIADBw4gLy/Pr+cON0EcDK1Wi7q6OrS0tEAulyM9PR1JSUngcoPnHjAYPUW73Y62tjY0NjZCo9EgNTUVmZmZYddj6oJpj/H06dOYM2cO1qxZg9tuu82v5w5miCj6gHvvvRc//PADDh8+jMjISL+ckwjixVitVjQ3N6OxsREmkwmpqalIT08PCu8xmERRo9GgoaEBLS0tEIlEyMjIQEpKCqlwBHPC2NPTg+nTp+Oaa67BG2+84ZdzhgpEFH2AzWbD5ZdfDhaLhW3btvl8PioRxKGhKAq9vb1obGxEa2srpFIpEhMToVAoIJVKAzKkF8iiSFEUdDodlEol2traoNfrkZycjPT0dERFRQXk58kk/hZGh8OByy67DFwuF1u3bg2qCEkgQETRR6hUKkybNg1LlizB2rVrfXYeIoieYbPZ0NbWBqVSia6uLggEAigUCigUCsTExARM9WqgiaLT6YRKpYJSqYRSqYTFYkFcXBwUCgWSkpICwsZAxp/C+Pvf/x7bt2/HkSNHEBUV5bPzhCrkFsJHxMTE4LvvvsPMmTMxadIk/P73v/f6OYggeg6Px0N6ejrS09Nht9vR3d0NpVKJo0ePwuFwICEhAQqFAgkJCWF/obdarejs7IRSqURHRwc4HA4UCgUmTpyIuLi4oFwhhin8VXyzZs0afPHFF/j555+JII4Q4in6mG+//RY33XQTvv/+e5SUlHjtuEQQvQtFUVCr1W5PSKfTISYmBgqFAnFxcX4PszLhKTqdTuj1enR1dUGpVEKlUkEmk7lvFCIjI0lodJT40mPctWsXlixZgq+//hpLlizx2nHDDSKKfuD555/HW2+9hUOHDiE9PX3UxyOC6HuMRqNbIHt6egAAcrkccrkckZGRiIyMREREhM/Crb4WRZcAqtVq90Or1QIAoqOjkZiYiISEhKAcuxbo+EIYGxoaUFRUhIceegh/+tOfvGBl+EJE0Q9QFIVbbrkFp0+fxr59+0ZV/UgE0f+4CkvUajU0Go37XwCQyWRukfSmUHpTFJ1O50X2uwSwr8jL5fKALTwKNbwpjGq1GrNnz0ZBQQE+/fRT8vsbJUQU/YTZbMbixYtht9vx008/jWjiChHEwMEllH1FUq1WA6AHmAsEAgiFwn6Pvs9dqiJwuKJot9thNpthNpthsVjcP/d9zmAwgMViuYWvr4CTCyhzeEMYzWYzFixYAJFIhO+//z7oJzkFAkQU/YhGo8HcuXORnp6OjRs3elSoQAQx8KEoCnq9Hkaj8SJh6vuz0+kEl8t1iySPxwOLxcL/t3fnYU3c+R/A3+GSKwFUgloEXDSUcquAUVyRKkTBQu2plUNZrVuwT+3TuovW9rG6wtp1u+zqA7vWE0pZ3a2iggeUQ6PhbBF0WQ6pog8QrAfBsFzJ9/fHYn5lVRQFBpLP63nm4cnMN5P3+DzmnZlkZng8HvT09MDj8cAYw82bN/HCCy+Ax+NBrVaDMQbGGLq7uzXr6unpgZ6eXp/C/d9CNjU1pQIcoZ6nGFUqFZYsWYKmpiYUFBTo7EUSBhuV4jBramqCWCxGQEAA9u3b91TPoULUHj8vtQdTT0+PpvAelF9PTw/q6uogEomgr6+vKUsejwcDA4M+pfegVMno9CzFqFarERUVBalUCplMBhsbm2FIqhuoFDlQW1sLsViM1atXIz4+vt+xVIi6aaSdp0iG1kCLccOGDThw4ABkMhkcHR2HKaVuGBlnKuuYadOm4cyZM9i1axcSExMfO44KkRDdMJAbFe/cuRPJyck4c+YMFeIQoFLkyIwZM/Dtt98iLi4O33zzzUPLqRAJ0S1PU4ypqanYvHkzjh07Bi8vLw5Saj8qRQ4tXLgQ+/fvR3R0NL799lvNfCpEQnRTf8V45MgRrFmzBocOHUJAQACHKbUbXeaNY2+99RY6OzsRHh4OfX19vPLKK1SIhOiwR10S7ujRo4iMjMSePXvw+uuvc5xQu1EpjgARERFQqVRYvnw5/vSnP8HOzo4KkRAd9vNiPH/+PD788EMkJSXhnXfe4Tqa1qNSHCFWrlyJrq4ufPDBBzh48CAVIiE6js/no7W1FevXr0diYiIiIyO5jqQTqBRHkHfffRc8Hg+RkZEwNDREaGgo15EIIRz55z//iVWrVmHXrl1YtWoV13F0BpXiCLNmzRoYGhpi2bJlSElJwWuvvcZ1JELIMDt8+DCioqKQnJyMiIgIruPoFCrFEWjlypUwMDBAeHg4lEol/acgRIfs27cPsbGx2LNnD32HyAEqxREqPDwcpqamCA8Ph1wux8cff8x1JELIEIuPj8e2bdvw9ddf49VXX+U6jk6iUhzBXnvtNYwbNw6hoaFobm7GF198MWT37yOEcEetVuPDDz/EgQMHBv2G5GRgqBRHOH9/f5w7dw6BgYGQy+U4ePDggO6uQQgZ2Xp6ehAeHo68vDycP38ebm5uXEfSabTbMQp4eHigsLAQMpkMwcHB6Ojo4DoSIWQQtLe3Y/HixSgtLUVhYSEV4ghApThKTJkyBTKZDC0tLZg3bx7u3LnDdSRCyHO4ffs25s2bh7t370Imk8HBwYHrSARUiv2Kj4+Ht7c3+Hw+hEIhwsLCUF1drVl+584drFu3Dk5OTjAxMYGdnR3ef/99tLa29lnPg/vg/XxKT0/vM2bLli2wtbWFn58fampqHplHKBSioKAAfD4fs2fPRm1t7eBvNCFkyFVXV2P27NmwsrJCXl4exo8f/8hxSUlJcHd3h0AggEAggFgsxqlTpzTL//a3v8Hf3x8CgQA8Hg/37t17aB0ODg4Pvf8kJCT0GbNnzx7Y29vDy8sLRUVFg7qtow2VYj8KCgoQExODwsJCZGdno7u7G4GBgVAqlQCAxsZGNDY24g9/+AMuX76MAwcO4PTp04iOjn5oXfv370dTU5NmCgsL0yy7cOECMjMzkZGRgeXLlyM2Nvaxmfh8PrKysuDn5wexWIwzZ84M+nYTQoZOVlYWZs+eDX9/f2RmZvZ79SpbW1skJCSgrKwMpaWlCAgIQGhoKK5cuQLgv4dfJRIJNm7c2O9rfv75533ef9atW6dZ1tDQgB07diA9PR2bNm3CypUrB2dDRytGnlpLSwsDwAoKCh475vDhw8zIyIh1d3dr5gFgR48efexzTpw4wUJDQ1lXVxcrLCxk3t7eT8yiVqtZYmIiMzExYTt37hzQdpCRr6urix07dox1dXVxHYUMoh07djATExO2e/fuZ16HlZUV++qrr/rMy8vLYwDY3bt3Hxpvb2/Pvvzyy8eur7Kyks2cOZPdv3+f1dfXMwcHh2fOpg1oT3EAHhwWHTt2bL9jBAIBDAz6/rA3JiYG48ePh4+PD/bt29fnljBBQUHo6OiAqakpJBIJ4uPjn5iFx+Ph/fffx/Hjx7F161ZERUWhq6vrGbeMEDKUurq6EB4ejvj4eGRmZuK9994b8DpUKhXS09OhVCohFosH9NyEhASMGzcOXl5e+OKLL9DT06NZ5urqCnd3d1hYWMDFxQXbtm0bcDatwnUrjxYqlYoFBwezOXPmPHbMrVu3mJ2dHdu4cWOf+Z9//jmTSqXs+++/ZwkJCWzMmDEsMTHxoefL5XLW2dk54Gy1tbXMycmJicVi1tLSMuDnk5GH9hS1R1NTE/Px8WEvvfQSu3r16oCfX1FRwczMzJi+vj6zsLBgmZmZD43pb09x586dLC8vj126dIklJSUxS0tLtn79+ofG/fTTT6y9vX3A+bQNleJTWrt2LbO3t2c3btx45PLW1lbm4+PDJBLJE9/INm/ezGxtbQc1X2trK1u0aBGzs7NjZWVlg7puMvyoFLVDSUkJmzx5MgsJCWEKheKZ1tHZ2clqa2tZaWkp++1vf8vGjx/Prly50mdMf6X4v/bu3csMDAxYR0fHM+XRdnT49CnExsbi5MmTyMvLg62t7UPL29raIJFIwOfzcfToURgaGva7Pl9fX9y8eROdnZ2DllEgEODEiRN4++23MW/ePCQnJw/augkhA7dr1y7Mnz8fK1asQEZGBvh8/jOtx8jICFOnTsWMGTMQHx8PDw8PJCYmPnMuX19f9PT04Nq1a8+8Dm1GV7TpB2MM69atw9GjR5Gfn48pU6Y8NEahUCAoKAhjxozB8ePHYWxs/MT1lpeXw8rKCmPGjBnUvPr6+vj9738PsViMqKgo5ObmYt++fXRvRkKGkUKhwMqVK5Gbm4u0tDQsWbJkUNevVquf6wN1eXk59PT0IBQKBzGV9qBS7EdMTAzS0tI0n/Kam5sBABYWFjAxMYFCoUBgYCDa29uRmpoKhUIBhUIBALC2toa+vj5OnDgBuVyOWbNmwdjYGNnZ2di+fTs++uijIcsdFhaGS5cu4a233oKXlxfS09MxY8aMIXs9Qsh/FRcXY9myZbCxsUFFRQUmT578XOuLi4vDokWLYGdnh7a2NqSlpSE/P19zKlZzczOam5tRV1cHAKisrASfz4ednR3Gjh0LmUyGoqIizJ8/H3w+HzKZDOvXr8eKFStgZWX13Nurlbg+fjuSAXjktH//fsbY/x/Hf9T0448/MsYYO3XqFPP09GTm5ubMzMyMeXh4sOTkZKZSqYY8f1dXF9uwYQMzNTWl0zZGGfpOcXRRqVSa0y3i4uL6nJL1PFatWsXs7e2ZkZERs7a2Zi+//DI7e/asZvlnn33W73tUWVkZ8/X1ZRYWFszY2Jg5Ozuz7du30/eJ/eAx9rNzA4hWOn36NFasWAGxWIyUlBRYWlpyHYk8QXd3N7KysrB48eInfkdNuHXnzh2Eh4ejuLgYX3/9NQIDA7mORJ4D/dBGB0gkElRUVEChUMDT0xPfffcd15EI0Qpnz56Fl5cX2tvbUVlZSYWoBagUdcSkSZOQm5uL1atXIyQkBGvWrEF7ezvXsQgZlZRKJaKjoxEaGoq1a9ciJycHEyZM4DoWGQRUijpEX18fmzZtQnFxMUpKSuDm5obc3FyuYxEyquTk5MDNzQ3l5eUoLS1FXFwc3eNUi1Ap6iA3NzcUFxcjKioKwcHBePfdd2mvkZAnaG9vx+rVq7FkyRJER0ejqKgILi4uXMcig4xKUUcZGhpi8+bNKCoqQlFREdzd3ZGfn891LEJGpO+++w6urq4oKytDSUkJNm3a9ND1jYl2oFLUce7u7igpKUF4eDgWLVqE1atXP3Q/SEJ0VWtrK6KjoxESEoJVq1ahqKgIrq6uXMciQ4hKkcDQ0BCfffYZCgsLUVlZCScnJ+zZswdqtZrraIRwQq1W469//SucnJxQVVWF4uJifPLJJ3R6jA6gUiQaHh4euHjxIuLj4xEXF4c5c+bghx9+4DoWIcOqrKwMYrEYn3zyCXbs2IELFy7Azc2N61hkmFApkj709PSwcuVK1NbWYvr06RCLxVizZg0dUiVa7969e1i9ejXmzJkDX19f1NbWIiIiAjwej+toZBhRKZJHsrKywu7duyGTyVBRUUGHVInWenCo9MUXX8SVK1dQVFSEP//5z3TlJx1FpUj65eXlhYsXLyIhIQFxcXHw9vbWXIyYkNHuzJkzmDlzZp9DpR4eHlzHIhyiUiRPpKenh6ioKFy9ehUSiQRLly5FQEAASktLuY5GyDMpLi6Gv78/li5diuDgYNTV1dGhUgKASpEMgIWFBX73u9+hrq4OTk5OmDNnDpYuXYra2lquoxHyVKqrqxEaGoq5c+fCxcUF9fX12Lp1KywsLLiORkYIKkUyYBMnTkRSUhKuXLkCAwMDuLu7Y9WqVZr7TRIy0jQ1NSEqKgoeHh4wMTHBv/71L+zevRs2NjZcRyMjDJUieWZTp07F4cOHIZVK0dDQgGnTpmHdunVUjmTEaGpqQkxMDEQiERobGyGTyZCeng5HR0euo5ERikqRPLcZM2YgJycHGRkZqKysxC9+8QvNd5CEcKGurg6RkZFwdHREVVUVTpw4obnNEyH9oVIkgyYgIAD5+fnIy8vDnTt34OLigtdffx2XLl3iOhrREeXl5Vi6dClcXFzQ2tqKgoIC5Obmwt/fn+toZJSgUiSDztfXF8ePH0dZWRmMjY3h4+MDiUQCqVTKdTSipc6dO4egoCD4+vrC3Nwc5eXlOHbsGLy9vbmORkYZKkUyZFxcXJCamorq6mo4Ojpi4cKFmD17NlJTU6FSqbiOR0a5np4epKSkQCwWIygoCCKRCDU1NTh06BCcnZ25jkdGKSpFMuQcHBywe/duXL9+HRKJBB999BHs7e2xceNGyOVyruORUUYulyMuLg4ODg7YsGEDFi9ejIaGBvzlL3+Bvb091/HIKEelSIaNUCjEp59+ihs3buCPf/wjCgoK4ODggLCwMOTk5NAl5MhjqdVqnDlzBqGhoXBwcIBUKsWXX36JhoYGbN68GdbW1lxHJFqCSpEMO0NDQ7z55pu4cOECioqKMGnSJLz66qtwdnbGtm3baO+RaMjlcmzduhXOzs544403YGtri+LiYpw/fx5vvPEG3cqJDDoeY4xxHYKQ+/fvIz09HUlJSaisrMTcuXOxbNkyLF++HKamplzHG3bd3d3IysrC4sWLde6NX6lUIi0tDd988w2kUik8PDywdu1avP322zAzM+M6HtFyVIpkxKmpqUFqaipSUlJw+/ZtLFy4EBEREQgJCYG+vj7X8YaFrpWiSqXC8ePHkZKSguzsbFhbWyMiIgLvvPMOpk2bxnU8okOoFMmIxRhDUVERUlJSkJ6eDkNDQ4SEhCAiIgJ+fn7Q09Peo/+6UIpqtRrnz5/HoUOHkJmZiZ6eHixbtgwrVqyAj48PXZybcIJKkYwK3d3dOHv2LFJSUnDy5Enw+XzMmzcPoaGhCA0N1bpDrNpaikqlEhkZGTh27BjOnTsHpVKp+aCzYMECrdpWMjpRKZJRp7OzE/n5+Th+/DgyMjJw9+5dzJo1C8HBwXjzzTdha2vLdcTnpk2lePPmTfz9739HZmYmCgsLMW7cOM2HmXnz5sHIyIjriIRoUCmSUY0xhoqKCmRkZCAjIwOXLl2Cq6sr5s6diwULFmDBggWj8scZo7kUlUolcnJykJ2dDalUisuXL8PT01NThG5ubnRolIxYVIpEqzQ2NiIrKws5OTnIy8tDa2sr3NzcIBaLNSU5Gg61jqZSfFCCOTk5KCwsREVFBaysrDB//ny8/PLLCA4OxsSJE7mOSchToVIkWosxhpqaGuTn5yM3Nxd5eXlQKBRwc3PDrFmzMGvWLPj5+Y3Iq6CM5FK8fv06pFIpZDIZCgsLUVlZCUtLS8yfPx8BAQHw9/fHtGnTaG+QjEpUikRnMMZQXV2N/Px85Ofno6SkBPX19RAKhXB2doa7uzt8fHzg5+cHBwcHTrOOlFL88ccfIZVKUVxcjIqKClRVVeHWrVtwdHSEt7c3/P394e/vD5FIRCVItAKVItFpCoUCP/zwA8rKylBSUoLS0lJcvXoV48ePh5OTExwdHSESieDi4gJXV1dMmTJlWE4FGc5SVKvVqK+vR2VlJaqqqlBTU4P6+npUVVXh9u3bmDp1KmbOnAlvb29Mnz4dXl5eEAgEQ5qJEK5QKRLyP9ra2lBeXo7y8nJUV1fj3//+N2pqanDz5k0YGxvD3t4ednZ2cHR0xNSpUzF58mTY2dnB3t4eQqFwUEpzMEtRrVZDLpfj+vXruHHjBm7cuIHa2lrU19fj+vXraGhoQEdHB2xtbSESifDiiy/CyckJnp6e8PT0BJ/Pf+7tIWS0oFIk5Cl1dHSgrq4ONTU1qKmpQXV1NWpra9HY2Ai5XI729nYYGRlh3LhxsLa2xvjx4yEUCiEUCiEQCMDn8yEQCDSThYUFBAIBLC0tYWFhAUNDQ+jr60NPTw9qtRqnTp1CYGAg9PX1oVKp0N3djdbWVty7dw8KhQKtra1QKBSaqa2tDQqFAi0tLWhpacGtW7fw008/4fbt2+jq6oKZmRlsbGwwceJEiEQiODk5QSQSQSQSwdHREcbGxlz/ExPCOSpFQgZJW1sbmpqaNFNjYyMaGxvR3NyMtrY2zXT//n3NX6VSiZ6engG9joGBAczMzGBubg4+n6/5KxAIYG5ujgkTJuCFF17AxIkT+0y0x0fIk1EpEsKxzs5OKJVKqFQqqNVqqNVqqFQq8Hg86OnpaSZ9fX2YmZlhzJgxXEcmRGtRKRJCCCG9tPeKyoQQQsgAUSkSQgghvagUCSGEkF5UioQQQkgvKkVCCCGkF5UiIYQQ0otKkRBCCOlFpUgIIYT0olIkhBBCelEpEkIIIb2oFAkhhJBeVIqEDJH4+Hh4e3uDz+dDKBQiLCwM1dXVmuXXrl0Dj8d75HTkyBHNuIaGBgQHB8PU1BRCoRAff/zxQ3fW2LJlC2xtbeHn54eampph20ZCtA2VIiFDpKCgADExMSgsLER2dja6u7sRGBgIpVIJAJg8eXKfW001NTVhy5YtMDc3x6JFiwAAKpUKwcHB6OrqwsWLF3Hw4EEcOHAAn376qeZ1Lly4gMzMTGRkZGD58uWIjY3lZHsJ0QZ0lwxChsmtW7cgFApRUFCAX/7yl48c4+XlhenTp2Pv3r0AgFOnTiEkJASNjY2wsbEBACQnJ+M3v/kNbt26BSMjI5w8eRJfffUVjhw5gu+//x7r1q1DcXHxsG0XIdqE9hQJGSatra0AgLFjxz5yeVlZGcrLyxEdHa2ZJ5PJ4ObmpilEAAgKCoJCocCVK1c0jzs6OmBqagqJRIL4+Pgh3ApCtJsB1wEI0QVqtRoffPAB5syZA1dX10eO2bt3L5ydnTF79mzNvObm5j6FCEDzuLm5GQBgaGiI06dPo6WlBZaWljAyMhqirSBE+1EpEjIMYmJicPnyZUil0kcu/89//oO0tDRs3rz5mV9DKBQ+83MJIf9Fh08JGWKxsbE4efIk8vLyYGtr+8gx//jHP9De3o6IiIg+8ydMmAC5XN5n3oPHEyZMGJrAhOgwKkVChghjDLGxsTh69Chyc3MxZcqUx47du3cvXnnlFVhbW/eZLxaLUVlZiZaWFs287OxsCAQCvPTSS0OWnRBdRb8+JWSIvPfee0hLS0NGRgacnJw08y0sLGBiYqJ5XFdXB5FIhKysLEgkkj7rUKlU8PT0xKRJk7Bjxw40NzcjPDwcv/rVr7B9+/Zh2xZCdAWVIiFDhMfjPXL+/v37ERUVpXm8ceNGpKam4tq1a9DTe/jgzfXr1/HrX/8a+fn5MDMzQ2RkJBISEmBgQD8JIGSwUSkSQgghveg7RUIIIaQXlSIhhBDSi0qREEII6UWlSAghhPSiUiSEEEJ6USkSQgghvagUCSGEkF5UioQQQkgvKkVCCCGkF5UiIYQQ0otKkRBCCOlFpUgIIYT0+j8SWxI+T2CMaAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_hues(rms, rmse, p1, p2, polar=True, plot_spans=True, configuration=configuration)" + ] + }, + { + "cell_type": "markdown", + "id": "405fced1-fb57-4d37-9dcf-6540fd3fc20e", + "metadata": {}, + "source": [ + "## Lags and coherence\n", + "\n", + "With the cross spectrum we can explore the time lags versus frequency" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "c4eda41b", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "2729it [00:00, 6000.14it/s]\n" + ] + } + ], + "source": [ + "# Use shorter segments, rebin a little more heavily\n", + "cs = AveragedCrossspectrum.from_events(events_sub, events_ref, segment_size=2, dt=0.005, norm=norm)\n", + "cs_reb = cs.rebin_log(0.4)\n", + "\n", + "lag, lag_e = cs_reb.time_lag()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "45ba99f4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAG1CAYAAAA/aGqTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABQ4ElEQVR4nO3deVxU9f4/8NcMuyAgiywK7rIoikIq5S6JabmEmmWJSnnz6jXX0hZLLdcW9Zp5+5bbTbtu5U0rlBTFEDfEUllcCQQGAmSXdc7vD3/MdWJxDnOGmYHX8/GYR87nfM5n3sfmnHn7OZ/z+cgEQRBARERERI0m13cARERERMaOCRURERGRlphQEREREWmJCRURERGRlphQEREREWmJCRURERGRlphQEREREWmJCRURERGRlkz1HUBLoFQqkZGRgdatW0Mmk+k7HCIiItKAIAgoKiqCu7s75PKG+6CYUDWBjIwMeHh46DsMIiIiaoS0tDS0b9++wTpMqJpA69atATz8H2Jra6vnaIiIiEgThYWF8PDwUP2ON4QJVROouc1na2vLhIqIiMjIaDJch4PSiYiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqIiIhIS0yoiIiIiLTEhIqoCZSVlWH+/PmYPXs2bty4AaVSqe+QiIhIQqb6DoCouUtMTMTBgwcRFRWFqqoqFBUVwdfXFxMmTICPj4++wyMiIgkwoSLSocTERGzevBnZ2dlo1aoVzMzM4OjoiPj4eKSlpWHevHlMqoiImgHe8iPSEaVSie+//x45OTnw8fGBhYUF5HI5bG1t4evri5ycHBw+fJi3/4iImgEmVEQ6kpqaiqSkJHh4eEAmk6ltk8lkaN++PRITE5GamqqnCImISCpMqIh0pKioCGVlZbC2tq5zu7W1NcrKylBUVNTEkRERkdSYUBHpSOvWrWFpaYmSkpI6t5eUlMDS0hKtW7du4siIiEhqTKiIdMTT0xPe3t5IS0uDIAhq2wRBwL179+Dj4wNPT089Rfh4SqUSKSkpuHr1KlJSUjjei4ioHnzKj0hH5HI5JkyYgLS0NCQmJqKsrAzm5uYoKChAZmYmnJycMH78eMjlhvnvmsTERHz//fdISkpCWVkZLC0t4e3tzekeiIjqYJhXcqJmwsfHB/PmzYO/vz8ePHiA3Nxc5OXloW/fvgY9ZULNdA9xcXG4efMmFAoF2rRpg/j4eGzevBmJiYn6DpGIyKCwh4pIx3x8fPDOO+/glVdeQVFREVq3bg1PT0+D7Zn663QPubm5AABbW1vY29sjISEBhw8fhpeXl8EeAxFRU2NCRdQE5HI5OnbsqO8wNCJmugd9HpNSqURqaqpRJKlE1PwxoSIiNZpM95Cenq7X6R44vouIDA0TKiJS8+h0D3UlVfqe7qFmfFdOTg48PDxgbW2NkpISLudDRHolOqEqLy/H+fPn8ccff6C0tBTOzs7o06cPOnXqpIv4iKiJ1Uz3EB8fDy8vL7VtNdM99O3bVy/TPTw6vsvLywu//vorAGDQoEHw9fXl+C4i0huNE6qYmBhs2rQJR44cQWVlJezs7GBlZYW8vDyUl5ejc+fOmDVrFl5//XVOVEhkxB6d7iE5ORl9+vSBtbU1iouLce/ePb1O92As47uIqOXR6Io4duxYvPDCC+jYsSOOHz+OoqIi5Obm4t69eygtLcXNmzfx7rvv4sSJE+jevTsiIyN1HTcR6VDNdA99+vRBbm4ubty4gdzcXL1P98DlfIjIUGnUQzVmzBgcOnQIZmZmdW7v3LkzOnfujLCwMCQkJCAzM1PSIImo6fn4+MDLy8ugnqQz9PFdRNRyaZRQ/e1vf9O4QV9fX/j6+jY6ICIyHIY23YOhje/i1A1EVEP0oPS0tDTVWAUAuHDhAvbu3QtfX1/MmjVL8gCJiGoY0vguTt1ARI8SfdV56aWXEBUVBQBQKBR4+umnceHCBbzzzjtYuXKl5AESET3KEMZ31UzdEB8fDycnJ3h5ecHJyYlL8xC1YKJ7qK5du4Z+/foBAPbv34+ePXsiJiYGx48fx+uvv47ly5dLHiQR0aP0Ob6LUzcQUV1EJ1SVlZWwsLAAAPzyyy8YO3YsAMDb25uD0YmoyehrfBenbiCiuoj+51OPHj2wbds2nDlzBpGRkRg1ahQAICMjA46OjpIHSERkSDh1AxHVRXQP1bp16zBhwgRs2LABYWFh6N27NwDghx9+UN0KJCJqrh6dusHW1hZDhw5V286pG4haJtEJ1dChQ5GTk4PCwkK0adNGVT5r1iy0atVK0uCIiAzNo1M3+Pr6qt320/fSPESkP41aHNnExEQtmQLAsQJE1CI8OnVDQkIC2rdvr1qgWd9L8xCR/sgEQRAeV6lPnz61Bl/W5/Lly1oH1dwUFhbCzs4OBQUFsLW11Xc4RCSBuuah8vHxwfjx4zkPFVEzIeb3W6MeqvHjx6v+XFZWhq1bt8LX1xdBQUEAgHPnzuH69ev4+9//3vioiYiMiCEuzUNE+qNRD9WjXn31Vbi5uWHVqlVq5e+//z7S0tKwfft2SQNsDthDRUREZHzE/H6LTqjs7Oxw6dIldOvWTa385s2bCAwMREFBgfiImzkmVERERMZHzO+36L5pKysrxMTE1CqPiYmBpaWl2OaIiKiRlEolUlJScPXqVaSkpECpVOo7JKIWS/RTfvPnz8fs2bNx+fJl1bxT58+fx/bt2/Hee+9JHiAREdXGxZmJDIvoW37AwzX8Nm3apFoA1MfHB2+88QYmT54seYDNAW/5aa+iogKrV68GALz99tswNzfXc0RE+lOzOHNOTg48PDxU0zakpaXBycmpyRaJJjIEuvx9kPwpv7+aPHkykyciIj14dHHmRycWtbW15eLMRHrUqIQKeJgRZmdn17pnz9mBiYh059HFmZVKJc6cOQMAGDRoEExMTJp0cWalUslpI0gyjf0+KZVK5Ofno7y8HCkpKejatatevoeiE6qbN29i5syZOHv2rFq5IAiQyWSorq6WLDgiIlKnyeLM6enpOl+cmWO4SEqN/T4lJibi4MGDiIqKQlVVFYqKiuDr66uX76HohGr69OkwNTXF0aNH4ebmpvEM6kREpD1DWJy5vjFc8fHxSEtL0/kYrpbWM9bcj7ex36ea/bKzs9GqVSuYmZnB0dGxyb6HfyU6obpy5Qri4uLg7e2ti3iIiKgB+l6cWd9juPTZM6aPxEZfx9tUx9rY79Oj+/n4+CA3N1e1n729vV7GEor+FF9fX+Tk5OgiFo18/vnn6NixIywtLdG/f39cuHChwfoHDhyAt7c3LC0t4efnh59++kltuyAIWL58Odzc3GBlZYXg4GDcvHlTrU5eXh6mTp2q+h8VHh6O4uJiyY+N6ldzjzwrK4vz7VCLVrM4s5OTExISElBQUICqqioUFBQgISFB54sz/3UM16lTp3Dq1ClUV1dDJpOpjeGSWk2PRHx8PJycnODl5QUnJyfEx8dj8+bNqifPdSExMRFr167F8uXLsWrVKixfvhxr167V+Wfq43ib8lgb+316dL+/3inT9fewPqLPuHXr1uHNN9/EqVOnkJubi8LCQrWXLu3btw8LFy7E+++/j8uXL6N3794ICQlBdnZ2nfXPnj2LF198EeHh4YiPj8f48eMxfvx4XLt2TVVn/fr12Lx5M7Zt24bz58/D2toaISEhKCsrU9WZOnUqrl+/jsjISBw9ehTR0dGYNWuWTo+V/icxMREbNmxAVFQUoqOjsXLlSp1fyIgMmY+PD+bNm4c+ffogNzcXN27cQG5uLvr27avz2xyajOEqKyuTfAzXX3sybG1tYWJiourJyMnJweHDh3Xyjy19JDb6Ot6mPtbGfp/09T1siOhbfsHBwQCAESNGqJU3xaD0Tz/9FK+99hpmzJgBANi2bRt+/PFHbN++HUuXLq1Vf9OmTRg1ahSWLFkCAFi1ahUiIyOxZcsWbNu2DYIgYOPGjXj33Xcxbtw4AMDu3bvh4uKCw4cPY8qUKUhMTERERAQuXryIwMBAAMA///lPjB49Gh9//DHc3d01jr+0ogqmFVW1yuUyGSzNTNTq1Uebug8qqiGg7mnHZJDByrxxdcsqq6FsYDqzVuamja6bkJCArZ9vwZ9/ZsPCqhVszMxha98GF+Pi1O6RP65dKzMT1b9iyquqUa2Upq6lqQnk8od1K6qUqGrg4iamroWpCUwaUbeyWonK6vrrmpvIYWoiF123qlqJigbqmpnIYdaIutVKAeVV9V8zTOVymJuKr6tUCiiTqK6JXAYL04ffd0EQ8KBSmrranvcdunTDvIWLkZaaiqLiIrS2aQ0PT0+Ympio7Sv1NaJmDFd+YRFsbW3x1KDBAAAlAGW1EoWFRTAzt1AbwyXFNeKPlBRcS0hUe7pRKQBPPvUUTExM4OrmjqvXE5B86w46/P+nG8Vce+o775VKJfYfPARFdjZ8fB7ekpLLZarE5uq1a9h/6DssWrykzl7Bxl4jbt15eLyu7u1QpRSAv/x/cW/XTtUD497eU5JrhFKpxKFD36mSOKUAKAUBVtY26ObljcTEBLVjleIaYWphBVNzC+QXFsHa2hrVggzyR461qLgYpuYWMLWwUvsu1+xXWFQM29Y2AABBeHh8SshQWFhUa7/GXiM0JTqhioqKEruLJCoqKhAXF4dly5apyuRyOYKDgxEbG1vnPrGxsVi4cKFaWUhICA4fPgwAuHv3LhQKhSpJBB6uVdi/f3/ExsZiypQpiI2Nhb29vSqZAh4mlXK5HOfPn8eECRNqfW55eTnKy8tV72t67vp9dAJyi1a16g/zcsaOGf1U7wNW/VLvhbh/Jwfs+1uQ6v3AdVHIK6mos26v9nb4Ye7A/8X96Wmk5z+os263tjaIXDhE9X7sll9xM7vu25rt7K0Qs3S46v3kf8Xi93t1r+HoYG2Oy+89rXoftv0Czt/Nq7OulZkJEleNUr1/ffdFHN79BSqybsPM0QMy006AAFy/kgtBMMdIeY7qHvnC/Vfw01VFne0CQMLKENXF9e3vruHQ5Xv11o17NxiONhYAgA+PJuLf5/6ot+6ZN4fBw+Hh/9OPjyfjy+g79dY9vmAwurs8/JH5POoWNp24WW/d/855Cr097AEAO2LuYs3PSfXW/fa1AQjq4vjwzxdSsfy/1+utu316IIZ7uwAADsenY8nB3+ut+/lLfTGmlxsA4Nj1LMzZe7neuhsm9sKkQA8AQPTNPzFz56V6664c1wPTgjoCAC7czcOL/3eu3rrLnvHG34Z0AQBcSy/AuM9rL3tV440R3bDg6e4AgFt/FmPkZ9H11p01uDPeHv2wFyc9/wEGra//uvbKgA5YNb4nACCvpAIBH/5Sb93Qvu3xyeTeAIAHldXwXX6s3rqj/VyxdWqA6n1DdTW/RiTr/BpRM4Zr077jKLNxqzWGqzI3Dc4dvdXGcElxjaj4MwVFl1MwP7QjTExMMHToUByOT8e26LsPP1tZjcq8DJxadwzmzh0BAClrx6j2b+w1oqogC/fPnISJlS2ism4DePj9aWVuCplMhvRKaxz7zwn8X7obTO1carXb2GvE/528jsOX7sLMoQIyee27MJP6uKt6YKS6RlQVZME34zf07PIwaT18+hLSlG1U25XlVTie/L9jleIaIQhKFKTJUXHp0sPrvMwNw7zawsTEBIIg4GryHVwubYOYrxMhkyWr2qvZr8u9JDwz8OF59ABm2BZ9V/U9NHfporZfY68RmhKdUA0ZMuTxlXQgJycH1dXVcHFR/8K6uLggKanuL5JCoaizvkKhUG2vKWuoTtu2bdW2m5qawsHBQVXnr9asWYMVK1ZoeGRUn+I8BSpz02Da2slg7pETtXQ1Y7i2Hj2Hotw0mLZ2hMzMEkJlGaqKcmFiZQsH36ckH8MlN7eC3NRc9XTjXwmVZZCZmkFubiXp5yorHkCoqoDMzEJVdjbmLIYNftgzZmZhBaGqEsqKuhPRxrK0sobM1BxCZTlkdfxD/MGD0v89zZknzZ0hZcUDlJfXfxtNZmYJoShP0mOVyeSw7haE6sI////13hHV1Q/HBN67dw92Do6wbtcfMpm8zv2ss6ORmJiIsrIyKM1MoCwvUX0PrbsF1dpPlxq19Ex+fj6+/vpr1b3UHj16YObMmbCzs5M8wBoZGRlo164dzp49i6Cg//3r680338Tp06dx/vz5WvuYm5tj165dePHFF1VlW7duxYoVK5CVlYWzZ8/iqaeeQkZGBtzc3FR1Jk+eDJlMhn379mH16tXYtWsXkpOT1dpu27YtVqxYgdmzZ9f63Lp6qDw8PJD5Z26dFwLe8qu77qXLV7B69Yfo3t0LABAT83Dus6eeehImJiaQCUrcuHED7733Hrp5+/KWH3jLryXd8tNFXTHnffxv1/DDD4eRnJyM8rIyWFhawsvbG889NxY+Pr6SXyOUSiU+2bAe137/TfU0WFW1EgIe/l0nJibAv09ftVtvUtzy+yMlBatWroCjo6Pq+m0ql6nq5t2/j5zcPLy3/H3VrcZHNfYaUVZRhXXr1uLKlXjVrcYagiAgOSkRgQEBeOutt1ClhCTXiD9SUrB61Qo4OzvD2toa0dFnoIRMdc0tLChAbt7/jlXKa0RSYiKO/PBfJCcno6K8DK2srODj44Pnxo5D527d6233ZnIyfjj8HQ4ePIjKqir06u0PH19fPPfcWHj/ZSxhY64ROl165tKlSwgJCYGVlZVqceRPP/0UH330EY4fP46+ffuKbVIjTk5OMDExQVZWllp5VlYWXF1d69zH1dW1wfo1/83KylJLqLKysuDv76+q89dB71VVVcjLy6v3cy0sLGBhYVGrvJW5qdoJXh9N6jSm7qMXOCnrPnpBlrKuk4M9bFq1QkXZA1hbW8NE9vACZ2Yih4mJHAUFRap/oYlpt+YHT+q65qZymGv4nIeu6j560ZKyrukjF04p65rIZRp/h8XUleuorkymm7qA7s57XV0j+vTuid5+vho9Wi/VNWLyxFAoMtKRkJCA9u3bw9raGqUlJbh37x5c27bF5NDnYWNZ9zpujb1GeHXtjJ6+PoiPj4eDvV2txCYzIwN9+/aFV9fOj+2VE3MuW5qbqo73ZnKS6nhL/v/xtnV2Vj3NaS6HJNcIr66d4ePjo5qSY9iwoWrHqsis/1i1vUb07e0Hf78eoqdq6O3XA17duiA3Nxfl5eVYsGCBRjOliznvNSW6L2zBggUYO3YsUlJS8N133+G7777D3bt38eyzz2L+/PmSBvcoc3NzBAQE4MSJE6oypVKJEydOqPVYPSooKEitPgBERkaq6nfq1Amurq5qdQoLC3H+/HlVnaCgIOTn5yMuLk5V5+TJk1Aqlejfv79kx0e11YzVSEtLw187Umvm2/Hx8eFyR0R6IpfL0bFjR/j5+aFjx446n+9HH0836nOaiqY+Xn1PydHY75OlpSU2btyIL774At27d9fbpKeib/lZWVkhPj6+1sSeCQkJCAwMRGlpqaQBPmrfvn0ICwvDv/71L/Tr1w8bN27E/v37kZSUBBcXF0ybNg3t2rXDmjVrADycNmHIkCFYu3YtxowZg//85z9YvXo1Ll++jJ49Hw4yXbduHdauXYtdu3ahU6dOeO+99/D7778jISEBlpaWAIBnnnkGWVlZ2LZtGyorKzFjxgwEBgZi7969GsUtpsuQ1D06E256ejrMzc3h7++PzMxMODk5NflMuESkf4YywaaPjw/Gjx/f7CYU1eexGhqd3vKztbVFampqrYQqLS1Np0sdAMALL7yAP//8E8uXL4dCoYC/vz8iIiJUg8pTU1PVvmRPPvkk9u7di3fffRdvv/02unXrhsOHD6uSKeDhGKySkhLMmjUL+fn5GDhwICIiIlTJFADs2bMHc+fOxYgRIyCXyxEaGorNmzfr9FjpoZp/oR08eBC3bt1CUVER8vLy0Ldv3xZ5chPR/3oympKPjw+8vLz0sgRMUx+vPo/VmInuoZo3bx6+//57fPzxx3jyyScBADExMViyZAlCQ0OxceNGXcRp1NhDpb2ysjIsXbpU1D1yIiIibei0h+rjjz+GTCbDtGnTUFX18OkRMzMzzJ49G2vXrm1cxESPIZfLYW9vDwBNMlaDiIhIDNEJlbm5OTZt2oQ1a9bg9u2Hk5x16dIFrVrVnieDiIiIqCUQnVAVFBSguroaDg4O8PPzU5Xn5eXB1NSUt7SIiIioxRF932TKlCn4z3/+U6t8//79mDJliiRBERERERkT0YPSHRwcEBMTU+vpqqSkJDz11FPIzc2VNMDmgIPSiYiIjI+Y32/RPVTl5eWqweiPqqysxIMH0q5lRERERGQMRCdU/fr1w5dfflmrfNu2bQgICKhjDyIiIqLmTfSg9A8//BDBwcH47bffMGLECADAiRMncPHiRRw/flzyAImIiIgMnegeqqeeegqxsbFo37499u/fjyNHjqBr1674/fffMWjQIF3ESERERGTQRA9KJ/E4KJ2IiMj46HRQOgDcvn0b7777Ll566SVkZ2cDAH7++Wdcv369Mc0RERERGTXRCdXp06fh5+eH8+fP49ChQyguLgYA/Pbbb3j//fclD5CIiIjI0IlOqJYuXYoPP/wQkZGRMDc3V5UPHz4c586dkzQ4IiIiImMgOqG6evUqJkyYUKu8bdu2yMnJkSQoIiIiImMiOqGyt7dHZmZmrfL4+Hi0a9dOkqCIiIiIjEmj1vJ76623oFAoIJPJoFQqERMTg8WLF2PatGm6iJGIiIjIoIlOqFavXg1vb294eHiguLgYvr6+GDx4MJ588km8++67uoiRiIiIyKA1eh6qtLQ0XL16FcXFxejTpw+6desmdWzNBuehIiIiMj5ifr9FLz1Tw8PDAx4eHqiursbVq1dx//59tGnTprHNERERERkt0bf85s+fj6+//hoAUF1djSFDhqBv377w8PDAqVOnpI6PiIiIyOCJTqgOHjyI3r17AwCOHDmCO3fuICkpCQsWLMA777wjeYBEREREhk50QpWTkwNXV1cAwE8//YTJkyeje/fumDlzJq5evSp5gERERESGTnRC5eLigoSEBFRXVyMiIgJPP/00AKC0tBQmJiaSB0hERERk6EQPSp8xYwYmT54MNzc3yGQyBAcHAwDOnz8Pb29vyQMkIiIiMnSiE6oPPvgAPXv2RFpaGiZNmgQLCwsAgImJCZYuXSp5gERERESGrtHzUJHmOA8VERGR8RHz+y16DBURERERqWNCRURERKQlJlREREREWmJCRURERKSlRq3lp1QqcevWLWRnZ0OpVKptGzx4sCSBERERERkL0QnVuXPn8NJLL+GPP/7AXx8QlMlkqK6uliw4IiIiImMgOqF6/fXXERgYiB9//FE1uScRERFRSyY6obp58yYOHjyIrl276iIeIiIiIqMjelB6//79cevWLV3EQkRERGSURPdQ/eMf/8CiRYugUCjg5+cHMzMzte29evWSLDgiIiIiYyB66Rm5vHanlkwmgyAIHJReDy49Q0REZHzE/H6L7qG6e/duowMjIiIiao5EJ1QdOnTQRRxERERERkujhOqHH37AM888AzMzM/zwww8N1h07dqwkgREREREZC43GUMnlcigUCrRt27bOMVSqxjiGqk4cQ0VERGR8JB9D9ejyMn9daoaIiIiopePiyERERERaYkJFREREpCUmVERERERaYkJFREREpCUmVERERERaYkJFREREpCVJEyq5XI7hw4cjLi5OymaJiIiIDJqkCdX27dsxePBgzJkzR8pmiYiIiAyaRjOlk3Y4UzoREZHxEfP7rXEP1cSJExEREQHmX0RERETqNE6o7t+/jzFjxsDT0xPLly/HnTt3dBkXERERkdHQOKE6ceIE7ty5g/DwcHzzzTfo1q0bhg8fjr1796K8vFyXMRIREREZNFGD0jt06IAPPvgAd+7cQWRkJNzd3fHaa6/Bzc0Nc+bM4dN9RERE1CJpPSi9qKgIe/fuxdtvv42CggJUVVVJFVuzwUHpRERExkfM77epNh909+5d7Ny5Ezt37kRBQQGCg4O1aY6IiIjIKImeh6qsrAzffPMNhg8fjm7dumH37t0IDw/H3bt3ERERoYsYiYiIiAyaxj1UFy5cwPbt27Fv3z6UlZVhwoQJiIiIwIgRIyCTyXQZIxEREZFB0zihGjBgAHr37o1Vq1Zh6tSpaNOmjS7jIiIiIjIaGt/yu3TpEuLj4zF37ly9JFN5eXmYOnUqbG1tYW9vj/DwcBQXFze4T1lZGebMmQNHR0fY2NggNDQUWVlZanVSU1MxZswYtGrVCm3btsWSJUvUBtafOnUKMpms1kuhUOjkOImIiMj4aJxQ9e3bV/XnM2fO4OWXX0ZQUBDS09MBAP/+97/x66+/Sh/h/zd16lRcv34dkZGROHr0KKKjozFr1qwG91mwYAGOHDmCAwcO4PTp08jIyMDzzz+v2l5dXY0xY8agoqICZ8+exa5du7Bz504sX768VlvJycnIzMxUvdq2bSv5MRIREZGREkQ6ePCgYGVlJbz66quChYWFcPv2bUEQBOGf//yn8Mwzz4htTiMJCQkCAOHixYuqsp9//lmQyWRCenp6nfvk5+cLZmZmwoEDB1RliYmJAgAhNjZWEARB+OmnnwS5XC4oFApVnS+++EKwtbUVysvLBUEQhKioKAGAcP/+/UbHX1BQIAAQCgoKGt0GERERNS0xv9+in/L78MMPsW3bNvzf//0fzMzMVOVPPfUULl++LFWepyY2Nhb29vYIDAxUlQUHB0Mul+P8+fN17hMXF4fKykq1qRy8vb3h6emJ2NhYVbt+fn5wcXFR1QkJCUFhYSGuX7+u1p6/vz/c3Nzw9NNPIyYmpsF4y8vLUVhYqPYiIiKi5kt0QpWcnIzBgwfXKrezs0N+fr4UMdWiUChq3WIzNTWFg4NDvWOZFAoFzM3NYW9vr1bu4uKi2kehUKglUzXba7YBgJubG7Zt24ZDhw7h0KFD8PDwwNChQxtMHtesWQM7OzvVy8PDQ9TxEhERkXERnVC5urri1q1btcp//fVXdO7cWVRbS5curXPA96OvpKQksSFKysvLC3/7298QEBCAJ598Etu3b8eTTz6Jzz77rN59li1bhoKCAtUrLS2tCSMmIiKipiZ6pvTXXnsNb7zxBrZv3w6ZTIaMjAzExsZi8eLFeO+990S1tWjRIkyfPr3BOp07d4arqyuys7PVyquqqpCXlwdXV9c693N1dUVFRQXy8/PVeqmysrJU+7i6uuLChQtq+9U8BVhfuwDQr1+/BgfgW1hYwMLCosHjIiIiouZDdEK1dOlSKJVKjBgxAqWlpRg8eDAsLCywePFi/OMf/xDVlrOzM5ydnR9bLygoCPn5+YiLi0NAQAAA4OTJk1Aqlejfv3+d+wQEBMDMzAwnTpxAaGgogIe3K1NTUxEUFKRq96OPPkJ2drbqlmJkZCRsbW3h6+tbbzxXrlyBm5ubqGMlIiKi5kv04siVlZUwMzNDRUUFbt26heLiYvj6+sLGxgY5OTlwcnLSSaDPPPMMsrKysG3bNlRWVmLGjBkIDAzE3r17AQDp6ekYMWIEdu/ejX79+gEAZs+ejZ9++gk7d+6Era2tKuE7e/YsgIfTJvj7+8Pd3R3r16+HQqHAK6+8gldffRWrV68GAGzcuBGdOnVCjx49UFZWhq+++gr//Oc/cfz4cYwYMUKj2Lk4MhERkfHR6eLIU6ZMwcGDB2Fubq7Wi5OVlYURI0bg2rVr4iPWwJ49ezB37lyMGDECcrkcoaGh2Lx5s2p7ZWUlkpOTUVpaqir77LPPVHXLy8sREhKCrVu3qrabmJjg6NGjmD17NoKCgmBtbY2wsDCsXLlSVaeiogKLFi1Ceno6WrVqhV69euGXX37BsGHDdHKcREREZHxE91A98cQT6NWrF77++mtVWWZmJoYPH44ePXrg4MGDkgdp7NhDRUREZHzE/H6Lfsrvp59+wtmzZ7Fw4UIAQEZGBoYOHQo/Pz/s37+/cRETERERGTHRt/ycnZ1x/PhxDBw4EABw9OhR9O3bF3v27IFcLjo/IyIiIjJ6ohMqAPDw8EBkZCQGDRqEp59+Gv/+978hk8mkjo2IiIjIKGiUULVp06bOhKm0tBRHjhyBo6OjqiwvL0+66IiIiIiMgEYJ1caNG3UcBhEREZHx0iihCgsL03UcREREREaLo8iJiIiItMSEioiIiEhLTKiIiIiItMSEioiIiEhLTKiIiIiItCRZQnX79m0MHz5cquaIiIiIjIZkCVVxcTFOnz4tVXNERERERkPjpWc2b97c4Pb09HStgyEiIiIyRhonVPPnz4ebmxvMzc3r3F5RUSFZUERERETGROOEqkOHDli3bh0mT55c5/YrV64gICBAssCIiIiIjIXGY6gCAgIQFxdX73aZTAZBECQJioiIiMiYaNxDtXLlSpSWlta73dfXF3fv3pUkKCIiIiJjonFC5evr2+B2MzMzdOjQQeuAiIiIiIyNVtMmrF27Fvn5+RKFQkRERGSctEqoVq9ejby8PKliISIiIjJKWiVUHIRORERExLX8iIiIiLSm8aD0uiQkJMDd3V2qWIiIiIiMklY9VB4eHlAqlVLFQkRERGSUNE6o9u/fr7a8zJYtW9ChQwdYWlrCyckJK1eu1EmARERERIZO41t+L774IjIzM9G2bVvs2LEDS5YswZtvvon+/fsjPj4ea9asgbu7O1599VVdxktERERkcDROqB59om/btm1YuXIllixZAgAYPXo0HBwcsHXrViZURERE1OKIGkMlk8kAAHfu3MHIkSPVto0cORK3bt2SLjIiIiIiIyHqKb+IiAjY2dnB0tKy1rp+ZWVlqoSLiIiIqCURlVCFhYWp/nzy5EkEBQWp3p87dw5dunSRLjIiIiIiI6FxQvW46RFcXFywZs0arQMiIiIiMjZaTez5qGeffVaqpoiIiIiMCpeeISIiItKSZAmVj48PTExMpGqOiIiIyGhIdstvzZo1KCgokKo5IiIiIqMhWUI1fvx4qZoiIiIiMiqNSqgKCgqgUCgAAK6urrCzs5M0KCIiIiJjImoM1VdffQVfX184ODjA19dX7c9ff/21rmIkIiIiMmga91Bt2LABH3zwAebNm4eQkBC4uLgAALKysnD8+HG88cYbuH//PhYvXqyzYImIiIgMkUx4dNXjBnTo0AEbNmzA5MmT69y+b98+LFmyBKmpqZIG2BwUFhbCzs4OBQUFsLW11Xc4REREpAExv98a3/LLzs6Gn59fvdv9/PyQk5OjeZREREREzYTGCdUTTzyBtWvXoqqqqta26upqrFu3Dk888YSkwREREREZA43HUG3ZsgUhISFwdXXF4MGD1cZQRUdHw9zcHMePH9dZoERERESGSuMxVABQVFSEb775BufOnVObNiEoKAgvvfQSxwfVg2OoiIiIjI+Y329RCRU1DhMqIiIi46OTQelEREREVDcmVERERERaYkJFREREpCUmVERERERa0jqhKiwsxOHDh5GYmChFPERERERGR3RCNXnyZGzZsgUA8ODBAwQGBmLy5Mno1asXDh06JHmARERERIZOdEIVHR2NQYMGAQC+//57CIKA/Px8bN68GR9++KHkARIREREZOtEJVUFBARwcHAAAERERCA0NRatWrTBmzBjcvHlT8gCJiIiIDJ3ohMrDwwOxsbEoKSlBREQERo4cCQC4f/8+LC0tJQ+QiIiIyNBpvJZfjfnz52Pq1KmwsbFBhw4dMHToUAAPbwX6+flJHR8RERGRwROdUP39739Hv379kJaWhqeffhpy+cNOrs6dO3MMFREREbVIotfy+/XXXzFw4EBdxdMscS0/IiIi46PTtfyGDx+OTp064Z133sH169cbHSQRERFRcyE6ocrIyMCiRYtw6tQp+Pn5wd/fHxs2bMC9e/d0ER8RERGRwROdUDk5OWHu3LmIiYnB7du3MWnSJOzatQsdO3bE8OHDdREjACAvLw9Tp06Fra0t7O3tER4ejuLi4gb3KSsrw5w5c+Do6AgbGxuEhoYiKytLrc68efMQEBAACwsL+Pv719nO77//jkGDBsHS0hIeHh5Yv369VIdFREREzYBWS8906tQJS5cuxdq1a+Hn54fTp09LFVctU6dOxfXr1xEZGYmjR48iOjoas2bNanCfBQsW4MiRIzhw4ABOnz6NjIwMPP/887XqzZw5Ey+88EKdbRQWFmLkyJHo0KED4uLisGHDBnzwwQf48ssvJTkuIiIiagaERvr111+F2bNnC87OzkLr1q2Fl19+Wfj5558b21yDEhISBADCxYsXVWU///yzIJPJhPT09Dr3yc/PF8zMzIQDBw6oyhITEwUAQmxsbK3677//vtC7d+9a5Vu3bhXatGkjlJeXq8reeustwcvLS+P4CwoKBABCQUGBxvsQERGRfon5/RbdQ7Vs2TJ06tQJw4cPR2pqKjZt2gSFQoF///vfGDVqlNT5HgAgNjYW9vb2CAwMVJUFBwdDLpfj/Pnzde4TFxeHyspKBAcHq8q8vb3h6emJ2NhYUZ89ePBgmJubq8pCQkKQnJyM+/fv17lPeXk5CgsL1V5ERETUfImehyo6OhpLlizB5MmT4eTkpIuYalEoFGjbtq1amampKRwcHKBQKOrdx9zcHPb29mrlLi4u9e5TXzudOnWq1UbNtjZt2tTaZ82aNVixYoXGn0FERETGTXQPVUxMDP7+979LkkwtXboUMpmswVdSUpLWn9PUli1bhoKCAtUrLS1N3yERERGRDonuoZLSokWLMH369AbrdO7cGa6ursjOzlYrr6qqQl5eHlxdXevcz9XVFRUVFcjPz1frpcrKyqp3n/ra+euTgTXv62vHwsICFhYWGn8GERERGTe9JlTOzs5wdnZ+bL2goCDk5+cjLi4OAQEBAICTJ09CqVSif//+de4TEBAAMzMznDhxAqGhoQCA5ORkpKamIigoSOMYg4KC8M4776CyshJmZmYAgMjISHh5edV5u4+IiIhaHq2mTWgqPj4+GDVqFF577TVcuHABMTExmDt3LqZMmQJ3d3cAQHp6Ory9vXHhwgUAgJ2dHcLDw7Fw4UJERUUhLi4OM2bMQFBQEAYMGKBq+9atW7hy5QoUCgUePHiAK1eu4MqVK6ioqAAAvPTSSzA3N0d4eDiuX7+Offv2YdOmTVi4cGHT/0UQERGRQdK4h6q6uhomJia6jKVBe/bswdy5czFixAjI5XKEhoZi8+bNqu2VlZVITk5GaWmpquyzzz5T1S0vL0dISAi2bt2q1u6rr76qNn9Wnz59AAB3795Fx44dYWdnh+PHj2POnDkICAiAk5MTli9f/tg5sIiIiKjl0HhxZFdXV0yfPh0zZ85E9+7ddR1Xs8LFkYmIiIyPThZHnjNnDg4ePAgfHx8MGjQIO3fuVOsNIiIiImqpNE6o3nvvPdy6dQsnTpxA586dMXfuXLi5ueG1116rd3JNIiIiopZA9KD0oUOHYteuXVAoFPjkk0+QmJiIoKAg9OjRA59++qkuYiQiIiIyaBqPoWrIjz/+iGnTpiE/Px/V1dVSxNWscAwVERGR8dHJGKq/Ki0txc6dOzFkyBCMHTsWjo6O+OijjxrbHBEREZHREj2x59mzZ7F9+3YcOHAAVVVVmDhxIlatWoXBgwfrIj4iIiIig6dxQrV+/Xrs2LEDN27cQGBgIDZs2IAXX3wRrVu31mV8RERERAZP44Rqw4YNePnll3HgwAH07NlTlzERERERGRWNE6qMjAzVWnY1ysrKYGlpKXlQRERERMZE40HpNcmUUqnEqlWr0K5dO9jY2ODOnTsAHs5T9fXXX+smSiIiIiIDJvopvw8//BA7d+7E+vXrYW5urirv2bMnvvrqK0mDIyIiIjIGohOq3bt348svv8TUqVPVFkvu3bs3kpKSJA2OiIiIyBiITqjS09PRtWvXWuVKpRKVlZWSBEVERERkTEQnVL6+vjhz5kyt8oMHD6JPnz6SBEVERERkTERP7Ll8+XKEhYUhPT0dSqUS3333HZKTk7F7924cPXpUFzESERERGTTRPVTjxo3DkSNH8Msvv8Da2hrLly9HYmIijhw5gqeffloXMRIREREZNNE9VPfu3cOgQYMQGRlZa9u5c+cwYMAASQIjIiIiMhaie6hGjhyJvLy8WuUxMTEYNWqUJEERERERGRPRCdWAAQMwcuRIFBUVqcqio6MxevRovP/++5IGR0RERGQMRCdUX331FTw9PfHcc8+hvLwcUVFRGDNmDFauXIkFCxboIkYiIiIigyY6oZLL5fjPf/4DMzMzDB8+HGPHjsWaNWvwxhtv6CI+IiIiIoMnEwRBeFyl33//vVZZUVERXnzxRYwZMwazZ89Wlffq1UvaCJuBwsJC2NnZoaCgALa2tvoOh4iIiDQg5vdbo4RKLpdDJpPh0aqPvq/5s0wmQ3V1tZbhNz9MqIiIiIyPmN9vjaZNuHv3riSBERERETVHGiVUHTp00HUcREREREZL9KB0IiIiIlLHhIqIiIhIS0yoiIiIiLTEhIqIiIhIS1onVFlZWUhNTZUiFiIiIiKjpHFCVVRUhJdffhkdOnRAWFgYKioqMGfOHLi5uaFTp04YMmQICgsLdRkrERERkUHSOKF6++23ERcXh8WLFyM1NRWTJ09GdHQ0zpw5g6ioKOTk5GDdunW6jJWIiIjIIGk0UzoAeHp6YteuXRg2bBgyMjLQvn17/PDDD3j22WcBAD/++CMWLVqEpKQknQZsjDhTOhERkfER8/utcQ9VdnY2unbtCgBwd3eHlZUVunfvrtres2dPpKWlNTJkIiIiIuOlcULl6OiIP//8U/V+3LhxsLe3V70vLi6GhYWFpMERERERGQONE6pevXrh4sWLqvd79+5F27ZtVe8vXrwIHx8faaMjIiIiMgIareUHAHv27IFcXn/+5eLigo8++kiSoIiIiIiMicYJlYODQ4Pbn3nmGa2DISIiIjJGWk3s6efnx4HoRERE1OJplVClpKSgsrJSqliIiIiIjBLX8iMiIiLSklYJ1aBBg2BlZSVVLERERERGSeNB6XX56aefpIqDiIiIyGg1OqESBAGnTp3CrVu34ObmhpCQEJiZmUkZGxEREZFR0DihGj16NL799lvY2dkhLy8Po0ePxoULF+Dk5ITc3Fx0794d0dHRcHZ21mW8RERERAZH4zFUERERKC8vBwC8++67KCoqwu3bt5GdnY0//vgD1tbWWL58uc4CJSIiIjJUjRqUfvLkSaxZswadOnUCALRv3x7r1q3DsWPHJA2OiIiIyBiISqhkMhkA4P79++jSpYvatq5duyIjI0O6yIiIiIiMhKhB6dOnT4eFhQUqKytx9+5d9OjRQ7VNoVDA3t5e6viIiIiIDJ7GCVVYWJjqz+PGjUNpaana9kOHDsHf31+ywIiIiIiMhUwQBEGKhkpKSmBiYgJLS0spmmtWCgsLYWdnh4KCAtja2uo7HCIiItKAmN9vrSb2fJS1tbVUTREREREZFcnW8vvvf/+L3bt3S9UcERERkdGQ7Jaft7c3bt68ierqaimaa1Z4y4+IiMj46OWWX1JSklRNERERERkVyW75EREREbVUkiVUJSUliI6Olqo5IiIiIqMhWUJ169YtDBs2TKrmiIiIiIwGb/kRERERaUnjQekODg4NbufTfURERNRSaZxQlZeXY/bs2fDz86tz+x9//IEVK1ZIFhgRERGRsdD4lp+/vz88PDwQFhZW52vcuHG6jBN5eXmYOnUqbG1tYW9vj/DwcBQXFze4T1lZGebMmQNHR0fY2NggNDQUWVlZanXmzZuHgIAAWFhY1LkWYUpKCmQyWa3XuXPnpDw8IiIiMmIaJ1RjxoxBfn5+vdsdHBwwbdo0KWKq09SpU3H9+nVERkbi6NGjiI6OxqxZsxrcZ8GCBThy5AgOHDiA06dPIyMjA88//3ytejNnzsQLL7zQYFu//PILMjMzVa+AgACtjoeIiIiaD8lmStelxMRE+Pr64uLFiwgMDAQAREREYPTo0bh37x7c3d1r7VNQUABnZ2fs3bsXEydOBPBw8lEfHx/ExsZiwIABavU/+OADHD58GFeuXFErT0lJQadOnRAfH19nD5YmOFM6ERGR8RHz+20UT/nFxsbC3t5elUwBQHBwMORyOc6fP1/nPnFxcaisrERwcLCqzNvbG56enoiNjRUdw9ixY9G2bVsMHDgQP/zwQ4N1y8vLUVhYqPYiIiKi5kujhErMeKHS0lJcv3690QHVRaFQoG3btmplpqamcHBwgEKhqHcfc3Nz2Nvbq5W7uLjUu09dbGxs8Mknn+DAgQP48ccfMXDgQIwfP77BpGrNmjWws7NTvTw8PDT+PCIiIjI+GiVUr7zyCkJCQnDgwAGUlJTUWSchIQFvv/02unTpgri4OI0+fOnSpXUO+H70pe81Ap2cnLBw4UL0798fTzzxBNauXYuXX34ZGzZsqHefZcuWoaCgQPVKS0trwoiJiIioqWk0bUJCQgK++OILvPvuu3jppZfQvXt3uLu7w9LSEvfv30dSUhKKi4sxYcIEHD9+vN6pFf5q0aJFmD59eoN1OnfuDFdXV2RnZ6uVV1VVIS8vD66urnXu5+rqioqKCuTn56v1UmVlZdW7j6b69++PyMjIerdbWFjAwsJCq88gIiIi46FRQmVmZoZ58+Zh3rx5uHTpEn799Vf88ccfePDgAXr37o0FCxZg2LBhj53886+cnZ3h7Oz82HpBQUHIz89HXFyc6um6kydPQqlUon///nXuExAQADMzM5w4cQKhoaEAgOTkZKSmpiIoKEhUnH915coVuLm5adUGERERNR8aT+xZIzAwUG1weFPw8fHBqFGj8Nprr2Hbtm2orKzE3LlzMWXKFNUTfunp6RgxYgR2796Nfv36wc7ODuHh4Vi4cCEcHBxga2uLf/zjHwgKClJ7wu/WrVsoLi6GQqHAgwcPVE/5+fr6wtzcHLt27YK5uTn69OkDAPjuu++wfft2fPXVV036d0BERESGS3RCpS979uzB3LlzMWLECMjlcoSGhmLz5s2q7ZWVlUhOTkZpaamq7LPPPlPVLS8vR0hICLZu3arW7quvvorTp0+r3tckTnfv3kXHjh0BAKtWrcIff/wBU1NTeHt7Y9++faqpGIiIiIiMYh4qY8d5qIiIiIxPs5uHioiIiMiQMaEiIiIi0hITKiIiIiItiR6U/uhA8EfJZDJYWlqia9euGDx4MExMTLQOjoiIiMgYiE6oPvvsM/z5558oLS1FmzZtAAD3799Hq1atYGNjg+zsbHTu3BlRUVFccoWIiIhaBNG3/FavXo0nnngCN2/eRG5uLnJzc3Hjxg30798fmzZtQmpqKlxdXbFgwQJdxEtERERkcERPm9ClSxccOnQI/v7+auXx8fEIDQ3FnTt3cPbsWYSGhiIzM1PKWI0Wp00gIiIyPjqdNiEzMxNVVVW1yquqqqBQKAAA7u7uKCoqEts0ERERkVESnVANGzYMf/vb3xAfH68qi4+Px+zZszF8+HAAwNWrV9GpUyfpoiQiIiIyYKITqq+//hoODg4ICAiAhYUFLCwsEBgYCAcHB3z99dcAABsbG3zyySeSB0tERERkiBq99ExSUhJu3LgBAPDy8oKXl5ekgTUnHENFRERkfMT8fjd6cWRvb294e3s3dnciIiKiZqNRCdW9e/fwww8/IDU1FRUVFWrbPv30U0kCIyIiIjIWohOqEydOYOzYsejcuTOSkpLQs2dPpKSkQBAE9O3bVxcxEhERERk00YPSly1bhsWLF+Pq1auwtLTEoUOHkJaWhiFDhmDSpEm6iJGIiIjIoIlOqBITEzFt2jQAgKmpKR48eAAbGxusXLkS69atkzxAIiIiIkMnOqGytrZWjZtyc3PD7du3VdtycnKki4yIiIjISIgeQzVgwAD8+uuv8PHxwejRo7Fo0SJcvXoV3333HQYMGKCLGImIiIgMmuiE6tNPP0VxcTEAYMWKFSguLsa+ffvQrVs3PuFHRERELVKjJ/YkzXFiTyIiIuOj08WRiYiIiEidRrf82rRpA5lMplGDeXl5WgVEREREZGw0Sqg2btyo4zCIiIiIjJdGCVVYWJiu4yAiIiIyWhxDRURERKQlJlREREREWmJCRURERKQlJlREREREWmp0QnXr1i0cO3YMDx48AABwflAiIiJqqUQnVLm5uQgODkb37t0xevRoZGZmAgDCw8OxaNEiyQMkIiIiMnSiE6oFCxbA1NQUqampaNWqlar8hRdeQEREhKTBERERERkD0YsjHz9+HMeOHUP79u3Vyrt164Y//vhDssCIiIiIjIXoHqqSkhK1nqkaeXl5sLCwkCQoIiIiImMiOqEaNGgQdu/erXovk8mgVCqxfv16DBs2TNLgiIiIiIyB6Ft+69evx4gRI3Dp0iVUVFTgzTffxPXr15GXl4eYmBhdxEhERERk0ET3UPXs2RM3btzAwIEDMW7cOJSUlOD5559HfHw8unTpoosYiYiIiAyaTOAEUjpXWFgIOzs7FBQUwNbWVt/hEBERkQbE/H6LvuUHAGVlZfj999+RnZ0NpVKptm3s2LGNaZKIiIjIaIlOqCIiIjBt2jTk5OTU2iaTyVBdXS1JYPR4FRUVWL16NQDg7bffhrm5uZ4jIiIiaplEj6H6xz/+gUmTJiEzMxNKpVLtxWSKiIiIWiLRCVVWVhYWLlwIFxcXXcRDREREZHREJ1QTJ07EqVOndBAKERERkXESPYZqy5YtmDRpEs6cOQM/Pz+YmZmpbZ83b55kwREREREZA9EJ1bfffovjx4/D0tISp06dgkwmU22TyWRMqIiIiKjFEZ1QvfPOO1ixYgWWLl0KuVz0HUMiIiKiZkd0RlRRUYEXXniByRQRERHR/yc6KwoLC8O+fft0EQsRERGRURJ9y6+6uhrr16/HsWPH0KtXr1qD0j/99FPJgiMiIiIyBqITqqtXr6JPnz4AgGvXrqlte3SAOhEREVFLITqhioqK0kUcREREREaLI8uNmFKpRH5+PrKyspCSklJroWoiIiJqGhr1UD3//PPYuXMnbG1t8fzzzzdY97vvvpMkMGpYYmIiDh48iKioKFRVVaGoqAi+vr6YMGECfHx89B0eERFRi6JRQmVnZ6caH2VnZ6fTgOjxEhMTsXnzZmRnZ6NVq1YwMzODo6Mj4uPjkZaWhnnz5jGpIiIiakIaJVQ7duzAypUrsXjxYuzYsUPXMVEDlEolvv/+e+Tk5MDHxwe5ubkAAFtbW9jb2yMhIQGHDx+Gl5cX5wojIiJqIhr/4q5YsQLFxcW6jIU0kJqaiqSkJHh4eNR6qlImk6F9+/ZITExEamqqniIkIiJqeTROqARB0GUcpKGioiKUlZXB2tq6zu3W1tYoKytDUVFRE0dGRETUcom6J8R5pvSvdevWsLS0RElJSZ3bS0pKYGlpidatWzdxZERERC2XqHmounfv/tikKi8vT6uAqGGenp7w9vZGfHw8vLy81LYJgoB79+6hb9++8PT01FOERERELY+ohGrFihV8yk/P5HI5JkyYgLS0NCQmJqKsrAzm5uYoKChAZmYmnJycMH78eA5IJyIiakKiEqopU6agbdu2uoqFNOTj44N58+bh4MGDuHXrFoqKipCXl4e+ffti/PjxnDKBiIioiWncjaHv8VN5eXmYOnWqanqA8PDwxz51WFZWhjlz5sDR0RE2NjYIDQ1FVlaWavtvv/2GF198ER4eHrCysoKPjw82bdpUq51Tp06hb9++sLCwQNeuXbFz506pD080Hx8fLFmyBMOGDcPgwYOxfPlyvPXWW0ymiIiI9MBonvKbOnUqrl+/jsjISBw9ehTR0dGYNWtWg/ssWLAAR44cwYEDB3D69GlkZGSozfQeFxeHtm3b4ptvvsH169fxzjvvYNmyZdiyZYuqzt27dzFmzBgMGzYMV65cwfz58/Hqq6/i2LFjOjtWTcnlctjb28PFxQUdO3bkbT4iIiI9kQn6zpQ0kJiYCF9fX1y8eBGBgYEAgIiICIwePRr37t2Du7t7rX0KCgrg7OyMvXv3YuLEiQCApKQk+Pj4IDY2FgMGDKjzs+bMmYPExEScPHkSAPDWW2/hxx9/xLVr11R1pkyZgvz8fERERGgUf2FhIezs7FBQUABbW1tRx96QiooKrF69GgDw9ttvw9zcXLK2iYiIWjoxv99G0aURGxsLe3t7VTIFAMHBwZDL5Th//nyd+8TFxaGyshLBwcGqMm9vb3h6eiI2NrbezyooKICDg4PaZz/aBgCEhIQ02EZ5eTkKCwvVXkRERNR8GUVCpVAoag2GNzU1hYODAxQKRb37mJubw97eXq3cxcWl3n3Onj2Lffv2qd1KVCgUcHFxqdVGYWEhHjx4UGc7a9asgZ2dnerl4eHxuEMkIiIiI6bXhGrp0qWQyWQNvpKSkpoklmvXrmHcuHF4//33MXLkSK3aWrZsGQoKClSvtLQ0iaIkIiIiQyRq2gSpLVq0CNOnT2+wTufOneHq6ors7Gy18qqqKuTl5cHV1bXO/VxdXVFRUYH8/Hy1XqqsrKxa+yQkJGDEiBGYNWsW3n333VrtPPpkYE0btra2sLKyqvOzLSwsYGFh0eBxERERUfOh14TK2dkZzs7Oj60XFBSE/Px8xMXFISAgAABw8uRJKJVK9O/fv859AgICYGZmhhMnTiA0NBQAkJycjNTUVAQFBanqXb9+HcOHD0dYWBg++uijOj/7p59+UiuLjIxUa4OIiIhaNqMYQ+Xj44NRo0bhtddew4ULFxATE4O5c+diypQpqif80tPT4e3tjQsXLgAA7OzsEB4ejoULFyIqKgpxcXGYMWMGgoKCVE/4Xbt2DcOGDcPIkSOxcOFCKBQKKBQK/Pnnn6rPfv3113Hnzh28+eabSEpKwtatW7F//34sWLCg6f8iiIiIyCAZRUIFAHv27IG3tzdGjBiB0aNHY+DAgfjyyy9V2ysrK5GcnIzS0lJV2WeffYZnn30WoaGhGDx4MFxdXfHdd9+pth88eBB//vknvvnmG7i5ualeTzzxhKpOp06d8OOPPyIyMhK9e/fGJ598gq+++gohISFNc+BERERk8IxiHipjx3moiIiIjE+zm4eKiIiIyJCxh6oJ6KqHioiIiHSHPVRERERETYgJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaYkJFREREZGWmFARERERaclU3wG0BIIgAAAKCwv1HAkRERFpquZ3u+Z3vCFMqJpAUVERAMDDw0PPkRAREZFYRUVFsLOza7COTNAk7SKtKJVKZGRkoHXr1pDJZACAJ554AhcvXpSkfW3aauy+YvbTtO7j6hUWFsLDwwNpaWmwtbXVOFZjJeV3RFu6jsVQzofG7s/zQfda0vkg9Wc09W+E2H0M+ZwQBAFFRUVwd3eHXN7wKCn2UDUBuVyO9u3bq5WZmJhI9j9cm7Yau6+Y/TStq2k9W1vbFvEDIuV3RFu6jsVQzofG7s/zQfda0vkg9Wc09W+E2H0M/Zx4XM9UDQ5K15M5c+YYRFuN3VfMfprWlfLvpDkwpL8PXcdiKOdDY/fn+aB7hvT30RSxGMo5oevzQUx9Q/oO1IW3/MhoFBYWws7ODgUFBQbzL1UifeH5QKRO3+cEe6jIaFhYWOD999+HhYWFvkMh0jueD0Tq9H1OsIeKiIiISEvsoSIiIiLSEhMqIiIiIi0xoSIiIiLSEhMqIiIiIi0xoSIiIiLSEhMqahaOHj0KLy8vdOvWDV999ZW+wyHSuwkTJqBNmzaYOHGivkMh0qu0tDQMHToUvr6+6NWrFw4cOKCTz+G0CWT0qqqq4Ovri6ioKNjZ2SEgIABnz56Fo6OjvkMj0ptTp06hqKgIu3btwsGDB/UdDpHeZGZmIisrC/7+/lAoFAgICMCNGzdgbW0t6eewh4qM3oULF9CjRw+0a9cONjY2eOaZZ3D8+HF9h0WkV0OHDkXr1q31HQaR3rm5ucHf3x8A4OrqCicnJ+Tl5Un+OUyoSO+io6Px3HPPwd3dHTKZDIcPH65V5/PPP0fHjh1haWmJ/v3748KFC6ptGRkZaNeunep9u3btkJ6e3hShE+mEtucEUXMi5fkQFxeH6upqeHh4SB4nEyrSu5KSEvTu3Ruff/55ndv37duHhQsX4v3338fly5fRu3dvhISEIDs7u4kjJWoaPCeI/keq8yEvLw/Tpk3Dl19+qZtABSIDAkD4/vvv1cr69esnzJkzR/W+urpacHd3F9asWSMIgiDExMQI48ePV21/4403hD179jRJvES61phzokZUVJQQGhraFGESNYnGng9lZWXCoEGDhN27d+ssNvZQkUGrqKhAXFwcgoODVWVyuRzBwcGIjY0FAPTr1w/Xrl1Deno6iouL8fPPPyMkJERfIRPplCbnBFFLocn5IAgCpk+fjuHDh+OVV17RWSxMqMig5eTkoLq6Gi4uLmrlLi4uUCgUAABTU1N88sknGDZsGPz9/bFo0SI+4UfNlibnBAAEBwdj0qRJ+Omnn9C+fXsmW9QsaXI+xMTEYN++fTh8+DD8/f3h7++Pq1evSh6LqeQtEunB2LFjMXbsWH2HQWQwfvnlF32HQGQQBg4cCKVSqfPPYQ8VGTQnJyeYmJggKytLrTwrKwuurq56iopIf3hOEP2PIZ0PTKjIoJmbmyMgIAAnTpxQlSmVSpw4cQJBQUF6jIxIP3hOEP2PIZ0PvOVHeldcXIxbt26p3t+9exdXrlyBg4MDPD09sXDhQoSFhSEwMBD9+vXDxo0bUVJSghkzZugxaiLd4TlB9D9Gcz7o7PlBIg1FRUUJAGq9wsLCVHX++c9/Cp6enoK5ubnQr18/4dy5c/oLmEjHeE4Q/Y+xnA9cy4+IiIhISxxDRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURkJCoqKtC1a1ecPXtW0nYjIiLg7+8PpVIpabtELQkTKiLSi+nTp0Mmk9V6PbpmF6nbtm0bOnXqhCeffFJVJpPJcPjw4Vp1p0+fjvHjx2vU7qhRo2BmZoY9e/ZIFClRy8OEioj0ZtSoUcjMzFR7derUqVa9iooKPURnWARBwJYtWxAeHq6T9qdPn47NmzfrpG2iloAJFRHpjYWFBVxdXdVeJiYmGDp0KObOnYv58+fDyckJISEhAIBr167hmWeegY2NDVxcXPDKK68gJydH1V5JSQmmTZsGGxsbuLm54ZNPPsHQoUMxf/58VZ26enTs7e2xc+dO1fu0tDRMnjwZ9vb2cHBwwLhx45CSkqLaXtP78/HHH8PNzQ2Ojo6YM2cOKisrVXXKy8vx1ltvwcPDAxYWFujatSu+/vprCIKArl274uOPP1aL4cqVKw320MXFxeH27dsYM2aMyL9lICUlpc7ewKFDh6rqPPfcc7h06RJu374tun0iYkJFRAZq165dMDc3R0xMDLZt24b8/HwMHz4cffr0waVLlxAREYGsrCxMnjxZtc+SJUtw+vRp/Pe//8Xx48dx6tQpXL58WdTnVlZWIiQkBK1bt8aZM2cQExMDGxsbjBo1Sq2nLCoqCrdv30ZUVBR27dqFnTt3qiVl06ZNw7fffovNmzcjMTER//rXv2BjYwOZTIaZM2dix44dap+7Y8cODB48GF27dq0zrjNnzqB79+5o3bq1qOMBAA8PD7VewPj4eDg6OmLw4MGqOp6ennBxccGZM2dEt09EAAQiIj0ICwsTTExMBGtra9Vr4sSJgiAIwpAhQ4Q+ffqo1V+1apUwcuRItbK0tDQBgJCcnCwUFRUJ5ubmwv79+1Xbc3NzBSsrK+GNN95QlQEQvv/+e7V27OzshB07dgiCIAj//ve/BS8vL0GpVKq2l5eXC1ZWVsKxY8dUsXfo0EGoqqpS1Zk0aZLwwgsvCIIgCMnJyQIAITIyss5jT09PF0xMTITz588LgiAIFRUVgpOTk7Bz5856/77eeOMNYfjw4bXKAQiWlpZqf4/W1taCqampMG7cuFr1Hzx4IPTv31949tlnherqarVtffr0ET744IN6YyCi+pnqN50jopZs2LBh+OKLL1Tvra2tVX8OCAhQq/vbb78hKioKNjY2tdq5ffs2Hjx4gIqKCvTv319V7uDgAC8vL1Ex/fbbb7h161atnqCysjK122E9evSAiYmJ6r2bmxuuXr0K4OHtOxMTEwwZMqTOz3B3d8eYMWOwfft29OvXD0eOHEF5eTkmTZpUb1wPHjyApaVlnds+++wzBAcHq5W99dZbqK6urlV35syZKCoqQmRkJORy9ZsUVlZWKC0trTcGIqofEyoi0htra+t6b3E9mlwBQHFxMZ577jmsW7euVl03NzeNnw6UyWQQBEGt7NGxT8XFxQgICKjziTdnZ2fVn83MzGq1WzPtgJWV1WPjePXVV/HKK6/gs88+w44dO/DCCy+gVatW9dZ3cnJSJWx/5erqWuvvsXXr1sjPz1cr+/DDD3Hs2DFcuHChzluHeXl5asdIRJpjQkVERqFv3744dOgQOnbsCFPT2peuLl26wMzMDOfPn4enpycA4P79+7hx44ZaT5GzszMyMzNV72/evKnWK9O3b1/s27cPbdu2ha2tbaNi9fPzg1KpxOnTp2v1HNUYPXo0rK2t8cUXXyAiIgLR0dENttmnTx988cUXEAQBMplMdEyHDh3CypUr8fPPP6NLly61ttf0wPXp00d020TEQelEZCTmzJmDvLw8vPjii7h48SJu376NY8eOYcaMGaiuroaNjQ3Cw8OxZMkSnDx5EteuXcP06dNr3dYaPnw4tmzZgvj4eFy6dAmvv/66Wm/T1KlT4eTkhHHjxuHMmTO4e/cuTp06hXnz5uHevXsaxdqxY0eEhYVh5syZOHz4sKqN/fv3q+qYmJhg+vTpWLZsGbp164agoKAG2xw2bBiKi4tx/fp1EX9rD127dg3Tpk3DW2+9hR49ekChUEChUCAvL09V59y5c7CwsHhsHERUNyZURGQU3N3dERMTg+rqaowcORJ+fn6YP38+7O3tVUnThg0bMGjQIDz33HMIDg7GwIEDa43F+uSTT+Dh4YFBgwbhpZdewuLFi9VutbVq1QrR0dHw9PTE888/Dx8fH4SHh6OsrExUj9UXX3yBiRMn4u9//zu8vb3x2muvoaSkRK1OeHg4KioqMGPGjMe25+joiAkTJjRq8s1Lly6htLQUH374Idzc3FSv559/XlXn22+/xdSpUxu87UhE9ZMJfx1MQETUjAwdOhT+/v7YuHGjvkOp5cyZMxgxYgTS0tLg4uLy2Pq///47nn76ady+fbvOwfmNlZOTAy8vL1y6dKnOiVWJ6PHYQ0VE1MTKy8tx7949fPDBB5g0aZJGyRQA9OrVC+vWrcPdu3cljSclJQVbt25lMkWkBQ5KJyJqYt9++y3Cw8Ph7++P3bt3i9p3+vTpkscTGBiIwMBAydslakl4y4+IiIhIS7zlR0RERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKQlJlREREREWmJCRURERKSl/wczurMrul24HQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, lag, yerr=lag_e, fmt=\"o\", color=\"k\", alpha=0.5)\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\n", + " f\"Time lag ({ref_band[0]:g}-{ref_band[1]:g} keV vs {sub_band[0]:g}-{sub_band[1]:g} keV, in seconds)\"\n", + ")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.semilogx()\n" + ] + }, + { + "cell_type": "markdown", + "id": "f1a2e785-7cf7-4807-9792-88a5579a7e4c", + "metadata": {}, + "source": [ + "Another interesting thing to measure is the coherence at different frequencies" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "a64e196a", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG1CAYAAAAV2Js8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/UUlEQVR4nO3de1yUdf7//+eAyiiCpylEhWjTYMZMUNGPmYWGkrYWmG6n9ZDl7rqUFh8r+7ab7me71dZu5bJNuZ/dSuvTmp1gd3N1TVeTLFMRTQM8pYEoGJocJoGFmd8f/ZyNAGWGGWZgHvfbjdvNud4X1zxBr+bV+3ofDA6HwyEAAIAAFOTrAAAAAL5CIQQAAAIWhRAAAAhYFEIAACBgUQgBAICARSEEAAACFoUQAAAIWBRCAAAgYHXxdQB/Z7fbdeLECYWFhclgMPg6DgAAaAWHw6GqqioNGDBAQUEt9/tQCF3EiRMnFBUV5esYAADADcXFxRo0aFCL7RRCFxEWFibp219keHi4j9MAAIDWqKysVFRUlPNzvCUUQhdx/nFYeHg4hRAAAB3MxYa1MFgaAAAELAohAAAQsCiEAABAwKIQAgAAASsgCqH3339fsbGxGjJkiP785z/7Og4AAPATnX7WWH19vTIyMrR582b16tVLI0eOVFpamvr16+fraAAAwMc6fY/Qjh07NHToUA0cOFA9e/bUlClTtGHDBl/HAgAAfsDvC6GtW7dq2rRpGjBggAwGg7Kzs5ucY7VaFRMTI6PRqDFjxmjHjh3OthMnTmjgwIHO1wMHDlRJSUl7RAcAAH7O7wshm82m4cOHy2q1Ntu+Zs0aZWRkaOnSpdq9e7eGDx+ulJQUnTp1qp2Ttp7dbtexY8e0b98+HTt2THa73deRAAAISH4/RmjKlCmaMmVKi+3PPfec5s+fr7vvvluStGLFCq1du1avvPKKlixZogEDBjTqASopKdHo0aNbvF5tba1qa2udrysrKz3wU/xHQUGBsrKyVFhYqJqaGhmNRsXFxSktLU1ms9mj7wUAAC7M73uELqSurk65ublKTk52HgsKClJycrI++eQTSdLo0aO1f/9+lZSUqLq6WuvWrVNKSkqL13zqqafUq1cv55cnN1wtKChQZmam8vLyZDKZFBsbK5PJpLy8PGVmZqqgoMBj7+Uv6P0CAPgzv+8RupDy8nI1NDQoIiKi0fGIiAgVFhZKkrp06aJnn31WEyZMkN1u18MPP3zBGWOPPvqoMjIynK/Pb9rWVna7XVlZWSovL5fFYmm0h5nFYlF+fr6ys7MVGxuroKAOXZ860fsFAPB3HboQaq2bb75ZN998c6vODQkJUUhIiMczFBUVqbCwUFFRUU02gDMYDBo0aJAKCgpUVFSkmJgYj79/ezvf+1VeXq6oqCiFhobKZrMpLy9PxcXFWrhwYYcohux2u4qKilRVVaWwsDBFR0d3mkIVANDBCyGTyaTg4GCVlZU1Ol5WVqb+/fv7KFXzqqqqVFNTo9DQ0GbbQ0NDVVJSoqqqqnZO5nmdpfeLHi0A6Pz891OoFbp166aRI0dq06ZNzmN2u12bNm3S2LFjfZisqbCwMBmNRtlstmbbbTabjEajwsLC2jmZ57nS++WvAnE8FwAEIr8vhKqrq7Vnzx7t2bNHknT06FHt2bPH+SGakZGhP/3pT1q1apUKCgq0YMEC2Ww25ywyd1mtVlksFiUmJrb1R5AkRUdHKy4uTsXFxXI4HI3aHA6Hjh8/LrPZrOjoaI+8ny+1pverpqbGb3u/vt+jFR4eruDgYGePVnl5ubKzs/164DeD1AGgdfz+0diuXbs0YcIE5+vzA5nnzJmjlStX6rbbbtNXX32lxx9/XKWlpYqPj9f69eubDKB2VXp6utLT01VZWalevXq16VrSt7PZ0tLSVFxcrPz8fA0aNMg5bub48eMymUxKTU3160dFrfXd3q/w8PAm7f7e+9XRx3PxSA8AWs/vC6GkpKQmPSjfd9999+m+++5rp0TuM5vNWrhwofNDqqSkREajUSNGjFBqamqn+ZA63/uVl5fXaIyQ9J/erxEjRvht71dHHs/VWQapA0B78ftCqLMxm82KjY3t1DOROnrvV0ft0eosg9QBoD3xX0MfCAoKUkxMjIYNG6aYmJhO+aF0vvcrISFBp0+f1sGDB3X69GmNGDHC73slOup4rs4wSB0A2hs9Qi2wWq2yWq1qaGjwdZQOq6P2fnXUHq2O/EgPAHyFQqgFnh4sHajO9351NB1xPFdHeaTHIpUA/AmFENCCjtaj1REGqTOjDYC/oRACLqAj9Wj5+yM9ZrQB8Ef++b+2ANzir4PUO8MilQA6J3qEgE7GHx/pdfRFKgF0XhRCLWDWGDoyf3uk990ZbQ0NDcrJyZEkjR8/XsHBwcxoA+AzFEItYNYY4Dnfn9GWlJTUqL29Z7Qxcw3AeRRCALzOn2a0MXMNwHdRCAHwOn+Z0cbMNQDfR18wgHbh6xltzFwD0Bx6hAC0G1/OaGPmGoDmUAi1gFljgHf4akYbM9cANIdCqAXMGgM6F3+buQbAPzBGCEBAOD9zrbi4WA6Ho1Hb+ZlrZrPZp3uxAWh/9AgBCAj+MnPtPNYyAvyDwfH9/zVCI+cfjVVUVCg8PNzXcQC0UXPrCJnNZqWmprbb1HnWMgK8r7Wf3/QIAQgovt6LjbWMAP9CIQQg4Phq5tr31zI6P43//FpG+fn5ys7OVmxsLI/JgHbCnQYA7cSVtYwAtA8KoRZYrVZZLBYlJib6OgqATuK7axk1JzQ0VDU1NaxlBLQjCqEWpKenKz8/Xzt37vR1FACdxHfXMmoOaxkB7Y9CCADaCWsZAf6HQggA2sn5tYxMJpPy8/NVUVGh+vp6VVRUKD8/v93XMgLAOkIXxTpCADzNH9YyAjo71hECAD/l67WMWNUa+A8KIQDwAV+tZcSq1kBjFEIAECBY1Rpoir5QAAgA31/VOjw8XMHBwc5VrcvLy5WdnS273e7rqEC7ohACgADw3VWt7Xa7tmzZoi1btqihoYFVrRHQeDTWAqvVKqvVqoaGBl9HAYA2++6q1sHBwUpKSmrUHhoaqpKSEla1RsChR6gFrCwNoDNhVWugeRRCABAAWNUaaB6FEAAEAFa1BprHytIXwcrSADoTVrVGoGBlaQBAE75e1RrwNxRCABBgfLWqNeCP+F8AAAAQsCiEAABAwKIQAgAAAYsxQgCAdmG32xmkDb/jciF09uxZZWVlKScnR19++aW++eYbXXLJJUpISFBKSoquueYab+QEAHRgzU3bj4uLU1paGtP24VOtLsVPnDihe++9V5GRkXriiSd07tw5xcfH64YbbtCgQYO0efNmTZo0SRaLRWvWrPFm5nZhtVplsViUmJjo6ygA0KEVFBQoMzNTeXl5MplMio2NlclkUl5enjIzM1VQUODriAhgre4RSkhI0Jw5c5SbmyuLxdLsOefOnVN2draWL1+u4uJiLV682GNB21t6errS09OdCzIBAFxnt9uVlZWl8vJyWSwWGQwGSVJ4eLgsFovy8/OVnZ2t2NhYHpPBJ1pdCOXn56tfv34XPKd79+664447dMcdd+j06dNtDgcA6NiKiopUWFioqKgoZxF0nsFg0KBBg1RQUKCioiLWNoJPtLr87tevn95//33Z7fZWnw8ACGxVVVWqqalRaGhos+2hoaGqqalRVVVVOycDvuVSP2RqaqqioqL02GOP6fDhw97KBADoJMLCwmQ0GmWz2Zptt9lsMhqNCgsLa+dkwLdcKoSOHj2qn/70p3rzzTcVGxur66+/Xq+//rrOnTvnrXwAgA4sOjpacXFxKi4u1vf3+HY4HDp+/LjMZrOio6N9lBCBzqVCKCoqSo8//riOHDmijRs3KiYmRgsWLFBkZKR+9rOfaefOnd7KCQDogIKCgpSWliaTyaT8/HxVVFSovr5eFRUVys/Pl8lkUmpqKgOl4TMGx/dLdBdVVVXpzTff1MqVK7V9+3ZdddVV2rt3r6fy+dz5WWMVFRUKDw/3dRwA6JCaW0fIbDYrNTWVdYTgFa39/G7zytJhYWG64YYb9OWXX6qwsFD5+fltvSQAoJMxm82KjY1lZWn4HbcLoXPnzuntt9/WK6+8opycHF1++eXKyMjQ3LlzPRgPANBZBAUFMUUefsflQmj79u165ZVX9NZbb6murk7Tp0/Xxo0bNWHCBG/kAwAA8BqXCiGLxaIDBw4oISFBTz31lO68805WXQYAAB2WS4VQcnKyVq9ereHDh3srDwAAQLtxqRDKzMx0/rm+vl5btmzRkSNHdOeddyosLEwnTpxQeHi4evbs6fGgAAAAnubWYOkvv/xSN954o4qKilRbW6tJkyYpLCxMTz/9tGpra7VixQpP5wQAAPA4t+YtLlq0SKNGjdLXX3+t7t27O4+npaVp06ZNHgsHAADgTW71COXk5Ojjjz9Wt27dGh2PiYlRSUmJR4IBAAB4m1s9Qna7XQ0NDU2OHz9+vNNsnGe1WmWxWJSYmOjrKAAAwEvcKoQmT56s5cuXO18bDAZVV1dr6dKlmjp1qqey+VR6erry8/PZPw0AgE7Mrb3Gjh8/rpSUFDkcDh06dEijRo3SoUOHZDKZtHXrVl166aXeyOoT7DUGAEDH09rPb7c3Xa2vr9eaNWu0d+9eVVdXa8SIEbrrrrsaDZ7uDCiEAADoeLxaCK1evVp33HFHs20PPfSQfvvb37p6Sb9FIQQAQMfT2s9vt8YILViwQOvWrWty/MEHH9T//d//uXNJAACAdudWIfTGG2/ojjvu0EcffeQ8dv/99+utt97S5s2bPRYOAIC2stvtOnbsmPbt26djx47Jbrf7OhL8iFvrCN1000168cUXdfPNN+uDDz7Qyy+/rL/+9a/avHmzrrzySk9nBADALQUFBcrKylJhYaFqampkNBoVFxentLQ0mc1mX8eDH3CrEJKkO++8U2fPntW4ceN0ySWX6MMPP9TgwYM9mQ0AALcVFBQoMzNT5eXlioqKUmhoqGw2m/Ly8lRcXKyFCxdSDKH1hVBGRkazxy+55BKNGDFCL774ovPYc8891/ZkAAC4yW63KysrS+Xl5bJYLDIYDJKk8PBwWSwW5efnKzs7W7GxsQoKcmuUCDqJVhdCeXl5zR4fPHiwKisrne3n/7EBAOArRUVFKiwsVFRUVJPPJYPBoEGDBqmgoEBFRUWKiYnxTUj4hVYXQgyCBgB0FFVVVaqpqVFoaKgaGhqUk5MjSRo/fryCg4MVGhqqkpISVVVV+TgpfM3tMUIAAPirsLAwGY1G2Ww2hYeHKykpqVG7zWaT0WjsNPtjwn08GAUAdDrR0dGKi4tTcXGxvr9usMPh0PHjx2U2mxUdHe2jhPAXFEIAgE4nKChIaWlpMplMys/PV0VFherr61VRUaH8/HyZTCalpqYyUBru7zUWKNhiAwA6rubWETKbzUpNTWXqfCfX2s9vxggBADots9ms2NhYFRUVqaqqSmFhYYqOjqYnCE4uF0KnT5/WZ599puHDh6tv374qLy/Xyy+/rNraWs2cOZMKGwDgV4KCgpgijxa5VAjt2LFDkydPVmVlpXr37q0PPvhAM2fOVJcuXWS32/Wb3/xGH330kUaMGOGtvAAAAB7jUt/gY489ppkzZ6qiokL/7//9P6WmpuqGG27QwYMHdfjwYd1+++369a9/7a2sAAAAHuXSYOm+fftq27ZtMpvN+ve//y2j0ahPPvlEo0ePliTt3r1bN998s44fP+61wO2NwdIAAHQ8rf38dqlHqK6uTt27d5ckde3aVT169JDJZHK2m0wmnT592s3IAAAA7culQigqKkpffPGF8/Wbb76pyMhI5+uTJ082KowAAAD8mUuDpW+//XadOnXK+fqmm25q1P63v/3N+ZgMAADA33l0QcVvvvlGwcHBCgkJ8dQlfY4xQgAAdDxeGSPUnG3btqm2tlaS1KNHD78sgtLS0tSnTx/NmDHD11EAAIAfaXMhNGXKFJWUlHgii9csWrRIr732mq9jAAAAP9PmQqgjbFWWlJSksLAwX8cAAAB+xuebrWzdulXTpk3TgAEDZDAYlJ2d3eQcq9WqmJgYGY1GjRkzRjt27Gj/oAAAoNNp86arf/zjHxUREeH299tsNg0fPlzz5s3T9OnTm7SvWbNGGRkZWrFihcaMGaPly5crJSVFBw4c0KWXXipJio+PV319fZPv3bBhgwYMGOBSntraWueYJ+nbwVYAAKBz8uissbYyGAzKyspSamqq89iYMWOUmJioF154QZJkt9sVFRWl+++/X0uWLGn1tbds2aIXXnhB77zzzgXPW7ZsmX71q181Oc6sMQAAOg6vzBr77hpCkrRnzx7NmTNH48aN04wZM7Rlyxa3wrakrq5Oubm5Sk5Odh4LCgpScnKyPvnkE4++13mPPvqoKioqnF/FxcVeeR8AAOB7LhVCkZGRzmLo448/1ujRo/Xll19q3Lhxqqys1KRJk7R161aPhSsvL1dDQ0OTR28REREqLS1t9XWSk5M1c+ZM/eMf/9CgQYMuWESFhIQoPDy80RcAAOicXBoj9N2naMuWLdOsWbP08ssvO4898MAD+tWvfqVNmzZ5LqEHbNy40dcRAACAH3J71tj+/fs1f/78Rsfmz5+vzz77rM2hzjOZTAoODlZZWVmj42VlZerfv7/H3gcAAAQmlwuhqqoqVVZWymg0NllF2mg06ptvvvFYuG7dumnkyJGNepjsdrs2bdqksWPHeux9mmO1WmWxWJSYmOjV9wEAAL7j8vT5K6+8UtK3j8l27dqlhIQEZ9vnn3/u8nT16upqHT582Pn66NGj2rNnj/r27avo6GhlZGRozpw5GjVqlEaPHq3ly5fLZrPp7rvvdjW6S9LT05Wenu4cdQ4AADoflwqhzZs3N3odGRnZ6PXRo0f1k5/8xKUAu3bt0oQJE5yvMzIyJElz5szRypUrddttt+mrr77S448/rtLSUsXHx2v9+vVtWrsIAABA8rN1hPwRu88DANDxtNvu8wAAAB2VRwuhOXPmaOLEiZ68pM8wWBoAgM7Po4XQwIEDddlll3nykj6Tnp6u/Px87dy509dRAACAlzBG6CIYIwQAQMfDGCEAAICL8GghVFxcrHnz5nnykgAAAF7j0ULozJkzWrVqlScvCQAA4DUuLaj4t7/97YLtX3zxRZvC+BOr1Sqr1aqGhgZfRwEAAF7i0mDpoKAgGQwGXehbDAZDpyoeGCwNAEDH45XB0pGRkXrvvfdkt9ub/dq9e3ebgwMAALQXlwqhkSNHKjc3t8X2i/UWAQAA+BOXxgg99NBDstlsLbYPHjy4ycasAAAA/ooFFS+CMUIAAHQ8LKjYRuw1BgBA50eP0EXQIwQAQMfT2s9vl8YIAQCA1rHb7SoqKlJVVZXCwsIUHR2toCAexPgbCiEAADysoKBAWVlZKiwsVE1NjYxGo+Li4pSWliaz2ezrePgOCiEAADyooKBAmZmZKi8vV1RUlEJDQ2Wz2ZSXl6fi4mItXLiQYsiPuNVHt2rVKq1du9b5+uGHH1bv3r11zTXX6Msvv/RYOAAAOhK73a6srCyVl5fLYrEoPDxcwcHBCg8Pl8ViUXl5ubKzs2W3230dFf8/twqhJ598Ut27d5ckffLJJ7JarXrmmWdkMpn04IMPejQgAAAdRVFRkQoLCxUVFSWDwdCozWAwaNCgQSooKFBRUZGPEuL73Ho0VlxcrMGDB0uSsrOzdeutt+onP/mJxo0bp6SkJE/mAwCgw6iqqlJNTY1CQ0PV0NCgnJwcSdL48eMVHBys0NBQlZSUqKqqysdJcZ5bPUI9e/bU6dOnJUkbNmzQpEmTJElGo1Hnzp3zXDofYh0hAICrwsLCZDQaZbPZFBwcrKSkJCUlJSk4OFiSZLPZZDQaFRYW5uOkOM+tQmjSpEm69957de+99+rgwYOaOnWqJOnzzz9XTEyMJ/P5THp6uvLz87Vz505fRwEAdBDR0dGKi4tTcXFxk703HQ6Hjh8/LrPZrOjoaB8lxPe5VQhZrVaNHTtWX331ld59913169dPkpSbm6s77rjDowEBAOgogoKClJaWJpPJpPz8fFVUVKi+vl4VFRXKz8+XyWRSamoq6wn5EVaWvghWlgYAuKq5dYTMZrNSU1OZOt9OvLqy9ODBg/XjH/9Yd911l4YMGeJ2SAAAOiOz2azY2FhWlu4A3PobSU9P19q1axUbG6vExET9/ve/V2lpqaezAQDQYQUFBSkmJkbDhg1TTEwMRZCfcutv5cEHH9TOnTtVWFioqVOnymq1KioqSpMnT9Zrr73m6YwAAABe4bExQtu3b9eCBQv02WefqaGhwROX9AuMEQIAoONpt93nd+zYob/85S9as2aNKisrNXPmzLZeEgAAoF24VQgdPHhQb7zxhlavXq2jR49q4sSJevrppzV9+nT17NnT0xkBAAC8wq1CKC4uTomJiUpPT9ftt9+uiIgIT+fyOavVKqvV2qke8wEAgMbcGiN06NChgJk2zxghAAA6ntZ+frs1ayxQiiAAANC5sagBAAAIWBRCAAAgYFEIAQCAgOVSIbR48WIVFhZ6KwsAAEC7cqkQ+utf/6qhQ4fqmmuu0SuvvCKbzeatXAAAAF7nUiF06NAhbd68WVdeeaUWLVqk/v37a968efr444+9lQ8AAMBrXB4jdN1112nlypUqLS3V73//ex06dEjXXnutzGazfve736msrMwbOQEAADzOI5uuHj58WK+++qpWrFih6upq1dbWeiKbX2BBRQAAOh6vLqj4XTabTTk5Ofrwww/19ddf6wc/+EFbLwkAANAu3C6EPvroI82bN0+RkZFauHChrrzySuXk5KigoMCT+XzGarXKYrEoMTHR11EAAICXuPRo7OTJk1q1apVWrlypgwcP6r/+6780b9483X777Z1213kejQEA0PG09vPbpd3no6Ki1K9fP82aNUv33HOPzGZzm4MCAAD4ikuF0FtvvaWbb75ZXbq49G0AAAB+yaUxQtOnT3cWQUeOHNEvfvEL3XHHHTp16pQkad26dfr88889nxIAAMAL3Bos/eGHH2rYsGH69NNP9d5776m6ulqStHfvXi1dutSjAQEAALzFrUJoyZIleuKJJ/TBBx+oW7duzuMTJ07U9u3bPRYOAADAm9wqhPbt26e0tLQmxy+99FKVl5e3ORQAAEB7cKsQ6t27t06ePNnkeF5engYOHNjmUAAAAO3BrULo9ttv1yOPPKLS0lIZDAbZ7XZt27ZNixcv1uzZsz2dEQAAwCvcKoSefPJJxcXFKSoqStXV1bJYLLruuut0zTXX6Be/+IWnMwIAAHhFmzZdLS4u1r59+1RdXa2EhAQNGTJE586dU/fu3T2Z0adYWRoAgI7Hq5uuLly4UNK3K01PnTpVP/rRjzRkyBDZbDZNnTrVvcQAAADtzK1CaO3atU3WC7LZbLrxxhtVX1/vkWAAAADe5tZeGRs2bND48ePVp08fPfDAA6qqqlJKSoq6dOmidevWeTojAACAV7hVCF1xxRVav369JkyYoKCgIK1evVohISFau3atQkNDPZ0RAADAK9zePfXqq6/W+++/r0mTJmnMmDF6//33O9UgaQAA0Pm1uhBKSEiQwWBocjwkJEQnTpzQuHHjnMd2797tmXQAAABe1OpCKDU11Ysx/I/VapXValVDQ4OvowAAAC9p0zpCgYB1hAAA6Hi8uo4QAABAZ0AhBAAAAhaFEAAACFgUQgAAIGBRCAEAgIDl0UKouLhY8+bN8+QlAQAAvMajhdCZM2e0atUqT14SAADAa1zaYuNvf/vbBdu/+OKLNoUBAABoTy4VQqmpqTIYDLrQGozNbcMBAADgj1x6NBYZGan33ntPdru92S/2GAMAAB2JS4XQyJEjlZub22L7xXqLAAAA/IlLj8Yeeugh2Wy2FtsHDx6szZs3tzkUAABAe2DT1Ytg01UAADqedtt0dfXq1RfsJQIAAPBXbS6EfvrTn6qsrMwTWQAAANpVmwshnqwBAICOir3GAABAwGpzIbRu3ToNGDDAE1kAAADalUvT55tz7bXXeiIHAABAu3OpR2jHjh1qaGhwvn7//fd1/fXXa+DAgRo1apRee+01jwcEAADwFpcKobFjx+r06dOSpL///e+65ZZbFBMTo8cee0wJCQm65557lJWV5ZWgAAAAnubSo7HvzhB75pln9PDDD+upp55yHrv88sv1zDPPKC0tzXMJAQAAvMTtwdIHDx7UjBkzGh279dZbVVhY2OZQnlRcXKykpCRZLBZdffXVevvtt30dCQAA+AmXB0vn5+ertLRU3bt3l91ub9JeX1/vkWCe0qVLFy1fvlzx8fEqLS3VyJEjNXXqVIWGhvo6GgAA8DGXC6EbbrjB+Yhs27ZtSkxMdLbl5eUpOjrac+k8IDIyUpGRkZKk/v37y2Qy6cyZMxRCAADAtUdjR48e1RdffKGjR4/q6NGjmjVrVqP2uro6PfLIIy4F2Lp1q6ZNm6YBAwbIYDAoOzu7yTlWq1UxMTEyGo0aM2aMduzY4dJ7nJebm6uGhgZFRUW59f0AAKBzcalH6LLLLrtg++zZs10OYLPZNHz4cM2bN0/Tp09v0r5mzRplZGRoxYoVGjNmjJYvX66UlBQdOHBAl156qSQpPj6+2UdyGzZscC72eObMGc2ePVt/+tOfLpintrZWtbW1zteVlZUu/0wAAKBjMDj8aLMwg8GgrKwspaamOo+NGTNGiYmJeuGFFyRJdrtdUVFRuv/++7VkyZJWXbe2tlaTJk3S/Pnzm/Rifd+yZcv0q1/9qsnxiooKhYeHt/6HAQAAPlNZWalevXpd9PPbo3uNJScn6wc/+IHHrldXV6fc3FwlJyc7jwUFBSk5OVmffPJJq67hcDg0d+5cTZw48aJFkCQ9+uijqqiocH4VFxe7nR8AAPi3Nm+x8V1paWkqLy/32PXKy8vV0NCgiIiIRscjIiJaPU1/27ZtWrNmja6++mrn+KPXX39dw4YNa/b8kJAQhYSEtCk3AADoGDxaCKWnp3vych5x7bXXNjvNHwAAoE2Pxr4/sNjTTCaTgoODVVZW1uh4WVmZ+vfv77X3BQAAgcHlQuiDDz7Q1KlT1adPH/Xo0UM9evRQnz59NHXqVG3cuNGj4bp166aRI0dq06ZNzmN2u12bNm3S2LFjPfpe32e1WmWxWBqtkwQAADoXlx6NrVq1Svfee69mzJih559/3jl2p6ysTBs2bNDUqVP18ssvt2pQ8nnV1dU6fPiw8/XRo0e1Z88e9e3bV9HR0crIyNCcOXM0atQojR49WsuXL5fNZtPdd9/tSnSXpaenKz093TnqHAAAdD4uTZ+/8sortWjRohbHAr344ot6/vnndejQoVYH2LJliyZMmNDk+Jw5c7Ry5UpJ0gsvvKDf/va3Ki0tVXx8vDIzMzVmzJhWv0dbtHb6HQAA8B+t/fx2qRAyGo3au3evYmNjm20/cOCA4uPjde7cOdcT+ykKIQAAOh6vrCM0dOhQvfzyyy22v/LKK7JYLK5cEgAAwGdcGiP07LPP6oc//KHWr1+v5OTkRmOENm3apC+++EJr1671StD2ZrVaZbVa1dDQ4OsoAADAS1zeYuPYsWN66aWXtH37dpWWlkr6dlf3sWPH6mc/+5liYmK8kdNneDQGAEDH45UxQoGIQggAgI7H42OEqJcAAEBn0+pCaOjQoXrzzTdVV1d3wfMOHTqkBQsW6De/+U2bwwEAAHhTqwdL/+EPf9Ajjzyin//855o0aZJGjRqlAQMGyGg06uuvv1Z+fr4++ugjff7557rvvvu0YMECb+YGAABoM5fHCH300Udas2aNcnJy9OWXX+rcuXMymUxKSEhQSkqK7rrrLvXp08dbedvNd2eNHTx4kDFCAAB0IAyW9hAGSwMA0PF4ZUFFAACAzoRCCAAABCwKIQAAELAohAAAQMCiEGqB1WqVxWJRYmKir6MAAAAvcXvW2JEjR/Tqq6/qyJEj+v3vf69LL71U69atU3R0tIYOHerpnD7DrDEAADoer84a+/DDDzVs2DB9+umneu+991RdXS1J2rt3r5YuXepeYgAAgHbmViG0ZMkSPfHEE/rggw/UrVs35/GJEydq+/btHgsHAADgTW4VQvv27VNaWlqT45deeqnKy8vbHAoAAKA9uFUI9e7dWydPnmxyPC8vTwMHDmxzKAAAgPbgViF0++2365FHHlFpaakMBoPsdru2bdumxYsXa/bs2Z7OCAAA4BVuFUJPPvmk4uLiFBUVperqalksFl133XW65ppr9Itf/MLTGQEAALyiTZuuFhcXa9++faqurlZCQoKGDBniyWw+xe7zAAB0XOw+7yGsIwQAQMfj1XWEbr31Vj399NNNjj/zzDOaOXOmO5cEAABtZLfbdezYMe3bt0/Hjh2T3W73dSS/18Wdb9q6dauWLVvW5PiUKVP07LPPtjUTAABwUUFBgbKyslRYWKiamhoZjUbFxcUpLS1NZrPZ1/H8lls9QtXV1Y0WUjyva9euqqysbHMoAADQegUFBcrMzFRubq4OHTqk0tJS9enTR3l5ecrMzFRBQYGvI/ottwqhYcOGac2aNU2Ov/nmm7JYLG0OBQAAWsdutysrK0vl5eUym80KCQlRUFCQwsPDZbFYVF5eruzsbB6TtcCtR2O//OUvNX36dB05ckQTJ06UJG3atEmrV6/W22+/7dGAAACgZUVFRSosLFRUVJQMBkOjNoPBoEGDBqmgoEBFRUWKiYnxTUg/5lYhNG3aNGVnZ+vJJ5/UO++8o+7du+vqq6/Wxo0bdf3113s6IwAAaEFVVZVqamoUGhrabHtoaKhKSkpUVVXVzsk6BrcKIUm66aabdNNNN3kyCwAAcFFYWJiMRqNsNluzxZDNZpPRaFRYWJgP0vk/twshSaqrq9OpU6eaPHeMjo5uUygAANA60dHRiouLU15enmJjYxu1ORwOHT9+XCNGjOCzuQVuFUKHDh3SvHnz9PHHHzc67nA4ZDAY1NDQ4JFwvvTdlaUBAPBXQUFBSktLU3FxsQ4cOKCEhASFhoaqurpax48fl8lkUmpqqoKC3Jof1em5tbL0uHHj1KVLFy1ZskSRkZFNBmcNHz7cYwF9jZWlAQAdQXPrCJnNZqWmpgbkOkKt/fx2q0doz549ys3NVVxcnNsBAQCA55jNZsXGxqqoqEhVVVUKCwtTdHQ0PUEX4VYhdH5dAgAA4D+CgoKYIu8it8rEp59+Wg8//LC2bNmi06dPq7KystEXAABAR+DWGKHz3WzfHxvUmQZLn8cYIQAAOh6vjhHavHmz28EAAAD8hVuFEKtHAwCAzsDtoeQ5OTn68Y9/rGuuuUYlJSWSpNdff10fffSRx8IBAAB4k1uF0LvvvquUlBR1795du3fvVm1trSSpoqJCTz75pEcDAgAAeItbhdATTzyhFStW6E9/+pO6du3qPD5u3Djt3r3bY+EAAAC8ya1C6MCBA7ruuuuaHO/Vq5fOnj3b1kwAAADtwq1CqH///jp8+HCT4x999JF+8IMftDmUP7BarbJYLEpMTPR1FAAA4CVuFULz58/XokWL9Omnn8pgMOjEiRN64403tHjxYi1YsMDTGX0iPT1d+fn52rlzp6+jAAAAL3Fr+vySJUtkt9t1ww036JtvvtF1112nkJAQLV68WPfff7+nMwIAAHiFyytLNzQ0aNu2bbr66qvVo0cPHT58WNXV1bJYLOrZs6e3cvoMK0sDANDxeG1l6eDgYE2ePFkFBQXq3bu3LBZLm4ICAAD4iltjhK666ip98cUXns4CAADQrtxeR2jx4sV6//33dfLkSXafBwAAHVKbdp+XGu9Az+7zAADAH7D7PAAAwEWw+zwAAAhY7D4PAAACFrvPAwCAgMXu8wAAIGCx+zwAAAhY7D4PAAACFrvPAwCAgMXu8wAAIGC5tbL0eXV1dew+DwAA/I5XV5Y+r1u3bp1293mr1Sqr1dqptgsBAACNudUjZLPZ9Jvf/EabNm3SqVOnZLfbG7V3pp3p6RECAKDj8WqP0L333qsPP/xQs2bNUmRkZKONVwEAADoKtwqhdevWae3atRo3bpyn8wAAALQbt6bP9+nTR3379vV0FgAAgHblViH061//Wo8//ri++eYbT+cBAABoN61+NJaQkNBoLNDhw4cVERGhmJiYRvuNSWK/MQAA0CG0uhBKTU31YgwAAID216YFFQMB0+cBAOh42mVBxdzcXBUUFEiShg4dqoSEhLZcDgAAoF25VQidOnVKt99+u7Zs2aLevXtLks6ePasJEybozTff1CWXXOLJjAAAAF7h1qyx+++/X1VVVfr888915swZnTlzRvv371dlZaUWLlzo6YwAAABe4dYYoV69emnjxo1KTExsdHzHjh2aPHmyzp4966l8PscYIQAAWma321VUVKSqqiqFhYUpOjpaQUFu9bN4lFfHCNnt9iZT5iWpa9euTfYdAwAAnVNBQYHeeecdvfPOO6qvr1dCQoIsFovS0tJkNpt9Ha9V3CrZJk6cqEWLFunEiRPOYyUlJXrwwQd1ww03eCwcAADwTwUFBcrMzNSePXvUo0cP9evXT/369VNeXp4yMzOdk6n8nVuF0AsvvKDKykrFxMToiiuu0BVXXKHLL79clZWV+sMf/uDpjAAAwI/Y7XZlZWWpvLxcZrNZISEhCgoKUnh4uCwWi8rLy5Wdnd0hnhK59WgsKipKu3fv1saNG1VYWChJMpvNSk5O9mg4AADgf4qKilRYWKioqKhGu05IksFg0KBBg1RQUKCioiLFxMT4JmQrub2OkMFg0KRJkzRp0iRP5gEAAH6uqqpKNTU1Cg0NbbY9NDRUJSUlqqqqaudkrnPp0di//vUvWSwWVVZWNmmrqKjQ0KFDlZOT47FwAADA/4SFhcloNMpmszXbbrPZZDQaFRYW1s7JXOdSIbR8+XLNnz+/2WlovXr10k9/+lM999xzHgsHAAD8T3R0tOLi4lRcXKzvr8LjcDh0/Phxmc1mRUdHt3iNuro6LVu2TMuWLVNdXZ23I7fIpUJo7969uvHGG1tsnzx5snJzc9scCgAA+K+goCClpaXJZDKpoKBANTU1stvtqqioUH5+vkwmk1JTU/1iPaGLcSlhWVlZs+sHndelSxd99dVXbQ4FAAD8m9ls1sKFCxUfH69z587p9OnTOnPmjEaMGKGFCxd2mHWEXBosPXDgQO3fv1+DBw9utv2zzz5TZGSkR4IBAAD/Zjab9dhjj2nWrFl+t7J0a7lUCE2dOlW//OUvdeONN8poNDZqO3funJYuXaof/vCHHg0IAAD8V1BQkN9Pkb8QlwqhX/ziF3rvvfd05ZVX6r777lNsbKwkqbCwUFarVQ0NDXrssce8EtRdZ8+eVXJysurr61VfX69FixZp/vz5vo4FAAD8gEuFUEREhD7++GMtWLBAjz76qHOkuMFgUEpKiqxWqyIiIrwS1F1hYWHaunWrevToIZvNpquuukrTp09Xv379fB0NAAD4mMsLKl522WX6xz/+oa+//lqHDx+Ww+HQkCFD1KdPH2/ka7Pg4GD16NFDklRbWyuHw9Fkqh8AAAhMbo9m6tOnjxITEzV69Og2FUFbt27VtGnTNGDAABkMBmVnZzc5x2q1KiYmRkajUWPGjNGOHTtceo+zZ89q+PDhGjRokB566CGZTCa38wIAgM7D58O6bTabhg8fLqvV2mz7mjVrlJGRoaVLl2r37t0aPny4UlJSdOrUKec58fHxuuqqq5p8nThxQpLUu3dv7d27V0ePHtVf/vIXlZWVtcvPBgAA/Jvbe415ypQpUzRlypQW25977jnNnz9fd999tyRpxYoVWrt2rV555RUtWbJEkrRnz55WvVdERISGDx+unJwczZgxo9lzamtrVVtb63zd3HYiAACgc/B5j9CF1NXVKTc3t9Gu9kFBQUpOTtYnn3zSqmuUlZU5N32rqKjQ1q1bnbPdmvPUU0+pV69ezq+oqKi2/RAAAMBv+XUhVF5eroaGhiYz0SIiIlRaWtqqa3z55ZcaP368hg8frvHjx+v+++/XsGHDWjz/0UcfVUVFhfOruLi4TT8DAADwXz5/NOZto0ePbvWjM0kKCQlRSEiI9wIBAAC/4dc9QiaTScHBwU0GN5eVlal///4+SgUAANrKbrfr7NmzKisr07Fjx2S3232Sw697hLp166aRI0dq06ZNSk1NlfTtL27Tpk267777vPreVqvVuVo2AADwnIKCAr3zzjvavHmz6uvrVVVVJYvForS0tHbfrNXnhVB1dbUOHz7sfH306FHt2bNHffv2VXR0tDIyMjRnzhyNGjVKo0eP1vLly2Wz2ZyzyLwlPT1d6enpqqysVK9evbz6XgAABIqCggJlZmbq1KlT6tGjh7p27ap+/fopLy9PxcXF7b5zvc8LoV27dmnChAnO1xkZGZKkOXPmaOXKlbrtttv01Vdf6fHHH1dpaani4+O1fv16v9vKAwAAXJjdbldWVpbKy8tlNpt1+vRpSVJ4eLh69+6t/Px8ZWdnKzY2tt12sPd5IZSUlHTRLS/uu+8+rz8KAwAA3lVUVKTCwkJFRUXJYDA0ajMYDBo0aJAKCgpUVFTUbjva+/VgaQAA0HlUVVWppqZGoaGhzbaHhoaqpqbGuf5fe6AQaoHVapXFYlFiYqKvowAA0CmEhYXJaDTKZrM1226z2WQ0GhUWFtZumSiEWpCenq78/Hzt3LnT11EAAOgUoqOjFRcXp+Li4ibDYhwOh44fPy6z2azo6Oh2y+TzMUIAACAwBAUFKS0tTcXFxSooKFBNTY26deumiooKnTx5UiaTSampqe02UFqiRwgAALQjs9mshQsXKj4+XufOndPp06d15swZjRgxot2nzkv0CAEAgHZmNpv10EMP6fTp06qtrdWDDz6owYMHt2tP0HkUQgAAoN0FBQWpd+/ekqSYmBifFEESj8ZaxKwxAAA6PwqhFjBrDACAzo9CCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQggAAAQsCqEWMH0eAIDOj0KoBUyfBwCg86MQAgAAAYtCCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQqgFTJ8HAKDzoxBqAdPnAQDo/CiEAABAwKIQAgAAAYtCCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQggAAAQsCiEAABCwKIRawMrSAAB0fhRCLWBlaQAAOj+Dw+Fw+DqEP6usrFSvXr1UUVGh8PBwX8cBAACt0NrPb3qEAABAwKIQAgAAAYtCCAAABCwKIQAAELAohAAAQMCiEAIAAAGLQggAAAQsCiEAABCwKIQAAEDAohBqAXuNAQDQ+bHFxkWwxQYAAB0PW2wAAABcBIUQAAAIWBRCAAAgYFEIAQCAgNXF1wH83fmx5JWVlT5OAgAAWuv85/bF5oRRCF1EVVWVJCkqKsrHSQAAgKuqqqrUq1evFtuZPn8RdrtdJ06cUFhYmAwGgxITE7Vz506PXLut13Ln+135ntaee7HzKisrFRUVpeLi4oBYgsCT/0bayttZAul+cOV87onG/OWeaI8c/nJPcD982xNUVVWlAQMGKCio5ZFA9AhdRFBQkAYNGuR8HRwc7LG/qLZey53vd+V7Wntua88LDw8PiP/oe/LfSFt5O0sg3Q+unM890Zi/3BPtkcNf7gnuh29dqCfoPAZLuyg9Pd1vruXO97vyPa0915O/k87An34f3s4SSPeDK+f7078Bf+Avv4/2yOEv9wT3Q+vxaAxex+rcQGPcE8B/+Pp+oEcIXhcSEqKlS5cqJCTE11EAv8A9AfyHr+8HeoQAAEDAokcIAAAELAohAAAQsCiEAABAwKIQAgAAAYtCCAAABCwKIfjc+++/r9jYWA0ZMkR//vOffR0H8Km0tDT16dNHM2bM8HUUwKeKi4uVlJQki8Wiq6++Wm+//bZX3ofp8/Cp+vp6WSwWbd68Wb169dLIkSP18ccfq1+/fr6OBvjEli1bVFVVpVWrVumdd97xdRzAZ06ePKmysjLFx8ertLRUI0eO1MGDBxUaGurR96FHCD61Y8cODR06VAMHDlTPnj01ZcoUbdiwwdexAJ9JSkpSWFiYr2MAPhcZGan4+HhJUv/+/WUymXTmzBmPvw+FENpk69atmjZtmgYMGCCDwaDs7Owm51itVsXExMhoNGrMmDHasWOHs+3EiRMaOHCg8/XAgQNVUlLSHtEBj2vr/QB0Jp68H3Jzc9XQ0KCoqCiP56QQQpvYbDYNHz5cVqu12fY1a9YoIyNDS5cu1e7duzV8+HClpKTo1KlT7ZwU8D7uB+A/PHU/nDlzRrNnz9b//u//eieoA/AQSY6srKxGx0aPHu1IT093vm5oaHAMGDDA8dRTTzkcDodj27ZtjtTUVGf7okWLHG+88Ua75AW8yZ374bzNmzc7br311vaICbQLd++Hmpoax/jx4x2vvfaa17LRIwSvqaurU25urpKTk53HgoKClJycrE8++USSNHr0aO3fv18lJSWqrq7WunXrlJKS4qvIgNe05n4AAkVr7geHw6G5c+dq4sSJmjVrlteyUAjBa8rLy9XQ0KCIiIhGxyMiIlRaWipJ6tKli5599llNmDBB8fHx+u///m9mjKFTas39IEnJycmaOXOm/vGPf2jQoEEUSeiUWnM/bNu2TWvWrFF2drbi4+MVHx+vffv2eTxLF49fEXDRzTffrJtvvtnXMQC/sHHjRl9HAPzCtddeK7vd7vX3oUcIXmMymRQcHKyysrJGx8vKytS/f38fpQJ8g/sB+A9/uh8ohOA13bp108iRI7Vp0ybnMbvdrk2bNmns2LE+TAa0P+4H4D/86X7g0RjapLq6WocPH3a+Pnr0qPbs2aO+ffsqOjpaGRkZmjNnjkaNGqXRo0dr+fLlstlsuvvuu32YGvAO7gfgPzrM/eC1+WgICJs3b3ZIavI1Z84c5zl/+MMfHNHR0Y5u3bo5Ro8e7di+fbvvAgNexP0A/EdHuR/YawwAAAQsxggBAICARSEEAAACFoUQAAAIWBRCAAAgYFEIAQCAgEUhBAAAAhaFEAAACFgUQgAAIGBRCAGAl9XV1Wnw4MH6+OOPPXrd9evXKz4+vl126AY6KwohAC6ZO3euDAZDk6/v7imExlasWKHLL79c11xzjfOYwWBQdnZ2k3Pnzp2r1NTUVl33xhtvVNeuXfXGG294KCkQeCiEALjsxhtv1MmTJxt9XX755U3Oq6ur80E6/+JwOPTCCy/onnvu8cr1586dq8zMTK9cGwgEFEIAXBYSEqL+/fs3+goODlZSUpLuu+8+PfDAAzKZTEpJSZEk7d+/X1OmTFHPnj0VERGhWbNmqby83Hk9m82m2bNnq2fPnoqMjNSzzz6rpKQkPfDAA85zmutB6d27t1auXOl8XVxcrB/96Efq3bu3+vbtq1tuuUXHjh1ztp/vbfnd736nyMhI9evXT+np6fr3v//tPKe2tlaPPPKIoqKiFBISosGDB+vll1+Ww+HQ4MGD9bvf/a5Rhj179lywRyw3N1dHjhzRTTfd5OJvWTp27FizvW9JSUnOc6ZNm6Zdu3bpyJEjLl8fAIUQAA9btWqVunXrpm3btmnFihU6e/asJk6cqISEBO3atUvr169XWVmZfvSjHzm/56GHHtKHH36ov/71r9qwYYO2bNmi3bt3u/S+//73v5WSkqKwsDDl5ORo27Zt6tmzp2688cZGPVObN2/WkSNHtHnzZq1atUorV65sVEzNnj1bq1evVmZmpgoKCvTHP/5RPXv2lMFg0Lx58/Tqq682et9XX31V1113nQYPHtxsrpycHF155ZUKCwtz6eeRpKioqEa9bnl5eerXr5+uu+465znR0dGKiIhQTk6Oy9cHIKnd97sH0KHNmTPHERwc7AgNDXV+zZgxw+FwOBzXX3+9IyEhodH5v/71rx2TJ09udKy4uNghyXHgwAFHVVWVo1u3bo633nrL2X769GlH9+7dHYsWLXIek+TIyspqdJ1evXo5Xn31VYfD4XC8/vrrjtjYWIfdbne219bWOrp37+745z//6cx+2WWXOerr653nzJw503Hbbbc5HA6H48CBAw5Jjg8++KDZn72kpMQRHBzs+PTTTx0Oh8NRV1fnMJlMjpUrV7b4+1q0aJFj4sSJTY5LchiNxka/x9DQUEeXLl0ct9xyS5Pzz5075xgzZozjhz/8oaOhoaFRW0JCgmPZsmUtZgDQsi6+LcMAdEQTJkzQSy+95HwdGhrq/PPIkSMbnbt3715t3rxZPXv2bHKdI0eO6Ny5c6qrq9OYMWOcx/v27avY2FiXMu3du1eHDx9u0vNSU1PT6LHR0KFDFRwc7HwdGRmpffv2Sfr2MVdwcLCuv/76Zt9jwIABuummm/TKK69o9OjR+vvf/67a2lrNnDmzxVznzp2T0Whstu35559XcnJyo2OPPPKIGhoampw7b948VVVV6YMPPlBQUOPO/O7du+ubb75pMQOAllEIAXBZaGhoi4+CvlsUSVJ1dbWmTZump59+usm5kZGRrZ5tZjAY5HA4Gh377tie6upqjRw5stkZVJdcconzz127dm1y3fPTz7t3737RHPfee69mzZql559/Xq+++qpuu+029ejRo8XzTSaTs9D6vv79+zf5PYaFhens2bONjj3xxBP65z//qR07djT7iO3MmTONfkYArUchBMCrRowYoXfffVcxMTHq0qXpf3KuuOIKde3aVZ9++qmio6MlSV9//bUOHjzYqGfmkksu0cmTJ52vDx061KgXZMSIEVqzZo0uvfRShYeHu5V12LBhstvt+vDDD5v01Jw3depUhYaG6qWXXtL69eu1devWC14zISFBL730khwOhwwGg8uZ3n33Xf3P//yP1q1bpyuuuKJJ+/ker4SEBJevDYDB0gC8LD09XWfOnNEdd9yhnTt36siRI/rnP/+pu+++Ww0NDerZs6fuuecePfTQQ/rXv/6l/fv3a+7cuU0e/0ycOFEvvPCC8vLytGvXLv3sZz9r1Ltz1113yWQy6ZZbblFOTo6OHj2qLVu2aOHChTp+/HirssbExGjOnDmaN2+esrOzndd46623nOcEBwdr7ty5evTRRzVkyBCNHTv2gtecMGGCqqur9fnnn7vwW/vW/v37NXv2bD3yyCMaOnSoSktLVVpaqjNnzjjP2b59u0JCQi6aA0DzKIQAeNWAAQO0bds2NTQ0aPLkyRo2bJgeeOAB9e7d21ns/Pa3v9X48eM1bdo0JScn69prr20y1ujZZ59VVFSUxo8frzvvvFOLFy9u9EiqR48e2rp1q6KjozV9+nSZzWbdc889qqmpcamH6KWXXtKMGTP085//XHFxcZo/f75sNlujc+655x7V1dXp7rvvvuj1+vXrp7S0NLcWPdy1a5e++eYbPfHEE4qMjHR+TZ8+3XnO6tWrddddd13w8RyAlhkc33/oDgB+ICkpSfHx8Vq+fLmvozSRk5OjG264QcXFxYqIiLjo+Z999pkmTZqkI0eONDto3F3l5eWKjY3Vrl27ml3QEsDF0SMEAK1UW1ur48ePa9myZZo5c2ariiBJuvrqq/X000/r6NGjHs1z7NgxvfjiixRBQBswWBoAWmn16tW65557FB8fr9dee82l7507d67H84waNUqjRo3y+HWBQMKjMQAAELB4NAYAAAIWhRAAAAhYFEIAACBgUQgBAICARSEEAAACFoUQAAAIWBRCAAAgYFEIAQCAgEUhBAAAAtb/ByH9Vh6kjGfnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "coh, coh_e = cs_reb.coherence()\n", + "plt.figure()\n", + "plt.errorbar(cs_reb.freq, coh, yerr=coh_e, fmt=\"o\", color=\"k\", alpha=0.5)\n", + "plt.xlabel(\"Frequency (Hz)\")\n", + "plt.ylabel(\n", + " f\"Coherence ({sub_band[0]:g}-{sub_band[1]:g} keV vs {ref_band[0]:g}-{ref_band[1]:g} keV)\"\n", + ")\n", + "plt.axhline(0, ls=\"--\")\n", + "plt.loglog()\n" + ] + }, + { + "cell_type": "markdown", + "id": "904811f2", + "metadata": { + "id": "904811f2" + }, + "source": [ + "# Spectral timing" + ] + }, + { + "cell_type": "markdown", + "id": "965a7273", + "metadata": { + "id": "965a7273" + }, + "source": [ + "Now let us explore the spectral timing properties of this observation, with no physical interpretation, just for the sake of data exploration." + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "302ef79e", + "metadata": { + "id": "302ef79e" + }, + "outputs": [], + "source": [ + "from stingray.varenergyspectrum import CountSpectrum, CovarianceSpectrum, RmsSpectrum, LagSpectrum" + ] + }, + { + "cell_type": "markdown", + "id": "b53713b3", + "metadata": { + "id": "b53713b3" + }, + "source": [ + "Let us start with the lag spectrum with respect to energy, in different frequency bands.\n", + "This might be confusing for people coming from other wavelengths, so let us specify that\n", + "\n", + "+ \"frequency\" refers to the frequency of the variability.\n", + "\n", + "+ \"energy\" refers to the photon energy.\n", + "\n", + "The photons at 0.3-12 keV are modulated by oscillations and other stochastic noise up to ~100 Hz (see section above). As an example, we will now analyze the spectral timing properties using the variability up to 1 Hz and between 4 and 10 Hz." + ] + }, + { + "cell_type": "markdown", + "id": "0c530beb", + "metadata": {}, + "source": [ + "From [Kara et al. 2019](https://www.nature.com/articles/s41586-018-0803-x), figure 3" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "5eca6d3c", + "metadata": { + "id": "5eca6d3c", + "outputId": "07a6c11a-34fb-4893-bf7c-a51b2299da14" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:36<00:00, 1.08it/s]\n" + ] + } + ], + "source": [ + "energy_spec = np.geomspace(0.5, 10, 41)\n", + "segment_size = 10\n", + "bin_time = 0.001\n", + "freq_interval = [3, 30]\n", + "ref_band = [0.5, 10]\n", + "\n", + "# If not specified, the reference energy band is the whole band.\n", + "\n", + "lagspec_3_30 = LagSpectrum(\n", + " events,\n", + " freq_interval=freq_interval,\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " ref_band=ref_band,\n", + ")\n", + "energies = lagspec_3_30.energy" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "23efaaa4", + "metadata": { + "id": "23efaaa4", + "outputId": "ceb9952c-6ea2-4093-eb07-9bdde6492601" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAG1CAYAAADtOGDLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAA5U0lEQVR4nO3de3wU9b3/8fckSNCERJRb4q4EBaUIKHKrl0SQGBS10m209qAHlFLsA4GINzi2WuolVns0WK/VGulVbRItbSNabThEawuC2iICoqhhISAXN2TxF00yvz9stqyZXHZnL7O7r+fjMY8HOzs789nsMPve73znO4ZpmqYAAAAQJC3eBQAAADgRIQkAAMACIQkAAMACIQkAAMACIQkAAMACIQkAAMACIQkAAMACIQkAAMBCr3gX4BRtbW3auXOn+vbtK8Mw4l0OAADoAdM0dfDgQeXl5SktLbJtP4Skf9u5c6fcbne8ywAAAGGor6+Xy+WK6DoJSf/Wt29fSV/+kbOzs+NcDQAA6InGxka53e7A93gkEZL+rf0UW3Z2NiEJAIAEE42uMnTcBgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAsEBIAgAAjub3+2UYhgzDkN/vj9l2CUkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWkiokeb1eXXHFFTr22GN15JFHavTo0XrjjTfiXRYAAEhAveJdQKQcOHBAZ511lqZMmaIXXnhBAwYM0Hvvvad+/frFuzQAAJCAkiYk/eQnP5Hb7VZFRUVg3tChQ+NYEQAASGRJc7pt5cqVGj9+vC699FINHDhQY8eO1eOPP97p8s3NzWpsbAyaAAAA2iVNSPrggw/0yCOPaPjw4XrxxRf1/e9/XwsXLtSKFSssly8rK1NOTk5gcrvdMa4YAAA4mWGaphnvIiKhd+/eGj9+vP72t78F5i1cuFDr1q3T66+/3mH55uZmNTc3Bx43NjbK7XbL5/MpOzs7JjUDAIDu+f1+ZWVlSZKampqUmZkZeK6xsVE5OTlR+f5Ompak3NxcjRw5Mmje1772NX388ceWy2dkZCg7OztoAgAAaJc0Iemss87Sli1bguZt3bpVQ4YMiVNFAAAgkSVNSLruuuv097//XXfddZe2bdum3/72t/r5z3+u+fPnx7s0AACQgJImJE2YMEHPPfecfve732nUqFG6/fbbVV5erpkzZ8a7NAAAkICSZpwkSbrooot00UUXxbsMAACQBJKmJQkAACCSCEnd8Pv9MgxDhmHI7/fHuxwAABAjhCQAAAALhCQAAAALhCQAAAALhCQAAAALhKRutLa2Bv69Zs2aoMcAACB5EZK6UF1dHXQ/uOnTpys/P1/V1dVxrAoAAMQCIakT1dXVKikpkdfrDZrv9XpVUlJCUAIAIMkRkiy0trZq0aJFMk2zw3Pt80pLSzn1BgBAEiMkWairq9OOHTs6fd40TdXX16uuri6GVQEAgFgiJFnYtWtXRJcDAACJh5BkITc3N6LLAQCAxENIslBQUCCXyyXDMCyfNwxDbrdbBQUFMa4MAADECiHJQnp6upYvXy5JHYJS++Py8nKlp6fHvDYAABAbhKROeDweVVZWKi8vL2i+y+VSZWWlPB5PnCoDAACx0CveBTiZx+NRUVGRcnJyJEk1NTUqLi6mBQkAgBRAS1I3Dg9EhYWFBCQAAFIEIQkAAMACIQkAAMACIQkAAMACIQkAAMACV7d1IzMz0/JGtwAAILnRkgQAAGCBkAQAAGCBkAQAAGCBkAQAAGCBkAQAAGCBkBRhfr9fhmHIMAz5/f54lwMAAMJESAIAALBASAIAALBASAIAALCQtCHp7rvvlmEYKi0tjel2W1tbA/9es2ZN0GMAAJA4kjIkrVu3To899pjGjBkT0+1WV1dr5MiRgcfTp09Xfn6+qqurY1oHAACwL+lCUlNTk2bOnKnHH39c/fr1i9l2q6urVVJSIq/XGzTf6/WqpKSEoAQAQIJJupA0f/58XXjhhSoqKupyuebmZjU2NgZN4WptbdWiRYssb4TbPq+0tJRTbwAAJJCkCklPP/20NmzYoLKysm6XLSsrU05OTmByu91hb7eurk47duzo9HnTNFVfX6+6urqwtwEAAGIraUJSfX29Fi1apN/85jfq06dPt8svXbpUPp8vMNXX14e97V27dkV0OQAAEH+94l1ApKxfv1579uzR6aefHpjX2tqqNWvW6MEHH1Rzc7PS09MDz2VkZCgjIyMi287NzY3ocgAAIP6SJiRNnTpV//rXv4LmXXXVVRoxYoRuvvnmoIAUaQUFBXK5XPJ6vZb9kgzDkMvlUkFBQdRqAAAAkZU0Ialv374aNWpU0LzMzEwde+yxHeZHWnp6upYvX66SkhIZhhEUlAzDkCSVl5dbBjW/36+srCxJX16Zl5mZGdVaAQBAzyRNn6R483g8qqysVF5eXtB8l8ulyspKeTyeOFUGAADCkTQtSVZWr14d0+15PB4VFRUpJydHklRTU6Pi4uKIn+qj9QkAgOijJSnCDg9EhYWFUe0LBQAAooeQlAL8fr8Mw5BhGPL7/fEuBwCAhEBIAgAAjhavm8cTkuIsnA8+XjsLAACxFs+bxxOSIiwzM1Omaco0zW47VIfzwcdzZwEAIJbiffN4QlKchPPBh7uz0PIEAEg0Trh5PCEpDsL54MPdWWh5AgAkop7ePP5vf/tb1GogJMVBTz/4uro6W6+JdzMlAADh6ulN4RsaGqJWAyEpDnr6wR++XKivcUIzJQAA4erpTeEHDx4ctRoISXHQ0w/+8OVCfU04LU8AADhF+83j2++B+lWGYcjtduvMM8+MWg2EpDjo6QdfUFAQ9mvCaa0CAMAp2m8eL6nDd193N4+PFEJSHITzwYf6mnBaqwAAcJJ43zyekBQn4XzwobwmnNYqAACcxuPxaNOmTYHHNTU12r59e9QDkiQZplXP3hTU2NionJwc+Xw+ZWdnx3y70pcffHFxcbdNhz19TfvVbZKCOnC3B6dYpHAAAOzy+/3KysqSJDU1NQUN1hzN729akuLs8HBTWFjYo3OrPX1NvJspAQBIZL3iXQCiy+PxqKioKOTWKgAAUh0tSSkgnNYqAABSHSEpAYVyE91w+f1+GYYhwzDk9/ujsg0AAJyMkAQAAGCBPklx1t4qlOjbAAAg2dCSBEuH39NtzZo13OMNAJByCEnooLq6WiNHjgw8nj59uvLz81VdXR3HqgAAiC1CEoK0D0Dp9XqD5nu9XpWUlBCUAAApg5CEgNbWVi1atMiy/1L7vNLSUk69AQBSAiEJAXV1ddqxY0enz5umqfr6etXV1cWwKgAA4oOQhIBdu3ZFdDkAABIZIQkBubm5EV0OAKKFAW8RC4QkBBQUFMjlcskwDMvnDcOQ2+1WQUFBjCsDAOcjuCUfQhIC0tPTtXz5cknqEJTaH5eXl3PvNwBASiAkIYjH41FlZaXy8vKC5rtcLlVWVsrj8cSpMgAAYovbkqADj8ejoqIi5eTkSJJqampUXFxMCxIAIKUkTUtSWVmZJkyYoL59+2rgwIGaMWOGtmzZEu+yEtbhgaiwsJCABABIOUkTkv7v//5P8+fP19///nf95S9/0RdffKHi4mI6zwEAgLAkzem2VatWBT1+6qmnNHDgQK1fv16FhYVxqipxZWZmWo68DQBAqkiakPRVPp9PknTMMcdYPt/c3Kzm5ubA48bGxpjUBQAAEkPSnG47XFtbm0pLS3XWWWdp1KhRlsuUlZUpJycnMLnd7hhXCQAAnCwpQ9L8+fO1ceNGPf30050us3TpUvl8vsBUX18fwwqTD4OoAQCSTdKdbrv22mv1pz/9SWvWrJHL5ep0uYyMDGVkZMSwMgAAkEiSJiSZpqkFCxboueee0+rVqzV06NB4lwQAABJY0pxumz9/vn7961/rt7/9rfr27auGhgY1NDTos88+i3dpKaG1tTXw7zVr1gQ9tsLpOQCA0yVNSHrkkUfk8/k0efJk5ebmBqZnnnkm3qUlverqao0cOTLwePr06crPz1d1dXUcqwKQzEL9YQaEI2lCkmmaltPs2bPjXVpSq66uVklJibxeb9B8r9erkpKSToMSBzgA4eKHGWIlaUISYq+1tVWLFi2yHHSyfV5paWmHAMQBDkC4wv1hBoSDkISw1dXVaceOHZ0+b5qm6uvrVVdXF5jHAQ5AuML9YQaEKyIh6YsvvlB9fb22bNmi/fv3R2KVSAC7du0KaTkOcADsCOeHGWBH2CHp4MGDeuSRR3TOOecoOztb+fn5+trXvqYBAwZoyJAhmjt3rtatWxfJWuEwubm5IS1n9wDHFXFAagv1h1ki4LjmbGGFpPvuu0/5+fmqqKhQUVGRnn/+eb311lvaunWrXn/9dd12221qaWlRcXGxzj//fL333nuRrhsOUFBQIJfLJcMwLJ83DENut1sFBQWSkvMAByB2Qv1hFmtckJJ8wgpJ69at05o1a7R27Vr98Ic/1LRp0zR69GgNGzZMEydO1NVXX62Kigo1NDRoxowZNH0mqfT0dC1fvlySOgSl9sfl5eVKT0+XZP8AxwEISG2h/jCLJS5ISVImTNM0TZ/PZ0oyfT5fvEtJOFVVVeZxxx1nSgpMbrfbrKqqClqupaXFdLlcpmEYQcu2T4ZhmG6322xpaenRNlwuV4dtAEhuVVVVpmEYHY4j7fPicUxor8nqmNZdTU1NTYHlm5qaYlh1Yunq7xTN72/bHbc/++wzHTp0KPD4o48+Unl5uV588UW7q0aC8Hg82rRpU+BxTU2Ntm/fLo/HE7RcqC1P7bgiDkA7j8ejyspK5eXlBc13uVyqrKzscNyJNi5ISXJ2U9Z5551nPvLII6ZpmuaBAwfMQYMGmS6Xy+zTp4/58MMP2119zNCSZE8ov4Z62vJkmv9pfZJFy5O6aX0CkLzaj9mSzJqamrgdA2prazs9Ph0+1dbWWr6elqSeSdiWpA0bNgTO/1ZWVmrQoEH66KOP9Mtf/lIPPPCA3dUjCfW05Unikl8A1g5vcS4sLOzQAh0rXJCS3HrZXcGhQ4fUt29fSdJLL70kj8ejtLQ0ff3rX9dHH31ku0AkhszMTMvm5s709ADHAQiAkzn9ijvYY7sladiwYXr++edVX1+vF198UcXFxZKkPXv2KDs723aBSE7toco0TWVmZna6HAcgAE7m5CvuYJ/tkHTrrbfqhhtuUH5+viZNmqQzzjhD0petSmPHjrVdIFKbnQMQg7QBiLZwL0hBYrAdkkpKSvTxxx/rjTfe0KpVqwLzp06dqvvvv9/u6pHiOAABcDqnXXGHyInIvdsGDx6ssWPHKi3tP6ubOHGiRowYEYnVI8WFewBi8EkAsRLKBSlIHBEJSUC0hXoAYvRbALHmlCvuEDmEJCSMnh6AGHwSQLKir2VsEZKQMHpyRRyj3wIAIoWQhKTC4JMAgEixHZLuuOOOSNQBRASDTwIAIiWkEbdvuummoMemaeqJJ55QY2OjJOmee+6JXGVAGOwOPun3+5WVlSVJampq6nKgSwBAcgspJD377LM644wzdMEFFwT6d/Tq1UunnHJKVIoDQtU++KTX67Xsl2QYhlwuF6PfAgC6FdLptnfffVcnnnii/vjHP+qss87SrFmz1LdvX82aNUuzZs2KVo1Aj9kdfJKxlYDE0NNbGwF2hBSSjjzySN1xxx0qKyvTDTfcoJtvvpkvEThOuINPMrYSAOBwYXXcbr+p7VlnnaWZM2dGuibAtnAGn2RsJQCxRuu1s9m6um3ixIm66667IlULEFE9HXySsZUAxAOt185nKyQVFxdHqg4gbhhbCUCs0XqdGGyFJKtf3oBT9LRjJ2MrAYglWq8Th62Q9NWrh4BEZHdsJQAIBa3XiYPbkiDltY+t1FnoNwxDbrebsZUARASt14mDkISUZ3dsJQAIBa3XicNWSOJLA8ki3LGVACBUtF4nDlsh6c0334xUHRHz0EMPKT8/X3369NGkSZO0du3aeJeEBBHq2EoAEA5arxNHUp1ue+aZZ7R48WLddttt2rBhg0499VRNmzZNe/bsiXdpSBA9HVsJAOyg9ToxGKaN6/j37t2rJ598Uq+//roaGhokSYMHD9aZZ56p2bNna8CAARErtCcmTZqkCRMm6MEHH5QktbW1ye12a8GCBVqyZEmXr21sbFROTo58Pp+ys7NjUS4AIMW1f/dIX7ZeFxcXd/njzO/3KysrS5LU1NSUMvet6+p9R/P7O+yWpHXr1umkk07SAw88oJycHBUWFqqwsFA5OTl64IEHNGLECL3xxhuRrLVLn3/+udavX6+ioqLAvLS0NBUVFen111/vsHxzc7MaGxuDJgAAYonWa2frFe4LFyxYoEsvvVSPPvpoh3Oqpmnqmmuu0YIFCywDSjTs3btXra2tGjRoUND8QYMGafPmzR2WLysr07Jly2JSGwAACF/74MCxFnZL0ttvv63rrrvOsne+YRi67rrr9NZbb9mpLaqWLl0qn88XmOrr6+NdEgAAcJCwW5IGDx6stWvXasSIEZbPr127tkOrTjT1799f6enp2r17d9D83bt3a/DgwR2Wz8jIUEZGRqzKAwAACSbskHTDDTfoe9/7ntavX6+pU6cGAtHu3bv1yiuv6PHHH9dPf/rTiBXand69e2vcuHF65ZVXNGPGDElfdtx+5ZVXdO2118asDgAAkBzCDknz589X//79df/99+vhhx8O3IgvPT1d48aN01NPPaXLLrssYoX2xOLFizVr1iyNHz9eEydOVHl5ufx+v6666qqY1gEAQDQcftPbNWvWdHs1HOwJOyRJ0re//W19+9vf1hdffKG9e/dK+vK01xFHHBGR4sKp55NPPtGtt96qhoYGnXbaaVq1alVMT/sBABAN1dXVWrhwYeDx9OnT5XK5tHz5csZVihJb4yQlE8ZJQjhSdcwSpBb28+jp6d+2urpaJSUlHa7war94KpUHoHTkOEndqa+v19VXXx2t1QMAkBJaW1u1aNEiy0vg2+eVlpYGnYpDZEQtJO3fv18rVqyI1uoBR/hq/wAOUgAira6uTjt27Oj0edM0VV9fr7q6uhhWlRrC7pO0cuXKLp//4IMPwl01kBDoHwAgFnbt2hXR5dBzYYekGTNmyDCMLkfAtBpoEkgGnfUP8Hq9KikpSen+AQAiKzc3N6LLoefCPt2Wm5ur6upqtbW1WU4bNmyIZJ2AY9A/AEAsFRQUyOVyddrwYBiG3G63CgoKYlxZ8gs7JI0bN07r16/v9PnuWpmAREX/ACAx+f1+GYYhwzDk9/vjXU6Ppaena/ny5ZI6nqFpf1xeXs54SVEQdki68cYbdeaZZ3b6/LBhw1RbWxvu6gHHon8AEHmJGmBixePxqLKyUnl5eUHzXS4Xp/ejKOw+Sd0162VmZuqcc84Jd/WAY9npH8B4MwDC5fF4VFRUpJycHElSTU0NI25HWVgtSR9//HFIy3u93nA2AzgS/QMAxMvhgaiwsJCAFGVhhaQJEyZo3rx5WrduXafL+Hw+Pf744xo1apSqqqrCLhBwGjv9AxhXCYmI/RapKqyQtGnTJmVmZuq8887T4MGDdeGFF2ru3LlasGCBrrjiCp1++ukaOHCgnnzySd1zzz1BY8kAySCc/gHV1dUaOXJk4PH06dOVn5+v6urqqNcLhIv9FqnM1r3bPvvsM/35z3/Wq6++qo8++kifffaZ+vfvr7Fjx2ratGkaNWpUJGuNKu7dhnC07zdS1/0DuO8SElEs99tY9NdzYp/AUGty4nuIt2h+f3OD238jJCEcPTlgtba2Kj8/v9NhAwzDkMvl0vbt2+lfAMeI9X6bqiEpVMnwHiItIW9wC6SCzMxMmaYp0zQ7PVgxrlLycOJl6tGqif0WICQBUce4SkhE7LcAIQmIOu67hETEfgsQkoCoY1wl53Li6TOnYL8FCElA1HHfJThNT8Ih+23y4MdA+MK+LUm7xYsXW843DEN9+vTRsGHDdMkll+iYY46xuykgYbWPq7Rw4cKgEehdLpfKy8u5/B+OxH6LVGc7JL355pvasGGDWltbdfLJJ0uStm7dqvT0dI0YMUIPP/ywrr/+er366qtBA5IBqYb7LiERxWq//eqo3vzfgBPYPt12ySWXqKioSDt37tT69eu1fv167dixQ+edd56+853vyOv1qrCwUNddd10k6gUSGvddQiKK9n4bq1G9ub0KQmU7JN177726/fbbgwZwysnJ0Y9+9CPdc889Ouqoo3Trrbdq/fr1djcFJLyejKsE5+JLNvLaR/X+6o3QvV6vSkpKIhaUuL0KwmE7JPl8Pu3Zs6fD/E8++USNjY2SpKOPPlqff/653U0BQNw49Us2kYNba2urFi1a1OG2J5IC80pLS22/p1gFMSSfiJxuu/rqq/Xcc89px44d2rFjh5577jnNmTNHM2bMkCStXbtWJ510kt1NAUBcOPVL1qnBradXU8ViVO9YBTEkJ9sh6bHHHtPUqVN1+eWXa8iQIRoyZIguv/xyTZ06VY8++qgkacSIEXriiSdsFwsAkdSTVhinfsk6NbiFIhajenN7FWdKlGEJbIekrKwsPf7449q3b5/efPNNvfnmm9q3b59+/vOfB/pcnHbaaTrttNPsbgoAOhXqQbenrTBO/JJ1anALVSxG9eb2KrAjYoNJZmVlacyYMRozZkzgDsUAYi9RfqHFUyitME78krUb3JzSjykWo3pzexXYEbGQtGnTJq1atUorV64MmgDASUJthXHil6yd4OakfkyxGNWb26vAFtOm999/3xwzZoxpGIaZlpZmGoYR+HdaWprd1ceMz+czJZk+ny/epQC2NDU1mZJMSWZTU1O8y4mZnr7v2trawHJdTbW1taZpmmZLS4vpcrlMwzAslzMMw3S73WZLS0uM3mno76FdVVWV5ftoP25XVVVZbi/UfSrU5auqqszjjjsuqCa3291pPaFqf99ffe/dvW8nCuf/txOPCZGsKZrf37ZbkhYtWqShQ4dqz549Ouqoo/TOO+9ozZo1Gj9+vFavXm139QBC5JRTKU4VaiuME+9hFk7riJP7MXk8Hm3atCnwuKamRtu3b4/YbU/ab6+Sl5cXNN/lcqmyspLbq6BTtkPS66+/rh//+Mfq37+/0tLSlJaWprPPPltlZWVauHBhJGoE0ENOOpUSaz0Nh+GcPnPal2w4wc1OP6ZYDIIa7VG9ox3EkJxsh6TW1lb17dtXktS/f3/t3LlTkjRkyBBt2bLF7up75MMPP9ScOXM0dOhQHXnkkTrxxBN12223MYAlUkoyXBIerlDCYbh9VJz2JRtqcHNiB/RY47ZACJXtkDRq1Ci9/fbbkqRJkybpnnvu0WuvvaYf//jHOuGEE2wX2BObN29WW1ubHnvsMb3zzju6//779eijj+p//ud/YrJ9IN6cfCol2kINh3ZOnzntSzaU4ObEDugIHbc2ijG7nZpWrVoV6PT23nvvmSeffLJpGIbZv39/8+WXX7a7+rDdc8895tChQ3u8PB23kcjC7cjrZD3p2Nneqbqz99tVp+pwOgsncgfYWHZAd2rnYid+frHgxPedMh23p02bFvjVMmzYMG3evFl79+7Vnj17NHXqVLurD5vP59MxxxzT6fPNzc1qbGwMmoBElaqnUuz0s3Ha6bNoi2UHdC4eQLKI2DhJhzvmmGPk9Xr1ve99Lxqr79a2bdv0s5/9TPPmzet0mbKyMuXk5AQmt9sdwwqByErVUyl2w6HTTp9FWyw6oCfTxQMMzIqohCRJ2rdvn37xi1/YWseSJUsCO2hn0+bNm4Ne4/V6df755+vSSy/V3LlzO1330qVL5fP5AlN9fb2tWoF4StUB81I1HNoRzRa0VL54AMkpaiEpEq6//nq9++67XU6Hdw7fuXOnpkyZojPPPFM///nPu1x3RkaGsrOzgybAiXrya9aJY/nY1ZNTNqkaDu2KRgtaKl88gOTl6JA0YMAAjRgxosupd+/ekr78pTJ58mSNGzdOFRUVSktz9FsDIs5pY/nY0dNTNk4Ph6l0usaJNwIG7EqKJNEekI4//nj99Kc/1SeffKKGhgY1NDTEuzQgppKhM3Kop2xiGQ65/LpzqXrxAJJbr3Bf2N2B59NPPw131SH7y1/+om3btmnbtm1yuVxBz1k1/QKJ5KunnYqLi7tsGUnkzsjdnbIxDEOlpaW65JJLgt6Xx+NRUVGRcnJyJH0ZDrv7OyGy6B+GZBR2S9LhV4ZZTUOGDNF///d/R7LWTs2ePTvw6+6rE5DIkulKoZ6wc8omkcOhHU5p3aJ/WPJIpdPE3Qm7JamioiKSdQD4ivbTTl8N++2nnTo7ldT+pZmIYn3KJpH/Vk7T3j+spKREhmEE/V170j+MzwJOlBR9koBkk6pXCnHKJrEl08UDgERIAhwpVa8U4pRN4kuGiweAdoQkwIGcfqVQqH0Werq8nUv6ndI3B6nbPwzJh5AEOFAqn3ZKplM2Tr2HWaoGylR9307dDxMBIQlwoFQ/7ZQMp2xS7cpEOBP7oT0RCUl1dXW64oordMYZZwQGgPvVr36lV199NRKrB1KO00eSDvWXaTi/ZBP5lA33MIMTsB/aZzskVVVVadq0aTryyCP15ptvqrm5WZLk8/l011132S4QSFVOPe0U6i/TVPslm6pXJsJZ2A8jxLTptNNOM1esWGGapmlmZWWZ77//vmmaprlhwwZz0KBBdlcfMz6fz5Rk+ny+eJcCBGnfNyWZNTU1ZktLS9xqqaqqMg3DCNTTPhmGYRqGYVZVVdla/nBNTU2B5ZuamqL91iKmtra2w/u1mmpra+NdatQk6mf3VYn8Puzsh7F435HcRjS/v223JG3ZskWFhYUd5ufk5MT01iRAsnLKaadQf5mm6i9Zp1+ZiNTAfhgZtkPS4MGDtW3btg7zX331VZ1wwgl2Vw/AIUIdu8nuWE+JeiVSKl+ZmGwS+aow9sPIsB2S5s6dq0WLFukf//iHDMPQzp079Zvf/EY33HCDvv/970eiRiClOSUshPrLNFV/yab6lYnJItH70rEfRobtkLRkyRL913/9l6ZOnaqmpiYVFhbqu9/9rubNm6cFCxZEokYAUdaTwR5D/WWaqr9knX5lIrqXDFeFsR9GSKQ6NzU3N5vvvPOO+Y9//MM8ePBgpFYbM3TcRirrSSfKlpYW0+VyWXbE1r87Y7vd7kDH8lCXTzZVVVXmcccdF/Se3W53l53VEX/t+63VPpuI+204+yEdt/8jIuMk/b//9//01ltv6YMPPlBDQ4P++te/auXKlVq5cmUkVg/AAUL9ZZrqv2STYUDMVJRs901kP7Snl90VrFq1SldeeaX27dvX4TnDMBKqoxuQqr7aQbW4uNgyvLSP3bRw4cKgUxEul0vl5eUdDryhLp9snHJlInouGfvSsR+Gz3ZL0oIFC3TZZZdp165damtrC5oISIDzhdpBNdRfpvySRSJJ1b50sGY7JO3evVuLFy/WoEGDIlEPgBgKt4NqqL9M+SWLRMFVYTic7ZBUUlKi1atXR6AUALGUqoM9Al1J9b50CGa7T9KDDz6oSy+9VHV1dRo9erSOOOKIoOcXLlxodxMAoiCUDqqTJ08Oeq597CYgGaV6Xzr8h+2Q9Lvf/U4vvfSS+vTpo9WrVwclb8MwCEmAQ8WygyqhConG4/GoqKhIOTk5kr7sS9fZBQ1IXrZD0i233KJly5ZpyZIlSkuLyIgCAGKADqpA1+hLB9up5vPPP9e3v/1tAhKQYOigCgBds51sZs2apWeeeSYStQCIITqoRp9T7rsHIDy2T7e1trbqnnvu0YsvvqgxY8Z06Lh933332d0EgCihgyoAdM52SPrXv/6lsWPHSpI2btwY9FxnzfgAnIMOqgBgzXZIqq2tjUQdAOKIDqoA0BG9rQEAACyE1ZK0ePFi3X777crMzNTixYu7XJY+SYDzMY4RAHQUVkh688039cUXXwT+3Rn6JAEAgK86/HZHa9ascWw/yLBCUm1trX784x/rhhtuoE8SAADoserq6qC7cUyfPl0ul0vLly933BW1YfdJWrZsmZqamiJZCwCkPL/fL8MwZBiG/H5/vMsBIqq6ulolJSVBQ45IktfrVUlJiaqrq+NUmbWwQ5JT+y80NzfrtNNOk2EYeuutt+JdDgAA0Jen2BYtWmSZH9rnlZaWBp2KizdbV7c5sc/RTTfdpLy8vHiXAQAADlNXV6cdO3Z0+rxpmqqvr1ddXV0Mq+qarXGSTjrppG6D0v79++1sIiQvvPCCXnrpJVVVVemFF16I2XYBAEDXdu3aFdHlYsFWSFq2bFlglN542717t+bOnavnn39eRx11VLfLNzc3q7m5OfC4sbExmuUBAJAQonXlWW5ubkSXiwVbIenyyy/XwIEDI1VL2EzT1OzZs3XNNddo/Pjx+vDDD7t9TVlZmZYtWxb94gAASBDRvPKsoKBALpdLXq/Xsl+SYRhyuVwqKCiwtZ1ICrtPUiz6Iy1ZsiRwlUdn0+bNm/Wzn/1MBw8e1NKlS3u87qVLl8rn8wWm+vr6KL4TAECiaR9k1TRNZWZmxrucqIv2lWfp6elavny5pI4Zov1xeXm5o8ZLMswwL1NLS0tTQ0NDVFuSPvnkE+3bt6/LZU444QRddtll+uMf/xj0R29tbVV6erpmzpypFStWdLutxsZG5eTkyOfzKTs723btABAOv9+vrKwsSVJTU1NKfDkjunqyT7W2tio/P7/TjtXtrTzbt2+3HWLaW6sOD2Nut1vl5eVhtVZF8/s77JDkJB9//HFQn6KdO3dq2rRpqqys1KRJk+RyubpdByEJgBMQkhBpPdmnVq9erSlTpnS7rtraWk2ePNl2Te3fuZJUU1Njq99TNL+/bfVJcorjjz8+6HH7znDiiSf2KCABgFMkyu0akFxifeXZ4ft0YWGhY/dxW+MkAQAip7q6WiNHjgw8nj59uvLz8x03CjGSTyJeeRYLSXG6LRI43QYgnto7zX71kNze17KystJx97VC8mjvk9TdlWeR6JMkRfa0cjS/v2lJAoA4S8TbNSC5JOKVZ7FASAKAOEvE2zUg+Xg8HlVWVna4tZfL5UrZlsyk6LgNAIksEW/XgOTk8XhUVFQUsSvPEh0tSQAQZ3SahZMkypVnsUBIAoA4a79dQ2d3MjAMQ26321G3awBSASEJAOKMTrOAMxGSAMAB6DQLOA8dtwHAIeg0CzgLLUkA4CB0mgWcg5AEAABggZAEAADC5vf7ZRiGDMOQ3++PdzkRRUgCAACwQEgCAACwQEgCAACwQEgCAACwwDhJAOAgmZmZMk0z3mUAEC1JAAAAlghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFpIqJP35z3/WpEmTdOSRR6pfv36aMWNGvEsCAAAJqle8C4iUqqoqzZ07V3fddZfOPfdctbS0aOPGjfEuCwAAJKikCEktLS1atGiR7r33Xs2ZMycwf+TIkXGsCgAAJLKkON22YcMGeb1epaWlaezYscrNzdUFF1zQZUtSc3OzGhsbgyYAAIB2SRGSPvjgA0nSj370I/3gBz/Qn/70J/Xr10+TJ0/W/v37LV9TVlamnJycwOR2u2NZMgAAcDhHh6QlS5bIMIwup82bN6utrU2SdMstt+hb3/qWxo0bp4qKChmGod///veW6166dKl8Pl9gqq+vj+VbAwAADufoPknXX3+9Zs+e3eUyJ5xwgnbt2iUpuA9SRkaGTjjhBH388ceWr8vIyFBGRkbEagUAAMnF0SFpwIABGjBgQLfLjRs3ThkZGdqyZYvOPvtsSdIXX3yhDz/8UEOGDIl2mQAAJI3MzEyZphnvMhzB0SGpp7Kzs3XNNdfotttuk9vt1pAhQ3TvvfdKki699NI4VwcAABJRUoQkSbr33nvVq1cvXXnllfrss880adIk/fWvf1W/fv3iXRoAAEhAhkmbmiSpsbFROTk58vl8ys7Ojnc5AAAkBL/fr6ysLElSU1OTMjMzo/KazkTz+9vRV7cBAADES9KcbgMAAIkhUTqH05IEAABggZAEAABggZAEAABggZAEAABggZAEAABggZAEAABggZAEAADC1traGvj3mjVrgh4nOkISAAAIS3V1tUaOHBl4PH36dOXn56u6ujqOVUUOIQkAAISsurpaJSUl8nq9QfO9Xq9KSkqSIigRkgAAQEhaW1u1aNEiy1Gz2+eVlpYm/Kk3QhIAAAhJXV2dduzY0enzpmmqvr5edXV1Mawq8ghJAAAgJLt27Yrock5FSAIAACHJzc2N6HJORUgCAAAhKSgokMvlkmEYls8bhiG3262CgoIYVxZZhCQAABCS9PR0LV++XJI6BKX2x+Xl5UpPT495bZFESAIAACHzeDyqrKxUXl5e0HyXy6XKykp5PJ44VRY5hml1/V4KamxsVE5Ojnw+n7Kzs+NdDgAACaH9+1OSampqVFxcHNMWpGh+f9OSBAAAwnZ4ICosLEz4U2yHIyQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYICQBAABYSJqQtHXrVl1yySXq37+/srOzdfbZZ6u2tjbeZQEAgASVNCHpoosuUktLi/76179q/fr1OvXUU3XRRRepoaEh3qUBAIAElBQhae/evXrvvfe0ZMkSjRkzRsOHD9fdd9+tQ4cOaePGjfEuDwAAJKCkCEnHHnusTj75ZP3yl7+U3+9XS0uLHnvsMQ0cOFDjxo2zfE1zc7MaGxuDJgAAgHa94l1AJBiGoZdfflkzZsxQ3759lZaWpoEDB2rVqlXq16+f5WvKysq0bNmyGFcKAAAShaNbkpYsWSLDMLqcNm/eLNM0NX/+fA0cOFB1dXVau3atZsyYoYsvvli7du2yXPfSpUvl8/kCU319fYzfHQAAcDLDNE0z3kV05pNPPtG+ffu6XOaEE05QXV2diouLdeDAAWVnZweeGz58uObMmaMlS5Z0u63Gxkbl5OTI5/MFrQMAAHTO7/crKytLktTU1KTMzMyYbj+a39+OPt02YMAADRgwoNvlDh06JElKSwtuGEtLS1NbW1tUagMAAMnN0afbeuqMM85Qv379NGvWLL399tvaunWrbrzxRm3fvl0XXnhhvMsDAAAJKClCUv/+/bVq1So1NTXp3HPP1fjx4/Xqq6/qD3/4g0499dR4lwcAABKQo0+3hWL8+PF68cUX410GAABIEknRkgQAABBphCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALhCQAAAALveJdAAAASFyZmZkyTTPeZUQFLUkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWCEkAAAAWesW7AKcwTVOS1NjYGOdKAABAT7V/b7d/j0cSIenfDh48KElyu91xrgQAAIRq3759ysnJieg6DTMa0SsBtbW16aSTTtL69etlGEbMtz9hwgStW7cuIbcR6fXaXV9jY6Pcbrfq6+uVnZ0dsboQH7H4v5EoEv1v4cT641UTx/zIrc/n8+n444/XgQMHdPTRR0esLomWpIC0tDT17t074im0p9LT06P+hR6tbUR6vZFaX3Z2NiEpCcTi/0aiSPS/hRPrj1dNHPMjv760tMh3s6bj9mHmz5+f1NuO1jYivd54fg5wHvaH/0j0v4UT649XTRzzo7e+SOJ0G5JOY2OjcnJy5PP5HPerFQAQWdE85tOShKSTkZGh2267TRkZGfEuBQAQZdE85tOSBAAAYIGWJAAAAAuEJAAAAAuEJAAAAAuEJAAAAAuEJAAAAAuEJKSUP/3pTzr55JM1fPhwPfHEE/EuBwAQZd/85jfVr18/lZSUhPxahgBAymhpadHIkSNVW1urnJwcjRs3Tn/729907LHHxrs0AECUrF69WgcPHtSKFStUWVkZ0mtpSULKWLt2rU455RQdd9xxysrK0gUXXKCXXnop3mUBAKJo8uTJ6tu3b1ivJSQhYaxZs0YXX3yx8vLyZBiGnn/++Q7LPPTQQ8rPz1efPn00adIkrV27NvDczp07ddxxxwUeH3fccfJ6vbEoHQAQBrvHfbsISUgYfr9fp556qh566CHL55955hktXrxYt912mzZs2KBTTz1V06ZN0549e2JcKQAgEuJ93CckIWFccMEFuuOOO/TNb37T8vn77rtPc+fO1VVXXaWRI0fq0Ucf1VFHHaUnn3xSkpSXlxfUcuT1epWXlxeT2gEAobN73LeLkISk8Pnnn2v9+vUqKioKzEtLS1NRUZFef/11SdLEiRO1ceNGeb1eNTU16YUXXtC0adPiVTIAwIaeHPft6hWRtQBxtnfvXrW2tmrQoEFB8wcNGqTNmzdLknr16qX//d//1ZQpU9TW1qabbrqJK9sAIEH15LgvSUVFRXr77bfl9/vlcrn0+9//XmeccUaPtkFIQkr5xje+oW984xvxLgMAECMvv/xy2K/ldBuSQv/+/ZWenq7du3cHzd+9e7cGDx4cp6oAANESi+M+IQlJoXfv3ho3bpxeeeWVwLy2tja98sorPW5WBQAkjlgc9zndhoTR1NSkbdu2BR5v375db731lo455hgdf/zxWrx4sWbNmqXx48dr4sSJKi8vl9/v11VXXRXHqgEA4Yr3cZ/bkiBhrF69WlOmTOkwf9asWXrqqackSQ8++KDuvfdeNTQ06LTTTtMDDzygSZMmxbhSAEAkxPu4T0gCAACwQJ8kAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAAAAC4QkAPiKffv2aeDAgfrwww8lfTnqr2EY+vTTT6O63SVLlmjBggVR3QaAniMkAQjb7NmzZRhGh+n888+Pd2m23HnnnbrkkkuUn59ve127d+/WEUccoaefftry+Tlz5uj000+XJN1www1asWKFPvjgA9vbBWAfIQmALeeff7527doVNP3ud7+L6jY///zzqK370KFD+sUvfqE5c+ZEZH2DBg3ShRdeqCeffLLDc36/X88++2xgW/3799e0adP0yCOPRGTbAOwhJAGwJSMjQ4MHDw6a+vXrF3jeMAw98cQT+uY3v6mjjjpKw4cP18qVK4PWsXHjRl1wwQXKysrSoEGDdOWVV2rv3r2B5ydPnqxrr71WpaWlgSAhSStXrtTw4cPVp08fTZkyRStWrAicFvP7/crOzlZlZWXQtp5//nllZmbq4MGDlu+npqZGGRkZ+vrXv97pez506JAuuOACnXXWWYFTcE888YS+9rWvqU+fPhoxYoQefvjhwPJz5szRK6+8oo8//jhoPb///e/V0tKimTNnBuZdfPHFnbY6AYgtQhKAqFu2bJkuu+wy/fOf/9T06dM1c+ZM7d+/X5L06aef6txzz9XYsWP1xhtvaNWqVdq9e7cuu+yyoHWsWLFCvXv31muvvaZHH31U27dvV0lJiWbMmKG3335b8+bN0y233BJYPjMzU5dffrkqKiqC1lNRUaGSkhL17dvXsta6ujqNGzeu0/fy6aef6rzzzlNbW5v+8pe/6Oijj9ZvfvMb3Xrrrbrzzjv17rvv6q677tIPf/hDrVixQpI0ffp0DRo0KHDX8sNr8Xg8OvroowPzJk6cqB07dgT6QwGIIxMAwjRr1iwzPT3dzMzMDJruvPPOwDKSzB/84AeBx01NTaYk84UXXjBN0zRvv/12s7i4OGi99fX1piRzy5Ytpmma5jnnnGOOHTs2aJmbb77ZHDVqVNC8W265xZRkHjhwwDRN0/zHP/5hpqenmzt37jRN0zR3795t9urVy1y9enWn7+mSSy4xr7766qB5tbW1piTz3XffNceMGWN+61vfMpubmwPPn3jiieZvf/vboNfcfvvt5hlnnBF4vGTJEnPo0KFmW1ubaZqmuW3bNtMwDPPll18Oep3P5zMldVkjgNigJQmALVOmTNFbb70VNF1zzTVBy4wZMybw78zMTGVnZ2vPnj2SpLffflu1tbXKysoKTCNGjJAkvf/++4HXfbV1Z8uWLZowYULQvIkTJ3Z4fMoppwRadH79619ryJAhKiws7PT9fPbZZ+rTp4/lc+edd56GDRumZ555Rr1795b0Zb+i999/X3PmzAl6D3fccUdQ/VdffbW2b9+u2tpaSV+2IuXn5+vcc88N2saRRx4p6ctTegDiq1e8CwCQ2DIzMzVs2LAulzniiCOCHhuGoba2NklSU1OTLr74Yv3kJz/p8Lrc3Nyg7YTju9/9rh566CEtWbJEFRUVuuqqq2QYRqfL9+/fXwcOHLB87sILL1RVVZU2bdqk0aNHB+qXpMcff1yTJk0KWj49PT3w7+HDh6ugoEAVFRWaPHmyfvnLX2ru3Lkdamk/DTlgwIDQ3yyAiCIkAYir008/XVVVVcrPz1evXj0/JJ188smqqakJmrdu3boOy11xxRW66aab9MADD2jTpk2aNWtWl+sdO3asfv3rX1s+d/fddysrK0tTp07V6tWrNXLkSA0aNEh5eXn64IMPgjpgW5kzZ46+//3v6xvf+Ia8Xq9mz57dYZmNGzfqiCOO0CmnnNLlugBEH6fbANjS3NyshoaGoOnwK9O6M3/+fO3fv1/f+c53tG7dOr3//vt68cUXddVVV6m1tbXT182bN0+bN2/WzTffrK1bt+rZZ58NdIw+vHWmX79+8ng8uvHGG1VcXCyXy9VlPdOmTdM777zTaWvST3/6U82cOVPnnnuuNm/eLOnLjullZWV64IEHtHXrVv3rX/9SRUWF7rvvvqDXXnrppTriiCM0b948FRcXy+12d1h/XV2dCgoKAqfdAMQPIQmALatWrVJubm7QdPbZZ/f49Xl5eXrttdfU2tqq4uJijR49WqWlpTr66KOVltb5IWro0KGqrKxUdXW1xowZo0ceeSRwdVtGRkbQsnPmzNHnn3+uq6++utt6Ro8erdNPP13PPvtsp8vcf//9uuyyy3Tuuedq69at+u53v6snnnhCFRUVGj16tM455xw99dRTGjp0aNDrjjrqKF1++eU6cOBAp7U8/fTTmjt3brd1Aog+wzRNM95FAEAk3HnnnXr00UdVX18fNP9Xv/qVrrvuOu3cuTPQ4borf/7zn3XjjTdq48aNXQa1SHvhhRd0/fXX65///GdIpx4BRAf/CwEkrIcfflgTJkzQscceq9dee0333nuvrr322sDzhw4d0q5du3T33Xdr3rx5PQpI0pcdtN977z15vV7LU2LR4vf7VVFRQUACHIKWJAAJ67rrrtMzzzyj/fv36/jjj9eVV16ppUuXBkLGj370I915550qLCzUH/7wB2VlZcW5YgCJhJAEAABggY7bAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFghJAAAAFv4/6Zmkh+cbJ7gAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_3_30.spectrum * 1e4,\n", + " yerr=lagspec_3_30.spectrum_error * 1e4,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " color=\"k\",\n", + ")\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time Lag ($10^{-4}$ s)\")\n", + "plt.xlim([0.5, 10])\n", + "plt.semilogx()" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "30e4fea7", + "metadata": { + "id": "30e4fea7", + "outputId": "c7722841-f708-42a7-fef9-06e94b3eb031" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:37<00:00, 1.06it/s]\n" + ] + } + ], + "source": [ + "lagspec_01_1 = LagSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " ref_band=ref_band,\n", + ")\n", + "energies = lagspec_01_1.energy\n", + "energies_err = np.diff(lagspec_01_1.energy_intervals, axis=1).flatten() / 2" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "e36acc05", + "metadata": { + "id": "e36acc05", + "outputId": "143c4c06-c8f2-4f82-8871-3da7415c6017" + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Time lag (s)')" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG1CAYAAADpzbD2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYZElEQVR4nO3de1xU9bo/8M9awwwDA4xcBIRQULyiqXlBTDPKJGtnppW1O2XG7na0i5Q77Wae6piVt5Kdu9PO2r9ya1bb006zjLRTShc1CzQvaF5xGBEYBgbmtub3x2xGJ4ZxBmaYC5/36zWvYs13rXkWwszD8/2uZwk2m80GIiIiInJJDHQARERERMGMyRIRERGRG0yWiIiIiNxgskRERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0mS0RERERuRAQ6gHAgSRIqKysRGxsLQRACHQ4RERF5wGazQa/XIy0tDaLYdv2IyZIPVFZWIiMjI9BhEBERUTucPHkSl1xySZvPM1nygdjYWAD2b3ZcXFyAoyEiIiJP1NfXIyMjw/E53hYmSz7QMvUWFxfHZImIiCjEXGwJDRd4ExEREbnBZImIiIjIjZCbhisuLsYrr7wCjUaDoUOH4vXXX8fo0aPbHL9hwwY888wzOHbsGPr27YslS5bguuuuczzf0NCA+fPnY+PGjTh37hyysrLw8MMP44EHHvBp3FarFWaz2afHJN9SKBRur4YgIqKuKaSSpfXr16OoqAirV69Gbm4uVqxYgYKCAhw8eBDJycmtxu/cuRO33347Fi9ejD/84Q9Yu3Ytpk6dij179mDw4MEAgKKiInz11Vd47733kJmZiS+++AL/+Z//ibS0NEyZMqXDMdtsNmg0GtTV1XX4WORfoigiKysLCoUi0KEQEVEQEWw2my3QQXgqNzcXo0aNwqpVqwDY+xtlZGTgoYcewvz581uNnzFjBhobG/Hpp586to0ZMwbDhg3D6tWrAQCDBw/GjBkz8MwzzzjGjBgxApMnT8YLL7zgUVz19fVQq9XQ6XStFnifOXMGdXV1SE5ORnR0NPswBamWXllyuRw9e/bkvxMRURfg7vP7QiFTWTKZTNi9ezcWLFjg2CaKIiZOnIjS0lKX+5SWlqKoqMhpW0FBATZu3Oj4euzYsfjkk09wzz33IC0tDdu3b8ehQ4ewfPnyNmMxGo0wGo2Or+vr612Os1qtjkQpMTHRk9OkAOrevTsqKythsVggl8sDHQ4REQWJkFmgUV1dDavVipSUFKftKSkp0Gg0LvfRaDQXHf/6669j0KBBuOSSS6BQKHDttdeiuLgYV1xxRZuxLF68GGq12vFoqyFlyxql6Ohoj86RAqtl+s1qtQY4EiIiCiYhkyz5y+uvv47vvvsOn3zyCXbv3o2lS5di9uzZ+PLLL9vcZ8GCBdDpdI7HyZMn3b4Gp3RCA/+diIjIlZCZhktKSoJMJkNVVZXT9qqqKqSmprrcJzU11e34pqYmPPnkk/jnP/+J66+/HgBw6aWXYu/evXj11VcxceJEl8eNjIxEZGRkR0/JKyaLhOJtFQCA2fnZUER0+TyXiIioU4TMJ65CocCIESNQUlLi2CZJEkpKSpCXl+dyn7y8PKfxALB161bHeLPZDLPZ3OpycZlMBkmSfHwGREREFIpCprIE2C/znzlzJkaOHInRo0djxYoVaGxsxKxZswAAd911F9LT07F48WIAwCOPPIIJEyZg6dKluP7667Fu3Trs2rULb775JgD77UkmTJiAefPmISoqCr169cLXX3+Nv//971i2bFnAztMVSbKhvskMk1XCqVoDMhNVEEVOGxEREflbyFSWAHsrgFdffRXPPvsshg0bhr1792LLli2ORdwnTpzAmTNnHOPHjh2LtWvX4s0338TQoUPx4YcfYuPGjY4eSwCwbt06jBo1CnfccQcGDRqEl156CS+++KLPm1J2RIVWj79+cxSlR8/h+6PnsLLkMN7YfgQVWr1fX7e4uBiZmZlQKpXIzc3FDz/84Hb8vn37MH36dGRmZkIQBKxYscKj1/n4448xadIkJCYmQhAE7N2796L7PPfccxg2bFir7ceOHfP4GERERJ4IqcoSAMyZMwdz5sxx+dz27dtbbbvllltwyy23tHm81NRUrFmzxlfh+VyFVo81O46hWm+EUi6DXBmB+CgFyit1qNQ1YdblmchOdn+35PbwtgEoABgMBvTu3Ru33HIL5s6d6/FrNTY2Yty4cbj11ltx7733+uoUiIiIfCKkKktdhckiwWSR0GyyYlOZBtV6I7KSVJDL7NNuUQoZeiepUK03YnOZBs0mK0wW366xWrZsGe69917MmjULgwYNwurVqxEdHY233367zX1GjRqFV155BbfddptXC+DvvPNOPPvss20uqO+Iu+++G4IgtHq4SqyJiCgwTBYJy7cewvKth3z+eeYLIVdZ6gparnqrbzKj9Og5KOUy1BhMqKxrAgDsQg1EQYDRYsXxMgNqG02Ii5Jj7jX9fPL67WkAGqxWrlyJl156yfH1Sy+9hH/84x8YMGBAAKMiIqJQwmQpiJmsEixWCXKl638muUxEg9ECk9W3Wbi7BqAHDhzw6Wt1RFlZGWJiYpy2/f7uPS2NQwH72qi//vWv+PLLL9tsN0FERPR7TJaC0Oz8bADAqVoDGowWxEcpEKWQYRdqAAAjeyVAJgrQN5tR12RG4bgsXBIf/F3C33//fdx///2Orz/77DOMHz++3cfr378/PvnkE6dtp0+fxpVXXtlq7E8//YQ777wTq1atwuWXX97u1yQioq6HyVIQamk4mZmoQr/kWJRX6tA7SQXx3x2mZaIAUQC0eiOGpKt93kagPQ1APTFlyhTk5uY6vk5PT2/3sQB7763s7GynbRERrX+kNRoNpkyZgj/96U8oLCzs0GsSEVHXwwXeQUwUBRQMTkGCSoEKbQOMFiskmw36ZjMOaxuQoFJgUk6Kz/sttacBqCdiY2ORnZ3teERFRfkiXLeam5tx4403YsCAAUHXO4uIiEIDK0tBLjs5FrMuz8SmMg2Ol9mn5eqazBiSrsaknBS/tA0ALt4AFGjdBNRkMmH//v2O/z99+jT27t2LmJiYVhWgC9XU1ODEiROorKwEABw8eBCAva1DR9cW3X///Th58iRKSkpw9uxZx/aEhATHjXOJiIjcYbIUArKTY3H/+GjUNZpgskooHJfl9w7eM2bMwNmzZ/Hss89Co9Fg2LBhTg1AAXsT0AtvFVNZWYnhw4c7vn711Vfx6quvYsKECW4v1f/kk0+ckrDbbrsNALBw4UI899xzHTqPr7/+GmfOnMGgQYOctm/bts3l2iYiIqLfE2y/v3yIvFZfXw+1Wg2dToe4uDjH9ubmZvz222/IysqCUqns0GvwRrr+58t/LyIi8lygPuPa+vz+PVaWQoQiQvRZHyUiIiLyHMsTRERERG4wWSIiIiJyg8kSERERkRtMloiIiIjcYLJERERE5AaTJSIiIiI32DogVFhMwDdL7f8//jEggt2niYiIOgMrS0RERERuMFkKFTYJaK4DGrRA3QlAkvz6cm+88QYuvfRSxMXFIS4uDnl5efjss88uut+UKVPQs2dPKJVK9OjRA3feeafjnm8tfvnlF4wfPx5KpRIZGRl4+eWX3R7z2LFjEAQBe/fubfXclVdeiUcffdSbUyMiIvIKk6VQcPYgsGMl8Ns3wPEdwNdLgG+X2bf7ySWXXIKXXnoJu3fvxq5du3DVVVfhxhtvxL59+9zul5+fjw8++AAHDx7ERx99hCNHjuDmm292PF9fX49JkyahV69e2L17N1555RU899xzePPNN/12LkRERB3BZCnYnT0IfLca0JQB8iggOgGISgDO/GLf7qeE6YYbbsB1112Hvn37ol+/fnjxxRcRExOD7777zu1+c+fOxZgxY9CrVy+MHTsW8+fPx3fffQez2QwAeP/992EymfD2228jJycHt912Gx5++GEsW7aswzFv374dgiC0etx9990dPjYREXVdTJaCkcVkf5ibgX0bgcazQGI2IFMAEABFNJDY1759///ax1lMfgvHarVi3bp1aGxsRF5ensf71dTU4P3338fYsWMhl8sBAKWlpbjiiiugUJxfoF5QUICDBw+itra2Q3GOHTsWZ86ccTy++uorKJVKXHHFFR06LhERdW28Gi4YtVz11lxnn3qTRwGGc4DupH37CQCCAFiMQM1R+3PKbkD+Ap+GUVZWhry8PDQ3NyMmJgb//Oc/MWjQoIvu98QTT2DVqlUwGAwYM2YMPv30U8dzGo0GWVlZTuNTUlIcz8XHx7d53LFjx0IUnfP7pqYmDBs2DACgUCiQmpoKADh37hz+9Kc/4Z577sE999zj0fkSERG5wspSMLOYAMkCyOSun5fJ7c/7qarUv39/7N27F99//z0efPBBzJw5E/v37wcAPPDAA4iJiXE8LjRv3jz89NNP+OKLLyCTyXDXXXfBZrN1OJ7169dj7969To+RI0e2Gmc2mzF9+nT06tULK1eu7PDrEhFR18bKUjAa/5j9v3UnAFODfY2SItpeUQKAnmMAQQYY64GmWiBvNtCtp8/DUCgUyM7OBgCMGDECP/74I1auXIm//vWv+K//+i88/vjjLvdLSkpCUlIS+vXrh4EDByIjIwPfffcd8vLykJqaiqqqKqfxLV+3VIXakpGR4YinRVRUVKtxDz74IE6ePIkffvgBERH8EScioo7hJ0kwamk4mdAb6N7fvpg7sa996g2wJ0qCCOg1QNpQ+zjR/0VCSZJgNBoBAMnJyUhOTvZoHwCO/fLy8vDUU0/BbDY71jFt3boV/fv3dzsF56lly5bhgw8+wM6dO5GYmNjh4xERETFZCmaiCAy8AdCdBqoP2tcoyeT2ipJeA6gSgQF/8EuitGDBAkyePBk9e/aEXq/H2rVrsX37dnz++edt7vP999/jxx9/xLhx4xAfH48jR47gmWeeQZ8+fRwLw//4xz9i0aJFKCwsxBNPPIHy8nKsXLkSy5cv73DMX375Jf785z+juLgYSUlJ0Gg0AOzVJ7Va3eHjExGFI5NFQvG2CgDA7PxsKCK4Quf3+B0Jdt37A2MeAFKHAOYmwFBjn3pLGwrkPmB/3g+0Wi3uuusu9O/fH1dffTV+/PFHfP7557jmmmva3Cc6Ohoff/wxrr76avTv3x+FhYW49NJL8fXXXyMyMhIAoFar8cUXX+C3337DiBEj8Nhjj+HZZ5/Ffffd1+GYv/32W1itVjzwwAPo0aOH4/HII490+NhERNR1CTZfrLzt4urr66FWq6HT6RAXF+fY3tzcjN9++w1ZWVlQKpUdexFzM/DlQvti7rzZnTb11pX49N+LiChEBENlKVAxtPX5/XuchgsVgmhvDwDYF3MzUSIiIuoUTJZCRYTC532UiIiIgoEk2VDfZIbJKuFUrQGZiSqIohDosByYLBEREVHAVGj12FSmQenRc7BYJTQYLeiXHIuCwSnITo4NdHgAmCwRERFRgFRo9Viz4xiq9UYo5TLIlRGIj1KgvFKHSl0TZl2eGRQJExe+EBERhRGTRcLyrYewfOshmCxSoMNpU7PJik1lGlTrjchKUkEus0+7RSlk6J2kQrXeiM1lGjSbrAGOlJWlTsELDkMD/52IiDrPki0HUHr0HJRyGWoMJlTWNQEAdqEGoiDAaLHieJkBtY0mLJySE9BYWVnyo5YO1QaDIcCRkCdMJvs99mQyWYAjISIKfyarBItVclSUfk8uE2GRJJisga+OsbLkRzKZDN26dYNWqwVgb9ooCMGzup/OkyQJZ8+eRXR0NO8nR0TUCQrHZaHBaEF8lAJRChl2oQYAMLJXAmSiAH2zGXVNZhSOywpwpEyW/K7l5rAtCRMFL1EU0bNnTya0RESdIDNRhX7JsSiv1KF3kgriv997ZaIAUQC0eiOGpKuRmagKcKRMlvxOEAT06NEDycnJMJvNgQ6H3FAoFBDZ7JOIqFOIooCCwSmo1DWhQtsAo8UKuUyEvtkMrd6IBJUCk3JSgqLfEpOlTiKTybgWhoiIgk4gG0JmJ8di1uWZ2FSmwfEyAxqMFtQ1mTEkXY1JOeyzRERERAEWDA0hs5Njcf/4aNQ1mmCySigcl8UO3kRERBR4wdQQUhQFxEXZryC/JD46qBIlgK0DiIiIuhSTRfK4IaQksf8cwMoSERFRWLnYGqTibRWobzJ71BDypuHpyEiIDtSpBA0mS0RERGHC0zVIjoaQStdpgFwmosFoQaPJ0lmhBzUmS0RERGHA0zVIs/OzcarW4FFDSJWCaQLANUtEREQ+E6ib2HpzU1pFhOhoCFmlb4YoAKIgQBQEp4aQ/VNikd4tqtPOIZgxZSQiIgpx3t6UNpQaQgYDVpaIiIgCwJdVqPbclLalIeSgdDWazRJqDSZHQ8jObBsQClhZIiIiCnHtvSltKDSEDAYhV1kqLi5GZmYmlEolcnNz8cMPP7gdv2HDBgwYMABKpRJDhgzB5s2bW4359ddfMWXKFKjVaqhUKowaNQonTpzw1ykQERH5lKdrkFzdlLalIWRSTGRQNoQMBiGVLK1fvx5FRUVYuHAh9uzZg6FDh6KgoABardbl+J07d+L2229HYWEhfvrpJ0ydOhVTp05FeXm5Y8yRI0cwbtw4DBgwANu3b8cvv/yCZ555BkqlsrNOi4iIqENa1iAlqBSONUiSzQZ9sxmHtQ1cg9RBIZUsLVu2DPfeey9mzZqFQYMGYfXq1YiOjsbbb7/tcvzKlStx7bXXYt68eRg4cCCef/55XHbZZVi1apVjzFNPPYXrrrsOL7/8MoYPH44+ffpgypQpSE5O7qzTIiKiMNHSELK6wYhTtYZO7YDNNUj+EzLJkslkwu7duzFx4kTHNlEUMXHiRJSWlrrcp7S01Gk8ABQUFDjGS5KETZs2oV+/figoKEBycjJyc3OxceNGt7EYjUbU19c7PYiIqGur0Orx12+OovToOXx/9BxWlhzGG9uPoEKr77QY7GuQeiOvdyJysxLxyNV98cCEPkyUOihkkqXq6mpYrVakpKQ4bU9JSYFGo3G5j0ajcTteq9WioaEBL730Eq699lp88cUXuOmmmzBt2jR8/fXXbcayePFiqNVqxyMjI6ODZ0dERKGspSHk/tM6KOUyxKsUjoaQa3Yc69SEiWuQfC9kkiV/kCT7JZQ33ngj5s6di2HDhmH+/Pn4wx/+gNWrV7e534IFC6DT6RyPkydPdlbIREQURDpyU9pATtmRd0KmdUBSUhJkMhmqqqqctldVVSE1NdXlPqmpqW7HJyUlISIiAoMGDXIaM3DgQHz77bdtxhIZGYnIyMj2nAYREYWR9t6U1tN7uFFwCJnKkkKhwIgRI1BSUuLYJkkSSkpKkJeX53KfvLw8p/EAsHXrVsd4hUKBUaNG4eDBg05jDh06hF69evn4DIiIKBx52hCy5aa0wTRlR54JmcoSABQVFWHmzJkYOXIkRo8ejRUrVqCxsRGzZs0CANx1111IT0/H4sWLAQCPPPIIJkyYgKVLl+L666/HunXrsGvXLrz55puOY86bNw8zZszAFVdcgfz8fGzZsgX/+te/sH379kCcIhERhRBvbkqrkImtpuxqDCYA56fsKrQN2FymwZz8GK41CiIhlSzNmDEDZ8+exbPPPguNRoNhw4Zhy5YtjkXcJ06cgCieL5aNHTsWa9euxdNPP40nn3wSffv2xcaNGzF48GDHmJtuugmrV6/G4sWL8fDDD6N///746KOPMG7cuE4/PyIiCi0X3pS2vFKH3kkqiII9ybmwIeSQdDU2/nQa+maL11N2FHghlSwBwJw5czBnzhyXz7mqBt1yyy245ZZb3B7znnvuwT333OOL8IiIqIvx9Ka0//r5zPkpO6Xrj1+5TESD0eKYsqPgEHLJEhERUbBpaQi5qUyD42X2abmWhpCTcuyLtmfnqzyeslMpOu/jWREhYu41/Trt9UIRkyUiIiIfuNhNab2ZskvvFhXIU2mTySKheFsFAPt6LUVE29eJeTM22DFZIiIi8pGWhpAAXDaE9HTKriOLu1kp8r3QTfOIiIhCEO/hFnpYWSIiIupkF5uy+71wmtIKRUyWiIiIAuBiU3YUPJiaEhEREbnByhIREZGPcHF1eGJliYiIiMgNVpaIiIgooIK9IsdkiYiIKACCPUGg8zgNR0REROQGkyUiIqIgJ0k21DeZUd1gxKlaAyTJFuiQuhROwxERUZcSag0eK7R6bCrToPToOVisEhqMFvRLjkXB4BR2++4kTJaIiIiCVIVWjzU7jqFab4RSLoNcGYH4KAXKK3Wo1DXx9iidJLjTaSIioi7IZJHQbLJiU5kG1XojspJUkMvsHb6jFDL0TlKhWm/E5jINmk3WAEcb/lhZIiKioBNqU2W+VrytAvVNZpQePQelXIYagwmVdU0AgF2ogSgIMFqsOF5mQG2jCQun5AQ44vDWtX76iIioywuVxdImqwSLVXJUlH5PLhNhkSSYrFKnxRQq3ztfY2WJiIi6jFBZLD07Pxunag1oMFoQH6VAlEKGXagBAIzslQCZKEDfbEZdkxmF47I6JaZQ+d75AytLRETUKUwWCcu3HsLyrYdgsrivhvijgtGyWHr/aR2UchniVQrHYuk1O46hQqvv8Gv4iiJCRGaiCv2SY1Glb4YoAKIgQBQEyEQBogBo9Ub0T4lFZqLK7/GE0vfOH5gsERFRUKnQ6vHXb46i9Og5fH/0HFaWHMYb24+0+wO5I4ulvUnwfE0UBRQMTkGCSoEKbQOMFiskmw36ZjMOaxuQoFJgUk4KRNH1NJ0vePO9C+cpOU7DERFRp2ipFpmsEk7VGpCZqGr1Qe+PS+VDebF0dnIsZl2eiU1lGhwvs0/L1TWZMSRdjUk5/p/+8uZ7d9PwdGQkRPs1nkBhskRERH7nyXqX31cwagwmAOcrGBXaBmwu0+C+8dFQKmRevb5jsbTS9ceeXCaiwWjp1MXSnspOjsX946NR12iCySqhcFyWy0TTXzz93jWaLE7bPUmOQwWTJSIi8itPq0VLthzwS/UnGBdLe0sUBcRFyQEAl8RHd1rS4c33TqU4n1KE22JwrlkiIiK/8HatkL8ulQ+2xdKhxJvvXXq3KADhuRiclSUiIvILb9cKFY7L8lv1p2WxdKWuybFYWi4ToW82Q6s3trlYOpymktrL0++dRbJBskh+m0oNJCZLRETkN96sFWqpYJRX6tA7SQVRsCclF1YwhqSr21398XaxdLhNJXWEJ9+75VsPhexC+othskRERH7h7Vqh9lZ/AM9vj+LpYmnewLY1T753obyQ3h0mS0RE5BcXrnfxtFrUGZfKX2yxtD+vygt17r534bCQvi1MloiIyG/aUy0K9KXy/roqL9y1JzkOFUyWiIjIr9pTLQrUpfJAcE4lKSJEzL2mX6e9Xnt1ZCo1mDFZIiIiv/N3tcibq9Yulnj486q8riDQXcf9gckSERF1Cn9Vi3x91Vq4TiV1pkBPpfoakyUiIgo6nk47+eOqtXCdSupsgZxK9TV28CYiok7RkgDNvaZfm5f2e8qb7uCSZPP6+C1TSYPS1Wg2S6g1mBxTSV2xbUBXx8oSERGFHG+6g980PB0ZCdFev0a4TSVR+zFZIiKikOTpVWuNJku7XyOcppKo/ZgsERFRu3naOdvXvGmAqFLwo446hmuWiIgo5FzYALFK3wxRAERBgCgITlet9U+JRXq3qECHSyGOyRIREbVbS3+j6gYjTtUa2rWYur1arlpLUCkcV61JNhv0zWYc1jbwqjXyGdYmiYioXXzd36g9/N0AMVQ6Z5N/MVkiIiKv+aO/UXvxqjXyNyZLRETkMZNFgiTZnPob1RhMAM73N6rQNmBzmQZz8mM6LWHhVWudo6tW2pgsERGRxzqjvxFRsOECbyIi8oqjv5HMdfVGLhNhkaQO9TciCiasLBERkceCtb9RV50eos7ByhIREXmM/Y2oK2JliYiIvNLS36hS1+TobySXidA3m6HVG9nfiMIOK0tEROS1lv5Gg9LVaDZLqDWYHP2NOrNtAFFnYGWJiIiceHq/N/Y3oq6CyRIREbUb+xtRVxBy03DFxcXIzMyEUqlEbm4ufvjhB7fjN2zYgAEDBkCpVGLIkCHYvHlzm2MfeOABCIKAFStW+DhqIqLAMVkkLN96CMu3HoLJIl10vDf3e2u5Cm3uNf3arEARhbqQ+slev349ioqKsHDhQuzZswdDhw5FQUEBtFqty/E7d+7E7bffjsLCQvz000+YOnUqpk6divLy8lZj//nPf+K7775DWlqav0+DiChoVWj1+Os3R1F69By+P3oOK0sO443tR1Ch1Qc6NKKAEWw2W+fdIrqDcnNzMWrUKKxatQoAIEkSMjIy8NBDD2H+/Pmtxs+YMQONjY349NNPHdvGjBmDYcOGYfXq1Y5tp0+fRm5uLj7//HNcf/31ePTRR/Hoo496HFd9fT3UajV0Oh3i4uLaf4JERH7QbLJiyZYDF11XdOH93qr0RshlAnJ6qFGlb0aCSsGF2xR2PP38DpnKkslkwu7duzFx4kTHNlEUMXHiRJSWlrrcp7S01Gk8ABQUFDiNlyQJd955J+bNm4ecnByPYjEajaivr3d6EBEFI08qRSaLhGaT1el+by3duVvu91atN2JzmcbtlBxRuAqZBd7V1dWwWq1ISUlx2p6SkoIDBw643Eej0bgcr9FoHF8vWbIEERERePjhhz2OZfHixVi0aJEX0RMRdb4LK0VKuQxyZQTioxQor9ShUtfkqBTxfm9E7oVMZckfdu/ejZUrV+Kdd96BIHh+BceCBQug0+kcj5MnT/oxSiIi73laKWo2WQHwfm9E7oRMZSkpKQkymQxVVVVO26uqqpCamupyn9TUVLfjv/nmG2i1WvTs2dPxvNVqxWOPPYYVK1bg2LFjLo8bGRmJyMjIDpwNEZF/LdlywKNKUW2jCQuuGxiU93sjChYhU1lSKBQYMWIESkpKHNskSUJJSQny8vJc7pOXl+c0HgC2bt3qGH/nnXfil19+wd69ex2PtLQ0zJs3D59//rn/ToaIyM88rRSZrBLv90Z0ESH1J0JRURFmzpyJkSNHYvTo0VixYgUaGxsxa9YsAMBdd92F9PR0LF68GADwyCOPYMKECVi6dCmuv/56rFu3Drt27cKbb74JAEhMTERiYqLTa8jlcqSmpqJ///6de3JERD5UOC7Lo0pR4bgsALzfG5E7IZUszZgxA2fPnsWzzz4LjUaDYcOGYcuWLY5F3CdOnIAoni+WjR07FmvXrsXTTz+NJ598En379sXGjRsxePDgQJ0CEVGnaKkUlVfq0DtJBfHf6zIvrBQNSVcjM1Hl2Kflfm+byjQ4Xmaflmu539uknBS2DaAuK6T6LAUr9lkiomDk3DepGXKZiEE94hyVorb6Jnnal4ko1IVdnyUiIvJOS6VoULoazWYJtQaTo1LkrsFky/3ekmIieb83IoTYNBwREXknOzkW94+PRl2jyeNKUcv93ojIjskSEVGYa6kUAWCliKgdmCwREYU5VoqIOobJEhFRkDBZJBRvqwAAzM7PhiKCy0qJggF/E4mIgoQk2VDfZEZ1gxGnag28aS1RkGBliYgoCFRo9dhUpkHp0XOwWCU0GC3olxyLgsGu+xuxCkXUebxKln799VesW7cO33zzDY4fPw6DwYDu3btj+PDhKCgowPTp03nPNCIiL13YD0kpl0GujEB8lALllTpU6prcXuZPRP7n0Z8ie/bswcSJEzF8+HB8++23yM3NxaOPPornn38e//Ef/wGbzYannnoKaWlpWLJkCYxGo7/jJiIKeSaLhGaTFZvKNKjWG5GVpHLcyy1KIUPvJBWq9UZsLtO0mpLjlB1R5/GosjR9+nTMmzcPH374Ibp169bmuNLSUqxcuRJLly7Fk08+6asYiYjCUvG2CtQ3mVF69ByUchlqDCZU1jUBAHahBqIgwGix4niZATcNT0dGQjQA76fsiKhjPEqWDh06BLlcftFxeXl5yMvLg9ls7nBgRERdgckqwWKVIFe6fjuWy0Q0GC1oNFkAcMqOKBA8SpYulijV1dU5VZw8SayIiLq62fnZOFVrv2FtfJQCUQoZdqEGADCyVwJkogB9sxl1TWYoZGKrKbsagwnA+Sm7Cm0DNpdpcN/4aCgVskCeGlFY8fryiSVLlmD9+vWOr2+99VYkJiYiPT0dP//8s0+DIyIKZ4oIEZmJKvRLjkWVvhmiAIiCAFEQIBMFiAKg1RvRPyUWG386jSVbDuCzsjOo0hux+0QtKuuaUFnXhF3Ha7DreC2q9M3YXHYGS7YcCPSpEYUVr5Ol1atXIyMjAwCwdetWbN26FZ999hkmT56MefPm+TxAIqJwJooCCganIEGlQIW2AUaLFZLNBn2zGYe1DUhQKTApJwWCIJyfspO5vl2JXCbCIkkwWaVOPgui8OZ1nyWNRuNIlj799FPceuutmDRpEjIzM5Gbm+vzAImIwl12cixmXZ6JTWUaHC+zT8vVNZkxJF2NSTn2Rduz81UeT9kVjssK8BkRhRevk6X4+HicPHkSGRkZ2LJlC1544QUAgM1mg9Vq9XmAREShzNPmkdnJsbh/fDTqGk0wWSUUjstCZqLKcdPbC6fsyit16J2kgijYn7twym5IuhqZiarOOTmiLsLrZGnatGn44x//iL59++LcuXOYPHkyAOCnn35Cdna2zwMkIgplLf2QTFYJp2oNTgnQ74migLgo+wUyl8RHtxrXMmVXqWtyTNnJZSL0zWZo9UbHlF1bxyei9vE6WVq+fDkyMzNx8uRJvPzyy4iJiQEAnDlzBv/5n//p8wCJiEKVt/2QFBEi5l7Tz+0xPZmyIyLfEmw2G9u+dlB9fT3UajV0Oh3i4uICHQ4RBYEL+yFV6Y2QywTk9FCjSt+MBJWiw/2Qmk1WLNlywOWUHRF5xtPPb4+uhvvuu+88fmGDwYB9+/Z5PJ6IKJx05BYm3lAqZFg4JQcv3jQEvbvHMFEi8iOPkqU777wTBQUF2LBhAxobG12O2b9/P5588kn06dMHu3fv9mmQREShonhbhcf9kE7/+9YmRBTcPFqztH//frzxxht4+umn8cc//hH9+vVDWloalEolamtrceDAATQ0NOCmm27CF198gSFDhvg7biKioOXtLUyIKLh5vWZp165d+Pbbb3H8+HE0NTUhKSkJw4cPR35+PhISEvwVZ1DjmiUiamGy2K96W1ly+Hw/pOOu+yE9Pqm/4+a4RNT5PP389vpquJEjR2LkyJEdCo6IKFx50w8pvVtUgKMlIk94nSwREZF77IdEFF68vjccERFdXEs/pEHpajSbJdQaTI5+SB1tG0BEnYuVJSIiP7nYLUyIKDQwWSIi8qOWfkhEFLo4DUdERETkhteVpddee83ldkEQoFQqkZ2djSuuuAIymazDwREREREFWrtupHv27FkYDAbEx8cDAGpraxEdHY2YmBhotVr07t0b27ZtQ0ZGhs8DJiLyNd5njYjc8Xoa7r//+78xatQoHD58GOfOncO5c+dw6NAh5ObmYuXKlThx4gRSU1Mxd+5cf8RLRORTFVo9/vrNUZQePYfvj57DypLDeGP7EVRo9S7HN5usWPTJPjz1zzIcPdvQofu7EVFo8LqDd58+ffDRRx9h2LBhTtt/+uknTJ8+HUePHsXOnTsxffp0nDlzxpexBi128CYKTRVaPdbsOIZqvRFVeiPkMgE5PdSo0jcjQaVodYl/hVaPTWUafFZ2BharhJx0Nfolx6JgcApbARCFIE8/v72uLJ05cwYWS+v7GVksFmg0GgBAWloa9HrXf5UREQWaySKh2WTFpjINqvVGZCWpIJfZp92iFDL0TlKhWm/E5jINmk1WAOcTq/2ndVDKZYhXKRAfpUB5pQ5rdhxrsxJFRKHP6zVL+fn5uP/++/HWW29h+PDhAOxVpQcffBBXXXUVAKCsrAxZWVm+jZSIyEeKt1WgvsmM0qPnoJTLUGMwobKuCQCwCzUQBQFGixXHywyobTThiWsHOCVWNQYTgPOJVYW2AZvLNLhvfDSUCl7cQhRuvE6W/va3v+HOO+/EiBEjIJfLAdirSldffTX+9re/AQBiYmKwdOlS30ZKRORDJqsEi1WCXOn6bVAuE9FgtMBklbBkywGPEyv2VCIKP14nS6mpqdi6dSsOHDiAQ4cOAQD69++P/v37O8bk5+f7LkIiIh+bnZ+NU7UGNBgtiI9SIEohwy7UAABG9kqATBSgbzajrsmMwnFZ+Nu3v3mcWBFR+Gl3B+8BAwZgwIABvoyFiKhTKCJEZCaq0C85FuWVOvROUkEU7GuWZKIAUQC0eiOGpKuRmahC4bgsjxMrIgo/7UqWTp06hU8++QQnTpyAyWRyem7ZsmU+CYyIyJ9EUUDB4BRU6ppQoW2A0WKFXCZC32yGVm9EgkqBSTkpEEXBq8SKiMKP18lSSUkJpkyZgt69e+PAgQMYPHgwjh07BpvNhssuu8wfMRIR+UV2cixmXZ6JTWUaHC+zT8vVNZkxJF2NSTnn2wF4k1gRUfjxus/S6NGjMXnyZCxatAixsbH4+eefkZycjDvuuAPXXnstHnzwQX/FGrTYZ4kotEmSDafrmtBoskCliEB6tyiXiY9TnyVJQk6aGv1TYp0SKyIKHZ5+fnudLMXGxmLv3r3o06cP4uPj8e233yInJwc///wzbrzxRhw7dqyjsYccJktEXQdvjUIUPjz9/PZ6Gk6lUjnWKfXo0QNHjhxBTo79Utnq6up2hktEFBqUChnbAxB1MV4nS2PGjMG3336LgQMH4rrrrsNjjz2GsrIyfPzxxxgzZow/YiQiIiIKGK+TpWXLlqGhoQEAsGjRIjQ0NGD9+vXo27cvr4QjIiKisOP1miVqjWuWiIiIQo/f1iwREYUCT69wIyK6GI+Spfj4eAiCZ28yNTU1HQqIiKijnC7xt0rISVejX3IsCgbzEn8i8p5HydKKFSv8HAYRkW9UaPVYs+MYqvVGKOUyyJURiI9SoLxSh0pdE2ZdnsmEiYi84lGyNHPmTH/HQUTk1sWm1UwWCZJkw6YyDar1RmQlqVBjsLc5iVLI0DtJhQptAzaXaTAnP4ZTckTkMTHQAXiruLgYmZmZUCqVyM3NxQ8//OB2/IYNGzBgwAAolUoMGTIEmzdvdjxnNpvxxBNPYMiQIVCpVEhLS8Ndd92FyspKf58GEXmhQqvH69sqcO/fd2HO+3vw6hcH8cb2I6jQ6h1jirdVYMmWA/is7Ayq9EbsPlGLyromVNY1YdfxGuw6XosqfTM2l53B6bqmAJ4NEYWakEqW1q9fj6KiIixcuBB79uzB0KFDUVBQAK1W63L8zp07cfvtt6OwsBA//fQTpk6diqlTp6K8vBwAYDAYsGfPHjzzzDPYs2cPPv74Yxw8eBBTpkzpzNMiIjdaptX2n9ZBKZchXqVwTKut2XHMKWEyWSVYrBLkMtdVI7lMhEWS0GiydFb4RBQGQqp1QG5uLkaNGoVVq1YBACRJQkZGBh566CHMnz+/1fgZM2agsbERn376qWPbmDFjMGzYMKxevdrla/z4448YPXo0jh8/jp49e3oUF1sHEPlHs8mKv35zFPtP65CVpMLuE7UAgJG9EiAKQIW2ATnpatw3vjdEUcCpWgNWlhxGfJQCUQoZdh2vcYyXiQL0zWbUNZnx+KT+yEiIDuSpEVEQ8PTzO2QqSyaTCbt378bEiRMd20RRxMSJE1FaWupyn9LSUqfxAFBQUNDmeADQ6XQQBAHdunVrc4zRaER9fb3Tg4h8z9NptSVbDkARISIzUYV+ybGo0jdDFABRECAKAmSiAFEAtHoj+qfEIr1bVKBPjYhCSLuTpYqKCnz++edoarLP/fu7QFVdXQ2r1YqUlBSn7SkpKdBoNC730Wg0Xo1vbm7GE088gdtvv91thrl48WKo1WrHIyMjw8uzISJPeDqtZrJKAABRFFAwOAUJKgUqtA0wWqyQbDbom804rG1AgkqBSTkpXNxNRF7xuinluXPnMGPGDHz11VcQBAGHDx9G7969UVhYiPj4eCxdutQfcfqd2WzGrbfeCpvNhjfeeMPt2AULFqCoqMjxdX19PRMmIj8oHJeFBqPl/LQaXE+rFY7LcuyTnRyLWZdnYlOZBsfLDGgwWlDXZMaQdDUm5bDPEhF5z+tkae7cuYiIiMCJEycwcOBAx/YZM2agqKjIb8lSUlISZDIZqqqqnLZXVVUhNTXV5T6pqakejW9JlI4fP46vvvrqouuOIiMjERkZ2Y6zICJvtEyrlVfq0DtJBfHfzXEvnFYbkq5GZqLKab/s5Fg8lB+DacPT2cGbiDrM62m4L774AkuWLMEll1zitL1v3744fvy4zwL7PYVCgREjRqCkpMSxTZIklJSUIC8vz+U+eXl5TuMBYOvWrU7jWxKlw4cP48svv0RiYqJ/ToCIvNaRaTVRFJCREI0BqXHISIhmokRE7eZ1ZamxsRHR0a2vIqmpqfF7taWoqAgzZ87EyJEjMXr0aKxYsQKNjY2YNWsWAOCuu+5Ceno6Fi9eDAB45JFHMGHCBCxduhTXX3891q1bh127duHNN98EYE+Ubr75ZuzZsweffvoprFarYz1TQkICFAqFX8+HiC6O02pEFGheJ0vjx4/H3//+dzz//PMAAEEQIEkSXn75ZeTn5/s8wAvNmDEDZ8+exbPPPguNRoNhw4Zhy5YtjkXcJ06cgCieL5aNHTsWa9euxdNPP40nn3wSffv2xcaNGzF48GAAwOnTp/HJJ58AAIYNG+b0Wtu2bcOVV17p1/MhIs9wWo2IAsnrPkvl5eW4+uqrcdlll+Grr77ClClTsG/fPtTU1GDHjh3o06ePv2INWuyzREREFHr81mdp8ODBOHToEMaNG4cbb7wRjY2NmDZtGn766acumSgRERFReAupDt7BipUlIiKi0OPp57fXa5YAe/PGX375BVqtFpIkOT3H+6oRERFROPE6WdqyZQvuuusuVFdXt3pOEARYrVafBEZEREQUDLxes/TQQw/hlltuwZkzZyBJktODiRIRERGFG6+TpaqqKhQVFbW65xoRERFROPI6Wbr55puxfft2P4RCREREFHy8vhrOYDDglltuQffu3TFkyBDI5XKn5x9++GGfBhgKeDUcERFR6PHb1XD/+Mc/8MUXX0CpVGL79u0QhPMddAVB6JLJEhEREYUvr5Olp556CosWLcL8+fOdbi1CREREFI68TpZMJhNmzJjBRImIOkySbDhd18T7vRFRUPM6WZo5cybWr1+PJ5980h/xEFEXUaHV4/PyKhw524BmixXKCBn6dI9BweAUZCfHBjo8IiIHr5Mlq9WKl19+GZ9//jkuvfTSVgu8ly1b5rPgiCg8VWj1WLPjGKr1RlTpjZDLBOT0UKO8UodKXRNmXZ7JhImIgobXyVJZWRmGDx8OACgvL3d67sLF3kREv2eySJAkGzaVaVCtNyIrSYUagwkAEKWQoXeSChXaBmwu0+C+8dFQKmQBjpiIqB3J0rZt2/wRBxF1AcXbKlDfZEbp0XNQymWoMZhQWdcEANiFGoiCAKPFiuNlBtQ2mrBwSk6AIyYiakdTSiKijjBZJVisEuQy15VouUyERZJgskounyci6mweVZamTZuGd955B3FxcZg2bZrbsR9//LFPAiOi8DM7Pxunag1oMFoQH6VAlEKGXagBAIzslQCZKEDfbEZdkxmF47ICHC0RkZ1HyZJarXasR1Kr1X4NiIjClyJCRGaiCv2SY1FeqUPvJBXEf7+3yEQBogBo9UYMSVcjM1EV4GiJiOw8SpbWrFmD//qv/8Ljjz+ONWvW+DsmIgpjoiigYHAKKnVNqNA2wGixQi4ToW82Q6s3IkGlwKScFPZbIqKg4fG94WQyGc6cOYPk5GR/xxRyeG84ovM8bTR5YZ8lo8WKyAgZspNjMCmHfZaIqHP4/N5wXt5vl4i6IG8aTWYnx6L3lTHs4E1EQc+r1gHso0REbWlPo0lRFJCREB2giImIPONVstSvX7+LJkw1NTUdCoiIQos3jSbn5MewckREIcerZGnRokW8Go6InHjTaPKm4emsJBFRyPEqWbrtttu4wJuIWnE0mlS6fkuRy0Q0GC1oNFk6OTIioo7zOFnieiUicsWbRpMqhdd3WCIiCjiPb3fCq+GIyJULG01W6ZshCoAoCBAFwanRZP+UWKR3iwp0uEREXvP4zzxJ4n2aiMg1NpokonDGmjgR+UR2cixmXZ7p1GhS32zBkHQ1G00SUUhjskREF+VpV242miSicMRkiYjc8qYrN8BGk0QUfjxe4E1EXU9LV+5fTtXhaHUjzuqNiFPKUV6pw5odx1Ch1Qc6RCIiv2OyREStmCwSmk1Wp67ccpl9Kq2lK3e13ojNZRpIEq+UJaLwxmk4ImqFXbmJiM5jZYmIXHJ05Za5Xpwtl4mwSBK7chNR2GNliYhaYVduIqLzWFkiolbYlZuI6Dz+SUhELrErNxGRHZMlImoTu3ITETFZIqKLYFduIurqmCwR0UWxKzcRdWVc4E1ERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0mS0RERERu8Go4oi5IkmxsBUBE5CEmS0RdTIVW72gy2WyxQhkhQ5/uMSgYzCaTRESuMFkKNZIE6E4CpgZAEQOoMwCxjdlUf43197HJbyq0eqzZcQzVeiOq9EbIZQJyeqhRXqlDpa4Jsy7PZMJERJ0vyD8nmCyFkrMHgV//BVQfBizNQIQSSOoLDLwB6N6/c8b6+9ihmOD5Mw4fajZZsalMg2q9EVlJKtQYTACAKIUMvZNUqNA2YHOZBveNj4ZSIfN7PEQ+FSwftvxD0nvefk4EQMglS8XFxXjllVeg0WgwdOhQvP766xg9enSb4zds2IBnnnkGx44dQ9++fbFkyRJcd911judtNhsWLlyI//mf/0FdXR0uv/xyvPHGG+jbt29nnI7nzh4EvlsNGM4B6nRArgLMjcCZXwDdaWDMA+d/qPw1tjOOHWoJnj/jAHz6xrtkywGUHj0HpVyG2sZmSLUnEY0mHLfEoyYiGc1WG46XGVDbaMLCKTl+i6NTxnaFOLwRLDH7a2yw/FEWqn9IBpK3nxMBElLJ0vr161FUVITVq1cjNzcXK1asQEFBAQ4ePIjk5ORW43fu3Inbb78dixcvxh/+8AesXbsWU6dOxZ49ezB48GAAwMsvv4zXXnsN7777LrKysvDMM8+goKAA+/fvh1Kp7OxTbM1iAmwSsG8j0HgWSOoPCP9eiCtXAYl9geqDwP7/BcY+bN/uj7GC6J84xj9u/yUOxQTPn3G0jPfhG6/JKsFilZAZUYnRjTsRbzkGBUyQNUThTERPfK/MQ7mUCpNV8vrYQTW2K8QBeP6BGCwx+3NsMPxRFqp/SAKBS9LNzZ5/psgD+3ks2Gw2W0Aj8EJubi5GjRqFVatWAQAkSUJGRgYeeughzJ8/v9X4GTNmoLGxEZ9++qlj25gxYzBs2DCsXr0aNpsNaWlpeOyxx/D4448DAHQ6HVJSUvDOO+/gtttu8yiu+vp6qNVq6HQ6xMXF+eBML7BtMdBcB/z2DSCPAiIiW4+xGAFzE5A13v61P8Yqu/knjlv/DqgvAXasBDRlzr8wAGCz2X9helx6PgnzdGxLguePY/srjoslj7rTQHSiZ2+8vxt79GwD1m3+EtfU/xOxkg6Hm7vBKESiZ5wAtakK9UIstsZNw23XTUTv7jFeHTtoxnaFOFrGe/KBGCwx+2Nsyx+SAf698ioOb947/BnzhQKZpH/2xPnPCZnCflzAfkxBcP5Mmbyk9Wv4gKef3yFTWTKZTNi9ezcWLFjg2CaKIiZOnIjS0lKX+5SWlqKoqMhpW0FBATZu3AgA+O2336DRaDBx4kTH82q1Grm5uSgtLW0zWTIajTAajY6v6+vr23tanrGYAMkCyOSun5fJAaPePg5o31ibrfUP6u/HXhiHJ+M9GVtaDEQozv/CNNW4OH8jUHPU/gYAeD729wmeL4/trzhyptmTRz9UBzPjZMiXvoPYfA7n1Nkwmuw/wxZZFGqUmVDoDuOqmO+RGVcQPBVNb8b6q/oZLHF4W4X15q/2YPneeTP22+VB8XvlVRzevHf4M+aWKo2/KlyeHtfbz7YACplkqbq6GlarFSkpKU7bU1JScODAAZf7aDQal+M1Go3j+ZZtbY1xZfHixVi0aJHX59Au4x8D6k7Ys/ioBCDSxZVKxnqgqRbIm23/2h9ju/X0TxwRCv8mg52RaPoyDj8mjyKAHP1O/GJNQF11FbrLJUQINpjrBOjNIroJIi7Vfwvxq+eCJ9H0ZmywxOyvOLz98PxyYeBj9vf3OQh+r7yKoyN/SBrOua68tCfma573PDn2JkmPz/Iu6c6b7d1nSgCFTLIUTBYsWOBUsaqvr0dGRoZ/XixCAST0tmfhZ34BlOrWZVu9Bkgbah8H+GesKPonjjGzAd2p0Erw/BmHn5PHONGIQd2sqDBYUGuKgMUGRAhAitKCPtES4izGjiea3lQdfXx+IZcc+7MK620MwfK983SsN39IduT36mI/z/76g/b3MQuC/b3EFzF/s9Q5OXaXiHmTpFstgFHneYJXsNi7z5QACplkKSkpCTKZDFVVVU7bq6qqkJqa6nKf1NRUt+Nb/ltVVYUePXo4jRk2bFibsURGRiIy0sU6HH8RRXuZU3caOHsAiEsHFNGAyQDUnwZUicCAP5yfN/bXWH/EIVf6Lxn0V4Lnzzj8mTz+e2xCVAJGKWJQb7TAbJEgjxARFxkBwaQHmnoEV6LpzdhgiTlYqrDe/NUeLN87b8Z684ekP3+v/PUHrT9jLtvgeSLmTYUra7x3CZ63nykBFDLJkkKhwIgRI1BSUoKpU6cCsC/wLikpwZw5c1zuk5eXh5KSEjz66KOObVu3bkVeXh4AICsrC6mpqSgpKXEkR/X19fj+++/x4IMP+vN0vNe9v73M2TJfrK+0zxenDbX/MF04X+yvsf46tj+TwVBLNP2ZPF4wVug+AOroiLbHBkui6c3YYIk5WKqw3sQQLN87b8cGy+9VqP0h2ZGqnLsEaOjt9kXf3iR43n4GBUjIJEsAUFRUhJkzZ2LkyJEYPXo0VqxYgcbGRsyaNQsAcNdddyE9PR2LFy8GADzyyCOYMGECli5diuuvvx7r1q3Drl278OabbwIABEHAo48+ihdeeAF9+/Z1tA5IS0tzJGRBpXt/e8nTkysR/DXWX8cOtQTPn3GEWoLn7zhCMeZg+PD0NoZg+d55W2kIht8rf713+Ctm0U9Vuah4+/u7t1Nr3n4GBUBItQ4AgFWrVjmaUg4bNgyvvfYacnNzAQBXXnklMjMz8c477zjGb9iwAU8//bSjKeXLL7/ssinlm2++ibq6OowbNw5/+ctf0K9fP49j8mvrgK4mFJsD+isOV1eedO/nOhHz19hgiSMUY/bXsS9caOvqAzH3gYtfwRTs3ztvYwYC/3vlbRzBELOnP0uSBHy7zJ4AdR/QOgE6e8CeAF0+t/VicE9+RgPI08/vkEuWghGTJfKbUEvwgmVsuMfh7Yd4MMTsz7HeCpY4vNGZXccDkaQHCJOlTsRkiYg6XbB8iFPoC5YkPQDCriklERFdQBSB+F6BjoLCgac/S96uLQqjn1EmS0REROSZMEqAvBFc9TAiIiKiIMNkiYiIiMgNJktEREREbjBZIiIiInKDyRIRERGRG0yWiIiIiNxg6wCiMCFJNpyua0KjyQKVIgLp3aIgisLFdyQiIreYLBGFgQqtHp+XV+HI2QY0W6xQRsjQp3sMCganIDvZxY0viYjIY5yGIwpxFVo91uw4hl9O1eFodSPO6o2IU8pRXqnDmh3HUKHVBzpEIqKQxmSJKESZLBKaTVZsKtOgWm9EVpIKcpl92i1KIUPvJBWq9UZsLtOg2WQNcLRERKGL03BEIap4WwXqm8woPXoOSrkMNQYTKuuaAAC7UANREGC0WHG8zIDaRhMWTskJcMRERKGJlSWiEGaySrBYJUdF6ffkMhEWSYLJKnVyZERE4YOVJaIg5u4Kt9n52ThVa0CD0YL4KAWiFDLsQg0AYGSvBMhEAfpmM+qazCgclxXI0yAiCmlMlog6yF+X7F/sCjdFhIjMRBX6JceivFKH3kkqiIL9dWWiAFEAtHojhqSrkZmo6nA8RERdFZMlog7w1yX7LVe4VeuNqNIbIZcJyOmhRnmlDpW6Jsy6PBPZybEQRQEFg1NQqWvC0epG5KTFIUohg8FkwRldMxJUCkzKSWG/JSKiDuCaJaJ2au8l+5Jkw8kaAw5o6nGyxgBJsjme8+YKt5b9spNjMevyTAxOU6POYMax6kbUGcwYkq52JFVERNR+rCwRtcPvE5oagwnA+YSmQtuAzWUa3Dc+GkqFzLHfxSpR3lzhdtPwdGQkRAOwJ0y9r4xhB28iIj9gskTUDku2HPD6kn1PptaAC65wU7r+9ZTLRDQYLWg0WZy2i6LgSJ6IiMh3mCwRtYOnCY3JKsFkkSBJNo8qUQ9O6INKXZNHV7ipFPz1JSLqDHy3JXLhYle4FY7L8viSfW+n1jy9wi29W1Tnf2OIiLogJktEv+PJFW7eXrLvzdQar3AjIgouTJaILuCPS/a9aR7ZMrXWcoVbS9JWVd+MyAgZhqSrMSmnY20JiIjIO0yWiACv1hW1XOHmaULz++aRfZNjMLZPkuO1bTaby6k1XuFGRBQcmCwRof03pfU0obmwEnVY24AeaiWiFDI0maxup9Z4hRsRUeAxWaIu42KLtr25wu1CniY0nFojIgpNTJaoS6jQ6rGpTIPPys7AYpWQk65Gv+RYx6LtzropLafWiIhCD5MlCnsXLtpWymWQKyMQH6VotWi7s25Ky6k1IqLQwnvDUdjy9j5rLeuKElQKxxVuIzPjYTBZcFjbwEv2iYi6KFaWKGy15z5rXFdERES/x2SJwlp77rPGdUVERHQhJksUttrTDLIF1xUREVELrlmisHVhM8gqfTNEARAFAaIgOC3a7p8Sy/usERFRm1hZorDG+6wREVFHsbJEYa9l0fbgNDXqDGYcq25EncGMIelqR9sAIiKitrCyRF0CF20TEVF7MVmiLoOLtomIqD04DUdERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0u8KaQJUk2Xt1GRER+x2SJQlKFVo9NZRp8VnYGFquEnHQ1+iXHomAwb3ZLRES+xWSJQk6FVo81O46hWm+EUi6DXBmB+CgFyit1qNQ1sdEkERH5FNcsUUhpNlmxqUyDar0RWUkqyGX2abcohQy9k1So1huxuUyDZpM1wJESEVG4YGWJQsqSLQdQevQclHIZagwmVNY1AQB2oQaiIMBoseJ4mQG1jSYsnJIT4GiJiCgcsLJEIcVklWCxSo6K0u/JZSIskgSTVerkyIiIKFyxskQhpXBcFhqMFsRHKRClkGEXagAAI3slQCYK0DebUddkRuG4rABHSkRE4YKVJQopmYkq9EuORZW+GaIAiIIAURAgEwWIAqDVG9E/JRaZiapAh0pERGEiZJKlmpoa3HHHHYiLi0O3bt1QWFiIhoYGt/s0Nzdj9uzZSExMRExMDKZPn46qqirH8z///DNuv/12ZGRkICoqCgMHDsTKlSv9fSrUAaIooGBwChJUChytbkROWhxGZsbDYLLgsLYBCSoFJuWksN8SERH5TMgkS3fccQf27duHrVu34tNPP8X//d//4b777nO7z9y5c/Gvf/0LGzZswNdff43KykpMmzbN8fzu3buRnJyM9957D/v27cNTTz2FBQsWYNWqVf4+HeqA7ORYzLo8E4PT1KgzmHGsuhF1BjOGpKvZNoCIiHxOsNlstkAHcTG//vorBg0ahB9//BEjR44EAGzZsgXXXXcdTp06hbS0tFb76HQ6dO/eHWvXrsXNN98MADhw4AAGDhyI0tJSjBkzxuVrzZ49G7/++iu++uorj+Orr6+HWq2GTqdDXFxcO86Q2oMdvImIqCM8/fwOicpSaWkpunXr5kiUAGDixIkQRRHff/+9y312794Ns9mMiRMnOrYNGDAAPXv2RGlpaZuvpdPpkJCQ4DYeo9GI+vp6pwf5hiTZcLLGgAOaepysMUCS2s7lRVFARkI0BqTGISMhmokSERH5RUhcDafRaJCcnOy0LSIiAgkJCdBoNG3uo1Ao0K1bN6ftKSkpbe6zc+dOrF+/Hps2bXIbz+LFi7Fo0SLPT4A8wluYEBFRMApoZWn+/PkQBMHt48CBA50SS3l5OW688UYsXLgQkyZNcjt2wYIF0Ol0jsfJkyc7JcZQ5Um1qOUWJvtP66CUyxCvUjhuYbJmxzFUaPUBiJyIiCjAlaXHHnsMd999t9sxvXv3RmpqKrRardN2i8WCmpoapKamutwvNTUVJpMJdXV1TtWlqqqqVvvs378fV199Ne677z48/fTTF407MjISkZGRFx1HF68WmSwSJMnmdAuTGoMJwPlbmFRoG7C5TIP7xkdDqZAF+IyIiKirCWiy1L17d3Tv3v2i4/Ly8lBXV4fdu3djxIgRAICvvvoKkiQhNzfX5T4jRoyAXC5HSUkJpk+fDgA4ePAgTpw4gby8PMe4ffv24aqrrsLMmTPx4osv+uCsqIUnN7z9189nUN9k5i1MiIgoaIXEAu+BAwfi2muvxb333osffvgBO3bswJw5c3Dbbbc5roQ7ffo0BgwYgB9++AEAoFarUVhYiKKiImzbtg27d+/GrFmzkJeX57gSrry8HPn5+Zg0aRKKioqg0Wig0Whw9uzZgJ1rODBZJI9veGuz2XgLEyIiCmohscAbAN5//33MmTMHV199NURRxPTp0/Haa685njebzTh48CAMBoNj2/Llyx1jjUYjCgoK8Je//MXx/IcffoizZ8/ivffew3vvvefY3qtXLxw7dqxTzsufTBYJxdsqAACz87OhiOic3Lh4W4XH1aK/3HEZAPAWJkREFLRCJllKSEjA2rVr23w+MzMTv28ZpVQqUVxcjOLiYpf7PPfcc3juued8GWZQkSQb6pvMMFklnKo1IDNR1WmX1zuqRUrXP2JymYgGowUmq4R+ybHolxyL8kodeiepIAr2GC+8hcmQdDVvYUJERAERMskSeadlYXXp0XOwWCU0GC2ddhn+7PxsnKo1eFQtUikiHLcwqdQ1oULbAKPFCrlMhL7ZDK3eyFuYEBFRQIXEmiXyTmdcht9ssmLRJ/vw1D/LcPRsg1M7AEWE6PENb9O7RQE4fwuTSy/pht5JMUiOjYS+2cJbmBARUcCxshRGOusyfE+qVu2pFmUnx6L3lTG8hQkREQUVJkthxJuF1e29DN+TdgAtCVNLtejz8iocOWtPmFqqRZNyXE8HttzChIiIKFgwWQoz3iys9uq4XlSt5uTHOKpBrBYREVGoY7IURrxZWO3tZfjeVK1uGp7uVB1itYiIiEIZF3iHEW8WVrfnMnxPm0c2miwdPRUiIqKgwcpSmGnvZfgXa2DpbTsAIiKicMHKUhhqWVg9KF2NZrOEWoMJdU1mt5fhtzSwrG4w4lStwakVANC+dgBEREThgCWAMJWdHIuH8mMwbXj6RRdWe9rAks0jiYioK2KyFMY8WVjtTSsA4HzValOZBsfL7NNyLVWrttoBEBERhTImS11Ys8nargaW3lStiIiIQh2TpS5syZYD7W5gyXYARETUVXCBdxfmaSsAbxtYEhERhRNWlrqwwnFZfmlgSUREFE5YWerC/NnAkoiIKFywstSFsRUAERHRxbGyFGJMFgnLtx7C8q2HYLJ0fC1RexpYEhERdSWsLIWYlk7bJquEU7UGZCaqOlz5YSsAIiKitjFZCiGedtpuD7YCICIico3JUojwttM2ERER+QbXLAU5k0Vq1Wm7pS9SS6ftar0Rm8s0rW5+S0RERB3HylKQK95Wgfoms0edtm8ans6pNCIiIh9jZSkEeNppu9Fk6eTIiIiIwh8rS0Fudn42TtUaPOq0rVLwn5OIiMjXWFkKcooI0eNO2+ndogIdLhERUdhhKSIEsNM2ERFR4LCyFCLYaZuIiCgwWFkKIdnJsbh/fDTqGk0wWSUUjsvySQdvIiIiahuTpRCjVMiwcEpOoMMgIiLqMjgNR0REROQGkyUiIiIiN5gsEREREbnBZImIiIjIDSZLRERERG4wWSIiIiJyg8kSERERkRtMloiIiIjcYLJERERE5AaTJSIiIiI3mCwRERERucFkiYiIiMgNJktEREREbjBZIiIiInKDyRIRERGRGxGBDiAc2Gw2AEB9fX2AIyEiIiJPtXxut3yOt4XJkg/o9XoAQEZGRoAjISIiIm/p9Xqo1eo2nxdsF0un6KIkSUJlZSViY2MhCIJPjz1q1Cj8+OOPPj1moF7P18f21fHae5z6+npkZGTg5MmTiIuL63Ac5B+d/TsUDELpnIMl1s6Mg++z3vHne63NZoNer0daWhpEse2VSaws+YAoirjkkkv8cmyZTNapH8T+fD1fH9tXx+voceLi4pgsBbHO/h0KBqF0zsESa2fGwffZ9vHXe627ilILLvAOcrNnzw6b1/P1sX11vM7+HlPn6or/vqF0zsESa2fGwffZ0MNpOKJ2qq+vh1qthk6nC4q/jImIwlEwvNeyskTUTpGRkVi4cCEiIyMDHQoRUdgKhvdaVpaIiIiI3GBliYiIiMgNJktEREREbjBZIiIiInKDyRIRERGRG0yWiIiIiNxgskTkJ59++in69++Pvn374q233gp0OEREYeemm25CfHw8br75Zr++DlsHEPmBxWLBoEGDsG3bNqjVaowYMQI7d+5EYmJioEMjIgob27dvh16vx7vvvosPP/zQb6/DyhKRH/zwww/IyclBeno6YmJiMHnyZHzxxReBDouIKKxceeWViI2N9fvrMFkicuH//u//cMMNNyAtLQ2CIGDjxo2txhQXFyMzMxNKpRK5ubn44YcfHM9VVlYiPT3d8XV6ejpOnz7dGaETEYWEjr7PdiYmS0QuNDY2YujQoSguLnb5/Pr161FUVISFCxdiz549GDp0KAoKCqDVajs5UiKi0BRK77NMlohcmDx5Ml544QXcdNNNLp9ftmwZ7r33XsyaNQuDBg3C6tWrER0djbfffhsAkJaW5lRJOn36NNLS0joldiKiUNDR99nOxGSJyEsmkwm7d+/GxIkTHdtEUcTEiRNRWloKABg9ejTKy8tx+vRpNDQ04LPPPkNBQUGgQiYiCimevM92pohOf0WiEFddXQ2r1YqUlBSn7SkpKThw4AAAICIiAkuXLkV+fj4kScKf//xnXglHROQhT95nAWDixIn4+eef0djYiEsuuQQbNmxAXl6ez+NhskTkJ1OmTMGUKVMCHQYRUdj68ssvO+V1OA1H5KWkpCTIZDJUVVU5ba+qqkJqamqAoiIiCh/B9j7LZInISwqFAiNGjEBJSYljmyRJKCkp8Uv5l4ioqwm291lOwxG50NDQgIqKCsfXv/32G/bu3YuEhAT07NkTRUVFmDlzJkaOHInRo0djxYoVaGxsxKxZswIYNRFR6Ail91ne7oTIhe3btyM/P7/V9pkzZ+Kdd94BAKxatQqvvPIKNBoNhg0bhtdeew25ubmdHCkRUWgKpfdZJktEREREbnDNEhEREZEbTJaIiIiI3GCyREREROQGkyUiIiIiN5gsEREREbnBZImIiIjIDSZLRERERG4wWSIiIiJyg8kSEZGPnDt3DsnJyTh27BgAe4diQRBQV1fn19edP38+HnroIb++BlFXxmSJiDrd3XffDUEQWj2uvfbaQIfWIS+++CJuvPFGZGZmdvhYVVVVkMvlWLduncvnCwsLcdlllwEAHn/8cbz77rs4evRoh1+XiFpjskREAXHttdfizJkzTo9//OMffn1Nk8nkt2MbDAb87W9/Q2FhoU+Ol5KSguuvvx5vv/12q+caGxvxwQcfOF4rKSkJBQUFeOONN3zy2kTkjMkSEQVEZGQkUlNTnR7x8fGO5wVBwFtvvYWbbroJ0dHR6Nu3Lz755BOnY5SXl2Py5MmIiYlBSkoK7rzzTlRXVzuev/LKKzFnzhw8+uijjoQCAD755BP07dsXSqUS+fn5ePfddx3TZY2NjYiLi8OHH37o9FobN26ESqWCXq93eT6bN29GZGQkxowZ0+Y5GwwGTJ48GZdffrljau6tt97CwIEDoVQqMWDAAPzlL39xjC8sLERJSQlOnDjhdJwNGzbAYrHgjjvucGy74YYb2qxCEVHHMFkioqC1aNEi3Hrrrfjll19w3XXX4Y477kBNTQ0AoK6uDldddRWGDx+OXbt2YcuWLaiqqsKtt97qdIx3330XCoUCO3bswOrVq/Hbb7/h5ptvxtSpU/Hzzz/j/vvvx1NPPeUYr1KpcNttt2HNmjVOx1mzZg1uvvlmxMbGuoz1m2++wYgRI9o8l7q6OlxzzTWQJAlbt25Ft27d8P777+PZZ5/Fiy++iF9//RX//d//jWeeeQbvvvsuAOC6665DSkqK4w7sF8Yybdo0dOvWzbFt9OjROHXqlGO9FBH5kI2IqJPNnDnTJpPJbCqVyunx4osvOsYAsD399NOOrxsaGmwAbJ999pnNZrPZnn/+edukSZOcjnvy5EkbANvBgwdtNpvNNmHCBNvw4cOdxjzxxBO2wYMHO2176qmnbABstbW1NpvNZvv+++9tMpnMVllZabPZbLaqqipbRESEbfv27W2e04033mi75557nLZt27bNBsD266+/2i699FLb9OnTbUaj0fF8nz59bGvXrnXa5/nnn7fl5eU5vp4/f74tKyvLJkmSzWaz2SoqKmyCINi+/PJLp/10Op0NgNsYiah9WFkiooDIz8/H3r17nR4PPPCA05hLL73U8f8qlQpxcXHQarUAgJ9//hnbtm1DTEyM4zFgwAAAwJEjRxz7/b7ac/DgQYwaNcpp2+jRo1t9nZOT46jwvPfee+jVqxeuuOKKNs+nqakJSqXS5XPXXHMNsrOzsX79eigUCgD2dUdHjhxBYWGh0zm88MILTvHfc889+O2337Bt2zYA9qpSZmYmrrrqKqfXiIqKAmCf6iMi34oIdABE1DWpVCpkZ2e7HSOXy52+FgQBkiQBABoaGnDDDTdgyZIlrfbr0aOH0+u0x5/+9CcUFxdj/vz5WLNmDWbNmgVBENocn5SUhNraWpfPXX/99fjoo4+wf/9+DBkyxBE/APzP//wPcnNzncbLZDLH//ft2xfjx4/HmjVrcOWVV+Lvf/877r333laxtExPdu/e3fuTJSK3mCwRUUi67LLL8NFHHyEzMxMREZ6/lfXv3x+bN2922vbjjz+2Gvcf//Ef+POf/4zXXnsN+/fvx8yZM90ed/jw4XjvvfdcPvfSSy8hJiYGV199NbZv345BgwYhJSUFaWlpOHr0qNNCbVcKCwvx4IMPYsqUKTh9+jTuvvvuVmPKy8shl8uRk5Pj9lhE5D1OwxFRQBiNRmg0GqfHhVeyXczs2bNRU1OD22+/HT/++COOHDmCzz//HLNmzYLVam1zv/vvvx8HDhzAE088gUOHDuGDDz5wLKC+sFoTHx+PadOmYd68eZg0aRIuueQSt/EUFBRg3759bVaXXn31Vdxxxx246qqrcODAAQD2BeyLFy/Ga6+9hkOHDqGsrAxr1qzBsmXLnPa95ZZbIJfLcf/992PSpEnIyMhodfxvvvkG48ePd0zHEZHvMFkiooDYsmULevTo4fQYN26cx/unpaVhx44dsFqtmDRpEoYMGYJHH30U3bp1gyi2/daWlZWFDz/8EB9//DEuvfRSvPHGG46r4SIjI53GFhYWwmQy4Z577rloPEOGDMFll12GDz74oM0xy5cvx6233oqrrroKhw4dwp/+9Ce89dZbWLNmDYYMGYIJEybgnXfeQVZWltN+0dHRuO2221BbW9tmLOvWrcO999570TiJyHuCzWazBToIIqJAevHFF7F69WqcPHnSafv/+3//D3PnzkVlZaVjYbY7mzZtwrx581BeXu42YfO1zz77DI899hh++eUXr6Ykicgz/K0ioi7nL3/5C0aNGoXExETs2LEDr7zyCubMmeN43mAw4MyZM3jppZdw//33e5QoAfaF3IcPH8bp06ddTpX5S2NjI9asWcNEichPWFkioi5n7ty5WL9+PWpqatCzZ0/ceeedWLBggSPZeO655/Diiy/iiiuuwP/+7/8iJiYmwBETUSAxWSIiIiJygwu8iYiIiNxgskRERETkBpMlIiIiIjeYLBERERG5wWSJiIiIyA0mS0RERERuMFkiIiIicoPJEhEREZEbTJaIiIiI3Pj/swB8vs75v5IAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=lagspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=lagspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Time lag (s)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "5d13b5e2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Phase lag (rad)')" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAG1CAYAAADpzbD2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABnpklEQVR4nO3deXxTVf4//te9adK0aelKW1qLbS2LlFWQWgERrRT1I4o4I44jUCsuA85I3WAU0FEHUETwJyMuA6MzqOiMX5cBq9ChDmJBQNEigpadlrSUbumWNLn5/ZFpINCG3DTbTV/PxyMPyM3Nzbld7n33nPd5H8FqtVpBRERERJ0S/d0AIiIiokDGYImIiIjICQZLRERERE4wWCIiIiJygsESERERkRMMloiIiIicYLBERERE5ASDJSIiIiInQvzdgGAgSRIqKysRGRkJQRD83RwiIiJygdVqhcFgQHJyMkSx6/4jBkseUFlZidTUVH83g4iIiNxw/PhxXHTRRV2+zmDJAyIjIwHYvti9evXyc2uIiIjIFY2NjUhNTbXfx7vCYMkDOobeevXqxWCJiIhIYS6UQsMEbyIiIiInGCwREREROcFhOB+RJAkmk8nfzSAnNBqN09kQRETUMzFY8gGTyYTDhw9DkiR/N4WcEEUR6enp0Gg0/m4KEREFEAZLXma1WnHy5EmoVCqkpqay5yJAddTKOnnyJPr27ct6WUREZMdgycvMZjNaWlqQnJyM8PBwfzeHnOjduzcqKythNpuhVqv93RwiIgoQ7ObwMovFAgAc2lGAju9Rx/eMiIgIYLDkMxzWCXz8HhERUWc4DKcQJrOEVVvKAQCzJ2RCE8I4l4iIyBd4xyUiIiJygsGSQkiSFY2t7ahpMuJEXQskyervJhEREfUIDJYUoLzagNe2HkLpodPYceg0Vhb/gldLDqK82uDVz121ahXS0tKg1WqRnZ2Nb775xun+P/74I6ZOnYq0tDQIgoAVK1a49DkffvghJk6ciLi4OAiCgD179lzwPU899RSGDx9+3vYjR464fAwiIiJXMFgKcOXVBqzddgT7KhqgVasQo9MgJkyDvZUNWLvtiNcCpvXr16OwsBCLFi3Ct99+i2HDhiEvLw/V1dVdvqelpQUZGRlYsmQJkpKSXP6s5uZmjB07FkuXLvVE04mIiDyKwVIAMpklmMwS2kwWbCjTo8ZgRHq8DmqVbbZWmEaFjHgdagxGbCzTo81kgcns2ergy5cvx6xZs5Cfn49BgwZh9erVCA8Px5o1a7p8z+WXX44XXngB06ZNQ2hoqMufddddd2HhwoXIzc31RNMdzJw5E4IgnPcoKSnx+GcREZH7TGYJL236GS9t+tnj97Tu4my4ANQx662xtR2lh05Dq1ahtsWEyvpWAMAu1EIUBBjNFhwta0Fdswm9wtSYe11/j3y+yWTC7t27MX/+fPs2URSRm5uL0tJSj3yGr6xcuRJLliyxP1+yZAneffddDBw40I+tIiIiJWGwFMBMFglmiwS1tvNvk1oloslohsni2Qi8pqYGFosFiYmJDtsTExOxf/9+j35Wd5SVlSEiIsJhm9XqmPgeFRWFqKgoALbcqNdeew2bN2+WNUxIREQ9G4OlADR7QiYA4ERdC5qMZsSEaRCmUWEXagEAoy6OhUoUYGhrR31rOwrGpuOimMBfSmXdunW477777M8/++wzjBs3zu3jDRgwAJ988onDtoqKClx99dXn7fvdd9/hrrvuwiuvvIIxY8a4/ZlERNTzMFgKQB0FJ9PidOifEIm9lQ3IiNdB/F+FaZUoQBSAaoMRQ1KikBangyh6rvp0fHw8VCoVqqqqHLZXVVV1q0dm8uTJyM7Otj9PSUlx+1iAbXmSzMxMh20hIef/SOv1ekyePBn33HMPCgoKuvWZRETU8zDBO4CJooC8wYmI1WlQXt0Eo9kCyWqFoa0dv1Q3IVanwcSsRI8GSoAtCBk5ciSKi4vt2yRJQnFxMXJyctw+bmRkJDIzM+2PsLAwTzTXqba2Ntx8880YOHAgli9f7vXPIyKi4MOepQCXmRCJ/DFp2FCmx9Ey27BcfWs7hqREYWJWIjITIr3yuYWFhZgxYwZGjRqF0aNHY8WKFWhubkZ+fr59n+nTpyMlJQWLFy8GYEsM37dvn/3/FRUV2LNnDyIiIs7rATpbbW0tjh07hsrKSgDAgQMHAABJSUndzi267777cPz4cRQXF+PUqVP27bGxsVzcmIiIXMJgSQEyEyJx37hw1DebYLJIKBib7vGht3PdfvvtOHXqFBYuXAi9Xo/hw4ejqKjIIen72LFjEMUznZOVlZUYMWKE/fmyZcuwbNkyjB8/3ulU/U8++cQhCJs2bRoAYNGiRXjqqae6dR5ffvklTp48iUGDBjls37JlS6e5TUREROcSrOdOHyLZGhsbERUVhYaGBvTq1cvhtba2Nhw+fBjp6enQarVufwYX0vU+T32viIhIPn/c55zdv8/GniWF0ISIHqujRERERK5j9wQRERGREwyWiIiIiJxQXLC0atUqpKWlQavVIjs7G998802X+77xxhsYN24cYmJiEBMTg9zc3PP272ztsEmTJnn7NIiIiEghFBUsrV+/HoWFhVi0aBG+/fZbDBs2DHl5eaiuru50/5KSEtxxxx3YsmULSktLkZqaiokTJ6KiosJhv0mTJuHkyZP2x7vvvuuL0yEiIiIFUFSwtHz5csyaNQv5+fkYNGgQVq9ejfDwcKxZs6bT/detW4ff/e53GD58OAYOHIg333zTXlzxbKGhofaaPklJSYiJifHF6RAREZECKCZYMplM2L17N3Jzc+3bRFFEbm4uSktLXTpGS0sL2tvbERsb67C9pKQECQkJGDBgAB544AGcPn3a6XGMRiMaGxsdHkRERBScFBMs1dTUwGKxOBRFBIDExETo9XqXjvH4448jOTnZIeCaNGkS3n77bRQXF2Pp0qX48ssvcf3118NisXR5nMWLF9tXs4+KikJqaqp7JyWH2QRsWWx7mE3e/zwiIiIC0IPqLC1ZsgTvvfceSkpKHAoOdlSLBoAhQ4Zg6NChuOSSS1BSUoJrr72202PNnz8fhYWF9ueNjY2+CZiIiIjI5xTTsxQfHw+VSoWqqiqH7VVVVRdcP2zZsmVYsmQJvvjiCwwdOtTpvhkZGYiPj0d5eXmX+4SGhqJXr14OD6+zSkBbPdBUDdQfAyTJqx/36quvYujQofbzy8nJwWeffXbB902ePBl9+/aFVqtFnz59cNddd9nXfOvwww8/YNy4cdBqtUhNTcXzzz/v9JhHjhyBIAjYs2fPea9dffXVeOihh+ScGhERkSyKCZY0Gg1GjhzpkJzdkaydk5PT5fuef/55PPPMMygqKsKoUaMu+DknTpzA6dOn0adPH4+02yNOHQC2rQQObwWObgO+XAp8tdy23UsuuugiLFmyBLt378auXbtwzTXX4Oabb8aPP/7o9H0TJkzA+++/jwMHDuBf//oXDh48iNtuu83+emNjIyZOnIiLL74Yu3fvxgsvvICnnnoKr7/+utfOhYiIqDsUEywBQGFhId544w289dZb+Omnn/DAAw+gubnZvgjr9OnTMX/+fPv+S5cuxYIFC7BmzRqkpaVBr9dDr9ejqakJANDU1IRHH30U27dvx5EjR1BcXIybb74ZmZmZyMvL88s5nufUAWD7akBfBqjDgPBYICwWOPmDbbuXAqabbroJN9xwA/r164f+/fvjueeeQ0REBLZv3+70fXPnzsUVV1yBiy++GFdeeSXmzZuH7du3o729HYBthqLJZMKaNWuQlZWFadOm4fe//z2WL1/e7TaXlJScVzNLEATMnDmz28cmIqKeS1HB0u23345ly5Zh4cKFGD58OPbs2YOioiJ70vexY8dw8uRJ+/6vvvoqTCYTbrvtNvTp08f+WLZsGQBApVLhhx9+wOTJk9G/f38UFBRg5MiR2Lp1K0JDQ/1yjgBsCdxmE9DeBvz4EdB8CojLBFQaAAKgCQfi+tm27/vYtp8Xk74tFgvee+89NDc3O+3FO1dtbS3WrVuHK6+8Emq1GgBQWlqKq666ChqNxr5fXl4eDhw4gLq6um6188orr3Sol/Wf//wHWq0WV111VbeOS0REPZviErznzJmDOXPmdPpaSUmJw/MjR444PVZYWBg+//xzD7XMg7a+aPu3rd429KYOA1pOAw3HbduPARAEwGwEag/ZXtNGAxPmd3FA95SVlSEnJwdtbW2IiIjA//t//w+DBg264Psef/xxvPLKK2hpacEVV1yBf//73/bX9Ho90tPTHfbvCHb1er3TGldXXnklRNExvm9tbcXw4cMB2IZqO/LXTp8+jXvuuQd333037r77bpfOl4iIqDOK6lnqccwmQDIDKnXnr6vUtte91Ks0YMAA7NmzBzt27MADDzyAGTNmYN++fQCA+++/HxEREfbH2R599FF89913+OKLL6BSqTB9+nRYrdZut2f9+vXYs2ePw6OzPLT29nZMnToVF198MVauXNntzyUiop5NcT1LPcK4h23/1h8DTE22HCVNuK1HCQD6XgEIKsDYCLTWATmzgei+Hm+GRqNBZmYmAGDkyJHYuXMnVq5ciddeew1/+tOf8Mgjj3T6vvj4eMTHx6N///649NJLkZqaiu3btyMnJwdJSUmdzmgEcMFZjampqfb2dAgLCztvvwceeADHjx/HN998g5AQ/ogTEVH38E4SiEL+l88TmwH0HmBL5o7rZxt6A2yBkiACBj2QPMy2n+j9TkJJkmA0GgEACQkJSEhIcOk9AOzvy8nJwRNPPIH29nZ7HtOmTZswYMAAjywzs3z5crz//vv4+uuvERcX1+3jERERMVgKZKIIXHoT0FAB1Byw5Sip1LYeJYMe0MUBA//PK4HS/Pnzcf3116Nv374wGAx45513UFJS4jTHa8eOHdi5cyfGjh2LmJgYHDx4EAsWLMAll1xiTwz/zW9+g6effhoFBQV4/PHHsXfvXqxcuRIvvfRSt9u8efNmPPbYY1i1ahXi4+Ptld3DwsIQFRXV7eMTEQUjk1nCqi222oKzJ2RCE8IMnXPxKxLoeg8ArrgfSBoCtLcCLbW2obfkYUD2/bbXvaC6uhrTp0/HgAEDcO2112Lnzp34/PPPcd1113X5nvDwcHz44Ye49tprMWDAABQUFGDo0KH48ssv7bMLo6Ki8MUXX+Dw4cMYOXIkHn74YSxcuBD33ntvt9v81VdfwWKx4P7773eY/fiHP/yh28cmIqKeS7B6IvO2h2tsbERUVBQaGhrOq+bd1taGw4cPIz093WGZFdna24DNi2zJ3DmzfTb01pN47HtFRKQggdKz5I92OLt/n43DcEohiLbyAIAtmZuBEhERkU8wWFKKEI3H6ygREREFCkmyorG1HSaLhBN1LUiL00EUBX83CwCDJSIiIvKz8moDNpTpUXroNMwWCU1GM/onRCJvcCIyEyL93TwGS0REROQ/5dUGrN12BDUGI7RqFdTaEMSEabC3sgGVDa3IH5Pm94CJiS9ERERBxGSW8NKmn/HSpp9hMkv+bk6XTGYJbSYLNpTpUWMwIj1eB7XKNuwWplEhI16HGoMRG8v0kCT/zkVjz5KPcNJh4OP3iIjId1ZtKUdjaztKD52GVq1CbYsJlfWtAIBdqIUoCDCaLTha1oIpI1KQGhvut7ayZ8nLVCoVAMBk8s76beQ5Hd+jju8ZERF5l8kiwWyR7D1K51KrRJglCc0ms49b5og9S14WEhKC8PBwnDp1Cmq1GiKn/AckSZJw6tQphIeHcz05IiIfmD0hEyfqWtBkNCMmTIMwjQq7UAsAGHVxLFSiAENbO+pb26HT+Pe6zLuClwmCgD59+uDw4cM4evSov5tDToiiiL59+0IQAmOqKhFRMNOEiEiL06F/QiT2VjYgI14H8X/XX5UoQBSAaoMRQ1KikBJ9/qLpvsRgyQc0Gg369evHobgAp9Fo2PNHRORDoiggb3AiKhtaUV7dBKPZArVKhKGtHdUGI2J1GkzMSvR7vSUGSz4iiiKX0CAiooDj72KQmQmRyB+Thg1lehwtsw3L1be2Y0hKFCZmsc4SERER+VGgFIPMTIjEfePCUd9sgskioWBsOit4ExERkX8FWjFIURTQK0wNALgoJjxgAiWApQOIiIh6FCUVgwwU7FkiIiIKIhfKQVJSMchAwWCJiIgoSLiag2QvBqntPAxQq0Q0Gc1+LwYZKBgsERERBQFXc5CUVAwyUDBniYiIyEP8tYitqzlIbSaLQzHIKkMbRAEQBQGiIDgUgxyQGOn3YpCBgiEjERGRwi0t2u9SDlJdswmLJmcpphhkoGDPEhERkR94shfK1QVpTZYzn9NRDHJQShTa2iXUtZjsxSB9XTYg0LFniYiISOEKxqa7lINUMDbd4X2BXgwyULBniYiISOFczUFKi9Od996OYpDxEaEBVwwyULBniYiISOGYg+Rd7FkiIiLykI6CkDVNRpyoa/FpBWzmIHkPe5aIiIg8IBAWpWUOkncwWCIiIuqmQFqUNpAXpFUqDsMRERG5qTuL0vpzyI7kYc8SERGRm9xdlDYQhuzIdYrrWVq1ahXS0tKg1WqRnZ2Nb775pst933jjDYwbNw4xMTGIiYlBbm7ueftbrVYsXLgQffr0QVhYGHJzc/HLL794+zSIiChIuFoQsmNR2o4hu30VDdCqVYjRaexDdmu3HUF5tcGXzScXKCpYWr9+PQoLC7Fo0SJ8++23GDZsGPLy8lBdXd3p/iUlJbjjjjuwZcsWlJaWIjU1FRMnTkRFRYV9n+effx4vv/wyVq9ejR07dkCn0yEvLw9tbW2+Oi0iIlKo2RMyUTA2HVkpUcjqE4VRF8ciOToMydFhGHVxLC5Pi8WgPr2QlRwFjUp0e8iO/EtRwdLy5csxa9Ys5OfnY9CgQVi9ejXCw8OxZs2aTvdft24dfve732H48OEYOHAg3nzzTUiShOLiYgC2XqUVK1bgySefxM0334yhQ4fi7bffRmVlJT766CMfnhkRESmRnEVpP/quAkuL9uOzspOoMhix+1gdKutbUVnfil1Ha7HraB2qDG3YWHYSFf8byqPAoJhgyWQyYffu3cjNzbVvE0URubm5KC0tdekYLS0taG9vR2xsLADg8OHD0Ov1DseMiopCdna202MajUY0NjY6PIiIqGfqKAgZq9PYC0JKVisMbe34pbrJXhBSEATZQ3YUGBST4F1TUwOLxYLExESH7YmJidi/f79Lx3j88ceRnJxsD470er39GOces+O1zixevBhPP/20nOYTEVEQ6ygIuaFMj6NlLWgymu0FISdm2ZK2Z0/Q4URdi0truOk0vrs9a0JEzL2uv88+T4kUEyx115IlS/Dee++hpKQEWq22W8eaP38+CgsL7c8bGxuRmpra3SYSEZGCXagg5NlDdnsrG5ARr4Mo2F47e8huSEoUUqLD/HkqXTKZJazaUg7Alq+lCel6gErOvoFOMcFSfHw8VCoVqqqqHLZXVVUhKSnJ6XuXLVuGJUuWYPPmzRg6dKh9e8f7qqqq0KdPH4djDh8+vMvjhYaGIjQ01I2zICKiYHahgpC+WMONPUWep5gwT6PRYOTIkfbkbAD2ZO2cnJwu3/f888/jmWeeQVFREUaNGuXwWnp6OpKSkhyO2djYiB07djg9JhERkbu4hpvyKKZnCQAKCwsxY8YMjBo1CqNHj8aKFSvQ3NyM/Px8AMD06dORkpKCxYsXAwCWLl2KhQsX4p133kFaWpo9DykiIgIREREQBAEPPfQQnn32WfTr1w/p6elYsGABkpOTccstt/jrNImIKMjJXcMtmIa0lEhRwdLtt9+OU6dOYeHChdDr9Rg+fDiKiorsCdrHjh2DKJ75AXr11VdhMplw2223ORxn0aJFeOqppwAAjz32GJqbm3Hvvfeivr4eY8eORVFRUbfzmoiIiJzhGm7KoahgCQDmzJmDOXPmdPpaSUmJw/MjR45c8HiCIOBPf/oT/vSnP3mgdURERBRsFBcsERERBSomVwcnDnoSEREROcGeJSIiIvK7QO6VY7BERETkB4EcHJAjDsMREREROcFgiYiIKMBJkhWNre2oaTLiRF0LJMnq7yb1KByGIyKiHkVpBR7Lqw3YUKZH6aHTMFskNBnN6J8QibzBiaz27SMMloiIiAJUebUBa7cdQY3BCK1aBbU2BDFhGuytbEBlQyuXR/GRwA6niYiIeiCTWUKbyYINZXrUGIxIj9dBrbJV+A7TqJARr0ONwYiNZXq0mSx+bm3wY88SEREFJKUNl3nSqi3laGxtR+mh09CqVahtMaGyvhUAsAu1EAUBRrMFR8taUNdswqLJWX5ucXDrOT95REREUE6ytMkiwWyR7D1K51KrRJglCSaL5LM2KeVr52nsWSIioh5DKcnSsydk4kRdC5qMZsSEaRCmUWEXagEAoy6OhUoUYGhrR31rOwrGpvukTUr52nkDe5aIiMgnTGYJL236GS9t+hkm84V7Qzzdi9GRLL2vogFatQoxOo09WXrttiMorzZ06/iepAkRkRanQ/+ESFQZ2iAKgCgIEAUBKlGAKADVBiMGJEYiLU7n9fYo6WvnDQyWiIgo4JRXG/Da1kMoPXQaOw6dxsriX/BqyUG3bsrdSZaWG+B5kigKyBuciFidBuXVTTCaLZCsVhja2vFLdRNidRpMzEqEKHY+TOcJTDS34TAcERH5REdPkcki4URdC9LidJ3e6D09XV7JydKZCZHIH5OGDWV6HC2zDcvVt7ZjSEoUJmZ5f/hLyV87T2KwREREXudKvovJLEGSrA69GLUtJgBnejHKq5uwsUyPORMiZPWo2JOltZ3f9tQqEU1Gs0+TpV2VmRCJ+8aFo77ZBJNFQsHY9C4DTW9w92vnanCsBAyWiIjIq1ztKZLTizFlRApSY8Nd+vxATJaWSxQF9ApTAwAuign3WdDh7tcu2JLBmbNEREReIzffxdXp8s0ms8ttCLRkaSVx52sXjMng7FkiIiKvWVq03+V8l/k3XOpyL4ZOI+/21ZEsXdnQak+WVqtEGNraUW0wdpksHUxDSe6S87U7Nzjuahj13nHh0GpUfj4z1zFYIiIir5GT73J2L8beygZkxOsgCrbA5OxejCEpUUiJDpPdFrnJ0sE2lNQdrn7t5ATHSkoGZ7BEREReUzA2XVa+i7s9QK4ujeJqsjQXsD2fK187JSfSO8NgiYiIvMbVnqKzc4W8PV3+QsnSwTqU5AkX+trJDY6VgsESERF5jbs9Rf6cLh+sQ0m+4E5wrAQMloiIyKvc7Sny13T5QBxK0oSImHtdf599nrvcDY4DHYMlIiLyOm/3FMmZtXahwCNYh5J8xd9Vx72BwRIREfmEt3qKPD1rLViHknzJ31XHPY3BEhERBSRXhp68MWstWIeSfM1fw6jewAreRETkEx3Bz9zr+nc5td9VJrPkcnVwSbLKPn7HUNKglCi0tUuoazHZh5J6YtmAno49S0REpDjeWkfubME2lETuY7BERESK5OqsNTnryJ0rmIaSyH0MloiIyG2uVs72tNkTMr22jhzRuZizREREinP2OnJVhjaIAiAKAkRBcJi1NiAx0q115IjOxmCJiIjc1lHfqKbJiBN1LW4lU7urY9ZarE5jn7UmWa0wtLXjl+omzlojj1FcsLRq1SqkpaVBq9UiOzsb33zzTZf7/vjjj5g6dSrS0tIgCAJWrFhx3j5PPfUUBEFweAwcONCLZ0BEFBzKqw14beshlB46jR2HTmNl8S94teQgyqsNPmuDt2eteXIGHymXogZy169fj8LCQqxevRrZ2dlYsWIF8vLycODAASQkJJy3f0tLCzIyMvCrX/0Kc+fO7fK4WVlZ2Lx5s/15SIiivixERD7njfpG7uKsNfI2RYXJy5cvx6xZs5Cfn49BgwZh9erVCA8Px5o1azrd//LLL8cLL7yAadOmITQ0tMvjhoSEICkpyf6Ij4/31ikQESmanPpGbSaLz9rVMWstPiKUs9a8qKf2tCmmC8VkMmH37t2YP3++fZsoisjNzUVpaWm3jv3LL78gOTkZWq0WOTk5WLx4Mfr27dvl/kajEUaj0f68sbGxW59PRKQUcuob1TWbsGhylp9bTNR9igkLa2pqYLFYkJiY6LA9MTERer3e7eNmZ2fjb3/7G4qKivDqq6/i8OHDGDduHAyGrsfcFy9ejKioKPsjNTXV7c8nIlIae30jVee9N2qVCLMkwWSRfNwyIu9QTM+St1x//fX2/w8dOhTZ2dm4+OKL8f7776OgoKDT98yfPx+FhYX2542NjQyYiKhHkFPfqGBsus/a5co6ckTuUkywFB8fD5VKhaqqKoftVVVVSEpK8tjnREdHo3///igvL+9yn9DQUKc5UEREwers+kZ7KxuQEa+DKNh6mM6ubzQkJQppcTo/t5bIMxQzDKfRaDBy5EgUFxfbt0mShOLiYuTk5Hjsc5qamnDw4EH06dPHY8ckIgomrG9EPY1igiUAKCwsxBtvvIG33noLP/30Ex544AE0NzcjPz8fADB9+nSHBHCTyYQ9e/Zgz549MJlMqKiowJ49exx6jR555BF8+eWXOHLkCL7++mtMmTIFKpUKd9xxh8/Pj4hIKbxd34gokChmGA4Abr/9dpw6dQoLFy6EXq/H8OHDUVRUZE/6PnbsGETxTPxXWVmJESNG2J8vW7YMy5Ytw/jx41FSUgIAOHHiBO644w6cPn0avXv3xtixY7F9+3b07t3bp+dGRBQoXF3vjfWNqKdQVLAEAHPmzMGcOXM6fa0jAOqQlpYGq9V56f333nvPU00jIupxOuobAWB9IwpaiguWiIhIHld7ijp0rPdmskg4UdfitLeIs9CoJ2CwREREduXVBmwo06P00GmYLRKajGb0T4hE3uBE5iFRj8VgiYgoyLnaUxRI672R8gVTryODJSKiIOZKT5HJLEGSrA7rvdW2mACcWe+tvLoJG8v0mDMhgnlJ1OMwWCIiClKu9hTJWe9tyogUpMaG+/nMiHxLUXWWiIjINW0mi0NPUcc6bh09RTUGIzaW6dFmsgBwfb23ZpPZZ+dAFChk9ywZjUbs2LEDR48eRUtLC3r37o0RI0YgPd13awAREZFzS4v2u9RTVNdswvwbLnV5vTedhgMS1PO4/FO/bds2rFy5Ep9++ina29sRFRWFsLAw1NbWwmg0IiMjA/feey/uv/9+REYyAZCIyJ/sPUXazi/zapWIJqMZJoska723lOgwX54GUUBwKViaPHkyvv32W/zmN7/BF198gVGjRiEs7MwvzKFDh7B161a8++67WL58Od5++21cd911Xms0ERE5VzA23aWeooKxtlGBjvXeKhta7eu9qVUiDG3tqDYYud4b9WguBUs33ngj/vWvf0GtVnf6ekZGBjIyMjBjxgzs27cPJ0+e9GgjiYhIHld7itLidPb3dKz3tqFMj6NltmG5jvXeJmaxzhL1XIL1QuuB0AU1NjYiKioKDQ0N6NWrl7+bQ0QEwHE2XJWhDWqViEF9etl7irqqm9RmsmBp0X6u90ZBz9X7N2fDEREFqY6eokEpUWhrl1DXYrL3FDkrMNmx3lt8RCjXeyOCi8NwMTExEATXfllqa2u71SAiIvKczIRI3DcuHPXNJpd7ioKp8jKRJ7gULK1YscL+/9OnT+PZZ59FXl4ecnJyAAClpaX4/PPPsWDBAq80koiI3NfRUwSAPUVEbpCdszR16lRMmDABc+bMcdj+yiuvYPPmzfjoo4882T5FYM4SERGR8ngtZ+nzzz/HpEmTzts+adIkbN68We7hiIjof0xmCS9t+hkvbfoZJrPk7+YQ0f/IDpbi4uLw8ccfn7f9448/RlxcnEcaRUTUE0mSFY2t7ahpMuJEXQskiZOViQKB7Lr1Tz/9NO655x6UlJQgOzsbALBjxw4UFRXhjTfe8HgDiYh6gvJqAzaU6VF66DTMFglNRjP6J0Qib3Dn9Y1MZgmrtpQDAGZPyIQmhJObibxFdrA0c+ZMXHrppXj55Zfx4YcfAgAuvfRSfPXVV/bgiYiIXHd2PSStWgW1NgQxYRrsrWxAZUOr02n+ROR9bq2ImJ2djXXr1nm6LUREPYrJLEGSrNhQpkeNwYj0eB1qW0wAgDCNChnxOpRXN2FjmR5zJkQ4zGLrGLIzWSScqGth4UgiL+rW8tFtbW0wmUwO2zgbjIjINau2lKOxtR2lh05Dq1ahtsWEyvpWAMAu1EIUBBjNFhwta8GUESlIjQ0HIH/Ijoi6R/Ygd0tLC+bMmYOEhATodDrExMQ4PIiIyHUmiwSzRYJa1XmvkFolwixJaDaZAZwZsttX0QCtWoUYncY+ZLd22xGUVxt82XyiHkF2z9Kjjz6KLVu24NVXX8Vdd92FVatWoaKiAq+99hqWLFnijTYSEQWl2RMycaLOtmBtTJgGYRoVdsG2CsKoi2OhEgUY2tpR39oOjUpEm8ni0pDdvePCodWo/HlqREFFdrD06aef4u2338bVV1+N/Px8jBs3DpmZmbj44ouxbt063Hnnnd5oJxFR0NGEiEiL06F/QiT2VjYgI14H8X9LS6lEAaIAVBuMGJIShY++q4ChzezSkF1dswmLJmf589SIgorsYbja2lpkZGQAsOUndawFN3bsWPz3v//1bOuIiIKcKArIG5yIWJ0G5dVNMJotkKxWGNra8Ut1E2J1GkzMSoQgCC4P2ZksLGhJ5Emye5YyMjJw+PBh9O3bFwMHDsT777+P0aNH49NPP0V0dLQXmkhEFNwyEyKRPyYNG8r0OFpmG5arb23HkJQoTMyyJW3PnqBzeciuYGy6n8+IKLjIDpby8/Px/fffY/z48Zg3bx5uuukmvPLKK2hvb8fy5cu90UYiIsVytXhkZkIk7hsXjvpmE0wWCQVj0x3KAcgZskuL0/nm5Ih6CNnB0ty5c+3/z83Nxf79+7F7925kZmZi6NChHm0cEZHSyamHJIoCeoWpAQAXxYSft1/HkF1lQ6t9yE6tEmFoa0e1wWgfsmO9JSLPEqxWq8uLD7W3t2PSpElYvXo1+vXr5812KYqrqxYTUc/SUQ/ps7KTMFskZKVEeaQeksNxJQlZyVEYkBhpH7IjIte4ev+W1bOkVqvxww8/dLtxRETBzptLmFxoyI6IPEv2bLjf/va3+Otf/+qNthARKZ7JLJ1XD6lj9lpHPaQagxEby/SQJJc79s+j1aiwaHIWnpsyBBm9IxgoEXmR7Jwls9mMNWvWYPPmzRg5ciR0OsdEQiZ5E1FP5u4SJkQUuGQHS3v37sVll10GAPj5558dXhME/mVDRGSvh6Tt/BKrVoloMprtS5gQUWCTHSxt2bLFG+0gIgoKcpYw0Wm6tZY5EfmI7Jwlf1u1ahXS0tKg1WqRnZ2Nb775pst9f/zxR0ydOhVpaWkQBAErVqzo9jGJiJw5ux5SlaENogCIggBREBzqIQ1IjERKdJi/m0tELnApWLr//vtx4sQJlw64fv16rFu3rluNcnbswsJCLFq0CN9++y2GDRuGvLw8VFdXd7p/S0sLMjIysGTJEiQlJXnkmEREF+LqEiZMyiZSBpfqLC1YsAAvv/wyxowZg5tuugmjRo1CcnIytFot6urqsG/fPnz11Vd47733kJycjNdff90rBSqzs7Nx+eWX45VXXgEASJKE1NRUPPjgg5g3b57T96alpeGhhx7CQw895LFjdmCdJSLqDOshEQU2j9ZZeuaZZzBnzhy8+eab+Mtf/oJ9+/Y5vB4ZGYnc3Fy8/vrrmDRpUvda3gWTyYTdu3dj/vz59m2iKCI3NxelpaU+PabRaITRaLQ/b2xsdOvziSi4sR4SUXBwObswMTERTzzxBJ544gnU1dXh2LFjaG1tRXx8PC655BKvz4SrqamBxWJBYmLiee3av3+/T4+5ePFiPP300259JhH1LB31kIhIudyaihETE4OYmBhPt0Ux5s+fj8LCQvvzxsZGpKam+rFFRERE5C2KmbcaHx8PlUqFqqoqh+1VVVVdJm9765ihoaEIDQ116zOJiIhIWRRTOkCj0WDkyJEoLi62b5MkCcXFxcjJyQmYYxKR8rSZLHj6kx/xxP8rw6FTTd1ahoSIgo9iepYAoLCwEDNmzMCoUaMwevRorFixAs3NzcjPzwcATJ8+HSkpKVi8eDEAWwJ3RzK6yWRCRUUF9uzZg4iICGRmZrp0TCIKbh0z1koPnYbZIqHJaEb/hEjkDe58xlqbyYKlRfuZsE3UgygqWLr99ttx6tQpLFy4EHq9HsOHD0dRUZE9QfvYsWMQxTOdZZWVlRgxYoT9+bJly7Bs2TKMHz8eJSUlLh2TiIJXebUBa7cdQY3BCK1aBbU2BDFhGuytbEBlQyvyx6Q5BExyAysiCg4u1Vki51hniUhZTGYJkmTFa1sPYV9FA9Ljddh9rA6AbUkSUQDKq5uQlRKFe8dlQKtROQRWVQYj1CoBWX2iUGVoQ6xOc15gRUSBz6N1ls42YsSITssECIIArVaLzMxMzJw5ExMmTJB7aCIin1i1pRyNre0oPXQaWrUKtS0mVNa3AgB2oRaiIMBotuBoWQvqmk14fNJAbCjTo8ZgRHq8DrUtJgBAmEaFjHgdyqubsLFMj3vHhUOrUfnz1IjIC2QneE+aNAmHDh2CTqfDhAkTMGHCBERERODgwYO4/PLLcfLkSeTm5uLjjz/2RnuJiDzCZJFgtkhQqzrPN1KrRJglCSaLhKVF+/FZ2UlUGYzYfawOlfWtqKxvxa6jtdh1tA5VhjZsLDuJpUXu1XwjosAmu2eppqYGDz/8MBYsWOCw/dlnn8XRo0fxxRdfYNGiRXjmmWdw8803e6yhRESeMntCJk7UtaDJaEZMmAZhGhV2oRaAbRhOJQowtLWjvrUdBWPT8devDtsCK23nl0y1SkST0QyTRfLlaRCRj8gOlt5//33s3r37vO3Tpk3DyJEj8cYbb+COO+7A8uXLPdJAIiJP04SISIvToX9CJPZWNiAjXgfxf+kFKlGAKADVBiOGpEQhLU6HgrHpLgdWRBR8ZA/DabVafP311+dt//rrr6HVagHYahV1/J+IKBCJooC8wYmI1WlQXt0Eo9kCyWqFoa0dv1Q3IVanwcSsRIiiYA+sqgxtEAVAFASIguAQWA1IjERanM7fp0VEXiC7Z+nBBx/E/fffj927d+Pyyy8HAOzcuRNvvvkm/vjHPwIAPv/8cwwfPtyjDSUi8rTMhEjkj0nDhjI9jpbZhuXqW9sxJCUKE7POlAPoCKwqG1rtgZVaJcLQ1o5qg9EhsCKi4ONW6YB169bhlVdewYEDBwAAAwYMwIMPPojf/OY3AIDW1lb77LiegKUDiJRNkqyoqG9Fs8kMnSYEKdFhnQY+HXWWPis7CbMkISs5CgMSIx0CKyJSDlfv36yz5AEMloh6DlbwJgoeXquzRETUk2k1KiyanOXvZhCRD8kOliwWC1566SW8//77OHbsGEwmk8PrtbW1HmscERERkb/Jng339NNPY/ny5bj99tvR0NCAwsJC3HrrrRBFEU899ZQXmkhERETkP7KDpXXr1uGNN97Aww8/jJCQENxxxx148803sXDhQmzfvt0bbSQiIiLyG9nBkl6vx5AhQwAAERERaGhoAAD83//9HzZs2ODZ1hERuUmSrDhe24L9+kYcr22BJHEuCxG5R3bO0kUXXYSTJ0+ib9++uOSSS/DFF1/gsssuw86dOxEaGuqNNhIRyeIwxd8iISslCv0TIpE3mFP8iUg+2T1LU6ZMQXFxMQBbgcoFCxagX79+mD59Ou6++26PN5CISI7yagPWbjuCfRUN0KpViNFpEBOmwd7KBqzddgTl1QZ/N5GIFKbbdZZKS0tRWlqKfv364aabbvJUuxSFdZaIfMNZ8UiTWYIkWfHa1kPYV9GA9Hgddh+rA2Bbw00UgPLqJmSlRGHOhEzWRiIiFqX0JQZLRN53oaG1lzb9jMbWdpQeOg2tWgW1SkBlfSsAIDk6DKIgwGi2oK1dwhvTRyE1NtzPZ0RE/ubRopSffPKJyx88efJkl/clInJFx9BajcFoC4S0IfahtcqGVuSPSQMAmCwSzBYJam3nlza1SkST0Yxmk9mHrScipXMpWLrllltcOpggCLBYLN1pDxGRXcfQ2oYyPWoMRqTH61DbYiuEG6ZRISNeh/LqJmws0+OB8ZegsqEVTUYzYsI0CNOosAu2IrmjLo6FShRgaGtHfWs7dBouXkBErnPpiiFJkrfbQUR0nlVbyh2G1mpbTPahtV2otQ+tHS1rwZQRKUiL06F/QiT2VjYgI14HUbDlJalEAaIAVBuMGJIShZToMH+eFhEpDP+8IqKAJmdoTRQF5A1ORGVDK8qrm2A0W6BWiTC0taPaYESsToOJWYlM7iYKRGYTsPVF2//HPQyEaPzbnrMwWCKigDV7QiZO1LXIGlrLTIhE/pg0bCjT42iZ7b31re0YkhKFiVmss0RE8jFYIqKApQkR3Rpay0yIxIMTInDriJROywwQEcnBYImIApq7Q2uiKLA8ABF5hOwK3kREvtYxtDYoJQpt7RLqWkz2obX8MWkcWiMir3KrZ+ngwYNYu3YtDh48iJUrVyIhIQGfffYZ+vbti6ysLE+3kYiIQ2tE5Deye5a+/PJLDBkyBDt27MCHH36IpqYmAMD333+PRYsWebyBREQdOobWBib1QmpsOAMlIvIJ2cHSvHnz8Oyzz2LTpk3QaM5M67vmmmuwfft2jzaOiIiIyN9kB0tlZWWYMmXKedsTEhJQU1PjkUYRERERBQrZwVJ0dDROnjx53vbvvvsOKSkpHmkUOSFJQN1RoOpH27+srk5ERORVshO8p02bhscffxwffPABBEGAJEnYtm0bHnnkEUyfPt0bbaQOpw4AP34E7PsYkMxAn2FA7wHApTfZ/iUiIiKPk92z9Oc//xkDBw5EamoqmpqaMGjQIFx11VW48sor8eSTT3qjjQTYAqXtqwF9GaAOA8JjgbBY4OQPtu2nDvi7hUREREFJdrCk0Wjwxhtv4NChQ/j3v/+Nf/zjH9i/fz/+/ve/Q6VSeaONPZvZBLS32XqUmk8BcZmASgNAADThQFw/2/Z9H3NIjoiIyAvcLkqZmpqKG264AVOnTkVzczPq6uo82a4urVq1CmlpadBqtcjOzsY333zjdP8PPvgAAwcOhFarxZAhQ7Bx40aH12fOnAlBEBwekyZN8uYpyLP1RWDzIlswZDgJHN8BNBy3PY5tB46X2rb/+JFtGxEREXmU7GDpoYcewl//+lcAgMViwfjx43HZZZchNTUVJSUlnm6fg/Xr16OwsBCLFi3Ct99+i2HDhiEvLw/V1dWd7v/111/jjjvuQEFBAb777jvccsstuOWWW7B3716H/SZNmoSTJ0/aH++++65Xz0M2s8mWo6RSd/66Sm173dTk23YRERH1ALKDpX/+858YNmwYAODTTz/FoUOHsH//fsydOxdPPPGExxt4tuXLl2PWrFnIz8/HoEGDsHr1aoSHh2PNmjWd7r9y5UpMmjQJjz76KC699FI888wzuOyyy/DKK6847BcaGoqkpCT7IyYmxqvnIcu4h4Gc2bZk7qRhQN8rgKhU26PvFUDfK4GkobbXNRH+bi0REVHQkR0s1dTUICkpCQCwceNG/PrXv0b//v1x9913o6yszOMN7GAymbB7927k5ubat4miiNzcXJSWlnb6ntLSUof9ASAvL++8/UtKSpCQkIABAwbggQcewOnTp522xWg0orGx0eHhNSEaIDbDNtvNcBKACAjC/x4qQBABgx5IGGgLoIiIiMijZAdLiYmJ2LdvHywWC4qKinDdddcBAFpaWrya4F1TUwOLxYLExMTz2qPX6zt9j16vv+D+kyZNwttvv43i4mIsXboUX375Ja6//npYLJYu27J48WJERUXZH6mpXg5SRNFWHiA8Dqg5AJiNgFUCjI3Aqf2ALg4Y+H+2/YgURJKsOF7bgv36RhyvbYEkWf3dJCKi88ius5Sfn49f//rX6NOnDwRBsPfc7NixAwMHDvR4A71t2rRp9v8PGTIEQ4cOxSWXXIKSkhJce+21nb5n/vz5KCwstD9vbGz0fsDUewBwxf22RO7aQ4DRALTWAcnDbIES6yyRwpRXG/D53iocPNWENrMF2hAVLukdgbzBichMiPR384iI7GQHS0899RQGDx6M48eP41e/+hVCQ0MBACqVCvPmzfN4AzvEx8dDpVKhqqrKYXtVVZV9WPBcSUlJsvYHgIyMDMTHx6O8vLzLYCk0NNR+3j7VewBw1aPAsGm2ZG5NhG3ojT1KpDDl1Qas3XYENQYjqgxGqFUCsvpEYW9lAyobWpE/Jo0BExEFDLfusrfddhvmzp2Liy66yL5txowZuPnmmz3WsHNpNBqMHDkSxcXF9m2SJKG4uBg5OTmdvicnJ8dhfwDYtGlTl/sDwIkTJ3D69Gn06dPHMw33NFEEYi4GErNs/zoLlLg0CgWgNpMFG8r0qDEYkR6vg1olAADCNCpkxOtQYzBiY5kebaauh8KJiHxJds8SADQ3N+PLL7/EsWPHYDKZHF77/e9/75GGdaawsBAzZszAqFGjMHr0aKxYsQLNzc3Iz88HAEyfPh0pKSlYvHgxAOAPf/gDxo8fjxdffBE33ngj3nvvPezatQuvv/46AKCpqQlPP/00pk6diqSkJBw8eBCPPfYYMjMzkZeX57Xz8AkujUIBamnRfpQeOg2tWoXaFhMq61sBALtQC1EQYDRbcLSsBXXNJiyanOXn1hIRuREsfffdd7jhhhvQ0tKC5uZmxMbGoqamBuHh4UhISPBqsHT77bfj1KlTWLhwIfR6PYYPH46ioiJ7EvexY8cgntXTcuWVV+Kdd97Bk08+iT/+8Y/o168fPvroIwwePBiAbejwhx9+wFtvvYX6+nokJydj4sSJeOaZZ/wzzOYpHUujNJ+yLY2iUp9ZGqWhwpb7xICJ/MRkkWC2SFBrO7/8qFUimoxmmCzsCSWiwCBYrVZZ00+uvvpq9O/fH6tXr0ZUVBS+//57qNVq/Pa3v8Uf/vAH3Hrrrd5qa8BqbGxEVFQUGhoa0KtXL/81xGyyzZLbttK2hlxcpq3iN2CryQTRNpuuz1Dgyt8Daq3/2ko91qFTTVhZ/AtiwjQI06iw62gtAGDUxbFQiQIMbe2ob23HH67th4zerB1G1GOYTbZVKwBbjcEQjdc/0tX7t+yepT179uC1116DKIpQqVQwGo3IyMjA888/jxkzZvTIYClgbH0RaKsHDm+19Si1nD6zBMox2GozmY222XQtp4Hrl/qztdRDpcXp0D8hEnsrG5ARr4Mo2HKWVKIAUQCqDUYMSYlCWpzOzy0lIrKRneCtVqvtQ10JCQk4duwYACAqKgrHj3NtMr9zdWkUs6nz14m8TBQF5A1ORKxOg/LqJhjNFkhWKwxt7filugmxOg0mZiVCFAV/N5WICIAbPUsjRozAzp070a9fP4wfPx4LFy5ETU0N/v73v9tzgchPxj0M1B+zlRUIiwU04bYeJcA2DCeobIUsW+tsS6icTZJsvVCuliSQuz/1GJJkRUV9K5pNZug0IUiJDjsv8MlMiET+mDR7nSWj2QJDmxlDUqIwMYt1loh6JKtkGx0xm2z3stiMgLmvyA6W/vznP8NgMAAAnnvuOUyfPh0PPPAA+vXr1+UabeQjZy+NcvIHIK6fbegNcFwaJXmYbb8OcmfOyd2fgVWPIafQZGZCJDKujrhgYEVEPUDHfeXw1jMLwwfQDG7ZwdKoUaPs/09ISEBRUZFHG0Td1LE0SkPFmaVRVGpbj5JBf/7SKHJnzrmzP0sY9AjuFJoURQGpseF+ajERBQQFzODmn/fBqGNplKQhQHsr0FJ7ZmmU7LN+6NrbbIFM8ynbzDmVBoBgG76L62fbvu9j235mk+v7dxS/7PgF0JfZfgHCY8/8AmxfbXudFM9kllhokojkc+e+4ieye5aqqqrwyCOPoLi4GNXV1Ti38oCzBWjJh1xZGmXzItdnzmmjXZ9pl3UrEHWR4y9Ay2nbvh2/ADUHbL8ALGGgeKu2lKOxtZ2FJolIHjkzuIfeblu1wk9kB0szZ87EsWPHsGDBAvtiuhSgOpZG6YorM+eMhjMz51zdv3SVLX+KJQx6DBaaJCK3uHpfMTX5tl3nkB0sffXVV9i6dSuGDx/uheaQT+XMdn3mXHRf12fahWjkB2KkWLMnZOJEXQuajOYzhSbReaHJgrHpfm4tEQUMOTO4Nf4tUCs7WEpNTT1v6I0USs7MOVF0ff8rZgMNJ3xTwoD8ThMistAkEcknZwZ3VKp/myr3DStWrMC8efPw2muvIS0tzQtNIp+RO3PO1f3VWvdLGPz0KVDzC2BuA0K0QHw/zpxTgI5Ck5UNrfZCk2qVCENbO6oNRhaaJKLOyb0P+YlLa8PFxMQ45CY1NzfDbDYjPDwcarXjMEttba3nWxngAmZtOHd1Nr0/YaDtB7SrOkvnBjW9+5+//9nTQQ0nbb8ASUPP/AKcPTOv032H2f4fHhcQU0fpws6us2Q0WxAaokJmQgQLTRKRc3LvQx7i6v3bpWDprbfecvmDZ8yY4fK+wULxwRLgvQrergRW7W1c/DfAuVKV2519iYjs2ttss7TNJluKhg8qeHt0Id2eGAD1OBeaOefu/r0H2IbhnAVWckoYcOacz8mpyg2w0CQRuUkQbWVqANukogDKV3W5JZIkYenSpRgzZgwuv/xyzJs3D62trd5sGwWLjsAqMcv277m/AFz8N2B1VOX+4UQ9DtU045TBiF5aNfZWNmDttiMorzb4u4lERF7ncoL3c889h6eeegq5ubkICwvDypUrUV1dzfXgqPvklDAgnzCZJUiS1aEqd22LLVjtqMpdXt2EjWV6zJkQwWE28j+zyVbkELBNSQ/R9Ox2kEe5HCy9/fbb+Mtf/oL77rsPALB582bceOONePPNNyEGUFcZKZA7M+fIq+RU5Z4yIoXDbkQU1FyOco4dO4YbbrjB/jw3NxeCIKCystIrDaMepGPqaHjcmamjVsnWo3Rqf8BMHe1p7FW5VZ33GqlVIsyShGaT2cctIyLyLZd7lsxmM7Rax5lIarUa7e3tHm8U9UAdi//+9ClQo7PNnGtrsPUoOZs6yiKWXiGnKrdOI7tcG5HnWSXbOmNmk60qtA9mUlHP4fJVzmq1YubMmQgNDbVva2trw/333w+d7kxV3g8//NCzLaSew5WZc2frrC5H7wFdF7FkYOUyOVW5U6LD/Nxa6vE6rgWHt9quBaYm59cCIplcDpY6Kx/w29/+1qONIXK5JMHZRSzVYbYZc2Gxtrynhorzi1iyOrhsrMpNiiD3WkDkBpeDpbVr13qzHUSuMZts3e0/fmS7OMZl2uovAbaZdHH9bHlP+z4Gxj1iC766qg7u7GLKXigAQGZCJPLHpDlU5Ta0mTEkJYpVucm/3LkW+AKHA4MSkw1IWba+aLsQuVLEMutWIOoi+RdT9kI5yEyIRMbVEazKTYFFzrVg6O3yiu66i8OBQYvBEimPK0UsjQagdJWtxomci6k7vVA9AKtyU0By9VpgavJ+W9wZDmRNJsVgsETKMu5hW9e2K0UsQzSuX0xb64CIRNd6obhGHZH/ybkWaCK8145AHQ4kj2KwRMoSonG9iOUVs4GGE65dTL9/17bdnTXqmN9E5HtyrgVRqd5rRyAOB5LHMVgi5ekoYtlQAZz+xTZMpgkHTM1AY8WZIpZqresX03aj7a9CV3qhzl6jjvlNRP5z9rWgo6CtSm37I8ig911B20AaDiSvYLBEyuRQxPIXwFBpC1TOLWLpamAVk+56l37HGnXMbyLyv45rwY8f2XpvOobVL1TQ1lMCZTiQvIrBEimXq0UsXQ2s5KxR197G/CaiQNF7ADDmD0Brra2XJ2e276bsB8pwIHkVgyVSNleLWLoSWMnp0v98kXv5TUBA5DhJkpWlACi4CCKgjbb9P7qvb3+nfDEcyJlzfsVgiXoOVwIrV9eoczVH4ez8JiAgcpzKqw32IpNtZgu0ISpc0jsCeYNZZJLIbe4MB7KApWIwWCI6lyu9UDmz5eU3AQGR41RebcDabUdQYzCiymCEWiUgq08U9lY2oLKhFflj0hgwkTKFaIAJ8/3bBjnDgSxgqSgMYYk609ELlZhl+/fci11HjoLhJADRNvQmCI45CgkDbfuZTefnOKk0AIQzOU7Np/63ILDktVNqM1mwoUyPGoMR6fE6qFW2YbcwjQoZ8TrUGIzYWKZHm8nitTYQBb2O4cCIhK6HAzv+cNKX2Ybyw2PPFLDcvtr2OgUUxQVLq1atQlpaGrRaLbKzs/HNN9843f+DDz7AwIEDodVqMWTIEGzcuNHhdavVioULF6JPnz4ICwtDbm4ufvnlF2+eAgWDjhyF8LgzOQpWydajdGq/Y47C1heBzYtswZDhJHB8h63XquE4cGw7cLzUtv3Hj87kPnnB0qL9+KzsJKoMRuw+VofK+lZU1rdi19Fa7DpahypDGzaWncTSov1eawNRjxYgfziRfIoKltavX4/CwkIsWrQI3377LYYNG4a8vDxUV1d3uv/XX3+NO+64AwUFBfjuu+9wyy234JZbbsHevXvt+zz//PN4+eWXsXr1auzYsQM6nQ55eXloa2vz1WmRUnXkKCQPt130IhLP5DdlnzOk5kqOU0dXvJeYLBLMFsneo3QutUqEWZJgsvAiTeQVAfKHE8mnqJyl5cuXY9asWcjPzwcArF69Ghs2bMCaNWswb9688/ZfuXIlJk2ahEcffRQA8Mwzz2DTpk145ZVXsHr1alitVqxYsQJPPvkkbr75ZgDA22+/jcTERHz00UeYNm2a706OlMmV/KYAqcNSMDYdTUYzYsI0CNOosAu1AIBRF8dCJQowtLWjvrUdBWPTvdYGoh6PBSwVSTE9SyaTCbt370Zubq59myiKyM3NRWlpaafvKS0tddgfAPLy8uz7Hz58GHq93mGfqKgoZGdnd3lMADAajWhsbHR4UA92ofyms+uwXCjHyYt1WNLidOifEIkqQxtEARAFAaIgQCUKEAWg2mDEgMRIpMXpvNYGoh5t3MO2pO8+w2yTO/peYfudj0q1/b/vlUDSUNvrLGAZUBTTs1RTUwOLxYLExESH7YmJidi/v/McC71e3+n+er3e/nrHtq726czixYvx9NNPyz4H6sFcrSTuxWnDoiggb3AiKhtacaimGVnJvRCmUaHFZMbJhjbE6jSYmJXIektE3eFsVl53CliyzIBfKSZYCiTz589HYWGh/XljYyNSU1mZlS7A1UriZ/NwAcvMhEjkj0mz11mqamxDaIgKQ1KiMDGLdZaIvM6dApY9pcxAIJR/6IJigqX4+HioVCpUVVU5bK+qqkJSUlKn70lKSnK6f8e/VVVV6NOnj8M+w4cP77ItoaGhCA0Ndec0qKdzdYkWwGsFLDMTIpFxdQQreBP5i5wClmfXZ1OH2QKrjjIDXIPSZxTTh6fRaDBy5EgUFxfbt0mShOLiYuTk5HT6npycHIf9AWDTpk32/dPT05GUlOSwT2NjI3bs2NHlMYm67UI5TsCZC2TlHuB0OdBUZavd4qE6LKIoIDU2HAOTeiE1NpyBErnPbAK2LLY9zq1YT13rKGCZPg64eAww/nFgzFzHVQJcLTPQztnb3qaYniUAKCwsxIwZMzBq1CiMHj0aK1asQHNzs3123PTp05GSkoLFixcDAP7whz9g/PjxePHFF3HjjTfivffew65du/D6668DAARBwEMPPYRnn30W/fr1Q3p6OhYsWIDk5GTccsst/jpN6snMJltugiuL9I57hDkLRErmbD27rS/acpTcXYOSPEpRwdLtt9+OU6dOYeHChdDr9Rg+fDiKiorsCdrHjh2DeNYP25VXXol33nkHTz75JP74xz+iX79++OijjzB48GD7Po899hiam5tx7733or6+HmPHjkVRURG0Wq4UT34g5wI59HbHte4CYIFe6oGYeOw97q5BSR4nWK1Wq78boXSNjY2IiopCQ0MDevXq5e/mkJJtWQw0VQNHt9mWQIBwJliKSrUFS1YJaKkFfrXWNpQHnEkA3fex7eLaZ1hwJoBSYPH2z53ZZPsDArBNuw/RdP+Y3jyuJ9vREXx+ufSs+mzbba+dW59t/ONAfKbv2x8EXL1/K6pniSjouVPAkgmg5A/8ufMuOWUGYjP829YegH2lRIFETgHLiEQmgJLvMfHYd+SsQUlexZ4lokDjagHLr15iAqgSBMKQjyfb4MvE42DPh3KlrpCcMgPkNQyWiAKRqwUsmQAa+ALhhu/pNvji586bhRgD4XsiR0eZgdZaW5tzZgd+m4MMgyWiQHWhApZy8ptyZvvtNIJOe5tt5XhXblqBUHnZnTY464nyxc+dN/OhAuF74g5nZQbOFQi9mUGGwRJRIOsoYNkZJoD6npwbbSAkQLvbBmc9L978ufN2nbFA+J6QIjFYIlIyXy3QyxpOrt9oA6Ww6LlJ2F214crfA+qz6sq5EhC6s76ZK7pTZ8wZOd+Tc78eRGCwRKR87izQK4eX1qgLKBcaWpMTeMhJvJdzw5dr8yL5Sdhyel7cSTx2ZXjI1XwoU5PrXwtWw/aPIBoOZLBEFAzkLNArx9k3T8NJ240qaVhwDVu40pMiJ/DQRnvnhi+XnCRsd3vDPJ147E6dMVdxMgR1A4MloiAhQUCFtTearTHQWUOQAsH9QmqBMpTkbXKG1ly90Xrzhi9HzmzXk7C7M/wlJ/H4QrPQ5ORDRaW6/rXgZAjqJgZLREGgvNqAz/dW4eCpJrSZLdCGqHBJ7wjkDU5EZkKk/AN6K3fEl5zlWcnNYZETeHjrhi+X3CRsd3vDXKkVBLieHO+NfChOhqBuYrBEpHDl1Qas3XYENQYjqgxGqFUCsvpEYW9lAyobWpE/Ju38gMmVhO1AGEpy14XWLJObw5K3WN6N1lsJ0HLIaYO3e8PkzkLzRiHGQPiedIerQSl5BYMlIoUymSVIkhUbyvSoMRiRHq9DbYst3yJMo0JGvA7l1U3YWKbHvePCodWobG90JWE7UIaS3OHKjRmQN7Tmzo02ECovu9oGb/aGuTsrzxuFGL2VlE5Bj8ESkUKt2lKOxtZ2lB46Da1ahdoWEyrrWwEAu1ALURBgNFtwtKwFdc0mLJqc5XrCdqAMJckhZ2ht7Fyg4YS8HBZ3brRyb/jeuDG72gZv9by4Myuvg5x8KFexGja5gcESkYKZLBLMFglqbee/ymqViCajGSaLJP8vfKUNW8jNs3Inh8WdG61a6/pUdG8tw+FqG7zRGxaIs9C8EYQFErk/R+w9uyAGS0QBTJKsqKhvRbPJDJ0mBCnRYRBF20199oRMnKhrQZPRjJgwDcI0KuxCLQBg1MWxUIkCDG3tqG9tR8HYdPf+wneo4aSzDdu1NXhuKEluscsL7S8nz8rdYFBO8CNHoCzD4emeFznJ8edino58gfJzFGQYLBF1k7OApjsuNMNNEyIiLU6H/gmR2FvZgIx4HcT/9Y6oRAGiAFQbjBiSEoW0OJ37f+F7s4aTsyRsufu7k2fl7WBQztcikJbh8GTPi9JnoSlp0d1A+zkKIgyWiLrB41P2zzquKzPcRFFA3uBEVDa04lBNM7KSeyFMo0KLyYyTDW2I1WkwMSvRFrx15y98Z2vUuUPuRd3V/d3Js/JWMOiKQK1n5ckenUAczvV0uYNA4G4iPbmEwRKRm9yasg/nPVFyZrjNmRABURSQmRCJ/DFp9qCtqrENoSEqDEmJwsSss4I2X/2Ff6GhMjkXdUGUH0y4c2P2dDDoqmCoZ+WKQJgZKJfSemm6k0hPF8RgicgNbSaL/Cn7uHBPlJwZblNGpCA1NhwAkJkQiYyrI5wPB/riL3xXyhLIXTpEbjARKENrrlJyPSs5lDQLTYm9NIGYSB9EGCwRuWFp0X55U/bhWk8U4PoMt2aT2WG7KAr24KlL3gwkXC1LIPei7k4w4c+hNTmUXM/KHUqZhabEXpruDLPTBTFYInKDnCn7cobWHhh/CSobWl2a4abTuPnr6+lAwptLh0T3dT+Y8NfQmhxKrGfVHUqZ3abEXhqlJ9IHOAZLRJ240Ay3grHpLk/Zlzu05uoMt5ToMPdP0JOBhDeXDhHF4A8mAjEBuqdTYi8Nf468isES0TlcmeEma8o+5A2tyZrhFijcXTrk9C+2oTpNOGBqBhorzr+o94SbgBIToIOZUntp+HPkNQyWiM7ijSn7copHdgytuTzDLRDIybs5d+mQjmRwQ6UtGbyri7rSkrbdoaQE6GCn5ACdP0dewWCJCO4tSutqQHNu8ch+CRG48pJ4+2dbrdZOh9ZcmuEWCOTk3Zy7dIic3CmlJG13h7eqg5N8Su6lCZREeiUV9LwABktEcHNRWrge0JzdE/VLdRP6RGkRplGh1WRxOrTm0gy3QOCr+kZKSNqm4MFeGvcpqaCnCxgsUY9xoaRtWYvSnsXVgEZRQ2vu6AlDZdTzBEovjTd5ugdIaQU9XcBgiXqE8moDNpTp8VnZSZgtErJSotA/IdKetC17UVo3KWZozV09YagsUHClePIET/cAKbGgpwsYLFHQOztpW6tWQa0NQUyY5rykbbkz3NylmKE1d3GozDeCKB+E/MQbPUBKLOjpAv5mUdAymaXzliVRq2wBUEfSdo3BiI1lekiS1Z5XFKvT2Ge4jUqLQYvJjF+qmwJzyj71TKcOANtW2m5KR7cBXy4Fvlpu2050IWbT+T1AKg0A4UwPUPMpWw+QJF3oaOcf+0JlRCRzYBX0dAF7lihoubPOWtDnFZHyBWE+SEBTStVxOby5gLMSC3q6gMESBTV31lkL+rwiUia5y8ooKB+E/MBbCzgrtaDnBTBYoqDlTjHIDkGfV0TKI3dZGQXlg5CHXag3zJsLOCu5oKcTimltbW0t7rzzTvTq1QvR0dEoKChAU5PziLetrQ2zZ89GXFwcIiIiMHXqVFRVVTnsIwjCeY/33nvPm6dCPnJ2McgqQxtEARAFAaIgOCRtD0iM7N46a0S+EqT5IORjZxeSNZwEINqCbUFw7AFKGOjemosdZUSShgDtrUBL7ZmCntnKHCZWTM/SnXfeiZMnT2LTpk1ob29Hfn4+7r33Xrzzzjtdvmfu3LnYsGEDPvjgA0RFRWHOnDm49dZbsW3bNof91q5di0mTJtmfR0dHe+s0yMcUuc4aUWfcWVaGqCve7gEKsoKeigiWfvrpJxQVFWHnzp0YNWoUAOD/+//+P9xwww1YtmwZkpOTz3tPQ0MD/vrXv+Kdd97BNddcA8AWFF166aXYvn07rrjiCvu+0dHRSEpK8s3JkM8xaZuCgrvLyhB1xdtLugRRQU9FBEulpaWIjo62B0oAkJubC1EUsWPHDkyZMuW89+zevRvt7e3Izc21bxs4cCD69u2L0tJSh2Bp9uzZuOeee5CRkYH7778f+fn5EISuexqMRiOMRqP9eWNjY3dPkbyMSdsUFII0H4T8KMh6gLxFEcGSXq9HQkKCw7aQkBDExsZCr9d3+R6NRnPekFpiYqLDe/70pz/hmmuuQXh4OL744gv87ne/Q1NTE37/+9932Z7Fixfj6aefdv+EyC+YtE1BQckLvFJgktMD1EMrx/s1WJo3bx6WLnU+Y+Onn37yahsWLFhg//+IESPQ3NyMF154wWmwNH/+fBQWFtqfNzY2IjXVjSQ4IiJ3sDeAyKf8Giw9/PDDmDlzptN9MjIykJSUhOrqaoftZrMZtbW1XeYaJSUlwWQyob6+3qF3qaqqyml+UnZ2Np555hkYjUaEhoZ2uk9oaGiXrxER+YRay/IARD7i12Cpd+/e6N279wX3y8nJQX19PXbv3o2RI0cCAP7zn/9AkiRkZ2d3+p6RI0dCrVajuLgYU6dOBQAcOHAAx44dQ05OTpeftWfPHsTExDAYIiIiIgAKyVm69NJLMWnSJMyaNQurV69Ge3s75syZg2nTptlnwlVUVODaa6/F22+/jdGjRyMqKgoFBQUoLCxEbGwsevXqhQcffBA5OTn25O5PP/0UVVVVuOKKK6DVarFp0yb8+c9/xiOPPOLP0yUiIqIAoohgCQDWrVuHOXPm4Nprr4Uoipg6dSpefvll++vt7e04cOAAWlpa7Nteeukl+75GoxF5eXn4y1/+Yn9drVZj1apVmDt3LqxWKzIzM7F8+XLMmjXLp+dG7pMkK2e4ERGRVwlWq9Xq70YoXWNjI6KiotDQ0IBevXr5uzk9Rnm1ARvK9Pis7CTMFglZKVHonxCJvMGsnURE5DI5M9y8ta+fuHr/VkzPEtHZyqsNWLvtCGoMRmjVKqi1IYgJ02BvZQMqG1qRPyaNARMREXkE55mSopjMEtpMFmwo06PGYER6vA5qlW3YLUyjQka8DjUGIzaW6SFJ7DQlIqLuY88SKcqqLeVobG1H6aHT0KpVqG0xobK+FQCwC7UQBQFGswVHy1owZUQKi1ASEVG3sWeJFMdkkWC2SPYepXOpVSLMkoRmk9nHLSMiomDEniVSlNkTMnGirgVNRjNiwjQI06iwC7UAgFEXx0IlCjC0taO+tR06DX+8iYio+3g3IUXRhIhIi9Ohf0Ik9lY2ICNeB/F/ix6rRAGiAFQbjBiSEoWU6DA/t5aISAFCNMCE+f5uRUBjsESKI4oC8gYnorKhFYdqmpGV3AthGhVaTGacbGhDrE6DiVmJrLdEREQewWCJFCkzIRL5Y9Lw+d4qHDzVhKrGNoSGqDAkJQoTs1hniYjI74Kox4rBEilWZkIkMq6OYAVvIiJfsUpAW72t4GT9MSA2AxCDf64YgyUKKHKXLxFFgeUBiIh84dQB4MePgMNbAckMmJqA3gOAS2+y/RvEGCxRwODyJUREAerUAWD7aqD5FKAOA1RqICwWOPkD0FABXHF/UAdMwd93Rn4nSVYcr23Bfn0jjte2dFpZu2P5kn0VDdCqVYjRaezLl6zddgTl1QY/tJyIqIczm4D2NluPUvMpIC4TUGkACIAmHIjrZ9u+72PbfkGKPUvkVa70Fp27fEltiwnAmeVLyqubsLFMj3vHhUOrUfnzdIiIepatL9pylA5vtfUotZwGGo7bXjsGQBAAsxGoPWR77fql/myt1zBYIq9xdbHbpUX7XVq+pK7ZhEWTs/x8VkREPYzZZMtRUqk7f12lBowG235BisESeZzJLEGSrC73FtmXL9F2/uOoVoloMpphski+PA0iIhr3sG3Wm6nJlqOkCbf1KAFA3ysAQQUYG4HWOiBntl+b6k0MloKYySxh1ZZyALZlQjQhvklRk7PYbV2zCQVj011avqRgbLpP2k9ERP8TorGVB+g9wJbMHdfPNvQG2AIlQQQMeiB5mG2/IMUE7yAmSVY0trajpsmIE3WdJ1Z7i6uL3Zoskn35kipDG0QBEAUBoiA4LF8yIDESaXE6n7WfiIj+RxRt5QHC44CaA7YcJatk61E6tR/QxQED/y+o6y2xZylIdSRWlx46DbNFQpPR7LNp+HIWuy0Ym+6wfEl5dROMZgvUKhGGtnZUG4xcvoSIyN96D7CVB/jxI1syt9FgG3pLHmYLlIK4bADAYCkouZpY3R1tJguWFu2HySKhYGw60uJ09mBGzmK3Hb1F5y5fYjRbYGgzc/kSIqJA0XsAMOYPQGutLZk7ZzYreJPyyE2sdncaviu9Vu70FnH5EiKiACeIgDba9v/ovj0iUAIYLAUVuYnV7kzDl9Nr5U5vEZcvISKiQMNgKch4axq+nF6rORMi7L1B7C0iIiKlY7AUROQmVsshp9dqyogUh94h9hYREZGS9YzBxh7i7MRqb0zDd7UcQLPJ3N1TISIiChjsWQoy7k7Dv1ABSzm9VjoNf6yIiCh4sGcpCHUkVg9KiUJbu4S6FhPqW9sxJCWqy7IBFypgKafXKiU6zFenSkRE5HXsAghSmQmReHBCBG4dkXLBxGpXC1iyeCQREfVEDJaCmCuJ1XILWHb0Wm0o0+NomW1YrqPXisUjiYgoGDFY6sHaTBa3CljK6bUiIiJSOgZLPdjSov1uF7BkOQAiIuopmODdg7laCkBuAUsiIqJgwp6lHqxgbLpXClgSEREFEwZLPVhHKYC9lQ3IiNdBFGw9TGeXAhiSEuVWAUsiIgpCIRpgwnx/t8LnFDMMV1tbizvvvBO9evVCdHQ0CgoK0NTU5PQ9r7/+Oq6++mr06tULgiCgvr7eI8cNFh2lAGJ1GnspAMlqhaGtHb9UN7EUABERERQULN1555348ccfsWnTJvz73//Gf//7X9x7771O39PS0oJJkybhj3/8o0eP608ms4SXNv2Mlzb9DJO5+7lE7hSwJCIi6kkEq9VqvfBu/vXTTz9h0KBB2LlzJ0aNGgUAKCoqwg033IATJ04gOTnZ6ftLSkowYcIE1NXVITo62mPH7dDY2IioqCg0NDSgV69e7p2ki9pMFiwt2g+TRULB2HSkxek80vMjSVZU1LeyFAAREfUYrt6/FZGzVFpaiujoaHtAAwC5ubkQRRE7duzAlClTfHpco9EIo9Fof97Y2OjW58vlaqVtd7AUABERUecUMQyn1+uRkJDgsC0kJASxsbHQ6/U+P+7ixYsRFRVlf6SmprrdBld1VNreV9EArVqFGJ3GXml77bYjKK82eL0NREREPZFfg6V58+ZBEASnj/379/uziZ2aP38+Ghoa7I/jx4977bNMZum8StsddZE6Km3XGIzYWKY/b/FbIiIi6j6/DsM9/PDDmDlzptN9MjIykJSUhOrqaoftZrMZtbW1SEpKcvvz3T1uaGgoQkND3f5cOVZtKUdja7tLlbanjEjhUBoREZGH+TVY6t27N3r37n3B/XJyclBfX4/du3dj5MiRAID//Oc/kCQJ2dnZbn++t47rafZK29rOv11qlYgmoxnNJrOPW0ZERBT8FJHgfemll2LSpEmYNWsWVq9ejfb2dsyZMwfTpk2zz1irqKjAtddei7fffhujR48GYMtJ0uv1KC8vBwCUlZUhMjISffv2RWxsrEvH9bfZEzJxoq7FpUrbOo0ivp1ERESKoogEbwBYt24dBg4ciGuvvRY33HADxo4di9dff93+ent7Ow4cOICWlhb7ttWrV2PEiBGYNWsWAOCqq67CiBEj8Mknn7h8XH/ThIj2SttVhjaIAiAKAkRBcKi0PSAxEinRYf5uLhERUdBRRJ2lQOeLOksds+FqDEZUGdqgVokY1KcXqg1GxOo0LCBJREQkk6v3b8X0LPV0rLRNRETkH0xyUZDMhEjcNy4c9c0mj1fwJiIios4xWFIYrUaFRZOz/N0MIiKiHoPDcEREREROMFgiIiIicoLBEhEREZETDJaIiIiInGCwREREROQEgyUiIiIiJxgsERERETnBYImIiIjICQZLRERERE4wWCIiIiJygsESERERkRMMloiIiIicYLBERERE5ASDJSIiIiInGCwRERERORHi7wYEA6vVCgBobGz0c0uIiIjIVR337Y77eFcYLHmAwWAAAKSmpvq5JURERCSXwWBAVFRUl68L1guFU3RBkiShsrISkZGREATBo8e+/PLLsXPnTo8e01+f5+lje+p43TlOY2MjUlNTcfz4cfTq1avbbSHP8/XvUCBQ0jkHSlt92Q4lXWc9dcxAvc5arVYYDAYkJydDFLvOTGLPkgeIooiLLrrIK8dWqVQ+vQl78/M8fWxPHc8Tx+nVqxeDpQDl69+hQKCkcw6UtvqyHUq6znrqmIF8nXXWo9SBCd4Bbvbs2UHzeZ4+tqeO5+uvMflWT/z+KumcA6WtvmyHkq6znjpmoHyf3cVhOKJuaGxsRFRUFBoaGgLir2MiomATCNdZ9iwRdUNoaCgWLVqE0NBQfzeFiCgoBcJ1lj1LRERERE6wZ4mIiIjICQZLRERERE4wWCIiIiJygsESERERkRMMloiIiIicYLBE5CX//ve/MWDAAPTr1w9vvvmmv5tDRBSUpkyZgpiYGNx2221e+wyWDiDyArPZjEGDBmHLli2IiorCyJEj8fXXXyMuLs7fTSMiCiolJSUwGAx466238M9//tMrn8GeJSIv+Oabb5CVlYWUlBRERETg+uuvxxdffOHvZhERBZ2rr74akZGRXv0MBktEnfjvf/+Lm266CcnJyRAEAR999NF5+6xatQppaWnQarXIzs7GN998Y3+tsrISKSkp9ucpKSmoqKjwRdOJiBSju9daX2GwRNSJ5uZmDBs2DKtWrer09fXr16OwsBCLFi3Ct99+i2HDhiEvLw/V1dU+bikRkXIp5VrLYImoE9dffz2effZZTJkypdPXly9fjlmzZiE/Px+DBg3C6tWrER4ejjVr1gAAkpOTHXqSKioqkJyc7JO2ExEpRXevtb7CYIlIJpPJhN27dyM3N9e+TRRF5ObmorS0FAAwevRo7N27FxUVFWhqasJnn32GvLw8fzWZiEhxXLnW+kqITz+NKAjU1NTAYrEgMTHRYXtiYiL2798PAAgJCcGLL76ICRMmQJIkPPbYY5wJR0QkgyvXWgDIzc3F999/j+bmZlx00UX44IMPkJOT49G2MFgi8pLJkydj8uTJ/m4GEVFQ27x5s9c/g8NwRDLFx8dDpVKhqqrKYXtVVRWSkpL81CoiouASSNdaBktEMmk0GowcORLFxcX2bZIkobi42ONdv0REPVUgXWs5DEfUiaamJpSXl9ufHz58GHv27EFsbCz69u2LwsJCzJgxA6NGjcLo0aOxYsUKNDc3Iz8/34+tJiJSFqVca7ncCVEnSkpKMGHChPO2z5gxA3/7298AAK+88gpeeOEF6PV6DB8+HC+//DKys7N93FIiIuVSyrWWwRIRERGRE8xZIiIiInKCwRIRERGREwyWiIiIiJxgsERERETkBIMlIiIiIicYLBERERE5wWCJiIiIyAkGS0REREROMFgiIvKQ06dPIyEhAUeOHAFgq04sCALq6+u9+rnz5s3Dgw8+6NXPIOrJGCwRkc/NnDkTgiCc95g0aZK/m9Ytzz33HG6++WakpaV1+1hVVVVQq9V47733On29oKAAl112GQDgkUcewVtvvYVDhw51+3OJ6HwMlojILyZNmoSTJ086PN59912vfqbJZPLasVtaWvDXv/4VBQUFHjleYmIibrzxRqxZs+a815qbm/H+++/bPys+Ph55eXl49dVXPfLZROSIwRIR+UVoaCiSkpIcHjExMfbXBUHAm2++iSlTpiA8PBz9+vXDJ5984nCMvXv34vrrr0dERAQSExNx1113oaamxv761VdfjTlz5uChhx6yBxQA8Mknn6Bfv37QarWYMGEC3nrrLftwWXNzM3r16oV//vOfDp/10UcfQafTwWAwdHo+GzduRGhoKK644oouz7mlpQXXX389xowZYx+ae/PNN3HppZdCq9Vi4MCB+Mtf/mLfv6CgAMXFxTh27JjDcT744AOYzWbceeed9m033XRTl71QRNQ9DJaIKGA9/fTT+PWvf40ffvgBN9xwA+68807U1tYCAOrr63HNNddgxIgR2LVrF4qKilBVVYVf//rXDsd46623oNFosG3bNqxevRqHDx/GbbfdhltuuQXff/897rvvPjzxxBP2/XU6HaZNm4a1a9c6HGft2rW47bbbEBkZ2Wlbt27dipEjR3Z5LvX19bjuuusgSRI2bdqE6OhorFu3DgsXLsRzzz2Hn376CX/+85+xYMECvPXWWwCAG264AYmJifbV189uy6233oro6Gj7ttGjR+PEiRP2fCki8iArEZGPzZgxw6pSqaw6nc7h8dxzz9n3AWB98skn7c+bmpqsAKyfffaZ1Wq1Wp955hnrxIkTHY57/PhxKwDrgQMHrFar1Tp+/HjriBEjHPZ5/PHHrYMHD3bY9sQTT1gBWOvq6qxWq9W6Y8cOq0qlslZWVlqtVqu1qqrKGhISYi0pKenynG6++Wbr3Xff7bBty5YtVgDWn376yTp06FDr1KlTrUaj0f76JZdcYn3nnXcc3vPMM89Yc3Jy7M/nzZtnTU9Pt0qSZLVardby8nKrIAjWzZs3O7yvoaHBCsBpG4nIPexZIiK/mDBhAvbs2ePwuP/++x32GTp0qP3/Op0OvXr1QnV1NQDg+++/x5YtWxAREWF/DBw4EABw8OBB+/vO7e05cOAALr/8codto0ePPu95VlaWvYfnH//4By6++GJcddVVXZ5Pa2srtFptp69dd911yMzMxPr166HRaADY8o4OHjyIgoICh3N49tlnHdp/99134/Dhw9iyZQsAW69SWloarrnmGofPCAsLA2Ab6iMizwrxdwOIqGfS6XTIzMx0uo9arXZ4LggCJEkCADQ1NeGmm27C0qVLz3tfnz59HD7HHffccw9WrVqFefPmYe3atcjPz4cgCF3uHx8fj7q6uk5fu/HGG/Gvf/0L+/btw5AhQ+ztB4A33ngD2dnZDvurVCr7//v164dx48Zh7dq1uPrqq/H2229j1qxZ57WlY3iyd+/e8k+WiJxisEREinTZZZfhX//6F9LS0hAS4vqlbMCAAdi4caPDtp07d563329/+1s89thjePnll7Fv3z7MmDHD6XFHjBiBf/zjH52+tmTJEkRERODaa69FSUkJBg0ahMTERCQnJ+PQoUMOidqdKSgowAMPPIDJkyejoqICM2fOPG+fvXv3Qq1WIysry+mxiEg+DsMRkV8YjUbo9XqHx9kz2S5k9uzZqK2txR133IGdO3fi4MGD+Pzzz5Gfnw+LxdLl++677z7s378fjz/+OH7++We8//779gTqs3trYmJicOutt+LRRx/FxIkTcdFFFzltT15eHn788ccue5eWLVuGO++8E9dccw32798PwJbAvnjxYrz88sv4+eefUVZWhrVr12L58uUO7/3Vr34FtVqN++67DxMnTkRqaup5x9+6dSvGjRtnH44jIs9hsEREflFUVIQ+ffo4PMaOHevy+5OTk7Ft2zZYLBZMnDgRQ4YMwUMPPYTo6GiIYteXtvT0dPzzn//Ehx9+iKFDh+LVV1+1z4YLDQ112LegoAAmkwl33333BdszZMgQXHbZZXj//fe73Oell17Cr3/9a1xzzTX4+eefcc899+DNN9/E2rVrMWTIEIwfPx5/+9vfkJ6e7vC+8PBwTJs2DXV1dV225b333sOsWbMu2E4ikk+wWq1WfzeCiMifnnvuOaxevRrHjx932P73v/8dc+fORWVlpT0x25kNGzbg0Ucfxd69e50GbJ722Wef4eGHH8YPP/wga0iSiFzD3yoi6nH+8pe/4PLLL0dcXBy2bduGF154AXPmzLG/3tLSgpMnT2LJkiW47777XAqUAFsi9y+//IKKiopOh8q8pbm5GWvXrmWgROQl7Fkioh5n7ty5WL9+PWpra9G3b1/cddddmD9/vj3YeOqpp/Dcc8/hqquuwscff4yIiAg/t5iI/InBEhEREZETTPAmIiIicoLBEhEREZETDJaIiIiInGCwREREROQEgyUiIiIiJxgsERERETnBYImIiIjICQZLRERERE4wWCIiIiJy4v8HT/yoYOrcLBIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "freq_01_1 = (1 + 0.1) / 2 * 2 * np.pi\n", + "freq_3_30 = (3 + 30) / 2 * 2 * np.pi\n", + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_01_1.spectrum * freq_01_1,\n", + " xerr=energies_err,\n", + " yerr=lagspec_01_1.spectrum_error * freq_01_1,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " lagspec_3_30.spectrum * freq_3_30,\n", + " xerr=energies_err,\n", + " yerr=lagspec_3_30.spectrum_error * freq_3_30,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Phase lag (rad)\")" + ] + }, + { + "cell_type": "markdown", + "id": "ab201dc2", + "metadata": { + "id": "ab201dc2" + }, + "source": [ + "Interesting: the low-frequency variability has much longer time lags than the high-frequency variability, but the phase lags are on the same order of magnitude." + ] + }, + { + "cell_type": "markdown", + "id": "9e85f891", + "metadata": { + "id": "9e85f891" + }, + "source": [ + "## Covariance and RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "11a45edb", + "metadata": { + "id": "11a45edb", + "outputId": "d95b650d-03df-4e73-bafe-7813b0729935" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:35<00:00, 1.13it/s]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:35<00:00, 1.14it/s]\n" + ] + } + ], + "source": [ + "covspec_3_30 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"abs\",\n", + " ref_band=ref_band,\n", + ")\n", + "covspec_01_1 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"abs\",\n", + " ref_band=ref_band,\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "a1d4d363", + "metadata": { + "id": "a1d4d363", + "outputId": "121ac01c-9046-44c6-9351-588a10cc3dc8" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAG1CAYAAAAfhDVuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABs8ElEQVR4nO3deXiU5dn38e/MZCZ7JgTIhmEzyCaLokIEVBABsSAVW2ldEHF9gj6CK9W61FLEPq6Vin2raFv3fSnSCgVXEIUiBAQF2bMBIZlsk8ks7x9jhgwJMJPMZJn8PscxR5j7vnPPNaCZM9d1Xudp8Hg8HkREREQilLG1ByAiIiISTgp2REREJKIp2BEREZGIpmBHREREIpqCHREREYloCnZEREQkoinYERERkYimYEdEREQiWlRrD6AtcLvd5Ofnk5iYiMFgaO3hiIiISAA8Hg/l5eVkZmZiNB57/kbBDpCfn09WVlZrD0NERESaYO/evZx00knHPK9gB0hMTAS8f1lJSUmtPBoREREJhM1mIysry/c5fiwKdsC3dJWUlKRgR0REpJ05UQqKEpRFREQkoinYERERkYimZSwREemwXC4XtbW1rT0MOQaz2YzJZGr2fRTsiIhIh+PxeCgsLKS0tLS1hyInkJycTHp6erNKwyjYERGRDqcu0ElNTSUuLk411togj8dDVVUVxcXFAGRkZDT5Xgp2RESkQ3G5XL5Ap3Pnzq09HDmO2NhYAIqLi0lNTW3ykpYSlEVEpEOpy9GJi4tr5ZFIIOr+nZqTW6VgR0REOiQtXbUPofh30jKWiIhIEzicbhat3A5A7phsLFGaP2irFOxI++F2Q9lecFSAJQGsWXCcxm8iIiLQystYzzzzDIMHD/a1acjJyeGjjz7ynbfb7eTm5tK5c2cSEhKYNm0aRUVFfvfYs2cPF110EXFxcaSmpnLHHXfgdDpb+q1IuB3YBp8/Biv/AJ884v36+WPe4yIircDt9mCrruVgRQ37Dlfhdntae0hyDK0a7Jx00kk8/PDDrFu3jm+++YaxY8dy8cUXs3nzZgDmzJnDBx98wBtvvMEnn3xCfn4+l1xyie/7XS4XF110EQ6Hgy+//JIXX3yRF154gfvuu6+13pKEw4FtsGYxFGyEuBTo3Mf7tWCj97gCHhFpYduLy3n2sx9Z/eMhvvrxEE+u+IFnVu1ge3F52F7zRBMExzJlyhS6d+9OTEwMGRkZXHnlleTn5/tds3HjRkaPHk1MTAxZWVk88sgjx73nrl27MBgMbNiwocG58847j1tvvTWYtxZ2rRrsTJ48mUmTJtGnTx9OOeUU5s+fT0JCAmvWrKGsrIznnnuOxx57jLFjxzJs2DCWLFnCl19+yZo1awD497//zZYtW/jHP/7B0KFDufDCC3nooYdYtGgRDoejNd+ahILTAbV22PwuVB7wBjnmeO85c7z3eeUB2PKed4lLRKQFbC8uZ8kXu9iyv4wYs4lO8RY6xVrIyy9jyRe7whbwnGiC4FjGjBnD66+/zrZt23jrrbfYsWMHl156qe+8zWZj/Pjx9OjRg3Xr1vHHP/6RBx54gL/85S9heR+toc0kPLhcLl599VUqKyvJyclh3bp11NbWMm7cON81/fr1o3v37qxevRqA1atXM2jQINLS0nzXTJgwAZvNdtx//JqaGmw2m99D2qDPHoXl93uDmfIC2PMlbHzV+9j9Bexd7T2++V1vLo+ISJg4nG4cTjd2h4t/birkYHkNvbrEYzZ5dwrFWkz07hLPwfIalm4qxO5w4XCG9pew400QHM+cOXMYMWIEPXr04Oyzz+buu+9mzZo1vq3cL730Eg6Hg+eff56BAwcyffp0brnlFh577LFmj3nVqlUYDIYGj6uvvrrZ9w5Gqycob9q0iZycHOx2OwkJCbzzzjsMGDCADRs2YLFYSE5O9rs+LS2NwsJCwFsBs36gU3e+7tyxLFiwgAcffDC0b0TCw+kAtxNM5sbPm8xQU+5NWhYRCZO6XVe26lpW/3iIGLOJkioH+aXVAHxDCUaDgRqni92bqjhc6SAp1sycC04Jy3hcLhdvvPGGb4IgUCUlJbz00kucffbZmM3en6urV6/mnHPOwWKx+K6bMGECCxcu5PDhw3Tq1KnJ4zz77LMpKCjwPf/uu++YNGkS55xzTpPv2RStHuz07duXDRs2UFZWxptvvsmMGTP45JNPwvqa8+bNY+7cub7nNpuNrKyssL6mNMHo26B0jzeQiU2B6MSG19TYoPqwd3eWiEiYOVxunC435pjGPz7NJiMVNU4crvAsrR9rguBE7rrrLp5++mmqqqoYMWIEH374oe9cYWEhvXr18ru+/sTB8YKds88+G+NRu2Krq6sZOnQoABaLhfT0dAAOHTrEtddeyzXXXMM111wT0PsNlVYPdiwWC9nZ2QAMGzaMr7/+mieffJLLLrsMh8NBaWmp3+xOUVGR7y8uPT2dtWvX+t2vbrdW3TWNiY6OJjo6OsTvREIuygIpvaFrX28ycowV6heX8nigvBAyh3i3oYuIhEnuGO/n1L7DVVTUOOkUayHWYuIbSgA4o0cKJqOBcnstpdW1zBrVi5M6hb5C87EmCAYMGMCNN97IP/7xD9+1FRVHZrzvuOMOZs2axe7du3nwwQe56qqr+PDDD5tdsO+1116jf//+fscuv/zyBtfV1tYybdo0evTowZNPPtms12yKVg92juZ2u6mpqWHYsGGYzWZWrFjBtGnTANi2bRt79uzxTdnl5OQwf/58X88MgI8//pikpKSAIl1pB4xG6D8ZyvbDga2Q1A0sceCoAtt+iO8M/X6mejsiElZ1BQN7do7nlNRE8vLL6N0lHuNPwYLJaMBogOLyGgZ1s9KzczxGY+grNB9rguDZZ5/ld7/7Hbfffnuj39elSxe6dOnCKaecQv/+/cnKymLNmjXk5OSQnp7eoKxLIBMHAFlZWb7x1KnrZ1XfTTfdxN69e1m7di1RUS0ferRqsDNv3jwuvPBCunfvTnl5OS+//DKrVq3iX//6F1arlVmzZjF37lxSUlJISkri5ptvJicnhxEjRgAwfvx4BgwYwJVXXskjjzxCYWEh9957L7m5uZq5iSRd+8KIG+G7D+DgD1CeD1Ex3hmdfj/znhcRaQFGo4EJp6aRX1bN9uIKapwuzCYj5fZaistrSIm3MH5gWlgCncbUTRAApKam+n7xP9H3AL7vy8nJ4Z577qG2ttaXx/Pxxx/Tt2/fZuXr1Hnsscd4/fXX+fLLL1ut8WqrBjvFxcVcddVVFBQUYLVaGTx4MP/617+44IILAHj88ccxGo1MmzaNmpoaJkyYwJ///Gff95tMJj788ENuuukmcnJyiI+PZ8aMGfzud79rrbck4dK1r3ereaAVlFVtWUTCJDs1kZkje/LPTYXs3uRd1iqtrmVQNyvjB6aRndpIfmEIHG+C4Fi++uorvv76a0aNGkWnTp3YsWMHv/3tbzn55JN9qyS//vWvefDBB5k1axZ33XUXeXl5PPnkkzz++OPNHvPy5cu58847WbRoEV26dPFtHoqNjcVqtTb7/oFq1WDnueeeO+75mJgYFi1axKJFi455TY8ePVi6dGmohyZtkdEInXqc+LoD247MAjnt3lmgLn28y2GhmAUKJpBS0CUSkbJTE7lhdByllQ4cLjezRvUK29JVnRNNEDQmLi6Ot99+m/vvv5/KykoyMjKYOHEi9957r28FxGq18u9//5vc3FyGDRtGly5duO+++7j++uubPebPP/8cl8vFjTfeyI033ug7PmPGDF544YVm3z9QBo/H0+HrW9tsNqxWK2VlZSQlJbX2cKQ56qotVx0Cazdv8cHaSm/OT1xn73JYcwKeYAKpcAddItIkdrudnTt30qtXL2JiYpp8HzUCbRnH+/cK9PO7zSUoizSJ0wEe95Fqy136Htm5VVdt+eA2b4HCs28BcxN+wB0rkCrY6A2m6gdSwVwrIu2SJcoYtjo6EloKdiQyfPYo2Eth52dgjvUGGXVVla1Z3sDHWQMlP3rPXbgw8HsHG0hBYNeOvl1LWiIiLUDBjkSO+tWWDQZI7u5/vq7asjPIvmnBBlJw5NrqkkbG+dO1gy8LLAdJRESaRcGORIZgqi3n5AZ//2ADqbprPZ6GgZFaXIiItCgFOxIZgqm2nNI7uHs3JZBSiwsRkTZDCQMSOeqqLcd19lZbttu8Myx2m/d5U6st1w+kygvAYASj6cjDYPQGUqn9vNcFeq1aXIiItAgFOxJZ6qotZwz25ssc2u79mjkEhjdjB1QwgVS4gi4REWkSLWNJ5Am22nIw9w20bUVTWlyoAKFI++J0eDcwgHe5O8rSuuORY1KwI5Ep0GrLwQomkArmWhUgFBEJG/3aKBKsukAqbaD36/FmXwK5tq4AYcFGiEvxBkhxKd7naxZ7z4tI2+Nxe8tSVBR7NzH81GAznBYtWkTPnj2JiYlh+PDhrF279rjXb968mWnTptGzZ08MBgNPPPFEQK/z9ttvM378eDp37ozBYGDDhg0n/J4HHniAoUOHNji+a9eugO8RLgp2RFqL0wG19iMFCDv38RYehCMFCCsPeAsQ1tpbdagicpQD2+CLJ701tXZ/AZ8shM8fC+svJ6+99hpz587l/vvvZ/369QwZMoQJEyZQXFx8zO+pqqqid+/ePPzww6Snpwf8WpWVlYwaNYqFC4MowNqGaRlLpLUcXazweAUIg636LCLhUzcbW3nA+/+uyewtNRHmdjCPPfYY1113HTNnzgRg8eLF/POf/+T555/n7rvvbvR7zjzzTM4880yAY17TmCuvvBLwzsqE2tVXX82LL77Y4PjKlSs577zzQv56oJkdEe/U8+HdULTZ+7UFpqJ96hcr9Hi8U+Gle7x/Bu9xtzP4qs8iElpORyOzsdlgsgAGsMQ1nI0N4f+3DoeDdevWMW7cON8xo9HIuHHjWL16dchepyU8+eSTFBQU+B7/+7//S2pqKv369Qvba2pmRzq21kwMDnfVZxEJnbpdV8dqHbOHhq1jYpJhzLyQvPzBgwdxuVykpaX5HU9LS2Pr1q0heY1Q2LRpEwkJ/gVTPXW/vP3EarVitVoBb27Qs88+y/Lly4NaZguWZnak42rtxOBgixWKSOurPxvbmHY2G/vSSy+RkJDge3z22WfNul/fvn3ZsGGD32Pp0qWNXvvf//6XK6+8kqeffpqRI0c263VPRDM70jHVn4o+URdzc0z4xlFXgLBsv7fgYFI373S4owps+1WAUKStGH2b92v92VhLnHdGB6D7CDCY/Gdjj+6h1wxdunTBZDJRVFTkd7yoqKhZMyJTpkxh+PDhvufdunVr8r0ALBYL2dnZfseiohqGGoWFhUyZMoVrr72WWbNmNes1A6FgRzqm5fe3ncTgphQgFJGWVVcwsH4Pvs59jvyiZKg3G1vXgy+Ev6RYLBaGDRvGihUrmDp1KgBut5sVK1Ywe/bsJt83MTGRxMRGltDDyG63c/HFF9OvXz8ee+yxFnlNBTvSMR2dGHyszuQtNRUdrqrPIhJa9WdjD27z/mJkMntndMoLwzobO3fuXGbMmMEZZ5zBWWedxRNPPEFlZaVvdxbAVVddRbdu3ViwYAHgTWzesmWL78/79+9nw4YNJCQkNJiBqa+kpIQ9e/aQn58PwLZt3mX99PT0ZufW3HDDDezdu5cVK1Zw4MAB3/GUlBQslvBUoVawIx1TTm7bSwwOV9VnEQmtutnYze96Z4Bryr0/L8I8G3vZZZdx4MAB7rvvPgoLCxk6dCjLli3zS1res2cPxnqBVn5+Pqeddprv+f/93//xf//3f5x77rmsWrXqmK/1/vvv+wVR06dPB+D+++/ngQceaNb7+OSTTygoKGDAgAF+x8O59dzgOTpNugOy2WxYrVbKyspISkpq7eFIS3C7vQXACjZC135HpqLBO9NzYKv3B9fIOZpdEYkwdrudnTt30qtXL2JimpGTV2v3Lok7Hd5fjEK8dCVex/v3CvTzWzM70jEpMVhEmstg9G4vB28ysn5etFkKdqTjUmKwiDRHlCVkdXQkvBTsSMemxGARkYinYEdEicEiIhFNv76KiIhIRFOwIyIiHZI2I7cPofh3UrAjIiIditns7WtVVVXVyiORQNT9O9X9uzWFcnZERKRDMZlMJCcnU1xcDEBcXByG+rW2pE3weDxUVVVRXFxMcnIyJpOpyfdSsCMiIh1OXcuDuoBH2q7k5ORmt6hQsCMiIh2OwWAgIyOD1NRUamtrW3s4cgxms7lZMzp1FOyIiEiHZTKZQvJhKm2bEpRFREQkoinYERERkYimYEdEREQimnJ2pHW53epLJSIiYaVgR1rPgW1HOo477d6O4136QP/J6jguIiIho2BHWseBbbBmMVQdAms3MMdDbSUUbISy/TDiRgU8IiISElovkJbldECtHTa/C5UHoHMfb6AD3q+d+3iPb3nPu8QlIiLSTJrZkZb12aNgL4Wdn4E51juzU7bXe86aBQYDOGug5EcYfBl06tGqwxURkfZPwY60PKcD3E4wmb3BTXJ3//MmM9SUe5OWRUREmknBjoTWiXZXjb4NSvd4z8emQHRiw3vU2KD6sPf7RUREmknBjoROILuroiyQ0tv7vGAjxFi9szt1PB4oL4TMId5ASUREpJkU7EhoBLO7ymj0BkBl++HAVkjqBpY4cFSBbT/Ed4Z+P1O9HRERCQl9mkjzBbq7qtZ+5Hu69vUGQBmDoboEDm33fs0cAsO17VxEREKnVYOdBQsWcOaZZ5KYmEhqaipTp05l27Ztftecd955GAwGv8eNN97od82ePXu46KKLiIuLIzU1lTvuuAOn09mSb6VjW36/N5gpL4C9q2HPl0cee1d7j29+13tdfV37wqi5MOY3cO6d3q8j5yjQERGRkGrVZaxPPvmE3NxczjzzTJxOJ7/5zW8YP348W7ZsIT4+3nfdddddx+9+9zvf87i4ON+fXS4XF110Eenp6Xz55ZcUFBRw1VVXYTab+cMf/tCi76fDqr+7yuNpuJW8bneV09Hwe41GbS8XEZGwatVgZ9myZX7PX3jhBVJTU1m3bh3nnHOO73hcXBzp6emN3uPf//43W7ZsYfny5aSlpTF06FAeeugh7rrrLh544AEsFktY34MAObmB7a7KyW35sYmISIfXpnJ2ysrKAEhJSfE7/tJLL9GlSxdOPfVU5s2bR1VVle/c6tWrGTRoEGlpab5jEyZMwGazsXnz5kZfp6amBpvN5veQZqjbXVVeAAYjGE1HHgajd3dVaj/vdRIabjcc3g1Fm71fVW1aROSYmjWzU1NTQ3R0dEgG4na7ufXWWxk5ciSnnnqq7/ivf/1revToQWZmJhs3buSuu+5i27ZtvP322wAUFhb6BTqA73lhYWGjr7VgwQIefPDBkIxb0O6qlqYGqiIiQQkq2Pnoo4949dVX+eyzz9i7dy9ut5v4+HhOO+00xo8fz8yZM8nMzGzSQHJzc8nLy+Pzzz/3O3799df7/jxo0CAyMjI4//zz2bFjByeffHKTXmvevHnMnTvX99xms5GVpZouzVK3u6ruQ7g83/shnDnEG+joQzg01EBVRCRoAQU777zzDnfddRfl5eVMmjSJu+66i8zMTGJjYykpKSEvL4/ly5fz0EMPcfXVV/PQQw/RtWvXgAcxe/ZsPvzwQz799FNOOumk4147fPhwALZv387JJ59Meno6a9eu9bumqKgI4Jh5PtHR0SGbkZJ6uvb1bjU/XgVlabr6W/y79D1SjLFui//Bbd5dcWffAuaYVh2qiEhbElCw88gjj/D4449z4YUXYmzkg+uXv/wlAPv37+dPf/oT//jHP5gzZ84J7+vxeLj55pt55513WLVqFb169Trh92zYsAGAjIwMAHJycpg/fz7FxcWkpqYC8PHHH5OUlMSAAQMCeXsSStpdFT7L7w+sgWrVIbhwYeuOVUSkDQko2Fm9enVAN+vWrRsPP/xwwC+em5vLyy+/zHvvvUdiYqIvx8ZqtRIbG8uOHTt4+eWXmTRpEp07d2bjxo3MmTOHc845h8GDBwMwfvx4BgwYwJVXXskjjzxCYWEh9957L7m5uZq9kcgSaAPVxrb4i4h0YAaPx+Npzg1cLhebNm2iR48edOrUKbgXr98TqZ4lS5Zw9dVXs3fvXq644gry8vKorKwkKyuLn//859x7770kJSX5rt+9ezc33XQTq1atIj4+nhkzZvDwww8TFRVYSpLNZsNqtVJWVuZ3X5E25eB2+GThibf4n3sXdMlu+fGJiLSwQD+/g96NdeuttzJo0CBmzZqFy+Xi3HPP5csvvyQuLo4PP/yQ8847L+B7nSjOysrK4pNPPjnhfXr06MHSpUsDfl2RdinQBqra4i8i4ifozNE333yTIUOGAPDBBx+wc+dOtm7dypw5c7jnnntCPkAR+UndFv+4zt4t/nabd1nLbvM+1xZ/EZFGBf1T8eDBg75dTkuXLuUXv/gFp5xyCtdccw2bNm0K+QBFpB41UBURCVrQy1hpaWls2bKFjIwMli1bxjPPPANAVVUVJpMp5AMUkaNoi7+ISFCCDnZmzpzJL3/5SzIyMjAYDIwbNw6Ar776in79+oV8gCLSCG3xFxEJWNDBzgMPPMCpp57K3r17+cUvfuHb3m0ymbj77rtDPkARERGR5mj21vNIoK3nEvHcbi17iUjECdvWcxFpZ9Q4VEQ6OAU7IpFMjUNFRILfei4i7YDT4d84tHMfb6ADRxqHVh7wNg51u1t1qCIi4RbwzM5//vMfzj33XG0vF2kPPnsU7KWBNQ4dfJl2dolIRAt4Zufaa6+la9eu/PrXv+a1117DZrOFc1wi0lyNNQ5N7n6kzYTJ7D3vqGjdcYqIhFnAMzs//vgjGzdu5P333+fRRx/l6quvZtSoUUyZMoWLL76Y7t27n/gmItIyRt8GpXu8gcyJGodaElp+fCIiLSionJ3Bgwdz7733snbtWnbs2MG0adP46KOP6Nu3L0OHDuW+++7jm2++CddYRSRQUZYjjUPLC8BgBKPpyMNg9DYOTe3nXdYSEYlgTU5QzszM5MYbb2Tp0qUcPHiQ3/72t+zatYuJEyfyhz/8IZRjFJGmUONQEREgDEUFXS4XJSUldO3aNZS3DSsVFZSI1lidna6neAMdbTsXkXas1YoKmkymdhXoiEQ8NQ4VkQ5ORQVFOgI1DhWRDky/2omIiEhEU7AjIiIiES3oYGf9+vVs2rTJ9/y9995j6tSp/OY3v8HhcIR0cCIiIiLNFXSwc8MNN/D9998D3kKD06dPJy4ujjfeeIM777wz5AMUERERaY6gg53vv/+eoUOHAvDGG29wzjnn8PLLL/PCCy/w1ltvhXp8IiIiIs0SdLDj8Xhw/9Qlefny5UyaNAmArKwsDh48GNrRiYiIiDRT0MHOGWecwe9//3v+/ve/88knn3DRRRcBsHPnTtLS0kI+QBEREZHmCDrYefzxx1m/fj2zZ8/mnnvuITs7G4A333yTs88+O+QDFBEREWmOkLWLsNvtREVFERXV/uoUql2EiIhI+xPo53fQMzu9e/fm0KFDDY7b7XZOOeWUYG8nIm2N2w2Hd0PRZu/Xn3L0RETaq6CnYXbt2oXL5WpwvKamhn379oVkUCLSShprGtqlj7d7upqGikg7FXCw8/777/v+/K9//Qur1ep77nK5WLFiBb169Qrt6ESk5RzYBmsWQ9UhsHYDczzUVkLBRijbDyNuVMAjIu1SwMHO1KlTATAYDMyYMcPvnNlspmfPnjz66KMhHZyItACnAzxu2PwuVB6ALn3BYPCeM8d7O6Yf3AZb3oOzbwFzTKsOV0QkWAEHO3W1dXr16sXXX39Nly5dwjYoEWlBnz0K9lLY+RmYY6G6pOE1zhoo+dE763PhwhYfoohIcwSds7Nz585wjENEWpPTAW4nmMzg8UDZXu9xa5Z3lsdkhppy73UiIu1Mk/aJr1ixghUrVlBcXOyb8anz/PPPh2RgItJCRt8GpXvAUQGxKRCd2PCaGhtUH4acXP/jbrc3MHJUgCXBGxwZg97kKSISVkEHOw8++CC/+93vOOOMM8jIyMBQt7YvIu1TlAVSenuTjws2Qoz1SM4OeGd6ygshc4j3ujrauSUi7UTQwc7ixYt54YUXuPLKK8MxHhFpDUajN0gp2w8HtkJSN7DEgaMKbPshvjP0+9mRWRvt3BKRdiTo+WaHw6G2ECKRqGtfb5CSMdibpHxou/dr5hAYXi94qbUf2bnVuY830IEjO7cqD3h3btXaW+2tiIjUF/TMzrXXXsvLL7/Mb3/723CMR0RaU9e+3oDleHk4y+/Xzi0RaVeCDnbsdjt/+ctfWL58OYMHD8ZsNvudf+yxx0I2OBFpBUYjdOpx7PPauSUi7UzQwc7GjRsZOnQoAHl5eX7nlKws0gHk5DZt55aISCsJOthZuXJlOMYhbZm2F0t9Tdm5JSLSippUZ0c6EG0vlqMFu3NLRKSVBR3sjBkz5rjLVf/5z3+aNSBpQ7S9WI6lbudWXSBcnu8NhDOHeAMd/XchIm1I0MFOXb5OndraWjZs2EBeXl6DBqHSTqkxpAQikJ1bIiJtQNDBzuOPP97o8QceeICKiopmD0jaADWGlECdaOeWiEgbELJfwa644gr1xYokR28vLt3jfXg83vMms/e8theLiEgbF7JgZ/Xq1cTEBLecsWDBAs4880wSExNJTU1l6tSpbNu2ze8au91Obm4unTt3JiEhgWnTplFUVOR3zZ49e7jooouIi4sjNTWVO+64A6fT2ez31GGNvs27bThjCKQPgR4jYfB076PHSOh+NqQP9p7X9mIREWnjgl7GuuSSS/yeezweCgoK+Oabb4KuqvzJJ5+Qm5vLmWeeidPp5De/+Q3jx49ny5YtxMd7S9DPmTOHf/7zn7zxxhtYrVZmz57NJZdcwhdffAGAy+XioosuIj09nS+//JKCggKuuuoqzGYzf/jDH4J9ewJNbwwpIiLSBhk8nrp1icDMnDnT77nRaKRr166MHTuW8ePHN2swBw4cIDU1lU8++YRzzjmHsrIyunbtyssvv8yll14KwNatW+nfvz+rV69mxIgRfPTRR/zsZz8jPz+ftLQ0wNus9K677uLAgQNYLJYTvq7NZsNqtVJWVkZSUlKz3kNEqb8bq7HtxcO1G0tERFpPoJ/fQc/sLFmypFkDO56ysjIAUlJSAFi3bh21tbWMGzfOd02/fv3o3r27L9hZvXo1gwYN8gU6ABMmTOCmm25i8+bNnHbaaQ1ep6amhpqaGt9zm80WrrfUvml7sYiIRIAmFxVct24d3333HQADBw5sNKgIhtvt5tZbb2XkyJGceuqpABQWFmKxWEhOTva7Ni0tjcLCQt819QOduvN15xqzYMECHnzwwWaNt8PQ9mIREWnngg52iouLmT59OqtWrfIFIaWlpYwZM4ZXX32Vrl27Nmkgubm55OXl8fnnnzfp+4Mxb9485s6d63tus9nIysoK++u2W9peLCIi7VjQv57ffPPNlJeXs3nzZkpKSigpKSEvLw+bzcYtt9zSpEHMnj2bDz/8kJUrV3LSSSf5jqenp+NwOCgtLfW7vqioiPT0dN81R+/Oqnted83RoqOjSUpK8nt0OG43HN4NRZu9X93u1h6RiIhIWAQ9s7Ns2TKWL19O//79fccGDBjAokWLgk5Q9ng83HzzzbzzzjusWrWKXr16+Z0fNmwYZrOZFStWMG3aNAC2bdvGnj17yMnJASAnJ4f58+dTXFxMamoqAB9//DFJSUkMGDAg2LfXMajflYiIdCBBBztutxuz2dzguNlsxh3k7EBubi4vv/wy7733HomJib4cG6vVSmxsLFarlVmzZjF37lxSUlJISkri5ptvJicnhxEjRgAwfvx4BgwYwJVXXskjjzxCYWEh9957L7m5uURHRwf79iKf+l2JiEgHE/TW84svvpjS0lJeeeUVMjMzAdi/fz+XX345nTp14p133gn8xY/RUHTJkiVcffXVgLeo4G233cYrr7xCTU0NEyZM4M9//rPfEtXu3bu56aabWLVqFfHx8cyYMYOHH36YqKjAYrkOsfW8rt/VF09C4Sb/flfgrZ1zcBtkDIbRtysBWURE2rxAP7+DDnb27t3LlClT2Lx5sy+pd+/evZx66qm8//77fjk37UWHCHZWLvDvd2WyeHdYgXd3lcHg7XdVWw2/ekUJySIi0uaFrc5OVlYW69evZ/ny5WzduhWA/v37+9XCkTaqfr8rgwGSu/ufN5mhpty7xVxERCRCNKnOjsFg4IILLuCCCy4I9XgkXEbf5m3k6aiA2BSITmx4TY0Nqg97a+mIiIhEiKATM2655RaeeuqpBseffvppbr311lCMScKhfr+r8gIwGMFoOvIwGL39rlL7eZe1REREIkTQwc5bb73FyJEjGxw/++yzefPNN0MyKAkTo9G7vTyuMxzYCnabd1nLbvM+j+/sbQOh5GQREYkgQX+qHTp0CKvV2uB4UlISBw8eDMmgJIzq+l1lDIbqEji03fs1c4gae4qISEQKOmcnOzubZcuWMXv2bL/jH330Eb179w7ZwCSM1O9KREQ6kKCDnblz5zJ79mwOHDjA2LFjAVixYgWPPvooTzzxRKjHJ+GiflciItJBBB3sXHPNNdTU1DB//nweeughAHr27MkzzzzDVVddFfIBikgEcbs1oygiLS7oooL1HThwgNjYWBIS2vdW5Q5RVFCktaknm4iEWNiKCtbXtWvX5ny7iHQU6skmIq0ooPnjiRMnsmbNmhNeV15ezsKFC1m0aFGzByYiEcDpgFo7bH4XKg94E+PN8d5z5njv88oDsOU97xKXiEgYBDSz84tf/IJp06ZhtVqZPHkyZ5xxBpmZmcTExHD48GG2bNnC559/ztKlS7nooov44x//GO5xi0h78Nmj/j3Zqg413pOt5EcYfJmS5kUkLAIKdmbNmsUVV1zBG2+8wWuvvcZf/vIXysrKAG/riAEDBjBhwgS+/vpr+vfvH9YBi0g7o55sItLKmpygXFZWRnV1NZ07d8ZsNod6XC1KCcoiYeJ0eHuyfbLwxD3Zxt6rmR0RCUqgn99N3vNptVpJT09v94GOiISRerKJSBugAhciEl7qySYirUw/XUQk/NSTTURaUbPq7IiIBEw92USklSjYEZGWo55sItIKmvQrVWlpKX/961+ZN28eJSUlAKxfv579+/eHdHAi9bndHvaWVLG10Mbekirc7iZ3OhERkQ4k6JmdjRs3Mm7cOKxWK7t27eK6664jJSWFt99+mz179vC3v/0tHOOUDm57cTn/yitix4EK7E4XMVEmTu6awIRT08hObWQ7s4iIyE+CntmZO3cuV199NT/88AMxMTG+45MmTeLTTz8N6eA6PLcbDu+Gos3erx20nP724nKWfLGLvPwykuPM9O6SQHKcmbz8MpZ8sYvtxeWtPcRj0myUiEjrC3pm5+uvv+bZZ59tcLxbt24UFhaGZFCCOkQDDqcbt9vDPzcVcrC8huzUBAwGAwBxlih6d4lne3EFSzcVMntMAkajoZVH7E+zUSIibUPQwU50dDQ2m63B8e+//15d0ENFHaIBWLRyO7bqWlb/eIgYs4mSKgf5pdUAZCbHYjQYqHG62L2pip+f1o2slLhWHvERdbNRJZUOMqwxxFliqXI4ycsvI7+smpkjezYIeNxuD/tLq6l0OIm3RNEtObbNBXAiIu1R0MHOlClT+N3vfsfrr78OeHtj7dmzh7vuuotp06aFfIAditMBHveRDtFd+np7CcGRDtEHt3k7RJ99C5hjjnu7SOBwuXG63JhjojAaDJzUyT+gMZuMVNQ4qXQ4W2xMxwtKmjobpVkgEZHwCTrYefTRR7n00ktJTU2lurqac889l8LCQnJycpg/f344xthxBNMhuuoQXLiwVYcbbrljstl3uIqKGiedYi0kxDT8z7XcXktpdS3xFv9z4ZolOVFQcvRsVGl1bYN7HD0b1ZRZIBERCVzQwY7VauXjjz/miy++4Ntvv6WiooLTTz+dcePGhWN8HU+gHaKdjtYZXwuyRBnp2TmeU1ITycsvIyn2yCwJgMfjobi8hkHdrHRLjvUdD9csSSBBCfjPRrk9ngZLb3WzUaVVtXRNcAU0C3T96DhiLKYmj11EpCNrclHBkSNHMnLkyFCORUbf5u0Q7ag4cYfonNyWH18rMBoNTDg1jfyyan4oriDDGkOsxUS1w0VBmZ2UeAvjB6b5LQeFepYkmKWpm849mfyy6oBmo95evw8goFmgw5UO7p8yMNi/PhERoQnBzi233EJ2dja33HKL3/Gnn36a7du388QTT4RqbB1P/Q7RBRshxnokZwfA4/F2iM4c4r2ug8hOTWTmyJ6+2Zoim53oKBODulkZP9A7WxNMQBLsLEmwidKBzkbZa10cqnQENAvkcHXMsgMiIqEQdLDz1ltv8f777zc4fvbZZ/Pwww8r2Gmuug7RZfu9HaGTuoElDhxVYNvfYTtEZ6cm0vu8hGPm4QQTkDRlliSYROlAZ6O6p8QHnJM0a1SvJv7NiYhI0MHOoUOHsFqtDY4nJSVx8ODBkAyqw6vrEF1XZ6c831tnJ3OIN9DpANvOG2M0Go67vTzQgCTYWZKmJEoHMhsFBDwL1LNzfFBjFhGRI4IOdrKzs1m2bBmzZ8/2O/7RRx/Ru3fHWVoJO3WIDkowAUmwsyRNTZQ+0WwUBJ+TJCIiwQs62Jk7dy6zZ8/mwIEDjB07FoAVK1bw6KOPagkr1NQhOmDBBCRHz5IEsk29qUHJiWajIPBZIBERaRqDx+MJulnPM888w/z588nPzwegZ8+ePPDAA1x11VUhH2BLsNlsWK1WysrKSEpKau3hSDMcvRvr6IDk6N1YwW5Tr399jdNFdJSJ7NSEkAQlqqAsIhKcQD+/mxTs1Dlw4ACxsbEkJCQ09RZtgoKdyBJoQNJwm3oUVQ7nMQOjOgpKRETahkA/v5tcZwdQLyxpkwLJlbE7ml7ML5ClKRERaTuCDnaKioq4/fbbWbFiBcXFxRw9MeRyuUI2OJGmOlFAsnDZ1rBtU5cQcbuVoC8iIRF0sHP11VezZ88efvvb35KRkeGXBCrSXoRrm7qEyIFtR0ovOO3e0gtd+nhrUHXQ0gsi0nRBBzuff/45n332GUOHDg3DcERaxqxRvVTMr606sA3WLPY2u7V2A3M81FZ6q4qX7ffWoFLAIyJBCHpOOCsrq8HSlUh7U7dNvajcjtEAJqPB9zAaoLi8hr5piSrm15KcDqi1w+Z3ofKAt86U+ae/f3O893nlAdjynneJS0QkQEHP7DzxxBPcfffdPPvss/Ts2TMMQxIJPxXza4M+exTspbDzMzDHemd2yvZ6z1mzvH3inDVQ8iMMvkw1qEQkYEEHO5dddhlVVVWcfPLJxMXFYTab/c6XlJSEbHAi4aRifm2Q0wFuJ5jM3uAmubv/eZMZasq9ScsiIgFq0syOSKQIZJu6tJDRt0HpHm8gE5sC0Y0EmzU2qD7s3Z0lIhKgoIOdGTNmhGMcIq1GdXPaiCgLpPT2Jh8XbIQYq3d2p47HA+WF3oa41qzWG6eItDvNKipot9txOBx+x1SBWESazGj0bi8v2w8HtkJSN7DEgaMKbPshvjP0+5nq7YhIUIL+iVFZWcns2bNJTU0lPj6eTp06+T2C8emnnzJ58mQyMzMxGAy8++67fuevvvpqDAaD32PixIl+15SUlHD55ZeTlJREcnIys2bNoqKiDa/nu91weDcUbfZ+7eC7StxuD3tLqthaaGNvSRVut3b6dXhd+3q3l2cMhuoSOLTd+zVzCAzXtnMRCV7QMzt33nknK1eu5JlnnuHKK69k0aJF7N+/n2effZaHH344qHtVVlYyZMgQrrnmGi655JJGr5k4cSJLlizxPY+OjvY7f/nll1NQUMDHH39MbW0tM2fO5Prrr+fll18O9q2Fnwql+Qm2CaccEfH9ubr29W41VwVlEQmBoBuBdu/enb/97W+cd955JCUlsX79erKzs/n73//OK6+8wtKlS5s2EIOBd955h6lTp/qOXX311ZSWljaY8anz3XffMWDAAL7++mvOOOMMAJYtW8akSZPYt28fmZmZAb12izQCPVahtLL9ENe5wxVKa2oTTlGQKCJSJ9DP76B/TSopKaF3796ANz+nbqv5qFGj+PTTT5s43GNbtWoVqamp9O3bl5tuuolDhw75zq1evZrk5GRfoAMwbtw4jEYjX331VcjH0iQqlObH4XT7NeHs3SWeOIt3grGuCefB8hqWbirUklYj6oLEvPwykuPM9O6SQHKcmbz8MpZ8sYvtxeWtPUQRkTYn6GWs3r17s3PnTrp3706/fv14/fXXOeuss/jggw9ITk4O6eAmTpzIJZdcQq9evdixYwe/+c1vuPDCC1m9ejUmk4nCwkJSU1P9vicqKoqUlBQKCwuPed+amhpqamp8z202W0jH7efoQmnVjdQh6kCF0hat3I6tutbXhLO0urbBNXVNOH9+WjftkqqnOZ3aRUQ6sqCDnZkzZ/Ltt99y7rnncvfddzN58mSefvppamtreeyxx0I6uOnTp/v+PGjQIAYPHszJJ5/MqlWrOP/885t83wULFvDggw+GYoiBqV8ozeNpWBW2gxVKq9+E0+3xNOg4XteEs9LhbOWRti3q1C4i0jRBBztz5szx/XncuHFs3bqVdevWkZ2dzeDBg0M6uKP17t2bLl26sH37ds4//3zS09MpLi72u8bpdFJSUkJ6evox7zNv3jzmzp3re26z2cjKClPdjg5WKO1EibO5Y7LZd7gqoCac8ZZmVUaIOOrULiLSNM3+NOnRowc9erTM0su+ffs4dOgQGRkZAOTk5FBaWsq6desYNmwYAP/5z39wu90MHz78mPeJjo5usKsrbDpQobRAEmctUUZfE868/DKSYo8sxwB4PB6Ky2sY1M1Kt+TY1norbZI6tYuINE1Awc5TTz3F9ddfT0xMDE899dRxr73lllsCfvGKigq2b9/ue75z5042bNhASkoKKSkpPPjgg0ybNo309HR27NjBnXfeSXZ2NhMmTACgf//+TJw4keuuu47FixdTW1vL7NmzmT59esA7sVpEByiU1nB3VSxVDid5+WXkl1X77a5SE86mCTRIbKxTe8RvVRcROY6Atp736tWLb775hs6dO9Or17F/azQYDPz4448Bv/iqVasYM2ZMg+MzZszgmWeeYerUqfz3v/+ltLSUzMxMxo8fz0MPPURaWprv2pKSEmbPns0HH3yA0Whk2rRpPPXUUyQkBL4k1CJbz6HxOjtdT/EGOu1427nd4eLZz35ky/4yv8RZ8H4Iby+uYGA3K9eP7u2XOFt/JqjG6SI6ykR2aoKacB7H0UHl0UFiY1v2tVVdRCJVoJ/fQdfZiUQtFuyAd3t5hBVKe/D9zb7E2eiohu+lxunCXusmp3fnBomzmnEIXjBBouoZiUgkC/TzO6icndraWvr168eHH35I//79mz3IDsloDM/28lYMogLdXdVY4qyacAYvkE7tDqcbt9sT0Fb12WMSFGCKSEQLKtgxm83Y7fZwjUWaqpXbUChxtuWdKEhUPSMRkSOC/tU/NzeXhQsX4nSqBkqbUNeGomAjxKV4KzLHpXifr1nsPR9mdYmzReV2jAYwGQ2+h9EAxeU19E1LbDRxVsLHN+NmMuD2eNh3uIp9h6tw/7RybTYZcbrdqmckIhEv6K3nX3/9NStWrODf//43gwYNIj7e/wPs7bffDtng5ATqt6Ho0vfIlva6NhQHt3nbUJx9C5hjwjYM7a5qe1TPSETkiKB/yiUnJzNt2rRwjEWCtfz+I20oqg41rMxc14ai6hBcuDCsQ8lOTWTmyJ6+xNkim53oKBODulm1u6oVqJ6RiMgRQQc7S5YsCcc4pCnqt6EwGCC5u//5ujYUTkeLDCeQxFlpOZpxExHx0vx1e5aTG1gbipzcFhuSdle1LU2ZcVM5ABGJNE0Kdt58801ef/119uzZg8PhP2uwfv36kAxMAhBoG4qU3q03Rml1wcy4qQChiESioHdjPfXUU8ycOZO0tDT++9//ctZZZ9G5c2d+/PFHLrzwwnCMUY6lrg1FXGdvGwq7zbusZbd5n0dAGwoJjboZt37pSWSlxB0z0FnyxS7y8stIjjPTu0sCyXFm8vLLWPLFLrYXl7fCyEVEmi/oT8E///nP/OUvf+FPf/oTFouFO++8k48//phbbrmFsrKycIxRjqdrXxhxI2QMhuoSOLTd+zVzCAy/sV23oZCW4XC6sTtcvgKEvbvEE/fTDq26AoQHy2tYuqkQu8Pl971ut4e9JVVsLbSxt6QKt7vDF2QXkTYo6GWsPXv2cPbZZwMQGxtLebn3t70rr7ySESNG8PTTT4d2hHJiXft6t5pHWBsKaRlHFyAsqXI0qIJdV4DwcKXD1/KjTS15RWAbFhEJnaCDnfT0dEpKSujRowfdu3dnzZo1DBkyhJ07d6I2W60oXG0opEOo3/LDaDBwUif/JPOjW34E0+U+7Fq5griItH1BBztjx47l/fff57TTTmPmzJnMmTOHN998k2+++YZLLrkkHGMUkTAKpgDhrFG9/Ja8jtdz6/rRcX5d7sOiroJ41SGwdvMW1Kyt9Cbtl+33LvEq4BHp8IIOdv7yl7/gdnt/u8vNzaVz5858+eWXTJkyhRtuuCHkAxSR8AqmAGHPzvE89OGWoJe8Qs7pAI+7TVQQF5G2L+hgx2g0Yqy3Fj59+nSmT58e0kGJSMsKpgBhsEteYfHZo2AvPVJBvLqk4TUtWEFcRNq2oIOd7OxsrrjiCn79619zyimnhGNMItIKAi1A2Ga63NevIO7xNGyX0sIVxEWk7Qo62MnNzeXll1/moYce4vTTT+eKK67gsssuIz09PRzjE5EWFEgBwmCWvMJm9G1QuqfNVRAXkbYp6L2Zc+bM4euvv+a7775j0qRJLFq0iKysLMaPH8/f/va3cIxRRFrQiQoQ1i15pcRb+KG4gnJ7LU63m3J7LT8UV7RMz60oy5EK4uUFYDCC0XTkYTB6K4in9lMFcRHB4AnBfvE1a9Zw0003sXHjRlwu14m/oY2x2WxYrVbKyspISkpq7eGItAv16+zUOF1ER5nITk1o2S739XdjJXUDSxw4qsC231tBXIU1RSJaoJ/fzWoEunbtWl5++WVee+01bDYbv/jFL5pzOxFpR9pEl/u6CuJ1dXbK8711djKHeFulKNAREZoQ7Hz//fe89NJLvPLKK+zcuZOxY8eycOFCLrnkEhISEsIxRhFpo9pEl3tVEBeREwg62OnXrx9nnnkmubm5TJ8+nbS0tHCMS0QkcKogLiLHEXSws23bNvr06ROOsYiIiIiEXNDBTl2gs27dOr777jsABgwYwOmnnx7akYmIiIiEQNDBTnFxMZdddhmffPIJycnJAJSWljJmzBheffVVunbtGuoxioiIiDRZ0Bl8N998MxUVFWzevJmSkhJKSkrIy8vDZrNxyy23hGOMIiIiIk0WdJ0dq9XK8uXLOfPMM/2Or127lvHjx1NaWhrK8bUI1dkRaRlut6d1t6qLSEQJW50dt9uN2WxucNxsNvu6oUtk0QeUhEL9IoR2p4uYKBMnd01gwqktWIRQRDqkoIOdsWPH8r//+7+88sorZGZmArB//37mzJnD+eefH/IBSuvSB5SEwvbicpZ8sYuSSgcZ1hjiLLFUOZzk5ZeRX1bNzJE99d+TiIRN0Dk7Tz/9NDabjZ49e3LyySdz8skn06tXL2w2G3/605/CMUZpJXUfUHn5ZSTHmendJYHkODN5+WUs+WIX24vLW3uI0sY5nG7sDhf/3FTIwfIaeneJJ87i/R0rzhJF7y7xHCyvYemmQtzuZneuERFpVNAzO1lZWaxfv57ly5ezdetWAPr378+4ceNCPjhpHQ6nG7fb4/uAyk490tm67gNqe3EFSzcVcv3oOGIsplYesbRVi1Zux1Zdy+ofDxFjNlFaXdvgmhqni92bqvj5ad1avxqziESkJvXGMhgMXHDBBVxwwQWhHo+0AUd/QJVUOcgvrQYgMzkWo8Hg+4A6XOng/ikDW3nE0pY5XG6cLjfmmCjcHk+D/5bMJiMVNU4qHc5WHqmIRKqAg53//Oc/zJ49mzVr1jTIeC4rK+Pss89m8eLFjB49OuSDlNA7UdJx/Q8oo8HASZ38f+Ou+4ByuJSULseWOyabfYerqKhx0inWQkJMwx855fZaSqtribc0qy+xiMgxBfzT5YknnuC6665rdGuX1Wrlhhtu4LHHHlOw0w6cKOk4mA+oWaN6tcI7kPbCEmWkZ+d4TklNJC+/jKTYI0uiAB6Ph+LyGgZ1s9ItObYVRyoikSzgBOVvv/2WiRMnHvP8+PHjWbduXUgGJeETSNJx/Q+oonI7RgOYjAbfw2iA4vIa+qYl0rNzfGu/JWnjjEYDE05NIyXewg/FFZTba3G63ZTba/mhuIKUeAvjB6apnIGIhE3AwU5RUVGj9XXqREVFceDAgZAMSkIv2F0x+oCSUMpOTWTmyJ6cmmmltKqWXQcrKa2qZVA3q7adi0jYBbyM1a1bN/Ly8sjOzm70/MaNG8nIyAjZwCS0gkk6rtsVU/cBVbfkVWSzEx1lYlA3K+MHqs6OBCc7NZHe5yWoQKWItLiAg51Jkybx29/+lokTJxITE+N3rrq6mvvvv5+f/exnIR+ghE6gScf1d8XoA0pCyWg0aHu5iLS4gHtjFRUVcfrpp2MymZg9ezZ9+/YFYOvWrSxatAiXy8X69etJS0sL64DDoSP0xnI43ew7XMWTK344YdLx7eP76gNJRETavJD3xkpLS+PLL7/kpptuYt68edTFSAaDgQkTJrBo0aJ2Geh0FNoVIyIiHVVQhS169OjB0qVLOXz4MNu3b8fj8dCnTx86deoUrvFJCNUlHeeXVfNDcQUZ1hhiLSaqHS4KyuxKOhYRkYgU8DJWJOsIy1j11a+zU+N0ER1lIjs1QUnHIiLSroR8GUsih5KOpT04UZVvEZFAKdjpoLQrRtqyE1X5FhEJhoIdEWlT6qp8l1Q6yLDGEGeJpcrhJC+/jPyyahUhFJGgBVxBWUQknIKt8i0iEqgmBTt///vfGTlyJJmZmezevRvwNgp97733grrPp59+yuTJk8nMzMRgMPDuu+/6nfd4PNx3331kZGQQGxvLuHHj+OGHH/yuKSkp4fLLLycpKYnk5GRmzZpFRUVFU96WiLSiRSu3s3DZVj7aVEBReQ3f7D7M17tKfI9vdh+mqNzO0k0F7P+p+reISCCCDnaeeeYZ5s6dy6RJkygtLcXlcgGQnJzME088EdS9KisrGTJkCIsWLWr0/COPPMJTTz3F4sWL+eqrr4iPj2fChAnY7XbfNZdffjmbN2/m448/5sMPP+TTTz/l+uuvD/ZttUlut4e9JVVsLbSxt6RKv81KxPNV+TYZcHs87Dtcxb7DVbh/2jRqNhlxut1+Vb5FRE4k6K3nAwYM4A9/+ANTp04lMTGRb7/9lt69e5OXl8d5553HwYMHmzYQg4F33nmHqVOnAt5ZnczMTG677TZuv/12AMrKykhLS+OFF15g+vTpfPfddwwYMICvv/6aM844A4Bly5YxadIk9u3bR2ZmZkCv3Ra3nitBUzoaVfkWkWAF+vkd9MzOzp07Oe200xocj46OprKyMtjbHfd1CgsLGTdunO+Y1Wpl+PDhrF69GoDVq1eTnJzsC3QAxo0bh9Fo5KuvvjrmvWtqarDZbH6PtqQuQTMvv4zkODO9uySQHGcmL7+MJV/sYntxeWsPUSTk6lf5Liq3YzSAyWjwPYwGKC6voW9aoqp8i0hQgg52evXqxYYNGxocX7ZsGf379w/FmAAoLCwEaNCCIi0tzXeusLCQ1NRUv/NRUVGkpKT4rmnMggULsFqtvkdWVlbIxt0cwSRo2h2uVh6tSOjVVflOibfwQ3EF5fZanG435fZafiiuUJVvEWmSoLeez507l9zcXOx2Ox6Ph7Vr1/LKK6+wYMEC/vrXv4ZjjCE3b9485s6d63tus9naRMCzaOV2bNW1rP7xEDFmEyVVDvJ/SsTMTI7FaDBQ43Sxe1MVhysd3D9lYCuPWCT0slMTmTmyp28Zt8hmJzrKxKBuVlX5FpEmCTrYufbaa4mNjeXee++lqqqKX//612RmZvLkk08yffr0kA0sPT0d8HZbz8jI8B0vKipi6NChvmuKi4v9vs/pdFJSUuL7/sZER0cTHR0dsrGGki9BMyYKo8HASZ388xLMJiMVNU4cLncrjVAk/FTlW0RCqUlFBS+//HIuv/xyqqqqqKioaLCUFAq9evUiPT2dFStW+IIbm83GV199xU033QRATk4OpaWlrFu3jmHDhgHwn//8B7fbzfDhw0M+pnDLHZPNvsNVVNQ4T5igOWtUr1YYoUjLUZVvEQmVoHN2xo4dS2lpKQBxcXG+QMdmszF27Nig7lVRUcGGDRt8OUA7d+5kw4YN7NmzB4PBwK233srvf/973n//fTZt2sRVV11FZmamb8dW//79mThxItdddx1r167liy++YPbs2UyfPj3gnVhtSTAJmj07x7f2cEVERNqFoGd2Vq1ahcPhaHDcbrfz2WefBXWvb775hjFjxvie1+XRzJgxgxdeeIE777yTyspKrr/+ekpLSxk1ahTLli0jJibG9z0vvfQSs2fP5vzzz8doNDJt2jSeeuqpYN9Wm1GXoJlfVs0PxRVkWGOItZiodrgoKLMrQVNERCRIAdfZ2bhxIwBDhw7lP//5DykpKb5zLpeLZcuW8eyzz7Jr166wDDSc2nqdnRqni+goE9mpCUrQFBER+Umgn98Bz+wMHToUg8GAwWBodLkqNjaWP/3pT00brTSgBE0REZHQCDjY2blzJx6Ph969e7N27Vq6du3qO2exWEhNTcVkMoVlkB2VEjRFRESaL+Bgp0ePHgC43dry3Bxut0ezNSIiIi0o6ATlv/3tb8c9f9VVVzV5MJFO/a5ERERaXtCNQDt16uT3vLa2lqqqKiwWC3FxcZSUlIR0gC2hJRKU6/pdlVQ6yLDGEGeJosrh9O2wmjmypwIekSbSjKlIxxTyBOU6hw8fbnDshx9+4KabbuKOO+4I9nYRz+F043Z7fP2uslMTMBi8P4Tr+l1tL65g6aZCZo9J0A9okSBpxlRETiTomZ1j+eabb7jiiivYunVrKG7XosI5s/P4x9/79buKjmpYx7HG6cJe6+b/XXWGEpJFgqAZU5GOLdDP76ArKB9LVFQU+fn5obpdRPH1uzIZcHs87Dtcxb7DVbh/ijPNJiNOt5tKh7OVRyrSPjicbuwOl2/GtHeXeOIs3onquhnTg+U1LN1UiN3hauXRikhrC3oZ6/333/d77vF4KCgo4Omnn2bkyJEhG1ikCKbfVbylSa3KRDqcRSu3+82YllbXNrimxuli96YqDlc6uH/KwFYYpYi0FUF/utb1papjMBjo2rUrY8eO5dFHHw3VuCJG/X5XefllJMUeydkBb7BYXF7DoG5WuiXHtuJIRdoX34xpI79AgHfGtKLGicPVzHIZbjeU7QVHBVgSwJoFxpBNiotICwg62FGdneC1RL8r7UaRjiSYGdNZo3r5nwgmeDmwDb77AA7+AE47RMVAlz7QfzJ07RuGdyYi4aB1kxaSnZrIzJE9fbtGimx2oqNMDOpmbXa/K+1GkY4mmBnTnp3jj3xjMMHLgW2wZjFUHQJrNzDHQ20lFGyEsv0w4kYFPCLtREDBTl038kA89thjTR5MpAtHv6uGu1FiqXI4ycsvI7+sWrtRJGIFPWMaaPDidIDHDZvfhcoD0KUv1AVS5njo3AcOboMt78Ho27WkJdIOBBTs/Pe//w3oZvV/s5LGhbLfVf3dKMer33P96DhiLOpbJpEn4BnTWntgwcvZt8Dnj4O9FHZ+BuZYqG6kUKqzBkp+hMGXQaceLfV2RaSJAgp2Vq5cGe5xSBMsXLZVu1GkwwtoxnT5/YEFL1WHICbZO7vjdoLJ3PiLmsxQU+7N+xGRNq9ZOTv79u0D4KSTTgrJYCQ49XejuD0e8kurAchMjsVoMIRuN4pIG3fCGdNAgxenA0bfBqV7vIFMbApEN7IMXGOD6sPeBGcRafOatBvr97//PY8++igVFd7fahITE7ntttu45557MGr9usXMGtWrabtRRDqanNzAgpecXIiyQEpvb/5OwUaIsR5Z9gLweKC8EDKHeHdy1adt6iJtUtDBzj333MNzzz3Hww8/7Csi+Pnnn/PAAw9gt9uZP39+yAcpjWvSbhSRjijQ4CWlt/eY0ejdoVW2Hw5shaRuYIkDRxXY9kN8Z+j3M/9ARtvURdqsoHtjZWZmsnjxYqZMmeJ3/L333uN//ud/2L9/f0gH2BJaout5uBy9G+vo3SjajSXyk/q7sRoLXoY3spW8sQCm6yneQKf+tcfa6VW2H+I6a5u6SJgE+vkddLATExPDxo0bOeWUU/yOb9u2jaFDh1JdXd20Ebei9hzsgH+dnRqni+goE9mpCc2u3yMScQINXuo73tJU3Tb1L56Ewk3+O73AO2t0cBtkDNY2dZEwCPTzO+hlrCFDhvD000/z1FNP+R1/+umnGTJkSPAjlWYLR/0ekYjUta93q3kweTVG47G3l3/2qLapi7QDQQc7jzzyCBdddBHLly8nJycHgNWrV7N3716WLl0a8gFKYEJZv0ckoh0veGmKpm5TVzKzSIsJOtg599xz+f7771m0aBFbt24F4JJLLuF//ud/yMzMDPkARUTarKZuU1cys0iLalKdnczMTO26EhFpyjZ19dwSaXFBz5kuW7aMzz//3Pd80aJFDB06lF//+tccPnw4pIMTEWnz6rapx3X2blO327zLWnab93ndNnW3079tRec+3kAHjrStqDzgbVtRa2/VtyQSaYLejTVo0CAWLlzIpEmT2LRpE2eccQa33XYbK1eupF+/fixZsiRcYw2b9r4bS0TagBPt9Fq5wD+ZOSq64T2cNVBbDb1Gw4ULW/wtiLQ3YduNtXPnTgYMGADAW2+9xeTJk/nDH/7A+vXrmTRpUtNHLCLSngWy0yuYthX1KZlZpFmCDnYsFgtVVVUALF++nKuuugqAlJQUbDZbaEcnItKeHG+nVzDJzDm5R44pmVmk2YIOdkaNGsXcuXMZOXIka9eu5bXXXgPg+++/V0NQEZFjCSaZua5thZKZRUIi6HnQp59+mqioKN58802eeeYZunXrBsBHH33ExIkTQz5AEZGIEWgys9GoZGaREAo6QTkSKUFZRFpUIG0rPrpLycwiJxC2BGUAl8vFO++8w3fffQdA//79mTp1KlFRTbqdiEjHEs5kZhFpIOjoZPPmzUyePJmioiL69vX+BrJw4UK6du3KBx98wKmnnhryQYqIRJwTta3IyQ0+mVlEGhV0zs61117Lqaeeyr59+1i/fj3r169n7969DB48mOuvvz4cYxQR6XjqkpnLC8BgBKPpyMNg9CYzp/Y7kswsIscU9MzOhg0b+Oabb+jUqZPvWKdOnZg/fz5nnnlmSAcnItJh1SUzl+33Ji8ndQNLHDiqwLbfP5lZRI4r6P9LTjnlFIqKihocLy4uJjs7OySDEhERvDM7I26EjMFQXQKHtnu/Zg6B4cfZdu52w+HdULTZ+9Xtbtlxi7QxAc3s1C8WuGDBAm655RYeeOABRowYAcCaNWv43e9+x8KF2hEgIhJSgSQz16cihCINBLT13Gg0YqhX/KruW+qO1X/ucrnCMc6w0tZzEYkIxypCWLbfW9tHRQglwoR06/nKlStDNjAREQkxpwM87iNFCLv0PVKdua4I4cFt3iKEo29Xno90OAEFO+eee25AN8vLy2vWYEREpAk+e9S/o3p1ScNrnDVQ8iMMvuz4W95FIlCzw/vy8nL+8pe/cNZZZzFkyJBQjElEJGzcbg97S6rYWmhjb0kVbvfxV/KDvb7VBFKE0O305v2IdDBNLnn86aef8txzz/HWW2+RmZnJJZdcwqJFi0I5NhGRkNpeXM6/8orYcaACu9NFTJSJk7smMOHUNLJTGxbuC/b6VhNMR3VLgv9xtzvw5GeRdiqoYKewsJAXXniB5557DpvNxi9/+Utqamp49913GTBgQLjGKCLSbNuLy1nyxS5KKh1kWGOIs8RS5XCSl19Gflk1M0f29Atggr2+VQXTUd2adeS4dm5JBxFw+D558mT69u3Lxo0beeKJJ8jPz+dPf/pTOMcmIhISdoeLf24q5GB5Db27xBNn8f6eF2eJoneXeA6W17B0UyF2hwuH0x3w9W1qSSuYjupwZOdWwUaIS/EmMceleJ+vWew9LxIhAp7Z+eijj7jlllu46aab6NOnTzjHJCISUguXbWX1j4eIMZsora5tcL7G6WL3pioOVzpIijVjq671XV9S5SC/tBqAzORYjAaD7/qfn9aNrJQ4333cbg/7S6updDiJt0TRLTkWo9HQ4PXCpq4IYd1sTXm+d7Ymc8iRjurB7Nw6+xYwx7Tc+EXCJOBg5/PPP+e5555j2LBh9O/fnyuvvJLp06eHc2w88MADPPjgg37H+vbty9atWwGw2+3cdtttvPrqq9TU1DBhwgT+/Oc/k5aWFtZxiUj74nC5cbrcmGMa/5FnNhmpqHHicLkbXG80GDipU1yj11c6nL5jbSa/50RFCI/euVV1yHsteK8zGI7s3Ko6BBfWKxar/B5ppwIOdkaMGMGIESN44okneO2113j++eeZO3cubrebjz/+mKysLBITQ/8/9MCBA1m+fPmRAUcdGfKcOXP45z//yRtvvIHVamX27NlccsklfPHFFyEfh4i0X7NG9aKixkmnWAsJjQQ85fZaSqtrmTWqFyd1imPf4aqAro//aXmrzeX3nKijev2dWwYDJHf3P28yQ02597o6yu+Rdizo3Vjx8fFcc801XHPNNWzbto3nnnuOhx9+mLvvvpsLLriA999/P7QDjIoiPT29wfGysjKee+45Xn75ZcaOHQvAkiVL6N+/P2vWrPG1shAR6dk5nlNSE8nLLyMpNqFBRfji8hoGdbPSs3M8RqMh4Ou7JkT75fdkpx65ti6/Z3txBUs3FTJ7TILfklarLXkFs3MrJ9f7/FiVmQs2eqszqzKztHFN3noO3iWlRx55hAULFvDBBx/w/PPPh2pcPj/88AOZmZnExMSQk5PDggUL6N69O+vWraO2tpZx48b5ru3Xrx/du3dn9erVxw12ampqqKmp8T2v3/tLRCKP0Whgwqlp5JdV80NxBRnWGGItJqodLgrK7KTEWxg/MM0XbAR6/TOf7GhSfk+rLnkFs3MrpTfU2pXfI+1es4KdOiaTialTpzJ16tRQ3M5n+PDhvPDCC/Tt25eCggIefPBBRo8eTV5eHoWFhVgsFpKTk/2+Jy0tjcLCwuPed8GCBQ1ygUQksmWnJjJzZE9fkFFksxMdZWJQNyvjBzYMMgK7viDo/J42seRVt3OrbL93p1ZSN7DEgaMKbPv9d2796/7AKjMfnd8j0oaEJNgJlwsvvND358GDBzN8+HB69OjB66+/TmxsbJPvO2/ePObOnet7brPZyMrKOs53iEgkyE5NpPd5CQEvH53o+twx2QHn91hMxoCXvK4fHUeMxeS7R1iWvALZuQWBVWY+Or9HpI1p08HO0ZKTkznllFPYvn07F1xwAQ6Hg9LSUr/ZnaKiokZzfOqLjo4mOjo6zKMVkbbIaDT4bRdvzvWWKGPA+T3v/nc/5XZnwFvg758yEAjzkteJdm6BN28nmPwekTaoXe0ZrKioYMeOHWRkZDBs2DDMZjMrVqzwnd+2bRt79uwhJyenFUcpIh1JXX5PSryFH4orKLfX4nS7KbfX8kNxhS+/x2AwHFnyMjU+K2M2GXG63b4t8HVLXnn5ZSTHmendJYHkODN5+WUs+WIX24vLQ/EGvDu30gZ6vx69lbwuv6e8AAxGMJqOPAxGb35Paj/vdSJtVJue2bn99tuZPHkyPXr0ID8/n/vvvx+TycSvfvUrrFYrs2bNYu7cuaSkpJCUlMTNN99MTk6OdmKJSIsKJL8nd0x8wEtes0b1avKSV8gFk98j0ka16WBn3759/OpXv+LQoUN07dqVUaNGsWbNGrp27QrA448/jtFoZNq0aX5FBUVEWtqJ8nuCWfLq2Tmehz7cEtAur/pLXmETaH7P0VSEUNqINh3svPrqq8c9HxMTw6JFi9RtXUTahBPlAwWzBT7QXV51S171hS2h+UT5PfWpCKG0IW062BERiTSBboEPpupzfWFNaD5RZeY6KkIobYyCHRGRFhbIFvhglrzqtHoNn2CajI6+XUta0mIU7IiItIKQLnk53bjdntZvW3F0k9HjFSEcfFlgs0QiIaBgR0SkjQp0yWvRyu1+bSuOV8Mn7G0r6hch9HgadlSvK0LoqGja/UWaQMGOiEgbFmjV5/oJzY1pkbYVwTQZtST4H9fOLQkjBTsiIm3ciZa8WqptxQkF02TUWq9Fj3ZuSZgp2BERaedaom0FBJjfE2wRQu3ckhagYEdEJAIEmtD8wbcFAS951a/hE1R+TyBFCLVzS1qQgh0RkQgRjrYV0MT8nhMVIdTOLWlBCnZERCJIqNtWNCu/50RFCOvv3GqMdm5JiCjYERGJMKGs4bNw2dYm5feckHZuSQtSsCMi0gEFWsOnKfk9AdHOLWlBCnZERDqoQGr4NLVHFwSwe0s7t6SFKNgREenATrTk1ZQeXRDE7q1Q79w6+xYwx4Tyr0gigIIdERE5pmDye+oEvXsr2J1bVYcatqGo27lVdQguXNhyf0HSLiijS0REjqsuv+fUTCulVbXsOlhJaVUtg7pZ/QIXh9Ptt3urd5d44ize36nrdm8dLK9h6aZC3G6P/4vU7dxKG+j9enTCcf2dWwYDJHf3PupmeExm73mnw//73G44vBuKNnu/uoPMLZKIoJkdERE5oUDye5rakBROkN8TzM6tnNwjx5TMLD9RsCMiIgE5UX4P+O/ecns85JdWA5CZHIvRYGjQkBQCyO8JZudWSm/vMSUzSz0KdkREJCSCaUga/9PyVsD5PcHs3Kq1K5lZ/CjYERGRkAimOnPXhOiAqzPPHpPgXdIKZOcWwPL7A2tDoWTmDkPBjoiIhEygu7ee+WRH0/J7uvbFnZJN4d7t1FSWEh2fTHpWNkZTvVYVgbahODqZWSKWgh0REQmpwKozFzQzv6cauzOKmKhqTv5xp3/9npzc4JOZ66gVRURSsCMiIiF3ot1bYc3vCTaZuY52b0UshasiIhIWdbu3+qUnkZUS57dNvX5+T1G5HaMBTEaD72E0QHF5DX3TEhvk9xyvfo/d4TqSzBzX2ZvMbLd5l7XsNu/zo9tQwJHdWwUbIS7Fm8gcl+J9vmax97y0W5rZERGRVhGO/B5f9/WfkpndWz6guuA7XA47JksMsZlDMPavl8wcTCuK0bf7B0ha8mo3FOyIiEiraUp+T2Ma676+3ZPJv5xTKKkdiMFZgceQQErtyUzwZJBdd1EwrSgGX+at7gxa8mpnFOyIiEirCmV+T133db/8nuTuxFqivPk9BeXk22r8+3M11oqivrrdW44K73MVLGx3FOyIiEirO1515mDq9/TsHB9w/Z7rR8cRE0wrClN04AULj17yklalYEdERNq8YLqvL1y2Nbj8nnq7tzzRSdhqXNS63JhNRpKiTRjqdm9tfB1qygIrWFh/yQuU39PKFOyIiEi7EFh+D8Hn9/y0e6u0aBcHv1vHflcKVViIw0E3Uwld0jJJ7vczyHs78IKFdUteoPyeNkDBjoiItBuBdF+fNapXUPk94E1m/tA5gZ7ulfQy7CeNWmowk+fuxS7nefzMk0n2UUteHksCthontU435igjSdFRGBzl3iUvS4L3xsrvaRMU7IiISLtyou7rweT3OJxu3G4P/9xUyHe1GdT2uZZiRxEWVxUOUxxlljS2H6jCuKmQ2WOyMf605FW+ax3f1XbjcHUtTrebKKORTrFm+pv3k9jrDEhIU0PSNkTBjoiIRJRg8nsWrfihkRo+MT89AMoa9OjanTqWwm83EmXfhjU+HU90PIbaSkwlhWyJ6UR61zH0+Pxx/y3twTQkVX5PyCnYERGRiBNofg8EnuNTWlVL1wQX7+5PpCT2Ys6P+5rO1bswVR/CZbRwMGUg//GcSef9icw2gLFefo/HAzaniVq3AbPRQ1KUC0NjDUmV3xMWCnZERCQiBZLfE0wNn7fX7wP4aRYonW2myXQxFBNjrMZuiOVgbSp2lwf7pgJ+fvn/kGU4AI4KDnsS+MFm5HCNA6fbQ5TRQKcoC6ckuUm2VhxpSKr8nrDRvJiIiESs4/XnguB6dCXGRB2ZBTIZ8BiMHIhKZ6+5Fwei0vEYjJhNRpxuN5UuA6T05mBcL/bt+ZFiWw0xlig6xUcTY4mi2FbD3j0/cjCul3fre/38ns59vIEOHMnvqTzgze+ptbf8X2IE0MyOiIh0aIHm+HRPiQ94FshiMmJ3eljqPIMens1kG/dR4Umj1hNLvKeaNGMRRa5ENjjP4BdODzEr7vfl93iqShouebmOkd8DyvEJgIIdERHp8ALN8Ql0p9e7/91Pud3J6h9jyI76GSMda8is2ovZ46DSYOF7cw++jBrO9h0x/LhsK/cbvPk9Ja5YtpfHctgRhdMDUQboZHGSHWckxX1Ufg8oxydACnZEREQILMcn0FmgD7490ry0KL4H70V3p4urmBjPT/k9plRcGHBWObzFDUfnYrMdZktJFKXGGBKTozCbjNS63BTbnThq7QxO6UJSXX4P+HJ83FUHqYhOxxGdisVjJ6HgW4zHyvHpoLNACnZERER+cqIaPhDYLFDumMaWvLr47tET/+KG9sRoNjkyiLVvwmA9BcNPAZY5ykSnOCMxZbvY5BjMsMQexDgd4HHD5ncpLyngO2cmh4vtON3V3uTnuK70t+eTeHSPrg48C6RgR0REJEgnmgUKtnnpQx9uYV/JqUxz7cR6aCu7aztRTTRdol10cR+k2JDI2yUDWf6v77k/8X2wl2L74Us2VqVQ6i4g0VWK2eCm1mKluNyEw1DF4LIPSKrr0dXBZ4EU7IiIiDTBiWaBgilu6HC52Uk3liVMZbh9NZmGvZg9ZdR6LOy0ZLM2OoedjnRSXW5cbg9uh4OiKihzxZAS7cSAtz2FBQ8pFielNTEUVRlIqCzBmJAW2CxQ/UrOB7bh3vIB1QXf4XJUY7LEEpvRH+OA9jkLZPB4PJ7WHkRrs9lsWK1WysrKSEpKau3hiIhIBNleXO5b8qpxuoiOMpGdmuCX+PzjgQqeXPGDd8kr2khSTaGvZYUtOp3yGhel1bX87/l9+GD9bijdw8Dti6k0Wak1xTd4TYuzgji3jQEDBpEZU1tvFiiORLMbs8FDrcdAea2RZEMlg+MPk9TnbO9OrwPbKF31Jw4W5bOvXlPUk+qaop53c6MBj9vlonDvdmoqS4mOTyY9KxujyRTWv9tAP781syMiIhJGgSQ+H73kVRnXjcqfzhk9HorLq3xLXm6jmUPmTHYbTmKAZyf7iD/SdwvA46Erh9hs7E0mnejq2HfULJCXxeAhxeL2zQLFOhyYa+0cXPs6BXv3sNuQRWKsmWSTkVqXha3V0fTYuwfn2jfoMv52v35eu7euJ3/Nm0SV/IDRVYPbFM3ulD5kjriUHv1OD/9f8gko2BEREQmzUC551VV9frX8Agbb3mGwp5BySyq1pljMrmoSHcWUxXSlOGkcbxp6YrUXMND1I05TNPmeRmaBjBXsdnViqX08//Ov+zmw+WuKnEmkRBdjqPjpGiAFKKoxYs77D1ZPOeafeev97N66nsKPn8BiP4wjPgPMcVBbheXAJgo/3gfc2uoBT/vMNGrEokWL6NmzJzExMQwfPpy1a9e29pBEREQCVrfL69RMK6VVtew6WElpVS2DulmZObKnb8mrLvnZmnUqS+MvpjihL3EuGyn2vcS5bBQn9OOj+ItJ7n4qCXGxHPhpFijVcxAP4DEYjjyArhxilzGLA+ZMPt9Zhs3upMYF5XYntnqPcrsThwtK7U4+31mGo8aOvaqSfV++RpS9BLv1ZDzmBDwY8ZgTsFtPJspewr7Vr+N2uVr17zYiZnZee+015s6dy+LFixk+fDhPPPEEEyZMYNu2baSmprb28ERERAISyJIXHJkJWlLWh1cqsuibVEaS0Y7NHcO2aiudEmL8qj4HMgt0zeiTeWf5FAaXFeAxJ1FubDgLFOOuoLzWw8YuU4j5x71UVDuIOZTHYUMMrprdDa6vdruJ3rOWwr3byezZeonNETGz89hjj3Hdddcxc+ZMBgwYwOLFi4mLi+P5559v7aGJiIgE5UT9vOrUzQQN7NaJ3a4ufFOdwW5XF049qZNvJiiYWaCeneP5+fmjsCdn08tiIzM5lsxOcUceybH0stiwJ/fh5+ePAsDldhHlceIymBsdo8tgxuRxUVNZGq6/roC0+5kdh8PBunXrmDdvnu+Y0Whk3LhxrF69utHvqampoaamxvfcZrOFfZwiIiKhFkzV5xPNAhmNBnp2SWRNz4kc+v5F0qt3Uh6ddmQWqKaIAk8iFT0n0LNLIidd8XsKd39P4Qe/Iym6E57oxIYDrLERVWMmOj655f5SGtHuZ3YOHjyIy+UiLS3N73haWhqFhYWNfs+CBQuwWq2+R1ZWVksMVUREJOQCmQkKZBao7l5nnTWC9RmXsYVeRNUcJrlqN1E1h9lCb/6bcRlnnjUCo9GAJTqGk04eiKvzKViqCzEABqPxyAOIri7C3fkU0rOyW/Yv5SjtfmanKebNm8fcuXN9z202mwIeERGJaIHmA2WnJvKz88/jX5v6sil/B8baCtzmBDp3O5mfnZrhC4wAjCYTmSMupfDjfVhKf6A2Ph23OR5jbSXmykKcMZ3IGHFp2OvtnEi7D3a6dOmCyWSiqKjI73hRURHp6emNfk90dDTR0dEtMTwREZE2I5DeX/BTYDQmgf2lJx03MAJ+2lZ+q6/OjrmyCLcpmtqug8hQnZ3QsFgsDBs2jBUrVjB16lQA3G43K1asYPbs2a07OBERkXYq0MAIvAFPVp8hLV5BOVDtPtgBmDt3LjNmzOCMM87grLPO4oknnqCyspKZM2e29tBEREQ6BKPJ1Krby48nIoKdyy67jAMHDnDfffdRWFjI0KFDWbZsWYOkZREREel41AgUNQIVERFpjwL9/G73W89FREREjkfBjoiIiEQ0BTsiIiIS0RTsiIiISERTsCMiIiIRTcGOiIiIRDQFOyIiIhLRIqKoYHPVlRqy2WytPBIREREJVN3n9olKBirYAcrLywHU+VxERKQdKi8vx2q1HvO8KijjbRyan59PYmIiBkPDjq7NceaZZ/L111+H9J6t9Xqhvneo7tec+9hsNrKysti7d6+qZ7dRLf3/UFvQnt5zWxlrS46jPf2cDdU92+rPWY/HQ3l5OZmZmRiNx87M0cwOYDQaOemkk8Jyb5PJ1KIfouF8vVDfO1T3C8V9kpKSFOy0US39/1Bb0J7ec1sZa0uOoz39nA3VPdvyz9njzejUUYJymOXm5kbM64X63qG6X0v/HUvL6oj/vu3pPbeVsbbkONrTz9lQ3bOt/Ds3lZaxpENTE1gRkfBqCz9nNbMjHVp0dDT3338/0dHRrT0UEZGI1BZ+zmpmR0RERCKaZnZEREQkoinYERERkYimYEdEREQimoIdERERiWgKdkRERCSiKdgROYYPP/yQvn370qdPH/7617+29nBERCLSz3/+czp16sSll14attfQ1nORRjidTgYMGMDKlSuxWq0MGzaML7/8ks6dO7f20EREIsqqVasoLy/nxRdf5M033wzLa2hmR6QRa9euZeDAgXTr1o2EhAQuvPBC/v3vf7f2sEREIs55551HYmJiWF9DwY5EpE8//ZTJkyeTmZmJwWDg3XffbXDNokWL6NmzJzExMQwfPpy1a9f6zuXn59OtWzff827durF///6WGLqISLvR3J+1LUXBjkSkyspKhgwZwqJFixo9/9prrzF37lzuv/9+1q9fz5AhQ5gwYQLFxcUtPFIRkfarvfysVbAjEenCCy/k97//PT//+c8bPf/YY49x3XXXMXPmTAYMGMDixYuJi4vj+eefByAzM9NvJmf//v1kZma2yNhFRNqL5v6sbSkKdqTDcTgcrFu3jnHjxvmOGY1Gxo0bx+rVqwE466yzyMvLY//+/VRUVPDRRx8xYcKE1hqyiEi7E8jP2pYS1aKvJtIGHDx4EJfLRVpamt/xtLQ0tm7dCkBUVBSPPvooY8aMwe12c+edd2onlohIEAL5WQswbtw4vv32WyorKznppJN44403yMnJCelYFOyIHMOUKVOYMmVKaw9DRCSiLV++POyvoWUs6XC6dOmCyWSiqKjI73hRURHp6emtNCoRkcjSln7WKtiRDsdisTBs2DBWrFjhO+Z2u1mxYkXIp05FRDqqtvSzVstYEpEqKirYvn277/nOnTvZsGEDKSkpdO/enblz5zJjxgzOOOMMzjrrLJ544gkqKyuZOXNmK45aRKR9aS8/a9UuQiLSqlWrGDNmTIPjM2bM4IUXXgDg6aef5o9//COFhYUMHTqUp556iuHDh7fwSEVE2q/28rNWwY6IiIhENOXsiIiISERTsCMiIiIRTcGOiIiIRDQFOyIiIhLRFOyIiIhIRFOwIyIiIhFNwY6IiIhENAU7IiIiEtEU7IiI/OTQoUOkpqaya9cuwFsd1mAwUFpaGtbXvfvuu7n55pvD+hoiHZmCHREJ2tVXX43BYGjwmDhxYmsPrVnmz5/PxRdfTM+ePZt9r6KiIsxmM6+++mqj52fNmsXpp58OwO23386LL77Ijz/+2OzXFZGGFOyISJNMnDiRgoICv8crr7wS1td0OBxhu3dVVRXPPfccs2bNCsn90tLSuOiii3j++ecbnKusrOT111/3vVaXLl2YMGECzzzzTEheW0T8KdgRkSaJjo4mPT3d79GpUyffeYPBwF//+ld+/vOfExcXR58+fXj//ff97pGXl8eFF15IQkICaWlpXHnllRw8eNB3/rzzzmP27NnceuutvoAA4P3336dPnz7ExMQwZswYXnzxRd9yU2VlJUlJSbz55pt+r/Xuu+8SHx9PeXl5o+9n6dKlREdHM2LEiGO+56qqKi688EJGjhzpW9r661//Sv/+/YmJiaFfv378+c9/9l0/a9YsVqxYwZ49e/zu88Ybb+B0Orn88st9xyZPnnzMWSARaR4FOyISNg8++CC//OUv2bhxI5MmTeLyyy+npKQEgNLSUsaOHctpp53GN998w7JlyygqKuKXv/yl3z1efPFFLBYLX3zxBYsXL2bnzp1ceumlTJ06lW+//ZYbbriBe+65x3d9fHw806dPZ8mSJX73WbJkCZdeeimJiYmNjvWzzz5j2LBhx3wvpaWlXHDBBbjdbj7++GOSk5N56aWXuO+++5g/fz7fffcdf/jDH/jtb3/Liy++CMCkSZNIS0vzdX+uP5ZLLrmE5ORk37GzzjqLffv2+fKFRCSEPCIiQZoxY4bHZDJ54uPj/R7z58/3XQN47r33Xt/ziooKD+D56KOPPB6Px/PQQw95xo8f73ffvXv3egDPtm3bPB6Px3Puued6TjvtNL9r7rrrLs+pp57qd+yee+7xAJ7Dhw97PB6P56uvvvKYTCZPfn6+x+PxeIqKijxRUVGeVatWHfM9XXzxxZ5rrrnG79jKlSs9gOe7777zDB482DNt2jRPTU2N7/zJJ5/sefnll/2+56GHHvLk5OT4nt99992eXr16edxut8fj8Xi2b9/uMRgMnuXLl/t9X1lZmQc47hhFpGk0syMiTTJmzBg2bNjg97jxxhv9rhk8eLDvz/Hx8SQlJVFcXAzAt99+y8qVK0lISPA9+vXrB8COHTt833f0bMu2bds488wz/Y6dddZZDZ4PHDjQN8Pyj3/8gx49enDOOecc8/1UV1cTExPT6LkLLriA7OxsXnvtNSwWC+DNu9mxYwezZs3yew+///3v/cZ/zTXXsHPnTlauXAl4Z3V69uzJ2LFj/V4jNjYW8C6ViUhoRbX2AESkfYqPjyc7O/u415jNZr/nBoMBt9sNQEVFBZMnT2bhwoUNvi8jI8PvdZri2muvZdGiRdx9990sWbKEmTNnYjAYjnl9ly5dOHz4cKPnLrroIt566y22bNnCoEGDfOMH+H//7/8xfPhwv+tNJpPvz3369GH06NEsWbKE8847j7/97W9cd911DcZSt7zXtWvX4N+siByXgh0RaRWnn346b731Fj179iQqKvAfRX379mXp0qV+x77++usG111xxRXceeedPPXUU2zZsoUZM2Yc976nnXYa//jHPxo99/DDD5OQkMD555/PqlWrGDBgAGlpaWRmZvLjjz/6JRo3ZtasWdx0001MmTKF/fv3c/XVVze4Ji8vD7PZzMCBA497LxEJnpaxRKRJampqKCws9HvU30l1Irm5uZSUlPCrX/2Kr7/+mh07dvCvf/2LmTNn4nK5jvl9N9xwA1u3buWuu+7i+++/5/XXX/clANefLenUqROXXHIJd9xxB+PHj+ekk0467ngmTJjA5s2bjzm783//939cfvnljB07lq1btwLeBOwFCxbw1FNP8f3337Np0yaWLFnCY4895ve9v/jFLzCbzdxwww2MHz+erKysBvf/7LPPGD16tG85S0RCR8GOiDTJsmXLyMjI8HuMGjUq4O/PzMzkiy++wOVyMX78eAYNGsStt95KcnIyRuOxfzT16tWLN998k7fffpvBgwfzzDPP+HZjRUdH+107a9YsHA4H11xzzQnHM2jQIE4//XRef/31Y17z+OOP88tf/pKxY8fy/fffc+211/LXv/6VJUuWMGjQIM4991xeeOEFevXq5fd9cXFxTJ8+ncOHDx9zLK+++irXXXfdCccpIsEzeDweT2sPQkSkOebPn8/ixYvZu3ev3/G///3vzJkzh/z8fF9i8fH885//5I477iAvL++4AVeoffTRR9x2221s3LgxqCU9EQmM/q8SkXbnz3/+M2eeeSadO3fmiy++4I9//COzZ8/2na+qqqKgoICHH36YG264IaBAB7yJyD/88AP79+9vdKkpXCorK1myZIkCHZEw0cyOiLQ7c+bM4bXXXqOkpITu3btz5ZVXMm/ePF+w8MADDzB//nzOOecc3nvvPRISElp5xCLSmhTsiIiISERTgrKIiIhENAU7IiIiEtEU7IiIiEhEU7AjIiIiEU3BjoiIiEQ0BTsiIiIS0RTsiIiISERTsCMiIiIRTcGOiIiIRLT/D39MrDwqmAFXAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Absolute Covariance (counts / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "b302af8b", + "metadata": { + "id": "b302af8b" + }, + "source": [ + "This covariance, plotted this way, mostly tracks the number of counts in each energy bin. To get an unfolded covariance, we need to use the response of the instrument. Another way is to plot the fractional covariance, normalizing by the number of counts in each bin." + ] + }, + { + "cell_type": "markdown", + "id": "d138219a", + "metadata": { + "id": "d138219a" + }, + "source": [ + "To do this, we calculate the Count Spectrum and divide by it." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "fe618f01", + "metadata": { + "id": "fe618f01", + "outputId": "10552705-f6a2-4189-c5c1-215971fde843" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "40it [00:06, 6.00it/s]\n" + ] + } + ], + "source": [ + "countsp = CountSpectrum(events, energy_spec=energy_spec)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "104dc4d9", + "metadata": { + "id": "104dc4d9", + "outputId": "2fed28f3-64ed-40e3-d9b7-ebdcea7bbf7a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHECAYAAADFxguEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABgEklEQVR4nO3deXhTddo38G+SNt2btpSuFGhtKVBaZFEpOw6LwCPLjKAMCkLF5YF3BFxxA1QsqCi4DKA+AjOKuIMLyygCKiAiUi1gkb3QFeje0qRZ3j8yCU2btuecnjRLv5/rygU5OTm5E7S5+1vuW2EymUwgIiIi8hBKZwdAREREJCcmN0RERORRmNwQERGRR2FyQ0RERB6FyQ0RERF5FCY3RERE5FGY3BAREZFHYXJDREREHoXJDREREXkUJjdERETkUdp1cvP999/j1ltvRUxMDBQKBbZs2eLQ11uyZAkUCoXNrXv37g59TSIiovamXSc31dXV6N27N9588802e82UlBQUFBRYbz/++GObvTYREVF74OXsAJxp7NixGDt2bJOPa7VaPPnkk/jggw9QVlaGXr16YcWKFRg+fLjk1/Ty8kJUVJTk5xMREVHz2vXITUvmzZuHAwcOYPPmzfj9998xZcoU3HLLLTh58qTka548eRIxMTFISEjA9OnTkZubK2PEREREpDCZTCZnB+EKFAoFPv/8c0yaNAkAkJubi4SEBOTm5iImJsZ63siRI3HjjTfihRdeEP0a27dvR1VVFZKTk1FQUIClS5ciLy8PR48eRVBQkFxvhYiIqF1r19NSzcnOzobBYEC3bt1sjmu1WnTo0AEAkJOTgx49ejR7ncceewzLly8HAJspsLS0NNx0003o0qULPvroI2RkZMj8DoiIiNonJjdNqKqqgkqlwuHDh6FSqWweCwwMBAAkJCTgjz/+aPY6lkTInpCQEHTr1g2nTp1qfcBEREQEgMlNk/r06QODwYDi4mIMGTLE7jlqtbpVW7mrqqpw+vRp3HXXXZKvQURERLbadXJTVVVlM2py9uxZZGVlISwsDN26dcP06dMxY8YMrFy5En369MGlS5ewa9cupKWlYfz48aJf7+GHH8att96KLl26ID8/H4sXL4ZKpcK0adPkfFtERETtWrteULxnzx6MGDGi0fGZM2diw4YNqKurw/PPP49//etfyMvLQ3h4OAYMGIClS5ciNTVV9Ovdcccd+P7773HlyhV07NgRgwcPxrJly3DdddfJ8XaIiIgI7Ty5ISIiIs/DOjdERETkUZjcEBERkUdpdwuKjUYj8vPzERQUBIVC4exwiIiISACTyYTKykrExMRAqWx+bKbdJTf5+fmIi4tzdhhEREQkwYULF9CpU6dmz2l3yY2lzcGFCxcQHBzs5GiIiIhIiIqKCsTFxQlqV9TukhvLVFRwcDCTGyIiIjcjZEkJFxQTERGRR2FyQ0RERB6l3U1LCWUwGFBXV+fsMKgJ3t7ejRqaEhERAU5ObpYsWYKlS5faHEtOTkZOTo7d8zds2IBZs2bZHPPx8UFtba1sMZlMJhQWFqKsrEy2a5JjhISEICoqilv6iYjIhtNHblJSUvDtt99a73t5NR9ScHAwTpw4Yb0v9xebJbGJiIiAv78/vzhdkMlkQk1NDYqLiwEA0dHRTo6IiIhcidOTGy8vL0RFRQk+X6FQiDpfDIPBYE1sOnTo4JDXIHn4+fkBAIqLixEREcEpKiIisnL6guKTJ08iJiYGCQkJmD59OnJzc5s9v6qqCl26dEFcXBwmTpyIY8eONXu+VqtFRUWFza0pljU2/v7+4t8ItTnLvxPXRhERUX1OTW5uuukmbNiwATt27MCaNWtw9uxZDBkyBJWVlXbPT05OxrvvvoutW7fivffeg9FoxMCBA3Hx4sUmXyMzMxMajcZ6E1KdmFNR7oH/TkREZI/CZDKZnB2ERVlZGbp06YJXXnkFGRkZLZ5fV1eHHj16YNq0aXjuuefsnqPVaqHVaq33LRUOy8vLGxXxq62txdmzZxEfHw9fX99WvRed3og3d58CAMwdkQi1l9MHyTyOnP9eRETk2ioqKqDRaOx+fzfk9DU39YWEhKBbt244deqUoPO9vb3Rp0+fZs/38fGBj4+PXCESERGRi3Op4YSqqiqcPn1a8O4Xg8GA7Oxsl9wtYzSaUHG1DpertLhYWgOj0WUGyIhIDkYjUHoeKDpm/tNodHZERPRfTk1uHn74Yezduxfnzp3D/v37MXnyZKhUKkybNg0AMGPGDCxatMh6/rPPPov//Oc/OHPmDH799VfceeedOH/+PO655x5nvQW7ThVXYt0PZ3DgzBUcPHMFq3edxJo9p3Gq2P5aIjmsWbMGaWlp1p5Z6enp2L59e4vPmzBhAjp37gxfX19ER0fjrrvuQn5+vs05v//+O4YMGQJfX1/ExcXhxRdfbPaa586dg0KhQFZWVqPHhg8fjvnz54t5a0Su59IJ4MdXgN0vAHtfNP/54yvm40TkdE6dlrp48SKmTZuGK1euoGPHjhg8eDB++ukndOzYEQCQm5sLpfJa/lVaWoo5c+agsLAQoaGh6NevH/bv34+ePXs66y00cqq4Euv3ncPlSi18vVXw9vVCqJ8aR/PLkV9+FbMGdUViRMsdTcXq1KkTli9fjqSkJJhMJmzcuBETJ07EkSNHkJKS0uTzRowYgSeeeALR0dHIy8vDww8/jNtuuw379+8HYJ7jHD16NEaOHIm1a9ciOzsbs2fPRkhICO69917Z3wc5gdEIlF8AdFWAOhDQxAFKlxrUdS2XTgA/rQVqrgCaWMA7AKirBgp+B8rzgAH3Ax2TGz+PnzNRm3GpBcVtobkFSVIXqOr05uFoo9GEdT+cwfG8csSHB+BwbikAoH+XMCgVwKniKqTEanDvkAT4qh1flyUsLAwvvfSSoMXZFl988QUmTZoErVYLb29vrFmzBk8++SQKCwuhVqsBAI8//ji2bNnSZCXpc+fOIT4+HkeOHMH1119v89jw4cNx/fXXY9WqVdizZw9GjBjR6PkzZ87Ehg0bWoyVC4plcOkE8MeXwOWTgL4W8PIFwpOAHre27Re02Os6K1GoqwX2rQYKs4EOicCFg+bjnQcAUAKXTwDRacDAfwDe9f6bFPs5E1Ejbrug2F1ZdkVVXK3DgTNX4OutQkmNDvllVwEAv6AESoUCWr0B57NrUFqtw+IJTY+mtJbBYMDHH3+M6upqpKenC35eSUkJ3n//fQwcOBDe3t4AgAMHDmDo0KHWxAYAxowZgxUrVqC0tBShoaGS4xw4cCAKCgqs9//44w+MGzcOQ4cOlXxNEkHsCISjvqDFXteRCVlL5367GDj7A+DtZ/7cyi+Yj+cCUCgAvRYoOWN+bOyKa/FKGekhIsmY3MhIZzBCbzDC29f+x+qtUqJKq4fO4JiFh9nZ2UhPT0dtbS0CAwPx+eefC5qye+yxx/DGG2+gpqYGAwYMwFdffWV9rLCwEPHx8TbnR0ZGWh9rLrkZOHCgzbQiAFy9etU6mqNWq63Vpq9cuYJ77rkHs2fPxuzZswW9X5JIrwNMRuDYFqD6EhCebP5iBsxfvB2SzCMQx7cCQx42f7lL+YIWklRISbAclZAJOVevA4x6QOVt/7NVeQPaSvN5DT/nhiM99j5nKTjdRdQIkxsZzB2RCAC4WFqDKq0eoX5q+KlV+AUlAMzTUiqlApW1dSi7WoeMwfHNXU6y5ORkZGVloby8HJ988glmzpyJvXv3omfPnrj//vvx3nvvWc+tqqqy/v2RRx5BRkYGzp8/j6VLl2LGjBn46quvWl0k78MPP0SPHj1sjk2fPr3ReXV1dfjb3/6GLl26YPXq1a16TRLgh5VAbZn9EQhNnO0IRMpfAU0ncYkQICxRqKsVdt2B/wAUSvGJgphESOi56XPNSYRfGKD2N4/YWGJQqABtBXC11Hxec59zw5GetNuB0C7i/y2ljKbJOZJF5KKY3MjAUqCva4cAdIsIwtH8ciSEB0D53x/WKqUCSgVQXKlFaqwGXTsEOCYOtRqJieZEq1+/fjh06BBWr16NdevW4dlnn8XDDz9s93nh4eEIDw9Ht27d0KNHD8TFxeGnn35Ceno6oqKiUFRUZHO+5X5LPb7i4uKs8VhYekLV98ADD+DChQv4+eefW2ycSjIROgJx4E3ASy0sEbJ8QQtNFJqa4ml43ZorgG+I8EShYULWXCI08B/m40LPDUswx17wO9CxOxBfbwrVZAIqC4GY3ubzxHzOuirb444Y9bI8R86RLCIXxW8SGSmVCozpFYn88qs4VVwFrd4Ab5USlbV1KK7UIixAjdEpkVAq26ZtgNFotFZnjoiIQEREhKDnALA+Lz09HU8++STq6uqs63C++eYbJCcnt2q9jcUrr7yCjz76CPv372ez0rYy5CGgLFfYCISXWvgX9NVSIDBS+GiMmCkeQJ6EzN7aGEDcOpoet5qTh0s5QHCs+fPT1QAVeUBAB6D7/5gTETGfszrw2vsQO+rVUkJmWdhsSYaqLwGVBebPK6p360ayiFwUkxuZJUYEYdagrvg6uxDns83TVGVX65Aaq8HolEiHbAMHgEWLFmHs2LHo3LkzKisrsWnTJuzZswc7d+5s8jkHDx7EoUOHMHjwYISGhuL06dN4+umncd1111kXIv/973/H0qVLkZGRgcceewxHjx7F6tWr8eqrr7Y65m+//RaPPvoo3nzzTYSHh6OwsBCAeXRHo9G0+vrtVku/9XuphY9ADJgLlF8U9gX92wfm40JHY8RM8YR0dkxCZkmcxJzbMdn85W5JQCrzzQlITG9zYmP50hfzOWv+2/OutaNe9hKyUc81ntKzJHVqf+kjWa1ZJ0TkYExuHCAxIgj3DfFHWbUOOoMRGYPj0bVDgENHbIqLizFjxgwUFBRAo9EgLS0NO3fuxKhRo5p8jr+/Pz777DMsXrwY1dXViI6Oxi233IKnnnrK2rJCo9HgP//5D+bOnYt+/fohPDwczzzzjCw1bn788UcYDAbcf//9uP/++63HhW4FJzuETiUolcJGILx9hX9B12nNX4hCEwUxUzxKpWMSsvS55uNizgXMcXRIannqSOjnbNQDBoFrisSOeolZ+yNmJEvqOiEpuPaHRGJy4yBKpQLBfuYfPJ1C/R0+FfV///d/op+TmpqK7777rsXz0tLS8MMPPwi+bteuXdFU+aQ9e/ZY/75kyRIsWbJE8HXbNUeswRA6AiH0Czo0XvjoSvpc4de1vE9HJGSWtTFizrVQKoV9uQv5nHdniktAxIx6ZX/smJGshuuExBCTrDhy7U97SJosCS5gnir1Ujd/vodgcuMgai8lFozq5uwwyBPIvfOofnE5oSMQQhMhKUmFkOuKjUNs4iTmXCmEfM5iEpD6n3OHpGv/3gqVeWdZ/c9ZzNofMSNZ9dcJAcITBbGLmoWuExLr0gnz/zPHt5o/9+je5ms5Y8F0Xa15qlGvM/8bWEYr7WmnyYpYTG6IXJkjdh5ZistZiBmBaOkLWmxSIfS6YuOwnCc0cRKbZEnR3OcsNgGp/zlfOWn+wlf7A7rqxp+zUsTan4YjWc0lTpZ1QoDwhEVosmKvRlBT64SkrP2pH4e3nzkOvzDnLJi2JFlnfzAnWbqq5pMsk9E8yqfXmf+baS4RknK+h2ByQ+SKxBTak7LzSCohiZCUREFogiX2fDGJk9gkS05iFh9LGfWSOpLVUuIECE9YGu7wam5R84+vOqZGkJikqeEopyOmsMQmWWITIbHnexAmN0SuSEyhvYZrMHzs7MiztyjWkZyZKDQkJnESm2TJydGjXnKPZIlNFMTs8PINcUyNILGLq+u30JBzCktKkiUlEXKV0SknYHJD5KqkrsHw1Vwb5QGaXxTrSM5MFNyVo0e95BzJEpsoiPnvuTU1glpKQsSOcjoiSRD72Y1cKjwRslfNW84pPTfB5IbIWZr7DbPhD/eWRmOk/NZPrsnRo15yjmSJSRTE7PBqOE0nZO2PkCRE7NomMVNp9aewhBDz2Ykd9XJ02w83wOSGyBlaWoDZ8Ie7kNGYtlgUS23DHUa9xCYKYnZ4AcIXTdurEdTcSIWYOHYuEj+FZdHcDiixn92BNx1Tzbs12/ldHJMbR+F2PWqK0B1QbbHziEgqMaMrli92MQuVAflrBFlGKoTGIXWhfksLecV+do6q5t1wO78HYXJD1FbE7ICyzIW3xc4jIqnEJixS/nuWs0aQZaRCaBxikgoLoWt06n92l0+YEzCVt/malYW2n53YJFLslJ4HYnLjKO20tgA1Q8wOqPpz4RyNIVcmpRCj2P+e5aoRVH+kQkgcYpIKKbV5bD67APMUdW1580UpW0qEpJzvgZjcOIKTagu8+eabeOmll1BYWIjevXvj9ddfx4033tjk+ceOHcMzzzyDw4cP4/z583j11Vcxf/78Fl/ns88+w9q1a3H48GGUlJTgyJEjuP7665t9zpIlS7BlyxZkZWXZHD937hzi4+MFXcMjSJ0L52gMuTKxCYuc/z1LWXwsNA4xScJeETugpPzyYkmEjm0xX0NbaU7YWqrmLfR8D8PkRm5Oqi3w4YcfYuHChVi7di1uuukmrFq1CmPGjMGJEycQERFh9zk1NTVISEjAlClTsGDBAsGvVV1djcGDB2Pq1KmYM2eOXG/B84nZAeXBc+HkoVylRpDQ9TxCCR1dARz/y0vHZGDoI0DvO4RX8x70IHC1RFhrBw/C5EYOlsVkUitfyuCVV17BnDlzMGvWLADA2rVr8fXXX+Pdd9/F448/bvc5N9xwA2644QYAaPIce+666y4A5lEXud19993YuHFjo+O7d+/G8OHDZX89WbVUwVTMDigPngsncghH7hYUMroidXpMLLFJpEJp3h4OmBcbt4PEBmByIw/LrigplS9loNPpcPjwYSxatMh6TKlUYuTIkThw4IBsr9MWVq9ejeXLl1vvL1++HB988AG6d+/uxKgEENpbh/VoiBzHkevTWkoqWjM95kheamDEopbP8zBMbuTUVv19Grh8+TIMBgMiIyNtjkdGRiInJ0fW12qN7OxsBAba/sZiMpls7ms0Gmg0GgDmtT3r1q3Dt99+i6ioqDaLUzShW7stWI+GyHFcZXqsnS7kdRVMbuQw5CHzn2KKMrmB999/H/fdd5/1/vbt2zFkyBDJ10tOTsYXX3xhcywvL8/udNORI0dw11134Y033sCgQYMkv6bD1a9g2lJzy/pTkdwBReSZxKzRcTUeVJ+NyY0cLP8BiK3AKZPw8HCoVCoUFRXZHC8qKmrViMeECRNw0003We/HxsZKvhYAqNVqJCYm2hzz8mr8n2BhYSEmTJiAe+65BxkZGa16TYdrqiy6veaWDaciuQOKyDPxlxenY3IjJycNSarVavTr1w+7du3CpEmTAABGoxG7du3CvHnzJF83KCgIQUF2dvQ4UG1tLSZOnIju3bvjlVdeadPXlsRJU5FE5OL4y4tTMbmRm5NqCyxcuBAzZ85E//79ceONN2LVqlWorq627p4CgBkzZiA2NhaZmZkAzAuRjx8/bv17Xl4esrKyEBgY2GiEpb6SkhLk5uYiPz8fAHDixAkAQFRUVKvXxtx33324cOECdu3ahUuXLlmPh4WFQa12wSHS+hVMW2puSUTkyjyo+CyTG0dwQm2B22+/HZcuXcIzzzyDwsJCXH/99dixY4fNIuPc3Fwo68WQn5+PPn36WO+//PLLePnllzFs2DDs2bOnydf64osvbJKmO+64AwCwePFiLFmypFXvY+/evSgoKEDPnj1tjrvsVnCxzS2JiFyRk4rPOorC1HC7ioerqKiARqNBeXk5goODbR6rra3F2bNnER8fD1/fVtah8aCFWa5K1n+v1qi/W8re1u6bHFO4kYhIFvWLz1YWmKfTo3qb/+7fwWHFZ8Vq7vu7IY7cOEo7rS3gcVoqzAdwazcRuScp/bDcBJMboqYILcwHcHcEEbmf5pr5NtcPyw0wuSGyR2xhPoC7I4jI/Ujth+XimNwQ1ddwmFZMYT4iInfSVv2wnIDJjR3tbI2123LIv1Nzw7RCCvMREbkLV+2HJQMuCKjH29s8LFdTU+PkSEgIy7+T5d9NNkKGaY16FuYjIvdnKT7r3+Fa8VmT0TxicynHbfthceSmHpVKhZCQEBQXFwMA/P39oahft4RcgslkQk1NDYqLixESEgKVSiXfxRsO07IwHxF5OicVn3UkJjcNWCrsWhIccl0hISHydwtvOEzLwnxE1B44ofisIzG5aUChUCA6OhoRERGoq6tzdjjUBG9vb3lHbOqr3yPsUo79wnxuOExLRNQshRLwDTH/PaSzW/+MY3LTBJVK5bgvT3J9LMxHROS2mNwQNYWF+YioPfGgyvpMboiaw8J8RERuh7+CEhERkUfhyA21P0KaYRIRkdtickPti5hmmERE5JaY3FD7IaUZJhERuR2njsUvWbIECoXC5ta9e/dmn/Pxxx+je/fu8PX1RWpqKrZt29ZG0ZLb0uuAutprzTA7JJkTG+BaM8zqS+ZmmEajU0MlInILeh2wO9N8c8FWNE4fuUlJScG3335rve/l1XRI+/fvx7Rp05CZmYn/+Z//waZNmzBp0iT8+uuv6NWrV1uES+6oYTPMqyWNz7E0w0y7nbujiIjcnNNXUXp5eSEqKsp6Cw8Pb/Lc1atX45ZbbsEjjzyCHj164LnnnkPfvn3xxhtvtGHE5JbqN8M0mcz9o8pyzX8HrjXD1FU5N04iImo1p4/cnDx5EjExMfD19UV6ejoyMzPRuXNnu+ceOHAACxcutDk2ZswYbNmypcnra7VaaLVa6/2KigpZ4iY3IqYZpjqw7eMjIiJZOXXk5qabbsKGDRuwY8cOrFmzBmfPnsWQIUNQWVlp9/zCwkJERkbaHIuMjERhYWGTr5GZmQmNRmO9xcXFyfoeyA3Ub4ZZWWDun6JUXbsplOZmmBHdzdvCiYjIrTk1uRk7diymTJmCtLQ0jBkzBtu2bUNZWRk++ugj2V5j0aJFKC8vt94uXLgg27XJjViaYfp3MDfDrK0wT0PVVpjvsxkmEZFwJqN5LWNVsXlk3MU2Yzh9Wqq+kJAQdOvWDadOnbL7eFRUFIqKimyOFRUVISoqqslr+vj4wMfHR9Y4yU2xGSYRUetdOmHefXr2h2trFTsmu1S9MJdKbqqqqnD69Gncdddddh9PT0/Hrl27MH/+fOuxb775Bunp6W0UIbk9NsMkIpLOUi+s+pJ596nK27yW0cXqhTn1J/rDDz+MvXv34ty5c9i/fz8mT54MlUqFadOmAQBmzJiBRYuudSh98MEHsWPHDqxcuRI5OTlYsmQJfvnlF8ybN89Zb4HckaUZZmSK+U8mNkREzWtULywRUKkBKAC1v229sLpaZ0fr3JGbixcvYtq0abhy5Qo6duyIwYMH46effkLHjh0BALm5uVDW++IZOHAgNm3ahKeeegpPPPEEkpKSsGXLFta4ISIicqSG9cJqrphHwAEgF4BCca1eWM0VYOwKZ0br3ORm8+bNzT6+Z8+eRsemTJmCKVOmOCgicltshklE5Fj164XZo/IGtJUuUbHYpdbcEEnCZphERI7VsF6Y2t88YgMAnQcACtW1emHpc50aKuACFYqJWsWyuK3gd8A/zDzv6//fxW0/rTU/TkRErdOwXhiU5qkohcKc2NSvFxaW4OxomdyQm2IzTCKitlW/XtjlE+Y1NiajecTGxeqFcVqK3FNzi9s0cbaL29gMk4hIHpZ6Yce2mH++aivNU1EuVi+MyQ25L6GL29gMk4hIPh2TgUEPAldLzD+H0+eap6JcYMTGgskNuSc2wyQich6FEvANMf89pLNLJTYA19yQu2IzTCIiagKTG3JfbIZJRER28Kc+uTfL4rboNPP875VT5j9jegM3uUaPEyIialtcc0Puj80wiYjalpcaGLGo5fOcpNXJjVarhY+PjxyxEElnaYZJRETtnuhfbbdv346ZM2ciISEB3t7e8Pf3R3BwMIYNG4Zly5YhPz/fEXESERERCSI4ufn888/RrVs3zJ49G15eXnjsscfw2WefYefOnXjnnXcwbNgwfPvtt0hISMD999+PS5cuOTJu8nRGI1B6Hig6Zv6TVYaJiEgghclkMgk5MT09HU899RTGjh0LZTNrGfLy8vD6668jMjISCxYskC1QuVRUVECj0aC8vBzBwcHODofsYSNMIiJqQMz3t+DkxlMwuXFxlkaYNVcATay5T1RdNVCeZ97yPYA7oIiI2iMx39+ybCcxGAzIyspCaWmpHJej9kpoI8y6WqeGSURErk3Sbqn58+cjNTUVGRkZMBgMGDZsGPbv3w9/f3989dVXGD58uMxhUrvw7WJhjTBrrgBjVzg3ViIiclmSRm4++eQT9O7dGwDw5Zdf4uzZs8jJycGCBQvw5JNPyhogtSNCGmEa9ebziIiImiBp5Oby5cuIiooCAGzbtg1Tpkyx7qRavXq1rAFSO5I+V1gjzPS5bR8bERG5DUkjN5GRkTh+/DgMBgN27NiBUaNGAQBqamqgUqlkDZDaEaGNMMMSnB0pERG5MEkjN7NmzcLUqVMRHR0NhUKBkSNHAgAOHjyI7t27yxogtSOWRpjleebGl8GxgNof0NUAFXlshElERIJISm6WLFmCXr164cKFC5gyZYq1/YJKpcLjjz8ua4DkQYzGlvs/WRphWurcVOab69zE9DYnNtwGTkRELWCdG2obYgvzCUmEiIio3RDz/c2u4OR4TRXmK/jdPAVlrzAfG2ESEZFE/FWYHEevY2E+IiJqcxy5Icf5YSVQW8bCfERE1KZEjdx89913MBgMjoqFPBEL8xERURsTNXJzzz33oKysDLfccgsmTpyIsWPHclEuNW3IQ0BZLgvzERFRmxI1cnPmzBns2bMHPXv2xMqVKxEZGYlRo0bh9ddfR25urqNiJFdmNAKl54GiY+Y/jcZrj3mpWZiPiIjaXKu2gufn5+OLL77AF198gd27dyM5ORkTJkzAhAkT0L9/fznjlA23gstI6Pbu+rul7BXmu8nObikiIqJ6xHx/y1bnprq6Gjt27MDWrVuxbds2LFy4EE888YQcl5YVkxuZNLW9uzwP8O/QeHu3vUSoYzcW5iMiIkGcktzUZzAYUFJSgo4dO8p96VZjctNKeh1gMgL7VgOF2UB4snnXk4XJBFw+AUSnAUMeti28x8J8REQkkdOL+KlUKpdMbEgGYrZ3p91uW4iPhfmIiKgN8NdmEk/o9m5dVdvGRUREBBbxI7Eabu9W+wOWjXKdBwAK1bXt3epAp4ZKRETtE5MbEqf+9u6C34GO3YH4odceN5nM27tjepunqYiIiNqYrNNSer2e9W7aA6XSvN3bvwNwKQeorTBPQ9VWmO8HdDDvguJiYSIicgJZv32OHTuG+Ph4OS9Jrqpjsnm7d3QacLUEuHLK/GdMb9atISIip+K0FEnXMdnc2Zvbu4mIyIWISm769u3b7ONXr15tVTDkIsTUo+H2biIicjGikpvjx4/jjjvuaHLqqaCgAH/++acsgZGTCG2pQERE5KJEJTe9evXCTTfdhAceeMDu41lZWXj77bdlCYycoKmWCgW/m9sqNGypQERE5IJELY4YNGgQTpw40eTjQUFBGDp0aJOPk4vS64C6WuDYFqD6knmrd34WcH6feeSmQ5L5+PGttl2/iYiIXJBDeku5snbZW6qlNTS7M21bKqjU9lsq1F0Fpn3ANTZERNTmnN5bilyI0DU0QloqaCvZUoGIiFye4OQmNzcXnTt3FnzhvLw8xMbGSgqKZCJ0DU3Dlgo+QY2vxZYKRETkJgSvubnhhhtw33334dChQ02eU15ejrfffhu9evXCp59+KiqQ5cuXQ6FQYP78+U2es2HDBigUCpubr6+vqNdpN+qvoemQZE5sAPOf9dfQ1NXatlSoLAAUSkCpunZTKM0tFSK6s6UCERG5PMEjN8ePH8eyZcswatQo+Pr6ol+/foiJiYGvry9KS0tx/PhxHDt2DH379sWLL76IcePGCQ7i0KFDWLduHdLS0lo8Nzg42GZRs0KhEPw67cq3i6+toam5Yn8NTckZ82NjV1xrqVCeZ26hEBxrboqpqwEq8thSgYiI3Ibgb6oOHTrglVdeQUFBAd544w0kJSXh8uXLOHnyJABg+vTpOHz4MA4cOCAqsamqqsL06dPx9ttvIzQ0tMXzFQoFoqKirLfIyEjBr9WuCFlDY9Sbz7NgSwUiIvIAohcU+/n54bbbbsNtt90mSwBz587F+PHjMXLkSDz//PMtnl9VVYUuXbrAaDSib9++eOGFF5CSktLk+VqtFlqt1nq/oqJClrhdXvrca2to1P6ApZ9p5wGAQnVtDU36XNvnsaUCERG5Oafultq8eTN+/fXXZtfx1JecnIx3330XaWlpKC8vx8svv4yBAwfi2LFj6NSpk93nZGZmYunSpXKG7R4sa2gKfgc6dgfi69UfMpnMa2hiepvPa4gtFYiIyI05rc7NhQsX0L9/f3zzzTfWtTbDhw/H9ddfj1WrVgm6Rl1dHXr06IFp06bhueees3uOvZGbuLi49lHnpv5uKXtraDjVREREbkJMnRunJTdbtmzB5MmToVKprMcMBgMUCgWUSiW0Wq3NY02ZMmUKvLy88MEHHwh6XY8p4ie0uaW9Ojcdu5kXBzOxISIiN+EWRfz+8pe/IDs72+bYrFmz0L17dzz22GOCEhuDwYDs7GxRC5g9gpjmllxDQ0RE7YzTkpugoCD06tXL5lhAQAA6dOhgPT5jxgzExsYiMzMTAPDss89iwIABSExMRFlZGV566SWcP38e99xzT5vH7zRSmltyDQ0REbUjkn99//e//41BgwYhJiYG58+fBwCsWrUKW7dulS243NxcFBQUWO+XlpZizpw56NGjB8aNG4eKigrs378fPXv2lO01XVbD5pYtFeYjIiJqpyStuVmzZg2eeeYZzJ8/H8uWLcPRo0eRkJCADRs2YOPGjdi9e7cjYpWF2665EdPcMn6IuTAfERGRhxDz/S1p5Ob111/H22+/jSeffNJmbUz//v0braMhGUkpzEdERNTOSFpzc/bsWfTp06fRcR8fH1RXV7c6KLKjYXNLMYX5iIiI2hFJIzfx8fHIyspqdHzHjh3o0aNHa2Miexo2t1R6mwvzxQ81T1HVb25przAfERFROyFp5GbhwoWYO3cuamtrYTKZ8PPPP+ODDz5AZmYm3nnnHbljJAs2tyQiImqR5CJ+77//PpYsWYLTp08DAGJiYrB06VJkZGTIGqDc3HZBcX0szEdERO1Mm1YorqmpQVVVFSIiIlpzmTbjEckNILxCMRERkQdweIXis2fPQq/XIykpCf7+/vD39wcAnDx5Et7e3ujatauUy5IYLMxHRERkl6Rf9e+++27s37+/0fGDBw/i7rvvbm1MRERERJJJSm6OHDmCQYMGNTo+YMAAu7uoSCCjESg9DxQdM/9pNDo7IiIiIrcjaVpKoVCgsrKy0fHy8nIYDIZWB9UuiWmGSURERE2SNHIzdOhQZGZm2iQyBoMBmZmZGDx4sGzBtRuWZpgFvwP+YeY+Uf5h5vs/rTU/TkRERIJIGrlZsWIFhg4diuTkZAwZMgQA8MMPP6CiogLfffedrAF6NL0OMBmvNcMMTzb3iAKuNcO8fMLcDHPIw9wNRUREJICk5KZnz574/fff8cYbb+C3336Dn58fZsyYgXnz5iEsLEzuGD3XDyttm2HWXLHfDLPkDJB2O3dHERERCSApuQHMRfteeOEFOWNpn4Q0w9RWmuvZEBERUYskJzdlZWX4+eefUVxcDGODXT0zZsxodWDtgphmmOpAp4ZKRETkLiQlN19++SWmT5+OqqoqBAcHQ2FZJwLzTiomNwLVb4ZZ8DvQsbu5EaaFyWRuhhnT2zxNRURERC2StEL1oYcewuzZs1FVVYWysjKUlpZabyUlJXLH6NkszTD9O5ibYdZWmKepaivM99kMk4iISBRJvaUCAgKQnZ2NhIQER8TkUC7bW4rNMImIiJrk8N5SY8aMwS+//OKWyU2bEtPcsmOyees3m2ESERG1iqTkZvz48XjkkUdw/PhxpKamwtvbdqfPhAkTZAnOrUmpOMxmmERERK0maVpK2cxogkKhcOkWDG0yLWWpOFxzBdDEmgvy1VUD5XnmtTUD7udUExERkQhivr8lzXkYjcYmb66c2LSJutprFYfDEoD8LOD8PvPITYck8/HjW83nERERkewk17mhJny72H7F4VzYVhyuuQKMXeHUUImIiDyR5OSmuroae/fuRW5uLnQ6nc1j//jHP1odmNsSWnFYr7P/OBEREbWKpOTmyJEjGDduHGpqalBdXY2wsDBcvnwZ/v7+iIiIaN/JTfrcaxWHfYIaP26pOJw+t+1jIyIiagckrblZsGABbr31VpSWlsLPzw8//fQTzp8/j379+uHll1+WO0b3Yqk4XFkAKJSAUnXtplCaKw5HdDefR0RERLKTlNxkZWXhoYceglKphEqlglarRVxcHF588UU88cQTcsfoXlhxmIiIyKkkfcN6e3tbt4NHREQgN9fc7VGj0eDChQvyReeuOiabt3tHpwFXS4Arp8x/xvQGbuI2cCIiIkeStOamT58+OHToEJKSkjBs2DA888wzuHz5Mv7973+jV69ecsfonlhxmIiIyCkkfdO+8MILiI6OBgAsW7YMoaGheOCBB3Dp0iW89dZbsgbo1iwVhyNTzH8ysSEiInI4SRWK3ZnLNs4kIiKiJjm8QjERERGRqxK85qZv377YtWsXQkND0adPHygUiibP/fXXX2UJjoiIiEgswcnNxIkT4ePjAwCYNGmSo+IhIiIiahXRa24MBgP27duHtLQ0hISEOCgsx+GaGyIiIvfj0DU3KpUKo0ePRmlpqeQAiYiIiBxF0oLiXr164cyZM3LHQkRERNRqkpKb559/Hg8//DC++uorFBQUoKKiwuZGRERE5CyS6two6xWjq79rymQyQaFQwGAwyBOdA3DNDRERkfsR8/0tqf3C7t27JQVGRERE5GiSkpthw4bJHQcRERGRLCQlNxY1NTXIzc2FTqezOZ6WltaqoIiIiIikkpTcXLp0CbNmzcL27dvtPu7Ka26IiIjIs0naLTV//nyUlZXh4MGD8PPzw44dO7Bx40YkJSXhiy++kDtGIiIiIsEkjdx899132Lp1K/r37w+lUokuXbpg1KhRCA4ORmZmJsaPHy93nERERESCSBq5qa6uRkREBAAgNDQUly5dAgCkpqZKbpq5fPlyKBQKzJ8/v9nzPv74Y3Tv3h2+vr5ITU3Ftm3bJL0eEREReSZJyU1ycjJOnDgBAOjduzfWrVuHvLw8rF27FtHR0aKvd+jQIaxbt67Fhcj79+/HtGnTkJGRgSNHjmDSpEmYNGkSjh49KuVtEBERkQeSlNw8+OCDKCgoAAAsXrwY27dvR+fOnfHaa6/hhRdeEHWtqqoqTJ8+HW+//TZCQ0ObPXf16tW45ZZb8Mgjj6BHjx547rnn0LdvX7zxxhtS3gYRERF5IElrbu68807r3/v164fz588jJycHnTt3Rnh4uKhrzZ07F+PHj8fIkSPx/PPPN3vugQMHsHDhQptjY8aMwZYtW5p8jlarhVartd5newgiIiLPJmnk5scff7S57+/vj759+4pObDZv3oxff/0VmZmZgs4vLCxEZGSkzbHIyEgUFhY2+ZzMzExoNBrrLS4uTlSMRERE5F4kJTc333wz4uPj8cQTT+D48eOSXvjChQt48MEH8f7778PX11fSNYRYtGgRysvLrbcLFy447LWIiIjI+SQlN/n5+XjooYewd+9e9OrVC9dffz1eeuklXLx4UfA1Dh8+jOLiYvTt2xdeXl7w8vLC3r178dprr8HLy8tuIcCoqCgUFRXZHCsqKkJUVFSTr+Pj44Pg4GCbGxEREXkuSclNeHg45s2bh3379uH06dOYMmUKNm7ciK5du+Lmm28WdI2//OUvyM7ORlZWlvXWv39/TJ8+HVlZWVCpVI2ek56ejl27dtkc++abb5Ceni7lbRAREZEHalVvKQCIj4/H448/jt69e+Ppp5/G3r17BT0vKCgIvXr1sjkWEBCADh06WI/PmDEDsbGx1jU5Dz74IIYNG4aVK1di/Pjx2Lx5M3755Re89dZbrX0bRERE5CEkjdxY7Nu3D//7v/+L6Oho/P3vf0evXr3w9ddfyxUbcnNzrVvOAWDgwIHYtGkT3nrrLfTu3RuffPIJtmzZ0ihJIiIiovZLYTKZTGKftGjRImzevBn5+fkYNWoUpk+fjokTJ8Lf398RMcqqoqICGo0G5eXlXH9DRETkJsR8f0ualvr+++/xyCOPYOrUqaK3fxMRERE5kqTkZt++fXLHQURERE6k0xvx5u5TAIC5IxKh9mrVyhWnkryg+PTp01i1ahX++OMPAEDPnj3x4IMP4rrrrpMtOCIiIiKxJKVlO3fuRM+ePfHzzz8jLS0NaWlpOHjwIFJSUvDNN9/IHSMRERGRYJJGbh5//HEsWLAAy5cvb3T8sccew6hRo2QJjoiIiNqG0WhCxdU66AxGXCytQdcOAVAqFc4OSxJJu6V8fX2RnZ2NpKQkm+N//vkn0tLSUFtbK1uAcuNuKSIiIluniivxdXYhtmcXQG8wIiVWg24RQRjTKxKJEUHODg+AuO9vSdNSHTt2RFZWVqPjWVlZiIiIkHJJIiIicoJTxZVYv+8cjueVw9dbhdAANUL91DiaX471+87hVHGls0MUTdK01Jw5c3DvvffizJkzGDhwIADzDqoVK1Zg4cKFsgZIRERE8tPpjTAaTfg6uxCXK7WIDw9ASY0OAOCnViEhPACniquwLbsQ80YEutUUlaRpKZPJhFWrVmHlypXIz88HAMTExOCRRx7BP/7xDygUrvsBcFqKiIgIePWbP1FxtQ4HzlyBr7cK3ioF8suuAgBiQvygVCig1RtQW2fE2zP6Iy7MuYV6HV7ET6FQYMGCBViwYAEqK83DVUFBrjEnR0RERGYt1a7RGYzQG4zw9rWfDnirlKjS6lGt0zs8VjmJSm6uXr2Kb775BiNGjLAmM5Y/KyoqsGfPHowZMwY+Pj7yR0pERESymTsiERdLa1Cl1SPUTw0/tQq/oAQA0L9LGFRKBSpr61B2tQ4B6lb32W5TohYUv/XWW1i9erXdUZrg4GC89tpreOedd2QLjoiIyBUYjSZcKKlBTmEFLpTUwGgUvaLDKSzbuy9XaXGx1DZutZcSXTsEoFtEEIoqa6FUAEqFAkqFAiqlAkoFUFypRXJkEGJD/Jz4LsQTlYq9//77ePrpp5t8fP78+Xj22Wcxd+7cVgdGRETkCtxhm7Q9lrgPnLkCvcGIKq2+UdxKpQJjekUiv/wqThVXQas3wFulRGVtHYortQgLUGN0SqRbLSYGRI7cnDx5Er17927y8bS0NJw8ebLVQRERkWO46wiEs7jrNmkxcSdGBGHWoK7oGatBbZ0RpTU6lF2tQ2qsBrMGdXXpBK4pokZu9Ho9Ll26hM6dO9t9/NKlS9Dr3WvRERFRe3GquBI7jxbh9KUq1OoN8PVS4bqOgS4/AuEstTqDoG3S9w7xh69a1arXWbEjBzqDERmD41tVGVjq9u7EiCDcN8QfZdU6WeJwNlHJTUpKCr799lv069fP7uP/+c9/kJKSIktgREQkH8tv8iXVOkRrfOGv9kONTo+j+eXIL7/qtr+hO9KKHTnWbdIlNTrrNulfUGLdJn0+uwal1TosniDtu0/I1JEYb+4+ZbO9u7m4J/eJtdnerVQqEOznDQDoFOrvtokNIHJaavbs2Xjuuefw1VdfNXrsyy+/xLJlyzB79mzZgiMiotbR6Y02IxBdwvyRnVeOg2evwMfL/Jv85UottmUXcoqqAes2aZX9L3lvlRJ6oxE6g1HS9R015SU0bnfb3i2GqJGbe++9F99//z0mTJiA7t27Izk5GQCQk5ODP//8E1OnTsW9997rkECJiEi81vwm395lDI4XtE06Y3C8qOuKmToSO+XVmu3dai8lFozqJuq9uCrRG9ffe+89TJgwAZs2bcKff/4Jk8mE5ORkLF26FFOnTnVEjERE1AqeWqjN0SzbpI/mlyMhPADK/1bfr79NOjVWg64dAkRdV0zCKXbKq/727pbidrft3WJIqsozdepUJjJERC7AaDQhr+wqqnV6BKi9EBviZ7NWwpMLtbVWS59d/W3SZy5XIyUmGH5qFWp0ehSU17Zqm7TQhFPKlJenbu8Wo339l0xE5EGE7H5q+Jt8UkQgBl4Xbr2GyWRqF7/JNyR055hlm7Tl3KKKWvh4qZAaq8HoFGmLfsUknGKnvBrG/XV2Ic5nm1/Lsr1batz1tdTWwdmY3BARuSExu5/q/yZ/srgK0Rpf+KlVuKoztHoEwh1ZPrvLlVoUVWrhrVIgJVrT5M6xxIggJAwPbHaURwwxU0dip7zq87Tt3WK4VqpFREQtErr7qVZnsD7H8pt8rxgNymrqcO5yNcpqmi/U5ioF/+SKo+HOsfjwAOuOIstCXnufHWBOEOPC/NE9KhhxYS1vk24pZkvCGRagtk4dGU0mVNbW4WRxlWwJp2V7d3igj9tv7xaDIzdERG5Gav0VMSMQjiz419JaF0fF4ciFvA1jFtKuwdFTR4Bn7YASg8kNEZGbac1iVMsIRHOkFPwTmrCISVbETh8J4ciFvA1j9vVWwdvXy1q7pqkpr/83IhB/7RMrKNlz9bUurkJwcvPXv/5V8EU/++wzScEQEVHL2rL+yuHcUuu1myrdLzRhEZo0SW0hADSfZDlyIW9rYhaScNZ/fxVX66AzGHGxtMZpa2hcJY6mCE5uNBqN9e8mkwmff/45NBoN+vfvDwA4fPgwysrKRCVBRETUWEujIEJ3Pzmy/oql4J/Q0ZWGa12aSpruHeKPNXtPSyo82NJ0kCMX8rZFsUS5WzVI5SpxNEdwcrN+/Xrr3x977DFMnToVa9euhUplrpxoMBjwv//7vwgODpY/SiKidkLIKIgjdz8JnbYpq6lDx0DhjSXFrBMK9vMWXXhQ6HSQI2vAOLJYotjpLkdxlThaImnNzbvvvosff/zRmtgAgEqlwsKFCzFw4EC89NJLsgVIROSKxCyKFXq+mLUuzq6/8tmvFwFAcMIiZq2LmDjUKqXg7t2W6aCGn51Wb0Blrb7NPjuxxRLbqjt5cxzZMsIRJCU3er0eOTk51t5SFjk5OTAapS3CIiJyF2J38LR0vpi1LvW/OBxdf6W5Ka/aOgOuVOsEJyxi1gmJmT7aciQPlbV60dNBzqxdI7ZYYlt0J29JW+00k4uk5GbWrFnIyMjA6dOnceONNwIADh48iOXLl2PWrFmyBkhE5ErE7iQScv6XvxVI/uIQsxhVCKFTXp3DAkQtzhW71kVo64MvfyuQPB3kyM9OzikvR+/wcrc4hJCU3Lz88suIiorCypUrUVBQAACIjo7GI488goceekjWAImIXIWYRbFKpULwaIzJZHKpLw6hU15iFjZL6dMkJI65I4QnWW3RO8sRU16O2h0nRlu0jJCTpH9ppVKJRx99FI8++igqKioAgAuJicjjiV0UK3Q05p/T+wKAS31xCJm2EbuwWco6oZbicMUu2HJPebVFq4aWtFXLCLlITmP1ej327NmD06dP4+9//zsAID8/H8HBwQgMDJQtQCIiVyF2dEXM+d0ighyyvbs1hEzbiE1YpHzxtxSHI7t3SyXnlJerdPl2lTiEkJTcnD9/Hrfccgtyc3Oh1WoxatQoBAUFYcWKFdBqtVi7dq3ccRIROZ2Y6YFOof6ipkvcubml2IRF7rUulhjk3j3mStqiVYM7xdESScnNgw8+iP79++O3335Dhw4drMcnT56MOXPmyBYcEVFridmyLWfxPKVSIfh8y3SJO39BOyJhEUvu6SBXI7ZVgyPjcPVu45KSmx9++AH79++HWq22Od61a1fk5eXJEhgRUWuJ7WMkd/E8KaMxnv4F7WiukGQ5kqu8P0u3cQAu2W1cUnJjNBphMBgaHb948SKCglz3Nwsiaj/EbNl2ZPE8KaMxrvIFRuSuJCU3o0ePxqpVq/DWW28BABQKBaqqqrB48WKMGzdO1gCJiMRoWBAvMSIQiv/u6vBXezXasg3A4cXzOBpD1LYkJTcrV67EmDFj0LNnT9TW1uLvf/87Tp48ifDwcHzwwQdyx0hEJFhzlVRjQvwabdkGhLcQaE3xPI7GELUdSclNp06d8Ntvv+HDDz/Eb7/9hqqqKmRkZGD69Onw82ubOgJERE0Ru2XbVYrnEZE8FCaTyeTsINpSRUUFNBoNysvLWXiQyE01t6tJpzfiYmkNVu86eW0L9nn7W7Af/EsSAFjPDbST4NQ/N6Eja3gROYuY729JIzcqlQpDhw7Fp59+irCwMOvxoqIixMTE2F1sTEQkh5Z2NYlp/mgpiGc5N9jv2vqcps4lItenlPIkk8kErVaL/v3749ixY40eIyJyBMuupqP55Qjx90ZCeCBC/L1xNL8c6/edw6niSgDXtmCHBahxsrgKlbV10BuNqKytw8niKpst2GLOJSL3ICm5USgU+PTTT3HrrbciPT0dW7dutXmMiEgMo9GECyU1yCmswIWSGhiNtr8k6fRGm6aVXcL8kZ1XjoNnr8DHS4WE8ABcrtRiW3ah9bmWLdi9YjQoq6nDucvVKKsxV1Jt2LlbzLlE5PokTUuZTCaoVCqsXr0aKSkpuP322/HUU0/hnnvukTs+IvJwQornNbcDquGupsl9Yq27ksRsweZ2bSLPIWnkpr57770X27dvx6pVqzBjxgxRz12zZg3S0tIQHByM4OBgpKenY/v27U2ev2HDBigUCpubr69va98CETmJ0GkmoN4OKJX9ZMNbpYTeaES1Tm9z3LIFu3tUMOLCmq+kKuZcInJdkkZuunTpApVKZb0/YsQI/PTTT7j11ltFXadTp05Yvnw5kpKSYDKZsHHjRkycOBFHjhxBSkqK3ecEBwfjxIkT1vucBiNyT/WnmVoqtDd3RKJNE8rmdjUFqCX9WCMiDyLpp8DZs2cbHUtMTMSRI0dQVFQk+DoNk6Fly5ZhzZo1+Omnn5pMbhQKBaKiogS/hlarhVartd6vqKgQ/FwicpwVO3IEF9pbPCHFZgdUc7uaLE0oiaj9avW0VH2+vr7o0qWLpOcaDAZs3rwZ1dXVSE9Pb/K8qqoqdOnSBXFxcZg4cWKj3VoNZWZmQqPRWG9xcXGS4iMieQmdZrIUz+OuJiISSnARv7CwMPz5558IDw9HaGhos9NBJSUlggPIzs5Geno6amtrERgYiE2bNjXZn+rAgQM4efIk0tLSUF5ejpdffhnff/89jh07hk6dOtl9jr2Rm7i4OBbxI3KyM5eqJBXPq78AWas3wMdLhcSIwCabUBKRZ3BIEb9XX33V2vF71apVrQqwvuTkZGRlZaG8vByffPIJZs6cib1796Jnz56Nzk1PT7cZ1Rk4cCB69OiBdevW4bnnnrN7fR8fH/j4+MgWLxHJQ+g0U8PiedzVREQtcbn2CyNHjsR1112HdevWCTp/ypQp8PLyEtywk+0XiFyHZbdUSbUO0Rpf+KlVuKozoKC8FmEBataYISIrh4zciFmI25qkwWg02kwjNcdgMCA7O7vJaSwicm2W4nmWaaaiilr4eKmQGqvhNBMRSSY4uQkJCWlx27XJZIJCoRDcW2rRokUYO3YsOnfujMrKSmzatAl79uzBzp07AQAzZsxAbGwsMjMzAQDPPvssBgwYgMTERJSVleGll17C+fPnWTyQyAU119yyPk4zEZHcBCc3u3fvlv3Fi4uLMWPGDBQUFECj0SAtLQ07d+7EqFGjAAC5ublQKq9t6CotLcWcOXNQWFiI0NBQ9OvXD/v377e7PoeInEdI1eH6LMXziIjk4HJrbhyNa26IHKvhOhp/tRdqdHquoyGiVnHImht7ampqkJubC51OZ3M8LS2tNZclIhfV3FSTTm+E0WgSXHXYV61q7qWIiCSTlNxcunQJs2bNarIPlNA1N0TkPlqaamquuWVTVYeJiBxBUoXi+fPno6ysDAcPHoSfnx927NiBjRs3IikpCV988YXcMRKRAxmNJlwoqUFOYQUulNTAaGw8Uy20waXYqsNERI4gaeTmu+++w9atW9G/f38olUp06dIFo0aNQnBwMDIzMzF+/Hi54yQiB2hpNEbMVNMDw65DfvlVQc0tMwbHt/VbJaJ2RFJyU11djYiICABAaGgoLl26hG7duiE1NRW//vqrrAESkWM0XvjrhxqdHkfzy5FffhWzBnXFl78VCJ5qmtwnVnLVYSIiOUmalkpOTsaJEycAAL1798a6deuQl5eHtWvXIjo6WtYAiUheOr0RtTqDdTQmITwA/mrz7zmW0ZjLlVpsyy6EyWQSPNVUrdOzuSURuQRJIzcPPvggCgoKAACLFy/GLbfcgvfffx9qtRobNmyQMz4ikpmYhb//nN4XAARNNQX8N0Fi1WEicjZJyc2dd95p/Xu/fv1w/vx55OTkoHPnzggPD5ctOCJyDOtojJ1kBTCPxlRp9dAZjOgWESRoqik2xM96nFWHiciZWlXnxsLf3x99+/aV41JE5GBzRyTiYmmN4NEYy1RTfvlVnCyustvg0t5UE6sOE5GzSEpuTCYTPvnkE+zevRvFxcUwGm23dX722WeyBEdE8lN7KQUv/LWMxnCqiYjciaTkZv78+Vi3bh1GjBiByMjIFhtqEpFrkTIaw6kmInIXknpLhYWF4b333sO4ceMcEZNDsbcU0TX169xo9Qb4eKmQGBHI0RgicjkO7y2l0WiQkJAgKTgich0cjSEiTySpzs2SJUuwdOlSXL16Ve54iKiNWRb+do8KRlyYPxMbInJ7kkZupk6dig8++AARERHo2rUrvL29bR5nlWIiIiJyFknJzcyZM3H48GHceeedXFBMRERELkVScvP1119j586dGDx4sNzxEBEREbWKpOQmLi6OO42IXJTRaOICYSJq1yQlNytXrsSjjz6KtWvXomvXrjKHRERS1d/aXas3wNdLhes6BmJML27tJqL2Q1Kdm9DQUNTU1ECv18Pf37/RguKSkhLZApQb69yQOxIyGnOquBLr951DSbUO0Rpf+Ku9UKPTW4vyzRrUlQkOEbkth9e5WbVqlZSnEZEEQkZjanUGfJ1diMuVWiRGXGun4K/2QkJ4AE4VV2FbdiHuHeIPX7XKmW+HiMjhRCc3dXV12Lt3L55++mnEx8c7IiYi+q/GozF+qNHpcTS/HPnlV62jMSt25ODAmSvw9VahpEaH/DJzDaqYED8oFQpo9Qacz65BabUOiyekOPldERE5lugift7e3vj0008dEQsR/ZdOb7QZjUkID4C/2vy7iGU05nKlFtuyC1GrM0BnMEJvMMJbZX/hsLdKCb3RCJ3BaPdxIiJPImlaatKkSdiyZQsWLFggdzxEBODN3adQcbVO8GhMxuB4VGn1CPVTI9C38f/WlbV1KLtah4zBHG0lIs8nKblJSkrCs88+i3379qFfv34ICAiwefwf//iHLMERtWfW0Rg7yQpgHo2p0uqhMxjRtUMAukUE4Wh+OYL9Am0Ka5pMJhRXapEaq0HXDgF2r0VE5Ekk7ZZqbq2NQqHAmTNnWhWUI3G3FLkDnd6Ii6U1WL3rZIujMQ/+JQkJHQMbrc/xU6twVWfgbiki8ggO3y119uxZSYER0TXNbe9WeylFj8YkRgRh1qCu1p1VRRW18PFSITVWg9EprHNDRO2HpOSmPsvAD/tLEQknZHu3UqnAmF6RyC+/ipPFVXZHY0anRNrUu0mMCELC8EBWKCaidk30bimLf/3rX0hNTYWfnx/8/PyQlpaGf//733LGRuSRLNNHR/PLEeLvjYTwQIT4e+NofjnW7zuHU8WV1nMtozG9YjQoq6nDucvVKKupQ2qspslpJqVSgbgwf3SPCkZcmD8TGyJqdySN3Lzyyit4+umnMW/ePAwaNAgA8OOPP+L+++/H5cuXuYuKyA6d3gij0SSo2N68EYHWpISjMURE4kheULx06VLMmDHD5vjGjRuxZMkSl16TwwXF5CyvfvOnzfZub5XC7vbu2joj3p7RH3Fh/k6OmIjIdYj5/pY0LVVQUICBAwc2Oj5w4EAUFBRIuSRRuyC02F61Tt/GkREReQ5J01KJiYn46KOP8MQTT9gc//DDD5GUlCRLYESeZu6IRFwsrRFUbC9A3eq1/kRE7Zakn6BLly7F7bffju+//9665mbfvn3YtWsXPvroI1kDJPIUYrZ3x4b4OTFSIiL3Jmla6m9/+xsOHjyI8PBwbNmyBVu2bEF4eDh+/vlnTJ48We4YiTyGZXt3WIAaJ4urUFlbB73RiMraOpwsrrK7vZuIiMSRtKDYnXFBMTlKc0X5Gqpf50arN8DHS4XEiEAW2yMiaoLDKxQTkS0hRfnq4/ZuIiLHEZXcKJXKFisRKxQK6PXc6UHtR8OeTv5qP9To9DiaX4788qstFtsjIiJ5iUpuPv/88yYfO3DgAF577TUYjcZWB0XkLmp1BkFF+e4d4g9ftcrJ0RIRtQ+ikpuJEyc2OnbixAk8/vjj+PLLLzF9+nQ8++yzsgVH5OpW7MixFuUrqdHZLcp3PrsGpdU6LJ6Q4uRoiYjaB8m9pfLz8zFnzhykpqZCr9cjKysLGzduRJcuXeSMj8ilCS3KpzNwRJOIqK2IXlBcXl6OF154Aa+//jquv/567Nq1C0OGDHFEbEQuL2NwvKCifBmD450QHRFR+yRq5ObFF19EQkICvvrqK3zwwQfYv38/Extq1yxF+Yoqa6FUACqlwnpTKoDiSi2SI4PQtUOAs0MlImo3RNW5USqV8PPzw8iRI6FSNb048rPPPpMlOEdgnRuSW8PdUn5qFa7qDCgor0VYgLrJ3VJERCScw+rczJgxo8Wt4ETtTWJEEGYN6mqtc1NUUQsfLxVSYzUsykdE5AROrVC8Zs0arFmzBufOnQMApKSk4JlnnsHYsWObfM7HH3+Mp59+GufOnUNSUhJWrFiBcePGCX5NjtyQo4ipUExEROKI+f6WvFtKDp06dcLy5ctx+PBh/PLLL7j55psxceJEHDt2zO75+/fvx7Rp05CRkYEjR45g0qRJmDRpEo4ePdrGkVN7YTSacKGkBjmFFbhQUgOjsenfBSxF+bpHBSMuzJ+JDRGRk7hcb6mwsDC89NJLyMjIaPTY7bffjurqanz11VfWYwMGDMD111+PtWvXCro+R25IKLEtFYiIyHHcZuSmPoPBgM2bN6O6uhrp6el2zzlw4ABGjhxpc2zMmDE4cOBAk9fVarWoqKiwuRG1xLJI+Gh+OUL8vZEQHogQf28czS/H+n3ncKq40tkhEhFRE5ye3GRnZyMwMBA+Pj64//778fnnn6Nnz552zy0sLERkZKTNscjISBQWFjZ5/czMTGg0GustLi5O1vjJs+j0RpuWCgnhAfBXm9fdW1oqXK7UYlt2IWp1BidHS0RE9ji9K3hycjKysrJQXl6OTz75BDNnzsTevXubTHDEWrRoERYuXGi9X1FRwQSHmvTm7lOouFrHlgpERG7M6cmNWq1GYmIiAKBfv344dOgQVq9ejXXr1jU6NyoqCkVFRTbHioqKEBUV1eT1fXx84OPjI2/Q5NGsLRXsVBwGzC0VqrR6tlQgInJRTk9uGjIajdBqtXYfS09Px65duzB//nzrsW+++abJNTpEYs0dkYiLpTVsqUBE5MacmtwsWrQIY8eORefOnVFZWYlNmzZhz5492LlzJwBz0cDY2FhkZmYCAB588EEMGzYMK1euxPjx47F582b88ssveOutt5z5NsjNNFePRu2ltLZUOJpfjmC/QJvClSaTCcWVWqTGathSgYjIRTk1uSkuLsaMGTNQUFAAjUaDtLQ07Ny5E6NGjQIA5ObmQqm8tuZ54MCB2LRpE5566ik88cQTSEpKwpYtW9CrVy9nvQVyM0K2dyuVCozpFYn88qs4WVxlt6XC6JRI1rEhInJRLlfnxtFY56b9atgDyl/thRqdvskeUPUTIa3eAB8vFRIjAtlSgYjICRzWW4rIHen0RhiNJuv27sSIa1NNlu3dp4qrsC27EPNGBFpHZBIjgpAwPJAtFYiI3AyTG/J4YrZ3T+4Ti7gwf+tzLS0ViIjIfTi9iB9RW7Bu71bZH3XxVimhNxpRrdO3cWRERCQ3jtyQxxOzvTtAzf8liIjcHUduyOPV395dVFkLpQJQKRXWm1IBFFdqkRwZhNgQP2eHS0RErcTkhtoFy/busAA1ThZXobK2DnqjEZW1dThZXMXt3UREHoTJDbUbiRFBmDWoK3rFaFBWU4dzl6tRVlOH1FhNo23gRETkvrjAgNoVbu8mIvJ8TG7IIzTXUqEhbu8mIvJsTG7I7QlpqUBERO0Hkxtya41bKvihRqfH0fxy5Jdf5VoaIqJ2iAuKyS3p9EbU6gzWlgoJ4QHw/2+NGktLhcuVWmzLLoTR2K7apxERtXscuSG31JqWCkRE5Nk4ckNuiy0ViIjIHo7ckFtiSwUiImoKR27IJRmNJlwoqUFOYQUulNQ0WjfDlgpERNQU/kpLLkfo1m5LS4X88qs4WVyFaI0v/NQqXNUZUFBey5YKRETtFJMbcilit3ZbWipYkqGiilr4eKmQGqvB6BTWuSEiao+Y3JDLqL+1OzEiEAqFecTFsrX7VHEVtmUX4t4h/vBVq6zPY0sFIiKqj8kNtZmWWiSs2JEjaGt3abUOiyek2FybLRWIiMiCyQ21CSHraKxbu+3sfALMW7urtHroDMa2DJ2IiNwMkxtyOKHraDIGxwva2p0xON4J74KIiNwFt4KTw4hpkVCrMwje2t21Q4CT3xkREbkyjtyQw4hpkWBZR8Ot3URE1FocuSGHEtoiwbKOxrK1u1eMBmU1dTh3uRplNXVIjdWwwzcREQnCkRtyGDEtEuqvo+HWbiIiag0mN+Qw9VskHM0vR7Dftdo1AGAymVBcqUVqrKbROhpu7SYiIqmY3FCrtFS7hi0SiIiorTG5IcmE9oBiiwQiImpLTG5IEik9oLiOhoiI2gJ3S5EoYmrXGI0mm+da1tF0jwpGXJg/ExsiInIIjtyQKGJq10zuE8tFwURE1OY4ckOiCa1dU63Tt3FkREREHLkhkcTUrglQ8z8vIiJqexy5aQeMRhMulNQgp7ACF0pqGq2FEaN+7ZqWekDFhvjJ+C6IiIiE4a/WHk7odu36WLuGiIjcGZMbDyZ2u7blOaxdQ0RE7ozJjYeqv107MeJa2wPLdu1TxVXYll2Ie4f4w1etAsDaNURE5BmY3HioFTtyBG3XLq3WYdG4HjAaTdZkKD48AIdzSwEA/buE2SRD80YENpqi4nZvIiJyJUxuPJR1u7ad3UyAebt2lVYPncHYbO2aX1DC2jVERORWmNx4qIzB8YK2a2cMjsfWrHzByRBr1xARkatjcuOmWtrRZNmufTS/HMF+19bcAIDJZEJxpRapsRp07RDA2jVERORR+E3lhoTsaBKzXVutVAhOhli7hoiIXB2TGzcjZkeTmO3arF1DRESeQmEymaSXq3VDFRUV0Gg0KC8vR3BwsLPDEUynN8JoNGHdD2dwPK/cZns3YB5dOVVchZRYDe4dkmDd3g20PIVVX/1RIa3eAB8vFRIjAlm7hoiInErM97dTR24yMzPx2WefIScnB35+fhg4cCBWrFiB5OTkJp+zYcMGzJo1y+aYj48PamtrHR2uU4npxl1arcPiCSnW54rZrs3aNURE5O6cmtzs3bsXc+fOxQ033AC9Xo8nnngCo0ePxvHjxxEQENDk84KDg3HixAnr/fojGJ5MzPbu1mDtGiIicmdOTW527Nhhc3/Dhg2IiIjA4cOHMXTo0Cafp1AoEBUV5ejwWk3MdFBL54vZ0ZQxON5h74mIiMjVudSC4vLycgBAWFhYs+dVVVWhS5cuMBqN6Nu3L1544QWkpKTYPVer1UKr1VrvV1RUyBdwM8Q2rGzp/PrduIVs7yYiImqvlM4OwMJoNGL+/PkYNGgQevXq1eR5ycnJePfdd7F161a89957MBqNGDhwIC5evGj3/MzMTGg0GustLi7OUW/ByrKj6Wh+OUL8vZEQHogQf28czS/H+n3ncKq4UtL5lh1NYQFqnCyuQmVtHfRGIypr63CyuIo7moiIiOBCu6UeeOABbN++HT/++CM6deok+Hl1dXXo0aMHpk2bhueee67R4/ZGbuLi4hy2W6pWZxC8o0mpVAjeATVvRKI1aeGOJiIiam/cZreUxbx58/DVV1/h+++/F5XYAIC3tzf69OmDU6dO2X3cx8cHPj4+coQpiJiGlcF+3oJ3QNXv6cQdTURERE1z6rSUyWTCvHnz8Pnnn+O7775DfLz4hbAGgwHZ2dmIjo52QITiWXc0qewnGt4qJfRGo3VHk9DzG/Z0suxo6h4VjLgwfyY2RERE/+XUkZu5c+di06ZN2Lp1K4KCglBYWAgA0Gg08PMzl/mfMWMGYmNjkZmZCQB49tlnMWDAACQmJqKsrAwvvfQSzp8/j3vuucdp76M+MQ0rO4X6s6cTERGRzJw6crNmzRqUl5dj+PDhiI6Ott4+/PBD6zm5ubkoKCiw3i8tLcWcOXPQo0cPjBs3DhUVFdi/fz969uzpjLfQiGVHU1FlLZQKQKVUWG9KBVBcqUVyZBC6dgiw2QHV0vns6URERCSMyywobitt0X6hYf+nhj2a6vd/knI+ERFReyPm+5vJjYOI3dHEHVBERERNY3LTjLZsnClnhWIiIqL2zO22gnsqsT2a2NOJiIio9VymQjERERGRHJjcEBERkUdhckNEREQehckNEREReRQmN0RERORRmNwQERGRR2FyQ0RERB6FyQ0RERF5FCY3RERE5FGY3BAREZFHaXftFyyttCoqKpwcCREREQll+d4W0hKz3SU3lZWVAIC4uDgnR0JERERiVVZWQqPRNHtOu+sKbjQakZ+fj6CgICgU8nfcvuGGG3Do0CHZr9vWryX3teW6XmuuU1FRgbi4OFy4cMHhHeFJmrb8/8dVuNt7doV42zoG/qwVx1E/a00mEyorKxETEwOlsvlVNe1u5EapVKJTp04Ou75KpWqzL05Hvpbc15brenJcJzg4mMmNi2rL/39chbu9Z1eIt61j4M9aaRzxs7alERsLLiiW2dy5cz3iteS+tlzXa8vPl9pee/z3dbf37ArxtnUM/FnrftrdtBS1XxUVFdBoNCgvL3f6b55ERJ7KFX7WcuSG2g0fHx8sXrwYPj4+zg6FiMhjucLPWo7cEBERkUfhyA0RERF5FCY3RERE5FGY3BAREZFHYXJDREREHoXJDREREXkUJjdEAL766iskJycjKSkJ77zzjrPDISLySJMnT0ZoaChuu+02h74Ot4JTu6fX69GzZ0/s3r0bGo0G/fr1w/79+9GhQwdnh0ZE5FH27NmDyspKbNy4EZ988onDXocjN9Tu/fzzz0hJSUFsbCwCAwMxduxY/Oc//3F2WEREHmf48OEICgpy+OswuSG39/333+PWW29FTEwMFAoFtmzZ0uicN998E127doWvry9uuukm/Pzzz9bH8vPzERsba70fGxuLvLy8tgidiMhttPZnbVtickNur7q6Gr1798abb75p9/EPP/wQCxcuxOLFi/Hrr7+id+/eGDNmDIqLi9s4UiIi9+VOP2uZ3JDbGzt2LJ5//nlMnjzZ7uOvvPIK5syZg1mzZqFnz55Yu3Yt/P398e677wIAYmJibEZq8vLyEBMT0yaxExG5i9b+rG1LTG7Io+l0Ohw+fBgjR460HlMqlRg5ciQOHDgAALjxxhtx9OhR5OXloaqqCtu3b8eYMWOcFTIRkdsR8rO2LXm1+SsStaHLly/DYDAgMjLS5nhkZCRycnIAAF5eXli5ciVGjBgBo9GIRx99lDuliIhEEPKzFgBGjhyJ3377DdXV1ejUqRM+/vhjpKenyx4PkxsiABMmTMCECROcHQYRkUf79ttv2+R1OC1FHi08PBwqlQpFRUU2x4uKihAVFeWkqIiIPIur/axlckMeTa1Wo1+/fti1a5f1mNFoxK5duxwyFEpE1B652s9aTkuR26uqqsKpU6es98+ePYusrCyEhYWhc+fOWLhwIWbOnIn+/fvjxhtvxKpVq1BdXY1Zs2Y5MWoiIvfiVj9rTURubvfu3SYAjW4zZ860nvP666+bOnfubFKr1aYbb7zR9NNPPzkvYCIiN+ROP2vZW4qIiIg8CtfcEBERkUdhckNEREQehckNEREReRQmN0RERORRmNwQERGRR2FyQ0RERB6FyQ0RERF5FCY3RERE5FGY3BAREZFHYXJDRO3SlStXEBERgXPnzgEA9uzZA4VCgbKyMoe+7uOPP47/9//+n0Nfg6i9Y3JDRM26++67oVAoGt1uueUWZ4fWKsuWLcPEiRPRtWvXVl+rqKgI3t7e2Lx5s93HMzIy0LdvXwDAww8/jI0bN+LMmTOtfl0iso/JDRG16JZbbkFBQYHN7YMPPnDoa+p0Ooddu6amBv/3f/+HjIwMWa4XGRmJ8ePH49133230WHV1NT766CPra4WHh2PMmDFYs2aNLK9NRI0xuSGiFvn4+CAqKsrmFhoaan1coVDgnXfeweTJk+Hv74+kpCR88cUXNtc4evQoxo4di8DAQERGRuKuu+7C5cuXrY8PHz4c8+bNw/z5860JAAB88cUXSEpKgq+vL0aMGIGNGzdap4+qq6sRHByMTz75xOa1tmzZgoCAAFRWVtp9P9u2bYOPjw8GDBjQ5HuuqanB2LFjMWjQIOtU1TvvvIMePXrA19cX3bt3xz//+U/r+RkZGdi1axdyc3NtrvPxxx9Dr9dj+vTp1mO33nprk6M8RNR6TG6ISBZLly7F1KlT8fvvv2PcuHGYPn06SkpKAABlZWW4+eab0adPH/zyyy/YsWMHioqKMHXqVJtrbNy4EWq1Gvv27cPatWtx9uxZ3HbbbZg0aRJ+++033HfffXjyySet5wcEBOCOO+7A+vXrba6zfv163HbbbQgKCrIb6w8//IB+/fo1+V7KysowatQoGI1GfPPNNwgJCcH777+PZ555BsuWLcMff/yBF154AU8//TQ2btwIABg3bhwiIyOxYcOGRrH89a9/RUhIiPXYjTfeiIsXL1rX+xCRzExERM2YOXOmSaVSmQICAmxuy5Yts54DwPTUU09Z71dVVZkAmLZv324ymUym5557zjR69Gib6164cMEEwHTixAmTyWQyDRs2zNSnTx+bcx577DFTr169bI49+eSTJgCm0tJSk8lkMh08eNCkUqlM+fn5JpPJZCoqKjJ5eXmZ9uzZ0+R7mjhxomn27Nk2x3bv3m0CYPrjjz9MaWlppr/97W8mrVZrffy6664zbdq0yeY5zz33nCk9Pd16//HHHzfFx8ebjEajyWQymU6dOmVSKBSmb7/91uZ55eXlJgDNxkhE0nHkhohaNGLECGRlZdnc7r//fptz0tLSrH8PCAhAcHAwiouLAQC//fYbdu/ejcDAQOute/fuAIDTp09bn9dwNOXEiRO44YYbbI7deOONje6npKRYR1Dee+89dOnSBUOHDm3y/Vy9ehW+vr52Hxs1ahQSExPx4YcfQq1WAzCvmzl9+jQyMjJs3sPzzz9vE//s2bNx9uxZ7N69G4B51KZr1664+eabbV7Dz88PgHnqi4jk5+XsAIjI9QUEBCAxMbHZc7y9vW3uKxQKGI1GAEBVVRVuvfVWrFixotHzoqOjbV5HinvuuQdvvvkmHn/8caxfvx6zZs2CQqFo8vzw8HCUlpbafWz8+PH49NNPcfz4caSmplrjB4C3334bN910k835KpXK+vekpCQMGTIE69evx/Dhw/Gvf/0Lc+bMaRSLZbquY8eO4t8sEbWIyQ0ROVzfvn3x6aefomvXrvDyEv5jJzk5Gdu2bbM5dujQoUbn3XnnnXj00Ufx2muv4fjx45g5c2az1+3Tpw/ee+89u48tX74cgYGB+Mtf/oI9e/agZ8+eiIyMRExMDM6cOWOzMNiejIwMPPDAA5gwYQLy8vJw9913Nzrn6NGj8Pb2RkpKSrPXIiJpOC1FRC3SarUoLCy0udXf6dSSuXPnoqSkBNOmTcOhQ4dw+vRp7Ny5E7NmzYLBYGjyeffddx9ycnLw2GOP4c8//8RHH31kXbBbfzQkNDQUf/3rX/HII49g9OjR6NSpU7PxjBkzBseOHWty9Obll1/G9OnTcfPNNyMnJweAecF0ZmYmXnvtNfz555/Izs7G+vXr8corr9g8d8qUKfD29sZ9992H0aNHIy4urtH1f/jhBwwZMsQ6PUVE8mJyQ0Qt2rFjB6Kjo21ugwcPFvz8mJgY7Nu3DwaDAaNHj0Zqairmz5+PkJAQKJVN/xiKj4/HJ598gs8++wxpaWlYs2aNdbeUj4+PzbkZGRnQ6XSYPXt2i/Gkpqaib9+++Oijj5o859VXX8XUqVNx8803488//8Q999yDd955B+vXr0dqaiqGDRuGDRs2ID4+3uZ5/v7+uOOOO1BaWtpkLJs3b8acOXNajJOIpFGYTCaTs4MgIhJq2bJlWLt2LS5cuGBz/N///jcWLFiA/Px860Lg5nz99dd45JFHcPTo0WYTLLlt374dDz30EH7//XdRU3REJBz/zyIil/bPf/4TN9xwAzp06IB9+/bhpZdewrx586yP19TUoKCgAMuXL8d9990nKLEBzAuHT548iby8PLtTR45SXV2N9evXM7EhciCO3BCRS1uwYAE+/PBDlJSUoHPnzrjrrruwaNEia3KwZMkSLFu2DEOHDsXWrVsRGBjo5IiJyNmY3BAREZFH4YJiIiIi8ihMboiIiMijMLkhIiIij8LkhoiIiDwKkxsiIiLyKExuiIiIyKMwuSEiIiKPwuSGiIiIPMr/B/a6IBOgjtYeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum / countsp.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error / countsp.spectrum,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum / countsp.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error / countsp.spectrum,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Normalized Covariance (1 / s)\");" + ] + }, + { + "cell_type": "markdown", + "id": "40de3c8c", + "metadata": { + "id": "40de3c8c" + }, + "source": [ + "Alternatively, we can calculate the Covariance Spectrum in fractional rms normalization" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "ac4fc20b", + "metadata": { + "id": "ac4fc20b", + "outputId": "1d04917c-d24a-4988-9d89-4f47ef86c3c3" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:40<00:00, 1.01s/it]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:38<00:00, 1.03it/s]\n" + ] + } + ], + "source": [ + "covspec_01_1 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")\n", + "covspec_3_30 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "5615406c", + "metadata": { + "id": "5615406c", + "outputId": "c74ddc36-c90c-4d32-d6d7-72820d5d2634" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG1CAYAAAARLUsBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABje0lEQVR4nO3deVzUdf4H8NfMwHDKHSCIAkGaJmoe5JW6kXSslpumbptGduh6rGKmbCtq6YJmRoUrm21mm626XWuXlfzErPBIszzxFuMUUYZDGJiZ3x/fZmQ4v99hTub1fDx4wHznO5/5DMp83/P5vD/vj0yn0+lARERE5ETktu4AERERkbUxACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfDAIiIiIicDgMgIiIicjoutu6APdJqtSgsLESXLl0gk8ls3R0iIiISQafTobKyEmFhYZDL2x7jYQDUgsLCQkRERNi6G0RERGSCy5cvo1u3bm2ewwCoBV26dAEg/AJ9fHxs3BsiIiISQ6VSISIiwnAdbwsDoBbop718fHwYABERETkYMekrTIImIiIip8MAiIiIiJyOXUyBrV+/Hi+//DKKi4vRr18/vPHGGxgyZEiL53700Uf4+9//jrNnz6K+vh6xsbFYuHAhHn/8ccM5Op0Oy5Ytw8aNG3H9+nUMHz4cGzZsQGxsrFn7rdFoUF9fb9Y2yXxcXV2hUChs3Q0iIrJDNg+Atm3bhuTkZGRlZSE+Ph4ZGRlITExEXl4egoODm50fEBCAF154Ab169YJSqcRnn32GpKQkBAcHIzExEQCwZs0avP7669i8eTOioqKwdOlSJCYm4sSJE3B3d+9wn3U6HYqLi3H9+vUOt0WW5efnh9DQUJYzICIiIzKdTqezZQfi4+MxePBgZGZmAhBq8ERERGDu3LlYsmSJqDbuvPNOPPjgg3jppZeg0+kQFhaGhQsX4rnnngMAVFRUICQkBO+88w6mTJnSbnsqlQq+vr6oqKhoMQm6qKgI169fR3BwMDw9PXlxtUM6nQ41NTUoLS2Fn58funbtausuERGRhbV3/W7MpiNAarUahw4dQkpKiuGYXC5HQkICcnNz2328TqfD//3f/yEvLw+rV68GAFy4cAHFxcVISEgwnOfr64v4+Hjk5uaKCoDaotFoDMFPYGBgh9oiy/Lw8AAAlJaWIjg4mNNhRERkYNMAqKysDBqNBiEhIUbHQ0JCcOrUqVYfV1FRgfDwcNTV1UGhUOAf//gH7r33XgBAcXGxoY2mberva6qurg51dXWG2yqVqtXn1uf8eHp6tvHKyF7o/53q6+sZABERkYHNc4BM0aVLFxw5cgRVVVXIzs5GcnIyoqOjMXr0aJPaS0tLw4oVKyQ9htNejoH/TkRE1BKbLoMPCgqCQqFASUmJ0fGSkhKEhoa2+ji5XI6YmBj0798fCxcuxMSJE5GWlgYAhsdJaTMlJQUVFRWGr8uXL3fkZYmmbtDi1W9O49VvTkPdoLXKcxIREZGNAyClUomBAwciOzvbcEyr1SI7OxtDhw4V3Y5WqzVMYUVFRSE0NNSoTZVKhf3797fappubm6HqM6s/ExERdX42nwJLTk7G9OnTMWjQIAwZMgQZGRmorq5GUlISAGDatGkIDw83jPCkpaVh0KBBuPXWW1FXV4cvvvgC//73v7FhwwYAwpTH/PnzsXLlSsTGxhqWwYeFheHhhx+21ctskVarg+pGPdQaLX69VoPIQC/I5ZyyIeostFodCq7fQLW6AV5KF4T7efBvnMhO2LwS9OTJk7F27Vqkpqaif//+OHLkCHbu3GlIYs7Pz0dRUZHh/Orqavz5z39Gnz59MHz4cHz44Yd477338NRTTxnOef755zF37lw888wzGDx4MKqqqrBz506z1AAyl7Ollfjn3vPIPX8V+89fxWvZZ7Ah5xzOllZa9HnXr1+PyMhIuLu7Iz4+HgcOHGjz/OPHj+ORRx5BZGQkZDIZMjIyRD3PRx99hLFjxyIwMBAymQxHjhxp9zHLly9H//79mx2/ePGi6DaI7MXZ0kpsyDmHV785jdezz+DVb05b5W+ciMSx+QgQAMyZMwdz5sxp8b6cnByj2ytXrsTKlSvbbE8mk+HFF1/Eiy++aK4umtXZ0kps+v4iyirr4O6qgKu7C/w9lDhWWIHCihtIGh6JmOD2d7KVSmrRSQCoqalBdHQ0Jk2ahAULFoh+rurqaowYMQKPPvoonn76aXO9BLIRjmRIo/8bL69Wo6uvOzyVHqhRN7T7N87fM5H12EUA5Az0Sc5arQ6fHy1GWWUdooK8UF6jBgB4KBWIDvLC2dIqfHG0GM+M9IS70rzLttetW4enn37aML2YlZWFzz//HG+//XarRScHDx6MwYMHA4DowpQADFuTXLx4sWOdbsETTzyBzZs3Nzu+e/duk1cCUuvOllbiq2MlOHelCrUNGri7KHDrLd5IvCPEqhdxqe3aKpioVWuM/sYP5V8DAAzqEdDm37jU3zMRdQwDICtZv/ssAEB1ox6556/C3VWB8ho1Cq/fAAD8iHLIZTLUNWhw6WgNrlWrsWx8H7M9f0eLTtqT1157Denp6Ybb6enp+M9//oNevXrZsFedk9SRDEtdxKW2a8mgrb1zV+88Jflv3NQRIyIyHQMgK1NrtGjQaOHq3vKv3lUhR1VdA9Qa8y6LN7XopLUdPXoU3t7eRsea7tbi6+sLX19fAEKu0T//+U/s2rWrzdIJJI26QWs0WhkT7G2oqeSpdDEayZgzxhtyucyki7iYwMOUIMxSQZuYc6X8jTf9Pbc1YqT/PROReTAAspLZY2IAAL9eq0FVXQP8PZTwUCrwI8oBCG92CrkMlbX1uH6jHjNGRNmyu6Jt2bIFzz77rOH2l19+iZEjR5rcXs+ePbFjxw6jYwUFBS1Obf300094/PHHkZmZieHDh5v8nNTc+t1nWx2tDPPzMBrJ+H1cV4T5ekgKlgBxwUTj6aS22n1mpCfkcpnkYEJKsCT23BkjokT/jbf1e246YjRhQDgiAkyrQG/J6UPmLZGjYgBkJUoXYcFdZKAXbgvugmOFFYgO8oL8tzd0hVwGuQworaxD33BfRAZ6mfX5TS062Z7x48cjPj7ecDs8PNzktgChNlRMTIzRMReX5v9Ni4uLMX78eDz11FOYMWNGh56TWiZ2JONf312AUiEXFSzpL+Jig4nWppOatnutWg0fD1fRwUTToK29XB0Aos+V+jcu9vdcrW4wOi428LDk9CHzlsiRMQCyMrlchsQ7QlBYcQNnS6tQ16CBq0KOytp6lFbWIcBLibF9Qsz+Capx0Ul9PSR90cnWVuCJ0aVLF3TpYt03utraWjz00EPo1asX1q1bZ9Xn7izau3jOHhNjNFrp3cLFWT+SoVTIRV/Er9fU4xZv8aM6UqeMzRG0tZSrA0BSXo/+b/x8WTX6hPnAQ6lAjboBRRW1Rn/jTX/PbY0YeSlvviaxgUfjFacllXVwVcjQp6tvu9OHYs5n3hI5OgZANhAT3AVJwyPx+dFiXDoqvPldv1GPvuG+GNvHcp+c2is6CTQvPKlWq3HixAnDzwUFBThy5Ai8vb2bjdQ0Vl5ejvz8fBQWFgIA8vLyAAhblXQ0V+fZZ5/F5cuXkZ2djStXrhiOBwQEQKlUdqhtZyDm4ql0kRuNZPh4eBvtq6bT6QwjGU8Oj0JhxQ1RwdJHh38F0HIw0dKojpTppG7+nqKDCSlBmz64knKu/m9c/3suUdXCzUXR7G+86e85Ntgbw24NavH3HO7nYfj3ExN4NF2N1taK05amD9s6HxA3Isa8JbJnDIBsJCa4C54d6Ynr1WqoNVrMGBFl8UrQkydPxpUrV5Camori4mL079/fqOgkIBSelMtv1scsLCzEgAEDDLfXrl2LtWvXYtSoUc1qNDW2Y8cOo8BqypQpAIBly5Zh+fLlHXode/bsQVFREXr37m103NmXwZs7objxaOWZ0ip09XWHh1KBG2qN0UiGu1IhOliqrdfgarVadDAhNjjQ/+2IPb9p0CYmH09q7l5McBdEj/Zu999E7O+5QauDtkEreipOymo0KdOHUkbEOpK3RGRpDIBsSC6XwcfDFQDQzd/TKp+U2io6CTQvPBkZGdlsFZYYTzzxBJ544glJj1m+fHmLwVHTPliitpCjM3dCsb4+jdiRDLEX8e4BXpIWAohtV/+3Y2rQ1l5wBUDSuXpyuUxUACDm9/zqN6clBSmWmj6UMiLWNG9JCnup++QMSd7qBq2hVMvsMTGGnNXOjgGQDSld5Fhw72227gY5OEskFDeuQSV2JENssCQ18BDbrtR+SA2upJxrCjG/ZylBiqWmD6WMiDXOWwLsI3FbirOllfj8aDG+PFqEBo0WfcJ9cVtwF5skedeqNVi985SoGQNnDWikYgBE5KCk1OoxJaG4MSkjGe1dxKUGHmLbldoP/XligyupgZgp2vo9S0mY1l8gLTF92HRErK2Vbvq8JcA+ErelsNWWRa315fOjxcg9fxUNGi2q6hraDMSkbrTtrBtzMwAiclBSavU0TShuK1G5ozWoxARLpgQTYoMwqedLCa6kBmLmJCVhWn8Bs8T0YdMRsfZWugHigxRLJW5LScZuqTil2C2LLDFdJjUQkxosST2/M2EAROTApIzqiE1UNncNqtbYMphoSkpwJTUQMyepQYqlpg/Fnis1mLBU4nbTZOy2AhUpxSmbbmdizukyUwIxU4IlexnlsgUGQER2rK03aqlTIqZMPVmaLYMJR2VKUGOJ6UMx50oNJiyVuN04GVtMoCK1H5YIJKT+7hbf18vmo2eOhgEQkZ1qL2dC6pQIYJ08FrI8qUGNpaYPxZxrD4nb+mRsMYGK1A8WUqbtGk+XAe1PmUn53Vlr9KwzYQBEZIfEruyyRkIx2SdHGD3rSOJ2e9uINE3cbuv8W7zdRAcqc8bESOrHS5+dkDxdBrQ/EiX1d/ev7y5YfPSss2EAZEsNamDvK8LPIxcCLqxi7OxM2YXdGgnFRKZoOkopJqiRklwt9vwNe85JHvEQ2w9TVleKnTKT8ruz9OhZZ9R5XxmRA5Kysqvx0DRHdcheSQ1qLJO4XSR5xENsP6QEHlISm/UfcMTuHWmp0bPGpQw6GwZAtqTTArXXhZGg6/lAQDQgt1zBqg0bNmDDhg2GSsp9+vRBamoq7r///jYfN378eBw5cgSlpaXw9/dHQkICVq9ejbCwMMM5v/zyC2bPno2DBw/illtuwdy5c/H888+32ubFixcRFRWFn376Cf379ze6b/To0ejfvz8yMjJMfakOzdShaY7qkL2ydeK2qZvOiumHlMDjtewzkkeixO4dKXWjbVttzG1PGADZypU84PgnwIW9gLYBUFcBt/QEbh8nfLeAbt26IT09HbGxsdDpdNi8eTMeeugh/PTTT+jTp0+rjxszZgz++te/omvXrigoKMBzzz2HiRMn4ocffgAAqFQqjB07FgkJCcjKysLRo0fx5JNPws/PD88884xFXktnJWUX9s48NE2djy0Tt6VMxTUd8WivH1IDCVM+4MQEd8HcMd74w4BwUYU9xW60bauNue0F30Ft4UoesC8LqL4CuHoAClfAIwAo+gWoKADummmRIGjcuHFGt1etWoUNGzZg3759bQZACxYsMPzco0cPLFmyBA8//DDq6+vh6uqKLVu2QK1W4+2334ZSqUSfPn1w5MgRrFu3rsMBUE5ODsaMGdPs+PTp0/HOO+90qG1baG/Vh5Rd2Dvz0DR1TvZSQ0nMVJwUTUe46ho0qKxtaBZImDoSpe+/2MKeUjbatsXG3PaCAZC1NAjzvNBphZGf6itAYAxQc1U4rvQEAmOBsjzgxP+AYfMAV3eLdUej0eC///0vqqurMXToUNGPKy8vx5YtWzBs2DC4ugobuebm5uLuu++GUnkziTsxMRGrV6/GtWvX4O/vb3I/hw0bhqKiIsPtkydP4oEHHsDdd99tcpu2InYrAHus10PUGViyDISYEa6OjERJ4a5UGK04M/f5nQUDIGvRr/aqvS5Me7l6CMFPxWXheD4AmQxoqAPKzwv33b/a7N04evQohg4ditraWnh7e+Pjjz9G7969233c4sWLkZmZiZqaGtx111347LPPDPcVFxcjKsp4+4SQkBDDfW0FQMOGDYO8Sd7TjRs3DHlBSqUSoaGhAICrV6/iqaeewpNPPoknn3xS1Ou1F2KXteuxXg+RZVhywYCYURrm3tgPBkDW1qAWcn4Uri3fr3AF6ipvjhiZWc+ePXHkyBFUVFTggw8+wPTp07Fnzx707t0bM2fOxHvvvWc4t6qqyvDzokWLMGPGDFy6dAkrVqzAtGnT8NlnnxlNz5hi27ZtuP32242OPfbYY83Oq6+vxyOPPIIePXrgtdde69BzWlvj+iPtbVjauFAaV3YRWYatFww4e+6NvWAAZC0jFwrfr+cLCc8eAcK0V/5v93e/C5ApgDoVcOMaMHS2RbqhVCoRExMDABg4cCAOHjyI1157Df/85z/x4osv4rnnnmvxcUFBQQgKCsJtt92G22+/HREREdi3bx+GDh2K0NBQlJSUGJ2vv60fvWlNRESEoT96Hh7Nh35nzZqFy5cv48CBA3Bxcaz/tq1VaG1pw9Kmw9C2fqMmIssQm9hsb9QNWqzffRaAkNOkdLHcymVLc6wriSPTFzkMiBYSnIt+EXJ+9CMoMgUgkwOVxUBYP+E8K9BqtairqwMABAcHIzg4WNRjABgeN3ToULzwwguGpGgA+Oabb9CzZ88O5f/orVu3Dtu3b8cPP/yAwMDADrdnbaYUSiOizo8fcGyLAZC1yeXCUveKAiHhuaHut2kvlRD8eAUCvX5vkXpAKSkpuP/++9G9e3dUVlbi/fffR05ODr766qtWH7N//34cPHgQI0aMgL+/P86dO4elS5fi1ltvNSRP//GPf8SKFSswY8YMLF68GMeOHcNrr72GV199tcN93rVrF55//nmsX78eQUFBKC4uBiCMEvn6+na4fWtoXCitrWXtM0ZEtfBoIiKyBMcdu3Jkt/QUlrqH9gXqbwA15cK0V1g/IN4yS+ABoLS0FNOmTUPPnj1xzz334ODBg/jqq69w7733tvoYT09PfPTRR7jnnnvQs2dPzJgxA3FxcdizZw/c3NwAAL6+vvj6669x4cIFDBw4EAsXLkRqaqpZagB999130Gg0mDlzJrp27Wr4+stf/tLhtq1Fv+qjpLIWcpmw2kP/pV/10TOki2HDUiIie6XV6qC6UY+yqjr8eq0GWq3O1l0ymUyn0zlu7y1EpVLB19cXFRUV8PHxMbqvtrYWFy5cQFRUFNzdO7hMvb4W2LVMSHgeOtvilaCdkVn/vTqg6Sqwpsvam64CIyKyN+1t4GoP2rp+N8UpMFuSyQF3P+Fnv+4MfhxUe8UNAS5rJyLHJnYDV0fCAMiWXJTAmBRb94I6QGxxQ4DL2onI8ZiygaujsIshh/Xr1yMyMhLu7u6Ij4/HgQMHWj1348aNGDlyJPz9/Q0bczY9v6qqCnPmzEG3bt3g4eGB3r17Iysry9Ivg5yM/hPRscIK+Hm6IjrIG36erjhWWIFN31/E2dLKZo/Rr/roFeqDiABPh3qzICLns373WazeeQpfHi1CSWUdDuVfQ+H1Gyi8fgM/XirHj5euoaSyFl8cLULBbyU+HIXNA6Bt27YhOTkZy5Ytw+HDh9GvXz8kJiaitLS0xfNzcnIwdepU7N69G7m5uYiIiMDYsWNRUFBgOCc5ORk7d+7Ee++9h5MnT2L+/PmYM2cOduzYYa2XRZ2YukFrVNwwOsgLnr/t26MvblhWWYcvjhajVq2xcW+JiDrGUMpD0fIHNleFHA1ardEGro7A5knQ8fHxGDx4MDIzMwEINWYiIiIwd+5cLFmypN3HazQa+Pv7IzMzE9OmTQMA3HHHHZg8eTKWLl1qOG/gwIG4//77sXLlynbbtFoSNFmcJf69Xv3mNFQ36g3FDV0VshaLG9bWazE0OtAp99ghos5B3aDFr9dq8Fr2mZsbuF5qeQPX58b2tHldIylJ0DYdAVKr1Th06BASEhIMx+RyORISEpCbmyuqjZqaGtTX1yMgIMBwbNiwYdixYwcKCgqg0+mwe/dunD59GmPHjm2xjbq6OqhUKqOv9nDxnGOw1L9T409EcpkM3fw90c3f07Cxof4TEYsbEpEja7yBq76Uh1wmvO81LeXRkQ1cbcGmSdBlZWXQaDSGjTP1QkJCcOrUKVFtLF68GGFhYUZB1BtvvIFnnnkG3bp1g4uLC+RyOTZu3NjqDuJpaWlYsWKFqOfTVzquqalpccsGsi81NTUAbv67mcPsMTH49VoNixsSkVPorBu4OvQqsPT0dGzduhU5OTlG0xtvvPEG9u3bhx07dqBHjx749ttvMXv27GaBkl5KSgqSk5MNt1UqFSIiIlp8ToVCAT8/P0OOkqenZ4c3BCXz0+l0qKmpQWlpKfz8/KBQKNp/kEiNPxEdK6yAj4e30f8BnU6H0so69A33ZXFDIuoUOuMGrjYNgIKCgqBQKFrcSLO9TTTXrl2L9PR07Nq1C3FxcYbjN27cwF//+ld8/PHHePDBBwEAcXFxOHLkCNauXdtiAOTm5maoaiyGvm+tJWqT/fDz82v3/5IpGn8iOlNa1WJxQ0f8RERE1JqY4C54dqQnrlerodZoMWNEFCIDvRz2fc6mAZBSqcTAgQORnZ2Nhx9+GICQBJ2dnY05c+a0+rg1a9Zg1apV+OqrrzBo0CCj++rr61FfXw95k6KCCoXCsIlnR8lkMnTt2hXBwcGor683S5tkfq6urmYd+WmKxQ2JyNnI5TL4eAgpBd38HbuUh82nwJKTkzF9+nQMGjQIQ4YMQUZGBqqrq5GUlAQAmDZtGsLDw5GWlgYAWL16NVJTU/H+++8jMjLSsDmmt7c3vL294ePjg1GjRmHRokXw8PBAjx49sGfPHrz77rtYt26dWfuuUCgseoEl+8fihkREjsnmAdDkyZNx5coVpKamori4GP3798fOnTsNidH5+flGozkbNmyAWq3GxIkTjdpZtmwZli9fDgDYunUrUlJS8Nhjj6G8vBw9evTAqlWrMHPmTKu9LnIe+uKGRESdndJFjgX33mbrbpiFzesA2SMpdQSIiIjIPnAzVKIOErPBKREROS4GQERNSNnglIiIHBMDIKJG9Bucller0dXXHZ5KD9SoG3CssAKFFTeQNDySQRARUSdg881QieyBlA1OtVqmzREROTqOABEBWL/7rNEGp+U16hY3OL10tAYTBoRz1RcRkYNjAET0G8MGpy3s7QUIG5xW1TWgWt1g5Z4RETkedYMW63efBSDsoah0sa9JJwZARJC2wamXkn82RESOzr7CMSIbabzBaUllLeQyQCGXGb7kMqC0sg49Q7og3M/D1t0lIqIOYgBE9Bv9BqcBXkqcKa1CZW09GrRaVNbW40xpFTc4JSLqRBgAETWi3+D0jjBfXK+px8WyalyvqUffcF8ugSci6kSYzEDUBDc4JSLqOK1WB9WNeqg1Wvx6rQaRgV529T7KAIioBdzglIjIdGdLK/H50WLknr+KBo0WVXUNuC24i11V1GcARERERGajr6hfVlkHd1cFXN1d4O+htLuK+swBIqeh1epwubwGp4pVuFxew4rORERm1LSiflSQF1wVwpSXh1JhVFG/Vq2xcW85AkROghucEhFZVlsV9X9EuVFF/WvVaiwb38em/WUARJ0eNzglIrIOsRX11RqtlXvWHAMg6rTUDVpotTrDcGxMsDdkMmE4Vr/B6dnSKnxxtBhzxnjb1eoEIiJH07SivodSgR9RDgAY1CMACrnMUFF/xogoG/eWARB1YtzglIjIehpX1D9WWIHoIC/If/vQ2biift9wX0QGetm4t0yCpk7OMByraHl0x1UhR4NWyw1OiYjMoHFF/bOlVahr0ECr09llRX2OAFGnxQ1OiYisT19R//Ojxbh0VHgPvn5DqKg/to/9LDzhuz51Wk2HY308buYAAYBOpzMMx3KDUyIi84kJ7oJnR3rierUaao0WM0ZEsRI0kTXph2MLK27gTGkVuvq6w0OpwA21BkUVtXY1HEtE1JnI5TL4eLgCALr5e9rd+yxzgKjT4wanRETUFEeAyClwg1MiImqMARA5DW5wSkREegyAiIiIyOyULnIsuPc2W3ejVQyAyGFptTpOaRERkUkYAJFD4uamRETUEQyAyOFwc1MiIuooLoMnh1Kr1hg2N40O8oLnbxWc9ZubllXW4YujxahVa2zcUyIismccASKHsnrnKVGbm16rVmPZ+D427i0REdkruxgBWr9+PSIjI+Hu7o74+HgcOHCg1XM3btyIkSNHwt/fH/7+/khISGjx/JMnT2L8+PHw9fWFl5cXBg8ejPz8fEu+DLICsZubqjVaK/eMiIgcic1HgLZt24bk5GRkZWUhPj4eGRkZSExMRF5eHoKDg5udn5OTg6lTp2LYsGFwd3fH6tWrMXbsWBw/fhzh4eEAgHPnzmHEiBGYMWMGVqxYAR8fHxw/fhzu7u7WfnlkZjNGRIna3HTGiCgb9I6IiByFTKfT6WzZgfj4eAwePBiZmZkAAK1Wi4iICMydOxdLlixp9/EajQb+/v7IzMzEtGnTAABTpkyBq6sr/v3vf5vUJ5VKBV9fX1RUVMDHx8ekNsgytFodNuScw7HCCsQGN9/c9ExpFfqG+2LmqFu5JJ6IyMlIuX7bdApMrVbj0KFDSEhIMByTy+VISEhAbm6uqDZqampQX1+PgIAAAEIA9fnnn+O2225DYmIigoODER8fj08++aTVNurq6qBSqYy+yD7pNzcN8FLiTGkVKmvr0aDVorK2HmdKq7i5KRERiWLTAKisrAwajQYhISFGx0NCQlBcXCyqjcWLFyMsLMwQRJWWlqKqqgrp6em477778PXXX2PChAn4wx/+gD179rTYRlpaGnx9fQ1fERERHXthZDKtVofL5TU4VazC5fIaaLXNByi5uSkREXWUzXOAOiI9PR1bt25FTk6OIb9HqxWSXx966CEsWLAAANC/f3/88MMPyMrKwqhRo5q1k5KSguTkZMNtlUrFIMgGpBQ35OamRETUETYNgIKCgqBQKFBSUmJ0vKSkBKGhoW0+du3atUhPT8euXbsQFxdn1KaLiwt69+5tdP7tt9+O7777rsW23Nzc4ObmZuKrIHMwpbghNzclIiJT2XQKTKlUYuDAgcjOzjYc02q1yM7OxtChQ1t93Jo1a/DSSy9h586dGDRoULM2Bw8ejLy8PKPjp0+fRo8ePcz7AqjD1A1aFjckIiKrs/kUWHJyMqZPn45BgwZhyJAhyMjIQHV1NZKSkgAA06ZNQ3h4ONLS0gAAq1evRmpqKt5//31ERkYacoW8vb3h7e0NAFi0aBEmT56Mu+++G2PGjMHOnTvx6aefIicnxyavkVq3fvdZqG7Us7ghERFZlc0DoMmTJ+PKlStITU1FcXEx+vfvj507dxoSo/Pz8yGX3xyo2rBhA9RqNSZOnGjUzrJly7B8+XIAwIQJE5CVlYW0tDTMmzcPPXv2xIcffogRI0ZY7XWReIbihi3U9QGE4oZVdQ0sbkhERGZj8zpA9oh1gKxH3aDFr9dq8Fr2mXaLG/7lnlhE3+Jtg14SEZEjcJg6QOQc2lrarnSRIzLQC7cFd0FJZS3kMkAhlxm+5DKgtLIOPUO6IDLQy4avgoiIOhObT4FR5yZmabu+uGFhxQ2cKa1CV193eCgVuKHWoKiilsUNiYjI7BgAkcVIWdquL26oD5ZKVLVwc1Ggb7gvxvZpXgeIiIioIxgAkdmpG7TQanWGpe0xjfbs0i9tP1tahS+OFmPOGG/DyA6LGxIRkbUwACKzk7K0fcKAcKNihixuSERE1sAkaLIIw9J2RcujN64KORq0WlSrG6zcMyIiIo4AkQXMHhODX6/VoKquod2l7V5K/hckIiLr4wgQmZ2Upe3hfh627i4RETkhBkBkEfql7QFeSpwprUJlbT0atFpU1tbjTGkVl7YTEZFNMQAii9Evbb8jzBfXa+pxsawa12vq0Tfct8Xd3YmIiKylQwkYtbW1cHd3N1dfyIFotTpRy9W5tJ2IiOyR5ABIq9Vi1apVyMrKQklJCU6fPo3o6GgsXboUkZGRmDFjhiX6SXZETHXnxri0nYiI7I3kKbCVK1finXfewZo1a6BUKg3H77jjDrz11ltm7RzZH31152OFFfDzdEV0kDf8PF1xrLACm76/iLOllbbuIhERUbskB0Dvvvsu3nzzTTz22GNQKBSG4/369cOpU6fM2jmyH+oGLWrVGkN15+ggL3j+toRdX925rLIOXxwtNtrslIiIyB5JngIrKChATExMs+NarRb19fVm6RTZn45UdyYiIrI3kkeAevfujb179zY7/sEHH2DAgAFm6RRZn1arw+XyGpwqVuFyeU2Lozis7kxERJ2F5BGg1NRUTJ8+HQUFBdBqtfjoo4+Ql5eHd999F5999pkl+kgWJiapmdWdiYioM5E8AvTQQw/h008/xa5du+Dl5YXU1FScPHkSn376Ke69915L9JEsSGxSM6s7ExFRZ2LSR/WRI0fim2++MXdfyMoaJzVHBXnhUP41AMCgHgGIDvLC2dIqfHG0GM+M9IS7UmGo7lxYcQNnSqvQ1dcdHkoFbqg1KKqoZXVnIiJyGJIDoIMHD0Kr1SI+Pt7o+P79+6FQKDBo0CCzdY4sa/XOUy0mNf+IcqOk5mvVaiwb3wfAzerO+imzElUt3FwU6Bvui7F9Wq4DREREZG8kB0CzZ8/G888/3ywAKigowOrVq7F//36zdY4sy5DU3EI+DyAkNVfVNUCt0RodZ3VnIiJydJIDoBMnTuDOO+9sdnzAgAE4ceKEWTpF1jFjRJSopOYZI6Ka3cfqzkRE5MgkJ0G7ubmhpKSk2fGioiK4uHD1jyMRm9QcGehl664SERGZleQAaOzYsUhJSUFFRYXh2PXr1/HXv/6Vq8AcjD6pOcBLiTOlVaisrUeDVovK2nqcKa1iUjMREXVaMp1OJ2nfgoKCAtx99924evWqofDhkSNHEBISgm+++QYREREW6ag1qVQq+Pr6oqKiAj4+PrbujsnE7tjeuA5QXYMGbi4KxAR7M6mZiIgcipTrt+QACACqq6uxZcsW/Pzzz/Dw8EBcXBymTp0KV1dXkzttTzpDACR1x3axwRIREZG9sngA1Nk5egCkL25YXq1GV193eCpdUKNuMNTqSRoeyZEdIiLqdKRcv03KWj5z5gx2796N0tJSaLXGS6RTU1NNaZLMQN2ghVark1TckIiIyBlJDoA2btyIWbNmISgoCKGhoZDJbk6TyGQyBkA21NaO7W0VNyQiInI2kgOglStXYtWqVVi8eLEl+kMdZGpxQyIiImciOQC6du0aJk2aZIm+UAdJ2bG9peKGREREzkJyHaBJkybh66+/Nmsn1q9fj8jISLi7uyM+Ph4HDhxo9dyNGzdi5MiR8Pf3h7+/PxISEto8f+bMmZDJZMjIyDBrn+2RlB3bWdyQiIicmeQRoJiYGCxduhT79u1D3759my19nzdvnqT2tm3bhuTkZGRlZSE+Ph4ZGRlITExEXl4egoODm52fk5ODqVOnYtiwYXB3d8fq1asxduxYHD9+HOHh4Ubnfvzxx9i3bx/CwsKkvkyHxR3biYiI2id5GXxUVOtTJzKZDOfPn5fUgfj4eAwePBiZmZkAAK1Wi4iICMydOxdLlixp9/EajQb+/v7IzMzEtGnTDMcLCgoQHx+Pr776Cg8++CDmz5+P+fPni+qToy+DB1jckIiInI9Fl8FfuHDB5I41pVarcejQIaSkpBiOyeVyJCQkIDc3V1QbNTU1qK+vR0BAgOGYVqvF448/jkWLFqFPn/ZXOtXV1aGurs5wW6VSSXgV9ok7thMREbVOcg6QOZWVlUGj0SAkJMToeEhICIqLi0W1sXjxYoSFhSEhIcFwbPXq1XBxcRE9HZeWlgZfX1/DV2fYzgO4uWN7r1AfRAR4MvghIiL6jUmFEH/99Vfs2LED+fn5UKvVRvetW7fOLB0TIz09HVu3bkVOTg7c3d0BAIcOHcJrr72Gw4cPG9UoaktKSgqSk5MNt1Uqld0GQdyygoiIqOMkB0DZ2dkYP348oqOjcerUKdxxxx24ePEidDod7rzzTkltBQUFQaFQoKSkxOh4SUkJQkND23zs2rVrkZ6ejl27diEuLs5wfO/evSgtLUX37t0NxzQaDRYuXIiMjAxcvHixWVtubm5wc3OT1HdbkLq/FxEREbVM8hRYSkoKnnvuORw9ehTu7u748MMPcfnyZYwaNUpyfSClUomBAwciOzvbcEyr1SI7OxtDhw5t9XFr1qzBSy+9hJ07d2LQoEFG9z3++OP45ZdfcOTIEcNXWFgYFi1ahK+++krai7Uj+v29jhVWwM/TFdFB3vDzdMWxwgps+v4izpZW2rqLREREDkPyCNDJkyfxn//8R3iwiwtu3LgBb29vvPjii3jooYcwa9YsSe0lJydj+vTpGDRoEIYMGYKMjAxUV1cjKSkJADBt2jSEh4cjLS0NgJDfk5qaivfffx+RkZGGXCFvb294e3sjMDAQgYGBRs/h6uqK0NBQ9OzZU+rLtbmm+3vFBHsbpvY8lS5G+3vNGePN6TAiIiIRJAdAXl5ehryfrl274ty5c4aVVmVlZZI7MHnyZFy5cgWpqakoLi5G//79sXPnTkNidH5+PuTymwNVGzZsgFqtxsSJE43aWbZsGZYvXy75+e1dW/t7hfl5GO3vNWFAOCICPG3cYyIiIvsnOQC666678N133+H222/HAw88gIULF+Lo0aP46KOPcNddd5nUiTlz5mDOnDkt3peTk2N0u6UcnvaY8hh7InZ/r2p1g5V7RkRE5JgkB0Dr1q1DVVUVAGDFihWoqqrCtm3bEBsba9UVYM6i6f5eHkoFfkQ5AGBQjwAo5DLD/l5eSpMW9RERETkdyVfM6Ohow89eXl7Iysoya4fIWOP9vY4VViA22BvDbg0y3K/T6VBaWYe+4b4I9/OwYU+JiIgch00LIZI4+v29AryUOFNahcraejRotaisrceZ0iru70VERCSRqBGggIAAnD59GkFBQfD392+zwGB5ebnZOkc3xQR3QdLwSEMdoBJVLdxcFOgb7sv9vYiIiCQSFQC9+uqr6NJFuMBmZGRYsj9OR0plZ+7vRUREZB6iAqDp06cDABoaGiCTyZCYmNhs/y6SzpTKzvr9vYiIiMh0knKAXFxcMHPmTNTW1lqqP06DlZ2JiIhsR3IS9JAhQ/DTTz9Zoi9Oo1atMVR27hHgiaMFFdh/4SrcXBSIDvJCWWUdvjhajFq1xtZdJSIi6pQkL4P/85//jIULF+LXX3/FwIED4eXlZXR/441JqWWrd55qsbLzjyg3qux8rVqNZeP72Li3REREnY/kAGjKlCkAgHnz5hmOyWQy6HQ6yGQyaDQctWiP2MrOao3Wyj0jIiJyDpIDoAsXLliiH05lxogoUZWdZ4yIsnFPiYiIOifJAVCPHj0s0Q+nIrayc2SgVxutEBERkalM3jzqxIkTyM/PN+wMrzd+/PgOd6qz01d2Lqy4gTOlVejq6w4PpQI31BoUVdSysjMREZGFSQ6Azp8/jwkTJuDo0aOG3B8AhurQzAESh5WdiYiIbEdyAPSXv/wFUVFRyM7ORlRUFA4cOICrV69i4cKFWLt2rSX62GmxsjMREZFtSA6AcnNz8X//938ICgqCXC6HXC7HiBEjkJaWhnnz5rFGkESs7ExERGR9kgshajQaw75gQUFBKCwsBCAkR+fl5Zm3d0REREQWIHkE6I477sDPP/+MqKgoxMfHY82aNVAqlXjzzTcRHR1tiT4SERERmZXkAOhvf/sbqqurAQAvvvgifv/732PkyJEIDAzEtm3bzN5BIiIiInOT6fTLuDqgvLwc/v7+hpVgjk6lUsHX1xcVFRXw8fGxdXeIiIhIBCnXb8k5QO+9955hBEgvICCg0wQ/RERE1PlJDoAWLFiAkJAQ/PGPf8QXX3zBuj9ERETkcCQHQEVFRdi6dStkMhkeffRRdO3aFbNnz8YPP/xgif4RERERmV2HcoBqamrw8ccf4/3338euXbvQrVs3nDt3zpz9swnmABERETkeKddvk/cCAwBPT08kJibi2rVruHTpEk6ePNmR5oiIiIisQvIUGCCM/GzZsgUPPPAAwsPDkZGRgQkTJuD48ePm7h8RERGR2UkeAZoyZQo+++wzeHp64tFHH8XSpUsxdOhQS/SNiIiIyCIkB0AKhQLbt29HYmIiFAqFJfpEREREZFGSA6AtW7ZYoh9EREREVmNSDtCePXswbtw4xMTEICYmBuPHj8fevXvN3TciIiIiizCpEnRCQgI8PT0xb948zJs3Dx4eHrjnnnvw/vvvW6KPRERERGYlOQBatWoV1qxZg23bthkCoG3btiE9PR0vvfSSSZ1Yv349IiMj4e7ujvj4eBw4cKDVczdu3IiRI0fC398f/v7+SEhIMDq/vr4eixcvRt++feHl5YWwsDBMmzYNhYWFJvWNiIiIOh/JAdD58+cxbty4ZsfHjx+PCxcuSO7Atm3bkJycjGXLluHw4cPo168fEhMTUVpa2uL5OTk5mDp1Knbv3o3c3FxERERg7NixKCgoACAs0T98+DCWLl2Kw4cP46OPPkJeXh7Gjx8vuW9ERETUOUmuBB0TE4NFixbh2WefNTqelZWFV155BWfOnJHUgfj4eAwePBiZmZkAAK1Wi4iICMydOxdLlixp9/EajQb+/v7IzMzEtGnTWjzn4MGDGDJkCC5duoTu3bu32yYrQRMRETkei1aCXrhwIebNm4cjR45g2LBhAIDvv/8e77zzDl577TVJbanVahw6dAgpKSmGY3K5HAkJCcjNzRXVRk1NDerr6xEQENDqORUVFZDJZPDz82vx/rq6OtTV1Rluq1QqcS+AiIiIHJLkAGjWrFkIDQ3FK6+8gu3btwMAbr/9dmzbtg0PPfSQpLbKysqg0WgQEhJidDwkJASnTp0S1cbixYsRFhaGhISEFu+vra3F4sWLMXXq1FajwbS0NKxYsUJS34mIiMhxmbQX2IQJEzBhwgRz90Wy9PR0bN26FTk5OXB3d292f319PR599FHodDps2LCh1XZSUlKQnJxsuK1SqRAREWGRPhMREZHtiU6CvnbtGt54440Wp4cqKipava8tQUFBUCgUKCkpMTpeUlKC0NDQNh+7du1apKen4+uvv0ZcXFyz+/XBz6VLl/DNN9+0ORfo5uYGHx8foy8iIiLqvEQHQJmZmfj2229bDA58fX2xd+9evPHGG5KeXKlUYuDAgcjOzjYc02q1yM7ObnN/sTVr1uCll17Czp07MWjQoGb364OfM2fOYNeuXQgMDJTULyIiIurcRAdAH374IWbOnNnq/c8++yw++OADyR1ITk7Gxo0bsXnzZpw8eRKzZs1CdXU1kpKSAADTpk0zSpJevXo1li5dirfffhuRkZEoLi5GcXExqqqqAAjBz8SJE/Hjjz9iy5Yt0Gg0hnPUarXk/hEREVHnIzoH6Ny5c4iNjW31/tjYWJw7d05yByZPnowrV64gNTUVxcXF6N+/P3bu3GlIjM7Pz4dcfjNO27BhA9RqNSZOnGjUzrJly7B8+XIUFBRgx44dAID+/fsbnbN7926MHj1ach+JiIiocxFdB8jPzw87d+7EXXfd1eL9+/btw3333Yfr16+bs382wTpAREREjkfK9Vv0FNiAAQPwySeftHr/xx9/jAEDBojuJBEREZGtiJ4CmzNnDqZMmYJu3bph1qxZUCgUAIRKzP/4xz/w6quvcjNUIiIicgiStsJ44YUXkJaWhi5duiA6OhqAsDdYVVUVFi1ahPT0dIt11Jo4BUZEROR4pFy/Je8FduDAAWzZsgVnz56FTqfDbbfdhj/+8Y8YMmRIhzptTxgAEREROR6L7gU2ZMiQThXsEBERkfMRnQRNRERE1FkwACIiIiKnY9JmqEREROSEGtTA3leEn0cuBFyUtu1PB3AEiIiIiJwOAyAiIiJyOqKmwAYMGACZTCaqwcOHD3eoQ0RERGSndFqg9rowFXY9HwiIBuSOOZYiKgB6+OGHLdwNIiIismtX8oDjnwAX9gLaBkBdBdzSE7h9nPDdwUguhOgMWAiRiIiokSt5wL4soPoKUFkEKFyB0H7Cz56BwF0z7SIIsshmqERERORkGtRAfa0w8lN9BQiMARRKADJA6QkExgrHT/wP0Gpt3VtJJC+D12g0ePXVV7F9+3bk5+dDrVYb3V9eXm62zhEREZEN7X1FyPm5sBdw9QBqrgIVl4X78gHIZEBDHVB+HoibDPj3sGVvJZE8ArRixQqsW7cOkydPRkVFBZKTk/GHP/wBcrkcy5cvt0AXiYiIyGYa1ELOj8K15fsVrjdzghyI5BGgLVu2YOPGjXjwwQexfPlyTJ06Fbfeeivi4uKwb98+zJs3zxL9JCIiImsbuVBY7aWuAjwChGmv/N/u634XIFMAdSrgxjVA6W3TrkoleQSouLgYffv2BQB4e3ujoqICAPD73/8en3/+uXl7R0RE5Ci0WuDaJaDkuPDdUXJiGtTA7jThq8E4rQUuSmGp+y09hYRnyIVpL5lMCH5kcqCyGAjuBfhG2KT7ppI8AtStWzcUFRWhe/fuuPXWW/H111/jzjvvxMGDB+Hm5maJPhIREdm3K3nAyU+BsjNAQy3g4g4ExTrsEnEjcrnwOioKgLI8IedH4SqM/FQWA16BQK/fO1w9IMm9nTBhArKzswEAc+fOxdKlSxEbG4tp06bhySefNHsHiYiI7Jp+iXjhEeDqWaCqBHD3A4p+EY5fybN1D9umL25YVSpMd7U0cnVLT2Gpe2hfoP4GUFMuTHuF9QPi7WMJvFQdrgOUm5uL3NxcxMbGYty4cebql02xDhAROTWtVljpo64S8jp8Ixzu073V1NcC378GFB8Vlohf3i8c734XALkwYtI1Dhg2D3B1t2lXW6Qvbnjif0Iic9d+bRc3rK8Fdi0TpsqGzra7StBSrt8d3g1+6NChGDp0aEebISIie9CZp3IsYdcycUvEa64C9682/XksEZQ2Lm7o6iFMa3kECCNXFQUtFzeUyYXRLQDw625XwY9UJgVAZ86cwe7du1FaWgptk6Gy1NRUs3SMiIisTH9BrLkK+IYDrl5AfXXbF0RnJ2aJeF1l8+RiKaSO0ojps05rXNyw5qpwn764YVme8Hwjn3PoIKctkgOgjRs3YtasWQgKCkJoaKjRJqkymYwBEBGRo2npgth4KsdJLogmGTpb3BLxobNNa9+UUZr2dOLihlJIDoBWrlyJVatWYfHixZboDxERWRsviKbTLxEv+kUIFPWDAo2XiIf1E86TQsoojSn5RWJHrpoWN3RRAmNSpD2XnZIcAF27dg2TJk2yRF+IiMhWTL0gOjtLLRGXEpRKzS/qxMUNpZAcAE2aNAlff/01Zs6caYn+EBGRubWXQMsLYuvEJB/rl4if/BQo8xKSx2srhJGfXr83PW/KUvlFjYsbtjdy5WDFDaWQHADFxMRg6dKl2LdvH/r27QtXV+N/GG6FQURkR8Ss6mp6QbylFxB19802dDqnuCA2I2VF3C09hUDCXCu1pASlpuQXWaO4YYNaGMnSvx4XpeltWYDkAOjNN9+Et7c39uzZgz179hjdJ5PJGAAREdkLKau6Gl8Qr5wCfMKFi666BlAVtH5B7Kw1gxonH1cWCcFBaL+2k4/lcvPlR0kZpZGaX6SnH7k6/okwlVZXebO4YUdGrhyE5ADowoULlugHERGZU32tuFVdjRNojaZyzgCVhcKoR2sXxM5YM8jSycdSWGOU5paewPC/ADfK7ba4oaV0qBCivoh046XwRERkB0wt0Cd2KsfeagaZayTKksnHTYmpqmyNUZpOVNxQCpNe5bvvvou+ffvCw8MDHh4eiIuLw7///W+TO7F+/XpERkbC3d0d8fHxOHDgQKvnbty4ESNHjoS/vz/8/f2RkJDQ7HydTofU1FR07doVHh4eSEhIwJkzZ0zuHxGRwxGTQKttaDmBVj+VE9JH+N74gtigNh5dCogW9sC69L0wAhQYKxw/8b/me0pJ2S1dyrlX8oDv1gG7/w7sWSN8/26d6XtwdeR3J9aVPGELjQt7hd/dntWt9/mWnsDdi4Cp/wEmbQJ+9zdg+ILWg5+2dndviX5p+5gUu8vTsSTJI0Dr1q3D0qVLMWfOHAwfPhwA8N1332HmzJkoKyvDggULJLW3bds2JCcnIysrC/Hx8cjIyEBiYiLy8vIQHBzc7PycnBxMnToVw4YNg7u7O1avXo2xY8fi+PHjCA8PBwCsWbMGr7/+OjZv3oyoqCgsXboUiYmJOHHiBNzd7XAvFiIic7NUgT5TawZJmS6Teq7UXJ22RossnXzctM9iixtKyS/Sb27aoBZei5NMaUkleTPUqKgorFixAtOmTTM6vnnzZixfvlxyjlB8fDwGDx6MzMxMAIBWq0VERATmzp2LJUuWtPt4jUYDf39/ZGZmYtq0adDpdAgLC8PChQvx3HPPAQAqKioQEhKCd955B1OmTGm3TW6GSkR2r70pH61WGFHQr+pqnKqg0wmJzmH9hJEEKRfH3WnCruGXvgc8AwDIbgZAvhHC8+i0wm7hkzYJo0itTZdVFACegcYX/NYCmsoi43P1uTpiNiJtXL1aTHDV+HcXGAtczv2t3WHCdJGpvztT+yyFubfN6AgbbJxq0c1Qi4qKMGzYsGbHhw0bhqKiIkltqdVqHDp0CCkpN6tKyuVyJCQkIDc3V1QbNTU1qK+vR0BAAAAhSbu4uBgJCQmGc3x9fREfH4/c3NwWA6C6ujrU1dUZbqtUKkmvg4jIqsRcxE1d1dUeKSMkCjdpydiA+OTj716VPhIldrTIHoobmlJx2xLbZphKH4hd2CsEYuoq2wVirTCpDtD27dvx17/+1ej4tm3bEBsbK6mtsrIyaDQahISEGB0PCQnBqVOnRLWxePFihIWFGQKe4uJiQxtN29Tf11RaWhpWrFghqe9ERO2Smpgr5nwpycdSV3WJIWV59i/bgboK8QnFgPhz3f3EFwq8cQ3wDpG2+aetixtKrbjdNNC01co1wL4CsTZIDoBWrFiByZMn49tvvzXkAH3//ffIzs7G9u3bzd7BtqSnp2Pr1q3IycnpUG5PSkoKkpOTDbdVKhUiIpyo2BcRmZ/UJeLtnS9lw9KmS9vNWaAPMB4huXpGGEVRegLqauPRpWMfSa9mLPZcKSNRP/9HOC515MWWxQ2lVtw2ddWfOdlTCQERJAdAjzzyCPbv349XX30Vn3zyCQDg9ttvx4EDBzBgwABJbQUFBUGhUKCkpMToeElJCUJDQ9t87Nq1a5Geno5du3YhLi7OcFz/uJKSEnTt2tWozf79+7fYlpubG9zc3CT1nYioVVKXiIs5/9hHpi/PNmeBPj0xo0umJBSLPVfKSFR9nXBBNmXkxVbFDaVW3LbUthlSWLOEgBmYVAdo4MCBeO+99zr85EqlEgMHDkR2djYefvhhAEISdHZ2NubMmdPq49asWYNVq1bhq6++wqBBg4zui4qKQmhoKLKzsw0Bj0qlwv79+zFr1qwO95mIqE1Scl5kcvGjOjqdfVzkGmtvhMSUasZituPQnyt2JMo/yn72OrNUfpGlVv1JZW//R9sgKgBSqVSGbOr2EoSlrppKTk7G9OnTMWjQIAwZMgQZGRmorq5GUlISAGDatGkIDw9HWloaAGD16tVITU3F+++/j8jISENej7e3N7y9vSGTyTB//nysXLkSsbGxhmXwYWFhhiCLiMhipExFuPuJ/8T86LvCcXu4yDXW3giJ2CBFf8GXmrgtNs/Jnjb/tER+kaW3zRDDGiUEzEhUAOTv74+ioiIEBwfDz8+vxcrPOp0OMpkMGo1GUgcmT56MK1euIDU1FcXFxejfvz927txpSGLOz8+HvNF/9g0bNkCtVmPixIlG7SxbtgzLly8HADz//POorq7GM888g+vXr2PEiBHYuXMnawARkeVJ/QQs9nxNHXDL7dJGSOyFlGRsUxK3xeTqSA3ELM3c+UXW2DajPdbYv8yMRNUB2rNnD4YPHw4XF5dmG6A2NWrUKLN1zlZYB4iIWtXeSq2ys0JVX8Mn4H3C8aafgEctFrYduJ4v7vzf/c14KXfN1ZZHSOLtY4VNi6SsirPUJqstJZvfclvn2fyzpTpAwb2s+/paLDcQdzMQs+D/USnXb8mFEPPz8xEREdFsFEin0+Hy5cvo3r279B7bGQZARE5G7MVWahE9MQUITSlY2Nkv4pbWWXew17NBAcJmbBSIWbQQYlRUlGE6rLHy8nJERUVJngIjIrIpscvVxa7sklqA0JSChZZY2u5MLLEqzp64utt8hZUj7DIvOQDS5/o0VVVVxRwbInIsYoIa/yjp9Xek5rGYkvfS2S/i5PjsfJd50QGQvlCgTCbD0qVL4enpabhPo9Fg//79rdbZISKyK1KKCmoapFUz1n/yljpKw1EdIqsSHQD99NNPAIQRoKNHj0KpVBruUyqV6Nevn2HzUSIiuyalYFvUSNNrm0gdpeGoDpHViA6Adu/eDQBISkrCa6+9xuRgInJsYoOaflOF0RgHqW1CROJIzgHKyMhAQ0NDs+Pl5eVwcXFhYERE9qGtlT5SCrZ5+AuPdcT6O0TUKskB0JQpUzBu3Dj8+c9/Njq+fft27NixA1988YXZOkdEZJL2VnY1LdjWVlCjD5ykrtQicnYuSmBMiq170SrJf6379+/HmDFjmh0fPXo09u/fb5ZOERGZTL+yq+gXwDNASCz2DBBu78sS7gduBjWegUJQU6sSpsRqVcLtpkGNfqVW1zhhae/Vs8L3sH72XXyQiFokeQSorq6uxSmw+vp63LhxwyydIiJqpr3idVJWdo18TnisKcvVuVKLqFOQHAANGTIEb775Jt544w2j41lZWRg4cKDZOkZEZCCmWKGUlV1xk2+utpIa1HClFlGnIDkAWrlyJRISEvDzzz/jnnvuAQBkZ2fj4MGD+Prrr83eQSJycmIrMAPiV3apq4yPM6ghcjqSA6Dhw4cjNzcXL7/8MrZv3w4PDw/ExcXhX//6F2JjYy3RRyJyVvW14iswN13Z5daleXv6lV1Kb6u+DCKyP5IDIADo378/tmzZYu6+EBEZ27VMWgXmxiu73H2bbyzaeGUXETk1kwIgvdraWqjVxpVPWQeIiMxGagVmLlcnIpEkB0A1NTV4/vnnsX37dly9erXZ/dwNnojMZuhscVNajSswm7KxKBE5HckB0KJFi7B7925s2LABjz/+ONavX4+CggL885//RHp6uiX6SETOSuyUVtMKzFyuTkTtkBwAffrpp3j33XcxevRoJCUlYeTIkYiJiUGPHj2wZcsWPPbYY5boJxE5o45MaXFlFxG1QfLHofLyckRHC5+2fHx8UF5eDgAYMWIEvv32W/P2joiIFZiJyAIkjwBFR0fjwoUL6N69O3r16oXt27djyJAh+PTTT+Hn52eBLhJRp9VedWc9TmkRkZlJDoCSkpLw888/Y9SoUViyZAnGjRuHzMxM1NfXY926dZboIxF1RmKqOzfGKS0iMiOZTqfTdaSBS5cu4dChQ4iJiUFcXJy5+mVTKpUKvr6+qKio4LJ+IqnEjOq0Vt25okDYnPQuTm0RkXRSrt+SRoDq6+tx3333ISsry1D1uUePHujRg5/KiAjtj+pI2bB02DzA1d2mL4eIOi9JAZCrqyt++eUXS/WFiOxVR0Z1Gu/Zdewj8RuW6qs7ExFZgOQcoD/96U/417/+xZo/RM5C6qhOUM+b9XpcvYxHdXQ66dWdiYgsQHIA1NDQgLfffhu7du3CwIED4eXlZXQ/E6GJOpGOjur4RhiP6jz6rnBcanVnIiIzkxwAHTt2DHfeeScA4PTp00b3yRpXaSUix2WpUR1NHXDL7aZVdyYiMiPRAdD58+cRFRWF3bt3W7I/RGQP9r5imVEdpTc3LCUiuyD6HSY2NhZXrlwx3J48eTJKSkos0ikisgNiRnW0DcKojn7PrsoiQCYH5IqbXzK5MKoT3EsIngBWdyYimxM9AtS0XNAXX3yBtLQ0s3eIiOzAyIXA9XzLjuqwujMR2ZDkHCAicgIuSvE7sTcd1dGvGKssFFaMhfUTgh9WdyYiOyL6o5ZMJmuW5GyOpOf169cjMjIS7u7uiI+Px4EDB1o99/jx43jkkUcQGRkJmUyGjIyMZudoNBosXboUUVFR8PDwwK233oqXXnqp2QgWEbVDP6rjGSiM6tSqhCmvWpVwu7VRnRHJwJi/AqOeF74PX8ApLSKyO5KmwJ544gm4ubkBAGprazFz5sxmy+A/+ugj0U++bds2JCcnIysrC/Hx8cjIyEBiYiLy8vIQHBzc7PyamhpER0dj0qRJWLBgQYttrl69Ghs2bMDmzZvRp08f/Pjjj0hKSoKvry/mzZsnum9EBI7qEFGnJXovsKSkJFENbtq0SfSTx8fHY/DgwcjMzAQAaLVaREREYO7cuViyZEmbj42MjMT8+fMxf/58o+O///3vERISgn/961+GY4888gg8PDzw3nvvieoX9wIjakLsru1ERDZkkb3ApAQ2YqjVahw6dAgpKSmGY3K5HAkJCcjNzTW53WHDhuHNN9/E6dOncdttt+Hnn3/Gd99912aBxrq6OtTV1Rluq1Qqk5+fqFPiqA4RdTI2S4IuKyuDRqNBSEiI0fGQkBCcOnXK5HaXLFkClUqFXr16QaFQQKPRYNWqVXjsscdafUxaWhpWrFhh8nMSERGRY+l0Y9jbt2/Hli1b8P777+Pw4cPYvHkz1q5di82bN7f6mJSUFFRUVBi+Ll++bMUeExERkbXZbAQoKCgICoWiWTHFkpIShIaGmtzuokWLsGTJEkyZMgUA0LdvX1y6dAlpaWmYPn16i49xc3MzJHcTERFR52ezESClUomBAwciOzvbcEyr1SI7OxtDhw41ud2amhrImyRnKhQKaLVak9sk6nS0WuDaJaDkuPCdfx9E5GRsWggxOTkZ06dPx6BBgzBkyBBkZGSgurrasOJs2rRpCA8PN1ScVqvVOHHihOHngoICHDlyBN7e3oiJiQEAjBs3DqtWrUL37t3Rp08f/PTTT1i3bh2efPJJ27xIImsRu1LrSt7NZe0NtcKy9qBYoeYP6/UQkZMQvQzeUjIzM/Hyyy+juLgY/fv3x+uvv474+HgAwOjRoxEZGYl33nkHAHDx4kVERUU1a2PUqFHIyckBAFRWVmLp0qX4+OOPUVpairCwMEydOhWpqalQKpWi+sRl8ORwxAY1V/KAfVnC5qa+4cLO7vXVwhYWnoFCzR8GQUTkoKRcv20eANkjBkDkUMQGNfW1wPevAcVHgaCezbe2KMsTNicdNg9wdbfd6yEiMpFF6gARkZ1pUAM6LXD8E6D6inFQ4+olbDRalgec+J8Q1OxaBlzYC7h6CMFSxW+rHX0jhMc11AHl54X77l9ts5dFRGQNDICIHNXeV4Da6+KDmga1sJeXwrXl9hSuQF2lcB4RUSfHAIjIkUkJaobOFhKkPQIAty7Nz61TATeuCecREXVyDICIHNXIhcD1fPFBTUC0kAtU9Avg7ts8B6iyWNjkNCDaeq+BiMhGOl0laKJOpa16PS7Km0FNZREgkwNyxc0vmVwIaoJ7CefJ5cKqMM9A4MopoFYljB7VqoTbXoHCDu/c5JSInABHgIjslZil7fqgpqJACGJ8wgGlJ6CuAVQFzYOaW3oKq8L07VYWCu2G9RPO4xJ4InISXAbfAi6DJ5uTWq+npWDplttaD2rEFk0kInIgXAZP5KikLG0f+ZzxyE5grPigRi4H/HtY5SUREdkjBkBE9kTK0va4ycZBDIMaIiLROOZNZG/ELG3XNggjPUREZBKOABHZEylL25Xe1u8fEVEnwREgInsiZWm7b4Ste0tE5LAYABHZG9brISKyOE6BEVmT2OXnrNdDRGRRDICIrEVMYcPGpC5tJyIi0RgAEVlDa4UNi34Rihs2LWyox6XtREQWwY+SRJZWX3uzsGFgrBD8ADcLG1ZfEQob1tfatJtERM6EI0BElrZrmbjChjVXgftX27avREROgiNARJYmtrBhg9q6/SIicmIcASKytKGzxRU2HDrb+n0jInJSHAEisjSxhQ0Dom3dUyIip8EAiMjSWNiQiMju8B2XyBr0hQ27xgE3yoGrZ4XvYf2A+FaWwBMRkcUwB4ioo6RUd2ZhQyIiu8AAiKgjpFZ3ZmFDIiK7wACIyFSmVncmIiKb49g7kVQNalZ3JiJycBwBIpJq7ytA7XVWdyYicmAcASIyBas7ExE5NI4AEUk1ciFwPZ/VnYmIHBhHgIhaotUC1y4BJceF71rtzftclKzuTETk4GweAK1fvx6RkZFwd3dHfHw8Dhw40Oq5x48fxyOPPILIyEjIZDJkZGS0eF5BQQH+9Kc/ITAwEB4eHujbty9+/PFHC70C6nSu5AHfrQN2/x3Ys0b4/t064bgeqzsTETk0m747b9u2DcnJyVi2bBkOHz6Mfv36ITExEaWlpS2eX1NTg+joaKSnpyM0NLTFc65du4bhw4fD1dUVX375JU6cOIFXXnkF/v7+lnwp1Fnol7YX/QJ4BggrujwDhNv7soyDIFZ3JiJyWDKdTqez1ZPHx8dj8ODByMzMBABotVpERERg7ty5WLJkSZuPjYyMxPz58zF//nyj40uWLMH333+PvXv3mtwvlUoFX19fVFRUwMfHx+R2yIE0qAGdFvj+NaD4KBDUU1jNpafTAWV5QrAz8jnjkR2xlaCJiMiipFy/bZYErVarcejQIaSkpBiOyeVyJCQkIDc31+R2d+zYgcTEREyaNAl79uxBeHg4/vznP+Ppp59u9TF1dXWoq6sz3FapVCY/PzkoKUvb4yYbV3NmdWciIodjs4+pZWVl0Gg0CAkJMToeEhKC4uJik9s9f/48NmzYgNjYWHz11VeYNWsW5s2bh82bN7f6mLS0NPj6+hq+IiIiTH5+cmBil7arq6zbLyIiMrtOtwxeq9Vi0KBB+Pvf/w4AGDBgAI4dO4asrCxMnz69xcekpKQgOTnZcFulUjEIcjZSlrYrva3fPyIiMiubjQAFBQVBoVCgpKTE6HhJSUmrCc5idO3aFb179zY6dvvttyM/P7/Vx7i5ucHHx8foi5yMlKXtvgyOiYgcnc0CIKVSiYEDByI7O9twTKvVIjs7G0OHDjW53eHDhyMvL8/o2OnTp9GjB3M0qB1c2k5E5DRsOgWWnJyM6dOnY9CgQRgyZAgyMjJQXV2NpKQkAMC0adMQHh6OtLQ0AELi9IkTJww/FxQU4MiRI/D29kZMTAwAYMGCBRg2bBj+/ve/49FHH8WBAwfw5ptv4s0337TNiyTHol/afvJToOwMUFkIuLgLS9t7/Z5L24mIOgmbLoMHgMzMTLz88ssoLi5G//798frrryM+Ph4AMHr0aERGRuKdd94BAFy8eBFRUVHN2hg1ahRycnIMtz/77DOkpKTgzJkziIqKQnJycpurwJriMvhOSspydS5tJyJyOFKu3zYPgOwRA6BO6ErezVGdhlphVCcoVpjy4qgOEVGn4BB1gIisRl/dueYq4BsOuHoB9dVCdeeKAmHKi0EQEZFT4Zg+dV4NaqC+Fjj+CVB9RdjWwtVLuM/VS7hdfQU48T/jzU6JiKjT4wgQdV5NqzvfKG9+TmvVnYmIqFPjCBB1bo2rO+t0QrHD6/nCzwCrOxMROSmOAFHnxerORETUCo4AkePSaoFrl4CS48L3pnk8rO5MRESt4AgQOSaxy9r11Z0rCoRqzj7hgNITUNcAqgJWdyYiclIMgMjxSF3WzurORETUBAMgciyNl7UH9QRkMuG4fll7WZ6wrH3YPMDV/ebjbukp3M/qzkREBAZAZG/a24Ji1zJxy9prrgL3rza+Ty7nUnciIgLAAIjsiZi8nqbL2isuC8d9I4TRIIUrUFcpnEdERNQKBkBkH8Tm9QydLW5Z+9DZ1n8NRETkMJgAQbYlZbuK+lrxy9oDom36soiIyL5xBIhsq+l2FTVXm09rNc3r4bJ2IiLqIF4lyPYa5/W0RL9dhT6vR7+svWuckAh99azwPawfEM+d3YmIqH0cASLbkrJdReO8Hi5rJyKiDmAARLbVeLuKol8Ad9+btX0AYaVXZbEwutM0r4fL2omIyEQMgMjy2qvtw+0qiIjIyhgAkWWJ3bOL21UQEZEVMQAiyzFlzy7m9RARkRXwykLmJ6W2j1Zr/Fh9Xk9IH+E7gx8iIrIAjgCR+Ump7RM3mYnMRERkdfx4TZYhtraPusq6/SIiIgJHgMgSpNT2UXpbv39EROT0GACRoL2l6lLOl1LbxzfCsq+LiIioBQyASPxSdSnns7YPERHZMQZAzk7qUnUp57O2DxER2SkGQM6s8VL1oJ43p6n0S9XL8oSl6sPmATI5oNOKO3/kczdHdljbh4iI7BADIGe2a5m4peo1VwF3P9OXtnPPLiIisjP8GO7MxC5Vb1BLO59L24mIyM7ZRQC0fv16REZGwt3dHfHx8Thw4ECr5x4/fhyPPPIIIiMjIZPJkJGR0Wbb6enpkMlkmD9/vnk77Qi0WuDaJaDkuPC9adXlobOBrv2A0H5Aj+FA3BThq8dwoPswIDROuH/obGFpu9jzubSdiIjsnM2nwLZt24bk5GRkZWUhPj4eGRkZSExMRF5eHoKDg5udX1NTg+joaEyaNAkLFixos+2DBw/in//8J+Li4izVffslZqWW2KXqAdHCNBaXthMRUSdh8xGgdevW4emnn0ZSUhJ69+6NrKwseHp64u23327x/MGDB+Pll1/GlClT4Obm1mq7VVVVeOyxx7Bx40b4+/tbqvv2Sb9Sq+gXwDNASEL2DBBu78sS7gduLlX3DBSWqteqhCmsWpVwu+lSdannExER2SmbXqnUajUOHTqEhIQEwzG5XI6EhATk5uZ2qO3Zs2fjwQcfNGq7NXV1dVCpVEZfDknKJqT1tcJx/VL1rnHAjXLg6lnhe1g/IH5m86XqUs8nIiKyQzadAisrK4NGo0FISIjR8ZCQEJw6dcrkdrdu3YrDhw/j4MGDos5PS0vDihUrTH4+uyFlE9Kaq8D9q4X7pC5V59J2IiJycDbPATK3y5cv4y9/+Qu++eYbuLu7i3pMSkoKkpOTDbdVKhUiIhw0j0XMSq26ypsru/SkLlXn0nYiInJgNg2AgoKCoFAoUFJSYnS8pKQEoaGhJrV56NAhlJaW4s477zQc02g0+Pbbb5GZmYm6ujooFAqjx7i5ubWZT2RR5tyDS8ompENnW+b1EBEROQCbBkBKpRIDBw5EdnY2Hn74YQCAVqtFdnY25syZY1Kb99xzD44ePWp0LCkpCb169cLixYubBT82Ze49uKRsQhoQbb3XSUREZGdsPgWWnJyM6dOnY9CgQRgyZAgyMjJQXV2NpKQkAMC0adMQHh6OtLQ0AELi9IkTJww/FxQU4MiRI/D29kZMTAy6dOmCO+64w+g5vLy8EBgY2Oy4TVlqDy5uQkpERNQumwdAkydPxpUrV5Camori4mL0798fO3fuNCRG5+fnQ97oYl1YWIgBAwYYbq9duxZr167FqFGjkJOTY+3um8bSe3BxE1IiIqI2yXQ6nc7WnbA3KpUKvr6+qKiogI+Pj/mf4MvFN1dqKZQtr9SqvwFEjWy+B1db50/9j3FistT8IiIiIgcm5fpt8xEgpyR1pZbY85vuwcWVWkRERC1iAGQLQ2eLX6nl1138yi7uwUVERCQK50NsQb9Sq7JIyPGRK25+yeTCSq3gXsJ5jVd2tXc+9+AiIiIShQGQLXAPLiIiIptiEnQLLJ4ErddSXZ9bbmt9pZbU84mIiJwIk6AdBffgIiIisgkGQLbGPbiIiIisjkMHRERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERERkdNhAEREREROhwEQEREROR0GQEREROR0GAARERGR0+FWGC3Q7w+rUqls3BMiIiISS3/dFrPPOwOgFlRWVgIAIiIibNwTIiIikqqyshK+vr5tniPTiQmTnIxWq0VhYSG6dOkCmUxm9vYHDx6MgwcPmr1daz+Xuds2V3sdaUelUiEiIgKXL1+Gj49Ph/tC5mfNvx974Wiv2R76a+0+8L1WGku91+p0OlRWViIsLAxyedtZPhwBaoFcLke3bt0s1r5CobDaxdWSz2Xuts3Vnjna8fHxYQBkp6z592MvHO0120N/rd0HvteaxhLvte2N/OgxCdoGZs+e3Smey9xtm6s9a/5+yfqc8d/X0V6zPfTX2n3ge63j4RQYUSMqlQq+vr6oqKiw+SdYIqLOyh7eazkCRNSIm5sbli1bBjc3N1t3hYio07KH91qOABEREZHT4QgQEREROR0GQEREROR0GAARERGR02EARERERE6HARARERE5HQZARCJ99tln6NmzJ2JjY/HWW2/ZujtERJ3ShAkT4O/vj4kTJ1r0ebgMnkiEhoYG9O7dG7t374avry8GDhyIH374AYGBgbbuGhFRp5KTk4PKykps3rwZH3zwgcWehyNARCIcOHAAffr0QXh4OLy9vXH//ffj66+/tnW3iIg6ndGjR6NLly4Wfx4GQOQUvv32W4wbNw5hYWGQyWT45JNPmp2zfv16REZGwt3dHfHx8Thw4IDhvsLCQoSHhxtuh4eHo6CgwBpdJyJyGB19r7UmBkDkFKqrq9GvXz+sX7++xfu3bduG5ORkLFu2DIcPH0a/fv2QmJiI0tJSK/eUiMhxOdJ7LQMgcgr3338/Vq5ciQkTJrR4/7p16/D0008jKSkJvXv3RlZWFjw9PfH2228DAMLCwoxGfAoKChAWFmaVvhMROYqOvtdaEwMgcnpqtRqHDh1CQkKC4ZhcLkdCQgJyc3MBAEOGDMGxY8dQUFCAqqoqfPnll0hMTLRVl4mIHI6Y91prcrH6MxLZmbKyMmg0GoSEhBgdDwkJwalTpwAALi4ueOWVVzBmzBhotVo8//zzXAFGRCSBmPdaAEhISMDPP/+M6upqdOvWDf/9738xdOhQs/eHARCRSOPHj8f48eNt3Q0iok5t165dVnkeToGR0wsKCoJCoUBJSYnR8ZKSEoSGhtqoV0REnYu9vdcyACKnp1QqMXDgQGRnZxuOabVaZGdnW2TYlYjIGdnbey2nwMgpVFVV4ezZs4bbFy5cwJEjRxAQEIDu3bsjOTkZ06dPx6BBgzBkyBBkZGSguroaSUlJNuw1EZFjcaT3Wm6FQU4hJycHY8aMaXZ8+vTpeOeddwAAmZmZePnll1FcXIz+/fvj9ddfR3x8vJV7SkTkuBzpvZYBEBERETkd5gARERGR02EARERERE6HARARERE5HQZARERE5HQYABEREZHTYQBERERETocBEBERETkdBkBERETkdBgAERG14urVqwgODsbFixcBCFVuZTIZrl+/btHnXbJkCebOnWvR5yBydgyAiKjDnnjiCchksmZf9913n6271iGrVq3CQw89hMjIyA63VVJSAldXV2zdurXF+2fMmIE777wTAPDcc89h8+bNOH/+fIefl4haxgCIiMzivvvuQ1FRkdHXf/7zH4s+p1qttljbNTU1+Ne//oUZM2aYpb2QkBA8+OCDePvtt5vdV11dje3btxueKygoCImJidiwYYNZnpuImmMARERm4ebmhtDQUKMvf39/w/0ymQxvvfUWJkyYAE9PT8TGxmLHjh1GbRw7dgz3338/vL29ERISgscffxxlZWWG+0ePHo05c+Zg/vz5hiABAHbs2IHY2Fi4u7tjzJgx2Lx5s2Gqqrq6Gj4+Pvjggw+MnuuTTz6Bl5cXKisrW3w9X3zxBdzc3HDXXXe1+pprampw//33Y/jw4YZpsbfeegu333473N3d0atXL/zjH/8wnD9jxgxkZ2cjPz/fqJ3//ve/aGhowGOPPWY4Nm7cuFZHi4io4xgAEZHVrFixAo8++ih++eUXPPDAA3jsscdQXl4OALh+/Tp+97vfYcCAAfjxxx+xc+dOlJSU4NFHHzVqY/PmzVAqlfj++++RlZWFCxcuYOLEiXj44Yfx888/49lnn8ULL7xgON/LywtTpkzBpk2bjNrZtGkTJk6ciC5durTY171792LgwIGtvpbr16/j3nvvhVarxTfffAM/Pz9s2bIFqampWLVqFU6ePIm///3vWLp0KTZv3gwAeOCBBxASEmLYFbtxX/7whz/Az8/PcGzIkCH49ddfDflHRGRmOiKiDpo+fbpOoVDovLy8jL5WrVplOAeA7m9/+5vhdlVVlQ6A7ssvv9TpdDrdSy+9pBs7dqxRu5cvX9YB0OXl5el0Op1u1KhRugEDBhids3jxYt0dd9xhdOyFF17QAdBdu3ZNp9PpdPv379cpFApdYWGhTqfT6UpKSnQuLi66nJycVl/TQw89pHvyySeNju3evVsHQHfy5EldXFyc7pFHHtHV1dUZ7r/11lt177//vtFjXnrpJd3QoUMNt5csWaKLiorSabVanU6n0509e1Ynk8l0u3btMnpcRUWFDkCbfSQi03EEiIjMYsyYMThy5IjR18yZM43OiYuLM/zs5eUFHx8flJaWAgB+/vln7N69G97e3oavXr16AQDOnTtneFzTUZm8vDwMHjzY6NiQIUOa3e7Tp49hJOa9995Djx49cPfdd7f6em7cuAF3d/cW77v33nsRExODbdu2QalUAhDyeM6dO4cZM2YYvYaVK1ca9f/JJ5/EhQsXsHv3bgDC6E9kZCR+97vfGT2Hh4cHAGGajYjMz8XWHSCizsHLywsxMTFtnuPq6mp0WyaTQavVAgCqqqowbtw4rF69utnjunbtavQ8pnjqqaewfv16LFmyBJs2bUJSUhJkMlmr5wcFBeHatWst3vfggw/iww8/xIkTJ9C3b19D/wFg48aNiI+PNzpfoVAYfo6NjcXIkSOxadMmjB49Gu+++y6efvrpZn3RTw3ecsst0l8sEbWLARAR2YU777wTH374ISIjI+HiIv6tqWfPnvjiiy+Mjh08eLDZeX/605/w/PPP4/XXX8eJEycwffr0NtsdMGAA3nvvvRbvS09Ph7e3N+655x7k5OSgd+/eCAkJQVhYGM6fP2+UzNySGTNmYNasWRg/fjwKCgrwxBNPNDvn2LFjcHV1RZ8+fdpsi4hMwykwIjKLuro6FBcXG301XsHVntmzZ6O8vBxTp07FwYMHce7cOXz11VdISkqCRqNp9XHPPvssTp06hcWLF+P06dPYvn27Icm48aiKv78//vCHP2DRokUYO3YsunXr1mZ/EhMTcfz48VZHgdauXYvHHnsMv/vd73Dq1CkAQpJ3WloaXn/9dZw+fRpHjx7Fpk2bsG7dOqPHTpo0Ca6urnj22WcxduxYRERENGt/7969GDlypGEqjIjMiwEQEZnFzp070bVrV6OvESNGiH58WFgYvv/+e2g0GowdOxZ9+/bF/Pnz4efnB7m89beqqKgofPDBB/joo48QFxeHDRs2GFaBubm5GZ07Y8YMqNVqPPnkk+32p2/fvrjzzjuxffv2Vs959dVX8eijj+J3v/sdTp8+jaeeegpvvfUWNm3ahL59+2LUqFF45513EBUVZfQ4T09PTJkyBdeuXWu1L1u3bsXTTz/dbj+JyDQynU6ns3UniIjMadWqVcjKysLly5eNjv/73//GggULUFhYaEhebsvnn3+ORYsW4dixY20GYeb25ZdfYuHChfjll18kTQcSkXj8yyIih/ePf/wDgwcPRmBgIL7//nu8/PLLmDNnjuH+mpoaFBUVIT09Hc8++6yo4AcQkp3PnDmDgoKCFqepLKW6uhqbNm1i8ENkQRwBIiKHt2DBAmzbtg3l5eXo3r07Hn/8caSkpBgCiOXLl2PVqlW4++678b///Q/e3t427jER2RoDICIiInI6TIImIiIip8MAiIiIiJwOAyAiIiJyOgyAiIiIyOkwACIiIiKnwwCIiIiInA4DICIiInI6DICIiIjI6TAAIiIiIqfz/032DyTdwB9uAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional Covariance\");" + ] + }, + { + "cell_type": "markdown", + "id": "5e8e484f", + "metadata": { + "id": "5e8e484f" + }, + "source": [ + "This should largely be equivalent to the RMS spectrum" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "c85620f9", + "metadata": { + "id": "c85620f9", + "outputId": "f24abf3e-fc16-4b0a-91cd-9c3fa5e61be2" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:09<00:00, 4.21it/s]\n", + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:09<00:00, 4.33it/s]\n" + ] + } + ], + "source": [ + "rmsspec_01_1 = RmsSpectrum(\n", + " events,\n", + " freq_interval=[0.1, 1],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")\n", + "rmsspec_3_30 = RmsSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "658f5d53", + "metadata": { + "id": "658f5d53", + "outputId": "db261231-2c52-4840-ee73-1d17f8641d7c" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAG1CAYAAAAC+gv1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjbElEQVR4nOzdeXxU5dn4/885s2afJBBCYiALW0AQAUHcFRS17tatKIj+sC7YVmrd6oJLC25IVSotdakVHrXftvax+rCIS21FQRBFCSgECJJ9ncwkM3Nmzvn9MWZgSCAzIcMk4Xq/XnlJZu45c88ImSv3fV3XrRiGYSCEEEIIIULUeE9ACCGEEKKnkQBJCCGEEOIAEiAJIYQQQhxAAiQhhBBCiANIgCSEEEIIcQAJkIQQQgghDiABkhBCCCHEASRAEkIIIYQ4gDneE+itdF2nvLyclJQUFEWJ93SEEEIIEQHDMGhubiYnJwdVPfg6kQRIXVReXk5eXl68pyGEEEKILtizZw/HHHPMQe+XAKmLUlJSgOAbnJqaGufZCCGEECISTqeTvLy80Of4wUiA1EVt22qpqakSIAkhhBC9TGfpMZKkLYQQQghxAAmQhBBCCCEOIAGSEEIIIcQBJEASQgghhDiABEhCCCGEEAeQAEkIIYQQ4gASIAkhhBBCHEACJCGEEEKIA0iAJIQQQghxAAmQhBBCCCEOIAGSEEIIIcQBJEASQgghhDiABEhCCCGEEAcwx3sCQghxNDN0Ha28At3tRk1KwpIzEEXt+HdX3eOh+umFGJpGxswZWAcPPuhYIcThkQBJCCHixLtjB86VK3GuWAmBAPbiYmxDhpBy9lRsRUUdjnV/9hkEAugu10HHCtGdDJ+P2j/8EYB+P70JxWqN84yODAmQhBAiDrw7dlD/l78QqKtDTUgAsxnV4cBTsgWtsoKM664LBT7RjBVCdI8esTa7ePFi8vPzsdvtTJo0iXXr1h107N///ncmTJiAw+EgKSmJsWPH8pe//CVsjGEYPPjggwwcOJCEhASmTp3Kd999Fzamvr6e6dOnk5qaisPh4MYbb8TlcsXk9QkhRBvD50P3eHCuXEmgrg5Lfj6K2YwCmBITsOQXEKirw7lyFbrHE9XYnsjQdXzf78Wz7Vt83+/F0PV4T0lEydB1Ak4n/ro6fHuPnv+HcV9BeuONN5g7dy5Llixh0qRJLFq0iGnTprFt2zaysrLajc/IyODXv/41I0aMwGq18q9//YtZs2aRlZXFtGnTAHjiiSd49tln+fOf/0xBQQEPPPAA06ZNY8uWLdjtdgCmT59ORUUFq1evRtM0Zs2axU033cTy5cuP6OsXQsRHNLk/3an2D38k4HTi/uwz1IQE/PUNaBUVALRs2Aiqiu714t1dRqChASDisdm/vq/L84omvynS9y6aLUTRMx3NW7uKYRhGPCcwadIkTjjhBJ5//nkAdF0nLy+P22+/nXvuuSeia4wbN44f/ehHPProoxiGQU5ODr/85S+58847AWhqamLAgAG88sorXH311ZSUlDBy5EjWr1/PhAkTAFixYgXnn38+33//PTk5OZ0+p9PpJC0tjaamJlJTU7v46oUQ8dCVD+7uSqauee55/HV1tKxfj+pwoEAo6LEMHAiqiqHr6I2NJJ5wAkDEYwfOeyjm70ekY/ffFtSqa8Bsxl5cTKCmGlN6umwL9gJ99f9hpJ/fcV1B8vl8bNiwgXvvvTd0m6qqTJ06lbVr13b6eMMweP/999m2bRuPP/44ADt37qSyspKpU6eGxqWlpTFp0iTWrl3L1Vdfzdq1a3E4HKHgCGDq1Kmoqspnn33GpZde2u65vF4vXq839L3T6ezSaxZCxE4kQUxX8nm6M5m6309vwrd3L7rLhepwYEpMCK4GAYnjx4FqIuByoTc2kjFzBkBUY/cXyapQLHKhDtwW9NcHV8JMiQmo+QVopTtwrlxF5g2zUH9Y1e/N4rUaGSuGz4eh60fV/8OOxDVAqq2tJRAIMGDAgLDbBwwYwNatWw/6uKamJnJzc/F6vZhMJn7/+99z9tlnA1BZWRm6xoHXbLuvsrKy3fad2WwmIyMjNOZA8+fP5+GHH47uBQohjphIgpiufHDHIoCwDh6MbcgQPCVbUPMLoO3DVDWBqhKoqcY+chTWwYMBohp74PtxsEAt2g9BIOKx1U8vPCLbgtEEJrEKYvriNmK028CH8/+wJ4t7DlJXpKSksGnTJlwuF2vWrGHu3LkUFhZyxhlnxOw57733XubOnRv63ul0kpeXF7PnE6I3ifcHVaSBSTQf3AN+dWdMAoh+N/8URVVJOXsqWmUFWukOdK8XxWIh4HL9sH2RQcrUKaH3JZqxkb4fznf/L2a5UIamQSAA5o4/YhSLBcPtDo47QKS5ULHYFoxWX64uPJz/h31FXAOkfv36YTKZqKqqCru9qqqK7Ozsgz5OVVWGDBkCwNixYykpKWH+/PmcccYZocdVVVUxcODAsGuOHTsWgOzsbKqrq8Ou6ff7qa+vP+jz2mw2bDZb1K9RiL4u1h9Uhwqool0FieaHfqySqdMuugjrMbnYiorIuO46mle/h5JYiuH1oTc7sY8cRcrUKWHvR6Rjo3k/DMOI/kMwwrEZM2d0aVsw0oTgeLdIiOZ9bguIe5pD9TbqyjZwXxTXAMlqtTJ+/HjWrFnDJZdcAgSTtNesWcOcOXMivo6u66H8oIKCArKzs1mzZk0oIHI6nXz22WfccsstAEyePJnGxkY2bNjA+PHjAXj//ffRdZ1JkyZ13wsUoo+L9QdVZwFVtEFMNB/czn+9E5MAQne7Q7e1bbdp325Ab6xDdWRiGTYepYNr2IqKsBYUHHL1LZr345jfLQKiy2+KdGy0W4iR/v2w5uXFbFswmjyaaN7ntoD4SIi2EjHgdGJoGr69e8PGKlZrl/4f9jVx32KbO3cuM2fOZMKECUycOJFFixbhdruZNSv4l3vGjBnk5uYyf/58IJgLNGHCBIqKivB6vbz77rv85S9/4YUXXgBAURR+8Ytf8NhjjzF06NBQmX9OTk4oCCsuLubcc89l9uzZLFmyBE3TmDNnDldffXVEFWxCHO1imb8STe4PRLcVEM0P/VglU6tJSfsmV7MNpeRtrLXfgd8DlXao/RiKL4T+w9u/FlXt9MM24vfDp2EbOiQmuVDRbCFGterl96M3Nx+RFgmdbQVH+j7vHxDHUjTl+JGMjXYbuC+Ke4B01VVXUVNTw4MPPkhlZSVjx45lxYoVoSTrsrIy1P3+B7jdbm699Va+//57EhISGDFiBK+99hpXXXVVaMxdd92F2+3mpptuorGxkVNOOYUVK1aEeiABLFu2jDlz5jBlyhRUVeXyyy/n2WefPXIvXIherP1v0PUEqvaAotP6uQdDTUD3+br0QRVV7s/s/w+toiLiICaqH/pd+C06krGWnB+2/mu2wadLoKUO0nLBkgSaGyq+gqa9cOLN7YMkXYemPeBzgTUZ0vL2PQ/RbY2oSUkxzYWKdFswmtWYpEmTYrYtuL/OVi6jfZ9jLVYruW3/D50rV+LdXRYM+BobO9wG7oviHiABzJkz56Bbah9++GHY94899hiPPfbYIa+nKAqPPPIIjzzyyEHHZGRkSFNIIQ5D2weVqvow+2uwJNQCoPhbMdQk/KZM/IFABx9UBqqqgaKjGB4MI6HLuT9pF110QBCTj4IXhUAwiEhwtA9i2n7or1iBb9d2DJeGXpOKvXgMKWefHfZDPyYBhO6HgA7fvAXuGsgcAns+Cz7hoBMhcyjUboMt/4STfgaWH36xq9kGJW9D22qT2Q79hoatNkWzNdIWqMUiF2r/8Z1tC+7/d6mzQCbt4otRkxJj2iKhuysRQwFxDMRqJXf/vClbURGZN9xAoKHxqDskuUcESEKI3iX0G3RdOWrrLkyqGb+RioEJ84B+4HOhBlow98sP/6CyGZha9+DX3CiGjim1CZLMBOzHoHsHRp37o7vd+4KYnSVo61Zibq1CMRsEtjUS8Now5Q1vtxVgS/XTb1QLafYs9JYW1EQ3lqJmlFR/u+cKBQWrVqOYDAxPC3ptBfbiY9sFVBGN/WA+eBph58dgSQiuIDXtCV6gDFAU8HuhvjR433mPR7Xa1JWtkUgDmWjHts3nUNuC0azGmBwOLDkDY7It2JXE665sQUWTJ9SZWBcStFHt9j5byn8oEiAJITp0qB/kigrWnAHYEpvxfO9EHZSD0eQLPtBsBVMGgd17sQ93Yc0ZABY7thwHnrWrUdMVUCzoigmTNRFc1QTKKrFPPrvj3J8EO60bPECAhFFDINFBwOUO276wpfrJGOqm2eXH29QfPaCgaAb2dI2UoW5s+wc+PwQbSksd1tz9go2qzdBc3uHWli3Vj7W4Gc3a/ENAFTh4QBXJWL8PdD+YLB2/+SYLeJuD4zRP1KtN0a70ACiANckPFg2s7V9X2NgIcqEiFe2qV6y2BWu6kHgd7RZULI7tiHUhwdFMAiQhRDud/iD/+GkUTyMpKTvQLH600p0YPheKGQJVPgJuHZMNUpK3o7z/MEx9mJSBLjRrAK3JjuEjuMrjg0CTGZOtlZQcN0rAB1b7vg/MLz5DTXJj9e8EdNjjhsRMAq4E7ONOxJKVGQogbMmtWC86GW3Lf9F9Bmr+OCzpKSj13+4LIKBrW1uRBlSRjD31l9BY9sMWYAZYE4MrR23zUEzgdUJrA0y+Dd57KLrVph9EtdITwfZdmE5yoaIdG23Q05VtwUiCmK4kXtuKiuh3882kXXRxt3dw7yxR/IgUEkTpUO0DehsJkIQQYSL6QQ7g92FzGGSc4KD52xa8la0YAdC9BvYBVlKGJmJL+GEV5L2HsDV8TMZoM807XHgrmzC8oOs+7JkWUgot2Oo/hPcCcN7jwQ/M8UVon/4NrboZMIHZBgEzgZ27MKWmkDKuEOW/z4RtVyktdVipBCvg/hpaDgggIPJg4+xHwYgiVwgiG3vqnZBRGAw8Kr4K3qcowbGKKbg811wJOccFx0Wz2nSAiFaFok0WjyaYimJsrPKb2sZ2FsQcTuL1oVbUunpsRyQ9w7pSjh/vvKneRAIkIY4iUTVdHDyYQF0FGF5Mqoaan49WWhrMwfj/7kBxfg8+F7aEDKxjk9Ea3OgeDdVuwZKehKI171sFWbsYdD+2rFSs/UHb60T3gZrpwJJmQcGAlvrgh7zfB4aOzb2BjPEpNJdl4K1yYmgBdA/YhwwmJU/D1rIRDCP6ACLSsR8/HV2uEEQ2dsxVkD44GCQ07YW67yD7uOBKks8Nzr2QlAkjLgh+gE2+LfLVpv11Fpz88D5HHNSp6r5gyl0DzRXB9yv7uI6DqS5U6XV3flM0Y7uS4B6JrhzbEc1qU6y7sh/NJEAS4igRTdNFk81Aqd6EuSVYmebfVBasTAs49uVg5OxbBVH6j8DaP23fkxkG1O+3CrLfh7xiS8Gaf+Dk9vuQ3y8wsdkTsI6woKXs+SGgGoglrSm4FffNW3Dlq8HHtwUQtpQOXvgBAUSkwcbmv8Ym+PK5gt/3Hx4MEtqCmObyYBCTc1wwOGoLHvZfbeo/AgpOC3+f919tahNJcPL13yMPAEddBmnHhAdTbUGhNbHrq2n7b2X+oDvzm6IVq94/0eQJdeW8wGi2EWNdun+oBpS9jQRIQhwFQr+R1tai2hRUswU1wYRnyzftmi4q/hYstkZUQ8Ovm8BQMWFG1Zux0IrudwRzMFR13ypIzVZIzf1hFaSl/SrI/h/y9rR9W0rQ8Yf8foGJgoI15YfxaZbgY9uCjYAX+hdHd+1Ig40Dc4W6K/iyJu97fP/hwYDhUDk60bzP0awKRbP6tnZxMPm+u1fTDsibilo350JB1xLcD3XtaPOEunrQb6S5UNGOjUYsktDjSQIkIfqwsG2z8t1Yktyoyh4Uv46pxoWamIFW3vzDb6Qz0SrKqS1dh6omYEobhF5ZCYA5Ozv4wdZQjS3BipqYEHyCSFdBovmQjyaJ2Zoc3bUh8rGqNfrALpLgK+2AQ65VNbjldiiRvs/RbAseuPp2qPfZbI3dVmZXxSgXCro3wT3aPKHDOSQ2ZpWIbVvOEPz3aW6feN3VM++0gMbSzUsBmD16NpaD/Z2JAwmQhOjD2rbNWj79CKu5Dr3RT8DtB0PFUJwo9bWgmWj+v3LSsr7HmqBhM5XjqQUVD7gbgxdy+kFRCNR7sfdrxpK43w/fSFZB2sZF8iFvtka+rdQWbER67WjHxir46opI3+dIA5kDV98OlSx+4m3Q9H10uVBdyZuCyFZ6oslviiZvaj8RBRARXjuarbuuHvRLzbbgyuGWfwb//w88Lvi6DlaJqHmCFZJ+X/D/Q0bhwf9uGnow8Pb7gr+8HDC2K9uCvYEESEL0ZXoAw9OK6mtAtWnoJIERzIExMGMoZlSTC7WlAb3Vh2Lzk1KgorWoaHV+DI1g6b5XD5buJ5lJKdBR/C3hzxPJKghE/iEfbWASzbW7MjYWwVdXdPY+H87q26GSxS326HOhIq3S2193JpZ3lAt1qLwpSxQf3B3N42DX/iHBPdKGo106JHb/QM2SEAzUEjIOXYn4zVvBlUbdH/z7crBgKoKxXd0W7OkkQBKiF+u0T8rIZnzl9dR+5UGxWDDbAmhuDwCWxARQFQKtZix2D+rYS2DgAGw+Fxl5FppL6vFW/lA9ZjZhH55KSnF6sOni/nk00YommIo22Ij02tGOjVXw1d1iufrW1dW0zqr02kSyGhNNYvnh5kIdaiUrmq3MtqpFImsiGlWieBcCtaiCqQjHHs62YE8mAZIQvVREfVLMJqwOC7Z0BU+9gWozgokKEPpvwG1gz1Cw9EsNfbja/F9hPWc0WmPLvtJ9RyJK3TbI6iCPJlbiGWwcKFbBV3eL5epbLFbTovmQj2Vbh/1FkrMU6Tzaqhbbmoi6a7DqFZBkgezCDhuORlxpFk2gdriViIcY2+VtwR5OAiQheqFIqtJsRUVw6i9RGstIKa9BW1eH1hrAsKgoZpWArT+BxlZMmSopEzNR7KlhH65K3TasqbmQnhL8cK3bdvh5NF0Rz2Cjt4rl6lt3r6bFKrG8q7lQkaxkRbOVabK1Py4mgq2+iCvNekAlonXa/Oi3BXsBCZCE6GVCCZGdVqX9kBCZUYht1PFkBD6jucyMt8oa3DZr9WMfnElKnh/bseO6lvAseq5Yrr5192paLBLLo82Fina7KtJu6F+9Cd6mLm31dVqVFk2gFsNKxMPpH2X4NPL/GswjM4ZfDwlSxSaE6KLqpxdGVJUWSoj8YVXI1rQXa2Ytml6EHrCgmjQsagNKSvbhJTyLnqs3rL7FKrE82lyoj7qQV9R27dptwftMluBcmyv3Xfvrv3ftuJhIqtIOzDmLYyVirBtQxoMESEL0MpFWpRme1n0P+mFVSCl5G2vtd+BvCq4K9R/bPQnPQnRVT2rrEG1eUdi1k4L5Sp6m8GtHezgxRJdIvX/AeKhA7cBKxO5cffuBraiIzBtuINDQiKFpZMycIZ20hRBHTsaQyKrSMobUhz9QVoVET9UT2jpEu5IV6bWjWeXJKOxSvlIoUPvmreAKl7c5OM9DVSIeKpg6cPUtkrE/UFQVU2pqcMq5ub02OAIJkITocTor3Y+0Ks3q6OC3YFkVEj1VvNs6RBPIRNsNPZrAZOVDXWtN0H84nPYrOO7qyCoROwumoh3bB0mAJEQP4t2xA+eKFTSv+BcENGxDh2EbMYaUc/Y1klNOnhNZVdrJc+L8aoSIUrxXOaPNb4pGJNtx0LV8pf3nH2kl4sk/h9b6zjtpRzO2j5EASYgewrtjB/V/fI5A2VZspioUm4Hi1PF8vBNt11Yybro9GCRFWpV2YJdiIXqDeK9yxrKKM5IAcPJtXT+mJRoWe+QHBSsq2B3BPzsGHTI4UqxW+t/eN345kwBJiDgLHSj792UEdnyBJV0hELBiYMKcnIxqaUbb8QXOfywjc85dwdL9aKvShBCRi2eLhGgTqY8EsxXOvPfIPV8PIQGSEHFW+8ILBJqa8H76DmarB39TErorWIGmoYACit9Fy/vvEGiB7Acf7FpVmhAicvFayYo2kbqXM3Qds9uL4g+glZdjKSjsMYndEiAJEW9ln6A0NwR/AFqU4H99wco0vHrwN0g9AF4fyvf/2fe4eOdrCCFiI9J8pZ7I7wt2R4dgZaDZetCh3h07aPi//8Ox5XuUgE7975fQOnRo2HFJ8SQBkhBx1u/c0fj2lFFbWY6alIDJqqL9kIBpSU8Klu57AphpxXFifviD452vIYSIjT7+C1DbcUlaTS0BqxnDrGJypOEp2RJ+XFIc9Y13WoheTDnzLqwX3Ilt8DEE/CkYjmMguX/wKz0P0vII+FOw5R+D9YI74z1dIcSR0vYL0IBRwf/2geDI8Pn2HZdUV4c5fzCYVRRASUjAkl9AoK4O58pVGLoe17nKCpIQ8Wa2ovQbQsopE9De/jdaZTOGpgdL91v9BJpaMVn9pJxyEkq/IfGerRBCHJyhB49s8fuCjTcPaAlQ+4c/EnA6cX/2GWpCAkZ9PbbaZgBav/gCVTWhe714d5eRdtFFWI/JjdMLkQBJiCPC8PvRvt2A3liH6sjEMmw8inm/f36qiu2s68horqL5i514m1IwAqC7WrBn6KSMG47tzOv6xG+QQog+qu38uJ0fB3s5+Vztz48DDE2DQADMZsBodxnFYgme5eZ2H7m5d0ACJCFizLv+PZx/fYnWr7dg+HXMGQ5s+YNIufx6bCdM3Tew/3BsF9+Jdcj/ou34Gr2lBTUxEcuQ0SgjL+zZiZlCiKNbhOfH9fvpTfj27kV3uVAdDrDbqHJXAJBw/PGYzBYCLhd6YyNqUlJcX5IESELEkHf9e9QvfoJAUzOqzQpJZtTUZDzf7kBb/AQZt9EuSFJO+yXW4/pmYqYQog+K4vw4xWrHOngwtiFD8JRswTR4MMYPvZ4UkwlUlUBNNfaRo7DkDIzfa0ICJCFiwmh1YwT8OP/6IoEmJ5a8HPxVVQCYEhJQ8xLQyvbi/H8v0e/4M9ptt0llmhCi13gvuvPjFFUl5eypaJUVaDtKUbQAhklFd7nw19ZiSs8gZeqUuPdDkgBJiBiovf8GjNYmPNt3o1oU/Ltd6O5gbyPN0xT8oaEFaP3iC7RvN2AdOSnOMxZCiC7qwvlxtqIiMq67job/+z9M321CCegEGptIGDmKlKlT4l7iDxIgCREzRsCPEdAh4SD/zEwKhieA3lh3ZCcmhBDdqYvnx9mKikifdT1fbf8Pij/AyFtvJlE6aQvRt/V77CV8WzdQu+DXqKnJmBIT0SorAbBkZwebP7rcKE4XqiMzzrMVQojDcBjnxymqij/JBoAlJ6fHBEcgjSKFiAklIQnr6JOwFQwmUNcYTEJs+1JNgEqgrhFbYT6WYePjPV0hhOi6tvPjEjP3nR9n6MGVo5qtvfb8uN41WyF6EcVsJuXy6zGlpqDt3ovh9WEEdAJuF77dezClpZBy2czwBG0hhOiN2s6Pyx4NWiu01Ae31XKOg0k398o2JfKTWYgYsp0wlYzboPlvr+DdtQdD09CdbuzDh5By2czwEn8hhOjN+g+Hk38OrfXBhOzJt7XrpN2bSIAkRIzZTpiK9fgzDt1JWwgh+gJFBbsj+GfHoF4bHIEESEIcEYrZLKX8Qoi+z2yFM++N9yy6hQRIQnSRoeto5RXobjdqUhKWnIE9qgJDCCF6OsVqYdcVk0J/7kl6xE/zxYsXk5+fj91uZ9KkSaxbt+6gY5cuXcqpp55Keno66enpTJ06td14RVE6/HryySdDY/Lz89vdv2DBgpi9RtG3eHfsoO4Pf6TmqfnUPrOAmqfmU/eHP+LdsSPeUxNCCNEN4h4gvfHGG8ydO5eHHnqIjRs3ctxxxzFt2jSqq6s7HP/hhx9yzTXX8MEHH7B27Vry8vI455xz2Lt3b2hMRUVF2NdLL72EoihcfvnlYdd65JFHwsbdfvvtMX2tom/w7thB/R+fw/Pvt2DXf1FrN6I2bcHz8T+p/+NzEiQJIUQfEPcAaeHChcyePZtZs2YxcuRIlixZQmJiIi+99FKH45ctW8att97K2LFjGTFiBH/605/QdZ01a9aExmRnZ4d9/fOf/+TMM8+ksDC8SVVKSkrYuKQ4nxwsejbD50P3eHD+fRmBHV9gSfagWK0YaiKm5GQsyR4CO77A+Y9lGLoe7+kKIYQ4DHENkHw+Hxs2bGDq1H2lzqqqMnXqVNauXRvRNVpaWtA0jYyMjA7vr6qq4p133uHGG29sd9+CBQvIzMzk+OOP58knn8Tv9x/0ebxeL06nM+xLHF1qX3iB6ieeoOWDd1D8jfibfARcreguF1pVHf4mH4q/kZb330Hbb0VTCCFE7xPXJO3a2loCgQADBgwIu33AgAFs3bo1omvcfffd5OTkhAVZ+/vzn/9MSkoKl112WdjtP/vZzxg3bhwZGRl88skn3HvvvVRUVLBw4cIOrzN//nwefvjhiOYk+qiyT1CaG4LdYS1K8L++4AG0ePVgl2w9AF4feuUOyMuL73yFEEJ0Wa+uYluwYAGvv/46H374IXa7vcMxL730EtOnT293/9y5c0N/HjNmDFarlZ/+9KfMnz8fm83W7jr33ntv2GOcTid58gF4VOl37mh8e8qorSxHTUrAZFXRfjid2pKeFDxfzRPATCuqxYjzbIUQohfw+2Dnx8E/F88EU8+pZItrgNSvXz9MJhNVVVVht1dVVZGdnX3Ixz711FMsWLCA9957jzFjxnQ45uOPP2bbtm288cYbnc5l0qRJ+P1+du3axfDh7Vui22y2DgMncfRQzrwLa/0ubF/8DE+VDzUrHVp/+CeUPhBQCLjqsOdnYsnLj+dUhRBCHKa45iBZrVbGjx8flmDdlnA9efLkgz7uiSee4NFHH2XFihVMmDDhoONefPFFxo8fz3HHHdfpXDZt2oSqqmRlZUX3IsTRw2xF6TeElFMmYLL60Sqb0TUdw4BAqx9fpROT1U/KKRNQ0gfHe7ZCCCEOQ9y32ObOncvMmTOZMGECEydOZNGiRbjdbmbNmgXAjBkzyM3NZf78+QA8/vjjPPjggyxfvpz8/HwqKysBSE5OJjk5OXRdp9PJX//6V55++ul2z7l27Vo+++wzzjzzTFJSUli7di133HEH1157Lenp6UfgVYteS1WxnXUdGc1VNH+xE29TCkYAdFcL9gydlHHDsZ15Xa9ury+EEKIHBEhXXXUVNTU1PPjgg1RWVjJ27FhWrFgRStwuKytD3e/D5oUXXsDn8/HjH/847DoPPfQQ8+bNC33/+uuvYxgG11xzTbvntNlsvP7668ybNw+v10tBQQF33HFHWI6REAfVfzi2i+/EOuR/0XZ8jd7SgpqYiGXIaJSRF/bKU6uFEEKEUwzDkGzSLnA6naSlpdHU1ERqamq8pyPiQdehaQ/4XGBNhrQ8WTkSQogoaJ5mXv/ntVgCfi6f8jSW/sNi/nM00s/vuK8gCdFTRH22mqqC5BoJIUTX1GxD3fx3Tqj4FrOhY/r4ScgqhuKesRIvAZIQBI8Pca5ciXPFSggEsBcXYxsyhJSzp2IrKor39IQQom+p2QafLkFxVeExW/GrJoyEdKj4Cpr2wok3xz1Ikv0AcdTz7thB/V/+gnfLFlSbgjnVgppgwrPlm+DtcraaEEJ0D78PNA988xa4azAyitBUMwYKWBIhcyi4a2DLP4NpDHEkK0jiqKZ7PDhXriRQvhtLkhtV2YPi1zHVuFATM9DKm3GuXEXmDbNQD9KMVAghRIQ+fho8jcHmkJaEYDDkbQret+czUE3g90J9KYy5Kq5pDBIgiaNa9dMLafn0I6zmOvRGPwG3HwwVQ3Gi1NeCZqL5/8oJNDSQ/ev74j1dIYTo/fw+0P3Brtkd1YmZLOBtDhbAxJEESOKoZnhaUX0NqDYNnSQwgv8gDcwYihnV5EJtacDwtMZ5pkII0Qec+ktoLAsGPwkZYLbB9trgfXmTwGQNnnPZ2hCsDo4jyUESR7WMIfVY7B4UixlLYgBV8aAqHiyJfixJgeDtdg8ZQ+rjPVUhhOj9zFbIKAwmYDdXgKKCQvBLNQW/b66ErBHB1ilxJAGSOKpZHRZs6QoBt4GhABZb8EtVAAi4DWzpClZHzzlAUQghejVVDZbyJ2ai1H6LNaChGEZwW61mKyRlwogL4t5XTrbYxFFNOXkOKeU1aOvq0FoDGIqCYlYJWPsTaGzFlKmSMjET5eQ58Z6qEEL0Hf2Hw4k3Y2z+O7aqL0gyvCitDZBzXDA4kj5IQsRZRiG2UceTEfiM5jIz3iorhhZAb/VjH5xJSp4f27HjgkvCQgghuk//4egnzWF9zadYAn4Gn/or1CPQSTtSEiCJo9sPS722pr1YM2vR9CL0gAXVpGFRG1BSsnvEUq8QQvRJikqzNTH4Z0fPOq6p58xEiHj5YalXyT0Oa4IXu70Wa4IX5ZixMCn+3VyFEEIcebKCJPq0iM9X6z882MFVDp8VQgiBBEiiD4v6fDU5fFYIIY4ssxUKTt335x5EAiTRJ7WdrxaorUW1KajmfeeraZUVZFx3nRxCK4QQ4qBk/0D0KYbPF36+mqUam7IHq38XppoNWMxVBMp341y5Ct3jifd0hRBC9FCygiT6lNo//JGA0ynnqwkhhDgssoIk+hY9sO98NZOGTiIYwb/mBmZ0JRHVpKH65Hw1IYQQBycrSKJP6TeyGV95PbVfeVAsFsy2AJo7uJVmSUwAVSHQKuerCSFELGgBjaWblwIwe/RsLKbee0yTrCCJPkUxm8LPV8PYdxBi8Hg1OV9NCCFEp2QFSfQ6h+xtdOovURrLws9Xs6jB89Vscr6aEEJEqy+tCkVDAiTRq3Ta28hslfPVhBCil9ANHafPiRbQKHeVk5eah6r0jM0tCZBErxFxbyM5X00IIXq80sZSVu1axfqK9fgNP27NTZGjiCmDplDoiP8vsPIJIXq8aHobGboefJCcryaEED1WaWMpy0qWsbV+K3azHYfNQZotjZL6EpaVLKO0sTTeU5QVJNHzRdPbKO2ii7Aekxt8oJyvJoQQPYoW0NANnVW7VlHXWkd+aj4N3gYAEs2J5KfkU9pUyurdq5mdNjuu220SIImeb//eRjYNnSQwXECwt5GhmFFNLtSWBnRXc/hj5Xw1IYToMZZuXorT52R9xXrsZjsN3gYq3BUAbKzeiKqo+AI+9uzawwVFF5CbnBu3uUqAJOLukFVpRNfbSNWb4vUyhBBCREALaPgNP2a14xDErJpDOUnxJAGSiCvvjh00r34P785SDI8XxW7DVlC4ryqN8N5GnnoD1WaEehrt39vInqFgSU+MzwsRQgjRqdmjZ1PuKsetuUmzpZFoTmRj9UYAxmWNQ1VUXD4XTb4mkixJcZ2rBEgibkJVaXV1aNU1YDZjLy7GU7IlvCotmt5G9tR4vywhhBAHYTFZyEvNo8hRREl9Cfkp+aE8I1VRURWVGk8NxRnFDEwaGNe5SraqiItQVVpdHZbBg1FNflTDjUnVsOTnE6irw7lyFbrHE97baHwK9kH9UFMzwZIa6m2UMT4l2NsoLS/eL00IIcQhqIrKlEFTSLelU9pUii/gQzd0XD4XO5p2kG5LZ8qgKXHvhyQrSCIuqp9eiPuzzzDZDJTqTZhbagHwbyrDUJPwBxx4d5cRaGgg+9f3SW8jIYToQwodhUwvns6qXavYs3sPfsNPk6+J4oziHtMHSQIkEReGpqH4W7DYGlENDb9uAkPFhBlVb8ZCK7rfgaFp+x7U1tuo5G2std+BvwnMdug/NhgcSW8jIYToNQodhcw6dhaNvka0gMaMkTOkk7YQGddeTW3pOlQ1AVPaIPTKSgDM2dmgKNBQjS3BSsa1V4c/UHobCSFEn6EqKqnWYO5oTnJOjwmOQAIkESfWbS9iM5XjqQUVD7gbg3c4/aAoBOq92Ps1Y932Igx5IvzB0ttICCFEjEmAJOJC0TVSClS0FhWtzo+hgWKGgFcn4NYxJZlJKdBRdK3ziwkhhBDdTAIkER+Tb8Pmc5GRZ6F5Sx3e0h0YfgPdnIl9uIOU4nRsqX6YfFu8ZyqEEOIoJAGSiInOumOTUQj9h2Pzf4V12hi0xiHoHg3VbsHiSESp2wZZxwXHCSGEEEeYBEii23l37MC5ciXOFSshEMBeXIxtyJCw7thtZfs07UWp24Y1NRfSU8DXAnXbIClTyvaFEELEjQRIolvt3x1bTUgAsxnV4WjfHRtCZfuUvA2130FzebBsP+c4KdsXQggRVz3i1/PFixeTn5+P3W5n0qRJrFu37qBjly5dyqmnnkp6ejrp6elMnTq13fjrr78eRVHCvs4999ywMfX19UyfPp3U1FQcDgc33ngjLpcrJq+vrzB0Hd/3e/Fs+xbf93sxdH3ffT5fdN2x2/QfDqfMhTPvg9PvCv735DskOBJCCBFXcV9BeuONN5g7dy5Llixh0qRJLFq0iGnTprFt2zaysrLajf/www+55pprOOmkk7Db7Tz++OOcc845fPPNN+Tm5obGnXvuubz88suh7202W9h1pk+fTkVFBatXr0bTNGbNmsVNN93E8uXLY/die7HOts1q//BHAk5ndN2x20jZvhBCiB4m7itICxcuZPbs2cyaNYuRI0eyZMkSEhMTeemllzocv2zZMm699VbGjh3LiBEj+NOf/oSu66xZsyZsnM1mIzs7O/SVnp4euq+kpIQVK1bwpz/9iUmTJnHKKafw3HPP8frrr1NeXh7T19sbtW2beUtKUBMSUB2O0LZZ/V/+gnfHDmC/7thUoBrN6LoJPWCBUHfsChR/S3h3bCGEEKIHimuA5PP52LBhA1OnTg3dpqoqU6dOZe3atRFdo6WlBU3TyMjICLv9ww8/JCsri+HDh3PLLbdQV1cXum/t2rU4HA4mTJgQum3q1Kmoqspnn33W4fN4vV6cTmfYV1/XbtssPx/FbEYBTIkJWPILQttmmTfMJOPaq7H1s6ImJWAaWISanIaakoJ54DGYcopQExOw9eugO7YQQgjRw8R1i622tpZAIMCAAQPCbh8wYABbt26N6Bp33303OTk5YUHWueeey2WXXUZBQQE7duzgvvvu47zzzmPt2rWYTCYqKyvbbd+ZzWYyMjKo/OHIiwPNnz+fhx9+OMpX2Lvtv22mJiTgr29Aq6gAoGXDRlBVdK8X7+4y0rK+x5qgdb07thBCCNGDxD0H6XAsWLCA119/nQ8//BC73R66/eqr961QjB49mjFjxlBUVMSHH37IlClTuvRc9957L3Pnzg1973Q6ycvL6/rkewlD0yAQALMZMFBVDRQdxfBgGAkoFguG243u0VBs+3XHrg9gTjChmkH3GfhdfumOLYQQoteIa4DUr18/TCYTVVVVYbdXVVWRnZ19yMc+9dRTLFiwgPfee48xY8YccmxhYSH9+vVj+/btTJkyhezsbKqrq8PG+P1+6uvrD/q8NputXaJ3X9fvpzfh27sX3eVCtRmYWvfg19woho4ptQmSzATsx6B7B6KeegskBfZ1xy6px1vpxK8FUEwm7MNTpTu2EEL0Qrqh4/Q50QIa5a5y8lLzetShsrES1wDJarUyfvx41qxZwyWXXAIQSrieM2fOQR/3xBNP8Jvf/IaVK1eG5REdzPfff09dXR0DBw4EYPLkyTQ2NrJhwwbGjx8PwPvvv4+u60yaNOnwX1gvcqiO14rVinXwYGw5DjxrV6OmK6BY0BUTJmsiuKoJlFVin3w2lrwfqtDaumOfMxqtsUW6YwshRC9W2ljKql2rWF+xHr/hx625KXIUMWXQFAodfftnedy32ObOncvMmTOZMGECEydOZNGiRbjdbmbNmgXAjBkzyM3NZf78+QA8/vjjPPjggyxfvpz8/PxQzlBycjLJycm4XC4efvhhLr/8crKzs9mxYwd33XUXQ4YMYdq0aQAUFxdz7rnnMnv2bJYsWYKmacyZM4err76anJyc+LwRceDdsYPm1e/h3VmK4fGi2G3YCgr3dbz2+1AMnZSBLjRrAM1px2zWUS0Gug/8TWZMtlZSctwoIN2xhRCiDyltLGVZyTLqWuuwm+2YVTNptjRK6kuodFcyvXh6nw6S4h4gXXXVVdTU1PDggw9SWVnJ2LFjWbFiRShxu6ysDHW/D9QXXngBn8/Hj3/847DrPPTQQ8ybNw+TycRXX33Fn//8ZxobG8nJyeGcc87h0UcfDdsiW7ZsGXPmzGHKlCmoqsrll1/Os88+e2RedA+wf8drrboGzGbsxcXhHa/L3gRPI7aGj8kYbaZ5hwtvZTP+ACgJAeyZFlIKLdjqP4SmPcFeRtIdWwghejUtoKEbOqt2raKutY781HwavA0AJJoTyU/Jp7SplNW7V3N98vXYzH0z/STuARLAnDlzDrql9uGHH4Z9v2vXrkNeKyEhgZUrV3b6nBkZGUdlU0jD58PQ9bDSfX998C++KTEBNb8ArXQHzpWr6DfcQPH7QPdjy0rF2h+0vU50H6iZDixpFhQMaKkH335dyPsPh8yhwaDJ5wJrMqTlycqREEL0Aks3L8Xpc7K+Yj12s50GbwMV7mAF88bqjaiKii/gY8+uPTR4G7hn4j1xnnFs9IgASRw5UZXu/2gR1qRAMMhJyECxpWDNP+CCXie0NgSDoP1Jd2whhOi1tICG3/BjVjsOE8yqGb/hRwv03apkCZCOQuGl++3tX7pP3pDgilDFV2BPA0XZ70IGNFcGt8/S+n7LAyGEOBrMHj2bclc5bs1Nmi2NRHMiG6s3AjAuaxyqouLyuWjyNTFj5Iw4zzZ2JEA6yoSV7jscmBLstG7wAAESRg2BRAcBlxu9sRE1KSks8ZqarZCaC9bEYOK1c68kXgshRB9jMVnIS82jyFFESX0J+Sn5obJ+VVFRFZUaTw3FGcXkpfbdX44lQDrKhEr3hwzB88VnqElurP6dgA573JCYScCVgH3ciVhygm0RJPFaCCGOLqqiMmXQFCrdlZQ2leIL+DCrZlw+FzWeGtJt6UwZNKVP90M67ADJ7/fj8XhITk7ufLDoERRVJWV8Edqnf0OrbgZMYLZBwExg5y5MqSmkjCsM9UMCJPFaCCGOMoWOQqYXT2fVrlXs2b0Hv+GnyddEcUbxUdEHKeJPt7fffptXXnkl7Lbf/OY3JCcn43A4OOecc2hoaOju+Ynu5veB5sHm3kDG+BTsQwajpPQDcwq6B+xDBpMxPgVby0bQ9fDHtiVeDxgV/K8ER0II0acVOgqZdewsThh4AhMGTOCW427hxtE39vngCKIIkBYuXIjb7Q59/8knn/Dggw/ywAMP8Oabb7Jnzx4effTRmExSRM7QdXzf78Wz7Vt83+/FODDI+fhpeO8h2PJPbPZGMkc00n/IbvoVfU//431kjmjCZm+Eb94KrhYJIYQ4qqmKSqo1lcyETHKSc/r0ttr+It5i++abb1i4cGHo+//3//4fZ599Nr/+9a8BsNvt/PznPw8bI46sTjtjt/mhtxEmCwoK1pQfKtPSLMEqNZMFvM3hvY2EEEKIo0jEAVJzczOZmZmh7//zn/9wxRVXhL4fNWoU5eXl3Ts7EbGIOmMXFcGpv4TGslBvI6yJUPbDRQadCIrp4L2NhBBCiKNExOtkubm5lJSUAOByufjyyy856aSTQvfX1dWRmJjY/TMUndI9nrDO2IrZjEKwM7Ylv4BAXR3OlavQPR4wW4OHxfYfDs0VoFqg4LTgl8kKihrsbZQ1QnobCSGEiIpu6Dh9Tupa6yh3laMbeucP6qEiXkG64oor+MUvfsF9993Hu+++S3Z2NieeeGLo/s8//5zhw6XcOx6qn14YUWfsQEMD2b++T3obCSGE6HaljaWs2rWK9RXr8Rt+3JqbIkdRr614izhAevDBB9m7dy8/+9nPyM7O5rXXXsNkMoXu/5//+R8uvPDCmExSHFqknbENbb+W8NLbSAghRDcpbSxlWcky6lrrsJvtmFUzabY0SupLqHRXMr14eq8LkiIOkBISEnj11VcPev8HH3zQLRMS0cuYOWNfZ+zEhODKEZA4fhyoJgIuF3pjIxkzD2gJL72NhBBCHCav38uqXauoa60jPzWfBm+w5U+iOZH8lHxKm0pZvXs11ydfj81si/NsIyedtPuAUGfski2o+QX7AhzVBKpKoKYa+8hRWAd3cHisHCorhBDiMDyz8RnWV6zHbrbT4G2gwh1M89hYvRFVUfEFfOzZtYcGbwP3TLwnzrONXMQB0llnnRXRuPfff7/LkxEdM3QdrbwC3e1GTUrCkjMwrMu1oqqknD0VrbICrXQHuteLYrEQcLkI1FRjSs8gZeqU8M7YQgghRDfQAhp+w49Z7TikMKtm/IYfLaB1eH9PFXGA9OGHHzJ48GB+9KMfYbFYYjknsR/vjh04V67EuWIlBALYi4uxDRnSrreRraiIjOuuo3nVahSTgeFpQa+twF58LClnnx3eB0kIIUSfowU0lm5eCsDs0bOxmI7MZ/WMkTNwa27SbGkkmhPZWB1M8xiXNQ5VUXH5XDT5mpgxckYnV+pZIg6QHn/8cV5++WX++te/Mn36dG644QaOPfbYWM7tqLd/byM1IQHMZlSHo31vox/YUv1Yi5vRrM3oLS2oiQEsRc0oqf44vgohhBB9WV5qHkWOIkrqS8hPyQ912lYVFVVRqfHUUJxRTF5q72odE/Gey69+9Su2bNnCW2+9RXNzMyeffDITJ05kyZIlOJ3OWM7xqGP4fNH1NgKo2QafLkGp2ow1Nwf7yOOw5uagVG2GT5cE7xdCCCG6maqoTBk0hXRbOqVNpfgCPnRDx+VzsaNpB+m2dKYMmtLrjiiJeraTJ09m6dKlVFRUcNttt/HSSy+Rk5MjQVI3qv3DH6l+eiHOFSvRqmto3fgFWkUFWkUFLRs20rpxI76qapwrVlD99ELQPMGz09w1wSaQ5Ztg93+DZfuZQ4O3b/lncJwQQgjRzQodhUwvns6IjBF4/B4avY00+ZoozijulSX+cBhVbBs3buSjjz6ipKSEY489VvKSullUvY3eewh2fgyWBGip23fIbBnBs9X8XqgvDd533uNH7kUIIYQ4ahQ6Cpl17CwafY1oAY0ZI2eQl5rX61aO2kQVIJWXl/PKK6/wyiuv4HQ6ufbaa/nss88YOXJkrOZ3VOr305vw7d0beW+jr58NHT7bobbDZ/2+I/gqhBBCHG1URSXVmgpATnJOrw2OIIoA6fzzz+eDDz7gnHPO4cknn+RHP/oR5oOsbojDo1it0fU2Srlt3+GztpT2F2w7fHbybUf2hQghhBC9VMQRzooVKxg4cCBlZWU8/PDDPPzwwx2O27hxY7dN7mgW1tto107sxcWoiYnoLS34qyrDexu1HT5b8RXY04Lbam0MI3j4bM5xwXFCCCGE6FTEAdJDDz0Uy3mIDoR6G61+D+/OUvzV1Sg2K/aRo0iZOmVfib8cPiuEEEJ0KwmQejhbURHWwYPRvt2A3liH6sjEMmw8yoHbm3L4rBBCCNFtui2JyOPx8Pzzz3PnnXd21yUFQM02lJK3sdZ+B34PVNqh9uPgitGBQY8cPiuEEEJ0i6g+OWtqavjXv/7FqlWrCAQCAGiaxu9+9zvy8/NZsGBBTCZ51Pqh+SMVX0FiRjD4ScwIfn+w5o9th88OGBX8rwRHQgghRNQi/vT8z3/+w9ChQ7nooos477zzOOmkk9iyZQujRo3iD3/4A/PmzWPPnj2xnOvRw++T5o9CCCGiohs6Tp+TutY6yl3l6IYe7yn1ahFvsd1///2cf/753Hffffz5z3/m6aef5tJLL+W3v/0tP/7xj2M5x6PPx0+Dp1GaPwohhIhIaWMpq3atYn3FevyGH7fmpshRxJRBU3plF+ueIOIVpM2bN3P//fdz7LHH8sgjj6AoCk888YQER7Hi93Xe/FH3S/NHIYQ4ypU2lrKsZBlb67diN9tx2Byk2dIoqS9hWckyShtL4z3FXiniFaSGhgb69esHQEJCAomJiRx77LExm9hR7dRfQmOZNH8UQghxUFpAQzd0Vu1aRV1rHfmp+TR4GwBINCeSn5JPaVMpq3evZnba7F7d1Toeoqpi27JlC5WVlQAYhsG2bdtwu91hY8aMGdN9sztama3S/FEIIcQhLd28FKfPyfqK9djNdhq8DVS4KwDYWL0RVVHxBXzs2bWHC4ouIDc5t0vPYzFZuHXsrd059V4hqgBpypQpGIYR+v6CCy4AQFEUDMNAUZRQdZs4TNL8UQghRCe0gIbf8GNWO/44N6vmUE6SiE7EAdLOnTtjOQ/REWn+KIQQ4iBmj55Nuasct+YmzZZGojmRjdXB477GZY1DVVRcPhdNviaSLElxnm3vE3GANHjw4FjOQxyMNH8UQgjRAYvJQl5qHkWOIkrqS8hPyQ/lGamKiqqo1HhqKM4oZmDSwDjPtvfptk7aIobamj8KIYQQ+1EVlSmDplDprqS0qRRfwIdZNePyuajx1JBuS2fKoCmSoN0F8o4JIYQQvViho5DpxdMZkTECj99Do7eRJl8TxRnFTC+eLn2QukhWkIQQQohertBRyKxjZ9Hoa0QLaMwYOYO81DxZOToMEiAJIYQQfYCqqKRaUwHISc6R4OgwybsnhBBCCHGAiAKk448/nnHjxkX01RWLFy8mPz8fu93OpEmTWLdu3UHHLl26lFNPPZX09HTS09OZOnVq2HhN07j77rsZPXo0SUlJ5OTkMGPGDMrLy8Ouk5+fj6IoYV8LFizo0vyFEEII0bdEtMV2ySWXxGwCb7zxBnPnzmXJkiVMmjSJRYsWMW3aNLZt20ZWVla78R9++CHXXHMNJ510Ena7nccff5xzzjmHb775htzcXFpaWti4cSMPPPAAxx13HA0NDfz85z/noosu4vPPPw+71iOPPMLs2bND36ekdHCkhxBCCHEIWkBj6ealQLA3keVgZ2iKXiWiAOmhhx6K2QQWLlzI7NmzmTVrFgBLlizhnXfe4aWXXuKee+5pN37ZsmVh3//pT3/ib3/7G2vWrGHGjBmkpaWxevXqsDHPP/88EydOpKysjEGDBoVuT0lJITs7OwavSgghhGhPgqneI645SD6fjw0bNjB16tTQbaqqMnXqVNauXRvRNVpaWtA0jYyMjIOOaWpqQlEUHA5H2O0LFiwgMzOT448/nieffBK/33/Qa3i9XpxOZ9iXEEIIIfqmqKvYAoEAzzzzDG+++SZlZWX4fL6w++vr6yO+Vm1tLYFAgAEDBoTdPmDAALZu3RrRNe6++25ycnLCgqz9eTwe7r77bq655hpSU1NDt//sZz9j3LhxZGRk8Mknn3DvvfdSUVHBwoULO7zO/PnzefjhhyN8ZUIIIYToTE8+CDfqFaSHH36YhQsXctVVV9HU1MTcuXO57LLLUFWVefPmxWCKB7dgwQJef/11/vGPf2C329vdr2kaV155JYZh8MILL4TdN3fuXM444wzGjBnDzTffzNNPP81zzz2H1+vt8LnuvfdempqaQl979uyJyWsSQgjRu+iGjtPnpK61jnJXObqhx3tKohtEvYK0bNkyli5dyo9+9CPmzZvHNddcQ1FREWPGjOHTTz/lZz/7WcTX6tevHyaTiaqqqrDbq6qqOs0Neuqpp1iwYAHvvfceY8aMaXd/W3C0e/du3n///bDVo45MmjQJv9/Prl27GD68/SGwNpsNm80WwasSQghxtChtLGXVrlWsr1iP3/Dj1twUOYqYMmiKdLDu5aJeQaqsrGT06NEAJCcn09TUBMAFF1zAO++8E9W1rFYr48ePZ82aNaHbdF1nzZo1TJ48+aCPe+KJJ3j00UdZsWIFEyZMaHd/W3D03Xff8d5775GZmdnpXDZt2oSqqh1WzgkhhBAHKm0sZVnJMrbWb8VutuOwOUizpVFSX8KykmWUNpbGe4riMEQdIB1zzDFUVFQAUFRUxKpVqwBYv359l1ZY5s6dy9KlS/nzn/9MSUkJt9xyC263O1TVNmPGDO69997Q+Mcff5wHHniAl156ifz8fCorK6msrMTlcgHB4OjHP/4xn3/+OcuWLSMQCITGtOVLrV27lkWLFvHll19SWlrKsmXLuOOOO7j22mtJT0+P+jUIIYQ4emgBDa/fy6pdq6hrrSM/NR+zGtyQSTQnkp+ST11rHat3r2633Sbbcb1H1Ftsl156KWvWrGHSpEncfvvtXHvttbz44ouUlZVxxx13RD2Bq666ipqaGh588EEqKysZO3YsK1asCCVul5WVoar74rgXXngBn8/Hj3/847DrPPTQQ8ybN4+9e/fyv//7vwCMHTs2bMwHH3zAGWecgc1m4/XXX2fevHl4vV4KCgq44447mDt3btTzF0IIcXRZunkpTp+T9RXrsZvtNHgbqHAHFw42Vm9EVVR8AR97du3hgqILyE3OBWK/HdeTE557I8UwDONwLrB27VrWrl3L0KFDufDCC7trXj2e0+kkLS2NpqamTvObhBCiL9ENnQp3BW7NTZIliYFJA4+qc79+v+n31LXW8XnV5zhsDoBQgNT2XuiGTqO3kSdPf5Jh6cNC23F1rXXUtNZgVs2MyBhBTWsN6bZ0phdP7xM5S72hz1Okn9+HfVjt5MmTD5kvJIQQou9oWwVZvXs1fsNPcUbxUZeUPHv0bMpd5bg1N2m2NBLNiWys3gjAuKxxqIqKy+eiydeETbW1245r8DYA+7bjSptKWb17NdcnX4/NLMVAPUWXAqTvvvuODz74gOrqanQ9fP/0wQcf7JaJCSGE6Fn2XwWxm+2YVXMoKbnSXdlnVkE6YzFZyEvNo8hRREl9Cfkp+aEVNFVRURWVGk8NxRnF/Kv0XzRrzRFtxzV4G7hnYvsTJER8RB0gLV26lFtuuYV+/fqRnZ2Noiih+xRFkQBJCCH6GC2goRt6r14F6e6tH1VRmTJoCpXuSkqbSvEFfJhVMy6fixpPcNtsyqAprNi1Ai2g4Tf8oUTuA5lVM37DjxbQDmtOontFHSA99thj/OY3v+Huu++OxXyEEEL0MNEkJffUVZC26jEtoFHuKicvNe+w86YKHYVML57Oql2r2LN7D37DT5OvieKM4tCWYzTbcTNGzuiOlyq6SdQBUkNDA1dccUUs5iKEEKKH6s2rILGsHit0FDLr2Fk0+hrRAhozRs4IC76i2Y7LS80Lu3ZvSHjuy6IOkK644gpWrVrFzTffHIv5CCGE6GF68yrIkcibUhWVVGuwGionOafdylSk23FHUyVgbxB1gDRkyBAeeOABPv30U0aPHo3FEh7RRnPUiBBCiJ7vcFZB4tkSoCdVj0WyHSd6lqgDpD/+8Y8kJyfz0Ucf8dFHH4XdpyiKBEhCCNEHdWUVJN4tAZ7Z+EyPypvqbDtO9CxRB0g7d+6MxTyEEEL0cG2rIGvK1rCzaSfegJdmrbnDVZCe0BLgSOVNRdPBurPtONFzHFajyLYm3PuX+gshhOi7Ch2F5KflH3LbrKdsbc0YOaNX5k31Zn3puJMuha6vvvoqo0ePJiEhgYSEBMaMGcNf/vKX7p6bEEKIHkhVVHKTcxmWPozc5Nx2qyDPbHyG1btXU9Nawxc1X1DhrqDCXcHG6o18UfMFNa01rNq1imc2PhPTebblTdW01qCghPKl9s+bKnIUtcubEgK6sIK0cOFCHnjgAebMmcPJJ58MwH/+8x9uvvlmamtru3RgrRBCiPjqzmTqntISQKrHxOGIOkB67rnneOGFF5gxY9+S5EUXXcSoUaOYN2+eBEhCCNHLlDaWhuUV2Uw2CtIKupxM3ZO2tnpa9Vhf2oLq66IOkCoqKjjppJPa3X7SSSdRUVHRLZMSQghxZBzslPnDSabuakuAWOmt1WOx6P4tItelPkhvvvkm9913X9jtb7zxBkOHDu22iQkhhIidaM5Xm502O6oP5p64tWUz23rkESgHE8vu3yBduiMRdYD08MMPc9VVV/Hvf/87lIP03//+lzVr1vDmm292+wSFEEJ0v2jOV7ug6AJyk3Ojun40LQG6yuv38szGZ2KyKhTPAKIntEgQXQiQLr/8cj777DOeeeYZ3nrrLQCKi4tZt24dxx9/fHfPTwghRIxEmkzt1txdun4kLQG6KtYrLPHSU1okdJXPr7P4g+0A3HbmEKzm3rsl2KU+SOPHj+e1117r7rkIIYQ4QqI5Xy3JktTl52lrCdCdjsQKS7zyf3pa9++jWUQBktPpJDU1NfTnQ2kbJ4QQoueK5ny1gUkDj9i8DrVtFk3e1OGssMRzdaqntEgQEQZI6enpVFRUkJWVhcPh6LBztmEYKIpCIBDo9kkKIYSIXme9jXpaMnVngUk0eVNdXWGJd/5PT2qR0BW6buBs1fAFdL5vaCE/MwlV7Z2nbUQUIL3//vtkZGQA8MEHH8R0QkIIIQ5fpL2NjkQydaTz7SwwgditsMSyqi8aPa1FQjS2VzfzzuZK1pbW4Q/ouLx+hmWlMO3YAQzJSon39KIWUYB0+umnh/5cUFBAXl5eu1UkwzDYs2dP985OCCFE1KLtbRTLZOrORBOY3HjsjVS6K2OywhLrqr5I9bRVvUhtr27m5f/uorbZi91iwmI3k55g5evyJsqbWpl1cn6vC5KifocLCgqoqalpd3t9fT0FBQXdMikhhBDR0wJauyqotpWWtmCjrrWO1btXoxt62GM7O18tVpZuXhrx2W21ntqYnq8W66q+SLWt6o3IGIHH76HR2xjq/t0TS/w9vgDvbK6kttlLQb8kLKbgAkqC1URhvyRqm728u7kSj693peBEXcXWlmt0IJfLhd1u75ZJCSGEiF5PWQWJVjSBSaxWWI5UVV+kelP378dXbGVtaR12i4n6Fh/lja0AfE49qqLg9QfYvbmFBrePhy4aFefZRi7iAGnu3LkAKIrCAw88QGJiYui+QCDAZ599xtixY7t9gkIIISLXU1ZBItWVwCQW56v1xKo+VVFJtQYrw3OSc3pkcATgC+j4AzoWe8d/5ywmFZfXjy+gd3h/TxVxgPTFF18AwRWkzZs3Y7VaQ/dZrVaOO+447rzzzu6foRBCiIj0tFWQSHQ1MInFCktvzf+JtxtPKcDl9ZOeYCXBauJz6gGYMDgDk6rQ7NFobNW48ZTelYYTcYDUVr02a9Ysfve730m/IyGE6AadleJHoyeugkSiq4FJLM5Xi8Xq1P503WBvYytun58kq5lcR0KPL4PvrDt2fmYSw7JS+Lq8icJ+Sag/pOGYVAVVgepmL6Nz08jP7BlBeaSizkFatGgRfr+/3e319fWYzWYJnIQQIkKRluK3iSSY2j/Y2NW8i+KMYhLMCbT6W6lsqeyxqyCxDkyinUss8n/ayuD/b3MF/oDOqNy0Xl0G30ZVFaYdO4Dypla2V7vw+gNYTCrNHo3qZi8ZSVbOGTWgxweCB4o6QLr66qu58MILufXWW8Nuf/PNN/nf//1f3n333W6bnBBC9FXRluJHE0wd2NuoqqUKm8kWl2AjGoWOQm467iYuHHLhEW83cKDuzv/pzWXwkTR/HJKVwqyT83lncyW7N7fg8vppbNUYnZvGOaN6ZwAYdYD02WefsXDhwna3n3HGGfz617/ulkkJIURf1ZXjMqINpiC2vY1iuU0Ui7Pb4snn19F1I6wMvr7FB+wrg99e7eLdzZXcdGoidqspzjMOF03zxyFZKfz01EQa3T58AZ0bTyno+5209+f1ejvcYtM0jdbW1m6ZlBBC9FXRHpdxx7g7unz2WCyCje3Vzaz8uoodNS48/gB2s4mi/sm9fpvoQBaThVvH3tr5wE4s/mA7zlbtiJTBe3wBHl+xtduCk66seqmqQmqCBYBj0hN7bXAEXQiQJk6cyB//+Eeee+65sNuXLFnC+PHju21iQgjRV0VzXEZPOt297QOz3u1jYJqdRGsCLT5/r9gmiqeulsFHE6R15zEfvX3Vq7tEHSA99thjTJ06lS+//JIpU6YAsGbNGtavX8+qVau6fYJCCNGXRFOKP2PkDF7d8mrcT3fv6ANzQ1lwJWvC4Iyj5gOzK247cwjfN7TEtAy+u/ObDmfVy2pWuePsYV16HT1N1AHSySefzNq1a3nyySd58803SUhIYMyYMbz44osMHTo0FnMUQohe5VDVZtGU4uel5vWI092P5DZRX2M1qzErg49mpWfOmclRbXf11eaP0Yg6QAIYO3Ysy5Yt6+65CCFErxdJtVk0pfhH6nT3zhKv5QOz62JVBh9N4Hrp8bnkZSR2csWgI7Hq1Rt0KUBq4/F48Pl8YbdJHyQhRF8USQ+itmqzBm8D2YnZoaCno2qzSEvxj0Rfo84Sr+UD89AiqeprK4Nve5+9/gDNHv9hl8FHGri6fe2Lqw4mlqtevUnUAVJLSwt33XUXb775JnV1de3uDwR612m9QgjRmc5WhToq3f+iJng807iscWHVZrPTZoeCmUhL8WPZ1yjSxOv9PzCHZiVzUlG/0DUMwzgqPjA7Ek3zxyFZKRSekdxtLRKiCVyTrOEf97qh4/Q50QIa5a7ydo0wj1Tzx866dMdT1AHSr371Kz744ANeeOEFrrvuOhYvXszevXv5wx/+wIIFC2IxRyGEiJtIVoVW7FoRcen+BUUXhJXeR1qK3919jaJJvG7LX2n7wPyu2sXANDsJVhOtvgAVTZ6DfmD2xqM1ItXVMvhIt7o6E81KT64jIfS40sZSVu1axfqK9aGDi4scRe2C7b7Y/DEaUQdIb7/9Nq+++ipnnHEGs2bN4tRTT2XIkCEMHjyYZcuWMX369FjMUwghjqhoVoUMw4i4dN+tubs8p+7sa9SV/JUDt4mqnB5sZtNBPzB7Us+k7gzUYpkcHe2co13p2b/pqN1sx6yaSbOlHbTpaF9r/hiNqAOk+vp6CguDb15qair19cHlvFNOOYVbbrmlS5NYvHgxTz75JJWVlRx33HE899xzTJw4scOxS5cu5dVXX+Xrr78GYPz48fz2t78NG28YBg899BBLly6lsbGRk08+mRdeeCGsyq6+vp7bb7+dt99+G1VVufzyy/nd735HcnJyl16DEKJviaah48IzgqcLRFJtlmTpOVtQXclfiXSbqKs9k6IJZCId292BWqySow+cczRbd52t9ETTwX3/bWAAu9V0VFYmRh0gFRYWsnPnTgYNGsSIESN48803mThxIm+//TYOhyPqCbzxxhvMnTuXJUuWMGnSJBYtWsS0adPYtm0bWVlZ7cZ/+OGHXHPNNZx00knY7XYef/xxzjnnHL755htyc4O/WT3xxBM8++yz/PnPf6agoIAHHniAadOmsWXLFux2OwDTp0+noqKC1atXo2kas2bN4qabbmL58uVRvwYhRN8U6aqQV/cyxDEkomqzgUkDj+RLOKjDyV/pbJvI4wt0qWdSNIFMpGP33waravZiMSmMGph22IFaLJKjO5pzpFt3Q7JSuP3MZC47PrfDOR8Y8Ne1NrC1phLDUGn1biLRBpre8Tbw0SrqAGnWrFl8+eWXnH766dxzzz1ceOGFPP/882ia1uEZbZ1ZuHAhs2fPZtasWUCwI/c777zDSy+9xD33tO8Ke2B7gT/96U/87W9/Y82aNcyYMQPDMFi0aBH3338/F198MQCvvvoqAwYM4K233uLqq6+mpKSEFStWsH79eiZMmADAc889x/nnn89TTz1FTk5O1K9DCNG3RNPQMcmSdESqzaJ1qA/5A/NXDpV4vX/+SiQeX7E16p5J0aw4RRr0HBioRdoNujur+g4MLjvT1TlD54FrW8Cv+azUOa20urLBUPjen0CiXSc9GfyK67C2gaMVyUG48RJ1gHTHHXeE/jx16lS2bt3Khg0bGDJkCGPGjInqWj6fjw0bNnDvvfeGblNVlalTp7J27dqIrtHS0oKmaWRkZACwc+dOKisrmTp1amhMWloakyZNYu3atVx99dWsXbsWh8MRCo7aXouqqnz22Wdceuml7Z7H6/Xi9XpD3zudzqheqxCiZ+msbD+aho5tq0KxrDaLViQrLF1NvO5MND2Tou3SDUQcQBxOoNZZ8NWV5OhIdGXOkWgL+CubmyirUbBgwWquRlUMBib3o8UXwNPiZVD/zCO2Ddydx6PEQlQBkqZpnHvuuSxZsiSUzzN48GAGDx7cpSevra0lEAgwYMCAsNsHDBjA1q1bI7rG3XffTU5OTiggqqysDF3jwGu23VdZWdlu+85sNpORkREac6D58+fz8MMPRzQnIUTPFkkzR+haD6Joq81ilXMT6WpMtInXkbjxlIKIeyZF26UbiHjs4QZqnSVetwWXpbVuRuWkkmA10eLzH7HgMhqGYaK/PYcWdyZO/7cMtA+i1mMAwdVEm9nE3pZyWt3DGZCQHdW1u6K7j0eJhagCJIvFwldffRWruURtwYIFvP7663z44Yeh3KJYuffee5k7d27oe6fTSV7e4XWuFUIcedE0c4SurQpFWm3W3Tk3XSndh+7vzxNtz6Rog4JIx8YqUOtqVV8koplzNNpeX9meIvwJe9jt34k3EADDzPdNDQSURhQ9id17Cqlo8nZbK4IDHakKwO4Q9Rbbtddey4svvtgtPY/69euHyWSiqqoq7Paqqiqysw8dwT711FMsWLCA9957L2xrr+1xVVVVDBy4LxmyqqqKsWPHhsZUV1eHXc/v91NfX3/Q57XZbNhstohfmxCi5/H6vaEqnsK0QpQftkUSzAlhVTzXJ1+Pzbzv33t39yCCruXcdDb2cKqrurM/TzRbd13p0h3p2Gi7Qceyqi9Ssexg7QvoKFoWmbYpNLMRl7oVlAABxUKCMYgkfSwt/swuJZZH6khUAHaXqAMkv9/PSy+9xHvvvcf48eNJSgr/nxRNorbVamX8+PGsWbOGSy65BABd11mzZg1z5sw56OOeeOIJfvOb37By5cqwPCKAgoICsrOzWbNmTSggcjqdfPbZZ6E2BJMnT6axsZENGzYwfvx4AN5//310XWfSpEkRz18I0bs8s/GZDsv224KdtrL9Bm8D90wMLxLprh5Eh5tz09nYWFZXRSPS1ZWuHGsR6dhotsFiWdUXjVh1sA5/ff2xmofxr9JVgI8zc07EYcnG5Q10KbE8Wj3l72hnon4Xvv76a8aNGwfAt99+G3Zf229j0Zg7dy4zZ85kwoQJTJw4kUWLFuF2u0NVbTNmzCA3N5f58+cD8Pjjj/Pggw+yfPly8vPzQzlDycnJJCcnoygKv/jFL3jssccYOnRoqMw/JycnFIQVFxdz7rnnMnv2bJYsWYKmacyZM4err75aKtiE6MMiLdvXAlrM5hDLnJt7zy+OWXVVV0S6uhJtPk80Y2MRqEWbeN2V9627z2078PXlZ9oxG2kApFkGYFJVqptbYv76YlkB2N0ifvbS0lIKCgr44IMPunUCV111FTU1NTz44INUVlYyduxYVqxYEUqyLisrQ1X3LWO/8MIL+Hw+fvzjH4dd56GHHmLevHkA3HXXXbjdbm666SYaGxs55ZRTWLFiRVie0rJly5gzZw5TpkwJNYp89tlnu/W1CSGOrM4q02aMnBFR2f6MkTNiOs9Y5dzEsnS/qyJdXYkmnyfa3J9YBWqx1N1bd3DA6lRNC/6AiknVafb4qXW1HpHX15MC0c4ohmEYkQw0mUxUVFSEqr+uuuoqnn322XbVYkcLp9NJWloaTU1NpKamxns6Qhz1IqlM0w2dFze/SEl9CUVpRWGr3oZhsKNpB8UZxdw4+sbDyi86VLWZzx/s9/K7Nd/t+w16d8e/Qf98SrBaONKxhf2DJwEcmLN0YP5PT6gQOphYVPVFa/+EeK8/gM1sYkhWcp85f2x7dTNvf7mX5ZvWYegqJw0qZkT2kT1fLbydggeLSWXkwNTQNmIs/45G+vkdcYCkqmpYeXxKSgpffvll6NiRo40ESEL0HAerTGsrxd+/Mi2asfvrzmMtdN3ghQ93hFZ5DgzUvqt2MTo3jZtPLwKIeOz+8+nrH/Kx1pcP2QVobvVwwz9+RyCgsuDs2QzJSjviry/sOBVdZ1ROGsMHpMT872ikn9/x3eATQojDEM2Bsm2VaV0p24/2WIvOqs2ibdDYlWaOsdiiOZp0Z+J1T2S3mjhzZPDvbkH/+HSv7ukH4UYcICmK0i4JuytJ2UII0V2iOVB2/8q0aMr2Iwl6BmUkRd1/KJY5N236+oe86P1UVSE1wQLAMemJPSY4gigCJMMwuP7660O9gDweDzfffHO7Mv+///3v3TtDIYQ4hK5WpnVWth9NOb4/EEx0jba3SzSrPLIiJMSRFXGANHPmzLDvr7322m6fjBBCROPAA2WTLcntxnS1Mi2acvzJhZld7u0SzSqPrAgJceREHCC9/PLLsZyHEEJE7cADZVOtqe2SmNsOlM1LDT8aKJIk3EiDnsvGHUOSzdQrersIISIj/1KFEL3a/gfK7mja0WFl2oEHykaSdH1gQ7vkDoKktqDHkWgh15HQo/oPCdEbWM0qd5w9LN7T6FDXG30IIUQP0VaZVpxRTKO3kV3OXTR6GynOKG5Xtt+WdP11eROORAuF/ZJxJFr4uryJl/+7i+3VzUB4Q7uqZg+qEmxk1/bV1tBu+ICU0OrTtGMHkJFk5btqF80eDb+u0+zR+K7adUSbDAohDp+sIAkherTOumO3KXQUMihlMJsqdlLX2kxmQgpjBxZgNplCYzy+QCjpesh+PYUSreZ255rZraaoy/Fjcbq7ECI+JEASQvRYkXTHbhO+baZjN7v4rP/OsG2zx1ds7TDpOseR0O5cs4cuGgXE7lgLIUTPJgGSEKJHOljH65L6EirdlWFbZ5E2aIz2DLQ20QY9Um0mRO8nAZIQokc5sDt2YVphaCsswZwQ1h17ZtKNYCgRb5vdeEpBRJVmN55S0G5eEvQIcXSRAEkI0aMcqjt2W/5RW3fsqvJRGFp6xNtmD1wwMqJKs/zMpA7nJoQ4ekgVmxCix4m4O7bRum/bzNTxdpfFpOLXdXwBXSrNhBARkxUkIcQR1VlV2oHdsRPNiWys3ggED6BVFTXUHfvGMSPQtfSIehW1bZtJpZkQIhISIAkhjphIqtIO7I5dlFbEpIGTQtfYvzv2oLRcMJTQtllqQnK7TtodbZtJpZkQojMSIAkhDlskvYqiqUqLqju2QlS9itpI0rUQ4lAkQBJCHJZIVoW8fm9EVWnXJ1+PzWwD9nXHbrt2VUsVNpON4ozidn2QZNtMCNHdFMMwjHhPojdyOp2kpaXR1NREampqvKcjRFwcbFWobZWnbVVowboFoao0s2rusCrN4/dwwsATuGfiPWHP4Q8EDtkde3+RHEArhDi6Rfr5LStIQoioRdOr6Prk6yOvSgtoYbdH0h17f7JtJoToLhIgCSGiFk2vogZvAzNGzghVpSWZk2n2+tH8OhazSorNjFsLVqXNGDkj9ByRdscWQohYkABJCNEl0awKtVWlrS/fjLelP40twf5DZlXFkWjBlljDCTmjyUvNw+fX0XUj1B27oF8SG8oagGDH6/27Y885M1m20IQQMSEBkhAiagf2KupsVUhVVIYkn8g/67/BpZWSYetPkikBT6CV3c17SPakMWTYiaiKyuIPvsXZqnXYHftz6sO6Y196fK5sqQkhYkICJCFE1PbvVRTJqpDHF+CrnXbStbNIT/oaZ2AvzkAjJsXCoKShGO5j2bzTzuRjAgARHyrr9vmP5MsWQhxFJEASQnRJNKtCj6/45ocVoUzMradR3VyOoXgZkJKGh0x8foN3N1fQ4PZx7/nFfN/QElF37CSr/AgTQsSGnMUmhIiaz6+HrQrlJQ0loLhxBioIKG4GJQ0lXTuLzTvteHyBsPPSFFTUQCYmfw5Wox8Kath5aVazSn5mEsOyUqhq9qAqYFKV0JeqQHWzl+EDUsh1JMT7rRBC9FHy65cQImqLP9i+X55Q56tCN55SENV5aW2HykbbHVsIIbqLrCAJIbokmlWhSFeEDjwvbdbJ+Rybk0Zji8auWjeNLRqjc9OkxF8IEXOygiSEiNptZw6JOE/oxlMKurwiJIfKCiHiRQIkIUTU9s8T+rq8idSE5FAnbQDDMKhu9jI6Ny20KtTV89KkO7YQIh4kQBJCdElXVoVkRUgI0VtIgCSE6JBu6FS4K3BrbpIsSaEjRPbXlVUhWRESQvQGEiAJIdopbSxlTdkadjbtxBvwYjPZKEgrYMqgKRQ6CsPGyqqQEKIvkgBJCBGmtLGUZSXLaPA2kJ2YTYI5gVZ/KyX1JVS6K5lePL1dkCSrQkKIvkbK/IUQQPDwWa/fy6pdq6hrrSM/JZ8Ec7ARY4I5gfyUfOpa61i9ezW6ocd5tkIIEVuygiSEAGDp5qU4fU7WV6zHbrbT4G2gwl0BEMo/8gV87Nm1hwuKLiA3OTfOMxZCiNiRAEmIo0hniddaQMNv+DGrZjDAr1nQDRWvRcVuBbNqxm/4cWvuOL4KIYSIPQmQhDhKdJZ4PXv0bMpd5bg1N0YgkcoGSA4Mwq/rtDSr2BItZKfDwKQWkixJnT+hEEL0YpKDJMRRoC3xektdCSYjmRTTQExGMlvqSlhWsozSxlIsJgt5qXk4LMfwRfluqpu9JFhMZCTaSLCYqG728kX5btIteQxMGhjvlySEEDEV9wBp8eLF5OfnY7fbmTRpEuvWrTvo2G+++YbLL7+c/Px8FEVh0aJF7ca03Xfg12233RYac8YZZ7S7/+abb47FyxMirvZPvC5rrKKuPo0vy1pZt7OBL8taqatPo6yxitW7V+PR/Pg0A0/TKHR/IqqtGkPxoBsBDMWDaqtG9yfiaRoJhpTwCyH6trhusb3xxhvMnTuXJUuWMGnSJBYtWsS0adPYtm0bWVlZ7ca3tLRQWFjIFVdcwR133NHhNdevX08gEAh9//XXX3P22WdzxRVXhI2bPXs2jzzySOj7xEQpURZ9T1vi9X/KPqfBmUrAX4WfZhRFJ9GcQk2LCbWplQr3aqrKR2Fo6XxaasJqPZ0W3ybK/XtB8ZNosWE3BmLzjWHtVhN7J7ZKWb8Qok+La4C0cOFCZs+ezaxZswBYsmQJ77zzDi+99BL33HNPu/EnnHACJ5xwAkCH9wP0798/7PsFCxZQVFTE6aefHnZ7YmIi2dnZ3fEyhOixArqBR/PR6Aa/30qiNYDLHyzRV1WDBFsAt9dKoxt8CS0YgTT8AZ10NYfEQDYeVzmG4qVfSho2MjFUhQbdh9vnj/MrE0KI2IpbgOTz+diwYQP33ntv6DZVVZk6dSpr167ttud47bXXmDt3bthBmgDLli3jtddeIzs7mwsvvJAHHnjgkKtIXq8Xr9cb+t7pdHbLHIWIJW/tGTS7yvF5d2HBiuFPRPckA2BgwQDMtODzpvKjYwsYkDgQl9dPeoKVZLsZCP+Fo9mj0diqkWSV+g5xZAUCATRNi/c0RC9gsVgwmUyHfZ24/ZSrra0lEAgwYMCAsNsHDBjA1q1bu+U53nrrLRobG7n++uvDbv/JT37C4MGDycnJ4auvvuLuu+9m27Zt/P3vfz/otebPn8/DDz/cLfMSort0VrZvUizYyEL1D8CwlWMYiUDbLwsKKAaGqQnVm0uatT/5mUkMy0rh6/ImUhOSw36xMAyD6mYvo3PTyHUkHNkXKo5ahmFQWVlJY2NjvKciehGHw0F2dna7xZFo9OlfA1988UXOO+88cnJywm6/6aabQn8ePXo0AwcOZMqUKezYsYOioqIOr3Xvvfcyd+7c0PdOp5O8vLzYTFyICJQ2lvLe7jV8U/MdLX4PiWY7o/oPZergfeel3XbmEL5vaKF69clUK2vQlToGpGZiVmz4DS8teh2qkUFWwkmk2KyoqsK0YwdQ3tTKd9UuBqbZSbCaaPUFqGjykJFk5ZxRA+ScNXHEtAVHWVlZJCYmHtYHnuj7DMOgpaWF6upqAAYO7HrFbdwCpH79+mEymaiqqgq7vaqqqltyg3bv3s177713yFWhNpMmTQJg+/btBw2QbDYbNpvtsOclRHcobSzl9xtf5tvaKgLeNAw9GUXV2Fm/nm/ryrh13CwKHYVYzSr5mUkcnz2CdXsNSNxMU6CcVr0ek2Il01oI7mMZd8yI0KrQkKwUZp2cz8qvq9hR46LK6cFmNjE6N41zRg1gSFZKnF+9OFoEAoFQcJSZmRnv6YheIiEh+LOsurqarKysLm+3xS1AslqtjB8/njVr1nDJJZcAoOs6a9asYc6cOYd9/ZdffpmsrCx+9KMfdTp206ZNwOFFmkIcKV6/l//55l98WV6OKTCAVLsFi0lFC1hwtlr4sryc123v8MtJN2Ez28JWhepc2WSnuDCZfQT8Vpqak8lMtrdbFRqSlULhGcnsbWzF7fOTZDWT60iQlSNxRLXlHEmVsYhW298ZTdN6X4AEMHfuXGbOnMmECROYOHEiixYtwu12h6raZsyYQW5uLvPnzweCSddbtmwJ/Xnv3r1s2rSJ5ORkhgwZErquruu8/PLLzJw5E7M5/CXu2LGD5cuXc/7555OZmclXX33FHXfcwWmnncaYMWOO0CsXouueWr+QFdu/xOtNIslax85mFwDJlmQUFFwt8H/b/4uhuvj15GARRPiqkAWXO4DNbGLMMckHXRVSVUVK+UWPINtqIlrd8XcmrgHSVVddRU1NDQ8++CCVlZWMHTuWFStWhBK3y8rKUNV9Cafl5eUcf/zxoe+feuopnnrqKU4//XQ+/PDD0O3vvfceZWVl3HDDDe2e02q18t5774WCsby8PC6//HLuv//+2L1QIbrRp6VNOD0aJgOavX5aA8GSeyPgR0EhYIDXo/FpaRNM3vc4WRUSRzOfX2fxB9uBYG6e1Rz3Psmih4t7kvacOXMOuqW2f9ADwS7ZhmF0es1zzjnnoOPy8vL46KOPop6nED1Fge0sKlzVJJiTMJGIoTkASLZaAPDTgidgUGA7q91jZVVICCEiIyG0ED2Mbujsde3l24Zv2evai27oYff/7LQTyU0aTFJiC7lpCRRnp1GcncYxjkRy0xJISnSTm5TPz047MU6vQIieR9cNnK0atS4v3ze0oOud/7J9uCorK7n99tspLCzEZrORl5fHhRdeyJo1a2L+3G3+/ve/M2HCBBwOB0lJSYwdO5a//OUvnT7upz/9KUVFRSQkJNC/f38uvvjidi14ysrK+NGPfkRiYiJZWVn86le/wu8/dBNZRVF466232t1+/fXXh/KRe4q4ryAJIfYpbSxlTdkadjbtxBvwYjPZKEgrYMqgfaX7hf1SOKH/aXxU9Xea1O9JMvULle27A7Xo/iQmZp9KYT+pNhMCYHt1M+9srmRtaR3+gI7L62dYVgrTjo1dVeauXbs4+eSTcTgcPPnkk4wePRpN01i5ciW33XZbt/X760xGRga//vWvGTFiBFarlX/961/MmjWLrKwspk2bdtDHjR8/nunTpzNo0CDq6+uZN28e55xzDjt37sRkMhEIBPjRj35EdnY2n3zyCRUVFcyYMQOLxcJvf/vbI/LaYk1WkIToIUobS1lWsoyS+hIcNgf5qfk4bA5K6ktYVrKM0sZSILhNdvXxEyhO/BH4cnH5m2jyl+PyN4HvGIoTz+eqsRMkt0gIgsHRy//dxZa9TdgtJtKTrKQnWPm6vImX/7uL7dXNMXneW2+9FUVRWLduHZdffjnDhg1j1KhRzJ07l08//TQ0rqysjIsvvpjk5GRSU1O58sorQ+1vvv32WxRFaRdMPfPMMwdtSXOgM844g0svvZTi4mKKior4+c9/zpgxY/jPf/5zyMfddNNNnHbaaeTn5zNu3Dgee+wx9uzZw65duwBYtWoVW7Zs4bXXXmPs2LGcd955PProoyxevBifzxfFO9Xerl27Ojx0/owzzjis60ZLAiQh4kwLaHj9XlbtWkVdax2Dk/PR/BbqXD40v4XByfnUtdaxevdqvP7gcTdDslL42Wknc27uTxjEpfTzn88gLuW8Y67hZ6edLL2KxFHN59fx+XU8vgDvbK6kttlLQb8kLKbgLw0JVhOF/ZKobfby7uZKPL4APr/eyVUjV19fz4oVK7jttttISkpqd7/D4QCCFdcXX3wx9fX1fPTRR6xevZrS0lKuuuoqAIYNG8aECRNYtmxZ2OOXLVvGT37yk6jnZRgGa9asYdu2bZx22mkRP87tdvPyyy9TUFAQapC8du1aRo8eHXYaxrRp03A6nXzzzTdRz21/eXl5VFRUhL6++OILMjMzo5pzd5AtNiHibOnmpTh9TtZXrMcIJPL1963UtfgwdIVEq51Em05qkos9zato8DZwz8TgQc1DslK49cxk9jYeI1VpQuynrVrN2aqxtrQOu8VEfYuP8sZWAD6nHlVR8PoD7N7cQoPbR2qChTvOHtYtz799+3YMw2DEiBGHHLdmzRo2b97Mzp07Q4HHq6++yqhRo1i/fj0nnHAC06dP5/nnn+fRRx8FgqtKGzZs4LXXXot4Pk1NTeTm5uL1ejGZTPz+97/n7LPP7vRxv//977nrrrtwu90MHz6c1atXY7VagWB+VUdHhbXddyjXXHNNu95EXq831LfQZDKFGkZ7PB4uueQSJk+ezLx58yJ6vd1FVpCE6AG0gEaLT6e6MRGXx4RJ9WOxeLGYdNytJqobk2jx6WiB8MM626rSRmSnkpeRKMGREPvxBXT8AT20cnQgi0nFr+v4At23egREVG0NUFJSQl5eXtixVSNHjsThcFBSUgLA1Vdfza5du0LbcsuWLWPcuHGdBl/7S0lJYdOmTaxfv57f/OY3zJ07N1Ql/tvf/pbk5OTQV1lZWehx06dP54svvuCjjz5i2LBhXHnllXg8noif92CeeeYZNm3aFPZ10UUXdTj2hhtuoLm5meXLl4e1/TkSZAVJiDibWXwje5v3smFPJX6Tjf4pqSjKvt/MDMOgusWJzcjhqqHT4zhTIXqH284MNg7+vqEFl9dPeoKVBKuJz6kHYMLgDEyqQrNHo7FV48ZTCjgmvfvaXwwdOrTD3KGuyM7O5qyzzmL58uWceOKJLF++nFtuuSWqa6iqGmqmPHbsWEpKSpg/fz5nnHEGN998M1deeWVo7P5nl6alpZGWlsbQoUM58cQTSU9P5x//+AfXXHMN2dnZrFu3Lux52nKnOjsuLDs7O6y5MwSDuAMPJH7sscdYuXIl69atIyXlyKcNyAqSEHH2x3/vZvl/3dTUO2jW6tjb5GFrZTNbK5vZ2+ih3OnBpdVSU+dg+X/d8Z6uED2e1ayGziEclpVCVbMHVQFVUVAVBZOqoCpQ3exl+IAU8jOTurVxZEZGBtOmTWPx4sW43e3/zbYFAsXFxezZs4c9e/aE7tuyZQuNjY2MHDkydNv06dN54403WLt2LaWlpVx99dWHNT9d1/F6vaG5DhkyJPR14OkTbQzDwDCM0OMmT57M5s2bQ4fCAqxevZrU1NSwuXfV3/72Nx555BHefPPNiBPSu5sESEL0AJoOFs9oLCSjKRUYSisGOgFa8VGBhRQsvtFo3bsTIESf1nYOYUaSle3VLrz+ALph0OzR+K7aRUaStd05hN1l8eLFBAIBJk6cyN/+9je+++47SkpKePbZZ5k8OdjifurUqYwePZrp06ezceNG1q1bx4wZMzj99NOZMGFC6FqXXXYZzc3N3HLLLZx55pmhVZ69e/cyYsSIdis5+5s/f34o+bukpISnn36av/zlL1x77bUHfUxpaSnz589nw4YNlJWV8cknn3DFFVeQkJDA+eefDwQbMo8cOZLrrruOL7/8kpUrV3L//fdz2223HfbB7l9//TUzZszg7rvvZtSoUVRWVlJZWUl9ff1hXTdassUmRJzdduaQ0FaAyZpBrfE5Tf69BAwXJsVCmnkEmco49OQsbjylIN7TFaJXaTuH8J3NlezeHPx31tiqMTo37aDnEHaHwsJCNm7cyG9+8xt++ctfUlFRQf/+/Rk/fjwvvPACEGya+M9//pPbb7+d0047DVVVOffcc3nuuefCrpWSksKFF17Im2++yUsvvRS6XdM0tm3bRktLy0Hn4Xa7ufXWW/n+++9JSEhgxIgRvPbaa6FKuY7Y7XY+/vhjFi1aRENDAwMGDOC0007jk08+ISsrCwgmUv/rX//illtuYfLkySQlJTFz5kweeeSRw3nbAPj8889paWnhscce47HHHgvdfuCxYrGmGJFmk4kwTqeTtLQ0mpqaSE1Njfd0RC+n6wYvfLiDr8ubGNI/Ebdeh2a0YlESSFIz2V7TwujcNG4+vUgSscVRw+PxsHPnTgoKCrDb7Yd3LV+Ax1dsxRfQufGUAvIzk+TfUh92qL87kX5+ywqSEEeAbuhUuCtwa26SLEkMTBqIquzb4W7bCihvamV7TQsD09JJtfaj1Rdge1NLTLcChDgaqKpCakLwvMJj0qXiU3ROAiQhYqy0sZT3dq/hm5rvaPF7SDTbGdV/KFMH7zs+BPZtBaz8uoodNS6qnB5sZlPMtwKEOBpYzWq39TkSRwcJkISIodLGUn6/8WW+ra0i4E3D0JNRVI2d9ev5tq6MW8fNahckFZ6RzN7GVmn+KIQQcSRVbELEQNvxIf/zzb/4srwcX2s/kqyJpCfZSLIm4mvtx5fl5bz+zTvoRnhpmjR/FEKI+JMVJCFiYMmXf8TpdbJi+5d4vUkkWevY2ewCINmSjIKCqwX+b/t/uW70peSlHhPnGQshhNifBEhCxMC6nfU0etw4PRomA5q9floDfgCMgB8FhYABXo/Gzvp6CZCEEKKHkQBJiBg4LuUyyoy9VLiqSTAnYSIRQ3MAkGwNVtL4acETMMA4vKZqQgghup8ESEJ00aFK9392VjFl9XnsXrUWr7qHTEsmimPfWU+GYVCr1ZCp5zM4NTdeL0EIIcRBSIAkRBd0VrpvNasU9kvhhP6n8VHV32lSvyfJ1A+zYsNveHEHatH9SUzMPpW89KR4vxwh+j6/Dz5+OvjnU38JZmt85yN6PAmQhIhSpKX7qqpw9fETqP63l9KWT3FZqlEUP4ZhRtGOoThxEleNnSBVakII0QNJmb8QEepK6f6QrBR+dtrJnJv7EwZxKf385zOISznvmGv42WknS/NHIY4UQwdPI7iqobEM9Nif/FxZWcntt99OYWEhNpuNvLw8LrzwQtasWRPz597fX//6V0aMGIHdbmf06NG8++67hxxfUVHBT37yE4YNG4aqqvziF7+I6Hn+/e9/c+GFF5KTk4OiKLz11ludPuaVV17B4XB0eF+k14gVWUESIkJdLd0fkpXCrWcms7fxGGn+KEQ81GyDb96CnR+D7gefC/oPh+ILg/+NgV27dnHyySfjcDh48sknGT16NJqmsXLlSm677Ta2bt0ak+c90CeffMI111zD/PnzueCCC1i+fDmXXHIJGzdu5Nhjj+3wMV6vl/79+3P//ffzzDPPRPxcbreb4447jhtuuIHLLrusu15C3MgKkhARWreznk9Lm3B6NPx6sHS/xRf8avYEv/w6OH8o3d+fNH8UIk5qtsGnS6ByM1gSIDEDEjKg4qvg7TXbYvK0t956K4qisG7dOi6//HKGDRvGqFGjmDt3Lp9++mloXFlZGRdffDHJycmkpqZy5ZVXUlVVBcC3336LoijtgqlnnnmGoqKiiObxu9/9jnPPPZdf/epXFBcX8+ijjzJu3Dief/75gz4mPz+f3/3ud8yYMYO0tLSIX/N5553HY489xqWXXhrxYyI1b948FEVp9/XKK690+3O1kQBJiAgdl3IZBbazsJBGkjmJZFN/7Pox2PVjSDb1J8nUj0RzEhbSpHRfiHjy+4Jfmie4cuSugcwhYLICClgTIXNo8PYt/wyO8/u67enr6+tZsWIFt912G0lJ7Ysw2raUdF3n4osvpr6+no8++ojVq1dTWlrKVVddBcCwYcOYMGECy5YtC3v8smXL+MlPfhLRXNauXcvUqVPDbps2bRpr167twiuLnzvvvJOKiorQ11NPPUViYiITJkyI2XPKFpsQEZLSfSF6ibZqNU9jcFvNkgAtddC0J3h7GaAo4PdCfWnwPrsDzry3W55++/btGIbBiBEjDjluzZo1bN68mZ07d5KXlwfAq6++yqhRo1i/fj0nnHAC06dP5/nnn+fRRx8FgqtKGzZs4LXXXotoLpWVlQwYMCDstgEDBlBZWdmFVxYbTU1NJCcnH3JMcnJyaMynn37K/fffz5///OeDbhN2B1lBEuIHuqGz17WXbxu+Za9rb7sz0vYv3Q/4E2gKfI9mtGKgoxmtNAW+D5buZ0npvhA9gt8XzDkyWTq+32QJ3t+Nq0cQ/GUpEiUlJeTl5YWCI4CRI0ficDgoKSkB4Oqrr2bXrl2hbblly5Yxbty4ToOvWPr4449DAUtycnK7Fa5opaSksGnTpnZfHSkrK+OSSy7hzjvv5Morrzys5+2MrCAJQbB0f03ZGnY27cQb8GIz2ShIK2DKoGBfozZSui9EL3DqL4P/bSwLJmQnZAS31cp+uH/QiaCYwOuE1gaYfBs4BnXb0w8dOrTD3KGuyM7O5qyzzmL58uWceOKJLF++nFtuuSWqx7flNLWpqqoiOzu7y3OaMGFCWABz4ApVtFRVZciQIZ2Oc7vdXHTRRUyePJlHHnnksJ4zonnF/BmE6OFKG0tZVrKMkvoSHDYH+an5OGwOSupLWFayjNLG0rDxUrovRA9ntga/MgqDVWrNFYAa3FZTlGBwpKjQXAlZI4LjurFxZEZGBtOmTWPx4sW43e529zc2NgJQXFzMnj172LNnT+i+LVu20NjYyMiRI0O3TZ8+nTfeeIO1a9dSWlrK1VdfHfFcJk+e3K6twOrVq5k8eXKUr2qfhIQEhgwZEvpKSYn9zzzDMLj22mvRdZ2//OUvKErsfwmVAEkc1bx+L6t2raKutY7Byflofgt1Lh+a38Lg5HzqWutYvXs1Xr837HHB0v2h3DftZO6Zehb3TTuZW84YKsGRED2JqgZL+RMzoXZbMOfI0IMrRzVbISkTRlwQHNfNFi9eTCAQYOLEifztb3/ju+++o6SkhGeffTYUnEydOpXRo0czffp0Nm7cyLp165gxYwann356WPLxZZddRnNzM7fccgtnnnkmOTk5AOzdu5cRI0awbt26g87j5z//OStWrODpp59m69atzJs3j88//5w5c+aExtx7773MmDEj7HFt21wul4uamho2bdrEli1bDvmaXS5X2PbYzp072bRpE2VlZYd8XCTmzZvHe++9xx/+8AdcLheVlZVUVlbS2tp62Nc+GNliE0e1ZzY+w/qK9RiBRL7+vpW6Fh+GrpBotZNo00lNcrGneRUN3gbumXhP2GPbSveFED1Y/+Fw4s3Barb6UvA2B7fVco4LBkcx6oNUWFjIxo0b+c1vfsMvf/lLKioq6N+/P+PHj+eFF14Ago0Q//nPf3L77bdz2mmnoaoq5557Ls8991zYtVJSUrjwwgt58803eemll0K3a5rGtm3baGlpOeg8TjrpJJYvX87999/Pfffdx9ChQ3nrrbfCkpsrKiraBTHHH3986M8bNmxg+fLlDB48mF27dh30uT7//HPOPPPM0Pdz584FYObMmYddjv/RRx/hcrk46aSTwm5/+eWXuf766w/r2gejGJFmk4kwTqeTtLQ0mpqaSE1Njfd0RBc9uvZRPvl+I83NWfj9Jvw0oyg6ieYUfJoJk9lPSko1Jx0zjgcmPxDv6QpxVPF4POzcuZOCggLsdvvhXUzzwHsPBROyJ98W3FaLwcqR6BkO9Xcn0s9vWUESR7Wrhk5nw55K/CYb/VNSUZR9yYaGYVDd4sRm5HDV0OlxnKUQ4rAparCUH4IJ2RIciU5IgCT6NN3QqXBX4NbcJFmSGJg0EFXZ94Nx+X/d1NQ7CJi/x9dkxeXxA5Bit4Bi4DFqaW3JY/l/3cy7OF6vQghx2MzWbutzJI4OEiCJPiuS0n1NB4tnNGpyI5pSgaEkg2EjQCsBGrCQgsk3Gi3251oKIYToQSRAEr1OZ6tCsK90v8HbQHZiNgnmBFr9rZTUl1DprmR68XQKHYXceEoBLq8fkzWDWuNzmvx7CRguTIqFNPMIMpVx6MlZ3HhKQZxerRBCiHiQAEn0Kp2tCmkBDd3QQ6X7BamFuHwBWjw+LOZg6f5OZymrd6/m+uTryc9MYlhWCl+X6xzX/1Lceh2a0YpFSSBJzWR7TQujc1PIz5TO2EIIcTSRAEn0GpGsCq3YtQKnz7mvdH+vh1avim4oqIpBQgel+9OOHUB5Uyvba1oYmJZOqrUfrb4A25tayEiycs6oAdIZWwghjjISIIke78BVocK0wlAX1QRzAvkp+ZQ2BVeFDMNAC2i0+HSamxPx+9V9pfumFNytJjxaEikpbrSABgSbPs46OZ+VX1exo8ZFldODzWxidG4a54waIM0fhRDiKCQBkujxlm5eGloVspvtNHga2NNUi26oZCf1w24FTfexZ9ceFpzyFIZhRF26PyQrhcIzktnb2Irb5yfJaibXkSArR0IIcZSKeyOIxYsXk5+fj91uZ9KkSYdsmf7NN99w+eWXk5+fj6IoLFq0qN2YefPmoShK2NeBpx57PB5uu+02MjMzSU5O5vLLL293mJ/oWbSAht/wo/ms7K2109CURWNjf8pqEvi+1obPZ8Vv+Hn1s+2h0v1mrY69TR62VjaztbKZvY0eyp0eXFotNXUOlv83/Iykts7YI7JTyctIlOBIiD5EC2j8ftPv+f2m34dWj4U4lLgGSG+88QZz587loYceYuPGjRx33HFMmzaN6urqDse3tLRQWFjIggULDnkS8ahRo6ioqAh9/ec//wm7/4477uDtt9/mr3/9Kx999BHl5eVcdtll3fraRPeZPXo2M0bO4JjEobS29MNi9GNo+iBGZQ3mmJT+WPRMPC2ZHJM4FIuSECrdt5D8Q+l+KwY6AVrxUYGFFCxSui+EEOIQ4hogLVy4kNmzZzNr1ixGjhzJkiVLSExMDDtrZn8nnHACTz75JFdffTU2m+2g1zWbzWRnZ4e++vXrF7qvqamJF198kYULF3LWWWcxfvx4Xn75ZT755BM+/fTTbn+NonO6obPXtZdvG75lr2svuhEeuRiGif72HFrcmTj9taQnWrGaTCgoWE0m0hOtOP11tLr7cedZk7jxlAKOyx7OCRkXM8QxnLx+kNPPRUaKxhDHCCZkXMRxA4ZL6b4QRxHd0HH6nNS11lHuKm/3c6a7XX/99aFdDIvFQkFBAXfddRcejydsXNuYAz9/vF4vmZmZKIrChx9+GLr9o48+4qyzziIjI4PExESGDh3KzJkz8fl8B53LT3/6U4qKikhISKB///5cfPHFbN269ZDz37ZtG2eeeSYDBgzAbrdTWFjI/fffj6aFr7799a9/ZcSIEdjtdkaPHs277757yOu+8sorOByODu9TFIW33nrrkI8/kuKWg+Tz+diwYQP33ruvs6mqqkydOpW1a9ce1rW/++47cnJysNvtTJ48mfnz5zNo0CAgeOiepmlMnTo1NH7EiBEMGjSItWvXcuKJJ3Z4Ta/Xi9e770R3p9N5WHPsjSLpPxStSJo5Lv5gO85WjbI9RfgT9rDLX4rHE2zomGTXCSgNKHoSu/cUUufWpHRfCBGmtLGUVbtWsb5iPX7Dj1tzU+QoCvs5EwvnnnsuL7/8MpqmsWHDBmbOnImiKDz++ONh4/Ly8nj55ZfDPn/+8Y9/kJycTH19fei2LVu2cO6553L77bfz7LPPkpCQwHfffcff/vY3AoHAQecxfvx4pk+fzqBBg6ivr2fevHmcc8457Ny5E5PJ1OFjLBYLM2bMYNy4cTgcDr788ktmz56Nruv89re/BeCTTz7hmmuuYf78+VxwwQUsX76cSy65hI0bN4YdhttbxW0Fqba2lkAgwIABA8JuHzBgAJWVlV2+7qRJk3jllVdYsWIFL7zwAjt37uTUU0+lubkZgMrKSqxWa7sItrPnnT9/PmlpaaGvvLy8Ls+xNyptLOXFzS+y+IvF/OHLP7D4i8W8uPlFShtLD+uay0qWUVJfgsPmID81H4fNQUl9CctKloVd2xfQUbQsMvUp2PQ8DLUFw1yDrrhIMAaRqU9B8Wfh9vlRVYVpxw4gI8nK9poW8KeTasoDfzrba6R0X4ijSdvPma31W7Gb7ThsDtJsaR3+nOluNpuN7Oxs8vLyuOSSS5g6dSqrV69uN27mzJm8/vrrtLa2hm576aWXmDlzZti4VatWkZ2dzRNPPMGxxx5LUVER5557LkuXLiUhIeGg87jppps47bTTyM/PZ9y4cTz22GPs2bOHXbt2HfQxhYWFzJo1i+OOO47Bgwdz0UUXMX36dD7++OPQmN/97nece+65/OpXv6K4uJhHH32UcePG8fzzz0fxLnWso3xiRVF45ZVXDvvakYp7knZ3O++887jiiisYM2YM06ZN491336WxsZE333zzsK5777330tTUFPras2dPN804vjrb3oLoAplIef3eUNl+fko+CebgP+62sv261jpW716N1+/ltjOHcOMpBYzKTWNc9gjOz5vOxYNu4PxjruPs7Jmce8xPOD57OKNy0kiyBhdF20r3j81Jo7FFY1etm8YWjdG5acw6OV9K94Xow7SAhhbQwn/OpOZjVoM/HxLNie1+zsQ6cfvrr7/mk08+wWq1trtv/Pjx5Ofn87e//Q2AsrIy/v3vf3PdddeFjcvOzqaiooJ///vfXZ6H2+3m5ZdfpqCgIKpf9Ldv386KFSs4/fTTQ7etXbs2bDcGYNq0aYe9CwRw5513huUSP/XUUyQmJjJhwoTDvnak4rbF1q9fP0wmU7vqsaqqqkMmYEfL4XAwbNgwtm/fDgT/gvl8PhobG8NWkTp7XpvNdsi8p94o2q7Uh+o/NDttdlTbbc9sfGZf2b63gQp3BUBo284XCJbttzVz3Ldt1sTQhGTSTAeU7je3MDo3jVzHvt+ipHRfiKPT0s1LAcLbg+z3c2Zj9cZ2P2dSrancOvbWbp3Hv/71L5KTk/H7/Xi9XlRVPejqyg033MBLL73EtddeyyuvvML5559P//79w8ZcccUVrFy5ktNPP53s7GxOPPFEpkyZwowZM0hNTT3kXH7/+99z11134Xa7GT58OKtXr+4wWDvQSSedxMaNG/F6vdx000088sgjofsqKyu7tAvU1NREcnLyIcckJyeHxnz66afcf//9/PnPfz6iW3dxW0GyWq2MHz+eNWvWhG7TdZ01a9YwefLkbnsel8vFjh07GDhwIBCM1C0WS9jzbtu2jbKysm593u4UySpPtCJZFVq6eSnPbHyG1btXU9Naw4bqDbxd+jZvl77N51Wf80XNF9S01rBq16rQD55ItZXtm1UzGODXLPh8Nrw+FcMAs2oOlvX/8Fvd/ttm31W7aPZo+HWdZo/Gd9Wug26bSem+EEevsJ8zHTjw50x3O/PMM9m0aROfffYZM2fOZNasWVx++eUdjr322mtZu3YtpaWlvPLKK9xwww3txphMJl5++WW+//57nnjiCXJzc/ntb38bqtw+lOnTp/PFF1/w0UcfMWzYMK688spQwvioUaNCAcl5550X9rg33niDjRs3snz5ct555x2eeuqpLr4b+6SkpLBp06Z2Xx0pKyvjkksu4c477+TKK6887OeORlwbRc6dO5eZM2cyYcIEJk6cyKJFi3C73cyaNQuAGTNmkJuby/z584FgYveWLVtCf967dy+bNm0iOTmZIUOGAMFluQsvvJDBgwdTXl7OQw89hMlk4pprrgEgLS2NG2+8kblz55KRkUFqaiq33347kydPPmiCdjxFksQcja50pY7kB4xbC+8p1FlC94yRM3BrboxAIpUNkBwYhF/XaWlWsSVayE6HgUktzBg5I/QY6XgthIjE7NGzASh3lePW3KTZ0kg0J7KxeiMA47LGoSoqLp+LJl8TM0bOICc5p9vnkZSUFPpseumllzjuuON48cUXufHGG9uNzczM5IILLuDGG2/E4/Fw3nnnhXJnD5Sbm8t1113Hddddx6OPPsqwYcNYsmQJDz/88EHn0pY/O3ToUE488UTS09P5xz/+wTXXXMO7774bqk47MJepbRtu5MiRBAIBbrrpJn75y19iMpnIzs7u0i6Qqqqh9+VQ3G43F110EZMnTw5buTpS4hogXXXVVdTU1PDggw9SWVnJ2LFjWbFiRWjJrqysDFXd96FaXl7O8ccfH/r+qaee4qmnnuL0008PlUF+//33XHPNNdTV1dG/f39OOeUUPv3007ClymeeeQZVVbn88svxer1MmzaN3//+90fmRUch0hPpo9GuK/UhtrcWnrEQIKIfMEmWfRVhkQR1eal5OCzH8P6eLzD5s0m1W7CYLGgBnepmLxWtlUwpHEdeavgeuWybCSE6YzFZgODPmSJHESX1JeSn5Id+SVMVFVVRqfHUUJxRTF5q3mFX5HZGVVXuu+8+/v/27jwsqnKPA/h3ZpgFGBkWlU0FAkol9Kq54C0XRES92sXtdq8iApn6iE/q1fayMirttjwWZl111Mq0srw+pWn5aIuaqV3KJTUBN1aVdQZmYebcP5BznWFxkAEG/X6eZ57HOec973kPDmd+/N7lLF68GP/4xz8aHFSdmpqKcePG4fHHH290dpk9Hx8fBAYGQq/X37zwdYIgQBAEcWZ2SEiIQ8dZrVaYzWZYrVbIZDLExMRg7969WLhwoVjmm2++cUpvjCAImDFjBqxWKz744APxD/m21O6PGklPT0d6enqD+25c+wEAQkNDIQhCk/Vt2bLlpudUqVTIzMxEZmamw+1sS83J8sxSz4LS7f9joxyZiu9oVshoNSLCO0K8wYRrwjE4cLBYThAE8QYT6FnbheloUGcyCzCUR8FacwZyZTEEiR+sghKCxAip8hrMRg8YynvDZBagsusmr+s2IyJqilQixageo1CoL0ROeQ5MFhPcpG7QmXS4YrgCH6UPRvUY1erBUZ2pU6di6dKlyMzMxJIlS+rtT0hIwJUrVxodT/Tee+8hKysLiYmJCA8Ph8FgwKZNm3Dy5Em8/fbbDR6Tk5ODrVu3Ij4+Hl26dMHly5fx6quvwt3dHePGjWu0rR999BHkcjmio6OhVCpx9OhRPPnkk/jb3/4Gubw2AH300UcxfPhwvP766xg/fjy2bNmCo0eP4v3337+Fn46t559/Ht9++y327NkDnU4HnU4HoDYT1tSMPWdq9wCJ6mtOlqduEDPgWOZmdvRsh9POnnJPmxtMdnm2TdBTWFUo3mAsVgvMgtnhoG7F1+fwU44MCsVwVJmykF+TB0hq4CFXQiUEQmnqg0OnZVhhOo1lE6Pa4X+BiG4Hd3nfhem9pmPP+T24dOESaoQalJvK0cu3V6uvg2TPzc0N6enpWLlyJebNmwdPT9u12CQSic3CxvYGDRqEH3/8EXPnzkV+fj7UajWioqKwfft2m9llN1KpVPjhhx/w1ltvobS0FP7+/hg2bBgOHjyIrl27NtnWFStW4OzZsxAEASEhIUhPT8eiRYvEMkOHDsXmzZvxzDPP4KmnnkJkZCS2b9/ulIHU3333HXQ6HYYOHWqzXavVYtasWS2u3xES4WYpGWpQRUUFNBoNysvLbzp7oLlWZ63GteprOFp0FN5KbwCoFyBZBSvKjGW4z/8+PBvzbKOZm7og5sbuOKtgxbrj68Ss0I2pS0EQkF2ejV6+vZAWnSb+ZXWz4Gt11mqboM5N6tZgUGeoMWBg4EBU5o3H4Zxr8PFUQIAVeZX5ECRG+HfSQAk/CIIEpVUmDA7zQ0ZitFN/vkTUMRgMBuTm5iIsLAwqlapFdRlrjHjzlzdhtpgxs/fMNulWo/bT1GfH0e9vZpBcUHOyPDN7z6y31sd/r/xXLNtQd5yjWaEbbx53ed+FHp1CkFWQi2vVlfBz74Q/BYbB7YZ+8ubMGEm7Pww6Yw183BVQq9wA2E5nrTSYUVZt5uNAiMgppBIpvBS1X4ZB6iAGR3RTDJBckFwmtxlc2NTYn+5e3bHyyEqH1/qo646rSzvXZYWKqoqglCkbTTufK64UZ48ZaqxQuelwuEsuxtxbO3vMPqjzdFOj0lgDc40VcjcpOindoDf/P6jr3un/6xp5uavrZbGKK42IDtbwcSBE5BRymdzp6xzR7Y0BkotqTpbnVtf6uMv7LoRqQm86qPtccSW0B86jRG9CoEYFD4U7qkw1OJFfjvzyanFl6rqg7kj+cRiruqCsqnatIjepFN4ecig9rmBgUPT11Hbtukb55dX4o1iHQI0K7goZqk0WFJQb+DgQIiJqVwyQXJijWZ66NYU0Sg3U8vqrk97YHWdPKpEiWB3c4PlNNVZYrQK+Ol6Iq5VGRHT9f6bHQ+GGuzp74lyxDjuPFyJ9pLp2bQv1EPyn5CR05hz4KrvAU+YOg6UaFyovQW3QIOLuIWIAxnWNiIjIVTFAcnGOZHlu7I7zUnjV6666sTuuOTL3nUNFtRmHcq5BJZehpMqE/LLahykGebtDKpHAWGPBheNV+EufQARp3PFbrgo+5lj4eJ5AhSUPFZYyyCRy9PCMhKC/F8dzVYjpZoFKUTt2iesaERGRK2KA1AE0leWp29/cQdeOMlmsqLFYIVc1/FGRy6TQGWuw7sdcKGTS68GUH9yqh6H4hplpBvjBVCNg5/EClOpNNlP3ua4RERG5GgZIt4nmDrquY7UKjWZv5o+MwOXSKrvZZrbqZpspZFK7YEoCqcUPAKAQ3CGRSCCXCdAZa2CytPxZckRERK2JAdJtxNFB13VsZ6ZZoHKTIbyLWpyZpnCTItTPsdlmqX8OQ355tUPBFKfuExGRq2OAdJu5WXdcHUdnpkmljs02UylkDgdTnLpPRG1NMJlw9b3aR2B0nvMIJArFTY6gOx1XyrrDmGqsMJgs4sy0uzp7wkNRGyfXzUy7WmnEzuOFsFprF1mvm212b5AGZVVmnL+qR1mVGdHBGjGQAiAGU76eCvxRrEOloXaaf6XBjD+KdZy6T0REHQYDpDtM5r5zWPH1aew6XoCiSiN+Pl+CL/57GV/89zIO517D0QulKKo0YOfxAuRdn7EG1AZJ80aEY9Hou7FgVCQWjb4bc4eH15uK72gwRUTUlgSrFZaKCtRcuwZTXh4Ea+uOhZw1axYkEknt+Eu5HGFhYXjsscdgMBhsytWV+emnn2y2G41G+Pn5QSKR2Dy4/bvvvkNsbCx8fX3h4eGByMhIJCcnw2QyNdoWg8GA+fPnw8/PD2q1GpMnT0ZRUVGT7f/8888RHx8vtiErK8uh687IyMDQoUPh4eEBb29vh44ZMWIEFi5cWG/7hg0bHK6jNbCL7Q7k6Mw0vanGZrujs804dZ+IXIkxOxsVu3dDf/gwYLHAqtNBGRGBTqPjoAwPb7XzJiQkQKvVwmw249ixY0hOToZEIsGKFStsynXv3h1arRZDhgwRt33xxRdQq9UoKSkRt506dQoJCQlYsGABVq1aBXd3d/zxxx/Ytm0bLBZLo+1YtGgRvvrqK3z66afQaDRIT0/HpEmTcODAgUaP0ev1uP/++zFt2jTMnj3b4Ws2mUyYOnUqYmJisG7dOoePc0UMkDqApmaaNbes/cw0d4UMR1H7C3hfiC9kUok4mNpTcesfD07dJyJXYMzORskHH8By7Rqk7u6Amxuk3t4w/H4K5sIC+CYltVqQpFQqERAQAKA2CIqLi8M333xTL0BKTk7GqlWr8NZbb8Hd3R0AsH79eiQnJ2P58uViuT179iAgIAArV64Ut4WHhyMhIaHRNpSXl2PdunXYvHkzYmNjAQBarRa9evXCTz/9ZBOU3SgpKQkAcP78+WZd8wsvvACgNvvjbKGhobhw4UK97YIgOP1cAAMkl3ezmWbNLWs/My2yqxpDwzuLddw4mDrY271Nr5WIyBmE691NgtWKit27Ybl2DfLQUNSUlAIAZB7ukIaGwZyTjYrde+CXmgKJVNqqA7dPnDiBgwcPIiQkpN6+AQMGIDQ0FNu2bcOMGTNw8eJFfP/998jMzLQJkAICAlBQUIDvv/8ew4YNc+i8x44dg9lsRlxcnLitZ8+e6NGjBw4dOtRogOSKjhw5ImbKLBYLpkyZArlc3mrnY4Dkwhydadbcso7OTGOXGBF1RHWz1SwVFdAfPgypuztqSkphLqh9kHfVsV8AqRRWoxHGCxdhKS2FzMsLXRakO7UdX375JdRqNWpqamA0GiGVSvHOO+80WDY1NRXr16/HjBkzsGHDBowbNw5dunSxKTN16lTs3r0bw4cPR0BAAIYMGYJRo0Zh5syZ8PLyarDewsJCKBSKemN5/P39UVhY6JTrdIbVq1dj7dq1NttqamqgUqnE9zf+PB599FEUFBTgyJEjrdYmDtJ2Qc2ZaWYwWZpVtg4HUxPR7U4wmwGLBXBrOBcgkcsBi6W2XCsYOXIksrKycPjwYSQnJyMlJQWTJ09usOyMGTNw6NAh5OTkYMOGDUhNTa1XRiaTQavV4vLly1i5ciWCg4Px8ssvIyoqCgXXg7+2MnfuXKjVavHVUtOnT0dWVpbN68UXX2yw7Pvvv49169Zhx44d9YJIZ2IGyQU15xlopfraVLKjZW98xAcHUxPR7ajznEcAAKa8PFh1Oki9vSHzcK/NHAHwGNAfkMpg0elgLSuDb/JMKIJvvn5cc3l6eiIiIgJA7Ziivn37Yt26dUhLS6tX1s/PD3/5y1+QlpYGg8GAsWPHorKyssF6g4ODkZSUhKSkJCxfvhx333031qxZI47/uVFAQABMJhPKyspsskhFRUXi+Khb8eKLL2LJkiW3fLw9jUYj/qzqdO3atV65ffv2YcGCBfj444/Rp08fp52/IcwguShxppms4WBFLpOixmqFyWJtVll7dYOpewZ4obuvB4MjIurwJAoFJAoFFCEhUEZEwHKlGIJECkjrXjJAKoXlSjGUkZFQhIS0+sKRUqkUTz31FJ555hlUV1c3WCY1NRX79+/HzJkzIZPJHKrXx8cHgYGB0Ov1De4fMGAA5HI59u7dK247c+YMLl68iJiYmOZfyHVdu3ZFRESE+GoL586dw5QpU/DUU09h0qRJrX4+ZpBcUHOegVb32A4+4oOIyJZEKkWn0XEwFxbAnJMNq9EIiVwOi04Hy5ViyHx80SluFCTStskVTJ06FUuXLkVmZmaD2ZeEhARcuXKl0fFE7733HrKyspCYmIjw8HAYDAZs2rQJJ0+exNtvv93gMRqNBmlpaVi8eDF8fX3h5eWFBQsWICYmxmaAds+ePfHKK68gMTERAFBSUoKLFy8iPz8fQG1QBdRmpJrKPF28eFE81mKxiOsnRUREtKgrrrq6GhMmTEC/fv3wyCOP2IyfakkmrCkMkFxQc56BVvfYDj7ig4ioPmV4OHyTklCxezeMFy5C0OthLSuDqncUOsWNatV1kOy5ubkhPT0dK1euxLx58+DpaXtPlkgk6Ny5cyNHA4MGDcKPP/6IuXPnIj8/H2q1GlFRUdi+fTuGDx/e6HFvvvkmpFIpJk+eDKPRiDFjxmD16tU2Zc6cOYPy8nLx/Y4dO5CSkiK+f+ihhwAAy5Ytw/PPP9/ouZ577jls3LhRfN+vXz8AtV1jI0aMaPS4mykqKsLp06dx+vRpBAUF2exrrWn+EqG1ar7NVVRUQKPRoLy8vNFov6XsZ6bZzzRrahZbU2WJiDoCg8GA3NxchIWF2cxmuhVWgwHFr78BwWyuHXMUEtJmmSNqe019dhz9/mYGyYXVzTSrW9uoqMIApZsM0cEaxEfZroPUnLJERHcaiVQK2fUvQ0VwMIMjuikGSC6uOTPNOCuNiKhhEoXC6esc0e2NAVIH0JzHdvARH0RERC3HHCMRERGRHQZIRETk0jiXiJrLGZ8ZBkhEROSS6h5EWlVV1c4toY6m7jPTkofZcgwSERG5JJlMBm9vbxQXFwMAPDw8bNZ5I7InCAKqqqpQXFwMb29vh1ckbwgDJCIicll1qyTXBUlEjvD29m7xCtsMkIiIyGVJJBIEBgaia9euMJvN7d0c6gDkcnmLMkd1GCAREZHLk8lkTvnSI3IUB2kTERER2WGARERERGSHARIRERGRHY5BukV1i1BVVFS0c0uIiIjIUXXf2zdbTJIB0i2qrKwEAHTv3r2dW0JERETNVVlZCY1G0+h+icA13G+J1WpFfn4+OnXq5PSFywYOHIgjR444tc72Op+z63ZWfS2pp6KiAt27d8elS5fg5eXV4raQ87X175Ar6EjX7Cptbct2tPa5XPFe66r3WUEQUFlZiaCgIEiljY80YgbpFkmlUnTr1q1V6pbJZG36xdua53N23c6qzxn1eHl5MUByUW39O+QKOtI1u0pb27IdrX0uV7zXuvJ9tqnMUR0O0nZB8+fPv23O5+y6nVVfW/+MqW3dif+/HemaXaWtbdmO1j6XK95rXeX/+Vaxi42omSoqKqDRaFBeXu4SfwUTEd1uXOE+ywwSUTMplUosW7YMSqWyvZtCRHRbcoX7LDNIRERERHaYQSIiIiKywwCJiIiIyA4DJCIiIiI7DJCIiIiI7DBAIiIiIrLDAInIib788kvcc889iIyMxNq1a9u7OUREt6XExET4+PhgypQprXYOTvMncpKamhr07t0b+/btg0ajwYABA3Dw4EH4+fm1d9OIiG4r+/fvR2VlJTZu3IjPPvusVc7BDBKRk/z888+IiopCcHAw1Go1xo4diz179rR3s4iIbjsjRoxAp06dWvUcDJCIrvv+++8xYcIEBAUFQSKRYPv27fXKZGZmIjQ0FCqVCoMHD8bPP/8s7svPz0dwcLD4Pjg4GHl5eW3RdCKiDqOl99q2wgCJ6Dq9Xo++ffsiMzOzwf1bt27F4sWLsWzZMvzyyy/o27cvxowZg+Li4jZuKRFRx9VR7rUMkIiuGzt2LF566SUkJiY2uP+NN97A7NmzkZKSgt69e2PNmjXw8PDA+vXrAQBBQUE2GaO8vDwEBQW1SduJiDqKlt5r2woDJCIHmEwmHDt2DHFxceI2qVSKuLg4HDp0CAAwaNAgnDhxAnl5edDpdNi1axfGjBnTXk0mIupwHLnXthW3Nj0bUQd19epVWCwW+Pv722z39/fH6dOnAQBubm54/fXXMXLkSFitVjz22GOcwUZE1AyO3GsBIC4uDr/++iv0ej26deuGTz/9FDExMU5tCwMkIieaOHEiJk6c2N7NICK6rX377betfg52sRE5oHPnzpDJZCgqKrLZXlRUhICAgHZqFRHR7cWV7rUMkIgcoFAoMGDAAOzdu1fcZrVasXfvXqendYmI7lSudK9lFxvRdTqdDufOnRPf5+bmIisrC76+vujRowcWL16M5ORk3HfffRg0aBDeeust6PV6pKSktGOriYg6lo5yr+WjRoiu279/P0aOHFlve3JyMjZs2AAAeOedd/Daa6+hsLAQf/rTn7Bq1SoMHjy4jVtKRNRxdZR7LQMkIiIiIjscg0RERERkhwESERERkR0GSERERER2GCARERER2WGARERERGSHARIRERGRHQZIRERERHYYIBERERHZYYBERNQC165dQ9euXXH+/HkAtasESyQSlJWVtep5n3jiCSxYsKBVz0F0J2OARERtYtasWZBIJPVeCQkJ7d20FsnIyMCDDz6I0NDQFtdVVFQEuVyOLVu2NLg/LS0N/fv3BwAsWbIEGzduRE5OTovPS0T1MUAiojaTkJCAgoICm9fHH3/cquc0mUytVndVVRXWrVuHtLQ0p9Tn7++P8ePHY/369fX26fV6fPLJJ+K5OnfujDFjxuDdd991yrmJyBYDJCJqM0qlEgEBATYvHx8fcb9EIsHatWuRmJgIDw8PREZGYseOHTZ1nDhxAmPHjoVarYa/vz+SkpJw9epVcf+IESOQnp6OhQsXikEEAOzYsQORkZFQqVQYOXIkNm7cKHaF6fV6eHl54bPPPrM51/bt2+Hp6YnKysoGr2fnzp1QKpUYMmRIo9dcVVWFsWPH4s9//rPY7bZ27Vr06tULKpUKPXv2xOrVq8XyaWlp2Lt3Ly5evGhTz6effoqamhpMnz5d3DZhwoRGs01E1DIMkIjIpbzwwguYNm0afvvtN4wbNw7Tp09HSUkJAKCsrAyxsbHo168fjh49iq+//hpFRUWYNm2aTR0bN26EQqHAgQMHsGbNGuTm5mLKlCn461//il9//RVz5szB008/LZb39PTEQw89BK1Wa1OPVqvFlClT0KlTpwbb+sMPP2DAgAGNXktZWRlGjx4Nq9WKb775Bt7e3vjoo4/w3HPPISMjA7///jtefvllPPvss9i4cSMAYNy4cfD39xefan5jWyZNmgRvb29x26BBg3D58mVx/BMROZFARNQGkpOTBZlMJnh6etq8MjIyxDIAhGeeeUZ8r9PpBADCrl27BEEQhOXLlwvx8fE29V66dEkAIJw5c0YQBEEYPny40K9fP5syjz/+uHDvvffabHv66acFAEJpaakgCIJw+PBhQSaTCfn5+YIgCEJRUZHg5uYm7N+/v9FrevDBB4XU1FSbbfv27RMACL///rvQp08fYfLkyYLRaBT3h4eHC5s3b7Y5Zvny5UJMTIz4/oknnhDCwsIEq9UqCIIgnDt3TpBIJMK3335rc1x5ebkAoMk2EtGtYQaJiNrMyJEjkZWVZfOaO3euTZk+ffqI//b09ISXlxeKi4sBAL/++iv27dsHtVotvnr27AkAyM7OFo+zz+qcOXMGAwcOtNk2aNCgeu+joqLETM6HH36IkJAQDBs2rNHrqa6uhkqlanDf6NGjERERga1bt0KhUACoHUeUnZ2NtLQ0m2t46aWXbNqfmpqK3Nxc7Nu3D0Bt9ig0NBSxsbE253B3dwdQ241HRM7l1t4NIKI7h6enJyIiIposI5fLbd5LJBJYrVYAgE6nw4QJE7BixYp6xwUGBtqc51Y8/PDDyMzMxBNPPAGtVouUlBRIJJJGy3fu3BmlpaUN7hs/fjy2bduGU6dOITo6Wmw/APz73//G4MGDbcrLZDLx35GRkXjggQeg1WoxYsQIbNq0CbNnz67Xlrquxy5dujT/YomoSQyQiKjD6N+/P7Zt24bQ0FC4uTl++7rnnnuwc+dOm21HjhypV27GjBl47LHHsGrVKpw6dQrJyclN1tuvXz98+OGHDe579dVXoVarMWrUKOzfvx+9e/eGv78/goKCkJOTYzPYuiFpaWmYN28eJk6ciLy8PMyaNatemRMnTkAulyMqKqrJuoio+djFRkRtxmg0orCw0OZ14wy0m5k/fz5KSkrw97//HUeOHEF2djZ2796NlJQUWCyWRo+bM2cOTp8+jccffxxnz57FJ598Ig6CvjEr4+Pjg0mTJmHp0qWIj49Ht27dmmzPmDFjcPLkyUazSP/6178wffp0xMbG4vTp0wBqB6G/8sorWLVqFc6ePYvjx49Dq9XijTfesDl26tSpkMvlmDNnDuLj49G9e/d69f/www944IEHxK42InIeBkhE1Ga+/vprBAYG2rzuv/9+h48PCgrCgQMHYLFYEB8fj+joaCxcuBDe3t6QShu/nYWFheGzzz7D559/jj59+uDdd98VZ7EplUqbsmlpaTCZTEhNTb1pe6Kjo9G/f3988sknjZZ58803MW3aNMTGxuLs2bN4+OGHsXbtWmi1WkRHR2P48OHYsGEDwsLCbI7z8PDAQw89hNLS0kbbsmXLFsyePfum7SSi5pMIgiC0dyOIiNpaRkYG1qxZg0uXLtls/+CDD7Bo0SLk5+eLg6ub8tVXX2Hp0qU4ceJEk0Gas+3atQv//Oc/8dtvvzWru5GIHMPfKiK6I6xevRoDBw6En58fDhw4gNdeew3p6eni/qqqKhQUFODVV1/FnDlzHAqOgNrB2H/88Qfy8vIa7AZrLXq9HlqtlsERUSthBomI7giLFi3C1q1bUVJSgh49eiApKQlPPvmkGGA8//zzyMjIwLBhw/Cf//wHarW6nVtMRO2JARIRERGRHQ7SJiIiIrLDAImIiIjIDgMkIiIiIjsMkIiIiIjsMEAiIiIissMAiYiIiMgOAyQiIiIiOwyQiIiIiOwwQCIiIiKy8z+cjSGEwdgtqgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure()\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"Cov. 3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " covspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=covspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"Cov. 0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " rmsspec_3_30.spectrum,\n", + " xerr=energies_err,\n", + " yerr=rmsspec_3_30.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"RMS 3-30 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.errorbar(\n", + " energies,\n", + " rmsspec_01_1.spectrum,\n", + " xerr=energies_err,\n", + " yerr=rmsspec_01_1.spectrum_error,\n", + " fmt=\"o\",\n", + " label=\"RMS 0.1-1 Hz\",\n", + " alpha=0.5,\n", + ")\n", + "plt.legend()\n", + "plt.semilogx()\n", + "plt.xlabel(\"Energy (keV)\")\n", + "plt.ylabel(\"Fractional RMS\");" + ] + }, + { + "cell_type": "markdown", + "id": "e3f96dbf", + "metadata": { + "id": "e3f96dbf" + }, + "source": [ + "QED, except that the error bars in some points look underestimated. It is always recommended to test error bars with simulations, in any case, as analytic formulas are based on a series of assumptions (in particular, on the coherence) that might not be correct in real life." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "fa853e69", + "metadata": { + "id": "fa853e69" + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 40/40 [00:36<00:00, 1.08it/s]\n" + ] + } + ], + "source": [ + "from stingray.varenergyspectrum import LagSpectrum\n", + "\n", + "covspec_3_30 = CovarianceSpectrum(\n", + " events,\n", + " freq_interval=[3, 30],\n", + " segment_size=segment_size,\n", + " bin_time=bin_time,\n", + " energy_spec=energy_spec,\n", + " norm=\"frac\",\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "1842eadc", + "metadata": {}, + "outputs": [], + "source": [ + "def variable_for_value(value):\n", + " for n, v in globals().items():\n", + " if id(v) == id(value):\n", + " return n\n", + " return None\n", + "\n", + "\n", + "for func in [lagspec_3_30, lagspec_01_1, covspec_01_1, covspec_3_30]:\n", + " name = variable_for_value(func)\n", + " func.write(name + \".csv\", fmt=\"ascii\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "61dc1445", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "collapsed_sections": [], + "name": "X-ray Variability of an accreting BH with Fourier methods.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.html b/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.html new file mode 100644 index 000000000..39660bb34 --- /dev/null +++ b/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.html @@ -0,0 +1,1888 @@ + + + + + + + + Introduction — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +

Start here to begin with Stingray.

+
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+import numpy as np
+%matplotlib inline
+import warnings
+warnings.filterwarnings('ignore')
+
+
+
+
+

Introduction

+

StingrayTimeseries is a generic time series object, and also acts as the base class for Stingray’s Lightcurve and EventList. It is a data container that associate times with measurements. The only compulsory element in such a series is indeed the time attribute.

+

Many of the methods in Lightcurve and EventList, indeed, are implemented in this class. For example, methods that truncate, add, subtract the series, or that filter it in some way (e.g. by adding a mask or applying the good time intervals)

+
+

Internal Class structure

+

For most of this internal behavior, all turns around the concept of “Array attributes”, “Internal attributes”, “Meta attributes”, and “Not array attributes”.

+

Array attributes Ideally, if one were to create a new object based on a table format, array attributes would be the table columns (so, they all have the same length of the time column). Example array attributes are

+
    +
  • counts, the number of counts in each bin of a typical X-ray light curve;

  • +
  • dt, the sampling time, if data are not evenly sampled;

  • +
+

Note that array attributes can have any dimension. The only important thing is that the first dimension’s size is equal to the size of time. E.g. if time is [1, 2, 3] (shape (3,) ), an array attribute could be [[4, 4], [2, 3], [4, 5]] (shape (3, 2)), but not [[1, 2, 3]] (shape (1, 3))

+

Meta attributes The most useful attributes are probably

+
    +
  • gti, or the Good Time Intervals where measurements are supposed to be reliable;

  • +
  • dt, the sampling time, when constant (evenly sampled time series);

  • +
  • mjdref the reference MJD for all the time measurements in the series

  • +
+

Internal array attributes Some classes, like Lightcurve, expose attributes (such as counts, counts_err) that are not arrays but properties. This is done for a flexible manipulation of counts, count rates etc, that can be set asynchronously depending on which one was set first (see the Lightcurve documentation). The actual arrays containing data are internal attributes (such as _counts) that get set only if needed. Another thing that lightcurve does is throwing an error if +one wants to set the time to a different length than its array attributes. The actual time is stored in the _time attribute, and this check is done when one tries to modify the time through the time property (by setting lc.time).

+

Not array attributes Some quantities, such as GTI, might in principle have the same length of time. One can then add gti to the list of not_array_attributes, that protects from the hypothesis of considering gti a standard array attribute.

+
+
+
+

Creating a time series

+
+
[2]:
+
+
+
from stingray import StingrayTimeseries
+
+
+
+

A StingrayTimeseries object is usually created in one of the following two ways:

+
    +
  1. From an array of time stamps and an array of any name.

    +
    ts = StingrayTimeseries(times, array_attrs=dict(my_array_attr=my_attr), **opts)
    +
    +
    +

    where **opts are any (optional) keyword arguments (e.g. dt=0.1, mjdref=55000, etc.) In principle, array attributes can be specified as simple keyword arguments. But when we use the array_attrs keyword, we will run a check on the length of the arrays, and raise an error if they are not of a shape compatible with the time array.

    +
  2. +
  3. A binned StingrayTimeseries, a generalization of a uniformly sampled light curve, can be obtained from an EventList object, through the to_binned_timeseries method.

    +
    ev = EventList(times, mjdref=55000)
    +ev.my_attr = my_attr_array
    +ts = ev.to_binned_timeseries(ev, dt=1, array_attrs={"my_attr": my_attr}, **opts)
    +
    +
    +
  4. +
+

as will be described in the next sections.

+

An additional possibility is creating an empty StingrayTimeseries object, whose attributes will be filled in later:

+
ts = StingrayTimeseries()
+
+
+

or, if one wants to specify any keyword arguments:

+
ts = StingrayTimeseries(**opts)
+
+
+

This option is usually only relevant to advanced users, but we mention it here for reference

+
+

1. Array of time stamps and counts

+

Create 1000 time stamps

+
+
[3]:
+
+
+
times = np.arange(1000)
+times[:10]
+
+
+
+
+
[3]:
+
+
+
+
+array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
+
+
+

Create 1000 random Poisson-distributed counts:

+
+
[4]:
+
+
+
my_attr = np.random.normal(size=len(times))
+my_attr[:10]
+
+
+
+
+
[4]:
+
+
+
+
+array([ 0.24828431,  1.65343943,  0.48755812,  0.53731942,  0.06821194,
+        0.67721999, -1.52268207,  0.90104872, -1.54513351,  0.4345529 ])
+
+
+

Create a Lightcurve object with the times and counts array.

+
+
[5]:
+
+
+
ts = StingrayTimeseries(times, array_attrs={"my_attr": my_attr})
+
+
+
+

The number of data points can be counted with the len function, or through the n property.

+
+
[6]:
+
+
+
len(ts), ts.n
+
+
+
+
+
[6]:
+
+
+
+
+(1000, 1000)
+
+
+
+
+

2. From an event list

+

Often, you might have an event list with associated properties such as weight, polarization, etc. If this is the case, you can use the to_binned_timeseries method of EventList to turn these photon arrival times into a regularly binned timeseries.

+
+
[7]:
+
+
+
from stingray import EventList
+
+arrival_times = np.sort(np.random.uniform(0, 100, 1000))
+goofy = np.random.normal(size=arrival_times.size)
+mickey = np.random.chisquare(2, size=arrival_times.size)
+ev = EventList(arrival_times, gti=[[0, 100]])
+ev.goofy = goofy
+ev.mickey = mickey
+
+
+
+

To create the time series, it’s necessary to specify the sampling time dt. By default, the time series will create histograms with all the array attributes of EventLists with the same length as ev.time.

+
+
[8]:
+
+
+
ts_new = ev.to_binned_timeseries(dt=1)
+
+
+
+

One can specify which attributes to use through the array_attrs keyword

+
+
[9]:
+
+
+
ts_new_small = ev.to_binned_timeseries(dt=1, array_attrs=["goofy"])
+
+
+
+

All attributes that have been histogrammed can be accessed through the array_attrs method:

+
+
[10]:
+
+
+
ts_new.array_attrs()
+
+
+
+
+
[10]:
+
+
+
+
+['counts', 'goofy', 'mickey']
+
+
+
+
[11]:
+
+
+
ts_new_small.array_attrs()
+
+
+
+
+
[11]:
+
+
+
+
+['counts', 'goofy']
+
+
+

Note the counts attribute, which is always created by the to_binned_timeseries method and gives the number of photons which concurred to creating each value of the time series.

+

The time bins can be seen with the .time attribute

+
+
[12]:
+
+
+
ts_new.time
+
+
+
+
+
[12]:
+
+
+
+
+array([ 0.5,  1.5,  2.5,  3.5,  4.5,  5.5,  6.5,  7.5,  8.5,  9.5, 10.5,
+       11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5,
+       22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5,
+       33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5,
+       44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5,
+       55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5,
+       66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5,
+       77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5,
+       88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.5, 96.5, 97.5, 98.5,
+       99.5])
+
+
+
+
+
+

Good Time Intervals

+

StingrayTimeseries (and most other core stingray classes) support the use of Good Time Intervals (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don’t apply to the data within a StingrayTimeseries object, but become relevant in a number of circumstances, such as when generating Powerspectrum objects.

+

If no GTIs are given at instantiation of the StingrayTimeseries class, an artificial GTI will be created spanning the entire length of the data set being passed in, including half a sample time before and after:

+
+
[13]:
+
+
+
times = np.arange(1000)
+counts = np.random.poisson(100, size=len(times))
+
+ts = StingrayTimeseries(times, array_attrs={"counts":counts}, dt=1)
+
+
+
+
+
[14]:
+
+
+
ts.gti
+
+
+
+
+
[14]:
+
+
+
+
+array([[-5.000e-01,  9.995e+02]])
+
+
+
+
[15]:
+
+
+
ts.counts
+
+
+
+
+
[15]:
+
+
+
+
+array([ 96,  92,  92, 103, 101,  95, 112, 108,  97,  92, 102,  88,  82,
+        82,  98, 107,  94,  90, 116,  97, 104, 109, 103,  90,  98, 104,
+        91, 103,  89, 103, 116,  88,  96, 106, 106,  81,  92,  99,  88,
+        88, 114,  95,  84, 102,  99,  89,  97,  84,  88, 100, 100,  89,
+        86, 100, 100, 110, 106,  95, 117, 113, 101,  99,  95,  97, 108,
+       107, 112,  82, 122, 101,  98,  94, 106, 109,  96, 103, 125, 105,
+       107,  95,  91,  94,  92, 118,  90, 101,  96, 113,  95, 109,  92,
+       101, 101,  97, 107, 109, 110, 113, 100, 113, 110,  91,  99, 103,
+        98,  94,  99,  99,  87,  92,  96, 111, 105,  91,  88,  83, 107,
+        78, 102,  90,  99,  96,  99, 107,  90, 111,  86, 129, 105,  98,
+        91, 100, 118,  95,  97, 106,  96, 117, 107, 102, 101,  98,  89,
+       105, 104, 104,  85, 113,  89,  89, 117, 111, 112, 117, 102, 129,
+       105,  99, 106,  83,  83,  93, 114,  91, 116,  90, 117, 109,  95,
+       103, 102,  90,  95,  83,  99, 108,  80, 104, 111, 107, 100,  87,
+        87,  97, 100, 115, 107,  93, 106,  76, 105,  88, 100,  99,  99,
+        89,  87,  89, 105, 106,  88, 113,  95, 120,  96, 107,  96, 114,
+        97, 106, 106,  94,  83, 111,  91, 109,  93, 108, 106, 100,  85,
+        84, 107, 126, 102,  99,  95, 100, 103,  90,  92,  89,  84, 120,
+       114,  98, 117,  97, 109,  95, 100,  97,  84,  90, 110, 103, 108,
+        92,  82, 115, 115,  97, 121, 104,  98,  89,  80,  99,  86,  98,
+        97, 100,  96,  96, 125, 112,  95,  86,  94, 100,  91, 123,  98,
+        76,  84, 109,  87,  92, 108,  89,  94,  94, 101, 110,  94,  94,
+       106, 103,  99, 117,  87, 101,  97,  79, 117, 107, 111, 113, 107,
+       106, 109, 104, 102,  99, 114,  89, 109,  95, 111,  75,  99, 115,
+        91, 118, 112,  91,  87, 106,  94,  98, 102, 110,  92,  84,  97,
+       118, 108,  89,  98,  99, 109, 122, 105, 101, 102, 107, 120,  87,
+        90, 109, 100, 107, 107,  98,  96,  90, 100, 115,  92,  86, 100,
+       114, 109,  91,  98,  96,  91, 105,  95,  93,  86,  85, 109, 107,
+        97, 101, 101, 119,  98, 111, 102, 101, 107, 107,  89, 107,  93,
+        98,  91, 102,  91, 116, 105,  98, 105,  95, 106,  99, 122, 111,
+       108,  84, 100, 111,  91,  86,  95, 104,  95, 129, 103,  80,  90,
+       105, 112,  97, 107, 113, 103,  96, 100,  99, 101, 111,  81, 110,
+       101,  97,  98, 108,  96,  97,  95, 107,  91,  89, 108,  99,  85,
+        97,  86, 103,  94, 111,  94,  83,  99,  91, 103,  96,  99,  98,
+        94, 111, 101,  93,  88,  98, 105,  88, 125, 109, 107, 100,  95,
+       104,  87,  97, 110,  98,  85, 114,  96, 116, 115,  99,  86,  96,
+       101,  99,  84,  96,  96, 104,  85,  86,  98, 109, 102,  90, 111,
+       104,  92, 107, 103, 101,  91, 106, 105,  93,  99, 108, 110,  85,
+        88,  93, 105, 105, 120,  87, 103, 101, 125,  81,  94,  89, 107,
+        96, 103, 104,  98,  98,  88, 108,  79,  92, 113, 112,  93,  99,
+       105,  90,  87,  80, 105, 111, 102, 109,  95, 103,  93, 105,  92,
+       113, 107,  94, 113, 108,  82, 100, 136,  88, 100,  89, 100, 113,
+        94, 116, 100,  93, 100, 110, 100, 108,  93,  85, 105,  95, 109,
+        99,  92,  96, 111, 110, 110, 108, 103,  92, 108,  95,  84, 106,
+        94, 112, 110,  98, 103,  80,  87,  81, 104,  93,  97, 100,  97,
+        89, 100, 108, 104,  98, 107,  91,  94,  94, 112,  92, 103,  99,
+       109,  98, 115, 114,  89,  97,  95,  95, 101, 102, 117,  88, 109,
+        92, 101,  97,  94, 115,  89, 102,  97,  89, 107,  99,  90, 116,
+        89, 115, 117, 108, 104, 101, 115,  87,  93,  96,  97,  99, 104,
+        94, 106, 111, 102, 104,  94,  97, 111,  90,  99, 103, 113,  87,
+       111,  99,  89,  86, 112,  84,  98,  67,  91,  98,  93,  99,  99,
+       116, 110, 106,  82,  88,  85,  88, 116, 116, 104, 104, 118, 106,
+       101,  83, 104, 106, 101, 101, 116, 103, 108, 121,  87, 115,  97,
+        79, 103, 109,  94,  91,  95,  99, 103, 111, 118,  90, 117,  91,
+        81,  90, 102, 115, 105, 100,  91,  95,  97,  98,  94,  99, 105,
+        94,  91, 113, 130, 116, 111,  95, 105, 101, 109, 108,  97, 105,
+       106, 106, 109, 106, 110, 102, 124, 109, 103,  91, 105,  87, 117,
+        99,  86, 107,  94,  98, 102, 108,  95,  99,  90, 110,  94,  66,
+        98, 122, 100,  93, 103,  86, 101,  92, 107,  80, 122,  99, 112,
+        99, 107, 120,  97,  89,  99, 111, 107,  98, 103, 112, 111,  97,
+        88,  84,  96,  95,  91,  94, 101,  89, 102, 104,  70, 122,  98,
+       104, 100, 101,  87,  97,  93,  84, 103,  95,  90,  96, 106,  86,
+       100,  92,  93,  99, 110,  86, 100,  93, 107, 101,  87,  95, 105,
+       114, 109, 100,  91,  99, 109,  97, 105,  93,  95, 103,  93,  93,
+        82, 104,  93, 114, 107, 110,  99,  86,  86, 119, 107,  86,  89,
+        95, 103,  85,  98,  99, 102, 107, 109, 108,  93,  93,  99, 116,
+       118, 102,  94, 112,  88, 110,  96, 107, 110, 101,  90, 101, 100,
+        96, 102, 125, 112,  93, 101,  88,  99,  80,  95, 108, 100, 113,
+        97, 109, 100,  97,  93,  95,  92,  91,  93,  98,  89,  92,  99,
+        96,  99,  96,  83, 100,  93, 106,  89, 113,  88,  79, 109, 105,
+        93, 110,  94, 109, 102, 103,  87,  98, 120,  92, 104, 100, 117,
+       102,  95, 106, 104, 103, 105, 107,  95,  97, 105, 102, 119, 101,
+        99,  99, 101,  92,  87, 104, 104,  96, 107,  98,  88,  95, 102,
+        86, 104, 101,  94, 114,  99,  98,  98, 100, 100,  98, 103, 127,
+        98,  82, 106,  94, 101, 108, 101,  98,  76,  97,  88,  99, 108,
+        92, 104,  83,  95, 104,  97,  84, 101, 107, 106,  94,  88, 103,
+        96, 101, 100, 100, 102,  85, 103,  97,  95, 100,  99,  80])
+
+
+
+
[16]:
+
+
+
print(times[0]) # first time stamp in the light curve
+print(times[-1]) # last time stamp in the light curve
+print(ts.gti) # the GTIs generated within Lightcurve
+
+
+
+
+
+
+
+
+0
+999
+[[-5.000e-01  9.995e+02]]
+
+
+GTIs are defined as 2-dimensional array (or a list of 2-tuples):
+
[17]:
+
+
+
gti = [(0, 500), (600, 1000)]
+
+
+
+
+
[18]:
+
+
+
ts = StingrayTimeseries(times, array_attrs={"counts":counts}, gti=gti)
+
+
+
+
+
[19]:
+
+
+
print(ts.gti)
+
+
+
+
+
+
+
+
+[[   0  500]
+ [ 600 1000]]
+
+
+

We’ll get back to these when we talk more about some of the methods that apply GTIs to the data.

+
+
+

Combining StingrayTimeseries objects

+

A StingrayTimeseries object can be combined with others in various ways. The best way is using the join operation, that combines the data according to the strategy defined by the user.

+

The default strategy is infer. Similar to what can be seen in EventLists, it decides what to do depending on the fact that GTIs have overlaps or not. If there are overlaps, GTIs are intersected. Otherwise, they are appended and merged. But one can select between:

+
    +
  • “intersection”, the GTIs are merged using the intersection of the GTIs.

  • +
  • “union”, the GTIs are merged using the union of the GTIs.

  • +
  • “append”, the GTIs are simply appended but they must be mutually exclusive (have no overlaps).

  • +
  • “none”, a single GTI with the minimum and the maximum time stamps of all GTIs is returned.

  • +
+

The data are always all merged. No filtering is applied for the new GTIs. But the user can always use the apply_gtis method to filter them out later.

+
+
[20]:
+
+
+
ts = StingrayTimeseries(
+    time=[1, 2, 3],
+    gti=[[0.5, 3.5]],
+    array_attrs={"blah": [1, 1, 1]},
+)
+ts_other = StingrayTimeseries(
+    time=[1.1, 2.1, 4, 5, 6.5],
+    array_attrs={"blah": [2, 2, 2, 2, 2]},
+    gti=[[1.5, 2.5], [4.5, 7.5]],
+)
+
+ts_new = ts.join(ts_other, strategy="union")
+
+for attr in ["gti", "time", "blah"]:
+    print(f"New {attr}:", getattr(ts_new, attr))
+
+
+
+
+
+
+
+
+New gti: [[0.5 3.5]
+ [4.5 7.5]]
+New time: [1.  1.1 2.  2.1 3.  4.  5.  6.5]
+New blah: [1 2 1 2 1 2 2 2]
+
+
+
+
[21]:
+
+
+
ts_new = ts.join(ts_other, strategy="intersect")
+
+for attr in ["gti", "time", "blah"]:
+    print(f"New {attr}:", getattr(ts_new, attr))
+
+
+
+
+
+
+
+
+New gti: [[0.5 3.5]]
+New time: [1.  1.1 2.  2.1 3.  4.  5.  6.5]
+New blah: [1 2 1 2 1 2 2 2]
+
+
+
+
[22]:
+
+
+
ts_new = ts.join(ts_other, strategy="none")
+
+for attr in ["gti", "time", "blah"]:
+    print(f"New {attr}:", getattr(ts_new, attr))
+
+
+
+
+
+
+
+
+New gti: [[1.  6.5]]
+New time: [1.  1.1 2.  2.1 3.  4.  5.  6.5]
+New blah: [1 2 1 2 1 2 2 2]
+
+
+

In this case, append will fail, because the GTIs intersect.

+
+
[23]:
+
+
+
ts_new = ts.join(ts_other, strategy="append")
+
+
+
+
+
+
+
+
+---------------------------------------------------------------------------
+ValueError                                Traceback (most recent call last)
+Cell In [23], line 1
+----> 1 ts_new = ts.join(ts_other, strategy="append")
+
+File ~/devel/StingraySoftware/stingray/stingray/base.py:1961, in StingrayTimeseries.join(self, *args, **kwargs)
+   1922 def join(self, *args, **kwargs):
+   1923     """
+   1924     Join other :class:`StingrayTimeseries` objects with the current one.
+   1925
+   (...)
+   1959         The resulting :class:`StingrayTimeseries` object.
+   1960     """
+-> 1961     return self._join_timeseries(*args, **kwargs)
+
+File ~/devel/StingraySoftware/stingray/stingray/base.py:1835, in StingrayTimeseries._join_timeseries(self, others, strategy, ignore_meta)
+   1832     new_gti = None
+   1833 else:
+   1834     # For this, initialize the GTIs
+-> 1835     new_gti = merge_gtis([obj.gti for obj in all_objs], strategy=strategy)
+   1837 all_time_arrays = [obj.time for obj in all_objs if obj.time is not None]
+   1839 new_ts.time = np.concatenate(all_time_arrays)
+
+File ~/devel/StingraySoftware/stingray/stingray/gti.py:1047, in merge_gtis(gti_list, strategy)
+   1045         gti0 = join_gtis(gti0, gti)
+   1046     elif strategy == "append":
+-> 1047         gti0 = append_gtis(gti0, gti)
+   1048 return gti0
+
+File ~/devel/StingraySoftware/stingray/stingray/gti.py:1090, in append_gtis(gti0, gti1)
+   1088 # Check if GTIs are mutually exclusive.
+   1089 if not check_separate(gti0, gti1):
+-> 1090     raise ValueError("In order to append, GTIs must be mutually exclusive.")
+   1092 new_gtis = np.concatenate([gti0, gti1])
+   1093 order = np.argsort(new_gtis[:, 0])
+
+ValueError: In order to append, GTIs must be mutually exclusive.
+
+
+

Empty StingrayTimeseries will throw warnings but try to be accommodating

+
+
[24]:
+
+
+
StingrayTimeseries().join(StingrayTimeseries()).time is None
+
+
+
+
+
[24]:
+
+
+
+
+True
+
+
+
+
[25]:
+
+
+
ts = StingrayTimeseries(time=[1, 2, 3])
+ts_other = StingrayTimeseries()
+ts_new = ts.join(ts_other)
+ts_new.time
+
+
+
+
+
[25]:
+
+
+
+
+array([1, 2, 3])
+
+
+

When the data being merged have a different time resolution (e.g. unevenly sampled data, events from instruments with different frame times), the time resolution becomes an array attribute:

+
+
[26]:
+
+
+
ts = StingrayTimeseries(time=[10, 20, 30], dt=1)
+ts_other = StingrayTimeseries(time=[40, 50, 60], dt=3)
+ts_new = ts.join(ts_other, strategy="union")
+
+ts_new.dt
+
+
+
+
+
[26]:
+
+
+
+
+array([1, 1, 1, 3, 3, 3])
+
+
+

In all other cases, meta attributes are simply transformed into a comma-separated list (if strings) or tuples

+
+
[27]:
+
+
+
ts = StingrayTimeseries(time=[10, 20, 30], a=1, b="a")
+ts_other = StingrayTimeseries(time=[40, 50, 60], a=3, b="b")
+ts_new = ts.join(ts_other, strategy="union")
+
+ts_new.a, ts_new.b
+
+
+
+
+
[27]:
+
+
+
+
+((1, 3), 'a,b')
+
+
+

Array attributes that are only in one series will receive nan values in the data corresponding to the other series

+
+
[28]:
+
+
+
ts = StingrayTimeseries(time=[1, 2, 3], blah=[3, 3, 3])
+ts_other = StingrayTimeseries(time=[4, 5])
+ts_new = ts.join(ts_other, strategy="union")
+
+ts_new.blah
+
+
+
+
+
[28]:
+
+
+
+
+array([ 3.,  3.,  3., nan, nan])
+
+
+

When using strategy="infer", the intersection or the union will be used depending on the fact that GTI overlap or not

+
+
[29]:
+
+
+
ts = StingrayTimeseries(time=[1, 2, 3], blah=[3, 3, 3], gti=[[0.5, 3.5]])
+ts1 = StingrayTimeseries(time=[5, 6], gti=[[4.5, 6.5]])
+ts2 = StingrayTimeseries(time=[2.1, 2.9], blah=[4, 4], gti=[[1.5, 3.5]])
+ts_new_1 = ts.join(ts1, strategy="infer")
+ts_new_2 = ts.join(ts2, strategy="infer")
+
+ts_new_1.blah, ts_new_2.blah
+
+
+
+
+
[29]:
+
+
+
+
+(array([ 3.,  3.,  3., nan, nan]), array([3, 3, 4, 4, 3]))
+
+
+
+
+

Operations

+
+

Addition/Subtraction

+

Two time series can be summed up or subtracted from each other if they have same time arrays.

+
+
[30]:
+
+
+
ts = StingrayTimeseries(times, array_attrs={"blabla":counts}, dt=1, skip_checks=True)
+ts_rand = StingrayTimeseries(times, array_attrs={"blabla": [600]*1000}, dt=1, skip_checks=True)
+
+
+
+
+
[31]:
+
+
+
ts_sum = ts + ts_rand
+
+
+
+
+
[32]:
+
+
+
print("Counts in light curve 1: " + str(ts.blabla[:5]))
+print("Counts in light curve 2: " + str(ts_rand.blabla[:5]))
+print("Counts in summed light curve: " + str(ts_sum.blabla[:5]))
+
+
+
+
+
+
+
+
+Counts in light curve 1: [ 96  92  92 103 101]
+Counts in light curve 2: [600 600 600 600 600]
+Counts in summed light curve: [696 692 692 703 701]
+
+
+
+
+

Negation

+

A negation operation on the time series object inverts the count array from positive to negative values.

+
+
[33]:
+
+
+
ts_neg = -ts
+
+
+
+
+
[34]:
+
+
+
ts_sum = ts + ts_neg
+
+
+
+
+
[35]:
+
+
+
np.all(ts_sum.blabla == 0)  # All the points on ts and ts_neg cancel each other
+
+
+
+
+
[35]:
+
+
+
+
+True
+
+
+
+
+

Indexing

+

Count value at a particular time can be obtained using indexing.

+
+
[36]:
+
+
+
ts[120]
+
+
+
+
+
[36]:
+
+
+
+
+<stingray.base.StingrayTimeseries at 0x13b99abc0>
+
+
+
+
[37]:
+
+
+
ts[120].time, ts[120].blabla, ts.time[120], ts.blabla[120]
+
+
+
+
+
[37]:
+
+
+
+
+(array([120]), array([99]), 120, 99)
+
+
+

A Lightcurve can also be sliced to generate a new object.

+
+
[38]:
+
+
+
ts_sliced = ts[100:200]
+
+
+
+
+
[39]:
+
+
+
len(ts_sliced.blabla)
+
+
+
+
+
[39]:
+
+
+
+
+100
+
+
+
+
+
+

Other useful Methods

+

Two time series can be combined into a single object using the concatenate method. Note that both of them must not have overlapping time arrays.

+
+
[40]:
+
+
+
ts_1 = ts
+ts_2 = StingrayTimeseries(np.arange(1000, 2000), array_attrs={"blabla": np.random.rand(1000)*1000}, dt=1, skip_checks=True)
+ts_long = ts_1.concatenate(ts_2)
+
+
+
+

The method will fail if the time series have overlaps:

+
+
[41]:
+
+
+
ts_1.concatenate(StingrayTimeseries(np.arange(800, 1000), gti=[[800, 1000]]))
+
+
+
+
+
+
+
+
+---------------------------------------------------------------------------
+ValueError                                Traceback (most recent call last)
+Cell In [41], line 1
+----> 1 ts_1.concatenate(StingrayTimeseries(np.arange(800, 1000), gti=[[800, 1000]]))
+
+File ~/devel/StingraySoftware/stingray/stingray/base.py:1749, in StingrayTimeseries.concatenate(self, other, check_gti)
+   1747 else:
+   1748     treatment = "none"
+-> 1749 new_ts = self._join_timeseries(other, strategy=treatment)
+   1750 return new_ts
+
+File ~/devel/StingraySoftware/stingray/stingray/base.py:1835, in StingrayTimeseries._join_timeseries(self, others, strategy, ignore_meta)
+   1832     new_gti = None
+   1833 else:
+   1834     # For this, initialize the GTIs
+-> 1835     new_gti = merge_gtis([obj.gti for obj in all_objs], strategy=strategy)
+   1837 all_time_arrays = [obj.time for obj in all_objs if obj.time is not None]
+   1839 new_ts.time = np.concatenate(all_time_arrays)
+
+File ~/devel/StingraySoftware/stingray/stingray/gti.py:1047, in merge_gtis(gti_list, strategy)
+   1045         gti0 = join_gtis(gti0, gti)
+   1046     elif strategy == "append":
+-> 1047         gti0 = append_gtis(gti0, gti)
+   1048 return gti0
+
+File ~/devel/StingraySoftware/stingray/stingray/gti.py:1090, in append_gtis(gti0, gti1)
+   1088 # Check if GTIs are mutually exclusive.
+   1089 if not check_separate(gti0, gti1):
+-> 1090     raise ValueError("In order to append, GTIs must be mutually exclusive.")
+   1092 new_gtis = np.concatenate([gti0, gti1])
+   1093 order = np.argsort(new_gtis[:, 0])
+
+ValueError: In order to append, GTIs must be mutually exclusive.
+
+
+
+

Truncation

+

A light curve can also be truncated.

+
+
[42]:
+
+
+
ts_cut = ts_long.truncate(start=0, stop=1000)
+
+
+
+
+
[43]:
+
+
+
len(ts_cut)
+
+
+
+
+
[43]:
+
+
+
+
+1000
+
+
+

Note : By default, the start and stop parameters are assumed to be given as indices of the time array. However, the start and stop values can also be given as time values in the same value as the time array.

+
+
[44]:
+
+
+
ts_cut = ts_long.truncate(start=500, stop=1500, method='time')
+
+
+
+
+
[45]:
+
+
+
ts_cut.time[0], ts_cut.time[-1]
+
+
+
+
+
[45]:
+
+
+
+
+(500, 1499)
+
+
+
+
+

Re-binning

+

The time resolution (dt) can also be changed to a larger value.

+

Note : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division.

+
+
[46]:
+
+
+
ts_rebinned = ts_long.rebin(2)
+
+
+
+
+
[47]:
+
+
+
print("Old time resolution = " + str(ts_long.dt))
+print("Number of data points = " + str(ts_long.n))
+print("New time resolution = " + str(ts_rebinned.dt))
+print("Number of data points = " + str(ts_rebinned.n))
+
+
+
+
+
+
+
+
+Old time resolution = 1
+Number of data points = 2000
+New time resolution = 2
+Number of data points = 1000
+
+
+
+
+

Sorting

+

A time series can be sorted using the sort method. This function sorts time array and the counts array is changed accordingly.

+
+
[48]:
+
+
+
new_ts = StingrayTimeseries(time=[2, 1, 3], array_attrs={"blabla": [200, 100, 300]}, dt=1)
+
+
+
+
+
[49]:
+
+
+
new_ts_sort = new_ts.sort(reverse=True)
+
+
+
+
+
[50]:
+
+
+
new_ts_sort.time, new_ts_sort.blabla
+
+
+
+
+
[50]:
+
+
+
+
+(array([3, 2, 1]), array([300, 200, 100]))
+
+
+
+
+

Plotting

+

A curve can be plotted with the plot method. Time intervals outside GTIs will be plotted as vertical red bands.

+
+
[51]:
+
+
+
ts.gti = np.asarray([[1, 300], [600, 800]])
+ts.plot("blabla")
+
+
+
+
+
[51]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='blabla'>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_96_1.png +
+
+

If a given array attr has an error bar (indicated by the attribute name + _err), one can specify witherrors=True to plot the attribute.

+
+
[52]:
+
+
+
ts.blabla_err = ts.blabla / 10.
+ts.plot("blabla", labels=["Time (s)", "blabla (cts)"], witherrors=True)
+
+
+
+
+
[52]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='blabla (cts)'>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_98_1.png +
+
+

A plot can also be customized using several keyword arguments.

+
+
[53]:
+
+
+
help(ts.plot)
+
+
+
+
+
+
+
+
+Help on method plot in module stingray.base:
+
+plot(attr, witherrors=False, labels=None, ax=None, title=None, marker='-', save=False, filename=None, plot_btis=True) method of stingray.base.StingrayTimeseries instance
+    Plot the time series using ``matplotlib``.
+
+    Plot the time series object on a graph ``self.time`` on x-axis and
+    ``self.counts`` on y-axis with ``self.counts_err`` optionally
+    as error bars.
+
+    Parameters
+    ----------
+    attr: str
+        Attribute to plot.
+
+    Other parameters
+    ----------------
+    witherrors: boolean, default False
+        Whether to plot the StingrayTimeseries with errorbars or not
+    labels : iterable, default ``None``
+        A list or tuple with ``xlabel`` and ``ylabel`` as strings. E.g.
+        if the attribute is ``'counts'``, the list of labels
+        could be ``['Time (s)', 'Counts (s^-1)']``
+    ax : ``matplotlib.pyplot.axis`` object
+        Axis to be used for plotting. Defaults to creating a new one.
+    title : str, default ``None``
+        The title of the plot.
+    marker : str, default '-'
+        Line style and color of the plot. Line styles and colors are
+        combined in a single format string, as in ``'bo'`` for blue
+        circles. See ``matplotlib.pyplot.plot`` for more options.
+    save : boolean, optional, default ``False``
+        If ``True``, save the figure with specified filename.
+    filename : str
+        File name of the image to save. Depends on the boolean ``save``.
+    plot_btis : bool
+        Plot the bad time intervals as red areas on the plot
+
+
+
+

The figure drawn can also be saved in a file using keywords arguments in the plot method itself.

+
+
[54]:
+
+
+
ts.plot("blabla", marker = 'k', save=True, filename="lightcurve.png")
+
+
+
+
+
[54]:
+
+
+
+
+<AxesSubplot: xlabel='Time (s)', ylabel='blabla'>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_StingrayTimeseries_Tutorial_102_1.png +
+
+
+
+

MJDREF and Shifting Times

+

The mjdref keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don’t become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time.

+

mjdref is generally passed into the Lightcurve object at instantiation, but it can be changed later:

+
+
[55]:
+
+
+
mjdref = 91254
+time = np.arange(1000)
+counts = np.random.poisson(100, size=len(time))
+
+ts = StingrayTimeseries(time, array_attrs={"counts": counts}, dt=1, skip_checks=True, mjdref=mjdref)
+print(ts.mjdref)
+
+
+
+
+
+
+
+
+91254
+
+
+
+
[56]:
+
+
+
mjdref_new = mjdref - 20 / 86400  # Subtract 20 seconds from MJDREF
+ts_new = ts.change_mjdref(mjdref_new)
+print(ts_new.mjdref)
+
+
+
+
+
+
+
+
+91253.99976851852
+
+
+
+
[57]:
+
+
+
ts_new.time
+
+
+
+
+
[57]:
+
+
+
+
+array([  19.99999965,   20.99999965,   21.99999965,   22.99999965,
+         23.99999965,   24.99999965,   25.99999965,   26.99999965,
+         27.99999965,   28.99999965,   29.99999965,   30.99999965,
+         31.99999965,   32.99999965,   33.99999965,   34.99999965,
+         35.99999965,   36.99999965,   37.99999965,   38.99999965,
+         39.99999965,   40.99999965,   41.99999965,   42.99999965,
+         43.99999965,   44.99999965,   45.99999965,   46.99999965,
+         47.99999965,   48.99999965,   49.99999965,   50.99999965,
+         51.99999965,   52.99999965,   53.99999965,   54.99999965,
+         55.99999965,   56.99999965,   57.99999965,   58.99999965,
+         59.99999965,   60.99999965,   61.99999965,   62.99999965,
+         63.99999965,   64.99999965,   65.99999965,   66.99999965,
+         67.99999965,   68.99999965,   69.99999965,   70.99999965,
+         71.99999965,   72.99999965,   73.99999965,   74.99999965,
+         75.99999965,   76.99999965,   77.99999965,   78.99999965,
+         79.99999965,   80.99999965,   81.99999965,   82.99999965,
+         83.99999965,   84.99999965,   85.99999965,   86.99999965,
+         87.99999965,   88.99999965,   89.99999965,   90.99999965,
+         91.99999965,   92.99999965,   93.99999965,   94.99999965,
+         95.99999965,   96.99999965,   97.99999965,   98.99999965,
+         99.99999965,  100.99999965,  101.99999965,  102.99999965,
+        103.99999965,  104.99999965,  105.99999965,  106.99999965,
+        107.99999965,  108.99999965,  109.99999965,  110.99999965,
+        111.99999965,  112.99999965,  113.99999965,  114.99999965,
+        115.99999965,  116.99999965,  117.99999965,  118.99999965,
+        119.99999965,  120.99999965,  121.99999965,  122.99999965,
+        123.99999965,  124.99999965,  125.99999965,  126.99999965,
+        127.99999965,  128.99999965,  129.99999965,  130.99999965,
+        131.99999965,  132.99999965,  133.99999965,  134.99999965,
+        135.99999965,  136.99999965,  137.99999965,  138.99999965,
+        139.99999965,  140.99999965,  141.99999965,  142.99999965,
+        143.99999965,  144.99999965,  145.99999965,  146.99999965,
+        147.99999965,  148.99999965,  149.99999965,  150.99999965,
+        151.99999965,  152.99999965,  153.99999965,  154.99999965,
+        155.99999965,  156.99999965,  157.99999965,  158.99999965,
+        159.99999965,  160.99999965,  161.99999965,  162.99999965,
+        163.99999965,  164.99999965,  165.99999965,  166.99999965,
+        167.99999965,  168.99999965,  169.99999965,  170.99999965,
+        171.99999965,  172.99999965,  173.99999965,  174.99999965,
+        175.99999965,  176.99999965,  177.99999965,  178.99999965,
+        179.99999965,  180.99999965,  181.99999965,  182.99999965,
+        183.99999965,  184.99999965,  185.99999965,  186.99999965,
+        187.99999965,  188.99999965,  189.99999965,  190.99999965,
+        191.99999965,  192.99999965,  193.99999965,  194.99999965,
+        195.99999965,  196.99999965,  197.99999965,  198.99999965,
+        199.99999965,  200.99999965,  201.99999965,  202.99999965,
+        203.99999965,  204.99999965,  205.99999965,  206.99999965,
+        207.99999965,  208.99999965,  209.99999965,  210.99999965,
+        211.99999965,  212.99999965,  213.99999965,  214.99999965,
+        215.99999965,  216.99999965,  217.99999965,  218.99999965,
+        219.99999965,  220.99999965,  221.99999965,  222.99999965,
+        223.99999965,  224.99999965,  225.99999965,  226.99999965,
+        227.99999965,  228.99999965,  229.99999965,  230.99999965,
+        231.99999965,  232.99999965,  233.99999965,  234.99999965,
+        235.99999965,  236.99999965,  237.99999965,  238.99999965,
+        239.99999965,  240.99999965,  241.99999965,  242.99999965,
+        243.99999965,  244.99999965,  245.99999965,  246.99999965,
+        247.99999965,  248.99999965,  249.99999965,  250.99999965,
+        251.99999965,  252.99999965,  253.99999965,  254.99999965,
+        255.99999965,  256.99999965,  257.99999965,  258.99999965,
+        259.99999965,  260.99999965,  261.99999965,  262.99999965,
+        263.99999965,  264.99999965,  265.99999965,  266.99999965,
+        267.99999965,  268.99999965,  269.99999965,  270.99999965,
+        271.99999965,  272.99999965,  273.99999965,  274.99999965,
+        275.99999965,  276.99999965,  277.99999965,  278.99999965,
+        279.99999965,  280.99999965,  281.99999965,  282.99999965,
+        283.99999965,  284.99999965,  285.99999965,  286.99999965,
+        287.99999965,  288.99999965,  289.99999965,  290.99999965,
+        291.99999965,  292.99999965,  293.99999965,  294.99999965,
+        295.99999965,  296.99999965,  297.99999965,  298.99999965,
+        299.99999965,  300.99999965,  301.99999965,  302.99999965,
+        303.99999965,  304.99999965,  305.99999965,  306.99999965,
+        307.99999965,  308.99999965,  309.99999965,  310.99999965,
+        311.99999965,  312.99999965,  313.99999965,  314.99999965,
+        315.99999965,  316.99999965,  317.99999965,  318.99999965,
+        319.99999965,  320.99999965,  321.99999965,  322.99999965,
+        323.99999965,  324.99999965,  325.99999965,  326.99999965,
+        327.99999965,  328.99999965,  329.99999965,  330.99999965,
+        331.99999965,  332.99999965,  333.99999965,  334.99999965,
+        335.99999965,  336.99999965,  337.99999965,  338.99999965,
+        339.99999965,  340.99999965,  341.99999965,  342.99999965,
+        343.99999965,  344.99999965,  345.99999965,  346.99999965,
+        347.99999965,  348.99999965,  349.99999965,  350.99999965,
+        351.99999965,  352.99999965,  353.99999965,  354.99999965,
+        355.99999965,  356.99999965,  357.99999965,  358.99999965,
+        359.99999965,  360.99999965,  361.99999965,  362.99999965,
+        363.99999965,  364.99999965,  365.99999965,  366.99999965,
+        367.99999965,  368.99999965,  369.99999965,  370.99999965,
+        371.99999965,  372.99999965,  373.99999965,  374.99999965,
+        375.99999965,  376.99999965,  377.99999965,  378.99999965,
+        379.99999965,  380.99999965,  381.99999965,  382.99999965,
+        383.99999965,  384.99999965,  385.99999965,  386.99999965,
+        387.99999965,  388.99999965,  389.99999965,  390.99999965,
+        391.99999965,  392.99999965,  393.99999965,  394.99999965,
+        395.99999965,  396.99999965,  397.99999965,  398.99999965,
+        399.99999965,  400.99999965,  401.99999965,  402.99999965,
+        403.99999965,  404.99999965,  405.99999965,  406.99999965,
+        407.99999965,  408.99999965,  409.99999965,  410.99999965,
+        411.99999965,  412.99999965,  413.99999965,  414.99999965,
+        415.99999965,  416.99999965,  417.99999965,  418.99999965,
+        419.99999965,  420.99999965,  421.99999965,  422.99999965,
+        423.99999965,  424.99999965,  425.99999965,  426.99999965,
+        427.99999965,  428.99999965,  429.99999965,  430.99999965,
+        431.99999965,  432.99999965,  433.99999965,  434.99999965,
+        435.99999965,  436.99999965,  437.99999965,  438.99999965,
+        439.99999965,  440.99999965,  441.99999965,  442.99999965,
+        443.99999965,  444.99999965,  445.99999965,  446.99999965,
+        447.99999965,  448.99999965,  449.99999965,  450.99999965,
+        451.99999965,  452.99999965,  453.99999965,  454.99999965,
+        455.99999965,  456.99999965,  457.99999965,  458.99999965,
+        459.99999965,  460.99999965,  461.99999965,  462.99999965,
+        463.99999965,  464.99999965,  465.99999965,  466.99999965,
+        467.99999965,  468.99999965,  469.99999965,  470.99999965,
+        471.99999965,  472.99999965,  473.99999965,  474.99999965,
+        475.99999965,  476.99999965,  477.99999965,  478.99999965,
+        479.99999965,  480.99999965,  481.99999965,  482.99999965,
+        483.99999965,  484.99999965,  485.99999965,  486.99999965,
+        487.99999965,  488.99999965,  489.99999965,  490.99999965,
+        491.99999965,  492.99999965,  493.99999965,  494.99999965,
+        495.99999965,  496.99999965,  497.99999965,  498.99999965,
+        499.99999965,  500.99999965,  501.99999965,  502.99999965,
+        503.99999965,  504.99999965,  505.99999965,  506.99999965,
+        507.99999965,  508.99999965,  509.99999965,  510.99999965,
+        511.99999965,  512.99999965,  513.99999965,  514.99999965,
+        515.99999965,  516.99999965,  517.99999965,  518.99999965,
+        519.99999965,  520.99999965,  521.99999965,  522.99999965,
+        523.99999965,  524.99999965,  525.99999965,  526.99999965,
+        527.99999965,  528.99999965,  529.99999965,  530.99999965,
+        531.99999965,  532.99999965,  533.99999965,  534.99999965,
+        535.99999965,  536.99999965,  537.99999965,  538.99999965,
+        539.99999965,  540.99999965,  541.99999965,  542.99999965,
+        543.99999965,  544.99999965,  545.99999965,  546.99999965,
+        547.99999965,  548.99999965,  549.99999965,  550.99999965,
+        551.99999965,  552.99999965,  553.99999965,  554.99999965,
+        555.99999965,  556.99999965,  557.99999965,  558.99999965,
+        559.99999965,  560.99999965,  561.99999965,  562.99999965,
+        563.99999965,  564.99999965,  565.99999965,  566.99999965,
+        567.99999965,  568.99999965,  569.99999965,  570.99999965,
+        571.99999965,  572.99999965,  573.99999965,  574.99999965,
+        575.99999965,  576.99999965,  577.99999965,  578.99999965,
+        579.99999965,  580.99999965,  581.99999965,  582.99999965,
+        583.99999965,  584.99999965,  585.99999965,  586.99999965,
+        587.99999965,  588.99999965,  589.99999965,  590.99999965,
+        591.99999965,  592.99999965,  593.99999965,  594.99999965,
+        595.99999965,  596.99999965,  597.99999965,  598.99999965,
+        599.99999965,  600.99999965,  601.99999965,  602.99999965,
+        603.99999965,  604.99999965,  605.99999965,  606.99999965,
+        607.99999965,  608.99999965,  609.99999965,  610.99999965,
+        611.99999965,  612.99999965,  613.99999965,  614.99999965,
+        615.99999965,  616.99999965,  617.99999965,  618.99999965,
+        619.99999965,  620.99999965,  621.99999965,  622.99999965,
+        623.99999965,  624.99999965,  625.99999965,  626.99999965,
+        627.99999965,  628.99999965,  629.99999965,  630.99999965,
+        631.99999965,  632.99999965,  633.99999965,  634.99999965,
+        635.99999965,  636.99999965,  637.99999965,  638.99999965,
+        639.99999965,  640.99999965,  641.99999965,  642.99999965,
+        643.99999965,  644.99999965,  645.99999965,  646.99999965,
+        647.99999965,  648.99999965,  649.99999965,  650.99999965,
+        651.99999965,  652.99999965,  653.99999965,  654.99999965,
+        655.99999965,  656.99999965,  657.99999965,  658.99999965,
+        659.99999965,  660.99999965,  661.99999965,  662.99999965,
+        663.99999965,  664.99999965,  665.99999965,  666.99999965,
+        667.99999965,  668.99999965,  669.99999965,  670.99999965,
+        671.99999965,  672.99999965,  673.99999965,  674.99999965,
+        675.99999965,  676.99999965,  677.99999965,  678.99999965,
+        679.99999965,  680.99999965,  681.99999965,  682.99999965,
+        683.99999965,  684.99999965,  685.99999965,  686.99999965,
+        687.99999965,  688.99999965,  689.99999965,  690.99999965,
+        691.99999965,  692.99999965,  693.99999965,  694.99999965,
+        695.99999965,  696.99999965,  697.99999965,  698.99999965,
+        699.99999965,  700.99999965,  701.99999965,  702.99999965,
+        703.99999965,  704.99999965,  705.99999965,  706.99999965,
+        707.99999965,  708.99999965,  709.99999965,  710.99999965,
+        711.99999965,  712.99999965,  713.99999965,  714.99999965,
+        715.99999965,  716.99999965,  717.99999965,  718.99999965,
+        719.99999965,  720.99999965,  721.99999965,  722.99999965,
+        723.99999965,  724.99999965,  725.99999965,  726.99999965,
+        727.99999965,  728.99999965,  729.99999965,  730.99999965,
+        731.99999965,  732.99999965,  733.99999965,  734.99999965,
+        735.99999965,  736.99999965,  737.99999965,  738.99999965,
+        739.99999965,  740.99999965,  741.99999965,  742.99999965,
+        743.99999965,  744.99999965,  745.99999965,  746.99999965,
+        747.99999965,  748.99999965,  749.99999965,  750.99999965,
+        751.99999965,  752.99999965,  753.99999965,  754.99999965,
+        755.99999965,  756.99999965,  757.99999965,  758.99999965,
+        759.99999965,  760.99999965,  761.99999965,  762.99999965,
+        763.99999965,  764.99999965,  765.99999965,  766.99999965,
+        767.99999965,  768.99999965,  769.99999965,  770.99999965,
+        771.99999965,  772.99999965,  773.99999965,  774.99999965,
+        775.99999965,  776.99999965,  777.99999965,  778.99999965,
+        779.99999965,  780.99999965,  781.99999965,  782.99999965,
+        783.99999965,  784.99999965,  785.99999965,  786.99999965,
+        787.99999965,  788.99999965,  789.99999965,  790.99999965,
+        791.99999965,  792.99999965,  793.99999965,  794.99999965,
+        795.99999965,  796.99999965,  797.99999965,  798.99999965,
+        799.99999965,  800.99999965,  801.99999965,  802.99999965,
+        803.99999965,  804.99999965,  805.99999965,  806.99999965,
+        807.99999965,  808.99999965,  809.99999965,  810.99999965,
+        811.99999965,  812.99999965,  813.99999965,  814.99999965,
+        815.99999965,  816.99999965,  817.99999965,  818.99999965,
+        819.99999965,  820.99999965,  821.99999965,  822.99999965,
+        823.99999965,  824.99999965,  825.99999965,  826.99999965,
+        827.99999965,  828.99999965,  829.99999965,  830.99999965,
+        831.99999965,  832.99999965,  833.99999965,  834.99999965,
+        835.99999965,  836.99999965,  837.99999965,  838.99999965,
+        839.99999965,  840.99999965,  841.99999965,  842.99999965,
+        843.99999965,  844.99999965,  845.99999965,  846.99999965,
+        847.99999965,  848.99999965,  849.99999965,  850.99999965,
+        851.99999965,  852.99999965,  853.99999965,  854.99999965,
+        855.99999965,  856.99999965,  857.99999965,  858.99999965,
+        859.99999965,  860.99999965,  861.99999965,  862.99999965,
+        863.99999965,  864.99999965,  865.99999965,  866.99999965,
+        867.99999965,  868.99999965,  869.99999965,  870.99999965,
+        871.99999965,  872.99999965,  873.99999965,  874.99999965,
+        875.99999965,  876.99999965,  877.99999965,  878.99999965,
+        879.99999965,  880.99999965,  881.99999965,  882.99999965,
+        883.99999965,  884.99999965,  885.99999965,  886.99999965,
+        887.99999965,  888.99999965,  889.99999965,  890.99999965,
+        891.99999965,  892.99999965,  893.99999965,  894.99999965,
+        895.99999965,  896.99999965,  897.99999965,  898.99999965,
+        899.99999965,  900.99999965,  901.99999965,  902.99999965,
+        903.99999965,  904.99999965,  905.99999965,  906.99999965,
+        907.99999965,  908.99999965,  909.99999965,  910.99999965,
+        911.99999965,  912.99999965,  913.99999965,  914.99999965,
+        915.99999965,  916.99999965,  917.99999965,  918.99999965,
+        919.99999965,  920.99999965,  921.99999965,  922.99999965,
+        923.99999965,  924.99999965,  925.99999965,  926.99999965,
+        927.99999965,  928.99999965,  929.99999965,  930.99999965,
+        931.99999965,  932.99999965,  933.99999965,  934.99999965,
+        935.99999965,  936.99999965,  937.99999965,  938.99999965,
+        939.99999965,  940.99999965,  941.99999965,  942.99999965,
+        943.99999965,  944.99999965,  945.99999965,  946.99999965,
+        947.99999965,  948.99999965,  949.99999965,  950.99999965,
+        951.99999965,  952.99999965,  953.99999965,  954.99999965,
+        955.99999965,  956.99999965,  957.99999965,  958.99999965,
+        959.99999965,  960.99999965,  961.99999965,  962.99999965,
+        963.99999965,  964.99999965,  965.99999965,  966.99999965,
+        967.99999965,  968.99999965,  969.99999965,  970.99999965,
+        971.99999965,  972.99999965,  973.99999965,  974.99999965,
+        975.99999965,  976.99999965,  977.99999965,  978.99999965,
+        979.99999965,  980.99999965,  981.99999965,  982.99999965,
+        983.99999965,  984.99999965,  985.99999965,  986.99999965,
+        987.99999965,  988.99999965,  989.99999965,  990.99999965,
+        991.99999965,  992.99999965,  993.99999965,  994.99999965,
+        995.99999965,  996.99999965,  997.99999965,  998.99999965,
+        999.99999965, 1000.99999965, 1001.99999965, 1002.99999965,
+       1003.99999965, 1004.99999965, 1005.99999965, 1006.99999965,
+       1007.99999965, 1008.99999965, 1009.99999965, 1010.99999965,
+       1011.99999965, 1012.99999965, 1013.99999965, 1014.99999965,
+       1015.99999965, 1016.99999965, 1017.99999965, 1018.99999965])
+
+
+
+
[58]:
+
+
+
ts_new.gti
+
+
+
+
+
[58]:
+
+
+
+
+array([[  19.49999965, 1019.49999965]])
+
+
+

This changes the reference time and all the times referred to it. It’s very useful when manipulating time series from different missions. Alternatively, one can shift the times (by a value in seconds) without modifying the MJDREF

+
+
[59]:
+
+
+
gti = [(0,500), (600, 1000)]
+ts.gti = gti
+
+
+
+
+
[60]:
+
+
+
print("first three time bins: " + str(ts.time[:3]))
+print("GTIs: " + str(ts.gti))
+
+
+
+
+
+
+
+
+first three time bins: [0 1 2]
+GTIs: [[   0  500]
+ [ 600 1000]]
+
+
+
+
[61]:
+
+
+
time_shift = 10.0
+ts_shifted = ts.shift(time_shift)
+
+
+
+
+
[62]:
+
+
+
print("Shifted first three time bins: " + str(ts_shifted.time[:3]))
+print("Shifted GTIs: " + str(ts_shifted.gti))
+
+
+
+
+
+
+
+
+Shifted first three time bins: [10. 11. 12.]
+Shifted GTIs: [[  10.  510.]
+ [ 610. 1010.]]
+
+
+
+
+

Splitting by GTI

+

A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:

+
+
[63]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.arange(20)
+counts = np.random.poisson(100, size=len(time))
+gti = [(0,8), (12,20)]
+
+
+ts = StingrayTimeseries(time, array_attrs={"blabla": counts}, dt=1, gti=gti)
+
+
+
+
+
[64]:
+
+
+
ts_split = ts.split_by_gti()
+
+
+
+
+
[65]:
+
+
+
print(ts.time, ts.blabla)
+for ts_tmp in ts_split:
+    print(ts_tmp.time, ts_tmp.blabla)
+
+
+
+
+
+
+
+
+[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19] [102  97  95 105 100  96 107 119  94 119 101  91 104  89 119 106 111  89
+ 100 110]
+[1 2 3 4 5 6 7] [ 97  95 105 100  96 107 119]
+[13 14 15 16 17 18 19] [ 89 119 106 111  89 100 110]
+
+
+

Because I’d passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.

+

You can also apply the GTIs directly to the original light curve, which will filter time, counts, countrate, counts_err and countrate_err to only fall within the bounds of the GTIs:

+
+
[66]:
+
+
+
# make a time array with a big gap and a small gap
+time = np.arange(20)
+counts = np.random.poisson(100, size=len(time))
+gti = [(0,8), (12,20)]
+
+
+ts = StingrayTimeseries(time, array_attrs={"blabla": counts}, dt=1, gti=gti)
+
+
+
+

Caution: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:

+
+
[67]:
+
+
+
# time array before applying GTIs:
+ts.time
+
+
+
+
+
[67]:
+
+
+
+
+array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
+       17, 18, 19])
+
+
+
+
[68]:
+
+
+
ts.apply_gtis()
+
+
+
+
+
[68]:
+
+
+
+
+<stingray.base.StingrayTimeseries at 0x13bb33c70>
+
+
+
+
[69]:
+
+
+
# time array after applying GTIs
+ts.time
+
+
+
+
+
[69]:
+
+
+
+
+array([ 1,  2,  3,  4,  5,  6,  7, 13, 14, 15, 16, 17, 18, 19])
+
+
+

As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs.

+
+
+
+

Reading/Writing Stingray Timeseries to/from files

+

The StingrayTimeseries class has roundtrip reading/writing capabilities via the read and write methods. Most of the I/O is managed by the astropy.io infrastructure. We regularly test the roundtrip to Enhanced CSV (.ecsv) and Hierarchical Data Format v.5 (.hdf5) formats.

+
+
+

Converting StingrayTimeseries to pandas, xarray and Astropy Table/Timeseries

+

StingrayTimeseries can be converted back and forth to xarray, pandas, astropy.table.Table and astropy.timeseries.TimeSeries objects through the relevant to_FORMAT and from_FORMAT, e.g. Refer to the methods’ documentation for more information on how data are stored in each case.

+
+
[70]:
+
+
+
type(ts.to_pandas())
+
+
+
+
+
[70]:
+
+
+
+
+pandas.core.frame.DataFrame
+
+
+
+
[71]:
+
+
+
type(ts.to_xarray())
+
+
+
+
+
[71]:
+
+
+
+
+xarray.core.dataset.Dataset
+
+
+
+
[72]:
+
+
+
type(ts.to_astropy_table())
+
+
+
+
+
[72]:
+
+
+
+
+astropy.table.table.Table
+
+
+
+
[73]:
+
+
+
type(ts.to_astropy_timeseries())
+
+
+
+
+
[73]:
+
+
+
+
+astropy.timeseries.sampled.TimeSeries
+
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb b/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb new file mode 100644 index 000000000..66265cad2 --- /dev/null +++ b/notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb @@ -0,0 +1,2204 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Start here to begin with Stingray." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import numpy as np\n", + "%matplotlib inline\n", + "import warnings\n", + "warnings.filterwarnings('ignore')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Introduction\n", + "\n", + "`StingrayTimeseries` is a generic time series object, and also acts as the base class for Stingray's `Lightcurve` and `EventList`. It is a data container that associate times with measurements.\n", + "The only compulsory element in such a series is indeed the `time` attribute.\n", + "\n", + "Many of the methods in `Lightcurve` and `EventList`, indeed, are implemented in this class. For example, methods that truncate, add, subtract the series, or that filter it in some way (e.g. by adding a mask or applying the good time intervals)\n", + "\n", + "\n", + "### Internal Class structure\n", + "\n", + "For most of this internal behavior, all turns around the concept of \"Array attributes\", \"Internal attributes\", \"Meta attributes\", and \"Not array attributes\". \n", + "\n", + "**Array attributes** Ideally, if one were to create a new object based on a table format, array attributes would be the table columns (so, they all have the same length of the `time` column).\n", + "Example array attributes are\n", + "\n", + "+ `counts`, the number of counts in each bin of a typical X-ray light curve;\n", + "+ `dt`, the sampling time, *if data are not evenly sampled*;\n", + "\n", + "Note that array attributes can have any dimension. The only important thing is that the *first dimension's size* is equal to the size of `time`. E.g. if time is `[1, 2, 3]` (shape (3,) ), an array attribute could be `[[4, 4], [2, 3], [4, 5]]` (shape (3, 2)), but not `[[1, 2, 3]]` (shape (1, 3))\n", + "\n", + "**Meta attributes** The most useful attributes are probably \n", + "\n", + "+ `gti`, or the Good Time Intervals where measurements are supposed to be reliable; \n", + "+ `dt`, the sampling time, when *constant* (evenly sampled time series);\n", + "+ `mjdref` the reference MJD for all the time measurements in the series\n", + "\n", + "**Internal array attributes** Some classes, like `Lightcurve`, expose attributes (such as `counts`, `counts_err`) that are not arrays but properties. This is done for a flexible manipulation of counts, count rates etc, that can be set asynchronously depending on which one was set first (see the `Lightcurve` documentation). The actual arrays containing data are internal attributes (such as `_counts`) that get set only if needed. Another thing that lightcurve does is throwing an error if one wants to set the time to a different length than its array attributes. The actual time is stored in the `_time` attribute, and this check is done when one tries to modify the time through the `time` property (by setting `lc.time`).\n", + "\n", + "**Not array attributes** Some quantities, such as GTI, might in principle have the same length of `time`. One can then add `gti` to the list of `not_array_attributes`, that protects from the hypothesis of considering `gti` a standard array attribute." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Creating a time series" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import StingrayTimeseries" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `StingrayTimeseries` object is usually created in one of the following two ways:\n", + "\n", + "1. From an array of time stamps and an array of any name.\n", + " \n", + " ts = StingrayTimeseries(times, array_attrs=dict(my_array_attr=my_attr), **opts)\n", + "\n", + " where `**opts` are any (optional) keyword arguments (e.g. `dt=0.1`, `mjdref=55000`, etc.)\n", + " In principle, array attributes can be specified as simple keyword arguments. But when we use the `array_attrs` keyword, we will run a check on the length of the arrays, and raise an error if they are not of a shape compatible with the ``time`` array.\n", + "\n", + "2. A binned `StingrayTimeseries`, a generalization of a uniformly sampled light curve, can be obtained from an EventList object, through the `to_binned_timeseries` method.\n", + "\n", + " ev = EventList(times, mjdref=55000)\n", + " ev.my_attr = my_attr_array\n", + " ts = ev.to_binned_timeseries(ev, dt=1, array_attrs={\"my_attr\": my_attr}, **opts)\n", + "\n", + "as will be described in the next sections.\n", + "\n", + "An additional possibility is creating an empty `StingrayTimeseries` object, whose attributes will be filled in later:\n", + "\n", + " ts = StingrayTimeseries()\n", + "\n", + "or, if one wants to specify any keyword arguments:\n", + "\n", + " ts = StingrayTimeseries(**opts)\n", + "\n", + " This option is usually only relevant to advanced users, but we mention it here for reference" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1. Array of time stamps and counts" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 time stamps" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "times = np.arange(1000)\n", + "times[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create 1000 random Poisson-distributed counts:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.24828431, 1.65343943, 0.48755812, 0.53731942, 0.06821194,\n", + " 0.67721999, -1.52268207, 0.90104872, -1.54513351, 0.4345529 ])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "my_attr = np.random.normal(size=len(times))\n", + "my_attr[:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Create a Lightcurve object with the times and counts array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "ts = StingrayTimeseries(times, array_attrs={\"my_attr\": my_attr})" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The number of data points can be counted with the `len` function, or through the `n` property." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 1000)" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ts), ts.n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2. From an event list\n", + "\n", + "Often, you might have an event list with associated properties such as weight, polarization, etc. If this is the case, you can use the `to_binned_timeseries` method of `EventList` to turn these photon arrival times into a regularly binned timeseries." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "from stingray import EventList\n", + "\n", + "arrival_times = np.sort(np.random.uniform(0, 100, 1000))\n", + "goofy = np.random.normal(size=arrival_times.size)\n", + "mickey = np.random.chisquare(2, size=arrival_times.size)\n", + "ev = EventList(arrival_times, gti=[[0, 100]])\n", + "ev.goofy = goofy\n", + "ev.mickey = mickey" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To create the time series, it's necessary to specify the sampling time `dt`. By default, the time series will create histograms with all the array attributes of `EventLists` with the same length as `ev.time`." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [], + "source": [ + "ts_new = ev.to_binned_timeseries(dt=1)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "One can specify which attributes to use through the `array_attrs` keyword" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "ts_new_small = ev.to_binned_timeseries(dt=1, array_attrs=[\"goofy\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All attributes that have been histogrammed can be accessed through the `array_attrs` method:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['counts', 'goofy', 'mickey']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.array_attrs()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['counts', 'goofy']" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new_small.array_attrs()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note the `counts` attribute, which is always created by the `to_binned_timeseries` method and gives the number of photons which concurred to creating each value of the time series." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time bins can be seen with the `.time` attribute" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5,\n", + " 11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5,\n", + " 22.5, 23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5,\n", + " 33.5, 34.5, 35.5, 36.5, 37.5, 38.5, 39.5, 40.5, 41.5, 42.5, 43.5,\n", + " 44.5, 45.5, 46.5, 47.5, 48.5, 49.5, 50.5, 51.5, 52.5, 53.5, 54.5,\n", + " 55.5, 56.5, 57.5, 58.5, 59.5, 60.5, 61.5, 62.5, 63.5, 64.5, 65.5,\n", + " 66.5, 67.5, 68.5, 69.5, 70.5, 71.5, 72.5, 73.5, 74.5, 75.5, 76.5,\n", + " 77.5, 78.5, 79.5, 80.5, 81.5, 82.5, 83.5, 84.5, 85.5, 86.5, 87.5,\n", + " 88.5, 89.5, 90.5, 91.5, 92.5, 93.5, 94.5, 95.5, 96.5, 97.5, 98.5,\n", + " 99.5])" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Good Time Intervals\n", + "\n", + "`StingrayTimeseries` (and most other core `stingray` classes) support the use of *Good Time Intervals* (or GTIs), which denote the parts of an observation that are reliable for scientific purposes. Often, GTIs introduce gaps (e.g. where the instrument was off, or affected by solar flares). By default. GTIs are passed and don't apply to the data within a `StingrayTimeseries` object, but become relevant in a number of circumstances, such as when generating `Powerspectrum` objects. \n", + "\n", + "If no GTIs are given at instantiation of the `StingrayTimeseries` class, an artificial GTI will be created spanning the entire length of the data set being passed in, including half a sample time before and after:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [], + "source": [ + "times = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(times))\n", + "\n", + "ts = StingrayTimeseries(times, array_attrs={\"counts\":counts}, dt=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-5.000e-01, 9.995e+02]])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.gti" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 96, 92, 92, 103, 101, 95, 112, 108, 97, 92, 102, 88, 82,\n", + " 82, 98, 107, 94, 90, 116, 97, 104, 109, 103, 90, 98, 104,\n", + " 91, 103, 89, 103, 116, 88, 96, 106, 106, 81, 92, 99, 88,\n", + " 88, 114, 95, 84, 102, 99, 89, 97, 84, 88, 100, 100, 89,\n", + " 86, 100, 100, 110, 106, 95, 117, 113, 101, 99, 95, 97, 108,\n", + " 107, 112, 82, 122, 101, 98, 94, 106, 109, 96, 103, 125, 105,\n", + " 107, 95, 91, 94, 92, 118, 90, 101, 96, 113, 95, 109, 92,\n", + " 101, 101, 97, 107, 109, 110, 113, 100, 113, 110, 91, 99, 103,\n", + " 98, 94, 99, 99, 87, 92, 96, 111, 105, 91, 88, 83, 107,\n", + " 78, 102, 90, 99, 96, 99, 107, 90, 111, 86, 129, 105, 98,\n", + " 91, 100, 118, 95, 97, 106, 96, 117, 107, 102, 101, 98, 89,\n", + " 105, 104, 104, 85, 113, 89, 89, 117, 111, 112, 117, 102, 129,\n", + " 105, 99, 106, 83, 83, 93, 114, 91, 116, 90, 117, 109, 95,\n", + " 103, 102, 90, 95, 83, 99, 108, 80, 104, 111, 107, 100, 87,\n", + " 87, 97, 100, 115, 107, 93, 106, 76, 105, 88, 100, 99, 99,\n", + " 89, 87, 89, 105, 106, 88, 113, 95, 120, 96, 107, 96, 114,\n", + " 97, 106, 106, 94, 83, 111, 91, 109, 93, 108, 106, 100, 85,\n", + " 84, 107, 126, 102, 99, 95, 100, 103, 90, 92, 89, 84, 120,\n", + " 114, 98, 117, 97, 109, 95, 100, 97, 84, 90, 110, 103, 108,\n", + " 92, 82, 115, 115, 97, 121, 104, 98, 89, 80, 99, 86, 98,\n", + " 97, 100, 96, 96, 125, 112, 95, 86, 94, 100, 91, 123, 98,\n", + " 76, 84, 109, 87, 92, 108, 89, 94, 94, 101, 110, 94, 94,\n", + " 106, 103, 99, 117, 87, 101, 97, 79, 117, 107, 111, 113, 107,\n", + " 106, 109, 104, 102, 99, 114, 89, 109, 95, 111, 75, 99, 115,\n", + " 91, 118, 112, 91, 87, 106, 94, 98, 102, 110, 92, 84, 97,\n", + " 118, 108, 89, 98, 99, 109, 122, 105, 101, 102, 107, 120, 87,\n", + " 90, 109, 100, 107, 107, 98, 96, 90, 100, 115, 92, 86, 100,\n", + " 114, 109, 91, 98, 96, 91, 105, 95, 93, 86, 85, 109, 107,\n", + " 97, 101, 101, 119, 98, 111, 102, 101, 107, 107, 89, 107, 93,\n", + " 98, 91, 102, 91, 116, 105, 98, 105, 95, 106, 99, 122, 111,\n", + " 108, 84, 100, 111, 91, 86, 95, 104, 95, 129, 103, 80, 90,\n", + " 105, 112, 97, 107, 113, 103, 96, 100, 99, 101, 111, 81, 110,\n", + " 101, 97, 98, 108, 96, 97, 95, 107, 91, 89, 108, 99, 85,\n", + " 97, 86, 103, 94, 111, 94, 83, 99, 91, 103, 96, 99, 98,\n", + " 94, 111, 101, 93, 88, 98, 105, 88, 125, 109, 107, 100, 95,\n", + " 104, 87, 97, 110, 98, 85, 114, 96, 116, 115, 99, 86, 96,\n", + " 101, 99, 84, 96, 96, 104, 85, 86, 98, 109, 102, 90, 111,\n", + " 104, 92, 107, 103, 101, 91, 106, 105, 93, 99, 108, 110, 85,\n", + " 88, 93, 105, 105, 120, 87, 103, 101, 125, 81, 94, 89, 107,\n", + " 96, 103, 104, 98, 98, 88, 108, 79, 92, 113, 112, 93, 99,\n", + " 105, 90, 87, 80, 105, 111, 102, 109, 95, 103, 93, 105, 92,\n", + " 113, 107, 94, 113, 108, 82, 100, 136, 88, 100, 89, 100, 113,\n", + " 94, 116, 100, 93, 100, 110, 100, 108, 93, 85, 105, 95, 109,\n", + " 99, 92, 96, 111, 110, 110, 108, 103, 92, 108, 95, 84, 106,\n", + " 94, 112, 110, 98, 103, 80, 87, 81, 104, 93, 97, 100, 97,\n", + " 89, 100, 108, 104, 98, 107, 91, 94, 94, 112, 92, 103, 99,\n", + " 109, 98, 115, 114, 89, 97, 95, 95, 101, 102, 117, 88, 109,\n", + " 92, 101, 97, 94, 115, 89, 102, 97, 89, 107, 99, 90, 116,\n", + " 89, 115, 117, 108, 104, 101, 115, 87, 93, 96, 97, 99, 104,\n", + " 94, 106, 111, 102, 104, 94, 97, 111, 90, 99, 103, 113, 87,\n", + " 111, 99, 89, 86, 112, 84, 98, 67, 91, 98, 93, 99, 99,\n", + " 116, 110, 106, 82, 88, 85, 88, 116, 116, 104, 104, 118, 106,\n", + " 101, 83, 104, 106, 101, 101, 116, 103, 108, 121, 87, 115, 97,\n", + " 79, 103, 109, 94, 91, 95, 99, 103, 111, 118, 90, 117, 91,\n", + " 81, 90, 102, 115, 105, 100, 91, 95, 97, 98, 94, 99, 105,\n", + " 94, 91, 113, 130, 116, 111, 95, 105, 101, 109, 108, 97, 105,\n", + " 106, 106, 109, 106, 110, 102, 124, 109, 103, 91, 105, 87, 117,\n", + " 99, 86, 107, 94, 98, 102, 108, 95, 99, 90, 110, 94, 66,\n", + " 98, 122, 100, 93, 103, 86, 101, 92, 107, 80, 122, 99, 112,\n", + " 99, 107, 120, 97, 89, 99, 111, 107, 98, 103, 112, 111, 97,\n", + " 88, 84, 96, 95, 91, 94, 101, 89, 102, 104, 70, 122, 98,\n", + " 104, 100, 101, 87, 97, 93, 84, 103, 95, 90, 96, 106, 86,\n", + " 100, 92, 93, 99, 110, 86, 100, 93, 107, 101, 87, 95, 105,\n", + " 114, 109, 100, 91, 99, 109, 97, 105, 93, 95, 103, 93, 93,\n", + " 82, 104, 93, 114, 107, 110, 99, 86, 86, 119, 107, 86, 89,\n", + " 95, 103, 85, 98, 99, 102, 107, 109, 108, 93, 93, 99, 116,\n", + " 118, 102, 94, 112, 88, 110, 96, 107, 110, 101, 90, 101, 100,\n", + " 96, 102, 125, 112, 93, 101, 88, 99, 80, 95, 108, 100, 113,\n", + " 97, 109, 100, 97, 93, 95, 92, 91, 93, 98, 89, 92, 99,\n", + " 96, 99, 96, 83, 100, 93, 106, 89, 113, 88, 79, 109, 105,\n", + " 93, 110, 94, 109, 102, 103, 87, 98, 120, 92, 104, 100, 117,\n", + " 102, 95, 106, 104, 103, 105, 107, 95, 97, 105, 102, 119, 101,\n", + " 99, 99, 101, 92, 87, 104, 104, 96, 107, 98, 88, 95, 102,\n", + " 86, 104, 101, 94, 114, 99, 98, 98, 100, 100, 98, 103, 127,\n", + " 98, 82, 106, 94, 101, 108, 101, 98, 76, 97, 88, 99, 108,\n", + " 92, 104, 83, 95, 104, 97, 84, 101, 107, 106, 94, 88, 103,\n", + " 96, 101, 100, 100, 102, 85, 103, 97, 95, 100, 99, 80])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.counts" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0\n", + "999\n", + "[[-5.000e-01 9.995e+02]]\n" + ] + } + ], + "source": [ + "print(times[0]) # first time stamp in the light curve\n", + "print(times[-1]) # last time stamp in the light curve\n", + "print(ts.gti) # the GTIs generated within Lightcurve" + ] + }, + { + "cell_type": "raw", + "metadata": {}, + "source": [ + "GTIs are defined as 2-dimensional array (or a list of 2-tuples):" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0, 500), (600, 1000)]" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [], + "source": [ + "ts = StingrayTimeseries(times, array_attrs={\"counts\":counts}, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(ts.gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We'll get back to these when we talk more about some of the methods that apply GTIs to the data.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Combining StingrayTimeseries objects" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A `StingrayTimeseries` object can be combined with others in various ways. The best way is using the `join` operation, that combines the data according to the strategy defined by the user.\n", + "\n", + "The default strategy is `infer`. Similar to what can be seen in `EventLists`, it decides what to do depending on the fact that GTIs have overlaps or not. If there are overlaps, GTIs are intersected. Otherwise, they are appended and merged. But one can select between:\n", + "\n", + "+ \"intersection\", the GTIs are merged using the intersection of the GTIs. \n", + "+ \"union\", the GTIs are merged using the union of the GTIs. \n", + "+ \"append\", the GTIs are simply appended but *they must be mutually exclusive* (have no overlaps).\n", + "+ \"none\", a single GTI with the minimum and the maximum time stamps of all GTIs is returned. \n", + "\n", + "The data are always all merged. No filtering is applied for the new GTIs. But the user can always use the `apply_gtis` method to filter them out later." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New gti: [[0.5 3.5]\n", + " [4.5 7.5]]\n", + "New time: [1. 1.1 2. 2.1 3. 4. 5. 6.5]\n", + "New blah: [1 2 1 2 1 2 2 2]\n" + ] + } + ], + "source": [ + "ts = StingrayTimeseries(\n", + " time=[1, 2, 3], \n", + " gti=[[0.5, 3.5]], \n", + " array_attrs={\"blah\": [1, 1, 1]},\n", + ")\n", + "ts_other = StingrayTimeseries(\n", + " time=[1.1, 2.1, 4, 5, 6.5], \n", + " array_attrs={\"blah\": [2, 2, 2, 2, 2]}, \n", + " gti=[[1.5, 2.5], [4.5, 7.5]],\n", + ")\n", + "\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "for attr in [\"gti\", \"time\", \"blah\"]:\n", + " print(f\"New {attr}:\", getattr(ts_new, attr))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New gti: [[0.5 3.5]]\n", + "New time: [1. 1.1 2. 2.1 3. 4. 5. 6.5]\n", + "New blah: [1 2 1 2 1 2 2 2]\n" + ] + } + ], + "source": [ + "ts_new = ts.join(ts_other, strategy=\"intersect\")\n", + "\n", + "for attr in [\"gti\", \"time\", \"blah\"]:\n", + " print(f\"New {attr}:\", getattr(ts_new, attr))\n" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "New gti: [[1. 6.5]]\n", + "New time: [1. 1.1 2. 2.1 3. 4. 5. 6.5]\n", + "New blah: [1 2 1 2 1 2 2 2]\n" + ] + } + ], + "source": [ + "ts_new = ts.join(ts_other, strategy=\"none\")\n", + "\n", + "for attr in [\"gti\", \"time\", \"blah\"]:\n", + " print(f\"New {attr}:\", getattr(ts_new, attr))\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this case, `append` will fail, because the GTIs intersect." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "In order to append, GTIs must be mutually exclusive.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [23], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m ts_new \u001b[38;5;241m=\u001b[39m \u001b[43mts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mjoin\u001b[49m\u001b[43m(\u001b[49m\u001b[43mts_other\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mappend\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1961\u001b[0m, in \u001b[0;36mStingrayTimeseries.join\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1922\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mjoin\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 1923\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 1924\u001b[0m \u001b[38;5;124;03m Join other :class:`StingrayTimeseries` objects with the current one.\u001b[39;00m\n\u001b[1;32m 1925\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1959\u001b[0m \u001b[38;5;124;03m The resulting :class:`StingrayTimeseries` object.\u001b[39;00m\n\u001b[1;32m 1960\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m-> 1961\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_join_timeseries\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1835\u001b[0m, in \u001b[0;36mStingrayTimeseries._join_timeseries\u001b[0;34m(self, others, strategy, ignore_meta)\u001b[0m\n\u001b[1;32m 1832\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1833\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1834\u001b[0m \u001b[38;5;66;03m# For this, initialize the GTIs\u001b[39;00m\n\u001b[0;32m-> 1835\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[43mmerge_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgti\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mall_objs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrategy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1837\u001b[0m all_time_arrays \u001b[38;5;241m=\u001b[39m [obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m all_objs \u001b[38;5;28;01mif\u001b[39;00m obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m]\n\u001b[1;32m 1839\u001b[0m new_ts\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate(all_time_arrays)\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1047\u001b[0m, in \u001b[0;36mmerge_gtis\u001b[0;34m(gti_list, strategy)\u001b[0m\n\u001b[1;32m 1045\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m join_gtis(gti0, gti)\n\u001b[1;32m 1046\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m strategy \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mappend\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 1047\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m \u001b[43mappend_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgti0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgti\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1048\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m gti0\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1090\u001b[0m, in \u001b[0;36mappend_gtis\u001b[0;34m(gti0, gti1)\u001b[0m\n\u001b[1;32m 1088\u001b[0m \u001b[38;5;66;03m# Check if GTIs are mutually exclusive.\u001b[39;00m\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m check_separate(gti0, gti1):\n\u001b[0;32m-> 1090\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIn order to append, GTIs must be mutually exclusive.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1092\u001b[0m new_gtis \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate([gti0, gti1])\n\u001b[1;32m 1093\u001b[0m order \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39margsort(new_gtis[:, \u001b[38;5;241m0\u001b[39m])\n", + "\u001b[0;31mValueError\u001b[0m: In order to append, GTIs must be mutually exclusive." + ] + } + ], + "source": [ + "ts_new = ts.join(ts_other, strategy=\"append\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Empty `StingrayTimeseries` will throw warnings but try to be accommodating" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "StingrayTimeseries().join(StingrayTimeseries()).time is None" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 2, 3])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[1, 2, 3])\n", + "ts_other = StingrayTimeseries()\n", + "ts_new = ts.join(ts_other)\n", + "ts_new.time\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the data being merged have a different time resolution (e.g. unevenly sampled data, events from instruments with different frame times), the time resolution becomes an array attribute:" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([1, 1, 1, 3, 3, 3])" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[10, 20, 30], dt=1)\n", + "ts_other = StingrayTimeseries(time=[40, 50, 60], dt=3)\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "ts_new.dt\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In all other cases, meta attributes are simply transformed into a comma-separated list (if strings) or tuples" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "((1, 3), 'a,b')" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[10, 20, 30], a=1, b=\"a\")\n", + "ts_other = StingrayTimeseries(time=[40, 50, 60], a=3, b=\"b\")\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "ts_new.a, ts_new.b" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Array attributes that are only in one series will receive `nan` values in the data corresponding to the other series" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 3., 3., 3., nan, nan])" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[1, 2, 3], blah=[3, 3, 3])\n", + "ts_other = StingrayTimeseries(time=[4, 5])\n", + "ts_new = ts.join(ts_other, strategy=\"union\")\n", + "\n", + "ts_new.blah\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When using `strategy=\"infer\"`, the intersection or the union will be used depending on the fact that GTI overlap or not" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([ 3., 3., 3., nan, nan]), array([3, 3, 4, 4, 3]))" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = StingrayTimeseries(time=[1, 2, 3], blah=[3, 3, 3], gti=[[0.5, 3.5]])\n", + "ts1 = StingrayTimeseries(time=[5, 6], gti=[[4.5, 6.5]])\n", + "ts2 = StingrayTimeseries(time=[2.1, 2.9], blah=[4, 4], gti=[[1.5, 3.5]])\n", + "ts_new_1 = ts.join(ts1, strategy=\"infer\")\n", + "ts_new_2 = ts.join(ts2, strategy=\"infer\")\n", + "\n", + "ts_new_1.blah, ts_new_2.blah\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Operations" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Addition/Subtraction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two time series can be summed up or subtracted from each other **if they have same time arrays.**" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": {}, + "outputs": [], + "source": [ + "ts = StingrayTimeseries(times, array_attrs={\"blabla\":counts}, dt=1, skip_checks=True)\n", + "ts_rand = StingrayTimeseries(times, array_attrs={\"blabla\": [600]*1000}, dt=1, skip_checks=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": {}, + "outputs": [], + "source": [ + "ts_sum = ts + ts_rand" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Counts in light curve 1: [ 96 92 92 103 101]\n", + "Counts in light curve 2: [600 600 600 600 600]\n", + "Counts in summed light curve: [696 692 692 703 701]\n" + ] + } + ], + "source": [ + "print(\"Counts in light curve 1: \" + str(ts.blabla[:5]))\n", + "print(\"Counts in light curve 2: \" + str(ts_rand.blabla[:5]))\n", + "print(\"Counts in summed light curve: \" + str(ts_sum.blabla[:5]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Negation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A negation operation on the time series object inverts the count array from positive to negative values." + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [], + "source": [ + "ts_neg = -ts" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [], + "source": [ + "ts_sum = ts + ts_neg" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.all(ts_sum.blabla == 0) # All the points on ts and ts_neg cancel each other" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Indexing" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Count value at a particular time can be obtained using indexing." + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 36, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[120]" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([120]), array([99]), 120, 99)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[120].time, ts[120].blabla, ts.time[120], ts.blabla[120]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A Lightcurve can also be sliced to generate a new object." + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "ts_sliced = ts[100:200]" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "100" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ts_sliced.blabla)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Other useful Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Two time series can be combined into a single object using the `concatenate` method. Note that both of them must not have overlapping time arrays." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [], + "source": [ + "ts_1 = ts\n", + "ts_2 = StingrayTimeseries(np.arange(1000, 2000), array_attrs={\"blabla\": np.random.rand(1000)*1000}, dt=1, skip_checks=True)\n", + "ts_long = ts_1.concatenate(ts_2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The method will fail if the time series have overlaps:" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": { + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "In order to append, GTIs must be mutually exclusive.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn [41], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mts_1\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconcatenate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mStingrayTimeseries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43marange\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m800\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgti\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m800\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1000\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1749\u001b[0m, in \u001b[0;36mStingrayTimeseries.concatenate\u001b[0;34m(self, other, check_gti)\u001b[0m\n\u001b[1;32m 1747\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1748\u001b[0m treatment \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnone\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1749\u001b[0m new_ts \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_join_timeseries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mother\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtreatment\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1750\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m new_ts\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/base.py:1835\u001b[0m, in \u001b[0;36mStingrayTimeseries._join_timeseries\u001b[0;34m(self, others, strategy, ignore_meta)\u001b[0m\n\u001b[1;32m 1832\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1833\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1834\u001b[0m \u001b[38;5;66;03m# For this, initialize the GTIs\u001b[39;00m\n\u001b[0;32m-> 1835\u001b[0m new_gti \u001b[38;5;241m=\u001b[39m \u001b[43mmerge_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgti\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mobj\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mall_objs\u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mstrategy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstrategy\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1837\u001b[0m all_time_arrays \u001b[38;5;241m=\u001b[39m [obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;28;01mfor\u001b[39;00m obj \u001b[38;5;129;01min\u001b[39;00m all_objs \u001b[38;5;28;01mif\u001b[39;00m obj\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m]\n\u001b[1;32m 1839\u001b[0m new_ts\u001b[38;5;241m.\u001b[39mtime \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate(all_time_arrays)\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1047\u001b[0m, in \u001b[0;36mmerge_gtis\u001b[0;34m(gti_list, strategy)\u001b[0m\n\u001b[1;32m 1045\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m join_gtis(gti0, gti)\n\u001b[1;32m 1046\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m strategy \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mappend\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m-> 1047\u001b[0m gti0 \u001b[38;5;241m=\u001b[39m \u001b[43mappend_gtis\u001b[49m\u001b[43m(\u001b[49m\u001b[43mgti0\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mgti\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1048\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m gti0\n", + "File \u001b[0;32m~/devel/StingraySoftware/stingray/stingray/gti.py:1090\u001b[0m, in \u001b[0;36mappend_gtis\u001b[0;34m(gti0, gti1)\u001b[0m\n\u001b[1;32m 1088\u001b[0m \u001b[38;5;66;03m# Check if GTIs are mutually exclusive.\u001b[39;00m\n\u001b[1;32m 1089\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m check_separate(gti0, gti1):\n\u001b[0;32m-> 1090\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mIn order to append, GTIs must be mutually exclusive.\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 1092\u001b[0m new_gtis \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mconcatenate([gti0, gti1])\n\u001b[1;32m 1093\u001b[0m order \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39margsort(new_gtis[:, \u001b[38;5;241m0\u001b[39m])\n", + "\u001b[0;31mValueError\u001b[0m: In order to append, GTIs must be mutually exclusive." + ] + } + ], + "source": [ + "ts_1.concatenate(StingrayTimeseries(np.arange(800, 1000), gti=[[800, 1000]]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Truncation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A light curve can also be truncated." + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "ts_cut = ts_long.truncate(start=0, stop=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1000" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(ts_cut)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Note** : By default, the `start` and `stop` parameters are assumed to be given as **indices** of the time array. However, the `start` and `stop` values can also be given as time values in the same value as the time array." + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [], + "source": [ + "ts_cut = ts_long.truncate(start=500, stop=1500, method='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(500, 1499)" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_cut.time[0], ts_cut.time[-1]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Re-binning" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The time resolution (`dt`) can also be changed to a larger value.\n", + "\n", + "**Note** : While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division." + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [], + "source": [ + "ts_rebinned = ts_long.rebin(2)" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Old time resolution = 1\n", + "Number of data points = 2000\n", + "New time resolution = 2\n", + "Number of data points = 1000\n" + ] + } + ], + "source": [ + "print(\"Old time resolution = \" + str(ts_long.dt))\n", + "print(\"Number of data points = \" + str(ts_long.n))\n", + "print(\"New time resolution = \" + str(ts_rebinned.dt))\n", + "print(\"Number of data points = \" + str(ts_rebinned.n))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Sorting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A time series can be sorted using the `sort` method. This function sorts `time` array and the `counts` array is changed accordingly." + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "metadata": {}, + "outputs": [], + "source": [ + "new_ts = StingrayTimeseries(time=[2, 1, 3], array_attrs={\"blabla\": [200, 100, 300]}, dt=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "new_ts_sort = new_ts.sort(reverse=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([3, 2, 1]), array([300, 200, 100]))" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_ts_sort.time, new_ts_sort.blabla" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A curve can be plotted with the `plot` method. Time intervals outside GTIs will be plotted as vertical red bands. " + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": { + "scrolled": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABgLklEQVR4nO3deXwTdfoH8E/StOnd9KAXtKVQoNyUu1widEFAvPWHyyLgtbsiiu7Pg1XQdVVc9KcuyMK6KrsqqOsusoqKi4AgWkoLlPsoUNpC6U2a3mmT+f1RCA1N2zSZZCbTz/v16uvVZiaTJ9Nk8mTm+T5flSAIAoiIiIgUSi11AERERESuxGSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRommkDkAOzGYzCgsLERQUBJVKJXU4REREZAdBEFBVVYXY2Fio1W2fv2GyA6CwsBBxcXGibzcYwPNXfn8ZgEH0RyBPdvX10U3qQEiWSsHjhqvxPeg+rn49FxQUoEePHm0uV7GDMlBZWQmdToeCggIEBweLtl1VURG0L74IAGh48UUI0dGibZs8n+X14ecHwd9f6nBIRlS1tUBdHY8bLsb3oHu48vVsMBgQFxcHvV6PkJCQNtfjmR3AcukqODhY1GQHNTWAjw8AwCcoCBBz2+T5rr4+dDogKEjqaEhOfHwAk4nHDVfje9A93PB67qgEhQXKREREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNEZIdGkxnGJrPUYRCRAzjrORFRB2qNTfj7T+dhFgT8amwCdP4+UodERJ3AMztERB3Q1zbCaDKjySygvNoodThE1ElMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGiSJju7d+/G7NmzERsbC5VKhc2bN1stf/HFF5GcnIyAgACEhoYiLS0NGRkZVutUVFRg7ty5CA4Ohk6nwwMPPIDq6mo3PgsiIiKSM0mTnZqaGgwdOhRr1qyxubxv37545513cOTIEezZswc9e/bEtGnTUFpaalln7ty5OHbsGLZt24YtW7Zg9+7dePjhh931FIiIiEjmNFI++IwZMzBjxow2l//yl7+0+vvNN9/E+++/j8OHD2Pq1Kk4ceIEtm7diszMTIwcORIAsHr1asycORNvvPEGYmNjXRo/ERHZp6iyHqeLq5DaOxzeXqygIPfymFec0WjEu+++i5CQEAwdOhQAkJ6eDp1OZ0l0ACAtLQ1qtbrV5a6WGhoaYDAYrH6IiMh1bnlnD+77YB/W/nBW6lCoC5J9srNlyxYEBgbC19cXb731FrZt24aIiAgAQFFRESIjI63W12g0CAsLQ1FRUZvbXLFiBUJCQiw/cXFxLn0ORERdXUlVAwDgyMVKiSOhrkj2yc6NN96I7Oxs/Pzzz7jppptwzz33oKSkxKltLl26FJWVlZafgoICkaIlIiIiuZF9shMQEICkpCSMHTsW77//PjQaDd5//30AQHR0dKvEp6mpCRUVFYiOjm5zm1qtFsHBwVY/REREpEyyT3auZzab0dDQfDo0NTUVer0e+/fvtyzfsWMHzGYzxowZI1WIXUpNQxP+tvscvj9ebPd9TlwyYNX2HOSX17owMhJbWXUD9p4rh77WKHUoRESdIulorOrqapw5c8byd25uLrKzsxEWFobw8HC88soruOWWWxATE4OysjKsWbMGFy9exN133w0A6N+/P2666SY89NBDWLduHRobG/Hoo49izpw5HInlJpuzL+KVb04AAI7+YToCtR2/pB74eyYKK+uRfrYcnzw81tUhkki2HCqEvq4ReeW1+J9RrHMjIs8habKTlZWFG2+80fL3k08+CQCYP38+1q1bh5MnT+If//gHysrKEB4ejlGjRuHHH3/EwIEDLffZsGEDHn30UUydOhVqtRp33nknVq1a5fbn0lVV1zdZfm9oNNmV7BRW1gMADhZcdllcJD59XSMA4FJlncSREBF1jqTJzuTJkyEIQpvLN23a1OE2wsLCsHHjRjHDIiIiIgXxuJodIiIios5gskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGiSDj0nIiIiedLXGvHloUIEajW4LaU71CqV1CE5jGd2iIiIqJWCy3WoqDEiv6IWhitNRT0Vkx0iIiJSNCY7REREpGhMdqhLqW80wVDv2adjiYioc5jsUJdR09CE8a/twMg/fo9jhZVSh0NERG7CZIe6jEJ9HcprjDCazDh5qUrqcIiIyE2Y7BAREZGiMdkhIiIiRWOy0wWYzQLSz5bjfFmN1KEoRp3RhJ0nS3C5xih1KIpQ32hCblk1jE1m0bctCELzJczqBtG3TeQsfa0RBRW1EARB6lAUjclOF7DlyCXc+7e9mPrmLtQ3mqQORxFe+PIoFv49EwvW75M6FEXYcvgS/pNdiO9PFIu+7QuX6/DPrAJ8tDcPtcYm0bdP5Kgmkxkfpufh3wcu4FQR6whdiclOF1BcWQ8AMJkFVDfwYC+GHSdLAQCHLnBUlxguXK4FAJwuFv+A3/I1X2tksk/y0WgSYL5yRqeKx2aXYrJDREREisZkh4iIiBSNyQ4REUnqXGk1/vx9Ds6UsG6FXIPJDhERSWrJZ9l46/vTeGTDAalDIYViskNERJI6fKXQ/3RxtcSRkFIx2SEiIiJFY7JDREREisZkh8hJeeU1WLThAD7Ykyt1KEREZAOTHSInfZSeh6+PXMJLW47DZGbLdyIiuWGyQ+SkWk7BQUQka0x2iIiISNGY7BAREZGiMdlRIEEQ8OjGA5j8+k4cvciJKpWkpKoef//5PL4+XAhBcF190OELerz34zkcuqB32WMQdUZlbSNuXv0jbn1nD6obmlBnNOGOv/yEmX/+EeXVDR3eXxAELP7kII+LXZRG6gBIfNUNTdhy+BIAYNvxYgRq+W9WivNlNdDXGqGvNaKhyQxfby+XPM6OkyUAgJ0nSzC0h84lj0HUGQcLLuPoRQOA5mRcq/HCgXw9AGB/3mVMGxjd7v1rjCZ8dagQAPDdsSIM6h7i0nhJXnhmR+E4NkhZXHgyh6jLMPON1OUw2SEiIiJFY7JD1AFjkxmVtY1Sh0EkOUEQUFrVcX0Mkdww2SFqR6PJjKlv/oDhL2/Dz2fKpA6HSFJPfJaNUa98j3d25EgdClGnMNkhaoe+thEFFXUwmQUcv2SQOhwiSW3Obi7wXf/TeWkDIeokSZOd3bt3Y/bs2YiNjYVKpcLmzZstyxobG/HMM89g8ODBCAgIQGxsLO677z4UFhZabaOiogJz585FcHAwdDodHnjgAVRXV7v5mRARdR0mFviSh5E02ampqcHQoUOxZs2aVstqa2tx4MABLFu2DAcOHMCmTZtw6tQp3HLLLVbrzZ07F8eOHcO2bduwZcsW7N69Gw8//LC7ngIRERHJnKQNWGbMmIEZM2bYXBYSEoJt27ZZ3fbOO+9g9OjRyM/PR3x8PE6cOIGtW7ciMzMTI0eOBACsXr0aM2fOxBtvvIHY2FiXPweSj1NFVahuaMLweB1UKpVd96lvNCH9XDmG9tAhLMDHxRGKq6y6AV5qFaKDfe1+vl1NeXUDCvV1UodBLlZsqMfu06VI7R0Ob6+uXZ3R0GRCob4O3XX+8NF07X3RkkfticrKSqhUKuh0OgBAeno6dDqdJdEBgLS0NKjVamRkZLS5nYaGBhgMBqsf8mwlVfWY/vZu3Ln2Z2TkVth9v5e/Po6F6zMx9722Xy9y9a/9F/BZZgGKDPVShyJLtcYmfLQ3D0fYLVfxlv3nGO77YB/W/XBW6lAk982RIvwnuxDfHSuSOhRZ8Zhkp76+Hs888wzuvfdeBAcHAwCKiooQGRlptZ5Go0FYWBiKitr+R69YsQIhISGWn7i4OJfGTq5XVmW0/F7ciQ//3aebR1id8ODi45qGJqlDkKU6I2ej72qOFjKxzSuvAQCcLWXtaksekew0NjbinnvugSAIWLt2rdPbW7p0KSorKy0/BQUFIkRJREREciT7SZOuJjp5eXnYsWOH5awOAERHR6OkpMRq/aamJlRUVCA6uu15UrRaLbRarctiJiIiIvmQ9Zmdq4lOTk4Ovv/+e4SHh1stT01NhV6vx/79+y237dixA2azGWPGjHF3uESyJwgCjl2sxOELes4PRCSS+kYTss5X4PyVS0hyVWtswr7cCly4XCt1KG4n6Zmd6upqnDlzxvJ3bm4usrOzERYWhpiYGNx11104cOAAtmzZApPJZKnDCQsLg4+PD/r374+bbroJDz30ENatW4fGxkY8+uijmDNnDkdiEdlQVm3EthPFAICwAB/0CPWXOCIiz3f4QiV+Pttc/7d4Sh94qeU5OnJfbgWyC/QAgCVpfaUNxs0kTXaysrJw4403Wv5+8sknAQDz58/Hiy++iC+//BIAMGzYMKv77dy5E5MnTwYAbNiwAY8++iimTp0KtVqNO++8E6tWrXJL/ESexmgyX/u9ydzOmkRkr5bF8IIgAJBnsmOo77qDGSRNdiZPnnzlhWFbe8uuCgsLw8aNG8UMi4iIiBRE1jU7RERERM5istPFNDSZ8ey/D+P5zUfQZBL3MsZLW47jqc8PoZp9XxxWXt2ALYcKcbRFIzxBELD7dCm+O1ZkdRmKyJW2nyjGg//IQvrZ8g7X/Sj9PH778X72dmnDmZIqfHmokN28JST7oeckrn255fg0s7mv0O0pPTAiIVS0bf/nyozIU/tH4aZBbQ/9p7btO1+BM6XVOFNajUHdQwAAl2sbcSD/MgAgPIAtE8g9HtlwAA1NZuSUVGHXUze2u+6y/xwDAIQG+ODV2we7IzyPsuXwJQCAoa4RvxqbIHE0XRPP7HQxjaZrdVBin9mxbNfMsw+Oqm9sve9aDhHncHFyl4YrBex55fYPU67uwgWw9jDUNUodQpfFZIeIiIgUjckOERERKRqTHQX4+WwZJvxpB5b/56jUoQAA/rjlOMa/tgO7T5dabhMEAb/+KAs9n/3a5n3+/H0OUldsx9dXrm1L4fa//IRao/in4XPLapD25i786r0M3PvuXvzizV0oqOh6HUzJMR29v08WGTDljR/w8IdZdrXrcKUvDxXiZJFzk+o+9slBTH59J45c4KSezvpgT26X7JZsC5MdBdiQkY8Ll+vwYXqe1KEAAIoNDbior8Pffz5vua2ixojvjhW3eZ+3vj+NS5X1ePv7026I0LaD+XocLxR/9vOfzpThTEk19pwpQ/q5cuSUVNs1woUI6Pj9/ePpMpwrq8F/jxejvMbo5uhaa/klxxFfHirE+fJabD0m3RcfpTDUN+LoRfGPaZ6IyY4CuKrQ2FmOdOit4bB1IityfX+7mpm1+KLgoIZmTHaIiIhI0ZjsSKysugHm677C1BlNqKrvOkMUpa4zoGaCILikZskZZhnGBAAms4D6RlPHK7qYIAgoq24QZTslVfWW92JpVetttpz/yRkmnrIhCbCpoIQ2ZOThuS+OYmKfCHz0wBgAQGVdI254fSdqjSZsWTwBfaOCJI7S9V7aclzqEAjA5uxC5JXX4MbkSKlDsdh04CIuXK5FWv8oS5NFqQkQ8NHePFTWGnFbSnckhAdIFstzm49iY0a+09v545YT+OCnXCwc3xO9uwXi+c3WxdCVtY2Y9PpOpx8HAHacLIEgCFCp5DlZptgq2VtHFnhmR0JXOw7/mFNmua2gohb62kYYm8w4WVQlVWhutf6n81KHQADyymsAACcvyaeg8epIktPF8nkvNDSZoa81QkBzMb6UxEh0AOCDn3IBNL8XbY2Cyq+oFfVDu6kLnd2paFE03i2IHdClwmSHiIjIDbQafuRKhXueiIiIFI3JDnkEQRBwqECPY4XuazRmNgvYe859/XDMgoALTjYbLDHUo9hQL1JE8lHVxeZcqqgxoqy6oVXxvtksIONceZuzi/9wqhTlIhQsd+TqpXZbKusasfNkiSwLy6nrYrJDHuFYoQG3rvkJs1btQX4nJiZ0xjdHL2HxJwfd8lgAcLzQAJMTI9MqaozYuC8fn+zLF2WEjpxcrjW2GrWoVLXGJvzrwAX8cKoEWXkVVsu2nyzB/7y7F1P/b5fNEZv/+/khzH0vwy1xrt6RY/P2NTvPYuHfM/HcF/Lo6E4EMNkhD1FUee1sRXGVe85ctHxMd3C2ALRlQ0Ylzj7tTCLoSWpbDPG+fgh4UYuzdvpa268Xdw1sOJivb3f5t0fZAZnkg8kOERERKRqTHSIiIlI0JjseoKCiFqu25+DoReXNAnxRXyf6Ntf/dB5fHSoUfbuuUGc04UDeZdEvmR3Iv9xmEaunKFFgoXVnnSmtkTqELq3RZMaBvMs4U2L7vXS80IBDBXpFzT+VX1GLzPMVsugQLiYmOx5g2X+O4s1tp7FgfabUoYhu+WbxixizC/RY/MlBu0Yl+ft4if74nXHogh5Z+Zfx7wMXRN1ufkUtvjpU6NBkrHKxOdszElZX+v5YsdQhdGk5xdXYnVOKLYcLW334V9QY8d/jRdh5qsTS/NLTCYKATQcu4KczZTiQf1nqcETFZMcDXO1oqrQRNkDzKCtXqbZjBvXekYEue3x7XC1KbnTRzNZNZs9Ndjh0GQj05Yw+UjI2XUtwrn+Ptvwi4clfKtpSY8fx05Mw2aEurWvMzkNE1LUx2SEiIiJFY7KjMJ251PXoJwfx111nLX9/lH4ePZ/9Gjev/lHUgtmSqnos+SxbtO3Z0laDM7l6+t+HkXnefd2ZxSYIAn44VYL/Hivy6FP4Wecr8M2RSzDYaNBX32jCd0eLsGp7Dr45cq1nzGEbE2V6gvNlNXhkw36svzLppzsp8RK8q1TUNGDL4UIcvqBvd71iQz2+OlSIk0XymbhXzpjsKECQr7fl9/92oqCxtKoBK749aSm8W/afYwCAoxcN2HJYvOLQ744WWc3sLjZ9rRHfHi1y2fZd5ZWvT0gdgsPKqo3ILtDj+CUD8p2c4kIqjSYz9pwpw+niKpywUTuWW1aDE0UGmAXBqv7LU6fj+Ef6eXxzpAh/+Op4q2koXK0zx6WuLut88+ivHSdL2l1vT04ZzpZWY6sHHvukwGRHAQK114oYHSlItTVssknE1vyNJtceWMWM1Z0u6j3zQxOwfs146rDblmHbeg0pbXqK2gbphhJ7cqG8uzXYeabUngEYdA2THSIiIlI0JjtERESkaEx23OQPXx3DpJU7sT/P9Y2aXvzyuMsfg665XGN0yXb1ta7Zrhg+2ZcvdQiiyjxf0fFKDqqqb8THe/PweVYBTO1cGks/W473fzzXZrdeMf119zmkrtiOTSI3s5SDi/o6TH9rN+a8m+6y/lWOOldWg2+P2J4g1ZWvQWKy4xZmQcCWw5eQX1GL/2RfdPnjid2Nl1pLCPe3/J7logTWUwt/PZFa5bqOSxf1dSirbsBFfR3Ka9oelZSRW46qhiZk5Lr+Q++1b0/iUmU9Vnx70uWP5W4Z58pxqrgKe89V4JwMp9s4VVxlcwSjK1+DxGTH7dr7ZkeeIyLQR+oQSERy+phx50ipqx28SXpyeg0qEZMdIiIiUjQmO2SX0qoGm984q+pdO/xRX2t0qmldW3HLUa3RvUOD7W0JUGc0dTgMu85o6vCsZX2j9TpmQXB6/itjk1nUugyzWUCdk/8HsWNyRnl1A0xmAVX1jahT2CzWttQ3ml1+TCLPxFnmqENrfziLP209iVlDYrDml8Mtt5+4ZMA7O8+47HH35JThvg8yEBfmj6Uz+nf6/n/ZeRb/PnABs4fGYvW9KS6IUFzHCt3bmffbo5eQEO4PX+/2Z37/6+6ziAjUtrn8XGlz0WVYgA9+NTYBKhu1B7llNfgy+yJ0/j6Yl5oAtUqFf++/gIv6OkwbEO1Q/Ia6RnyYngeVClgwricCtM4fzj7LKkCxoR43DXIsJn2tER/tzYOXSoUF43vC30e6Q+xnmfl45t9HEBmkhb6u0WWdrvee63wn8B9zSjElOUr0WHadLsWu06WWvz/NzMcLsweK/jjkeXhmhzr08d48AMDXh61HEZwqqnLp4x4trIRZAPLKa2228+/I1ULtrw6J1w1aTH0knnEdaLtmI8TP2+rv9tr9F+rrIAAorzG22eCxqLIeAoDLtUbLWY+L+joAwJlSx0YfVdQY0WRuPotSIdKIuKvdkc+XOVYcXl5thMkswGgyQ18rbT3Mlivv15KqBpdO6XHcRvfpjpx08bHjKkMdz/JQM0mTnd27d2P27NmIjY2FSqXC5s2brZZv2rQJ06ZNQ3h4OFQqFbKzs1tto76+HosWLUJ4eDgCAwNx5513oriYrcnF5CmXgTxNqL93xytJJEDCMxJERGKTNNmpqanB0KFDsWbNmjaXT5gwAX/605/a3MYTTzyBr776Cp9//jl27dqFwsJC3HHHHa4KmYiIiDyMpF/fZsyYgRkzZrS5fN68eQCA8+fP21xeWVmJ999/Hxs3bsSUKVMAAOvXr0f//v2xd+9ejB07VvSY5aa0qgG7W1yjdtT1BajlXXiW4jqjCXvPlTs9LPdcabXTBdLV9U3IL/ecfjs1DU3Q+Ts/LN+ZWbLrjCYUGerh79N+LZIYSgz1KDbUIyrYt9Wyy7VGxOr8rG5j64nW6u0onD5fVoO951zff8gsCLh4uQ7Bft6tLuW2p6qT81SdL69BsG/nHqM9NQ1NKK1uQFyof8crd1Eefa56//79aGxsRFpamuW25ORkxMfHIz09vc1kp6GhAQ0N1w6mBkPnrznLxT1/TUdumfONs747Zj1z7t9+zMVzswY4vV1P9NzmI9h0wLnmjzUNTZjyf7sAABP7RDi8nY378tw+SssZn2UW4Nc39HZqG1c7Djtq08ELKK1qQPfrEg1XOFNajTOl1bgvNQFhAdZF3NuOFyPpurqs7Hw9Yga7Pi5nXK2lcpdXvj7R7vL6RhOm/N8PcEeeeKLQgG0niuGlVuGRyUkue5xvrnRRvj2luyjb+zSzAFX1jRjdM0yU7SmRRxcoFxUVwcfHBzqdzur2qKgoFBW1Pe39ihUrEBISYvmJi4tzcaSuI0aiAwBFBusZuLty07xtx5yv+WpZUF1scHx2c09KdACIMrzZ2edcWtX8RcadH9rV9bZjrm+0Lgy2NVJNDpKjgyy/l1Q5/np1xI857Z+Zrm5ockuiAwCVV963JrPglrNwYs1cXnUl7kuV7v3feRKPTnYctXTpUlRWVlp+CgoKpA6JiEgygSIM2yeSM49+hUdHR8NoNEKv11ud3SkuLkZ0dNt9MrRaLbTatvuGEBERkXJ49JmdESNGwNvbG9u3b7fcdurUKeTn5yM1NVXCyDpvQ0Zeh11qHZFTXIVV23PaXSfz/GUcvuDehnZtKXTRadizdvZy+eZI25c/7bFqew5OFtlXA7bv/GXL6Wd7XbYxE3rGuYo2+xBdvYzS0GRC1vkK5Il02VNq1fVN2OfCCTNPFhlg7GQX5DMl1TiQ75pJYa86KpP3KQDsOVOGD/bkosGBHj6f7ivAxox8lFc34LyHFOBnF+hxMP+y3Ze36owmZJ6vwIXLjj+/zl4CL3DisZRO0jM71dXVOHPmWgfe3NxcZGdnIywsDPHx8aioqEB+fj4KC5ubwp06dQpA8xmd6OhohISE4IEHHsCTTz6JsLAwBAcHY/HixUhNTfW4kVjPfXEU/aKCOuxm21nfHu34w3v+B/vg6y2fvPdyjRGhAeLWDD32yUG8/T/DOlzvg59ynXqcP2/PwaaDF/DPX7sv2S6tbsDOkyUYHh/aatmJSwaMT4rA0YuV2HOmzG0xOcNgxyi43TmlKKx0bU3O6WL7G9/VN5ksRaeu9FmWvC65v7TlOIbH6zp9v/yKWvz+iyP44uAF8YNykf15zYlssK83etvREHR//mVknXcuIf/i4EX8xsmCf2om6SdcVlYWUlJSkJLS3Mr/ySefREpKCpYvXw4A+PLLL5GSkoJZs2YBAObMmYOUlBSsW7fOso233noLN998M+68805MmjQJ0dHR2LRpk/ufjAg6O3xRTGEiDBcWS60L5vA55kCXV0cVVLh3NAsAlBhsD9U2Xxn2Xtcoj7ma2hLa4vVnzxkVsTomt6czXYflMheWFJwpsnV1F3ZXsPeMX7UIc3TZMyyf7CPpmZ3Jkye324NkwYIFWLBgQbvb8PX1xZo1a9psTEhE8qdRy3OUEhEpg3yuXRARERG5AJMdN/uni6+5Xz9Zp6f6/ngxXvv2pKjbzC7Qi7q99rz6jbixe5IvswuRX1GLEkM9vjpUiBOX3HcJ0d7LSXVGE7Yec64YvaU9ObbroT78+Xy7E2Xuz6vA10cuOd2t21MZOrjU85/si/j1R/vdFI30quob7R5M4W6F+np8eagQZ0qqoK814uvDhch2cUG+mDx66LknajS5tlFVhgtHqLjTIxsPiL7Nlzvo1Comuc607g7nyqpRWlWPsEAt8sprcLa0GmMSw93y2AUV10ajeHup20x+zpVW45yIHyptNVM0CQLyK2yPkGkym/HjlSRJzpPCSunxT7OlDsFhPprOX5qVcw3TD6dKYDSZca60GsPidMgpqUZOSTWG2RgYIUc8s0Oy1JniUHt11W/PUqhqaEKNBAX35hY1gMG+bX+XMzkxX5loWoTQ5OIvQeR+3l6d/3iV89xpLQuzPbEgn8kOERERKRqTHSIiIlI01uxI5MUvj7m0A2xbnv/iqM3b7e1cPPX/fkBcmD/+PCcFSz7LbnddMZvYHci7Vgj39eFLGMXZfa3UGJtazVxvj0/25QOAS/ZnWbXt3j8dyS3tfJfnfx+4gNuGdTyD9Md78zCkRwgiAuU1XYwjnZd/9X6GCyKRj7U/nG1zmSAAC9bvc+njv7fnHDTqzp8PKKlqQKzOz9KEUA6yzlcgu0DfqieSIAj45mgRSg31mDkkBt0cfF+UGOrxzZFL6Bbsi5mDomU54S3P7Ejk7z+fl+RxO9sC/3pnS2vww6lS/NfOD9Zaozh1Gy0PHBcuu79pnydor7lbR31sMp3s9CqmChtTYtjD3oRBLlOjOCvPQ6ZZcIWL+jpUidC0rz3GJrNDx6+CNgrSpbTnTJnN44PRZEZOcRX0dY0458CXjKvOldVAX9eInOIqpz9jXIXJDjnE3WV0Lb8osP9c53nSLnM0VjkXd1LXIcOTGi4nh3r/jjDZIXKz9kYJERGR+HjUlbFL+jpFz41S32hGo0/nT3lePy+S3L/Rl1Y5VrtSa5Tufy/W5Ud3ajILaJD5HGDuJOZw9vIax17DnqLRZIa5ybOOtW31drqelMcROWGyI2Mrvj2J9/bk2v2i9kTlDkzomJV3GZ9l5uN/RsUDAO5a97PYYYnqcq1j/X32nisXORL7XLKzWF1uig312GbwzNjFZjYLSHfw9XO6uHWzxQXrM50NSbaMJjM+3ZePSi9f9IwIkDocu5wsMtj9RfjCZffWEJ0tqcGA2GC3PqY9eBlL5kqrGpiZ27ClxbQYUswy7qwHJiRKHQIpWIMLmnIqVU1DE+qbzDAJgsMjCN0tt8zxYmJX8GpRSKmvc2yAgasx2fFwrP/wTMtuHiB1CESy0DcqUOoQqAtgskNERESKxmSHXOp4oQGHL+hF32762XKYzALMMi9OllqjyYzcsmpZX9ZoMplR6oLLB52ZC80kCCi6rlbJkXoyuqb+SrF4VX0jdpwskTga8RSzLswj8RoIdcjLy/HGEXetSxcxkmuazAI+zypAkC9ni27P4QuVsm+i19as4M5q6mQi/Glmvkvi6Mou1xjxu88P4YdTpW2u42mToGYX6DGkR4jUYVAn8cwOdah/tPwq6wEgr6IWRfyWRSRb5TXGDs/qpPYOd1M04qmu56ART8NkhzqkceLMDnkOHy8eDsj9hsbppA6BugCHL2PV1NRg165dyM/Ph9FofW37scceczowIiIiIjE4lOwcPHgQM2fORG1tLWpqahAWFoaysjL4+/sjMjKSyY6D3vvxHGfzlrHsAr3UIXQJ7RUGN5rMOHyh0ul+KFLWMZ24ZEBDkxn9Y4Jc9hhymthVLjJzr+2T9T+dx+IpfeDrxPbOlLZuvuhJGk1mHMjTW/42mQWHjnHbjhehwAMmZ3bovPUTTzyB2bNn4/Lly/Dz88PevXuRl5eHESNG4I033hA7xi7jpzPlePv7HKnDoDb891ix1CF0eaeLqvBjTtvFrvaSqnlcZZ0R3x0rwg+nSpDvwlnL7/tgn8u27akW/v1aF+haownbTzg+Qqy+yYQsD08oz5RUIyP3WpftvPJa7Drd+ffWsUIDDJ0Y+SgVh5Kd7Oxs/O53v4NarYaXlxcaGhoQFxeHlStX4ve//73YMRLJQmiAuCO/enlIa3o5aTDJdwi9PYwtWgAYPfy5eLrqBsc/oBsV8L8zXteOQumvR4eSHW9vb6jVzXeNjIxEfn7zkM2QkBAUFBSIFx2Rgo1LipA6BKI2PTW9HyICtVKHQSQKh2p2UlJSkJmZiT59+uCGG27A8uXLUVZWho8++giDBg0SO0YiIiIihzl0ZufVV19FTEwMAOCVV15BaGgofvvb36K0tBTvvvuuqAF6OmOT2SOv7ZZVG/H7L45Icrr2gz25Ln+MLw5exK8/ysLxQoPLH0vpDPUdXw5oWRvww8lSbDte5MqQZEuJXZltzZLuak//67Ao2/lnZgEyHJgdftvxtuv3fj5bju9PKKO+70xJ5/+3+3IrcLq4CpW1jfj68CUcyL/sgsg6z6EzOyNHjrT8HhkZia1bt4oWkNIUGepc1iHW1TZm5OO2Yd3d/rjvuyHZ2XOmrM1lXmoVTJyGwmVOFDHBJHl4/b+n8ExDE+An7naPXpR313J7VTiYnH9z5BJGJIQip6QKOSVVGDYqWvKmflI/vuKZPbzmq0nhRWu29O7GwmFyjs6P05iQ59OoHW8o23IaEDl8dbT7zE5KSgpUKvue+IEDBxwOiIjI06md+JAgElt4gI8iL6F2ht3Jzm233ebCMIiIiIhcw+5k54UXXnBlHF3KTW/vdvi+d639GR8/OAa+3l4iRtR5YhUIknwovc+Gp/qOzSydlltWI3UINl3Sy2ciY32tuGd+Dl3Qi7o9Zzk8NxYAZGVl4cSJEwCAAQMGYMSIEaIEpXQni6ocvm9W3mWcLq7CkB468QJyM41ahSYWACMiwEfqEEjmzILy3yc9Qv3g5+2FukbXzST+89m2ByRIqbDSPdMsKP9V1DGHCpQvXLiAiRMnYvTo0Xj88cfx+OOPY9SoUZgwYQIuXLggdoykMJnPpUkdgixMHxQldQhEkgsL8MHe30/F/07rK3UokrKzJFYUXl2wpsyhZOfBBx9EY2MjTpw4gYqKClRUVODEiRMwm8148MEHxY6RFCaUZzSIqIUQP2+EBbBbM7mOQ5exdu3ahZ9//hn9+vWz3NavXz+sXr0aEydOFC04IqKrao0mno8nh9Q0NLW6rbrBdZfN7FVrNNn83dVMZgG1xtb7RMkcSnbi4uLQ2Ni6a6rJZEJsbKzTQREpGT+vHbP+J9c3m5Sbs6U1gKTzU3n+qzWvvAavfnOy1e1/3HIc3SSIp6X66+qU0h3o5uyojFzHO/tXesAs59dz6DLW66+/jsWLFyMrK8tyW1ZWFh5//HG88cYbogVHpETXzzZMJFf1jdav1SBfp8a0SEKK6SyUztHOylKyO9kJDQ1FWFgYwsLCsHDhQmRnZ2PMmDHQarXQarUYM2YMDhw4gPvvv9/uB9+9ezdmz56N2NhYqFQqbN682Wq5IAhYvnw5YmJi4Ofnh7S0NOTk5FitU1FRgblz5yI4OBg6nQ4PPPAAqqv54iZlmzc2AbE6kXvck0dbedcQAEBMiK9o21w8Jcny+/7n0/D7mf1F2zaRO9mdpr/99tuiP3hNTQ2GDh2K+++/H3fccUer5StXrsSqVavwj3/8A4mJiVi2bBmmT5+O48ePw9e3+Q09d+5cXLp0Cdu2bUNjYyMWLlyIhx9+GBs3bhQ9XiIiIvI8dic78+fPF/3BZ8yYgRkzZthcJggC3n77bTz//PO49dZbAQAffvghoqKisHnzZsyZMwcnTpzA1q1bkZmZaZmcdPXq1Zg5cybeeOMNxdYPGZvM2HmqBBAAQ33XKDI7W9q6KVjW+QpMHxgt+mNduNx+74sLl2vx85lr19ZLqxpEj4GU75yN17TSeNolWznWogiCYDVVkyAIHR6jxFBWbcRlkRoNFhnqESsIkHLAu9MXYOvr62E0Wu+Q4OBgZzeL3NxcFBUVIS3tWk+WkJAQjBkzBunp6ZgzZw7S09Oh0+msZmFPS0uDWq1GRkYGbr/9dpvbbmhoQEPDtQ8og8GzZmH+8/Yc/JgjzyZZrmJrFvLM85dd0km6vVERJrOAaW/tduvICVKms6XKv9z+0d7zUofg8YoM9YgJuXbJ+nRxtc3RZWIrNojX3fnrI5dwaw8tpOws5lCBck1NDR599FFERkYiICAAoaGhVj9iKCoqAgBERVnvnqioKMuyoqIiREZGWi3XaDQICwuzrGPLihUrEBISYvmJi4sTJWZ3EfNFeD0xr/e7gyv3hS2NJjMTHSI7mT3rxI4sXZ/YVLsh0XGFOomPmw4lO08//TR27NiBtWvXQqvV4r333sMf/vAHxMbG4sMPPxQ7RtEtXboUlZWVlp+CggKpQ5KN9QtHSR0CERGRqBy6jPXVV1/hww8/xOTJk7Fw4UJMnDgRSUlJSEhIwIYNGzB37lynA4uObq7FKC4uRkxMjOX24uJiDBs2zLJOSUmJ1f2amppQUVFhub8tV0eQERERkfI5dGanoqICvXr1AtBcn1NR0dycaMKECdi92/EZvVtKTExEdHQ0tm/fbrnNYDAgIyMDqampAIDU1FTo9Xrs37/fss6OHTtgNpsxZswYUeKQI3fOlPv6f09hx8mSjleUiDt7aBQbGrB6R07HKxJJqKGTRcEX9XXIyrvsklgEBTQllIvKukZ8c+QSfswplToUhy7lS1387VCy06tXL+TmNnczTU5Oxj//+U8AzWd8dDqd3duprq5GdnY2srOzATQXJWdnZyM/Px8qlQpLlizByy+/jC+//BJHjhzBfffdh9jYWNx2220AgP79++Omm27CQw89hH379uGnn37Co48+ijlz5ih2JBYAVLnxmu3BfH2rxmJd2ZqdZ0Xblo+X48XV3l4OvXWpC+hsw7c/f3/aRZEAZ0qUX4TtLt8fL8bp4iqpw3BYweVaSR/foSPmwoULcejQIQDAs88+izVr1sDX1xdPPPEEnnrqKbu3k5WVhZSUFKSkpAAAnnzySaSkpGD58uUAmmuDFi9ejIcffhijRo1CdXU1tm7daumxAwAbNmxAcnIypk6dipkzZ2LChAl49913HXla5Eb/uH+01CFILtjPG32jghy+L5EYXFnw6qnFtGIR80vJpUpxzuh31/lB5+/+yZh9JP6C5lDNzhNPPGH5PS0tDSdPnsT+/fuRlJSEIUOG2L2dyZMnQxDaPs2pUqnw0ksv4aWXXmpznbCwMDYQ9ECpvcKlDkEW4kL9sdfQuZ4ZCeEBLorGWniAD8o9sC08OaZvVKDHTq2w6Mbeop51FUuwr0Z27yGdvzdS4kOx5XCh1KG4lSgTnSQkJCAhIUGMTRERERGJyu5kZ9WqVXZv9LHHHnMoGCIich9jkxnfHGm7J5mzPPVMkdxknq9AE5sWOcXuZOett96yaz2VSsVkh8iFGkVqwR8V7Ov2poxEXYmfjxfg5KwgjSYBP53pWh3zXcHuZOfq6KvrXa25aTl3BxG5Tkq8zultzBwcg26BWvwj/bzT2yLxxYf5o/qiZ01jIxdTkpu76rfXMiPAxws1bujoG6h1vlLE3E5dqytN6tMN/j5e2HOmTBGF5g6XR7///vsYNGgQfH194evri0GDBuG9994TMzYiskFrYz6w8IDOja7oGxXkknnFqPNs/e8SI9xThK5Eo3qGYXRiWLvrdA/1a3c5AckxQUiOCUa/aMdGjMqNQ2nn8uXL8eabb2Lx4sWWBn/p6el44oknkJ+f3+7oKSIiIiJ3cijZWbt2Lf72t7/h3nvvtdx2yy23YMiQIVi8eDGTHaJ2dLbDLSmbmU2GXebfBy5g+sDWc20XidSzxh2O8nKmKBy6jNXY2IiRI0e2un3EiBFoavL8a3td1X2pbB/QFUR72Mz2Sid1G32pqFTNNS0xIc5fUorVXduGyWxGn8hAy996G/vXUO85n1MNTeLWFnXV7usOPet58+Zh7dq1rW5/9913RZkEtKsJ62S9hSv85obe+MMtA6UOQzLLbh7Q5rLRPcMwMiHUjdG4TkJ4AO4eESfKtsb1jhBlO9Q1ZT6XhvSlUxAiQjfwmwdbTw90Y79Ip7cppT6RQbjxSqG12EN/hvQIEXmLnsHuy1hPPvmk5XeVSoX33nsP//3vfzF27FgAQEZGBvLz83HfffeJH6XCRQT6dHo+G7HFh/l36RF1Xu089VidL0qqGtwXjAsF+2rgpRbn/xygbV3gHOzrDUN91zxTQZ0TEaiVOgTZ8vZSIcBHlJ6/dIXde/PgwYNWf48YMQIAcPZsc4vuiIgIRERE4NixYyKG59kMdY2oa3T98EYiIrLN0EUvE5I1u5OdnTt3ujIORfo0Mx9hhZVSh0FdAGtciWx7+esTUodAMtA1K5Xc5PAF+SQ6kUHuPWU8IiEUQSI01HKUVtO1XtqhEsxiHB3sC52/D4J9r9VcxLD4GQCgUXet1x+R3PEd6ULzxspndNOWxRPc+nj//u04eLVXCONC51+bhf8ZJU4Rblt2/O4GUToZi6VXN/c3ofPz8cKCcT0xr8UovkBfDW7o203Ux/ESuZZsVM/2G86JYWhc1ywCJfsEtfiC8IsBrYfGu5MrBsjIsUCcyQ4REREpGpMdIiIimSqXeKSuUjDZ6SLUIg03todfF5lzqdGk7E7IjrYiUHfhFgZEYhC7q7amxfG/q7YYYbKjAON6h2Nyv254flZ/jE8KR1xY646k7uxp8facYW57rOu9dsfgDtcZ3N12PcWLs9tuLGhL3yhlTJB3vYTwAPTuFuhwHZAz9UNSFFpfT4wmd2Rbd50fJvaJwMu3DZI6FFmLD/MXbTu9IgKQ1j8KSZGBGNJDB10XfX0z2XGTsb3C0cNFM+0uujEJf184Gg9O7IUND45FWn/bBW+3Dou1ebuYlt88ANMHRjt8f2dPQM0ZHd/hOjMHx+DZGcmtbl8wPhH32nH/q37Rxn72dDf0jcDsobGtmpp5e6nhb0ejsyBfb4xMcKwIeGRP6TtVy21E2et3DZE6hA5FBNqXpA6NC8FHD4zBrzoxeMPWrPBKFxUszpfT8UkRuGVYd0QG++LmIbGYkhzp9jM7cpmeQh5REBEREbkIkx0iIiJSNCY7MtBkcm3/26ungc+X17r0ceTELLCnMNmm9MJyOTtTUt3p+/jbmIONXE+sOfTkgsmODJhc+MF8//hEfLBgFACgupMTNCZGuL9RnVhuT+kudQgAgHtG9sBSG/VBBAyPl6Y+p0nsoS526hnuvvdTQrg/Hp/aB+t+NbzThfdim9OiwWd1fVOn7tu7WwBGOVj/JTfJ0Z4zoGHGoBhoNa2TTE96DtdjsqNwz8zoh6FxOofu+9vJvcUNxo0ig6QvMh3aIwQr7xqKX9/g+H50RXdTuRidqIwPMXuF21nEKwadnzee+EVf3DQoBgvGJ7rtcW35/az+Dt/3oYm93No2w5XiRBph5Q792khqPOk5XI/JDhERESkakx0iIiJSNCY7RCQJjUQTxdqjVwf1anKf1byitvNTDHQLcl/j0a6iZV+qtnpUtdVxPoCF2aKS9zuWqIWoYK1HF8iRNY1aDR8XNBxL6hbo9DamddAY01/rhXtHx+P2lO4Y1EZHbik9NLFXp9Yf1D1YsU0yxTQsToebBlm/Nsa0U3s2tlc4Zg6OwR0pPdpsKhug1WBc74hWt0cH+6JPpP3Hu1+OjodvF5mqxxFMdshjeKlUmNS3m0P37Rvl/Acgic8VRbs9HCiivL5Lrz0fGlHBvkgID0Cwb+fb7wdqO+5E7YzOTrsxuW+kxww17hkuXZGsv48GydHBSIq8djwJaOd/6aNRo29UEOLD/dHe3rXVMVmlUqGHjal/bN/fF5HB0g/KkDMmO0RERKRoTHbcqItONuvxjGxCR0QKJVXfKXdjsuNCcWF+lknXkiIDcfeIuA7u4V4+Xmro/JtPwffpYpd5OtNhOae4811fxRLkwCUS6jxbl3Cu1kt0dnZ7FZr7PDlyeQsA/H284KvhoZmcmwRVo1a3+RoMC7h2u6Guc81mPZVrLxx3cbE6f8weEoOGJjMCpyQBMTH4ZF8+LlXWSx0aAMDXW409z0xBrbFJFk34qLW+UYHIK6+ROgzZ667zw0V9nUP37RHqh0YbU7bMHBwNQ11z4ejp4iq7trVwXCK8NSr4+2hwX2oC3tl5plOxTEmORHJ0MEoKS20uf3xqH/x5e06ntkmeq0eo4/VJD05MbLP2LCyg642849cHF/PReCHI1xsqlQoqlQpxTrx4XSFQq2GiQx7Px4kzIV5tDCNXqVQI8fdGu5Wl19F6qy1DjDVeanh3crRZgFbT7nNxZxdm8mwcmWWNyQ4REREpGpOdLoSZPjmjM7OFC3Bv0aOK1f9Ocdf/y9eHxyCSBpOdLuQ3N/RGiF/7RZOJEQEY3D0EPUL9MKpn5yZqjA72RWrvcGdCdJlhDk6G2tWE+vsgxM/5SyVRHfT86OxrqyODu4fAz9sLA2Pl1+CvIxGBWoQHaKHz80a0RL1SUuIcn4E+MSIAQ3voWt0eGaTFjf26IUirwW8nNx97Fk9JanM7cp4YNiE8AAE+GiRI0OPHE1/TciT7ZKeqqgpLlixBQkIC/Pz8MG7cOGRmZlqWC4KA5cuXIyYmBn5+fkhLS0NODgv4bJk9NBaHXpjW7jpajRe+WjwBe56ZYtXx01bTq5YGxARj7++non9MsCixiumPtw1yeSt8MZsW/mKAOJ1s545JwJK0vkizozPuhKQILEnri/njeorSXK6tbrFXjU9q3THWGYkRAfj1Db1F23fu5KNRYV5qAhaMT2y3QZ0rjXIw0fj1Db2w838nt6olGhgbjH3PpWH9wtFQqVR45qZkHHphGm5P6dHmtpIiA/HwpM51fnaX21O646FJvTpM4l3hFwOiEKuzr7kgtU32yc6DDz6Ibdu24aOPPsKRI0cwbdo0pKWl4eLFiwCAlStXYtWqVVi3bh0yMjIQEBCA6dOno75eHiOeiIiISFqyTnbq6urw73//GytXrsSkSZOQlJSEF198EUlJSVi7di0EQcDbb7+N559/HrfeeiuGDBmCDz/8EIWFhdi8ebPU4RO5lgS9wIRO9CciIpILWSc7TU1NMJlM8PW1PnXo5+eHPXv2IDc3F0VFRUhLS7MsCwkJwZgxY5Cent7mdhsaGmAwGKx+pNTWrLeuFhMiv1Oj4YHu6f+gaeNSTWVd52eLlkpx1bWzl+6a16iu0WT5XS2TomAx4jB1kS6yrnL9Mawzxewd8VdgUXPLt6tM3kaKJ+tkJygoCKmpqfjjH/+IwsJCmEwmfPzxx0hPT8elS5dQVFQEAIiKsr5OHxUVZVlmy4oVKxASEmL5iYuTrrPx1ORIvHH3UMwaHIO0/pFuecw/zxmG8UnheOGWAU5t5/czk0WKCLh5SAzuHtEDf503QrRttmfm4Bibt1fUeE6y0/IDum9kEIbYKBJ1JTmM7osL88eMQe3PUG6PUCc61XqClXcNwQAX1tPNS02wKq7uFSFeDdt9qQmIdHHNnbvFhfmjT1QQBsaGIMJNX/C6OlknOwDw0UcfQRAEdO/eHVqtFqtWrcK9994LdRuNwOyxdOlSVFZWWn4KCgpEjNh+Nw2MxvsLRmFQ9xCsmTscr94x2C2Pe+uw7tjw4FiM6+14kWha/yg8PKm3aDG988vheP3uoRgeHwqfTjZic0SPUH/cPz7R5Y/jLmq1ClOSI3GTCB/89ugmkwP0ncN7oE8np3OwJambsqdLuWdkHD5+cIzLtp8UGYT1C0dZ/hbzdZgUGYS/Lxwt2vbkwMdLjVmDY/CLAVGyOUOqdLJPdnr37o1du3ahuroaBQUF2LdvHxobG9GrVy9ERze/oYqLi63uU1xcbFlmi1arRXBwsNUPERERKZPsk52rAgICEBMTg8uXL+O7777DrbfeisTERERHR2P79u2W9QwGAzIyMpCamiphtERERCQXsp8I9LvvvoMgCOjXrx/OnDmDp556CsnJyVi4cCFUKhWWLFmCl19+GX369EFiYiKWLVuG2NhY3HbbbVKH3mlajfQ1EGIaEBOMn8+WSx2GKGoamjp9n4TwgA7X0Xh1/hS2twP3saVlUXNn53DqzLblxl+EWiNnZqO+nq2ZqTUt/h/29t4J8JH94dxlvDXXXm+BNvZXkK8GVfWdfw/LRYifNwodnOiWmsn+zE5lZSUWLVqE5ORk3HfffZgwYQK+++47eHs3HyCefvppLF68GA8//DBGjRqF6upqbN26tdUILk8Q4ueNP88ZJnUYonnl9sH4zQ3WdT0fLBgpUTSt3ZYSa/e6Nw+xf10AGNojBM/M6LiAO8jXGxOSIqDz7/jD09/HC5P6dhOty66PRo0Zg2Iwtlc4kmOcr3tpSavxwoxBtovApTYsXuf0Nib3dX4wwR3De2BUzzCbXcejgrQY0kOHJ9L6YkgP6w66H94/GncM7467RvTA+oWj8MxNyXj19sGSdPeVC38fDdb8cjiWpPXB7cNbNy78x/2eXfMzrnc4RvUMw502nhvZR/ZfBe655x7cc889bS5XqVR46aWX8NJLL7kxKte5dVh3PP5pttRhiCIxIgDPzkjGul1nAQC9IgIwJVk+HW4701U5qZMdkp+anozudnY9HRATDHOAGd+fKG53vZT4UAyPd7ytvy39osVNcq7f9rdHL7ls+46IDPK1zErujBD/9qddsUd8mD/iw2wnKCqVCn2jgtB3TDwKrytgndS3Gyb17Wb5+8Z+zYnX0YuVTsfkyWYNiQHQnGCbr2slMDw+FA9OSMR7e3IliMx5Qb7eoncd72pkf2aHiIiIyBlMdoiIiDyYsUm8Jo5KxWTHzfR2dOidmuye5oKd4eqJNMWgxE6rShcdbH2pT4xLTPZwppGbPYXnYgryvbZP3NnfKMyDGy3KsXWNWqWy9NQJ9rO+DOrIBLAtm3pernW8Gaor+vwEaOV3LGay42YPTux4Vt837xmGNb8c7oZo7JcSJ26tiBgen9rH8vtjU5LwzWMTJYyGHDEuKRyzBsfgpkHRuGtED7d9mN+e0t2h+8WFitOxuTOCfL3xzWMTsX7hKEwb6L7HvnVY54ry5USlUqG/CztGO0KtVuFXYxMwe2gsBne3LjqPCNRiYGzn4rU16swR/j5euHd0fKfvZ+szYcagGNw2rDt6ybBJJ5MdN9P5dVzYGOLvfaXYrtnYXmGuDMkucvym1D302lmBaQOj0TPCvd+4yXneXmr0iQpCcnQweoS6bzSRI9+kAaBPVKAk02QMiA3Gjf0i3TqkX+NEl3o5SIyQ3+i0sAAf9O4WaPP/2F0nXbxRDozwjAhqfeavW5AWPSMCZNkV2rNfzUREREQdYLJDRNSCq2ZAF1psttqBJpVEHZHf+RT5YLJDbdKoVeh15dLQyJ7SX0pLvu4afO9ugVCrAD9vL/QIta+njbv0vO4U+tA4nd33DfHzhpdaBZVKhdB2mg1eve4/6Lrr/57M10ctapFyXzsnCW1ZjFvuopnva40ml2z3qh6hfvDz9oJa1fzeuF6Qr8bphpR9Il1bizGsE+8TZ7QsE+jI9U0d5ezqMcHW//96V2emHxjrOc/PGbJvKkjSUalU+ObxiaioMSJW54fHPjkoSRybHhmHYF8NEiMC8aetJy23D4gJRuZzafDWqG223JfK8psHtKo/+ddvUjH59R9w0Y6W7wE+Gjw0sZfVmQBbpiRHYmRCGIL9lPM21qjVWDi+J05eqsL2k+03WbTHhD4RGN87Aut/br+ZnCeMNuyIzt8HGc9NRWOTGeE2Cr29vdTY+b+TseVwIZ7612GHHmNkzzDsemoybnj9ByejtW3m4BhsfGgMfvm3DJds/6rX7xqCiAAffLOtos11UuJCMSxO51Hvr9Te4RgYG4IgO2K+eWgMquqbEOzrOc/PGV3jWZLDfL29EGtnJ2BX8ffxQlKk7W/otg7qUtPZ6K7r7aVG91A/u5Id4Nqw0rp2zgaoVCpROvnKjbeXWrShqyoAwQrcR23pKOn38/FyqBi1JVcnhjEhrj/eqFUqxLXRvdpCJU6nbHfqzDFBrVIhxI4BM0rBy1hERESkaEx2SBRab76UPEGTyTXFt66klvEM6qRcXfVV5+2lzGO5Mp9VF5EYEYDe3QIwSMICs/vHJ0Ln742H7GiWqCRxYf5IiQ9FQrg/+scEo4+dhbCuFhPih2A/b0QGaREa0HyKuuVlSGdGAQ3toXM2PIcM6REiSW8bpbq+oZ3cxIX6YXi8Dt11fhid2HpgxI3JkaJfShsep4NWo8b4pAj07hYIfx8Nkuwsxu4R6ocgkRr8SWlc7whoNWpM7KPMCUc9/z/UhW1/8gbJv/Uunz0Ay2cPkDQGd/vkobHw9lIjOsQXu566EQDwv58fkjiqZiF+3rh/fKLVbWK0/b9/fCKC/bxx6ILe4W30igjAubKazt+vWyAm9umGt78/bXW7K2dsV7LQAB+8cfdQ2bxmr6fxUmPTI+PbXD4sTocXZg/E6Fe+R0lVgyiPOSA2GCMHO9YlPixAiwdafNm7/nXqKUYnhtlMLpWCZ3aIiIhI0ZjsEBERkaIx2SG3cWamaWe17Flj7qiBjYK5u5A86MpQaFUn58ppuX5bV2rbKqRsub475uhp+XgynBLIYUp6Lu7kdWXHiTVRp6fz0cgjzZBHFKRoK+8cgglJEXhmRj/JYkgbEGX5XeiCyc7kfpGID/PHaDd3wp7aPxJxYf6Y2cmZwnuE+qFvVBD6xwQjMqh1X5iE8ACktNFtt1e3QPTqFojh8aEOT/jZGX2igpAYEYDRPcOg1SijkPre0XGKHZXjajMGRyMuzB9p/aM6XlnBJvXthoTwAIyId6wWSmxMPcnl7hkVh3tGxUkaQ+8I17a5l7thcTq3teJvqWd4AHqGN085cuKSwe77eXupMXNw2y39b0/p3uayQK0GtwyNtT9IJ4X4eePWYW3H44kW3ZgkdQgeKykyqM0mqF3J8PhQDI8PRX5FrdShAOCZHSIiIlI4JjtERESkaEx2PETP8A7mcaF2eWuuVVteLRz0bVFf4X/ltusn8LRXYYs5r8SctdurRfWrj5trKFrWbGi8pK9WDb4yj083Gc6H1pbIK83v/GTWFNHfR17xuIKtWq+WWr5Ppe5XphTeMjhOtIU1Ox7iL3NH4MtDhZjUNwJ7z5ZjaJyOb9BO8PfRYM0vhyOnpAq3D+8BoLm52tv/MwwFFbWW+pDfTeuLqGAtxveOwC/fs3/m5ZoWnYkn9+smWtw+mubalYoao9ub6CVFBqK6IRxBvt6iJnCOunlIDE4XVaN/jOfUQ6T1j8KxQgOSIgORXaCXOhyLKcmR0GrUaGgySx2KyzxyY28EajUY2dN2gezsoTGozeuF0fnhVl98qPPCA3wwPD7UMvpSjqQ/gpFdBsQGY0BsMIDmtt7UebOGxACwLnq97bpC15gQPzw1PdmpxxF7aoO+Ek1F4aNRY3RiuCSPbUtkkG+H39blJjTABxOutt8vkDaWlny9vfDI5CS85aHdfu0RGeSL/53e9gjQIF9vPDixF/ANz5o7a1TPMCTHBEsdRrt4GYuIiIgUjckOERERKRqTHbJbPxEvp3ipVZYiydgQ60sTaQMind7+1WJWwLMKWpUsQqbFutS2lrOLu6NBI3Us5MqxLVbnJ2kcLd/H/h7w2pB/hCQbHz4wGmNe3S7KtrzUKmxZPAHZBXqMuq6r72t3DoGxScD3J4od3n6Inze+fmwCSqsaMLGPeAXD5LjRPcMQGeRr9QFK8nbL0Fjo/L3RXecvei0aOeauET1QVFmPnhEBOHxBL1kcAVoN5oyKh7HJjLhQaRMvezDZIbtFBYtbHHq1rf/1gn29MWtItFPJDgAMjA1x6v4kLo2XGkmRXbuTtafReKkxJblrT3sgN0G+3rIZ9RQd4jkDBngZi4iIiBSNyQ4REREpGpMdN+vVLdDSFddVTeKGX5llNjEiAN5q/osdNfFKf5TbhytrkkfqHH8fL0u9SliAj8TRuE6fKwMQwgJ8EMGi/nYlXJncNrIL1J9FXylfCPHzhsaDP09Ys+NmSZGByHwuDVX1jYgPc00zq9lDYzGyZyhC/X3YZdkJ6xeMwqXKesSF+WPnqRKpwyGJeHupcf/4RDSazIoekTS2Vzj2PTcVAT4aFiN3YHD3ECSE+yNABp3FXa1PVBAeCPGFn7cXzpXVSB2Ow5T/n5KhsAAfl39DjAmRf3W83Gm81IhzUUJKnsVHo4aPxnO/1drL0zpUSylYJkXC7iCXgmhnKP/dS0RERF0akx0P4O3m2a6JHKWCvC+bevGyLlGXxE9RGZs7Jh6h/t6Yn9pT6lCI2qRRq9ArIhD+Phr06hYgdTg2DYvTwdfbCyMSdFKHAuDaIAIl6dUtAIO7hyAuzA8jEpT3/MizyTrZMZlMWLZsGRITE+Hn54fevXvjj3/8IwRBsKwjCAKWL1+OmJgY+Pn5IS0tDTk5ORJGLZ5Xbh+Mg8unIW0Am3qRfKlUKtwyLBYPT+oleQv7tkzuF4nf3NAbSZHSzCB/vUl9ldfVW6vxwleLJ+DHp6ew1o1kR9bJzp/+9CesXbsW77zzDk6cOIE//elPWLlyJVavXm1ZZ+XKlVi1ahXWrVuHjIwMBAQEYPr06aivr5cwciIiIpILWY/G+vnnn3Hrrbdi1qxZAICePXvik08+wb59+wA0n9V5++238fzzz+PWW28FAHz44YeIiorC5s2bMWfOHMliJyIiomaG+kY0mcySJR2yPrMzbtw4bN++HadPnwYAHDp0CHv27MGMGTMAALm5uSgqKkJaWprlPiEhIRgzZgzS09Pb3G5DQwMMBoPVD8mLV4vmVRoZFJW2jEHjJX08UvPzUW4fFn8XPTdvvm5EJfZcfVJreZhTq5TzWmn5vIxNZsnikPWZnWeffRYGgwHJycnw8vKCyWTCK6+8grlz5wIAioqKAABRUdY1LVFRUZZltqxYsQJ/+MMfXBc4OW1SnwjMHBwNnb8PekVIP3nkyIQw3DI0Fhq1CkN76KQORzJT+0chp7gKqb3DpQ5FdGn9o3C6uApje7nmuQ2L08FQ3+QRM0R7gudn9cfqHWdwh0I6nCeEByApMhD+Pl7Q+Xt+X5urokN80adbIFDeAJWESZysk51//vOf2LBhAzZu3IiBAwciOzsbS5YsQWxsLObPn+/wdpcuXYonn3zS8rfBYEBcXJwYIZNIdP4++MvcEVKHYeHn44VV96ZIHYbkBncPweDuypxNflD3EAxy4XMLD9Ti9hRlfDDLwZhe4RjjosRUCn4+Xrh5SKzUYYhOo1bjxuRIoNwLkPCMsKyTnaeeegrPPvuspfZm8ODByMvLw4oVKzB//nxER0cDAIqLixETE2O5X3FxMYYNG9bmdrVaLbRa5c9pQkRERDKv2amtrYX6uonHvLy8YDY3X/dLTExEdHQ0tm/fblluMBiQkZGB1NRUt8ZKRERE8iTrMzuzZ8/GK6+8gvj4eAwcOBAHDx7Em2++ifvvvx9Ac3+PJUuW4OWXX0afPn2QmJiIZcuWITY2Frfddpu0wRNdJy7UH/tyK6QOg64T5Cvrw6DstOxCHeKnnNoST9QtUIvS6gb+H+wg63f56tWrsWzZMjzyyCMoKSlBbGwsfv3rX2P58uWWdZ5++mnU1NTg4Ycfhl6vx4QJE7B161b4+iqrUp883/9O74voEC3G946QOhQCcHtKd1y4XIehcTqpQ/EoWo0X1v1qOE5cqsIvR8dLHU6XdtOgaJy4VIW+0dIP4pA7WSc7QUFBePvtt/H222+3uY5KpcJLL72El156yX2BETkgJsQPT01PljoMuiIhPAAJ4fKc3kLubhoUg5sGxXS8IrlUeKAWE/qw/tQesq7ZISIiInIWkx0iIiJSNCY71CmhV5pdDYiRx4SKREREHZF1zQ7Jz5ePTsCxQgMm91PerM1ERKRMTHaoU+LC/BEX5i91GERERHbjZSwiIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHPIqq41Uk4aPhW4mISK54hCaPMm1gFCICtfjFgCj4esvn5fvAhETo/L2xYFxPqUMhInKJmBBfhPh5o1ugFuEBPlKH0ylsKkgeZURCGLKeT5M6jFY4CzQRKV2QrzcWjk+UOgyHyOerMREREZELMNkhIiIiRWOyQyQDapXK5u9EROQ81uwQyUDPCH8kdQtEgFaDYD++LYmIxMSjKpEM+PtocPPQWKnDICJSJF7GIiIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKJvtkp2fPnlCpVK1+Fi1aBACor6/HokWLEB4ejsDAQNx5550oLi6WOGoiIiKSC9knO5mZmbh06ZLlZ9u2bQCAu+++GwDwxBNP4KuvvsLnn3+OXbt2obCwEHfccYeUIRMREZGMaKQOoCPdunWz+vu1115D7969ccMNN6CyshLvv/8+Nm7ciClTpgAA1q9fj/79+2Pv3r0YO3asFCETERGRjMj+zE5LRqMRH3/8Me6//36oVCrs378fjY2NSEtLs6yTnJyM+Ph4pKent7mdhoYGGAwGqx8iIlIuH821jzuVSsJASBKyP7PT0ubNm6HX67FgwQIAQFFREXx8fKDT6azWi4qKQlFRUZvbWbFiBf7whz+4MFIiIpKTu0fG4WRRFYbF6aDVeEkdDrmZR53Zef/99zFjxgzExsY6tZ2lS5eisrLS8lNQUCBShEREJEeJEQH4YMEoPDa1j9ShkAQ85sxOXl4evv/+e2zatMlyW3R0NIxGI/R6vdXZneLiYkRHR7e5La1WC61W68pwiYiISCY85szO+vXrERkZiVmzZlluGzFiBLy9vbF9+3bLbadOnUJ+fj5SU1OlCJOIiIhkxiPO7JjNZqxfvx7z58+HRnMt5JCQEDzwwAN48sknERYWhuDgYCxevBipqakciUVEREQAPCTZ+f7775Gfn4/777+/1bK33noLarUad955JxoaGjB9+nT85S9/kSBKIiIikiOPSHamTZsGQRBsLvP19cWaNWuwZs0aN0dFREREnsBjanaIiIiIHMFkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEi6oIGxAYDALrr/BDgw1nASdk8oqkgERGJ6xcDorB36VSE+HlD48XvvaRsTHaIiLqo6BBfqUMgcgum80RERKRoTHaIiIhI0XgZi4iIZK1XtwAM6h6MyrpGjEgIlToc8kBMdoiISNZ8vb2wZfFEqcMgD8bLWERERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBRNI3UAciAIAgDAYDCIul1VVRW0RiMAoKGqCkJAgKjbJ89meX3o9RCuvE6IAEBVWwsYjTxuuBjfg+7hytfz1c/tq5/jbcYgdLRGF3DhwgXExcVJHQYRERE5oKCgAD169GhzOZMdAGazGYWFhQgKCoJKpRJ12waDAXFxcSgoKEBwcLCo26ZruJ/dg/vZPbif3YP72T1cuZ8FQUBVVRViY2OhVrddmcPLWADUanW7GaEYgoOD+WZyA+5n9+B+dg/uZ/fgfnYPV+3nkJCQDtdhgTIREREpGpMdIiIiUjQmOy6m1WrxwgsvQKvVSh2KonE/uwf3s3twP7sH97N7yGE/s0CZiIiIFI1ndoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmTHhdasWYOePXvC19cXY8aMwb59+6QOyaOsWLECo0aNQlBQECIjI3Hbbbfh1KlTVuvU19dj0aJFCA8PR2BgIO68804UFxdbrZOfn49Zs2bB398fkZGReOqpp9DU1OTOp+IxXnvtNahUKixZssRyG/exeC5evIhf/epXCA8Ph5+fHwYPHoysrCzLckEQsHz5csTExMDPzw9paWnIycmx2kZFRQXmzp2L4OBg6HQ6PPDAA6iurnb3U5Etk8mEZcuWITExEX5+fujduzf++Mc/Ws2dxP3cebt378bs2bMRGxsLlUqFzZs3Wy0Xa58ePnwYEydOhK+vL+Li4rBy5UpxnoBALvHpp58KPj4+wgcffCAcO3ZMeOihhwSdTicUFxdLHZrHmD59urB+/Xrh6NGjQnZ2tjBz5kwhPj5eqK6utqzzm9/8RoiLixO2b98uZGVlCWPHjhXGjRtnWd7U1CQMGjRISEtLEw4ePCh88803QkREhLB06VIpnpKs7du3T+jZs6cwZMgQ4fHHH7fczn0sjoqKCiEhIUFYsGCBkJGRIZw7d0747rvvhDNnzljWee2114SQkBBh8+bNwqFDh4RbbrlFSExMFOrq6izr3HTTTcLQoUOFvXv3Cj/++KOQlJQk3HvvvVI8JVl65ZVXhPDwcGHLli1Cbm6u8PnnnwuBgYHCn//8Z8s63M+d98033wjPPfecsGnTJgGA8MUXX1gtF2OfVlZWClFRUcLcuXOFo0ePCp988ong5+cn/PWvf3U6fiY7LjJ69Ghh0aJFlr9NJpMQGxsrrFixQsKoPFtJSYkAQNi1a5cgCIKg1+sFb29v4fPPP7esc+LECQGAkJ6eLghC8xtUrVYLRUVFlnXWrl0rBAcHCw0NDe59AjJWVVUl9OnTR9i2bZtwww03WJId7mPxPPPMM8KECRPaXG42m4Xo6Gjh9ddft9ym1+sFrVYrfPLJJ4IgCMLx48cFAEJmZqZlnW+//VZQqVTCxYsXXRe8B5k1a5Zw//33W912xx13CHPnzhUEgftZDNcnO2Lt07/85S9CaGio1XHjmWeeEfr16+d0zLyM5QJGoxH79+9HWlqa5Ta1Wo20tDSkp6dLGJlnq6ysBACEhYUBAPbv34/Gxkar/ZycnIz4+HjLfk5PT8fgwYMRFRVlWWf69OkwGAw4duyYG6OXt0WLFmHWrFlW+xLgPhbTl19+iZEjR+Luu+9GZGQkUlJS8Le//c2yPDc3F0VFRVb7OiQkBGPGjLHa1zqdDiNHjrSsk5aWBrVajYyMDPc9GRkbN24ctm/fjtOnTwMADh06hD179mDGjBkAuJ9dQax9mp6ejkmTJsHHx8eyzvTp03Hq1ClcvnzZqRg5EagLlJWVwWQyWR38ASAqKgonT56UKCrPZjabsWTJEowfPx6DBg0CABQVFcHHxwc6nc5q3aioKBQVFVnWsfV/uLqMgE8//RQHDhxAZmZmq2Xcx+I5d+4c1q5diyeffBK///3vkZmZicceeww+Pj6YP3++ZV/Z2pct93VkZKTVco1Gg7CwMO7rK5599lkYDAYkJyfDy8sLJpMJr7zyCubOnQsA3M8uINY+LSoqQmJiYqttXF0WGhrqcIxMdsgjLFq0CEePHsWePXukDkVRCgoK8Pjjj2Pbtm3w9fWVOhxFM5vNGDlyJF599VUAQEpKCo4ePYp169Zh/vz5EkenHP/85z+xYcMGbNy4EQMHDkR2djaWLFmC2NhY7ucujJexXCAiIgJeXl6tRqwUFxcjOjpaoqg816OPPootW7Zg586d6NGjh+X26OhoGI1G6PV6q/Vb7ufo6Gib/4ery7q6/fv3o6SkBMOHD4dGo4FGo8GuXbuwatUqaDQaREVFcR+LJCYmBgMGDLC6rX///sjPzwdwbV+1d9yIjo5GSUmJ1fKmpiZUVFRwX1/x1FNP4dlnn8WcOXMwePBgzJs3D0888QRWrFgBgPvZFcTap648ljDZcQEfHx+MGDEC27dvt9xmNpuxfft2pKamShiZZxEEAY8++ii++OIL7Nixo9XpzREjRsDb29tqP586dQr5+fmW/ZyamoojR45Yvcm2bduG4ODgVh88XdHUqVNx5MgRZGdnW35GjhyJuXPnWn7nPhbH+PHjW7VOOH36NBISEgAAiYmJiI6OttrXBoMBGRkZVvtar9dj//79lnV27NgBs9mMMWPGuOFZyF9tbS3UauuPNi8vL5jNZgDcz64g1j5NTU3F7t270djYaFln27Zt6Nevn1OXsABw6LmrfPrpp4JWqxX+/ve/C8ePHxcefvhhQafTWY1Yofb99re/FUJCQoQffvhBuHTpkuWntrbWss5vfvMbIT4+XtixY4eQlZUlpKamCqmpqZblV4dFT5s2TcjOzha2bt0qdOvWjcOi29FyNJYgcB+LZd++fYJGoxFeeeUVIScnR9iwYYPg7+8vfPzxx5Z1XnvtNUGn0wn/+c9/hMOHDwu33nqrzeG7KSkpQkZGhrBnzx6hT58+XXpI9PXmz58vdO/e3TL0fNOmTUJERITw9NNPW9bhfu68qqoq4eDBg8LBgwcFAMKbb74pHDx4UMjLyxMEQZx9qtfrhaioKGHevHnC0aNHhU8//VTw9/fn0HO5W716tRAfHy/4+PgIo0ePFvbu3St1SB4FgM2f9evXW9apq6sTHnnkESE0NFTw9/cXbr/9duHSpUtW2zl//rwwY8YMwc/PT4iIiBB+97vfCY2NjW5+Np7j+mSH+1g8X331lTBo0CBBq9UKycnJwrvvvmu13Gw2C8uWLROioqIErVYrTJ06VTh16pTVOuXl5cK9994rBAYGCsHBwcLChQuFqqoqdz4NWTMYDMLjjz8uxMfHC76+vkKvXr2E5557zmo4M/dz5+3cudPm8Xj+/PmCIIi3Tw8dOiRMmDBB0Gq1Qvfu3YXXXntNlPhVgtCirSQRERGRwrBmh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4hkacGCBbjtttske/x58+ZZZijvyJw5c/B///d/Lo6IiBzFDspE5HYqlard5S+88AKeeOIJCIIAnU7nnqBaOHToEKZMmYK8vDwEBgZ2uP7Ro0cxadIk5ObmIiQkxA0RElFnMNkhIrcrKiqy/P7ZZ59h+fLlVjOCBwYG2pVkuMqDDz4IjUaDdevW2X2fUaNGYcGCBVi0aJELIyMiR/AyFhG5XXR0tOUnJCQEKpXK6rbAwMBWl7EmT56MxYsXY8mSJQgNDUVUVBT+9re/oaamBgsXLkRQUBCSkpLw7bffWj3W0aNHMWPGDAQGBiIqKgrz5s1DWVlZm7GZTCb861//wuzZs61u/8tf/oI+ffrA19cXUVFRuOuuu6yWz549G59++qnzO4eIRMdkh4g8xj/+8Q9ERERg3759WLx4MX7729/i7rvvxrhx43DgwAFMmzYN8+bNQ21tLQBAr9djypQpSElJQVZWFrZu3Yri4mLcc889bT7G4cOHUVlZiZEjR1puy8rKwmOPPYaXXnoJp06dwtatWzFp0iSr+40ePRr79u1DQ0ODa548ETmMyQ4ReYyhQ4fi+eefR58+fbB06VL4+voiIiICDz30EPr06YPly5ejvLwchw8fBgC88847SElJwauvvork5GSkpKTggw8+wM6dO3H69Gmbj5GXlwcvLy9ERkZabsvPz0dAQABuvvlmJCQkICUlBY899pjV/WJjY2E0Gq0u0RGRPDDZISKPMWTIEMvvXl5eCA8Px+DBgy23RUVFAQBKSkoANBca79y501IDFBgYiOTkZADA2bNnbT5GXV0dtFqtVRH1L37xCyQkJKBXr16YN28eNmzYYDl7dJWfnx8AtLqdiKTHZIeIPIa3t7fV3yqVyuq2qwmK2WwGAFRXV2P27NnIzs62+snJyWl1GeqqiIgI1NbWwmg0Wm4LCgrCgQMH8MknnyAmJgbLly/H0KFDodfrLetUVFQAALp16ybKcyUi8TDZISLFGj58OI4dO4aePXsiKSnJ6icgIMDmfYYNGwYAOH78uNXtGo0GaWlpWLlyJQ4fPozz589jx44dluVHjx5Fjx49EBER4bLnQ0SOYbJDRIq1aNEiVFRU4N5770VmZibOnj2L7777DgsXLoTJZLJ5n27dumH48OHYs2eP5bYtW7Zg1apVyM7ORl5eHj788EOYzWb069fPss6PP/6IadOmufw5EVHnMdkhIsWKjY3FTz/9BJPJhGnTpmHw4MFYsmQJdDod1Oq2D38PPvggNmzYYPlbp9Nh06ZNmDJlCvr3749169bhk08+wcCBAwEA9fX12Lx5Mx566CGXPyci6jw2FSQiuk5dXR369euHzz77DKmpqR2uv3btWnzxxRf473//64boiKizeGaHiOg6fn5++PDDD9ttPtiSt7c3Vq9e7eKoiMhRPLNDREREisYzO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRo/w9sSMJMvJrh2AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.gti = np.asarray([[1, 300], [600, 800]])\n", + "ts.plot(\"blabla\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If a given array attr has an error bar (indicated by the attribute name + `_err`), one can specify `witherrors=True` to plot the attribute." + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACRWUlEQVR4nO3deXwTZf4H8M9M0oueQKGlUMp9X+UUREQtICB488NFVFRYFWVR1wMPdFkVdXXXlVVYcdeVXdT1QEQXUQQUESj3fR9yl6uUXtAmmef3R5p0kswkk8lcSb/v14sXzWQy8zRNJk+e5/t8vxxjjIEQQgghJEbxZjeAEEIIIURP1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKbZzW6AFQiCgJMnTyI1NRUcx5ndHEIIIYQowBhDWVkZcnJywPPy4zfU2QFw8uRJ5Obman7cNADP1fz8EoBSzc9Aopnn9dHI7IYQSzoLum7ojd6DxtH79Xzs2DE0a9ZM9n6OMigDFy9eREZGBo4dO4a0tDTNjssVFSHhxRcBAFUvvgiWna3ZsUn0874+kpLA6tUzuznEQrjKSuDSJbpu6Izeg8bQ8/VcWlqK3NxclJSUID09XXY/GtkBvFNXaWlpmnZ2UFEBxMcDAOJTUwEtj02in+f1kZEBpKaa3RpiJfHxgMtF1w290XvQGAa8nkOFoFCAMiGEEEJiGnV2CCGEEBLTqLNDCCGEkJhGnR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlp1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKZRZ4cQQgghMc1udgMIIcTyXNXAz2+6f77qccAWb257CCFhoZEdQgghhMQ06uwQQgghJKZRZ4cQQgghMY06O4QQQgiJadTZIYQQQkhMo84OIYQQQmIadXYIIYQQEtOos0MIIYSQmEadHUIIIYTENOrsEEIIISSmUWeHEEIIITGNOjuEEEIIiWnU2SGEEEJITKPODiGEEEJiGnV2CCGEEBLTqLNDCCGEkJhGnR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlp1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQggh+qquAF5Md/+rrjC7NaQOos4OIYQQQmIadXYIIYQQEtOos0MIIYSQmEadHRKZcOfiae4+OrmqgR9nuv+5qs1uDSGEhIU6O4QQQgiJadTZIYQQQkhMM7Wzs3LlSowaNQo5OTngOA4LFy6U3feBBx4Ax3F46623fLYXFxdj3LhxSEtLQ0ZGBu677z6Ul5fr23BCCCGERA1TOzsVFRXo3r073nnnnaD7ffnll1i7di1ycnIC7hs3bhx27tyJpUuX4ptvvsHKlSsxadIkvZpMCCGEkChjN/Pkw4cPx/Dhw4Puc+LECTzyyCP47rvvMHLkSJ/7du/ejSVLlmD9+vXo3bs3AGDWrFkYMWIE3njjDcnOESGEEELqFkvH7AiCgPHjx+OJJ55A586dA+5fs2YNMjIyvB0dACgoKADP8ygsLJQ9blVVFUpLS33+EUIIISQ2Wbqz89prr8Fut2PKlCmS9xcVFaFx48Y+2+x2Oxo0aICioiLZ486cORPp6enef7m5uZq2mxBCCCHWYdnOzsaNG/HXv/4V//rXv8BxnKbHnjZtGi5evOj9d+zYMU2PTwghhES9GMqvZdnOzs8//4wzZ86gefPmsNvtsNvtOHLkCB5//HG0aNECAJCdnY0zZ874PM7pdKK4uBjZ2dmyx05ISEBaWprPP0IIIYTEJlMDlIMZP348CgoKfLYNGzYM48ePx4QJEwAA/fv3R0lJCTZu3IhevXoBAJYvXw5BENCvXz/D20wIIYQQ6zG1s1NeXo4DBw54bx8+fBhbtmxBgwYN0Lx5czRs2NBn/7i4OGRnZ6N9+/YAgI4dO+L666/HxIkTMWfOHDgcDjz88MMYO3YsrcQihBBCCACTp7E2bNiA/Px85OfnAwAee+wx5OfnY/r06YqPMX/+fHTo0AHXXXcdRowYgYEDB+K9997Tq8kkmlFdLkIIqZNMHdkZPHgwGGOK9//1118DtjVo0AAfffSRhq0ihBBCSCyxbIAyIYQQQogWqLNDCCGEkJhm2dVYREPVFcArNQHbz5wE4pPNbU+0o+dTW65q4Oc33T9f9Thgi4+u4xOiFr02DUMjO4QQEoo4trDkGMAE89pCCAkbjewQQkgwZ/cC+5fW3t7+KZCQCrQZAjRqb167CCGK0cgOIYTIObsX2PklUF3mu72q3L397F5z2kUICQt1dgghRAoTgANLATAIjMNuoTkOC54yNDXTWgd+oCmtSFH+K2IA6uwQQoiUkmNAlXtE5wjLwndCH3wlXIlSVq9mBwZUlbr3I4RYGnV2CCFEimiUoQpxkj/770cIsSbq7BBCiBSlKQUo9QAhlkedHUIiRTEHsSkj173qCpzMDhyQkObejxBiadTZIYQQKRzvXl7uvuF/p/u/NgXu/QghlkbvUkIIkdOoPdD5ZsCe4Ls9IdW9nfLsEBIVKKkgIYQE06g9UN0I2H3OfbvtUKBpKxrRISSKUGcnFvnXbiKxw4haOlSvJxAnmsZKzaaOjhmkrmvh1KijmnZ1Gr1jCSGEEBLTqLNDCCGEkJhGnR1CCCGExDTq7BASDOXQIcSN3gskilFnhxBCCCExjTo7hBBCCIlp1NkhhBBCSEyjPDskNqjJoRHteTcoF05w4nxBJLZF8/tYS5QjSxaN7BBCCCEkplFnhxBCCCExjTo7hBBC9CW4an8+str3NiEGoM4OIYQQ/exaBLzTt/b2/NuAt7q4txNiEOrsEFKXuKqBH2e6/7mqzW4NiXW7FgGf3gWUnfLdXnrKvT1WOjzR8r6KlnbqgDo7hBBCtCe4gCVPAWAAgGpmQylLqrnTvQ1LnqYpLWII6uyQyIQ7F09z99GJsdqfS44BTDCvLSQ6HFkNlJ4EADiYDUOq/4SeVX/HGlfHmh0YUHoCOFZoXhtJnUGdHaJeuHPxNHcfnc7uBdbNrb29/VNg7bvu7YTIKT/t/bEEyTjCsuGEHTtZS9n9CNELdXbqmupKbYr5yc7Fn5Sei68rc/eRkppT99nmMLY95/YDO78Eqst8t1eVu7dThyc2hVP0U27flCxl51K6X7Sqw3EyVkKdHRI+0Vz8JRaPr11X4FfB74Ilnov3m7v/VcjC164rUMkSQHP3FndwBTx/o4ssGXuFXDiY3bsNB36gKS0iLW8AkJYDgJPZgQPSmgK5/YxsFamjqLNDwieai3/beTMecUzBTdUzRDvUzMUfWR2wPwDcVD0DjzimYJbzJun9iXWIRnT+6xqMb4W+WC10qtnCgKpSdwwPIf54G3D9azU3/Ds8Nbevf9W9HyE6o84OCZ9ojn0Paw4AKEGq/H5+c/KefXezPNnjEuupRCIA4Ayr73tHJNOhJLZ1Gg2MmQekNPbdnpbj3t5ptDntInUOFQKNBf4FLfWmdI49MT28/b+4D2g/3JxCfnoWEhT/fTyM+DsZpS4XXjRCqIK1Vipo+0pOYBs6jQYaDwDeqFl11fNu4KYh0iM61ZXW+V2iHRUE9UEjOyR8Iefia3jm4vMGAKlNguwY4jjEPPGpCBpzkZAGZOQa2SISjcQdm/otaOoqWsRQygnq7JDw+czFh9jP8/+QP8rsRB0dS2t9Tc0PMjEXbQoAji4jhMScGEs5QVcpoo5nLt6eoGz/DiOkt6flALfMlb6PmC+zLdD5ZiA+xXd7Qqp7e6P25rSLEKKfs3tjLuUEdXbMJJWfIpz8FmbrNBrIu1L943PygYfWAgvu165NRJ1guXwatQf6Tqy9ndwIuOJB/Ts6Vs1P4nJao12ea4V/PJja43iuOeVnA48pFXem1rI/WP/apiXx+8noPFlqMAE4sBTe9BK+d7r/i8KUE9TZIRGKYBoqqb6xc/dUqkI9TvR3tifQ1BUhsarkGFDlHtE5yRriH87hWOLqI9ohOlNO0BWL1A1SpSrEtwkhhPiMuu0VclGGetjDmkNgnOx+0YCWnpPY5ylV4T8sW1ZkSnMIIcSyRMv9hWAj91GWFoBGdkh0UBvL5FeqoojVxxlWk/9Hck5aRCp2QU+u6trcGGofb4VYEj38/Gbs/U5yXNXA6lnAlvnuvDNiPrXtKgMf+0qOMd+4g53nlZzoiDkk0jJy3QsQYizlBHV26gJxbMrRtea1wwyiUhUHhSa4ouod9Kt6BydZA/XHpNgfbRmZyyPKc4WQGGPFPDYcD7QZInen+78oTDlB01ixbs9iYOnztbc/vdO8tphBVILiKHNncmbgcYw1Rg5XHP7xdi0Cvn2y9vb820IkTCRBnd0L7F9ae3v7p+5vlW2GAA1aan8+8fFp2TwxU7DXvtmvzUbt3akldh4HnKLtCanujo7Z7VMhurpmJHwLJgJlp6Tv27PY2LaYQWmpCiX2LHbH/vg/nxT7o06oXB7n9kd2fLnHR3GuEBIjoiGPTaP2QOOOtbe73m5MygmdUGfH6iLOu8NwgaXgfedwbBZa+971w3Rzp2AElz4xMeKYAaWlLZRY+jw8cT6HhGy85xyJ4ywTPrE/4T6fLoc7PkMqv00kfn7T2rE7frk8TrP62CS0xSWW4N2G3YsiO/7BFQCAambHFqE1jgmNPHe6/7NqrhDx68Bxybx2GMXK0+zB4uCC5aYKxu+1v19oip1Ci5rVTia/NgN+X9F1M71Z1E1diUVvy4lis5w34SXneNxc7VeyofSkO+YklgUtbRFmB0g0ojPJ8RhecY7D49UP+O5zrDC8Y9ZVolweAPCp62qsFLphtdCpZkuI4HElx6/51ryDtcSPQg98IQyCi3kuedGZKyTm+KeEqAvT7KLXfglLxv+EK7BU6IVjzFMZnl6beqDOTh1whGXL3ymKaYlZntIWSfV9t6epj7U5wJoBAApZJ9876sLzqQW/UUoX3Mkli1mq5sd3jxZ5zsPL7kcM5kkJUdem2UWvuSrEi36Ok92PRI46O3WdljEtVtZpNHDDW7W3C2YAD+kwClNXns9I6Z2jQ+nxoyxXSMzwSwkhyexpdr3Qa9MU1NmJBeJ8GwG5N0JM1Xx4g/sbhDg2SOscGVrW1Ynk+Lzo5Z7dJfxSFalNEPL5FARlF+hXcqTzpESLSHP6KMnlEYmMXCA+2CgR5z7/1o/kfwfx77jnf7Xbt34UWdvMYmbdvWq/2KNjhd6UEADwuesqjK9+GhuEdrX7xOo0u9LX/taP5N9bsZxTSyfU2SFEqSGemKcgH8QfjwHe6uIeoifyfHJ5+D+fGgSTczzQ+hq5O93/tZK7n+jOb7r3944H8bPQDTMddwTdLyYoyWNDNEednVh3y1x34UYSuQ4j3LE/qUFioACg9JQ7FoE6PMF5cnnEp/huT0gFOo6K/PiZbaW3J6S6zyt3P9GfzHTvWWQo2i/qeV77cfV8t2v12icBqLMT6zqMAFpcVXt7zH/Ma0ss6DQamLwuYLODiafEauIQljwdmzEHWmrUHug7sfZ2SmN3Lg+9OiJdbonqXCExI7df6JQQaTnu1BGxqlF7oPNNtbeb99f3tV/HUWfHCC4H8EY7Y+bKqyt941f857ybX6Hv+esCv1if/zoHo2PVB3jacb9oKwNKT0QWcyCVu4NFuCRbiVAp7BmLrIaXP070gWdP0DeXR1pT6ePrWXtLSXyF2pwtapldv8onJYRMh6dghu97zb9Mi1PmuZSLTbJCmZfVb/u+DsSvxaNrAMEp/TgSMersxJoDP/jenn8b8OvP5rSljvin63o4YccnrmsD79Q65mDjB4HbIs00HOwc2z8F1r6r/TkI8aSEkJsW7jCi9mf/fDzzbwP+1CrwMXLL1aUe/1YXYN934bebRCXq7MSaxY8HbnNWGd+OOsQRrMSc1jEH1eWB23Z/rW16ef9zVJW7z0GI1vynhZMbB+4jl49HKsPwgomBHR65x5eeAhZNAUqOqms7iSrU2Yk57imIA0IOtgitA2c9KIZEvbCGvjn3lIkWMQeiP6KL8TgqNEYF8ws6P/BDZFNcfo+9xOJxRMiCk/GIOJsxiU1aXUvEU1X2xMBz1OTjYQzYKLTFYcE9EsQYsEVojQOCX9qJH6ZLPh5wXxc3e6+LNa/rExutWTaEaIqqnsegsywNBdVvAAD+Gz/D987j68M7mDiHzTMnfRNdVVcAB5cByFffWKXn/v2B8B8v126l/Ie459/mDposmAGgnuRD3GpiEK5/NXguH/+6R6vflt7v4nHvj4VCR6xjHZCGCtxrX1KztSa9vGg/RX5+E7jqccAWH/DYL1yDcA7p6MEdwGDbVgTt8LgctTE8nuMF7FPtu4/n/AAwYEp47ZY7ptR5wzqeI7CNZrcpElrmt5KaHnqnLzD8dXdgbbiqK5W9J4+s9ubjWS7k4z7HEwCA7Qn3YTdrjjHVLwAA1ic8gEZcKdyxcrX5e3DoJ+/tc6Lr4sdxf0R/2273/o5L7n3S0sP/PUjUoJGdGHSO1b5pi1gD3zsrzhrcmii1axGw6OHA7aWn3EPlYv4dmrQcdyxCp9HatEUUZHkK7r9nKSQ+KCIJNvV77Dm4X0NHmcS0Aqlb9iwOfM0DQFmRe3pIz7gXUczbKdG1rISl+Nw+yzKkHy+63vlcF+F3XYzmBJ9EERrZqWuSG4Xep64LmsqeIWD1SHpzoLgmLmrc50Dra8PPzhyMEenlKTU9kbP0eQR9L6x4Sb9zRxrzpvR6Fx9spJbEAhrZiTkhMnA262NMM6KBXMyBaOicMeCfzuvxjvNGVHtz6fhd+MVLp/MGaNvRAYD0ZqH3iU9Vtl8k54g2RizTrwtEgb3LXT0w0zEWp70jKUy+kKcW8gaEzscTTLM+IR7PuRP7pelYzsZI9JqXRSM70UzNnLzcB7H/MO4rOe5Yl2igpjry0bXA188Gbt/xJbBosvfmXpaLGc67AABduMO42rZN2fEjjTcC3DEkP85Utq/gBM6rPA/g22GLJGW9OA5ILXHcSySP9c/MDADnDwI5ndW3zZ9/fI44R47nuRBvcznMjeMJ5ZUcYIr8a/xex5MAgMtIwB/iPoz8fN73iUy9Md7mjpFbcL/0/aF48vl8eheky5IwoGmv2nw3UrFlSsjF28nxnKPrg+E9Too41kzqNX9uP5Cl4Ws+Spk6srNy5UqMGjUKOTk54DgOCxcu9N7ncDjw1FNPoWvXrkhOTkZOTg7uuusunDzp+wFcXFyMcePGIS0tDRkZGbjvvvtQXi6xPLeuGCHxIeG/wiGW7FokHU8Qyso/SX8j9YvTuYR40c8WKLshl3DPeVm75eGxMqUltUx/72Jtl+nXUadZfeNOJs6340Nhp9yTzye5oe/2tBxg9NtARvOImmcpRqSmiFKmdnYqKirQvXt3vPPOOwH3VVZWYtOmTXj++eexadMmLFiwAHv37sXo0b5Bn+PGjcPOnTuxdOlSfPPNN1i5ciUmTZpk1K9gPW0KfG9f+TugxUBz2qK3oLE1fvsFUDLcq1NF7ojInVvD4eteE7Q7ltGUDOMf+IGWGocjtQmCvhdSmxjZGrfRs4DEjND7ed77nUYDYz+u3T5gCjB1O9BumC7NMxS95hUxtbMzfPhwvPTSS7j55psD7ktPT8fSpUsxZswYtG/fHldccQX+9re/YePGjTh61J0Eavfu3ViyZAnef/999OvXDwMHDsSsWbPwySefBIwAiVVVVaG0tNTnX8zKbIeYraQriq25yJLxf1XP4e7qJ1HF/GZnjxXKHuIz5yAMrXoNC11X1mwJdeEw+blktR23z5xX4yvXALiY522s4KLnf2GUulByUfx6ES2hr2Jx+Nw1COuZXx2sqlJ3GQyizJA/ytxR8zq55jnDmuLF24DLF7w3H3c8gBurZnhz8HiJU23woo+7zLbax9Z5SJVY0VPpCZ+b64QO+I+zAEcFz0pKVvuaD1UKJoZFVYDyxYsXwXEcMjIyAABr1qxBRkYGevfu7d2noKAAPM+jsFD+A27mzJlIT0/3/svNzdW76UQPomWp64T2KGSd8JPQAztYS9n9/D3pnIR9LBfPOu4NvFNqSjAtx11J3gJOIBOHWROcR5qyB5zdC6zza/u6ubE1xC1aQn+SNcRxJrMax6yaUNGowwjp13xaE/f0kBmjIxXnfG7uZi2wlbXBcqGH334mpNrwlFgx6n3lF2+5WuiMc0jHOtbBd7/z+33f/0a302RR09m5fPkynnrqKdxxxx1IS3Nf3IuKitC4sW8eELvdjgYNGqCoqEj2WNOmTcPFixe9/44ds8C3vFdy9LkAfzUZOLA09LnfaKP9udUI53kQLUtlwUZcvpose0xW8xaoQFLgnf5TgoOecA99y8YQILz2z+7vvuDoyRMce3onsHMBUF3me391ObDzS+vUvio5pqwQplwQs1bL9H9+M7yCnJ5g8nADVaUUzva9Lf4wMysfjNRrvvQk8Ol4dW16o427UGe5b6cFFxWWbkjOlNwccB2INNWGf8B5sGKuYlU17ys1rwn/gPZQ9i+R3FzN4nw3HF8f+P73tLMOdHiiorPjcDgwZswYMMYwe/bs0A8IISEhAWlpaT7/SBSKaFmqisc0aq/f0LcmZH4nJgAHV3hvXmbxcPgvoz+0IvBx0UjJEvqENCCDRnOjWpMeQKKCIGk9U234TQFXsEQw5nkPWm0JeO21oZwlippe80MdiOmxfGfH09E5cuQIli5d6tMxyc7OxpkzZ3z2dzqdKC4uRna2TCXdui6WamN5lpWqZvHYlNJwlv4H+V1Kjnm/0Z1hGXjPNRLvu0agyvvNjwFVZfKPjyZK4o3aFMivaiOBQtWEM+OawvNA19sV7KfjlxNRfNgmoQ3mukbiK0FcC89KHR53W9a4OuF910gsEfr63lcH4tgs/Y73dHT279+PH374AQ0b+i4d7N+/P0pKSrBx40bvtuXLl0MQBPTr18/o5kaH96427lxq8t+Eq9NodTE0g54AUi3eId79lfJ9E1KAjqOk7xNNq51naRDAowrxKAta3ysGxElMTbYf4R6hI/IO/OB7e/5t7jpYcv51vb7tkZPTw5zzeojeV7uFPADAr8yC15ScXt4ft7DWANz5wwLEeBybqUkFy8vLceBAbSK0w4cPY8uWLWjQoAGaNGmC2267DZs2bcI333wDl8vljcNp0KAB4uPj0bFjR1x//fWYOHEi5syZA4fDgYcffhhjx45FTo5FM2J6kvXplcvk7W4AggzRl8vHMmluwUTAngC0uS68x1VXhpcsscMIACGmN1/JAW7aUHu7+RXAwHXAiz/LP+btbgBaK2+H+FxG6zNRflTD6Lw5nmR6np8B9cU+wyWOcWh1DbD7ou/9DWv+npEkLpQiF5cR7BziNhj1/CixWCKZXlmQ64bcAoA9i4FuIUZfHEHifcK9DhhNj/eVy6FN3JdYw9bASfeAQNDYxlC/z6q/ABwLfG+bXfBWIVNHdjZs2ID8/Hzk57urZj/22GPIz8/H9OnTceLECSxatAjHjx9Hjx490KRJE++/1atXe48xf/58dOjQAddddx1GjBiBgQMH4r333jPrV7I8B7NhsasvNgptIz+Y3/D1UldPrHZ1Em1hwLdPBRnmlhnmNWpY3Kj4mzB+n0ssATuFPJSx2lEJxoDDQjaOCI3lHxhs+iYj111OQv7BQEKw+6OVxacplRK/fsRLqZXsr4r7fXlIyMYXrqtQzhIRakpmk9AGi119RbFgAH6YHllbjq5V/1gjhFFipZilYrfQHNX+aTGMiJNhrOb9HSRXUh2IYzN1ZGfw4MFgQRIiBbvPo0GDBvjoI5lU4yTAd0JvPOz4HQBga8L9SOciWN3hl79mouP3AICV3FQ052tiqcpOuldDSTmyWvoVaORUmxHC+H2WCj1xiOWgEUowzr4MgLtC81eCOw9QCi6Ff36OB1pfA+xeJHWn+79WcvcTUx38EVg4q/b2gvtCP+advsDw18MfUfVzW/WLKEYattta4sW4ebL7lbEk3FI9AwDwdtwsjLatcd9RetL9Hm95lboGfHqnuscZJYx8VB+7roUDdvTh9uJK247aOyrOQvdO+Y7PAHsSpDusNeeuA3Fssf3bxToVMTHFrDbAu1xquXU4ZIavi+E3SiD3ISo4wzqu5oyIKQLCmjo8wtzL6c8iw7vtEqstUyEuXxGWTJmRvIQUoPPN8vcTc33/jPzr50eZ4PyyInctqAhf38U1+Zt21cSjyBFfR4qZ33t/r0HvMaux+15bHTXf6s77Xxudl41pj9x5ElLd7/86EMdGnR0zVFe6c0xEMh8tuIClz2vXJiU87X4xHSg/Kz9iEzGJbyDiJGJqc404qnyPYfTzp6ef3wwRHyKTr6OqzJ1/J6z4FQVD76HaE0w4+W3E51OS/2T1rJpcKUpy+ahoh1qycRpBRrc3yAXm1zzmh+mRtEgb2z7VZ1q6+jLw1UPaH1csVK4lufs63wJ0uEHZOQyrW+h5HYlGkbqOAfrc737/K80fJMdV7T5GpMfREXV2rERw+V4Ygi35PLLaW8hyi9Aaj1Q/jGWufAMaGdo/nMPxhGMSzrAM7zaBcXjVMRYDLktf1D9xDsZj1Q+KUpzr7OyegEKgs50yq5kidExohMeqH8Q85xD8wTEef3TcCSez8FtPtKTWUpTUAIpBod7fh4RsTK1+CJ+7xNNFTHnqAg07Iy8678ElJhp9rDznvlYpxMDhTcfteNZxr0/cWlRJb6Y8/iXSpIdBnEEGlrp6oZKJCxiL3kMZudFdGiZMpsbsED9vdfV98c2/Tb7InmiqZ7rjHmxjrfGNcAUO28yf5/66JtdEO+44Jtrdw9h7WC7muEbLPuZpp7t4a5qrAi/y8vEBmrlUErDpNecdGGP7EQ05bXPO/Ms1DAuEq7BAqP0wut62Hn2wW9PzaGbnAgC3mt2KQOvmAm2H1Ikhd7FQ7+93XTdioTAQC4WBuM0WZHWhlD2LNR/hXCV0wRDbptoN5aeBM0WAVKoDv2SWx1hjzHK5ayVewe/CKJvFg5TlKO1E6Bwns5O1QBa7gG7cIV3PEw0s/PUyhu37Tnr75RLg0gXfbXJLPkWlEjxxHsxif84q1KYrdyjsV5cyg5ZJJ2VIblbaznBIxUb5rFohvoplLszVdSe1vVio9/cF/ziZcCyYGDDCGamA99D5g9LL2QHgu2nKj0NUcVnsc8Es9CyYYblcFWEpomFH8XBz3gD5UZ9Y90ab2gRY1RXKY58WiWKMGnWou8+f1R35ReYOcWp7iSmtn9/UPkeJ6dROMyh9nJ5TgxyQmgNs+pfO54mQyxFeLJcSSqdc1S49V91Onaatwq3nZQLq7JihZnXFfOe16HH573hXFCtyhmXgmqo3MbzqFb+5Vvgu9eZtwJBwOk3W9bLjN6F38o8riDTOgOPDf/5cMqvHYgBjwCJXf8x1jsAp1sDcxlSXe9u00HUl3neOEMV/1aS2NzGuyAkbPnJeh385hxkQVxL8Q/MFx91YJvQM+3H+XnH8BvmX/45vXP3wb2cBul5+3+f+0ywDg6v+HNYxAQbk3xUQO/Q3541hHicKiV6f51mQ2otGV2W3dG0/fVFnx0SvOn+DEqTidecd3m2bhDY4zJpgN2uBPf4pvf2XZAervm0VaTlAvweD7jLXpWDlwn9u9r39Tl9gV4R5YcJ9/r56EPg+ylZwnT+oaDcH7DjEclCBJBwSQo14GXPZuIx4/MqyUY4k/MqyfO80MbV9MUvDGWSgBCk4yRqGfoCOPnQNk74jLrzp4PdcN+ACUjHHORpLhL4BpUQ2CW3lSyE0C1KaZ/2cgE3xiN0vDV6i1+dxVluhvR6qfPczaum5B1d3Ozs0KWqisGsTpWSF3sdqHip0f5tYIxOnpFSFb8FXby4RNXWx1GLMPU3icgBQmSjNaHsXu0t2hJHtNSoyD/vHthFfDnWdwcuIQ3q4DzpeCGC89H0SCwE4K09paUWm9IIdfiPShi09JzSyY4YUlcXick0ubvpGm/Af82quinxC0h+2B4QcnPcGY9ZcMHXMlcMYsFNoEXjHur/rdj4XIvvmdYGloIKJL6DMvbrKqWHui9IT2h0LCIyzkRiVcPqn2S/aHvq4e/8XWTsKQ9Rb01Epqxc4jQ33a2SX0BylMtNnW4VWYQa/q+vY7mPynedyloQdQl5sZAqQeg0oyemk9MuFjkvPJbmqQu8To6izY4ZrVX5AHys0rm6Uxaxw9UBB9Ru4quqvojweTPOVJGIfuobiOadEen6d6tmsYx0jevxxlokPXcPwD9dwXGZxvnfq+DxprnGngE3rWAffDdXapgewkvMsDZ8I12Cx0A9FolxVAPAfVwFGVL+K4VWvSj72xuqX8ITjt2GeMfwOzyGWg8Uu6UroTzp/ixuqZ+LvSqano1mw3pxFlp6HTfw7lRyDpQPLw2SxZ7qOaCczz55UH4hPkX/c/NuAt7pEHqtidaP/FrDpCHMnG6xEIkoQ5DkKR4h0+rIxCjr5VYhsmvIicz8vAnhUwm94/MLhiI5tKIlvn4mwZlZWPVwUpV8o8osJ2sZaAQBOQH5EYKEwUPnJbpkLpKp7nR9iwWO71gqBndaYcW4/sPEDs1uhrXP73bmsPLZ/CpyxaC4wFaizYyW/2wbc8Jfg+5SecseqxHqHR2/H17tzjNQVRdvMboFy0dTWaNdhBDB5ne+2HKnVXcTH7kXeVYMBFC4KsJzdXweOmFp0GbkaEXd2qqrq7hyg5l7NlfwA3ic0xTvOG2tKKdQMKy55Wv8pLQOmzA4IEvE8K15S+GhOMlfOe86RWOXqEvyhmz6E6iFaDYeey1gSNrM2uMA0Gq2qsUFojxOiVSC6Bh3rtAzct/0aMysfj8shqiEU+oOkiNXXv011YTlydQUwV1QFftEjilb0XWbx2CC081lR5SEwDtuEVtgj+K2aPbxSu9ImF49LT5trcfzqSr/6de5jHhBysEVoDafS2K8oyW8V9lX722+/xd13341WrVohLi4O9erVQ1paGq6++mq8/PLLOHlSYT0Wotgkx+P4k/P/8LjjgZotzB0kKs67o4e/dtO9MvhvHY8GbgwnvqR9YFzAd0Jf3Ol4Jnj9qUvFys/hr2+4MRHyCoWOWC+0x2KXtsHnu1gePnNdLdqi49z7zgW6HPYbob8ux40m3whX6HsCTd7fwTrSUbCyL4j1QjusErric5/3kttR1hjLhXwsEfr6Tq1Xl6n/AuA/KrRzAbD2Xd+s4Wf36jaFVskS8I3QHz8KPXCARVCo2oIUd3a+/PJLtGvXDvfeey/sdjueeuopLFiwAN999x3ef/99XH311fjhhx/QqlUrPPDAAzh71uBkSTHMEzuy3j9IU67shFYuXQAW3K/rKQ6ypsp2jJdIid/vAWDD+4HbayhJk96ZCzOWpd+DwHXarQDzXCTPIkOzY5LYkQi/0R8+XnpHtRZMjLzDc02Q90Ni2AvZLaU8SHqQ6mDlcNTmgdor8beoEpVJObvX/bPcFFqExL+H+PeLBYrz7Lz++uv4y1/+guHDh4PnAz9ExowZAwA4ceIEZs2ahf/85z949FGJb+1EOzp9o7akPvcDP/nlVtm1EJGOWMSFm+BMw44OIWFr1gfQOtb8h+kA3lD/+JZXAZCpV1ZX88jI5NkJTep6xgBwwP6lNQNlsbNCykiKOztr1qxRtF/Tpk3x6qvSyyLrJJfDHdV+nehNH3EsDAfUawhUngu4Ryo3h5zfVD+L+2zf4i77UgDu1PMfuoahO3cQ8+JnIp2rjLCdbruE5riz+pnIDiIVJ1Mz3eVkPB53BM/SrCvHJYQ7XP8bx3P4Wnhan/ZI4qDlRbKKxeF7oRfi4cIQfgN4LsSxxXP6PnEC4eCAhBSgSptl54xx+EHoiUuIxxB+I5I43xVfxSwVPwrdcdQve/NKoZv6k0aauyc5E8BFdacWOuAvzltxE/8Lxtp/rNnKAso5hO2fQwAErqAE4C2Ns1doHtk5/M0dDEBB3q+ja+UzpVdXAm+0A7ZfBpI0nm7b/qnqhx4VGqNQ6IDO/BF04o/UbGUBwcMHhBxsFtqiJ78frXktwkc0eg5Wvw1cVVP41fNe76Hd1L9amkRaulwubNmyBRcuUFbTABclErC9Fzj/q1zNC7LbGO+WbK42/mSd0F7xkY6wbEx3TgAAnGHp3tTzW1lrrBE6R9BGX/90DQ8/W3QYdrM8XY8fwH/YX2UOm3+6hmvQGHMcY41wkDXFbtbc2Cm4VtdodqhipGIna4FDLMdbWVxsp9AioKMDAFVmDu8rzd8i4TXHWKwVOuNp5yQNG6TMj0J3w88JAPj0Tne6Dp1jD1U7tSVg009Cd5xAI3wv9A760O+F3jiBzJD7ETdVnZ2pU6fiH//4BwB3R+fqq69Gz549kZubix9//FHL9kW3fd8BR1cHbvevcRWOtBxgzDygfe23lVyutpSCoLL/6v84JfEuSlUyfYeytWxrSHsWa7ZkvZQZ2EFrO1TTwzHRt0BmVBBqx1FAZlvNDhfqd9D9daV0ibJGq//OI0hBSp3xZk69lJ6ybpqJs3sCNpX758iS4Ymp0azz3T4Kai1GQNW76PPPP0f37u6e+tdff43Dhw9jz549ePTRR/Hss89q2sCoJbiAFS/DM3XgYhyqvCnvI3jjT90OdBoN5A2QXHYNqO/wRJ3UJjB8tcfS5xGVc+YNWml6OGeEZS1U0bCjYzQns4Exv9fq4Z98bjKGwOW+vB1IkAjOjxBjCMyyrQe1pXEidJnFQfA+39Z5vzphU7lqnHMv0khIhW7XvIatfW836aHPeUyi6lPx3LlzyM52v4gXL16M22+/3btSa/t2BTVr6oIjq93FKgG4GI/bHS+gZ9XfsVPIi+y4Mxq4I/15GzDkjwF3u8BjZPXMyM6hhJo6WZG4eCxwm8TvrzuJKatw4qTCUa7ziJhaJ5CJ74Q+ZjdDU+uEDqF3UumY0AizXaPwsesa3w6PaEUNY8AXwiDMdo32zUwsOIHL6mJ0gpnoeAxdqv6Br1w6L+9XWxonAqtcXdCtai5urv6DqGNhjQ7PDtYSiwXpNBPrZUMQal4zbYcAbYb4btOSf66cpAhyPLkcEcTm6UNVZycrKwu7du2Cy+XCkiVLMGSI+w9QWVkJm60OJKhSQjRVdQnxOMYaowJJ2CZo+A1bIvCuROPkdEjM0PZ4akkF/HUYIVlawgjJuOT9uQgNg+yp3jkW3ct2o4nNvxq1hk4gEy7YcAb1URVkTchx1ggu8CHLMGjhB6E3nLBjgesqfU8kVxpHR6uFzqhGPLayNqiEPl9EIrFfpogqD5maewmpQOebgUbt3f863xzBaq+6S/FqLLEJEyZgzJgxaNKkCTiOQ0FBAQCgsLAQHTro9w0pqqREVufIMi6XmN2C4NoNA/Bnw0/bgivCTtbS8PMSoiXD4q2IOi2ucocsiOO2GrUH0poCP1MC33CoGtl58cUX8f7772PSpEn45ZdfkJDg7j3bbDY8/bSRy2ktLG9ATYE9HS8mBlVAv8iSsdTVE2UsyWe7i3FYJXTV7bxVzI4Vrh6qU+ZfhLvdmk4H6RgndEqnESIAkunllYwCFiMNh4QmqAgyVecEj8NCNiqCPM9O5t5H/LcoZqk4KjQWxVYoIPo9GONwTGiE80y7wNtilopjQqPA+BqFPG0qZgribIIV/fWwqU8iWMES8IOrJ86zVKxydcERpYVtw1za72BBvjM7Awu4nkYDzaop+NsstMF20ZeQsGPL9GqYWk16SAeoR7Aqr65S1dmZN28eRo0ahUcffRTNmtUOyd1xxx24eFH7+eWoxNuAa3QM1t61CHinr37HF3nI8TtMdPwev3f45kr43HV1YOZQDb3jvAkTHE/ipqoZqh7/YPVUTHT8Hk84NMzxoGGckE1u2FoPErFG3whXKKp/s0gYgC9cg2TvX+3qjK+EK/3KU/haK3TCV8KV+NQ1GADgYDbMcw3BAuEq7FeaRfvnN4ELv3pvHmLZ+EIYhH+7hqBKg2DbambHPNdQfCEMwkGVU0n7WVN8IQzCPNfQ4J0AAGipIAVFRgvf27sWKm7LNMf9uN/xe/Sq+jvudISR5+r8fuX7AvjYFSQdwJb/SG5ez5SnyAjH/4T++FmUB+lLV5AK8FJxh1arZK5np0Ztzqef3wxd182CtbJUdXYmTJgg2akpKyvDhAkTIm5UzGg3DMjVtuYRAPfy50/vUp3fJVy/CO6imt8Jvp0rXQs1AtjG3PFNamNiNtZcUL+VCQhUpcMI99J/W+Qfrrn8mdA7aUUmfb3SzmpxkGXLJ+F+HfjUB/JzijUAAJTCHWtQDTs8I2QVSJJ7WKDq2kSX4sddRuRlFMTHCKtNIhWiZcPB4nMUq9dA9UOXCMZ8GQq69LlEYmEBgCKm/vcKxwUlI2xiOpVhIOZT1dlhjIGT6HEeP34c6ekUVOkjTeG31nBE6/LnWNFpNJAZ+TdTQweiwwxoTBEFYFtKnLpOiCUdXml2C/SXkRt6H1Krw2hl+1ltui0KhPXVIz8/HxzHgeM4XHfddbDbax/ucrlw+PBhXH/99Zo3kvgRjegsdF2JHzTIoHnK75vWVqE1Rtp0rqpuURuEdvja1R/7ZFZNAAg5vMwYMNs1Cg7Y4VAwVSRnh9ACmwUN8ssYFDB/kjVEDnc+omM4GY/1ESwF3y80xUnWEA250ojaocRqoTMuIx7d+UOB7WDNkM8d8NlWicTa4p7VSmJjjP1QO8CaIYsr0e6APe4Efnwl6C5bhNZB72cMeM91A+Y6R2rXLhkXWTI2C22Qx51GS75It/N87hqEVtxJNPV/r3B+ZV0uHnfnl/KP2yk9AfHXpV1CHs6zNPTmZWqUkfA6OzfddBMAYMuWLRg2bBhSUmqHrePj49GiRQvceuutmjaQyKtidkx1TNbkWF/75dtYIfTAM/hIk2Pr5pUcYMo2zQ97f/XjKIHM8Hd1pfu8VS8DkF+NtYO1xOvOOwD4ZrgOx2XE4wehl6rHBtg8T5vjhPC1qz9+a/8momMcY41RyDpK3+kIPeL0P+EKAEADpn9n5yJSsELIR2vuFFI437b9JHRHD+4AONGH114hF/1tu5Sf4PhGIClfq+YqcpFpuKxZCF1o92HHI0Hv38tyMdP5G61aFNRqoTP2slxsYW0wlf9Ct/McZ41wnDXCcN7vC2XxQfhcV3YucCcTbDvEvQoLAFzVNUWgaz9rPSUjktll7Rp5aAUAjWZqCucAbW7X5lgqhdXZeeGFFwAALVq0wNixY72rsIg5XBpmsfUfp0i26jSGAWQ7OmEQx39cYuriSbT8+8Kp4UUwiEsa5DUJuoImjFQIWrRFqWBtFnd2wl7qzUJ3FrSQgTLv675ax0UHUo6zxkHvjzgeKy1HcbFT/xWnenP6P9endyDgS1R1ObDzy9pcO0HouWAk2qmK2enUqRO2bNkSsL2wsBAbNmyItE0klFjJ4UNIuE7vMLsFscWWAIBDIgKXiMeEzrcAD0X7dHxNZ/nADwATKF5HJVWdncmTJ+PYscAo+xMnTmDyZG2mVeqae6t/D5fS3B6DnlJ83Dedt2OZ0DPoPv9yDsU/XNYoArdA0Cej6wqXsqrLzzsiW014TdWb+NalrJTCV64rwz6+1GjPR67rcJJJr1jzTEkcERrjQ+dQrBU6hX1OI51Ao+A71KyW2Sm0wHJBv+mdFUKPsEaGHLDhc9cg/KRBde/KIIUgNc94HEG9sTec/4fbq6arWrk2xfEI7q9+HItdOq8YS2/qTgOigb87b8DnrkGKY/AOCjn4l3MYNsiWgQhtl7e8EAOqSt2r2y4el91/jVHvb4NyvGlJVWdn165d6Nkz8AM0Pz8fu3aFMR9NvJYLPXFYaW6PNgWKj3uUhR4FetF5j/ydVikXEaG/OW9StN/SCIO9D7MmeLUmVsdI2wXp+KEjNX//Daw9LiAVF2H9NPNKplGWCz10b4dcB1LKWZaB4yxER00Dmk5tAkByJnDLXNUPX886hAwwlvOD0AsPO6aoPrcRxCNel5CA46wRzkBZktPVQieUIAVlqKf6/D/6d56rK2TTSBhq7btmtyBsqjo7CQkJOH36dMD2U6dO+azQIqiJmteYozL0PlqxermIt7uF3gfq86YEUFAAVfP6ZArIVbr3DHiHTHBnMt/aVKFHODX/0JcQTnxN1E4sCAKw4H7fbanhJVQM+jyFuFbJvW6tIpLEn1Ua5H6q9s9htPsrYO//Ij5u5FS84k0eDVL1Shs6dCimTZvmk1iwpKQEzzzzjLcoKIH7j3tqq+8mnbOrxEqAmpPxYX2zDsV/ab2eLiJFk4y+0aqUub/JMuaeRrNqiIGWZUTkOl/uJIry7/lqZkdlkFIcprBrWF4lQlXMrrpcTLTSopOkBwYOF1k97/u5lNULr9SLyVR9Mr7xxhsYNGgQ8vLykJ/vnjffsmULsrKy8O9//1vTBka14+sB5yVANAf/qvMOjLMv1+2UzzjvD71TFPhN9bPYx7RLSHYRKfhC7wrPImGl548x/3QNxyB+G0pYMrax1ujCHTbs3EcEZcH7e4TmWCIoi61SQi5+6AOXfN6xambHP1wjUAU7/s/2o2ZtiRUMHEZUz8RBpeVEYsBWlVOCRvhO6I19LBe9uH1I4BxYLXRGS+4UbrStNrtpiqjq7DRt2hTbtm3D/PnzsXXrViQlJWHChAm44447EBdXd7/RBqg4F7CpEUe1w5RYJ5dnJQKSwXsZecAFzU9V5+0VcnG6JrZhB2uJpjhryHnPi8paJKFKNsj4uM6lTpQoR5K31EKxXDFTLjZGatVwMT7yjs75gwDaadKecGVyF1Ee5lL2AyxHp9ZEzvPlczNrg1Tmnp5UHGdqAarfScnJyZg0aZKWbYk9yeZfUEkIJUcAaJChmFhO9AywB9G0B1Cs4/F/XQldZ01mX6HjwRXYuxjYY848ahyib8WSEu4Yreh7dymO2Vm7dq3ig1ZWVmLnzp2qGhRTmvUB7NI9+w2COd82flWwOiuYT51XY4fQAk7GY5EwIOi+BwTthp/FybcqVMZanNcqG6gF7WW5KFYRGL1K6IKVrm4o1yqAu8ZphStWpARNKihjl5CnqIL7dtYSJVpmCNaI3Gq6YB8qS1yRl4mRZFACylA+cl0b9P4fXAqzi/8wXdX5twktfQq7KuWJY9Fu9DDyjsU5lo4dQovAgGe4p373Cc0iir+5zOKwXWiJ83IjlBaguLMzfvx4DBs2DJ999hkqKqSXvu3atQvPPPMMWrdujY0bN2rWyKjF24AmgXk3LrF43Fb9ovHtAfDPCPPpPOn8LW6ofgXLhXz8yrKD7rtQGBjRucS+F13YPnUN1uy4scRT5V2KnZP+lrmTtcAm1hb/c5n7DVycZXi30DzsxxeyjtjJ8kLu97PQDQtdyl6XfAQrccJVhPAD6B9wPKZDS+BTe89MW5j8iOselouvQ3zZ8lKYPdnfcqEn9qqIGzzKGuMyizc0g3co/3UNliw9U8aS8KUwEIuFfjgWIpN1MGuEzlgm9LT0tVlxZ2fXrl0YOXIknnvuOWRkZKBz584YMmQIRo0ahYEDByIzMxM9e/bE4cOH8f333+Ouu+7Ss93RQ6LquZXeBGopWV6dBu3yQZSg9nxOiy9XtaJQfwtxrIsZbKLOjtoVhZUKR/zEr6VgYnUaIhZcYJGXdNHLZSRoW3KjfeQJX+XeUz5lbSKYzzxXM6JTJTFyZBWK/yJxcXGYMmUKpkyZgg0bNmDVqlU4cuQILl26hO7du+PRRx/FNddcgwYNjFviW2eZPQ9OItKWO479wSqq6yD6ZtgJAPeKznrarRojUSgj/JFOEkhV97N3797o3Vun+WLidW/1E/idfYHZzdDNjyqz4P7TNQK/tX+DLK4EAPBX5y3aNUoH55Ch6nFLtap4HqZfWZbmMTxGKGQdozi7n7YYk0hIp5D/9PQ61hHrHNqvjjRMapOgU3NOxmO10AWCyxZ+oVaTFIWRN0yLEibhuMzikchZr9YazQdYWAlS8Qfn3WY3w5K+drnn68+wdKzQsUaSHiLJymqEsyo7Z8Q6QsXTBaO2k2RZ1zwX9O6zLAN7WHNsYW2i5rX/k0tZ5nijiDs3hyN47emJOjskKlXVDEqqWbnjI0V9UJ5aPAR8GPeq4ecldUfE74tY0m5Y0LvFJStcUfKRWBpBvS09JIlqiFn1ObRmq2JBdQXwRjtg5xdmt4QEk6x/8UYprXl1K0QIiTXtuGP6nkBBPTsS+6izQ3RTimT0vzwLi4V+mh/7T86xOCI0xo+uHhEeKTrm6NVaJXTFO84bsZtZN8hxtdBZl1Uc4awwO4cM/NM1XPXjSaAfhR5gDHjRcRfec91gdnM085nrargYfXRGG/qLkZDqQX2SsVPQrpinv42sHfYZvKop2jhghwN2S1eXpimX2FWFOPwrSH0wAGjNRd8oZ5nFppFIaKqTAVRUVOCnn37C0aNHUV3tG3k9ZcqUiBtGrKMNdwLbmDUL1HG0/IaQqHYNvwXf6jD6S4iYqs7O5s2bMWLECFRWVqKiogINGjTAuXPnUK9ePTRu3Jg6OyptFtpEzdLHuqhKy0RhRFaw6SPGuIhKUXiYGeBZzFJ1X5F3lsVuaRS1zomekyMRls0BgIswqOxI4WxdDssYcJr5vpfOsIywj3Oa1VeWqkJwhn1sLaka23700UcxatQoXLhwAUlJSVi7di2OHDmCXr164Y033tC6jXXGE84H8KTzt2Y3o26pVp7l+a/OWzU7rZGlCGLJJtYWn7iuifg4RzX4sFPjLNIxzzUUH7iuD7sidjh+4wi+3LquqWY23Ol4xnv7Ledt+FVQ/xooY0n4ReiiRdNMs4218ikhsYc1x/+E8BPWfuy6VlmqA2buKLyqzs6WLVvw+OOPg+d52Gw2VFVVITc3F6+//jqeeeaZ0AcgxCouHFa8a32UaXbaJrqWso5dp8JIpmZFpaIipBT3YZwKiZGHExEU6rTa0m81Sv0K4iopARSRA0uBfd/pe44gVHV24uLiwPPuhzZu3BhHjx4FAKSnp+PYMZ2XEUaLPYvNbgGxMI4DruM3md0MQmT9yT7H7CaQWOK8DCyaAuxaZMrpVQUh5OfnY/369Wjbti2uvvpqTJ8+HefOncO///1vdOkS3UN7mhBcwNLnAQDVzI49Fl72K2cLa4uvXVdglG2t4efeJOifF2OFqwc2CO1QatS8ex13ArX5jDYLbSybeExvsbicfZ+KyuCRmuMapclxfnD1hI1Vhv24DUJ72fs2CW1Qykf/yA8AHGfh5yFbK3RCU+4c7HBhJ2uBPO40muA8vLVcljwNdBgJ8MauwlR1xXnllVfQpEkTAMDLL7+M+vXr48EHH8TZs2fx3nvvadrAqHRktbcWy2HWJKLU7WZ6xDHFW83WSL+pflb3c8xxjcafnGNxiOXofi7i6yehO1YJXc1uBoliWrxvLyAF05z3q+qAXoB81fUzqI/VQudImmYZwX5POeVIwhJXH6wUumGt0AlfuAaJ7mVA6Qn3Z6TBVBcC9WjcuDGWLFmiWYNiQvlp74/VUb6Cp5IlGn7Oy0gw/JxieVwRjkRpB5VYQxyccET5ez/WmXFtqytOowGcLEhJH9FnpFHq5liy3lLMWelBtJEAh9lNIFEuFeFPjRCil4YoNbsJvkz4jFT81SM/Px8cpywHzKZNdTzwMm8AkNoEKDsRcNchloMpjodVH/pFx114MW5eJK3TxL9cwYvrEUIixwBchM6rZOqAPYLxcUVKHI9gRZjWSjR+nclOD9bLdH9GGkxxZ+emm27SsRkxhrcBQ/4IfHiv5N2RxCv8y3U9ptq/QAanPD+MHnaxFqaePxY4qEwCCeGUhT4M9dKMO6v7OX4Suut+DjWKojyVgirdxhgenAyE0dl54YUX9GwHCYOV6xyF0hRn8Wb8bIytnm52U0x3p+0HHNSxdhiJfkIdyKjejT+EJfFPYYZzPFbrlKjPqmVlzGqXljnDwtZ+hCmnjSiCbsOGDdi9ezcAoFOnTujVq1eIR9QRoqXnJFAX7lezm2AJepcMiDVVTPvK6MQaOvDHkMedxmro09m5JLHowQoFaMVB7NWIQzyMKangAq968UxEJY1Ss02ZwgJUdnaOHz+OO+64A7/88gsyMjIAACUlJRgwYAA++eQTNGtWxytRi5aeE0IidxnxmO0abXYzDHeQUiNEbKPQVrLy+jPO+9HI5Ezm4izaF5CKCyz8pd5qlCIZ21kr1Y9XPQV/9TRTprAAlaux7r//fjgcDuzevRvFxcUoLi7G7t27IQgC7r//fsXHWblyJUaNGoWcnBxwHIeFCxf63M8Yw/Tp09GkSRMkJSWhoKAA+/fv99mnuLgY48aNQ1paGjIyMnDfffehvLxcza+lHdGyOvr2TggxUhq0ieeL53xHGWxwaXJco20T1H+oE2mVULls/6eZpmVQVtXZ+emnnzB79my0b1+bRbJ9+/aYNWsWVq5cqfg4FRUV6N69O9555x3J+19//XW8/fbbmDNnDgoLC5GcnIxhw4bh8uXL3n3GjRuHnTt3YunSpfjmm2+wcuVKTJo0Sc2vpR1aek50Ntm2ECm4ZHYziIW8bv87ACCb02q0guEafrP31sHE8Rhn+0GjY5M6qew08OldpnR4VE1j5ebmwuEIzEXicrmQk6N82HX48OEYPny45H2MMbz11lt47rnncOONNwIA5s2bh6ysLCxcuBBjx47F7t27sWTJEqxfv96b6HDWrFkYMWIE3njjjbDaoqkgS8+1cJEl4xehMy4xc5PvGUkqJf0GoZ0uOXFCFZvcIeRhJ2up+XlJ3bKXxf50vxXiYsIRUTyKQZzMJlnYVGvHVJSKkFPE6iMbxTCzZISqkZ0//elPeOSRR7Bhwwbvtg0bNuB3v/sd3njjDU0advjwYRQVFaGgoMC7LT09Hf369cOaNWsAAGvWrEFGRoZPRueCggLwPI/CwkLZY1dVVaG0tNTnn6Y8S8918pzzXjzimIInnb/V7RzR4CNXgS51ecqC1Ms6z1JxQ/VMzc9J6p6jLPZHgL90DTS7CVGvjPl2bNYJHQw5734NO+OLhAEoZZ74JHNKRige2alfv75PUsGKigr069cPdntNSminE3a7Hffee68mOXmKiooAAFlZvheErKws731FRUVo3Lixz/12ux0NGjTw7iNl5syZ+MMf/hBxG4PqoN/yurMsXbdjcxDAomhpu57PhRSjAggJiQVaJ6qriy4hAamiKeuzMPaap5UqxAGoqt1gcMkIxZ2dt956S8dmGGvatGl47LHHvLdLS0uRm2vNDJtG6sIdxlT7F7jf8Xuzm0IIISSW1TM2Yabizs7dd9+tZzsCZGe7CzGePn3aW2Hdc7tHjx7efc6cOePzOKfTieLiYu/jpSQkJCAhIXrjXULFlGjpMceD2MZaG3a+cOkxjSVnI2uP55wTDDsfIWqcZvXD2n+90B5FOiW3rEtxhXo7JjTCt0I/VJpcKFmtEpaCRuKRHYXlp7QS8XzF5cuXdYl/admyJbKzs7Fs2TLvttLSUhQWFqJ///4AgP79+6OkpAQbN2707rN8+XIIgoB+/fpp0g4rChZTorUNrH3oncIUZ1DiLD2sFTprdqz0CJYI8xbNCEvMF24trdcd/6dTS4CfIyiNQ3wtEgZEbUcHAE4yvw51hf5lQsRUdXYqKirw8MMPo3HjxkhOTkb9+vV9/ilVXl6OLVu2YMuWLQDcQclbtmzB0aNHwXEcpk6dipdeegmLFi3C9u3bcddddyEnJ8cbE9SxY0dcf/31mDhxItatW4dffvkFDz/8MMaOHWveSiwSUgLn9C6Trcvy+DPIQ/jz1pm4CBtH+ZuINtyxFNF37GiQikrNjuWIrOCBVyfuV03bpZTdP+ecwSlaVHV2nnzySSxfvhyzZ89GQkIC3n//ffzhD39ATk4O5s1TXpF7w4YNyM/PR35+PgDgscceQ35+PqZPn+49zyOPPIJJkyahT58+KC8vx5IlS5CYWJvQaP78+ejQoQOuu+46jBgxAgMHDsR7772n5tciBurN7zW7CZaQw50P+zFNVDxGjSTxkDOJee24Y2Y3QbUb+V/MboIko8o/hCOdq0Q+f8DEFnBAWlPDy0ao6ip+/fXXmDdvHgYPHowJEybgqquuQps2bZCXl4f58+dj3Lhxio4zePBgMCY/HM9xHGbMmIEZM2bI7tOgQQN89NFHYf8OhBBS163UuRq4kTF1scoFHl+4rjK7GRqpidO5/lXDy0aoGtkpLi5Gq1buFNxpaWkoLnZn7Bw4cGBYGZQJIeHTKpFiW06fpJeEEDct4hOLWSqOscahd4wGienAmHlAJ+Pr3Knq7LRq1QqHDx8GAHTo0AGffvopAPeIj6cwKCFEH134wwHbwi0dcY9tCU0lWkQ9XA7Y1o07ZEJLYsNz9n+HnNbKQJnu7chESVQvJLjL9j3usy3WNr7ncol2xwqTqs7OhAkTsHXrVgDA008/jXfeeQeJiYl49NFH8cQTT2jaQEJIaOGO9mRw2hSLJJFLQnXAtnT6+6iWxV1AKuf+gK6WidQwohMSp1nhVHNKWDTgypDKXZLsjKvHuUtFCMYXlVUVs/Poo496fy4oKMCePXuwceNGtGnTBt26ddOscVHNhD9mpLR9URM5u1gLs5tA9JaQCqXx3dH73V8bnAbPgODXIfDcnu26ES/YPwzYvxhpEZ/TKFuEyPOciZ8fc19volIRLY2NQ9JkLVteXh7y8vK0OFRs2LUI+PZJs1sRtgftX8MVRaUitJSCSpSjXugdY8AgfqvZTYh9VWWAwg9UoY6+51pzJ9CNO4RkLvJVf234ExCvbO7Kuad6k8Oc3rUiLV4f4oKszbkzKDIwMa0kg0tFAGF0dt5++23FB50yZYqqxsSEXYvcJezD6D+35E7hMGsSekcdzYubiUG27fjB1dPUdpjlBfs8POF8QPK+h21fYpEwICYKN17J70BPjZadDua34Eehh8+2+ijDBVD9MBLasgTtQh6u4zfhL7jde/tKfqdmxzbDFfwuxMOhy2q5xihBEUzu7BicYwcIo7Pzl7/8RdF+HMfV3c6O4AKWPAVPR+cXV2ecp3TphBBiigokYZHL2HwuJAQTcuwAYXR2PKuvSBBHVgOlJ703PxcG4UpsDPIAQrThgLE5KwDALhGAqV1QZnSrq9PBVrSZtTW7CUSsy62G59gBNKiNxRgLmhiwTvGbh7zIjKthFcpY23JDz/dW3DuGnk+sH7dL92ywt/I/6Xr8cLXkigw/ZxvuBHpy+3yWSXfgjxrejnAZkRm6DXcy9E6EAEiUWI0X7eoHW9q/epY73MNgqjs7//jHP9ClSxckJiYiMTERXbp0wfvvv69l26KP3zzkaH61SQ3xlYgq3G4z7sO5GXcGN9nMS9/+34SX0IzTt8jczLj30QgXdD1HOBpzJYafM5FzYJBtO7rzB2u3odryyQoHGBDP0YDTP48LiV4NUFsw+yp+m4kt8W2LVnrz+4LvYMLyc1WdnenTp+N3v/sdRo0ahc8++wyfffYZRo0ahUcffdRb16pOyhsApOXArLwIJIqM+9zsFhBCosD5KFomr4xo+bmBVC09nz17NubOnYs77rjDu2306NHo1q0bHnnkkaC1rGIabwOuf61mNZa1NEaJYecayO8w7Fz+1H5Lqqdi+etZ1Fd1LgCmLL0MVzIu4xLCD7DP5C5iP2uqQ4tIrLgiyldL6S0R1QG5gyKRw53HXlYPNgjg/auPm8Xga6CqkR2Hw4HevXsHbO/VqxecTutVeTVUp9Hu2h9Jvkv7GuKibqecE/cX/CfuFaxNmIw5cX9GC4n4jVz+LOwGVOC9lf8J0+3/1v08cmbFzQq5zzP2+chCsc+2BDjwQ/zvwzrXfbbFYe3vw4Sll0rdyq/E7baf0Ejl1Fgvbq9k8LIS+dx+VY/TUjfuYOidDDSSX2t2EzQz1rYcc+L+gtlxfzW7KZbWkdMm9u1G/hfcZvsJQ/kNuJH/BXfaloLnLBJja/A1UFVnZ/z48Zg9e3bA9vfee09xxfOY1mk08Mgmn01X2/Sbl+3IHcFA2w5kcxdwvW0DkmQyIXf3u4inaFnzpMYw2wZVoyRaUVIGoQl3HkNsgavk2vAnwxoZyuaKQ+8kp2nglwWraMIVoyl3LmB7Q4Vz+3ZOQCvulKpzZ3Laxw+EK1GjQqtaGcxvMbsJmklDJa63rUd9rly0lab9/Wk1+pLNXUAz7hxsnICWfJHf826MwJggzpTl54qnsR577DHvzxzH4f3338f333+PK664AgBQWFiIo0eP4q67rDeFYwp7vNkt8PJU3j3JMk1uCfE6scHsFhBiOC2nZkg0qvn7X/+q4cvPFXd2Nm/e7HO7V69eAICDB92jBZmZmcjMzMTOnTQXazUP2t3L/E6hYfAde9wJbNxlQIv0F2/AlJ1Sdjjh9H+rRUHMDoluPAS04IpwkjXEZRWxV3ooZhLBtqP/BiyaLPuYhriI80jXsVXEX55eqSxSs4Axb7pnPwymuLOzYsUKPdtBdLIj4V6kcAoLfLa6xqez86L9X3jReY8+DdPZ3bbvsEToa3obHrN/jsuIQ7+qd33vVDhfHcvlF263/YTPXFeb3QxV7HD51BtSoi13wrDA7ZH8WrwW9543yLxT1QeGnFfKjoR70aXqn/I7tBsme9cHca/heecEs6tXaqKA34gfhF5mNyOkRijBTbx06pAB/A6sFrqoO3BSfWDi10DTZhG0Tj1K8xnjFHd0ACDbtw5LPQOSr8WyRFQjnauQzirc+lrgwTUhj6FFRWirirPQ6FswUu0Md+TQZkJm6RTuMjgugqR1Q2dq1g61Yikjd7RM4MXDCU6PxtrjTcmc7EGdHb0s+6PZLQjfvJFmt6DuMPFNbxXR3ZGzdtvVlA8JCIq98Ks2janDxK9xude7XL8iWjpH0YI6O3r4/nmgMHC1muWVnzG7BUGlw/iVBEQ/Sld3maGAD17Tril3Dq24k2jLHTeoReERZ7VWqg+/13dDlXX/PmbJwoWAUbpgpRF68AeQhWK0447LpnKQWvkIAK3DLDnSl9sT1v51DXV2tOasBtb8zexWqGTtb6vtuWOqc6DoXSuLhE+vfB89uRCp6v0koSqgXlYX/tegj4mDE6NtazDSVojmXPjB5np39MItifGq/b3AaesEiWDirmMiaBWA3Mjj6IzIFyanJ78Pj9gX+kwNBuuUtOVP4A77CoywFcIms5w8Hk5cx28K2J7GVaIXt1fiERLn4Y5jgI0WBwVDnR2trZ8LMItkqCSEELXqtzC7BYRohjo7WhPNc4uT6yXjElpbrEBisij5YAp3ycSWGO8sU76UtdLEZbsuFbEXJDyhSmKkqUi+mYIYeD9xOnw8HFun/TFjWKR/AbnA+HhR4swqxEV4luhAnR2tib4NDeK3oRt3CJ24I/iNbTlmx71lWrOkdOMP4WX7+3jJ/g/0MDJF/u8PGHcuGeHUfHKoKyEXWlxSyF068kf0OTfxaiUzDXGb7ScM4HeiL79b8bEG81swlN+APP40hvHrw25LW+44buVXyt4fkzWlDv2I2A3Hjez3iuT9P4pfjXhOesqvnSjWrK58oaLOjtb6TPR+I0rkHGjHH0cn/ggyuVK0408gB9LBaGbgwDDOvhx32pcZWy9FiJ3lpHpLjYURAp3Vw+WIlrE3kSn70Yw7h778nrBSMPTgD6JTzQdURz78+kZ9+T3I5c/K3n8r/3PYx9SUHlP0S5+H1eMFVetxZ0QPV502AEBrXlyyxbfTJdcJimXU2dGaPR7o/7DZrbC24+F/4yXmU1MBncSYCh2+rJWpq6MWFSjFhGVQZ0cPQ/8I9HvQ7FYEGMmHTmLXjKv9Vim3JFLp42VVKNhHY1ncBcPPGY1scMkWIQwndomFGL7vyGk7Pdehpkq0mpVRAXidpi1lpHmL1zKkyBTx1VtzTmHaCWfgSCMHAamQLsDbvubv4hnR7hZkSXxn7ldlbTBYPdHfJJ3TvnhyMPFwaJN8s+3QyI8R5aizo5frnje7BQH+HDcbX8S/EHSfDvwxrIh/DD/HT0EOd967vSmCd1CG8uuxIv4xdFIydJ/cSFF7tfKK/X00CJILw2p6cEpimkLHAtzEr8JvbMu8HYFg+nG7cSP/C+63favJlGZPPvjy7wKJpbaRuIbfgjG2HzFaQYc+JEGDD5cOymv/5HDncZfte9xn+xZJnDlZywfYJGri2ROA1tfV3n7mJJDoG9j/oO0r/JIwJaCa9hB+AxbGP4/P4/8AAPg2YRoWxT+Lu23fy7ZhnG0ZOI2qfWupHqpwr+1b3GX7HtkyU556sXMC7rEtifxADVpFfowoR52dOiSBc6IXvz/IHu4P0JZ8EXJ531GdeiEuws24s2jJKywe16yPsv000kTUadOLlnl8GnEXFewVukPShCtGY65EfjWRvTZAuiFXipZ8kWYftqGyI9s4bT/UeI4hhzsPO2eReLD08GpgNeDKkBoNKyJTGvvcbMOfRI5EB4CHgB78Qe/vlM5VoBt/WLoMQWoTABw4DujKHda8yS25yKfJ0rhKNODM+cKUbFIHONZQZ6cOswd8izIoSPBYoTHnCcIusySziDUwuCXqlSP0aq6gcvK1aYjJtKifFGrajdSQWY7uH0gb1vM5xFNaR/oxkQTpEuJBnR2T5eAcHrN/hkxclJ331tot/Eqkoxy32370vaPPRCAlW/Fx+qtdBvvZXQGbGuEC+vM78YL9Q3XHDNNvbMslt+9nBlbkPbBMs0O15E6FX07j5GbNzm+WeDjQL4yl4XJ0Sy9gATzHMILX9wvGQ/ZFPreVjU7W6DACGDMPSJW+9ky2fxVJ08x1QTo2LZc7i3q4jFzuDBLrTMFlc79QUGfHRPfb/ofViVMwyrYWGxIfxIfxrxly3j/Hz8HWxEm4xrbV9452w4BJPyk6xnP2/+Bfcdq0tw13HOsTJ+Pj+Jcxwf6dJscMpcC2CUNV5EHRzK5FwOLfa3Ko+ihDPa4KE+zfoR8Xxge/RLCpUvlcsOlQY6ShAg/ZF3mXekfiCl4iZiWGvBv/VyyKf1a3499k+wVz497w3r7Ztkp6x1v+Ib2902hgsnTCwZttv+C9uDcjbaI5Dq+Q3NyYu4BJ9v/hVtvP+lQYJwGos0Nq5fajpZJGWfIUYja3CIkN5/ZB89dosHg9uvYQHVFnx0K0iD2ICG8D4utpdrgEibl2KyWzCidN+mUWH/bxg8YalLqz9oYK5JUiV1AwXOIl5pLHbNwxgmNbtyMnt7Q+HPERLgfmQjz34jaK3zNxQQKwIw7O5v3eD4XvAodNTmKokPjaqclSbYvJqJmi1uK1iwFT3P+Mpkf5kTBQZ8dCOnG/4l7bYrOboZk5cW8FTBU9Yf+vSa0JNJDfoXjf9nx4q616cPsxxv5jyP0acxcULQ0H3BfxftxuzVbtZKIUPbn96MIdRq7SPCsKNcJF9LTAVJeUVqFW59hCd2x78JGVPImHCwP57ejAHUVHib9/c5xGHleE+22LfVYTpqECT9o/RjPuDHpzezHTPhc38avwjH1+WJmeJQkOZdukJCqvNaeHdtxxTLJ9gztsyyXf1zPtc01olXYKbBvRhjuBkTrHXsWy2I3Ki0I2jmF63H/wT9cIs5uiiWtsWzCI34rWVfMBAHfYlmGEzTqFAHsESXDmbyi/AT8L3RTv/1bcu2iqYMm7nRMwiN8OF2fHVtY66L5D+I1oxx8Puk84OI5hkG2bZseTOvYmZ1tdjq9WT24fkrgQq3uyuwBF8sHbmbiIDC7yxQS9g+QiSuIc6MPvQx/7UayD7wjbQ/av8ZD9a+/tO+COC1ni0jmlQ7AyL/f/CPz1vtrbVzwMrDNu9IDjgGfiPvLeLmZpPvffYV+B+a4C7GAtDWuTlppx59DMdg4uVjs+kYJL6ldkMuuOvOqFRnYIMUNaDsxenUBkVIW5qq2uOFYoXxvLP96mUXv926NQKdNual6SzQpVw8O8llzU7ktTtKDOjsHOICPkPlpPKWihfhRkILbi8yary201P2jU4YlPCfMBnHbnjoB/mQKpOK9wXUb48VU+zgXP/qy69IjKANz6opQC9XVMbFeKZJ/bAVnH930H7Fig2/mxJ5IpfN/XcqqorMN56DzFlqYsgWQCaqcEk/xe5/63lRAvWT/Lwvgdzx8E9n4rOk6Qc3e8sSbpY3iSpKZUS08C1caW2xCjzo7B5PK7iP0n7hU8Y5/vvd0I5td1GmXTIA2/mAZz/HfYavPUPG3/CP+OmxnxMQ2zehbQ+16fLMYRqQ5zWqXjKBUdJO0N49fjGn4zruK34VZ+ZchM3UoICi5rt/IrVR27LXcCV/HbVT026DSQP3ti7Tn5E/gg7nX8Pe7P6MEpn3oNVzXz7YwN8M+jtX4u4JD5sDrwQ2Qn37UIWDBR/eNTsnxu+pev0JXctYy3AblXeG8mc5dxK78SI/hCtOB8s8234k4iVS7TuQzxNLkrnI/yvYsBV229ryzuAkbJlVmJT5beDun0EyP5tRjFr7FkLULq7BjM/0UuJY8/g/+z1eZnGGfXLvlcSDIXZE1XONzxKXDXotD7hSAuVDrWtgIteA2KQBpp7//cCdU0EeYcfGZboG8EHy4aSeYuozt/CL34/cjljSsQmxlO0juRztxhJIaK+QmXVIfXO/Lndo1tC4bZNhiak8UWTo20la+rP5HgijwVg0R+sAYoVX88LaRkBSy1z+XPoh1/PKD+HM8xtOPCm1oKayWnT4yO7+M4MLTmTwY+JiEVyMiVPWQmF/j8tuSKao5lvZgg6uxYwYg/a3u8xp3Cf8wzJ929eCNKObQcaL2cGqPelr+v21gdTsiAsiKgUv+6XT4adwaufsq94ijST06p5atth0R2TAvQ6zLtQO1r3qeCvFRyxzjlFeYtoVxhXTyxZ04CL14ETm31pmJQLTFVdMPgKdpgwb6q32OR/Q4BHaEKFVP8ra4xfbm4lmLnN4lmbQrMbkGt8trRkSzuAjJQBg6CpquA1PLPlNuZc99uirNIgd8HRhtzP3QbcyXen1NRiRyck97REfhB14ArBQeGeDiQFqSEiGeUMKwMwmd2AmvfBc7uVf4YA6WjXLZumRptFX5bFsenhJN/KRznRHEVJdB+CrENdwJ2OJGEywGxUEBtiQJZUkvu/XLvaFGaI4DomjPatlrdMcTxPrfMlS094TEgjLQTHfkQqSFOy0xrlp92x8eokZAMtA9/1NeTxiAg7YNErEwjlAAIjJuLVbT0nPgSzX3X46rwS8IUXEY8GppU8RcA1iQ8jGpmR3PuDG6s/qN3+zW2LVjHP4g0VMLuX0U7Jx/Q6rp8MbwcOx/EveYTexLHubA84XF0qJKo+xUXOIXRGCWYZPsfbHDhAlIDH1NjNL8a5UhCGhdm0F9VObDzS3fcTtD9ygAEGYFTeyEPIpmrwkTb/7CZtcFaQcUIpZ8R/DpcwC7Mcw0Nup+S6WWra8OfxPqEh2CHSzIXU32uHIUJkzHPNQR/ckqMVjbpDog/12+fB6xtBOyvjb8YbVuD+ijDeMcz2jVcdM253/4t0lCJJ52/De8Y4nifDiPcpW9e/J/s7vPiXsXN1TNQFGTBSAG/Ec25M6HfX3IjO4LLHR+jRo/xgD38sYih/Hr0x87A+B+JZLFjbStwCQlIkcvbtftrgLcDSJS+P8rQyI5e4pOBBzUO6lXK/833zEng9wqToOX287mZzFWF39FJywGeDq+DEEwqKpHHn5EcEW7MXUQi55f4LC0HyO6q2fnDLZiZzAV+ew5oIzj3t8/kTMljJHFVQbJNu58InmPhd3QAeCdqDknX7fEqC9EB+HWle0qs1z2123gbMPCx0E0IEhydwDk0q3TNcQxpARd+AwKzw1mOrGF76nPlQZNOpnKXfFZ3+TjtN9qRNwC+UynunyWDT8MoIBwgb4DPip8mCvJThRRimtzOCSHPwwEq318KiKeApaaDVU5/cZy7zQEP91kx5r7TxgnyHR0PtYHnPe9R9zgdUWcnBgS8LeRWTCihMpbGLk5jXnrSmNgfOQUztJ1rlnk+fT8GVER6XPMs1M/LSz+OkwgqlQ5NZDUjN0EIIYLSq8qAEolOrZIcHtWRr5Zhap+7vCsjPremNGuPsudD9rXqP6V6dC0CI5hkzjHoSUXnlsTbgF4TJM8g1VbpZdraRFr5lmPQ4pgWCdQN6P3Iv1Zqy44woKoUcKn44mHBpIXU2Yli3biDGMqvRzPObxVLqA8pjSRwTvzG9gM6cEcx2vaL753lQVZGRZRPQwHNVjhJu5rfgnjOhcH8FnTifsVN/Cpv7RrFbpnrHmpXI8iy8TbcSWTiIjpxR5BQM5qUK3p9MJVv+foow9X81sA7pJa8h7sMPoSr+O2SeZ5Ux/Y0aBVhixSQmuKT+7auVXtSGivabaDSpfOf3gkcEb2vg8XCRBp32LA2e3gP/gD6crvRl9stWZZjkv0btOZORHY+P/343aiPMozgC9GKO4UsXFAcy9KGP4mGULe6zxQdR0kuKe/L7UF9lKE35xfPx1S8z3Z+rrJx+qGYnSi2KOF56Tt44/6sr8T9U/qO4sPyD1owESh4Hwg31flVTwARpvPQwkt29+/chj+JxQnu2IWx1c+G9yWuwwjgvMqlsZltgYZtgFWBq/gyuYu40+77JImDpdW62/49nIzHT+jue4dUHo5LgdMc9VAFJ3hUqwj+bccdQy/7PrzlvNVne/cwyn2EJSMPKNsS2TGkYjXi6gHV2hRxlXTPEuBv+e6fb/kHsOA+yd1y+XOYZPsG77luCH1MpyjvkScW5pUr5PdXSxS3k8JdxqcJf5TddQC/E4/YF6LF5Y9k9wlXd+4Qutvd16w2CG9lWDZXjPGi95z/69RyMtu6X+NrZvlsHmDbiQHYGbg/Z0PYI1RyX3gOLAPygpfF0QuN7BjlvtDJBCPHuedmpb71S1UzVxrHE24bUnOALfOD77b6r9LbpwSp1ZQ/PvTpPUvow3XhV2B6sfR9cTqnm1fDf5RAVdyHzEjDVY+7Y3H8q2D7k8rDwRhQpGDkQK69Fkh0iAT5oHBTKH2fiqeg/fK7aEJwyU9z+19fbDJL5+PruZebv3jR933qF7cTPj2XmpuQadwWp00ZiqseBwZPcz/Xg6e5/wWknZD7/TggIU1RYVzFfv5TeMk1NUSdnZhR84K9/lXzqwD0ugcoc1eWFjelNjCSAeXGLnesDjWIuerPwJ9kvnFkNNe+QZE4J1FNvOXVsrvbRHEIvskhg3xbO7dfvg6Sh1QejksXgOraKSfPVFMD/wRkjXyLW3rVxPKIp6h84sFE4mSmsSRT1esoRXI5t8RzG0ksnRXoGYfH24AhcqM5Ki5oek+VK6BbcLORVE5P+l5zRO/TsiLgiMr0AhGizk6sSKoPjJkHdBptbjtumesz/85zDO/E/RUTbd/gHvsS05o10rY29E4S0y8A5HPSmJVwa/fXgR2ehvJDw3GcE0P5DejF7UVHTkFOnnP73UvTQ83VZ0pUNHf6djRusq1CD+4AruX9VrSFKBfSljuBPtxeFPAbkSRRQqIPtxdtZOI2evH70JPbjxt4BX9zDVzB70I+tx838r8E39GCQZty/h33SuDGYHF4WpCLtQuRMweA+7rjsWdxZKUn/IXMd+PbGbuJd7/mA8ptWFVbmbQMHUepLuiayDkwhN+I3txetOP9FjHo/TqSQZ0dK5CaYgqXPRHoMDJwu9ppHUDdNFeHEQF1akbaCvFs3EdorDJFvyp+GWg1z6My7nPgcYkRFh8104oaLsP3CrVs3E8n/giusu1AkpJSBwdXQPUqErvv896MO4fBtq1o4J++IDHNPcQuI4Fz4ErbDnThfw24LwvFuNK2wxuA7S+Fu4xBtm1ow8sEsYY7PdDllsBtnWu3pXGVuNq2DS15la8xPapmi6eLngk/O/FVNomke37va8XE15Fwr3XjPgcmrwu9n7ijtPR5aLoKKsgXCQBA2+t9brbgT2OwbSvSOb+4lY43atcmLfkHyHcd457GzuocuG+LqxQftjP/KwbadvgUQAWg/nUUIersxIqyk6YNDwYIOf/OAcmNpO/Saj5X0DIQVOLCmTcAOFU7WnGJScUoMKD0hA7D/wqWjYfEycemVEdw7KT6NccNMfXAmPRIhxVidpRQWOk6pgiC8fEWeQPCT4dRM4VumLQcZftFFJNkoIxc/UatU7Nr8jcZjzo7UaIV5/vtrAMnkcLcpOHBAEHn3wGAyUfrvz848vPvWgQsfNBnUyPRqFJ2TVK0LFE1+WzOHZw8sqb6by//5ZdSRM/3VtbG+3OWf5X6CP4uyaJ4kJAJwBSr6Yi0uiboXg1r4mwCvpkFPTSnrFTHri+BdXMDtweJPfIs7xcXgDWNwqRvnjIhbbjwR1f01JxT8Zr8eAzwTl/tG6OTa23uLyPdZSrFe0YNEyJNYBn0tSC6z8gqriaww+mXp0jCVU+YVheRlp5Hif/Gz8AOoRV68vuwUWiHbvyhwJ1MGh6UFCrXjVyw5uUgU13x9YCmPYHjQfbxzNe7OvhszuJK8G38U6hEorduTHP+DL6JfwbVsKMz9ysA4PW493CLsArd+YPoXTUn+O8g83zn8WcU7adECncJ42w/wAE7mkCjoqEJqe7AwwYtg+6Wzx1AJn8xcAoqlEbt3XEOe+XT9QOoCUbm4DNyFmTK4HbbTzjDMnzyBkmKT4ksaSHHu6fYfn5Tfh9bnHtly9m9wP6lsqNho21rcJI1RC53Fh+GKFkRMfEUUYjporG2FXjOKb00PaiyIgAKRzL0ctci4D8yAe4if7R/gOH8OvTkpaebH7AtQm/7bvQIJ7bmqsfdq5N+OgA4aj7Yg01Det5rjdrLJ+ezxbmP++P3ftvj3dmVVwcpUuwRlwQMDPGa1VE/bjc68UcCqrkHaHOdMQ2SQJ2dKNGIK8U1ti0AgGtr/q/FuYdStR4eNGmJoCzBFXp6Ksh8fUf/QDkgICYkmavCdbbNcDDxtw+Zb2R+pTUC1fxdQu4XXKOAWCcOSEhRN5XV+RZ3YDHHy19841OB6nLYOAEt1IwAAKHjHAC4/07Kv+0mc5fRUknsVY87gXUhOqpaadQeqN9CIueRuxOXyFWjFWfwtIoCdk5Af34n1gjiuAwlf4soCLJObQKUFSGJq8Z1NvlSL/GcCwNsuwCuCrosYe06xv2FwoiFDM7LxgTAyySszeNPB8YoeeT0BA4FKUBrEJrGihXXv1o7PCh+zR9Zrb7Tcnx9xM3SlJL26DJfL3MRUTIcK/67qCJzEQ4xBSUrvVnoi29rz7G1/QCwSQ5xK7lAh9kOracLQn2IxMT0hN8Im3drFHRu/AWdQteI+GkplZmi1DP2xR9jysq0RKpUxfU1qYH27VCBOjtW8ONrkT3+lrm1S853LQLO7au9b/5twFtd1OWdqPCdLuhUM9WjhRzuvHeF1EDed+XHPTaZJeoVIaYvRNrzx5GJEjRAKTrxEsutEzMCtyU1kN6ulvjvopbUSrqOo6SXfWslsy3Q+WbNg4X78HvBgaEHF+Yqv5BLf3W2T+L1KJXrSEyqzVbuFCVlSCaPu8X2M+LgRAG/wfg2qdVhhO9SdK2d3eubYmH3V/qdyw8PAU1xDja4AleYalymBYD7d60QTcuX/Or9sRFXgkRUIxmX0cC/nEuTfO3bEiGaxtJTckOgxzj3z1uDZBTeEOEb0xMfs2sR8OldgPCy7/2lp6TzTniWp8rxWzH1Yfyr6BMqjkWhRM6BZfGP4zLikeyXR+XFuHmIgxNz/dPZy63gktCAK8PahIcBuIfsfQx+BrjiQeBVUfbfMf9xP4+b5wNfPxLW7yJLixpdvSYEpHXXtaPjITs9o15Pfj+6cYdEhQYVCjUl5lnCrjZeIW8AcNSv82KLd0/57fwysEAm4M51xNsD85B4YjoA932e56/rGGAngOoQv7vn8SUy2bx/fwB4o430fZG4VCI5rXmDrRAF/KbwgtStQO17L1SMzLn97r89FJTa0IJfPBDHAbfZfoILvPu6Jr60ib8YiV+HoY4rF3N0dq/79S8Mlrw7FZWYaPsfOLDAWJ0GLX1Wq1oBjewYQXABGz/Q/xxLnoL0tIDKoWi/lPNafy+1cSygo+MheXFVkgI/tQk8LbVzQmBHBwB63h04tdS8pt7PipcD9zeTmaMBSs8tzrRcWRw083JgR8eE309JbAMTgANLEfS9c+CH4Fmmxc+ff1kNy5H/PRM5R/gvw3N7ImuOVUWSg0ojHCfxBY7j3FPUWlHy+gdg4wTpoGQLpmagzo4Rzu3zXhTFcQvSMQwqHVntnTtuwEmtRFHxBjVpiaAsJe3xztf7X51Ft+WOc2Q1UF5Us3ft8xV132qNdHYvsF1U4fjYOmDtu9JVv4P9TYyk5ItHyTFvADgnupjXvi4YUFXq3k8pmeBO6efKeIoSTsr9zfZ953tbwxFBS6lZdZcCrdJAaMSeqO0XI9HrP1HR68KPBadsaRrLCKJlsENsG/CT0A3ViMPNtlXanUOUy+Ux+2dgTmCkVLr8G98Bvposf5z45NqpLfEccEoWUBbkDR5OpuZb3gcW/x64XBJ4X2J68OXnoXQY4S6b8e2TvsHKqdmhg5dFz6GdE/CY/TOsF9pjrG0F1gid1LcpXP0nA2tnhd4vFM9QdnVF6OWroYa9pXiG9JlfcsKqcumq3/HJvkvCE1KBVoOB3YvCO68UW7x7KTgQOnahugIIVX1ddIxsFKM9dwwCODTlzsvuF9S5/YDTCSAp8L69i91TZipT82vlLtv3OMKycAW/S36ntCZAiej2qL8CKTvd0+fwj9Oo+cA7uib4dLlHfLL7OvKKyUvb/XnSDJze5Y3PuZrfikLW0ZuyQr9z17yuXdXBp2l5jT/KRa/rK/jdEAQebbgTqAr1vrEw6uwYQRTomcMV45/xb2h/DlEul178fnwUL1Hbxm+/sNyzBJgln/AtLB1GAO2G+cbMeNz/I/C3CIPbOo12f4h6jj/ucyCrK/DnEB8mfs/NFPuX3p8N7exEC9khfZkl5eL4I8+yXLnRDl0pGOUUddztnIDhNpmSBUo7+AdXAAiSav/AD7UpAUzSjj+Bf8e/Kr/DuM/daRReuaJ2myCEmD7ngCVPu0vZWG2kOFyiv3Uufxa5UL5gIuqIftcmXDFutf0MAFgnmNshjwRNYxkhs53+F7G8ATVpy+WGD2vqNKnN+aL1hUrueFqdR3wcpSnn8wYAKQqKDgLWy0FkhqBlJSQ+/PxjWEz8YA+qusId/xC07AUHJKQpj8UJ9VyFOyWmuSC/p4fU+6j4oPzSawDekil6l7Ix4v2YkausFIoWLh4PHg+mN01/V9G14Ph6066dFr3axBje5v5WG8yAKe4pphriOBFPmvyQ57jes4RdJjbi+lfdBRg9BQLVFggFgOteUFVgUNYzJ91tSsmU38c/LiAS8cmBhU55GzD0JWWPf6evuuX8erjqcffvM3ha0OKaeokXvVYNj29SMP0mjr+qJxUQf+mC73uh+CBQOBto7BnNk7ngtylQ3WFr5DMXVEOPpcNA7dR0yPeripiqy6XeH1O52qzoqfDLkB5JKZv4ZGDsR7W3j6wJ3MeIMhYcLyqFEmEnwDM1Nnia+/Xrn8pgxxfu2LezCsrW6EHL3/XIL7U/L5joToWyS4Op6zBZurPjcrnw/PPPo2XLlkhKSkLr1q3xxz/+EUy0moIxhunTp6NJkyZISkpCQUEB9u8PVY3aBIOfAvo9GLids7k7OkP/6DONksg58K+4V/G8fR5us61Udo5Oo93xKql+oxNpOe7tkeZ8MUKwDsSih6XjfLSkdMlqWZH0cv46KJW7hBF8Ia7hN2tfXV4DNk7ALfzPGMRvQ1fucOAOZ3YHdjSqyt3B1rl9pfMNdRwVUYzNCJtEcdhIvnxEasy8wCnu1OzQ+WoS07w/9uH2YqZ9Lv4c9y7acX4J7rQsZfOTxFRbmUGvu0bttc9BdXZvzXJ2P1Xl7qXfZnV4tPpdnX7Zk0tPuWO8DO7wWLqz89prr2H27Nn429/+ht27d+O1117D66+/jlmzaoM3X3/9dbz99tuYM2cOCgsLkZycjGHDhuHyZfPTUwe47nnf24OfAZ4tcnd0gIAppsG2bbjPvgQpXBi/S6fRwGRRfMG4z4Gp26OjoyO4aso9BBF0yNxIUZhZVkft+OPozh+Czbsk1lqrMZrzZ9CT348ETunIU83f98xuoI9EDakIcx3V918xGc6UmB46jQYm/eS7beKPoTv/DVp7p89tHMMd9hW4xbZKNGNZM32uaSmbEOk19J4madQe6Cv6otPxRvXHCrrEu2bbgR+MKQUhxf93bdxZfl+xoO2tuW/J04ZOaVm6s7N69WrceOONGDlyJFq0aIHbbrsNQ4cOxbp17g9zxhjeeustPPfcc7jxxhvRrVs3zJs3DydPnsTChQtlj1tVVYXS0lKff6bofS9gFw3BmxmvYgVHVodYMcXk6zmZIoILUCRlPCzPWh2dQErbVxNLY0QHu0l382OY/K8TSq4bxQeBYTNrbgSZPjfyGnRMYtRMa+L4s7QIVo+JlnhLq3kNhioFIbj06xCJf9fEdGWPKT0RsOkUxGUjDIrlErF0Z2fAgAFYtmwZ9u1zlz/YunUrVq1aheHDhwMADh8+jKKiIhQUFHgfk56ejn79+mHNGol53RozZ85Eenq6919urkUSfnmWXgYzZZsxbYmUVJyAJy5HbrheNK/flne/uRviIhKhUwcnjCrRnumZRFShoZIq4KGW4s+/DZh7jbtzN+ARIEfBCrSrHq+d49eCZ1mrwmPawJAM9yhjYHFSkYRU9/C3CfFDitgTAzbxYN7cKVlcie+d/lNcapbpA2jPuQOQm0lVbfevH2SLc2df//2+wNepJ+bO/1+I17Am/KeZ1/wN+G6a+zVs8PT59bz7S+//2Vb43iGVuuKZk0BOd13aERHRayuz5j1VD5cDc7A5qwJj8sTTS45KYJ2OJTLCVV0bs5VRM4pph8SXu0hiucJk6aXnTz/9NEpLS9GhQwfYbDa4XC68/PLLGDfOXYKhqMj9AZSV5TsfnJWV5b1PyrRp0/DYY495b5eWllqnw1OXieb1b7StQSfuKBpzJdJZkA12lW0HlnOPIZ2rkA5yDUYuDqnsNPDrESAjDYDCVWAm4jiGu2zfoxxJaMjJjIaKKz1bahSuRvMB7rwvfvlCOI5hvG0pypCEhvD73TSKpRnI70B7HAusI6ThOXS1Z3FNnJrfSEbpKWD1LODmvwNfTnJvG/c50PpaXUd0ZsXNwl6Wi46cX+07LeOD9Cb6u3fk3de7ZFwKzEos9fqoLg9+20yijncz7hz+j/8RLl5iRNXAv5WlOzuffvop5s+fj48++gidO3fGli1bMHXqVOTk5ODuu+9WfdyEhAQkJCRo2FKiibwB7nIPNVNZbXn/oVDO/Y3a8NQs7orQrXj/DrR0pWgfQeOQah77689A1m2RNdEgCZzDb8UVBySk1A7FW3lJOQAUbYfc30z6d0vVKA0/B45jaBywCqvmHJYvJ4Ga13GQfDrLXqzdpOv0uftDM45zoYtPUj/OPZqUNyAwKNaqPEu8q8oBMIkvEX6vDyWxMCH3M4BfuYh0rgLgGADPqKrob2UQC1+VgCeeeAJPP/00xo4di65du2L8+PF49NFHMXOme444O9v9bfj0ad+hsNOnT3vvsxSp5c5S+/hP/4gfY8RQtRT/8174VfuYE94mKvcgQzw/Ln5eQk2RRUxlqQNRHFLAclwA7jn5Mmt9K1Os5jlodY36Q4in0gZPky9KGNYxgxwjaL4bsZrfrU2Bb8yCyiksn2NKniPIpdhzTdD19Y3A97j/7VDxdKYuHvCLD1ISEmA0qWnjoEu8JV4fMrE7cf7fAEPF+Pi0K07dlHPfSYHbPFPt4lhUi8RyWbqzU1lZCZ73baLNZoMguKc1WrZsiezsbCxbtsx7f2lpKQoLC9G/f39D2xrz/HPcbPpQn9wWwVZ/jP4bkJih/TlDuWWuRDxCk9DLcgGfOelp9o9QH2V40v5x4H6uKKy/5YnNMaIKu8YSUY0WXBFSUYk8TiJuwPO7aVXCoeOowI5KQoq25zBIC64I+dx+5HFF6MuZUPDz6qcDt0VTeg1/cku8pV6DfvFjfbg9SEIV+vJ+fwe9cjap4f+6N+lvZelprFGjRuHll19G8+bN0blzZ2zevBl//vOfce+99wIAOI7D1KlT8dJLL6Ft27Zo2bIlnn/+eeTk5OCmm24yt/GxZtHDAPxqIBmV28Kj3TBg1W5jzwlIl7d4qFDZtxLRnPRv7MvxG/ty6f1scYiq5exWj80JgeOAm2y/SN/Z4ir38LqW03GZbYGMvNpyGQDQZyJgj77p9HjOhS8TXjCvAXn9gZ9Ftw2ID9Jdo/ZA/Ra1BVTF7y8xv47DlbaduBI7A49npRiwXhOAH2tq890yF+h/uyl/K0t3dmbNmoXnn38eDz30EM6cOYOcnBz89re/xfTp0737PPnkk6ioqMCkSZNQUlKCgQMHYsmSJUhMDFxxQSJhcm4Ls6lZlgsExCEFqpmTj08BpAJXrcrqsTly4lNrpgyDdCyb9NDnd/OvBG3BytBBpTap+YIj9dxx7tFOM6ayoim9RjBKyqkojR/TJM5MI+Lfq1kf0/5Wlu7spKam4q233sJbb70luw/HcZgxYwZmzJhhXMPqivhk4O5vgA9vAADEiZYOxvuXBThWCLQdAl34LOMWjex4luFaze8P1LaXtwHDX6+pCg34flDUXARaXAVcEl0QPKnkAflRE3GV71iitMqzUp5YBM+xWl9Tk63WP7hcdNuu0dJ+f1rEIwXjie0JdX91hbrK4kP+WLMaS+q5A1AwA1hwf/jH9W+jEZXPPc/DtCCxnRHFZ+nEp4Ms83fofHPoEUP/60cUjs6GKwq/mhFDiWJO0rkKPGv/D8balgemuzcwX0LUkSvjkZoFtBgINGxtTrvqosy2MvERGqb/j1UdRgQvR6O01ArRRkAMmMZxZjHG0iM7xAL88iBMtMvkjImm3BZm6DQaaDW4Nu5n3OdAvY7As8+Z2qw6SSo+Ir1Z7W0iT+p17ImXsVJQbF3Qa0JtDJhcjA/xos5ONAuVpVcLeQPc39xKT0F+rj7HfcEzhKgNR1abE5goft490wZP/6/2/qNr3d9yg8X55A0AzutQpkRqeks8faJ2KsV/Okjt49XwLI31P3ck0wz+8RF1iWeq6MV31D1e73I0oabj4hK1n+rq9wCQUZPFOtzp4fh6vtPOWky/KqEkxkcpxdPiouuvZeoUKkPdQBIcbwOuf03mToPzJexaBJzZVXt7/m3AW10Mr54bwP/8n95pjXYRQmoJokzsNAqlzolNtT/v+ca8dqhAnR0SWqfR0jlljMyXsGuRO8jXPx9N6Sn3drM6Fp52+TO7XYQQojVXmKVyLISmsYgy/sGHSnNbhBqSVkJwAUueQtBU9UueBjqMlG9PGEU/DW2XEcxauRXJio9gjw01fWX0SpNYXBnnmaqlEZDwxOJrQU3pCfHzYJGVXjSyQ9QxMrfFscIQ88MMKD3hjuEx0pHVGrZLdEG5eBxg5hc/JYSQsEpPWBh1doj1iZa132Jzp069mt8SdD9DiM430eaevx5n+yHofpLOHwROi7Kgbv8cWPsucHavFq0khBD1RKN7WSgBB4Z0lPsVzbU+msYi1ida1n6P/XuMsBUiExIrmYxe/i463zP2jzDRvhiNAqpaI3i7So4Cp38B7D18t1eVAzu/dNdUIoQQs4hW/ObxpzGJ+x/i4ADPRVF5G1BnJzr4Zwq2YtZgPeX281n+3pjz//1rlr/nDZA/hlTsULBtSrLMipblcxxD44COToh2CS7gxEbAHiTm59CPwNVPmZM/w0pZVqMxFsJKz5+/+GSgxSDg0HmzW6IfJRmlf78POD9N/+zW0cyv9EQSJxGknJAKXPGQpfP8WLdlhHj4LH/3rydk8PJ3sUjbdXw94Kh0HwpSMToMqCoFSo5p0VpCCAlfQIkKCa2usXRHB6DODokWciUXjFz+rnW7Ks55f+zIH0UWLiCf2w8b59fxoRUxhBArkEtim9nW2HaoQNNYRBmtC/TJDTEHm0YKlqpe6fH1EE67xJIzvT825kpwh3259H56Z8k2SjRORdV1Rr6PSGhmL+mO4hIV0dFKQjz0TlWvlpp2NesDxNWD7NAwOCAhre6VMyCEWJOWJSoMFj0tJSTW8Dagaa+aGzIxP20KouqCQgghVkTTWEZLaaT/sDANPUfO/znUK24mozmQkQacXAVUl9VuT0h1d3QatdfnvES5ujL9RtcN5erKawIwf+pMI9TZIcRsDVsDzToCq/7svh1lc+EkSjFX7c/VFbETG0aIBLqaEmIFUTwXTgghVkdXVEIIIYTENJrGsiqaPyfRwurxC1ZsX6jK7dGIrlnEwmhkhxBCiLU5RSUKHJfNaweJWtTZIYQQQkhMo2ksYk1WGxK3WnvMYMXpIK0Y8bvF8vNntFh8P8bq68MWDwx4BDh/3l3U2iQ0skMIIYSQmEadHUIIIXXLkdWA4Aq9H4kZNI1FiFECht5LTWtKnRerUwZGiMYppF2LgLMnAdTUmZt/G5CWA/R6ytRmRYRew2GhkR1CCCGxa9ci4NO7AJfTd3vpKWDRFKDkqDntIoaizg4hhJDYJLiAJU8BYBJ31mw7sRFggpGtIiagzg4hhJDYdGQ1UHoyyA4McFSG2IfEAorZIcpF41w9IaTuKj/t/bE9dxQ7WEukojJwv2qJbSSmUGeHEEJIbErJ8v44Le5jdHIdwRX87sD9TMz/QoxBnR1CCCGxKW+Ae9VV6SlkcqW4z77EbwcOiKvn3ofENIrZIYQQEpt4G3D9azU3OL87a2437QVw9FEY6+gvTAghJHZ1Gg2MmQekZvtuT8sBRr8NZDQ3p13EUNTZIYQQEts6jQYmr6u9Pe5zYOp2oN0w89pEDEUxOyS6WHVFmFXbRQhx4221P+cN8L1NlInirM00skMIIXUREyXao1pRJMZRZ4cQQuqaXYuAExtqb8+/DXiri3s7ITGIOjuEEFKXeGtFVftuLz3l3k4dHhKDKGaHECuI4rlwEkVC1origCVPAx1GWiumRVy7qmg70CrLWu0jlkcjO4QQUleIakU1QonEDgwoPeHezyp2LQIW/7729vfP0pQbCRuN7BBCSF0hqhX1qP0LJLmqcTW/Neh+pvJOufX03e6Zchszz72snJAQqLNDCCF1hahWVEu+CK/xc0PuZ5ponXIjlkTTWIQQUld4akUFlE7w4IC0pu79zCaacpNmwSk3YlnU2SGEkLpCSa2o61+1xkiJaCotk6tN2NkQpbL7ESKHprEIIaQu8dSK+vZJoOxU7fa0HHdHxyoxMKKptHzuAP4d9woSOAda8Kdl9yNEDnV2CCGkruk0Gmg1GHg113173OdA62utMaLj4ZlyKz0FjmO4yrbDbwfOfb8VptyI5dE0FiGE1EVWrxUVTVNuxPKos0MIIcSaPFNuqdm+29NyaNk5CQtNYxFCCLGuaJhyI5ZHIzuEEEKszepTbsTyqLNDCCGEkJhGnR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlptPScEEJI7ItPBl68GHo/EpNoZIcQQgghMY06O4QQQgiJadTZIYQQQkhMo84OIYQQQmIadXYIIYQQEtOos0MIIYSQmGb5zs6JEydw5513omHDhkhKSkLXrl2xYcMG7/2MMUyfPh1NmjRBUlISCgoKsH//fhNbTAghhBArsXRn58KFC7jyyisRFxeHb7/9Frt27cKbb76J+vXre/d5/fXX8fbbb2POnDkoLCxEcnIyhg0bhsuXL5vYckIIIYRYhaWTCr722mvIzc3FBx984N3WsmVL78+MMbz11lt47rnncOONNwIA5s2bh6ysLCxcuBBjx441vM2EEEIIsRZLj+wsWrQIvXv3xu23347GjRsjPz8fc+fO9d5/+PBhFBUVoaCgwLstPT0d/fr1w5o1a2SPW1VVhdLSUp9/hBBSp3gyCr940f0zITHM0p2dQ4cOYfbs2Wjbti2+++47PPjgg5gyZQo+/PBDAEBRUREAICsry+dxWVlZ3vukzJw5E+np6d5/ubm5+v0ShBBCCDGVpTs7giCgZ8+eeOWVV5Cfn49JkyZh4sSJmDNnTkTHnTZtGi5evOj9d+zYMY1aTAghhBCrsXTMTpMmTdCpUyefbR07dsQXX3wBAMjOzgYAnD59Gk2aNPHuc/r0afTo0UP2uAkJCUhISNC+wYQQQrRHRTxJhCw9snPllVdi7969Ptv27duHvLw8AO5g5ezsbCxbtsx7f2lpKQoLC9G/f39D20oIIYQQa7L0yM6jjz6KAQMG4JVXXsGYMWOwbt06vPfee3jvvfcAABzHYerUqXjppZfQtm1btGzZEs8//zxycnJw0003mdt4QgghhFiCpTs7ffr0wZdffolp06ZhxowZaNmyJd566y2MGzfOu8+TTz6JiooKTJo0CSUlJRg4cCCWLFmCxMREE1tOCCGEEKuwdGcHAG644QbccMMNsvdzHIcZM2ZgxowZBraKEEIIIdHC0jE7hBBCCCGRos4OIYQQQmIadXYIIYQQEtOos0MIIYSQmEadHUIIIYTENOrsEEIIISSmUWeHEEIIITGNOjuEEEIIiWnU2SGEEEJITKPODiGEEEJiGnV2CCGEEBLTLF8bywiMMQBAaWmppsflysqQUF0NAKgqKwNLTtb0+CS6eV8fJSVgNa8TQgCAq6wEqqvpuqEzeg8aQ8/Xs+dz2/M5LtsGFmqPOuD48ePIzc01uxmEEEIIUeHYsWNo1qyZ7P3U2QEgCAJOnjyJ1NRUcByn2XFLS0uRm5uLY8eOIS0tTbPjkkD0XBuDnmdj0PNsDHqejaHn88wYQ1lZGXJycsDz8pE5NI0FgOf5oD3CSKWlpdEbySD0XBuDnmdj0PNsDHqejaHX85yenh5yHwpQJoQQQkhMo84OIYQQQmIadXZ0lJCQgBdeeAEJCQlmNyXm0XNtDHqejUHPszHoeTaGFZ5nClAmhBBCSEyjkR1CCCGExDTq7BBCCCEkplFnhxBCCCExjTo7hBBCCIlp1NnR0TvvvIMWLVogMTER/fr1w7p168xuUtSYOXMm+vTpg9TUVDRu3Bg33XQT9u7d67PP5cuXMXnyZDRs2BApKSm49dZbcfr0aZ99jh49ipEjR6JevXpo3LgxnnjiCTidTiN/lajy6quvguM4TJ061buNnmftnDhxAnfeeScaNmyIpKQkdO3aFRs2bPDezxjD9OnT0aRJEyQlJaGgoAD79+/3OUZxcTHGjRuHtLQ0ZGRk4L777kN5ebnRv4pluVwuPP/882jZsiWSkpLQunVr/PGPf/SpnUTPc/hWrlyJUaNGIScnBxzHYeHChT73a/Wcbtu2DVdddRUSExORm5uL119/XZtfgBFdfPLJJyw+Pp7985//ZDt37mQTJ05kGRkZ7PTp02Y3LSoMGzaMffDBB2zHjh1sy5YtbMSIEax58+asvLzcu88DDzzAcnNz2bJly9iGDRvYFVdcwQYMGOC93+l0si5durCCggK2efNmtnjxYpaZmcmmTZtmxq9keevWrWMtWrRg3bp1Y7/73e+82+l51kZxcTHLy8tj99xzDyssLGSHDh1i3333HTtw4IB3n1dffZWlp6ezhQsXsq1bt7LRo0ezli1bskuXLnn3uf7661n37t3Z2rVr2c8//8zatGnD7rjjDjN+JUt6+eWXWcOGDdk333zDDh8+zD777DOWkpLC/vrXv3r3oec5fIsXL2bPPvssW7BgAQPAvvzyS5/7tXhOL168yLKysti4cePYjh072Mcff8ySkpLY3//+94jbT50dnfTt25dNnjzZe9vlcrGcnBw2c+ZME1sVvc6cOcMAsJ9++okxxlhJSQmLi4tjn332mXef3bt3MwBszZo1jDH3m5PneVZUVOTdZ/bs2SwtLY1VVVUZ+wtYXFlZGWvbti1bunQpu/rqq72dHXqetfPUU0+xgQMHyt4vCALLzs5mf/rTn7zbSkpKWEJCAvv4448ZY4zt2rWLAWDr16/37vPtt98yjuPYiRMn9Gt8FBk5ciS79957fbbdcsstbNy4cYwxep614N/Z0eo5fffdd1n9+vV9rhtPPfUUa9++fcRtpmksHVRXV2Pjxo0oKCjwbuN5HgUFBVizZo2JLYteFy9eBAA0aNAAALBx40Y4HA6f57hDhw5o3ry59zles2YNunbtiqysLO8+w4YNQ2lpKXbu3Glg661v8uTJGDlypM/zCdDzrKVFixahd+/euP3229G4cWPk5+dj7ty53vsPHz6MoqIin+c6PT0d/fr183muMzIy0Lt3b+8+BQUF4HkehYWFxv0yFjZgwAAsW7YM+/btAwBs3boVq1atwvDhwwHQ86wHrZ7TNWvWYNCgQYiPj/fuM2zYMOzduxcXLlyIqI1UCFQH586dg8vl8rn4A0BWVhb27NljUquilyAImDp1Kq688kp06dIFAFBUVIT4+HhkZGT47JuVlYWioiLvPlJ/A899xO2TTz7Bpk2bsH79+oD76HnWzqFDhzB79mw89thjeOaZZ7B+/XpMmTIF8fHxuPvuu73PldRzKX6uGzdu7HO/3W5HgwYN6Lmu8fTTT6O0tBQdOnSAzWaDy+XCyy+/jHHjxgEAPc860Oo5LSoqQsuWLQOO4bmvfv36qttInR1ieZMnT8aOHTuwatUqs5sSc44dO4bf/e53WLp0KRITE81uTkwTBAG9e/fGK6+8AgDIz8/Hjh07MGfOHNx9990mty52fPrpp5g/fz4++ugjdO7cGVu2bMHUqVORk5NDz3MdRtNYOsjMzITNZgtYsXL69GlkZ2eb1Kro9PDDD+Obb77BihUr0KxZM+/27OxsVFdXo6SkxGd/8XOcnZ0t+Tfw3Efc01RnzpxBz549YbfbYbfb8dNPP+Htt9+G3W5HVlYWPc8aadKkCTp16uSzrWPHjjh69CiA2ucq2HUjOzsbZ86c8bnf6XSiuLiYnusaTzzxBJ5++mmMHTsWXbt2xfjx4/Hoo49i5syZAOh51oNWz6me1xLq7OggPj4evXr1wrJly7zbBEHAsmXL0L9/fxNbFj0YY3j44Yfx5ZdfYvny5QFDm7169UJcXJzPc7x3714cPXrU+xz3798f27dv93mDLV26FGlpaQEfOnXVddddh+3bt2PLli3ef71798a4ceO8P9PzrI0rr7wyIH3Cvn37kJeXBwBo2bIlsrOzfZ7r0tJSFBYW+jzXJSUl2Lhxo3ef5cuXQxAE9OvXz4DfwvoqKyvB874fbTabDYIgAKDnWQ9aPaf9+/fHypUr4XA4vPssXboU7du3j2gKCwAtPdfLJ598whISEti//vUvtmvXLjZp0iSWkZHhs2KFyHvwwQdZeno6+/HHH9mpU6e8/yorK737PPDAA6x58+Zs+fLlbMOGDax///6sf//+3vs9S6KHDh3KtmzZwpYsWcIaNWpES6JDEK/GYoyeZ62sW7eO2e129vLLL7P9+/ez+fPns3r16rH//Oc/3n1effVVlpGRwb766iu2bds2duONN0ou383Pz2eFhYVs1apVrG3btnV6SbS/u+++mzVt2tS79HzBggUsMzOTPfnkk9596HkOX1lZGdu8eTPbvHkzA8D+/Oc/s82bN7MjR44wxrR5TktKSlhWVhYbP34827FjB/vkk09YvXr1aOm51c2aNYs1b96cxcfHs759+7K1a9ea3aSoAUDy3wcffODd59KlS+yhhx5i9evXZ/Xq1WM333wzO3XqlM9xfv31VzZ8+HCWlJTEMjMz2eOPP84cDofBv0108e/s0POsna+//pp16dKFJSQksA4dOrD33nvP535BENjzzz/PsrKyWEJCArvuuuvY3r17ffY5f/48u+OOO1hKSgpLS0tjEyZMYGVlZUb+GpZWWlrKfve737HmzZuzxMRE1qpVK/bss8/6LGem5zl8K1askLwm33333Ywx7Z7TrVu3soEDB7KEhATWtGlT9uqrr2rSfo4xUVpJQgghhJAYQzE7hBBCCIlp1NkhhBBCSEyjzg4hhBBCYhp1dgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKZRZ4cQQgghMY06O4QQy7nnnntw0003mXb+8ePHe6uThzJ27Fi8+eabOreIEBIJyqBMCDEUx3FB73/hhRfw6KOPgjGGjIwMYxolsnXrVlx77bU4cuQIUlJSQu6/Y8cODBo0CIcPH0Z6eroBLSSEhIs6O4QQQxUVFXl//u9//4vp06f7VANPSUlR1MnQy/333w+73Y45c+YofkyfPn1wzz33YPLkyTq2jBCiFk1jEUIMlZ2d7f2Xnp4OjuN8tqWkpARMYw0ePBiPPPIIpk6divr16yMrKwtz585FRUUFJkyYgNTUVLRp0wbffvutz7l27NiB4cOHIyUlBVlZWRg/fjzOnTsn2zaXy4XPP/8co0aN8tn+7rvvom3btkhMTERWVhZuu+02n/tHjRqFTz75JPInhxCiC+rsEEKiwocffojMzEysW7cOjzzyCB588EHcfvvtGDBgADZt2oShQ4di/PjxqKysBACUlJTg2muvRX5+PjZs2IAlS5bg9OnTGDNmjOw5tm3bhosXL6J3797ebRs2bMCUKVMwY8YM7N27F0uWLMGgQYN8Hte3b1+sW7cOVVVV+vzyhJCIUGeHEBIVunfvjueeew5t27bFtGnTkJiYiMzMTEycOBFt27bF9OnTcf78eWzbtg0A8Le//Q35+fl45ZVX0KFDB+Tn5+Of//wnVqxYgX379kme48iRI7DZbGjcuLF329GjR5GcnIwbbrgBeXl5yM/Px5QpU3wel5OTg+rqap8pOkKIdVBnhxASFbp16+b92WazoWHDhujatat3W1ZWFgDgzJkzANyBxitWrPDGAKWkpKBDhw4AgIMHD0qe49KlS0hISPAJoh4yZAjy8vLQqlUrjB8/HvPnz/eOHnkkJSUBQMB2Qog1UGeHEBIV4uLifG5zHOezzdNBEQQBAFBeXo5Ro0Zhy5YtPv/2798fMA3lkZmZicrKSlRXV3u3paamYtOmTfj444/RpEkTTJ8+Hd27d0dJSYl3n+LiYgBAo0aNNPldCSHaos4OISQm9ezZEzt37kSLFi3Qpk0bn3/JycmSj+nRowcAYNeuXT7b7XY7CgoK8Prrr2Pbtm349ddfsXz5cu/9O3bsQLNmzZCZmanb70MIUY86O4SQmDR58mQUFxfjjjvuwPr163Hw4EF89913mDBhAlwul+RjGjVqhJ49e2LVqlXebd988w3efvttbNmyBUeOHMG8efMgCALat2/v3efnn3/G0KFDdf+dCCHqUGeHEBKTcnJy8Msvv8DlcmHo0KHo2rUrpk6dioyMDPC8/KXv/vvvx/z58723MzIysGDBAlx77bXo2LEj5syZg48//hidO3cGAFy+fBkLFy7ExIkTdf+dCCHqUFJBQggRuXTpEtq3b4///ve/6N+/f8j9Z8+ejS+//BLff/+9Aa0jhKhBIzuEECKSlJSEefPmBU0+KBYXF4dZs2bp3CpCSCRoZIcQQgghMY1GdgghhBAS06izQwghhJCYRp0dQgghhMQ06uwQQgghJKZRZ4cQQgghMY06O4QQQgiJadTZIYQQQkhMo84OIYQQQmIadXYIIYQQEtP+H9G+4b9v1taqAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.blabla_err = ts.blabla / 10.\n", + "ts.plot(\"blabla\", labels=[\"Time (s)\", \"blabla (cts)\"], witherrors=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A plot can also be customized using several keyword arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on method plot in module stingray.base:\n", + "\n", + "plot(attr, witherrors=False, labels=None, ax=None, title=None, marker='-', save=False, filename=None, plot_btis=True) method of stingray.base.StingrayTimeseries instance\n", + " Plot the time series using ``matplotlib``.\n", + " \n", + " Plot the time series object on a graph ``self.time`` on x-axis and\n", + " ``self.counts`` on y-axis with ``self.counts_err`` optionally\n", + " as error bars.\n", + " \n", + " Parameters\n", + " ----------\n", + " attr: str\n", + " Attribute to plot.\n", + " \n", + " Other parameters\n", + " ----------------\n", + " witherrors: boolean, default False\n", + " Whether to plot the StingrayTimeseries with errorbars or not\n", + " labels : iterable, default ``None``\n", + " A list or tuple with ``xlabel`` and ``ylabel`` as strings. E.g.\n", + " if the attribute is ``'counts'``, the list of labels\n", + " could be ``['Time (s)', 'Counts (s^-1)']``\n", + " ax : ``matplotlib.pyplot.axis`` object\n", + " Axis to be used for plotting. Defaults to creating a new one.\n", + " title : str, default ``None``\n", + " The title of the plot.\n", + " marker : str, default '-'\n", + " Line style and color of the plot. Line styles and colors are\n", + " combined in a single format string, as in ``'bo'`` for blue\n", + " circles. See ``matplotlib.pyplot.plot`` for more options.\n", + " save : boolean, optional, default ``False``\n", + " If ``True``, save the figure with specified filename.\n", + " filename : str\n", + " File name of the image to save. Depends on the boolean ``save``.\n", + " plot_btis : bool\n", + " Plot the bad time intervals as red areas on the plot\n", + "\n" + ] + } + ], + "source": [ + "help(ts.plot)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The figure drawn can also be saved in a file using keywords arguments in the plot method itself." + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAGwCAYAAABPSaTdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfkklEQVR4nO3deXhMZ/sH8O9EVtkX2QiCNCGWxhZRWiSloWhtpbF28bZFbb9WvW/RUqV0UapUq32rtRRF7bVTRCSINfYQZEMkkUT28/uDzJuRbTJzzpyZk+/nunJdk7M8556Tmck95zzP/agEQRBAREREpFBmcgdAREREJCUmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBTNXO4AjEFxcTESExNhb28PlUoldzhERESkBUEQ8PDhQ3h7e8PMrOLrN0x2ACQmJsLHx0f0dh0AfPzk8WcAMkU/ApmyktdHHbkDIaN0F/zckBrfg4Yj9ev51q1bqFevXoXrVaygDGRkZMDJyQm3bt2Cg4ODaO2qkpNh9cknAIC8Tz6B4OkpWttk+tSvDxsbCLVryx0OGRFVTg7w6BE/NyTG96BhSPl6zszMhI+PD9LT0+Ho6FjhdryyA6hvXTk4OIia7CA7G7C0BABY2tsDYrZNpq/k9eHkBNjbyx0NGRNLS6CoiJ8bUuN70DAM8HquqgsKOygTERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhGRFvLz85GXlyd3GESkA856TkRUhezsbCxcuBDFxcV499134eLiIndIRFQNvLJDRFSFtLQ05OXno6CwEKmpqXKHQ0TVxGSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKJmuyc+jQIfTu3Rve3t5QqVTYtGmTxvpPPvkEAQEBsLW1hbOzM8LCwhAVFaWxTVpaGiIiIuDg4AAnJye8+eabyMrKMuCzICIiImMma7KTnZ2NVq1aYfHixeWuf+aZZ/Ddd9/h7NmzOHz4MBo2bIju3bvj7t276m0iIiJw/vx57N69G1u3bsWhQ4cwevRoQz0FIiIiMnLmch48PDwc4eHhFa5//fXXNX7/+uuvsXz5cpw5cwahoaGIi4vDzp07ER0djbZt2wIAFi1ahJ49e+LLL7+Et7e3pPETEZF27ty5g/Pnz6Nr166wsLCQOxyqYUymz05+fj6WLVsGR0dHtGrVCgAQGRkJJycndaIDAGFhYTAzMytzu6u0vLw8ZGZmavwQEZF02rVrhx49emDu3Llyh0I1kNEnO1u3boWdnR2sra3xzTffYPfu3XBzcwMAJCcnw93dXWN7c3NzuLi4IDk5ucI258yZA0dHR/WPj4+PpM+BiKimS0pKAgCcOHFC5kioJjL6ZKdr166IjY3F0aNH8dJLL2HQoEFITU3Vq82pU6ciIyND/XPr1i2RoiUiIiJjY/TJjq2tLZo0aYIOHTpg+fLlMDc3x/LlywEAnp6eZRKfwsJCpKWlwdPTs8I2rays4ODgoPFDREREymT0yc7TiouLkZeXBwAICQlBenq6xmXRffv2obi4GMHBwXKFWKNkZWXhq6++wpYtW7Te58yZM5g1axauX78uYWQkttTUVBw8eBBpaWlyh0JEVC2yjsbKysrC1atX1b/Hx8cjNjYWLi4ucHV1xezZs9GnTx94eXnh3r17WLx4Me7cuYOBAwcCAJo2bYqXXnoJb7/9NpYuXYqCggKMHTsWgwcP5kgsA1m5ciX+7//+DwCQmZkJe3v7Kvd5+eWXcevWLezfvx/79u2TOkQSyZo1a5D24AGuXr2KN998U+5wiIi0JmuyExMTg65du6p/nzRpEgBgxIgRWLp0KS5evIhff/0V9+7dg6urK9q1a4d//vkHgYGB6n1WrlyJsWPHIjQ0FGZmZujfvz8WLlxo8OdSU5UeyZabm6tVslPSR+rYsWOSxUXiS3vwAABw6/ZtmSMhIqoeWZOdLl26QBCECtdv2LChyjZcXFywatUqMcMiIiIiBTG5PjtERERE1cFkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0WQdek5ERETGKS0tDatXr4aDgwMiIiJgZma610dMN3IiIiKSTHx8PO7eu4dr168jPT1d7nD0wmSHiIiIFI3JDhERESkakx2qUR49eoSMjAy5wyAiIgNiskM1RlZWFho0aAB3d3fExsbKHQ4RERkIkx2qMRISEnD37l3k5+fjzJkzcodDREQGwmSHiIiIFI3JDhERESkak50aoLi4GAcOHMDVq1flDkUxcnJysH37dty/f1/uUBQhNzcXly9fRn5+vuhtC4KAW7duITU1VfS2ifSVlpaG+Ph4CIIgdyiKxmSnBli7di26du2KgIAAPHr0SO5wFGHcuHHo1asXwsPD5Q5FEf744w+sWr0amzdvFr3tGzduYPnPP+P7JUuQnZ0tevtEuiosLMR3332HX1eswNmzZ+UOR9GY7NQAd+7cAQAUFRXh4cOHMkejDNu2bQMAREdHyxyJMsTfuAEAOHf+vOhtZ2Zmqh8z2SFjkp+fj+InV3RKv05JfEx2iIiISNGY7BAREZGiMdkhIiJZXb58GTNnzkRcXJzcoZBCmcsdABER1WwRERGIiYnB2rVrce7cObnDIQXilR0iIpJVTEwMAOC8BB3UiQAmO0RERKRwTHaIiIhI0ZjsEOnp2rVrGDRoEL799lu5QyEionIw2SHS0/fff49169ZhwoQJKCoqkjscIiJ6CpMdIj2xKi8RkXFjskNERESKxmSHiIiIFI3JjgIJgoDBgwfDz88Pp06dkjscElFycjIWLVqEtWvXQngygaAUYmJi8PXXX3OiUzIaDx48QJs2bdC+fXs8fPgQOTk56NixI4KCgnD37t0q9xcEAUOGDIGfnx9OnjxpgIjJmLCCsgI9fPgQf/zxBwDgr7/+gr29vcwRkVguX76M+2lpuJ+WhtzcXNjY2EhynG3btkEAsG37drRr106SYxBVR1RUlDpJiYmJgbW1NSIjIwEAR48eRd++fSvdPysrC2vWrAEAbNy4Ea1bt5Y2YDIqvLKjcFJ++yfl4quGlKy4uFjuEMjAmOwQERGRojHZIapCfn4+Hjx4IHcYRLITBAEpKSlyh0FUbUx2iCpRUFCAgIAA1KlTB/v27ZM7HCJZDRs2DJ6enpg9e7bcoRBVC5MdokqkpaUhPj4eRUVFiI2NlTscIlmtXLkSADg1CpkcWZOdQ4cOoXfv3vD29oZKpcKmTZvU6woKCjBlyhS0aNECtra28Pb2xvDhw5GYmKjRRlpaGiIiIuDg4AAnJye8+eabyMrKMvAzISKqOTgtCpkaWZOd7OxstGrVCosXLy6zLicnBydPnsS0adNw8uRJbNiwAZcuXUKfPn00touIiMD58+exe/dubN26FYcOHcLo0aMN9RSIiIjIyMlaZyc8PBzh4eHlrnN0dMTu3bs1ln333Xdo3749EhISUL9+fcTFxWHnzp2Ijo5G27ZtAQCLFi1Cz5498eWXX8Lb21vy50DG49y5c3j48CE6dOgAlUql1T6PHj3CgQMH0K5dO7i5uUkcobhSUlJgbm6OunXrav18a5q7d+/i1q1bcodBErtz5w527dqFrl27wsLCQu5wZJWbm4uEhAQ0aNAAVlZWcodjNEyqz05GRgZUKhWcnJwAAJGRkXByclInOgAQFhYGMzMzREVFVdhOXl4eMjMzNX7ItCUnJ6NFixbo2LEjDh06pPV+kydPRs+ePREWFiZhdNL476+/4qfly3Hnzh25QzFK2dnZWPz994g5cULuUEhiY8aMQY8ePfDFF1/IHYrs1q9fj1WrV2Pjxo1yh2JUTCbZyc3NxZQpUzBkyBA4ODgAePwPzt3dXWM7c3NzuLi4IDk5ucK25syZA0dHR/WPj4+PpLGT9EoPh63OP/+///4bAHD69GnRYzKUhw8fyh2CUcrJyZE7BDIwTgMBXL12DQBw8dIlmSMxLiaR7BQUFGDQoEEQBAFLlizRu72pU6ciIyND/cPL3ERERMpl9HNjlSQ6N2/exL59+9RXdQDA09MTqampGtsXFhYiLS0Nnp6eFbZpZWXFe5lEREQ1hFFf2SlJdK5cuYI9e/bA1dVVY31ISAjS09NxotQ9+X379qG4uBjBwcGGDpfI6AmCgFOnTiEmJobzAxGJJDc3F0eOHMHVq1flDqVS2dnZ+Oeff3Dz5k25QzE4Wa/sZGVlabw44uPjERsbCxcXF3h5eWHAgAE4efIktm7diqKiInU/HBcXF1haWqJp06Z46aWX8Pbbb2Pp0qUoKCjA2LFjMXjwYI7EIipHamoq/tq8GQDg5uaGhg0byhsQkQJER0dj75MK69M+/hi1atWSOaLyHTp0CFHHjwMAPpkxQ+ZoDEvWZCcmJgZdu3ZV/z5p0iQAwIgRI/DJJ59g85MP5WeffVZjv/3796NLly4AHlf0HDt2LEJDQ2FmZob+/ftj4cKFBomfyNTk5eWV+5iIdJedna1+LAiCjJFULiMjQ+4QZCNrstOlS5dKXxjavGhcXFywatUqMcMiIiIiBTHqPjtERERE+mKyU8Pk5ubi7bffxnvvvYfCwkJR254wYQLeeOMN1n3RQ2pqKv744w+NeiGCIGDXrl3YtGkTcnNzZYyOapKtW7eib9++OHDgQJXbfv/99xgwYAAusbZLueLi4rBmzRokJCTIHUqNZfRDz0lchw4dwk8//QQAGDZsGEJCQkRru+R2Yu/evfHqq6+K1m5N8s8//yDu4kXEXbyI1q1bAwDu37+Po5GRAAD3OnXkDI9qkIEDByI3Nxfnz5+vcpTRmDFjADzu9L506VJDhGdS/li7FgCQnp6Od955R+ZoaiZe2alhCgoKyn0s1TGoeh49elRmWekh4hwuToZSchXx2pOKvNrg1DuVe/Dggdwh1FhMdoiIiEjRmOwQERGRojHZUYD9+/fD19cXY8eOlTsUAMDEiRPRsGFD7Nq1S71MEAT069cPKpWq3H1mzpwJHx8frFu3zlBhlhESEqJRL0MsV65cQbNmzfDiiy+iW7duCAwMRHx8vOjHIWWq6v199uxZ+Pv749VXX5W9xsvq1atx9uxZvdp4/fXX4efnp1EZn3SzYMEC3LhxQ+4wjAKTHQVYunQpbty4gcWLF8sdCgAgMTERN2/e1CjueO/ePWzcuLHCfWbMmIHbt2/jk08+MUCE5Tt27BhiY2NFb3fv3r2Ii4vDnj17sH//fly4cAH79+8X/TikTFW9v3ft2oXLly9j06ZNuHv3roGjK+vvv//Wa//Vq1fj6tWr2LBhg0gR1VzpGRmcCf4JJjsKYKwdgnWp0Mth60SajPX9LTV2xhcHz+NjTHaIiIhI0ZjsyCw1NbVM5p2Tk1OjhnDK3c+AHhMEQZI+S/ooLi42upgAoKioqNwyAYYmCAJSUlJEaSc5OVn9XiyvzZycHL2PA0D0YqZE2mCyI6MffvgBHh4eeOmll9TL0tPT4ePjA3d3d5w/f17G6Axn4sSJcodAeDyp7vwvv0R0dLTcoaj99ttvmP/ll0bV70AQBHz//feYN29etWrQSOHdd9/F/Pnz9W5n0qRJ8PLywsSJE7F06VJ4enpqrH/w4AHq1aun93EAYNu2bTXqC056errcIRCY7MiqpOLw7t271cvi4+ORlpaGvLw8vUc1mIpvv/1W7hAIwNUn/7jPnDkjcyT/E/9kJIkxJf65ubm4n5YGAY8748vphx9+EKWdBQsWAHj8XoyJiSmz/vr166IWxKtJV3dKdxr38vKSMZKajckOERGRAVhZWckdQo3FZIeIiIgUjckOmQRBEBAdHS1JHZyKFBcXazXjs5jH07fYYFJSkuy3VqRQ0/o93Lt3D6mpqWX6thQXF+PQoUMVzi6+Y8cOg9TaSUtLQ35+frnrHjx4gO3btxtlx3KquZjskEk4deoU2rdvj6CgIFy/ft0gx1y/fj0GDx5skGMBQGxsLIr0qIlx7949/LBsGZb9+KMoI3SMyf20tBpTLyQ7Oxv/XbEC23fswNGjRzXWbd26FS+88AICAgLKHbE5cuRIhIaGGiTOWbNmlbv8888/R69evTi7NxkVJjtkEu7cuaN+bKgrF6WPaQj6dgAtXZBRicUZi4qK5A7BIEpfEUlOTtZYV/o1mZaWVu7+hhrYcOzYsUrX//nnnwaJg0gbTHaIiIhI0ZjsEBERkaIx2TEBN27cwKxZs3Dq1Cm5QxFdQkKC6G0uXLgQf/zxh+jtSiE7OxvHjh0T/ZbZ0aNHK+zEaiqSkpLkDkF2cXFxcodQoxUUFCAyMrLCv8Pp06dx/PhxRfUnu379Og4fPmwUFcLFZC53AFS19957Dzt27MDixYvL3MM3dWPGjBG9zaioKAwePBidO3eGt7d3pdva2tqKfvzqiI6ORszNm8iPjkZwcLBo7V6Pj8f1+HhM/egjk63tsXLlSrlDkN1ff/0Fn/bt5Q6jxjp//jz+3rULADDlww9hY2OjXnfv3j1s3LQJAOBep44c4YlOEASs+O03AEB+fj4cHR1ljkg8vLJjAkoqmipthA0ASa9WadNJt2nTppIdXxslQ6rzJZrZ2pQr1WZx6LKi/tmYory8PPXjp2efL72u9GOlUNogByY7VKOpVCq5QyAiIokx2SEiIiJFY7KjMKmpqVpv+9prr2nMmPz9999DpVKhTZs2onaYTU5ORkREhGjtlaeiAmfG6s0338SRI0fkDkNngiBg586d+Ouvv0z6Ev6RI0ewfv16ZGRklFn36NEjbNy4EbNmzcK6devUy8ubKNMUXL16FQMHDsTChQsNfuzqfC7VdHfv3sXatWurfJ0lJiZizZo1NWbCaH0x2VGA0vf1Nz3pMKeN5ORkfPjhh+pe9yWdhU+ePIm1a9eKFt+GDRs0ZnYXW1pamkkWMJs0aZLcIegsNTUVx6KicCo21mAVrcVWUFCA3Xv24Nz58+VOQ3L58mWcPnMGRcXFyCzVf+GOiU7H8d1332H9+vUYP358mWkopFadz6Wa7ujRo7gQF4et27ZVut3u3btx8dIl/Llhg4EiM21MdhTAwcFB/fjpTnTaKG/YpC7tVETMtspjqp1wE27dkjsEnZWuZmyqw25Lx13ea8hUn1dFsrKyZDu21J8BSpKbm6vVdkrrQCw1JjtERESkaEx2iIiISNGY7BjIhAkT0LhxY0RGRkp+rPfff1/yY9D/3Lt3T5J2K5ro0Rgs+/FHuUMQ1T+HD0vWdmZmJpYsWYJffvml0slMDxw4gG+++cYgVZPnz58PHx8f/PakgJySJCQkoEWLFujatavR3T67dPlyhf0LD0v4GiQmOwZRXFyMP9auxfXr1w1SFfbXX3+V/Bg1XePGjdWPpRpVZaodf02RmYT1lm7evImU1FTcTEjA3bt3K9zuwMGDyMjMxMGDByWLpcSUKVNw+/ZtfPjhh5Ify9AOHjyIc+fO4cCBA0Y5ZcrZc+eQn59fZjlrfkmLyY6BVfbNjkyHh4eH3CGQiIzpH02xAUdKPXjwwGDHosoZ02tQiZjsEBERkaIx2SGtpKSklFubo7xibGJKS0sr95KvtiqK2xhlG3guKG37M+Tk5FQ5DDsnJ6fKq5aPHj0qM2Rd3+ecn5+v1+vjacXFxcjJydGrjby8PFFj0sfdu3dRVFSEzMxMvZ+XKXj06JHkn0lkmpjsUJW++OILeHp6YvDgwRrLz5w5g9mzZ0t23D179qBOnTpo1qyZTrV05syZA09PT7z++usSRCe+kxJOilqe9X/+qS4oWZl58+fjhx9+qHD9pUuXMP/JNhUllleuXMG8efOwZMkSdeL066+/Yv6XX5Zb0E8b6enpmD9/Pr788kvRao4sX74c8+fP17kqbVpaGubPn4+vvvrK4Mnr05YvXw53d3f4+PjA3d0dq1evluQ4uvQx2vVkJnGx7dy5E+PGjVP//tNPP0lyHDI9THaoSkuWLAGAMlWVpS5TfvLkSRQXF+PatWvq2cGro6Sj9po1a0SOTByBzZrJHUKFfTacnZw0fk+ppNx/QkICBACpd+9WeLXozp07EADcu39ffdXjZkICAODixYvVjht4PAquoLAQ+QUFoo2Iu5OYCAGPkzNdpKamorCoCHn5+bKPpit5vyYlJUk6pYcuyaqhpjjQ5XODlEnWZOfQoUPo3bs3vL29oVKpypQU37BhA7p37w5XV1eoVKpy31S5ubkYM2YMXF1dYWdnh/79+yMlJcUwT6CGUFolWWPh4uIidwgVsre3lzsEIiLRyJrsZGdno1WrVli8eHGF6zt16oQvvviiwjYmTpyILVu2YN26dTh48CASExPRr18/qUImIiIiE2Mu58HDw8MRHh5e4fphw4YBAG7cuFHu+oyMDCxfvhyrVq1Ct27dAAC//PILmjZtimPHjqFDhw6ix2xsUlJSsHPnTr3befrqTU2epTgnJwcHDhzQ+zbE5cuXkZycrNeVsczMTFy7dk2vOAwpKytLlCtW+lydzcnJwZ07d2Bra6t3HFVJTExEYmIivL29y6y7d+8efHx8NJaZ6jxuUtJmLqirV6/iwIEDksdSXFyMmzdvwsnJCc7Ozlrvl5GZWa3jXLlypdrHqMzDhw+RkpICX19fUdpTIlmTHX2dOHECBQUFCAsLUy8LCAhA/fr1ERkZWWGyk5eXp3EPO7OaL1Rj0rlzZ537F5S2ceNGjd+/+uorfPnll3q3a4reffddrFixQq82srKy4O/vDwDo3r27zu388MMPyDahUTQ//fST3oXqMjMzsWTpUp33/+2335CUnIwG9evrFYc24i5eRNzFixjz3nuoU6eOxrq/Nm9G06ZNNZZFRUWhXr16kselj5s3bxr0eJMnT650/aNHj+Dv72+Q2+mnT5/GX5s3w7xWLUydOlWy46xbvx4AMGzoUFHaW758OdIzMvB8586itKdEJt1BOTk5GZaWlnB6qjOlh4cHkpOTK9xvzpw5cHR0VP88/e3LlIiR6ACPO5CW5u7uLkq7pujpvmO6KN0x8ulzWx2mlOgAQI4Wo7uqou/s3ElP3vslHaANoaLRYE+PdjPWwnEtW7ZUP05KSjLosasamfXw4UOD9Rss6bBfWFRkkKtwYn3RTn8y3P7WrVuitKdEJp3s6Grq1KnIyMhQ//AFQkQ1GTukk9KZ9G0sT09P5OfnIz09XePqTkpKCjw9PSvcz8rKClZWVgaIkIiIiORm0ld22rRpAwsLC+zdu1e97NKlS0hISEBISIiMkVXfDz/8IMml2vPnz2PmzJmVbnP48GFER0eLfmxdSHWVTdsJAdc/uZeuq1mzZmldQ+Sfw4fVl5+1de/+/TLLDh48WGHV2JLbKLm5uThy5AiuXr1areMZq8zMTBw6dEiy9s+cPVvtKshxcXE4duyYRBE9duLECUnbr449e/bg22+/1aqD8dN+/PFHLFu2DHfv3jWZ12RUVBSioqK0nt8wJycHhw8fRnx8vM7HTExMrNb28RUM5iGZr+xkZWVpvNDj4+MRGxsLFxcX1K9fH2lpaUhISFD/wUv+YXl6esLT0xOOjo548803MWnSJLi4uMDBwQHjxo1DSEiIyY3Eeuedd9C8eXPUrl1b1Hb//PPPKrd56aWXYGNjI+px9XH//n24urqK2uaQIUPw+++/V7ndggUL9DrOp59+ihUrVkj6j/hpySkp2LZtW7kJ/unTpxEaGoqTJ09i9549BotJH9oUgtu1axcSJL79fO7cOa23ffTokbrTqZSWL18u+TGqY8KECTp9sbx+/Tr+9a9/4bfffpMgKmkcOXoUAODo6IiAgIAqtz969CgOHzmi1zF/++03TJkyRa826DFZr+zExMQgKCgIQUFBAIBJkyYhKCgI06dPBwBs3rwZQUFB6NWrFwBg8ODBCAoKwtJSIzW++eYbvPzyy+jfvz+ef/55eHp6YsOGDYZ/MiKQc1SYm5ubbMd+mhRl9k8ZcCoGfb7J6aqiTqUlVwuNfV4kt1LJrTbVfu/evStlOFrHUULbecaUSJ/PreoklMZC29eFGJ/nj3S4akblk/XKTpcuXSqdpHHkyJEYOXJkpW1YW1tj8eLFFRYmJCLjZ25u0t0HicjImXSfHSIiIqKqMNkxMKnvua9bt07S9g1ly5Ytot+rPn78uKjtVeaDDz4w2LGMzerVq3H9+nUkJSVhzZo1OHPmjMGOrW2n4pycnDKFNPVRUa2Y7777rtKJMo8ePYp169bV2Akrq3req1atwquvvmqYYIxAZmYm4nScGFdqt27dwpo1axAXF4e0tDSsXbsWUVFRcoelNV47NjCp7+0fPHhQ0vYNZeDAgaK3OWnSJNHbrIixzrRuCJeeTJNRp04dXL12DRcvXUKXF14wyLFL95eytLBAfgXvt0uXLuGiliP0tFFRMcWi4mJcu3693HWFhYXYtXs3AIjeIV8pIiIi5A5BZ7qUNzHUbPC62L59O/Ly83Hx0iV0CA7Ghbg4XIiLQ3BwsNyhaYVXdsgoVadzqLZKqqOS9DIyM/WuhKyL0uUbnq6sXpq2w4elVLq/IufMUh4LC4tq72MMr8uK5JW6airF57PUmOwQERGRojHZISIiIkVjnx2ZjB8/3qCF50q888475S7XtnJx06ZN4evri1WrVmFoFTP27hGxiN3RJwW9AGDt2rXo1KmTaG0rwcOsLJ063C778UcAQGcJzmdySopO+12+fLna+/y6YgWGatG/4/slS9CubVt4eHjoEppkjkZGVnufsLAwCSIxHnPnzq1wXXFxMcLDwyU9/jfffKNTSYSkpCT4+Pjo9DeVypEjRxAVFYXMpyasFQQB69evR1JSEgYNGqTz+yIpKQnr1q2Dl5cXBgwYYJQT3vLKjkwWLlwoy3GrWwL/aRcvXsSOHTu0nhlcrAKBpZOdmzdvitKm0jz9QVZaVR/a/xw+LHY4Ort3755O+0Vq+c8lOiZGp/aNzbVr1+QOQTYJCQkVTpEilty8PGTp8PklR1HRquzes6fcz4e8vDycv3ABaQ8eaD2lTnkuXbqEtAcPcP7CBaPtz8Nkh3RSWTFIKZT+pmBmxpdtdRnjN62K6BorO/kS6c7Qn+mGxv8aRAZW2SghIiISH/vsGLFbt27pNKOwqXj06JFOt9WenhfJ2L/RJycn67SfFHOEaUuOYeP6KiwsVPT7pbrErOlliLnI5FRQWIhiI739UhFt57uT83PEmPDKjhH78MMP4evra/STOOpDlw/RI0eOaFSiNvbOyvfv39dpv/0HDogbiJZu3b6NNBOsSXQnMRF/bd4sdxhGobi4GPv379dp3/Pnz5dZJnVnYDnl5+fjhx9+wLx585Camip3OFo5e/ZshYUsnxZ/44a0wTxFn74/UmKyY+SSk5OZmZdj7dq16sfG2CGwKhMnTpQ7BFIwXuHSXlZWFnLz8lBUXGwyyY4uIxalVKtWLfVjXb/cSY3Jjolj/w/T9PXXX8sdApFRCAwMlDsEqgGY7BAREZGiMdkhScXGxiI6Olr0dvft24eioiKNuZCorPz8fFy+fNloa18Aj2PUtQBhZaozF1pRcTHu3LmjsSxV4Z1ypfboSZ+SzMxMbNu2TeZoxJOUlCR3CKQDjsaiKulSRbSEVJ2HCwsL8csvv8DR0VGS9pUiOibG6IvoXZeoz1VBNUfp/fjTT5LEUZPdv38fI0aMwI4dOyrcRsxRY4ZwLCoKbdq0kTsMqiZe2aEqtWrVSu4QynXt2rUy38aJyHjcvXu3yqs63bp1M1A04nlYSbVyMk5MdqhK+lzZIdNhZWkpdwhUA7Vv317uEKgG0Pm/WHZ2Ng4ePIiEhIQyheHef/99vQMjIiIiEoNOyc6pU6fQs2dP5OTkIDs7Gy4uLrh37x5q164Nd3d3Jjs6+uqrr9C5c2e5w6AKHD9+XO4QaoTKOgbn5+cjJiYGKXrWQ5Gi07y2zpw5g9zcXElvDx82ooldjcU///yjfvztt99i2rRpsNajvbi4OP2DklFBQQGOHTum/r2oqEinz7i//voLNwxcuFAXOiU7EydORO/evbF06VI4Ojri2LFjsLCwwNChQzF+/HixY6wx9u7di71798odBlVg48aNcodQ450/fx67du/Wux19kyVdPXjwABuevI7s7OwkO06PHj0ka9tU9erVS/04OzsbW7ZswUAdB1A8evQIh48cESs0WcTFxeHAwYPq369du4ZEHUaanYqNFTEq6ejUZyc2NhaTJ0+GmZkZatWqhby8PPj4+GDevHn497//LXaMREbBzc1N1Pae8fMTtb2awJiH0GujdPym/lxMXWZmps77mtoIsvI8/fpT+utRp2THwsICZmaPd3V3d0dCQgIAwNHREbdu3RIvOiIFCw0NlTsEogp9/vnn8PDwkDsMIlHodBsrKCgI0dHR8PPzwwsvvIDp06fj3r17+O2339C8eXOxYyQiIiLSmU5Xdj7//HN4eXkBAGbPng1nZ2e8++67uHv3LpYtWyZqgKYuPz/fJDsLpqam4p133pHlcu2CBQskP8Zvv/2Gfv364dSpU5IfS+nSMzKq3KZ034AdO3bgr7/+kjIko6XEqszlzZIutTfeeEOUdn7++WedZoffVMnrd9/+/diyZYs+YRkNXTphH/rnH5w/fx4PHjzAunXrNDpBy0mnKztt27ZVP3Z3d8fOnTtFC0hpbt++LVmFWKn98MMPiIiIMPhxv/nmG8mPsWfPngrX1apVC0VFRZLHUFOdPnNG7hCIAAD/+fhjzJGg3RMnT0rQquHd1TE5X7d+PZ7r2BHnL1zA+QsX0L5pU9mL+sl9fMUz9bmblNARr7oCAgLkDoFMnIuzs9whEOlNn4Kypf93CIIgRjh60fqZBAUFQaVSabXtSYVktUREuqhVq5bcIRCpudepo8hbqNWhdbLzyiuvSBgGERERkTS0TnZmzJghZRw1ij6VUzt16oQ9e/bA2lqf2p/6E6uDIBmPvKemfSHjwGKW+rty5YrcIZTLmEq13E9LE7W94zJWKS+PXjM8xsTEqHtrN2vWjNPea+mMHh00jxw5gnPnzml0Ejc15ubmKCwslDsM2bGGCVWlJrxPGjZsiNq1ayMnJ0eyY+zbt0+ytvVROtnRtpuILoyhz4zcdOqgfPv2bXTu3Bnt27fH+PHjMX78eLRr1w6dOnXC7du3xY6RFCY5OVnuEIzCq6++KncIRLJzc3PDnTt38Nlnn8kdSo1hXgP7lOmU7Lz11lsoKChAXFwc0tLSkJaWhri4OBQXF+Ott94SO0ZSGFdXV7lDICIj4uTkhDp16sgdBimYTrexDh48iKNHj8Lf31+9zN/fH4sWLeKs3UQkiaysLF6OJ508fPhQq2WGlp2d/b/HOTkGe30XFhUhKyvLIMcyFjolOz4+PuXWXykqKoK3t7feQREpGf9h6+bbhQvlDsHgLl2+LOvxlfBavXbtGj744IMyyydOnAhPGeIpLefRI43f9x84YLBjHzx0SOd9Hzx4IGIkhqHTbaz58+dj3LhxiImJUS+LiYnB+PHj8eWXX4oWHJESKX12YVKOR0/9M3Z0dJQpEt3JMZ2F0ulaWVlOWic7zs7OcHFxgYuLC0aNGoXY2FgEBwfDysoKVlZWCA4OxsmTJ6s1JPnQoUPo3bs3vL29oVKpsGnTJo31giBg+vTp8PLygo2NDcLCwsoMIUxLS0NERAQcHBzg5OSEN998s8ZdnqOaZ8x776G+j4/cYZAR+fnnnwEA9erVE63NadOmqR+npqZi/vz5orVNZEha38aSYnLG7OxstGrVCm+88Qb69etXZv28efOwcOFC/Prrr/D19cW0adPQo0cPXLhwQV1nJiIiAklJSdi9ezcKCgowatQojB49GqtWrRI9XiIiIjI9Wic7I0aMEP3g4eHhCA8PL3edIAhYsGABPv74Y/Tt2xcAsGLFCnh4eGDTpk0YPHgw4uLisHPnTkRHR6vrzixatAg9e/bEl19+qdj+Q3l5edixYwcEQUB6errc4RjExYsXyyw7fPhwuUmyvm7cuFHp+ps3b2Lv3r3q3zmUnnRxWeb+OIZgards04ywL4ogCBo1eARBqPIzSgypqamiFRpMTExEPRsbSFdJqGp6TwSam5uLzMxMjR8xxMfHIzk5GWFhYepljo6OCA4ORmRkJAAgMjISTk5OGgX2wsLCYGZmhqioqArbzsvLkyRmQ5k5cyZ69uyJXr16yR2KwZQ3C/nhw4exc+dO0Y9VeoREeXEEBgaa3GuGjE9cOQm80ixevFjuEEzenTt3NH4/f/48Hhqgq8adxETR2vpj3TokJSWJ1p4udEp2srOzMXbsWLi7u8PW1hbOzs4aP2Io+bb8dJVZDw8P9brk5GS4u7trrDc3N4eLi0ul37bnzJkDR0dH9Y+PifV9ePrFLyYx7/cbgpTnojwFBQWVJkNE9D/FxcVyh2Dynh4ib6pftKSskK0NnZKdDz/8EPv27cOSJUtgZWWFn376CZ9++im8vb2xYsUKsWMU3dSpU5GRkaH+Mab5SeS2fft2uUMgIiISlU51drZs2YIVK1agS5cuGDVqFDp37owmTZqgQYMGWLlyJSIiIvQOzNPzcQWElJQUeHl5qZenpKTg2WefVW+TmpqqsV9hYSHS0tLU+5enZAQZERERKZ9OV3bS0tLQqFEjAICDgwPSnnRi6tSpEw7pUaioNF9fX3h6emp0BM3MzERUVBRCQkIAACEhIUhPT8eJEyfU2+zbtw/FxcUIDg4WJQ5jZMgrUf/5z3+wbds2gx2vugxZQyMxMRGzZs0y2PGIdJGbm1ut7RMSEnDkyBFJYlFCUUJj8eDBA6xfvx67du+WOxRk63BLSu5ChDolO40aNUJ8fDwAICAgAGvXrgXw+IqPk5OT1u1kZWUhNjYWsbGxAB53So6NjUVCQgJUKhUmTJiAzz77DJs3b8bZs2cxfPhweHt745VXXgEANG3aFC+99BLefvttHD9+HEeOHMHYsWMxePBgxY7EAgx7z/bYsWNlCovVZJ9//rlobelzddHCwkK0OEhZ7t27V63tP/30U4kiAeLi4iRru6bZvHkzzplwgcSSnEEuOiU7o0aNwunTpwEAH330ERYvXgxra2tMnDix3LLcFYmJiUFQUBCCgoIAAJMmTUJQUBCmT58O4HHfoHHjxmH06NFo164dsrKysHPnTnWNHQBYuXIlAgICEBoaip49e6JTp05YtmyZLk+LDEiKUVSmxtHREc0DA3XatzpfKogqI+WXJ1PtTCsWSxG/lNy+fVuUdho2aABXFxdR2qoOS0tLgx+zNJ367EycOFH9OCwsDBcvXsSJEyfQpEkTtGzZUut2unTpUullTpVKhZkzZ2LmzJkVbuPi4sICgiaoa9eucodgFHx9fXGgmt/WmjRuLFE0mtzr1EGqCZaFJ90EBgaa7NQK//73v0W96ioWJycno3sPOTs7Izg4GH88uSNTU+iU7DytQYMGaNCggRhNEREREYlK62RnYTVmHH7//fd1CoaIiAwnLy8P69evl6x9U71SZGwOHz6MgsJCucMwaVonO998841W26lUKiY7RBLKz88XpZ263t6iVkklIk21a9fWu438/HzsKTUqmXSjdbJTUU/qkj43pefuICLpdOjQocwyFYDqDPIdOGAAPD09sei770SLi8TTyNcXmTKPXjFVJdPoVFYyw87ODlkGmHLBwcFB7zbkGr7fo3t32NraYs+ePch8qoqzKdJ5bqzly5ejefPmsLa2hrW1NZo3b46ffvpJzNiIqBylRyOWqFOnTrXaCAwMhI2NjVghkR7cy/nbPfPMMzJEogydO3fG888/X+k27GNatZYtW6Jly5Zo0aKF3KGIQqcOytOnT8fXX3+NcePGqQv8RUZGYuLEiUhISKh09BQRERGRIemU7CxZsgQ//vgjhgwZol7Wp08ftGzZEuPGjWOyQ1SJ6la4JWXjZJnS+fXXX/Hqq6+WWW7oCYT1UXqGANKdTrexCgoK0LZt2zLL27Rpg0L2GDdZY8aMkTsEMoB6devKHQKVIncZfbmoVCrY29vDx8dH77bq16+vflxYWIhmzZqpfy+Zzqi09PR0vY9pKGJ/Oaqp80LqlOwMGzYMS5YsKbN82bJlokwCWtO4ubnJHQKmTJmCRYsWyR2GbCobbdi5c2c899xzBoxGOk0aN8aoUaNEaSu0WzdR2qGaKTk5Gbdv3xalGvigQYM0fu/Zs6febcopsFkz9HryHMQe/NOmTRtR2zMVWt/GmjRpkvqxSqXCTz/9hF27dqlHhkRFRSEhIQHDhw8XP0qF8/DwqPZ8NmJr1KhRjR5RV6tWrQrX1a9fH0lJSQaMRjpOTk6VPtfqsLOzK9u+oyPSMzJEaZ+Uzd3dXe4QjJalpSXs7e3lDkNRtE52Tp06pfF7SXZ47do1AI+vTri5ubGIVCkZGRnIzs6WOwwiohqrpt4mJE1aJzv79++XMg5F+umnn+D6ZEZ3IinJVYuDyNhNnjxZ7hDICOhcZ4eqFhMTI3cIal5eXgY9XseOHUUpqKWr8mrRKJmrq6vBj1m3bl24urjAydFRvUyMzqZKYCHibNdEpD8mOxJ699135Q5BzdDDF48cOQJzc1Hmma02QRDw5ptvSnqMS5culVvJWC7+/v4GP6atrS3GjRuH9957T73MwcEBL/XoIepxapmJ+zHVuVMnUdsrT7t27SQ/Bpmu0l8QXunbV8ZIgDoSDJDpZYQdxJnsEBERkaIx2SEiIjJSqXfvyh2CIjDZqSHEGm6sDTFm+jUFYs0+bqzMdLx9pOt+RPRYUVGRqO2V7lJQU9+fNfNZK0y3bt0QHh6Or776CqGhofD19S2zjSFrWqxcudJgx3rajz/+WOU2FRXVWrhwYbWO1bx582ptbyqaNG6MAH9/nSejDAgI0PnYri4uOu8rFhdnZ7lDUKwGDRrgxRdfLLcoLf1Po0aNRGmncaNG8H/mGfTp0wfNmjZFu7Zt4WIE7zE5MNkxkK5duqBhw4aStP3vf/8b27dvx6RJk7Bnzx706dOn3O1ef/11SY5f2oIFC/DKK6/ovL++3zreeuutKrcZOHAgvvjiizLLx40bh9GjR2t9rIrOs6nr0aMHBg8eXKaomaWFBexsbavc38HBAZ10rDjdyQCdh6tSr149uUPQ8Msvv8gdQpW0/TLVrl077Nq1C++8847WbdcpZ1Z4pasr0pQuoaGhGDJkCLy8vDBo0CD06tXL4MVjLY1kZCKTHSIiIlI0JjtERESkaEx2jEBBQYGk7ZdcBr569aqkxzEmxcXFcodARkrpHcuNWVxcXLX3KW8ONpKeXHXSpMJkxwiI3fO+tAkTJmDbtm0AgMzMzGrt6+fnJ0VIBjF06FC5QwAAvPHGG5g3b57cYRiljiEhshy3sLBQluP6NWlisGM1btwYM2bMwJ9//lntjvdiK92PrrqfQQEBAUbRj0sMLVu0kDsErQ3o3x9WVlZllpvSc3gakx2Fmzt3rs7VXKdOnSpyNIbj7e0tdwho164dli9fjg8++EDnNqSobmosnn/+eblDMChDdrR1cXHBJ598gn79+mHcuHEGO255vvzyS533nTx5skHLZkipvFGyxqqikaam9ByexmSHiIiIFI3JDhERESkakx0ikoUxd4D0r6KgooURxw4A9+7dq/Y+np6eEkRSs5XuXF1RR+uKKs6zY7a4mOyQyfD29kYLE+4gR5rMzc1hZWkpertN9ajgXKKqwph2dnYY/fbbGDZ0KNq0bq338cQ2efLkam3funVr9JV59m1T0CE4GP379dNY9kIlfc+6dOmCgQMGYPiwYRUWlbWzs0Not25lltetWxeBzZppHdu/Ro9GbRsbrbevaZjskMmoVasWevToodO+gYGBIkdDYpBiGhNdOlG6P9V52EaLfxre3t5o3LgxnJycqn08h6eqU4vNrZod28PDw02mI3ATA45qe5qtrS1atGiBZk2bqpc9XWm8NEtLSwQGBlY5/UN5AypUKpXWVffrenvDy8tLq21rKiY7REREpGhMdgzI0HOSkDjy8vLkDoGISBJy1Z0yNCY7EmrUqBHMniQ4AQEBGDVqlMwRabK0tFTPgNusGveGlaA6FZYvXLggYSSVc3R0lO3YNUl5t3BK+ks0r+YtUBUe35Zw0vFvZ1u7tla30Uj59KnNZGFuXuEt1tK3OR+kp+t8DFNi3EMKTFy9evXw2muvIS8vD/bTpgFeXli2bBlu374td2gAHo8CuHHjBrKzszkSw0gFBgbi6rVrcodh9BrUr4+bCQk67duwQYNyp5AYMGAAwp78Izh3/rxWbY1//31YWlrC1tYWY8aMwezPP69WLC/36oWWLVsi8dKlctfPmDEDn376abXaJNOlbZ+d8kyePBnW1tblrquJM8nzyo7ErKys4ODgAJVKBZVKZXQVKO3t7ZnokMkrr7S9tioaAq9SqeDs7FyttqytrWFrawsAsLCwgKWFRbX2t7e3h2UlI9Rq4j8p0k1FiU5NxWSHiIiIFI3JTg3CfgCkj/yCAq23FQRBwkjKMjPjR5k+DPX3qqiAHpHU+AlRg0yZMqXKy/LPPPMM2rRpg4YNG1Z7tuG6deuia9eu+oQomeDgYLlDMAlurq7qTuv6qGoi1s4iz2Tdpk0b1LaxQeugIFHbNQQPDw+416kDF2dn1K1bV5YYOnTooPO+fn5+aN++fZnlXl5e6NmzJxwcHPDRRx/B2dkZH3/8cYXtGPPEsE0aN4a9nR0aN25s8GOb4mvaGBl9svPw4UNMmDABDRo0gI2NDTp27Ijo6Gj1ekEQMH36dHh5ecHGxgZhYWG4cuWKjBEbr9deew1paWmVbmNlZYWYmBjEx8drdI6r6p/Xs88+i9u3b6Nly5ZihCqq77//XvJ+SWIWLezbp48o7bzzr3/hkxkz0Kd37yq3fTEsDJ/MmIGxY8eKUlyuqo6VoaGheh+jND8/P3z44YfoI9K5MyRLS0u89957eP/992WbIqBz58467ffhhx/i8uXLZYpDBgUFITExEdu2bYNKpcKcOXOQlpaGoUOHVthWQEAA/u///k+nOKQ2dOhQTJ48ucrPQSn06dMH9X18DH5cpTH6ZOett97C7t278dtvv+Hs2bPo3r07wsLCcOfOHQDAvHnzsHDhQixduhRRUVGwtbVFjx49kJubK3PkREREZAyMOtl59OgR/vzzT8ybNw/PP/88mjRpgk8++QRNmjTBkiVLIAgCFixYgI8//hh9+/ZFy5YtsWLFCiQmJmLTpk1yh0+kOIbui0NEJAajTnYKCwtRVFRUZgidjY0NDh8+jPj4eCQnJyMsLEy9ztHREcHBwYiMjKyw3by8PGRmZmr8yEmuTnv16tWT5biVkWKupPJUNNy4qtt8xiQxMVH92FAziGfn5KgfG0unYDMRKpMXFRWJEEnN9fRnWHl1i3RVMpRfSUq/d4zlfaR0Rn2W7e3tERISglmzZiExMRFFRUX4/fffERkZiaSkJCQnJwN43MGvNA8PD/W68syZMweOjo7qHx8Z74e+/PLL+O9//4uBAweitxZ9K8SwcuVKhIaGYuHChXq1M3/+fJEietyfaNSoUdi4caNobVZm4MCB5S6/d++eQY4vhsJS/6ADAwPRrm1bgx7fGEb3NfL1xYABA/Rup7oTZ5qan3/+Gc8++6xk7b/33nsanav9/f1Fa3vMmDGKm+TS19cXgc2aoXVQkMG+4NV0Rp3sAMBvv/0GQRBQt25dWFlZYeHChRgyZIhe2fDUqVORkZGh/rl165aIEWuvX79+2LJlC1q3bo21a9di2bJlBjnu66+/jj179ug1cqpPnz6idiZcs2YNfv75Z3To0KHSompiadCgASZMmCD5cQzFzMwMvXr1Qv9+/QxyPM+nvmDIZfjw4aJMddK01CzWSjRq1Cjs3r1bsvabNm2K7du3q3/vJ+LrsGnTptixY4do7RkDKysrDBw4EH369OGVHQMx+rPcuHFjHDx4EFlZWbh16xaOHz+OgoICNGrUSD3CJiUlRWOflJSUSkfflFQ1Lv1DREREymT0yU4JW1tbeHl54cGDB/j777/Rt29f+Pr6wtPTE3v37lVvl5mZiaioKISEhMgYLRERERkLo092/v77b+zcuRPx8fHYvXs3unbtqp5BXKVSYcKECfjss8+wefNmnD17FsOHD4e3tzdeeeUVuUOvNqXNZSJlHwFDe/jwYbX3adKkSZXb6NKxWKzbfKXr6Yh969BQHaZ1IUaHVzHnqCqv0KdFqb+HtrV35KrRYwxKv37Lu1LvqOMM9MaiunO0UVlGn+xkZGRgzJgxCAgIwPDhw9GpUyf8/fffsHgywd6HH36IcePGYfTo0WjXrh2ysrKwc+dOk0wcnJycsGrVKrnDEM3SpUsxZcoUjWVbt26VKZqyIiIitN72tddeq1bb7dq1w9y5c6vcztHRES+GhsJVi6rFtrVr46UePUSrsmtlZYUB/fuja5cuaNGihShtPt22MRKjmnZ4eLjebQwfNgydO3Uqt++ct5cX2rVti08/+QTt2rXTWPf3339j+PDhGDlyJLZv3465c+fihx9+kKW6r7GwtbXF2rVr8cknn2DYsGFl1u/cuVOGqMTTrVs3dO7UCSOGD5c7FJNlvF+/nhg0aBAGDRpU4XqVSoWZM2di5syZBoxKOkOGDMHrr78udxii8PPzw9y5c/HFF18AeDwVRa9evWSO6n+qU1W5up1gP//8c9SvX1+rbVu1aoWi2rWxecuWSrcLCQnRq6x/eZo3by5qe0+3vf7PPyVrXxfeXl6iXNkR45t2o0aN0KhRo3LXqVQqBAYGInD0aNwqLNRY1717d3Tv3l39e0nidfLkSb1jMmWlR1gWFxdrrOvQoQMmTZqEr7/+2tBhicLR0VH0quM1jdFf2SEiIiLSB5MdIiIiE5aXlyd3CEaPyY6BaVOh9+WXXzZAJNUj9USaYlBipVWle7r/kaE62epTJ6iJgfvGlO5ca8j3oSkXWlSJUFVbbLVq1VJX+3ZyctJYp8vr3qZUv9R79+/rHpcEdX6MsbM8kx0Dmzx5cpXbrFixAmvXrjVANNoTu6+IGGbMmKF+PG3aNMTGxsoXDOkkNDQUgwYORP9+/TBq5Mgy1dClUp3O6aX5NmyI/gbueO3g4IDY2Fhs377doKNMTbnvoEqlQqtWreQOQ4OZmRnee+89DBk8GG3atNFY5+HhgaBqjl4Vqz6cra0tRr/9drX361BOR/8B/ftjaESEqBW0xcJkx8BctBh14+zsrNHZrkuXLhJGpB1j/KbUoEED9eNXXnlFq6HeZFwsLCzQrFkztGjRQuPvKTV7e3ud9gsMDJRlmoxWrVohPDxco1yA1EpGvJoqPz8/uUMow83NDf7+/uX+HQ35+n+at7d3tfcp74uJp6cnmjRpYpRVoY0vIiIiIiIRMdkhIiql8Kmh3lLI1KFIJRHpjskOVcjc3BzPPPMMAKBTp04yRwO0bNlS4/eAgACYmZmhdu3aaNiwoTxBVeDpS+jt27fXel8XFxeYP+nMWFkn0bZP7vu3ad1atyCNUO3atWEnYkfz5oGBWm1X+jzfvXtXtOOXlpWVJUm7JRo2bIjatWvDzMwMAQEBZdY7OjrqXZBSjElXKyNGwUdtVFa77Wnt2raVMBJxtX0Sa9Ny/v5P83/y2d5aQZ8flTH6ooIkH5VKhdOnT+Pu3bvw8fHBkCFDZIkjMjISjo6OeOaZZ/DRRx+pl7dq1QrJycmwtLQ0qnLwCxYsKHP//fDhw/Dz88PNmzer3N/Ozg6TJ0+GIAiVbterVy8899xzZUZ2mDJzc3O8//77OHv2LLaIUG37xRdfRGhoKL5duLDS7UxhtGFVXFxckJiYiPz8/HKns7CwsMDly5exdu1ajBo1SqdjPPfcc7h69apk/eMGDBiAffv2oVu3bpK0X+Lnn3+Gu7s71n/3XYXbdAgORnBwsEm9v7p27YqgoCCtPg9fe+01ZGRkmNTz0weTHaqUtbU1fHx8ZI3B1tYWTZs2LXedmHMUiaW8TugWFhZo0KCBVskOAHUn2JycnAq3UalUipwzx9LSUtShq0o8RxWp6p9c7dq1deqMWprUiWG9evUkbR94PDKqourVJUzx/VWdmM3MzEzu+emDt7GIiIhI0ZjskChMceLVmqigoEDuEKrNkMOtiWo6SxMvOVARJjsmzM/PDwEBAbJ2MJswYQJcXFy0KpaoJL6+vujQoQMaN26MVq1aIVDLjrBS8/HxgbOTE7w8PdWdbktPSJqZmalz2+2fmn3bUNq1a4faMtS2UaqnC9oZG19fX4SEhKB+/fp4/vnny6zv1auX6LfSQoKDYW1lhbDQUDQNCIBdJbfOn9agQQM4ilTgT06h3brB2spKY5JZJWGfHRN28eJF2Ys3ffPNN/jmm29kjcHQ9u/fDwsLC9StWxdXr14FAJ07fIrNyckJ48eP11gmRtn/CePHw8nJCcejo3Vuw/+ZZ3Dp8uXq7+fvjxdffBGffPqpxvIWEs7YrmSurq7473//i5EjR8odSrnMzc1x9OjRCte3b98eCxYsgLe3N5KSkkQ55rPPPovnXnpJp33r1KmDiRMnqn9/+nVqKjp37ozOnTvLHYZkeGWHiIiIFI3JDhERESkakx0yGENN8lie0jVriouLZYtDboae16mkL4NZNedWK317tqJbtZaWljrvK6bSxzDGOeR0paTnYkgls4g76Dj/mtJYWVnJHQIAJjtkAMuXL0dYWBjmzp0rWwx9+vRRP66JyU7P8HA0btTI4Pfke/fujUa+vhgwYEC19mvQoAGaBwbi2Vat4OXlVWZ9k8aNK6y26+/vjwB/f4R06KDzhJ/VERgYiGf8/PB8586KGZX49ttvm/xEoHIZMGAAGvn6anzm1EQv9eiBJo0bo2PHjnKHAoAdlMkA3njjDbzxxhuyxuDv7y/r8eXWvn37ak1ZIZYmTZqoq+2ePn1a6/0sLS0rTZCGDh1a4Tp7e3sMHjxY+yD15OTkhNdff91gxzOE//znP3KHYLKaNm2q9UguJevQoQM6dOiA69evyx0KAF7ZISIiIoVjskNERESKxmTHREg18V5NUbozq8OTTrOlO+uWzMWk6+zpCQkJZdoSg7n5/+40V9QhVyql+2wYQ/8N5ycTFnrK2NG9ukr6GxlbUURbEWeWN1ZVzQFW+hzUMmePDjEYw+dERfgXNhHr16/H6tWr0aNHD+zfvx/t27eXvaCgKbG1tcXatWtx4cIFDBs2DMDj4mq///474uPj1f1DZs2aBW9vb4SGhiI0NFTr9h8+fKh+HB4eLlrclpaWGDhgAO7du4eWLVuK1q42mjVrhszMTDg6OhrFP8fXXnsN586dM/h50EefPn1w6tQpNG3aFFFRUXKHo9arVy9YW1sjNzdX7lAkM3XqVNjb26NTp07lrh88eDCyr17FC1FRsDaSEUOmyr1OHYSEhGg127pcmOyYiFatWqFVq1YAgK5du8ocjWkaOHBgmWUREREav9erVw+zZ8/W6zhij8iRayoKS0vLcsv1y8XT01PyGbfF5urqirCwMLnDKMPGxgZTp07FjBkz5A5FMp6envjss88qXO/g4PC48vHUqQaMSpk6depk9F9CeGmAiIiIFI3JDhERESkakx3SWnMRJ16sVauWuh+Ij4+PxjoxinE5PenMCsDkbn0oVUkFbWPrrEsVK/3eEbPjPenOxdkZAFC/fn1Z4yjdj88UXhvss0Na+/vvv1G3bl1R2qpVqxZOnjyJqKioMh0If/rpJ+Tn52Pz5s06t+/k5IRTp04hOTkZL774or7hkgg6d+4MLy8vJp8mZMiQIXBxcUGDBg0MPtUIlW/kyJG4ffs2mjRpguiYGNnisLOzw9tvvYW8vDz4+vrKFoe2mOyQ1qoaylldzzzzDJ555pkyyx0dHTFw4EC9kh0AePbZZ/Xan8RlYWHByrImxtzcHL169ZI7DCrFwcEBzZo1kzsMABDty68h8DYWERERKRqTHSIiIlI0JjsG5u/vj1q1agEAWrRoIckxQkJCAAB+fn5GXdHS2HXv3h0A1EUIqWays7NTd6quU6eOzNFIp6Sek5ubG9zd3WWOxrg1btwYAOBVA/qfldyqcnZyMun/J+yzY2ABAQFITk5GRkYGGjVqJMkxXnvtNTz33HNwc3NjlWU9bNu2Dbdu3YKvry927NghdzgkEwsLC0yYMAH5+fkmMepEVy+88AKSkpJgZ2fHzshVaNOmDZo0aaLo10OJZs2aYdLEibCxscHly5flDkdnTHZk4ObmBjc3N0mPUa9ePUnbrwnMzc1NYpQBSc/S0tLgc5PJgSPltGfMUyOIrWQ+QVPGr/1ERESkaEx2TEBN+EZJyqBSqeQOoVIl/eWIqGZhsmPE3nnnHbi6umLs2LFyh0JUIQsLC/g/8wzsbG3h7+8vdzjlCm7fHjbW1ujYsaPcoQAAOj4ZRKAk/v7+aNOmDXx9ffHcc8/JHQ6RBqNOdoqKijBt2jT4+vrCxsYGjRs3xqxZsyAIgnobQRAwffp0eHl5wcbGBmFhYbhy5YqMUYtnyZIluHfvHnr37i13KEQVUqlUGDJkCP7v//6vzNQfxiI8PBxTpkwxmqKGJSP9lMTKygoxMTG4fv06GjZsKHc4RBqMOtn54osvsGTJEnz33XeIi4vDF198gXnz5mHRokXqbebNm4eFCxdi6dKliIqKgq2tLXr06IHc3FwZIyciIiJjYdSjsY4ePYq+ffuqy5U3bNgQq1evxvHjxwE8vqqzYMECfPzxx+jbty8AYMWKFfDw8MCmTZswePBg2WInIiKix9IzMlBYWChb0mHUV3Y6duyIvXv3qsf2nz59GocPH0Z4eDgAID4+HsnJyQgLC1Pv4+joiODgYERGRlbYbl5eHjIzMzV+yLiYm5uX+1guxhaP3ErPeKw0Uj03DjQQl9hz9cmtdE00JdVHK/1c8vLyZIvDqD+1P/roI2RmZiIgIAC1atVCUVERZs+ejYiICABAcnIyAMDDw0NjPw8PD/W68syZMweffvqpdIGT3rp3744BAwbA1dXVKDq9PvfccxgyZAjMzc3Rvn17ucORTe+XX8aFCxfQtWtXuUMRXZ/evXH+/Hl06dJFkvbbt2+P9PR01m4Syddff41Zs2Zh+PDhcociiiZNmqBZ06awtbWFi4uL3OGIpl69emgWEADcvy/raE2jTnbWrl2LlStXYtWqVQgMDERsbCwmTJgAb29vjBgxQud2p06dikmTJql/z8zMNNqOlTWVi4sL1q1bJ3cYarVr18aqVavkDkN2bdq0QZs2beQOQxKtW7dG69atJWvf3d0dQ4cOlaz9mub555/H7t275Q5DNLVr18agQYPkDkN05ubm6NmzJ3D/PlC7tnxxyHZkLXzwwQf46KOP1H1vWrRogZs3b2LOnDkYMWKEutpnSkoKvLy81PulpKTg2WefrbBdKysrWFlZSRo7ERERGQejvjGYk5NT5t5lrVq1UFxcDADw9fWFp6cn9u7dq16fmZmJqKgo9WSYREREVLMZdbLTu3dvzJ49G9u2bcONGzewceNGfP3113j11VcBPK7vMWHCBHz22WfYvHkzzp49i+HDh8Pb2xuvvPKKvMETPYV9NYxTTZrjSAylO+g7OzvLGAl5Pumv6uzkJG8gJsCob2MtWrQI06ZNw3vvvYfU1FR4e3vjX//6F6ZPn67e5sMPP0R2djZGjx6N9PR0dOrUCTt37oS1tbWMkROV9dlnn6Fu3boIDQ2VOxQCMGzoUNy4caNGdzjXhZWVFf7880+cOXMGo0ePljucGq1fv344c+YMmjdvLncoRs+okx17e3ssWLAACxYsqHAblUqFmTNnYubMmYYLjEgH9erVw+zZs+UOg55o3LgxGjduLHcYJqlfv37o16+f3GHUeO7u7hqlV6hiRn0bi4iIiEhfTHaIiIhI0ZjsULW4uroCAFq1aiVzJERERNox6j47ZHyio6MRGxurnrKDiIjI2DHZoWrx9fXlEGoiIjIpvI1FREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjskElRqVRyh1AuKysruUMgIqIKMNkhk/LKK6/Aw8MDffv2hY2NjdzhqE2cOBEuLi4YN26c3KEQEUmiXr16cHZygqeHB+rUqSN3ONXCooJkUjp27Ijk5GS5wyiDs0ATkdI5Ojpi/PjxcoehE17ZISIiIkVjskNERESKxmSHyAiYmZmV+5iIiPTHPjtERsDPzw9NAwJgb28PJycnucMhIlIUJjtERsDW1havvfaa3GEQESkSr5cTERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkVjskNERESKxmSHiIiIFI3JDhERESkakx0iIiJSNCY7REREpGhMdoiIiEjRmOwQERGRojHZISIiIkUz+mSnYcOGUKlUZX7GjBkDAMjNzcWYMWPg6uoKOzs79O/fHykpKTJHTURERMbC6JOd6OhoJCUlqX92794NABg4cCAAYOLEidiyZQvWrVuHgwcPIjExEf369ZMzZCIiIjIi5nIHUJU6depo/D537lw0btwYL7zwAjIyMrB8+XKsWrUK3bp1AwD88ssvaNq0KY4dO4YOHTrIETIREREZEaO/slNafn4+fv/9d7zxxhtQqVQ4ceIECgoKEBYWpt4mICAA9evXR2RkZIXt5OXlITMzU+OHiIiUy8rKSv3YzMyk/vWRCIz+yk5pmzZtQnp6OkaOHAkASE5OhqWlJZycnDS28/DwQHJycoXtzJkzB59++qmEkRIRkTEZNWoUzpw5g+DgYI3Eh2oGk0p2li9fjvDwcHh7e+vVztSpUzFp0iT175mZmfDx8dE3PCIiMlJ+fn7YunWr3GGQTEwm2bl58yb27NmDDRs2qJd5enoiPz8f6enpGld3UlJS4OnpWWFbVlZWzOyJiIhqCJO5cfnLL7/A3d0dvXr1Ui9r06YNLCwssHfvXvWyS5cuISEhASEhIXKESUREREbGJK7sFBcX45dffsGIESNgbv6/kB0dHfHmm29i0qRJcHFxgYODA8aNG4eQkBCOxCIiIiIAJpLs7NmzBwkJCXjjjTfKrPvmm29gZmaG/v37Iy8vDz169MD3338vQ5RERERkjEwi2enevTsEQSh3nbW1NRYvXozFixcbOCoiIiIyBSbTZ4eIiIhIF0x2iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSKiGujZZ58FANSvXx92dnbyBkMkMZMoKkhEROLq06cPbt++DWdnZ41peIiUiK9wIqIaqm7dunKHQGQQvI1FREREisZkh4iIiBSNt7GIiMio+fv7o3Xr1njw4AGee+45ucMhE8Rkh4iIjJq1tTVOnDghdxhkwngbi4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaKZyx2AMRAEAQCQmZkparuqhw9hlZ8PAMh7+BCCra2o7ZNpU78+0tMhPHmdEAGAKicHyM/n54bE+B40DClfzyX/t0v+j1cYg1DVFjXA7du34ePjI3cYREREpINbt26hXr16Fa5nsgOguLgYiYmJsLe3h0qlErXtzMxM+Pj44NatW3BwcBC1bfofnmfD4Hk2DJ5nw+B5Ngwpz7MgCHj48CG8vb1hZlZxzxzexgJgZmZWaUYoBgcHB76ZDIDn2TB4ng2D59kweJ4NQ6rz7OjoWOU27KBMREREisZkh4iIiBSNyY7ErKysMGPGDFhZWckdiqLxPBsGz7Nh8DwbBs+zYRjDeWYHZSIiIlI0XtkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHQktXrwYDRs2hLW1NYKDg3H8+HG5QzIpc+bMQbt27WBvbw93d3e88soruHTpksY2ubm5GDNmDFxdXWFnZ4f+/fsjJSVFY5uEhAT06tULtWvXhru7Oz744AMUFhYa8qmYjLlz50KlUmHChAnqZTzH4rlz5w6GDh0KV1dX2NjYoEWLFoiJiVGvFwQB06dPh5eXF2xsbBAWFoYrV65otJGWloaIiAg4ODjAyckJb775JrKysgz9VIxWUVERpk2bBl9fX9jY2KBx48aYNWuWxtxJPM/Vd+jQIfTu3Rve3t5QqVTYtGmTxnqxzumZM2fQuXNnWFtbw8fHB/PmzRPnCQgkiTVr1giWlpbCzz//LJw/f154++23BScnJyElJUXu0ExGjx49hF9++UU4d+6cEBsbK/Ts2VOoX7++kJWVpd7mnXfeEXx8fIS9e/cKMTExQocOHYSOHTuq1xcWFgrNmzcXwsLChFOnTgnbt28X3NzchKlTp8rxlIza8ePHhYYNGwotW7YUxo8fr17OcyyOtLQ0oUGDBsLIkSOFqKgo4fr168Lff/8tXL16Vb3N3LlzBUdHR2HTpk3C6dOnhT59+gi+vr7Co0eP1Nu89NJLQqtWrYRjx44J//zzj9CkSRNhyJAhcjwlozR79mzB1dVV2Lp1qxAfHy+sW7dOsLOzE7799lv1NjzP1bd9+3bhP//5j7BhwwYBgLBx40aN9WKc04yMDMHDw0OIiIgQzp07J6xevVqwsbERfvjhB73jZ7Ijkfbt2wtjxoxR/15UVCR4e3sLc+bMkTEq05aamioAEA4ePCgIgiCkp6cLFhYWwrp169TbxMXFCQCEyMhIQRAev0HNzMyE5ORk9TZLliwRHBwchLy8PMM+ASP28OFDwc/PT9i9e7fwwgsvqJMdnmPxTJkyRejUqVOF64uLiwVPT09h/vz56mXp6emClZWVsHr1akEQBOHChQsCACE6Olq9zY4dOwSVSiXcuXNHuuBNSK9evYQ33nhDY1m/fv2EiIgIQRB4nsXwdLIj1jn9/vvvBWdnZ43PjSlTpgj+/v56x8zbWBLIz8/HiRMnEBYWpl5mZmaGsLAwREZGyhiZacvIyAAAuLi4AABOnDiBgoICjfMcEBCA+vXrq89zZGQkWrRoAQ8PD/U2PXr0QGZmJs6fP2/A6I3bmDFj0KtXL41zCfAci2nz5s1o27YtBg4cCHd3dwQFBeHHH39Ur4+Pj0dycrLGuXZ0dERwcLDGuXZyckLbtm3V24SFhcHMzAxRUVGGezJGrGPHjti7dy8uX74MADh9+jQOHz6M8PBwADzPUhDrnEZGRuL555+HpaWlepsePXrg0qVLePDggV4xciJQCdy7dw9FRUUaH/4A4OHhgYsXL8oUlWkrLi7GhAkT8Nxzz6F58+YAgOTkZFhaWsLJyUljWw8PDyQnJ6u3Ke/vULKOgDVr1uDkyZOIjo4us47nWDzXr1/HkiVLMGnSJPz73/9GdHQ03n//fVhaWmLEiBHqc1XeuSx9rt3d3TXWm5ubw8XFhef6iY8++giZmZkICAhArVq1UFRUhNmzZyMiIgIAeJ4lINY5TU5Ohq+vb5k2StY5OzvrHCOTHTIJY8aMwblz53D48GG5Q1GUW7duYfz48di9ezesra3lDkfRiouL0bZtW3z++ecAgKCgIJw7dw5Lly7FiBEjZI5OOdauXYuVK1di1apVCAwMRGxsLCZMmABvb2+e5xqMt7Ek4Obmhlq1apUZsZKSkgJPT0+ZojJdY8eOxdatW7F//37Uq1dPvdzT0xP5+flIT0/X2L70efb09Cz371CyrqY7ceIEUlNT0bp1a5ibm8Pc3BwHDx7EwoULYW5uDg8PD55jkXh5eaFZs2Yay5o2bYqEhAQA/ztXlX1ueHp6IjU1VWN9YWEh0tLSeK6f+OCDD/DRRx9h8ODBaNGiBYYNG4aJEydizpw5AHiepSDWOZXys4TJjgQsLS3Rpk0b7N27V72suLgYe/fuRUhIiIyRmRZBEDB27Fhs3LgR+/btK3N5s02bNrCwsNA4z5cuXUJCQoL6PIeEhODs2bMab7Ldu3fDwcGhzD+emig0NBRnz55FbGys+qdt27aIiIhQP+Y5Fsdzzz1XpnTC5cuX0aBBAwCAr68vPD09Nc51ZmYmoqKiNM51eno6Tpw4od5m3759KC4uRnBwsAGehfHLycmBmZnmv7ZatWqhuLgYAM+zFMQ6pyEhITh06BAKCgrU2+zevRv+/v563cICwKHnUlmzZo1gZWUl/Pe//xUuXLggjB49WnByctIYsUKVe/fddwVHR0fhwIEDQlJSkvonJydHvc0777wj1K9fX9i3b58QExMjhISECCEhIer1JcOiu3fvLsTGxgo7d+4U6tSpw2HRlSg9GksQeI7Fcvz4ccHc3FyYPXu2cOXKFWHlypVC7dq1hd9//129zdy5cwUnJyfhr7/+Es6cOSP07du33OG7QUFBQlRUlHD48GHBz8+vRg+JftqIESOEunXrqoeeb9iwQXBzcxM+/PBD9TY8z9X38OFD4dSpU8KpU6cEAMLXX38tnDp1Srh586YgCOKc0/T0dMHDw0MYNmyYcO7cOWHNmjVC7dq1OfTc2C1atEioX7++YGlpKbRv3144duyY3CGZFADl/vzyyy/qbR49eiS89957grOzs1C7dm3h1VdfFZKSkjTauXHjhhAeHi7Y2NgIbm5uwuTJk4WCggIDPxvT8XSyw3Msni1btgjNmzcXrKyshICAAGHZsmUa64uLi4Vp06YJHh4egpWVlRAaGipcunRJY5v79+8LQ4YMEezs7AQHBwdh1KhRwsOHDw35NIxaZmamMH78eKF+/fqCtbW10KhRI+E///mPxnBmnufq279/f7mfxyNGjBAEQbxzevr0aaFTp06ClZWVULduXWHu3LmixK8ShFJlJYmIiIgUhn12iIiISNGY7BAREZGiMdkhIiIiRWOyQ0RERIrGZIeIiIgUjckOERERKRqTHSIiIlI0JjtERESkaEx2iMgojRw5Eq+88opsxx82bJh6hvKqDB48GF999ZXEERGRrlhBmYgMTqVSVbp+xowZmDhxIgRBgJOTk2GCKuX06dPo1q0bbt68CTs7uyq3P3fuHJ5//nnEx8fD0dHRABESUXUw2SEig0tOTlY//uOPPzB9+nSNGcHt7Oy0SjKk8tZbb8Hc3BxLly7Vep927dph5MiRGDNmjISREZEueBuLiAzO09NT/ePo6AiVSqWxzM7OrsxtrC5dumDcuHGYMGECnJ2d4eHhgR9//BHZ2dkYNWoU7O3t0aRJE+zYsUPjWOfOnUN4eDjs7Ozg4eGBYcOG4d69exXGVlRUhPXr16N3794ay7///nv4+fnB2toaHh4eGDBggMb63r17Y82aNfqfHCISHZMdIjIZv/76K9zc3HD8+HGMGzcO7777LgYOHIiOHTvi5MmT6N69O4YNG4acnBwAQHp6Orp164agoCDExMRg586dSElJwaBBgyo8xpkzZ5CRkYG2bduql8XExOD999/HzJkzcenSJezcuRPPP/+8xn7t27fH8ePHkZeXJ82TJyKdMdkhIpPRqlUrfPzxx/Dz88PUqVNhbW0NNzc3vP322/Dz88P06dNx//59nDlzBgDw3XffISgoCJ9//jkCAgIQFBSEn3/+Gfv378fly5fLPcbNmzdRq1YtuLu7q5clJCTA1tYWL7/8Mho0aICgoCC8//77Gvt5e3sjPz9f4xYdERkHJjtEZDJatmypflyrVi24urqiRYsW6mUeHh4AgNTUVACPOxrv379f3QfIzs4OAQEBAIBr166Ve4xHjx7ByspKoxP1iy++iAYNGqBRo0YYNmwYVq5cqb56VMLGxgYAyiwnIvkx2SEik2FhYaHxu0ql0lhWkqAUFxcDALKystC7d2/ExsZq/Fy5cqXMbagSbm5uyMnJQX5+vnqZvb09Tp48idWrV8PLywvTp09Hq1atkJ6ert4mLS0NAFCnTh1RnisRiYfJDhEpVuvWrXH+/Hk0bNgQTZo00fixtbUtd59nn30WAHDhwgWN5ebm5ggLC8O8efNw5swZ3LhxA/v27VOvP3fuHOrVqwc3NzfJng8R6YbJDhEp1pgxY5CWloYhQ4YgOjoa165dw99//41Ro0ahqKio3H3q1KmD1q1b4/Dhw+plW7duxcKFCxEbG4ubN29ixYoVKC4uhr+/v3qbf/75B927d5f8ORFR9THZISLF8vb2xpEjR1BUVITu3bujRYsWmDBhApycnGBmVvHH31tvvYWVK1eqf3dycsKGDRvQrVs3NG3aFEuXLsXq1asRGBgIAMjNzcWmTZvw9ttvS/6ciKj6WFSQiOgpjx49gr+/P/744w+EhIRUuf2SJUuwceNG7Nq1ywDREVF18coOEdFTbGxssGLFikqLD5ZmYWGBRYsWSRwVEemKV3aIiIhI0Xhlh4iIiBSNyQ4REREpGpMdIiIiUjQmO0RERKRoTHaIiIhI0ZjsEBERkaIx2SEiIiJFY7JDREREisZkh4iIiBTt/wEYZNWQ60zzhwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ts.plot(\"blabla\", marker = 'k', save=True, filename=\"lightcurve.png\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### MJDREF and Shifting Times\n", + "\n", + "The `mjdref` keyword argument defines a reference time in Modified Julian Date. Often, X-ray missions count their internal time in seconds from a given reference date and time (so that numbers don't become arbitrarily large). The data is then in the format of Mission Elapsed Time (MET), or seconds since that reference time. \n", + "\n", + "`mjdref` is generally passed into the `Lightcurve` object at instantiation, but it can be changed later:" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91254\n" + ] + } + ], + "source": [ + "mjdref = 91254\n", + "time = np.arange(1000)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "\n", + "ts = StingrayTimeseries(time, array_attrs={\"counts\": counts}, dt=1, skip_checks=True, mjdref=mjdref)\n", + "print(ts.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "91253.99976851852\n" + ] + } + ], + "source": [ + "mjdref_new = mjdref - 20 / 86400 # Subtract 20 seconds from MJDREF\n", + "ts_new = ts.change_mjdref(mjdref_new)\n", + "print(ts_new.mjdref)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 19.99999965, 20.99999965, 21.99999965, 22.99999965,\n", + " 23.99999965, 24.99999965, 25.99999965, 26.99999965,\n", + " 27.99999965, 28.99999965, 29.99999965, 30.99999965,\n", + " 31.99999965, 32.99999965, 33.99999965, 34.99999965,\n", + " 35.99999965, 36.99999965, 37.99999965, 38.99999965,\n", + " 39.99999965, 40.99999965, 41.99999965, 42.99999965,\n", + " 43.99999965, 44.99999965, 45.99999965, 46.99999965,\n", + " 47.99999965, 48.99999965, 49.99999965, 50.99999965,\n", + " 51.99999965, 52.99999965, 53.99999965, 54.99999965,\n", + " 55.99999965, 56.99999965, 57.99999965, 58.99999965,\n", + " 59.99999965, 60.99999965, 61.99999965, 62.99999965,\n", + " 63.99999965, 64.99999965, 65.99999965, 66.99999965,\n", + " 67.99999965, 68.99999965, 69.99999965, 70.99999965,\n", + " 71.99999965, 72.99999965, 73.99999965, 74.99999965,\n", + " 75.99999965, 76.99999965, 77.99999965, 78.99999965,\n", + " 79.99999965, 80.99999965, 81.99999965, 82.99999965,\n", + " 83.99999965, 84.99999965, 85.99999965, 86.99999965,\n", + " 87.99999965, 88.99999965, 89.99999965, 90.99999965,\n", + " 91.99999965, 92.99999965, 93.99999965, 94.99999965,\n", + " 95.99999965, 96.99999965, 97.99999965, 98.99999965,\n", + " 99.99999965, 100.99999965, 101.99999965, 102.99999965,\n", + " 103.99999965, 104.99999965, 105.99999965, 106.99999965,\n", + " 107.99999965, 108.99999965, 109.99999965, 110.99999965,\n", + " 111.99999965, 112.99999965, 113.99999965, 114.99999965,\n", + " 115.99999965, 116.99999965, 117.99999965, 118.99999965,\n", + " 119.99999965, 120.99999965, 121.99999965, 122.99999965,\n", + " 123.99999965, 124.99999965, 125.99999965, 126.99999965,\n", + " 127.99999965, 128.99999965, 129.99999965, 130.99999965,\n", + " 131.99999965, 132.99999965, 133.99999965, 134.99999965,\n", + " 135.99999965, 136.99999965, 137.99999965, 138.99999965,\n", + " 139.99999965, 140.99999965, 141.99999965, 142.99999965,\n", + " 143.99999965, 144.99999965, 145.99999965, 146.99999965,\n", + " 147.99999965, 148.99999965, 149.99999965, 150.99999965,\n", + " 151.99999965, 152.99999965, 153.99999965, 154.99999965,\n", + " 155.99999965, 156.99999965, 157.99999965, 158.99999965,\n", + " 159.99999965, 160.99999965, 161.99999965, 162.99999965,\n", + " 163.99999965, 164.99999965, 165.99999965, 166.99999965,\n", + " 167.99999965, 168.99999965, 169.99999965, 170.99999965,\n", + " 171.99999965, 172.99999965, 173.99999965, 174.99999965,\n", + " 175.99999965, 176.99999965, 177.99999965, 178.99999965,\n", + " 179.99999965, 180.99999965, 181.99999965, 182.99999965,\n", + " 183.99999965, 184.99999965, 185.99999965, 186.99999965,\n", + " 187.99999965, 188.99999965, 189.99999965, 190.99999965,\n", + " 191.99999965, 192.99999965, 193.99999965, 194.99999965,\n", + " 195.99999965, 196.99999965, 197.99999965, 198.99999965,\n", + " 199.99999965, 200.99999965, 201.99999965, 202.99999965,\n", + " 203.99999965, 204.99999965, 205.99999965, 206.99999965,\n", + " 207.99999965, 208.99999965, 209.99999965, 210.99999965,\n", + " 211.99999965, 212.99999965, 213.99999965, 214.99999965,\n", + " 215.99999965, 216.99999965, 217.99999965, 218.99999965,\n", + " 219.99999965, 220.99999965, 221.99999965, 222.99999965,\n", + " 223.99999965, 224.99999965, 225.99999965, 226.99999965,\n", + " 227.99999965, 228.99999965, 229.99999965, 230.99999965,\n", + " 231.99999965, 232.99999965, 233.99999965, 234.99999965,\n", + " 235.99999965, 236.99999965, 237.99999965, 238.99999965,\n", + " 239.99999965, 240.99999965, 241.99999965, 242.99999965,\n", + " 243.99999965, 244.99999965, 245.99999965, 246.99999965,\n", + " 247.99999965, 248.99999965, 249.99999965, 250.99999965,\n", + " 251.99999965, 252.99999965, 253.99999965, 254.99999965,\n", + " 255.99999965, 256.99999965, 257.99999965, 258.99999965,\n", + " 259.99999965, 260.99999965, 261.99999965, 262.99999965,\n", + " 263.99999965, 264.99999965, 265.99999965, 266.99999965,\n", + " 267.99999965, 268.99999965, 269.99999965, 270.99999965,\n", + " 271.99999965, 272.99999965, 273.99999965, 274.99999965,\n", + " 275.99999965, 276.99999965, 277.99999965, 278.99999965,\n", + " 279.99999965, 280.99999965, 281.99999965, 282.99999965,\n", + " 283.99999965, 284.99999965, 285.99999965, 286.99999965,\n", + " 287.99999965, 288.99999965, 289.99999965, 290.99999965,\n", + " 291.99999965, 292.99999965, 293.99999965, 294.99999965,\n", + " 295.99999965, 296.99999965, 297.99999965, 298.99999965,\n", + " 299.99999965, 300.99999965, 301.99999965, 302.99999965,\n", + " 303.99999965, 304.99999965, 305.99999965, 306.99999965,\n", + " 307.99999965, 308.99999965, 309.99999965, 310.99999965,\n", + " 311.99999965, 312.99999965, 313.99999965, 314.99999965,\n", + " 315.99999965, 316.99999965, 317.99999965, 318.99999965,\n", + " 319.99999965, 320.99999965, 321.99999965, 322.99999965,\n", + " 323.99999965, 324.99999965, 325.99999965, 326.99999965,\n", + " 327.99999965, 328.99999965, 329.99999965, 330.99999965,\n", + " 331.99999965, 332.99999965, 333.99999965, 334.99999965,\n", + " 335.99999965, 336.99999965, 337.99999965, 338.99999965,\n", + " 339.99999965, 340.99999965, 341.99999965, 342.99999965,\n", + " 343.99999965, 344.99999965, 345.99999965, 346.99999965,\n", + " 347.99999965, 348.99999965, 349.99999965, 350.99999965,\n", + " 351.99999965, 352.99999965, 353.99999965, 354.99999965,\n", + " 355.99999965, 356.99999965, 357.99999965, 358.99999965,\n", + " 359.99999965, 360.99999965, 361.99999965, 362.99999965,\n", + " 363.99999965, 364.99999965, 365.99999965, 366.99999965,\n", + " 367.99999965, 368.99999965, 369.99999965, 370.99999965,\n", + " 371.99999965, 372.99999965, 373.99999965, 374.99999965,\n", + " 375.99999965, 376.99999965, 377.99999965, 378.99999965,\n", + " 379.99999965, 380.99999965, 381.99999965, 382.99999965,\n", + " 383.99999965, 384.99999965, 385.99999965, 386.99999965,\n", + " 387.99999965, 388.99999965, 389.99999965, 390.99999965,\n", + " 391.99999965, 392.99999965, 393.99999965, 394.99999965,\n", + " 395.99999965, 396.99999965, 397.99999965, 398.99999965,\n", + " 399.99999965, 400.99999965, 401.99999965, 402.99999965,\n", + " 403.99999965, 404.99999965, 405.99999965, 406.99999965,\n", + " 407.99999965, 408.99999965, 409.99999965, 410.99999965,\n", + " 411.99999965, 412.99999965, 413.99999965, 414.99999965,\n", + " 415.99999965, 416.99999965, 417.99999965, 418.99999965,\n", + " 419.99999965, 420.99999965, 421.99999965, 422.99999965,\n", + " 423.99999965, 424.99999965, 425.99999965, 426.99999965,\n", + " 427.99999965, 428.99999965, 429.99999965, 430.99999965,\n", + " 431.99999965, 432.99999965, 433.99999965, 434.99999965,\n", + " 435.99999965, 436.99999965, 437.99999965, 438.99999965,\n", + " 439.99999965, 440.99999965, 441.99999965, 442.99999965,\n", + " 443.99999965, 444.99999965, 445.99999965, 446.99999965,\n", + " 447.99999965, 448.99999965, 449.99999965, 450.99999965,\n", + " 451.99999965, 452.99999965, 453.99999965, 454.99999965,\n", + " 455.99999965, 456.99999965, 457.99999965, 458.99999965,\n", + " 459.99999965, 460.99999965, 461.99999965, 462.99999965,\n", + " 463.99999965, 464.99999965, 465.99999965, 466.99999965,\n", + " 467.99999965, 468.99999965, 469.99999965, 470.99999965,\n", + " 471.99999965, 472.99999965, 473.99999965, 474.99999965,\n", + " 475.99999965, 476.99999965, 477.99999965, 478.99999965,\n", + " 479.99999965, 480.99999965, 481.99999965, 482.99999965,\n", + " 483.99999965, 484.99999965, 485.99999965, 486.99999965,\n", + " 487.99999965, 488.99999965, 489.99999965, 490.99999965,\n", + " 491.99999965, 492.99999965, 493.99999965, 494.99999965,\n", + " 495.99999965, 496.99999965, 497.99999965, 498.99999965,\n", + " 499.99999965, 500.99999965, 501.99999965, 502.99999965,\n", + " 503.99999965, 504.99999965, 505.99999965, 506.99999965,\n", + " 507.99999965, 508.99999965, 509.99999965, 510.99999965,\n", + " 511.99999965, 512.99999965, 513.99999965, 514.99999965,\n", + " 515.99999965, 516.99999965, 517.99999965, 518.99999965,\n", + " 519.99999965, 520.99999965, 521.99999965, 522.99999965,\n", + " 523.99999965, 524.99999965, 525.99999965, 526.99999965,\n", + " 527.99999965, 528.99999965, 529.99999965, 530.99999965,\n", + " 531.99999965, 532.99999965, 533.99999965, 534.99999965,\n", + " 535.99999965, 536.99999965, 537.99999965, 538.99999965,\n", + " 539.99999965, 540.99999965, 541.99999965, 542.99999965,\n", + " 543.99999965, 544.99999965, 545.99999965, 546.99999965,\n", + " 547.99999965, 548.99999965, 549.99999965, 550.99999965,\n", + " 551.99999965, 552.99999965, 553.99999965, 554.99999965,\n", + " 555.99999965, 556.99999965, 557.99999965, 558.99999965,\n", + " 559.99999965, 560.99999965, 561.99999965, 562.99999965,\n", + " 563.99999965, 564.99999965, 565.99999965, 566.99999965,\n", + " 567.99999965, 568.99999965, 569.99999965, 570.99999965,\n", + " 571.99999965, 572.99999965, 573.99999965, 574.99999965,\n", + " 575.99999965, 576.99999965, 577.99999965, 578.99999965,\n", + " 579.99999965, 580.99999965, 581.99999965, 582.99999965,\n", + " 583.99999965, 584.99999965, 585.99999965, 586.99999965,\n", + " 587.99999965, 588.99999965, 589.99999965, 590.99999965,\n", + " 591.99999965, 592.99999965, 593.99999965, 594.99999965,\n", + " 595.99999965, 596.99999965, 597.99999965, 598.99999965,\n", + " 599.99999965, 600.99999965, 601.99999965, 602.99999965,\n", + " 603.99999965, 604.99999965, 605.99999965, 606.99999965,\n", + " 607.99999965, 608.99999965, 609.99999965, 610.99999965,\n", + " 611.99999965, 612.99999965, 613.99999965, 614.99999965,\n", + " 615.99999965, 616.99999965, 617.99999965, 618.99999965,\n", + " 619.99999965, 620.99999965, 621.99999965, 622.99999965,\n", + " 623.99999965, 624.99999965, 625.99999965, 626.99999965,\n", + " 627.99999965, 628.99999965, 629.99999965, 630.99999965,\n", + " 631.99999965, 632.99999965, 633.99999965, 634.99999965,\n", + " 635.99999965, 636.99999965, 637.99999965, 638.99999965,\n", + " 639.99999965, 640.99999965, 641.99999965, 642.99999965,\n", + " 643.99999965, 644.99999965, 645.99999965, 646.99999965,\n", + " 647.99999965, 648.99999965, 649.99999965, 650.99999965,\n", + " 651.99999965, 652.99999965, 653.99999965, 654.99999965,\n", + " 655.99999965, 656.99999965, 657.99999965, 658.99999965,\n", + " 659.99999965, 660.99999965, 661.99999965, 662.99999965,\n", + " 663.99999965, 664.99999965, 665.99999965, 666.99999965,\n", + " 667.99999965, 668.99999965, 669.99999965, 670.99999965,\n", + " 671.99999965, 672.99999965, 673.99999965, 674.99999965,\n", + " 675.99999965, 676.99999965, 677.99999965, 678.99999965,\n", + " 679.99999965, 680.99999965, 681.99999965, 682.99999965,\n", + " 683.99999965, 684.99999965, 685.99999965, 686.99999965,\n", + " 687.99999965, 688.99999965, 689.99999965, 690.99999965,\n", + " 691.99999965, 692.99999965, 693.99999965, 694.99999965,\n", + " 695.99999965, 696.99999965, 697.99999965, 698.99999965,\n", + " 699.99999965, 700.99999965, 701.99999965, 702.99999965,\n", + " 703.99999965, 704.99999965, 705.99999965, 706.99999965,\n", + " 707.99999965, 708.99999965, 709.99999965, 710.99999965,\n", + " 711.99999965, 712.99999965, 713.99999965, 714.99999965,\n", + " 715.99999965, 716.99999965, 717.99999965, 718.99999965,\n", + " 719.99999965, 720.99999965, 721.99999965, 722.99999965,\n", + " 723.99999965, 724.99999965, 725.99999965, 726.99999965,\n", + " 727.99999965, 728.99999965, 729.99999965, 730.99999965,\n", + " 731.99999965, 732.99999965, 733.99999965, 734.99999965,\n", + " 735.99999965, 736.99999965, 737.99999965, 738.99999965,\n", + " 739.99999965, 740.99999965, 741.99999965, 742.99999965,\n", + " 743.99999965, 744.99999965, 745.99999965, 746.99999965,\n", + " 747.99999965, 748.99999965, 749.99999965, 750.99999965,\n", + " 751.99999965, 752.99999965, 753.99999965, 754.99999965,\n", + " 755.99999965, 756.99999965, 757.99999965, 758.99999965,\n", + " 759.99999965, 760.99999965, 761.99999965, 762.99999965,\n", + " 763.99999965, 764.99999965, 765.99999965, 766.99999965,\n", + " 767.99999965, 768.99999965, 769.99999965, 770.99999965,\n", + " 771.99999965, 772.99999965, 773.99999965, 774.99999965,\n", + " 775.99999965, 776.99999965, 777.99999965, 778.99999965,\n", + " 779.99999965, 780.99999965, 781.99999965, 782.99999965,\n", + " 783.99999965, 784.99999965, 785.99999965, 786.99999965,\n", + " 787.99999965, 788.99999965, 789.99999965, 790.99999965,\n", + " 791.99999965, 792.99999965, 793.99999965, 794.99999965,\n", + " 795.99999965, 796.99999965, 797.99999965, 798.99999965,\n", + " 799.99999965, 800.99999965, 801.99999965, 802.99999965,\n", + " 803.99999965, 804.99999965, 805.99999965, 806.99999965,\n", + " 807.99999965, 808.99999965, 809.99999965, 810.99999965,\n", + " 811.99999965, 812.99999965, 813.99999965, 814.99999965,\n", + " 815.99999965, 816.99999965, 817.99999965, 818.99999965,\n", + " 819.99999965, 820.99999965, 821.99999965, 822.99999965,\n", + " 823.99999965, 824.99999965, 825.99999965, 826.99999965,\n", + " 827.99999965, 828.99999965, 829.99999965, 830.99999965,\n", + " 831.99999965, 832.99999965, 833.99999965, 834.99999965,\n", + " 835.99999965, 836.99999965, 837.99999965, 838.99999965,\n", + " 839.99999965, 840.99999965, 841.99999965, 842.99999965,\n", + " 843.99999965, 844.99999965, 845.99999965, 846.99999965,\n", + " 847.99999965, 848.99999965, 849.99999965, 850.99999965,\n", + " 851.99999965, 852.99999965, 853.99999965, 854.99999965,\n", + " 855.99999965, 856.99999965, 857.99999965, 858.99999965,\n", + " 859.99999965, 860.99999965, 861.99999965, 862.99999965,\n", + " 863.99999965, 864.99999965, 865.99999965, 866.99999965,\n", + " 867.99999965, 868.99999965, 869.99999965, 870.99999965,\n", + " 871.99999965, 872.99999965, 873.99999965, 874.99999965,\n", + " 875.99999965, 876.99999965, 877.99999965, 878.99999965,\n", + " 879.99999965, 880.99999965, 881.99999965, 882.99999965,\n", + " 883.99999965, 884.99999965, 885.99999965, 886.99999965,\n", + " 887.99999965, 888.99999965, 889.99999965, 890.99999965,\n", + " 891.99999965, 892.99999965, 893.99999965, 894.99999965,\n", + " 895.99999965, 896.99999965, 897.99999965, 898.99999965,\n", + " 899.99999965, 900.99999965, 901.99999965, 902.99999965,\n", + " 903.99999965, 904.99999965, 905.99999965, 906.99999965,\n", + " 907.99999965, 908.99999965, 909.99999965, 910.99999965,\n", + " 911.99999965, 912.99999965, 913.99999965, 914.99999965,\n", + " 915.99999965, 916.99999965, 917.99999965, 918.99999965,\n", + " 919.99999965, 920.99999965, 921.99999965, 922.99999965,\n", + " 923.99999965, 924.99999965, 925.99999965, 926.99999965,\n", + " 927.99999965, 928.99999965, 929.99999965, 930.99999965,\n", + " 931.99999965, 932.99999965, 933.99999965, 934.99999965,\n", + " 935.99999965, 936.99999965, 937.99999965, 938.99999965,\n", + " 939.99999965, 940.99999965, 941.99999965, 942.99999965,\n", + " 943.99999965, 944.99999965, 945.99999965, 946.99999965,\n", + " 947.99999965, 948.99999965, 949.99999965, 950.99999965,\n", + " 951.99999965, 952.99999965, 953.99999965, 954.99999965,\n", + " 955.99999965, 956.99999965, 957.99999965, 958.99999965,\n", + " 959.99999965, 960.99999965, 961.99999965, 962.99999965,\n", + " 963.99999965, 964.99999965, 965.99999965, 966.99999965,\n", + " 967.99999965, 968.99999965, 969.99999965, 970.99999965,\n", + " 971.99999965, 972.99999965, 973.99999965, 974.99999965,\n", + " 975.99999965, 976.99999965, 977.99999965, 978.99999965,\n", + " 979.99999965, 980.99999965, 981.99999965, 982.99999965,\n", + " 983.99999965, 984.99999965, 985.99999965, 986.99999965,\n", + " 987.99999965, 988.99999965, 989.99999965, 990.99999965,\n", + " 991.99999965, 992.99999965, 993.99999965, 994.99999965,\n", + " 995.99999965, 996.99999965, 997.99999965, 998.99999965,\n", + " 999.99999965, 1000.99999965, 1001.99999965, 1002.99999965,\n", + " 1003.99999965, 1004.99999965, 1005.99999965, 1006.99999965,\n", + " 1007.99999965, 1008.99999965, 1009.99999965, 1010.99999965,\n", + " 1011.99999965, 1012.99999965, 1013.99999965, 1014.99999965,\n", + " 1015.99999965, 1016.99999965, 1017.99999965, 1018.99999965])" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.time" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 19.49999965, 1019.49999965]])" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts_new.gti" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This changes the reference time and all the times referred to it. It's very useful when manipulating time series from different missions. Alternatively, one can shift the times (by a value in seconds) without modifying the MJDREF" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "gti = [(0,500), (600, 1000)]\n", + "ts.gti = gti" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "first three time bins: [0 1 2]\n", + "GTIs: [[ 0 500]\n", + " [ 600 1000]]\n" + ] + } + ], + "source": [ + "print(\"first three time bins: \" + str(ts.time[:3]))\n", + "print(\"GTIs: \" + str(ts.gti))" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "time_shift = 10.0\n", + "ts_shifted = ts.shift(time_shift)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Shifted first three time bins: [10. 11. 12.]\n", + "Shifted GTIs: [[ 10. 510.]\n", + " [ 610. 1010.]]\n" + ] + } + ], + "source": [ + "print(\"Shifted first three time bins: \" + str(ts_shifted.time[:3]))\n", + "print(\"Shifted GTIs: \" + str(ts_shifted.gti))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Splitting by GTI\n", + "\n", + "A special case of splitting your light curve object is to split by GTIs. This can be helpful if you want to look at individual contiguous segments separately:" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "ts = StingrayTimeseries(time, array_attrs={\"blabla\": counts}, dt=1, gti=gti)" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "ts_split = ts.split_by_gti()" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [102 97 95 105 100 96 107 119 94 119 101 91 104 89 119 106 111 89\n", + " 100 110]\n", + "[1 2 3 4 5 6 7] [ 97 95 105 100 96 107 119]\n", + "[13 14 15 16 17 18 19] [ 89 119 106 111 89 100 110]\n" + ] + } + ], + "source": [ + "print(ts.time, ts.blabla)\n", + "for ts_tmp in ts_split:\n", + " print(ts_tmp.time, ts_tmp.blabla)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Because I'd passed in GTIs that define the range from 0-8 and from 12-20 as good time intervals, the light curve will be split into two individual ones containing all data points falling within these ranges.\n", + "\n", + "You can also apply the GTIs *directly* to the original light curve, which will filter `time`, `counts`, `countrate`, `counts_err` and `countrate_err` to only fall within the bounds of the GTIs:" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [], + "source": [ + "# make a time array with a big gap and a small gap\n", + "time = np.arange(20)\n", + "counts = np.random.poisson(100, size=len(time))\n", + "gti = [(0,8), (12,20)]\n", + "\n", + "\n", + "ts = StingrayTimeseries(time, array_attrs={\"blabla\": counts}, dt=1, gti=gti)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**Caution**: This is one of the few methods that change the original state of the object, rather than returning a new copy of it with the changes applied! So any events falling outside of the range of the GTIs will be lost:" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n", + " 17, 18, 19])" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array before applying GTIs:\n", + "ts.time" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.apply_gtis()" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 1, 2, 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 18, 19])" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# time array after applying GTIs\n", + "ts.time" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the time bins 8-12 have been dropped, since they fall outside of the GTIs. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Reading/Writing Stingray Timeseries to/from files\n", + "\n", + "The `StingrayTimeseries` class has roundtrip reading/writing capabilities via the `read` and `write` methods. Most of the I/O is managed by the `astropy.io` infrastructure. We regularly test the roundtrip to Enhanced CSV (`.ecsv`) and Hierarchical Data Format v.5 (`.hdf5`) formats. \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Converting StingrayTimeseries to pandas, xarray and Astropy Table/Timeseries\n", + "\n", + "`StingrayTimeseries` can be converted back and forth to `xarray`, `pandas`, `astropy.table.Table` and `astropy.timeseries.TimeSeries` objects through the relevant `to_FORMAT` and `from_FORMAT`, e.g. Refer to the methods' documentation for more information on how data are stored in each case.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "pandas.core.frame.DataFrame" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_pandas())" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "xarray.core.dataset.Dataset" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_xarray())" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.table.table.Table" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_astropy_table())" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "astropy.timeseries.sampled.TimeSeries" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "type(ts.to_astropy_timeseries())" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "celltoolbar": "Tags", + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 1 +} diff --git a/notebooks/StingrayTimeseries/Working with weights and polarization.html b/notebooks/StingrayTimeseries/Working with weights and polarization.html new file mode 100644 index 000000000..1711206df --- /dev/null +++ b/notebooks/StingrayTimeseries/Working with weights and polarization.html @@ -0,0 +1,594 @@ + + + + + + + + Why using weights? — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
%load_ext autoreload
+%autoreload 2
+
+import numpy as np
+from stingray import StingrayTimeseries, EventList, Lightcurve, Powerspectrum
+import matplotlib.pyplot as plt
+
+
+
+
+

Why using weights?

+

In some missions like Fermi, events are assigned a weight. The weight measures the probability that a given event is associated with the source, based on position and data quality.

+

In this tutorial, we go beyond the concept of count light curves and show how to use weighted event lists. We will use StingrayTimeseries objects, that allow for more flexibility than Lightcurves.

+

Note that that weight can have any name. Here, we will call it poids, using the French term for weight

+
+
[2]:
+
+
+
# The FOV is assumed to be a detector with 1000 x 1000 pixels
+center = 50
+# The source is right at the center, with a Gaussian spread of 10 pixels
+pixel_spread = 3
+min_pixel = 1
+max_pixel = 100
+
+# Create an event list with a pulsation
+freq = 1.2
+ampl = 1.
+
+# Input Light curve characteristics
+t0 = 0
+t1 = 1000
+# Dt should be smaller and not an integer divisor of the period
+dt = 1 / np.sqrt(971*3) / freq
+times = np.arange(t0 + dt/2, t1 - dt/2, dt)
+
+# The actual number will be a random number, Poisson-distributed
+raw_n_pulsed_counts = 2000
+n_background_counts = np.random.poisson(200000)
+
+# Normalize so that the sum gives the number of expected counts
+continuous_pulsed_counts = (1 + ampl * np.sin(2 * np.pi * freq * times))
+continuous_pulsed_counts /= np.sum(continuous_pulsed_counts)
+continuous_pulsed_counts *= raw_n_pulsed_counts
+
+# This light curve only serves the purpose of the simulation
+continuous_pulsed_lc = Lightcurve(times, continuous_pulsed_counts, dt=dt, skip_checks=True)
+
+pulsed_ev = EventList(gti=np.asarray([[t0, t1]]))
+pulsed_ev.simulate_times(continuous_pulsed_lc)
+n_pulsed_counts = pulsed_ev.time.size
+
+unpulsed_ev = EventList(np.sort(np.random.uniform(t0, t1, n_background_counts)), gti=pulsed_ev.gti)
+
+# Now, give each event a position.
+pulsed_ev.x = np.random.normal(center, pixel_spread, n_pulsed_counts)
+pulsed_ev.y = np.random.normal(center, pixel_spread, n_pulsed_counts)
+
+unpulsed_ev.x = np.random.uniform(min_pixel, max_pixel, n_background_counts)
+unpulsed_ev.y = np.random.uniform(min_pixel, max_pixel, n_background_counts)
+
+ev = pulsed_ev.join(unpulsed_ev)
+
+# The weight is a probability that an event is from the source, given the
+# distance from the center of the FOV.
+weight = 1 / (2 * np.pi * pixel_spread**2)*np.exp(-0.5 / pixel_spread**2 * ((ev.x - center)**2 + (ev.y - center)**2))
+# weight[weight < 1e-10] = 0
+ev.poids = weight
+
+
+
+
+
[3]:
+
+
+
plt.hist2d(ev.x, ev.y, bins=100, cmap="twilight");
+
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_3_0.png +
+
+
+
[4]:
+
+
+
plt.hist2d(ev.x, ev.y, weights=ev.poids, bins=100, cmap="twilight");
+
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_4_0.png +
+
+

Now, let us create a StingrayTimeseries object from this event list.

+

By default, the to_binned_timeseries method calculates a series from the weighted sum of all attributes of the same length of ev.time (such as x and y), plus the number of counts per bin (like in Lightcurve).

+

However, one can specify a list of attributes to weigh on through the array_attrs keyword.

+
+
[5]:
+
+
+
# Let's use a different dt
+ts_dt = 1 / np.sqrt(89) / freq
+ts_all = ev.to_binned_timeseries(ts_dt)
+ts = ev.to_binned_timeseries(ts_dt, array_attrs={"poids"})
+
+print("Attributes without the array_attrs keyword:", ts_all.array_attrs())
+print("Attributes with the array_attrs keyword:", ts.array_attrs())
+
+
+
+
+
+
+
+
+Attributes without the array_attrs keyword: ['counts', 'poids', 'x', 'y']
+Attributes with the array_attrs keyword: ['counts', 'poids']
+
+
+

Since event lists might have many attributes, it is advisable to select which ones to transform in weights.

+

Giving an empty dictionary (array_attrs={}) creates something very similar to a standard Lightcurve

+

Finally, for usage with Powerspectrum, let us assign a mean error for the weights. This will only work and make sense when the vast majority of events are from noise.

+
+
[6]:
+
+
+
ts.poids_err = np.zeros_like(ts.poids) + np.std(ts.poids)
+
+
+
+
+
+

Timing analysis using StingrayTimeseries

+

The timing analysis that can be done with a StingrayTimeseries object is very similar to the one doable with a Lightcurve. For example, we can call the from_stingray_timeseries method of Powerspectrum.

+

Note that in this case we have to specify which attribute to use as flux (in the from_lightcurve method, counts was the default). For this, we use the flux_attr keyword.

+

We can also, optionally, specify another attribute which will serve as an error bar for those normalizations where it makes sense. For this, we use the error_flux_attr keyword.

+
+
[7]:
+
+
+
ps_counts = \
+    Powerspectrum.from_stingray_timeseries(ts, flux_attr="counts", norm="leahy")
+ps_weighted = \
+    Powerspectrum.from_stingray_timeseries(
+        ts, flux_attr="poids", error_flux_attr="poids_err", norm="leahy")
+
+
+
+
+
[8]:
+
+
+
higher = ps_weighted.power.max() > ps_counts.power.max()
+
+plt.plot(ps_counts.freq,
+         ps_counts.power,
+         ds="steps-mid", alpha=0.8, zorder=(10 if higher else 0))
+plt.plot(ps_weighted.freq,
+         ps_weighted.power,
+         ds="steps-mid", alpha=0.8, zorder=(10 if not higher else 0))
+plt.axvline(freq, ls=":", alpha=0.5)
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.lines.Line2D at 0x176660ca0>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_12_1.png +
+
+
+
[9]:
+
+
+
plt.plot(ps_counts.freq,
+         ps_counts.power,
+         ds="steps-mid", alpha=0.8, zorder=(10 if higher else 0))
+plt.plot(ps_weighted.freq,
+         ps_weighted.power,
+         ds="steps-mid", alpha=0.8, zorder=(10 if not higher else 0))
+plt.axvline(freq, ls=":", alpha=0.5)
+plt.semilogy()
+plt.ylim(2, None)
+
+
+
+
+
[9]:
+
+
+
+
+(2, 1021.5756611715042)
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_13_1.png +
+
+

As we can see, the analysis using weights has found the pulsation whereas the one considering just the events hasn’t.

+

This was a very trivial case, where the selection could have been done by just selecting events around the source position. But weights might take into account many other factors, such as the energy, the data quality, and more.

+
+
+

Polarimetric light curves

+

Another case that might be useful is when we are looking for a pulsation not in the flux, but in some other quantity. This might be the case, for example, in polarimetric light curves.

+

In the following example, we introduce a significant periodic change of polarization in a signal which has no periodic modulation of the flux.

+
+
[10]:
+
+
+
def extract_varying_random_photon_angles(photon_times, psi_mean=0, psi_amp=0, pd_mean=0, pd_amp=0, freq=1., n_bins_per_cycle=16, N =100):
+    from scipy.interpolate import interp1d
+
+    pulse_cycles = photon_times * freq
+    pulse_cycle_frac = pulse_cycles - np.floor(pulse_cycles)
+    order = np.argsort(pulse_cycle_frac)
+    disordered_photon_times = photon_times[order]
+
+    sorted_cycle_frac = pulse_cycle_frac[order]
+
+    random_angles = np.zeros_like(photon_times)
+
+    idx0 = 0
+    delta_cycle_frac = 1 / n_bins_per_cycle
+    angles = np.linspace(0, np.pi * 2, N + 1)[:-1]
+    baseline = photon_times.size / n_bins_per_cycle
+    A_mean = pd_mean * baseline
+    A_amp = pd_amp * baseline
+    for cycle_no in range(n_bins_per_cycle):
+        idx1 = np.searchsorted(sorted_cycle_frac[idx0:], (1 + cycle_no) * delta_cycle_frac)
+
+        sorted_cycle_frac_good = sorted_cycle_frac[idx0: idx0 + idx1]
+        n_phot = sorted_cycle_frac_good.size
+        mean_cycle_frac = (0.5 + cycle_no) * delta_cycle_frac
+        A = A_mean + A_amp * np.cos(2 * np.pi * mean_cycle_frac)
+        psi = psi_mean + psi_amp * np.cos(2 * np.pi * mean_cycle_frac)
+
+        # TODO: be safe at edges of distribution
+        # The distribution is the one expected for polarization angles.
+        distr = A * np.cos(2 * (angles+ psi)) + baseline
+
+        norm_distr = distr / distr.sum()
+        dph = 1 / distr.size
+        cdf = np.cumsum(norm_distr)
+        cdf = np.concatenate(([0], cdf))
+
+        interp = interp1d(cdf, np.arange(0, 1 + dph, dph) * (2 * np.pi), kind="cubic", fill_value="extrapolate")
+
+        # Generate random values of polarization angle with the inverse CDF method.
+        random_cdf_val = np.random.uniform(0, 1, n_phot)
+        random_angles[idx0: idx0 + idx1] = interp(random_cdf_val)
+        # Note that we searched from idx0 on
+        idx0 += idx1
+
+    order = np.argsort(disordered_photon_times)
+    return random_angles[order]
+
+
+def plot_angle_distribution_with_pulse_phase(photon_times, random_angles, freq):
+    pulse_phase = (photon_times * freq)
+    pulse_phase -= np.floor(pulse_phase)
+
+    fig = plt.figure()
+    gs = fig.add_gridspec(2, 2, hspace=0, wspace=0, height_ratios=[1, 2], width_ratios=[2, 1])
+    # gs = plt.GridSpec(2, 2, height_ratios=[1, 2], width_ratios=[2, 1])
+
+    (ax00, ax01), (ax10, ax11) = gs.subplots(sharex='col', sharey='row')
+
+    h2, binsx, binsy, _ = ax10.hist2d(pulse_phase, random_angles, vmin=0, bins=(32, 16), cmap="twilight")
+    ax10.set_ylabel(r"$\psi$")
+    ax10.set_xlabel(r"Pulse phase")
+    mean_binsx = (binsx[:-1] + binsx[:-1]) / 2
+    mean_binsy = (binsy[:-1] + binsy[:-1]) / 2
+    for i in range(h2.shape[1]):
+        ax00.plot(mean_binsx, h2[:, i])
+    for i in range(h2.shape[0]):
+        ax11.plot(h2[i, :], mean_binsy)
+


+
+
+
+
[11]:
+
+
+
n_photons = 100000
+psi_mean = np.radians(22.5)
+# Photon times are completely random. No pulsation
+photon_times = np.sort(np.random.uniform(t0, t1, n_photons))
+
+# Here we generate polarization angles for all the photons
+random_angles = extract_varying_random_photon_angles(
+    photon_times,
+    psi_mean=psi_mean,
+    psi_amp=0, # No change of polarization angle
+    pd_mean=0.5, # A mean polarization degree of 50%
+    pd_amp=0.1, # A *change* of polarization degree by 10%
+    freq=freq)
+
+plot_angle_distribution_with_pulse_phase(photon_times, random_angles, freq)
+
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_17_0.png +
+
+

The plot above shows the change of the modulation curve with pulse phase. Please note: there is no change of flux. There is no pulsation that can be seen in the here, in the pulsed profile (red bands indicate 1, 2, and 3 sigma deviations from the mean):

+
+
[12]:
+
+
+
phases = (photon_times / freq) % 1
+
+profile, _ = np.histogram(phases, bins=np.linspace(0, 1, 17))
+
+mean = profile.mean()
+for nsigma in range(1, 4):
+    plt.axhspan(mean - nsigma * np.sqrt(mean), mean + nsigma * np.sqrt(mean), alpha=0.5, color="red")
+plt.plot(profile, ds="steps-mid", zorder=10)
+plt.axhline(mean, ls=":")
+plt.xlabel("Pulse Phase")
+plt.ylabel("Counts")
+
+
+
+
+
[12]:
+
+
+
+
+Text(0, 0.5, 'Counts')
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_19_1.png +
+
+

Now, let us put the polarimetric information in the form of Stokes parameters in an EventList object.

+
+
[13]:
+
+
+
ev_polar = EventList(time=photon_times, gti=[[t0, t1]])
+ev_polar.q = np.cos(2 * random_angles)
+ev_polar.u = np.sin(2 * random_angles)
+
+ts_polar = ev_polar.to_binned_timeseries(dt=ts_dt, array_attrs=["q", "u"])
+ts_polar.array_attrs()
+
+
+
+
+
[13]:
+
+
+
+
+['counts', 'q', 'u']
+
+
+
+
[14]:
+
+
+
ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr="q").plot()
+ax.axvline(freq, ls=":", color="k")
+
+
+
+
+
[14]:
+
+
+
+
+<matplotlib.lines.Line2D at 0x1774ef6d0>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_22_1.png +
+
+

A pulsation in the Q Stokes parameter! Let us see the U parameter:

+
+
[15]:
+
+
+
ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr="u").plot()
+ax.axvline(freq, ls=":", color="k")
+
+
+
+
+
[15]:
+
+
+
+
+<matplotlib.lines.Line2D at 0x17767be80>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_24_1.png +
+
+

Of course, different mean polarization angles will lead to very different contributions in the U and Q parameters. Our choice of 22.5 degrees was made on purpose, to have similar contributions in the two parameters.

+

To reiterate that this pulsation cannot be seen in the flux, we plot the standard power spectrum:

+
+
[16]:
+
+
+
ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr="counts").plot()
+ax.axvline(freq, ls=":", color="k")
+
+
+
+
+
[16]:
+
+
+
+
+<matplotlib.lines.Line2D at 0x17745fa90>
+
+
+
+
+
+
+../../_images/notebooks_StingrayTimeseries_Working_with_weights_and_polarization_27_1.png +
+
+
+
[ ]:
+
+
+

+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/StingrayTimeseries/Working with weights and polarization.ipynb b/notebooks/StingrayTimeseries/Working with weights and polarization.ipynb new file mode 100644 index 000000000..10ea4a97f --- /dev/null +++ b/notebooks/StingrayTimeseries/Working with weights and polarization.ipynb @@ -0,0 +1,675 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "0a564915", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2\n", + "\n", + "import numpy as np\n", + "from stingray import StingrayTimeseries, EventList, Lightcurve, Powerspectrum\n", + "import matplotlib.pyplot as plt\n" + ] + }, + { + "cell_type": "markdown", + "id": "350ab06d", + "metadata": {}, + "source": [ + "## Why using weights?\n", + "\n", + "In some missions like Fermi, events are assigned a weight. The weight measures the probability that a given event is associated with the source, based on position and data quality.\n", + "\n", + "In this tutorial, we go beyond the concept of count light curves and show how to use weighted event lists. We will use `StingrayTimeseries` objects, that allow for more flexibility than `Lightcurve`s.\n", + "\n", + "Note that that weight can have any name. Here, we will call it `poids`, using the French term for `weight`\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "fbf90998", + "metadata": { + "scrolled": true + }, + "outputs": [], + "source": [ + "# The FOV is assumed to be a detector with 1000 x 1000 pixels\n", + "center = 50\n", + "# The source is right at the center, with a Gaussian spread of 10 pixels\n", + "pixel_spread = 3\n", + "min_pixel = 1\n", + "max_pixel = 100\n", + "\n", + "# Create an event list with a pulsation\n", + "freq = 1.2\n", + "ampl = 1.\n", + "\n", + "# Input Light curve characteristics\n", + "t0 = 0\n", + "t1 = 1000\n", + "# Dt should be smaller and not an integer divisor of the period\n", + "dt = 1 / np.sqrt(971*3) / freq\n", + "times = np.arange(t0 + dt/2, t1 - dt/2, dt)\n", + "\n", + "# The actual number will be a random number, Poisson-distributed\n", + "raw_n_pulsed_counts = 2000\n", + "n_background_counts = np.random.poisson(200000)\n", + "\n", + "# Normalize so that the sum gives the number of expected counts\n", + "continuous_pulsed_counts = (1 + ampl * np.sin(2 * np.pi * freq * times))\n", + "continuous_pulsed_counts /= np.sum(continuous_pulsed_counts)\n", + "continuous_pulsed_counts *= raw_n_pulsed_counts\n", + "\n", + "# This light curve only serves the purpose of the simulation\n", + "continuous_pulsed_lc = Lightcurve(times, continuous_pulsed_counts, dt=dt, skip_checks=True)\n", + "\n", + "pulsed_ev = EventList(gti=np.asarray([[t0, t1]]))\n", + "pulsed_ev.simulate_times(continuous_pulsed_lc)\n", + "n_pulsed_counts = pulsed_ev.time.size\n", + "\n", + "unpulsed_ev = EventList(np.sort(np.random.uniform(t0, t1, n_background_counts)), gti=pulsed_ev.gti)\n", + "\n", + "# Now, give each event a position. \n", + "pulsed_ev.x = np.random.normal(center, pixel_spread, n_pulsed_counts)\n", + "pulsed_ev.y = np.random.normal(center, pixel_spread, n_pulsed_counts)\n", + "\n", + "unpulsed_ev.x = np.random.uniform(min_pixel, max_pixel, n_background_counts)\n", + "unpulsed_ev.y = np.random.uniform(min_pixel, max_pixel, n_background_counts)\n", + "\n", + "ev = pulsed_ev.join(unpulsed_ev)\n", + "\n", + "# The weight is a probability that an event is from the source, given the \n", + "# distance from the center of the FOV.\n", + "weight = 1 / (2 * np.pi * pixel_spread**2)*np.exp(-0.5 / pixel_spread**2 * ((ev.x - center)**2 + (ev.y - center)**2))\n", + "# weight[weight < 1e-10] = 0\n", + "ev.poids = weight\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "24499117", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcF0lEQVR4nO2deXhV5bX/VwKZgQRCSRjCDEFGGRQZqlZQRORCUVGverF6pY6Fen91aLXa1qrYap21WrXUqYh1uIg4gWIZlUEmMcicAElkOAlkhpzfH30uePb343VTb49R1+d5fJ5m9Qx7v/vd79m867u+KyEajUbNcRzHcRwnTiR+3QfgOI7jOM53C3/4cBzHcRwnrvjDh+M4juM4ccUfPhzHcRzHiSv+8OE4juM4Tlzxhw/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40vjrPoAg9fX1tnPnTmvatKklJCR83YfjOI7jOE4IotGo7d+/39q0aWOJif/73kaDe/jYuXOn5eXlfd2H4TiO4zjOP0FhYaG1a9fuf31Ng3v4aNq0qZmZTbrpBUtOTf9fX1u5s1Zi6W2SQ31P9b6DEkttrsPRtVuKxPaWHZJY4ZIDEktI1Se/aHW9xPJOaCKxkm16bh2667F0/J6e77y5ZRJrk58qsaKPKiVG40fjnJgWe26d+6bJa0pLdYzD0qqVXoudhXUSq9hcLbFGcB1rPyiVWMeL2kusRzsdYxpP4hDMqX6jMiW29oMKidH4Vddo5wO6ZuMnfE9im/fouKx6U88jubVe76Q0nbdt8pJi/v50/n55TbeTmkps/f0bJNaoWyuJZQ3Ue+AgnP/QARkS+2hTlcTatEqS2NbtOo/pO9Iz9fxLF+r5JqQ3khjNvSa5eiz0vbTWVMJ6sXGpzp8hp+o8K/xM75cWmXrM61fr+B0KfC/Nz83wPlpntr24S2LNT9U5sOevmyVGc4Vo3FbHrm6jrsm1az6VWMYP+0uMfgtawJq0fZ7eUzSXqyL6m1EH6wX9PtA9Grw+Zny++bA2RMr1WD5bGbuuZHTW6xjmN7O2utKm3zbx8O/4/0aDe/j4n1RLcmq6JafqQvN5DqboTZ2cGu7hoz5FBzI5VYcjLV0ndUqdXrzkZJ0MCSl6o0fr9b0p6Xqeyal6bqlwLOkZGkuGc0tJ18mUnKJpLRo/GufElNgFOjVdF6eUtH/+4SM1Xa9FcqoupnXJ+kPRCI7XGsPxwbinZ9A4hTuPQ8l6fGl0bfWS4fhFG+kPFF2z9Axd7NKqdO4lw/Elp+rBJMFDc2p67JgmJ+s8TqVzhXFvlKz/qEhJ0/cmJsCDAZxrCjwspaXrHEhJg3kM30GfR+ebkAwPHzD3wn4vrTX1ifBjBPMnLUPHL6WC5iPMC7jeh6Kx30vzMzlF34frTFK46x12rhCNU/R7E5J07KKJdH/T+qvrTwqtSXBP0bkdqob5A+sK/T7QPRq8PmZ8vnRP8u9X8Dv1WoT9zTSzUJKJBvfw8T+0aNU45mLv+Fj/JZc3UCdmrzydXJtLayS2fsk+iaWe0FxiFfCEed7ANhJ7LFIosX0f6L+WeozV7/hklh5LYrY+BLTK1In0/of6tNuIFmP60Wob7kHt7In6r49Nu2P/1ZPTTBfYKvjX3Z5incB1VTrGp52UK7GPMiMSq8jXG7OgQK93/bF6DjRXDtTojXnl+ZoGfHp+scT0apt1aak38fKiPRLbCO9NbaG3Z3DHyczs1Xf2Siyrtb43f0QziZWUhHuwKphbHvN3faGebdE2PdfO1+RLrHC57t7QvZLSTe/v5Z/qe2urw/XGzMnRMdm4Uv/1Xj5br+3JN3aTWMF2nWefrdN1qi7k8S2fqfMiukfPN/WElhJbMEf/BX7wI93ts0s7Sqh2h55HRtfYa7kPdnvrVum8K6zKkljH83W93PZWRGLpZ3aSGO3CDYBdGLoWqT31X/3Vp2fr6+Dha/sCnY/739XYMRe3lRixYZMeX/ehup5vWKS7Wp166BpHr2sKv1+0Bkd26T3ffnjsTgVdH5qLXQPnX10J//D7ArzaxXEcx3GcuOIPH47jOI7jxBV/+HAcx3EcJ640WM1HkHrQBZSDgnjWA6sklthSlbeUq6P8N+XW7l6pqmzKz2+Y9YDEck78hcQOFZRIrPlFXSVGec0zhmVJLKjHMDPbDNUzSamqA9k7R4/lhdWqKznw7uKYv7vcMkpe0y4nXP6PruOMpXocpcv0WmT1Vl1A5Q44V7g+sx9QnU6Lk1tI7P1nVCFPegTS2rz4gubdqUqiaRsdq8hazbEGc7NmZluf3ymxih+oxiW/veaOac43y9LjqwtoADIGab6a9A7Ve/Xzv9dLtTaRXXp9eh+ruf3doD34bJ2O05I/rpZYk4m9JEbjrsoLs6VQYUJ6BD43HYP05jDGK7fod/RXHQTpeQaeqHqet+D4iKC+w8wsOzf2O0ir1RTmWLsOOp6kqyFNG13vY9vqeT319A6JZXbRuZ2qlwKpBl1fK5jf+RN0bVizQed8MqyrNC8+flivdyfQ5BC0np14HFRNlqsgdgf8lgb1b4Ov0DJZWsuKtsV+fm21ft8X4TsfjuM4juPEFX/4cBzHcRwnrvjDh+M4juM4cSUhGo2GK0KPE+Xl5ZaZmWlX/G52jFkL5dF2Pq65+MQ8zcsRiS01B0f5dNIjkF8AaUPC+miQbmPG3ZoPbJSnecjho9XZ8K0r35VYcp7m8Ci/SOdbBjXq0arY1+15eY685tQ/nS+xZY+qziIhW/UTA8/Renx67w2/HySxh2ZvlxhpD7I76/U5c4B+74x5n0ksLORhQvl+onMHPT7ygqD8Oc29YB7fjK83aU2CXDdF/Tve2ag6nbUfab5/BOgT5r5fLjEaJzo20v1MGKpeGC8t2i2xUtCG9PnlAImtn6H57tR+eu/VgA9JDpxvCZwvXUfSCpAvBWky9oOX0Zhr1LOGdAFBf6Mtn+gaQP4TpCGq3KdzbPBgXctKy/S95C/SHFxaSVdC93dFRO9HGif6fThUoPde6wvUJbn4DX1dLviL0HkM65IlsScf0/WMjiUxT9/bpK/qQAhaH4PQeAbPobqywn41aZSVlZVZs2Y67z+P73w4juM4jhNX/OHDcRzHcZy40mDTLpfd9lpMb5fy2UXy2oRs3bqL7tH0B22NURkobRETVGJXsVHf26iFfsfQkzW1Q9bItN1K7HpWt+QonULbslhq+55aJhO05RyESgLJCpvsp+nY+nTXMXn/GU2JdDgtS2Jk6f1VUhNhrfPD2pcTlHahUlMqFaTyTtrqXgHNwTKydH4H51n2Wbp9T9vrVD5JZd/7d+rW/2mjsiRG6Zk62DI+fbymX1+48GWJXfLCORJ7cuLMUK87UKvfu3iNrj80v2mbm0q1D0Harmt/HdO+7fTavvCIrplEtFLHPsz9TWmxUwd++fvMuGwzmMo1M6tdqI0Hul6vjeBofcuH1gvULoNS5sSPLlJ7Bkrl0fWme4ruUYLWUSprp/FLSNNrRLb7jfJj00LUioFSjwcLYudY3aEqm/nx9Z52cRzHcRyn4eEPH47jOI7jxBV/+HAcx3EcJ640WHv1Fq0aW0r6kcOrO0XbMlcv0Xwbtb5+9+a1EotA+2bKiW8r1Xxo8RbNWUcrNd922vna0vm1Wz+RWM8r9ViotI1yrKRnoXbQlDslTrhdS1dXzI7o5wXacFOZMo0T5bDrNujxnjRZr/ffX1I9ylfRd1AetkMr1en8HcaT7NXX/V6vLbWUJw0JlZKTvoPeS3bolCemuUwal5ZQAhgJ3H9h28TnNNPxzOiu474G3kv6Dpo/VG6+rlBz4hmDdW6TLoL0HaRRyBuoc4Agu//+p+j9UlCg93xYzcz8Mh0rujdobaAS32AZLa1HNAfmr9PjIJ0X2YOPG6l27S+CZiEtRe8VupdpPImadwok1rh9DrxSNR/UjmLKnf0k9sdX1BI+rFZpOZRvV85aIbH/ePp0iS3dpK0xqnvpb0awdcW43q3lNQVz9dq2Oz32XGuqKsyukZchvvPhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TV74xPh8E5VLD1jpTnriiRvPJH96zSWLkcUA2zc0n9ZEY2W0H9RNmZvtnL5BY0zHDJUZaC8qJBlsfm5ldMkrzeg8+uU1ilJ8N5t7r4byonpzGjrwBXpoFVthP/LfE2v9sgsRoXpDmg14Xdl5Q3p0I62FCmg+y0SY9C0E+MZR7J+t8yju//2Fs7pjmMWmwDm7XnDi1tifL9TnPq4fLgDFZEiN/HtKGkI8GefaQfoBsucnbp75QNRVE6glq/05jQNoV0v3Q+tNuimoPaE7t+Fi/I+glQl4YV1/SQWILt6oui+4V8oQJa6dPY5yYp+sgzRWCtFXb3opI7IxLcyVGvi50zHQsNC7k7bNynp4vrVPk2UP3Kc35MPbqB4t0njRuF7vO1NZU2NN3j3efD8dxHMdxGh7+8OE4juM4Tlzxhw/HcRzHceJKg9V8XPRfr1hyyhHNB/UzoDbKE8ZqLnXTbn1dUYlqIAjy0M/soj0DKIeZ20nzd6THIKimmnrFNG2jMdIPUB8BytGHbW8fhGrq23XQYyPtCeXYSZ9AUI6Uri21uU7qrnniqlnrJTbuwSESC2ogvghq152QruNCra9pXIruWyWxtLHHSIx6CJHPB3l6UA48yKTjVLtz+/RPJZYKeiHKQ9O9ErZnTdg29mF7afx4vPo5EDOWqp6FvoP0J217qiaH1gZqKU/6E/JrCft5RPD+G9JH9XekR9n6iup0mp6gPY/oeLc8sVViaeDvRHyVtfaTWXqPkvdJImglqP/Q7Ls2S6zj+XoepLUJ07b+iyAvFvKumv/YTom1ODlW50W/IUEvEDOzVoNiP7+mqsLuu+YM13w4juM4jtPw8IcPx3Ecx3HiSoO1V//3cbmW0eTIVvRrK3TbnCjer1tPy2fqe2lbjcoxN09/VGK9f/4TiVG5bAfY8lqzQbfaqJ34aLBmLynX11EZFpXGkpUvladRaofGL5gmoLLVfZA2OGNYlsRefUfL82i7kEpeKd0zoK+m6PZAioW2vrcVqdX9W29GJEbQ52WcrimrErAND9tyu88vB+h7oXySUiy0Jd7rGk2fZKTo5wWt7Wdn6tYtlbLum67G6cnDukps8Egt711dpNu8NHZUAknW7EHLcDPeqn7yzV0Sozm17c5FEksfq9eHbNjJ5pzuPUo3U+otG9rMUwv01H5aoklrQ3ANofGkNW8MzCd6b688vVfKoQyf0tlkOU+WCNRqI7epzoGS4/X8yTY9CcqjqdS26Q/UJn5kT009PbNFv4PSzVt26ThXryqTWGJLHdPcpnpf0TUKppH3vqdrslXpmtIuUEJcValz+IvwnQ/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40mBLbecvXmZNPqf5+GhXRF676D3Nmx7aq3mprN6acyVb6TA24mZcXkWll1RORra91PqaSiCXTS+WWLBEysxs3wc6LlQuS5/XcbxqTajkcc/mWI0HlXaS3S9BehGyB6d8/4kX6vEWbNdrGzxeM9YoXDhGW2lPf1E1ALWLdewS87IkRlBZbdlMzVn/4De9JUZaDswnz9Z8MpWkBu2Rzbjcj8o7g1AJLUFlkaQBeOMVzTuTLou+l+5bKktvlqX3GekxLpmsbchbpqn24O6ntcySyv9fXxiRGK0Xe4qhRB40Gv2GqEaK7LuphHLn41oi3eayWL0E3T+kcaJ1i6iANYXsBag1xqFC1VmQloW0IaRfi1bqPUXrYBgb+i+iqkZ/Zsf10++g9hbdh/7vbUb+B9Iv0X1QM1e/o/M1+TF/U5nyuN7ajmPaHR/H/F1bW2nP//VcL7V1HMdxHKfh4Q8fjuM4juPEFX/4cBzHcRwnrjRYzcfFv/hvS049kuuifDXpGHKaaV6X6sypffULF74ssdwpp0qMWqKTzfeqxVADDnlnart+7imaDyTtAeXvUkZoq2tqeR+t0hp60seQD0lQ4zH/Pj0OahtObbNJozLxinYSe/EF9S2gfCi1/w7TJt6M8+7Uxp7GLmg1bMZ1++RdQB4UYa3ow9ovl5SoVoA0D9SyPagVoO+knDNdb4LGhOz/W4xWTQ6dA2klSBtC404W5HS+5K/ywW0fSyyxpeqhopWqoSDNEOmDwrYtoLlM15bWn+AaF7bVO1mQk8U+zeNUGE/SWdAaSpC+hXRjpPmgFggp3XRtJE0FrbXk9UK6CtK90Jqck6NjekFf1SU9+PctEiP9TlDnRa8Jo5mqqaywaZNPd82H4ziO4zgND3/4cBzHcRwnrjRYe/WktERL+tw23GAoqSSr8lU7dcudym8P1EDK4aIfSIy2ait36JZuDnR9pO03grZH/3T7BokNmqQ20iv2ardEKoGjcllKCVAKhLZ+g50RqRsuQVu8VGp8oFbHuP8pun3dpSXYT7fV600W6TQvklL1PGgruS1so4btEDt5hNob3zZxtsTIhjwDUjtUAremVMtUKU1A9vREcNudyjjJpjsH0hqU/qH0x4a9WRKj9AylXSg1Qd1LN8Ax0zyj67ivDLoEX6TXjNKWtIVNr6P1J2w6LmzKIj9fxz5osU/l61QOH6Yk24xTLBunrZRYV7CNJ2h9o++gVD2lxzc++rDETrr/WolR6qRzKx1PsmHfA2th/ghNVdD9Qh3db5qxTGI1HxVILHPS8RILQvMkslbTz82G670SFt/5cBzHcRwnrvjDh+M4juM4ccUfPhzHcRzHiSsNttT2+sfesJT0I/ntzQ9o7ur8ewdKjNqzk50z2ZxTeefby7V1MekWKOc6EEqzSso1X0s258ecq22ZqZSRcuWUDyT9CZWfLoeSZqL4jVib4qYnqMX3gdVayvqTn2mb64Vb9ZqtmB2RGLUcP/CC5jlTh6oteQ6UVpPmhVpJN8pTnQVZPNMYkBU22bqHLSVHe+g9+t6kfnpt6XupFJa0B8H3hrVqpzJLgiz2iTXTb5FYz1Ouk1ju6Tp2n61TDQTpecg6/7hru0hs7Ud6n2W11vMlHQSdL5Vjku08WQdMPbujxEj3M/sutX/P/aFqyYKllmS5v+vZ7RLLPkv1TKQjo7lCOoM+3fV11GKANB90vUmnEtml9yhdRyo/PVik30EaubAl8qQXIb0a6fqIglsXSKz11CESC/6mkWaKflfqVsXOsdq6SvvrWz/yUlvHcRzHcRoe/vDhOI7jOE5c8YcPx3Ecx3HiSoPVfDz1+ruWnnEkd0Z5TvIVoFx8UnetRaYW1Et+rvqBlJH5EkuCPHbYnD35I1D9dEZX9a8g/QB5VdB7KedItMsJZ10ctLGn60N6FKpZJ2hMwtbA03sJ+jzywiDL/lnXrZJY+pmdJEY2/jRWZNNMeV2yeietALWFJ+p3a86a9BL57WOvJdnpN+qeJbG6RYUSyzxH9RM0P0krEdYinSCfjzMuVb0D6bLI5yPsGA8YkyUx0ouQ/mbP33T80k5Rbx/StQ3uotqDGbepf5Cl6fwOas7CWvPT/CSdBemt0Odkg47xwYIiiZEfCLWsf3XVZxIjK35qoUH6k6VL9feGGDxYf2+CXklmZokt9TuS2+r8TgKtEumI6vdojOzkg3o18n4pKtH3ndQrdn2rrDhg54z8vms+HMdxHMdpePjDh+M4juM4caXB2qu/+ccdlpx0ZDs5tV+mvObQhojEOp6vW5JUVjuso5aEbf5xX4mVbdLy1todGjsR7N8XvadbhlTySlvfByp1m5dISIdum7CFHbbsjLbWqBRt5d7Yc6Otf+ouS6/b+opuhdL1rqrRrVrqXEndZYNpAzOzBXO0jDoslGKhNGDrppoCy+2k14JKBYndz72mx9J2gsTqC8OlBKhLbOkyvW5hOuemt9Wt/xPv6iexN17RElAzfS9tfddptgLTKVR+TCWldCzUKZmuT3uwlqa5TOXRPcZqWTam/K7Uebbu959IrBxs3V94RNMT1GmaCFq4U8qX0i5hLddPPE5TQstT9Zq1G6LXbPM2LSMv3qLphRnVJaGOhc6tEtbpv4dMj+9/V7tvb4O0GEFrF1k20Lryp5vXSYxSoZatxxJMZ1JakJi5LLbTem1tuJS3me98OI7jOI4TZ/zhw3Ecx3GcuOIPH47jOI7jxJUGW2p73rhnYjQfVqVahHNv6i6x1UWar26VqdIWKnOi9sMpx2qpbYuTNedI2hAq+yXGXKP6kwM1qvmgYx40SXOiwXbYZmbvP6O56BTIJRK9j9X8YrAVO5VA0vsqIHdOtr1UZloe0TGhslrKxVO7+2PbainYE/dukVjz4/XzhvTR3Cxds24tNbf92grVABTdp6W7ycM0j0+Q7Ty+DsrzqGTv3FNUvzT9xdjcLpWqL/zpfInl3zpcYmHLhaklPJWW0/Wm7yBNSlh9VGYX1QzRPU+ljR1Oy5IYzeWcHF2ngtoLM9bCUJkq2ZVTawgqqwwDtaInTRtpaArmarl5QtqX64rM+DqGHROC1hoqoz5UoPdto3wtSyfdBumo6HyjVTovDq7UdT9lRAc9FriXqYR/6Ml6vwRLhqk0+O8vqT7q+xNifwurKirs6h+O8FJbx3Ecx3EaHv7w4TiO4zhOXPGHD8dxHMdx4kqD9flIzE61xOQjubiMrloX//rCiMT2L9Ga/y3gGUEce8f3JUbeEmTHS3nNqhrNY9N7yW6b7NpJG0LvrV6l/hXRPWA7D62fKf+7cp7mP4P1/M2hBTO9j6AcLuVcyQ49slY/j/Lp1Fq6Aq43tfqm3P5yyDFTPT7pO8hamvQd5CFQPlu9GwzyzpdMbi+xGfNU91OxUfU2CztEJBZsM1/UWT+fWnWP7Kn37Z/AC2Mz2LA3ylcPkkTwKCB9B0G6ALxm0Co+Zyj4usB1TAJtCHlQUE6drLrJU4g0LqQXIS0V6UAIagMRhPQ3BOk7wlqG0/wkfVnFRh0n0lRUzlohsXKYt+S9lH2Wrr9hLdfD3o90fzfur95VXfvr2kDaRjqWFat1TIO/Ge/D7w95SlXUxF6LqtpwfkVmvvPhOI7jOE6c8YcPx3Ecx3Hiij98OI7jOI4TVxqsz8e/X/KiJScfycdm9dbcbNg6e+rzcNIUrZOmXiwTxmovhKWbDkiM8s7DR6vWpLRMNR/7oF039VPJaq05PepVQHnSsF4IiZB3pTxxsK/D1ue1Fp36hmCeHHLxBPWSIA0N5U2pDTlpY4Ktpc3YC4KuD+XnSbeRnavXkfoPYd8e+LwDq3U+knalbpXW6U+5U3uv3P3vb0ks2LKcdDV0fQjS85AGgNrEU48VugeovwbNR/JrmfO85uLDHh/dU/1P0XuPPDIoj39aD11/Hnxym8Sopwr1MyrYDr2qSIMUuCfps2gtI51J3Qa93qRfo3GndT/sPKO5Qvct9WRKaqH3KF1vgu4N8hwhvw3SYxC0xtMc7dRDY9RDaGTX2HtjS0R1Oi/N2i2xoBas9mCVzfj7ZPf5cBzHcRyn4eEPH47jOI7jxJUGm3a5Zfqblpp+ZEu0cyvdPnrrzYjEaubqlmTmOV0kRttWRNU7anudkt9ZYh3P1219KrFLb65bhvs+0G1JsvTu3EG3/ciunLbVCHrv+hm6XU10HB9rwU325cse1fJJS9MUzn/+XG3y99foNuWr72jagMrzKnfouJN9N23/U3oqLUXTQlSCTdB30FYyXVvamqctbCqjPvPWHhJ7/YliieWcqFuj7XL0GhWVxF4PsiCnNGOwFM/MbDekGWmrmtKqVJZNpZdUqh4WuvdOHajn9vZyTdvRvVxfGJEYpQFpW38rlCVTapBSeZSSbAcl8RsW6fwJWgfQfN84baXE0sYeIzGy/R43UltU0HjSHKCUCKWkqYx68Ro9V0qJkE08lemmDu0tMWpbQSlZsk1PP1NLuitf05YPxNi7NIVKVgy0ZgbnD/12UQonSHVlhf1q0ihPuziO4ziO0/Dwhw/HcRzHceKKP3w4juM4jhNXjspe/dChQ3brrbfaM888Y8XFxdamTRu7+OKL7aabbrKEhH/kxaPRqN1yyy32+OOPWyQSsWHDhtkjjzxi3bp1O6oD27y6ypI/1xr+kyK1TafcbNOL1Kaa8ukGNuKUY08bqXm0cya1ltj8dZpbGwH59D6tNNf5as4uiVEe1uA8tnyiuUSC2tvTdzTK09LDOrC+rq6OtfReCSWGVNpINtBPPqZ21qSLoDwxlT0P6KvnStqDYihNI9b/eYfEUk/QEkjKO0crVctAZKSEK3Euq9LrkwTtAw7U6PdS+S2VqS57Wa93/e5YLQPlpqmMszlogcJqoajsm7Ra9YWqszj3JtURzZyu9xmVLpPO4EAfKNGEEtWf/EzXuafnq9ZmwlCdP9Nf1OMLaqvMuCy7YqOOH2kK8m/qKTHSQwW1X8ec20pe026Kro00n0iD9eILqi2j631oQ0Ri1j1LjwXWN9J30LXNBEt8sk1/76N2EotWql6kap6Oe+NjdfzaXKZzhUqBqc0A/faVlIezuyd9UFBzRboQIjhPauvCa62Oaudj2rRp9sgjj9iDDz5o69evt2nTptldd91lDzzwwOHX3HXXXXb//ffbo48+akuXLrWMjAwbNWqUVVerQM1xHMdxnO8eR7XzsWjRIhs3bpyNGTPGzMw6duxozz//vH3wwQdm9o9dj3vvvdduuukmGzdunJmZ/eUvf7GcnBx75ZVX7Lzzzvs/PnzHcRzHcb5pHNXOx9ChQ23u3Lm2YcMGMzNbtWqVLViwwEaPHm1mZlu2bLHi4mIbOXLk4fdkZmba4MGDbfHixfiZNTU1Vl5eHvOf4ziO4zjfXo5q5+OGG26w8vJy69GjhzVq1MgOHTpkv/3tb+2CCy4wM7Pi4n/kNnNyYnNUOTk5h/+/IHfccYf96le/+tLvptpp0g+QT0UzyJsSV56vlr8PPLQ51HsJ8iGZm6YPV6QVoFxnEVgoH4J6dLLR3t1JfQUox0pQ/fhrt34S83enSzvKayg33ey0LIlR3p1q7ynvTt+RNlZ9EMingMad7LEbQY6ZcqLkfUE+GpTXnf+Y5okTW+r1Jh8SspEm62vyWyBrdtLqdO4Qe2+Qh0sEdDDkGUJztgwsroNeE2ZmWz6BOQvaHdIUhG3RQF4idC9TS/m3OqgF9d45JRJ7SSKs8SGvDppTpK3ZAC3lyWOF5k+Lk2P1VbSu0vwkjRP5nDTKz5aYwfyMVqpehOzq134UzreJoN8RakVPug3SiySn6rmFtbonbZ5BbPnMPRJbNgf0FuCrtGWenttx18Z6YRUU6LGRdX5CeuznJ9Tq930RR7Xz8cILL9izzz5rzz33nK1YscKmT59uv//972369OlH8zEx3HjjjVZWVnb4v8JCMKZyHMdxHOdbw1HtfPzsZz+zG2644bB2o0+fPrZt2za74447bNKkSZabm2tmZiUlJda69ZGKkJKSEjv22GPxM1NSUiwlJVzVgeM4juM433yO6uGjsrLSEhNjN0saNWpk9fX/2Lbr1KmT5ebm2ty5cw8/bJSXl9vSpUvtiiuuOKoDa5OfainpR7b1yKa6L5RefgxW03uKdRu+bOYmid2fH5FYB0gTUFktbXs2hy6V1MGWuko2/YFu8ZUu03NrNUi3ptsN0fQRbdNNvEJLx6h0ddZ1ajGfkB77wLjlia3ymuyz9Dhoi5e62tZRigDKR2lLt1Wmptloi5Mgi3DqdkzlalTi+/eXNAX2/Qk6b7eF7JhJUGoj2KXSzGxxplp1N4Et/Nl3aaqxMpBSoflJbN6m2+bUKZrSJAVz9T6jzp0EXUfaSieoIy6db3ZPTTtQ6TuVZVNnVrKYJzv0om2a7qE1hNJH9B3BDrZmZruf3hjzN6Ve33hF5zZeH0iZU2k1pacSsnV969JS77MVOyL6vUD+CJ3vrTL1Xv7kU7V2oN8CTItBGueVi56V2NAHz5UYpTuovDwxW69tInWyhnYMwRSLmdpMkL08dU6e98hvYv4+FNXx+CKO6uFj7Nix9tvf/tbat29vvXr1spUrV9o999xjl1xyiZmZJSQk2NSpU+22226zbt26WadOnezmm2+2Nm3a2Pjx44/mqxzHcRzH+ZZyVA8fDzzwgN1888125ZVXWmlpqbVp08Z+/OMf2y9/+cvDr7nuuuusoqLCJk+ebJFIxIYPH25vvPGGpabqU5PjOI7jON89jurho2nTpnbvvffavffe+4WvSUhIsF//+tf261//+qsem+M4juM430ISotFouN7gcaK8vNwyMzPtsttes+TUI/k+aptNrYaPB/tgyjtTnpPyppS/o5b19B17/qaVO5TDJAtl0kakwvcO7tJEYqRJoVKvBXO0hTXliTOy9HuDGheyIKc8OekiKBdPOWGysy6fXSQxGuOk7lqelwqtuauh5LPfEP08KllsCbofyuHmg7V/2FLB6iVayhm0PjczS8xTXQm1YqdrSxqSoGaIbKVzT9cSQ7LbRo0PXNswNtBmbFX+zseas6f3UusFarOQ3VlfRyXTuaDdofJtsjQvuHWBxIb94SSJzb/yNYllXfQDiVEpMJUb0xoXLE3f8bGWkdPnU6ltk766RtG1pe8YerLet7Ru3XR5vsSmf6jrL10LKt3Naab3QNBewIzLb8NaGBws0vMlS4k6WJPoO6hUm67tJ7P03gheI1qjVs7TdSZIbU2FPfvwBCsrK7NmzVRf83m8sZzjOI7jOHHFHz4cx3Ecx4kr/vDhOI7jOE5cOSrB6dfJhWPUt+ApyIURZNVNVtNEK2itPP++bRLL/WGuxHpeqW3HSRtBWoFVkP+k2mtqT06UwnecPl51AWQjXVelY3Xu4NjrsT5NvRHIuvt9iFF7aMrFk36i2Rj1KiFNwd731JPgtGvAD+VTzQl/eI96wpCHSdh8Mp0HWb2TTud9OL6UfnodSaNA9u/ZuZpjrgC9UeOAh0DTNnpepJkijwKyiE9L0WsW1udj4aaIxEgzVblP9Qgr1up7R5+vGqy57+uxkE18rzzw/gAPnC0fScgmPDFSYusK4ZpNHiExnD+gl9hWqmsh+YYENXak72jUAqzzJcJsfUU9Z0j7Rj451I7h1sv/LrGTb9SW9eVgh75idkRi5MVD/hjkp/PQ7O0S279EdRZBC3sz1j4lgQ6PtHNrNuhcGde7tcQ6t9IxWLwmVudEGrQfXdRWYvtrYudFZcUBe/ZheRniOx+O4ziO48QVf/hwHMdxHCeuNNhS23XL11nTJke2DW84+xV5bfNJfSRGW+5UbkRbjVRmSVTNWi+xVj/uK7HIWt0ir9+tW2NUBkqdaTuer51pafuSPo/Kug4VqJ1xy4u6SozKkovfiC29pC1TSgnVQNrgxAv1vVRORx0kqStp2FQHlW9TiW/YcjVKH9FWP22RU8oiaHFtxteHUlQLfzpfYh1uGCoxTO08o3MqmHYhaM4ec7Fu1dK9d+JxWo5JKTAaJ0qrtgXr863Pa+dgOr6SEl0HyA6doHJesg1PzNO5Qlv9lHYgi3Caj3TNaB2gNgsvPBJbwk5zm1KZjfK0LJ06dCdka7qPyrcHTdJ0NpVCU5kp3XtUtkrrCq3dB1fq/GmUr2mXS6dquv1Pt2+QGKVdyJ6B0j2UCqayXxr7JEjTBm0H6HeU7oHg709tXaX99dULvdTWcRzHcZyGhz98OI7jOI4TV/zhw3Ecx3GcuNJgNR8X/dcrlpxyJH9IZaZhrcCJsFbqGxZpfvHsiZpbW10E7e6hVTO1dt/1rJZmpZ2i+g7SCpQu0++lUrSw40LW2lR6GbRfXnfjHHnNoHvOkNg+sCUnC24q060vjEiMxolKIMmmubQsnMaHjrn45WKJtRit+V/Sy9A1oxLS6lWqeyE9D+kbtr0VkdjAc9T+fNl0PQ/6jmBpeu0Oncc070hXQ9ena399L2lDqMSQdBG1C1Uv0/X6/hIjXRLdZ0GNk5nZGCjVfv9Dnbf739UydJorpF8iDhXq/Dn3v1RnsGm3lkuGtY4Pni/NCXof3cvtOuiaQhqVhHTVFFDZM2mBSLtEpaekDyLCtpSn86Xy8oQ0Pbf6PeFsEkhvs+8DtTrvMVbbJ4QtVx88OFarQ79T1N4jeP/UVlfYn3/7b675cBzHcRyn4eEPH47jOI7jxBV/+HAcx3EcJ640WHv1zn3TLDX9SH6X8u4n9dKc0l9/vlZiYeuf+0zpILEqaH1NLev3bNb8XQa0Yg+2ojczK83XXHynHpqXozGg/F3lDj2WSnV1t+5D9fjID4Py7O/d8WnM373uGC2vyYAcIWloqM6e8pw5kNMkXQB5dRzbOktiT67eJTHK17YapONEniukH2gGLdYHjNFjQV1Np3DeKRSj/C/6I5ygryO9TfaJsfdaCeTdqU365gcKJEZeJWEhe3DSmrQfHk7fQffZlk/0HiDNQ9CS2ow1LvW7NT+fkwNW1SH1CAZeGjPu3iKxxJaqUSCPECKoBCIfjbB6MxpPgjyQXr16scSaTOwlsW2w1pAPCY0JHTPdA5Fd//zPJXkPbd6m87EPtPNokqLr2RzwIRnWJUtiQW2eGbceyG0aex8s2qxzth/8nhUGfFPqasLp6Mx858NxHMdxnDjjDx+O4ziO48SVBltqO+WB1y0l7cg2T2SXbudQuR9t3YXtHkhbplTuSFt3YcqXzHgLjcrzyOo9aIH7Ra+r26BbZmR/TttvBKWUgtuwtF24YrWmMPLzdZwyUvQZmMaJtrmJUwdmSuzt5XodaQ5Q6oDGiUrs6L3U6TYPUnmUEqD5TdvmG1fqONNcoflN30FzOQxJ0Ck67PWm0j6CSirJip/SqmRpTimw3ZDepM7TlKIkW+qw84yg+ZMYsiM3pUomDG0psXc+1rLXPcWx68oZw7LkNZTq+Ur26nvgXEPa0FNZbVhLfILueZp7tE7NfkAt0uk3iI6PujvT/U3WAdQWIedEXS9oPQ/a7pOtQesL2n/pZ9XWVNjTd4/3UlvHcRzHcRoe/vDhOI7jOE5c8YcPx3Ecx3HiSoMttR1+TFNLzzjSZvsvd74hr6EW4WaacyS9SPWS3RKj9tofz1OdQSMou7twjNolUxvlsDbFSamaryVL3cRsfS/lXcPabReVaLnfob0aSw4cM5VAUl67S0sta3t+6nKJJQ1V62qyNyabfNJ30NiRnXNdleZ1a6CslPLT2VB+S8e842PNT1MZWxHYfFPZ4pXn61g98NBmiWX11jx7Vmv9XrL7D+Z7yYZ/xeyIxDaDBoJanZPlOs27gd30HE4fr/n0zaV6XpQ7p/JjstY20OmQhqZio16f9sP1nu+Vp/Nic6m+N1qlY9U0ZAv4ZmC7T/qOMGtD8X49NtKR0dzWM+BS8E9m6euoDJbaIpDmjF5HpafbF+jaQOX18x/bKbFjzlUbB4L0HaQjImhtIBq30zEoum+VxJKHaal78Hp0bpUrrwmjZamp0nXhi/CdD8dxHMdx4oo/fDiO4ziOE1f84cNxHMdxnLjSYDUfJftrLa3+SJ6xcr/m28hrgVrHk4VyUZrm6jq30teVnKX59JwcHTbSdwyapHmz5TO1NbeB5oOslqlmm3LglJuzKv28ohL9PNLHkO9DMOdPVsHUIpx8C8be1U9iL136jsQGjh8pMfL+uObUjhK75Wn9PPredYWas+4Afi3kKxDWN4U0PjQv6laqj0LKyHyJPfy8Xm/yAyErejw+mPMl78e2FPgMtEbnTGotMWrrvjtLVQBbX1GPAtJHUTv1z9bptSA769NGZYX6vGA7eTOzHeCt0RY0Fdvg84KeGWZmiyM6b/f8Ta9jp0s7Sow0CuR9sXSpfge1HkiBNSSo/bp4WDt5zZoNerzoP1Gk14e0S6SjyofWEx/c9rHE9l3WTWKkB9v0m79JrP3PJkiM5lRqP/UPovPYNu9piQ2a9DOJ5TRTfcTc97V1Rx14OVFrDKLdFF3jyK8k2C5jH3h6nDRZNW1Bf55oVDVeX4TvfDiO4ziOE1f84cNxHMdxnLjiDx+O4ziO48SVBtvb5bLbXrPk1CN5LWp1TvXzlF+lfgukR0iCfhgE9Xuh/DT116BWzR1Oy5IYefzvg54T5NNPuegtT2yV2Hm395bY0k16fDSmwfOIVobTE1ALd9LphOknY2bWuYNqD1bO05w4XVvylgh7zchfhb6j8jXVbTTur7lT8jMom7lJYtSOnnqHDOirn0c9UNLb6nnQ9Qjmz8lXIlqp85PG6eyJqrd6cuJMPY7BgySWkK5zgO6fkT11npHHRdieOo1a6PfSfUZ6DLq25BHS+1h9HfmQ0H1A3imkdduwSD8vE3xDgpoz0nIQi97T8+/aX8/r44f1vqDeIQRp/ajHFX0veb2QBqs5eHCUlOh3lP5xtcT6/HKAxEgbMm6k6nTmr1PNB5Gaqvco+YbQ/KldXCyx4NiT9o8I3iu1tZX23JNne28Xx3Ecx3EaHv7w4TiO4zhOXGmwpbbpmYmW8rnytv27tfSpPKIlYtT6mcr91HyaLXqpXC26R2M1c/dKLPWcLhI7VFAisT19m0iM0ky0rX3GpVrO+/oTuq2WkK2lWQdqdWuNtqFzO+m2ZPXe2LE6WCQvwdJg2s7T0WSL673v6RiXgZU8tRz/8Xi1zr//d59KLKmNbi/Ttj5ZUqfD9nXZHi0hTW/bSWJEJswfShdSWSlZQeeermWLVI5YukyvSDB1QCnPsG3naWs57/rTJLb76Y0Sa5SvbQzKI3pfzJin4165Q+c2jV0BzB9MDUI6kkqcabuebNjJTp9SO2Rh3giOmbb6ye6frnewdDdYUmnG5aiUwvlklqa7mo3R0t1gObcZt4AoiOixUIqFxp2ge2DLLv0OWgcrJ/aSWAakRLLg2s6cvktfBy0QaN2je3kl2BgMH63lwdtgTgUtEOr36L3S/Hi9V5LSYsc9KaTdgJnvfDiO4ziOE2f84cNxHMdxnLjiDx+O4ziO48SVBqv52L2+2pJTjuSQ//Pn3eU1z8xW/cTqIs1fUhtlKk+kMjEi7RQtlaScHukbOl+j9tiUO6bc35A+qm8ge/EmoCHJz9dcLL2Xyk+p7DdYkprRWXPdVA5Gnz8Y7MvnL9E8MZXpUski2RH/8ZUdEiM757pqHTuCLKmp/HTCE2oJ/8YrmsO98CLVpJBlf7CFtZlaYZuxLqkiouNHJYqk59j6fKyGpGy33iuFQ9WWnajUS4Elv1RWTK0NCNI7EDR2dK/shjL30o2w1uTq8dF9uw5arFPrgbCQNoTWFbJJfzVTtQdz/+uDmL+T+qtOie4BagsRbNduxnqM+sKIxLq01OOla0ZrPJUf0ziRzu2rQK0myBKgFN5L+o76Qo3VVus6QHoeKq8/+JF+c/A3jfRr9JsZXD9qa8LpbMx858NxHMdxnDjjDx+O4ziO48QVf/hwHMdxHCeuNFh79esfe8NS0v/3tsFkZUxaiX0f6OuoZplyWu06qJUxWfQSZNtLtfEE+Q8se1RbWDfqniUxyulRXT1ZcJPuhTw3gvlFqpUnTwryASAoR0qeEZSfXzZdfU6oHXYSeCOQFT/ljkeAh8nsB/T6kPai55WaPyeNAh0faVzIppm8bQiyX6brHa2KHYN68N3pOP57EiMPjrCtDcjmPGzreBo78s4h2/SqWesldsLtavU+rKMey4ylqkMjO3A6luS2OpdpDMjvh3QV5Dex9iP93qp56gkT1ACQ9Tt9Fh0v2ctngzamGjwiwnjOmPE6QOsF+bXQ9aF1gDRddM2I9Oaq8aE1jtb4juerxpDGiiDvFPrtC2p1yMKfmDC0ZczfFQcO2OgTT3B7dcdxHMdxGh7+8OE4juM4TlxpsGmXaTPetrQvSbuM6a7bUQ+8vVViWOpWqNvGVHJVNv0DibW8/ASJUXqGyr9oGzoslBYiy+hDhbpVedJkHauw29W0BRlk7xzdbj73Ji2PLt6vW6GU6qGSOCr5pZI92s788B7tEJt9lpaGNoMSSNripK67E8a2lNhLs3ZLrG6Vls5R+ixvoKYQ5//kHol1nnS5xKjsjqB0GZVLBq/H1lfUvpzSLjR2xS+T/T+0SgjZOoC2kalkMWxaiO4zattAc7m0TOdj0TYdT9r+p5QspaMoBUIpBlobqKSZujY3bhd7vWlu//XnayXW6dKOEqN1tXqJ3hdJ/TSNRV2maT0Ke99SGodKy6l9AlkYEJQCovLbsGXjlD7LSNHYmg06f5JDrN1m2sWXuh/T3Ammz2oqK2za5NM97eI4juM4TsPDHz4cx3Ecx4kr/vDhOI7jOE5cabCaj1umv2mpX6L5WP9n9WnO/aHmicnmO2wJIOXdqaX10JM1b1hRozlHsmkmLcP6GVouS22UB4LF8eZSPQ8q5az5VEvHcqCElMYvmMelUjLKuw+apNeHyj2pRTjpUSh3Hsxfmpmt+fUKibWb0k9iRPEbeyR2zLmtJEb6E8rrFszV8jcqH6Rzo5w1tXGnNuaJ2ZqzJW1IuxzVL1UE8udUbk75ecp/d2mp5/rCI0USC+oOzLgMmHLR+98l82qF1gvSpFiajgnZ/YfVfpEegUo+6fPCWsfT/fLpnU9JLKfPqRJLzMuK+TshXe+phDSNEd2H6jpO85Ps2mldIU1O2NJlauWwrVQ1OWFLWXc+/qnEElvqb0FNwWaJpY8doO+Fa3Zorx4f6VRQW7NK7dUT0nVOdTgtK+bvXnl6782Fst0gtdUV9uff/ptrPhzHcRzHaXj4w4fjOI7jOHHFHz4cx3Ecx4kr4QqNvwY+nb/fkpOP6CMox9VidI7EKAdHrbnD6jsoj0Z55yYpmpukdsYEWY5T63TyllgOn0feDWShTD4XpG9IbKn5v6DNdW5TPYe//k2tgknz0rW/agAI0vgMmNJBYgXb9dqSvoO0LNSGnCzSybuhfLbqFvYPUU1BWLtp8hqgvDhpCsJqd0j7FEaDc7BIdU8DTlYfjXdvVi+IlUN13oVtdxBs4W1mduJx6r+wDsZzyxNb9XtBH1QL6wrpl0iPQVAbiAFjsiSW000/741X9HuHj9ZWAeTZs3+J6iqOvfNSiZGOKAjZ0Ndt0PMiTdfKefo6msekT+gUUltV9c4qiY1+YqTEFq/RcyXb9FaDVBtC43T8TT0ltmJ2RGIpafkSq98DPizgJVK+GDRI8HtI1vb0O7L76Y0S21oZu57tAT1TbifVVgXXy2hC+P0M3/lwHMdxHCeu+MOH4ziO4zhxpcGW2gbt1amDIln0Uirmq3S1JYtiSpOQpTdtN4a1vSar5WBnUTPeDqXSLCo7o23OpO46LpRmClq4f5XS032QiqEUE5Uz//0l3ZamLVPaXidaZerxhbUtpmtGVvfUYbcO0glkrU3Qe2mO0n1AltGXjGotsWC3VkrPUSl4ZJceG/FV7LYp/RF2Tp02KktiB2r0ve8/o3byYbqDmnF363MH6zr15Ju7JEbQ+dK9Rt2YD8G9TOmTYDkmnStZmhcu1xRG2PWS0hWUTkkbGa5Enrr/UjqS5gVB6WGyRKDU0/KZer/QsVAXWnodpdZPHajryuoiXX+oTD5M+4RGebquBsuoqysr7FeTRnmpreM4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwZbaZiQnWtrn2gaHLRWlPGQd5LXpdWSbTna39F4qTzz4keYDS6s0L065yegezZ2SnoXKxMj2mGyKa8Bmt2buNomljNBy1pqC2LLSqhots6Rj27/zn/9O0neQtTiVnlJOfO+cEoltBJ0BlZVSDpxKIBfMkRDaXqeHzIuT9om0IXugzLnZmHYSI03Tg0/q9QjeB1TCR3lo0nIc3K7jnjb2GP08KDHE7PyVnSQUNo//1psRiZGuZOIVOnZLN2krerpm1P78vl99HOr4aJxJz0L6DppndD1ST2gpsaAN+aL3VBcSFtLSLXtU52dint5TB2tAjwLrG2npaA6Q9qsCrveB1Xpt14M2hrRuC386X2L5tw6XGP3eVC/S0vTPstWGnfR/M2A9o2tL8zvY4uOkyW3kNWRhkBEo30+s91Jbx3Ecx3EaKP7w4TiO4zhOXPGHD8dxHMdx4kqD1XwsfrvMklOO5OnTTtEcFNXUh7XK7dBKtQctKR8IrZWppTV5a9z48FCJrSlV3UJYXn9Cc+Dk00BW3cGcnpnZfmhZnpCu40w+BZ+NjLULps8/VKC17RmgO8i+rJvEqK07+QDQtSB9C0EaGvTvAG8EyrGXlqmupPxFzf/m3TFaYmT9fertvSW2u5N+L+WOz4P3zl+nHgLtOui9EcYzgs6/5lO996iVeOak4yVG1s07TP0SyJOC5kC/IXpem7epBoD0CHT/vDRLtRJBy3kzM4PzWLlcj5ly6uQnQ5BNPllrj5ukfi2rwSOkbzsdq9cXRmL+Jo8L8os4fbxqVMjS/IbfD5LYOxtVs3Ds5H+X2Ix56kFREQnnX5IB86IO7u+9b74lscyO5C+imo/WU4dIjNoY0G8GeZiQlmxbKbR3iKhlfZ/uusaTFX9QR1QwV9cKanES1DrW1ny5Vf//cNQ7Hzt27LALL7zQsrOzLS0tzfr06WPLli07/P9Ho1H75S9/aa1bt7a0tDQbOXKkffqp9ltxHMdxHOe7yVE9fOzbt8+GDRtmSUlJNmfOHPv444/t7rvvtubNjzShueuuu+z++++3Rx991JYuXWoZGRk2atQoq64O91TvOI7jOM63m6NKu0ybNs3y8vLsqaeeOhzr1OlImVs0GrV7773XbrrpJhs3bpyZmf3lL3+xnJwce+WVV+y88877Pzpsx3Ecx3G+qRxVb5eePXvaqFGjrKioyObPn29t27a1K6+80i677DIzM9u8ebN16dLFVq5caccee+zh95100kl27LHH2n333SefWVNTYzU1R/KV5eXllpeXZ/9+yYuWnHwkh0X5Jmp/ngQ5e+pp0WOstgz+ZJa2oCY/h7JNml+l/gX0uvS2mhOmHHPYNtykg6CW7VS3fuKF6s1BuoXOrfTcyB8hCPViWbEafCrgmpX+cbXEmk/qI7H8fD026qlDXhjkeUBeAzSedM2Kt0CLbNCfkK6EoDw2jRV5SxDkN0E6A7pfGgf0QcFeEGac1w6rqaCeIJTrpvlDn0drA+X2s1rDdYS+NdSvg7wqqB/NpLNVe/HaCv0OgrwqmraB9vYwzhUbdayoFxRdy5E9Y9fH6S9q3xnyi6D7kbxpeh+r9xRpcva+pxq5ptDundj/rvos5f5QryP501APKtJC0bhXQ68l6o9FHlLkKUS9XaiPVLDPihlrN8gnJW9grF6EdGSkcQpqjWprK+25J8/+v+/tsnnzZnvkkUesW7du9uabb9oVV1xhP/nJT2z69OlmZlZc/A9BZE5OrJAvJyfn8P8X5I477rDMzMzD/+XlqXGY4ziO4zjfHo7q4aO+vt4GDBhgt99+u/Xv398mT55sl112mT366KP/9AHceOONVlZWdvi/wkL914TjOI7jON8ejkrz0bp1a+vZs2dM7JhjjrG//e1vZmaWm/uPLa2SkhJr3frIVmNJSUlMGubzpKSkWEqKbtUFoVJEslenLeicPrrVVlKupUpht7codULQttr+JZraMdhGpK0x2r6kbdSMLP3e7NOyJEZb2LRluNH0dUEoxUIlXZSGoK3VJhN7hTq2ZdN1PKmMkc518BS1cH/3ZrU33r9bt9Lbga3yuJH6OrLg7pWn29w0H3enahqDSsQXzCmTGKUswnKoQEseE7Nj77VqKEEf0ke3fak9PdnkZ/XWMkEqJ6RUQvF9CyQ28ZkfSuzhH94usfb9JkjsuGu7SCynmY47lWrTNvxLizS9hyXdsNbQGkLfQem45La6rlKbiu17teXDnwIt1amdOl2LZbC+hb0fyeo/qbuuK5Q+q4O1wdL0mmGZcrXO0Q2LdO2itAalYpIgLUa/S7vBJr8DrKMVNXq+ZBNftE3vF5oDnXporFVm7KMApV0Owbh/f0LsmldVkWLPPSkvQ45q52PYsGFWUFAQE9uwYYN16PCPRbxTp06Wm5trc+fOPfz/l5eX29KlS23IEK19dhzHcRznu8dR7Xz89Kc/taFDh9rtt99uEydOtA8++MAee+wxe+yxx8zMLCEhwaZOnWq33XabdevWzTp16mQ333yztWnTxsaPH/+vOH7HcRzHcb5hHNXDx3HHHWcvv/yy3XjjjfbrX//aOnXqZPfee69dcMEFh19z3XXXWUVFhU2ePNkikYgNHz7c3njjDUtN1a1mx3Ecx3G+exxVqW08KC8vt8zMTLtl+puWmn4kx7Z+BpRNna65yrBlcn+b9DuJDb5rqsSoDGvTb/4msfY/09wxlZ1Rnm/bWxGJUQvvTbs1T0rlaQTlmKmUk3QVZFVdVKL5xSCRXZCHBajklUoWqSSQNBBhNQU0JmHL7qj8eM7zavtM1v40R6l8kObP8pn6XiobJ8txgjQAPaFFfTC3Ta0NSPdD12L0+VrivRys2Uve1zLBlG56HSnfT5oXyp2HvX9Il0Tt1D9+eIvETr5R2weQnoXKjamEn6ztKR9PpbDls4sk1vqC9hIL6k9I59YOrNpJA0FaoM2l4eYn2R90AP0a6ajmwvyh0mrS2hDBclQzs/MGqp7lr8v1niKoJQVZ1mN7i5BaxLDl1sG5QrpB+r0Iahhr6yrtr69e+H9faus4juM4jvNV8YcPx3Ecx3Hiij98OI7jOI4TVxqs5uO8cc9YctKRHBvlxEmfQPa0QWtoM86jFd23SmIj7tb235Q7Dmtd3SxL67PJlhr9SsBrgHQGVNtNLctbQq14WCvkYCtlst6l9xGUdw+rxyAr8IHnqBaILNcpn076jvV/3iGxYy5uKzHSWfx4vL7uvht0npEnAc15ytmTRqOqRseKavfD2qQHr0fpMvVBoBYIlNem8WzUPUti3+ulx0ZzgO4p0lE16dtEYvumr5HYuAfVFoA0KaTdIU8LWgdIB0Gt56lFA1G/R+8h0gKRpoAIrqPUioHbuuvcIY0K6bya/kA1NOhfAjHy7yDIn6Zdjt57tA6StojmKGkjwrZjIAYP1rny1pXvSqzl5SdIjNpqkG4q6P1BGssWJ6sOL/g7VVVZYdefe6prPhzHcRzHaXj4w4fjOI7jOHGlwaZdgl1tr7mqs7z26fnarG7P37Q3TPIQLbWlssCC7brFSV0l61ZBp0XYMgzbcZUslKlz5d45antNTLmzn8ReXaXpGdqajlbqVipttwVLLes26HmNuUbt72c/oNeHtqqpu27YrpJUAkhpCNoiphJSImxn0eL73pZYl1tGhfoOgkrsqGMv2dgXTntLYhmDB0mMSkiDJY+0pU/Xh0pUrUrHmEqrqcSbSo3DtkWIVun1prJDSiEmQezasZruuuU/3pFYygi18f8qhC19D1uqXAMppWA569bntXz0P3+jLRDISp7SYlRWTPOYIHtwshanlE3YtGrqCS0lFrake/5jOlaJLTU9Q2X4lD6i1GUGvI7S17QmhS2jlddA2W797tj7zEttHcdxHMdpsPjDh+M4juM4ccUfPhzHcRzHiSsNVvNx2W2vWXLqkZwY5fEp70W5T8r/nj5ec8ykR6CWzmH1GLk/VK0JQWWL0UrNT1O+lspZycKd2FOsOUwqXyY9R7AMlPKIlL8knUVkreZ/w9qhU66ScpMDxmRJjMrpKJ9cMFdz50T+CM1xBltVm7GehXLWNOepVJI0CpTHD1ty/tENT0iszdnnxfx9qEC1FwnZmsMmfUf9bp1PdXtUk3SwRl9Hepldz26XGOm8yG58QF+9f7q11JLc2067S193w48kFrSbNjOL7tH7u/Gxqqshe2wq0Qx73xJd++v5htHqpPZTbQNZ89O403fSPZWQptqQQxsi+rpsXRuaH6/rNOk79sHaSOXbpJU48TidF+sK9bdlZE/VQy3cFJEYQesAra1nDlA7gScf0/sgo6uOPWkRKwIlyKSRo1YWi96LvUdrayrs6bvHu+bDcRzHcZyGhz98OI7jOI4TV/zhw3Ecx3GcuNJgNR9Bnw+ybiafikunau39/hrNo72+UN9bNnOTxNLP1M+jmv86aGkdti6c2o5TDTjZAAdzdWZs8127Q2NfxYZ9xexIzN+UW6Rc5UDQrZSU6/UJ2+o8rA5k/7tqF0wW6ZQTPqmX5i7fXl4msbB+BjQHiCYp+nlh24TTGNAcPfDCOomljMyXWPmL82P+Tu96jLxm/UePSywjQXPTkUT1VUg6pHqUXmN/JrH6wojEmo1pJ7GwkD4o7FwmDyDS39D1IZ0X6Zz6dNdxIbt2ajNwxqWqv5h912aJtRidI7Eg5NfScbxarpOmi6D2EdSiYulSHSdao8LqYCad3VpiT9y7RWI0dq8/ob5SQT8UM/blIC3H7keXSIws0qkFwOXTT5HYrv06l0mTsn2BzpXg7yu1YiCto9urO47jOI7zjcEfPhzHcRzHiSvh/Gy/BuqL9lt90pEtvJE928trZsBW2/QXd0mMtotoGz4xT8tvyaaaOk2SNTB1TV0wR7frCSofLMnLkhjZXNO2pG4Ymh2CbXhKsRBBW939hbqVZ2A5v7lUx47K7sj2OixUProfusYSkV06pzbl6HYmdeokwqbZ6mH8qKQwIV2vz2ewvUzzkebF1va65R5MsZiZ7a5YH/N3ZI3aiKdblsQ6J2tq4nspuvU9ZKD+O+iR12dKjEjMO0di1IV1/n3bJEbl8FR6iW0WoAS9EZSk0nsprbrz8U8ltu0aTYFRC4DEbL22TZJhDsD5kg17cF2JgD04pTrI0pzKVsOmVSnFTZ1paT0fc5225KCSV7IwoA7DZONPtvM0xtRdtvVU7Z5M6bO0sZripLJasmegEmSyHQh2Kac1lO6LoF1BbXW4rslmvvPhOI7jOE6c8YcPx3Ecx3Hiij98OI7jOI4TVxqs5qPpid+LsVd/bYXaOZPdLeXqSKNBLZPD6jvq92i+Mneg5g2ppCms3e1KsBqunLVCYhuyB0is/yma59sDuVPSfARzf2asmQnaztcuVlUJlXZSGfAlk1XPQ625qTyP7PRJt0Etran8jezVV87T60i2z1mQ6yWND5WNm2mM8sl1K9XGP6m/loNn9dLzLd6i8zZaqbHGKXosp6TE5ntn7dHPv/WsLIk9+d96/gN76nz670V6HM2zNNf9SeRlibUBHUzBdp1nVFJKrRdIq0UltF3PVU0T6ZcoF38mlHxOH6FjsPmBAoklDc3TGGh8lm5SnQHpT0gfE2wBENR4mZlVwhpFbSuWg9U/QdoT0mMUg4U98cYrqq2itZHueSq5p7lC+o7moJs76QotB3/hkSKJRSt1TTq0Vz+P5tShAl0bckAT2KUllJKfHDu/3715rbym5UVdJRa0k6irCWfzb+Y7H47jOI7jxBl/+HAcx3EcJ674w4fjOI7jOHGlwWo+KnfW2sGUI7nh/HzN1c15Xttwk0Ux5XCpjXsd5NYOfkR+IFkSW3fjHIllTx4hsfLZmudbW9VGYnmgISlucbzEyLqZCNtym7QbzS7tKLGg10D2WZqHJrtx8gZ4ZrbmKnsfC224C8BfBXwFyEqectaXXKU+ADOW6rHQtagGTUVYy2waA9LHDLpcx3TtR6pVIu0O2avTuBzarfnz9AMLJPbSwdh7rV2i6q1Sv6fnOryNagy6XaLW0C9dNVtiB/a9LbH2jQdLjK7tzsdVL3P8TT0lZqAjopYFVTCXSb9EkD/EjHm6dhGdweeDLPtpHSA/jAMvLJNYQeehEgt6OpBmitbGOVWqRfj+BNWBbCtVbQN52NA6sALmcf4I1d9QW/gP79EWGj2vVM1Ufnv9zSAtR0aq/vt9+UzVJ3a+VD9vIuhASKdDrezJK6jNZd0ktv7P2spg3O8HSez1hbG+IY3762/S3jmgN+sXe20TE8PvZ/jOh+M4juM4ccUfPhzHcRzHiSsNNu3SrFOKpaQd2aoiO16y4Katftq2WgQWxW17goVwW90ao9LY+e9KCKkt1LTLeSN7S2x1EWzhw9YqWd5SKVXOKB2D9z/ULb66bLV9pg6H9YGt/pwcPTbakqSUQw2V4sF2a7sOeg5U2kipjmZZmrZ78Em126ZSvGAHXzOz0edreeILv3pTYsltNfVGNufUCZNKfOn46N6gsuTlYPF8qErn2bZa/d70aFbM372a6fX5rz9+IrFfnKwlpS37jpfYj89fKrHlb+uxrek0XGKN8nTOErQdTqWc1I06kUpt++sYlEC5PpWQkh06pYcJsuynku7vQWqwyUTdcqc1JHg/l23S80oeomWmNCZUtknlwlSCTvdeApT4lpToNaPUerRSUzb03rApNbJnoDQbrbVkuU6ltoUwv8O2nzj3pu4Su/tp7WwcbBVwDJSRF23Ta1u5I3btqa/RVN8X4TsfjuM4juPEFX/4cBzHcRwnrvjDh+M4juM4caXBaj7Kt9RYcsr/fniUh+2Vp3nOknLNoxGkbeg3RPNtS36u5WpdbhklMbL5pjbKpO+gMjEq9erbS49v/jrNMVNed0BfzeEtgnw3tVcOlqKRnfX6GVqKR7nEklTN9R7bVvOmf7p9g8TO/S8tk3t9YURiZC2e3lbPi3QW1IKaLKObnX2SxKqXqE38jiotPaT27Fal83Yt2GhfOEZtw383+o8Sy/7haIkdrIEWAEn9JNZuUKzWYtnih+Q1RJuRPSS279N5EvvFX7T0tC5B5/ExOXodqe1Ay8tPkBhptYItwc14XgRz22Zsz090OC1LYuURLUklnQ6V/TZJ0XWg+1BdByb2Vb3abevUrv3UgaohCZZ8UkuJJNDL0JhQ2SaNMWrLoIw69/RsiZ3US9eL+VCGnzpcS5fDaNrMzGre0bGzib0kVAe/SwSV2r40S9cLOhZqeUH27y9CjHRjuwN6xw2L9DeJfm+DuqIaKLX+Inznw3Ecx3GcuOIPH47jOI7jxBV/+HAcx3EcJ64kRKNRFQN8jZSXl1tmZqad/r0fW1Likbxg66vHy2vJLrrVoHA1/0X3rZJY80l9JEa210mQ+1p7+/0S6zTxMolRK+Tmx2sObkgfPQ/SGVCL7FTQBZC9OrUJp/bSw7pkSeydj2NtubcvUO1Aclv9LPK4oPz3nr8VSoxs7ammnsaEdCth/A3M2K9kN7TcnnScehdMe0HtnMnXJOx5kAZp1WLNz542KktiNH82gTdJRl/VfBy34/mYvzP1423GGtVo/NeF6vNB/h3vleh76xI0J547eIzEDm5X2+fG+freFier1ibYJsDM7GCR5smb9FU7eeLE4/R11AaCdETLpmtrAzpm8jJqCXow0rPQ2kUEPXXoHqDjJT0GtR3I6Kp6M1pryUeDtDF0D5BvU1itDdmwt76gvcRI10djTOtvzVz1GRp7l957NH9o/EjDRzbstC6PGxk7z8jmnbyINq6MnWO1NRX29N3jrayszJo10zXt8/jOh+M4juM4ccUfPhzHcRzHiSv+8OE4juM4TlxpsD4feVPGWnLqkfx2xUbNX5J+gvooNG6nuT/qaRFW30G5tQNnXiIxqlHvOF57gmx7KyKx10DzQG3rSQNAudiEdK0LzwadAfU06NxKxz7Yrpv6LdDYUW+XjCx9HZ0rQdd74Dmadyb/Dup9QX0e9n2g7+0xtrnEbp/+qcQmjG0pMRupefxX39HcLPXJoDw+aXzI22bn43p8jVNUb2RpOlfe2hV7PTp8pvnqxMbqeXDTX5ZLrDZB77NTmqpXyZsV2ismr99FEgu29TZjH4SyTTq3k2DsdAaYZefq60hnsXiNriuHCrSnjDqTmKX2U78N8uCgubIH7jXSS1Tu0zVz14Ov6Ov+/cyYv/MGqqdHYku9f8JC2pg3XtHzIs8M6mVEOp1CWM/Jq6II/ECm3n+cxO771cf6eTAGdbAWkg/LJ0U652n+EPR7uA3mKK3Lh2Bc7hv7h5i/u93wI3lNEoxTcNwP1obriWPmOx+O4ziO48QZf/hwHMdxHCeuNNhS2/PPm2HJyUe2+hLSdfsof4SmDcK2WKftR0oT0FYTlbqFLeEqKNBtKdrS3fLEVolVblwvsZ+//h8Sq6jTjeOXFqltL50HlVPRmAbLtWjsKI01eDDYwT+2U2K0BU3fUTZTS+LaXNZNYhURPZYzhmVJbMbdW/7pY6HPoy1yKhGnFtlUHkxQSS6VUVOZM1Fw6wL4vNjrtmPHu6E+K7exlvdas5MlVLlf50DTVnodE9P1Xqb27LTNTS0LKA1I15Es++m+DaYjzbQVgZnZtlJNi1ELAKIOyjYpLULHQvdBmBLXsOWtQ0/WNN78+zRFR6kySiFTSTulqen3gdLylC6lefH2Nb+R2KkP3CwxumaU1qB7ORXKl+ma0evo92b30xsllpin49woT8c5aHdPaZ0wMoKaygqbNvl0L7V1HMdxHKfh4Q8fjuM4juPEFX/4cBzHcRwnrjRYzccFV75kySlHclNRaNX7/Qmaz6qo0ZwZ6Swoz0m5eILsabNaa/63OZTiUSkr6Qeo/XdRSbgW3lRS+YPf9JbYsa2zJPbgk5qfzeyix5Ic0MKEzV+2y1FtA5WPEqRZoJzrV9HudGilx0eaFGp33/F8bR1euBw0DwC1GKe8K2lDqKyU7OmTh+SGeu/eOWpXnpAdqymgHPuWFx6XWNfLr5QYlQYX3/e2xMjmPXgcZmx9vvvRJRLLv3W4xKidOh0fzZ/gPWDG+ptDe3WukF6N1gYql42s1TlFayHpSgjSvQTt1feB9iKstThpaHq0UO3FPbNUb0W25DSedF/QdQy7rtI6Ra+jda9Xnpbfbi7Va0vXm36D0MYAzo3WR9LHkBVBUL9D6wIRnIu1tZX23JNnu+bDcRzHcZyGhz98OI7jOI4TV/zhw3Ecx3GcuNJg7dUT0xItMeXIs1EjyHGFrZWnumvKB9ZAXTi1Oictx/oZpRJrN0lz7NVL1G+jrnuWxFbu0PMg7wKyAyffg0XvqUX4ihaqKahbpFqBMtPPGz461vuCPr8exp1y4uQN8P4z2ka6A3iEkK6k+GVoTT5arYwp102f1/QEzU8fWB2u5TTlZmugtf2J4zVnvxxs52urVaJF2pWcKztJDP1awH+gEczH3c+9FvN3l5vPktd0TrtcYnSf0dilZOm9kpin84I8e8j+Pm2k6kXo2hJ0fOQP8fHDqlFoNqadxMgi/JNZ+yRGaw35cpDfQmmZzmXSs5D/S6ceqoMIHl+H07LkNeTZQ+vAzOm7JJbcVv1vSLNQDrqafWCl3na4zhW6H5fPVKv75sfre6lFRYuT9R79bJ3ey/S9E/vqvHgvU79j6VIJ2QiYF2+9GZEY2f1vLlD9lplqPoJr9YSh2hbinY91zpYF9CgJieH3M3znw3Ecx3GcuOIPH47jOI7jxJUGm3apr6q3+vojW0Fte2r5EpUxYpdK2KbL7pklseq94bo0UoqFSi+p+yJ1DA1TympmVrRNv4NKAA9tiEjs9Os6S2z2XZsl1vmafInROC9d+uXdF+v36Pl/D7YQKX1GW6H0nWQ1XbF6FRyNbsNTesFMt36DZYdmZhthrtA2fEK2bk1H9+h5NEnWbVmy5V6xWlNlYS3xR5+vHZVnXadjdfxNPSW2Ku3fYv4OW+6Z21TP4VVIx9WtlBCmF3JydP5UdtNUDKVaKYVBaYjawogejGnapbawSGLVe8OVMw++UK/FgjllEqO1oWLpMj28c8+QEKW8qJvs+x9qmilYSk3lo7T1T52YNywK12ZhzQa93kQKXG9KoVZC6prSR1Rev6JarzdZzGd013GhlPFv4H5sD6kiSoE1SdbrSClt+r3p9f96hHpdkCcf2/6lrzHTkvHqSjN7ONRbfefDcRzHcZz44g8fjuM4juPEFX/4cBzHcRwnrjRYzUfXwRmWmn4kL7hhkebJg+WeZqwfSIM8WudWGiNG9tTc30tQ7kjtjHfdq5qKDjcMlRjloql80rI0hLqA6lYSW1eo+dRjLm4rMdKzJHXX3GTQ9plMxIdCXptokqLn+n6x5qHJanrlHx6UGFl6b3xUE5H33HmHxO7+97cklvTjvhIjSN+RkE42xfq6GXerXmQQlGpTHrsEdD+tBul3LF6j91CjfC1BDmN3Ty0GqLXBX658Q2LH3vF9iX1UpcfW7nQtCSQtC50r3VMZULp85ik6RxfCekFW2Cn5qqOiXDxBJanUQoK0X9mTR0iMSu4H9FX9xZznVY9A47c/oLeh9aN2sZaKbjSds9/rpboI0i6RlfqBF1Tf8h9Pny6xt5erXob0f1ue2Cqxremq5Rh0udoLkFaCtE+XTtUy9z/dvkFie4r1+tAcfX1bRGKkBdq/U3/76HekbJPO5eDcu2Rye3nNn25eJ7GM1KyYvxPrvdTWcRzHcZwGij98OI7jOI4TV/zhw3Ecx3GcuJIQjUZVwPA1Ul5ebpmZmXb9Y29Yyuc0H1THTTnNsMy/T1vH5/5Q85XEZ+s0/0l5zTMHaM76mdlqd5vVWnOTYVvPk58BeaKURzSfTLbU1J6c7KYbt4v9Dsr/Ugt38lwJfpZZ+HbYK+fpOSSCdwN9HuknyMKe2olTK21qX02eBGSXXFKu+VqygqbrUwdzoPexem/shvOg+4o+L6i3oVwy2TtTG3LSYxB0HETYVuI0duSTE9Zams6X7tHqVapHuOW3AyQ2e8POUJ9H6wW1fKiq0aWdLOap5UHQ/yQJ7ikau133LpbYsD+cJLEwXhNmrGMgbxaaA+RPRPf3xpU6xmHbApAfEelA9s9eILHcKadKjDQf2+5cJDEa0xWzIxIjL5EwvkBRaDUS9H6hz6+prLBpk0+3srIya9ZM17nP4zsfjuM4juPEla/08HHnnXdaQkKCTZ069XCsurrarrrqKsvOzrYmTZrYWWedZSUl1NzGcRzHcZzvIv90qe2HH35of/zjH61v39gyxJ/+9Kc2e/ZsmzlzpmVmZtrVV19tEyZMsIULFx7V56emJFjq57aHaDuqYLuWDFG6Ynx3ta4uvVi3m6lcLSdHh6iirW7xbfrVmxJ76mzdGjt7opbBUpllpJ+WEdNWegVso1I5YkZXfe+JUApL6SgkkCqhMlPauty/gbZRNTWRnavvpRQLQXbWdVAeTamyVplQngdlllT2G7Yr6XLoalu6TEtNqZMqzdE6qIzNSNH7Ze0WfSHZOdM2dHJgq5+6RxtsfVN6qjZVrwVZV69arGOSDV14qXsrbYdX7tOt5BW/nSaxCXPvkRhB29xkCd9xvN5nlGLJaabztiBN596uZ9X6ugK66VKasgK23D+D9NahvbH3KSVJyE5//8RBEqP7lu49Sv8QlHaitDKlWCgVRang/av0Hj1pSgeJvXLRsxI75rdn63es1LJsWuPI6j0y6XiJUTqOyt8pNUjz9uDK2PmYfqaWC2PX4cC410C5+BfxT+18HDhwwC644AJ7/PHHrXnzIwtkWVmZPfHEE3bPPffYKaecYgMHDrSnnnrKFi1aZEuWLPlnvspxHMdxnG8Z/9TDx1VXXWVjxoyxkSNHxsSXL19udXV1MfEePXpY+/btbfFiFSKZmdXU1Fh5eXnMf47jOI7jfHs56rTLX//6V1uxYoV9+OGH8v8VFxdbcnKyZWVlxcRzcnKsuFirIczM7rjjDvvVr351tIfhOI7jOM43lKN6+CgsLLQpU6bY22+/bamp4drPfxk33nijXXvttYf/Li8vt7y8PPvkT9ssufERnUKnSzvKe6lsjPKLu8tUx0C5tb7tNEdItr1UcpXRV1u2E/R5J01uIzFqRU7aEIJyzFR2tg1yjmQrTATLNstBZ0F5/KIsLT+mMkGyvw/bNpvKQOm9lGPO7aW6jazWmnencmuyc6ayWmpFntVbdS8f3fh3ibW8/ASJUS6W7Lspt70R8v2kmQlqV6j0EnUgAJWHF4Amh44jskuvI7VxJ20MHXPXYy+SGJXDE2RLTtb5pEkxKIentStvoM6LaihhP/E4LSPu00o1Ga+u3SUxmredetC5xUKau7oNeg6N8vSzSt7XHe6JV6hu5aVZuyVGmpfWF6gd+Po/75BYTYG2vMi/dbjEqJfF0qWqQRr/9AUSWzBH1/ixd+nvQ9cWqkt6dZXa39P9QvcylfWTvmP0+fr7sC5QMku/rVtf0WNrcbLOsbAcVdpl+fLlVlpaagMGDLDGjRtb48aNbf78+Xb//fdb48aNLScnx2pray0SicS8r6SkxHJz2UMjJSXFmjVrFvOf4ziO4zjfXo5q52PEiBG2Zs2amNiPfvQj69Gjh11//fWWl5dnSUlJNnfuXDvrrLPMzKygoMC2b99uQ4YM+b87asdxHMdxvrEc1cNH06ZNrXfv3jGxjIwMy87OPhy/9NJL7dprr7UWLVpYs2bN7JprrrEhQ4bYCSfodrHjOI7jON89/mmfjy/iD3/4gyUmJtpZZ51lNTU1NmrUKHv4YW1n/mWcfmM3S884ksck++mVoGOg+nHSd1BOvG3PcC2JDT0ENN9GvhwFBZonpRwh1ajXF+6VWOdr8iVGuffdz70G33GuxKh+vHaHHnMw300+GmTnTbneCrC9Ltqm14K8XpJSVRtCuUnKOx8q1Bzuiy9orpPy7pQnJ++P1279RGLRSh3PCfcOlNjbU3W3kLwq6HqTxf6481XP88dXNC9O7F8Say+ekK73VGK2ak/6n6L3CkE27OQRQr475GuTkKbXgq53zyvVz2BYlyyJUUv0kk91DKKVeh6JLfVaFG/Rc6M26WQTT/4vc+G+OjA4nOdCHbSyL9r25Rl5uh/pXGlNXv8LXY/ePv4siQ09WefPNpjbtMbXjs6RWFn3LIn1ytPP21yq92jla6q5+/sO1euRpfm6QtVozH6gUGJ0X9Wt1O8d96CuDe9/qFrEH1+l/iJPz9fiD1q/g5C+I/j7WJMMv5dfwFd++Hjvvfdi/k5NTbWHHnrIHnrooa/60Y7jOI7jfAvx3i6O4ziO48QVf/hwHMdxHCeuJESj0S9P9sSR8vJyy8zMtAdfnmtpGUfy9FRTHpZzB2vu774bVunrbuouMaozJ6jumnp91IbIrZlxDq4acrP0vWdcqmXNb7yiepFDGyISawQ5UcrbB7UhYduaN26n+dWwNevk00BQK3bK15JehvxACPIXIR0IHTPlyovu0/lYE9Hc7M9f/w+JzViqvhRnDlA/lRnzVAtTPrtIYsngIxHs01OxUbVB+SN0vlNfHBqTdh001009ZshH4phztV9SBuhFurRUDdbrCyMSo54b5HtAfXtoXqRDLygad/KqoJ4/5C9C+hiay7SGUL+coPdO2H5R9Pn9hujxDuuo+gHSH1XN0x44h3bvk1ijlqqDoXkc7Fljxj1q3rvjU4mlnQJ+TLDukYZk8Rq9jqQn3L5A5zdpSNKgR8/6GaUSS+qu761bpb8FTX8Qew9RXyDS8Glvlwp75GdjrKys7EttM3znw3Ecx3GcuOIPH47jOI7jxJVvTNplW6lul9G2Im3f0tYvWdbWQ4zKLGlrjLYgafufym+Xz9wjMUpPNILtavq8ZdN1u55KuH75iz4Sm/6hln9RW+ZgaSTZXhN0vNT+ndJstM1NY0wtt4vf0DGmssBGLXScaNyprJag9BnZ81OZaiJ8L1mOD+mj29pUeklznkoZyUY6eL77PtB7gKAU4JznNf0TrdQtXUpbkhU/tUmn8mOaF5SuoLJNKoendOSH92ySWDNodz+gr94H1J699dXjJbbnsbkSy51yqsSIsOmt4Dw7dWCmvKZ4v96jYeaOmdmev+k6Q2mNcSM1JdIpS+fFY3P185JTNTVBa0iwjNzM7Nz/0hLsmdPVmp5KugmyTtgHaQyC5ihZ9lN6K+xvSzD1Ta858MIyibUO2AF42sVxHMdxnAaLP3w4juM4jhNX/OHDcRzHcZy48n9ur/5/xaJZ+yw5+UhOkcrLKN8/rndriS3O1BwzQboSsuqmlvWUJybdwqrFmhNtAvbilIdMPUHLyciu/aTJmjulnPW0FzQ/TbqAlpBLpJby8llgZ22g+VixWnPOSZCv3f67lyTW6tJ/C3VspHkhnQ6VwZLOoFWm3jo0xjQGgyapDoKuI9Gnu+ZiyaY5tZ/m6Em7UloG5Zir9DxGXBNrzT5nrbY2IL0M6Tvqd+v1oZJAuo4RKGemckdqCRCRiNngwTq312zQ7615p0BiHyxSPdgPftNbYrQOkDaCIJ1K9eBBEgurW1hdpN972qgsiQWv26O/+Zu8psWo0yRGJfJkiW9nqdU/6UBmwFyk9ZcgHRrNbYIsFg4VqH6CynlJO1hSoscStlUAldqSPcHKefq9hwq0DP/Au5sl1uuO0TF/k66xww1DJRbWOoLwnQ/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40mB9Pi7+xX9bcqrmYz9P9RLNyx1zcVuJkQ8AEdYbgDQA6/+s1sBkVU5tszt30Jw1tbanennKG5KvCeXFia3Pq53xSVM6SCyYsw5rM0xtn8lqutOlHSVGecgBY7IkRu3ZLx6mXguvrtW6fbqOuT/UvC7lk8k2nOymyeKZyOqt+fMIaC1oDHKaqf6CLPbJ+puOOWivThbkZKdPGgDSFVEO+8QLNbdP+ol2OXqudP/QHCWvINL9kE9MzUeqAwn6HpixTof0ZeTdQL4udM+TZ8TOx9UiPP1M1YHQvA1e3y1PbJXXNMpXC3+CtEDB+WTG1vTks0TzbOA5eiwVYIlftE3HneY72fg3Bc0defbUF+rxkdcLzbP89vr7QBqk/Tv1PMgmn9Yp0jkF7ys6jjBeW7XVFfb4TWe6z4fjOI7jOA0Pf/hwHMdxHCeuNNi0y2W3vRaTdqGyWkpDVO7T7UfabqXS2EXv6VYblU3V79HtwbB2tC0vP0FiYTuEUhkW2fsOH61lllTOiqXKYGdM5XlBOrfSbToqs0xuq6+jbXiCtqBp+5G28KmcmSyuqfT0k1laxkjpBJpntF1NNtJkO79yns7Hqy/RFNhbn4TrvEzpOOLAC+skNu7B2HRC2C6ddP6JeVkSi1bqdQxbUknpCkptUbl+CdjQE82P13JHshyfv04/j+yxqUsuvY6g8yUmna22A0/cq92daS536hF7n1LH1PpCTeP99E/DJVZ8QNeeV9+BLtuwDlB5OJVRE2TZT1BrA4JSlJR+pN8WWlfW/HqFxJpM7CWx4LUw498CglK3lOYPpmlfvXqxvKbr9f2/9PtqKits2uTTPe3iOI7jOE7Dwx8+HMdxHMeJK/7w4TiO4zhOXGmwmo9gqW0dlENRy/G2PVV7kZaiVt1UckWQLoKomqclqtlgIUxlcsO6ZEnsnY9VZ0Ct7cmunVorv/2fz0vs1D+dLzEqUw3bxjwI5bX3bFa9DJWIUfkktYemfDWVkpHmhTQfFTV6zMumF0sssaXOs9Hnq0Zh+adaGhu2jXtuU831vr4wIjGao2HHgMr96BpFnn435u+gHbOZWXlEc+x1Ie2X6VpQWS0dG+myqIV5WItr0vh0OC1LYrSuZMC1pXuUNCmkUQirLaKS4X3T10is+aQ+EgtTDl5fqPqj1BNahjq2sBYGYSldpuNJFuT0vaQroflDkNaPtEpjrtF1/603IxKjdY9aCkSrdF6Q1o+g9g6kpQqWL59xqdoL0FpWEYkdOy+1dRzHcRynweIPH47jOI7jxBV/+HAcx3EcJ640WM3Heac9ZclJR/KdZHEdzDeZcSt2atWckK05YWq73mOsWupS7jgZvjdsu2HyRyANwHt3qF1yzyvVLjlsbpssmUnfQZ83pE/s+JF1dxJYKIe1IKd8KOX7Sd+y7FG93k1/0Eq/A2r0CbJ1p5wr5VdJG0IeLjTG+z7Q7yXLcfKnIe0T6QJIL0L5+GAu+nu99PPpfqQxplw8+ZwUFKjmg+ysaUz+ct40ifX/9RSJEXSvbFypehmyCG/XQe/bj278u8RSjs2XWIuT1WOHjoXmCq0hYbUWYdfRMJDPEunhTr6xm8RoHpNXCenhqC1EUj8dT/INCWv3T15B+5fosZD/CdHyoq6hXkfXNqxPzOAuesybdutcDt5rpMH6+0t6XsF1sLamwp59eIJrPhzHcRzHaXj4w4fjOI7jOHHln693+hfTqGumNUo5sqVO3fmo/Ja2+snOOqxlbdgUC0E2tlS2GYGt+e3wedQZsVVmuK62BdANlUr7ivfo66ir7YGa2PfSNjyVy4YtDaaupFSeOKyjbq3uPl/Pa+sravWeDSVnVD5JKRY63+INEYkNGAMla1AynHOiblGSZT/ZNNNWMqWKqByRXheRiFpLU7njJZPbS+yjHXpPVcPWP40JnT9ZYVPXz66XXykxgra0CdqGT2qj40mltmkj++nruuq2Nq0rdH+T1fk+SBnT+FEp5+nj9R7aXBq7hoS15ifr89YX6LxYMKdMYtTx+6mntct0/1N03PdAWpW65Hbtr+NOtgt1aVriTG0wKFVWtknXMxpjalEQtsM5Qb+HYbs2B1PfVJb//Ql6DsHu5tHq8I8UvvPhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TVxpsqe2UB163lLQjuTMqAaU8JNn7Bq1jzcK38CYNALWPX1eouVTSGVDpJbU9ppK1sNbApEegMqz5P7lHYifdf63EqIX3aaOyYv4m693il1XfUr9bNQbpZ2q5MJUEks5gwJgsiRGkKSD9AFn2Dz1Zc8yUE6UcM+WxCbIhp88Laxu+f6fOb9LMEKQFGnhOdszfGSk6TqRHITYs0utIc5YgzQLpvCj/TZB19f7ZCyTW5ZZREiMdGmnJCNJtEGTVHdRbmfF8pHLZsk26ZtLYF923KubvE24f9L8e5/9AmrbUfpkSo/Jb0uZRCXYFlJnSeDbK03uFzpXmFN23pA+itZHWCypTpfssIV2/g/RB+9/V8+14vo4fldou3aTl6kHovIi6VbHnVVtXaX9960deaus4juM4TsPDHz4cx3Ecx4kr/vDhOI7jOE5cabA+H5Vl9Xbwc+3NSfNRvUprxatbZ0uMPBQoz0faELJXn33XZomRluEHv+ktMfIk+CpQzTvZUpesVr+FThMvkxhZMpPHQbBGnTQGjbpnSYxszvPzNb+68KfzJUZ+CSvn6bgTZI1M1t/UFp7y6WQ/XArW2qRLIj0LaT5Iy1BVo68jfwjSAp0zSa2qn52s1t+XTz9FYjPmxeqXyBK/drHm+7PPUs1CWE8YmsdkYV+/R9/b/Hi9LyLgdUPeJzZ8tIS2PLFVXwd88mmWxGgNIT1C3kDVfpWU630V1iuHXkdjf1IvXR+XXt8/5m/STAV1QGbcomIErL8loOUgP4vN23Q9orYDuafrsdCc+vCeTRLrdGlHiZHWj+5lWhtzm7aUGOk2wkKW/evg94Ys12fctkFigy7XezK4jtI8IY1T14vbxh5DZYXZW/IyxHc+HMdxHMeJK/7w4TiO4zhOXGmwaZcWrRpbSvqRw6OukidN1tIiKvej7q2HwAqbuiASlDo48bjOEpv9gHZXZTte3c6jEkAqzSooCNdZc+Ne3Uaj0ksqFTxtfFuJvboqdhv+1IFaTjd/naZ6qPzW8nUbMP/W4RIb2VO3r19atFs/D6DOxtmw3bp3TonEaF5Qh2Hq1PnJp9r10lrrNjSlnmjbfFw/LQd/6xMdA7J6f32hlha3m6KprCcfU3P/0efHfu/rT+h1bJSvW9+U6qgv1C3j2tE5EqNywmMu1rlIpcZEoxZwX0xbKTEqKy2GMlAq6yc7a1p/KKVGKT8q16fSVUpPUGdouv80wWm26Vdvxvw96J4z5DVFJbp+kKU7lQZTuSxBKUVKY1FKpOR9XX8S0nVMqMUAdZ6m8m1K7z0/dbnEyE6AoPX3k1m6hrS5TNcakibAaotjHywtPnOA3svUKiE472qqwt2LZr7z4TiO4zhOnPGHD8dxHMdx4oo/fDiO4ziOE1carL36Zbe9ZsmpR8rHKCdOuSuybq6ctUJiqUO1DLa+MCKx827X1734guaiyZabSg9rC4skduwd35cYQedGuWOyYW/aRvPdE4ZqSdg7H2t+sXC55u2DZYFUpkzlrXVwbNSGm9o3L3pPc7OpcP6keSHIkpk0OQTlosOS317nMpVgD+mj5ZMvXfqOxDInHS+xPY/NlViTHwwJdXyUt2/bMzZGc4LK8ygPve73n0gs85wuErtklJYGP/y8aneorJjKVklTQRofKkUkfUMtlEcTWEYN84fK1Um3QVoGWrtIg0TzjI4vWEr+7s1r5TUJ6TqPqbSaxpi0OwVz9byS2+p30HpBbRZIMzVhrK55q4v0dWFL5Ad203kW1v6eSv175ek99MYras1O91rYdSXMfCQredJH9fnlgJi/qysr7FeTRrm9uuM4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwWo+nnr9XUvPOKIZIF+BMy7Nldhbb0YkFsxXm3FtN1ngZmSFez4rfkPth4noHs0vNhvTTmIVGzVHSD4fJ16ovg/vP6PeAB1Oy5IY5e3T22qOed/0NRILeiFQfpXGnXwLrEpz3Yl5Wj9fv1vzl4kt9TvIRyJaqT4IjY9VvxZi+Gj1VSjYrjlhIjU13PwhfwjSrlAumvwHug9VvUjRNh1nskmv2wDamoC3RHpzzQmTDmbXs+oZQl4LLcDngz5vz2a9jqRnIsjrJTEvS2KkeWkEmq4kiNF6QboXssknaF6Q/o18PsJCXiytBsXOH9K3dO6g15HaHZAujeZP5T5d36qXqIcN+e6QZxFxqEDX6Z5XqgcHeceQVoLuH/xeOD7StZE2hPRBpX9cLbEmE3tJjLxotj6/U2KpJ8RqYej65OR8uS2Yaz4cx3Ecx2mw+MOH4ziO4zhxxR8+HMdxHMeJKw22t8v8hfstOfVI/T7lYUnfQb4PYXUG+0ErkB+i/bCZ2THnqn6AejqYqWc+5bGDOVczs8/WqeahW0v10pi/Z5vEOrRSbUga6AKoh06wlttMc8yU09xTrNeCWolTm/SENM050ntJ27B+ho5TI9CQkL6F8qvUx6X1Be0lVhFRv4k9e8Pl4tHPAfLOlIvtDO3JSQNQNlPbiScN1flNuiSzWM0HeVKcNipLYrOz9fpQ+/PSZfqddA+EbR1PHHeteonshnuU9GAGfWHC9nYJqwfrOF7vUfLFWTZd9W9NT9B+Jycep2vDrOtWSSxlRAeJBTUepAtZBXOAIF+OQ1U6nl376zwuStN19dxTdJzIn4iuI+mNaM2j+5HmPB0z3bcRWB8XzCmTGK1JpH1q9eO+EiPfpmdmq8fKwe0aq+ueFfP3kBNVr/HarerPE/R18d4ujuM4juM0WPzhw3Ecx3GcuNJg0y5pWY0s5XNb73VQ1kZbkrTVOBdeR1umZL+8fKZumZKV8QbT7UFKJ9DWKm3xUYlm/R7dSv/T7RskZmm6pbmtVLf91t04R2I/f/0/JPbgk5rGCbZgpjQJlaFRmqSkREsHqayNyo+p9JRSao1aaNqFSoiTh3WVGJVC0/WpMJ1nlIogi/RDI7W1PVlLj4DtUCpDH3iOpjbqwMJ8/xLdrk6AVEmw5DFYmmdmtvxT3Zqn+R62zJ2gFAuV2p46UMujyUabUrKUFqKUWjW0dzhjWJZ+L5RMU5v0tBTdXq+BMU1I188jq+73PzwgMWrtTmmRzoH01rCT1NbgyTd3SYxKjSmtTKXLrTL1HDbu1XueUglE/gi9V1plankrWZDT9aZ5RsdMlG3S9ZFaANC9kdRbX0dl49MhLUTH3Dtgk2CmrUpKyvWzaB0Mlt9WV4Z/pPCdD8dxHMdx4oo/fDiO4ziOE1f84cNxHMdxnLjSYDUfu59aa0mNjuSBk/prrrL58ZrHf/Xqxfq6SX0kRiVxlTs0N0kW7ss/1VwiWShvXAn5T/heypMWb9FjoRb1lOulXPSWJ7ZKrNcdoyX26irNgZM98tKbb4/5u/vYa+Q1mXB9qG02tcMuKNA8NOVwKXdOVt3UInpPC50XZF1N7dTp+pDdNrXXTgN9B1ktN0nRY95cquNC98GxbXWsVs7bITHSD0T3qM6gUaAUjyAL7oqIzne63jTGpBWoB/1Wn+5ahr90k+od6N4jfRCdB5VgR3bp5724rlRi0SqdA2QdkAE6osRs1YMlwjwjaF1pB/N7JWizgiXIb32iNuf0+WG1EnTNSHtB15s+L4z1t1n4tgikV8uGdhHUyiKlm2o0qISW1hDSzu2doxoXagtA7Sx2fKxjSiXSpMEJQjrJYJlybY1qdL4I3/lwHMdxHCeu+MOH4ziO4zhxxR8+HMdxHMeJKw1W83HG74+39IwjGoe576tWgOxu203RfHq7HM0RrpgdCXUc5F1AOeGNmzXXhXbB0NacCNuue9tbEYnlgBcEeTdsnLZSYidADfh28AHIP3dqzN/RSs1rUx52/069FsEaczP29GjVV8ez1YXqI0GeJkRY62ryfSCb873v7ZXYUviOerDxb5Ki50E+DTQHSM/y1NOq7wh6s5iZRUCPkHOi6pyKX44dl0zQ1ZA3y+5Hl0is3R3fl9i2OxdJrOXlJ0iMtBfUhpy0UDSnErI1P0/jSTqqvavUHju1n/qL5HbS76DPo7lHPilo4Q76gUMw90pgHSUtWVAjFrTRNmPdxrZUarOgx0v6Dhr3StCbUTv5ziG8K8y+wJ8HdEnkz0O/BYcKVI+Re1q+xFqCJpA8pBLS9XXHXNxWYtS6o3C5Hh95idCxBDU+W5/fKa/ZA1b3NXNjPaBqD7rmw3Ecx3GcBspRPXzccccddtxxx1nTpk2tVatWNn78eCsoKIh5TXV1tV111VWWnZ1tTZo0sbPOOstKSsI50jmO4ziO8+0nIRqN6l7pF3D66afbeeedZ8cdd5wdPHjQfv7zn9vatWvt448/toyMf2zrX3HFFTZ79mz785//bJmZmXb11VdbYmKiLVy4MNR3lJeXW2Zmpl3/2BuWkn4kVRB2W5HKjWiLk8rkKNVB27wEbUEuek+31+tW6dY8kdRPSy/pvWOu6ywx2h4kqDyY7IIpjRHc4qPyPyrfGjdSz+v1hRGJlc8ukhiVl2197UmJte83QWI9r9RSbbJmpzk19GQtZaVOt2mntJHY9RPV0vy2RwskRuXMdVDuR6+7cIymQMJ2+SRbc0pHVQdSDJReoPunHViLE+tnaIlqYku9pyhl1fF8HXe65yldSt1aqZsu2qvD9aE536mHprvCQqXpYY+PUk9k4V5Vo+MStJ0fNElTcWs/0i12Olfq8lq5T9MGvaE7c04znT+UjqS2GmG7nh9YrZ+H5bLUUbqDlp9SOoVS4WHlAAdXagqEbPLp+CiVRbYLQS67u7/EqJVHsJtybXWFPX7TmVZWVmbNmuk5f56j0ny88cYbMX//+c9/tlatWtny5cvtxBNPtLKyMnviiSfsueees1NOOcXMzJ566ik75phjbMmSJXbCCZrDdRzHcRznu8VX0nyUlf3jX0MtWvzjX7PLly+3uro6Gzly5OHX9OjRw9q3b2+LF6v5l5lZTU2NlZeXx/znOI7jOM63l3/64aO+vt6mTp1qw4YNs969e5uZWXFxsSUnJ1tWVlbMa3Nycqy4WJXcZv/QkWRmZh7+Ly9PVdWO4ziO43x7+KdLba+66ipbu3atLViw4CsdwI033mjXXnvt4b/Ly8stLy/P8r6XZGkZR3Ji1P69yy2jJEY5zfKI5jTD5seoLGnlPM07a3N2s8jT70ose/IIiZEO4qVZamdMbcxfu/UTiSUP0fwsUbpXtRwZYH1NHNoQifk7CY6NNAsHakHHALqahHTNpZKN+MQrfimxt5drCeSGRdpOnXQq/YZoPp3KAs+8tYfEyNr/j631FqOSVypTHTdRS9to/B6dNE9iXa/XnG0WtOYu26S6l/6ngC1+YKzOPUVLQBduikiMxp3K/1DfsVvHPTFPj608ovoBsqQm233SvJQu02OmsTtjrM75+etAoxGy7XppGWhIWqguYCDoEdYV6liRtfbBIo0NPEdLybcHrgfpGIgtoV5lNniw3mdUMt1lmF4faoFAOrew5bIZoMcgfdC+D0Az1V3vA+LiYdqO/s8LVdeGep6uqhujkvudj6sOzS7qKiHSpgX1Wp/uVh1MUN9hpi1JamtUm/lF/FMPH1dffbW99tpr9v7771u7dkcGNTc312pray0SicTsfpSUlFhuLv8gpqSkWErKPy/IchzHcRznm8VRpV2i0ahdffXV9vLLL9u8efOsU6dYxe3AgQMtKSnJ5s6dezhWUFBg27dvtyFDhvzfHLHjOI7jON9ojmrn46qrrrLnnnvOXn31VWvatOlhHUdmZqalpaVZZmamXXrppXbttddaixYtrFmzZnbNNdfYkCFDvNLFcRzHcRwzO8qHj0ceecTMzE4++eSY+FNPPWUXX3yxmZn94Q9/sMTERDvrrLOspqbGRo0aZQ8//PBRH9i6jdWW8rn2whmD1T43bJ00tSmmvHOHVvp51Na8+1DNy5Fteu6UUyV2yajWEqN21eQXQD4K1WCbHra1cnJbTXeRJXEY6NhIs9A0Rce4bJP6l5DPCdnpv14d0dctUY8LylcSlNummn/KsSf119p7yvU+NrdQYuSHQfoBajM/7sFwu4pd+6le4mljIXiQoKfF9Bd3yWvqNmhO/GCB5rVbngIW/vCdCek6JpQTJ8vsHLCkJr+Jspmb9PggT06+FDOn6xgQ5KfTt104zQNBrSao3Tm1nq+E+zRorW2mawNp5Kh9QrDFuhl7a6AHEsyfYmipsGqxanJIy/IW3CvU8oL45H1dQxq303X17y/p2kWvI31Hfntdf8POAdL9VJyj2pAhfXSevfGKHnPNntix2gYeMaS1WRvwBIpWh3+kOKqHjzB+ZKmpqfbQQw/ZQw89dDQf7TiO4zjOdwTv7eI4juM4TlxpsF1t/21wtmU0OWKZ+xqUY9L2W/4ILZsi++DzBmq50bQ7PpbYpVN1K53KtciSOgvKLP/4inYbrYWusbS9TB0pk7rrVjrZaLcfrq+jjrhrXlgnsbSxx0gsWLZIpaKbdusW4rJH1aKXSiApxUKpKEpXZORrZRXZNJP9Mtkg07i3BCvo7dCR8t4Xt0qMbKSpfPtHF2nq4JldWkJaUq5jRemjHmN1niXDfbV5m25XB7fOqdT2ycf0OFqd3FdiBQVwHJAC/PF4Pf8HHtosMbJcj1bqOTTK15LSTNiqpjFpBmkNSljVwNrQuZWeG6XUqHwyI0u/NyxUbkwdUjMgbVUeSLPQ/Uj3/KSzNa1MVv87oAyfOvhSeobSynsgtRMsAzXj1Bulj6KVcL4bNEa283T/kP3935dp+oNKqyl91iRZj5laUhzo201iBz/SVgbB8ltqZ1II1ywoX6iBcfsifOfDcRzHcZy44g8fjuM4juPEFX/4cBzHcRwnriREw5SwxJHy8nLLzMy0y257zZJTj+geqD005aXKpn8gsfSxAyRG5bLUvppslcmGnY7lQEj9BEF5vrDfSxqSSya3lxhZ6GIJ3CrNTQat3qkV/bLHfiGxS5+6V2Kkd6DrQ1bdV1/SQWJPvqklkJRPJwvlsBb7lNelsrY5z38mMZpTlFMferLqdCpqdJxJ+0TljaRLIo0C2djvfS92DjTK03MNWu6bmf3nb3pJjMp06XgJKvcrKtGxo5Lkejj/aJWWmdL1IWiuoNX7e3r/kJ08Wb3TNaOy1wlD1ep9137VXC1eo3OFbMODlus03+n8w1q6Vy9aK7HWU7VkfM/ftCy98bFawh+W9LaqoTljWJbEXl8YkRjpy+g3g9oCEHQP0fEV3/e2xAbdc4bESNu4cdpKid30whiJ/e6xjTF/nw02CdS2IqiPqqmqsPuuOcPKysqsWTPVz30e3/lwHMdxHCeu+MOH4ziO4zhxxR8+HMdxHMeJKw3W56NyZ60d/JwVN7Vdr16ituRXvTBWYveNe05ifSeeI7EtbVUrQTXgYduzJw9Tm2bKbQetq83Ya2BPsb6u8jVtYp1+pnqTzJin2gPSQVBenKzOg14VpNvod/INEju2reYBdw/UPDmNMeVDK+pgTKC+v1LtVax+j75uP1gjF5OtPcy996s1T0p1+6QNeWtnRGIF23U+kk6F2P3oEollTjpeYqjvAH+I4BwgTVKZZUmM5h35tZC2oQ7ui6CdsxlbixPf66XX9rN1mp/f9Ju/SWz80xdIjPQ3RAT0HV9FS0Zrw1NP6wTP7KL6GNJ30BwI6mjKNulcjIBeJlqpMYL0HXRfLE9Vrdq5g9UXaOFW1dUsm65OLHWw/v7lojck1mSitgAogXH//gRdG8kinfQi1JKDOOnhMyVGOi/yP6HWC2T1fqgw9vPIo4m0S0Gfqdoana9fhO98OI7jOI4TV/zhw3Ecx3GcuOIPH47jOI7jxJUG6/Nxxe9mW0rakRwg5SrJfz+6R3Nh1NOBcvHUbpnycpS/oxrrwuXqoUCQp8W7VzwmsR88Mlli637/icRSRqj3Rb8h+h3USptyzEmQow+2raea9bAeClTLT9eM+n9Q/5ydj38qMdLB4Hm9q30Pcn+o/RuoVwNpd0hDQ7l40hZRT5DNpZp7p34VYaH+HMFra2aW2i8z5u9xIzXX/cIjmkumXjmksyD9TQq0Dae+OMse1flDPUyo3Tt5qZSW6XgO65IlMdJZkK6kdFm4HlS01pAuq/gN7dtzzLmqN2qVqXOKWsBTb5xgvyXyoTltVJbEqM8QeYSQboXuKVpr98G6Rb4u2Z1VCxTW/4V8Lmh+E036NpFYmHvKzKxTD/CxgXlBaw3pCckXh/o+BY95QF+9z0iDFhzP2poKe/ru8e7z4TiO4zhOw8MfPhzHcRzHiSsNNu0StFcvm7lJXtv5mnyJdWil23RkGU5bhmQ9HNZCmaCt9LBpHNpKp1K0udDunSyzG0MJ6YSxasm8dJNartOYLpgTa7Ub1g6dLLgbdc+SGJEU0oKbzj8xW7dgqTyaytXIXp0svSmdQNvwkV16baee3VFia0p1i/ytNyMSo9QBbZEStNVNZa/B9FbRfavkNSfcruWJH9z2scSojf2B1TDvTsuSGJWbE2FtyXfdu1hiw/5wksRWzI5IjMosKWVDKdm0FE07UGt7KmHvf4pebyorzT1dU5c094jg9j+tR2FTdtR2Puz9Q+X1YS32T+ql2/5kEU5rfHW1zh8aO0oDEnR8+e31PILr6hdB623fdhpbXaRrMBG8vlRuT+t08PrUVlfY4zed6WkXx3Ecx3EaHv7w4TiO4zhOXPGHD8dxHMdx4kqD1XxMm/G2paUfyWGt/UjL5KjMsvhlzX2SPTiVV5EeYcx1nSW2HDQFu57dLrHss/IkFtauPW+glhmS9mDhT+dLLH3sAIkd/EhLSNNOaSMxKvVa8+sVEmv1474SCxJZq+NEbcOzc3VMwuhMzMKXKXecMklipAGo3Kd6HrL5Ji0HlfHVLtb52OnSjhKjsmzK7ZP2gAhb0tzzSi1BJtbPiJ0/VFpNmhyyPqdy7kNwP5KFO0HXjDQ0D83We5TaNpAGYNtbEYlRKTB9b7BduZnZ6eN1TXrjFdX4ULn6JZPVcvylRWr3T+Wxh/ZqLCFNzzdYDo76DihLT8zTOUvaGCr5pfN68jG9ZnS8dYt0bpPlAGm6ti9QXQ2VQlPp8tKlunbTnO+Vp99LZfNbPoGWCjs0RmNA6wX9bhLB7xh9/vfkNfS7F9Tp1NZU2LMPT3DNh+M4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwWo+bpn+pqV+TvNRMFf9LMgi/eeTuknstkcLJHb1JZoPfOsTzZtSfXuf7pq/Iy8Ryi+O7NlcYpTXpJwbQT4fVfN2SuzkG3Vc6Jgpz05WyEGL50RoG07nMPsBzc22OFlzwoXT3pJYWhvV34y9q5/E5jyvbdzJQposuOl6d+6gOVxqaU06ItLuhNU8EGQZnQr+EBunrZQY+XAUFGg+uWIj6KsCGhKaE7WgCyCtAHlwDB6sGhLS+JA1PX1H5Q4YY9B0kR6MbKrJbjrs8YVtYx/Wx4c0BQR5VZA1e7AtOkHrAmm6BozJkhjdK9TKguzv6VqQL1LYVgSfzFIfEoJ8gcL6DJFGg7RudB9QywfSxJEGiXxxtj6vvwVB63xi73uqySEL/6Be0TUfjuM4juM0WPzhw3Ecx3GcuBJuH+lrIFJ+yFLqjpSZUWkRbUHfPl07mh4q1G2/GUvVPpbKZZuNaSexbaVarkbbkjs+VrvgPz2/Tt/7A93OotRB2E68W0xLaMn2mezVX3xBy+codWBVsWPQfrimWKh0sON4fR2lCFKy1JKZSufWFeoYU5lps+G6tRy2W+QqKFmkuUf2y2QHTlurBFk3U5qkXb7Oi63tdWuVuotSeoLKDIOdRKlzcK//10NiE/vq/bOsWOc2dUOl+/aay7Wlwm/+oBbudA7r4fPCpljWbNB5Rvb8VN5KJblU9vzWTp3zdav0Htq+Q+cybevTeQy8Rsv/ybI/WJIbgRLdaKWWAZONOHXUJtt4SmtQioVs6CnFQvc3pVMoVUaE7cQ7GEqLqSSXSv0plXXicbpm7oHOubTWDLpcr/eSny+TWPNJfSQWhNJiwbGrqQrfYdt3PhzHcRzHiSv+8OE4juM4Tlzxhw/HcRzHceJKgy21ndD5FktKPFK+mTq0t7yW2sST9oLysAeLNIdLuVnKy1FpH0H5SmqvTSVxJVBiRzSB3F9Glj5TUhlkWPtzItg6m7QcBLUSp/I3Oq+wufiyTZr/Jd0K6jEgr0vzpxHk+8POFWo7TlBLdCqVJKtzymNTyTBB2pDgGFAeP2z5MWklqCydLPZJb0XW9D+b3FVi9764VWIElT1/lfOg4yN9A30vrVPRPfp5Hc9XnRfN7xOP0/uK9GXtAxqp8ojqOyYMVc0Y2bx/lbLsA6sPSIzW6epVWvZM5f+kBSJtCK0D1BqDoDWe9H9hy41prRlxop4H6aZQIwa/S8ExoNfQOh0s762prLBpk0/3UlvHcRzHcRoe/vDhOI7jOE5c8YcPx3Ecx3HiSoP1+Rh8x3BL+5y9OtWFk0/F6wsjEqNa/v0bND9GvgqUx6ba+9wfao1+0Hr2iyA9QrRSjy+1X6bEKDdJdttmmk8O5nXNuL10clvVD9CxBCEbccrNDpqkY0etoMO2r94POVKyGaY8OelvKOea1VrnFOWxyRq5DsaOxoUYAz4N1Oq6XY7mbHeXad6e9AhhfA+6tNR7ZXmR6lES0lUHcwjaxO9Qq47Qmpz0tjoH/rywSGI0xqSr2bNZ5y1B6wppI+j+phbr5LdBurZ+5+gx0zpFLF6jryNfnLev+U3M392GXiqv+dMc9UqilgVESbVe27D6DvLJyQXNGc2fsPoOIuh1Y8Y+HwStIXQs9DqyayfbfVqTyMdnzfQ1EmsysVfM36f10N9W9EUKrJc1NeHGw8x3PhzHcRzHiTP+8OE4juM4TlxpsGmXtR9UWPLndn9/dJFu5320Q7eeqCMn2ZJTJ0fa6h96sr4uF9I9r76jqZj6PbrlVV8YkZgN7Cgh6vRKpbGdemg5E3UArl24UWLtpmhHWBor2s5rnqnb6Xpsun3fd2Qnia0u0q1g2lrNz9fPIztnKreua6EW9tQZ8sQLdft2EWzDk5U6lUo2y9Jxou1/SmPRli6V01Ga7di2Oi8ev0dt7Ftf0F5idG7BVONqKBOk8mjq3EnzgkoMqSz0/Q91a562lis26hY5UfxycajXJWTr9v+5sCZRh2qDtMbcLXqPhu0cWwGpQSrbpLQvdc6lFgXn/+XWmL/pPqOyb7qOdGxUflu9aK3EopVqp29wr1AJf5juzGZcQkvnQS0V6DtaDdIx3gNtG6ae3VFiv3tM12lak3Ftbaff+zqsId1/OUBiQcv6V1dp+TWV3wa7gFPq+YvwnQ/HcRzHceKKP3w4juM4jhNX/OHDcRzHcZy40mDt1W+Z/qalfq7UNphbMgvf4nj3o0v0vXna6jv7LC1jJMhum8pvE/NULxK2vJVeR1BpKJVZUp54/YxSiZEl8aECze0GtQJUnkgW3KSroXJZKtOlUmgqHyWopJRKIGk8KY9JFu6k8aFSScodk51+0Lr4i6D5U79b8/ikIyLLdcrvB6H77NxTVC+zcFNEPx9K9kgbUgd58kOFqmMge/n+p4TTdFXN0xLsnleqLonuFfreQxsiEjtpSgeJrVitx1I2c5PEkoaGW5Oo3JhKV0mXQ6WmQev0GfNUAxBWX0flo6TpIu0O3VOky/r7S7r+JqRBmTfMH9L/0TGTziKsnULdokKJ9fp/PUK9l+zaqaSb7Omr4R4ibVFQm0brIN3zwVYeNVUVdt81Z7i9uuM4juM4DQ9/+HAcx3EcJ674w4fjOI7jOHGlwfp8bJgTseTkI/m+xGzNaVI+kF7XZOIgiVHei+q9Kd9WuU/zbadd11lirz+hHgLUJnwH5EnJGjiYXzNjTwby4CDNDNmak232zOkSstJlsbnOgys1d768KEdiOdAKGnUWYCm8G7QhVN+/5RN978GPNGdf3kXz6Xvf09xx0xOaS6z7UM33l5RoTnj301q3/1mVfm+PsfodYbUR5F1QuU+PhebtZgMPE/CWCHoXkE6AdAF0vOnNdX6eeJzOC7IC3wf3/PDR4JECNs+kM6jNV6vyjx/eIrHGx6pPDJF6gnoAUVsA0g9Ugr7je71UM0QaJJq3ZB1P68W+6esk9lGH2DWTtAPUdoE8gc4coMdBHk2byeYcrP63lep9QRonWt82b9PPI90T2dXT/UjrCnnnWK9uEiK9CF1vumY0f2iNbwceK60y9Rqt2RA7fjQmy99X7V/S8bF6Gff5cBzHcRynweIPH47jOI7jxJUGm3YZdm5LS8vQre3PM/8x3epPgi6II2CrH7d0oWyTrKup5LNrCy3XSummW4t0zGStTd1QB3fRMrmlqVpOt/7POyTW9Ae6bUxbi7t76hjQtn6wzHnT7M3ymuwztWQxbEmubmZyJ1Dq6EqE3Tan8klKMZD98qG9ui17/E09JUblwXTNkDSwWj5Xz209bMMfA6+jFNWAMVkSy0j58n+nLJijtvFUzkxlz++H3K6lUtH3n9F0D3WFpvQZnesK+F46j7Bdm+l7qWsobYcXbNfrQxYDCek6L4KpUTOzjK66dl0+/RSJUYl0ENr6p9TErv16r1A5917okkvrVktIK2+t0s8rKIC53VfPn9Ji2An9XV2V0k7Rztj57cOlihIhDUjXjNJbYa0n6HqYVn5LaTVdMyKYoq2tDfc+M9/5cBzHcRwnzvjDh+M4juM4ccUfPhzHcRzHiSsNVvOx4M+7LDnpSJ6VLHApl0ptf+eCdTVZN4fO60I52VvVuyVGUG42bO707Yjmk6l8slH3LIlhO2TIEVLp6g6wkw/qNCqmnCqvoRxp7g+1/I00ENFKjTVJ1nGn0i5qbZ8EOVyyI6by7WQofyN9xzVXabn1jKWax6ZjJgvu1y/9b4mldz1GYqTbIB0RlY3TffDhPWrzHcxtVy/R+d5itJZWkw00WZ8vn6llfCmg3yLIhn7rK+HKfkkXQGWbW59XC/tzb+ousfmwNlCp5AMPqUaKcvt0fTKh/JTGispeSXP16W7VjQXXn9NGZclr1hXqOJEdwFtvRiRGLQZo/vTprvcelVFTiXN+vo4TaWhojKnBQFI/bU9ArSFI+0RzvhzsHgxiVPpet1d1LwRZAvRtp7Fg6TO149j62pMS63r5lTF/N6oJ/0jhOx+O4ziO48QVf/hwHMdxHCeu+MOH4ziO4zhxpcFqPjqMaWkp6UdyU5OOU+vh6R9qm2LKfxOkASD/AcrVrZyn+d/SKs1tU+6YNB9Us025052Pfyqxlhd1lVgErMnJQ4B0JeRfQfne9z+MzRPT8R7I1jw0Wb/TNWt+vI77zOm7JEbaELLYb9tTc8d0vUk/sONjvY7kD7Fwq3prkE9M6TKYP2Dtn3XRDyR2sEiPhfLOG6etlFjxxF4Si8K8TR6iuhyxRIccO2loyCOFPEPomtF50bUgElvq9SZb92ArcTMzvTqsKXj1Hb3e1BYgaE1vZvYZ6AzI/n3EeNUZvPGKfi/pQEhrUrdBz64A9BcVG2PXgdkh9VsEtacfCBqVzaU6duTBUQPePuT/snmb6lvINpx0MPWgD6IYeY5Ug0aMdG009wpuXSCx5Lx2GoN7lPySSEu1sZ2u8TVzt8X8ndhS19+gvsNM/VASq13z4TiO4zhOA8UfPhzHcRzHiSv+8OE4juM4TlxpsJqPnQXVlpxyJCf2QkqRvIY8BKhmm9oUf7ZOc8eHCjW/uHKeHht58hvESBdAechTB6onw+sLIxLr9f96SIxqtl/cpLnT0jIdl8odeiyUO37t1k8kFsw5JqWqliUHeuqsn6G5Y/Jrodp2bh0PvWjA34D8S6gGvmCuesKMPv97EqP8dOdWOnZEOZwHvbekDfRvgPw8nVtSf+2rQ94c9btVA5AP8yzY/pu0Ir1D9oQJtu82Mxs+Wu8B7NmyR+fF1g069zqO12tGehHqh0E9cMgjhdafTj10zhMVbfU6Ut8R6kFF6w9pGQqqdY4m0b0G2pD2w2Nz/uURnbNhW71Tv5LZd6nPCfkTke8OrSvUT4XWPOpnVbcK+iBd3FZitDaQHwaNC9171Lfm2Du+LzHSxNE4E6SdozlfujfWx6e+UNcF0v4FPVxqa/Tcvwjf+XAcx3EcJ640uJ2PaPQf/8KorYn9F051pT5h1lTpU1ZtjT4l1sC/0mprYOejTv9V1QiKZxITwz2zVUHD1ZoqfZKvrFDVc221PqFXV+q/8Cor9F9ktTX0Xj0Weh2O6UHoVBh4b02VHls0qk/YtTDGtdX6r7baWr0+NVVwrtV6bWuqdFpXJ4VzBKyt1eOrrFAHyOpKuo5aPVRVqePJc0DPrQYmEI0pnRudRxTGvh6ubXWlzovgXInW6v1YBfMz8aDeKzVVem2rKuAeDXkO1li/twbPgeaUXjMazxrY+aB1pboy3JJaWw1zpYLWOD3m2hqaZ/Qd4Sr/6uBf7zWBrsC4hsK9Vw3zna5jPa61eh3ra/Vca6r0+lRVwG4DHUuNzvc6OBa8B+A8qitp7dZx53Uv3BpPn0fnllhP95quNbguB86Nrg+tg8F14X9+t//nd/x/IyEa5lVxpKioyPLytKzWcRzHcZyGT2FhobVrpyXCn6fBPXzU19fbzp07rWnTppaQoE9ozr+W8vJyy8vLs8LCQmvWLFz+2vnX4dejYeHXo2Hh16NhEY1Gbf/+/damTZsvzRA0uLRLYmLilz4xOf96mjVr5jdzA8KvR8PCr0fDwq9HwyEzU8XjhAtOHcdxHMeJK/7w4TiO4zhOXPGHDyeGlJQUu+WWWywlJVwdufOvxa9Hw8KvR8PCr8c3lwYnOHUcx3Ec59uN73w4juM4jhNX/OHDcRzHcZy44g8fjuM4juPEFX/4cBzHcRwnrvjDx3eQO+64w4477jhr2rSptWrVysaPH28FBQUxr6murrarrrrKsrOzrUmTJnbWWWdZSUnJ13TE3y3uvPNOS0hIsKlTpx6O+fWILzt27LALL7zQsrOzLS0tzfr06WPLli07/P9Ho1H75S9/aa1bt7a0tDQbOXKkffrpp1/jEX97OXTokN18883WqVMnS0tLsy5duthvfvObmP4hfj2+efjDx3eQ+fPn21VXXWVLliyxt99+2+rq6uy0006zioojTYJ++tOf2qxZs2zmzJk2f/5827lzp02YMOFrPOrvBh9++KH98Y9/tL59+8bE/XrEj3379tmwYcMsKSnJ5syZYx9//LHdfffd1rz5kXb0d911l91///326KOP2tKlSy0jI8NGjRpl1dXaCM75akybNs0eeeQRe/DBB239+vU2bdo0u+uuu+yBBx44/Bq/Ht9Aos53ntLS0qiZRefPnx+NRqPRSCQSTUpKis6cOfPwa9avXx81s+jixYu/rsP81rN///5ot27dom+//Xb0pJNOik6ZMiUajfr1iDfXX399dPjw4V/4/9fX10dzc3Ojv/vd7w7HIpFINCUlJfr888/H4xC/U4wZMyZ6ySWXxMQmTJgQveCCC6LRqF+Pbyq+8+FYWVmZmZm1aNHCzMyWL19udXV1NnLkyMOv6dGjh7Vv394WL178tRzjd4GrrrrKxowZEzPuZn494s1///d/26BBg+ycc86xVq1aWf/+/e3xxx8//P9v2bLFiouLY65HZmamDR482K/Hv4ChQ4fa3LlzbcOGDWZmtmrVKluwYIGNHj3azPx6fFNpcI3lnPhSX19vU6dOtWHDhlnv3r3NzKy4uNiSk5MtKysr5rU5OTlWXFz8NRzlt5+//vWvtmLFCvvwww/l//PrEV82b95sjzzyiF177bX285//3D788EP7yU9+YsnJyTZp0qTDY56TkxPzPr8e/xpuuOEGKy8vtx49elijRo3s0KFD9tvf/tYuuOACMzO/Ht9Q/OHjO85VV11la9eutQULFnzdh/KdpbCw0KZMmWJvv/22paamft2H852nvr7eBg0aZLfffruZmfXv39/Wrl1rjz76qE2aNOlrPrrvHi+88II9++yz9txzz1mvXr3so48+sqlTp1qbNm38enyD8bTLd5irr77aXnvtNXv33XetXbt2h+O5ublWW1trkUgk5vUlJSWWm5sb56P89rN8+XIrLS21AQMGWOPGja1x48Y2f/58u//++61x48aWk5Pj1yOOtG7d2nr27BkTO+aYY2z79u1mZofHPFht5NfjX8PPfvYzu+GGG+y8886zPn362EUXXWQ//elP7Y477jAzvx7fVPzh4ztINBq1q6++2l5++WWbN2+ederUKeb/HzhwoCUlJdncuXMPxwoKCmz79u02ZMiQeB/ut54RI0bYmjVr7KOPPjr836BBg+yCCy44/L/9esSPYcOGSen5hg0brEOHDmZm1qlTJ8vNzY25HuXl5bZ06VK/Hv8CKisrLTEx9qeqUaNGVl9fb2Z+Pb6xfN2KVyf+XHHFFdHMzMzoe++9F921a9fh/yorKw+/5vLLL4+2b98+Om/evOiyZcuiQ4YMiQ4ZMuRrPOrvFp+vdolG/XrEkw8++CDauHHj6G9/+9vop59+Gn322Wej6enp0Weeeebwa+68885oVlZW9NVXX42uXr06Om7cuGinTp2iVVVVX+ORfzuZNGlStG3bttHXXnstumXLluhLL70UbdmyZfS66647/Bq/Ht88/OHjO4iZ4X9PPfXU4ddUVVVFr7zyymjz5s2j6enp0R/+8IfRXbt2fX0H/R0j+PDh1yO+zJo1K9q7d+9oSkpKtEePHtHHHnss5v+vr6+P3nzzzdGcnJxoSkpKdMSIEdGCgoKv6Wi/3ZSXl0enTJkSbd++fTQ1NTXauXPn6C9+8YtoTU3N4df49fjmkRCNfs4mznEcx3Ec51+Maz4cx3Ecx4kr/vDhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TV/zhw3Ecx3GcuOIPH47jOI7jxBV/+HAcx3EcJ674w4fjOI7jOHHFHz4cx3Ecx4kr/vDhOI7jOE5c8YcPx3Ecx3Hiij98OI7jOI4TV/4/+43usITlM7MAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist2d(ev.x, ev.y, bins=100, cmap=\"twilight\");" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "737473bb", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAh8AAAGdCAYAAACyzRGfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcG0lEQVR4nO3de4zcZf3o8c/eu+1eetHutrbFldNYbOFYCqlLiRrZ2BhiQKqGpBgUj6gsSksCUrU1XqC03kgxtsLPIEYqP0hELeeoaYqu4VBKKYqC2BLpz/ZQdmvOYXd63Zbd7/njFycO3/lBty3P7nZfr2QS9plnZp/tN7Tv/c4z36nIsiwLAIBEKod7AQDA2CI+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgqerhXsCrDQ4Oxr59+6KxsTEqKiqGezkAwAnIsiwOHDgQ06dPj8rK1z63MeLiY9++fTFz5szhXgYAcBL27t0bM2bMeM05Iy4+GhsbIyJiW9e2aGhoGObVAAAn4uDBg7HwPQuL/46/lhEXH/98qaWhoSEaG17/BwAARo4T2TJhwykAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUkOKj4GBgVi5cmW0tbVFfX19nH322fH1r389siwrzsmyLFatWhXTpk2L+vr66OjoiOeff/60LxwAGJ2GFB9r1qyJ9evXx/e+97147rnnYs2aNbF27dq48847i3PWrl0b69atiw0bNsS2bdtiwoQJsXjx4jh69OhpXzwAMPpUD2XyY489FpdddllceumlERHx1re+NX7605/GE088ERH/edbjjjvuiC9/+ctx2WWXRUTEj3/842hpaYmf//znceWVV57m5QMAo82QznxcdNFFsWXLlti1a1dERDz99NPx6KOPxgc+8IGIiNi9e3d0d3dHR0dH8THNzc2xcOHC2Lp1a9nn7O/vj0KhUHIDAM5cQzrzccstt0ShUIg5c+ZEVVVVDAwMxK233hpLly6NiIju7u6IiGhpaSl5XEtLS/G+V1u9enV89atfPZm1AwCj0JDOfDzwwANx3333xcaNG+Opp56Ke++9N771rW/Fvffee9ILWLFiRfT19RVve/fuPennAgBGviGd+bjpppvilltuKe7dOPfcc+Pvf/97rF69Oq6++upobW2NiIienp6YNm1a8XE9PT3xzne+s+xz1tXVRV1d3UkuHwAYbYZ05uPw4cNRWVn6kKqqqhgcHIyIiLa2tmhtbY0tW7YU7y8UCrFt27Zob28/DcsFAEa7IZ35+OAHPxi33nprzJo1K+bOnRt/+MMf4jvf+U5cc801ERFRUVERy5Yti2984xsxe/bsaGtri5UrV8b06dPj8ssvfyPWDwCMMkOKjzvvvDNWrlwZ1113Xezfvz+mT58en/70p2PVqlXFOTfffHMcOnQorr322ujt7Y2LL744fv3rX8e4ceNO++IBgNGnIvvXy5OOAIVCIZqbm+PZHc9GY0PjcC8HADgBBw4eiLkL5kZfX180NTW95lyf7QIAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AIKkhx8eLL74YV111VUyZMiXq6+vj3HPPjSeffLJ4f5ZlsWrVqpg2bVrU19dHR0dHPP/886d10QDA6DWk+Hj55Zdj0aJFUVNTE7/61a/iL3/5S3z729+OSZMmFeesXbs21q1bFxs2bIht27bFhAkTYvHixXH06NHTvngAYPSpHsrkNWvWxMyZM+Oee+4pjrW1tRX/O8uyuOOOO+LLX/5yXHbZZRER8eMf/zhaWlri5z//eVx55ZWnadkAwGg1pDMfv/zlL+OCCy6Ij3zkIzF16tSYP39+3H333cX7d+/eHd3d3dHR0VEca25ujoULF8bWrVvLPmd/f38UCoWSGwBw5hpSfLzwwguxfv36mD17dvzmN7+Jz372s/H5z38+7r333oiI6O7ujoiIlpaWkse1tLQU73u11atXR3Nzc/E2c+bMk/k5AIBRYkjxMTg4GOeff37cdtttMX/+/Lj22mvjU5/6VGzYsOGkF7BixYro6+sr3vbu3XvSzwUAjHxDio9p06bFO97xjpKxc845J/bs2RMREa2trRER0dPTUzKnp6eneN+r1dXVRVNTU8kNGD7ZCLkBZ64hxceiRYti586dJWO7du2Ks846KyL+c/Npa2trbNmypXh/oVCIbdu2RXt7+2lYLgAw2g3p3S7Lly+Piy66KG677bb46Ec/Gk888UTcddddcdddd0VEREVFRSxbtiy+8Y1vxOzZs6OtrS1WrlwZ06dPj8svv/yNWD8AMMoMKT4uvPDCeOihh2LFihXxta99Ldra2uKOO+6IpUuXFufcfPPNcejQobj22mujt7c3Lr744vj1r38d48aNO+2LBwBGn4osy0bUy6uFQiGam5vj2R3PRmND43AvB85oJ/o//4nMqygzNljmkZVlZp7oOsp9j1OZB5w+Bw4eiLkL5kZfX9/r7t/02S4AQFLiAwBISnwAAEkNacMpMHqdyv6O7FWjAzGYm1NZ5neZVz8uIuJYNlDmsfldGtUV5X43ys8rt7+j3M9gHwiMHM58AABJiQ8AICkvu8AZqPxLJ3nl3gpb7qWSowOvlHxdVZn/veXYwLHc2JFXXsmNlTO+Jv9X0fiqmtzYQJZ/uae2ouqEvkc5XoqB4eHMBwCQlPgAAJISHwBAUvZ8wCh3Kvs7yo3948ih1/2eLxaO5MaOvpLfj/HKYP75K8pstKityv8e1Dwu/9dTW3P+ks1Hy/wMdWX2gVTY4QEjhjMfAEBS4gMASEp8AABJ2fMBY0S5a2QUjvfnxsps04inXuwrfdyh/HP9fVf+ucpcST3KXZZjwuT84IJzxufGqioO5MZmNTXmxgYqyuw1OcE9H3aGwBvPmQ8AICnxAQAk5WUXGEVO5W215d7iWug/nhv70778Sxt/+4/SS6f3PdabX8fh/HMVntyWn5flL7leWzcpNzZw43tyY21n5R87ocyl2VsnNOTGXinzSbw1ZT+JN89LMXB6OfMBACQlPgCApMQHAJCUPR8wRhwZyO+X+Mfh/Ntj/9Gbn/fyv+8u+To7lt/fcfb/+1+5sc1H9ufG5o+fkht7rpB/W23TSxflxl7Ib9uIt7fk1zKlPv8e39rK/Nt57e+A4eHMBwCQlPgAAJISHwBAUvZ8wCiXldm5MFjmmhZHX8nv5Th8LL834v88efh1v+ezf/tRbuwTV701N/a2p6fmxuZ8dE5u7DOrfpsba334udzYhP9xXm6s90h+z8f/rT2SG5s+IX8ZdmB4OPMBACQlPgCApLzsAqNcuU9rLTc2UObjag/1l3nv6vEyl2YfV1vy9czK+tycOzb25MZu+vRZubFpHdflxj79o7/mxh742//Ojc2Y8N9zY9VV+d+hqirzP//xMh+xW1vmI3ZP9NNvgZPnzAcAkJT4AACSEh8AQFL2fMAoV26HQv9gfn9DRUV+ZmWZXz+a5uT3cxxseHPJ1/ueyr9td3zkv2f97LNzYz2P/ig3tunvrbmxt8xrz41VV+d/hpcP59fy9ik1+cdW5H9Y+ztgeDjzAQAkJT4AgKTEBwCQlD0fMMqV+1j4+soy/2vX5oca6vLXuXjLjPx+iaf/7U8lXw9UHs3NOTSYf9z2O7fnxv7nfxRyY8diem6s+vz8PpDGCfnflybW53+GVwbLXL8EGDGc+QAAkhIfAEBS4gMASMqeDxgjBrL8PoipE/IbQcpd+eKlT5d+lH3Vvzfn5lTOnJgb+/2OXbmxSf9t0n+9yH8xfkZ+bedMz1+D5C2N43NjE2rK/Vyu6QEjhTMfAEBS4gMASMrLLjCKnPgLB/mZ46vyb4Wd1dSYG+sf6MuNvf3supKv91zTlpvTuz9/mfOoPSc3NHFBQ25sQmP+96CzWvMvndRW5efVVeX/GqutyL/9trLMn0m5P08vzsAbz5kPACAp8QEAJCU+AICk7PmAMaLcW01rKvN7I2Y1TciNNdeV7hd52+SB3JxnJh3KjZ19cf4tuQ21+b92XizkL9c+szn/ttrJ4+pyY+Or83tZBstcdL7Kbg4YMZz5AACSEh8AQFLiAwBIyp4PGOVOdCfDiV7nYkJ1/voag6/aQjGlzMfYv3l8fo9GVmbvxWCWH2t8U/57Ntbmx+rK7FEpt5el3M9ajl0gMDyc+QAAkhIfAEBSXnaBM9CpXIa9psylySfWjiv5ejDyn5Bb7vLt5ZR77ECZl2KqK/K/G1Wd4O9LLpsOI5szHwBAUuIDAEhKfAAASdnzAWPEqex5ePVbVysjvy+knHKXOa8u89iqivy8E327bDn2d8DI5swHAJCU+AAAkhIfAEBS9nzAGPZG74040Y+xL3eJ9PLzgDOBMx8AQFKnFB+33357VFRUxLJly4pjR48ejc7OzpgyZUo0NDTEkiVLoqen51TXCQCcIU46PrZv3x4/+MEP4rzzzisZX758eWzatCkefPDB6Orqin379sUVV1xxygsFhk/FCLkBZ4aTio+DBw/G0qVL4+67745JkyYVx/v6+uKHP/xhfOc734n3ve99sWDBgrjnnnvisccei8cff/y0LRoAGL1OKj46Ozvj0ksvjY6OjpLxHTt2xPHjx0vG58yZE7NmzYqtW7eWfa7+/v4oFAolNwDgzDXkd7vcf//98dRTT8X27dtz93V3d0dtbW1MnDixZLylpSW6u7vLPt/q1avjq1/96lCXAQCMUkM687F379644YYb4r777otx48a9/gNOwIoVK6Kvr69427t372l5XgBgZBpSfOzYsSP2798f559/flRXV0d1dXV0dXXFunXrorq6OlpaWuLYsWPR29tb8rienp5obW0t+5x1dXXR1NRUcgMAzlxDetnlkksuiT//+c8lY5/4xCdizpw58YUvfCFmzpwZNTU1sWXLlliyZElEROzcuTP27NkT7e3tp2/VAMCoNaT4aGxsjHnz5pWMTZgwIaZMmVIc/+QnPxk33nhjTJ48OZqamuJzn/tctLe3x7ve9a7Tt2oAYNQ67ZdX/+53vxuVlZWxZMmS6O/vj8WLF8f3v//90/1tAIBRqiLLsmy4F/GvCoVCNDc3x7M7no3GhsbhXg4AcAIOHDwQcxfMjb6+vtfdv+mzXQCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACCpIcXH6tWr48ILL4zGxsaYOnVqXH755bFz586SOUePHo3Ozs6YMmVKNDQ0xJIlS6Knp+e0LhoAGL2GFB9dXV3R2dkZjz/+eGzevDmOHz8e73//++PQoUPFOcuXL49NmzbFgw8+GF1dXbFv37644oorTvvCAYDRqSLLsuxkH/yPf/wjpk6dGl1dXfHud787+vr64s1vfnNs3LgxPvzhD0dExF//+tc455xzYuvWrfGud73rdZ+zUChEc3NzPLvj2WhsaDzZpQEACR04eCDmLpgbfX190dTU9JpzT2nPR19fX0RETJ48OSIiduzYEcePH4+Ojo7inDlz5sSsWbNi69atZZ+jv78/CoVCyQ0AOHOddHwMDg7GsmXLYtGiRTFv3ryIiOju7o7a2tqYOHFiydyWlpbo7u4u+zyrV6+O5ubm4m3mzJknuyQAYBQ46fjo7OyMZ555Ju6///5TWsCKFSuir6+veNu7d+8pPR8AMLJVn8yDrr/++nj44Yfj97//fcyYMaM43traGseOHYve3t6Ssx89PT3R2tpa9rnq6uqirq7uZJYBAIxCQzrzkWVZXH/99fHQQw/FI488Em1tbSX3L1iwIGpqamLLli3FsZ07d8aePXuivb399KwYABjVhnTmo7OzMzZu3Bi/+MUvorGxsbiPo7m5Oerr66O5uTk++clPxo033hiTJ0+Opqam+NznPhft7e0n9E4XAODMN6T4WL9+fUREvPe97y0Zv+eee+LjH/94RER897vfjcrKyliyZEn09/fH4sWL4/vf//5pWSwAMPqd0nU+3giu8wEAo0+y63wAAAyV+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJCU+AAAkhIfAEBS4gMASEp8AABJiQ8AICnxAQAkJT4AgKTEBwCQlPgAAJISHwBAUuIDAEhKfAAASYkPACAp8QEAJFU93At4tSzLIiLi4MGDw7wSAOBE/fPf7X/+O/5aRlx8HDhwICIiFr5n4TCvBAAYqgMHDkRzc/NrzqnITiRREhocHIx9+/ZFY2NjVFRUDPdyxpxCoRAzZ86MvXv3RlNT03AvZ8xzPEYWx2NkcTxGlizL4sCBAzF9+vSorHztXR0j7sxHZWVlzJgxY7iXMeY1NTX5n3kEcTxGFsdjZHE8Ro7XO+PxTzacAgBJiQ8AICnxQYm6urr4yle+EnV1dcO9FMLxGGkcj5HF8Ri9RtyGUwDgzObMBwCQlPgAAJISHwBAUuIDAEhKfIxBq1evjgsvvDAaGxtj6tSpcfnll8fOnTtL5hw9ejQ6OztjypQp0dDQEEuWLImenp5hWvHYcvvtt0dFRUUsW7asOOZ4pPXiiy/GVVddFVOmTIn6+vo499xz48knnyzen2VZrFq1KqZNmxb19fXR0dERzz///DCu+Mw1MDAQK1eujLa2tqivr4+zzz47vv71r5d8fojjMfqIjzGoq6srOjs74/HHH4/NmzfH8ePH4/3vf38cOnSoOGf58uWxadOmePDBB6Orqyv27dsXV1xxxTCuemzYvn17/OAHP4jzzjuvZNzxSOfll1+ORYsWRU1NTfzqV7+Kv/zlL/Htb387Jk2aVJyzdu3aWLduXWzYsCG2bdsWEyZMiMWLF8fRo0eHceVnpjVr1sT69evje9/7Xjz33HOxZs2aWLt2bdx5553FOY7HKJQx5u3fvz+LiKyrqyvLsizr7e3NampqsgcffLA457nnnssiItu6detwLfOMd+DAgWz27NnZ5s2bs/e85z3ZDTfckGWZ45HaF77wheziiy/+L+8fHBzMWltbs29+85vFsd7e3qyuri776U9/mmKJY8qll16aXXPNNSVjV1xxRbZ06dIsyxyP0cqZD6Kvry8iIiZPnhwRETt27Ijjx49HR0dHcc6cOXNi1qxZsXXr1mFZ41jQ2dkZl156acmfe4Tjkdovf/nLuOCCC+IjH/lITJ06NebPnx9333138f7du3dHd3d3yfFobm6OhQsXOh5vgIsuuii2bNkSu3btioiIp59+Oh599NH4wAc+EBGOx2g14j5YjrQGBwdj2bJlsWjRopg3b15ERHR3d0dtbW1MnDixZG5LS0t0d3cPwyrPfPfff3889dRTsX379tx9jkdaL7zwQqxfvz5uvPHG+OIXvxjbt2+Pz3/+81FbWxtXX3118c+8paWl5HGOxxvjlltuiUKhEHPmzImqqqoYGBiIW2+9NZYuXRoR4XiMUuJjjOvs7IxnnnkmHn300eFeypi1d+/euOGGG2Lz5s0xbty44V7OmDc4OBgXXHBB3HbbbRERMX/+/HjmmWdiw4YNcfXVVw/z6saeBx54IO67777YuHFjzJ07N/74xz/GsmXLYvr06Y7HKOZllzHs+uuvj4cffjh++9vfxowZM4rjra2tcezYsejt7S2Z39PTE62trYlXeebbsWNH7N+/P84///yorq6O6urq6OrqinXr1kV1dXW0tLQ4HglNmzYt3vGOd5SMnXPOObFnz56IiOKf+avfbeR4vDFuuummuOWWW+LKK6+Mc889Nz72sY/F8uXLY/Xq1RHheIxW4mMMyrIsrr/++njooYfikUceiba2tpL7FyxYEDU1NbFly5bi2M6dO2PPnj3R3t6eerlnvEsuuST+/Oc/xx//+Mfi7YILLoilS5cW/9vxSGfRokW5t57v2rUrzjrrrIiIaGtri9bW1pLjUSgUYtu2bY7HG+Dw4cNRWVn6T1VVVVUMDg5GhOMxag33jlfS++xnP5s1Nzdnv/vd77KXXnqpeDt8+HBxzmc+85ls1qxZ2SOPPJI9+eSTWXt7e9be3j6Mqx5b/vXdLlnmeKT0xBNPZNXV1dmtt96aPf/889l9992XjR8/PvvJT35SnHP77bdnEydOzH7xi19kf/rTn7LLLrssa2try44cOTKMKz8zXX311dlb3vKW7OGHH852796d/exnP8ve9KY3ZTfffHNxjuMx+oiPMSgiyt7uueee4pwjR45k1113XTZp0qRs/Pjx2Yc+9KHspZdeGr5FjzGvjg/HI61NmzZl8+bNy+rq6rI5c+Zkd911V8n9g4OD2cqVK7OWlpasrq4uu+SSS7KdO3cO02rPbIVCIbvhhhuyWbNmZePGjcve9ra3ZV/60pey/v7+4hzHY/SpyLJ/uUwcAMAbzJ4PACAp8QEAJCU+AICkxAcAkJT4AACSEh8AQFLiAwBISnwAAEmJDwAgKfEBACQlPgCApMQHAJDU/wfbqvC3jF3qnwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.hist2d(ev.x, ev.y, weights=ev.poids, bins=100, cmap=\"twilight\");\n" + ] + }, + { + "cell_type": "markdown", + "id": "83c88589", + "metadata": {}, + "source": [ + "Now, let us create a `StingrayTimeseries` object from this event list. \n", + "\n", + "By default, the `to_binned_timeseries` method calculates a series from the weighted sum of all attributes of the same length of `ev.time` (such as `x` and `y`), plus the number of counts per bin (like in `Lightcurve`).\n", + "\n", + "However, one can specify a list of attributes to weigh on through the `array_attrs` keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "939cde48", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Attributes without the array_attrs keyword: ['counts', 'poids', 'x', 'y']\n", + "Attributes with the array_attrs keyword: ['counts', 'poids']\n" + ] + } + ], + "source": [ + "# Let's use a different dt\n", + "ts_dt = 1 / np.sqrt(89) / freq\n", + "ts_all = ev.to_binned_timeseries(ts_dt)\n", + "ts = ev.to_binned_timeseries(ts_dt, array_attrs={\"poids\"})\n", + "\n", + "print(\"Attributes without the array_attrs keyword:\", ts_all.array_attrs())\n", + "print(\"Attributes with the array_attrs keyword:\", ts.array_attrs())" + ] + }, + { + "cell_type": "markdown", + "id": "c563c288", + "metadata": {}, + "source": [ + "Since event lists might have many attributes, it is advisable to select which ones to transform in weights.\n", + "\n", + "Giving an empty dictionary (`array_attrs={}`) creates something very similar to a standard `Lightcurve` " + ] + }, + { + "cell_type": "markdown", + "id": "aba0cbaf", + "metadata": {}, + "source": [ + "Finally, for usage with `Powerspectrum`, let us assign a mean error for the weights. This will only work and make sense when the vast majority of events are from noise." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "06a72161", + "metadata": {}, + "outputs": [], + "source": [ + "ts.poids_err = np.zeros_like(ts.poids) + np.std(ts.poids)\n" + ] + }, + { + "cell_type": "markdown", + "id": "7ebae9e1", + "metadata": {}, + "source": [ + "## Timing analysis using StingrayTimeseries\n", + "\n", + "The timing analysis that can be done with a StingrayTimeseries object is very similar to the one doable with a `Lightcurve`. For example, we can call the `from_stingray_timeseries` method of `Powerspectrum`. \n", + "\n", + "Note that in this case we have to specify which attribute to use as flux (in the `from_lightcurve` method, `counts` was the default). For this, we use the `flux_attr` keyword.\n", + "\n", + "We can also, optionally, specify another attribute which will serve as an error bar for those normalizations where it makes sense. For this, we use the `error_flux_attr` keyword." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "d0d9a70c", + "metadata": {}, + "outputs": [], + "source": [ + "ps_counts = \\\n", + " Powerspectrum.from_stingray_timeseries(ts, flux_attr=\"counts\", norm=\"leahy\")\n", + "ps_weighted = \\\n", + " Powerspectrum.from_stingray_timeseries(\n", + " ts, flux_attr=\"poids\", error_flux_attr=\"poids_err\", norm=\"leahy\")" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "4444acb3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAigAAAGdCAYAAAA44ojeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDiklEQVR4nO3deXwUdZ7/8VdV5z66Q4AkHEFBUOQW5Ij3gaKiIyuOjuMo4zqXEx2V3xzLruPMOgeuzuE4IrjjeN8yoyiuIqKCSjiMghxygwmEHBDSnbuPqt8fFRojqIRjqkK/n49HP1LVXd396U7S9a7v91vfNmzbthERERHxENPtAkRERES+SAFFREREPEcBRURERDxHAUVEREQ8RwFFREREPEcBRURERDxHAUVEREQ8RwFFREREPCfJ7QIOhWVZVFRUkJ2djWEYbpcjIiIiB8G2berr6+nZsyem+dVtJJ0yoFRUVFBYWOh2GSIiInIIysvL6d2791du0ykDSnZ2NuC8QL/f73I1IiIicjBCoRCFhYXx/fhX6ZQBZW+3jt/vV0A5RsQsm4/L9gBwSp8u+Ex13YmIHKsOZnhGpwwocuyJWTbvbdwFwLDeOQooIiIJTgFFPME0YFBPf3xZREQSmwKKeEKSz2TC4AK3yxAREY/QPCgiIiLiOQooIiIi4jnq4hFPCEctHn5/CwDfO6MfKUnKziIiiUwBRTyjNWK5XYKIiHiEAop4QrLP4LunHR9fFhGRxKaAIp5gGAZdMlPcLkNERDxCHf0iIiLiOWpBEU+IWTardgQBGNoroJlkRUQSnAKKeELMsnlnXTUAg3r4FVBERBKcAop4gmnAgJTdENqJafdDvY8iIolNAUU8IclncumG/wIrBtu7Qd+z3C5JRERcpMNU8Q4r5vysK3O3DhERcZ0CioiIiHiOunjEEyIxi8eCowH4rgXJLtcjIiLuUkART7BtaLBS4ssiIpLYFFDEE5JMg2uzV7QtD3K3GBERcZ0CiniCaRrkJTU6K5oCRUQk4WmQrIiIiHiOWlDEE2KWzbrWPAAGWuBzuR4REXGXAop4QsyyebNpAAADbAUUEZFEp4AinmAa0Dd5T3xZREQSmwKKeEKSz2RS1lpnxTzd3WJERMR1GiQrIiIinqOAIiIiIp6jLh7xhEjM4qngSAC+o6nuRUQSngKKeIJtQ52VHl8WEZHEpoAinpBkGlyV/Unbsqa6FxFJdAoo4gmmadArqd5ZMXSesYhIotMgWREREfEctaCIJ1iWzaZwVwD620rOIiKJTgFFPCFq2bzWOBCAYgtSXK5HRETcpYAinmAY0DspGF8WEZHEpoAinpDsM/lm9mpnxTzN3WJERMR16uoXERERz1FAEREREc9RF494QiRm8XxoBABXa6p7EZGEp4AinmDbUBPLjC+LiEhiU0ART0gyDa7IWtO2PNjlakRExG0KKOIJpmlwXHKds6LTjEVEEp4GyYqIiIjnqAVFPMGybLZFugBwvKa6FxFJeAoo4glRy2ZOwyBAU92LiIgCiniEYUC+ryG+LCIiiU0BRTwh2Wfybf9KZ8U3zt1iRETEderqFxEREc85rIBy9913YxgGt912W/y6lpYWiouL6dq1K1lZWUyePJmqqqp29ysrK2PixIlkZGSQl5fHz372M6LR6OGUIiIiIseQQw4oy5cv56GHHmLYsGHtrr/99tt59dVXefHFF1m4cCEVFRVcccUV8dtjsRgTJ04kHA6zePFiHn/8cR577DHuvPPOQ38V0ulFYhbP1w/l+fqhRCy3qxEREbcdUkBpaGjg2muv5W9/+xtdunSJXx8MBvn73//On/70J8477zxGjRrFo48+yuLFi1myZAkAb775JmvXruWpp55ixIgRXHzxxfzmN79hxowZhMPhI/OqpNOxbaiI+qmI+jXVvYiIHFpAKS4uZuLEiYwfP77d9aWlpUQikXbXDxw4kD59+lBSUgJASUkJQ4cOJT8/P77NhAkTCIVCrFmz5lDKkWNAkmlwWeanXJb5KUkaGSUikvA6fBbPc889x0cffcTy5cv3u62yspKUlBRycnLaXZ+fn09lZWV8m8+Hk723773tQFpbW2ltbY2vh0KhjpYtHmeaBv1Tap0VnWYsIpLwOnSsWl5ezq233srTTz9NWlra0appP9OnTycQCMQvhYWF/7LnFhERkX+9DgWU0tJSqqurGTlyJElJSSQlJbFw4ULuv/9+kpKSyM/PJxwOU1dX1+5+VVVVFBQUAFBQULDfWT171/du80XTpk0jGAzGL+Xl5R0pWzoBy7Ipj/gpj/ixNAZFRCThdSignH/++axatYoVK1bEL6eeeirXXnttfDk5OZkFCxbE77N+/XrKysooKioCoKioiFWrVlFdXR3fZv78+fj9fgYNGnTA501NTcXv97e7yLElatnMbhjK7IahRHUWj4hIwuvQGJTs7GyGDBnS7rrMzEy6du0av/7GG29k6tSp5Obm4vf7ueWWWygqKmLcOGd20AsvvJBBgwZx3XXXcc8991BZWckdd9xBcXExqampR+hlSWdjGNDV1xRfFhGRxHbEp7r/85//jGmaTJ48mdbWViZMmMCDDz4Yv93n8zF37lxuuukmioqKyMzMZMqUKdx1111HuhTpRJJ9Jtf7P3ZWzDHuFiMiIq4zbLvzzToRCoUIBAIEg0F19xxLHjrb+Tn2hzDi2+7WIiIiR1xH9t+acUJEREQ8R99mLJ4QiVm8Uj8YgG9YkOxyPSIi4i4FFPEE24ayaE58WUREEpsCinhCkmlwUeaGtuWhLlcjIiJuU0ARTzBNg5NTapwVnWYsIpLwNEhWREREPEctKOIJlmVTHc0CIM9WchYRSXQKKOIJUcvm2frhABRbkOJyPSIi4i4FFPEEwwC/2RJfFhGRxKaAIp6Q7DO5MVDqrJij3S1GRERcp65+ERER8RwFFBEREfEcdfGIJ0RjFv/XMBCASyz9YYqIJDrtB8QTLBs2R7rGl0VEJLEpoIgn+EyD8RmbnGVDU92LiCQ6BRTxBJ9pMDS1ylnRyCgRkYSnXYGIiIh4jlpQxBNs22Z3LAOArra+L1BEJNEpoIgnRGI2T4ZOATTVvYiIKKCIh6QbEbdLEBERj1BAEU9ISTL5Uc4yZ8U30t1iRETEdRokKyIiIp6jgCIiIiKeoy4e8YRozGJ+44kAXKCp7kVEEp72A+IJlg3rwt0BOF9T3YuIJDwFFPEEn2lwdvoWZ1lT3YuIJDwFFPEEn2kwMm2ns6KRUSIiCU+7AhEREfEctaCIJ9i2TSiWCoBfU92LiCQ8BRTxhEjM5pHQqYCmuhcREQUU8ZBkI+Z2CSIi4hEKKOIJKUkmN+cscVZ8I1ytRURE3KdBsiIiIuI5CigiIiLiOeriEU+IxizeaewPwLma6l5EJOFpPyCeYNmwOpwPwNk6yVhEJOEpoIgn+EyD09I+c5aNYS5XIyIiblNAEU/wmQZj07c7KxoZJSKS8LQrEBEREc9RC4p4gm3bNFvJAKRrqnsRkYSngCKeEInZPBQcA2iqexERURePiIiIeJBaUMQTUpJMbu/ygbPi01k8IiKJTi0oIiIi4jkKKCIiIuI56uIRT4jGLN5v6gvAGZrqXkQk4Wk/IJ5g2fBxa08ATrNdLkZERFyngCKe4DMNxqSVO8ua6l5EJOEpoIgn+EyD09PLnBWNjBIRSXjaFYiIiIjnqAVFPMG2bSK2k5eTNdW9iEjCU0ART4jEbGbUFQFQbBma6l5EJMGpi0dEREQ8Ry0o4gnJPoPinBJn2RzucjUiIuI2BRTxBMMwSDGsthV3axEREfepi0dEREQ8Ry0o4gkxy2ZJcx8Axlngc7keERFxlwKKeELMslnWUgjAaFsBRUQk0SmgiCeYBpySWtG2rEGyIiKJTgFFPCHJZ3JOxlZnRSOjREQSnnYFIiIi4jkKKCIiIuI56uIRTwhHLWbsOR2A4hia6l5EJMGpBUVEREQ8p0MBZebMmQwbNgy/34/f76eoqIjXX389fntLSwvFxcV07dqVrKwsJk+eTFVVVbvHKCsrY+LEiWRkZJCXl8fPfvYzotHokXk10mkl+wx+GFjGDwPLSFZsFhFJeB3aFfTu3Zu7776b0tJSPvzwQ8477zwuv/xy1qxZA8Dtt9/Oq6++yosvvsjChQupqKjgiiuuiN8/FosxceJEwuEwixcv5vHHH+exxx7jzjvvPLKvSjodwzDIMCNkmBEMTXUvIpLwDNu27cN5gNzcXO69916uvPJKunfvzjPPPMOVV14JwLp16zj55JMpKSlh3LhxvP7661x66aVUVFSQn58PwKxZs/jFL35BTU0NKSkHN/IgFAoRCAQIBoP4/f7DKV+85KGznZ/jfgzDr3a3FhEROeI6sv8+5Mb0WCzGc889R2NjI0VFRZSWlhKJRBg/fnx8m4EDB9KnTx9KSpxvqS0pKWHo0KHxcAIwYcIEQqFQvBXmQFpbWwmFQu0ucmyJWTZLm3uztLk3MVtNKCIiia7DAWXVqlVkZWWRmprKj370I1566SUGDRpEZWUlKSkp5OTktNs+Pz+fyspKACorK9uFk723773ty0yfPp1AIBC/FBYWdrRs8biYZbO45TgWtxxH7LDa9ERE5FjQ4YBy0kknsWLFCpYuXcpNN93ElClTWLt27dGoLW7atGkEg8H4pby8/Kg+n/zrmQYMSaliSEoVphpQREQSXofnQUlJSaF///4AjBo1iuXLl/OXv/yFq6++mnA4TF1dXbtWlKqqKgoKCgAoKChg2bJl7R5v71k+e7c5kNTUVFJTUztaqnQiST6TCzI3OSvmBHeLERER1x32CZ2WZdHa2sqoUaNITk5mwYIF8dvWr19PWVkZRUVFABQVFbFq1Sqqq6vj28yfPx+/38+gQYMOtxQRERE5RnSoBWXatGlcfPHF9OnTh/r6ep555hneffdd5s2bRyAQ4MYbb2Tq1Knk5ubi9/u55ZZbKCoqYty4cQBceOGFDBo0iOuuu4577rmHyspK7rjjDoqLi9VCIiIiInEdCijV1dVcf/317Ny5k0AgwLBhw5g3bx4XXHABAH/+858xTZPJkyfT2trKhAkTePDBB+P39/l8zJ07l5tuuomioiIyMzOZMmUKd91115F9VdLphKMW/1vnBNkfaKp7EZGEd9jzoLhB86Ace8JRixl/uAOA4gkjSDnlKpcrEhGRI60j+299WaB4QrLP4N/9HzrL5gh3ixEREdcpoIgnGIZBwNfatuJuLSIi4j59LZuIiIh4jlpQxBNils3Klh4ADLfA53I9IiLiLgUU8YSYZbOwuR8AQ2wFFBGRRKeAIp5gGjAwpSa+LCIiiU0BRTwhyWdyceYGZ8W8wN1iRETEdRokKyIiIp6jgCIepD4eEZFEpy4e8YRw1OKRujEA/LumuhcRSXgKKOIZzXay2yWIiIhHKKCIJyT7DK7zf+wsm6e4XI2IiLhNAUU8wTAMuvma2lbcrUVERNynQbIiIiLiOWpBEU+IWTZrW/MBGKSp7kVEEp4CinhCzLJ5q6k/ACdpqnsRkYSngCKeYBpwQvLu+LKIiCQ2BRTxhCSfyTey1jkr5nh3ixEREddpkKyIiIh4jgKKiIiIeI66eMQTIjGLJ4KjALjeAs0pKyKS2BRQxBNsG0JWWnxZREQSmwKKeEKSaXBN9sq2ZU11LyKS6BRQxBNM06AgqcFZ0WnGIiIJT4NkRURExHPUgiKeYFk268PdAWcmWSVnEZHEpoAinhC1bN5oPBGAEyxIcbkeERFxlwKKeIJhQJ+kuviyiIgkNgUU8YRkn8nk7DXOinmuu8WIiIjr1NUvIiIinqOAIiIiIp6jLh7xhEjM4tmQM0HbNZrqXkQk4SmgiCfYNuyOZcSXRUQksSmgiCckmQZXZq1qW9ZU9yIiiU4BRTzBNA0Kk0POik4zFhFJeBokKyIiIp6jFhTxBMuy2RLOBaCfproXEUl4CijiCVHL5tXGkwEo1lT3IiIJTwFFPMEwoGdSKL4sIiKJTQFFPCHZZ3J1tnMWD+bZ7hYjIiKuU1e/eI+aUEREEp4CioiIiHiOunjEEyIxixdDwwH4pqa6FxFJeAoo4gm2DVWxrPiyiIgkNgUU8YQk0+DyrLVtyyNdrkZERNymgCKeYJoG/ZL3OCsaIysikvA0SFZEREQ8Ry0o4gmWZVMeyQGgUFPdi4gkPAUU8YSoZfPPhsGAproXEREFFPEIw4Duvsb4soiIJDYFFPGEZJ/Jd/wrnBXzTFdrERER96mrX0RERDxHAUVEREQ8R1084gmRmMXL9UMAmKSp7kVEEp4CiniCbcP2aCC+LCIiiU0BRTwhyTSYmLmubVlT3YuIJDoFFPEE0zQ4MWW3s6LTjEVEEp4GyYqIiIjnqAVFPMGybHZGswHooanuRUQSngKKeELUsnmhfhigqe5FREQBRTzCMCDHbI4vi4hIYlNAEU9I9pncEPjIWTFPd7cYERFxnbr6RURExHM6FFCmT5/O6NGjyc7OJi8vj0mTJrF+/fp227S0tFBcXEzXrl3Jyspi8uTJVFVVtdumrKyMiRMnkpGRQV5eHj/72c+IRqOH/2pERETkmNChgLJw4UKKi4tZsmQJ8+fPJxKJcOGFF9LY2Bjf5vbbb+fVV1/lxRdfZOHChVRUVHDFFVfEb4/FYkycOJFwOMzixYt5/PHHeeyxx7jzzjuP3KuSTicas3i5YRAvNwwiarldjYiIuM2w7UOfWLympoa8vDwWLlzIWWedRTAYpHv37jzzzDNceeWVAKxbt46TTz6ZkpISxo0bx+uvv86ll15KRUUF+fn5AMyaNYtf/OIX1NTUkJLy9edvhEIhAoEAwWAQv99/qOWLh4SjFjP+cAcAxReNJGXElS5XJCIiR1pH9t+HNQYlGAwCkJubC0BpaSmRSITx48fHtxk4cCB9+vShpKQEgJKSEoYOHRoPJwATJkwgFAqxZs2aAz5Pa2sroVCo3UWOLT7T4MKMjVyYsRGfzuIREUl4hxxQLMvitttu4/TTT2fIEOdbaCsrK0lJSSEnJ6fdtvn5+VRWVsa3+Xw42Xv73tsOZPr06QQCgfilsLDwUMsWj/KZBoNTqxmcWo1PQ7dFRBLeIe8KiouLWb16Nc8999yRrOeApk2bRjAYjF/Ky8uP+nOKiIiIew5pHpSbb76ZuXPnsmjRInr37h2/vqCggHA4TF1dXbtWlKqqKgoKCuLbLFu2rN3j7T3LZ+82X5SamkpqauqhlCqdhGXZ7IpmAtBNU92LiCS8Du0HbNvm5ptv5qWXXuLtt9+mb9++7W4fNWoUycnJLFiwIH7d+vXrKSsro6ioCICioiJWrVpFdXV1fJv58+fj9/sZNGjQ4bwW6cSils3T9SN4un6EzuIREZGOtaAUFxfzzDPPMGfOHLKzs+NjRgKBAOnp6QQCAW688UamTp1Kbm4ufr+fW265haKiIsaNGwfAhRdeyKBBg7juuuu45557qKys5I477qC4uFitJAnMMCDLDMeXRUQksXUooMycOROAc845p931jz76KN/97ncB+POf/4xpmkyePJnW1lYmTJjAgw8+GN/W5/Mxd+5cbrrpJoqKisjMzGTKlCncddddh/dKpFNL9pl8P7DcWfEVuVuMiIi47rDmQXGL5kE5Rj10tvPz9J/AkMnu1iIiIkfcv2weFBEREZGjQd9mLJ4QjVm80XASABdZ+sMUEUl0akERT7Bs2BjpxsZIN6xO1+koIiJHmg5UxRN8psG5GZudZWOUy9WIiIjbFFDEE3ymwYjUtq86ULueiEjC065AREREPEctKOIJtm1TF0sDIMcGzdUmIpLYFFDEEyIxm8dCztiTYgtSXK5HRETcpYAinpFqRN0uQUREPEIBRTwhJcnkxzlLnRXfWHeLERER12mQrIiIiHiOAoqIiIh4jrp4xBOiMYsFjf0BOF9T3YuIJDztB8QTLBvWhvMBOFdT3YuIJDwFFPEEn2lwZvo2Z9k41d1iRETEdQoo4gk+0+DUtB3OikZGiYgkPO0KRERExHPUgiKeYNs2DZYzf2yWproXEUl4CijiCZGYzcPB0YCmuhcREQUU8RATnb4jIiIOBRTxhJQkk1u7LHZWfKPdLUZERFynQbIiIiLiOQooIiIi4jnq4hFPiMYsFjX1A+AsTXUvIpLwtB8QT7BsWNnaA4AzNFZWRCThKaCIJ/hMg3FpZc6yproXEUl4CijiCT7ToCi93FnRyCgRkYSnXYGIiIh4jlpQxBNs26bV8gGQqqnuRUQSngKKeEIkZjMzOA7QVPciIqIuHhEREfEgtaCIJyT7DH6S40x1b5o6i0dEJNEpoIgnGIaBz2ibAEUDUEREEp66eERERMRz1IIinhCzbD5oOh6A0y3wuVuOiIi4TAFFPCFm2ZS29gJgnK2AIiKS6BRQxBN8psGo1B3Osqa6FxFJeAoo4gk+0+CsjG3OikZGiYgkPO0KRERExHPUgiKeYNs2lu2cX2xqqnsRkYSngCKeEInZzKg7DdBU9yIioi4eERER8SC1oIgnJPsMbgoscZY11b2ISMJTQBFPMAyDNDPWtuJuLSIi4j518YiIiIjnqAVFPCFm2SxrLgRgjKa6FxFJeAoo4gkxy2ZJSx8ARmEooIiIJDgFFPEE04DhqTvjyyIiktgUUMQTknwm52VscVY0MkpEJOFpVyAiIiKeo4AiIiIinqMuHvGEcNRi5h5nqvubYprqXkQk0SmgiGdYmqFNRETaKKCIJyT7DL4XWO4sm6NdrkZERNymgCKeYBgG2Wa4bcXdWkRExH0aJCsiIiKeoxYU8YSYZfNxSy8ATtFU9yIiCU8BRTwhZtm813w8AMNsBRQRkUSngCKeYBowKKUqviwiIolNAUU8IclnMiFzk7OikVEiIglPuwIRERHxHAUUERER8Rx18YgnhKMWD9eNBeB7MUNT3YuIJLgOt6AsWrSIyy67jJ49e2IYBi+//HK7223b5s4776RHjx6kp6czfvx4Nm7c2G6b2tparr32Wvx+Pzk5Odx44400NDQc1guRzq/VTqLVVmYWEZFDCCiNjY0MHz6cGTNmHPD2e+65h/vvv59Zs2axdOlSMjMzmTBhAi0tLfFtrr32WtasWcP8+fOZO3cuixYt4gc/+MGhvwrp9JJ9Bt/1l/JdfynJ6ngUEUl4HT5cvfjii7n44osPeJtt29x3333ccccdXH755QA88cQT5Ofn8/LLL/Otb32LTz/9lDfeeIPly5dz6qmnAvDXv/6VSy65hD/84Q/07NnzMF6OdFaGYdDF1xZidZqxiEjCO6LHqlu3bqWyspLx48fHrwsEAowdO5aSkhIASkpKyMnJiYcTgPHjx2OaJkuXLj3g47a2thIKhdpdRERE5Nh1RANKZWUlAPn5+e2uz8/Pj99WWVlJXl5eu9uTkpLIzc2Nb/NF06dPJxAIxC+FhYVHsmzxgJhls6K1gBWtBcQst6sRERG3dYre/mnTphEMBuOX8vJyt0uSIyxm2bzTdALvNJ1AzHa7GhERcdsRPWWioKAAgKqqKnr06BG/vqqqihEjRsS3qa6ubne/aDRKbW1t/P5flJqaSmpq6pEsVTzGNGBA8q74soiIJLYj2oLSt29fCgoKWLBgQfy6UCjE0qVLKSoqAqCoqIi6ujpKS0vj27z99ttYlsXYsWOPZDnSiST5TC7NWs+lWetJ6hTteiIicjR1uAWloaGBTZs2xde3bt3KihUryM3NpU+fPtx222389re/ZcCAAfTt25df/vKX9OzZk0mTJgFw8sknc9FFF/H973+fWbNmEYlEuPnmm/nWt76lM3hEREQEOISA8uGHH3LuuefG16dOnQrAlClTeOyxx/j5z39OY2MjP/jBD6irq+OMM87gjTfeIC0tLX6fp59+mptvvpnzzz8f0zSZPHky999//xF4OSIiInIsMGzb7nRDEkOhEIFAgGAwiN/vd7scOQIiMYvH/vhzAL578RkkD53kbkEiInLEdWT/rXnFxRNsGxqslPiyiIgkNgUU8YQk0+Da7BVty2PcLUZERFyngCKeYJoGeUmNzopOMxYRSXg6oVNEREQ8Ry0o4gkxy2Zdq/MVCANtA5/L9YiIiLsUUMQTYpbNm00DABhgo4AiIpLgFFDEE0wD+ibviS+LiEhiU0ART0jymUzKWuusmBe5W4yIiLhOg2RFRETEcxRQRERExHPUxSOeEIlZPBUcCcB3LEh2uR4REXGXAop4gm1DnZUeXxYRkcSmgCKekGQaXJX9SdvyWJerERERtymgiCeYpkGvpHpnRacZi4gkPA2SFREREc9RC4p4gmXZbAp3BaC/reQsIpLoFFDEE6KWzWuNAwEotiDF5XpERMRdCijiCYYBvZOC8WUREUlsCijiCck+k29mr3ZWzAvdLUZERFynrn4RERHxHAUU8SD18YiIJDp18YgnRGIWz4dGAHC1proXEUl4CijiCbYNNbHM+LKIiCQ2BRTxhCTT4IqsNW3L41yuRkRE3KaAIp5gmgbHJdc5KxqCIiKS8DRIVkRERDxHLSjiCZZlsy3SBYDjNdW9iEjCU0ART4haNnMaBgGa6l5ERBRQxCMMA/J9DfFlERFJbAoo4gnJPpNv+1c6K+Z4d4sRERHXqatfREREPEcBRURERDxHXTziCZGYxT/rhwJwhaa6FxFJeAoo4gm2DRVRf3xZREQSmwKKeEKSaXBZ5qdty5rqXkQk0SmgiCeYpkH/lFpnRacZi4gkPA2SFREREc9RC4p4gmXZ7Ig4Y1B6aap7EZGEp4AinhC1bGY3OGfxaKp7ERFRQBFPMAzo6muKL4uISGJTQBFPSPaZXO//2Fkxz3O3GBERcZ26+kVERMRzFFBERETEc9TFI54QiVm8Uj8YgG9oqnsRkYSngCKeYNtQFs2JL4uISGJTQBFPSDINLsrc0Lasqe5FRBKdAop4gmkanJxS46zoNGMRkYSnQbIiIiLiOWpBEU+wLJvqaBYAeZrqXkQk4SmgiCdELZtn64cDmupeREQUUMQjDAP8Zkt8WUREEpsCinhCss/kxkCps2Ke42otInLsicYsknzqPO5M9NsS71ETirSxLE2KI4fvjdU7ueqhEpZu2e12KdIBCijiGatb83ijccDXbxjcAQvvgbqyo1+UuGb5tlq++VAJizbUuF2KdHIz3tlMJGYza+Fmt0uRDlBAEU+Ixixuqp7E72rP5aPqr9n49Z/DutfglVv+JbUd69ZX1rN6R9DtMvZz16trCUct7p23/mu3tW2bf360nZLNR/YIuSUS45ZnP+bh97Yc0cd1QzhqsbGqPqFbpYLNkSP2WP+3aifvrPu6Dys5HAoo4gmWDa12Eq12Ejsav2bj4HbnZ3Pd0S7rmLayvI4ddc389MWVTPvnKkItR+7D+19tXWU9j36wjd//36cdvm+oJUJLJHbA2xZuqGHbrkbmrKg43BJd97f3tjD1hZXMW1Ppdimd3u6GVma+u5k/zd9wSIFvV0PrEQ1LxyoFlA6w935JjL4s5ojzWRH8Zgt+s6XDE8k2h52j3McXbzsapR207XuamPr8iiN+VBWOWkf8qHdTdT13vLyaX7y40ukqa6gm2NR5PzD3NIYP6X7B5gj//uhybn3u4wPebh9D/+tvrHaCyYul212upOP+pb+HcCNY1ldu0vy5QBvrYG1N4Sg3PLqc7zy89JDKSyQKKAdpU3UD3/n7Ul56eiY8/x2ItkI0DKWPw85P3C7vyNj4FhWzf0E0VLXfTXYsytbqelqjbf+YVWugau2Red5Nb+F7/GLSjSjpRrTDU92/9WkV23Y1MtvlD96nl5axsbqBP83fcPB3qt0Cjbu+9OaWSIzvPfEhP31x5RH9kN5U3QBAMFQHkWZo3oNdXw3hpvg2G6rqmbVwM3VNX9j5H0M77S01DbRGLSrqWg54u9GBAduWZfPSx9vZWFV/pMo7Kqwv/v6sGKx8Hmr2/7ttjUSJlPwvrHh235XbPoBF97b7WzmaFm2o4fpHlvHpztD+NzbUOLW3hGgOxyjZvHvfZ9QBfO1fbmgnPDEJ3vyvr9zs838XHf13qAzu+1uzLJsXPiznsr++z5NLPuvYA3XEimdgzctH7/GPEgWUgxHayVPPP0coGOSR9SlOF8O292DjPPjwEXj9F0flaXc3tLJ4065/WZ/xktce44efnMidT82PXxeNWYSaWij52+38ZOZL/OLZpc4H08s/hpdvgsiBP9g7ZNEfnQ/Jr/IVRzT7feB+iXB0/8dYUV7HrIWbaQpHD3ifrbsaWbShhvqD6P6oCnXwvQjthBdvgKcmf+kmm2sa2NMYZmN1w9HJBZ97UGvubTD3tvj63a+v47VPdvLMss8NRv7oCafeunLn8nmhnbD1va89+tzP2ldg04KO134EWJHWfWVU7L8DNDsQUN5cW8kj729j6gsr213f0BqFz0rg1Vud9+hgbZgHS2Z95R7w8cXb+OmLK2kOO/8/ZbubeODtjVTUNX/tw5d+Vsstz37MnP+bC0sehH9+v93t4ajFVQ8uYsq8KCyd5RyQAcz7T/h0Lqyd86WPbds2ZbubiMba/hY2vQXPXQvV6w647Ve5d9566poi/Pera/a/ce5tTu2v/oR7Zszg9y8tY9a7Bzle6EDPu+ktiIXhs8VfeVfzc38W9tfHni/cd9+d31xbxZMlTjB5YXnb/1Plauf9PVL/8KGdsPQheP/P+36HnYTmQfmCHz9dSnltMy/9+LR958wvnUUomAER374NbRt2b3KWI/sfSVQGW/CZBt2zU6ElBClZYO7LgyWbd5OZ6mNY75z4dZZl0xq1SEkyMQ246amP4k2J3zuzL5eP6AU4XRort9cxojCHtGQf1G6FpDTw9zjo1xmJWfgMA/Nz/2n/13gSAKtq9/1ZTJ6xCMuK0af+eIhF2LzxU+wN1eyOZdDN1+S89uQ0ALYsn8emkMkF540/+CPPDfMg0oRtQ7QtL+/dv732yU5Wl1Vze9I/SCn/AM7/JfQ7Z7+HOJidyJwVO3j4va3cMfFkxvbrGr/+rlfXEInZdMlI5urRfVi9I0hr1GLUcV0A+M9/rnJ2MMAfrxrOifnZB/e6DsbujV+7yec/o55eVsb7G2v4/b8NpWtW6pGro83OSBbH1+wbkFpT7+y811aECLVE+EfpdsZ/PJsuvmZSnruelxsGU3viN/nhZWc5v+83/gP2bIMJv4Pjz/ja57Ntm5lvrqTfmle4KHMj9D0LfMlffadoGJL2n2e43Ud5pBkM3wG3A+f/bMeuEPYL17G5pQ9YEyC9C7+Zu5ZnJwWgqRaOPx3YuyOyIRZxfhmGAeEmwlGLtdXNnBTdwLRlKZyQn4PPt+/vcM6KHVw+ohcvLC/nySWfMS32EKell8G70+Eb93/tewPAO793fhaOhl6j9hYPhsGclRXk+9OYvXwrxMK8/34NFwzuyX3vOmF2RXkdJxVk82+n9KJ/3gH+Zvd8xq9fWANp2Ty8NcIZOel09TVDUy21dhbLttZyQvdMrFAV9Vaq89K/uCMO7fjS0t9cW8UDb29iTN9cfnnpIFjwG+eGxX+FSTOc5WiYZ//2P8yrDvCHS4+n26hvfOXb0dh6gIOYvePRarfy4Z4zgQre+jSbW8cf+GxAA6C+Cup3Yr35S9Yf921OOPNqUpLaPpvtAzzH1vegfAmcdiuWmcxrq3ay4NN9rcwdyhHLH8asiwBDAWeA+n5euYUt4QCLPwsw6dwislK/sJuORZz6/YUA7T7DDyj6uQMnK8rXzdMdiVkke2S+GAWUz6kKtVBe6xx5/NuDi8nJSOZHZ5/A6TXridmjwP7ckaFtQ/mydvcv/ayW+pYoY3ok88MZb2KlZENSGleEX+WGwEcw8FI466dUV2zj989/COldePnW8/GZBuGoxQ+e/JDdDZ9LuNEWaN4DGd14+L2tDO0VoF/3LB5fvJXXVpZTNKCAHhnwb2tvI8fXAlNehQX/Df0vgBMnQM16yOkDKRnUNoZZvHkX5w3MA+CHT5bSu0s6068YFn8609j7n2bQHI5hrnoBa1cTGAZldk58u5kL1vD67iuZ2uV9zt1RCgMugJYgt77qfFj48isY1jOT7v6ML91JxLV9CEcw2R3LcF5221HXrIWbYc9njM4u57yMqHNqcd+z43e1bDDDTZib34LWbpDqZ8HaSqzSx7jguCRWZp1BsNXmrKIiHn5vKwB/fHMD147rg3/jy5ybvZ1I7BLAYOG6Ss6rf5VpKwZAcgYjCnP4zeCdNISikOp8wD+ztIxfXTboy8PXl3xQzVmxg9ZIjKsGZ0FGrvO3s2Qm7DqYs1NwjuiC23lh0R5I78L/ra7k22P6YPCFD6dIM7z2/6BgGPbYH8brtG3bWY5FYelMtqWdzIwPnFD5+Tlnfl97Lq/2esJZCTc6j5ecBrbFg7Pf5INdGfyz9nIAssxWGqxUWF3DiCG19OueSffabVTGsijY/hHG8We0DS7dwRWDA0SSMunbLbPde7dye5DX1+6GuiInoOz5DLqeEK/JNJzf8V7Lli9l9cLZlOWMZezY00lP8TGkV4Bunw9rtgXPXgMpmdjffALD97mDioYaSMnk70sqeeWtd4DL226ohvQuThB96UfOVZP/Dpnd2BlscbrgmmpZ9PQScvzZDNs5mxl7TudtYyyB5u0EU/LYvLsH40/Ojz/Vwws3cnleDU8uqYdYhEdCpzoBZWf71hVwxgP9ZcEmrhldyGlZlTD/Tjjt5s+98IeJnd0d35vTILidzUkn8HDtZEjzw26nteCTZVu4YOP7bAz/DoCqUCtVoVbe37SbOcWnt3s+y4Z5j94F9ac5e2zDYHs0wM9rLuYbsx9nLmdSGWxhSK9A/ODLwsDXvAfSAlRGs/hL3WlcuSedUbbttGB0OR4GTnSeYPFfeeCNDEjzs2yLTbh+F0l2W9irWu0c0ft7wOp/8MzOngA8M38xP/mqgBKLQEvdvvt+TlkkwJKWPvH1z/97VgZbeHTxVsCGcCMRM5ngk9cR8LUyu34oT25pYkzwE3458STwpR44bbx5h/Mz53j+Y8OJfLqz3unib94D2NhfaOFuicQINUfI86c5j/f+n5wD1NHfh4+eZEn9UEg6CXx7Pxtt2vVr2xb/U3s2FauCRLPLmdz8D36/KouxvVKZdHI2LP4rtg0/TZrGxuYsZn5nJL27ZDj/5021sHOF8znp27d7r4ulkWGGSfngL3DutC99m5ds2c3dr6/jB2f145KhB3/Ae7QooHzO3mbSveqaItz96kpeSd/Jlkhu/HrbhjmbogyoiTJ472fjJy/y61ei4O/NL3ssxWrpAi1OP/8/GeIElHVz4cQJBD94AVr6QrSFSTM+4Onvj+UXsz9xwokdA8OE1gYItZ05YFvg78Wtz63g1VvO4LUln0DTHkpaGyA5g6X1E/hz99eIPDqZymg2kc1/Z9NWk4cXl/Oz7n/krBt+x3+9sI7tDTbrdtYzqKefuqYIdU0RwlGL5/85m1OPC+zbv4YbuGrGO8xIfha4fL9/2td3FwDwaGgk5779W+gxAmvPvv7T+15ditlcywO93qL87D/Qu3sum3c1cNoJXUlN8vFlzLYK7M8Ws3FeNQSzIdpCvdX2Jocb4e3fYNnwRGgk/2gYwlV/aftnqx8GqQ3cN3cPNHRnc8U6Xmt0moRP6D+QvR8CzZEYDy/aDLvSGFKwAiLnQVIq5ZvX8O8b04By6HoCK9Zvhqo/Qeh6CPQGoPQz+MYDH3D/Nafw93fWsrKyhT9dNYIBO16mtLE7G7eFnU/HpFSo/hTyTiZm2Ty8aAvs2sB5y2fT7Ru/gbQc+OR5APbE0tgc6UpsYwUfbGvgW8O60LOr33mMytXEVi2DhgznA7qhGtICbN64jh9+WoE/I50/XtIT483/gsGTwEyGqjWEKz/l6o+GEo0576dpwAPfHknh7sW0fvISv6uOQfYQ5zkO8IEcjlqEnr8F6k4Hf0+M0B7WVW8DY1/LU8Pe34kd43evrQUMJjc7v5P0xTk8P7KWW55ZDfWVvLWoHgK9+G7/ZiZX3gen3wpDrth/bMs/boRTvgOjbqB848dYe5vSguXw0H/xmx3XAwMhFKS0eRNgMKSXn7su6AllS8HOgliUTUGDFKOe3z71Ibbh4+cTTmJAegM8921Wpo7ildCkA/8BtnUz2jYY/7iR39eeQ0lsYHysxb0bnADyYg8fbzedAMYugnaa00Kalcdby9rCR1Z3CFXwyFOvQPNwiEVpMT/3UbtxPuVdT2fl9jp6d8ngly99ApEm/ueVal7uOpOyepse839DiuHsWK77+FT4eD7/kWsyLDWFYEMT1Fc6nxNt3m3qRxIWZNjOvi7SDElpWM0NVPxjGj0vbRtT0RpiT10dD0ROc9YjzgHZU6ERVMeyeHhrMuQ6R9yfP/W8MpZFj6evxkxK4a7dF1EezWH1mgCzBpZSsPJFIrbJhlhfGla9yql1bwDfcd4Xw2TyvRuA6zkt/TOm5S6EZ79FxaAbCax+ArgG2Nd6uvrjJby/pY5/v/xCp1Vj2wdOGGisgXAj8+Y8SXX/q5h0chb2yufxA/fsOYvPIl3itdrV6/n1/avZnDHC+RtrbYCGqvgB5q2+S3ms4B+82jgQgGUflRKpvJ23mvqzyjqeH2WmEIqlkRuOkpGSxJyGk1nS0of/DlXx6UZzv7MH7bpyNhnd6Z6dim1ZXPe/70OwjNP6duGycYNp+ugjamPpXFTpjFV8MnQKdHFq+ayiEnZtgvQc5/LeH6mKZlER9QNQsnkX2dVbWB0axeo9FpP2/JWYbfBucz827tkB3U/kpqc+4vkfjuMnM1/huMZPOD9jM0W9n2VO8kUsqkrhiqbZ/E/tVQBcEVpNQe52JiSV8so2H/0GDGZYdwO6HE95bRO/e805C27mu5vpkpHCuH65HRqHdaQZdiccph4KhQgEAgSDQfx+/xF73C01Ddz67EdtzWA4CXf3pv3GR0zLfZfpkauhvoqz0rfys9z3ALhsx/Vf+tiz8l/Cb7ayufcV+La+w3/umuDckJUHqX5o2vXVp836ksH08cp1ffnGI22nUho4Ry612w7+Rfp7OEchvmTI6MpE611ea/tH/aIBKbvYGO72pQ+VakR5OP+fbIp05b49pxO00trd3ispyI5oAHL7xZvuT+/fjZr6Vi4d3oPymhDfWX1jvD937/t3YcZG3mza10T7vcByLs/ad/ro34KjeaXh5IN/zXvlHg9minNUGPzcgFrDOOCO+tyMLbzT1K/9lUmpzmtpbXDuF+jND+3ZPBQc226zZ3o8x7rM0ZwcXsU1oZ9AXRkDU6rJNCP8ostC1oTzmd/Un8XNx+2rIacQ9pTRMz3Cr26awmMz78aHxfvNx+974PQuzpFbajb4e/LiwEV8sHoTDVYKl2SuJ9mwWNJcyO98P3KOOOurnCPt7AJ+2KeCh0obvvItGp+xibcyJzqtb/HXnPLVfddtf0vU7zt9dWqX9/jTnjP32/SRgtl09zURS+/GpO3XOK9nzzb+2fMpnq8fxisNJ9Ns79/NMyilmrXhvPZXZuTGn/fy5KXMaRoG/p77JvDr1t/p6gGmjwxStvRlZtaNg24nwq4vDAjtfiI01PBUYBa31VzKiSm79v1uvmBU2g5KW3q1vzI9Z9//b1Ja+2b1Nt/KXklhUpABKbv4Ld+jbFe9s224Pt769r3Ach4OjqZvci33583l6dBwnmv7Es29kowYUftLgn5SqvO30bjLaf1qGyP2617L+XXNOU7I/6K0ALS0hRHDcNab65zWrN37JjYblFLNmLRyHgu1dTf5kp3fQX1bd0dKBoSb8JsthL7wWXAgxyXvaRcs/v20Qh5Z3DYOI9ALrCjX8Gb8S0Tjup0Ie7ZCLMKPc5bwYN24Az9BoDe0hpyg9AXTct9leu05X1lfVu/B3HD68fz1+decKwyzfSt6m4k9QrwWHQ3hBqjf2X4MVk5vqHM+a2bkzeG95uOd32dKFmTnt3t/MUzOTNvMe819nfXsfGffsGtfV/Ccnk8wu2GoE3IAktOdz3TLcrpX2xTnlDCjruhLX9tFmRt4o/FEAKfV9FtPc9kT2/bb7sfnnMDFR7glpSP7b1cDyowZM7j33nuprKxk+PDh/PWvf2XMmDFfe7+jFVA2lVdy+99e23dFZldo/PqJn9KMCPd2f51bqr+6D/WoSPMf8B/Qc0zf1w+E/QpXZX9Cga+Brr5GfrX7giNYWCeWU8jk6Ov8o2HI/rclp8ePjgFnx723Rc5lZ6Zv3fchnJXntAwdbV8SGr6oXW0u65NcR7/kWt79YkiWfw3TB5nd2wXvL9/W7Pjg8C/+j36RLxkyu3VsYPUhGJJaxZnpW53wnp4DWfu6Knt3SWfmd0Yd0efrFAHl+eef5/rrr2fWrFmMHTuW++67jxdffJH169eTl5f3lfc9WgFlQ8lr/L/XNYmRiIiI2f1E5tyyf0vo4ejI/tu1obp/+tOf+P73v88NN9zAoEGDmDVrFhkZGTzyyCNulcTSnYd+hC+HxwaCVipBK7WDJ+2JiMjRYB1gbpx/JVcCSjgcprS0lPHjx+8rxDQZP348JSUl+23f2tpKKBRqdzkaFq7eelQeVw5Oi51MywHGH4iISOJxJaDs2rWLWCxGfn5+u+vz8/OprNy/i2X69OkEAoH4pbCw8KjUdWXfzjvV97Eg22wl22z9+g1FROSoGzN8sKvP3ylOM542bRpTp06Nr4dCoaMSUi66dir93nmCny6M0jMpxCWZ63nLGEe4YQ+ZKSZbW/0MSqqgS2Yq+f2G8MmWnZybvYM36nrx/d5lbE8bQOlne1iyKx1wzoLpXlDIit0mTcldGZkbZnvFDqpbnBH4Y7u14E9LpnZXJX6zldFp5ZT7R5Gblc7K3fB+bYB7BnxK0871fNJawD/DY+NnGPXvmkJdSgGjoh8zuE8+I7PreG1PIR9UmpRV7XLOusjIdQZitdZDS4hTurQwJi9KtLaMPsPPJRyN8eHajcyr64WJxQl+i2t7VLCqvJZ/tIzm2u6beTo4FEwfhVYF5bHctkkGDH59yQCWbNhOS10VO1pSyIrWMSaynFxfM6/YZ3D26FPo7s+kcvMK3llTzskpNcxpOYUTM+rZYPVmTG4TA+sWYftSeTI4HCMplVm5LzM7eCJbI124ImsNF2Rsos5K46aqSTSndsVMSsWyYqRbDVwyOJ/ays/ompXC+poWTu7Tg3U76/hkt8HIPJOipnfI7tab5qRsHlgfIJacyZD8DFaHUp0Bk027MQ2DkeYGYpEI1/hX8oE9jNfq+jAgeRcjksoIFp7LoMx6ajNP4OyWd2jdWsLq1gLuD57O+KxtjAkEeahyAFHL4AeBZawKFzA/PJgRJ/XnjAKLNVu28cEOm+Myw1xiv8//Ri/hKvMdkomypMulbAkZ1De1OGcGpOdi2BbJoW1kZmRy2pD+pFYsZY/ZhXd2mJCSSXK0kf/KW8yCYE+iBaewdHsTmakpHBcw+UHvct77ZAPlkQCtdhIrWntwzvFpvFceIS+/B03NLaQ2V/GDk5poKVvB6xRx9ZBsGj5bQbilkRW+Ybyz02m9mt7tDRYkn8OmIDRYyexK7QOGSd/IJiZ030P+iaOZV27y8ZZKTvN9Sq7ZxD+aT4HkDLJ9ESwzmb6pIS6MvUd1wZlk+rvyt+W1WL4UTvBbBHLz+WhrFb/LmcuToRGsC+cxsItNYbcA87c0MySjlu55vfigEo5LDmE21WBiU0Y+jXYaJKXx3ZPCfFhWzzezVxEsOJ1asvls+w6+PTiNvD4nMvuFJ3gyNJIx6dvpl9FMUq8RfFCVzNZdjZCewwmxrRyXESG/SyavbrHpkR5jY0vAOZ07OY3Bx/Vgzdbt/KRLCSUNBYTTuzM2s4qtta3ssdKxU7IojfWHaAvXFFTQreUz6rP6ssPXm2jddq7gbd7JvZp/lqVzeuYORuU0saK1Bxl2I2/UFYLpY0jvXFbvqHP+p8ONXJ61jjm7ezMkYw8D87Mwdq1jkTGa3hkRSisjYMOYXqlcmL6OqpoaeqVH6UMFqzOL+N/KAfSObKMyqTdDza20dhvMiuoo4XAETB+9rJ2kGDFOHdiPFzdBfmQ7Z6dv4YV6Zx6k8V0q6Z6dRp8si5OaPuIPFcO4KvsTUrsdz8zKgVSFWmi1kzAyu/LIiUu45ZPjaYgl0zMnjUHh1SRlduGNxgHQWk+OHaLOyGZsTohtQYvemTa7rQzSWndTb6ViYTA8dSdV2UNZ35xNUxRSY820RqMM8ZWzmhOc9yTSwrkZm3mn6QROS/+MrNweVDT7uKxbFffuHM7Awnz8NLBsczXHWeWM7tJIcqCA9XUmJ/Q7ARqqeHZdjHOyyilrSmFL6knxs5rGdWuhzuxCZqArfTMjzN4Mo3JbySpfyMWZG+g39lJmf9pMpHoDGyLd6ZWTTnayRUlTbyrsrtBYzWUppZyQXMvToRHUWJlgQ4YZ5sQcg83RbtS3xJzPy1hr25lRewCD/vkBbjx7ANtXvsPKrZX0OfUSajcuIa+gkCc+acAALs2rYV2txWa7J76MXK4sqKSlNUxFZRUfp55KONzK4Nh6zh83kuomm4rt22iJwardBq2k0s0IkdfFT59YGeVNSYSsVL7ds4qdPS/g3Q8/oTm5C1XhVPD3YIi/lbSalaxsySOSlE1+aoRBxjb6jL6YPoXHH/H9bEe4Mkg2HA6TkZHB7NmzmTRpUvz6KVOmUFdXx5w5Xz6FMhy9QbIiIiJy9Hh+kGxKSgqjRo1iwYJ9379hWRYLFiygqOjLz92WY5dt2wSbIwSbI8fUN8iKiMihca2LZ+rUqUyZMoVTTz2VMWPGcN9999HY2MgNN9zgVkniokjM5pH3nUHKxef2JyXJvdkLRUTEfa4FlKuvvpqamhruvPNOKisrGTFiBG+88cZ+A2clcST7FEpERMShqe5FRETkX8LzY1BEREREvooCioiIiHhOp5gHRY590ZjFO+trADj3pO4k+ZSdRUQSmfYC4gmWDat3BFm9I4jV6UZFiYjIkaYWFPEEn2lw2gld48siIpLYFFDEE3ymwdh+Xd0uQ0REPEJdPCIiIuI5akERT7Btm+ZIDID0ZB+GoW4eEZFEphYU8YRIzOahhVt4aOEWIjGNkhURSXSdsgVl7+S3oVDI5UrkSAlHLVoaGwDn95qSpOwsInKs2bvfPphJ7DtlQKmvrwegsLDQ5UrkaPhPtwsQEZGjqr6+nkAg8JXbdMrv4rEsi4qKCrKzs4/4WIVQKERhYSHl5eX6np8O0nt3ePT+HR69f4dO793h0ft38Gzbpr6+np49e2KaX91S3ilbUEzTpHfv3kf1Ofx+v/7QDpHeu8Oj9+/w6P07dHrvDo/ev4PzdS0ne6mjX0RERDxHAUVEREQ8RwHlC1JTU/nVr35Famqq26V0OnrvDo/ev8Oj9+/Q6b07PHr/jo5OOUhWREREjm1qQRERERHPUUARERERz1FAEREREc9RQBERERHPUUD5nBkzZnD88ceTlpbG2LFjWbZsmdsldQqLFi3isssuo2fPnhiGwcsvv+x2SZ3K9OnTGT16NNnZ2eTl5TFp0iTWr1/vdlmdwsyZMxk2bFh8gqyioiJef/11t8vqtO6++24Mw+C2225zu5RO4de//jWGYbS7DBw40O2yjhkKKG2ef/55pk6dyq9+9Ss++ugjhg8fzoQJE6iurna7NM9rbGxk+PDhzJgxw+1SOqWFCxdSXFzMkiVLmD9/PpFIhAsvvJDGxka3S/O83r17c/fdd1NaWsqHH37Ieeedx+WXX86aNWvcLq3TWb58OQ899BDDhg1zu5ROZfDgwezcuTN+ef/9990u6Zih04zbjB07ltGjR/PAAw8Azvf9FBYWcsstt/Af//EfLlfXeRiGwUsvvcSkSZPcLqXTqqmpIS8vj4ULF3LWWWe5XU6nk5uby7333suNN97odimdRkNDAyNHjuTBBx/kt7/9LSNGjOC+++5zuyzP+/Wvf83LL7/MihUr3C7lmKQWFCAcDlNaWsr48ePj15mmyfjx4ykpKXGxMklEwWAQcHa0cvBisRjPPfccjY2NFBUVuV1Op1JcXMzEiRPbfQbKwdm4cSM9e/akX79+XHvttZSVlbld0jGjU35Z4JG2a9cuYrEY+fn57a7Pz89n3bp1LlUliciyLG677TZOP/10hgwZ4nY5ncKqVasoKiqipaWFrKwsXnrpJQYNGuR2WZ3Gc889x0cffcTy5cvdLqXTGTt2LI899hgnnXQSO3fu5L//+78588wzWb16NdnZ2W6X1+kpoIh4SHFxMatXr1Y/dgecdNJJrFixgmAwyOzZs5kyZQoLFy5USDkI5eXl3HrrrcyfP5+0tDS3y+l0Lr744vjysGHDGDt2LMcddxwvvPCCuhiPAAUUoFu3bvh8PqqqqtpdX1VVRUFBgUtVSaK5+eabmTt3LosWLaJ3795ul9NppKSk0L9/fwBGjRrF8uXL+ctf/sJDDz3kcmXeV1paSnV1NSNHjoxfF4vFWLRoEQ888ACtra34fD4XK+xccnJyOPHEE9m0aZPbpRwTNAYF5wNu1KhRLFiwIH6dZVksWLBAfdly1Nm2zc0338xLL73E22+/Td++fd0uqVOzLIvW1la3y+gUzj//fFatWsWKFSvil1NPPZVrr72WFStWKJx0UENDA5s3b6ZHjx5ul3JMUAtKm6lTpzJlyhROPfVUxowZw3333UdjYyM33HCD26V5XkNDQ7sjhq1bt7JixQpyc3Pp06ePi5V1DsXFxTzzzDPMmTOH7OxsKisrAQgEAqSnp7tcnbdNmzaNiy++mD59+lBfX88zzzzDu+++y7x589wurVPIzs7eb6xTZmYmXbt21Riog/DTn/6Uyy67jOOOO46Kigp+9atf4fP5uOaaa9wu7ZiggNLm6quvpqamhjvvvJPKykpGjBjBG2+8sd/AWdnfhx9+yLnnnhtfnzp1KgBTpkzhsccec6mqzmPmzJkAnHPOOe2uf/TRR/nud7/7ry+oE6murub6669n586dBAIBhg0bxrx587jgggvcLk0SwPbt27nmmmvYvXs33bt354wzzmDJkiV0797d7dKOCZoHRURERDxHY1BERETEcxRQRERExHMUUERERMRzFFBERETEcxRQRERExHMUUERERMRzFFBERETEcxRQRERExHMUUERERMRzFFBERETEcxRQRERExHMUUERERMRz/j/1md9Ttgg6WAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "higher = ps_weighted.power.max() > ps_counts.power.max()\n", + "\n", + "plt.plot(ps_counts.freq, \n", + " ps_counts.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if higher else 0))\n", + "plt.plot(ps_weighted.freq, \n", + " ps_weighted.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if not higher else 0))\n", + "plt.axvline(freq, ls=\":\", alpha=0.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "76d8e1b2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(2, 1021.5756611715042)" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiYAAAGjCAYAAAAYW96wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABP+0lEQVR4nO3deZwcVbk38F91z0ySCVkJBCJBRC56B0wCSYgoVwHDRVQUlyuKS+AqvurABfNeveT6yqIoKoqoaXYwLAbCloQACYQhJEC2yYTJNtkm6ySzb93T3dNb1Xn/qJlOz/RW1V3dp7r79/185pPepuukp7rqqXOe8xxFCCFAREREZAMO2Q0gIiIiGsTAhIiIiGyDgQkRERHZBgMTIiIisg0GJkRERGQbDEyIiIjINhiYEBERkW0wMCEiIiLbYGBCREREtsHAhIiIiGyDgQkRERHZRt4Dk97eXsyaNQszZszA+eefj0cffTTfTSAiIiKbUvK9iJ+qqggGg6isrITP58P555+PLVu24OSTT85nM4iIiMiG8t5j4nQ6UVlZCQAIBoMQQoALHBMREREAlJn9hXXr1uHee+9FXV0dWlpasHTpUlxzzTVDXuNyuXDvvfeitbUV06dPx9///ndcdNFF0ed7e3vx2c9+Fvv378e9996LSZMmGd6+pmlobm7GmDFjoCiK2eYTERGRBEII9PX1YcqUKXA4UvSLCJNef/118ctf/lK8/PLLAoBYunTpkOefe+45UVFRIZ544gmxa9cuceONN4rx48eLtra2uPdqbW0Vn/rUp0Rra2vS7QUCAeF2u6M/DQ0NAgB/+MMf/vCHP/wpwJ+mpqaUcUZWOSaKosT1mMyZMwezZ8/GwoULAeg9HFOnTsXNN9+M2267Le49fvrTn+Lyyy/HN77xjYTbuPPOO3HXXXfFPd7U1ISxY8dm2nQiIiLKI4/Hg6lTp6K3txfjxo1L+jrTQzmphEIh1NXVYcGCBdHHHA4H5s6diw0bNgAA2traUFlZiTFjxsDtdmPdunX4yU9+kvQ9FyxYgPnz50fvD/7Hxo4dy8CkSKiawAdHewAAF5w5AU4Hh+iIiIpVujQMSwOTzs5OqKqKyZMnD3l88uTJ2LNnDwDgyJEj+NGPfhRNer355pvxiU98Iul7jhgxAiNGjLCymWQzqibw7v5OAMC0M8YzMCEiKmGWBiZGXHTRRaivr8/3ZsnGHApQNWVs9DYREZUuSwOTSZMmwel0oq2tbcjjbW1tOO2006zcFBWRMqcDV57H/YOIiCyuY1JRUYGZM2eipqYm+pimaaipqcHFF19s5aaIiIioCJnuMfF6vWhsbIzeP3ToEOrr6zFx4kSceeaZmD9/PubNm4dZs2bhoosuwv333w+fz4cbbrghq4a6XC64XC6oqprV+xAREZF9mZ4u/M477+Cyyy6Le3zevHlYtGgRAGDhwoXRAmszZszA3/72N8yZM8eSBns8HowbNw5ut5uzcopEKKLhsfcOAgB+eMnZqCjj2pJERMXG6Pk772vlZIuBSfEJRTS41ui9cNWXncPAhIioCBk9f+d9Vg7RcOVOBdd/6qzobSIiKl0MTEg6RVEwYXSF7GYQEZENsM+ciIiIbIM9JiSdqgnsOO4GAHziQ+NY+ZWIqIQVTGDC6cLFS9UE1uxpBwBUnT6WgQkRUQnjrBySLqJqWLWrFQDw+fNOQ5mTI4xERMWGs3KoYJQ5HfjStCmym0FERDbAS1MiIiKyDQYmREREZBscyiHpwqqGRe8fBgBc/+mzUM4cEyKiksXAhKQTAvAGI9HbRERUuhiYkHRlDgXf+eSZ0dtERFS6CiYwYR2T4uVwKDh1zEjZzSAiIhtgHRMiIiLKOdYxoYKhagJ7Wj0AgI+fxsqvRESljIEJSadqAm/uagMA/MupYxiYEBGVMAYmJJ1DAT4yaXT0NhERlS4GJiRdmdOBay74kOxmEBGRDbCSFREREdkGAxMiIiKyDQ7lkHRhVcMzG48AAL77yQ+zJD0RUQkrmDOAy+VCVVUVZs+eLbspZDEhgF5/GL3+MEvSExGVOBZYI+k0TaDFEwAAnD52JBycmkNEVHRYYI0KhsOh4EPjR8luBhER2UDBDOUQERFR8WOPCUmnaQKNHV4AwDmnnMShHCKiEsYeE5Iuogm8tr0Fr21vQUQrqJQnIiKyGHtMSDpFAc6YMCp6m4iIShcDE5Ku3OnAf8yaKrsZRERkAxzKISIiIttgYEJERES2waEcki6salhS2wQAuHb2VJakJyIqYQVzBmBJ+uIlBNDRF0RHX5Al6YmIShxL0pN0mibQ1OMHAEydUMk6JkRERYgl6algOBwKPnzyaNnNICIiGyiYoRwiIiIqfuwxIek0TeBwey8A4KxTx3Moh4iohLHHhKSLhMNYvvhBLH/2IUQiEdnNISIiidhjQtIpgR5MVlv122EvUDFBcouIiEgWBiYkXbnTgevGbtPvsIYJEVFJ41mAiIiIbIOBCREREdkGh3JIurCq4eW+TwAAvqZqKJfcHiIikoeBCUknADRH9CqAhVWHmIiIrMbAhKQrcyi4evTu6G0iIipdBROYuFwuuFwuqKoquylkMYei4JyK7sE7chtDRERSFUzya3V1NRoaGlBbWyu7KURERJQjBdNjQsVLEwLHw3qOyYc0UTjRMhERWY6BCUkX0QRe9Oqzcqo1gQrJ7SEiInkYmJB0CoCTnX79NlNMiIhKGgMTkq7c6cD3x36g32FJeiKiksazABEREdkGAxMiIiKyDQ7lkHRhVcMrfecBAL7MkvRERCWNgQlJJwAcjYzXb7MkPRFRSWNgQtKVORR8fvS+6G0iIipdDExIOoei4F8rOgbvyG0MERFJxeRXIiIisg32mJB0mhBoj5wEADiVJemJiEoaAxOSLqIJPNs3HQBL0hMRlToGJiSdAmCsI6DfZooJEVFJY2BC0pU7HfjBuDr9DkvSExGVtII5C7hcLlRVVWH27Nmym0JEREQ5UjCBSXV1NRoaGlBbWyu7KURERJQjHMoh6SKawOvejwMAvqAK7pRERCWM5wCSThMCB8InR28TEVHpYmBC0jkVBXMrG/XbrPxKRFTSGJiQdE6Hgk+MaNPvMDAhIippBZP8SkRERMWPPSYknRACXWolAOBkIcA+EyKi0sXAhKQLawJPey4AAFSrLElPRFTKGJiQLYxSwrKbQERENsDAhKSrcDrw4/Gb9TtlTHsiIiplPAuQDbB2CRER6RiYEBERkW1wKIeki2gCq33nAgCuYEl6IqKSxnMASacJgT2hUwAAn2NJeiKiksbAhKRzKgo+O+qgfpuVX4mIShoDE5LO6VBw4cgW/Q4DEyKiksbkVyIiIrIN9piQdEIIeNQRAICxLElPRFTSGJiQdGFN4AnPLAAsSU9EVOoYmJAtlCuq7CYQEZENMDAh6SqcDtw0fqN+hyXpiYhKGs8CREREZBsMTIiIiMg2CmYox+VyweVyQVWZi1BsIprAGt85AIDLWJKeiKikFUyPSXV1NRoaGlBbWyu7KWQxTQjsDE3GztBkaCxJT0RU0nhxStI5FQWfGnlEv83Kr0REJY2BCUnndCiYM+qYfoeBCRFRSSuYoRwiIiIqfuwxIemEpqFfKwcAjGJJeiKiksbAhKQLawIPuy8CwJL0RESljkM5REREZBvsMSHpKpwO/GzC+/qdsv+R2xgiIpKKPSZERERkGwxMiIiIyDY4lEPSRTSB9/wfAQBcwpL0REQljecAkk4TAh8EpwAAPsWS9EREJY2BCUnnVBRcNLJJv83Kr0REJY2BCUnndCj49Kij+h0GJkREJY3Jr0RERGQb7DEh6YQQCAs9Ri5nSXoiopLGwISkC2sCrt6LAbAkPRFRqeNQDhEREdkGe0xIunKHgurxG/TbTg7kEBGVMgYmJJ2iKKhQtME7chtDRERScSiHiIiIbIM9JiSdqgls7D8TAPBJTcApuT1ERCQPAxOSThUaNgemAgBmMzAhIippDExIOoei4IIRzdHbRERUuhiYkHRlDgWXVh7S73BWDhFRSWPyKxEREdkGAxMiIiKyDQ7lkHQhVYOr59MAgOqIxpL0REQljD0mREREZBvsMSHpyh0K/s+4zfptJr8SEZU0BiYknaIoqHSEB+/IbQwREUnFoRwiIiKyDfaYkHSqJrCl/wwAwCxWfiUiKmkMTEg6VQisD3wYAHABAxMiopLGwISkcygKzq9oi94mIqLSlfcck6amJlx66aWoqqrCtGnT8MILL+S7CWQzZQ4FV4xuxBWjG1HGWTlERCUt7z0mZWVluP/++zFjxgy0trZi5syZ+MIXvoDRo0fnuylERERkM3kPTE4//XScfvrpAIDTTjsNkyZNQnd3NwMTIiIiMj+Us27dOlx99dWYMmUKFEXBsmXL4l7jcrlw1llnYeTIkZgzZw42b96c8L3q6uqgqiqmTp1quuFUPEKqhoW9n8TC3k8iFNFkN4eIiCQyHZj4fD5Mnz4dLpcr4fNLlizB/Pnzcccdd2Dr1q2YPn06rrzySrS3tw95XXd3N77//e/jkUceSbm9YDAIj8cz5IeKT1g4ERacj0NEVOoUIYTI+JcVBUuXLsU111wTfWzOnDmYPXs2Fi5cCADQNA1Tp07FzTffjNtuuw2AHmxcccUVuPHGG/G9730v5TbuvPNO3HXXXXGPu91ujB07NtOmk40IdzM8/7weADD2huehjBovtT1ERGQ9j8eDcePGpT1/WzorJxQKoa6uDnPnzj2xAYcDc+fOxYYNGwAAQghcf/31uPzyy9MGJQCwYMECuN3u6E9TU5OVTSYbUBQF45xBjHMGoXC6MBFRSbM0MOns7ISqqpg8efKQxydPnozW1lYAwPvvv48lS5Zg2bJlmDFjBmbMmIEdO3Ykfc8RI0Zg7NixQ36IiIioOOV9Vs4ll1wCTWOCI52gagLbAvpMrems/EpEVNIsDUwmTZoEp9OJtra2IY+3tbXhtNNOs3JTVERUIbC2/2wAwPkMTIiISpqlQzkVFRWYOXMmampqoo9pmoaamhpcfPHFVm6KiohDUfDxig58vKKDJemJiEqc6R4Tr9eLxsbG6P1Dhw6hvr4eEydOxJlnnon58+dj3rx5mDVrFi666CLcf//98Pl8uOGGGyxtOBWPMoeCq0bv0++wJD0RUUkzHZhs2bIFl112WfT+/PnzAQDz5s3DokWLcO2116KjowO33347WltbMWPGDKxatSouIdYsl8sFl8sFVVWzeh8iIiKyr6zqmMhgdB40FRBPC/Dst/Tb814BRo6T2x4iIrKc0fN33mflEA0XUjU80XsRAOA/IxoqJLeHiIjkYWBCttAvymU3gYiIbICBCUlX7lDwvbEf6LeZ/EpEVNIYmJB0iqJgktM/eEduY4iISCpL65gQERERZaNgAhOXy4WqqirMnj1bdlPIYqomsCM4GTuCk6FqBTVJjIiILFYwgUl1dTUaGhpQW1sruylkMVUIvOU/B2/5z2FgQkRU4phjQtI5FAUfLe+K3iYiotLFwISkK3Mo+PJJe/Q7nJVDRFTSCmYoh4iIiIofAxMiIiKyDQ7lkHRhVeAp90wAwPdVDawBS0RUuhiYkHQCAh5tpH6bk3KIiEpawQQmLpcLLpcLqqrKbgpZrMyh4NtjtkVvExFR6SqYHBPWMSleDkXBaWVenFbmhYOBCRFRSSuYwISIiIiKX8EM5VDx0oTA3tApAICPaYLRMhFRCWNgQtJFNIFVvnMBAB/VBCokt4eIiORhYELSKVBwZlmvfpspJkREJY2BCUlX7lTw9TG79DtODuQQEZUyngWIiIjINhiYEBERkW0UzFAOC6wVr7Aq8KznAgDAt1mSnoiopBVMjwkLrBUvAYEutRJdaiVL0hMRlbiC6TGh4lXmUPCNk3ZEbxMRUeliYELSORQFU8s9g3fkNoaIiKQqmKEcKmYcvyEiIh17TEg6TQgcDE0EAJzNkvRERCWNgQlJF9EEVvj+FQBQzZL0REQljYEJSadAwZQyPceEJemJiEobAxOSrtyp4Nox+qwclqQnIiptPAsQERGRbRRMYOJyuVBVVYXZs2fLbgoRERHlSMEEJqz8WrzCqsBiz3Qs9kxHWNVkN4eIiCRijglJJyDQpp6k32ZJEyKiksbAhKQrcyj4ykkN0dtERFS6GJiQdA5FwdnlPYN35DaGiIikKpgcEyIiIip+7DEh6TQh0BQeDwCYypL0REQljYEJSRfRBF72ngeAJemJiEodAxOSToGCU5w+/TZTTIiIShoDE5Ku3Kngu2Pr9TssSU9EVNJ4FiAiIiLbYGBCREREtsGhHJIuHNGwrO98AMA1qoZyye0hIiJ5GJiQdAICxyLj9NssSU9EVNIKJjBxuVxwuVxQVVV2U8hiZQ4FXxy9J3qbiIhKV8HkmHB14eLlUBScW9GFcyu64GBgQkRU0gomMCEiIqLiVzBDOVS8NCHQEhkDADidJemJiEoaAxOSLqIJPN83DQBL0hMRlToGJiSdAgXjHf36baaYEBGVNAYmJF25U8EN47bqd1iSnoiopPEsQERERLbBwISIiIhsg0M5JF1EE3jVWwUA+JIquFMSEZUwngNIOk0IHApPiN4mIqLSxcCEpHMqCv69cr9+m5VfiYhKGgMTks7pUHDeiHb9DgMTIqKSxuRXIiIisg32mJB0mhDojIwGAExiSXoiopLGwISki2gC/+ybAYAl6YmISh0DE5JOAXCSI6TfZooJEVFJK5jAxOVyweVyQVVV2U0hi5U7Fdw4rla/w5L0REQlrWDOAtXV1WhoaEBtba3sphAREVGOFExgQkRERMWvYIZyqHhFNIFV3o8BAD7PkvRERCWNPSYknSYE9ocnYX94EkvSExGVOF6cknRORcFllQf026z8SkRU0hiYkHROh4IZI1r1OwxMiIhKGodyiIiIyDbYY0LSCSHQq44EAIwXAuwzISIqXQxMSLqwJrDIMxMAUK2yJD0RUSljYEK2MEKJyG4CERHZAAMTkq7C6cBPx2/S75Qx7YmIqJTxLEBERES2wcCEiIiIbINDOSRdRBOo8Z0DAPgcS9ITEZU0ngNIOk0INIQmAwAuY0l6IqKSxsCEpHMqCv5t1GH9Niu/EhGVNAYmJJ1TAWaNPK7fYWBCRFTSmPxKREREtsEeE5JOCAGvptd7PYkl6YmIShoDE5IurAk85p4NgCXpiYhKHQMTsgUHOBuHiIgYmJANVDgduGXCev0OS9ITEZU0ngWIiIjINgomMHG5XKiqqsLs2bNlN4WIiArE8vrj+MWL2+DuD8tuChlUMIFJdXU1GhoaUFtbK7spZLGIJvC2/2y87T8bEZW5JkRkncfePYTdLX1YuaNFdlPIIOaYkHSaENgWPB0AcAlL0hNRDniDEdlNIIMYmJB0TkXBJ0ce1W+z8isRUUljYELSOR0KLh7VpN9hYEIAjnb5sflwN66efjpGlDllN4eI8oiBCRUeTQMcBZMeRRmoXrwVANAfiuB7F58ltzFElFc8upN0QgjsDk7CgdB4iHQ5JvWLgSevBtp356dxJNW+Nq/sJhBRnjEwIel6+iOY1/ZNfLv1OoTTzcrZ9DAQ8gK1j+encURElFcMTEi6Tn8G2fIhn/UNISIi6RiYkHRlioJTnV6c6vSi3MnkV7IHbzCCJ947hD2tHtlNISopDExIOkVRoAD6j8LAhOxh6dZjWPrBcfz2NeYz0VBpc+EoKwxMiEpYRNUK/iDb7glgwcs7sOlgl6Xvu6e1DwDQ62cpczqh1x/CD57cgmc2HpHdlKLFwISkUzWBPq0CfVoFVK2wT5KFxBMI49pHNuL3K/fIbkpSAun3h7+/3Yidx924mz0bSXmDERzt8stuRlF4se4YOvqCWFLbJLspRYuBCUmnQcAvKuAXDEzyad2+DoQiGtYfsLanId88AfZopHP7sp2oXrwVje2cfp2tAu9gLAgMTEg6BxRUKiFUKiETJel5dCAyav9AQLL1SI/klhClx8qvJJ3ToWCMIxS9TUREpYs9JiRdZhNxGMAQERUj9piQdEKcSHEUQjDkyDFfMILXtregyxeS3RQiojgMTEi6iCbQrp4EAAirAhWS21PsXqw7hhfrjsluhnRhVcM7eztQNWUsPjR+lOzm5IWRWU6UO32BMH7zagPmfORkfH3mGbKbY1scyqGC5+4PF3wtjnyqYwIkAKBmdxv+VrMfv3ud04wpP97c1YbdLX1YtP6w7KbYGgMTkq7MoeAUpxenZFCSfn1jJ7772CY8vO5gjlpnTGO7F/et3ocWd7/UdpiihoDug0B/YQcqmQ79fXC0FwBKqr6HwoHSrGVTnNofymBdsBLEwISkUxQFDug7o9mS9E9uOAwAeG17i+XtMuO+1XuxZk87Hl4rN0AyxdsGqGHA2y67JUREUQxMqEDZa+imqVvvKdl+rFduQ8yw10dIRASAya9kA6om4NXKo7edkttDVKyY/EqFgD0mJJ0QAj4xAj4xwkRJ+tIYK2eJfqI8EQLoOgCoucsD4bfZGAYmBrj7w3hnbzuCe94EDq2T3Zzisu05KCt/gVFKCKOUEBzZZJYVmUOdPnztgffx9EAeDVG2Ci35td0TwJbD3fmZdbd3JfDifwIbFuZ+WwMiqoa6Iz3oD6l522YhYGBiwC+X7sCfVzVg0fLVwJu/AiJFWJiqtwlo3ZH/7W58EGWKwFhHCGMdIZSZnJVTzBa9fwiaAJ7fUro1R3J5PuLVq/394MktuGtFQ36muG99Sv9319Lcb2vAUxuO4M5XduGelZyyHouBiQFHuvyAUPFe/4f1B7QinPK19MfA8pv0AIVKnj8UKaypz2SIqRyTSBDY9DDQuvPEY0c2AIfft75haew87s79RvJwXB9+2bVqZyuAE1PXc6L3aMFdTDMwyVTXAWDVAqCzUXZLrBEaWA6994jcdpAt3PbSDvzoqTo0ddu/xofZKea50NzbD9eaxoL4vIbwdgAbXID7ePxz9f8E6hcDy6v1+5EQsOo24I3/BYLe/LYzke5DwJ7Xc9utlkOaJtAfzvEQTtNmYMn3gGU/ye12LMbAJFMrbgGOrC+4P3jWNBWoexI4VmfZW4aFgjZ1NNrU0QhFNIO/VZgHoyE0yePKKc7nhzp9AIDtx/JwpVoEHninEat2tmLh2wV2obL6dmD788ArN8U/1zPsIkULn7gdtkFv2gvXA2v/ADTWoKHZg5fqjiGiGj1+yBF71Hp9Zx5qL+1bpf/bVVj7JQOTTAX79H/VwuoiS8atjsBK37nwhuJP+Ac7vLhrxS7sbe0DDqwBtjwBvDbf4hYoKJWZNgD0q71FXwI2PCC7Jbr9qwFfl+xWFKxtTXoA19DikdyS1OKSX9sb9H/93flvjFU6duNXy3di0frDeHd/p+zWGPbPjUdlN8G2GJiYUMzr3v6m+3I80PtJ/GVLYOgTQmDhivXYcqAd963eC7it/zKVQWCS04dJTh/KTO6RhTbLIGr780DYD2xfkvdNJxz5ePtu/eqTCEB/SMXv9k/FKt+/yG6KIYM9rUe6fJJbYpxaoENQ+cDAhAAAe0OnAAA2twwbXjjyPvYfbgK6D6K5N5DgN7PnUASc0H+M5wsUaEAyKJKbzzIrTZtSP79+od71n8cDKg/dyYUiGsImhy6MJr/W7GnDhp6xcPVenEnThurvBTr2Zv8+VDIYmBghSniOect22S0oWblK6sw4rtjxAnBwLdC5z9L2FL2GV4DNj1r6lqGIhh89vQU3L/4AWg6K8Hn6081QMbHN1/4v8PKPgLaGjNuTcmu9TYC/syCO0/m/nCrMCzgGJumsX6jPvAn5ePWWI6pQ4BPl8InyvFY63dPqKay1beyiSKbL56VoFwC8+2fgg2fM9RrUPqYHNEm0eQLo8oZwvLcfwYFhjKNdftTsbjP8/2rq9qNPqzDepkxPcoOJl8e3ZPb76TRt0vOjCmAxSpH0DsXiWjnp7HgBwPf1aXUM43JChQKvNkK/rQlTO2U2nQo/f0HvDXrmh3MwblR55m9EmenvBWp+DXz8C8A5c6U2ZePBLnzy7JNzu5GQwSm2nY3A1qf121VfNvz21Yu3AgAqyhz4t385JenrhBC4+dkPcKTLj7N6r8TfT11heBu2ZoeZQtnqbQLKK4HROd4XbU7KqfarX/0qJkyYgG984xsyNp+xfCa/rtvXgRe2lEaxMwcERiphjFTCUkrSu/3huMeEELhn5W48/t6hvLfHTgz/OY5s0KfPm7HlceB4HVDzG9PtimXFHvPb12xUedNoAJNEY3vy31egoKHFoxeNBHA4PCGrbZGF/N3Aku8Cz3xNdkukkxKY3HLLLXjqqadkbLpg3PvGXjy14Qj2t/XJbsoJORrDLVMExjmCGOcImihJn9t+0MZ2L9Y3dmHZBwkKT5W6niNAc/2J++F+vfDWqgVAyESBsaCN9u18sEHXvYBAWM1tQwJhFbWHuxGM2D/nQ6rhh7pcFLe0QfHBTEgJTC699FKMGTNGxqYLjrs//mo+X17Z1oy17aNOPNDZCAQKr+CWEML07IVITK7LxoPFVd/DzLEqYbrC2j/oBQYHq4VGgieeMzXbSOJBM9wP+HuQy2ihzRMo7BwmLbNjz99q9uPXKxqkFJuzQxVgyp7pwGTdunW4+uqrMWXKFCiKgmXLlsW9xuVy4ayzzsLIkSMxZ84cbN682Yq2SmeDC568ae7tx6PrDuJPu8cNe6I+p9uNOxG2NQBb/gGEM59ee9/qffj6g+vR3pfZe/z2td043lsE49dW82TZm6SkP/zkLD912U+B/W9m3WvTFwjHJZt29OmB2g+f3IJfLt2JPaFJWW1DBgGR+juX4g8zWOTsnb0dKbfR1OW1tkfYaCAV8ACNbyXo3cvzEb6UTigmmQ5MfD4fpk+fDpfLlfD5JUuWYP78+bjjjjuwdetWTJ8+HVdeeSXa2zPLmA4Gg/B4PEN+Sok3GMnf7IFh2825Dfo+FBIOtKuj0a6ORmh4z8YbC4C6RcDu4TMU9CsjIxdI7+ztgBDA69szLwHd7ZVb4fc3rzZgwcvbLZkaamZ3yukFqMyr2+6D+r+BzI8nO4+7cd2jm/CX1UOnT/9h1Z4h9wdrBFGMrgP46d+ex/xFa9Drt+i7ZXS/3viAnte09UlrtkuWMx2YXHXVVbj77rvx1a9+NeHz9913H2688UbccMMNqKqqwkMPPYTKyko88cQTGTXwnnvuwbhx46I/U6dOzeh9jNA0kZOaANn485v7ijcBc/vz0ZsCypDk4jV72lF7uFufuQEA7TZKTpRg86Fu7DzuQYtHfmE2IYAX+s5HbXPmw4yaJrDTUwmfJmE2VEivDpptMvuLdccAAGuG9Qwc7ZK/kF8g14vDZev9+/UdydcR7WHKm70r9X+3PZf+tZoGqCcu0pbUHsXy+mbz29Q0vfRE664UL8pFoF6YQ1uW5piEQiHU1dVh7twTU/8cDgfmzp2LDRs2ZPSeCxYsgNvtjv40NeVmpoo3GMFXXO/jK673bRecZPRFsIrRjyKLXp1yaDjZ6cPJTh/KnQraPAHct3offr0i84JMZphaCt4qNhsL/yBwetLnAmEVO4+7Mfi12BY6DU95LsSv38t89shbu9uwoGEq/m/HFzJ+j4y9d3/+t2khtz+c8uv28tbj+NYjG7HzeOJ8sKR73uBFQL5tf0HOdtMRQp8ls/ibgKYiFNHwTKbr2zRv1UtPNK42uGl7nYPyzdLApLOzE6qqYvLkyUMenzx5MlpbW6P3586di//4j//A66+/jjPOOCNl0DJixAiMHTt2yE8uPLLuYPR2X46HMUIRrXB2vP4eQ69pefI/cfydzHrFFEVfL6cMAgoUqQm/pao+mDgwUQDctaIBC17egRe95wMAutXKrLe3br/ey3A8Mi7NK3PguHUrY5tj8DufImjdedyN7z6+CfesjOlB7O/Wr8hjqJrA88nKDQgt8YXE3pUQQuS/t2XPqwkf7vGdGOLpl9EDFAnqeVR+vXibls0xO9Br+KV/6fk0bnyqDr58DKfblJRZOW+99RY6Ojrg9/tx7NgxXHyxBesxZMlId6IVdUyOdvlx3aMb8cA7BzL6/bCqoS0P3fmDi2IZEal/Hj86eAl+/LbFB7VIqoRT6wM7f+hEPk/OOzQkBqamZuUA0SvvN3znWt0Si9/PuA61En4RO4wkgNV36InWRggBqIkD6Fz2wC0dmL5+rKdfn74fcAOLvwXU3Bn32oTfYQFg3Z+AnoN6gBIr7Medr+zCfzy0wcDxMPf7b+wid4VyHZfOpkD6VIS3/R9FmyeATYeKazagGZYGJpMmTYLT6URbW9uQx9va2nDaaadZuSnbEkKg9nA32pMEDyu2NyMY0bBqZ2vC59P546o9+OGTW/STRdALvP4LYOfL2TQ5oVeTJorGHyFCMbFIJkmzqlDgF2Xwi7KhK266j6X9XStWFxYC2N/Wh2sf3oh737D3YmMye9qSBuY2G5ZKpyMyEj9s/Tp2BGOOSSE/cPAdPdE6jeX1x3H9fUtwePs6fYVoWTobgb6B48jBtQZ/SUDpPqDnTUTig4+tR3sBADW7E0xWKIC/c9omDuSLHA2Pw1OeC/KT5B/jaHi84dcmrHCgaVnNUCwUlgYmFRUVmDlzJmpqaqKPaZqGmpoaW/SKZMvIKaHuSA9+vaIBd61o0Hei5vohO1IkSXGjUEQztE7MxoPdAIA3G9r0JK6mTcD7fzXSfFP6PL0Jp1I2+Mfjhb7zERHWHaRUKOjTRqJPGzn0M9DM1R5JJ9WnO5jI+O7+TkQSHBEK4JiccxqA9f1nolMdncetmgzEIqlneDyz8Qj+88iV0OKCrCTbCXr0ei3BPn1/bKzBY2v3ocvtQ5c6Wl+jZfg7JWtybwb5Cf5u879ThCwJyH1dwJNXAwCq27+CF/o+gUfWxvRcp9mGLXptVt0GPP3VhPtdMTEdmHi9XtTX16O+vh4AcOjQIdTX1+PoUf1LN3/+fDz66KN48sknsXv3bvzkJz+Bz+fDDTfckFVDXS4XqqqqMHv27KzeJ7kTe12XN/Ms8fqmXgDA0W4/UP+MXojqjf9N+TthVcN3H9uE7z2+CQc7vMaSb4UwNW45KBhRsbz+OJrT1eVofAvwxCfd3tF0IZ7yXIh3+s82ve1kHBAYoUQwQokkL0mf48ggdppypzdkSU9MShIjHVPThWNud6mjcU/3pXjac4HlbUrL1wnsWqb3EiYTCQKPX6EPVSSxpLbJ3CKEnha9RPzWp4CGZfraPl0H0/5aQplcQAzOXBMC6NyfcPgon0tlyGJJUND8QVwP1742YwncmhD4r+c+sKARWWraBIT9OLD9fctz8bq8Qby7vyOvC6kmYzow2bJlCy644AJccIF+cJo/fz4uuOAC3H777QCAa6+9Fn/6059w++23Y8aMGaivr8eqVaviEmLNqq6uRkNDA2pra7N6HyNuea4eTd0WdNEOrg6aJtmuubcf/WEVfYEIbnmuHl9xvZ/9tpN4dtNRPPbuIfyfp1O3KdmhLiCcAJKvsZHJAaRcERjvCGC8I4Ayh9GDbJLXJRn3T0X+1zAFLaInIGv6eFm2lS0jqobDXb64x21/cnv3PuC9v6SuPeEfuIrcnWpRugz/2v29hpNmM96f2vcAa/+oLxg6aPD/dHwr8NIPgSPZHxuUYS1sj4zGY+5ZaA9Y0IGuqTD2CaTf3yzfI4XJYZuY75o3qKHVncUQiqGPxNj/eG9oEm59z4HvP77J3HumGQL6yTNb8cdVe/HajszrPVnF9J546aWXQggR97No0aLoa2666SYcOXIEwWAQmzZtwpw5c6xsc44M3Sk2H4rvQrX1wVvTgI590RNYMg0t1heos/pTyfj9eg4Dj83VT2DJqBH94J9iSXlblRH3HNeXc+/TDxZJu7Q7G4HnvgMcWJPy7f74xl57dEkDgMNp/LWDJ+TBGhRFou5IN+5+tUEvMlZzF7DnNWDTQ/EvPPC2/q83s0KVqfyq6wos91bhrvr0y4SEhAM7g5MTDnciEgSe+TrQmz43LJaR3dEuu2xUoDdaDydntAgCb9yFt998ZUgRusEZdKY7NmruSvn04MynrUcMzMTMMSmzcopa0AN42wA1iBd6zkFzZODL/vZvc7vdLY8DL98IvPvnlC+TsXpv3nzwjP7vrmXJX3N0vX7wH/Y5xQ7d/P3tRstGWhIGEv09xruWBq9y0h0Ea+7Uk4XfujPlyzYcsNHYtMkPeWvgdFzf9AXU2eDAmYqZfIg7X2nApkPdeGjtwRNDp77UpdwTOZigBzPpqOiw+80RvQTDUX9Zmq0oWOSZiQWdV2LpzoELN2/HiVyw5np93w7742f8ZCDb3kF3fzjt/p7RDKpIP9DXlj45P+ABVv5Pmh68FJrr8cL2bvzlvQ48mOEsziHMrv4tEQOTJBZvPooW97A8DCP78MG1erdvXxue6vpX/KXn0/rj+9/U/23fBXQfSJgRP4SvA+g5lHQ8PBjRcMwfc8U5eFLe81rKt836hBv7GQx2OWf5pmHhQIdaiQ61EmEzCa+eZuBYramy4n0eT1xMINzHoDRtSP83MckfiuBHT9fh4dgEu+NbgaeuOXEFbJV0bXcfB1belqOrvPi//+s7WvD/lu1Af8ia6eOaAO7ougJd6ijc+cqw6pn5iLX3vwkcfi/BE9Zcy3f7jE3PTfZfbQieamxDWXaXrfD+KwDg2Q86gaObgH9+A3jzl/Ev7D6QJjgx145Mkl9//sI2/O712IrR2ewoMdtXDQ4J7X4FOLoxZc5TKkokgNd8HwcArN+xr6QSoRmYRA3d8UMRDbc8Wz/ksX6RvHx2ze42NDR7TmTeh/WgZk9o2AHj6CZ9x/Z3pm6Ov1ufYZBkNd/1B7rwk40TsNvAOhxCiOgS5EZ7TIaPQyf06q3x28rgQC0AaHBAg8PEcVPoQzYhb3SY4+c7z8TTnhkA9HoxncOSmHe3eHDdm8Cfey4Z+lZr7gF6mwD34KwJAex9w+RKufFWN7Sh1R0YOvXaSBnsXNj0EHB0Q8KE5lx48J0D2Nbkxopt2W8vrGq4uePLFrQqcwdCEzMun5/1EHDrzrQXHPmmCgHsGEjMTXQlrmmAmmKGVMv2tNuIfmr+Tv17443vSdrQPxVLvVXxvwOgJS4nxOyxKcu/m5HilEa35+vUZ+OYVpg95AxMUjBabXB3iwf3v7Uf//NS+i9bVJpckKiBq45kmdLr+89M+xYPvHMA1z26CUe7/IY7Nwy9zECdESPKoGGiw4+JDr+J5FfEZdjv8Y7C833T0KWOQvXDr+Pmx94a8vzuFn3689phM4pavQN/i8Hemv5eKNsWAz1HzP1HpErzuXUNLEGf5Co26SHb1wF4W1OfZFLwh7KvE9HU7Y+r/7D5ULepIoDZurXjS7i7+/K8bW+I5dVD7/e1ItOemh3HPVjQeWX2bcpE7eOJp1en23d9XRDhfmDrorinftd9GZ5wzzK0+TWd4xESqU55yT9TKctWmNXbpF/4FoGCCUxyP10488gybsgnmSTdAUampv7vyzvMNGlIDZBVO1sRimhYsb3ZUI+J+RlJ2UXlDgUoVzSUKxqSxyXGt3EsMg4IuOHtNlbE7p7uS4c+YPGQTqakpQNFQnpVUQDYtRzod+t5Uzbym1cbkpdcz5GdQWMzC0UkpPdy6PeM/Y7RavUQei9qTL2W9/s/nPC1iWombTuWuAfWEkZ22DQJmGbfzpCQD+g5DE8ggqc8F1r0pmZZF9jEfixD1kN69VZg5S9i9r3CVTCBST6nC+dMkqOPkbwKU7NpDq0DFn0B2D90waiIKgwFJo+/dwiKktkXyRdUs8orEClX38wdO3Z4Slsh9ulr9Fk+mnpieCuUOFi9b/U+rGzQhyUTFd3bcLALrjWNCCcsYxnD6Lh9jBfMBCb+blP5Fd5gBNszPIlHOg/qvRxhf+Y1T9I68X/5W++nEvY67GmNL5CY+eYsOrF27Mls89l8Q93H9IsNNYwNw3uYzS5SqoZTJicf7fLjeLoaUckkODana96C2AtW30B6QIafsZ0UTGBSrDRN4Nbn6o3/gr8T6D4YnxQbu1Ov/aOe47Lmd3G/buQqJG3xtRT+a/FW/OTBFdA69hv+HU0A/aIM/aIMqt/gyUBoqYttWWzNnnb0BTIsaBT2A/sHhpVMXAZ29JkYPrGye2UwQdZAjs2aPe144N0mPOaehetavoWjPTG/E/KhuaUZq3a24I1daXqvHvsc0GVu5oHhU2XTZn18fv3fjb3+1fl4ZvFTptoynF8r14uzmSnmlgVDOWHZePqriacxp6KGcPzFBblpj1UOv2tudWN3U9JaSf0hFdWLt+LHT9dZVKQs++90U38Fftz2FazxW1cQMx8YmEhmeiVjX5f+xYhLrIrZiQdLySfIJ8hJDYvYk2KgB11dXQi++GPDv65CgUcbCY82Ekkq9ut2LQWgX5nvPNaDUHeGS5AnkO7A/mZDG55473Bmb97bBLz9G6D7UGa/H0MIYNXOFhzoMBmUZfiHN3rCW+6tQr8ox7LtMVeT7mN6wmK4f8hKsfr7Jjjobslsdeq0Bouy7XzJ2OuP1+HNw9kFFG5tBKzovj/WX461/rOifz5pw3v9PdHvn2GeFvx4+znYHDgj5csM1zEx8sKBXChPkouI4T0vAgA2LIxOVkj//skvTqKVWIWm9xAO+84FtKHTsYXQBhYqTTLEn2Gvday/HjgVxyPjcN/whH+bY2CSS3FXSxZGBQM7ffSLZvCINaGywtD7Jn+3+P/DkC9QBvkZQ0vSJ3mRrx14734AwMve87Cg8/N40jPT9LaS2RhIn0T81u4M8ixig0MLimO919gJ15oDSXvZ+rQKzF9Sj+89vgkLXt4B15rGrLdpRjhRZJnBME02OtRK3LViV3R5CEPbTzL7zQpDPhGT4/8/2fYR/KnnM1hvYP/Mv+Ff1sRf3t90XY6N/elX1Y1/d2XIPUN6jgJC4GdmeqEB4OmvmXt9Mv09+tIBh9bFPXV8oF5MlPuY3l5fmhmaaRzv7cctz30QPxFiz2sI9ZpfLNYOdYIYmFjA8LoqVndXxL5fzAkwLBzo19IVS0rCm9mqx9lwDilJn+RFMfU3/tk3AwDwykBNheGs6URNt6CXwa2YnjIY04YEu9Xhzpg6JJ379dWlOxsxeOBe5q3C/nYvev1h7DzuxqqdrYZyfpKN4VtW7bj3KPDiD/TqxGYY+JiHf//+2vNpbDncg18tMxEE5GRYMMFnV7/Y8G+3RU6K3t5joCxAWpoaP7sqTz0wv+2+TL8RCRqaKpxWssUa96wAan6N9r7EF0hJd6d0q0Qb/b4PXny8fXfal0b6B4LhaH2SRDkmSf5AMTVN/rJ6Hw42NQ9J4t9woAvrV0kqTWABBiapRDLPtUjM6sAk5oQT88X5YdvX8M2W6+KCE0OdKtFE3CRtzdOYebwTjRcxSZZmlhG3yj0rd+O7j28ytohWXJ6G8TNB2lcur9YX9VrxX9GHmodflcEmUx13vqRPWX79v43/TrgfYt8betFCE7rVUSYbZ72kJxT1xAmz9nDqglm3d82NeyyrXJLeo/qyDbkgRPqT+6BEBdkSSfUFaHwr+XMmihcO/p2EQPziqSbHzYa+fNjvbnwg7vURYWJJhuFihpT8Pu/AFHJdQAV+9/pu3NN9acraW3bGwCSVHutyGADERd3v7LV+3QsA6FYrAQCN4ZOtf/N8LLTS26QP3ZjR12K8NgxwYqkAk/oCYaxv7IKnP4K1+8yXDk/k0XUH8culO9LPXBlucNgsh2t2WJ5UGTQxU6SvWT8A1z6a8Om404bVCRie49n9fprm/HpFQ8rnEwWZWcmwFo0ha/8IrL7d2GuHVWo20isXtxdmULY/lbu7L8O8o1el7mkOZrHOWC6rtg7LewnHHEaCMcHP/T2fwvrG7IaN8qVgApPc1zExLq4bv7cJ0MzP2Pjzm/vio3QLbRtY7CkZtz+M52ub0OaJn32R8SE+g8AlIhzoVCvRqVYirAHKm78E/CaHQAKe6AnaSK2CW9q/ZLqdAPB+44kCUaqvG1j8LWDr03qdjwwDhFe2NWP7MTd2xNYk2Po00LE7+S/Z1DsHehM8Gr9PRPM/hrwst0Fvn5Ymv2qAKhSEhTPh8E44UYEuoel/++HtN5FbY4M+rezsfd3yt4yPMwc+pSMbUiZKv+X/6Ik7w3p4k33OmwNT0Rspx5bgh4Y8Hj08B/v0WVYp+GOGTDcEpsIbUaAKxfxie2kN79kZ9vSmh6OVxXsGLlIBoMZ/Du5ZWRhTiQsmMLFLHZM9oUm4blE9VvvOOfHghoUGe1fi99BES9BbZUnftJTbW/TuXjy9ch3+9lyGi0wlYuaKeIAAoMIBFQ5ofS14w39u8teK9FdY+0OT0m4zkGEX5yPrYqa0NtYg4mnF/7x+TF8fKctKuEMKYtU+BiVBUly6WVw5nzZaoILCietavmXote/2n5X0ubcTTbv0HNf/9p5jMBJi9IdUdPus7b04kKh3NOgBan6T+1VwrbJ3pb6WVAJCAId9FVhefxyhlf+b9C0OhCfir4PrkwHGZ9sMbiSGuz+MG9q+gft7PgU0vpn21//r2Q+it+/rvgS375iEG9q+jps7vjxw3DInq/6/BBV2Bx3p8mH+8/XYevTExV/a6fx5VjCBiV38ofuz8AZV/K33U0Of0CLQR/PN7U7v7h9+8hE5rTza2H7iKnDdjoNAJIDtx4Z2UXZZeNAUQqQtHV6uaJjg8GOCw4+y+mewypc8MHnLf07S53LC3zVk7HzIrBNNwwfBKWgYvh7SgGxXR01kRwZFv5J2RGS5FlDUsP9mfL2XHGZYNn+gLxiX5LA/WBK/PTLa8FvuDycPbP0iQa/LYPG5kD/ay5LqJPSzJfX4wZPmLrDSHVcSfi88LXouRqrVtrNh5f7duR+9NffD88r/6PfDASgNK4YMU/x2z2Q89u4hvOn7l6RvUxc7NVkLx8226lKH7gep/k7vNnahW61Ejf+cjBZL3t9XgR610mAenEjc656ggeG43JQTfwe3OiLtln73Sj32H+/EHctPFLNc+PbQ2XvSijsOYGBipZAvcVfvICNd1b7O3CWoDZfk2xaKaNiSpvZAOnXBD+EXL27DDYtq8Y2H1ietKwDoX6sKRUNFypL0un/2Tc+qXWn5u4CA+8RX3depD9UloQ2vdtp9CNj5cvL3jzmYP+aehd92XWq8bYFevbiemiBwzeQkYWYlZxPiplWbHObc12ai123FrUDnviE9dbEfxc9fGDYDJMsOpbi/93ADJ8J/xKzfMvRrr+B4b39M79hA0mivlflsItpTcDA8ITfLCcROCBTA7tApmc8EBNDX1YLvtX4T32n5lt6bVPsYsOnB6LFwT/hUtAb0Xs6dIWNLA6DnSFa9RbFF0jZ2Gw9sM9KxT9+X03ip7zw8N+wYGLtHfrf1WvSnWmwy7IfnyDb9s0nxvbz+H5szLyhpAQYmVgr3Y3vwtBQvMHBUzCJJ6kh4PP7Q/ZmhD+58SU8UU0PGr1vNXEk3bYbSFz/2+ofuz2J3Sx+6vCEIAWw6mGXy18DZRk25CJcFTNQUeLktwRTOsB94/6+Gfn+5t8pQ/ZSovjb9CrIvyxNNLpMgAXiDw662fJ0xV/ypvwN7d+/C/120JmnQnNTA/+nGtq8OuUI9OrDuk1XX9q/4Ek9RH25TwGDdDk8z0NsE0bYLqlDQGJqYXU5C0KPPfvIN5hjkfobSW/5z8IuOq/DNluvgMZDHk2ghvSOeoWt74XidfmdgP4idOm2YiWT4QRHhRG3gQ/ANGzJtDSQOuto8Adz35l4c6jQRAGXx/VtkoHZTs5oisT/2Ist9DNideBjfF1Sji57KwMAknxL0mGR+wDzxXgdCE7G+/0zc1P5lvDd8fPz9v+nBTqJemGTT+8ysqvv6z4GD7xh/fQICQEA4ERDOHCSKpaAGzZ8AxeDVqEBv2NqpeG0eo+PhiT4kE3tS96HEvS4ADnR4sT+UxWwuIYCm2uTBbapeQ38Xttf8Uw+kB3oeQhjWba1pGP7/j/2ftyaZbWVFFU3gxIw3y8Qk2P6199P4WceX8Gw2vYKeFv0zGvhut6Y6SYV8MLLfLHJfGDdEoAmBPx76CDrUSqyJWa37wd5PpnyvLYEP4evN38WLfeel3W6yv6XV/tpzYlj+n33T8euuz+H25cbW7Lr7td1Ys7cDty6pN77BFLWNEq03lZ7Jac3RjYWAdX/KYHu5l3nfW4lI3QNiIaEBIfNFnpZ7q7DcW2Xg/RMcmIN9yOkuEOwDRowZ2HzyE0MEDrg1/couWb5GTvIUug8D5YmvKJOeyPwd+oyh0ekTbOMlqw2jAloEjyxdjandYzDjsq/rbbAokfVghw+fGP5ggkX5QsKhV5Tt+KKxN1aDgBh2ou7v1tcfSZB4nVbHHiBw/sD79AIAvImuwPt7gFETzb+/zQ2uZ/J83zR8Z+y2Ic8t91ahDGmC6EBv3EMP9c7BF5EkL8ng9NeXvOfjcGQCbpvwzpDH3+2ZiC58Zsh3Nl2JgsEgwEjV5gfdcxI+/n7/WXjM7ccPxm5J+x7pKUPyc9oGgqF9bX34zDkToo8ny/EZLHhoanZlkmPhUm8VnogZAvzLjgogB3VICiFBnj0maTzsvsj4i9NdfftjMqXD/YDQ8GZD24nn0kxHs5oVVT0DWhl+1p7kROZpjt5c3ZB8+EHPMVFRoajYG04SmAx2f5ptcvue1Jn5ZrL2gRPTmH2dSDcskbipCR7tOahX3NVUvLbBgqqYw/zv0h1Y5Z6K6vYvp3xdUMQHqa7ei5P/grcjPn/BqsTtVN3dAzUsNKHn6dj/MGuNl7znpz6pJBvisyBJdXfoFNzQ9o24x4dfSGTyt0h2zZJqdt1yb1Vu6jRlTGQ0dBQrNigpdQxM0hheRTJZ4W4AgKbieGRc/LODX7zhZYpj80n6k+Rg+LvNDzfEyPXQyObAGWiKjE/7uj2tfXh+SxM2H4r/f5ZBwwRHPyY4+uFMdlU4OBRl8v+z5p9/0BMLRQ6yzK06CWta9G+ccbCY5uTjaj8/N1VyLV5jZviJN+HnEfOS5d4qNBqYHm7kUz0WHov/13kFdgYNJldmIsnfKenfPZBFUa9MaGrC74qAAq+WfsZH5j2b5n/Pn+OqprEz8F4+Hn9cB3Di2Oxp0XN7JOgOmDu2xc/qSUzagpEooMDETgXWBsUdwJKM228LDQwHde0f+kQ0xyPNJPcs1lv5Zst1Gf+uEeHhOQApPL3hCH7zaupql5atzTIguqpmllcziRmPkvaEJqHdl5tZMFbJKMEwA1vr6y39e2hZ7TMn/oa/674U24Kn42A4i2GiBD09ZvdpaT1AQugn185Gma3Ql1AwMJsm1y0cMjyTrAdvsDqw2fpNFi7t4Q2aO64YLVOfjyLfyRRMYGKXAmuxFnReOfSBJAtL+QfHyZP9pdOtOptFj0ls97zS0QC4mwa+9PbpADeTmNiryV8HJZbRq4qfd3wBv1iTi4XiBgwv7qZFgJ5DpmZ5/awjs2q4QyX+W9YFTlTUXL3yJX3ac+xvCeBV78ewO8HQgBVJkEbG1bs0CxJb1cymWHbE1FlJFchEnzF1IjS4k6Zoe8opqAapQkn4/a0Lfgju4LC/Ty6mOGcj2ZBvglwtQ/zJC6ARk1/TsvoKPqGBRL9cUw9vBELn6F+mcdnVKclaTBAXEQ50DQyZZXf1m0NqCHAaK2kOQK/D4B8686CrXw8wu9VR+HHbNUl/tbG9Dw92XJVwWNAwf5f+GUc6gMoEPQAWrzUSFQ4AI+Mfju2FUCDigu3NgTPw8PBkRzUCv6NiyKqpmbLpXhVlNOCOzrpLtrpuAt6IYn4oM2xR8b0YP++8KuHjz/dNg2OT9duzmyHnkkKpxisJA5M01IymbyWTXS9F/dHMh3SAYdUhLboiyeR/VN/Ui9GHV2OwfqMAEBkYErJLP86+4XkL3YeAk4Yn5ir4Tdflid9g69OA9+MAYp7XNODI+3ig97Kk3akKBH61bBe8GS5zH91b0/XDSuyn7VDji1UdT7JgXZ+hvIZCI/TeiazyR4z//R7b2Ar4TeY/ZDh8nGq3SpXMasdBTm/IuuHGXm0k5hud7WYTMnNMGJjkU5Yng5eWL7WoIdAPjJJ2vF8t2wn0BLFiIEXHOZD8OnjbDhLORkk35DZM3PBBXwswFuhKUwvDm2Y9nEFC6MHmlDIPzhuht00A+jCOyaTUvPQMDihThv6NvVqF4cJlmbJNj4kW0esEZZs4beKKO1WJ/eQyO1ZZsR+9s7cDezrnZv0+RqTKq1r6QXPS58x6fvj0+SyG50tBweSYyDJ8sbdEY9U5P+j5u/UTTbbLsNuUQzkxXdg2J5AcyrrY18Cv7wqdir/1fgq3dX5+6PNZJEvng3PYd+jZvulxa5ikVUBd4Yv7puPnHZ/XK5627sjpWljFoNUdQH1wSoJnhs3YyrA3e3OWy21kIi4MyUkyfvFgYCKb0WS5Pnut/micXQZnJDE5Vr814QE5sZYEwx8KYN3UaLM1XjKUcMXedNzHMmxf8v0xV0FxSJRhT+hUvO3/aI62YBEL+u4z/rZnmDScVIp9I+nwa5HIKjfNJhiYmBQQZbDuZCsAn7nhgYJjYFqcJvRl6YMG59cXs1CCImf50BBMUNjO6MwBt3Vd3qZEYk4+KZZ5B+xR7dKtjbT+BFwsTA6TAmmOwiYXjixIvk59SGhYPPlQb+KKuYWEOSYmebSR1i0XD5jKO7HbMMfB8AT8tefTqV+khgFH6qmGKhzRWQmGVw61sY39U9GijkE5VAw/fLrVESmTAGXJqopmsjWX8i1PPTyZesZzAUKFEnyraS4oQr6EeRL5DP/ymReVf0YWfO0CnGVJl9UoZAxMMpHBcvFCAEcj4201HTbbg8gjvSbK9afYugIMnMSBLYEzcvsJ5WE2ym+7LwMAXFZ5MO6533Qn6UY2Mf0zFTv0DNjNiq4peKQtm33VOnFJkHkQ0DI4zKe7+ErSw2E6VygLRw1UnLYtBdZEcQFPQeVbGcXAJJZQ9e4xLQKMNT7Wn+5kIADc2P61vFXWzBdDB4ZkgUDMibhM0TDRmYerXaFmXhApA8OXMwCAvRlOA07E1HFNZhnHAa/7zsUXRu/L+3YfaTkHQPHXyUimXS2w406CxQj1xz1A5YmevZRry9hsyCxnF1s57CWUeQldMDkmuS9JL/RSzP29+lLkFp7AdodOTRyUaGrBRrvHIuMKr8ZEZ2NGKzgnZZ/Or/SMzgKwYBpjosUAAeDB3k8CyGGvTqYno4Fy4yXX2yTUoQFrvtflSSbZYoRAfIXjZHyd1rQlG3kqnJkrMr8NBROY5Lwk/fArSgsDhqSLp5k8kGY9zdRCsSXGs7U2k1kZZuWibkCacfhtwdOt32aMSC6+vt3xw09mLfdWWdCQPOo+JLsFcawt7JhEBkPS0uWzJ0RYt57N0Pe12efe8IrsFsQpmMAk53qPDr1vYS2ID0xMAS06KaYg7g6dAiH0Og/d2ih0a6NyF6XbYCjDajUx00+f8cyw5k1zXF8hLyfcVHqPDL1v0/3CU2i9kcWo52j612TC7IJ/A3YlmjlnhXf/bLu6KgxMBvXY76op1/KS1e5Insb0i46roisvh4XT8HLcpItdWG2JhKTKTCzpmxZXPCvj/TCTK8/hScbZjtFbuEos2UxO/7bm9/m4QoqWklA4NAUmv1rATjNtzNDydfXq6wAcTmDURP12zMlgU/+ZAIDxjsQnCCHkrtlgVj6Dq+En9Bf6zsfa/rMBG88efLZvunVvlqp2ifuYHriMn2rd9hKxWZIlUUYCHmDUeECxR18FAxMLGF0ZNFtDT0Mi7hGz8tJjoob0kvqAfiIZdpX7bv9ZUACMUHLdlWjPLvuE0ib4Je4peMpzofVtKVSDOWLp6nHESJa0K0Nx1+goPfHD+TY7Hg2uNh6zEjmTXwuYEECZTRaes6XYMfwEXe9ubWR+2mGHLH2j0iVeR0JAMMUMCpuNF0vVewRGD7EcSqSMGFgupHn48hE2i0sApD6m5BkDk6jMrlC+3Px9i9tRbNJ/AwWAkHAgJBy5+77avCqoaZ6W5J9V0MIp0Xng0ypy9+aaykXzKLdMruRdKFjHpNAMdnvJZMeIOws9WiV6tErZzbBeDnsv2N1fvG5p/5LsJpS2gl001Zw/dH8Gx8Lxi4HKZp9B1UIiKeHNytohdsPhMKIT8pW3RknI7gXJ04Xne/1n2bJQJgOTKF59yqIAONmZuNJuszoGj7pn46Pl3bi88kB+G2ZzOR0CISJ5vK1AWX7y73bYcOFUBiZkaz9u+yoAoC5wBl7o+4Tk1tiLymCaqDgFPMBJeZoYYEPMMaGCwZyKoQq1fg4R2Ycm7BcG2K9FSeR+Eb/MSclDVUPyx0GN8LSkfYkA0KONRI82sthyenNKyC7vTkS5422X3QJpCiYwyfkifoWmyKa/hkQZQjYqcFUI+kV5+hcREWUgrMq7TOSZgGxhnCMguwmUbyznTmQfkSBiK4oLif3XDEws8Kb/X2Q3oaApAEYqXAyt5ATsU2mSiKDXXRpceFXiuHrBDOXY2ZHwBNlNIErORqWmiYjSYY8JSScARAYyw8sUzjWxnIEEZCKiISQeiNljMohnQ6m6tUp0F2NJeiIiMoU9JmQLTpakJyIiMDAhG1AATEpSkp6IiEoLh3KIiIjINhiYEBERkW1wKIekEwDcmr5g1ThHgHnIREQljIEJ2UKQ5eiJiOTztgHlo6BIvETk2YBsYSxL0hMRyRXsA/p79R+JGJhEcQBBFgXAKJakJyKSK2bFeplr5TD5lYiIiAYW8pOPgQnZQgQORLg7EhHZgswck4I5E7hcLlRVVWH27Nmym0IWEwC61Ep0qZUyF7QkIiIbKJjApLq6Gg0NDaitrZXdFMoBBwQcDEuIiEoek19JOgXAKU6f7GYQEZENFEyPCRERERU/BiZERERkGxzKIekEAI82AgAw1hFkRRkiohLGHhOyhYAoR0CUy24GEREBUCReIbLHhGxhjMMehX2IiAgQEidJMjAh6RQAlUpYdjOIiGiQUKVtmkM5g2T2WxEREdmJxPL0DEzIFlQoUJn2SkRkCwoX8aNSJgB0qqPRqY5m7VciohLHHBOyBZnRORER2QcDE5JOAXAqS9ITERE4lENERETDBTzSNs3AhIiIiIZqb5C2aQ7lkHQCQN9ASfoxLElPRFTS2GNCttAvytHPkvRERLagCE3attljQrZwksKS9EREdiFzniQDE5JOATDawZL0RES2IXGxHA7lEBERkW0wMIliyqVMGhRo/BsQEdmCorDHRD6JiT6lTgDoUEejgyXpiYjsQeJQTsHlmIiBD8vjsbb4SzgUhDowZZXySwDQND0wVBXBfhMiIsl8/oDl59nB9xNpgh5FpHuFTbhcLrhcLoRCIRw4cEB2c4iIiCgDTU1NOOOMM5I+XzCBySBN09Dc3IwxY8ZAUay7tvZ4PJg6dSqampowduxYy963VPDzyw4/v8zxs8sOP7/s8PMzTgiBvr4+TJkyBQ5H8kySghvKcTgcKSOtbI0dO5Y7Vxb4+WWHn1/m+Nllh59fdvj5GTNu3Li0r2HyKxEREdkGAxMiIiKyDQYmA0aMGIE77rgDI0ZwZk4m+Pllh59f5vjZZYefX3b4+Vmv4JJfiYiIqHixx4SIiIhsg4EJERER2QYDEyIiIrINBiZERERkGwxMiIiIyDYYmAxwuVw466yzMHLkSMyZMwebN2+W3aSCsG7dOlx99dWYMmUKFEXBsmXLZDepYNxzzz2YPXs2xowZg1NPPRXXXHMN9u7dK7tZBePBBx/EtGnTohU3L774YqxcuVJ2swrS73//eyiKgltvvVV2UwrCnXfeCUVRhvx8/OMfl92sosHABMCSJUswf/583HHHHdi6dSumT5+OK6+8Eu3t7bKbZns+nw/Tp0+Hy+WS3ZSCs3btWlRXV2Pjxo1YvXo1wuEw/v3f/x0+n0920wrCGWecgd///veoq6vDli1bcPnll+MrX/kKdu3aJbtpBaW2thYPP/wwpk2bJrspBeW8885DS0tL9Oe9996T3aSiwTomAObMmYPZs2dj4cKFAPSFAqdOnYqbb74Zt912m+TWFQ5FUbB06VJcc801sptSkDo6OnDqqadi7dq1+MxnPiO7OQVp4sSJuPfee/GDH/xAdlMKgtfrxYUXXogHHngAd999N2bMmIH7779fdrNs784778SyZctQX18vuylFqeR7TEKhEOrq6jB37tzoYw6HA3PnzsWGDRsktoxKjdvtBqCfXMkcVVXx3HPPwefz4eKLL5bdnIJRXV2NL37xi0OOf2TM/v37MWXKFJx99tn4zne+g6NHj8puUtEouNWFrdbZ2QlVVTF58uQhj0+ePBl79uyR1CoqNZqm4dZbb8WnP/1pnH/++bKbUzB27NiBiy++GIFAACeddBKWLl2Kqqoq2c0qCM899xy2bt2K2tpa2U0pOHPmzMGiRYvwsY99DC0tLbjrrrvwb//2b9i5cyfGjBkju3kFr+QDEyI7qK6uxs6dOzlObdLHPvYx1NfXw+1248UXX8S8efOwdu1aBidpNDU14ZZbbsHq1asxcuRI2c0pOFdddVX09rRp0zBnzhx8+MMfxvPPP89hRAuUfGAyadIkOJ1OtLW1DXm8ra0Np512mqRWUSm56aab8Oqrr2LdunU444wzZDenoFRUVOCcc84BAMycORO1tbX461//iocfflhyy+ytrq4O7e3tuPDCC6OPqaqKdevWYeHChQgGg3A6nRJbWFjGjx+Pc889F42NjbKbUhRKPsekoqICM2fORE1NTfQxTdNQU1PDsWrKKSEEbrrpJixduhRvv/02PvKRj8huUsHTNA3BYFB2M2zvc5/7HHbs2IH6+vroz6xZs/Cd73wH9fX1DEpM8nq9OHDgAE4//XTZTSkKJd9jAgDz58/HvHnzMGvWLFx00UW4//774fP5cMMNN8humu15vd4hVwmHDh1CfX09Jk6ciDPPPFNiy+yvuroaixcvxvLlyzFmzBi0trYCAMaNG4dRo0ZJbp39LViwAFdddRXOPPNM9PX1YfHixXjnnXfwxhtvyG6a7Y0ZMyYul2n06NE4+eSTmeNkwH//93/j6quvxoc//GE0NzfjjjvugNPpxLe//W3ZTSsKDEwAXHvttejo6MDtt9+O1tZWzJgxA6tWrYpLiKV4W7ZswWWXXRa9P3/+fADAvHnzsGjRIkmtKgwPPvggAODSSy8d8vg//vEPXH/99flvUIFpb2/H97//fbS0tGDcuHGYNm0a3njjDVxxxRWym0ZF7tixY/j2t7+Nrq4unHLKKbjkkkuwceNGnHLKKbKbVhRYx4SIiIhso+RzTIiIiMg+GJgQERGRbTAwISIiIttgYEJERES2wcCEiIiIbIOBCREREdkGAxMiIiKyDQYmREREZBsMTIiIiMg2GJgQERGRbTAwISIiItv4/8xrsGZMzAewAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(ps_counts.freq, \n", + " ps_counts.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if higher else 0))\n", + "plt.plot(ps_weighted.freq, \n", + " ps_weighted.power, \n", + " ds=\"steps-mid\", alpha=0.8, zorder=(10 if not higher else 0))\n", + "plt.axvline(freq, ls=\":\", alpha=0.5)\n", + "plt.semilogy()\n", + "plt.ylim(2, None)" + ] + }, + { + "cell_type": "markdown", + "id": "356a267e", + "metadata": {}, + "source": [ + "As we can see, the analysis using weights has found the pulsation whereas the one considering just the events hasn't.\n", + "\n", + "This was a very trivial case, where the selection could have been done by just selecting events around the source position. But weights might take into account many other factors, such as the energy, the data quality, and more.\n" + ] + }, + { + "cell_type": "markdown", + "id": "8ff2add9", + "metadata": {}, + "source": [ + "## Polarimetric light curves\n", + "\n", + "\n", + "Another case that might be useful is when we are looking for a pulsation not in the flux, but in some other quantity. This might be the case, for example, in polarimetric light curves.\n", + "\n", + "In the following example, we introduce a significant periodic change of polarization in a signal which has no periodic modulation of the flux.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "cf2505cb", + "metadata": {}, + "outputs": [], + "source": [ + "def extract_varying_random_photon_angles(photon_times, psi_mean=0, psi_amp=0, pd_mean=0, pd_amp=0, freq=1., n_bins_per_cycle=16, N =100):\n", + " from scipy.interpolate import interp1d\n", + "\n", + " pulse_cycles = photon_times * freq\n", + " pulse_cycle_frac = pulse_cycles - np.floor(pulse_cycles)\n", + " order = np.argsort(pulse_cycle_frac)\n", + " disordered_photon_times = photon_times[order]\n", + "\n", + " sorted_cycle_frac = pulse_cycle_frac[order]\n", + "\n", + " random_angles = np.zeros_like(photon_times)\n", + "\n", + " idx0 = 0\n", + " delta_cycle_frac = 1 / n_bins_per_cycle\n", + " angles = np.linspace(0, np.pi * 2, N + 1)[:-1]\n", + " baseline = photon_times.size / n_bins_per_cycle\n", + " A_mean = pd_mean * baseline\n", + " A_amp = pd_amp * baseline\n", + " for cycle_no in range(n_bins_per_cycle):\n", + " idx1 = np.searchsorted(sorted_cycle_frac[idx0:], (1 + cycle_no) * delta_cycle_frac)\n", + "\n", + " sorted_cycle_frac_good = sorted_cycle_frac[idx0: idx0 + idx1]\n", + " n_phot = sorted_cycle_frac_good.size\n", + " mean_cycle_frac = (0.5 + cycle_no) * delta_cycle_frac\n", + " A = A_mean + A_amp * np.cos(2 * np.pi * mean_cycle_frac)\n", + " psi = psi_mean + psi_amp * np.cos(2 * np.pi * mean_cycle_frac)\n", + "\n", + " # TODO: be safe at edges of distribution\n", + " # The distribution is the one expected for polarization angles.\n", + " distr = A * np.cos(2 * (angles+ psi)) + baseline\n", + "\n", + " norm_distr = distr / distr.sum()\n", + " dph = 1 / distr.size\n", + " cdf = np.cumsum(norm_distr)\n", + " cdf = np.concatenate(([0], cdf))\n", + "\n", + " interp = interp1d(cdf, np.arange(0, 1 + dph, dph) * (2 * np.pi), kind=\"cubic\", fill_value=\"extrapolate\")\n", + "\n", + " # Generate random values of polarization angle with the inverse CDF method.\n", + " random_cdf_val = np.random.uniform(0, 1, n_phot)\n", + " random_angles[idx0: idx0 + idx1] = interp(random_cdf_val)\n", + " # Note that we searched from idx0 on\n", + " idx0 += idx1\n", + "\n", + " order = np.argsort(disordered_photon_times)\n", + " return random_angles[order]\n", + "\n", + "\n", + "def plot_angle_distribution_with_pulse_phase(photon_times, random_angles, freq):\n", + " pulse_phase = (photon_times * freq)\n", + " pulse_phase -= np.floor(pulse_phase)\n", + "\n", + " fig = plt.figure()\n", + " gs = fig.add_gridspec(2, 2, hspace=0, wspace=0, height_ratios=[1, 2], width_ratios=[2, 1])\n", + " # gs = plt.GridSpec(2, 2, height_ratios=[1, 2], width_ratios=[2, 1])\n", + "\n", + " (ax00, ax01), (ax10, ax11) = gs.subplots(sharex='col', sharey='row')\n", + "\n", + " h2, binsx, binsy, _ = ax10.hist2d(pulse_phase, random_angles, vmin=0, bins=(32, 16), cmap=\"twilight\")\n", + " ax10.set_ylabel(r\"$\\psi$\")\n", + " ax10.set_xlabel(r\"Pulse phase\")\n", + " mean_binsx = (binsx[:-1] + binsx[:-1]) / 2\n", + " mean_binsy = (binsy[:-1] + binsy[:-1]) / 2\n", + " for i in range(h2.shape[1]):\n", + " ax00.plot(mean_binsx, h2[:, i])\n", + " for i in range(h2.shape[0]):\n", + " ax11.plot(h2[i, :], mean_binsy)\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "65f034f4", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAisAAAGwCAYAAABo5yU1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU5dqH79ma3U3vvZAQQkJooXcEBAQLgqAoIFhR7B797PXYj/XYG6KCIkUQEKT3DgkkIb33ttlstpf5/lgIxITm8Sge976uvTbZmXnnndnZmd/7vE8RRFEUcePGjRs3bty4uUSR/NkdcOPGjRs3bty4ORduseLGjRs3bty4uaRxixU3bty4cePGzSWNW6y4cePGjRs3bi5p3GLFjRs3bty4cXNJ4xYrbty4cePGjZtLGrdYcePGjRs3btxc0sj+7A78pzidTqqqqvDy8kIQhD+7O27cuHFzSeJwOCgoKCAhIQGpVPpnd8eNG0RRRK/XEx4ejkRybtvJX16sVFVVERUV9Wd3w40bN27cuHHzGygvLycyMvKc6/zlxYqXlxfgOlhvb+8/uTdu3Lhxc2lSUVFBSkqK+17p5pKhpaWFqKiotuf4ufjLi5VTUz/e3t7uH6AbN27cnIVT90f3vdLNpcaFuHC4HWzduHHjxo0bN5c0brHyH9CqbaK+tPjP7oYbN27cuHHzP41brPxGmqoqWfTIPXz96H1U5mT/2d1x48aNGzdu/mdxi5XfgL6xgWX/fBJTiw5RdLJl4cc4nY4/u1tu3Lhx48bN/yRusXKRmPQtLPvnU+gb6vELC0ehUlNXXEjWts1/dtfcuHHzP4K2upLyrGN/djfcuLlkcIuVi8BqMrLilWdpqizH0z+AaU+8yOBpNwCw67tFWIyGP7mHbty4+atjs1r4/rnHWPr845QcO/pnd8eNm0sCt1i5QOw2G6v+9RI1BXl4eHpxxYKnOL6jhRZtV/zCIjDqmtm34vs/u5tu3Lj5i5O1bTMGbRMAO79diOh0/sk9cuPmz8ctVi4Ap9PBz++9QdnxdGQKJTF95rLmw3LSN5ZxYncdwfGTADiybjVNVZV/cm/duHHzV8XpcHDop+Vt/9eVFJKzZ8ef2CM3bi4N3GLlPIiiyObPPiRv/24EQYpEeSWlmTKcdpGgaFfWvdJsT8ITe+F02Nn+9Wd/co/duHHzR+I02rCW6xGd4n/cVu7enejqalF5+zBwygwAdn33NXab7T9u242bvzJ/+Qy2/202fvI5x7esB0CmnohEFk10ij9pE2MJT/Bly6ITnNhTjdk6GIk0k6IjByk+eoi4Pv3+5J67cePmv4GjxYKluAVLsQ5riQ5bjREAz6Hh+F4Z/5vbFUWRA6uWAdB34lWkXXE1mds20lJfS8Yv60ibdPXv0n83bv6KuMXKWagu1LHx02+oL/4ZAJl6LF0HDCVtYgzBMadTVQ+9rivlJ5po1UJQl+HU5m9j66LPiE7thVQm/7O678aNm98BURRxNJmxFOtcAqVEh6PRDIDRKVJtdVJlE9E5RFK2lNM/yR+Prn4d2mlububAgQNkZGSg0Wjo27cvvXr1QqVSta1TnH6IhrIS5B4qel8+CbmHB0Oum8nGT/7NvpXf02P0WJRqzR927G7cXEr87cWKKIoYdVaaagxoqw1oq43Ulempzt2LzbgBgJCECUy862YCIjw7bK9UybhsVndWv5tOc30KSs1htFUVpG9YS9qka/7go3Hjxs3vhX5nBfqdlThbrKc/c4hU25zUIKA1t8+tdMzkRLUom76PD0Sict1aKyoq2Lt3L9nZ2Yiia5rIYDCwfv16Nm3aREpKCmlpaURFRXHgxx8A6DVuIh6erntNj1HjOLzmR5qqKji4ejnDrp/9Rxy6GzeXHH8bsSKKIi0NZrTVBpqqDWhrDGhrjGirDVh/ddNxWAuwGX8BoMdlk7n89jvOWWgpKtmflOHhZO2sQqYejsWwjr3LltB92CjUPr7/leMpzzpGc20NPUaNRZC4XY/c/O9RmXuCPT98S2tjA4Om3UDSkBEXVPDs98CU2YBubTGiKKID6pRyqkx2dHp72zqCAGEJvnTpE0RDmZ6cfTUcrLeg+SoT53A5e/fupaKiom39uLg4Bg4cSEtLC4cPH6a2tpaMjAwyMjIIUMqw5mQjkclIu+L0dI9EKmXYzDmsfuOfHF67it6XT8LTP+APOQdu3FxK/E+LFYvRRkWOlrKsRsqym2jVWjpdTxBA42tDIhRjbjlBS3MRIJIycux5hcophkxNoCy7iZaGRNQ+xzDqKtj1/ddcfvs9v+sxiaLIwdXL2bl4IQAV2ccZP/9+JFLp77ofN27+mzTXGvHwlOOh6ThVWldSxO7vv6boyMG2z9a9+zpH161m5OxbiejW/b/aN7vWTNOyfA43H6fcUoUoTUUiCwJAIhWITPInvk8QsT0DUXsrAHA6nLTWG6go1LM5ow5txVEcMhNSqZTU1FQGDRpEaGho2z769+9PRUUFhw8fJjMzE2PBCWSA1cufTTt2kpaWRmRkJIIgkNBvEOGJ3anKO8GeZYt/93uKGzd/BQTxlG3yL0pLSws+Pj7odDq8PL2oL9dTltVEWXYjNUUtv/LQdyJR2vEMVhAY6Y1fgIi5KY+KnMPUFua1azdp6Egm3v3gRYmAilwtq946itNeiVX/PQgCN738NiFxv93p7kzsNhubPv03WdtPZssVBBBFEgcN44p7HkYq66g9zQYbRen1JKQFo/D4n9ambv5LiKKIKIpIficLXk2RjhVvHCEgQsP0x/u3DQaaqirYvfRb8vbuBECQSOgxaixeAUEcXL0cm8XlK5I4eDgjZs7BJzj0rPv4rYgOkfpPjlGaW8SO6i8A1/3DM7A7vcZNoc/4AShV7X9HZrOZrVu3cvRwBuraJOQ2b5wSC13HyRk6diBeXl7n3GdFXg7fP/UwAK3xPRAVHgAEBQWRkpJC9+7dsWkb+P6ZRxEECXPeeJ+AyKiLPraKigqioqLQ6XR4e3uffwM3bv7LnPn8Pt81+T/z9NryzQmaiq2Y9O1D/HyCPTA566hzlGKTNyOxGtBWaanObUZqMbVb1z+mC90GD6PHsFF4BwVfdB8iu/mROiqS49tAoemO1XCCrQs/Ycazr/zH5mtji47V/3qJypwsBEHC6JtvwzMgkDVvvUrevl3YbVauvP//kCkUbduYDTZ+fPMojZWt1BbpGD3rvzsidfO/h1arZfny5TQ2NjJ48GAGDhyIUqn8ze2JosieFQWITpGG8laqC5rx9LWxd/kSsrZtRhRdCdCSho5kyHUz8QuLACB1zHj2LP2G41s3krd3J4UH99L3iqsZOGX67+p02rK5FGtpCwcbtwAiMoU3dpue1oYT7F5ygoqsPgycMp3I7j3aftNr1qwhMzMTAJ+EGhQFGqw2JQ07ZSjGe5x3n8c2rAEgcdAwek2dyeHDh8nKyqK+vp5t27axbds2/P398Y7pQktpETu/+4prHn7ydztmN27+CvzPWFZen7salUKDXCklMsmP6JQA8Gpl/c+raLUYUDQ34tXciNWsb9tWRMCh8cLu5YfdyxfxZPSOl5cXQUFB+Pj44Ovri4+PT9vf3t7eSM9hbbFZHHz34gF0tXVY9QsRnTYm3fcISUNG/OZjbKwoZ+Vrz6GrrUGhUjP5/keJ650GQHH6YVa/8U/sNisxPftw9cNPIFd6YDXZWfX2UepKXccrkQjc+PwgvANV59qVm78JTosD7fI85OGeeI2M7FRM5+bmsnLlSsxmc9tnGo2G4cOH069fP2SdWPLOR8nxBta+76p5IzoNePocp7nqAA67yxekS9oAhk6/ieDYLp1uX1dSxPavP6csMwMAlZc3Q667kZ5jJ/zHU6HmgmYaPj9OTkshGQ3LAAnTnnwTT38lB1ctI3vn1rZssuHdkhk0ZTrKkHA++eQTAGbMmEFSUhJNuU2sfCcDiwhhYWqufmIAUlnnVildXQ2f33c7otPpssJ2SQDAZDKRm5tLdnY2hYWFOBwOJBYT6qIsBCBm4hTSRl5GTEzMBVu83JYVN5caF2NZ+c1i5cMPP+TDDz+kpKQEgJSUFJ5++mkmTpwIuEyjDz30EN999x0Wi4Xx48fzwQcfEBIS0tZGWVkZ8+fPZ+vWrXh6ejJnzhxefvnli7oJnjrYjd8cpXv/GEK7+IAgsnXrVnbt2oXEZEBTUwEnRYpUriAyvDuhliiCFDHoZXZ0UU60/lZqGmppaGg45/4EQcDLy6tNwISHhzNgwIB2fa7Kb2blm0ewG/diN+/FKyCIuW99iFx5/lHWryk5dpQ1b72CxWjAJziEKY8+Q0BkdLt1yjIzWPna89gtFiKTezD5vifY8Fke1QU6PDRyvAM9qCvVkzw0zG1dcQNAy6ZSWjaVAeA9Phbv0aenFRwOB1u2bGH37t0ARERE0KdPH3bv3o1Wq3Vt4+3NqFGj6NWr1znF+5mITpHvXzpIQ3kLGs90mip2AS6REt2jJ0NnzCY8Men87YgixUcPsf3rz2mqcjmw+kdEMXLWPOJ69/tNVkxHq5Xad45i1Zn4sXIhDnsDoQkjuPGfj7Sto6ur4eDq5WRu3dgmrmQ+fug9/ek2eBjXXXdd27olqwpZ/3MpDiChVyCX35GKIOnYr02ff0jGL2uJ6dmHaU+80GnfLBYL+fn5nDhxguItPyNtqsOu8sQU0w21RkNSUhKpqanExcWd8xjdYsXNpcYfIlZ++uknpFIpXbt2RRRFvvrqK15//XWOHj1KSkoK8+fPZ+3atSxcuBAfHx8WLFiARCJpuwE6HA569+5NaGgor7/+OtXV1cyePZvbbruNl1566TcfbFNTE8uXL6eyrBRlfSUKbT0Acg8VQ6bdQM9xE1F4qHC0WNBtKMV4pNY1LS0T8BoWgWJwMHXNDWi1Wpqbm9HpdG3vOp0Oh8PRoQ+hoaFMmzaNwMDAts92/ZBP+qYibPqvcDpaGDxtJkOum3lR5zj9l3Vs+fIjRKeT8G7JXP3wE6i9fTpdtzInmxWvPIPVZMLDMwpReiVKjSfXPNAHu83JitcPu60rbgBXxtXqVw8iWk5fy75TEvAcGIZer2fZsmWUlpYCMHDgQMaNG4dMJsPhcHD06FG2b9+OXu8S//7+/owePZqUlJTzjvDzDtaw8fNsnLY9WFv3ASBIQ+l1+XTG3Hz5RR+Hw27n2Ob17PlhMWZ9CwDDrp/NwCnTz7ldXV0dXl5ebTlORKdI41dZmHO1HDBmUFy7HkHiwbx3PsU3uGPOlNamRg6tWUH6Lz/jsLnCmn3Dwplw5/1EJCW3tZn51mF25rcgAn3GRTNkakK7dgzNWj5bcAt2m5XpT79EVErP8x6ztraGhQ/Nx2mzYY/rjsnDNQU2YMAArrjiinNu6xYrbi41/hCx0hn+/v68/vrrTJs2jaCgIBYvXsy0adMAyMnJoXv37uzdu5dBgwbx888/M3nyZKqqqtqsLR999BGPPvoo9fX1KM7wvTgTi8WCxXI6qqelpaXtB1hSUsKan37CWV+NR10FgsM1+kkaOpKRN83rNOTPWtmKbm0RliIdABKNHO/LY9D0C0WQth8JOZ1ODAZDm4Bpampi7969mEwm5HI5EydOpE+fPgiCgN3q4Pt/HqSxPB2bYQ0yhZLL77iHwOhY/MIikMk7RkHYbDaysrIICgwkd9Najv78EwDJw0cz7o57O93mTCrzcln63JM47SYkshCu/b/niEmNBGD1O0cpP6EleVg4o286/+jVzf8uup+L0W+vQB6mwaObP/pt5SCAfowna45uwmAwoFAouPrqq0lJSemwvc1m49ChQ+zcuROj0ZW9NSQkhMsuu4zExMROLRsOh5PFz+5HW5mJzbAKgOSRN1KYEYxfqIaZzw78zX5dZkMre777hqO/rEEQJEx78kWie3R88DudTrZs2cKuXbvw8/PjzjvvRKlUot9ZgW5tMUbRwpqyTxCdRroNnc7ke8+e00QURT798AMaMtNRtTTitFmRSGVcNvcOeo1zWZftzWYOvnSQIy0uP7rhM7rS8wwL1q7vFrF/5VLCErpxw4tvXPDx71zyFQd+/AG/8EhG3PUQuXl5pKamEh3d3uL663tlZWUlycnJbrHi5pLhDxcrDoeDH374gTlz5nD06FFqamoYM2YMWq0WX1/ftvViYmK4//77eeCBB3j66adZvXo16enpbcuLi4vp0qULR44coU+fPp3u69lnn+W5557r8PnXX39NUeYxlDVlyEytAPgFhTP2zgWd3rjORBRFzCea0K0rxt7gcroVFFLkERoUEV4oIj2RR3giC1B1MOW2tLSwcuVKiouLAdd02OTJk1GpVNQU6Vj+2iEs+qWI9tMFDgVBgk9ICP4RUQREROEbGk69wUh6Th56fSvqqmKkrc2Aa6Q44JrrznsjczpFNn6eRd7+LKyty0A0ERgVw7QnX0Tj60d1QTMr3jjisq68MAjvANeo0m61Ul9WTG1hAQ3lpcT16Ud82oBz7svNXxeH3krNawcRbU4CZifj0d0f7cp8dh/exxFZEaIAwcHBTJ8+vZ2lsDMsFgv79u1jz549bQ/F8PBwQkJCkMvl7V7aQijeWYNVvxhEC10Gj2DMnLv47tnD2CwOrnmgDxHdOloxLpSGRdns2P41xa3HUam8mPXqe3iFnO6/1Wpl5cqVnDhxou2ztLQ0xvcZRd2HGeAQ2W7bQ03FTqSKAO767FMUys4HTODy51myZAkymYw7b7uVvYsXkrdvF+ByBr5s7p3I5HIMR2rZv+gEJ8wuX5cJt/cgvm8wFqORT++ei8Vo4KqHn6Br/8EXfKwWo4HP7r0Ns76FcbffQ88x4ztd72z3SrdYcXOp8IeJlePHjzN48GDMZjOenp4sXryYK664gsWLFzN37tx2qh5cpsrRo0fz6quvcvvtt1NaWsqGDRvalhuNRjQaDevWrWvzffk1Z7OsPD33RrwMzQiATJAzYOJ1DLjxuotKeS86nBj2VdOyuQyn0d5huaCUIg/3RBHh2U7AiIjs3r2brVu34nQ68fHxYerUqURHR7NnRQFH1mcjOg7iF2KkuboCi9Fw9j4IEgTRiShIGDrrFgZfQD0Q0SmyZdEJcvbVIJEKDLsugN3fvYFB24RfeCTXPfUiXv6B/PjmQcqz8wmJM+MT0EptcQGN5aU4z5jaUqjU3Pnxot/kX+Pm0qd5dSGte6pQRHkRdFcvTCYTK1asoKCgAIBEMZyr5kzFs8uFJx4zGo3s2bOHffv2Ybd3/N0gSvCr641DtwLR0YBDpcEY0w25Qkm0dCAtJRK69gvm8lt7/KZjMudrafg8E7vTxqaqRehsDQRrYrnmzsfx7BeGvlXPkiVLqK6uRiqVMnDgQPbs2QPAFcoBhOu80IU5WL/nLcDBkBn3M/jasWfdn9Pp5KOPPqKuro5hw4YxduzY0/mPlnwFokhYYhJXPfAYGj9/Gr/JZv/BekqsTqQygcn39KYqZzM7Fy/EPyKKm994/6ITOx5eu4ptiz7F08+fee980unv1W1ZcXOp84eFLnfr1o309HR0Oh3Lli1jzpw5bN++/T9p8rwolcpOQycVzfUIcjnRPsmMeWAB/t2jO9n63AhSCZ5DI9AMCsdeb8Ra0Yq1Uo+tshVrlQHR4sBarMNarDu9jUKKLFhFSlAwwb0m83PeNpp1Or788ktGjhzJkElDKTnWgLZmNHaHgon3JhIcIyV9726O7NmFsbEeicWM1GZBsFkRRCcSpQf6sDi2Hz9BbN8BhIWFnbXPoiiy/bs8cvbVIEgExt/agy59gohMeoUfXngCbVUFi598GLWXD/VlJYhOB+XHoPyMNlTePoR0SaC+pAhDs5a8fbtJGTnmos/ffxPRKVKc0cCRX0qxWRxcfX+ftoRcbi4Me7OZ1v3VAHiPj6GyspKlS5fS0tKCTCZjuFcv4qt9afkmD+UdPZGHuPwhbGYzglR61mlItVrN2LFjGThwIDk5OZjNZmw2W9urMQeairYjOhoQFEq8+w5B7nCi0+koNabjR1/yD9fSc0IIoZFBF3VMokOk+aciAHyHxTDR60GWffIMdYYSdn2+kKidg1hvP0yryYBareb6668nOjoam83GwYMH2W7O4DqfEezOXws4UPvEM/Cay865z+PHj1NXV4eHhwdDhw4FXI73A66eRlBMHGvffY3qvBy+efwBrnrwMUKuTaR3SQvmOjM1NpEf3zqIw7gcgAFXT/tNGah7XX4FR35eTUt9LUfWre7UT+fX98qWlpaL3o8bN5cK/5FYUSgUJCS4nMbS0tI4ePAg77zzDjNmzMBqtdLc3NxuGqi2trYti2NoaCgHDhxo115tbW3bsotFI/dlZNdrSX3gKmQB/5kDqSAVkIdqkIdq0PRz+dOIDvGkgNFjrWw9LWCsDmwVrdgqWtEAV9GHPfJcCqQ1bNu2jbx9WQxNHMoRk50WnZX1H2ci+Oqpl2ciytV4xHZj6LBhDBgwAKfNiq62Bs/AYL774QfKy8v5+uuvufnmmwkO7pj3RRRF9iwvIGtHJQgw9ubudOnjutn7hYZz/bOvsvSFx9HV1tDa6IpyksjUQBDBcQkMuGogIV0S8AoIQhAE9q9cyq7vFnF8yy9/qFixmk1s+eJjnE4HIXEJhMQnEBzbBYWHCqfDScHhOg6vL6Wp6rRFav+qQndk00Wi31wODhFlFx+qJFq+/fJbHA4H/v7+TJ8+nWC/IOo/O461rIX8f2+mJcVIWd4xKnOykUgkjJpzKz3HTjzrlKSXlxf9+/dv95nZYOPz1R/gtJ4AQWDao88Q3aMnoiiSn5/Pzp070ev0yO1eLHp3NYlDAhg2bNh5p6BOYdhfjb3OiEQtw3tsNL5qOeMk9/LzB/8iu3kPR6sbsXp64S/35oap1xMUHQ7AkIBe5DozaZGY2C4eQ1+fCQiMu+2OczoK2+12tm7dCsDQoUPbFSIEiOudxo0vvcWq11+ksaKM7599jDG3zKfrdf3p92Um6UYHJa3Z2C16BIkXuopQjJV6FJ4KJHIJglwKMuG8074yuZxhM25i3b//xYFVy0gdM/6szvdu3Pwv8Ls62F522WVER0fzzjvvEBQUxJIlS5g6dSrgmuNNSkrq4GBbXV3d9iD+5JNP+Mc//kFdXd0FJ546ZUbK+edmEhYMQ/oHjrZFhxN7oxl7nRFbndH1Xm/CXmckz1HJHnkuNsGBQpTR2xZHqV2OoyUAAQFRsBOeJmPCzEGo1eoObZvNZhYtWkRVVRWenp7MnTuXgID2pvn9PxVxaG0JAKNnJZE8NLxDO4ZmLdk7tuAbEkZIlwT0Wjk/vnkUiVTgphcG4+V/2nysb2rg07vmIYpO5r71Mf7hEZ0e9/r16yktLaV///707NnzN+XbaDuHosi6994gZ/evLHKCgMY3FIc9ELs9AIksBKU6lK79I8neXQ0CzHiiP4GR584O6saFrcFE7ZuHwAnCDZEsWudKKZCYmMi1116LaLdReuwoxYcPUbz/ICabvtN2koaOZNztC1B4XNiA4JfPNnN84zuAk+Ez5zLg6qntlouiyM5Vxzm+vgG71IQ28CCCRCA5OZnhw4efc+DiMNioeeMQosmO7zUJeA4Ka2vzmxeeoi4rHadUhk/MEMaK/VFI5HgOCkPVK4iGz45TbW9kjfwwXoWlYG8gMGYQc147d7K1/fv38/PPP+Pp6cm999571kAAq8nI+g/eJv+Aa7qp17iJ9Pa5DOOhOtaUf4LJoUOmGoXMoy8eAnRXSYmSnxQpAghyKRKVFKmvB1JfJTI/petvPyUyX9ffglzg68fup76kiL5XXM3oObeds+/uaCA3lxp/yDTQY489xsSJE4mOjkav17N48WK2bdvGhg0b8PHx4ZZbbuHBBx90ZV709uaee+5h8ODBDBo0CIDLL7+c5ORkZs2axWuvvUZNTQ1PPvkkd99992/KkBkyr9cfKlTANW0kD1YjD1Zz5q1bdIqENFvoVlTF6h0/U9NSzwFFPihAIfci2N4Li05G9SH4RZ/LqBu74RvcXrB4eHhw0003sXDhQurq6li0aBFz587Fy9Ob6kId+Ydqyd5ZBbiiDDoTKgAaXz/6X3X6AeEdBBHd/KjM1XJ4fSmjZnZrW+blH0hcnzSKjhwkc+svjLhxbof2ioqK2LfPFXa6evVqtm3bxtChQ+nbty/y80QrdcaxTevJ2b0dQSIhbdI1NFVWUJmbh8XQjEFbDVS3rWtrlVCaHolKFUyrLpId33sy5cH+f1hxu78yLZtKwQnOBBUrtq7CYrEQ7utNtNTJihefoKYgvy17LIBUIidYGU1kWBIpd0yi+PghdixeSM7u7dSVFHHVg4+1y/cjiiIOnQXR7EAWrEaQCDRU1JG5+TPASXi3NPpfdW2HfgmCwKAJyeRs2w1mFXHBPSiuzyQrK4usrCy6devGwIEDCQsL62DFaNlYimiyuyygA1yixm6389NPP1Fol6BWqpBaTHgJdXgmBmDN1dG6p4rWPa7fTUxCHDEVxTTZD4OgYOzt565obLFY2LFjBwAjR448q1ABl+/XlQ8+xv6VS9m99BsyNv5MfdcSovyTMJXoUMrU9I/qR3aTiNEhctTooEgKPTykBMoliFYHDqsDh84KpR3bNzlFWmQSvK390cqacGp9z9l3N27+6vxmy8ott9zC5s2bqa6uxsfHh549e/Loo48ybtw44HRSuCVLlrRLCnfmSKm0tJT58+ezbds2NBoNc+bM4ZVXXvlNSeEu1dGCw+Fg69atHD54iBhrIH1MMXgF+FLdzZ9DG8ux25xI5RIGXBlH7zFRSKTtTdCtra18+fE3GGoFPJ0hyG2+2C2nHyqDrulC2oTYi+pTVb6Wlf/qaF0RRZHCQ/tZ9caLqH18uf2Dhe3qDTmdTj7++GNqa2uJiYmhsbGR1lZX5JVGo2Hw4MH079//gsVmbXEhS556GIfNxpDps1GoB5CxpRyT3oboNCBXNhIUaQJnHXWlhRi0Tb9qQUFkch96Xz6auD5p7Ub7BoOBgoICunbt2qnl6r9JRXYmO5d8xdAZs84biXYxiKL4m4SZrcZA7TtHsIsONkbnUllXjY/ViLPoBJzx8w+IjCa2dxpxvdIIDoxF+3kOToMNRZwPQfN6UFl4gjVvv4pB24RMrmD48JnE+qa6rIr1RkSr67r0SPLH9/qufPHQo+gb8pEpA7jjww/w0Jw9Lf72xblk7qgkvm8wva8KZOfOnWRlZbVbx9PTk6CgIAIDA/FXeiPd0oSvU0PUrWmoEvwwGAx8//33lJWVIQgCowYN5NiSz7GaTAy4ehr9B1yNbm0xtmoDEo0cr3nd+PQf8xEdrTh8kkmYMIhrr+0oqE6xY8cOtmzZgp+fHwsWLLjgZHhFRw6y7r032jnWD7nuRgZPuwG7zcGxLRUc/rmkrfp7bIo/gy6Pxkstx641o682UF+mp6HWSJPWgtZkx3z6FoAoOkiK92PsI/3O2Q+3ZcXNpcaflmflz+BSFytnYqs30vB5Jo5mC1IfBYopXdm1vpSKHFdW0MAoTy6b1R3fUDVVec1t1aKba43t2vHwlBGTEkh8WjBxPc8+t6/X6yksLKSuro6BAwfi43N6TvvHt45QmdtMjxERjJzZDVNWA9ofC0Ap4cfMtzGZWjqEVB4+fJiffvoJDw8P7r33XuRyOenp6ezatQudzuV07OHhwaBBgxgwYMA5RYLFaOSbx+6juaaaqKQ+6OpGYz15JaoE6OohIVohQXrGw9lkb6XJWkOtuYSS1jxsjtNTFVKZnNiefUgYOIQWqYIdu/dgNptRqVSMHTuWPn36/G6F+M6F3WZj4UPz0dXWoFRruOHFNwiIuPiic6cQ7U6MxY38/NnbNDVVMvmhRwlPujhfnYZF2ZiyG9gemE9Bazkqgw5ZeQGIIrG9+tJ14FBie/XFO7C9c6u1spX6T44hWhzIQ9WITmitbWBfzWpqza7hfrxXb/r4j0EqkcGpvEQOkaPm3eRV7wJkXHHPi3Qfdu5In/pyPUv/eRCJRGDOK0NReytoaGhg165dFBYWtiWh6wylUklQUBB6vR6dTodSqeS6664jISGB3L27WPP2KwBM+b9niOvVD3O+FnmQmpUffEbZ8fVIZD60xHdFlMD1119PUlLHPERGo5F33nkHi8XC1KlTSU1NvYhvAJqqKln1xos0VZYjV3pw2wdfovI8PYVp0ls5sKaYrJ1ViE4RiUQgPNEXbbUBg87aoT1BAN9AFQGBHvh7yYnoGUh4v3P7+rnFiptLDbdYuYSx6yw0fH4ce50JiVpGwM0pFFW0sntZARajHUEiIJEIOOynh06CRCAoRkNlSx6tVBMQ6cXNN8/pYBZ3OByUl5dTUFBAQUEBNTU1bcsiIiKYN29e22iwMk/b5rty5dBQOHa6zEBG0zZydPuJCOjGlTf/A1VqIFbBznvvvYfBYGD8+PEMHjy43X6PHTvGrl27aGxsBFzO1/3792fw4MF4enq266coiqx521WA0SswiAD1TGr0UtQS6OYhJVIuIDmPBcHqdPKLtgKzJR+ZvQCLo/l0+ydrPok+AZi9/UCQEBERwaRJkwgP7zhdVl3QjEQmITjaq9OU6AANDQ0cOHAAk8lEr169iI+P79TKcfCnFez45ou2/31Dw5j5zzfbPZjOhdPiwFrWgqVY53qVtbC3ehXlhhzANT1zxd0Pkzhs6AW1Zy3XU/d+OgdlBWTISlHoGlFWl4Ao0nv8ZC6be8c5rTXmwmYavswE++nbhCiHE6b9HC/fDogEhcVwxR0PE5AYg7WilYz3VrCzfBkAoQnXceM/51xQX3945RB1JS0MnhJP3/Ex7fthNtPQ0EB9fT01J8qpPlFGs8SAXmLmzFuYr68vM2fObOeQvvmLj0jfsAYPTy9mvfoO3oHB1BRV8u1jdwN2+l01H2uwgt27d6PRaLj77rs7CO1ffvmFPXv2EBISwh13nNsJ92xYjEaOrFtFWEIisSdre/2apioDe1YUUJrZ2PaZIIBfmIagaC+Cor0IjvEmMNITufLiaiG5xYqbSw23WLnEcRhsNCzMwlauR1BICJidjCNIzc7v8yk8UgeAp7+S6JQAYpIDiEjyQ6mS0dDQwJdffonBYCAiIoLZs2djMpnaxElRURFWa/tRWFhYGE1NTVgsFkaPHs3IkSPblq145SDVJXpiFRJ6qaV4johAHqymZnc2P+55EwGByVHzUXt4czSoksPaE/j7+3PXXXd1OlXndDrJzs5m586dbZFdMpmMXr16MWjQIIKCXCP3o+t/YsuXHyORyhh82QIOH5IgANfOTyW4q+95z5/TZMdWZyR7TzX7DtYhE0SU3hlUtZ5Apm9fTdvXL57ayBCsdtd56devH5dddlnbw+j4tgp2fJcHgIennKju/sSk+BOVHIDKS05xcTF79+4lPz+/XR+CgoIYNGgQPXv2bPPVMbbo+Pze27CajAyfeTMZG9fRUl9HdI+eXPvY8+2m1NqOxWjDUtyCpcQlTmxVrXCGif9o42byWg4hEaT4e4TRYKpAQGDkdfNImzblvOeq/vPjZBRlsUueg6y5AVV1KSDSe/wkLpt75wVNK1nKWrCV65EFqZEFq5B6KxEkAiUZR1j73huY9S0o1Rom3PUAAZFRfP3o/dgsJqTKPlweM4H421JRRp//t5m9u4qtX+fgHejBTc8P7lQ4ijYnNW8ewqG14HVZFOrRETQ1NVFfX4/ZbCY5ObmD0LDbbHz39CPUFuUTlpjEjGde4at/PI+26ghKz2ju+vTfOBwOPvnkE+rr6+nRo0db5m1wJVF77733sNvtzJw5k8TExPMey39KZZ4WbbWBgAhPAqO8LlqYdIZbrLi51HCLlb8ATouDxq+zsRQ0g1TA//ok1KmBNFa2IkgE/ELVnT5IamtrWbhwISaTCaVS2SHxnlqtJj4+noSEBOLj4/H09CQjI4OVK1cikUi49dZbCQsLw7C3moIfC9jdYkcCTL89hYC+p4tMfvfkI1TmZ9Mr6jIi5D1YptiHQ3ByudCH7r1S0PQPRRHhSWeIokheXh47duygsvJ05t6EhASSoiLY+fE7OB12hk29mZztAbQ6RLp38+OyBzrPWnw27HYHXz+9E2OTE6O6EoN3IaldutPTK5qK7KMcPfYzIiL9gidT1UVJrq607RyNHTsWbyLY8GkWiCCTS7DbnO13oDJjkNRhUzZhk+tJ7NYVX19f0tPT20ShWq2mX79+9O/fn/3ff03GxnUEx8Zz08tv0VBeypKn/oHNYqbX5ZMYe8v8ds1bylpo+DyzXY0eAKmfEmWcDzkN+9m7fSkA8QNuwj8ghfr9SylpOgpA3+GTGXXX7WfN02Ep0nH0s61skGcg1dWjqi4BoNflkxgz78KEyvloaahnzTuvUp3nsvyofXwx6poRpOHER84kTSIFmYSAG5JQpZw70ZzN4mDho7uwmh1cdW9vopL9O+5vSxktv5Qi9VYQ8nA/JIoLe4jr6mr4+tH7sBgNRCanUZF9GIAJC14gZbjruqusrOSzzz5DFEWuu+66tlIDq1ev5siRI0RHRzN37ty/rEO3W6y4udRwi5W/CKLdSdP3uZiON4BwspjcgLMngDtFZWUlixYtwmKxIAgCkZGRJCQkkJCQQFhYWAcTtSiK/PDDD2RnZxPgH8B1XiOx57p8TPY4oF5vI3VkBCNuOB0ZlL1jCz+//yY+wSF49htDTnEe4UIAE029EHCFVwbc1B1Vytl9ZkRRpLS0lL1795KbmwsOO5ribCQ2K4FduxPrcS2ZFSaUMoGbXhmKh+eFR3NVVlaydu1a6ouN+Gp7AiKjbo8hpe/pYnE7vv6Sg2uWo5SoGB8xD523k72aAhr1WmRWb/y0PUGUkDw8nBHXJ1KSVcuhbSeoKzAgsbZ3BpUrJUR1DyBxYAgR3b05cuQI+/fvb/PVkVrNqIuyQBSZ/szLRCW7fBoKTjosI4qMmTef3uMnAa7pwLp/H8WptyH198Cjqy/KOB/kMd60WhwcWLWBzC2u6SSZagQyD5fzpNxDgp/zIGW1rlDvhKSBTH7q/zpkahZFkdx/72J5wzZEXe1/LFREp3jWKTKH3c7OxV9yeK2r5g+CGg/fWcx8ajSOjaWYc5pc1/dV8XgO7jxq7RQ7luRyfHsl8X2CmHBHe78Qh87iClW2OfG/vhvq3qenenL2VZO+sQynE+QKCTKFFJlCilx5+m99fRZ5e05P0fmF92XeW8+328fmzZvZuXMnarWau+66C7PZzPvvv48oisybN69D/Z2/Em6x4uZSwy1W/kKITpHmHwswHHD5l3hPiMV71PkdMhsbG6mvrycmJqaD70pnGI1G3n/33xjMRlLsUQwWu+FzRRy6QBWr3kpHIhOY9cJgPP1ckUE2i5mP7piN1WTEGJ2IQ+PNHbffgZ/Bg9bdVZhzmhDkEoLu6IniAnKdNDQ0sPyV52gtL8YpV2CK7o2/djCCKGXQFZGkXXVu07rT6cRkMmEwGNi/fz+HD7tGxkqlkijHYHQVTmJTA5h0d6+2bRx2G98+/iD1pcVE+CYy1PcaREHkeICWomI1EqcMi7KRrmNUOEWX382pqtrean8SQnshN/tRlavDbLC1tXuqvovD4SAnJ4e9e/fSuGcLMkMLNi9fQoeNZdCgQSQmJiKRSNj/4w/sWvIVgkTC1MeeJyoplfqPj2GrbEUeqsZnbgpVxXrKspsoy2qkuSYPW+tKwIFU2Qef8PF4h0vQVpuwaF2CQS3NQduwHhEn4aGJTHnxeTy8Tlu6GjIqWLjiG8wtlaiqXHWreo27gjG3zL8ooWI22Pjl8ywqcrRofBR4+Xvg6e+Bl78HXgEn30/+XZy+n02fL8PhTCP1sn6MmtnNlWF21enr22tkJN7jY88qfBorW/nuhQNIJAKzXx6Cxud0ZFnT97kYj9ahiPEm6M6eCIKAw+Fk97ICjm+tuKDjsRm34bAcAWTc+PL7hHZpn0vIbrfz6aefUltbS/fu3REEgezsbBITE5k58+Kqpl9quMWKm0uNPyzdvpsLw+Ew06TdTYD/MCSS9mG9gkTAd0oCErUc/bZyWtaXYM5tQh6kRuqrdCWEOpkMSuqtbKsEHRAQ0CFJ3NkQHU5s22sZpu/KBnkGWbJyek4aRGT/CLyA8K6+VOU3c2RDGSOud4kGudKDpKEjObbpZ+TNDfQaPoqwcJfVR9nFl8ZFWZhztTR8lUXw3b2R+Z67llDp/l20lhcjkclIuXIGuXsFBFGKTd7CuvTvKXemEhISgtFoxGg0YjAY2v4+9fo1PXv2ZNy4cdgNEr57/gAlxxspP9FEVHfX9IFUJueKBQ/xzWP3U9mcR1WPCgKqoqgt8kYigkxtpd7rBIePnJ7+iYiIYNCgQSQnJ7c5IzudIvVleo5tKSfvQC07v88jqrs/CpWMlJQU1FYTKzb+CIIEa0gUJSUllJSUEB8fz5QpUxhw9TSaKsrI3rmVn95+mUkD70ZeKeBQyciQSCl7bC9Op2vM4HTUYzOsBhwExfVh7B33s/fIdo4fPwYKUHlFoNHHYnQkIfNUYjesoaomj2/vv59pL7yIT3goVquVpT8t+5VQmXjRFhVDs4XV76a3ZQ5u1Vpo1VqgUNfp+kq1DFEyGYVSQv8rYgFXNmjfKQlIfZS0bCxFv70Cu86C/7REBFnH6auACE9Cu3hTU9TCiT3V9JvoasdS2oLxaJ3LQnNlFwRBwNhiZcOnmVTlNwPQ74pYIrr5Ybc4sFkd2K1O7Nb2f1tNMyhJ9ySmZ7cOQgVcPlbXXHMNn376abuih5dddu4U/G7cuPnv4hYr/2UcDjPpGXNpbj5ATPTtJCQ82mEdQRDwmRCLRC1Dt64Ya3EL1uJO6nhIQOp9SsAokVzgtImlWIetspUoAukRkkBmUwFrd24gukcXVCoV/SfHseqto2TtqqTv+Bg8/VyCyiM6DgCZXsvgM9KoC1IB/xuSqP/oGLYaAw1fZhE8vxcSj84vp6q8HHZ8+yUAo2bfikdBJIXmJkBEFa+judnRrvr2ufDw8CAoKIgxY8YQGxvr+tALeoyM4NjWCnYvy2f6EwOQnBy5B0bHMvT62ez45gv2H1yBf+Q8TKIHGgkMl6nR+Q/hiLIYb38fBg0aRFRUVIcHukQiEBLrzeibkqgpbqGl3sT+1UUMn5GIw25n29efA5A26Wp6XzmVAwcOcODAAQoLC/nwww+55pprGHf7PWhrqqjOz2Xjzs8YGzmbggBvSk5GffgEqQiJk7imKUQrEUkpjLpjPstXfkd9fT2CIJDSI4X6+nrqKw/j1dIVBXEInjOwGpbT3FrDF48soNe1s6hu0NHUWIjHSaHSc+wExsybf1E1aJrrjKx+Jx19oxm1j4IJt6ciSKC1yYK+0Yy+6eTr5N9Wkx3LyeKfvcZGofE9LcoFQcB7TDRSHyXaFfmY0utpaLESMCsZiarjNZMyPIKaohayd1WRdjIqqPmnQgDUaSEoIr2oK23h54+O06q1IPeQMvbmZLr0Pn9dodJj6RxevQOT7hj9Jw/H06+jX0xYWBgjRowgPX0JXl4NBAYNJCjIncrejZs/k/+ZaaDcshoSo0LOv8EfiNNp53jmXTQ0bAZAJvNi6JDdyGRnT45lrTZgq9Rj11pwNFtwNJuxN7v+xvHbvyrBQ4bf1K5IE7346KOP0Gq19OzZ05VqXRRZ+a8jVBfoCI7xIijGG4VKwsEje7GW/IzEqqf/NXPoO+FKVJ4KpHLXQ8/ebKHu/XSceivKrr4E3pyC8KukdqZWPV8/ei/6hnoSBw1j1Oi5/PhJFi1OSOobxJjbUykvL+fIkSPYbDbUanXbS6PRtPtbpVKdNRGX2WDjm6f2YjHaGXVjN1KGnx41O50Olj73OJU5WQjScHzCb2Ti2GjEPVWuRGZSAXXPIGQhrmzEsmA1Mj+PNivWmZRnN7H63XQQ4Lr/60dlzg62fPERKi9v5r3zCR4a11RMXV0dy5Yto67OFd01aNAgemviWPnhsxgdegJDuqG3TEQikXDlfb0JilTw3TOP0FhRRkBkND1n3MzPGzdis9nw9PRk2rRpbeLMZDJRWlpK5s4KatNFnNZWbK0rEZ1NiBIpVr8gFI01CEDPMRMYe+tdFyVUGir0rH43A1OLFZ8gFVfd1xvvwHNPNVpMdlqbzFiMdkLjfdrEYofvKU9L4zcnEK0OkAooorxQxvmgjPNBEeOFRCnDbnWw8P92YzHamXxPLwJNdrTL8hCUUkIf7kdBViNbv83FYXPiG6Jm4p2p+Ied/Td1ClEU+fbxB6ktckV2RSWnMu3JF5F0ck3V1P5MZuY9CILrNycIcry9euDr2x9f3wH4+KQhl/+1plLc00BuLjX+lj4rSY8u5/Fr0rhxQPRZb5R/JKLo5MSJR6muWYFEokAm88VqraNbtxeIjLj4uW/RKeJstZ4UMWbsWgtOk/2CtpXIJaj7hSI7OdotLy/niy++aBf1UJGrZdVbRztsazenYzdtQZAGovCahSAIyJVSAiM9GXVTEp5OkfqPMhBtTjQDQvGdktBmmRCdTn58/QWKjhzENzSMG556g8NvHONYsw2FXMJNLw9BdRFOtecjY3M5u37IR+Ul56bnB6M4OWoXnSLrPtxFzo63ACt9Jl7PZTffhF1rRruyAEuetmNjUgFZoKpNvMiDVciCXGJm41cnyD9YS0C4jMbSDzG36ts5z57CZrOxcePGtoKdAaIXafpgDtSsxOGwIlX2YeCUm+k/KYrlLz1NxYlMPP0CCB49kYwTruiauLg4pk6d2iFXzSmMLVa2L8mh8HA5VsNqRPvp6KseI8dx+Z33XJRQqcpvZu0Hx7Ca7AREenLVvb1/9+rWDYVayr/MJOjXl68A8nBPlHE+HC3Tk32skbjUAHprTThbbXhNiOV4nZmMLa6a4TGpAYybl4KyE+tMZ+Qf3MvqN/6JTKlEECTYzCYGXTuDoTNmtVuvsXE7GcfuQBRteHr2wGZrwGKp+VVrAp6eSSfFS398fdJQKIIv6Ught1hxc6nxtxQrUfcvRaJU0z/Wj5ev7UlCcOc39z8CURTJL3iJ8vIvEAQpqT0+wGyuIC//BdTqBAYNXP+n39RORT2oVCruuusuvLy8qMzV0lhlQNeo5+C+o4h2CUG+AdTnvA+iHaXPjQiS09YruYeUcXOTCZVLaPw6G0TwmRiH18hIV4G6JV9xcNUypHI5M1/8F/YdJtbsrcUmwogZXUkd/dszu3aGw+Hku+cP0FxrpO/4aAZPcUUG7V1ZwJENZTisWdgMG5BIZdz40psEx3ZBFEUs+c1Yy/XtilFid3a6D0EpRdY/hNWbKzE0bsZhOUxAZDSzX3uvbYRe2Wzi232lXN8/mugANSeOZvLjqlVYsCFDSpgxjObSHwG4bO58KrKPkbd/N3IPFfJeA6ltcZUwGDFiBKNGjbqgBGTFGfVs+yaL5urVOG15ePv1Zfw99xKVHHDB11rJsQbWf5qJw+YkLMGHSXf1RKm++HpP5+PBpemsOFJJJBJe6hdLD6cES0kLjiZz2zotDpGtejsCMM5bhiLAg6NyGZV5zYDLP2XA5Lg2R12jsZjKyiWEhU3F07Nbh32KTieLHrmHhvJSBlxzHYHRsax793UQBKY+9hyxvfoCoNXuIz1jHk6nheDgK+iR8jYgwWyuoLn5IM3NB9E2H8BkKumwD0GQIZf7Ipf7I5f7oVAEIJf7o5D7IVec/EwegK9vWgfftTOx2p18f6gcrcHK/FHxyKW/T+Zlt1hxc6nxtxQrH2zI4L1dVRitDhRSCfdclsAdI+NRdOLE99+mpORDCoveACC5++uEhV2L3a5n1+6hOBwG+vRehL//hWUg/W9ht9v57LPPqKmpISEhgRtvvLHtobZy5UoyMjKIjIzklltu4ed//4sTu7bRc+wERtx4B63NFnYsyWtzbOw/KZYkXwUta10+En4zu3EwfVVbKOvld9xLQlgamz88RqlVJCBEzfRnBv5XLGDFxxpY98ExJDKBG58dRMnxRnZ+70r6NnpWEnl7vqDw0D4Co2K48aW3kHVSjE50ijiaLafFS9u7CdHsMgfk2rSkV7iK9E285wmSh7ky+jqdIlM+3ENGeTPhPh4svXUQ8u/zaK5oZIcmh0a9DK+WROzmfdhNe9r2KUil2OK6Y5J7oFKpuPbaa+natetFHbvFZGfPigKyduQjCK5pEf9wDb3GRJE4IASZ/Ow5SXL317D5qxOITpHY1ADG39YD2QXmMLkY9hQ2MPPT/W3/qxVS1twzjC5Bnth1FqynMveWtLC1oIUmh0ikXKDZQ0ar3oZcKWXMzd2J73M6bNliqePgoWuxWKqRSJR0S3ye8PBp7fZ7Yvd21r37Okq1hlvf+xwPT082fvpvjm1aj8rLm1mvvYtTWsbR9Dk4HEYCA8eQ2uN9JJLOxZrFUkez7hDNzQdobj5Ia2sucGG3Uk/PJPqlLUMqbT+1Jooiv2TX8vK6E5Q0uhzKbxkWx1OTky+o3fPhFituLjX+lmJFp9Ohd8p5YuVxtuXWA5AU6sUrU3vSO8r3D+tPReVicnOfAqBrwhNER89rW5ab9xwVFYsIDBxDr56f/Ef7cTotOBwm5HLf39xGXV0dH3/8MQ6Hg0mTJtG/f3+qqqr45BNX32699VYiIyMpzzrG0ucfR6FSccf7CzFt24bDYCLTmcrxba5ph9iegfQP9sBysIbD2o0U6lxTSmPmzafniPFkv3KA7bWukfO1D/clLOG39/tciKLI6nfSqcjREhDhSWNVK4gw8Kou9LsiFqOuma/+sQCjrpl+V17LyJvmnb/RU207RUzHG2jZWMq2rG+pNOYjkcWSkDKHyY+mIUglLD1YziPLj7Vt87rSk8EWCRK1DOWMbix9Lx2nHQyafPzL1qKTuCw4Kg8f6uK6EhERwXXXXYevr+9vPge6eiPHtlRwYk81tpMJ51ReclJGRJA6MrLDtE7GlnJ2LXX5cSQODOGy2d2R/k6j+TOx2B1MfHsnRQ0GbhgQTXFDK/uKmkgJ92bFXUNQytqLoxPbK9iyJK/tf58gFRPnpxIQftpq6nAYOXzkBvT6TCQSBU6nK1lfWNg0uiU+i1SqwulwsPCh+Wirqxg6/SYGTb0eALvVyuKnHqa+pIiYfmEEDTiI3aHH328YPXt+glR64dXfnU4LVpsWm7UJq60Jm7UJm63J9ZmtCau1CZtNS2trNna7noiIG0nqdjrHS2aljhfWZLO/2FWs008tR2t0hcv/e2YfJvc8d36aC8EtVtxcavxtxYq3t7frYZVRxXM/ZdNksCIRYO7QOB66PBG14r8b/FRbt47MzHsBkdiY+cTHP9xuudFYzN59YwGBwYM2o1a3r39iNRnZ/vUXeAcFkzZ5CjJ556M6p9PO4SMzaGlJx1PTDf+AEQT4j+jUvCxarRgPH8YjtSdSz45OiHv37mXDhg3I5XLuvPNOVq9eTWlpKampqUydOtXVhijyxf2301xTTR8zhOW6IjMiP/yACmUS2xfn4rA78Qn2QNn8M2W1LqEydtZ8ek2eRNOyPH7eWkmzQySxfwjjbkn5Laf3gmmoaGXpPw+0FRROGRHByBsS2yxHhYf38+NrL4AgMP3pl9oSuF0oZceP8cOLjyMgoPCehSANZFCIipiJMUz8JYt6o5XbhsehPFDL9RYZDsBzdne2ry2lulBHQKSS0J0vEFhWRkGIH94mC2E6A02TJzHg5Zfb0vf/FiyWOloNeXh79cRpU5G9u5pjW8tpbXJlOpbIBBL7h9BrTDQBERoO/FTMoXUlAPS8LJJh07qeNQfKf8rbm/J4e1M+QV5KNj04EpPVwcR3dqA12pg7NJZnrmx/XditDr56bA9mg43olADGzUvGQ3P63Iiig2PH76KhYRNyuT/90n6gtm4tRUVvA048PZNI7fFvCvfl88vH76Ly8ubGf33MK5tL6B3lw4z+0WhrqvjhlduJGZeHTOXA16c/vXt/2cHqcS5sDif7ihqJD/Ik3Pfc2zU17eZo+mwAeqZ+jF0xlNc35LLyaCWiCEqZhNuGd+HOUfH8e0sBH20vRK2QsnrBUBKCL6y+1NlwixU3lxp/S7HS2FiBv//pCJAmg5UX1mSz8qhr5B/pp+LFa3owLCEQ2W8cNYqiSIvJTkWzkUqticpmE1KJwOhuwag5QkbGrYiijYjwG+jW7YVOfQXSM+bR2LidqKh5JHZ9ou1zp9PBqtdfpOjIQQD8I6K4/I57iejWscJuRcW35OY93eFzqVSNn99gAvxH4O8/HA9pKBXz78KwZw+CWo3PpEn4zpiBqkcKNpsWg6GQ1tY8Dh1ag81ejkbTSkNDOGWlg1iw4B58fX0RRRHDrl3seudfZEnt+LWaGFxUDaKIZvhwoj/9hNriFtZ9lE5z5SqctlwEBAYGTSa+Sxre42I4+kU26SYHcoWEG18Y3C7R13+Lbd/mkLWzitiegUy8M7XDlNOGj94lc+sveAcFM/u1f6M8R4XoM3E6HXz72IPUlRTSa+xE5OahZGY1oRLgMm8ZZYKTNT4CT13RHd2SXABexYSHRkVspQ25UsKw2q8R0vfglMnYN6A/IY1NxOe61vWZMoWw555FOGN6Smuw8vyabCqbDPz7xjSCvT3O6I8Vne4IjY07aGzaQWurKzeIRKIgMGAMoaFX4+c7guKMZjI2l1N7Rki8X6gabY1rumHgVXGkTYz9r/lSFda3MvHtnVgdTt67oQ9X9nJZCrbk1DJv4SEAPpvdj7HJ7SP6Gir0aGuMxPcN7vAd5uX/k/LyL5BIFPTp8w2+Pq7igE1Ne8jMuh+brRGpVEPl7mhqMmDkrFvYKE3i4+1FSARYcddQEgO07N83FSc6DLUeJCd+QELaSC6Gh5ZmsPyIKyldpJ+KAbH+DIjzp3+cP10CNR3OaX7+S5SVf45d9OapPY9SZ3CJkGt6h/OPCUlEnBQ8doeTWZ8fYG9RI/FBGlYtGIan8rcPuNxixc2lxt9SrKxZm0LXrtcTFTkHleq04+bW3DqeXJlJZbOruJ0ggI9Kjr9agb9GgZ9GQcAZ7/4aBX5qBS1mG1XNZirPECaVWhMGq6NDH+J8Snik3/sopBbU3pczKO3fCELn8/2NjdtJz5iHVOrJsKF72sKYd3z7JQdXL0cql6NUazDqmkEQ6H35FQy/YQ4KletharM1s3ffWGw2LfFdHsZDFUnTyQeV1Xq6cjIOCPzcC0W6pUMfbDESDEOtmPo5ETvN5XYTYy57DuOhQ9S9/TamQ4cxy6RsTY5BFARm3v0wzXfcBaJIl5/XIY2MZNUbL1OSfgCQIPecRGpgMgmI2ETYrLdjFWHotAR6j/1j0pU77E6q8poJ7+bb6ZSG1WRk0SP3oKurJWXUWCbMv/+C2s3cupENH72DUq1h3jufIPfwZMlz+9E3molSCvT9VWSKuWcA846XM00rQ4pAj7q1BGevQ+rjQ+SHH9AYFISPjw/21T9R+9JL4HSi7tePiPfeRebnx57CBp5ctJ204rUEWRowegYzbFQ3ArpYQFWMTn8Qh8Nwxh4FlIpgLNbatk/kcj+CgycRFno1xoYuHNtSQeHRekSnCAKMvD6RHiMjf8tpviBEUWTmp/vZW9TIiMQgvprbv90D/IU12Xy+qxg/tZx19w0nzOf8Vo3yiq/Jy3sWgB4p7xASMrndcoullsys+2ludkViNeeFkTjhB6755CiOkwn4+kWaub/PW1gs1WAN4vhiP+Ry37bKzBfCL1nVvPzRcuJMJbTKvKlVBFKnDMIkdf1eAz0V9D8pXgbE+ZMY4sXKI8VYauYRrqkgsyGJnY2P8eTkHm3T1Q67jeaaakDA6RPEle/tpqbFzBWpobw/s28H8WOzaZHL/c7bV7dYcXOp8bcUK6tWx6LRSAAJQUHjiI6ah49PGoIgYLDYeX1DLov3l2F1dB7lcTEEaBRE+KmI8FXhsBUzKew5PBVGshq68e7R24kN8mNij1DGp4SSEu7d7uYiik727b8co7GYbonPERl5E1nbN7P+g7cAuOKeh4ntncb2RZ+TtX0TAJ4BgYy79W669O3f5vei0XRlQP81SCSytnZbW3NcI+yG7QhvHUV1WECUizTeZQcB1LskqNIlCPaTocVKAcfwIBST09D6hpKTs4uo6CzkZQoit/fGsjcdAEGhwG/mTHbbWyk+fpR+V15Ll50HaN2+Ha+bZrJfaqck/TBSuZy4tDlU5LouujClBLkoUmYV8QtRM+PpAf+RL4TV2kBR8Tu0tubg6ZmEl1cPvL1S0Wi6ntUR8lxUnMjk++ceA1Fk2PWzCYqJQ+XljcrbB5WXNwqVqt13ZzWb+OK+2zE0axlx0zz6X3ktACXHG1j7/jGciPhFeTDaAqLVibKrL743dmfRiwcwN5jxbcykz/EPUUREEPXppyi7xLXrT+vOnVQ+8CDO1lbkUVH8MusRlhwuZHzdL/h6tRCYosUr0oCHX/vK2qJdjVrRi7CoiURETUAu96e19QQ1NT9SU7saq7W+bV2VKprQkGvwVE6iLENKULQ3MT3OngnZaLXz2vpcKrRG/jkllRDvc2cq7ozlhyt46IcMlDIJGx8YSXRAeyuWxe5g6od7yKxsYWCcP4tvG4RUcuZvRmz3PTQ0bCXj2O2Ak/guDxMb275A5CmsplZWfT4R/+QqAGpM8fzr4Cx6RHejoqGE25LfIFjdiFodT6/URax48VVXZeau3Zjx7Csd6i2didPp4MjWbaz6ahG+lsYOyy1KL6pkgdTIg6hXnhYwcqmAzSESpqnmmcFvIJfY8JLMwFLdjabKchorK9DVVuM8WfbBPyIK356DeD7bA63EkycndefW4V3a9lNXt57sE4+Q2uN9AgKGn/N7cIsVN5caf0uxUly8Fm3zUpqadrYt8/JKJTpqHsHBE5FI5NgdTnQmG00GK40GK9qT701nvLRG17tGIWsTJGe+h/uoUJ2MkjCZKjh8ZAYWSw02SXeWlTzC9vxWbGckb4v0UzEhJZTLugejlEkx2xyYtN8j6N/ELommvOFJdMvfBacDe+oYDKnjSAr15qre4TTmZrLx0/fQ1blGyUmje+CRuAJwnDWiSHQ6qX7iSXQrVyLKpGTN6U5rYgNh/jF0De+Bhy0MtpZiWrUdW0lZ23YeqalYhw3FengpsgMuJz9kUnynTiNw/p3IQ0NdRflefwG1jy8zZ95G2V3zOZwQSaNKgUyp5Jp/PEVMam+yd1WxfUkuzjPOw1X39yYqqWO20AtBFB1UVC6mqOhN7PaOmX0lEgWemiS8vFPx9uqBl1cqGk3CBQmYUxatzpDKZO3Ei81ipjo/F9+QMOb864M2n6JV6ZVs+jyLJJsM30gN0+/tja2kBY8kf/auLiJ9Uzlyq56BB1+kRONL0QPP88CMwZ3u01JQQPHtdyJWVWKSycmIDkIXJCf5hlKkCpdIcToFjI3etBQr0JdrMDV4AK6HuU9wCJHdU0kaOoKY1N4giDQ17aGm9kfq63/B4ThdtsDbuw9xcQsIDBjVaV8yK3Xcu+QoRQ0uy02kn4pvbhlIbOD5E7CdQmuwMubN7TQZrPxjfDfuHp3Q6XrFDQYmv7sTg9XBA2MTuW9sV+w2G+vefZ36smIm3/coIV0S0OuzOXzkehwOA2Fh19E96eWzTl0dWLWMnYsXEtpTSvDgEiS0YrBpSEx8mvKyD5A4Sqk3BpKS+i2pMQntKjOnTbqGUbNv7dCmw24je+dWDq5ahrbaJYLsEgV9xozDbjJQW1RAU3UldHJbbZV5opP4IMgkREha8Y8uImp4DU6HQN6KWMxNp4WgQqXCYbfjsJ2uSVXhEU6+VyKPzZ/O0JRoysq/JD//n4BIaMjVpKS8ec7vwi1W3Fxq/C3FyqmDbW3No7xiITU1P+J0uqZAlMpQIiNmERFx/X8UPSOKTvSt2a5pl8Yd6FqOIIoONJqupPVdglzuh85kY2tOHesza9iWV4fZ1tGS4yE188bIp1DJLGStS8BWLqdQHce64PGueSpcIZ1X9w5neq8QWvau5fCalcRNLMU7yoCSPgwd/UOHm7QoilQ9+xwt33+PQ5DwUv9Z7Al3OY8qZBKW3zmE1EiftnWNBw7S/P33tGzcCGfcFEUBTP0dKGYNo8fYz9v243Q4+OTuuRi0TUReeTOtK76gWS5BLpNx7ZMvEtm9R1sbNUU6fv74OEadlfi+QUy4/eKcWE+h0x0hN/dZ9K1ZAHh5pRAZMQujsYgW/XH0+kzsdn2H7SQSBV6eKcTG3k1g4Oiztl9SXMHWRx/CgQWJUoZVFLE47NidHaf7TnHVg4/TdeAQAFotdsb8axutzRbmm9QINpER1yeSOiqSyjwtP755BBDoefxDlBEezI6eglmm5LGJSdwxMr5D2z8ereSNJTt5dus7ROibcQK6q4Mwja9ErY6n0j6Lp9arMNlVvH9tIonUU3Eii8qcLOqKixDF09ebT0goqZeNp8eosWh8/XA4jNTXb6S6ZiVNTbsBJ4Igp0/vRfj5DWjbzukU+WJ3Ma+uz3FZAXw8UMgklDYaCfRU8NW8AaSEX1j6+UeWZbD0UAWJIZ6suWf4OVMJrDxawQPfZyARYPEtA2hY8wW5e12DD4VKxaQH76JK/yQWSw1+fkPo3euLs4cWGw18ds+tmFv1DJm7gP9Lb2R2t0+J9SlvW8doD+DZPQsI9Y/jx7uHIpdK2hLHAVz98JMk9B8EgM1qIXPLLxxcvQJ9o8tSZZIoOebTi0ceuIV+3U77y1lNRuqKi6gtLqCmMJ/a4kK01ZX46430K67GJJdxID4ci1xKwuRaPCO0iNYA/MRHCIiIJyAiCk//AKwmI3n7d3Ni5zbKs4+3CSCHICH5KlCFun4TERE30i3xmbNOPZ/CLVbcXGr8rcXKKazWRiorl1BR+U2bGVwiUeKp6YZGk4Bak4BGHY9GE4+HR1TbdMqvsVobaWraTWPTdhobd2KztTf5enml0jP1Qzw8wjpsa7I62J5Xz87dmUh3b+dIlzTsvv54yKVcFrKIFP9N6Eo9ydvbH8O4+ag1agRB4JfsGorqT/sh9Ijw5qYuRwhSvYvTIZDzfRfC4gYy7rYF+AS7HBK1BgsHH32OqE0rcSLwetoN7Inrx5TeEdS0mNmeV0+Er4o19wzDT9M+dNXe1IRu5Y+0bNiAPCIcj1mXcUz3D0TRRmLiM0RFzm5bd/Vnn5K/cVXb/zK7g+haK+9PeYoIP/VpK5SviiC5DEmNgbRh0SjOUjfobFitjRQUvk519Q+u/ci8ie/yMBER17e7KYuiiMlUil6fSYs+E33LcfStWe0ETFjYdSR2fQKZrH00xZr0cnQP3Eff6hP8GocgYJVJscokrnepFKtCjkqlJi4sEo/4BBTxXVjeIOP9Iic+4cG8lZbA3h8KkHtImfZoGqv+uQujXUFY9W4GpVoIe+YZPtlTxss/u7LTvja1J9P7u/yrWi12nl6Vycb9OUyqW0+IuZ7UinoitK7jaB3tIOHFb/ALGMAzqzL5am8paoWUZXcOITncdd1bjEaq8k5QdOQAJ3Zuw2J0XUMSqYyE/oPoOXYC0Sk9ESQSLJZ6cvOeob5+A3K5H/37rUSliqJeb+GhHzLYkef6zYxPCeHVqT2xOURmf3GAE9UteCllfH5zfwbEndtSdqC4iekf7wVg2Z2D6Rd7fsvaKWfVy1v3063+CBKplKCYOOrL8uh6TSmqADNqdQL90n44Z7r7PT98y95lS/APj+Ro/9tYfayG3pFqXh67laqqb1EoAont9hWTPyhDZ7K1s/psW/Qpx39cTmptMxFBoeimTObg7m0uPzJA5ePLblUqB5TduH1MEv8Yn3Te42rNyaX8phuh1fWdCCEhRHz6McrYAPYfmITV2kBk5Gy6JT7T6fYtDfUc37GVzWvWkDz4GH7xruui7mgUQb7T6TFqHKHx587L4xYrbi41/pZipe7IEYL69Omw3Om0UFu7lrLyL2ltze60DUFQoFbHojkpYNTqOAzGIpoad9CiP86ZyZ6kUo0r4iZgJAH+w9s583aG4cABKu9/AEdTE7LQUKI+/ABlt2789P6jaFJWIIrQM2kpwRFpbduIosj+4iYW7y9jfWYNTqeFF4a+RLC6kfKK/mg3WHDabcgUShLGTGavJhXZkq+Zkf0LAJ8NvIHoWTdw46BoAj2V6Ew2rvr3LkobjYxIDOLLm/u38wnoDJeJ+UUEQU6/tKV4e/ekTm9m1ptruTzbVZTQIvVgaG4JwQYDjwy9k+NBp038ComVG7v/wJDwAxjsvgiK3iRGDSMqdAgaTQKC0PkIWxQdVFZ9T2HhG9jtruq+YWHXkRD/DxSKC6wyLToxmcqorFxMWfkXgIiHRwTdu7+Kv99gjFY7z67Owv+Ld7m6aA8OQSAnLABBBDkSfGRSPJwiCrsDmcWKxGxGYu7oqHwmTk8v1F27sjdgGlq7DzLs2JHhYWpgYlojYfecrnj8ys85fLS9EIkAH9yYRpiPB/d+dxR7RT4T635B5TSj8vZh0n0P0/TdAjyWuablPEeOJPLf7+GQSLn5y4PsKmggwlfFj3cPJcirfYSVzWImd89Ojm1aT3VBbtvnvqFhbdYWpaeSw0euR6/PRKPpisn7Q/6xvICGVitKmYSnr0xm5oDotn7rTDZu++oQB0qaUMokfHBjX8Z077wel9Xu5Ip3d1JQ18oNA6J4+dqeF/TdGSx27n3ibZLLtwEw4e4HSRw4mC3rJiDzqcBmkhKmfp5eo68/axsmfQuf3XMLVpOJ+Bl3cf8BEYkAq+4eRmqkD3p9NkplKAqFPyuOVPDg0gwUUgnr7htGQrAXLdu3U3Lvvcgtrmm3VqWcffHhKMPC6H/VVD6tCWTdiUaSQr1YtWBoh/wwv8ah11Ny/Q1YCwvx6NEDh06HrbwcWVgYMQu/RO9ZQnqGK99Pr56fndUSaLM1s//wbViMR3A4JJTtjkV3wvW9p44Zz+W333POfrjFiptLjb+lWDmQ0JWwCRMIuPMOVCkd83i0NNZTmLGOgDgNDqoxGAsxGAoxGotwOl3JygQTqA5IUB+QYAsXabnGgagBT8/uBPiPICBgBD4+fZFIzl8rRRRFtN8upvaVV8BuB5kM7HYEtRrdVRPZdSKdLldU4B2lJypqLoldn+y0nSaDlU0H3yDA+TnNZm+e2P0kHmYzV+p34atzmbQj6g30qnLVLqmaNZ9hj97dMcFWdQtTPtiN2ebk3jFdeXBc4nn7fzzzburrN+DhEUlKrxXc+Hk2WVUtXKXfRU+5lmseegzzp1+gX7oUy5CR5M5/nEqtiWZ9IanqV/FXVnTatlPwJsCvPwH+A/DzHYCnZzISiQxdSwa5uU+j12cC4OmZTLduz7aFpAJUbvyFlpwTxM6dh8rz/HkntNoDZJ94BLPZda7Ufjfwwi8DGLH7B67Oc4XMHokJocb33OUZBKeIwuFAZbUTHxFNl9Ao0g/loqmpIMzQhHBS0Oo1ERzq9yiiIAXRybj+BhJvvbrDuf2/5cf5/lA5CqkEp9NJSvMxhjXtQYJISJcErnrocXSmn8nLfx5Nhie+XwmIZgshTz6J/003ojPauOaD3RQ3GEiL8WPxbQPP+tCsKyni2OYNnNi5BavJFRUnkcpIGDCYvpNHU1RzH1ZrHen1Kfz76G10C/Xh3Rv6kBjS8fyabQ7u/vYIm3PqkEoE3riuJ1P6dIwk+veWfN74JY8AjYLND43EV336N2NvbKR1+w4cOl0nfS3kxM6tABSrYkhJ60tsZCZVkTtwKqTkr4rCWKdi5E3z6HfSwfnXbP/mCw79tILAmDg+D5hCmdbUaR6XU9/FvIUH2ZpbT78IT/5t3I/2S5cYb1V7ILHZUdvsiNFRJCxdyoZSI/csOYpMIvDj3UPpEXHu6TDRbqd8/l0Ydu5EFhpK7NLvQRQpu3ku1uJiZEFBRH/5BSXOxVRUfIVcHsDAgetQKgLbtWMyVZKeMQ+jsQBR0PDGwbnkNibw0iAPfCuP0XPcFZ2mOTgTt1hxc6nxtxUrnidrs2iGDydw/p2o+/bF2KLjwKplZGxYi91mRaFSMeCa6aRdcTUyhQKn00HL4S1ov1uCedNBsJyurib4aQh67GH8r5xxUfknnBYLNc89j27FCgC8J08m+JF/UP1/j2HYswcRyAnzJ/bp6WjFd0+GMe9GJuv4wLRY6ti7bywOhwFFwLMsze7B+sxqbHYn8cYibs5ZTb9yVy6Z8u4JJL3wItE9enXar1OjSIAvb+7P6KRzh2fabC0cOHgVZnM5ZYY0nts9mwCNkuXzh7Q5WZrz8ii+6mqQSknYtJEmyRFO5Dzm6q8ikOi4V9hXoqOwYjdekkzifUtQSttHs0ilGjSaRFpa0gERmcyLLl0eJCJ8Ztv0nN1i5egD96HZsg0BqAj0wTzlKrqPHENc777njNyw21vJz3+ZqurvABCPKgj7DCQiVCXFE//sc0R0T2FrRgnP/3AAicVAkp+E2X0CwWzE1KLDpG/BoGumOi8HUXQiSKQc9uxBRkA/frpnBGH6eiyFhVgLiziaqyDf0ZXUHlJGLOg8Z4fd4WTB4qNsPF7B6MbtdG91ZWpNHj6asbcvwCnq2LtvHA5HK926vYBmp5SaZ59F6utL/MZfkHp5UVjfypT3d9NitnNt3wj+dV2vc16nNrOZnD07OLbpZ2oKXRlrpUoPCtIGMyn5UxRSG+XWKVw/5lU8zpGa3+Zw8siyY205jJ65Mpm5Q09HNpU0GBj/9g4sdidvzejFlD6R2Kqq0G/ahP6XjRgPH+7UAfVcOD1EVOOHUh3clX0HdgEw4OppDLthTrtjbtU28fm9t2G3WnCOm8f7BUpCvT3Y9NDIs+YoqdaZmPPcMhbs/oquOtcx+d5wPR43z0GbnYX9hZdcltG0fsxMuJ56C9w3pisPnEfwA9S+/ApNX32F4OFBzLfftA2k7A0NlM27BUteHlI/PyI/+4hjrY9iMOQREDCKXj0/azsuvT6L9IxbsFrrUSpD6d3rC97fJfLhNlfCuFV3D6VrJ8Ly17jFiptLjb+lWKk7cgTr4iW0rF0LTpeToS02mmMeEmoVEhAEVN4+mFpcozk/P38GRyagPHwUy8kKtwCKhHh8Jl+J7qefsBa6MrV6jh5N6DNPIw8NPW9/bDU1VNx7H+Zjx0AiIfjhh/GfezOCIFB1Iovjt99KdH0zAD7XXkvpFfsxWotJTHyWqMhZHdrLzv4H1TUr8PbuTb+0HxAECY2tFlYercRzy8/0WvJvAIojgjkR6LphxfcbyIgb5+If3nHE+9SPmXy9rxRvDxlr7hneIYz01+hajrP/4DSkgp3l+VO544rH6fWr8gWls+dgPHAApidTNSodAF/fgfRIeRul8rQgKm008OPRMvbn7sFLmkWibyFd/QrRyE1t6zQ5x5LVehM1ejVNJyOzFNWlPLTtA8L17UfidV5qjsaEIPfxoduQESQPH01Y124dHtg1Ta289s5CYk2rSU4pJfQ9AWmrgK1fKMkLf0YmOx2FcaRMy9wvD6Iz2UgM8WTRvIGE+pxe3lBWwtZFn1N23JWlV1SqueyGWfQaNxGp7FQYuYiuzoRPsOqs4kHf1EDOvj3s+OknaKpGkEgYNesW+ky8CkEQyMx6gNra1Xh79aRfv2XgECm6+hqshYUE3HYbwQ89CMDO/Hpu/vIgDqd4VqfdzijMyWXtJx9iqyzAJPGgekgi16Z8D0By99cIC5t6zu2dTpEX1mbz5e4SAO69LIFrQ40cXrOC/fhyCAWXezcxzViBbUcWFLSvbG2NdmIPvYBbjwiKUgmyutPn0REVSZZoodrXk+TLJzL21ruQSFziavMXH5G+YQ1+sV15WToWmxM+uimNCT06/+2Koohu5Y9UPPc8UosZvUJNwHPPEz/ldAVtU1YWZbPn4DQY2BOawsqrF7Dy3hHnLTDYvGwZ1U+6Sm9EvP023hPGt1tu12opv/U2zFlZSHx8CHz3SY6Z/oHTaW27HzQ27uR45t04HAY0mkR69/oCD48w7A4nc748wO6CRroEaVh191C8PM4d/eYWK24uNf6WYuXUwRoL8il4/nmkBw8jOXlorb7e+N1yC13m3ULO4q+p+eILgmobkJ1MDoVcjs8VE/GdPh1VX1fSJafVSuPHn9DwySdgsyHRaAh++CF8Z8ygqaqS/AN7KDi4l9amRvzCIvCPiCTI4kD59RLQ6ZD4+BDx5r/wHOoKL9Y3NvDt4w9g0DaRpvYj5MBRcDqR9Iym8qYCVMFdGDRwQztfDl1LBocOuUzd/dKW4+PTGwBHayvNy5ZR9+prIIr433wznvPvYN/y78jYuA7R6UQildLr8isYPPUGVF6nLwKL3cGMj/eRXt5McpirJsu5RtGvrc/hROFCbur+AyClX9r3+Pi09w1q+GkJ9f94HoenSO0/bcQkzCcu9j5qCgqozjtBTK++BEXHtq0viiLp5c2sPFrJmowK1JIyYn3KqNCHU9LSvgTBFSU7ueP4GhQOBzaJhJUpI8jXxPLwgW9QOu00qVUciQ3GKncJBXVgCL1GjaH78FH4BIWwYumPZK9dhsamR+pwMrS4Gk+DGWu0k8YH7Wj8k0lJfqNdpd7cmibu+norZksTcf42Hr08FD8PI1ZbE1KJkrV5Xfjup3xG6fbjY3Y5XPuFRTDipnnEpw04q0Bprq0h/8Ae8g/soTrvtED28PLmyvsfbbOINWn3cvToTYBA/34r8PZ2+Xvot26lYv5dCAoF8et/Rh7uygL71Z4SnlmdhSDAp7M6ZoEFl7jIqmphe14d2/PqOVLWjMRuYUr1akKs9aj9Axl5dwLVdV8iCAr69v2m3fRbZ4iiyL+3FPCvjXmkWo4zM2Y5oV5aNJkSPNIF5NWnr2VRELHGi5h7OzH3diIE+yCX+yGVqhCdMuqLy7CZHCjVvsSkDkAu98TmULD4YB0n6oKQ5Gm4x5BJSMY+17QqYJNIqPTzRDJ6JGOe+SfGZi2f33c7Toed7N4z2azzYWz3YD6d3a/T78TR0kLNs8/Rsm4dACVRSTyVPI2ElC4svnVQu4y5679dS9g//w+F0w4TJpH01uvntGIZDx6kdN4tYLMReM8Cgu6+u9P1HC0tlN9+B6b0dCQaDcoXr6FQ+SUSiZKYmDspKXkfUbTj5zuInj0/auck3thqYfJ7u6jWmbmyVzjv3dDRZ+9M3GLFzaXG31KsNDU2UHpwH/tWfo9B24SH1U53o52wqrq2sFypnx8O7ekRXquHgjJ/Lyr9vOgyfBTDZ87BJ7j9CMySn0/Vk09hznBNn7T4eXM02AeDxxl+K6JIdGMLyZUNSIAWDwXHusWi6tKFgIhI/COiyNu3m7qSQgKjYrjhhdexHjzkSgBmMGAPhsb5VlIv/5KAgBEnm3Ry6PB1tLSkExo6heSuL9O6ezctq39Cv3kzosXl8Ol7/QxCn3mm7cbZWFnOjm++aEvbr9RoGHjNdEK6JCBTKJErlTRZROZ+c4wGs5Or02J5bXqfTm+8X+8t4alVWYDIB1f8iNK+FQ9lOAMGrG7LmNnQsJWs4w8S8JgJabOA6v9m0hTSm+Ob19NQXtrWVny/QQyaMp3QhPamc5vDyfbcetZlVmO1O/E/mUU4QOog5sPnCTqW7jrv3p6E/etNoocPx2Cxc2jdDrxf/D88DHrqVd78lNSbALEWuXh6Gs+p1CCxuKIvLDI1Eww2VDk5yIKC8PxoPvlN/8Jm0yIIcry8emCzuYrNdZbL5ddUG4IJCrycwNZw9i/djqnFtU1USk9Gzb6V4NguiKJIY3kp+Qf2kn9gD/Wlxe3aCE/sTtcBg+k+fDQaX9f5dDqt7D8wGaOxkIiIm0jq9twZl5nL18G4fz/eV11JxGuvtX3+xI+ZLN5fhkYhZcVdQ+kW6kVDq4Wd+fVsz61nZ34DjYb202/xQRpmpPoh+/kDtFWV+IdH0HuWg6bmrcjlAScjhCLoDNHpxFpaiul4BhkrP8C7rgxFJUjMZyRzk4AxVo50WCL+V45FE9YND48IPDzC26Y8zYZWvnv6ERoryvCPiOL6519r54tUoTXy+MrMtuikfj4iz8qL8djwE7byM8KQA/0x9Egmv6IYohN402MsokbDxodGtaWvPxPjkaNUPfwwtqoqkEoJuuceDNfOZMJ7uzHZHLx4TQ9uGuQSzjU6M5e/tZ3uxRk8ffArJE4n/nPnEvzIPzr93VgrKiiZdh2O5ma8Jk4g4s03zylsHK0GKubPx3jwIIJKheWhWBrCM9qWh4ZcTffur3TqK3e0TMu93x3l7Rl9SIs5dxZbt1hxc6nxtxQr79x2EzadS4h4B4Uw5LqZdB82CqdWS9NXX6H9djFOoxFBLsdr/Hj8ZkzHEd+FPUu/JXPbRhBFpDIZfa+4moFTpqPwUFGZd4KCA3vI378HvxMFdKtpROYUcQoCDb1T8J87l4CoaHRvvg07dwPQGBbEkWAfbJ2Ui1d5eXPjS2+2CSJzXh4Vd87HVlWFUyVifyiFXje5EpRVV68kO/thlBUq4kquxrBhG46mpra2FHFx+E6fjv+c2QiSjubo0uPpbF/0GfVlJec/iRIJSg8VMqUSv7BwIrv3oNojnMd3t2AV5DwwNpG7R4Vy4OA1mEwlBASMpmfqhxQVv0Np6YcA+P4SjPrHZpo1KvYkuEb8MoWS0PiuVORktfkoxPTsw6ApM4hM7nHW7ujTj1J053wUzTpEoKlXCmkff4bqV5WIrSUllN1+O7aycmye3vwweT5HtM3E63KJMlUgQcQkUSL0GsNsZwuti75CUCqJ+XoRqp49sVjqycl9goaGzZ30QkAq86WuVUWjSYXJ7kVaXBxl9SUEKY8hl5zOw6JUhGHTRpO/rQF9pRyQEJ82kKbKcrTVladblEiISk6l64AhJPQfhKd/x+imktKPKSx8Dbncn8GDNiGXt3fgNGVlUTJ1GgCxy5ah6uHygbA5nMz6fD/7ipoI8/Eg0FPJ8cr202YahZShCYGM7BbEiK5BRPm7pgBbGupY8vQjtDY2ENY1ji6TCzEYc/H0TCKt71KkUjW20lJMmVmYs06+srNxtrZ26L9VJuNERHe69IvnSFk+BqvLeT00IZFh1892Jao7id1qZfnLT1ORnYmnnz83vPhGp2nuRVHkx/RKnv8pG63RhkSAW4bEcKePlsYvPse2fz+STu5iTokUeYAfMj9/pH5+SP39kPn5ITqcNC9bBg4H8shIIt54HVVvV7++3F3Mcz9lo1FI+eXBkYT7eLQ54PaM9GFhWB21T7hqegU99CCBt93Wbp+O1lZKb7gBS34BHikpxHzzNRLV+csHOE0mKhbcg2H3bgSFguY7JRiSWoiJuZP4Lg+dNXoOXN/9+aakwC1W3Fx6/C3FyotTLicgKJhB115P6pjLOzhcOnQ6TMeO4dGjBzK/9iOQupIitn/9OWWZrtGMyssbiVSKofm0FUamVNI1vhtxmXlw3JWMSdm1K4JahTnjGAgCQQ8+QMCtt+J0OGiuqT6ZPrucpspyDM1ahs6YRXhi+5wM9sZGyu66HUtGNqJEJOCxe/EePpasj2ag2GtCXnt6RCb198d70iR8rroKjx4p53X6dTodZG3bTOa2TViNBmwWMzaLBbvVgs1saZdArNPtEXD4RzBoSH8iu/fAN0rC8ROzcTqteHhEYja7on1aS2IoXydnVFYZUhGyhvcnftp0koePRqnW0FhZzsFVy8jeuRXxpD9RRFIyA6fMILbX6VonotNJxbvv0vLJJ0icIma5DHHeHPrc/9BZj9Xe2Ej5nfMxHz+OoFQS9OqrnIhPY3tGIfUlRUwcM5iBpelU/99jAIS/8QY+k0/7I4iiSHPzfmx2HXK5Pwq5P3K5H3K5D4IgpcVs49avDnGguKktVbqn3Mw3sxxILTtoaNyG03na50a0qWjMV9Jc5EVrpQapTE5Mzz50HTiU+LQB7abkfo3ZXMXefZfjdJpI7v46YWGdR7tUPvIILat/Qj1gANFfLWw7N1qDlWs+2E1p4+kstclh3ozsFsTIxCD6RvudNSlbY2U53z3zKGZ9C7F9EwgashexrIGA4/Eo99uwV9d02EaUi9giRcxhQERPHMMf4JsaGQvGJpEc7o2pVc+h1cs5sv4n7CctgVEpPRl2/SzCErqx5t3Xydu7E4VKxYxnXyU4tkuHfbTrY6uF59dksyrdlTk2yl/Fy1N6EtdcwNEnH8e/vgmFKEGwOVHbzx1qDi7H99BnnkbqddqS43SKTP94L4dKtYxIDGJyahiPLD+GQiZh7T3D6BriReOXC6l79VUAQp9/Dr/p013nw+Gg4u4FtG7bhiwoiNhlPyAP6Ty0uzOcViuV991P69atIJPh+9QdBF1+I1Jf39+lwKRbrLi51PhbipUtSxYxbMp1yJUXX7sEXA+t4qOH2Pb152irXA9hpVpDfNoAEgYOIbZnH+RKD1fl5TVrqP3nSziamwGQeHsT8a9/4Tl82G/at9NiIfvucUh31XdYJnh44DVmDD5XXYlmyBAE+cXXwOkMURSx22ws+Ho/u05UEekp473rkinPz2P5up0EGSrx7iQzbMwQCX6pLrHmsEko3x5Gc6E3MoWSIXobnjn5eF9zDRGvvNxhW11dDQdXLydz60YcJ/0OQrokMHDKdGJjE8i/az5CpisXTkOAL7FvvUXUgEHnPRan0Ujlgw/Rum0bCAIhTzyB/003Ai5zf9mcOYg2GwF33kHw/fdf9Lky2xwsWHyETSfqALh1WBxPTk52nQOHmaamndTVr6ehYUu7KSS5EEO3pGcICbuwKr7Hjs+nvv4XfH3607fvkrM+oGxVVRROmIhotRL54Qd4jT6dl6Os0cjCPSUkh3szomtguwrN56OmII8fn3qEoNoG4m1WlPWnv39BqUSR2AVzhJHmoEJsUSLWIKjL8icp5WHSJk4/a7uGZi37Vy7l2Kaf2753/4gomirLkUhlXPvYs+0sLudja04dT6w8TpXOZbWZlhbJPWk+7Nu4iWcLfDDL1Ky8tR8pGhFHUxP2Ji0OrRaHtgm7VotTp0M9YCBe4y/v9BwX1rcy8Z2dWO1OZBIBeyfOy3VvvkXjJ5+ARELEm2/iPWE8ta+/TtPnX7isd998jSr14rM2i1YrlY88in79+rbPBLUaeXgY8vBw1yvs5HuE610WFIQgPXeuF3CLFTeXHn9LsfJ7/QAddjvFRw8hUyiISkk9a0isvamJ+rfewlZZRegzT6OIiel0vQuloXEnha/Mw/snGaIA1kQnAVNnEX7t/Ug9z50D5D+hxWzjqvd2UdJoZHCXAMqajFQ2m+gd5cvHU7rQVJhDxYksKnKyaKosB0RC+9ejDjRTuScET6+u9Bw7keQRoxELiyiZPgNBoSBh21Zk/p1nLNU3NXB4zUoyNq3HbrEQoDfSp6IBhdWGQxCo7d+LQe9+0ObHcSGIdjs1L7xI8/euiBb/W+bhd8NMSmbMwNHYiNe4sUS8806nU2YXgs3h5I0NuZQ1GXltWs9OIy+cTita7X7q6zdQU/sTDodrmiQocBwJCY+iVsd12OYUruJ8tyIIUgb0/6mdw29n1P3rTRo//RRFly50Wb0KQXZxGYLb9dtoRL9pE7rVP2HYvbttyk6UCJh7ODANcOB72STqWja15SRqyvem5mAIY+Y8SvLws5czOJOW+jr2Ll9C1rbNbVa9K+55mO7DRl10n1stdt7YkMtXe0sQRVd1Y6VMSmWzidmDY3j+6rNPM14IH24r5NX1LifoPtG+LLtzSIfiijVPP0PzDz8gyOX4zpiB9ptvAAj/1xv4TJrUabsXgmi3U/f66+jWrMXR2LFIYgdkMgLmzm2LEDsbbrHi5lLDLVb+goiiyL79E7AWFuBUgW/cUHr3/up3Mf+ejzMTxgHEBWpYdudgAjzbZ0U16pqpzMmmIicLh91O92GjCE9MatfH4uumYz5+nKAHHiDwjtvPuV9Ds5acx/4P1dYdCIDeQ4HzlpsZcPe9baGoF4MoijR+/An1b78NgEStxmk0okxKIvbbb5BoLrwA33+K1dpIUfG7VFUtQRQdCIKMyIibiIu7p0N9KofDzP79EzGZy4iOuoWuXR8/b/sOvZ7Cy8fj0GoJffZZ/K6fcdF9NOw/QPPyZeg3bUY0np46Ir4LWRY9VT4aUucE4vTc07bIpgugeLMX1mYfrnzwMbr07X/R+22qquDo+jWEd+1G9wsUOmfjcGkTjy4/TkGdSxgGeynZ9NBIvM8Txns+7A4nMz/bT16tnuXzhxAf1HHAIDocVD7wIPpffmn7LGD+nQTfd99/tO8zcZrN2KqrsVVVtb3sVVXYKk/+X1sLDgdB999H4J13nrMtt1hxc6nxh4iVl19+mRUrVpCTk4NKpWLIkCG8+uqrdOt2ekRoNpt56KGH+O6777BYLIwfP54PPviAkDPmccvKypg/fz5bt27F09OTOXPm8PLLLyO7wJHi/4pYAaio+JbcvKcveHT9e3KqiFygp4IV84eeN//K2Wj+8Ueq/+8xZGFhJGz85awjfrtWS9Ujj2LY6SpUZx/YH98H7iOq97nDZS+4D08+BXY70oAA4n5Y2hbm+0fTasinoOAVGhu3ASCT+RAXdw+RETe2RXcUFb1Nccl7KJWhDBq4odPkgJ3R9M231L74ItKAAOI3bEDqeWFi7NTIvemrRW2fyaOj8bnySnyuuhJFTAzHNm9g4yfvASL953kj926mfI+G8gMmFCoNUx59ul3hyj8Ti93BB1sLWXu8mqcnJzMiMeh3adfhFLE7nedMp++0Wim/4w6Me/fhNW4cEe+8/Zutd78F0eHAXleHoFSe1ZJ5CrdYcXOp8YeIlQkTJnD99dfTv39/7HY7jz/+OJmZmWRnZ6M5OYKdP38+a9euZeHChfj4+LBgwQIkEgm7d7siZxwOB7179yY0NJTXX3+d6upqZs+ezW233cZLL730ux/spY7DYSYv7zm8vXsSEXHDH77/rCodYT4q/DXnLydwNpwWCwWjRuPQaol47128x43rsI4pPZ2KBx7EXl2NoFQS+vTT+E7t3Jn0t2LYtx/t998RcOutnZZf+KNpbNxJfsFLGAyuTLUqVQxdE/4PjaYr+w9cgdNppUeP9wgJvuKC2xRtNoomX4m1tPSCR/R2rZbKBx7EuG8fAD7TpuI7dSqq3r07WPEOrFrGzsULAdD4+mFo1qL28WXq48+f1xn274RotWI6dsx1Dv+D6bj/Nm6x4uZS40+ZBqqvryc4OJjt27czYsQIdDodQUFBLF68mGnTXKGWOTk5dO/enb179zJo0CB+/vlnJk+eTFVVVZu15aOPPuLRRx+lvr4eheL8D83/JbHyv8Ip50P1oEHELPyy7XNRFNF+/TW1r78BNhuKmBgi3n0Hj25/nAXpz0QUHVRV/UBh0Ztt1bulUk8cjlb8/YfTu9eXFz3t17JxI5X33Ivg4UH8hvXnjD4xZ2dTseAebFVVSNRqwl55Ge/LLz9Hf0V2fPslh346WTYiKIRpT76AX+ifY6Vy85/hFituLjUu5vn9u9krdSeLkvmfNEUePnwYm83G2LFj29ZJSkoiOjqavXtdZeP37t1Lampqu2mh8ePH09LSQlZWVqf7sVgstLS0tHu5ubTwu34GSCQY9+3DUlAAuPJPVN7/ALUvvQw2G17jxxO7fNn/nFARRZEPyupI3nWcV4qqsTlPjwUEQUpExPUMGbyF2Jj5SCRKHI5WBEFBt8RnfpN/ktfYsajS0hDNZurfefes6+nWrKVk5o3YqqqQx0QT+/135xQqrv4KjLhxLoOunUFC/0Hc8PxrbqHyF+LX90q9vmN0nxs3fxV+F7HidDq5//77GTp0KD16uOaxa2pqUCgU+P4qkVdISAg1NTVt64T8aiR46v9T6/yal19+GR8fn7ZXVFTU73EIbn5H5OHheI25DADt4sWYc3IonjoV/YYNIJcT8vjjRLz9Vvsop6qj0Fr3J/X490EURZ4vrOL5wiqabA7eLq3lmqP5lJra5/yQyTyJj3+YwYM2ER19G6k93jlnpNC5EASBkEf+AYBu5UrMOTntlot2O7WvvU7Vww8jms1oRgwnbulSlF27XnD7Q2fM4uqHn+w0iZ2bS5df3yuTk5P/7C65cfOb+V3Eyt13301mZibffffd79HcOXnsscfQ6XRtr/IzUm67uXTwu9GV56R5xUpKZlyPrbQMWVgYsd98jf/sWaetCKIIW1+CT0bBB4OgtnOL2qWO3SnyQE45H5a7cuXcFBaAt0zC4RYjYw/msrJW22EbD49wuib8H0FB57ZwnA9Vr154XzERRJG6115v+9zR3Ez57XfQ9MUXAATcfjtRH36I1MfnbE25+R/i1/fK7OzsP7tLbtz8Zv5jsbJgwQLWrFnD1q1biYw8XeU3NDQUq9VK88nEaaeora0l9GT14tDQUGprazssP7WsM5RKJd7e3u1ebi491AMHooiPRzSbES0W14h+xXJUvXqdXsnphHX/gO2ubKAYG+GrK/9ygsXscHJrVjHf1TQhFeCdpGjeSIpiU79u9PfWoHc4mZ9dyr0nSmm1O87f4G8g6MEHEeRyDHv20LpzF+bcXIqnXYdhzx4ElYqIt98i+MEHLih52KXEilotLxVWYXKcO9uym478+l7pdUamXjdu/mr8ZrEiiiILFixg5cqVbNmyhbi49mbstLQ05HI5mzefrruSm5tLWVkZgwcPBmDw4MEcP36currT5v+NGzfi7e3tNln+0Zi08N2NsPFpcNjOueqJVhNr6poxn+MBcmp6Qh4RQdD99xP10UftyxzYrbDiNjj4KSDAuBcgrPcZguWvMQrU2x3MPFbE+oYWlBKBL3rEMSPM5bcVrVKysk8CD8aGIAGW1mgZdyiX9JaTOU0Kt8Cia2DH62dt/0JRREbid9NNAFQ//TQl19+AraICeWQksd8twXvChN/cdoHRzJbGFv7olEzfVTdyV3Yp75bVMed4kVuwuHHzN+Y3RwPdddddLF68mFWrVrXLreLj44PqZOGu+fPns27dOhYuXIi3tzf33HMPAHv2uJJMnQpdDg8P57XXXqOmpoZZs2Zx6623/i1Dl/9U1jwAh1zTBcSNgOu+AnXHvA15BjNXHM6j1eEkUC5jTkQAN0cEEqS4iCRcVgMsnQ0Fm0AigykfQ+o0l2BadA1Up4M6EOb8BCGXrmitt9q4MaOIY60mPKUSFqV2YYhf5zlS9jW3cnd2KZUWG3IB/q95M/PTX0ByquDlTSsgYcz/s3fW4VFc6x//zPpusnE3IiQQwd2haIF6S12ou922t3LrbrfuflvqLVy0FGgp7h5CiLvLZjfrO/P7Y0JCSqDblrbcX+fzPHk2u3tmzpnZ3Tnfec8rv2s8PouF3ClT0XY4UgaMHk38v59H/TO/sV/DPqud03YW0u4TuS4xkgfS4v6URIU/NLVx8d5ifJJ8RyUCE0LNfNgvBaMfRfsUjkSJBlI40fhTooHeeOMNLBYLEydOJDY2tvPvi4505wAvvPACs2fP5qyzzmL8+PHExMTw7bffdr6vVqtZvHgxarWaUaNGcdFFF3HJJZfwyCOP/NZhKfwWqrbDto4QY60JStbAu1OgsbBbM4vHy2V7S7D5RDQCNHq8PF9ax5AN+7k1r5w8m6OHnf8MRwt8fIYsVLQmOP8LWagAGEPhkgUQOwDsjbKFpT7v+B7rcaLC6eb0HYXssTkI12r4dlDvowoVgJEhgazKjmSWtwyPBI8GT+b8/s9RF99RT2rRLeD6fdEaH1jdPHfmRbQbjHw27RT2Pv707xIqNS43F+8tob3DovFGRQP3FlQh/sEWlt1WO1fmluKT4OzoUL4Z1BuTWsVPLVbm7i1RLCwKCn9D/hbp9iVJ4s2KBv5T3cgdyTGcFXPsTI9/K0QfvHOSbM3ofx6Mvgk+Ow8sFWAIgXM/hpTxiJLEJXtLWNnURrxey5IhGWy22Hi7ooHtbV2p2seFBnJ1QiSTw4NQ/fwO3ForC5X6/WAIhgu+gqQRR47J3gz/OQ1q90BAJFy6GKL60uT2ctfBCkodLl7O7EV2oPHox1W9Ew5+Lwug4AQISYTgRDCG/O5Tlt/u5LzdRdS4PMTrtXw5MI000zEKBnpdsPlNWPMckquNeTGzuT/jVhyClnCNmpcPPsXkisUw7CqY9dxvGtOnNU3cfkB2Ns8y6tjvcKNXCXw5II0RIb++tlS718dpOwvZZ3OQYTJwUVwYDxZWIwEXxIbxbJ9E1L/FwuLzwM5PYOOrEJ0Ns/4NARGdb5c5XMzaXkCjx8v40EA+6Z+KTqViU6uNC/YUY/eJTAoz80FOCgbFwvKrUCwrCicaSm2gw7D7RG4/UM6C+lZANiW9kd2L06L8L5L3/5ot78DSO0AfDDdtg8AosNbB5xdA1TZ5mWbWv3k6dBovlNVhUAn8d3A6A8xd6fi3W9p5q7KBJQ2t+Dq+Tb1Neq5MiOScmFAC1GpoLpaXeFrLIDAGLv5WnqyOxs8Ey7ZzFnJ1tURT849o3KVIYefyZk4G0yIOi2wRfZC/FDa+DuUbet6vPkgWLSGJsog59H9gjDxpmsJlgXOU2kQ72tq5cHcxLV4fGSYDnw9IJc7QPXmhT/RR0FpAenBv1AcWwYoH5eMGiOkP05/gYNQwrttfSq7NiYDEP0ve5ZbyTxAuWwrJY37pU+vG/LoWrt9fhgRckxjJ/alxXJFbwvLGNkI0ahYOTicjwP/qyz5J4tIOYRqh1bB0SDpJRj1f1zZzc145InBmdCgv901Co/JTsIg+2PeNHPnVUtL1emAMnPkWpE6kye3llB0FFDtc5AQamT+oN+bDUt1vbLVx4f+6YGnIlwV4D0usfzSKWFE40VDESgflDheX7ytln82BRoBhwQFsbG1HI8D7OSndJ7r/pyyqb+X18nquSozkzOifCTRbPbwyFFwWmPkcDL+q6z2PA/57A+z7hsUR47ky+1EAXs1M4uyjWKYqnG7er2xgXk0TbV7ZVB+qUXNDmMiVy87HYKuC0BS4eD6E+ZFXxN6M9J9TeVedwcOp1+OT2omovhUkL25DDm2Rt/FA72SujTIg7JonWy9aSuVtVRroMxOQoLVCthTZ/ahgC4AgTyamcNl3xhQGARGsMfXhMtUI7KgZpHYwL7SBML0BdCbQGkFrwqvWc/v2Z/ixZj1jRT3/Li/EKElgjoXJD8jWq47aMU6fyAOFVfynWh7XrIbVvFz/OQFX/yDv0w+WNrRyVceSySVx4TydkYAgCNh9IufsKmR7m73TEhaj7/Irsre5WflBLsYgHcNmphAS3dXffQcrea+qEYMA3xrzGVzwJThaIX0qi+JncV2VD68EsyKDeSOrF7pj1cKRJDiwBH58XLaogTxZj7gG9n4NDQcAAfuY2zk79Fx2WB0kGLQsHtx9vIfY2Grjgt3FOMT/McEiSbDu37DqEfk7dd6nPVsV/0AUsaJwoqGIFWBts5Vr9pfS7PERodXwTqKG4bkfcFPwLL51B6ETBD7un8qEsP+/4XyfdSwNHPqAD911d94Nz78Wdn8m+4hc9eOR1gRJIm/1a8zyDcauNnFN+1Yenno+6I+9rGDz+vi8tpl3KxsodbgBSHTU8K/mpZx66n0IQT2Hpf+cNq+P2/YVsqRF9oUZVPsSle5tne+7jINoi7iZC+tX8WT+M+gkr2wVGXq5vKQSFNt9h+52sFR2iJfyjsdKWcjY6mUx42ztcSzfh4/myqyHcat0jG/Zxgf7/kWA2N1HRwTuCY9jaVBXfZhBLg+vpJ1P8Lg7QNdzocFPqpu452AFHgn6tBfzofYAKdN/ufLyD01tXLq3BI8kcU5MKC/1Teq29Nbk9nLqjgKKHC6yAgwsGJxOkEaNKEosenkXlQfk3C+CSqDvyBiGzkrmy6YK/lUlL+u9m/sAsxt/OvJc9DqDK3vdhFtQMyXMzLs9CQZJguIf4YfHZJ8okJf+xtwCw6+Rv0NuOyy/F+/2/3B59qN8HzGGUDUsHNKX9GNYgja0yBaW/xnB4vPCsju7HNgB1Do47TXoP6db03afj+0WO5sschXpm5Oij9uxKWJF4UTjby1WJEni7coGHi6sRgQGmI28HysS/+kp0N6AR1BzTdbDLI0YhxGRz/pGMTI24Rf7+V/jg6pG7jlYCcCQIFOnX8m40EDezEomvHozfDgTEODKVZBwZLXjVo+XGdsPUupwM7Z1J5/v/gea6Cy44HN5CeXneF3QVCjfLTccxNd4kK+bPTzZ61Jq9XIl3KFBJh7uHc+Q4GNXCM61ObhyXwklDjdaAf5V/RmfORbRpFFzXuRwvm3YihsJl3E4bRE3MKY9n3dj3IQOOMdvq0SP+DyyE3B7o+zka29iocXH9a5UvKiY6S7ijdaF6N1W8DjwulzUWGIotaTwYUg1W2K2IUgqhlaczN74VTjVTtJD03lryltEmo5eDXibpZ0rdh2gTlQT7LHyRi8TJ/U5egXq9S1WLtxTjFOUOCUyhDeyevW4JFPmcDF7RwENbi/jQgOZ1z+VXUvL2Lq4BI1ORVx6KOW5smWnIF7FF2OCkQSB+4ve4IbKzyFuMGSeIltDDiyRw619Ln4KHcpl2Y/jUBsY76vhg5RAApJHgVoD5Zvhh0ehVK6ojdYEI6+T/aGM3a17kiRx5+b1fOIIxOBz8WXefQwffyUMOO+YH9P6FisX7SnBIYqcFGbm/RNVsLjb4esr4OAyQIBpj0L5JjiwGICW8fexNedqNra1s6m1nb02O97DrshjQwL5sF8Kgceo/OwvilhRONH424oVbUAgd+RX8E1HttBzYkJ5JtSO8WNZqBDRBwQBV2MRl+U8zo9hIwj0tvNl/UcMThsEfWfL/gt/Ae1eHx9VN/FBVSN9Aww8nZFwhC+Ev7xZXs9DRdUAXJUQwSO941nSYOHmA+XYfSKJei0f7n+A7MqVMGQunPLiEfvwSRIX7Snmx2YrCQYty2PthH91PrQ34AuIxTrmWflC3FICzSXQUgyWKpC6R2oISPjSx/DBmId5taoVhyi/f0ZUCPemxZHYwzF+WtPEvQcrcYoS8Xot7+QkU1n5X+7b+iRRXi/fVVSz0WjgluhIvIKAN2AsLWFXkWoy8nH/lGM7u/5Kfu6n8VKfRNobnZTlNlGe20z1wRa8HpGdcSvY3EuegE63XEFCwUDqtJWsHPIuLd4mEgITeHva2ySaj/79qnV5uHLNKrZpYhAkkXtTorkxOY6i1iKe3vo0FdYKLsy8kLTok7kotxq7T2RqeBDv5SQfcylmj9XOGR3hxzMMJob+pxJBgskjS+nb/ha1VRJfqq/h2fGD8WgEhhTZuc9VxeAzhmGIS+6+M5cVClZA3iI21FVzcZ8HadeYGNm6mw8Ln8cQlIyhpsMao9bB0Ctg3O2yL1QP/Lu0lmdKahGA9+rnMTPvbfmNfnNg1vNgOPoFTBYsxThEiclhQbzfLxn9sZakkH3Ymjxemtxemj1emjwdj+5D//u6vRauVXF/7wSm/5YlY1sDfHaubFnSGOCsd2lIm8H6Ziubc39kkx3yAtOO2Cxer2VYcAArmtpo94kMMBv5tH8a4brfV9FZESsKJxp/S7Gyv66BW8qa2GNzoBbgobR4rtQ3IXx0CrTXy46Nl/xX9j9oOIgjbwkXWhPYYEonxNPGt7tvIau9GOIGQeapkH06hKX+4eNv9Xh5r7KRdysbaDksu2mQRsXj6QmcHR3aY14La7MTj8tHWGx3C8WLpbU8VSLXVbo5KYp7UmM7t8+zOZi7r4RShxujz8kLpa9x+gUv9ejs91hRNa+W12NUCSwanE6O2YTUUkbxm4+yrmIqNvHoVoKeUKkEXOE6fsgysDVahSQIaCU41aPjIl0AEYEGQtOCeLSugS9qmwGYHBbEK1lJhGrUnLv4XPKa87jFY+TKmlLofw4rkodw5+6X8Uk+VMFTqQu6mBCthndzkhkb+vuX9z6pbuLOfHkZbU5ECOcWeyneWk9bo7Nbu6LkLayInQfArf1v54pBc9m2tITNC0vwRFhYPugdKm0VRBgjeHPKm/QJO3rxRpetiXuXfsC8yCkIooN+nqXU1y/CJ3V9NySVGbt5BoMST2PewH5+WRRWN7dx0e5ivMCoPAc31WzhJPUDAFQZ4pg59G3q1Gb6tvg4c4UFtQQ6o4ZBU5Pof1ICOkPXROlx+WipbaelysLGkkIejgrCoVET3+Th/J9sDNF8z/jxNtST7jqm+P+sponbOiKYnkiP5/K4MFj7b1j9JEg+CE2Gs96DhKFH3cfhgmVSmJmZkcEdQsTXgxDx4hB/2+Xu1GANj+f08T+fUFMRfHKWLOaNobTM+YIXvAl8UNWI52eX3N72MkZ6qhk5cAYjYuI7BfzONjsX7imi2eMj3aTn8wFpxP/GGxhQxIrCicffUqxkfLcBi85ImFbN29nJjPVWw4ezO4RKP7hk4RGTss3r47wdeWxr9xLus7Fg+/WkO8q6GiQMl9eUc8467t77DW4Pb1c08EFVI7aOvBGpRj1XJETwdW0LO63yss3MiGCe7pPQeZFsrmlnx3dlHNxaB5LEabcOIr5PKJIk8VRJLS+VyeUK7kqJ4bZe0UcIndamCq77aTk/hsoTwPWJUdyXFtstDPW/9S1ckyufhzezenF6dCitdXbWfnGQ8v2ykFALbtQqCQRVx5+6w3G0e3+iKOF1d7e21ISoWTnQRGm0fEwmp8joA072puipC1ajAu5OjeXGpChUgsC22m3MXT4Xg9rAijOXEaINkB1agcXFi7l37b1ISJgjTqXYeDYalcDTGYlcGPfbC++9W9nAvwqqAJjl1TF8aSNehxcAlVogLj2EpKxwiiN28ci++xElkSv7Xcktg28BwOvx8dnDm2lrdJI2NYh3tE9ysOUgZq2Z16a8xqCoQUftW9y3gHs3vssigwWV2ApApmYEEfYM1piWI3jljM+B2kAuyLyAizIvItRw7Og20Sdyz3928VGyLGweKXiVqxu/wzbtSU71DWa/3UOfAAMLB/WmKbeFzQuLaa5uB8Bo1pI6KAprk4OWGjvW5u5irSZUzbwJZhx6FdEtXvqXuomMMDB0QiJBRi1GtQqTWoVRpcKoVmFUCeyzOTodg29OiuLetMOqOVdsgW+ugNZy2VF62JXdwpt/zjoplIvFQTjwb6lEJwhE6DSEaTWEazWEadWEH/5cDeE/PUZo2Wq+iZ7KG4nn4hM0hIhOHkoI4NyMnGMnxqvcBp/OAXsT7tBUPpo+j+cbfLR23IxkBxoYFRLIyOBARlhzifz6QnnpMSgezv8cYvt37qqg3cm5u4uo7giT/3xA2jH9eY6FIlYUTjT+lmIlctFaBkRH8n6/FBKtJb8oVA5h8Xg5Z1cRe2wOYrQqFuj2knzgKyj5qWtJQ6WB9GnQ/1zImAHa377MUO1080ZFPZ9UN3Xe5WUGGLilVzSnRIWgFgS8osSr5XU8X1qHR5II12q4PyyckLWNFO1qgMM+saAwLec+MIrHK+p4q1IuovdAWhzXJ/VsdufLS/DtX8RT/e/nlVC5MvKEUDNvZvciVKsh1+Zg9vYCHKLI9YlR3JMUzfalpexcWY7olVBrVAyansSQ6b3Q6HqeHLyilwPNB9het52ytjIu7XsZ4UTjsLlx2jw4bG7sVjdrHA4+0Dmp0XQdUIBD5JJ8L3Onp5GUJYuNW3+8lVXlqzgn4xweGPXAEf19ffBrHt74MACJseezQzsTgNntGm4ODSVjQBSGwJ7viCVJotxaTog+hGC9bOp/tayOx4prABhb7GbiVhsCEBYXwNCZyfTKCUdn0LCxeiM3rLoBj+jh7IyzeWDkA90msZI9jSx9fQ8qtcDse7L419672FG/A4PawPMTn2d8wvgjxlPUWsQTm59gS+0W+QV1JK1hl6FW5aAWod0gkeraRrhzKaVtxQAYNUbmZMzh0uxLj+oXs+m/RWxfVsbGTDUr+wcjSCJvJGj50mHih2YrkToNS4dkdN7Vi6JE4bY6tiwqwdJwZLI/o1lLaEwAoTEmQmMCaI7UcJOlkcZfWfvo7OhQXslMOnLyd1pg8e2w72u/9rMpuD+vJp6PShdIeMoowk0BR4iR8I7nAWrV0cWGJMnZnLd/IPvazHqevfkb+IdxHHvMskVsnKuM5/ok0itl8JHbH1gKX1+O5HWwvPdFPJJ6LcUu+Zz0DTDwUO84Job97KLcVASfngtNBaANgLPehb4zO9+udLo5b3cRhXYXYVo1n/ZPY2DQr/fLUsSKwonG31KsXLFpFy8P7YepuRA+nCULleh+cOnRhcohmtxeztxVSH67kwSDlv8OSife0yznhdj9uZzr4xD6YMg+TRYuSaM7w1ABOZeEtaYrVLa1vDPapMwt8UrsWXxhyMTTkTh4oNnEbcnRTO0pgRpyqvPrdpdQ4JFr9fQrdTFjh50s1Ub6ByxmZestWMVItk6G5RHyMT6RHs/lCUdZoilcKZumBTVcs4b/quK5Na8ChyjSy6Dj330TufVABRVONxNCA3lMCmLDVwXYml0AJGWHM+7cdEKiul8onV4nexv3sqNuB9vrtrOrYRcOb9cE1z+yPx+f/DEq4cjlCo8o8VF1Iy+V1pHsUzF5ZQvaBrm/tMGRJJ9sZM4PZyIhseC0BaSFHLnGD/DJ/k94eqtcEDHOdza7U04DwOgSyalwM0nUMyUjgtSBUZhCtOxp2MPKspWsLF9Jla0KrUrLlKQp+MwnMa81GgSBsbkOJu5zEBJpZPgpKfQeGo2qw4l1b8Nervj+ChxeB1N7TeXZ8c+i/lk0lSRJLHltD2X7mkjKCmPydRncueZO1lSuQSNoeHTso8xOnQ1Au6edt3a/xcf7P8YredGrdFxlsTKkOZFrsp6iKlwWW1GtXi5bbWPqWWnU9jrAO3veIa9ZzvKrU+k4I/0M5ubMJT4wvnMc5blNLHplFyAwJfh5Phg1iw+DR3e+b1QJfDsonUE9TIA+n8jBzXU017QTEmUkNDaAsJiAHsVfqcPFu5UN1FqclBS14vBJ+HQCxhgTXq2AwyfiEEXsPhGXKHFaVAgvZyYd3d9GkmD/Aij6sef3D6OkLoY9+4MxSvVEhdmJOv1GIjLiuy1f+cX6l2HF/YAghxd3iAZv1S7e2vETzxpH4lTrMfqc3GVdw1WDxqJJ7jiXW9+FpXeyJyCNh3L+xQZ9MgARWg13p8ZyXkzY0fPSOFrgq8ugeDWdjrijboSO60Kj28uFe4rYbXUQoBL4KFHFWOGQI3iTXFcrcdgxD00RKwonGn9LsTJz3kxu63cuk5c/hmCrg+gc2aIS4N9SQJ3Lwxk7Cyl2uEg16nmxbyISskOeo6UcR9kmHJW7sLsdONQGHCo9DmMk9qBEHF4PDq8XuyjiUBmwq/UdjwYcKgMOtR6Huivb6sjWXdxW/jHj1W0IsQNlP5m4gbJfjT4QyeOkcu0Gtv/QTFlzGD9lG9nY14CkEohxNvFS6ctMiAynuEzLdaGXsztFjyCJPB9YxwVDp3cXUIfwOOGNUXJytpHXw4wnAdhvc3DZ3hLKne7OpolaLf/Y46Fpj7zkEximZ9ycDFIGRCAIAq3OVvY17esUJ3sb9+IRuxc/NOvMDI4azLa6bbR72rl/5P3M6dM9TPNwJElCEARcDi9bF5WwZ3UlkiixMXUBu6N/ZHTsaN6a9lbP34FGB3tWV/Kfgg/YGLcIgAzreezrOwvLIf0geQlr2U948xbcml3YVZbO7TWCBq/k7Xzu1cSRYB3DmRUjGD8jh76jY1Ef5hdS3FrMJd9dgsVlYWTsSF6b/Bo6dc++BK11dj57dDOiV+Lka/uR2D+E+9ffz5LiJQDcPfxuwo3hPLv1Wert8vLOpMRJ/HP4Pwnfv54vPxRpIYrtk8yQEcapOxzUbZbbDZicyKgz09hQs56397zNroZdAKgFNYOiBjEmfgyDA4ay48UaXG492cbvmDi2Bd8pL3Nlfi3LGi2yY2tOMjMjQ4762fwW7G1ulr6xh7qSNlQqgQkX9CFrbNdSz6HP+3iw58dK1n55sJvFEQABQqJMRPUyE5lkJqpXEBGJgbRjJUAbcORntv+/cs0qgBlPyRFMP6OkMo879hezXiuLwQFtB/i39Xuyg4Oo2buIp1Ku5MvoGUiCgF4lcG1iFDcmRXVLbndUfB65Cvn2jtIXqZPk5c6OyDSb086lvf/J+tDB6EQ3b+1/mJOb1sltx/1DzuNzDBSxonCi8bcUK5lvZKI2qsl2ubhZCmXUhUsQAo++zt0TRTYLZ6//ElvbVkRNBHbzNCR1yHEb6yQaubX5e0aULYa2qiPelySBMv1sttWOp87dGwAVHvoaVyPlOLgv9RxKkB1qL40Lx+L1saC+FUGUuGBrBU87LkcTlw3TH4fksd13vvppWP2EnDH0xq3doiyaPV6uyy3jpxYrBgkuW2khotmL3WQhfLSIpo+dMlspxZZiSiwlNDubjxh7hDGCIdFDGBI9hMFRg0kPTUclqJiXN4+ntjyFWWtm4RkLiTD695k0Vtr4/otdPBdyKx6Nizm1t3DZaWeS2Des41xJ1Ba3sXtVOcU7Gzj0Ld6TuZwNIUsBuG/E/dSLgSwoXE6dZQsq0XZYD0bCnP0Y7RjK1F7jeKH9AHmGnzDYNyJIsmVHp9IxNXkq52Scw+CowQiCQLWtmouXXUy9vZ5+Ef14d9q7mLTHNslvWlDE9u/KMIcbuODBEai0Ak9veZpPD3zarV1CYAL3jLiH8QnjkSSJZW/upWR3I0HqWub0+wT91YuQBBXbl5WyeaGcBTa5XzhTr8hGq1ezrW4bb+95m001m7rt1+QOondbPOf3iWTs5McIMYbi8Im8VFZHP7ORWcdZqBzC6/Hxw38OULBV9qMaOCWRUWf27rRO/V4kUWLjgiJ2fl8OQN9RMQSb7NRvWkODI76bE7hLbacofBcFkduoCSoiUUjlpSGvk9q3Q4hWbpMtsl4nDL8aTn6m06pxRL+SxGeFB3m4ohWLoEcteZnVsIYV4aM6b0rOjA7lntTYHqPdjn1QEtKmNyj48UEkSaKPp/tNgFPQcX3m/SyNHI9KEnm+8VvOl0qh7ykw4Nxj7loRKwonGn9LsfL0cxl8HabB0WFVGBI9hJsH3czg6B7WlQ/DJ/rYVreNRUWLWFm+knZPe9ebghZjyGTCI8/AbIzqcA7scBZExGgpxehswWQwYzQFYwwIwxQQilGjwagSujkWBmnUhGoPM0nbGuR6PNU7Eat2U1QA2xtOoskrZ3ZVC26yEssYNCkS84CJYAqj3efj8aIa3q9q7NyNVhCYs91OaoGDwUELGWXquCvrOxumPgLhabI15bWR4HPB2e/jyzodi9tCi7NF/nO1UFFfx3935uNxVOPU1NIWUI9L6O5IeTiJ5kQGRw3uFCiJ5sQe75R9oo8Lll7A/qb9nJxyMs+Mf+bYH+hhHFraCXVFM2fH3Qio6D00il454exdXUV9aVvXeDJDGTA5icTMUJ7b8Rwf7//4iP2ZtMFoA4ZRoR2Ey5AFggaVTyKyzUddqPzZXOWErMQDzC/5tnN5BSAtOI0z0s/g64NfU9pWSmpwKh/O+PAXHVtBjp759KFN2FpcDD8lhWGzUuR6VXve5PVdr6NX67mi3xVcnnM5erUegF0ry1n/dSEqtcDZkfcTyV6Y9picqwQo2FbHqo/y8HlEwuMDmHl9f4LC5YmywlrB+sJFLNq4gP2GJrzqLquZgEBORA5j4scwJm4MORE5aFS/LyQWwOKysLN+J4WthUSbokkNSSUlKAWjxsi2paVsWdRdXP3q5Zmf4fOIrPpPXqcQGnl6KoOn95K/gw0H4cNZWNpcLAsfzPKoCHa6t+MTvN32kdY4iFnVV5Da10Rq1ZMkSmvQZJwkL/+of3l8dS4P9+0vZHGrq/O1YUEBPNw7jsE95BGSRAmPy4fWoD7ityJKInsb97KqbBUry1dSYZWjpKYFZXBP6llEhCR3ZFMOx2sI5q6Caj6tkW8abjaHcM+QXr9oqVLEisKJxt9SrFjuNuNJzOLdASfzZfFC3KJ8gR4bP5abBt1EVnhWt+0OthxkcfFilhQv6TS/A8QFxDEteRo76newp0H2VdEIGk5JO4Ur+l1Br6Bex23sPp9IwZY6tn9XRmudHP2j1UrkDDcx8NTBmIL1PW63ptnKbQfKafZ4eTs7mbRKN8ve3IuggnPGrCGy8CUkSaREZ2RdnwnsspXR5Gyi2WCmVR+AxWVBOsJmfiQaQUNiUCKpwanyX4j8mByU/IvWhMPZ37Sf85ecjyiJvDXlLUbHj/7FbXyij1MWnEKFtYK7B99D4v6h7FtdyeHfVrVGRcbwaAZMTiQ8viurriRJPL75cb7I/4JoUzRTek1hctJkBkcNRq1SU+fyML+uha9qmsm1y4JMJcEzqfFclBzZuY/cply+OvgVy0qWdfPBiQ2I5T8n/4eYAP8y8YIsLr5/Nxe1VsUFD44gKEIWFrmNuYQbw7vtq7bYwvzndiCKEuPPy6CfeRUsull+Ux/cWZSxTsphydZhOJxajAECMy9PJiYrGaq2U/ruEyypvRGf4CVxVhUlMS2sq15HQUtBt3EZ1AYywjLIDs8mKzyL7PBsUoJTflHANNgb2F6/ne2129lRv4OCloIev1OxAbGkhqQS5ozBul1LsC2K1JA0zrluNOaw3+ao7rJ7WPbmXqoOtqJSCZx0SV/6jJSzFUuSxO6G3SzK/ZjlpcuxHGbF6R3SmxnxMwm0h/FMyaOI+BhZdioDqycDoFW56DUgltQhsZ1O1MfC5xFx2Nwsrm1lQYuFSYKeEQ4VLpsXh82D0+bGYfXgbPfgsLpxtnuRRImoXmamXZlNQLiOHXU7WFm+klXlq7pdh/RqPV7Ri0/yYdaZuXPonZze+/ROQSJJEg8XVPFmx43LuT4DL03pe8zxKmJF4UTj7ylWnhtG0LVLISCC2vZa3tz9JgsKF3Tmp5jaayoXZ13M7vrdLC5eTH5Lfuc+zDoz05OnMzt1NoOiBqESVEiSxJbaLby95+3OyAyVoGJ68nSu6ncV6aHpv3nMXo+PAxtr2bG8DGuTPFnqTRpyJsXT1rcEUeMlNUQWBUfzhfCIEnafj+AOa83yd/exf2c5lpRyGHiADVU/UYO3x20PEaQLIlgbgq9Bi85pIlgbwqgR/egTlU5qcCqJQYloVX7mlfgFnt7yNJ/kfUJCYALzT5uPQXPsiWp1xWpu+uEmzDozK89eiUlroqHCyrovC7DU28kaF0/O+HhMQUc3s9e11xFlijrmHeeBdgdLGywMMpuYFN7zj8XmtrGkeAnfFHyD3WvnlZNeISXYj9pGhyFJEv99cSdV+a2kDozk5Gv79djOafPwxeNbsLW46D00imlXZMvB4Auuh92fHtHe6otgScu9NHlTUONmcugbRGsP8GXDM7gkM/1GhzD+ki7rYl17HRuqN7C+ej0bqzfS5m47Yp8GtYE+YX26CRi9Rt/po7S9bjvl1vIjtksOSiYzPJN6e/1RlwsPYfQGMjhyCHMGnMm4hHFo1f59z6zNTha/upvm6na0BjUnX92PhMxQilqLWF62nMVFi6m0VXa2j/RJzLJamW2Ip8/Fizud7T8/8DmPb34clQTXlwzC0HQaNm+XlUytUZGYFUZ0chAuu6cjiu2Q6PDgsHrwuH5d5BOAT/BSGZxPWdQ+KqNyafN1+U4FaAMYnzCeKUlTGBs/lnJrOQ9ueJD9TXJNpRExI3hw1IMkBiXSWmfnu3f2sSjQy6oBJm70GPnXtKPn7wFFrCicePw9xUp1MUGx3SeQ8rZyXtv1GstKlh1x16dRaZiQMIHZqbMZnzD+qKIAYFf9Lt7Z+w5rKtd0vnZS4klc3f9qsiOOUTn4Z3hcPnLXVrFzRTl2i2z5MZq1DJySRNhQgYe3Psi2uq7aNypBRUJgAqnBqaSEpJAanEpacBopwSkE6gIRJZH85nzWV69nTfladjfsQhS6cproBA1DPCKj2pqIyziFsCGXE6oPJcQQQog+hPYmNwv+vRNbi4vQ2ABOv23QMSf/30O7p51TF5xKvb2eq/pdxc2Dbz5m+yuXX8nm2s3MzZnL7UNuP27jkCSJRpubqlYHVS0Oqlrt1Fpc9I01c/rAeHSa45CyvSEf9n4Fgy+BkKTOl5uqbXzx2FYkUeKUmwaQlN3d+VsSJZa8LkcPBUcZmXPPMHTGw+7ue6xtVIG7qZYV+VMobZfzcwSqGrGJEUQlBXDmncNQa3s+JlESKWsrY3/TfvY37Se3KZe8pjzsXvsvHqKAQJ+wPp3LgIOiBh3hj9TibKHYUiz/tcr+ToUtRdQ5aru1CxDMTImfytn9zmBA5ICjisvGShuLX9lFu8WNKVhL+qU6tjk2sqp8FaVtpZ3tjBojU3tNZXbqbIarg1D/5zQ5g/VhiSElUeShL6bzrbsWsyjy+bgX0GtGUryzgaKd9VjqjwzX7vE8qAQMgVqMHX+GQJ38aD70mq7z/3zXfu7Zchct7i4RF4CZqWmTmZo8lRGxIzqXAQ/hFb18sv8TXtv1Gk6fE4PawHmRlxKwLAufU75+JF+Szkn9ftnKp4gVhRONv6dYOcbBHmw5yGs7X2NN1Rr6R/RnVuospidP78yr4S95TXm8s/cdVpat7BQ/Y+LGcOOgG8mJyOnW1uPyHZZXxEN9aRt7fqzEaZMd5gJD9QyalkTm6FgWlv2XZ7Y+g91rx6gxkh6STomlBKvHetSxRJmi8Ik+mpzdKwkHO6JIsmRy0YzTmJQ9FqOghdYyORvvYZOApcH+pwmVQ6wqW8Wtq29Fo9Lw9SlfHzUMOb85n7MXnY1aULPszGXEBnYUJJQk2PCyXH9o+hOgP3qW2opmO9vKmqloPiRKuv7cXrHHbeKCDVw9PpXzhidh0P7GWiy7v4DFt4LHDkEJcNnibhWm131ZwO4fKgiJNnHe/cNRHyaOdiwvY+P8ItQaFWffPYSIBP+z8IqixMZvDrJrley4rTdqmHPfsM7lJr/30yFgcptyO0VMXlMebtFNdnh2pzgZGDWQIN1vm/BarW0sWLiaH6pXkR+yDbuuy7oTpY7llN6zOSPrtG5LrhUHmlny5m4qtAVUJ+2nImofdc66zve1Ki2j4kYxM2UmkxIndV+mrD8AH82WBUvsALh4AWz/EPeqh5kbG80eg57eIb2ZN3MeJq0JSZJorm6neFcDbY0ODAFajGZdpyjpFCSBWvQmjV9RTd+Xfs89a+/BLbqJNEaS5RlK0O40YttSiUsNY/pV2QSGHt3aWNFWwUMbHmJLnWzljbAlcLb7Ki6bO4uAkJ6Xi3+OIlYUTjT+lmKlaF8lKZlxCMeINDhe4ZLFrcW8s/cdlhYvRUSe+LI8QxnXfBrmlkicNg9eT88TYlCkkSHTe9FnZAxN7kYe2vAQa6vkgm+Dowbz2JjHSAxKlC0AjsbOO9Oi1iJKLCUUW4ppdHQ52Bo1RkbEjmBs3FhGx41mzyctlO5pJKqXmbPuGoKqh1Ts3YRKjInTbx/8hwsVkM//zT/ezOqK1QyOGswHMz7oMffKA+sfYH7hfKYnT+e5Cc/JL4oiLL0Dtr0nP+8zC879pDNM2+nxsbmkmZ/yG/jpYD1FDe1H7PcQggDRZgPxoUbiQ4yEBehYureGeqvsKBkRqOPKcalcNLIXgXo/HUE9Tvjun7D9Q/m5xiBHlgQnwqWLOgWLy+Fl3gMbcVg9jDozjcHT5Am5uqCVBS/sRBIlJl7Yh+xx8Ufp6Njkbahm309VjDgttTOp3u9FlER8ku+4LQkewuvxUbynnqXbVrHW9gPFobu7OQNnGDI5I+s01PWBLNixlOLQPTi1XRFdRo2RcfHjmNJrCuPixxGoO0Y18Po8OVGkvRFCU+Q0+ED91Ic4t2ohjY5GpvaayvMTnj9uIdWH+Hj/xzy79VkkJE5KPImnxj+FUWOkeFcDqz7Kw+3wYgjUMvXyrKN+ZtZmJ9+9s5c1thVsSF6AW+NALai5LPsyrh1w7S8uq4IiVhROPP6WYuXZuQsJiwglKSuMpOwwEjPDMAYe/wlYkiTK9zez+b/FFNWVsC1hOQWRW5EECSSB9MYhDK04mWBXBGqNCqNZvgMzBenpMyKa3kOiUKlVLCtZxmObHqPN3YZWpeXmQTdzcdbFRyQW6/GY3W0UtxYjSiL9Ivp1W+9vb3Xx6cObcTu83SbDQ1gaHCz4945OoXLabYMIOIoj7x9Bja2G0/57Gg6vg4dHP8yZ6Wd2e7/J0cS0r6fhFt18fPLHDIwaKCfbW3gT7JoHCKDWgs9N8+AbmR92JT8dbGBzcROuwywmapXAgIRgekcFEh9i6hQmCaFGooMMRyz3OD0+vt5eyRuri6hqlZcAgo1aLhudzNwxyYSYdDQ5mmh2Nh/pr9RcIufnqN0jj2/CXTDkMvjoVDkraXCibGEJTQbgwMYaVn2Uh1av5oKHRqJSC3z5+BbaLW4yhkczZW7WcZ8wT3ScNg/7tpayaO93bJXWUBmcL/+mfkaQLoiJiROZkjSFUXGj/JqkOzlcsACMuA5Ofopd9buYu3wuXtHLzYNu5qr+Vx2XYxIlkee2dUWmndfnPO4efne337ilwc53b++jscIGAgybmczQWSndwrvLcptY+f5+nO0e9CYNgy+IZp7tbb4v+x6AXkG9eHDUgwyLUZLCKfxv8bcUKy9cswQth124BIjqFURSdhi9ssOJ6mXu0crwa6guaGXTf4uoKZSd4rR6NX1HxdIWVM8Cxzw22+QETWpBzempp3PtoGuPiBhpcbbw+ObHWV66HIDMsEyeGPsEvUN7/66xHU7ehmp++M8B1FoV5/1rOCHRskn8rxAqPVmzPsr9iOe2PUeQLoiFpy8k3Nh1N/nm7jd5bddr9Ivox7yZ8xBEL8y/Rs4mLKipnPQC6wsbObf8EQBudV/PAlHOKRMbbGBCRiQTMiIZ3TuCYOOvtwR4fCL/3VXN66sLKe6wzgTo1Izo42av9yWc1DMmfgw3DbqJ7PBsyFssO7+6LGAKhzPfgd5ydAnWWnly/JlgkUSJb5/bTm1xG+lDo3DavVTsbyY0xsTZdw/tMQrl0M/07yBiLA12tm46wKL8xew1bsKhaWdw4DAunHAmw+KG/T4LT91++OZKiB8Mp7wEHcLhUMkGAYFXJ7/aYymEX4PL5+Letfd2CorbhtzG3Oy5PX5+Xo+PtV8WsH+tXCk9oW8oUy/PxhCoZeviErYtKwUJIpPMzLg6p3Np74fyH3h80+PUO+o5Ne1UHh/7+DHHpIgVhRONv6VYaW5sob1BpHx/M+W5zTRV2bq105s0JPQNI6FPCLG9QwiLDTjmktHh1Je1sXlhMeW5HUX8NCpyJsYzZHovjOYu601uUy6v7HyF9VXrATmp2Hl9z+OKflcQZgjjp4qfeHDDgzQ5m1ALaq7ufzVX9b/quJvXJUli0Su7qdjfTGzvYM64fTDWZifz/70DW7OLkGgTp9/+xwqVqlYHz353gO/31/GvWVlcMKLL0dQrejlv8Xnkt+RzSuopPDHuCQDcPjfTv5lOo6ORp8c9zcykyfD15XBgMai0VE95lanfhdDu9nGn5nNu0CzEjZZlQ98lc9hk0qMCf9Nk7qmvRx0YiMrU5efgEyWW7avh5VX5HOwIK0fwoA3ZhjZ0I3pdHf/2hTCpYq/8XsJwOOdDCP7Z8o21Vk421lQIwUkdgqUXDeVWvnxya2fWVY1Wxdl3D+0Wgn2Idk87t/x4CwebD3JJ9iVc0PeCXxU6/kcjSRIbipp4b10JG4oaeez0fpw9JOG47Le+1IrH7SOhzy/ns/m9PLLxEb46+BVmrZlPZ31KcnDyb9qPxWXh5h9uZkf9DjQqDY+NeYxZqbN+cbv8zbWsnncAr1skIFhHcJSJ6oJWAHLGxzPmnN5ofuZLZXVbeXP3m1zV7ypCDCHH3L8iVhRONP6WYuXnB2trcVGR10R5bjMVec247N3DePUBGuJ6hxCXLouXyMTAIywvzTXtbFlUTNEOuUCgSiWQOSaWoTOTj+kMt71uOy/veJkd9TsAMGlMDIoe1CliUoNTeWLsE78qkujX0tbk4PNHtuBx+Rg8PYmDW+v+FKFic3l5c3UR76wt7lyWUasEPpw7jHHpXRlF9zbs5cKlFyIh8e60dxkRO4JFRYu4d929RBmj+O60BWi/mguFK0Ctp/30D5j1nYnSJjt9YrXcPa0/43beiubgMgiIgqt/hOBfP0FaFi2i+p57UZvNRNx4A6Fz5iBoZfG4vHQ5j258jKamGNxNk/E5EgGIpplXDc8yDLky9bqkASSf+REJIUcJZ26rkR08DxMsbpuK7+79looAOYR51CAvg6+ZdsSm7Z52rl1xbWcqfYBwQzhX9b+KczLOOSKKrcHqYntZC5mxZnqFH5mY7Hji9PhYuLua99eVcKC2yxncoFWx+Kax9I7q2UFYkiR21u/E5XORFZ71qx3d/yg8Pg9XfH8FO+t3khqcyryZ847tB9MDVbYqrlt5HSWWEgK1gbw06SWGxw73e/umahvL395HS60skDV6NZMu7EPGcP9z+hwNRawonGgoYuVniD6R+jIrFXnNVBe0Ultswevu7gCr1auJSQsmrncwkb2CKNxaR/7mWjkJmQAZw6MZPjuF4Ej/7mglSWJ99Xpe3vFyZyZUAYGLsy7mpkE3/bq19t/I3tWVrPn8YOfzP1Ko+ESJL7dV8Pz3B2m0yY6qI1LCCDXp+C63liCDhgU3jCE1suvi//imx/k8/3N6BfXim1O/4eKlF5PXnMfN/a/lqj3fQcka0BjxnfcZl68J4KeDDai0rRiTX+aKgedya86VqN4/Ger2ydW1L18OOv8n6Navv6bm/gc4PNOcLjWVwNtu4Hndjywr/Q6AvmF9eWzMYzQ1h7N51TdcUv0Y4UIbbZKRO72X8UOQgDF8O3NyxnN1/6uJMvVQ8bqtRrawNBchGqIo+c5Me6OK3JwrMFtK6V25jMS33iRgdFfCvHZPO9etvI6d9Tsx68xc3e9qvsj/ojOPSGxALNcNuI5ZKbPZUmLh0y1lfJ9bh7ejmndyuEleFusTycjUcEw6eXlJkiTaFi+h4dVX0Kf1JubBB9BGR/d8kiQJ8pdCSxn0mQFhqTTaXHyyqYxPNpXRaOsIwdeqOWdoAgV1NjYWN5EVG8T8G0aj/1lNHIvLwsMbH2ZF2YrO1+ID47tyukRkkxmW+ZcJmEZHI+cuOpd6Rz2TEifx4qQXe3QC74m8pjyuX3U9jY5Gok3RvD7ldTJCM371GNxOL+u/KcRSb2f8eX0Iiz0+olMRKwonGopY+QV8PpGGcivVBa3UFLRSU2Q5wvJyiNSBkQw/JaVH87w/SJLEyvKV/FD+A2eln8XQmKG/aT+/qW9RYsELO6kuaPVLqJQ0ttPu8pIRbf5V+UbWFjTw+JK8zrvr5HAT987MZGpWNG6fyPlvb2JHeSupEQHMv34MwSbZcmF1WzltwWk0OBoYnzCeNZVr0Kt1rHCFElqxFXSBcOFXPJ0Xxhuri0BwY0p+A7WhBoCTU07msexr0L0/XQ5LzTwVzvmo50KOP6P5k3nUPfYYACHnn4chI4OGl1/B19ICwJ5kgXlTNEydfBXX9rsGbUMe7PhYrqyLRENABjd4bmVLW0jnPtXGEozhO7hkWD+uHjD3CLO8ZKlCfGUCam8DbpuaupqxxDz7JnVPPY31++8RTCZ6ffgBxv79afe0c/3K69lRvwOzzsw7U98hOyIbj+hhfsF83trzFrVt7XgsQ8AyBrera3JPiQigotneKVoAdGoVw1PCGBMGfRd/QvSGlRxaMFMFBRFz/78Imj27+zJaxVZYfi9Ubul8qdSUwwfW4fzXM4JWzMQGG7h0dDLnD0si2KSlrs3JjBfX0GL3cPX4VO6dmdm57fa67dy99m5q22vRCBpiAmK6JXA7nITABLIjZAEzInaE7B/0J7GnYQ+XfXcZHtHDxVkXMzFhIgaNAYPGgFFjxKgxYlDLzw9l+t1QtYHbVt+G3WsnPTSd1ye//qsyHP8ZKGJF4URDESu/EkmUaKpul8VLYSt1pW2ExgQw/JQUopP/t3/UTpuHgm11pA2OOmp4siRJvLyqkBdWylYYnVpFZqyZnPhg+icEkxMfTEa0Ge3PlskK6608viSPH/PlZbJgo5ZbJqdz0che3cROg9XF6a+tp6rVwdjeEXw4dxiajn19V/odd/50Z2fbs3x6HiovAEMwXPQti5vjuPHTnQAY4j5lZv9oxsaP5dGNj+KVvAyLGcYr6RcRMO9c8Llh/F1w0n3HPCdN771H/bNySHTYZZcR9c+7sHvtvPjT46g/WcDMrRJaH6hNPmJmpWKObERoPixN/eBL4ORn8KkNrClo4NPN5azMq+sy0KjbMYXu5awBfbhj3FkEG4yIDgc1/7of+w8L6XVSIzqzDyk4CWHuEkRTDJXXXkv7ho2oQ0KI/uhdbi5+RhYqWjPvTHunc8lQFCU2FTfx8aYSvt9fh0/sEBcqJ5FRJdwycQgXDpiIzeVlY1ETPx1sYHV+Q2eE0yEinBZGh0BkVRHeOjlJm753OoGTTyJE1crI4lfJaJCdwN0qI0Wa3mS49qHuiNDxoKExdgKRYy5B02cGaLsshd/n1nL1x9sB+OSKEYxMC+GtPW/x9p63ESWRJHMSz4x/huyIbCwuC3nNeeQ2duV16UnA3DDwBq7pf82f5mA8v2A+D2w4dhVjkPO7GDQG2j3tiJLI8JjhvDjpRcw6/3Pk/FkoYkXhREMRKwp+4/GJ/Gv+Pr7YJhdOM+s1WF1HWpl0GhWZsUH0iw8iNUrL/uo25u9oxCdKaFQCl4xK5ubJvQkx9SyI9le3cfabG7C7fVw6qhcPnyYn0ZMkietXXc+6KjmSan5lDb01ZrhkAXmkcOqra/D4BLRhP3HhWBP3j7wftUrNhuoN3L76dto97fQO6c0HMdMIWXa33NnZ70POWUeMQZIkGl9/ncZXXgUg/Lpribz5ZrbVbeP+9fdTZasiUBR5VOjD2IJc9Jrazjx6EhroczLCsMug95Qj9l1rcfLF1nI+2lRIs+2wn5Qgkh6qYlDhHjIPbiPbUkH6rZcSYnkXobkYQnrBeZ8iBiRRdsVVOPfsoS1Yy90Xirgignh72tukBvWlqsXBDwfq+WxLOaVNXRlm+yWYSYgrY4f9Hew+2So0IHIA94+8nz5hfeQln6VL2f7Su2zWRLA9ui97otJxC0eGyAdi53rNQq5QL0MveBAlgS99E3jeew4NhBIjtHBH3D5mSj9hat7ftaEhGLJOh/7nQtIoUKm4d/5ePt1cToRZS5/szyhp3oJBEpmVeBLXZ12KURIgIh2MIUeMw+KydGbU3Vm/szNz9MyUmTwy5pEjsrwC4PNCS6lcuPM4CZp5efNYVLQIp9eJ0+fE4XXg8Dpwep091kGalTqLR0c/6nfpgD8bRawonGgoYkXBL9pdXm74dAer8xtQCfDwaTlcNCKJ8mY7e6ss7K20yI9VFqzOnpfJpmVFc/fJfbv5onTibJMjeezN4HFQXNPAT/tKMeBmZKKRlCABPHYqPW1cKdQzzN7Oow4NXLqQZlMqE19YSlu7DnXAQW44WeC2Ibd0u7POb87n+pXXU++oJ8oYxVeGvoTt+EROyDZ3KcQP6WwrSRIN/36BpnfeASDy1lspP2MYb+99m82V6xjjcHCOQ2Rcuw2VrysxmaM9jJZcH9YKI6rwOCKuvRbT8OHoknsh9LDc5BMlfsyv4411W9lVbsPn6f6dFIA+MWamxHu5rvQWAtrlGjuiWo/VmEhZtYcqZyS56gQOJIxhjzOen2d+D9RrOGNgDBflGOijbwVLBY7Gg+SXrsLWkEew10OFXk+vyImEb7DQuu4gkleFNjGR6PvuRTtmHJtLmllf2IjF7kEleRlS9RXTmz7ErJaFUL4vnUUpt7HYbqfKWoWgaUMbso2ksABmp83mjKA+xBWtlcsKtFUdNrgY0BqR3Hba29vQS260wlFq6GgDYNgVMOpGMB/FZwY5rPjxTY/jlbwMiBzAi5Ne7Ert73XB7s9g3QuyWBl3B0y+/6j7Oh5IkoRbdOP0dgkYjUpDojnxD+3396KIFYUTDUWsKPwiDVYXl3+4lb1VFgxaFa+cP5ipWd0nDJ/oY1vdNhYWLmJ54XZstjBC6+IIaE7A5PYxzLqaU0YNoc9JZ2DIzOyMogGgZrecKK2l1P9BmePg0kU4g5OY9NLX1DQGI2ibuPN0ieuHXNrjJjW2Gq5beR1FliKCNAEsdgURWr5ZnjSv/hGC4pAkibonnqTlk/+gC/QhzRnJzrAidC2lpLo9pHk8mA7/GUT2la0E/c5BCk6gbelS6p9/Hm91TWcTVUAAhsxMDDk5GLKzMWRndxMwkiRR/f7bHHz9I3LDUtiQkMq2+N64vV31c2Jo4t/aNxiiKkAveHo8Pp8kUC5FUapKQDCEkGlqI1KsR9VWDWLP2/wcSQKfJgp15gSEhKEQN1B2SNYFQMFK+P4+aDgAgFcVTs1PYKvS0Rqs5ZWTRfJSdYxNGMvmms3dqk/3j+jPrOQZzLQKBOxZgKZmLYLkPPpABJUsULQdJQDaO6oMawzy0trom+WK0j2wuWYzt62+DavbSlxAHK+Nf47exevl8guHiyVBBZd/D4nHTpD2d0QRKwonGopY+X9Om9PDe2tLqLU4OWNwPCNSwrpZHHyijxJLCfub95PbmEuZtYxwQzgxATHEBcQheaJ4fpGDmlYPYQE63rt0KIOSuvJYHGw5yOLixSwpXtJZtj69SuLSdRoyil09jkkwmTANHIBxyBCCouvR5b2B4HPJydCSRskTlC4ASWNkyYFWdta4kLQmrpvaj8jQENCZIHEELo2OWe+8S2FpMghu7jxd4IYRpx/zfFhcFm798Va21W0jGBVLm70EWSohdgBS+nScP81HsJSgM3s5aoLggCjodw4MOFcuePezpQTR6aRl3jysK1fhzMtDch45KasCAjBkZWHIzsZbX0fb0mUASDMm8PRECzss+xC9gUQJI8k0nUJpnZa82jYESSRFV0GK6gAZ6gomGHwkNuQSoWtBpzlGZV9BDUHx8gQfnIBXDMRR3oJtw040UiOGUA/qKDcmXQ+lHwSVvK1FXv7DGAYT74Ghc1m+9A30T7xJdIt8afCdMY3M+x7HVlvJji0LKdq1Gm9JGfGNInFNYHIfGo6EIcwNooDoE2g0CCwfcApfGUeAxsD8myaRFt3xG5UkOLgc1j4HlVs7TqAGBpwHY2+Xl3N+RqmllDu+v4Yx1Qe4tM1KmK/j3JhjYfRNULUD9n0N4b3h2nVdokgBUMSKwomHIlZ+Bx6fh+9Kv8MreskKzyI1JPW4JG0TnU5Uht8Xruz1iXy2tYIXVhykub1rqaJ3tJ5RmQ4MIfvJb8nlQPOBbnfAh+OzJ2GvvBR8AQjaRuLS55MUZiQ2MJYoUxTbareR35Lf2T6zxcjVm8zE75KzawpaLSHnnot+ykQ+/fZhzHmVZFVCgENCUIvEDLUQkiL3bbdFYYu8GCGge70TpyRwbX0MuR49KRo370fVEKiSEGMiuKFuN9sqxgBw7TQtd590ZO6RnnD73Ny37j6+K/2OBI+X+fWtGNxHVg92CAJlOh2+8DSSUqdijhsCEX1k/wk/Sh0ASF4vruJinLn7ce7bhzM3VxYwrp8JObWa6H/eRejFFyMhsaBwAS9sf4FWVysAs1NnMzfrWh7f/Cg7GjYToA3gralvMSByAI59uZRfcjEq0UbwpH5EzpmC4LXL4i9YFieSOQbngYNYv1+BdcUK3MXFnV1r4+OxXH8Ot3s/RbA1MNgncH3UKHrbbVCzC6wdViKVFkZcA+PvwKk18uSWJ/m24Fv0bol/bIlmYEdW1WPhE6A2FKoiBFoCILVWIrUO1CKICNw75mp2R6aTbq3hbdVegocNwTR0KNrERFR6PULlRljzLJTKNbIQVJB9Joz7B0Rnya/Zm2Hzm4ib3kDlkgsfVmk0VA44m+EzXkLQGsDRAq+NBFutvLQ0/dgZXf9uKGJF4URDESu/kd0Nu3low0MUthZ2vqZX6+kT2ofM8MzOXBBpIWmdIYtHQ5IkXAcLsK5YQcv3KyiuaSUpWE/IkEEYh8oXa11yst/RDT/m1/PEkjwK6uXMvOFBHrSmSmrrEkCSxZSgaUMbuhFtyGYCDBKZYZmdgsvisrDhoJ3V25MRRTUaYyX6hA9QaY4s+KdRaThVO5RTV9sxrZYT26FSEXzG6URefz3aeDlLq9Vt5fLll5PflMdMi5lHbE3oPHVIIjTsMdN0IBDo+fia9WZumXALjaYQhtYd4KGN71ESHMc/xt+IW63lbNcB7huRgGnYUHSpqX6dJ1ESeWH7C8zb/QFjm13cV+9EV+vF2abhqywtP/YNYUL2RVycfWm3FP/HA8nrxVVULAuXffvwNjcTev75BIzonhDM4rLw8o6X+ergV92cNA8XKodo37SZiquvRnK7CT7zTGIffwwkCcfOnZ0CxVN9mJjQagkYNRLz1KkEn3IKKoOBens9d625i+11cnTOhZkX8o8h/0Brb4K6XIjIgJBEytvKuX317eS35CMgcN3A67i639U4N22m+t778NbWIhgM6FJT0KemoU9LRdfxWBnsY0nFchYXL6amvYbJSZN5cOA/0eWVYN+2jdLtucwNn4JNZ+Lc/FVclres+8nTaFAZjZiifISlNRIQ1tr5lt2ZgKiPJkCzH8Eni2ApPJ35sSk8asvDKwjMyZjD3SPulm8qDi6HT+cAguy31Ksrb43octG+YQPta9ehiYwgaPZsdIm/389EdDhwl5Sg79u3Rz+mEwVFrCicaPxpYmXNmjU8++yzbN++nZqaGubPn8/pp5/e+b4kSTz44IO88847tLa2MmbMGN544w3S07sKwTU3N3PTTTexaNEiVCoVZ511Fi+99BKBgf7lNTkeYsXusfPKzleYlzcPCYkwQxhpIWnkNeVh89iOaK9X6+kT1oessKzORFapwamoUeHcuxfrihW0rViBu6ycrdGZvJszmwpzNEaPk2F1Bxhds5dhdQcwh5gxDR2KacgQTMOGos/IOOJid6C2jceX5LG2QC6+ptd5MIYt4x++JWR63PykD2KlbyJFbTNwu2Wzt04jcOageK4cl9qZRfTD9SU8vHg/kgRTMqN46byBeKR2qturqWmvocZWQ529jlSnmcFLCrEvXAodZvagmScTceNN6FOPzNDa6Gjkvc9mclPFQUyShBgQiXDOh3hUSdi3bpMtDr6enXPzRRPXuPrgQs3g9u2UaFJp0YcytDaPhza9j7pjMleHhmLqEHjGIUPRJcTjqa3FU12Dp7r6iD9fY1dVaq8K3jrHTPaZc7mg7wUnTLbU3MZcHtv0GPua9vUoVA5hXbmSyptvAVHENGIEruIifA1dxycYjQSOG4d56lQCJ05AbT4yZNYrenll5yu8v+99QPY1eW7Cc8QGxgKwsmwl96+/H5vHRpghjKfGPcWouFGd20seD96mJjRRUcecjEVJpN5eT7Qp+ghxuWRnBTd8sQcBiZfa1tNny0pE25G/LQB9iIeILCvmRGe31TinRUe7bhzaSVcRMG48n5R+zfPbnkdCYmTsSJ6f+DxBuiBYcAPs+gRCU/BdvIL2zduwrlhB5YZt/BDWh02xOQS7rEyq3Mm4OCPhp84maMYM1CEhRz22n+Oz2bCt/gnrihXY1qxBcjgwT59O/LPPIOj++ArmvwVFrCicaPxpYmXZsmWsX7+eIUOGcOaZZx4hVp5++mmefPJJPvroI1JSUrj//vvZu3cv+/fvx9CxJHLyySdTU1PDW2+9hcfjYe7cuQwbNoxPP/30uB9sT6yrWscjGx+hpl02i5+adip3Dr2TEEMIoiRSYa2Qwygbc9nfLOeBaPd0WSNUokTfConRBWpGHoQgi+z0WBIUyzv9T2NnhFygUC2A77AzrfV5GNRQwNjqPYyo2U+Qx44qKAjToEHo0tJoNYfxtj2C+Q0aREAl+DAErSM0fAUvNlcxzNl9yUGMyiY/dCKv1maypC6UQxaNCRmRxIUY+GyL7Jtw4YgkHj41uzPPySE8dXU0vfserZ9/juSRjyFw4kQib7kZQ2YmPeJ1yUnDtr4LwGaDno/6juO5WR/7VbumxFLCHUvmsX3PoM7X4kM0fDUqEO3uHdi3b8exa9eRyyt+IOp1NIRraLl8NtPOvYsA7R+bev63IEoiayvXkhycTK+gXkdt1/rNt9Tc15U7RmU2EzhpoixQxo5FZfTPN2N1xWruXXcvVreVYH0wj415jC21WzqrAg+OGswz458hOuDokTm/h39+vYcvtlUQF2xg6S3jCNKA5HAgdvxJTme3/2kqRFe9EKm1hqZdIm0HnBz6Xgt6PQHjxlI5OIF7xG9o0jpJDkpmdupskt06Jn33ADpfGw1FwXxdPYZViUPYEZWB+LOlviCXjQlVuzmpZjdDBqQQcuqpBE6ciKoHweFtacG2ahVtK1Zg37Cx83dyOIGTJhH/4guo9H9eJXN/UcSKwonGX7IMJAhCN7EiSRJxcXH84x//4I477gDAYrEQHR3Nhx9+yHnnnUdeXh5ZWVls3bqVoUPlzK7fffcdM2fOpLKykri4uF/s97eKlRZnC89sfYbFxYsBOeX3AyMfYHT86GNu52mzUL51NTU71uHcl0vovgpM7V2WgyqzmVeHzGBXyDBARZjQyo1Ry5luKqUk6XSWe8azNt/aLVeGWhLp11zCmMrdDKk7wJr4gXyRcRKOjkRbY6t2Mzd3KcnqOhLGN6E3+xB9aqyuHALiQG3ZhyB1OWI6zb34UTWKtxqy2CWmcegCf9eMPlw3Ia3rrtfnxV20F8sn7+JYuwKV2o0kCmjScgi55GqMQ8fJOTR6WoJpKYOvLoVqOWFb87DLOc2ymVaPldFxo3n1pFePmm+i1dnKm3ve5IsDX+CVvHgap+BsmIJJp2LBDWPJiO6yDkhuN47cXOzbtmHftg3Hjp2IVivq0FC0cXFo42I7HuPQxMWhjY1DGx+HOiTk/1WFYsvChTj27CVwwgQCRgz/zXfvldZK7vjpDnKbcru9Pjd7LjcNvum4F9U8nHaXl1kvr6W0yc6s/rG8ev4gvz8jSRRx7N6NdcVKefmroqLrTbWa/Ska9sR5yCqX6FsGTRlhnDRILjJ5vvs+NopyUr3oUCfD01UYpFh+zLXQeFjm6nhbA5MqdjC59SB9J4wg+NRT0CYkYF25CuuKFdi3bgWxy1lZl5KCedo0zFOn4mtppvLGm5BcLgJGjybhtVf9FpFHHKvbTeNbb+MuLSX86qsx9Pn1Kft7QhErCicaJ4RYKS4uJi0tjZ07dzJw4MDOdhMmTGDgwIG89NJLvP/++/zjH/+gpSPFOYDX68VgMPDVV19xxhlnHNGPy+XCddiddltbm/wDzF9PUMaxhQbIImppyVKe3vI0La4WVIKKCzMv5MaBNx5hDfDZbN2dKHNzcZeVHbFPVXAwrnEj+SBhAIsbwvH4VIwQDnCh4WtmSAfQHeab8L3JyFPhEYi6fki2gVhakmlt63nJK95ezjklCxncUEZCoIdewxtQ6yTc7Woq14ThssgTiy4+nMgZGQRGNKOq3AC+rvNj0UaxjoFkxwWRbHCAvQnsjUjWegR32y+eL1RaMIXLfwHhYIqQE3nt+xacrWAMhTPfgfSp7KrfxdUrrsbhdTAjeQZPjXsK9WF3sh6fh88OfMabe97E6pZT809ImMBtQ27jYIWJ3lGBpEcfO/On5PMheTy/21n574zb5+aZrc/wRf4XmLVmHhv7GCclnfSn9L27opWz3tiAV5S4cmwKg3uFEh9iJD7USHiAzi/xIkkSrvz8Dr+d73EVFOJWaagwR/FjwmBWJwyiyRjM45r3uFCzigopnFMDZuIOyUWll5fQBASmJs1gkPk8thUKLN9Xg8Pb9TvNbCrlpIrtDGoowKtS41Jrcal1+FLSUA0aAtn98IaG43D75D+Pj7byKhrXrMMpqfBGRCFk98PhA4dHft/h9uHyioxKC+ehU7KJNB9pfXGXllL1jztw5naISZWKkLPPJvLmm9BERBzR/lj8/FpZVVVFVlaWIlYUThhOCLGyYcMGxowZQ3V1NbGxsZ3t5syZgyAIfPHFFzzxxBN89NFH5Ofnd9tXVFQUDz/8MNddd90R/Tz00EM8/PDDR7xuuS+SoHNfh35nH3WMNbYaHt30KGur5KiD3iG9eWT0I/SL7Ccneioqwr5tO/bt23Hu3Yu7tLTH/Wjj4jrza+gHDGCFJpZnVxTgsDRwlnoNcw0/keDrShleExRDvsHIuPoS1ECbSuDZsFAWBAaAICC6w/Bas/FYcxAdvRA0reijviMxto6Lsi7kXKsdw/L7QPIhRg/CPeIxvHaB9g0bsMyf31nPBpUK84RRhE/shUEoQihcAe6e/QIOx+fTIQRFowqLl4WOvQnam8BzpPNtN+KHwjkfdsuNsb5qPTf+cCNe0cucjDn8a+S/AFhVvop/b/83FVb5jjgjNIM7ht7RzTdC4c9lf9N+okxRXQnW/iRe+7GQZ5fnH/G6XqPqFC7xIfJfXIiRQIOGlnY3Te1uWtrdNLe7abZ3PLa7abY6sXu7X8aCjVpOzwri7pLLMNprKM+Ywsr+s6i2VVNsKWZr7dbOthMTJnJh3yuorovg2x2VbChsoodg7+NKqEnL42f0Y2Y/+dooSRKW+QuofewxJLsddXAwxoEDsf30EwAqk4nwa64h7NJL/BbqR71WKmJF4QTh/7VYOapl5W4zQXpBzrcw+SFQy9E6rc5WNtZsZF3VOlaUrcDhdaBVabk252rOV4/CvWOnvLywfUfnpO9DwKHV41Lr8MbGI2VkIqX0RkxOwRefiEtnxOn20e72Mn9HJYbqzVygWcVM9RZ0dJiVdYGycBpyGcR1+GTU7EFaeCNCzW4AGmOy+WHAqRwUvFTbOhxd21pID+/FRVkXMDlhIpqVD8Gm1+Xt+82BU1/pVodFdLuxrlhB6xdfYt/SVXBOExNDyFmnETosCo31AO4mK7bNe7DvLcLnUuF1qTCMmEDYlTdhHDCw5w/V02GJaW/ssMg0dT0PjIIhc0Fz5HLEdyXfcdeau5CQmJMxhyJLUWc0SoQxgpsH3cypaad2s7oo/H3wiRLzNpextbSFqhY7Va0O6q0ufu+VSK9RMbFPJGcMSmBS30i54nPJGvjoFLnBxfMhTbYg5Tfn887ed/i+9PvOqKyRsSO5uv/VJBpzWLS7hvk7KihutGPUqTFq1Rh0akyH/tfKjyadGqNOjV4j/2/SqVE3NuD47BP0VgsBcVEk3nIT5rAQtGqJtRVb+Hy9j+pm2YJ0yoAYHpqcgvOpx2lbuhQA0/DhxD3zNNqYGOzbt1P31NM498pLWpq4WKJuu52gWTN/MfJIsawonOicEGLlj1oG+jmdB7vgboJ2ypO6NXEoX/Y7mR8adrK3cS8SEoIkkVEFU5pimdgchbDnAKK9ex4OwWBg/7CpPB45hibx2KHJATg4W72Gi9QrSVcdlkEzpj8MnSsnGNP3sKTh88ri48cnwOuQs3dOuhdG3tApsABwWeHrK6BALibHpH/B+DuOWffEVVxC65dfytYWi0V+UaVCn5aKq6Cw83nQzJmEX30VhozjsxbeE18c+ILHNj/W+dygNnBp9qVcnnO5X863Cn8v3F6RWouTylY7VS0OqlodnY92t4+wAF33P5P8GBqgI7zjMcig6XkZaemdsOVtCEqA6zfIflgdlFhKeG/veywuXoyvw+9rYORAru5/NWPjx/5mvydnfj7lcy/H19yMLr03+x+Yw2vl86iyVSFJatwNk3E3TQRUhLos3Lb9K4Y05lN49lCc555MvCmMUBFsphCcbjuqlRsI/mAR2kb5d92WFk3uhcOpSQ3G4XUwIXECU3tNPeaYFJ8VhRONE0KsHHKwveOOO/jHP/7RObCoqKgjHGy3bdvGkCFyHZfvv/+eGTNm/GoH2092fIJY+C1n71+FUZKo1Ki5JTqSgzodozxJXLqwnbCDdd22VZnNmAYP7sx7Mt8ezANLDuAT5VOiEsCk02DQdt1RJaobOd21mJPs32GS5GUSSWtC6He2bGmIG+RfIbXmYlh0i3znBxA7QLaaxA6A1nL49Dyoz5XFzOlvQM6Z/nwMgJxPwvr9Clq/+AL7tm3yi1otwaedSsRVV6HrdfTIk+PJe3vf443dbzCt1zRuHnwzMQExf0q/CgrdcLfDG6Pl0g+DLoLTXjuiSZWtig/2fcC3Bd/i6ShjkBmWyeU5lzMhcQJGza93lnUUFlB0yUWom9uoDoNHzlejio4kPSSdWms1ST9I7OJsKs1RAERoN+NMWcJIdxtPNDQR5fNRoNWyMsDISpOJEkHD7G1w+kYRY0dOyI19BT6ZoGHG6Mu5a8StxxyPIlYUTjT+NLFis9koLJTv2AcNGsS///1vJk2aRFhYGElJSTz99NM89dRT3UKX9+zZc0Tocl1dHW+++WZn6PLQoUN/dehy5huZqI1qMtxuXq5vIt7jwavW0WyYTfN/tiN5PAgmE4Hjxsm5TYYNRZ+ejqBW4xMlHl+Sx/vrSwA4bWAcT5zRD5NO3XVnVbEFNr4GeYvgUORNeG8Yca1cR8bwG378kgS75snhv06LnD59yGWQtxDaG+QU8Od/DglDfnFXR8NVXIxj5y4CRo1E64f4O96IkohKOHETZSn8TSjbAB/MBCS44CvI6Dkzcr29no9yP+Krg191ZoE2aoyMjR/L5KTJjE8Yj1n3C07gksS6qnW8svMVmgv388BnPiLbwBkVTNrH8zDqA6i+8y7sW7fiVGv5cPoV/FfXGw1e7jF8zlyW0tMvpt4QyN6IFPZqMmncHkRLvYHC4HiKg+O41FzBvx646ZjjUsSKwonGnyZWVq9ezaRJk454/dJLL+XDDz/sTAr39ttv09raytixY3n99dfJOGz5obm5mRtvvLFbUriXX375VyeFO/vLs5mYPpExcWPICYhH+Oh81PWyE13j/kDsIScT++DDndlXD2Fzebn5s538cECugfOPqRnceFJvWaT4vJD3X9j4OlRt69ooZQKMugF6T4XjkbHSWgfL7oL9C7pei+4H53921MJuCgoKv5Lv7oVNr8m1hK7fKEeySRJ4nbJ/lscObjt47LS11/Nj8RJ2VW3A4WjCIEoYJJFAVKQFxNI7IJ5EQwQG0SdvB5B9BtvCEnhl9+vsqJczP5s0Jq6OOoNxz6zCV1GJJjoayenEZ7EgmEzE3H8/waefxs5d2zEsvIYsSb752xFxGn3Pe4yW3FWwfyFR9evQSl0lNmqkMJb7hrJcHMYWsS+nBLt58Z6jBxeAIlYUTjz+1un2Rbudhpdeovnj/xDVz0J4ZsdSTdpkhLPfky9QHVS22Lnyo20cqLWi16h4fs4AZufEyDVGds2T17kPFXpT62QH15HXQUzOH3MwB5bAyofkirinvAx6/wSbgoKCH3gc8OZYaCqUHeAlqUNoHL9LYIlWw3vBQawIDuOcvudzRb8rCDWE4qmrp3zu3M76TYacHOKfexZdcjLs/hyW/APcNuxqM7c5rmC5OBxBoNPp2ISTCardzFBvZbJqJ4FCV+0vr8aMMOZm1JPuOubYFLGicKLxtxQrra2tqPfspfahh/BUyQ6vQaeeQsyZWahX3i07s4YkyQ6wHjs2m5WKuiZ0ooMAlYcIvQ+Nzym3OxxTBAy7EoZdIUfAKCgo/O9SsRU+nAk+95HvqXVypWZtQMejqaNauKnz/zbJS7mzkUJbNVWuZhwqAYcgEO31ca7VRnBH0jhfUDzqcbfDwIs6o/e8TU3UPf4EupQUIq65GkF0yiJl75dy/73GwJlvs6pay93f7qXB6iJQryE7Loj+CcHkxAfTLz6Y5GA1qtI18nLxgaXgaIbJD8K424956IpYUTjR+FuKlcG3fMyw2nyG1OczVG0l/YF7CRw3Tm5Uswc+vxAs5f7vOCpbtqL0O6dbqLCCgsL/OJYq2UfskCDRmUBj7B6N5wdVtipWlq1kVfkq8pvzmRE3ltvEIEJ2fALt8rIygTEw+kbZ+f5wS2nlNvjmCtnpV1DDxHtksdERzu/0+GiwuogPMaJSHcNh3+eF8g0QlgbB8UdvhyJWFE48/pZiJfHWL1Hp5ZBYtQCDe4UyISOSCRlRZMcFoXK2IO1fyA95NSzOs+BAT9/EKK6ZkoPRZO66izp08dKdeLVkFBQU/gfwOGDHx7D+JWjrSA5pDIOR18sW2u0fyKkLRC8EJ8FZ70LSiD98WIpYUTjR+FuKlffPvIKS2RezvlmiqKF75tXwAB3j0iOwu318v18OX756fCr/nNEX9bHuWhQUFBR+K1437PkC1v1bTlUAshXlUDRh9pkw+wW5fMWfgCJWFE40/pZipbWhgeCO2hkVzXbWFDTwU34D6wsbaXd3FfnTqAQePyOHc4cl/VVDVlBQ+Dvh88qRfmufh/r9sk/MzGdh4AX+5WQ6TihiReFE428pVo52sG6vyI7yFn462EBeTRvXjE9jVFr4XzBSBQWFvzWiCGXrITT5L0lJoIgVhRONXyNWfp1H2f8gOo2KkanhjExVBIqCgsJfiEoFKeP+6lEoKPxPoqQWVVBQUFBQUDihUcSKgoKCgoKCwgnN//wykM8nO89WVlYq67AKCgoKR6GiQs7GXV5eTkhIyF87GAUFZJ8V6JrHj8X/vFg5VEgxOzv7Lx6JgoKCwolPv379/uohKCh0o7CwkGHDhh2zzf98NFBLSwthYWEsfPwGAgz6Y7bVxyb7vV+N2T+HXHPcQL/aNWz70u++RZfLr3YBaYP8amc7sNnvvlVGo1/ttr+1y692iWn+rzRGjEjxq52/58fb1v7LjToo3dDiX9+/fAMAQPr0WL/7bthR61e7iP6RfrVrK2zyu++QzGi/2qkC/UuS6Cip9rvvoJHHvjgdwhDRy692zroSv/tu3bTtlxsBUbNO9audq7HS775dxQV+tYs97Ua/2tWvet+/di1Wzn/6IyoqKhQrtMIJQVtbG4mJiTQ3NxMaGnrMtv/zlhW1Wk5PHWDQE2j8BbFi8m8iBtAEmPxqZw48drn4QziM/qfsF/2c3wP8HCO/cF4OR+XnOI1qrV/tTFr/xUqAn+MUBf/0tdfl8btvo8a/4xH9TIsRYND53Xe71r++/d2n18/9/Zp9qvz8bFR6/4870M/fo8HP77nG5P9vzKP37xwF+tm31u5/3xo/z7nZz8rz7b9wk3aIAKNcDykoKEgRKwonFIfm8WOhONgqKCgoKCgonNAoYkVBQUFBQUHhhEYRKwoKCgoKCgonNIpYUVBQUFBQUDihUcSKgoKCgoKCwgnNCSFWqqqquOiiiwgPD8doNNKvXz+2bfMvtFBBQUFBQUHh/zd/eehyS0sLY8aMYdKkSSxbtozIyEgKCgp+MeZaQUFBQUFB4e/BXy5Wnn76aRITE/nggw86X0tJOXpyMJfLheuwpGCH0vUqKCgoKHTh9nrxeLuyGNqd7r9wNAoKv4+/XKwsXLiQ6dOnc8455/DTTz8RHx/P9ddfz1VXXdVj+yeffJKHH374Tx6lgoKCwv8WH63YwnvLN/7Vw1BQOC785WKluLiYN954g9tvv517772XrVu3cvPNN6PT6bj00kuPaH/PPfdw++23dz4/lK5XQUFBQaGLS6cO54JJQzqfN7TaOO+pD/+6ASko/A7+crEiiiJDhw7liSeeAGDQoEHs27ePN998s0exotfr0ev9Tx+voKCg8HdEp9Gg03Rd4tsNyjKQwv8uf7lYiY2NJSsrq9trmZmZfPPNN3/RiBQUFBQUFI4/3zda0KtUTAgz09ZYz77Vq9GahjFkei9U6u7BuQ0NDZSUlBCWnMmXhfX0Twsjy2wi1dR1s+6pt9NUUctu9z7SM3NI1kbT9P4HBF9xLrvrVrGsOgN7YSvjxjqZ1W5DOrCYvRYjxSmXEWMrIzSjFk/LdCITgigvfg5jXjIZI7LReQphxDUgCKzfsZ6a6krC6+PIGJNDfJ+jB7+IosTy3FrCAnSMSA3HZ2un9csvCT79NDRhYb/r3P3lYmXMmDHk5+d3e+3gwYP06uVfpVUFBQUFBYUTnY2tNubuK0EnqPg8O5H9TzxIc1UFat0OKvPOYtqV/QkIloWIxWLh9ddfR5Ik8sNaWRMSgM9l5c7kGP6REtO5T8feRrwrqigL2ceHDfN48gstju3bqfbtZ06/C3GoVGjrRb5b9BMznZ8jOFvpD9RWl1KbVk17rR1b7UoqGhrQBTVS0BaO8alW0rLrIGU8dmNvVixcAUB4fTBNFfmc/eDII45NFCW+31/LiysLOFBrpX9CMP+9YQxtS5ZQ/8wzWBYsIHXhf3/X+fvLxcptt93G6NGjeeKJJ5gzZw5btmzh7bff5u233/5V+9EnpP1iVWVNgP/h0Gqdf9VWvW7/opFEp93vvp3l1f713dLsV7vAfkd+uY5G5Wfz/WqXnPnLVTIB6kp9v9yog9BW/86lNjLCr3aVqyv87jt1nH+q32N1+tVu6+f+fYYAWSP9W9b0tvn3HRK9/lWlBij9ocqvdtF9/Ps9+Nz+f97aoCi/2u1/7j2/2oWl+VmF/A8gMGXILzfqwNfm3++28otn/Wqn8rPatOj2vwq5wvFnSJCJ8aFmfmy2cnFeBS+dNIPmT97F595H6U47Xzx2BjOuHkRcegjBwcGkp6dz8OBBhPqDqGOG4gNCtEe/7qbsrMNVbEI3/k4+EBtwV4jQC4RkI8b63QitrQC40KAeVI450I3o1VO1Lg5DqIVekyFqaBP2PUZq3X3Y+0EeheV1EAkIoFaJxGWGIYoSKpVcfl6SJL7fX8eLKwvIq5Gv32a9hol9ovD4JFq/+gqA4NNP/93n7y9PCjds2DDmz5/PZ599Rk5ODo8++igvvvgiF1544V89NAUFBQUFheOCTqXivZwURgQH0OYVuTMkjeE33olaq0X0FNNaNY/5z69n5/flSJJExoBhAKSpm0iIlG/Ew7RHty9ktA/ANuGf3B4Wy5f1OajL2kGScEcEcKmvtrNdQboBAt1YLSHkLxiLo6malsJg1I7+CCqoPk/HfOv9HCwNRRS7bnyWDnud0XMyUKkEWaTk1jLr5XVc8/F28mraCNRruOmk3qz95yRun5qBLz8P5759CFotwWec/rvP319uWQGYPXs2s2fP/quHoaCgoKCg8IdhUqv4uH8qZ+0sZK/Nwa36cN696yHWv/gkrvZaXJbPWPeVm5qiVr4Q7BhFMzEqKx7RDSotIZrulhVXS5c1ul0/hss8NqyAXu3k0vSF5EU8wIomK4G6TKAEEaiL0VNbGE/V+mjUzmpATUK/cylaHU7c2AfRmRuIHfIfVDuuI0Wn5hvZiEKtt5Y2Vxtbihy8uOog+6rkvgN0auaOSeHKcSmEmHSd4zlkVTFPnYrmOCR5/cstKwoKCgoKCn8XgjRqPhuQRrpJT5XLww12HdPvfwJzRCSS2Irb+hlF23NJ32Oj2hsHQIvHC0Boh2XF2+qi6bNcKnYVAqAStTzrMWEF+kQ6eXDUM5zSz8zVQfLSX7U+GoBWg5qSlfE0boxD7XSAoEdrPpvGyhicVi0tO69A8gmYk3aQmr6BXkPkZW9JArctgzNf38yV/9nGvqo2AnRqrp+Yxrp/nsQd0/t0EypiezttixYDEDLnnONy3k4Iy4qCgoKCgsLfhQidhi8GpHHqzgKKHS6ubRT4z4NPs+q5R2koK8Fl/ZKgwFOYZknGm9qIU6MFIMgt0rqoCNumGvBJlBtaifKG4/UFAALXjE9lQvi/cLQ3EmEeQZ8Fp9M37QkSXHUA7LFE0lYSjiTZEFQhaAPPQKUOJTRJy8jpfTBt0FO+SI31dC8NfT4k2VFApW8gu7xxtNUMow03Jp2aS0cnc9W4VMICdD0eX9uyZYjt7Wh7JWEaPvy4nDPFsqKgoKCgoPAnE2fQ8dWA3kTpNOTanFxT0cqs+x6jPTwFAQ9u2wJE+36cVVF41bJdwf7aDmzrq5F8IvOt5ezTNgKgloL46PLh3D4lEkf7LpAkTN8/g661hstqvyHFUQmArSkUSfIiaOIxhl2IT6+mOWILReJapLWFeKtEgndnoc0T2N3Sl9P3DmelJ4NGKRAENyMy21h71yT+OaPvUYUKQEvHElDoOecgqI6PzFDEioKCgoKCwl9AiknPFwPSCNGo2dZmZ85PRXxonkpBYDoCIqJjFUmCHGEnSCIV7kosjhruadzD8+YQ0Mp+IyOSkpiQEUlz0xp5v5UeAquqOeAcj/rgFNLssljZG9YHY3A2U668h74jk9F4A3Ghxud180PTNjCqyD/lbB7fdzsv7ryOQlsyWsFDtrqGsOQXSU3dQ3jgsaMXnQcO4Ny9B7Rags8447idK2UZSEFBQUFB4S8iM9DIpwNSOXvLQQq31SEIavqcfRUT8/MwVwVQGWwGQO/xsJR6NgixNEWkoNFYEdQOAGIC5XQOVdWfE1AdSP2e0ax2TMXuCwTHYqIC5HD5hYOm8vK4DPrHJfPts9sJVasZ5sthuWorW/Dypd5KQWMIBIegE91MTFnLjOQfqDg4jI817ZS3lf/i8bR+2eFYO3kymvDw43aeFLGioKCgoKDwFzI4KIBRNV42uUWm6/VM29pKsD0K1FCjsoFkQlNkZbGvN5JBIEqr5prTA6hdLW+vEdRsXPkKReuG0VZ7FRJqJNGBz/ENYYKcdLVJG0xJVA7zK7cyNGYYQo2N0YEqdkkGVrgHUIEGWn3oNQKntuRx+rovCLyyjka9BmOfDQTW6Cmzlh3zOESHA8vChQCEHifH2kMoYkVBQUFBQeEv5Me8OvS5zXxMAEkuNeDDZlKTMC2ZitpcdFsb8ba4AYE0oYVZDTHs2LKGRFGewvO3lrGjNbtzf5GGfbQ4d+Ny1xERbAOgPkCOLFrcouG21RWg9XGL4GYPPkCDCpG+6nqmJQhcnB5B/Sor+m/VlPUKISCwlTmRXt5scmNxWQjWB/d4HG3LvkO02dAmJmIa6X8yUn9QxIqCgoKCgsJfgCRJtOxpQPvFAR5BzsDsMap5NUnD14laTq2rYMXGdlSCFkGQGKsqJE3bisqgxlgexUBHDhjA59KhVtnJ1P9IuH4taxqScdhsBGpcjI8sBSAkpi8AjdZ0Ltyxh4OCnEBFp1ExIzuGVbtLGKiporVW5MCgQYQBrho9B/LGMnDwMvqYvExwC5S1ldE/sn+Px3Mot0rI2WcfN8faQyhiRUFBQUFB4U/GWdRK2/JS3OVWklFhFyTCJyURNyGBrNpmdN/uYFGdDwQtYpCWsQODGPT9PgSxP1p3CCnOaNR6WRAEGau53Hw7xe0BLCvPQvTZ0KlFLkzeiVEnggRuXQrGzVVIrXAQAY0E40PNPHn9cKKDDNxn0LB5m5Wx2hJW7d7NeZmZ+PLysNtDKC4eSnr6ZmYHeyhvWNejWHEePIhj507QaAg58/g51h5CiQZSUFBQUFD4k3BXWGl4dy+N7+zFXW7FicQnuGi+KIPwackUWxx89dU+PHVyFFCGqoUR5kBG/uBG7xyOzh2ChERx2G4ORm4BIIFcdrWEs6QyE9EnYY6IZGR4KYFaD+26SACe2eZFagVJAClBx1yrgZuGJBMdJNeWun1qBvXaaMp9IYiiSP5hVZJra9JpJBGNAOr69/B62484rtavvgbAPGkSmsjI437eFLGioKCgoKDwB+OpbafxP/upf20XrsJWUAssN4iciw3L8GhGZEXzxdZyTnl5HQcaHGTYndxVU8vsljgm5jpR27zoAwRU0bns7vUN3/d5Hwk5yqfKEcTa+hQAevUfhbWxnnZzKBe478XVUUS3UophktaFZ4wRV3Yk5QkaIhICO8cXHqjn1il92OBJxoWWA6Ehh41eoF0aRatXQCe2crDgkW7HJjqdWP4rV1UOmTPnDzl/yjKQgoKCgoLCH4h1XRWWJcUgAQKo+kXwksPGFwX1xAQZuGFSGjd+upMle2vQSnBFi5cwVSiSMRS1BBXhGrb31nFW4tNEOIooqgrH5DMw2CE7zTa7TIBEYEo0a2qHkJ8UyZeikTPV64gQ5FwsD+vScZ4WwI/Ve3Eyko19BMLju8SKJEkMTQ5F0ujJd4QyzVLG/sy+IAgIgo+K5q00G1UM0vioqfmaiJDJBFaFYd++g/Z16xDb2tDGxREwZvQfcg7/34iVDY8txajWHrNNk9X//YUE+NeuqlX65UZASqTgd9+F9f7tM8zg3z7T0yr87ttq8a9dSIR/fX99oO2XG3WQXib61S45tM6vdgcavX73PbS52a92Pp9/+1P5/3HT3uD2q13+Fpdf7b4tb/K774yjePX/nLACu1/tDL/iihK08VP/G/vBntwjTdNHw+vfV42kjR/71W53lZ9fDGBIL/UvNwLyq/y7DrhF/9pZvf59hgrHH2deE0ig6x3CqngdT2wqxeryIghwyahenPPGBmraXKh9Pq5qbCNAH4dXDXuTdGzrbaA2TAOSRFw7lDfrmdEyhDNbp2IUZKfcKsnCwSF92NY0htHmtdyrXsNY1V7UgvzdaFLFcmP2ekoah+MLkKN0NFoNpiAdtRYnC3ZVsWRjIcPzF/MvdxPWMDOOLAFLMPQLXoE5qAG1uvt3vOL+WzCt636coZdcfNwdaw/x/0asKCgoKCgonIgIGnkCf6OumQ8K5VDinPggekcF8uzyfCQgzN3GSKOeAH0cPgE+mWDGGmtgZriBLyvziat7m+SaXtzddBVmwYwkSGz0NPGFthZCjJzZVsKzhs8IErpEaYUmjvci0/g06XLaDKkAaLxOpnl9TIyI57pXl5G29Wt6iU3MSVHhG+8hIKSBGHMTKlV3Ra+ygq5QQFeoQn9QQFsF6ogITEOGYBoyGNOwYej79v3DzqEiVhQUFBQUFP4gKprt5NVYyAIsVhfhATouG92L7/bWsGBnNQCaSDX66FQy18vWwYLRIdw9PplJIQJ3Lb6YC8riuLjhCkIJwyFIfOVtZY2mglGGnTytXkuaqqazP4cUwpqgRJ6L7k1u1PmIWrniss7rYrJbTUpVBanb5hER3Mi0XipUZ9gJMLciCN0tdIJFwHBQkAVKgQpNLeh7JWMcOgTT9UMwDR2CNikJQfgVZuTfgSJWFBQUFBQUjjNOj483Vhfx5k9F3OnVkYWO0UmhZOSE8fx3B/CIIGkFPNmh6AN1nLWiDZUEccMiuf6iHNYe+IbnP1/EdbWXEU00Ffj4RGxA1GzmFON6blHtQ9UhMLySjgp1Fh9Havk4og/tIachaqIA0HvcTG6s4NSiVwk2N+JKkNCeJ6fpP9xxwmM1YMgH834PugIV6hYVxswsTEOHYDxbtp5oIiL+7NPYiSJWFBQUFBQUjhOSJPHdvloeW5JHVassCkLMBvZ4fbxgt1K1tB4AX7geT04o43UwZZ0bj0siMsnMsGkSL791HcPLJnC1dAUb8bBA2EqWeg3/Um/CLDg6+6p2Z7EvIJUX42o4GJSDPegURI0cNhzgtXN68yKmaBahi3FADIh0CRS7LQhHQyimPB9Ja+vQOrWYBg7ENGQIxqsGYxwwEHWgn86bfwKKWFFQUFBQUDgOFNRZeWhRLusLZSf3mBADUyen8GphIyV5bQiNIpIA+kQt5wS2cuXwoRQtrCa/xoIhQI0mYj7Fb/Zhiu98fqKaPer/ME29hvNUXUEFjQRRZJ3ONnMvPshYRqs5ElfQXDwa2eoRLLZwijCfk9Qr0EfKzvuSJGCzhWJtjcTWFI6mWEXm/jJy+qQTNGwkposHY8jKQtAeO0jlr0QRKwoKCgoKCr+DNqeHF1cU8NHGUnyihDpYR99hMRRqRD7YWo6mvB0BMOjgstbNXD/idIKGTGPPjxXkb64lSC2SrKvAUzyeItVaNNq3uFa1v3OZxyloKDbGsMUxjGr7UHZlLsYSE0Cr8VFsKrmycajUxCnMZ5KwCo3owWaNoN4SRVtrJO3NYfi8WtI87cweMISo08agS0n5wyJ3/ggUsaKgoKCgoPAbEEWJr3dU8sx3B2hwePDFGDFnhNCiF9jR5kS7txmNTU6hMFOt407BQq9n7kVlMFC1v45dXx+kv9FFq6EQh3oVo9WbOElwdu6/2BhOSwQcaJ2KPbgZY3AFdaHB7FHdRasgZ5gNkxqZLS5gsGUP9rZwDljGY7VEIHgEfBoNwXo106dMoP/o0Wg0/7tT/v/uyBUUFBQUFP4idlW08uDCXHa2tuNLNCHFRyCqBVokCW2pDc3BViRJIMRp5R57LWPChmDqn4RKq6bx6zfYv0FPfMhGktWrSVTVd+63VgimIioAV5IDm2hErRcJSVnLdqaxhOuxCKEAhHmbGNe8kbTqWhxtoRyQTkLl8yGq5Tw+mf0yGTVqFImJiX9axM4fiSJWFBQUFBQU/KTR5uKx5Xl8XdOCLyEAKSuq870ESYVhazWVLT4kBEbU7ueR/gbihp2JZUkxYvE8Nj1QSpCqgKlB+zu3s0kG9hkScKXZ8IZ7QHADanzAd5zMUk6jTZATOAY72xhYVkhGXQVqScIhhiKpZIGiNZkYPHgww4cPJzQ09M88LX84ilhRUFBQUFD4BdxeH09uKOaDykackXoIk8WAVhCYGRlMeq2N/ywvoFGlQ+91c33jFq6+8yL08UHUv3Enbdo6wpy5jNTKmahFSWCXKpXqaD2GlAYEbWtHTwLttmB+sJ7M4ogZ2HRmAIIcNgaXHSS9vgK15ONQaT9JpSY0NJSRI0cycOBA9Hr9n3xm/hwUsaKgoKCgoHAUWj1ent1XybyaJpxGNcQaAUjQargyKYqZIWZeeGcFrzaoQaWjt6WKJ/tA/1OTaPrmfAw+CzFCKzEdVRZKpWi2ByRBqoWQsGaMAD5QVwi4doSwLHw2C4dNxx4n9xNstzG4PJ/0+goMBh1uSeKQUElOTmbkyJFkZGSg+h9ylv0tKGJFQUFBQUHhMCRJYrOlnbdK61je3IYoCGBUg09iqF7PvdmJjAoNZMeuIs5/5Ueq1IEIksglLVu5KWsd3rYi9D+0EgcgQJtk5AfVAOpitMQnFxHobkMSLeh3C5jWqrA0xPDRrLP4YdYoXFodACF2K4PK8kmvr0KjEhAlcDvcqNVqcnJyGDlyJLGxsX/pefozUcSKgoKCgoIC0Oj28lVtM59UN1Hk6CgcKggIVg9jtHr+PSaDpCADXp/Icy8v4M0qFZGBNm41zOd0NhNrtKBvlQv+iZLAWimHHQG90EbYiHBpMNSPoH7/CAbv+wSxKYAD6Rl8M3UGW3vn4NbIOU5C29sY0FZPnagivb4SFXLUkclkYtiwYQwdOhSz2fwXnaG/DkWsKCgoKCj8rSlod/JsaS3LGix4pI4aOV4Rda2D/qKaf0/LJDNWdnDds3Ujn6//jKSQApYY9xPfYMfs6KqcXijGsYSRWExJxDtqaGtoIubgWTRq49G5y4hsXMS3w89hS59+5Man4ukQKVEuO2dKDoIt9XxsiCCrthQVoNPpOPnkk8nJyUF7Aidt+6NRxIqCgoKCwt+WHW3tXLC7mFavbBFRWdyoKtuJt0vcP6Mvs/rF4nY3snnDs5SWLyLHV8ydopPQUk/nPiySiUW+UexgFH086cS17MDnasSpG0tAoIr6KCsl0UWURkZSFn4X7Xpj57Yxznay2prwtDZzQBSJsrZwqj2/8/3zzjuP1NTUP++EnKAIkiRJv9zsj+Ohhx7i4Ycf7vZanz59OHDggF/bt7W1ERwczPCQKWiEY2uvEE2S3+Oyeet/uREQrEv0q11gaLLffbc07f/lRoBWZfKrndPb4nffPsnzy40Aj+T45UaAm3a/+05PP8+vdgcL3verXYAQ73ffdqnVr3aBqki/2lnFEr/7NhDjV7s2Va1f7QLEMP/7VgX71U6v8s/s7PRZ/O7b3++vSR/1y40Ah7vR777bvQ1+tUvqNd2/HXaEjvpDS8UOv9rZfU1+tQsP6OPf/rxtLKt5FYvFQlBQkF/b/H9nY6uNi/cUY/OJJKCifkMtKquHOUMTuHd6BNampZTkf4qpvYi4OidRDW40ojxl+iSBtWJ/vvWNB3EkM7wC9vZdlKq8uANCsZg9lEaGURYeQ2VoJF511/yk9XpJaGvF7GghvqmBOEsTWtHX+b6EQEBMDFNHDGfQoEF/+nn5szg0f/vznTwhLCvZ2dmsXLmy8/n/cpY9BQUFBYUTn9XNbczdW4JDlEjwCTT8WEm4ppk7Jxwkw/QM+9aWEVvnYmidE5NT7NyuWIzha98ElvnGMZhwhkk1NEm72WIQaYwOpCw8htLwGBqCuuc5MdvtJLa0EuywkNhcTZjD2u19n8FIVHIKo7IyyU7vjdFoRKGLE0IVaDQaYmL8u7tUUFBQUFD4PSxraOWa3DLckkSWu57hJV8xauh2ggJbiWxyE5vvJKzVw6G8r+2SgUW+kXzlm0CR1JsRKisTtWV4NCX8GBpBaVgm5eEx2AzdrYW92uuJrmsntL2ZhJYqtFKX6BEFAW1UDH0zMhibnUlMdPT/i0yzfxQnhFgpKCggLi4Og8HAqFGjePLJJ0lK6nnJxuVy4XK5Op+3tbX9WcNUUFBQ+J/BJ3kRpa6lBY/oPkbrvw/z61p4OHczU9nESd7VxGjKCYrxElvnInqfC62vyzNiky+TL30TWCYOxyBAlrqGyYb9VEVEsTt8IJWhUd2Wd3SSixxPIcm1beiqHYS4us9PXmMAkSmpjMzqw/+xd9/hcVV3/sff997po5lR712y5SLLHXdjG1dMMaaEULPpG1JID0l+KZvdhd1sEpJNIJRQQwnFdBuDbdx7k5ssS1bvfWY0febe3x9jDIRgX2ex5XJezzMPWPrqnnOPpnx0yznjhg27aCdwOxuGPKxMmTKFJ554grKyMtrb2/nlL3/JrFmzOHTo0D+8Pevee+/92DUugiAIwkdVe7ZS5dk81N04b/g91bxz+DF6A3v5DXWYwiqZXUGyOkIk+D8IdZ1qIs+r83gpNotmLYN0yUu5o4dApoODqaNY60iCDx0BSdJ6maDtYcRAG0q9RHjwg+vAYrKMkpFF2bDhzC0fRUZaqjh68k8a8rCyZMmSk/9fUVHBlClTKCgo4IUXXuALX/jCx+rvuecevvOd75z8t8fjIS9P30WugiAIl4oy53SGOaac/Lc/6mVN58ND2KNzz9e3j65jD9Hl2cqgwYdT1SjqC5PdESKlL8z7c76GNYW16kSejs1nmzoKDZlUs5+cnAjduQU0/d31I8VaLePZzdhoJcY2I+1tIwiHE4kBYbuD1BPXnkwcVoLJZDrn+30xGvKw8vcSExMZPnw4tbW1//D7ZrNZHDoTBEE4DUUyoHzoDkmjHDpF9cVjsH0TXbWP0OXbjc8U32d7KEpJY4j0rii2yAd3PNZoeTwXncuLsdl4sSGhYU9R8AxLpsX1weeMMRaiXD7ABHYznj1YAlFaW0bS0TmBCBakrByGl5ZyRfkostJSz/k+XwrOu7AyODjI8ePHuf3224e6K4IgCMJ5TlNVfE0r6ap7ks7QAfzmKAAGSSW3JURah0qy/4OpFjyanXXaJB6JLOKwVgiApEA0P4FoQQIBc/w2dGfATQWVTLFsZrR8EDNh3O50WlrG4usvxlw0jLk3VjC1tOSSnqztXBnysPK9732Pq6++moKCAtra2vj5z3+Ooih89rOfHequCYIgCOchLRphsPZvdDU/T1f0KH7ziYtiTRrJvREyWzTS3T4U4nffxJA5opXycmwWz8VmE9Li4UIzy0QLE4jl2sEgk9XTTpm7lpmOtYywHEQCNE2it6uQgeZpaLF8rlgyg9HjRg3Rnl+6hjystLS08NnPfpbe3l7S0tKYOXMm27dvJy1N3+RbgiAIwsVPCw3irX6KrpaX6aKegEUCBVDA6ouR0mggp2+QBDV48mc6tFQ2qRU8Il/JsXA2nMg0qt1AtCgBQ5qZ0q4WsuuPMMWymREZezAa46eOYlET0daJpDYtwGKyk3PNaIpGjxyCPRfgPAgrzz///FB3QRAEQTgPad4uPFV/oavzTbqUNoIWGSwAElIIEpps5HYPkv2hWbr9moU96gies17OGqYQ/tDdw2qSCWuOjfJwL0m9DRR1HKMw+yDpxfXIcvwojBZIJKlxIWmtc2m1ejAvzmXyZVPEXTxDbMjDiiAIgiC8T+upwV31F7p63qXT3EfYIoMdQCYWlTG0JJLdGaA41I6J+BILqiZxhBJeS5jKMylLGewyIg/E55XRAFuymSlWjVJ/C9GaRpKSW8nJqSIpuf1ku0Z3EWkNV5LQNYFWcy+N8zSmz70O5QyWUhDOHhFWBEEQhKGjqmitexg49gRtfZvoSvCjmjVwAcjEYgYCHWlktEcp87eSxLGTP9pOOq85Z/CX4hto8yahNAwiH4siE0aSYLTNzFUxD5K3hg5/L6npjeSMPIot4f11l2Qs3WNJr1uK1V1Kh6mXhmndzF1yNRajZShGQ/gEIqwIgiAI51Ysglb3Hh1H/0rD4AF8iQEkcxRS4t+ORo24u7NxtcsM93ZRyCEkKX7BiR8Lb7um81jhcnbbRqG0+DHsHcQYHgDAIklcg4HLpD5awkdwy2Gyco8ztWgvBkN8PR4ZK5a2qWQcvxJTII1ewwAHxtUy9+prmWTXvxCocO6IsCIIgiCcU4Mv3sAuyzFUZxjsIBEPKL29eXjbCynr9XKVshmb7OX9BXp2JIzjqdylrEydTTBoQGkaxNrSwfvL7aQhsUw2kmfy0O/vp0WTyRvVSFL2OjTiF82aTVmYm2eRfngOStSGWxlka9lBZl2zhOtTioZmMARdLpqwUrLoi5hMp15y3likb0l64ORV46cT7Y2cvgjQ+vWvy5GdO0Zf27Xe0xcBkvMMZlCM6txxg76LzdS6Pv1tq+rpa4AM0yRddUljp+luWgvq+z2qbn1jbml3nb7ohOTSy/QVmnXO5RCO6m5bsuh7bkQ7unXVKYn69xtN33NNSv34shv/SEKPvt8NQM4cfbNea/qekrrfLwAKUsp01QWa9U3ipjj0XVNh8HTDH/+oq/Zs0TSN2tonaEipQlZiRKNGPH2F9DaNIdI2ipmphyhnBUZj/H2jw5DOX7Ov5G9Zi2k2Z6L0BEjc0YfmjQ+4BhQjs9hooiPfSqjBQ9OAwqjZx0hKXomqBtAAh6OcrMTbcL+YQKIngaAUZk3+TiZePZfb8pZ8coeF88ZFE1YEQRCE81co1Mv2HV8nGt2JrIB7IB3Z96/0bkml3LaaKan/hjEaDylN5ix+W3gHL6UvJIpCWk0XWS2t9EclfCe2NwWZ4mQbB4psvBlSWbi/l+SKtYzIX4OmDqKq4HCMprjo24Q7C/A+eZzEqIUeQz97Lm/ljiu+iVEWk7ldKERYEQRBEM6qpqZ3OHr0BygGL6oq424oZHZrI8fce1mQ/gp2eQCi0GTJ5Hf5d/BixiLMfpVh+7vo6daIHzOTsABTlACGzEHWD69giyKx8ICbxeY3GXHlGmS8aCrY7cMpLr6btNSFHFq7DcfaRuyahVprM9yYwRdG/euQjodw5kRYEQRBEM6KWCzItu0/IhR6A8UAAb+LFG0581p+TUQyM9P5OADN5kx+V3A7L6Utoqg5wvhNPRwNxqg/sZ00DWZEmjhSspp1RcuJWMeR0R/mix3vMq78JUyG+GQqNlsxRUXfJCN9Kaqqsemp1yiuSgEM7Es5xtjPX0F+SuGQjIXwfyPCiiAIgvCp6+zcx779X8do7ABgcKCCifbLcO76c3ziWS1EizmD3xXcznuWeYyqizL2YC8HtdjJbZTEwkxxH8EcfYUX5yTQn/l9YoZs5nQc5TOu3+IcEb8F2WrJp6joG2RkXIMsGxjw9LHv4XcY1pMDwO7hx1l0+y1YjdaP9VO4MIiwIgiCIHxqVFVl567/xut9DKMxhj9kx9g7jZnNa0gJrQOgxZzOn3M+Q11gKlnVVmwhD5tPrOMjAxWhPkb2bSNrsJ6+xHZenZdDb+aPcMQUvhz8DeMztgFgMWdTWPR1sjKXI5+4/uTI8QO4/3qMYYEcwlKE5ssDLFv8uaEYCuFTJMKKIAiC8Kno729k2/avYjIfo45hyM0ZXNW6maxwfFmVVlMaryQvRR2cRuhICgcIs5X4Wj5mScJlU1l4+AWStD6M0Ri9SR3sn5lOe/YvmBQ9wJeMfyDBOIjZlEFh4dfIzr4RWTYD8TuNVm1+lfy3zeTFMnAbBjHenMvl5frurhTObyKsCIIgCP9ne/Y8wbGeR9hlvIzUtjLubH6TnFD8CEi7MZVNpqWE3FeyxyOxkSgx4tM5JEkyfSV2MmuPs6TyTYxKCEMsRndyO/ZxGodzfsKXeYjZhvcwGVMoLPgWOTm3oCgfzDDrj/j528t/4fLK0Zg0I52OAUq+PI3EtNQhGQvh0yfCiiAIgvBP6xno5o/bH2CXIYvR3Qv4TvMz5Ia6AOhVkqjTruOwdzF/Q6WKD65HKYzKJCRbqSsIU7C9mis7VmFQwigxlf6kDuYM6+TZ3G/zb8o9ZCtBCgt/QF7u7SjKR+fLqh+oY+3TL7O4dSoAXbmDjPviEhSL+Hi7mIjfpiAIgnBGNE3j4GCAPx3aywZfhKt6JR5q+h9yQ50AeKVE+iI38bfgXF4EuolPVKgAo0IKE0MGOoYH6O/dj7I7k6s63kSRYygxlcGkDj5b1Exjcjk3Op6lrOgL5OV9DoPh45MDvlOzmoEXa1jsiQeVwUkK45cvRpLFCskXGxFWBEEQBF16wlFWdPbxbGsPtT4/N3Wu593Gp8kLxe/4CZFEa+R6HojN5Q1NInRiPR/FqFGmmpnTJ+PQYsy0/YnfVc9il6OEf215BFkGWVXxJffy1bx6DLIJ/+gplE/6MUbjx2dFjsQiPLj5j5S/l8b04FiiUgzL1TmMmD7snI6HcO6IsCIIgiB8oqiqsa7Pw/Ptfbzb60GLRbixczVPNT5F/omQEtVcHI5ez//E5rEJOf6DEigJoOW4+Ex1lJwBFVWJMVZ9kO8FFnLMkcXX6v+MLCvIqspAapgfZx7FHIPWqT9j/LS7/mF/Onwd/O7N+/jswStIjSYSMkXIunMcthKxAOHFTIQVQRAE4WOqfUGeb+/lpc5+usNRDGqUG7re4XuNj5EbjK8VFZZs7AzfxK+ic6iW3l9nSsOQKuMrSiFJUbhtoxeXX8Mgx7BI+/iS7Vb8RpW76v+EJJuRVI2OLCvfSz+AOQr9OYvJWfCPg8rWtq2seP1pvtp4AxbNRChJo+CL0zCkiPlTLnYirAiCIAgAuCNRXu0a4Pn2PvZ5/QAoWpTb297ku81PkhmKr90TVIysDS/nF+GFdEtWkMCACrkmfEUpBG0GSrs93Lg+iCFiwCbHOBw8yEvpo5GVHr5e+yRgQ9I0erOdLLNVkxb1EjIlk3T7Ix/rl6qpPFz5MH1r67i7+xYAtGIrRXeMQxYX0l4SxG9ZEAThEqdqGj+uaeX59l6Cavw6E1lTmdn1Dg/UPEJqrAeAsFHidXUBvxj8DIMnQkqiGsAzLInBgiQwyjg0N8tb9lKwdQyaZsBlCPBctJXD6WXIhnbuqv0rkICkaQTSUhgx2MaUxOMAmG94CCzOj/Qtpsa4e93dTNyVzx3uqwGwTMsg5aphSIq4kPZScdGEFVORJzU3VgAAc61JREFUDZPFfsoao13WvT1/XVBfoapvbXjNF9bddqxD5wvQo7OPZn1LyANEj7bqqpNt+g67hjradLdtnThaV52lVd/cCe6DO3W3HY3pG8sER56uuqT88brbxqDz9xOK6CqL9vXrblpJSNBVJ1t1/r7b9T1/AKyzxuorNOp73UrJ+k8FRKo8+rbpMuvboKbvfQDA36av1pCnb3/UgKqrTgt+cp0nGuOp1h5UwCrL/MDSRcOe73JtfyKpsR4iBomGXBtv132G34TngwTl7iY+NzaNh5MT6EhLAeBm7Wnmua30b5vHoAZ5BQ4itas4nDYHgH/pfhm0BNA0XHmFlJeNIP3Qn5Al0EZfhzR84cf6tr19O7n77cx3T0WVNJKXDSNhSpaufRYuHvo/vQVBEISLUqLRwK+GxdfRCagq/t46rvZ2sN7RDoDbbqQp38peKR5KZrfs55G0DlLmzMZwrB1zJARAP8nIgS4G1fhfwvM+M5w537gDcyzCxO4D2PvjHzl+Wx/cvICsYWWkWXwASGVL/2Hf6ncd5tae+PdSbigTQeUSJcKKIAiCwBdy0/hlaTYAv7Zexp7U6+lxxe+wsXvjR4OOGzIBuKzzCIM9fXz7hf2EAxLzju4FYLW0lNpjMwDIN4PWOkjKuDEsSg0ze2ATmiRhiUZ48XIvDxz6I7bkQlLN8bASSSr9WJ8i3X6m7CwGoH9MDPvEjLM4AsL5TIQVQRAEAYCv5KXzk5T4LLP3Fn+ZcNk98VNDagRPfyJNviwkNMZ3HaP6WAsD/ghpqakU9HUyqa2BFE8MY0ceoOIY/QrBun4i4TDle54mapCxhqIcmTeBmMFJWO7kwbf+glmJEdMkWns+eppTDUbpeKISq2rmkK2WousnnfsBEc4bIqwIgiAIJ32j522+3/AYAC8FCmg0JwLQVjcCgMKENkwj54LHg9Ni4Jc3TgFgQk0lcw/E7yBqzo7hLV1DW/SvvH3Pt/FKGoZojHdS55Op9BK2x0/rbMpYh1+S6A3ZaK46crIPmqrR9+IxpN4oPYZ+Vk3YQ4JF3/VVwsVJhBVBEAThAzXv8J3GJ7nbEp9L5ZAjfiG05o9/XIzJqMQ2LZnMlBJ+c9M4huWkYjKZUFSZEa3xGwnWD0/mST5PTcu7HGtpBE0jZklif+pIGgLpjO3MJmZIx28I8qTLQXfQTt2+/Se74N3QTPBwL1Epxr/nPsKEosnndgyE844IK4IgCEKctxPa9yMBPyyv4Gt56RxJKAEgK9oLQEXqETqLXyGt4kZm2yxIkkRKSgqWQCYSEmEDNKYZaGnMp+lw/BqXCn8nruvi6/cc8RRz/YhifK4bAXjC5aQuZqOn6Thtx7oIVPfheacRgAezXqDa2sCs3FnneCCE840IK4IgCEJc7Zr4f7PHIzky+H8lWeQWxG/DHym1oCgxsq1daPYevDm76HnyMJGeAMnJKVj98buJTFFY3jbI8lV/RZMksga9TJrRzOzJw1CkGO2BDFKsiQxLmkFpRMMvy7yaZQI03v39O/Q+cxQ0cI9WWenaRE5CDkXOoiEaEOF8IcKKIAiCEFfzTvy/pQsAkCSJW8bNjn9JakFNs7Cq/wYAOopfRg2G6H38ENbBZJSYBcmgomkxyt/4I5qkkRAMcVXxEY6WJdDZci8jko8BsKvdx1fyEvlBT/xU0+6sID67xiRLCoRjSOk2Xi3aBMCsnFlIkpj87VJ3XoWV++67D0mSuPvuu4e6K4IgCJeWWASOvxf//2EfTM4mJRbgw4pJilHo6uGljGvZGp2JZBugO3Mt0d4gRTUGZEBJ86IMvIZf8mGIxVjkqGHnsAn8LvkeAsE2xqbEL6LdVO/hajqYFgwyORhFlaFujAmXMYGgqrG2aZAD1bUAzM6dfa5HQjgPnTdhZdeuXTz00ENUVFQMdVcEQRAuPc07IeQGazLkTDj55c21PRxR4zM3V2jvoUkyDxq+yV4m0Vn0ClFDGJcqMcEmE+jfhJ8GAKYFmskvGeDewi+zUZvExug1lCU0IqFytCuGv2EfAFeE0wGJPcm1HDXXcaTzON5gjKl7byLPN5zJmeLiWuE8CSuDg4PceuutPPLIIyQlJQ11dwRBEC49J08BzQc5vgSEPxzl2y9UUqUWAHDZ4HrMvq2oksLv+R5HEkay3/U6qqaRY1IoD8Znlx3e18+kcS3Ecq5lXlsuAG+FrsIQVRieFF8HqP3YbgA81jJCtukA/CH5CexHHySxvxpTzMLiI1+mr0HnsiLCRe28CCt33XUXS5cuZf78+aetDYVCeDyejzwEQRCEj4pFw4RDvpOPSNh/6h+oeTf+3xOngDRN46evHKLbG+Kolg/ATIMLR+9DTKjdR1Qycj8/oHZ0L/v8XgBGJE5lnHEUC0YfRTMaYd5PuL0hzOyeKKZQkEDAycSM/QCo7fH/upViBhNvQNIM1Cf2sHN2DmMPPkhS/1GUqJE3/reSthr9610JF6chDyvPP/88e/fu5d5779VVf++99+JyuU4+8vL0LSwnCIJwKTmw628888Dyk49XnvryJxe7W6DrMCBB6RUA/G1XMyv2xRemPHriNFCuz41RkrlyzW+pqDtKRDLxB8s32FP6Fgf74xfEluUsRXOM42DwKuTCUgx2Az8/ECA3EiYQcDAh/QCgkR9tBqBgIA/VkErEHm/3rcJW3rxMpeLgn0nqqyIaivHG/1bSWi0Cy6VsSMNKc3Mz3/rWt3jmmWewWCy6fuaee+7B7XaffDQ3N5/lXgqCIFx4KiZ/hlu/tuLk47o7Hv7k4vePquROAlsyh9vc/Oz1wye/3Z8QX7dH8XVxXfYsAqYY//7HXzN88DhhycyTY+7gXVsL7v49IMn0Rn7EscEbGOj0Yy5y4YrA0kCEQMBJksXNVFclLslPTFOYPJhNgiwzkLQMQ9SAOyHA87Mk1s5zUHHoIZJ7DxMNq7z5x0qaj/adzSETzmNDGlb27NlDV1cXEyZMwGAwYDAY2LBhA3/4wx8wGAzEYrGP/YzZbMbpdH7kIQiCIHyUYjBhMttPPowm2ycXN++M/7dlN/x5Ji3P3c1sdRcm4jPSNgzKdCjx61G+u38No1J9aNZ0lmzqYnTsICHJwrPXfJkvX1nAyqxWQrKFaXYHjX/ax2AsvgiiuaWfYMCBpsE813YAJFTMsf/ka/170GQ73qRlJ74u83KFTPhLyxlz+GFSeg8RjaisfvgQsYh6dgZMOK9JmqZpQ9W41+ulsbHxI1/7l3/5F0aMGMEPf/hDysvLT7sNj8eDy+ViYuLlGCTDKWsVArr7ppCqq07j44HqH9fpH2afrO+vhyQtV1edlxbdbVu0FF11Zsmrq8594s1OD1mz6qozENJVF+MUb85/xy7p228PjacvAkoMLt1tN0X0jaWqc39skr7xAQhpdl11Vuk01zuc4NH0//0joW/ujGSdm+xWo7rb1iR9r1tV0vfBmKjl6G7bQ7vOSn19TJKKddUFY362DLyG2+3++B95x9+DVT+AnmMf+fLBWCHfiH6DBi2L5fJGfmZ8mkQpvkqyP2bigHcKBzJcrJo8lR3ydFQpfmGuPRpgcUuEW5sl8v0QIsqgFGC1sZK0oh1kph8jdbeNyVrNybaqraX8MW8Za6U9KOHjSJqBzJ5ElnckMOutBrZO+xVhk5Prvjue7GHiRoyLwfuf3//wOfl3Tv3pfpY5HI6PBRK73U5KSoquoCIIgiB8Ckrmwtd3xafbb9wM9ZvQGjYzpreG9cp3aVbTWKNO4NvhfyVX7uZzyjuUKO1MTdzE5KBExbv1bE/axeGKfLZY5tBnSOXlQisvF8LoXi+fbTIwv9vB9eHJ9B0bzRHvBoIT1/Fy9S2M629jmbKFskAt/3vsf+gwOPlcTiGt8gBtaf086RpPtCVARv8xujIm0VLVJ8LKJWhIw4ogCIJwHnFkQPn1UH59/LiXpx0at5BTv4mba9bzL97VuDUbG9QK3o1MoEKuZ7pyhKnWw0wNHqZyWxGlWjtVRVk0ZZVSZangcIqDn6bAf4VCLG6NckdzEjNbr6K3cyaXV7zItjQn/1N1P9fLm7nD8A450V7eaDzAPWmprE6wMWh6l9/efAdjWrKZWK9RtW4fk68uFrPaXmKG9DTQp0GcBjo9cRro9MRpoFMTp4FO7YI/DaSXpw21fjM9B9egNG/BGWznsFqAKsmMlhowS/HfQYeWxFPRhayzjCaSaaYxbRiDzmSQJCRNo7zHwy3NKrO7FLoN/dQWvsv9LZfRF0piobKLrxveYKRUx70pSfzN6QBgmDyayoxvMLotRh6v8d3r7qLYpW/fhfPTmZwGEmHlE2tFWDkVEVZOTYSV0xNh5XTOw7Dyd2L9zdTveQd31Toye3Zg1oJYpTD2E8/BgGZiRWwWj8UW02FORElT6EnPQU02gyyRGAiwqGWQO5qNxIIxtkgDvBWz0WhQmWfZzb+whh1JzTyaFA8sN3qDpFku5/Hs5ST6DFxh6+Zr867BYXV8KvsjnFsirHwCEVZOT4SVUxNh5dREWDm9iymsfFhM1Thw6CD1u1dR2PQKI7Tj2KQPXv/rY2N5LLaYjWoFiqISSzUTTnegppqRDRIV3f3c3KQytstIbUhlpxajy+KlwHyUWMpqXk+Jvy9eNejjF919bEieyl9yricYK+cmLcgNMydiynaI00MXkAvmAltBEATh4qDIEuMrKhhfUUFM/QG763tp2PQMFQ1PMEKrY45SyRylkuNqJo/GlvJK50zojAIaapKZg2kWKkdZSBoVZlGLh+VNJtyDyTQPTiXgHst1nQ3synqPla5aPBky/9O1nYV926ix5vN4znW8vknh5gET88qysU/IwOAyD/WQCJ8icWTlE2vFkZVTEUdWTk0cWTk9cWTldC6sIyufJKZqHDy4n8DmBxjb/To24mv9DGpmVkgz+FNwOZ0kn6xX7QbUNAukmhgTcrO8KUZBh5XGMIQ1iMghWlzVBBOO8v3Qegrk+Hh6FRt/y1zMtoRrWNySweVJCdjHZ2AtT0E2i7/Lz0fiNNAnEGHl9ERYOTURVk5NhJXTu9TCyofFAm5a1j6M48BjJIfbAFCBA9Y8HtcW8aZ7NjHtg/dxzSijppmxOzSu8PmY12zA67Xg+9CvRTF2Mcy0i1HmzWQYjyFLKuuSLuPdxGWUd4/lcreEdXQK9gkZmEsSkRRxmuh8IcLKJxBh5fREWDk1EVZOTYSV07uUw8pJaozY0bfwbfhfnJ07T365z25ig3MELwTmsq97LMHYB8uwaBKQbCLbFGaJ10fKQARtMAPpQxOxGyQ/hebdFJr3km/eS4fNyZsp15DsvYKZXRaMDiO2senYJqRjzLKL61uGmLhmRRAEQTh/yQrKqGtwjroG2vajbn8ADq0g2RfmOt8BFpsO0TTcxibLCDa1TGFn/0QCUQv0hmkHHsOO4pQoSnYzLFqH3Q/57jGg2agNzqY2OBtQyTDWMK1nNxnWn7Ijdzhq+Eou2xJhcHMrhgwb9gkZ2MaloYjrW857IqwIgiAIQyd7HPLyh2HBv8GuR9F2P4bV30tZ/SAl8h4WZR6iqexZ6joLeK1hCQcNowkGZGJ+jVos1DIKg0EjN7OdwsgAw31O7JE0DNEEOiNldEbKYBBsvX0UmPdwNHEjEXsZ5V3jiK7y4367HnNJIrbx6VjLU5HNylCPiPAPiLAiCIIgDD1HJsz7KdKs78LBF2HbAxi6q8hrC5LbFmR4io9R4+sYDDg4sr2IFzNuoMGcQ2wgSjQKDdF0Gkhnk0Ulz+ImN1xHiWzBFU7GHHbhV5OpCiyAAMhE8FuOILs0yoJFJNVohGoHGHi1Fmt5Krbx6ZhLE5FkcZrofCHCiiAIgnD+MFphwh0w/naoWw/bH0CqeYe03jBpvWG8dh9p09wUq+0E1xvZYpvO+lHzaY/akLuDxELQQBINxiS2oJFu6ifPWksRkB22Yo0kEosk0hMcAUHoAkzGPrKsCll+J6l7O/Hv60J2mLCNS8M2Ph1TdsIQD4ogwoogCIJw/pGk+AKLJXOhpwZ2/Blt/zM4fAFGHRuk1Oije5KJTEsfs1s20t2VwtrSz7I9czhBdwy5K4jsjdCpJNNJMruBJOMgk+315GkhkmUzSV4b7kAx4YiTxgg0EkNWJEbYFEo9IQY3tTK4qRXzsERS7xyNZNB/Abnw6bpo7gZ6dO5SbAbjqWsH9G83rPMmFpvOG07yy/VfwPXymz5ddfMn6MuaQX03cgBgNOmr21Ol72lTmKr/MGogqK8uLU1fXVj/TTG0duur0/te5Q7pf1m1BPV1dNEIy+mLAKv+m6Dw6bsRiT0N+u5MybbrP99v0vmnkt5n0LDR+j9Iupr13eWTN+rU7ynvi/j0jQ+AqrN03z59fSzSd1MgfUE/397xzvlxN9A/y98He58itvUBFH/nyS/HZOhLNNGdZKLdn8BmbQnr0xdTZUlF6Q7Gg0tfCOnEyzJH6Wea0oBVjjKQ3suMfkjrSaA5NB6fGr8TNDk/gcuzbKi1AxDTSLymhITp2UOw0xevM7kbSMREQRAE4cJgS4aZd6N89zD+ZS/Q5lqGT3KhqJDWF2bU8UGuaO/gbt/TPOr5Fx7zf5nP2NdQNDJKeE4m0Xw7GtAaS+Kl6HhWO8YQGSzmdUsfbw+v5M60LzHX+Udiskpf0yDPH+7l4GWpaIBnbRNqUP/t8cKnS5wGEgRBEC4sihHbuEXYxi1CjcZo3rKNwa0vk+JfR7rSgMsbxeWNUsJx5pp/T0/KgzSkJPFuwSI2ps6h7rgd2R2hq9vCSvsoDCUTKIn18PWkGVwnbeYyy69Z6/s+iYNwbHUbK0bZmB5WuXZjM8kLi4Z67y9JIqwIgiAIFyzZoJB3+Uy4fCbubj+71lUS2vcmOdI28kyVWENR8tqC5LW1M1V5kt7kZ2kpdPJI6AbWHp9J1BdFPTDI0cwkDpYt5i15PoW97ZT2HCa5TyKzP5OKw4nsyLfx52AfX6q18tmiNOyKuMX5XBJhRRAEQbgouNJsTP7MNGLLp3B8fxcrN9ShNG+kyLyLQstObHjI7A6T2d3DBP5Mb9LjvBubxEN9y2nsyELpDhApdXI0v4CjWYUYoxHy+zop6m6gpCPEku3JPBz08Zv2bj6Xk8rnc1NJM+m7rkn4vxFhRRAEQbioKEaZ4ZMzGT45k962Cg5vamPL9jaSolUUmXdRYN5GqrGNNE+IW9jCLeYt1EvprIpMZc2xCRxrziUyKhF3ShrH03M5np7LeyNj5PR3U9xTS3q9h20pqbyUmsXs4SV8pSCT4XZ9F8AL/xwRVgRBEISLVkp2ArM/M5xpy0qo2T2cwxsnsb3xNpxKB/nmbRSaVpJn7qGILr5meJ2vGV6nO+Zk3f4JVLsyaBqRyW77VDrkbJpSMmlKyUTSNLLcPRR1txKu3s8vHS6cBUXcPGEsszNTxJpDZ4EIK4IgCMJFz2hWGDUjm1Ezsulq9HB4UxtHd2ZzyH8dRslNiu0vjIvtpcAWIM3k4TOG9eCD4G4j9dYX6Ms1sjJlNmvNV9AgFdOWmEZbYnwehTRPP0Wd7bz81JO8arEwsqyMayaMJSMtVQSXT4kIK4IgCMIlJb3ASXqBk+nXl3JsRwcHN7TQ0f4dXkqop9u4kcvadzE2GsWZFSbL0M/IYDvUwozav/JD20s0pDl4N2Uar9sXc0waSbcziW5nEjuLRpEcGOBoRyf7n3qG9FiMsSPKqCgfSUFBAQaD+Mj9Z4mREwRBEC5JZquBMXNyKb88h47jbja/qBLxlnMkq4idagBH5x6SvQ60fCczTYcYJx3H6Q9S0RikovF1vm54h5ZUOxvSxvCyayn75fH0WRPpK0hkX0EZzoiHbd3t5L++ihyvm8KsfMrHjWbEyOEkJIgp/M+ECCuCIAjCJU2SJLJKE7nxnvkc3p3Ki2+8SoJsxW77HANWCEf/wn29i6lPHsFcQyWL2MUs5RDmaJCSjiAlHeu5U9pClyOJbVn5vJy8hM3GGXiMTiqznVRml2GP+SgZaCJ3xzayV75Jqi2Z0tJhjJ88huycLHG66DREWBEEQRCEE0ZPGkd/0MuaNWsZdNTg6kjDLP+I67J+zgppM2s8N/OCeS6WWIjrAhv5fGQd+Sn9mBUPWZ4ulnu6uI699FmS2ZuWyRuZc1hpXcyg4uBAykgOpIBZCzLMd5yCrsNsfXwndtVIdloBo8eMZOzkkZgt+pdnuVScUVh55513GDduHOnp6WerP4IgCIIwpKZPn0FNTS2NjY34kpuINWyikoX8JP0Jvp34E+5Wb2FnYDbPWRfwnHUB84/v4gsDm0gZlUOedT9WpZGUYA8LmntY0HyIXxn+SmVyOmszpvBS4jX0yukcShjNoYTRGIoiDA8fo6S/kbrth1i1xozLnE5hfgnjLysnvzQTSRZHXc4orCxbtoxQKERGRgbjxo1j/PjxLFiwgDlz5pyl7gmCIAjCuSXLMsuWLePBBx8kDJiK8+k7vpc3wgXcmH+Qp6WneSGWyFPmYg6F01mTP5mtWeXcenQtxaY7MGXnUmHfTY5pF1b5IK7oALO7BpjddYwfSi+xLzGXranjWZG+hHpDMUfMozmSORopI8YwtYYR3hoGO49w8G/vIYdTSE/MZcSIMsonDSMx3XZJnjI6o7Di9XqpqqqisrKSyspKduzYwW9+8xumTZvGm2++id1uP1v9FARBEIRzJikpiSVLlvDaa6/htjoZPXs+9RvXsLU7nxlpjVzvehiH8m2kSDq/lP20G208Un4Vhe42FnTW0JS8EIt0JUVKNyUJB8kxHcAi78aGjxn9Nczor+FbNSvY5yxlW/JoXshaQp1pGMeUERxLHAGJUDT8OGNDlSR072Pj/r2s2+7EThoj8scyZdEo0vIdQz1M58wZhZXe3l7Ky8spLy/n1ltvBaCrq4vly5fzq1/9ivvuu++sdFIQBEEQzrVx48Zx9OhRqqurOdjjpnjBNezeupbsQQ9FCf0sUe9DtcjMjo3kGe0qfquNpMGVzSOubBQ1SF5EojiWRIl3DsP8paSZrmNYiheXshurvAOT3MEUz1GmeI5yW+u7PJ15FRtdo+m0ZVNvKaReKqHeUsIbuVEm5uxkXPdRArVeDtaGaT8S4qYfT8aVZh3qYTonJE3TNL3FsiyTmZnJ2LFjTz7GjRuHz+fjyiuvpKur62z29R/yeDy4XC7W/f4HJFhPfVGStWC07u3GAl5ddWo0pKsuWH9Md9umjCxddYMHjuiqMyTonwa6YWO3rrqSq4t11YW7+nS3HeoJ6KqTDPoOgdpyEnW37W8d0FVnTtF39DDU69Pddn9jUFddcqG+32PEF9PddtJkfb9Ha3G5rrpwZ4PutlH1vfVEujr1bS4U1t20dXiZrrqetTt11WXdcK3uts3JebrqwgNtuuoi3h5ddZ29/Sz5yv/D7XbjdDp1/YwAfr+fN998kyNH4u+3JqORfFOU8s5XyTe2k2z+4H2rT3PwUPRaXlUvo1NL/ch2UmISJRGFck8nFeE+ipNzSbeHsMrbsBtWYZDiv8eAbOK11IWM6FzKG2UuVrlU6mwfPGeytWYu6z9K2eZR5KSlc/33J6IY5XMwEp++9z+/9Twnz+jISk1NDZWVlRw4cIDKykpeeOEFGhoaMJlMRCIRbrvtNqZMmcK4ceOYNWuWrm0++OCDPPjggzQ0NAAwevRofvazn7FkyZIz6ZogCIIgfOpsNhs33XQTjY2NrF69mra2Nmoj0J1zB5PKR2NuP0ys6m0y1U7yLF3cY/wr9/BX6tVM3tQm8pI2maZoKb2KTK8SZaclBauaQpk/wOSWNi63jyUvcTkJ8lYchlexUsPNXW+C9CZlVZO4zLmMHZ4t7CrN40DeRNqkPF5NzsN8dZCJfXUEXjNw5w3jh3qYzrozCislJSWUlJSwfPnyk1/zeDy89957XHfddWiaxpNPPskPf/hD/H6/rm3m5uZy3333MWzYsJM/f+2117Jv3z5Gj9Z/JEQQBEEQzpaCggK++MUvcvDgQdasWYPb7Wbtlq3k5uay+K6/4DSbOLh7G7EdW8gN95BtqOLr8iq+Ib2FW7HzvDSBl2PTaQiPJiAb2J9gZX/CKB7TNMo8jUyypDHPeB+j5BochlexyDuwKrtZ5NtNBZlM3pnOnq3bOXb5BA5mlNEuZ7M1pYytwBPr1/O14SO4JjMds3xhHmU5nTMKK8nJyYwbN+7kKaAxY8aQkJDAypUrKSkp4ZlnngEgFtN/GPrqq6/+yL//4z/+gwcffJDt27eLsCIIgiCcN2RZZuzYsYwcOZKtW7eyZcsWWlpaePTRRxkzZgxXXHEFiUuuJeTz0bpyH9L+XhxaNRZ5H/8i7+UryiYCFoXHlCm8672WRvLoVySOONM5AjxFiNxwEpNi32K5MsA45S0SlHfJUjrISutgZrSancd6OXi8k5Jb5vKXhlZ2SRVUkcg3qjv4fzXN3JqTyR056RSc5rKIC80ZhZXHHnvs5J1Ar7322slTNzabjRdeeOFknaIo/1RnYrEYL774Ij6fj2nTpv3DmlAoRCj0wXUiHo/nn2pLEAThYhaORAhHoif/7QvouzZKOD2TycScOXOYMGEC69atY//+/Rw8eJCqqiqmTZvGzJkzKb5xJtp1KoM7JzHw7gwIqChSO7CHZdpmvmj5MW7FzpOBWzkUnMlxo0KrotJidNCCxquaC0f4ZhZKy7nNsI4xhpU4DH1cwRZmRXfQ+fwmXvrcAzy/dhNb0nvZYJpBn5rKn5p7eaC5hyuSHdyZk8a8FCfKRXCr8xnPs7Js2bKT//Z6vbS3t5OTk/N/um354MGDTJs2jWAwSEJCAq+88gqjRo36h7X33nsvv/zlL//ptgRBEC4Fj614h4dfXDXU3bioOZ1Oli1bxmWXXcbq1atpbGxk06ZN7Nu3j3nz5jFu3Dgc03OwT8rEt60dz3oDWiALuIqaQIiO4FpmsYqbrC9zVLqcg96rqVesHDeq1BuieGWZl7HwcuxKbNGFfFnZzrXGVyiS2smLHEJ7eDY3mHJIPvQlpqZspmNCO2uUaRyUxrGmb5A1fYPkWYzckZ3KZ7NSSDVduJPWn9HdQGdLOBymqakJt9vNSy+9xKOPPsqGDRv+YWD5R0dW8vLyxN1ApyDuBjo9cTfQqYm7gU7tfLwb6O+PrHT1DXDD3f8h7gY6SzRN4+jRo7z77rv09cXf9zIyMli0aBHFxfHXmRqM4t3UyuDmVrRQ/HXaE4lx2FOF1/8GmVYvRvMYmrX5hFUXLQaVBilAvRKk2/L+e4/GNPkI31RWMU3Ze7L9rkgJlf6lJC8ycty+m1WRSWxkLj4pPheLSZK4Oj2Rz+WkMsl5fkwsd9buBjpbTCYTpaWlAEycOJFdu3bx+9//noceeuhjtWazGbP54joXJwiC8GkzGY2YjMaT/xangc4uSZIYOXIkw4YNY9euXWzYsIHOzk6eeuopysrKWLBgAampqbgWFJAwPRvvhmYGt7aRisLlKeV0Okdy1LOfvv61hGNPkpxZRK52BQXhBGZH7Lj9g3SG6tiencV2dRTb1NEUR9v4vLKKG5SNpBuPs8D1B7xbkik1JTJtuoNqw0o2xspZwyLqGMbLnf283NnP6AQLd2ancn1GEnbDP3fZxrl2XoSVv6eq6keOngiCIAjChcBgMDBt2jQqKirYsGEDu3btorq6mpqaGiZPnszll1+OzW4j8cpiHDNy8LzXzOCONjKMChkpE2lzjKNucAtdfTupH/suVUm3MuuIj0SfA6dtNMnmrQQ1A2k76nmvZAL/nvA5fhO9kVuVtdxpeIc0pQ9ifVg2NKFEzJRVRLgiczvVWjZrWcQ2aTaHB+EHx1r4t+Nt3JSZzJ05qZTZ9R+BHwpDHlbuuecelixZQn5+Pl6vl2effZb169ezevXqoe6aIAiCIPxT7HY7V155JZMnT+add96hpqaGHTt2UFlZyZw5c5g0aRIGl5mkZaX4yw4ysPoYzo5pZJsUspJm0WyfTm7du6xf3M0fr8zh9qYtFO5PAsAiRTEVXMttLRvpklfS6CqiyjGF661XcplxO19QVjJSbibbHCV29Dg9h3IZnt5N6ciHuMXwFJuYwzr5atpiqTzW2sNjrT1MS7TzuZxUlqS6MJ2Htz8PeVjp6urijjvuoL29HZfLRUVFBatXr2bBggVD3TVBEARB+D9JS0vj1ltv5fjx46xevZquri7efvttdu7cycKFCykrKyNsaaGj4mEMl0VJqr6WcHU/+WYDuabF3HlE474pEn8rmMhv8+6ia/PVgISmGOnNuhIpMoGcwb+RHWhg3oCPNHk4L5feQ8jRyhXKm8xRKhlvbIZ+OLCpkMOm4eQU1/Fvad+k1lDGBuNn2BEtY9uAj20DPtJNBm7NSuG27BRyLKahHr6Thjys/OUvfxnqLgiCIAjCWVVSUsJXv/pV9u3bx7p16+jr6+P555+nqKiIYcM7ADBmJpA+vZxwi5fuV44ht/q5fkDiVXeMoy4rq+SryZejqKqRiP9tMExBMWZiSLiOyOAKOhLtxLzHuf7djciObHylV/JC/h1kGN9iqrKJCqWBilgDLcdSebJqAZXOHMozVrIk7RGOOK5hDbPpCkf5XWMnv2/sZFGqiztzUpid5EAe4gtyz79jPYIgCIJwEZJlmYkTJ/KNb3yDmTNnoigK9fX1vLPawLHqacRiKQCYch3kfGMiqV8sR7VH+Gpt/BrOd7WrkRQVgMSKo0S8zxD2voSEjNG2EIBuh4VXpl3PxiwbxsonGbPyz+RWFtDq/h1V0c8wqDnJlXr4ieE5/uL7E/k1EZ7ceDt7N5q5vOpxPu9ewWRrGBVY1ePm5so6Zuyo4s9NXfR/6O6yc02EFUEQBEE4hywWC/Pnz+frX/865eXlgERnZykvvFDHxo0biUQi8brSJPJ/OpclUxMYNRAmJBsIkwBASkk/+dckMSB5CA++QDR8EMU4EgCzv5JA6jU8uei/eWbcJBq61hFafR+GrT56W39CX+Tr+NRcHFKALxlWssH8bX4QfIWW+hKe3T6F5lU1zN3/Nlf0NZOARH0gzC+OtzF+62G+VdXEPo++5XQ+TSKsCIIgCMIQSEpK4oYbbmDipC04HN1EIirr1q3jkUceIRCIzzslSRKumRX8ZHp8rhavIT51R2vLSGxJB7j+thl0pi2iV/ITi1SBZAE0Ir6VFAyGybDfyE+W/ZYfzv4Ma61tuLf9nu41u+mqvZ3u4E8JxsZhkFSuUrbzmvlnLFG2MRBKZFvnGLbskhm2cSe/LstldIKFoKrxt44+luw5xiud/ed0rIb8mpVPixbwo2r6J8M6nahb3+RoMb++yb/kD813cDp9m/frqlOjqs4N6p9foXBOhq66YFOXrrqW/YO62y6aq69tvWIB/ZOERXz6Dm8G+/S9QN3dOn83QO5EfRN0Gez65hcK1eifiM+SW6qrzrtzo6462az/gjz3UX3PobBf3+s65+rJutsOtTTqqsv/ly/oqjNYXLrb7t38oq46vfN1aif+Cj+d0ID+16JwbuXnF2O1vk13dyENDbPo6uriueee4/bbb8d44rNjdloK0EJDSibjWmrp7i6ipyefpqw9ZCQs40F7ATe3vkBSZABNkpG0CBHf25icN+EbmcSuUUsYaLico5ve4iuH3iC490mOdjvIn/D/yFL2kGz6HQDflh7hctt+fuT/VwAMJje3ZSVxVVoi1+ytocYfQgKc53h+FnFkRRAEQRCG0JjyP1JY8GXS0xsYPeoNDIYoTU1NvPTSSycXBu4Mx0Pp7uJyloYmkqG60DSFzrZc3JbdXKnuxaX50CQjBtfVgAkt1k5fxmG6XQYyDTKPDWziK4feAGDXMImVi0pxSVYcxpcACLhN5CtRng/MByDN0s3nxz3NjuZ3WLonHlTsisxTY4q4IuXczoIswoogCIIgDCFZNlJa+kPGVjxKYpLEqFFrkeQY1dXVvPXWW2iaRlswfqQ4PaCSRiK2nrG48vbgSmxHBpLt4CsZQzh/NrKSi8kyCwDLsfcoaD7Ob39/H5HnngHgxSmJ3H+dia8O3oHL8DRGqRk1ImF2hrk78nX2a8NwWRT+J/N3NJmLufW4i7pAiFyLkTcnDGNBqv4jiZ/aGJ3zFgVBEARB+JjU1LlcNvkN8gvyGDFiE6Cyd+9e1q1bQ31lfI2s9JDKnkCMQRUSvR1UVKxhTMVqDCEPyDJhm5u+tJ3Y5BpM5gQUNcadrzxKWvMhYrLEmtHJvDhvkGv65pMePk6C4TUAZKPGvdFbeFu9DKMi8fANxdQpY/kvfooPG2OtQVZNHM7IBOuQjM1Fc82KIAiCIFzoLJYsJox/lsTE+4mE11BbO5VNm7bgyVJheAZOs5GOoEoYjUl9Gg1tVpLTB0gNjyDgS8Wf0EDE5KG5IB3UNMx9naj9nVRlp9Jvt7BiRoCkqJPbeueQZPo2EvFro56MLuCR2FUA/PcNY3lDGuTR0u8AMEPbwDfUlaQY3hqycRFHVgRBEAThPCLLBkpLvseSJfdQkh1fffuQ1QvAsfb4hdKDdpnO3tkM7M2iZfM3iPlKMUYd3HrbbcyvOkpaVxfIEqHUTHwlYzg2ajTucWX0pLi5s+taspQnMEhdaBq8F6ngF9E7AZgzLsgLcpBHu+J3I/2o8VG+afgrsWAtnZ2vDcFoxImwIgiCIAjnoUTLdOb1/Qsjotn4zPGFBjMC8TlOxqR2U9NTT9h9G/6uEciGAM65a8nNMpFceYC5695jznvvkTDQD7JMJCUTH8nM6ZjJYm8Mu+FdNA2Oqrl8JfJdNGSUpANU5w/jvT4vVhn+cvin3N30HIUFXwSgvuGPqKq+u88+bSKsCIIgCMJ5Rouq9P61Cm0gyghpBH0mBwDpUgNhqYPGQyswJVyHbMxDUvzkzb4fV3QFxz9z08lTO3vy8jH0tpAZSkMO+EGWyQs4cBn/AEA3iVwd+U/CshEpoZXwxNnUh1SyzEZeK0tiac8mAHJzb8doTCYQaKKj49UhGQ8RVgRBEAThPKJpGgOvHydc7yYgaXw74sNtsQOQEPLjTTqGZLsK2ZiLKkXJTnkZS089Jb+RUZuaAajPysbmkPnsL/+LopLLaTJ2UdAV4HptIwmSnw4thatC9xLFAAaJwOTxRBQ7Yx1WVk0cToXtg7nBFMVGQcFX4tsdoqMrIqwIgiAIwnlkcEsbvp0dqGj8TAvgcxqRLPH7YRyeME7vWBQlG8ngx1HxV3LkHLL/aEAZlAhmxY+qRJNc3P4fvyWjuJSY08ehosMsTJQpkapQNZmfRL9CFy4MBpXg9HQwGZlll3ll/DAyzR+fxDQ351ZMplSCwRba218+p+MBIqwIgiAIwnkjWN3HwJt1ADxAiMEcO499eSoxwBKKkduWgzHiQpUiBDO2Mnr3ThKefxlJlfBPitH3wwiRLJWZN91EQnJ8YcRt0ce4s2cKWcYnAXjafzlrY+XIkoZvcgZYDUxsOMqot19jy7q1+Hwfn5ldUawUFHwVgIaGP6Gq+mcI/zSIsCIIgiAI54Fgh4+2p44gAW8RxlOexAtfmUbUJGMJq9z+nhtFyQQtgt++m0mrN5GwRUKTNA5ek03tDQqYwDdXxTiyDAD3oRfZ7z3Cnb4DyJKPY2ox/6Z8Pt7e+FQkh0xOw1sU1TchqTG2bNnC/fffz7ubduDD8pH+5WR/FpMpnWCojbb2l87p2IiwIgiCIAhDzNsf4Nif9mGKaVQSxT8nhz/eMhGrSaGhx8Nt671kukFTQ5ilSuavfZm0nh7CRiN7Fo7iV4u+z3uRGwHwX6ayqvdvsO8ZXljzXX7emYdNriSimfhK5C5iKERGJWK1R8hsuY+w/Dz9BZexJjyMkNFJJBJhy65Kfs8XWKNOw++P34GkKBYKP3J0JXTOxkeEFUEQBEEYQi29Pnb8bjfJEY12VFhWwrcXj0CWJYKDEeoeOEBWf4ygQSWl7xBTNj2FLRBg0Gbl3QXzOZ5UQUl9D57OVAzNEpjAceyvBF6/i2ZpBBNiawD4VfQW6rUsooUJpJnd3Lbiz1y+s58SZzH/uWwyXVIyz3mHM3LGYjLTUwhjYjOTuP/++1m7di1+v5/s7JsxmzMJhTpobXvhnI2RCCuCIAiCMESq2tys/t0uRoQhgIbxpuEsnZoPQDgQ5fl/34h50IDPBAl97zDu0GMYYjG6UpLZUpxBf2r8upRxLbVc1dJI+uYYI6u9zOkc5GmHk+/3tSNLITar5Twdm08s08rkQA2/fvEhnINucrutzPWOIj/ZxlVjswCJB/b5+cLUNG7mNTLpJhwOs2nTJu6//34OHDhCRkZ8ptuGhgfO2dEVSdO7Dvl5yuPx4HK5+E7+Uszyx69g/rB0h/7ttnv0DYvLLOmqC0X1t10+Ql9dd4e+us4B/W3rfTYMRvUVplj0jQ9Ap1/VVVecrC9ju/26myZN57pcJxZAPa0Ot/62nZbT1wDk5eqrCwX0t+326Kvb26XvDWl0kll3250+fc+higJ9z6GaFt1NM2eBvn5W79K330nJ+tsO63xvN5r01Xl1/g77w35+cvAd3G43Tue5XTFX+McG/GH+9t/bWBqUUdGQry8ld3L2ye+/9cAmGg5EiEphKg78L5m98Qtvj48Yw4ryYRyZNJeC9iZmdFZSQRXjo4fQTAFeSbBh1zSWewMYUPFoNhaF/ovWxCzmhA5wxfa36HZakYi/tsLDxvNu4jzqek6c7iHGBvN36ZTSOaKM5ngsC7u9n7S0BjKzWjEaB070UGbmjM2YzRn/1P6///mt5zkp1gYSBEEQhHNMVVVWP7CHpcH4H1/Wq4pJ+1BQObxpLw2VQZAUJlY+QkpfHV57Ou/MX8zT06cxuesoP9/3Byqko+TQSYei8GhSAhYtgTvcXhwn/vLcGBvDr6K30Z2WzqKOdxnRdIQepw0JGLC4OGoZTmV4DOEeP8nSIPOUQ+Qpbh6VbsFmc5Oa1sjEtF3YbB+kYlm2kpZ6Bdk5N//TQeVMibAiCIIgCOfYxscPMKMnfsh9cHY2uTM/OHTa/Mbr7H2mCRJHkdJ7ECnSysbJN/OX5bNY3v4mK/d+nSKpBVnSqDMa+H/OJAzAVwc8ZJw4/HtILeS+6GfZbBvPWPkgX979AIqq4rE4OGoZzjF7Kf2mJJIkP4uVw2QrHoKSHYvFR0JaK0VpW7AnDJzskyybSEmZS0b6UlJT56IotnM5XCKsCIIgCMK5dHRFNaU1JxYmHJ3IvCtLAAg3NdH8q1/RfrgPT8VdSGqMI9lumiZdy1T5Xbbs/z1GKQYSHDCb+LM9CYMhxrf6ByiJxINPs5bG/0Ru5DVpBhVJZr5y8DHCksZ+1ziqbaX0GpNIlf1MVerJUY4QlcyYzT5S0hpIS2vE4eg92U9JMpKcPJOMjKtIS70Cg+EMrqX4lImwIgiCIAjnSOeaRhJ2dgGwLtPI7beVExsYoOfBP9P3zF9RYxo1k38CgDn5IN+zPYQzEF9pWZNglSWVx+12TKYg3+kbYEIofhFUn+bgj9Fl/DU2n0RnAn8OKqxv2MnLKYvpNSWRqfiYoLSQKx9DkwwYTX7SUhtJS2/C6ew62T9JUkhKnBYPKGkLMRp1XtB3lomwIgiCIAjngGdzK5E1TQC8ZFP5/OfH0Pf4E/Q8+CCqN36kpWn4XPy2TKyym1tNv8as+hnAzlP2Qt6wh7AqPn7Y1cuMWDzABDDxWHQxf45eg99k5V+Ndm72GPijNsgWVw5jlU7y5OMgyRiNQVJSm8hIb8Lh7ECS3r/IXSIx8TIy0peSnr4Ikyl1KIbnlERYEQRBEISzbHB7G54T0+g/TYhlJQN0XXctkdZWABRXjORxMTbLS0CDsc4X2WIZwZtmOzvsnRS4A/y/Fjczjb3IEsSQeDF2Ob+L3ECnlIzFHOUPQTN2pYeXjB2Y5R6ukCQUJUxqahMZmc04nW1I0gd3Xbqc40nPWEpG+pXn7ELZf5YIK4IgCIJwFvl2dTDw6nEAVvUcZlHLm/DqcSKAwRojbYwHV2GA97xfJRyw40vw893SZBw99ZS0RfmvsJ8pSW0YTfGg8Q6T+O/QTdRquWCWKIj2sFDtY4/FjSppKEqE9JRmsrJacTqbkaQP5lxwOEaTkX4V6elLsVpzhmI4/ikirAiCIAjCWeLb00n/yzWog010Hn6cme3xIymyQSVl5CBJw320RBJZ419Cu38+WrSRtvCrLFofZEpCkKmpzdgcEQD2KMO5z38zu7QRSAqUy+1M0FqQjRCToyQnt5KT3YrT1QRS5GQf7PbhZGRcRUb6ldhsRUMyDv9XIqwIgiAIwlng39vG4LNPoh19HV9dPwmaBJJGYomf5BFeDnqzecY7j05rAgn9Zsy+h0HzM1/qYUZ+A0mmIADHDTn8d+gmVgcnAVBi7OUyuRGLHCYpqY3c9FacyQ1Ihg8Cis1WRHr6UjLSl5KQMHxI9v/TJMKKIAiCIHxaNA1a9xB65zF8q1YzUGVAjcqAREJ2kOQyL73NNh7uXEhvgoypr4+USD8AebYBZmbUk22JXzzbZUjifm7ghcFZRDHgUoLMMtQyLOU4RYU92BNqgA+m6raYc+JHUDKWkpAwCknSP4P4+W7Iw8q9997LihUrOHr0KFarlenTp/Nf//VflJWVDXXXBEEQBEGfnho48ALagRdw7+uk+6CDqD++ZoIlKYyr2EddVwprW4bT5TKjhH04+gAkUiwh5mS0U2hrBmBQtvKg9Toe651PAAuKpDLHcYjrxuzDkXAUTfOebNYQTMTRPYWCOXeQnD/logooHzbkYWXDhg3cddddTJ48mWg0yo9//GMWLlzIkSNHsNvtQ909QRAEQfjHvB1w6GU48AK078fXaaJzv5NQfxIAss1EpDDI3lAWbUEH4WQFACWqEjaoeDIHuNYSYYqhBknSiKDwdOKV/LH/Kvp64xOwjUup5Y4xr+IyxW951jQwGlNItV2BYW0p1r5Skq8vw16QOTRjcI4MeVh5++23P/LvJ554gvT0dPbs2cPs2bM/Vh8KhQiFPlgJzOPRuYqXIAjCJSSixohqH9ymGoydwWqqwicLuqHqDTj4ItRvBE0l5DbQWZmMr82CBrgTHHTl59Es+QgZDHBijd2wQaUpw09/WpAbohLXRqvjM9ICryXN4X+CN9DcEV8VM83aw20jX6A89SgABoOL9LRFZGRchdM2ke7/PUisL4h1TCq2Sef3bcefhiEPK3/P7Y4vV5uc/I+XMb333nv55S9/eS67JAiCcMFZ3XGMle3VQ92Ni4OmwbG3ofI5qH4bYvE/mCN+me7DSbjrLHhNJlqznHSkpuKXo0AIMBBRVJoyArRmRrAbk7jea+HK4BGsUggk2OwYx39abudwaxaSCooUZWnRu1xZ9C4Wk5m0tOvISF9KcvIMZNmEGorS/0otsd4gSqKZpOXDLtpTPx92XoUVVVW5++67mTFjBuXl5f+w5p577uE73/nOyX97PB7y8vLOVRcFQRAuCIsyh3NFRunJfw+EA/zqyLoh7NEFytcLr90Fx1YB8dzi96bSd0hlsNnMgMXC8YIkOl3vX7YQRZWgOSNAc2aEBLOThX4rUwJ9FAcOY0AFCaqUAu5Vb2FjdzkgIQGjko9yS9mLWDqDFKb+gGEVtyFFDYQb3Hh3tRKqcxNu9YIKSJB8cxmy9bz6GD9rzqu9vOuuuzh06BCbN2/+xBqz2YzZbP7Y14+FSzDKH//6h9X5E3X3RXHqW7CpprdZV52qRU5fdMLG7fq26dW6Tl8ElGVfr7vt9vZPHvsPc9Omb4M+3U0jaYquuiPB3NMXAYOqvvEBsPYn6qrz0KFzi/oPuQ8zXqer7qU9K3XVZZrG6G67I7JHV52kWXTVHe5y6247XRmpq66pUd8h7rbB3brb3vySvjqbIUVXndqi//Ud0/lekJo8VlddT1+lrrpg7Lx6u78w1G+CFV8CbzsxzUSTp4zIji5ifQp9NgvHC5PodsZXH9aA/iSFmrxBrFY7C/wmvh7qpTh0CAMfTMpWrebycPQqXlFnoiIDGgWOZhbkraWkv57Bt0cydsbNZHWOpvehKsItJ8LJhyjJFpzz8jEXnh/r9pwL582z9+tf/zpvvvkmGzduJDdX34eRIAiCIHzqYlHYcB/axv8h6pNpqUvBX2NCCvfSm5BAbUkSfQlWIB5SejOt9GdpzI4EuDXSz7DIPowfCihH1TxWxqbwljqF41o2Kc4BZiVup9x5iBxfDyk9M8ntuxOXlgpJUTik4eWDP1qVJDPm4kTMxS7MxS4MSfr+eLiYDHlY0TSNb3zjG7zyyiusX7+eoqILc3Y9QRAE4cLX3LwV44qv4jjaTn9NIt5WK5oGPQ4bxwqT8VjNaEDMYiWUaafY4mUejYwJ1n5iQGl3pFCaVM/8pHf4pr0Ga3MpKd5FpHgWYvAooGrgBYgfdVMSzSeCSTygGJIvvXDy94Y8rNx11108++yzvPbaazgcDjo64ofZXS4XVqt1iHsnCIIgXMw0TeNw72HW1q1F2fYqN+yqwV9jod+digZ0Ou1U5abhNyqoFhuBxGQyHQEqlBomchST9NGA8lZsCqtsUwkkG5mYtI9vJD5Akj8Ra+NMkmpvx+JPRvrIaR0NxWWKB5OSeEBRksyXxEWzZ2LIw8qDDz4IwJw5cz7y9ccff5zPfe5z575DgiAIwkUtokbY07mHNcfWUFVdRUGjxmcOHcFSF6A/4kADWpKdHM1Jo9uRTo8rm2JbN1OUI0yT1nw8oBinsTZpEua0Qea41vPT6F+wd5XjqJ2N3bccSZM/0r7iNGEu+eC0jpJsEeHkNIY8rGiaNtRdEARBEC5y/oifLa1bWF+1nsbjjSS5ExndFOGrNY2ktvUAElFk9hXks754Mn32JEaaW7hC3stM+dWPBhQpjzfts9iWPpLktE4ui1bxM+9aXM0zsO//DrL20Y9W2WnC8qHTOkqKCCdnasjDiiAIgiCcDf3Bft5rfI9NhzbR19RH+mA6rqCJJfUqpTU7cXq9dFqTeKN0LluLy+my2JluPMIt8iZmygc/GlAMBbyZOItDufkkmNyM7Aryvd4A2UfnoKiLP9Ku7DB+cEFsSSIGEU7+z0RYEQRBEC4abYNtvFv7LrsO7SLYHiTDl4ELF7keiWE1R7F2uDmUXMrK8ts4nJKDaoiyUNnDN+UXPhZQqsyFrEyfSW16OgmxKJNbbFy1dwQJ4Y9OWionGD9yWseQahXh5FMmwoogCIJwwdI0jZqBGt458g6Hqg4hd8ukhlJJJRViKtYuD8E+lUpbAc8Mm07faCtOBlmo7OEL8ssfDyi2It5Jm0ZdcgpZQZmFjTncVDsc6UOndiS7jKUk+eQdO4Y0EU7ONhFWBEEQhAtKTI1R2VXJuwfe5XjNcRz9DhxRBxlaJoOaiYawDc+ghUZTKv1JVkjiREDZyZXyDmYqBzF96DbjKnsR61In0+LMYKQnhSub8rFWp5/8vl+JYSsxkTgyL37kJN0mwsk5JsKKIAiCcN4Lx8JsadrChsoNtNW1keJNwaSacWhFdKgO9qsuuqIJeGVT/AcS4gHlBmU915i2MU078pF5UKrsRWxMHU+fpZCKvlyuqilAUeOzoA+gsoMIao7CFYvLGVaaLMLJEBNhRRAEQTgvecNe1tWsY9uBbXiaPCT7U/BrNgbVCmpVJ52qE9/7SxoDyJDIIMssm1lo2s3kSDVGLRafZpb4KZ5tKePwG0cwtmMYV1anISExKAfYrEXZi8o+YowoT+O7i0ZQkpYwNDsufIwIK4IgCMJ5o9vfzaoDq6g8Ukm0PYYSyqBDzaVDddCpuj4aTgBZ0yg1dLDYuY0Z8iHG+2sxaVEIx79/1FbInqRxhBnL+LbRLKyx4ZV9HLbXsCP1AGsHRnE0moAGzBqWxP2LyqjITTzn+y2cmggrgiAIwpCq669j1d5VHKuqIdLjYiCaRoc6lg7VgR/TR2plDTIJUeaoYZprH+Nj9Yx112IKfLB4aLWtkAOu8WiRyxjbPprJ/UH222t42fkW1VnVoLqoal6O11sMQEWuix8uHsGM0tRzut+CfiKsCIIgCEOiy9fFv73wb7iaXAzEEtkYmYX371b4ljXIjsnkqDHSbHVUDNvMyMF2pvQcwdT7QUA5ZiugKmEiJv/llHTlUNRRz47EKn6Y9wb1llZsksRoz2U0NHyZLjXeRnGane8vLGNxeaa4JuU8J2kX+BSyHo8Hl8vF53/+BiaL/ZS1wbaw7u1qvujpiwACsdPXAJonqLttyWY6fRGAQT59DSAl6dweoHXr66fa6dHXtv0sLMBlN56+BiCs73cDEKo6rqvOlJmlq06y6uwjEDper6vOPHaEvg269T/XIm2duuqM+fr2WwvrfN1wBs9zWefz3GnW3bbmCenbZqK+bWpufdsDMIxK1FUXa/TrqpMz9b3GfN5uXnj0NtxuN06nU9fPnE11PXX89unfkupOpS3mZF2klCgKMirZUY28qJm8qEyCUcWTWEtRxj5m+fZR4a09uY1aaz611imYvbOwdKr0BprwGQ7zZlEN+zPiz0WXauby3gXs753GYU0BINNp5tsLhnP9hFwMir7nl/Dpe//zW89zUhxZEQRBEM6pnbU7efGFF0kNp1IfS2RzpJgYCtmSl2VuC3bViaZF2TeqkxLlPb7o2UB2RzcAIcnIbucsTIPLSexOZbDvPap8L5KS2MvGskF2pMXbSIhZuKZnCU39U3hWi19jazXK/OucUr48uxiLURm6ARDOmAgrgiAIwjnz+ubX2bl2J3bNzhHVxa5ICRoyZWorC/1ZKJKdtsJGxiSs5n/73sOmxo8U9hpdHEycRHb7beR1pFDj2cP2gRVkJLVQN3qQx1LjH2dm1ci1fVdA72yeVhX8J24FWjYumx8uGUGWyzpk+y7880RYEQRBEM66aDTK4ysep/VIK4pmYA92DoaHAzDM38HlpOEZ1sAc7XXmDuyEE2cz6+xZNKSnk9d6B6XNZXQHm9na9xdSnQdpmezj4RQzYMCgKSzpn0lRz3yexEKLGgM0xua6+NnVo5lYkDRk+y7834mwIgiCIJxVAwMD/OmJPxMZCKJpsE2yciw4CoBJSheTyhpY5vtfRvTHr99SkTiUks9AdoSEgbmUVl9POBJhj/s1HJbVNI33cX+SjZhkRtIk5ngmMaf7Sp43JvFsLAjESHeY+eHiEVw3PgdZFhfPXuhEWBEEQRDOikhM5W9rd3F020oMmkRQCrMTJ3XBctLo5/Mp67gptIaUbjcAftlMVWYGgZxBYqqNrMNfwtJfSqN/FyblGepG9PFsUgJBOX4zxWXecpb3XMUGRwHfi7pRI0FMBpkvzSria3NKsZvFR9zFQvwmBUEQhE9VtzfEszsa2Ll1E6VqMwYkuowD7I4NJy2o8lvjA1ylbMd04q7LTmMyDVl2Ark+YgY/iY0LSau9EXewkzC/oLqohscSXXiV+B0jo/wl3Np7Da2ZY/kxPbhPhJ3FozP58ZUjyU+xDdm+C2eHCCuCIAjCp2J/8wBPbm1gzYEmZstVDFMChBUjW7OtjGzX+N/ok0wxHz1Zf9RYSEuyDXl4J5oUwBhIJ3vfFzD05hHhCY5kruehZAfdhvj1JoXBbD7bfzWu0rnc7++mprYDgBGZDn529Siml4hJ3S5WIqwIgiAI/7RQNMbKg+08sbWRyuYB0iQv15mO0J+QyM6MHCZHK3mq6Qny6QYZoijsNYymxpyNa8RRrPYuNCRczXNIq74RSd3M0ZT/4g8pRhqN8ZCSEU7huu75TJp8Aw+3elm7uwGAZLuJ7y4czs2T81HEdSkXNRFWBEEQhDPW6QnyzPZGnt3ZRM9gGNCYZmpAzjSxJ6WMaz3r+M+GX+NQ45Pb9WkJbJfGc1QqJSWnhpz83UgSGILJZB7+PPY+I+0Jv+DXaf1UmeOncVzRBJa2zyQ/cAV1U/K4bX0dkZiGQZa4c3oh37xiGK4zmIBRuHCJsCIIgiDoomkaexr7eWJrA28f6iCqxucwSU8xkpfdT8xk5vaOV1lctQX5xPwmx9QcnoktIKikkJbQwYjh67A6fAA4W2eSdvRqgqYX+UX+PnbYzIAJS8zMFV0TKWycxUF7Ji86Vfq2NgAwtyyNnywdRWm6WBH5UiLCiiAIgnBKwUiM1yvbeHJrA4fb4kttaEDp6BTMmVGKe7bw5dYXqRisOfkzG9UKHoleyUGtlIXmKkZnbSGn5DiSrKGEXGQcvhPbQAcPZP2SlQ4AM7ImU+wpZglLqWsu4LGECF1KCPzxdXz+39JRzB2RPiRjIAwtEVYEQRCEf6h1IMBftzfy/M4m+v0RAIxWhWETMwnavCxs+huf2/UqGeE+AAKSwhpTMX/0fIFqLZ80aZAbE9YzfuQWzIleABztU0k/OI3X0l/isdIeVElC1iTGdheQGxtDOJDAS74Mjjnia7k5LAbunj+cO6YVYBTr+FyyRFgRBEEQTtI0je11fTy5tYF3jnSgnlhXJzXXQcroZFRfDbe2/DfXd76LRYsHij7JzvMOO3s9N7DOPR0VmWypny9kPkvh6BqQVZSwg/SDN3HcW83Xhj9ESAGQGN6TzgTzDL5w57e4+5FV7Aq5iBlkJOCWKfl8Z8FwUhL0L1IpXJxEWBEEQRAAePdIJ/+zuprqTu/Jrw0bk4Y734ZjoIqfVP6Cywf2nPxeC5m8Zs9kveLE2LuQrbEiQGKY1MTdE57EkhJffDChYxKWHcV8e+QK2tLjK1Tn9jsZ6xvD12/7EYe8ZpY9uo8Ob/zunwJZ43+/PIOKQjFFvhAnwoogCIIAwLf/tp/BUBSrUeG6CTncOa2QpcfqGYxGWXH8T0wf2IcKVDGM7UzgwDCZPb5DTG+dyouxQkCiQj7A1y9/AsUYRQ7bSay8HnPDu3xm6hEAUj1WKtrz+PzyHzJ20mW8sKuZH7y8F4AEQkw2NvPNq+eJoCJ8xEUTVkLdETRz5DRFqu7tae0+fYVWfUMoJZ7BSp9Gfedltd6AvrquQf1tm3Q+JaIxXWVyoVN302qHX1dd5FC9rjrj8HzdbZvS9F2052+sOX0RYEnN1d22edRwXXXB/VW66kxpmbrbNo0r0VUXq+vWVScn2nW3HTneom+bFouuOsOwbN1tS059pxXkFH11SqH+GVOjXWFddVKqvrY1ne9rWvj0ddNKUnj3SCdLK7L4z+vGADC23caWgUFSXekwAAGsvM4CQpgp1Fz0e/3UxlLRkMmT2vnS3EdRFDB78rHtuptj1fVkmNsAO/ZAMks3J5CcncaoirG8sq+FH644AMAopZcJhnpSHSmMmTBS1z4Jlw5xtZIgCIIAwL/OiYfX1/a30u6O/zF0Q2b8CMdOJQMAu9nAct4GwF3rJt9bwLFYGgBXlK7HpoDiTSV3z/fpGnTQk1qBUj+WYS0a3qRyYgmJ9Le18Js/v8B3X6hE02CcfZDJhjrMqpk77rwNg+Gi+Tta+JSIsCIIgiAAMCE/iSlFyURiGn/ZFD+CeVVaIhZZYo/hxBE72UgZdVw+3AVAZyyJQc2MVfEzJX830ZiB/F0/xhBx4M/aAkBtyQ1883WN9EAyRxd/hlpbEQ+1JqJqMDklwthoFbJmYFLJFSSnJQ7FrgvnuSEPKxs3buTqq68mOzsbSZJ49dVXh7pLgiAIl6z3j648u7OJfl8Yh0FhUaqLOuuJU5ux+On2y1P6sFgs1GrJAEzP2YXmldiw61uYosmovm6OD67AYPTgt2cRTpjNnSsr2Sdn8k7GIjRJpkxtY9TgfiQknP2jmLp41JDss3D+G/Kw4vP5GDt2LH/605+GuiuCIAiXvMuHpzEqy4k/HOOpbY0AXJ+RRJ0tHla0cPwauK72FrxRL42xeFiZ6tpJ7Zv55A2UAhDtPMjC5h4OFr4FQF3RUsZXtTPp5ZXEkChT25libUWSwOEuo3R4CUmZ+q95Ei4tQx5WlixZwr//+79z3XXXDXVXBEEQLnmSJJ08uvLE1nr84Shzk53EbGkMKlakE9Po7+kJ400ZRNUUihxN+NfbiPiMTJXia/VEOw6RF40yb2oZPbYWYgYb9YVX8bXKV1ji9DDV1oosgamrFaPHw9h5+i9KFy49Qx5WzlQoFMLj8XzkIQiCIHxULBYmHPadfETC+u4eBFhSnklBio1+f4S/7WrGKEssy0g+eSooKCtEhx1le9d4AKa7zPQEk3EZU0mTDGhqmFhPNQAFOePYUrQCgNbsGUQtaXxpzX9gJEiibMLU204suIaUnAvu40g4hy64Z8e9996Ly+U6+cjLyxvqLgmCIJx3Dux5gWcfveHk49Xnv6L7Zw2KzJdnFwPwyMY6wlGVGzKTqD8RVuqznDSH0+gKpJFglol4YgwoTrJs8Z+JBKpBjYBiYkN7O+3O4/S69oAkU112I5a2GFd0vkNKdAKykooa8/PuI39C07RPfyCEi8IFF1buuece3G73yUdzc/NQd0kQBOG8UzHxJm754ksnH8tufuiMfv76CbmkOcy0uYO8XtnGeIeNPkd87iKfmsh7TbMAWDgqi9fcaQwaEsiyxk8fhT2HAdhvH8FjO3YD0Jm9GYUQHucwulPHkfien2zLf+BIvwJZMXB893aObFz3ae2+cJG54MKK2WzG6XR+5CEIgiB8lKKYMJnsJx9G0xlMTAlYjApfmFkEwJ83HCcSGcRijZ92l3xG9nVXANDU4yEkGbFICqmW+JGXyMBhalw5fNP5JaJKFwBOm43x9lcBqB55MzHZSMar3Qyb9Vem3Ri/ZnHd4w/h6e76P++7cPG54MKKIAiCcG7cOiUfh8VAU28vG3fcSaphPwCZvn5UZPItAXY3e5G1GLNNNmRJxhtx04CJn8z4MoOSlYSEfgD6+xwUO98lQe4hojhoLL0axSPherYBOedlskcVEw74efvB+9FU/bONC5eGIQ8rg4OD7N+/n/379wNQX1/P/v37aWpqGtqOCYIgXOIcFiN3TM3gm+MfRopUYkuIL7ORE+vGTJieUHym2ckDeyiyxo/CtPnr+WnpF/Ca7JSpx4nJnQAkRJ3UZE9lmuNJAJqz5+G3JGE5LKO+XkXBghrMDoXmwwfYt/rNIdhb4Xw25GFl9+7djB8/nvHj41eVf+c732H8+PH87Gc/G+KeCYIgXNpisRCzU3/LyOQaAlEz3dr3GCR+OqlA6cSvGcmUfEwc2EeqnAVAY6AWtzGBYf3N3GB+kyhRJE1i+fzlKONvYphlM6mmGmJIVE7+AgDOVxUiNTWUf3YAxRxl0zNP0NsqrkcUPjDkYWXOnDlomvaxxxNPPDHUXRMEQbhkqWqIg4e+xqBnCzHNwv17v8q2PQO0aPF1gPKT+yFB4YrudaSa0rDIJiJqCHeggRG+eu4+toL9J+4OssfsjK8YT2rZFbgNDuY6/gxoBJQidpUPQ4pKJD5mRA23MOrGbjTFz6o//pZYNDqEIyCcT4Y8rAiCIAjnn7r6P9Dbux6ApJQlePypGIMDHFNzAPiu7zmuzdzF9rGX4cmbgAb4o4PIksyyjpUcGD+aQWN8bhdVCfCfL30JayTATstU0o115CfsACCa/S3a0gswdULS70xYW9yULm2js/4Yb/3+vwkOnsGq8cJFS9Iu8BvbPR4PLpeLeck3Y5BNp6ztUat1b1fSTr2t91nRdzdSjIjuto3oW24+hFdXXaKSr7vtmFqnq65P5/6ockx32wU4dNU1avrevKyq/iweQ98Ffaqkb3sa+l9WSVj0bVPK1lVnkPRtD6BLO6qrTtH5NhGTdA4QYNU5mBH0vRbPRK5tiq66xsAmXXV2LVV32yH03e1iIkVXnYq+11hIDbLHvR63263rLsqW1meprv45nHhtqJqR1q58jhyp4N/lxzBJ8Xb7cPB8ymLezL6GMk8m01r78FS/yEC4kz6ni52jauhMjoeWlLCZ4YFp/Lf7JUxhIy/2/ppBNQ1JUylofIuihtVIaARHqBwvSqSxLY2ElFSuvOs75I2u0LWfwoXj/c9vPc9JEVY+gQgrpybCyqmJsHJ6Iqyc2lCHFYBQqJOOjtdo71iBz1cTb0+TONI0GnuThcXqbnKlnhP9kFhvmcDjBcs54JrC6KYm0o++R05HI312hYPDOmnMHAQJrDEHk8ni/zUdYH//nRwPTQcgKdRC2f4/YwvE7yDqyUrisCsBn8XM5GuuZ8ZNt6IYjLr6Lpz/RFj5BCKsnJ4IK6cmwsqpibByehdSWHmfpml4Bw/T0f4KHZ2vE4n0AdA1mEp7dSmTvI3Mlg+erG+R03g64yqeKbyGQNTEsLpDlNUdxtHfSlVxF7V5blQZNDmZ6ZEUvlxtZI/nDqKaFRN+Sj1/I2PfLiRNQpMkmpMc1GQm4RpexpXf+B4pOWLm8ouBCCufQISV0xNh5dREWDk1EVZO70IMKx9pT43Q27eR9vYV9PSsRdMihKImjjaNJL1FY6m2kyQp/hoNo/BWwiyeKF7OjsQKbEEfw+qOUNBUhce8n2MFvUSMGprsYlFvLpOPz6M3El+1udC4kbymlzBWx/cvJks0pLhozM1g5ue/TMX8JUhn8HwTzj8irHwCEVZOT4SVUxNh5dREWDm9Cz2sfFgkMkBn10ra2l7G692PpkF9XwGB4+nM9NcwQa49WXvUkM/jOdfxUu5ifAYb1oCP4oYqLL69dDl3ELSEMcTs3HR8Aa7ey9GQcSodXKb8mdjeMFKPO96mLFOXnggLrmDhN76Lzen6VPZFOPdEWPkEIqycnggrpybCyqmJsHJ6F1NY+TC/v5629hU0tqyAWAcDISd1dWUUd3lYwm5sUggAHxZWJM7jLyU3cDQhvpaQOegnveswUTYToZL8gWIW1d6KIZKERIyJ9pco8qyn60ACitsPQNCg0FSYw5hf/BvFk/T9PoXziwgrn0CEldMTYeXURFg5NRFWTu9iDSvv0zSV/oEdVNe9gGfgHdDCVLWPxNRkY1FoPyVy+8navYYynshfxis5C4jI8QtnjeEAtsF9KOE9zD8ykrLuCQBkGKuZ77ifYGuEnoMOFH8YAJ/JQHjxAib9239gspzZ+kfC0BJh5ROIsHJ6IqycmggrpybCyuld7GHlw2IxPzWNb3Gk7nmcUiWt3gza64oZN9DGfGkvBin+uuvDwZuOy3m49EZqnYUnf16OBUgeaGBWdRplbTIWNcDljkcoM71He10y/YftKKH4/vucdrJ+dA/Z1y0X17JcIERY+QQirJyeCCunJsLKqYmwcnqXUlj5sF5PC+/tfQqrdyWauZ+DTeWktmpcre4kU4rfqhzTJPbIo1iRsZCX8uczaE04+fPGaIzhrVFGtoSZ3r+V5fY/YIr5aKtOwn3UhhyNv4ajWU5KfnQ3tgWfAVnMe3o+E2HlE4iwcnoirJyaCCunJsLK6V2qYeV9kWiMjevewdr+CqH0HRzxZjJYn8mMwRpmKodP1nVoyWwwX8aL2YvZnz6cQav95PeMUY2Sdh9XDbzGvw48jTkQov1IEt4aC5Iaf66quUYKPzMR+7zboXAWKGJ+lvONCCufQISV0xNh5dREWDk1EVZO71IPK++LDoape3o/Mf9WPNlbaXA0cLRxJMWdXq6VtuGU4hfShjUDexnFBttlrMuYQl1aFl7bB+8VhliUaf27uaXrHeY078BTacbXYEbSQJNgsNBJ6rggBRMmooy+FkquAHPCJ3VLOIfOJKwYzlGfBEEQBOEkQ4KJYV+djG97Lv1vTiJD9lCQuZ1jY7fxgG8GclMCS8L7GCM3MJUDTA0c4Kb6t9hfX87GhMlUpRVSn5qD257AptSpbEqdinFEmHkTd7K4aRNj1h5BqYviqPfgb5R550g7xlF/ZpT1h2SWjEUeeRWULQG7/qApDB0RVgRBEIQhIUkSCdOyMRW66HuuitzmBeQ0L+A1ZxP1mRvZkJDFi22TGdvfzlJ5B0VSO0W0s2BwE3sHR1PZUE61vYi61CzqUvMYSLCzOnUmq1NnYhoXZmbnXqZv28VlWyoprG4gctzA5hFj6AmlMLLmr5Tzc1ILypBGXAUjlkJS4VAPifAJxGmgTyBOA52aOA10auI00OmJ00CndrGfBvp7ajiG+806fDs7ABhIMvGzmBe7cSsjS2vw9RhJbY2xTN1Gkdx58ueq1AIqpXKqpRJ67EkcT8miOjMDnzX5ZI1BjTKp5iCzduxkxoHdmKMRjowexfGSEtKVXsqpppxqEjMKYeSJ4JJRDuKuorNKXLPyCURYOT0RVk5NhJVTE2Hl9ERYOTX/gW76V9SgBWNIZoXOYgevdnSwI9uNI7uZvO5aEhpizPId4wp5L4oUf272YWebNpZDlBOQ7PTZHFSnp3E8PYtBa9rJ7SuxGOOrD3HtxjWMOV5FfWkpTfn5BGw28mjjCjZTSCskFsDMu2HS54doJC5+l2RYeenma7GZTn21d39bVPd2VZ2fsYrOE2l+fZ+vgP677dwefXWJZzAb9c46fTs+LlfRVRfVP+R4fPrqDPqaxhvU33Zeur66Y236Xi4zp+jsJFB3VF9QytKXVTigP5PjMOury87UV3e8WX/bU6bpG6ODe/Q9J5u9+oPx5WP1tb3lgL7fzfRy/cE4GNBXl5iub5tHdPbRHfFzX907531YAYj2Bel7/ijhpg/+INMkqLWqbMmwUJ3Sj9G4E1dzN8O7erlB2kyaFJ+OP6wpbJZGs4kJeNR0HHKEJqfG4UwnBkcpxxMKTm4zs6eL69a/w5Kt7+FzJtBYUEhLXg6TTUe4QtuIgRhc/iOY8yNxlOUsEBfYCoIgCBcsQ7KFtK+MJXCwm2DtAKE6N7G+IMP8MsPqw1BvJyrN5YhT4mBhI7/UhlPcV8ucwSNMkI4zjwPM4wAHKOJldSYeTwnlfSpB55sk2qOMtg/njazpdKSm8+ANt/H41TewcPsmrn/vbSbu2UNbTjYvl93A7KS1ZG24D8KDsPDfRWAZQiKsCIIgCOcdSZGwjUvHNi5+2DPaHyRU5z7xGID+EBVujQp3PpBPVLqCQ2ldHLG/Q+nAHiYE6qmQ66mgnl7NwXPM47n+uSg+je3GFrLaXuFzTgerCiZwNKGI1y9fwOuXL2Dy4Uquf28Vk9dsptPkoCM/keE9D2ML+5CW/lZMNDdERFgRBEEQznuGJAuGiRbsEzOA+KmiUJ0b3/F+PLX9WLxRxnWlA7cBt9FqbCfiepLMwF5SYl6+bniNrypvsFqdxJO+RezUJvCk34elq5WblCq6h6WxPnMiu0aPZdfoseR1tXHdutUs2r6RpppUlO2rSFpVhet7D2AqLhnSsbgUibAiCIIgXHAMyRYMyRbskzJI0zRi/SFqj3TRXNVDSquf9GAWxp4f4SFGWNmG1fQCdupYquxkqbKTKjWPJ2KLeS08ndcpQjqgUnyoksRkqC4spDktiz/c/C/8ZdlnWLxtPdetW01sXRM9667CUjEG1zXX4rxyCYbk5NN3Vvg/E2FFEARBuKBJkoQh2cKImfmMmJmPNxLl7doujh7sIqM9wMS+WWQEZuKVGkhQ3sRqWMtIuZn/kh/hZ6aneIVp/Dl4HS1qOq09QI8fl+xGSjbgzUzi5WmLWDFnMVOOVXLDqpVMOHCQ4IGDdN57LwkzZ+K85moc8+YhW8Wqz2eLCCuCIAjCRcVhNHDjyGwYmU2l18/TLT3saOhlVE8Zk3tLmN51K5nSOsyG17HTy22s51bzeo5as3hBnsnz7oUEonboAWPPAEZATTCwO7WYnbd/j3ytm+WbNrLgvdWwYQODGzYg22w4Fi7Edc3V2KZMQVL03xEonJ4IK4IgCMJFa6zDxtiR+QwOy2FFZz9Pt/XyU6+Vsp7lfHZvCZOjR0m1b6FAqmdkoJ2f8yLft6xmf1IOLyvj2NtXQYMnD3kwijw4CA2DtCsy/1uwiIfuXsTC7mPc/M5K0ttqcb/6Ku5XX8WQlobzqqtwXXM15hEjkMRdRP9nIqwIgiAIF70Eg8IdOancnp1CpTfA0209/HdmIun1GSzY7KHYVsHoxAbGSkewRT1M7/YwhQb6bIepGmlns+LiUF8Zh3pG4gk7UbqDxLphFfmsvPwusi1+ljTWcuXWV7F3d9P3+OP0Pf44ptJSXNdcg+uqpRizdU6WJHyMCCuCIAjCJUOSJMY5bYxz5vOL0hxWlGTzzLBRHNn8Nh2HgryXUcEYezOXUUkq/aT5D5BWD5PVcXQ7XLQPq+GorYfKgRJ29EyidSATKRCjPWDmMedoHlsyinwpyLymY0yuXU9RbS3dv/0t3b/9LdbJk3FdczXORYtQzvOJ+c43IqwIgiAIlySHQeHOnFTuyE5hf3kxzx24nPCKp1Hbk9iVfislSiuXsY9SGrDK+8n37SftWDbFscXMcBZyW/peuocf4b1QCe/1zqGjJxUpoNKkWXkidyxP5I4lMRZhck89E5p2Mb7yMIFdu+j4t1/hmDsX1zVXY589G9n06S8pcbERYUUQBEG4pEmSxHinjfEzJ+OeMp7nV62i5/W/0eBModZ5HckMMFbax2TtMDalDavyGIl+C63H5hJSb+dOp4lbUo/QXn6MF0yj2Ng7k2CvAbkvxABG3s0YzrsZw5E0jWHeTia2HWTi7mpGvPstDHY7rqVLcF19NdYJE5DEpHP/kAgrgiAIgnCCy2jgK9dcTWDeHF57+nEa9uyiPzOP9wxz2cIMMq37mB86SD5eCi2rKGQVzb6xbHfPJdKyiK/YVL6esJP3CmO8WjGSWnchck8w/hiMcsyZyTFnJs+NWIA9EmR8VzUTt1cz8fWvk2Q1k3DNVWTfuBxziZh47sNEWBEEQRCEv2NNcHDzv36TjtpjrHzkAdq9bsJJaTQFpvAnZSrRlO1c5znG9HAveeZK8syVeKLpbO+/gh3uYST2xPiBpYlAShOv5uSxYXgJ4ZCM0hvE0uNB7gnhw8LmnLFszhkLQL6ng0m7q5nw1nfIM8Rg/gJKb76OnJL8IR6NoSfCiiAIgiB8gszS4Xzu3t+wf/VK3nv1JQZTsrCaLNA7hUcTZ/GfGe9wa3871w4O4DR0sdDwHHM1E4eDM9kanERXMEZRQyeLFB9HyuD1zDL6crJA0zAO+MnvrUHqidDqzqTJGX+sKL0cczTMmNo6Jnzj30kjQmzcBNKXLmbK6FxyEi+9yecu+LCiaRoA/kjktLX+aFT/dnWuNq/37GJAf9O618kK6uzjmbQdVvVtNBDTtyx9VGcfQf/+6H3ShvR1EdA/RiFV01Xnj+hvPKhzLP26+6i7aYyf8nPoTNrWO0bBmL5O6n3unknbIVXv70b/dQYhnWNpiujbpt7nTzAWf4/0eDz6OiB8ROmMy8kcOYbVj/8n9W0RIskZZHWGcPXM4qcjZX7tfZOlbg+3DETIo49ieS3FrOWx7p/RmdjBvoiBgS3j+Fy0g4GiRraU5FCVkEtNVilkwT3hn+HuS6Cqr4zqrrH0xczsTMxnZ2I+iUEPj774X6zdsZU3P/NV7r95/FAPx6fi/efi+5/jpyJpeqrOYy0tLeTl5Q11NwRBEARB+Cc0NzeTm5t7ypoLPqyoqkpbWxsOh+OSniXQ4/GQl5dHc3Mzzkv4/n0xDh8QYxEnxiEuFotRW1tLaWkpyqc8FfzFPsYX8/4N5b5pmobX6yU7Oxv5NKcULvjTQLIsnzaRXUqcTudF92L6Z4hx+IAYizgxDjB58uSzuv2LfYwv5v0bqn1zuVy66sQN3YIgCIIgnNdEWBEEQRAE4bwmwspFwmw28/Of/xyz2TzUXRlSYhw+IMYiTozD2Xexj/HFvH8Xyr5d8BfYCoIgCIJwcRNHVgRBEARBOK+JsCIIgiAIwnlNhBVBEARBEM5rIqwIgiAIgnBeE2HlAvKnP/2JwsJCLBYLU6ZMYefOnZ9Y+8gjjzBr1iySkpJISkpi/vz5p6y/kJzJOHzY888/jyRJLFu27Ox28Bw503EYGBjgrrvuIisrC7PZzPDhw1m5cuU56u3ZdaZjcf/991NWVobVaiUvL49vf/vbBIPBc9TbC8PGjRu5+uqryc7ORpIkXn311Y98X9M0fvazn5GVlYXVamX+/PnU1NR8pKavr49bb70Vp9NJYmIiX/jCFxgcHDyHe/GP3XvvvUyePBmHw0F6ejrLli2jurr6IzXBYJC77rqLlJQUEhISuP766+ns7PxITVNTE0uXLsVms5Gens73v/99omewBt3Z8uCDD1JRUXFyordp06axatWqk9+/IPdNEy4Izz//vGYymbTHHntMO3z4sPalL31JS0xM1Do7O/9h/S233KL96U9/0vbt26dVVVVpn/vc5zSXy6W1tLSc455/us50HN5XX1+v5eTkaLNmzdKuvfbac9PZs+hMxyEUCmmTJk3SrrzySm3z5s1afX29tn79em3//v3nuOefvjMdi2eeeUYzm83aM888o9XX12urV6/WsrKytG9/+9vnuOfnt5UrV2o/+clPtBUrVmiA9sorr3zk+/fdd5/mcrm0V199VausrNSuueYaraioSAsEAidrFi9erI0dO1bbvn27tmnTJq20tFT77Gc/e4735OMWLVqkPf7449qhQ4e0/fv3a1deeaWWn5+vDQ4Onqz56le/quXl5Wlr167Vdu/erU2dOlWbPn36ye9Ho1GtvLxcmz9/vrZv3z5t5cqVWmpqqnbPPfcMxS59xOuvv6699dZb2rFjx7Tq6mrtxz/+sWY0GrVDhw5pmnZh7psIKxeIyy67TLvrrrtO/jsWi2nZ2dnavffeq+vno9Go5nA4tCeffPJsdfGc+GfGIRqNatOnT9ceffRR7c4777wowsqZjsODDz6oFRcXa+Fw+Fx18Zw507G46667tHnz5n3ka9/5zne0GTNmnNV+Xsj+PqyoqqplZmZqv/71r09+bWBgQDObzdpzzz2naZqmHTlyRAO0Xbt2naxZtWqVJkmS1traes76rkdXV5cGaBs2bNA0Lb4vRqNRe/HFF0/WVFVVaYC2bds2TdPiYU6WZe3/t3fnMVHdWxzAv8PAAAOyyI4FyiJF4mgNptMpJpZCWLQWutgWLWLVEgWiFmiKpdQFJaQUxJpIWjXYpBbS0tBaJAaEoqEgVsIoWooLoAkBXCpKoQ7DzHl/NNzXEeUJT2ax55NM4tzf7/7mnJPr5DD33ty+vj5hTnFxMdnZ2ZFKpdJvAo/A0dGRDhw4YLK58WkgEzAyMoKWlhZEREQI28zMzBAREYGmpqZHWmN4eBhqtRozZ86crjCn3VTrsGPHDri6umLt2rX6CHPaTaUOR44cgUKhQEpKCtzc3DB37lzk5uZCo9HoK+xpMZVavPDCC2hpaRFOFXV2dqKqqgpLlizRS8xPgq6uLvT19enU3d7eHnK5XKh7U1MTHBwcsHDhQmFOREQEzMzM0NzcrPeYJ3Lnzh0AEL4fW1paoFardfILCgqCt7e3Tn4ymQxubm7CnKioKNy9excXLlzQY/QT02g0KCsrw9DQEBQKhcnmZvIPMvw3uHnzJjQajc6BAwBubm74/fffH2mNDz/8EJ6enjoHqKmZSh0aGhpw8OBBKJVKPUSoH1OpQ2dnJ+rq6rBy5UpUVVXh8uXLSE5OhlqtxtatW/UR9rSYSi1WrFiBmzdvYtGiRSAijI6OYv369fjoo4/0EfIToa+vDwAeWPexsb6+Pri6uuqMm5ubY+bMmcIcY6DVarF582aEhoZi7ty5AP6OXSKRwMHBQWfu/fk9KP+xMUNra2uDQqHAvXv3YGtri4qKCgQHB0OpVJpkbtys/Avk5eWhrKwM9fX1sLKyMnQ4ejM4OIiEhATs378fzs7Ohg7HoLRaLVxdXfHll19CLBYjJCQEPT09yM/PN+lmZSrq6+uRm5uLffv2QS6X4/Lly9i0aRNycnKQnZ1t6PCYnqWkpOD8+fNoaGgwdCiP1TPPPAOlUok7d+6gvLwciYmJOHHihKHDmjJuVkyAs7MzxGLxuKu1+/v74e7uPuG+n332GfLy8nD8+HHMmzdvOsOcdpOtw5UrV9Dd3Y1ly5YJ27RaLYC//8Lr6OiAv7//9AY9DaZyPHh4eMDCwgJisVjYNmfOHPT19WFkZAQSiWRaY54uU6lFdnY2EhISsG7dOgCATCbD0NAQkpKSkJWVBTMzPjv+v4zVtr+/Hx4eHsL2/v5+PPvss8Kc69ev6+w3OjqKP/74439+b+lLamoqKisrcfLkSTz11FPCdnd3d4yMjGBgYEDnF4h/Hlfu7u7j7jobOw6NIT+JRIKAgAAAQEhICH799Vfs2bMHb731lknmxv8rTYBEIkFISAhqa2uFbVqtFrW1tVAoFA/d79NPP0VOTg6OHTumc97YVE22DkFBQWhra4NSqRRer7zyCsLCwqBUKuHl5aXP8B+bqRwPoaGhuHz5stCsAcDFixfh4eFhso0KMLVaDA8Pj2tIxpo44kelPRJfX1+4u7vr1P3u3btobm4W6q5QKDAwMICWlhZhTl1dHbRaLeRyud5j/iciQmpqKioqKlBXVwdfX1+d8ZCQEFhYWOjk19HRgWvXrunk19bWptOQ1dTUwM7ODsHBwfpJZBK0Wi1UKpXp5maQy3rZpJWVlZGlpSUdOnSIfvvtN0pKSiIHBwfhau2EhATKzMwU5ufl5ZFEIqHy8nLq7e0VXoODg4ZK4bGYbB3u96TcDTTZOly7do1mzJhBqamp1NHRQZWVleTq6ko7d+40VAqPzWRrsXXrVpoxYwaVlpZSZ2cnVVdXk7+/P7355puGSsEoDQ4OUmtrK7W2thIAKiwspNbWVrp69SoR/f0d4+DgQD/++COdO3eOYmNjH3jr8oIFC6i5uZkaGhpo9uzZRnHr8oYNG8je3p7q6+t1vh+Hh4eFOevXrydvb2+qq6ujM2fOkEKhIIVCIYyP3d4bGRlJSqWSjh07Ri4uLkZx63JmZiadOHGCurq66Ny5c5SZmUkikYiqq6uJyDRz42bFhOzdu5e8vb1JIpHQc889R6dOnRLGFi9eTImJicJ7Hx8fAjDutXXrVv0H/phNpg73e1KaFaLJ16GxsZHkcjlZWlqSn58f7dq1i0ZHR/Uc9fSYTC3UajVt27aN/P39ycrKiry8vCg5OZlu376t/8CN2M8///zA75CxWmq1WsrOziY3NzeytLSk8PBw6ujo0Fnj1q1bFB8fT7a2tmRnZ0fvvvuuUfzB9KC8AFBJSYkw56+//qLk5GRydHQkqVRKr776KvX29uqs093dTTExMWRtbU3Ozs6Unp5OarVaz9mMt2bNGvLx8SGJREIuLi4UHh4uNCpEppmbiIh/92SMMcaY8eJrVhhjjDFm1LhZYYwxxphR42aFMcYYY0aNmxXGGGOMGTVuVhhjjDFm1LhZYYwxxphR42aFMcYYY0aNmxXGGGOMGTVuVti/1tNPP42ioiKDfX53dzdEIhGUSqXBYmCMMVPAzQozSatXr4ZIJIJIJBKeLrpjxw6Mjo4aOjTGGGOPmbmhA2BsqqKjo1FSUgKVSoWqqiqkpKTAwsICW7ZsMXRojDHGHiP+ZYWZLEtLS7i7u8PHxwcbNmxAREQEjhw5AgB48cUXsXnzZp35cXFxWL169QPXIiJs27YN3t7esLS0hKenJzZu3CiMq1QqZGRkYNasWbCxsYFcLkd9ff2E8YlEIhQXFyMmJgbW1tbw8/NDeXn5uHmdnZ0ICwuDVCrF/Pnz0dTUJIzdunUL8fHxmDVrFqRSKWQyGUpLS3X2Ly8vh0wmg7W1NZycnBAREYGhoSFh/MCBA5gzZw6srKwQFBSEffv2TRg3Y4wZG25W2BPD2toaIyMjU9r3+++/x+7du/HFF1/g0qVL+OGHHyCTyYTx1NRUNDU1oaysDOfOncPy5csRHR2NS5cuTbhudnY2Xn/9dZw9exYrV67E22+/jfb2dp05WVlZyMjIgFKpRGBgIOLj44XTWffu3UNISAiOHj2K8+fPIykpCQkJCTh9+jQAoLe3F/Hx8VizZg3a29tRX1+P1157DWPPJz18+DA++eQT7Nq1C+3t7cjNzUV2dja++uqrKdWJMcYMwmDPe2bs/5CYmEixsbFE9Pej6mtqasjS0pIyMjKIiGjx4sW0adMmnX1iY2OFx9sTEfn4+NDu3buJiKigoIACAwNpZGRk3GddvXqVxGIx9fT06GwPDw+nLVu2PDRGALR+/XqdbXK5nDZs2EBERF1dXQSADhw4IIxfuHCBAFB7e/tD1126dCmlp6cTEVFLSwsBoO7u7gfO9ff3p2+++UZnW05ODikUioeuzxhjxoavWWEmq7KyEra2tlCr1dBqtVixYgW2bds2pbWWL1+OoqIi+Pn5ITo6GkuWLMGyZctgbm6OtrY2aDQaBAYG6uyjUqng5OQ04boKhWLc+/vv/pk3b57wbw8PDwDA9evXERQUBI1Gg9zcXHz77bfo6enByMgIVCoVpFIpAGD+/PkIDw+HTCZDVFQUIiMj8cYbb8DR0RFDQ0O4cuUK1q5di/fee0/4jNHRUdjb20+6RowxZijcrDCTFRYWhuLiYkgkEnh6esLc/L+Hs5mZmXAqZIxarX7oWl5eXujo6MDx48dRU1OD5ORk5Ofn48SJE/jzzz8hFovR0tICsViss5+tre3/nYeFhYXwb5FIBADQarUAgPz8fOzZswdFRUWQyWSwsbHB5s2bhdNdYrEYNTU1aGxsRHV1Nfbu3YusrCw0NzcLDc3+/fshl8t1PvP+PBhjzJjxNSvMZNnY2CAgIADe3t46jQoAuLi4oLe3V3iv0Whw/vz5CdeztrbGsmXL8Pnnn6O+vh5NTU1oa2vDggULoNFocP36dQQEBOi83N3dJ1zz1KlT497PmTPnkXP85ZdfEBsbi3feeQfz58+Hn58fLl68qDNHJBIhNDQU27dvR2trKyQSCSoqKuDm5gZPT090dnaOi9vX1/eRY2CMMUPjX1bYE+mll15CWloajh49Cn9/fxQWFmJgYOCh8w8dOgSNRgO5XA6pVIqvv/4a1tbW8PHxgZOTE1auXIlVq1ahoKAACxYswI0bN1BbW4t58+Zh6dKlD133u+++w8KFC7Fo0SIcPnwYp0+fxsGDBx85j9mzZ6O8vByNjY1wdHREYWEh+vv7ERwcDABobm5GbW0tIiMj4erqiubmZty4cUNoiLZv346NGzfC3t4e0dHRUKlUOHPmDG7fvo20tLRHjoMxxgyJmxX2RFqzZg3Onj2LVatWwdzcHO+//z7CwsIeOt/BwQF5eXlIS0uDRqOBTCbDTz/9JFyTUlJSgp07dyI9PR09PT1wdnbG888/j5dffnnCOLZv346ysjIkJyfDw8MDpaWlQqPxKD7++GN0dnYiKioKUqkUSUlJiIuLw507dwAAdnZ2OHnyJIqKinD37l34+PigoKAAMTExAIB169ZBKpUiPz8fH3zwAWxsbCCTycbd1s0YY8ZMRPef2GeMPRYikQgVFRWIi4szdCiMMWbS+JoVxhhjjBk1blYYY4wxZtT4mhXGpgmfYWWMsceDf1lhjDHGmFHjZoUxxhhjRo2bFcYYY4wZNW5WGGOMMWbUuFlhjDHGmFHjZoUxxhhjRo2bFcYYY4wZNW5WGGOMMWbU/gMuhIhRgalu9QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "n_photons = 100000\n", + "psi_mean = np.radians(22.5)\n", + "# Photon times are completely random. No pulsation\n", + "photon_times = np.sort(np.random.uniform(t0, t1, n_photons))\n", + "\n", + "# Here we generate polarization angles for all the photons\n", + "random_angles = extract_varying_random_photon_angles(\n", + " photon_times, \n", + " psi_mean=psi_mean, \n", + " psi_amp=0, # No change of polarization angle\n", + " pd_mean=0.5, # A mean polarization degree of 50%\n", + " pd_amp=0.1, # A *change* of polarization degree by 10%\n", + " freq=freq)\n", + "\n", + "plot_angle_distribution_with_pulse_phase(photon_times, random_angles, freq)\n" + ] + }, + { + "cell_type": "markdown", + "id": "65b47c0d", + "metadata": {}, + "source": [ + "The plot above shows the change of the modulation curve with pulse phase. Please note: there is no change of flux. There is no pulsation that can be seen in the here, in the pulsed profile (red bands indicate 1, 2, and 3 sigma deviations from the mean):" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "62e31e68", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'Counts')" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAGwCAYAAABIC3rIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9ZklEQVR4nO3deXxU9b3/8fdkmRCWJBDIpiFEWcOikQHEgBspQXCrNhQNiMqFlhtAFimlFqWoQdaAyoWGq4HbgvqjFYu0iGERqLKGIoQlgKAgGmIJJKzZ5vz+sBkZCJCEZA7kvJ6PxzwezDmfnPM5M+Hw5ns2m2EYhgAAACzMy+wGAAAAzEYgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAludjdgM3C6fTqe+++04NGjSQzWYzux0AAFABhmHo9OnTioiIkJfXlceBCEQV9N133ykyMtLsNgAAQBUcPXpUt9566xXnE4gqqEGDBpJ+/EADAgJM7gYAAFREQUGBIiMjXf+OXwmBqILKDpMFBAQQiAAAuMlc63QXTqoGAACWZ3ogOnbsmPr376/g4GD5+/urffv22rZtm2v+s88+K5vN5vbq1auX2zLy8vKUlJSkgIAABQUFadCgQTpz5oxbzc6dO9W9e3fVqVNHkZGRmjp1qke2DwAA3PhMPWR28uRJxcXF6YEHHtCKFSvUpEkTHThwQA0bNnSr69Wrl9LT013v/fz83OYnJSXp+++/V0ZGhoqLi/Xcc89pyJAhWrx4saQfjx/27NlT8fHxmjdvnnbt2qXnn39eQUFBGjJkSM1vKAAAuKGZGoimTJmiyMhIt7ATHR19WZ2fn5/CwsLKXcbevXv1ySefaOvWrXI4HJKkt956S71799b06dMVERGhRYsWqaioSO+++67sdrvatm2rHTt2aObMmQQiAABg7iGzZcuWyeFwKDExUSEhIYqNjdX8+fMvq/vss88UEhKiVq1aaejQoTpx4oRr3saNGxUUFOQKQ5IUHx8vLy8vbd682VVz7733ym63u2oSEhKUnZ2tkydPlttbYWGhCgoK3F4AAKB2MjUQHTp0SHPnzlWLFi20cuVKDR06VCNGjNDChQtdNb169dL//d//afXq1ZoyZYrWrVunhx56SKWlpZKknJwchYSEuC3Xx8dHjRo1Uk5OjqsmNDTUrabsfVnNpSZPnqzAwEDXi3sQAQBQe5l6yMzpdMrhcCglJUWSFBsbq6ysLM2bN08DBw6UJPXr189V3759e3Xo0EG33367PvvsM/Xo0aPGehs/frxGjx7tel92HwMAAFD7mDpCFB4erpiYGLdpbdq00ZEjR674M7fddpsaN26sgwcPSpLCwsKUm5vrVlNSUqK8vDzXeUdhYWE6fvy4W03Z+yudm+Tn5+e65xD3HgIAoHYzNRDFxcUpOzvbbdr+/fsVFRV1xZ/59ttvdeLECYWHh0uSunbtqlOnTikzM9NVs2bNGjmdTnXp0sVVs379ehUXF7tqMjIy1KpVq8uuaAMAANZjaiAaNWqUNm3apJSUFB08eFCLFy9WWlqakpOTJUlnzpzR2LFjtWnTJn399ddavXq1HnvsMTVv3lwJCQmSfhxR6tWrlwYPHqwtW7bo888/17Bhw9SvXz9FRERIkp5++mnZ7XYNGjRIu3fv1gcffKDZs2e7HRIDAAAWZpjs448/Ntq1a2f4+fkZrVu3NtLS0lzzzp07Z/Ts2dNo0qSJ4evra0RFRRmDBw82cnJy3JZx4sQJ46mnnjLq169vBAQEGM8995xx+vRpt5ovv/zS6Natm+Hn52fccsstxhtvvFGpPvPz8w1JRn5+ftU3FgAAeFRF//22GYZhmB3KbgYFBQUKDAxUfn4+5xMBAHCTqOi/36Y/ugMAAMBsPO2+snJypLNnze4CAABUxOnTFSojEFXWxInSRXe8BgAAN7CiogqVEYgqy99fCgoyuwsAAFARp05VqIxAVFn+/lKDBmZ3AQAAKqKwsEJlnFQNAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsj0AEAAAsz8fsBm46Z89Kfn5mdwEAACri7NkKlRGIKmvjRqlOHbO7AAAAFXHhQoXKCESV5eMj+fub3QUAAKiIkpIKlZkeiI4dO6Zx48ZpxYoVOnfunJo3b6709HQ5HI7Lan/961/rj3/8o1JTUzVy5EjX9Ly8PA0fPlwff/yxvLy89OSTT2r27NmqX7++q2bnzp1KTk7W1q1b1aRJEw0fPly/+c1vKt+wjw+HzAAAuFmcP1+hMlNPqj558qTi4uLk6+urFStWaM+ePZoxY4YaNmx4We3SpUu1adMmRUREXDYvKSlJu3fvVkZGhpYvX67169dryJAhrvkFBQXq2bOnoqKilJmZqWnTpmnixIlKS0ur0e0DAAA3B1NHiKZMmaLIyEilp6e7pkVHR19Wd+zYMQ0fPlwrV65Unz593Obt3btXn3zyibZu3eoaVXrrrbfUu3dvTZ8+XREREVq0aJGKior07rvvym63q23bttqxY4dmzpzpFpwAAIA1mTpCtGzZMjkcDiUmJiokJESxsbGaP3++W43T6dSAAQM0duxYtW3b9rJlbNy4UUFBQW6H2OLj4+Xl5aXNmze7au69917Z7XZXTUJCgrKzs3Xy5MlyeyssLFRBQYHbCwAA1E6mBqJDhw5p7ty5atGihVauXKmhQ4dqxIgRWrhwoatmypQp8vHx0YgRI8pdRk5OjkJCQtym+fj4qFGjRsrJyXHVhIaGutWUvS+rudTkyZMVGBjoekVGRlZ5OwEAwI3N1ENmTqdTDodDKSkpkqTY2FhlZWVp3rx5GjhwoDIzMzV79mxt375dNpvNo72NHz9eo0ePdr0vKCggFAEAUEuZOkIUHh6umJgYt2lt2rTRkSNHJEkbNmxQbm6umjZtKh8fH/n4+Oibb77RmDFj1KxZM0lSWFiYcnNz3ZZRUlKivLw8hYWFuWqOHz/uVlP2vqzmUn5+fgoICHB7AQCA2snUQBQXF6fs7Gy3afv371dUVJQkacCAAdq5c6d27NjhekVERGjs2LFauXKlJKlr1646deqUMjMzXctYs2aNnE6nunTp4qpZv369iouLXTUZGRlq1apVuVe0AQAAazE1EI0aNUqbNm1SSkqKDh48qMWLFystLU3JycmSpODgYLVr187t5evrq7CwMLVq1UrSjyNKvXr10uDBg7VlyxZ9/vnnGjZsmPr16+e6RP/pp5+W3W7XoEGDtHv3bn3wwQeaPXu22yExAABgXaYGok6dOmnp0qV677331K5dO7366quaNWuWkpKSKrWcRYsWqXXr1urRo4d69+6tbt26ud1jKDAwUJ9++qkOHz6sjh07asyYMXr55Ze55B4AAEiSbIZhGGY3cTMoKChQYGCg8u+4QwFBQWa3AwAAKqDg1CkFfvml8vPzr3o+sKkjRAAAADcCAhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8H7MbAAAA1ceQdN7L15R1+zuLZTNlzdePQAQAQC1hSPpF26eV2eAWU9bvKPhWS/a8d1OGIg6ZAQBQS5z38jUtDEnStoBbTRudul6MEAE3KIa9AVyPbdvmqK6z2CPrOuflK4cj2SPrqikEIuAGxLA3gOtV11nssUBUG3DIDLgBMewNAJ7FCBFwg2PYGwBqHoEIuMEx7A0ANY9AhJsGJxkDAGoKgQg3BU4yBgDUJAJRZRUXS4WFZndhOTfEScbFTs8duvJy/vTnwkKptq8XQPVg33G54or1QiCqrO+/l06cMLsLSf85hORjN2Xd/iVFnh0t8bFL3X/847b3R6puiWdC6TkfPzn6zfrxzTdfSyVFHlnvxdtrifUCqB7sOy5XVLFeCERV4WP+x2ZI+kXPscoMaW7K+h25B7Xk02meC0XeP33mdY1S1ZXzKsXVyCi9pAcPrfei7bXEegFUD/YdlyMQ1RAvrxsiEJ33tpsWhiRpW0hznferq7qlHvpfwMV/2Xx8JJsJf8lZL4AbHfuOy3lV7JaL5v/Ljuu2bek41fXQ8OQ5H7scP5/ikXUBAOApBKJaoG5JkedGagAAqIV4dAcAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA8AhEAALA80wPRsWPH1L9/fwUHB8vf31/t27fXtm3bXPMnTpyo1q1bq169emrYsKHi4+O1efNmt2Xk5eUpKSlJAQEBCgoK0qBBg3TmzBm3mp07d6p79+6qU6eOIiMjNXXqVI9sHwAAuPGZGohOnjypuLg4+fr6asWKFdqzZ49mzJihhg0bumpatmypt99+W7t27dI///lPNWvWTD179tQPP/zgqklKStLu3buVkZGh5cuXa/369RoyZIhrfkFBgXr27KmoqChlZmZq2rRpmjhxotLS0jy6vQAA4MbkY+bKp0yZosjISKWnp7umRUdHu9U8/fTTbu9nzpypd955Rzt37lSPHj20d+9effLJJ9q6dascDock6a233lLv3r01ffp0RUREaNGiRSoqKtK7774ru92utm3baseOHZo5c6ZbcAIAANZk6gjRsmXL5HA4lJiYqJCQEMXGxmr+/PlXrC8qKlJaWpoCAwN1xx13SJI2btyooKAgVxiSpPj4eHl5ebkOrW3cuFH33nuv7Ha7qyYhIUHZ2dk6efJkuesqLCxUQUGB2wsAANROpgaiQ4cOae7cuWrRooVWrlypoUOHasSIEVq4cKFb3fLly1W/fn3VqVNHqampysjIUOPGjSVJOTk5CgkJcav38fFRo0aNlJOT46oJDQ11qyl7X1ZzqcmTJyswMND1ioyMrJZtBgAANx5TA5HT6dRdd92llJQUxcbGasiQIRo8eLDmzZvnVvfAAw9ox44d+uKLL9SrVy/17dtXubm5Ndrb+PHjlZ+f73odPXq0RtcHAADMY2ogCg8PV0xMjNu0Nm3a6MiRI27T6tWrp+bNm+vuu+/WO++8Ix8fH73zzjuSpLCwsMvCUUlJifLy8hQWFuaqOX78uFtN2fuymkv5+fkpICDA7QUAAGonU0+qjouLU3Z2ttu0/fv3Kyoq6qo/53Q6VVhYKEnq2rWrTp06pczMTHXs2FGStGbNGjmdTnXp0sVV89JLL6m4uFi+vr6SpIyMDLVq1crtijYAQM0xJJ33tl+zrib4lxbJZsqacbMwNRCNGjVK99xzj1JSUtS3b19t2bJFaWlprsvhz549q9dff12PPvqowsPD9e9//1tz5szRsWPHlJiYKOnHEaVevXq5DrUVFxdr2LBh6tevnyIiIiT9eKXaH/7wBw0aNEjjxo1TVlaWZs+erdTUVNO2HQCsxJD0ix6jldnkdlPW7/jhKy1ZPZNQhCsy9ZBZp06dtHTpUr333ntq166dXn31Vc2aNUtJSUmSJG9vb+3bt09PPvmkWrZsqUceeUQnTpzQhg0b1LZtW9dyFi1apNatW6tHjx7q3bu3unXr5naPocDAQH366ac6fPiwOnbsqDFjxujll1/mknsA8JDz3nbTwpAkbWtyu2mjU7g5mDpCJEkPP/ywHn744XLn1alTRx9++OE1l9GoUSMtXrz4qjUdOnTQhg0bqtQjAKD6bFs6TnVLijyyrnM+djl+PsUj68LNzfRABACwlrolRapb6plABFSU6c8yAwAAMBuBCAAAWB6BCAAAWB6BCAAAWB6BCAAAWB5XmQEo1zkfz9+zhbsJAzBLlQLR9u3b5evrq/bt20uS/va3vyk9PV0xMTGaOHGi7HZufgXc7My4dwt3EwZgliodMvvVr36l/fv3S5IOHTqkfv36qW7dulqyZIl+85vfVGuDADzHv7RIjh++Mm393E0YgFmqNEK0f/9+3XnnnZKkJUuW6N5779XixYv1+eefq1+/fpo1a1Y1tgjAU2ySlqye6fFQwt2EAZitSoHIMAw5nU5J0qpVq1yP3oiMjNS///3v6usOgMfZJO4iDMByqnTIzOFw6LXXXtOf/vQnrVu3Tn369JEkHT58WKGhodXaIAAAQE2rUiBKTU3V9u3bNWzYML300ktq3ry5JOkvf/mL7rnnnmptEAAAoKZV6ZDZHXfcoV27dl02fdq0afLx4Up+AABwc6nSCNFtt92mEydOXDb9woULatmy5XU3BQAA4ElVCkRff/21SktLL5teWFiob7/99rqbAgAA8KRKHd9atmyZ688rV65UYGCg631paalWr16t6Ojo6usOAADAAyoViB5//HFJks1m08CBA93m+fr6qlmzZpoxY0a1NQcAnmBIpt0QkseVADeGSgWisnsPRUdHa+vWrWrcuHGNNAUAnmJI+kWP0cpscrsp6+dxJcCNoUqXhB0+fLi6+wAAU5z3tpsWhqSfHlfCzTABc1X5GvnVq1dr9erVys3NdY0clXn33XevuzEA8LRtS8epbolnggmPKwFuLFUKRH/4wx80adIkORwOhYeHy2ZjsBfAza9uSREjNYBFVSkQzZs3TwsWLNCAAQOqux8AAACPq9J9iIqKinhEBwAAqDWqFIj+67/+S4sXL67uXgAAAExRpUNmFy5cUFpamlatWqUOHTrI19fXbf7MmTOrpTkAAABPqFIg2rlzp+68805JUlZWltu82n6C9TkfuxpIrnuGFHl5q8TmLW/DKT9nyU91/7nJW53SYnnJkCQV27xU7OUjL8OpOlWsPe/tK0M2lV70OZfYvHTO2y4vGapTWnxZrZ+zWN6G4aot8vK5rPaCt6+cssnuLJGP8eNVg6U2mwq9fC+rvXi9ZcpqbTLkf/FyvXzktHnJ11ki30uWW5Fap2y64O3r+ozKFHr5qNTmJR+jVHZnqVutJLcTY8urvfhGfBffGK/s+7y4tsw5b3u5tRX57iv7e3Lp9krlf5/X+j2pzHd/vb8nl32flan1unxXdKXv82q/J5fWXuu7v/QE6nPe9kr9nlzp+6xM7cWqcx9Rke+zpvYRV6otT3XtI6Tyv/siL2/XNKdsrs+yOvcRVf09uZ59xJW++0t/rzy9jyjruSb2ERX97surrYgqHTJbu3btFV9r1qypyiJvGp2fmq08v/qu92mt4xWTmKpXOvZ1q+v48zcUk5iqY/Uauqb9X4v7FJOYqnGd+7vVdntkkmISU3UwIMw17S/RdysmMVXD73nerTa+9wTFJKZqT8NbXdNWRMYqJjFV/9X9V261j/Ycp5jEVG1p0tw1bXVEO8Ukpirp/uFutX0fHKWYxFStD2vjmvZFSCvFJKbq5/EvlvtZrLqlvevP/wqOVkxiqh7q9Tu3mqHdBismMVUfNevsmrYv8BbFJKbq/j4T3WpH3z1QMYmpeu/2bq5p39Rv/GPtw6+41f6u01OKSUxVessHXNNy/QMUk5iqDk9Od6t9LfYJxSSmak5Mgmtaga+/YhJTFZOY6hbsprd/VDGJqZre/tHLttfxxBQV+Pq73s+JSVBMYqpei33Cra7Dk9MVk5iqXP8A17T0lg8oJjFVv+v0lFttl8deV0xiqr6p/9NNTt+7vZscT1x+Ofb9fSYqJjFV+wJvcU37qFlnxSSmami3wW61D/X6nWISU/Wv4J8epbPy1jsUk5iqgff9t1vtz+NfVExiqr4IaeWatj6sjWISU9X3wVFutUn3D1dMYqpWR7RzTdvSpLliElP1aM9xbrX/1f1XiklM1fKmHV3TshpGKiYxVfG9J7jVvnj3M5dt78GAMMUkpqrbI5Pcpo/r3F8xian6vxb3uaYdq9dQMYmp6vjzN9xqX+nYVzGJqUprHe+aludX3/XdX8rxxBTNbtvb9f68t91Ve/GdrGe37a2YxFS9ccdjbj9fVluRfUS3R923S6refURWw0jXtOVNO3p0HzHwvv9WTGKqVt56h2val42iLtteqfr2EV0ee92ttmwf8acW97qm/eDfoEb2ESU2L1etp/YRMYmpGn23+xMj7u8z8bJ9h6f3EdKPf4+qex8x/J7nFZOYqr9E3+2aVpl9REVUKRABAADUJjbD+M/4VyU88MADVz00VhtHiQoKChQYGKjvQ8MVWsd+Qxwya/+LH8/V2vmXMfIxnB4ZDj/3n/8xl603oOSCW21NHjIr+5/PniWj5G04PXLI7OLt3fbhOAUXnfHIcHi+b1237a1bWlSrD5nl+dbVXU9Oc9teTx0yu/Q7Dig575FDZv+217/sO67Nh8xO+/i59lll23ul77O6D5nd+Z8Roawlo12fX209ZHbW28/t98rXWeKRfcSlf4+Cis/dMIfMCs6cUeCJE8rPz1dAwE+jcpeq0jlEZecPlSkuLtaOHTuUlZV12UNfa5u6JUWy6aehc7uzVHaVXl5Xzs3dfA2nfMuZXpla/4uCSRkfw1nuMvwvOa5bVutTTm155wh5G8ZVb1JX9gt8tdqL/wJWpdZL5df6XWetTeV/7lf6PvWfelsFaiuz3Ct99xX9Pq/1e3Kxynz31fF7UqnaSnyf1/t7cqXvXv+ZfvG5Y5X9PamO77669hEXu9L3WVP7iCvVlqfm9xE/7Ssv+Pi67kRe3jlcJTZvlXh7Xza9vAf/VrS2vIf31tTviX9psYxL1ubpfYQkySYVefno0rnGRedwXeziWv/S8m+Oer37iIqoUiBKTb382LskTZw4UWfOnKlSIwAA1CQzHpVixYf3Xs/nfPHooadV+Vlm5enfv786d+6s6dOnX7sYAIAa5l9aJMcPX2mbSQ/w3dbkdp3wq+/RZ+SZwezPuTpUayDauHGj6tSpU52LBACgymySlqyeWe5hr5p08cN7rfAQ3+r6nP1NfJZglQLRE0+4X0JoGIa+//57bdu2TRMmTLjCTwEA4HlXO2+sppg9YuL44SuPhwszPufqVKVAFBgY6Pbey8tLrVq10qRJk9SzZ89qaQwAgJuVWSNTZco7mRtXV6VAlJ6eXt19AABQq9zsIyZWc13nEGVmZmrv3r2SpLZt2yo2NrZamgIAAPCkKgWi3Nxc9evXT5999pmCgoIkSadOndIDDzyg999/X02aNKnOHgEAAGpUlR7dMXz4cJ0+fVq7d+9WXl6e8vLylJWVpYKCAo0YMaK6ewQAAKhRVRoh+uSTT7Rq1Sq1afPTQ/5iYmI0Z84cTqoGAAA3nSqNEDmdTvn6+l423dfXV06ns5yfAAAAuHFVaYTowQcf1AsvvKD33ntPERERkqRjx45p1KhR6tGjR7U2CAC1nRl3F+aybMBdlQLR22+/rUcffVTNmjVTZGSkJOno0aNq166d/vznP1drgwBQ2/GMLcB8VQpEkZGR2r59u1atWqV9+/ZJktq0aaP4+PhqbQ4Aaiuz72S8rcntOu9t5z45wH9UKhCtWbNGw4YN06ZNmxQQEKCf/exn+tnPfiZJys/PV9u2bTVv3jx17969RpoFgNriRnjGFoCfVCoQzZo1S4MHD1ZAQMBl8wIDA/WrX/1KM2fOJBABQAVwJ2PgxlGpq8y+/PJL9erV64rze/bsqczMzOtuyioMSee87VV7mXASJgAAtVWlRoiOHz9e7uX2roX5+OiHH3647qas4ry3XTGJqWa3AQCA5VVqhOiWW25RVlbWFefv3LlT4eHh190UKs7xw1fyZ8gdAIDrUqkRot69e2vChAnq1auX6tSp4zbv/PnzeuWVV/Twww9Xa4O1mX9pkfYsGXXdy+CyWQAArk+lAtHvf/97ffjhh2rZsqWGDRumVq1aSZL27dunOXPmqLS0VC+99FKNNFobcUIlADN58lxEznvEja5SgSg0NFRffPGFhg4dqvHjx8swDEmSzWZTQkKC5syZo9DQ0BppFABQvbj8HvhJpW/MGBUVpX/84x86efKkDh48KMMw1KJFCzVs2LAm+gMAVCOzbwjJeY+4UVXpTtWS1LBhQ3Xq1Kk6ewEA1DCzbghZhvMecaOqciACANycOH8RuFylLrsHAACojQhEAADA8ghEAADA8ghEAADA8kwPRMeOHVP//v0VHBwsf39/tW/fXtu2bZMkFRcXa9y4cWrfvr3q1auniIgIPfPMM/ruu+/clpGXl6ekpCQFBAQoKChIgwYN0pkzZ9xqdu7cqe7du6tOnTqKjIzU1KlTPbaNAADgxmZqIDp58qTi4uLk6+urFStWaM+ePZoxY4brnkbnzp3T9u3bNWHCBG3fvl0ffvihsrOz9eijj7otJykpSbt371ZGRoaWL1+u9evXa8iQIa75BQUF6tmzp6KiopSZmalp06Zp4sSJSktL8+j2AgCAG5Opl91PmTJFkZGRSk9Pd02Ljo52/TkwMFAZGRluP/P222+rc+fOOnLkiJo2baq9e/fqk08+0datW+VwOCRJb731lnr37q3p06crIiJCixYtUlFRkd59913Z7Xa1bdtWO3bs0MyZM92C08UKCwtVWFjoel9QUFCdmw4AAG4gpo4QLVu2TA6HQ4mJiQoJCVFsbKzmz59/1Z/Jz8+XzWZTUFCQJGnjxo0KCgpyhSFJio+Pl5eXlzZv3uyquffee2W3/3QjsoSEBGVnZ+vkyZPlrmfy5MkKDAx0vSIjI69zawEAwI3K1EB06NAhzZ07Vy1atNDKlSs1dOhQjRgxQgsXLiy3/sKFCxo3bpyeeuopBQQESJJycnIUEhLiVufj46NGjRopJyfHVXPpM9bK3pfVXGr8+PHKz893vY4ePXpd2woAAG5cph4yczqdcjgcSklJkSTFxsYqKytL8+bN08CBA91qi4uL1bdvXxmGoblz59Z4b35+fvLz86vx9QAAAPOZGojCw8MVExPjNq1Nmzb661//6jatLAx98803WrNmjWt0SJLCwsKUm5vrVl9SUqK8vDyFhYW5ao4fP+5WU/a+rAaVd87Hc89C8uS6AADWY2ogiouLU3Z2ttu0/fv3KyoqyvW+LAwdOHBAa9euVXBwsFt9165dderUKWVmZqpjx46SpDVr1sjpdKpLly6umpdeeknFxcXy9fWVJGVkZKhVq1auK9pQeY6fTzG7BQAAqoWp5xCNGjVKmzZtUkpKig4ePKjFixcrLS1NycnJkn4MQ7/4xS+0bds2LVq0SKWlpcrJyVFOTo6Kin58MGGbNm3Uq1cvDR48WFu2bNHnn3+uYcOGqV+/foqIiJAkPf3007Lb7Ro0aJB2796tDz74QLNnz9bo0aNN2/ablX9pkRw/fGXa+h0/fCV/HkoJAKhmpo4QderUSUuXLtX48eM1adIkRUdHa9asWUpKSpL0400bly1bJkm688473X527dq1uv/++yVJixYt0rBhw9SjRw95eXnpySef1JtvvumqDQwM1Keffqrk5GR17NhRjRs31ssvv3zFS+5xZTZJS1bP1Hlvcw5h+ZcWyWbKmgEAtZmpgUiSHn74YT388MPlzmvWrJkMw7jmMho1aqTFixdftaZDhw7asGFDlXqEO5ukuozSAABqEdMDEQBczNMn0HPCPgCJQATgBsPJ+gDMYPrDXQHA7JP1JU7YB6yOESIApjP7ZH2JE/YBqyMQAbghcLI+ADNxyAwAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFgegQgAAFge9yGqLKdTKikxuwt4inHR/xlKSqRSD333Zq0XAGobp7NCZQSiqiAQWchFwaS0xIPfvVnrBQBrIhBVVni4FBBgdhfwFC/fn/4c1UxyFtfu9QJAbVNQIJ08ec0yAlFl+fpKfn5mdwFPuTiY+PlJTg+ddmfWegGgtvH1vXaNOKkaAACAQAQAAEAgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlmd6IDp27Jj69++v4OBg+fv7q3379tq2bZtr/ocffqiePXsqODhYNptNO3bsuGwZFy5cUHJysoKDg1W/fn09+eSTOn78uFvNkSNH1KdPH9WtW1chISEaO3asSkpKanrzAADATcDUQHTy5EnFxcXJ19dXK1as0J49ezRjxgw1bNjQVXP27Fl169ZNU6ZMueJyRo0apY8//lhLlizRunXr9N133+mJJ55wzS8tLVWfPn1UVFSkL774QgsXLtSCBQv08ssv1+j2AQCAm4OPmSufMmWKIiMjlZ6e7poWHR3tVjNgwABJ0tdff13uMvLz8/XOO+9o8eLFevDBByVJ6enpatOmjTZt2qS7775bn376qfbs2aNVq1YpNDRUd955p1599VWNGzdOEydOlN1uv2y5hYWFKiwsdL0vKCi43s0FAAA3KFNHiJYtWyaHw6HExESFhIQoNjZW8+fPr9QyMjMzVVxcrPj4eNe01q1bq2nTptq4caMkaePGjWrfvr1CQ0NdNQkJCSooKNDu3bvLXe7kyZMVGBjoekVGRlZhCwEAwM3A1EB06NAhzZ07Vy1atNDKlSs1dOhQjRgxQgsXLqzwMnJycmS32xUUFOQ2PTQ0VDk5Oa6ai8NQ2fyyeeUZP3688vPzXa+jR49WYssAAMDNxNRDZk6nUw6HQykpKZKk2NhYZWVlad68eRo4cKCZrcnPz09+fn6m9gAAADzD1BGi8PBwxcTEuE1r06aNjhw5UuFlhIWFqaioSKdOnXKbfvz4cYWFhblqLr3qrOx9WQ0AALAuUwNRXFycsrOz3abt379fUVFRFV5Gx44d5evrq9WrV7umZWdn68iRI+rataskqWvXrtq1a5dyc3NdNRkZGQoICLgskAEAAOsx9ZDZqFGjdM899yglJUV9+/bVli1blJaWprS0NFdNXl6ejhw5ou+++06SXAEqLCxMYWFhCgwM1KBBgzR69Gg1atRIAQEBGj58uLp27aq7775bktSzZ0/FxMRowIABmjp1qnJycvT73/9eycnJlT8sVlIiXXT1GWo5L+dPfy4slJzFtXu9AFDbVPCeg6YGok6dOmnp0qUaP368Jk2apOjoaM2aNUtJSUmummXLlum5555zve/Xr58k6ZVXXtHEiRMlSampqfLy8tKTTz6pwsJCJSQk6H/+539cP+Pt7a3ly5dr6NCh6tq1q+rVq6eBAwdq0qRJlW+6pEQ6f75qG4ybj/dFf5EunJdKPRRMzFovANQ2FQxENsMwjBpupVYoKChQYGCg8p99VgGNGpndDjzknLwU43u/JGlP8WeqK+fVf+AmXy8A1DYFeXkKXLBA+fn5CggIuGKdqSNEN6V69aQGDczuAp5ieEllR0jrN5BsHgomZq0XAGqbCp7mYvqzzAAAAMxGIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJbnY3YDwM3inLwkw4PrAgB4DIEIqCBHYazZLQAAagj/DQWuwl9OOWynTVu/w3Za/nKatn4AsApGiICrsNmkJfZ9Om/S/x385ZTNZsqqAcBSCETANdhsUl1GaQCgVuOQGQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwCEQAAsDwfsxu46Zw/L50+bXYXAACgIs6fr1AZgaiyzp+XSkvN7gIAAFREUVGFymyGYRg13EqtUFBQoMDAQOVnZyugQQOz2wEAABVQcPq0Alu1Un5+vgICAq5YxwhRZYWFSVf5QAEAwA2kXr0KlXFSNQAAsDwCEQAAsDzTA9GxY8fUv39/BQcHy9/fX+3bt9e2bdtc8w3D0Msvv6zw8HD5+/srPj5eBw4ccFtGXl6ekpKSFBAQoKCgIA0aNEhnzpxxq9m5c6e6d++uOnXqKDIyUlOnTvXI9gEAgBufqYHo5MmTiouLk6+vr1asWKE9e/ZoxowZatiwoatm6tSpevPNNzVv3jxt3rxZ9erVU0JCgi5cuOCqSUpK0u7du5WRkaHly5dr/fr1GjJkiGt+QUGBevbsqaioKGVmZmratGmaOHGi0tLSPLq9AADgxmTqVWa//e1v9fnnn2vDhg3lzjcMQxERERozZoxefPFFSVJ+fr5CQ0O1YMEC9evXT3v37lVMTIy2bt0qh8MhSfrkk0/Uu3dvffvtt4qIiNDcuXP10ksvKScnR3a73bXujz76SPv27atQr66rzK5xljoAALhxVPTfb1NHiJYtWyaHw6HExESFhIQoNjZW8+fPd80/fPiwcnJyFB8f75oWGBioLl26aOPGjZKkjRs3KigoyBWGJCk+Pl5eXl7avHmzq+bee+91hSFJSkhIUHZ2tk6ePFlub4WFhSooKHB7AQCA2snUQHTo0CHNnTtXLVq00MqVKzV06FCNGDFCCxculCTl5ORIkkJDQ91+LjQ01DUvJydHISEhbvN9fHzUqFEjt5rylnHxOi41efJkBQYGul6RkZHXubUAAOBGZWogcjqduuuuu5SSkqLY2FgNGTJEgwcP1rx588xsS5I0fvx45efnu15Hjx41uyUAAFBDTA1E4eHhiomJcZvWpk0bHTlyRJIUFhYmSTp+/LhbzfHjx13zwsLClJub6za/pKREeXl5bjXlLePidVzKz89PAQEBbi8AAFA7mRqI4uLilJ2d7TZt//79ioqKkiRFR0crLCxMq1evds0vKCjQ5s2b1bVrV0lS165dderUKWVmZrpq1qxZI6fTqS5durhq1q9fr+LiYldNRkaGWrVq5XZFGwAAsCZTA9GoUaO0adMmpaSk6ODBg1q8eLHS0tKUnJwsSbLZbBo5cqRee+01LVu2TLt27dIzzzyjiIgIPf7445J+HFHq1auXBg8erC1btujzzz/XsGHD1K9fP0VEREiSnn76adntdg0aNEi7d+/WBx98oNmzZ2v06NFmbToAALiRGCb7+OOPjXbt2hl+fn5G69atjbS0NLf5TqfTmDBhghEaGmr4+fkZPXr0MLKzs91qTpw4YTz11FNG/fr1jYCAAOO5554zTp8+7Vbz5ZdfGt26dTP8/PyMW265xXjjjTcq1Wd+fr4hycjPz6/ahgIAAI+r6L/fPO2+grgPEQAAN5+K/vvN0+4rqCw3cj8iAABuHmX/bl9r/IdAVEGnT5+WJO5HBADATej06dMKDAy84nwOmVWQ0+nUd999pwYNGshms1XbcgsKChQZGamjR49a4lAc21u7WW17JettM9tbu9XG7TUMQ6dPn1ZERIS8vK58LRkjRBXk5eWlW2+9tcaWb7V7HbG9tZvVtley3jazvbVbbdveq40MlTH1snsAAIAbAYEIAABYHoHIZH5+fnrllVfk5+dndisewfbWblbbXsl628z21m5W296LcVI1AACwPEaIAACA5RGIAACA5RGIAACA5RGIAACA5RGITDZnzhw1a9ZMderUUZcuXbRlyxazW6oRkydPVqdOndSgQQOFhITo8ccfV3Z2ttltecwbb7whm82mkSNHmt1KjTl27Jj69++v4OBg+fv7q3379tq2bZvZbdWI0tJSTZgwQdHR0fL399ftt9+uV1999ZrPSrpZrF+/Xo888ogiIiJks9n00Ucfuc03DEMvv/yywsPD5e/vr/j4eB04cMCcZqvJ1ba5uLhY48aNU/v27VWvXj1FRETomWee0XfffWdew9fpWt/xxX7961/LZrNp1qxZHuvPDAQiE33wwQcaPXq0XnnlFW3fvl133HGHEhISlJuba3Zr1W7dunVKTk7Wpk2blJGRoeLiYvXs2VNnz541u7Uat3XrVv3xj39Uhw4dzG6lxpw8eVJxcXHy9fXVihUrtGfPHs2YMUMNGzY0u7UaMWXKFM2dO1dvv/229u7dqylTpmjq1Kl66623zG6tWpw9e1Z33HGH5syZU+78qVOn6s0339S8efO0efNm1atXTwkJCbpw4YKHO60+V9vmc+fOafv27ZowYYK2b9+uDz/8UNnZ2Xr00UdN6LR6XOs7LrN06VJt2rRJERERHurMRAZM07lzZyM5Odn1vrS01IiIiDAmT55sYleekZuba0gy1q1bZ3YrNer06dNGixYtjIyMDOO+++4zXnjhBbNbqhHjxo0zunXrZnYbHtOnTx/j+eefd5v2xBNPGElJSSZ1VHMkGUuXLnW9dzqdRlhYmDFt2jTXtFOnThl+fn7Ge++9Z0KH1e/SbS7Pli1bDEnGN99845mmatCVtvfbb781brnlFiMrK8uIiooyUlNTPd6bJzFCZJKioiJlZmYqPj7eNc3Ly0vx8fHauHGjiZ15Rn5+viSpUaNGJndSs5KTk9WnTx+377k2WrZsmRwOhxITExUSEqLY2FjNnz/f7LZqzD333KPVq1dr//79kqQvv/xS//znP/XQQw+Z3FnNO3z4sHJyctx+pwMDA9WlSxdL7LvK5Ofny2azKSgoyOxWaoTT6dSAAQM0duxYtW3b1ux2PIKHu5rk3//+t0pLSxUaGuo2PTQ0VPv27TOpK89wOp0aOXKk4uLi1K5dO7PbqTHvv/++tm/frq1bt5rdSo07dOiQ5s6dq9GjR+t3v/udtm7dqhEjRshut2vgwIFmt1ftfvvb36qgoECtW7eWt7e3SktL9frrryspKcns1mpcTk6OJJW77yqbV9tduHBB48aN01NPPVWrHoB6sSlTpsjHx0cjRowwuxWPIRDB45KTk5WVlaV//vOfZrdSY44ePaoXXnhBGRkZqlOnjtnt1Din0ymHw6GUlBRJUmxsrLKysjRv3rxaGYj+3//7f1q0aJEWL16stm3baseOHRo5cqQiIiJq5fbiJ8XFxerbt68Mw9DcuXPNbqdGZGZmavbs2dq+fbtsNpvZ7XgMh8xM0rhxY3l7e+v48eNu048fP66wsDCTuqp5w4YN0/Lly7V27VrdeuutZrdTYzIzM5Wbm6u77rpLPj4+8vHx0bp16/Tmm2/Kx8dHpaWlZrdYrcLDwxUTE+M2rU2bNjpy5IhJHdWssWPH6re//a369eun9u3ba8CAARo1apQmT55sdms1rmz/ZLV9l/RTGPrmm2+UkZFRa0eHNmzYoNzcXDVt2tS1//rmm280ZswYNWvWzOz2agyByCR2u10dO3bU6tWrXdOcTqdWr16trl27mthZzTAMQ8OGDdPSpUu1Zs0aRUdHm91SjerRo4d27dqlHTt2uF4Oh0NJSUnasWOHvL29zW6xWsXFxV12G4X9+/crKirKpI5q1rlz5+Tl5b779Pb2ltPpNKkjz4mOjlZYWJjbvqugoECbN2+ulfuuMmVh6MCBA1q1apWCg4PNbqnGDBgwQDt37nTbf0VERGjs2LFauXKl2e3VGA6ZmWj06NEaOHCgHA6HOnfurFmzZuns2bN67rnnzG6t2iUnJ2vx4sX629/+pgYNGrjONQgMDJS/v7/J3VW/Bg0aXHZ+VL169RQcHFwrz5saNWqU7rnnHqWkpKhv377asmWL0tLSlJaWZnZrNeKRRx7R66+/rqZNm6pt27b617/+pZkzZ+r55583u7VqcebMGR08eND1/vDhw9qxY4caNWqkpk2bauTIkXrttdfUokULRUdHa8KECYqIiNDjjz9uXtPX6WrbHB4erl/84hfavn27li9frtLSUtc+rFGjRrLb7Wa1XWXX+o4vDXy+vr4KCwtTq1atPN2q55h9mZvVvfXWW0bTpk0Nu91udO7c2di0aZPZLdUISeW+0tPTzW7NY2rzZfeGYRgff/yx0a5dO8PPz89o3bq1kZaWZnZLNaagoMB44YUXjKZNmxp16tQxbrvtNuOll14yCgsLzW6tWqxdu7bcv68DBw40DOPHS+8nTJhghIaGGn5+fkaPHj2M7Oxsc5u+Tlfb5sOHD19xH7Z27VqzW6+Sa33Hl7LCZfc2w6glt1YFAACoIs4hAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAgAAlkcgAnBTaNasmWbNmmXa+p999tmb+tEUAK6OQASgxj377LOy2Wyy2Wyy2+1q3ry5Jk2apJKSErNbc2nWrJmrx3r16umuu+7SkiVLzG4LgIcQiAB4RK9evfT999/rwIEDGjNmjCZOnKhp06aZ3ZabSZMm6fvvv9e//vUvderUSb/85S/1xRdfmN0WAA8gEAHwCD8/P4WFhSkqKkpDhw5VfHy8li1bJkm6//77NXLkSLf6xx9/XM8++2y5yzIMQxMnTlTTpk3l5+eniIgIjRgxwjW/sLBQL774om655RbVq1dPXbp00WeffXbNHhs0aKCwsDC1bNlSc+bMkb+/vz7++GO3munTpys8PFzBwcFKTk5WcXGxa96f/vQnORwO13Kefvpp5ebmuuafPHlSSUlJatKkifz9/dWiRQulp6e75h89elR9+/ZVUFCQGjVqpMcee0xff/31NfsGcP0IRABM4e/vr6Kioir97F//+lelpqbqj3/8ow4cOKCPPvpI7du3d80fNmyYNm7cqPfff187d+5UYmKievXqpQMHDlR4HT4+PvL19XXrce3atfrqq6+0du1aLVy4UAsWLNCCBQtc84uLi/Xqq6/qyy+/1EcffaSvv/7aLdRNmDBBe/bs0YoVK7R3717NnTtXjRs3dv1sQkKCGjRooA0bNujzzz9X/fr11atXryp/TgAqzsfsBgBYi2EYWr16tVauXKnhw4dXaRlHjhxRWFiY4uPj5evrq6ZNm6pz586ueenp6Tpy5IgiIiIkSS+++KI++eQTpaenKyUl5ZrLLyoq0owZM5Sfn68HH3zQNb1hw4Z6++235e3trdatW6tPnz5avXq1Bg8eLEl6/vnnXbW33Xab3nzzTXXq1ElnzpxR/fr1deTIEcXGxsrhcEj68bylMh988IGcTqf+93//VzabTZKUnp6uoKAgffbZZ+rZs2eVPisAFcMIEQCPWL58uerXr686derooYce0i9/+UtNnDixSstKTEzU+fPnddttt2nw4MFaunSp6wTtXbt2qbS0VC1btlT9+vVdr3Xr1umrr7666nLHjRun+vXrq27dupoyZYreeOMN9enTxzW/bdu28vb2dr0PDw93OySWmZmpRx55RE2bNlWDBg103333SfoxpEnS0KFD9f777+vOO+/Ub37zG7fzk7788ksdPHhQDRo0cPXcqFEjXbhw4Zp9A7h+jBAB8IgHHnhAc+fOld1uV0REhHx8ftr9eHl5yTAMt/qLz825VGRkpLKzs7Vq1SplZGTov//7vzVt2jStW7dOZ86ckbe3tzIzM93CiyTVr1//qj2OHTtWzz77rOrXr6/Q0FDXSE0ZX19ft/c2m01Op1OSdPbsWSUkJCghIUGLFi1SkyZNdOTIESUkJLgOeT300EP65ptv9I9//EMZGRnq0aOHkpOTNX36dJ05c0YdO3bUokWLLuurSZMmV+0bwPUjEAHwiHr16ql58+blzmvSpIm+//571/vS0lJlZWXpgQceuOLy/P399cgjj+iRRx5RcnKyWrdurV27dik2NlalpaXKzc1V9+7dK9Vj48aNr9jjtezbt08nTpzQG2+8ocjISEnStm3bLqtr0qSJBg4cqIEDB6p79+4aO3aspk+frrvuuksffPCBQkJCFBAQUKUeAFQdh8wAmO7BBx/U3//+d/3973/Xvn37NHToUJ06deqK9QsWLNA777yjrKwsHTp0SH/+85/l7++vqKgotWzZUklJSXrmmWf04Ycf6vDhw9qyZYsmT56sv//97zW2DU2bNpXdbtdbb72lQ4cOadmyZXr11Vfdal5++WX97W9/08GDB7V7924tX75cbdq0kSQlJSWpcePGeuyxx7RhwwYdPnxYn332mUaMGKFvv/22xvoG8CMCEQDTPf/88xo4cKCeeeYZ3XfffbrtttuuOjoUFBSk+fPnKy4uTh06dNCqVav08ccfKzg4WNKPJyM/88wzGjNmjFq1aqXHH39cW7duVdOmTWtsG5o0aaIFCxZoyZIliomJ0RtvvKHp06e71djtdo0fP14dOnTQvffeK29vb73//vuSpLp162r9+vVq2rSpnnjiCbVp00aDBg3ShQsXGDECPMBmXHrgHgAAwGIYIQIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJZHIAIAAJb3/wH0NAISptGWMAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "phases = (photon_times / freq) % 1\n", + "\n", + "profile, _ = np.histogram(phases, bins=np.linspace(0, 1, 17))\n", + "\n", + "mean = profile.mean()\n", + "for nsigma in range(1, 4):\n", + " plt.axhspan(mean - nsigma * np.sqrt(mean), mean + nsigma * np.sqrt(mean), alpha=0.5, color=\"red\")\n", + "plt.plot(profile, ds=\"steps-mid\", zorder=10)\n", + "plt.axhline(mean, ls=\":\")\n", + "plt.xlabel(\"Pulse Phase\")\n", + "plt.ylabel(\"Counts\")" + ] + }, + { + "cell_type": "markdown", + "id": "99e027ab", + "metadata": {}, + "source": [ + "Now, let us put the polarimetric information in the form of Stokes parameters in an `EventList` object." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "e2a4ad9b", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['counts', 'q', 'u']" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ev_polar = EventList(time=photon_times, gti=[[t0, t1]])\n", + "ev_polar.q = np.cos(2 * random_angles)\n", + "ev_polar.u = np.sin(2 * random_angles)\n", + "\n", + "ts_polar = ev_polar.to_binned_timeseries(dt=ts_dt, array_attrs=[\"q\", \"u\"])\n", + "ts_polar.array_attrs()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "98dfd14f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABSLElEQVR4nO3deXhTddr/8XdaaAstLSKUtQUERNksIktB2UQREEFHZBgVUGRGLQjD6CDoI65PnQdR8AcijiOMo4grMC6AiOyCsguoCKiUrSwqLS2lLc35/XHoEpq0SZpysnxe13WuJiffnNxJk5w739VmGIaBiIiISJAIszoAEREREV9SciMiIiJBRcmNiIiIBBUlNyIiIhJUlNyIiIhIUFFyIyIiIkFFyY2IiIgEFSU3IiIiElSU3IiIiEhQUXIjIiIiQSWkk5s1a9YwcOBAGjRogM1mY9GiRR4fwzAMXnjhBS6//HIiIyNp2LAhzz33nO+DFREREbdUsToAK2VnZ3PVVVdx7733ctttt3l1jHHjxvH555/zwgsv0LZtW3777Td+++03H0cqIiIi7rJp4UyTzWZj4cKFDB48uGhfbm4ujz32GO+88w6nTp2iTZs2/OMf/6Bnz54AfP/997Rr145du3bRsmVLawIXERERByHdLFWeMWPGsGHDBhYsWMC3337LkCFDuOmmm9i7dy8AH3/8MZdddhmffPIJTZs2pUmTJtx3332quREREbGQkhsX0tLSmDt3Lu+//z7XXXcdzZo14+GHH+baa69l7ty5APz0008cOHCA999/nzfffJN58+axZcsWbr/9doujFxERCV0h3eemLDt37qSgoIDLL7/cYX9ubi6XXnopAHa7ndzcXN58882icv/617/o0KEDe/bsUVOViIiIBZTcuJCVlUV4eDhbtmwhPDzc4baYmBgA6tevT5UqVRwSoCuvvBIwa36U3IiIiFx8Sm5caN++PQUFBRw/fpzrrrvOaZlu3bpx7tw59u/fT7NmzQD48ccfAWjcuPFFi1VERESKhfRoqaysLPbt2weYycyLL75Ir169qFWrFomJidx1112sX7+eadOm0b59e06cOMGKFSto164dAwYMwG6307FjR2JiYpg+fTp2u52UlBRiY2P5/PPPLX52IiIioSmkk5tVq1bRq1evUvtHjBjBvHnzyM/P59lnn+XNN9/k8OHD1K5dmy5duvDUU0/Rtm1bAI4cOcLYsWP5/PPPiY6Opl+/fkybNo1atWpd7KcjIiIihHhyIyIiIsFHQ8FFREQkqCi5ERERkaAScqOl7HY7R44coUaNGthsNqvDERERETcYhsHp06dp0KABYWFl182EXHJz5MgREhISrA5DREREvHDw4EEaNWpUZpmQS25q1KgBmC9ObGysxdGIiIiIOzIzM0lISCg6j5cl5JKbwqao2NhYJTciIiIBxp0uJSGX3EjwycvLY8aMGQCMGzeOiIgIiyMSERErhdw8N5mZmcTFxZGRkaGamyCRnZ1dtN5XVlYW0dHRFkckIiK+5sn5WzU3EvCqVKnCiBEjii6LiEho05lAAl5kZCTz5s2zOgwRESlHQUEB+fn5Lm+PiIgod5i3O5TciIiISKUyDIP09HROnTpVZrmwsDCaNm1a4b6TSm5ERESkUhUmNvHx8VSvXt3piKfCSXaPHj1KYmJihSbaVXIjAS87O5uGDRsCcPjwYXUoFhHxIwUFBUWJzaWXXlpm2Tp16nDkyBHOnTtH1apVvX5MJTcSFDIyMqwOQUREnCjsY1O9evVyyxY2RxUUFCi5kdBWrVo1fvzxx6LLIiLif9xpZvLVmo9KbiTghYWF0aJFC6vDEBERP1Hx8VYiIiIifkQ1NxLw8vPzee211wD485//XKF2WhERCXxKbiTg5eXlMWbMGABGjhyp5EZExA+5s9qTr1aEUrOUBLzw8HCuvPJ24HZWrw63OhwRESmh8AfnmTNnyi2bl5cHmN/rFaGaGwl4UVFRfP/9+wA88gj0729xQCIiUiQ8PJyaNWty/PhxgDIn8Ttx4gTVq1ev8DqBSm5ERESkUtWrVw+gKMFxJSwsrMKzE4OSGxEREalkNpuN+vXrEx8fr4UzRdxhtuOa89zY7XuB8mfBFBGRiy88PLzC/WncoeRGAp7Zu/5I4TUrQxERET+g5EYCXlRUFLANAJstytpgRETEcpYOBZ89ezbt2rUjNjaW2NhYkpOTWbJkicvy8+bNw2azOWzmiU1CmVnFmQQkYbNpKLiISKiztOamUaNGPP/887Ro0QLDMPj3v//NoEGD2LZtG61bt3Z6n9jYWPbs2VN03VeLbImIiEhwsDS5GThwoMP15557jtmzZ7Nx40aXyY3NZisaUiYCnO95/zYAdvudgGYoFhEJZX4zQ3FBQQELFiwgOzub5ORkl+WysrJo3LgxCQkJDBo0iN27d1/EKMUfmTNa3gPcg2HkWR2OiIhYzPIOxTt37iQ5OZmzZ88SExPDwoULadWqldOyLVu25I033qBdu3ZkZGTwwgsv0LVrV3bv3k2jRo2c3ic3N5fc3Nyi65mZmZXyPMQ6Zp+bwmmJ1edGRCTU2QxfrVLlpby8PNLS0sjIyOCDDz7g9ddfZ/Xq1S4TnJLy8/O58sorGTZsGM8884zTMk8++SRPPfVUqf0ZGRnExsZWOH7xD4Vdr668Er77ztpYRETE9zIzM4mLi3Pr/G15cnOhPn360KxZM+bMmeNW+SFDhlClShXeeecdp7c7q7lJSEhQchNklNyIiAQ3T5Ibv+lzU8hutzskI2UpKChg586d1K9f32WZyMjIoqHmhZuIiIgEL0v73EyaNIl+/fqRmJjI6dOnmT9/PqtWrWLZsmUADB8+nIYNG5KamgrA008/TZcuXWjevDmnTp1i6tSpHDhwgPvuu8/KpyEWM5dfuAoAu30HWn5BRCS0WZrcHD9+nOHDh3P06FHi4uJo164dy5Yt44YbbgAgLS3NYQGt33//ndGjR5Oens4ll1xChw4d+Oqrr9zqnyPBy2xZ3Vd4zcpQRETED/hdn5vK5kmbnQSGgoICqlTZCMAVV3Th++81YkpEJNh4cv62fCi4SEWZQ8G7AcUdi0VEJHT5XYdiERERkYpQzY0EvHPnzgELATCMW9HbWkQktOksIAHPnDrgDgAMIwu9rUVEQpvOAhLwzBF1PQqvWRmKiIj4ASU3EvCqVasGrAIgTLmNiEjI06lAREREgoqSGwkqoTVrk4iIOKPkRgJeTk4OkAQkYbfnWByNiIhYTX1uJODZ7XZgR+E1K0MRERE/oORGAl5UVBTwOQA2W5S1wYiIiOWU3EjAM5dfMBdb1fILIiKiPjciIiISVFRzIwHPXH5hGQCG0Re9rUVEQpvOAhLwzOUXbga0/IKIiOgsIEHAXH7hGgAMQy2tIiKhTsmNBDxz+YVNgJZfEBERdSiWIKPRUiIiouRGREREgoqSGwl45vIL3YBuWn5BRETU50YCn7n8wleF16wMRURE/ICSGwl4kZGRwEIAbLZIa4MRERHLKbmRgFelShVgMKAOxSIioj43EmQMw+oIRETEaqq5kYBXUFAArAXAMK4Dwi2NR0RErKXkRgLe2bNngV5A4fIL0ZbGIyIi1lJyIwHPZrMBrQqvWRmKiIj4ASU3EvCqV68O7Aa0/IKIiKhDsYiIiAQZJTciIiISVJTcSMAzl1+4AbhByy+IiIj63EjgM5df+AIAw9DyCyIioU7JjQQ8c/mFtwAtvyAiIkpuJAiYyy/cCWi0lIiIqM+NiIiIBBnV3EjAM5df2AqAYVyNll8QEQltltbczJ49m3bt2hEbG0tsbCzJycksWbKkzPu8//77XHHFFURFRdG2bVs+++yzixSt+Ctz+YVOQCcM46zV4YiIiMUsTW4aNWrE888/z5YtW9i8eTO9e/dm0KBB7N6922n5r776imHDhjFq1Ci2bdvG4MGDGTx4MLt27brIkYs/MZdfaHx+0/ILIiKhzmYYhmF1ECXVqlWLqVOnMmrUqFK3DR06lOzsbD755JOifV26dCEpKYlXX33VreNnZmYSFxdHRkYGsbGxPotbrGU7n9O0bAk//GBtLCIi4nuenL/9pkNxQUEBCxYsIDs7m+TkZKdlNmzYQJ8+fRz29e3blw0bNrg8bm5uLpmZmQ6bBC//StVFRMQKlic3O3fuJCYmhsjISO6//34WLlxIq1atnJZNT0+nbt26Dvvq1q1Lenq6y+OnpqYSFxdXtCUkJPg0fhEREfEvlic3LVu2ZPv27Xz99dc88MADjBgxgu+++85nx580aRIZGRlF28GDB312bPEPZofiwcBg7HZ1KBYRCXWWDwWPiIigefPmAHTo0IFNmzYxY8YM5syZU6psvXr1OHbsmMO+Y8eOUa9ePZfHj4yMPD+DrQQrcyj44sJrVoYiIiJ+wPKamwvZ7XZyc3Od3pacnMyKFSsc9i1fvtxlHx0JDREREcBrwGvYbBFWhyMiIhaztOZm0qRJ9OvXj8TERE6fPs38+fNZtWoVy5YtA2D48OE0bNiQ1NRUAMaNG0ePHj2YNm0aAwYMYMGCBWzevJnXXnvNyqchFqtatSowGigeNSUiIqHL0uTm+PHjDB8+nKNHjxIXF0e7du1YtmwZN9xwAwBpaWmElVgsqGvXrsyfP5/HH3+cyZMn06JFCxYtWkSbNm2segoiIiLiZ/xunpvKpnlugo/dbic8/HsAWrS4kh9/9LvWVhERqSBPzt+WdygWqaicnBzArL2z27OAaEvjERERaym5kSBR2+oARETETyi5kYAXHR0NnAAgTC1SIiIhT6cCCSoaLSUiIkpuREREJKgouZGAZy6/cCdwp5ZfEBERJTcS+MzlF+af37T8gohIqFOHYgl45vILLwFo+QUREVFyI4HPXH5hvNVhiIiIn1CzlIiIiAQV1dxIwLPb7UAaAIaRiHJ2EZHQpuRGAp65/EJTAAxDyy+IiIQ6JTcSJKpbHYCIiPgJJTcS8MzlF7IBLb8gIiLqnCAiIiJBRsmNiIiIBBUlNxLwcnNzgdHAaOz2XKvDERERiym5kYB37tw54HXgdQzjnNXhiIiIxdShWAKeOUPxswDYbFWtDUZERCyn5EYCnrm21GMA2GzWxiIiItZTs5QEFSU3IiKimhsJeIZhACfPX64NKMMREQllSm4k4J05cwaIB7T8goiIqFlKREREgoxqbiTgmcsvGID63IiIiGpuREREJMgouREREZGgouRGAp65/MJ4YDyGoeUXRERCnZIbCXjm8gszgBlafkFERNShWAKfufzCZEDLL4iIiJIbCQLm8gvPARotJSIiapYSERGRIKOaGwl45vILZwCw26uj5RdEREKbam4k4JnLL8QAMRjGGavDERERiym5ERERkaBiaXKTmppKx44dqVGjBvHx8QwePJg9e/aUeZ958+Zhs9kctqioqIsUsfij6tWrA1lAFjZbdavDERERi1ma3KxevZqUlBQ2btzI8uXLyc/P58YbbyQ7O7vM+8XGxnL06NGi7cCBAxcpYvFHNpsNcyXwaMLC1N9GRCTUWdqheOnSpQ7X582bR3x8PFu2bKF79+4u72ez2ahXr15lhyciIiIByK/63GRkZABQq1atMstlZWXRuHFjEhISGDRoELt3774Y4YmfysvLAx4DHsMw8qwOR0RELOY3yY3dbmf8+PF069aNNm3auCzXsmVL3njjDRYvXsxbb72F3W6na9euHDp0yGn53NxcMjMzHTYJLvn5+cD/Av+LYeRbHY6IiFjMb+a5SUlJYdeuXaxbt67McsnJySQnJxdd79q1K1deeSVz5szhmWeeKVU+NTWVp556yufxiv+oUqUKMA4Am81v3tIiImIRv6i5GTNmDJ988gkrV66kUaNGHt23atWqtG/fnn379jm9fdKkSWRkZBRtBw8e9EXI4kciIyOB6ee3SEtjERER61n6M9cwDMaOHcvChQtZtWoVTZs29fgYBQUF7Ny5k/79+zu9PTIy8vzJT0REREKBpclNSkoK8+fPZ/HixdSoUYP09HQA4uLiqFatGgDDhw+nYcOGpKamAvD000/TpUsXmjdvzqlTp5g6dSoHDhzgvvvus+x5iIiIiP+wNLmZPXs2AD179nTYP3fuXEaOHAlAWloaYWHFrWe///47o0ePJj09nUsuuYQOHTrw1Vdf0apVq4sVtvgZc16kGADs9izMOW9ERCRU2Qxz1cGQkZmZSVxcHBkZGcTGxlodjvhAdnY2MTFmctO0aRY//aTkRkQk2Hhy/tbQEgl45vILxwG0/IKIiCi5kcBnLr9Q5/xla2MRERHr+cVQcBERERFfUc2NBDxz+YWpANjtjwARlsYjIiLWUnIjAc9cfuFxAAxjPEpuRERCm5IbCXjm8gvmPEdafkFERHQmkIBnzkD9T0AdikVERB2KJcgouRERESU3IiIiElSU3EjAM5dfiAaisduzrQ5HREQspj43EiTOWB2AiIj4CSU3EvDMFeR/LrxmZSgiIuIHlNxIwDNXjW8CqEOxiIioz42IiIgEGa9qbn7++WfWrl3LgQMHOHPmDHXq1KF9+/YkJycTFRXl6xhFymTOUDwLAMNIAapaGo+IiFjLo+Tm7bffZsaMGWzevJm6devSoEEDqlWrxm+//cb+/fuJiorizjvvZOLEiTRu3LiyYhZxYK4t9VcADGM0Sm5EREKb28lN+/btiYiIYOTIkXz44YckJCQ43J6bm8uGDRtYsGAB11xzDa+88gpDhgzxecAiFwoPDwf+VHjNylBERMQP2AzDMNwpuGzZMvr27evWQX/99Vd++eUXOnToUKHgKkNmZiZxcXFkZGQQGxtrdTjiI4UdiS+7DPbvtzYWERHxPU/O327X3Lib2ABceumlXHrppW6XFxEREfEVr0dL7d+/n8cff5xhw4Zx/PhxAJYsWcLu3bt9FpyIp9yrhxQRkWDmVXKzevVq2rZty9dff81HH31EVlYWADt27GDKlCk+DVCkPObyC3WAOlp+QUREvEtuHn30UZ599lmWL19ORERE0f7evXuzceNGnwUn4r6T5zcREQl1Xs1zs3PnTubPn19qf3x8PCdP6gQjF5e5/MIuAGw2Lb8gIhLqvKq5qVmzJkePHi21f9u2bTRs2LDCQYl4wlx+oTXQGptNk26LiIQ6r84Ef/zjH5k4cSLp6enYbDbsdjvr16/n4YcfZvjw4b6OUcRtWltKRES8Sm7+93//lyuuuIKEhASysrJo1aoV3bt3p2vXrjz++OO+jlGkTObyC/8E/olh5FsdjoiIWMztSfycSUtLY9euXWRlZdG+fXtatGjhy9gqhSbxCz7Z2dnExMQA0KRJFj//HG1xRCIi4muVMomfM4mJiSQmJlbkECIVZi6/MAgAw9DyCyIioc6r5KagoIB58+axYsUKjh8/jt1ud7j9yy+/9ElwIu4wV6JfBECY+hOLiIQ8r5KbcePGMW/ePAYMGECbNm2wqReniIiI+AmvkpsFCxbw3nvv0b9/f1/HIyIiIlIhXlXiR0RE0Lx5c1/HIuKVM2fOAE2AJtjtZyyORkRErOZVcvO3v/2NGTNmUIGBViI+Y74PD5zf9J4UEQl1XjVLrVu3jpUrV7JkyRJat25N1apVHW7/6KOPfBKciDvMDsXfAGCzRVkbjIiIWM6r5KZmzZrceuutvo5FxCvmUPCOgGYoFhERL5ObuXPn+joOEZ9QS6mIiFRoVpATJ06wbt061q1bx4kTJzy+f2pqKh07dqRGjRrEx8czePBg9uzZU+793n//fa644gqioqJo27Ytn332mTfhS5A4d+4c8DbwNoZxzupwRETEYl4lN9nZ2dx7773Ur1+f7t270717dxo0aMCoUaPOj1xxz+rVq0lJSWHjxo0sX76c/Px8brzxRrKzs13e56uvvmLYsGGMGjWKbdu2MXjwYAYPHsyuXbu8eSoSBHJzc4G7gLswjFyrwxEREYt5tbbUX/7yF7744gtmzpxJt27dALOT8UMPPcQNN9zA7NmzvQrmxIkTxMfHs3r1arp37+60zNChQ8nOzuaTTz4p2telSxeSkpJ49dVXy30MrS0VfHJycqhe/RYAEhP/y4ED1SyOSEREfK3S15b68MMP+eCDD+jZs2fRvv79+1OtWjXuuOMOr5ObjIwMAGrVquWyzIYNG5gwYYLDvr59+7Jo0SKn5XNzc8//sjdlZmZ6FZv4r2rVqgHLAS2/ICIiXjZLnTlzhrp165baHx8f71GzVEl2u53x48fTrVs32rRp47Jcenp6qceuW7cu6enpTsunpqYSFxdXtCUkJHgVnwQGjZYSERGvkpvk5GSmTJnC2bNni/bl5OTw1FNPkZyc7FUgKSkp7Nq1iwULFnh1f1cmTZpERkZG0Xbw4EGfHl9ERET8i1fNUjNmzKBv3740atSIq666CoAdO3YQFRXFsmXLPD7emDFj+OSTT1izZg2NGjUqs2y9evU4duyYw75jx45Rr149p+UjIyOJjIz0OCYJHGZtoTnPjd2+CahuaTwiImItr2pu2rRpw969e0lNTSUpKYmkpCSef/559u7dS+vWrd0+jmEYjBkzhoULF/Lll1/StGnTcu+TnJzMihUrHPYtX77c6xojCXxmn/jvgO+0JIiIiHhXcwNQvXp1Ro8eXaEHT0lJYf78+SxevJgaNWoU9ZuJi4s730kUhg8fTsOGDUlNTQVg3Lhx9OjRg2nTpjFgwAAWLFjA5s2bee211yoUiwQuc/mFlYCWXxARkQokN3v37mXlypUcP34cu93ucNsTTzzh1jEKR1WVHHUF5gzII0eOBCAtLY2wEkNgunbtyvz583n88ceZPHkyLVq0YNGiRWV2QpbgZi6/0BNQh2IREfFynpt//vOfPPDAA9SuXZt69ephK3FGsdlsbN261adB+pLmuQlOhW/BJk3g558tDUVERCpBpc9z8+yzz/Lcc88xceJErwIU8SVz+QVzUkfDuJkKVEiKiEgQ8Oos8PvvvzNkyBBfxyLiFXOSRnOVesPIQsmNiEho82q01JAhQ/j88899HYuIV8w+WV3Pb5qiWEQk1Hn1E7d58+b8z//8Dxs3bqRt27ZUrVrV4faHHnrIJ8GJuMMcWbce0PILIiLiZYfisuajsdls/PTTTxUKqjKpQ3FwKuxQ3Lgx/PKLpaGIiEglqPQOxT9rOIqIiIj4KVXiS8DLycnBXH6hI3Z7jtXhiIiIxdxObp5//vnzJ5Hyff3113z66adeByXiCXMSyc3nN3s5pUVEJNi5ndx89913JCYm8uCDD7JkyRJOnDhRdNu5c+f49ttveeWVV+jatStDhw6lRo0alRKwyIXMhVE/AT7BZtMiqSIioc7tPjdvvvkmO3bsYObMmfzpT38iMzOT8PBwIiMjz6/KDO3bt+e+++5j5MiR59f7Eal8VapUAQYAWn5BRES8HC1lt9v59ttvOXDgADk5OdSuXZukpCRq165dGTH6lEZLBSctvyAiEtwqfbRUWFgYSUlJJCUleXN3EZ8qKCgAvgTAMHoD4ZbGIyIi1tI89RLwzp49C9wIgN2eBURbGo+IiFhLyY0EPHP5hasKr1kZioiI+AElNxLwzOUXtgNafkFERPQzV0RERIKMx8lNfn4+VapUYdeuXZURj4iIiEiFeJzcVK1alcTExPMjVESsZ86c3RPoqeUXRETEu2apxx57jMmTJ/Pbb7/5Oh4Rj5nLL6w+v2n5BRGRUOdVh+KZM2eyb98+GjRoQOPGjYmOdhx6u3XrVp8EJ+IOc/mF9wC0/IKIiHiX3AwePNjHYYh4z1x+YYjVYYiIiJ/wKrmZMmWKr+MQERER8Qmvh4KfOnWK119/nUmTJhX1vdm6dSuHDx/2WXAi7jA7t68H1mMY6uguIhLqvKq5+fbbb+nTpw9xcXH88ssvjB49mlq1avHRRx+RlpbGm2++6es4RVwyl1+4FgDD0PILIiKhzquamwkTJjBy5Ej27t1LVFRU0f7+/fuzZs0anwUn4g6bzQY0P7/ZLI5GRESs5lXNzaZNm5gzZ06p/Q0bNiQ9Pb3CQYl4onr16sBeQMsviIiIlzU3kZGRZGZmltr/448/UqdOnQoHJSIiIuItr5KbW265haeffpr8/HzAbBZIS0tj4sSJ/OEPf/BpgCKesKlVSkQk5HmV3EybNo2srCzi4+PJycmhR48eNG/enBo1avDcc8/5OkaRMpkdigcAA7Dbz1odjoiIWMyrPjdxcXEsX76cdevW8e2335KVlcXVV19Nnz59fB2fSLnMoeCfAWgouIiIeJfcnD17lqioKK699lquvfZaX8ck4pGIiAhgLgA2W4S1wYiIiOW8Sm5q1qxJp06d6NGjB7169SI5OZlq1ar5OjYRt1StWhUYCajPjYiIeNnn5osvvuCmm27i66+/5pZbbuGSSy7h2muv5bHHHmP58uW+jlFERETEbTbDMIyKHODcuXNF8968/fbb2O32830g/FNmZiZxcXFkZGQQGxtrdTjiAwUFBVSpshOAhIS2pKWFWxyRiIj4mifnb6+apcCc02bVqlVFW25uLjfffDM9e/b09pAiXjFHS7UHtPyCiIh42SzVsGFDunTpwtKlS+nSpQtLlizh5MmTLFy4kHHjxrl9nDVr1jBw4EAaNGiAzWZj0aJFZZZftWoVNput1KZZkUObufxCg/ObOt2IiIQ6r5KbOnXqcObMGdLT00lPT+fYsWPk5OR4fJzs7GyuuuoqZs2a5dH99uzZw9GjR4u2+Ph4jx9bgoe5/MJh4DA2W3WrwxEREYt51Sy1fft2Tp06xZo1a1i9ejWTJ0/mu+++IykpiV69erk9kV+/fv3o16+fx48fHx9PzZo1Pb6fiIiIBD+vlxmsWbMmt9xyC5MnT2bSpEncfvvtbNq0ieeff96X8TmVlJRE/fr1ueGGG1i/fn2ZZXNzc8nMzHTYREREJHh5ldx89NFHPPTQQ7Rr1466devywAMPkJWVxbRp09i6dauvYyxSv359Xn31VT788EM+/PBDEhIS6NmzZ5mPmZqaSlxcXNGWkJBQafGJNcwOxUOAIRiGll8QEQl1Xg0Fj4+Pp3v37vTs2ZMePXrQtm3bigdis7Fw4UIGDx7s0f169OhBYmIi//nPf5zenpubS25ubtH1zMxMEhISNBQ8iGRnZxMTEwNAw4ZZHDqk0VIiIsGm0oeCHz9+3KvAKkOnTp1Yt26dy9sjIyOJjIy8iBHJxWYuvzAT0PILIiJSgXluCgoKWLRoEd9//z0ArVq1YtCgQYSHX9wJ1LZv3079+vUv6mOKfzGXX0gBtPyCiIh4mdzs27eP/v37c/jwYVq2bAmYfVsSEhL49NNPadasmVvHycrKYt++fUXXf/75Z7Zv306tWrVITExk0qRJHD58mDfffBOA6dOn07RpU1q3bs3Zs2d5/fXX+fLLL/n888+9eRoShJTciIiIV8nNQw89RLNmzdi4cSO1atUC4Ndff+Wuu+7ioYce4tNPP3XrOJs3b6ZXr15F1ydMmADAiBEjmDdvHkePHiUtLa3o9ry8PP72t79x+PBhqlevTrt27fjiiy8cjiGhx263A/sBMIxmVGAQoIiIBAGvOhRHR0ezcePGUh2Jd+zYQbdu3cjKyvJZgL6mtaWCjzoUi4gEv0rvUBwZGcnp06dL7c/KyjrfuVPkYouzOgAREfETXtXf33zzzfz5z3/m66+/xjAMDMNg48aN3H///dxyyy2+jlGkTNHR0cAp4BRhYaq1EREJdV4lNy+//DLNmjUjOTmZqKgooqKi6NatG82bN2fGjBm+jlFERETEbV41S9WsWZPFixezb9++oqHgV155Jc2bN/dpcCIiIiKe8ii5sdvtTJ06lf/+97/k5eVx/fXXM2XKFKpVq1ZZ8YmUy5yB+i8AGMYcQJM2ioiEMo+apZ577jkmT55MTEwMDRs2ZMaMGaSkpFRWbCJuOXfuHPBv4N8YxjmrwxEREYt5VHPz5ptv8sorr/CXv5i/kr/44gsGDBjA66+/TliY5hYRa5gzFP8fADZbVWuDERERy3mU3KSlpdG/f/+i63369MFms3HkyBEaNWrk8+BE3GFOP/CI1WGIiIif8Ki65dy5c0RFRTnsq1q1Kvn5+T4NSkRERMRbHtXcGIbByJEjHVbZPnv2LPfff//5uUZMH330ke8iFCmHufzCUQAMoz5afkFEJLR5lNyMGDGi1L677rrLZ8GIeCMnJwcwm0UNIwvQRH4iIqHMo+Rm7ty5lRWHSAV5NWWTiIgEIZ0RJOCZTaJmvy8N2hMREZ0KREREJKgouZGgYrNZHYGIiFhNyY0EPHP5hRQgBbs91+pwRETEYkpuJOCZyy+8Aryi5RdEREQdiiXwmcsvTAG0/IKIiCi5kSBgLr/wJKA+NyIiomYpERERCTKquZGAZxgGkHH+chyg6hsRkVCm5EYC3pkzZ4BLAC2/ICIiapYSERGRIKOaGwl41atXB/LOX9NbWkQk1OlMIAHPZrMBVc9ftjYWERGxnpqlREREJKgouZGAl5eXBzwCPIJh5JVXXEREgpySGwl4+fn5wAvACxhGvtXhiIiIxdTnRgKeufzCw4CWXxARESU3EgTM5RemAupQLCIiapYSERGRIKOaGwl45vIL585froKWXxARCW2quZGAZy6/EAFEYBhnrA5HREQspuRGREREgoqapSTgmcsv/A6AzVbd2mBERMRySm4k4JnLL9Q8f9nSUERExA9Y2iy1Zs0aBg4cSIMGDbDZbCxatKjc+6xatYqrr76ayMhImjdvzrx58yo9ThEREQkcliY32dnZXHXVVcyaNcut8j///DMDBgygV69ebN++nfHjx3PfffexbNmySo5U/Jm5/MKTwJNafkFERLAZ5jhay9lsNhYuXMjgwYNdlpk4cSKffvopu3btKtr3xz/+kVOnTrF06VK3HiczM5O4uDgyMjKIjY2taNjiB7Kzs4mJiQGgfv0sjhyJtjgiERHxNU/O3wHV52bDhg306dPHYV/fvn0ZP368y/vk5uaSm5tbdD0zM7OywhOLVKlSBXiw8JqVoYiIiB8IqKHg6enp1K1b12Ff3bp1yczMJCcnx+l9UlNTiYuLK9oSEhIuRqhyEUVGRgKzgFnYbJFWhyMiIhYLqOTGG5MmTSIjI6NoO3jwoNUhiYiISCUKqDr8evXqcezYMYd9x44dIzY2lmrVqjm9T2Rk5Plf9iIiIhIKAqrmJjk5mRUrVjjsW758OcnJyRZFJP4gOzsbqApUxW7PtjocERGxmKXJTVZWFtu3b2f79u2AOdR7+/btpKWlAWaT0vDhw4vK33///fz000/8/e9/54cffuCVV17hvffe469//asV4YtfOUfh4pkiIhLaLG2W2rx5M7169Sq6PmHCBABGjBjBvHnzOHr0aFGiA9C0aVM+/fRT/vrXvzJjxgwaNWrE66+/Tt++fS967OI/zCbJQwDYbM6bJ0VEJHT4zTw3F4vmuQlOhcsuNGgAhw9bG4uIiPieJ+fvgOpzIyIiIlKegBotJeKMufzCDAAMYxwQYWk8IiJiLSU3EvDy8/OBvwNgGA+i5EZEJLQpuZGAZy6/MAIAm01vaRGRUKczgQQ8c5LGeUBxx2IREQld6lAsIiIiQUXJjYiIiAQVJTcS8MzlF2oCNbX8goiIqM+NBIsMAEJrSkoREXFGyY0EPHP5hR8BLb8gIiJKbiQIhIWFAS0AjZYSERH1uREREZEgo5obCXjmDMWvAWAYfwaqWhqPiIhYS8mNBDxzbakxABjGSJTciIiENiU3EvDCw8OB2wGw2cKtDUZERCyn5EYCXlRUFPA+oA7FIiKiDsUiIiISZJTciIiISFBRciMB78yZM0BDoCGGccbqcERExGLqcyMBzzAM4EiJyyIiEsqU3EjAMzsUbwPAZouyNhgREbGckhsJeOZQ8CRAo6VERER9bkRERCTIqOZGAp65/MLbABjGnWiGYhGR0KbkRgKeufzCPQDY7UNQciMiEtqU3EjAM/vc9Ae0/IKIiCi5kSBgjpb6FFCHYhERUYdiERERCTJKbkRERCSoKLmRgGcuv9ACaKHlF0RERH1uJPCZSy7sK3FZRERCmZIbCXhmh+J1gJZfEBERJTcSBMyh4N2sDkNERPyE+tyIiIhIUFHNjQS8c+fOAQvPX7sVva1FREKbX9TczJo1iyZNmhAVFUXnzp355ptvXJadN28eNpvNYTP7XEioys3NBe4A7sAwcq0OR0RELGb5T9x3332XCRMm8Oqrr9K5c2emT59O37592bNnD/Hx8U7vExsby549e4qu2zQtbUgLCwsDegBgs/lFvi4iIhay/Ezw4osvMnr0aO655x5atWrFq6++SvXq1XnjjTdc3sdms1GvXr2irW7duhcxYvE31apVA1YBq7DZqlkcjYiIWM3S5CYvL48tW7bQp0+fon1hYWH06dOHDRs2uLxfVlYWjRs3JiEhgUGDBrF7926XZXNzc8nMzHTYREREJHhZmtycPHmSgoKCUjUvdevWJT093el9WrZsyRtvvMHixYt56623sNvtdO3alUOHDjktn5qaSlxcXNGWkJDg8+chIiIi/sPyZilPJScnM3z4cJKSkujRowcfffQRderUYc6cOU7LT5o0iYyMjKLt4MGDFzliqWw5OTlAEpCE3Z5jcTQiImI1SzsU165dm/DwcI4dO+aw/9ixY9SrV8+tY1StWpX27duzb98+p7dHRkYSGRlZ4VjFf9ntdmBH4TUrQxERET9gac1NREQEHTp0YMWKFUX77HY7K1asIDk52a1jFBQUsHPnTurXr19ZYYqfM6cC+Pz8pmkBRERCneVDwSdMmMCIESO45ppr6NSpE9OnTyc7O5t77rkHgOHDh9OwYUNSU1MBePrpp+nSpQvNmzfn1KlTTJ06lQMHDnDfffdZ+TTEQubyCzcAoFkBRETE8uRm6NChnDhxgieeeIL09HSSkpJYunRpUSfjtLS08/OYmH7//XdGjx5Neno6l1xyCR06dOCrr76iVatWVj0FERER8SM2wzAMq4O4mDIzM4mLiyMjI4PY2FirwxEfOHfuHFWrLgMgPr4vx45ZnrOLiIiPeXL+1llAAp65/MLN569lobe1iEho01lAAp7ZbHlN4TUrQxERET+g5EYCnrn8wiZAHYpFREQ/c0VERCTIKLmRkPLDD9C7N6xaZXUkIiJSWdQsJQHPXH7BXHzVML4AXK8M/oc/wHffwcqVEFrjBEVEQodqbiTgmcsvfHV+K3v5hSNHLkZE3jEMM/HKz7c6EqlMBw+am4hUHiU3EvDMtcMWnt/KXkfMnzscv/EGtG5t1i5J4Ni8GV591b2awLw8SEw0t9zcyo9NJFQpuZGAV6VKFWAwMBibreyWVn9Obl580fz78cfWxiGe6dgRHngAPvqo/LKnThVfzsystJDEC3l50KkT3H+/1ZF4bts2uPxy+PBDqyPxH0pu/IjdDvfcA9OnWx2JWMGfEy9PrFkDd98Nx49bHcnFtWuXZ+WD5f8dLJYuhU2bYM4cqyPx3B/+AHv3wu23++Z4u3bB//t/cO6cb45nBXUo9iPLl8O8eebl8eOtjCSwFBQUAGsBMIzrgHBL4/FWZZ3sMjPN91a/flC9euU8Rkk9eph/8/Lg3Xcdb8vJMWPp3RtiYio/FhF3FRRYHYH3srN9e7y2bc2/NhuMGeO8zAcfwI8/wuTJvn1sX1HNjR85fdrqCALLxo3w5JOQmXkW6AX0wjDOlnkff/61XFmx3X67uaWkVM7xXfnpp9L7UlJg0CD4058ubiy+cvw4HD3q/f2DcYSeYcAf/wiPP251JOKNnTthyBBzMMOFtmxxfb8hQ+Cxx2D9+sqLrSKU3EjASk6Gp56CO+6wAa3Ob2VnCMGW3BiG+cvqf//XdZnly82/hbWCVpo71/zrj/2KsrPh9dfh2DHntxcUQN260KABnDlT8cdz9v/OyYH33oPff/fumK++CuPGuU6iFi50r2+QJzZuNGvonnvOt8e92Pz5u6EyXXutWQtz/fXe3d/V58VqSm78SKh+uCrqiy+qA7uB3dhsZbe7BNtrvGsXzJpl/oKywqFDcPKkb4518iT885/WdbQdNw5Gj4ZevZzfXnJ0k7df6GX9EgZ45BEYOhT69/fu+A88AC+/DKtXl74tKwtuu83sn5GV5fmxDxyAt94q3Q/jbNmVpR775Rfvk7uKCMZaNXcUft7S062Nw9eU3PgRfzrx5uRYHUHocfX/L+tk74saBG+dOgUJCVCnjm+Od/PN8Oc/w733lr7t8GGzs2dlKqzR+P778ssW/q/KOiHanUy5VLJ/grP7/uc/5t+NG8uPoSwlR2UVKvmZ9ubz3aSJ2VH8lVcc9/syKTh8GJo2hVq1Knact9+Gq682E6VQYOW5w1+TQiU3fsQfkpszZ8wvserVYe1aq6MxfxWuX++7zn5Wv8ZHjrhOVpzFNmUKxMWZzQmV7bffzD5M+/cXX//6a9fl9+zx7eMXPpaz4ayNGpnDdD0dkeQJT7+kDcOxKn/DBpgxw9y/aRPUrAkzZzrep+T/2Nnj+er96esTzubNxZe//NK3xy7pm298c5y77jKHR1/sfmbl8ddEwJVAi7ckJTd+4PffS//Ks+pNNXasWf0MZhW51f7wB7NNuKw+JZAD3ADcgGGU/ZPUyuTm+HFo2NBMVpxxFtvTT5t/L/ySfuUVuOIKeO0138U3erTZh+maa8zrzZtDly7mEFlnwnzw7VFQAD17uj+3yIYNFX9MVzz9zJ06ZS7jUWjZMnOU40cfwYgR5gCBsWM9e7zKfH96+51SUGDO5VPIbjef4yOPmJf96QQ4dao530shT5rffPnaOxu9lJNjfmZHjPDd4zhz+jT84x/FP1Kc2bvXbIY9dKjij2cYkJZmfnf40/QPSm4qid3uXpPBd9+ZVbAXduZavNh5+f/7P3j+edfHy8szf/n++qv7sZb05pve3a+yfPaZ+ff//b+yStmBL85vZS+/UNKZM65rUVavdj56wBnDgL//Hd55p+xy5fW32Lat7McoKSXFrDl54w33YnTHmjXm38ImjcJ+D646/5ZXC+GOtWvN19rduUUu5sl/9GgYNcrz47jTrOXs8cA/a24u7GPz8cfmj44XXvB95+QLGYZnJ8y//908cVtp4UJzmoMLf5B9/LE5dLqyv2P/+ld49FFo1851mWuvNftm3XZb2cdy5/1oGObUDk8+CXfc4VGolUrJTSXp0weio8vvpPWvf5l/V61yfCNd2AxhGGZHw4kTYdIk88Rz/Lj5KyU1tbjcU0+Zw3579vTFs7DOgQOOTRBlf1lHAm+d35wvv7B5szn8uGRH0Jo1zVqUC5PQn34yX7/Wrd2LdckS8xdjecObwysw/Y6z/htWmDXL7FRqtzsO9S7r/5Ob6/z2X38tPyG80MVKbn7/3Rw59cYbxR2mS95us7mO5auv3EtwnP1PfZWUlHecX34xR8iMHVt+k29Zr7mvO6FeGMvYseYItQvnS7pYjh71fB2wwoS4ZCd/u73sWjxvfPed8x9gb71l/i3rx3VhwlhePzZ33o+GUVxL5Kwju1WU3FSSwurq8qbDLvnFUdaXyMqV5hDRQnl55i+DvXvNTort2pnT98+fb97urG/CoUNwyy2wYoV7z8HXTp6E//63/FkvT50y+/0UTiQF5X3IqgB3nt+cz0vZsWPpE2nhApUXVt+625fEbjebU9wdAlulAlNm+kPV/4ED5rDzu++G+Hgz2S7kKvk6dcpMIJ0NM61d23Wz2htvmLN1X8wZUku+xiVPsoWXSz5Hu911UrBkifP92dmOzSQX/k8fesh5R+BChw7BtGmQkeG6jKtjX7ivUydznpKZM4tPhp4cq5Cvk80L+yjNmmX+nTz54n8G7HZz2H9iovuT5BmG8+bahQsda6CWLjU/T6tWmf9TT5/b2bPmj6/Wrc1m5JI/2iq6ZlnhMjCBTsmNH3H1RWEYMHJk6f15ecWXd+6Ev/2t9P1Kuu8+s2q0Tx/3Y/r117I/eIZR9hdySR07mhO4zZhhxv7ll6WHkebnw6WXOn+cQp99Bjfd5N5juqOwaccwzPbqkp0nXcnNNZOlOXPMX+qF0tJcf7mUrLnxpvNqeU6fNn+NF34RHzjg2VIe5T1Gyf/zhc2erpKbjz82X4+SfVPcMWqUOS/PggWO+z05mT7zjGdNAOU9/5LJzJVXmqN63FVQADVqwL59rh+v7KZX6NYNHn4Y/vIX9x/XHUeOlH27J/+7Q4fM1+bCJAXMWoLffiv7/q5++f/0k5loeNoMW5Hkq/DHD7hXQ2W3Q9euzrsEnDjheL1fP/MHXK9e5v/0k088i63khK/lNXd76sLzSHn84YeXM0puKplhFH8pfvih+eY/cMDs3zB2rOuqw5JvmL/8xf2q0ZL3u/xyx46aaWnFl/v1K//XyNdfm7+unQ3NLfTgg3DJJfDFF+XHVjgs88MPzQ/Q9deXTtrWrCm/un7AALPzZrECYNP5zfNhVdOnw+7d0KEDxMbCE0+UXf6HHyAqyhyRcaHGjc0hqM6UTG5KfnFC+V8Q7nyB3Hmn+Wu8sFq8Y0ez/b2kpUu9rw0p60Th7H+2ebPjScGbGbgvPFG4e7LassX8P3rSedPVa1z4mCVPrLm57j+fsWPh009LH9/Tk0Lh59dVzVBJR486/vg5exYGDnRe1tlghpkzi4ej9+vn+nFsNsfnMXGi+fm4sAlm2TKztuiyy8qPvWTMJaWnm+9tTzrBGoZZW+YqgTt2zOx74mxenZLPKz3drLV0ViN+9qz5Pk1LKz2Ev/A5lPe+dTabN5jJeZcuxfH//jt8+61vOvMHPSPEZGRkGICRkZFRqY9jfjQMY/hww4iMNIypU4v39etXfLnk9t//Fl+++27zOFu3Oi979KhhPPBA6f2JiaX3FbrySsf9qamGUVDgGHeVKs4fzxm7vfj2Ll3cf006d3Z97IULnT9+zZqlj1O8ZRnA+S3L+OUXw/jb3wyjb1/DOHPG1X0ct4ED3Xvey5aVfyxXr9f69cW35+Q43lZQ4Hj/nTsd465Vy7z+zDOGccMN7j2+q9uqVTOM334rHV/t2sVlduwovvzgg+bt27e7Pmbh61zW47ZrZxg2m3uvX+H20kuOr82MGc5f20IvvmgYI0YYxpIlZf8vCq1bZ37uDMN8XQrvc/x48eWWLQ1j6VL3XndPtgMHHGMp7z1UuD8qyjAmTzaMtWtdlwHDaNOmeP/Mma7jeOopx2P83/+59z4Cw3jlFcNYvrz4esnXaNcu8/4//lj+Z8NZ/Nde6/pxd+wo//5gGJdcUnz50KHS5a+6qvj2F190jDEnp/j6ZZcVX1650vzuy883jDvuKN7/9delH/+PfzSPNWdO2a/j9OlmObu9+LshJcWxzJYthlGjhnn5s8/ce4+NGVP8+S3rdXL1/05ONs9hP/xg3rZggWHMn+9Y7oUX3P//VpQn5+9KDsX/XOzkxtnWpYvz/RcmN3v2mCd1Z2WPHjWM++8vvT8hwfWX5BVXOP/wb95s3n72bNlv+guV/PK57LLi/XZ72a9Jp07Oj/3OO64fPy6urNc224DG57dsh9sKT4bufBGU97xLJnPlbYWvwY4d5hdbQYFhbNhQfHtWluOx8/Md7z91qmGcO1d8PTras+dRXtk77ij9/ymZ3JTc3EluCr/8ynvcsDDPXv+ICMOIj3fct3278/dXyce+7rriy3/9a+lk8sLy775rJg2F10smN4Wbr5ObX35xHsuF773jxw3j1lvLf3+WdYznnnMdx5QpxeX27vXsfVQyEbpwCw837z98eNkxlxW/q+3xxz2//7vvul/eMMyE3dXtixeX/r668CRf8livvVZ2bIXJTd++5utWMjkv3Bo3Lr48dqxn77Xjx91/3s72N2xoGNnZxdd//931MW64ofR721c8OX+rcsvHcnJg69ayyxiG8/0lqy4/+ghatnTdn2XwYHMdGXeOvXGj6ynSf/+9uOo+KspVxM6tW1d8ubBadedOc8bal192LFtyyLWrZpG773b9WK5eM1N14Jfzm+PyC75aLXfPHnNosLsKn8tVV5nNiu++6/j/vbApwNn1kgsR+nrV38Jh3554+23Xtz34oPexlCUvr/RQ4KQkxyYXZ0pOQPnSS+X3PRo61PE9Vvb7zTfKmyW4Xz8zjocf9n4Sx8LmT3ebFC9sXi5vaYV//tP1bYXN8VZPnFmo8Hl+843ZxFTeEg9ljVD85JPSn8myRp2524y0bJl5HGdNgSWbQT2dSLGiHfMPH3b8zJX1fbR8edldGS4WJTc+Vr262XfDGyVn53SnP4wzzr6Uk5PLn8/AE3v3XtjnxXT8uNkf5tdfiyeImjjR7GtTcq6UC5O/778358xw5wPo6SRRFf1iNQyzk+MVVxQP23fHhYnA9u2OX3DNmkGbNmanwn37nPd7KGs+o4pKTy/u+JyX595rP3Wq69u+/NK9qe59daJr2tQcaeKuffvM13TrVvP5pqWV/gKu6CgTT115ZdlJ2tKlZr+lw4e9f4yICPOzWJbC995bb5lrU5VUXv+e8pJMKP0///774olCL6bC78bOnc1RWBMmlF225MSFFzp3rvToR1fJjc3mXj+p8pR8HXfv9uy+drvZvzEhwft5gErO+VRe8v/ll9atEVekciqP/FdlN0u5U0XoqlnKF1tcnOf3ad26/NhPnDC3Tz91/7glq/l9sdnthvHtt57dJznZMHr08P4x+/f3/r4lX9NJk8w2c2flbrrJscoXDGPo0NLlfv3V/cd+/HH3yqWmGkZsrGE0a1Z+s1R5xyrsF+TL/3l5W2HfpPI+fzabYfTubV6++WbD6Nix7OOmp1+c+N1pzruwj1rJ7fXXzb+NGjk2a3uyPfqoYXz8sXf3bdKk7NsNwzDuucf5bfPnF/9vTp707L3z+ONm09CoUYbx3Xdms+6F/dYu3N5+27G58cLm8ZLbXXeVH8OFTU3PPOP9+6CwWaqsMq4+n+5she8TMIzu3V2Xc/UddeGWllZ+mZQUX59d1eemTP6Q3JT1ZWXFlphYfuwXdka2Yps82VUbf44Bg85vOZbHWbhd+JoWnlwv3Hr3NozTp62Pt1Yt17e524HR3c+AL7fC/k0rV/rumEePXpzY3e2rFKhbhw7ulRs+3LPXwFny/p//lH2fvn0r97nWq+f9fd3pG1injvX/z8LtwAH3yvmaJ+fvCkwrJsEiLc1ci6Qs7k4pX5lcry9VACwucdk/XBivq3byrVvN1bCtVlafgf793TvGjh2+icUTYWHmJJbffuu7YxqG745Vnq1bzcktg5G7c7CUnP/HHc8+W3pfWX32wHlTui9VZLbmceO8myrBKiUnlPVXNjNbDB2ZmZnExcWRkZFBbGysT4+9aBHcemv55Tp3Lnu1ZfFUPjDv/OWRQFXLIpHgcNNNrhcM9aUffjD7c4W65GRzMkx/6Xzsj+Lj/WthSnf4Orvw5PytmhsfciexkcpQFfBgKJNIOS5GYgPuzYYdCkLrJ7Z3Ai2xsZpGS1nA0ypYEQlOzma5DkUbN3q+QKVIWVRz4yOetLc6W3tEKsIOFHYKuhLl7CKBJzHR6ggkmCi58ZHyJruSypQDtDl/OQuItjAWERGxmpIbHwmknu7BqbbVAYiIiJ/wi/r7WbNm0aRJE6KioujcuTPflJyq14n333+fK664gqioKNq2bctnn312kSJ1zdlqsXKxRAMnzm+qtRERCXWWJzfvvvsuEyZMYMqUKWzdupWrrrqKvn37ctxF1/CvvvqKYcOGMWrUKLZt28bgwYMZPHgwuyzOLiIiLH14EREROc/yeW46d+5Mx44dmTlzJgB2u52EhATGjh3Lo48+Wqr80KFDyc7O5pNPPina16VLF5KSknjV2UqSF6iseW7++18YNMhnhxMREQloVs5zY2nNTV5eHlu2bKFPnz5F+8LCwujTpw8bNmxwep8NGzY4lAfo27evy/IXS3i4pQ8f4s4Cd57f1LNbRCTUWdqh+OTJkxQUFFC3bl2H/XXr1uWHH35wep/09HSn5dNdjMXOzc0lt8Ryv5mVtFRpw4aVclhxSwEw//zl16wMRCTohYeXvVSHCEC/ftY+vuV9bipbamoqcXFxRVtCQkKlPE5SEtQ+P2CnSgVTxpJroNx0E/TuDR07OpZZvLj48pgxMHSoZ49xYfkXX4SVK6FHD+jeHbp0Kf8YX30Fc+ZAixbwt7+5Lrd7N5w6BUOGwOWXw+23uy6blATdusG2bTByJFx/vePtJf99bdsWXooAXgJeIiIigkcfdT2N+6hRxZcbNHAdx623wssvQ0oKPP88DBwI69ZB166OZQYPNi9fcglcdx385z/wyiuOcfbtC61ama/Xu++6fkwwk+QOHczn/fDD0L694+1Nm5Z9/8LnGB0N1arBgw8W7x8zBqZNg/vucyx//fWONY/PPut+H7LkZHNdrOuvh1mz4J57YOxYc1K2kv79b/O1Gj8eWrc29z33HFxzTXGZsWPhf/6n+Prf/158uW9faN7cdRzDhzvfX9hUXLNm8Xve2XNr0cL5/adPhwEDiq8nJZn/4xUrHMtFRRVfvukm82/HjvDSS6Xfw+6oU8f5/ksvdb7/wAFo1sy83LevuaTDsGGOZaKjHeMsPF7NmrB2rdmE8PHH8MADrmPevx/OnYO33ip92/Dh5ue70PXXQ9Wqjp+Zslx9Ndx4Y+n90dHmcxo2rPT3UuEkiPv2mc/hQo0awdy5jp+bli2LL8fEmGvr/fWvEBdXdnyffQZt2hR/zxdq0gRSU0vvB3O9s2rViq9HRpp/b7sNfvzR/Ky7+q5t3hwmTnQdT82azveX/NxUq2Z+nv/4x5Lfl6arrzbfN8uWwWOPQadOkJ0N69c7luvRAyZMMP+P7do5f8xHH4W334bHHzevDxsGn37qOvaLwdI+N3l5eVSvXp0PPviAwYVnCWDEiBGcOnWKxSXP4OclJiYyYcIExo8fX7RvypQpLFq0iB1OVu1zVnOTkJBQKWtLiYiISOUImD43ERERdOjQgRUlfgbZ7XZWrFhBcnKy0/skJyc7lAdYvny5y/KRkZHExsY6bCIiIhK8LJ/Eb8KECYwYMYJrrrmGTp06MX36dLKzs7nnnnsAGD58OA0bNiQ1NRWAcePG0aNHD6ZNm8aAAQNYsGABmzdv5rXX1NciVNntdtLS0gCzZi8sLOhbW0VEpAyWJzdDhw7lxIkTPPHEE6Snp5OUlMTSpUuLOg2npaU5nKy6du3K/Pnzefzxx5k8eTItWrRg0aJFtGnTxtVDSJDLycmh6flG9aysLKKjNZGfiEgos3yem4utsua5EetkZ2cTHx8PwPHjx5XciIgEIU/O35bX3IhUVHR0NNnZ2VaHISIifkKdE0RERCSoKLkRERGRoKLkRgJebm4uo0ePZvTo0Q5zGomISGhSh2IJeNnZ2cTExAAaLSUiEqzUoVhCStWqVXn22WeLLouISGhTzY2IiIj4vYBZfkFERETE19QsJQHPMAxOnjwJQO3atbG5WhJcRERCgpIbCXhnzpwpmqFYHYpFRCTkkpvCLkaZmZkWRyK+UnJ24szMTAoKCiyMRkREKkPhedudrsIhl9ycPn0agISEBIsjkcrQoEEDq0MQEZFKdPr0aeLi4sosE3Kjpex2O0eOHKFGjRo+75uRmZlJQkICBw8e1EgsD+m1qxi9fhWj1897eu0qRq+f+wzD4PTp0zRo0ICwsLLHQ4VczU1YWBiNGjWq1MeIjY3Vm9RLeu0qRq9fxej1855eu4rR6+ee8mpsCmkouIiIiAQVJTciIiISVJTc+FBkZCRTpkwhMjLS6lACjl67itHrVzF6/byn165i9PpVjpDrUCwiIiLBTTU3IiIiElSU3IiIiEhQUXIjIiIiQUXJjY/MmjWLJk2aEBUVRefOnfnmm2+sDilgrFmzhoEDB9KgQQNsNhuLFi2yOqSAkZqaSseOHalRowbx8fEMHjyYPXv2WB1WQJg9ezbt2rUrml8kOTmZJUuWWB1WwHr++eex2WyMHz/e6lACwpNPPonNZnPYrrjiCqvDChpKbnzg3XffZcKECUyZMoWtW7dy1VVX0bdvX44fP251aAEhOzubq666ilmzZlkdSsBZvXo1KSkpbNy4keXLl5Ofn8+NN97osN6WONeoUSOef/55tmzZwubNm+nduzeDBg1i9+7dVocWcDZt2sScOXNo166d1aEElNatW3P06NGibd26dVaHFDQ0WsoHOnfuTMeOHZk5cyZgLvGQkJDA2LFjefTRRy2OLrDYbDYWLlzI4MGDrQ4lIJ04cYL4+HhWr15N9+7drQ4n4NSqVYupU6cyatQoq0MJGFlZWVx99dW88sorPPvssyQlJTF9+nSrw/J7Tz75JIsWLWL79u1WhxKUVHNTQXl5eWzZsoU+ffoU7QsLC6NPnz5s2LDBwsgkFGVkZADmSVrcV1BQwIIFC8jOziY5OdnqcAJKSkoKAwYMcPgOFPfs3buXBg0acNlll3HnnXeSlpZmdUhBI+TWlvK1kydPUlBQQN26dR32161blx9++MGiqCQU2e12xo8fT7du3WjTpo3V4QSEnTt3kpyczNmzZ4mJiWHhwoW0atXK6rACxoIFC9i6dSubNm2yOpSA07lzZ+bNm0fLli05evQoTz31FNdddx27du2iRo0aVocX8JTciASJlJQUdu3apXZ7D7Rs2ZLt27eTkZHBBx98wIgRI1i9erUSHDccPHiQcePGsXz5cqKioqwOJ+D069ev6HK7du3o3LkzjRs35r333lOzqA8ouamg2rVrEx4ezrFjxxz2Hzt2jHr16lkUlYSaMWPG8Mknn7BmzZpKX/U+mERERNC8eXMAOnTowKZNm5gxYwZz5syxODL/t2XLFo4fP87VV19dtK+goIA1a9Ywc+ZMcnNzCQ8PtzDCwFKzZk0uv/xy9u3bZ3UoQUF9biooIiKCDh06sGLFiqJ9drudFStWqO1eKp1hGIwZM4aFCxfy5Zdf0rRpU6tDCmh2u53c3FyrwwgI119/PTt37mT79u1F2zXXXMOdd97J9u3bldh4KCsri/3791O/fn2rQwkKqrnxgQkTJjBixAiuueYaOnXqxPTp08nOzuaee+6xOrSAkJWV5fBr5eeff2b79u3UqlWLxMRECyPzfykpKcyfP5/FixdTo0YN0tPTAYiLi6NatWoWR+ffJk2aRL9+/UhMTOT06dPMnz+fVatWsWzZMqtDCwg1atQo1bcrOjqaSy+9VH2+3PDwww8zcOBAGjduzJEjR5gyZQrh4eEMGzbM6tCCgpIbHxg6dCgnTpzgiSeeID09naSkJJYuXVqqk7E4t3nzZnr16lV0fcKECQCMGDGCefPmWRRVYJg9ezYAPXv2dNg/d+5cRo4cefEDCiDHjx9n+PDhHD16lLi4ONq1a8eyZcu44YYbrA5NQsChQ4cYNmwYv/76K3Xq1OHaa69l48aN1KlTx+rQgoLmuREREZGgoj43IiIiElSU3IiIiEhQUXIjIiIiQUXJjYiIiAQVJTciIiISVJTciIiISFBRciMiIiJBRcmNiIiIBBUlNyIiXsjLy6N58+Z89dVXPj3u0qVLSUpKwm63+/S4IqFEyY2IMHLkSGw2W6lNKxS79uqrr9K0aVO6du1atM9ms7Fo0aJSZUeOHMngwYPdOu5NN91E1apVefvtt30UqUjoUXIjIoB5Uj169KjD5myV8by8PAui8y+GYTBz5kxGjRpVKccfOXIkL7/8cqUcWyQUKLkREQAiIyOpV6+ewxYeHk7Pnj0ZM2YM48ePp3bt2vTt2xeAXbt20a9fP2JiYqhbty533303J0+eLDpednY2w4cPJyYmhvr16zNt2jR69uzJ+PHji8o4q+moWbOmw4KpBw8e5I477qBmzZrUqlWLQYMG8csvvxTdXlgr8sILL1C/fn0uvfRSUlJSyM/PLyqTm5vLxIkTSUhIIDIykubNm/Ovf/0LwzBo3rw5L7zwgkMM27dvL7PmasuWLezfv58BAwZ4+CrDL7/84rSWrOTipwMHDmTz5s3s37/f4+OLiJIbEXHDv//9byIiIli/fj2vvvoqp06donfv3rRv357NmzezdOlSjh07xh133FF0n0ceeYTVq1ezePFiPv/8c1atWsXWrVs9etz8/Hz69u1LjRo1WLt2LevXrycmJoabbrrJoQZp5cqV7N+/n5UrV/Lvf/+befPmOSRIw4cP55133uHll1/m+++/Z86cOcTExGCz2bj33nuZO3euw+POnTuX7t2707x5c6dxrV27lssvv5waNWp49HwAEhISHGrHtm3bxqWXXkr37t2LyiQmJlK3bl3Wrl3r8fFFBDBEJOSNGDHCCA8PN6Kjo4u222+/3TAMw+jRo4fRvn17h/LPPPOMceONNzrsO3jwoAEYe/bsMU6fPm1EREQY7733XtHtv/76q1GtWjVj3LhxRfsAY+HChQ7HiYuLM+bOnWsYhmH85z//MVq2bGnY7fai23Nzc41q1aoZy5YtK4q9cePGxrlz54rKDBkyxBg6dKhhGIaxZ88eAzCWL1/u9LkfPnzYCA8PN77++mvDMAwjLy/PqF27tjFv3jyXr9e4ceOM3r17l9oPGFFRUQ6vY3R0tFGlShVj0KBBpcrn5OQYnTt3Nm6++WajoKDA4bb27dsbTz75pMsYRMS1KtamViLiL3r16sXs2bOLrkdHRxdd7tChg0PZHTt2sHLlSmJiYkodZ//+/eTk5JCXl0fnzp2L9teqVYuWLVt6FNOOHTvYt29fqRqSs2fPOjTZtG7dmvDw8KLr9evXZ+fOnYDZxBQeHk6PHj2cPkaDBg0YMGAAb7zxBp06deLjjz8mNzeXIUOGuIwrJyeHqKgop7e99NJL9OnTx2HfxIkTKSgoKFX23nvv5fTp0yxfvpywMMeK9GrVqnHmzBmXMYiIa0puRAQwkxlXzTAlEx2ArKwsBg4cyD/+8Y9SZevXr+/2KCubzYZhGA77SvaVycrKokOHDk5HDtWpU6foctWqVUsdt3AodbVq1cqN47777uPuu+/mpZdeYu7cuQwdOpTq1au7LF+7du2i5OlC9erVK/U61qhRg1OnTjnse/bZZ1m2bBnffPON0+at3377zeE5ioj7lNyIiMeuvvpqPvzwQ5o0aUKVKqW/Rpo1a0bVqlX5+uuvSUxMBOD333/nxx9/dKhBqVOnDkePHi26vnfvXofaiquvvpp3332X+Ph4YmNjvYq1bdu22O12Vq9eXapGpVD//v2Jjo5m9uzZLF26lDVr1pR5zPbt2zN79mwMw8Bms3kc04cffsjTTz/NkiVLaNasWanbC2um2rdv7/GxRUQdikXECykpKfz2228MGzaMTZs2sX//fpYtW8Y999xDQUEBMTExjBo1ikceeYQvv/ySXbt2MXLkyFJNL71792bmzJls27aNzZs3c//99zvUwtx5553Url2bQYMGsXbtWn7++WdWrVrFQw89xKFDh9yKtUmTJowYMYJ7772XRYsWFR3jvffeKyoTHh7OyJEjmTRpEi1atCA5ObnMY/bq1YusrCx2797twatm2rVrF8OHD2fixIm0bt2a9PR00tPT+e2334rKbNy4kcjIyHLjEBHnlNyIiMcaNGjA+vXrKSgo4MYbb6Rt27aMHz+emjVrFiUwU6dO5brrrmPgwIH06dOHa6+9tlTfnWnTppGQkMB1113Hn/70Jx5++GGH5qDq1auzZs0aEhMTue2227jyyisZNWoUZ8+e9agmZ/bs2dx+++08+OCDXHHFFYwePZrs7GyHMqNGjSIvL4977rmn3ONdeuml3HrrrV5NtLd582bOnDnDs88+S/369Yu22267rajMO++8w5133llm05iIuGYzLmzwFhGpJD179iQpKYnp06dbHUopa9eu5frrr+fgwYPUrVu33PLffvstN9xwA/v373fasdpbJ0+epGXLlmzevNnpJIoiUj7V3IhISMvNzeXQoUM8+eSTDBkyxK3EBqBdu3b84x//4Oeff/ZpPL/88guvvPKKEhuRClCHYhEJae+88w6jRo0iKSmJN99806P7jhw50ufxXHPNNVxzzTU+P65IKFGzlIiIiAQVNUuJiIhIUFFyIyIiIkFFyY2IiIgEFSU3IiIiElSU3IiIiEhQUXIjIiIiQUXJjYiIiAQVJTciIiISVJTciIiISFD5/8TYZJMlyO9RAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr=\"q\").plot()\n", + "ax.axvline(freq, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "d6988516", + "metadata": {}, + "source": [ + "A pulsation in the Q Stokes parameter! Let us see the U parameter:" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "844eda9e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHACAYAAABeV0mSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABQB0lEQVR4nO3deXgT1foH8G9aum8IpaWFFviBIrK1rJa1KIqACC7IRZQWEeVaFOTqRVxAFEUvoOBl9aJUvLKpLFdUFlkKIiD7orJVoAgtFJCWbumS+f1xmjZps3fSySTfz/PkaTKZTN6kk8ybM+ecVyNJkgQiIiIiN+GldABEREREcmJyQ0RERG6FyQ0RERG5FSY3RERE5FaY3BAREZFbYXJDREREboXJDREREbkVJjdERETkVpjcEBERkVthckNERERuxaOTm507d2LQoEGIjo6GRqPBunXr7N6GJEmYNWsW7rjjDvj5+aFRo0Z499135Q+WiIiIbFJH6QCUlJ+fj/bt2+Ppp5/GI4884tA2xo8fj82bN2PWrFlo27Ytbty4gRs3bsgcKREREdlKw8KZgkajwdq1azFkyJCKZVqtFq+//jpWrFiBmzdvok2bNvjggw+QmJgIAPj999/Rrl07nDhxAi1btlQmcCIiIjLi0aelrBk3bhz27NmDlStX4tixYxg6dCgeeOABnDlzBgDw7bff4v/+7/+wYcMGNGvWDE2bNsUzzzzDlhsiIiIFMbkxIyMjA0uXLsVXX32Fnj17onnz5nj55ZfRo0cPLF26FADwxx9/4MKFC/jqq6+wbNkypKam4uDBg3jssccUjp6IiMhzeXSfG0uOHz+OsrIy3HHHHUbLtVot6tevDwDQ6XTQarVYtmxZxXqffvopOnbsiFOnTvFUFRERkQKY3JiRl5cHb29vHDx4EN7e3kb3BQcHAwCioqJQp04dowSoVatWAETLD5MbIiKi2sfkxoz4+HiUlZXh6tWr6Nmzp8l1unfvjtLSUqSnp6N58+YAgNOnTwMAmjRpUmuxEhERUSWPHi2Vl5eHs2fPAhDJzIcffog+ffqgXr16iI2NxZNPPondu3dj9uzZiI+PR3Z2NrZu3Yp27dph4MCB0Ol06Ny5M4KDgzFnzhzodDqkpKQgNDQUmzdvVvjVEREReSaPTm527NiBPn36VFuelJSE1NRUlJSUYPr06Vi2bBkuXbqE8PBw3H333Zg2bRratm0LALh8+TJeeOEFbN68GUFBQejfvz9mz56NevXq1fbLISIiInh4ckNERETuh0PBiYiIyK0wuSEiIiK34nGjpXQ6HS5fvoyQkBBoNBqlwyEiIiIbSJKEW7duITo6Gl5elttmPC65uXz5MmJiYpQOg4iIiBxw8eJFNG7c2OI6HpfchISEABBvTmhoqMLREBERkS1yc3MRExNTcRy3xOOSG/2pqNDQUCY3REREKmNLlxKPS27I/RQXF2Pu3LkAgPHjx8PX11fhiIiISEkeN89Nbm4uwsLCkJOTw5YbN5Gfn19R7ysvLw9BQUEKR0RERHKz5/jNlhtSvTp16iApKaniOhEReTYeCUj1/Pz8kJqaqnQYRERkRVlZGUpKSsze7+vra3WYty2Y3BAREZFTSZKErKws3Lx50+J6Xl5eaNasWY37TjK5ISIiIqfSJzYREREIDAw0OeJJP8luZmYmYmNjazTRLpMbUr38/Hw0atQIAHDp0iV2KCYiciFlZWUViU39+vUtrtugQQNcvnwZpaWl8PHxcfg5mdyQW8jJyVE6BCIiMkHfxyYwMNDquvrTUWVlZUxuyLMFBATg9OnTFdeJiMj12HKaSa6aj0xuSPW8vLxw++23Kx0GERG5iJqPtyIiIiJyIWy5IdUrKSnBJ598AgB49tlna3SeloiI1I/JDalecXExxo0bBwBITk5mckNE5IJsqfYkV0UonpYi1fP29karVo8BeAxpad5Kh0NERAb0PzgLCgqsrltcXAxAfK/XBFtuSPX8/f3x++9fAQBeeQUYMEDhgIiIqIK3tzfq1q2Lq1evAoDFSfyys7MRGBhY4zqBTG6IiIjIqRo2bAgAFQmOOV5eXjWenRhgckNEREROptFoEBUVhYiICBbOJLKFOI8r5rnR6c4AsD4LJhER1T5vb+8a96exBZMbUj3Ru/6y/paSoRARkQtgckOq5+/vD+AwAECj8Vc2GCIiUhyTG1I90cQZBwCQqSwJERGpGOe5ISIiIrfClhtSPdHz/ksAgE43AgBnKCYi8mRMbkj1xIyWowAAkjQUTG6IiDwbkxtSPdHnRj8tMcsvEBF5OiY3pHpitNR3AAAZ5n4iIiKV46GAiIiI3AqTGyIiInIrTG5I9SrLL9wOna5A6XCIiEhh7HNDqifKL5zV31IyFCIicgFMbkj1RIfinwCw/AIRETG5ITcghoJ3B8DyC0RExD43RERE5GbYckOqV1paCmAtAECSHgZ3ayIiz8ajAKmeVqsF8DgAQJLywN2aiMiz8ShAqufl5QWgt/6WkqEQEZELYHJDqhcQEABgBwCWXyAiIv7MJSIiIjfD5IbcisQ5/IiIPB6TG1K9wsJCAHEA4qDTFSocDRERKY19bkj1dDodgKP6W0qGQkRELoDJDameKL+wGQDLLxAREZMbcgOi/MJ9AFh+gYiI2OeGiIiI3Axbbkj1RPmFTQAASeoH7tZERJ5N0ZabGTNmoHPnzggJCUFERASGDBmCU6dOWX3cV199hTvvvBP+/v5o27Ytvv/++1qIllyVKL/wIIAHIUlapcMhIiKFKZrcpKWlISUlBXv37sWWLVtQUlKC+++/H/n5+WYf8/PPP2P48OEYPXo0Dh8+jCFDhmDIkCE4ceJELUZOrkSUX+hUfuGZViIiT6eRJNeZ9iw7OxsRERFIS0tDr169TK4zbNgw5OfnY8OGDRXL7r77bsTFxWHRokVWnyM3NxdhYWHIyclBaGiobLGTsvQdie+8E/j9d2VjISIi+dlz/Hapn7k5OTkAgHr16pldZ8+ePejbt6/Rsn79+mHPnj0m19dqtcjNzTW6EBERkftymeRGp9NhwoQJ6N69O9q0aWN2vaysLERGRhoti4yMRFZWlsn1Z8yYgbCwsIpLTEyMrHETERGRa3GZ5CYlJQUnTpzAypUrZd3u5MmTkZOTU3G5ePGirNsn5YnyC90BdGf5BSIico0xs+PGjcOGDRuwc+dONG7c2OK6DRs2xJUrV4yWXblyBQ0bNjS5vp+fH/z8/GSLlVyPKL/ws/6WkqEQEZELULTlRpIkjBs3DmvXrsW2bdvQrFkzq49JSEjA1q1bjZZt2bIFCQkJzgqTXJxIXtcCWAuNhoksEZGnU7TlJiUlBcuXL8f69esREhJS0W8mLCwMAQEBAICRI0eiUaNGmDFjBgBg/Pjx6N27N2bPno2BAwdi5cqVOHDgAD755BPFXgcpq06dOgCGAGD5BSIiUrjlZuHChcjJyUFiYiKioqIqLqtWrapYJyMjA5mZmRW3u3XrhuXLl+OTTz5B+/bt8fXXX2PdunUWOyGT53CdiQ2IiEgpLjXPTW3gPDfup6ysDHXq7AIA3HFHT5w65a1wREREJDd7jt8u0aGYqCaKiooA9AEASFIegCBF4yEiImUxuSHV02g0AO7S31IyFCIicgFMbkj1AgMDAfwKAPBymZmbiIhIKTwUEBERkVthckNERERuhckNqZ4ov3AfgPtYfoGIiNjnhtRPlF/4UX9LyVCIiMgFMLkh1RPlF/4LACy/QERETG5I/UT5hREAWH6BiIjY54aIiIjcDFtuSPXKysoAHAIASFIHACy/QETkyZjckOqJ8gtdALD8AhERMbkhNyDKLzTR31IyFCIicgFMbkj1RPmF8wBYfoGIiNihmIiIiNwMkxtyK5KkdARERKQ0JjekeqJD8RAAQ6DTFSkcDRERKY19bkj1xFDw9fpbSoZCREQugMkNqZ6vry+ATwAAGo2vssEQEZHimNyQ6vn4+AAYA4DlF4iIiH1uiIiIyM2w5YZUT6fTAfi9/FYrMGcnIvJsTG5I9QoLCwG0AcDyC0RExOSG3EY4AM5zQ0RETG7IDQQFBQHIBsDyC0RExM4JRERE5GaY3BAREZFbYXJDqifKL4wAMILlF4iIiMkNqZ8ov7C8/MLyC0REno4dikn1RPmFjwCw/AIRETG5ITcgyi9MAMDyC0RExNNS5GY4zw0REbHlhlRPlF/IAABIUiyYsxMReTYmN6R6ovxCMwAsv0BERExuyG0EKh0AERG5CCY3pHqi/EI+AJZfICIidk4gIiIiN8PkhtwKh4ITERGTG1I9rVYLYAyAMdDptEqHQ0RECmNyQ6pXWloKYAmAJZCkUqXDISIihbFDMamemKF4OgBAo/FRNhgiIlIckxtSPVFb6nUA7HNDREQ8LUVERERuhi03pHqSJAG4Vn49HACbb4iIPBmTG1K9goICABEAWH6BiIh4WoqIiIjcDFtuSPVE+QUJAMsvEBERW27IzUiS0hEQEZHSmNwQERGRW2FyQ6onyi9MADABksTyC0REno7JDameKL8wF8Bcll8gIiJ2KCb1E+UXXgPA8gtERMTkhtyAKL/wLgCWXyAiIp6WIjfD5IaIiNhyQ6onyi8UlF8PBMsvEBF5NrbckOqJ8gvBAIKh0xUoHQ4RESmMyQ0RERG5FZ6WItULDAwEkAcA0GgClQ2GiIgUx+SGVE+j0UBfCZwdiomIiKeliIiIyK0wuSHVKy4uBvA6gNchScVKh0NERApjckOqV1JSAuA9AO9BkkqUDoeIiBTGPjekenXq1AEwHgCg0XCXJiLydDwSkOr5+fkBmKN0GERE5CIUPS21c+dODBo0CNHR0dBoNFi3bp3F9Xfs2AGNRlPtkpWVVTsBExERkctTNLnJz89H+/btMX/+fLsed+rUKWRmZlZcIiIinBQhERERqY2ip6X69++P/v372/24iIgI1K1bV/6ASJXy8/Mhyi8AOl0e9HPeEBGRZ1LlaKm4uDhERUXhvvvuw+7du5UOh4iIiFyIqjoUR0VFYdGiRejUqRO0Wi2WLFmCxMRE7Nu3Dx06dDD5GK1WC61WW3E7Nze3tsKlWiLKL1wFwPILRESksuSmZcuWaNmyZcXtbt26IT09HR999BG++OILk4+ZMWMGpk2bVlshkgJE+YUGAAAvVbZFEhGRnFR/KOjSpQvOnj1r9v7JkycjJyen4nLx4sVajI6IiIhqm6pabkw5cuQIoqKizN7v5+dXPg8KuStRfmEmAECSXgHgq2g8RESkLEWTm7y8PKNWl3PnzuHIkSOoV68eYmNjMXnyZFy6dAnLli0DAMyZMwfNmjVD69atUVRUhCVLlmDbtm3YvHmzUi+BXIAov/AGAECnmwAmN0REnk3R5ObAgQPo06dPxe2JEycCAJKSkpCamorMzExkZGRU3F9cXIx//OMfuHTpEgIDA9GuXTv8+OOPRtsgzyPKLzwDgOUXiIgI0EiSJCkdRG3Kzc1FWFgYcnJyEBoaqnQ4JBONRvxt3hyw0AWLiIhUyp7jt+o7FBMREREZYnJDREREboXJDameKL8QBCAIOl2+0uEQEZHC2PuS3ESB0gEQEZGLYHJDqhcQEADgHABAowlQNhgiIlIckxtSPS8vLwBNlQ6DiIhcBPvcEBERkVtxqOXm3Llz2LVrFy5cuICCggI0aNAA8fHxSEhIgL+/v9wxElkkZiieDwCQpBQAPorGQ0REyrIrufnyyy8xd+5cHDhwAJGRkYiOjkZAQABu3LiB9PR0+Pv7Y8SIEZg0aRKaNGnirJiJjIjaUi8BACRpDJjcEBF5NpuTm/j4ePj6+iI5ORnffPMNYmJijO7XarXYs2cPVq5ciU6dOmHBggUYOnSo7AETVeXt7Q3gCQCARuOtbDBERKQ4m8svbNq0Cf369bNpo9evX8f58+fRsWPHGgXnDCy/4J5YfoGIyL3Zc/y2ueXG1sQGAOrXr4/69evbvD4RERGRXBweLZWeno433ngDw4cPx9WrVwEAP/zwA3799VfZgiMiIiKyl0PJTVpaGtq2bYt9+/ZhzZo1yMvLAwAcPXoUU6dOlTVAImtE+YUGABqgrIzlF4iIPJ1Dyc2rr76K6dOnY8uWLfD19a1Yfs8992Dv3r2yBUdku2vlFyIi8nQOzXNz/PhxLF++vNryiIgIXLvGAwzVLlF+4QQAll8gIiIHW27q1q2LzMzMassPHz6MRo0a1TgoInuI8gutAbSGRsNJt4mIPJ1DR4K//e1vmDRpErKysqDRaKDT6bB79268/PLLGDlypNwxEhEREdnMoeTmvffew5133omYmBjk5eXhrrvuQq9evdCtWze88cYbcsdIZJEov/AfAP+BJJUoHQ4RESnM5kn8TMnIyMCJEyeQl5eH+Ph43H777XLG5hScxM/95OfnIzg4GADQtGkezp0LUjgiIiKSm1Mm8TMlNjYWsbGxNdkEUY2J8guD9beUDIWIiFyAQ8lNWVkZUlNTsXXrVly9ehU6nc7o/m3btskSHJEtRCX6dQAqyzAQEZHncii5GT9+PFJTUzFw4EC0adMGGh5RiIiIyEU4lNysXLkSq1evxoABA+SOh4iIiKhGHBot5evrixYtWsgdC5FDCgoKADQF0BQ6XYHC0RARkdIcSm7+8Y9/YO7cuajBQCsi2Yj98AKAC9BouE8SEXk6h05L/fTTT9i+fTt++OEHtG7dGj4+Pkb3r1mzRpbgiGwhOhT/AgDQaPyVDYaIiBTnUHJTt25dPPzww3LHQuQQMRS8MwCOliIiIgeTm6VLl8odBxEREZEsajSJX3Z2Nk6dOgUAaNmyJRo0aCBLUET2KC0tBbAKAKDTDUMNd2siIlI5hzoU5+fn4+mnn0ZUVBR69eqFXr16ITo6GqNHjy4fuUJUe7RaLYAnATwJSdIqHQ4RESnMoeRm4sSJSEtLw7fffoubN2/i5s2bWL9+PdLS0vCPf/xD7hiJLPLy8gLQt/zi0C5NRERuxKHCmeHh4fj666+RmJhotHz79u14/PHHkZ2dLVd8smPhTPek70jcrBnwxx/KxkJERPKz5/jt0M/cgoICREZGVlseERHB01JERESkKIeSm4SEBEydOhVFRUUVywoLCzFt2jQkJCTIFhwRERGRvRwaVjJ37lz069cPjRs3Rvv27QEAR48ehb+/PzZt2iRrgETWiNZCMc+NTrcfQKCi8RARkbIcSm7atGmDM2fO4Msvv8TJkycBAMOHD8eIESMQEBAga4BE1ohuY7/pbykZChERuQCHJwQJDAzEmDFj5IyFyCGi/MJ2/S0lQyEiIhfgcHJz5swZbN++HVevXoVOpzO6b8qUKTUOjMhWovxCIgCWXyAiIgeTm//85z/4+9//jvDwcDRs2BAagyOKRqNhckNERESKcSi5mT59Ot59911MmjRJ7niI7CbKL2wAAEjSg2D5BSIiz+bQUeCvv/7C0KFD5Y6FyCGi/IK+Sn0emNwQEXk2h+a5GTp0KDZv3ix3LEQOEeUXupVfWH6BiMjTOfQTt0WLFnjzzTexd+9etG3bFj4+Pkb3v/jii7IER2QLMf3AbgCAF3MbIiKP51BtqWbNmpnfoEaDP1y4uA9rS7kn1pYiInJv9hy/HWq5OXfunEOBERERETkbG/FJ9QoLCyHKL3RGWVmh0uEQEZHCbE5u3n///fKDiHX79u3Dd99953BQRPYQk0geKL/orKxNRETuzubk5rfffkNsbCyef/55/PDDD8jOzq64r7S0FMeOHcOCBQvQrVs3DBs2DCEhIU4JmKgqPz8/iHluNkCj8VM6HCIiUpjNfW6WLVuGo0ePYt68eXjiiSeQm5sLb29v+Pn5lVdlBuLj4/HMM88gOTm5vN4PkfPVqVMHwEAALL9AREQOjpbS6XQ4duwYLly4gMLCQoSHhyMuLg7h4eHOiFFWHC3lnvRJTdOmAPu7ExG5H6ePlvLy8kJcXBzi4uIceTiRrMrKygBsAwBI0j0AvBWNh4iIlMV56kn1ioqKANwPAJCkPABBisZDRETKYnJDqifKL7TX31IyFCIicgFMbkj1RPmFIwDYoZiIiPgzl4iIiNyM3clNSUkJ6tSpgxMnTjgjHiIiIqIasTu58fHxQWxsbPkIFSLliZmzEwEkQpJYfoGIyNM5dFrq9ddfx2uvvYYbN27IHQ+R3UT5hbTyC8svEBF5Ooc6FM+bNw9nz55FdHQ0mjRpgqAg46G3hw4dkiU4IluI8gurAYDlF4iIyLHkZsiQITKHQeQ4UX5hKACOliIiIgeTm6lTp8odBxEREZEsHB4KfvPmTSxZsgSTJ0+u6Htz6NAhXLp0SbbgiGwhOrfvBrAbOh07uhMReTqHWm6OHTuGvn37IiwsDOfPn8eYMWNQr149rFmzBhkZGVi2bJnccRKZJcov9ADA8gtERORgy83EiRORnJyMM2fOwN/fv2L5gAEDsHPnTpu3s3PnTgwaNAjR0dHQaDRYt26d1cfs2LEDHTp0gJ+fH1q0aIHU1FQHXgG5E41GA6BF+YWdboiIPJ1Dyc3+/fvx3HPPVVveqFEjZGVl2byd/Px8tG/fHvPnz7dp/XPnzmHgwIHo06cPjhw5ggkTJuCZZ57Bpk2bbH5Ocj+BgYEAzgA4Ay+vQKXDISIihTl0WsrPzw+5ubnVlp8+fRoNGjSweTv9+/dH//79bV5/0aJFaNasGWbPng0AaNWqFX766Sd89NFH6Nevn83bISIiIvflUMvNQw89hLfffhslJSUAxGmBjIwMTJo0CY8++qisARras2cP+vbta7SsX79+2LNnj9Oek4iIiNTFoeRm9uzZyMvLQ0REBAoLC9G7d2+0aNECISEhePfdd+WOsUJWVhYiIyONlkVGRiI3N7d8Cv7qtFotcnNzjS7kXkSH4oEABkKSipQOh4iIFObQaamwsDBs2bIFP/30E44dO4a8vDx06NChWquKK5gxYwamTZumdBjkRGIo+PcAAEniUHAiIk/nUHJTVFQEf39/9OjRAz169JA7JrMaNmyIK1euGC27cuUKQkNDERAQYPIxkydPxsSJEytu5+bmIiYmxqlxUu3y9fUFsFR/S8lQiIjIBTiU3NStWxddunRB79690adPHyQkJJhNLuSUkJCA77//3mjZli1bkJCQYPYxfn5+5bWHyF35+PgASAbA8gtERORgn5sff/wRDzzwAPbt24eHHnoIt912G3r06IHXX38dW7ZssXk7eXl5OHLkCI4cOQJADPU+cuQIMjIyAIhWl5EjR1asP3bsWPzxxx/45z//iZMnT2LBggVYvXo1XnrpJUdeBrkhJjdERKSRJEmqyQZKS0uxf/9+LF68GF9++SV0Ol15HwjrduzYgT59+lRbnpSUhNTUVCQnJ+P8+fPYsWOH0WNeeukl/Pbbb2jcuDHefPNNJCcn2xxvbm4uwsLCkJOTg9DQUJsfR66rrKwMdeocBwDExrbFhQveCkdERERys+f47XByc/r0aezYsaPiotVq0atXLyQmJmL8+PEOBV4bmNy4n/z8fAQHBwMAYmLykJHB8gtERO7GnuO3Q31uGjVqhMLCQiQmJiIxMRGTJk1Cu3btyqfBJ6pdYr+L1t9SMhQiInIBDvW5adCgAQoKCpCVlYWsrCxcuXLF7DwzRM4myi9cAnCJ5ReIiMix5ObIkSPIysrCq6++Cq1Wi9deew3h4eHo1q0bXn/9dbljJCIiIrJZjTsUX79+HTt27MD69euxYsUKuzoUK4F9btyT/oxobCxw4YKysRARkfyc3udmzZo1FR2Jf/vtN9SrVw89evTA7Nmz0bt3b4eCJnKUKL/wFABAkr4A4K9oPEREpCyHkpuxY8eiV69eePbZZ9G7d2+0bdtW7riIbCZaCr8GAEhSqqKxEBGR8hxKbq5evSp3HEQOE+UX5gEANBqWXyAi8nQOJTeA+LW8bt06/P777wCAu+66C4MHD4a3NydQo9olyi+kAOAMxURE5GByc/bsWQwYMACXLl1Cy5YtAYjq2zExMfjuu+/QvHlzWYMkIiIispVDQ8FffPFFNG/eHBcvXsShQ4dw6NAhZGRkoFmzZnjxxRfljpHIIp1OB+AMgDOQJJ3S4RARkcIcarlJS0vD3r17Ua9evYpl9evXx/vvv4/u3bvLFhyRLcQEkncAACQpDwDLLxAReTKHkhs/Pz/cunWr2vK8vLzyzp1EtS0MAFCzWZuIiMgdOHRa6sEHH8Szzz6Lffv2QZIkSJKEvXv3YuzYsXjooYfkjpHIoqCgIAA3AdyElxdbbYiIPJ1Dyc3HH3+M5s2bIyEhAf7+/vD390f37t3RokULzJ07V+4YiWzG0VJEROTQaam6deti/fr1OHv2bMVQ8FatWqFFixayBkdERERkL7uSG51Oh5kzZ+J///sfiouLce+992Lq1KkICAhwVnxEVmm1WgDPAQAkaTEAP0XjISIiZdl1Wurdd9/Fa6+9huDgYDRq1Ahz585FSkqKs2IjsklpaSmAzwF8DkkqVTocIiJSmF0tN8uWLcOCBQvw3HPiV/KPP/6IgQMHYsmSJfDycqj7DlGNiRmK/wUA0Gh8lA2GiIgUZ1dyk5GRgQEDBlTc7tu3LzQaDS5fvozGjRvLHhyRLcT0A68AYIdiIiKy87RUaWkp/P39jZb5+PigpKRE1qCIiIiIHGVXy40kSUhOToafX2WHzaKiIowdO7Z8rhFhzZo18kVIZIUov5BZfj0KDs5wQEREbsKu5CYpKanasieffFK2YIgcIcoviNOiLL9ARER2JTdLly51VhxENeTQlE1EROSGeEQg1ROnREW/Lw7aIyIiHgqIiIjIrTC5ISIiIrfC5IZUT5RfSAGQAknSKh0OEREpjMkNqZ4ov7AAwAKWXyAiInYoJvUT5RemAmD5BSIiYnJDbkCUX3gLAMsvEBERT0sRERGRm2HLDameJEkAcsqvhwFg8w0RkSdjckOqV1BQAOA2ACy/QEREPC1FREREboYtN6R6gYGBAIoBABoNd2kiIk/HIwGpnkajAeBTfl3ZWIiISHk8LUVuRZKUjoCIiJTG5IZUr7i4GMArAF6BJBUrHQ4RESmMyQ2pXklJCYBZAGZBkkqUDoeIiBTGPjekeqL8wssAWH6BiIiY3JAbEOUXZgJgh2IiIuJpKSIiInIzbLkh1RPlF0rLr9cByy8QEXk2ttyQ6onyC74AfCFJBUqHQ0RECmNyQ0RERG6Fp6VI9UT5hb8AABpNoLLBEBGR4pjckOqJ8gt1y68rGgoREbkAnpYiIiIit8KWG1I9UX7hPQCAJL0G0bmYiIg8FZMbUj1RfmEaAECSXgGTGyIiz8bkhlSvTp06AJ4HAGg03KWJiDwdjwSken5+fgDmA2CHYiIiYodicjOSpHQERESkNCY3RERE5FaY3JDq5efnA/AB4AOdLl/pcIiISGHsc0NuolTpAIiIyEUwuSHVCwgIAPAnAECjCVA2GCIiUhyTG1I9Ly8vAI0AcLQUERGxzw0RERG5GbbckOqJ8gtzAQCSNB6coZiIyLMxuSHVE+UX/gkAkKTnweSGiMizMbkh1RPlF5IAsPwCERExuSE3IMovpAJgh2IiImKHYiIiInIzLpHczJ8/H02bNoW/vz+6du2KX375xey6qamp0Gg0Rhd/f/9ajJaIiIhcmeLJzapVqzBx4kRMnToVhw4dQvv27dGvXz9cvXrV7GNCQ0ORmZlZcblw4UItRkyuRpRfqAugLssvEBGR8snNhx9+iDFjxmDUqFG46667sGjRIgQGBuKzzz4z+xiNRoOGDRtWXCIjI2sxYnJNOeUXIiLydIomN8XFxTh48CD69u1bsczLywt9+/bFnj17zD4uLy8PTZo0QUxMDAYPHoxff/21NsIlFyXKL5wGcJrlF4iISNnk5tq1aygrK6vW8hIZGYmsrCyTj2nZsiU+++wzrF+/Hv/973+h0+nQrVs3/PnnnybX12q1yM3NNbqQexHlF24vvyjeGElERApT3ZEgISEBI0eORFxcHHr37o01a9agQYMGWLx4scn1Z8yYgbCwsIpLTExMLUdMREREtUnR5CY8PBze3t64cuWK0fIrV66gYcOGNm3Dx8cH8fHxOHv2rMn7J0+ejJycnIrLxYsXaxw3uRYxQ/F8APMhSSVKh0NERApTNLnx9fVFx44dsXXr1oplOp0OW7duRUJCgk3bKCsrw/HjxxEVFWXyfj8/P4SGhhpdyL2I2lLjAIyDJBUrHQ4RESlM8RmKJ06ciKSkJHTq1AldunTBnDlzkJ+fj1GjRgEARo4ciUaNGmHGjBkAgLfffht33303WrRogZs3b2LmzJm4cOECnnnmGSVfBinI29sbwGMAAI3GW9lgiIhIcYonN8OGDUN2djamTJmCrKwsxMXFYePGjRWdjDMyMso7jAp//fUXxowZg6ysLNx2223o2LEjfv75Z9x1111KvQRSmJjE8SsALL9ARESARpIkSekgalNubi7CwsKQk5PDU1RuRJ/UREcDly4pGwsREcnPnuO36kZLEREREVnC5IZUr6CgAEAjAI0gSQVKh0NERApTvM8NUU2JM6uXDa4TEZEnY3JDqic6FB8GAGg0rBBPROTpmNyQ6omh4HEAOFqKiIjY54aIiIjcDFtuSPVE+YUvAQCSNAKAj6LxEBGRspjckOqJ8gtiRmtJGgomN0REno3JDame6HMzAADLLxAREZMbcgNitNR3ANihmIiI2KGY3AynuSEiIiY3REREVVy6BJw6pXQU5CieliLVE+UX2gMAJOkogEBF4yEi9WvcWPy9ehVo0EDZWMh+bLkh1RMlF84COMvyC0QuJjsbOHZM6Sgcd/q00hGQI5jckE22bAHWrFE6CtNEh+KfAPzE8gvk0V59FWjVCsjNVTqSShERQPv2wPHjSkdCnoTJDdnk/vuBRx8V56FdjRgK3h1Adw4FJ4/2wQfAyZPAJ58oHUl1O3cqHYFz3boF/PQToNMpHQkBTG7ITtnZSkdARNaUlSkdgefp1Qvo2dM1E0tPxOSGVK+0tBTAV+WXUoWjISJPdOSI+JuaqmQUpMfkRgF//gkkJQGHDikdif1csb+uVqsF8DiAx6HTaZUOx6UUFCgdARFR7WNyo4Dhw4Fly4COHZWOxD14eXkB6A2gN0pLuUvrbd0KBAUBkycrHQm5m61bgX/8A9Dyt0Q1+/YpHQEBTG4U8dtvSkdgn5q21mRkAMOGAXv3yhNPVQEBAQB2ANiB69cDnPMkTnTiBLBkifwdESdMEH/ff1/e7RL17Qt8+CHw738rHYmQkwO88AKwZ4/SkZCr4CR+ZBdHEp0nnwR27QJWr3bN01pKa9tW/A0IAEaMkG+7rLNFznbunO3rOnN/fP11YP58YN48fseQwJYbN3f4MNC8uUgslHLmjHLPrSZy98EydzC5elXsD8XF8j4fuae8PKUjsO733523bf5IUCcmN25u6FDgjz/EaSFHGf4ScuRXkbO/HAoLCwHElV8KnftkbqBrV7E/vPee0pHYRqcDiorM379zJ7BjR62F41GWLAFCQkSriCtz5ncMW4LUicmNmyuU+Vjvih90nU4H4Gj5xbaOKxcvAqNGVQ7fdEfmvvDPnxd/nTXjtCTJu5/cfbfoGH3zZvX7ioqA3r2BPn1qv4Xhjz+A2bPV0bLhqDFjxN9x42q+LVsTkDVrxIShpv7fRLZickNW1fRA5eyWG1F+YXP5xXr5BZ1OtFykpgLx8c6NzR6ulDiePw+0aCH6MNijrAzo3BkYMEC+WPbvF/+zH3+sfp9hi05tlxxo3Rp4+WVR8oDk8+ijIsF5+23bH+PM7xiellInJjekeqL8wn3lF8vlF4qKxEHbE0ZVWPtStpRMvfwykJ4uRqAAYr6cJ54AvvrK8jZPnQIOHgQ2bqydZM3wNdZ2cqhPrHhKzDmuXFE6AmH7dqUjcF3Z2cDUqZWtwa6EyQ15lK1b7Rvh4amqzl/y4YfAihXA44/bvg25k42aJGvk3pzZuvLGG8Du3c7bvpqNGCFa2Hr0UDqS6pjcuJlly8QByFIHTHvVtEOxIWdM+iXKL3xXfrFcfsGTmpjlfK1ZWfY/p9zJhqntKdlyo/TzqkFJidIRyOPnn5WOwDXpW7VcsaAykxuVy8sTHSrnzBG3k5LEqYOFC53zfDUdLTVlinyx6InyCw+WXzhlqq2cfVB299NS9jzvrVui7IotTp50nVMyNbV4ce08jyf8aLl5E5g1SwyGIOuY3KjcvHliKOxLLxkvv3FDvueQs0OxfoROYaH5mZpLSoDx44Fvv7Vt+6L8QqfyC3dpPbm+8OfMsX1btZ1syPl8paVAfr79j7PleRs0AGJirB+YLl4EWrUCGja0Pw5HlZY6r4XlwgXnbFftcnPFqV57+qo89xzwyitA9+5OC8tucs+qLiceCVSutkeIyHXA6tZNjDbZsKH6fZ9+Cnz8MfDQQ5bj0DeFivIL+8svlssv2HPAlyT5h9K7milTRIdAS156yfggtXOnbduujdNScp4yvfNOIDhYTOUvN/3p2J9+srxebRfTlSTRwb5RI5HkeJKMDFHnb//+6vc5OzF//nlRm6tZM5G02GLjRvFXjpYbuSbwZHJDTnP8uNIRWGfq17V+fpnPPxd/i4oq77Plw/vss0DjxsCXX8oWZjUDBwKBgUBmpvOew9BHH8m7PVOJ3GefVV6/cQN45x3RIdDaAd3w/t69bXtOwwPEhg2iNc5cC0FpKbBtm/0tJ3ImN+np4q+9I+nseV5r69aktc1w27m5tiUrBQUicc3OFgd7Z7L3tZ0+XfPn/Okn4OuvTd83fDiwciXQpUvNn8de+kQFAD75xLbHyNUS+/HHgJ8f8P338mzPVTG5IassfSFLUs2atL28RAtMQADwyCO2P27JEvHXVB8euX51/fCD+LtihfHynBzxpai2ydsKCoDRoytvG/7frP0PHXlPDR8zaJD4UjVMrgxNmwbcey8weLD9z2Pq+dzB5MligICt1q2rvP7ee0D79tYf48gB09Ff67b8SJg7t/L6gQNiagH9/9XS85p7HT17ilnaTSVKciRPjjK3r1ZdXlYm+lDK2c9m/Hjx11odO7V/npjckF2q7vB9+wJRUY71VQDEl5L+gGf45WwPUX6he/mlEDEx5ltBHPkyr9qEO3So+NX37LP2b2vrVpGQlZXZ/1hrCgqM/z9VX6utSWhRkeOn46z1gTHXqXbRIvF369bKZVX3KWeflnJ0O3IeBAzfv/ffFwMEbHX0qPFtc33aaur++x17nLlJ+c6fB/77X9HSpK9kr3fnneKU2W23ARERjick9iYHSnS2X7hQ9M0ynDV9yRIx+rV5c/k7TVva3oIFot/XiRPyPmdtYnKjcrXRgdPSdrdtA65fd3wiM43G/g9t1TknRPmFn8svOly6BEyc6Fg8Op1IjPbtq1xWNbnZskX8rdqiY8mmTcBTT4lk8J13bP9FLknAv/9t/VRJerooUTB0aOWyqu+rLe+zTgdERhonGYAotmkv/X5jeJA1ty9Vje2FF0T/F3vmF1HLL80//xS1mky1/NX2qB9L3x/mTlVW3Tf01q4VB2J7+wE2ayY+G4mJpu/PzBQjha5fF5NLmmLtfXO10VSm9tXnnxev8emnK5dt2iT+lpTI/xq8LBz9U1LEZ15ffkON6igdANVMbY9OMfccW7aIA7efX/X7LH0oHfnAVp0wys/PD8Ba/S2Lj7X2fCtWVE+M5GhleeAB49t//GF5/fR08cVWrx7w4otimaX/r76w4TffmF/H0mvXb7uoyPTB6dQpy/Gaeg79Nlu3rr7MGn3ZB2tTB6ix5aZrV+DyZeDYsepDpWtyAJPz4FdSAtSta99j9KeVmzUDPvjA/ud05kR59r43Sk6T4Ix92pTr162v48odhq1hy42Ls+d0j7Vme3tcvgx06AD85z+2rT93ruj9by8vr5p/odepUwfAkPKL5Xzd2nOZasrXP6aoCHjtNftjdMTtt4tfTyNHOr4NR95XS7/m7GXPvmcuVmvJuzO+/B1NbnJygKVLgb/+srz+5cvir75Pl1zkfC9qMpWErRM+ysmRfd3exxhOjCpJ4jSguU7bixaJ+moFBfbHZcjSaWayjMlNLSgoAJ580nyvfXPmzhVN8//9r/l1zH351/SD8NprwOHDol+Jrb8k9K0Hevrhr5YOUNbivHbN8v21WUph5kxgxgznPof+15T+fbK1n4wtBzb9QdWUhQuNR6w5yvD/qdPZ3o/K8HFV+47YSulJ/EaOFKcUHnvM+rqA6X4gtX0Aq61Wgtp28aJoGdMzfF9v3RKj9yzNll71vfj8czHoITVV3H7/fSAuzriDvqG//10kr1W/E81t315yzmNmSKutnItM7Zjc1II5c8SQZcP+ELbQd6576inz6xh+aPWzFNvi5Eng11/N31/TXxzr1wP+/qK/iDWWvtAbNACmTzd/v04H5OSUAdhRfpG/p64+Pmd10DRkbR4Uexi+rwUFonOmOVOn2leF2RaSBDz8cPVl1sTFVV63p57Uhx+K59MnhCdPAmPH2j+R3Lx54gve1k6o+hj+9z/xd9s22+K1x6+/itO+cp+6kSu5Meyjtn69bY/55Rdg82b7nkeSRF+lDh2M52equp/ExhqPFjO8f/BgMXrPnr5B+u/KUaPE33feEX+t9Z3LzRV9hqp2hLb1vTb3g7V+fdH/qKZzE5WVAe++W7lfvfmmqMpeE3KW/qkJJje1oLaaaV95xbb1SkrELKht2lSe9iopEV9QpaXAsGHmqz/b2v/kb38Tf1980XrLjbWOr2++afm5MjKKAPQpv1j+ZNXkl7HhKAZbpaebnkpfoxHvfdWWKVviO33a9gOIni3T+W/dKm/LjT2nkWx53dZiW7xYtBStXi1ud+smltk7vHzjRvEFHxtb/b7cXOunneyVlSV+mNy4Yf59GDRI/H9qq0ChvZ+Tu++uvJ6TIybGGzOmekd0w75bXbsC/frZ9zySJE6VHz7seDJuS5XvAwcs329PX5ToaKBlS8ufQcPO24bbtrTPz54NfPGF7XGYkpoqCoPq9ytLZwlsMX++aOHSfwaVxOTGBSxeLGYJPXvW8nqSJD7Uhs2p5r6E9Bm9qfsNM+vLl4G9e8UsmXffLVqLqu6Yhh+wTz+1HKOe4QfU0hTjpvp42HuA9fLSALir/FL9BZ89W7OOcfp4Tp6073E//yz+r+am0r/tNtEyZa+WLYEhQ4xbCKwVlTS1H1R9jCTJe2pCqQ7u+lFI+iTE8DTXyZOiBW7/fvvj0+mAsDDRybtq/4uaeOABMQu0pRbamhYmXL5cJBNVJ+oz1XIjx+y1XbqIYcxVWzbathV/a/Lr3jC+X34R+7a1CensTdYSEizf78j3ye+/V16vus8Y/gA2t21THYD//LNm+59hsvnbbzWbsPSFF4Bx48T1YcMc345cmNzUAmudNMeOFb/wX3jB8no+PqI51t/feguKrX1DHn5YfJCXLhW3zZ0j1vv8c9vmmrD1A1e15ebJJ8UEZPbw9w8E8Gv5JdDovkWLROdcw+GVtcVaDZia1vM5eLDyurUv29rqy2Gt5cbcKDFbOhTbo2pr6ZQpIslt1UqM3urSpfI0kiUbN4oDcVGR8Y8KS/2XAPEZmTbNtlIO+uTr++/Nv15vb9PLtVqxH0mSGC5tzogRIhGoOo9M1f/Rtm1ixKOp0U4TJtR85KB+nx8wwLHHf/cd8Oqrlbe7drXtcfr3Va5yNY4kN5ZaZMx9bqx9j+blidPN+hGV1liaeNRwVGNVpaWW9y+gcoSjq2ByUwts/SVUVCQ+uOaGURp+seh3JEtf/ikppr+EDR9jqd+NXtUPWMuWog+HpS86Wz/8VeN3pJyCpS+At94Sf/VlHky9Xx9/XHndVJ8GZyQGchzMDftFmerbZE9/FUvLTBkypHIODnPPaao/gKmOkHl5jp+WMhfvqlXGt995R5TTMLXOpUvmv/T79xfN7KGhxhMb6juWmovhrrvEvmfrQUfP3PtQx8QgwGXLxA8dX18xDNtwdl9zrB3c9R1kP/yw+n1z59o3t5MltpwacgZ9X5macqS1RKcT+9mqVdVHwRr+37VaMW+YVmv9eb74QiTStvRtBKqfzrb1+6Z3b9HSrKZCqExuasHChebvM2yePXpUJDaGv0zM0fdotzbLpLMEBRl3/KzKnuSmpv0tnnnGtucyZ/x48QXRrh2QllazbdnK3Cgve7409YmbOYatBqbe46r/I3sSq/Xrq8/dU3Ub5g6E+/eL5OD6ddFKFxJivSVEz9SpNFuZ6tT555+iRllkpOXHlpQYF7U0PEiaikGf+P/8s/HyqsmFLZ91wLjlRl+41HD2YnOj0qzNMFu1lcDaPmDqtMXy5ZYfU1VNBys4Qv+65ChjoNM59uNNkkSHZH1/REOGrYhnzwJ9+og+S9b2b1vjWLDA8nHIGv1+vHix+DFYW/X2aoLJjcLGjq28bthRsepOvWuX8W39F5yScx9Y+uK09aBj6zw3VUfdGEpLKwRwX/nFsboBo0c7VoTU3GOs/UI21xFQrmq9gPHoLlv73DhSRuPGDdOd5rOzTT9nly7iSz48HHj9dcvbNoy7pATo2FGcurTG1oRZ/zmqyQHX0r5eta9MSorx7aqttOb+T4antnv3Nj8Euaqqv7SrttTae2rU1P5prUZRVUFB9q0vB3u+J61NsHnPPca3LZ2uqZo8mpsOxNTMy198IU+/tZwcsd89/3z1Fkpr78svv4iOy3ozZogfg5aK57oKJjcK058uqarqTt2rl+n17PnQOnq+uep5ejnZGv/69SKZMn0w1AH4sfxi+aeMueezNATbUozt2lUeIDIzRRL67LOi46kjxo+3beZQe9mS3ADidIo95s0Tw1KjosT8IYb9UuSedC8tTXSoNzx1WZPtZWXZ13fCkedytEZX1eet+v8zV4C0qvx8475fhknotWsiwTR8HmveeMP4thyvrzaZ+ywbvvbERMvbqNq6a2tnb3tHhsnF8DPpyI8nU4nXmTOOx1NbWH7BRTljpElYmJhXomlT+x5n6yzFgPhlEBxs/v6qp2PsqS2lH2lRnR+A/xpcF44dqz780hktXYWForN3dHTNt3X5svEBx9C+faLlwpovv6z+a9rW5MbeycEMO8H/8QfwxBOW17c2ItASU4mIuX4mtvRBuH5dnsnQ5Pysmjt96OjM0ZZGrVTtV3PokP3D3PUDEVzJ449XX6Z/X819/r28RKfzadPsP3Uld3kZQ84ecehImQxbFRQAgYHW13MWttw4SVER8NBD1kcfmeOsnfr++4E77nDOtgHRf8Kelh55ko06AEaUXyrzdcNJvADRvOqs6fpr4xfs3XcD//yn8bK0tOodd598snpnb1Pvs6WRE46yViSz6lBka6yNvjI1sm75ctuTqPHjbY/F0ar1//qX7etWPf0MiORG7qR8167qIypHjLA+IkYNTM3RJUli7iJLHaLffhto0sT+55s3z3kzpdszR9rNm+J/WLWsh7O6LlibFsTeSWtlJ3mYnJwcCYCUk5Mj+7bPnpWkq1fF9SVL9LOGGF/ee0+S6tUzfZ/h5dYt6+tIkvV1XPFiGPfYsZI0c2btPff48fY/Zto0y+9127aSdOqUcu/nm29WXzZrlvHtS5esb6dNm5rFceSI8e1XX635a+vZs/J6WFjldb2abLt1a3ne/6goSfrmG+f9f8+dk6TISPm2V1goSX37Oi9eV7xMn67M8w4d6tztG+4XiYmV1ydMkKSiIvEZyc6uXD53bu2+frnZc/zmaSmZZGaKCdsAMXy0cWPT69laeNFaR0vAtjk0XJHhhFurVjlWcNNYGQD9UJYOAMxMCgIxn5Dcjh9XdoikqeGtVc+Tf/ut9e1YG1ljLzkqChu2ZBju799/X71lzl6SVLPH62Vm1nzKekuaNZN3e02b2jZjtTuxVEfKmczN9C4Xw1aZHTsqr8+ZIz5/c+dWr/fmKZjcyOTw4crrclT7teVg5MjIFldgON/IX39V76RovyIAXcqv5wEwPxzD0S91awdCuQ6UzmI4Kq+21HTCN0sGDqx5BfPaqBXmijwtsQHc96Bu6Xvn44/FyDTD79uXXnJ+TK6CfW5clC3ncBs1cn4c6qAB0KT8YvkE8/799m996lTrHePc9cuzJpyZ3AB8z8l27rqvWPtRNWNG7dUjczVsuZGJq/9yd2+BAM479Rms1cIx1RHU01Sd1LHqBHZESrGlZIwaVS1MSpXYciMTd/1lQLaxtx6WJ/jlF6UjIBK++UbpCKi2MbkhIiIit8LkRiY8LaWkIgBDyi9Wzh8REZHbY58bcgNlANYbXCciIk/G5EYmbLlRki+ATwyuExGRJ2NyIxMmN0ryATBG6SCIiMhFsM+NTHx8lI6AiIiIALbcyKZTJ6Uj8GQ6AL+XX28F5uxERJ6NyY1MOM+NkgoBtCm/brn8AhERuT8mNzJhcqO0cKUDICIiF+ES7ffz589H06ZN4e/vj65du+IXK1ObfvXVV7jzzjvh7++Ptm3b4nvDMtMKYXKjpCAA2eUXttoQEXk6xZObVatWYeLEiZg6dSoOHTqE9u3bo1+/frhqpmjGzz//jOHDh2P06NE4fPgwhgwZgiFDhuDEiRO1HLkxf39Fn56IiIjKaSRJ2UHMXbt2RefOnTFv3jwAgE6nQ0xMDF544QW8+uqr1dYfNmwY8vPzsWHDhopld999N+Li4rBo0SKrz5ebm4uwsDDk5OQgNDRUvhcCQGO5IDUREZHHkDu7sOf4rWjLTXFxMQ4ePIi+fftWLPPy8kLfvn2xZ88ek4/Zs2eP0foA0K9fP7Pr16bkZKUj8FRFAEaUX1h+gYjI0yma3Fy7dg1lZWWIjIw0Wh4ZGYmsrCyTj8nKyrJrfa1Wi9zcXKOLs8yYYfn+nj2d9tQ2W79eVGsODlY6EjmVAVhefnGs/EJCAtCxo5wxUW1o2VLpCFzbu+8qHQGRMhTvc+NsM2bMQFhYWMUlJibGac/VsKHoWDxqFHDPPcDJk8CUKcC//iWSip07gb/9Taxbp3yc2s6dwPz5QGIiMGyYOMg++qj4W9WKFcDateJ6u3bA3r3AgQOV95uaa6dDh8rrv/8OPPQQ0LkzcOsW8PHHYvmoUZXrTJkCjB1r+vX9/e/ArFnieuvWwJgxYt3nnhPP/e9/A1otcPAgsGqVWO+ll4D33hPXe/QAzp4Fnn0WePNNID4eOHYMMNO9Cnv2ALt3V94+cwY4cUK8xzk5wCOPAE8+Ccya5Yu33/4I//rXR/jgA1+cOiXep/Hjq2/zxAng/feBAQOA3Fzg3Dngiy+ADRuAH34A7r1XrDd8OHD4sIhfLy0NmDfPOCZDAwcCEycCTZqI2+++K2J9/nnggw+qr9+ihXj/9P3hQ0OB0aPF9YiIyvXCw4F//rPy9qVLQFkZcOUKMHeueC8vXRL7zNChYjtPPQVs3Ag88YR4rQsXmo55xQrxmOho8X968UVg+3axn1Q1fTowYYLYn9u0qVw+ebLxelVbi194AVi5svI9GDgQyM4W7+WhQ8anczMzgbw84H//E7eTk0U8J08CrVoBjRqJ5fHx4r09eVLsF02aAHPmiGbwoiLgu+/EvlFVdHT1Zb/+KrZVXAwYntnOzATeeqvyNT7wADBoEDB4sPjsvPUW8NVXQEkJ8MYbwNtvAzt2AMuWif3m7rsrt/Xpp8CQIdWfGwDuuKP6srffFvvpv/8tPjNPPw28/jqQnl753gDi//Tcc+L6U0+J/XnLFvHZGDYMePll8fnS71emxMcDSUmm76tfX/z/QkOBr78W3xuvvSa2d/Cg+A6aMQN48EHx/ixYINb9z38qtxFU3sf/zTfF/zMgwPg5xo0zvv3RR8DMmWK/BIDLl4Ft2yrvX7oUOH9efJ8AwB9/AA0aiOsjR4r4unUDLl4U+8SUKZWfp337xGd84EDxXfbKK2L5yy+Lv889J74Xhg8X77NOJ77LNm0S761+3169Gpg9W1yfMwdISRGP/fvfxbZWrRKfvzvuAO66S/zNyRH75ZQpld+PgPhfAeK9mzlTXB8wQDz3b79VrvfWW+K7R78Pd+5ceV9goPhMrVtXuUx/JkH/PTRggPg/PfEE8PDD4r7HHgNu3hTvFyD2WW9v8X0xf76Ip08fcd9ttwH9+ol4r14V+77+PSsrE/vdo4+K1z9mjPiuVZKifW6Ki4sRGBiIr7/+GkMMPvlJSUm4efMm1q9fX+0xsbGxmDhxIiZMmFCxbOrUqVi3bh2OHj1abX2tVgutVltxOzc3FzExMU7pc0NERETOoZo+N76+vujYsSO2bt1asUyn02Hr1q1IMNV0ASAhIcFofQDYsmWL2fX9/PwQGhpqdCEiIiL3pfgkfhMnTkRSUhI6deqELl26YM6cOcjPz8eo8nMlI0eORKNGjTCjvEPL+PHj0bt3b8yePRsDBw7EypUrceDAAXzyySeWnobcmE6nQ0ZGBgDRsufl5fZnW4mIyALFk5thw4YhOzsbU6ZMQVZWFuLi4rBx48aKTsMZGRlGB6tu3bph+fLleOONN/Daa6/h9ttvx7p169DGsBMAeZTCwkI0a9YMAJCXl4egIE7kR0TkyRSf56a2OXOeG1JGfn4+Isp7DF69epXJDRGRG7Ln+K14yw1RTQUFBSE/P1/pMIiIyEWwcwIRERG5FSY3RERE5FaY3JDqabVajBkzBmPGjDGa04iIiDwTOxST6uXn5yO4vJ4ER0sREbkndigmj+Lj44Pp06dXXCciIs/GlhsiIiJyeaopv0BEREQkN56WItWTJAnXrl0DAISHh0NjWGaaiIg8DpMbUr2CgoKKGYrZoZiIiDwuudF3McrNzVU4EpKL4ezEubm5KCsrUzAaIiJyBv1x25auwh6X3Ny6dQsAEBMTo3Ak5AzR0dFKh0BERE5069YthIWFWVzH40ZL6XQ6XL58GSEhIbL3zcjNzUVMTAwuXrzIkVh24ntXM3z/aobvn+P43tUM3z/bSZKEW7duITo6Gl5elsdDeVzLjZeXFxo3buzU5wgNDeVO6iC+dzXD969m+P45ju9dzfD9s421Fhs9DgUnIiIit8LkhoiIiNwKkxsZ+fn5YerUqfDz81M6FNXhe1czfP9qhu+f4/je1QzfP+fwuA7FRERE5N7YckNERERuhckNERERuRUmN0RERORWmNzIZP78+WjatCn8/f3RtWtX/PLLL0qHpBo7d+7EoEGDEB0dDY1Gg3Xr1ikdkmrMmDEDnTt3RkhICCIiIjBkyBCcOnVK6bBUYeHChWjXrl3F/CIJCQn44YcflA5Ltd5//31oNBpMmDBB6VBU4a233oJGozG63HnnnUqH5TaY3Mhg1apVmDhxIqZOnYpDhw6hffv26NevH65evap0aKqQn5+P9u3bY/78+UqHojppaWlISUnB3r17sWXLFpSUlOD+++83qrdFpjVu3Bjvv/8+Dh48iAMHDuCee+7B4MGD8euvvyodmurs378fixcvRrt27ZQORVVat26NzMzMistPP/2kdEhug6OlZNC1a1d07twZ8+bNAyBKPMTExOCFF17Aq6++qnB06qLRaLB27VoMGTJE6VBUKTs7GxEREUhLS0OvXr2UDkd16tWrh5kzZ2L06NFKh6IaeXl56NChAxYsWIDp06cjLi4Oc+bMUTosl/fWW29h3bp1OHLkiNKhuCW23NRQcXExDh48iL59+1Ys8/LyQt++fbFnzx4FIyNPlJOTA0AcpMl2ZWVlWLlyJfLz85GQkKB0OKqSkpKCgQMHGn0Hkm3OnDmD6Oho/N///R9GjBiBjIwMpUNyGx5XW0pu165dQ1lZGSIjI42WR0ZG4uTJkwpFRZ5Ip9NhwoQJ6N69O9q0aaN0OKpw/PhxJCQkoKioCMHBwVi7di3uuusupcNSjZUrV+LQoUPYv3+/0qGoTteuXZGamoqWLVsiMzMT06ZNQ8+ePXHixAmEhIQoHZ7qMbkhchMpKSk4ceIEz9vboWXLljhy5AhycnLw9ddfIykpCWlpaUxwbHDx4kWMHz8eW7Zsgb+/v9LhqE7//v0rrrdr1w5du3ZFkyZNsHr1ap4WlQGTmxoKDw+Ht7c3rly5YrT8ypUraNiwoUJRkacZN24cNmzYgJ07dzq96r078fX1RYsWLQAAHTt2xP79+zF37lwsXrxY4chc38GDB3H16lV06NChYllZWRl27tyJefPmQavVwtvbW8EI1aVu3bq44447cPbsWaVDcQvsc1NDvr6+6NixI7Zu3VqxTKfTYevWrTx3T04nSRLGjRuHtWvXYtu2bWjWrJnSIamaTqeDVqtVOgxVuPfee3H8+HEcOXKk4tKpUyeMGDECR44cYWJjp7y8PKSnpyMqKkrpUNwCW25kMHHiRCQlJaFTp07o0qUL5syZg/z8fIwaNUrp0FQhLy/P6NfKuXPncOTIEdSrVw+xsbEKRub6UlJSsHz5cqxfvx4hISHIysoCAISFhSEgIEDh6Fzb5MmT0b9/f8TGxuLWrVtYvnw5duzYgU2bNikdmiqEhIRU69sVFBSE+vXrs8+XDV5++WUMGjQITZo0weXLlzF16lR4e3tj+PDhSofmFpjcyGDYsGHIzs7GlClTkJWVhbi4OGzcuLFaJ2My7cCBA+jTp0/F7YkTJwIAkpKSkJqaqlBU6rBw4UIAQGJiotHypUuXIjk5ufYDUpGrV69i5MiRyMzMRFhYGNq1a4dNmzbhvvvuUzo08gB//vknhg8fjuvXr6NBgwbo0aMH9u7diwYNGigdmlvgPDdERETkVtjnhoiIiNwKkxsiIiJyK0xuiIiIyK0wuSEiIiK3wuSGiIiI3AqTGyIiInIrTG6IiIjIrTC5ISIiIrfC5IaIyAHFxcVo0aIFfv75Z1m3u3HjRsTFxUGn08m6XSJPwuSGiJCcnAyNRlPtwgrF5i1atAjNmjVDt27dKpZpNBqsW7eu2rrJyckYMmSITdt94IEH4OPjgy+//FKmSIk8D5MbIgIgDqqZmZlGF1NVxouLixWIzrVIkoR58+Zh9OjRTtl+cnIyPv74Y6dsm8gTMLkhIgCAn58fGjZsaHTx9vZGYmIixo0bhwkTJiA8PBz9+vUDAJw4cQL9+/dHcHAwIiMj8dRTT+HatWsV28vPz8fIkSMRHByMqKgozJ49G4mJiZgwYULFOqZaOurWrWtUMPXixYt4/PHHUbduXdSrVw+DBw/G+fPnK+7Xt4rMmjULUVFRqF+/PlJSUlBSUlKxjlarxaRJkxATEwM/Pz+0aNECn376KSRJQosWLTBr1iyjGI4cOWKx5ergwYNIT0/HwIED7XyXgfPnz5tsJTMsfjpo0CAcOHAA6enpdm+fiJjcEJENPv/8c/j6+mL37t1YtGgRbt68iXvuuQfx8fE4cOAANm7ciCtXruDxxx+veMwrr7yCtLQ0rF+/Hps3b8aOHTtw6NAhu563pKQE/fr1Q0hICHbt2oXdu3cjODgYDzzwgFEL0vbt25Geno7t27fj888/R2pqqlGCNHLkSKxYsQIff/wxfv/9dyxevBjBwcHQaDR4+umnsXTpUqPnXbp0KXr16oUWLVqYjGvXrl244447EBISYtfrAYCYmBij1rHDhw+jfv366NWrV8U6sbGxiIyMxK5du+zePhEBkIjI4yUlJUne3t5SUFBQxeWxxx6TJEmSevfuLcXHxxut/84770j333+/0bKLFy9KAKRTp05Jt27dknx9faXVq1dX3H/9+nUpICBAGj9+fMUyANLatWuNthMWFiYtXbpUkiRJ+uKLL6SWLVtKOp2u4n6tVisFBARImzZtqoi9SZMmUmlpacU6Q4cOlYYNGyZJkiSdOnVKAiBt2bLF5Gu/dOmS5O3tLe3bt0+SJEkqLi6WwsPDpdTUVLPv1/jx46V77rmn2nIAkr+/v9H7GBQUJNWpU0caPHhwtfULCwulrl27Sg8++KBUVlZmdF98fLz01ltvmY2BiMyro2xqRUSuok+fPli4cGHF7aCgoIrrHTt2NFr36NGj2L59O4KDg6ttJz09HYWFhSguLkbXrl0rlterVw8tW7a0K6ajR4/i7Nmz1VpIioqKjE7ZtG7dGt7e3hW3o6KicPz4cQDiFJO3tzd69+5t8jmio6MxcOBAfPbZZ+jSpQu+/fZbaLVaDB061GxchYWF8Pf3N3nfRx99hL59+xotmzRpEsrKyqqt+/TTT+PWrVvYsmULvLyMG9IDAgJQUFBgNgYiMo/JDREBEMmMudMwhokOAOTl5WHQoEH44IMPqq0bFRVl8ygrjUYDSZKMlhn2lcnLy0PHjh1Njhxq0KBBxXUfH59q29UPpQ4ICLAaxzPPPIOnnnoKH330EZYuXYphw4YhMDDQ7Prh4eEVyVNVDRs2rPY+hoSE4ObNm0bLpk+fjk2bNuGXX34xeXrrxo0bRq+RiGzH5IaI7NahQwd88803aNq0KerUqf410rx5c/j4+GDfvn2IjY0FAPz11184ffq0UQtKgwYNkJmZWXH7zJkzRq0VHTp0wKpVqxAREYHQ0FCHYm3bti10Oh3S0tKqtajoDRgwAEFBQVi4cCE2btyInTt3WtxmfHw8Fi5cCEmSoNFo7I7pm2++wdtvv40ffvgBzZs3r3a/vmUqPj7e7m0TETsUE5EDUlJScOPGDQwfPhz79+9Heno6Nm3ahFGjRqGsrAzBwcEYPXo0XnnlFWzbtg0nTpxAcnJytVMv99xzD+bNm4fDhw/jwIEDGDt2rFErzIgRIxAeHo7Bgwdj165dOHfuHHbs2IEXX3wRf/75p02xNm3aFElJSXj66aexbt26im2sXr26Yh1vb28kJydj8uTJuP3225GQkGBxm3369EFeXh5+/fVXO9414cSJExg5ciQmTZqE1q1bIysrC1lZWbhx40bFOnv37oWfn5/VOIjINCY3RGS36Oho7N69G2VlZbj//vvRtm1bTJgwAXXr1q1IYGbOnImePXti0KBB6Nu3L3r06FGt787s2bMRExODnj174oknnsDLL79sdDooMDAQO3fuRGxsLB555BG0atUKo0ePRlFRkV0tOQsXLsRjjz2G559/HnfeeSfGjBmD/Px8o3VGjx6N4uJijBo1yur26tevj4cfftihifYOHDiAgoICTJ8+HVFRURWXRx55pGKdFStWYMSIERZPjRGReRqp6glvIiInSUxMRFxcHObMmaN0KNXs2rUL9957Ly5evIjIyEir6x87dgz33Xcf0tPTTXasdtS1a9fQsmVLHDhwwOQkikRkHVtuiMijabVa/Pnnn3jrrbcwdOhQmxIbAGjXrh0++OADnDt3TtZ4zp8/jwULFjCxIaoBdigmIo+2YsUKjB49GnFxcVi2bJldj01OTpY9nk6dOqFTp06yb5fIk/C0FBEREbkVnpYiIiIit8LkhoiIiNwKkxsiIiJyK0xuiIiIyK0wuSEiIiK3wuSGiIiI3AqTGyIiInIrTG6IiIjIrTC5ISIiIrfy/47SzIT1Q67SAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr=\"u\").plot()\n", + "ax.axvline(freq, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "markdown", + "id": "7df924b1", + "metadata": {}, + "source": [ + "Of course, different mean polarization angles will lead to very different contributions in the U and Q parameters. Our choice of 22.5 degrees was made on purpose, to have similar contributions in the two parameters." + ] + }, + { + "cell_type": "markdown", + "id": "619fe79a", + "metadata": {}, + "source": [ + "To reiterate that this pulsation cannot be seen in the flux, we plot the standard power spectrum:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "e85807ea", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlUAAAGwCAYAAACAZ5AeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpCUlEQVR4nO3dd3wT9f8H8FdnuihltmxQFGTIlFpAVETKUMGBiFUBEfQLKIgiAgouBMEByhQV9CeCoCICAlZG2XsPWYIg0BaEtnSPfH5/XJMmbdomuUvuLnk9H4979Hr55O6dy4137j73+fgIIQSIiIiISBZftQMgIiIi8gRMqoiIiIgUwKSKiIiISAFMqoiIiIgUwKSKiIiISAFMqoiIiIgUwKSKiIiISAH+agfgTYxGIy5fvowKFSrAx8dH7XCIiIjIDkII3Lx5EzVr1oSvb+nXo5hUudHly5dRp04dtcMgIiIiJ1y8eBG1a9cu9XUmVW5UoUIFANKXEh4ernI0REREZI+0tDTUqVPHfB4vDZMqNzLd8gsPD2dSRUREpDPlVd1hUkUkQ25uLmbMmAEAGDFiBAIDA1WOiIiI1OLDDpXdJy0tDRUrVkRqaiqvVHmIjIwMhIWFAQDS09MRGhqqckRERKQ0e8/fvFJFJIO/vz/69+9vHiciIu/FswCRDAaDAQsXLlQ7DCIiKkdBQQHy8vJsvhYQEAA/Pz/Zy2BSRURERB5LCIHExESkpKSUWS4iIgJRUVGy2pFkUkVEREQey5RQVa9eHSEhISWSJiEEMjMzkZycDACoUaOG08tiUkUkQ0ZGBmrVqgUAuHTpEiuqExFpSEFBgTmhqlKlSqnlgoODAQDJycmoXr2607cCmVQRyZSamqp2CEREZIOpDlVISEi5ZU1l8vLymFQRqSE4OBinTp0yjxMRkfbYU09KiT55mVQRyeDr64vbbrtN7TCIiEgDSu9qmYiIiIjsxitVRDLk5eXhyy+/BAAMGTIEAQEBKkdERERqYVJFJENubi6GDx8OABgwYACTKiIiF8nJAfz9AWfqkNvTI58SvfYxqSKSwc/PD0888YR5nIiIlJeRAVSpAjRqBBw6ZP/7TD90MzMzy32YKDMz0+o9zmBSRSRDUFAQli1bpnYYREQebft26UrV4cOOvc/Pzw8RERHmhj3La/wzIiJC1g9kJlVERETksaKiogDAnFiVxtRNjRxMqoiIiMhj+fj4oEaNGqhevTo7VCbSsszMTHM7VadPn7ar1V4iInI/Pz8/l9d9ZVJFJIMQApcvXzaPExGR92JSRSRDUFAQDhw4YB4nIiLvxaSKSAY/Pz+0bNlS7TCIiEgD2E0NERERkQJ4pYpIhry8PCxatAgAEBcXxxbViYhcoFjTUprFpIpIhtzcXAwcOBAA0KdPHyZVRERejEkVkQx+fn7o0aOHeZyIiLwXkyoiGYKCgrB69Wq1wyAiIg1gRXUiIiIiBTCpIiIiIlIAkyoiGUzd1Nx2223IzMxUOxwiIo+klw4rWKeKSAYhBM6cOWMeJyIi78WkikiGoKAgbN261TxORETKYztVRF7Az88PHTp0UDsMIiLSANapIiIiIlIAr1QRyZCfn4/ly5cDAB599FH4+3OXIiLyVjwDEMmQk5ODJ598EgCQnp7OpIqIyIvxDEAkg6+vL+69917zOBEReS8mVUQyBAcHY9OmTWqHQUREGsCf1kREREQKYFJFREREmqaXdqqYVBHJkJWVhZYtW6Jly5bIyspSOxwiIlIR61QRyWA0GnHo0CHzOBEReS8mVUQyBAUF4Y8//jCPExGR92JSRSSDn58fHnzwQbXDICIiDWCdKiIiItI0IdSOwD68UkUkQ35+PtatWwcAiI2NZYvqRERejGcAIhlycnLw0EMPAWA3NURE3o5nACIZfH190bZtW/M4EREpTy/tVDGpIpIhODgYe/bsUTsMIiLSAP60JiIiIlIAkyoiIiIiBTCpIpIhKysLHTp0QIcOHdhNDRGRl2OdKiIZjEYjtm/fbh4nIiLvxaSKSAaDwYDly5ebx4mIyHsxqSKSwd/fH71791Y7DCIi0gDWqSIiIiJNYztVRF6goKAAW7ZsAQDcc8898PPzUzkiIiJSC5MqIhmys7Nx//33A5C6qQkNDVU5IiIiUguTKiIZfHx80KRJE/M4ERF5LyZVRDKEhITg2LFjaodBROTRhFA7AvuwojoRERGRAphUERERESmASRWRDFlZWXjwwQfx4IMPspsaIiIvxzpVRDIYjUb8+eef5nEiIlKeXp4DYlJFJIPBYMD3339vHiciIu+l6u2/goICvP3222jQoAGCg4Nx66234v3334ewqOYvhMCECRNQo0YNBAcHo0uXLjh9+rTVfK5fv464uDiEh4cjIiICgwYNQnp6ulWZw4cP45577kFQUBDq1KmDqVOnlohn2bJlaNy4MYKCgtC8eXP8/vvvVq/bEwt5F39/f8TFxSEuLg7+/vyN4m7//gsUFKgdBRGRRNWk6qOPPsKcOXMwc+ZMnDhxAh999BGmTp2KL774wlxm6tSp+PzzzzF37lzs2rULoaGhiI2NRXZ2trlMXFwcjh07hvj4eKxatQqbN2/GkCFDzK+npaWha9euqFevHvbt24dp06bhnXfewZdffmkus337dvTr1w+DBg3CgQMH0Lt3b/Tu3RtHjx51KBYico/ffwfq1AF69VI7EiKiQkJFPXv2FM8//7zVtMcee0zExcUJIYQwGo0iKipKTJs2zfx6SkqKMBgMYvHixUIIIY4fPy4AiD179pjLrFmzRvj4+IhLly4JIYSYPXu2qFSpksjJyTGXGTNmjGjUqJH5/yeffFL07NnTKpbo6Gjx4osv2h1LeVJTUwUAkZqaald50r78/Hyxe/dusXv3bpGfn692OF6lSxchpNZr1I6EiFxt/Xp193d7z9+qXqlq37491q9fj1OnTgEADh06hK1bt6J79+4AgHPnziExMRFdunQxv6dixYqIjo7Gjh07AAA7duxAREQE2rZtay7TpUsX+Pr6YteuXeYynTp1QmBgoLlMbGwsTp48iRs3bpjLWC7HVMa0HHtiKS4nJwdpaWlWA3mW7OxstGvXDu3ateMVSyIiL6dqJZA333wTaWlpaNy4Mfz8/FBQUIBJkyYhLi4OAJCYmAgAiIyMtHpfZGSk+bXExERUr17d6nV/f39UrlzZqkyDBg1KzMP0WqVKlZCYmFjucsqLpbjJkyfj3XfftWNNkF75+PigXr165nEiIvJeql6pWrp0KRYtWoQffvgB+/fvx7fffouPP/4Y3377rZphKWbs2LFITU01DxcvXlQ7JFJYSEgIzp8/j/PnzyMkJETtcIiISEWqXqkaPXo03nzzTTz11FMAgObNm+Off/7B5MmT0b9/f0RFRQEAkpKSUKNGDfP7kpKS0LJlSwBAVFQUkpOTreabn5+P69evm98fFRWFpKQkqzKm/8srY/l6ebEUZzAY+Jg9ERGRTHq5EaDqlarMzEz4+lqH4OfnZ25EsUGDBoiKisL69evNr6elpWHXrl2IiYkBAMTExCAlJQX79u0zl9mwYQOMRiOio6PNZTZv3oy8vDxzmfj4eDRq1AiVKlUyl7FcjqmMaTn2xEJERERezE0V523q37+/qFWrlli1apU4d+6c+OWXX0TVqlXFG2+8YS4zZcoUERERIVasWCEOHz4sevXqJRo0aCCysrLMZbp16yZatWoldu3aJbZu3Spuu+020a9fP/PrKSkpIjIyUjz77LPi6NGjYsmSJSIkJETMmzfPXGbbtm3C399ffPzxx+LEiRNi4sSJIiAgQBw5csShWMrCp/88T1ZWlujVq5fo1auX3dsBKYNP/xF5jw0b9PH0n6qHo7S0NDFixAhRt25dERQUJG655RYxfvx4q6YPjEajePvtt0VkZKQwGAzigQceECdPnrSaz3///Sf69esnwsLCRHh4uBg4cKC4efOmVZlDhw6Jjh07CoPBIGrVqiWmTJlSIp6lS5eK22+/XQQGBoqmTZuK1atXW71uTyxlYVLledLT0wUAAUCkp6erHY5XYVJF5D300qSCjxAWzZeTS6WlpaFixYpITU1FeHi42uGQAvLy8rBw4UIAwIABAxAQEKBuQF7kwQeBwm4XwaMYkWfbsAF44AFpXI393d7zN/vVIJIhICAAgwcPVjsMIiLSAFUrqhMRERF5Cl6pIpLBaDTixIkTAIA77rijxNOsRETkPZhUEcmQlZWFZs2aAQDS09MRGhqqckRERJ5HL+1UMakikqlq1apqh0BERBrApIpIhtDQUFy9elXtMIiISANYAYSIiIhIAUyqiIiIiBTApIpIhuzsbMTFxSEuLg7Z2dlqh0NERCpiUkUkQ0FBAX744Qf88MMPKCgoUDscIiJSESuqE8kQGBiIzz77zDxORETei0kVkQwBAQEYOXKk2mEQEXk0vbRTxdt/RERERArglSoiGYxGIy5cuAAAqFu3LrupISJyASHUjsA+TKqIZMjKykKDBg0AsJsaIiJvx6SKSKaQkBC1QyAiIg1gUkUkQ2hoKDIyMtQOg4iINIAVQIiIiIgUwKSKiIiISAFMqohkyMnJweDBgzF48GDk5OSoHQ4RkUdiO1VEXiA/Px9fffUVvvrqK+Tn56sdDhERqYgV1YlkCAgIwAcffGAeJyIi78WkikiGwMBAjB8/Xu0wiIhIA3j7j4iIiEgBvFJFHuH8eelv/fruXa4QAteuXQMAVK1aFT56qU1JRESKY1JFupeTAxT2FIPsbMBgcN+yMzMzUb16dQDspoaIyNvx9h/pXkpK0XhammphEBGRl+OVKiIZQkNDIfTSfToRkU7ppWYFr1QRERGRpunltyuTKiIiIiIFMKkikiEnJwcjR47EyJEj2U2Nm+nldgAReQ8mVeRR3H2JOD8/HzNmzMCMGTPYTY2b6eV2ABF5D1ZUJ91T84pFQEAAxo0bZx4nIiLvxaSKSIbAwEBMmjRJ7TAUl54OjBoF9OkDPPig2tEQEekDb/8RUQkffADMnw907ap2JERE+sErVUQyCCGQmZkJAAgJCfGYbmrOnVM7AiKiIno5tPJKFZEMmZmZCAsLQ1hYmDm5IiIi78SkioiIiEgBvP1HJENISAjS09PN456CzRUQETmOSRWRDD4+PggNDVU7DCIi0gDe/iMiIiJSAJMqIhlyc3Mxfvx4jB8/Hrm5uWqHQ0REKmJSRSRDXl4ePvzwQ3z44YfIy8tTOxzFsE4VEZHjWKeKPIq7kwF/f3+MGDHCPE7uo5d2a4jIe/AsQLqn5snVYDBg+vTp6gXgxXg1jYi0hrf/iIiISDe0/IOKSRWRB0tLA06csJ529izQrx9w8KAqIREReSwmVUQyZGRkwMfHBz4+PsjIyFA7nBLq1weaNAH27Cma1qsXsGQJ0KqVamEREXkkJlVEHuzGDenvqlVF04pfuSIiImUwqSK3MBqBceOA1avVjkRZISEhSE5ORnJyMrupISLycnz6j9xiyRJg8mRp3JNO2D4+PqhWrZraYRARkQbwShW5xcWLakdARKRf+fnA5ctqR6EevbRLx6SKSIbc3FxMmjQJkyZN0nQ3NXo5IBGRbV26ALVqAVu2qB0JlYVJFZEMeXl5eOutt/DWW2/pppsaexIsT7pFS+QJEhKkv19+qW4cWqDl4xPrVBHJ4O/vjxdeeME8TkRE3otnAfIo7v4FYzAYMH/+fPculIiINIm3/8gtXFmnh/WFyueJ68gTPxMR6RuTKiLSJS3XqyAi78SkikiGjIwMhIaGIjQ0VJPd1BCRZ+GPCW1jnSoimTIzM9UOgYiINED1K1WXLl3CM888gypVqiA4OBjNmzfH3r17za8LITBhwgTUqFEDwcHB6NKlC06fPm01j+vXryMuLg7h4eGIiIjAoEGDkJ6eblXm8OHDuOeeexAUFIQ6depg6tSpJWJZtmwZGjdujKCgIDRv3hy///671ev2xEK2ufLXleW83V3PJjg4GOfOncO5c+cQHBzs3oUTEZGmqJpU3bhxAx06dEBAQADWrFmD48eP45NPPkGlSpXMZaZOnYrPP/8cc+fOxa5duxAaGorY2FhkZ2eby8TFxeHYsWOIj4/HqlWrsHnzZgwZMsT8elpaGrp27Yp69eph3759mDZtGt555x18adHgx/bt29GvXz8MGjQIBw4cQO/evdG7d28cPXrUoVhIXe6+NO7r64v69eujfv368PVV/TeKYniLgYi0StPHJ6GiMWPGiI4dO5b6utFoFFFRUWLatGnmaSkpKcJgMIjFixcLIYQ4fvy4ACD27NljLrNmzRrh4+MjLl26JIQQYvbs2aJSpUoiJyfHatmNGjUy///kk0+Knj17Wi0/OjpavPjii3bHUlx2drZITU01DxcvXhQARGpqarnrxtN89JEQ0q6g/LyvXi2a95Urys9fz0zr5Z13iqb5+ZX/XTz6qOu+L6V06aL9GImUYtrW4+LUjkQdCQlF6yA/3/3LT01Ntev8repP699++w1t27ZFnz59UL16dbRq1cqqzZ9z584hMTERXbp0MU+rWLEioqOjsWPHDgDAjh07EBERgbZt25rLdOnSBb6+vti1a5e5TKdOnRAYGGguExsbi5MnT+LGjRvmMpbLMZUxLceeWIqbPHkyKlasaB7q1Knj1Hoi7crLy8P06dMxffp0TbeobnlblE0RECnvwgUgJUXtKEhtDldUP3fuHLZs2YJ//vkHmZmZqFatGlq1aoWYmBgEBQU5NK+///4bc+bMwahRozBu3Djs2bMHr7zyCgIDA9G/f38kJiYCACIjI63eFxkZaX4tMTER1atXt/5Q/v6oXLmyVZkGDRqUmIfptUqVKiExMbHc5ZQXS3Fjx47FqFGjzP+npaUxsfIwubm5ePXVVwEAgwcPRkBAgMoREZG7XbkC1KsnjWv61hS5nN1J1aJFizBjxgzs3bsXkZGRqFmzJoKDg3H9+nWcPXsWQUFBiIuLw5gxY1DPtHWVw2g0om3btvjwww8BAK1atcLRo0cxd+5c9O/f37lPpCEGgwEGg0HtMMiF/Pz88PTTT5vHPQVPDET2s3i2irycXbf/WrVqhc8//xwDBgzAP//8gytXrmDfvn3YunUrjh8/jrS0NKxYscKcJC1btsyuhdeoUQNNmjSxmnbHHXfgwoULAICoqCgAQFJSklWZpKQk82tRUVFITk62ej0/Px/Xr1+3KmNrHpbLKK2M5evlxULeJygoCIsWLcKiRYscvlJLRESexa6kasqUKdi1axeGDh1q8/aVwWDAfffdh7lz5+Kvv/7CLbfcYtfCO3TogJMnT1pNO3XqlPlKV4MGDRAVFYX169ebX09LS8OuXbsQExMDAIiJiUFKSgr27dtnLrNhwwYYjUZER0eby2zevNmqzkt8fDwaNWpkftIwJibGajmmMqbl2BMLlc5d9Xh4hcU21qkiIj3TzXHLTRXnbdq9e7fw9/cXkyZNEqdPnxaLFi0SISEh4vvvvzeXmTJlioiIiBArVqwQhw8fFr169RINGjQQWVlZ5jLdunUTrVq1Ert27RJbt24Vt912m+jXr5/59ZSUFBEZGSmeffZZcfToUbFkyRIREhIi5s2bZy6zbds24e/vLz7++GNx4sQJMXHiRBEQECCOHDniUCxlsffpAU80darrntS6dq1o3pcvKz9/PTOtl3ffLZoWEMCn/4iU9Ntvrt8WTfN/+mnXLUPLNm/Wx9N/Tm0CZ86cEePHjxdPPfWUSEpKEkII8fvvv4ujR486PK+VK1eKZs2aCYPBIBo3biy+/PJLq9eNRqN4++23RWRkpDAYDOKBBx4QJ0+etCrz33//iX79+omwsDARHh4uBg4cKG7evGlV5tChQ6Jjx47CYDCIWrVqiSlTppSIZenSpeL2228XgYGBomnTpmL16tUOx1IWJlWel1Slp6eLqlWriqpVq4r09HT3LtwOtpIqf//yv4vevbWfsDz4oPZjJO/ApMr1LJOqvDz3L9/e87ePEI7dMElISED37t3RoUMHbN68GSdOnMAtt9yCKVOmYO/evfjpp59ccUHNI6SlpaFixYpITU1FeHi42uG43KVLQM2a0mXbqVOBMWOk6UrfovvvP6BqVWn88mWgRg1l51+WjIwMhIWFAQDS09MRGhrqvoXbwXTJ/L33gLfflsYDAoD8fGm8tO/i0UeBX38tu4zaunYF4uOlca3GSN5h5UrgkUekcaW2xbw8aV81Me3LTz8NLFqkzDL0ZMsWoFMnaTwvD/B3cyd79p6/HW6n6s0338QHH3yA+Ph4q3afOnfujJ07dzoXLXmcb74BatcGXn7ZvctVo5uao0eP4ujRo+ymxs2YSJGnWrwYCAwElixROxJylMNJ1ZEjR/Doo4+WmF69enVcu3ZNkaBI/0xXpWbNcv2y1Dy5+vr6omnTpmjatKluuqnRTYVPIi9V2EoL+vVTNw5ynMNngYiICFy5cqXE9AMHDqBWrVqKBEWehydyfeFVICLSEr0ckxxOqp566imMGTMGiYmJ8PHxgdFoxLZt2/D666/jueeec0WMRHZz946Xl5eH+fPnY/78+brppoaIiFzD4aTqww8/ROPGjVGnTh2kp6ejSZMm6NSpE9q3b4+33nrLFTESlUnNhCE3NxdDhgzBkCFDkJubq14gREQeTC8/DB2uPx8YGIj58+fj7bffxtGjR5Geno5WrVrhtttuc0V8pFN6uVQrl5+fH3r16mUeJyIi5a1Zo3YE9nH6ocS6deuibt26SsZCpDtBQUH41dT2gIY52qK6tyTFRKR9iYnA5MlF/5uOT6mpwOuvSxX7779fndiKczipKigowMKFC7F+/XokJyfDaDRavb5hwwbFgiPPoZdLt56KSRIR6VWxLnfN3noL+OoradDKMc7hpGrEiBFYuHAhevbsiWbNmsGHZ0sij8PdWp/y8qTvzt0NI1L54uOB334Dpk0D5PS97o7k4eRJqfHmzp1dvyw5/v5b7QhKcnjXW7JkCZYuXYoePXq4Ih4iWdz9ayUzMxNNmjQBABw/fhwhISHuDcAJWvlFR8rKz5d6EwgNBc6fZ2KsNV27Sn9r1gTGjlU3lvI0biz9PXIEaNZM3Vj0xqmK6g0bNnRFLOTBXHkiV/PkIYTAP//8Yx7XKkfXkYY/CpXin3+kLpv++w/IzQUMBrUjIlvOn1c7AvsxqXKcw00qvPbaa5gxY4amTyDkvdydYAUFBWH37t3YvXs3guRc03cjT7mC4Smfg7wLT53K0Op6dPhK1datW7Fx40asWbMGTZs2RYBlj48AfvnlF8WCI9I6Pz8/3HXXXWqHQUQq0uoJ3lP9/DMwfDiQlaV2JCU5nFRFRETY7PuPqCyuvKrAA5p34vdOesTtVj4t94nocFK1YMECV8RBpEv5+fn48ccfAQB9+/aFv0Yfu2KdKtIKUys8Oul/3C6O7F/ctzyb02eAq1ev4uTJkwCARo0aoVq1aooFRfqn1oHDnuVmZ8t7pNlSTk4OnnnmGQBA7969NZtUkWcTAhg8WO0oyicEEB0t7YOHDnlWYkUEOFFRPSMjA88//zxq1KiBTp06oVOnTqhZsyYGDRqEzMxMV8RIVCZHfiXu3g0EBwMjRyqzbF9fX3Tp0gVdunSBr07OEKzg7XmOHgU2blQ7ivKlpwN790rxXrqkdjTq4JUqz+bwWWDUqFFISEjAypUrkZKSgpSUFKxYsQIJCQl47bXXXBEjkWLGj5f+zpihzPyCg4MRHx+P+Ph4BAcHKzNT8hh//gns2+f65WRnu34Z5H20kgDq6Yegw0nVzz//jK+//hrdu3dHeHg4wsPD0aNHD8yfPx8//fSTK2IknRs9Whq82YoVwJYtakehTx99BLRpI/XzpScXLgAPPgi0bat2JORJtJLokG0OJ1WZmZmIjIwsMb169eq8/Uc2ffyx/Hns3QtMmiQ1aqg3588DvXsDnTqpHYlEbwflN98E9u8HPvtM7UgcU9gmLBHJpKdjlsNJVUxMDCZOnIhsi+vNWVlZePfddxETE6NocEQmd90ldZ75xRdqR2ItMzMTTZs2RdOmTUv9UeGtdUeUlpOjdgSucfkysG6dvk4c5Dw9fc96uu2mFQ4/qjRjxgzExsaidu3aaNGiBQDg0KFDCAoKwrp16xQPkMjS0aNqR2BNCIHjx4+bx7XK8uBoz4FSwx/F49SqJf1dvly6oukMPZ/85syRbpVOnqx2JKSmffuAr74C3nsPKN6YgJ62b4eTqmbNmuH06dNYtGgR/vrrLwBAv379EBcXx4q6pAo1d7igoCBsLHzsylXd1Pz9N3D4MNCrl74OLkrz9ERv/Xrnkyo9GzpU+vvkk0CrVurG4ixHtk1P346dZap7mJQE6LljFqca1QkJCcFgPTSKQuRifn5+uO+++1y6jFtvlf6uWAE88ohLF6V7p04Bfn5F64y0q3hykZamThzkuKtXpbqyzz8PNGqk7LyPHVN2fu7mVFJ1+vRpbNy4EcnJyTCamsctNGHCBEUCIyJr27YxqbJU/KpdRkbRAT4vD2A7rKRFerpSVVqsAwcCq1dLdVz5fJo1hw878+fPx//+9z9UrVoVUVFR8LE4svn4+DCpIgDuPXA4siylb5/l5+dj1apVAICHHnpIsy2qe0M3NdeuFY3n5HhPUrVjB9Cnj9pR6FNqqtSye8eO8lp397ZuanbskP5qsUNjtTl82Pnggw8wadIkjBkzxhXxELmU0ge0nJwccwfj6enpNpMqrR1EPaVeltbWa3Huiq99e/csR2nFt0M1vs927aRbxt98I119IZLL4dz8xo0b6MOfRaSS8g687j4w+/r6on379mjfvr3Lu6nRehJBpDenTkl/lyxRNw7yHA6fBfr06YM//vjDFbEQ6U5wcDC2bduGbdu28elXsuIpVwRJW7Tw44rbdukcvv3XsGFDvP3229i5cyeaN2+OgIAAq9dfeeUVxYIj/XLVTueq+Z44Afz2G/Dyy0BIiLLz5gFIGVo4mRDJpaftmMcuxzmcVH355ZcICwtDQkICEhISrF7z8fFhUkUA9HXgAIAmTaS///0HTJ2qbiyl4QGOiLSAx6LSOZxUnTt3zhVxkIqMRunx2LvuAqKi1I6mbK5O1nbtcqx8VlYWOhV26rd582beAiSyk95+eClFK5/74kWpP83hw4FbblE7mrLpKYnzkoeOqSwLFwKDBgEVKtjXAN/Fi0Dt2vra0F3FaDRi79695nFXknMw9rTv6ubNktO0crIi76PHbe+hh6SeGn7+ufTOv7XyubQShz3sqqg+ZcoUZNnZIMWuXbuwevVqWUGRe5m+LlsnquJmzADq1gX02KJGXp7yyYXBYMCqVauwatUqGAwGZWeuIi0fxH77DQgPB/78U+1IyFGeltw7o6x9a84cYOTIst9f2jrMygLy86Vx09+yHD4s/b1wofyyZD+7kqrjx4+jbt26GDp0KNasWYOrV6+aX8vPz8fhw4cxe/ZstG/fHn379kWFChVcFjCpy7TDT5umzvKdPSj/8gsQGAjExysbj7+/P3r27ImePXuW2vCnlhMUPXr5ZdvTtXbC5vdeklbXibvjKm15Q4dKP1wdfW9mpnSnoVEjYO1awGAAvv5afpzkOLuSqu+++w5//vkn8vLy8PTTTyMqKgqBgYGoUKECDAYDWrVqhW+++QbPPfcc/vrrL3MdE/JerjpILVzo3Psef9y+clo7MRN5Ki00/qkUR44b27YB1asDixcrt/wDB4CCAqnz9V69pHqyL7yg3PzdSe/HYLvrVLVo0QLz58/HvHnzcPjwYfzzzz/IyspC1apV0bJlS1StWtWVcRKVyp0H419+kX4JzpwpXfkqKCjAhg0bAACdO3eGn5+f+4JxgOWBSq2D1pYtwLvvSuuucWPH36+3k67eTw7exJ3f1fnz0t+nnwb69XPfcpXkyvVlaz/X077kcEV1X19ftGzZEi1btnRBOETaZrri1by5dBsqOzsbXbt2BSB1UxMaGqpidMpxRQJjuoDdqxdw8qTy86ciektAiTwFn/4jl9DTLwtnJCZKf319fdGiRQvzuC2evi4cdfmyc+8zrUeuTyJ1uXsf1NOPBNd2VkbkZu7e+YKDg7Fz50H06nUQR46wjSpX0tOBVW16SDz5fTrHnetND9uR1jCpIpfwpgPmJ58A770HREe7djlKrNPMTM/9bjz1c5H7CAFMngysWKF2JNqglX1KT8kdkyqysnmz2hHoz9GjZb+ulQPThQtAaCiQna12JN5Bzveemwts2gTk5Dg/j//+A/74Q3oSjMpm+q42bQLGjQN693bu/d5CT0mOuzmUVOXl5cHf3x9HyzuLkG7de29RfSEqnekgmpWVhfXr7wNwHwD7GshVy4IFakdA9ho2DLj/fuCll5yfR+vWQGws8NVXysUll9ZPxs7W9/M2SieRGRlF41rfRsrjUFIVEBCAunXroqCgwFXxkAZcuqR2BPphNBpx9WoCgAQArr0kIOdgo/cDFVD+gdwTPqOJKRFytl02oKil7J9/lh2OWzh6ov7+e+kp3DNnXBOPVnnSdm7y6qtF484mbHPmALNnKxOPHA7f/hs/fjzGjRuH69evuyIeIlU5esAyGAxo334pgKUAyu+mhl1CaMOsWezmRg1KXuF49lnp1rucq3l6pIVbjUondsuXy5/H0KHSFd7UVPnzksPhJhVmzpyJM2fOoGbNmqhXr16Jdnn279+vWHCkX1rY8d3B398fdev2wfbt9pWvV8/5dSN3nTryfi1+f3IO5EIAO3cCzZoBBw8Cw4cXTXcVT7yioCSl1o/lrSNnyY2F37V25Oaqu3yHk6rejtbgI93R4gnVXQ4dAtq0AT78UKqPUhoeRN3PtF06s+6//RYYOBBo2tT+zsCPHZNuJ7z1FlCjhuPLVJM378NycL8muRxOqiZOnOiKOMjD6PXgdOOGNHTrVvaJyfRaQUEBrl3bWTj1bgAlu6nRwrrQQgxq+r//k/4eO2b/e1q2BPLzgRMngMKeiEhBWkz8tBhTcfn57ltWaetD6eOJHta7vZxqUiElJQVfffUVxo4da65btX//flxiDWdSgZo7ZHZ2Nv78syOAjgBst1XgaHwFBUBamuzQSsTgSQcuW5T+fKaTl95rNOjte1fidp4n++UXbTWT0aoV8Pzzys1P7z8AHU6qDh8+jNtvvx0fffQRPv74Y6SkpAAAfvnlF4wdO1bp+Ig0zcfHB2FhDQE0BKDM0eCuu4CKFdV9vFtvJ+LyyPk8atWB80avvQaEhQEJCe5drpxby2pwV2Xs0taH5fSDB9lciyWHk6pRo0ZhwIABOH36NIKCgszTe/Togc1sOZIKecsJJSQkBA89dBrAaQAhiszzwAHpr5KtOvv46OeE4WqOrgdv2Zbdobx1/+mn0t8333R9LHr23XfqLt+V+4SteTuyz6p9nHM4qdqzZw9efPHFEtNr1aqFRLYa6dWMRqBzZ6BvX/Vi4AnQe5V1MJX75KCeqX2SsZee17O7Yx850r3LU5uenlx2uKK6wWBAmo0KH6dOnUK1atUUCYqcd/261L9b7druX/aJE8DGjdJ4xYruX74z8vOlvvv0JicH2LEDaN8eCAy07z1qH2z0iuvNswgh/QD0K/lMiUPzyM4Ggr20D3W9JOpqcPhK1SOPPIL33nsPeXl5AKQ6JRcuXMCYMWPw+OOPKx4gOaZKFaBOHanfL3fTUuVJe82dK+9WQ3Z2NhISegLoidIqqjur+Mnc8v8hQ6RuTF5+WdFFapoa9aLk0NuJx2gE/v3XtcvQQoLavj1w661A4SmsVL//Xvprzz8PhIQAx48rGxvpn8NJ1SeffIL09HRUr14dWVlZuPfee9GwYUNUqFABkyZNckWM5AQ5O7sWDnzucuSIvPcXFBTgypXfAfwOwH3dN5nqVHz5pX3l9XaCL4u7P4u37A9xcdIPsl9+cc/y1Nomd+4E/vnHuiN0W7H07Fn6PEzdB02bpmhomvX++0DbtsDNm66Zv+U+pvdjlcO3/ypWrIj4+Hhs3boVhw8fRnp6Olq3bo0uXbq4Ij7SEb3vDM4IDAxEdPQC7NoFALbvwyl1UnZk/X72GbBnjzLL9QSurFO1aRNQv740aIVlzPZuf0uWSH8nTwYee0z5mIrzpGTVU499pu9owgTp79y5wOjR7v+8elq/DidV2dnZCAoKQseOHdGxY0dXxERO+uYbZeajxAas1gHT3TtfQEAAGjQYUJhUaceoUSWnqXkSO33a9cuwp7FWpee7e7d0G1buMoDyt938fMDf4SO2dxFCaufN0fXkSQmeK6ndBYw91E7AHL79FxERgU6dOuHtt9/Ghg0bkJWV5Yq4yAmDBhWNe3IdkuTk0l9z9HO7I2alluHO71TpZbVoUf7ydu60r9FTd/TTZpkElrUuykqmHV2HZZWfM0eqFG16EIRs69EDqFbN+dtUzmxbRqP0/XgTVx439Z7gOpxU/fnnn+jWrRt27dqFRx55BJUqVULHjh0xfvx4xMfHuyJGcjMlNmpX7hg2WvRwO8tuam7cOAjgIIrXqcrIALTym0PtdqrKWw+LFgExMUC7duXPy55tS85n3bIFuP1259/vCkOHSleqnn7a8feq/cvdkqtjWbsWSEkpu5K50pYsAdasce69ajxQ5Iji35ceEh61Y3Q4qerYsSPGjRuHP/74AykpKdi4cSMaNmyIqVOnolu3bk4HMmXKFPj4+GCkRQMc2dnZGDZsGKpUqYKwsDA8/vjjSEpKsnrfhQsX0LNnT4SEhKB69eoYPXo08ot1jrRp0ya0bt0aBoMBDRs2xEJTLUMLs2bNQv369REUFITo6Gjs3r3b6nV7YiH30NITN9nZ2Vi3rhWAVrB8+i83V2oZOiJCG09Far2bmkWLpL8nTyozPzmf1VS3SIl5kb44c6X70CHnl/fFF86/l7TJqb7/Tp06hS+//BLPPfccHn/8caxcuRIPPfQQPjU1h+ugPXv2YN68ebjzzjutpr/66qtYuXIlli1bhoSEBFy+fBmPWdSgLCgoQM+ePZGbm4vt27fj22+/xcKFCzHBVKsOwLlz59CzZ0/cf//9OHjwIEaOHIkXXngB69atM5f58ccfMWrUKEycOBH79+9HixYtEBsbi2SL+0zlxULWnD0R5eQA991XVDHSlcsqz6uvlt9dho+PD4KDawKoCctuakzdYObmSp/JGTyZWytvfbjqKoinfA9XrqgdQdk8ZT07QktXEbVC7+vE4aSqVq1auPvuu7F27VrcfffdWLNmDa5du4bly5djxIgRDgeQnp6OuLg4zJ8/H5UqVTJPT01Nxddff41PP/0UnTt3Rps2bbBgwQJs374dO3fuBAD88ccfOH78OL7//nu0bNkS3bt3x/vvv49Zs2Yht7BG3dy5c9GgQQN88sknuOOOOzB8+HA88cQT+Oyzz8zL+vTTTzF48GAMHDgQTZo0wdy5cxESEoJvCmt+2xMLWe8Mzh4gly2TEpn331cmJjmmT5cSvLKEhISgd+9LAC5BqW5qSiPnYONJXbPosUmFw4eBoCCgdWvp9pQ7YxECmDoVqFkTYKs3ZfOk/UTvMjOBPn2KrmLbS+2kzOGkqlq1asjMzERiYiISExORlJQkq7L6sGHD0LNnzxJNMuzbtw95eXlW0xs3boy6detix44dAIAdO3agefPmiIyMNJeJjY1FWloajh07Zi5TfN6xsbHmeeTm5mLfvn1WZXx9fdGlSxdzGXtisSUnJwdpaWlWg7eQc6VKD9TYcXkAd56rmlQo6zXLZfboIW3bBw5Ij6S725gx0t+33nL/si1pdRtW+gfL6dPavzKoJba2i88+A376CXjmGffHI4fDSdXBgweRmJiIN998Ezk5ORg3bhyqVq2K9u3bY/z48Q7Na8mSJdi/fz8mT55c4rXExEQEBgYiIiLCanpkZKS5j8HExESrhMr0uum1ssqkpaUhKysL165dQ0FBgc0ylvMoLxZbJk+ejIoVK5qHOnXqlFpWD9S6/eIIdx20S1tOcjJwxx3SlQF3x1QercShBrU/u2X1S8tGJ8k2LRxL7OHjU3LbSk6WHnSoWVOdmJRU2n7jju/n2jXXL8MVnGr1JCIiAo888gg6dOiA9u3bY8WKFVi8eDF27dpld6vqFy9exIgRIxAfH4+goCBnwtC8sWPHYpRFg0FpaWluS6xccRJZuVLd5buC3INDdnY2tm59tvC//8OkSUH46y/gr79kh6a4P/+0v6wj60UI4I03gObNgeeeczwupWitGRFXxGPv96KX/c9S4c0FAO6PX8nlnTih3Lzc7cQJ4I8/1I1Bj9uuJYeTql9++QWbNm3Cpk2bcPz4cVSuXBkdO3bEJ598gnvvvdfu+ezbtw/Jyclo3bq1eVpBQQE2b96MmTNnYt26dcjNzUVKSorVFaKkpCRERUUBAKKioko8pWd6Is+yTPGn9JKSkhAeHo7g4GD4+fnBz8/PZhnLeZQXiy0GgwEGg8HONaIeew/U584pMx9Xz8MRcnfggoICXLz4U+F/CzXbOJ6Pj9QOlL2uX7e/7IYNwMcfS+PPPuv679Ad7VRZclWjosXZE5feTzhlsXjwW1fcWdfR1Zo0sa+c1uK2pPY+4vDtv5deegmXL1/GkCFDcODAASQnJ+OXX37BK6+8ghbltfBn4YEHHsCRI0dw8OBB89C2bVvExcWZxwMCArB+/Xrze06ePIkLFy4gJiYGABATE4MjR45YPaUXHx+P8PBwNCncOmJiYqzmYSpjmkdgYCDatGljVcZoNGL9+vXmMm3atCk3Fj0rq+NepebpjCtXgL175c/HlaTtZyaAmSitmxotH4BsOXrUsfVueZne19f5NnvspcerGJbbQGnbg6s+lz3bnxaa/bBHWprUYroSXLW+Ledb3npVKwFwtjUgtRMWPXD4SlVyWc1ZO6BChQpo1qyZ1bTQ0FBUqVLFPH3QoEEYNWoUKleujPDwcLz88suIiYnB3XffDQDo2rUrmjRpgmeffRZTp05FYmIi3nrrLQwbNsx8heill17CzJkz8cYbb+D555/Hhg0bsHTpUqxevdq83FGjRqF///5o27Yt2rVrh+nTpyMjIwMDBw4EIPV3WF4spDxTnQRH2oFxNIGRm/AEBATg9tuHYd8+efOxRa0D2Pz58t7fo4drYndknkomsvZWRtezxYvdsxw56+vKFemY0KIFcPCgYiG51K+/uqcfRUfFxakdQelM24i9ncWX9n61OFWnqqCgAL/++itOFN48btKkCXr16gU/Pz9Fg/vss8/g6+uLxx9/HDk5OYiNjcXs2bPNr/v5+WHVqlX43//+h5iYGISGhqJ///547733zGUaNGiA1atX49VXX8WMGTNQu3ZtfPXVV4iNjTWX6du3L65evYoJEyYgMTERLVu2xNq1a60qr5cXizewrHxdHiVPqsUfsFR7pyHtU/uBBVcu7//+D1i4EFi6FKhSxb73lOfvv4vGndm//voLqFpVGlzlt9+kv3Ia27Rk63MqfWzRaovpZTy0bkXNY21mpnrLlsPhpOrMmTPo0aMHLl26hEaNGgGQnnKrU6cOVq9ejVtvvdXpYDZt2mT1f1BQEGbNmoVZs2aV+p569erh93L6JLjvvvtw4MCBMssMHz4cw4cPL/V1e2LREyGkbi8CAkq+VtqOdPlyyWlz5kiPic+dW3L+anD3co1GI27ePFv4361wsj1dckBp26e3JNumhwEmTABccThydB86e1Z64tXyvadPS7eQn3rKue/FW75LkujhyXJ7OXwGeOWVV3Drrbfi4sWL2L9/P/bv348LFy6gQYMGeOWVV1wRI7lA165A9epAenrJ1xw5qA4dKt0uWrdOmcY/bXFFnS8TuTtrVlYWVq26HcDtAGy316ZUvK5IGH/5Rfl5OkNPB01LZcXtis9kOU85jYgW58i2lZwMZBf1yITt20uWuf12qZ/CH3+UH5s7uftHmVa2eyGA5cttTyfHOHylKiEhATt37kTlypXN06pUqYIpU6agQ4cOigZHzitvZzA9Xq9UH9h6bddUzkEjOxsYNw7w8alono9eGi81efzxkutAjVal9XrwvnlT3eW7Iineuxc4fx6oX7/ka//8I02vXRu4eLH8ee3YIV2tssXepyp/+EFqjV6JBMQV7S7Zk1g78jStOxSPec0ax+p+uTIZtPUd6en44PCVKoPBgJs2jiTp6ekIDLT99BN5B7WaVFBrh5s2Dfj881AIkQIgBUAoFiwoWU4LBwS5382//9q+/QtILR9rgb0naaVOCDNmAGW1d+yKE7jlPIWQkmJHLV4MdO4sXXEqzbPP2p5uqmnx77/2LUvuVebkZKlS9eOPA3l5jr03Lw946SWpVW6TJ56wHYtpvKzv5vz5kkm0rcY/bZk+vfwyrrRli3Sb1qR4zPbWsaLyOZxUPfTQQxgyZAh27doFIQSEENi5cydeeuklPPLII66IkRRWvFchV/wCdGUioeSvJDnzOnVKuTi0LCsLqFMHqFVLqodXXLGm4lxOK7dMHGlXyZ6YZ84s6ohbrrKSyKefBjZulK6ylqa0BFpJ9qyT1NSicUebfViwAJg3T+o/zsTZK3tnzgANGgA1apRf1layVlpC6OofXEOHAm3aAJ06AQ0byp+fO34gamX/dpbDSdXnn3+OW2+9FTExMQgKCkJQUBA6dOiAhg0bYsaMGa6IkRTWv7/1/1q4kqI3y5bZX9bZg4Tc23JKsbyiocTtTWe3N9P7nHm/Xg7UffsqP8/S1teNG66df3mvlUWJfurL63vPkW3C1ERhRobz8biL5eeaMwfYv9+1y3CH48fduzw5HK5TFRERgRUrVuDMmTPmJhXuuOMONFQiDSa3KJ4QuKJehpae/lu6VPnlnD0LSO2+5gB4sXDqPAAlW9BX6gDkycmvrXX02mtAsQeCdcvelvZd0d6Zp9Dq9i/nYQV7jg379gFlPJhegj3ryZ1JUVaW1HZdt25FHXs7yhU/NlzF7qTKaDRi2rRp+O2335Cbm4sHHngAEydORHBwsCvjIxfT0pN0riJ3h/zsM+DVV0t7NR/At4Xjs2ArqdICperxmOTlAd9+K9XNcVUsn35q//vKa5NYqydkNTmzTorf2vLxce1+r/R26w5KL/f++5V/IMLZ6hqm78OR72XhQunH0aZNzidVemL37b9JkyZh3LhxCAsLQ61atTBjxgwMGzbMlbGRnS5dAqKjlZuf1p7mKm9e5V3ml8uiT2wbAgBMLRxsNPqFkvGfPw/07g1s3apEdMqz55f3p58CgwcDzjRLl54OWHRoAMC+7aWsysSRkdaNBWo5iTp92nZTJoB7416+HLhwwfnlTphQfhktfw/O+vbb8ss4o7TbsWo/YWrJmVvw9jTi6Unbid1J1XfffYfZs2dj3bp1+PXXX7Fy5UosWrQIRr10GuXBRo0qWVnY0V8eSlDrSlXLluosVxIIYHThYPvp1+LfRb9+wIoVwD33uDo2+zizC5d3W668RPehhxxfZnnKqlytpauoV68Ct90mfz5l7eP21pd6+mnHlmm5Hj/4wLH3yuXId6j09225rgcMsH/ZjsRRThvWinLn/uBJCZM97E6qLly4gB49epj/79KlC3x8fHDZHY+JUJm00EaUUk//aenk5yrnz6sdgbWJE5Wf5w8/KD/P8riiwrQcZW3LiYnOzdPezzFtmn3lTp92Lg5Lch88sJcjHVE7cuVTae7a1n76yf66eiZr19p+gtdR3nCcdpbdSVV+fj6CgoKspgUEBCDP0cZDyGOtXFk07soDS36+1N7Mxx/Ln5f8g4MRwKXCQbtXbcvqg8yZKw5qHlTlLttdsav5C714sylqcWc1ACXoKVno0wew6ObWLt27259wK8XbrlTZXVFdCIEBAwbAYCiqiJudnY2XXnoJoaGh5mm/aKXfC3K7suseKefsWWn4+Wfg9detX3P/DpwFoHbheDqA0BIl7D1Qnz9v/fSXkp/l/feVmxeg/MnHcn6ZmbbbAJOzPuTG+7//AffeW3rr4O7iyttarigv9/32dH1lzzpJTwe2bXP8feWVVbv6xLJljv8o+v57x5dj4m0JkjPsTqr6F2/cCMAzzzyjaDDkflrul04/HGuZpLSDZ4MGCoTiAsW/2wMHXPvof6dOZc9f7lNrzpg7VxrUTqrs/Rzu3B/LSgZmzwaaNpUaoXTkfUrr1QvYsMH59zuyPtU+Frpjverpip672X02WGCr/w3SBLV3YkC5lqBt0Wrr7NJ7QwG45xZ4aevhzBnppPXmm841cQBIDQS2bl1+udxc+8rJ6T+wtITKNE9H65Hoiac0A2Bp2DDbSZU9lGpSwVZCZVldQYllaIVWj5eOsOeJwdKonfA53PgneRalNsA33lBmPo5y9+0IJZetlH79pE5w4+Odj6ljx6IDWVnbhL0tSrti3QghJY6mZgBcRS+dYmul8r09ceTnS20U3XWXY8tzRZ+NJko9oKH2SdwZcnt5cOT9jj40kJkJhJasRaEbTKo8gLMHutKocbA2NSToiVy9PvfulT8PrVRsLs9HH9lXztl1fuwY8PXXzr3XGzi7XhcsKNmYq1JsxaSVY4kSLao7SskruWqcCy5elPd+tX/sOtz3H5FcBQXW/7/2GnD77VLTEO4+GMpfXg6AYYWDay9xaOFE4aoYlJivEvNwd9tLcmitkd6yOHt1Ual+M13Fxwf4+2/143CUI3EdOeK6OEy00CyQUphUebnydq7cXKltEyU7Eu3Vy3rZn34q1Qv69FP5TxC6/yCWD2B24WC7ARhP6vvP3s+iRgK4Zo195dwVm1LLcbZNK5P4eGXiKI3aiY8S69mZ21qAdFXzxx/lL9eZZbuDj49rGur1ZEyqqATLnfvNN6W2TR5/XLn5r14NjBsH1K4NJCUVTX/3XeD6deWW42rSegoAMLFwsN1Nje33la/4SefmTakfLXevIy0kc/Zw1e0lZyn1lOLo0fJj0St7mlRQktLLMMVf2nx/+knZH6z2ciSBK69fTbLGOlVUguUBYM4c6e+6dcouY/Jk6e/UqY7Foz2BAN5xy5K++koa2rd3zfxLW8+WXdK46te0Vr5jLV4tSEkpGld7PSldf1MrlPzeHb21NniwOj0QuIu7tw+192FeqfJyam+Acql5QFdr2du3u2a+vr7Agw+WnP7NN0XjavQp6U6ekCA4w9XtXymxXuU00yHXmTPy3l9W7IsXy5u3GvS6f7sDkypSVfFK6/ojAKQUDraP4no6Ua9fDyjR85RS/brJmacrZGerHYGytLBOnWEZt5JP/5X2vk8+cW5+nkDNZmv0iEmVh5K7Ie/eDUyZ4vqkZ+FC187flaQDcCaASoWDjBbrNKSsE5Kn/0It7/Op3QuXvXWMtHYis7Ve5WxLvjxzqcLZCv2WZs8GZs1SJh5b1N72WafKy5W2AUZHu2f5qanKzs8VV0jkUqMiqpIs16mrbj3qhVHlPrPd2VSAFtgTR2n1vLTyGeylZrylbVcDB1pfuT59Wl5L9OnpUgv7ABAXB0REOD8vrWJSRZqn7VsuIQBMre3Z3p1+/dX6f70d7C3Z+xSo2p9R7V+rztJK3FqJw5IrO3+Oj1fmtrde2Lt/Fl8nP/wgr1K95fyyslyTVKl97OFFVNK8efNKf039g78PpKYUAgrHlaP+Z3MfV39WrbcHVJZVq9SOQD5bbTlpbfueNk2Z+Wh9W1P6Vmx5LNeH5W1bta/6ugqTKg918qR95bS40xf3339qR6COjz4CHntM7SicM2qU1FK+FsnprNUdzp8v/TVXJSKuTnBOn3bt/JXw889qR+AeQpT8vt2V4FomVfp/SMk2JlUeasQI59+rtV+QWkj8/v5banyzpFwAowsH251uObs+ExOB5csde8/77zu3LEvF17ez8TvSGKerv2PL+ZfVAnZ5cbhj32jQwPXLMNHavu4MpT7D2bPKzMednPnsx49LdZvcpbQrd7xSRbqSn1/UcCfJd+utQM2atl7JA/Bx4aB+pYwJE9SOwH7vv2//FVVAuZOnng/m7mphXAs/ZAB5TSM4un5SU4Fdu5xbnqV//rGOw5X0cAXQkrtbyFcDkyoPNnSodWvYtnjahu3I5xEC2LrV/vK2f90FAHi9cLDdTY3e1rG74p0wAWjc2D3LIseUtg1ocVtWMnFZtkz+PAYPLho3ra/y1tv06cCLLzq3PKWfoFZaad+Pnn/clIVJlQcoa4c9d859cejNjz8CBw/KnUsggGmFQ6Bd73D1r1e5Jz6lbv+R48pb165u+bw8s2e7Zr72KO0z7dwp9SdavKwz+5nS6y011b66Q6++CqSlObcMJfoCdVdFdUs9e3rmsYVJFTnNXY8gl1VRXc5O6akVU+V2wOuJBzqlePu6OX68/DL21tdR8kT+0EPAjRvW07TwXb36KnDXXdq5nVoad60ry+WcPAn89Zd7lutOTKo8QFk77IQJJX/FKeXyZdfMV66ffgL27nXX0gSkulR5KK2bGncfUJXuUkMLJye59PIZ3L2tlLZe/v5bakfo5k2gc2fHrlC98IIysTnK2Ss9llyx/g8cUH6eelLWvueJtwCZVHm4f/+VfsWVRs5BRIsnqv37gT59pF+HW7a4Y4mZkG77BcIbuqnRi7K2TS1/Pkf2qZ9+cu1yv/kGmDED2LixqBVse5T1dGV5y5TDFccj20/8aosS2/OHH8qfR2kWLXLdvLWISZWX02JiJIfl02SdOqkXh6Xvv7f+/8oVdeLwZkolUp62v5QlM1P9pELpjpEdFR4u/TAl5504UTRefP/R8g8cZ7GbGipBzyeO4rG7/umyEAA3LMbLp/VG77T6/cuJy973euJBnuRRou6lVvcpUh6vVHkA7rBFiq+LstpByrXdVqeDfABEFA6eeUbW6/a1YQOwb5807s7GDuXQ67p2FXe3a8SkWv/U3oeYVFEJejqwyNmBfvtN3rL1tJ7kkLOOJ09WLg5H/Psv8MADQNu2UmOMpuRK79Q+Ybibs5/X3e8rjyuPFd5yHNILJlUewJ6dSpmrMtrnzpOOtKxcAO8UDo6v5KNHlYxIe8aNU2e5lq1af/edcvN19fallaf/HHl/Tk7R/9euyZuf3FjK+t9ZTFqU4w0/CphUeYnS6vHYOmCo3cCgvuQBeLdwcLzhrrFjlY6H9CI+vuRTV+XVt3PVCd7ZfblbN+v26jIylInHxN0JDRMo9/LE9c2K6l4iKQmIigKCgqyny0mMXnlFXkyewR/AUItx0rodO9SOQNK1q+vm7a4fPH/8AfTu7dxyHT2hrl/vWHkt4Q9Q78ErVR7Anh22QQPbT8LJ2dlXrXL+va7i/oOXAcCswsHg7oW7hKtuo5Tm4kXXzr84OY1EOtq3pNLK6l3Akjs72nW2Mrk9ZS3n7cjxxhOvgGhdfLzaEWgDf1p7Ect6JiZPPOH+OJTk7gTAkpIH7sOHlZuX3tStC1SqVH45Pv1lP0c6Cpfrf/9z/r28giOfVrbZHj3K77rMG75vXqnyMikpakdAtmj56TS5B8KzZ8svU7zfNnf5/HPXzVsrJ7uypKQAx46pHYVtjtY31PKTe3rYFtTgivWiduLGpMoDOLJh2nNFQM/c//RfBoCAwkHhWroeols3ZeYza5Zz77t0qfTXRoxwbp62/PGH9ht2taVZM2324zllivPvdfY4cOGC88v0dpbr/Nw54MgR9WJRE5MqItnyCwfnqf3rqixyf02eOaNMHM4qqwFYR5X1PcXGOp/4qc2yKxE5rl5VZj7OGDnS+v98ebskyXDLLcCdd0oPSHkbJlVEsgQD+LdwCFY5FtfQcsJnD1fEn5Vle7q9nQlrjVLrKDpamfmYOJLQr1xp/b/RqGwscuh9H7KHre+q+AMTxddD9+7A+fMuC0kVrKjuAfTQ27u7uL+iui+AWgrNS5v0vD0AQEKC8vN0ZV0sNdjzHavVkKszfHy0vU8pSSuf05njxPnzwKBBysahdjLNK1Wka2o+/ectuE5LsqcOkp7Wmz2fR40uh6ZOdf69Wkk2ANfHYuvJbi2w53MrfZt2wQJl5+coJlVEsuQCmFY4eElfQDqgtZbHte7ff92/zJs3y28zTM4VQU/9rmyJi1M7Anm9cyhp6VL3L9MSkyoPoPQJREu/8Bzl/qf/8gC8UTg43k2NFhVfh3reHhxl72f1lhO2K58KbN4ciIhw3fzJvUrbJ55+uuwynlZ9hXWqqAS1N0p98QfQ32Jc/4p346LH7UELMes9GZ08Wb32w+Tav1/erUNyTl4eEBBQ9L8QQGBg0f/PPOP6GNTe9z3jLECkAumkaQCwUN1AFLZ/v/X/ah+ktMS0LspLmHJygN27XR+PK+k1oQKAjz5Sbl5KXK1z5T6kleS9oAAICwMGDCi9zO+/uz6OQ4eAgweBli1dvyxbePvPA/CkV8Sd60Ltp0zchduX/UwnuCeeAEaPVjcWUoa37OdKyM0Fvvyy6H8fn/KPH1u2KB+Hmj9omFSRrqn59N/337tvWeQYV/96L207M03XYmfj5BwluvFx5faolStVtqj1g0zNdcKkikrQ85UJ98eeASCicHC8m5qcHOmvlte5lg/aSpP7WbdvVyYO0o7Vq9WOoGxaPnYA2o9PaaxT5QG86aRX3KFDakcAAKlOvzM+Hrh4UcFQXMCbDorlfVZ761QRuYuS3TApzRuvVDGpohL0dMK4+261IwgGcMpi3HF16yoWjEt4U1JlL64TcoQrt5cuXVw3b71iUkWy8ABfxP2dqPoCuM3dCyUX0dMPCiKts6eiuquWqxbWqaIS9JykffKJ2hGQJ9PzvkHkbkIwqXKryZMn46677kKFChVQvXp19O7dGyeL3SDOzs7GsGHDUKVKFYSFheHxxx9HUlKSVZkLFy6gZ8+eCAkJQfXq1TF69GjkF7tksWnTJrRu3RoGgwENGzbEwoULS8Qza9Ys1K9fH0FBQYiOjsbuYs9l2hMLeZs8ALMKB89oUb04PSYSzsScnQ3s22dfWV7RIkdwe3Evr02qEhISMGzYMOzcuRPx8fHIy8tD165dkZFR9BTVq6++ipUrV2LZsmVISEjA5cuX8dhjj5lfLygoQM+ePZGbm4vt27fj22+/xcKFCzFhwgRzmXPnzqFnz564//77cfDgQYwcORIvvPAC1q1bZy7z448/YtSoUZg4cSL279+PFi1aIDY2FsnJyXbHQt4oF8DwwsEz+/47ckTtCNyjWzf7H5/XY6JJ5G5qXalSldCQ5ORkAUAkJCQIIYRISUkRAQEBYtmyZeYyJ06cEADEjh07hBBC/P7778LX11ckJiaay8yZM0eEh4eLnJwcIYQQb7zxhmjatKnVsvr27StiY2PN/7dr104MGzbM/H9BQYGoWbOmmDx5st2xFJednS1SU1PNw8WLFwUAkZqa6tT6KU23bqZNV5lhyxZl5+fZQ5YAnigcsjQQDwdAiMhI+8ua2FN23jyp7Msvl17GaFT/83PQ1vDmm+rHoMawaZMQcXHuX+7ChYqeYoUQQqSmpgp7zt+aqlOVmio9ml65cmUAwL59+5CXl4cuFo83NG7cGHXr1sWOwg7KduzYgebNmyMyMtJcJjY2FmlpaThW+LNzx44dVvMwlTHNIzc3F/v27bMq4+vriy5dupjL2BNLcZMnT0bFihXNQ506dZxbMaRhQQCWFQ5BKsdCJo7clT95UmoB3R5ClF/mww/tXzZ5B3u2G0+k1m04r739Z8loNGLkyJHo0KEDmjVrBgBITExEYGAgIop1ZR4ZGYnExERzGcuEyvS66bWyyqSlpSErKwvXrl1DQUGBzTKW8ygvluLGjh2L1NRU83DRRQ0SKb3Drl+v7PyItCw2Fvj5Z8fe88UXpb/21lvy4iHP461JVUEB8N9/7l8um1QAMGzYMBw9ehRbt25VOxTFGAwGGAwGtcNw2DvvqB0Bkfv884/aEZCnmzpV7QjU0bmzOsv1+itVw4cPx6pVq7Bx40bUrl3bPD0qKgq5ublISUmxKp+UlISoqChzmeJP4Jn+L69MeHg4goODUbVqVfj5+dksYzmP8mIhb5QJoFbhkKlyLEREpCZVkyohBIYPH47ly5djw4YNaNCggdXrbdq0QUBAANZb3I86efIkLly4gJiYGABATEwMjhw5YvWUXnx8PMLDw9GkSRNzmfXF7mnFx8eb5xEYGIg2bdpYlTEajVi/fr25jD2xkDcSAC4XDl56jd+LzJkDvPii2lEQUVlUbcJC+Try9vvf//4nKlasKDZt2iSuXLliHjIzM81lXnrpJVG3bl2xYcMGsXfvXhETEyNiYmLMr+fn54tmzZqJrl27ioMHD4q1a9eKatWqibFjx5rL/P333yIkJESMHj1anDhxQsyaNUv4+fmJtWvXmsssWbJEGAwGsXDhQnH8+HExZMgQERERYfVUYXmxlMfepwccpfTTfxwcGfIFcKBwyNdAPBw4cODg3cOiRYqeYoUQ9p+/ofyi7QfA5rBgwQJzmaysLDF06FBRqVIlERISIh599FFx5coVq/mcP39edO/eXQQHB4uqVauK1157TeTl5VmV2bhxo2jZsqUIDAwUt9xyi9UyTL744gtRt25dERgYKNq1ayd27txp9bo9sZSFSRUHDhw4cODg2uGHHxQ9xQoh7D9/+wghhFpXybxNWloaKlasiNTUVISHhys2327dAIt2TImIiLzW4sXAU08pO097z9+aefqPSJ/yACwqHI8DEKBiLEREpCYmVUSy5AIYWDjeB0yqiIjUxXaqiHTLD0APi3EiIlITkyqShT2gqykIwGq1gyAiokJe3/gnycNHDYiIiNTHpIqIiIhIAUyqiGTJBHBb4cBuaoiIvBnrVBHJIgCcsRgnIiJvxaSKSJYgAFstxomISE18+o9k4dN/avID0EHtIIiISANYp8oD8Ok/IiIiiZrnRF6pIpIlH8DywvFHwV2KiMh78QxAJEsOgCcLx9PBXYqISF2sU0WkW74A7rUYJyIib8WkikiWYACb1A6CiIg0gD+tPQCf/iMiIlIfkyoPwKf/iIiI1MekikiWLAAtC4csVSMhIiJ1sU4VkSxGAIcsxomIyFsxqSKSJQjAHxbjRETkrZhUEcniB+BBtYMgIiINYJ0qIiIiIgXwShWRLPkA1hWOx4K7FBGR9+IZgEiWHAAPFY6zmxoiIm/GMwCRLL4A2lqMExGRmtj3H5FuBQPYo3YQRERUSM0GsfnT2gOwmxoiIiL1ManyAOymhoiISH1MqohkyQLQoXBgNzVERGpjnSoi3TIC2G4xTkRE3opJFZEsBgDLLcaJiMhbMakiksUfQG+1gyAiIg1gnSoiIiIiBfBKFZEsBQC2FI7fA6mDZSIi8kZMqohkyQZwf+F4OoBQFWMhIiI1MakiksUHQBOLcSIiUhObVCDSrRAAx9QOgoiICrGbGiIiIiKdY1JFREREpAAmVUSyZAF4sHBgNzVERGpjnSoi3TIC+NNinIiIvBWTKiJZDAC+txgnIiI1qVlRnUkVkSz+AOLUDoKIiDSAdaqIiIjIY7BOFZFuFQDYXzjeGuymhojIezGpIpIlG0C7wnF2U0NE5M2YVBHJ4gOgnsU4ERF5KyZVRLKEADivdhBERKQBrKhOREREpAAmVUREREQKYFLlAXbvVjsCb5YNoHfhkK1qJEREpC7WqfIAN26oHYE3KwCwwmKciIjUxHaqiHQrEMCXFuNERKQmdlNDpFsBAAarHQQRuUiVKsB//6kdBekF61QRERGVQs1bSeQcNb8zJlWkG0OHAhUqqB1FcUYAxwoHo8qxEOlX27ZqR2BbSIjaEZCeMKki3WjZUu0IbMkC0KxwyFI5FiL90t4PJsn48WpHQHrCpIp046mntHopvmrh4F4LF7p9kapJSVE7AvJWVd2/a5OOManyAHfdpXYE7lGhghaTqlAAVwsH93am/Nhjbl2cqipWVDsCshQc7Fj5N990TRzeJipK7Qj04d571Vs2kyoHzZo1C/Xr10dQUBCio6OxWwMtb955p9oRuI6/P1CzJvDXX9L/9iZV99/vupi04Nw57d4uUdqttzpWfsoUx5eRmgrExgJvvOH4e7Xu3Dng1CmgSRPl5lm/vv1ld+4EmjVTbtnezNXJwq5dwCefuHYZ7lC5snrLZlLlgB9//BGjRo3CxIkTsX//frRo0QKxsbFITk5WNa6gIPnz+Pff8sv07Cl/OY7KzQUuXQIaNbL/PcHBwOLFrotJC/z8rP+W55VXXBeLLX//XX6ZunWVX+60acCYMY6/LzwcWLsW+Ogj5WNSW/36wG23KXuV96efSk4LC7P+gbdwIXD1KhAdDdx+e/nztFXm5En74qlWzb5yzii+3v74w3XLKs3Zs8C8ecBrr8mf17p1wPbtJR8MuOsuoF07YNQo+cvwaoLs1q5dOzFs2DDz/wUFBaJmzZpi8uTJdr0/NTVVABCpqamKxrV0qRBSc2fWQ//+tqfbGoQo+/VatYTIyyt/PjNm2L/M8obg4JKftVKlkuV+/tn6/0cflcpeuCBEr17KxWMaZs60/D9LAE8XDlnm6ffeK8Qff5R875tvClG9uvwYLlyQPuO5c/aVz8sTIj+/5PRPPxXi5ZeVWzft2wuRkCDFNnasEEFBQvz1l+2yL7xg3zy7dZPm17t3ydcyMqz/nzev/G0ZEOKTT6z/tzRpkvVrd99t/f8jjxSNR0YK8cwz1q8r8f2ahmrV5M/DpEkT6+nXrgnxwAOlv8/WvgYI0aOHNL/27a2nf/mlEIsW2V6nQgjxww9CfP556ctLSys5LT1diI8/FqJ+fSGefLL0937zjRBRUfLX1alTQvTsaf3dX7pUcn06M+9vvik5zcfHse8wL0+IRo2sXwsMdCyO/fuL5pecLMTx40JMmyZEYmLRdEc/W0RE+WWqVJH//XTr5tj6UpK9528XLd7z5OTkCD8/P7F8+XKr6c8995x45JFHbL4nOztbpKammoeLFy/a9aU4ymgU4vvvpZPXgAHWG9auXfZvhKW91r170bKSkqQT+cqVQrzyihBnzgjh62s9ny1bhGja1LGdpXNnIW6/XYi1a4umnT9f8rPecov1+7KypOkpKUXTiq/espZ7+LAQs2dbT0tPF2LWLCEuXpSSlx9/FOLGDSG2bxfip5+EuH7dsny6ACAAiBs30s3T8/KkZZ84UXTyuXJFmrZzZ9H7Y2OF2LRJiN9/F+LyZWmdHj8uxMSJRWUqVCgZ96VLRZ/v6afLX78FBVLZxYuFCAkpmr5lizS9+MnVFL/RKESXLtK0OXOk779PH+l/Pz8hfvut7IOZaT516liXGz7cOumsWrX02E2f1Wi0nl6tWsnv9//+T5pmSrRtnciio6UyAweWHrdl+QsXitYBIMT69UK89ZaUQBiN0md85ZWi199/X/rbsaO0LRZf/sGDQnToII2PHi3E6tVS8j9vnnW5iAhpW+ze3Xr6/fdb/5CIj5f+fvedtK3a2reFKJnQmPad1auFWLJE+iw7d0rb+uLF1snEDz8UjZsOgf/9J8SLLxZN//NPIc6eLX2dCiGd0IvHN2eOEPv2Sa+bts1ataTjjKWrV0smFKbh11+FyMkR4qGHpHVa/PVJk4R44w0p8TNN8/Ut2u63b5f2a5PUVCHmz5cSTyGEOHlSKnfHHdL/ixdbz3/s2PKPtUaj9Dm/+qpo39+2TTpWrl9f+vuK/7gsKJAS0BYthJgwQZpvUpL1j5Rt26TtpPi87rhD+nFVntJisfy+TcPdd0sxJCSUfK1Bg6Lx1q2FqFGj6P9r10pfTk6OEJUrC1GvnvSdPfaYENnZUmxGo7QPh4RI+8HBg0I8/7wQAQHSe196qfzP5wwmVQq7dOmSACC2b99uNX306NGiXbt2Nt8zceJEYTrhWg5KJ1WWbtwQYswYIQ4dKpqWny+d3J94QkqGsrKEWLOmaAP+6COp3KJF0i+Bp54SYtkyIaZOlQ5k5TEahRgyRIgvvrCenp0txM2b0kY/dKiULPzxhxDr1knjQ4YI8d579i3D5NAhIVq2lE40S5bY954PP5QOMFeuSL9427aVDv5JSUVlLl2SdkzTSbk8Fy5IB+ErV3LFuHGfic8++0zk5uba/TkuXJC+q7JkZUnr1mgUYvDgou9ryBDrcomJ0tWDqCgpeenbV4iuXYVo1UqIDRukxLe4WbOkxMZolP6/ckU6IUVGSomtoy5flk6ypcnNLTqhrVkjTcvPl5KVkSOlOHJzhdi6Vbqics89QoSFSYmCpY0bhWjcWLpaaEoUf/1Vmu9tt0kHYxPT+DffSCeg4kn6jRtScnT8eMl4TUnS669L/1+8KJ0gBg8u/TOePi3E339Ln2vjRmnbF0JKui5dkq5emj5PeroQmzdbn+Byc6VE7NVXi9aHENK6feYZaZ6WsrKKTvqWfv9dSrROn7bexgoKpBP/p58K8fXXpX8OS998I13JNBqlZGrs2KJtxmTOHGk/Nk3fscP2NieEVOaRR6TjwRdfSNunpb/+EuK116yvmhS3ZIn03Xz7rbRNDRlStC2YZGVJcT/zjJSAWFq1SoiGDaXEw2gs+XppsrOtvy+jUfrsph8mQkj71eefS0nYqVPSd/jDDyW3vb/+Kvp+TXbskOK66y4hFi6U1tH//Z/98RmN0nJNyYcQ0nf22mtSwrNhQ8nvrjRXr0rbKyDEww9Licr48VKyOWCAEM2bS0nv9OnW+316urTuf/ml6Efkli3S1b8zZ6SkumNHaT8XQjpWAdKPs+3bhfjf/4TYu1d6LSen6EeZvf77z/7P6Ch7kyofIYRQ5b6jzly+fBm1atXC9u3bERMTY57+xhtvICEhAbt27SrxnpycHOTk5Jj/T0tLQ506dZCamorw8HC3xE1ERETypKWloWLFiuWev9n3n52qVq0KPz8/JCUlWU1PSkpCVCnPuRoMBhgMBneER0RERCrj0392CgwMRJs2bbB+/XrzNKPRiPXr11tduSLvYjQacf78eZw/fx5GI7upISLyZrxS5YBRo0ahf//+aNu2Ldq1a4fp06cjIyMDAwcOVDs0UklWVhYaNGgAAEhPT0doqHsbACUiIu1gUuWAvn374urVq5gwYQISExPRsmVLrF27FpGRkWqHRioKYY+rREQEgBXV3cjeim5ERESkHfaev1mnioiIiEgBTKqIiIiIFMCkikiGnJwcDB48GIMHD7Zqk4yIiLwP61S5EetUeZ6MjAyEhYUB4NN/RESeio1/ErlBQEAAPvjgA/M4ERF5L16pciNeqSIiItIfPv1HRERE5Ea8/UckgxAC165dAyD1D+nj46NyREREpBYmVUQyZGZmonr16gBYUZ2IyNsxqXIjU/W1tLQ0lSMhpWRkZJjH09LSUFBQoGI0RETkCqbzdnnV0JlUudHNmzcBAHXq1FE5EnKFmjVrqh0CERG50M2bN1GxYsVSX+fTf25kNBpx+fJlVKhQQdG6N2lpaahTpw4uXrzIpwqdwPUnD9ef87ju5OH6k4frz35CCNy8eRM1a9aEr2/pz/jxSpUb+fr6onbt2i6bf3h4OHcMGbj+5OH6cx7XnTxcf/Jw/dmnrCtUJmxSgYiIiEgBTKqIiIiIFMCkygMYDAZMnDgRBoNB7VB0ietPHq4/53HdycP1Jw/Xn/JYUZ2IiIhIAbxSRURERKQAJlVERERECmBSRURERKQAJlVERERECmBS5QFmzZqF+vXrIygoCNHR0di9e7faIenC5s2b8fDDD6NmzZrw8fHBr7/+qnZIujF58mTcddddqFChAqpXr47evXvj5MmTaoelG3PmzMGdd95pbnQxJiYGa9asUTssXZoyZQp8fHwwcuRItUPRhXfeeQc+Pj5WQ+PGjdUOy2MwqdK5H3/8EaNGjcLEiROxf/9+tGjRArGxsUhOTlY7NM3LyMhAixYtMGvWLLVD0Z2EhAQMGzYMO3fuRHx8PPLy8tC1a1erDqapdLVr18aUKVOwb98+7N27F507d0avXr1w7NgxtUPTlT179mDevHm488471Q5FV5o2bYorV66Yh61bt6odksdgkwo6Fx0djbvuugszZ84EIPUvWKdOHbz88st48803VY5OP3x8fLB8+XL07t1b7VB06erVq6hevToSEhLQqVMntcPRpcqVK2PatGkYNGiQ2qHoQnp6Olq3bo3Zs2fjgw8+QMuWLTF9+nS1w9K8d955B7/++isOHjyodigeiVeqdCw3Nxf79u1Dly5dzNN8fX3RpUsX7NixQ8XIyNukpqYCkBIDckxBQQGWLFmCjIwMxMTEqB2ObgwbNgw9e/a0Ov6RfU6fPo2aNWvilltuQVxcHC5cuKB2SB6DHSrr2LVr11BQUIDIyEir6ZGRkfjrr79Uioq8jdFoxMiRI9GhQwc0a9ZM7XB048iRI4iJiUF2djbCwsKwfPlyNGnSRO2wdGHJkiXYv38/9uzZo3YouhMdHY2FCxeiUaNGuHLlCt59913cc889OHr0KCpUqKB2eLrHpIqIZBk2bBiOHj3KehkOatSoEQ4ePIjU1FT89NNP6N+/PxISEphYlePixYsYMWIE4uPjERQUpHY4utO9e3fz+J133ono6GjUq1cPS5cu5a1nBTCp0rGqVavCz88PSUlJVtOTkpIQFRWlUlTkTYYPH45Vq1Zh8+bNqF27ttrh6EpgYCAaNmwIAGjTpg327NmDGTNmYN68eSpHpm379u1DcnIyWrdubZ5WUFCAzZs3Y+bMmcjJyYGfn5+KEepLREQEbr/9dpw5c0btUDwC61TpWGBgINq0aYP169ebpxmNRqxfv551M8ilhBAYPnw4li9fjg0bNqBBgwZqh6R7RqMROTk5aoeheQ888ACOHDmCgwcPmoe2bdsiLi4OBw8eZELloPT0dJw9exY1atRQOxSPwCtVOjdq1Cj0798fbdu2Rbt27TB9+nRkZGRg4MCBaoemeenp6Va/zs6dO4eDBw+icuXKqFu3roqRad+wYcPwww8/YMWKFahQoQISExMBABUrVkRwcLDK0Wnf2LFj0b17d9StWxc3b97EDz/8gE2bNmHdunVqh6Z5FSpUKFF3LzQ0FFWqVGGdPju8/vrrePjhh1GvXj1cvnwZEydOhJ+fH/r166d2aB6BSZXO9e3bF1evXsWECROQmJiIli1bYu3atSUqr1NJe/fuxf3332/+f9SoUQCA/v37Y+HChSpFpQ9z5swBANx3331W0xcsWIABAwa4PyCdSU5OxnPPPYcrV66gYsWKuPPOO7Fu3To8+OCDaodGHu7ff/9Fv3798N9//6FatWro2LEjdu7ciWrVqqkdmkdgO1VERERECmCdKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIincnNzUXDhg2xfft2Ree7du1atGzZEkajUdH5EnkLJlVEpKoBAwbAx8enxGDZLyNZmzt3Lho0aID27dubp/n4+ODXX38tUXbAgAHo3bu3XfPt1q0bAgICsGjRIoUiJfIuTKqISHXdunXDlStXrIYGDRqUKJebm6tCdNoihMDMmTMxaNAgl8x/wIAB+Pzzz10ybyJPx6SKiFRnMBgQFRVlNfj5+eG+++7D8OHDMXLkSFStWhWxsbEAgKNHj6J79+4ICwtDZGQknn32WVy7ds08v4yMDDz33HMICwtDjRo18Mknn+C+++7DyJEjzWVsXdmJiIiw6kz74sWLePLJJxEREYHKlSujV69eOH/+vPl101Wgjz/+GDVq1ECVKlUwbNgw5OXlmcvk5ORgzJgxqFOnDgwGAxo2bIivv/4aQgg0bNgQH3/8sVUMBw8eLPNK3b59+3D27Fn07NnTwbUMnD9/3uZVQcuOsR9++GHs3bsXZ8+edXj+RN6OSRURadq3336LwMBAbNu2DXPnzkVKSgo6d+6MVq1aYe/evVi7di2SkpLw5JNPmt8zevRoJCQkYMWKFfjjjz+wadMm7N+/36Hl5uXlITY2FhUqVMCWLVuwbds2hIWFoVu3blZXzDZu3IizZ89i48aN+Pbbb7Fw4UKrxOy5557D4sWL8fnnn+PEiROYN28ewsLC4OPjg+effx4LFiywWu6CBQvQqVMnNGzY0GZcW7Zswe23344KFSo49HkAoE6dOlZXAw8cOIAqVaqgU6dO5jJ169ZFZGQktmzZ4vD8ibyeICJSUf/+/YWfn58IDQ01D0888YQQQoh7771XtGrVyqr8+++/L7p27Wo17eLFiwKAOHnypLh586YIDAwUS5cuNb/+33//ieDgYDFixAjzNABi+fLlVvOpWLGiWLBggRBCiP/7v/8TjRo1Ekaj0fx6Tk6OCA4OFuvWrTPHXq9ePZGfn28u06dPH9G3b18hhBAnT54UAER8fLzNz37p0iXh5+cndu3aJYQQIjc3V1StWlUsXLiw1PU1YsQI0blz5xLTAYigoCCr9RgaGir8/f1Fr169SpTPysoS0dHR4qGHHhIFBQVWr7Vq1Uq88847pcZARLb5q5vSEREB999/P+bMmWP+PzQ01Dzepk0bq7KHDh3Cxo0bERYWVmI+Z8+eRVZWFnJzcxEdHW2eXrlyZTRq1MihmA4dOoQzZ86UuCKUnZ1tdWusadOm8PPzM/9fo0YNHDlyBIB0K8/Pzw/33nuvzWXUrFkTPXv2xDfffIN27dph5cqVyMnJQZ8+fUqNKysrC0FBQTZf++yzz9ClSxeraWPGjEFBQUGJss8//zxu3ryJ+Ph4+Ppa37QIDg5GZmZmqTEQkW1MqohIdaGhoaXe7rJMsAAgPT0dDz/8MD766KMSZWvUqGH3U4M+Pj4QQlhNs6wLlZ6ejjZt2th8Eq5atWrm8YCAgBLzNTVJEBwcXG4cL7zwAp599ll89tlnWLBgAfr27YuQkJBSy1etWtWctBUXFRVVYj1WqFABKSkpVtM++OADrFu3Drt377Z5G/H69etWn5GI7MOkioh0pXXr1vj5559Rv359+PuXPITdeuutCAgIwK5du1C3bl0AwI0bN3Dq1CmrK0bVqlXDlStXzP+fPn3a6upM69at8eOPP6J69eoIDw93KtbmzZvDaDQiISGhxBUkkx49eiA0NBRz5szB2rVrsXnz5jLn2apVK8yZMwdCCPj4+Dgc088//4z33nsPa9aswa233lriddOVuFatWjk8byJvx4rqRKQrw4YNw/Xr19GvXz/s2bMHZ8+exbp16zBw4EAUFBQgLCwMgwYNwujRo7FhwwYcPXoUAwYMKHGLq3Pnzpg5cyYOHDiAvXv34qWXXrK66hQXF4eqVauiV69e2LJlC86dO4dNmzbhlVdewb///mtXrPXr10f//v3x/PPP49dffzXPY+nSpeYyfn5+GDBgAMaOHYvbbrsNMTExZc7z/vvvR3p6Oo4dO+bAWpMcPXoUzz33HMaMGYOmTZsiMTERiYmJuH79urnMzp07YTAYyo2DiEpiUkVEulKzZk1s27YNBQUF6Nq1K5o3b46RI0ciIiLCnDhNmzYN99xzDx5++GF06dIFHTt2LFE365NPPkGdOnVwzz334Omnn8brr79uddstJCQEmzdvRt26dfHYY4/hjjvuwKBBg5Cdne3Qlas5c+bgiSeewNChQ9G4cWMMHjwYGRkZVmUGDRqE3NxcDBw4sNz5ValSBY8++qhTDXTu3bsXmZmZ+OCDD1CjRg3z8Nhjj5nLLF68GHFxcWXegiQi23xE8UoFREQe6L777kPLli0xffp0tUMpYcuWLXjggQdw8eJFREZGllv+8OHDePDBB3H27FmbFfadde3aNTRq1Ah79+612fgqEZWNV6qIiFSSk5ODf//9F++88w769OljV0IFAHfeeSc++ugjnDt3TtF4zp8/j9mzZzOhInISK6oTEalk8eLFGDRoEFq2bInvvvvOofcOGDBA8Xjatm2Ltm3bKj5fIm/B239ERERECuDtPyIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUgCTKiIiIiIFMKkiIiIiUsD/A7TdV7oDcKqkAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ax = Powerspectrum.from_stingray_timeseries(ts_polar, flux_attr=\"counts\").plot()\n", + "ax.axvline(freq, ls=\":\", color=\"k\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "33ce87b1", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/notebooks/Transfer Functions/Data Preparation.html b/notebooks/Transfer Functions/Data Preparation.html new file mode 100644 index 000000000..bf970c5f6 --- /dev/null +++ b/notebooks/Transfer Functions/Data Preparation.html @@ -0,0 +1,193 @@ + + + + + + + + Setting Up Data — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+
[1]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+
+
[2]:
+
+
+
from stingray.simulator.transfer import TransferFunction
+
+
+
+
+

Setting Up Data

+

We use Image module from Python Imaging library to digitize 2-d plot from Uttley et al. (2014)

+
+
[3]:
+
+
+
from PIL import Image
+
+
+
+
+
[4]:
+
+
+
im = Image.open('2d.png')
+width, height = im.size
+
+
+
+

Initialize an intensity array.

+
+
[5]:
+
+
+
intensity = np.array([[1 for j in range(width)] for i in range(height)])
+
+
+
+

Below, we retrieve each pixel and then calculate darkness value. The perceived brightness is given by:

+

_0.2126R + 0.7152G + 0.0722*B_

+

To get darkness, the formula is corrected as follows:

+

_0.2126(255-R) + 0.7152(255-G) + 0.0722*(255-B)_

+
+
[6]:
+
+
+
for x in range(0, height):
+    for y in range(0, width):
+        RGB = im.getpixel((y, x))
+        intensity[x][y] = (0.2126 * (255-RGB[0]) + 0.7152 * (255-RGB[1]) + 0.0722 * (255-RGB[2]))
+
+
+
+

Invert along Y-axis to account for some conventions.

+
+
[7]:
+
+
+
intensity = intensity[::-1]
+
+
+
+
+
[8]:
+
+
+
np.savetxt('intensity.txt', intensity)
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Transfer Functions/Data Preparation.ipynb b/notebooks/Transfer Functions/Data Preparation.ipynb new file mode 100644 index 000000000..461505f14 --- /dev/null +++ b/notebooks/Transfer Functions/Data Preparation.ipynb @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setting Up Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We use `Image` module from Python Imaging library to digitize 2-d plot from Uttley et al. (2014)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from PIL import Image" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "im = Image.open('2d.png')\n", + "width, height = im.size" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize an intensity array." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "intensity = np.array([[1 for j in range(width)] for i in range(height)])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Below, we retrieve each pixel and then calculate darkness value. The perceived brightness is given by:\n", + "\n", + "_0.2126*R + 0.7152*G + 0.0722*B_\n", + "\n", + "To get darkness, the formula is corrected as follows:\n", + "\n", + "_0.2126*(255-R) + 0.7152*(255-G) + 0.0722*(255-B)_" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "for x in range(0, height):\n", + " for y in range(0, width):\n", + " RGB = im.getpixel((y, x))\n", + " intensity[x][y] = (0.2126 * (255-RGB[0]) + 0.7152 * (255-RGB[1]) + 0.0722 * (255-RGB[2]))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Invert along Y-axis to account for some conventions." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "intensity = intensity[::-1]" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "np.savetxt('intensity.txt', intensity)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py310", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/Transfer Functions/TransferFunction Tutorial.html b/notebooks/Transfer Functions/TransferFunction Tutorial.html new file mode 100644 index 000000000..c25828e76 --- /dev/null +++ b/notebooks/Transfer Functions/TransferFunction Tutorial.html @@ -0,0 +1,370 @@ + + + + + + + + Contents — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Contents

+

This notebook covers the basics of creating TransferFunction object, obtaining time and energy resolved responses, plotting them and using IO methods available. Finally, artificial responses are introduced which provide a way for quick testing.

+
+
+

Setup

+

Set up some useful libraries.

+
+
[1]:
+
+
+
import numpy as np
+from matplotlib import pyplot as plt
+%matplotlib inline
+
+
+
+

Import relevant stingray libraries.

+
+
[2]:
+
+
+
from stingray.simulator.transfer import TransferFunction
+from stingray.simulator.transfer import simple_ir, relativistic_ir
+
+
+
+
+

Creating TransferFunction

+

A transfer function can be initialized by passing a 2-d array containing time across the first dimension and energy across the second. For example, if the 2-d array is defined by arr, then arr[1][5] defines a time of 5 units and energy of 1 unit.

+

For the purpose of this tutorial, we have stored a 2-d array in a text file named intensity.txt. The script to generate this file is explained in Data Preparation notebook.

+
+
[3]:
+
+
+
response = np.loadtxt('intensity.txt')
+
+
+
+

Initialize transfer function by passing the array defined above.

+
+
[4]:
+
+
+
transfer = TransferFunction(response)
+transfer.data.shape
+
+
+
+
+
[4]:
+
+
+
+
+(524, 744)
+
+
+

By default, time and energy spacing across both axes are set to 1. However, they can be changed by supplying additional parameters dt and de.

+
+
+

Obtaining Time-Resolved Response

+

The 2-d transfer function can be converted into a time-resolved/energy-averaged response.

+
+
[5]:
+
+
+
transfer.time_response()
+
+
+
+

This sets time parameter which can be accessed by transfer.time

+
+
[6]:
+
+
+
transfer.time[1:10]
+
+
+
+
+
[6]:
+
+
+
+
+array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
+
+
+

Additionally, energy interval over which to average, can be specified by specifying e0 and e1 parameters.

+
+
+

Obtaining Energy-Resolved Response

+

Energy-resolved/time-averaged response can be also be formed from 2-d transfer function.

+
+
[7]:
+
+
+
transfer.energy_response()
+
+
+
+

This sets energy parameter which can be accessed by transfer.energy

+
+
[8]:
+
+
+
transfer.energy[1:10]
+
+
+
+
+
[8]:
+
+
+
+
+array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
+
+
+
+
+

Plotting Responses

+

TransferFunction() creates plots of time-resolved, energy-resolved and 2-d responses. These plots can be saved by setting save parameter.

+
+
[9]:
+
+
+
transfer.plot(response='2d')
+
+
+
+
+
[10]:
+
+
+
transfer.plot(response='time')
+
+
+
+
+
[11]:
+
+
+
transfer.plot(response='energy')
+
+
+
+

By enabling save=True parameter, the plots can be also saved.

+
+
+

IO

+

TransferFunction can be saved in pickle format and retrieved later.

+
+
[12]:
+
+
+
transfer.write('transfer.pickle')
+
+
+
+

Saved files can be read using static read() method.

+
+
[13]:
+
+
+
transfer_new = TransferFunction.read('transfer.pickle')
+transfer_new.time[1:10]
+
+
+
+
+
[13]:
+
+
+
+
+array([0., 0., 0., 0., 0., 0., 0., 0., 0.])
+
+
+
+
+

Artificial Responses

+

For quick testing, two helper impulse response models are provided.

+
+

1- Simple IR

+

simple_ir() allows to define an impulse response of constant height. It takes in time resolution starting time, width and intensity as arguments.

+
+
[14]:
+
+
+
s_ir = simple_ir(dt=0.125, start=10, width=5, intensity=0.1)
+plt.plot(s_ir)
+
+
+
+
+
[14]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x2a22c0a90>]
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_39_1.png +
+
+
+
+

2- Relativistic IR

+

A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: time_resolution, primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default.

+
+
[15]:
+
+
+
r_ir = relativistic_ir(dt=0.125)
+plt.plot(r_ir)
+
+
+
+
+
[15]:
+
+
+
+
+[<matplotlib.lines.Line2D at 0x2a288ec20>]
+
+
+
+
+
+
+../../_images/notebooks_Transfer_Functions_TransferFunction_Tutorial_42_1.png +
+
+
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb b/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb new file mode 100644 index 000000000..d2b4c7bc6 --- /dev/null +++ b/notebooks/Transfer Functions/TransferFunction Tutorial.ipynb @@ -0,0 +1,481 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This notebook covers the basics of creating TransferFunction object, obtaining time and energy resolved responses, plotting them and using IO methods available. Finally, artificial responses are introduced which provide a way for quick testing." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Set up some useful libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "from matplotlib import pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import relevant stingray libraries." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.simulator.transfer import TransferFunction\n", + "from stingray.simulator.transfer import simple_ir, relativistic_ir" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Creating TransferFunction" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A transfer function can be initialized by passing a 2-d array containing time across the first dimension and energy across the second. For example, if the 2-d array is defined by `arr`, then `arr[1][5]` defines a time of 5 units and energy of 1 unit.\n", + "\n", + "For the purpose of this tutorial, we have stored a 2-d array in a text file named `intensity.txt`. The script to generate this file is explained in `Data Preparation` notebook." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "response = np.loadtxt('intensity.txt')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Initialize transfer function by passing the array defined above." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "(524, 744)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer = TransferFunction(response)\n", + "transfer.data.shape" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By default, time and energy spacing across both axes are set to 1. However, they can be changed by supplying additional parameters `dt` and `de`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Time-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The 2-d transfer function can be converted into a time-resolved/energy-averaged response." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.time_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `time` parameter which can be accessed by `transfer.time`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Additionally, energy interval over which to average, can be specified by specifying `e0` and `e1` parameters." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Obtaining Energy-Resolved Response" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Energy-resolved/time-averaged response can be also be formed from 2-d transfer function." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.energy_response()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This sets `energy` parameter which can be accessed by `transfer.energy`" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer.energy[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Plotting Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction() creates plots of `time-resolved`, `energy-resolved` and `2-d responses`. These plots can be saved by setting `save` parameter. " + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.plot(response='2d')" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.plot(response='time')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [], + "source": [ + "transfer.plot(response='energy')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By enabling `save=True` parameter, the plots can be also saved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# IO" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "TransferFunction can be saved in pickle format and retrieved later." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "transfer.write('transfer.pickle')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Saved files can be read using static `read()` method." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0., 0., 0., 0., 0., 0., 0., 0., 0.])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "transfer_new = TransferFunction.read('transfer.pickle')\n", + "transfer_new.time[1:10]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Artificial Responses" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For quick testing, two helper impulse response models are provided." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 1- Simple IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "simple_ir() allows to define an impulse response of constant height. It takes in time resolution starting time, width and intensity as arguments." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGdCAYAAAAxCSikAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApVklEQVR4nO3df3DV9Z3v8Vd+kASRhEqu5xgIBru0AYmJEhKD3mKnmYYdtjbaXWOGSi5l6riLCMZFCOXH7Vg36oqDSsaU3Wmd3UphmSqLFLMbI9J6iQQSWIs/kLvlEgY8CaxLDgZJ6Pl+7x+QL5waQk6acI7vPB8zZ2K+53O++Xw/8yV5+fn1jXNd1xUAAEAMi492BQAAAK6EwAIAAGIegQUAAMQ8AgsAAIh5BBYAABDzCCwAACDmEVgAAEDMI7AAAICYlxjtCgwGx3F0/PhxjR49WnFxcdGuDgAA6AfXdXX69GllZGQoPr7vPhQTgeX48ePKzMyMdjUAAMAAHD16VOPHj++zjInAMnr0aEnnLzg1NTXKtQEAAP0RDAaVmZnp/R3vi4nA0jMMlJqaSmABAOBLpj/TOZh0CwAAYh6BBQAAxDwCCwAAiHkEFgAAEPMILAAAIOYRWAAAQMwjsAAAgJhHYAEAADGPwAIAAGLegAJLTU2NsrKylJKSosLCQjU1NV227Pvvv6/vfe97ysrKUlxcnNauXfsnnxMAAAwvEQeWTZs2qbKyUqtXr1ZLS4tyc3NVUlKi9vb2XsufOXNGN910k5566in5/f5BOScAABhe4lzXdSP5QGFhoaZPn65169ZJkhzHUWZmphYuXKhly5b1+dmsrCwtXrxYixcvHrRzSucfnpSWlqaOjg6eJQQAwJdEJH+/I3r4YXd3t5qbm1VVVeUdi4+PV3FxsRobGwdU2YGcs6urS11dXd73wWBwQD8bAKxqOvyp6g4E5Cqi/ycFLisxPk4/mj0lej8/ksInT55UKBSSz+cLO+7z+fTRRx8NqAIDOWd1dbV+/OMfD+jnAcBwsOxX7+n3JzujXQ0YkpQY/+UJLLGiqqpKlZWV3vfBYFCZmZlRrBEAxJbg2T9Iku6fnqmx1yZFuTawICE+uguLIwos6enpSkhIUFtbW9jxtra2y06oHYpzJicnKzk5eUA/DwCGA+fC9MQf3DlRX/ONjnJtgD9dRHEpKSlJ06ZNU0NDg3fMcRw1NDSoqKhoQBUYinMCwHAXcs4Hlvi4uCjXBBgcEQ8JVVZWqqKiQvn5+SooKNDatWvV2dmpefPmSZLmzp2rcePGqbq6WtL5SbUffPCB99/Hjh3T/v37de211+rP/uzP+nVOAEBknAuBJSGewAIbIg4sZWVlOnHihFatWqVAIKC8vDzV1dV5k2ZbW1sVf8k41/Hjx3Xrrbd63z/77LN69tlnNXPmTL399tv9OicAIDI9Q0IJ9LDAiIj3YYlF7MMCAOGyV76hs+cc/fbxbyrzumuiXR2gV5H8/eZZQgBgkOOc/8qQEKwgsACAQSGXOSywhcACAAaxSgjWEFgAwJieFUISPSywg8ACAMaELllLwSohWEFgAQBjQpf0sER5N3Vg0HArA4AxjsuQEOwhsACAMZd0sDDpFmYQWADAmLAhIQILjCCwAIAxrBKCRQQWADDm0lVC5BVYQWABAGMcb9M4KY4hIRhBYAEAY9iWHxYRWADAGLblh0UEFgAwhic1wyICCwAY4w0J0cMCQwgsAGBMz0638fSwwBACCwAYc+kqIcAKAgsAGMMqIVhEYAEAY1glBIsILABgDKuEYBGBBQCM6RkSoocFlhBYAMCYniEhelhgCYEFAIxxmHQLgwgsAGBMiGXNMIjAAgDGOMxhgUEEFgAwhlVCsIjAAgDGsEoIFhFYAMAYh1VCMIjAAgDGeJNuCSwwhMACAMZ4zxIir8AQAgsAGMOQECwisACAMUy6hUUEFgAwhq35YRGBBQCMudDBQg8LTCGwAIAxrBKCRQQWADCGVUKwiMACAMawSggWEVgAwBhWCcEiAgsAGEMPCywisACAMUy6hUUEFgAwJnRhWXMCQ0IwhMACAMa4LkNCsIfAAgDG9AwJ0cECSwgsAGDMxX1YSCywg8ACAMawSggWEVgAwJiQc/4rq4RgCYEFAIxhSAgWEVgAwBiGhGARgQUAjGFrflhEYAEAYy72sES5IsAg4nYGAGMcl635YQ+BBQCM8VYJMSQEQwgsAGCMwyohGERgAQBjeFozLCKwAIAx7MMCiwgsAGAMq4Rg0YBu55qaGmVlZSklJUWFhYVqamrqs/zmzZuVnZ2tlJQU5eTkaPv27WHvf/bZZ3r44Yc1fvx4jRw5UlOmTFFtbe1AqgYAwx5DQrAo4sCyadMmVVZWavXq1WppaVFubq5KSkrU3t7ea/ldu3apvLxc8+fP1759+1RaWqrS0lIdOHDAK1NZWam6ujr94he/0IcffqjFixfr4Ycf1tatWwd+ZQAwTDEkBIsiDizPPfecfvjDH2revHleT8g111yjn/3sZ72Wf/755zVr1iwtWbJEkydP1hNPPKHbbrtN69at88rs2rVLFRUVuuuuu5SVlaUHH3xQubm5V+y5AQB8EVvzw6KIAkt3d7eam5tVXFx88QTx8SouLlZjY2Ovn2lsbAwrL0klJSVh5WfMmKGtW7fq2LFjcl1XO3bs0Mcff6xvf/vbvZ6zq6tLwWAw7AUAOO9CXmEfFpgSUWA5efKkQqGQfD5f2HGfz6dAINDrZwKBwBXLv/jii5oyZYrGjx+vpKQkzZo1SzU1NfrGN77R6zmrq6uVlpbmvTIzMyO5DAAw7eKzhKJcEWAQxcQc8hdffFHvvvuutm7dqubmZq1Zs0YLFizQm2++2Wv5qqoqdXR0eK+jR49e5RoDQOxiSAgWJUZSOD09XQkJCWpraws73tbWJr/f3+tn/H5/n+U///xzLV++XK+99ppmz54tSbrlllu0f/9+Pfvss18YTpKk5ORkJScnR1J1ABg2WCUEiyLqYUlKStK0adPU0NDgHXMcRw0NDSoqKur1M0VFRWHlJam+vt4rf+7cOZ07d07x8eFVSUhIkOM4kVQPACC25odNEfWwSOeXIFdUVCg/P18FBQVau3atOjs7NW/ePEnS3LlzNW7cOFVXV0uSFi1apJkzZ2rNmjWaPXu2Nm7cqL1792r9+vWSpNTUVM2cOVNLlizRyJEjdeONN2rnzp36p3/6Jz333HODeKkAMDzQwwKLIg4sZWVlOnHihFatWqVAIKC8vDzV1dV5E2tbW1vDektmzJihDRs2aMWKFVq+fLkmTZqkLVu2aOrUqV6ZjRs3qqqqSnPmzNGnn36qG2+8UU8++aQeeuihQbhEABheQhdWCdHDAkviXPdC3+GXWDAYVFpamjo6OpSamhrt6gBAVH3/H3frnf97UmvL8lR667hoVwe4rEj+fsfEKiEAwOBhSAgWEVgAwBgm3cIiAgsAGOOwcRwMIrAAgDEMCcEiAgsAGMMqIVhEYAEAY9iaHxYRWADAGIaEYBGBBQCMYZUQLCKwAIAxF3tYolwRYBBxOwOAMSF6WGAQgQUAjOl54ApzWGAJgQUAjPGGhOhhgSEEFgAwJsSyZhhEYAEAY1glBIsILABgDKuEYBG3MwAY4/WwMCQEQwgsAGCMN4eFISEYQmABAGPYmh8WEVgAwBiHpzXDIAILABjTM4eFfVhgCYEFAIxhlRAs4nYGAGNYJQSLCCwAYAyrhGARgQUADHFd15t0yyohWEJgAQBDesKKRA8LbCGwAIAhoUsSCz0ssITAAgCG9Ey4lZh0C1sILABgSFhgYUgIhhBYAMCQS4eEyCuwhMACAIY4zsX/ZkgIlhBYAMCQEENCMIrAAgCGsEoIVhFYAMAQtuWHVQQWADCEbflhFYEFAAzhSc2wilsaAAzxhoToYYExBBYAMIQHH8IqAgsAGOINCdHDAmMILABgCKuEYBWBBQAMoYcFVhFYAMAQb1kzv91hDLc0ABjCKiFYRWABAEMu7sNCYIEtBBYAMIRJt7CKwAIAhoSc818ZEoI1BBYAMKSnh4UhIVhDYAEAQxxvWXOUKwIMMgILABgSctmHBTYRWADAkIv7sBBYYAuBBQAMYZUQrCKwAIAhPauEGBKCNQQWADCEISFYRWABAEPYmh9WEVgAwJCLW/NHuSLAIOOWBgBDmHQLqwgsAGCIwz4sMGpAgaWmpkZZWVlKSUlRYWGhmpqa+iy/efNmZWdnKyUlRTk5Odq+ffsXynz44Ye6++67lZaWplGjRmn69OlqbW0dSPUAYNhilRCsijiwbNq0SZWVlVq9erVaWlqUm5urkpIStbe391p+165dKi8v1/z587Vv3z6VlpaqtLRUBw4c8Mr853/+p+68805lZ2fr7bff1nvvvaeVK1cqJSVl4FcGAMOQwyohGBXnuhf6D/upsLBQ06dP17p16yRJjuMoMzNTCxcu1LJly75QvqysTJ2dndq2bZt37Pbbb1deXp5qa2slSffff79GjBihf/7nfx7QRQSDQaWlpamjo0OpqakDOgcAWPDLplZVvfo7FU/26R8r8qNdHaBPkfz9jqiHpbu7W83NzSouLr54gvh4FRcXq7GxsdfPNDY2hpWXpJKSEq+84zj69a9/ra997WsqKSnR9ddfr8LCQm3ZsuWy9ejq6lIwGAx7AQAu3YclyhUBBllEt/TJkycVCoXk8/nCjvt8PgUCgV4/EwgE+izf3t6uzz77TE899ZRmzZqlf//3f9c999yje++9Vzt37uz1nNXV1UpLS/NemZmZkVwGAJjFKiFYFfUM7jjnZ4h997vf1aOPPqq8vDwtW7ZMf/EXf+ENGf2xqqoqdXR0eK+jR49ezSoDQMzy9mFh0i2MSYykcHp6uhISEtTW1hZ2vK2tTX6/v9fP+P3+Psunp6crMTFRU6ZMCSszefJkvfPOO72eMzk5WcnJyZFUHQCGBbbmh1UR9bAkJSVp2rRpamho8I45jqOGhgYVFRX1+pmioqKw8pJUX1/vlU9KStL06dN18ODBsDIff/yxbrzxxkiqBwDDXs8yCnpYYE1EPSySVFlZqYqKCuXn56ugoEBr165VZ2en5s2bJ0maO3euxo0bp+rqaknSokWLNHPmTK1Zs0azZ8/Wxo0btXfvXq1fv94755IlS1RWVqZvfOMb+uY3v6m6ujq9/vrrevvttwfnKgFgmAixcRyMijiwlJWV6cSJE1q1apUCgYDy8vJUV1fnTaxtbW1V/CUPsZgxY4Y2bNigFStWaPny5Zo0aZK2bNmiqVOnemXuuece1dbWqrq6Wo888oi+/vWv61e/+pXuvPPOQbhEABg+WCUEqyLehyUWsQ8LAJz3YsMhran/WOUFmaq+95ZoVwfo05DtwwIAiG0MCcEqAgsAGMLW/LCKwAIAhtDDAqsILABgSM/TmulhgTUEFgAwhK35YRWBBQAM6ZnDwogQrCGwAIAhPXNYEkgsMIbAAgCGsEoIVhFYAMAQVgnBKgILABjCKiFYRWABAEMYEoJVBBYAMIQhIVhFYAEAQxye1gyjuKUBwBCHHhYYRWABAENC5/MKgQXmEFgAwBAm3cIqAgsAGBK6EFjiCSwwhsACAIawNT+sIrAAgCGsEoJV3NIAYAj7sMAqAgsAGBJi0i2MIrAAgCE9+7AQWGANgQUADHEuPPyQISFYQ2ABAEOYwwKrCCwAYAirhGAVtzQAGEIPC6wisACAIWzND6sILABgiNfDQmCBMQQWADAkdGGVEFvzwxoCCwAYwpAQrCKwAIAhTLqFVQQWADCEnW5hFYEFAAzpGRIir8AaAgsAGMIqIVhFYAEAQxxWCcEoAgsAGBJilRCMIrAAgCGsEoJVBBYAMIR9WGAVgQUADAm5PK0ZNnFLA4AhIYchIdhEYAEAQy50sDAkBHMILABgCD0ssIrAAgCGsHEcrCKwAIAh3iohelhgDIEFAAy52MMS5YoAg4xbGgCMcF334qRbelhgDIEFAIzomXArsUoI9hBYAMCInuEgiUm3sIfAAgBG9DypWWJICPYQWADACOfSHhYCC4whsACAEeFDQlGsCDAEuKUBwAjn0km39LDAGAILABjBKiFYRmABACN6hoTi4qQ4elhgDIEFAIzoWSXEcBAsIrAAgBE8+BCWDSiw1NTUKCsrSykpKSosLFRTU1Of5Tdv3qzs7GylpKQoJydH27dvv2zZhx56SHFxcVq7du1AqgYAwxYPPoRlEQeWTZs2qbKyUqtXr1ZLS4tyc3NVUlKi9vb2Xsvv2rVL5eXlmj9/vvbt26fS0lKVlpbqwIEDXyj72muv6d1331VGRkbkVwIAw1zPpFsm3MKiiAPLc889px/+8IeaN2+epkyZotraWl1zzTX62c9+1mv5559/XrNmzdKSJUs0efJkPfHEE7rtttu0bt26sHLHjh3TwoUL9corr2jEiBEDuxoAGMacSybdAtZEFFi6u7vV3Nys4uLiiyeIj1dxcbEaGxt7/UxjY2NYeUkqKSkJK+84jh544AEtWbJEN9988xXr0dXVpWAwGPYCgOGuJ7DQwwKLIgosJ0+eVCgUks/nCzvu8/kUCAR6/UwgELhi+aefflqJiYl65JFH+lWP6upqpaWlea/MzMxILgMATAqxSgiGRX2VUHNzs55//nm9/PLL/d43oKqqSh0dHd7r6NGjQ1xLAIh9PXNYWCUEiyIKLOnp6UpISFBbW1vY8ba2Nvn9/l4/4/f7+yz/29/+Vu3t7ZowYYISExOVmJioI0eO6LHHHlNWVlav50xOTlZqamrYCwCGO29IiB4WGBRRYElKStK0adPU0NDgHXMcRw0NDSoqKur1M0VFRWHlJam+vt4r/8ADD+i9997T/v37vVdGRoaWLFmif/u3f4v0egBg2GKVECxLjPQDlZWVqqioUH5+vgoKCrR27Vp1dnZq3rx5kqS5c+dq3Lhxqq6uliQtWrRIM2fO1Jo1azR79mxt3LhRe/fu1fr16yVJY8eO1dixY8N+xogRI+T3+/X1r3/9T70+ABg2Lm4cF+WKAEMg4sBSVlamEydOaNWqVQoEAsrLy1NdXZ03sba1tVXxl/xrmTFjhjZs2KAVK1Zo+fLlmjRpkrZs2aKpU6cO3lUAANg4DqbFua7rXrlYbAsGg0pLS1NHRwfzWQAMW02HP9V9P23UTf9jlN567K5oVwe4okj+ftNxCABGeKuE6GGBQQQWADCCVUKwjMACAEawDwssI7AAgBEhb2v+KFcEGALc1gBgBKuEYBmBBQCMYEgIlhFYAMAIJt3CMgILABjR87RmelhgEYEFAIyghwWWEVgAwAiHZwnBMG5rADCCnW5hGYEFAIzoCSwJzGGBQQQWADCCOSywjMACAEawSgiWEVgAwIgQPSwwjMACAEY4zGGBYQQWADCCrflhGYEFAIy4OOk2yhUBhgCBBQCM8DaOYw4LDCKwAIARrBKCZQQWADCCfVhgGYEFAIxg0i0sI7AAgBEXt+aPckWAIcBtDQBGMCQEywgsAGAEQ0KwjMACAEawNT8sI7AAgBEX8gpb88MkAgsAGNEzJBRHDwsMIrAAgBGsEoJl3NYAYASrhGAZgQUAjGCVECwjsACAEfSwwDICCwAYQQ8LLCOwAIARPU9rZlkzLCKwAIARDAnBMgILABjRE1gYEoJFBBYAMMKbw0JegUEEFgAwwhsSIrHAIAILABhxsYeFwAJ7CCwAYASrhGAZgQUAjGCVECwjsACAEWwcB8sILABgxMVJt1GuCDAEuK0BwAgm3cIyAgsAGOFtHEdggUEEFgAwwmGVEAwjsACAESF6WGAYgQUAjOiZw0IPCywisACAEawSgmXc1gBgBKuEYBmBBQCMYEgIlhFYAMAItuaHZQQWADCCrflhGYEFAIy40MHCHBaYRGABACNCrBKCYdzWAGAEq4Rg2YACS01NjbKyspSSkqLCwkI1NTX1WX7z5s3Kzs5WSkqKcnJytH37du+9c+fOaenSpcrJydGoUaOUkZGhuXPn6vjx4wOpGgAMWw6rhGBYxIFl06ZNqqys1OrVq9XS0qLc3FyVlJSovb291/K7du1SeXm55s+fr3379qm0tFSlpaU6cOCAJOnMmTNqaWnRypUr1dLSoldffVUHDx7U3Xff/addGQAMM2zND8viXLdnmlb/FBYWavr06Vq3bp0kyXEcZWZmauHChVq2bNkXypeVlamzs1Pbtm3zjt1+++3Ky8tTbW1trz9jz549Kigo0JEjRzRhwoQr1ikYDCotLU0dHR1KTU2N5HIAwIz8n7ypk5916Y1F/1OTb+B3IWJfJH+/I+ph6e7uVnNzs4qLiy+eID5excXFamxs7PUzjY2NYeUlqaSk5LLlJamjo0NxcXEaM2ZMr+93dXUpGAyGvQBguLu4NT89LLAnosBy8uRJhUIh+Xy+sOM+n0+BQKDXzwQCgYjKnz17VkuXLlV5efll01Z1dbXS0tK8V2ZmZiSXAQAmMekWlsXUKqFz587pvvvuk+u6eumlly5brqqqSh0dHd7r6NGjV7GWABCb6GGBZYmRFE5PT1dCQoLa2trCjre1tcnv9/f6Gb/f36/yPWHlyJEjeuutt/ocy0pOTlZycnIkVQcA8xyvhyXKFQGGQEQ9LElJSZo2bZoaGhq8Y47jqKGhQUVFRb1+pqioKKy8JNXX14eV7wkrhw4d0ptvvqmxY8dGUi0AgFglBNsi6mGRpMrKSlVUVCg/P18FBQVau3atOjs7NW/ePEnS3LlzNW7cOFVXV0uSFi1apJkzZ2rNmjWaPXu2Nm7cqL1792r9+vWSzoeVv/zLv1RLS4u2bdumUCjkzW+57rrrlJSUNFjXCgCmOc75rwwJwaKIA0tZWZlOnDihVatWKRAIKC8vT3V1dd7E2tbWVsXHX+y4mTFjhjZs2KAVK1Zo+fLlmjRpkrZs2aKpU6dKko4dO6atW7dKkvLy8sJ+1o4dO3TXXXcN8NIAYHgJMYcFhkW8D0ssYh8WAJCylv1akrTnR8X6H6OZ54fYN2T7sAAAYlPPhFuJHhbYRGABAANCl3SWJzDpFgYRWADAgNAlPSzx/GaHQdzWAGDApbMRGRKCRQQWADDg0iEh9mGBRQQWADAgbEiIwAKDCCwAYACrhGAdgQUADAgfEopiRYAhQmABAAMuffBhHENCMIjAAgAGsC0/rCOwAIABIYcnNcM2AgsAGMCTmmEdgQUADHB6hoToYYFRBBYAMKBnDgt5BVYRWADAgJ5VQgwJwSoCCwAYwCohWEdgAQADWCUE6wgsAGAAq4RgHYEFAAzoGRKihwVWEVgAwIAQk25hHIEFAAxwmHQL4wgsAGDApQ8/BCwisACAAcxhgXUEFgAwgFVCsI7AAgAG0MMC6wgsAGAAW/PDOgILABjg7XRLYIFRBBYAMMB7lhB5BUYRWADAAIaEYB2BBQAMYNItrCOwAIABFzpYCCwwi8ACAAYwJATrCCwAYACrhGAdgQUADGCVEKwjsACAAQwJwToCCwAYwCohWEdgAQAD6GGBdQQWADCASbewjsACAAaELuzDksCQEIwisACAAa43hyXKFQGGCIEFAAxgSAjWEVgAwICL+7AQWGATgQUADGCVEKwjsACAASHn/FeGhGAVgQUADGBICNYRWADAAIaEYB2BBQAMYGt+WEdgAQADnJ4hIX6rwyhubQAwoGdIiB4WWEVgAQADWCUE6wgsAGCAwyohGEdgAQAD2Jof1hFYAMAA9mGBdQQWADDg4j4sUa4IMES4tQHAAIaEYB2BBQAMYEgI1g0osNTU1CgrK0spKSkqLCxUU1NTn+U3b96s7OxspaSkKCcnR9u3bw9733VdrVq1SjfccINGjhyp4uJiHTp0aCBVA4Bh6UJeYWt+mBVxYNm0aZMqKyu1evVqtbS0KDc3VyUlJWpvb++1/K5du1ReXq758+dr3759Ki0tVWlpqQ4cOOCVeeaZZ/TCCy+otrZWu3fv1qhRo1RSUqKzZ88O/MoAYBjpGRKKo4cFRsW5bk8u75/CwkJNnz5d69atkyQ5jqPMzEwtXLhQy5Yt+0L5srIydXZ2atu2bd6x22+/XXl5eaqtrZXrusrIyNBjjz2mv/3bv5UkdXR0yOfz6eWXX9b9999/xToFg0GlpaWpo6NDqampkVwOAJiwYEOLfv3eJ/rf35mi/3XHxGhXB+iXSP5+J0Zy4u7ubjU3N6uqqso7Fh8fr+LiYjU2Nvb6mcbGRlVWVoYdKykp0ZYtWyRJhw8fViAQUHFxsfd+WlqaCgsL1djY2Gtg6erqUldXl/d9MBiM5DL67Q8hR09u/3BIzg0Ag+n9Yx2SGBKCXREFlpMnTyoUCsnn84Ud9/l8+uijj3r9TCAQ6LV8IBDw3u85drkyf6y6ulo//vGPI6n6gDiu9PP/8/+G/OcAwGBJHTki2lUAhkREgSVWVFVVhfXaBINBZWZmDvrPiY+TFnzzq4N+XgAYCteNSlbJzf5oVwMYEhEFlvT0dCUkJKitrS3seFtbm/z+3v+R+P3+Psv3fG1ra9MNN9wQViYvL6/XcyYnJys5OTmSqg9IYkK8lpRkD/nPAQAAfYtolVBSUpKmTZumhoYG75jjOGpoaFBRUVGvnykqKgorL0n19fVe+YkTJ8rv94eVCQaD2r1792XPCQAAhpeIh4QqKytVUVGh/Px8FRQUaO3aters7NS8efMkSXPnztW4ceNUXV0tSVq0aJFmzpypNWvWaPbs2dq4caP27t2r9evXSzq/BG/x4sX6yU9+okmTJmnixIlauXKlMjIyVFpaOnhXCgAAvrQiDixlZWU6ceKEVq1apUAgoLy8PNXV1XmTZltbWxUff7HjZsaMGdqwYYNWrFih5cuXa9KkSdqyZYumTp3qlXn88cfV2dmpBx98UKdOndKdd96puro6paSkDMIlAgCAL7uI92GJRezDAgDAl08kf795lhAAAIh5BBYAABDzCCwAACDmEVgAAEDMI7AAAICYR2ABAAAxj8ACAABiHoEFAADEPAILAACIeRFvzR+LejbrDQaDUa4JAADor56/2/3ZdN9EYDl9+rQkKTMzM8o1AQAAkTp9+rTS0tL6LGPiWUKO4+j48eMaPXq04uLiBvXcwWBQmZmZOnr0KM8p6gfaKzK0V//RVpGhvSJDe0VmsNrLdV2dPn1aGRkZYQ9O7o2JHpb4+HiNHz9+SH9GamoqN3EEaK/I0F79R1tFhvaKDO0VmcForyv1rPRg0i0AAIh5BBYAABDzCCxXkJycrNWrVys5OTnaVflSoL0iQ3v1H20VGdorMrRXZKLRXiYm3QIAANvoYQEAADGPwAIAAGIegQUAAMQ8AgsAAIh5BJYrqKmpUVZWllJSUlRYWKimpqZoVynqqqurNX36dI0ePVrXX3+9SktLdfDgwbAyZ8+e1YIFCzR27Fhde+21+t73vqe2trYo1Ti2PPXUU4qLi9PixYu9Y7RXuGPHjun73/++xo4dq5EjRyonJ0d79+713nddV6tWrdINN9ygkSNHqri4WIcOHYpijaMjFApp5cqVmjhxokaOHKmvfvWreuKJJ8KeyzKc2+o3v/mNvvOd7ygjI0NxcXHasmVL2Pv9aZtPP/1Uc+bMUWpqqsaMGaP58+frs88+u4pXcfX01V7nzp3T0qVLlZOTo1GjRikjI0Nz587V8ePHw84xlO1FYOnDpk2bVFlZqdWrV6ulpUW5ubkqKSlRe3t7tKsWVTt37tSCBQv07rvvqr6+XufOndO3v/1tdXZ2emUeffRRvf7669q8ebN27typ48eP6957741irWPDnj179NOf/lS33HJL2HHa66L//u//1h133KERI0bojTfe0AcffKA1a9boK1/5ilfmmWee0QsvvKDa2lrt3r1bo0aNUklJic6ePRvFml99Tz/9tF566SWtW7dOH374oZ5++mk988wzevHFF70yw7mtOjs7lZubq5qaml7f70/bzJkzR++//77q6+u1bds2/eY3v9GDDz54tS7hquqrvc6cOaOWlhatXLlSLS0tevXVV3Xw4EHdfffdYeWGtL1cXFZBQYG7YMEC7/tQKORmZGS41dXVUaxV7Glvb3cluTt37nRd13VPnTrljhgxwt28ebNX5sMPP3QluY2NjdGqZtSdPn3anTRpkltfX+/OnDnTXbRokeu6tNcfW7p0qXvnnXde9n3HcVy/3+/+/d//vXfs1KlTbnJysvvLX/7yalQxZsyePdv9wQ9+EHbs3nvvdefMmeO6Lm11KUnua6+95n3fn7b54IMPXEnunj17vDJvvPGGGxcX5x47duyq1T0a/ri9etPU1ORKco8cOeK67tC3Fz0sl9Hd3a3m5mYVFxd7x+Lj41VcXKzGxsYo1iz2dHR0SJKuu+46SVJzc7POnTsX1nbZ2dmaMGHCsG67BQsWaPbs2WHtItFef2zr1q3Kz8/XX/3VX+n666/Xrbfeqn/4h3/w3j98+LACgUBYe6WlpamwsHDYtdeMGTPU0NCgjz/+WJL0H//xH3rnnXf053/+55Joq770p20aGxs1ZswY5efne2WKi4sVHx+v3bt3X/U6x5qOjg7FxcVpzJgxkoa+vUw8/HAonDx5UqFQSD6fL+y4z+fTRx99FKVaxR7HcbR48WLdcccdmjp1qiQpEAgoKSnJu4l7+Hw+BQKBKNQy+jZu3KiWlhbt2bPnC+/RXuF+//vf66WXXlJlZaWWL1+uPXv26JFHHlFSUpIqKiq8Nunt3+Zwa69ly5YpGAwqOztbCQkJCoVCevLJJzVnzhxJoq360J+2CQQCuv7668PeT0xM1HXXXTfs2+/s2bNaunSpysvLvYcfDnV7EVjwJ1mwYIEOHDigd955J9pViVlHjx7VokWLVF9fr5SUlGhXJ+Y5jqP8/Hz93d/9nSTp1ltv1YEDB1RbW6uKiooo1y62/Mu//IteeeUVbdiwQTfffLP279+vxYsXKyMjg7bCkDl37pzuu+8+ua6rl1566ar9XIaELiM9PV0JCQlfWKnR1tYmv98fpVrFlocffljbtm3Tjh07NH78eO+43+9Xd3e3Tp06FVZ+uLZdc3Oz2tvbddtttykxMVGJiYnauXOnXnjhBSUmJsrn89Fel7jhhhs0ZcqUsGOTJ09Wa2urJHltwr9NacmSJVq2bJnuv/9+5eTk6IEHHtCjjz6q6upqSbRVX/rTNn6//wuLLP7whz/o008/Hbbt1xNWjhw5ovr6eq93RRr69iKwXEZSUpKmTZumhoYG75jjOGpoaFBRUVEUaxZ9ruvq4Ycf1muvvaa33npLEydODHt/2rRpGjFiRFjbHTx4UK2trcOy7b71rW/pd7/7nfbv3++98vPzNWfOHO+/aa+L7rjjji8sk//444914403SpImTpwov98f1l7BYFC7d+8edu115swZxceH/xpPSEiQ4ziSaKu+9KdtioqKdOrUKTU3N3tl3nrrLTmOo8LCwqte52jrCSuHDh3Sm2++qbFjx4a9P+Tt9SdP2zVs48aNbnJysvvyyy+7H3zwgfvggw+6Y8aMcQOBQLSrFlV//dd/7aalpblvv/22+8knn3ivM2fOeGUeeughd8KECe5bb73l7t271y0qKnKLioqiWOvYcukqIdelvS7V1NTkJiYmuk8++aR76NAh95VXXnGvueYa9xe/+IVX5qmnnnLHjBnj/uu//qv73nvvud/97nfdiRMnup9//nkUa371VVRUuOPGjXO3bdvmHj582H311Vfd9PR09/HHH/fKDOe2On36tLtv3z533759riT3ueeec/ft2+etaulP28yaNcu99dZb3d27d7vvvPOOO2nSJLe8vDxalzSk+mqv7u5u9+6773bHjx/v7t+/P+x3f1dXl3eOoWwvAssVvPjii+6ECRPcpKQkt6CgwH333XejXaWok9Tr6+c//7lX5vPPP3f/5m/+xv3KV77iXnPNNe4999zjfvLJJ9GrdIz548BCe4V7/fXX3alTp7rJycludna2u379+rD3HcdxV65c6fp8Pjc5Odn91re+5R48eDBKtY2eYDDoLlq0yJ0wYYKbkpLi3nTTTe6PfvSjsD8gw7mtduzY0evvqoqKCtd1+9c2//Vf/+WWl5e71157rZuamurOmzfPPX36dBSuZuj11V6HDx++7O/+HTt2eOcYyvaKc91LtkQEAACIQcxhAQAAMY/AAgAAYh6BBQAAxDwCCwAAiHkEFgAAEPMILAAAIOYRWAAAQMwjsAAAgJhHYAEAADGPwAIAAGIegQUAAMQ8AgsAAIh5/x8uvy+k5PrzdQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s_ir = simple_ir(dt=0.125, start=10, width=5, intensity=0.1)\n", + "plt.plot(s_ir)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 2- Relativistic IR" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A more realistic impulse response mimicking black hole dynamics can be created using relativistic_ir(). Its arguments are: time_resolution, primary peak time, secondary peak time, end time, primary peak value, secondary peak value, rise slope and decay slope. These paramaters are set to appropriate values by default." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiMAAAGdCAYAAADAAnMpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABEzklEQVR4nO3deXhU5fk38O+ZNetMNjJZyMYuW4gBYkRFJYpIaV3aolJBrPbVUoumrRIVkFqJ/qwWqwiKILaKoFRxAVGMAqIIJBAWZU8gISEbIZmsM5mZ8/6RzCSBBDLJJGfOzPdzXXMBZ86ZuY9j7tzzPPd5jiCKoggiIiIiiSikDoCIiIi8G4sRIiIikhSLESIiIpIUixEiIiKSFIsRIiIikhSLESIiIpIUixEiIiKSFIsRIiIikpRK6gC6wmazobi4GIGBgRAEQepwiIiIqAtEUURNTQ2ioqKgUHQ+/iGLYqS4uBgxMTFSh0FERETdUFhYiP79+3f6vCyKkcDAQADNJ6PT6SSOhoiIiLrCaDQiJibG8Xu8M7IoRuxTMzqdjsUIERGRzFyuxYINrERERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCmni5Ht27dj2rRpiIqKgiAI2LBhQ5eP/f7776FSqTBmzBhn35aIiIg8lNPFSF1dHRITE7F06VKnjquqqsLMmTMxadIkZ9+SiIiIPJjT96aZMmUKpkyZ4vQbPfTQQ7jnnnugVCqdGk0hIiIiz9YnPSNvv/028vLysHDhwi7tbzKZYDQa2z2I6NLqzRYs23oSpyrqpA6FiMgpvV6MHD9+HPPmzcO7774LlaprAzGZmZnQ6/WOR0xMTC9HSSR/G/YV44XNR7Dk62NSh0JE5JReLUasVivuueceLFq0CEOGDOnycRkZGaiurnY8CgsLezFKIs9w+lzziEh5rUniSIiInON0z4gzampqkJ2djX379uFPf/oTAMBms0EURahUKnz11Ve48cYbLzpOq9VCq9X2ZmhEHudMVQMAoKbRInEkRETO6dViRKfT4eDBg+22vf766/jmm2+wfv16JCQk9ObbE3mVYhYjRCRTThcjtbW1OHHihOPf+fn5yM3NRUhICGJjY5GRkYGioiL85z//gUKhwMiRI9sdHx4eDh8fn4u2E1HPtBYjTRJHQkTkHKeLkezsbNxwww2Of6enpwMAZs2ahdWrV+Ps2bMoKChwXYREdFlmiw1lNc29IkaOjBCRzAiiKIpSB3E5RqMRer0e1dXV0Ol0UodD5HYKztXjuhe/dfz76D9ugVallDAiIqKu//7mvWmIPEBRyxSNHftGiEhOWIwQeYBiFiNEJGMsRog8wMUjI2xiJSL5YDFC5AE4MkJEcsZihMgDcGSEiOSMxQiRB7CPjPiqm6+gMTZwZISI5IPFCJHMiaLoGBkZYggAABg5MkJEMsJihEjmztc3obHJBgAYbAgEwJ4RIpIXFiNEMmefoukXqEVogAYAixEikhcWI0Qyd+Z8czESHeQLnY8aABtYiUheWIwQyZx9ZCQ6yBeBPs23m+LICBHJCYsRIpmzFyNRQT6txYiJIyNEJB8sRohkrrjaXoz4IlBrn6bhyAgRyQeLESKZKzrPaRoikjeV1AEQUc8UVTUCaB4ZUQgCADawEpG8sBghkrHGJisqak0AmkdGak3NIyJGjowQkYywGCGSsbPVzaMivmolgvzUjpERs8UGk8UKrUopZXhERF3CnhEiGXNc1hvsC0EQEODT+v2CfSNEJBcsRohkrKiq9UoaAFAqBPhrmkdDWIwQkVywGCGSsdYFz3wc2wK5CisRyQyLESIZa3tZrx0v7yUiuWExQiRjbRc8s9P5cmSEiOSFxQiRjBW3WWPEzj4ywst7iUguWIwQyZTNJjoaWNtP03BJeCKSFxYjRDJ1rs4Ms8UGQQAi9G0bWO09I5ymISJ5YDFCJFP2K2kMgT5QK1t/lNnASkRyw2KESKaKHWuM+LTbruOlvUQkMyxGiGTqwgXP7DgyQkRyw2KESKaK2iwF3xaLESKSGxYjRDJV3MGVNAAQqOU0DRHJC4sRIplyTNPoOTJCRPLGYoRIpjpa8AxoXWeEi54RkVywGCGSoQazFZV1ZgCX6hnhNA0RyQOLESIZst+TJkCrgq6l+LCzX9prsthgttj6PDYiImexGCGSIfvdeqOCfCAIQrvnAtoUJxwdISI5YDFCJEOdXUkDAEqFAH+NEgCbWIlIHliMEMlQcScLntnxZnlEJCdOFyPbt2/HtGnTEBUVBUEQsGHDhkvu/9FHH+Gmm25Cv379oNPpkJqaii+//LK78RIRgDOXLUbYxEpE8uF0MVJXV4fExEQsXbq0S/tv374dN910EzZt2oScnBzccMMNmDZtGvbt2+d0sETU7FLTNEBrMcLLe4lIDlSX36W9KVOmYMqUKV3ef8mSJe3+vXjxYnzyySf47LPPkJSU5OzbExFa1xi58LJeu0DeLI+IZMTpYqSnbDYbampqEBIS0uk+JpMJJpPJ8W+j0dgXoRHJgs0m4mx1V6dpODJCRO6vzxtY//nPf6K2tha//e1vO90nMzMTer3e8YiJienDCInc28nyWjRZRfiqlTAEajvchw2sRCQnfVqMrFmzBosWLcIHH3yA8PDwTvfLyMhAdXW141FYWNiHURK5t92nKgEASbFBUCk7/hHWsYGViGSkz6Zp1q5diwceeAAffvgh0tLSLrmvVquFVtvxNz4ib5d96jwAYGx851OdnKYhIjnpk5GR999/H7Nnz8b777+PqVOn9sVbEnmsPS0jI+PigzvdxzFNY+LICBG5P6dHRmpra3HixAnHv/Pz85Gbm4uQkBDExsYiIyMDRUVF+M9//gOgeWpm1qxZeOWVV5CSkoKSkhIAgK+vL/R6vYtOg8g7nK1uwJnzDVAIQFLspYqRlkt7GzgyQkTuz+mRkezsbCQlJTkuy01PT0dSUhIWLFgAADh79iwKCgoc+7/55puwWCyYM2cOIiMjHY+5c+e66BSIvId9imZElB4B2s6/S/DSXiKSE6dHRq6//nqIotjp86tXr273761btzr7FkTUieyWKZqxl5iiAdgzQkTywnvTEMnInpaRkXGXaF4FuAIrEckLixEimTA2NuFwSfMCgGPjLj0youM0DRHJCIsRIpnYe/o8RBGIC/VDuM7nkvvaR0ZMFhvMFltfhEdE1G0sRohkwrG+SNylp2gAtGtu5egIEbk7FiNEMtGV9UXsVEoF/DRKAGxiJSL3x2KESAbMFhtyC6sAAOMSLj8yAvCKGiKSDxYjRDJwqLgaJosNIf4aDAjz79IxXGuEiOSCxQiRDOzJb1lfJC4YgiB06Rhe3ktEcsFihEgGurq+SFscGSEiuWAxQuTmbDYROae7tvJqWzr2jBCRTLAYIXJzeRW1OF/fBB+1AiOiun5zydaRERYjROTeWIwQuTn7FM2YmCBoVF3/kW0dGeE0DRG5NxYjRG6udX2RrveLALy0l4jkg8UIkZvL7kbzKtBmmsbEkREicm8sRojcWKmxEQWV9VAIQFJskFPHcmSEiOSCxQiRG7NP0VwRqXOMdHSVfX+uM0JE7o7FCJEb253fvX4RoO3ICKdpiMi9sRghclN1Jgs+yS0GAEwYFOb08ZymISK5YDFC5KbW7ilEdUMTEsL8ceOwcKeP13EFViKSCRYjRG7IbLHhre/yAAB/uG4AlIqu3Y+mLfvISGOTDU1Wm0vjIyJyJRYjRG7o0/3FOFvdiH6BWtyeFN2t1wjQqhx/51QNEbkzFiNEbsZmE/HGtpMAgPsnJMBHrezW66iUCvhpmo/lVA0RuTMWI0RuJutIGY6X1SJQq8KMq2J79FpsYiUiOWAxQuRmlreMisy4Ks7RhNpdrWuNcGSEiNwXixEiN7LnVCVyTp+HRqnA/RPie/x6HBkhIjlgMULkRpZvbR4VuTM5GuE6nx6/nuP+NCxGiMiNsRghchNHS2qQdaQMggD84bqBLnlNrsJKRHLAYoTITdivoJkyMgIJYf4ueU0dp2mISAZYjBC5gZPltfh0f/PS7w9NdM2oCNB2moYjI0TkvliMEEms1NiIWat2w2ITce3gMIzuH+Sy1w7UcmSEiNwfixEiCVXVm3Hvyl04c74B8aF+ePm3Y1z6+ryahojkgMUIkUTqzRbMXr0Hx0prYdBp8d/fp6BfoNal78F1RohIDliMEEnAZLHi//03B/sKqhDkp8Z/f5+CmBA/l78PR0aISA5YjBD1MatNRPq6/fjueAX8NEq8fd84DDEE9sp7sYGViORAdfldiMhVKmpN+PtnP2PjwbNQKwW8cW8ykmKDe+39ODJCRHLAYoSoD9SbLVj5XT7e2J6HWpMFCgF45a4kXDu4X6++r44rsBKRDLAYIepFFqsNH2SfwZKvj6GsxgQAGN1fjydvvQJXDQjt9fe3j4w0NFnRZLVBreTMLBG5H6cz0/bt2zFt2jRERUVBEARs2LDhssds3boVV155JbRaLQYNGoTVq1d3I1QiebDZRPxcbMQb205i8pLtePLjgyirMSEmxBev3p2EDX+c0CeFCAAE+LR+3+DoCBG5K6dHRurq6pCYmIj7778fd9xxx2X3z8/Px9SpU/HQQw/hvffeQ1ZWFh544AFERkZi8uTJ3QqayJ2Iooiz1Y34Me8cvjtege+OV6Ci1uR4PthPjT9PGowZKXHQqPp2ZEKtVMBXrURDkxU1jU0I8df06fsTEXWF08XIlClTMGXKlC7vv3z5ciQkJOCll14CAFxxxRXYsWMH/vWvf7EYIdmwWG0ormrE6co6nDpXj9MVdThdWY+Cc/U4XVmHxiZbu/191UqkDgzFdYPDcEdyf0fvhhQCfVQtxQhHRojIPfV6z8jOnTuRlpbWbtvkyZPx6KOPdnqMyWSCydT6zdJoNPZWeEQdqqwzY/m2kzhWWoPT5+pRWFkPi03sdH+FAFwRqcN1Q/rhusH9cGVcELQqZR9G3LlAHxXKakxc+IyI3FavFyMlJSUwGAztthkMBhiNRjQ0NMDX1/eiYzIzM7Fo0aLeDo2oU+v2FOLN7XnttmlUCsSF+CEu1A9xof6IC/VDbIgf4kP9ER3s67bNocF+GgB1KDOaLrsvEZEU3PJqmoyMDKSnpzv+bTQaERMTI2FE5G3sowgTh/TD/5s4APGh/ojQ+UChECSOzHmj+wch+/R55Jw+j9uSoqUOh4joIr1ejERERKC0tLTdttLSUuh0ug5HRQBAq9VCq3XtPTqInNFkae4BGRYZiKsHhkkcTc+MTwjBqu/zsTu/UupQiIg61OvjyqmpqcjKymq3bcuWLUhNTe3ttybqtiZrczGicdOpF2eMi29e4fVoaQ3O15kljoaI6GJOZ9ra2lrk5uYiNzcXQPOlu7m5uSgoKADQPMUyc+ZMx/4PPfQQ8vLy8Pjjj+PIkSN4/fXX8cEHH+Cxxx5zzRkQ9QKztblZ1V37QJwRGqDFoPAAAMCeUxwdISL343Smzc7ORlJSEpKSkgAA6enpSEpKwoIFCwAAZ8+edRQmAJCQkICNGzdiy5YtSExMxEsvvYS33nqLl/WSW7OPjHhCMQI0T9UA4FQNEbklp3tGrr/+eohi55c4drS66vXXX499+/Y5+1ZEkmktRuTXsNqRlIQQrNlVgN0cGSEiN+QZX/uIXMzRM9LHK6b2lnHxzSMjh4qqUWvi4mdE5F48I9MSuZjZ4jk9IwAQFeSLmBBf2EQg5/R5qcMhImrHMzItkYt5Ws8IAIyPb7453+78cxJHQkTUnudkWiIX8rSeEaC5bwRgEysRuR8WI0Qd8KR1RuzsV9TsL6xGY5NV4miIiFp5TqYlciFPWmfELi7UD+GBWpitNuQWVkkdDhGRg+dkWiIXsi8Hr/aQq2kAQBAErjdCRG7JczItkQt5Ys8IwL4RInJPLEaIOuCJPSMAMD6h+YqanNPnHedIRCQ1z8q0RC7S5IE9IwAwODwAQX5qNDRZcaioWupwiIgAsBgh6pDZA9cZAQCFQnCsxsqpGiJyF56VaYlcpHU5eM/qGQHYN0JE7ofFCFEHHFfTeNjICNC63sieU5Ww2Tq/6SURUV/xvExL5AKe2jMCAMMjdfDXKGFstOBoaY3U4RARsRghupAoih7bMwIAKqUCV8YFA+BUDRG5B8/LtEQ9ZGkzdeFpl/basW+EiNyJZ2Zaoh5ou/6G2gMbWIHW9UZ25Z+DKLJvhIikxWKE6AJNltZfzp44TQMAiTF6+KqVqKg1s2+EiCTnmZmWqAfs/SKCAKgUnjkyolUpHVfV7DheIXE0ROTtWIwQXaCpTfOqIHhmMQIA1wwKAwDsOMFihIikxWKE6AKeel+aC10zuLkY2ZVXCZPFKnE0ROTNPDvbEnWDp96x90JDDYEIC9CgocmKfQVVUodDRF6MxQjRBcwWz13wrC2FQsAE+1QN+0aISEKenW2JuqHJgxc8uxD7RojIHXh+tiVyUutN8jz/x8PeN3LgTBWq65skjoaIvJXnZ1siJ5m9pGcEACL1vhjYzx82EdiZx9ERIpIGixGiC3jyTfI6wqkaIpKad2RbIic0WbynZwQArhncDwCbWIlIOt6RbYmc4C3rjNhdNSAESoWAU+fqUVhZL3U4ROSFvCPbEjnB0TPioTfJu1CgjxpjYoIAAN9zqoaIJMBihOgC3tYzArBvhIik5T3ZlqiLvGmdETv7Jb4/nDwHm028zN5ERK7lPdmWqIu8rWcEAMbEBCFAq0JlnRk/nzVKHQ4ReRnvybZEXWS2eM86I3ZqpQJXDQgBwKkaIup7LEaILuCNPSMAeJ8aIpKMd2Vboi5w9Ix4wXLwbV3b0jey+1QlGpusEkdDRN7Eu7ItURd4Y88IAAzsFwCDTguzxYbsU+elDoeIvEi3su3SpUsRHx8PHx8fpKSkYPfu3Zfcf8mSJRg6dCh8fX0RExODxx57DI2Njd0KmKi3edO9adoSBAHXDGpejfW74+USR0NE3sTpYmTdunVIT0/HwoULsXfvXiQmJmLy5MkoKyvrcP81a9Zg3rx5WLhwIQ4fPoyVK1di3bp1ePLJJ3scPFFvaLJ4Z88IAEwc2lyMfHu0459nIqLe4HS2ffnll/Hggw9i9uzZGD58OJYvXw4/Pz+sWrWqw/1/+OEHTJgwAffccw/i4+Nx88034+67777saAqRVLxxnRG7iYP7QakQcKy0lkvDE1GfcSrbms1m5OTkIC0trfUFFAqkpaVh586dHR5z9dVXIycnx1F85OXlYdOmTbj11ls7fR+TyQSj0djuQdRXHD0jXtbACgB6PzXGxgUDAL45wtERIuobTmXbiooKWK1WGAyGdtsNBgNKSko6POaee+7B3//+d1xzzTVQq9UYOHAgrr/++ktO02RmZkKv1zseMTExzoRJ1CPe2jNiN+mKcABAFosRIuojvf7Vb+vWrVi8eDFef/117N27Fx999BE2btyIZ599ttNjMjIyUF1d7XgUFhb2dphEDt66zojdjcOav2z8ePIc6kwWiaMhIm+gcmbnsLAwKJVKlJaWttteWlqKiIiIDo+ZP38+7r33XjzwwAMAgFGjRqGurg5/+MMf8NRTT0GhuDjha7VaaLVaZ0Ijcpkmi/f2jADAwH7+iAv1w+lz9dhxogKTR3T8s01E5CpOZVuNRoPk5GRkZWU5ttlsNmRlZSE1NbXDY+rr6y8qOJRKJQBAFHlDLnI/3rrOiJ0gCLhhaPNUzTeHOVVDRL3P6Wybnp6OFStW4J133sHhw4fx8MMPo66uDrNnzwYAzJw5ExkZGY79p02bhmXLlmHt2rXIz8/Hli1bMH/+fEybNs1RlBC5E0fPiMo7e0aA1r6Rb46W8S6+RNTrnJqmAYDp06ejvLwcCxYsQElJCcaMGYPNmzc7mloLCgrajYQ8/fTTEAQBTz/9NIqKitCvXz9MmzYNzz33nOvOgsiFvPnSXrvxCSHw1yhRXmPCoeJqjO4fJHVIROTBBFEGcyVGoxF6vR7V1dXQ6XRSh0Me7s5lPyDn9Hm8cW+yV/dLPPTfHGz+qQRzJw3GYzcNkTocIpKhrv7+9t6vfkSdMFu8u2fE7kb7VA0v8SWiXubd2ZaoA5ymaWZvYj1YVI1SI+8lRUS9x7uzLVEHvH3RM7t+gVokxgQBAL7l6AgR9SIWI0QXcIyMeOFy8BeaNIyrsRJR72O2JbqA/a693t4zAgA3thQjO45XoLHJKnE0ROSpmG2JLsCekVYjonQw6LRoaLLix7xzUodDRB6K2ZboAuwZaSUIguNeNbyqhoh6C4sRogtwZKQ9R9/I4TLewoGIegWzLdEF7Hft1bCBFQAwYVAYtCoFiqoacLS0RupwiMgDMdsStWG1ibC23IuFIyPNfDVKXDs4DADwxcESiaMhIk/EbEvUhn2KBmDPSFtTRkYCAL44dFbiSIjIE7EYIWqjfTHCHw+7tCsMUCsFHCutxYkyTtUQkWsx2xK1Ye8XAViMtKX3U2PCIE7VEFHvYLYlasM+MqJUCFAqOE3T1q0tUzWbDrEYISLXYjFC1Ib9jr3sF7nYzSMMUCkEHD5rRH5FndThEJEHYTFC1AbXGOlckJ8GqQNDAbCRlYhcixmXqA3HGiMsRjp066iWq2rYN0JELsSMS9QGR0Yu7ebhBigE4GBRNQor66UOh4g8BDMuURuO+9Ko2DPSkdAALa4awKkaInItFiNEbTRZODJyOVNapmo2cqqGiFyEGZeoDfaMXN7kEQYIArC/sApnznOqhoh6jhmXqA32jFxeeKAPxsWHAAA2c80RInIBZlyiNhw9I1xn5JJuHRkBAPiCxQgRuQCLEaI2ODLSNfa+kZzT51FS3ShxNEQkd8y4RG3YixGNij8al2LQ+WBsXDAAYDOvqiGiHmLGJWqjydLcwMqRkcuzj45s4lU1RNRDzLhEbbBnpOtuHRUBQQB2n6rkVTVE1CMsRojaYM9I10XqfXFVQvMCaBv2FUkcDRHJGTMuURuOnhEWI11yx5XRAICP9hVBFEWJoyEiuWLGJWrDvugZR0a6ZsqoSPioFcgrr8OBM9VSh0NEMsWMS9SG2cJ70zgjQKvCzcOb1xz5mFM1RNRNLEaI2mDPiPNub5mq+XR/seO/HxGRM5hxidpgz4jzrh0UhrAALSrrzNh2tFzqcIhIhphxidpgz4jzVEoFfpkYBYBTNUTUPcy4RG2YOU3TLfararYcLkV1Q5PE0RCR3DDjErXRxAbWbhkRpcMQQwDMFhu+OMjl4YnIOSxGiNpgz0j3CIKA25P6A2hec4SIyBndyrhLly5FfHw8fHx8kJKSgt27d19y/6qqKsyZMweRkZHQarUYMmQINm3a1K2AiXoTe0a677akqObl4fMrUVjJ5eGJqOuczrjr1q1Deno6Fi5ciL179yIxMRGTJ09GWVlZh/ubzWbcdNNNOHXqFNavX4+jR49ixYoViI6O7nHwRK7GnpHui9T7InUAl4cnIuc5nXFffvllPPjgg5g9ezaGDx+O5cuXw8/PD6tWrepw/1WrVqGyshIbNmzAhAkTEB8fj4kTJyIxMbHHwRO5WhNvlNcjd1zZPFXzMZeHJyInOFWMmM1m5OTkIC0trfUFFAqkpaVh586dHR7z6aefIjU1FXPmzIHBYMDIkSOxePFiWK3WTt/HZDLBaDS2exD1BUfPiIojI91xy8iI5uXhK+qwn8vDE1EXOZVxKyoqYLVaYTAY2m03GAwoKSnp8Ji8vDysX78eVqsVmzZtwvz58/HSSy/hH//4R6fvk5mZCb1e73jExMQ4EyZRtzVZ2DPSEwFaFSaPaF4e/oPsQomjISK56PWMa7PZEB4ejjfffBPJycmYPn06nnrqKSxfvrzTYzIyMlBdXe14FBYyqVHfYM9Iz00f1/zl4ZN9Rag1WSSOhojkQOXMzmFhYVAqlSgtLW23vbS0FBERER0eExkZCbVaDaVS6dh2xRVXoKSkBGazGRqN5qJjtFottFqtM6ERuQSnaXoudUAoBoT5I6+iDp/mFuOelFipQyIiN+dUxtVoNEhOTkZWVpZjm81mQ1ZWFlJTUzs8ZsKECThx4gRsttYbaB07dgyRkZEdFiJEUmIDa88JgoC7xzcXIGt2n5Y4GiKSA6e//qWnp2PFihV45513cPjwYTz88MOoq6vD7NmzAQAzZ85ERkaGY/+HH34YlZWVmDt3Lo4dO4aNGzdi8eLFmDNnjuvOgshF7OuMcNGznrkzuT80SgUOFRlx4EyV1OEQkZtzapoGAKZPn47y8nIsWLAAJSUlGDNmDDZv3uxoai0oKIBC0ZrIY2Ji8OWXX+Kxxx7D6NGjER0djblz5+KJJ55w3VkQuYjZwp4RVwjx12DKqAh8kluMNbsKMLp/kNQhEZEbE0QZLAZgNBqh1+tRXV0NnU4ndTjkwcY/9zXKakzY9OdrMTyK/6/1xO78Svz2jZ3w0yjx45OToPNRSx0SEfWxrv7+5tc/ojZaG1jZM9JT4+KDMSg8APVmKz7hiqxEdAksRoja4L1pXEcQBNzT0sj63q4CrshKRJ1ixiVqg+uMuNadV/aHVqXAkZIa7CuskjocInJTzLhELURRbHNpL380XEHvp8bU0ZEAgDW7CiSOhojcFTMuUQurTYR9JoGX9rrOjJQ4AMDnB4pR3dAkcTRE5I6YcYla2PtFAEDNBlaXuTI2CMMiAtHYZMPHe89IHQ4RuSEWI0Qt7P0iAKdpXEkQBMeS8GxkJaKOMOMStWhqU4yoFBwZcaXbkqLhq1bieFktduadkzocInIzLEaIWjjWGFEqIAgsRlxJ56PGr5P7AwBWfpcvcTRE5G5YjBC1aLLY1xhhIdIbZk+IhyAAWUfKcLK8VupwiMiNsBghauFYY0TFH4veMKBfACYNa76H1codHB0holbMukQtuMZI73vw2gQAwP9yzqCyzixxNETkLph1iVq07Rmh3jE+IQSjovUwWWx478fTUodDRG6CWZeoRevICHtGeosgCHigZXTknZ2nYbJYJY6IiNwBixGiFmYLb5LXF24dFYlIvQ8qak34JLdY6nCIyA0w6xK1YM9I31ArFbjv6ngAzZf5chE0ImLWJWrRxKtp+sxd42Phr1HiaGkNdpyokDocIpIYsy5Ri9YGVvaM9Da9rxq/HRcDAFjBRdCIvB6LEaIWZit7RvrS/RMSoBCA7cfKcbSkRupwiEhCzLpELZos7BnpSzEhfrhlZAQA4K3v8iSOhoikxKxL1IINrH3vgWsHAAA+3leEwsp6iaMhIqkw6xK1cPSMqNgz0leujA3GNYPCYLGJWLbtpNThEJFEWIwQtWDPiDTmpg0GAHyYXYiiqgaJoyEiKTDrErXgNI00xsWHIHVAKJqsIpZv5egIkTdi1iVqwQZW6dhHR9btKcTZao6OEHkbZl2iFlxnRDpXDQjF+IQQmK02jo4QeSEWI0Qt2DMirUcnNY+OvL+nEKXGRomjIaK+xKxL1ILLwUsrdWAoxsYFw2yxYTmvrCHyKsy6RC3YwCotQRAcvSNrdhWgrIajI0TeglmXqAV7RqR3zaAwJMUGwWSx4c1tXJWVyFuwGCFqYeLVNJITBAFzW3pH3t11GuU1JokjIqK+wKxL1KKJDaxuYeKQfkiMCUJjkw1Lvz0hdThE1AeYdYlaONYZYQOrpARBwOOThwIA3v3xNE5V1EkcERH1NmZdohbsGXEfEwaFYeKQfrDYRLz45VGpwyGiXsZihKiFmVfTuJV5U4ZBEICNB89iX8F5qcMhol7ErEvUgpf2upcrInW488r+AIDMTUcgiqLEERFRb2HWJWrBBlb385ebh0CrUmD3qUp8fbhM6nCIqJd0K+suXboU8fHx8PHxQUpKCnbv3t2l49auXQtBEHDbbbd1522JepWjZ0TFnhF3Ean3xe+vSQAAPP/FYVhaPiMi8ixOFyPr1q1Deno6Fi5ciL179yIxMRGTJ09GWdmlv7WcOnUKf/3rX3Httdd2O1ii3mTmOiNu6aHrByLYT42T5XVYl10odThE1Auczrovv/wyHnzwQcyePRvDhw/H8uXL4efnh1WrVnV6jNVqxYwZM7Bo0SIMGDCgRwET9Rb2jLgnnY8af25ZCO1fW46jzmSROCIicjWnsq7ZbEZOTg7S0tJaX0ChQFpaGnbu3NnpcX//+98RHh6O3//+9116H5PJBKPR2O5B1NvYM+K+ZqTEIS7UDxW1Jqz4jsvEE3kap7JuRUUFrFYrDAZDu+0GgwElJSUdHrNjxw6sXLkSK1as6PL7ZGZmQq/XOx4xMTHOhEnULa3rjLAYcTcalQKPTx4GAHhjWx7OVjdIHBERuVKvZt2amhrce++9WLFiBcLCwrp8XEZGBqqrqx2PwkLOE1Pvc0zTsIHVLd06KgJj44LR0GTFs5//LHU4RORCKmd2DgsLg1KpRGlpabvtpaWliIiIuGj/kydP4tSpU5g2bZpjm83WnPBVKhWOHj2KgQMHXnScVquFVqt1JjSiHmMDq3sTBAHP3jYSv3h1BzYdLMH2Y+W4bkg/qcMiIhdwKutqNBokJycjKyvLsc1msyErKwupqakX7T9s2DAcPHgQubm5jscvf/lL3HDDDcjNzeX0C7kVe88Ip2nc1xWROsxKjQcALPz0J5gsVmkDIiKXcGpkBADS09Mxa9YsjB07FuPHj8eSJUtQV1eH2bNnAwBmzpyJ6OhoZGZmwsfHByNHjmx3fFBQEABctJ1IaryaRh4eu2kwPj9QjPyKOry5LQ+PtFxpQ0Ty5XQxMn36dJSXl2PBggUoKSnBmDFjsHnzZkdTa0FBARQKJnOSF5tNhMVmv5qGPSPuLNBHjaemXoG5a3Px2rcncFtSNGJC/KQOi4h6QBBlcMMHo9EIvV6P6upq6HQ6qcMhD2SyWDH06c0AgAPP3Aydj1riiOhSRFHEjLd24YeT5zBpWDhW3jdO6pCIqANd/f3NIQwitPaLAOwZkQNBEPD3X42EWikg60gZtvxcevmDiMhtMesSAWiytN7zhD0j8jAoPAAPXNu8ovMzn/6EBjObWYnkilmXCK3NqwoBUCrYMyIXj9w4CNFBviiqasC/vzkudThE1E0sRogAmHkljSz5aVRYOG04AODN7XnYX1glbUBE1C3MvETgGiNydvOICPwyMQpWm4i/frgfjU2criGSG2ZeIrRdCp4/EnK06JcjEBagxfGyWiz5mtM1RHLDzEuEtkvBs19EjoL9NVh8e/NCim9uP4m9BecljoiInMFihAhcfdUT3DwiAnckRcMmgtM1RDLDzEsE9ox4ioXTRiA8UIu88jq89NVRqcMhoi5i5iUCR0Y8hd5PjefvHAUAeGtHPrJPVUocERF1BTMvEdpc2qtiz4jc3TjMgN8k94fYMl1Tb7ZIHRIRXQaLESK0rsDKkRHP8PQvhiNS74NT5+qx6NOfpQ6HiC6DmZcIrT0jLEY8g95XjZd+mwhBANZlF2LDviKpQyKiS2DmJUJrzwgbWD3H1QPD8OcbBwMAnvz4IPLKayWOiIg6w8xLhLbLwbNnxJP8edJgXDUgBPVmK+as2cfLfYncFIsRIvBqGk+lVAh45a4khPprcPisEf/YyP4RInfEzEuENg2sXA7e4xh0PvjX9DEAgHd/LMDGA2elDYiILsLMSwQueubprhvSD3+8fiAAYN7/DuD0uTqJIyKitph5icCeEW+QftMQjI0LRo3Jgjlr9rJ/hMiNsBghQpuraThN47FUSgX+fXcSgv3UOFRkxN/WH4AoilKHRURgMUIEgA2s3iIqyBfLfpcMlULAZ/uL8frWk1KHRERgMUIEgD0j3uSqAaFY9KsRAIAXvzyKr34qkTgiImLmJQJg5nLwXmVGShxmpsYBAB5dl4sjJUaJIyLybsy8ROA0jTea/4vhuHpgKOrNVjzwTjbO1ZqkDonIazHzEqFNMcK79noNtVKB12dcibhQP5w534CH39vrGCEjor7FYoQI7BnxVkF+Grw1cywCtCrszq/EvI94hQ2RFJh5idB2nRH+SHibwYZAvHp3EpQKAR/tLcLzXxyROiQir8PMS4Q2y8GzGPFKNwwLx/N3jAIAvLE9D29u5yW/RH2JmZcIbRtY2TPirX4zNgbzpgwDACzedATrc85IHBGR92AxQoQ2PSNcgdWr/b/rBuDBaxMAAE/87wCyDpdKHBGRd2DmJQJ7RqiZIAjImHIF7rgyGlabiD++txfZpyqlDovI4zHzEoHrjFArhULAC3eOxo3DwmGy2HD/6j04VFQtdVhEHo2ZlwjsGaH21EoFlt5zJZLjgmFstOCeFT/iwJkqqcMi8lgsRogANFm4zgi156tRYvXscY6CZMZbu5BbWCV1WEQeiZmXCG1XYOWPBLUK9FHjnfvHY1x8MGoaLbj3rV3YV3Be6rCIPA4zLxHYwEqdC9CqsHr2eIyPD0GNyYJ7V+5GzmkWJESuxMxLBPaM0KX5a1V4e/Y4pCSEoNZkwcyVu7CHV9kQuUy3ipGlS5ciPj4ePj4+SElJwe7duzvdd8WKFbj22msRHByM4OBgpKWlXXJ/Iinw3jR0OfaCJHVAKOrMVty7che+/pnrkBC5gtOZd926dUhPT8fChQuxd+9eJCYmYvLkySgrK+tw/61bt+Luu+/Gt99+i507dyImJgY333wzioqKehw8katwOXjqCj+NCqvuG4frh/ZDY5MNf/hvNtbuLpA6LCLZE0Qnb1GZkpKCcePG4bXXXgMA2Gw2xMTE4JFHHsG8efMue7zVakVwcDBee+01zJw5s0vvaTQaodfrUV1dDZ1O50y4RF0y9OkvYLLY8P28GxEd5Ct1OOTmmqw2ZHx00LFk/KNpgzF30mAIAqf5iNrq6u9vp74Gms1m5OTkIC0trfUFFAqkpaVh586dXXqN+vp6NDU1ISQkpNN9TCYTjEZjuwdRb2LPCDlDrVTgxV+Pxp9uGAQAWPL1cTz58UFYWv4/IiLnOFWMVFRUwGq1wmAwtNtuMBhQUlLSpdd44oknEBUV1a6guVBmZib0er3jERMT40yYRE6x2kTYWsYH2TNCXSUIAv46eSievW0kFALw/u5CPPRuDurNFqlDI5KdPs28zz//PNauXYuPP/4YPj4+ne6XkZGB6upqx6OwsLAPoyRv09Tm2yx7RshZ914Vh2W/S4ZWpcDXh8vw62U7UVhZL3VYRLLiVOYNCwuDUqlEaWn7DvLS0lJERERc8th//vOfeP755/HVV19h9OjRl9xXq9VCp9O1exD1FjOLEeqhySMi8N4DKQj11+Dns0b8aun32HnynNRhEcmGU5lXo9EgOTkZWVlZjm02mw1ZWVlITU3t9Lj/+7//w7PPPovNmzdj7Nix3Y+WqBfYr6QB2DNC3Tc2PgSfPXINRkbrUFlnxu9W7sLq7/Ph5DUCRF7J6a+B6enpWLFiBd555x0cPnwYDz/8MOrq6jB79mwAwMyZM5GRkeHY/4UXXsD8+fOxatUqxMfHo6SkBCUlJaitrXXdWRD1gH2NEbVS4NUQ1CNRQb5Y/9DVuD0pGlabiGc++xl/W38AjU1WqUMjcmsqZw+YPn06ysvLsWDBApSUlGDMmDHYvHmzo6m1oKAACkVrjbNs2TKYzWb8+te/bvc6CxcuxDPPPNOz6IlcoIlLwZML+aiVePm3iRgRpcPiTYexPucMjpfW4LV7rkRMiJ/U4RG5JafXGZEC1xmh3nSyvBaTXtoGva8a+xfeLHU45EF2HK/AnDV7Ud3QhECtCovvGIVpiVFSh0XUZ3plnREiT8SREeot1wwOw8Y/X4PkuGDUmCx45P19eHz9fl7+S3QBZl/yek0W+31p2C9Crtc/2A/r/nAVHrlxEAQB+CD7DH7x6g78VFwtdWhEboPFCHk9+6W9ahV/HKh3qJQK/OXmoVjzwFUw6LTIK6/D7Ut/wFvf5cFqc/uZcqJex+xLXo/TNNRXUgeG4ou51yHtinCYrTb8Y+Nh/Gb5DzhRxqsLybsx+5LXYzFCfSnEX4MVM8di8e2jEKBVYW9BFW7993dYtvUk721DXovZl7yevRhhzwj1FUEQcE9KLL567DpMHNIPZosNL2w+gjuW/YAjJbwxKHkfFiPk9cwW+6Jn/HGgvhUV5IvVs8fhn79JhM5HhQNnqjHt1R14/osjqDPxihvyHsy+5PU4TUNSEgQBv07uj6/TJ+Km4QY0WUUs33YSk17ahk/3F3M5efIKzL7k9Zp4NQ25gXCdD968NxlvzRyL2BA/lBgb8ef39+GuN3/k1A15PGZf8nrsGSF3IQgC0oYb8NVj1+EvNw2Bj1qBXfmVmPrvHVj4ySGcqzVJHSJRr2AxQl7PbGXPCLkXH7USj0wajK/TJ2LKyAhYbSLe2XkaE1/cile+Ps5+EvI4zL7k9cwW9oyQe+of7Idlv0vGew+kYFS0HrUmC/719TFMfPFb/GfnKcf/u0Ryx+xLXo8NrOTuJgwKwydzJuDVu5MQF+qHilozFnzyE9Je3ob/5Zzh+iQke8y+5PWaWr5dalTsGSH3pVAImJYYha/TJ+LZX41AWIAWBZX1+MuH+3HDS1vx/u4CmCxWqcMk6hYWI+T1ODJCcqJWKnBvajy2/e16PH7LUIT6a1BY2YCMjw7i+he3YvX3+WhsYlFC8sLsS16PDawkR/5aFf54/SDseOJGLPjFcBh0WpytbsQzn/2Ma174Bku+PobyGl59Q/LA7EtejyMjJGe+GiXuvyYB2x+/Ac/dPhL9g31RUWvGkq+PY8Lz3+AvH+zHoaJqqcMkuiSV1AEQSY3rjJAn0KqUmJESh9+OjcGXP5Vg5Y587Cuowv/2nsH/9p7B+IQQzL46HmnDDSy8ye2wGCGvx5ER8iRqpQK/GB2FX4yOwr6C83j7+1PYdPAsdudXYnd+JcICNLgzuT/uGheLhDB/qcMlAsBihKj1RnlcDp48TFJsMJJig5Fx6zD8d+dpfJB9BhW1JryxLQ9vbMvDVQNCcPf4WEweEQEftVLqcMmLsRghr8eREfJ0kXpfPH7LMDx20xBkHS7D2j0F2HasHD/mVeLHvEoEaFW4ZWQEbhsTjdSBoVAqOGVJfYvFCHk99oyQt1ArFbhlZARuGRmBoqoGfLCnEOtzzqCoqgHrc85gfc4ZhAdq8cvEKPxqTDRGRusgCPy5oN7HYoS8HkdGyBtFB/nisZuGYO6kwcg+fR4bcouw8cBZlNWY8NaOfLy1Ix/9g31xy4gITBkVgaSYYCg4YkK9hMUIeT2uM0LeTKEQMD4hBOMTQvDMtBHYerQMn+QWI+tIKc6cb3AUJuGBWtw8woCbh0dgfEIIe0zIpViMkNezLwfPBlbydhqVAjePiMDNIyLQYLZi27EybD5UgqzDZSirMeHdHwvw7o8F8FUrMWFQGG4Y1g/XDw1HdJCv1KGTzLEYIa/HnhGii/lqlLhlZCRuGRkJs8WG709W4MtDJfj2aBlKjSZ8fbgUXx8uBQAMNQTimsFhmDAoFOMTQhGg5a8Wcg7/jyGvx54RokvTqBS4YWg4bhgaDlEU8fNZI7YeLce3R8qwt+A8jpbW4GhpDVbuyIdKISAxJggTBoYidWAYkmKDOKVDl8VihLwee0aIuk4QBIyI0mNElB5zbhiE83Vm7DhRgR9OVuD7E+dQUFmPnNPnkXP6PP79zQmolQJGRusxPj4E4+JDMDY+GEF+GqlPg9wMixHyehwZIeq+YH8NpiVGYVpiFACgsLIe35+owPcnz2FX3jmU1Ziwr6AK+wqq8Mb2PADAwH7+GBMTjDExeoyJCcawyED+/Hk5FiPk9Rw9Iyr2jBD1VEyIH+4aH4u7xsdCFEUUVjZg96lKZJ+qxO5Tlcgrr8PJlsf/9p4BAGhVCoyI0mFktB4jo/QYHqXDEEMgNGwq9xosRsjrOa6m4TczIpcSBAGxoX6IDfXDr5P7AwDO1Zqw/0wVcguqsK+wCvsLq2BstGBvQRX2FlQ5jlUrBQwxBGJ4pA5DIwIxLEKHIREB6Beg5UJsHojFCHk99owQ9Z3QAC1uHGbAjcMMAABRFJFfUYcDZ6rxU3E1DhUZ8VNxNYyNFvxUbMRPxcZ2x4f4azDUEIjBhgAM7NfyCPdHhM6HRYqMsRghr8eeESLpCIKAAf0CMKBfAG5LigbQXKCcOd+An4qrcfhsDY6W1OBYaQ1OnatDZZ0ZO/POYWfeuXav469RYkC/AMSH+SM+1A/xof6ID/NDXKg/Qv01LFTcHIsR8nqt64ywGCFyB4IgICbEDzEhfrhlZKRje2OTFcdLa3G0tAYnympxsrz5cfpcPerMVhwsqsbBouqLXs9fo0RMiB/6B/uhf7Bv82sH+yIqyBfRQb4I8lOzWJEYixHyeo6RETawErk1H7USo/rrMaq/vt12s8WGgsrmptjT5+pw6lx9858V9SiubkCd2YojJTU4UlLTyesqHIVJpN4HETofhOua/4zQ+8Cg80Gov4b35ulFLEbIq4miiCb2jBDJmkalwKDwQAwKD7zoucYmK4qqGlBYWY/C8w04U1mPwvP1KKxswNnqBlTUmtHYZENeeR3yyus6fQ+lQkBYgAb9ArXoF6Bt/jNQi1B/LUIDNAgLaP4z1F+LYD81VMwnTmExQl7NXogALEaIPJGPWulodO1IY5MVJdWNKK5qQHF1I85WNaDE2IhSY2PLnyZU1JpgtYkoNZpQajR16X31vmoE+6kR7K9BiJ8GQX4aBPupEeSnht5XDb2fBkG+LX/3VUPnq0agj8pr81C3ipGlS5fixRdfRElJCRITE/Hqq69i/Pjxne7/4YcfYv78+Th16hQGDx6MF154Abfeemu3gyZyFfsUDcCeESJv5KNWNje9hvl3uk+T1YZztWaU15hQXtvY/GfLo6LOjMpaM87VmXCu1ozKejNEEahuaEJ1QxNOnat3Kh4/jRI6HzV0vioEaFUI8GkuUgK1KgT6qOCvbd7ur7X/XQl/TfPf/TRKx59+GhWUMppWcroYWbduHdLT07F8+XKkpKRgyZIlmDx5Mo4ePYrw8PCL9v/hhx9w9913IzMzE7/4xS+wZs0a3Hbbbdi7dy9GjhzpkpMg6q62xYiaN8ojog6olQpE6Jv7RwD9Jfe12kRU1Ztxvr4J5+vNqKwz43xdc5FSXd+EqvrmIqWqwez4e02jBbUmCwCg3mxFvdmKEuMl36ZLtCoF/DRK+KqV8G0pUHzVSvholPBVK+Cjbn7Op+UxIyUWMSF+PX/jbhBEURQvv1urlJQUjBs3Dq+99hoAwGazISYmBo888gjmzZt30f7Tp09HXV0dPv/8c8e2q666CmPGjMHy5cu79J5GoxF6vR7V1dXQ6XTOhEt0SWU1jRj/XBYEAchbfCs76olIEharDbUmC4wNlpYCpQnGliKlprEJtY0W1Jia/13X8qh1/NuKerMF9SYr6swW2Jz6rd7qoz9ejStjg116Xl39/e3UyIjZbEZOTg4yMjIc2xQKBdLS0rBz584Oj9m5cyfS09PbbZs8eTI2bNjQ6fuYTCaYTK3zckajC0rEDqzckY8z550bQiPPUtfybUStVLAQISLJqJQKBLX0lvSEKIowWWyoM1lQb7aiscnqGG2x/72xyYqGpuY/W/9uQ4TOx0Vn4zynipGKigpYrVYYDIZ22w0GA44cOdLhMSUlJR3uX1JS0un7ZGZmYtGiRc6E1i0bDxS3W36YvFewn1rqEIiIekwQBMe0S6jUwTjBLa+mycjIaDeaYjQaERMT4/L3uTO5P1IHyunjot5y/dCL+52IiKhvOFWMhIWFQalUorS0tN320tJSREREdHhMRESEU/sDgFarhVardSa0bpmREtfr70FERESX5tS1jBqNBsnJycjKynJss9lsyMrKQmpqaofHpKamttsfALZs2dLp/kRERORdnJ6mSU9Px6xZszB27FiMHz8eS5YsQV1dHWbPng0AmDlzJqKjo5GZmQkAmDt3LiZOnIiXXnoJU6dOxdq1a5GdnY0333zTtWdCREREsuR0MTJ9+nSUl5djwYIFKCkpwZgxY7B582ZHk2pBQQEUitYBl6uvvhpr1qzB008/jSeffBKDBw/Ghg0buMYIERERAejGOiNS4DojRERE8tPV399c/5qIiIgkxWKEiIiIJMVihIiIiCTFYoSIiIgkxWKEiIiIJMVihIiIiCTFYoSIiIgkxWKEiIiIJMVihIiIiCTl9HLwUrAvEms0GiWOhIiIiLrK/nv7cou9y6IYqampAQDExMRIHAkRERE5q6amBnq9vtPnZXFvGpvNhuLiYgQGBkIQBJe9rtFoRExMDAoLCz32njeefo48P/nz9HPk+cmfp59jb56fKIqoqalBVFRUu5voXkgWIyMKhQL9+/fvtdfX6XQe+T9YW55+jjw/+fP0c+T5yZ+nn2Nvnd+lRkTs2MBKREREkmIxQkRERJLy6mJEq9Vi4cKF0Gq1UofSazz9HHl+8ufp58jzkz9PP0d3OD9ZNLASERGR5/LqkREiIiKSHosRIiIikhSLESIiIpIUixEiIiKSlFcXI0uXLkV8fDx8fHyQkpKC3bt3Sx1St2zfvh3Tpk1DVFQUBEHAhg0b2j0viiIWLFiAyMhI+Pr6Ii0tDcePH5cm2G7IzMzEuHHjEBgYiPDwcNx22204evRou30aGxsxZ84chIaGIiAgAHfeeSdKS0slith5y5Ytw+jRox2LDqWmpuKLL75wPC/387vQ888/D0EQ8Oijjzq2yfkcn3nmGQiC0O4xbNgwx/NyPre2ioqK8Lvf/Q6hoaHw9fXFqFGjkJ2d7XhezrkmPj7+os9QEATMmTMHgPw/Q6vVivnz5yMhIQG+vr4YOHAgnn322Xb3jJH08xO91Nq1a0WNRiOuWrVK/Omnn8QHH3xQDAoKEktLS6UOzWmbNm0Sn3rqKfGjjz4SAYgff/xxu+eff/55Ua/Xixs2bBD3798v/vKXvxQTEhLEhoYGaQJ20uTJk8W3335bPHTokJibmyveeuutYmxsrFhbW+vY56GHHhJjYmLErKwsMTs7W7zqqqvEq6++WsKonfPpp5+KGzduFI8dOyYePXpUfPLJJ0W1Wi0eOnRIFEX5n19bu3fvFuPj48XRo0eLc+fOdWyX8zkuXLhQHDFihHj27FnHo7y83PG8nM/NrrKyUoyLixPvu+8+cdeuXWJeXp745ZdfiidOnHDsI+dcU1ZW1u7z27JliwhA/Pbbb0VRlP9n+Nxzz4mhoaHi559/Lubn54sffvihGBAQIL7yyiuOfaT8/Ly2GBk/frw4Z84cx7+tVqsYFRUlZmZmShhVz11YjNhsNjEiIkJ88cUXHduqqqpErVYrvv/++xJE2HNlZWUiAHHbtm2iKDafj1qtFj/88EPHPocPHxYBiDt37pQqzB4LDg4W33rrLY86v5qaGnHw4MHili1bxIkTJzqKEbmf48KFC8XExMQOn5P7udk98cQT4jXXXNPp856Wa+bOnSsOHDhQtNlsHvEZTp06Vbz//vvbbbvjjjvEGTNmiKIo/efnldM0ZrMZOTk5SEtLc2xTKBRIS0vDzp07JYzM9fLz81FSUtLuXPV6PVJSUmR7rtXV1QCAkJAQAEBOTg6ampraneOwYcMQGxsry3O0Wq1Yu3Yt6urqkJqa6lHnN2fOHEydOrXduQCe8RkeP34cUVFRGDBgAGbMmIGCggIAnnFuAPDpp59i7Nix+M1vfoPw8HAkJSVhxYoVjuc9KdeYzWa8++67uP/++yEIgkd8hldffTWysrJw7NgxAMD+/fuxY8cOTJkyBYD0n58sbpTnahUVFbBarTAYDO22GwwGHDlyRKKoekdJSQkAdHiu9ufkxGaz4dFHH8WECRMwcuRIAM3nqNFoEBQU1G5fuZ3jwYMHkZqaisbGRgQEBODjjz/G8OHDkZub6xHnt3btWuzduxd79uy56Dm5f4YpKSlYvXo1hg4dirNnz2LRokW49tprcejQIdmfm11eXh6WLVuG9PR0PPnkk9izZw/+/Oc/Q6PRYNasWR6VazZs2ICqqircd999AOT//ycAzJs3D0ajEcOGDYNSqYTVasVzzz2HGTNmAJD+d4VXFiMkX3PmzMGhQ4ewY8cOqUNxuaFDhyI3NxfV1dVYv349Zs2ahW3btkkdlksUFhZi7ty52LJlC3x8fKQOx+Xs3y4BYPTo0UhJSUFcXBw++OAD+Pr6ShiZ69hsNowdOxaLFy8GACQlJeHQoUNYvnw5Zs2aJXF0rrVy5UpMmTIFUVFRUofiMh988AHee+89rFmzBiNGjEBubi4effRRREVFucXn55XTNGFhYVAqlRd1QpeWliIiIkKiqHqH/Xw84Vz/9Kc/4fPPP8e3336L/v37O7ZHRETAbDajqqqq3f5yO0eNRoNBgwYhOTkZmZmZSExMxCuvvOIR55eTk4OysjJceeWVUKlUUKlU2LZtG/79739DpVLBYDDI/hzbCgoKwpAhQ3DixAmP+PwAIDIyEsOHD2+37YorrnBMR3lKrjl9+jS+/vprPPDAA45tnvAZ/u1vf8O8efNw1113YdSoUbj33nvx2GOPITMzE4D0n59XFiMajQbJycnIyspybLPZbMjKykJqaqqEkbleQkICIiIi2p2r0WjErl27ZHOuoijiT3/6Ez7++GN88803SEhIaPd8cnIy1Gp1u3M8evQoCgoKZHOOHbHZbDCZTB5xfpMmTcLBgweRm5vreIwdOxYzZsxw/F3u59hWbW0tTp48icjISI/4/ABgwoQJF11Sf+zYMcTFxQHwjFwDAG+//TbCw8MxdepUxzZP+Azr6+uhULT/la9UKmGz2QC4wefX6y2ybmrt2rWiVqsVV69eLf7888/iH/7wBzEoKEgsKSmROjSn1dTUiPv27RP37dsnAhBffvllcd++feLp06dFUWy+XCsoKEj85JNPxAMHDoi/+tWvZHO5nSiK4sMPPyzq9Xpx69at7S69q6+vd+zz0EMPibGxseI333wjZmdni6mpqWJqaqqEUTtn3rx54rZt28T8/HzxwIED4rx580RBEMSvvvpKFEX5n19H2l5NI4ryPse//OUv4tatW8X8/Hzx+++/F9PS0sSwsDCxrKxMFEV5n5vd7t27RZVKJT733HPi8ePHxffee0/08/MT3333Xcc+cs81VqtVjI2NFZ944omLnpP7Zzhr1iwxOjracWnvRx99JIaFhYmPP/64Yx8pPz+vLUZEURRfffVVMTY2VtRoNOL48ePFH3/8UeqQuuXbb78VAVz0mDVrliiKzZdszZ8/XzQYDKJWqxUnTZokHj16VNqgndDRuQEQ3377bcc+DQ0N4h//+EcxODhY9PPzE2+//Xbx7Nmz0gXtpPvvv1+Mi4sTNRqN2K9fP3HSpEmOQkQU5X9+HbmwGJHzOU6fPl2MjIwUNRqNGB0dLU6fPr3d+htyPre2PvvsM3HkyJGiVqsVhw0bJr755pvtnpd7rvnyyy9FAB3GLPfP0Gg0inPnzhVjY2NFHx8fccCAAeJTTz0lmkwmxz5Sfn6CKLZZfo2IiIioj3llzwgRERG5DxYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCQpFiNEREQkKRYjREREJCkWI0RERCSp/w/ZCdN0aTpNywAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "r_ir = relativistic_ir(dt=0.125)\n", + "plt.plot(r_ir)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "py310", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.8" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/notebooks/Window Functions/window_functions.html b/notebooks/Window Functions/window_functions.html new file mode 100644 index 000000000..f4a836408 --- /dev/null +++ b/notebooks/Window Functions/window_functions.html @@ -0,0 +1,730 @@ + + + + + + + + Window functions — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Window functions

+

Stingray now has a bunch of window functions that can be used for various applications in signal processing.

+

Windows available include: 1. Uniform or Rectangular Window 2. Parzen window 3. Hamming window 4. Hanning Window 5. Triangular window 6. Welch Window 7. Blackmann Window 8. Flat-top Window

+

All windows are available in stingray.utils package and called be used by calling create_window function. Below are some of the examples demonstrating different window functions.

+
+
[64]:
+
+
+
from stingray.utils import create_window
+
+from scipy.fftpack import fft, fftshift, fftfreq
+import numpy as np
+
+import matplotlib.pyplot as plt
+%matplotlib inline
+
+
+
+

create_window function in stingray.utils takes two parameters.

+
    +
  1. N : Number of data points in the window

  2. +
  3. window_type : Type of window to create. Default is uniform.

  4. +
+
+
+

Uniform Window

+
+
[65]:
+
+
+
N = 100
+window = create_window(N)
+
+
+
+
+
[66]:
+
+
+
plt.plot(window)
+plt.title("Uniform window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[66]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f0ccc50>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_7_1.png +
+
+
+
[67]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Uniform window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
+
+
+
+C:\Users\Haroon Rashid\Anaconda3\lib\site-packages\ipykernel\__main__.py:4: RuntimeWarning: divide by zero encountered in log10
+
+
+
+
[67]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f1b6e10>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_8_2.png +
+
+
+
+

Parzen Window

+
+
[68]:
+
+
+
N = 100
+window = create_window(N, window_type='parzen')
+
+
+
+
+
[69]:
+
+
+
plt.plot(window)
+plt.title("Parzen window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[69]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f1a8160>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_11_1.png +
+
+
+
[70]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Parzen window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[70]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f24b978>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_12_1.png +
+
+
+
+

Hamming Window

+
+
[71]:
+
+
+
N = 50
+window = create_window(N, window_type='hamming')
+
+
+
+
+
[72]:
+
+
+
plt.plot(window)
+plt.title("Hamming window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[72]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f360ba8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_15_1.png +
+
+
+
[73]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Hamming window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[73]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f2f6fd0>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_16_1.png +
+
+
+
+

Hanning Window

+
+
[74]:
+
+
+
N = 50
+window = create_window(N, window_type='hanning')
+
+
+
+
+
[75]:
+
+
+
plt.plot(window)
+plt.title("Hanning window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[75]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f34f470>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_19_1.png +
+
+
+
[76]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Hanning window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
+
+
+
+C:\Users\Haroon Rashid\Anaconda3\lib\site-packages\ipykernel\__main__.py:4: RuntimeWarning: divide by zero encountered in log10
+
+
+
+
[76]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f4715f8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_20_2.png +
+
+
+
+

Traingular Window

+
+
[77]:
+
+
+
N = 50
+window = create_window(N, window_type='triangular')
+
+
+
+
+
[78]:
+
+
+
plt.plot(window)
+plt.title("Traingualr window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[78]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f4397b8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_23_1.png +
+
+
+
[79]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Triangular window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[79]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f534470>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_24_1.png +
+
+
+
+

Welch Window

+
+
[80]:
+
+
+
N = 50
+window = create_window(N, window_type='welch')
+
+
+
+
+
[81]:
+
+
+
plt.plot(window)
+plt.title("Welch window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[81]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f629eb8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_27_1.png +
+
+
+
[82]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Welch window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
+
+
+
+C:\Users\Haroon Rashid\Anaconda3\lib\site-packages\ipykernel\__main__.py:4: RuntimeWarning: divide by zero encountered in log10
+
+
+
+
[82]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f738080>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_28_2.png +
+
+
+
+

Blackmann’s Window

+
+
[83]:
+
+
+
N = 50
+window = create_window(N, window_type='blackmann')
+
+
+
+
+
[84]:
+
+
+
plt.plot(window)
+plt.title("Blackmann window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[84]:
+
+
+
+
+<matplotlib.text.Text at 0x21d8f6b92e8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_31_1.png +
+
+
+
[85]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Blackmann window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[85]:
+
+
+
+
+<matplotlib.text.Text at 0x21d9083b2e8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_32_1.png +
+
+
+
+

Flat Top Window

+
+
[86]:
+
+
+
N = 50
+window = create_window(N, window_type='flat-top')
+
+
+
+
+
[87]:
+
+
+
plt.plot(window)
+plt.title("Flat-top window")
+plt.ylabel("Amplitude")
+plt.xlabel("Sample Number (n)")
+
+
+
+
+
[87]:
+
+
+
+
+<matplotlib.text.Text at 0x21d9081e470>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_35_1.png +
+
+
+
[88]:
+
+
+
nfft = 2048
+A = fft(window,nfft ) / (len(window)/2.0)
+freq = fftfreq(nfft)
+response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))
+plt.plot(freq, response)
+plt.title("Frequency response of the Flat-top window")
+plt.ylabel("Magnitude [dB]")
+plt.xlabel("Normalized frequency [cycles per sample]")
+
+
+
+
+
[88]:
+
+
+
+
+<matplotlib.text.Text at 0x21d909314a8>
+
+
+
+
+
+
+../../_images/notebooks_Window_Functions_window_functions_36_1.png +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/notebooks/Window Functions/window_functions.ipynb b/notebooks/Window Functions/window_functions.ipynb new file mode 100644 index 000000000..ea3fd311a --- /dev/null +++ b/notebooks/Window Functions/window_functions.ipynb @@ -0,0 +1,848 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Window functions" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`Stingray` now has a bunch of window functions that can be used for various applications in signal processing.\n", + "\n", + "Windows available include:\n", + "1. Uniform or Rectangular Window\n", + "2. Parzen window\n", + "3. Hamming window\n", + "4. Hanning Window\n", + "5. Triangular window\n", + "6. Welch Window\n", + "7. Blackmann Window\n", + "8. Flat-top Window" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "All windows are available in `stingray.utils` package and called be used by calling `create_window` function. Below are some of the examples demonstrating different window functions. " + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from stingray.utils import create_window\n", + "\n", + "from scipy.fftpack import fft, fftshift, fftfreq\n", + "import numpy as np\n", + "\n", + "import matplotlib.pyplot as plt\n", + "%matplotlib inline" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "`create_window` function in `stingray.utils` takes two parameters. \n", + "\n", + "1. `N` : Number of data points in the window\n", + "2. `window_type` : Type of window to create. Default is `uniform`." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Uniform Window " + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N)" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGN5JREFUeJzt3X2UXXV97/H3xwREtCUouV5MgCBGNFirOEUUURDbi4py\nl0st+Ix6ufYigtV60dqLdumydalVqsJCRfCKoKWooPh0i4BYRYYHkfBQIyhJQAlaAaEFwe/9Y++R\n45iZ+SXkZCZz3q+1Zs35/fY+e39/k8n+zH44e6eqkCRpJg+Y7QIkSVsGA0OS1MTAkCQ1MTAkSU0M\nDElSEwNDktTEwNBISHJCkr8ZaP9Fkp8l+VWSh81mbVNJsm+Sa+/H+yvJozZlTRpt8XMY2hIkKWB5\nVa0a6HsH8KiqetkGLmsr4DZg76r6/iYtdA5Z389Muj/cw9AoejiwDbByQ9+Yjv9vNJL8xde8kGS/\nJGuSvCnJzUluSnLYwPSTk7wryaOBicM8v0xybj/9qUkuTnJr//2pA+89L8m7k3wbuBN4ZN/3riT/\n2h/WOjvJw5KcmuS2fhnLpqj1lCRv6l8v6Q8dHdG3d0vyiyQPmBjTwPt+nOTNSa7o6/xskm0Gpv9V\nP+4bk7x60jq3S/KpJOuS/CTJ2yeCr28/qX/90r6ePfr2a5J8YWP/XTS/GBiaT/4rsB2wBHgN8JEk\n2w/OUFX/BuzRNxdV1TOTPBT4MnAc8DDgA8CXJ53beDlwOPAHwE/6vkP6/iXAbsB3gE8CDwWuBo6d\nos7zgf36188ArgOePtD+VlX9Zor3vhg4ENgVeDzwKoAkBwJvBv4UWA48a9L7/pHuZ/PIfh2vACYC\ndaZ6zp+iFo0YA0Pzya+Bv62qX1fVOcCvgN0b3vdc4IdV9X+r6p6qOg24BnjewDwnV9XKfvqv+75P\nVtWPqupW4CvAj6rq/1XVPcA/AU+cYn3nA0/r/8J/OvBeYJ9+2kwb6OOq6saq+gVwNvCEvv/FfT1X\nVtUdwDsm3pBkAV24vbWqbq+qHwPvpwu7iXqe0b/eF3jPQNvA0G8ZGNpS3AtsNalvK7qQmPDzfmM9\n4U7gIQ3LfgT37TVM+AndnsOE1et5388GXv/HetrrXXdV/Qi4g25jvy/wJeDGJLsz8wb6pwOvB8f3\niEk1Do5nB7qf1U8mTZ8Y3/nAvkl2BBYAnwP26Q+pbQdcPk09GiEGhrYUNwDLJvXtyu9v6DfGjcAu\nk/p2BtYOtDf15YTnAy8Etq6qtX37lcD2bNwG+iZgp4H2zgOvb6EL1l0mTV8L0F9FdSdwJHBBVd1G\nF0yHAxdOc3hMI8bA0Jbis8DbkyztTwg/i+6Q0RmbYNnnAI9O8pIkC5P8ObCC7i//YTkfeD1wQd8+\nr29fWFX3bsTyPge8KsmKJNsycP6kX97ngHcn+YMkuwB/CXx6PfVM7N2cN6ktGRjaYvwt8K/AhcC/\n0x33f2lVXXl/F1xVPwcOAt4E/Bx4C3BQVd1yf5c9jfPpTqBPBMaFwLYD7Q1SVV8BPgicC6zqvw86\nku4w2HX9uj4DnDRNPZPbkh/ckyS1cQ9DktTEwJAkNTEwJElNDAxJUpOFs13AprTDDjvUsmXLZrsM\nSdpiXHLJJbdU1eKWeedVYCxbtozx8fHZLkOSthhJmj/86iEpSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElS\nEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVKToQVGkpOS3JzkyimmJ8lxSVYl\nuSLJnpOmL0hyWZIvDatGSVK7Ye5hnAwcOM30ZwPL+6/DgeMnTT8KuHoolUmSNtjQAqOqLgB+Mc0s\nBwOfqs53gUVJdgRIshR4LvDxYdUnSdows3kOYwmweqC9pu8D+CDwFuA3My0kyeFJxpOMr1u3btNX\nKUkC5uBJ7yQHATdX1SUt81fViVU1VlVjixcvHnJ1kjS6ZjMw1gI7DbSX9n37AM9P8mPgdOCZST69\n+cuTJA2azcA4C3hFf7XU3sCtVXVTVb21qpZW1TLgEODcqnrZLNYpSQIWDmvBSU4D9gN2SLIGOBbY\nCqCqTgDOAZ4DrALuBA4bVi2SpPtvaIFRVYfOML2AI2aY5zzgvE1XlSRpY825k96SpLnJwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEw\nJElNDAxJUhMDQ5LUxMCQJDUZWmAkOSnJzUmunGJ6khyXZFWSK5Ls2ffvlOSbSa5KsjLJUcOqUZLU\nbph7GCcDB04z/dnA8v7rcOD4vv8e4E1VtQLYGzgiyYoh1ilJajC0wKiqC4BfTDPLwcCnqvNdYFGS\nHavqpqq6tF/G7cDVwJJh1SlJajOb5zCWAKsH2muYFAxJlgFPBC7abFVJktZrzp70TvIQ4J+Bo6vq\ntmnmOzzJeJLxdevWbb4CJWnEzGZgrAV2Gmgv7ftIshVdWJxaVWdOt5CqOrGqxqpqbPHixUMrVpJG\n3WwGxlnAK/qrpfYGbq2qm5IE+ARwdVV9YBbrkyQNWDisBSc5DdgP2CHJGuBYYCuAqjoBOAd4DrAK\nuBM4rH/rPsDLgR8kubzve1tVnTOsWiVJMxtaYFTVoTNML+CI9fRfCGRYdUmSNs6cPektSZpbDAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNZkxMJJsm+Rv\nknysby9PctDwS5MkzSUtexifBO4CntK31wLvGlpFkqQ5qSUwdquq9wK/BqiqO/H245I0cloC4+4k\nDwIKIMludHsckqQR0vIApWOBrwI7JTmV7ol4rxpmUZKkuWfGwKiqbyS5FNib7lDUUVV1y9ArkyTN\nKVMGRpI9J3Xd1H/fOcnOVXXp8MqSJM010+1hvL//vg0wBnyfbg/j8cA49101JUkaAVOe9K6q/atq\nf7o9iz2raqyqngQ8ke7SWknSCGm5Smr3qvrBRKOqrgQeO7ySJElzUctVUlck+Tjw6b79UuCK4ZUk\nSZqLWgLjMOAvgKP69gXA8UOrSJI0J7VcVvufwD/0X5KkETVjYCS5nv5T3oOq6pFDqUiSNCe1HJIa\nG3i9DfAi4KHDKUeSNFfNeJVUVf184GttVX0QeO5mqE2SNIe0HJIa/MT3A+j2OFr2TCRJ80jLhv/9\nA6/vAa4HXjycciRJc1VLYLymqq4b7Eiy65DqkSTNUS2f9D6jse93JDkpyc1JrpxiepIcl2RVkisG\nD30lOTDJtf20YxpqlCQN2XR3q30MsAewXZIXDEz6Q7qrpWZyMvBh4FNTTH82sLz/ejLdhwGfnGQB\n8BHgT4E1wMVJzqqqqxrWKUkakukOSe0OHAQsAp430H878D9mWnBVXZBk2TSzHAx8qqoK+G6SRUl2\nBJYBqyYOgyU5vZ93aIHxzrNXctWNtw1r8ZI0VCse8Ycc+7w9hr6eKQOjqr4IfDHJU6rqO0NY9xJg\n9UB7Td+3vv4nT7WQJIcDhwPsvPPOm75KSRIw/SGpt1TVe4GXJDl08vSqesNQK2tUVScCJwKMjY39\n3ifSW2yOZJakLd10h6Su7r+PD2nda4GdBtpL+76tpuiXJM2i6Q5Jnd1/P2VI6z4LeH1/juLJwK1V\ndVOSdcDy/tLdtcAhwEuGVIMkqdF0h6TOZj03HZxQVc+fbsFJTgP2A3ZIsgY4lm7vgao6ATgHeA6w\nCriT7jbqVNU9SV4PfA1YAJxUVSvbhyRJGobpDkm97/4suKp+77zHpOkFHDHFtHPoAkWSNEdMd0jq\n/InXSbYGHkO3x3FtVd29GWqTJM0hLTcffC5wAvAjIMCuSf5nVX1l2MVJkuaO1psP7l9VqwCS7AZ8\nGTAwJGmEtNxL6vaJsOhdR/dpb0nSCGnZwxhPcg7wObpzGC+iu7/TCwCq6swh1idJmiNaAmMb4GfA\nM/r2OuBBdPeXKsDAkKQRMGNgVNVhm6MQSdLc1nKV1K7AkXR3kf3t/DN9cE+SNL+0HJL6AvAJ4Gzg\nN8MtR5I0V7UExn9W1XFDr0SSNKe1BMaHkhwLfB24a6Kzqi4dWlWSpDmnJTD+CHg58EzuOyRVfVuS\nNCJaAuNFwCO9f5QkjbaWT3pfSfdcb0nSCGvZw1gEXJPkYu47h1FVdfDwypIkzTUtgXHswOsA+9I9\nBU+SNEJmPCTVPxfjNuAg4GS6k90nDLcsSdJcM90jWh8NHNp/3QJ8FkhV7b+ZapMkzSHTHZK6BvgW\ncNDAszDeuFmqkiTNOdMdknoBcBPwzSQfS3IA3TkMSdIImjIwquoLVXUI3bO8vwkcDfyXJMcn+bPN\nVaAkaW5oOel9R1V9pqqeBywFLgP+99ArkyTNKS0f3Putqvr3qjqxqg4YVkGSpLlpgwJDkjS6DAxJ\nUhMDQ5LUxMCQJDUxMCRJTQwMSVITA0OS1GSogZHkwCTXJlmV5Jj1TN8+yeeTXJHke0keNzDtjUlW\nJrkyyWlJthlmrZKk6Q0tMJIsAD4CPBtYARyaZMWk2d4GXF5VjwdeAXyof+8S4A3AWFU9DliAz+CQ\npFk1zD2MvYBVVXVd/zzw04HJT+lbAZwLUFXXAMuSPLyfthB4UJKFwLbAjUOsVZI0g2EGxhJg9UB7\nTd836Pt0d8UlyV7ALsDSqloLvA+4ge6OubdW1deHWKskaQazfdL774BFSS4HjqS7seG9Sban2xvZ\nFXgE8OAkL1vfApIcnmQ8yfi6des2V92SNHKGGRhrgZ0G2kv7vt+qqtuq6rCqegLdOYzFwHXAs4Dr\nq2pdVf0aOBN46vpW0t8McayqxhYvXjyMcUiSGG5gXAwsT7Jrkq3pTlqfNThDkkX9NIDXAhdU1W10\nh6L2TrJtkgAHAFcPsVZJ0gyme0Tr/VJV9yR5PfA1uqucTqqqlUle108/AXgscEqSAlYCr+mnXZTk\nDOBS4B66Q1UnDqtWSdLMUlWzXcMmMzY2VuPj47NdhiRtMZJcUlVjLfPO9klvSdIWwsCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU0MDElSEwNDktTEwJAkNTEwJElNDAxJUhMDQ5LUxMCQJDUxMCRJ\nTQwMSVITA0OS1MTAkCQ1MTAkSU2GGhhJDkxybZJVSY5Zz/Ttk3w+yRVJvpfkcQPTFiU5I8k1Sa5O\n8pRh1ipJmt7QAiPJAuAjwLOBFcChSVZMmu1twOVV9XjgFcCHBqZ9CPhqVT0G+GPg6mHVKkma2TD3\nMPYCVlXVdVV1N3A6cPCkeVYA5wJU1TXAsiQPT7Id8HTgE/20u6vql0OsVZI0g2EGxhJg9UB7Td83\n6PvACwCS7AXsAiwFdgXWAZ9MclmSjyd58PpWkuTwJONJxtetW7epxyBJ6s32Se+/AxYluRw4ErgM\nuBdYCOwJHF9VTwTuAH7vHAhAVZ1YVWNVNbZ48eLNVLYkjZ6FQ1z2WmCngfbSvu+3quo24DCAJAGu\nB64DtgXWVNVF/axnMEVgSJI2j2HuYVwMLE+ya5KtgUOAswZn6K+E2rpvvha4oKpuq6qfAquT7N5P\nOwC4aoi1SpJmMLQ9jKq6J8nrga8BC4CTqmplktf1008AHguckqSAlcBrBhZxJHBqHyjX0e+JSJJm\nR6pqtmvYZMbGxmp8fHy2y5CkLUaSS6pqrGXe2T7pLUnaQhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWpiYEiSmhgYkqQmBoYkqYmBIUlqYmBIkpoYGJKk\nJgaGJKmJgSFJamJgSJKaGBiSpCYGhiSpiYEhSWqSqprtGjaZJOuAn2zk23cAbtmE5WwJRnHMMJrj\nHsUxw2iOe0PHvEtVLW6ZcV4Fxv2RZLyqxma7js1pFMcMoznuURwzjOa4hzlmD0lJkpoYGJKkJgbG\nfU6c7QJmwSiOGUZz3KM4ZhjNcQ9tzJ7DkCQ1cQ9DktTEwJAkNRn5wEhyYJJrk6xKcsxs1zMsSXZK\n8s0kVyVZmeSovv+hSb6R5If99+1nu9ZNLcmCJJcl+VLfHoUxL0pyRpJrklyd5CnzfdxJ3tj/bl+Z\n5LQk28zHMSc5KcnNSa4c6JtynEne2m/frk3y3+7Pukc6MJIsAD4CPBtYARyaZMXsVjU09wBvqqoV\nwN7AEf1YjwH+paqWA//St+ebo4CrB9qjMOYPAV+tqscAf0w3/nk77iRLgDcAY1X1OGABcAjzc8wn\nAwdO6lvvOPv/44cAe/Tv+Wi/3dsoIx0YwF7Aqqq6rqruBk4HDp7lmoaiqm6qqkv717fTbUCW0I33\nlH62U4D/PjsVDkeSpcBzgY8PdM/3MW8HPB34BEBV3V1Vv2SejxtYCDwoyUJgW+BG5uGYq+oC4BeT\nuqca58HA6VV1V1VdD6yi2+5tlFEPjCXA6oH2mr5vXkuyDHgicBHw8Kq6qZ/0U+Dhs1TWsHwQeAvw\nm4G++T7mXYF1wCf7Q3EfT/Jg5vG4q2ot8D7gBuAm4Naq+jrzeMyTTDXOTbqNG/XAGDlJHgL8M3B0\nVd02OK26a6znzXXWSQ4Cbq6qS6aaZ76NubcQ2BM4vqqeCNzBpEMx823c/TH7g+nC8hHAg5O8bHCe\n+TbmqQxznKMeGGuBnQbaS/u+eSnJVnRhcWpVndl3/yzJjv30HYGbZ6u+IdgHeH6SH9Mdbnxmkk8z\nv8cM3V+Ra6rqor59Bl2AzOdxPwu4vqrWVdWvgTOBpzK/xzxoqnFu0m3cqAfGxcDyJLsm2Zru5NBZ\ns1zTUCQJ3THtq6vqAwOTzgJe2b9+JfDFzV3bsFTVW6tqaVUto/u3PbeqXsY8HjNAVf0UWJ1k977r\nAOAq5ve4bwD2TrJt/7t+AN15uvk85kFTjfMs4JAkD0yyK7Ac+N7GrmTkP+md5Dl0x7kXACdV1btn\nuaShSPI04FvAD7jveP7b6M5jfA7Yme7W8C+uqskn1LZ4SfYD3lxVByV5GPN8zEmeQHeif2vgOuAw\nuj8Q5+24k7wT+HO6KwIvA14LPIR5NuYkpwH70d3G/GfAscAXmGKcSf4aeDXdz+XoqvrKRq971AND\nktRm1A9JSZIaGRiSpCYGhiSpiYEhSWpiYEiSmhgY2iIk+ev+TqRXJLk8yZOHvL7zkoxtwPwnJ1mb\n5IF9e4f+A4Obopb9Ju60u6kkOTrJK2aY54+SnLwp16stm4GhOS/JU4CDgD2r6vF0n+pdPf27ZsW9\ndNe7zymT707a35zv1cBnpntfVf0AWJpk5yGWpy2IgaEtwY7ALVV1F0BV3VJVNwIk+T9JLu6fgXBi\n/ynfiT2Ef0gy3j8P4k+SnNk/L+Bd/TzL+udFnNrPc0aSbSevPMmfJflOkkuT/FN/P671+SDwxn6D\nPPj+39lDSPLhJK/qX/84yXv6vabxJHsm+VqSHyV53cBi/jDJl/tnGpyQ5AHT1dYv9++TXAq8aFKd\nzwQurap7Bn5Wf5/ke0n+Lcm+A/OeTfcpecnA0Bbh68BO/cbso0meMTDtw1X1J/0zEB5Etycy4e6q\nGgNOoLtVwhHA44BX9Z/2Btgd+GhVPRa4DfhfgytOsgPwduBZVbUnMA785RR13gBcCLx8A8d3Q1U9\nge6T+CcDL6R7Zsk7B+bZCziS7rktuwEvaKjt51W1Z1WdPml9+wCTb8i4sKr2Ao6m++TwhHFgXyQM\nDG0BqupXwJOAw+lu2/3Zib/Qgf2TXJTkB3R/Oe8x8NaJ+4L9AFjZPxPkLrpbZUzckG11VX27f/1p\n4GmTVr833Ub620kup7tPzy7TlPse4K/YsP9bg3VeVFW3V9U64K4ki/pp3+uf23IvcFpf50y1fXaK\n9e1I93McNHEzykuAZQP9N9Pd/VVi4cyzSLOv31CeB5zXh8Mrk5wOfJTuKWurk7wD2GbgbXf1338z\n8HqiPfG7P/neOJPbAb5RVYc21vnDfuP94oHue/jdANnmd9+10XXOVNsdU/T/xzQ13Mvvbhe26eeX\n3MPQ3Jdk9yTLB7qeQHeDtYmN3i39sfsXbsTid+5PqgO8hO6Q0qDvAvskeVRfy4OTPHqGZb4bePNA\n+yfAiv6OoYvo7qS6ofbq76r8ALob7F24kbVBdxfXRzWu99HAlTPOpZFgYGhL8BDglCRXJbmC7jDM\nO/rHjn6MboP2Nbrb1W+oa+meb341sD1w/ODE/tDQq4DT+nV/B3jMdAusqpXApQPt1XR3Er2y/37Z\nRtR5MfBhuo399cDnN6a23lfoHuHaYn/gyxtcreYl71arkZXuUbVf6k+Yj5QknwfeUlU/nGaeBwLn\nA0+buKJKo809DGk0HUN38ns6OwPHGBaa4B6GJKmJexiSpCYGhiSpiYEhSWpiYEiSmhgYkqQm/x/6\n0mpI7TkJ/gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Uniform window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXmcZUddNv587770Pt09PftkJwlbQkCRRZBFkCUIrwKC\nL1EU9eUVFF71RVFxiSg/QRZB2SWgifEVSNghQDbINiEJycwks+89Pb3dfb+3fn9U1Tl16pzqe+7M\ndPftmXo+n/70vXXrnFNn+z71XYsYY7CwsLCwsDAhstoDsLCwsLDob1iisLCwsLBYEpYoLCwsLCyW\nhCUKCwsLC4slYYnCwsLCwmJJWKKwsLCwsFgSligsLFYQRHQZET1MREUiekfIbRgRXbzcYwsDItpJ\nRC8Qn4mIPk9Ei0R0/yoPzQgi+lMi+sxpbvsCIjp2tse01hBb7QGcyyCiQwDWA2grzZcyxk6szogs\n+gB/DOCHjLGnB/1IRLcD+BJj7LQE21IQAv5LjLHNp3tMxtiVytfnAngJgM2MsfJZHOpZBWPs71Z7\nDGsdVqNYfryKMTag/PlIgojOK8I+385XwzYAO1d7EGcJ2wAcOh2SOM+fgTUHSxSrACLaLswJbyWi\nIwB+INp/loh+TEQ5InpEqvjitwuI6A5hsvgeEf0zEX1J/OZTj4noEBG9WHyOENH/JaL9RDRPRDcT\n0Zg2lrcQ0REimiOiP1P2ExWq+35x7AeJaAsRfZyIPqgd81Yi+kPDOTMiejsR7QWwV7Q9SZzLAhE9\nQUS/qvT/JSLaJY55nIj+j3quYkxz4jzfpGw3TEQ3ENEsER0movcSUUT8dh0R3U1E/yjMJQeJ6OXK\nttcR0QFxzIPafn+TiHaL7b5DRNuWuL+vFiaaHBHdTkSXi/YfAHghgH8mohIRXaptdz2A5ym//7Py\n84uJaK/Y58eJiE5nbN1ARO8Tz8cN4jrsJKJrlN8PEdGLieitAD4D4NlirH8lfv9tIton7umtRLRR\n2TboGWBE9L/EuRWJ6G+I6CLxHhTEWBKGsR4momeIz28S+7pSfH8rEX1VOSf5rnR73tNE9G/iWu4C\n8EztmJeLe5oT1+bVov0C0SaftU8T0Slluy8S0R+c7n1ZdTDG7N8y/QE4BODFAe3bATAANwDIAkgD\n2ARgHsAvgRP4S8T3CbHNPQA+BCAJ4PkAiuDmAgB4AYBjpmMDeCeAewFsFtt/EsCN2lg+LcbxNAB1\nAJeL3/8IwKMALgNA4vd1AJ4F4ASAiOg3DqACYL3hWjAA3wMwJo6TBXAUwG+Am0CvAjAH4ArRfxrA\n88TnUQBXK+faUq7FzwMoA7hM/H4DgFsADIpz2wPgreK36wA0Afw2gCiA3xPnQGI8BWU/GwBcKT5f\nC2AfgMvFWN8L4MeG87xUjOclAOLgpqZ9ABLi99sB/NYSz4zvd3Htvg5gBMBWALMAXnYaY/M9J/ox\nAbwPQA38OYwCeD+Aew3P1XUA7lZ++wVxD68W9+ZjAO40PQNK2y0AhgBcCf7sfR/AhQCGAewC8BbD\n+dwA4N3i86cA7Afwe8pvf6ick3xXtmPp5/3vAdwlxrgFwGPymon7uQ/AnwJIiPMtKs/MEQDPEJ+f\nAHBA2e8RAFettkw6bVm22gM4l//ES1UCkBN/XxXt8mG9UOn7JwC+qG3/HQBvEcKhBSCr/PYfCE8U\nuwG8SPltA7jAjClj2az8fj+AN4jPTwC41nB+uwG8RHz+3wC+ucS1YAB+Qfn+egB3aX0+CeAvxecj\nAH4HwJDW5wUB1+JmAH8OLtgaEGQjfvsdALeLz9cB2Kf8lhHjmgInihyA10EIMaXftyDIRnyPgJPi\ntoDz/HMAN2t9jwN4gfh+O06PKJ6rne//PY2x+Z4T/ZjgQvU25bcrAFQNz9V18BLFZwF8QPk+IJ6z\n7UHPgNL2HOX7gwD+RPn+QQAfNlyrtwK4VXkWfwvATeL7YbiTi/fBTxSm5/0ABAmL72+DSxTPA3AS\nYnIk2m4E8D7x+YsA3iWepycAfADA7wK4QDxbkaDzWAt/1vS0/HgNY2xE/L1G++2o8nkbgF8R6muO\niHLgzsINADYCWGReW/DhHsawDcBXlP3uBnewr1f6nFQ+V8BfcoDPqvYb9vsFAG8Wn98M/qIsBf18\nf0Y73zeBv2QAF9i/BOAwcZPbs5Vtg67FRnCtJg7vtTkMrq1JOOfJGKuIjwNif68Hf7GniegbRPQk\nZawfUca5AK6FqPuV2KgenzHWEecd1LcXmO5PL2NrgV8fHXFwgW46VorC+RT0cy+Ba8XqWI7qGwGY\nUT5XA74PIBh3AHgeEW0AnyTcDOA5RLQdXBt5eImxmq7nRm2M6rO0EcBRcU/V3+X53QFOxs8HcCc4\nAf+8+LtL225NwRLF6kIt3XsUXKMYUf6yjLG/BzfDjBJRVum/VflcBp8dA+B+BQAT2r5fru07xRg7\nHmKMRwFcZPjtSwCuJaKngZs+vtplX/r53qGNaYAx9nsAwBh7gDF2LYBJsd+blW2DrsUJcLNHE1x4\nqr+FOU8wxr7DGHsJODk/Dm6ekGP9HW2sacbYjwN2c0I9vvAlbAk7BnivURj0MrYjAMaJyBG8Ynzb\n0NvEwwT93LPgZkr13Hs9PyMYY/vAhfzvg5u4CuAE8DZwTed0BPM0+P2SUN+zEwC2SD+E8rs8vzvA\ntY4XiM93A3gOOFHccRpj6RtYougffAnAq4joF4k7kFPEHbebGWOHAewA8FdElCCi5wJ4lbLtHvBZ\n3yuIKA5up04qv/8rgOulk5OIJojo2pDj+gyAvyGiS4jjqUS0DgAYY8cAPACuSfw3Y6zaw/l+HcCl\nRPTrRBQXf88UzsKEcE4OM8aa4L4D/aWX1+J5AF4J4L8YY21wQrmeiAbF+b4L/NouCSJaT0TXCuFW\nBzcZymP+K4D3KI7SYSL6FcOubgbwCiJ6kbgX7xb7CxLcQZgBt8+HReixMcaOALgPwD8Q0QARJcF9\nUE1wH9aZ4kYAv0FETxf7/jsA9zHGDp2FfZtwB7jZUwri27XvveJm8Os5SkSbwUlI4j5wYvpj8by+\nAPw9vAkAGGN7wTWgN4NPggrg9/N1ZzCevoAlij4BY+wouGPyT8GdlUfBX2J5j34NwM+Amxb+EtxZ\nJ7fNA/hf4EL9OLiGoUZBfQTArQC+S0RFcKHwMyGH9iHwl+e74AL7s+BOQIkvAHgKupudPGCMFQG8\nFMAbwGdqJwH8A1yC+3UAh4ioAG4OepOy+UkAi2K7fwfwu4yxx8Vvvw9+/gfAZ3T/AeBzIYYUASeV\nE+DX+OfBnd1gjH1FjO0mMZ7HALw8aCeMsSfABcXHwDWcV4GHSDdCjAHg9+p/iKibj3br3MvYBF4P\nrqXtA39WXgTgFYyxWsjxLTWW28B9NP8NPjO/CPz+LifuAA9cuNPwvVf8Fbh2dRD8mXeea3EPXwV+\nfecAfALA/1SePXn8efE+y+8E4CenOZ6+AAknjMUaAxG9D8DFjLE3d+u7zON4PviMfRtbgYeJDElj\nFhYWywerUVicNoRp5Z0APrMSJGFhYbE6sERhcVognkSWA3f8fniVh2NhYbGMsKYnCwsLC4slYTUK\nCwsLC4slcU4U5hofH2fbt29f7WFYWFhYrCk8+OCDc4yxiW79zgmi2L59O3bs2LHaw7CwsLBYUyCi\nUImW1vRkYWFhYbEkLFFYWFhYWCwJSxQWFhYWFkvCEoWFhYWFxZKwRGFhYWFhsST6liiI6GXEl8fc\nR0T/d7XHY2FhYXG+oi+JQqyn8HHwKo1XAHgjEV2xuqOysLCwOD/Rr3kUzwJfsvIAABDRTeAluHed\nzYM02x1c/43dWCg3sH1dpvsG5xKIVnsEK47z74zPy9sMOk/uNAPDyXwNv/ncC3Dp+sFlPVa/EsUm\neJcjPAZt/QQiehv4SlbYulVdhCo8irUW/u3Hh5R9ntZu1hxseS8Li3MH64dSuPQl5ydRdAVj7FMA\nPgUA11xzzWmJvrFsAt98x/Pwyo/dhbe/8GK8+6WXndUxWlisJs7Hgp/nyym3Ogw/9/c/wJaxNN7x\nokuW/Xj9ShTH4V23djPCrzncE67YOITnXDyOrzx0HO96yaWg80WtsDjncT4+y+fLKd+zbw5zpTr+\n9jVXIhpZ/pPuS2c2+DrMlxDRBUSUAF9O8dblOtirnroRxxar2DNTWq5DWFhYWJw1/PDxU0jHo3jB\nZZMrcry+JArGWAt8gfTvANgN4GbG2M7lOt6zL1oHALj/4PxyHcLCwsLirOGBQwu4ausIUvHoihyv\nL4kCABhj32SMXcoYu4gxdv1yHmvzaBobhlO4/9Dich7GwsLC4oxRqrewe7qAa7aPrdgx+5YoVhJE\nhCdvGsbu6cJqD8XCwsJiSTx6LI8OA67eOrJix7REIfCkqUEcnCuj1myv9lAsLCwsjNh3qggAuGxq\neUNiVViiEHjS1BDaHYZ9p6xD28LCon+x71QJA8kYpoZSK3ZMSxQCF08OAAAOzpVXeSQWFhYWZuyb\nLeGiieyKhj9bohDYMpYGABxZqKzySCwsLCzM2HeqhIvExHalYIlCIJOIYWIwiSPzligsLCz6E7Vm\nGzOFOravy67ocS1RKNg6lrEahYWFRd9iplADAGwYXjn/BGCJwoMto2kcXbREYWFh0Z+YzkuiSK/o\ncS1RKFg/lMKpYv28LKZmYWHR/5jOVwEAU1ajWD1MDqXQaHWQrzZXeygWFhYWPrgahSWKVcPkYBIA\ncKpYX+WRWFhYWPhxMl/DUCqGbHJlC39bolCwXiSwSIeRhYWFRT9hOl9bcf8EYInCA0ejKFiNwsLC\nov8wX6pjfDCx4se1RKFgcogTxWzJEoWFhUX/YbHSxGjGEsWqIh2PIhGLIFexzmwLC4v+w0K5gbGs\nJYpVBRFhJB1HrtJY7aFYWFhYeNBqd1CoWY2iLzCSiVuNwsLCou+QrzbBGKxG0Q8YSSeQq1qNwsLC\nor+wKCwdo5YoVh/DVqOwsLDoQyyUuVwazcRX/NiWKDSMpOM2M9vCwqLvIH2n1kfRBxjJxB0Vz8LC\nwqJfUKq3AAADK5yVDVii8GEkk0Ct2bFrZ1tYWPQVyoIoVrp8B2CJwgfJ1pK9LSwsLPoBpTqfvFqN\nog8g2bpStxqFhYVF/6BcbyFCQCq+8mLbEoWGbCIKACg3uEZxqlDDHXtm7RoVFhYWK4pcpYHbds2g\n0+Gyp1RvIZuMgYhWfCyWKDRkhEYh7YHXff4BvOVz9+Pbj51czWFZWFicZ/j9Gx/Cb92wA/+54ygA\nThSrYXYCLFH4MJCUGkUbJ3JV7JouAAC++vDx1RyWhYXFeYS5Uh0/2jcHAPj6T08A4JPX1XBkA5Yo\nfMgkpI+ihR2HFwEAl0wO4CdHctb8ZGFhsSL4yeFFdBjwpKlB/PRYHowxx/S0GrBEoUGNejoyXwYA\nvPbqzZgt1jFj16mwsLBYAeyeLoIIeM1Vm1CstTBbrKNcbzkWj5WGJQoNGeHMrjTaOLJQweRgEldu\nHAIAHBLEYWFhYbGc2HOqiK1jGVw8MQCAr2xXrretj6JfIFW7cqOFIwsVbBnLYNu6DADgyEJlNYdm\nYWFxnuBErorNo2lMDfPlmafzNWt66ickYxEQAdVGG3OlBiYHk9g4kkY0Qjgyb4nCwsJi+TGd42tj\nbxBEcTJfRa3ZRjpuTU99ASJCMhZBvdVBrtLASCaBeDSCycEkZgq11R6ehYXFOY5Wu4NTxRo2DKcw\nlk0gHiXMFOuotzpIxixR9A1S8SiqjTZylSZGREnf8YGkXUvbwsJi2XGqWEeHARuG0yAiDIuK1o1W\nB4nY6ohsSxQBSMYiWCg30Oowp/b7xGASs0VLFBYWFsuL6Ty3XEiz05BYnrnR7iBpiaJ/kIpHcVKY\nmUZE7feJgSTmFI3iwGwJv3/jQ3j8ZGFVxmhhYXFu4IZ7DuH939rt5GktlPkyB+sGuOwZTsedSepq\naRSr40LvcyRjEZwUrD6SFqanwQTmSg10OgyRCOED334C3955EgvlOv79t352NYdrYWGxRnE8V8Vf\n3LITAPCci8bx/EsnnIXThoXsGU7HcXCOh+ZbjaKPkIxFHVYfSHEuHUkn0O4wlBstMMbw4/08vf6+\nAwt27QoLC4vTwvd2ujXk7twzCwA+osgmY1gU8ui8Igoi+v+I6HEi+ikRfYWIRpTf3kNE+4joCSL6\nxdUYXyoeQVUI/5QIRxtKc8Io1Fo4NF9BodbCLzxpEq0Oc+pBWVhYWPSCx04UMD6QxJM3DeGJmSIA\nlygGU5woMvEoCjVepPR8c2Z/D8CTGWNPBbAHwHsAgIiuAPAGAFcCeBmATxDRiseDqSFoKfF5SNy0\nQrWJA7MlAMBrr94EAHh8urjCI7SwsDgX8MTJIi7fMIhL1w9ijyCKQrWJwVQM0QgvJy6rRQA4v8Jj\nGWPfZYzJJeTuBbBZfL4WwE2MsTpj7CCAfQCetdLjU1k7nZAahUsUJ3JVAMAzto0iHiUcXbSJeBYW\nFr3j4FwZF00MYPu6LGYKddRbbeSrTcfsBLhLHwDnn0ah4jcBfEt83gTgqPLbMdHmAxG9jYh2ENGO\n2dnZszqgWMRdGESuJuVoFLUWTuRriEcJ6wdT2DSSxlFb2sPCwqJHlOotlOotTA2nMDmYBADMFut+\nooirGsU5RhREdBsRPRbwd63S588AtAD8e6/7Z4x9ijF2DWPsmomJibM5dMSjikah+yiERrF+KIVI\nhLBlLIOji1Wn//FcFa//5D24ecdRWFhYWABAo9XB737xQfz113Y5bTKycmoohckhThSnAogirZie\nzrnwWMbYi5f6nYiuA/BKAC9i7kIPxwFsUbptFm0rilhU1Si8Pop8tYmFcgMTYgYwMZjEgVm3quxn\n7zqI+w4uYNeJAn75qk0e0rGwsDg/8YPHZ/BtEeH0az+zBRdPDuKUyNVaP5TCoIiuPFWoo1Bt4uLJ\nAWdbuUYOACRWSZ6sVtTTywD8MYBXM8ZUu82tAN5AREkiugDAJQDuX+nxxSLuZZGqnmT1atNrQxwf\nSGK+XHeSZe49MA8AKNZb2HXCRkNZWFgAP3j8lPP5R/u4jJBJvR7TU6mOSqPtJQdFi0ieZ0UB/xnA\nIIDvEdHDRPSvAMAY2wngZgC7AHwbwNsZYyuepBAXGkUqHnEWMpdVZWsaUazLJlBrdlBptFFvtfH4\nyQKuffpGAMBOSxQWFhYAdk0X8NyLx7Eum8DOE3kALlGsH0p6gmVqzTbSCVc0xxULx2ppFKuSmc0Y\nu3iJ364HcP0KDseHmEMULnsTEdJqsUBJFAN8JjBXqqPdYegw4HmXTOAHu09ht82vsLA479HuMOw5\nWcJ1z9mOarPtrGuTqzSRjkeRScTAGEM8SijVW6hq5cRVckjEyLf/lYA1oAdA+hX02u/peBSVZhuF\nmqJRiHosc6WG8wBsW5fBlrEMjudcJ3e53sLb//0n+MxdB1biFCwsLFYBxVoTb7thB754zyGnbb5U\nR6PdwZaxDLaOZXB0gcuFfKXpBMkQEQZTcRRrTR9RqH7OaOQ88lH0O+SNSWlEkYpHcapQB2PAcMYt\n2AUAhVrTiX7aMprBxpG0k28BAF9+6Di+8eg0/vYbu53yIBYWFucW/mvHMXx31wz+/JadKNV5qti0\nEt20ZTSN6XwVzXbHF900kIxhodwAY15fRFzxUaih+ysJSxQBkDdDtQ0C3GcxW+Q3fUhEKQyKZJhS\nrYV5UV12fCCBzaNpj0Zx7/555/N9B9zPFhYW5w5++ITrtH7oyCIAb9nwiaEUOgxYrDRQqDWdaEqA\nE4WsEuvVKFw5FLFE0T+ICY0iQt6bkk5EsVhpOp8Bt2hgqd7CQrmB4XQcsWgEU8MpFGstlMWs4qEj\ni3jpFesRjZB1cltYnINgjGHniQJ+8cr1AOBEPZ7M8wnj1HAKY8ISsVBu+DSKwZRCFIlgH0WULFH0\nDeIG1k7Ho1iscLORrAElC3eVapwo1mX5gzCWdR+IequN6UINV2wcwkUTWc8aFs12B++86SH83Td3\nL9v5WFhYnF1M56t4w6fuwa2PnHDaZot1LJQbePaF67BhOIUnTvLaTdOFGhLRCMYyCYxmubyQRDFk\nIgqDj2KVXBR2PYogxAwhaKl4FEVRxVH6LzLxKIh43sRipYFRQRCjYuawWGmg2e6AMe672DqWwTEl\nk/vuvXO45WH+sP3yVZtw+YahZTsvCwuLs4NP3XkA9x5YwN6ZEl7xlA2IRsgxNW8Zy2DzaBonhCYx\nV2xg3UACkQg5E8jFchOFatMxYQPc9FRuyKrVanis1Sj6EtIm2HESxjlU57a8kZEIYSARQ7HWxEK5\n6RDEmJg5LFZcJ/fWdRlsGknjuEIUtys2zR/vt74LC4u1gDvE2hHz5YZTTdopyTGcwtRw2vmumpgc\n01OlgWqz7Sn455UvatkOlxxiNuqpfyCd2RpPeNRB9UYOpGIo1VrIVRoYEWtsyyVUF8sNzBTcqIeN\nI2kU6y0UatzXsXu6iGduH8X6oSQeO573HO8bP53Gfz947OyenIWFRWjkKg188LtPeAp/luotHJwr\n4xVP2QAAzno0JwQxbBxOY8NwCicLNTDGUFCIQsqF2WIdzTYzypR+Mz1ZogiAND1pPOFRB9XPg6mY\n47geEDME1WklV6cazSYwJRZMnxEP1YG5Ei4cH8AVG4Y8CXonclW8/T9+gnf/1yM+ArGwsFgZfOA7\nT+BjP9iHv7jlMadt70wRjAGvfOoGxCLk+CJO5qtIxiIYycSxfiiFWpOHwKq+iEQsgkQ04kRIpg2V\nYZPGPApreuobyGgn/Zaovgt1AZF0PIpqs80TZbT1K3LVJhYqDSSiEWQTUazL8kzuxUoThVoTc6UG\nLpjIYvNoxpN3cfsTbun023bPnNXzs7Cw6A7GGG4XNZru2jvnLHksw123rctiajjlfJ/O17BhOAUi\nwqiwLOQqTV90UzYZxZwgilQimCjUkFi1SKkeiblSMDqzieijIbYvMMbeexbH0xeQfKDflHjEX1UW\n4OxfqrfQbDNkxY2PRmTJjxby1SZGs3EQkWOaWig3HK1ig9AyCrUWirUmBlNxPHx0EeuyCYxk4j6N\n4kPf24Pd0wV85A1P9xQPs7CwOD3cs38e//Dtx/HX116Jp27mKzOfyNdwIl/Dsy4Yw/0HF7DvVAlP\n3jTsEMPGkRQ2DKcwLZzWC+WGU9JHEkO+2vRUcgD4GtjzJW5lSGtyRMLkwO5HjeJaAA92+Xvdcg9w\nNSALAerkrd48rxkq6piX0orgziajKDfampPbjYaaFbOKicEkNo2kAcCJnDgwW8ZFkwN4yqZhTxXa\nU8UaPvr9vfjerhknWsrCwuLM8P5v7cbDR3P48G17nTbppP7lq/jaadIXMZ2rIhWPYDjNTUxBTmv5\nf77Mq8HqGdhzXUxPJnPTakU9LTUd/SfG2BeW2piIRs/yePoCppsRi3rJwfkci2BeEEVWUSUziRgq\nMmw24w+blWvhTg4mnQdjtljHk6b4EokvuWI9JodSuPWRE2i2O4hHI7hrz5yz/3v2z+ONz9rqfH/8\nZAEPH8nhV6/ZsmoZnBYW/YxjixV8f/cpvOFZWxzzcb7axKNCa79n/zw6HYZIhHBonjuwn3/pBCIE\nHBMO7elCDRuH0yAiTA2l8L1dM2CMIV9t4tL1gwBc0/OJHCeRbFKdQMacEHm1SmzSUKojYvi8kjAS\nBWPsw902DtNnLUJGFpBuehK2wmiENO0iinzVm7EN8EXRy402yvUWxsYyzu/peBQLpYbzoI4PJCE9\nIgvlBqqNNubLDWwZy2BiIIkO46F3W8Yy2DVdQCoewfMumXAeboDbU9/yufsxU6gjHo3gdc/YDAsL\nCy9+/8aH8NCRHEr1Ft7+Ql7E+tFjeTAGvPppG3HrIydwZKGC7eNZHJ4rIxWPYONwChODScfkdDJf\nw/ohbi4eG0ig3uqg3uoEahRycSJVc8gkok4dqFRM1Si6m55WC0bTExGliOgtRPRq4vgTIvo6EX2E\niMZXcpArDaMzWzCIXhNeNUNlEt6ZQ6XRQqXR9mgaQ+kYSvUW5kp1xCKE4XRcScRpOGrpxGASm0a5\nSUrOQA7OlbF9XRZXbBjCwbmy42B7YqaImQLf7jtiJS2J47kqbrz/CJrtTu8Xw8JiDeLgXBn/+cAR\ndDpu7OJssY6HjuQAAN9V3pGD83yFylc8lYe7Pi6imGaKdUwNcef01HDaWT9isdLAmKgaLWs1LVYa\nKNVbjiYhiUJu49UcFGuE6sxW5IjqwF4tv4SKpUxPNwBoAsgCeDeAx8AXHHougH8DX8b0nIS8MTqR\ny5unt6tmqKymURRrLVQaLa/vIsGJIhblJEEk/wMLlabruxhIOuG0JwsuUVy+YRCbBYFM52u4YDyL\nBw/zAmRXbR3xOb/feeND2HF4kZdAfv5Fp3VNLCzWChhjeNOn78WJfA3xaASvvZpr1/K9eNqWEeye\nLqDV7iAWjeCQ0Byu2cYt6TL6cLZYE9o+MDWUxME5TiiFAM3h+GKVV5UW31PxKBLRiDN58zqtXUIw\n5UvElYSJ1Yp0UrGUM/sKxtibAPwPAJcxxt7OGPu2iHLassR2ax4RozM7OBHPkyijEMWAQaPIJKOo\nNNoo1VpOUcFohDCSjnONoiir0Cad2lGL5SYYY5jOV7FpJI3No9yUJR/qg7P8YX/ZlVM4ka85zvWF\ncgMPiiqW337Mq2k8djyPP7jpIRyZr8DCYi3iyz85hvd+9VGPtrx/tuQkv31LeealM/p1V29Co9Vx\nBP+RhQq2jGYwlk0gEYs4WsBcqeEQxcRgEnOlhuOL0Ini6CJ/h9SSHLyIqKgNZ3Baq0Shag79plEs\nRRQNAGCMtQDo4TUrvjzpSsI1PXlvkDQ9MS0Vz3PjNWd2qcZXrMpo7eV6CyUlQQ/gju4FJRpqfDCB\noVQcEXJV21qzg/GBpKNRyHIgB4RJavt4FoBrqvrJ4UUwBjxt8zB2nuCzKIm//voufPXhE/jH7z7h\nuwayOJmFRT+g2mgjLyo3S+QqDbzr5kfwpXuP4GtKcb77D/KJ0dM2eyMGjy5UMD6QdMJfD4sJ0myx\njvXCxLRMGVJlAAAgAElEQVRByYuYK9UxPuiuO5Ov8kWFmm3mIwq5jeq0ziSiwWGwsWDtQvVFeHMn\nwlyh5cVSRLGZiD5KRB9TPsvvm1ZofKsCeWNMGkWH6e3KUoVR1V8RxbxYiEQ1PXFNo41izUsUg6IU\niHSMj2Z4IbGRTAIL5QbmxEM3MZjEhLIYO8Bfgm2ilhQAHM/xl0DOml579WbUWx0cEN+LtaZjrrp7\n3xyYoibdeP8RPPP62/CJ2/eFul4WFsuJequNV37sLrzwg7c7Gc0AcO+BBefznXvcBNX9syWk4hG8\n9MopHM9VnffpeK6KTaNpTAlH9HRBIQThc1g/lMJMvoZmu4NcpeloFEOpONod5kQxSd+EJAqZE5XW\nynBIjSJtTKxTiEIhB9X0pAfVrAaWIoo/As+V2KF8lt//ePmHtnpwfRR61JPQKDTbk8r+8ag33K3e\n4jP4bFKPhuIaxWDK7/wu1VqIR8l5oEYzcSxWXCf3+EASqXgUmYSbvzFXqmNi0NU0jimaxlg2gads\nHgYAp2bNrhMFtDsML758EgvlhmeRpZvuPwIA+OI9hz3nenShgv/5ufvxg8dtprjF2Uenw/AXtzyG\nv/n6Ls9zd9+BBeyfLWOh3MA3FVPSQ0cWkYhG8LxLxh0HNAAcEtr1JZMDAIDDwll9fLGKzSNpTAwm\nEY0QZvK8FhMnCk4I4wNcq5dVon0mJvH+yO/SeS19EXphv4qoBmuq6aQSgikkth9gJArG2BeW+lvJ\nQa40upXw0H0U6s1OeOq1BNsis4kYKvW2z/TETVKupiGJaiwrNArFdwG4pqpmu4PFShMTAykMp+NI\nxSNOEtDRhQq2jmWwWUvok5rGq562EQDw+DR/0Qq1Jn56PI+RTBzT+ZrzAgDAJ+/cjzv3zOLPv7rT\n8yLXW218+LY9eORoznBFLSxcMMbwbz86iO/t8k44frx/HjfccxifvfsgHjvumozuPTCPWIQwmIw5\nq8YBfBK0bV0GT9k0jH2nSmiISdmhed6+YZg/8/JdOFmoYWo4hWiEMDGQxMlCDeVGm5tzB13NIV9t\noiSIQq43IwnhmPRFiLWupUl5oezXHFRzs8lH4fFF9IHmYMJS4bFfI6JbTX8rOciVRsQQ9WQqP27S\nKBJRhRxUQkhGuY+i1tIScaJco6i7Tm6AP7zFmltxVpYBGcsmsFhuOHbQ8cEEiAjrsklnJb7ZYh2T\ng0mMDySRiEYcn8bBuTIS0QiedcEYAG9GOGPAG57JE/nUXA1ZWvl4rupZU+Om+4/iw7ftxW/dsANt\nxS7HGMOX7j2Mhy2BnJdod4Lv/+17ZvG+r+3Cb9+ww+N3+NF+N5n0rn2uKemJk0VcPDmAq7aNOhMa\ngGsK28ez2L4ui1aHOVWaTxXq2DCcxvphLvxnCjXUmm1UGm0nDH1yKMkXGhLvjgwakb4I+a7JiZzu\ni5AkkIxFRLSi3xehkkZ6jYTBmrCU6ekfAXwQwEEAVQCfFn8lAPuXf2irB8dHobW7zmytXQ1rU258\nwuDkziZiKDdaKAZpFI7vwk35zyg+DcBdfnU0m8BCpekxSfH2uGMb5Q65JCIRwvrhpBPRcSxXxcaR\nFNYPppCIRdzoqTletuAlV/DlHA8JzSNfbeLoQtUprawSyPdF4bTZYt2ppAkA3999Cu/96mN4/Sfv\nQb3lxj8wxvD5Hx30RWFZrE1UGi186LtP4KfHvITwtUdO4L1ffQzXff5+zwTiDqXg5d37XHJ4+EgO\nT9sygk0jaQ8hHJwv44LxLC5bP4B9syUwxsAYw+H5CraNZZwQ8uk8J4RivYXxgQTGs0nEIoTpfM15\nH2RlBJ0QhhRTUqPVcSotyCgmPS9CaghEvKabo1GEKBueMITBqqTRb1jK9HQHY+wOAM9hjL2eMfY1\n8fdrAJ63ckNceUjTk58QgsNj1WKBHo0i5vVXSKQTUXQY0Gh1fDkYlXoLpXoTg6qmkYg6UVL8uyCK\nDA+nlS/BmLK63kK5gVa7g4WKG+I3lkk4msZcsY7JwRQiEcKmkTSOOURRQYSAp2waxkAy5jNVvfwp\nUyCCQwiMMTx0ZBE/eyHXTNQcDln1tt7q4IGDrslgx+FF/NXXduF3v/Sgk7kq9/W3X9+Fv7zlMZ8f\nqNXu2ITBFYRM5FRxaK6Mt3zufvxIEe4A8PkfHcJHf7AP77jxIc99+4GYQOQqTTyikMgDhxbwzO2j\niEbIU1r/0HwZF01k8aSpQWe54HaH4ajIlN44kkaj1cFCuYFivYV6q4P1QymnqObJQs0zaYpECBOD\nSWeJUsBdUGwoHUeh2nTeqUFNc5Cat5yUSc0/KIopk3CJImUoyWFyYHvKc6xF05OCLBFdKL8Q0QXg\nSXjnLEy3y5Rf4dUogokiEQ1+aNQ+mWQMlWYbharX9JRJxJy8i2wi6qioA4rzG4DjGB/NJJCrNLAg\nIq5khNSoMFUBPFpKhv5NipcJ4ElG6waSSMQinEAWvZrGk6aGMDmYdAhkvswdfy++fD0yiagTqw4A\nDx5exDNEEpNHA9ntrup3515X6Dx0NIfP3H0QX7jnMO4/6Ea0dDoMb/z0vXj+B37oiXoBgN3TBdzy\n8HEfsVh0x2yxji/ec8hHCv+14ygu/4tv4+YdRz3tH75tD+7YM4u/+fouT7tcpfHQfMWpjwQAOw4t\nOPd/pwhTZYzh4FwZT940jAvH3fXja802pvM1bF+XxdZ1GUdQz5X4Aj+bRtIOIUzna66/bjCB9bI9\nV/VEBgKu5pCruJGEarvuixjWfBGyXRJDUBRTN82ByCsjTCam1Vq9LgzCjOwPAdxORLcT0R0Afgjg\nncs7rP6Esfy4wc6YDEEgKmlkE1Ewxl+OgaRehbaFos+nIZzfYlbkLJqUTWC+3HC0B7mI0pjQNACu\nUUxITUMlkKIbAbJpNO2YpGRY4KaRtGc51wOzXNO4eHIAW0bd9cDbHW4auGb7KDaNpD0E8vDRRTxt\nywgyiahHA7lHWQpWXRZ254kCHji0iOl8zbOYfbvD8IZP3Yt33vQwblPIBwA+/sN9ePb7v499p0qe\n9sPzZXzktr0oi2sm0ekw7JkprgnCKdaanig1iYeOLOLTdx7wlK0AgH+9Yz9+9u++jz0zRU/7H/2/\nR/Dnt+zEx3/oDYP+7N0HwRjwubsPOm2MMfxI3JPHTxadiUWz3cEjR/N49oXrAMDRECqNFk7ka3jh\nZRMYSsWc9tkSr6a6fV0WF05kcUREEUnBvHUsgw3DKWGCbTrHGR9IOvWVZgo1hxDGB5IYTMaQiEU8\nAR+y3PeQIAT53I9qvohiXfgixCRLmqDk9ZXvVFp3Wse7O63lOx/XCCBmIIq16qMAADDGvg3gEnBy\neAd4lvZ3l3tgqwrD/aIuNaB0JAzRDQkDacj1c+dKdV+CnkMgKW9CT7XZRkHEiQ8Kv8ZQipcIKQr7\n66Di08hVGqi32ijUWopPI+HMlGZLDSemfExtL9YxmIwhnYhi02jGeZHkC75lLOMhluOLVTTaHVw4\nnsW2dRmnHwDsny3j0skBXL5hyEMgDx3J4aIJHtaoaiDSjp2MRfCTI64J45FjOSdGXvV3VBttfOT7\nezGdr+ELPz4EFe/58qP4p9v2+ITjv9yxHy/9pzvxmbsOetrvOzCPq//me/h/2pK0J3JVvPFT9+Ib\nP532tBdrTfzhfz6Mbz7qbW+0OnjPl3+KG0XosUSr3cG7bn4Y7//mbk97u8Pw65+9D6/9xI88M/5W\nu4PXfuLH+IV/vN0J+wS4wH7TZ+7D9d/cjVseOe457oe+uwcnCzV8/kfuuVUbbceEpGYvL5YbePxk\nEal4BI+fLDrP0Il8DbPFOn7pKVMAXEKQ9/kVT93gMSVJAtg+nsVFkwNO9r9MctsqopKkc/iUiK6b\nHEpiSolWcuueJZRyNl4TkyyBo/ocRqTPQUQxFTWtezgdFw7wuqddVlA4pbU7GkXZn2ktf4tpxULl\nO6/7Hkyhr2uSKIjoavmZMVZnjD0i/upBfc4l6BnZEtEupT10mExPpvaMeOA6zNtH5mDMFGua74J/\nPiVmUbJfJsmJRc7GJLmMZRMoN9rOSzDi+DTiWKzwEiFzxbqjtqtEIZ3iADdVyRdV/p8cTGLjSMoh\nkKPODDGLTSMugchZ4gUTWWwdc00MAF8W9pLJQVyxccjjFN87U8SG4RRecNmERwN58JCbgau2P3Is\n54RKPnDINWEtlhuOpqKGZsroLAC46QGvIP/E7fuxUG7go9/f62n/zF0Hcc+BefzlrTs9jtr/fOAo\nvvLQcfzBfz7sEfDfemwaN95/FO/58qMe89nd++bw5Z8cxyfvPOCx1+84tIC79s7hJ0dy+OHjrrb0\n8NEc9p4qod7qeNYjeex43onZv22X2//R43k0hG9HNec9ciyHZpvhqZuHcWC2hKrYdrcwBcny9fI+\nyKCGVz5VhFOLfocEWV02NYiNIymHIA7N8f/bxrKexX3ks7dhOIWp4RSKNe57mxMCeGIg6SbE5b2a\ngzQb5SpN5xquG9BMSXVvwMew8EVUGsK/Z/JFaJqDfO6lxp+IRRCLEMriOnn9D3wbVcsAXI1C1yDO\nNY3i80Q0SkRjpj8An12pgfYDTKU91FmEikQI01MYn4asSDtTqPvCbHl7Del41LGDylmRDBeU5CIj\nOE5q7aOZBNodhkKt5Uk+GsnEUWt2UG20MauZqiqNNmpN3p6KRzCQjGHDcBr5ahO1ZtslkCFeAfdU\nsY5Gq+MQydYxnkV+slBDq90BYwzHF6vYMpbG5lHeLgXw/tkSLpoYwGXrB3F4vuw4tffPljCWTeD5\nl05g76miI5ilwP3VazZj76mS0y61l6u3jmC/IhxnCnVM52uYHExi/2zZmZW2Owz3HeTEcmSh4nG8\n376HC+O5Ut1Z4AZwHbiNVgc/PZb3tQPejGKVBFQn8Z17Z50Jyf0K2cnPE4NJT96KzLK/Ztsodp5w\njysjkd74rC04MFd2BKY0yb32qk3oMF59GHBn/C+7kmsOe2ZKnvanbxnBYDLmmCJl+7YxTUMoitUb\nR1KYGuLtMrkNANZlXUI4qfocBpKO8A9KMk3EIihUmygIDUHNkDZpDvlqE+U6v9dyMiaJYTpf8yS3\nSmGfqzSRiEU8Sbfyt3Q86mmPx/hnNewVcN9nXT6YfRRrkyiG0X2Fu6Zx6zUMU/CBY2EyVJXV4SGE\nMNqF4bMU/POaSSrrEEjN5/wGeJlkwJ1dZZT+gNenAfDa+fVWxyEU6dtYEC+sdH6PKOsBzwoNhK8T\nnPC0A1ygbRhOgTEuPGT75GAKG0fSaHcYZop1zBbrqLc62DKWcdvFOA/O8fDIjSNpdJg7/gOzZWHa\nyjprdgDAnpkixrIJPO+SCbQ7zInYkgTyK9ds8QjHXdNcsP7qNbzW5U6R7MXLuHfwetH+mBDA5XoL\nB+fKePmTuTBVHbWPHc/jxZevF+2uwN55ooAXXDaBWISc4/ExFXHNtlFMDiY9ZrgnTpZw8cQArto6\n4qlXtHu6iM2jaTznonWe/vtnS1iXTeDnL53AofmKM7M+PF9BNhHFz186AcaA/afcQniJWAQ/d/G4\n6MfbD82XEY8Srto6igjB0QSOLFSQiEYwNcQ1AakhnirWEI0Qxgf4fZb3YK5YR4T4JGTDcIqHd4vS\n+kT8mZOa61ypjrlSHVFRcl9dRnRRrDcvn3tVc1AF/HA6jkKNE0UiGnFm+cPpOMqNNvLVJpKxiDOZ\nkkJ/rsQnX1Lwy3ckV214tAbA1TZURzagag4RrT3Y9GQyVa9JjYIxtp0xdiFj7IIl/p61koNdbXRb\np0KHNxEvOL8ijHlKPpi6SSqj2FO9pUC8GoUkBLfda39VZ1fq95GMu0ZGvtrCcNp1igPucq5upri7\nHvhssY5ELILBZGxJAgG4gHfWIR5Oe5aFrTW5P2VqmBML4DrWjy1WsFWpb+X4R3I1bB5NO2t5qMJu\nKBXDVVtHnO0BV3i+XNjfpdDcK4jk2qs2iu98dr33VAmM8az2eJSc8hFzpQYKtRZ+7qJ1WJdNOLkA\nzXYHh+bKuGLDEC6aGPDkCOybLeFi4a9R2/fPlnDJ+gE8aWrI44Q+Mi/KU6wfxHS+5mgIh+f5tZBF\nIaVJ5chCBVvXZd1qw+JaHJorY6sgZfXeH1vk1YkTsQjWD7kF8uSEIBIhbBhx12aYKzYwluU1yaYE\nUXQ6DHNl3h4VIaq8bx1zpQbGMgmHFAA4zma5H9meq/CopMGUK8jVaCW1eoFLIE3PpEl+ni3VfQX7\n+DEansWDJIHUmh1P8T7A9UsYTUzRYEuDLh8MBoi1SRTnM0y3S97IpaKeVKgPSK9aRBiTlHzwTxW9\nmoYsQHiqwGdvUvNw2wUhaDHipxwNhL+oquZQqjcdYlEJJFdpOsQhI0pylYZjqiIip10SCMCJQu3v\nxLkPJJzollmhaQDcdr1RKXjIGMNsieeC6OuNn8xXMTWktvPzPZGrYeNIWiEc3n86X0MmEcWl6wcR\nIZVw+P/Lp4YwmIo5QlMK4e3rsp7ZtTRBXTQ5gC1jrsP/6EIFrQ7DhRPe9nyFC8gLJ7LYPJp2hHi7\nw3BkoYILxnn7YqXpmMkOL3BC2DiScs4JgJN85rTn3WNvHUu7SWni2DOFGjYMpzCQjPFzk+HOJddH\nNaVqCErhvA0KgcyX3YnCxEASjXaHaw7FOtZl3RBVgBPCXKnu8SvI9mKt5Wiy8WgE2UTU0RxUwa9q\nFL72StNXaNPRHLR3RC4YlKs2jYmxukYh33OfiUlGN0X1/sG14aKmiaUlirUFU7VGU1VZ00xAbdeL\nBTqfQ4TNGvMuxENdqrc8sx9pqjpZqGEgEXOiLPy+i7hnP067pmkUak3Umh3Hp+GsxlfxvrCjiqlq\nsdLAqEhukprGoiCQVJwLAre96WTCrssmPOuKO4s4DSYdH8l8iRNUs80wMZj0ZOYCwLQghImBJOJR\ncgT7yUIVG4ZTGErFPXb26Txvj0f5LPq4015DKh7BSCbOQ4IdYuH/N46ksHE47XyXs+xNIylsHEk5\nwloK242i3SE00X/DMCevnCCE+VId7Q7DlJJMNp2volxvIVdpYvNo2qljNJ2vgjFuppsaTvvqG80J\nMh3LJJCIRpSKqQ3nem4YTjnrN6hrMEwNpZwxzpfrTsjp2AAPp+Zk7UbJydDSQpXfz3Vae77aRKHa\nxIjQTIfF/c9XmijWW07OAuDXHNT2nEMIbv+sssbLYMqvOcyX686ESW3PVZpaMhw5762fKCKiXdco\nhIlJkwOSQHyJuwZ50W+FAFVYougBJtNTGOeUqQZUKN+F0t80+wlyfs8W6771MQBXQOkahe781glE\n9pf/S3XviyyJYbHM186QROQ1YTUxmuE1qUYyrkaxqMS56z4QgBPFYCqGCIl2JdpKmrgWKw2U67w0\nyvohnnU+PuBGaE3nak7o5YYRVxM4ka85WsbGEVfwT+er2DicdtYpUHNKMokohtNxbBxJO4QjI3om\nBjmBnMhxIX5K8ctsGE47kT7S4bt+KOXRBE4V3f24hFBzsoInBpLYKNtzNRSqLbQ6DOMDCUwOJrlv\nIVdFSxSLXDfATTqTQ0mnYup82Y1imxhMOlFE88qMfySTcBLV5ooNTz2kVoehIkjNCX5QCCFfbTr3\nUdUcyg13YjGQ4PeTE0LTI+CHnDwHr+AfSsVQrHs1XIBrDq0Ow0Kl4TExyed/rtRwgj8AIBN3+6ga\nAhEhpUQ6qXCd0wYTk0+jCK7kcK45swEAYr3sNxPRX4jvW4nonPZNGJ3ZTngsBbbrCOWjCGFiMpqk\nDH2kLyJfbXpeAtkuBZoTEhgPJgQ12gpws1SlZiLrTzkVNsX/Qo0nB8r9SAGyqJkGhlIxRCOExUoD\n8+UG4lFeITQVj/Ja/krBQynsRjIJRzMB3PpWI1k+08yJvApZqmFEZKl3hBCZGHDLnOSUcibS3DI+\nkHCOOVOoO2aw9UMpR4DPFGvKWsopzBRqghBqSMYiGErFMDWcQq3ZQaHqEsLkUNIhhJP5qnNdJweT\nmBrign8mX1MIxNWWZgo1zJXdc54cctcjUdtj0QhGMzzhUhaqW6dEq+WqTRGx1nEE/0g6gXy16RKL\nYjIqVJsOsch1ouX9zAkNQS/FrWsCpvZIhBxC0Cspq1FMquaQTsRQlc+dhxD458Vyw7cmBMDNnqpG\noZbaSOgCPiY1h2CNQhfocROBxKRGoZuezq3wWIlPAHg2gDeK70UAH1+2EfUxnHUqtHYjURgWH1Ef\niDD+il4/d9M05ssNxCLkbCNnYCc1Qsg4xOJ1crux5k002h1nZpeMRRCNkPsii/ZYlM/4pUCQ7TxS\niudwLJYbjqYBcHMVXxeg6RnTSEYQgizJ4Ji3OIHkhHCUwknuv1hv8TWNM27kVq7K+0otB+BCU8bQ\n5xTz2UgmgbzINeHtbg5Kq8OEhlDH5JA3Amyx0sCpAje3qY79xUrTQyDyOLlq0yWQoZRjnuO5A25N\nr1Q8ilQ8gny16SFTgJt01PZxRRPIKUUk9exlmcmv+hAagjyCVnXLiVUXHULw+LRcAe9xTpt8DpqJ\nKZvkhKBrDplEFNVGG+V6K9g5XfWakkxZ06YV54AwJqZgH4WPQGQR0ZAaxVonip9hjL0dQA0AGGOL\nABLLOqpVhul2SVmv2xxNJVpMN75n7SKET8PbRzVVqaXOXU0jyNcxKwhBagwy5vyk5rtIRHny0Smt\nnYiQictyI01txhcVBNJ0nOUAPDNKacsGXLNHsdZChNwxSULwEwgveCgztWWEluwvy1m7BJIQArCD\nUr3lzJJHsnHkxCyam09cYmm0O6g02shVmm7/tBvRtVBuOLNxVfDLdm5uc4XmQonPfjMJb2SYJMGx\nTAKDqTiI5H68SWYjaa4tzSu5CbzdSxRjWtkKt+6RS7589i4qqWrBDNLHM6gRwkyhhg6Dojm65KgS\nQiIWQToedTQEPWm0Iispa+tNyzpmAxohVJpcI0oFrPci8x/U/UgkYt2LdwLue6g7rc3RTTIMNjhf\nQp9IGn0Ua7woYJOIohDykYgmAJyXZTzljdfXozDdYFM0lEejMBULDFG63LNtCAJRwwB1xzk3AXFB\nkZQlCaIRJGMRNxoqqRBCIuoLvwW4FiIXZVKdk1lR8FC3OTszxEbLIQOALwxTrHHhpYZBSg3Bqfrp\nONLjyCmE4NjHpQYitAdHwAuTVE7rP5pJoNHqoNr0EoIzsxeCdjjjFaZ5nxnG9b8Uam77iNJerLWc\nBXCcWXeV949HCak4vy9DqTjywjwHKIQgzm1R065ckvWW0B4R18jJXpZh0Ok4mm2mZPh7xyTDiNVs\nZ8Cf1eyu2eAlFrnPfLWJeqvjE/xl+bxo0Ur8uWj7tALGeIa/OVopWItQ31NTcAn/jffTTVIJoy8i\n2PTkEoWnua+d1iaEIYqPAvgKgEkiuh7A3QD+7mwcnIjeTUSMiMaVtvcQ0T4ieoKIfvFsHKf3cQW3\nywctLFGEMUmZ/A9xo4bQmxlKJZCIYm5SXwIp+KtNf3kCtYSy7hif0Xwdsn2uVEeHwedsrNRbvhll\nRswoy/WWYxpz270+EIBrEOV6C4VaC0TcIQpwYaf6KFzBH/eE36rtzTZzhJpjknKEYxWtDlMcsmpI\ncMMR+COKiUk1t6maQ6GqtGcVYqk1ndm7NCXx/k2hSZCzr5yYjcci5Mykh9O8vRwg+HPVhq9YpPRF\nSALpVs5CXgu3QJ7XFyVL08tzS8X5Ij7Oc6FNCE4V/e1p8XwxBp8pqdxoo9HqBJqSyo22hxAyCcM7\notZeUgR0NKJENxnyIkwaRVw3MYl2PezVXQAtnEbRz4h168AY+3ciehDAi8CtMq9hjO3usllXENEW\nAC8FcERpuwLAGwBcCWAjgNuI6FLGmL84/iqAnP+6Mzu4f69hs6pKa9QQQjiz5UvQ7rBAtbrR6vja\nM4moU/5A92vIME9Pe9IlkEyiu0BYKnyRr53BsHEk7mmvNvwaiDRJFGtNT+hvRpRcd01PrlDrMDd0\ndkTTBGRZbFXTANz1N1xC4L/PluooN9oewgEEIdSa7uxdseMXak1sGeMJb4NJ14Ff1K6FNCXVmm52\nvNxXrsK1EjWLeCQTx6G5im+dkiHRXyeQ4XTck8E+qGkIJ7SKqfL+yWsnTZdSoM8WAjTNeNSngQLi\nuZCmTa1d+oQ8PoRE1CmlogpyEyGopGEKJ9cFeSIaQbXT9juzTT6K2NKmJx2yNpw/jyK4fx9bnpYs\nCqjWdDoF4EYA/wFgRrSdKf4JwB/Da/K/FsBNogjhQQD7APRNhJXpRppufBiTlLqtSdPwfnYf3lg0\n4pCUSU02hfjp6rZsj0XIoxpnk1HHGectKxJzXnDd3yFt5t5lIXlYY7XZ9q7el+AEUmn4nZPS1zGk\naBQZsWC9LmQz8SiabYZcpYkIucf254jI3BEhBIVwdFY4E/uUs+shx5TE/x8VRe98jl1Rf0gXvjLS\nS/XjSKeySiyAa0rS24eE5mCKDCrVudlO3rfhtFg6t+othCfHIIMWZLusWjxT1KPeRDCDEPx63o0M\nUfaGo8Z8CZ283SUEvTKyNP95nqN4zH3ulGfbtPa0+k6ZFgnSM6JNCXTmqCeTL4J/18WA7ObPowgW\nu6ZipP2ApUxPDwLYIf7PAtgDYK/4/OCZHJSIrgVwnDH2iPbTJgDqainHRFvQPt5GRDuIaMfs7GxQ\nlxWD0fQUwsmtbmqKhjK1q9+N7UYCMUV6ePubXsx0Ioq6qNDqNQ3EXF+HlgS4WG6KfXr7V+otYYsO\nNj2ZSqurJil3vYC6p2ibDJt0ViZLeAlE2v2lfyTttHtnxbL/nDZblkI2X2mg0eo4pBaLRpCKR/hY\nNbKT2hXPRtb8OA1+bmr7QJJfo6DIoLIw2wVFAM2VeBkV+SykHcGvlXbRSmu70W0yH8cr+OU60Xp/\neWzTmg0OIUS9z5GsbuvVZM3+tKB2Ux/vpCzcpCnp+By0dhkGqzGCaZ0ak6naVMKjn2E0PTHGLgAA\nIgpQld4AACAASURBVPo0gK8wxr4pvr8cwGu67ZiIbgMwFfDTnwH4U3Cz02mDMfYpAJ8CgGuuuWaF\nVpvpLaMyjI9C7RNbghBM7XxfflNS3KBRyEqXpkgPU7v+m+lFziZdX4fubNRLN8v9VJrcFp1NeAVL\ntdFGtdHWFqnnM835ckMzbbmEkE74TRW68EorwlT97hCFQyxeITuv+WvcHBS+nyHNL1MSS9iqGkI6\nzs1nnOxi/vZay8nfkO3VpnD4J73nJovtecjUKclS8/mDAJ6IGYsoFVM1zcFHIFoZe2likmSa0a63\njJLzTCziMWdi4dUclIlIPIzgDzY3hck78oWvdnlHdEuBfG91jUK+w36NwpRwZ9Ao+leh6O6jAPCz\njLHfll8YY98iog9024gx9uKgdiJ6CoALADwiZn2bAfxEJPEdB7BF6b5ZtK0wlrYh6gk0Jh+FiSg8\nGoXaX3W2GbbVNQTZS3/Yk4bZkhP6Z5gtmTQT/bNpZpdWM141U5VcL8Frc46hXG+h2WaOgOPtPNO2\nWG95orWksFooN5zkNdkf4IJct3Xz9rpnYRkpNHUCkRm7khBSjglL6y/2GxUCVzdtyW3minUwBl9y\nWLXZCQwJnS83UNE0hJQgzVK97SGiTCKGdodhsdzwzurjroD3rIioaA5BFVNni7yCq9T4dNL0aHzJ\nmJNNr08IGkGEYHI2GyP9ugt+U7uJQHyCX5qeDNq1/v7K7U3RTbrckO+zL5zeIC/6mCdCRT2dIKL3\nEtF28fdnAE503coAxtijjLFJUZ12O7h56WrG2EkAtwJ4AxElxdrclwC4/3SPdbZhupEmoW5qV5tN\nZGKqN6ULfvkQ+kxMRsEfDWw3zq4MznNTeGHKMCv0CArNxNBs87PIapoDwJ3ByYB4+cVKw/OCy/b5\nsrY6oJKZG7R8pS74XeEoZ8sxbf/BZhWTQ9ZpV88tHkGl3kKj1fFlEVcbLdRa3hyBjNQo6v6cAkAQ\nQkLVrryEoI4H4L6FgQACmS/XkYq5azAkojw8VwYI6PetJdYLMd1nU72yMOajXiP6TH0iEXI0CZ0o\nIs55mqKYPM3O9v5qsHJ7zcRkcGb3sy/ChDBE8UYAE+Ahsl8BMAk3S/usgjG2E8DNAHYB+DaAt/dL\nxJMK/UabhDoZrq5KDuZQ3OB23W4qF/cxaQ5+U5LB9ORoINHAdn0RlzBVb70EEmxiMGXOSuHVbLPA\n7HK9mJsz4y/phOBqAh4TlhT8YrYstRaTqSoqQovdSC/vvqRfRk8Cc9q1scowXj3Es9rkC0J5SFC0\n+3wUSjVg3aEM+ElT9uEk69UCAF5aW72X0sQkoc6kVS3PE74doqZZ0pDP432OKLC/5/mKd3/u1N90\n05MU5LrpWB7blCjnW9rU8UV4mo2mJ9M7b5Ij/YAw4bEL4OtlLwuEVqF+vx7A9ct1vHAIdnl0qyqr\nw6RRqP275Wx0O1ab+Wd16vewUU+ORmFwfuumqoRB1Q81WzREsagzPk8ClYFYghKuyo12oOlprtTA\ntnUZ337my7y8hhQWPs1Bs78HR3RFHTOMLuBlnkZS659zNBDvtag02qhrGkU6wSPPctWGV1sSmkOh\n1vL0zyqC3+sn4O1MW9dEPRefCTMeQbEefqIQ5p4bk0ZDPEempFTT/gEu+KtNPyHI7/p76kQxGfqb\nVqzTNQeTM9uE/qWJEERBRD9EgORkjP3Csoyoj+EqmOHiosOYlcx9DGPQfpAPp+nh9Qn4blFSJmIx\nLPMIhHM2emaIBsGkzvi80VbBcfSmmj5BzmxANxfxR7/W7Di5EAAXBql4xMkp8WwTjzrluPXkQ5l3\noZvJ3AgwU7t3rPK4psV0wmTapzxaQHeTjwyz1hfGApaYKBjJIUS0UojS+qFMnkbnt64VRwG0jGtX\n+3wR4qvPOU3BJiy3YgMC23XhaX63g9v7AWGc2f9H+ZwC8DoAreUZTn/DeIO7OL+X3KehPaxGwYmD\n+R5ex3fRo+YQNBsL6t+r78I4+zM4G00CJAyBBPki9G1lFjFj/hXLMokYas0GohHyEFyQ6Up+lkIi\npY1JmgZTcVN78Mw+yC8DhFvQyhyAEGwikv1qzU54X5djxyfPfTOVm+l5zfhQWkrwRMQfGRgs4CVM\nmoMv3NVQkiNq0BxkP7/pqY8ZwYAwpic9Z+JHRNQ3DubVgI8YTKanEKn6vWoUvoeaZP9wmobJad0t\nEc/UPx71JugZZ4hqu8G2HKYGlnEBqIAZOGCuGEpEIhzVG36r9sso+RiAX4sIak9qJqOgsZoql6YN\npJY2mNuMZr4Qwld/LhJRThS+duc+G54LQ/Rc2HGYJg2m++zVTL1akfs5eMavm5jkvdUTqx3fhU/T\nMAStdMm0DssL/UwgYUxPahZ2BMAzAAwv24j6AoYbD6lKalEMPfoZwmwb1h9iiuEmg5osZ1dGE4NB\nAzGFEPqJqPuM0pwQRV37qxVAvYSjmK2WiLBSkYxFgolCfE9p7RlD6K/JHGYkLA8h9EYsPc/MQwhr\n/p2bZ3qdKCyVdxNmnXjTBKJXv4QKo0DXGEF+80++DM7saLCJyQmD9RnoTXJk7SGM6elBcEsGgZuc\nDgJ463IOql9hNj0FI0ztr14d5L5YbcNDbdI03FhwTT3vEg1lip7SX8owM0eTpqGGHYaKelHbDYJF\nhke2OsxY5C1lIMGU1l9un4xFPMLFZA7zag4hNIoQxNJzaKmmsZlqgBnzaLokYi71vKjP3pmYJE3n\npmsOEuZE19766zwku/kyrQ2mJ0ej0Pbbx4qDEWGI4nLGWE1tIKLkMo1nTcIYHnsGT0R4H0Vwu0nT\nkC+Lvnsn9M+wKIsxEU/bT5iX3ZwQFbB/7XOYmXOQua3VaYc3w3Xxy5hqAAFecjGRlzoOU96JqX8o\ngbuU5hAVhfB61RxCmp6ca7SU8zuEg91MDl7iC4KpdI7+Tsmv+n5ck5GugUing77f4OOZ3v5zNY/i\nxwFt95ztgfQXTOGxKzeCsE5u8/Kswf3dAmbB7aayBXq7FAj6OL3VcEMI+Jj64ofQQEK0+0s1GEhQ\nbG9eX0DTuozamEHLMYQBm3IK1PElQzmwDfkIS5Cm44syBTP4+kd9+1f7mUxVca1dPZ5J0zBNCNTr\not5boyYQUqMwTbK6EYgpikk/LBnezXNKoyCiKfCCfGkiugquTBgCkDFtdz5iOe672SRletiDHXWm\nipamdp+mEQ1+O+SLrL80uoBw+6umpO4C3hgGaRDK0Qg5UUwmwa/6N9Qx6UXe5Dn7NBCHWDRzmyRN\n8p6nul/POavtJj+LIbQ4zHVZKqegq3PapF31qIH4JhCx4OfZ48cwPAvq7YmGIArd5yADO6IGn4Z/\nP8Hvjvyq50vIX3yJuIFHO/d8FL8I4DrweksfUtqL4EX9zmH0ZkpajhmCUZ0NqebK734fRReNwqCx\n6A58k73X5GA0F21TXnyVKAyzblXg6LNZAicu08IyukbhFnkz9NfbTRqFaE/FvFFS6jmoGoVKZCoh\nxAwkYCw/b3AcR0RYb7MdvB6Jvh/1u1EDOQ1ntgp9vxLqNfbkF6l1zww10HqusWYwJfW68JiObnkR\na5EYdCxVPfYLAL5ARK9jjP33Co6pb7GSNsfQGoVsjwT3M5UhMK26ZepvXCBeazcSiMfE1H0WGSp6\nSnM2k1ApfBqFIBef4DeYnuSY4tpFNUZ6SWGqjSdm0igMIZ5mrUu9XsHXRS8bL/Nr9DpGp+20Nmlp\nBtLUZ/Wm58JUSVXtH4ZAVJgIxGR6MpmY9HeBOb8Hv4M+05NJLqxB5ljK9PRmxtiXAGwnonfpvzPG\nPhSw2TmNlcyoDKtRdLOD+k1MJpOU3E9wu7+mvqHdEInicUIabNTqC6vWD/Iu7qR+9msUfJ/BGoI/\nd0BoCAYNRDeXxJ1Zd7CmYXL4AmZ/jemzNwLMoFEYyMQ0BvW7L7HSoDmYHP6mMGtp3tFHYyKEMLkJ\nPWsORlIKZ6oy9ZePuk9772JpCE0gfYylTE9Z8X9gJQZi4UVYjeJstXfTHMKWJwjjSPQscu8Jj1Xb\ng80N6nUxzQT1maMU4Kb1CEyhwjoRSULwtfdqbjGYUvQ1nfXx6Ptcav0SaUfXycutmGoQ/CHDpo1h\n1qbnIvhSmIX6EvdZotd1YHzPi9Pf20++A752BDNFr2L/nHJmM8Y+Kf7/1coNp79xJqU6ej6WcRYV\nrt0ciRHc362dH6w5mJZz1IklTKy6+oJ7CMTgzA4dKiy8FLopyRH8BvOJ0fRk1EyCNQ1duzJdC5Uc\nowYSMCUfqoJcJU1dE5DErgcXmEq7yOP1Sgg6TAXyjCYm03rTqs+lx1yjnjUN3cQkxh42vN0YTut8\nDSaotYQwmdkTAH4bwHa1P2PsN5dvWKuN3sJjl0OV7HWdip41CoMN2Sj4Dcs5mkxSOsIkR5lm2sa4\neENYii7I5TH8JiYK7G9yfrump2ChqWtdutB19qPs12SGixnI1BxV5m2XtaR0DcGkaRhDfw1BDlKQ\nm8hRvxbdiEWH10cR2MVcnVm7RHIo+hjkGP1RUkuPTYcxsa7HoJh+RpiEu1sA3AXgNgB9tzbESsJ0\ne1fSR2EK2TPZQfWXxhTpYTIxRQztcoboNzH0Rlgmc0s4p2XwTM3kuzBqFD5CEEJTt9dL05MeHmvU\nKExCPfjcYtHg81fHYYwqMxCI3t5xaoBpEwWxX1NlVP1Uupsqw00gzKX4gycNKkwCV+8vx+IjBPH0\n+p3WQqPQ9uv6KPTnbmlLwxrkBR/CEEWGMfYnyz6SvkJvd3Y5noNeZyNhNQpzkhF5fpdwbc4Gs4op\nGkqD0SR1GoTg9PeZDMSxDNpLWFOSFPAmJ7ffvyOIQmNTk4PZlF1sjAAzhMcGja1buxy7qQaYKRrO\nFGZtIkf9WpyJRtGr6UkfqxyKPgZXc0Bge9jgFYdYfO+UYfvg5r6GQan34OtE9EvLPpK1gJAP5lk5\nVEiNwm3vjVh0IjLt17RKVzefhmk/S7X3WotH7+7OloPt8qb1CEwagimcVr8WkhD87d01CnVIsRCa\nRhgHuQrzhEC//xTY3xQl55qYDD4tw/PiG7fJR2HQLk19lmqXpOVrd5zWukbBYarIbNY0vJDvmK99\nDTJFGKJ4JzhZVImoQERFIios98D6EcZZ/jIcq/coJu93o+Yg/usCvhvRmDQNUzSUb3whZo7GEMqQ\n+5RCy2+LFu2akJXnZpp1+5ziJue06NdmukbRfZavCqOYwXdh8t2oMJVw8WsCsh3B/bWnOWbQohwT\nUweB7f7gh3BaoUSYyVevpid/uGuw6anTjRB6fOHP9fBYAABjbHAlBrIWsJJ5FGGP1c0OajI9mdbx\n1XdjVu+D23s2PYWwRYfVouQp6QJaCjPdFGReHVD01w5sMtv06sA35jyoJilDxnJYTTMaIXTazJ/P\n4GgOwedg0hx0yHadHE2aRq8abxh0WwdCouOYmEJqJg4hGDQN6M9RcH/3nTLM1tYQwkQ9XR3QnAdw\nmDF2Xq50p2M5TE/hNYpgU4LbX+vdo+bgqs/BQlPfW6/mI89sucey0b732+CjcGeUwY5dn+B3CCE4\nVFQfTq++FaPPRTU9Ge9TYHOAkCIAzH8sg4nJ0UANJOgT/F20PJ/pqcdJQBh0M5dKuJqmHgHG//t9\nDqJd22+v/U2nthZNT2Gc2Z8AcDWAR8X3pwB4DMAwEf0eY+y7yzW4fsNK3t9eZ/K9zth000C3KCu/\nqcJALCEIwbOfED6KsKYnIv4ymwok6pYgk10+YiCEiHG2LI7jG3fgsEOVnjDPlnsTuGaHqmnCEW57\npwaY4Vr4+ptCnM9AaoYlYpPT2pkoGHwRpjGbEFbbX4M8EcpHcQLAVYyxZzDGngHg6QAOAHgJgA8s\n5+D6DeS8HCt3LB29raVtDiENO+PrtRCi6SUwzUDDjCF0RJdhbPKrf3Yd3G5aiMZp1+zy5lLvp38+\nJtI0zlINSV29LrWr7ydqeOaNJCj7h/aBBe8nDMw5Qt7vJo1SjtDk5A7rk/RXk/X2XIvEoCMMUVzK\nGNspvzDGdgF4EmPswPINqz/RDzfcNGs5U9XeKOC7aRoGk5Rv/yHGYdY6gvub1kA2+WVCC3JjjgD/\nHzZHIGyyY1D/XvdpvL5hSdNpD3c8t6qw1m40PRmGtww+Cn3MMvnQHx4bnIHtRj1Baw8mBLc1+LnT\nca4m3O0kon8BcJP4/noAu8Qqd81lG1kfYzXvc1hB0U0g9Ho8n6HC4P3u1TSmwuSjCGuvjxDPCDUu\n7qRvbxibqQyFa27RjhsJ3n+vSWZq/541uR6ve9gJh/zqN1V2PwftCIbxGbqHgNFHYTA9mU1SwQSi\ng5kYxABXww3W9tYSwmgU1wHYB+APxN8B0dYE8MLlGlg/oh8mAmdaOx/Oi+99GUwRHUT6B89uAqKk\nejOZqAiTpevpr/sonKxz7dgGIWjys7imp+Dj+XJHztBM2K1dhVkM93qssOTbRaMwaA7hfWCn/1KF\nNc+64dHBmoOPWAz7Nzmtex1fP8iRXhEmPLYK4IPiT0fprI+oL2Co9YTgl2MlYXrGTDNB//ZLP6W9\nCopenZ9L4YyrhEolx0BqoQmkS4in0b+jE06P53MmuQMm85yJ+MPeJ3NIaZftQ/vAgvdzJtCvRdvx\nUQRrDr4xOBqI3h7c3xQN1Sup9zPChMdeAuD9AK4AkJLtjLELl3Fc/Yk+uL9nK8wwLNn1btI4fYEQ\nNrtYQhdWZkIgz39/u7Zf06zYGCrqPX7XcZ/RLNrQ3qNGEfY+ddv+TGt9nalpNMw+HROTT9MQ7YZw\nWl++hPgf1sndq5mwnxHG9PR5AP8CoAVuaroBwJeWc1Crj95m3SsJMghH05h0M0mvYzf7KOTxdXNO\n8H7CHLfX8h8m04DfxBQ8BoMiYC6VbTJJnYHTuleYNcreNjBl7JtCi8PnRfQ2UViOdynsc2QsCthj\nraduFoi1SAw6whBFmjH2fQDEGDvMGHsfgFcs77D6E45WvYqmp7ARPT3KDeM5dTMx+dVt02zrDMwq\nJh9FSKHUjUCMmoOvPIXof6aVUXuMz1cRVhMwmdWcMYTUTN1u+jkHj8+Nhgo3QVkJjULC56MwFQXs\nUj1Wx+mW9lhLCBP1VCeiCIC9RPS/ARzHebrqXT88B706Bc0Pt+7M7q0C5nI4ak0ILey6RLeEHYNJ\n2Ml2XaPoVmhPR9h1DoLHZvolnDmkW7s/aKGLNneGocLL8U6drWgov8ZqIBDxP+zCZmuRUMIWBcwA\neAeAZwD4dQBvWc5B9Sv6If6514Q7Hd21IoPGYtiP7yhGdf30r53ZKWw6Vo/tXb7r4zDlUfjs+8uQ\njdxzdFOvjnMWrAn4ckq6PIdnaqo6E4Q2PRmLAvL/Z2ouM+VdnJPObMbYA+JjCcBvLO9w+hv9eHtN\nCxFJ+Ir/9XgW3bKOw2cj93TYUNv6iwIabM7iv79sdPB+u4UK+53fvWkOZyQceyRiEwmaTExhrapd\nE+58/YP3sxxzL2NVWZ+PIrgdZ9n0ZAw5X0MwEgUR3brUhoyxV5/94Vh0Q68Jdyb0KhB8x+u1/xlF\n+oSdIRrGYJg5Kgfopdn44uuEsbKk6f3uOlLD3Y+eJxDdSnj4NJOz/1z0ClN0k2kpVHPGtsEkFfzY\n+bAGeWJJjeLZAI4CuBHAfVib53dW0Q8zgZ59FNr3kBaHrv0du7zeHtx9WWB2Wgf319v///bOPNqO\notrD3y83MyEJmSdCAkkwA0TkJkxhDiCDIJMgU4IiSxkVUUFcGmVFEcWBpz5lElARUQYRGQQkDkRk\nJiTwkCg4IA8eyCAKwYT9/ug6N+ee7j6nO/fMd39r3XX77K7u2tV9Tu2qXVW70oxl+g+8fOlK9Rk1\nZAA3nbqA4YP7lehRfaMZn8pZMI7J9+l5aJeCQeguzxLwsFGkRY9N+17E5BVaV1nHKFqRcoZiHFHg\nv/cCRwE/B35YHPept9EMvsWslUylZHlnbpXerutHVOqXr2cLMeZKqhC7p7Qy7Qr+lkysKBWL1j1B\nRx8xZ+KwyvfNQWZdu+TVcX9lNQhpLqymGN+LzW4K8tgYRcpCvEDWnkNqqMAmeBZ5SR3MNrN1Znar\nmS0CticK47EszHxyGkTeGRTpkS27kxY2Oj3f5B5FPW1p2lhEWkswXreVrxBK6bKNPSxjTyqK7K5H\nhfQpeefsWcb1COlTtsLNGhSwnsR7FBVWWqf00krpksbukzzW0QSPIjdlB7ND4L/9iXoVU4ALgetr\nr5aTRtb9JSpNlyz90hd2XXtzXffFA+nrK5L1qWeFkH91eFqPIluF0HWf2H3LJq8qeacrx3tRyeM1\necuQf21L46vHtAZE2grstHmwmcOPF+Q9fNbNQLnB7CuBOcDNwGfNbGXdtGpSWvEFx0jxLffvG7W2\n1q7L1wOJ375+Dyl9+mmyPPO0xpSaIuv4QCPIO5Uz8xhFSs8hbYwi78ZK9SRzOPG0PbMrpE/Nt4Ie\nrUC5dRTHANOJ1lEsl/Rq+PunpFd7mrGkUyX9j6RVks4vkp8tabWkJyTt09N82p2uHkJaaOSU9KUU\nuuX/KelRDOrXAcC/1qxLzj82RpGmafVJX1iXNrCb0qPIWMk2w88760ystPTrXYYZx7pIcyWl9Chq\nMSW4RqT1rgrEvy/JBqRA1unXrUhqj8LMehBooDySdgcOAuaa2RpJY4J8FnAkMBuYANwhaYaZJddS\nTuaQDqWUfocH9oted+kPffzwKA7k28ZtnHiffiXxD+o6mF1hQLVApZXZaS3HrNSzDsy/Ir42Lfyu\nnkbGhXil4TOagfU72ZXK8w1md8nTMmq+oucmSwiPWvAh4DwzWwNgZs8H+UHA1UH+lKTVwHzgd41R\ns/nZYswQnnn5dQb07egmXzBtFLc/9hxTRm7UTf6uuRP4+p1PcuDc8d3ku205hpN224L3L5jaTT5q\nyAB+ftoCNh/VPWrLmrVRz2PqqO73rye5/fUpPY3U+6fl18DWcd7KKO9sqKyTH1LVSGle9k8LDlWG\nX31sNzYaEK+iLjp220T9F+84hUefeSUm32naSO5e/WJMPmPsEO57+iX69e2uW6EXnTadtpT0R9Y+\nXYpGGYoZwM6SlgJvAGeGFeATgXuK0v0tyGJIOhE4EWDy5MlVVW70kAEAdG62STd5oQW7cNbYxOu2\nmzoiJuvoI2ZPGBqT7zN7LK+tWRuTf/HQrVj5TNyzd8vpO3Pf0/+Iyb9x1DY89JeXGb3xgG7y43bY\njH3njGPM0IHd5NPGDOHp8+IxHTv6iI+/823xQgGzJ8SneG4xeiM+tf9MDt6m++tp5PTYNB3yRwNN\nSdcE8+Tz76VeMs7SdR8S5fEMo3+pa05KPm/IYPZ3F89LNAibjUxuhOw9e1yifMmBsxPlly2ex+tv\nxp0SFx/XycpnXmVISd7nHbo1V/7uz7Hf8/t3nsoDf3mJQ98xqZt8u82jdEdv170eGr1x9Ns7an5y\n/XTA1uMT5VNGDk6UN5KaGQpJdxCtxSjlnJDvCKJpt/OAayTl2t/CzC4CLgLo7OysqumePHIwd5yx\nS6w13q+jD8vP2oORQ/rHrnl0yd6xVj3AHz+/X2Ie3zm2M1F+xLzJHDEvLp85figzx8cNztCB/dh1\nxuiYXFLMSFQTSZywc/yVNaMbJm2+fGpLsMIU4UZ6ErK6zwq61mJnuXJsSMDD3d82pgaarGdA347E\n3+bwwf1ZMH1UTD5qyADO2GtGTD5+2CCuP2mnRHlS42vYoH6JcoBHPrM3G/WP63TfOQsZnCC/95N7\n0ncDemXVomaGwswWpp2T9CHgOov6ufdKegsYRRSZdtOipJOCrO5MG5Psk58wfFCifOOB/RLlvY1C\nBVQPl1TegHfplWy22TCkyOs56yn/Arra9ILyuv2c7gwblFxflHoGCtSy0ZeFRrmebgB2B+6SNAPo\nD7wA3AhcJekrRIPZ04F7G6SjswF09BEXH9fJ3Elxd1W9SJu+mLZAr5S0+fXps11yKlgDejoNtkDe\nsCalYxrl8rvqhO0Yn9LQcpqbRhmKy4DLJK0E3gQWhd7FKknXAI8R7ah3ss94aj32ShnDqRe5W7VZ\nxy6awCCkUXHfiErXp64RyZdfOdfTjtPibh6nNWiIoTCzN4nWaSSdWwosra9GTr0Y0Lf2ftbMYclz\nx7vKV5nWk7TZRtVa11JphliXHuEZTxvTK/c2a1sa1aNweiHXnbQj44fV3teatvApdaOjks95V9o2\nA3lb/mlkXWldrqNy9YnbM90NRVvhhsKpG++YvEnlRFUgPuupsKK2OusomjF2T+ZpsCkL5dLoujzH\nGoLtNx+Z7eZOy9C4+VaOUyPyupjSYgDF0qXfIYtaNSU2gJ8ir0RWb9xG/aM25mZNOOffqT7eo3Aa\nzs9OWcDgAfG54xtK1lDclVrJeQd4G0lP96TOa1AmjxzMpYs6mZ+wyNRpP9xQOA1nqypPpc0ai8dS\n5On3bfzK7KwUVIq7pKLPeUN1JKXec2ZjZ7c59cNdT07bkeaGKSVt45qs920msi4OzDp7qcCAECxy\nUMJqYaf34D0Kp2m56oTteGNt/mU0Wd0tqfsLpKVPiRnVDPYjs7utS54tKOC+c8Zzxl7/4vidpvRE\nPafFcUPhNC0bukArdR+BvOvwMob8aAayTo/N63rq6CNO23N6T1Rz2gB3PTltR1pQwNLqNHUrzLRN\noFKDBTbecMS3NlWQZ7u+GY2f0zy4oXBajqO3m8zEMjGD8lbcWXsO+afN1o+8LqZS3r3NBKD2kVyd\n1sRdT07LsfTgrfJdkDK2UMn5kjMga0PJGzG3tOxbTxqeGhLbcbxH4bQ9eafB5o4B1YSGo0DMgDSx\nrk7z4obCaXvWD2ZnG4so0EIdilRK7URhS9JWKoPTeNz15LQNN526gLtXv5D7uqx+/DS70koDwV8+\nfC6X3f0U86b4imonO24onLZhzsRhzJkYX+Wd5npK3wc6eTptmryVGDdsIJ/cb2aj1XBaDHc9c/dt\nPQAADkdJREFUOW1P2kK5AvEw44X0tYmTVA+aUCWnhXFD4fQaYi6inIPWudM7TpvghsJpe75wyFbM\nHD+UcSmbJuWeNtsC7fWvHvF25k4a1hUO3HF6gn+LnLZnp2mjuOX0nWPyvBsXdclTNgNqJhbOGsvC\nBu9d7rQP3qNwej1ZewjueXJ6K24onF5L2nRXS5kmlTo9thm7FI5TRdxQOL2WtNlQaXtsF8i694Pj\ntAs+RuH0Ws7ZfyZr33qL3bfsWSC8gn3IG/qjGly6qJPfPJl/kaHj5MENhdNr2XTEYC5ZNC8mT3VJ\npfQ0GtmT2HPmWN+S1Kk57npynBRiLqkKC/ccp11xQ+E4PaQV1lU4Tk9wQ+E4JXRFm22wHo7TLLih\ncJyMpO5w5xbFaXPcUDhOCftvHW0LevA2E3NdV0uDsXjHKcyf6qHBncbgs54cp4SpozZK3BY0baOj\nekyPXXLg7Nrd3HEq4D0Kx8lI14Jt9zU5vQw3FI6TEzcTTm/DDYXjOI5TFjcUjlMl3CPltCtuKBwn\nK74y2+mluKFwnIysj/XkOL0LNxSOk5FNBvcHYOqoIYnnGxE91nHqga+jcJyMbDN5E65833y233xk\nzfK486O7eo/FaToa0qOQ9HZJ90h6WNL9kuYXnTtb0mpJT0japxH6OU4au8wYTf++yT+baoxdbDF6\nCJuPTu6xOE6jaFSP4nzgs2Z2i6T9wufdJM0CjgRmAxOAOyTNMLN1DdLTcRyn19OoMQoDhobjYcDf\nw/FBwNVmtsbMngJWA/MTrnccx3HqRKN6FB8GbpP0ZSJjtWOQTwTuKUr3tyCLIelE4ESAyZMn105T\nx3GcXk7NDIWkO4BxCafOAfYEPmJm10p6D3ApsDDP/c3sIuAigM7OTp9v4jiOUyNqZijMLLXil3Ql\ncHr4+GPgknD8DLBpUdJJQeY4TY9Pj3XalUaNUfwd2DUc7wE8GY5vBI6UNEDSVGA6cG8D9HMcx3EC\njRqj+ADwdUl9gTcIYw1mtkrSNcBjwFrgZJ/x5LQKHtrDaVcaYijM7LfAtinnlgJL66uR4ziOk4aH\n8HAcx3HK4obCcRzHKYsbCsdxHKcsbigcp4cU9tAe2M9/Tk574tFjHaeHjN54AB/bZ0sO2Hp85msu\nOHwuEzcZVEOtHKd6uKFwnCpw8u7TcqU/dNtJNdLEcaqP95Udx3GcsrihcBzHccrihsJxHMcpixsK\nx3EcpyxuKBzHcZyyuKFwHMdxyuKGwnEcxymLGwrHcRynLLI22JZL0v8Bf260HhvAKOCFRitRZ7zM\nvQMvc2uwmZmNrpSoLQxFqyLpfjPrbLQe9cTL3DvwMrcX7npyHMdxyuKGwnEcxymLG4rGclGjFWgA\nXubegZe5jfAxCsdxHKcs3qNwHMdxyuKGwnEcxymLG4o6ImmEpNslPRn+b1ImbYekhyTdVE8dq02W\nMkvaVNJdkh6TtErS6Y3QtSdIeqekJyStlnRWwnlJujCcXyHpHY3Qs5pkKPPRoayPSlouaW4j9Kwm\nlcpclG6epLWSDqunfrXCDUV9OQu408ymA3eGz2mcDjxeF61qS5YyrwU+amazgO2BkyXNqqOOPUJS\nB/BNYF9gFvDeBP33BaaHvxOB/66rklUmY5mfAnY1s62Ac2nxwd6MZS6k+yLwi/pqWDvcUNSXg4Ar\nwvEVwLuTEkmaBOwPXFInvWpJxTKb2bNm9mA4/ieRgZxYNw17znxgtZn9yczeBK4mKncxBwFXWsQ9\nwHBJ2TfZbj4qltnMlpvZS+HjPUCr7/+a5T0DnApcCzxfT+VqiRuK+jLWzJ4Nx/8LjE1J9zXg48Bb\nddGqtmQtMwCSpgDbAL+vrVpVZSLw16LPfyNu6LKkaSXyluf9wC011aj2VCyzpInAwbR4j7GUvo1W\noN2QdAcwLuHUOcUfzMwkxeYmSzoAeN7MHpC0W220rC49LXPRfYYQtcQ+bGavVldLp1FI2p3IUCxo\ntC514GvAJ8zsLUmN1qVquKGoMma2MO2cpOckjTezZ4PbIalruhNwoKT9gIHAUEnfN7NjaqRyj6lC\nmZHUj8hI/MDMrquRqrXiGWDTos+TgixvmlYiU3kkbU3kQt3XzF6sk261IkuZO4Grg5EYBewnaa2Z\n3VAfFWuDu57qy43AonC8CPhpaQIzO9vMJpnZFOBI4JfNbCQyULHMin5VlwKPm9lX6qhbtbgPmC5p\nqqT+RO/txpI0NwLHhdlP2wOvFLnkWpGKZZY0GbgOONbM/tAAHatNxTKb2VQzmxJ+vz8BTmp1IwFu\nKOrNecBekp4EFobPSJog6eaGalY7spR5J+BYYA9JD4e//Rqjbn7MbC1wCnAb0UD8NWa2StIHJX0w\nJLsZ+BOwGrgYOKkhylaJjGX+NDAS+FZ4p/c3SN2qkLHMbYmH8HAcx3HK4j0Kx3EcpyxuKBzHcZyy\nuKFwHMdxyuKGwnEcxymLGwrHcRynLG4oWhxJJumCos9nSlpSZx0uL0TJlHRJTwP6SZoiaWXKuS+F\nCLNf6kkezUR4fk9Vc4pl8TvpjUhaLOkbFdIcEaLAtnSE5nrgK7NbnzXAIZK+YGYv5L1YUt8wP7wq\nmNkJ1bpXCicCI8xsXbGw2uVoAB8zs580WolqIqmj9D01E2b2I0nPAWc2Wpdmx3sUrc9aovDNHyk9\nEVrmvwx7AtwZVsoWWpvflvR74HxJSyRdIek3kv4s6RBJ54d9BG4N4TWQ9GlJ90laKekiJQSzkbRM\nUqekA4sWzz0h6alwfltJv5L0gKTbChFUg/wRSY8AJycVVNKNwBDggdAaLC3HRpIuk3Svor08DgrX\nDZJ0taTHJV0v6feSOsO514ruf5iky8PxaEnXhvLeJ2mnIF8S8lgm6U+STiu6/rjwrB+R9D1JG4ee\nQuH5DS3+nIaksUHPR8LfjpI+J+nDRWmWKuzbIekT4V09Ium8hPulPfPTFO0BskLS1QnXLZb001DW\nJyV9pujcMeE5PyzpO4pCayPpNUkXhPe4Q8n9YvlJmi/pd+F9LZe0ZVHeNyjaw+RpSadIOiOku0fS\niJBumaSvBz1WSpqfUI7Ed+nkwMz8r4X/gNeAocDTwDCi1tGScO5nwKJw/D7ghnB8OXAT0BE+LwF+\nC/QD5gL/JorNA3A98O5wPKIo3+8B7yq632HheBnQWaLjNUSVfz9gOTA6yI8ALgvHK4BdwvGXgJVp\n5S06Li3H54FjwvFw4A/ARsAZRflsTWRcOxPudxhweTi+ClgQjicThRcpPKvlwACiWD4vhnLNDvmN\nKn5WwHeLnt+JwAUJZep6fuHzj4gCIwJ0hPc6BXgwyPoAfyRa9bxv0GdwSb6Xh/KUe+Z/BwYUnleC\nXouBZ0M+g4CVRLGMZhJ9t/qFdN8CjgvHBrwn5d3F8iP67vYNxwuBa4vyXg1sDIwGXgE+GM59tej5\nLAMuDse7EL434fpvlHuX4fNuwE2N/h03+5+7ntoAM3tV0pXAacDrRad2AA4Jx98Dzi8692Pr7ha4\nxcz+I+lRosrp1iB/lKiSAthd0seBwcAIYBVRhZFKSP+6mX1T0hxgDnB76Ix0AM9KGk5Ucfy6SNd9\nMxW+ezn2JgqoWHAlDCSqGHYBLgQwsxWSVmS470JgltZ3moYqim4L8HMzWwOskfQ8Uej0PYIuL4R8\n/hHSXkIUMv4G4HjgAxny3gM4LtxnHVEl+YqkFyVtE/J7yMxelLQQ+K6Z/bsk3wJbkvDMw7kVwA8k\n3RD0S+J2C8H8JF1HFAF2LbAtcF+45yDWB3tcRxTcMYmk/IYBV0iaTmRkintbd1m0P8k/Jb3C+u/a\no0QGv8APQ9l/HXptw0vyTXyXZvYaTibcULQPXwMeJGrBZuFfJZ/XAFgUHvk/FppbRHti9JU0kKjl\n2Glmf1U0YD6wXAahEjucqKIGELDKzEpdEqU/7DwUl0PAoWb2RMn9y11fHMOmuDx9gO3N7I2Ee60p\nEq2jzO/IzO5W5ALcjajnkzhIn5FLiFrK44DLMl6T+MwD+xO9m3cB50jayuLjPKUxfizc8wozOzvh\nnm9Y+rhELD+ine/uMrODFe1FsqwoffFzfqvo81t0f+ZJOhaT+C6d7PgYRZsQWpLXEMX9L7CcKMIl\nwNHAb3qQRaESfSG0rMvOqJG0GdG2kYebWaGX8wQwWtIOIU0/SbPN7GXgZUmF/QqO3kAdbwNOVajN\nQ+sb4NfAUUE2h+6t0eckzZTUh2jDmQK/INqprFCet1fI+5fA4ZJGhvQjis5dSeT+yGrE7wQ+FO7T\nIWlYkF8PvBOYR1RWgNuB4yUNTsgXUp55KO+mZnYX8Amilv0Q4uylaN/zQUS7E94d9DtM0phCnuF9\np1Imv2GsD9W9uPxjSeWIkMcCoqi8r5Scz/sunRLcULQXFxD5zQucSlSJrCCKznr6ht44VOYXE/mp\nbyMKuVyOxUS+7RvCQOPNFm0feRjwxTDY+TCwY0h/PPBNSQ8TtVg3hHOJXBcrJK0KnyHabWyIpMeB\nzwEPFF1zFtE4x3LWu2QgcuN1hoHXx4CyU1fNbBWwFPhVKFtxuPQfAJsQXCQZOJ3Izfdo0HVWyONN\n4C6iqKXrguxWolDX94dn120GT5ln3gF8P+TxEHBheMel3EvkSlpBNH5wv5k9BnwK+EX4bt0OVNrW\nNS2/84EvSHqIDfdwvBGu/zbdG0oFcr1LJ45Hj3V6HZKWAWeaWV3CXitaz3CQmR2bcv5yogHVstNj\nQ6v8QaJe2pNVVzSe32IiV+Mptc5rQ+npuwwuwTPN7IBq6tVueI/CcWqIpP8i2oPj3DLJXgHOVZkF\nd4oWMa4G7qyHkegNSDqCaNztpUbr0ux4j8JxHMcpi/coHMdxnLK4oXAcx3HK4obCcRzHKYsbCsdx\nHKcsbigcx3Gcsvw/9zNZB2vXBA8AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Uniform window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Parzen Window" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 100\n", + "window = create_window(N, window_type='parzen')" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8lfX5//HXlQ0kECBhZLOX7DAUUNyioNYJbmu1fh21\nw7b2Z1s7vv12WrVVa6l7AnUhuLUCIjLC3hBCyGKEEQgJ2dfvj3Ogh0iSk5CT+4zr+Xich+e+z33u\n874xOVc+9+e+Px9RVYwxxhiAMKcDGGOM8R9WFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCVYUjDHG\nnGBFwZg2JiKTRGTrabxfRaRva2Yy5jgrCsZviUiuiBwTkaMisldEXhSRWKdznS5V/VJVBzidw5hT\nsaJg/N00VY0FRgGZwM+buwMRiWj1VMYEKSsKJiCoaiHwIXAGgIjcLiKbRaRURHJE5LvHtxWRySJS\nICI/FZE9wAsiMs/d4jj+qBOR29zbDxSRT0XkoIhsFZHrPPb1oog8JSLvuz9rmYj0OVVGEXlJRH7k\nfp7sPs1zr3u5j3v/YcfzebwvV0QeFJF1InJYRGaLSIzH6z8Wkd0iUiQi3673mZ1E5GURKRaRXSLy\ncxEJc7+2S0RGu5/f6M4zxL18h4i8ezr/T0xwsqJgAoKIpAKXAqvdq/YBU4GOwO3AYyIyyuMtPYAu\nQDpwl6pOU9VYd6vjWmAP8LmIdAA+BV4HugHTgadFZLDHvqYDvwY6A9nA7xqIuRCY7H5+DpADnO2x\n/KWq1jXw3uuAS4BewDDgNvdxXwI8CFwI9AMuqPe+vwOdgN7uz7jF/e/hTZ6FDWQxIcyKgvF374pI\nCbAY15fY/wGo6vuqukNdFgKfAJM83lcHPKKqlap67PhKEekPvARcp6r5uApLrqq+oKo1qroaeAtX\n4TjuHVVdrqo1wGvAiAayLgQmuv9SPxv4EzDB/VpTX8J/U9UiVT0IzPP4jOuAF1R1g6qWAb/yOJZw\nXAXrZ6paqqq5wKPAzR55znE/nwT83mPZioI5JSsKxt9dqarxqpquqvcc/4IXkSkistR9SqYEVysi\nweN9xapa4bkjEekEzAV+rqqL3avTgXEiUnL8AdyIq6Vx3B6P5+XAKTu7VXUHUIbrC30SMB8oEpEB\nNP0l3NBnJAH5Hq/t8nieAETWW7cLSHY/XwhMEpGeQDgwB5ggIhm4WhdrGsljQpR1wJmAIyLRuP6a\nvwWYq6rV7vPj4rGZ1ntPGK5TRF+o6kyPl/KBhap6YSvFWwhcA0SpaqGILARuxXXqqSVfwruBVI/l\nNI/n+4FqXIVtk8frhQCqmi0i5cD9wCJVPeLuY7kLWNzIqSwTwqylYAJRFBANFAM1IjIFuKiJ9/wO\n6AA8UG/9fKC/iNwsIpHuxxgRGdTCbAuB+4BF7uUF7uXFqlrbgv3NAW4TkcEi0h545PgL7v3NAX4n\nInEikg78EHj1FHmOt1IW1Fs25iRWFEzAUdVS4Hu4vhAPATcA7zXxthnAeOCQxxVIN7r3dRGuc/NF\nuE7j/BFX0WmJhUAc/y0Ki4H2HsvNoqofAo8D/8HVyf2fepvcj+uUVY77s14Hnm8kT/1lY04iNsmO\nMcaY46ylYIwx5gQrCsYYY06womCMMeYEKwrGGGNOCLj7FBISEjQjI8PpGMYYE1BWrly5X1UTm9ou\n4IpCRkYGWVlZTscwxpiAIiK7mt7KTh8ZY4zxYEXBGGPMCVYUjDHGnGBFwRhjzAlWFIwxxpzgs6Ig\nIs+LyD4R2dDA6yIifxORbPc0hKNOtZ0xxpi248uWwou4phdsyBRc0wv2wzW++z98mMUYY4wXfHaf\ngqoucs/w1JArgJfVNUzrUhGJF5GeqrrbV5mM8QVVpehwBTnFR8kpLqOiupZeCR3ondiBtC4diIqw\ns7QmcDh581oyJ08zWOBe942iICJ34WpNkJaWVv9lYxxRVlnDv7PyeXFJLrkHyk+5TVxMBNPHpHLr\nWRmkdG7fxgmNab6AuKPZPX3iTIDMzEybAMI4qrq2jqe/2MGzi3MorahhVFo8d0zqTd/EWPokdiA6\nMpzc/WXk7D/K55v38fxXuTz/VS6XDe3JL6cNJiG2pfP3GON7ThaFQk6eezbFvc4Yv7XrQBkPzFrD\nmvwSLhnSg++e05uRaZ2/sd3w1HiGp8bzrZEpFJUc46UlubywJJclO/bz52uHc+6Abg6kN6ZpTp7s\nfA+4xX0V0njgsPUnGH82d00hlz7xJTnFR3nyhpE8c/PoUxaE+pLi2/GzSwcx776JdO0Qze0vrODX\n8zZSU1vXBqmNaR6ftRRE5A1gMpAgIgW4JhyPBFDVZ4APgEtxzTtbDtzuqyzGnK6XluTyyHsbGZvR\nhcemjyA5vl2z9zGgRxxz75vAHz7cwgtf5bLncAVPTB9pHdHGr/jy6qMZTbyuwL2++nxjWss/F+7g\n9x9u4aLB3fn7DSOJjghv8b5iIsP51eVDSO3Snt/O30TVqyt56sZRxES2fJ/GtCb7E8WYRvz98+38\n/sMtTBuexFM3jjqtguDpjom9+O2VZ/D5ln3c+XIWFdW1rbJfY06XFQVjGvDvrHwe/XQbV41M5vHr\nRxAZ3rq/LjePT+dP1wzjy+37eeitdbgaz8Y4KyAuSTWmrWXlHuThdzZwVp+u/PGaYYSHiU8+57rM\nVPYeruDRT7fRr3sc957b1yefY4y3rCgYU0/+wXK++8pKkuJjePrGUa3eQqjvvvP6sn3fUf788Vb6\ndovl4iE9fPp5xjTGTh8Z46GiupY7X86iqraOZ28dQ3z7KJ9/pojwp2uGMTylE9+ftYZte0t9/pnG\nNMSKgjEe/vDhFrbsKeVvM0bSt1tsm31uTGQ4/7olk/ZR4XzvjdVU1ljHs3GGFQVj3BZuK+bFJbnc\ndlaGI3ccd+sYw5+uGcaWPaU8+sm2Nv98Y8CKgjEAHCyr4sF/r6V/91gemjLQsRznD+rOjePS+NeX\nOSzJ3u9YDhO6rCiYkKeq/OztdRwur+bx60c6fiPZzy8bTK+EDvxwzlpKyqsczWJCjxUFE/LeX7+b\njzfu5cGL+zM4qaPTcWgXFc4T14+k+Gglf/hwi9NxTIixomBC2pGKan4zbxNnJHfkjom9nY5zwtCU\nTtwxsRezVuSzIveg03FMCLGiYELaox9vpfhoJf/3raE+u0Gtpb5/QT+S49vx8DvrqbYRVU0bsaJg\nQtba/BJeXrqLW8anMywl3uk439A+KoJfXT6EbXuP8uyXO52OY0KEFQUTkmrrlIffXU9ibDQ/uniA\n03EadOHg7lw0uDtPfL6N/IOnnvLTmNZkRcGEpDlZ+WwoPMIvpg6mY0yk03Ea9avLhyCIdTqbNmFF\nwYSco5U1PPrJNjLTOzN1WE+n4zQpKb4dd53dm/fX72blLut0Nr5lRcGEnH8u3MH+o5U8fNkgRPyr\nc7kh3z2nN93iovnf9zfbENvGp6womJCy+/Ax/vVlDtOGJ3k1v7K/aB8VwYMXDWB1Xgnvr7epzI3v\nWFEwIeUvH2+jrg5+4sedyw25enQKA3vE8cePttiAecZnrCiYkLGp6Ahvry7g9gkZpHZp73ScZgsP\nEx6+bBD5B4/xyte7nI5jgpQVBRMy/vrpNmKjI7hncuDObjapXyIT+ybw9IIdlFXWOB3HBCErCiYk\nrM0v4bPNe7lzUm86tffvS1Cb8sOL+nOwrIoXl+Q6HcUEISsKJiQ89tk24ttHcvuEDKejnLZRaZ05\nd0AiMxflcKSi2uk4JshYUTBBb+WuQyzYWsx3z+5DnJ/fqOatH144gMPHqnl+sQ1/YVqXFQUT9P76\n6VYSYqO49ax0p6O0mqEpnbhocHee+3KnzblgWpUVBRPUluUc4KvsA9x9Th/aR0U4HadV/eDC/pRW\n1thgeaZVWVEwQe2pBTtIiI3ipvHB00o4blDPjkw5owcvfZ1rfQum1VhRMEFrfcFhFm0r5o6JvR2f\nYtNX7pncl9KKGl5davctmNZhRcEEracXZBMXE8FN49OcjuIzQ1M6cXb/RJ77cifHquwuZ3P6rCiY\noJS9r5SPNu7htrMyguaKo4bcO7kPB8qqmL0iz+koJghYUTBB6ekFO4iJCOf2Cb2cjuJz43p3ZUxG\nZ2YuyqGqxqbtNKfHp0VBRC4Rka0iki0iD53i9U4iMk9E1orIRhG53Zd5TGjIP1jO3DVF3DAujS4d\nopyO0ybuObcvRYcreHd1odNRTIDzWVEQkXDgKWAKMBiYISKD6212L7BJVYcDk4FHRSQ0fouNzzy3\neCdhAt+ZFPythOMm909kcM+OzPwyh7o6m2/BtJwvWwpjgWxVzVHVKmAWcEW9bRSIE9dMJ7HAQcBG\n+TItdri8mjlZ+UwbnkTPTu2cjtNmRIQ7z+5F9r6jLNxW7HQcE8B8WRSSgXyP5QL3Ok9PAoOAImA9\n8ICqfuOkqIjcJSJZIpJVXGw/8KZhry3fRXlVLXdO6u10lDY3dVgSPTrGMHNRjtNRTABzuqP5YmAN\nkASMAJ4UkY71N1LVmaqaqaqZiYmJbZ3RBIiqmjpe/CqXSf0SGNTzGz9GQS8yPIzbJ2Twdc4BNhQe\ndjqOCVC+LAqFQKrHcop7nafbgbfVJRvYCQz0YSYTxN5bW8S+0sqQbCUcN2NcGrHRETz7pbUWTMv4\nsiisAPqJSC935/F04L162+QB5wOISHdgAGA/zabZVJVnv8xhYI84JvVLcDqOYzrGRHL9mFTmrdtN\nUckxp+OYAOSzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8FzhKR9cDnwE9Vdb+vMpng9eX2/WzZU8p3\nJvXGdd1C6Do+Z4RNwmNawqfDRqrqB8AH9dY94/G8CLjIlxlMaHjhq50kxEYzbXhPp6M4LqVze6ac\n0YM3lufxwPn96BAdXKPDGt9yuqPZmNO2c38ZX2wt5qbxaURHBOfAd811+4QMSitqeMduZjPNZEXB\nBLyXluQSGS7cMC54B75rrlFpnRma3IkXl+SiajezGe9ZUTABrbSimjdXFjBtWBLd4mKcjuM3RITb\nJ2SQve8oX2UfcDqOCSBWFExAe2tlAUcra7j1rAyno/idy4b1JCE2iheX2MxsxntWFEzAqqtTXvp6\nF6PS4hmeGu90HL8THRHODePS+XzLPnYdKHM6jgkQVhRMwFq4rZid+8u4LQSGx26pm8alES5il6ca\nr1lRMAHr5a9z6RYXzZQzejgdxW916xjDpUN78ubKAsqrbKxJ0zQrCiYg5R0oZ8G2YmaMTSMy3H6M\nG3PLmemUVtQwd02R01FMALDfJhOQXlu2izARZoy1y1CbMjq9MwN7xPHK17vs8lTTJCsKJuBUVNcy\nOyufi4d0p0cnuwy1KSLCLWdmsGn3EVbllTgdx/g5Kwom4Ly/bjcl5dXcND7d6SgB44oRScRFR/Dq\n0l1ORzF+zoqCCTgvL91Fn8QOnNm7q9NRAkaH6AiuHp3C++t2s/9opdNxjB+zomACyrqCEtbml3Dz\n+PSQHw21uW4an0ZVbR1zsvKb3tiELCsKJqC8tjSPdpHhXDU6xekoAadvtzjO7N2V15bmUVtnHc7m\n1KwomIBxpKKa99YWccWIJDrGRDodJyDdOD6NwpJjLNpuc52bU7OiYALGu6sLOVZda6OhnoaLBvcg\nITaK15flOR3F+CkrCiYgqCqvLc1jaHInhqXYOEctFRURxrWZqXy+eS+7D9t0neabrCiYgLAq7xBb\n95ZaK6EVzBiTRp3C7BXW4Wy+yYqCCQivLcsjNjqCy4cnOR0l4KV1bc+kfgnMXpFPTW2d03GMn7Gi\nYPxeSXkV89ft5ooRSTbfcCu5cVwauw9X8MVW63A2J7OiYPzeW6sKqaqp48Zxdgdzazl/UHe6xUXz\n+jK7w9mczIqC8WuqyhvL8xieGs/gpI5OxwkakeFhXD8mlQXbiikssQ5n819WFIxfW7nrENn7jnLD\n2FSnowSd6zJd/6ZzrMPZeLCiYPza68tdHcxTh1kHc2tL7dKeSf0SmZOVb3c4mxOsKBi/dfhYNR+s\n383l1sHsMzPGpLL7cAULt+1zOorxE1YUjN+au6aQiuo6ZoyxexN85fxB3UmIjeKN5XYKybhYUTB+\nydXBnM8ZyR0ZmtLJ6ThBKyoijGtGp/KfLfvYd6TC6TjGD1hRMH5pXcFhNu8+wnRrJfjc9DGp1NYp\n/15Z4HQU4wesKBi/NGuFa4jsK0ZYB7OvZSS4JiyatSKPOutwDnlWFIzfKaus4b01RUwd1pM4GyK7\nTUwfm0r+wWMs2XHA6SjGYT4tCiJyiYhsFZFsEXmogW0mi8gaEdkoIgt9mccEhvfX7aasqpbpY+3U\nUVu5eEgP4ttHMmuFDakd6posCiLSXkR+ISL/ci/3E5GpXrwvHHgKmAIMBmaIyOB628QDTwOXq+oQ\n4NoWHIMJMrNW5NGvWyyj0myI7LYSExnOt0Ym88nGvRwsq3I6jnGQNy2FF4BK4Ez3ciHwv168byyQ\nrao5qloFzAKuqLfNDcDbqpoHoKp2sXSI27a3lFV5JVw/JtXmYG5j149Jpaq2jndWFzodxTjIm6LQ\nR1X/BFQDqGo54M1vazLgefFzgXudp/5AZxFZICIrReSWU+1IRO4SkSwRySoutlEdg9ms5flEhgtX\njbI5mNvawB4dGZEaz+wVeahah3Oo8qYoVIlIO0ABRKQPrpZDa4gARgOXARcDvxCR/vU3UtWZqpqp\nqpmJiYmt9NHG31TW1PL26gIuGtKDLh2inI4TkqaPSWXb3qOszi9xOopxiDdF4RHgIyBVRF4DPgd+\n4sX7CgHPUcxS3Os8FQAfq2qZqu4HFgHDvdi3CUKfbNxLSXk108fY4HdOmTo8ifZR4cxabh3OoarJ\noqCqnwJXAbcBbwCZqrrAi32vAPqJSC8RiQKmA+/V22YuMFFEIkSkPTAO2Ox9fBNMZq/IJzm+HRP6\nJDgdJWTFRkcwbVgS89bu5mhljdNxjAMaLAoiMur4A0gHdgNFQJp7XaNUtQa4D/gY1xf9HFXdKCJ3\ni8jd7m0242qFrAOWA8+q6obTPSgTePIPlrM4ez/XZaYSFmYdzE66fmwqx6prmb+2yOkoxgGNDT35\nqPu/MUAmsBZXB/MwIIv/Xo3UIFX9APig3rpn6i3/Gfiz95FNMPp3Vj5hAtdmWgez00amxtO/eyyz\nVuTbvSIhqMGWgqqeq6rn4mohjHJ39I4GRvLNvgFjWuz4uDtn908kKb6d03FCnohwXWYqa/JL2Lqn\n1Ok4po1509E8QFXXH19wn94Z5LtIJtQs2l7M7sMV1sHsR64alUJkuDDbZmULOd4UhXUi8qx7OIrJ\n7jub1/k6mAkds5fn07VDFOcN7O50FOPWpUMUFw3uwdurC6isqXU6jmlD3hSF24GNwAPuxyb3OmNO\n2/6jlXy2eS9Xj04hKsLGZ/Qn149JpaS8mk837XU6imlDTc5xqKoVwGPuhzGt6u1VBdTU6YlJ5I3/\nmNg3geT4dsxekW9zZIcQbwbE2ykiOfUfbRHOBDdVZfaKfDLTO9O3W6zTcUw9YWHCtZkpfLl9P/kH\ny52OY9qIN+31TGCM+zEJ+Bvwqi9DmdCwctchdhSXcZ11MPutazNTEcFmZQsh3tzRfMDjUaiqj+Ma\nq8iY0zJrRT6x0RFMHdbT6SimAcnx7Ti7XyL/zsqn1mZlCwnenD4a5fHIdN+N3GRfhDGNOVJRzfvr\ndjNteBLto+zHyZ9dPyaV3YcrWLTdRigOBd78Nj7q8bwG2Alc55s4JlTMW1vEsepauzchAFwwqDtd\nOkQxe3k+5w7o5nQc42PeFIU7VPWkjmUR6eWjPCZEzF6Rz8AecQxL6eR0FNOEqIgwrh6VzAtf5VJc\nWkliXLTTkYwPedPR/KaX64zxyqaiI6wrOMx0m10tYFw/JpWaOuXtVdbhHOwabCmIyEBgCNBJRK7y\neKkjrkHyjGmROVn5REWEceXI+hPxGX/Vt1scmemdmZ2Vz11n97ZiHsQaaykMAKYC8cA0j8co4E7f\nRzPBqKK6lndWF3LJkB7Et7fZ1QLJdWNSySkuY0XuIaejGB9qsKWgqnOBuSJypqp+3YaZTBD7cMNu\nDh+rZvpY62AONFOH9eQ38zYxa0UeY3t1cTqO8ZHGJtk5PuXmDSLyt/qPNspngsys5fmkd23P+F5d\nnY5imql9VASXj0jig/Wuwm6CU2Onj45Pi5kFrDzFw5hmySk+yrKdB7l+jM2uFqhmjEmjorqOuWts\nSpVg1djpo3nu/77UdnFMMJu9Ip/wMOGa0Ta7WqAamtKJIUkdeWN5PjePT7cO5yDU2NVH84AG72tX\n1ct9ksgEpaqaOt5cWcD5A7vRLc4uXgtk08ek8ou5G1lfeJhhKfFOxzGtrLGb1/7SZilM0Pts814O\nlFUxw+b8DXhXjEzmdx9s5o3l+VYUglBjp48WHn8uIlHAQFwth62qWtUG2UwQeWN5HkmdYji7f6LT\nUcxp6hgTyWVDk3hvTSE/v2wQHaJt7Kpg4s2AeJcBO3ANmf0kkC0iU3wdzASP/IPlLM7ezzWZqYRb\nB3NQmDE2lbKqWuavK3I6imll3gxz8ShwrqpOVtVzgHOxWdhMM8xekY+ADX4XREand6Zft1heX57v\ndBTTyrwpCqWqmu2xnAOU+iiPCTLVtXXMznKNrpkU387pOKaViAg3jEtjbX4JG4sOOx3HtCJvikKW\niHwgIreJyK3APGCFiFxVb0wkY77h8817KS6ttA7mIHTVyBSiI8J4fVme01FMK/KmKMQAe4FzgMlA\nMdAO1zhIU32WzASF15fn07NTDJMHWAdzsOnUPpLLhvVk7poiyiprnI5jWkmTlw2o6u1tEcQEn/yD\n5Xy5vZjvndePiHBv/v4wgeaGsWm8vaqQeWuLmG6twaDQZFFwT6hzP5Dhub3dvGaaMmtFHoJrLH4T\nnEand6Z/91jeWJ5nRSFIeHOB8bvAc7j6Eup8G8cEi+raOuZkFVgHc5ATEWaMTePX8zaxofAwZyTb\nTHqBzps2fYWq/k1Vv1DVhccfPk9mAtqnm1wdzDeMs78eg91VI1OIiQzjNetwDgreFIUnROQRETlT\nREYdf/g8mQlory7dRXJ8OybbRO9Br1P7SKYNS2LumkKOVNiQ2oHOm6IwFNdMa3/AdSPbo3g5LpKI\nXCIiW0UkW0QeamS7MSJSIyLXeLNf49+y9x1lyY4D3DAuze5gDhE3jU+nvKqWd1bZkNqBzps+hWuB\n3s0d70hEwoGngAuBAlz3NrynqptOsd0fgU+as3/jv15btovIcOG6TOtgDhXDU+MZltKJV5fu4pYz\nbUjtQOZNS2EDrnmam2sskK2qOe6CMgu44hTb3Q+8BexrwWcYP3Osqpa3VhZwyRk9SYyLdjqOaUM3\njUtn+76jLN950Oko5jR4UxTigS0i8rGIvOd+zPXifcmA58AoBe51J4hIMvAt4B+N7UhE7hKRLBHJ\nKi4u9uKjjVPmrS3iSEUNN1kHc8iZNjyJjjERvGodzgHNm9NHj3g8F2ASML2VPv9x4KeqWtdYc1NV\nZwIzATIzMxuc+Mc479Vlu+jfPdYmdg9B7aLCuXp0Cq8u3UVx6WBrKQaoJlsK7stPj+Aa0uJF4Dzg\nGS/2XQh4nlROca/zlAnMEpFc4BrgaRG50ot9Gz+0Nr+EdQWHuXGcnVMOVTeOS6e6VpmTZaOnBqoG\ni4KI9HdfiroF+DuQB4iqnquqf/di3yuAfiLSyz1Jz3TgPc8NVLWXqmaoagbwJnCPqr7b0oMxznrp\n61w6RIVz1ajkJrc1walvt1gm9k3g1aW7qKm1e10DUWMthS24WgVTVXWiuxDUertjVa0B7gM+BjYD\nc1R1o4jcLSJ3n05o43/2H61k/trdXD06hbiYSKfjGAfdcmY6uw9X8OmmvU5HMS3QWJ/CVbj+uv9C\nRD7CdfVQs84JqOoHwAf11p3y1JOq3tacfRv/Mmt5HlW1ddxyZobTUYzDzh/UnZTO7XhxSS5ThvZ0\nOo5ppgZbCqr6rqpOxzU38xfA94FuIvIPEbmorQIa/1dTW8erS/OY1C+Bvt1inY5jHBYeJtw8Pp1l\nOw+yZc8Rp+OYZvKmo7lMVV9X1Wm4OotXAz/1eTITMD7ZtJc9RyqslWBOuC4zleiIMF5assvpKKaZ\nmjXIvaoeUtWZqnq+rwKZwPPiklxSOrfjvIE2zpFx6dwhiitHJPPu6kIOl9t4SIHEZj4xp2Xz7iMs\n33mQW85Mt3GOzEluOSudY9W1zM6ym9kCiRUFc1qeW7yTdpHhNs6R+YYhSZ0Y26sLLy2xy1MDiRUF\n02L7Sit4b00R12amEN8+yuk4xg99Z2IvCkuO8fFGuzw1UFhRMC326te7qK6r4/YJvZyOYvzU+YO6\nk961Pc8uznE6ivGSFQXTIhXVtby6LI/zB3anV0IHp+MYPxUeJnx7Qi9W55Wwctchp+MYL1hRMC3y\nzupCDpZVccdEayWYxl0zOoWOMRE8v3in01GMF6womGZTVZ5bvJMhSR0Z39tGQzWN6xAdwYxxaXy4\nYTf5B8udjmOaYEXBNNuCbcVk7zvKHRN72Wioxiu3npmBiPDiklyno5gmWFEwzfbMgh306BjD1GFJ\nTkcxASIpvh3ThvXkjeV5lJQ3a2Zf08asKJhmWZV3iGU7D/KdSb2IirAfH+O9uyf3obyqlpe/tqEv\n/Jn9VptmeWbBDjq1i2TGWJtu0zTPwB4dOW9gN15cksuxKq9H4TdtzIqC8Vr2vlI+2bSXW89Mp0O0\nNzO5GnOyu8/pw8GyKpuZzY9ZUTBe++fCHGIiw7j1rAyno5gANSajM6PTOzNzUQ7VNvSFX7KiYLxS\nVHKMd9cUMn1MGl1jbUJ20zIiwv+c04fCkmO8v26303HMKVhRMF6ZuSgHVexmNXPazhvYjf7dY3nq\ni2zq6tTpOKYeKwqmSXuPVPD68jyuHpVCapf2TscxAS4sTLj/vH5s33eUDzZYa8HfWFEwTfrHgh3U\n1in3ntvX6SgmSFw6tCf9usXyxGfbrbXgZ6womEb9t5WQTFpXayWY1hEeJnzvfGst+CMrCqZRx1sJ\n953bz+lEPPffAAAUHklEQVQoJshYa8E/WVEwDdp3pII3rJVgfMRaC/7JioJp0JNfZFNjrQTjQ8db\nC499us2m7PQTVhTMKeXuL+P1ZXlMH5NqrQTjM+Fhwo8uGsCO4jLeXFngdByDFQXTgL98spXI8DAe\nON9aCca3Lh7SnZFp8Tz22TYbE8kPWFEw37CuoIT563Zz56RedOsY43QcE+REhJ9NGcTeI5W8sMRm\nZ3OaFQVzElXlDx9uoUuHKO48u7fTcUyIGNurCxcM6sY/FuzgUJnNt+AkKwrmJIu272fJjgPcf15f\n4mIinY5jQsiPLx5IWWUNT32R7XSUkGZFwZxQXVvH/87fRFqX9tw4Lt3pOCbEDOgRxzWjU3jp61x2\n7i9zOk7I8mlREJFLRGSriGSLyEOneP1GEVknIutFZImIDPdlHtO4V77exfZ9R/nF1ME2q5pxxIMX\nDyA6IpzfzNvodJSQ5bPffBEJB54CpgCDgRkiMrjeZjuBc1R1KPBbYKav8pjG7T9ayWOfbePs/olc\nMKib03FMiOoWF8MD5/fji63F/GfLXqfjhCRf/jk4FshW1RxVrQJmAVd4bqCqS1T1kHtxKZDiwzym\nEX/+aCvHqmr55dTBiIjTcUwIu/WsDPokduA38zZRWWOXqLY1XxaFZMBzzr0C97qG3AF8eKoXROQu\nEckSkazi4uJWjGgA1uaXMGdlPrdPyKBvt1in45gQFxURxiPThpB7oJznF+c6HSfk+MWJYxE5F1dR\n+OmpXlfVmaqaqaqZiYmJbRsuyNXU1vGLuRvo2iGa++1GNeMnzu6fyIWDu/O3z7eTf7Dc6TghxZdF\noRBI9VhOca87iYgMA54FrlDVAz7MY07hxSW5rCs4zCPTBtPRLkE1fuRXlw8hTODhdzegaqOothVf\nFoUVQD8R6SUiUcB04D3PDUQkDXgbuFlVt/kwizmFvAPl/OWTrZw/sBtTh/V0Oo4xJ0mOb8ePLx7A\nom3FzF1T5HSckOGzoqCqNcB9wMfAZmCOqm4UkbtF5G73Zr8EugJPi8gaEcnyVR5zMlXl4XfXEy7C\nb688wzqXjV+6+cwMRqbF8+t5GzlwtNLpOCHBp30KqvqBqvZX1T6q+jv3umdU9Rn38++oamdVHeF+\nZPoyj/mvt1YV8uX2/fx0ykCS4ts5HceYUwoPE/549TCOVtbw2/mbnI4TEvyio9m0rcKSY/x63kZG\np3fmJrtz2fi5/t3juGdyX95dU8RHNhmPz1lRCDF1dcqDc9ZSW6f89brhhIXZaSPj/+47ry/DUjrx\n0Nvr2Xukwuk4Qc2KQoh5bvFOvs45wCPTBpPetYPTcYzxSmR4GI9dP4KK6lp+/OY6uxrJh6wohJDN\nu4/w54+3ctHg7lyXmdr0G4zxI30SY3n40kEs2lbMy1/vcjpO0LKiECLKKmv43hur6dgukt9fNdSu\nNjIB6abx6UwekMj/fbCZTUVHnI4TlKwohABV5f+9s57s4qM8fv0IusZGOx3JmBYREf5y7XDi20fy\nP6+t5PCxaqcjBR0rCiHg1aW7mLumiB9d2J+J/RKcjmPMaUmIjeapG0ZReOgYP/73WutfaGVWFILc\n6rxD/Gb+Js4b2I17Jvd1Oo4xrSIzowsPTRnIJ5v2MnNRjtNxgooVhSC290gF97y2iu4dY+zyUxN0\n7pjYi0uH9uCPH21h4TYbPbm1WFEIUuVVNXznpSwOH6vmnzePJr59lNORjGlVIsKfrhlO/+5x3Pfa\nKrbtLXU6UlCwohCE6uqU789aw8aiwzx5w0iGJHVyOpIxPhEbHcHzt40hJiqc219YQXGpjY90uqwo\nBKE/fLSFTzbt5RdTB3PewO5OxzHGp5Li2/HcrZkcKKvkrleyOFZls7WdDisKQebpBdnMXJTDLWem\nc9tZGU7HMaZNDEuJ54npI1mbX8Ldr66kqqbO6UgBy4pCEHnl61z+9NFWrhiRxCPThtgNaiakXDyk\nB3+4ahgLtxXzwKzV1NRaYWgJKwpB4q2VBfxi7kYuGNSdv1w7nHC70siEoOvGpPKLqYP5cMMefvrW\neurq7B6G5opwOoA5fXNW5PPQ2+uY0LcrT94wkshwq/UmdN0xsRdllTX89VPXZI5/vHooEfY74TUr\nCgHu+cU7+c38TUzql8DMmzOJiQx3OpIxjrv/vL4I8Oin2yivquHx6SOIjrDfDW9Y+QxQqsrfPt/O\nb+Zv4pIhPXj21kzaRdkPvTHguofh/vP78Uv3qaQ7X15JeVWN07ECghWFAFRVU8dP31rHXz/dxlUj\nk3nyhpH2V5Axp/Dtib3409XDWLy9mOv++TV7DtsEPU2xohBgDpVVcfNzy5iTVcD3zuvLX64dbudL\njWnEdWNSefbWTHYWl3HFU4tZX3DY6Uh+zb5NAsjGosNc+fRXrM4v4fHrR/DDiwbYeEbGeOG8gd15\n656ziAgL49p/LuGd1QVOR/JbVhQCgKryyte5fOvpJVRU1/LGneO5cmSy07GMCSgDe3Tk3XsnMCw5\nnh/MXstP3lxr/QynYFcf+blDZVX8v3fW8+GGPUwekMij1w63SXKMaaHEuGhev3Mcj3+2nacWZLM6\nr4Qnpo9kcFJHp6P5DWsp+ClVZf66Ii7460I+3bSXn00ZyPO3jrGCYMxpiggP48GLB/DKt8dxqLya\ny59czKOfbKWyxsZMAisKfqngUDnffWUl972+muTO7Zh3/0S+e04f6z8wphVN7JfApz84m8tHJPH3\n/2Rz2d8WsyzngNOxHCeBNpVdZmamZmVlOR3DJ0orqvnHgh08u3gnYQI/vLA/357Qy64uMsbHFmzd\nx8PvbKCw5BiXDOnBQ1MGkpHQwelYrUpEVqpqZpPbWVFwXnlVDa8vy+OZhTvYf7SKq0Ym8+DFA0iK\nb+d0NGNCxrGqWp5bnMPTC3ZQXVvHjLFpfPecPiQHye+hFYUAUFJexWvL8nhu8U4OllVxZu+uPDRl\nIMNT452OZkzI2nekgsc+28a/swoQgatGpvDdc3rTOzHW6WinxYqCn1JV1uSX8OrSPOavK6Kypo5z\nByRy33l9GZ3exel4xhi3gkPlzFyUw6wV+VTV1DGhb1duGpfOBYO7B+Sgk1YU/Ez2vlLmrd3N/HVF\n7Cguo31UOFeOTOamcel2OZwxfqy4tJLZK/J4Y3k+hSXH6NIhikvO6MHUYT0Z16trwAxTb0XBYWWV\nNSzPPcjCrcUs2l5MTnEZIjA2owuXj0ji8uFJxMVEOh3TGOOl2jplwdZ9vLO6kM837+NYdS1dO0Qx\nsV8C5/RPZGK/BLrFxTgds0F+URRE5BLgCSAceFZV/1DvdXG/filQDtymqqsa26c/FoVjVbVs31fK\nlj2lrC84zKq8Q2zefYQ6heiIMMb37sq5AxKZMrQn3Tv67w+NMcY75VU1/GfLPj7fvI9F24o5UFYF\nQGqXdoxK68yI1HgG9ujIgB5xdOkQ5XBaF8eLgoiEA9uAC4ECYAUwQ1U3eWxzKXA/rqIwDnhCVcc1\ntt+2KgqqSmVNHaUVNRypqObIsWoOHK2i+GglxaWVFB46Rv6hcvIOllNYcozj/4yx0REMT+3EqLTO\njMnowtheXWyOA2OCWF2dsrHoCEtzDrAq7xCr8g6x90jlidcTYqNI7dKetC7tSencju4dY0iMjSYh\nLppO7SLpGBNJXEwE7SLDfXovkrdFwZfDXIwFslU1xx1oFnAFsMljmyuAl9VVmZaKSLyI9FTV3a0d\nZuG2Yn47/78fraoooOpqFtbU1lFTp9TUKRXVtRyrrqWxepkQG01ql3aMTu/MNaNTGNgjjgE9OpLW\npX3AnGM0xpy+sDBhaEonhqZ0AlzfLcWllWzZU8rWPaVk7ztK3sFyVu46xLy1RTQ2Q2h0RBgxkeFE\nhocRGS5EhAvhIoSJIALTx6Rx59m9fXo8viwKyUC+x3IBrtZAU9skAycVBRG5C7gLIC0trUVhYqMj\nGNA97qR1IhAmQpi4bn2PCHP9T4iJCKddVDgxkeHExUTQqZ2rknftEE1iXDRdY6Ns/gJjzCmJCN06\nxtCtYwxn90886bXaOuVgWRX73WccXGchXGcjjlXVnviDtLr2v3+o1qlSp1CnSmKc74e5CYgB8VR1\nJjATXKePWrKP0emdGZ3euVVzGWNMc4SHCYlxrj8uB/V0Os2p+fJi20Ig1WM5xb2uudsYY4xpI74s\nCiuAfiLSS0SigOnAe/W2eQ+4RVzGA4d90Z9gjDHGOz47faSqNSJyH/AxrktSn1fVjSJyt/v1Z4AP\ncF15lI3rktTbfZXHGGNM03zap6CqH+D64vdc94zHcwXu9WUGY4wx3gu8ATyMMcb4jBUFY4wxJ1hR\nMMYYc4IVBWOMMScE3CipIlIM7Grh2xOA/a0YJ1CE4nGH4jFDaB53KB4zNP+401U1samNAq4onA4R\nyfJmQKhgE4rHHYrHDKF53KF4zOC747bTR8YYY06womCMMeaEUCsKM50O4JBQPO5QPGYIzeMOxWMG\nHx13SPUpGGOMaVyotRSMMcY0woqCMcaYE0KmKIjIJSKyVUSyReQhp/P4goikisgXIrJJRDaKyAPu\n9V1E5FMR2e7+b9DNNiQi4SKyWkTmu5dD4ZjjReRNEdkiIptF5MwQOe4fuH++N4jIGyISE2zHLSLP\ni8g+Edngsa7BYxSRn7m/27aKyMWn89khURREJBx4CpgCDAZmiMhgZ1P5RA3wI1UdDIwH7nUf50PA\n56raD/jcvRxsHgA2eyyHwjE/AXykqgOB4biOP6iPW0SSge8Bmap6Bq5h+acTfMf9InBJvXWnPEb3\n7/h0YIj7PU+7v/NaJCSKAjAWyFbVHFWtAmYBVzicqdWp6m5VXeV+XorrSyIZ17G+5N7sJeBKZxL6\nhoikAJcBz3qsDvZj7gScDTwHoKpVqlpCkB+3WwTQTkQigPZAEUF23Kq6CDhYb3VDx3gFMEtVK1V1\nJ675aca29LNDpSgkA/keywXudUFLRDKAkcAyoLvHjHZ7gO4OxfKVx4GfAHUe64L9mHsBxcAL7tNm\nz4pIB4L8uFW1EPgLkAfsxjVb4ycE+XG7NXSMrfr9FipFIaSISCzwFvB9VT3i+Zp7YqOguQ5ZRKYC\n+1R1ZUPbBNsxu0UAo4B/qOpIoIx6p0yC8bjd59GvwFUUk4AOInKT5zbBeNz1+fIYQ6UoFAKpHssp\n7nVBR0QicRWE11T1bffqvSLS0/16T2CfU/l8YAJwuYjk4joteJ6IvEpwHzO4/hosUNVl7uU3cRWJ\nYD/uC4CdqlqsqtXA28BZBP9xQ8PH2Krfb6FSFFYA/USkl4hE4eqUec/hTK1ORATXOebNqvpXj5fe\nA251P78VmNvW2XxFVX+mqimqmoHr/+t/VPUmgviYAVR1D5AvIgPcq84HNhHkx43rtNF4EWnv/nk/\nH1ffWbAfNzR8jO8B00UkWkR6Af2A5S3+FFUNiQdwKbAN2AE87HQeHx3jRFxNynXAGvfjUqArrqsV\ntgOfAV2czuqj458MzHc/D/pjBkYAWe7/3+8CnUPkuH8NbAE2AK8A0cF23MAbuPpMqnG1Cu9o7BiB\nh93fbVuBKafz2TbMhTHGmBNC5fSRMcYYL1hRMMYYc4IVBWOMMSdYUTDGGHOCFQVjjDEnWFEwfkVE\nHnaPgLlORNaIyDgff94CEfF68nMReVFECkUk2r2c4L5xrjWyTD4+ymtrEZHvi8gtTWwzVERebM3P\nNYHLioLxGyJyJjAVGKWqw3DdvZrf+LscUQt82+kQ9dUfGdM9YNy3gdcbe5+qrgdSRCTNh/FMgLCi\nYPxJT2C/qlYCqOp+VS0CEJFfisgK9xj6M913sx7/S/8xEclyzykwRkTedo85/7/ubTLccw685t7m\nTRFpX//DReQiEflaRFaJyL/dY0idyuPAD9xfup7vP+kvfRF5UkRucz/PFZHfu1s/WSIySkQ+FpEd\nInK3x246isj77nHxnxGRsMayuff7RxFZBVxbL+d5wCpVrfH4t/qjiCwXkW0iMslj23m47gg3Ic6K\ngvEnnwCp7i+sp0XkHI/XnlTVMeoaQ78drhbFcVWqmgk8g+vW/3uBM4DbRKSre5sBwNOqOgg4Atzj\n+cEikgD8HLhAVUfhulP4hw3kzAMWAzc38/jyVHUE8CWu8fKvwTXvxa89thkL3I9r3o8+wFVeZDug\nqqNUdVa9z5sA1B8oMEJVxwLfBx7xWJ8FTMKEPCsKxm+o6lFgNHAXrmGhZx//Sxs4V0SWich6XH8B\nD/F46/FxrNYDG9U1r0QlkMN/BwrLV9Wv3M9fxTUkiKfxuL6IvxKRNbjGlklvJO7vgR/TvN8hz5zL\nVLVUVYuBShGJd7+2XF3zftTiGupgohfZZjfweT1x/Tt6Oj5I4kogw2P9PlyjjpoQF9H0Jsa0HfeX\n4QJggbsA3Cois4Cncc22lS8ivwJiPN5W6f5vncfz48vHf8brj+dSf1mAT1V1hpc5t7u/oK/zWF3D\nyUUi5uR3tThnU9nKGlh/rJEMtZz8+x/j3t6EOGspGL8hIgNEpJ/HqhHALv77xbbffS79mhbsPs3d\nkQ1wA67TP56WAhNEpK87SwcR6d/EPn8HPOixvAsY7B6tMh7XCJ7NNdY9mm8YcL07Z0uygWv00L5e\nfm5/XAPMmRBnRcH4k1jgJRHZJCLrcJ0y+ZW6ppn8F64vrY9xDYXeXFtxzVm9Gddoov/wfNF9Guc2\n4A33Z38NDGxsh6q6EVjlsZwPzHHnnAOsbkHOFcCTuL7QdwLvtCSb24e4puz0xrnA+81Oa4KOjZJq\ngp64piad7+6kDiki8g7wE1Xd3sg20cBCYOLxK5VM6LKWgjHB7SFcHc6NSQMesoJgwFoKxhhjPFhL\nwRhjzAlWFIwxxpxgRcEYY8wJVhSMMcacYEXBGGPMCf8fcGqGIouq0A4AAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Parzen window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXeYJFd57n9fp+nJYWd2NszmIGmVpVUCIZGERBQ5Y+MA\nxgabiwPRvsb2BV9jA8ZggcHmGhEtEAIBQiABCkhIYldxg1abd2Znd3Lomc7d5/5Rdaqrezqcmt1J\n2nqfp5/pqTpddarq1HnPl0UphQ8fPnz48DEbBBa6Az58+PDhY+nCJxEfPnz48DFr+CTiw4cPHz5m\nDZ9EfPjw4cPHrOGTiA8fPnz4mDV8EvHhw4cPH7OGTyI+fCxCiMhZIvK4iMRE5M8Mf6NEZPNc920p\nQ0Q+KiL/OcvfPl9E+k53n5Y6fBJZBBCRIyKSEJEp12fVQvfLx4Lig8CvlFLNSql/K90pIveIyB/O\nxYlFZL1NSHosHhGRD8/FueYbSqlPKqXm5L6dqfBJZPHglUqpJtenv7SBiIQWomMLhTPtekuwDti9\nwH1oU0o1AW8B/reI3OD1AGf4Mzwj4JPIIoZrRfgHInIM+KW9/UoReVBExkXkCRF5vus3G0TkXlsN\ncpeIfEFEvmHvmyGO26vMF9vfAyLyYRE5KCIjInKLiHSU9OV3ReSYiAyLyMdcxwnaqoKD9rl3isga\nEfl3Efl0yTlvF5EPVLhmJSLvFZH9wH5729n2tYyKyD4ReaOr/ctEZI99zuMi8pfua7X7NGxf59tc\nv2sVkZtFZEhEjorIX4tIwN73ThH5tYj8i4iMichhEXmp67fvFJFD9jkPlxz390Vkr/27n4nIuirP\n91Uistt+jveIyDn29l8CLwC+YEsCW0t+9wngea79X3DtfrGI7LeP+e8iIrPpmxtKqd9gEdp59nE+\nJyK9IjJpP+fnuc7xcRH5noh8Q0QmgXfafdFSzbT9jNfb7V8hltpu3B7TF7iOdURE/lJEnhSRCRH5\nHxGJVriXR0XkUvv72+xznGv//wci8gNX//T7UGtM14vIf9v3aw9wWck5z7Gf27j9HF9lb99gb9Pj\n6SsiMuj63ddF5H+Z3PslAaWU/1ngD3AEeHGZ7esBBdwMNAL1wGpgBHgZ1iLgOvv/Lvs3vwE+A9QB\n1wAx4Bv2vucDfZXODbwfeAjosX//H8C3S/ryFbsfFwIp4Bx7/18BTwFnAWLvXwZcDvQDAbtdJxAH\nuivcCwXcBXTY52kEeoHfA0LAxcAwsM1ufwJ4nv29HbjEda1Z1724FpgGzrL33wz8EGi2r+0Z4A/s\nfe8EMsC7gCDwx/Y1iN2fSddxVgLn2t9vBA4A59h9/WvgwQrXudXuz3VAGEt9dQCI2PvvAf6wypiZ\nsd++dz8G2oC1wBBwwyz6pp91yL7m59rP7EX2/rfbzzYE/AVwEoja+z5u37tXY43P+pJjfxK4z77m\ni4FB4Ar7Pv8u1nisc43NR4BV9njYC7ynQp9vBv7C/v5l4CDwx659H3D17xsl11lpTP9f4H773GuA\nXdjvj93/A8BHgQjwQqx3TY+LY8Cl9vd9wCHXcY8BFy/0vHPa5q+F7oD/cV6WKWDc/vzA3q4H+UZX\n2w8BXy/5/c/sF3At1sTZ6Nr3LcxJZK+eKOz/V9oTQsjVlx7X/keAN9vf9wE3Vri+vcB19vf3AXdU\nuRcKeKHr/zcB95e0+Q/gb+3vx4A/AlpK2jy/zL24BfgbrAkrjU1E9r4/Au6xv78TOODa12D3awUW\niYwDr2PmBPlTbCKy/w9gTb7rylzn3wC3lLQ9Djzf/v8eZkciV5dc74dn0Tf9rMeBMfv5/VmVvowB\nF9rfPw7cV6Hdm+zxphc8XwT+oaTNPuBa19h8u2vfp4AvVTj2HwC3u8bbHwLfsf8/SmFx8XFmkkil\nMX0Im4Tt/99NgUSeh0WeAdf+bwMft79/Hfhze8zss/v+HmCDfV8D5a5jKX58ddbiwauVUm3259Ul\n+3pd39cBb7DF5XERGQeuxprwVwFjSqlpV/ujHvqwDrjNddy9QA7odrU56foeB5rs72uwVn/l8DWs\n1Sv236/X6Efp9V5Rcr1vw3o5wZrMXwYcFUuNd5Xrt+XuxSosaShM8b05iiXlaTjXqZSK21+b7OO9\nCWtCOCEiPxGRs119/Zyrn6NYK3n3cTVWuc+vlMrb112urRdUej5e+qbRqZRqV0qdo1zGfVvFtNdW\nMY0DrVj3VKO39EAicjHwBeA1SqkhV5/+ouTZrsG6N7WupxT3As8TkZVYi4RbgOfaarNW4PEq11np\nHKtKrsU9XlYBvfZzc+/X9/NerIXMNViS1z1Y0vC1WIsi9++WNHwSWRpwp1ruxZJE2lyfRqXU/8VS\n7bSLSKOr/VrX92msVTVg2TGArpJjv7Tk2FGl1HGDPvYCmyrs+wZwo4hciKVO+UGNY5Ve770lfWpS\nSv0xgFLqt0qpG4Hl9nFvcf223L3ox1KHZbAmMfc+k+tEKfUzpdR1WMT9NJY6RPf1j0r6Wq+UerDM\nYfrd57dtF2tM+0DxPTKBl75VhG3/+CDwRqBdKdUGTGARUtm+iYh+Nu9VSj1W0qdPlPSpQSn1bY/X\nhlLqABYB/CmWJDSJRQ7vBn49y0n7BNYz0XC/S/3AGm33cO3Xz+9eLGnl+fb3X2OpBa+1/3/WwCeR\npYdvAK8UkevFMmZHxTIi9yiljgI7gL8TkYiIXA280vXbZ4CoiLxcRMJYevE61/4vAZ/QBlcR6RKR\nGw379Z/AP4jIFrFwgYgsA1BK9QG/xZJAblVKJTxc74+BrSLyDhEJ25/LbKNmxDaitiqlMli2itLJ\nQt+L5wGvAL6rlMphkc0nRKTZvt4/x7q3VSEi3SJyo01OKSw1pD7nl4CPuAy6rSLyhgqHugV4uYi8\nyH4Wf2Efz3RSHwA2Grb12rdqaMZSEw4BIRH530BLpcZieWd9D0uFdEvJ7q8A7xGRK+wx02iPzeZZ\n9Ausyfl9FCbpe0r+94pbsO5Zu4j0YBGUxsNYpPVBe0w+H+td+w6AUmo/kMCSvO+1SW0AS3L2ScTH\nwkEp1YtlJP0o1ovci2XU1s/yrViGylHgb7GMivq3E8CfYE34x7EkE7e31ueA24Gfi0gMy8h+hWHX\nPoP10v0cazL/LyxjpcbXgPOprcoqglIqBrwEeDPW6u8k8E8UyO8dwBGxPIHeg6Xq0jiJpa/vB76J\nZZR92t73p1jXfwhrlfgt4KsGXQpgEU4/1j2+FsvwjlLqNrtv37H7swt4abmDKKX2YU0wn8eSjF6J\n5eadNugDWM/q9bbn0Iw4kjLnM+5bDfwMuBNrQXIUSFJGfeVCD9aK/H9JcRzUWqXUDiznhS9gPacD\nWPao2eJeLJK7r8L/XvF3WNd4GGtcO2PXfk6vxLqHw8BNwO+4xpc+/4j9zur/BXh0lv1ZlBDbCOTj\nWQoR+TiwWSn19lpt57gf12Ct9NepeRh09srwG0qpnrk+lw8fZzJ8ScTHnMNW17wf+M/5IBAfPnzM\nH3wS8TGnECuAbhzLCP2vC9wdHz58nGb46iwfPnz48DFr+JKIDx8+fPiYNZ71ydE6OzvV+vXrF7ob\nPnz48LGksHPnzmGlVFetds96Elm/fj07duxY6G748OHDx5KCiBhlu/DVWT58+PDhY9bwScSHDx8+\nfMwaPon48OHDh49ZwycRHz58+PAxa/gk4sOHDx8+Zo0lRyIicoNYJVIPiMiHF7o/Pnz48HEmY0mR\niF3/4t+xMmduA94iItsWtlc+fPjwceZiqcWJXI5VtvQQgIh8Byst+p7TfaIHDwzzx998lJedv4Ku\nprraP/DhYzYQqd3Ghw8PyOTy3L1ngDddtoY/fJ6XkjOzw1IjkdUU1y7oo0y9CxF5N1ZFM9auXVu6\n2whff+goE4kM336k1z7mrA7jw0dF+GnrfMwl/s9P9vokMlsopb4MfBlg+/bts3pVb3rbJRwcmuYv\nvvsEe/on+Na7ruSy9R2ntZ8+fPjwcboQT2d57U0P0jsa51Ovv5AbzlsxL+ddUjYRrGp87prHPZjX\npPYEEWHz8iZu/r3LWdVWz19+9wmSmdxcnMqHDx8+Thmf+fkzPH0yxk1vv5SXX7CSYGB+1CdLjUR+\nC2wRkQ0iEsEqmXr7XJ6wtSHMP772fI6OxPmvXx+ey1P58OHDx6xwZHiarz5wmLdcvpZrt9bMmXha\nsaRIRCmVBd6HVed5L3CLUmr3XJ/3OZs6ecFZXfzXrw8TT2fn+nQ+fPjw4Qn/cd9BQsEAH7huy7yf\ne0mRCIBS6g6l1Fal1Cal1Cfm67zvfcFmRqfT/OCx/vk6pQ8fPnzUxMhUilt3HucNl/awvDk67+df\nciSyULh0XTtndTfz3Z29tRv78OHDxzzhR0/0k87l+Z2r1i/I+X0SMYSI8IbtPTx2bJyDQ1ML3R0f\nPnz4AOC2x/s5Z2ULZ61oXpDz+yTiAS87fyUAP989sMA98eHDhw84NhLnid5xXnPxqgXrg08iHrCq\nrZ7zVrdw916fRHz48LHwuPeZQQCu2zY/MSHl4JOIR7z4nG4ePTbG6HR6obviw4ePMxz3PjPEmo56\n1i9rWLA++CTiEVdv7kQpeOTw6EJ3xYcPH2cw0tk8Dx4c4dqtXcgC5mXyScQjLuhpIxoO8PDhkYXu\nig8fPs5gPNk3Tjyd4+rN8xtcWAqfRDwiEgpw6bp2HjrkSyI+fPhYODzeOw7AJevaFrQfPonMAtvX\ndfD0yUmmU370ug8fPhYGjx0bp6e9fkECDN3wSWQWOH91K0rBnhOTC90VHz58nKF47NgYF69tX+hu\n+CQyG5zf0wrAruMTC9wTHz58nIkYmEzSP5Hk4jULq8oCn0RmheXNdXQ21fGUTyI+fPhYAOzpt7Qg\nekG7kPBJZBYQEc5f3cLu4746y4cPH/OPfQMxALYuX5hUJ274JDJLbO1u5vDwNLm8X+PUhw8f84tn\nBmJ0t9TR2hBe6K74JDJbbOpqIp3L0zcWX+iu+PDh4wzD/oEptnYvvBQCPonMGpuWNwL4GX19+PAx\nr8jnFfsHY2xZBKos8Elk1tjY2QTAoaHpBe6JDx8+ziT0TyRIZvJsXt600F0BfBKZNdobI3Q0RnxJ\nxIcPH/OKY6OWCn3dAiZddMMnkVPAxs5GXxLx4cPHvKJvLAFAT3v9AvfEgk8ip4Ce9nr6JxIL3Q0f\nPnycQegbjRMQq77RYoBPIqeAVW31nBhP+m6+Pnz4mDf0jiVY2VpPOLg4pu/F0QsXROTjInJcRB63\nPy9z7fuIiBwQkX0icv1C9hMsEsnmFUOx1EJ3xYcPH2cIekfji0aVBYuQRGx8Vil1kf25A0BEtgFv\nBs4FbgBuEpHgQnZytf0gj4/7Ki0fPnzMD/rGEvS0Lw6jOixeEimHG4HvKKVSSqnDwAHg8oXs0Oo2\nn0R8+PAxf8jk8gzEks4CdjFgsZLIn4rIkyLyVRHRuY5XA72uNn32thkQkXeLyA4R2TE0NDRnndSG\nrf4KJJLM5Dg8PI1Svs3Ehw8fZhieSjE8VV5FPjqdRikrCexiwYKQiIjcLSK7ynxuBL4IbAQuAk4A\nn/Z6fKXUl5VS25VS27u65q50ZFNdiIZIsKxNZHAyyUs+ex8v+Jd7eN+3H/OJxIcPHzXxkydPcNU/\n/oIrP/kLfvLkiRn79VzTtYhIJLQQJ1VKvdiknYh8Bfix/e9xYI1rd4+9bUHR2VRXlkQ+9bN9nJxM\n8sbtPdyyo49rt3bxxu1ryhzBhw8fPiyC+NCtT7JtVStKKT5621Ncs7WT5mi4qA0sLhJZdOosEVnp\n+vc1wC77++3Am0WkTkQ2AFuAR+a7f6Xoaq6bIXqOx9P84LHjvPXytfzT6y7ggp5WvnTvQfK+K7AP\nHz4q4JsPH2U6neUzb7yQj7/qXCYSGe54qlgacUikySeRaviUiDwlIk8CLwA+AKCU2g3cAuwB7gTe\nq5TKLVw3LXQ2RWaQyF17BsjmFa+9ZDUiwu9etZ5DQ9M8emxsgXrpw4ePxYx8XnHro308d1Mnm7qa\nuHhNGxs7G/lxiUpraMqXRGpCKfUOpdT5SqkLlFKvUkqdcO37hFJqk1LqLKXUTxeynxqdTXUMT6WL\ntj14cISu5jrOX21VHbvu3G7CQeGuPQML0UUfPnwscuw5MUnvaIIbL1oFWIXvrtnaxY4jY2Ryeafd\nUCxFczRENLyg0Q1FWHQkstTQ2VTH6HS66EE/dmyMS9a2ISIAtETDXL6hg3ufmTtPMR8+fCxdPHBg\nGIBrthYcgS7f0EEik2OXqwz3UCy1qKQQ8EnklNHZFAFgLG5JI2PTaY6MxLloTXtRu8vWd7BvIMZk\nMjPvffThw8fixgMHR9i8vInulqiz7aI1bQDs7i+U4R6eSrGsMTLv/asGn0ROES31lufEZMIihwN2\navizVxYXjLlsfQdKwWPHxue3gz58+FjUUErx+LExLlvfUbR9ZWuUxkiQA4OFchOTySyt9T6JPKvQ\napPIRCILwGE7NfzGzsaidhetaSMglqrLhw8fPjT6xhJMJrOct7qlaLuIsLm7uZhEEhlnzlks8Enk\nFFEqiRwemSYcFCclikZjXYi1HQ3sH/CLWPnw4aOA3f2WzePcVa0z9m3uaioikYlEhpb6BQnvqwif\nRE4RBUnEJpGhadZ0NBAqk6Z58/JmnhmIVTxWLq+4c9cJfntkdG4668OHj3nFiYkEt+7sq5rpe0//\nJAGBs1fMrJm+ur2egViSTC5PNpdnKpVddJLI4qK0JYhSEjkxmZwhhWhs7W7inn2DpLN5IqGZJPPh\nW5/kuzv7APin153Pmy5bO0e99uHDx1yjfzzBy//tfsbiGVa0RPnxn11NZ5kgwYND06ztaCjrtruy\nNYpSlldWvb1/sZGIL4mcIlqixeqs4SoueFu7m8nmFYeHZ5bU3Xl0jO/u7OOdz1nPVRuX8X9+spex\n6XSZo/jw4WMp4BN37CWZyfPpN1zI8FSKL/zyQNl2R0amWV9iQ9VY0Wp5a52YSDoL1ZaoTyLPKkRC\nAerDQSYSGZSyClQtb46WbbvBHijHRuMz9n37kWM01YX44A1n8Tev2EYsmeX7jy14ajAfPnzMAoOT\nSe7cdZJ3XLWO113awysuWMmtj/aRzBQn2VBKcWwkzrqO8vVBVtguvycnkk54gC+JPAvRWh9mIpFh\nPJ4hnctXTNOsq5H1lpBILq/42e6TXH/uChoiIbatauGCnlZ+4JOIDx9LEj98vJ9cXvHmy6ykq6+9\npIdYMsuDB4eL2o1Op4mlsqxbVl4SWelIIglHEmlt8EnkWYeW+hCTyQyDNTJsdjRGaIgE6Rsrrj+y\nu3+CWDLLNVs7nW0v2dbNU8cn/NK7PnwsQdy3f4gty5vY2NUEWNHnkVCA3xwcKWp31F5QrltWXhJp\nrQ8TCQYYmkoRS1phBM3RxWXK9knkNKA+EiKezjEYSwKVC8aICD3t9fSNFUsiDx+yvLGu2rjM2abT\nH+h0CD58+FgaSGZyPHJ4lKu3FBaF0XCQS9a28dChYs9LrZVYW0GdJSK0NoSZTGSYTlkk0hjxSeRZ\nh4ZwkEQ6x1jcEjeXNVWOKF3dVj9DEtlzYpKVrVGWu1IebFvZQn04yBN91SPcdx4d47bHZupaffjw\ncfrx8KERfvj4cdLZfMU2Tx2fIJXN85xNnUXbL+hpY99AjGxJQkWg6N0vRVt9mPF4hoT9jtdHFk/y\nRfBdfE8LGiJBTkxkiNmGr+Yq3hPdLVF2uXLhAOw9MTnDRzwUDHDuqhae7JugEu7cdYL3fONRAL7/\n6HFu/v3LnaSPPnz4OL347o5e/up7TwJw53knueltl5R933bbCRN1Fm+Ns1c0k87mOTIyzebl1vs+\nFEsRCQVoqaKiamuwSCSetkikYZGRiC+JnAbUR4IkMjkm7dQn1VzwuprrGJlKkbMLVGVyeQ4OTXH2\nypYZbc/vaWV3/0TRykUjk8vzt7fv5rzVLfzV9Wdx//5hfvLUzHKaPnz4OHXEkhn+/sd7uGJDB+97\nwWZ+uuskDxwYKdt2z4lJljVG6G4pVmufvaLF3l8IOB6Kpehqqqu6+GutjzCeKJBINOSTyLMODZEg\n8XSWWDJDOChEw5Vva2dTHXlVyPrbP54gk1Mzcm0BnLeqlWTGWrmU4hd7BxmYTPGBF2/lPdduYmNn\nIzc/ePT0XZQPHz4c/OiJE8SSWT780rP50xdtpr0hzLcfOVa27e7+SbataplBDBu7rHf8qCtObDCW\nYnlL9dTubQ1hJuJpEuks9eEggcDi0jb4JHIa0GAb1ieTGZqj4aqrCu25pXWh2j6ypoxhbdNyy7Pj\n0NBMErlz1wmWNUa4dmsXwYDwukt7eOTI6AyjvQ8fPk4d33+0j7O6m7loTRt1oSCvvHAVv3h6gFS2\n2BaZzyv2D06VTWESDQfpaq4rsolqSaQaWuvDjiSy2FRZ4JPIaUF9xDKsTyayVXWbgJP2QJfU1ZO+\njiFxQwcnlka4K6V44OAIV2/pdHJ0vWRbNwD376/uzZVI53i8d7yqYdCHjzMFBwZjnJhIVG0TS2Z4\nrHec67Z1OwvEa7Z0kczkefRosePLYCxFOpuvGPexuq2evvG4q32ypiTSaKvL4+ncojOqg08ipwUN\n4SDZvGJ0Ou1k9a0EXcTKLYkEA+JEprrRWh+msykyg0QOD08zFEsVuQRvXt7EipYov67iEjyRyPDy\nz9/Pq//9AV73xQeJp7PG1+jDx7MN//aL/bz4M/dxzad+xa+eHqzY7pHDo+TyiudsLrxvV2zsICDw\n0KFiu8ixGi67Pe31HLclkXQ2z1g8Q1dTZc8ssEIIlK0C9yWRZyn06mAolqrpw73MlkRG7bxYfWMJ\nVrREy2b9BVi3rHGGTWSvbZg7z+X9ISJsX9/O41WKXn32rmc4OhLnT56/iaeOT/Dl+w7VuDIfPp6d\n2Hcyxr/e/QzXn9vNpq4mPnTrkzNUUxqPHB4lEgxwydpCtdLmaJiNXU3sOVHsaXnUflcrk0gDx8cT\n5POKcdsu2lElJAAK3lgjU2nqF1mMCCwQiYjIG0Rkt4jkRWR7yb6PiMgBEdknIte7tl8qIk/Z+/5N\nFpEva4P9YMfi6apGdYDmuhAihay/QzUMaytbo5ycSBZte/rkJMGAsNm2mWhc0NPK8fEEI1Mzo9xj\nyQzf3dHLqy9azQdvOJuXbOvm/z1wpOKL48PHsxn//eBh6kJB/ul1F/CRl53DYCzFnbtOlm2758Qk\nW1c0zciyu21lC3tK3PV7R+MExErhXg7dLXVkcoqJRMY4F1a9QyIpGspk+l1oLJQksgt4LXCfe6OI\nbAPeDJwL3ADcJCL6rn0ReBewxf7cMG+9rYE6O637ZDJTNp2zG4GA0FwXckhkdDpNR0PllciqtnpO\nTCRRSjnb9p6IsbGzcca5zl9t1WR+6vjM2JL79w8znc7xxu09ALzlirVMJDLcu2+o5vUN2vUMfPhY\n7BicTJZ1iXcjnc3z4ydO8NLzV9DWEOF5mztZ1Rrljgou8ntPxBz3XDfOWdnC8fFCTiuw1FkrW+sJ\nV9AsLHPZRCcN05joFPBj8UzZEhILjQXpkVJqr1JqX5ldNwLfUUqllFKHgQPA5SKyEmhRSj2krNn0\nZuDV89jlqtAPNpnJO4RSDa0N4WISaaxMIitaoqRs3anGMwMxzirj/aG3uSuhady/f5imuhCXrLNE\n8qs3d9JcF+JXNUjk47fv5vJP/ILrPnNvTQOkDx8LBaUUH/rek1z+yV9w/b/eVzXn3OO948RSWV6y\nbQVgLeyuPWs5DxwYmeFwMhRLMTyV4pwycVza8cWdUHVgMsWqtso2jk77XR+eSjvlI2qldtfqrEQm\nV5GcFhKLrUergV7X/332ttX299LtZSEi7xaRHSKyY2io9kr7VOFeHdSSRMASXyft1PGj0+mqOlE9\nIPvHrQk8m8vTP54om7CtozFCW0OYQ2XqlTxwYJirNi1zBmE4GOCKjR385mBlQ/yv9g3y3w8e4YZz\nVzAYS/EPP95T89p8+FgI/HTXSf5nRy+vuGAlvWMJPnnH3optf31gmIAU56q7enMnU6nsDBuHrkRa\nzmVX2z3cpR2GpirXEwLotPeNTBckkdYa5W7dHlmR0KLR4juYMxIRkbtFZFeZz41zdU4NpdSXlVLb\nlVLbu7q65vp0RILeSWQikWEqlSWdy7OsiiSystXSrWq7yEAsRTavWN1W3nC3sbORQ0PFkshEPMOx\n0TiXrmsv2n7lxmUcGYk7iSNL8dVfH2Zla5TPv/Vi/vB5G7njqZNlC2r58LHQ+M/7D7Gxq5HPvfli\n3nHlOn70RH/Fcf3I4RHOXdValFL9wjWWk0qpKri3SpbdNR3Wu1lEIjXiPvS7PhxLeZBECiRzRkki\nSqkXK6XOK/P5YZWfHQfWuP7vsbcdt7+Xbl8UcEsidTUM61AgEe2h1V7FJqKTOeq22j2wkuFuY1fT\njIn+6ZPW6qpUBaa9u3aXGAfB0tnev3+YN2xfQzgY4K2Xr0WEmjVOekfjvPebj/KR7z/p5BLz4WM2\n+ObDR3nHfz3MT2uk8zk0NMWjx8Z582VrCAaEt1y+lmxecceTM3+nlGJP/2SRZyNY8RvtDWF2leSq\n6x2LE6rggt8cDdPRGHFIJJXNMZHIVJVEtBF93GVYrxUW4HbrDQXOIBKZJW4H3iwidSKyAcuA/ohS\n6gQwKSJX2l5ZvwNUI6N5RRGJGOS1aaoLMZ3KMWITQ7Wsv9peMmq7Ax63A5Uq1XFf3VbvBDxp7Ksg\nkm9bZefyKUMiD9p1D1549nLAKtO5fV07v9pX2Z8+nc3zrpt3cPfeAf7nt7186NYnK7b14aMa7tx1\ngo/dtotHj47x3m89ymPHxiq2/aUd4/GKC1YBVszU+mUN3Fcm8LZ/IslkMuuMfQ0RYduqFp4eiBVt\n7xtLsLKtsgv+qrYoJ2xV81CNekJgJVZtiASJJbNMJrJEgoGadtT68OJWZ1VUxonIvxn8flIp9dde\nTyoirwE+D3QBPxGRx5VS1yuldovILcAeIAu8VymlfVD/BPhvoB74qf1ZFChWZ9Xm5YZIiOl0tlCp\nrL4yidQpO7oaAAAgAElEQVSHg9SFAk699f5xS0SvZLxb1RZFKRiYTDqpVJ4+GaO1PjxjNdUSDbO2\no2GGHhjggf3DtERDRZlIn7Opk8//cj8T8UzZ6mo/eaqfp0/G+NLbL2XfyRifvfsZnuqb4Pye1hlt\nffioBKUUn7pzH2d1N3PLH13FCz99D1/45QH+652XlW3/0KFR1i9rYJVrYXXN1i6+t7OPXF4RdOWa\n2msvmLatnGnj2NDZyI+eKJZeekfj9FRQHYOVgWJ4yno3TUgELG+sWDJDKBigORqqmXnbrd1Yauqs\nG4GdNT6vm81JlVK3KaV6lFJ1SqlupdT1rn2fUEptUkqdpZT6qWv7Dlsdtkkp9T7l9nldYBQZ1g0k\nEZ0mRReZaaqrbFgTEToaI446a3TailptqBB05NhQJgv64MND02zqaiw7WDd2NXKkjJ3jsd4xtq/v\nKHoBr9q0jLyCncdGZ7QHuOW3faxb1sBLtnXze1evpy4U4Hs7e8u21Tg5keTNX/4N133mXh45XP64\nPpY+JpMZ/vBrO7j2n3/Fz3aXj8fQ2Hl0jEPD07z7mo20NoR52xVr+cXTgwxOzrRx5POKRw6PcKXL\nSA5w0Zo24uncDPuglsrPKuOyu35ZIxOJjLNgA0sS0baPcrBIxCIPnVS1mnoarMWbJYlkjKoUuhep\nS02d9Vml1NeqfYD/mK+OLmZ4tYk0Rqw0Kdptt7GuOvG0N0ScAVrLJVjXZNbeXADHxxOsbi+/mlq/\nzCIRNyens3kODU3PUH85NpTjMyWXqVSW3x4Z5WXnryQQEFqiYV50znLu2HWSSnyvlOIvv/sET/ZN\nMJ3K8p5v7HT0xD6eXfi72/dwz75BBHj/dx4rcostxU93naQuFOCG8ywX3JeevxIoqK3cODoaZzKZ\nLYomh8JYLTWU943FWdYYKbtwW2/nuzpsR52ns3kGY6kiCacUmkSUUk4piFrBg5YkkiWZyVVcDLrh\nlj7Ci1CdVXHGU0r9a60fm7Q5E1CkzjKSRKyBo8XfapIIMEMSqerNZQ/4E7Y3Vz6vODGRqGhDWb+s\ngel0jiFXlPvBoSmyeTXDEN9UF2JDZyO7+mcGMz5yeIRsXnH15kI1t2u2dDEUS7G/TNwKWP76vz4w\nzF+85Cz+4x3bGZ1O8/Xf1E5n/+v9w3zu7v1+3MoCIpvL882Hj/K1B4/UTOZ5bCTO9x/r4w+u3sC3\n3nUl2Zziqw8crtj+oUMjXLqunUb7vTh7RTMrW6PcXyYv3L6TWrIoHqubupqIhgMznEZ6RxP0VEhJ\noj2wNMHpd66qy25TZEYEei1DeXM0TCxpVSo0SagYChaII7KU1FkiEhWR3xWRV4mFD4nIj0XkcyLS\nWel3ZyK8xok0uHJtAc7LUgntjRFHahmdTtNehUSa6kI0RIIM28cemkqRyamK3lzr7YCpoyOFlaF+\nMctF6W5b2eLk7nLjoUOjREKBIjfi59qE8puD5Yv3fG9nHw2RIG/c3sP5Pa1cvr6DWx/tqyi5APzq\n6UHe8dWH+ezdz/D6L/6mKFrYx/zh7360h4/dtou/vX13TQeK7z9mhXi987nrWdVWzw3nreAHjx13\nCrO5MRHPsOfEZJF6SkS4ZF35vHA6jmNLd3EKoGBAHCnbjb6xeNmM2QDdthQ/OGm9O1pN1VnFZVcT\nzPBUwWW3loqqIInkjWyo4cDStYncDLwE+H3gHmAt8AUghmXg9mEj5LIbmKQlcJNIJBSoOTCsGstm\n6iyw1F/am0vXLuipIImsKpFcwIp4DwbEKaLjxsauRvrG4jNWn3tPTLK1uzi/UE97PZ1NkbJpWADu\n2z/Eczd3OuWEX3nRKg4NTZcNlgRLqvqHH+9hU1cT337XlRwfT/DVX1de0Wo80TvO3/9oj29zqYKh\nWIpP3fk033nkWFUSB2vi/sbDR3nnc9bzvhds5rbHjrOrwjMGuHvvAJet63Dsddefu4KxeKasx9Wj\nvWMoBZet7yjafvGaNo6PJ2ZEou8biLG2o6GsWmjdsoai5KW5vOL4eII1FVS7zXUhouGAE1+ivSc7\nq3hPaoIZiqWZTGaJhgM1PTSbo2FiqSyJdK7I86oS3EWo3FLJYkG12WubUuptwOuBs5RS71VK3Wl7\nY62p8rszDkGPD1kP+KGpFI0G4myj7RIMtdVZYKm/tHFwyH4hKiV57G7Wq68CiRwftzILlyO39csa\nyStmFL96+mSMs7rLuU22lo1DOTYSp3c0wXM3FVacz7MllwcrpLN/5Mgoh4aned8LNnPVpmW86Ozl\nfPPho2VXtBoHBmO85SsP8dUHDvPWrzzE472Vsxy7MR5P18zBtNgxOp0mX+XeaGRzeX7nq49w0z0H\n+fD3n+Kmew5Wbf/dHb2EAsL7X7SFd12zkYZIkG8+XF4NOZHIsLt/siiN+jVbuxChbHnZZ2wp+JyV\n5e1xOuZJ4+DgFFtKEpFqrO9spHc04YwPKwecqiiJiAjLm6MMaEnEJqxljbXjPiaTGSYTmZqBg2B5\nXCbTOZLZHHUeEyouKXUWkAZQSmWB/pJ9fupXF9wrhaBBcmEtiQzHUjVVWQBNdUHSuTyTth61mjoL\nLPXXqK3+cmJRKrwILfXW6sudKfj4WBUbSqe1inOv8Ean0wzFUmVTQ5y3qoX9A7EZ2YIfPmxNIM9x\n2VDWLWtgVWuUhypIDHc8dYL6cJCXnGsV4HrNJasZnkqz82jlGILP3rWfoAh3feAa2hsj/MvPyqVs\nK8a/3v0MF/39Xbzw0/caV4ocjCUdHboJcnnlKallOpvncIkDRCXk85bDwiX/cBevvumBmiq/7+3s\nY++JSb709ku4/txu/v1XByr+Jp9X/OiJE1y7dTntjRFa68O88Ozl3LVnsCxh/fbwKEpRpJ5qrQ+z\nuauJx3tnPrd9AzG6W+poK/Fw0lLxwRL72vHxREVSWL+skbSdJggK7vGVxjZYWXYLkohNIlUkEa26\niiWzTCYzNe0hAPWRAIlMjqShJOLGUlNn9dgp1z/v+q7/r5i36kyEmzhCBvWPNYkMxpI1jepQMLzr\nl6GW90dHQ9iRRPTf9sbyvxERuluiDLjUBJY3V+UXE+DI8EwbSrmkkJuXN5HNK3pHi43gT5+MEQ0H\n2NRVWEWKCBf0tLG7gmrkoUMjXLahw5Hkrt3aRTgoZb12wLr2O3ef5K1XrGVLdzO//9wN/PrA8Ay3\nTzd2Hh3lX+/ez/PP6mJsOs3HbttVsa3G9x/t46p//CVX/uMvuHvPQM32sWSGTR+9gy0f+6mRim08\nnualn7uPF/zLPbzr5h1VJS+AHz5xnO/t7OPl569kd/8kn/55deK8ZUcvZ69o5vpzV/CnL9xCPJ3j\nh4+Xz0xwYGiKk5NJrreJHODF53QzPJUqK3E+3jtOMCBctKataPtFa9p4vHd8Bik+MxBja/fMcdTV\nVEdzNMRBV6noyWSGWDJb0XtKeyoO2FK2LpFQzVC+vDnq2ERGptJEQoGq76iWPGLJjFFlU7AkkWxe\nEUtljWwibiw1ddZfYcWC7HB91/9/cO67tnTgVmcFDEhE2w0yOWVkiNfSihazaxW+aneps0am0zTV\nharqabtbogzYkkg2l+fkZLLiaq2jMUIkFHBeTIBjo9aLrbOauqEN96UGzn0nY2xZ3lx07wDOXdXC\nkZH4jJQpY9NpnhmY4ooNBV15czTMeatbebSCJPLLpwfJ5RUvv8ByEX3VRVZE88+rTPRfvOcQHY0R\nbnrbJbzn+Zu495mhGSoUN4anUnz0tqe4aE0bm7ua+KvvPVGzYqSbmN51846y9V/c+OQde+kdTfCW\ny9dw995BbtlROfZGKcVNvzrIOStb+PxbLub1l/Rwy45ex6ZWit7ROI8eG+fGi1YjIpy3upVNXY3c\nVeEe/faIRXqXu56D/v5oGRvHvoEYG8qULTh3VQtj8UyRV2A+r9g/MMVZZUhERNjU1cRB1wLghBN4\nW36sLteq2pg2lNfOENHVXOfYXXSZhmrBgE2zkET0vYgls0benG4sKUnEIEbEh40im4gBibgHgomO\ns8khEeulqaUC62iIEEtlSWfzRob45c0FEX54Kk0ur1jRWj4i3pJc6oqCGY+PJQgIZX+zQUsuJdUZ\n91VIZ3/uasuu8vTJYg8wPUGVGlwvWdvOE33la8b/8ulBulvqnKj71W31bFvZUrEU6mQyw73PDPLa\ni1fTEAnx1svXEgwIP3qiVJtbwNd/c5R0Ns8/v/4C/uHV5zIWz3Drzr6K7Q8Mxrj9iX7e94LN/PwD\n1zCRyPDNh49VbD8YS3LbY8d56xVr+eRrzufCnla+ct+himqtp0/G2D84xVuvWEsgILz9ynUkM/mK\nxPmgncX5um3LnW0vPHs5Dx0aIZGeqbXecWSMzqa6osp9K1ujLG+uK2tvemYgVpYUNtl2jIODhXEx\nPJ0ilc2ztkyyQ7Cy5mpHEShI5pVIpNu2A5ZKItXeh9Z6y+idyyumUllaamTYDQcD1IeDTCYydvCg\niTorWPa7CZaUTUREfiQit1f6zGcnFzvc6qzSlXU5uHPlmHhzadIYdEik+sBrs1+S8Xja2JtrPKFt\nKNqtsXqNk4EiQ3yS7gqG+LaGMC3RUBGJjNk2lHKTy8ZOa3IpTSKpI41LDa4Xrmkjlc2zf3Cm2/Hj\nveNctr6jaCV5xcYOnugbL2uPuP+ZYTI55QS5tTdGuGJDBz/fXVly+clTJ7hy4zI2djVx6boOzl7R\nzI/KJP7T+MFj/QTEcnfd2t3M87Z08j+/7a1ICnfvGSSTU7zl8rWIWMkFDw1Pl3WzBvjFXquvL7Wv\n4bzVLaxoifLLveWJ87dHxmhvCBepFS/fsIxMTpWNB3qyb5yL1rQV3VOthiz1wounsxwbjZddLOjz\nuSWLWjYLXeVT36s+m0QqtW9viBAKiCOJjEynaY5Wl8odQ7mdZdtE3axddhOZnFHlQbcdxEQT4caS\nkkSAfwE+DRwGEsBX7M8UUN194wxDkWHdgEQiHklEi8xanVVrYDfb+2OprBGJtNlFsvJ55RiHO6p4\npHS3FDxYwEoKWelFFhF62hsc1QMUUmeXS6/d015PKCAz1F8HBqZY0RKdsdLTRFRaiGt4KsXx8QQX\n9hTr4i9d104yky+bdHLH0VGi4QAXuvT312ztYv/gVFmV05HhaQ4MTnH9uSucbS85dwU7jowWpc5w\n4+69A2xf3+G4hr7s/JUcH0/wzEB5O80v9g7Q017PVjsO4rpt3YhYxymH3x4Z46zuZuf4IsI1Wzt5\n+PBIWaLaedRKb+MmBW2/KI3LyOTyHB2JO31xY0t3E0dHpovI+dDQNEpR1ntqRUuUhkiwhESqSxYr\nWqOkc3lnjJ4YTxAKSEUbRyAgLG+ucxY8w1PV07SD9S6A5VUWS2ZpMpAsmqMhYqmMcdzHqZDIkrKJ\nKKXuVUrdCzxXKfUmpdSP7M9bgefNXxeXFoxIxJ3GwGBQaNI4aajO0u2nU1nG45mauXxa68MoZelo\nCyRS+TfdLcUrwv7xZNXUECtao0XqLz1ZlDPeh4IB1nQ0zFB/HRiamhFQBpYdJhQQJ+hM4yk7pXdp\n8kdNKuWMwI8eG+eCnrai1Z4Onny0TKDbDtsWc9Wm4uJGeUVZj7GTE0mePhnjxecUVEcvOMv6ft8z\nM4un5fKK3xwa4QVnLXcm+WVNdZzV3ezYJkrbP3p0jO3ri1OAXLy2nbF4piigFCxj8OHh6RlG767m\nOla1RmdIFkdHpsnmFZvLkMKmriYyOVWUzuS4/ZzXlIkQDwSEnvb6ovQ8tUhEG8p1TNPIlLVAqvbO\ndbVEHRvHyFS6qj0ECpKIrvfTbOL4YufCSmRyRqTgTo3k1bBuMl/MN0yuoFFENup/7BTtMy2oPgCz\nBGnFkoi5+KsjaGtJIppkplJZYsnaSd60O+V4Im1IInUkMjmm7ASSQ7EUy6t4vHS31JWov3QAZKV8\nXg1F3l9KKQ4MThWpXDQioQDrOxtnrOT32sbw0pTfq9vqaYgEZ6i/kpkce/onuHht8YR6/upWQgEp\n64762LExmutCbHb164Ieq/3OMkbmJ/osItrusuusaI2ypqO+rD3h0NAU8XRuRp+2r2/nsWPjM7y0\nDgxOEUtlZxQf0yShz6+hPZ3KkcKW7mYODRffUy3tlSeRxqJjgolkUV8U5No3lqCpLlTRw6m0QNto\n3ERVG2bcdncfi6dnuA6Xwl3vYyppps6qDwdIpHOks3kjEinKheVRPRUwCCGYb5hcwQeAe0TkHhG5\nF/gV8P657dbShcmYcJOIycpCr1z0BG8qiUwls0ync7VtKPrFiVuFsgJS2Fa2vSadeIZEOkcik6ta\n4re7JcrwVNpRdfSNJWiMBCsaLVe21RdJLkOxFPF0rmwEPcC6joYZCf2OjViJ9kqDvwIBYfPyJvaX\nkM6RkWkyOcW5q4oll2g4yPrORvadnKlueuzYOBetbStSZ0bDQbatauGJMqTwVN8EwYCwraRe94U9\nbWVJ5EktTZUUULpoTTtTqewMu1GhlGvx8bcsbyIcFMcVW6M6KTRxcHC6KPZDE0Q5Mt/gpM8pJpFo\nOEB7mbIBACtbokUk0j+eYFVbtKI3VLddykCPjbHptJGUrWNeTCQLtzprKpV1VMnVUB8OOjZF7yTi\njRRqpY1fCNSc8pRSd2IVh3o/8GdY0es/n+uOLVUEDSSRUEDQY6FWQRooDMwR20WxlvFOk8botOVp\nVYt09IszbldbbG+IVHVV1i/uWDxdCMiqof6Cgqtlvx2HUnGyaI4yOp12AhT1RLOqtfyKtqe93pFu\nNI6OxMvaXAC2LG+eIYkctifIjWXclLd2N3GgpH0ur9g/GJtBCGDZacrZOJ48PsHW7uYZE80FPa0c\nH0/MCFZ86vgEDZEgG0smbW0H2j8wkxREmEG2oWCAdcsai+wPun04KKwro27a2NVIIpMrIvPe0Tid\nTXVlx1NrfZj6cLCEFCw1Z6XnvLItyvBUoYDa0FTKccstBx3rpN2VxwwkkbYSEqlFCvraYklzw3p9\nJOjYwOpNcmGdQmr3xUch1b2zLtHflVIppdQT9idVro0PCyYR6yLiDCQTcVYTzVQqSyQUqBmL0lTn\nzRDvkEg8zVi8eoJHwFlZjsXNSvzqYlhFBs4q6q8VrdY+HfSlJ6ZKbser2+uJJbNFUdZHR6ZZt6y8\n5LK2o4GByVRRFL3O11Uu1mXL8maOjsZJZgrtj48lyORUWeloa3czw1OpGcb1fScnZ3iX6eMDM4Ig\n9w/G2NI9M5Zm8/ImRJhBVAeGpuhpry+7Gt7Y2VikagLLM2r9ssayVfv0fXDbpk5MJCsWQxMRx3tK\n4/h45cwHYNk4lMJxLx+r4QRSFwrSVBdidFqrpzIVg2g1WuvDTCYzlsuugXqqIWztH45Zz86k3kc0\nHHRKNZhJIlL2ezXoaWURCiJVJZH/JyLtItJR6QP813x1dKkgaDgo6uwX18TvOxIMFCQXk7gS7c1l\nv5y1ghN1ZUXtkWJsQ4kXbCjVDJaalPSkanmMVYkadiQXq/8n7ZTvKyuRiG1b0fXnU9kcJyaTRbEM\nRe1tg36/y2Ps0NA03S3lV9kbuxpRquBVBjj2glIpAQoZZd3G/kQ6x8BkyombcaOcuyvY0lSZa6iP\nBFnT3jBDmjo4OFVknyk6x/ImjgxPF+UDswoulb9HpdHeACcmEmVrjWusaI0WpefvH09UfGZQeM56\nsWNJwdVJoa0hzFjckrDH41YwYDW0NkRQylq4ZPOqpiRS78omAbUXYGCps7TWzyTuYzaSiJ5VlppN\npJXalQ39PNwlMAk2hIJdxMTFV0QcacSkfX04SEBwotBrqbM0aUylskYivJZcxqbTRi7BbskFdCRw\n5clCT1QnJwqSSCQUqLhKLZCCNYH1jSVQiookonMtHXcFrh0ennJiVMzaV5ZcHPuAi3Q0AZULpFvd\nXk8kFCiSFNJZK+fT+goquXXLGuh19UcpxdGROBsqXMOa9gayeeWoFMEi50qTvDZiu4n2RA0vvJUu\nQ7lSipHpdFWJs8O1GMnk8kwmszWl4I5Gq0DbZCJDXlGzvTaU6yDFWjaRSChAKCCFWj+GNhGNWhl8\noYREjCURq93io5AqNdaVUuvnsR/PGpiuFPTgMfXOiIaDJDN5o/YiQkMk5KSUqEUKdSFL0tEle7ur\n6KXBZYhPZMjaS7BqK8K2MpNFVUnEnngcSWQyyYqWygZXd00HKKjBKksu1kToTq7YP57k6i3ly+Ro\nSadvvJhEmqOhsragla31iBSTjjY4l1OxBQPC2o6GIqP08fEEeQVrK6jkVrfVs9cVQDiZsFxMK6mb\n3O6xq9rqSaRzjMUzFe9RfSRIW0PYUU/FkhliqWxVyWJFq+WFp6O9c3lVVc2pFwWj02nHg8okMHZs\nOu0YsttqSC56gaQlJCNSiASdsdRgIFm4pQ8Tl93ILLyzAmJnvV2ELLL4wh+XOEwlES3+mkgWUKiY\naNq+LhRwDPG1vLNEhIZwkOlUztIb13jRQsEA0XCA6ZRlhxCprjtuiYYIBoSxeNpRaVXz5mpriCBS\nIrlUmVz0RK4zFmvy7KywCl7ZGiUgBckll1cMTaUqqmqWN9cRDkoRKfSPJ+hpbyhLbJFQgOXNdUXG\nfifAsor6yG2UPuKQTgWVXFs9w1Mpx07T76j8KsRYtGnpzjrHiRrtwZIIdTu9Mq9UUgCs2hp5ZUV7\njxm4ijtqznjaMZabeFtp91uAprrqJOIkO3Xsg7WDBxsiBW8rE8nC7RxjkpXXXeLWdL4oSCKLj0V8\nEjnNMLWJ6EA901w42s3XmHTCQefFNKnjXB8JkciYqbPAkm6mUjkrqjcSqmrsFxHa6sOMxTOu1PSV\nJ4ugXaNd998KmKz88kfDlsFVrx51HYhK0cmhYID2hgjDTpLKFLm8cnItlSIQEFa1FXuADUymKrYH\na5J3k86x0TjN0VDFlfOqMjETQMUCSlqFp/vkkEIlSaSlvqidJpNK7aGY2LThuJoE6UgWtoMGVCeF\nxkiQcFAYnTZz0ABLkpi21a76GNWgx/6ABxtHQyTkSEYm75tbmjAxrLvtIOWcGsohsEQN63MGEXmD\niOwWkbyIbHdtXy8iCRF53P58ybXvUhF5SkQO2CnpF+HtNPPOApxAMVNS8OLNBdbqaNpOoGdabTGe\nzhnFlVjtQ8TTWaZTWaOaKG0N4SJDvEmQ2JgrSKzW5LKsKeJIXkNTKUIBqZoy32pfrP7qqqLG626O\nFhXuGphMVlX7rW5vKCKdwclUVZXcitYSd9dYCpHKOcy0Sq7fIRGbFCqom1rqrbLJup2W1qoFiS5r\nqnOVFLCeRTUyd1y/p10kUuU5i4hVhXM65bSvpZ6yFi/WuIPa9j6niqj9jE28repdCzCTRZ7X4EGv\nGSugoCZfjJNezSu266u/XUT+t/3/WhG5/BTPuwt4LXBfmX0HlVIX2Z/3uLZ/EXgXVszKFuCGU+zD\nnMAk7QkU1FmmpKDFXmN1lmtFZEoiY/GMUVwJ6GqLWabTWSPSaYqGmUrlnDrUtWqitDZEiiSR1hqT\ny7LGiENQw7EUnU11VaWjDld77YFUTbJY1hRxpKhsLs/wVHVJpLu5zpGMwJq0qxmZV7VZ7q66L0Ox\nFMsaIxVXqqV2oIGJJAGhYpyFVbWvkDlgzGDl39FYKLM8aiBZuG0c2g23pvdUvZUyJGarp2pVBmyM\nhEhmrAJtYE4i2qHATBIpeFvVmcR9eAweLlZnefTOMpxf5hMmV3ATcBXwFvv/GPDvp3JSpdRepVTt\nEnM2RGQl0KKUekhZeqCbgVefSh/mCuY2kdlJIiYuvlCSKdjgN/WRYMEjxbDaouXNlTNuP53KEktp\nXXaNmih2uop0Ns9UKmsgiRQm7eGpFJ3NtdtryWXQ0fdXliyWNblIaipNXlVv39EUIZ7OObVFhmxi\nq4TSaOxa7XWlSn0No3ZKj2qLmI7GiKOmGY1btqxqZN7eECGZyRNPZz3bOGoVQ9NonCFZmAXSmpKC\nNnrrBYCJC667jZEkUlQe26vkcgZIIsAVSqn3AkkApdQYUP0NPTVssFVZ94qITvS4GnAXaeijSnVF\nEXm3iOwQkR1DQzMT280ljP24HUnErL2eHNyrmGpwe4mYvAiNkZDLI8VUErG8uUw8XhojtuRiTCIR\nxhNpJ4CwVvzAssaCpDAaz1TV3QN0utsb2Gk6GusYs+uu69V8NVVQZ8kkXyvAUpPCqMs5oFr7lvoQ\noYA47cemMzVVQW7pazyepiUarjrpLXNJFmPxDJFgoKq3kvbaG4tnGE+kCQWk5nN21FO26tXUHf2k\n475uZhOZsCUpkwwRRS67HtOYmCwiQx5JB3DYYzEq8U2uICMiQexpT0S6gJrFoUXkbhHZVeZzY5Wf\nnQDWKqUuAv4c+JaIzMwrUQNKqS8rpbYrpbZ3dXV5/fkpwfQhFyJQzX6gycbYEB/yps6qjwSZiGuP\nFLMaJ9OpLFPJbM1gRihMFtqrptZk0VhneYuNO7ry6uuWlvqwUw3RJOlkR2MdEwlL0plMZIiEAlWN\nop1NVtDaWDzj6O+rBVi6VTvTqSzxdK4qKZSm9BiOVScREaHdRQomdiM3iRjVmXGCRC1vq/bGcNXx\n2hCx4pOccVEXqjm+m+oKi4tQQGqOPae2jmEgrSaEMS+Gco9SvLu9SdyH+56Yai5cv/bYfu5R++2H\nfwNuA5aLyCeA1wN/XetHSqkXe+2MnVIlZX/fKSIHga3AcaDH1bTH3rboYEoKWrIwHRJad2runeWt\nZklDJEjajmY2qnESsUghHKxeg9o5fp1luJ9KW6lbap1DqzmM4wHqLF15JpdnKlk70Z52MR6PW9JO\nLRuNW1KYMLDraIIZmU7RGrPaVatlUchHlkEpy+W4Vu2LZY0Rp+Tr6HSangqeXM45bBuHUorxeG3J\nxQkqjacZNSApEaGxzirQZKrmbKwLWYlCU1kaIsGa74+7VHRDJFjTRhC0iSlhu0KbZohwvhu8C5Gg\nm4K2oqcAACAASURBVBS8pnY3bG9rLhajJFLzKSulvikiO4EXYc15r1ZK7Z2LzthSzqhSKmenn98C\nHFJKjYrIpIhcCTwM/A7w+bnow3xBq728BieapI53twsGxMjYH/UouTTUBa3018G8sSFeSyJGNRoi\nIdLZvKNbr6kWcdW6NkndotONT+ra2DUlF5sUplKOc0C1etpum0V7Q217QkMkSCQYYCyeJpnJk87m\nazsTNFmeTWA5H5y/uoY6qyFCOptnOp1jLJ6umsIEiuvSxJKZmkZv/RtL8jJzuGiOhjza1qw2Q7GU\nUSAgWPc2lc0TDIihzaLwvphI5aeSldcj5yxCOaR6AkZ3jqxB4NvAt4ABe9usISKvEZE+LIP9T0Tk\nZ/aua4AnReRx4HvAe5RSuvrOnwD/CRzAqqz401Ppw0LDa0K1gouvofor4E395SYOE+N9Xch6MZOZ\nnFGUriaF8UTGiHQa7DbDTsBkLV15QR2UyORqBpU1O6STMZJEtLppIpHxKImkHc+jasQmIpYb9HTG\nUcvVqtfd0VjH6LQlWZgkztSkN5W0DOW1VIR6wo6lskynzFy/HbVlKmtoWwsybWdKMBkXWj01kcgY\nj23dD9P2blLw6uJrbOOwYbqI1An5F2NkQ7WnthOr7wKsBcbs723AMWDDbE+qlLoNS0VWuv1W4NYK\nv9kBnDfbcy4+aEnErLXWnZqsjMBliDclHY8ifDQcsNRfOe914k0miyZ7wtIeY7UigZ3qj7bBtZYk\noifoKTvqvpbqyJlQ7WzB0XCgajRzQyRIKCBM2kkt3eesBCcvlOPuWlua0hX1Utl87UA9p1iZlcKk\nUj0XDX0PtSv32rrq6jIo9rYyVWfl8oqR6ZTRuNALllgyU9Omo+ElT11R+2DtjNng3bDuhteEiovQ\nw7dqedwNSqmNwN3AK5VSnUqpZcArAL+eyCmiMHa8TfKmqym9IjJXf3kLmCoy3AfNVqhguWY2Gaxo\nZxhQa0wwesLVAX61SKSUFGpJIs22ZBNLmbUXEUdVU5Asaie2HI8XJJFa6qOmaMjpD9SOvWlyqfCm\nU7UdIpwKmXb7JgPJQl9z3DBo1T0uTNrrcZdXXiQLbzFWkaBX0nGndvcmiZhygs5wsVTTnlyplLpD\n/6OU+inwnLnr0pmBQmpns/YFycLbi2MqubiNgyYvj/u4JgFZus1EImOUj0hPcFoSqaX/1qv8E8aS\nSGGCnIjXJoUmd3sDEtG/mXIF0tUkkXpLEjFt31yn7UY68M5MWhux41xqEXM4GKAuFGAqnSWeytFg\nQv4R65qnDEgKCrY403FRFP/kNcbKY3uvxwfvkoJXSWQRarOMvLP6ReSvgW/Y/78N6J+7Lp1ZMNVx\nasO6aW6uoMcI94jHl7POYxyKniC0O20tNLpWqAGpPQHoCbRAImaSxWRSq3aqtw8GhIZIkKmUmQ0F\nrGR/MVsSEantjtpYFyKezhmrv5ziY4Z5oQrFysxiLKw+WCqz6bRhTjVbEklmckbqqTpHPZU1G0ce\nMzHA7EnBVDXlJgLPNotFSApeYXJX3wJ0YdkwbgOWU4he9zFLeI1ADdtuHKbirFf1l1djoldvLj1Z\n5JXZitDJeRRL0RCpHW/Q4EguhhNqtCDpKINVuT5mLJllMpE18lRqrgsRS2aYNEhSCdrIbK7+arL7\noHN61TJkN7nsUibtrT6FGI6ljCQXsGxXyUyOeNpMctGLi1xeeZaAjZ1GvL4LtnrKlA9Ma4KUg6nk\nUjCsz/pUcwYTF99RrPrqPk4j9GAwdfHTA9WrIX42kojJJF/nMQ7Fqxoi6gSJpY2rywEM2d5ctaLo\ngwGhPhw0NtyDvSp33FfNVuWDsaSRyzHYSS1TOWN1VmkZ5FqShRPtPamJ1kw9NWDfo1oZc8EyfCcz\neVLZvJF6yms802zUWbqduWq3sOAxgWnS1XLwKrksRptIzZEtIr+iQIQOlFIvnJMenWHwKlmYx5V4\ndAn26J3lniCMSKfIEG8+WcTTuarpRTSiEau9jvg2IQUr6aR5+6Zo2PGGMiWdQ0NZplKZmqopsCb1\ndC7PaDxtpP4qJYXaWQCKScesREDQpf4yUE+Fgk5gn+dx4aHKZyqb96Ce0vZBMycT/S7kDVnkVJIi\nGksiSp9r1qeaM5jYRP7S9T0KvA7Izk13zhzosWO6EHEi3D1KIqZZhb3aRCIe1QqzNcSDVeukZn/s\nOvTaU8lU2tHpMKIGq+zGSJBEOksinTNK5KfVX14kEbAy8jbV1VZ/OZLIhFkKkHAwQCQYcKQvU5da\nnbTRpFaGW7IwWcB4zfEGzIJEZmcTyRqSyClJIh4liyUpiSildpZsekBEHpmj/pwxcCqVGQ7AQlEa\nb4Z4U0Q82kTcmUtN40oKxzfXlVvtzfIRWXUgzPN/RcMBRxKJGpJOLJklmckbTagNEWtVPp3K1gzs\ng4I6amgqZeTZpO1GuriWkQ0iHHDyZ5kY1qOhoFMAyshWFvYqcXqTaMGlnjK2cXgjEb0A0261tWC6\nUCsH83ytylP7+YSJOssdnR4ALgVa56xHZxhMx58mD9P22hCfM1xNuV8wk6hbdxsz10yPhnhXG9OX\ntD5s5ecyPUd9JMjRkbjz3eT40+ks6VzeSJ0VDVskYpGOiTOB9TqOxdNG0pqesHXqkwbDPo0nzFV4\nUY/eUMU2i9NvE4FZeB56NKxrCdDQJHKK6iyvksjig4k6yx25ngUOA38wl506E+CkPZkjcVa/aDnD\nN8FrpG3QoyRyKoZ4UxLxugqOhoKOEdtkQq1zqXbqI2aTvFJWVLxRbIwtGYxNZ8wC7+x7OjqVpi4U\nMCL/aDjAUMw80ab7ORgFoXolHY/PDApJDr0ayk2lc+ddmBfD+ty2nw+YkMg5Sqmke4OI1LZ0+qgK\nr7mzvAYnan20qXHQq/or5JFEIkWSi5kBNRIKkLYT55lAT6p1oYCR2s8tfZiop+rDQUcVZGYfsNqM\nx9OGbs12MOB0io7GZuPjT6dzNVOkOL9xkdmckILXKn8exxG4k5F6c9k1XfV7lSxORZ1lnDvLeY0X\nH4uYPIUHy2z7zenuyJkGLVF4XVmYDnC9KjVVZ3kVq92kY7KCdL9opitI3c40vbbXdBVuIvBCCubt\nrX5Mp3Oe1FPJTN7MpuNRRQjeJUK3usnMzuTNxuFVonX/xtzGEZhxrqrHF2/qrFOyiRi2031ZjLmz\nKi5fRGQFVvXAehG5mML1tgC1M7H5qIrZqrNMoSWFvKFx0GsdBHd7k5fZa3uw7CgxssbEWUhvYebK\n6Z7wTG0i5b6btDfpk5uMTUgqHBQC4i2PVNSjq7W7HyaSS9hj+hy3Cs50XOgFj4mDhru9V09IY8P6\nvKqzFh+LVJOBrwfeiVUA6jOu7THgo3PYpzMKxisLj+ovLSmYkojX1VTIY82F2Ugi2ivL1F7jNV+Y\ne8IzMzK73I49Si4mffIa8CkiRG1ngvAspC+zRJunsFgwmOSL1KKGRKgnd2Mbh04Z5LFgnLlh3bBh\nGXgPNlx8qEgiSqmvAV8TkdfZKdp9zAGMB5GubGY4jAppVebGJdj98psQkFcbChTyhJkSnOdEewH3\nyt+bO6qJ5FKsCvKWXNBE/WWdwyYRU0kkXFDtmNxXr0GoIc+SiPdxoce26bjwWgDOYyJez6rgWWEp\nVjYUkbcrpb4BrBeRPy/dr5T6TJmf+fCIudJxiqPXnStJpPCmmbxEgaIVp5kawtFlG745XutGhD2m\n8PYqfbmJw4ykvJEOFOJbvOZIM81k4CZ/k9+4JRGv7U3J3yER05gp+xpM1aJBu0+GQvy8TuxLLdiw\n0f7bNB8dOVNhPAA9jh3HODhHboruycWrOO/V1dI0c/FsU367z2Xa3sw+4G2C9KrOAld6G4/tTUmn\nSA1pop7yKFnMxrDu1bNRk4dx2QWPC7D5nNiXlCSilPoP++/fzV93zkTMzajwKuF4lUTc7b2K8151\n095tIoaFuFwpv03Uiu6J14QIiyQXAxuKexI1May7z2ES1Q+ussmzIFq35Fb5+N6JUCNouBrxqp7y\nXG3Q46JofrRZphaa+YdJxHoX8C5gvbu9Uur3565bz344CdU8DkDj1dEpuOyawD1ZeCYRYzdlb2oL\nrzmS9PG9Gmjd56oGr7ExXttD4Tl4jrEwrpDpzfAdnIXa0vmtcRzHzHOZ9MnYZdejFD8fKCRgXHyi\niEmE0g+B+7HK5ObmtjtnHkwne68is8egW8/qLLeKyeu4Nne19Obf7zVORBOBV5ICs9VtsQ3FRBUU\nIBgQcnnlQZ0lM/pW6xxgrv5yLxZMIuK9uvi6YTqOCpKIWfuCy67h8R31lzfD/Xxg8VGIGYk0KKU+\ndDpPKiL/DLwSSAMHgd9TSo3b+z6ClVYlB/yZUupn9vZLgf8G6oE7gPcrU0fuRQgtUczVwsKresrr\nCqfYJjJHkojHTMQOKXhsb4qwR0nEq00ECpOEVyI0Lpus1VmzkETM2ntT+blhvKDymLy0sEgwtXHo\n8xg1n1/D+iJkEZOR9GMRedlpPu9dwHlKqQuAZ4CPAIjINuDNwLnADcBNIqKXcF/EUqttsT83nOY+\nLQjmyijndXXkOWL9FGwi5q6WHkkk5E395bX4kGfDuttTyaPR2JgUPKYACXkkHRPpo6i92/Xb87jw\n1s7YxdejJFIIBDZsb9juVOBUNlyEsojJCHk/FpEkRGRSRGIiMnkqJ1VK/VwppWuSPIQV0AhwI/Ad\npVRKKXUYOABcLiIrgRal1EO29HEz8OpT6cNiwVytLLwe17M6q4hEvJ3Lq0HU1DCq3UW9Vos0tTOF\nPa6yi1yIDa9BTxLm0po3byuvFS+9GqVDRWrOuZGGvaqzCmUUzNp7lXTmM4p8MUoiJvVEameCOzX8\nPvA/9vfVWKSi0Wdvy9jfS7eXhYi8G3g3wNq1a09nX0875mpQeH+BvR3f/eJ4l0TM2umJ1DztiTdd\ntld1VpFh3eCGuWMg5kzl59hEvLX3SjqmcF+zeA7a89bOvBaPo6Ayau9ZnWXW7LRgEXKIkXfWJWU2\nTwBHXdJEud/dDawos+tjSqkf2m0+hpVe/ptm3TWDUurLwJcBtm/fvqjtJl7FU2PjoONhMjcJGE/l\nt15tIqYTmVeDqJ5ITe+pVxdf98Rues1aKjJ3a/bonRXQhvU5Itp5UHNq8jCVnj1nzHayPZi2N2x4\nCtDv8VLLnaVxE3AJ8JT9//nALqBVRP5YKfXzcj9SSr242kFF5J3AK4AXuQzkx4E1rmY99rbjFFRe\n7u1LFl5rJnvP9mufx7D9qaWz9tbe2CDqeGd5WzV7XcWb3iOvRmP3BDxXqh19zV5tKHOWDucUvPaM\n75HXd6fkr2l702cwHxO7YxNZfBxiZBPpBy5WSl2qlLoUuAg4BFwHfGo2JxWRG4APAq9SSsVdu24H\n3iwidSKyAcuA/ohS6gQwKSJXivXEfgfL9XjJY6ka1k/tXGbt9IRnuhjWK1Ov2Vq99gcM1Vmu9t7V\nQh4lEY+G8rnK7nxKxGlaW8PxbDRtb8E4wt2jJDKfWIx9MpFEtiqldut/lFJ7RORspdShU2DgLwB1\nwF32MR5SSr1HKbVbRG4B9mCpud6rlNKxKX9CwcX3p/ZnyWK2wYammKuJvRw8G/E9qqeMI5kD3lbZ\nQY/qr6IJ0iRNiqvfnl2ujfvkTRLR5GRaZ8bU1qLhvk7vac69tfda0Ml0XBTUX4tvyl6MfTIhkd0i\n8kXgO/b/bwL22NUNM7M5qVJqc5V9nwA+UWb7DuC82ZxvMWPuDOv2F9PcWadSWGeOVpy6nemq3GvO\nI93eq8uxKQKzsA/oCc88it72SDOWpqz2piTiOTHnPNhECgsw0/banuCpO4uqANT/b+/M4+Uqqjz+\n/RGWBEKAQFhDCEtEISJOAoZVYKISQIIIAwqE4EgmAwiouPDBDzIwEYRhxmFcGGQwRKOIIssgq5Go\nIxMkQEgCiATQDzARATWIYCTJmT9u9Xs3L/3eq+ru2327+3w/n37vLnVvnbrbqTp16lSvIiwfMdWX\n6WSutueG3zNh25vAoUUJ1i0UVbNI9QZqZjiFojriay1z7FH1TD6U2reQ2hKJfY4qcqyKnTY50ZxV\nl9deZFaps/z1jrGIlCPRm6uZlLAhEuXi+wZwZfj15bWGS9RlFPVMNLNPJJXUDtFUb67o1lfiqLIy\nerClztpXuUaxzgT1PBbJQUALcj7oqcUX5M3VTNrSnCVpHHApsAcwtLLdzHYpUK6uIT52VhpFv8D1\nUE/Y+QHPmxpoL1Hp1DODXT1moYHo1YOxz1ExyqxqXon3OTZ9xTyV2rEeL0f4n3hcMyihDokyZ32D\nLOTIKjLz1RzgW0UK1U0U3bHejCk+U4n9WKxJ/Fgkj40JF7+oKYTzJIcjTyxzUXGemtpCTTRPRadP\n7BNJvabNpIQiRSmRYWY2D5CZ/cbMLgKOLFas7iF9sGFsKPi09M38WEQPvEvsZE6eEyVR0dbTWksO\ncBlZ5kqq1Ai4sSMsm9m5XNRYmgrxrbXa5GkGbWnOAlZKWg94StJZZIP8fLbDOkmtHRXlRtuTvoQ1\nzooHUXStPNGc1TMgMzFEeC2kByMsxhSU7nZbPoeLdO+s7H/qu1a+z3U5ZYoNwLgxcDYwATgFOLVI\nobqJ6EG6iYbdomt19RArW8XMlOzim9ixHm3OqqslEpeuIkmsV1TN7tXR5rKk09dF4oD1BPNXqLBF\ny5Hm8dZMSihSlHfWg2HxNeC0YsVxGkWZfNz7EquwKl6osa2qyguWPFlRXPK6FG2qq2xqOJz4uFNh\noY3NnBXZY5V6ckskLllLKGMo+H6ViKTbBjrQzI5uvDjdR9FmiDJGn4z9VlRaCNFKpPI/0fzVjAGZ\n6R5psZNYpXasF2tWq4f0MCbFpK+ka6azSSzt1hLZD3gO+A7wAOVW0G1H0R/3MnYKVoj9oCYrkTRL\nTc0j3Gsh9YMUGy8s1X6fHiwzLX09JLulp44TiTxvT2WkhJ+8Mr7WAymRbcmCLH4I+DDwQ+A7+Tha\nTv2kPhPRs7MlS9I84l18s/+p/QOpMZJiqadmmmrOio0X1tv6ijtvmfvK4seJZP9TW7TpLZe48zeT\nMiq2fp9UM1ttZneZ2anAJLLQJ/ODh5bTZMr48NRKfA2y0hJJO3+87TtN6TS1JZJo5iyqctFcF9+4\ndD0d5bGVkTVpDhqpgxmbSQlFGrhjPQRZPJKsNTIWuAq4uXixOp9Ub6tUUj8uzSS9TyTuC9zjNh0p\nR2qIpHq8deI7gdNMeKmDSjuhT6RC7DVaXVEKiQ4dJfxel1KmgTrW55BFzb0D+CczW9o0qZy6qdSu\nY+39zST2ZV6dXIMM5y/ow1fPWZPH7cSmD8li3ZQTfQma2yeSfJ/jzltpicS3JMurRcrodjxQS+Rk\n4M9k40TOzgkvwMxsRMGyOR1K/DiRkD61Bhndsgj/45LXRcp84GvMoj+QqWbOcrdE4tKlVhZWJ5pF\ni66M1EMZXff7VSJmVkIHt86jhM9p4aSadqJbIj228jg50t1j49LVw3rrqVcbRpBqtixsytoGUFRe\nq9eE83eCOauEHwxXFC2iVjNT+YxT6cS+B6mDDXs/pMV4ZzXlBa5xYFxRMdLKGDur19sq7ryr12Ra\nJLryklgZ6XZcibSYotxRK5SzY72YcSKprpm95qzu+VqUUnH25BWX7o+vZxOqbjZsg6j0lZZIamWk\njOasMuJKpEFM2GmLpPQn7jMGgBHDYmJgwgG7bQXAfrtuGZV+5PANQz47Jsl10LitotNO2mUk244Y\nOnjCPsS+zD0doonG8tT+hFJ9K7TOQtxhiaOxYyljS2T6AWMB2HrTuGfvsLduDcCkXeLencozfdyE\n0VHpKxyy+6jotGO33DhpeoAPv2tMkizNJO4L5gzK9/5hvyRT07mTx3HWYbv1zHk9GJN22ZKnZk2J\nTj98o/V5+gtHJH0Efn1ZWoT/G2bsl5S+QrQSqZizUgeJJbbuyqRDKhSl2MrcJxL7XMx8967MfPeu\n0ec9cNxWPHvpEdEKdItNNkx+d5bNmpJ0reZ98pD4kwOzjhnPxUfvmXRMs3Al0iCS5zaQeubHjiVW\ngVSoJ9ZTGUg2Z3VQoL2i6J24Ky19MyjycU1tgSXPRFnwuykpeo6ZZtMSc5akKyT9UtJiSTdL2jxs\nHyvpDUmLwu/q3DETJC2RtEzSVSqjm4LTUFJddtfUONiwjI9S4oiGhp+3J30TL00Z74MzOK3qE7kX\nGG9mewG/As7P7XvazPYOv5m57V8DTgfGhd/hTZPWaQlrEiel6m2JRKuR3N9yUdQHtczjRJz2pCVK\nxMzuMbNVYXUBMGAPlqTtgBFmtsAyX8Y5wDEFi+k0mE+9b/eeTs4YUudYT3X97MbvY3qfSDFy5PmX\n49/B+B187HK7UoY+kY8A382t7yxpEbAC+JyZ/QzYAXg+l+b5sK0qkmYAMwDGjCmvV0O3ceahuyWl\nX5M40rhC6lzaZWyKRJuzEu1ZRfcN1MJxE0Yne0I55aEwJSLpR2Th5PtygZndGtJcAKwC5oZ9y4Ex\nZvaKpAnALZKSXRLM7BrgGoCJEyeWcKSEE0OqeSp9Lu0ym7Pi0qUOjEufT6SMV8cpE4UpETObPNB+\nSdOBo4C/DSYqzGwlsDIsPyTpaeAtwAusbfIaHbY5HczqRHNW6lzabe68thbxbs3BO6sjYh84ZaBV\n3lmHA58Gjjaz13PbR0kaEpZ3IetAf8bMlgOvSpoUvLKmAbe2QHSniaxJHDyYGrCxzCPVo2VLNmel\ny+I4A9GqPpEvAxsB94aa0YLgiXUwcLGkN4E1wEwz+3045gxgNjAMuDP8nA5mTSVwXuKXrxNcfFNJ\nndmwzArUaS9aokTMrGoPq5ndBNzUz76FZPObOF3CpkOzxzN2kJX1DllPoow6pOgR627OchpFGbyz\nHKcq103fh7uW/pbtNhsWlb53sGGxQS2dgfn26e/ijb+ubrUYTpNwJeKUlu03H8ZHDtw5+bjoAIwl\n9s6KpYztif13jQ/i6bQ/HsXX6RgqI9xTY2eVsU8kOWR7dLryldVpb1yJOB1DZ0XxLVaqMs4z47Qn\nrkScjiE9im8Z1UcasTMaOk5RuBJxOobe0duJLZES6pIyR9t1nDyuRJyOoSd0fGR6VVkqC0UpBVc2\nTqNxJeJ0DFP33h6Ao8P/QfEPahR7bj+Cj09+S6vFcEqKu/g6HcOuo4anTfGb2IfSTGL7a5rRJfLD\nsw8qPhOnbfGWiNO11DjAvZSkOgl4f7zTKFyJOF1PKVsiJZTJcarhSsTpWspcGy9qjvWe87uSchqE\nKxGn6+mE8SKpSqHMCtRpL1yJOE4ZaX+95nQJrkScrqXM4dDL5J3lOAPhSsTpWoaEcL9bbbphiyVp\nHhutn73yIzfpnjI7xeLjRJyuZetNh3LZsW/nsLdu3WpR1qGoju9x22zKPx8zninjty0mA6frcCXi\ndDUn7jum1SKsRTO6Qk6etFMTcnG6BTdnOU6JSB0AWeZ+Hac7cCXiOCUkNhJxb/h7d+dyWkNLlIik\nSyQtlrRI0j2Sts/tO1/SMklPSnpfbvsESUvCvqvkb43TgdT6UPvL4LSKVrVErjCzvcxsb+B24EIA\nSXsAJwJ7AocDX5U0JBzzNeB0YFz4Hd50qR2nYDopnpfTHbREiZjZq7nVTeh9d6YCN5jZSjN7FlgG\n7CtpO2CEmS2wbCq3OcAxTRXacZpI8hzrrnWcFtEy7yxJs4BpwArg0LB5B2BBLtnzYdubYbnv9v7O\nPQOYATBmTLm8bxxnIFwXOO1GYS0RST+StLTKbyqAmV1gZjsCc4GzGpm3mV1jZhPNbOKoUaMaeWrH\nKZRec5arE6c9KKwlYmaTI5POBe4APg+8AOyY2zc6bHshLPfd7jidSaQOMY974rSYVnlnjcutTgV+\nGZZvA06UtJGknck60H9hZsuBVyVNCl5Z04Bbmyq045QYb7c4raJV3lmXBdPWYuC9wDkAZvYYcCPw\nOHAXcKaZrQ7HnAFcS9bZ/jRwZ9OldhzggN22LDyP2I7yyXtsA8DEsSMLlMZx+qclHetm9sEB9s0C\nZlXZvhAYX6RcjjMYSXO410Bqi+KgcaMKl8lxBsJHrDtOifBxIk674UrEcUqIB2Rw2gVXIo5TIlx1\nOO2GKxHHKRFuznLaDVcijlNC3JrltAuuRBynRLjucNoNVyKOU0I87InTLrgScRzHcWrGlYjjlBDv\nE3HaBVcijuM4Ts24EnEcx3FqxpWI4ziOUzOuRBzHcZyacSXiOI7j1IwrEccpERtvOKTVIjhOEi2Z\nT8RxuoW5H30XL7+2Mjr992buz7wnXmToBq5MnPbAlYjjFMgBu22VlH63rYez29bDC5LGcRqPm7Mc\nx3GcmnEl4jiO49SMKxHHcRynZlyJOI7jODXTEiUi6RJJiyUtknSPpO3D9rGS3gjbF0m6OnfMBElL\nJC2TdJV8EmrHcZyW06qWyBVmtpeZ7Q3cDlyY2/e0me0dfjNz278GnA6MC7/Dmyeu4ziOU42WKBEz\nezW3ugm9U0tXRdJ2wAgzW2BmBswBjilQRMdxHCeClvWJSJol6TngJNZuiewcTFk/kXRQ2LYD8Hwu\nzfNhW3/nniFpoaSFL730UsNldxzHcTKUVewLOLH0I2DbKrsuMLNbc+nOB4aa2eclbQQMN7NXJE0A\nbgH2BN4CXGZmk8MxBwGfMbOjIuR4CfhN/SVqKlsBL7daiCbjZe4OvMztw05mNmqwRIWNWK988COY\nC9wBfN7MVgIrw/EPSXqaTIG8AIzOHTM6bIuRY9CLUDYkLTSzia2Wo5l4mbsDL3Pn0SrvrHG51anA\nL8P2UZKGhOVdyDrQnzGz5cCrkiYFr6xpwK04juM4LaVVsbMuk7Q7sIbM1FTxwjoYuFjSm2HfTDP7\nfdh3BjAbGAbcGX6O4zhOC2mJEjGzD/az/Sbgpn72LQTGFylXibim1QK0AC9zd+Bl7jAK61h3AwaE\nIgAACjhJREFUHMdxOh8Pe+I4juPUjCsRx3Ecp2ZciZQASSMl3SvpqfB/iwHSDpH0iKTbmyljo4kp\ns6QdJd0n6XFJj0k6pxWy1oukwyU9GeK+fbbKfoV4cMtCTLm/aYWcjSSizCeFsi6RdL+kd7RCzkYy\nWJlz6faRtErScc2UryhciZSDzwLzzGwcMC+s98c5wBNNkapYYsq8Cvikme0BTALOlLRHE2Wsm+Cy\n/hVgCrAH8KEqZZhCb0y4GWRx4tqWyDI/C7zbzN4OXEKbdz5HlrmS7ovAPc2VsDhciZSDqcD1Yfl6\n+okLJmk0cCRwbZPkKpJBy2xmy83s4bD8JzLl2W+4m5KyL7DMzJ4xs78CN5CVPc9UYI5lLAA2D/Hi\n2pVBy2xm95vZH8LqAtYeTNyOxNxngI+ReaD+rpnCFYkrkXKwTRhQCfBbYJt+0n0J+DTZGJp2J7bM\nQDZNAPBO4IFixWo4OwDP5darxX2LSdNOpJbn72n/cV+DllnSDsAHaPOWZl9aNdiw6xgollh+xcxM\n0jp+15KOAn4XwsEcUoyUjaXeMufOM5ys9nZunwjQTpsj6VAyJXJgq2VpAl8ii/m3ppOmQ3Il0iQG\niiUm6UVJ25nZ8mDGqNbUPQA4WtIRwFBghKRvmdnJBYlcNw0oM5I2IFMgc83sBwWJWiQvADvm1qvF\nfYtJ005ElUfSXmSm2Slm9kqTZCuKmDJPBG4ICmQr4AhJq8zsluaIWAxuzioHtwGnhuVTqRIXzMzO\nN7PRZjYWOBH4cZkVSASDljnESfsv4Akz+9cmytZIHgTGSdpZ0oZk9+62PmluA6YFL61JwIqcqa8d\nGbTMksYAPwBOMbNftUDGRjNomc1sZzMbG97h7wNntLsCAVciZeEy4D2SngImh3UkbS/pjpZKVhwx\nZT4AOAU4TL1TJh/RGnFrw8xWAWcBd5M5BtxoZo9JmimpEjPuDuAZYBnwdbI4cW1LZJkvBLYEvhru\n68IWidsQIsvckXjYE8dxHKdmvCXiOI7j1IwrEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgS\n6VAkmaQrc+vnSbqoyTLMrkQqlXRtvcETJY2VtLSffVeESL9X1JNHmQjX79lGuojm70k3Imm6pC8P\nkuaEEIm3rSNlNwsfsd65rASOlXSpmb2cerCk9YPve0Mws4826lz9MAMYaWar8xsbXY4W8Ckz+36r\nhWgkkob0vU9lwsy+K+lF4LxWy9IOeEukc1lFFl774313hBr9j8N8DvPC6OFKLfVqSQ8Al0u6SNL1\nkn4m6TeSjpV0eZgD4q4QkgRJF0p6UNJSSdeoSmAgSfMlTZR0dG7g4JOSng37J0j6iaSHJN1diWIb\ntj8q6VHgzGoFlXQbMBx4KNQi+5ZjE0nXSfqFsrlYpobjhkm6QdITkm6W9ICkiWHfa7nzHydpdlge\nJemmUN4HJR0Qtl8U8pgv6RlJZ+eOnxau9aOSvilp09DCqFy/Efn1/pC0TZDz0fDbX9LFks7NpZml\nMO+KpM+Ee/WopMuqnK+/a362sjlcFku6ocpx0yXdGsr6lKTP5/adHK7zIkn/qSz0OZJek3RluI/7\n9TnfOvlJ2lfS/4b7db+k3XN536JsDppfSzpL0idCugWSRoZ08yX9e5BjqaR9q5Sj6r10EjEz/3Xg\nD3gNGAH8GtiMrFZ1Udj338CpYfkjwC1heTZwOzAkrF8E/A+wAfAO4HWyOEcANwPHhOWRuXy/Cbw/\nd77jwvJ8YGIfGW8kUwwbAPcDo8L2E4DrwvJi4OCwfAWwtL/y5pb7luMLwMlheXPgV8AmwCdy+exF\npngnVjnfccDssPxt4MCwPIYsJEvlWt0PbEQWF+mVUK49Q35b5a8V8I3c9ZsBXFmlTD3XL6x/lywI\nJcCQcF/HAg+HbesBT5ONBJ8S5Nm4T76zQ3kGuub/B2xUuV5V5JoOLA/5DAOWksWFehvZs7VBSPdV\nYFpYNuDv+rl36+RH9uyuH5YnAzfl8l4GbAqMAlYAM8O+f8tdn/nA18PywYTnJhz/5YHuZVg/BLi9\n1e9xO/zcnNXBmNmrkuYAZwNv5HbtBxwblr8JXJ7b9z1b29Rwp5m9KWkJ2YfrrrB9CdkHDOBQSZ8G\nNgZGAo+RfUz6JaR/w8y+Imk8MB64NzRihgDLJW1O9lH5aU7WKVGFX7sc7yULXlkxTwwl+2gcDFwF\nYGaLJS2OOO9kYA/1NrZGKIsyDPBDM1sJrJT0O7Lw9ocFWV4O+fw+pL2WLKz/LcBpwOkReR8GTAvn\nWU32AV0h6RVJ7wz5PWJmr0iaDHzDzF7vk2+F3alyzcO+xcBcSbcE+apxr4WgiZJ+QBaFdxUwAXgw\nnHMYvYE1V5MF0qxGtfw2A66XNI5MAeVbafdZNr/MnyStoPdZW0JWGajwnVD2n4bW3uZ98q16L83s\nNZxoXIl0Pl8CHiar+cbw5z7rKwEsC1/9poVqGtmcJutLGkpW45xoZs8p67wfOlAG4QN3PNlHHEDA\nY2bW18zR96VPIV8OAR80syf7nH+g4/PxgPLlWQ+YZGZ/qXKulblNqxng/TKznyszKx5C1mKq6jAQ\nybVkNextgesij6l6zQNHkt2b9wMXSHq7rduv1DdekoVzXm9m51c551+s/36QdfIjm+3wPjP7gLK5\nZObn0uev85rc+hrWvubVZMxT9V46aXifSIcTaqA3ks3ZUOF+siijACcBP6sji8oH9uVQIx/Q80fS\nTmTTiB5vZpXW0ZPAKEn7hTQbSNrTzP4I/FFSZa6Jk2qU8W7gYwpf+lBrB/gp8OGwbTxr12JflPQ2\nSeuRTSRU4R6y2ekq5dl7kLx/DBwvacuQfmRu3xwyk0qsgp8H/GM4zxBJm4XtNwOHA/uQlRXgXuA0\nSRtXyRf6ueahvDua2X3AZ8haBMNZl/dIGilpGNmslD8P8h0naetKnuF+98sA+W1Gbyj16QNfln45\nIeRxIFlk5BV99qfeS6cKrkS6gyvJ7PQVPkb2gVlMFiX3nFpPHD70Xyezi99NFhJ7IKaT2dJvCZ2e\nd1g2nehxwBdDx+siYP+Q/jTgK5IWkdV0a+ESMnPIYkmPhXXIZpgbLukJ4GLgodwxnyXrV7mfXjMP\nZKbBiaET+HFgQPdbM3sMmAX8JJQtH9J+LrAFwewSwTlkpsMlQdY9Qh5/Be4jixy7Omy7iywU+cJw\n7dbyNBrgmg8BvhXyeAS4KtzjvvyCzDy1mKy/YqGZPQ58DrgnPFv3AoNN89tffpcDl0p6hNotJn8J\nx1/N2pWoCkn30qmOR/F1nICk+cB5ZtaUsOTKxmtMNbNT+tk/m6xzd0AX31Cbf5isdfdUwwVdN7/p\nZObLs4rOq1bqvZfBzHiemR3VSLk6EW+JOE4LkPQfZHOoXDJAshXAJRpgsKGyAZzLgHnNUCDdgKQT\nyPr5/tBqWdoBb4k4juM4NeMtEcdxHKdmXIk4juM4NeNKxHEcx6kZVyKO4zhOzbgScRzHcWrm/wFZ\n/Tb2voD4tQAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Parzen window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hamming Window" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hamming')" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUZCJ5BQQiAhCaGDEBABBQQFbCx2XSu6\nrGv3VVfd3Xctq2t511UUFNF10dVVsQMWBKSJBQLSEkpCTSgJoUNIv98/ZpIds5QAmZwp9+e65mLO\nmTMzvwPk3HnOc87ziKpijDHGAIQ4HcAYY4zvsKJgjDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYY\nY6pYUTDmGEQkQ0SGOPj9fxCRN07xvUNEJLe2M5nAZ0XBOEZENovI8GrrbhKR75zK5ElVu6rqPAe/\n/6+qeqtT32+CkxUFY4wxVawoGJ8mIg+LyAYROSgimSIyxuO1m0RkkYi8ICL7RGSjiAxwr88RkXwR\nudFj+yki8oqIfCUih9zvbSUiL4rIXhFZKyJneGxf1ZIRkcdEZKqIvO3OkiEiaR7b9haRn92vfSgi\nH4jIk8fYpy0i0sf9/NcioiLS1b18i4h85vGd77ifJ7i3u1FEtopIgYj80eMzo9z7t1dEMoG+1b6z\ns4jMc/89ZYjIJe71ie51Ie7l10Uk3+N9/xKRe0/hn874KSsKxtdtAM4GmgCPA++ISGuP188EVgLN\ngX8D7+M6ICYD1wETRKShx/ZXAn8CWgDFwA/AMvfyR8Dfj5PlEvfnNwWmARMARCQC+BSYAkQD7wFj\njv4RAMwHhrifDwY2Aud4LM8/znsHAanAMODPItLZvf5RIMn9GAF4FsNwYDrwDRAL3AW8KyKpqroJ\nOABUFsNzgEMen3uiPCbAWFEwTvvM/ZvqPhHZB7zi+aKqfqiq21W1QlU/ALKAfh6bbFLVf6pqOfAB\nEA88oarFqvoNUIKrQFT6VFWXqmoRrgN5kaq+7fH+Mzi271T1S/e2/wJ6utf3B8KAl1S1VFU/ARYf\n53Pm4zrYgqvgPe2xfKKD8OOqekRVVwArPDJcCTylqntUNQd4yeM9/YGGwDOqWqKq3wIzgGs884hI\nK/fyR+7lRKCx+3tMkLCiYJz2K1VtWvkAbvd8UURuEJHlHkWjG67f6ivleTw/AqCq1dc1PM72x9u2\nup0ezwuBSBEJA9oA2/SXo0vmHOdz5gNnu1s8ocBUYKCIJOBqES0/iQyVedtU+84tHs/bADmqWlHt\n9TiPPENwtRIWAPNwFafBwMJq7zMBzoqC8Vki0h54HbgTaO4uGqsBcTTYf9sBxImIZ674Y22sqtm4\nDuh3AQtU9QCug/04XK2RUzkI76j2ne08nm8H4iv7DTxe3+Z+Ph9Xi2WI+/l3wEDs1FFQsqJgfFkD\nQIFdACJyM66Wgq/5ASgH7hSRMBEZzS9PcR3NfFzFrvKgO6/a8smaCjwiIs1EpC2uglPpJ1xF6Pci\nEu6+9+JiXP0jqGoWrlbSdcB8d5HKAy47jTzGT1lRMD5LVTOB53EddPOA7sAiR0MdhaqWAJcCtwD7\ncB1cZ+DqyD6W+UAjXKdrjrZ8sh7HdUpoE64O5X9Vy3cxMAoowNVvc4Oqrq2WZ7e7P6JyWXB1wpsg\nIjbJjjG1T0R+Aiap6j+dzmLMybCWgjG1QEQGu+95CHPfG9ED+NrpXMacrDCnAxgTIFJxnddvgOu+\ng8tVdYezkYw5eXb6yBhjTBU7fWSMMaaK350+atGihSYkJDgdwxhj/MrSpUsLVDXmRNv5XVFISEgg\nPT3d6RjGGONXRGTLibey00fGGGM8WFEwxhhTxYqCMcaYKlYUjDHGVLGiYIwxporXioKIvOmeDnH1\nMV4XEXlJRLJFZKWI9PZWFmOMMTXjzZbCFGDkcV4fBaS4H+OAV72YxRhjTA147T4FVV3gnknqWEYD\nb7tnq/pRRJqKSGsbL8b4gyMl5SzZvIflOfsoKz/KnDgidG7ViP4dmtOsQUTdBzTmFDl581ocv5w+\nMNe97r+KgoiMw9WaoF27dtVfNsbrSssrWJGzj0XZu1m0oYCft+6ltNw1bpgcZR64yiHFRKBL68YM\nTG7BgKTm9EuMpn6E390zaoKIX/zvVNXJwGSAtLQ0G8HP1Jm8A0VMnJvNx0tzOVxSjgh0bdOYsQMT\nGZDcgr4JzY56kC8tr2BlrquIfL+hgCmLNjN5wUbCQ4VhnVpy33kdSW3VyIE9Mub4nCwK2/jlnLJt\n+c+cscY4as/hEibN38Bb32+mvEIZ3SuO4Z1jOSupOU3rn/h0UHhoCH3aR9OnfTR3D0vhSEk56Vv2\nsGD9Lt5fnMPMzJ1c0rMN9w7vSGKLBnWwR8bUjJNFYRquOW3fB84E9lt/gnHa/iOl/GPhRv7x3SYK\nS8sZ0yuOe4an0L756R24oyJCOTslhrNTYrh9SDKTF25kyqLNzFi5g8t7t+Xu4SnENY2qpb0w5tR5\nbT4FEXkPGAK0wDW/7qNAOICqThIRASbgukKpELhZVU840l1aWpragHimtqkq//pxC89/s579R0q5\nsHtr7h2eQkpL753iyT9YxKvzNvDuj1sBuHFAex4YkUq9sFCvfacJXiKyVFXTTridv02yY0XB1LaD\nRaU89PFKvly1k7NTWvDQyE50i2tSZ9+/fd8Rxs/O4oP0HHq0bcLEa3sTH12/zr7fBAcrCsbUwNqd\nB7j9nWVs2VPIgyNS+e05HZCjXU5UB2Zm7OSBqSsICRFeuKon53Zq6UgOE5hqWhRsmAsTtD5emsuv\nJi7iYHEZ7956JrcNTnKsIACM6NqKGXcPIq5pFGOnpPO3mesor/CvX9qM/7OiYIJOUWk5j3yykvs/\nXEGv+KZ8cfcg+ndo7nQsANo3b8Antw/g6r7xTJibzfX/+IldB4udjmWCiBUFE1T2F5Zy1Ws/8N7i\nHG4fksQ7t5xJbKNIp2P9QmR4KM9c1oP/u7wHS7fs5aKXF5Kdf9DpWCZIWFEwQWN/YSm//sePrNlx\nkNeu78PvR3YiLNR3fwSuSIvn09sHUl4BV0/+iez8Q05HMkHAd38ijKlFlQVh/c5DvHZ9H0Z0beV0\npBrp0qYx7487E4CrJ/9ohcF4nRUFE/D2F5Zy3T9+qioIQzvFOh3ppCTHNqoqDNe8boXBeJcVBRPQ\nKgvCup0H/bIgVKosDKpWGIx3WVEwAWt/YSnXv+kqCJOu7+23BaFScmwj3vvNfwrDhl1WGEzts6Jg\nAtLh4jKuf/Mn1u5wFYRAuREspeV/CsPVk39ky+7DTkcyAcaKggk4FRXK/0xdzupt+3n1usApCJUq\nC0NpeQW3vpXOwaJSpyOZAGJFwQScF+dkMTMjjz9d2IVhnQOrIFRKadmIV67tzcaCw9z3wXIq7M5n\nU0usKJiA8sXKHbw0J4sr+rTl5oEJTsfxqgHJLfjzRV2YvSaf52etczqOCRB+MfOaMTWRsX0/D3y4\ngt7tmvLkmG6OjmNUV244qz1rdx5g4twNdGrVmIt7tnE6kvFz1lIwAaHgUDHj3l5K0/rhTLq+T9DM\nSSAiPH5JN/omNOPBj1awKne/05GMn7OiYPxeSVkFv3tnKQWHipl8fZrPjWXkbRFhIbx6XR+i60cw\n7l/p5B8scjqS8WNWFIxfU1UenbaaJZv38tzlPejetu4mx/ElLRrW4/Ub09hbWMLv3llGcVm505GM\nn7KiYPzah+m5VSOeju4V53QcR3Vt04Tnr+jF0i17eeqLNU7HMX7KioLxW1t2H+ax6Rn07xDN/een\nOh3HJ1zYozW3DErk7R+2MHdtvtNxjB+yomD8Ull5Bfd+sJzQEOHvV/YiNCTwrzSqqQdHpNKpVSMe\n/Ggluw/ZBD3m5FhRMH5pwtxsft66j6fGdKdN0yin4/iUyPBQXry6FweOlPLQx6vwt3nYjbOsKBi/\ns2zrXl7+NpsxZ8RxiV2Xf1SdWjXm9yNTmb0mj/eX5Dgdx/gRKwrGrxwuLuO+D5bTqnEkj4/u6nQc\nnzZ2YCKDklvwxPRMNhXYwHmmZqwoGL/yxPRMtu4p5O9X9qRxZLjTcXxaSIjwtyt6EhEWwr3v/0xp\neYXTkYwfsKJg/MbXq3fyQXoOvxucxJkdmjsdxy+0ahLJ05d2Z0Xufl6ek+V0HOMHrCgYv5B/oIhH\nPllJt7jG3Du8o9Nx/MoF3VtzeZ+2TJibzdIte5yOY3ycFQXjF/702WoKS8p58aoziAiz/7Yn69GL\nuxDXLIoHPlxJUand7WyOzX66jM+bmbGTbzLzuO+8jiTHNnQ6jl9qFBnO02N6sKngMK/MzXY6jvFh\nVhSMTztUXMajn2fQqVUjbhmU6HQcvzYopQVjzojj1fkbyM4/6HQc46OsKBif9reZ68g7WMRfL+1O\neKj9dz1df7qwMw3qhfGHT1bbbG3mqOynzPisFTn7eOuHzVx3Znt6t2vmdJyA0LxhPf4wqjOLN+/h\nw6V2U5v5b1YUjE8qK6/gkU9WEdOwHg+OtMHuatMVaW3plxjNX79cS4GNjWSqsaJgfNKU7zeTueMA\nj13S1W5Sq2Uiwl/HdKewpIwnZ2Q6Hcf4GCsKxufk7i3k+W/WM6xTLKO6tXI6TkBKjm3I74Yk89ny\n7SzM2uV0HONDvFoURGSkiKwTkWwRefgorzcRkekiskJEMkTkZm/mMb5PVXn08wwAHh/dFREbEttb\nbh+SRIcWDfjjp6vt3gVTxWtFQURCgYnAKKALcI2IdKm22R1Apqr2BIYAz4tIhLcyGd/39eqdzFmb\nz/3nd6Rts/pOxwlokeGhPDmmG1v3FPKSDYFh3LzZUugHZKvqRlUtAd4HRlfbRoFG4vp1sCGwByjz\nYibjwwpLynhiRiZdWjfmpgEJTscJCgOSWnBZ77a8vnCjjaRqAO8WhTjA85q3XPc6TxOAzsB2YBVw\nj6r+11COIjJORNJFJH3XLjv/Gahem7+RHfuLeOySroTZPQl15qFRqdQLC+WpL6zT2Tjf0TwCWA60\nAXoBE0SkcfWNVHWyqqapalpMTExdZzR1YPu+I7y2YAMX9mhNv8Rop+MEldhGkdwxNJnZa/Kt09l4\ntShsA+I9ltu613m6GfhEXbKBTUAnL2YyPurZr9eiCo+Msn9+J4wdlEC76Pr8ZUYmZTbvQlDzZlFY\nAqSISKK78/hqYFq1bbYCwwBEpCWQCmz0Yibjg5Zu2cvny7cz7pwO1rnskHphofzhgs6szzvEe4u3\nOh3HOMhrRUFVy4A7gZnAGmCqqmaIyG0icpt7s78AA0RkFTAHeEhVC7yVyfieigrliekZxDaqx22D\nk5yOE9RGdG1J/w7R/H3WevYXljodxzjEq30KqvqlqnZU1SRVfcq9bpKqTnI/366q56tqd1Xtpqrv\neDOP8T2fLd/Gitz9PDSyEw3qhTkdJ6iJCH++qCv7j5Qy3i5RDVpOdzSbIHa4uIxnv15Lz/imjDmj\n+oVpxgld2jTmqr7tePuHzWTnH3I6jnGAFQXjmEnzN5B3oJg/X9SFkBC7c9lX3H9+R6LC7RLVYGVF\nwTgid28hkxds5JKebejT3obF9iUtGtbjrmHJzF23i3nr8p2OY+qYFQXjiGe+WosIPGyXoPqkmwYk\nktDcdYlqqV2iGlSsKJg6tzxnHzNW7mDc2R1o0zTK6TjmKCLCQvjDBZ3ZsOswU9NtMp5gYkXB1ClV\n5dmv1tK8QQTj7BJUn3Zel5aktW/G+NlZHCmxUVSDhRUFU6cWZBXww8bd3HVuMg3tElSfJiI8PKoT\n+QeLeXPRJqfjmDpiRcHUmYoKVyshPjqKa89s73QcUwNpCdEM7xzLpPkb2FdY4nQcUwesKJg6M33l\ndjJ3HOD+81KJCLP/ev7iwRGdOFRcxivzNjgdxdQB+8k0daKkrILnv1lP59aNuaRnG6fjmJOQ2qoR\nl57Rlinfb2bbviNOxzFeZkXB1In3Fm9l655Cfj8y1W5U80P3nZcCCi/OWu90FONlVhSM1x0uLuPl\nb7M4MzGaIR1tPgx/1LZZfa4/qz0fL8slK++g03GMF1lRMF73xsJNFBwq4eFRnXDNvGr80R1Dk2kQ\nEcZzM9c5HcV4kRUF41W7DxUzecEGRnZtxRntbDgLfxbdIILfDu7ArMw8lm7Z43Qc4yVWFIxXTZib\nzZHSch4Ykep0FFMLxg5KJKZRPZ79ah2q6nQc4wVWFIzX5O4t5N0ft3JlWjzJsQ2djmNqQf2IMO4e\nlsLizXuYa4PlBSQrCsZrXp6TDQL3DE9xOoqpRVf3jadddH3+Pmu9tRYCkBUF4xWbCw7z0bJcru3X\njtZNbNC7QBIeGsLdw1JYve0AMzPynI5japkVBeMVL32bRXiocPtQG/QuEP2qVxs6tGjAC7PWU1Fh\nrYVAYkXB1Lrs/EN89vM2ru/fnthGkU7HMV4QFhrCPcNTWJd3kC9W7XA6jqlFVhRMrRs/J4vI8FBu\ns6GxA9pFPdqQEtuQF2evp9xaCwHDioKpVet2HmTGyu3cNCCB5g3rOR3HeFFoiHDfeR3ZsOsw01Zs\nczqOqSVWFEytemHWehpEhDHunA5ORzF1YGTXVnRu3Zjxs7Mos2k7A4IVBVNrVm/bz9cZOxk7KJGm\n9SOcjmPqQEiI8D/ndWTz7kI+WWathUBgRcHUmhdnr6dxZBi3DEp0OoqpQ8M7x9KzbRPGz8mipMxa\nC/7OioKpFctz9jF7TT7jzulAk6hwp+OYOiTi6lvYtu8IU9NznI5jTpMVBVMr/j5rPc3qh3PTQGsl\nBKPBHWPo3a4pE77Npqi03Ok45jRYUTCnbemWPSxYv4vfDk6iYb0wp+MYB4gI95+fys4DRby3eKvT\nccxpOGFREJH6IvK/IvK6ezlFRC7yfjTjL16cnUXzBhHccFZ7p6MYBw1Iak6/xGgmzd9grQU/VpOW\nwj+BYuAs9/I24EmvJTJ+ZemWvSzMKuC3gztQP8JaCcFMRLh3WAp5B4r5YIn1LfirmhSFJFV9DigF\nUNVCwKbPMoDr7uXmDSK4rr+1EgycldScvgnNeHXeBorLrLXgj2pSFEpEJApQABFJwtVyMEHu5617\nWbB+F785x1oJxkVEuGdYR3YeKGKqtRb8Uk2KwqPA10C8iLwLzAF+79VUxi+Mn5NFdIMIrrdWgvEw\nMLk5fdo34xVrLfilExYFVZ0FXArcBLwHpKnqPO/GMr5uec4+5q3bxa1nJ9LArjgyHkSEe4ensGN/\nER+m5zodx5ykYxYFEeld+QDaAzuA7UA797oTEpGRIrJORLJF5OFjbDNERJaLSIaIzD+VnTB1b/zs\n9TStH84NZyU4HcX4oEHJLejdrimvzttgdzn7meP9ive8+89IIA1YgauDuQeQzn+uRjoqEQkFJgLn\nAbnAEhGZpqqZHts0BV4BRqrqVhGJPdUdMXVnRc4+5q7bxYMjUu2+BHNUIsI9wzty45uL+WhpLtee\n2c7pSKaGjtlSUNWhqjoUVwuht6qmqWof4Axcl6WeSD8gW1U3qmoJ8D4wuto21wKfqOpW93faTOB+\n4KU5WTSJCrf7EsxxnZPSgl7xTZk4N9taC36kJh3Nqaq6qnJBVVcDnWvwvjjA8/KDXPc6Tx2BZiIy\nT0SWisgNR/sgERknIukikr5r164afLXxllW5+5mzNp9bByXSKNLGODLH5motpLBt3xE+WWZ9C/6i\nJkVhpYi84T73P8R9Z/PKWvr+MKAPcCEwAvhfEelYfSNVnexuqaTFxMTU0lebUzHe3Uq4cWCC01GM\nHxjSMYaebZswYW42pTbfgl+oSVG4GcgA7nE/Mt3rTmQbEO+x3Jb/Pu2UC8xU1cOqWgAsAHrW4LON\nA1Zv28/sNXncMiiRxtZKMDVQ2VrI3XuET22+Bb9Qk0tSi1T1BVUd4368oKpFNfjsJUCKiCSKSARw\nNTCt2jafA4NEJExE6gNnAmtOdidM3Xj52ywaRYZxk7USzEkYmhpLD3drwWZn8301GRBvk4hsrP44\n0ftUtQy4E5iJ60A/VVUzROQ2EbnNvc0aXDfGrQQWA2+4+yyMj1mz4wAzM/IYO9BaCebkiAh3nZvC\n1j2FfL58u9NxzAnU5HrCNI/nkcAVQHRNPlxVvwS+rLZuUrXl/wP+ryafZ5wzYW42DeuFMdbmSzCn\nYHjnWDq3bszEudn86ow4QkNs+DRfVZPTR7s9HttU9UVcHcMmSGTnH+TLVTu4cUB7mtS3VoI5eSLC\n3ecms7HgMDNWWmvBl52wpVDt7uUQXC0Hu2MpiEz4Npuo8FBuGdTB6SjGj43o2oqOLRsy4dtsLu7R\nhhBrLfikmhzcn/d4XgZsAq70ThzjazYVHGbaiu385uwORDeIcDqO8WMhIcKd56Zw93s/83XGTi7o\n3trpSOYoanJJ6i2Vdzer6nmqOg4o8XYw4xsmzs0mIiyEW8+2VoI5fRd2b02HmAa8NCeLigp1Oo45\nipoUhY9quM4EmK27C/n0521c2689MY3qOR3HBIDQEOHOocms3XmQ2WvynI5jjuKYp49EpBPQFWgi\nIpd6vNQY11VIJsC9Oj+b0BDht4OtlWBqzyU92zB+ThYvf5vNeV1aImJ9C77keC2FVOAioClwscej\nN/Ab70czTsrdW8hHS3O5um88LRvb7wCm9oSFhnDHkGRWbdvPvHU2lpmvOWZLQVU/Bz4XkbNU9Yc6\nzGR8wKT5GwC4bXCSw0lMIBrTO47xc7IYPyeLIakx1lrwIcebZKdyys1rReSl6o86ymccsHN/EVOX\n5HJ5n3jaNI1yOo4JQOGhIdw+NInlOfv4LrvA6TjGw/FOH1WOQZQOLD3KwwSoSfM3UK7K7UOslWC8\n5/I+bWndJJKX5mShalci+YrjnT6a7v7zrbqLY5yWf7CI9xZvZcwZccRH13c6jglg9cJCuW1wEo9O\ny+DHjXs4K6m505EMx7/6aDpwzPKtqpd4JZFx1OsLNlJaXsGdQ5OdjmKCwFV945k4N5uX5mRZUfAR\nx7uj+W91lsL4hIJDxbzz41Z+1SuOhBYNnI5jgkBkeCi/HZzEX2ZksnjTHvol1misTeNFx5ujeX7l\nA/gB2AvsAX5wrzMB5o2FmygqK+eOc62VYOrOtf3a0aJhBC9/m+V0FEPN5lO4ENgAvARMALJFZJS3\ng5m6tedwCW//sJmLe7QhKaah03FMEImKCGXcOR1YmFXA0i17nY4T9GoyzMXzwFBVHaKqg4GhwAve\njWXq2pvfbeJIaTl3WivBOODXZ7YnuoG1FnxBTYrCQVXN9ljeCBz0Uh7jgP2FpUz5fjMXdGtNx5aN\nnI5jglCDemHcenYi89btYkXOPqfjBLWaFIV0EflSRG4SkRuB6cASEbm02phIxk+9uWgTh4rLrJVg\nHHXDWQk0rR9urQWH1aQoRAJ5wGBgCLALiMI1DtJFXktm6sSBolLeXLSJEV1b0rl1Y6fjmCDWsF4Y\ntwxMZPaafFZv2+90nKB1wkl2VPXmughinPHWos0cLCrjrnNTnI5iDDcOTOD1hRt5+dssXrs+7cRv\nMLWuJtNxJgJ3AQme29vNa/7vUHEZb3y3ieGdY+kW18TpOMbQODKcsYMSeXF2Fmt2HLDWqwNqcvro\nM2Az8DKuK5EqH8bPvf3DZvYfKbVWgvEpNw9IpFG9MCZ8m33ijU2tq8kczUWqaqOiBpjDxWW8sXAT\nQ1Jj6Bnf1Ok4xlRpUj+cmwYmMGFuNuvzDtoVcXWsJi2F8SLyqIicJSK9Kx9eT2a86u0ftrDncAl3\nD7NWgvE9Ywcm0iAijPFz7EqkulaTlkJ34HrgXKDCvU7dy8YPHSouY/KCDQzuGEPvds2cjmPMf2nW\nIIKbBiQwcV4263YeJLWVtRbqSk1aClcAHVR1sKoOdT+sIPixt3/YzN7CUu4dbq0E47tuPbuytbDe\n6ShBpSZFYTWueZpNAHC1EjYyJDWGM6yVYHxY0/oR3DwwgS9X7WTtzgNOxwkaNSkKTYG1IjJTRKa5\nH597O5jxjre+38y+wlLuHd7R6SjGnNAtg1xXIo2fbX0LdaUmfQqPejwX4Gzgau/EMd50sKiU1xdu\n5NxOsfSyK46MH6hsLbz0bTaZ2w/QpY3dt+BtJ2wpuOdOOIBrSIspuDqYJ3k3lvGG/7QSrC/B+I9b\nBnWgUaT1LdSVYxYFEenovhR1La4b17YC4u5ofrnOEppacaColNcXbmJYp1h6tLVWgvEfTeqHM3Zg\nIjMz8sjYbmMiedvxWgprcbUKLlLVQe5CUF43sUxte2uR6+5l60sw/mjsoERXa8H6FrzueEXhUmAH\nMFdEXheRYbj6FIyfOeDuSxjeuSXd29oYR8b/NIkK55ZBiXyTmWcjqHrZ8eZo/kxVrwY6AXOBe4FY\nEXlVRM6vq4Dm9E1ZtJkDRWXWl2D82s0DE2kcaXc5e1tNOpoPq+q/VfVioC3wM/BQTT5cREaKyDoR\nyRaRh4+zXV8RKRORy2uc3NTIgaJS3li4kfO6tLSRUI1fc7UWOjArM49VudZa8Jaa3KdQRVX3qupk\nVR12om1FJBSYCIwCugDXiEiXY2z3LPDNyWQxNfPGgo3WSjAB4+ZBCTSJCufvs9Y5HSVgnVRROEn9\ngGxV3aiqJcD7wOijbHcX8DGQ78UsQangUDFvfLeJC3u0pmsbayUY/9c4MpzbBicxd90u0jfvcTpO\nQPJmUYgDcjyWc93rqohIHDAGePV4HyQi40QkXUTSd+3aVetBA9Wr8zZQVFrOfXbFkQkgNw5oT4uG\n9Xhu5jpU1ek4AcebRaEmXgQeUtWK423kPmWVpqppMTExdRTNv+3Yf4R//biFy3q3JTm2odNxjKk1\n9SPCuOvcZBZv2sPCrAKn4wQcbxaFbUC8x3Jb9zpPacD7IrIZuBx4RUR+5cVMQeOlOdmoqs2XYALS\n1f3iiWsaxd++sdZCbfNmUVgCpIhIoohE4BovaZrnBqqaqKoJqpoAfATcrqqfeTFTUNhccJip6Tlc\n268d8dH1nY5jTK2rFxbKPcNTWJm7n5kZeU7HCSheKwqqWgbcCcwE1gBTVTVDRG4Tkdu89b0GXpy9\nnvBQ4Y5zk52OYozXXHpGHB1iGvD8N+sor7DWQm3xap+Cqn6pqh1VNUlVn3Kvm6Sq/zWgnqrepKof\neTNPMFihjIrmAAATaElEQVS78wCfr9jOTQMSiW0U6XQcY7wmLDSE+89LJSv/ENNWVD8zbU6V0x3N\nppY9/816GkaEcdvgDk5HMcbrRnVrRZfWjXlhVhYlZce9XsXUkBWFALI8Zx+zMvP4zTkdaFo/wuk4\nxnhdSIjw4IhUtu4pZGp6zonfYE7IikIA+dvMdUQ3iGDsoESnoxhTZ4akxpDWvhkvf5tFUakN5Hy6\nrCgEiO83FPBddgG3D0miYb2aTKhnTGAQER4YkUregWLe/mGz03H8nhWFAFBRoTz95VpaN4nkuv7t\nnY5jTJ3r36E553SMYeLcDewvLHU6jl+zohAApq/czqpt+3ng/FQiw0OdjmOMIx4Z1YkDRaVMmGtD\na58OKwp+rqi0nOe+XkeX1o0Zc0bcid9gTIDq3LoxV/Rpy1vfbyFnT6HTcfyWFQU/99b3m9m27wh/\nvLAzISE2MZ4Jbv9zXiohIfDcTBta+1RZUfBjew+XMGFuNkNTYxiY3MLpOMY4rlWTSMad3YHpK7az\nPGef03H8khUFP/bSt1kcLi7jkQs6Ox3FGJ8xbnASLRpG8Ncv1thgeafAioKf2lxwmHd+3MJVfePp\n2LKR03GM8RkN64Vx33kdWbx5D7MybbC8k2VFwU89N3Mt4aEhNoGOMUdxVVo8ybENeeartZSW2/AX\nJ8OKgh9aumUvX67aybhzOhDb2Aa9M6a6sNAQHhnViY0Fh3l/8Van4/gVKwp+RlV56otMYhrV4zdn\n26B3xhzLuZ1i6d8hmhdnZ3GwyG5oqykrCn7m69U7WbZ1H/ef15EGNpyFMcckIvzxgi7sPlzCq/M2\nOB3Hb1hR8CNFpeU89eUaUls24oq0+BO/wZgg171tE8acEccb321iy+7DTsfxC1YU/Mir8zaQu/cI\nj13SlVC7Uc2YGnl4VCfCQ4Qnpmc6HcUvWFHwE1t3F/Lq/A1c3LMNZyU1dzqOMX6jZeNI7hmewpy1\n+cxZY5eonogVBT/xxIwMwkOEP9qNasactJsHJpIc25DHp2fanAsnYEXBD3y7No/Za/K5e1gKrZrY\nJajGnKzw0BCeuKQrW/cU8tr8jU7H8WlWFHxcUWk5j03LJCmmATcPtBnVjDlVA5JbcGGP1rwyL9tG\nUT0OKwo+bvKCjWzdU8gTo7sREWb/XMacjj9d2JnQEOGJGdbpfCx2lPFhOXsKmTg3mwu7t7ZRUI2p\nBa2bRHHXuSnMysxj7rp8p+P4JCsKPuwvMzIJEeGPF1rnsjG15ZZBiXSIacDj0zIoLrNO5+qsKPio\neevy+SYzj7uGJdOmaZTTcYwJGBFhITx2cVc27y7k9QXW6VydFQUfdKSknEenZZDYogG3DLLOZWNq\n2zkdYxjZtRUT5mbbnc7VWFHwQX/7Zh1bdhfy1Jhu1AsLdTqOMQHp0Uu6EB4Swu8/WklFhU3GU8mK\ngo9ZumUPby7axHX92zEgyTqXjfGW1k2i+NNFnflp0x7e/WmL03F8hhUFH1JUWs6DH66kTZMoHh5l\nncvGeNuVafGcndKCp79aa/cuuFlR8CEvzFrPxoLDPHtZDxrasNjGeJ2I8MxlPQgR4eFPVtqczlhR\n8Bk/b93L6ws3ck2/dgxKsdNGxtSVuKZRPHJBJxZl7+a9xTlOx3GcFQUfUFRazoMfraRV40j+cEEn\np+MYE3Su7deOAUnN+euXa9i274jTcRxlRcEHjJ+TRXb+IZ6+rAeNIsOdjmNM0BERnr2sBxWqPPxx\ncJ9GsqLgsBU5+3ht/gauTGvL4I4xTscxJmjFR9fn4VGdWJhVwNT04D2N5NWiICIjRWSdiGSLyMNH\nef3XIrJSRFaJyPci0tObeXyN67TRCmIa1eOPF3ZxOo4xQe+6M9tzZmI0T84I3tNIXisKIhIKTARG\nAV2Aa0Sk+pFvEzBYVbsDfwEmeyuPL3p8eibr8w7xzGU9aBJlp42McVpIiPDc5a7TSHf9exml5RVO\nR6pz3mwp9AOyVXWjqpYA7wOjPTdQ1e9Vda978UegrRfz+JTPl2/jvcVbuW1wEkNTY52OY4xxa9+8\nAc9c1oNlW/fx3NdrnY5T57xZFOIAzxNzue51x3IL8NXRXhCRcSKSLiLpu3btqsWIzsjOP8Qjn6yi\nb0IzHji/o9NxjDHVXNyzDdf3b8/rCzfxTcZOp+PUKZ/oaBaRobiKwkNHe11VJ6tqmqqmxcT4d2fs\nkZJy7nh3GZHhobx8TW/CQn3in8AYU82fLupM97gmPPDhiqC629mbR6RtQLzHclv3ul8QkR7AG8Bo\nVd3txTw+4c+fr2Z9/kFevKqXzbdsjA+rFxbKxGt7o8Ad/14WNHMveLMoLAFSRCRRRCKAq4FpnhuI\nSDvgE+B6VV3vxSw+4cP0HD5cmstdQ5M5xy4/NcbntWten/+7vCcrc/fz9JfB0b/gtaKgqmXAncBM\nYA0wVVUzROQ2EbnNvdmfgebAKyKyXETSvZXHaet2HuR/P1/NWR2ac89w60cwxl+M7NaKWwYlMuX7\nzXyxcofTcbxO/O3OvbS0NE1P96/acai4jNETvmP/kTK+vGcQsY3stJEx/qSkrIIrX/uB7PxDTL9r\nEIktGjgd6aSJyFJVTTvRdtbL6WUlZRX87p2lbN5dyEvX9LKCYIwfiggLYeKvexMeKtz8z8UUHCp2\nOpLXWFHwoooK5aGPV7Iwq4CnL+1uk+YY48fimkbxxo192XmgiLFTlnC4uMzpSF5hRcGLnp25lk9/\n3saDI1K5Mi3+xG8wxvi0Pu2bMfHa3mRsP8Dv3g3MO56tKHjJP77bxGvzN3LDWe25fUiS03GMMbVk\nWOeW/HVMNxas38VDHwXeiKo2vZcXTFuxnb/MyGRUt1Y8enFXRMTpSMaYWnRV33bkHyjm+VnriW0c\nycOjAmceFCsKtez77ALun7qcfonRvHBVL0JDrCAYE4juPDeZvINFTJq/gdhG9Rg7KNHpSLXCikIt\nWpm7j3H/WkqHFg15/YY0IsNDnY5kjPESEeHxS7qx62Axf/kik+YNIxjd63jDu/kH61OoJfPX7+Ka\nyT/SJCqcKWP72lDYxgSB0BBh/NVn0C8hmns/WM6b321yOtJps6JQCz5Mz2HslCW0a96AT24fQOsm\nUU5HMsbUkcjwUN4a24/zu7TkiRmZPPVFJhUV/tv5bEXhNKgqL83J4sGPVjIgqTlTf9uflo3t5jRj\ngk1keCiv/LoPN57lGm77ng+W++0AetancIrKyiv4389X897iHC7tHcczl/YgIsxqrDHBKjREeOyS\nrrRuGsUzX60l/0ARk29I87tTyXYUOwWFJWWM+9dS3lucwx1Dk3j+ip5WEIwxiAi3DU5i/NW9WLZ1\nL1dM+p7tfjbXsx3JTtLSLXsZPWER89bl8+SvuvHgiE52H4Ix5hdG94rjrZv7sWNfERe//B3TV2z3\nm5vcrCjU0OHiMh6blsHlk77ncHEZU27ux3X92zsdyxjjowYkt+CT2wcQ1yyKu977md+8nc6O/b7f\narChs2tg3rp8/vjparbvP8IN/dvz4MhONKxn3THGmBMrK6/gn4s28/ysdYSFhPDQqE78ul87Qur4\nxtaaDp1tReE49hwu4YnpGXy2fDvJsQ159rLu9GkfXSffbYwJLFt2H+YPn65iUfZu+iY04+lLe5Ac\n27DOvt+KwilSVZbn7OODJTlMX7GdkvIKfjckmTuGJlEvzO5QNsacOlXlw6W5PDkjk8Ml5QzrFMvV\n/eI5JyWGsFDvns2vaVGwcyBuew+X8OnP2/hgSQ7r8g4SFR7KRT1a85tzOtCxZSOn4xljAoCIcGVa\nPENSY3hj4SY+XprLN5l5tGocyRVpbbkyLZ746PrOZgy2lkJ5hbLzQBE5ewrZuqeQ3D2FrMs7yNy1\nuygpr6Bn2yZc1bcdF/dsTaNI/7q+2BjjX0rKKvh2bR7vL8lh/vpdqMKApOZ0b9uEdtH1iW9Wn3bR\n9WnTNOq0L3u300fVzF2bz+PTM9i27wil5f/Z5xCB1k2iOK9LS65Mi6dLm8a1GdcYY2pk274jfJSe\ny4yV29myu5ASjwl8Ko9TNw9M4NazO5zS59vpo2qiG0TQNa4JI7u1dlXg6CjaRdendZPTr8DGGHO6\n4ppGcc/wFO4ZnkJ5hZLncUYjZ+8RcvYUEtOontdzBE1LwRhjgllNWwr2K7IxxpgqVhSMMcZUsaJg\njDGmihUFY4wxVawoGGOMqWJFwRhjTBUrCsYYY6pYUTDGGFPF725eE5FdwJZTfHsLoKAW4/iTYN13\n2+/gYvt9bO1VNeZEH+R3ReF0iEh6Te7oC0TBuu+238HF9vv02ekjY4wxVawoGGOMqRJsRWGy0wEc\nFKz7bvsdXGy/T1NQ9SkYY4w5vmBrKRhjjDkOKwrGGGOqBE1REJGRIrJORLJF5GGn83iLiLwpIvki\nstpjXbSIzBKRLPefzZzM6A0iEi8ic0UkU0QyROQe9/qA3ncRiRSRxSKywr3fj7vXB/R+VxKRUBH5\nWURmuJcDfr9FZLOIrBKR5SKS7l5Xa/sdFEVBREKBicAooAtwjYh0cTaV10wBRlZb9zAwR1VTgDnu\n5UBTBtyvql2A/sAd7n/jQN/3YuBcVe0J9AJGikh/An+/K90DrPFYDpb9HqqqvTzuTai1/Q6KogD0\nA7JVdaOqlgDvA6MdzuQVqroA2FNt9WjgLffzt4Bf1WmoOqCqO1R1mfv5QVwHijgCfN/V5ZB7Mdz9\nUAJ8vwFEpC1wIfCGx+qA3+9jqLX9DpaiEAfkeCznutcFi5aqusP9fCfQ0skw3iYiCcAZwE8Ewb67\nT6EsB/KBWaoaFPsNvAj8HqjwWBcM+63AbBFZKiLj3Otqbb/DTjed8S+qqiISsNchi0hD4GPgXlU9\nICJVrwXqvqtqOdBLRJoCn4pIt2qvB9x+i8hFQL6qLhWRIUfbJhD3222Qqm4TkVhglois9XzxdPc7\nWFoK24B4j+W27nXBIk9EWgO4/8x3OI9XiEg4roLwrqp+4l4dFPsOoKr7gLm4+pQCfb8HApeIyGZc\np4PPFZF3CPz9RlW3uf/MBz7FdXq81vY7WIrCEiBFRBJFJAK4GpjmcKa6NA240f38RuBzB7N4hbia\nBP8A1qjq3z1eCuh9F5EYdwsBEYkCzgPWEuD7raqPqGpbVU3A9fP8rapeR4Dvt4g0EJFGlc+B84HV\n1OJ+B80dzSJyAa5zkKHAm6r6lMORvEJE3gOG4BpKNw94FPgMmAq0wzXs+JWqWr0z2q+JyCBgIbCK\n/5xj/gOufoWA3XcR6YGrYzEU1y95U1X1CRFpTgDvtyf36aMHVPWiQN9vEemAq3UArtP//1bVp2pz\nv4OmKBhjjDmxYDl9ZIwxpgasKBhjjKliRcEYY0wVKwrGGGOqWFEwxhhTxYqC8Ski8kf3aJ8r3aNA\nnunl75snIjWe8FxEpojINhGp515u4b6BqjayDKkc7bO2iMi9InLDCbbpLiJTavN7jf+yomB8hoic\nBVwE9FbVHsBwfjlmla8oB8Y6HaI692jAnsthuHL++3jvU9VVQFsRaefFeMZPWFEwvqQ1UKCqxQCq\nWqCq2wFE5M8iskREVovIZPcdzJW/6b8gIukiskZE+orIJ+5x5Z90b5MgImtF5F33Nh+JSP3qXy4i\n54vIDyKyTEQ+dI+jdDQvAve5D7qe7//Fb/oiMkFEbnI/3ywiT1eOgS8ivUVkpohsEJHbPD6msYh8\nIa65PyaJSMjxsrk/91kRWQZcUS3nucAyVS3z+Lt6VlzzL6wXkbM9tp2O685gE+SsKBhf8g0Q7z5g\nvSIigz1em6CqfVW1GxCFq0VRqcQ9rvwkXLf33wF0A25y3+kJkAq8oqqdgQPA7Z5fLCItgD8Bw1W1\nN5AO/M8xcm4FvgOuP8n926qqvXDdeT0FuBzX3A+Pe2zTD7gL17wfScClNci2W1V7q+r71b5vILC0\n2rowVe0H3IvrbvdK6cDZmKBnRcH4DPe8AH2AccAu4IPK37SBoSLyk4iswvUbcFePt1aOY7UKyHDP\nrVAMbOQ/AyHmqOoi9/N3gEHVvr4/rgPxInENQ30j0P44cZ8GHuTkfoY8c/6kqgdVdRdQXDl+EbDY\nPe9HOfCeO+eJsn1wjO9rjevv0VPlQIFLgQSP9flAm5PYFxOgbOhs41PcB8N5wDx3AbhRRN4HXgHS\nVDVHRB4DIj3eVuz+s8LjeeVy5f/x6uO5VF8WXHMRXFPDnFnuA/SVHqvL+GWRiPzlu04554myHT7G\n+iPHyVDOL3/+I93bmyBnLQXjM0QkVURSPFb1wjW4V+WBrcB9Lv3yU/j4du6ObIBrcZ3+8fQjMFBE\nkt1ZGohIxxN85lPAAx7LW4AuIlLP/Zv/sFPI2c89mm8IcJU756lkA9fsc8k1/N6OuEbbNEHOioLx\nJQ2Bt0QkU0RW4jpl8ph7noDXcR20ZuIaCv1krcM1b/MaoBnwqueL7tM4NwHvub/7B6DT8T5QVTOA\nZR7LObhGqlzt/vPnU8i5BJiA64C+Cfj0VLK5fQWcU8PvHQp8cdJpTcCxUVJNwBPX9Jwz3J3UQUVE\nPgV+r6pZx9mmHjAf14xeZXUWzvgkaykYE9gextXhfDztgIetIBiwloIxxhgP1lIwxhhTxYqCMcaY\nKlYUjDHGVLGiYIwxpooVBWOMMVX+HwMypbVyYD+xAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hamming window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 73, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HcW5/z+vepcsS26S3LuNO2C66R1DSAIJLSGB8AOS\nkNzcEAIJaeTmphBCQggEcsGUUEIwhGZMMwZ3Y2Nb7t2SbFm2JEu2ZdX5/bG7R3tWZ6VjtaPyfp5H\nj87Ozu6+uzsz35l3ZmfEGIOiKIqitIaoSBugKIqidF9URBRFUZRWoyKiKIqitBoVEUVRFKXVqIgo\niqIorUZFRFEURWk1KiKK0smIyBgRWS0ilSLynTCPMSIysqNtizQiMlhEDotIdARteFtEbmrlsT8T\nkWfb26auTEykDejpiMhOoD9Q7woebYwpioxFShfgh8CHxpgpoXaKyEfAs8aYJ9r7wiIyFNgBxBpj\n6lzhTwEFxpj72vuax4MxZjeQEmEbLo7k9bsb2hLpHC43xqS4/poIiIj0KkHvbffrYQiQH2kjFKU9\nUBGJECIy1HZRfENEdgMf2OEzRWSRiJSLyOciMst1zDARWWC7QeaLyF+cprOIzBKRAs81dorIefbv\nKBH5kYhsE5GDIvKSiGR6bLlJRHaLyAERudd1nmgR+bF9bKWIrBSRPBF5RET+4Lnm6yLyPZ97NiJy\nh4hsAbbYYWPteykVkU0i8mVX/EtEZL19zUIR+YH7Xm2bDtj3eZ3ruHQRmSMiJSKyS0TuE5Eoe9/X\nROQTEfm9iJSJyA4Rudh17NdEZLt9zR2e894sIhvs4+aJyJBm3u8VIpJvv8ePRGScHf4BcDbwF9tt\nM9pz3APAGa79f3HtPk9EttjnfEREpDW2hYOIvCwi+0TkkIh8LCITXPueEpG/2m6fwyLyqYgMEJGH\n7OtvFJGprvg7ReS/RWSNiBwRkSdFpL99fKWIvCcifey4TlqMsbc/EpFf2teoFJF3RSTLde4b7Xd8\nUER+4k7znvsZZj83Jx38XUT2u/Y/IyJ3ua75Tft3S+llmLjyJJDlua5fOvi6iPzHFW+LiLzs2t4j\nIiFbql0OY4z+deAfsBM4L0T4UMAAc4BkIBHIAQ4Cl2AJ/Pn2drZ9zGLgQSAeOBOoxHJ7AMzCckeE\nvDbwXWAJkGsf/xjwT48tf7ftmAxUA+Ps/f8NrAXGAGLv7wucBBQBUXa8LOAo0N/nWRhgPpBpXycZ\n2AN8Hcu1OhU4AIy34+8FzrB/9wGmue61zvUszgKOAGPs/XOA14BU+942A9+w930NqAVuAaKB/2ff\ng9j2VLjOMxCYYP+eDWwFxtm23gcs8rnP0bY95wOxWO6rrUCcvf8j4JvNpJkm++1n9waQAQwGSoCL\nWmGb865jPOFPAb9ybd9sP7944CFgtSfuAWA6kIBVAdoB3Gg/019huevc6XAJlls3B9gPfGa/b+f4\n+0PZZz+LbfYzTbS3f2PvGw8cBk4H4oDf2++2SX6z4+8Gptu/NwHbaUzju4Gp3uffXHoJI0/6pgNg\nOFCOlc8HAbuw86+9rww7X3X1v4gb0NP/7Ax02E4w5cBcO9zJLMNdce8GnvEcPw+4CavgqAOSXfue\nJ3wR2QCc69o30M4cMS5bcl37lwHX2r83AbN97m8DcL79+07grWaehQHOcW1fAyz0xHmMxgJlN/At\nIM0TZ1aIZ/ES8BM7o9dgC5G971vAR/bvrwFbXfuSbLsGYIlIOXA1kOi55tvYQmRvR2EJ5pAQ9/kT\n4CVP3EJglr39Ea0TkdM99/ujVtjmvOtyz18NLhHxHJNhH5Nubz8F/N21/9vABtf2CUC5Jx1e59p+\nBXjUc7w3X7hF5D5X3NuBd+zfP8WuCLneZQ3+IvIM8H37XW8CfgvcBgyzn0GU65puEfFLLy3lyZbS\nwR5gGnAt8DhWnhuLVal6/XjKmUj+qTurc7jSGJNh/13p2bfH9XsI8CW76VsuIuVYtayBWLWVMmPM\nEVf8XcdhwxDgVdd5N2B19vd3xdnn+n2Uxg7OPKzaYCieBq63f1+PlVGbw3u/J3vu9zqsDApWYX4J\nsMt2GZziOjbUsxiE1RqKJfjZ7MKqATsE7tMYc9T+mWKf7xqsgmWviLwpImNdtv7JZWcpVuvFfV4H\np2bpXKPBvu9QcY8Hv/dzPLY5ZLnSZAZW4QcE3Je/Ect9WYElAhDsqil2/a4Kse3tHD/e+G787nsQ\nrvRkv8uDzZxnAVYF5EzgYyyxOMv+W2i/p2av704vtJwnW0oHbnsWeOxZ0Mx9dClURCKPexrlPVgt\nkQzXX7Ix5jdYrp0+IpLsij/Y9fsIVi0JsAoCINtz7os9504wxhSGYeMeYITPvmeB2SIyGcudMreF\nc3nvd4HHphRjzP8DMMYsN8bMBvrZ533JdWyoZ1GE5WapxSpY3fvCuU+MMfOMMedjCfdGLBefY+u3\nPLYmGmMWhThNkfv6dt9FXrg2EPyMwuF4bAuHr2K5yM4D0rFaB2AJU1diL5Z7FgARScRys/qxAKu/\naZb9+xPgNFpfaLeUJ1tKB46InGH/XoCKiNJGngUuF5EL7dpgglidyLnGmF3ACuDnIhInIqcDl7uO\n3QwkiMilIhKL5RePd+3/G/CA0+EqItkiMjtMu54Afikio8Rikoj0BTDGFADLsVogrxhjqo7jft8A\nRovIDSISa/+dKCLj7Hu8TkTSjTG1WH0V3pqi8yzOAC4DXjbG1GOJzQMikmrf7/exnm2z2J29s+1C\noRrLDelc82/APWJ3MIvVef8ln1O9BFwqIufa7+K/7POFW6gXY/nFw+V4bAuHVCx7D2JVTH7dhnN1\nJP/Cyi+nikgc8DOaETpjzBasVs/1WJWXCqxnfTWtKLTDyJMtpYMFWIMsEu18tBC4CEsIVx2vPZFC\nRaQLYYzZg1UD/DFWx+kerE5t5z19FTgZy11xP1YHsnPsISx/8RNYNZ0jgHu01p+A14F3RaQSq6Pz\n5DBNexArQ7yLVZg/idXJ6fA0lh+8JVdWEMaYSuACLJ9wEZbb4H9pFL8bgJ22S+U2LFeXwz6szsci\n4DngNmPMRnvft7HufztWbfN54B9hmBSFJThFWM/4LKyOVIwxr9q2vWDbsw4I+T2BMWYTVkH1Z6yW\n0eVYw7xrwrABrHf1RXs00MMtRT4e28JkDpYbphBYj5VWuhzGmHysd/0CVqvgMFanfXUzhy0ADtp5\nzdkWrI7+1tBcnmw2HRhjNts2L7S3K7DS7Kd2Zahb4IwwULohIvIzYKQx5vqW4nawHWdi1fSHmE5I\nUGINe37WGJPbUlyl9yAiKVgd5KOMMTsibU9vQVsiSpuwm+nfBZ7oDAFRFDcicrmIJNkuyN9jDUXf\nGVmrehcqIkqrsT+cKsfqhH4owuYovZPZWO7HImAU1rB0rcx0IurOUhRFUVqNtkQURVGUVtPjJ8HL\nysoyQ4cOjbQZiqIo3YqVK1ceMMZktxSvx4vI0KFDWbFiRaTNUBRF6VaISFgzYqg7S1EURWk1KiKK\noihKq1ERURRFUVqNioiiKIrSalREFEVRlFbT7URERC4SaxnVrSLyo0jboyiK0pvpViJir5HxCNYM\npeOBr4jI+MhapSiK0nvpbt+JnIS1VOV2ABF5AWvunPXtfaFPthzgm3OWMyUvg+lD+hAtXW09HkVR\nlKbsKati4ZYSvnXmCG4583iWpWkd3U1EcgheXrWAEGtiiMitwK0AgwcP9u4Oi2eX7OJYbQNLtpey\nZHupfd5WnUpRFKXD8U6D+MBbG1REWosx5nGshe+ZMWNGq2aYfPT6aVRU1fHBpmL+OH8LheVV/HL2\nRL56cutESVEUpaPYuv8wN/1jGSWHq/nm6cP48ow8BmcmtXxgO9DdRKQQa41ih1zCX7f6uBAR0pNi\nuWpqLueN68+3/7mKH7+6luT4aGZPyemISyqKohw3xRXHuPHJpdTUG1657VROyE3v1Ot3q451rLW8\nR4nIMHtN5WuxlnztUFITYvnb9dM5aWgmP3plLVv3H+7oSyqKorRIfYPhjuc+o7yqlqe+fmKnCwh0\nMxExxtQBdwLzgA3AS/Y6yx1OQmw0f/7qVBJio/ivl1bT0KDrsCiKElmeWrSTFbvK+OXsiUzM6XwB\ngW4mIgDGmLeMMaONMSOMMQ905rX7pyXw08vH83nBIV75rKAzL60oihLEwcPVPPjuJs4Z248vTIuc\ni73biUikmT05hyl5GTw4fzM1dQ2RNkdRlF7K3xZso6q2nh9fMhaJ4NBRFZHjJCpK+O55o9h76Biv\nf14UaXMURemFlB6pYc7iXVw5NYeR/VIjaouKSCuYNTqbsQNSeWLhdnSNekVROpt/rdxDdV0Dt501\nItKmqIi0BhHhuplD2LivkvyiikiboyhKL6KhwfDc0t2cNDST0f0j2woBFZFWc/mkgcRFR2kHu6Io\nncqqPWXsOniUa0/KazlyJ6Ai0koykuI4b3w//vN5kQ73VRSl03hn3T5io4XzxvePtCmAikibuGD8\nAA4crmFN4aFIm6IoSi/AGMPb6/Zx2sgs0hJiI20OoCLSJs4anU2UwAcb90faFEVRegFb9h+moKyK\nCycMiLQpAVRE2kCf5DimDu7Dgs0lkTZFUZRewJLtBwE4fWRWhC1pREWkjZw8LJP8wkNU1dRH2hRF\nUXo4S7YfJCcjkdw+iZE2JYCKSBuZMbQPdQ2G1XvKI22Koig9GGMMy3aUcvKwzIh+oe5FRaSNTB+c\nCcDKXaURtkRRlJ5MQVkVBw7XMG1In0ibEoSKSBtJT4plcGYSG/ZVRtoURVF6MBv2Wh82jx+UFmFL\nglERaQdG909ls4qIoigdyIa9lYjA2AGR/0rdjYpIOzBmQAo7Dhyhuk471xVF6RjW7z3E0L7JJMV1\nrQVpVUTagdH9U6lrMGwvORJpUxRF6aFsLznCyH4pkTajCSoi7cCIbOvF7jqoIqIoSvtjjKGgrIq8\nPkmRNqUJKiLtQE6GNWa7sPxYhC1RFKUnUnqkhqraevIyu873IQ4qIu1ARlIsSXHRFJZVRdoURVF6\nIAV22ZKrLZGeiYgwKCORwvKjx31sTV0DD7+/hV+/tYFDR2uD9m3df5gFm0uo11mCFaXbsGlfJQu3\nlAQtWGeM4YVlu7lv7lp2HDh+t7cjIo7XoyvRtbr5uzH9UuM5eLjGd/+mfZV878XVGOCha6Ywxh6m\n98s31vPMkl0A5Bcd4tlvnIyIsGjrAW76v2XU1huunDKIh66dCkBtfQO/+M96lu8s5dvnjOLSSQMD\n19hfcYxlO0s5Y1Q26YldY4ZPRenOGGP4eMsB0hJimDq48SO/grKj3P3KGmrrDf979SSGZSUD8G7+\nPr717EqMgRtmDuGXV04E4MXle/jRv9cC8MGG/bz3X2eRFBdDdV09d/9rDUt3lHLH2SO5fuaQkHaU\nHqkGIDs1viNvt1VoS6Sd6JMcR+mR0CJSXVfP/3tuJcUVxyiuOMZ3X1hFQ4PhwOFqnl+2m+tnDuZn\nl4/n060HWb6zDGMMv3hjPTkZiXzt1KHMXV3E8p3WF/FPfrKDZ5bsovxoLXe9uCpQqymuOMbFf1rI\nnc+v4qpHPqXyWGOr5u8fb+fM337I/76zMah2VHqkhqcX7WRdiKnsj9XW6zopSrfmWG19k+Wry4/W\nMGfxzibTFC3cUsL5Dy7gljkrgvLOA29u4KZ/LOOqvy7ilZXWAnTGGO56YTWrdpezoaiCO5//DGMM\n9Q2GB97awJj+qXx5Ri7PLNnF5uJKGhoMj3y0lWmDM3jpW6dQdOgYLyzbA8ATC3cwd3URKfEx3Dd3\nHZ/tLgt5L+W2l6IrVg67nIiIyM9EpFBEVtt/l7j23SMiW0Vkk4hcGEk7vfRNjuPgkRo27qtgT2mw\nW+vNNXvZXnKE335xEvdeMo6N+ypZvrOUt9bupb7BcMPMoXxpRh4JsVG8saaI9Xsr2LivklvOHM6P\nLh5LSnwML6/YQ0OD4alPd3LGqCxe//ZpCMKcxTsBePj9LVRW1/HTy8az/cARnl5khS/edpAH3tpA\ngzE8+tE2XltdBFgZ7MuPLeb+1/O56q+fBmWqpz7dwcT753HhQx+zv6JxsEBB2VG+/+JqfvP2Ro7V\nNn4TY4zho037WbT1QJPncqy2nqM1de30lJWeTn2D4VBVbZPw3QePMndVYZN9b6/dy23PrGT++uJA\nmDGG++auZexP3uHGfywLpNWaugaufXwJP30tny8+uihQMSs9UsMdz33G4eo6Pti4n1+/tRGAPaVH\nefLTHXxhag7Th/Thf+x0v66wghW7yvjhhWO4/4oJ5BdVsGR7KYu3HWTXwaPcec5IfnTxOGKjhVdW\nFrBqTxl7Squ4fuYQThqWyfiBabyxpoj6BsMzi3dx1uhs5t5xGtmp8Tz03pag+ztWW8/KXaWUV9WS\nFBdNXEyXK7K7nojY/NEYM8X+ewtARMYD1wITgIuAv4pIdCSNdNMnKY5DVbVc+vAnXPKnhZRUVgf2\nvbyigGFZyZwzth8XThxAXHQU720oZsn2gwzOTGLMgFSS42M4aVhflu8sY/E2a7rn88f1JyE2mrNG\nZ/Pp1oOsKTzEvopjXD0tl36pCZw9Npt31u2jrr6B1z8v4tITBnLz6cM4dURf/r2qEID/+3QHWSnx\nvPf9sxg7IJW/L9xu2bSygK37D/PbL06iT1Icv5tnZZydB47wizfWMzkvgz1lR/nFG+sBK3N/8+kV\nvPZ5EX9bsI3fvrMpcH9/nL+Zr/3fcr76xFKesM8P8NnuMk7+9ftM/cV83lm3LxBecayWO57/jKv+\n+imrXDUvYwwvLt/N/a+tY/fBYCHeUlzJC8t2U340uLVXVVPPyl1lIT/0LDtS06QmqoRHxbFaausb\nmoRv2ldJYXnwABJjDPPy9zF/fXHQ866tb+CRD7fyP28H9/cdrq7jO/9cxexHPmXlrsb3v7/yGBf8\ncQFTfvEuD87fHAjfXnKYSx9eyF0vrubLf1scEIWVu8q4/fnPeG9DMbc9u5L8IqtFPX99Mc8u2c3p\nI7NYuOUAT36yA4C5qwrZuK+S33zhBPqlxvM7Ow2/trqQimN1PHnTiVxzYh6vrCyg8lgtL68sQIAf\nXDiGO88eyYHD1SzedpA31hQRFx3FVdNyueQEKz+/v6GYhVtKiI0Wzhnbj0x7mYhF2w6ydIclVueM\n7QfA2WOz+bzgEKv3lLOv4hhXTB5EcnwM156YxydbSih2Vdy+9+Jqrn50MU9+sqNLtkKg64pIKGYD\nLxhjqo0xO4CtwEkRtilAcrylZ/UNhsrqusDa6zV1DazcXca5Y/shIqTExzBuUBrrCitYU3CIE3LT\nA+eYkpvOpn0VLN5mTffcLy0BgKmDMygsr2JevlUQnzzcmvTxlOF92XvoGO9t2E/lsTrOthPphRMG\nsL3kCNtKDrNwywEuOWEACbHRXDU1h/yiCvYequI/nxcxdkAqX5qey/Uzh/Dp1oPsrzjGP5fvJjpK\nePS6adx0ylDeWruXkspqPti4n437KvnjNVO4ZkYezy7dRemRGvZXHOPRBdu49ISBzBqTzR/nb+ZQ\nVS0NDYYf/msNKfExDM9O4e5X1nCk2mqRPPDGBt5Zt4+dB45w6zMrAy2Vl1cWcPcra3l68S6uf3Jp\nYHr9DXsruOzPn/Cjf6/ly481FiKHqmq59M8LufrRRUGFS0OD4dv/XMXUX87nuieWBgnMEwu3c8L9\n87hlzoqg8A837ueCPy7grhdWBU3rv2FvBTc8uZS7/7UmqEVVXHGM7724mh+/ujbI/VF5rJafvZ7P\nfXPXUuZyb9bUNfDg/M3c8++1QYVEQ4PhsQXb+O+XP2enq8PVGMPTi3Zy5/OfsaYg2PXy/NLd3PzU\ncj7cFLwY2gvLdvPFRxfx/NLdTcLP+cNH/OqN9UEuymeX7OKEn83jpn8s43B14709+ckOpvz8XWb9\n7qOgb58e+XArFz70MbN+92HQGjoPzt/Mt55ZyS1zVvDnD7YGwn/z9kZ+N28Tjy3Yzp3//CwgML9+\nawNvrCmioPQot85ZEUgXv3l7I3vKqjh9ZBYPv78l4GZ9cP5mEPjpZePZVFzJi8stV9DfP95O3+Q4\nFt59Nslx0fxtgVWBeXH5HgamJ/DU10/k9JFZ/HPZbowxvPZ5IUP7JnHNiXlcN3MIy3aWsvdQFW+u\n2cu4gWmMH5TG1dNyqKlvYMHmEj7deoDJeRkMykjklBF9SYiN4uMtJazYVcYJuemkJ8aSFBfD1MEZ\nrNxdxqo95ZyQkx74ovykoZnkFx1ixc4yhmUlk5EUB8Ck3AzqGwzP2X2hJw2z8vPlkwfRYOD9DdZ7\nLSg7ytuuypeKyPHxbRFZIyL/EBGnNysH2OOKU2CHNUFEbhWRFSKyoqSkcxaMSoxtbBRNyk0PNK/X\n762gpq4haObN8QPTWLm7jIKyKsa55sEZMyDNSkQb9wfNjzMxxxKaf39WQFZKPAMC4mKd03FpzbCv\nMSUvA4CXlu+hqraeU0dYC9icPsr6/9GmEj7bVcasMZawOTWkT7YeYMGmEmYMyaRfWgKXTbIS9Sdb\nS3g3fx/pibFcMnEA188cQk1dAx9t2s+ba/dSW2/4/gWjueu80Rypqefd/H0s21nK1v2H+cGFo/nV\nlRM5VFXLG2uKOHi4mn+vKuCGmUN4/MYZlFRW89pqa536P3+whSl5GTz7jZPZXXo0IMR/eHczyfEx\n/OrKiWwuPsxLK6xk8NiCbZYQnTmczwsO8ZxdeL7+eRH/+byI88b1Z9G2g/zjE+v5rCko51dvbiAv\nM4n564t59KNtgO3OeP4zKqrqmLu6iIfet2rBNXUNfPPpFazaXc5LK/fw67c2AFYBf+fzn/Gfz4v4\n57Ld3Dd3XeBd/fjVdTy1aCfPLd3NXS+uDoT//t1NPPz+Fl5Yvptb5qwIFOZPfrKD/3l7Iy+vLAhy\nvfz7s0Lufz2ft9bu5aZ/LOPgYatl+/6GYn786lo+2XqAbz2zkm0lhwFYtqOUH/17LZuKK/nxq2tZ\ntM1yLa4rPMQ9r66lqqaeJz7ZwYv2s9tSXMlPX1tHbp8kPt5Swp/es+5518Ej/PqtDcwYmknFsVp+\n/h+rJVpYXsVD723mnLH9GNI3mZ/MXRfo13v0o21cPnkQF00YwCMfbuXg4WoOHa1lzuKdXDMjj59c\nNp6FWw7w2e5yKo7V8q+VBVx70mAev3EGB4/UMHd1IZXHanlzzV6+PCOXR66bRmJsNC8u30PlsVrm\nry/mC1NzuPn0YUwYlMZrdvwPNu3nskmDGJieyKWTBvLBhmLKj9bw8ZYSLps0kJjoKC6bNJCCsirW\nFVawdHspF04cEJTmF245wJqCQ5xp541JuRnExUSxYmcZawsOceJQq4BPiI1m/MA01hdVsK7wEJNz\nM1z5NpUtxYfZXnI46IvyUf1TaDDWyqfu8PEDrQkU31y7l9SEmMDaIKP6pdAvNZ7F9sJTS7dbLRhH\nZFREXIjIeyKyLsTfbOBRYDgwBdgL/OF4z2+MedwYM8MYMyM7O7udrQ9Ngi0iqQkxnDK8L2sKyjlW\nW89ndnN9mmtkx4jsZGrqLFfBgPTGIXvuD4kGZiQEfg/pa40NL66oZmjfpMBaAsOzrREhi7YdJDE2\nmoHp1jFjBqQSHSW8/nlRYBtgVL9UYqKEt9fto67BMCXPEqfxA9NIiI1ixa4yNu6rDLR0JgxKIy0h\nxnKxbT/IqSP6EhMdxYRBaWQmx/Hp1oN8uvUAQ/smMSI7hcm56WSnxrNwywEWbC4hJko4f/wApg3O\nYGB6Ah9tKuHjLSXU1huunpbLjCF9GNI3iffWF5NfVMGe0ipumDmE00b2ZWS/FN5Zt49DVbV8sLHY\nqj2ePJgJg9KYu6oQYwz/WlnAOWP78+NLxlmdlnYN9fmluxmenczfb5zOqSP68tzSXRhjmLN4F6nx\nMbx02ymcN64/zyzeRX2D4dklu6iqrefZb57EFZMH8fyS3VTV1PPm2iIKy6v481em8pWTBvPS8gLK\nj9awbEcpy3eWcf/l47ntrBG8/nkRBWVH2VN6lDfWFHH7rBHcc/FYFmwuYW3BISqO1fLM4l18YWoO\nv//iZNYUHGLBlhJq6xt4fOF2zhiVxZybT2J36VFe/7wIYwyPfbyNCYPSePM7Z1B2tDbQunj84+3k\nZSay4L9nIRBw1Tz5yXYyk+P45O5z6J8Wz+MfW7XypxftJDE2mnnfO5PJuemB+M8t3U1sdBTPffNk\nLp80iBeW7+FYbT0vryjAGMOfvzKVm08bxoeb9lNUXsVrqwuprTf8/IoJfOfcUewuPcrSHVa/Xl2D\n4c6zR/Ltc0dSXdfAu+uLeSffqlxcP3MIX56RS1x0FG+v3cv7G4qpqWvg6mm5TBucwbCsZN7NL2bh\nlgNU1zUwe0oOaQmxnDk6iw827mfp9lKq6xq4aKI1CvHccf1ZtaecRdsOUlPXEBCD00dmc6SmnldX\nWXaePKwvYK33A/Dyyj3UNRim2hWsUf1SiI+JYu6qQmrqGwIVtdjoKMYNSGVe/j5q6hsY07+xMjey\nXwpLd1j2DMtq/F5jVP9UDlfXceBwDcOyGsViSN/kwO9B6Y35eUB6AlEC1XUN5GQkBvKziHDKiL4s\n2X4QYwyr9pSRGh/DrDFWGRbVhdYQcRMRETHGnGeMmRji7zVjTLExpt4Y0wD8nUaXVSGQ5zpNrh3W\nJUiMs0QkMTaak4ZlUltvLVT12e4yBqUnMMCTiBz6pzUO2RvkGgM+0CUu/VMTiIkSO37jsakJsfRN\ntprIuX0aE2NCbDQD0hLYe+gYcdFR5Nk1nbiYKIb0TeJj2xXhTNcSFSWMyE7h3Xyr9TTazjhRUcLo\n/qmsLThEQVlVoAYVFSVMGJTG5uJK8osqAi0iEWHa4Azyiw6xenc5E3LSSYmPsTLH8L58truMZTtK\nSU+MZcKgNESE00ZmsWxHKZ/aNeczRmchIswanc2yHaV8vLmEBgNn262mc8f2Y/WeclbsKmN/ZTUX\nTOgPwAUTBrCpuJKt+ytZubuMSyYORES41K6Jbis5zEeb9nPOuH6kxMdwxZRBHDxSw5qCct7fUMy0\nwX0Y2S/fi8YPAAAgAElEQVSVL83IpbK6jiU7DvJufjED0xOYNSaba0/Mo6a+gQ827mdefjHxMVF8\ncXoeXz1pMMbAO+v28ebavRgD180cwjUnDiY6SpiXv4/3NxRTVVvPDacM4Yopg0hNiOHd/H0s2X6Q\nkspqrp85hDNGZTE4M4l56/axcV8lm4sPc93JQxg3MI0Th/Zh3vp97K84xtIdpVwzI4+B6YmcP74/\n89cXc7TG6hC+amoO6YmxXDklh0+3HuBwdR3z8vdxyQkDSUuI5QvTctm6/zC7Dh5h/vpizhqdTWZy\nHFdOHUTlsTo+21XG+xv3c/KwvvRPS+CySQMxBj7ZcoCPNpVwQk46eZlJnDu2H9FRwqJtB/h4cwnD\nspIZMyCV8QPTGJiewKdbD7B420H6pcYzMSeN1IRYpg/pw7KdpazcZRWMU/MyEBFmDu/L6j3lfL6n\nnLjoqEANf/qQPhSWV/HxlhJErNY9wKScdIyx+hkBTrAL/wn29OiOq8txEw/LSiExNjowsmqcnYZj\noqMY3T+VRXb/46j+jYX/iH4p7D10LJCvAuHZjXFyXOHuOIMzG8XFnbfdlcXY6KhAPvZ+9zF9SB9K\nKqspLK9i1e5yJudlkJVinedobdec4LXLubNEZKBr8yrA8RW8DlwrIvEiMgwYBSzrbPv8SIixRKTB\nmEChunpPOat2lzPVs4jMgDS3iDT+djdXB7qEJipKAv5U7zhxJ4HlZQZ/yTrIbskMykggJrrxNTvj\n2aMEBvdtPGZEdgoHbJeJO7OM6p/CWts3PcLVJB/Zzwrfe+gYI7Iba1yj+qWy8+BRNu6rYFRQ0z6V\n4opqVu0uZ0z/VKJsURw3MI3K6joWbCphYHoC/VItu0/ITaemvoG31u4lylWITB3chwZDoNXhuBuc\n/88t3U19gwm0pmYOt2qkc1cVceBwDaeOsLad/x9vPsCawkOcZm9PH9KHmChhxc5Slmw/yGkjLVGb\nMCid1IQYVuyyWmUnDs0kMS6avMwk8jITWbGzjOU7ShmenUxORiLpibFMyctg0bYDLNtRRmpCDJNz\nM4iNjuLUEX2t4dw7SokSAtc4c3QWi7cfZJndEXuG7WI5Y1Q26woreH+j5Ss/fZRVMz1zVDYlldW8\n8plV+z5tpHUPp43Morbe+rit4lgdpwx3wq3/b63dR2F5VcBNMn1IJiKWO3NzcWWg9j4iO4WMpFiW\n7Swlv/AQUwdbBXxyfAzjBqayclcZawsPMdl+NyLCCTnprC+qYG3hISblpgcqNhNz0ti4r5LVe8qZ\nkJMWeP8TBqVxqKqWd9cXM3ZgamD00YRBjgu3kGFZySTHW/0Mzloa720opn9aPH3sStTgzCQSY6PZ\nuK+SpLho+tn5JDpKGNI3iSN2P5e7cuYu/PunNuY3d97LdeWrfi5RcH85npXcGJ5p2wONedN7TrAG\n4kCwxwFgap717BdtO8jGfZVMHZxBqn3v1SoiYfNbEVkrImuAs4HvARhj8oGXgPXAO8Adxpgu81Sd\nlkh9gyEzOY4hfZOYl29lVqcJ7dDHldD6uUQh1lXYu+MAxNuZyy06VjxLeLJSguM78TI953ESdmZy\nHPExjf047tZRblAtqzGzDHU1z4e7hMb9e2S/FOobDGVHa4PFyBaUjfsqGdEvuUn44u0HA+455zwA\n7+TvI7dPUsBd6NQY5+XvIy46KlDzC4TbHZFOa2pIZpLlSlm3Nyg8KyWerJQ43l2/D2NgrF1DTYqL\nYVT/VD7ZcoCyo7WB1ld0lDA5N4PP95Szbf/hQM0XrIy/pqCctYWHAoUAWAXkluLDrCkoZ0pehqvg\nTGd36VGW7SxldP9UUuxCYuKgdI7W1PPOun1kpcQF3oNzrbmrComNlsC2U6C+Zo/Ec2rxTm37P2us\ne57kqpXHRUfx2morvlOLT0+MZVjfZOauKqS+wQQKcKfF+d6GYo7U1DNxUOMgkHED0lixq4ziiuqg\nRZLGD0pj+4EjbCs5EnCjAowdkEZNXQPrCiuC+gec97HjwJGgWryTFg5X1wXV1gekJRAb3bRVHhUl\ngYK6X2p80PKxTnhmclzQEFknzcdGCxlJ7gpc8PUcMl1i4RaIrNTGPObkR+u8jddynx8stzc0ionD\n2IGpxMdE8ewSy9U6dXAGKXZcxwXe1ehyImKMucEYc4IxZpIx5gpjzF7XvgeMMSOMMWOMMW9H0k4v\nTiHnTFEyOTeDVbutUTXe5SzTEhoTlCM+Tc4XExzu5Ik+nsTY107YKfHeRGptuxM+QF9bbLyddH1d\nYpPkssktTu7Mku0KH5geumUVJEau/h63r3iIqzXktJIAhtu+ZWMIEpdB6YkkxkZTcayOoVlJRNsF\nc1pCLP3T4ik6dIyU+JiAOMdERzE8O5lt9jT9XsHLL7JWixsRJIrJfF7QtPU1PDuZ/KIKauobgsJH\nZKdQdOgY+yutPiv3+Sur68gvqgi6T6cQXbK9NEiYR7gEdUjf5EBB6MRfuqOUnIzEQOHkPJcVu8pI\niY8JVBiyUuJIS4jhc/vbH6eVGh0lDMtKZqO9gNow13MdmpVMke3Ccds6tG9y4EM39/scmtXYr+d2\nw7qFwF0A54RR63enneyUeOxXG2idgiUWzrY7HBpFoV+aT7inFe8cn2y7XB3cFS8nfUFwHnFGY0Kw\nEGR6RMHBPfAGIN7eTvCEx0ZHcUJOOmvs9Dclrw9xjhh1zS6Rrici3ZWEWOtROgMoJ7taHxM8y1k6\nNU+gMYH4nM/BSYTej43SEq1zObWVxmtY8TOTg8XCEZWYqODz9HXVrNwZqq9LhNyZxV0TCw5v/O3O\ndO7z+IW7C4XEuOhAM95dM4yKkoBbYZDHn+zEc/cPQaPfOSMpNkg83QWeu+B0T7c9zFXIu+O7BW9w\n39Bi6Y7jPqdbFN0F8/Cs0OG5fZICtW93yzApLiZQULvvWUQC185OjQ8qqJz7jJLgZx/k2nEVwu5n\n7HbnuAt/93tzt2jdhblbUNzncV/LXcjHREcF0pg7vnVM6PBAfI9Y9PFxBTtpwZsH/UZBucPdrfh4\nV55MTQh9bLxHLOKiG/svvTijK3MyEslMjiPGjqsd6z0cp3bovOZptv/4hJz0oAQHwYlOfBKGN3E5\nNaJYT4JvsFu4KfHB8Z2WiTe+UzC7a1gAGT4Zx+1Wc5/LLTruOH7h7haUW3Tcouh14WXagtS09WWF\ne2t9joD19bj2nO2+yd5wy9bkuOig5+3X+nKfN8id4fqdk5EUOtxVSLvD3YW3+7m4w6OjJFA7doe7\n7WsSbl/D23Hr3HPflPigNOCcXyT4ebufWbZLLPxcsn6i4C7A3aLjfv9eV61TIevvKfxT7II6OyU4\n3KlQZTUJD50XnPjeCU6TfLwDfl4Ddx72+6LcWyl0KnHeFgo0ei6cPisnblTX1BCdgLG9CIiInaCm\n5GXwqysncordYesmKozUEK6I1NsfcCXHB79Kp7ld7fGjJsUHu9284V5S4kMnEXd4mqsV5K6tuQvF\nmGb6exy8ouDUEL39Ok5B6D2PU7P2+pkD8b3h9vGxnozvvp47k/f16UANamX5tMT8Wm5u0Y2KEqKj\nhPoGE3RO55jiiuomzyLT556dZ+MVYKdl6i2AnfPGRkcFFYruZ+x+z+535W4RuN+/uyUS7CINPYmg\n93062cRbu3cqYcmeNOvE8xbkTt7wfoHv2OQN9xMLP3Fx462cOXjd006+TYxrKjrnj+/PfZeO44rJ\ng4LO2VVbIioi7YQzBNd5zyLiOyNnOHhrLk5CiosJTkgNdmL0Nsmdjrsqz4gOJyPUNMlQoZOCX8Zx\nh7sLHXcm8mZyh/TE0NfyuhGcjOYNdwp2bwHpdF42KVCTQhcu3gI5VLifr9xdoLqFwy2u7kLRHe5+\nRl6Rjo+J4mhNfZNw5316KwuOUHndmY6t3vjOs2nPZ+FOO+7+vmSfNBKq4ISmadix0Wur49rzVqic\ndOEtaxPs470VJ6dg94aHah2447cGb6XQuWaoa8VGR/HNM4YHtruodgRQd1Y74ST09nrfTTvWQ2cc\np3binSHKcaF5546KP86M49u094nvxq9pHxftk0m9wmnfm7dm6GSqRI/wOYWZ9zxOQerNjE58bw0v\nNSG0yLnD3YWiO9xdaLvflbcw9wt3BMYrCo6NXtscMfOKTsDf36QPzQr3jvRxavHecL+WqF+6cF/P\nm1YdvP1xjccGv4foFtJ8jCfcaaF4Z592CvA6b7jTEgkzL4TjQfDDmyad1o+3ryQUThbuqi0RFZF2\nIjrQEmmfF92kw81OSd4M5Te/YKBF5JE1JyF684NfM9ybUQPnCSNDxfoUFrExoY/13puz7RfudE46\nNLonQvu4/cM97ozY0AVnOCPpknwKBb9WmTfcKQC94uKIfrJHOJ078hb2TvrxvoPEQIEafM8Jvr78\n4+sfcBMT7fOefa7lfc+NLtzg8zitfu/7d+J7540MiIhnhyM63nC/vNAWvM+xzk6LfnnEjeNtCCNq\nROiiZnU/GmsLbTvPmaOtD8niPRnNKSz8andeGkfqBIf7jfSI8RORNtyQn9D43UOTGqe96XVzOIWK\n9/xObc9PFLy17IBrzyfci5/Lz22H3z2H07cEjbVlb7hf35cT32uzU8BGewragIjUh66te/HWoAPh\nYbh2fCsRPuLibaH49QNG+VTYGkUk+H06rSNvfauxwzp0Ras9cL4z8uZnR8T9hNZNQxdviWifSDvR\nNzmOCyf0D/JltoY/fGkyJZXVTQojR6T8akneUMeN5c1oUT7i4nfejqiV+bq5vP09dlnQZDCBnau8\nmcopJLzhfoWWX+ES71twtr7O5e8uDN2yaNJCMaHDAy1R7wt13Jyem3PEwtsn5tviaINrx7cSEaY7\nK8rHneVtXTs49+pN87E+HdPRUaHzQlvcVl7mfOMkiiuONbHJaRWHUykcNzCVs0Zn88OLxrSbXe2J\nikg7ERUlPHbDjDafJzs1PuQSmMYuXsJN3oEmsI9YeMXB153VESISZkukIeDC8w4msP57TWtoaP6e\nveEBQfXYEe1T42uLoHoLkZOHZbJ0R2mTe3O2vM/didb0vVn/vX1f0QERCQ4PCKdHXPyEPdyW7/EQ\nrjvLsdErLn55wU9PAy0XT3w/F3R7JnlrZoSm+dlpifhVcNzEx0Tz9M1dZtWLJqg7q5vQWMsKL75T\ni/crIP1qZV46oiUSrjvLuWdvodMokKHFxc/N4XfPTdwZfq29dnQnXDRxQLP7/a51vC4Nr1g4j9jb\nGPCrLHTM+w/PzemIRZP04vOe/RYgc2L5uXD9xKUjOXuMNfuw99uY7oi2RCLE2p9dcFzxW1qgz7vb\nz7XjHoLsxtdN1gF+WL9r+X0D4225+I1W8ROXloTTr4USCfzeGz7hfq4dP6J8noWfcHZES9TPneXt\nH3Des7evJNDi8Bzvny5CHxDlV4nohPd/13mjuWHmkCZTtHRHVEQihN/0CC0RbqHR4NMn0nieYBoL\n2laZ1S54xaLBZ0Sa32gVPxeec7Pe+H4Fqp87qz1pqVLg9x7CfT+NlYXg8Gif2ndntkT8BKtJZcHH\nhsb+Pjzx/dxcocO933YF7OuE9x8dJT1CQEBFpNvwl69O5e8LdwTNmArNuLf8+g18CuDoLjA/j3fo\nb6Am6tsn4hPuMygh/I7V47G6bfhVCnzD2/h6/PsBOq8l6kdTd2boSoFf34efy9cv3LdPrBXC+dsv\nTmrqDuglqIh0E4Znp/A/Xzgh7PgNPrU1vwLYz+XTmfiNwvK2DBp8Rmf533Po8MA9hznIoDNwrtxe\nr6Fpn0ho4ewIt9Xx0rRPxMJXFDzFf2P88IQ5xtedFZ69br48I6/lSD0U7Vjvofj51v3cXH7uj87E\nW5D5d6D7DPH1EUi/cKfFEQmfeEv4uXxacoO1eF6f2nd7DmttLU063AP3GhzufHPhbaE64d7hyoH3\n7yntAq9ZvOGRfxbdCW2J9FD8at+Oi8CbXxNiohmencxd541ucq7ff2ky4wamNgl/6JopIYcvfv20\noVTVNF0vLCcjkcLyKl+bm462ccKD4/n1fTT4tFzqfYTTr3+gM0SkJS3w3tvxFmy+Xk6fkU2RbImc\nPSabDzeVNLHp/ism8JO565rMUHzvpePITInjognBI9yuO3kI5Udr+X+zRgSFT8pLJyslnu950nZX\nn06ku6Ai0kPxKyzGD0xn7IBU7r10fFB4VJTwwX/NCnmuL07PDRl+5dSckOH3Xz4hZPi8750ZUlxe\nvf3UwFrXbs4ak83zS3cHTeoH/kN5/b4f8fOtO2IT7ki1DsG3Az10Z3KTw4/TVKeTOdxpb9qT5755\nMpuLK5uEP3r99MDCV27OGp3Nxz88u0l4RlIc91w8rkl4XEwU3zu/aSUoLSGWFfed1zTcXsL4u+eO\nCvcWlBCoiPRQAi0RT3hiXDTv3HVm5xuENZVHqOk/pg7uE1iX3s3Pr5jA7bNGkO6Zrfe7545iw96K\nwNrhDs4UHUmeazjfzHhbKI0uv+DrRtKz49cP0PrzBYuPX39Ca0TkS9NzmywMBfD5/Rc0mQQRrLXf\nTxuZ1SQ8ITaaAemtnyG3tURHCXPvOK3Tr9vTUBHp5vj5yP06n7sTsdFRQSv5OUzMSeeTu89pEv61\n04ZSXdfA108bGhTuiFBeZvC5/KaS6Qo+8eP9/iNcWhpkMKZ/U7fln66dErR8sMPvvjQ55DX8VgZU\neiYqIj2Uc8f152f/Wc81J/aeUSPxMdF8J4Rr4sShmTx2w3RmjckOCnem+hgVouDsaFr+utoTfrx9\nIj7RnZage414sNyZz3/zZMYMaPosZk8J7bbsyeT2SeSrJw+OtBndAhWRbo5fYZGXmcTO31zaucZ0\nYS6c0HSakczkOJ79xslMykuPgEUWfu8v7D4Rn/M6w2W9I5WG9E3mqa+fGFh61c2pIVxNvZVQLV0l\nNBEZ4isiXxKRfBFpEJEZnn33iMhWEdkkIhe6wqeLyFp738PSFXwOXQCnZumdaloJj9NHZTXpuAf4\n5ZUTefu7Z0TAIou2uiEvnzyIO88eyX9f2HTm11lj+vlOa68ox0ukUtI64AvAY+5AERkPXAtMAAYB\n74nIaGNMPfAocAuwFHgLuAh4uzON7or88KIx9EuL57JJgyJtSo/ihmaWNg7Vb9DeSJNvGkKLyszh\nfXl68S4meGYyiI2O4gchBERpG4/fMD3kLNu9mYiIiDFmA4TMGLOBF4wx1cAOEdkKnCQiO4E0Y8wS\n+7g5wJWoiJAUF8Pts0ZG2oxeQ/7PLwxrIaG2Em5L5OITBrLqJ+cHreeudBwXhHCL9na6mg8kB9jj\n2i6ww3Ls397wkIjIrSKyQkRWlJSUdIihSu8kOT4msE59e+AnFd7wiXZLIyOpqViogCiRpMNaIiLy\nHhBKtu81xrzWUdcFMMY8DjwOMGPGjF46LZrSmXxy99ntOpzae657Lx3PVdNyGdmv6VBbRYkkviIi\nIg+HcXyFMea+UDuMMU0/EW2ZQsA9JjXXDiu0f3vDFaVLEOp7lrbg1aO4mCim5GW06zUUpT1ozp01\nG1jZwt/V7WzP68C1IhIvIsOAUcAyY8xeoEJEZtqjsm4EOrQ1oygdSVsnUlSUrkJz7qw/GmOebu5g\nEWk6V0UYiMhVwJ+BbOBNEVltjLnQGJMvIi8B64E64A57ZBbA7cBTQCJWh3qv71RXuj6zxmSTX1Th\nu987uOQ7547id/M2dcja5orSEYjfR0w9hRkzZpgVK1ZE2gxFCeLvH2/ngbc2sO7nF4acT0xRIo2I\nrDTGzGgpnm91R0QSROQmEblCLO4WkTdE5E8iop+2KoqiKM32icwBLgBuBj4CBgN/ASqx3EqKorQS\n7+y6itJdaa4dPd4YM1FEYoACY8xZdvg7IvJ5J9imKD0enbtH6e401xKpATDG1AFFnn1NVxZSFEVR\neh3NtURy7W9FxPUbe7v3zQ2tKIqiNKE5Eflv12/v8CYd7qQobaCHD4pUehG+ItLSNyKKorQdXdBA\n6e40N+3Jf8B/CIkx5ooOsUhRFEXpNjTnzvq9/f8LWBMpPmtvfwUo7kijFEVRlO5Bc+6sBQAi8gfP\nV4v/ERHtE1GUNqBdIkpPIZwJepJFZLizYU+MmNxxJilK70H0SxGlmxPOpD3fAz4Ske1Yw3uHALd2\nqFWKoihKt6BFETHGvCMio4CxdtBGe/laRVEUpZfT3ASM05zfxphqY8zn9l91qDiKooSPfiei9BSa\na4n8n4jMovnpfZ4EprarRYrSi9DvRJTuTnMiko61emFzybykfc1RFEVRuhPNDfEd2ol2KIqiKN0Q\nXYNTUSKAriei9BRURBRFUZRWoyKiKIqitJoWRcReX/16EfmpvT1YRE7qeNMURVGUrk44LZG/Aqdg\nTbwI1hrrj3SYRYrSC9DvRJSeQjgicrIx5g7gGIAxpgyIa8tFReRLIpIvIg0iMsMVPlREqkRktf33\nN9e+6SKyVkS2isjDIjrCXun+aCpWujvhiEitiERjTzwqItlAQxuvuw5rivmPQ+zbZoyZYv/d5gp/\nFLgFGGX/XdRGGxRFUZQ2Eo6IPAy8CvQTkQeAT4Bft+WixpgNxphN4cYXkYFAmjFmiTHGAHOAK9ti\ng6IoitJ2wpmA8TkRWQmci/X1+pXGmA0daNMwEVkNHALuM8YsBHKAAlecAjssJCJyK/ZMw4MHD+5A\nUxVFUXo3zS2Pm+na3A/8073PGFPa3IlF5D2sFRG93GuMec3nsL3AYGPMQRGZDswVkQnNXScUxpjH\ngccBZsyYoV2YSpdF1xNRujvNtURWYvWDCDAYKLN/ZwC7gWHNndgYc97xGmPPEFxt/14pItuA0UAh\nkOuKmmuHKYqiKBHEt0/EGDPMGDMceA+43BiTZYzpC1wGvNsRxohItt2Jj72a4ihguzFmL1AhIjPt\nUVk3An6tGUVRFKWTCKdjfaYx5i1nwxjzNnBqWy4qIleJSAHW9ydvisg8e9eZwBq7T+RfwG0ut9nt\nwBPAVmAb8HZbbFCUSGL0QxGlhxDO8rhFInIf8Ky9fR1Q1JaLGmNexRrx5Q1/BXjF55gVwMS2XFdR\nuhr6nYjS3QmnJfIVIBur0H8V6Efj1+uKoihKLyacIb6lwHc7wRZF6TWoN0vpKbQoIiLyITRd/MAY\nc06HWKQovQj1ZindnXD6RH7g+p0AXA3UdYw5iqIoSnciHHfWSk/QpyKyrIPsURRFUboR4biz3F+u\nRwHTgfQOs0hRegHaJaL0FMJxZ7m/XK8DdgDf6EijFKW3oCsaKN2dcERknDHmmDtAROI7yB5FURSl\nGxHOdyKLQoQtbm9DFEVRlO5Hc7P4DsCabj1RRKbSOBoxDUjqBNsUpcei34koPYXm3FkXAl/DmjH3\nQVd4JfDjDrRJUXoN2iOidHd8RcQY8zTwtIhcbc9ppSiKoihBNOfOut4Y8ywwVES+791vjHkwxGGK\noihKL6I5d1ay/T+lMwxRlN6E0S9FlB5Cc+6sx+z/P+88cxSld6GfiSjdnXC+WM8GbgGGuuMbY27u\nOLMURVGU7kA4Hxu+BizEWia3vmPNURRFUboT4YhIkjHm7g63RFF6EfqdiNJTCOeL9TdE5JIOt0RR\neiE6d5bS3QlHRL6LJSRVIlIhIpUiUtHRhimKoihdn3DWE0ntDEMURVGU7keLLRERmRbib4SIhNOf\n4nfO34nIRhFZIyKvikiGa989IrJVRDaJyIWu8Okistbe97CoH0DpxmiXiNJTCMed9VdgCfB3+28J\n8DKwSUQuaOV15wMTjTGTgM3APQAiMh64FpgAXAT8VUSi7WMexRpqPMr+u6iV11YURVHaiXBEpAiY\naoyZboyZDkwBtgPnA79tzUWNMe8aY5x12pdgTfIIMBt4wRhTbYzZAWwFThKRgUCaMWaJMcYAc4Ar\nW3NtRVEUpf0IR0RGG2PynQ1jzHpgrDFmezvZcDPwtv07B9jj2ldgh+XYv73hIRGRW0VkhYisKCkp\naSczFUVRFC/h9Gvki8ijwAv29jXAent1w1q/g0TkPWBAiF33GmNes+Pci7Xk7nPHZXULGGMeBx4H\nmDFjhrqfla6Hfiii9BDCEZGvAbcDd9nbnwI/wBKQs/0OMsac19xJReRrwGXAubaLCqAQyHNFy7XD\nCml0ebnDFaXbokNDlJ5AOEN8q4A/2H9eDrfmoiJyEfBD4CxjzFHXrteB50XkQWAQVgf6MmNMvf2N\nykxgKXAj8OfWXFtRFEVpP8KZgHEU8D/AeCDBCTfGDG/Ddf8CxAPz7ZG6S4wxtxlj8kXkJWA9lpvr\nDmOMM1/X7cBTQCJWH8rbTc6qKIqidCrhuLP+D7gf+COW++rrhNch74sxZmQz+x4AHggRvgKY2Jbr\nKkpXQXtElJ5COGKQaIx5HxBjzC5jzM+ASzvWLEXp+WiXiNITCKclUi0iUcAWEbkTq0NbVztUFEVR\nwp6AMQn4DjAduAG4qSONUhRFUboH4YzOWm7/PIzVH6IoShvRz0SUnoKviIjI680daIy5ov3NUZTe\ng84hqvQEmmuJnII1Bck/sb7N0BSvKIqiBNGciAzAmmTxK8BXgTeBf7rn0VIURVF6N74d68aYemPM\nO8aYm4CZWDPqfmSP0FIUpQ0Y/VJE6SE027FuT7J4KVZrZCjwMPBqx5ulKD0f9Q8rPYHmOtbnYH0h\n/hbwc2PMuk6zSlEURekWNNcSuR44gvWdyHdcI0kEMMaYtA62TVEUReni+IqIMaZN82MpiuKPfiei\n9BRUKBQlQuhnIkpPQEVEURRFaTUqIoqiKEqrURFRlAigXSJKT0FFRFEihOiXIkoPQEVEURRFaTUq\nIoqiKEqrURFRlAig34koPQUVEUWJFNolovQAVEQURVGUVhMRERGR34nIRhFZIyKvikiGHT5URKpE\nZLX99zfXMdNFZK2IbBWRh0WXhVMURYk4kWqJzAcmGmMmAZuBe1z7thljpth/t7nCHwVuAUbZfxd1\nmjMOQFAAAA81SURBVLWK0s7oeiJKTyEiImKMedcYU2dvLgFym4svIgOBNGPMEmOMAeYAV3awmYrS\noWhTWukJdIU+kZuBt13bw2xX1gIROcMOywEKXHEK7LCQiMitIrJCRFaUlJS0v8WKoigK0MLKhm1B\nRN7DWqfdy73GmNfsOPcCdcBz9r69wGBjzEERmQ7MFZEJx3ttY8zjwOMAM2bMUL+BoihKB9FhImKM\nOa+5/SLyNeAy4FzbRYUxphqotn+vFJFtwGigkGCXV64dpijdE63aKD2ESI3Ougj4IXCFMeaoKzxb\nRKLt38OxOtC3G2P2AhUiMtMelXUj8FoETFeUdkPHFyo9gQ5ribTAX4B4YL49UneJPRLrTOAXIlIL\nNAC3GWNK7WNuB54CErH6UN72nlRRFEXpXCIiIsaYkT7hrwCv+OxbAUzsSLsURVGU46MrjM5SlF6H\ndokoPQUVEUWJELqeiNITUBFRFEVRWo2KiKIoitJqVEQUJQIYXVBE6SGoiChKhNDvRJSegIqIoiiK\n0mpURBRFUZRWoyKiKBFAu0SUnoKKiKJECO0SUXoCKiKKoihKq1ERURRFUVqNioiiRADtElF6Cioi\nihIhRD8UUXoAKiKKoihKq1ERUZQIoEN8lZ6CioiiRAh1Zik9ARURRVEUpdWoiCiKoiitRkVEUSKA\n0UG+Sg9BRURRIoV2iig9gIiIiIj8UkTWiMhqEXlXRAa59t0jIltFZJOIXOgKny4ia+19D4sOslcU\nRYk4kWqJ/M4YM8kYMwV4A/gpgIiMB64FJgAXAX8VkWj7mEeBW4BR9t9FnW61oiiKEkRERMQYU+Ha\nTKZxFojZwAvGmGpjzA5gK3CSiAwE0owxS4y1rugc4MpONVpR2hH9TkTpKcRE6sIi8gBwI3AIONsO\nzgGWuKIV2GG19m9vuKJ0W9Qfq/QEOqwlIiLvici6EH+zAYwx9xpj8oDngDvb+dq3isgKEVlRUlLS\nnqdWFEVRXHRYS8QYc16YUZ8D3gLuBwqBPNe+XDus0P7tDfe79uPA4wAzZsxQx4GiKEoHEanRWaNc\nm7OBjfbv14FrRSReRIZhdaAvM8bsBSpEZKY9KutG4LVONVpRFEVpQqT6RH4jImOABmAXcBuAMSZf\nRF4C1gN1wB3GmHr7mNuBp4BE4G37T1G6LTpKXekJREREjDFXN7PvAeCBEOErgIkdaZeiKIpyfOgX\n64qiKEqrURFRlAhg9EMRpYegIqIoEUK7RJSegIqIoiiK0mpURBRFUZRWoyKiKBFAe0SUnoKKiKJE\nCO0SUXoCKiKKoihKq1ERURRFUVpNxKaCV5TezIRBaVTV1LccUVG6OCoiihIBrjlxMNecODjSZihK\nm1F3lqIoitJqVEQURVGUVqMioiiKorQaFRFFURSl1aiIKIqiKK1GRURRFEVpNSoiiqIoSqtREVEU\nRVFajfT0FdZEpATYFWk7jpMs4ECkjehk9J57B3rP3YchxpjsliL1eBHpjojICmPMjEjb0ZnoPfcO\n9J57HurOUhRFUVqNioiiKIrSalREuiaPR9qACKD33DvQe+5haJ+IoiiK0mq0JaIoiqK0GhURRVEU\npdWoiHQBRCRTROaLyBb7f59m4kaLyCoReaMzbWxvwrlnEckTkQ9FZL2I5IvIdyNha1sRkYtEZJOI\nbBWRH4XYLyLysL1/jYhMi4Sd7UkY93ydfa9rRWSRiEyOhJ3tSUv37Ip3oojUicgXO9O+jkJFpGvw\nI+B9Y8wo4H1724/vAhs6xaqOJZx7rgP+yxgzHpgJ3CEi4zvRxjYjItHAI8DFwHjgKyHu4WJglP13\nK/BopxrZzoR5zzuAs4wxJwC/pJt3Pod5z068/wXe7VwLOw4Vka7BbOBp+/fTwJWhIolILnAp8EQn\n2dWRtHjPxpi9xpjP7N+VWOKZ02kWtg8nAVuNMduNMTXAC1j37mY2MMdYLAEyRGRgZxvajrR4z8aY\nRcaYMntzCZDbyTa2N+G8Z4BvA68A+zvTuI5ERaRr0N8Ys9f+vQ/o7xPvIeCHQEOnWNWxhHvPAIjI\nUGAqsLRjzWp3coA9ru0CmgphOHG6E8d7P98A3u5QizqeFu9ZRHKAq+jmLU0vMZE2oLcgIu8BA0Ls\nute9YYwxItJk3LWIXAbsN8asFJFZHWNl+9LWe3adJwWr9naXMaaifa1UIomInI0lIqdH2pZO4CHg\nbmNMg4hE2pZ2Q0WkkzDGnOe3T0SKRWSgMWav7cYI1dQ9DbhCRC4BEoA0EXnWGHN9B5ncZtrhnhGR\nWCwBec4Y8+8OMrUjKQTyXNu5dtjxxulOhHU/IjIJyzV7sTHmYCfZ1lGEc88zgBdsAckCLhGROmPM\n3M4xsWNQd1bX4HXgJvv3TcBr3gjGmHuMMbnGmKHAtcAHXVlAwqDFexYrtz0JbDDGPNiJtrUny4FR\nIjJMROKw3t3rnjivAzfao7RmAodcrr7uSIv3LCKDgX8DNxhjNkfAxvamxXs2xgwzxgy18/C/gNu7\nu4CAikhX4TfA+SKyBTjP3kZEBonIWxG1rOMI555PA24AzhGR1fbfJZExt3UYY+qAO4F5WAMDXjLG\n5IvIbf+/vXONsauq4vjv32lDW0pbB6t+UfliCFBfYSQWSYOkGokiWqc2EaxTowQVipIqGg1OaBBt\n06gIBG1TplSUpx0VsaUpHYpUoe9pC6lUwJhIMK1SrdARyvLDWteeuXPu7Z3bsUOn65fcZJ+999lr\nr73P3c9z1pZ0eUR7AHga2AMsAb44LJkdIhrU+VrgVOCWqNdNw5TdIaFBnUckafYkSZIkaZqciSRJ\nkiRNk51IkiRJ0jTZiSRJkiRNk51IkiRJ0jTZiSRJkiRNk53ICEWSSVpcuJ4vqfMY56GrYqlU0tKj\nNZ4o6TRJO2uELQpLv4uORsZriSi/Z4byFdFinZyISOqQdNMR4swOS7zHtaXsY0V+sT5y6QNmSrrB\nzPYO9mZJo+Pd9yHBzD43VGnV4DKg1cwOFT2HWo9h4Ktmdu9wZ2IokdRSXU+vJczsLknPA/OHOy/H\nAzkTGbm8gpvX/kp1QIzoH4rzHNbG18OVUeqtkh4DFkrqlLRc0iOS/ixppqSFcQbEqjBJgqRrJW2U\ntFPST1RiGEhSj6Q2SR8tfDi4W9IzEX62pIclbZa0umLFNvy3S9oOfKlMUUm/AiYAm2MUWa3HyZKW\nSXpcfhbLxXHfOEl3SnpS0kpJj0lqi7ADhfTbJXWFe4qk+0LfjZLeF/6dIaNH0tOS5hXunxNlvV3S\nCkmnxAyjUn4Ti9e1kPTGyOf2+J0r6TpJXy7EuV5x7oqka6Kutkv6bkl6tcp8nvwMl15Jd5bc1yHp\nl6HrU5K+XQi7NMp5m6Qfy02fI+mApMVRj9Oq0hsgT9I5kn4f9bVB0ukF2d3yM2ielXSFpKsj3h8k\ntUa8Hkk/jHzslHROiR6ldZkMEjPL3wj8AQeAicCzwCR8VNUZYb8GPhPuzwLd4e4C7gda4roT+B0w\nBngn8CJu5whgJfCxcLcW5K4ALiqk1x7uHqCtKo934x3DGGADMCX8ZwPLwt0LTA/3ImBnLX0L7mo9\nvgNcGu7JwB+Bk4GrC3LegXe8bSXptQNd4f4ZcF6434KbZKmU1QbgJNwu0r7Q66yQ9/piWQG3Fcrv\nMmBxiU7/K7+4vgs3QgnQEvV6GrAl/EYBf8K/BL8w8jO+Sm5X6FOvzP8KnFQpr5J8dQDPhZxxwE7c\nLtQZ+LM1JuLdAswJtwGfrFF3A+Thz+7ocM8A7ivI3gOcAkwB9gOXR9j3C+XTAywJ93TiuYn7b6pX\nl3F9PnD/cP+Pj4dfLmeNYMzsn5JuB+YBLxWCpgEzw70CWFgIu8f6LzX81sxelrQDb7hWhf8OvAED\neL+krwHjgVZgF96Y1CTiv2RmN0uaCkwF1sQkpgV4TtJkvFFZX8jrhQ0p31+PD+LGKyvLE2PxRmM6\ncCOAmfVK6m0g3RnAmTo82ZootzIM8Bsz6wP6JP0NN29/QeRlb8j5e8Rdipv17wbmAp9vQPYFwJxI\n5xDegO6XtE/Su0PeVjPbJ2kGcJuZvVglt8LplJR5hPUCd0jqjvyVscbCaKKkX+BWeF8BzgY2Rprj\nOGxY8xBuSLOMMnmTgOWS3oZ3QMVZ2jrz82X+JWk/h5+1HfhgoMLPQ/f1MdubXCW3tC7N7ABJw2Qn\nMvL5AbAFH/k2wr+rrvsAzM1Xv2wxTMPPNBktaSw+4mwzs7/IN+/H1hMQDdwsvBEHELDLzKqXOar/\n9IOhqIeAT5jZ7qr0691ftAdU1GcU8F4zO1iSVl/B6xB1/l9m9qh8WfF8fMZU+sJAgyzFR9hvApY1\neE9pmQcfxuvmIuCbkt5uA/eVqu0lWaS53My+UZLmQau9DzJAHn7a4Toz+7j8LJmeQvxiOb9auH6V\n/mVelscipXWZDI7cExnhxAj0bvzMhgobcCujAJcAjxyFiEoDuzdG5HXf/JH0VvwY0VlmVpkd7Qam\nSJoWccZIOsvMXgBekFQ5a+KSJvO4GrhS0dLHqB1gPfCp8JtK/1Hs85LOkDQKP0iowoP46XQVfd51\nBNkPAbMknRrxWwtht+NLKo128GuBL0Q6LZImhf9K4EPAe3BdAdYAcyWNL5ELNco89H2zma0DrsFn\nBBMYyAcktUoah59K+Wjkr13SGyoyo75rUkfeJA6bUu+oXyw1mR0yzsMtI++vCh9sXSYlZCdyYrAY\nX6evcCXewPTiVnKvajbhaOiX4Oviq3GT2PXowNfSu2PT8wHz40Tbge/Fxus24NyIPxe4WdI2fKTb\nDAvw5ZBeSbviGvyEuQmSngSuAzYX7vk6vq+ygcPLPOBLg22xCfwEUPf1WzPbBVwPPBy6FU3a3wG8\njlh2aYCr8KXDHZHXM0PGf4B1uOXYQ+G3CjdFvinKrt+bRnXKvAX4acjYCtwYdVzN4/jyVC++X7HJ\nzJ4AvgU8GM/WGuBIx/zWkrcQuEHSVppfMTkY999K/0FUhUHVZVJOWvFNkkBSDzDfzI6JWXL59xoX\nm9mna4R34Zu7dV/xjdH8Fnx299SQZ3SgvA58+fKK/7esZjnauoxlxvlm9pGhzNdIJGciSTIMSPoR\nfobKgjrR9gMLVOdjQ/kHnHuAtceiAzkRkDQb3+f7x3Dn5XggZyJJkiRJ0+RMJEmSJGma7ESSJEmS\npslOJEmSJGma7ESSJEmSpslOJEmSJGma/wL71//A3XXO4gAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hamming window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hanning Window" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='hanning')" + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGXax/HvnUYCodcQEggQehMCKiBFUMHG2pG1gbus\na/dVV91m2XVXXd0VBUV0XXR17Q2QFQFpYoEE6RASIJDQQugQ0u/3j5nEMQvJAJmcKffnuubKnDJz\nfgeSuec55XlEVTHGGGMAwpwOYIwxxn9YUTDGGFPBioIxxpgKVhSMMcZUsKJgjDGmghUFY4wxFawo\nGAOISKKIHBWRcAcz/FdEbj7N1z4mIm/VdCYTeqwoGL8hIlkiMrLSvFtE5Gtfb1tVt6tqrKqW+npb\nVWQYrapvOLV9Y8CKgjHGGA9WFExAEZGHRWSziBwRkfUicoXHsltE5GsReVZEDojIVhEZ7bF8oYj8\nSUSWul//pYg0cy9rJyIqIhHVretefpOIbBORfSLyhxO1ctzrJYnIQREJc0+/KiK5Hsv/LSL3emzz\nF17uS5KILHJnmws0q7Tdy0VknXvbC0Wkq3v+eBGZ6bFehoh84DGdLSJ9TuO/xgQJKwom0GwGzgMa\nAo8Db4lInMfys4F0XB+SzwD/FBHxWD4OGA+0AKKAB6rY1gnXFZFuwEvAz4E4d5b4E72Bqm4FDgNn\nuWcNAY6Wf0gDQ4FFJ9l+VfvyHyDNvexPQMW5CBHpBLwD3As0B2YDM0Ukyr2t80QkTERau/frXPfr\n2gOxwOoq/k1MkLOiYPzNp+5vtwdF5CCuD98KqvqBqu5U1TJVfQ/IAAZ4rLJNVV91nxt4A9eHdkuP\n5f9S1U2qehx4H6jqW/HJ1r0amKmqX6tqEfBHoKpOxBYBQ0WklXv6Q/d0EtAAWHWS151wX0QkEegP\n/EFVC1V1MTDT43XXAZ+r6lxVLQaeBWKAgaq6BTji3pchwBxgp4h0wVWglqhqWRX7YoKcFQXjb36m\nqo3KH8Dtngvdh21WehSNHvz00Mnu8ieqmu9+Gnui5UB+pWWVnWzd1kB2pe3sq+J9FgHDcH0ILwYW\n4voAru5D+GT70ho4oKrHPNbd5vG8tee0+/2z+bE145lnUaU8J2u1mBBhRcEEDBFpC7wK3Ak0dReN\ntYBU+cKatwto45ErBmhaxfqLcB3yGuZ+/jUwiNP/EN4FNBaReh7zEj2e7wTaeuQTIAHY4ZFnmDvT\nIvfDioIBrCiYwFIP12GaveA6aYqrpVDbPgQuE5GB7uP0j1FFYVLVDOA4cAOwSFUPA3uAqziND2FV\n3QakAo+LSJSIDAYu81jlfeASERkhIpHA/UAh8I17+SJgOBCjqjnAEmAUrsL2w6nmMcHFioIJGKq6\nHngO+BbXh2pPYKkDOdYBdwHv4vrWfhTIxfXBezKLgH2qmu0xLcCK04wxDteJ6P3Ao8CbHvnScRWg\nF4E8XAXjMvf5D1R1kzvzEvf0YWALsNTJ+zSMfxAbZMeYMyMiscBBINl9tZExActaCsacBhG5TETq\nuo/rPwusAbKcTWXMmbOiYMzpGYPrhO5OIBkYq9bsNkHADh8ZY4ypYC0FY4wxFSKcDnCqmjVrpu3a\ntXM6hjHGBJS0tLQ8VW1e3XoBVxTatWtHamqq0zGMMSagiMi26teyw0fGGGM8WFEwxhhTwYqCMcaY\nClYUjDHGVLCiYIwxpoLPioKIvC4iuSKy9iTLRUReEJFMEVktIn19lcUYY4x3fNlSmI6rO96TGY2r\ne4BkYCLwsg+zGGOM8YLP7lNQ1cUi0q6KVcYAb7r7i/lORBqJSJyq7vJVJmNqyvGiUpZn7Wdl9kFK\nSk8wcJoIXVvV55z2TWlcL6r2Axpzmpy8eS0ejyENgRz3vP8pCiIyEVdrgsTExMqLjfG54tIyVmUf\nZGnmPpZuzuOH7QcoLnX1GyYnGF6nvEsxEegW14BBHZsxsENTBiQ1oW5UwN0zakJIQPx2quo0YBpA\nSkqK9eBnas2ewwVMWZDJR2k5HCsqRQS6t27AhEFJDOzYjP7tGp/wQ764tIzVOa4i8s3mPKYvzWLa\n4i1EhgsjurTkvgs60blVfQf2yJiqOVkUduAaN7ZcG34cQ9YYR+0/VsTURZt545ssSsuUMX3iGdm1\nBed2aEqjutUfDooMD6Nf2yb0a9uEu0ckc7yolNRt+1m8aS/vLstmzvrdXN67NfeO7ERSs3rVvp8x\ntcXJojADuFNE3sU1rOAhO59gnHboeDH/XLKFf369lfziUq7oE889I5Np2/TMPrhjosI5L7k55yU3\n5/ZhHZm2ZAvTl2Yxa/Uuru7bhrtHJhPfKKaG9sKY0+ez8RRE5B1gGNAM13i6jwKRAKo6VUQEmIzr\nCqV8YLyqVtvTXUpKilqHeKamqSr//m4bz325iUPHi7mkZxz3jkwmuaXvDvHkHing5YWbefu77QDc\nPLAtD1zUmToR4T7bpgldIpKmqinVrhdog+xYUTA17UhBMQ99tJrZa3ZzXnIzHhrVhR7xDWtt+zsP\nHmfSvAzeS82mV5uGTBnXl4QmdWtt+yY0WFEwxgsbdx/m9rdWsG1/Pg9e1JlfDWmPnOhyolowZ91u\nHnh/FWFhwj+u6835XVo6ksMEJ2+LgnVzYULWR2k5/GzKUo4UlvD2L87mtqEdHCsIABd1b8WsuwcT\n3yiGCdNTeXZOOqVlgfWlzQQ+Kwom5BQUl/LIx6u5/4NV9EloxOd3D+ac9k2djgVA26b1+Pj2gYzt\nn8DkBZnc+M/v2Xuk0OlYJoRYUTAh5VB+Mde98i3vLMvm9mEdeOvWs2lRP9rpWD8RHRnOU1f14m9X\n9yJt2wEufXEJmblHnI5lQoQVBRMyDuUX8/N/fseGXUd45cZ+/GZUFyLC/fdP4JqUBD65fRClZTB2\n2vdk5h51OpIJAf77F2FMDSovCJt2H+WVG/txUfdWTkfySrfWDXh34tkAjJ32nRUG43NWFEzQO5Rf\nzA3//L6iIAzv0sLpSKekY4v6FYXh+letMBjfsqJgglp5QUjffSQgC0K58sKgaoXB+JYVBRO0DuUX\nc+PrroIw9ca+AVsQynVsUZ93fvljYdi81wqDqXlWFExQOlZYwo2vf8/GXa6CECw3giW3/LEwjJ32\nHdv2HXM6kgkyVhRM0CkrU/7v/ZWs3XGIl28InoJQrrwwFJeW8Ys3UjlSUOx0JBNErCiYoPP8/Azm\nrNvD7y/pxoiuwVUQyiW3rM9L4/qyJe8Y9723kjK789nUECsKJqh8vnoXL8zP4Jp+bRg/qJ3TcXxq\nYMdm/PHSbszbkMtzc9OdjmOCRECMvGaMN9btPMQDH6yib2Ij/nxFD0f7MaotN53blo27DzNlwWa6\ntGrAZb1bOx3JBDhrKZigkHe0kIlvptGobiRTb+wXMmMSiAiPX96D/u0a8+CHq1iTc8jpSCbAWVEw\nAa+opIxfv5VG3tFCpt2Y4nd9GflaVEQYL9/QjyZ1o5j471RyjxQ4HckEMCsKJqCpKo/OWMvyrAM8\nc3UverapvcFx/Emz2Dq8enMKB/KL+PVbKygsKXU6kglQVhRMQPsgNaeix9MxfeKdjuOo7q0b8tw1\nfUjbdoAnP9/gdBwToKwomIC1bd8xHpu5jnPaN+H+Czs7HccvXNIrjlsHJ/Hmt9tYsDHX6TgmAFlR\nMAGppLSMe99bSXiY8Pdr+xAeFvxXGnnrwYs606VVfR78cDX7jtoAPebUWFEwAWnygkx+2H6QJ6/o\nSetGMU7H8SvRkeE8P7YPh48X89BHawi0cdiNs6womICzYvsBXvwqkyvOiudyuy7/hLq0asBvRnVm\n3oY9vLs82+k4JoBYUTAB5VhhCfe9t5JWDaJ5fEx3p+P4tQmDkhjcsRlPzFzP1jzrOM94x4qCCShP\nzFzP9v35/P3a3jSIjnQ6jl8LCxOevaY3URFh3PvuDxSXljkdyQQAKwomYHyxdjfvpWbz66EdOLt9\nU6fjBIRWDaP565U9WZVziBfnZzgdxwQAKwomIOQeLuCRj1fTI74B947s5HScgHJxzziu7teGyQsy\nSdu23+k4xs9ZUTAB4fefriW/qJTnrzuLqAj7tT1Vj17WjfjGMTzwwWoKiu1uZ3Ny9tdl/N6cdbv5\ncv0e7rugEx1bxDodJyDVj47kr1f0YmveMV5akOl0HOPHrCgYv3a0sIRHP1tHl1b1uXVwktNxAtrg\n5GZccVY8Ly/aTGbuEafjGD9lRcH4tWfnpLPnSAF/ubInkeH263qmfn9JV+rVieC3H6+10drMCfn0\nr0xERolIuohkisjDJ1jeUERmisgqEVknIuN9mccEllXZB3nj2yxuOLstfRMbOx0nKDSNrcNvR3dl\nWdZ+Pkizm9rM//JZURCRcGAKMBroBlwvIt0qrXYHsF5VewPDgOdEJMpXmUzgKCkt45GP19A8tg4P\njrLO7mrSNSltGJDUhL/M3kie9Y1kKvFlS2EAkKmqW1S1CHgXGFNpHQXqi2vcxFhgP1Diw0wmQEz/\nJov1uw7z2OXd7Sa1GiYi/OWKnuQXlfDnWeudjmP8jC+LQjzg2T7Ncc/zNBnoCuwE1gD3qKrddhni\ncg7k89yXmxjRpQWje7RyOk5Q6tgill8P68inK3eyJGOv03GMH3H6zN1FwEqgNdAHmCwiDSqvJCIT\nRSRVRFL37rVf4GCmqjz62ToAHh/THVcj0vjC7cM60L5ZPX73yVq7d8FU8GVR2AEkeEy3cc/zNB74\nWF0yga1Al8pvpKrTVDVFVVOaN2/us8DGeV+s3c38jbncf2En2jSu63ScoBYdGc6fr+jB9v35vGBd\nYBg3XxaF5UCyiCS5Tx6PBWZUWmc7MAJARFoCnYEtPsxk/Fh+UQlPzFpPt7gG3DKwndNxQsLADs24\nqm8bXl2yxXpSNYAPi4KqlgB3AnOADcD7qrpORG4Tkdvcq/0JGCgia4D5wEOqmuerTMa/vbJoC7sO\nFfDY5d2JsHsSas1DoztTJyKcJz+3k84GInz55qo6G5hdad5Uj+c7gQt9mcEEhp0Hj/PK4s1c0iuO\nAUlNnI4TUlrUj+aO4R15+ouNLMnYy3nJdog2lNnXMeMXnv5iI6rwyOj/OaVkasGEwe1IbFKXP81a\nT4mNuxDSrCgYx6VtO8BnK3cycUh7O7nskDoR4fz24q5s2nOUd5ZtdzqOcZAVBeOosjLliZnraFG/\nDrcN7eB0nJB2UfeWnNO+CX+fu4lD+cVOxzEOsaJgHPXpyh2syjnEQ6O6UK+OT09xmWqICH+8tDuH\njhczyS5RDVlWFIxjjhWW8PQXG+md0Igrzqp8s7txQrfWDbiufyJvfptFZu5Rp+MYB1hRMI6Zumgz\new4X8sdLuxEWZncu+4v7L+xETKRdohqqrCgYR+QcyGfa4i1c3rs1/dpat9j+pFlsHe4a0ZEF6XtZ\nmJ7rdBxTy6woGEc89d+NiMDDdgmqX7plYBLtmrouUS22S1RDihUFU+tWZh9k1updTDyvPa0bxTgd\nx5xAVEQYv724K5v3HuP9VBuMJ5RYUTC1SlV5+r8baVoviol2Capfu6BbS1LaNmbSvAyOF1kvqqHC\nioKpVYsz8vh2yz7uOr8jsXYJql8TER4e3YXcI4W8vnSr03FMLbGiYGpNWZmrlZDQJIZxZ7d1Oo7x\nQkq7Jozs2oKpizZzML/I6TimFlhRMLVm5uqdrN91mPsv6ExUhP3qBYoHL+rC0cISXlq42ekophbY\nX6apFUUlZTz35Sa6xjXg8t6tnY5jTkHnVvW58qw2TP8mix0Hjzsdx/iYFQVTK95Ztp3t+/P5zajO\ndqNaALrvgmRQeH7uJqejGB+zomB87lhhCS9+lcHZSU0Y1sn66g9EbRrX5cZz2/LRihwy9hxxOo7x\nISsKxudeW7KVvKNFPDy6CyLWSghUdwzvSL2oCJ6Zk+50FONDVhSMT+07Wsi0xZsZ1b0VZyVadxaB\nrEm9KH41tD1z1+8hbdt+p+MYH7GiYHxq8oJMjheX8sBFnZ2OYmrAhMFJNK9fh6f/m46qOh3H+IAV\nBeMzOQfyefu77VybkkDHFrFOxzE1oG5UBHePSGZZ1n4WWGd5QcmKgvGZF+dngsA9I5OdjmJq0Nj+\nCSQ2qcvf526y1kIQsqJgfCIr7xgfrshh3IBE4hpap3fBJDI8jLtHJLN2x2HmrNvjdBxTw6woGJ94\n4asMIsOF24dbp3fB6Gd9WtO+WT3+MXcTZWXWWggmVhRMjcvMPcqnP+zgxnPa0qJ+tNNxjA9EhIdx\nz8hk0vcc4fM1u5yOY2qQFQVT4ybNzyA6MpzbrGvsoHZpr9Ykt4jl+XmbKLXWQtCwomBqVPruI8xa\nvZNbBrajaWwdp+MYHwoPE+67oBOb9x5jxqodTscxNcSKgqlR/5i7iXpREUwc0t7pKKYWjOreiq5x\nDZg0L4MSG7YzKFhRMDVm7Y5DfLFuNxMGJ9GobpTTcUwtCAsT/u+CTmTty+fjFdZaCAZWFEyNeX7e\nJhpER3Dr4CSno5haNLJrC3q3acik+RkUlVhrIdBZUTA1YmX2QeZtyGXikPY0jIl0Oo6pRSKucws7\nDh7n/dRsp+OYM2RFwdSIv8/dROO6kdwyyFoJoWhop+b0TWzE5K8yKSgudTqOOQM+LQoiMkpE0kUk\nU0QePsk6w0RkpYisE5FFvsxjfCNt234Wb9rLr4Z2ILZOhNNxjANEhPsv7MzuwwW8s2y703HMGai2\nKIhIXRH5g4i86p5OFpFLvXhdODAFGA10A64XkW6V1mkEvARcrqrdgWtOYx+Mw56fl0HTelHcdG5b\np6MYBw3s0JQBSU2YumiztRYCmDcthX8BhcC57ukdwJ+9eN0AIFNVt6hqEfAuMKbSOuOAj1V1O4Cq\nWreLASZt2wGWZOTxq6HtqRtlrYRQJiLcOyKZPYcLeW+5nVsIVN4UhQ6q+gxQDKCq+YA3w2fFA56/\nGTnueZ46AY1FZKGIpInITSd6IxGZKCKpIpK6d+9eLzZtasuk+a5Wwg3nWCvBwLkdmtK/XWNeXriZ\nwhJrLQQib4pCkYjEAAogIh1wtRxqQgTQD7gEuAj4g4h0qrySqk5T1RRVTWne3Mb49Rc/bD/A4k17\n+eUQayUYFxHhnhGd2H24gPettRCQvCkKjwJfAAki8jYwH/iNF6/bASR4TLdxz/OUA8xR1WOqmgcs\nBnp78d7GD0yan0GTelHcaK0E42FQx6b0a9uYl6y1EJCqLQqqOhe4ErgFeAdIUdWFXrz3ciBZRJJE\nJAoYC8yotM5nwGARiRCRusDZwAbv4xunrMw+yML0vfzivCTq2RVHxoOIcO/IZHYdKuCD1Byn45hT\ndNK/ZhHpW2lWef+4iSKSqKorqnpjVS0RkTuBOUA48LqqrhOR29zLp6rqBhH5AlgNlAGvqera090Z\nU3smzdtEo7qR3HRuO6ejGD80uGMz+iY24uWFm7k2JYGoCLslKlBU9RXvOffPaCAFWIXrBHMvIJUf\nr0Y6KVWdDcyuNG9qpem/AX/zPrJx2qrsgyxI38uDF3W2+xLMCYkI94zsxM2vL+PDtBzGnZ3odCTj\npZOWb1UdrqrDcbUQ+rpP9PYDzuJ/zw2YEPLC/AwaxkTafQmmSkOSm9EnoRFTFmRan0gBxJs2XWdV\nXVM+4T6809V3kYw/W5NziPkbc/nF4CTqR1sfR+bkXK2FZHYcPM7HK+zcQqDwpiisFpHX3N1RDHPf\n2bza18GMf5rkbiXcPKid01FMABjWqTm92zRk8oJMim28hYDgTVEYD6wD7nE/1rvnmRCzdsch5m3Y\nw62Dk2hgrQTjhfLWQs6B43xi4y0EhGrPEqpqAfAP98OEsBe/yqB+dAS3WCvBnILhnVvQy91auLJv\nPBHhdiWSP/OmQ7ytIrKl8qM2whn/sWHXYeas28OEQdZKMKdGRLjr/GS278/ns5U7nY5jquHN9YQp\nHs+jcfVk2sQ3cYy/mrwgk9g6EUyw8RLMaRjZtQVd4xowZUEmPzsrnvAwb7pPM07w5o7mfR6PHar6\nPK6+ikyIyMw9wuw1u7h5YFsa1rVWgjl1IsLd53dkS94xZq221oI/q7alUOnO5jBcLQe7YymETP4q\nk5jIcG4d3N7pKCaAXdS9FZ1axjL5q0wu69WaMGst+CVvPtyf83heAmwFrvVNHONvtuYdY8aqnfzy\nvPY0qRfldBwTwMLChDvPT+bud37gi3W7ubhnnNORzAl4cxnAreV3N6vqBao6ESjydTDjH6YsyCQq\nIoxfnGetBHPmLukZR/vm9XhhfgZlZep0HHMC3hSFD72cZ4LM9n35fPLDDsYNaEvz+nWcjmOCQHiY\ncOfwjmzcfYR5G/Y4HcecQFW9pHYBugMNReRKj0UNcF2FZILcy4syCQ8TfjXUWgmm5lzeuzWT5mfw\n4leZXNCtJSJ2bsGfVNVS6AxcCjQCLvN49AV+6ftoxkk5B/L5MC2Hsf0TaNnAvgOYmhMRHsYdwzqy\nZschFqbb8Lr+5qQtBVX9DPhMRM5V1W9rMZPxA1MXbQbgtqEdHE5igtEVfeOZND+DSfMzGNa5ubUW\n/MhJWwoiUj7k5jgReaHyo5byGQfsPlTA+8tzuLpfAq0bxTgdxwShyPAwbh/egZXZB/k6M8/pOMZD\nVYePyofFTAXSTvAwQWrqos2UqnL7MGslGN+5ul8b4hpG88L8DFTtSiR/UdXho5nun2/UXhzjtNwj\nBbyzbDtXnBVPQpO6TscxQaxORDi3De3AozPW8d2W/ZzboanTkQxVX300Ezhp+VbVy32SyDjq1cVb\nKC4t487hHZ2OYkLAdf0TmLIgkxfmZ1hR8BNV3dH8bK2lMH4h72ghb323nZ/1iadds3pOxzEhIDoy\nnF8N7cCfZq1n2db9DEiyvjadVtUYzYvKH8C3wAFgP/Cte54JMq8t2UpBSSl3nG+tBFN7xg1IpFls\nFC9+leF0FIN34ylcAmwGXgAmA5kiMtrXwUzt2n+siDe/zeKyXq3p0DzW6TgmhMREhTNxSHuWZOSR\ntu2A03FCnjfdXDwHDFfVYao6FBiOjcIWdF7/eivHi0u501oJxgE/P7stTepZa8EfeFMUjqhqpsf0\nFuCIj/IYBxzKL2b6N1lc3COOTi3rOx3HhKB6dSL4xXlJLEzfy6rsg07HCWneFIVUEZktIreIyM3A\nTGC5iFxZqU8kE6BeX7qVo4Ul1kowjrrp3HY0qhtprQWHeVMUooE9wFBgGLAXiMHVD9KlPktmasXh\ngmJeX7qVi7q3pGtcA6fjmBAWWyeCWwclMW9DLmt3HHI6TsiqdpAdVR1fG0GMM95YmsWRghLuOj/Z\n6SjGcPOgdry6ZAsvfpXBKzemVP8CU+O8GY4zCbgLaOe5vt28FviOFpbw2tdbGdm1BT3iGzodxxga\nREcyYXASz8/LYMOuw9Z6dYA3h48+BbKAF3FdiVT+MAHuzW+zOHS82FoJxq+MH5hE/ToRTP4qs/qV\nTY3zZozmAlW1XlGDzLHCEl5bspVhnZvTO6GR03GMqdCwbiS3DGrH5AWZbNpzxK6Iq2XetBQmicij\nInKuiPQtf/g8mfGpN7/dxv5jRdw9wloJxv9MGJREvagIJs23K5FqmzdFoSeukdae4sdDR171iyQi\no0QkXUQyReThKtbrLyIlInK1N+9rzszRwhKmLd7M0E7N6ZvY2Ok4xvyPxvWiuGVgO2av2UX6brst\nqjZ5UxSuAdqr6lBVHe5+nF/di0QkHJgCjAa6AdeLSLeTrPc08OWpRTen681vsziQX8y9I62VYPzX\nL84rby1scjpKSPGmKKzFNU7zqRoAZKrqFlUtAt4FxpxgvbuAj4Dc09iGOUWuVsIWhnVuzlnWSjB+\nrFHdKMYPasfsNbvZuPuw03FChjdFoRGwUUTmiMgM9+MzL14XD2R7TOe451UQkXjgCuDlqt5IRCaK\nSKqIpO7dawN9n4k3vsniYH4x947s5HQUY6p162DXlUiT5tm5hdrizdVHj3o8F+A8YGwNbf954CFV\nLatq4G5VnQZMA0hJSbFx+07TkYJiXl2yhfO7tKCPXXFkAkB5a+GFrzJZv/Mw3VrbfQu+Vm1LwT12\nwmFcXVpMB84Hpnrx3juABI/pNu55nlKAd0UkC7gaeElEfubFe5vT8GMrwc4lmMBx6+D21I+2cwu1\nparhODsB17sfecB7gKjqcC/fezmQ7L4jegeu1sU4zxVUNclje9OBWar66ansgPHO4YJiXl2ylRFd\nWtCrjbUSTOBoWDeSCYOSmDQ/g3U7D9G9td1970tVtRQ24moVXKqqg1X1RaDU2zdW1RLgTmAOsAF4\nX1XXichtInLbmYQ2p+6Npa67l+1cgglEEwYnuVoLdm7B56o6p3Alrm/3C0TkC1xXD538wP8JqOps\nYHaleSc89KSqt5zKexvvHXafSxjZtSU929i3LBN4GsZEcqu7T6S1Ow5ZX10+VNUYzZ+q6ligC7AA\nuBdoISIvi8iFtRXQnLnpS7M4XFBi5xJMQBs/KIkG0XaXs695c6L5mKr+R1Uvw3Wy+AfgIZ8nMzXi\ncEExry3ZwgXdWtq3KxPQXK2F9sxdv4c1OTbegq94c59CBVU9oKrTVHWErwKZmvXa4i3WSjBBY/zg\ndjSMieTvc9OdjhK0TqkomMCSd7SQ177eyiW94uyKDRMUGkRHctvQDixI30tq1n6n4wQlKwpB7OWF\nmykoLuU+u+LIBJGbB7alWWwdnpmTjqrdy1rTrCgEqV2HjvPv77ZxVd82dGwR63QcY2pM3agI7jq/\nI8u27mdJRp7TcYKOFYUg9cL8TFTVxkswQWnsgATiG8Xw7JfWWqhpVhSCUFbeMd5PzWbcgEQSmtR1\nOo4xNa5ORDj3jExmdc4h5qzb43ScoGJFIQg9P28TkeHCHed3dDqKMT5z5VnxtG9ej+e+TKe0zFoL\nNcWKQpDZuPswn63ayS0Dk2hRP9rpOMb4TER4GPdf0JmM3KPMWFW5r01zuqwoBJnnvtxEbFQEtw1t\n73QUY3xudI9WdItrwD/mZlBUUuZ0nKBgRSGIrMw+yNz1e/jlkPY0qhvldBxjfC4sTHjwos5s35/P\n+6nZ1b8xswjhAAAUCklEQVTAVMuKQhB5dk46TepFMWFwUvUrGxMkhnVuTkrbxrz4VQYFxV535GxO\nwopCkPhmcx5fZ+Zx+7AOxNbxZkA9Y4KDiPDARZ3Zc7iQN7/NcjpOwLOiEATKypS/zt5IXMNobjin\nrdNxjKl157RvypBOzZmyYDOH8oudjhPQrCgEgZmrd7JmxyEeuLAz0ZHhTscxxhGPjO7C4YJiJi+w\nrrXPhBWFAFdQXMozX6TTLa4BV5wV73QcYxzTNa4B1/RrwxvfbCN7f77TcQKWFYUA98Y3Wew4eJzf\nXdKVsLBTGhjPmKDzfxd0JiwMnpljXWufLisKAezAsSImL8hkeOfmDOrYzOk4xjiuVcNoJp7Xnpmr\ndrIy+6DTcQKSFYUA9sJXGRwrLOGRi7s6HcUYvzFxaAeaxUbxl883WGd5p8GKQoDKyjvGW99t47r+\nCXRqWd/pOMb4jdg6Edx3QSeWZe1n7nrrLO9UWVEIUM/M2UhkeJgNoGPMCVyXkkDHFrE89d+NFJda\n9xenwopCAErbdoDZa3YzcUh7WjSwTu+MqSwiPIxHRndhS94x3l223ek4AcWKQoBRVZ78fD3N69fh\nl+dZp3fGnMz5XVpwTvsmPD8vgyMFdkObt6woBJgv1u5mxfaD3H9BJ+pZdxbGnJSI8LuLu7HvWBEv\nL9zsdJyAYUUhgBQUl/Lk7A10blmfa1ISnI5jjN/r2aYhV5wVz2tfb2XbvmNOxwkIVhQCyMsLN5Nz\n4DiPXd6dcLtRzRivPDy6C5FhwhMz1zsdJSBYUQgQ2/fl8/KizVzWuzXndmjqdBxjAkbLBtHcMzKZ\n+Rtzmb/BLlGtjhWFAPHErHVEhgm/sxvVjDll4wcl0bFFLI/PXG9jLlTDikIA+GrjHuZtyOXuEcm0\namiXoBpzqiLDw3ji8u5s35/PK4u2OB3Hr/m0KIjIKBFJF5FMEXn4BMt/LiKrRWSNiHwjIr19mScQ\nFRSX8tiM9XRoXo/xg2xENWNO18COzbikVxwvLcy0XlSr4LOiICLhwBRgNNANuF5EulVabSswVFV7\nAn8CpvkqT6CatngL2/fn88SYHkRFWMPOmDPx+0u6Eh4mPDHLTjqfjC8/ZQYAmaq6RVWLgHeBMZ4r\nqOo3qnrAPfkd0MaHeQJO9v58pizI5JKecdYLqjE1IK5hDHedn8zc9XtYkJ7rdBy/5MuiEA9ke0zn\nuOedzK3Af0+0QEQmikiqiKTu3bu3BiP6tz/NWk+YCL+7xE4uG1NTbh2cRPvm9Xh8xjoKS+ykc2V+\ncTxCRIbjKgoPnWi5qk5T1RRVTWnevHnthnPIwvRcvly/h7tGdKR1oxin4xgTNKIiwnjssu5k7cvn\n1cV20rkyXxaFHYDnbbdt3PN+QkR6Aa8BY1R1nw/zBIzjRaU8OmMdSc3qcetgO7lsTE0b0qk5o7q3\nYvKCTLvTuRJfFoXlQLKIJIlIFDAWmOG5gogkAh8DN6rqJh9mCSjPfpnOtn35PHlFD+pEhDsdx5ig\n9Ojl3YgMC+M3H66mrMwG4ynns6KgqiXAncAcYAPwvqquE5HbROQ292p/BJoCL4nIShFJ9VWeQJG2\nbT+vL93KDeckMrCDnVw2xlfiGsbw+0u78v3W/bz9/Tan4/gNCbTh6lJSUjQ1NThrR0FxKRdPWkJh\nSRlz7htCrPWCaoxPqSo3vb6MtG0HmHPvEBKa1HU6ks+ISJqqplS3nl+caDYu/5i7iS15x3j6ql5W\nEIypBSLCU1f1IkyEhz9ebWM6Y0XBb/yw/QCvLtnC9QMSGZxsh42MqS3xjWJ45OIuLM3cxzvLsqt/\nQZCzouAHCopLefDD1bRqEM1vL+7idBxjQs64AYkM7NCUv8zewI6Dx52O4ygrCn5g0vwMMnOP8ter\nelE/OtLpOMaEHBHh6at6UabKwx+F9mEkKwoOW5V9kFcWbebalDYM7RQaN+YZ448SmtTl4dFdWJKR\nx/upoXsYyYqCg1yHjVbRvH4dfndJ5b4CjTG17Yaz23J2UhP+PCt0DyNZUXDQ4zPXs2nPUZ66qhcN\nY+ywkTFOCwsTnrnadRjprv+soLi0zOlItc6KgkM+W7mDd5Zt57ahHRjeuYXTcYwxbm2b1uOpq3qx\nYvtBnvlio9Nxap0VBQdk5h7lkY/X0L9dYx64sJPTcYwxlVzWuzU3ntOWV5ds5ct1u52OU6usKNSy\n40Wl3PH2CqIjw3nx+r5EhNt/gTH+6PeXdqVnfEMe+GBVSI3UZp9IteyPn61lU+4Rnr+uj423bIwf\nqxMRzpRxfVHgjv+sCJmxF6wo1KIPUrP5IC2Hu4Z3ZIhdfmqM30tsWpe/Xd2b1TmH+Ovs0Di/YEWh\nlqTvPsIfPlvLue2bcs9IO49gTKAY1aMVtw5OYvo3WXy+epfTcXzOikItOFpYwu1vpxFbJ5JJ1/ch\nPEycjmSMOQUPjepCn4RGPPTRarbmBfegPFYUfKyopIxfv5VG1r58Xri+Dy3q23kEYwJNVEQYU37e\nl8hwYfy/lpF3tNDpSD5jRcGHysqUhz5azZKMPP56ZU8bNMeYABbfKIbXbu7P7sMFTJi+nGOFJU5H\n8gkrCj709JyNfPLDDh68qDPXpiRU/wJjjF/r17YxU8b1Zd3Ow/z67eC849mKgo/88+utvLJoCzed\n25bbh3VwOo4xpoaM6NqSv1zRg8Wb9vLQh8HXo6oN7+UDM1bt5E+z1jO6Rysevaw7InZi2Zhgcl3/\nRHIPF/Lc3E20aBDNw6ODZxwUKwo17JvMPO5/fyUDkprwj+vsSiNjgtWd53dkz5ECpi7aTIv6dZgw\nOMnpSDXCikINWp1zkIn/TqN9s1hevSmF6MhwpyMZY3xERHj88h7sPVLInz5fT9PYKMb0iXc61hmz\ncwo1ZNGmvVw/7TsaxkQyfUJ/6wrbmBAQHiZMGnsWA9o14d73VvL611udjnTGrCjUgA9Ss5kwfTmJ\nTevx8e0DiWsY43QkY0wtiY4M540JA7iwW0uemLWeJz9fT1lZ4J58tqJwBlSVF+Zn8OCHqxnYoSnv\n/+ocWjawm9OMCTXRkeG89PN+3Hyuq7vte95bGbAd6Nk5hdNUUlrGHz5byzvLsrmybzxPXdmLqAir\nscaEqvAw4bHLuxPXKIan/ruR3MMFTLspJeAOJdun2GnILyph4r/TeGdZNncM78Bz1/S2gmCMQUS4\nbWgHJo3tw4rtB7hm6jfsDLCxnu2T7BSlbTvAmMlLWZiey59/1oMHL+pi9yEYY35iTJ943hg/gF0H\nC7jsxa+ZuWpnwNzkZkXBS8cKS3hsxjqunvoNxwpLmD5+ADec09bpWMYYPzWwYzM+vn0g8Y1juOud\nH/jlm6nsOuT/rQYJlOpVLiUlRVNTU2t1mwvTc/ndJ2vZeeg4N53TlgdHdSG2jp2OMcZUr6S0jH8t\nzeK5uelEhIXx0Ogu/HxAImG1fGOriKSpakq161lROLn9x4p4YuY6Pl25k44tYnn6qp70a9ukVrZt\njAku2/Yd47efrGFp5j76t2vMX6/sRccWsbW2fSsKp0lVWZl9kPeWZzNz1U6KSsv49bCO3DG8A3Ui\n7A5lY8zpU1U+SMvhz7PWc6yolBFdWjB2QAJDkpsTEe7bo/neFgWfHgMRkVHAJCAceE1Vn6q0XNzL\nLwbygVtUdYUvM53MgWNFfPLDDt5bnk36niPERIZzaa84fjmkPZ1a1ncikjEmyIgI16YkMKxzc15b\nspWP0nL4cv0eWjWI5pqUNlybkkBCk7rOZvRVS0FEwoFNwAVADrAcuF5V13usczFwF66icDYwSVXP\nrup9z7SlUFqm7D5cQPb+fLbvzydnfz7pe46wYONeikrL6N2mIdf1T+Sy3nHUjw6s64uNMYGlqKSM\nrzbu4d3l2SzatBdVGNihKT3bNCSxSV0SGtclsUldWjeKOePL3v2hpTAAyFTVLe5A7wJjgPUe64wB\n3lRXZfpORBqJSJyq1vjo2As25vL4zHXsOHic4tIfC2GYQFzDGMadnci1KQl0a92gpjdtjDEnFBUR\nxqgecYzqEceOg8f5MDWHWat38q+vsyjyGMCn/HNq/KB2/OK89j7N5MuiEA9ke0zn4GoNVLdOPPCT\noiAiE4GJAImJiacVpkm9KLrHN2RUjzhXBW4SQ2KTusQ1PPMKbIwxZyq+UQz3jEzmnpHJlJYpezyO\naGQfOE72/nya16/j8xwBcV2lqk4DpoHr8NHpvEfvhEZMGde3RnMZY4wvhIcJrRvF0LpRDGe3b1qr\n2/blV+QdgOfAxG3c8051HWOMMbXEl0VhOZAsIkkiEgWMBWZUWmcGcJO4nAMc8sX5BGOMMd7x2eEj\nVS0RkTuBObguSX1dVdeJyG3u5VOB2biuPMrEdUnqeF/lMcYYUz2fnlNQ1dm4Pvg95031eK7AHb7M\nYIwxxnt22Y0xxpgKVhSMMcZUsKJgjDGmghUFY4wxFQKul1QR2QtsO82XNwPyajBOIAnVfbf9Di22\n3yfXVlWbV/dGAVcUzoSIpHrTIVQwCtV9t/0OLbbfZ84OHxljjKlgRcEYY0yFUCsK05wO4KBQ3Xfb\n79Bi+32GQuqcgjHGmKqFWkvBGGNMFawoGGOMqRAyRUFERolIuohkisjDTufxFRF5XURyRWStx7wm\nIjJXRDLcPxs7mdEXRCRBRBaIyHoRWSci97jnB/W+i0i0iCwTkVXu/X7cPT+o97uciISLyA8iMss9\nHfT7LSJZIrJGRFaKSKp7Xo3td0gUBREJB6YAo4FuwPUi0s3ZVD4zHRhVad7DwHxVTQbmu6eDTQlw\nv6p2A84B7nD/Hwf7vhcC56tqb6APMMo9Nkmw73e5e4ANHtOhst/DVbWPx70JNbbfIVEUgAFApqpu\nUdUi4F1gjMOZfEJVFwP7K80eA7zhfv4G8LNaDVULVHWXqq5wPz+C64MiniDfd3U56p6MdD+UIN9v\nABFpA1wCvOYxO+j3+yRqbL9DpSjEA9ke0znueaGipceIdruBlk6G8TURaQecBXxPCOy7+xDKSiAX\nmKuqIbHfwPPAb4Ayj3mhsN8KzBORNBGZ6J5XY/vt00F2jP9RVRWRoL0OWURigY+Ae1X1sIhULAvW\nfVfVUqCPiDQCPhGRHpWWB91+i8ilQK6qponIsBOtE4z77TZYVXeISAtgrohs9Fx4pvsdKi2FHUCC\nx3Qb97xQsUdE4gDcP3MdzuMTIhKJqyC8raofu2eHxL4DqOpBYAGuc0rBvt+DgMtFJAvX4eDzReQt\ngn+/UdUd7p+5wCe4Do/X2H6HSlFYDiSLSJKIRAFjgRkOZ6pNM4Cb3c9vBj5zMItPiKtJ8E9gg6r+\n3WNRUO+7iDR3txAQkRjgAmAjQb7fqvqIqrZR1Xa4/p6/UtUbCPL9FpF6IlK//DlwIbCWGtzvkLmj\nWUQuxnUMMhx4XVWfdDiST4jIO8AwXF3p7gEeBT4F3gcScXU7fq2qVj4ZHdBEZDCwBFjDj8eYf4vr\nvELQ7ruI9MJ1YjEc15e891X1CRFpShDvtyf34aMHVPXSYN9vEWmPq3UArsP//1HVJ2tyv0OmKBhj\njKleqBw+MsYY4wUrCsYYYypYUTDGGFPBioIxxpgKVhSMMcZUsKJg/IqI/M7d2+dqdy+QZ/t4ewtF\nxOsBz0VkuojsEJE67ulm7huoaiLLsPLePmuKiNwrIjdVs05PEZlek9s1gcuKgvEbInIucCnQV1V7\nASP5aZ9V/qIUmOB0iMrcvQF7Tkfgyvmfql6nqmuANiKS6MN4JkBYUTD+JA7IU9VCAFXNU9WdACLy\nRxFZLiJrRWSa+w7m8m/6/xCRVBHZICL9ReRjd7/yf3av005ENorI2+51PhSRupU3LiIXisi3IrJC\nRD5w96N0Is8D97k/dD1f/5Nv+iIyWURucT/PEpG/lveBLyJ9RWSOiGwWkds83qaBiHwurrE/popI\nWFXZ3O/7tIisAK6plPN8YIWqlnj8Wz0trvEXNonIeR7rzsR1Z7AJcVYUjD/5Ekhwf2C9JCJDPZZN\nVtX+qtoDiMHVoihX5O5Xfiqu2/vvAHoAt7jv9AToDLykql2Bw8DtnhsWkWbA74GRqtoXSAX+7yQ5\ntwNfAzee4v5tV9U+uO68ng5cjWvsh8c91hkA3IVr3I8OwJVeZNunqn1V9d1K2xsEpFWaF6GqA4B7\ncd3tXi4VOA8T8qwoGL/hHhegHzAR2Au8V/5NGxguIt+LyBpc34C7e7y0vB+rNcA699gKhcAWfuwI\nMVtVl7qfvwUMrrT5c3B9EC8VVzfUNwNtq4j7V+BBTu1vyDPn96p6RFX3AoXl/RcBy9zjfpQC77hz\nVpftvZNsLw7Xv6On8o4C04B2HvNzgdansC8mSFnX2cavuD8MFwIL3QXgZhF5F3gJSFHVbBF5DIj2\neFmh+2eZx/Py6fLf8cr9uVSeFlxjEVzvZc4M9wf0tR6zS/hpkYj+6atOO2d12Y6dZP7xKjKU8tO/\n/2j3+ibEWUvB+A0R6SwiyR6z+uDq3Kv8gy3PfSz96tN4+0T3iWyAcbgO/3j6DhgkIh3dWeqJSKdq\n3vNJ4AGP6W1ANxGp4/7mP+I0cg5w9+YbBlznznk62cA1+lxHL7fbCVdvmybEWVEw/iQWeENE1ovI\nalyHTB5zjxPwKq4PrTm4ukI/Vem4xm3eADQGXvZc6D6Mcwvwjnvb3wJdqnpDVV0HrPCYzsbVU+Va\n988fTiPncmAyrg/0rcAnp5PN7b/AEC+3Oxz4/JTTmqBjvaSaoCeu4TlnuU9ShxQR+QT4japmVLFO\nHWARrhG9SmotnPFL1lIwJrg9jOuEc1USgYetIBiwloIxxhgP1lIwxhhTwYqCMcaYClYUjDHGVLCi\nYIwxpoIVBWOMMRX+H7AincKiXlzgAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Hanning window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl4HGd9+D/fvbVa3Zdt2ZZv546TmBxcIRAgBEJCuQIE\nSCkNtNCmQAuFtlB+EEpbyhmuFCgkHGlSEgghJCEhd5w4dg7ftmTJsu772JV2V1rt+/tjZlazox17\nrcM6/H6eZx/tzrHzzmpmvu/3FqUUGo1Go9FMB898D0Cj0Wg0ixctRDQajUYzbbQQ0Wg0Gs200UJE\no9FoNNNGCxGNRqPRTBstRDQajUYzbbQQ0WjmGRHZLCIvikhURP42z32UiGyY67HNNSLyPhF5cJ7H\nEBORddPc91ER+fBsj2kxoYXISUZEjohI3LxwrdeK+R6XZl75NPCIUqpIKfVt58q5fFCJyBpTIPkc\ny38qIl+ei2PaUUr9Qin1hrk+znHGEFFKNc7nGBYzWojMD1eZF671andu4Lyplzqn2vk6qAP2zvcg\nNJrpoIXIAsE2I/wLETkK/MlcfrGIPC0igyLykoi8xrbPWhF5zDSD/FFEbhaRn5vrXiMirY5jHBGR\ny833HhH5RxE5LCJ9InKHiJQ7xvJBETkqIr0i8k+27/GKyOfMfaMislNEVonId0XkvxzHvEdEPuFy\nzkpEPiYi9UC9uew081z6ReSgiLzLtv2VIrLPPGabiPy9/VzNMfWa5/k+234lInKriPSISLOI/LOI\neMx114vIkyLyNREZEJEmEXmTbd/rRaTRPGaT43s/JCL7zf0eEJG6Y/x/3yoie83/46Micrq5/E/A\nZcDNpla6ybHfTcCrbOtvtq2+XETqze/8rojIdMaWDyJyp4h0isiQiDwuImfa1v3UPP7vzd/pWRFZ\nb1uvROSjucZq/f55busVkf8y/8dNIvJxyaFFmdv+uYj8zva5XkTutH1uEZEttmNuyPNcXi8iB8zf\n4WbA/pt7zGurWUS6zWuuxFz3MxH5lPm+1rr2zc/rzet9cT6PlVL6dRJfwBHg8hzL1wAKuBUoBAqA\nWqAPuBJD4L/e/Fxl7rMN+DoQBF4NRIGfm+teA7S6HRu4EXgGWGnu/0PgV46x/Lc5jnOBJHC6uf4f\ngN3AZoyb6FygArgQaAc85naVwChQ4/JbKOCPQLl5nEKgBfhzwAecB/QCZ5jbdwCvMt+XAefbzjVl\n+y0uBUaAzeb6W4HfAkXmuR0C/sJcdz0wDvwl4AX+yjwHMcczbPue5cCZ5vurgQbgdHOs/ww87XKe\nm8zxvB7wY5ivGoCAuf5R4MPHuGamrDd/u3uBUmA10ANcMY2xWf9rn2P5T4Ev2z5/yPz9gsA3gRcd\n2/aZ/38f8Avg9jzHej3wZJ7bfhTYh3HNlgEP5Rq7ue06YBDjvlkBNGPeD+a6ASavUwVsON65YFzP\nUeAd5v/xExjX3Ydtv1GD+f0R4C7gNtu635nv3wscBv7Xtu638/1smvYzbb4HcKq9MB7kMfMCHwR+\nYy63buZ1tm0/Y12EtmUPAB80b7AUUGhb90vyFyL7gdfZ1i3HeJj6bGNZaVu/HbjWfH8QuNrl/PYD\nrzfffxy47xi/hQJea/v8buAJxzY/BL5gvj8KfAQodmzzmhy/xR3Av2AIhjFMQWSu+wjwqPn+eqDB\nti5sjmsZhhAZBN4OFDiO+QdMQWR+9mAIzLoc5/kvwB2ObduA15ifH2V6QuSVjvP9x2mMzfpfDzpe\nY9iEiGOfUnOfEvPzT4Ef2dZfCRzIc6zXM1WIuG37J+AjtnWX4yJEzPUtwPnAtcAtGNfwaRiTlHsc\nx9xwvHMBPgA8Y1snQCuTQuRh4K9t6zczeU+txxRcwA8wrkFLqP0M+OSJPksWymtxqk+Ln2uUUqXm\n6xrHuhbb+zrgnaZaPygig8ArMR74K4ABpdSIbfvmExhDHXC37Xv3AxNAjW2bTtv7UYzZFcAqjJlU\nLn4GXGe+vw647TjjcJ7vRY7zfR/GAx2Mh/mVQLMYZrxLbPvm+i1WYMwe/WT/Ns0YWp5F5jyVUqPm\n24j5fe/GmAF3mCaO02xj/ZZtnP0YDxX791pYM2HrGGnzvHNteyK4/X9OZGwWlbZrshRjQgJkzEhf\nFcN8OYwxGQHjtz3eWPJdn8+2K8i+Xuzvc/EYxgTj1eb7RzG01EvNzzM6vjIkgH0MWf9n870PQxM/\njKGNbsEwT94LtIvI5jzGs6DRQmThYS+r3IKhiZTaXoVKqa9imHbKRKTQtv1q2/sRjFk1YDwIgCrH\nd7/J8d0hpVRbHmNswZhZ5eLnwNUici6GOeU3x/ku5/k+5hhTRCn1VwBKqeeUUlcD1eb33mHbN9dv\n0Y5hDhvHeLDa1+VzniilHlBKvR5DcB/AMPFZY/2IY6wFSqmnc3xNu/34po1/Vb5jIPs3yocTGVs+\nvBfDRHY5UIKhvYDNH3CS6MAwZVmsOs72lhB5lfn+MfITIsc6fuaYtv+jRdb/mUlrQZdtPO/AMGO2\nmZ8/iGGae3Ea41kQaCGysPk5cJWIvNGcDYbEcCKvVEo1AzuAL4pIQEReCVxl2/cQEBKRN4uIH8Mu\nHrSt/wFwk+VwFZEqEbk6z3H9CPiSiGwUg3NEpAJAKdUKPIehgfxaKRU/gfO9F9gkIu8XEb/5epmI\nnG6e4/tEpEQpNY7hq0g79rd+i1cBbwHuVEpNYAibm0SkyDzfT2L8tsdERGpE5GpTOCUxzJDWMX8A\nfFZMB7MYzvt3unzVHcCbReR15v/iU+b35ftQ78Kws+fLiYwtH4owxtuHMTH5ygy+aybcAdxoOqZL\nMcy9x+IxjKCFAvO6fAK4AsN/98I0jv974EwR+TPTmf+3TGrJAL8CPiFGwEsE43f6X6VUyjaejwOP\nm58fNT8/aV6nixItRBYwSqkWjBng5zAcjC0YTm3r//Ze4CIMc8UXMBzI1r5DwF9jPPDbMDQTe7TW\nt4B7gAdFJIrhZL8oz6F9HeOGfhDjYf5jDMe4xc+Aszm+KSsLpVQUeAOGDbsdw6zw70wKv/cDR0yT\nykcxTF0WnRg253YMZ+hHlVIHzHV/g3H+jcCTGKaan+QxJA+GwGnH+I0vxXC8o5S62xzb7eZ49gBv\nyvUlSqmDGKa972BoRldhhHmP5TEGMP5X7xAj0mpKHkmO4+U9tjy5FcM004bh2H5mBt81E/4b45rb\nhSEE7sOY6ed8ACulDmEI/ifMz8MY18BT03loK6V6gXcCX8UQqBuBp2yb/ATjmn8caAISGNeexWMY\nAtkSIk9iCOXHWcSI6djRLAFE5F8xHITXHW/bOR7HqzFm+nXqJFxgYoQ9/1wptfJ422qWDmKEYv9A\nKVV33I01c4bWRDSzimmuuREjwkXPUDSzhogUiJEr5BORWgzt++75HtepjhYimllDjAS6QQwn9Dfn\neTiapYcAX8QwW76AEVH4+XkdkUabszQajUYzfbQmotFoNJpps+SL3lVWVqo1a9bM9zA0Go1mUbFz\n585epVTV8bZb8kJkzZo17NixY76HodFoNIsKEcmrAoY2Z2k0Go1m2mghotFoNJppo4WIRqPRaKaN\nFiIajUajmTZaiGg0Go1m2iw6ISIiV4jRNrVBRP5xvsej0Wg0pzKLSoiYPTG+i1GR9AzgPSJyxvyO\nSqPRaE5dFlueyIUYrUwbAUTkdoxS6ftm+0BPN/Ty0Z/v5HWn17CqrOD4O2g0Gs0CYHRsggf3dfH+\ni+v4y1efSBua6bHYhEgt2e0oW8nRA0NEbgBuAFi9erVzdV7c9kwzw4kUd78w2XxOTnYfN41GozkB\n7KUQb7pvvxYi00UpdQtwC8DWrVunVWHye+87n9aBOF+9/wC/39XBJy7fxI2Xb5zVcWo0Gs1ssadt\niHf/cBsVkSD/9mdnc8m6ipNy3MUmRNrI7mm8kvz7VJ8QIsKq8jA3v+c8gj4P33joEFvXlPGKDZVz\ncTiNRqOZNiPJFB//5fOUFPi54yOXsKwkdNKOvagc6xi9uzeaPYwDGG1U75nLA4oIN11zNusqC/nH\nu3YxlnK29dZoNJr55dsP19PcP8rX373lpAoQWGRCxGx4/3HgAYyGNHcopfbO9XELAl7+5aozaOmP\nc/tzR+f6cBqNRpM3HUNxfvr0Ed52Xi0XnyQTlp1FJUQAlFL3KaU2KaXWK6VuOlnHfc2mKi5cU853\nH2lgfEJrIxqNZmHww8caSSvFJy7fNC/HX3RCZL4QEW549Tq6hpM8tK9rvoej0Wg0jI6l+PXOVq48\nezmrysPzMgYtRE6Ay06rpra0gNueyavMvkaj0cwp97zYTjSZ4rqL6+ZtDFqInABej/CuravY1thH\n13Bivoej0WhOcX7zYhvrqwrZWlc2b2PQQuQEefM5y1EKHtjbOd9D0Wg0pzA90STbm/p58zkrkHnM\nhNZC5ATZUB1hY3WE+3Z3zPdQNBrNKcyD+zpJK7jy7GXzOg4tRKbBFWctY3tTP0Px8fkeikajOUX5\n0/5u6irCbK4pmtdxaCEyDV6xoZK0gmcb++Z7KBqN5hQkNZHm2aZ+Xrmhcl5NWaCFyLQ4b3UpIb+H\npw9rIaLRaE4+L7UOEUumFkQZJi1EpkHQ5+Vla8p5qqF3voei0WhOQZ42nz3zkaHuRAuRaXLJ+grq\nu2MMjIzN91A0Gs0pxnPNA5y2rIjywsB8D0ULkemyZWUpALvahuZ5JBqN5lRCKcWu1kHONZ9B840W\nItPkrJUlAOxqGZznkWg0mlOJ1oE4g6PjnLOqZL6HAmghMm2KQ37WVxXyUqsWIhqN5uSxq9WwfpxT\nqzWRRc85K0vZrc1ZGo3mJLKrdZCA18PmZfObH2KhhcgM2FRTRNdwUicdajSak8a+jmE2LYsQ8C2M\nx/fCGMUiZWN1BICG7tg8j0Sj0ZwqHO6OsbF6YWghoIXIjNhYYwmR6DyPRKPRnAqMJFO0DyVYX1U4\n30PJsOCEiIj8p4gcEJFdInK3iJTa1n1WRBpE5KCIvHE+xwmwsixM0OehvktrIhqNZu5p6h0BYH1V\nZJ5HMsmCEyLAH4GzlFLnAIeAzwKIyBnAtcCZwBXA90TEO2+jxOgvsr4qQr02Z2k0mpPA4R7jWbO+\nWgsRV5RSDyqlUubHZ4CV5vurgduVUkmlVBPQAFw4H2O0s7aykKP9o/M9DI1GcwpwuDuGR6CuYn5a\n4eZiwQkRBx8C/mC+rwVabOtazWVTEJEbRGSHiOzo6emZ0wHWlhXQNhgnnVZzehyNRqM52j/K8pIC\ngr55NcJkMS9CREQeEpE9OV5X27b5JyAF/OJEv18pdYtSaqtSamtVVdVsDn0KtaUFjKXS9I4k5/Q4\nGo1G0z6UoLa0YL6HkYVvPg6qlLr8WOtF5HrgLcDrlFLWFL8NWGXbbKW5bF5ZWWb8Q1sH4lQXheZ5\nNBqNZinTPhjngnnsp56LBWfOEpErgE8Db1VK2Z0N9wDXikhQRNYCG4Ht8zFGO7WmEGkbiM/zSDQa\nzVImnVZ0DSdYXqI1keNxMxAE/mh27HpGKfVRpdReEbkD2Idh5vqYUmpiHscJkFEt2wa1ENFoNHNH\nbyzJ+IRiRenCsngsOCGilNpwjHU3ATedxOEcl6KQn6Kgj67hxHwPRaPRLGGsieqKBaaJLDhz1mKk\nIhKgL6abU2k0mrnDmqguK1lYmogWIrNARSRIb0xHZ2k0mrmjz+yiWhkJzvNIstFCZBaoKNSaiEaj\nmVusVtylYf88jyQbLURmgYpIkD6dJ6LRaOaQ/pFxCgNeQv6Fk2gIWojMCpWRAP0jY0zorHWNRjNH\nDI6OUVYYmO9hTEELkVmgojBAWsHAqDZpaTSauaF/dIxyLUSWJqVh4x87rDscajSaOWJgZIyysBYi\nS5JI0Ei3iSVTx9lSo9FopofWRJYwkZApRBIpHtzbyblffJBv/PHQPI9Ko9EsZl5qGeRlNz3EP9z5\nEgBDo+MUhxZcfrgWIrOBpYlEkym+/sdDDMXHufmRBlp0nxGNRjNNvnTvPnqiSe7c2cqBzmHi4xMU\nBrUQWZIUmbODlv5RDnRGue7i1UykFb/b1T7PI9NoNIuRtsE4O5oH+OAldQA8erCH8QlFOLCwwntB\nC5FZwdJEnmzoBeDNZ6/grNpiHjs4tw2xNBrN0uSRA90AfODla1hWHGJ7Uz8A4YDWRJYklk/kYGcU\nMFrmbq0rZ3fbkM4d0Wg0J8xLLYOUFwZYV1nImsowBzqGAbQmslQJ+rwEfB46hhJ4PUJVUZBzVpYw\nOjbB4Z7YfA9Po9EsMna1DnHuyhJEhJVlYdqHjOKLYe0TWbpYM4TqoiBej3BWbQkA+9qH53NYGo1m\nkTGWSlPfHc08Q2qKJwsuhhdYyRPQQmTWCHiNn7Km2CjTvLo8jAg09+kILY1Gkz+tA6OklWEWB7IS\nDMNBLUSWLEG/8VNaFTZDfi8rSgpo7huZz2FpNJpFhjXxrKsIA5MVMUA71k8IEfmUiCgRqbQt+6yI\nNIjIQRF543yOz0nQZ8wQIjabZV1FmCNaiGg0mhPAembUVRiaSGnBZOn3Qu1Yzw8RWQW8AThqW3YG\ncC1wJnAF8D0RWTC/qGXOcgqRozrhUKPRnABH+0cJB7xUmCVOimxZ6tZkdSGxIIUI8A3g04A9PvZq\n4HalVFIp1QQ0ABfOx+ByYZmz7EKkuihE38gY4xPp+RqWRqNZZPREk9QUhxARgKz+IT6vzNewXFlw\nQkRErgbalFIvOVbVAi22z63mslzfcYOI7BCRHT09Jyfhz+8xfkp7WYKqoiBKQb/ZkSw1kWZ0TBdp\n1Gg0k0ykFSO24q19sbGMFgKTE1TQQiSDiDwkIntyvK4GPgd8fibfr5S6RSm1VSm1taqqanYGfRzS\nylCa7MlAVUVGaF5PNEl8bILXf+NxLrrpYQ506rBfjUZjTCyv+9GznPvFB3n8kDHh7RtJZvVRD9lM\nWD7Pgpv3z48QUUpdrpQ6y/kCGoG1wEsicgRYCTwvIsuANmCV7WtWmssWBF6PMUPweyd/UrsQueuF\nVpp6R4gmU3zrofp5GaNGo1lYPHKwh22NfaTSipv/1ABAb2yMikhuTcR6ziwkFpRYU0rtVkpVK6XW\nKKXWYJiszldKdQL3ANeKSFBE1gIbge3zONwsrH+uXd2sLDSESG8syVMNvdSWFnD9y9fw8IFu4mMT\n8zJOjUazcPjNi21UFAb4yKXr2NHcTzQxzsDoGBUumohfm7Omj1JqL3AHsA+4H/iYUmrBPIk9phPM\nPlOwoiqiiRTPNw+ydU0Zrz2tmrFUmu1H+udlnBqNZmGglOLZxj4u3VzF+avLSCvYdrgPpaDKponY\nHetaEzlBTI2k1/b5JqXUeqXUZqXUH+ZzbE5MGYLP9k+2CjP2xJJ0DifYUBVhy+pSAHa3Dp70MWo0\nmoVD60Cc3tgY560q5YzlxQA8fbgPgDK7Y91nc6xrn8jSx2v7J/u9Hgr83kwFzpXlBRSH/KyrLGR3\n29B8DVGj0SwAdrUaz4BzV5WyorQAn0c41GVUArdHeXpsE1OtiZwC+Bz/5KKQj/0dxoWxqswoY7Ch\nOkJjj85k12hOZazM9A3VEbweoaY4REO3UfW7cAGWN3FDC5FZxjlTKAr56Bw2yjhbxRnXVBbS3D9K\nWvca0WhOWZr7RqgqCmbqYdUUB+mOJoGF2TfEDS1EZgkru3SqJjJZ96bYfF9XEWYslabDFC6ATkLU\naJY4ifGJrOoVR/tHWV0eznzOLrSohcgpSy5NxMJytK8oLQCgcygOwL/ff4AzPv8AP3js8EkapUaj\nOZkc6oryspse4opvPk7MzE5v6Y9nCxF7ocUF2HzKDdeRisi389h/WCn1z7M4nkWLJTqcQsSaUUSC\nvsy6ajMJsXs4SV8syS2PNwLw7Yfrec+FqymxXUwajWbx882HDhFNpIgmUtz9Qhvvu3A1HUNxVpSG\nMtuUhCfv+6WiiVwN7DzO6+1zPcDFghXiK47giYCZKFQcyi7MCNAdTfJkQy8TacUXrjqD0bEJHj3Y\nfVLGq9FoTg6J8QkeOdDDBy6pY3V5mMcO9jAYHyetyCpvUhyyC5EloIkA31BK/exYO4tI2SyPZ9Hi\nFnhnlYi3+0YqCgN4PUJ3NEFT7wjhgJfrLq7jWw/X82R9L1dvyVlXUqPRLEJ2HBkgPj7BZZurSYxP\n8PD+bvpHDAd6uS0fpCCwsJMK3XDVRJRS3zzezvlsc6qhHAFXVt0bu2/E4xEqCgP0RJM09o6wrqoQ\nv9fDllWlOn9Eo1li7Gk37unzV5exoTpC38gYh80Q/+xCi4vTRe06ahEJicgHReStYvAZEblXRL5l\n7zaoMbCis5xCJNOsKpSt9JWG/QzHUzT2xFhXGQHgjOXFHO6JMZbS/Uc0mqXCwc4oy4pDlIT9rDXv\n9R1m2SO7JmIvb7KYOJbouxWju+CHgEeB1cDNQBT46VwPbLHhpnxaJQsC3uyfujjkZ2B0jPbBOKvK\njWitTTVFjE8ojvZPJiImxidQTsmk0WgWLM579kBnlM3LioDJvulWtvpSFyJnKKXeB7wD2KyU+phS\n6n4zGmvVMfbT2AiYQsTvECIlBX5aB+KkFVSY1X4tYdLSb4T+PlnfyzlffJDrfvwsEzoxUaNZ8Ny+\n/Sinf/5+vnDPXsAostjcZ5isAapM81Vzn9E2294JNeRfYuYsYAxAKZUC2h3rFkz13IWG81EfdLFz\nlhT4aRs0hIXVO8Aqi9IyYFxg33r4EGOpNE819PHIAR21pdEsZBLjE3zlvv0oBbdua6alf5RoMsXo\n2ATLS4yIzJICP36vZKpYFNi0j+AS1ERWisi3ReQ7tvfWZx0+5MAK7XWanixNJO1YbveRlJmZqlVF\nQYI+D60DcQZHx3juyAB/+7qNVEYC3POSU45rNJqFxFMNvQwnUvzrVWcA8NihHrodJY88HsmYsEJ+\nT1ZxxYJFKkSOFeL7D7b3OxzrnJ9PeW549Xoe2t/N+XXZUc+WL8QpROwXjHVRiQiVkSC90SQvthil\n4i9eV05T7wjPNvWhlMo48DUazcJi+5F+Al4P77loNd9/7DA7mwdYU2GYsSwhAka4f9dwckouyLF8\nIpduqspKTFxIuAqR4+WIaLK5cG05R7765inLrWRDp0vDfsHYewdURAL0jYxxoNOo/HtWbQlb62L8\n7qV2OocTLC8pmIPRazSambK7dYjTlhcR9HnZVFPE4Z4YXQ5NBCb9IM6sdGfdPTs/+9CFczDi2eFY\nIb6/E5F73F5zOSgR+RsROSAie0XkP2zLPysiDSJyUETeOJdjmC0sf7rz+rAnFtmdaxWFAfpHxmgd\nGKU07Kc45GdTjRHZcagrltmuqXeEhu7o3A1co9G4MhQfZ3tTf6YSt1KK3W1DnFVbAsDaykKaekZs\nFbwn80GsnDGnEHEG3ywWjmXO+pr598+AZcDPzc/vAbrmakAichlGyZVzlVJJEak2l58BXAucCawA\nHhKRTQupRW4urLa5HocZym7OyjZtBTnYGaV1IM7KMiv014gtr++KcummKhq6Y1z5rSdIK8Vdf/1y\nzllZOtenodFoTFITad71g20c7Iryics3cePlG+kfGSOaSLGhyrhX11QUEk2maOodIeT3ZJmurElj\ngcOc5VuA/dPz4VgZ648ppR4DXqGUerdS6nfm673Aq+ZwTH8FfFUplTTHYYUlXQ3crpRKKqWagAZg\n4ep4JvkIEb/t4rHMWa0DcWrNar8VkSBFQR+tA0Y010+fbmJsIs2EUvzwsca5PgWNRmPjof3dHOyK\n4vUItz1zhIm0ykRa1poTP8t81dQ7QiSYXVDVqtAbdvhA/Auw9W0+5DPqQhFZZ30QkbVA4dwNiU3A\nq0TkWRF5TEReZi6vBVps27XiEiUmIjeIyA4R2dHT0zOHQz0+1nXh9IeHbKqs3VleUuAnmUrTNZTI\nKomwvDREu3mhPlHfy+WnV/OeC1fz2KEeneGu0ZxEHjvUTVHIx3+981x6Y2Psah2kzZzgWRO/KrNS\nd1PvSFbJI5g0YxUGHT6RRaqJ5FMq8hPAoyLSiJGYXQfcMJODishDGCYyJ/9kjqkcuBh4GXCHXYjl\ng1LqFuAWgK1bty6ILD1nQTW3cL5C8wKLJlNZJeGXlRTQMZRgYGSM5r5R3nfRalaVhfnls0fZ2z7E\neat1LUyN5mTwVEMfl6yrYOsa457b2z5MYtywqltCpNLM/eofGcsss7Byx5zRWEtWiCil7heRjcBp\n5qIDlqlpuiilLndbJyJ/BdyljISL7SKSBiqBNrIz5VeayxY0VmSv05zld7lg7M1oim1CZEVJiH3t\nQxzuMZzrG6ojbKw2HO77OoYzQqR1YJR97cO87vSaRVUJVKNZiOxpGyKaSHHJ+goAoolxjvaPcu2F\nq6gtLaAo5GN/xzBBn5dwwEup2RPEfu86NZGgGbHpjMZacuYsETnfem/6IV4yX8lc28wivwEuM79/\nExAAeoF7gGtFJGia1DYC2+fg+LOKVa7Eac5yi8SwR2rZNZGKiBG1ZQmR9VURVpZNXsQAI8kU7/rB\nNm64bSfffrh+Nk9DoznlqO+KcvV3n+I9//0MfzpgxBI1mtV311dFEBHWVRZytH+UvpEklZFgxjRt\nv48jQacQsXLHso+3WDWRY4m+/xGRMhEpd3sBP56DMf0EWCcie4DbgQ8qg73AHcA+4H7gYws9Mgsm\nNRHvFE0k908ftmsith4kpQUB0soo5iZiqM0iwpqKQo6atbYe2t9F+1CCSNDHrduOkEwt+J9Ho1mw\n/OSpI3jEyCz/xTNHAbImcWA40DuHEgyOjme0EDBMVW4VvK32EKl0ti9zKYb4lmB0LzyWeJx1r7VS\nagy4zmXdTcBNs33MucTKVHeas9xmHRGbs82uiVjvG3tGKA8H8JkX3Krygkxi4iMHuqmMBPnyNWfy\n0Z8/z0stQ1y4tnz2TkajOUVQSvH4oR5ee1o1y0sK+OX2o4yl0jT2jOD1SKY3+rKSENsa+ygM+qa0\ntS4K+egbGaPIoYn4TLOVszj3sZINFzLHCvFdo5Rap5Rae4zXgg+xnW9Sps7qNHc6S8NbWPZSyLal\nWjbWxt5h8Fn+AAAgAElEQVRYVvnolWVhoxpwWrG3fZgtq0q4eF0FIvBsY1/Wd48kUzM6F41mqTI6\nlsokDoJRSbttMM4rNlRy3upSxlJpDvfE6BhKUF0UzNTEqykOEU2k6BpOZPlBYPL+DTkz080JpLMU\n0mL1YS5O/WkRkZowVFanquqmiQRsVX/tWe2WqtzSH89U/QVYXhJiLJWmK5rgcE+MM5YXUxoOUFce\nZn/ncGa77z3awJlfeICv/uHAzE9Ko1lCPH90gAu+9BBX3fxkJsrKunfOXVnKGcuLjWUdw/TEkpnw\nXYBq833HUIJShxCxJoTOCaOliTh9Iou1Lp4WInOMpYlMESIukRj27ewXX7aTffIitrSSPW3DpBWs\nqTRSeDZUF1FvlkmJJVN88yHD0f6jJxrpjiamfT4azVLjvx48SHx8gr3tw/x+Vwcw6UBfV1VInVlE\nsaU/Tk80mREckB2F5TRnWZrF1Hs/dxfUxYoWInPMmKmJODUPN9XVHvrrt2kl9ou1zObAs4TIvnZj\n5rTM7FuwsSZCU+8IE2nDtjuWSvOVt51NKq14YO+cVa3RaBYVw4lxth3u469fs57lJSEe3NcJQGNP\njKqiIEUhPwGfh8pIgM5hQ4jYNZFcJmcnTiHizQiRpSFFjitEzP7q14nI583Pq0VE+0JOELuvA6YW\nZLQIuGgi9uREey6J1YtkX4fRbnOZWW6htrSAVFrRF0vyUssgAa+Hd25dybLi0BRfyZ62IQZGxqZx\nVhrN4mEirdjZPEB8bDJq8dnGftIKXrWxiovWlrPbbFvb2DvCusrJwhzLSkK0DyboN0N5LewRlM4E\nYss65cwJc/OJLFby0US+B1yCUXgRjB7r352zES0xPnjJGj5wSR0feXV20r0zWsvCzZxlb50Z9tuq\n/kYsIZKtiVjCpGMowb6OYTYti+D3eji/rpTdbUOZ/W/ffpS3fOdJrrr5SUbHtONds3T5yn37efv3\nn+ZDP30uowXsbh3EI3De6lLOWFFMu1kVoms4wQpbpvmy4gIae2OklUP7CNnDenM/TgO+3KbsXCLk\n8285g/+94eLpnuK8kI8QuUgp9TEgAaCUGsBIANTkQWHQx/+7+qws7eFY2E1Y9osv5LNrIrZeJKYm\n0tIfp8DvzVQLtYRJx1CCxp4RNpnZ7RurizjaP0pifAKlFLc83ogItA7EufeljmmepUazsBkcHeO2\nbc2IwLbGvsyk63DvCKvKw4T83kwFiMbeGL0OB3pVUYAWMx/Lfi/b70VnGZNJTSS3OcvpWAf40CvX\nctG6imme5fyQjxAZFxEvpuAUkSpAV/ybIZ58fCK291ltNAPZF661nT2pyRIi7YNxo5mV2RVtQ3UE\npQzHYetAnMbeEf71qjNZVV7AH/drX4lmafJ4fS9jE2l+9IGtiMDD+43i4E09k2Yr6x6p74qRGE9n\n6l9BtsZRaCvhbp/oOU3WFu6O9VPHnPVt4G6gWkRuAp4EvjKnozoFcPOJ2Ovn+Nyy2h1x55b2UZTD\nV1LfHWUirTIdEa0kqdaBUXY2DwDwsjXlXLKugueOTDbZSaYm+Pgvn+fG21/IhD1qNIuBXz57lHd8\n/2leMltMAzzX1E9R0MdrNlezrrKQ3W1DKKVo6h1hbaWRfW7dI7tMc2+VSxSWXROxCw6nOUuworOy\nb/bJyt6LM6TXyXGFiFLqF8CngX8DOoBrlFJ3zvXAljpuPhE3DcWOszezVfnXrol4PUJxyMe+DiOb\nfbnlKzH/dg0nONQVxecRNtVE2LKqjMHRcdqHDJX9tm3N3Lurg9++2M4vnz16gmen0cwPbYNxvnDP\nHnY0D/C5u3dnlh/sirJpWRFej3DmihL2tQ/TPzJGfHyCVeWG8CgO+QgHvOwxhUhFod2BntuEZRcQ\nbj3SnXkiS0V4WByrAKO9RlY38Cvgl0CXuUwzA2ZyHQUdjjrLvFXoEC6l4QCHu41cEWtWVRkJ4vUI\nncMJmvtHqS0rwOf1sKHamI01mNv/7qV2zl1ZwrkrS7jrhdbpD1ajOYnct6uD8QnFBy+pY2/7MC39\noyilONQVzbSZXldVSPtQnI4hI1/KujdEhOqiIE29Ro6I3YFeZDNn2Qsq2gVCvj6Rpcaxzm4nsMP8\n2wMcAurN9zvnfmhLGzlmSbJj48wxsdRrZ6G30rCfmFnqxLoJvB6hKhKkcyjJ0b7RjHnLLkTiYxPs\nbhvi0k1VvPa0Gva2DzMUH898790vtPL53+7JWqbRnGxu3XaEL9+7Lytk96nDvWysjvD+S+oAePpw\nL72xMQZHxzNtpleUFKAU7G03NA57yG5JgZ9owrhn7GYrux/SLUjGLTrL71vaQsQ1ZEgptRZARP4b\nuFspdZ/5+U3ANSdneEuXmZTJcVYEtnwkzkJvhTn6OoMx8+qNJekYinNWrVHSoSzsJxzw0j5ohASn\nFZxVW0Ik6EMpeLFlMNPf/VN3vERaGRm3X7rmrOmfiEYzTbY39fP53+4FjMnT312+CTCSbl+5sZJ1\nlREK/F4OdsbYvMy4xq0Jk+VA39U6VYjYfR9236Nd+3eWdrdw0zj8zpvd9KcvFaNWPiLyYkuAACil\n/gC8fO6GdGrg5hPJa1+XLonOGZL9JrCr5qVhP4PxcQZGxzMZ7yLCsuKQUYPLNGmdtqyYzcsME4Bl\n5rrnRaMP2GtPq+b/drbqcvOaeeH27UcpKfCzta6Mu19oQylFTzRJdzTJmStK8HiEDdUR6rujdJpm\nK6vvuZX/YeVL2aOw7KVLIi4O9IJAbt+HWxXepeYDcZKPEGkXkX8WkTXm65+A9rke2FJnJkLEac6y\nwgzDjp7N1sXu90rWTKq4wE/bwCgTaZWJ4gKoLg7SPZygdTCOiDFjKy8MUBr2Z/ooPNHQy5ZVpbzn\nwtXExycyEV4AT9T38JHbdmSyfjWamTI6luIff72Lr//xUCYkVinFEw29vHpTFW85ZznNfaN0Dieo\n7zKCSE43Jz5rKws50jeSqRVnCZEKc+LU1DOCSHb4bkmWJmITIjZTlVsHQrd7eonLkLyEyHuAKoww\n37uBaiaz1zXTRGZgJp3aatf4MmcUiKWJRIK+rNlQaYGf3phR5sQuRGqKQ3QOJ2gfjFNTFMLv9SAi\nxs3YO0I6rTjQEeXcVaVcuMaIrXipxRAY8bEJPvG/L/LA3i4+cceLWWW1NZrpcsvjjdz+XAvffrg+\nk9vRMZSgJ5rkwjVlnLOqFDBMU22DRmThyrLJXh/dw0k6hxL4PJIRHkUhPyIQTaYI+73ZOVj+ycq7\n2Tkgk+/d6t65LXcuVeTudrpYySfEt18pdaNS6jzzdaNSqv9kDG4pM6uaiCk8nMutmZTT4W6fbdl7\nk1RGgvTFxmgfjLPCtBuDER7cNZygdSBOfHyCzTVFlIT9LC8JcdAsmf1kg+HAvGbLChq6Y7xgi9HX\naKaDUoo7d7Tyyg2VVBQGuNs0pdabptWNNUWcbvo7DnVGaR9MIAI1JYaPo7ooSDKV5kjfCGWFgYyw\n8Hok4z8MO0zAVoSVU6u3m7OceR8WrkLETUNxOe/FRj4FGB8RkT85X3M1IBHZIiLPiMiLIrLDXuxR\nRD4rIg0iclBE3jhXYzgZzOQCcjrWrZvDaZMtyDjcs6uL2n0lZYXZ9uDRsQk6hxNZzsbqImNG19Rn\nlcc2olw21RRxyCw3/1RDLwV+L5+78nRE4Mn63sz+Tzf0svXLD/H/frdveiesWfI8WW9cI1/47Z7M\nsiN9o7QNxrnirGW8elMVzzUZc1fLP7exOkJBwEtlJEDbYJy2wVGqIsHMA98K3T3cPZLlEwQj/B2m\nJu5aEVZOrd4eeeUmFBZrU6mZko9R5e+BfzBf/wK8iBH6O1f8B/BFpdQW4PPmZ0TkDOBa4EzgCuB7\nZjmWRcnMHOvZny2h4nWsCJuzKmcZens8u/3msjSU1v54lrZSXRwkmkxxxIyftxIXV5eHMyaE/R3D\nnLa8iOriEBurI+xqNTQRpRT/+ru99MaS/OSpJg7YGmVpNGBcI1/+/T56Y0l+tq05c41Y19DWNWWc\nu7KE7qgRUdjQHaMs7M/01aktLaBt0Oz1UZw9+QGjL7o9zwMmnebOxF3r3nAKBLeSJnackzuLpWK2\nciMfc9ZO2+sppdQngdfM4ZgUUGy+L2HSiX81cLtSKqmUagIagEVbkn4mF5bzArdkh1MTsZyBzhI9\n9hvHXr7aEhxjE+msUMeaouyQSGuGt7w0xFB8nJFkioNdUU4zHZqblxVz0HRyHu6Jcagrxidfvwmf\nR/jdS9kxGTubBzJOe83SJ5ZM8fD+rqxSOvXdMQ50RvnU6zfh9Qj3mY2hDnfH8IjhILfCdA93j9A5\nFM+qsLuyLEzbQJzB+HiWj6+s0LiGU2mVlXEO9gRdh9nKvB8mHD69oEsOiB23ahNTfCJLzF2Yjzmr\n3PaqNM1IJXM4pr8D/lNEWoCvAZ81l9cCLbbtWs1lucZ8g2kK29HT0zOHQ50+M/KJTNl30tZrx3K4\nK0fR6YKAvcT8VCEC2RErlt/kUFeU0rA/s0+teSMf7IoyODrOWrOQ3eaaCK0DcUaSKZ5vNmaTbz5n\nOWevLGF706Q77aF9Xbz9+09z5bee4GjfaJ5nr1msKKX46G07+Yuf7eDv73wps/zpBsP0ec15tZy2\nrCjjT6vvjlFXUUjQ582UJmkdGKXb0V2wqihITyzJUHw8a/JjD9F15nZY5ilnuK7lQHcKEad5Kxfu\nPpHc2y+V0N98zFn2zPVtwKeAv5jJQUXkIRHZk+N1NfBXwCeUUquATwA/PtHvV0rdopTaqpTaWlVV\nNZOhzhkzMZ86ZzzWteg0W2WEiGPmY9c+st7bbqjiAt+U9w3dsayb1+pZ8uJR46a3QihXmUldHUNx\ndrUNUhTysbaikPNXl7GrdSjTd/5HTzYS9HlIptL8YntzPqeuWcTs6xjmyYZeQn4P9+3uyORv7OsY\npjISYFV5mHNWlvJSyyBKKQ73xFhfZUxMlhWH8HqE1oG4KUQmAz/KwgGiiRS90WRWn3O7L9DpE8nk\nVrmYs8YnsguV5zPpc8sTWTou9NzkI0ROV0qtU0qtVUptVEq9AXhuJgdVSl2ulDorx+u3wAeBu8xN\n72TSZNUGrLJ9zUpz2aJkJrMQpyYijr8W1uzJGW1bYI9/t4Uu2gWKXROx3sfHJ7KWWw2xLBu2JVSs\naqjtgwmO9I6yriqCxyNsrikimUrTNhhndCzF9qZ+Pvyqtbx6UxV/3DdZhl4pxRd+u4e/vHUHQ6O6\ntMpi5OY/1fO+Hz1DsxmMAUb5dRH4n+svJK2MiD4w2hKsN4M11lcVMpxIMTg6TsdQIqPt+rwelpeE\naO4fpS+W7fuwzFbDiVSWNm0vlBhxBJe4RWGFzPthfCL7psnHaZ5vnsgpZ84Cns6xbNtsD8RGO3Cp\n+f61GPW6AO4BrhWRoIisBTYC2+dwHHOKdU1eUFd2wvs6L2jrInVem35f7r4FdmFh12rspi27WcCt\nDLYV4XKg0/B/WBWCLcd751CCloFRVpUZD4I1prmrqXeEXa1DpBVsrSvnorXlNPaMZATGH/Z08rNt\nzfxxXxfffbTB9XfQLEz2tA3xtQcP8VRDH1+5b39m+a7WQdZXRbhobTlFIR/PHzUSVQ/3xFhv1m6z\ntNiGnhjRRIrq4kmNozISpLHH6C5YYYsqtPtBSsOT16rP68lMkpxh7hkh4uITSaWdmsjxzzvfPBHL\np2hVg1jsuNbOEpFlGD6HAhE5j8nfohgIz+GY/hL4loj4MLop3gCglNorIncA+4AU8DGl1KKtuSEi\n3Ps3r2R1xYn/lFPMWea/xpngF/AaN4Rz5uNs12mR1cfdpWSKfXZnmQ7qu7IrBVtmrdbBOO2Dca48\nezkAayqNcz3SO5LRxM6sLc6Y3Xa3DfHKjZXc82I71UVBtqwq5a7n2/jsm07LbD8wMsb+jmEuXleR\nV9l8zdxS3xVlQilOW1acWXb3C20EfB7etqWWu19sI5ZMEQn62NU6xCs3VOLxCGcsL+ZQZ5SBkTEG\nRsczjaFWmYmCViWEKluoeXlhgB1HDJ9axF5V16VdLRgmpiRThYV1rTvrXVl1rpz3TD6WA7fL0bnv\nuatKufOjl3CemSi52DlWz9Y3AtdjmI2+blseBT43VwNSSj0JXOCy7ibgprk69snmrNrpxSdMyRMx\nPzrNVtbMyHn9u9luQzaHu2trXpspzOf1UBT0EU2m8Igt29fnoTjk43BPjPEJldFMKguD+L1C53CS\nsVSacMBLVSTIRLUx8Ka+EV6xoYJnm/q4/PQaXramnAf3ddHQHWNjTRGpiTTv+uE26rtj/N3lGzNF\n9zTzw8HOKG/5zhNMpBV3fvTlGa36yfpeLlpbzlvOXc7/7mjhxaODnLGimO5okjNWGMKmriLMIwd7\nMuXYLbOVleS6O0djqLJwgGGzwq7dUR528evZcQoLy7HuvJdmkutxIibql61ZOt00XM1ZSqmfKaUu\nA65XSl1me71VKXWX236auceZJ2JdvE5zlnU/OG21bpqI3Zxl38bjkcxnZ5HHTBl6Z2mVcCCTV2KZ\nvTweoaLQqCB8tN8oQy8i1BSFCPk9NPeO0DGUYGB0nLNqS9i6xngoWWaPPx3opr47RsDr4cdPNOni\nj/PMj55oJK2M6+/WbUcAoyNmQ0+MLatKOWuFMUna2z5E64ARfWdV0l1dHqYnmqTFXF5pCovikB+v\nRzhkmkjtSa92U1WWELFNbKb29DCuyYA39z3g1GZ9mYjG2WOp68vHakp1nfl2jYh80vk6SePT5MAt\nqcnp+7BmVU6h46aJ2M1ZU2ZuGSHiaM0bnKzPZacs7M8IkTLbzW+VoW8bjGdmnx6PUFdeyJG+0Ux+\nyenLi6mrKCTg83C4x/ieRw/1EAn6+Na1W4gmU+w8kl388e3ff5r793TkPDfN9OkcSvD+Hz/LV/9w\nIHONpdOKRw5285ZzlvP282v50/5u0mlFY88IE2nFxpoiygoDLCsOcbArSuuAkZRaa/rHLN/Hi2Y4\nryUsPB6hvDBAc78hXLJNqbnNqnbnuFt3wal9zo3PzlvJKmmyVPqfnwyO5VgvNP9GgKIcL8084eZY\nd2JpIE6h49r3wJvbnGUcw/iOKZqIW32ucIARs1lQaYG9PleA3liS/pFkJroLjKz4nliSdjMDflV5\nAV6PsK6yMFPm4sWjg5xfV8arNlUhAs+aOSepiTSf+b9d7Gwe4DO/3s2I2YhLMzv85wMHeaK+lx88\ndphnGo3f/EjfCL2xMV6+voIL6sqMigZ9IxwyJwGbzS6Cq8oLaB+M02YKkZWlhvCwfB0HOozIPns5\n9orCAGMpw7GdJTgC9mgruyZiEyLO69b8O1WI5I5Gse4tLULy51jmrB+af7+Y63Xyhqhx4uZYd06e\nPBmfSH5CxI4zucpKvnLG1Wcyfx3CpSgrimtSE6mMBOmJJhkYzc4uNoo/GkLE65FMHsCaikKa+4zZ\n7eGeGJtrIkSCRt7JQdPk8fzRQdqHEnzgkjqG4uM8crA7ayz1XVGiCR0qfDyUUuxpG8rKJk+MT3Dv\nrnb+7PxaCgNe7jErDtTbes5Yvr297cM0m0mjVhDF8pIC2gcT9MSSBH2eTM6RVbLkUFeMoM+TJRTc\nAjnCLt0Fw353c5aFs7ugLxP+nn3TuOVWadzJJ2O9SkQ+JyK3iMhPrNfJGJwmN1PyRDKTquwrf9In\nkr2/MykxF05NxBIiziiXwkBuc5bdwWkXIiUFfrpMx7q9+GNFYcCsIJzIJJaBWc47mqSlf5RkKs3G\naqu0SlEmP+Wphl48Ap98/SaKQj6eapgs/njnjhZe/43Hufq7T2U9HDVT+dqDB3nLd57kQz99LmPO\neb55gGQqzZvPXs5F6yoy0VGWdri+OpKpVHC0f5Su4QQVhYFMrakVpQV0DMXpi41RFg5kJjSWFto2\nGDdLs09ek5aPQyTbxGr3fdg1X/u1NkWImF/r9IlYcyRnMIp7wqDGjXzyRH6LUebkIeD3tpdmnphS\nO8stOitTmNHhPMzjRnFT/53CJWxzrGctdzE92G9+u6+ksihIfHyCpt4RauxF9IqDRBOpTH2tlWb5\ni7qKQtoG40aPk85h1lQUUhoOsGVVaSayRynF9x49DBgJbQ/s7TzueZ+qRBPj/OTJIwA8fbiPve2G\ngLb+nr+6jHNWltDQEyOWTFHfFaW2tIBI0Ec44KMs7KdtME7XcDIrt2NZcZDxCcWRvpEpkwkLp5/N\nul4KA9nBGvbt7BqxvTS7a59zx/VsmXqdmojPpeGUxp18frGwUuozSqk7lFK/tl5zPjKNK85oK+uz\nW2y705wlecSLOIWFZQ5wHtsK/3Was6zZYcDnyTp+JEeyIti6zfWOZFcQLsoO+bQ+15aGGJ9Q9MaS\nHOqKZRK3NtcUUd8VYyKtaOwdoal3hC9dcxbLikNZQkQpxV3Pt/LgKShYjvSOcMvjhxkYGcsse/pw\nH/HxCX74/gsQgYf2GxUEGrpjVBQGKCsMcNqyIpQy9m8bjLOybLIIYm1ZAW0DcbqjiaxJgKVtHunN\nFiJ+WyKgs5JuOGMidQRx2LazT4zs19eU6Czzr5uPz3nP5KOla7LJR4jcKyJXzvlINHnj1Cwsm/Tm\nZZGs5ZZ5y6l45NNV0dl4x+Oi1Vg35xQNxbRTO49tFyIlObLinUX0rFpde0whYj2grNIqrYNxWvpH\nMyaVTWZplZb+0UxNr4vWlnPRunJ2Ng9kzDS/393BJ+94iRtu28lzR06dHmtjqTTX/892vnLfAT7z\n612Z5c829hPye7hsczWbqosyUVMNtmxyq2Ngpn6VTeNYUVJA51CC7uFkVoKg9T/uGxnL8oGBXeNw\nmEhtmoidoEtoup18gkZg8rp0RmEdT0u3C06NQT5C5EYMQRIXkWERiYqIbgoxjziv86vOXcHDn7qU\n155Wk7Xc8mM4VfR8isk5+0hbu0zJOTGFjd8xKGs26axBZDdnuZm87FnH1oOnvjtGOODNbLfcTErb\n2z5MKq0yJVesm7x9KM7e9mFCfg/rqyJsWVVK13CSnmgSgF88c5Sa4iDFIR+3bTt1ij8+Ud/Dkb5R\nNlZHeGh/F13DRrLfoa4om2uKCPg8nL2yJGPGauyJZepaWb9t68Ao3cPZlXTLCwP0j44xnBjPmhy4\nlSSByWvBmSBoaSDOulZu+U123JIF3c1Z2dv5jhF08uznXscfbnzVccdwqpFPP5EipZRHKVWglCo2\nPxcfbz/N7PNms3xIrsxY60a3kzLvkCkhwXkcy62kiJsm4myIZT0YnCW17YIjq8yKXYjkqCDc3DdK\neeGkY9bKK9hnPuwsM9cyW90uK6HR6xE2mLPpxt4REuMT7Gju55ottbzhzGU8Ud+TVTLm+aMD3Lur\nfdHnCuxpG+Ku51uz/gePHOwmEvTxH+84h7SCZxr7AENYWB0r11QYiYCDo0ZJklpTYJcU+CkMeDnY\nGSU+PpElRErDAfpiSUbHJrImCm7tBWBS05hSSdc0kTobQeUTVTg1/N1KNsy975RqDscwZ9UUh6Y0\ntwIyWvCpyrHKngAgIufnWDwENCuldED+SeSb127hy9eclff2aRchMp1eJtYeznvREiLOm8/N9GDV\n84Js+7WbJmJ/H8kRNpypIFySXUG4YyhB68BophbTmgrjRj/SO4Lf62F8QnHe6jKiiXH+b2crh3uM\n0ipHekd49w+3MT6hGH5bivdetDrneSx0eqJJ3vmDbcTHJ+gYSvCxyzYAsLttmLNqizm7toQCv5cX\njg5y+ek1tA8lJutXmYmAVl8Pq/SIiFBZFMzkgmSXJPFnZvWuORz+3A50N43DKcTzMWc5zVGW49x5\nfbpNEKYTnfWHG1/FmKN0/KlEPuas7wHPAP9tvp7BKNF+UETeMIdj0zjwez1ZYbHHw1UTmYHvcKo5\ny3gAOL/SzfSQVZPLTYjYe0K4ZCwHfV4KA14aHMUfCwJeSsN+OocStA7EMw/EFaUFBLwejvSNctgM\nTz19eVGmlpPVK/6OHS1MpBXVRUF+9vQRl19h4XPHjhYSqQmWFYe4/bmjKKUYn0izv2OYs2tL8Hk9\nbKqJcLgnlsntWGv27rB8Hy9YRRAd9auOZrLJJ/9PdlOV/X8Wsmuezn7mAZdKum6NofIQIlMmSCr3\ncuubndftdKKzQn7vFC3rVCKfX6wdOE8pdYFS6gJgC9AIvB6z/7lmYTLpE5kFTcTcxXmTZTSTKeUj\n3ByckxvaHyr22ahdWPi8Hlu0TrbiXBoOEE1OLchXHg7QMZQglkxlHoBej1AZCdATNep2eT3CitIC\n1ldFEJnMe3jsUA8Xri3nhlev42BXlI6heM7zWOg8erCbs2tL+JvXbaClP05T7wjNfaOMpdKcvtwQ\nnKvKwxztH6U7avhFrH4wVvDCPjObvCoy6UAvLwwwYJbst0dP2XvU2Ht3uDVAg0lh4TRnBUwz1oRL\nIuCxcNMk8r3kdZ7IiZOPENmklNprfVBK7QNOU0o1zt2wNLOBNTuyZuMWM9JEXIo/OsOG3W747OrA\ntjIrtu2dZgtLY4k4zB72Ga/T1HWkbyTz3qLSrNvV3D9KbWkBfq+HkN9LbWkBTb0xkqkJDnVF2bKq\njAvXGlVWn7PV5/qfp5p41w+3ZTLlFwJjqTSfvONFPnrbzky5l/GJNC+2DHLxugq2mOXG97QPTymC\nWFdh9Ca3nOuWwK0oNP5aWen28jRuRRCzSpLY/i/268CZw2H9z51mLusaSU2nMVSePT2Ot3/dNFo0\nnKoc1ycC7BWR7wO3m5/fDewTkSCga0ksYF6xoYLvve98Lj89O2prdvu758bN9GAXEPZImGPV7Qq5\n5BNYmkyB35v1gCkNB9jVaoQEO0urdA4lGB1LZUqOg9FEq3M4weHuEcYnFGeuKOb05cX4PMKBjmHe\neu4KmvtG+PLv9zORVnzhnj3cfsMlef0Oc83/7WzlrueNBp9nP13Cxy7bQHPfKOMTis01RWyqKcLv\nFdKjlzIAACAASURBVPa1D2f6lFtFEGtLw6TSKhOcYAUrFAS8FPi9GTNXxEVY2zXDApdIOztOYWFp\npc7Z/2QRxOz9Z3LdunUXzBWk8osPX8TGmqmBKprc5KOJXA80AH9nvhrNZePAZXM1MM3MERGuPHv5\nlIfyTDR21+5tLtVQndgd627f64ykmdREchd/nGLmKvBn/EHZdbus4o9jlNt8SzXFIbqGk5mZel1F\nGL/Xw+qKMI1mBeEH9nYykVa896LVPNPYT9vgwjBz/e6ldjbXFHH+6lLu32MkTjZ0G5rSxpoIfq+H\nFaUFtA6M0jYQx2erSzbZ3jhKgd+b9Tvafx+7uckuyIuCuZfnK0SsScSUcuweqxz7iWsi7uS/7ys2\nVGb1cNccm3xCfONKqf9SSr3NfH1NKTWqlEorpWInY5Ca2WUm/d2dN7wV5ZKvg9Jq2XssnELPalk6\nNYPZ+FzkqCAczuq+mK2J9Jud9OwaSk1xiM6hREYwWCXq11dFMuVWnmnsZ0N1hPdfXAfAtsN9xz2P\nuWZ0LMWO5n5es7mKSzdVs7ttiGhiPNNp0gr7ri01Kun2RJNURoKZh7FVObe+O5ZlsoLJ3zrk92Q9\nvAvdiiDalrtFUTl9Im79bnwumki+WrCdjAM9t79dMwvkU4Bxo4j8n4jsE5FG6zWTg4rIO0Vkr4ik\nRWSrY91nRaRBRA6KyBttyy8Qkd3mum/LTJ6EmhPG8nm43cjOxdYDwrncLV7fjtOfYn2F05yVyWw+\nRnmMskJ71JChofQ7sqdrio26XQc7o4T8nswsvLa0INN572BnlDOWF7O5poiikI8Xjk76SoBM6fK5\nJDWRzgpN3dM2zPiE4qJ15VlRZu1DcSojgczvs6LUqKQ7MDqepZlZvo/+kbGpWp5L1njYRXDYBYRb\nroVbwt+UAqEu5dhnUtbK7WGhnyIzJ59/y/8A38foa34ZcCvw8xkedw/wZ8Dj9oUicgZwLXAmcAXw\nPRGxrs7vY/Rf32i+rpjhGDTTwGlScMvHszQWp707nzBNN0HjnMmG3SoI51H51f4wtQTKgc4oNcWh\njKZWUxwilkzRHTW0lM3LivB4hE1mfS6Lrz94kNM/fz+3PTN3me9Heke4+N8e5g3feJyY6UC3tKSN\n1UWcZtYOO9gZNbPJs30+XdEEA6PZwrPIpXoA2EqSTDEhTm5nn8fZfSJuWqhbqPmUAqGZcuyzZ86a\nEuK7yBNJFxL5CJECpdTDgCilmpVS/wq8eSYHVUrtV0odzLHqauB2pVRSKdWE4Yu5UESWA8VKqWeU\n8d+/FbhmJmPQnBhuN/xkvH3uMGLnzZtXLxNn8Udv7rpdlo19ymzZ9kCzC6QiF5u/lVXdOjBKaY66\nXS+YNbisiJ1NNREOmX6HvliS7z56mIm04j/uPzBn5ea/+0gDvbEx6rtj3P18KwCHu41eHLWlBawo\nNZp4tQ2OmnWtsnM7lDJKtWdFV7nk4MDkb+oULvn0MHd72E+p4eZSINRVE5lFx3pm+ZJvXjv35CNE\nkiLiAepF5OMi8jaMbodzQS3QYvvcai6rNd87l+dERG4QkR0isqOnp2dOBnqq4qaJOG9Sy+zl1ETy\nyTp2aiLWzNSt5ErQETpqN7nYHfzZjY+mliXvjY1lF380H8S7W63ij8bsvq6ikMHRcWLJFA8f6GYi\nrfjsm04jmkjxZP1kL5PZIp1WPLC3k3dcsJL1VYU8uM+osHvYLFXi8Qhej1AVCdI1nKRrOOEoSWKc\nU080mSVEgj5v5rd2Cgu3tsfOUiQWgaxIOzeTp3OiYfx1bp75P89mdJaLsNDmrJmTbwHGMPC3wAXA\n+4EPHm8nEXlIRPbkeF09syEfH6XULUqprUqprVVVVXN9uFMC617L90bOFGx0qWV0LJyaiFtfFOvB\n5RxT2GbOsu+T1cjItk2xS30nK29iT7shRKxkvOWZ+lxxdrUOUhT08cGXryHg9bB9DioCH+iMMpxI\n8YoNFVy4tpxdrUMopWgbjLPKVlW2piRE13CCvpGxTLguZIc5lxTkdqBP8TdZmsgUIXL8JNJ8NRG3\na8lNCM3EnOUW4quZOcfNE1FKPWe+jQF/nu8XK6Uun8Z42oBVts8rzWVt5nvncs1JZqo5K3d0ltfF\nJ5IPrg8RZ8mVTI2l7O3CbnZ7e/Z0YPJhmCVEbMUfLQ2l3lFaxRImHUMJ9rYPc/qKYkJ+L2fVFk9x\nuM8GO5sNwbS1rpxYcoJfbW+hzYy2spIiAWqKguzvHGYirbI1rXDu8wNDsA6MjruWHnGWaXfzadmv\nCzefiFsfnCnN1DIhvs79c37ttHCGD2umj6sQEZF7jrWjUuqtsz8c7gF+KSJfB1ZgONC3K6UmzDL0\nFwPPAh8AvjMHx9e4YD2MnQ9yS0iMO54Ebv1H8mHKg8pFq7E0EWd3OrcHnT8rKz53ZFGu4o9tg3GK\ngr6MDyZT5HEwwdG+Ud5wppHMuXlZMffv6Tj2yU2Dwz0jFAa8rCwrYIMZttvQHWNgdDyrJEllUZCW\nfUaYslvJ/bAjOMEt18YyETpLo7v5tOzC2i06yylErI9TuwtaIb7Ksf3s+0Q0M+dYmsglGP6JX2E8\nuGft32D6Vb4DVAG/F5EXlVJvVErtFZE7gH0Y0WAfU0pZnsq/Bn4KFAB/MF+ak4xzkmmZQeJj2Q5l\n61kzHTu2W+l65/PL0lichfryKbmS3Zc7t1YSDhiZ8BNplfWQtXIqOk3TkSVU1lcVMjA6PiWZcaY0\n9Y5QV1GIiGRMaVa/D3txRHu0VVYioN9WENGlxIgz8u1EC2vamXH9qjnoLugmgLRsmTnHEiLLMIos\nvgd4L0Zf9V/Z62hNF6XU3cDdLutuAm7KsXwHkH8ddM2c4LwZz1lpdFU8c0Vxzu2mo4m4CR7ncm+e\nXews7PZ8+0MzZNNK7I5kEaHYNPfYc1HCAS8+j2RKoltl6NeZVXCbemOUF5ZztG+Uhw908fYLVp5Q\nldff7+ogHPRy2eZqAJr7RjhzRUnWsXa1GhFjlbYkQbey+aFAbuEJk1qAM9fG0kSmCujj/z/dHtj5\nTijcorMsXr6+Iq/vyRqT23ItRWaMqxAxNYD7gfvNOlnvAR4VkS8qpW4+WQPULGy2rinniU9fNqVt\nqJszfCY4be3Ww2ZKQqNLVrxduNiFiN1M5nQcFwYNITJFuBT4M4UYV5iaiKWRdA0nUUrxkZ/vZH/H\nMC+1DPLNa8/L6xwfOdDNx375PAD3/s0rOW1ZES0Dca40G5KF/F7Kwv5M6frspk+5c2LsTnNndJVl\nMZqioZi/VSqdnUQ5o1wNh2x3q1+V8YnkkCLbP/e6LG0xX5zXiKVZ5moypTkxjulYN4XHmzEEyBrg\n27hoEJrFxfffd/6sFZlzVgmGyVnkdB46brNDp4JhCappVRD2u4SqulQQdvoMSgr8NPUadbUs05UV\nAtxpOtz3dwxTGPBy764OPn/VmXmZuH61/SjhgJf4+AS/eaGNGy5dx0RaZcxYYJiwDps1vbI7QubW\nRLIDClzqV81h6RELN01kSlCGWJrIVCli7+t+IjivkXdvXUV8bIL3X1I3re/TTOJq4BSRW4FtwPnA\nF5VSL1NKfUkppaOilgBvOns5G6qLTni/fDN9J1waYuWD84Z36+/ucdFE8ull4maWce5r+UucQqQ4\n5MsUebR8EWVhPwGvh65ogp1mQ6d/f8c5pNIqr1pbifEJHq/v4R0XrORldeW80DJIb3QMICtktzjk\nz/y+2V0EcxdBtP8PQr7c2tyUrHG3CKkZZY1nf87UXZuShGitn/ahpjC1Da6HD79qnWveiyZ/juUl\nuw4jOupG4GkzOmpYRKIiMnxyhqdZKHz6is1A9sPsWGSEyDRmrlMym3F70OUWIm6OXbuW4TYrnlL8\n0Zc76S5X90URobo4SNdQgt1tQ1RGgrzx/7d37nF2VFW+//76ke7O+9UkIQkGBHlFeTWaCChi9AOC\n8hDEOwqCMzD4Qq+XC/pxrjI6MyqOL9RhRMYJoDPqiKBXGCMgDF4RJeGRhxkkCMwEoiQBEpJAku6s\n+0ft6q5T59Tp6tPn2Vnfz6c/XbVr135Ude9Ve+211zp8NuPHtfPbx4cXIv/5xxd4afceFh8wg0Pn\nTOI/N2xl47adAMxICpFE3YXRHttKpidJz0SGnCAW5st6hqOZiYzUumokQuS0V83huAOz10oasfRR\nTVVuM1NuTWQU7s6c0fDVdx45qt25teD0I+dy+pGZTgKKGNVMJGthNh2hMRYiRTOXDAGRmGVkfVEX\nq7PimUjh4DslYyCPI//t7B9gQXApf8jsSazNEchqbYgkePi+U3h2xy627xpg9VPRRsekl90pGWqr\nZNvzhCeGbNcj7YNmtpRMr4S8IWor4et/dnT5DA34d7r6nUex9N4neOXcKfWvvI7kCUrl1JmRDNbN\nyv4zJzBnSjefOPXQEd+b9f+e/jrOypcd82T4kaQolklHef9c3Z1tBSqwKT2dbHlxN5u37+To/aYB\ncMicydy6cgNmVrYNv3t6KxO7Opg3rWfQHX3scmXmhKQ6K2pLmwrNk5MCIu9MYsj1SOk1kbRCq5rq\nrCxmTe5m/vQePnXa4RXXVVx3/aXI/Onj+T+nHVb3euuNCxGnJvSMa+fXH39jRfdm6cizvmTT0mQ0\nWoTiWCbBP1emmqvQumdKTydPbt7BhudfYt4RkSA4sHciW17czXM7dpddXH9803Zevk/kC2vfIERi\nM+LkHpDuRMz5pFAqjBqZT5DGAjdtOZU5E6niwnqWdda4jjZ+eflJFddTiuaa148tXGXlNB1ZX+vp\nAS1emM1yp1EJ6ZnIuEHnj2khEp2nA2JNHd/Jfz27g/49Rm9Yx4jNn+PIiVk8/fyLzAvCI773yWd3\n0NPZnjJDjv1dlXZVAuVcj6TPVfB72PtHE9OjgSO5hx+qHS5EnKZnuP//9OXRqFzS1llDHoQL83Vl\nrJUk9x3EC+DzpkUm0Oufyw6pGztUjGO/x/dGu+UL64hVWOmBPmlplO0EsfT6UdFGzowNf1WdiVDa\nOqsWuAipHS5EnJYhvW8gyw19NdVZg2sGGQN22kQ06ZsqFihzc8xEnt2+i539ewbVWO1tGlz7SHvY\njetMm1vncUmSFi5ZIWqznmE1F9ZjajnAZ5kRO9XDhYjTsgw58CtMH83XclqdNWReXJgvVh2lnQcm\nTWhjVdfk7g66OtrYtG1XZr1PPx+F4Y2FCMDU4MI9S23Vn+p4nlgtxQK3dP9i0oKquvtEKi5qxHjw\nqdrhQsRperIGgFjl8/yOwsF5NPrv9va0uif6nf6KjgfstG+pUkJEEjMndrEp7PkoxZ+2RkJkVmJH\nduy2vcjDboYAyzMTyQoTm35mgxv+Mu6vaEaSdYvrs1oat85yWob0l+viA2ZwwkEzi8yIR6POymte\n3BXUVv0DhY1KzhqSDhFnTBzH5jIzkeeCIJyWiP0RuytJz0RiVyzpmUie0MNZFm5FayWUts4a39nO\nKQtnc96ikbsLqeU+keFwdVbtcCHiND1ZA0B3Zzs3/vlritJrobdPl5k5E+ksnokAzJgwbnD3eSme\n37EbgGkJE+CsGPKD6qyUAMujxstSKRXJn4yi2trENe8+Zth6StedZeJbUXEjwmVI7XB1ltMy5FWh\nVzN4UVaY3/irf6BoTaS0/6oZE7uGnYl0tKkgDsigKW+Rm/bofPdAoYfdPN3OjquRYVY9fJG5KZbt\n9VsUcRPf2uFCxGl64gE77zAwqljcOfMN+u1KpXcXbPhLBLvq7uSFl/ozy3tux26mju8sDOcb1Fjp\ngFGdGT7D8gyURTORwXtTZcXXq7j6PVIB5rQGDREiks6RtEbSHkl9ifQ3SVohaVX4fVLi2jEhfZ2k\nq+WfFnsNnz3rlbz3uP057sCZufJnORXMQ94/qywPwlmL2xO72tm2s589aVOywPM7dg1aY8XEAim9\nHpPlMywPaQGbvbA+8rK/9I4j+OZ52aquRlpnObWjUWsiq4GzgG+m0jcBbzWzpyUtBJYBsSOpa4CL\niEL13gacjIfI3SuYNbmbT741vw+iWPeeteu6HMVjZ3n3H2k9f9bidhwkasfugSKPwAAvvNRfEFQK\nhtZE0qq09gwBloe8wmFoJpK/7LOOnlf2evpZxU4lYys0pzVpyNszs7VQ/AdtZg8mTtcAPSEw1nRg\nspndF+67ATgDFyItyb9etKjAK221iQervgXTRnxveojNMnXNUpllzURiM93tO/tLCpEXdw8UbSqM\n1VlFM5HBYFwjJ2t2lk6OXf4fMnvkMWey6y6s5dI3HsR+08dzaojaWEuqqZZzCmnmT4C3Aw+Y2U5J\nc4H1iWvrGZqhOC3G4gpiZI+EcR1t/PRDx7Ng5oQR35vX79aQOivnTCQIjkf++ALX3P0Y7zvx5cya\n3M1X73iUQ+ZM4sVdA0xLqbNiK6ysmUglPsKyLKTSHLbvZH54yWKOmD91xHVkkW5uV0c75x67X9XK\nL0VXZzvbdw3UtI69nZoJEUl3ALNLXPqEmf14mHsPBz4PvLnCui8GLgbYb7/a/pGONZZeeCzPbs+2\nImoVFlYYwyFrgTlNe8ZsIMsFeyxEvnrno6x48jkmdnXwtiP35ct3/B6IXOcXha5tiw0KUkIkbmQF\nU5FM1yMlkvsWTB95BRXUXUt+8JeLuG3VHz2Weg2pmRAxsyWV3CdpHlEc9/PN7LGQ/BSQVLjOC2lZ\ndV8LXAvQ19fn89gRcOLB+zS6CQ0lc7G6yP1H4e+Y4dRZcdjcFU8+x/6JmdLjm7bz6tSgPRjnPKVM\nG5X1WZF1VlhYr4OFVCMC/R24zyQufWP1VHJOMU1l4itpKnAr8DEz+1WcbmYbgK2SFgWrrPOBsrMZ\nx6mIjH0iaYZmIqVVTWnS6yD/9ewOHt+0vSCtOHRt+Y2PlYzJxdZZFRRSIc0WrdOpDo0y8T1T0npg\nMXCrpGXh0geBA4FPSnoo/MSfxu8HrgPWAY/hi+pODcj6Ws67sJ41UKZdlzy95UUefaYwZG53aj/I\nYFFFIWpDXRV82jd017jLkDFJo6yzbiZSWaXT/wb4m4x7lgMLa9w0Zy+naL9Exvd+1j6RrHE9qeY6\ncJ+JrHtmG49t3M7Leyfw2MZoRpIWNBkypC7WWbXAt3aNTZpKneU4jSbvMBfnSw+MWbODpIv5BTOi\nIFVPbNrO3BCwCop3pmfRnmEZlgcfyJ1q40LEcRJkqaPSawdxvt39e0qmp0ma/saRDvv3GDOTDhfT\nM5F4j0qq8iGniaMXCIOL9i5bnApp5n0ijlN3shwwpgfyQ+ZM4sj5U7n85IML0vOos+IQuDAUEwUK\noyJCtjv22VO6OXL+VK44+ZDMfuRlcE3EpYhTIS5EHKcMWUNrV0c7t3zguKL0PDOR3kldg8dJIdKZ\nYR6cXhPp7ixddyW4/bszWlyIOE6CtBD4yJJXsH3XAO84dn5F98d0JiImTp+QECIJf1npeCBDs6Bc\nVQPwV6ceygG9I9+pX8ulkjYVhzB2xg4uRJym4WcfOYEnN+9oaBvSg+m0CeP4+3OOyH1/pvVTouAZ\niXWQyT2djGtvY9fAnuw45yOYL/zFCQfkzhsKj9o3srtGxB0ffT1rnt5awxqcRuJCxGkaDpk9mUNm\nT25oG0Y7mOZZ7J6eECI9ne10dURCpBru2EfK4I71GtZ1QO9EDuidWLPyncbi1lnOXsVr9p/OkkOz\nXbuMdld1nsE4ucje3dk+aBac1zKsmlz8upcD8IpZPsg7leEzEWev4vt/ubjs9Xpso0gKi+7OtoRX\n3lRbat8U3nTYLJ743Kl1qMkZq/hMxHES1EOFlFxA7+poHxQq6ZmI7wt0WgEXIo5TZ5T4rxvX0TY4\nA8kSGh5QyWlmXIg4Tp1JzkQ62jSozkovymf5znKcZsKFiOPUmaTaqrO9rYw6q/SOdcdpJnxh3XGq\nzJSeTt7z2gWZ15OyoqNdCYeKhflOPLgXgLcfMw/HaVZciDgOUXjadJCoSnn4U+WjOifVVp1tQ2si\n6ZnIy2ZMcMspp+lxIeI4wE3vey1PbK6OEBmOpLDoaNfgmkctI//9+uMn8ez2XTUr39l7cSHiOES7\nyJM7yWtJW0qdNeTavXZ1zpnSw5wpPbWrwNlraVR43HMkrZG0R1Jfiev7Sdom6bJE2jGSVklaJ+lq\neXQdp0VJ/ul2trWVTHecVqFR1lmrgbOAezKuf4niGOrXABcBB4Wfk2vWOsepMV8590guOmF/JnZ3\nDPqvqqU6y3FqRaNirK+F0l9eks4AHge2J9LmAJPN7L5wfgNwBsWCxnFagjOOmssZR80tSKtCoELH\nqTtNtU9E0kTgCuCvU5fmAusT5+tDWlY5F0taLmn5xo0bq99Qx6ki8ZqIz0ScVqRmQkTSHZJWl/g5\nvcxtVwJfNrNto6nbzK41sz4z6+vt7R1NUY5Tc1yIOK1MzdRZZrakgtteA5wt6SpgKrBH0kvATUBy\nx9U84KnRt9Jxmoe2ptILOE4+msrE18xOiI8lXQlsM7Ovh/OtkhYBvwHOB77WkEY6To3wmYjTijTK\nxPdMSeuBxcCtkpbluO39wHXAOuAxfFHdGWP4wrrTijTKOutm4OZh8lyZOl8OLKxhsxynIcSu3n2f\niNOKuBbWcRpMPdyeOE6tcCHiOE1CuwsRpwVxIeI4DSY28XUZ4rQiLkQcp0lo85V1pwVxIeI4DWbI\nd1aDG+I4FeBCxHEazKA6C5ciTuvhQsRxmgRfE3FaERcijtNgbPgsjtO0uBBxnCbBJyJOK+JCxHEa\njPlUxGlhXIg4TsMZXFl3nJbDhYjjNJiece2AW2c5rUlTuYJ3nLHM0guPZdvO/qL0G9/7Gm5dtYHe\nSV0NaJXjjA4XIo5TJ048eJ+S6QtmTuADbziwzq1xnOrg6izHcRynYlyIOI7jOBXjQsRxHMepmEaF\nxz1H0hpJeyT1pa69StKvw/VVkrpD+jHhfJ2kq+Vh4BzHcRpOo2Yiq4GzgHuSiZI6gO8Al5jZ4cCJ\nwO5w+RrgIuCg8HNyvRrrOI7jlKYhQsTM1prZIyUuvRlYaWYPh3ybzWxA0hxgspndZ1FA6huAM+rY\nZMdxHKcEzbYm8grAJC2T9ICky0P6XGB9It/6kFYSSRdLWi5p+caNG2vYXMdxnL2bmu0TkXQHMLvE\npU+Y2Y/LtOd44FhgB3CnpBXAlpHUbWbXAtcC9PX1uWcix3GcGlEzIWJmSyq4bT1wj5ltApB0G3A0\n0TrJvES+ecBTeQpcsWLFJklPVtCWRjIT2NToRtQZ7/Pegfe5dXhZnkzNtmN9GXC5pPHALuD1wJfN\nbIOkrZIWAb8Bzge+lqdAM+utWWtrhKTlZtY3fM6xg/d578D7PPZolInvmZLWA4uBWyUtAzCz54Av\nAfcDDwEPmNmt4bb3A9cB64DHgH+ve8Mdx3GcAhoyEzGzm4GbM659h0h9lU5fDiyscdMcx3GcEdBs\n1llOxLWNbkAD8D7vHXifxxgyD6vmOI7jVIjPRBzHcZyKcSHiOI7jVIwLkSZA0nRJt0t6NPyeViZv\nu6QHJf20nm2sNnn6LGm+pLsk/S445PxwI9o6WiSdLOmR4Dz0YyWuKzgVXSdppaSjG9HOapKjz+8K\nfV0l6V5JRzSindVkuD4n8h0rqV/S2fVsX61wIdIcfAy408wOAu4M51l8GFhbl1bVljx97gf+l5kd\nBiwCPiDpsDq2cdRIage+AZwCHAb8jxJ9OIUhx6IXEzkbbVly9vlx4PVm9krgM7T44nPOPsf5Pg/8\nvL4trB0uRJqD04Hrw/H1ZDiXlDQPOJVov0yrM2yfzWyDmT0Qjl8gEp6ZPtOalFcD68zsD2a2C/ge\nUd+TnA7cYBH3AVOD09FWZdg+m9m9YV8YwH0UeqRoRfK8Z4APATcBz9SzcbXEhUhzMMvMNoTjPwKz\nMvJ9Bbgc2FOXVtWWvH0GQNIC4CgijwWtxFzgvxPnpZyH5snTSoy0P39O628eHrbPkuYCZ9LiM800\nzeb2ZMxSziFl8sTMTFKR3bWk04BnzGyFpBNr08rqMto+J8qZSPT19hEz21rdVjqNRNIbiITI8Y1u\nSx34CnCFme0ZSzH1XIjUiXIOKSX9SdKc4CNsDqWnuscBb5P0FqAbmCzpO2b27ho1edRUoc9I6iQS\nIN81sx/VqKm15ClgfuK8lPPQPHlaiVz9kfQqItXsKWa2uU5tqxV5+twHfC8IkJnAWyT1m9kt9Wli\nbXB1VnPwE+A94fg9QJGrfDP7uJnNM7MFwDuBXzSzAMnBsH0OIZD/CVhrZl+qY9uqyf3AQZL2lzSO\n6N39JJXnJ8D5wUprEbAloeprRYbts6T9gB8B55nZ7xvQxmozbJ/NbH8zWxD+h38IvL/VBQi4EGkW\nPge8SdKjwJJwjqR9gzv8sUiePh8HnAecJOmh8POWxjS3MsysH/ggkYfqtcAPzGyNpEskXRKy3Qb8\ngci56LeInI22LDn7/ElgBvAP4b0ub1Bzq0LOPo9J3O2J4ziOUzE+E3Ecx3EqxoWI4ziOUzEuRBzH\ncZyKcSHiOI7jVIwLEcdxHKdiXIiMUSSZpC8mzi+TdGWd27A09lQq6brROk+UtEDS6oxrXwiefr8w\nmjqaifD8Hq+miWjyneyNSLpA0teHyXNu8MTb0p6y64XvWB+77ATOkvRZM9s00psldQTb96pgZn9R\nrbIyuBiYbmYDycRq96MB/G8z+2GjG1FNJLWn31MzYWbfl/Qn4LJGt6UV8JnI2KWfyL32/0xfCF/0\nvwjxHO4Mu4fjr9R/lPQb4CpJV0q6XtIvJT0p6SxJV4UYED8LLkmQ9ElJ90taLelalXAMJOluSX2S\n3pbYOPiIpMfD9WMk/YekFZKWxV5sQ/rDkh4GPlCqo5J+AkwEVoSvyHQ/Jkj6tqTfKorFcnq4r0fS\n9yStlXSzpN9I6gvXtiXKP1vS0nDcK+mm0N/7JR0X0q8Mddwt6Q+SLk3cf3541g9LulHSpDDDZg7F\nDgAABdpJREFUiJ/f5OR5FpJmhXY+HH5eK+nTkj6SyPO3CnFXJF0R3tXDkj5XorysZ36pohguKyV9\nr8R9F0j6cejro5I+lbj27vCcH5L0TUWuz5G0TdIXw3tcnCqvqD5Jr5b06/C+7pV0cKLuWxTFoHlC\n0gclfTTku0/S9JDvbklfDe1YLenVJfpR8l06I8TM/GcM/gDbgMnAE8AUoq+qK8O1/wu8Jxy/F7gl\nHC8Ffgq0h/Mrgf8HdAJHADuI/BwB3AycEY6nJ+q9EXhroryzw/HdQF+qjT8gEgydwL1Ab0g/F/h2\nOF4JvC4cfwFYndXfxHG6H38HvDscTwV+D0wAPpqo51VEgrevRHlnA0vD8b8Ax4fj/YhcssTP6l6g\ni8gv0ubQr8NDfTOTzwr458Tzuxj4Yok+DT6/cP59IieUAO3hvS4AHghpbcBjRDvBTwntGZ+qd2no\nT7ln/jTQFT+vEu26ANgQ6ukBVhP5hTqU6G+rM+T7B+D8cGzAOzLeXVF9RH+7HeF4CXBTou51wCSg\nF9gCXBKufTnxfO4GvhWOX0f4uwn3f73cuwznJwI/bfT/cSv8uDprDGNmWyXdAFwKvJi4tBg4Kxzf\nCFyVuPZvVqhq+Hcz2y1pFdHA9bOQvopoAAN4g6TLgfHAdGAN0WCSScj/opl9Q9JCYCFwe5jEtAMb\nJE0lGlTuSbT1lFydL+zHm4mcV8bqiW6iQeN1wNUAZrZS0soc5S4BDtPQZGuyIi/DALea2U5gp6Rn\niNzbnxTasinU82zIex2RW/9bgAuBi3LUfRJwfihngGgA3SJps6SjQn0PmtlmSUuAfzazHal6Yw6m\nxDMP11YC35V0S2hfKW634DRR0o+IvPD2A8cA94cyexhyrDlA5EizFKXqmwJcL+kgIgGUnKXdZVF8\nmRckbWHob20V0cdAzL+Gvt8TZntTU/WWfJdmtg0nNy5Exj5fAR4g+vLNw/bU+U4Ai9xX77bwmUYU\n06RDUjfRF2efmf23osX77nIVhAHuHKJBHEDAGjNLqznS//QjIdkPAW83s0dS5Ze7P+kPKNmfNmCR\nmb1UoqydiaQByvx/mdmvFKkVTySaMZU0GMjJdURf2LOBb+e8p+QzD5xK9G7eCnxC0iuteF0p7S/J\nQpnXm9nHS5T5kmWvgxTVRxTt8C4zO1NRLJm7E/mTz3lP4nwPhc+8VBuTlHyXzsjwNZExTvgC/QFR\nzIaYe4m8jAK8C/jlKKqIB9hN4Yu8rOWPpJcRhRE9x8zi2dEjQK+kxSFPp6TDzex54HlJcayJd1XY\nxmXAhxRG+vDVDnAP8GchbSGFX7F/knSopDaiQEIxPyeKThf358hh6v4FcI6kGSH/9MS1G4hUKnkF\n/J3A+0I57ZKmhPSbgZOBY4n6CnA7cKGk8SXqhYxnHvo738zuAq4gmhFMpJg3SZouqYcoKuWvQvvO\nlrRPXGd435mUqW8KQ67ULyj/WDI5N9RxPJFn5C2p6yN9l04JXIjsHXyRSE8f8yGiAWYlkZfcD1da\ncBjov0WkF19G5BK7HBcQ6dJvCYuet1kUTvRs4PNh4fUh4LUh/4XANyQ9RPSlWwmfIVKHrJS0JpxD\nFGFuoqS1wKeBFYl7Pka0rnIvQ2oeiFSDfWER+HdAWfNbM1sD/C3wH6FvSZf23wWmEdQuOfgwkepw\nVWjrYaGOXcBdRJ5jB0Laz4hckS8Pz67A0qjMM28HvhPqeBC4OrzjNL8lUk+tJFqvWG5mvwP+Cvh5\n+Nu6HRguzG9WfVcBn5X0IJVrTF4K9/8jhR9RMSN6l05p3Iuv4wQk3Q1cZmZ1cUuuaL/G6WZ2Xsb1\npUSLu2VNfMPX/ANEs7tHq97Q4vouIFJffrDWdVXKaN9lUDNeZmanVbNdYxGfiThOA5D0NaIYKp8p\nk20L8BmV2WyoaAPnOuDOegiQvQFJ5xKt8z3X6La0Aj4TcRzHcSrGZyKO4zhOxbgQcRzHcSrGhYjj\nOI5TMS5EHMdxnIpxIeI4juNUzP8HWIkMz2GBd4EAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Hanning window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Traingular Window" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='triangular')" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 78, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVIW5//HPsxQBpTelo3SQusEaATWKESUYCwgk5iZR\nbIFoVNRf4tVYkptrQ1Q0idErKBgFG6Yo9s4urPQWehEWkCJtXXh+f8yZdVjZ3WHZs9O+79drXs4p\nc+Y5JHueOe17zN0REREByEp0ASIikjzUFEREpIiagoiIFFFTEBGRImoKIiJSRE1BRESKqClISjOz\nKmb2tZm1SnAdZ5vZyhCWe7yZfX0En19rZv0rsCRJc2oKUqmCDXj0dcDM9sQMDz/c5bn7fnc/xt1X\nh1Fvorn7cnc/JtF1SOaomugCJLPEbuCCX9a/cPe3SprfzKq6e2Fl1BaWdFgHyRzaU5CkYmZ3m9kU\nM3vezHYCI8zsFDP71My2mdkGMxtnZtWC+auamZtZm2B4YjD9H2a208w+MbO2Mcs/z8yWmNl2M3vE\nzD4ysytivvvpmHnbmZnHDP/CzBYGy/2Pmf2ilPVYa2Y3mdlcYNchpt9jZg8G748K9pjuC4aPMbO9\nZlb3EDV8aGZ3mtnHQR3/NLMGMdOvMLNVZrbZzMYW+84awb/NBjNbZ2YPmFn1YNpHZjY4eN8v+Dc9\nNxg+18xyyvrfTtKDmoIkoyHAc0BdYApQCIwGGgGnAQOBq0r5/OXAb4EGwGrg9wBm1gR4AbgpWNYK\noO9h1LUROB+oA/wSeMTMupcy/1DgPKDeIaa9B/QP3p8ErAfOCIZPBea7+/YSlns58FOgKXA0cAOA\nmZ0IjA+mNweaAcfGfO53QDbQHehF5N/y1kPU0w9YHlNPv2C6ZAA1BUlGH7r7a+5+wN33uPtMd//M\n3QvdfTnwJJENVUledPccd/8GmAT0DMYPAvLc/ZVg2oPA5niLCmpa7hFvAzOA75fykYfdfa277znE\ntI+BLmZWj8jG90mgrZnVouyN8F/dfam77wb+HrN+lwAvu/tH7r4PuA2wmM8NB/7b3fPdfRNwFzAy\nmPYe3/6bngHcFzOsppBB1BQkGa2JHTCzTmY23cy+NLMdRDZmjUr5/Jcx73cD0fMYzWKX7ZE0yLXx\nFmVmg8zsMzPbambbgHPKqGNNSRPc/WtgNpEN8BnAu8CnwCmUvRGOd/2+BrbGzNsMWBUzvIrIHgXA\nR0BXM2sMdAOeAY43s4ZAH+CDUuqRNKKmIMmoeHTvE8A8oJ271yFyGMS+86mybQBaRAfMzPh2owiR\nY/+1YoaPjZm3JvAikV/QTd29HvDvMuooK4L4PeBs4EQgNxg+j8ghnvJshDcALWNqPobIIbSo9UDr\nmOFWwDooaiB5wK+J7E19A3wG3AgscvevylGPpCA1BUkFtYHtwC4z60zp5xNK8zrQ28wuMLOqRM5T\nNI6Zngf0M7OWwWGd2BO1RwHVgXxgv5kNAs4qZx1R7wFXAHOCq5PeBa4EFrv71lI+V5K/A4ODE/NH\nAXdzcGN6HvidmTUK9gh+C0wsVs91fLuX8m6xYckAagqSCm4kcmJ1J5G9hinlWYi7bwQuAx4AtgAn\nEDmEsy+Y5Z/ANGAu8DnwasxntxH5FT2NyCGZi4k0mSPxIZE9k/eD4blETqq/X+InSuHuc4g0uheI\n7AF8ycGHmu4EviCy1zWHyJ7AfTHT3yPSgN8vYVgygOkhO5KpzKwKkUMqF7u7jpmLoD0FyTBmNtDM\n6gWHV34LfENkr0BEUFOQzHM6kWvw84FzgSHB5Zsigg4fiYhIDO0piIhIkZQLxGvUqJG3adMm0WWI\niKSU3Nzcze7euKz5Uq4ptGnThpwcZXOJiBwOM1tV9lw6fCQiIjHUFEREpIiagoiIFFFTEBGRImoK\nIiJSJLSmYGZPmdkmM5tXwnQLHg24zMzmmFnvsGoREZH4hLmn8DSRxyaW5DygffC6Eng8xFpERCQO\noTUFd3+fg5/6VNxg4P+CRxt+CtQzs+PCqkekou0uKGTKzNXsKdif6FJEKkwizyk05+DHFa7l4Kdg\nFTGzK80sx8xy8vPzK6U4kdK4Ozf9fQ63vDSXW16agzLEJF2kxIlmd3/S3bPdPbtx4zLv0hYJ3V8+\nWMH0uRvo07o+r36xnqc+WpnokkQqRCKbwjpinidL5Nm56xJUi0jcPvnPFv7wz0Wc1+1Y/n7VKZzT\npSn3vrGQz5ZvSXRpIkcskU3hVeAnwVVIJwPb3X1DAusRKdOG7Xu47rlZtGlYiz9d0oOsLOP+S3vQ\nukEtrn1uNht37E10iSJHJMxLUp8HPgE6mtlaM/u5mY0ys1HBLG8QedjJMuDPwDVh1SJSEfYV7ufq\nibPY+81+nhiZzTFHRfIka9eoxhMj+7C7oJCrJ+ZSUHggwZWKlF9oKanuPqyM6Q5cG9b3i1S0O19b\nQN6abUwY0Zt2TY45aFr7prX508U9uPa5Wdw9fQF3De6WoCpFjkxKnGgWSbQXctbw3GerGdXvBAZ2\nO/SV0+d3P45ffr8t//fJKqbOWlvJFYpUDDUFkTLMXbud//fyPE5r15DfnNOh1HlvGdiJk49vwK1T\n5zJ//fZKqlCk4qgpiJTiq10FjJqYS6OjqzNuaC+qVin9T6ZqlSzGX96b+rWqM2piLtt2F1RSpSIV\nQ01BpAT7Dzi/mjyb/J37eHxEHxoec1Rcn2t0zFE8NqI3X27fy+jJeew/oBvbJHWoKYiU4P5/L+aD\npZu5a3BXerSsd1if7d2qPndc0JX3luTz8FtLQqpQpOKpKYgcwr/mf8lj7/6HYX1bMrRvq3ItY/hJ\nrbikTwvGvb2MtxZsrOAKRcKhpiBSzH/yv+bGF76gR4u6/PeFXcu9HDPj9z/qRrfmdfj1C3ms3Lyr\nAqsUCYeagkiMXfsKGfVsLtWrZvH4iD4cVbXKES2vRrUqPD68D1WyjKuezWV3QWEFVSoSDjUFkYC7\nc/OLc/hP/teMH9aLZvVqVshyWzaoxbihvViyaSdjX5qrRFVJamoKIoFo8unNAztxartGFbrsMzo0\n5jfndOTVL9bzNyWqShJTUxDh4OTTq844PpTvuLrfCfwgSFT9fEVpz58SSRw1Bcl4xZNPzSyU74km\nqrZqUItrJs1SoqokJTUFyWglJZ+GpU6NakwIElWvmTRLiaqSdNQUJKNFk0//95Ie30k+DUuHprX5\nn4u7k7vqK+6evqBSvlMkXmoKkrFik0/PO/HQyadhGdS9mRJVJSmpKUhGOpzk07AoUVWSkZqCZJzD\nTT4NixJVJRmpKUhGKW/yaVhiE1XHTMnjgBJVJcHUFCSjPPBm+ZNPwxJNVH13cT4PzVia6HIkw6kp\nSMb49/wvefSd/zD0e+VPPg3L8JNacXGfFoybsZQZC5WoKomjpiAZYXmQfNr9CJNPw2Jm3B0kqo6Z\nokRVSRw1BUl7u/YVctWzuVQLkk9rVDuy5NOwxCaqjpqoRFVJDDUFSWvuzs0vRZJPHxnWi+YVlHwa\nlmii6uKNO7l1qhJVpfKpKUha+8sHK5g+ZwM3nduJ0yo4+TQsZ3RozI0/6MAreUpUlcqnpiBpK5p8\nOrDrsYzqF07yaViu6d+OszsrUVUqn5qCpKUN2/dw/fPR5NPuoSWfhiUry3jgsh60VKKqVDI1BUk7\n0eTTPQX7eWJkH2rXqJboksqlTo1qTBjRh137lKgqlUdNQdLOXUHy6Z8u6UG7JrUTXc4R6Xjst4mq\n9yhRVSqBmoKklb/nrGHSZ6u56ozj+WElJ5+G5YIezfj56W155pNVTJutRFUJl5qCpI1567Zz+8vz\nOPWEhtx0bsdEl1Ohxp7Xib5tI4mqC9bvSHQ5ksbUFCQtfLWrgKuejSSfPjIsccmnYalWJYtHL+9N\n3ZrVGDUxl+27v0l0SZKmQv3LMbOBZrbYzJaZ2dhDTK9vZtPMbI6ZfW5m3cKsR9JTsiWfhqVx7aN4\nfEQfNmzfw5gps5WoKqEIrSmYWRXgUeA8oAswzMy6FJvtNiDP3bsDPwEeDqseSV8PvrmED5Zu5s4k\nSj4NS+9W9fndBV15Z3E+DytRVUIQ5p5CX2CZuy939wJgMjC42DxdgLcB3H0R0MbMmoZYk6SZNxds\nZPw7y7gsuyXDkiz5NCwjTmrFj3u34OEZS3l7kRJVpWKF2RSaA2tihtcG42J9AVwEYGZ9gdZAi+IL\nMrMrzSzHzHLy8/NDKldSzfL8r7lhSh7dW9TlzsHJl3waFjPjniHd6NqsDmMm57FqixJVpeIk+mzc\nH4B6ZpYHXA/MBvYXn8ndn3T3bHfPbty4cWXXKElo175CRk3MpWoV47HhvZM2+TQsNapVYcKIPpgZ\nVz2by56C7/zZiJRLmE1hHdAyZrhFMK6Iu+9w95+5e08i5xQaA8tDrEnSgLtzy0tzWLbpax4Z1psW\n9WsluqSEaNmgFuOGRRNV5yhRVSpEmE1hJtDezNqaWXVgKPBq7AxmVi+YBvAL4H1310XYUqq/friC\n1+ds4DfnduT09qmRfBqWfh0ac8PZHXg5bz3PfLwy0eVIGqga1oLdvdDMrgP+BVQBnnL3+WY2Kpg+\nAegMPGNmDswHfh5WPZIePl2+hfv+sYhzuzbl6n4nJLqcpHDtgHZ8sXYbd09fSNfmdflemwaJLklS\nmKXaLmd2drbn5OQkugxJgA3b93DBIx9Sp2Y1Xrn2tJQNugvD9j3fMHj8h+wq2M/060+nSZ0aiS5J\nkoyZ5bp7dlnzJfpEs0hc9hXu55pJQfLpiNRNPg1L3ZrVeGJkNl/vVaKqHBk1BUkJv399AbNXR5JP\n2zdN7eTTsEQTVXNWfcW9byxMdDmSokI7pyBSUV7MXcvET9Mr+TQsF/RoRt6abfz1wxX0aFmXIb2+\nc9uPSKm0pyBJbd667dw+bS6nHJ9+yadhUaKqHAk1BUlaX+0qYNTEXBocXZ1HLk+/5NOwKFFVjoT+\nyiQp7T/gjJ6Sx6YdkeTTRmmafBqWxrWP4rHhSlSVw6emIEnpobeW8P6SfO4c3JWeaZ58GpY+rZWo\nKodPTUGSzpsLNvLI25mVfBoWJarK4VJTkKSyYvOujEw+DUvxRNWVm5WoKqVTU5CksWtfIaOezdzk\n07DEJqqOmpjL7oLCRJckSUxNQZJCNPl06aadGZ18GpaWDWrxSFGi6lwlqkqJ1BQkKUSTT286t1PG\nJ5+G5YwOjbnxBx14JW89TytRVUqgpiAJF00+Hdj1WEb1Oz7R5aS1a/q34+zOTbln+kJmrtya6HIk\nCakpSEJt2L6H656bRZuGtfjTJd0xs0SXlNaysowHLutBywa1uGbSLDbt2JvokiTJqClIwhQUHvg2\n+XSkkk8rS50a1Zgwoo8SVeWQ1BQkYe56fX5R8mm7Jko+rUxKVJWSKCVVEkLJp4mnRFU5FO0pSKVT\n8mnyUKKqFKemIJUqmnza8OjqjFfyacIpUVWK01+kVJr9B5xfTZ5dlHzaUMmnSUGJqhJLTUEqzYNv\nLuGDpZu5c3BXeij5NKn0aV2f3w3qwjuL8xn3thJVM5maglSKf8//kvHvKPk0mY04uTUX9W7OwzOW\n8s6iTYkuRxJETUFCtzz/a2584QslnyY5M+PeISfS+dg6jJ48m1VblKiaidQUJFS79hUyaqKST1NF\njWpVeGJkJFH1qmdz2VOwP9ElSSVTU5DQRJNPl236WsmnKaRlg1o8PLQnizfu5LZpSlTNNGoKEppo\n8ulvzu2o5NMU079jE244uwPTZq/j/z5ZlehypBKpKUgoosmn53ZtytX9Tkh0OVIO1w5ox9mdm/D7\n1xcoUTWDqClIhYsmn7ZuWIv/vaSHkk9TVFaWcf+lPWlRv6YSVTOImoJUqH2F+7lm0ix2F+zniRFK\nPk11dWtW44mR2Xy9t5Brn5vFN/uVqJru1BSkQv3+9QWR5NOLe9C+qZJP00HHY2vzx4u7M3PlV9wz\nXYmq6S7UpmBmA81ssZktM7Oxh5he18xeM7MvzGy+mf0szHokXNHk0yvPOJ7zuyv5NJ1c2KMZ/3Va\nW57+eCXTZq9NdDkSojKbgpnVMrPfmtmfg+H2ZjYojs9VAR4FzgO6AMPMrEux2a4FFrh7D6A/cL+Z\nVT/MdZAkEJt8erOST9PSrT9UomomiGdP4W/APuCUYHgdcHccn+sLLHP35e5eAEwGBhebx4HaFjkT\neQywFSiMp3BJHtHk0wZHV+cRJZ+mrWpVshh/eS8lqqa5eP56T3D3/wG+AXD33UA8l5M0B9bEDK8N\nxsUaD3QG1gNzgdHu/p0zWWZ2pZnlmFlOfn5+HF8tlWX/AWf0lDw27djHY8N700jJp2mtSe0aPDa8\ntxJV01g8TaHAzGoS+VWPmZ1AZM+hIpwL5AHNgJ7AeDOrU3wmd3/S3bPdPbtx48YV9NVSER56awnv\nL8nnjgu70KtV/USXI5WgT+sGSlRNY/E0hTuAfwItzWwSMAO4OY7PrQNaxgy3CMbF+hkw1SOWASuA\nTnEsW5LAmws28sjby7ikTwsuV/JpRlGiavoqsym4+5vARcAVwPNAtru/G8eyZwLtzaxtcPJ4KPBq\nsXlWA2cBmFlToCOwPN7iJXFWbN7FDVPy6Na8Dr//UTfdoJZhlKiavkpsCmbWO/oCWgMbiBz7bxWM\nK5W7FwLXAf8CFgIvuPt8MxtlZqOC2X4PnGpmc4nsgdzi7puPbJUkbLsLChn1bCT5dMKIPko+zVBK\nVE1PVlICopm9E7ytAWQDXxA5wdwdyHH3Uw75wZBlZ2d7Tk5OIr5aiCSf/mpyHtPnrOeZ/+rL99vr\nHE+me3fxJn729EwG92jGg5f11F5jkjKzXHfPLmu+EvcU3H2Auw8gsofQOzjR2wfoxXfPDUiGeOqj\nlbz2xXpuPKejGoIAkUTVX5/dgZfz1vPMxysTXY4coXhONHd097nRAXefR+QyUskwny3fwr1vLOSc\nLk25pr+ST+Vb1wWJqndPX6hE1RQXT1OYY2Z/MbP+wevPwJywC5PksnHHXq59bjatG9Ti/kuVfCoH\nU6Jq+oinKfwMmA+MDl4LgnGSIQoKD3D1xFx2FxTyxEgln8qh1a1ZjQkj+yhRNcXFc0nqXnd/0N2H\nBK8H3V0/AzLI3dMXMEvJpxKHTsfW4Q8/PlGJqimsalkzmNkKgruZY7n78aFUJEnlpdy1/N8nq/jl\n99sq+VTiMrhnc75Ys52nPlpBr1b1GNyzeLqNJLMymwKRy1GjagCXAA3CKUeSybx127lt2lxOPr4B\ntwzUjeYSv1t/2Il567dzy0tz6NC0Np2P+056jSSpeA4fbYl5rXP3h4DzK6E2SaBtuwu4elIk+XT8\n5b2VfCqH5TuJqnuUqJoq4nmeQu+YV3ZwN3I8exiSovYfcEZPzmPjdiWfSvlFE1XXb9vDDVPylKia\nIuLZuN8f876QSGjdpeGUI8ng4beW8N6SfO4Z0k3Jp3JE+rRuwG8HdeF3r8znkbeXMfrs9okuScoQ\nT1P4ubsfFFJnZm1DqkcS7K0FGxmn5FOpQCNPbk3e6m08NGMJ3VvWZUDHJokuSUoRz4HiF+McJylu\n5eZd/PoFJZ9KxTIz7hlyIp2OrcPo52ezesvuRJckpSgtJbWTmf0YqGtmF8W8riByFZKkkd0FhVz1\nbC5VsozHhyv5VCpWzepVeGJEkKg6UYmqyay0PYWOwCCgHnBBzKs38MvwS5PK4u6MfWkuSzbtZNzQ\nXrRsUCvRJUkaatWwFg8N7cmiL3dw+7S5lJTQLIlV4jkFd38FeMXMTnH3TyqxJqlkf/toJa9+sZ6b\nzu3IGR2UfCrhGdCxCWPO6sCDby2hZ6t6/OSUNokuSYopsSmY2c3u/j/A5WY2rPh0d/9VqJVJpfhs\n+RbuCZJPr+6n5FMJ3/VntmPO2m3c9doCuhxXh+w2uhc2mZR2+CgaXJID5B7iJSmuePJpVpZOLEv4\nsrKMBy6LSVTdqSi1ZFLik9eSlZ68VjEKCg8w7M+fsnDDDl659jQF3UmlW/TlDoY8+jHdmtfhuV+e\nTDXdNR+qeJ+8Vtrho9c4RBBelLtfWM7aJAncPX0Buau+YvzlvdQQJCGiiaqjJ+dx7xsLueOCroku\nSSj95rX/rbQqpFJNnfVt8umg7s0SXY5ksME9m5O3Zht/+2glPVsqUTUZlHb10XvR92ZWHehEZM9h\nsbsXVEJtEoL567dz61Qln0ryuO2HnZm/bocSVZNEPIF45wP/AcYB44FlZnZe2IVJxdu2u4BRE3Op\nX0vJp5I8qlXJYvzwXtSpoUTVZBDPVuF+YIC793f3fsAA4MFwy5KKduCAM2ZKJPn08RFKPpXk0qR2\nDR4foUTVZBBPU9jp7stihpcDO0OqR0Ly0IylvLs4nzsu7KLkU0lK0UTVGYs28cjby8r+gIQinpTU\nHDN7A3iByDmFS4CZZnYRgLtPDbE+qQBvLdjIuBlLlXwqSe+gRNUWdRnQSYmqlS2ePYUawEagH9Af\nyAdqEslBGhRaZVIhosmnJzavq+RTSXrRRNXOx9Zh9OTZrNqyK9ElZRzdvJbGdhcUMuTRj9m0cy+v\nXX86Leor6E5Sw5qtuxn0yIc0q1eTqVefSs3qSu09UvHevBbP1UdtzewBM5tqZq9GXxVTpoQlmny6\ndNNOxg3rpYYgKaVlg1o8HCSq3qZE1UoVzzmFl4G/Aq8BB8ItRypKbPLp99sr+VRST/+OTfj12R14\n4M0l9GxZj5+e2ibRJWWEeJrCXncfF3olUmFik0+v6a/kU0ld1w2IJKr+/vUFdG2mRNXKEM+J5ofN\n7A4zO8XMekdfoVcm5VI8+VQnliWVZWUZ91+qRNXKFE9TOJHIk9b+QORGtvuJMxfJzAaa2WIzW2Zm\nYw8x/SYzywte88xsv5npp0A5FRQe4OqJuewuKOSJkX2oXaNaoksSOWJ1a1Zjwsg+7NxbyHWTZvPN\nfh3FDlM8TeES4Hh37+fuA4LXmWV9yMyqAI8C5wFdgGFm1iV2Hnf/k7v3dPeewK3Ae+6+9fBXQyCS\nfDpr9Tb+dHEPJZ9KWokmqn6+civ3vrGw7A9IucXTFOYReU7z4eoLLHP35UGA3mRgcCnzDwOeL8f3\nCPBS7rfJp+d3Py7R5YhUuME9m/Oz09rwt49W8kreukSXk7biOdFcD1hkZjOBfcE4d/fSNvAAzYE1\nMcNrgZMONaOZ1QIGAteVMP1K4EqAVq10R25x89Zt57ZpczmprZJPJb0pUTV88ewp3AEMAe4FHgBm\nAu0quI4LgI9KOnTk7k+6e7a7ZzdurMsrY23bXcDVkyLJp48OV/KppDclqoavzC1I8FyFHUQiLZ4G\nzgQmxLHsdUDLmOEWwbhDGYoOHR22/Qec0ZPz+HL7Xh5T8qlkiGii6rqvlKgahhKbgpl1CC5FXQQ8\nAqwmEosxwN0fiWPZM4H2wR3R1Yls+L9zJ7SZ1SWSq/RKudYggz381hLeW5LPHRd0pbeSTyWDKFE1\nPKWdU1gEfAAMikZnm9mv412wuxea2XXAv4AqwFPuPt/MRgXTo3sbQ4B/u7uSrw7DWws2Mu7tZVzc\npwXDT9J5Fsk8PzmlNXlrgkTVlnUZ0FGJqhWhxEA8M/sRkV/3pwH/JHL10F/cvW3llfddCsSLJJ9e\nMP5DWjesxYujTqVGNYWFSWbaU7Cfix7/mHVf7eb1679Pq4bK+CrJEQfiufvL7j6UyLOZ3wHGAE3M\n7HEzO6fiSpXDsbugkKuezaVKlvH48D5qCJLRalavwoQRkYCFqybmsqdgf4IrSn3xnGje5e7PufsF\nRE4WzwZuCb0y+Y5o8umSTTsZN7QXLRvoV5FI64ZH8/CwXiz6cge3K1H1iB3W9Yvu/lVweehZYRUk\nJYsmn/7mnI6c0UGX5opEDejYhDFndWDq7HU8++mqRJeT0nRRe4r4fEXk9v4fdGnK1f2UfCpS3PVn\ntuOsTk2467UF5K5SWk55qSmkgI079nLNpFm0CpJPs7KUfCpSXFaW8cBlPWlevyZXT1SianmpKSS5\ngsIDXDNpFrsLCpkwsg91lHwqUqK6NasxYUQfduz9Romq5aSmkOTumb6A3FVf8T8Xd6eDkk9FytT5\nuDr88cfd+XzlVu57Y1Giy0k5agpJbNrstTzzySp+cXpbBnVvluhyRFLG4J7NueLUNjz10Qolqh4m\nNYUktWD9Dm6dGkk+HXuekk9FDtft53fme23qM/aluSz6ckeiy0kZagpJaNvuAq6amEO9mtUZf7mS\nT0XKo1qVLB69vDfH1KjKqGeVqBovbW2SzIEDzpgpkeTTR4f3pnFtJZ+KlFeTOjV4fHhv1ipRNW5q\nCknmoRlLeXdxJPm0T2sln4ocqew23yaqjn9HiaplUVNIIjMWbmTcjKVKPhWpYD85pTVDejXnwbeW\n8M7iTYkuJ6mpKSSJlZt3MWZKHt2a1+HuH3XDTDeoiVQUM+PeISfS6dg6jJmcx+otuxNdUtJSU0gC\nuwsKGTVRyaciYYomqro7o5SoWiI1hQRzd26dOpfFG5V8KhK21g2P5uGhvVj45Q5uf1mJqoeippBg\nT3+8klfy1nPjDzoo+VSkEgzo1ITRZ7Vn6qx1TFSi6neoKSTQzJVbuWf6Qs7u3JRr+rdLdDkiGeNX\nZ7bnzE5NuOt1JaoWp6aQINHk05YNavHAZUo+FalMWVnGg5f2pFm9mlwzSYmqsdQUEiCafPr13kIm\njFDyqUgi1K0VSVTdvkeJqrHUFBIgNvm047FKPhVJlM7H1eEPFylRNVbVRBeQaWKTTy/ooeRTkUT7\nUa/m5K3ZxlMfraBHy7oM7tk80SUllPYUKpGST0WSkxJVv6WmUEm27/6GURNzlXwqkoSUqPotbZkq\nQST5dDYbtu/hsRFKPhVJRrGJqje+kLmJqmoKleDhGUt5Z3E+v7ugK71bKflUJFllt2nA/zu/M28t\n3MSjGZqoqqYQsrcXbeThGUv5ce8WjFDyqUjS++mpbfhRz2Y88NYS3s3ARFU1hRCt2rKLMZPz6Nqs\nDvcMUfKpSCowM+67qDsdm9Zm9OQ81mzNrERVNYWQ7C4o5KpnczEzJoxQ8qlIKqlZvQpPjOyDu3PV\ns5mVqKqyU5RzAAANqUlEQVSmEIKDkk+HKflUJBW1bng0Dw3tyYINmZWoGmpTMLOBZrbYzJaZ2dgS\n5ulvZnlmNt/M3guznsoSm3zaT8mnIinrzE5NGXN2ZiWqhnZHs5lVAR4FfgCsBWaa2avuviBmnnrA\nY8BAd19tZk3CqqeyKPlUJL386sz2zFm7nbteX0CXZnXT/tnpYe4p9AWWuftydy8AJgODi81zOTDV\n3VcDuHtKn+rfpORTkbQTTVQ9rm5NrpmUm/aJqmE2hebAmpjhtcG4WB2A+mb2rpnlmtlPDrUgM7vS\nzHLMLCc/Pz+kco+Mkk9F0lfdWtV4YmSQqPpceieqJvpEc1WgD3A+cC7wWzPrUHwmd3/S3bPdPbtx\n4+Q8Rn/vGwvJUfKpSNoqSlRdsZU//CN9E1XDTEldB7SMGW4RjIu1Ftji7ruAXWb2PtADWBJiXRVu\n2uy1PP3xSn6u5FORtBZNVP3rhyvo0bIeF6bh33uYewozgfZm1tbMqgNDgVeLzfMKcLqZVTWzWsBJ\nwMIQa6pw0eTTvko+FckIt/2wM9mt63PLi3PSMlE1tKbg7oXAdcC/iGzoX3D3+WY2ysxGBfMsBP4J\nzAE+B/7i7vPCqqmiRZNP69asxqOX96aakk9F0l71qlk8Njx9E1Ut1W7IyM7O9pycnESXwYEDzs+f\nmcmHyzYz+cpT0v4yNRE52MyVWxn25Kf079iYJ0dmJ/3VhmaW6+7ZZc2nn7blFJt8qoYgknm+l6aJ\nqmoK5aDkUxGBgxNV30mTRFU1hcMUTT7tcpyST0UyXWyi6pjJeazekvqJqmoKh2FPwf6i5NMnRir5\nVEQOTlQdNTH1E1XVFOLk7oydOkfJpyLyHemUqKqmEKdo8ukNZyv5VES+68xOTRl9VuonqqopxOHb\n5NMmXDtAyacicmijz2rPgI6Nuev1BeSu+irR5ZSLmkIZDk4+7Zn01yKLSOJkZRkPXdYrpRNV1RRK\noeRTETlcqZ6oqqZQinumL1DyqYgctthE1fveSK1E1TBTUlPatNlreeaTVUo+FZFyiSaqPvXRCnq0\nrMvgnsUfJ5OctKdwCEo+FZGKEE1UHfvS3JRJVFVTKEbJpyJSUVIxUVVbvBgHDjhjpsxmw/Y9PDa8\nD41rH5XokkQkxTWpU4PHhvdm7Vd7uPGFPA4cSO4b29QUYhQlnw7qouRTEakw32vTgNtTJFFVTSEQ\nTT69qHdzRpzcOtHliEiaueLUNgwOElXfTeJEVTUFDk4+vXfIiUo+FZEKF0lUPZGOTWszenIea7Ym\nZ6JqxjcFJZ+KSGWpVb3qQYmqe79JvkTVjG4K7s6tQfLpw0N7KvlUREIXTVSdv34Ht0+bl3SJqhnd\nFJ75eCUvB8mn/Ts2SXQ5IpIhoomqL81ay8TPVie6nINkbFOYuXIrdyv5VEQSpChR9bX5SZWompFN\nIZp82qJ+Te6/VMmnIlL5iieq5u/cl+iSgAxsCrHJp0+MzKZuTSWfikhi1K1VjQkjoomqsyhMgkTV\njGsK976xkJxVX/FHJZ+KSBLo0qwO9110Ip+t2Mof/pH4RNWMagrTZq/l6Y9X8vPT23Khkk9FJEkM\n6dWCn57Smr98uILXvlif0Foypiko+VREktnt50fidW5+cQ6Lv9yZsDoypins3PsNbRsdo+RTEUlK\nByWqTsxlx97EJKpmzNbxpOMbMv3605V8KiJJq2mQqLpm625umPJFQhJVM6YpALr0VESS3reJqht5\n7N3KT1TNqKYgIpIKoomq97+5hPeW5Ffqd6spiIgkmYMTVWdXaqJqqE3BzAaa2WIzW2ZmYw8xvb+Z\nbTezvOD1uzDrERFJFbWqV2XCiD7sP1C5iaqhNQUzqwI8CpwHdAGGmVmXQ8z6gbv3DF53hVWPiEiq\nadPoaB66rHITVcPcU+gLLHP35e5eAEwGBof4fSIiaeeszpWbqBpmU2gOrIkZXhuMK+5UM5tjZv8w\ns66HWpCZXWlmOWaWk59fuSddREQSbfRZ7bmwRzOaVsIl9VVD/4bSzQJaufvXZvZD4GWgffGZ3P1J\n4EmA7Ozs5HoihYhIyLKyjHHDelXOd4W47HVAy5jhFsG4Iu6+w92/Dt6/AVQzs0Yh1iQiIqUIsynM\nBNqbWVszqw4MBV6NncHMjjUzC973DerZEmJNIiJSitAOH7l7oZldB/wLqAI85e7zzWxUMH0CcDFw\ntZkVAnuAoZ5sDywVEckglmrb4OzsbM/JyUl0GSIiKcXMct09u6z5dEeziIgUUVMQEZEiagoiIlJE\nTUFERIqk3IlmM8sHVpXz442AzRVYTirJ1HXXemcWrXfJWrt747IWlHJN4UiYWU48Z9/TUaauu9Y7\ns2i9j5wOH4mISBE1BRERKZJpTeHJRBeQQJm67lrvzKL1PkIZdU5BRERKl2l7CiIiUgo1BRERKZIx\nTcHMBprZYjNbZmZjE11PWMzsKTPbZGbzYsY1MLM3zWxp8N/6iawxDGbW0szeMbMFZjbfzEYH49N6\n3c2shpl9bmZfBOt9ZzA+rdc7ysyqmNlsM3s9GE779TazlWY218zyzCwnGFdh650RTcHMqgCPAucB\nXYBhZtYlsVWF5mlgYLFxY4EZ7t4emBEMp5tC4EZ37wKcDFwb/G+c7uu+DzjT3XsAPYGBZnYy6b/e\nUaOBhTHDmbLeA9y9Z8y9CRW23hnRFIC+wDJ3X+7uBcBkYHCCawqFu78PbC02ejDwTPD+GeBHlVpU\nJXD3De4+K3i/k8iGojlpvu4e8XUwWC14OWm+3gBm1gI4H/hLzOi0X+8SVNh6Z0pTaA6siRleG4zL\nFE3dfUPw/kugaSKLCZuZtQF6AZ+RAeseHELJAzYBb7p7Rqw38BBwM3AgZlwmrLcDb5lZrpldGYyr\nsPUO7clrkpzc3c0sba9DNrNjgJeAMe6+I3jaK5C+6+7u+4GeZlYPmGZm3YpNT7v1NrNBwCZ3zzWz\n/oeaJx3XO3C6u68zsybAm2a2KHbika53puwprANaxgy3CMZlio1mdhxA8N9NCa4nFGZWjUhDmOTu\nU4PRGbHuAO6+DXiHyDmldF/v04ALzWwlkcPBZ5rZRNJ/vXH3dcF/NwHTiBwer7D1zpSmMBNob2Zt\nzaw6MBR4NcE1VaZXgZ8G738KvJLAWkJhkV2CvwIL3f2BmElpve5m1jjYQ8DMagI/ABaR5uvt7re6\newt3b0Pk7/ltdx9Bmq+3mR1tZrWj74FzgHlU4HpnzB3NZvZDIscgqwBPufs9CS4pFGb2PNCfSJTu\nRuAO4GXgBaAVkdjxS929+MnolGZmpwMfAHP59hjzbUTOK6TtuptZdyInFqsQ+ZH3grvfZWYNSeP1\njhUcPvqNuw9K9/U2s+OJ7B1A5PD/c+5+T0Wud8Y0BRERKVumHD4SEZE4qCmIiEgRNQURESmipiAi\nIkXUFEREpIiagiQVM7s9SPucE6RAnhTy971rZnE/8NzMnjazdWZ2VDDcKLiBqiJq6R9N+6woZjbG\nzH5SxjwnmtnTFfm9krrUFCRpmNkpwCCgt7t3B87m4MyqZLEf+K9EF1FckAYcO1yVSJ3PlfY5d58L\ntDCzViGWJylCTUGSyXHAZnffB+Dum919PYCZ/c7MZprZPDN7MriDOfpL/0EzyzGzhWb2PTObGuTK\n3x3M08bMFpnZpGCeF82sVvEvN7NzzOwTM5tlZn8PcpQO5SHg18FGN/bzB/3SN7PxZnZF8H6lmd0X\nzcA3s95m9i8z+4+ZjYpZTB0zm26RZ39MMLOs0moLlvtHM5sFXFKszjOBWe5eGPNv9UeLPH9hiZl9\nP2be14jcGSwZTk1Bksm/gZbBBusxM+sXM228u3/P3bsBNYnsUUQVBLnyE4jc3n8t0A24IrjTE6Aj\n8Ji7dwZ2ANfEfrGZNQL+H3C2u/cGcoAbSqhzNfAhMPIw12+1u/ckcuf108DFRJ79cGfMPH2B64k8\n9+ME4KI4atvi7r3dfXKx7zsNyC02rqq79wXGELnbPSoH+D6S8dQUJGkEzwXoA1wJ5ANTor+0gQFm\n9pmZzSXyC7hrzEejOVZzgfnBsxX2Acv5Nghxjbt/FLyfCJxe7OtPJrIh/sgiMdQ/BVqXUu59wE0c\n3t9QbJ2fuftOd88H9kXzi4DPg+d+7AeeD+osq7YpJXzfcUT+HWNFgwJzgTYx4zcBzQ5jXSRNKTpb\nkkqwMXwXeDdoAD81s8nAY0C2u68xs/8GasR8bF/w3wMx76PD0f+PF89zKT5sRJ5FMCzOOpcGG+hL\nY0YXcnCTqHHwp8pdZ1m17Sph/J5SatjPwX//NYL5JcNpT0GShpl1NLP2MaN6Egn3im7YNgfH0i8u\nx+JbBSeyAS4ncvgn1qfAaWbWLqjlaDPrUMYy7wF+EzO8CuhiZkcFv/zPKkedfYM03yzgsqDO8tQG\nkafPtYvzezsQSduUDKemIMnkGOAZM1tgZnOIHDL57+A5AX8mstH6F5Eo9MO1mMhzmxcC9YHHYycG\nh3GuAJ4PvvsToFNpC3T3+cCsmOE1RJIq5wX/nV2OOmcC44ls0FcA08pTW+AfwBlxfu8AYPphVytp\nRympkvYs8njO14OT1BnFzKYBN7v70lLmOQp4j8gTvQorrThJStpTEElvY4mccC5NK2CsGoKA9hRE\nRCSG9hRERKSImoKIiBRRUxARkSJqCiIiUkRNQUREivx/gDjbhNwyqfkAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Traingualr window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEWCAYAAAB42tAoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXecJUd5Lvy8J6eJOzObo3ICI4TAXIJMFGCQ74dtkfwh\ng40Dtrm2sQ02RtfwCZtLNCDbBGMLZNCVwSCECUKgnHclraRdabU5zOzkOWdOjvX9UaGr+3Sd6dHu\nzJzdref3m9+cU12nu7q7qt56nzcUMcZgYWFhYWFhQmilG2BhYWFh0d2wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOsIKCgsLCwuLjrCCwsLCwsKiI6ygsLA4ySCi84jocSLKE9GfBPwNI6Kzl7pthmvf\nRkTvXIlra22IiGewZZmv+24i+vFz/O3ZRHRGxBeQjaM4MRDRIQCrATS14nMZY2Mr0yKLlQYR/SuA\necbYnxqO3wngRsbY17QyBuAcxti+E7juywHISY8ApAAUtSoXMsaOPNfzLyWIKAKgDmArY+zQCjcn\nEIRg38sYo5Vuy1LDahQnB29mjGW0vzYhIQbCGYMz7X492Axg13JflDF2j+yDAC4Sxf1av3QJCSIK\nEdEpPwec4X1tWXDKd5JuBRFtEar0e4noCIBfiPKXENH9RJQlop1EdIX2m61EdJegLH5GRF8iohvF\nsSuI6JjnGoeI6DXic4iIPkRE+4lohohuJqJBT1veTURHiGiaiP5GO0+YiP5a/DZPRDuIaCMRXU9E\nn/Fc8wdEZFopMyJ6PxHtBbBXlJ0v7mWWiPYQ0W9q9d9IRLvFNUeJ6IP6vYo2TYv7fKf2uz4i+gYR\nTRHRYSL6iJzwiOgaIrqXiD5NRHNEdJCI3qD99hoiOiCuedBz3vcQ0dPidz8los0d3u9biGiXeI93\nEtEFovwXAH4FwJeIqEBE53p+dx2Al2vHv6Qdfg0R7RXnvJ6ISPtd4LZ1gng2HyeiB8C1jU2i7Bpx\n/BwiukO8r2ki+iYR9Wm/P0ZEf0ZETxJRjoi+TURx7fiHiWhcvM/fJY1O0q8jvv8Oce3K9HwfJ6J5\n0Wf/Vjt2tjjvbxMfW7f5/P4+IrpKfH6lqP968f31RLTd2wZy6K/fI6J94ll/QTtnmIg+R3x8HQBw\npeeaG4joh+LZ7SWi94jyFBFViGhAfL+WiOpElBbf/56IPt35za0wGGP27wT+ABwC8Bqf8i0AGIBv\nAEgDSAJYD2AGwBvBhfRrxfdh8ZsHAHwWQBzAKwDkwSkKALgCwDHTtQF8AMCDADaI338ZwLc9bfmq\naMfzAVQBXCCO/wWAJwGcB05ZPB/AKgCXAxgDEBL1hgCUAKw2PAsG4GcABsV10gCOAvhtABEALwAw\nDU6BAMBxAC8XnwcAXKrda0N7Fq8En9TOE8e/AeAWAD3i3p4F8F5x7BpwCuN3AYQB/IG4BxLtmdfO\nsxbAReLzVQD2AbhAtPUjAO433Oe5oj2vBRAF8JfitzFx/E4Av9Ohz7QdF8/uhwD6AWwCMAXgysW2\nzaf/RTzl94p+c4Foe0SUXaPd26sBxACMALgPwKe13x8D72drRB95Vt4LgF8Vz/oC8ay/LdqwRbv2\nNdq5fgfAneJzxFP3VeBaUQi8P04D+FVx7GxR99/A6bWkz/1/AsDnxOePAtgP4Drt2Gc6tOEWAH3i\nGc7CGWN/BK4pbhD3fjcApl3zPgBfBJAAcKlo8yvFsfsBXCU+/0K057XasTev9FzWsT+tdANO9T8x\n6AoAsuLv+6JcDtRtWt2/AvBNz+9/CuDd4JNDA0BaO/YtBBcUTwN4tXZsLfiEGdHaskE7/jCAt4nP\ne2Qn9rm/p7UO/UcAftThWTAAr9K+Xw3gHk+dLwO4Vnw+AuD3APR66lzh8yxuBvC34JN/DULYiGO/\npw32awDs046lRLvWgE9eWQBvhWdyAef236t9D4ELxc0+9/m3AG721B0FcIX4fieem6B4med+P7TY\ntml15Dv3ExQf9Sm7xnCeXwfwiPb9mOw34vtnAXxJfP4GgI9rx87HcxQUPu34EoBPic9SUGzqcP+v\nB/Co+Hy7uNa94vt9AN7SoQ0v0c7zXwA+KD7frb838AUfE5+3go83vc9+CsDXxOe/F88qCmAcwJ8C\n+P9E/6yAU4QrPp+Z/iz1dHLwa4yxfvH3a55jR7XPmwH8hqAWskSUBfAy8El9HYA5xphufDy8iDZs\nBvA97bxPgxvYV2t1xrXPJQAZ8Xkj+ArHDzcAeJf4/C4A31ygHd77fbHnft8JPmkDfMJ+I4DDxCm3\nX9Z+6/cs1oFrNVG4n81hcG1NQt0nY6wkPmbE+a4G8PsAjhPRfxPR+Vpb/1Fr5yy4FqKfV2Kdfn3G\nWEvct1/dxcD0fhbTtiA4ajpARGuI05ajRDQP4N/Bn3mQdq7znNt4nYVARL8sKL0pIsqBT+jednQ6\n/30ALiKiYQAXg/fjbUS0CsALAdzT4bdB70/vg+sATPv0WfmO7gJfAL0IwGMAfg6uKb8UwNOMsWyH\n9qw4rKBYejDt81FwjaJf+0szxv4BnIYZkLylwCbtcxF89QGA86UAhj3nfoPn3AnG2GiANh4FcJbh\n2I0AriKi54NTCt9f4Fze+73L06YMY+wPAIAx9ghj7CpwiuP74KtoCb9nMQauztfBJ0/9WJD7BGPs\np4yx14IL52fA6TjZ1t/ztDXJGLvf5zRj+vWFLWFj0DbA/YyCYDFtO9HrfxKclryEMdYLrqEF9eo5\nDk7LSGz0HHf1YTgLBj/cBOC7ADYyxvoAfM3bDrmU9wNjrADgcfCV++OMsTqAhwD8OYBnGGNznW/F\nF8fhvid9fI4BGPLps7JP3AdOpb0FXGg8CT7mrhTfuxpWUCwvbgTwZmFMCxNRgrjhdgNj7DCA7QD+\njohiRPQyAG/WfvssgAQRvYmIouA8dVw7/i8ArpNGTiIalsa8APgagI8LQyYR0fPEyguMsWMAHgHX\nJL7LGCsv4n5/COBcIvotIoqKvxcR0QXiHt9JRH1iEM8DaHl+L5/Fy8H57/9kjDXBBcp1RNQj7vfP\nwJ9tRxDRaiK6SgzmKjhlKK/5LwA+TEQXibp9RPQbhlPdDOBNRPRq8S7+XJwv6MQ9AWBbwLqLbduJ\nogd8Qs8R0UYAH1zEb28G8F7icSQpcIpOx+MA3kpESeJG/vcs0I5ZxliFiF4C4G2LaIfEXeB0qZyI\n7/R8XyxuBvC/iGi9GB9/JQ8wxg6Cj99PEFGciH4J3DZ3ozieB7ATwB+CL54YuOB63wm0Z9lgBcUy\ngjF2FNww+dfgxsqj4IZk+R7eAeDF4NTCteCcr/xtDryTfQ18lVIE54sl/hHADwDcRkR5cIPjiwM2\n7bPgg+A28An7X8GN0RI3ALgEC9NOLojB8TrwQT4GrtJ/Eo6A+y0AhwTF8fvgtJTEOIA58bv/APD7\njLFnxLE/Br//A+C897cAfD1Ak0LgQmUM/Bm/EtzYDcbY90TbbhLteQrAG/xOwhjbA07DfRFcw3kz\nuDGyFqANAH9Xv+71qjFhMW07CbgW3IkhB96fvhv0h4yxWwH8MziXvxd8FQ1wIQoAnwbXZibB31cn\n4f4HAP5e9OW/hlvbDIq7wAXO3Ybvi8U/g1NGT4Ivnr7jOX41gHPA++53APw1Y+xOT3vC4AJFfs+g\nMw3WFbABd10MIvrfAM5mjL1robpL3I5XgA/qzZ3U/ZN4vSvAjfgbFqpr0b0goksAPAogLuw4Fqco\nrEZh0RGCWvkAuPeGXVVYdAQR/U9BFw4C+AcAt1ghcerDCgoLI4gHkWXBDb+fX+HmWJwaeD84HbcP\n3O3z/SvbHIuTAUs9WVhYWFh0hNUoLCwsLCw64rRIpjU0NMS2bNmy0s2wsLCwOKWwY8eOacbY8EL1\nTgtBsWXLFmzfvn3hihYWFhYWCkQUKPuDpZ4sLCwsLDrCCgoLCwsLi46wgsLCwsLCoiOsoLCwsLCw\n6AgrKCwsLCwsOqJrBQURXUl868x9RPShlW6PhYWFxZmKrhQUYq+F68EzZF4I4O1EdOHKtsrCwsLi\nzES3xlFcDr6d5QEAIKKbwNNz7z6ZF6k3W/jYrbsxU6zi7OHMwj+w4KCg+9hYAMF3/bHgsN0rGBgD\nnhzN4cNvOB/nrO5Z0mt1q6BYD/eWg8fg2VuBiN4HvukHNm3SN5oKjnylgW8+6MSb2A66MGxqMAuL\n7sILNw+csYJiQTDGvgLgKwBw2WWXPafpazAdw30fehWu/NzdeMV5w7j+HZee1DZaWFgsDjZJaTBM\n5at46T/8Aq+/aA3+8ArTLsYnD90qKEbh3pt2A4LvR7worO9P4u0v3oSv3XMAk/kKRnoSS3EZCwuL\nACCr1gfCf+44hkaL4YOvP29ZnllXGrPBtxk8h4i2ElEMfCvNHyzVxf6fS9ejxYDbd08u1SUsLCws\nThp+8tQ4Xrh5AFuH0styva4UFIyxBvgm6D8F8DSAmxlju5bqeuet7sGmwRR+8czEUl3CwsLC4qRg\nulDFk6M5XHHugklfTxq6lXoCY+xHAH60HNciIrx46yBuf3oCjDGr/lpYWHQt7t8/AwB4xTIKiq7U\nKFYCL9w8gLlSHQeniyvdFAsLCwsjdh7NIh4J4aJ1vct2TSsoBF64eQAA8OiR7Aq3xMLCwsKMJ4/l\ncOG6XkTCyzd9W0EhsG04g3gkhD3j8yvdFAsLCwtftFoMu8ZyuGR937Je1woKgXCIcNZwBnsnCyvd\nFAsLCwtfHJktoVhrLivtBFhB4cI5qzPYO2EFhYWFRXdC2lDPWuaUQ1ZQaDh3dQ9Gs2UUqo2VboqF\nhYVFG6SgWK74CQkrKDScNcwf/iHr+WRhYdGFODhdRE8igsF0bFmvawWFhg0DKQDAsbnyCrfEwsLC\noh2HZorYNpRe9lgvKyg0rO9PAgCOzZVWuCUWFhYW7Tg0U8TmVctLOwFWULjQn4oiHQtjNGs1CgsL\ni+5Cq8UwkatinVjQLiesoNBARFg/kMSopZ4sLCy6DLOlGmrNFtb0xpf92lZQeLC+P2ltFBYWFl2H\n8VwFALCmz2oUK451/Ukcz1lBYWFh0V2QgmJt3/LvmWMFhQfDPXHMleqoN1sr3RQLCwsLhePzVlB0\nDYZ7OP83U6itcEssLCwsHIznyoiECKsy1kax4hgSL2EqX13hllhYWFg4mJyvYigTRzi0/PvlWEHh\ngdQopgtWUFhYWHQP5kq1ZY/IlrCCwoNhq1FYWFh0IeZKdQykoytybSsoPJAaxZTVKCwsLLoIc8Ua\nBlJWo+gKJKJhJKIhZEvWmG1hYdE9mCtZQdFV6E/GkCvXV7oZFhYWFgCAZoshW65jwNoougd9ySiy\nJSsoLCwsugPz5ToYAwZS1kbRNehLRq1GYWFh0TWYFVS49XrqIvRaQWFhYdFFkDbTfmuj6B70p6KY\nt4LCwsKiSzBb5PPRoBUU3QNLPVlYWHQT5MK1NxlZketbQeGDvmQUxVrTJga0sLDoChRrDQBAOm4F\nRdegL8k9C6xWYWFh0Q0oVLmgyFhB0T2QL6NUba5wSywsLCz4XBQOEeKRlZmyraDwQToeBuCoexYW\nFhYriUK1gVQsDKLlzxwLWEHhi1RMaBRWUFhYWHQBitXGitFOgBUUvlAahaWeLCwsugDFWmPFDNmA\nFRS+sBqFhYVFN6FYbVpB0W1IC0FhNQoLC4tuQLHaQDoWXrHrW0Hhg5Q1ZltYWHQRClVLPXUdrEZh\nYWHRTSjVmmeeMZuIPkVEzxDRE0T0PSLq1459mIj2EdEeInr9SrQvEQ2BiNsoWi2GT/30Gdy2a3wl\nmmJhYXEGotZo4eM/3I3bd08A4NRT6gyknn4G4GLG2PMAPAvgwwBARBcCeBuAiwBcCeCfiGjZnw4R\nIRkNo1xr4u69U7j+jv143zd3oNawKT0sLCyWHrfuHMO/3nsQH/zOTjDGUK43zzxBwRi7jTEmDQAP\nAtggPl8F4CbGWJUxdhDAPgCXr0QbY5EQas0WHjo4q8p2HsuuRFMsLCzOMDxwYAYAkC3VMZaroNpo\nIbZCUdlAd9go3gPgx+LzegBHtWPHRFkbiOh9RLSdiLZPTU2d9EbFIyFU6y0cmi4iGeWS/NmJvDpe\nrDbwsVt340HxQi0sLCwWi1aL4R9v34tbHh91le8am1caxNNj82i2GOKR01CjIKLbiegpn7+rtDp/\nA6AB4D8We37G2FcYY5cxxi4bHh4+mU0H4GgUY7kKXrh5AMloGPsni+r4DQ8cwtfvO4g/uHGHzTJr\nYWHxnPCTXeP43O3P4gM3PY6xbBkAFx77Jwt47YWrAQCHZvi8c1pqFIyx1zDGLvb5uwUAiOgaAL8K\n4J2MMSZ+Ngpgo3aaDaJs2RGPhFFtNDGWLWN9fxJbh9I4OF1Qx3/8JDduz5XqeMJSUhYWFs8B0lgN\nAHfsmQQATBerqDVbeP6GfoQIODJbAoAVSwgIrJzX05UA/hLAWxhjJe3QDwC8jYjiRLQVwDkAHl6J\nNsbCIRSrTUzlq1jbn8CavgQm81UA3CNhz3geV1/GZdqDB2Y7ncrCwsLCFw8dnMUbLl6DgVQUT43m\nAADHsxUAwIaBJIYycSUoTkuNYgF8CUAPgJ8R0eNE9C8AwBjbBeBmALsB/ATA+xljKxLMEIuEMF3g\ngmEgFcNwJo4pISj2TxVQa7bw0rNXYX1/Ens124WFhYVFEJRqDYxmy7hwbS/OHskoavt4jlNQ6/qT\nGEjFMDnP551YeOUExYpEcDDGzu5w7DoA1y1jc3wRj4QwnuOSPROPYKQ3julCFc0WUxJ+21AG24bT\n2DdV6HQqCwsLizYcmubzyNbhNEazZdwmaCjJXIz0xtGXjOLANBcg8ehpaMw+1RGLhDBbrAEAMokI\nhnviaDFgtlhTAmRtfwJnDWdwcKoIx8xiYWFhsTCkkXrLqjQ2DqYwW6yhUm8iW+I7aw6kYuhNRhSz\nsZIahRUUBsSF1xMA9CQiGEzHAHBBMZYrIxYOYTAVw7r+BIq1JvJVmxfKwsIiOA4KTWHLUBrDmTgA\nYCpfRbZURyYeQTQcQq/Ylhk4A43ZpwJ0n+WeeBS9Cf7C8pU6xnMVrO6LIxQirO5NAAAmhJZhYWFh\nEQRT+Sp6EhFk4hEM93JBMZmvIluuoU8ICDnvAFZQdCV0D4NMIoKeBDfnzFfqmC3WsCrNX+waISjG\n562gsLCwCI7pQhVDQpPQNYpcqY7+FBcQCc0usZJeTyuXjrDLoUvvnkQELWGDyFcayJXriopa0ycE\nhdUoLCwsFgEuKPg8MtwjBEWhimxZFxTOPHRaRmaf6nBpFHFdo+CCQqqGUmDMlbjhu1ht4Kov3YsP\n3PTYMrfYwsKiW3F0toRXfuoOXH/HPlU2U3CYCTmf5Ct1ZEsO9ZTsEo3CCgoDdA+DeCSkuML5ct0l\nKDLxCCIhUp4KP35qHDuP5XDL42Nt8RVHZ0uYE55UFhYWpx8YY3j8aLZtG+Ub7j+EwzMlfP72Z1Ft\n8NCwmWINq4RGEY+EEA0T8pUGyrWm2hMnGbOCoqshX0osHAIRIR4JIRYOKUHRLwQFEaE/FUW2zAXF\nY0fm1DkeOeR8PjJTwqs/exde/dm7ULAeUhYWpyW+99gofu36+/An33YzCjIbbL3J8MzxPBrNFuZK\nNWWjICJk4hEUKg2U6k0lIBIRKyi6GpEQAQCiYf6fiNCTiGAsVwFjcLmt9SWjyAmN4qnRHH552yr0\nxCPYfTyn6vzoqeOoNVqYLdbw86cnYGFhcfrhP7cfAwDc/vSkisOqN1vYO1HAay7gSf72TRYwV6qD\nMSiNAgB6ElEUqg2Uapqg0DQKOSetBKygMCAc4o8molFQiWgYE8K7SRcUA6mYslEcni1h23Aa56/t\nwbPjTsT2A/tncNZwGulYGDsOO5qGhYXF6YFqo4lHj8zhkvV9AICdR3my0MMzRdSaLbzuotWIhgl7\nJwuKVdDdXzPxCHLlOmqNFlJRTj0lNC0iRFZQdB2kfNCleDIWRlYIBN3I1J+KYq5UR7nGoyrX9Sex\nvj+JMZGzBeCriEvW9+Hi9X3YeczRNCwsLE4PHJgqotpo4bdeshlEwBNinI+KJH9bVqWxti+J47ky\nChUuKNLaPtiZRETlk0vG+ASkp+0IW42i+xASLyWkvZxENIQ5QTHpgqInEUWx2lDJvNb2JbC2P4mJ\n+QpaLYZKvYnRbBnbhjM4d3UPDtrcUBYWpx0OTPFI64vW92J1T0LlhDuedeaFoUwM04Uq8lU+j2Q0\nQdGbiCjGIimM2VFt/gmvoEZhjKMgoi8E+P08Y+wjJ7E9XQOpSbg0iqijUeiBMMlYGKVaQ8VSrOlL\noFhtoN5kmC5UlXDZMpRGIhpqc7FljKHeZCtqrLKwsFgcap7tSeV+NVuH0tgwkMSxOS4oxnIVEPF5\nYbgnjoPTRRSr3PNJut0DXGhMibxOciGqaxGhFZweOl36KgA7Fvh761I3cKUg+UCdF0xEw6g3mfjs\nPLp0LIxSrakEwqp0HGv6kgCAifmqWiWs7Utg40AKAHeVBYBGs4X/+U/34/Wfv9t6Q1lYnCK4bdc4\nLvzoT3Djg4dV2ViuglXpGFKxCDYOpnBsjmsSk/MVrErHEQ2HMNzDtyso+GgUiWgYMreo3AZVt5Gu\npI2iU2T25xhjN3T6MRENnOT2dA2kJhEOuQWF3+dkLIJSrYlsmWsbvckIBkRk5VyppnjH4UxcRXyP\nZcu4eH0fHj44i8eF0eunT43jrS/cAIBrGX/xnSdwYKqAf7vmcvSlHKOXhYXF8uAnT43jo7c8hU++\n9Xn4lfNHVPnX7jmIRovha/ccwLteshkAT78hI6z5RmcVMMYwV6phMM3H71AmjrlSXcVdpT2CQkJq\nFDqj0ZU2CsbY5xf6cZA6pyrCBupJwqtRAFx7ALi7rAzBz5brKk3wUE9c+U1L17lHRdxFJETYftjZ\nKe/ZiQK+s+MYHj2SxXcePXZyb87CwiIQPn/7s5jMV/H5n+9VZdK7KRIiHJpxgmj13E2DqRjqTYZC\ntYFsqY7+JHeDlV5OMjecTj3paYOke6yLeupGryciShDRu4noLcTxV0T0QyL6RyIaWs5GrgRMxmzn\nsyM0UmJVMJ4rIxIiJKNh9ImOkRMaRTIaRjoWVik/ZkTnevp4HpsGU3jRlkHsPu5Ect+zd4qfOxbG\nA/tnluIWLSwsOmAyX8Ez43kkoiE8ecyJtt43WUCjxfDrQvt/+vg8AHfupgGZ2qcoMjmIhWMmIeeK\nCsIhcgkH/bOcX6Ia9dSVGgWAbwB4HYD3ALgTwCbwLUzzAP59qRu20pCahP5qomGDoBCfj+cq6E1G\nQUTKUJ0t1VWoPhEhEQ2jJ+5sRrJ/qoBzV2dw3poe7J3Iqw2Qdo3NY21fAq+7cLXaS9fCwmL5IMfd\nNS/dihYDnhTurnsnuNH6Lc9fBwDYN1UAYwzTeSfSWlJNM0W+v4SkoqVNYqZQQyoaBmlagu4KK1MI\nuTWKk3+PQdFJUFzIGHsngF8HcB5j7P2MsZ8IL6eNy9O8lYNU8/R960yCIh3nn8dzFSUgYpEQ0rEw\n5kp15Ct1V2DNYCaGmQLXKI7nKljXn8SGgSRKtSbmy3zVcmC6iG3DaVy4rhfj8xUV+Q0AdzwziY/d\nulvljLGwsDgx7DyaxUe+/yRmxAIOAPaIgNmrfokLBLkj3ahwd33+xn5EQoTxXAXFWhPlehNDPVJQ\n8P9zpRrmSjX0p7iGIW0SM8Vam5ejrlHIjBDyPwCXUFludBIUNQBgjDUAjHmOnfYzlJ+ap7+0hItP\nFOrkfMXFOfanYsiWa8hXGkrlBHjG2dliDeVaE7lyHat7E1grvKRkkN7BqQK2DWWwaZB7SR3Lci+p\nerOFP/yPR/H1+w7i5keOutp38/ajuPrLDyiPKgsLCzduevgIrv7yA2qyl/jQfz2JGx88guvv2K/K\nxrJl9CWjOGckg3CIcHSW/+Z4roz+VBTpeASrexMYz1UwKxZ+qwTlJDWI47kKqo2WlkSULypni9W2\njYh0jSLqo1GsJDoJig1E9AUi+qL2WX5fv0ztWzHIF6TvhS1d1SIhcrmtSWN2vtJQbm0Aty+Ua00U\nqg30uAJroshXG8qgtaY3gbX9zr4WxWoD85UG1g8ksb5fCArharfj8BzKdS6nf/HMpDpnvdnCtbfs\nwkMHZ/Hlu53ObmFhwVFtNHHtD/gY+erdB1T5xHxF2RnuFrZBgAuKdf1JRMIhrO1LqLiI8VxFLexW\n98YxPl/BfIVr/L1JN8UkPR7lHJGJ8+OzC2gUkbB0pumO2KpO7rF/oX3e7jnm/X7aQQkKrUxKeZ12\nAtwbiuifkyK+Il9p4JwRd2DNsbmSiq9Y3Ztw7ZQnO9dITxwbBniHlFrC7jHeoV9+zhCe1ozfjx/N\nKgFy797p53jXFhanL7YfmkO10QIA3LvPGSMyJ9PLzxnCffumUao1kIrxBKDrxMZk6/qTGBOpOCbm\nq1gtti5d3ZvAsxN5FQMlF4SSYpK2SOnFJGnqepO1bUSkCwppo4iEu1yjYIzd0OlvORu5ElDh8pqk\nkOH0XqowZvBcSEbDKNe5RpHxRGAWqg3Mi9Tk/akoBgSHmS3VVXTmUCaO/lQUsXBIle2bKqAvGcXL\nzxnC+HxFueZJQ9s1L92CQzMl5CuOTeOJY1n81XeeUIJJR73ZCv5QLCy6DK0W87XV3bpzDNf9t9uO\nt2uMj5H/95c348BUARWxsNovUm+85fnr0GKOsXosW1aa/lAmhlmRlWGuVMOgGK/9qSjmKw2Vu0mO\n83gkBCIoW6Skp/UAO69Goe+Bo7MX3YBO7rG3EtEPTH/L2ciVgK9GIV4sY+66uu0i7kntUa41Uag0\nlMoJ8M5UqHB6CeBUVCIaQiwSQrasBej1xEFEGEhHlUA4OFXEWcNpbB3KAIDKJ3NguoDeRASvOJd7\nLu8Zd7SNa3+wC/93+1F8/vZnXe3+v48cwcXX/hTf3WHjNCxOPbRaDL/55Qfw8k/eocYMAJRrTfzx\ntx/DV+85iP96dFSV750oYLgnjpdsW+USCAemChjKxHHB2l4AXEBU6tx+KCmmgVRMjcFcyXF37U1E\nMV+uK41y9SbxAAAgAElEQVRCCgIiQjoWcQSFmBdSMf+4CcDtii/nlFPBRvFpAJ8BcBBAGcBXxV8B\nwGlPgvu9ICndWx5JYdIoUrEwsuUaas1WW06XYq2p8kb1JiN8AySxr8W0plEA3INCBuhNzHN+dK1Q\niY+L/FIHp4vYNqwZv4VNY7pQxWNHuGp9xzMO/woAX73nIKqNFv75rtP+dVqchthxZA7bD89hMl/F\n9x9zBMKDB524I51iOjDNF1mbV8kxwhdZo9kyNg7yjM8AT8Uhtw2Qmv5gmm8lUGu0kK82nAC6ZBTV\nRkuNWZ05SMXCmC5W1WeACwDJSHg1iohLUIRc/1canainuxhjdwH4H4yxqxljt4q/dwB4+fI1cWXg\nZ8yWL82rUZippwim87zDpTUjtxQacpLvEa6z/akosqW6coV19uWOqgA9mSbAERRcIIxlK9gwkMQ6\n0dmlV8czwo5xxXnDGJ+vKIEznqtg3yRfYe2bLKhygAcafezW3S6tRGKmUHU9EwuLk4lCtaEoIR3f\nfOAQvqnlVQKAhw/yTAb9qagrq8HOo1kQAb9y3rCiZAHe59f1JZWWIMffVL6KkR5O8yaiIRzPlpHT\naGGAC4wWczR4WS6N12osa8xBKhbWqCc+/olIUUxejUJfnPqlEFpJBBFXaSLaJr8Q0VYA6aVrUneg\nkzHbq1HEwyZjdkgZmHVKSqqnY9kyeuIRdS3pTluoNvjWq6IjSY2iXGsiX21gpDeOwXQMsUjI09kT\nSMUiGEzHlKB4VuzbLX3BpXfH0+P8/zsu3wTAMZIDwOd+thdfv+8g/uZ7T7ru8449k7j8Ez/Hh77r\nLrewOBmYzFfwiv9zB970hXtctoW9E3n87S278Lfff8oVfLrzaBbbhtO44txh7DzqlB+YKmJ9fxIv\n3DyAI7MllGtNMMbUImsgFUUsElJeh5Ni7BAR1vQmMJGvqlxM/WqxFhPn5nSVEhQJZyyHQ+TK3pCK\nRZTA0dP/qG2W2zSK9ijsrrdRaPhTAHcS0Z1EdBeAOwB8YGmbtfKQxmxdJkgPBO96OhrRbRTujiKh\nG6oyWufybqmaLdUxX2koLQMABlPcRuF4Q/FOPSTiMUq1BgrVBoZ6eGde05vAhBAgh2aK6ElE8KIt\ngwCcFdFBYcB70/PWAgD2TDjaw93Pcopq++E5RY8B3Ae92WK4ecdRNQAk9k8VUK6d9uE1FicJh2eK\nLocLAPjxk+OYLdawf6qIe551KKM79jhu4Hc9O6Wdo4RtQxmcNZzB+HxFaSIHpgvYNpzBBpGpeTRb\nxny5gVqzpex+a/sSGMuWUW1wW8SICJTrT8WQLdWUoFC2iCQfs5LSleNW/h/LlpGOuSOtpYcTAJfb\nvNQkvF5PuvYgz7OSQXY6FhQUjLGfADgHXDj8CXiU9m1L3bCVhqNROGIhpqgnj41Cj9jWXn7CZxUB\nOKuLyXzVZbvoiUdQFJO+Xp4WNo0ZwXfKoJ6+VAzZUl3RW8PKpuFszcptGgms7k2AyG3T6ElEcM5I\nBsloGGNCA5nMVzCaLeMV5w4DgHLBZYzh/v0z2LwqBca4J5XE/fun8erP3IV3fO1B13PJlet4+1ce\nxHX/vdv7eC3OAIxly7jy83fj+jv2ucqfGs3hik/fiauuvw/NljOW7t03jbV9CURChB1HnO2CHzuS\nxeZVKWwdSitXVsYYDs8WsXlVChs9drnRuTI2ajTsWLaMyTzv9zK761CGa+nTghqSEdV9SW6czolM\n0JL+lYs+6X0oWQGpUUzmq4pekkhqC8WkT3oOr0bRLTSTHzp5PV0qPzPGqoyxneKv6lfndINjo3DK\npEbR8qgUevCdW6PwFxRyJZEt1ds3QKo2ka/UXW506XgEzRZTnVqubvqTUeTKNUwV+CCQnX0gHVN7\nY0zMc7U6Gg5hOBPHuLBpjM9XsL4/CSLCuv6EEhTSE+Stl/KYSklVjc9XkK808JuX8ewtOlV1604e\nuP/YkSz2a7v3ff+xUTxwYAZfvecgDk4XXc/srmenXMJGolhttGkrFt2DOc2WJdFotnDrzjFl0JX4\nj4cO45nxPD710z2uFDS3PjEGxjhFJFPsA5wmvXTzAM4eyeCZ407/OjhdxNnDGVy4rldRqVP5Kir1\nFjYNprBx0Ik1qjVamCvVMdKTwPoBx16na+MAFwC5smMPlBRTfyqKbNlJAy4FRTomczS5NxZKir2t\nc+V628Sf8oxtiVhkYRtFt6GTRvFvRDRARIOmPwD/ulwNXW6E/ARFyF+j0OGNo5DQO5HkMcv1pqt+\nOs73tShUPBqF6GSSU5Wutsr4LSZW5aGRiirj9OR8BSMiOGhtX8Jl05CrKx5M5KzGAODSTQPoiUcc\n91tBVb1gUz9W98bx7IQjEB7YP4Ntw9xs9fgRZ+Df/eyU8vC4f79DJeydyOPdX38YV11/nyu3TrnW\nxOs+dzde/Zm7XBMLADRbDC2vhLZYMjR9nvV3dhzDCz7+M3zuZ24363+//xD++NuP4Q9u3OEqv3PP\nlJr8Hj7kGJsfPDCLbUOivwhBUak3cXS2hLOGeYJM2b9aLSY8+viucWNZvr3wpJj4V/cmtE3CKkpY\njfTGFZ00na8qTWBY0xxy5bqivySF1C/Kix5315SgkaRxWi7wpAAo1ZouZgHwjvkgNopTU1D0YeEd\n7k7bpV9YcYRaWWhh3lDnHfWoyni4XaMAPFloYzxAL1du1ygAKG1AChG5+slX3J16IB1DrlxHvdnC\nVKGqVlFDmbjq6FP5qqKq1vQm1F4ax+ZKCIltG9f2J5RX1QGhEWwb4tyvFCzVRhOHZ0t448VrEY+E\n8My4sxLcfXwev/ZL69GTiCjNBABu2z0BgAvhO/Y4nPMdeyYxmi1julDFj546rsoZY3j31x/Gyz75\ni7ZV65fv2o/f+teHfFe6NpjQgd/Ef9uucVx1/X1qlS5x8/ajOPcjP8Ytj4+6yuVubt944JDrfLft\n4u/zkUNziuKpN1vYO1HAO1/MnSX2iH7BGMO+iTxece4wVqVjqvzobAktBpwlBMLEfAXNFsNUoYpq\no4VNq9LY0J9ETfTpaTXxxxQVO1N0bxIWDYeQiUcwpy2mpBG6T7iiy7Ejx5QUIMVaE0ktu6tkB6ZF\nP5Pf9cWg1+agu7bqQkDW62Sj6DZ0co/dwhjbxhjb2uHv8uVs7HIi5Cso5DHz79wZILWQfB+Nwls/\nrfGg3khuABjPuX21+5IxV2eXfKn00BjLllFvMpXyuC/FB4HuAQJIqooPgGPZsqKq1vQl1T7gk/MV\nhAjKNVcmLzwyUwJjwNkj3Ki4d5KvBAvVBo7nKjh7JIML1vQqN10AeOTQLM4eySATjyjOWZYnoiH0\nJiLYcdjhqJ8+nse9+6Yxlqvge1oA1Xyljr//8TO4Z+80vvXwEdd7uO6/d+PSj/2sjd76wc4xvOoz\nd7rcJgGuzfzkqeNtrpmtFsNDB2Z8XTZNgshvUpblftqoSVs6NldyUXkSB6YKvnuUfPZnz+JXv3hP\nmzD9xI+exkXX/sR1z4wx/N2tu7HzaBZf/IXbhvDlu/aj2WL46j1OPqR8pY4njmWxvj+JuVJdUYm1\nRguPHZ3DCzb1A+Dp8QFOF9WaLVy6aQDr+hIq+nkqX0Wx1sS24TTOXd2j+oue92xNXxKNFsNMoepJ\nZ+PYImZUEr44EtEwUrGwy+FDtznIxJyAM5b6kjzfWlYIEOk80peKgTGunbjztvlTT/pYbou0Fk4u\nsXDItbiU9aKe9Bzdkq7DD90RzdGF8FMalCcCzC805hIU7Z0D8OSG8uExvbYLqVHIFBwZ0Wl7kxHU\nmu3BPjKluXSRVXEaSe7Rka9yDxAZ0DeQiqHaaKFca2K6UHOoql43VbUqE0c4RFjfn8TxHKcADs1w\namrLUBrrBxzBckhpIDzA6eick9F2/1QB56/pwUXrerFb0zSeGs3h4nV9uGzLoGuCv3efs4mT7i9/\nn5bTSqe2yrUm/u2+Q8hXG/j3+w6p8laL4f/85BkcmCq2GVg/8aOn8fs3PopP/XSPq/yGBw7h6q88\niL+7dZerfMfhWTz/727DZ25z1z8wVcDl192Oa295ylUuXT//6FuPucrnK3W85rN34Te+/AAamuDJ\nlmq48vP34E1fuMeVeqVUa+DNX7wXb//qg66Jf7pQxRd+vhdPjc7jWw8dcdX/yt0HUKm3cMMDzrM4\nPFNS/eO+fdNKgE3OV7B/qohMPIJdY/OKgtk7WUCLAW97kbBRifd2ZLaEepPhKrE3g1wQyNxkm1el\nsG04o9xKpYDZsiqNdf36QsShktaKvGdjuYorS4Fc2ExrGoWyy6W4B6BDw7rp2XylgVg4pMaVtD1I\nqlVqFDK763Sh2qbty3LAGasmhxXAWSh6BYCkqLw71oW7xMPJD1ZQGOCnBgZ5kW51c3Eahcv4rWen\njcuNkcrIxCPKfiI1kMl8FWGxs55+HjkIe7WAvmKtqVIiS6O4HFSzpRqyWu784Z44pgtVtFrMRVWt\n7k2g1mghW66rSWxNb8JlA5H/1/XzKPLJfBX1ZgvVRhPH5srYNpzB5lUpFR0L8Eln61Aa24bSODJb\nUpPXnvECVvfG8doLV+MJbXLcfXweIQJ+87INeOJoTq3KHzk0i0aLIR0Lu7xnDs0UlWfMgwdn1Pmb\nLYYfPcmprh/sHHOt+m96mKdy//5jYy4N4psPHEap1hSTsKNt3PTIUcwUa7jhgcOulf33HxvFaLaM\n/37yOPZqVM9tuyZwcLqIHYfn8NBBRwjesWdSBJ+1VNsA4KEDsygKN+QfPuFk/3/wgKNh6NrG9kP8\n/tOxMLZrdoKdQhC//fKNmC3WFPUoBcA7XrwJjAHPiKBL6U79uovWIETAPnEPcuJ//kZuu5Ia0Jh4\n/2v7kljX7/QLaVtY25fAmr44JvNVNFsME4KyGumNY02fk0lZp5LU9sKlGmaKNcTFni8AsCoTw0yx\npmwOcnE0kOLacqFad2npUlDI/icFhfRUmi3WXOMxGuZxTZV6C0S6i2tILSq9xumoIV+TrO+dY05J\n6ulMh9/+tI6Nwvw7/WW7qCeXZ5T/3tumCG9Ho3C708pVzUSugkw8ojQeWd+J/HZsGoCPppGS2zby\nTVb01ViLAYVagwcl9UqqyhmwcjJclYlhTV8CuXIdpVrDoQx641jbnwRjfJI4NlcGY8DmwRQ2DKQw\nMV9FtdFEpd7ExHxVeLGkUKm3lAHywDTfm+OckQyO5ypaMrcCNq9K45IN/chXG2oSkpz7O1+yGYdn\nSioWRNIi73rJJmRLdbW/wMHpAmaKNVyyvg9T+aqiQfKVOvZM5HH2SAblelN5hDHGcM/eafTEI6g2\nWuq8ADfgy8nrUY0+u/vZaVX+yCGn/J69Uyrj6Hat/KEDs+hLRjHSE3cJx4cOziIaJpy7OuMqf/JY\nDrFwCFdfthG7xnKunRL5PW/GoZmSykl0YKoIIuCNl/A4GhmAKSf+N1y8BgCUUDs4XUQ4RNg2nMZI\nT0IJgsMzjoawpi+pFg7Hs3xb4OGeOEZ6Epgp1rjNQdMQ1vQm0BQU0+R8FZl4BKlYRG0jyj36nPrS\nWWOuVMd8uY4+sZsk4AiENptDyrFFuF3OHQeRWCSktHzpqTRTqLW5u+p2CT3OIaFsDv6CwqtpSHgF\nQ7ekFPfDgi0T+2W/i4g+Kr5vIqKTYpsgoj8nIqbvwU1EHyaifUS0h4hefzKu81zgJ9ylgOgsKJzP\nZurJn4ZyCRMf20Wh2nAZz2T5RN69YZLs0HLQSo8OuYqStECPx6aRLdWRLdbVgJS/y5XqmC3WVL1+\nbcBOF6oYSEW5TUNQBhPzVWXUHMo46UbGc46b4urehEqhPjpXViv9jS53RzmRS68Xt7/8AZEgcaM4\nj1wd7p8qYDAdw+UiyFDSY3vG8wiHCG9+ntzCkk+C+wRPLvdAlpSOjCGR0esyKnimyFe0bxeG2ifF\n6rzebGH/VAG/cdlGhAh4Uosi3jORx5UXr0VfMuouH8/jRVsHcdZwuq3+Ret68bwNfa7yfZN5nDWc\nwQs3D7oEwoFpHlNw8YY+zFecvU4OTRcxlInhMvEs9Il/fX8SZ4/w5JLSOeHQdBE98QguXt+HEDma\nwfh8BSM93ECsOzlM5vkGPP2pqIuqHM9VsLo3gXCIMNIbR7PFMFvkE380zLcKXq2l1p8raf1L9rty\nHdlSDcloWNkhYuEQFwiejMw9CZ6ROV9tIBENqUlaGqd5Yk59kSXTgNdc5XLszBRrbdsJyPGW8ggQ\nudhrzwbbeU+JNo3iFLdR/BOAXwbwdvE9D+D6E70wEW0E35P7iFZ2IYC3AbgIwJUA/omIwv5nWFqE\nOlBPnWwUuiYSMWgUUYNAiBk+m+pIlz25GpMwaRRy4vdqFJKCmilWka82lKDQB+y8tp2rU15z7RPs\npErnRsXBdAzRcEgdny3WNW+VuJoopvJuo+Vazd2xUm8iW6pjbZ8jWKRAcLaRbRcg24bS2DDorj+W\nLWNNbwJbhWumrC81hVdfMAIAOCrK5daXv3L+CCIhwuHZoqv+y84eQk8iogy1h2eKqDcZnrehD1tW\npRUNI5/HeWu46+e+ST5ZN5otHJgq4pyRDM5f06vKAT5hbxlK46yRDI7MlBStdlAIhLOG05ivODEn\nsr58RnLiPzhTxJZVaZXwTvaJY3MlbBpMYaSHT+bKPTpbwfqBJI+76YnjeNYRCNLddF2fszfDVL6K\noQyPdl7Tl1B052yJ7xMPOIGg8j3L+gPaAiVfaWjBbWFEQqTKZf8lIm5zKHL3VX0zsHQsomKQ9KwG\naW1PGD+BkC3VPLtV+kdTA87Y8woQOZ69Xkyyvmlh6aWyT3UbxYsZY+8HUAEAxtgcgNhJuPbnAPwl\n3BkxrgJwkwjwOwhgH4AV8awK+QiF0KKpJ3+NQq+TMLjXBREaUk2e9ax+2jSKhDtoSBnF5SYrcitX\nMcgltSQHLud4G8qrSlEAxTpmilU1Ich0B9kyFwhDslw7j049OFRCzYk6z8Rd7o66YHEibSsqDbS+\nudOoNqmt7kuoyVEaLEezZazrT2AoE0csElKC4thcGUOZONb3J5GMhlX9sWwZRMD6/iTW9idUfUm3\nbB3iE7CzGi855QNJdZ7DM7I8gw36Bjj5KmrNlqo/lquAMYZcuY65Uh1bVqWwXriEThc5l390tuya\n+EezZTDGcGyujE2DKa28ou5h42AK68S+CrKt3G2aOyes6U3guKg/XXC84db2JZVmonvJjfTGMTnf\nXn+kN45CtYFSrYFsqa7e+5BmhJ4paP1FX4iU6+0CodxOGQ2k+L4QhUpDLYgAvmgq1hoi/Y1bcyjX\nm5iv1N3lYrzMlWouKjhliKYGnMWet1xRTJ44ClMSUQnvYvRUt1HUxaqeAQARDQM4IQd1IroKwChj\nbKfn0HoA+kbQx2DYdpWI3kdE24lo+9TUlF+VE4LfK3OEhxn6qsDkHqvDqFEY4i5iPraLRou5y6WR\nWxgoJR/rCBBe3qsMeE5KEUBzIUw5eWwYcxsIAaiB3OehtubLdcyXGy4jOsAprKl8FZEQT6kuqYbZ\nYl0FCA6mY2qlOVuoqTaN9CRUfV3gjPQkkIiGkYlHlFCR2UB7ElH0JiJKgEgNJCQ8t+REPpmvYHUv\nX+VuGEhiNOtoIMNCqOj1J+bd9Jk8vzTIrhFCalTtiOYY/Nf188m30Wwpwby6L4F1fdxBYKZYU7TO\n+v4U1vU5wnG2yFPWr+tPYq3UELIVFGtNlOtNd1ZhIUCkwO5LRpGMhnFcCCN94l+jOSHw+k58zbhP\ngOZAKoZirYlao+Uql6m3c2UetyApStkP5is8j5n8rvpLxa2xymO5Ei/PaOU9Yi+XQtWtIaRjEaU5\neDUK2Wf8FlOVesvoUOK1Ucicbt7U39KryeT1xNqyw3F4maZTNeBO4gsAvgdghIiuA3AvgE8s9CMi\nup2InvL5uwrAXwP46Ik0nDH2FcbYZYyxy4aHh0/kVIEhJb6foVtCXyXoL9672pCIGymmxWkXcR9K\nSu7IpQx1Hk2jx6NpyIlW1nM8Q/jEJTnhnkQEREBOGA9lpLi+QsxX65rLIc+Qmy1zY3l/KoZQiJQA\nmSvVlF+8tHf0JiKYLVZdGojuL69y9/Rq+a20BIl6kOFssQbGGMbnK4ruGsrElBaj0yprNZfNsWxF\nTcjrhEswr1/BKpG91ytAiKC0k+lCVRjp5Za3XCviXj5VtSpf3ZNw0sPPlVXurqFMzJWvSN+nRG7R\nOZYrY1rzDOpJRJGJRzA+X1FeUzo1NKGV6xN/1je+hq/qWy2G2WIVq9IycZ7znqcLNSf3mPb+50o1\nRVHKfpAXO8H1eNy4c3JhkXR7Jcn4h17d/haPoFRr8H6XcGsUTdHOjJ6MTwiTuZI7xYZpAyFTZgVA\n2yPCEFHdZsw2bHQmcSrZKDrtmQ0AYIz9BxHtAPBq8MX0rzHGng7wu9f4lRPRJQC2AtgpPAc2AHhU\nGMhHAWzUqm8QZSsGXSao9/ocvJ4iJkHhop78BUI4RIiECI0WM2oX3v12IyFCrdFCNEyqTSlNIBA5\nRrhE1H/bRici3G3rCAlX3FKt6UpgKCcKyS1vE7vwyU2Z5kS5HPiJaBhpkbO/1mxiIBVVz2lVJs6N\nxgVH0wAc6kGWD6WdoMGZYk1pUWqVm4pirlRDpd5CrdFS2tBAKqYoocl8FZes7+PXSUVVDMh0oapo\nrUHhpw9wgaAnl8tXG6g2mpicr2BVmht8Jd0iXU/DIcKqjBYLoHlXre6NoyZcb2eKVcyXuefOUE9c\n8fAzxZqaWFdlYup5zBQcz6Ah7Z75BlhS4Gjl5bpL+MryXWM5FKoNVBstjTLkAZ2FWgMt5rxfqSnk\nytzt1OssMVfkGoX0nnMERV3kMYuK9x9CLBzCfLnRplFkEtIIXVe0GcDjHMayTRRr7RoFwLXQ1T0J\nrZyPl1qj5d4CIADl69Uc5GIv6pngTd5NMUO2aQkv9XRKahSenE6TAL4N4FsAJkTZcwJj7EnG2IiI\n/N4CTi9dyhgbB/ADAG8jorjY9+IcAA8/12udbChNokPKoZCBejIhZqCn2qM823lQU30iUmqze38M\nqYbXhf+34+KXiobbNAppA5kQE4uu0qdiYZTkfuBiwEbD3K8958Mt96WiyApbh74SlFHhuXJDTUAA\n1yy4u6M7F4/UHOQ2snJyWiXOI7UoucodTMcwW6yryHO5Gh5Mc4HTEu6Zrih1ueWlRp8MpGMo17kb\n71S+ghGhmfRrBlldM9HtL1IDCYdITZ6SPouECAOpmFOuGfyH0nFF/+U0V+ShTBwRoXXlynWXRiGv\nPafXV9QQDz6T0cjq3kRQmtqDIeVoCLVmSwlf5WYtnvlUngtgKczksz02x6P1+8R50jGugeYrjTbj\ndG8yitliFaVa05VyPx0Loyw0B/dmQBEUq402LybZZ2dLNWNiTtNCTK9vSruh/8YbQCcXYu3ZYGVg\nHXzhNV53YipWGp00ih3gUyIB2ARgTnzuB/dU2nqyG8MY20VENwPYDaAB4P2Msa7Z5EB2CO/GRX51\ngGAh+RGDwdtLVcUjIZ54zFDHr34e/gF9zRZzDTKAaxHTnv19I2G+4pucd2sUvH4YswXuG+92U4yq\nlaMuWHriERSqTe6t4t0WttrgAXIaZSBXlPlKAyFyVoYD6RhmS3UtsMoxsD9zfN5JZyIz7KZi2DU2\nr21tGVXnmStyakNfLQ+kYshXG6g3W66YEn3iz5brynNqUCvPlevKEUCf+Pnq2u1aLJM59iWjgoZz\nzjNdqCEWDqktclOxMOZKdSSiboHQn3ILR8d9mWtvcuIf1K69b6rQlvKlP8WFoNxF0TvxH1VBaVHf\n8oxHo5TGenmeUIiQiUf43tI1N5XUm4woSi8dd/cvqbHq/UsuRBot5hIC8rfc5uCvLRgFhUGL8FJB\npu1J5XTgLXdS/vjPA36eld0K45JX5HLaBuB2AG9mjA0xxlYB+FUAJ20/CqFZTGvfr2OMncUYO48x\n9uOTdZ1Ft8unTL7wTklM9VWCyS7hd05vfS/f6ZdxMm5Qn/VzeQdBxLD6ScXaNQqAc79SgLjKoxFl\nJ8h4vE/mSnXUm6xNsFREZlyvK2+pxgWIzhtn4mG+chQai9R+5H4Bkp7Rgwml9wwv1zSHorYRjTC4\nrkrH0GgxlbNK0h7SkD6eq6BSb6kJXObLmi3WhIdOu0CYL9fbzjNXqrn4d12jmK801Cq6Jx5BiKQA\nqaHXJ5gsV66DSBeOXBMoVLzPgieFLFTdwlRujCWFrNe2NOqxRXltVF6K0Sn3bgtaVu9cojcRxfh8\nBYy17ysthXjCowmUalyDc8UOif4CeFzFg2gOHjpXztP62NE9Fb0aRVTFRXg0gZB/fTm2TYKim91h\nvQhizH4JY+xH8ouYvF+6dE3qLuivMsgCQI+tCbJicGsgZuop7hP9aaKh9O9xr4ufIRe+XwI0gNNP\nWY9RHOCTgOTGvcF+jluuXh5BqS4nfjeFVaw1fDnnUrUh3Bq9fvEN5Ct17m8vnkFaUGHzlfbJsdpo\nGV1/ZRp170Qus+XK1bMTvS48dzSNBeD++K5YEy3dRE4TII6rsBQszqpbagheA67MV1SoNpCJOSlc\n+oQRulDlWpd8h9weVFMCRJ/485WGEpreiH2lIUiNQgoET4CmXL1Petys5X9pA9H7VI/mfeaiMKMR\nzBV5e/RNv1KxCPKVOlrMf9MvwN3/TSn9TUJD/67XISIlEMIhb31H09ZhEgjOnjYGrydDao9uRBBB\nMUZEHyGiLeLvbwCMLfirUxzSoPd2EZUbFPrLD7JiMMVdBNEoTHEa+vcg5wE8boGeRIUNoUJ5aSzl\nfusSLBFlaPb6pJdr7f7sMlCqWG26qId0XETatvnF882dvMbPdDzC04Qo11/p0eXey0OWy0nN6wGm\nBIiIlXAoI0Gr5MpotpimOegTvyZAklq6iYpj8JW2BSVYNF7eJRA8gkJO/K7yJLf7yGAyqYEo7cqT\nMdCcbHUAACAASURBVNWbwkWeK9PmtBB1HZfR2bKt3ngcKdTCIUI8ElIUllcTkN5cel9LuDQKt/tq\nvdne7+KulDeLEw6mNOD6OeV9AGaNwssUKEFhME6bGAhv/U6BvDI770phQa8n8Ijsa8FdZAHgbjhR\n2qctehJRHPqHN7lWA0Ekvi4cgmggen1daJg2NfEarWOREGqNltGHu01QGIKDdJogadAuvKp+tcE9\ndby79MmBrw9AnXP2aiDFGve2Sbs4ZxlR2y5YirV2AZLSJv5wiByDvGeVKyc5eY/HPYkT5f16Y0pS\nYiezCc+kKY9nyzWU6011Hp4/KIRCtaHyEkn0JKIoiKhq6f4q2zBfqaNca7q0q0w8gql8tS12oDfJ\nYwraYgeE0JwW6TJkHzBlIVYaQt5ti1Lu1B6vN+klJ+NJvFSS9A7T+1EiGlJR5PqEnRLec7KOfh6J\nIFq0O9vBwq7l+rna9oUgqVGQb32TMdtrkpQCxBxHEUyF8M5DK4Eg7rGz4Ptln5Fwb1K08IvVVwlB\nNkZ3UU+GbLP6ueKeCT4aItRg1hxMaQW8lJSe6TJI3EaygwCRA9/rjpgt1cGYRxAJgVCtuzWKVCwi\n9iSoqT2RZf0W426hfrsAHvckSNRz9/B28+9q0sz5T45eu0wq7q+ZSMEizyO9lORvZf6hXs9kWqo1\nXUGJsrwiPMk2pbV7FtHFhao7GlkKzULVs9GVFi/j9yxkyhfZV+XKX038cSlMvfE1jrdSKupQj17N\n0VdQRPimXED7AkLCZISOGdLym+IfTILFPEb8NYR2jUKOEW99/t+UDdYcR+H+3mm6CDKXLCUWFBRE\ndAd8bLuMsVctSYu6GI53bPubJ+IdwqQhmOCiqgzBeoDDc5oEiHG1FDUMDkO6gfY8Nv5aTsrACScN\nK0G5e5/eNoBPdoUK3x8j7VlFAzzVxLlrelz1AWC6WFVRyPz8zmrZz79+plB1CUGVin3eX1DMFt37\nDnjplh6NbolFQmqS7fHYZabyVVdUu7xGqc61JV2AJKOOa3HGQ7eVfbWxCCr1FnLlels5b2vV4zFk\neEYa9USarUO+Y0UNuYI6I8p2lfBM/JKqkloYr6P1C+396+UJg5uqOSjVUN+UkTnq3+fbBIXUEAwT\nv3fDITJQTyED9SQFh9em0cUmikDU0we1zwkAbwV3XT3j0OlFErg01TtXIOrJWMld3lR2Av8ciab9\nek3Uk0mAtG2yYshuqwsEfeCYNnJJGFaCqVhEBZvp1JOTtK3u0WTE5FWsYcuqtCqXrrUzxZqL5pH1\nZwo138y70p4iJ0snKNHNs0u6ZUrVd7dVraKj7glexmQkPNReSQS3eWk7JRDibgEi91KXGXr1Nkzm\neXp2b/nEfMUloJJKCLqfUVppXVWk9O0/xXmy5ToP+gy7Bf9Uvn3xomsXiZj/JG2KczD1HdPEb/xs\nijUKu8eOHHpet1ZZ7l2sye/eMaI0CmOSv2DG7G5GEOpph6foPiLqmiC4lUAno5NLUAToCEYfa09x\n06BRNH0MzYCZf5X12gSLYZMV3c1WV3/jhs2XTKp+ykAx6BOuPlHoK15XfTERzXkEiJzo54o1FfSm\n158pVtsoL14uPbrcmsaMgW6ZK7Z7gKWiYZUORF8Vp2NhFeOQ8EymMrGg14DrFzsgtbH2DKiO/eV8\nTevSy1frgkU9u5oKMOTPwolBGNCos1g4hHCI0GyxtoWFK7I57BZ23nZ471OfsE0begXJexY3CIS4\noW1GzaFt4pflJiN3MGN22KBReI9LrDS91AmhhSroEdpENCT2iOhbhrZ1HTq9SPIxgAWJtDStKtp+\ny/zrmzSNhbye2tVwf3VbCRavsVy3pxgGvmsyjZkmB6dcX6mZBFEq7j/w5STI05y0ayDTno1o9Ekz\npglBOQE66Uz0STDiaAgeumWu1G6odWkUbQb/ett5UrEIsmUexOji/WNhMMbb6g4y45/zlYav8K02\nWr7PrsXMOY28zhKSfjL1I+9n133qtJLLzhDACG3Y6CsQ9RRA6wA0o7VhnLbHS/jTvGrHuoDusaYd\n7rpXTASjnvQI7QaAgwDeu5SN6lY4imT7EiFEQBPuCX6x7rHu83nKDZ1LRonLzJYSzgbu/gPclBLZ\nu1oyGcVNmXFjBq7YRCvon91JFA1UlSHIMIjGkvSZxJqeCF+ZxyovdoLzTszSsOu+hrMnhXfidwSC\nWwPxcwlNxsKo1Fvi/tvvuerxbjPFFJi8fkz5jcIhUppDW/xONIR81RzQ6b1GTHMhdafTX1jrdFNM\n5FsnWILMYF5PpiSfzHNcQvbP9gm+s02jaVAp2mwUXSwpggiKCxhjFb2AiOKmyqczOnolCCuF3lkC\nudMaBIVBThjywzBjsI9XrVbusYYVopd/lZpGe2ZMfyN3EH92U+oRV5S64TwuW4dB64h7Jmvnc7tA\nKNebbZOgpHqiYXIJxKTh2qYJ2Oseqp9fLjJd5QZhanJRNvH4QdxJ22xU4RDKraaRkjTatELk6sOm\nBHmm92a0bxm11IU1Cm9CTb9rAWYjtNQAzJHWrmI1VtuM2V088S8WC1JPAO73KXvgZDfkVEAn24Ra\n8S/W68kgTdoEhaFTq05qMKSZXPxMK8Q23/EFjOJ6Hf383nKTpuHSKEx5rwznNxo/Dato7/4CevZc\nHZKiadsK02A3SZkEgsujx01h+Z0naaLnYv4TqImqWazBF3DeScyrOS5AYZoWHG2rcf3dGnZ7TBg0\nAVMuJv08nQSChDmVhvt7y0DzmtxdyUhhkev4QuhmG4VRoyCiNeCbBiWJ6AVwFrW9AFKm350J8BMY\nssSVwuNkUk+q3P/3Jo3CWy4HrJeS0uModMiJyRTQxz+bNAHd/uA/wF1J2EL+dYKkVjdx3XrbdI8k\n/VzeSVAKF9PeyN7PJqOtLlgSQQSLrjn4UE9AUE3OIEAMwlo/FjQozS+XGKAnzvOnbfi1w231vb8x\n3U+noFQJo0Aw2AS85Y5G4U9VeYkkNfYNmoYJKxxDtyh0op5eD+Aa8D0hPquV58E3Hjrj0CmOwi/f\ny4m4x5p8rL31Teqw2RfcRDGFxHWCaRSmFaJpIg+iLbgnE4MGEsBo6Ze7p95s99wxaVey3LQVJpF5\n0jX5/CcMVFXCpVH4n9OlaRjjCxbm5U3CV68XNCht0RqFYRGgf9ZX1KZ0Nq4+YnAVDzymqP26gNlG\nIat5s0ebqCfyHJeQAan6++52GAUFY+wGADcQ0VsZY99dxjadkuhPRVHOuTOiB4vM9i9vp574/6Cd\n3ZSGIGLQNOQA9w4C04QQNQzwmGGAm6kqf6rONJlEI/4TRSREKujRTyDUmz78u9EDLOT67y33ugrr\nHmAJw2rZXe6/unbx8gatK0jwmak8FNKE5iIFgslGYdJAvKtx/Z5dnyP+Y6TTPfiV6wisUZB/uZQU\nXu1aLaK81JM8v4lG9nyX59VjWbodnaindzHGbgSwhYj+zHucMfZZn5+d1ug079/0vpfgF89MuuiG\nIDB16nZjtv/Eb9IoFqak3PXl4PUKCqNgMUg4r3ul9zyAmRpx1wmgUUTd14qFQ8Il1E9DaBpjRBIG\nWqVNUIg2tUWvGzx0TNHCEZcAWVjrMlEyz8UWEZNC0+vdJJ6B0ZhtiMdpf9aGBYpRc/DvR7qgMWUs\nMNsifIuNmoZ3glcahSGwzssnODmd3NA3BtPxj29/AX64cwxnDWf8G9qF6DSrybDXU+duVhCbV6Xx\n2/9j66J/5115SZg0h6AahQoa8pzeNPEvnCrZfR7TADeWB1zx+pXrK23TeeRvvLED+rm8ex0bNQox\n8XsnooV4+Ygnetmk/cQMmkYQBwGTLcZLz0jtyo8aKtaai6aSvPWNgkXzhtJh2ubT1F9M8Ugu93PT\nxB+YzhV93uBybmqzKS6irdzzX2J9fxK/98qzfM/drehEPX1Z/P+75WtOd2MpvBIMcsLoX2VaLbVr\nFPJ/yFNusGkogeMud1IluweBaTVn0jSihoSHpq0njVRKB57d2eTeoCF0iDp3tdWgUSgNxGC7MJXz\nYyYB4q9RLNa+49XkoqEQas32rMKmuBgZ5Ww2ZgcTLMrW5e1Hi+wven19xa+XL3bnOBP11MY8Gbye\nnN95y00ahe/PT0kESQo4DOB3AWzR6zPG3rN0zepOLMV7X6zXk8lzo13TEBqFQUNos2nIcviXeweB\nd3UuYZoQXN46AXzeTRSTia/X22iKOvduOGNOhBjyvRd5D16qypRczuTKqWuRbg8tgxZlOI9JmALO\nJOWdyOW1jRO/QUPwCk1HKPvX92qgJs05iEZBIf9yk01gsTvKtXk9wd/ryeSk5GgUnnLlHmv44SmE\nIIT6LQDuAd8StWv2r14JLMULD+6h4a8mOzyo6fz+522jnkL+5zFqFIaB79VgnPMszKGbeGmTv3y7\nW2N7fcA88RsnxwWM2V4DbMTAy5sM/iYtyhSDYtLGTIZtwJnUgtiS9HsIGohp2lJXXq8ZUAM1LSz0\nvmDKdmDUHIyahvu7aZFl0ihkub8+AXhFyekgICSCCIoUY+yvlrwlpwA6Btw9Rxg9JQyderGrKLMa\n7t8Ok6bhXS0FNQxKuASCvi+xwevJZQg3THYme41X21HRwkYB4q+BmKgnrzCU9byZGoz0nCZowgZv\nIJegMMROmKg6AGgZkkW2DMklTRO/2SkiZChfeOIPUj9sEA6m8+gwL5qCahTyWv6ahncaMGkUWg3T\ngVMGCz914IdE9MYlb8kZClPHb1u1iILFB+j5T6Ym47f3LHJC8I6BxRoSTZxzpz04FnstkzA1Zf2U\nk6hXDpmCD81BiZJu8Xct9kJvRxCNwhSD4HZLdtNhJoHgd139Gm2CwuRmbfCScyhMN7weRBJGmkir\nr1cxncevDW3lBu+mdhsF63geL8xeT+7/pzKCCIoPgAuLMhHNE1GeiOaXumHdiKV44V4+XSLwxK/K\n3fVkZ29Xk58b9eSdBE3xH0YqwaA5BEl5EjTNialtsp4pj1Wbz/8CXlJemFyLg3iG6e/BaIswCJBO\nbZPajbfcmBJbalEG5wdTPI53FW2iNs1UpUkDWbi/mGBcTBmoJBP15O0vDvXkv/hqC8Q7DTQJiSD7\nUfQsVOdMwVK8di81IGF2j/U/T/B8Mv7nkXOR9zQL5bfxwjRITSthk11Ch4ltWGxUu5d6khNH+6RG\nrv+qXFFMnlgTycu3ggoKfy3KRD2ZvJ50mJ6FOU7Bf+Jv84aTgsKgpXmfhdJMvQuOE4h5COISG+ic\nnka1DJqDiXqSMMU4tY8RefzURxCvp0t9inMADjPGzqyd7pbgjZsm3MXyrGYBEqx8oTiKNorhBD1L\n1HW1eWyx1FNQzzA18D2TlUqcaEhn0m7MFs/CIxAc6gm+9b1w57daWKMwlesIsjIHnOdtes+LjfBv\np57ge57FJ+rTBUV7OzshqL1OaRRt5VKABCFcFk7tcTogyJP4JwAPAviq+HsQwH8C2ENEr1vCtnUd\nTqYq+eKtg52vZVi1GLPHBuRTveeTcFaC/uc3aRpeLNp2EUCjWLQbpCmAKuxPq7QnTvQ3cocMD0Ma\nm9vSnwSgnkzeUPocZUpzoqM9/by6gqvcuHfCAguFdqrK34BvsnUt1pitX48MQsOExRqtvfcs78m0\nb7337C87ewgAcPaIOzb5THOPHQPwXsbYLgAgogsBfAzAXwL4LwC3LV3zTl98472Xo1JrGY+bqCfz\npBnsurKaN7GhyQjpDHx/weKFmWIIolEYaLgTFEpiS+42KslJnOj9Pf8f82ogJkPtIg3+Zk1DEwja\n83JPlAs/R3ntVpMZM5oGTi4ptS6jjcLQj05wYWFCEIo1aByF0hyCaqbSRuGpfvWLNuJVF4xgpCfh\nKneop1NfUgQRFOdKIQEAjLHdRHQ+Y+xAN+dPXwqczNuNR8LG7JeAmWc3YbE2CpMR0kRJebHY1X8g\njcIwgS5WOJomhDaNQtEqwcoX8ttvFyDPXcAF3dDKVJ/3h/YNrcxxNPK/v2Zi2u/Eq1GYtLSgzhkn\nA6b35BWmDvXkfx6TBtJuzKY2IcHrnT4IIih2EdE/A7hJfL8awG6xy119yVrWhVjOF2+aBNtdtf0H\npsmnWwoU0+q3XaOQv/PW9z//ooOgaOE6Qb1YTOXOfua+1dtpmwXsQEGfxYkICrPtanHPt53CNLXB\nf6Fg1EAMGoWpfabJeJEKRSAEtZ+1FqlRSASVbSba9lREEBvFNQD2Afhf4u+AKKsD+JWlalg3Qk2y\ny7DhSNuAI/+BKbFY6skLOdmZIsLbr2cYRIbzmyZf/fyLFggBJwT5rX1vZKlp+K+W2+g5g+Zgsu+c\nqBHeD6YabbYlw7WUTcv4/oK1bSFtzhSns9B5TwaCeFIBmo0ioCPA4sf9aSAhBIK4x5YBfEb8eVE4\n6S3qYqzka1/o2osd+G31jNTT4q53IlSC0espKOcsyw0G/6BCz1ktw7f8RAXCYrWuIOc0Trht6w2p\nXZkEiLu+KZ2FKQeY8nrylC+2H50IgixKAGfRFdx7zt+YbYJjozj1EcQ99hwAfw/gQgCKiGOMbVvC\ndnU1VkKVNF3zuaq3bSk5FjBae09/omq5H4zRuwa9Nyhfb7oHZvBucWJHgrkEKwGyQDsWOk8gjWKB\nlXxb2wyahpE6DGgPWmih0H54+TSKIAIXWDhLbFtSQGWkCLj4UtVPfVERhHr6NwD/DKABTjV9A8CN\nS9mobkU3vG+T9ht4ZUbyPP7eKqY8Nt6bXywdFASL1igC2gBMBll13OAqajLUtgmERdtWfIsDTSim\nGkFtACZjttMG03UXRyW1G7P9z7s01FNAQSHbEFij4AiuUXTBhHGSEERQJBljPwdAjLHDjLH/DeBN\nS9us7oQpArMb4B0cDTHLte/j638PslbQleNi02oEwcmKzWhrs5oc3cXOROH5fUgKCv8AqnZjtr+Q\nXSwlFQSLjYg3pZs40bYtpJG0U5gn/1mYEDBOzomLMDShbeGyQH0vTh8xEczrqUpEIQB7ieiPAIzi\nTN31bgXfvLx00AleppNY3Rt31zfcg9n1z30diRNZFZuwELXTVh5wlboQBdAefMb/mz3Dgj2jxUav\nB0FQ6slkczDtUyJhEqbt7fBfcJjsOEEprZOBoFpKawHqyWjrCGz3C1TtlEAQQfEBACkAfwLg4wBe\nBeDdS9mobsVKvvhPvvV5+PRte3DJ+j7f496B+eevOxdDmf+/vTOPtqOo9vD3y80IZCAkEAgJQQlD\nwiRcIAxChKBMgiIICgqIRgUZVFCR93woCwcUn/rUh4gIOICogKgMAhIckEmEMLgUHuhSQQVUFJVA\n7t3vj66Te9Knq0/3PfPJ/ta663ZXV1ft6j5du2pX1a4J7L/1hoXSjy0mKtujaOTDb97K7GyZYgO1\ncdfq5dyWFB7kbuAhxU1PKTNJpGyKxI+Fr7qe7i2tmhmWHZ5Opeh4UjNI/y6uO+Wl3P+HZ2riVcyv\naRm+9uZd+O59j2fEL8catTLbzO4Kh88Cx7VWnN6gEy9+/gaT+cIbBqPX09/btLXGc8qS+TXxYqKv\nmtERURRRc0uNHO0zq8TWjtROg42lHylznVlPhU1MJU1mRShrwolY4XJMVQXliK6jyc636JqXZpB+\nFlttOIWtNpxSE294ODv+7pvNYPfglqOaWGNqTSCqKCRdk3ejmR3cSMaSTgJOJNk17/tm9p4QfgZw\nfAg/2cxuaCSfZhIz/3SSERNDuV9vurUcq2QjdWN8QVgpKYpRdkpobLZKfAZp2vSUnEc9o6bla2CR\nYVnKm56yTUCx9RVFWXV/pNdVeDC7BbVuWUVcNHrZ6bGxxlcvktej2BX4HXAZcAdNrAMkvQw4BNjO\nzFZIWj+ELwCOBBYCGwE3SdrczLpiC9ZunsVQVFFEvu+aSnEkfrlKuhXPqOxU3BpXDZXwSA8kRu3+\n4dn5jpieVg+fOmkcABtNXd29Q0O9rshnWHQKcb0eRZrYM6r3/muUacnfUSMUrvhLblA02h5Fv/t6\nmgXsC7wOeD3wfeCyar9PDfB24KNmtgLAzP4cwg8BLg/hj0l6BNgZ+FkT8myYbn7dxWdiZEeMmWdG\nZvpkt7rTtGJwsuzUyrKKpeizq7t2IBU+afwA28+ZxpSgMOrJV4T0FrmxNEc2qErdP+qcVye2q1ts\nJlGjz74MRRsrw5FedLPS7ybLQ6NEJ5KZ2ZCZXW9mxwCLSNx4LAsznxplc+Clku6QdKuknUL4bJJe\nTIXfh7AaJC2VdLeku5988skmiFSfbuxQxNyP1yP2gRdeWNWCWU8xyvo3Kjv4nSb2fdeb9ZSV/tCw\n1U6/bahHkU3MPUnMFUysB1m0bouVITZ7ruykiHYQG8yOxx8d3VhvlCV3MDs4/juQpFcxD/gMcFWR\nhCXdRNIrSXNmyHc6iQLaCbhCUqmV3mZ2AXABwODgYB/p7tFR9LcYMz2NbPOYHT8d3s4eRYyoS4aC\n899jLb6YiaHeLJYshTY0bIX9JBWhrAmn5n2G/0Vbu+mFmSNyZKczsno5X44KrTA9FSU2LlcvfuH0\nS8rTzeQNZl8KbA1cC3zQzB4ok7CZLclJ++3AlZZ82XdKGgZmkKzRmFMVdeMQ1hX0g60xRsWePnf6\nWpnXi856auczKrqrW3yDmuxeVGwQcjSDk8NWqygaITouUzMNVpnhI6JYZvw0K4eSeOnd/mJlqjyj\noj3TTo77jZieisUv+/5jGx31Ink9iqOBf5Ksozi56oUKMDOrnW9WnKtJ3IHcImlzYDzwFHAN8HVJ\nnyQZzJ4P3NlAPk2lG7uQ5QfWEtItxcF50zn/6B1ZvMXM1cLruSuvCS+4KrYZFHU0F+sh1LdRF3u4\nee9gZUaPopHKMTqYXVSBrDI9ZcdPv+8Xwq5P6b26R9zVZ8+eK2p6Gg03nLpnk1KKmOfyo5duDHXz\nJJiiRBWFmbXyk78IuEjSA8DzwDGhd/GgpCuAh0h8S53YLTOeup3C3dycH+1+W2dZCsNtBT+OVrhk\niOaVqh2feyGp1NaekP2zrlUg+d5D08QqwTyGh2s3D2qEMmavrPgx01Ms3edXJs801qOImjDT+Tax\nNtli1uSmpDMckbUeJfVKX1BkZXbTMbPnSXosWdfOAc5pr0RrHkXtrZUK4fmh+Lat1TRTTUwYO4YV\nK4tvFzt2QDw/NGJGqzBiDomYniI7n6WJOQ/NUxxDZlFnh6Oh0UqtokSLijRzcuICZsY641cLj41R\nDUeUbzsbEEUpaxoa9WD2KO/rJjqiKJzmUfZHOGJ6Ksb0tZMK4oWIothl0+mrnTezQvjhaYv57dP/\njF5PV1ZXnrAbdzz6l8J7HdczPdUOfsfWmkRFZOWQNXX1cWmzRyr+Jw7fjq/e/lt2mLtuofvfue/m\nLJw9lb02X90kWW+6a3ozqHrKcnCTYvI0k9jYVTR+WcXSR10KVxQ9TmxLyhgLN0qGlhZkuDTIYt56\na3Hqkvkcsn3tLOU73r9PTes975v79JHb15gw8pg9bRKzp02KXk/3BLacNYUtZ9WWK7Yye8iybdT1\nnmQZm/OwWVOngBbVOaum7Kae0czJE3jnvptH70v/jiaOG+Dg7TYqLN9uL57Bm3bflLfutfokxvE5\n7/2O9+/DlInjasI/fti2bDg1/v7TTF97PH/55/OF41ceZfHB6XLxqwY1eh5XFCWo/EDmRGYGNYOX\nzp/Bjx9+qnD8i4/bicvu/F1uhVrNyxfOYtlpi5k3Y+1C8SVx6pLsimWDKRkbyud8FFnKphEaXSg1\nXHHFHmsdp87jnlTjeQ4NW03ruhHKLvZqtcmnZgOsMeIDr1xQEy+vV5X1OwI4fHBOZniMW09fnGuq\nTHPZ0kVcdc8faho7Mfbecn0u/MljLHrReoXirzMhSXf7jacVlqlbcUVRggljBzj/6B3ZYW7xF3/r\n6YuZOG6gcPyvHL9LKZk2W38y/3lQ7YeZR1ElMRraaYsu21JPy/aKhbO47oE/1jqMi+07MIoG4lCz\nB7NT5/tvnZShaPxG43UzkyeOo8ww95azpnDGAcUnb+622Qwe+8gBhZX1rKkT+c6Ju5cafP/q8buw\n0bRsxdlJXFGUJG9mUBabrNe6SrkbqXxCk0oox1HnVXL2SbpR+6qXzGb/bWYxYexAZvy0fT82j77e\nYHYr11F87vU7rNqkKite2amZZc3qfWSGL0TZ57ndnHK9iT3m13qt7QZcUThNZezAGN6z3xbss+UG\nLc+ruBmmMghZGz+tJPKo9Aynr7X6DKB6pqfmKorUbKIxYnxO+sXHNMqa8ZL/RcfGAM559dZsvkFz\nprY67cUVhdN0Tli8WadFyKTsoGWaXV+0Hh88eCGH7lB8rCXx9VS8Er586aKWKpampTsKY9VRu2zS\nAkmcduCKwlljKD/4nT4Xx+w2rzZeThrvfvkWbLVh8VZ00YHSonTQlZLTR7iicPqeVTOACs7MLWNO\nqcfxe2zatLRGQ9mWf9Gid+H6OaeFtNEzj+N0hpGdycouVisYrwsrzbJrBEZLPy0qc+K4onD6ntZX\nZl2oKQKN7lMSY/LExBixZQmzmtO7uOnJ6Tg3vWvPUmtNWk1st79epFUl2HjdtfjG0kVs2weLyZz6\nuKJwOs5m67enVdrorKdG0+0EZfdSL8MuTR54d7oXNz05fU9k07W68fuBblZiTu/gisLpeyzmkqMO\nReN3c13sisJpBq4oHKdBunkso+zakWZODXb6B1cUTt8zUvWVc/nRDxRVE5WtTpu5yZLTP/hgttNz\nXPHWXfnNU/ENjWoY7ZaXRffMLpdsW6j0cor2KE7aez7Dw8brdpnbSrGcHsUVhdNz7LzpdHZO7ayX\nR9nB7ApdbFEqTFFFsc6EsZx5YDl39c6ag5ueHCeFldx3oqsVSjfL5vQMrigcJ4WNcoJsNyqMbpTJ\n6T1cUTh9j0X2xq5H8emxlX3LSyXvOD2DKwqn7xntGEVRurHV3oUiOT2MKwqn77GSs568Z+A4vIbK\nOgAADbdJREFUq+OKwul79tlqfQCmThpX6r5uXkhXj8re7uMH/BN3Gsenxzp9z5kHbMXb93ox01J7\nXccYbYeim/TKhw/dhtP326KrvPI6vYs3N5y+Z+zAGNafMrFw/NFOj+0mk9W4gTGsP7l4mR0nD1cU\njhOj6KynbupKOE4LcEXhOClGu47CcfoVVxSOE6GXfT05TjNxReE4KUY71uAWKKdfcUXhOBEKr8zu\nwsFsx2kmrigcp0GKmqgcp1dxReE4Ebz6d5wEVxSOk6LsDnc+NuH0O74y23FSHD44h6vvfZyjFm1S\n6r5WKoz3H7Aljz5ZYlc/x2kiHVEUkrYHzgcmAiuBE8zsznDtDOB4YAg42cxu6ISMzprLBlMmctO7\n9iocv6IfWjmYvXTPF7cuccepQ6d6FOcCHzSz6yQdEM4XS1oAHAksBDYCbpK0uZkNdUhOx3GcNZ5O\njVEYMCUcTwUeD8eHAJeb2Qozewx4BNi5A/I5Tml8rMLpVzrVozgVuEHSJ0iU1W4hfDZwe1W834ew\nGiQtBZYCzJ07t3WSOo7jrOG0TFFIugmYlXHpTGAf4J1m9m1JrwW+BCwpk76ZXQBcADA4OOhLnRzH\ncVpEyxSFmUUrfkmXAqeE028CF4bjPwBzqqJuHMIcp+vxldlOv9KpMYrHgcq0kr2Bh8PxNcCRkiZI\n2hSYD9zZAfkcx3GcQKfGKN4CfFrSWOA5wliDmT0o6QrgIZJpsyf6jCenV/DBbKdf6YiiMLOfADtG\nrp0DnNNeiRzHcZwY7sLDcRzHycUVheM0CR/MdvoVVxSO4zhOLq4oHKdJ+GC206+4onAcx3FycUXh\nOI7j5OKKwnGahA9mO/2KKwrHcRwnF1cUjtMkfDDb6VdcUTiO4zi5uKJwHMdxcnFF4TgNomBzmjjO\nPyenP+mU91jH6RtmTp7A6a/YgoO23bDwPecdvh2z153UQqkcp3m4onCcJnDiyzYrFf81O27cIkkc\np/l4X9lxHMfJxRWF4ziOk4srCsdxHCcXVxSO4zhOLq4oHMdxnFxcUTiO4zi5uKJwHMdxcnFF4TiO\n4+Qi6wMn+pKeBH7baTlGwQzgqU4L0Wa8zGsGXubeYBMzm1kvUl8oil5F0t1mNthpOdqJl3nNwMvc\nX7jpyXEcx8nFFYXjOI6TiyuKznJBpwXoAF7mNQMvcx/hYxSO4zhOLt6jcBzHcXJxReE4juPk4oqi\njUiaLulGSQ+H/+vmxB2Q9AtJ32unjM2mSJklzZF0i6SHJD0o6ZROyNoIkvaT9CtJj0h6X8Z1SfpM\nuL5c0g6dkLOZFCjzUaGs90u6TdJ2nZCzmdQrc1W8nSStlHRYO+VrFa4o2sv7gJvNbD5wcziPcQrw\ny7ZI1VqKlHkl8G4zWwAsAk6UtKCNMjaEpAHgc8D+wALgdRny7w/MD39Lgf9tq5BNpmCZHwP2MrNt\ngLPp8cHegmWuxPsY8IP2Stg6XFG0l0OAS8LxJcCrsiJJ2hg4ELiwTXK1krplNrMnzOyecPwPEgU5\nu20SNs7OwCNm9qiZPQ9cTlLuag4BLrWE24Fpkopvst191C2zmd1mZn8Np7cDvb7/a5H3DHAS8G3g\nz+0UrpW4omgvG5jZE+H4j8AGkXifAt4DDLdFqtZStMwASJoHvAS4o7ViNZXZwO+qzn9PraIrEqeX\nKFue44HrWipR66lbZkmzgVfT4z3GNGM7LUC/IekmYFbGpTOrT8zMJNXMTZZ0EPBnM/u5pMWtkbK5\nNFrmqnTWIWmJnWpmf2+ulE6nkPQyEkWxR6dlaQOfAt5rZsOSOi1L03BF0WTMbEnsmqQ/SdrQzJ4I\nZoesrunuwMGSDgAmAlMkfdXMjm6RyA3ThDIjaRyJkviamV3ZIlFbxR+AOVXnG4ewsnF6iULlkbQt\niQl1fzN7uk2ytYoiZR4ELg9KYgZwgKSVZnZ1e0RsDW56ai/XAMeE42OA76QjmNkZZraxmc0DjgR+\n2M1KogB1y6zkq/oS8Esz+2QbZWsWdwHzJW0qaTzJe7smFeca4I1h9tMi4Jkqk1wvUrfMkuYCVwJv\nMLNfd0DGZlO3zGa2qZnNC9/vt4ATel1JgCuKdvNRYF9JDwNLwjmSNpJ0bUclax1Fyrw78AZgb0n3\nhr8DOiNuecxsJfAO4AaSgfgrzOxBSW+T9LYQ7VrgUeAR4IvACR0RtkkULPMHgPWAz4d3eneHxG0K\nBcvcl7gLD8dxHCcX71E4juM4ubiicBzHcXJxReE4juPk4orCcRzHycUVheM4jpOLK4oeR5JJOq/q\n/DRJZ7VZhosrXjIlXdioQz9J8yQ9ELn28eBh9uON5NFNhOf3WDOnWFa/kzURScdK+mydOEcEL7A9\n7aG5HfjK7N5nBXCopI+Y2VNlb5Y0NswPbwpm9uZmpRVhKTDdzIaqA5tdjg5wupl9q9NCNBNJA+n3\n1E2Y2Tck/Qk4rdOydDveo+h9VpK4b35n+kJomf8w7Alwc1gpW2ltni/pDuBcSWdJukTSjyX9VtKh\nks4N+whcH9xrIOkDku6S9ICkC5ThzEbSMkmDkg6uWjz3K0mPhes7SrpV0s8l3VDxoBrC75N0H3Bi\nVkElXQOsA/w8tAbT5Vhb0kWS7lSyl8ch4b5Jki6X9EtJV0m6Q9JguPZsVfqHSbo4HM+U9O1Q3rsk\n7R7Czwp5LJP0qKSTq+5/Y3jW90n6iqTJoadQeX5Tqs9jSNogyHlf+NtN0ocknVoV5xyFfTskvTe8\nq/skfTQjvdgzP1nJHiDLJV2ecd+xkr4TyvqwpP+qunZ0eM73SvqCEtfaSHpW0nnhPe6aSq8mP0k7\nS/pZeF+3SdqiKu+rlexh8htJ75D0rhDvdknTQ7xlkj4d5HhA0s4Z5ch8l04JzMz/evgPeBaYAvwG\nmErSOjorXPsucEw4fhNwdTi+GPgeMBDOzwJ+AowDtgP+ReKbB+Aq4FXheHpVvl8BXlmV3mHheBkw\nmJLxCpLKfxxwGzAzhB8BXBSOlwN7huOPAw/Eylt1nC7Hh4Gjw/E04NfA2sC7qvLZlkS5Dmakdxhw\ncTj+OrBHOJ5L4l6k8qxuAyaQ+PJ5OpRrYchvRvWzAr5c9fyWAudllGnV8wvn3yBxjAgwEN7rPOCe\nEDYG+D+SVc/7B3nWSuV7cShP3jN/HJhQeV4Zch0LPBHymQQ8QOLLaCuS39a4EO/zwBvDsQGvjby7\nmvxIfrtjw/ES4NtVeT8CTAZmAs8AbwvX/rvq+SwDvhiO9yT8bsL9n817l+F8MfC9Tn/H3f7npqc+\nwMz+LulS4GTg31WXdgUODcdfAc6tuvZNW90scJ2ZvSDpfpLK6foQfj9JJQXwMknvAdYCpgMPklQY\nUUL8f5vZ5yRtDWwN3Bg6IwPAE5KmkVQcP6qSdf9ChV+9HC8ncahYMSVMJKkY9gQ+A2BmyyUtL5Du\nEmCBRjpNU5R4twX4vpmtAFZI+jOJ6/S9gyxPhXz+EuJeSOIy/mrgOOAtBfLeG3hjSGeIpJJ8RtLT\nkl4S8vuFmT0taQnwZTP7VyrfCluQ8czDteXA1yRdHeTL4kYLzvwkXUniAXYlsCNwV0hzEiPOHodI\nnDtmkZXfVOASSfNJlEx1b+sWS/Yn+YekZxj5rd1PovArXBbK/qPQa5uWyjfzXZrZsziFcEXRP3wK\nuIekBVuEf6bOVwBY4h75BQvNLZI9McZKmkjSchw0s98pGTCfmJdBqMQOJ6moAQQ8aGZpk0T6wy5D\ndTkEvMbMfpVKP+/+ah821eUZAywys+cy0lpRFTREzndkZj9VYgJcTNLzyRykL8iFJC3lWcBFBe/J\nfOaBA0nezSuBMyVtY7XjPGkfPxbSvMTMzshI8zmLj0vU5Eey890tZvZqJXuRLKuKX/2ch6vOh1n9\nmWfJWE3mu3SK42MUfUJoSV5B4ve/wm0kHi4BjgJ+3EAWlUr0qdCyzp1RI2kTkm0jDzezSi/nV8BM\nSbuGOOMkLTSzvwF/k1TZr+CoUcp4A3CSQm0eWt8APwJeH8K2ZvXW6J8kbSVpDMmGMxV+QLJTWaU8\n29fJ+4fA4ZLWC/GnV127lMT8UVSJ3wy8PaQzIGlqCL8K2A/YiaSsADcCx0laKyNfiDzzUN45ZnYL\n8F6Slv061LKvkn3PJ5HsTvjTIN9hktav5Bned5Sc/KYy4qr72PzHEuWIkMceJF55n0ldL/sunRSu\nKPqL80js5hVOIqlElpN4Zz1ltAmHyvyLJHbqG0hcLudxLIlt++ow0HitJdtHHgZ8LAx23gvsFuIf\nB3xO0r0kLdbRcDaJ6WK5pAfDOSS7ja0j6ZfAh4CfV93zPpJxjtsYMclAYsYbDAOvDwG5U1fN7EHg\nHODWULZqd+lfA9YlmEgKcAqJme/+IOuCkMfzwC0kXkuHQtj1JK6u7w7PbrUZPDnPfAD4asjjF8Bn\nwjtOcyeJKWk5yfjB3Wb2EPAfwA/Cb+tGoN62rrH8zgU+IukXjN7C8Vy4/3xWbyhVKPUunVrce6yz\nxiFpGXCambXF7bWS9QyHmNkbItcvJhlQzZ0eG1rl95D00h5uuqC1+R1LYmp8R6vzGi2NvstgEjzN\nzA5qplz9hvcoHKeFSPofkj04zs6J9gxwtnIW3ClZxPgIcHM7lMSagKQjSMbd/tppWbod71E4juM4\nuXiPwnEcx8nFFYXjOI6TiysKx3EcJxdXFI7jOE4urigcx3GcXP4fOGc3BGgZWBkAAAAASUVORK5C\nYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Triangular window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Welch Window" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='welch')" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd8VfX9x/HXJ4MkEJIACSuDhL1nCCAq4MSJ+hNExa2I\no9X+bKudtr/W2tbWWqui1oEWFaniqihOEGWGDQISVgYjCSHMDJJ8fn/cA71ECAFyc+74PB+P++De\nc849532AnE++Z3y/oqoYY4wxAGFuBzDGGOM/rCgYY4w5woqCMcaYI6woGGOMOcKKgjHGmCOsKBhj\njDnCioIJKSIyRUR+X4/lZovI7Q287etF5JNT/G66iKiIRDRkJmNqs6Jg/JqI/ExEPqo1bcNxpo1v\n3HQnR1VfU9UL3M5hTF2sKBh/9xVwhoiEA4hIOyASGFBrWmdnWWPMabCiYPzdYjxFoL/z+SzgS2B9\nrWkbVXUbgIh0F5FPRaRERNaLyLjjrVxExojIchHZKyIbRWS01+wOIvKNiOwTkU9EJPE465gjIv/j\nvB/unOa5xPl8rogsd97fLCJfe31PRWSS08opFZGnRUSceeEi8hcRKRaRTcAltbbZXkTed/YxR0Tu\ncKZHi0jZ4awi8gsRqRKROOfz70TkiRP9pZvQZUXB+DVVrQQWAmc7k84G5gJf15r2FYCINAM+BV4H\nWgPjgWdEpGftdYtIFvAq8BMgwVnPFq9FrgNucdbTBPjxcWLOAUY670cAm7yyjXDmH8+lwGCgLzAO\nuNCZfoczbwCQCVxd63vTgHygvTPvDyJyjqqW4ymkI7y2vxUYXs88JsRZUTCBYA7/PciehacozK01\n7fCB7lJgi6q+rKpVqroMeBsYe4z13ga8pKqfqmqNqhao6jqv+S+r6neqWgZM578tk2PlO3wQPht4\nlKMPynUdhP+oqqWqmounBXR4G+OAJ1Q1T1VLnHUCICKpeA7yD6pquaouB14AbvTO41yU7gs86XyO\nxlOA7DSbOS4rCiYQfAWcKSItgSRV3QDMw3OtoSXQm/8e6DoAQ5zTMaUiUgpcD7Q9xnpTgY11bHeH\n1/uDQOxxlpsPdBWRNngO6q8Cqc4pnCzqPggfbxvtgTyveVu93rcHSlR1X635yc77wy2XgcAqPC2n\nEcBQIEdVd9WRx4Q4u73NBIL5QDyeUyrfAKjqXhHZ5kzbpqqbnWXzgDmqen491psHdDrdcKp6UESW\nAPcBq1W1UkTmAf+L51pH8SmsdjueonVYmtf7bUBLEWnuVRjSgALn/TygG3Alnr+Lb0UkDbgYO3Vk\nTsBaCsbvOadvsvEcZOd6zframeb9m/h/8PzWfoOIRDqvwSLS4xirfhG4xbkYHCYiySLS/RRjzgHu\n5b8H3dm1Pp+s6cAPRSRFRFoADx2eoap5eA78jzoXlvviORU21Zl/EFgC3OO1/XnApNPIY0KEFQUT\nKObgueD7tde0uc60I0XB+c35AjwXmLfhOT3zJyCq9gpVdRGeC8l/A/Y42+hwGvmae2Wp/flk/ROY\nBawAlgIzas2/FkjHs4/vAA+r6me18kQCixoojwkRYoPsGGOMOcxaCsYYY46womCMMeYIKwrGGGOO\nsKJgjDHmiIB7TiExMVHT09PdjmGMMQFlyZIlxaqadKLlAq4opKenk52d7XYMY4wJKCKy9cRL2ekj\nY4wxXqwoGGOMOcKKgjHGmCOsKBhjjDnCioIxxpgjfFYUROQlESkUkdXHmS8i8qQzlOBKERnoqyzG\nGGPqx5cthSnA6DrmXwR0cV4Tgck+zGKMMaYefPacgqp+JSLpdSwyBnhVPd20LhCRBBFpp6rbfZXJ\nmNNRU6PsOlDJjj3l7NjreRXvq+B4PQ23aNaEtnHRtImPpm1cNK2bRxERbmdsjX9z8+G1ZI4ebjDf\nmfa9oiAiE/G0JkhLS6s925gGt+fgIZbnl7Iiz/Nat2MfhfvKOVT9/QIg8v3vH6tOiEBSbBSdkmLp\nl5pA/9R4+qe2oG18tA/2wJhTExBPNKvq88DzAJmZmTYAhGlwxfsr+OzbnSzYtIsV+XvYXHwA8BzI\nOyfFkpnegvYJMZ7f/OOiaRcfTdv4aBJjowgP+35VUFVKDlSyY285O/eWs2NPBTv2lrO9tIz1O/fx\n4tebjhSYNnFR9E9NYHB6S87v2YYOrZo16r4b483NolDA0WPQpvDfMWaN8bn83QeZtWYns9bsIHtL\nCTUKrZtHMSAtgbGZKfRPSaB3Sjxx0ZEnvW4RoVVsFK1io+jVPv5788sPVbN2+15W5JWy3HnNWrOT\n33+4lu5tmzO6d1su7NWW7m2bI8dqihjjI24WhfeBe0VkGjAE2GPXE4yvlRyoZHp2Hh+u3M6qgj0A\ndGvTnHvP6cKFvdrQs11coxyEoyPDGZDWggFpLY5Myys5yKw1O5i1Zgd//3wDT3y2gbSWTbmoT1uu\nz+pAWqumPs9ljM+G4xSRN4CRQCKwE3gYz5ixqOqz4vnJewrPHUoHgVtU9YQ93WVmZqp1iGdO1uqC\nPbwybwvvrdhGZVUN/VITuMj5bTwj0f9O1xTtq+DTb3fy8ZodzMspplqVUd1ac9MZ6ZzVOZGwY5yy\nMqYuIrJEVTNPuFygjdFsRcHUV2VVDR+t3s6r87eyZOtuYiLDuWpgMjedkU7XNs3djldvO/aU8/qi\nXF5fmEvx/go6JjbjhmEduHpQCs1P4dSWCU1WFEzIOlRdw7TFeTz1xQZ27q0gvVVTbhiWztWDUoiP\nCdyDaEVVNR+v3sGUeVtYlltKsybh3DI8g4kjOp7SdQ8TWqwomJBTU6N8sHIbj3/6HVt3HWRwegvu\nHtmZEV2Tgu50y8r8Up77ahMfrtxOQtNI7h7ZiRuHpRMdGe52NOOnrCiYkKGqzF5fxJ9nrWft9r10\nb9ucB0d3Z2S3pKC/c2d1wR4em7WeOd8V0TYumvvP68LVg1LsITnzPVYUTEhYs20Pv33/WxZtKSGt\nZVMeuKArl/VtH3QtgxOZv3EXf561jmW5pXRMbMYvL+3BOd3buB3L+BErCiaolVVW88Tn3/HC3M20\naBrJfed15ZrMVJpEhO5vyKrKp9/u5M+z1pNTuJ9L+7bj4ct6kdQ8yu1oxg/UtygExBPNxnj7ekMx\nv3h3FVt3HWRcZgo/v7gHCU2buB3LdSLCBb3aMrJba56ds5Gnvsjhq++K+MUlPRiXmRr0p9JMw7CW\nggkYuw9U8vsP1/L20nzSWzXlD1f14YxOiW7H8ls5hfv5+YxVLNpSwtCOLXn0qr5++UyGaRx2+sgE\nlY9X7+AX76xiT9khJp7dkR+e28XutKmHmhrlzew8/jBzLRVVNTxwflfuOKtjyF1zMXb6yASJ8kPV\nPDpzLa/M30qf5Him3j6EHu3i3I4VMMLChGuz0ji3e2t+9d5qHv1oHd9s3MXj4/qRGGvXGsz3he5V\nOeP3Nhcf4H8mz+OV+Vu5/cwM3r7rDCsIp6h1XDTPThjEI1f2ZsGmXVz897nM37jL7VjGD1lRMH7p\nveUFXPrkXApKy3jhxkx+eWnPkL6zqCGICNcP6cC7dw8nNiqC619YwBOffUd1TWCdQja+ZT9lxq+U\nVVbz0NsruW/acnq0i2PmD8/ivJ52v31D6tk+jg9+cCZj+ifzxGcbmPDCQgr3lrsdy/gJKwrGb2wr\nLeOqyfN4MzuPe0Z1YtrEobRPiHE7VlBqFhXB4+P68djVfVmeV8rFT37NstzdbscyfsCKgvELK/NL\nueLpb8grOchLNw3mJxd2t64afExEGJuZynv3DiemSRjjn1/AhyttSJNQZz91xnUfr97OuOfmExke\nxtt3ncGo7q3djhRSurZpzrt3D6dPcjz3vL6Up77YQKDdqm4ajhUF4xpVZfLsjUyaupQe7eJ4957h\ndGsbOOMcBJNWsVFMvX0IY/q35y+ffMcD/15BRVW127GMC+w5BeOKyqoafvnuKqZn53Np33b8ZWw/\nexjNZdGR4TxxTX86Jsbyt8++I7+kjGdvGETLZtaFSCixloJpdPsrqrj55UVMz87nh+d05snxA6wg\n+AkR4b7zuvDktQNYnl/Klc98Q+6ug27HMo3IioJpVHsOHuL6FxaycHMJfx3bj/+9oJt1ueCHLu/X\nnjfuGErpwUOMe24+OYX73Y5kGokVBdNoivdXMP6fC1i7bS+Trx/I/wxKcTuSqcOgDi2YNnEoVTU1\nXPPcfNZu3+t2JNMIrCiYRrFjTznXPDefzcX7eeGmTC7o1dbtSKYeerSLY/qdw2gS4blldXleqduR\njI9ZUTA+l1dykLHPzWPn3gpevXUIZ3dNcjuSOQkdk2KZfucw4mMimfDCQhZusj6TgpkVBeNTG4v2\nM+65+ewtq+K124eQldHS7UjmFKS2bMq/Jw2jbXw0N728iK++K3I7kvERKwrGZ3IK93PNc/M5VF3D\ntIlD6Zea4HYkcxraxEXz5sShdEyM5fZXsvlyXaHbkYwPWFEwPpFXcpAJLywEhDfvHGZdXgeJVrFR\nvHHHULq1bc6kqUtYYKeSgo4VBdPgCveWM+HFhZQdqmbq7Vl0Sop1O5JpQPFNI3nl1izSWjbltimL\nWWEXn4OKFQXToHYfqGTCiwsp2lfBlFsG072ttRCCUctmTZh6+xBaxjbhppcXsX7HPrcjmQZiRcE0\nmH3lh7jp5UVs2XWQF27KZEBaC7cjGR9qExfNa7cNJSoijAkvLmRL8QG3I5kGYEXBNIiyympueyWb\nb50H087olOh2JNMI0lo1ZeptQ6iqruH6FxayfU+Z25HMabKiYE5bZVUNd722hMVbSnj8mv6c28NG\nSgslXdo059Vbh7C3zNOFSfH+CrcjmdNgRcGcFlXloRkrmb2+iEeu6MPl/dq7Hcm4oE9KPC/ePJht\npWXcNmUxZZXW7Xag8mlREJHRIrJeRHJE5KFjzI8XkQ9EZIWIrBGRW3yZxzS8p77IYcbSAu4/rwvX\nDUlzO45xUVZGS54cP4CVBXv40ZvLqamxgXoCkc+KgoiEA08DFwE9gWtFpGetxe4BvlXVfsBI4K8i\nYp23B4j3lhfw10+/48oBydx3bhe34xg/cEGvtvzi4h58vGYHf/p4ndtxzCnw5SA7WUCOqm4CEJFp\nwBjgW69lFGguIgLEAiVAlQ8zmQaSvaWEn/x7JVkZLfnj//TB809oDNx2ZgZbdh3gua820aFVM2tB\nBhhfnj5KBvK8Puc707w9BfQAtgGrgPtUtab2ikRkoohki0h2UZH1ueK2LcUHuOPVbJJbxPDchEFE\nRdgAOea/RITfXNaLEV2T+NV7q62fpADj9oXmC4HlQHugP/CUiHzvaSdVfV5VM1U1MynJeth0U+nB\nSm6dshgFXrp5MC1sqEZzDBHhYTx13QC6tI7lnteW2sNtAcSXRaEASPX6nOJM83YLMEM9coDNQHcf\nZjKnobKqhjv/tYT83WU8f0MmGYnN3I5k/Fjz6EheunkwMU3CuXXKYgr3lbsdydSDL4vCYqCLiGQ4\nF4/HA+/XWiYXOBdARNoA3YBNPsxkTsOv31vNws0l/PnqvtYFtqmX9gkxvHjTYEoOVDLx1SVUVNmt\nqv7OZ0VBVauAe4FZwFpguqquEZFJIjLJWex3wBkisgr4HHhQVYt9lcmcujcW5TJtcR73jOrEFQNq\nXxoy5vj6pMTz+Lh+LM8r5f8++PbEXzCu8uXdR6jqTGBmrWnPer3fBlzgywzm9C3PK+Xh99Zwdtck\n/vf8bm7HMQHooj7tuHNER56bs4l+qQmMy0w98ZeMK9y+0Gz83K79Fdw9dQmt46L4+zX9CQ+zW0/N\nqfnJBd04o1Mrfvnualbl73E7jjkOKwrmuKqqa/jBG8vYdaCSZycMsjuNzGmJCA/jH9cOILFZEyZN\nXcLuA5VuRzLHYEXBHNdjn6xn3sZd/P6K3vROjnc7jgkCrWKjmDxhEEX7KvjhtGVUW1cYfseKgjmm\nj1Zt57k5m7h+SBpj7fyvaUD9UhP47ZhezN1QzOOfrnc7jqnFioL5npzCffz43yvon5rAry+r3V2V\nMafv2qw0rslM5ekvN/LJmh1uxzFerCiYo5RVVnPX1KXENAln8oSB1oWF8ZnfjulF35R4Hpi+gryS\ng27HMQ4rCuYov/vwW3KK9vPENQNoFx/jdhwTxKIjw3n6uoEg8MNpyzhU/b1uz4wLrCiYIz5atZ3X\nF+Zy59mdOLOLDadpfC+1ZVP+cGUfluWW8sRn37kdx2BFwTgKSst48O2V9EtN4IELurodx4SQy/q1\n55rMVJ6ZvZF5OdahgdusKBiqqmu4f9oyahSeHN+fyHD7b2Ea18OX9yQjsRk/mr6cEnt+wVX202/4\nxxc5LN6ym99f0ZsOraznU9P4mjaJ4MnxA9h94BA/fWsFqvb8glusKIS4RZtL+McXG7hqYLJ1dGdc\n1Ts5nocu6s5nawt5df5Wt+OELCsKIaz0YCX3T1tGWsum/N+Y3m7HMYZbhqczqlsSj8xcy9rte92O\nE5KsKIQoVeWht1dRuK+CJ68dQGyUTzvMNaZeRITHxvYjPiaSH7yxjLJKG3+hsVlRCFHvLCvg4zU7\n+PGF3eibkuB2HGOOSIyN4vFx/cgp3M9js6wbjMZmRSEE7dhTzm/eX0NmhxbccVZHt+MY8z1ndUni\nxmEdeHneZhZu2uV2nJBiRSHEqCo/m7GSyuoaHhvbz8ZHMH7rwdHdSW3RlJ+8tZIDFVVuxwkZVhRC\nzL+z8/lyfREPje5ORqLdfmr8V7OoCP4yth95uw/yp4/XuR0nZFhRCCEFpWX87j/fMiSjJTcOS3c7\njjEnlJXRklvOyODV+Vv5xp52bhRWFEKE526jlVSr8tjV/Qiz00YmQPzkwm5kJDbjp2+tZF/5Ibfj\nBD0rCiHi9UW5zN1QzM8v7kFaq6ZuxzGm3mKahPOXsf3YvqeMP8y000i+ZkUhBOSVHOSRD9dyZudE\nrh+S5nYcY07aIOdOuTcW5TLnuyK34wQ1KwpBrqZG+elbKwkT4U9X90XEThuZwPSj87vSuXUsD761\nkj1ldhrJV6woBLlpi/OYv2kXv7ykB8kJNmiOCVzRkeH8dWw/CveV88eP7DSSr1hRCGKF+8p59KO1\nDOvYimsGp7odx5jT1i81gVuHZ/DGolwWbylxO05QsqIQxP7vg2+pqKrhkSt722kjEzR+dH5XkhNi\n+PmMVVRW2RCeDc2KQpD6cn0h/1m5nXtHdaZjUqzbcYxpMM2iIvjdFb3YULif5+ZsdDtO0LGiEIQO\nVlbxy3dW07l1LJNGdHI7jjEN7pzubbikTzv+8WUOm4r2ux0nqFhRCEJPfLaBgtIyHr2qD00i7J/Y\nBKeHL+tJVEQYv3hntY3U1oDsiBFk1mzbw4tfb+barFQGp7d0O44xPtM6LpoHR3dn/qZdzFha4Hac\noOHToiAio0VkvYjkiMhDx1lmpIgsF5E1IjLHl3mCXXWN8rMZq2jRtAkPje7hdhxjfO66rDQGdWjB\n7z/8lpIDlW7HCQonLAoi0lREfiUi/3Q+dxGRS+vxvXDgaeAioCdwrYj0rLVMAvAMcLmq9gLGnsI+\nGMer87ewMn8Pv76sJ/FNI92OY4zPhYUJf7iyD/vKq3jkw7VuxwkK9WkpvAxUAMOczwXA7+vxvSwg\nR1U3qWolMA0YU2uZ64AZqpoLoKqF9Uptvmf7njL+Mms9Z3dN4rK+7dyOY0yj6da2ORPP7sjbS/OZ\nZz2pnrb6FIVOqvpn4BCAqh4E6nPTezKQ5/U535nmrSvQQkRmi8gSEbnxWCsSkYkiki0i2UVF1u/J\nsfz+P2upqlEeucKeSTCh54fndqFDq6b86r3V9uzCaapPUagUkRhAAUSkE56WQ0OIAAYBlwAXAr8S\nka61F1LV51U1U1Uzk5KSGmjTwWNeTjEfrtrO3SM7k9rSekA1oSc6MpxfX9qTjUUHeGXeFrfjBLT6\nFIWHgY+BVBF5Dfgc+Gk9vlcAePetkOJM85YPzFLVA6paDHwF9KvHuo2jqrqG33ywhpQWMdw5wsZb\nNqHr3B5tGNUtib9/voHCveVuxwlYJywKqvopcBVwM/AGkKmqs+ux7sVAFxHJEJEmwHjg/VrLvAec\nKSIRItIUGALY1aKT8K8FW/lu535+dWlPoiPD3Y5jjKt+fVkvKqtq+KMN33nKjlsURGTg4RfQAdgO\nbAPSnGl1UtUq4F5gFp4D/XRVXSMik0RkkrPMWjytkJXAIuAFVV19ujsVKor3V/D4p99xVpdELujZ\nxu04xrguI7EZt52VwYylBSzZutvtOAFJjvckoIh86byNBjKBFXguMPcFslV12DG/6GOZmZmanZ3t\nxqb9zoNvreTtpfl8fP/ZdG5t/RsZA3Cgoopz/jqb1s2jefee4YTb0LMAiMgSVc080XLHbSmo6ihV\nHYWnhTDQudA7CBjA968NmEa2Iq+U6UvyuGV4uhUEY7w0i4rg5xf3YFXBHqZn5534C+Yo9bnQ3E1V\nVx3+4JzescdlXVRTozz8/hoSY6P44bld3I5jjN+5vF97stJb8tis9ew5aKO0nYz6FIWVIvKC0x3F\nSOfJ5pW+DmaO7+2l+SzPK+Wh0d1pHm1PLhtTm4jwm8t7UXqwksc/Xe92nIBSn6JwC7AGuM95fetM\nMy7YW36IP328noFpCVw5oPazgMaYw3q2j+P6IR3414KtrNux1+04AaM+t6SWq+rfVPVK5/U3VbWb\ngF3yj883sOtABb+9vDdhdgHNmDo9cEFX4mIi+c37a6x77XqqT4d4m0VkU+1XY4QzR8vddZAp87Yw\ndlAKfVLi3Y5jjN9LaNqEB87vyoJNJXy21rpWq4+IeizjfQtTNJ6eTK2jfhf8adY6IsLCeOCCbm5H\nMSZgjM9K4+V5W3j0o7WM7JZEZLgNI1OX+pw+2uX1KlDVJ/D0VWQa0ZKtu/lw5XYmnt2RNnHRbscx\nJmBEhofxs4t6sKnoANMW5bodx++dsKVQ6+nlMDwth/q0MEwDUVX+MHMtSc2jmHi29W9kzMk6r0dr\nhmS05G+fbWDMgGTi7K6946pPO+qvXq9HgYHAOF+GMkf7ePUOlmzdzQPnd6VZlNVjY06WiPCLS3pQ\ncqCSZ2dvdDuOX6vPEeY2VT3qwrKIZPgoj6nlcOde3do0Z2xm6om/YIw5pr4pCVzRvz0vfr2ZCUM7\n0D4hxu1Ifqk+LYW36jnN+MDUBVvZuusgP7u4u/XhYsxp+vGF3VDgL5/YA23Hc9yWgoh0B3oB8SJy\nldesODx3IRkf23PwEE9+sYGzuiQyoqsNLmTM6Upp0ZRbh2fw3FcbuXV4Br2T7dbu2upqKXQDLgUS\ngMu8XgOBO3wfzTw9O4c9ZYf42UU9bIhNYxrI3aM6kRATySMfrrUH2o7huC0FVX0PeE9Ehqnq/EbM\nZIC8koNM+WYLVw9MoWf7OLfjGBM04qIjuf+8rjz8/hq+XF/IOd1tLBJvdQ2yc3jIzetE5Mnar0bK\nF7L+PGs9YWHYg2rG+MB1Q9LISGzGH2auo6q6xu04fqWu00eHh8XMBpYc42V8ZHXBHj5YsY3bz+xI\n23i7fGNMQ4sMD+PB0d3IKdzPjGU2PIy3uk4ffeD8+UrjxTEAf/1kPfExkdxhD6oZ4zMX9mpL35R4\n/v7ZBsb0b09UhI1xDnXfffQBcNyrMKp6uU8ShbjFW0r4cn0RD47uTnyMPXVpjK+ICD+5sBs3vLiI\nNxbmcvNwe/wK6n547S+NlsIAnu4sHvt4PUnNo7jpjA5uxzEm6J3ZOZGhHVvy1Jc5jBucStMm1mNA\nXWM0zzn8AuYDu4ESYL4zzTSwrzYUs2hLCT84p7P95zSmERxuLRTvr+Tlb7a4Hccv1Gc8hUuAjcCT\nwFNAjohc5OtgoUZVeWzWOlJaxDB+cJrbcYwJGYM6tOTc7q15bs5GG8+Z+neIN0pVR6rqCGAU8Dff\nxgo9H6/eweqCvdx/XleaRFh/78Y0pgcu6Mbe8iqen2ud5dXn6LNPVXO8Pm8C9vkoT0iqrlH+8sl6\nOreOtXGXjXFBz/ZxXN6vPS99vYWifRVux3FVfYpCtojMFJGbReQm4ANgsYhcVatPJHOK3llWwMai\nA/z4gq7W6Z0xLvnR+V2prK7h6S9zTrxwEKtPUYgGdgIjgJFAERCDpx+kS32WLERUVFXzt0+/o09y\nPBf2aut2HGNCVkZiM8ZlpvD6wlzydx90O45rTniLi6re0hhBQtWbi/MoKC3j0av6WKd3xrjsB+d0\n4e2lBTz5+Qb+fHU/t+O4oj53H2WIyOMiMkNE3j/8aoxwwa6sspp/fJHDkIyWnNUl0e04xoS89gkx\n3DC0A28tyWdj0X6347iiPqeP3gW2AP/g6KE5zWl6beFWivZV8MAF3ayVYIyfuGtkJ6Iiwnnqi9C8\ntlCfJ6TKVdV6RW1g5Yeqee6rTZzRqRVZGS3djmOMcSTGRnHDsA68MHcTPzinMx2TYt2O1Kjq01L4\nu4g8LCLDRGTg4ZfPkwW51xfmUrSvgvvO7eJ2FGNMLXec1ZEmEWE8FYJ3ItWnKPTBM9LaH/nvqaN6\n9YskIqNFZL2I5IjIQ3UsN1hEqkTk6vqsN9CVH6rm2TkbGdqxJUM6tnI7jjGmlqTmUUwY0oH3lm9j\nS/EBt+M0qvoUhbFAR1UdoaqjnNc5J/qSiIQDTwMXAT2Ba0Wk53GW+xPwyclFD1zTFuVSuK+C+87t\n6nYUY8xxTBzRkYgwCbnWQn2Kwmo84zSfrCwgR1U3qWolMA0Yc4zlfgC8DRSewjYCTvmhaibP2UhW\nRkuGdbJWgjH+qnXzaK4f0oF3lhWwdVfotBbqUxQSgHUiMsvrltT36vG9ZCDP63O+M+0IEUkGrgQm\n17UiEZkoItkikl1UVFSPTfuv6dl57Nxbwf12LcEYvzfJaS2E0lPO9SkKD+M5cP8BeBxYDHRuoO0/\nATyoqnUOkqqqz6tqpqpmJiUlNdCmG19FVTWTZ29kcHoLayUYEwBax0VzbVYaM5YWkFcSGk85n7Ao\nOGMn7MXTpcUU4Bzg2XqsuwBI9fqc4kzzlglME5EtwNXAMyJyRT3WHZCmZ+ezfU85953b1Z5LMCZA\n3DWyE2EV3iM/AAATtUlEQVQh1Fo4blEQka7Orajr8Dy4lguIc6H5H/VY92Kgi/NEdBNgPHDUk9Cq\nmqGq6aqaDrwF3K2q757qzviziqpqJn+Zw6AOLRje2VoJxgSKNnHRXJeVxltL8kOitVBXS2EdnlbB\npap6plMIquu7YlWtAu4FZgFrgemqukZEJonIpNMJHYj+nZ3Ptj3l3HduF2slGBNgJo3oRJgIz8wO\n/tZCXU80X4Xnt/svReRjPHcPndTRTFVnAjNrTTvmqSdVvflk1h1IKqtqmDx7IwPSEqyPI2MCUNv4\naMZnpfL6wlzuGdWZlBZN3Y7kM3WN0fyuqo4HugNfAvcDrUVksohc0FgBg8E7y/IpKC3jh9ZKMCZg\n3TXS01p4bs4mt6P4VH0uNB9Q1ddV9TI8F4uXAQ/6PFmQqK5Rnp2ziV7t4xjZNXDvnDIm1LWLj+Gq\ngclMz84L6tHZTmowYFXd7dweeq6vAgWbWWt2sLn4AHeP7GytBGMC3J0jOlFZXcPL32x2O4rP2Ajx\nPqSqPDM7h4zEZozubaOqGRPoMhKbcXHvdvxr/lb2lh9yO45PWFHwobkbilldsJc7z+5oYy8bEyTu\nGtmJfRVVTF2w1e0oPmFFwYcmz95Im7gorhyYfOKFjTEBoXdyPGd3TeKlr7dQfqjed+kHDCsKPrIs\ndzfzN+3ijrM6EhUR7nYcY0wDumtEJ4r3V/DvJfluR2lwVhR85JnZG4mPiWR8VprbUYwxDWxox5YM\nSEvg+a82UlVdZ9dtAceKgg9s2LmPT7/dyU1npBMbVZ8RT40xgUREuGtEJ/JKyvhw1Xa34zQoKwo+\nMHnORmIiw7n5jHS3oxhjfOS8Hm3o0jqWybM3oqpux2kwVhQaWP7ug7y/fBvjs1Jp2ayJ23GMMT4S\nFibcNbIT63bs44t1wTNGmBWFBvbPrzYh4hn42xgT3C7r157khBieCaLWghWFBlS8v4Jpi/O4on8y\n7RNi3I5jjPGxyPAwJp7dkSVbd7N4y2634zQIKwoN6NV5W6isruHOEZ3cjmKMaSTjMlNp1awJk4Ok\nW20rCg2krLKafy3Yynk92tC5dazbcYwxjSSmSTg3Dkvny/VF5BTuczvOabOi0EDeWprP7oOH7FqC\nMSFowtA0oiLCeGFu4HeUZ0WhAdTUKC99vZm+KfEMTm/hdhxjTCNrFRvFVQNTmLGsIOC71bai0AA+\nX1fI5uID3H5WR+se25gQdduZGVRW1fCvAO8oz4pCA/jn3E0kJ8RwsXWPbUzI6tw6lnO7t2bqgq0B\n3VGeFYXTtDK/lEWbS7hleDoR4fbXaUwou/2sjpQcqOTtpYHbUZ4dxU7TP+dupnlUBNcMTnU7ijHG\nZUM7tqR3chwvzt1MTU1gPsxmReE0FJSWMXPVdsZnpdI8OtLtOMYYl4kId5zVkU3FBwK26wsrCqfh\n5a89t5/dPDzD5STGGH9xcZ92tIuP5p9zN7kd5ZRYUThFe8sPMW1xHpf0aUeydWlhjHFEhodxy/B0\nFm4uYVX+HrfjnDQrCqfozUV57K+osofVjDHfMz4rjdioiIBsLVhROAWHqmt4+ZvNDMloSZ+UeLfj\nGGP8TFx0JNcMTuXDVdvZVlrmdpyTYkXhFHy0egfb9pRbK8EYc1y3DE8HYMq8La7mOFlWFE7Bi19v\npmNiM87p3trtKMYYP5XSoikX9W7LGwtzOVBR5XacerOicJKW5e5mRV4pNw9PJyzMurQwxhzfLcMz\n2FdRxYwAepjNisJJmjJvC82jIrhqYIrbUYwxfm5gWgJ9U+KZMm9LwIzM5tOiICKjRWS9iOSIyEPH\nmH+9iKwUkVUiMk9E+vkyz+kq3FvOzFXbGZuZSmxUhNtxjDF+TkS4+Yx0NhYd4OucYrfj1IvPioKI\nhANPAxcBPYFrRaRnrcU2AyNUtQ/wO+B5X+VpCK8tzKWqRrlxWAe3oxhjAsQlfduRGNuEKd9scTtK\nvfiypZAF5KjqJlWtBKYBY7wXUNV5qnp4YNMFgN+ek6moqua1hbmM6taa9MRmbscxxgSIqIhwrstK\n44v1hWzddcDtOCfky6KQDOR5fc53ph3PbcBHx5ohIhNFJFtEsouKihowYv3NXLWd4v0V3HxGuivb\nN8YEruuHdiBchFfn+/9YC35xoVlERuEpCg8ea76qPq+qmaqamZSU1LjhHFPmbaVjUjPO7JzoyvaN\nMYGrTVw0F/Vpx/TFeX5/e6ovi0IB4N2fdIoz7Sgi0hd4ARijqrt8mOeUHbkN9Qy7DdUYc2puPiM9\nIG5P9WVRWAx0EZEMEWkCjAfe915ARNKAGcANqvqdD7OcFrsN1RhzugLl9lSfFQVVrQLuBWYBa4Hp\nqrpGRCaJyCRnsV8DrYBnRGS5iGT7Ks+pKtxbzocr7TZUY8zpCZTbU316TUFVZ6pqV1XtpKqPONOe\nVdVnnfe3q2oLVe3vvDJ9medUvLYwl2q121CNMacvEG5P9YsLzf7KbkM1xjSkQLg91YpCHew2VGNM\nQ/P321OtKNTBbkM1xjQ0f7891YrCcazML2VFXik3Du1gt6EaYxrUTcM6sK+iivdXbHM7yvdYUTiO\n1xbkEhMZzlWD7DZUY0zDGtShBd3bNmfqgq1+d3uqFYVj2FN2iPdWFDCmf3vioiPdjmOMCTIiwvVD\nO7Bm216W55W6HecoVhSOYcbSfMoP1TBhqN2GaozxjSsHJNOsSThTF+S6HeUoVhRqUVVeW5hLv9QE\neifHux3HGBOkYqMiuGJAMv9ZuY3Sg5VuxznCikItCzaVkFO4nwlD0tyOYowJchOGdqCiqoa3lvhP\nf0hWFGqZunAr8TGRXNavvdtRjDFBrke7OAZ1aMFrC3OpqfGPC85WFLwU7itn1uodXD0ohejIcLfj\nGGNCwIShaWwuPsC8jf7RSbQVBS/TF+dRVaNcb6eOjDGN5KLe7WjRNJKpC/zjCWcrCo7qGuWNRXkM\n79yKjkmxbscxxoSI6MhwxmWm8unanezcW+52HCsKh81eX0hBaRkThthtqMaYxnXdkDSqa5Rpi/JO\nvLCPWVFwTF2wldbNozivZxu3oxhjQkyHVs04u2sSbyzKpaq6xtUsVhSAvJKDzP6uiPFZaUSG21+J\nMabxTRiSxo695Xy+rtDVHHYEBF5flIsA4wennnBZY4zxhXO6t6ZdfLTrF5xDvihUVtUwfXEe5/Zo\nQ/uEGLfjGGNCVER4GOMHpzF3QzFbit0bgCfki8In3+5g14FKuw3VGOO68VmphIcJ0xa7d8E55IvC\nm4vzSE6I4ewuSW5HMcaEuDZx0ZzTvTVvLcnnkEsXnEO6KOSVHGTuhmLGZabaQDrGGL8wfnAqxfsr\n+HytOxecQ7ooTM/OI0xgbKYNpGOM8Q8juibRNi6aNxe706V2yBaFquoapmfnMaJrkl1gNsb4jYjw\nMMZmpjDnuyK2lZY1+vZDtijMXl/Ezr0VjM+yC8zGGP8yLjMVxXM2o7GFbFGYtjiPxNgozune2u0o\nxhhzlNSWTTmzcyL/zs6nupG71A7JorBzbzlfri9kbGaKPcFsjPFL4wenUVBaxtwNRY263ZA8Ir61\nxFN9r8m0J5iNMf7p/J5taNmsCW828jMLIVcUamqUaYtzGdaxFemJzdyOY4wxx9QkIoz/GZjMp9/u\npGhfRaNtN+SKwvxNu8grKWN8lrUSjDH+7ZrBaVTVKDOWNt4YziFXFN5YlEt8TCQX9mrrdhRjjKlT\n59axDE5vwZuL81BtnAvOIVUUSg5U8smanVw5INnGYDbGBITxg9PYVHyAhZtLGmV7Pi0KIjJaRNaL\nSI6IPHSM+SIiTzrzV4rIQF/mmbE0n8rqGjt1ZIwJGBf3aUfz6IhGu+Dss6IgIuHA08BFQE/gWhHp\nWWuxi4AuzmsiMNlXeVSVaYvz6J+aQPe2cb7ajDHGNKiYJuFc0T+Zmau2s+fgIZ9vz5cthSwgR1U3\nqWolMA0YU2uZMcCr6rEASBCRdr4IszR3NzmF+7nWWgnGmAAzPiuViqoa3l1e4PNt+bIoJAPe7Z18\nZ9rJLoOITBSRbBHJLio69Qc5zu6axKV925/y940xxg292sczpn97WjRr4vNtRfh8Cw1AVZ8HngfI\nzMw8pUvwgzq05NVbsxo0lzHGNJa/jx/QKNvxZUuhAPA+V5PiTDvZZYwxxjQSXxaFxUAXEckQkSbA\neOD9Wsu8D9zo3IU0FNijqtt9mMkYY0wdfHb6SFWrROReYBYQDrykqmtEZJIz/1lgJnAxkAMcBG7x\nVR5jjDEn5tNrCqo6E8+B33vas17vFbjHlxmMMcbUX0g90WyMMaZuVhSMMcYcYUXBGGPMEVYUjDHG\nHCGN1R1rQxGRImDrKX49EShuwDiBJFT33fY7tNh+H18HVU060YoCriicDhHJVtVMt3O4IVT33fY7\ntNh+nz47fWSMMeYIKwrGGGOOCLWi8LzbAVwUqvtu+x1abL9PU0hdUzDGGFO3UGspGGOMqYMVBWOM\nMUeETFEQkdEisl5EckTkIbfz+IqIvCQihSKy2mtaSxH5VEQ2OH+2cDOjL4hIqoh8KSLfisgaEbnP\nmR7U+y4i0SKySERWOPv9W2d6UO/3YSISLiLLROQ/zueg328R2SIiq0RkuYhkO9MabL9DoiiISDjw\nNHAR0BO4VkR6upvKZ6YAo2tNewj4XFW7AJ87n4NNFfCAqvYEhgL3OP/Gwb7vFcA5qtoP6A+MdsYm\nCfb9Puw+YK3X51DZ71Gq2t/r2YQG2++QKApAFpCjqptUtRKYBoxxOZNPqOpXQEmtyWOAV5z3rwBX\nNGqoRqCq21V1qfN+H54DRTJBvu/qsd/5GOm8lCDfbwARSQEuAV7wmhz0+30cDbbfoVIUkoE8r8/5\nzrRQ0cZrRLsdQBs3w/iaiKQDA4CFhMC+O6dQlgOFwKeqGhL7DTwB/BSo8ZoWCvutwGciskREJjrT\nGmy/fTrIjvE/qqoiErT3IYtILPA2cL+q7hWRI/OCdd9VtRroLyIJwDsi0rvW/KDbbxG5FChU1SUi\nMvJYywTjfjvOVNUCEWkNfCoi67xnnu5+h0pLoQBI9fqc4kwLFTtFpB2A82ehy3l8QkQi8RSE11R1\nhjM5JPYdQFVLgS/xXFMK9v0eDlwuIlvwnA4+R0SmEvz7jaoWOH8WAu/gOT3eYPsdKkVhMdBFRDJE\npAkwHnjf5UyN6X3gJuf9TcB7LmbxCfE0CV4E1qrq416zgnrfRSTJaSEgIjHA+cA6gny/VfVnqpqi\nqul4fp6/UNUJBPl+i0gzEWl++D1wAbCaBtzvkHmiWUQuxnMOMhx4SVUfcTmST4jIG8BIPF3p7gQe\nBt4FpgNpeLodH6eqtS9GBzQROROYC6ziv+eYf47nukLQ7ruI9MVzYTEczy9501X1/0SkFUG8396c\n00c/VtVLg32/RaQjntYBeE7/v66qjzTkfodMUTDGGHNioXL6yBhjTD1YUTDGGHOEFQVjjDFHWFEw\nxhhzhBUFY4wxR1hRMH5FRH7h9Pa50ukFcoiPtzdbROo94LmITBGRAhGJcj4nOg9QNUSWkYd7+2wo\nInK/iNx4gmX6iMiUhtyuCVxWFIzfEJFhwKXAQFXtC5zH0X1W+Ytq4Fa3Q9Tm9Abs/TkCT87X6/qe\nqq4CUkQkzYfxTICwomD8STugWFUrAFS1WFW3AYjIr0VksYisFpHnnSeYD/+m/zcRyRaRtSIyWERm\nOP3K/95ZJl1E1onIa84yb4lI09obF5ELRGS+iCwVkX87/SgdyxPAj5yDrvf3j/pNX0SeEpGbnfdb\nROTRw33gi8hAEZklIhtFZJLXauJE5EPxjP3xrIiE1ZXNWe+fRGQpMLZWznOApapa5fV39SfxjL/w\nnYic5bXsB3ieDDYhzoqC8SefAKnOAesZERnhNe8pVR2sqr2BGDwtisMqnX7ln8XzeP89QG/gZudJ\nT4BuwDOq2gPYC9ztvWERSQR+CZynqgOBbOB/j5MzF/gauOEk9y9XVfvjefJ6CnA1nrEffuu1TBbw\nAzzjfnQCrqpHtl2qOlBVp9Xa3nBgSa1pEaqaBdyP52n3w7KBszAhz4qC8RvOuACDgIlAEfDm4d+0\ngVEislBEVuH5DbiX11cP92O1CljjjK1QAWzivx0h5qnqN877qcCZtTY/FM+B+BvxdEN9E9ChjriP\nAj/h5H6GvHMuVNV9qloEVBzuvwhY5Iz7UQ284eQ8UbY3j7O9dnj+Hr0d7ihwCZDuNb0QaH8S+2KC\nlHWdbfyKczCcDcx2CsBNIjINeAbIVNU8EfkNEO31tQrnzxqv94c/H/4/Xrs/l9qfBc9YBNfWM+cG\n5wA9zmtyFUcXieijv3XKOU+U7cBxppfVkaGao3/+o53lTYizloLxGyLSTUS6eE3qj6dzr8MHtmLn\nXPrVp7D6NOdCNsB1eE7/eFsADBeRzk6WZiLS9QTrfAT4sdfnrUBPEYlyfvM/9xRyZjm9+YYB1zg5\nTyUbeEaf61zP7XbF09umCXFWFIw/iQVeEZFvRWQlnlMmv3HGCfgnnoPWLDxdoZ+s9XjGbV4LtAAm\ne890TuPcDLzhbHs+0L2uFarqGmCp1+c8PD1Vrnb+XHYKORcDT+E5oG8G3jmVbI6PgLPrud1RwIcn\nndYEHesl1QQ98QzP+R/nInVIEZF3gJ+q6oY6lokC5uAZ0auq0cIZv2QtBWOC20N4LjjXJQ14yAqC\nAWspGGOM8WItBWOMMUdYUTDGGHOEFQVjjDFHWFEwxhhzhBUFY4wxR/w/H6igK+FfyYwAAAAASUVO\nRK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Welch window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\Haroon Rashid\\Anaconda3\\lib\\site-packages\\ipykernel\\__main__.py:4: RuntimeWarning: divide by zero encountered in log10\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsvXeYZFd55/95K1dXV+cwWROUhQCBEBhMBhMMyGkXbGBh\nvQs2Bi+/BRsMmF17sRzWNrZZwQK2scGkFWAwJgkEiiiMRkgahZFGEztM51hdOZzfH/eeW/feqttT\n0zM9HeZ8n6efrjo3nVv33PM9bxalFAYGBgYGBitBaK07YGBgYGCwcWFIxMDAwMBgxTAkYmBgYGCw\nYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWDEMiBgbrGCJymYg8JCIZEflvLR6jROTi1e7bmUJE\nTojIK1rY75z3X0Q+LSIfXeGxbxeRu85lfzYTDImsI9gvWV5Ellx/29a6XwZrig8Atyql0kqpT/g3\nishtIvJfV+PCInKziHzQ9X27PcE3a9uyGn04V1BK/bZS6mNr3Y/NCEMi6w+vV0q1u/5O+XcQkcha\ndGytcKHdrw8XAY+t0bXvAF7k+v4i4IkmbU8ppcbPZ8cM1g8MiWwAiMhue7X3X0RkCPiJ3f48Eblb\nROZF5GEReYnrmD0icrutBvmRiNwoIl+0t71EREZ813BUDSISEpE/EJGjIjIjIjeJSI+vL28TkSER\nmRaRj7jOExaRD9vHZkTkARHZKSKfFJG/9l3z2yLy3wPuWYnIu0XkKeApu+1y+15mReRJEfmPrv1f\nKyKP29ccFZHfc9+r3adp+z7f7DquU0S+ICJTInJSRP5QREL2treLyF0i8lciMicix0XkNa5j3y4i\nx+xrHved9zdF5JB93M0ictEyz/cNIvKY/RxvE5Er7PafAC8FbrSl0kt9x90AvNC1/UbX5leIyFP2\nOT8pIrKCvt0BvED/Hva1/ha41td2h+vcrxNL/TZvj82nB9xz03HSSv9d50iIJbn32d8/IiIVEemw\nv39MRP7W/vzPIvIn9mc9Jt4vIpMiMiYi/9l13l57bC6KyH5gn++6zxeR+0Vkwf7/fLv9pSLyiGu/\nH4nI/a7vd4rILwX81hsXSinzt07+gBPAK5q07wYU8AUgBSSB7cAM8FqsxcAr7e/99jH3AB8H4lir\nxQzwRXvbS4CRoGsD7wXuBXbYx38G+IqvL39v9+MZQBG4wt7++8AjwGWA2Nt7geuAU0DI3q8PyAGD\nAb+FAn4E9NjXSQHDwH8GIsA1wDRwpb3/GPBC+3M38CzXvVZcv8WLgSxwmb39C8C/AWn73g4D/8Xe\n9nagDLwDCAPvsu9B7P4sus6zFbjK/nw9cAS4wu7rHwJ3B9znpXZ/XglEsdRXR4CYvf024L8uM2Ya\nttu/3XeALmAXMAW8egV9iwN54Br7+6PAXuCnvrb/ZH++BpgEnmv/Xm/DGlfxJmOs6Tg5Xf+b9PEO\n4Fftzz8EjgKvcW37ZfvzPwN/4hsT/8v+zV+LNRa77e1fBW6yn/HTgFHgLntbDzAHvNX+/X7d/t6L\nNU4LWGM7CkzYx6btbXl9j5vpb807YP5cD8N6yZaAefvvW3b7bvvF2uva94PAv/iOv9l+cXfZL0nK\nte3LtE4ih4CXu7ZtxZpMI66+7HBt3w+8yf78JHB9wP0dAl5pf34P8L1lfgsFvMz1/Y3Anb59PgP8\nT/vzEPBbQIdvHz1huH+Lm4CPYk10JWwisrf9FnCb/fntwBHXtja7X1vsCWYe+FUg6bvm97GJyP4e\nsiepi5rc50eBm3z7jgIvsb/fxspI5Od99/sHZ9o31/nfizV5Dtttf+5qq+ljgf8LfMx3/JPAi5uM\nseXGSWD/m+z7MeAT9tgct/v150AC16RNI4nkgYjrPJPA8+wxUQYud237U+ok8lZgv68P9wBvtz/f\nCfyKfa4f2n1/NZZEefBs54j1+GfUWesPv6SU6rL//KLvsOvzRcB/sMX9eRGZB34ea8LfBswppbKu\n/U+eQR8uAr7pOu8hoAoMuvZx68BzQLv9eSfWarAZPg+8xf78FuBfTtMP//0+13e/b8aa0MGazF8L\nnBRLjfdzrmOb/RbbqK8YT/q2bXd9d+5TKZWzP7bb53sj8NvAmIh8V0Qud/X171z9nMVabbvPq7HN\nfX2lVM2+72b7ngmCns+Z9A3qdpEXYkkgAHe52oaVUrr/FwHv9z2jnVj36Mdy42S5/vtxOxYpPAtL\nsvkRlrT5PKwFwEzAcTNKqUqTa/RjEZJ77LnHxzYa3yX3mNH9eZH9+Ta7Py+2v286GBLZWHCnXB7G\nkkS6XH8ppdSfY6l2ukUk5dp/l+tzFmtVDVj6aayXx33u1/jOnVBKjbbQx2F8OmQXvghcLyLPwFKn\nfOs05/Lf7+2+PrUrpd4FoJS6Xyl1PTBgn/cm17HNfotTWOqwMtbk597Wyn2ilLpZKfVKLOJ+AkvF\np/v6W76+JpVSdzc5zSn39W3d/85W+4D3N2oFZ9I3sEjkhViT4p1220+BF9htd7j2HQZu8J27TSn1\nlYB+BI2TM8HdWCqxX8YaH49jPcPXsrJJewpLcnXbZ9zvjud5ubbr5+UnkdsxJGKwTvFF4PUi8irb\nSJmwDYY77JXhAeCPRSQmIj8PvN517GEgISK/KCJRLL143LX908AN2uAqIv0icn2L/foH4GMicolY\neLqI9AIopUaA+7EkkG8opfJncL/fAS4VkbeKSNT+e46IXGHf45tFpFMpVcayVdR8x+vf4oXA64Cv\nKaWqWGRzg4ik7ft9H9ZvuyxEZFBErrfJqYilhtTX/DTwIRG5yt63U0T+Q8CpbgJ+UURebj+L99vn\nC5rU/ZjAslO0ijPpG1iqmi4syfFOAKXUHNZk+xa8JPL3wG+LyHPtZ5+yx1i6yXkDx8mZwJYOHwDe\nTX2SvhtLQjzjSdseE/8K/JGItInIlVgqYo3vYY3D3xCRiIi8EbgSa3zqa1+GZQPcr5R6DFuKxvtb\nbRoYEtmgUEoNYxlJP4z1Qg9jGSv1M/0NrIE7C/xPLAOyPnYB+B2sF3kUSzJxe2v9HfBt4IciksEy\nsj+3xa59HGti/CHWZP6PWEZFjc8DV3N6VZYHSqkM8AvAm7BWg+PAX1Anv7cCJ0RkEWsCebPr8HEs\n4+cp4EvAbyulnrC3/S7W/R/DUtN8GfhcC10KYRHOKazf+MVYhneUUt+0+/ZVuz+PAq9pdhKl1JNY\nk/H/wZKMXo/l5l1qoQ9gPatfE8vTqiGOpMn1Wu6bvX8Wa5KO2ftq3Ikl9d3h2vcAlhPCjVi/9xEs\nu1IznG6cnAlux1JL7nd9T7PySfs9WKqtcSxbyj/pDbZ67HVYZD+D5QjxOqXUtL09C/wMeMz1DO8B\nTiqlJlfYn3UNsY1BBpscIvJHwMVKqbecbt9V7seLsFb6F6nzMPjEcnv+olJqx2pfy8DgQoSRRAzO\nG2x1zXuBfzgfBGJgYLD6MCRicF4gVgDdPJYR+m/XuDsGBgbnCEadZWBgYGCwYhhJxMDAwMBgxdj0\nie36+vrU7t2717obBgYGBhsKDzzwwLRSqv90+216Etm9ezcHDhxY624YGBgYbCiISEtZLow6y8DA\nwMBgxTAkYmBgYGCwYhgSMTAwMDBYMQyJGBgYGBisGIZEDAwMDAxWjA1HIiLyarFKox4RkT9Y6/4Y\nGBgYXMjYUCRi1734JFbW0SuBX7dTNRsYGBgYrAE2WpzIdVjVyo4BiMhXsdKhP36uL3T3kWl+72sP\n8/pnbCMe2VBcu/khstY9MPDBPJH1hXuPzfCLT9/Kf/q53at+rY1GItvxlq0coUmdCxF5J/BOgF27\ndvk3t4Qv3TfEqYUCn7njmH3OFZ3G4BzDpHozMGgN9x2fNSSyUiilPgt8FuDaa69d0bRz429cw2se\n2cLvfuVB3vZzu/mjN1x1TvtoYGBgcK5x4MQsv/bpe3j9M7bxl7/29PNyzY2mpxnFW/t4B63Xoj4j\niAive/o23vLci/jCPSc4OZNdjcsYGBgYnDP8yXcPsaUjwV/86tUkouHzcs2NRiL3A5eIyB4RiWGV\nSv32al7wPS+7mHBI+KefnljNyxgYGBicFQ6OzPPQ8Dzvesk+2mLnT8m0oUhEKVXBqn98M3AIuEkp\n9dhqXnOwI8Grn7aVbz00SrlaW81LGRgYGKwYX9k/RDIa5peftf28XndDkQiAUup7SqlLlVL7lFI3\nnI9rvuEZ25jPlbn76Mz5uJyBgYHBGaFaU9z82AS/cNUgHYnoeb32hiORtcALL+kjFQvzw8fG17or\nBgYGBg14eGSe2WyJl18xeN6vbUikBSSiYZ67t5d7jCRiYGCwDvGTQ5OEQ8KLLzltDalzDkMiLeL5\n+3o5Np1lbCG/1l0xMDAw8OC+4zNcvb2Tzrbzq8oCQyIt43l7ewHYf3x2jXtiYGBgUEe5WuPgyALP\n2tW9Jtc3JNIiLtuSJh4J8cjIwlp3xcDAwMDBobFFipUaz7qoa02ub0ikRUTDIa7c1sFBQyIGBgbr\nCA8OzQNwjZFE1j+esaOLR08tUK2ZBE4GBgbrA4+fWqQ3FWNbZ2JNrm9I5AxwxdY0uVKVkbncWnfF\nwMDAAIDDkxkuGWxH1ihLrCGRM8DFA2kAjkwurXFPDAwMDEApxZGJJS6x56a1gCGRM8DFA+0APGVI\nxMDAYB1gYrFIpljhksH2NeuDIZEzQGcyykA6biQRAwODdYGnJjMARhLZSNjX387RKUMiBgYGa4+j\n9oJWa0nWAoZEzhA7e5KMzpmodQMDg7XH8FyeRDREX3tszfpgSOQMsaO7jclMkUK5utZdMTAwuMAx\nOpdnR3fbmnlmgSGRM8b2riQAp+aNNGJgYLC2GJnPsaM7uaZ9MCRyhtAPbNSQiIGBwRpjZC7vLGzX\nCoZEzhDbbRIZMXYRAwODNcRSscJ8rsyO7rY17YchkTPElo4EITHqLAMDg7XFmD0Hbetam3QnGoZE\nzhCRcIieVJypTHGtu2JgYHABQ89BA2lDIhsO/ek400uGRAwMDNYO09kSwJq694IhkRWhrz1mJBED\nA4M1xYy9kO1tj69pPwyJrACWJFJa624YGBhcwJheKhIOCV3J818S1w1DIitAf7tlE1HK1BUxMDBY\nG8wslehJxQiF1i7QEAyJrAj96Tilao3FQmWtu2JgYHCBYnqpRN8aq7LAkMiK0N1mGbLmskalZWBg\nsDaYXiquuVEdDImsCJ22DnIhX17jnhgYGFyomMkW6U0ZEmmAiPyliDwhIgdF5Jsi0uXa9iEROSIi\nT4rIq9aqj51thkQMDAzWFvO5Ml1thkSa4UfA05RSTwcOAx8CEJErgTcBVwGvBj4lIuG16KCRRAwM\nDNYSSimWihXSichad2X9kYhS6odKKW2xvhfYYX++HviqUqqolDoOHAGuW4s+GhIxMDBYS+RKVZSC\n9rghkdPhN4Hv25+3A8OubSN2WwNE5J0ickBEDkxNTZ3zThkSMTAwWEssFa11dvuFKomIyC0i8miT\nv+td+3wEqABfOtPzK6U+q5S6Vil1bX9//7nsOgCJaJh4JMSiTSJz2RL3HJ2hVjNxIwYGBquDI5NL\nPDVh1VTP2OEF60ESWZMeKKVesdx2EXk78Drg5aoe0TcK7HTttsNuWxOk4hGypQpKKX7z8/fz4NA8\nH3rN5fzWi/etVZcMDAw2KYZmcrz2E3dSrSl+9N9f5EgixibSBCLyauADwBuUUjnXpm8DbxKRuIjs\nAS4B9q9FHwGS0TC5UpWh2RwPDs0D8C/3njRR7AYGBuccX7l/iFKlRrWm+NZDp1hyJJG1TXkC65BE\ngBuBNPAjEXlIRD4NoJR6DLgJeBz4AfBupdSaFTpPxcPkilXuOToDwG+9aC8jc3kOTyytVZcMDAw2\nKW59YpIXXNzL1ds7OXBilqWipUpfD+qsdUciSqmLlVI7lVLPtP9+27XtBqXUPqXUZUqp7y93ntVG\nMhYhV65ydGqJeCTEf7jW0rQ9NDy3lt0yMDDYZMiVKhyeyPDsi3q4dDDNsamsYxMx6qwNjLZomHyp\nwsmZHLt62tjblyKdiPDwyMJad83AwGAT4dDYIjUFV2/v5KLeNsYXC04W8fUgiax9DzYoUvEwp+bL\nZAo5LuptIxQSLh5o5/hUdq27ZmBgsInw+JjlkXXVtg5yJUsCOTS2CFgOPmsNI4msEMlYhHy5ylSm\nyECHVZ5yd2+KkzOGRAwMDM4dhmayxCMhtnYm2GLPNSdnc4RDQiyy9lP42vdgg6ItGiZbrDCfL9Nt\n59La3Zvi1EKBQnnN7P0GBgabDMOzeXZ0JxEReu2svRMLBWLh9TF9r49ebEC0xcNMZopUa4qupPVg\nd/e1AXByJrfcoQYGBgYtY3gux84ea27RZSjGFwvrQgoBQyIrRlusnvtRZ/Xd1pUErAdsYGBgcC4w\nPJtjZ7dFIl1tMcQuZGhIZIMjHqmTiK5xPJC2qoxNGhIxMDA4B8iXqiwWKmzptGwh4ZCQilnGdKPO\n2uCIuh6gzuk/kLYe9GSmuCZ9MjAw2FyYyVpzibv4lNaCxI0ksrERDYvzWQf8JGNh0vEIU4ZEDAwM\nzgHmslZkeo+LRLRbr1FnbXC4H2AyWldt9afjTC1ZJDKbLfHiv7yVX/rkTylWjMeWgYHB8vjM7Ue5\n6n/8gO8eHANckki7m0Ss+caQyAaHW52VcJFIRzLqpIj/yv4hTs7keGh4npsfmzjvfTQwMNg4WCpW\n+NtbniJbqvI3txwGrIUoQE8q7uzXZmwimwPuB+jWTXa1RZ1iVXcfnebKrR30p+Pc/Nj4ee+jgYHB\nxsE9R2fIl6u84ooBjkwuMbFYqJOIq5Z6KmYkkU2BaKS5JNKZtEikVlMcHF7gWRd18dw9PTxkp4s3\nMDAwaIYDJ2aJRUK87fm7AXhiPMNMtkQkJHQk6+lNtGeoMaxvcMRchnX3w9QkMrVUJFOscNlgmmfs\n6GJ0Ps/0kjG4GxgYNMeTExn29bfztG2d1vfxReZzJbraoojU5xu9gF0vksjaZ+/aoHDbREKh+gPu\ntG0iI3NW1Pr27iThkLXv0ckl+trjGBgYGPjx1MQS1+7upjsVo6styshcnmyx2pCpN2rPNzFXrNpa\nYn1Q2QZENMCo1ZmMUlPw5LhVnGp7Vxu7e+10KLMmHYqBgUEjlooVRufzXDqYBqzA5YnFAtlixTGk\na+i5Z70Y1o0kskIEiZI6ZuTwhJW+eVtXgmQ0TCQkJsOvgYFBU5yazwM4ObIG0gkmM0XikZDj0qsR\nCWtJZH2QyProxQZEkCSStFcNo/N5YuEQ7fEIkXCILZ0JTs3X06EopUy2XwODCxS1mqJWU873CTtV\nkk71PpCOM7lYJFeqNtQM0XOPMaxvcERcdhA32mxPrfGFAh3JukFsIB1nMlMnkQ98/SBP/+Mfcsfh\nqdXvrIGBwbrBUrHCyz9+Oz/35z92nG0mFq3/gx2WzbS/I85UpshSseLkytLQ2TKC5qDzDUMiK0Q4\niERsH+6xhYLHLa/fXllY2/J87YERSpUaN/7kyOp31sDAYN3g3x4a5fh0lonFIjcdGAbqkojOv9eR\niFKq1pjLljwZw6EuiQTNQecbhkRWCAl4fm226Dm9VKTTzu4L1uDQ6VC09PGqqwZ5YGiOxUJ5dTtr\nYGCwbnDL4xNc1NvGFVs7+OmRacAikY5EhKRNGB22bXUuV25QZ0W0Kn19cIghkZUiFMAinjojLhLp\nT8eZz5UpVqocGsuQioV56/N2U60pHjSBiAYGFwweGV3kObt7uHp7B4fGMiilmFysl9kGSCfqc4ff\nsK5j1Nw2lbVEoHeWiHyiheMXlVJ/eA77s2EQRCLuZIwdroGgS+gu5iscGlvksi1prtzWAcBTExle\nfGn/KvbWwMBgPWAqU2R6qcgVWzsICdx0YISppSLz+ZIntYlbFR7k4lutnZ8+nw7LufheD/yP0xz/\nB8AFSSJBLtrxaH2DeyB02FLJYqHM6Hye5+zuoScVo689zpPjmVXtq4GBwfrAE+OLAFyxJU3Bzuw9\nOpdnMV9hW1ddEmmP1xegfi8src6qqXUuiQB/o5T6/HIHi0j3Oe7PhoEESCLuAKBmUsl8rszEYoFB\nW3Td25fyBCHWaop7js3w9B2dHpHWwMBgY0Epxf7js1wymHbqgQzZ7/qe/pSTXHF8ocBioczlibRz\nrHvu8MeDaO+s6jpRZwXaRJRSf3u6g1vZZ7MiSJ3lfuDuErpaKjk5k6VcVWy1y11u7UowtpB39rvx\n1iO8+R/u4x1fOLAa3TYwMDhP+Or9w7zxs/fyxs/c40z44wsFwiFhIJ1ga2cSsDw5F/NlR1sBXo2G\nPzJdzz2V9U4iIpIQkbeJyBvEwgdF5Dsi8nci0rfaHROR94uIcl9LRD4kIkdE5EkRedVq92E5BHnX\neeuMuFRbtlTxpB3JriWRbV1JxhcKVGsKpRRfe8By+bv32CzHp02Eu4HBRsWX7xsC4KnJJR4atpxn\nxhYK9LfHCYeE7rYosUiIsYU8mWLF8cgCSLgWoEGBzUEeoucby3lnfQH4BeA3gduAXcCNQAb459Xs\nlIjstK895Gq7EngTcBXwauBTIrJmGciCJBF3AJBXErFI5OS0Jc7qSmXbupKUq4rppSLDs3mGZ/O8\n80V7AUwgooHBBsVCrswjowv85gv2AHDvsRnAcuXdYmshRITeVIyh2RxKESyJ+NRZWv5YJxyyLIlc\nqZR6M/BrwGVKqXcrpX5ge2PtXOV+/Q3wAeq/F1iG/q8qpYpKqePAEeC6Ve5HIEIBoojbVtJMEhm1\nc+ToHFv9NplMLxUdo9trnraFvvY4j4wunPuOGxgYrDoeO2W9uy+5rJ/dvW08Pma922MLBSe1CVhh\nAMOz3jkBTiOJ2Ab1jSCJlACUUhXglG/bqiV9EpHrgVGl1MO+TduBYdf3Ebut2TneKSIHROTA1NTq\nrOZbCRZ1SyKJaAgRGLcjU7XRvNt265vLlp2kjZcMprlia9ohFQMDg40FTRpXbutgd1+KE7Zq2nKq\nqZeD6EhGnTnB7crrlkT83ll1SWR9sMhy3lk77FgRcX3G/t508m4VInILsKXJpo8AH8ZSZa0YSqnP\nAp8FuPbaa1fF+hRuYRngHggiQjIaZipjRa3rVUe37bUxlysxMpenrz1OezzCJQNpvrJ/CKUUIsJc\ntsTb/mk/WzsTfOrNz143KQ8MDC50/L/7h/jEj4/wv66/ipdfMQhYWbz72uP0tcfZ3Zti//FZKtUa\nmUKFLlc8SFcy6nhpucnCbUxf7zaR5Ujk912f/a5CZ+U6pJR6RbN2Ebka2AM8bKuFdgA/E5HrgFG8\narQddtuaIMjF1424r2hMMhomV6oiAu32qsORRHIlW19qrVJ2dCfJl6vM5cr0pGJ85f4hDo4scHBk\ngduenHQGq4GBwdqhVKnxFz94ktlsib/4wRPOezm2UGB7t+V9tbOnjVypysicpbZyZ7Lw2kHq84Vb\nXR4Ne+eadRIe4iCQRE4XI7IaUEo9Agzo7yJyArhWKTUtIt8GviwiHwe2AZcA+893HzVaU2d5VxC6\nFnt7LOIMki47kn0uW2Z8sci2zrrXFlh1BnpSMW59YpLLt6QZmctzy6EJQyIGBusAB07MMpstcd2e\nHvYfn2VyscBAR4LxhQL7+tsB6LPtntrb0k0c7jRJiYDU7n7Dug4yXCeCyLJpT/4dr2HbA6XUG1al\nR8HXe0xEbgIeByrAu5VSa1aQI8g7yw2/ykkb2t0GtGg4RDoRYS5XYnKxwDW7ugDYbpPI6HyeK7d2\n8MjoAr9x3UUcn17iZydNri0Dg/WAB23X3fe89GL+0/H9PHByjtdcvZXxhQIvuNiKTuhNWdqFYzaJ\nuCURd1ChWxJxI1idtT5oZDl11l/Z/38Fy37xRfv7rwMTq9kpDaXUbt/3G4Abzse1T4cg7yw3/CSi\nM3S2J7w/ezoeYbFQZiZbcmqwD9pqrcnFAsNzOQrlGpcOtpOIhrjzqWmKlaqjLvvZ0BxDMzmuf+a2\ndTOwDAw2Gx4anufo5BK/fM125/1/dHSB3b1tXLvbSt5xbDpLplAmU6w4AcXanf/YlFUy20MiLkkk\nqMhUg4vvBlJn3Q4gIn+tlLrWtenfReSCD6duRZ3ln8/1qiPhW3Gk4hGn1ogOOKrbSsoctQffJYPt\ntMUjVGqKY1NZrtjawWy2xJs+cy+lao1KTfFrz95xNrdlYGDQBAu5Mv/x0/dQqtaoKsV/vNYyz56c\nybGnL0VbLMJAOm7XCbGrFPpIpK7Oqk+7HkkkgET8Wg/HO2udrBdbSQWfEpG9+ouI7AFSq9eljYFW\n1Fn+fTR5+AdLKh5xUp9oVZdWc81mS4wvWASzrSvJLrsG86htpPvJE5OU7HSe//bQmvkZGBhsanz/\n0THnPfv3h+sRD8NzOacu+u6+FCdnsszlrPpAOl+Wzs57csYKNHbnxHNLIv7FpYZfo6Ecm8j6YJHl\n1Fka/x24TUSOYdlyLgLeuaq92gBoxcXWTyI6mt0vnqbiYY5MWtKGO3tnTyrmeG2JQJ+dLgHqQYt3\nH52mrz3G9c/czr/cc5JSpdZwfgMDg7PDfcdnGUjHedVVW/jGz0aoVGtkS1UyhQo7uy0S2dKR4ODI\nPAs2iWi1VSQcIhENMZO1FoNu6aM1SaR5nzaMJKKU+gGWJ9R7gf+GFb3+w9Xu2HpHKw/Q//B1Cme/\n628qFmGpWAG8Rvfuthiz2RKTmQK9qTjRcIi+VJxYJMQpm0Semljiiq0dPH1HJ6VqzVF9Adx3bIb/\n76sPOgRlYGCwPCrVGjd893E+eau3bPXDw/M8c2cXz9zZRa5U5cRMlmE7I+8O25W3JxVjZqnEQt4i\nEXc9ofZ4hELZkmTcZOGxiQRIIq1oPdYSyyVgfJb+bKcaedj+Kzbb50JDKw/Wb+TW/t7+rJztrvKX\nXhKJ2pJIkYG0ZWgPhYQtHQnGFgrUaoojk0tcOpjmyq1WgatDdqRstab44DcO8q2HTvHH//7YCu7Q\nwODCw7cfPsXf33mcv7z5SQ6cmAWgXK1xYibLZVvS7Om3NPknZ3KML1i2D+2O39ceI1OsOGWw3QZ0\nd4nboKAh4LuPAAAgAElEQVTCQEmkQZ1l/V8v1LKcJPJPItItIj1Bf8A/nq+Orje0ZhPxfo+ErJ/b\nr25yR7a7SaQjGSVTqDCXKzn6VairuaaXiuTLVXb3pbioN4VIXe/6xPgiJ2ZyDHbEufvojCNiGxgY\nBOO7B8foa48RC4f4waPjgJW+vaZgZ3cbu3stEjkxk2M2Z0Wa63ez1/asPD7VGA+SsoOLIyGp10jH\nOxcEufL65xHFxsmd1Qk8cJq/C3ZmasU7y2830TYR/4rDrd7y1laOkC1WWSpUAiUUgMG0peIaSMcd\nW8mBE3MAfPDVl1OtKR4YmnWOL5SrfOm+k5ycManmDS5MFCtV/t/9Qx71b62m2H9illdeuYWrtndw\ncMRKouiorXqSdLdFScXCDM/mmLdJRKcu6rX/H5teIh2PeN5/rW3wG8/9WolmaPDO0pLIOmGR5Vx8\nd5/Hfmw4tPIAGwzr4eaG9SAdaSoWJlusEAmJR+XVnYpxeGLJcSV01ybRtpInxjN0t0V5xZWDzveX\nXW59vvEnR7jx1iPs7m3jx+9/icnDZXDB4dO3HeNvbjnMju4kt//+SwmHhFMLeTKFCldv7yQaFr7x\nwAhKKYbnLBLZ2d2GiNCfjjObLZGIhomFQ6Tsd1arr0bm8p5FH0BbvLlnZrQFJxj/VLPOwkRacvE1\nWCH8D1+LsX4S8VZDrH9OxSPky1UW8mWPhNLTZnttZbwkst1FIidnsuzuS9GRiLK9K+nUcVdK8Y2f\njQCWSP7g0Ny5uFUDgw0DpRQ3HbASgo/M5Z2CUTqOY3dfG/v628mWqkwvlRidyxOSetxHTyrGTLbI\nXLZEdyrqLCi13WN6qUgi1lzi8EsiQSosN4KSva6XpZ8hkVWEXxKJBrj4BhnatPSRL1c9Ue7dqRi5\nUtWpQ6Bz8/S1x5mxM4KenMk5+tuLetsckXxkLs/YQoH3vfJSwHJd1KhUa/zlzU/wL/eeXOktGxis\nKzw6usAHv37QUyV0ZC7P6Hye99vvwN1HpgGcdO17+9o9aYdmsiW622LOhN/bHmdmqcRcruQEBUP9\nfS1XlaceCNTf+QZJJHzmGg21zqpSGRJZRfgfftg2rEd86iM3qbjVZG6Pjg6fwR2sAd4ejzgSTndb\njEyhQrFSZWwh77wIlprLklp0sZwXXdrP3r4UB0fqebi+/fApPnnrUT76rUd51BTEMtjgUErxvpse\n4v8dGOaj33rUadfF3l56+QA7upNOyerj0zmS0TCDHXHH42p0Lm+Rhcuxpa89xvRSicVC2ePG6/HA\nijbXNvjdeFuRRPzzSG2dBRue9g7s+upvEZH/YX/fZadmNzgN/KYGverwDwp/3IiGuzKi2yaidbAT\nCwWvwT1ll+CdyVFTdQllW1eSiUyBcrXGUdtz5NLBdvYNtHNsqr5C+/eHT9GZjBISHM8UjWyx4qjK\nDAzWG3KliuNUovHkRIbDE0v0pGLcfXSaTMHyA6qrrVJcOpjmqQnLuD62kGdbVwIRcRZgYwt5ZrMl\nutsag4BzparHhul+R/2SSDxAEmnJyzNgll4ndvWWJJFPAT+HlXgRrBrrn1y1Hm0i+P27tWHdb5QP\nijB3k4tbnaVXPGOLea/B3Rat9UuhXQ63dSZQyqqqNjKXpzcVoy0WYV9/OydmslSqNZRSPDQ8z6uv\n2sLV2zu57/iMc95Cucqr/vYOXvyXt3okFwOD9YBqTfErn7qbn/+Ln/BTWzUF8MBJy973+6+6jJqC\nA/b3E9NZ+tNW8bc9fSm7xrliZqmeALUjaXlXzWZLzOfKHrVVOhGlWlPMZkveVO7RkOOk0iCJODYR\nb7tfK9EMQUSzTjikJRJ5rlLq3UABQCk1B8SWP8QAgtVZ/ocfmL3TJeq2NVnxTCwUPZKI9lfXEeo6\n8Ztun8+VGZnLOcVydvW0Ua4qJjNFRufzzOXKPG1HJ8/c2cWhsYyTo+fHhyYZmctTrio+f3ejvaRW\nW2/+IgabFZVqrWG83XtshifGMygF/3z3Caf94PACXW1RXvu0rQActp1LTsxk2WPbC7d0JMiXq2SK\nFaaXivTZQb0iQlcyyny+zGzWG6elF3FTmaJHEhERpyZIkE3Eb1hfSfoktYFqrGuURSSM7VkmIv1A\nbVV7tUngHx/ay6Lmy+UcKIlE3Qb3+uDThFKq1mh36WR1gasjtu+7XlVpfe5stsSp+bqtRFdRnFgs\nOEGKF/e3s7e/naVixSnle9eRaToSEV511SD3HqtLKAB//v0nuPyjP+Dmx7zqLwODc425bImX/fXt\nvPJvbndUUwC3H54iFg7xy9ds575jM1Rtkjk+k+Xi/nY626L0pGKcsOOiRubyTtLEAbve+cRCgaml\nIn0usuhsi7KQKzOfL9PpUmelbRIpVmqexR24bR/NbSL+uJBWSkr41VnrLRV8KyTyCeCbwICI3ADc\nBfzpqvZqk6BRErH+V30rqUiA0jMWENkalCZFt4/Yfu2aVNwleGddNUsG0pbL4mSm6ByzozvpVGTT\nZHRwZJ6n7+jieXt7GZ3PO+keZrMl/uHOY5SqNW78iTfXEFi1UIyUYrASzGZLFCvemnP/+uAoQ7M5\njk5l+dZD9Uy6B0fmuWJbBy+4uI/FQsWxeYzO5Z28Vrt72zg2lXXUVv22xLHFdo8fnsuRKVScdwOs\n92ZqqUipUnMizsFrQG+LeeNBYkGSiL0IbHD7Pyt11voQRVpJwPgl4APAnwFjwC8ppb622h3bKNA5\nq5rB/+z1qqOq/CTSfDC4PTncJOIWidNNBrSWIDSpaKPgbNZKDqfJRceXTNq2knBI2NqZcF68sXmL\nBJ6aXOKKrWkuG0wDOFG+9x6boVJTvPzyAR4ZXXCuC3DT/cNc96c/5sPffCTg1zEwaI6fHpnm2j/5\nEW/9x/2O6gbgx4cmuHxLmu1dScctF6xA2qu2dbDPzmt1Ytqy840vFthhZ9jd3t3G+GKBTLFCqVpz\nnE4G7HdAq4C7XBJHVzLqlGhwSxypePMsvOBWWzWXRCpV77u/kpISV2235pynbe887bHnA8slYHTn\nyJoEvgJ8GZiw2y543P+RV/CNdz0/cHuDJKLVWb7VeTjAVzwwUVvUbStplEQmM0VE6qshHUmrvba6\n2uppGkJi7T+2UGAgHScSDtVF/EyBaXsltqunjb22hKIrtP3s5BzxSIh3vMgqN+M2un/yNksyuenA\nMHN27Iq+95sODDvJ7QwuXMxlS/zjXcedzAsan73jGDUF+4/POuVnazXFIyMLXLu7m+v29DhG86Vi\nhflcmV09bezps0jk+HSW8cUC1Zpy7H997TGmM0VmlqyxqO2F2nV+zJau3Q4snW1RxmzXeG8mCbdU\n0jyo0O/Kq9/lcoMW4sxz8L3s8kHu/MBLefXTtpz22POB5SSRB4AD9v8p4DDwlP35gdXv2vpHfzru\nGVx+tJpOJGgguaUPT1R72OsR4v4cEihVarRFw47kE7ELXGmdcJdNKqGQkE5EWcyXmXMZD9tiEdJ2\ntcVhu/jVju42BjviJKNhTtj2k6NTS+ztb+fKbdbKSPvbD8/mOGmX660py6ai8a2HRvnA1w/yps/e\ny8xSXXIBa6Iw6q/NiWbP9SPfeoSPfedx3n/Tw05bqVLj3mMz/MqztgNwz1HLBjcylydTrPC0bZ1c\nMtjOZKZIplB2irNt70rS1Rajqy3KydmsExe13cmwGydbqjpBt7ruuc4Eocki5VuUVex+e2uhu9MU\n+dVZdvVSn51Te2YqnxaiFZtIsxRL2qazHhBIIkqpPUqpvcAtwOuVUn1KqV7gdcAFX0+kFQRJqv5B\nEUQ28YB0KB6Duy9QUb8E/sHdHo84cR46ngQsV8bFQoVZX/Rtf0ecyUzBsZVs704iIgx2xJ2V4/Hp\nLHvt1CpbOxOOa7FOI/Fff34vsUjII6F8/QEr5Uqlprj5sQmnPV+q8tpP3MmL/+pWpn3kYrCx8ZFv\nPsLVf3Qz97mcMhYLZef533Vk2llQHBpbpFip8YorBtnTl3LGks5ftbsvxd4+SyI+MZ1jdL4+PgH6\n2+NMZ0rM2gWgtMTRb9s6DtsLHb1gikVCxCMhR23ltje6F4hudZbHa9Inceg32S+JaK2E3yjeiiSy\n3tGKYf15Sqnv6S9Kqe8DwTocAwdBtZH9CDSsB5BIkMEd6one/GJ2WyzsrM46k3Wy6LAlkflc2aMP\n1i+jFv/7Xcb4yUyRak0xPJdnd5+1ItrZ3eaQ1LGpLCJWTfh9/e0ctsmlUq3x4NA8b3/+bvraYx6V\n1s2PjfPEeIbh2Txf3T/k6ftN9w/zji8ccF50g/UHpRR/9r1D/ME3DnoM4idnsnzpviGypSqfvO2o\n037/8VmqNcUfvOZyAO49Zo2FY9PWWNE1co7atgq3xKHH3MnZrNO+wyVxTC8VmbdLH+iFUV/a+q+l\ncX/JhWbqLE8FQteiLMg+CfV33O+2r8nC75m5GZKftkIip0TkD0Vkt/33EeDUaY8yCE7h7NsvaCAF\nkYVbBPZHu+v9/F4jqXi9emK7J51KvWaJm0Q6k1EWC2XmcyVCUk+10t8RZypTZC5XolpTjofXls6E\n8yIem15iW2eSRDTMpYPtjtHyyNQS+XKVa3Z1cc2ubh5ySSi3HJpgsCPOVds6uOOpuvprIVfmw998\nhB89PsHf3fKU556eHM/w+197mCfGF5v+fgbnHoVylRu++zg33T/sab/32CyfueMYX71/mH/92ajT\nrp/lSy/r575jMxTKFsE8YcdsvPHanYQEnrSf4dBMHhHLS3BHT5KRuTy1mmJ03mof7EgwaI+5qUyR\n8cUC4ZA4XlV96ThTS0WnzrkmEf1fL6RSPg/HSdspxOt51VwScb9z/txX+tX0Sxj6nfVLIusl1uNs\n0AqJ/DrQj+Xm+01ggHr0usEyCFxktOjm5yaXoFiSxmSOtiTis9W4db0JXxGsuZzlteWPys3Yaq6u\ntpjTl4F0nMnFguOJpV0lt3YlGF8oWKmzZ3Nc1GutFnd0Jx0jp05wt6+/nYsH2hmayVGpWiFHj51a\n5Jqd3Tx/Xy8PDc87btA/fmKCSk2xpy/FLYcmPTrlD3/zEb72wAgf+PpBz71OZYr87lce5N8eGsVg\nZTgxneU9X/4Ztz4x6Wn/0n1D/P2dx/nANw46zxPgB4+OkYiG6E/H+fGhuprywaE5BtJx3vicXRQr\nNSeb9LGpLIMdcbpTMXb1tDnpeE7OZtnSkSARDbOrp41StcZEpsDofJ4Bu25OZzJKNCxMZSyJoysZ\ndSZpS4IuMp8vEYuEnLGuJQ/tnu51k/eWsdVwSx/JAE/JiI9EdC4sv60jKEZsvbjpng1acfGdVUq9\nVyl1jf33XqWUca1pAX7bhwpQaAVJIm41V1CitrivXUsvfoO/W73lFsE7klFOzedRylvOsyMZsQzu\nPjVXbypGtlR11Ahuf/tStcZstsTUUr2c75bOJNWaYnqpyJBt1NzV28bu3jYqNcWp+QLZYoUTM1mu\n3NbBJYNpSpWaYwB9eHie9niEd75oL9NLRWeyGZ3P88DJOXpTMQ6OLHhUXZ+89Qj//vApfu9rDzPr\n8gzLFiv8yqd+yts+t59y1RsvO71U3NRJJ6cyRSf5phufv/sEP/8XP+Eul/QHcMP3DvGdg2P83tce\ndoge4PuPjDku47e4yOKBoTmefVE3r7higP3HZx2yPzaV5eKBdi4ZtGOPbKn02PSSY9vY19/uuI0P\nz+Yco7F2z7UyT+edpIghW/KYyhQbAgF7263xObFQoLutnqa9PW7toyUXt7qpo0lKIfASh1cScZGI\nTxUdDUhtpN9x/wxwQUgiInKriPzE/3c+OrfR4SeHujqrNcO6uz2opkBQZGzKp85yr6oSnkqKEbKl\nqr2Pt8JiplhhOlOkxyehQD2JnbaVaEPlXK7M5GLR8b/fav8fXygwNJujMxmlIxHlIqfMaJbhuRxK\n1SUUgKfsyebRU4tcubWDq22f+Kdsw+hDQ5Yq7AOvvgyA+2ydulKK7z4yxo7uJOWq4s6nppy+f/X+\nYX42NM/th6c8CSaLlSqv+8RdvO7/3MUdh+v7A/zwsXHe9rn9Tu169zHfOXiqqRPAXLbUQFKngz8A\nVd/L9FKxwaOnVlP84NFxh2g1SpUav/e1h/nYdx73HFOsVLn+xrv4xU/cxe2u+8sWK/zVzU8yMpfn\nr3/0pNOeL1W54/AUWzsTzGRLTs6pYqXKQ8PzvOm6XeztTznZCyrVGocnlrhyaweXb+lgsWBlO1BK\ncWxqib39KS7qaSMaFue5Hp/OOvXKt3YlHGeNsYWC41GlKwXOLJWYy5ad72AtXqaXiizYkoiGljhG\n5vJ0JWMN7TrflXuS95BFAHEkAwzrfklEv9sN2Sp0g1+dxcZHK+qs3wN+3/77KPAQluuvwWkQpM5q\nCEIMIAi3mitoxeJPoxCUdiHIu8vzorglFPulG53PeyQR/TKenLVIRKvAtBQzPJejWKk55KIL+Ywt\nFJhYLLLV/q4jhacyRccgv7Ur4dRA0RPk8eks+wba2WtPOHol+8joAtGw8IZnbCcWDnHI1qmPzueZ\nyhR5xwv3ko5HPPVSbntykn39Kbrboh41zS2PTzJuT2JfdNVSqVRrfOhfH+H2w1P86fcOeX7Pj//o\nMO/58oO84wsHPBP2o6MLPO/PfszrPnGXh0hKlRrX33gXL/zfP2lwbf7Qvz7CM//4hw2xM5/48RGu\n/ZNb+JsfHfa0f+GeE/z2Fx/gTZ+913ONbz98iq8/MMI/3nXcQxa3PD7JqYXG+7v/xCyZYoXr9vTw\n0PC8o6I8ODJPsVJzjN66X0cml6jUFFdu7eCKLR2Ow8TQbI5SpcZlWzociePwxBJzuTKLhQp7+tqJ\nhENO5c1ipcp8ruwsMAbSCeZyZUqVmidPlfas0upWd83y7raYlRwxX3LinsCltloseIzkFnFYn90q\nK6h7UsUiIY8ayhOb5Vp4uffxSyL6Go3ZKgLUWZtAFGlFnfWA6++nSqn3AS9ZzU6JyO+KyBMi8piI\n/G9X+4dE5IiIPCkir1rNPpwLtBKNCsEEEfKQyOljSaBOFv7BrfcT8RKKWyrxqLlsiWNiseAx0mtJ\nZNznzaJJRHvTaDVXt5P8seSZIHSiu6mlIqMun/7utiixSIiJTIFcqcJstsSO7iRtsQjbOhOOBHR8\neoldPW0kY2F297U5Ke21SuoZO7u4cluHo4Ov1RQ/OznH8/f18dw9vU4QG1iR9+3xCL/27B3sPzHr\nxDTcf2KOmWyJvX0p7jk64zgmVGvKMR4/ODTPMZdt4F/uOWnp/icy3PZkfSL/3iNjPDyyYHmfuYzS\nw7M5vrJ/iEyxwidvraeOqVRrfO6nxwH43E9PeMji63ZlytH5PPe7iOcHj44xkLZieX58qE6S9xyb\ndu7v/hN1VdMDJ+cIh4Tfeck+lKr/djre57o9PWzvSjpkod1jL9+S5pLBdobncuRLVScF+87uZH0R\nMJdzFgK7bPXUYNqSOKZtjz89BrTqc2QuR65UdcaIXqBYmXRLHsmiI2k7hGS9kohWW01mih7bn4jQ\nbo/jlJ9E9MLLtyBzSxl+iSOovU4i3v0cF1/f8RufQlpTZ/W4/vrsyXvV4u1F5KXA9cAzlFJXAX9l\nt18JvAm4Cng18Ck7MeS6RUNtZKeYjG+/s7hGQ6ld+0Xwe404kbSRkIeQ3MThlkT0iq5cVU3bT80X\nSEbDzgpLrwa13UNLL5pc5vNlZpaKTnr6VCxMMhpmOlNkbD5PxNZzO7EoCwVHQqknjEw4JYFH5+tJ\n9Pb21XXqOhByX3+Kvf0pJ7p+fLFAtlTlsi1pLt2S5sRM1vEUenhknqfv6OQ5u7uZz5UdN1Ado/D+\nX7iMik1CYAVZTmWK/O7LLgbg7qP1+IfbDk/yqqsGSURDnrTkdxyeojcV4+rtnfzEJQXd+qT1+WWX\nD3DvsVmHLB4cnmchX+aXnrmNpWLFufZCrsyjo4v8zkv2EQmJY8tQSvHg0DwvvrSf6/b0sN8lgT04\nNM8zd3bx7Iv0/Vm/0eGJDLt727hmVzdQ95h6YjxDRyLClo4El21JO+QxYlfS3GlHhysFo/M55zlt\n60rSn44jgk0WXueLAduzb1o7ZbTX2wGH8DWJJKJhUrEwE/az80vEi4Uyiz4JRY/PUqXWkJJESxxB\nJOJ/l9x2yCDnl6hvsabJIkhl7VdNbgJBpCV1ljty/R7g/cB/WcU+vQv4c6VUEUAppd+464GvKqWK\nSqnjwBFgXRfHCkycJv7vKx9JfluJfhH8K6SgVNTu1Zo3Ere5PjhIXaDJYmTOG7SVioWJhISFfJmZ\nbMnRa4sIfekY00tFq+hPqu4BZq1Y6xKKNqgOdljt+jo6x9e2rqQjGQ3P5uhqi5JORNnb185czorG\n15LK3v4Ulw2mUcpSzyilODK5xGVb0lxi5wbT+z4+tsj2riTP22tl+dH6fG2gft3Tt9HdFuVx+/tk\nxlLZXbenl2fu7PJIOw8MzfGc3T1ct6eHR0cXHBvIQ8Pz9LXH+dVn7SBfrvL4KUst95gtFbzzRfsA\nyzak+wTw3L29XDzQ7kz8k5kiM9kSV23r4PKtaY5NLzl1Yo5PZ7lksJ3Lt9i5z9x2ib52OpNRtnQk\nHFXh6FyeXb1tiAi7etocSePUQoHeVIxENOzkXRtfsJ6TiEXy0XCI3lTcQyI6T5X1/FztNrno6HEt\n8bjTrve0xxzpszPpJ5EKuXK1aZkEaBzrmiz8AYJaVeV3Xokso7bS8NszHRIJ8MBsNKxvfBZphUSu\nUErttSPYL1FK/QJw/yr26VLghSJyn4jcLiLPsdu3A27n9BG7rQEi8k4ROSAiB6ampprtcl4QWBvZ\nh7MZR0EFrhrUWboojr/iWoAkkgj4rNVcs9mSL97Em0FYE4yI0JmMMrNUJFOoeCYIKzCs5Lhpagx0\nWL7+OurYSZaXtianXMnKl6TJZaAjTq5UZalY8ZCLjmIeWyhwfKZeP3tnj9V+yq6fnStVuainzakx\noSWRo5NLXDrYTm97nJ5UjCOT9ZV6LBxiX3+KiwfqcTCHxqztV27t4NLBNMdskiqUqwzN5rh8a5rL\nt6QpVmqctK9xaCzD07ZbEz/Uk1s+MZ6hJxXjiq1pelIxpxaGjom5wia9p+w+aWK4dDDNxf3tlKuK\nodkck5kiuVKVPX0pR600NJujVlOcmMmxxw7c29aVcDzcxhbybO2sS3+ZQoWlYsVq7/LatMYXC0wu\nFuhNxZ1JeLAjzviCS22lYzgaUo9Yz1UvTLQU63Y170hEnf3dkkhHIkqpUqNaUy2NW+t78wWWXjz5\nJRGPOitIEglUZzWPE9mMWX1aIZG7m7TdczYXFZFbROTRJn/XAxGgB3geljH/JjlDulZKfVYpda1S\n6tr+/v6z6epZwT/u9Pjxi7pnsxbx/zKaLILquPtflKCXzm03aabOAq/bcCQcIhULOzmI3ATTmYw6\n9Uq6PSoJywPMMo76Ah3tKHrrmHrG1Uyh4rgX96W8OvXJxYJnAnTaMwWmFguExFKtaGP/+GLB43bc\nnYrRmYw6JDI6n3fcTPf0pZx7GJnLs707SSQc4uKBdsftWJ9rT1+Kff3tZOyaLFblPKv9Ulva0VLQ\n8GyO3b0pdna3EQ6Js+o+Np1lX38KEeGSgXYnLf/wbJ5kNEx/Os7F/e0Mz+YplKuMzNdznOlEmSdm\nsk6fd/W00ZOKkYqFGZrNMZcrUarUHFXhVpc0N7ZQYJv9G2lHiPGFAuMLBbZ01MkFLLXVXK5EjyuV\nTr8d8De9VKQ9HnHGVUfSm+xQq6HaHek2b48Lr8utlj6blYgG/xhuPm6hLnH43414gPTuXogF5biK\nBLje+wUXffjGlzsaEQnaICJbsFb6SRG5hvr9dwBnlf1LKfWKZa77LuBflaU83C8iNaAPGAV2unbd\nYbetW7TKfWcj0vpXPHV1VnPDul/8TgSQhcdWEmue5sHv5ZKMhZ3VZzrujjmJOt5PHiO9nc+rWBZP\nQrmORJQFO0ZFXNHyWorRE6022jsp7TNFZrNlnn2RnS9JG+8zRaaWivSk4lZ0cypOJCSMLxScc2qp\nZktHgsnFIkvFCgv5sqfd8QCbqxf22t6VZDZbolC2YmeiYWEgHXeCLYdmc8zYsSp7+lIOwY0vFpjL\nlVkqVtjZ00YsEmJHd9K5t7GFPM+ybRXbu5KOO+2p+byTx0xLBVOZIqNzeUelpLNCTy4WycYtu8/W\nTuuY7d2Wh9SUY6+ou2L/+NAE2WKFTKHCVtd9g0Uic7kSz9jR5YyDdDxSD/hzSQ+dySjHp7PMZUue\nPG3aKUN7imki0GNl0iYLv3oqb9uughY83iSkzdWwUJc4wr4Z3vG88ue1CjCme/YJUGf538vNEFQY\nhOUkkVdhGbV3AB8H/tr+ex/w4VXs07eAlwKIyKVYpXingW8DbxKRuIjsAS4B9q9iP1aMwY5403Yn\nTqTBc2Pl1/KfS5OEX8zWqgb//sEvZnM1l1tCaUYiGm4pxZ2byN2eiodZKlQa1FkdySjFSo3JxQId\niahzT1qVVld7WN+1usTKmVRPJOkuujW5WA+ADIWEwQ4rwn7Gr3Kx7TRjjrHYdkPtiDuT3KirOuSA\nKwXH6LwVEBcKie/a1r1v7UzSm4oRDQun5guOmmZnt5fAajXF+ELBIZzBTitfWa2mOOUKuht0qZRG\n5/MMphPEIiHHYD2xWGwwbvem4lZAqC/jwJbOBIVyzZHC/G62s7lSQ361Dic1TmOsxmLeIsj2eKPR\ne3zBkqb0QicRDREJiRMrEpT4MIgs4q2qs04jifg1TUEBvm4EeWf54Ugim5BLAiURpdTngc+LyK8q\npb5xHvv0OeBzIvIoUALeZkslj4nITcDjQAV4t1Kqusx51gzf/J0X8Nip4HxOjd5ZZyOJND93kIuv\nH0FqK48bsKtdxIr2LVZqDV4ubdGIvX/IIwm1RcOUKpbXUdKTajtKtlihXKt5o+V1LMpMzqf+qrdD\n3f21YCcAACAASURBVCNMt4/NF6jUlDMBJmNh2uMRppcsSURPmGBNkrO5EjPZEiJ1lVl/e5wHhuYa\nJ9mOhCOdTC8VGeyskwtYap2JhYKzctftk4sFZrNW/rGeVIxQSNjSmWB8Ie9cQ5NBfzrOY6cWmV4q\nUq4qtnfVVUqVmmI6a9V9uWJLh9Mnfe0Z1/3FIiF6UjEmMwWKFYuE9STf0x7j0KnFhvtz4ny0/cH+\nrol7crFAsVLzSBwdySiLeSvv2jN3drmeX9Sxo7S7FxMuzz732BER2hMRR33ZrEYOeGM1ghY5Cc+4\n9UkcWhIJcDrxe061kmHX/54FSSIrecVved+LnIXLesZy6qy3KKW+COwWkff5tyulPr4aHVJKlYC3\nBGy7AbhhNa57LrGtK+msFt0ISntydqsTn/He/t9gPLQn9YbSvAHFrpZVC9gk4g90TNj7uVef/uO9\nqoowGZ0U0pdVFSyJo8818ev2k/ZE1+MzzPoDIMGauDIFK97kYttWANakuZAvM5st0pWsSzt9dvbi\n+bzfHmP1w7Jl1KUgtyptLldyIu572mJEQuK0a1UaWJP/uE0u7vvoT9susD7pSF9jYqFo1X1xvJ2s\n7eMLBWZ9UoLlhFCkbFfx0zr93lSMmWzJkVC0pOEuXOb+7n4W4DduWxLHfL5Ml09tVakpppdKjpQF\n3tQju3z1MNIuEnGTQirA2ypIKnGP50abSHN7oZba/XaPII+sZsdq6G8NhnXH9bd1XDyQ5uKB9Bkc\nsTZY7ldK2f/bgXSTP4MzhLPQOQcyrR7vDcZ7+xpBhnV/eU73SxAPWMUF+dv7iUq7TrptKNa5Akgk\n0XyC0Kvf8cVC05WsXi3riS4ViyBSnwDdHmDtiQhL9qo47XNJXsiXmVkqObErYLmd5svVeu0Vm0R0\noJv2qnJSjLtUaXO5kmOn0fmdJjNFpjIljxTUmYyxkLeSW7r725+Os1SsOAZmverX20fnc1RqyiMl\nhAQW8mWPGs861nJOmFkqOS60YKmzLPK07E26vLK+1gmflJeIholFQnXpz6d21JUvOxLu9nqyQ3+2\nXLAWMv5SBZpgEtGQx27ncUEPkI79EodGkGHdbxfUNhL/xN+KTcR/rqBgw02oxXKwnDrrM/b/Pz5/\n3bkw4B9QrVQ3aziHCCgVmOTRb1gPSrvg1vu6z+VWHQSv6LzX0BKHX0LxJrLzqrM03GoI92TjzfNV\nj6KPR+qTTSgktMcjjt3FTRaWB1iZpUKlQdpZzJetKHqfSyk0rrz1xFhXpUU919LJKt3qt662qKP+\n0m7Kuv3Q2CKz2RLxSMghVk1IRyez3ms32ILqROWuTOn3fNNkq/sOOFLM8GyO9njEeeZ+dZZbvdiZ\njDZt70hEHTtGW6zxOVnqrEYSgUZ7mjay+0sYxMLNVVhB6iw3/Kl/NCn4AwT1gsv/FrZmWPeeq273\nbO7iuxkRSCIaItIPvAPY7d5fKfWbq9etzYkgF/GzGV7+sam1VX4xux4x693fv59/f4BogFuwfxWm\nX+aYLxbFLZmkAozvgQb+JoGOOV/0MngntKTPu2dsIU+lpjykpSWRpWLFsS24rzE8myMeCdXdUwMm\n8kQ0TCwcYnTeSnff7cvjpKWg7S71ZmcyynzOKvjVk4o5E04QgTWomnx2Ip2jyp9DKlOoEBJxnAOs\na2g327wjhXiuMeslMH2MDjh0SxYdSVfyziZ51/z7+0vPuqElZT8hxFqQjv0GdI2GDLuh5jYRPY6r\n/gVWC+qs0xnSnf1Oe6aNi1biRP4NK83JLcB3XX8GZwqd9sQ/wM7Cc8NvlNfvQZBO1m+XaUXv6z9X\nkG5Zr9z8RvxkgH2llSAxf24vTXr+yUZPmv5t6USkHrviU2eVq4rZbMnTJ20DGJ7Le20rzkTeZJJN\nRhia9Xo1WdeuS0FuwuxMRsmWqkwvFX2Gam/QnVah+dsbgvHmGmNwOhKW55RfGtAT+cRiMTDjQCQk\nnmfQmYxSKFuOEe72dIC9IsimEQqJ8/wCo8ljy5FIkE2ktWhyTR5BNpGG0rUtSCKtlsDezDitJAK0\nKaU+uOo9uYDQGGx45kY3FUBIWt4Jcv1tkEQCvLbcCA7O8qsFmieyc3tktQWWGQ1YcfrtK5Ew5Wql\nKYk0u0Y6EXGM981W3mMLBc8KWZ9n1BX5DnUpQa/I3TaAdCLqVMxzT9jt8QhHpyoNrq6agMYXCt4y\nrYl6JmR3QaVk1Eod09S4nYw4Eorf/rBUrBANh7zSQLwuibg9qrSbbaWmPNIfeH9PjwdfC4uA9rif\nLKzn15DzrQUS8eSyCsiw64Z/8RO1x3GQTcSv6m1lgRXkWRn0Lm9GcmlFEvmOiLx21XtyASBInVX3\nIW99gAXZ6INqlgTl7mnFjdH/0kUDouKjAZKI+3tQtcbACSkgTYt/JRtUhc4/qdf3b54nTKti8uWq\npz0RDRENixM97T9mslkwpTteosmq/9RCvmlespG5PB2Jur1CRKyATdvm45W0ok5pV/+5lLLT0yQa\nSbKmoN1FhCJ16cO/sg8i+CAPviAvP3BlzG0YI2H7WN/+AbEa0YBx5EYQWTRI0AELrJVIIkHv+CbM\nduKgFRJ5LxaR5EVkUUQyImKKWq8AQcGGZ6MwbZBqgnS0AVlEW0lXH1Qbwf+SBqmzgojKW68hSG3R\nfBLyux17Iu89dhcXiSSaE02gbcZFYCLiGIz96fTTiairsJe3Xdf6dq/INZllChWfFGSdv1SpNdx3\npx2A6b+/jkTUcdv2k4tzvVijJAJeycx97/6VfXBgn+uZRZpLBkHxSv5AviAVaRBBeB1Cmu4SuMjx\nR6wHOZ0EFYJbDsEaAgubTw5pQZ2llDLuvOcYjRyyEnWW9d8vcevVq99IqF8I/2orqKricvvoF8Rv\nlNcTht87K5BEgogjgBCs/ZobYPXkFnbp3f3n9daZb+4x5lXXNLftJCLeynhpDzkFeSNFXfs0d3le\nzlgctM1NTkESmNe43Zw8oU6A/vsOtEW4PfgCIsuDVKFBxdSC0vX44ZYSgib7hjrnoeY2Ef29toLs\niMFqK+/3oOSrmwGteGc9q0nzAnBSKVU5913avAgKNjyblAit6mQ12fh70Mpqy69R0Nf0r+iC1FlB\nagEPibhXrwESivW9uTrLkVCi3gk+FhBMGTSRL+c6qo/3E1uQ44CHRNwxMQFp9oPidPzfE0HkG3Af\n7msv57rtJslm1xbx/p7BqXHqn/0LEL0tuJiaTxIJUme52gPLS/vjPgIkaJz3rzWp3ruPz7HltPuf\n/pwbDa0Y1j8FPAt4xP5+NfAo0Cki71JK/XC1OrfZEKTOOrsEjK3tV5dEfOqsFhSarZTvhfrk31iX\noflFvBNSQMBYkCTSJIq+abvrvO7rBednCpYG9OSa8E+AQa6nrsk0SGJwXzsUEhLREIVyrclEbn2P\nhiWQZIPS1gRJV0FedP5nodv9BB2kgnS3+xcQ0cjydrMGFVRL6qwgScT7XY/8oBogfrTyXrb65vrf\nu82EVmwip4BrlFLPVko9G3gmcAx4JfC/lz3SoCkaVjzO/zMnk1b5x/HOCmhv5Vg/GiaIUPMJIigW\nJUid5UbQZJpsqCFfn+iatfuvFxQAGQ5JvfZKgDTg914KWt0HSVpB17au0VzSCmoPqgfjnsjd/XAT\naVBZgCCbSFCf/J/d125QhdJ8jGgDekMxtQBJxH3eViURbTsKiuFYkSbgDI/ZjNl8WyGRS5VSj+kv\nSqnHgcuVUsdWr1ubE4HBhnUWOWO0KsXUDeu+9hUY1jWCJBE//GovDY93VsCKM0ht1TiZNreVxAIm\n01bUVkGTZtD+EKyecl+7LUAKcp87kMCWmci9HlLNySwUEmcSdUeDu8/VeG2r3T/5JgLu2z0O/FKo\nONduLon4x2cs0sIiJ2B8+sml5tgR/Wor7QV32ks1oEGdFeAduXnlkNbUWY+JyP8Fvmp/fyPwuIjE\ngfKq9WwTIriy4Zkb1p1jW9wvSJ21Ehffertf4tATgT/JY/Pj4+HmE4/3nM29dfyTUFBhoaCJ/HRq\nnUyh0ro0EKlPsp5cZAHXSCxDIo40EKBKC0pB4++Xuz3ITdZvQA8iaP1bB1XRhGBp0z++tAeUf9Gg\nx1JjmYQWVEoBu/jHrR6XjYG49nnOpZQQaHE/d5dYL2hFEnk7Vj3z/8/+O2a3lbHrfhicGc5lxHor\nLxmcJ3WW/b0hU3DA8VHXKjOoG41J8UJN+6Qncv+140GqHM9q2XcuvepvUPc0l3Z0ezgkgfnHglRb\ngUQVGB8T7DkVpM7y2xV0H/1ErPfzT/DRgEhvt5QRKA34xki1ps/pt5vphVRzj6rlELzIaVGddQ4n\n9sA4kU0sirTi4punXpDKj6Vz3qNNjMBU8M7/1bOJOETV0H7m6iz9Mga5Svrdi4MM6+6JJIgMGwId\nXUkX3XCyFPtIpBV7gF8K0t1vCHwL9AyzvvufXxCBeaWV5oQUZNwOUu8td94gu0KDcduxBXmvoX8f\n/xNyXy9woRG4APFeWz/PlUgigS6+vnZHnRUQqLUZPafOB1px8b0E+DPgSsDJ5KaU2ruK/dqcCNCX\nno1OtlVJ5GxE9UbdsmraHnHUWd7jA5M8uvoedB8NNR60JOJPaeHkP/JLIl7vp/r+wR5EzYL3rHM1\nn+DrlfGCr+2esL0uyP77WN7ms5xNJMhzyk8WEtAelNdKk4s/jCLSgodUY9Em67+f1xxJJCCwdTkE\nZcgNGrfB6qzVw2YmqFbUWf8E/F+saoIvBb4AfHE1O3WhYjXHmX6XV+JOHPQy+lUSQeqsoInA/fK3\nmg01yNc/SF0XZLB3r5D92VodvX1AKvGGYlz2pOuXgpazuzjX9huYAzzDtAQWpGrywyuhBNhEGs4V\natpXfd+NEubpx5KfoIMq/7WqkjoTtLr4caeXOVs4EesN7Wd96nWLVkgkqZT6MSBKqZNKqT8CfnF1\nu7U5EZzvauUjrNVx36rE0gxBuuVWE9m1Uqs6UJ3VEADWnESiAdGUQZOQe8JoqJNtTwF+ctH34V/5\nBmWBDbLBePZpsFdY//1utnrV35BUsIVgPD9ZBHlI6WP8j0K3+yO6W3mujTEZug/NScT/tM5m3Daq\ns5rbRFZDEgkipM0okLTinVUUkRDwlIi8BxjFqnZosEI0rFJ0+wpemKCXzE9LZzN4/RO5nkv8K9HT\nTRDLIWiXhuI+jjqkNUmktTrZARNawGTq/z2C7i/IvbjZOU/X7kzkLUoD7nb/tfUiIMi43UhUAZJI\nS0Wbmi8C/N0O+s1beX6tXluP28Y4rdWf2oPsoZsBrUgi7wXagP8GPBt4K/C21ezUZkWQxJGKRRhI\nx/mTX3raGZ+zdcP6WdhdfKNE34ffOBpkvA9SuXiu0aJhPUgdEgmwibRCYI1G3ubHOpPsMl5KzfaH\n5dJ3NCck/+6Bnm8tBOP5ySIUIM1pT6r/v70zj7ekqu7999dNzyPdNA3dTTNJkG4QkQtpwEiDjTIo\nCAFBBYTkyQdEweThQEgITx4xwfhieNEYJAoYI0GRIYogIgQjYWgUmumDtBIVxAE0IFGm7pU/ap97\nT1fVPrdOnaoz3fX9fO7n1nT2WrvqnL1qr7X32tkGPhLrKpDuIBYTybiz2nRzFaHoEN9ORkfGSBe1\ncsk8Zk6dzJmv36k6IX1CkdFZd4fN54CT61VnuGnMTp6Zyp46eZK465w1pcqMpmzIXFeqeCBn5m/D\niERdRZvuF1qXIaJfzGOSDczGGvIiDV2+UYgPL97080VWh4w19mn9Yr2B0SSBGVfh+O669DVJ2Zb5\nkjSec3aYbfK/TMqceEwk//rM97aDL276s+MN8a1zrY95M6bw0IcPrq38XhI1IpKua/VBMzu8enWG\nm9NW78j0KZM5bq9tKiuz6Ne+kx9IJkC5Mf94TKcib5NRH3LErx1L552ZB1OgFxRzKWXcWW0Gf4sY\nsKJB3s1G3VnFZLfSY9IkYEP8rT8bM8iXUWj4baZ+jf/F3LBl0rHHPtuYo5KZsV6hO6tMePNTx7+G\nZZvPrEyHbtOqJ7IP8GPgC8CdDGdMqKtMnzKZ01bvWGmZhdOeRFxNZWSMjc5Kuwtiny8hNJBuCEaT\n6GXiFflv6mVGEI3KjgwvbjRGY7IjLqUCBiybWyohrfZo/UoEt2NzL7K91db3If14ixiR9P2PLd8c\nHZ1XxOEeIeaGzQ7WCP/Li8rQznf+4F23rlBy92llRLYiSbL4NuDtJOuqf6E5j5bTe7oxOitNrDdg\nkcBlJxQd+jnWMLbvU88Ef1NljpUVzmfcdbGeSAnZsZhBIy5RQkbRuFJjv2hvoEgDn4lLjMoa/7Ot\nZJf57OjorJTeVcZEhjmAHiP6NTCzDWZ2g5m9E1hFkvrk1jBCy+kTio7OalBFAx+bsT46yqxCmdnh\n0PlljjW+m15frCeS/zMo6taJ9WSKyI75/LPB7fzPF3GZFQ0kN2Sme5TRVOsFnmusp5T+bKwXW+XQ\n9NiM9VjSxE4Yxmy9MVoG1kOSxcNIeiPbARcBV9evllOUTIMduW40rUQFMhs/unTjaWO/xkI6FSHb\nk8hffrTdSWzNxBr72Jt6+upYluJyvaBQj8gcnHRwu0gbW3Q4bUNmZpnYUeuSLrf9XtB4y8em6eSd\nJ/1ysGFUdsSITJx2v1KirzGSLgf+g2RBqv9jZnuZ2flm9kSdCkl6taQ7JN0raa2kvZvOnS1pvaRH\nJL2xTj0GhcxbVfS69suelcow22Dc0VkVvoVlJoxtzD8+uh9pMFuReVuOupRi9c2nSA8sFniODYHN\nxCVKDFqIuf4aZIP3+eUW+U7F5moUHbpbphe7aM40IPv9jcVEnM5o1RM5HvhvknkiZzQ9TAFmZnNr\n0ulCEqP1NUmHhv3VklYAxwErgSXANyT9jpltqEmPwSDye8j2UNr/4dxy1mp+9MvfZI5HYyKRcjr5\nzRYdwhxrfIvUO56WJV9GrBdUhni8Iv+67How7cscm6ux6fFGNdJ+/VispIyRHIuJFFO8TP2uPX0/\nfvrs8xn9YkN8q4xjbLtwFt9e/zTzZkyprMx+J2pEzKyDcREdYUDDQM0jWVkR4AjgCjN7AXhM0npg\nb5Le0tByw/t+r+UInKI/skmRBrAVW86dzpZzp2eON3oDmZ7IqM+5uIzxyDZCkUzI4zSMZYitQBmT\nXYai631HDV1H8aZ8A5Y2VJ1M+Cs6fDo6OqtE/ZbMn8GS+TMyx2Mz1mMjxspw7ptWsGaXLdlt2byO\nyxoUiqQ96TbvA26U9Nck7rZ9w/GlwB1N1z0ejmWQdApwCsDy5cvr07QLvHKr1h2+wt39Chv2sVEu\n+Q18poEomeLeLOetMeK/Hs9FU4bY8OK0jE4an8zKf5EyY+8RZURbxNg39tPDiMeMS/tv7BkDFJk1\nHqNKz1NjmHR8gmbnMqZPmcyBr1zceUEDRE+MiKRvkAwhTnMO8Hrgj8zsKklvBf4RaGs6t5ldDFwM\nMDIyMtRj7mLf+3Yq/fFjX83cGcW/ChsjvuU6MpXGYj6ZdPqN/xX0RGINeYxJkaG/rVi+YCY/+uVv\nchIwxtxZ+UN8O+uJbLofM9AdpR6JPL/i7qzqrMiHj9iVpfNnsP/vLNpUp6FuIeqnJ0bEzKJGIQT0\nzwy7XwQuCdtPAM1TvZeFYxOabAygfd6yR26HLsrozN98b1bOeint66RQXrq3szEyAqxxXZmYSIxY\nLyh7XaMXVJzbPnBA7vGYMRxtjNOpR0rc3HYTfnZiRDK91UgvqI6Jqmm2mD2Ncw5bkTke60E7xehV\n3KMVPwH2D9sHAo+G7euA4yRNk7Q9sBNwVw/06yva/+J3/kuJurMib7JlJI6mfC8YWB8NFkeC4WUo\nmrcpllSwDLEiomldOumJFLyuyhjXqOyi7qwuzreYSHM7qqQfYyLvAv5W0mbA84TYhpk9KOlK4CGS\nBbJOn/Ajs8hxScQurLDL/sqt5nD795/OrFNRxxtdZgpGdFZ8rCfSPmMupWK+8/Gub0t2+B8Lbmcm\nApZ4DYxls431UGKjs8rQ+I4UHQBRhwFL4/NEOqPvjIiZ/TtJyvm8cxcAF3RXo/4m9vZU5+/hUyfs\nyUM/eZY50zcdxjjWwHXeFYnFJeKz4hv/06606txZ8esawkuLypCNS4wjuw3GjEXqeL6nMGrAytDu\nSKhW1932/gP47Uudv0c2etZuQ8rRd0bEaY+iDV1j9u5W86Z1LHPu9Cms2mFh9HyVb3RF8x/FGsBO\nVMm66/Ibm9i8izLE2umxwHo6JlJCxngNeWbUVvXNaxWjs5YvrCbzbWN548YkRac93IgMOEVTai+Y\nNZW/OXZ39nvFFrXpEu0llBziC9nG5oWXkqj+wlnpH3xkeHENvaA0dQwvzg4jbi27HdodqjsWj+m8\nKxJzHcUD6/X3D3bZei4X/v6reOPKvAGjzni4ERlwInPVcjlyj2W16hLLi1SuIU/GZ6V7HH/25hVs\nu3BmxhjGkuvV4c4qmvyxSmITAavMBhAzEq1GZ130tj2YWiDlfYONke9Ir3lrhWv8TDTciAw43XhT\na5dKJ/ylGrCl82dw9qG7ZK7bGElp0QmxIH16idrRVCVdiAJn056Uj4nEEgDHJlPm9RYO331J2/Lz\nZDiDSz8O8XUGlKhLokxhbQ6bbXfuQ0vREdnTgu/8xZc35l5fJPX7eIznaap0smHqycRkdzJPJCrb\nbcjQ4EZkyOjl5Nt203y3ot0iRgPuNY6QmhoGJ7yYWtqw0ZBX2djGXIKZdc7LiBwnx1k2pUwJGTHR\nXZhU6HQXd2cNKb34TVa5KNVVp+3Ldff9JDMXJSq7wiR6DdJFzZme/Fwy82NqkJ3RJTaUO8icMSU/\nbX/LMosOYS5hRf7hhD356TPPZ4777PDhw43IkNKLHkmVy+PuunQeuy4tngm1GwHbNbss5v1v3Jnj\nV22bK7sKI1Lmuf3FkbuxaocFbcuIPafMPJESkw1jI53qWEXQ6S1uRIaMfvxpdkOnKnsDjQYuE8Se\nJE4/4BWZ6xuB9jpiB6M6tSj67b9bLlN1usjY0N9uxEQ8CeLg4jERpzLqWJSqKGM9ke6b0YZ7a6fF\ns2uTMXta8r63/RazOi4rmvZkvPQfVcxY77wIp8/wnsiA8oYVi/n6Qz/rtRqbsHJJsvbJXtsVd61U\nxe7L5iPBqfvv0HXZW86dzuV/sDd7LJ/fcVmx3sA2C2by2ZP3qvTeFrW3UydPYt6MKZx9yCs7lhmb\n9T+eLu2467rB7svmcd/jz/Rajb7AjciA8sl3vKaSvEFVsmqHhdz1J6/PrIbYDf/35rOm8thHDquk\nrDKdmdel1qiogwN23rKSctpe02OSuO/P31CJ7Abt3ON7zz2IGVPbHzhQJ188dV9eSo3Sm6i4ERlQ\nNps8iTktls3tFXnL6TrtU6dbLhZ/iK0HU6nsEp+ZP3Nq5Xp0ytTNJmUWFJuo+F1w6qcfo/0FGNZg\n72g69oLrwVQsPMgY0C+Fk8GNiOOk2DZkh+2FC6WbdqsXzbinXR8+3J3l1M6gvXT+9TG7c9Rrnq5k\nJFTbRFLal+H6M34vX0QXJkfGmBVGmaWHDQ9rr28i4EZkyBjZbnM+f+eP2HnxnF6rMkqrpurSk/fi\npQ391YLMmT6l52nBq2jfV4TRckVljM4m71x0lItPHOHae59g+YJq1gLpBss2n9FrFfoaNyJDxpF7\nLON3t1/IkvmD8cVfXdGIo2GhijU7xpeREJ3wV2MPZen8Gbx7dXbCZr/2Vu899yAPoI+DG5EhpN8M\niAdR26cbw6I99cj49OPIsH7DTazjTDTGy+LbPU2cIcCNiFM7E71R2mFR8QD9QSsWA7DzVvWlUGmQ\n7iH2dhmBHgp3OsLdWU7tTGRv1vf+7yFtrcdx5B7LOHjl1rUOLx6dJ1JwPRHHaYUbEcepkTJB2W7N\nT8nERHrYHXDDNbi4O8upHQ/g9hejM9MLrrHuOK1wI+I4E4zYCpQelnDK4EbEqZ1+cFUsnjut1yr0\nDbH1RF6x5exN/jtOEXoSE5F0DHAesAuwt5mtbTp3NvCHwAbgDDO7MRzfE7gUmAFcD5xpscUXHKeJ\nb33gAOZOn9JrNfqOtHE/fPcl7LhodlvLEjtOr3oiDwBHAbc1H5S0AjgOWAkcDHxSUiPK+PfAu4Cd\nwt/BXdPWGWi2WTCTeTPdiDSIrSciyQ2I0zY9MSJm9rCZPZJz6gjgCjN7wcweA9YDe0vaGphrZneE\n3sflwFu6qLLTAf3gznIcpx76LSayFPhx0/7j4djSsJ0+noukUyStlbT2F7/4RS2KOs6g0sssvs7w\nUVtMRNI3gLxUqOeY2bV1yQUws4uBiwFGRkY8btJjfMhof+I2xKmC2oyIma0p8bEngG2a9peFY0+E\n7fRxx3FK4j0Rpwr6zZ11HXCcpGmSticJoN9lZk8Cz0papSThz4lArb0Zpzq8repP+umx+DjLwaUn\nRkTSkZIeB/YBvirpRgAzexC4EngIuAE43cw2hI+9G7iEJNj+feBrXVfcKUU/NVYObDV3OuDG3amG\nnswTMbOrgasj5y4ALsg5vhbYtWbVnAnEV894LU8992Kv1eg6XzptH+754a/6ap2XPlLFaRNPwOjU\nTj81Vs2sXDIx50Qs23wmyzYfnOVpnf6m32IijuM4zgDhRsSpnf7shziOUwVuRBzHcZzSuBFxaqdP\nQyKO41SAGxGndvo1sO44Tue4EXEcx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzHcUrjRsRx\nHMcpjRsRx3EcpzRuRBzHcZzSuBFxHMdxSuNGxHEcxymNGxHHcXrO5ElJapypk71JGjR8USqnK5z7\nphXss+PCXqvh9CmH7bY1Dz/5a07bf8deq+K0icys1zrUysjIiK1du7bXajiO4wwUku4xs5HxrvO+\no+M4jlMaNyKO4zhOadyIOI7jOKVxI+I4juOUxo2I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO3DnV\nxAAACq5JREFU45Rm6CcbSvoF8MNe69EmWwBP9VqJLuN1nhh4nQeHbc1s0XgXDb0RGUQkrS0yU3SY\n8DpPDLzOw4e7sxzHcZzSuBFxHMdxSuNGpD+5uNcK9ACv88TA6zxkeEzEcRzHKY33RBzHcZzSuBFx\nHMdxSuNGpA+QtEDSTZIeDf83b3HtZEnflfSVbupYNUXqLGkbSbdIekjSg5LO7IWunSLpYEmPSFov\n6UM55yXponB+naTX9ELPKilQ53eEut4v6XZJu/dCzyoZr85N1+0l6WVJR3dTv7pwI9IffAi42cx2\nAm4O+zHOBB7uilb1UqTOLwP/28xWAKuA0yWt6KKOHSNpMvAJ4BBgBfC2nDocAuwU/k4B/r6rSlZM\nwTo/BuxvZrsB5zPgweeCdW5c91fA17urYX24EekPjgAuC9uXAW/Ju0jSMuAw4JIu6VUn49bZzJ40\ns++E7V+TGM+lXdOwGvYG1pvZD8zsReAKkro3cwRwuSXcAcyXtHW3Fa2QcetsZreb2a/C7h3Asi7r\nWDVFnjPAe4GrgJ93U7k6cSPSHyw2syfD9k+BxZHrPg58ANjYFa3qpWidAZC0HbAHcGe9alXOUuDH\nTfuPkzWERa4ZJNqtzx8CX6tVo/oZt86SlgJHMuA9zTSb9VqBiYKkbwBb5Zw6p3nHzExSZty1pDcB\nPzezeyStrkfLaum0zk3lzCZ5e3ufmT1brZZOL5F0AIkReW2vdekCHwc+aGYbJfVal8pwI9IlzGxN\n7Jykn0na2syeDG6MvK7ufsDhkg4FpgNzJf2TmR1fk8odU0GdkTSFxIB83sy+XJOqdfIEsE3T/rJw\nrN1rBolC9ZH0KhLX7CFm9nSXdKuLInUeAa4IBmQL4FBJL5vZNd1RsR7cndUfXAe8M2y/E7g2fYGZ\nnW1my8xsO+A44Jv9bEAKMG6dlfza/hF42Mz+Xxd1q5K7gZ0kbS9pKsmzuy51zXXAiWGU1irgmSZX\n3yAybp0lLQe+DJxgZt/rgY5VM26dzWx7M9su/Ia/BLx70A0IuBHpF/4SOEjSo8CasI+kJZKu76lm\n9VGkzvsBJwAHSro3/B3aG3XLYWYvA+8BbiQZGHClmT0o6VRJp4bLrgd+AKwHPg28uyfKVkTBOp8L\nLAQ+GZ7r2h6pWwkF6zyUeNoTx3EcpzTeE3Ecx3FK40bEcRzHKY0bEcdxHKc0bkQcx3Gc0rgRcRzH\ncUrjRmRIkWSSPta0f5ak87qsw6WNTKWSLuk0eaKk7SQ9EDn30ZDp96OdyOgnwv17rMohos3PZCIi\n6SRJfzfONceGTLwDnSm7W/iM9eHlBeAoSR8xs6fa/bCkzcLY90ows/9VVVkRTgEWmNmG5oNV16MH\nvN/MvtRrJapE0uT0c+onzOxfJP0MOKvXugwC3hMZXl4mSa/9R+kT4Y3+m2E9h5vD7OHGW+qnJN0J\nXCjpPEmXSfqWpB9KOkrShWENiBtCShIknSvpbkkPSLpYOYmBJN0qaUTS4U0TBx+R9Fg4v6ekf5N0\nj6QbG1lsw/H7JN0HnJ5XUUnXAbOBe8JbZLoesyR9RtJdStZiOSJ8boakKyQ9LOlqSXdKGgnnnmsq\n/2hJl4btRZKuCvW9W9J+4fh5Qcatkn4g6Yymz58Y7vV9kj4naU7oYTTu39zm/RiSFgc97wt/+0r6\nsKT3NV1zgcK6K5I+GJ7VfZL+Mqe82D0/Q8kaLuskXZHzuZMkXRvq+qikP286d3y4z/dK+gclqc+R\n9Jykj4XnuE+qvIw8SXtL+o/wvG6XtHOT7GuUrEHzn5LeI+mPw3V3SFoQrrtV0t8GPR6QtHdOPXKf\npdMmZuZ/Q/gHPAfMBf4TmEfyVnVeOPevwDvD9h8A14TtS4GvAJPD/nnAvwNTgN2B35DkOQK4GnhL\n2F7QJPdzwJubyjs6bN8KjKR0vJLEMEwBbgcWhePHAp8J2+uA14XtjwIPxOrbtJ2ux18Ax4ft+cD3\ngFnAHzfJeRWJ4R3JKe9o4NKw/c/Aa8P2cpKULI17dTswjSQv0tOhXiuDvC2a7xXw2ab7dwrwsZw6\njd6/sP8vJEkoASaH57od8J1wbBLwfZKZ4IcEfWam5F4a6tPqnv8EmNa4Xzl6nQQ8GeTMAB4gyQu1\nC8l3a0q47pPAiWHbgLdGnl1GHsl3d7OwvQa4qkn2emAOsAh4Bjg1nPubpvtzK/DpsP06wvcmfP7v\nWj3LsL8a+Eqvf8eD8OfurCHGzJ6VdDlwBvDbplP7AEeF7c8BFzad+6Jt6mr4mpm9JOl+kobrhnD8\nfpIGDOAASR8AZgILgAdJGpMo4frfmtknJO0K7ArcFDoxk4EnJc0naVRua9L1kEKV37QebyBJXtlw\nT0wnaTReB1wEYGbrJK0rUO4aYIXGOltzlWQZBviqmb0AvCDp5yTp7Q8MujwV5PwyXHsJSVr/a4CT\ngXcVkH0gcGIoZwNJA/qMpKcl7RHkfdfMnpa0Bvismf0mJbfBzuTc83BuHfB5SdcE/fK4yULSRElf\nJsnC+zKwJ3B3KHMGY4k1N5Ak0swjT9484DJJO5EYoOZe2i2WrC/za0nPMPZdu5/kZaDBF0Ldbwu9\nvfkpubnP0syewymMG5Hh5+PAd0jefIvw36n9FwAsSV/9koXXNJI1TTaTNJ3kjXPEzH6sJHg/vZWA\n0MAdQ9KIAwh40MzSbo70j74dmush4PfN7JFU+a0+35wPqLk+k4BVZvZ8TlkvNB3aQIvfl5l9W4lb\ncTVJjyl3wEBBLiF5w94K+EzBz+Te88BhJM/mzcA5knazbFwpnS/JQpmXmdnZOWU+b/E4SEYeyWqH\nt5jZkUrWkrm16frm+7yxaX8jm97zPB2byX2WTnt4TGTICW+gV5Ks2dDgdpIsowDvAL7VgYhGA/tU\neCNvOfJH0rYky4geY2aN3tEjwCJJ+4RrpkhaaWb/BfyXpMZaE+8oqeONwHsVWvrw1g5wG/D2cGxX\nNn2L/ZmkXSRNIllIqMHXSVana9Tn1ePI/iZwjKSF4foFTecuJ3GpFDXwNwOnhXImS5oXjl8NHAzs\nRVJXgJuAkyXNzJELkXse6ruNmd0CfJCkRzCbLAdJWiBpBsmqlN8O+h0tacuGzPC8o7SQN4+xVOon\ntb4tUY4NMl5Lkhn5mdT5dp+lk4MbkYnBx0j89A3eS9LArCPJkntm2YJDQ/9pEr/4jSQpsVtxEokv\n/ZoQ9LzekuVEjwb+KgRe7wX2DdefDHxC0r0kb7plOJ/EHbJO0oNhH5IV5mZLehj4MHBP02c+RBJX\nuZ0xNw8krsGREAR+CGg5/NbMHgQuAP4t1K05pf3ngc0JbpcCnEniOrw/6LoiyHgRuIUkc+yGcOwG\nklTka8O922SkUYt7Phn4pyDju8BF4RmnuYvEPbWOJF6x1sweAv4U+Hr4bt0EjLfMb0zehcBHJH2X\n8h6T58PnP8WmL1EN2nqWTj6exddxApJuBc4ys66kJVcyX+MIMzshcv5SkuBuyyG+4W3+OyS9u0cr\nVzQr7yQS9+V76pZVlk6fZXAznmVmb6pSr2HEeyKO0wMk/X+SNVTOb3HZM8D5ajHZUMkEzvXAzd0w\nIBMBSceSxPl+1WtdBgHviTiO4zil8Z6I4ziOUxo3Io7jOE5p3Ig4juM4pXEj4jiO45TGjYjjOI5T\nmv8BB6iJV+uXCzUAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Welch window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Blackmann's Window" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='blackmann')" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xd4VGX6//H3nU4ghJLQUkiA0JsYQGmCDVTsDTusK+ta\ndl3Lrtvd/a1bv/aGggqWFbE37ArSBZReAwmEHmpCQvr9+2NO2DESGCCTM+V+XddcmVNmzudAMvec\nc57zPKKqGGOMMQARbgcwxhgTOKwoGGOMOcyKgjHGmMOsKBhjjDnMioIxxpjDrCgYY4w5zIqCCQgi\nMllE/naS7zFcRLbUV6ZAIyIHRaTDCb52hoj8tL4zmdBjRcE0CBHJE5FDzgfbPhH5SETS3M4VTFS1\niapudDuHCW1WFExDulBVmwBtgZ3AEy7nMcbUYkXBNDhVLQXeBLofabmINBeRD0WkwDmq+FBEUr2W\ntxCRF0Vkm7P83Tre5xciskpEUmtOLYnIr0Vkl4hsF5FLROR8EVknIntF5Hderx0gIvNEZL+z7pMi\nEuO1XEXkVhFZ76zzlIiIs2ysiMwWkf9z8uWKyHl1ZBwnIh94Ta8XkTe8pvNFpK/XNjs5zyc72/xI\nRIpEZIGIdPR63TkiskZEDojIk4B4LYsQkT+IyCbn3+IlEUl0lk0RkXuc5ynONm93pjs6/072uRHC\n7D/XNDgRiQeuBubXsUoE8CLQHkgHDgFPei1/GYgHegCtgEeOsI0/AWOBM1S15jpDGyAOSAH+BEwE\nrgdOBYYCfxSRTGfdKuBXQBJwOnAWcFutzYwG+gO9gauAkV7LBgJrndf/G3i+pmjUMhMY6nxQtwNi\nnO3hXD9oAiw7wusAxgB/AZoDOcCDzuuSgLeBPzjb3wAM9nrdWOcxAqjZRs2/70xguPP8DGAjMMxr\nepaqVteRx4QCVbWHPfz+APKAg8B+oALYBvTyWj4Z+Fsdr+0L7HOetwWqgeZHWG84sBV4GJgNJNZa\ndgiIdKYTAAUGeq2zGLikjgx3Ae94TSswxGt6GnC/83wskOO1LN5Zv00d750P9MPzIf8c8C3QFRgH\nvF9rm528/r0meS07H1jjPL8RmO+1TIAtwE+d6S+B27yWd3H+T6KAjsA+PIV5AvAzYIuz3hTgbrd/\nl+zh34cdKZiGdImqNsPzbf0OYKaItKm9kojEi8izzumNQuAboJmIRAJpwF5V3VfHNpoB44F/qOqB\nWsv2qGqV8/yQ83On1/JDeL41IyKdndNWO5wMf8fzrdvbDq/nJTWvrb1MVUucp97LvdV8Ox/mPJ+B\n51v5Gc50Xerafjs8haZm++o97Szf5DW9CU9BaK2qG4BiPIV4KPAhsE1EuviQx4QAKwqmwalqlaq+\njecUzZAjrHIPnm+vA1W1Kf87fSF4PtxaiEizOt5+H57TOi+KyOA61vHFM8AaIMvJ8Du8zsvXs5qi\nMNR5PhPfikJdtuMpngA4p628W3ptw3NqrkY6UMn/CuRM4AogRlW3OtM34TlNteQE8pggYkXBNDjx\nuBjPh8zqI6ySgOdb+34RaQH8uWaBqm4HPgaedi5IR4vIMO8Xq+oM4DrgbREZcIIxE4BC4KCIdAV+\nfoLv44uZeM7vN1LP9Y9ZwCigJfD9CbzfR0APEblMRKKAX+C5nlLjNeBXIpIpIk3wHAW9rqqVXnnu\nwHOEBp4jlzuA2V5HWiZEWVEwDekDETmI58P2QeAmVV15hPUeBRoBu/FcjP6k1vIb8JwDXwPswnO+\n/wdU9XPgJ842+51A1nuBa4EiPBekXz+B9/CJqq7Dc71lljNdiOcC75wT+RBW1d3AlcA/gT1AFjDH\na5UX8Fys/wbIBUqBO72Wz8RTFGuKwmw810W+wYQ88ZxuNMYYY+xIwRhjjBcrCsYYYw6zomCMMeYw\nKwrGGGMOi3I7wPFKSkrSjIwMt2MYY0xQWbx48W5VTT7WekFXFDIyMli0aJHbMYwxJqiIyKZjr2Wn\nj4wxxnixomCMMeYwKwrGGGMOs6JgjDHmMCsKxhhjDvNbURCRF5yh/lbUsVxE5HERyRGRZSfYaZkx\nxph65M8jhcl4uv+ty3l4em/MwjMoyjN+zGKMMcYHfrtPQVW/EZGMo6xyMfCSMyrUfBFpJiJtnf7y\njQl4ObuK+GTFDsorfzxksYgwuFMS/TOac+ShmY0JTG7evJbCD4cI3OLM+1FREJHxeI4mSE9Pb5Bw\nxhxJZVU1X67ZxUvz8piTsweAI33mq8JjX66na5sEbhqUwcV92xEfE3T3ipowFBS/par6HJ4BzcnO\nzrYBIEyD23OwjNcX5fPq/M1s3X+Idolx3DeyC2P6p9GySeyP1j9UXsV7S7YyZd4mfvv2cv4xfTVX\nZadx/WntyUhq7MIeGOMbN4vCVn44bmyqM8+YgKGqTJi5kUe+WEd5ZTWDO7XkTxd256yurYiKrPuS\nXKOYSMYMSOfq/mks3rSPKfM2MXluHpNm53JVdip/vbgncdGRDbgnxvjGzaLwPnCHiEwFBgIH7HqC\nCSSlFVXc/9Yy3l2yjfN6tuHuczqT1TrhuN5DRMjOaEF2Rgt2XdCNibM2MnFWLut3HeTZG06lVUKc\nn9Ibc2L8VhRE5DVgOJAkIlvwDL4eDaCqE4DpwPlADlACjPNXFmOO167CUm55eTFL8/dz38gu3Da8\n40lfMG7VNI7fX9CdfunNuXvaUi5+cg4Tb8ymZ0piPaU25uQF3RjN2dnZar2kGn9avuUAt7y0iMLS\nCh6+qi+jerap922s2HqA8S8tYl9JBQ9d1Yfze7Wt920Y401EFqtq9rHWszuajfHy4bJtXPnsXCIj\nhDdvHeSXggDQMyWRd+8YTLe2Cdz26nc89sV6gu0LmglNVhSMcTz3zQbu+O/39GyXyHt3DKZ7u6Z+\n3V6rhDheG38al/VL4ZEv1vGr15dQXW2FwbgrKJqkGuNv05dv5+/T13BBr7Y8fHUfYqMapmVQbFQk\nD13Zh4yWjXn483WkNo/n3pFdGmTbxhyJFQUT9lZsPcDd05ZwSnozHrqq4QpCDRHhzjM7sW3/IZ78\nOoes1k24uG9Kg2YwpoadPjJhbVdhKbe8tIgW8TE8e8Oprt07ICL89eKeDMhswX1vLmNJ/n5Xchhj\nRcGErdKKKsa/vJj9JRVMvCnb9XsGYqIimHD9qbRKiOWWlxax/cAhV/OY8GRFwYQlVeX+tzzfyB+5\nug892gXGvQItGsfw/E39KSmr5JaXFnGovMrtSCbMWFEwYemZmRt4d8k27jmnM6N6BtY9Al3aJPD4\nNaewclsh976x1JqqmgZlRcGEnc9W7uA/n67lwj7tuOPMTm7HOaKzurXm/lFd+Wj5dh77cr3bcUwY\nsaJgwsr2A4e4Z9pSeqUk8p8regf0WAfjh3Xgsn4pPPrFeuZt2ON2HBMmrCiYsKGq/OGdFVRUV/PE\nNacEfC+lIsKDl/QivUU8v317mV1fMA3CioIJGx8s286Xa3Zx77ldaN8yOMY0aBQTyT8v70XenhIe\n/WKd23FMGLCiYMLC3uJyHnh/JX3SmjFucKbbcY7LoI5JXDMgjYmzNrJsi92/YPzLioIJC3/9YCVF\npRX8+/LeREYE7nWEutx/XjeSE2L59ZvLjjgmtDH1xYqCCXlfrdnJu0u2cdvwTnRpc3yD5ASKxEbR\n/O2SXqzZUcSzMze4HceEMCsKJqQVlVbw+3dW0Ll1E24b0dHtOCflnO6tGd27LU98lcP6nUVuxzEh\nyoqCCWn/+mQNOwpL+dflvRu8ozt/eOCiHsTHRvKbt5ZRZd1sGz+womBC1oKNe3hl/mZ+MjiTU9Kb\nux2nXiQ1ieXPF3bnu837eWlenttxTAiyomBCUlllFfe/vZy0Fo2459zObsepV5f0TWF4l2T+/cla\ntuwrcTuOCTFWFExIemnuJnJ3F/O3S3oRHxNaw4aICA9e2gtF+c+na92OY0KMFQUTcvaXlPPEV+s5\no3MyZ3ROdjuOX6Q0a8TNQzJ5b8k2lm854HYcE0KsKJiQ8/SMDRSVVXL/eV3djuJXPzujIy0ax/D3\n6autJ1VTb6womJCSv7eEyXPyuLxfKt3aNnU7jl81jYvmF2d2Yt7GPcxYV+B2HBMirCiYkPLw5+sQ\nIeQuLtfl2oHtyWgZzz+nr7EmqqZeWFEwIWPF1gO88/1Wbh6SSdvERm7HaRAxURH8elRX1u4s4q3F\nW9yOY0KAFQUTElSVv09fTfP4aG4dHtx3Lh+v83q2oW9aMx76fK11r21OmhUFExJmritg7oY9/OKs\nLJrGRbsdp0GJCL87vxs7C8t4YU6u23FMkLOiYIJeVbXyz4/XkN4inusGtnc7jisGZLbgnO6teWbG\nBvYcLHM7jgliVhRM0Hvruy2s2VHEr0d1ISYqfH+lfzOqK4cqqnjcxnQ2JyF8/4JMSDhUXsXDn62j\nT1ozLujV1u04rurUqglj+qfx6oLN5O4udjuOCVJWFExQe3XBJnYUlvK787oiEnyD59S3X56dRUxU\nhA3daU6YX4uCiIwSkbUikiMi9x9heaKIfCAiS0VkpYiM82ceE1pKK6p49puNDOrYkoEdWrodJyC0\nSojj+tPa88HSbXa0YE6I34qCiEQCTwHnAd2Ba0Ske63VbgdWqWofYDjwkIjE+CuTCS2vL8ynoKiM\nO8/McjtKQPnp0EyiIyN4+usct6OYIOTPI4UBQI6qblTVcmAqcHGtdRRIEM9xfxNgL1Dpx0wmRJRV\nVjFh5gb6ZzTntA4t3I4TUFolxHHNgHTe+X4r+Xuta21zfPxZFFKAfK/pLc48b08C3YBtwHLgl6r6\no1HJRWS8iCwSkUUFBdbHi4G3v9vK9gOl3Hlmll1LOIKfndGBCBEm2HjO5ji5faF5JLAEaAf0BZ4U\nkR/1Yqaqz6lqtqpmJyeHZlfIxncVVdU8PSOHPqmJDM1KcjtOQGqb2IgrslN5Y9EWdhwodTuOCSL+\nLApbgTSv6VRnnrdxwNvqkQPkAqHd37E5ae8t2Ub+3kN2lHAMPz+jI9WqdrRgjos/i8JCIEtEMp2L\nx2OA92utsxk4C0BEWgNdgI1+zGSCXFW18vTXOXRv25SzurVyO05AS2sRz6WnpPDat5vZVWRHC8Y3\nfisKqloJ3AF8CqwGpqnqShG5VURudVb7f8AgEVkOfAn8RlV3+yuTCX4fLd/Oxt3F3HlmJztK8MHt\nIzpRUVXN87OsTyTjG78OXquq04HpteZN8Hq+DTjXnxlM6KiuVp78aj2dWzdhZI82bscJChlJjbmo\nTztenr/p8EhtxhyN2xeajfHZZ6t2sG7nQW4f0YmICDtK8NXtIzpxqKKKF2bb0YI5NisKJiioKk98\nlUNmUmNG927ndpygktU6gfN6tmHK3DwOHKpwO44JcFYUTFD4eu0uVm4r5LbhHYm0o4TjdseILIrK\nKpk8J8/tKCbAWVEwQWHCjI2kNGvEJafUvv/R+KJ7u6ac3a0VU+bl2ehs5qisKJiAtyR/P9/m7eXm\nIZ4+fcyJGT+sI3uLy3nrOxvL2dTN/sJMwJs4ayMJcVFc1T/t2CubOvXPaE6f1ESen51LdbW6HccE\nKCsKJqDl7y3h4+XbuW5ge5rE+rUFdcgTEW4Z1oHc3cV8sXqn23FMgLKiYALa87NziYwQxg7KcDtK\nSBjVow2pzRsxcZZ1HGCOzIqCCVgHSiqYtiifi/qk0CYxzu04ISEqMoKbh2SyMG8f32/e53YcE4Cs\nKJiA9eq3mygpr+KnQzPdjhJSrspOo2lcFJOs6wtzBFYUTEAqq6xi8pw8hmYl0a3tj3pTNyehcWwU\n153Wno9XbGfzHhuEx/yQFQUTkN5fso1dRWWMH9bB7SghaeygDCIjhBfm2NGC+SErCibgqCqTZuXS\ntU0CQzrZIDr+0LppHBf1SeH1hfnsLyl3O44JIFYUTMD5Zv1u1u4s4pahHax7bD+6ZVgmhyqqeHXB\nZrejmABiRcEEnInfbKR101gu7GMd3/lT1zZNGdY5mclz8yirtK4vjIcVBRNQVm47wOyc3YwbnElM\nlP16+tv4oR0oKCrjvSXb3I5iAoT91ZmA8vysXBrHRHLNgHS3o4SFwZ1a0rVNApNmbUTVur4wVhRM\nANlVWMoHy7ZxZXYaiY2i3Y4TFkSEnw7twLqdB5mTs8ftOCYAWFEwAeOV+ZuorFbr0qKBXdinLUlN\nYqx5qgGsKJgAUeq0gjmzSysykhq7HSesxEZFcu3A9ny1Zhe5u4vdjmNcZkXBBIQPlm5jT3E54wZb\nlxZuuP60dKIjhSlz89yOYlxmRcG4TlV5cU4enVs3YXCnlm7HCUutEuK4sHc73liUT2GpjeMczqwo\nGNd9m7uXVdsLGTso025Wc9G4wZkUl1fxxiIbmS2cWVEwrntxTh7N4qO51MZfdlWv1ESy2zdnytw8\nqmxktrBlRcG4Kn9vCZ+t2sGY/uk0iol0O07YGzc4k817S/hqzS63oxiXWFEwrnp5/iZEhBtPb+92\nFAOM7NGadolxvGjNU8OWFQXjmpLySqZ+u5lRPdrQrlkjt+MYPCOz3XB6BnM37GHNjkK34xgXWFEw\nrnnru60UllYybnCG21GMl2sGpBEXHcHkOXluRzEusKJgXFFdrUyek0uvlERObd/c7TjGS7P4GC49\nJZV3vt/K3mIbayHcWFEwrpiVs5sNBcWMG5xhzVAD0LjBGZRVVvPatzbWQrixomBc8eKcXJKaxHJB\n77ZuRzFH0Lm1Z9S7l+dtoqKq2u04pgEdsyiISLyI/FFEJjrTWSIy2pc3F5FRIrJWRHJE5P461hku\nIktEZKWIzDy++CYYbSw4yIy1BVx/WjqxUdYMNVCNG5zBjsJSPl25w+0opgH5cqTwIlAGnO5MbwX+\ndqwXiUgk8BRwHtAduEZEutdapxnwNHCRqvYArvQ9uglWL83bRHSkcO1AGzMhkI3o0or2LePtgnOY\n8aUodFTVfwMVAKpaAvhyEngAkKOqG1W1HJgKXFxrnWuBt1V1s/PedsdMiCsqreDNxVsY3bsdrRLi\n3I5jjiIiQrjx9AwWbdrHiq0H3I5jGogvRaFcRBoBCiAiHfEcORxLCpDvNb3FmeetM9BcRGaIyGIR\nufFIbyQi40VkkYgsKigo8GHTJlC9tXgLB8squcnGTAgKV2anEh8TyWTrPTVs+FIU/gx8AqSJyKvA\nl8Cv62n7UcCpwAXASOCPItK59kqq+pyqZqtqdnJycj1t2jS06mplyrxN9E1rRt+0Zm7HMT5oGhfN\n5f1SeX/pNvYc9OW7oAl2xywKqvo5cBkwFngNyFbVGT6891YgzWs61ZnnbQvwqaoWq+pu4Bugjw/v\nbYLQN+sLyN1dbDerBZmbBrWnvLKaqQvzj72yCXp1FgUR6VfzANoD24FtQLoz71gWAlkikikiMcAY\n4P1a67wHDBGRKBGJBwYCq09kR0zgmzw3j+SEWM7rac1Qg0mnVgkMzbLmqeEi6ijLHnJ+xgHZwFI8\nF5h7A4v4X2ukI1LVShG5A/gUiAReUNWVInKrs3yCqq4WkU+AZUA1MElVV5zMDpnAVNMM9a6zs4iJ\nsttjgs3YQRncPGURn67cweje7dyOY/yozqKgqiMARORtoJ+qLnemewIP+PLmqjodmF5r3oRa0/8B\n/nNcqU3QsWaowa2meeqUuXlWFEKcL1/ZutQUBADnm3w3/0UyoeZgWSVvLt7CBb3aWjPUIBURIdxw\nWnsW5lnz1FDnS1FYJiKTnDuPhzt3Ni/zdzATOmqaoY4dnOl2FHMSrsxOIz4mkinWPDWk+VIUxgEr\ngV86j1XOPGOOqbpamTI3z5qhhoDERp7mqe9Z89SQ5kuT1FJVfURVL3Uej6hqaUOEM8Hvm/UFbNxd\nzFi7WS0kWPPU0OdLh3i5IrKx9qMhwpngN8Vphnp+L2uGGgpqmqe+Mt+ap4YqX04fZQP9ncdQ4HHg\nFX+GMqEhd3cxX68t4LqB6dYMNYSMHZTB9gPWe2qo8uX00R6vx1ZVfRRPtxTGHNXkObnWDDUE1TRP\nfdF6Tw1Jvpw+6uf1yHZuPjvaTW/GUOj0hnqh9YYaciIihJtOz2Dxpn0s27Lf7TimnvlyTP+Q1+Mf\nQD/gKn+GMsFv2sJ8isurGGfNUEPSldmpNImNsqOFEORLUbhZVUc4j3NUdTxgo3mbOlVVK1Pm5ZHd\nvjm9UhPdjmP8ICEumitOTeXDZdvYVWiNEUOJL0XhTR/nGQPAl6t3kr/3ED8ZYkcJoWzsoAwqq5VX\n5m9yO4qpR3VeGxCRrkAPIFFELvNa1BRPJ3nGHNELc3JJadaIc7u3djuK8aOMpMac1bUVry7YzG0j\nOhEXbeNth4KjHSl0AUYDzYALvR79gFv8H80Eo9XbC5m/cS83nN6eqEhrhhrqxg3OZE9xOR8s3eZ2\nFFNPjtZL6nvAeyJyuqrOa8BMJoi9OCeXuOgIxvRPO/bKJugN6tiSLq0TeHFOHlecmoqIL8O3m0B2\ntEF2aobcvFZEHq/9aKB8JojsOVjGu0u2cVm/VJrFx7gdxzQAEWHs4AxWbS9kQe5et+OYenC04/ua\nEdAWAYuP8DDmB177djPlldWMs36Owsqlp6TQPD6aF+fkuh3F1IOjnT76wPk5peHimGBVXlnNy/M3\nMTQriazWCW7HMQ0oLjqSawakM2HmBvL3lpDWIt7tSOYkHO300Qci8n5dj4YMaQLfxyu2s7OwjJ/Y\nzWph6YbT2yMivDQvz+0o5iQdrbuK/2uwFCbovTAnjw5JjTmjc7LbUYwL2iY24ryebZi6MJ+7zu5M\n41jrCSdY1XmkoKozax7APGAfsBeY58wzBoDvNu9jaf5+bhqUQUSEtT4JV+MGZ1JUWslb321xO4o5\nCb50iHcBsAFPl9lPAjkicp6/g5ng8fysXBLiorj81FS3oxgX9UtvRp+0ZrwwO5eqanU7jjlBvnaI\nN0JVh6vqGcAI4BH/xjLBYvOeEj5esZ3rBraniZ0yCGsiwvihHcjbU8Lnq3a6HcecIF+KQpGq5nhN\nbwSK/JTHBJkX5uQSGSE23KYBYGSP1qS1aMSkWTY4Y7DypSgsEpHpIjJWRG4CPgAWishltfpEMmFm\nf0k50xblc2GfdrRJtO6wDERFRvCTwZks2rSP7zbvczuOOQG+FIU4YCdwBjAcKAAa4ekHabTfkpmA\n9+qCzZSUV3HL0A5uRzEB5KrsNJrGRdnRQpA65klgVR3XEEFMcCmrrGLK3DyGZiXRrW1Tt+OYANI4\nNorrTmvPszM3sHlPCekt7Wa2YOJL66NMEXlYRN62m9dMjfeXbGNXUZkdJZgjGjsog8gI4QXr+iLo\n+NJc5F3geTzXEqr9G8cEA1Vl0qxcurZJYGhWkttxTABq3TSOi/qk8PrCfO46O8s6SAwivlxTKFXV\nx1X161o3tJkw9c363azdWcRPh3awrpJNnW4ZlsmhiipeXbDZ7SjmOPhSFB4TkT+LyOki0q/m4fdk\nJmBN/GYjrZvGclGfdm5HMQGsa5umDM1KYvLcPMoqq9yOY3zkS1HohWektX/iuZHtIXzsF0lERonI\nWhHJEZH7j7JefxGpFJErfHlf455V2wqZnbObsYMyiYmykdXM0Y0f1oGCojLeW2IjswULX64pXAl0\nUNXy43ljEYkEngLOAbbgubfhfVVddYT1/gV8djzvb9wxadZG4mMiuXZAuttRTBAY0imJrm0SmDRr\nI1fayGxBwZeveivwjNN8vAYAOaq60SkoU4GLj7DencBbwK4T2IZpQNsPHOL9pdu4un8aifHRbscx\nQUBEuGVoB9btPMjMdQVuxzE+8KUoNAPWiMinXk1S3/PhdSlAvtf0FmfeYSKSAlwKPONrYOOeyXPy\nqFa1MRPMcbmwTztaN43luW/sZrZg4Mvpoz97PRdgKDCmnrb/KPAbVa0+2mGliIwHxgOkp9tpCzfs\nLynnlfmbGN27nY2sZY5LTFQENw/J5O/T1/D95n2ckt7c7UjmKI55pOA0Py3E06XFZOBMYIIP770V\nSPOaTnXmecsGpopIHnAF8LSIXHKEDM+paraqZicn2yAubnhxTh7F5VXcPqKT21FMELpuYHuaxUfz\n1Nc5x17ZuKrOIwUR6Qxc4zx2A68DoqojfHzvhUCWiGTiKQZjgGu9V1DVw+chRGQy8KGqvns8O2D8\n72BZJZPn5nFO99Z0aWPjL5vj1zg2inGDMnnki3Ws3l5oXaMEsKMdKazBc1QwWlWHqOoTgM+NjVW1\nErgD+BRYDUxT1ZUicquI3HoyoU3DemX+Jg4cquAOO0owJ2HsoAyaxEbZ0UKAO9o1hcvwfLv/WkQ+\nwdN66Ljak6nqdGB6rXlHPPWkqmOP571NwyitqGLSrFyGZiXRJ+1EGqEZ45EYH831p7Xn2W82cHfB\nQTokN3E7kjmCo43R/K6qjgG6Al8DdwGtROQZETm3oQIad72+MJ/dB8vsWoKpFzcPySQmMoJnZmxw\nO4qpgy8XmotV9b+qeiGei8XfA7/xezLjuvLKap6duYHs9s0ZmNnC7TgmBCQnxHLNgHTe+X4rW/aV\nuB3HHMFx9VOgqvuclkBn+SuQCRzvfr+VbQdKuf3MTnYnqqk344d1QAS7byFAWec15oiqqpVnZm6g\nZ0pThne2ZsCm/rRr1ojLTkll6sJ8dhWVuh3H1GJFwRzRR8u3k7u7mNuH21GCqX8/H96Ryqpqnp9l\ng/AEGisK5keqq5Wnv86hU6smjOzRxu04JgRlJDVmdO92vDJ/E/tLjquvTeNnVhTMj3y5ZhdrdhRx\n2/CORETYUYLxj9tHdKK4vIoX5+S5HcV4saJgfkBVefKr9aS1aGSD6Bi/6tImgXO6t+bFObkUlla4\nHcc4rCiYH/hs1U6WbjnAnSOyiIq0Xw/jX788K4vC0komWUukgGF/9eawqmrloc/W0iG5MZf1Szn2\nC4w5ST1TErmgV1smzc5l98Eyt+MYrCgYLx8s3ca6nQe5+5zOdpRgGsyvzulMaUWV3eUcIOwv3wBQ\nUVXNw5+vo3vbppzfs63bcUwY6dSqCZf3S+Xl+ZvYfuCQ23HCnhUFA8C0Rfls3lvCfSO7WIsj0+B+\neXYWqsr3Nn0sAAAUtUlEQVTjX1oPqm6zomAoraji8S/Xk92+OcO72N3LpuGlNo/nuoHtmbYon7zd\nxW7HCWtWFAwvz9vEzsIy7h3Zxe5eNq65bURHoiOFR75Y53aUsGZFIcwVlVbw9IwchmYlcVqHlm7H\nMWGsVUIc4wZn8v7SbazeXuh2nLBlRSHMvTA7j30lFdw3sovbUYzhZ8M60CQ2ioc+s6MFt1hRCGP7\nisuZOGsjo3q0oXeqjapm3NcsPoafDevAF6t38t3mfW7HCUtWFMLYhJkbKC6v5J5zO7sdxZjDxg3O\npGXjGP7v07VuRwlLVhTC1JZ9JUyem8elfVPIap3gdhxjDmscG8VtIzoxd8MeZqzd5XacsGNFIUz9\nY/oaROAeu5ZgAtD1p6WT0TKev364ivLKarfjhBUrCmFo3oY9fLR8O7ee0ZGUZo3cjmPMj8RGRfKH\nC7qzsaCYl+bluR0nrFhRCDOVVdX85YOVpDRrxM+GdXQ7jjF1OqtbK87onMxjX6ynoMg6y2soVhTC\nzGsL81mzo4jfnd+NRjGRbscxpk4iwh9Hd+dQRZVddG5AVhTCyP6Sch76bC0DM1twfi8bZtMEvk6t\nmjB2UAbTFuezfMsBt+OEBSsKYeSRz9dReKiCBy7qYd1ZmKDxi7OzaNk4hgc+WImquh0n5FlRCBNr\ndxTxyoLNXDswnW5tm7odxxifNY2L5r6RXVi8aR/vLdnmdpyQZ0UhDKgqf/lgJU1io7jnHGuCaoLP\nlaem0SslkX98vJriskq344Q0Kwph4NOVO5i7YQ93n9OZ5o1j3I5jzHGLiBAeuKg7OwvLeHqGjbng\nT1YUQlxpRRV/+2g1XVoncN3AdLfjGHPCTm3fgkv6tmPirFw27ylxO07IsqIQ4h75fB1b9h3izxd1\nt3GXTdC7/7xuREcIv3tnuV109hO/fkqIyCgRWSsiOSJy/xGWXyciy0RkuYjMFZE+/swTbr7fvI+J\nszZyzYA0BnVMcjuOMSetTWIcv7ugG7NzdjN1Yb7bcUKS34qCiEQCTwHnAd2Ba0Ske63VcoEzVLUX\n8P+A5/yVJ9yUVlRx35vLaN00jt+e383tOMbUm2sHpDOoY0se/Gg1W/cfcjtOyPHnkcIAIEdVN6pq\nOTAVuNh7BVWdq6o1nabPB1L9mCesPPblenJ2HeQfl/WiaVy023GMqTciwr8u7021Kve/tcxOI9Uz\nfxaFFMD7+G6LM68uNwMfH2mBiIwXkUUisqigoKAeI4ampfn7eXbmBq7KTmV4l1ZuxzGm3qW1iOe3\n53Vl1vrdTFtkp5HqU0BceRSREXiKwm+OtFxVn1PVbFXNTk5ObthwQaassop731hKq4Q4fn9B7bN1\nxoSO6wa257QOLfjbh6vZfsBOI9UXfxaFrUCa13SqM+8HRKQ3MAm4WFX3+DFPWHjiyxzWO6eNEhvZ\naSMTuiIihH9f3ofKauW3b1trpPriz6KwEMgSkUwRiQHGAO97ryAi6cDbwA2qaiN1n6TlWw7wzMwN\nXN4vlRFd7bSRCX3pLeP5zaguzFhbwJuLt7gdJyT4rSioaiVwB/ApsBqYpqorReRWEbnVWe1PQEvg\naRFZIiKL/JUn1JVXVnPvG0tp2TiGP42200YmfNx4egYDMlrw1w9XseNAqdtxgp5frymo6nRV7ayq\nHVX1QWfeBFWd4Dz/qao2V9W+ziPbn3lC2X8+XcPanUX8/dJeJMbbaSMTPiIihH9f0ZuKqmrueWMJ\nVdV2GulkBMSFZnNyPlmxnYmzcrn+tHTO7t7a7TjGNLiMpMb85aIezMnZw6Nf2Jnok2FFIchtLDjI\nvW8so09aM/5op41MGLu6fzpXZafyxFc5fLVmp9txgpYVhSBWUl7Jz1/5juhI4enr+hEbZcNrmvD2\n14t70r1tU+6auoT8vdZp3omwohCkVJXfv7OCdbuKeGzMKaQ0a+R2JGNcFxcdyYTrTwXg1lcWU1pR\n5XKi4GNFIUi9smAz73y/lV+d3Zlhne2GPmNqpLeM5+Gr+rJyWyEPvL/S7ThBx4pCEFqSv5+/frCS\n4V2SuWNEJ7fjGBNwzu7emttHdGTqwnymWW+qx8WKQpDZW1zOba8splVCHI9e3ZeICHE7kjEB6e5z\nujC4U0v++N4KVmw94HacoGFFIYiUVlTx81cWs/tgOROuP5Vm8Ta0pjF1iYwQHhtzCs3jY/jZy4vt\nxjYfWVEIEpVV1dzx3+/5Nm8v/7myN71SE92OZEzAS2oSy8QbszlwqIIbnl/A/pJytyMFPCsKQaC6\nWvnNW8v5YvVO/nJRDy7ue7QeyI0x3nqlJvLcjaeyaW8JY19cSHFZpduRApoVhQCnqvx9+mre+m4L\nvzq7MzeenuF2JGOCzqCOSTxxzSks27KfW19ZTFmlNVWtixWFAPf0jA1Mmp3L2EEZ/OIsa2lkzIka\n2aMN/7y8N7PW7+bu15daH0l1iHI7gKnbfxds5j+fruWSvu340+juiFhLI2NOxlXZaewvKefv09eQ\nGB/Ng5f0tL+rWqwoBKiPlm3n9+8u58yurfjPlX2s6akx9WT8sI7sK6ngmRkbaNYomvtGdrHC4MWK\nQgD674LN/OHd5Zya3pynru1HdKSd5TOmPv16ZBf2l5Tz9IwNlJRX8cfR3Ym0L16AFYWAoqo8/Pk6\nnvgqhxFdknny2n40irFO7oypbyLCg5f0onFMFJNm57LjQCmPjulLXLT9vdlX0ABRUVXNvW8s44mv\nchjTP42JN2bTONZqtjH+EhEh/GF0d/44ujufrtrBdZMWsK/Y7mOwohAAikor+MnkhYebnf7jsl5E\n2SkjYxrEzUMyeerafizfeoDLJ8wN+y637ZPHZTsLS7n62fnM3bCHf1/Rm1+enWUXvYxpYOf3assr\nNw9kz8FyLn16Lsu3hG9fSVYUXPRt7l4ufWoOeXuKeWFsf67KTnM7kjFha0BmC976+enERkVw9XPz\nePu7LaiG370MVhRcUF5Zzb8/WcPVz80jOiqCaT87nTNsTARjXNepVQLv3DaIHu2acve0pdzx2vdh\n11+SXclsYDm7irjr9SWs2FrImP5p/HF0d7ugbEwAadU0jqnjT+fZbzbw8GfrWJy3j/+7sg9DspLc\njtYg7EihgagqL83L44LHZ7NtfynP3nAq/7y8txUEYwJQZIRw2/BOvHv7YBrHRnL98wv4fx+uCovh\nPe0TqQFs2lPMn95bycx1BQzvksy/r+hNq4Q4t2MZY46hZ0oiH945lH9+vJrnZ+cye/1u/n5ZL05t\n39ztaH4jwXYhJTs7WxctWuR2DJ8UFJXx5FfreXXBZqIjI/jd+V25/rT21rrImCA0Y+0ufv3mMnYV\nlTGyR2vuG9mVTq2auB3LZyKyWFWzj7meFYX6d7CskonfbGTirI2UVVZzdf80fnlWFq2b2tGBMcGs\nuKySF2bn8uw3Gykpr+Sq7DTuOrszbRID/2/bioILyiqrmPptPo9/uZ49xeWc36sN957bhQ7JwfNt\nwhhzbHsOlvHU1xt4eX4eESKMG5zJrWd0COghcq0oNKB1O4uY+m0+b3+/hf0lFZzeoSW/Oa8rfdOa\nuR3NGONH+XtLeOTzdbyzZCsxkRGc36stV/dPY2Bmi4A7TWxFwc+Kyyr5aNl2Xlu4me837yc6Uji3\nRxuuG5DO6R1bBtwvhDHGf9buKOLl+Xm89/02isoqyUxqzNX907i8XyrJCbFuxwOsKPjFjgOlzM7Z\nzez1BXyxehcHyyrpmNyYawakc+kpKbRsEhj/+cYYdxwqr+Kj5dt5feFmFubtIypCOKNzMsM6JzO4\nUxIdkxu79oXRikI9OFBSwbd5e5mTs5tZ6wvYUFAMQIvGMYzo0ooxA9LIbt/cjgqMMT+Ss8tzWvmT\nlTvYsu8QAG2axjG4UxJDslpyeockWjeNbbDPj4AoCiIyCngMiAQmqeo/ay0XZ/n5QAkwVlW/O9p7\n1ldRUFUOVVRRXFZFYWkFm/eUsKHgIBsKitno/Nx9sAyAuOgIBma2ZEinJAZ3SqJrmwQbCc0Y47PN\ne0qYnbObOTm7mbNhN/tLKgBIiIuiY3ITOiQ3pmNyEzomNyYzqQnN4qNpHBtFfHRkvX3WuF4URCQS\nWAecA2wBFgLXqOoqr3XOB+7EUxQGAo+p6sCjve+JFoUZa3fx1w9XUVxWSUlZFcXllRxp3O7m8dF0\ncP5zOiQ3oXdqIqe2b05slA2+YYw5edXVyqrthSzM28vGgmI2FBxkY0ExOwpLj7h+fEwkjWOjaBIb\nxbUD0rllWIcT2q6vRcGfdzQPAHJUdaMTaCpwMbDKa52LgZfUU5nmi0gzEWmrqtvrO0zTRtF0a9OU\nxrH/+weOj4miSWwkTeKiSGseT4fkJrRoHLhNyowxwS8iQuiZkkjPlMQfzD9YVkluQTF5e4opLK2g\nuKySg2VVni+y5Z7nDXHR2p9FIQXI95regudo4FjrpAA/KAoiMh4YD5Cenn5CYfqlN6ffdaF7a7ox\nJrg1iY2iV2oivVITj72yHwVFh3iq+pyqZqtqdnKydTFtjDH+4s+isBXwHjUm1Zl3vOsYY4xpIP4s\nCguBLBHJFJEYYAzwfq113gduFI/TgAP+uJ5gjDHGN367pqCqlSJyB/ApniapL6jqShG51Vk+AZiO\np+VRDp4mqeP8lccYY8yx+XU8BVWdjueD33veBK/nCtzuzwzGGGN8FxQXmo0xxjQMKwrGGGMOs6Jg\njDHmsKDrEE9ECoBNJ/jyJGB3PcYJJuG677bf4cX2u27tVfWYN3oFXVE4GSKyyJe+P0JRuO677Xd4\nsf0+eXb6yBhjzGFWFIwxxhwWbkXhObcDuChc9932O7zYfp+ksLqmYIwx5ujC7UjBGGPMUVhRMMYY\nc1jYFAURGSUia0UkR0TudzuPv4jICyKyS0RWeM1rISKfi8h652fIjTYkImki8rWIrBKRlSLyS2d+\nSO+7iMSJyLcistTZ778480N6v2uISKSIfC8iHzrTIb/fIpInIstFZImILHLm1dt+h0VRcMaLfgo4\nD+gOXCMi3d1N5TeTgVG15t0PfKmqWcCXznSoqQTuUdXuwGnA7c7/cajvexlwpqr2AfoCo5xu6EN9\nv2v8EljtNR0u+z1CVft63ZtQb/sdFkUBr/GiVbUcqBkvOuSo6jfA3lqzLwamOM+nAJc0aKgGoKrb\nVfU753kRng+KFEJ839XjoDMZ7TyUEN9vABFJBS4AJnnNDvn9rkO97Xe4FIW6xoIOF629Bi/aAbR2\nM4y/iUgGcAqwgDDYd+cUyhJgF/C5qobFfgOPAr8Gqr3mhcN+K/CFiCx2xq+Hetxvv46nYAKPqqqI\nhGw7ZBFpArwF3KWqhSJyeFmo7ruqVgF9RaQZ8I6I9Ky1POT2W0RGA7tUdbGIDD/SOqG4344hqrpV\nRFoBn4vIGu+FJ7vf4XKkEO5jQe8UkbYAzs9dLufxCxGJxlMQXlXVt53ZYbHvAKq6H/gazzWlUN/v\nwcBFIpKH53TwmSLyCqG/36jqVufnLuAdPKfH622/w6Uo+DJedCh7H7jJeX4T8J6LWfxCPIcEzwOr\nVfVhr0Uhve8ikuwcISAijYBzgDWE+H6r6m9VNVVVM/D8PX+lqtcT4vstIo1FJKHmOXAusIJ63O+w\nuaNZRM7Hcw6yZrzoB12O5Bci8howHE9XujuBPwPvAtOAdDzdjl+lqrUvRgc1ERkCzAKW879zzL/D\nc10hZPddRHrjubAYiedL3jRV/auItCSE99ubc/roXlUdHer7LSId8BwdgOf0/39V9cH63O+wKQrG\nGGOOLVxOHxljjPGBFQVjjDGHWVEwxhhzmBUFY4wxh1lRMMYYc5gVBRNQROT3Tm+fy5xeIAf6eXsz\nRMTnAc9FZLKIbBWRWGc6ybmBqj6yDK/p7bO+iMhdInLjMdbpJSKT63O7JnhZUTABQ0ROB0YD/VS1\nN3A2P+yzKlBUAT9xO0RtTm/A3tNReHL+92ivU9XlQKqIpPsxngkSVhRMIGkL7FbVMgBV3a2q2wBE\n5E8islBEVojIc84dzDXf9B8RkUUislpE+ovI206/8n9z1skQkTUi8qqzzpsiEl974yJyrojME5Hv\nROQNpx+lI3kU+JXzoev9+h980xeRJ0VkrPM8T0T+UdMHvoj0E5FPRWSDiNzq9TZNReQj8Yz9MUFE\nIo6WzXnff4nId8CVtXKeCXynqpVe/1b/Es/4C+tEZKjXuh/guTPYhDkrCiaQfAakOR9YT4vIGV7L\nnlTV/qraE2iE54iiRrnTr/wEPLf33w70BMY6d3oCdAGeVtVuQCFwm/eGRSQJ+ANwtqr2AxYBd9eR\nczMwG7jhOPdvs6r2xXPn9WTgCjxjP/zFa50BwJ14xv3oCFzmQ7Y9qtpPVafW2t5gYHGteVGqOgC4\nC8/d7jUWAUMxYc+KggkYzrgApwLjgQLg9Zpv2sAIEVkgIsvxfAPu4fXSmn6slgMrnbEVyoCN/K8j\nxHxVneM8fwUYUmvzp+H5IJ4jnm6obwLaHyXuP4D7OL6/Ie+cC1S1SFULgLKa/ouAb51xP6qA15yc\nx8r2eh3ba4vn39FbTUeBi4EMr/m7gHbHsS8mRFnX2SagOB+GM4AZTgG4SUSmAk8D2aqaLyIPAHFe\nLytzflZ7Pa+Zrvkdr92fS+1pwTMWwTU+5lzvfEBf5TW7kh8WibgfvuqEcx4rW3Ed8w8dJUMVP/z7\nj3PWN2HOjhRMwBCRLiKS5TWrL57OvWo+2HY759KvOIG3T3cuZANci+f0j7f5wGAR6eRkaSwinY/x\nng8C93pNbwK6i0is883/rBPIOcDpzTcCuNrJeSLZwDP6XCcft9sZT2+bJsxZUTCBpAkwRURWicgy\nPKdMHnDGCZiI50PrUzxdoR+vtXjGbV4NNAee8V7onMYZC7zmbHse0PVob6iqK4HvvKbz8fRUucL5\n+f0J5FwIPInnAz0XeOdEsjk+Bob5uN0RwEfHndaEHOsl1YQ88QzP+aFzkTqsiMg7wK9Vdf1R1okF\nZuIZ0auywcKZgGRHCsaEtvvxXHA+mnTgfisIBuxIwRhjjBc7UjDGGHOYFQVjjDGHWVEwxhhzmBUF\nY4wxh1lRMMYYc9j/ByIchgUrJJgtAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Blackmann window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 85, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXl8FdXZx79P9j0hISwBQtgREFEQcF+qdauitX1datVq\ntS5t7f62tW/tpt03W6u1m1L3XVQQQVlERPZ9CSFsCSEJAUISQtbz/jEzN3Mn9yaXkOTmhuf7+dzP\nnTlzZs5zZs45v7PNGTHGoCiKoigdISrcBiiKoiiRi4qIoiiK0mFURBRFUZQOoyKiKIqidBgVEUVR\nFKXDqIgoiqIoHUZFRFG6EBEZIyJrRaRKRL4e4jlGREZ2tW12WLtE5JITvMZPROSZzrKpJyEi54nI\nthM4v9ueZbhQEelE7AxZKyLVrl9OuO1Swsr3gAXGmFRjzKPegyKyUES+3BUBi0ieXYg5abFURP4m\nIrFdEV5vxBjzoTFmTLjt6MmoiHQ+VxtjUly/fV4PIhITDsPCxckWXw9DgU1htiHDGJMCnAqcBdwf\nZnuUXoSKSDfgqhHeKSJ7gA9s9+kislREDovIOhG50HXOMBFZZHeDzBORvzpdBiJyoYgUecLwdUuI\nSJSIfF9EdohIhYi8JCKZHltuE5E9InJARB50XSdaRH5on1slIqtEZIiIPCYiv/eEOUtEvhkkzkZE\n7heR7cB2222sHZeDIrJNRP7H5f9KEdlsh1ksIt9xx9W26YAdzy+4zksXkZkiUi4iu0XkRyISZR+7\nXUSWiMjvROSQiOwUkStc594uIoV2mDs9171DRLbY580VkaFtPN9rRGST/RwXisgptvsHwEXAX+2W\nwGjPeQ8D57mO/9V1+BIR2W5f8zERkY7Y5sYYUwbMA8YFicdUEfnYDrPETnNxruPjXc+vVER+GOAa\nsSLyvIi8KiJxYnV1vSwiz9j3eYOIjBaRH4hImYjsFZFPu87/kh23KvvZfMV1zEkL37bPLRGRL7mO\nP2Xfq3fs8z8RkRFB4vq0iHzb3h7kpFd7f4Qdxyjx5DU7/X1HRNaLSKWIvCgiCa7j37Xt2icid3jC\nbCut7haRyfb2F2x7xtv7d4rIG4Gfag/AGKO/TvoBu4BLArjnAQaYCSQDicAgoAK4EkvML7X3s+1z\nPgb+AMQD5wNVwDP2sQuBomBhAw8Ay4DB9vl/B5732PIP247TgDrgFPv4d4ENwBhA7ONZwFRgHxBl\n++sLHAX6B7kXBqvAyrTDSQb2Al8CYoDTgQPAONt/CXCevd0HOMMV10bXvbgAqAHG2MdnAm8CqXbc\n8oE77WO3Aw3AXUA0cK8dB7HtOeK6zkBgvL09AygATrFt/RGwNEg8R9v2XArEYnVfFQBx9vGFwJfb\nSDOtjtv37m0gA8gFyoHLO2Cb86xj7P0cYB1wR5B0MxmYbl83D9gCfMM+lmo/o28DCfb+NPvYT4Bn\n7Of8DvAUEO06dgy4zL7uTGAn8KB9v+4CdrrsuQoYYT+jC7DSmDct/Mw+90r7eB/7+FNYeWiqHdaz\nwAtB7s0dwFv29s3ADuBF17E3A+U1+34tt+9lpn2P7rGPXQ6UAhOw0tdz9v0fGUJanQl8295+0rbn\nXtexb4a7fAuahsNtQG/62QmsGjhs/96w3Z3MPNzl93+B/3rOnwvchlVwNALJrmPPEbqIbAE+5To2\nEKswjXHZMth1fDlwo729DZgRJH5bgEvt7a8Cs9u4Fwa42LV/A/Chx8/fgYfs7T3AV4A0j58LA9yL\nl4D/wxKGemwhso99BVhob98OFLiOJdl2DbAz+WHgeiDRE+YcJ3Pb+1FYhdXQAPH8P+Alj99i4EJ7\nfyEdE5FzPfH9fgdsc561kx4NsNR9jwlS8bGPfQN43d6+CVgTxN9PgFnAIuBRQDzH5rn2r8bKI47I\npNp2ZQS59hvAA660UIstirZbGTDd3n4K+Kfr2JXA1iDXHQEcsu/fE3a6KbKPPQ18K1Bes+/XLa79\n3wBP2Nv/Bn7lOjbajttI2k+rdwKzXPnsy9gCCOzGFtKe+NPurM7nWmNMhv271nNsr2t7KPB5u+vg\nsIgcBs7FKvBzgEPGmBqX/93HYcNQ4HXXdbcATUB/l5/9ru2jQIq9PQSrFhSIp4Fb7O1bgP+2Y4c3\nvtM88f0CVoEOVmF+JbBbrG68s1znBroXOVitoVj8781urFaegy+expij9maKfb0bgHuAErsLZKzL\n1j+77DyIVTN2X9chxx2+MabZjncgv8dDsOdzPLY59DXGZGCJ6EdYlZVW2N1Mb4vIfhE5AjyCdY+h\n7XQBVgtmIlYh6l3VtdS1XQscMMY0ufZx4iciV4jIMrs76TBWmujrOr/CGNPo2nffGwh+3/wwxuzA\nakFOwupSfBvYJyJjsFpAi9qIa7AwcvBP8+502V5aXQScJyIDsQTnJeAcEckD0oG1bdgTVlREuhd3\n5tqL1RLJcP2SjTG/wuo26CMiyS7/ua7tGqwCAbDGMYBsz7Wv8Fw7wRhTHIKNe7FqaYF4BpghIqdh\ndae010/rje8ij00pxph7AYwxK4wxM4B+9nVfcp0b6F7sw+oOa8AqWN3HQoknxpi5xphLsYR7K1YX\nn2PrVzy2Jhpjlga4zD53+PbYxZBQbcD/HoXC8djmH5AxtVi19eki0jeAl8ex7sMoY0wa8EMsgXLC\nHd7G5d8Dfgm8LyL92/AXFBGJB14FfofVTZoBzHbZ0NksAj6H1fVYbO/fhtWd2pFCuwTr2Tu482yb\nadUYU4AlSF8DFhtjjmCJ1d3AErty0iNREQkfzwBXi8hlYg1mJ9iDeIONMbuBlcBP7cHJc7G6ARzy\ngQQRuUqs6Zo/whovcHgCeNgZcBWRbBGZEaJd/wR+LiKjxGKiiGQBGGOKgBVYLZBX7UIpVN4GRovI\nF+3B11gROVNETrHj+AURSTfGNGCNVXgzjXMvzgM+A7xs12ZfsuOaasf3W1j3tk1EpL+IzLDFqQ6r\ni8UJ8wngB66BzXQR+XyQS70EXCUin7Kfxbft67VbqNuU0nbh7OV4bPPDLqS/iFU4VQTwkop176vt\nVtm9rmNvAwNF5BsiEm/f72nuk40xv8Hqdn0/iEi1RxxWOi4HGsWaBPHptk85IRZhdcsutvcX2vtL\nXC2l4+El4HYRGSciScBDzoEQ06pjj9MKWujZ75GoiIQJY8xerEHSH2Jlmr1Yg9rOM7kZmIbVXfEQ\n1uCac24lcB9WgV+M1TJxz9b6M1Yf9XsiUoU1yO6X4dvgD1iJ/T2sAuVfWAOmDk9jTRVtryvLD2NM\nFVaBcCNW7X0/8GtaxO+LwC67G+UerK4uh/1Y/df7sAZL7zHGbLWPfQ0r/oXAEqxC7N8hmBSFlYn3\nYd3jC7ALTWPM67ZtL9j2bASuCHQRY8w2rK69v2DVNq/GmuZdH4INYD2rz4k106rVeyQBwgvZNheH\nRaQaS7DOAq4J0OUE8B2sdFeF1Sp70RVuFdbkgauxnsd2rJlnXvt+jtWSnC/2jMBQscP4Olb6O2Tb\nMut4rnGcLMISTkdElmC18BcHPaMNjDFzgD9hzb4ssP/dtJdWvfZ493skEjgtKT0NEfkJ1iyPW9rz\n28V2nI9VexoapCDq7PAuxJpQMLirw1IU5fjRlogSMnZ3zQNYM2C09qEoioqIEhpivUB3GGsQ+k9h\nNkdRlB6CdmcpiqIoHUZbIoqiKEqH6fUL4/Xt29fk5eWF2wxFUZSIYtWqVQeMMdnt+ev1IpKXl8fK\nlSvDbYaiKEpEISIhrZKh3VmKoihKh1ERURRFUTqMioiiKIrSYVREFEVRlA6jIqIoiqJ0mIgTERG5\nXKxPqxaIyPfDbY+iKMrJTESJiP3djMewVi0dB9wkIgG/F60oiqJ0PZH2nshUrM+dFgKIyAtYy6lv\n7uyAlmw/wB1PryAvK4npw7PISIzt7CAURVE6lcZmw6rdh9i07wj3XTSC+y4c2eVhRpqIDML/85NF\nBPhOhojcjfVFMHJzc72HQ+KZZbupb2wmv7Sa/NJq17U7dDlFUZQuI9ASiL95d5uKSEcxxjwJPAkw\nZcqUDq0w+fgtZ1BT38S2/VW8tW4fL67YS5TAT64Zz+enDGn/AoqiKN3AjvJq7n1mFfml1Zw7si83\nT8vlzLxM+qbEdUv4kSYixfh/w3gwoX/L+rgQEVLiY5g8tA+Th/bhznOH8b1X1vPdV9azq6KG73x6\nDKLNEkVRwsjynQe58+kVxEZH8a/bpvCpUzr0efsTIqIG1rG+7z1KRIaJSBzWp1a78vOZPoZkJjHz\nzqncNHUIjy3YwV8+KOiOYBVFUQKyvugwdzy1guzUeN68/5ywCAhEWEvEGNMoIl8F5gLRwL+NMZu6\nK/zY6CgevvZU6hsNf5iXz9CsJGZMGtRdwSuKogBQduQYdzy1koykWJ778nQGpCeEzZaIEhEAY8xs\nYHa4wo+KEn59/ansOVjDD1/bwIRB6YzITgmXOYqinGQ0NRu+/sIaqusaePbL54ZVQCDyurN6BDHR\nUTx60+nExUTx3ZfX0dysX4dUFKV7+O/Hu1hWeJCfz5jAmAGp4TZHRaSjDExP5MGrxrF6z2FeWrm3\n/RMURVFOkJLKWn47dxvnj87mc5MHh9scQEXkhLj+jEFMG5bJr97dStWxhnCboyhKL+d3c/NpbDY8\nfO2EHjM7VEXkBBARHrzqFA4fbeDfS3aF2xxFUXoxBWVVvL6miFvPGsqQzKRwm+NDReQEmTg4g0vH\n9eefSwqpPKqtEUVRuoY/zt9OYmw093bDW+jHg4pIJ/CNS0ZRdayRF1bsCbcpiqL0QvYePMqcDSXc\nctZQMpO75030UFER6QTG56QzbVgm/122myadqaUoSifzzLLdiAi3nZUXblNaoSLSSdx+dh5Fh2p5\nf0tpuE1RFKUXUVvfxPPL93D5+AHkZCSG25xWqIh0EpeO60//tHheWKHTfRVF6TzmbSnlyLFGbpk+\nNNymBERFpJOIiY5ixqRBLM4v51BNfbjNURSll/DGmmJy0hOYNiwz3KYEREWkE7nmtBwamw1zNu4P\ntymKovQCKqrrWJRfzjWTBhEV1TPeC/GiItKJjM9JY0R2MrPWdcnq9IqinGTM21xKU7PhmtNywm1K\nUFREOhER4bLxA1ix6xBH9A12RVFOkA+2lpGTnsApA8O/RlYwVEQ6mYvG9qOp2bBk+4Fwm6IoSgRT\n19jEkoIDXDS2X49Z4iQQKiKdzOlDMkhLiGHB1rJwm6IoSgSzfOdBjtY3cfHYfuE2pU1URDqZmOgo\nzhudzZKCAxijLx4qitIxlmw/QFx0FGeP6BtuU9pERaQLmDYsk5LKYxQfrg23KYqiRCgrdh3k1MHp\nJMZFh9uUNlER6QKmDLXmc6/cdSjMliiKEokca2hiY/ERpgztE25T2kVFpAsYMyCV1PgYlu86GG5T\nFEWJQDYUV1Lf1MxkFZGTk+goYVJuBuv2Hg63KYqiRCCrdlu9GCoiJzHjBqaxvbSahqbmcJuiKEqE\nsWnfEQZlJJKVEh9uU9pFRaSLOGVgGvVNzRSW14TbFEVRIoz8/VWMHdBzXzB00+NERER+IiLFIrLW\n/l3pOvYDESkQkW0iclk47WyPcTlpAGwuqQyzJYqiRBL1jc3sKK9mTISISEy4DQjCH40xv3M7iMg4\n4EZgPJADzBeR0caYpnAY2B7D+yYTEyVsL60OtymKokQQhQeqaWw2ESMiPa4l0gYzgBeMMXXGmJ1A\nATA1zDYFJSY6isF9Etl98Gi4TVEUJYLYaXeBj8hOCbMlodFTReRrIrJeRP4tIs70hEGA+4tPRbZb\nK0TkbhFZKSIry8vLu9rWoORmJbOnQkVEUZTQKTpkvaQ8JDMpzJaERlhERETmi8jGAL8ZwOPAcGAS\nUAL8/nivb4x50hgzxRgzJTs7u5OtD52hmUnsrtCBdUVRQqfo0FFSE2JIT4wNtykhEZYxEWPMJaH4\nE5F/AG/bu8XAENfhwbZbjyU3M4kjxxqprG2ImAShKEp4KTpUy+A+kdEKgR7YnSUiA1271wEb7e1Z\nwI0iEi8iw4BRwPLutu946JdmzfEur6oLsyWKokQKRYdqGZSRGG4zQqYnzs76jYhMAgywC/gKgDFm\nk4i8BGwGGoH7e+rMLIfslBYRGdkvMgbJFEUJLweq65iS1/PfVHfocSJijPliG8ceBh7uRnNOiL6p\nlogcqNaWiKIo7WOM4XBtA32S4sJtSsj0uO6s3kTfFBURRVFC58ixRpqaDRlJkTOGqiLShWQkxhIl\nUFFdT1OzfqBKUZS2OXy0HkBbIopFVJSQHBfDkx8WMu7H7zJ/c2m4TVIUpQdSWdvAxb9fyOV/+hCA\nPsnaElFskuNjqG9spq6xmUc/2N5l4RhjmL+5lMX55a0+y/vB1lKe+mgn1XWNfu4FZVW8uGKPr/bj\nUFvfxMc7Kqjx+AerptSsrSqlB1F5tKFVS98Yw5o9hyg6dLSV+9xN+5m/udQvnxhjeG/Tfp5euouj\n9f7pfteBGl5ZVUTl0YYui8PLK/dSWF5DbYM1VyhDWyKKQ3ysdYtFYH1RpW+676GaeqqOHX+i/PP8\n7Ux4aC53zVzJsYaWyWm/fncbX565klv/vZzHF+3wub+0ci93PLWSn7y1mbueXunLOJv3HeGqR5fw\nv69u4HNPfOy7VnVdI9c+9hE3/WMZV/9lCUdcNv5k1iYm/WweV/91iZ/wfLC1lPN/s4A7nlpBZW2L\n/32Ha3nghTX8+M2NfgLW0NTMfz7ayZOLd1DX6D/BbtXuQ7y7sYRGzxL6B2vq2Vhc2Uogm5sNB2v8\nRVA5cbz32aGmrrFVIQtQfLiWgrKqVu4biip5Z30J9Y3+z3PB1jJ+N3dbq0LeSq8rWrXaH1+4g7N+\n+T4/fWuTn22/fncrp/3sPa7482IqXGOPv3hnC9f9bSkX/24RH++o8Ln/7r1tfOW/q/jyzJX85YMC\nn/vzy/dy939X8dCsTXzlv6t8YeSXVnHlox/ynZfXcd3fPvJLxzM/3sXEn8zlxic/Pu402NRsKD5c\n6wtnUb7/yhpJPfyTuG5URLqYmjqrkLx2krVCy8biShZsK2PaI+8z/ZH3WbrjQKtz/rVkJ9Memc+M\nxz6isLxlAcf5m0v54/x8xgxIZd7mUv78vtWy2VNxlCcX7+Czpw/i0nH9efT97VRU19HY1Mxv527j\nzLw+PHT1OD4urGDBtjIA/jAvn+T4GB657lQKyqp57pM9ADyzbDfbSqv46kUj2VVRw99tQVpacICn\nlu7i4rH92Lq/ij/OywegorqOrz23BoNhcX45v5y9BbAKoXueWcXsDSXM/Hg3P5m1yRePR2Zv4adv\nbeaR2Vv5wWsbfO5vr9/H9Y8v5Z5nVvN9l3t+aRUX/W4hn/nLEv731fU+98raBmY89hFn/HweP3x9\ngy9DNjcbvv/qesb8aA4PvbnRr9CZ+fEuLvjtAn7+9ma/FtXi/HI+9/hSHpm9xU/A8kuruHvmSn45\ne4tfQVhWdYzvv7qeX87e4ifmNXWN/HLOFh5+Z3Mr4XxsQQE/fWuT30QLYwxPL93Fg69vYK9nnbWX\nV+7lOy+vY/O+I37ub63bx/3PrmbJdv+08+7G/dz27+W8tHKvn/v8zaV89m8f8du5W/3i/MHWUi7+\n/ULue3aVnzAs2FrG5F/M5/I/LfazacHWMqb8Yj5TH/ZPtwu2lnHhbxdwyR8W84/FhX7uMx5bwv3P\nrearz632PYcF28r40lMr+OuCAm58cpkv7EX55XzvlfUsKTjAPc+sIr/UEqWlOw7w63e3khAbzX8+\n2sXLq4oAWLv3MI8v3MEFo7PZeaCG387d5ntm/1qyk2sn5ZCTkcBDs6w0UHbkGE8sKmTGpByumDCA\nvy4o4EB1HfWNzfxpfj7ThmXy4JWn8OH2AywpsOL3x3n5xEQJv7l+IoUHanh66S7AyscPzdrEsOwU\nVu85zP+9udEX74amZn7w2gYm/ew97nt2lV/FCloqauf86gO+8/J6mpsNq3cf4oYpLe9Sx0ZHTtEc\nOZZGKNV1VgI6d2RfwErgj7yzhQHpCfRPS+DbL62jtr6lEHp1VRE/f3szeVnJ7D14lK/8d5WvUHti\n0Q5yM5N48e7pXH1aDs98vJu6xibeWFuMAb5z2Ri+eclojjU08+6m/SwrPEh5VR13nDOMW6YPpU9S\nLG+s2cfBmnoWbivj85MHc/O0XCYOTufNtdbL/899soezhmfxncvGcPHYfry8sghjDM8t30NmchyP\n33IGMybl8OrqYo41NPHyqiJq6pv4z+1nctPUXF5bXUzl0QaWFR5kfVElv7h2Al8+dxivrS5i3+Fa\nyo4c49lle7hhyhDuuWAEr60uprC8mqZmwy/e3sLEwencdtZQXllVxMZiaxn9X7yzhSiB688YzEsr\ni1i+0/rs8GMLCti4r5JLTunHc5/sYaFdm3t1dREvrNjL2AGpPP3xbt7ZUALAmj2H+PGbm2g2hn8t\n2ekrbEuPHOMr/11FQXk1Ty4u5D8f7QKs71x/6T8rWJRfzt8XF/KoLdrGGO59ZjUvrtzL3xcX8rO3\nN/ue3w9f38DfFxXyjw938u2X1vrc/zAvn9/O3cZ/PtrlV9Od+fFuHpq1iWc/2cOt/17ua5nN3lDC\nd19ZzyurirjlX5/4arqfFFbwtefXMGdjCXc8tYIddiVj6/4j3P/capYVVvC9V9bzkV0IFh06yn3P\nrmZHeQ2PLdjB8yusykJ5lSX+x+qbmLNxP7+ba1UKauoa+caLa0lPjKXoUC0PvmEVjnWNTXz3lfUM\n7pNIdmo833tlPQ1NzTQ3G370xkaG903h/NHZ/Pa9bZQdOYYxhkdmb2FEdgpfuWA4720u5RP7uf15\n/naG9U3m6TumUnSolhdXWM/hH4sLGZSRyIffu4iE2GifID29dBdZyXHMeeA8xuek+Z7PzI93kRof\nw2NfOIPPTR7C62uKqa5r5NVVRcRECf/3mXHcd+FI8kur2Vh8hLfXl9DUbPjaxSN54JJR1Dc2M2fj\nfhbnl1NWVcc9F4zg1rOHkp4Yy5tr93Gopp65m/Zz87Sh/M+ZQzh7RBav2AL27Cd7SIiJ5r93TuWu\n84Yxe0OJb528Jxbu4PnlezgzL5P3NpXy9efX+Lee5mxl075KLhqTzauri3h/axk19U2cOjjd5yc2\nKnKK5sixNEJx0s6QzCSyU+OZt7mU7WXV3H3+cH5x3QRKKo8xa51VgB9raOJX725l8tA+PHfXdH5x\n7QS2l1Uzb3MpZVXHWLn7EDecOYSY6CiunZRDVV0jnxQeZMG2Mk4fkkFORiKnDExlSGYii/PL+XB7\nOXHRUVw0th+x0VFcMDqbZYUVfFJYQWOz4bIJAwC45JT+rCuqZGNxJXsOHuVy2/3T4wZQVlXHttIq\nFuWX8+lx/YmPiebq03Kormtk5a5DzNtcysTB6Yzsl8r1kwdT39TMwvwy3lq/j5T4GGZMGsTN03Jp\nNvD+llLe3bSf+qZm7jp/OHeck4cIvL2+hGWFFew/cox7LhjBty8bQ1x0FK+vKWZ/5TE+3F7ObWfn\n8fB1E0iNj+HllXtpaGrm5ZV7ufLUgTx+y2T6pcbzvKs1NXZAKq/eezbD+ybz3493A/DU0l1kJMUy\n54HzmTg43VcYPbPMEuNZ95/LeaP68q8lO2lqNsxat4/iw7X8+/Yz+czEgTy1dJc1XlRYwardh3jk\nulO59ayhvLhiL+VVdew6UMOba/dx/0Uj+OYlo5m7qZTtpVVU1zUyc+kuZkzK4ZefPZVVuw/xUUEF\njU3NPLFoB9OGZfKf289k54Ea3lpnCd7jC3cwql8Kb3/tXA7W1PPsMisOjy3cQXZqPIu+exFRUVar\nFeDJRYXEx0Sx+HsXMTA9gSfsFuRTH+2i2RjmPHAeZ+Rm8I/FhRhjeHW1Jf4z75zKZ08fzPPL93C0\nvpHX1xRTWdvA7z5/GvdeOILF+eUUllfzwZYyDlTX8eBVp/D9K8ZSdKiWJdsPsKywguLDtXz14pE8\ndPU46hubeWt9CRuLj7C9rJo7zh3GNy8ZTXJcNG+u3cfuihrW7j3MjWcO4YLR2YwbmMY760s4UF3H\n0h0HuO70QfRPS+DT4/rz3uZSjtY3smBrOddMyiEhNpoZk3LYUnKE4sO1LM4v55Jx/UmJj+GqUwdS\n19jMil0HWbitnLNGZJGVEs+l4/ojAgu3lbEov5xR/VIY2S+VMf2tfPLxjgMs3VFBfEwUZ4/MIj4m\nmnNH9uXD7eUs3VFBs4FLx/UHrP+dB2rYXVHDuxtL+PT4/qQlxHLztKEYA3M37aeusYl/LtnJpeP6\n849bp/DDK09hUX45C7dZFZyK6jpeXLmXG84cwp9uOJ3oKPGJ5dCslqVOYmOkk0uirkNFpItxRCQu\nJoqcjERWur6dfNbwLIZnJ/PqaktE5m7aT3lVHd+6dDTRUcJl4weQlRzHu5v2+/p1zx9lLSh51ogs\nRGD5zoNs2neEKXmZAIgIpw3OYNO+I2zcV8nYgakkxFr9q6fn9qGsqo65m/YTGy2Mtz+cddqQDMCq\nXQG+t2WnDbeu+dKKIqqONfq+9zx5aB8r7F0H2VBcybRhlr8JOWkkxUWzavchVu46yOShfUiIjWZY\n32QGZSSydEcFHxUcYEhmIiP7pdAvLYFTBqTxyc4KPt5RQXSUcMHobNISYpk2PNPn3xi4bPwAEmKj\nuWhsPxbll7Nu72EOHW3g6okDiY2O4vIJA1i8vZySylrWFVUyY9IgYqKj+MxpOSzfdZCDNfW8v6WM\ny8cPICU+huvPGMy20ip2V9Qwd9N+pg3LIjcric9PGcL+I8dYu/cwczaUMLhPImePyOLmqblU1zWy\neHs5szeUkBgbzbWTBvGFaUNpaja8t3k/szdaAvCFaUO5eVouUbZAzt9cSk19E7eelcdnzxhEclw0\n724qYfmug5RUHuPWs/K4cEw2QzITeXdjCTvKq9lQXMnN03KZMCidqXmZvLtpP5W1DSzZXs7/TBnM\nkMwkLh8/gNkbSmhoambe5lKunphD/7QEPnvGID4qOMCRYw3M3byfC8f0Iycjkf+ZMoRdFUfZXlbN\nnA0lnJ7JcwIoAAAgAElEQVSbwch+qVx3+iBqG5pYWlDBgq1lDOubzOShfbjmtBzA6uqbt6WUrOQ4\nzhuVzQWjs0mKi2bBtjI+2FpGXEwUl47rz4jsFEb1S2HhtjI+LLAKTee5nTcqmw+3l/vSsVMwXzQ2\nmzV7D/sK7IvG9gPg3FF9qaxt4PU1xdQ3NTN9eBYAZ4+wWvSvririQHU90+00OnloH2KihEXbyskv\nq/Kl1T7JceRlJbNxn1VJctK6k0/W7a1kQ/FhTh2UTnyMk08yKD1Sx6L8MmKjhYl2C+FMO4+9vb6E\nQ0cbOMu2aVBGIqP6pfBhwQEW5x+gsraBm6flAvDFs4bSLzWe55ZbeWve5lLqG5v54vQ80pNiGd0/\nleW7rBba0MxkX7kRoy0RxaGx2eqKiouOop/9BntcdBSj+qUgIlw+fgCrdx+ipq6RdzfuJzs13pc4\no6OE80b15eMdFazZc5jkuGjfFxOT4mIYmpnEnI3WoKUjCGB9VbHoUC0rdh5i3MAWd+dzm7M37mdE\ndoov00ywz317/T5EWr5jMKRPEomx0cxat8/yN8jKTGkJsQzLSmbW2mLqG5t97jHRUZw6KJ1Vuw+x\nvayaSa4MO2FQGvmlVWzdX8XEwRk+m6bk9WHtnsOs2XuIsQNSSY63FlGYNCSD/NIqPi6sICU+htH9\nLdtPz83wCSHAGbktwnasoZmXVljdDVOHWe5T8zIxxip0qusafcLo/C/OLye/tJqzR1j33Ln3q3Yf\nZPWew5w3qi8iwuS8PsRFR9kCeYgzh2WSGBfN6P4p9E2JZ+Uuy31UvxRyMqwun7ED0li5+yCf7DxI\nakIMk4ZkEB8TzfThWXxUUMGKnYcQgfNGW2GcPyqbj3dU+Lrrzh+dbf/3ZdO+I8zbXEqzaalInD2y\nL4ePNvDGmmKq6ho5b7RVwJ4zoi/Nxho72XuwlnNH2nGz47g4v5xN+4744nrmsD7ERgsrdx9i+a6D\nvgJ7SGYSgzIS+WTnQdbuPczpuX2IjhISYqOZODid9UWVrCs6zIScNF9F5YzcPmzad4T1eysZmpVE\nZrI1y2jikHSr9VJwgNSEGIb1tQrMUwel09RseG11EVGCL706aerllUW+9AAwsl8KUQJzNlrP30kX\niXFWZeWdDSUYA+NzWrqGxuWksTj/ABU19X75YXxOOsWHa9lQXOn37Y5R9jXnbiplaFayb3zCCftV\nu0vLESRne0vJEVbuOkhcdJQvPcVGR3HNaTks3FZGdV0j728tY5DdYwAwpn9LuM5ae9Z52hJRbJp9\nLRHxiUh2ajwxdsKcPjyLxmbDqt2HWLqjgovGZBMV1ZKAxuekU1ZVx+o9hxienUK069jo/qnssD9g\n417106nR1Dc1k+NayC3Xbi7XNzYzMD3B556ZHEdyXDRVxxoZlJHoKxCiooRhfZN9A8GD+7Rca2hW\nErvsPuDhfVsywvDsZDbtO4Ix/s3zkf1S2FFew+6Ko4zom+znXlPfxCeFBxnTv+VLbuNz0mhqNry7\ncT9jBqT64n2qXbi8trqYfqnx9Euz4uEI00sr99qFkeVv4hDr3xkLcPyN6pdKYmw0zy+3+uOd/ujs\n1HgG90nknQ1Wzd8pzOJjLAFfvvMg28uqmWi7iwhn5Gawbu9hNhRX+vVrTx7ax1fTnTQkwxeHCYPS\n2VVRw8rdBxnVL4W0hFife409RpGeGMtw+z6Nt8N6e72/mJ+Ra8XF6aefYBecTuH2xppiv/NzM5Po\nkxTLa6uLaWw2vnsRHxPN8L4pfFRwgKpjjb4CznkO64sqKSyv8d17gLEDrErBlpIqvwJ77MBUDtbU\n81HBAb8C+5QBTkWlhFMGpCEivusALNxWztCsZBLtWUkjslOIiRLW7j1MfExLBSwhNpq8rGS2lFiT\nDbxpz5n96F7AcFhWsm/q7CBXGnbS87GGZvJcaXJEtrVdWdvg23bCzs1MovBAje9+Oozpn0p5VR0L\nt5UzLifNV0EDqzLQ0GQNnq/efYjpw7N88R+Qnmg/gyhfvgMdWFcCEBcd7VsO3l3jcFoW728ppbK2\ngUlD/BdeG223HtYXVfoVyoCfQAxwiYJ7Ozu1Jaz+qQm+gsztR0R813ILBUB/29aU+BhSE1pegHJ/\nMMcdH7e7W9iG+WX2lu28LCuTNjYbBmYktDq3uq4xoBBW1NT72Tq4TyJRYk01zU6N9xVGaQmx9E2J\no7C8BpGWjB8dJQzNSmKzXRi5a6LD+iazbu9hAEa63Edkp7B272Gamg2jXDXIEf1SKDxQQ3lVnZ8Q\njshOprqukY3FR1oJqjHw4fYDvvg77mC1FPKyknwFjWPDwm3lDExP8LXWcjOTiY4SPtl5kNho8d2P\n5PgYBqYnsGKX1XXqiJGIMDw7xRdnt02jB6SywZ7I4LZpRL8Uig/X+u6xw6j+KRytb6K6rtGvYHbu\nY1VdIwPT/SsdDu605362/VxpNTpK6G9XEAb1SfTdC2cfICMplnTX8iAD0lquOzBIfnCH4bY7J8Pt\nJ7B9gM+mtIQY33OAlme3rbSq1RcJz7C7f9/dtJ+KmnomDEpzXS+eQMRoS0TxEhcT5SuEU1yJLys5\njj5JsbyzwWqej3N1SwHkuTJfrudLZ+7C2505gmWaqCghya7t9HdlOGgRG6f7oeX8hFbX9PrLcm33\nTQ6cSd1i5rbb7e7OsO4CK8ctiinxxMVYydZdSMVGR/n2B3ji5ghbVnK8Xw0vN4gQBivw3O7u+zc0\nM4i7q3Y7xCWow121W7fQDu8b2H1QRqIvzsNcfqxxtgRfXGJccXPCS02I8XtWfvfVdb/dNXe3iLgL\nY7+COUiB7Y7/gPT4gO7ugjMuJsq3xlw/z3Nz4uZdFt1ZHTvLm1Zd52cEERe3H/f5qQkteTIuJopE\nO58EC8ObH9zpxx1vsPL7wLQE37sv7oqGk/4bPO9F6ewspRVxMVEkx1sJs9k13U/Ev8vIm2GcDAa0\n+rBVdoq7D7XlUfZxZSB3rQqsGn8gd0fYvGv29E2NaxWW2190lPgVXn2CiIt7212oueOX4xIFd1wH\nelpNmXbY3ozcNyWwe5YtbN5an7PKcp+kWL/uB7dN7vvkJ4SpgYXQz911HbcouP27C/U+SXE4FW63\nAEdFCX3te+a+vttW7/N0nlu/1Hi/WrzjPzkumjRXwem2yb3khju8gX6thsCC0t+vMG3x7661eysw\nThjeuDlvbXsL8iz7ObdKq7Z7lOAXZ3d83M/E3bJOivNf0NxpsfdpValy0pJ/HPzE03MMIK9vMmV2\nV5v7Pjr5zm0v4Nel3dNREekm4mKiiAvSz+kkwLjoqFYZxp35kuL9E3qwryUmuvpWvX4S7DfovW/E\nBhMRJ6N50rivpudN6m6BiI9pia+7YM5MCiwo7tqgO1NlegTMaep7C500O67eDO7Y6s3cjth6/bvv\nQaLrPvmJs+scd0HjrpH28RPLlm339ft6WopOGvGKdpa97y3UHIH0tiCd+926oLXcUxNiPeLS4s9d\noPoLahDhdN0Ld3rzPp9A50LLILLX3UmTyZ5079yDRE8adsaWvKvypLnEIs6VJt3pLdkjIk5Fz3v/\nnGt58487TXvTE3hbsS3xdOIYyQu0qoh0E3HRUX4J2I2Tefqnx7dZA0mK9RT8CYE/B+MuHLx9q47A\nxHtscWzzZlgno3mb205h0ehJ/OmJgYXAbau7H9s9USAhNvBSD954O7Z6M7JTc03xFjp2eF5BzUiM\n87tey3UCi7O7QPF2STpkp7gmLLj8u++ru9WYEu8fh/h2nkNmkNq3d8E+R1RSPWkk0/ZX2+C/3Iw7\nbu5n4r5n7sqJ+7ru5+B+5sGW7kj0PE/nfiR7/Dstd+/zdPajPXklWH7wVr684brDcoiy4+EVKsef\nt9B351uvoEOL2KfGx/iJtLcFFImoiHQTsdHiK6y8yxI5Cay95Z+9Cd2buQLhFREnk3sLTqfw8k4t\ndAoCb0XJ3f3jJpgQuAuOYC2yoOfGeQtaWwi9omrfD+91fIvZBWlNHa0PXqAGvI7XPdEtFi1hu+32\nFuY+/55CxOka9D5rJ82kewTOibPbBre79zk74tTsSYRe0fJdx2W3u6B0C0RCkLTgTSNO2vLa5KTR\nGE+6cNKM1zan4PUW5MEK5IQglTc33jAcm7xjE44/b+XJTaC84YixNy1H0lTeYKiIdBMiEnTaXlpi\n4IztxZtJgrVs3HgzgbPrPdexzZsxHfdoT39WsLCDZWR3rdHb/+vgzWAOThdci01iu3taKLa7t5Xl\nFHjBCh3vqsRBW0TB7ItrCc9bO3YIVkh73Z004K0g+Ao1TxpybPW6t4hF4PC8cfaKVnt2u59hfGzg\ntOB9DkIQEYlyKjAe/0EqPM5zaGzyj8PxVk4CXbO1TZ50HyQ/+PkJkDcc8feKj1c4I5HIb0v1cF65\n5yw+tBfKC1bw+mo3TW2LiDejhzKX3NsScZrp3tqSk7ajvGIR3bIKsRtvAeHg7ao4HoLVGL2FgCMG\nXv9OTdlbkDvnt25N2S1DT3jBnlOwwtJdeAUTyGCtRq+7U7h7C28njBhP3Hzib7wC6RS0/t2QTteg\n13+w1kSwgtlNsLTQ6n5J4Gu2CKR/3IKtJBwT5DkHe26hiYj3+RjbNk8FJsbJD8FFJND9cFoitZ5W\nr/d5zrxjqu8dmEhBRaSLmZKX6VuSxMk83ryREqSLwUtibOCCpS1a1e6ccz0J3Qnbmzccf63EJUiG\nDVYTD4VgLRGvMDli4C0cnNqht8XhtGS89zeYKATrYghWGLVVoPjCCtZyiw8ct9bdXIFbIr6gTeAW\npNc2p1D0tlCDvZcQSkUlWPy9FZVgac95bt6lPpwoeWv9Thrzjh8Ge26hpEmvH+c5eK8Z64TdxiUD\n5Y1UXzeYv6g74TpRPH90tm+lgkgh8ttSEUSwdOeIgbeg9uJtiYTUneUpBFpaIqGJgOPfO209mICF\nUJ4GJVht2CsuTm3dGwenUPG2OKId44OM63hrvMHuTTD7QsFb0Drvinjvo1PIeLvwHBO9hb0jjN4C\n1ffcvCIS5Yw/BG7ReDmRSkGr5xOke6rFhsBhmVZtRdu2oBWe47EyMM599d4Xx5K28mqg+CUG6VJ1\nnkNb3WM9HRWRMODNFC0Di20nJG+TO5RaYqtCQJxz/d2dxO3NHI6l0R4VCVYQtCeEbRFsZpq38HYy\nuLdl4ITtbXE4l23VEolxWij+4cVFBxaLzhwE/eL0oW0e994Lx0Zvbb052HOz4+pNIsEGsbtimY1W\nYyJBurNa0lho9zdYWvWN33WCijj31fvM2+stgMCVEN/4m+d053lG0nshXsIiIiLyeRHZJCLNIjLF\nc+wHIlIgIttE5DKX+2QR2WAfe1RC6UOIEEIZrIPWLRGn3/uW6bkhh+VkPG9eCFajnTQkgzH9U7n3\nghH+NgcVkZBNCRnv1E3nZcLWImL9eweNnQFdb5yd7iyvqAeLW3cmuWCi4O1DbxnL8j+/yScigQva\nWI97Vyyz4RWqYN1ZJkhXast5gePsfR59kuKYODidv9x0escM9rPJ+veKtrNO2Dn2opaBCJR+gk3K\niA6he6ynE64xkY3AZ4G/ux1FZBxwIzAeyAHmi8hoY0wT8DhwF/AJMBu4HJjTnUZ3FU5Caq8G5a2R\nJ8RGs+b/Lg36XkMg8rKSKSirDjCw7tTu/P2nJ8Yy95vnt7pOdxa03lryfReOJC0h1m/5EGgpYL21\nvWAtkWBjVKF0E54o7VVovRWKFpEnoLv3vgcraH1prVVf//HH+WczxlN65FjI/oPNtvLZGqTD1yvy\nwVpZcTFRzPrquSHb0xa+7iyPrcP6JrP2x5f6vcDoJVBXb7DxvhYRiVwVCYuIGGO2QMACZwbwgjGm\nDtgpIgXAVBHZBaQZY5bZ580EriXCRMRZePCzpw/2c2+wZ2W1V3gFavJ632Bujz/ccBofbT/gW8jQ\nwRnvCzUxhzKof6L85abTW30CFqwlzZ1lzd3ced5w9hw8yu3n5Pm5O/fNW27HBhGR7py77y04ja/w\n9/cXTBSCzaoL3s1l/XtFo604f/vS0UxwrU7scOtZeQH9P3bzGXywtayVu68lEqQ7K+igoYdgrayO\n8M7Xz8Uz1g24BtYDhBHsfSGHQBWpYC0R517ccc6wdiztufS02VmDgGWu/SLbrcHe9roHRETuBu4G\nyM0NvaunqxmQnsDOX17ZKpE5n0R1LyjoZuyAVLbur+oUG9ISYrni1IGt3IO1RILRHSJy9Wk5XG1/\nGCkU0hNj+dONrbsypuZlkpkcx30X+nfJBdPL7miJtEfrMZHjG/tw/Hu1wRm493ZfRUcJI/ultOq2\nBPjap0Ydl+1XTRzIVRNbp7GR/VNYs+dwq8Lf150V5HpeoQ02JtIR3MvYuwk2sN4Wp+dmsGbP4YDH\nnF4Eb76Ji4li16+uCjqdORIIKiIi8mgI5x8xxvwoyPnzgQEBDj1ojHkzRPs6hDHmSeBJgClTpvSo\npxOolnLB6Gzuv2gEd5/XOgMDvHrv2VTXNXapXcFqusFwCrmp9lcNT4T53zqfmrqm9j12kD7Jcaz+\nv0tbuTs1ymtP9xeq7hDIYDi339udZXwtDn//wQpUn7vnBGctrBmT/OtgIsL8b13QYbtD4V+3ncm6\nvYf9Fj4Ed9xCS3vOYpYTA7SOOotgs+Ha4tkvT+NIbeB8GhUl/PSa8b4PfnmJ5CHetloiM4Aft3P+\n94GAImKMuaQD9hQDQ1z7g223Ynvb694riImO4ruXjQ16PDk+Juibw52FM8gcbHprIBZ858Kgi+wd\nDyP7pbbvqQtIiY9h408va7U2V7C++84kWM0mmFgEa4kEE39n0kGgBRg3/vSyVutUdQeZyXG+z9+6\nccY8Qi1HJw/tw+yvn+f7UmdX0JGWSFJcTJtrYd12dt6JmtUjaatk+qMx5um2ThaRPm0d7wCzgOdE\n5A9YA+ujgOXGmCYROSIi07EG1m8F/tLJYZ/UfP+KsWQlx3FVgK6uYLi/bRGpBHuT/M83TvL7kl+X\nEaTgDNad1XqsJHA35JWnDmR/5TFuCTCVOJQ118JBsIH1QHi/u9Mef7np9FarBLdFTLTQ2GxazYZT\nWhM0NRlj/tTeyaH4CYSIXIclAtnAOyKy1hhzmTFmk4i8BGwGGoH77ZlZAPcBTwGJWAPqETWo3t08\n9aUzKakMfeZMWkIs3/70mC60CH712VODzlLpaXi7e9y4l03vKoK2ODwF7Xi7MHW+rOcQHSXcdf7w\nrjOwE/n19RP56wcFvu/edwXHM7YG8Nq95zBvc2mvWNuqq2lrTCQBuAE4BLwFfA84D9gB/NwY03ra\nTIgYY14HXg9y7GHg4QDuK4EJHQ3zZOPCMa27DcLNjVN7ziSHjrLsB5/qFCFsbyC19ZhI4BbH5yYP\nZtKQDEb1D0+XYGcwuE8Sv7p+YtDjwd5Y70rG5aQdd2vnZKUtmZ0JfBq4A1gI5AJ/BaqwWgSKctIx\nID0h6MfAOkLQF+w8OdOZBOB9wVJEIlpAlMinrc7RccaYCSISAxQZY5ypG++KyLpusE1RIobnvjyt\nU7s+vC2R31w/kbdG7evSGUk9leMZK1G6n7ZEpB7AGNMoIvs8x7puPqaiRCBnj+zbqdfzjon0SY4L\n+nKfooSTtkRksP2uiLi2sfeDjzoqinLCRPBrA8pJRlsi8l3X9krPMe++oigdwKsVU4dl8uH2AxG9\nlpJyctHWFN823xFRFKV9lj/4KY7VB1icKQhP3DKZPQeP9oilVxQlFNqa4vsWwV+sxRhzTZdYpCi9\niH6pCQHdg83wTY6P4ZSBOrVUiRza6s76nf3/Waw1sJ6x928CSrvSKEVRFCUyaKs7axGAiPzeGOP+\ncNRbIqJjIorSCUTywnuKAqF92TBZRHzrJ4jIMCDyF01SFEVRTphQVmL7JrBQRAqxJpMMxf5Wh6IE\n4usXj9R+/XYIx1Iekca9F45gz8Gj/M+ZQ9r3rISNdkXEGPOuiIwCnLXKt9pfHlSUgHyrixdy7E1o\nZ1ZwslLiefLWKe17VMJK0O4sETnD2TbG1Blj1tm/ukB+FEVRlJOPtloi/xGRC2m7svQvoPX3SBVF\nUZSTgrZEJB1YRdsiUt655ijKyUEEf1JbUfxoa4pvXjfaoSgnJTrDV4l0dG0FRVEUpcOoiChKGNDe\nLKW3oCKiKGFEP7ikRDrtiohY3CIiP7b3c0VkatebpiiKovR0QmmJ/A04C2vhRbC+sf5Yl1mkKIqi\nRAyhiMg0Y8z9wDEAY8whIO5EAhWRz4vIJhFpFpEpLvc8EakVkbX27wnXsckiskFECkTkUdGV65QI\nRqf4Kr2FUESkQUSisccCRSQbCP0rO4HZiLXE/OIAx3YYYybZv3tc7o8DdwGj7N/lJ2iDooQdrQop\nkU4oIvIo8DrQT0QeBpYAj5xIoMaYLcaYbaH6F5GBQJoxZpkxxgAzgWtPxAZFURTlxAllAcZnRWQV\n8Cmst9evNcZs6UKbhonIWqAS+JEx5kNgEFDk8lNkuwVERO7GXmk4Nze3C01VFEU5uWnr87iZrt0y\n4Hn3MWPMwbYuLCLzsb6I6OVBY8ybQU4rAXKNMRUiMhl4Q0TGtxVOIIwxTwJPAkyZMkV7n5Uehy4F\nr/QW2mqJrMIaBxEgFzhkb2cAe4BhbV3YGHPJ8RpjrxBcZ2+vEpEdwGigGBjs8jrYdlMURVHCSNAx\nEWPMMGPMcGA+cLUxpq8xJgv4DPBeVxgjItn2ID721xRHAYXGmBLgiIhMt2dl3QoEa80oiqIo3UQo\nA+vTjTGznR1jzBzg7BMJVESuE5EirPdP3hGRufah84H19pjIK8A9rm6z+4B/AgXADmDOidigKOFE\np/gqvYVQPo+7T0R+BDxj738B2HcigRpjXsea8eV1fxV4Ncg5K4EJJxKuovQ0dIqvEumE0hK5CcjG\nKvRfB/rR8va6oiiKchITyhTfg8AD3WCLoiiKEmG0KyIisoAAK1cbYy7uEosURVGUiCGUMZHvuLYT\ngOuBxq4xR1FOLnQpeCXSCaU7a5XH6SMRWd5F9iiKoigRRCjdWe4316OAyUB6l1mkKIqiRAyhdGe5\n31xvBHYCd3alUYrS2zH6oojSSwhFRE4xxhxzO4hIfBfZoygnFfqeiBLphPKeyNIAbh93tiGKoihK\n5NHWKr4DsJZbTxSR08E3jSQNSOoG2xSl16K9WUpvoa3urMuA27FWzP2Dy70K+GEX2qQoJw3am6VE\nOkFFxBjzNPC0iFxvr2mlKIqiKH601Z11izHmGSBPRL7lPW6M+UOA0xRFUZSTiLa6s5Lt/5TuMERR\nTiZ0SETpLbTVnfV3+/+n3WeOopxciM7xVSKcUN5YzwbuAvLc/o0xd3SdWYqiKEokEMrLhm8CH2J9\nJrepa81RlJMDneKr9BZCEZEkY8z/drkliqIoSsQRyhvrb4vIlV1uiaKchOiIiBLphCIiD2AJSa2I\nHBGRKhE50tWGKYqiKD2fUL4nktodhijKyYTRSb5KLyGU2VlnBHCuBHYbY/QLh4pyAugMXyXSCaU7\n62/AMuAf9m8Z8DKwTUQ+3ZFAReS3IrJVRNaLyOsikuE69gMRKRCRbSJymct9sohssI89KjrBXlEU\nJeyEIiL7gNONMZONMZOBSUAhcCnwmw6GOw+YYIyZCOQDPwAQkXHAjcB44HLgbyISbZ/zONb7KqPs\n3+UdDFtRFEXpJEIRkdHGmE3OjjFmMzDWGFPY0UCNMe+5usKWYa0UDDADeMEYU2eM2QkUAFNFZCCQ\nZoxZZqxPws0Eru1o+IoSbvQ9EaW3EMp7IptE5HHgBXv/BmCz/XXDhk6w4Q7gRXt7EJaoOBTZbg32\nttc9ICJyN3A3QG5ubieYqChdg/bKKpFOKC2R27FaBN+wf4W2WwNwUbCTRGS+iGwM8Jvh8vMg1nfb\nn+14FFpjjHnSGDPFGDMlOzu7My+tKIqiuAhlim8t8Hv756W6jfMuaeu6InI78BngU3YXFUAxMMTl\nbbDtVkxLl5fbXVEiEu3NUnoL7bZERGSUiLwiIptFpND5nUigInI58D3gGmPMUdehWcCNIhIvIsOw\nBtCXG2NKgCMiMt2elXUr1ppeiqIoShgJZUzkP8BDwB+xuq++RGjdYG3xVyAemGf3CS8zxtxjjNkk\nIi8Bm7G6ue43xjiLPt4HPAUkAnPsn6IoihJGQhGRRGPM+yIixpjdwE9EZBXw444GaowZ2caxh4GH\nA7ivBCZ0NExFURSl8wlFROpEJArYLiJfxRqL0K8dKsqJoHN8lV5CqAswJgFfByYDXwRu60qjFOVk\nQGf3Kr2BUGZnrbA3q7HGQxRFURQFaENERGRWWycaY67pfHMURVGUSKKtlshZwF7geeAT9Ps5itJp\n6IiI0ltoS0QGYC2yeBNwM/AO8Lx7HS1FUTqO1sqU3kDQgXVjTJMx5l1jzG3AdKylTxbaM7QURVEU\npe2BdXuRxauwWiN5wKPA611vlqL0bnSGr9JbaGtgfSbWy32zgZ8aYzZ2m1WKchKgK/gqvYG2WiK3\nADVY74l83ZXgBTDGmLQutk1RFEXp4QQVEWPMia6PpSiKovRyVCgUJQwYneSr9BJURBQlTOiIiNIb\nUBFRFEVROoyKiKIoitJhVEQUJQzoeyJKb0FFRFHChL4movQGVEQURVGUDqMioihhQHuzlN6Cioii\nhAnRSb5KL0BFRFEURekwKiKKoihKhwmLiIjIb0Vkq4isF5HXRSTDds8TkVoRWWv/nnCdM1lENohI\ngYg8KroEqhLB6BRfpbcQrpbIPGCCMWYikA/8wHVshzFmkv27x+X+OHAXMMr+Xd5t1ipKV6DVIKUX\nEBYRMca8Z4xptHeXAYPb8i8iA4E0Y8wyY4wBZgLXdrGZiqIoSjv0hDGRO4A5rv1hdlfWIhE5z3Yb\nBBS5/BTZbgERkbtFZKWIrCwvL+98ixVFURSgnc/jnggiMh8YEODQg8aYN20/DwKNwLP2sRIg1xhT\nIa8meHkAAA6xSURBVCKTgTdEZPzxhm2MeRJ4EmDKlCna+6z0OHQpeKW30GUiYoy5pK3jInI78Bng\nU3YXFcaYOqDO3l4lIjuA0UAx/l1eg203RYlYdEhE6Q2Ea3bW5cD3gGuMMUdd7tkiEm1vD8caQC80\nxpQAR0Rkuj0r61bgzTCYriiKorjospZIO/wViAfm2TN1l9kzsc4HfiYiDUAzcI8x5qB9zn3AU0Ai\n1hjKHO9FFSVi0N4spZcQFhExxowM4v4q8GqQYyuBCV1pl6J0J/qmk9Ib6AmzsxRFUZQIRUVEURRF\n6TAqIooSBnRIROktqIgoSpjQpeCV3oCKiKIoitJhVEQUJQwYXcZX6SWoiChKmNApvkpvQEVEURRF\n6TAqIoqiKEqHURFRlDCgQyJKb0FFRFHChA6JKL0BFRFFURSlw6iIKIqiKB1GRURRwoAOiSi9BRUR\nRQkToi+KKL0AFRFFURSlw6iIKEoY0Cm+Sm9BRURRwoR2Zim9ARURRVEUpcOoiCiKoigdRkVEUcKA\n0Um+Si9BRURRwoUOiii9gLCIiIj8XETWi8haEXlPRHJcx34gIgUisk1ELnO5TxaRDfaxR0Un2SuK\nooSdcLVEfmuMmWiMmQS8DfwYQETGATcC44HLgb+JSLR9zuPAXcAo+3d5t1utKIqi+BEWETHGHHHt\nJtOyCsQM4AVjTJ0xZidQAEwVkYFAmjFmmbG+KzoTuLZbjVaUTkTfE1F6CzHhClhEHgZuBSqBi2zn\nQcAyl7ci263B3va6B7v23cDdALm5uZ1ntKJ0Itofq/QGuqwlIiLzRWRjgN8MAGPMg8aYIcCzwFc7\nM2xjzJPGmCnGmCnZ2dmdeWlFURTFRZe1RIwxl4To9VlgNvAQUAwMcR0bbLsV29ted0VRFCWMhGt2\n1ijX7gxgq709C7hRROJFZBjWAPpyY0wJcEREptuzsm4F3uxWoxWlk9EJhkpvIFxjIr8SkTFAM7Ab\nuAfAGLNJRF4CNgONwP3GmCb7nPuAp4BEYI79UxRFUcJIWETEGHN9G8ceBh4O4L4SmNCVdimKoijH\nh76xrihhwOgcX6WXoCKiKGFCh0SU3oCKiKIoitJhVEQURVGUDqMioihhQEdElN6CioiihAkdElF6\nAyoiiqIoSocJ2wKMinIyMz4njdr6pvY9KkoPR0VEUcLADWfmcsOZusK0Evlod5aiKIrSYVREFEVR\nlA6jIqIoiqJ0GBURRVEUpcOoiCiKoigdRkVEURRF6TAqIoqiKEqHURFRFEVROoz09o/jiEg51id4\nI4m+wIFwG9HNaJxPDjTOkcNQY0x2e556vYhEIiKy0hgzJdx2dCca55MDjXPvQ7uzFEVRlA6jIqIo\niqJ0GBWRnsmT4TYgDGicTw40zr0MHRNRFEVROoy2RBRFUZQOoyKiKIqidBgVkR6AiGSKyDwR2W7/\n92nDb7SIrBGRt7vTxs4mlDiLyBARWSAim0Vkk4g8EA5bTxQRuVxEtolIgYh8P8BxEZFH7ePrReSM\ncNjZmYQQ5y/Ycd0gIktF5LRw2NmZtBdnl78zRaRRRD7XnfZ1FSoiPYPvA+8bY0YB79v7wXgA2NIt\nVnUtocS5Efi2MWYcMB24X0TGdaONJ4yIRAOPAVcA44CbAsThCmCU/bsbeLxbjexkQozzTuACY8yp\nwM+J8MHnEOPs+Ps18F73Wth1qIj0DGYAT9vbTwPXBvIkIoOBq4B/dpNdXUm7cTbGlBhjVtvbVVji\nOajbLOwcpgIFxphCY0w98AJW3N3MAGYai2VAhogM7G5DO5F242yMWWqMOWTvLgMGd7ONnU0ozxng\na8CrQFl3GteVqIj0DPobY0rs7f1A/yD+/gR8D2juFqu6llDjDICI5AGnA590rVmdziBgr2u/iNZC\nGIqfSOJ443MnMKdLLep62o2ziAwCriPCW5peYsJtwMmCiMwHBgQ49KB7xxhjRKTVvGsR+QxQZoxZ\nJSIXdo2VncuJxtl1nRSs2ts3jDFHOtdKJZyIyEVYInJuuG3pBv4E/K8xpllEwm1Lp6Ei0k0YYy4J\ndkxESkVkoDGmxO7GCNTUPQe4RkSuBBKANBF5xhhzSxeZfMJ0QpwRkVgsAXnWGPNaF5nalRQDQ1z7\ng2234/UTSYQUHxGZiNU1e4UxpqKbbOsqQonzFOAFW0D6AleKSKMx5o3uMbFr0O6snsEs4DZ7+zbg\nTa8HY8wPjDGDjTF5wI3ABz1ZQEKg3TiLldv+BWwxxvyhG23rTFYAo0RkmIjEYT27WR4/s4Bb7Vla\n04FKV1dfJNJunEUkF3gN+KIxJj8MNnY27cbZGDPMGJNn5+FXgPsiXUBARaSn8CvgUhHZDlxi7yMi\nOSIyO6yWdR2hxPkc4IvAxSKy1v5dGR5zO4YxphH4KjAXa2LAS8aYTSJyj4jcY3ubDRQCBcA/gPvC\nYmwnEWKcfwxkAX+zn+vKMJnbKYQY516JLnuiKIqidBhtiSiKoigdRkVEURRF6TAqIoqiKMr/t3eu\nMXZVVRz//TttaEtpy2jVLypfDAGqaBiJRdIgqUaiiNQpTQTr1CjRCEVJFY1GJzSItmlUBIPSlCkV\n5SF2UJSWpnQoMgqlj5lOIRUUjIkE0yqjFTrCsPyw1nH23Dn39s7t2KHT/Utuss/e++y1H+fu5zlr\nNUweRDKZTCbTMHkQyWQymUzD5EFkgiLJJK1OrpdLaj/KeegoNJVKWnOkyhMlnSKpr0rYqtD0u+pI\nZLyWiPp7ZixfEU3b5HhEUpukGw8TZ3Fo4j2mNWUfLfIX6xOXAWChpOvNbP9ob5Y0Od59HxPM7NNj\nlVYVLgeazWww9RzrcowDXzKzn493JsYSSU2V7fRawszulPQ8sHy883IskFciE5dXcPXaX6wMiBn9\ng2HPYUt8PVzMUm+W9CiwUlK7pHWSHpb0Z0kLJa0MGxAbQyUJkr4habukPkk/VoliIEldklokfST5\ncHCfpGci/CxJD0naIWlTocU2/Hsk9QCfLyuopF8CM4AdMYusLMeJktZKekxui+WiuG+apDskPSlp\ng6RHJbVE2MEk/VZJHeGeI+meKO92Se8N//aQ0SXpT5KWJfcvibrukbRe0kmxwijqb2Z6XQ1Jb4x8\n9sTvHEnXSvpCEuc6hd0VSddEW/VI+nZJetXqfJnchkuvpDtK7muTdG+U9SlJ30zCLot63i3pR3LV\n50g6KGl1tOO8ivRGyJN0tqTfRXt1Szo1kd0pt0HzrKQrJF0d8X4vqTnidUn6fuSjT9LZJeUobcvM\nKDGz/JuAP+AgMBN4FpiFz6raI+xXwCfD/SmgM9wdwH1AU1y3A78FpgBnAi/ieo4ANgAfDXdzInc9\ncGGSXmu4u4CWijzehQ8MU4BuYE74LwbWhrsXmB/uVUBftfIm7spyfAu4LNyzgT8AJwJXJ3LegQ+8\nLSXptQId4f4pcG6434KrZCnqqhs4AdeLdCDKdUbIe31aV8CtSf1dDqwuKdP/6i+u78SVUAI0Rbue\nAuwMv0nAH/EvwS+I/EyvkNsR5alV538FTijqqyRfbcBzIWca0IfrhToNf7amRLwfAkvCbcAlVdpu\nhDz82Z0c7gXAPYnsp4GTgDlAP/DZCPtuUj9dwC3hnk88N3H/jbXaMq7PA+4b7//xsfDL21kTGDP7\np6TbgGXAS0nQPGBhuNcDK5Owu234VsP9ZvaypD14x7Ux/PfgHRjA+yR9GZgONAN78c6kKhH/JTO7\nSdJcYC6wORYxTcBzkmbjncq2JK8X1FX44eX4AK68stiemIp3GvOBGwDMrFdSbx3pLgBO19Bia6Zc\nyzDAr81sABiQ9Ddcvf35kZf9IefvEXcNrta/E1gKfKYO2ecDSyKdQbwD7Zd0QNK7Qt4uMzsgaQFw\nq5m9WCG34FRK6jzCeoHbJXVG/srYbKE0UdIvcC28rwBnAdsjzWkMKdYcxBVpllEmbxawTtLb8AEo\nXaVtNbcv8y9J/Qw9a3vwyUDBz6Ls22K1N7tCbmlbmtlBMnWTB5GJz/eAnfjMtx7+XXE9AGCuvvpl\ni2kabtNksqSp+Iyzxcz+Ij+8n1pLQHRwi/BOHEDAXjOr3Oao/NOPhrQcAj5mZvsq0q91f6oPKC3P\nJOA9ZnaoJK2BxGuQGv8vM3tEvq14Hr5iKn1hoE7W4DPsNwFr67yntM6DD+FtcyHwNUlvt5HnSpX6\nkizSXGdmXy1J85BVPwcZIQ+3drjVzC6W25LpSuKn9fxqcv0qw+u8LI8ppW2ZGR35TGSCEzPQu3Cb\nDQXduJZRgEuBh49ARNHB7o8Zec03fyS9FTcjusjMitXRPmCOpHkRZ4qkM8zsBeAFSYWtiUsbzOMm\n4EpFTx+zdoBtwMfDby7DZ7HPSzpN0iTckFDBA7h1uqI87zyM7AeBRZJeF/Gbk7Db8C2Vegf4LcDn\nIp0mSbPCfwPwQeDdeFkBNgNLJU0vkQtV6jzK+2Yz2wpcg68IZjCS90tqljQNt0r5SOSvVdIbCpnR\n3lWpIW8WQ6rU22pXS1UWh4xzcc3I/RXho23LTAl5EDk+WI3v0xdciXcwvbiW3KsaTTg6+lvwffFN\nuErsWrThe+mdcej5G3Nzoq3Ad+LgdTdwTsRfCtwkaTc+022EFfh2SK+kvXENbmFuhqQngWuBHck9\nX8HPVboZ2uYB3xpsiUPgJ4Car9+a2V7gOuChKFuq0v524GRi26UOrsK3DvdEXk8PGf8BtuKaYwfD\nbyOuivzxqLthbxrVqPMm4CchYxdwQ7RxJY/h21O9+HnF42b2BPB14IF4tjYDhzPzW03eSuB6Sbto\nfMfkUNx/M8MnUQWjastMOVmLbyYTSOoClpvZUVFLLv9e4yIz+0SV8A78cLfmK74xm9+Jr+6eGvOM\njpTXhm9fXvH/ltUoR9qWsc243Mw+PJb5mojklUgmMw5I+gFuQ2VFjWj9wArV+NhQ/gHn08CWozGA\nHA9IWoyf8/1jvPNyLJBXIplMJpNpmLwSyWQymUzD5EEkk8lkMg2TB5FMJpPJNEweRDKZTCbTMHkQ\nyWQymUzD/Be7EGrwo8OjJAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Blackmann window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Flat Top Window" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "N = 50\n", + "window = create_window(N, window_type='flat-top')" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 87, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAEWCAYAAABliCz2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8XOWV4P3fUWmXbO3etFiWLGO8bxgLbIPZwmIgGwmB\nZICkx/12epLQ05l0Mt096fTbebt73nRCd0imA0kI3UmAQCAEYgKGgDdkY9ngfZElL7Ika7UsWbuq\nzvxRV1AotizLVbq1nO/nUx/Vrbp177mS6tRT5z73eURVMcYYE/3i3A7AGGPM+LCEb4wxMcISvjHG\nxAhL+MYYEyMs4RtjTIywhG+MMTHCEr5xnYgUi4iKSLzbsQSTiLwiIg+M8bV/JyI/D3ZMJrZZwjfj\nRkSOi0iPiJwLuE27xG1cLyKnLrJOWHyAqOptqvqkmzEYE8gSvhlvd6pqesCt3u2AjIkVlvBN2BGR\nh0TkoIh0ikiNiPyp83ga8Aow7SLfEDY5P9uddcpFJE5E/kZETohIk4j8h4hkONsd+kawTkTqRaRB\nRL56gdhmiEi7iMQ5y4+LSFPA8/8pIg87998SkT9x7j8oIltE5DsickZEjonIbcO2u9E55g1A7rD9\n3iUi+519vyUiVwb8rl4KWK9KRJ4NWK4VkUWj/uWbqGYJ34SjJmAtMBF4CPieiCxR1S7gNqD+It8Q\nVjs/M511KoAHndsaoARIBx4d9ro1QBlwC/BXInLT8A2r6jGgA1gcsK9zQwkYuA7YeIHjuho4jD+Z\n/2/gJyIiznO/BHY6z/2/wPu1fxGZBTwFPAzkAeuBl0Qk0dnXKucDbRqQCJQ7rxs6zj0XiMfEGEv4\nZrz9xmmltovIb863gqr+TlWr1W8j8Bqw6jL3ez/wXVWtUdVzwDeAe4fV+b+lql2quhd4AvjMBba1\nEbhORKY4y885yzPwf0jtvsDrTqjq46rqBZ4EpgKTRaQIuAr4W1XtU9VNwEsBr/s08DtV3aCqA8B3\ngBTgGlWtATqBRfg/fF4F6kVkNv4Pn82q6hvl78hEuajqFWEiwkdV9fWRVnBKHd8EZuFvlKQCe0dY\n/1zA4pwLrDYNOBGwfAL////kgMdqhz0//wLb2gjcBZzCXz56C/gc0MvICfb00B1V7XYa9+n4W/Vn\nnG8wgfsvPF/squoTkVogPyCe64GZzv12/Mm+nAt/2zAxyFr4JqyISBLwa/yt2Mmqmom/hDFU+vij\n4V2HnQQ+eb51gHpgesByETAINAY8Vjjs+QudUN6I/xvH9c79LcC1jFzOGUkDkOWcowjc/3ljd8pA\nhUBdQDzXOzFtdG7XXUY8JkpZwjfhJhFIApqBQae1f0vA841AztAJ1wtoBnz4a/VDngL+wjk5mg78\nf8AzqjoYsM7fikiqiMzFf+7gmfNtXFWrgB7gs8BGVe1w4voEY0iwqnoCqAS+JSKJIrISuDNglV8B\nd4jIjSKSAPwl0Ae87Ty/Ef/5hxRVPQVsBm4FcoB3LzUeE72spGPCiqp2isiX8Se5JPy17N8GPH9I\nRJ4CakTEA8wZfuLWKZd8G9jqJMhbgZ/iL41sApLx17q/NGz3G4Gj+BtC31HV10YIdSOwQlVrA5Zn\nA7vGcNgA9+Gv67cBFcB/AJnO8RwWkc8C38dfxnkPf/fWfuf5I05Za7Oz3CEiNUCzc77AGADEJkAx\nsU5EioFjQMKwFr8xUcVKOsYYEyMs4RtjTIywko4xxsQIa+EbY0yMCKteOrm5uVpcXOx2GMYYEzF2\n7tzZoqp5o1k3rBJ+cXExlZWVbodhjDERQ0ROXHwtPyvpGGNMjLCEb4wxMcISvjHGxAhL+MYYEyMs\n4RtjTIywhG+MMTHCEr4xxsSIsOqHb0y4eG3/afbVnT3vc4unZ7HmiknjHJExl88SvjHDvPDuKf7i\nGf+0tO9PMe5Q9T/2o88u5Za5U87zamPClyV8YwK8Xd3C157bQ3lJDk9+fjmJ8R+uevb0e7n38W18\n+el3eXpdOYsKM12K1JhLZzV8YxxHGjv50//cSXFOGv/+uaV/lOwBUhI9/OSBZUyakMwXfraDk63d\nLkRqzNhYwjcGaOro5aEndpCc4OGJh64iIyXhguvmpifxxENX4VXlwSfe4UxX/zhGaszYWcI3Ma+r\nb5DPP7mDM939PPHgVRRkpV70NaV56Tz+X5Zxqr2Hdf9ZSe+ATR1rwp8lfBPTBr0+vvTUuxyo7+AH\n9y1hXn7GqF97VXE23/3UQnYcP8NXn92Nz2eTCZnwZidtTUz7u5f284dDTXz7Y/NYM/vSu1quXTCN\nujM9/OMrh8jPSuEbt10ZgiiNCQ5r4ZuYteN4Gz/fdpJ1q0u4/+rpY97OutUl3Hd1ET/aWMOB+o4g\nRmhMcFnCNzHrRxtryEpN4C9umnVZ2xER/uojs0lN9PD45pogRWdM8FnCNzHpaNM5Xj/YyOfKi0lJ\n9Fz29jJSE7j3qiJe2l1PfXtPECI0Jvgs4ZuY9OPNNSTFx/FA+dhLOcN9fmUxCvx0y7GgbdOYYLKE\nb2JOU2cvz++q45NLC8hJTwradguyUlm7YCpPvXOSsz0DQduuMcFiCd/EnCffPs6Az8efrCoJ+rbX\nrS6hq9/LL7efDPq2jblclvBNTOnqG+Tn207ykTlTmJGbFvTtz52WwcqZuTyx9Rh9g3YxlgkvlvBN\nTHlmRy1newZYd13wW/dD1q0uoamzjxffqw/ZPowZC0v4JmYMen38ZMsxrirOYklRVsj2s6oslyun\nTuTxTTV29a0JK5bwTcz43d4G6tp7WLe6NKT7ERHWrZ5BVdM53jrSFNJ9GXMpLOGbmKCqPLaphtK8\nNG4cwxAKl2rtgmlMy0jmRxvtQiwTPizhm5jwdnUr++s7+K+rSoiLk4u/4DIleOL4/MoZbD/Wxu7a\n9pDvz5jRsIRvYsKPNtWQm57ERxfnj9s+711exITkeB7bZK18Ex4s4Zuod/h0J5uONPPQtcUkJ1z+\nMAqjlZ4Uz/1XT+eVfQ3UttnMWMZ9lvBN1HvxvTo8ccJnlheN+74/Vz4dn8JLe6yLpnFfyBO+iHhE\n5F0ReTnU+zJmOFVl/d4GrinNITstcdz3n5+ZwuKiTNbvbRj3fRsz3Hi08L8CHByH/RjzRw42dHK8\ntZvb5091LYbb501lX12HTXhuXBfShC8iBcAdwI9DuR9jLuSVfQ3ECdwyZ7JrMdw6b8r7sRjjplC3\n8B8Bvgb4LrSCiKwTkUoRqWxubg5xOCaWqCq/29vAipKcoI6KeakKs1NZUJDB+n2nXYvBGAhhwheR\ntUCTqu4caT1VfUxVl6nqsry8vFCFY2LQkcZz1DR3uVrOGXL7/Knsrm3n1Bkr6xj3hLKFfy1wl4gc\nB54GbhCRn4dwf8Z8yPq9DYjAR+ZOcTsUbnPKOr+3Vr5xUcgSvqp+Q1ULVLUYuBf4g6p+NlT7M2a4\nV/Y1sLw4m7wJ7pVzhkzPSWPutInWW8e4yvrhm6h0tKmTI43nwqKcM+T2+VPZdbLd5rw1rhmXhK+q\nb6nq2vHYlzEA6/eeRuSDHjLhwMo6xm3WwjdRaf3eBpZNz2LyxGS3Q3lfSV46s6dMsO6ZxjWW8E3U\nqWk+x6HTndw2L3zKOUNunz+VyhNnaOzodTsUE4Ms4Zuo84pTMgmncs6Q2+dPQdXKOsYdlvBN1Fm/\nt4HFRZlMy0xxO5Q/MnPSBMompVtvHeMKS/gmqpxo7WJ/fQe3h2E5Z8ht86fyzvE2mjv73A7FxBhL\n+CaqDJVzbpsffuWcIXfMn4oqvLrfyjpmfFnCN1Fl/d4GFhZkUJCV6nYoFzRrcjoleWlW1jHjzhK+\niRq1bd3sOXWW28LoYqvzERFunzeVbTWttJ6zso4ZP5bwTdQYKpGEc/1+yG3zp+BTeO1Ao9uhmBhi\nCd9EjbcONzNrcjpFOeFbzhkyZ+pE8jNT2HjYhgQ348cSvokKPf1e3jnexuqyyBhiW0RYVZbL1uoW\nBr0XnC7CmKCyhG+iwvZjrfQP+lg1KzISPsCqsjw6ewfZfard7VBMjLCEb6LCpiMtJMbHcfWMbLdD\nGbVrZ+YQJ7DxSIvboZgYYQnfRIXNVc1cPSOb5ASP26GMWmZqIgsKMtlcZXV8Mz4s4ZuIV9/eQ1XT\nOVaV5bodyiVbPSuP3bXtnO0ecDsUEwMs4ZuIt6XKXxJZHUH1+yGry3LxKWyttrKOCT1L+Cbibaxq\nZtKEJK6YPMHtUC7ZosJMJiTFs+mIlXVM6FnCNxHN61O2Hm1hVVkeIuJ2OJcs3hPHNTNz2FzVgqq6\nHY6JcpbwTUTbV3eW9u4BVs+KvPr9kNWz8qhr76GmpcvtUEyUs4RvItpQKWTlzAhO+M7FYlbWMaFm\nCd9EtM1VLczLn0hOepLboYxZYXYqM3LT2FxlJ25NaFnCNxGrs3eAXSfPRMxwCiNZVZZLRXUrfYNe\nt0MxUcwSvolYFdWtDPqUVVGQ8FeX5dEz4GXniTNuh2KimCV8E7E2VTWTmuhh6fQst0O5bCtKc4iP\nEzbZMAsmhCzhm4i1uaqF8pIcEuMj/984PSmepdOzbJgFE1KR/04xMelEaxcnWrsjcjiFC1k9K4/9\n9R02ubkJGUv4JiJtiuDhFC5k6MNr61Er65jQsIRvItKmI83kZ6YwIzfN7VCCZt60DLJSE6w/vgkZ\nS/gm4gx4fVRUt7J6VmQOp3AhcXHCyrI8NtkwCyZELOGbiPPuyXbO9Q2yOorq90NWl+XScq6Pgw2d\nbodiopAlfBNxNlc1EydwTQQPp3AhQ9cUWG8dEwohS/gikiwi74jIbhHZLyLfCtW+TGzZXNXCwsJM\nMlIS3A4l6KZkJDNrcjpb7MStCYFQtvD7gBtUdSGwCLhVRFaEcH8mBpzrG2Rv3VmuKc1xO5SQuaY0\nl8rjZ+gf9LkdiokyIUv46nfOWUxwbnYmylyWHcfa8PqU8pLoK+cMWVGSQ8+Al92n2t0OxUSZkNbw\nRcQjIu8BTcAGVd1+nnXWiUiliFQ2N1vd0oysoqaVBI9ExXAKF7KiJBsR/1hBxgRTSBO+qnpVdRFQ\nACwXkXnnWecxVV2mqsvy8qLnIhoTGhXVrSwuyiIl0eN2KCGTmZrIlVMmWsI3QTcuvXRUtR14E7h1\nPPZnotPZ7gH21Z+lvCR66/dDyktz2HnyDL0DNlyyCZ5Q9tLJE5FM534KcDNwKFT7M9Fv+7FWVP3J\nMNqVl+TQP+hj10kbLtkETyhb+FOBN0VkD7ADfw3/5RDuz0S5ippWkuLjWFyU6XYoIbe8JJs4gW1W\n1jFBFB+qDavqHmBxqLZvYk9FdStLp2eRFB+99fshE5MTmJ+fQUWNJXwTPHalrYkIbV39HDrdGRP1\n+yErSnN4r7adnn6r45vgsIRvIsJ2p6UbC/X7IeUlOQx4lcoTbW6HYqKEJXwTESpqWklJ8LCgIPrr\n90OuKs4mPk6se6YJGkv4JiJUVLeyrDgrKqYzHK20pHgWFFgd3wRP7Lx7TMRq7uyjqulcTJVzhpSX\n5rDn1FnO9Q26HYqJApbwTdjbNlS/j6ETtkPKS3Lx+pQdx62Oby7fRRO+iKSKyN+KyOPOcpmIrA19\naMb4VdS0kp4Uz/z8DLdDGXdLp2eR4BHrj2+CYjQt/CfwD3Vc7izXAf8QsoiMGWZbdSvLZ2QT74m9\nL6QpiR4WF2ZZHd8ExWjeQaWq+r+BAQBV7QaiZyJRE9YaO3qpaemKyXLOkBWlOeyrO0tH74DboZgI\nN5qE3++MhaMAIlKKv8VvTMgNdUmMxRO2Q8pLcvApvFNjdXxzeUaT8L8J/B4oFJFfAG8AXwtpVMY4\nKqpbmZgcz5VTJ7odimsWF2WSGB9nZR1z2S46lo6qbhCRXcAK/KWcr6iqTbhpxkVFTStXl+TgiYvd\nKmJygoelRVl2AZa5bBds4YvIkqEbMB1oAOqBIucxY0Kqrr2Hk23dMV2/H1JemsPB0x20d/e7HYqJ\nYCO18P/F+ZkMLAN242/hLwAq+aDXjjEhYfX7D5SX5vDdDbCtpo1b501xOxwToS7YwlfVNaq6Bn/L\nfokzDeFS/EMe141XgCZ2VVS3kpWawBWTJ7gdiusWFmSSkuB5/yI0Y8ZiNCdtr1DVvUMLqroPuDJ0\nIRkDqsq2mlZWlOQQF8P1+yGJ8XEsK7Y6vrk8o0n4e0TkxyJyvXN7HNgT6sBMbKtt66GuvcfKOQFW\nlORwuLGT1nPWK9qMzWgS/kPAfuArzu2A85gxIVNR4+8IZidsPzD04bfN+uObMRpNt8xe4HvOzZhx\nUVHdSm56EjMnpbsdStiYn59BWqKHipoW7lgw1e1wTAS6aMIXkWM4V9kGUtWSkERkYp6qUlHTyoqS\nbESsfj8kwRPHVTOyrY5vxmw0k5gvC7ifDNwDZIcmHGPgWEsXjR19Vr8/j/KSHN463ExTRy+TJia7\nHY6JMBet4atqa8CtTlUfAe4Yh9hMjKqI4fHvL2boQ9CGWTBjMZqSTuBVtXH4W/yj+WZgzJhUVLcy\neWISM3LT3A4l7MydlsGE5Hi21bRy96J8t8MxEWY0iftfAu4PAseAT4UmHBPr/P3v21g5M8fq9+fh\niROutjq+GaPRJPwvqGpN4AMiMiNE8ZgYd7TpHC3nrH4/khUlObx+sImGsz1MzUhxOxwTQUbTD/+5\nUT5mzGX7oH6f63Ik4ev9Or618s0lumALX0RmA3OBDBH5eMBTE/H31jEm6CqqW8nPTKEw21quF3Ll\nlIlkpiZQUd3Kx5cUuB2OiSAjlXSuANYCmcCdAY93Av81lEGZ2OTz+cfPuWH2ZKvfjyBuqI5vPXXM\nJbpgwlfVF4EXRaRcVSvGMSYTow43dnKme8Dq96NQXpLDq/sbqW3rpjA71e1wTIQYqaTzNWfy8vtE\n5DPDn1fVL4c0MhNzhob+tYR/ceWl/nMc22paLeGbURuppHPQ+Vk5HoEYU1HdSlF2KvmZVr+/mFmT\n08lOS6SippV7lhW6HY6JECOVdF5yfj45lg2LSCHwH8Bk/GPxPKaq/zqWbZno5/Mp24+18ZG5k90O\nJSKICCtKstlW3Yqq2jkPMyojlXRe4jyDpg1R1bsusu1B4C9VdZeITAB2isgGVT0wtlBNNDvQ0MHZ\nHqvfX4rykhzW7z3NybZupufYVcnm4kYq6Xzncjasqg34p0dEVTtF5CCQj388fWM+ZJv1v79kgf3x\nLeGb0RippLNx6L6IJAKz8bf4D6tq/6XsRESK8c+Fu/08z60D1gEUFRVdymZNFKmobmVGbhpTMuwS\nj9EqzUsnb0ISFTWt3Lvc3jvm4i56pa2I3AFUA/8GPAocFZHbRrsDEUkHfg08rKodw59X1cecCdKX\n5eXljT5yEzUGvT7eOdbGChsd85L46/g5VDh1fGMuZjRDK/wLsEZVr1fV64A1jHL2KxFJwJ/sf6Gq\nz489TBPN9td30Nk3aPX7MSgvyaGps4+ali63QzERYDQJv1NVjwYs1+C/2nZE4u828BPgoKp+d4zx\nmRgwdMXoihKbV+dS2bg65lKMJuFXish6EXlQRB4AXgJ2iMjHh42xM9y1wOeAG0TkPed2ezCCNtGl\norqVmZPSmTTB6veXqjgnlSkTk22YBTMqoxkeORloBK5zlpuBFPzj6yhw3lKNqm4BrHOwGdGA18eO\n4218wgYBGxMRobw0h81VzdYf31zURRO+qj40HoGY2LTnVDvd/V6r31+G8tIcXni3jsONncyeMtHt\ncEwYG80UhzOALwHFgeuP4sIrYy5q05EWROAaS/hjtnKm/9qFLVUtlvDNiEZT0vkN/pOvLwG+0IZj\nYs2Woy0sKMgkMzXR7VAi1rTMFErz0thc1cKfrCpxOxwTxkaT8HtV9d9CHomJOR29A7xX286fXVfq\ndigRb1VZHk/vOEnfoJekeI/b4ZgwNZpeOv8qIt8UkXIRWTJ0C3lkJupVVLfi9Smrymw4hcu1qiyX\n3gEfO4+fcTsUE8ZG08Kfj9O9kg9KOuosGzNmW6paSE30sLgoy+1QIt7VJTnExwmbj7ZwzUz7ADXn\nN5qEfw9Qcqnj5xhzMZurmllRkkNi/Gi+aJqRpCfFs6Qoi81VzfzVrbPdDseEqdG80/bhn9fWmKCp\nbevmeGu3lXOCaFVZLvvrO2jrsraZOb/RJPxM4JCIvCoiv3VuL4Y6MBPdthxtAbCEH0Qry3JRha3O\n79aY4UZT0vlmwH0BVgH3hiYcEys2VzUzZWIypXnpbocSNRYUZDIxOZ7NVc3cuXCa2+GYMHTRFr4z\nLn4HsBb4Gf6Ttf8e2rBMNPP6lK1HW1lVlmtDAQSRJ064dmYuW6pabLhkc14XTPgiMsvpjnkI+D5w\nEhBVXaOq3x+3CE3U2Vd3lrM9A6y0ck7QrSzLpf5srw2XbM5rpBb+Ifyt+bWqutJJ8t7xCctEs81V\nzQBca90Hg27VTP8kQpuPNLsciQlHIyX8j+Ofk/ZNEXlcRG7ERr80QbC5qoW50yaSm57kdihRpygn\nlek5qe+fFDcm0AUTvqr+RlXvxT+X7ZvAw8AkEfk/InLLeAVooktX3yC7Tp6xck4IrZyZS0V1KwNe\nG/rKfNhoTtp2qeovVfVOoAB4F/irkEdmotL2Y60MeJXVZTZ/caisKsujq9/Luyfb3Q7FhJlLusRR\nVc84k47fGKqATHTbXNVCUnwcS6fbcAqhUl6aQ5zAliqr45sPs2vazbjaXNXC8hnZJCfYiI6hkpGS\nwMLCTDZVWR3ffJglfDNuGs72cLTpnJVzxsGqsjz2nGrnbPeA26GYMGIJ34ybzU6L007Yht6qslx8\nCm9XWyvffMASvhk3W6payE1PYvaUCW6HEvUWFWaSnhTPZuueaQJYwjfjwudTth5tseEUxkmCJ44V\nJTlssTq+CWAJ34yLAw0dtHb1vz/htgm9VWW5nGzr5kSrDbNg/Czhm3Hx1uEmwIZDHk+rZ/lPjr95\nqMnlSEy4sIRvxsWGA40sLMxk0sRkt0OJGTNy0yjNS2PDwUa3QzFhwhK+CbnGjl52nzrLLXMmux1K\nzLl5zhS217Rxtse6ZxpL+GYcbDjgb2Fawh9/t8ydzKBP3y+pmdhmCd+E3GsHGinOSWXmJJvdarwt\nKsgkb0ISr+23so6xhG9CrLN3gIrqFm6eM9m6Y7ogLk646cpJvHW4ib5Bm84i1lnCNyG18UgzA17l\n5jlT3A4lZt08ZzJd/V4qqlvdDsW4zBK+CakNBxrJTku00TFddE1pLqmJnvfPpZjYFbKELyI/FZEm\nEdkXqn2Y8Dbg9fGHQ03cOHsSnjgr57glOcHDdbPy2HCgEZ/PJjePZaFs4f8MuDWE2zdhbntNG529\ng9xsvXNcd/OcyTR19rGn7qzboRgXhSzhq+omoC1U2zfhb8OB0yQnxLHKhkN23Q3Ot6wNB067HYpx\nkes1fBFZJyKVIlLZ3Gwz9EQLVWXDgUZWleWRkmiTnbgtMzWR5cXZVsePca4nfGfKxGWquiwvz1qC\n0WJ/fQf1Z3utnBNGbp4zmSON5zjeYoOpxSrXE76JTq8daCRO4MbZk9wOxTiGPnytlR+7LOGbkNhw\noJGl07PISU9yOxTjKMxOZfaUCZbwY1gou2U+BVQAV4jIKRH5Qqj2ZcJLbVs3Bxs6uMUutgo7t8yd\nQuWJNtq6+t0OxbgglL10PqOqU1U1QVULVPUnodqXCS+vO8PxWv0+/NwyZzI+hTdsyOSYZCUdE3Sv\n7W+kbFI6xblpbodihpk7bSLTMpJ5zco6MckSvgmq9u5+3jneZq37MCUi3DRnMpurmunpt8HUYo0l\nfBNUbx5uwutTbplr9ftwdcucKfQO+Nhy1CY4jzWW8E1Qvby7gSkTk1mQn+F2KOYCri7JJiMlgZf3\n1LsdihlnlvBN0DR19vLWkWY+tiSfOBssLWwleOK4a+E0fr/vtE19GGMs4ZugeWFXHV6fcs/SArdD\nMRdxz7IC+gZ91sqPMZbwTVCoKr+qrGXp9CxK8mwqw3A3Pz+DKyZP4FeVp9wOxYwjS/gmKN6tbae6\nucta9xFCRLhnWQG7a9upaux0OxwzTizhm6B4tvIUyQlx3LFgqtuhmFH66OJ84uOEZ3daKz9WWMI3\nl62n38vLu+u5fd5UJiQnuB2OGaXc9CTWzJ7E87vqGPD63A7HjANL+Oayvbr/NJ19g3xymZVzIs09\nSwtoOdfHxsM2F0UssIRvLtuzO2spzE5hxYwct0Mxl2jN7Enkpify7M5at0Mx48ASvrkstW3dbD3a\nyieXFFrf+wiU4InjY4vzeeNgEy3n+twOx4SYJXxzWX696xQi8Iml+W6HYsbonmWFDPqU37xb53Yo\nJsQs4Zsx8/mU53ae4prSHAqyUt0Ox4zRrMkTWFiQwXM7T6GqbodjQsgSvhmzbcdaOXWmh3uWFrod\nirlMn1xWyKHTneyr63A7FBNClvDNmD1XeYoJSfF8xEbGjHh3LZhGYnycnbyNcpbwzZh09g6wfl8D\naxdOIyXR43Y45jJlpCbwkblTePG9enoHbJz8aGUJ34zJy3sa6B3wcY/1vY8a9ywt4GzPgE1yHsUs\n4ZtLpqr8cvtJSvPSWFyY6XY4JkiunZnLtIxkfrn9pNuhmBCxhG8u2ZuHm9hbd5Y/WVWCiPW9jxae\nOOHzK2dQUdPKO8fa3A7HhIAlfHNJVJVHXq+iICuFT9rImFHn/qunk5uexPc2HHE7FBMClvDNJXnj\nYBN7Tp3lSzfMJMFj/z7RJiXRw59dX0pFTSvbalrdDscEmb1jzaipKo+8cYSi7FQ+vsRa99Hq/quL\nmDTBWvnRyBK+GbUNBxrZV9dhrfsol5zg4YvXl7L9WBtvV7e4HY4JInvXmlHx+ZTvvV5FcU4qH1ts\n4+ZEu3uXFzFlYjKPbKiy4RaiiCV8MyqvHTjNwYYOvnRDGfHWuo96yQkevrimlHeOt7H1qNXyo4W9\nc81F+Xz+njkzctO4e9E0t8Mx4+TTVxUyNSOZ771+xFr5UcISvrmo3+8/zaHTnXz5xpnWuo8hSfEe\nvrhmJjtPnGFzldXyo4G9e82IfD7lX1+voiQvjbsWWu0+1nxqWQHTrJUfNSzhmxGt39fA4cZOvnJj\nGR6b0SqDof+MAAAP2klEQVTmJMV7+PMbZvLuyXY2HrF5byNdSBO+iNwqIodF5KiIfD2U+zLB1zfo\n5ZHXq5g5KZ21C6x2H6vuWVpIfmYK391whEGvz+1wzGUIWcIXEQ/wA+A2YA7wGRGZE4p9dfUN0tPv\npW/Qy4DXh8+n9vUzCP7plUMcbTrHN26bba37GJYYH8fXbr2CPafO8m9vVLkdTsRTVXw+ZcDro3fA\nS0+/l+7+wXHZd3wIt70cOKqqNQAi8jRwN3Ag2Dta9g+v03OeMbzjBOI9cSTHx5Gc4HFu/vupiR4y\nUxLJSksgMzWRrNQEMlMSyU5LJD8rhcLsVNKTQvnrCW+v7j/NE1uP8+A1xdx45WS3wzEuu3tRPpur\nWvj+m0dZPiOHlWW5bofkmo7eAWrbuqlv76Wtq4/27gHOdA/Q3t3Pme5+2rsH6Bnw0jvgpXfA5/z0\n0jvoY9Drw3eetmjehCR2/PVNIY89lBktHwicPucUcPXwlURkHbAOoKioaEw7+upHrqB/0IfP+eT0\nKXiHfYr2DvjoHfzgj9DVN0h18znOnPD/oQbP81fITE2gMCuVwuwUCrNSmT11AvOmZVCSlx7VLd7a\ntm7+x7O7mZ+fwTdun+12OCZM/P3dc9ld287Dz7zH+q+sZNKEZLdDCplBr4/q5i721p3l8OkOatt6\nqD3TzakzPZztGfij9RM88n7DMSMlgey0RJLjP2hgJid4SEqII9ETh4jgESFOIC5O8MQJaeM0iZDr\nTVhVfQx4DGDZsmVjqsN8YeWMy42Brn4vZ7r6ae3qp+6M/49b29ZN7ZkeDp3u5PWDTfQP+uuXqYke\n5kydyLz8DObnZ3BVcTZFOdExiXf/oI8vPfUuqvCD+5aQFG+zWRm/1MR4fnD/Eu56dAsPP/0e//mF\nq6Oi4aOqHGvpovLEGfbVnWVv3VkONnTQO+B/vyfFx1HgfOtfUpT1/v38zBRy0hPJSk0kNdETEUOF\nhzLh1wGBs1sXOI+FHREhPSme9KR4CrNTWXSeST0CP/H3ObdndtTys7ePA1Cck8rqWXmsLsujvDSH\ntAgtB/3/rx7ivdp2fnj/kqj5EDPBM2vyBP7+rnl87dd7ePQPR/nKTWVuhzQmHb0DvH20lU1VzWw6\n0sypMz0ApCV6mDstg/uWT2d+wUTm52cwIzd6vtGHMivtAMpEZAb+RH8vcF8I9xdS8Z44rpgygSum\nTHh/HHivT6luPsfbR1vYVNXCs5Wn+I+KEyR4hCVFWdx45STWLpjGtMwUl6MfnTcONvL45mN8bsV0\nbp8/1e1wTJi6Z1kBFTWt/OsbR1g+I5vy0hy3QxqV2rZuXtpTz5uHmth1sh2vT0lL9FBemsufri6h\nvDSXktw04qIkuZ+PhLI3i4jcDjwCeICfquq3R1p/2bJlWllZGbJ4Qq1v0MvO42fYWNXMpiMtHGzo\nAOCq4izuWjiN2+dPJSc9yeUoz6+uvYc7/m0z0zJSeP6L15CcYKUcc2FdfYPc+egWOnsHWf/lVeRN\nCM//66aOXl7e08Bvd9fzXm07APPzM1g9K5fVZXksmZ4V8SO/ishOVV02qnXDqftipCf84Y63dPHy\nnnp+u7ueI43n8MQJ187M5e6F07ht/hRSE8Oj7NM74OX+H2/nUEMHL395FTNy09wOyUSAgw0dfPQH\nW1k+I5ufPHAVifHhkTg7ewdYv7eBF9+rZ1tNKz6FOVMncufCady5cCoFWdFVqrSEH4YOne7gt+/V\n89KeemrbekhPiufOhVO5Z1khiwszXTvhc7K1mz/7xU7213fw/c8s5s6FdoGVGb2n3znJ15/fy9Lp\nWTx632KmZrhTvlRVdhw/wzM7alm/t4GeAS8zctO4c+E07lo4lZmTJrgS13iwhB/GVJXKE/5/zN/t\n8f9jlk1K59NXFfKxxfnjWvJ5bf9p/vLZ3QjwvU8vsv72Zkx+t6eBrz23m6QED498ehGrZ+WN276b\nOnp5btcpnq08xbGWLqchNY1PLStgkYsNqfFkCT9CnOsb5OXd9TxTWcu7J9uJjxPWzJ7EJ5bks2b2\npJB1iRzw+vjOq4f50aYa5udn8MP7l1CYHV1fc834qm4+xxd/vosjTZ18+YYyvhzCsZd6B7xsONDI\n87tOsamqBa9PWV6czaeuKuT2MCqVjhdL+BGoqrGTZ3ee4oV362ju7CMjJYG1C6by8SUFLCkKXkul\nsaOX//bLXew4fobPrZjO36y90vram6Do6ffy17/Zy/O76lhVlssjn14UtG+sPp+y43gbz++qY/3e\nBjr7BpmakcxHF+dzz9ICSvLSg7KfSGQJP4INen1srW7l+V2neHX/aXoHfBTnpHLTlZO5dmYuy2dk\nX3Iff1XlcGMnbxxs4omtx+jq8/JPn5jP3YtsuGMTXKrKMztq+V+/3U92aiIPXVvMjVdOojQv/ZIb\nLR29A2yvaWPr0RZeP9jIqTM9pCZ6uG3eVD6xJJ8VJTlR3YVytCzhR4nO3gF+v+80L75XzzvH2uj3\n+oiPExYVZnLNzFyuKc1h5qR0UhM9JMd7PvTP3zvgZVtNK3841MQbB5uoa/dfWLKkKJN//sQCyiZH\n70ks4759dWf5ny/sZc+pswBMz0nlhtmTuHH2ZJbPyP5Qjx6fT+kZ8NLd76WqsZOt1S1sPdrK3rqz\neH1KUnwcV5fk8LHF0/jI3Ngr2VyMJfwo1DvgpfL4GbZWt/D20Rb21p39o0GYUhP9g8KlJHpoPddP\nd7+X5IQ4Vs7M48YrJ3HD7ElMnhi945+Y8FPf3sMbh5r4w8FGtla30j/oIz0pnqy0BLr7/El++MCH\nnjhhYUEG187M5ZrSXBYXZdp1ISOwhB8DzvYMsL2mldMdvXT3+9843X2DdDvDrU5IjmfNFZMoL82x\nN4sJC939g7x9tJW3jjTR1ecNaKDEk5roIS3RQ35WClcVZzMhOcHtcCOGJXxjjIkRl5Lww+PSOGOM\nMSFnCd8YY2KEJXxjjIkRlvCNMSZGWMI3xpgYYQnfGGNihCV8Y4yJEZbwjTEmRoTVhVci0gycGOPL\nc4GWIIYTKey4Y4sdd2wZzXFPV9VRTUIQVgn/cohI5WivNosmdtyxxY47tgT7uK2kY4wxMcISvjHG\nxIhoSviPuR2AS+y4Y4sdd2wJ6nFHTQ3fGGPMyKKphW+MMWYElvCNMSZGRHzCF5FbReSwiBwVka+7\nHU8oichPRaRJRPYFPJYtIhtEpMr5meVmjMEmIoUi8qaIHBCR/SLyFefxaD/uZBF5R0R2O8f9Lefx\nqD7uISLiEZF3ReRlZzlWjvu4iOwVkfdEpNJ5LGjHHtEJX0Q8wA+A24A5wGdEZI67UYXUz4Bbhz32\ndeANVS0D3nCWo8kg8JeqOgdYAfy58zeO9uPuA25Q1YXAIuBWEVlB9B/3kK8ABwOWY+W4Adao6qKA\n/vdBO/aITvjAcuCoqtaoaj/wNHC3yzGFjKpuAtqGPXw38KRz/0ngo+MaVIipaoOq7nLud+JPAvlE\n/3Grqp5zFhOcmxLlxw0gIgXAHcCPAx6O+uMeQdCOPdITfj5QG7B8ynkslkxW1Qbn/mlgspvBhJKI\nFAOLge3EwHE7ZY33gCZgg6rGxHEDjwBfA3wBj8XCcYP/Q/11EdkpIuucx4J27PGXG50JH6qqIhKV\n/WxFJB34NfCwqnaIyPvPRetxq6oXWCQimcALIjJv2PNRd9wishZoUtWdInL9+daJxuMOsFJV60Rk\nErBBRA4FPnm5xx7pLfw6oDBgucB5LJY0ishUAOdnk8vxBJ2IJOBP9r9Q1eedh6P+uIeoajvwJv7z\nN9F+3NcCd4nIcfwl2htE5OdE/3EDoKp1zs8m4AX8ZeugHXukJ/wdQJmIzBCRROBe4LcuxzTefgs8\n4Nx/AHjRxViCTvxN+Z8AB1X1uwFPRftx5zkte0QkBbgZOESUH7eqfkNVC1S1GP/7+Q+q+lmi/LgB\nRCRNRCYM3QduAfYRxGOP+CttReR2/DU/D/BTVf22yyGFjIg8BVyPf8jURuCbwG+AXwFF+IeW/pSq\nDj+xG7FEZCWwGdjLBzXd/4m/jh/Nx70A/wk6D/6G2a9U9e9FJIcoPu5ATknnq6q6NhaOW0RK8Lfq\nwV9u/6WqfjuYxx7xCd8YY8zoRHpJxxhjzChZwjfGmBhhCd8YY2KEJXxjjIkRlvCNMSZGWMI340JE\n/toZ9XGPMxLg1SHe31siMurJn0XkZyJSJyJJznKuc/FPMGK5fmjUx2ARkYdF5L9cZJ35IvKzYO7X\nRDZL+CbkRKQcWAssUdUFwE18eAykcOEFPu92EMM5o8IGLsfjj/OXI71OVfcCBSJSFMLwTASxhG/G\nw1SgRVX7AFS1RVXrAUTkf4nIDhHZJyKPOVfWDrXQvycilSJyUESuEpHnnTHB/8FZp1hEDonIL5x1\nnhOR1OE7F5FbRKRCRHaJyLPOuDzn8wjwF05CDXz9h1roIvKoiDzo3D8uIv84NH65iCwRkVdFpFpE\n/p+AzUwUkd+Jf+6GfxeRuJFic7b7zyKyC7hnWJw3ALtUdTDgd/XP4h8//4iIrApY9yX8V6waYwnf\njIvXgEInGf1QRK4LeO5RVb1KVecBKfi/CQzpd8YE/3f8l5P/OTAPeNC5+hDgCuCHqnol0AF8MXDH\nIpIL/A1wk6ouASqB/36BOE8CW4DPXeLxnVTVRfivCP4Z8En8Y/d/K2Cd5cCX8M/bUAp8fBSxtarq\nElV9etj+rgV2DnssXlWXAw/jvwJ7SCWwCmOwhG/GgTOu+1JgHdAMPDPUQgbWiMh2EdmLv+U6N+Cl\nQ+Mi7QX2O2Pj9wE1fDBoXq2qbnXu/xxYOWz3K/An2a3iH2r4AWD6COH+I/A/uLT3RmCc21W1U1Wb\ngb6h8XCAd5x5G7zAU06cF4vtmQvsbyr+32OgoUHldgLFAY83AdMu4VhMFLPhkc24cBLdW8BbTnJ/\nQESeBn4ILFPVWhH5OyA54GV9zk9fwP2h5aH/3eFjgwxfFvxjyX9mlHFWOcn3UwEPD/LhD4DkD79q\nzHFeLLauCzzeM0IMXj78vk521jfGWvgm9ETkChEpC3hoEf5BoIaSVotTu/7kGDZf5JwUBrgPf0km\n0DbgWhGZ6cSSJiKzLrLNbwNfDVg+AcwRkSSnxX7jGOJc7ozqGgd82olzLLGBf9avmaPc7yz8Iy4a\nYwnfjIt04EnxT0S+B38Z4++ccd4fx5+QXsU/3PWlOox/ntuDQBbwfwKfdEorDwJPOfuuAGaPtEFV\n3Q/sCliuxT9a4T7n57tjiHMH8Cj+ZH0MeGEssTleAVaPcr9rgN9dcrQmKtlomSZiiX/Kw5edE74x\nRUReAL6mqlUjrJMEbMQ/i9LguAVnwpa18I2JTF/Hf/J2JEXA1y3ZmyHWwjfGmBhhLXxjjIkRlvCN\nMSZGWMI3xpgYYQnfGGNihCV8Y4yJEf8Xqz66jDo2m7oAAAAASUVORK5CYII=\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(window)\n", + "plt.title(\"Flat-top window\")\n", + "plt.ylabel(\"Amplitude\")\n", + "plt.xlabel(\"Sample Number (n)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 88, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4HNW5uN9PvVuSJTfJstw7GCxsh15DTUwNNUAgEH5A\nINyUG1IJCZcU0kjh4pBcILSQQscU04wxNi7YuNuybFmWZFmSVW1LVjm/P2ZmNTvSSmtZ0mrX3/s8\n++zMmfbN7sz5zlfOOWKMQVEURVF6Q1SoBVAURVHCF1UiiqIoSq9RJaIoiqL0GlUiiqIoSq9RJaIo\niqL0GlUiiqIoSq9RJaIogwQRmSwia0SkQUTuCvIYIyIT+lmuG0VkSX9eIxSISKOIjOvlse+LyFf7\nWqZwRJVIiBCRnSJy0H6Qnc+oUMulhJTvAO8ZY1KNMQ97N/ZnxSUi+bZCcj+Pa3txnvtE5Kke9hkU\nSskYk2KMKQq1HOFOTKgFOMr5gjFmUXc7iEiMMaZ1oAQKNUfb/XoYAzwXYhnSj+LfX+kFaokMMlwt\nwptFZBfwrl0+T0SWikitiKwVkdNdx4wVkQ9sN8jbIvJHpzUoIqeLyG7PNXaKyNn2cpSIfFdEtotI\ntYg8LyKZHlluEJFdIlIlIt93nSdaRL5nH9sgIqtEZLSI/ElEfu255ssick+AezYicoeIbAO22WVT\n7HvZJyJbRORLrv0vEJGN9jVLReRb7nu1Zaqy7/Na13FDRORJEakUkWIR+YGIRNnbbhSRJSLykIjU\niMgOETnfdeyNIlJkX3OH57w3icgm+7g3RWRMN//vF0Vkg/0/vi8iU+3yd4EzgD/aVsAkz3EPAKe4\ntv/RtflsEdlmn/NPIiK9kS1YROT3IlIiIvX2f36KXX4e8D3gykCWjH2//wt8zt6n1i7v6b/5yH6u\n60Rks4icFUC2r4jIK671bSLyT9d6iYjMspd9rkARedz+7V6z/+PlIjLeddw59nXr7N/e/RtH2fIW\ni8he+z6G2NueEJFv2ss5zrNur4+3n+/wroeNMfoJwQfYCZzdRXk+YIAngWQgEcgBqoELsBT/OfZ6\ntn3Mx8BvgHjgVKABeMredjqwO9C1gbuBZUCuffyjwLMeWf5iy3Es0AxMtbd/G1gHTMZ6qY4FhgJz\ngDIgyt4vCzgADA/wWxjgbSDTvk4yUAJ8BctaPg6oAqbZ+5cDp9jLGcDxrnttdf0WpwH7gcn29ieB\nl4BU+962Ajfb224EWoBbgGjg/9n3ILY89a7zjASm28vzgUJgqi3rD4ClAe5zki3POUAslvuqEIiz\nt78PfLWbZ6bTdvu3exVIB/KASuC8Xsjm/NcxXWy7EVjiWr/O/p9jgG8Ce4AEe9t92M9eN/fhd74g\n/5tW4B77d7sSqAMyuzj3OKAW6z0ZBRRjP//2tho6nksDTLCXH8d6p+bY9/U08Jzr+W0ALrevf48t\nz1ft7TfZv/M4IAX4D/B317ZX7OVrgO3AP1zbXgp1XXTEdVmoBThaP1gVeaP9wNcCL9rlzss8zrXv\nfzsPpavsTeAGu+JoBZJd254heCWyCTjLtW0kVmUa45Il17X9E+Aqe3kLMD/A/W0CzrGX7wRe7+a3\nMMCZrvUrgQ89+zwK/Nhe3gV8DUjz7HN6F7/F88APsRTDIWxFZG/7GvC+vXwjUOjalmTLNQJLidQC\nlwGJnmsuxK7s7PUoLIU5pov7/CHwvGffUuB0e/19eqdETvbc73d7IZvzX9e6Pt9y/TZLupGrBjjW\nXr6Pw1QiQf43ZYB4nsMvBzh/CXA8cBWwwN53Claj5GXPb+dWIo+5tl0AbLaXrweWubYJsJsOJfIO\ncLtr+2Q63qHx9u8ThWWBfY0OpfYE8F/B1hmD9RPeZlT4c7ExJt3+XOzZVuJaHgNcYbsram0XwMlY\nFf4ooMYYs9+1f/FhyDAGeMF13k1AGzDctc8e1/IBrNYWwGisllVXPIHVYsX+/nsPcnjvd67nfq/F\nqtDBqswvAIrFcuN9znVsV7/FKKzWZCz+v00xlpXn4LtPY8wBezHFPt+VwG1Aue3ymOKS9fcuOfdh\nVTLu8zo4LWPnGu32fXe17+EQ6P85HNkcslzP5ENd7SAi37JdZHX2eYdg/b5d7XuKdATqNwS6Jj3/\nN6XGrnld2wMlonyA1aA41V5+H8sqPc1eD0Sg33EUrufTlsP9vPr9r/ZyDJblvR3L+pyF5Y58FSgT\nkclByBMWqBIZvLhfmBIsSyTd9Uk2xvwcy7WTISLJrv3zXMv7sVrVgBXHALI95z7fc+4EY0xpEDKW\nYLW0uuIpYL6IHIvlTnmxh3N57/cDj0wpxpj/B2CMWWGMmQ8Ms8/7vOvYrn6LMix3WAtWxereFsx9\nYox50xhzDpbi3ozl4nNk/ZpH1kRjzNIuTlPmvr4duxgdrAz4/0bBcDiyBYUd//gO8CUgwxiTjuVa\ncmIEfjIaYz60/7sUY8z0APcRzH+T44710PG/doWjRE6xlz8gOCUSiHKs/wnw+98c/P5XOrwDFS55\nLsdyW5ba6zdguWLX9EKeQYUqkfDgKeALInKuWMHsBLGCyLnGmGJgJfATEYkTkZOBL7iO3QokiMiF\nIhKL5RePd23/X+ABJ+AqItkiMj9IuR4DfioiE8XiGBEZCmCM2Q2swLJA/m2MOXgY9/sqMElEviwi\nsfbnBBGZat/jtSIyxBjTghWraPcc7/wWpwAXAf80xrRhKZsHRCTVvt//wvptu0VEhovIfFs5NWO5\nIZ1r/i9wr4hMt/cdIiJXBDjV88CFInKW/V980z5fsJV6BZbfPVgOR7ZgScWqICuBGBH5EZDmkTG/\nh2BxBZArInEAQf43w4C77GfhCqyGyesBzv8BVpJCov0cfgichxXH+fSw7tbiNWC6iFwqIjHAXXRY\nxQDPAveIleCSAvwPVtzDyXL7AMulu9hef99eX2Lfe1ijSiQMMMaUYAVJv4f18pZgBbWd/+8aYC6W\nu+LHWEFK59g64HasCr8UyzJxZ2v9HngZeEtEGrCC7HODFO03WC//W1iV+V+xAuMOTwAz6dmV5Ycx\npgH4PJZPuwzLzfALOpTfl4GdIlKP5WK61nX4HiwfdBlWcPQ2Y8xme9vXse6/CFiCFTv6WxAiRWFV\namVYv/FpWIF3jDEv2LI9Z8uzHji/q5MYY7Zgufb+gNX6/gJWmvehIGQA67+6XKxMq079SLq4XtCy\nHQZvAm9gNU6KgSb8XTtOJlS1iKwOcI53gQ3AHhGpsst6+m+WAxOxfrcHgMuNMdVdndwYsxVL0X9o\nr9fb5/2oN5W2MaYKuAL4OVbwfSLwkWuXv2E944uBHVi/yddd2z/AUr6OElmC5R1YTAQg/m5GJRIQ\nkfuwAobX9bRvP8txKlZrcowZgAdNrLTnp4wxuf19LWXgEJEbsYLYJ4daFqUzaoko/YLtrrkbK+NF\nWyqKEqGoElH6HLE6lNViBaF/F2JxFEXpR9SdpSiKovQatUQURVGUXhPxAzBmZWWZ/Pz8UIuhKIoS\nVqxatarKGJPd034Rr0Ty8/NZuXJlqMVQFEUJK0QkqJEv1J2lKIqi9BpVIoqiKEqvUSWiKIqi9BpV\nIoqiKEqvUSWiKIqi9JqwUyIicp5Y06UWish3Qy2PoijK0UxYKRF7Low/YY1EOg24WkSmhVYqRVGU\no5dw6ycyB2sK0yIAEXkOa4j0jX19ofc27+Urj68gOkqIiRJio6OIiRaS42LIzUhkXHYy2SnxPZ9I\nURSlHzjY0sa2vY2U7DtA9f5DHDzURnNrx9Q63zh7It84e1K/yxFuSiQH/7kLdtPF3BcicitwK0Be\nXp53c1A888kuANraDW3txvfn1B5oobT2IMt37PNcs1eXURRFCZrDGerwd4u2qRLpLcaYBcACgIKC\ngl6NMPmX6wtobze0thta2tppbTO0tLfT2NRKSc0BNpc3sHR7FUsKq2hpM5w1ZRj3XjCV8dkpPZ9c\nURTlMDhwqJUFi4tYsLiIA4famDoyjVMnZXHc6AzyMpPITo0nKS6ahNhooqMGtkUbbkqkFP+5jXMJ\nfn7qwyYqSoiLEuJiOkJHWSnx5Gclc8rEbG45dRzVjc08s3wXjy4u4vzffch/nz+Fm07KR9Q0URSl\nD1hbUstdz31KcfUBLpg5gttPn8CMnCGhFstHWA0Fb89vvBU4C0t5rACuMcZsCHRMQUGBGYixs6oa\nm/nuv9exaFMFXzh2FL++4lg/5aMoinK4vLSmlG/9cy3ZKfH85spZzBs3dMCuLSKrjDEFPe0XVpaI\nMaZVRO7Emuc5GvhbdwpkIMlKiecv18/mkQ+288s3tlB3sIW/XD+b+JjoUIumKEoY8tSyYn7w4nrm\njs3k0S/PJj0pLtQidUnYNZWNMa8bYyYZY8YbYx4ItTxuRITbT5/ALy6byeKtlfzX82tpbw8fS09R\nlMHBa5+V88OX1nPWlGE8cdOcQatAIMwskXDhyhPyqD3QwoMLNzMuK5lvfn5yqEVSFCVMWF9axz3P\nr2F2XgZ/uvZ4EmIHtzcj7CyRcOHWU8dxxexc/vheIUu2VYVaHEVRwoCGphbufGY1Q5PjWHB9waBX\nIKBKpN8QEX4yfzrjs1O45/k11B1sCbVIiqIMcu5/ZSMlNQd5+OrjyEwevC4sN6pE+pGkuBh+d+Us\nqhub+dWbm0MtjqIog5hlRdX8c9Vubj11HCfkZ4ZanKBRJdLPzMgZwg0n5vP08l2sKakNtTiKogxC\nWtra+cGL68nNSOSuMyeGWpzDQpXIAPBf50xiaHI8P1+4iXDql6MoysDwz5W7KdzbyI8umkZi3OCP\ng7hRJTIApCbEcscZ41lWtI+l26tDLY6iKIOIppY2/vDuNo7LS+ecacNDLc5ho0pkgLh6Th4jhyTw\n0Ftb1BpRFMXHs5/soryuiW9/fnJYDpekSmSASIiN5vbTx/PprlpW76oJtTiKogwC2toNf12yg4Ix\nGZw4ISvU4vQKVSIDyGWzc0lLiOFvS3aGWhRFUQYBizZVsLvmIDedPDbUovQaVSIDSFJcDFfPyeON\nDXsorT0YanEURQkxj3+0k5z0RD4fhrEQB1UiA8x188bQ1m74z6rdoRZFUZQQUlTZyMdF1Vw3bwwx\n0eFbFYev5GHK6Mwk5o7N5IVPSzXArihHMS9+WkqUwKXH54RalCNClUgIuOz4XIqq9mvnQ0U5SjHG\n8MKaUk6akMXwtIRQi3NEqBIJAefPHEF8TBQvftpvkzIqijKIWb2rhpJ9B7l4VnhbIaBKJCSkJsRy\n2qRs3t5YoS4tRTkKWbhuD3HRUXx+evgG1B1UiYSIs6cNp6yuiQ1l9aEWRVGUAebdzXuZN34oqQmx\noRbliFElEiLOnDIMEStPXFGUo4eiykaKqvZz1pRhoRalT1AlEiKyUuI5Pi+DdzfvDbUoiqIMIM47\nf6YqEeVIOXlCFutL63TCKkU5ilhSWMW47GRGZyaFWpQ+QZVICJk3bijtBlbs2BdqURRFGQBa29pZ\nubOGeeOGhlqUPkOVSAg5Li+duJgoPi7S4eEV5WhgY3k9jc2tzB0bPjMX9oQqkRCSEBvN8XnpLFMl\noihHBcuLLK+DWiL9iIjcJyKlIrLG/lzg2naviBSKyBYROTeUcvYVx+dlsGVPA00tbaEWRVGUfmZl\n8T7yMpPCvpe6m0GnRGx+a4yZZX9eBxCRacBVwHTgPODPIhJe80h2wTG56bS2GzaWa38RRYl01pfW\nc0zukFCL0acMViXSFfOB54wxzcaYHUAhMCfEMh0xzgO1bnddiCVRFKU/qdl/iNLag8zMUSUyEHxd\nRD4Tkb+JSIZdlgOUuPbZbZd1QkRuFZGVIrKysrKyv2U9IkYOSSArJZ61u3UwRkWJZNaXWQ3FGapE\njhwRWSQi67v4zAceAcYBs4By4NeHe35jzAJjTIExpiA7O7uPpe9bRITpo9LYXN4QalEURelH1pda\nLuvpo9JCLEnfEhOKixpjzg5mPxH5C/CqvVoKjHZtzrXLwp4Jw1JYvqOa9nZDVJSEWhxFUfqBbRUN\njEhLID0pLtSi9CmDzp0lIiNdq5cA6+3ll4GrRCReRMYCE4FPBlq+/mDCsBSaWtp1ylxFiWC2V+1n\nXHZyqMXoc0JiifTAL0VkFmCAncDXAIwxG0TkeWAj0ArcYYyJiLzYicNSACjc2xgxQyEoitKBMYai\nykbmzxoValH6nEGnRIwxX+5m2wPAAwMozoAwwaVEzoiQQdkURemgqvEQDU2tjMtKCbUofc6gc2cd\njaQnxZGaEMPumgOhFkVRlH5gR9V+gIh0Z6kSGSTkpCdqTERRIpQy+92ORHe1KpFBQk56IrtrVIko\nSiRSVme92yMiaLgTB1Uig4ScjERfa0VRlMhiT10TaQkxJMcPujD0EaNKZJCQk55IfVMrDU06QZWi\nRBrldU2MSk8MtRj9giqRQUJWSjwA1Y2HQiyJoih9zZ66JkYMiTxXFqgSGTRkJlu9WPcdUCWiKJFG\nZUMz2XZDMdJQJTJI8CkRtUQUJeKoO9hCelJsqMXoF1SJDBJ8SmS/KhFFiSSaW9s42NLGkERVIko/\nMjTFUiLVLiXS2tbO3vqmUImkKEov2N/cSr0rQabuoLWsSkTpV5LiYoiLjvI9cK1t7Xzp0Y+Z8z/v\n8PA720IsnaIowfDZ7lrm/c87zH3gHT6z5wiqt9/pNFUiSn+TGBfNwUOtALy2rpzVu2oZm5XM7xZt\npXBvY4ilUxSlO4wx/PClDcTHRhEbLfz27a2AWiLKAJIcF82BQ9bAxO9u3ktWSjzPf+1zREcJzyzf\nFWLpFEXpjrW761hbUss950ziqjl5fFRYzcFDbapElIEj0aVEVhXXMHdcJtmp8ZwxeRhvrC/HGBNi\nCRVFCcTr68qJjRYuOmYUBWMyONTWzuY99TS1tAOWyzoSUSUyiEiKi+G1deXc8481lNUeZHyWNeLn\nqZOyKatr8o0EqijK4GPJtirmjM1kSGIsU0ZYU+A+vnQntz+9GoCY6MictVSVyCDCmRr3hU9LaTeQ\nm2GN+HnShCwAPtmxL2SyKYoSmAOHWtm8p57ZeRkAjBiSgAi8tKbMt09sVGRWt5F5V2HKvv3Nfuu5\nmdZYO2Myk0iKi2bznoYez1HZ0Myf3itk6fYqv/K3N1Zw3u8W870X1nGotd1v2566Jr+UREWJRNra\nDTuq9tPW7u8WfnltGef+djH3vbyBdte2ivom/vjuNlbs7Lnxtm53He0GZuWlAxAXE+UbysghNiYy\nLZHIdNKFKXUH/CtyZ5iEqChh8ohUNu+p7/b4lrZ2rntsOVsqGogSeO7WzzFnbCZltQe585nVDEmM\n5ZnluxiZlsDXz5oIwN+W7OCnr20kJT6Gp26ey7Gj033nqz1wiJY2Q3ZqZA7XoEQmTS1tVDY0+83d\ncai1nWsfW8aKnTXMHZvJ32+eS1xMFEWVjXzr+bUMSYrl8aU7GZuVzA0n5tPU0sZVC5axo2o/MVHC\n87d9juNtK6MrCiut7EnHjQUwNDmOyoaOhmGMWiJKf+NtIbmHjZ4yIpWtFd2n+b7waSlbKhr49RXH\nMiw1gd+/Y6UYPrWsmNZ2w39uP5Gzpgzj8aU7OdTaTkV9Ew8u3MS8sUNJjY/hu/9Z5wvef7itknkP\nvsO8B9/hhU93+13HGENTS0RMb6+EMa1t7TS3+j+HZbUHOevXH3DKL9/jxy+t95X/30c7WLGzhkuO\ny2H5jn08+4mV7fjkx8WIwGt3ncyc/EweW1KEMYaX1pSyo2o/f7j6ODKT4/jNW1u7lWVX9QHiYqL8\n5gtJjIv22ydWYyJKf9PSjRIZnZnEvv2HOGD3I+mK1z4rJ39oEpcen8OXCnL5eHs1tQcOsWhTBXPH\nZpKbkcQVBaOp3n+IT3fV8J/VpbS0GR68dCZ3nz2RTeX1fFpSS1u74d7/rGNUeiIzc4bwwxc3UGsP\nDFnZ0Mz5v/+Q6T9+kwWLt/fPD6EoPbCxrJ4Tf/4ux93/Nm9vrPCVP7hwMzUHDnH+jBE88XExq4r3\nYYzhuRUlzB2byW+vnMWxo9N5bkUJ7e2GhevLOX1yNsNSE7jk+BxK9h1kS0UDr9rv0kXHjOSauXl8\ntL2KvQ2BR4/YWb2f0RmJvrgmQJT4K43Y6MisbiPzrsKUTpaIqyUz0h5Gek9d1w/ywUNtfLy9mrOn\nDkdEOG1yNu0GFm3ay9aKRl9w/sQJQ4kS+LiomiWFlUwZkUp+VjLnTR9JdJTw7qa9LN1exe6ag3zz\nnMk8cMkMGptbeeWzcgB+8cZmiqr2MzsvgwcXbmZTueViM8bws1c3csIDi/jNW1s0HVnpE5YVVXP6\nr97j8keW+oYAam83fPtfa+3kk0S+86+17G9upaqxmYXryrl6Th4PXXEsqfExPL9iN9v2NrKjaj/z\nZ+UA8Plpw+0GUw0V9c2cPnkYACfb78iKnTWsLq7hlInZiAhnTx2OMbC0sDqgnMXVBxgz1H/+dO87\noNlZSr/jVSIxrpbLiDQryB5IiWzaU8+htnbmjM0EOnyzr6y1skOmjkwFIC0hljFDk9myp4G1JXWc\nkG/tPyQplmkj01hTUsvS7dXERgtnThnGtJFpjMtO5u2NFTQ0tfDK2jKuLBjNX64vID4miqeWFQPw\n6mflPLZkB0MSY3n43ULecrUOF2+t5PJHlvLg65s63aOiALyzqYLLH1nKQ29u8QW3G5tb+fqzn9Lc\n2s6Gsnq+/6Llnvq0pJYNZfV859zJPHDJTGoOtPDG+j18uK2S1nbDJcflkBwfw8kTs1i8rZJPd9UA\nMG9cpt/308ssl9aMUUMASyGlxMfwxvpy9h9q45hcq3zKiFQSY6NZU1IbUP499U2MSu9+vhDNzupD\nROQKEdkgIu0iUuDZdq+IFIrIFhE511U+W0TW2dseFpHIVOsBcCyRMpcS+Xh7Ncfd/xa/fmsLm8ut\nzK2pIy3lkRwfQ25GIh9srQRg0vBU33Hjs5NZVlRNY3MrE4al+MqnjkxlU3k9q4prmD5qCIlx0YgI\nc8dmsmZXDcuK9tHc2s4FM0cyJCmWs6YMZ9GmCowx/P3jYsZlJ/P6XaeQPzSJvy7ZAVgZLrc9tYpt\next5dHERf11S5Lve3oYmvvfCOn7xxmaNsRwlvL6unK8/+ykfFXZkD5bsO8D/e3o12/Y28sf3Cnlu\nRQlgNYAqG5r5w9XHccup43h7YwVltQdZuK6cuJgozp85gtl5GWSnxvPelr18smMfaQkxvndg9pgM\nyuua+GBrJakJMYy1+10578Jr6yzreuJw6x0QESYNT+Ej2+Jw3o2Y6CimjUpjY3k9q4r3UfCzRfz0\n1Y0++dvbDXUHW8hIiuv23t2urkgiVKpxPXApsNhdKCLTgKuA6cB5wJ9FxPHpPALcAky0P+cNmLSD\ngAx7qPjKhmZK9h0A4E/vFVJzoIVH3t/O6l01JMRGkZvRMQVnvsu8dqcbjstOocbOBBuX3bHPpOGp\nvnjJpOEdyuWY3HTqm1p59bMyogSOHW210OaNy6SivpkNZfV8snMfXzhmFHExUVx6fC6f7NhHVWMz\nTy/fxcGWNl6+8yROnZTNgsVFtLS1Y4zhjqdX8+wnu3jk/e3c73kpn1m+iz+8s01Tj8MQYwwvry3j\nN29t8ctOWlZUze1Pr+bVz8r4yuMrKLIzmpwGxxvfOIXj8tJ57EMruP36OisuMXtMBl88diRgDQe0\nsriGWaPTSU2IJSpKKBiTwYayerbsaWDaqDSi7craUQIfbKkkLzMJp92ZmhDL0OQ4mlvbGZocR0Js\nh9s4J6Mjo8s9E2FeZhKlNQd55P3tVDU289clOyivO0jN/kPs2ncAYzoPa3K0WN0hUSLGmE3GmC1d\nbJoPPGeMaTbG7AAKgTkiMhJIM8YsM5aj8Ung4gEUOeSkxscgYsUkTvnleywtrOLjomrm5GfS2m5Y\nuK6c4WkJuA00JzU3NlqIj+n4q4e5UnZzXS+No4Ba2oxfufMyLly/h/HZKb7hG46zUx6ftsf1clxj\nJ00YClhDt7y7uYITxmQyZmgy18zJo6rxECt31vDJjn2s2FnDT+fP4MYT8/nHihLKag8C8MgH2/ne\nC+v49dtbuePp1X6+5Y1l9TyzfJcv0K+EDmMMb6zfw+vryv36V/xndSl3PfspD79byA1/+4TWNqtf\n0sPvbGN4WjyLv30GAvzfRztpb7fOcfqkbEYOSeTS43IoqtrPtr2NrNi5j9MnD0NEGJ+dwtDkOFbv\nqmFTeT3H5AzxXW/i8FSKq/eztaLRZ21Ax3O7/1AbOZ75zR0F4U1fd94NEf+GV25GImV1B1lWtI/j\n7L4gi7dWcvGfP+L0h94HIN1jiRwdKqQbJWK7jHr6/KyP5ckBSlzru+2yHHvZWx5I9ltFZKWIrKys\nrOxjEUNDVJSQ4srW+t2ibbS1G750wmjAelGGeV6ILHuOkuT4GD/l4kyABZDpevCHu9IT3RaNs3yo\ntZ0cV7ljxbz6mRV3mWm/2DNyhhAbLSwtrGJDWT0n2krllIlZRAks3V7F2xsriIuJ4rLjc7nxxHza\n2g1vbtjDwUNt/O/72zln2nB+/IVpfLitiqXbLffCZ7trufhPH/G9F9Zx5aPL/NI7Dx5qY2lhFQ1q\nufQ5xhhWFe9jd80Bv/I/vFvIbU+t4vanV/PQW1absK3d8Ms3N3N8Xjq/v2oWG8vreWtjBfv2H+Lj\nomqunpPH6Mwkzpk2nIXr91BU1cie+ibOnjocgM+Nt4Lb/169m6aWdt8zJWL1lVq8tZLm1nafCwpg\n4rAU2o0VQ3EHt93P8yivEknrXokkxET7ZVPlpCdi7Gt8qWA0SXHRPPNJCcXVHb9JeoQOsNgT3Vki\n84FVPXwuC3SwiCwSkfVdfOb3nfhdY4xZYIwpMMYUZGdn9/flBowYl0/1E7sX7azR6b4Wk/eFyEyO\n73ScVd6hOFITOhST+3h3vvuwVGsIB4DhqR3lSXExZKXE09DUSmp8DEPs6T/jY6IZnZnEok17MaYj\nyJ8cH8P47BQ2ldezbEc1BWMySIyLJj8rmXFZyXy4rYrF2yppaG7lxhPzuWZuHqnxMby0phSAh97a\nSlpiLA8ZTFGsAAAgAElEQVReOpMtFQ38w/adN7W0cekjS7nmseVc+PCSTrND7m9uPWpcC0dKQ1NL\np6yiH720gcse+Zgzf/0Bq4qt525vQxN/fLeQC2aO4AvHjuKxD3ewt6GJ5Tuqqahv5uaTx/GFY0aR\nnRrPG+v3sHR7FcZY48ABfG78UDubag8Ax9gu0rFZySTERvGKPVzIlJEdsbyJw1KosqePdisIt9tp\npGs5NjqKONsCH5bm/244VoP3nXGmsPX26XBbJflDkxkzNJm1nkC7d/rbyIyAdKY7JfJbY8wT3X2A\nRwMdbIw52xgzo4vPS91csxQY7VrPtctK7WVveUTx4h0n8e1zJwfc3tBk9RFxP+A56YmMGGIrEc8w\nCynxlq/Xm4PgNrvdwT63pZPiUi7RUUKK7cIantZ1y234EP/MlPyhyZTa7im3i2HqyDQ2ltVTuLfR\nFwAFOHZ0OpvK61mxYx9xMVEU5GcQHxPNqZOy+aiwmurGZpZsq+SqE0Zz9Zw8ZuSk8a9VlnH61LJi\nNpXX8/UzJ1Bae5A/vNsxideCxduZed+bnPPbD6jQWSIDYozVN2jmfW9x1YJlvv5Ia0pq+fuyYi49\nLofslHjuf8WKXS1ct4dDbe3cc/Ykvn7mBA61tfP2xgo+2Frpy+yLihJOmZDF0u1VrNlVS0JslM8N\ndWyu5RL656rdxEZb7iqwnrUJw1J8CSQjh3RYECP8ljuet6GuRpE3uJ1gK5HUeP/BOdISrfW0BP+K\nP9Veb/U0OtwTSo0YkuCzzqNd70+gSae+9flJ3PeFaV1uiwQCKhFjzO96OjiYfQ6Tl4GrRCReRMZi\nBdA/McaUA/UiMs/Oyroe6E4ZhSWzRqdzxxkTAm53HuxpduWbEBtFYly0T3l4H2Kns6K3RZTk6Unb\nUd7xoiV7Xro2u3WaneavLJwW3kiPEnG71sYMTfJbLqtroqml3S+oP2VEKuV1TSwprGLGqDTiYywZ\nZ41Op7T2IG9trKDdwBlTrJbsudNGsK60jroDLfxndSmzRqfzzc9P5sKZI3nh01IOtbZTVNnIgws3\nU5CfSXltEz95ZYPveqW1B7nlyZXc9eynVDf6j1kWyRhjePSD7Xzp0Y95Y/0eX/nbGyt49pNdnDop\nm+U79vHXD61g979X7SYhNor7L57BzSePZe3uOnZU7WfRpgomDEth4vBUJg5LISc9kY8Kq1i3u46p\nI9N8vbWnjUqz4mDFNeQPTfalrTv//a59BxgxJMHPdeSks8dGCxmu1n0gSznLVe61BuLs58g7DLvT\nYIqL8a8Cnee+pc1/fDm3xZ6VEud7vt1u34QY//fKUUMnTcjixpPGEql0FxNJEJEbROSLYvHfIvKq\niPxeRLKO5KIicomI7AY+B7wmIm8CGGM2AM8DG4E3gDuMMY7j+3bgMaxg+3Zg4ZHIEM7k2mMCRdsW\nhvOCxHteCEdZeHvOBlIi7hfK23JzWlzeDBTHNeZ1Czjmf3xMlF/2i7tlOdblv3aslc17Gvz82jPs\nlus/VpQQHSVMG2mtz87PwBh4b8teNpbXc840y6d+wcyR1B5oYU1JLf9YWUJMlPCna47nKyfls3D9\nHirqmzDGcOczq1m8tZKF68v59r8+85N9W0UDy4qqw77D5M6q/SzZVuXnynt5bZnVSbSsnq8/u5rt\ndobU35cVMzozkb/dUMCpk7L5x8oSjDG8tXEPp08aRkp8jO83Xry1knWldRSMsRIrRITpo9LYvKeB\nzXsafI0cgPF2cHtNSa1fo8FxhUJnC9qxdi03audEEfB/Dt3PanqiN83Wundvo8j9TLpJtMu93k93\nAy0xNtpnsbitoEADLEZ6b4Tu3FlPAp8HbgLeB/KAPwINwONHclFjzAvGmFxjTLwxZrgx5lzXtgeM\nMeONMZONMQtd5Sttd9h4Y8ydJtzf8CMgy35wnR/AqfzjPS0hZ8C3hFj/vzkxwAvkxvvSOeeO8/iK\nHXdAimf/oXZQ/5CnRed2h7lbkG73hLt151gxa0pqGZOZ5GvhTreVyT9XWXGRWfbAkSfkWxXb6l01\nfLi1itljrH4E82flYIyVIrqquIZPd9Xyoy9M455zJvHu5r1sLLN63r+3eS/n/f5DrlqwjJ+80pF2\nHG4sL6rm879dzHV/Xc5//9tSksYY/vReIZOHp/LON09DEP7+cTF1B1v4eHs1F8wcSUx0FBfMGMHu\nmoMsKayior7Z1zkvNyORjKRY3tm8l9oDLUx3ZUhNHpFKUeV+9u0/5Pf/jXO5Mt0DIkJH4kegBojz\nDDmkuawBd8XsXnZbDNChDJLj/Z/5ONvyaW3zr0acd6XdU724zxsTHeVbd7uz4iJ0WJOe6O6upxlj\nrgUuByYbY+4wxrxhjPkB/nELZYAZar9kTgc9J3DuNc1jAymXIB52r7XivKfe8X+cl9NrBTktRa+q\nT3X5oN3+6xEBMsOGpyX4YkDu4OiQpFiyUuJ8HcMmj7ACsENT4slJT2R1cQ2b9tQzZ6yVGTZpeApZ\nKfGs3FnDO5v3EhMlfPHYUVx9Qh5Rgm/myJ++tpFxWclcdnwujy/d6VMuAIs2VvCLNzb7+ukMBlra\n2vnrkh088v523/NgjOFHL21gWFo8V88Zzb9W7WZ9aR07qw+wtaKR6+blMSwtgTOmZPP2xgo+3VVD\na7vhtImWq9BJ3X5+pRVzmtFFhhRYUxQ4uONebmtzqMvKcLfaocP15B0y3Wn1e1vw3oZKV3jfAaet\n6XVnOZV/W7t/I8exULzPrbfh5SiRFpcSivVcO7Ltjw66q00OARhjWoEyzzbtXhxCnAfYeXydF8I7\nNk+sXe61RKKD6DnrfYGdNa8ScV6uzi6zrl94d0Xg9l+7g/1OVpkjq6NshnviMU7aZlx0lF8FNS47\nmfe3VmJMR18Bx+WysbyelTv3cUzuEFITYslIjuO4vAw+LKzis911FFXu55ZTx/Gji6YRFxPls3Q+\n2FrJV59cySPvb+eqBctobA48EOZA8sBrm/jpqxv5xRub+aE9LMiGsnq2VDRw5xkTuPeCqcRFR/Hy\n2jKW2L3ET7aVxZyxQymtPcj7WyylMN0e/mNcdjJx0VEstHt0O0FvgLFZHctu69GtCEa6hv9wj//m\nDXo7rievcnGe72bPKAZe67grvErEiSN6G0XOO+B1WwWy0r0Zjo6MrS4l5LVEjhZXSXdKJNfuC/IH\n17KzHrCPhtL/OBWx01pyMqzavW+E/dzHx3rdXIffRnJ0hPcldZRNsK1Gt1vArZDc5/W6HhyrxqtE\nHF/68CHxftcfnZnkm3jL7U6ZMjKVwr0NbK1oZLJr3oeZOUPYsqeBj4ssq+b0ydkMSYrllAlZvLt5\nLwB/fHcbeZlJPP3VuZTWHuRpe8wwsGa1W72rptNkX31N4d4GX8YbWMOF/H1ZMdfOzeOWU8byr9W7\nKdl3gDc37CE6SjhvxgjSEmI5YWwGi7daY0hlp8aTb7sIj7XHhnppTSkjhyT4UrRjo6PIG5pEa7sh\nLibKT9m7Eybc6d5uJTLMVe7+X7xKJMmxYj3Pp1Phe11K3mevKzo926brcsdC8YYr4mO7vob3+U6M\ntZ5jt7c20Ci9kW6RdPevfBurL8hK17Kz/p3+F00JhNfvG+Mzzf1fOqdS87qavFbD4eB9UZyX0fvu\nOi+j91LBtCZT4/2D906rMcvjI3d86SPT/DuSuSs0d0/l3IwkWtqscY7GZ7vTjlM5cKiN1z4rZ3Rm\noq8SPGFsJsXVB9ha0cCKnTV8qSCXkyZkMXtMBi98amWYNzS1cNEflnDpn5dyzV+W9ZsieezDIs7+\nzWJO/9V7LNlmWRQL15fT1m647bTxXDN3DMbAok0VrCmpZcqIVJ91NzMnne2VjWzf28j47GRfhZhv\nK9iaAy2dsus6gtvxAYPbTpos+P83gRI3UjzPrTMgobeCd7KcvG2iYIZSDxTE9pY7p/buHSjg7sVx\nsbrT7YOx8COR7lJ8e+ojooSIFE8l6ygFb257s0+J9IElYr9uXpPduaT33fXFaTz7B+PX9loiTjDd\n62pwKslMjzvEXaG5ldbINP+xkBzG2e6adaV1fuONOb2lnZGKnd7Un582nM17Gtjb0MTjH+2kqHI/\nN56Yz8riGt++fUlFfRO/fHMLp07KJjcjiZ+8sgFjDIs27WXayDRGZyYxNiuZ0ZmJrNxZw7rSOp/s\nYLn0WtoMa3fX+bmjrHGjrP/HG9x2rAzvKAhu15O7Ynb/zoEqYm8Hvuhoxw3r/4wkxAawRHoRuHbO\n0MlA8T23XgsjOCXiKIxgFEeku7UCvtEi8grd3L8x5ov9IpHSI94WXYd/1//vcgLUp07yz8juzWii\ngdxZPpdagAl4vC9+MC4Jr6JxWqzeY7vKkAEY6oqpuI9xZ4O5M3/cQX13BpETT3llbRnRUVZMBaDA\nyQArruXFNaXMG5fJfV+czvrSOp5aXsxNJ/dtn4B/rCihpa2dn82fwYeFlXz/hfVsLK9nQ2kdVxR0\n5LhMGZHG6l011B5o8UundS+PzuywzESEzKQ4yuqaOgW3A6Vue589B3fl67V8HaI9Q6E7DQ3v4+iL\n4XWyRHrf0vc+n4EqNue5ddKZA+HsF6nDux8O3TULH7K/LwVGAE/Z61cDFV0eoQwIXnfWZHto6zxP\nCuX0UUP46LtnMsrjqugNHYF178tovY7ebBYnyB+M0vCS5LVWAmWG2RZKqyfDJlBF51ZObv+8u6Ic\n7Rp4MjslnriYKGoOtJCTnuhrITt9VZbvqGZ75X4un21V5F+cNYofvbSB7ZWNjM9OYfWuGt7bvJfL\nZ+d2mrAoEM2tbfz942LiY6O5dk4eUVHCO5v3cmxuOnlDkzgzxppA6fkVJew/1Ma0UR2xnUnDU3yz\n/Ll7d7v7YWQl+yuF1IRYqGvqpCycLDrvbx7IknQ3TAJZIl4LODqAGzaQJXIk7qJOSiRATATgk++f\n1ak/lIP33QsqSSVIGcOVgErEGPMBgIj82hjjnvPjFRFZ2e+SKQHxdgS8oiCXCcNTON5OzXTjHb30\nSPFWKk6GlNe6cfqo9GZKUG9l46x5FZITkBXPa5oS33Ul5q4A3C4wd6XndtdERQkj0hLYte+AX3px\nYlw0w1LjedWe7dEZ1dWZPXJVcQ1x0VFcvWAZza3t/HPlbt6859SAFZObn7yykWfsUZGbW9q48oTR\nfLa7lrvPmghYVlNmchxvbrCUhTtxwD3IoDvG4ba6vD26nUrQG/R2FLE3xuOdN7wrAlWs3vJALqWO\nvhr+xx9Jp71ABoP32QH/xAA3737zNJ8L1enRHqmzFR4OwbzhySIyzlmxhyMJrlml9ClT7L4Q3hdZ\nRLpUIH1JRxaWf/llx+fygwuncttp4/zKnfqiN5aIt9UYqI+K4yrzVhDBpBcHalF7rRhn2I0Rnsyw\nvMwk31wZThxl7NBkUuNjWFtSy5Mf76TdGB798mz21Dfxfx/t6PJ6bnZU7eeZ5bu4+eSxnDh+KH9b\nsoPNexowBt8seyLClBGp7LHHAXNnrLldUm553b9Hhid+5DxL3v/JcU953T5HMk94oFictzQuumtL\nBOD3V83i3W+edtjX7myJOOXBn2Ncdoqv8eF0UozUedMPh56jnHAP8L6IFGH932OAW/tVKqVLnr1l\nHkVV+zsFygcS73sdHSV89ZRxnfZzOmH1Rol4W6y+oL7nXE4r0NuaDPRiu7OGArWWvdljaQHSi3Mz\nEllZXEN0lPhcQVFRVme8wr2N1B1sYd64oZw7fQQnTRjKS2vKuPusid22pv+1qoQogVtPHceSbVV8\n859redHOAnOnJLstDreF5DcsSNLhuWO8FbwT1/D+30fSK7uzJdK1S8lpFHQ1JoUzT/rh4lUi7d24\ns4LBcaFGRwlLv3smtQcCT0Fw1AbWHYwxb4jIRGCKXbTZGHP0jFg3iMhIjmN2cpzv5TsSV1V8TBRf\nnjcm6P3/duMJ/H3ZzqCv6aSIHs41HAK1Dju5uQJYR4ECsIGGynDjtVAcF5TXFeW4NYalxvtVjnlD\nk3h7QwUNza1cONOaje+iY0Zx73/W2f1TUgnEe5srmTM2k+FpCb4Jvl5fV05stPjFtZyMqfSkWL8G\nhXs+C+9ggA5eBRvry5DyupSc4w+/r0YgYjwmY6A0W6e1f91hPDu/u3JWtx1Avc/UmVOG8eDCzVx4\nzKigr+HGse5y0hMZZX+OVrrLzjreGLMawFYaa7vbRxk4RIS/3lDg62HcG7b87PzD2n/yiFR+dvHM\noPdPT4pj588v7NUghp16y9urXoujo4+KJx5zBK1lrxJJCuDucSwUbwpsbnoiDXZlNtbOijpxvDX0\nysrifQGVSH1TC5v21HPXmVbsIzcjkXg7qD9qSNcDEXqVqlv2QIq0c3Db6avRdRZdb/pqBCLam5QR\nICaSFBfDzp9feFjnvvi47i0U7zUmDk897Gu4OWViFg9dcSwXHTOyx30jPWrS3RPxfyKSISKZgT7A\nXwdKUMWfs6YO9xt2YrDSFyOYOqcwnlaxc25v8Df2CLJ4vB3lHAXldeOkeYaecRjaRUfHvMwkhibH\nsWZXLYFYW1KLMR1TDEdFiS/bzps55VhFLZ7BA91ZbYF+d6+CdX6qTn047N28cYkjCSR7FdiRupSC\nwWlo9HVHQBHh8tm5QXdOjGS6c2cNweqh3t2vHxlzzw4yhiTGasDOhWOBeI2akydkkRIfw40n5fuV\nH4klEqiSDGSJeBWYO+vLmUpYxJpoyRl2vSsK91rbJo3o6AyYlRLPtr2NnZSIE7dp9YyQHExHuc7D\nfzjl3sEDu/7Nk+NiGDUkgW+cM6nHa3nxVuTtASyR/iAUnckvnpXDZ7vrIt7V1V2Kb/4AyqG4WP3D\nc0ItwqCiwxLxJzM5jvU/ObfT/kfSWo4O4ErznjM5zhmAz18qd4qwu0/GuOwUFq4vD3jdosr9pMbH\n+PXpyEh25qzwKBH72i2eawdTUXYKbjvl0V3fd1d9NZbee1bPF+qCztlZXQ+Z0x+EYk6Pr5yUz3Xz\nxhxRHCkcCCY7SxlgjtYxeAJx++kT+Hh7tW9q1Z5wehH35nfsXNl03SJ3Kgav0nEPde/uOzMuK5na\nAy3UHWjpMnOqeN8B8rOS/a7vBO+9Kd2Brh1MRentYR0ortSbSvfsqcM7jcjrJmA/kQGIGoRiXigR\nIS7ARFWRhCoRJSQ4weZg+Nz4oRT+zwVB7+/49289tXPqcU90Si92rCCPFnGu4a2ckgJ0dHRScV9d\nV8a/V+3mhxdNY+rINO5+7lOmjkyjurG5Uxqxk23lbcn6lEgvlKTX4nDwlk60h3w5nJTax24o6Ha7\n12V23owRPLeixDeMTH8S+VV56FAlogw4R5IVEwwx0VHseDB4peOmU+s+wH6BKvJAI9g6vaC//4I1\n58ev39rKZbNzeHNDBW9uqCBKYKprWlnoiHEESmHuTes62OD2qPREiv7ngl6NsxYI7291+uRh/f4s\nOET6FLWhpEdnnT2/+nUi8iN7PU9E5vS/aIrSe0SkVxWHeN6IQPEYX295zzUCdcbzBsc/2bHPN84V\nWEFmryvIlyAQoMNfb4b0DxRY7+pcfalAurr2QOAMqKke4v4jGEvkz0A7cCZwP9Yc6/8GTuhHuZQQ\n8cY3TqGxaXDM2hcKvJaIgzcmEqiCDZQZ5p4f/NRJ2SzeWsmbGyqYk5/JJzv3AZ2HtHcu4Q1uO5l7\nvXJnBbJEDvtMh09fK6Vg+PvNc1lVvC/gUDjKkRNM2sBcY8wdQBOAMaYGCBw9U8KaKSPSKLD7KhyN\neCtZp4XujYnk2mmbV54w2q88UCc/dx+OgjFWDKCt3TBlZEfnQ68S6YjH+J/LGf/q+s8d/mgAnSZn\nCtRtPELITo3nvBk9dwhUek8w6rlFRKKxjWoRycayTBQl4vAaIufNGMGTHxczz5MIMCwtgY33n9up\nb4Y3eOyQ5NrPGUwR/Ifv97aWHQXm7TU+JDGWjfef22XrOiZKOH3ysC5l6Iru3FmKEgzBKJGHgReA\nYSLyAHA58IN+lUo5KnngkhksL9oXUhm87qwTx2cFDP4GqsS7wu3KmTS8w/rITo0nJT6GxubWgO6p\nrkazDeSeOZwsNksu67s/Vcjvr5rFy2vK+vEKSigJZgDGp0VkFXAW1rN2sTFm05FcVESuAO4DpgJz\njDEr7fJ8YBOwxd51mTHmNnvbbOBxIBF4Hbjb9GZgJmXQcu3cMVw79/BdNIfDQ1ccG3DmPTjyPjrB\n+P3dQ2WkxMdYmV7NnV1hA2EdPHTFsSxYXNSvLsz5s3J6PfquMvjpbgBG91O1F3jWvc0YcyRNxvVY\nMyY+2sW27caYWV2UPwLcAizHUiLnAQuPQAblKOTy2bndbh+IVFB37/fk+Bif8ugcj7G++7OtlJuR\nxP3zZ/Tb+ZXIpztLZBVWHESAPKDGXk4HdgFje3tRx5IJ9oUVkZFAmjFmmb3+JHAxqkSUMMTdazwl\nPibgLJApdu93dy94RRlsdDd21lgAEfkL8IIx5nV7/XysCry/GCsia4A64AfGmA+BHGC3a5/ddlmX\niMit2BNn5eXl9aOoSqRw7Oh01pYEHmX3cPjTNcczdWTgeUO8lkhMAEvkkuNyqDvYwrVzj/wZHpIY\nS93BwBMnKUpvCSawPs8Yc4uzYoxZKCK/7OkgEVkEjOhi0/eNMS8FOKwcyDPGVNsxkBdFZHoQMvph\njFkALAAoKCjQuInSI0/dPIeK+r6Za+3CHuaYcAffk+OifRlSnYdjF24+udcGvx/vf+t0Go7i/j9K\n/xGMEikTkR8AT9nr1wI9ploYY84+XGHsya+a7eVVIrIdmASUAm5ndq5dpih9QmpC7IC5jUSE9KRY\nag+0EBcT5ZsnJTpAenBfkJEc12l+dUXpC4J5aq8GsrHSfF8AhtllfY6IZNt9UhCRccBEoMgYUw7U\ni8g8sQIp1wOBrBlFGfTcfdZE33LHnB7aV0MJP4JJ8d0H3N2XFxWRS4A/YCmn10RkjTHmXOBU4H4R\nacHq0HibKwvsdjpSfBeiQXUljHEnXPmUyBHMg6IooaJHJSIi79F5/DmMMWf29qLGGMeq8Zb/G2tc\nrq6OWQloLqISUQjiS+EN1NtdUQYzwcREvuVaTgAuAzRCpyh9hNNCU3eWEo4E485a5Sn6SEQ+6Sd5\nFOWowG3aqztLCWeCcWe5e65HAbOB4OYpVRSlewRXdpYqESX8CMad5e653grsAG7uT6EUJdJxD2XS\nriPpKmFMMEpkqjGmyV0gIvGBdlYUJXhEOtxZqkKUcCSYdJClXZR93NeCKMrRijMvu84DroQj3Y3i\nOwJrfKpEETmOjoZSGpAU6DhFUbrmiZvm0NDUefyqJ2+aw2vryjvNw64o4UB37qxzgRuxhhj5jau8\nAfheP8qkKBHJaZOyO5UJkJ+VzB1nTBh4gRSlD+huFN8ngCdE5DK7E6CiKH2ETqemRArdubOuM8Y8\nBeSLyH95txtjftPFYYqiHAYaB1HCne7cWcn2d8pACKIoiqKEH925sx61v38ycOIoytGB6TwcnaKE\nJcH0WM/Gmts8372/Meam/hNLUY4O1JmlhDvBdDZ8CfgQWAS09a84iqIoSjgRjBJJMsb8d79LoihH\nEZqdpUQKwfRYf1VELuh3SRTlKESTs5RwJxglcjeWIjkoIvUi0iAi9f0tmKJEMmqIKJFCMPOJpA6E\nIIpyNCIaWlfCnGCys47vorgOKDbG6AyHiqIoRzHBBNb/DBwPrLPXZwLrgSEi8v+MMW/1l3CKEqlo\nYF2JFIKJiZQBxxljZhtjZgOzgCLgHOCX/SmcokQ6GlhXwp1glMgkY8wGZ8UYsxGYYowp6j+xFCWy\n0R7rSqQQjBLZICKPiMhp9ufPwEZ7dsPOkyMEgYj8SkQ2i8hnIvKCiKS7tt0rIoUiskVEznWVzxaR\ndfa2h0VHrlMURQk5wSiRG4FC4Bv2p8guawHO6OV13wZmGGOOAbYC9wKIyDTgKmA6cB7wZxGJto95\nBGv4lYn257xeXltRFEXpI4JJ8T0I/Nr+eGnszUU9wfhlwOX28nzgOWNMM7BDRAqBOSKyE0gzxiwD\nEJEngYuBhb25vqKEGg2sK5FCj5aIiEwUkX+JyEYRKXI+fSjDTXQogxygxLVtt12WYy97ywPJfKuI\nrBSRlZWVlX0oqqL0LeqUVcKdYNxZ/4flSmrFcl89CTzV00EiskhE1nfxme/a5/v2eZ/unfhdY4xZ\nYIwpMMYUZGd3npJUURRF6RuC6SeSaIx5R0TEGFMM3Cciq4AfdXeQMebs7raLyI3ARcBZxviM+1Jg\ntGu3XLus1F72liuKoighJBhLpFlEooBtInKniFzCEc52KCLnAd8BvmiMOeDa9DJwlYjEi8hYrAD6\nJ8aYcqBeRObZWVnXYw1RryhhjQ57ooQ7wVgidwNJwF3AT4EzgRuO8Lp/BOKBt+1M3WXGmNuMMRtE\n5HlgI5ab6w5jjDOHye3A40AiVgxFg+pK2GI0sq5ECMFkZ62wFxuBr/TFRY0xE7rZ9gDwQBflK4EZ\nfXF9RRksaGBdCXcCKhERebm7A40xX+x7cRRFUZRwojtL5HNY6bbPAsvR6aAVpc9Qb5YSKXSnREZg\nDbJ4NXAN8BrwrHscLUVRjgxtmSnhTsDsLGNMmzHmDWPMDcA8rKFP3heROwdMOkVRFGVQ021g3R5k\n8UIsayQfeBh4of/FUpTIRr1ZSqTQXWD9SaxsqNeBnxhj1g+YVIpylKCDUSvhTneWyHXAfqx+Ine5\nHnYBjDEmrZ9lU5SIRQPrSqQQUIkYY4Lpza4oyhGgdogS7qiiUBRFUXqNKhFFCQE6Pa4SKagSUZQQ\nonF1JdxRJaIoIUAD60qkoEpEUUKIpvgq4Y4qEUVRFKXXqBJRlBCg3iwlUlAloiiKovQaVSKKoihK\nr1EloiihQNOzlAhBlYiihAhNzFIiAVUiihIC1A5RIgVVIooSItQQUSIBVSKKoihKr1EloighQOPq\nSlLEdDIAAA92SURBVKQQEiUiIr8Skc0i8pmIvCAi6XZ5vogcFJE19ud/XcfMFpF1IlIoIg+Ljheh\nhDn6CCuRQKgskbeBGcaYY4CtwL2ubduNMbPsz22u8keAW4CJ9ue8AZNWUfoYHQpeiRRCokSMMW8Z\nY1rt1WVAbnf7i8hIIM0Ys8wYY4AngYv7WUxF6VfUDlEigcEQE7kJWOhaH2u7sj4QkVPsshxgt2uf\n3XZZl4jIrSKyUkRWVlZW9r3EiqIoCtDNHOtHiogsAkZ0sen7xpiX7H2+D7QCT9vbyoE8Y0y1iMwG\nXhSR6Yd7bWPMAmABQEFBgfoNlEGHBtaVSKHflIgx5uzutovIjcBFwFm2iwpjTDPQbC+vEpHtwCSg\nFH+XV65dpihhi8bVlUggVNlZ5wHfAb5ojDngKs8WkWh7eRxWAL3IGFMO1IvIPDsr63rgpRCIriiK\norjoN0ukB/4IxANv22mOy+xMrFOB+0WkBWgHbjPG7LOPuR14HEjEiqEs9J5UUcIF9WYpkUJIlIgx\nZkKA8n8D/w6wbSUwoz/lUpSBRDQ/S4kABkN2lqIcdWhgXYkUVIkoSqhQQ0SJAFSJKIqiKL1GlYii\nhAAd9kSJFFSJKEqIUG+WEgmoElGUUKCGiBIhqBJRlBChPdaVSECViKIoitJrVIkoSghQb5YSKagS\nUZQQoT3WlUhAlYiiKIrSa1SJKEoIMDruiRIhqBJRlBCh2VlKJKBKRFFCgBoiSqSgSkRRQoQaIkok\noEpEURRF6TWqRBQlBKg3S4kUVIkoSogQjawrEYAqEUVRFKXXqBJRlBCg2VlKpKBKRFFChDqzlEhA\nlYiihACd2VCJFEKiRETkpyLymYisEZG3RGSUa9u9IlIoIltE5FxX+WwRWWdve1g0KqmEO/oEKxFA\nqCyRXxljjjHGzAJeBX4EICLTgKuA6cB5wJ9FJNo+5hHgFmCi/TlvwKVWFEVR/AiJEjHG1LtWk+lI\nm58PPGeMaTbG7AAKgTkiMhJIM8YsM9bIdU8CFw+o0IrSh2hgXYkUYkJ1YRF5ALgeqAPOsItzgGWu\n3XbbZS32srdcUcIW9WYpkUC/WSIiskhE1nfxmQ9gjPm+MWY08DRwZx9f+1YRWSkiKysrK/vy1Iqi\nKIqLfrNEjDFnB7nr08DrwI+BUmC0a1uuXVZqL3vLA117AbAAoKCgQB0HyqBEc0OUSCBU2VkTXavz\ngc328svAVSISLyJjsQLonxhjyoF6EZlnZ2VdD7w0oEIriqIonQhVTOTnIjIZaAeKgdsAjDEbROR5\nYCPQCtxhjGmzj7kdeBxIBBbaH0UJS3RmQyVSCIkSMcZc1s22B4AHuihfCczoT7kUZSBRb5YSCWiP\ndUVRFKXXqBJRlBCgziwlUlAloighQr1ZSiQQss6GinI0M31UGgcPtfW8o6IMclSJKEoIuPKEPK48\nIS/UYijKEaPuLEVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVRFKXXqBJRFEVReo0qEUVR\nFKXXqBJRFEVReo1E+pDUIlKJNdx8OJEFVIVaiAFG7/noQO85fBhjjMnuaaeIVyLhiIisNMYUhFqO\ngUTv+ehA7znyUHeWoiiK0mtUiSiKoii9RpXI4GRBqAUIAXrPRwd6zxGGxkQURVGUXqOWiKIoitJr\nVIkoiqIovUaVyCBARDJF5G0R2WZ/Z3Szb7SIfCoirw6kjH1NMPcsIqNF5D0R2SgiG0Tk7lDIeqSI\nyHkiskVECkXku11sFxF52N7+mYgcHwo5+5Ig7vla+17XichSETk2FHL2JT3ds2u/E0SkVUQuH0j5\n+gtVIoOD7wLvGGMmAu/Y64G4G9g0IFL1L8HccyvwTWPMNGAecIeITBtAGY8YEYkG/gScD0wDru7i\nHs4HJtqfW4FHBlTIPibIe94BnGaMmQn8lDAPPgd5z85+vwDeGlgJ+w9VIoOD+cAT9vITwMVd7SQi\nucCFwGMDJFd/0uM9G2PKjTGr7eUGLOWZM2AS9g1zgEJjTJEx5hDwHNa9u5kPPGkslgHpIjJyoAXt\nQ3q8Z2PMUmNMjb26DMgdYBn7mmD+Z4CvA/8G9g6kcP2JKpHBwXBjTLm9vAcYHmC/3wHfAdoHRKr+\nJdh7BkBE8oHjgOX9K1afkwOUuNZ301kRBrNPOHG493MzsLBfJep/erxnEckBLiHMLU0vMaEW4GhB\nRBYBI7rY9H33ijHGiEinvGsRuQjYa4xZJSKn94+UfcuR3rPrPClYrbdvGGPq+1ZKJZSIyBlYSuTk\nUMsyAPwO+G9jTLuIhFqWPkOVyABhjDk70DYRqRCRkcaYctuN0ZWpexLwRRG5AEgA0kTkKWPMdf0k\n8hHTB/eMiMRiKZCnjTH/6SdR+5NSYLRrPdcuO9x9womg7kdEjsFyzZ5vjKkeINn6i2DuuQB4zlYg\nWcAFItJqjHlxYETsH9SdNTh4GbjBXr4BeMm7gzHmXmNMrjEmH7gKeHcwK5Ag6PGexXrb/gpsMsb8\nZgBl60tWABNFZKyIxGH9dy979nkZuN7O0poH1LlcfeFIj/csInnAf4AvG2O2hkDGvqbHezbGjDXG\n5Nvv8L+A28NdgYAqkcHCz4FzRGQbcLa9joiMEpHXQypZ/xHMPZ8EfBk4U0TW2J8LQiNu7zDGtAJ3\nAm9iJQY8b4zZICK3icht9m6vA0VAIfAX4PaQCNtHBHnPPwKGAn+2/9eVIRK3TwjyniMSHfZEURRF\n6TVqiSiKoii9RpWIoiiK0mtUiSiKoii9RpWIoiiK0mtUiSj/v71zjbGrquL4799pQ1tKW0arflH5\nYghQRcNILJIGSTUSRaROaSJYp0aJRihKqmg0OqFBtE2jIhiUpkypKA+xg6K0NKVDkVEofcx0Cqmg\nYEwkmFYZrdARhuWHtY6z5865t3duxw6d7l9yk3323mev/Th3P89ZK5PJZBomDyITFEkmaXVyvVxS\n+1HOQ0ehqVTSmiNVnijpFEl9VcJWhabfVUci47VE1N8zY/mKaNomxyOS2iTdeJg4i0MT7zGtKfto\nkb9Yn7gMAAslXW9m+0d7s6TJ8e77mGBmnx6rtKpwOdBsZoOp51iXYxz4kpn9fLwzMZZIaqpsp9cS\nZnanpOeB5eOdl2OBvBKZuLyCq9f+YmVAzOgfDHsOW+Lr4WKWerOkR4GVktolrZP0sKQ/S1ooaWXY\ngNgYKkmQ9A1J2yX1SfqxShQDSeqS1CLpI8mHg/skPRPhZ0l6SNIOSZsKLbbh3yOpB/h8WUEl/RKY\nAeyIWWRlOU6UtFbSY3JbLBfFfdMk3SHpSUkbJD0qqSXCDibpt0rqCPccSfdEebdLem/4t4eMLkl/\nkrQsuX9J1HWPpPWSTooVRlF/M9Prakh6Y+SzJ37nSLpW0heSONcp7K5IuibaqkfSt0vSq1bny+Q2\nXHol3VFyX5uke6OsT0n6ZhJ2WdTzbkk/kqs+R9JBSaujHedVpDdCnqSzJf0u2qtb0qmJ7E65DZpn\nJV0h6eqI93tJzRGvS9L3Ix99ks4uKUdpW2ZGiZnl3wT8AQeBmcCzwCx8VtUeYb8CPhnuTwGd4e4A\n7gOa4rod+C0wBTgTeBHXcwSwAfhouJsTueuBC5P0WsPdBbRU5PEufGCYAnQDc8J/MbA23L3A/HCv\nAvqqlTdxV5bjW8Bl4Z4N/AE4Ebg6kfMOfOBtKUmvFegI90+Bc8P9FlwlS1FX3cAJuF6kA1GuM0Le\n69O6Am5N6u9yYHVJmf5Xf3F9J66EEqAp2vUUYGf4TQL+iH8JfkHkZ3qF3I4oT606/ytwQlFfJflq\nA54LOdOAPlwv1Gn4szUl4v0QWBJuAy6p0nYj5OHP7uRwLwDuSWQ/DZwEzAH6gc9G2HeT+ukCbgn3\nfOK5iftvrNWWcX0ecN94/4+PhV/ezprAmNk/Jd0GLANeSoLmAQvDvR5YmYTdbcO3Gu43s5cl7cE7\nro3hvwfvwADeJ+nLwHSgGdiLdyZVifgvmdlNkuYCc4HNsYhpAp6TNBvvVLYleb2grsIPL8cHcOWV\nxfbEVLzTmA/cAGBmvZJ660h3AXC6hhZbM+VahgF+bWYDwICkv+Hq7c+PvOwPOX+PuGtwtf6dwFLg\nM3XIPh9YEukM4h1ov6QDkt4V8naZ2QFJC4BbzezFCrkFp1JS5xHWC9wuqTPyV8ZmC6WJkn6Ba+F9\nBTgL2B5pTmNIseYgrkizjDJ5s4B1kt6GD0DpKm2ruX2Zf0nqZ+hZ24NPBgp+FmXfFqu92RVyS9vS\nzA6SqZs8iEx8vgfsxGe+9fDviusBAHP11S9bTNNwmyaTJU3FZ5wtZvYX+eH91FoCooNbhHfiAAL2\nmlnlNkfln340pOUQ8DEz21eRfq37U31AaXkmAe8xs0MlaQ0kXoPU+H+Z2SPybcXz8BVT6QsDdbIG\nn2G/CVhb5z2ldR58CG+bC4GvSXq7jTxXqtSXZJHmOjP7akmah6z6OcgIebi1w61mdrHclkxXEj+t\n51eT61cZXudleUwpbcvM6MhnIhOcmIHehdtsKOjGtYwCXAo8fAQiig52f8zIa775I+mtuBnRRWZW\nrI72AXMkzYs4UySdYWYvAC9IKmxNXNpgHjcBVyp6+pi1A2wDPh5+cxk+i31e0mmSJuGGhAoewK3T\nFeV552FkPwgskvS6iN+chN2Gb6nUO8BvAT4X6TRJmhX+G4APAu/GywqwGVgqaXqJXKhS51HeN5vZ\nVuAafEUwg5G8X1KzpGm4VcpHIn+tkt5QyIz2rkoNebMYUqXeVrtaqrI4ZJyLa0burwgfbVtmSsiD\nyPHBanyfvuBKvIPpxbXkXtVowtHR34Lvi2/CVWLXog3fS++MQ8/fmJsTbQW+Ewevu4FzIv5S4CZJ\nu/GZbiOswLdDeiXtjWtwC3MzJD0JXAvsSO75Cn6u0s3QNg/41mBLHAI/AdR8/dbM9gLXAQ9F2VKV\n9rcDJxPbLnVwFb51uCfyenrI+A+wFdccOxh+G3FV5I9H3Q1706hGnTcBPwkZu4Aboo0reQzfnurF\nzyseN7MngK8DD8SztRk4nJnfavJWAtdL2kXjOyaH4v6bGT6JKhhVW2bKyVp8M5lAUhew3MyOilpy\n+fcaF5nZJ6qEd+CHuzVf8Y3Z/E58dffUmGd0pLw2fPvyiv+3rEY50raMbcblZvbhsczXRCSvRDKZ\ncUDSD3AbKitqROsHVqjGx4byDzifBrYcjQHkeEDSYvyc7x/jnZdjgbwSyWQymUzD5JVIJpPJZBom\nDyKZTCaTaZg8iGQymUymYfIgkslkMpmGyYNIJpPJZBrmv/jnK9qSdwCGAAAAAElFTkSuQmCC\n", + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "nfft = 2048\n", + "A = fft(window,nfft ) / (len(window)/2.0)\n", + "freq = fftfreq(nfft)\n", + "response = 20 * np.log10(np.abs(fftshift(A/(abs(A).max()))))\n", + "plt.plot(freq, response)\n", + "plt.title(\"Frequency response of the Flat-top window\")\n", + "plt.ylabel(\"Magnitude [dB]\")\n", + "plt.xlabel(\"Normalized frequency [cycles per sample]\")" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.0" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/objects.inv b/objects.inv new file mode 100644 index 000000000..99ab07964 Binary files /dev/null and b/objects.inv differ diff --git a/pulsar.html b/pulsar.html new file mode 100644 index 000000000..848add58c --- /dev/null +++ b/pulsar.html @@ -0,0 +1,139 @@ + + + + + + + + Analysing Pulsar Data — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Analysing Pulsar Data

+

The subpackage stingray.pulse implements a set of tools for +analysing (X-ray) pulsar data, in particular periodicity searches.

+

Many of these methods are generally applicable for searchsing for +and analysing strictly periodic signals (with a possible frequency +derivative) in the presence of instrumental noise.

+

Below, we show examples of how this functionality can be implemented and +used in practice.

+ +
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 000000000..e698de6e7 --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,153 @@ + + + + + + + Python Module Index — stingray v + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+ + +

Python Module Index

+ +
+ s +
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
 
+ s
+ stingray +
    + stingray.deadtime.fad +
    + stingray.deadtime.model +
    + stingray.gti +
    + stingray.io +
    + stingray.mission_support.missions +
    + stingray.mission_support.rxte +
    + stingray.modeling.scripts +
    + stingray.pulse +
    + stingray.stats +
    + stingray.utils +
+ + +
+
+
+
+
+
+

  + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/search.html b/search.html new file mode 100644 index 000000000..85c004c50 --- /dev/null +++ b/search.html @@ -0,0 +1,110 @@ + + + + + + + Search — stingray v + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+ +

Search

+ + + + +

+ Searching for multiple words only shows matches that contain + all words. +

+ + +
+ + + +
+ + +
+ + +
+
+
+
+
+
+

  + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 000000000..be05f2c4e --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"alltitles": {"### Creating a light curve": [[29, "###-Creating-a-light-curve"]], "(i) Using power-law spectrum": [[40, "(i)-Using-power-law-spectrum"]], "(ii) Using user-defined model": [[40, "(ii)-Using-user-defined-model"]], "(iii) Using pre-defined models": [[40, "(iii)-Using-pre-defined-models"]], "(iv) Using impulse response": [[40, "(iv)-Using-impulse-response"]], "1- Simple IR": [[45, "1--Simple-IR"]], "1. Array of time stamps and counts": [[23, "1.-Array-of-time-stamps-and-counts"], [42, "1.-Array-of-time-stamps-and-counts"]], "1. Create a light curve": [[25, "1.-Create-a-light-curve"], [31, "1.-Create-a-light-curve"]], "1. Create two light curves": [[14, "1.-Create-two-light-curves"], [15, "1.-Create-two-light-curves"], [24, "1.-Create-two-light-curves"]], "1. Data handling and simulation": [[9, "data-handling-and-simulation"]], "1. Fourier methods": [[9, "fourier-methods"]], "1. Frequency-dependent lags": [[15, "1.-Frequency-dependent-lags"]], "2- Relativistic IR": [[45, "2--Relativistic-IR"]], "2. And we can logarithmically/geometrically re-bin a cross spectrum": [[15, "2.-And-we-can-logarithmically/geometrically-re-bin-a-cross-spectrum"]], "2. And we can logarithmically/geometrically re-bin a power spectrum": [[31, "2.-And-we-can-logarithmically/geometrically-re-bin-a-power-spectrum"]], "2. Create a CrossCorrelation Object from two Light curves created above": [[14, "2.-Create-a-CrossCorrelation-Object-from-two-Light-curves-created-above"]], "2. Energy-dependent lags": [[15, "2.-Energy-dependent-lags"]], "2. From an event list": [[42, "2.-From-an-event-list"]], "2. Pass both light curves to the AveragedCrossspectrum class with a specified segment_size.": [[15, "2.-Pass-both-light-curves-to-the-AveragedCrossspectrum-class-with-a-specified-segment_size."]], "2. Pass both of the light curves to the Crossspectrum class to create a Crossspectrum object.": [[15, "2.-Pass-both-of-the-light-curves-to-the-Crossspectrum-class-to-create-a-Crossspectrum-object."]], "2. Pass both of the light curves to the LombScargleCrossspectrum class to create a LombScargleCrossspectrum object.": [[24, "2.-Pass-both-of-the-light-curves-to-the-LombScargleCrossspectrum-class-to-create-a-LombScargleCrossspectrum-object."]], "2. Pass the light curve to the AveragedPowerspectrum class with a specified segment_size.": [[31, "2.-Pass-the-light-curve-to-the-AveragedPowerspectrum-class-with-a-specified-segment_size."]], "2. Pass the light curve to the LombScarglePowerspectrum class to create a LombScarglePowerspectrum object.": [[25, "2.-Pass-the-light-curve-to-the-LombScarglePowerspectrum-class-to-create-a-LombScarglePowerspectrum-object."]], "2. Pass the light curve to the Powerspectrum class to create a Powerspectrum object.": [[31, "2.-Pass-the-light-curve-to-the-Powerspectrum-class-to-create-a-Powerspectrum-object."]], "2. Photon Arrival Times": [[23, "2.-Photon-Arrival-Times"]], "3. Other time series methods": [[9, "other-time-series-methods"]], "3. Plot Cross Correlation for Different lags": [[14, "3.-Plot-Cross-Correlation-for-Different-lags"]], "A Spectral timing exploration": [[9, "a-spectral-timing-exploration"]], "A look at jk_var_deg_freedom": [[29, "A-look-at-jk_var_deg_freedom"]], "A look at the different normalizations": [[29, "A-look-at-the-different-normalizations"]], "A look at the values contained in these attributes.": [[29, "A-look-at-the-values-contained-in-these-attributes."]], "A power spectrum of this lightcurve..": [[19, "A-power-spectrum-of-this-lightcurve.."]], "A quick look at a NuSTAR observation": [[6, "a-quick-look-at-a-nustar-observation"]], "A summary of the jackknife variance estimate": [[29, "A-summary-of-the-jackknife-variance-estimate"]], "Acknowledgements": [[1, null]], "Addition/Subtraction": [[23, "Addition/Subtraction"], [42, "Addition/Subtraction"]], "Additional information": [[9, "additional-information"]], "Advanced": [[9, "advanced"]], "All starts with a lightcurve..": [[20, "All-starts-with-a-lightcurve.."]], "An Example Lag Analysis": [[48, "an-example-lag-analysis"]], "Analysing Pulsar Data": [[47, null]], "Analysis": [[38, "Analysis"]], "Analyzing Light Curve Segments": [[23, "Analyzing-Light-Curve-Segments"]], "Another Example": [[13, "Another-Example"], [14, "Another-Example"], [14, "id1"]], "Another Window demonstrated": [[13, "Another-Window-demonstrated"]], "Artificial Responses": [[45, "Artificial-Responses"]], "As can be seen, there is improvement in both the variance and the bias.": [[29, "As-can-be-seen,-there-is-improvement-in-both-the-variance-and-the-bias."]], "Attributes": [[24, "Attributes"], [25, "Attributes"]], "Attributes of the Multitaper object": [[29, "Attributes-of-the-Multitaper-object"]], "Attribution": [[4, "attribution"]], "AutoCorrelation": [[2, "autocorrelation"], [14, "AutoCorrelation"]], "Auxiliary Classes": [[2, "auxiliary-classes"]], "Available Spectral Models": [[48, "available-spectral-models"]], "AveragedCovariancespectrum": [[2, "averagedcovariancespectrum"]], "AveragedCrossspectrum": [[2, "averagedcrossspectrum"]], "AveragedPowerspectrum": [[2, "averagedpowerspectrum"]], "Base Class": [[2, "base-class"]], "Bayesian Excess Variance": [[5, "bayesian-excess-variance"]], "Bayesian Parameter Estimation": [[28, "Bayesian-Parameter-Estimation"]], "Bayesian-ish QPO Searches": [[28, "Bayesian-ish-QPO-Searches"]], "Baysian Excess Variance (Bexvar)": [[12, null]], "Bexvar: Theoretical background": [[12, "Bexvar:-Theoretical-background"]], "Bispectra": [[5, "bispectra"]], "Bispectrum": [[2, "bispectrum"]], "Bispectrum Tutorial": [[13, null]], "Blackmann\u2019s Window": [[46, "Blackmann's-Window"]], "Breaking Changes": [[8, "breaking-changes"]], "Bug Fixes": [[8, "bug-fixes"], [8, "id2"], [8, "id5"], [8, "id8"]], "Bug fixes": [[8, "id10"], [8, "id12"], [8, "id16"]], "Building the Documentation": [[9, "building-the-documentation"]], "But how does this compare to the classical Lomb-Scargle Periodogram?": [[29, "But-how-does-this-compare-to-the-classical-Lomb-Scargle-Periodogram?"]], "Calculating a baseline": [[23, "Calculating-a-baseline"]], "Calibrating Likelihood Ratio Tests": [[28, "Calibrating-Likelihood-Ratio-Tests"]], "Changelog": [[8, "changelog"]], "Channel Simulation": [[40, "Channel-Simulation"], [48, "channel-simulation"]], "Checking the Light Curve for Irregularities": [[23, "Checking-the-Light-Curve-for-Irregularities"]], "Citing Stingray": [[3, null]], "Coding Guidelines": [[4, "coding-guidelines"]], "Coding Style and Conventions": [[4, "coding-style-and-conventions"]], "Coherence": [[2, "coherence"], [15, "Coherence"]], "Combining StingrayTimeseries objects": [[42, "Combining-StingrayTimeseries-objects"]], "Community Guidelines": [[4, "community-guidelines"]], "Comparing Powerspectrum and Multitaper on poisson-distributed lightcurve": [[29, "Comparing-Powerspectrum-and-Multitaper-on-poisson-distributed-lightcurve"]], "Compatibility and Dependencies": [[4, "compatibility-and-dependencies"]], "Compatibility with Lightkurve": [[23, "Compatibility-with-Lightkurve"]], "Concatenation": [[23, "Concatenation"]], "Contents": [[21, null], [38, null], [39, null], [40, null], [45, null]], "Contributing to Stingray": [[4, "contributing-to-stingray"]], "Contribution Guidelines": [[4, "contribution-guidelines"]], "Contribution Workflow": [[4, "contribution-workflow"]], "Convenience Functions": [[2, "convenience-functions"], [28, "Convenience-Functions"]], "Converting StingrayTimeseries to pandas, xarray and Astropy Table/Timeseries": [[42, "Converting-StingrayTimeseries-to-pandas,-xarray-and-Astropy-Table/Timeseries"]], "Core Stingray Functionality": [[5, null]], "Covariance and RMS spectrum": [[41, "Covariance-and-RMS-spectrum"]], "Covariancespectrum": [[2, "covariancespectrum"]], "Creating EventList from Photon Arrival Times": [[21, "Creating-EventList-from-Photon-Arrival-Times"]], "Creating TransferFunction": [[45, "Creating-TransferFunction"]], "Creating a Multitaper object": [[29, "Creating-a-Multitaper-object"]], "Creating a Simulator Object": [[40, "Creating-a-Simulator-Object"], [48, "creating-a-simulator-object"]], "Creating a light curve": [[23, null]], "Creating a light curve from an EventList object": [[21, "Creating-a-light-curve-from-an-EventList-object"]], "Creating a time series": [[42, "Creating-a-time-series"]], "Credits:": [[27, "Credits:"]], "Cross Spectra": [[5, "cross-spectra"], [15, null]], "Cross- and Autocorrelations": [[5, "cross-and-autocorrelations"]], "CrossCorrelation": [[2, "crosscorrelation"], [14, null]], "CrossCorrelation Example": [[14, "CrossCorrelation-Example"]], "Crossspectrum": [[2, "crossspectrum"]], "Current Capabilities": [[9, "current-capabilities"]], "DOI": [[3, "id1"]], "Data Classes": [[2, "data-classes"]], "Data and Configuration": [[4, "data-and-configuration"]], "Data loading and cleanup.": [[41, "Data-loading-and-cleanup."]], "Data preparation": [[30, null]], "Dead-Time Corrections": [[2, "module-stingray.deadtime.fad"]], "Dealing with dead time": [[7, null]], "Dependencies": [[9, "dependencies"]], "Documentation": [[8, "documentation"]], "Documentation and Testing": [[4, "documentation-and-testing"]], "DynamicPowerspectrum": [[20, "DynamicPowerspectrum"]], "Dynamical Power Spectra": [[5, "dynamical-power-spectra"]], "Dynamical Power Spectra (on fake data)": [[19, null]], "Dynamical Power Spectra (on real data)": [[20, null]], "Dynamical Powerspectrum": [[2, "dynamical-powerspectrum"]], "Energy Dependence": [[37, "Energy-Dependence"]], "Energy Dependent Impulse Responses": [[38, "Energy-Dependent-Impulse-Responses"]], "Enforcement": [[4, "enforcement"]], "Error Distributions in stingray.Lightcurve": [[23, "Error-Distributions-in-stingray.Lightcurve"]], "EventList": [[2, "eventlist"]], "Evidence Comparison": [[27, "Evidence-Comparison"]], "Examples of interactive phaseograms": [[33, "Examples-of-interactive-phaseograms"]], "Exceptions": [[2, "exceptions"]], "ExcessVarianceSpectrum": [[2, "excessvariancespectrum"]], "Features": [[9, "features"]], "First: shift the rows of the phaseogram interactively": [[33, "First:-shift-the-rows-of-the-phaseogram-interactively"]], "Fit peak with Sinc-squared and Gaussian functions": [[33, "Fit-peak-with-Sinc-squared-and-Gaussian-functions"]], "Fitting Lorentzians": [[28, "Fitting-Lorentzians"]], "Fitting a power spectrum with some model": [[28, "Fitting-a-power-spectrum-with-some-model"]], "Flat Top Window": [[46, "Flat-Top-Window"]], "Fourier Amplitude Difference correction in Stingray": [[18, null]], "Fourier Analysis": [[5, "fourier-analysis"]], "Fourier Products": [[2, "fourier-products"]], "Future Plans": [[9, "future-plans"]], "GTI Functionality": [[2, "module-stingray.gti"]], "Gaussian Processes Inferencing in Stingray": [[27, null]], "Gaussian Processes in Astronomy": [[27, "Gaussian-Processes-in-Astronomy"]], "Generalized Lorenzian Function": [[39, "Generalized-Lorenzian-Function"]], "Generate a fake lightcurve": [[19, "Generate-a-fake-lightcurve"]], "Get Help, Report Bugs or Contribute": [[4, null]], "Getting Involved with Development": [[4, "getting-involved-with-development"]], "Getting started": [[48, "getting-started"]], "Good Time Intervals": [[23, "Good-Time-Intervals"], [42, "Good-Time-Intervals"]], "Hamming Window": [[46, "Hamming-Window"]], "Hanning Window": [[46, "Hanning-Window"]], "Hardness-intensity diagram": [[41, "Hardness-intensity-diagram"]], "Higher-Order Fourier and Spectral Timing Products": [[2, "higher-order-fourier-and-spectral-timing-products"]], "History": [[8, null]], "I/O Functionality": [[2, "module-stingray.io"]], "IO": [[45, "IO"]], "Important Concepts": [[48, "important-concepts"]], "Improvements": [[8, "improvements"], [8, "id15"]], "Indexing": [[23, "Indexing"], [42, "Indexing"]], "Indices and tables": [[9, "indices-and-tables"]], "Initializing": [[38, "Initializing"]], "Install Stingray in colab": [[29, null]], "Installation": [[9, "installation"]], "Installation instructions": [[9, "installation-instructions"]], "Installing development environment (for new contributors)": [[9, "installing-development-environment-for-new-contributors"]], "Installing from source (bleeding edge version)": [[9, "installing-from-source-bleeding-edge-version"]], "Installing via conda": [[9, "installing-via-conda"]], "Installing via pip": [[9, "installing-via-pip"]], "Internal Changes": [[8, "internal-changes"], [8, "id3"], [8, "id6"], [8, "id9"]], "Internal Class structure": [[42, "Internal-Class-structure"]], "Introduction": [[41, null], [42, null], [48, "introduction"]], "Inverse Transform Sampling": [[34, null]], "It is actually only one feature drifiting along time": [[19, "It-is-actually-only-one-feature-drifiting-along-time"]], "It looks like we have at least 2 frequencies.": [[19, "It-looks-like-we-have-at-least-2-frequencies."]], "Joining EventLists": [[21, "Joining-EventLists"]], "Lag-frequency Spectrum": [[37, "Lag-frequency-Spectrum"]], "LagEnergySpectrum": [[2, "lagenergyspectrum"]], "Lags and coherence": [[41, "Lags-and-coherence"]], "Let\u2019s be \u201clazy\u201d: lazy loading with FITSTimeseriesReader": [[30, "Let's-be-%22lazy%22:-lazy-loading-with-FITSTimeseriesReader"]], "Let\u2019s have a look at the individual tapers.": [[29, "Let's-have-a-look-at-the-individual-tapers."]], "Let\u2019s look at the Dynamic Powerspectrum..": [[19, "Let's-look-at-the-Dynamic-Powerspectrum.."]], "Let\u2019s trace that drifiting feature.": [[19, "Let's-trace-that-drifiting-feature."]], "Light Curve Simulation": [[39, "Light-Curve-Simulation"], [40, "Light-Curve-Simulation"]], "Lightcurve": [[2, "lightcurve"]], "Likelihood Ratios": [[28, "Likelihood-Ratios"]], "Likelihoods and Posteriors": [[28, "Likelihoods-and-Posteriors"]], "Linearly re-binning a power spectrum in frequency": [[29, "Linearly-re-binning-a-power-spectrum-in-frequency"]], "Loading an EventList from an X-ray observation in HEASoft-compatible format": [[21, "Loading-an-EventList-from-an-X-ray-observation-in-HEASoft-compatible-format"]], "Loading and writing EventList objects": [[21, "Loading-and-writing-EventList-objects"]], "Log-Likelihood Classes": [[2, "log-likelihood-classes"]], "Lomb Scargle Cross Spectra": [[24, null]], "Lomb Scargle Crossspectrum": [[5, "lomb-scargle-crossspectrum"]], "Lomb Scargle Power Spectra": [[25, null]], "Lomb Scargle Powerspectrum": [[5, "lomb-scargle-powerspectrum"]], "MJDREF and Shifting Times": [[23, "MJDREF-and-Shifting-Times"], [42, "MJDREF-and-Shifting-Times"]], "Maximum Likelihood Fitting": [[28, "Maximum-Likelihood-Fitting"]], "Methods": [[23, "Methods"]], "Mission-specific I/O": [[2, "module-stingray.mission_support.missions"]], "Model 1": [[27, "Model-1"]], "Model 2": [[27, "Model-2"]], "Modeling": [[2, "modeling"]], "Modes of Correlation": [[14, "Modes-of-Correlation"]], "More Data Exploration": [[6, null]], "More realistic impulse response": [[37, "More-realistic-impulse-response"]], "Multi-taper Periodogram": [[5, "multi-taper-periodogram"]], "Multitaper Spectral Estimator Example": [[29, "Multitaper-Spectral-Estimator-Example"]], "Naive procedure: create light curve, then calculate PDS": [[30, "Naive-procedure:-create-light-curve,-then-calculate-PDS"]], "Negation": [[23, "Negation"], [42, "Negation"]], "New": [[8, "new"], [8, "id14"]], "New Features": [[8, "new-features"], [8, "id1"], [8, "id4"], [8, "id7"]], "New dead time model function": [[17, "New-dead-time-model-function"]], "Non-paralyzable dead time": [[17, "Non-paralyzable-dead-time"]], "Normalizating the cross spectrum": [[15, "Normalizating-the-cross-spectrum"]], "Normalizating the power spectrum": [[31, "Normalizating-the-power-spectrum"]], "Now let\u2019s see their frequency domain representations (here PSD)": [[29, "Now-let's-see-their-frequency-domain-representations-(here-PSD)"]], "Observations with frequent data gaps": [[26, null]], "Obtaining Energy-Resolved Response": [[45, "Obtaining-Energy-Resolved-Response"]], "Obtaining Time-Resolved Response": [[45, "Obtaining-Time-Resolved-Response"]], "Operations": [[23, "Operations"], [42, "Operations"]], "Other Parameters": [[24, "Other-Parameters"], [25, "Other-Parameters"]], "Other Useful References": [[3, "other-useful-references"]], "Other Utility Functions": [[2, "module-stingray.utils"]], "Other attributes with the S(f) estimates": [[29, "Other-attributes-with-the-S(f)-estimates"]], "Other useful Methods": [[42, "Other-useful-Methods"]], "Our Pledge": [[4, "our-pledge"]], "Our Responsibilities": [[4, "our-responsibilities"]], "Our Standards": [[4, "our-standards"]], "Outline": [[37, null]], "Overlaying this traced function with the Dynamical Powerspectrum": [[19, "Overlaying-this-traced-function-with-the-Dynamical-Powerspectrum"]], "Papers": [[3, "papers"]], "Paralyzable dead time": [[17, "Paralyzable-dead-time"]], "Parameter Estimation Classes": [[2, "parameter-estimation-classes"]], "Parameter Posterior Analysis": [[27, "Parameter-Posterior-Analysis"]], "Parameters": [[24, "Parameters"], [25, "Parameters"]], "Parzen Window": [[46, "Parzen-Window"]], "Periodogram - non-paralyzable": [[17, "Periodogram---non-paralyzable"]], "Periodogram and cross spectrum": [[41, "Periodogram-and-cross-spectrum"]], "Periodogram modeling": [[41, "Periodogram-modeling"]], "Phase Dispersion Minimization in Stingray": [[32, null]], "Phaseogram": [[33, "Phaseogram"]], "Platform-specific issues": [[9, "platform-specific-issues"]], "Plot Window": [[13, "Plot-Window"]], "Plots": [[13, "Plots"]], "Plotting": [[23, "Plotting"], [42, "Plotting"]], "Plotting Responses": [[45, "Plotting-Responses"]], "Plotting the Sample Lightcurve": [[27, "Plotting-the-Sample-Lightcurve"]], "Plotting the first 3000 data points of the kepler lightcurve": [[29, "Plotting-the-first-3000-data-points-of-the-kepler-lightcurve"]], "Poisson distributed lightcurve": [[29, "Poisson-distributed-lightcurve"]], "Polarimetric light curves": [[43, "Polarimetric-light-curves"]], "Posterior Classes": [[2, "posterior-classes"]], "Power Spectral Models": [[39, "Power-Spectral-Models"]], "Power colors": [[41, "Power-colors"]], "Power spectra of normal-distributed light curves": [[31, "Power-spectra-of-normal-distributed-light-curves"]], "Power spectrum example": [[31, null]], "Powerspectra": [[5, "powerspectra"]], "Powerspectrum": [[2, "powerspectrum"]], "Presentations": [[8, "presentations"]], "Previous projects merged to Stingray": [[8, "previous-projects-merged-to-stingray"]], "Prior and log likelihood": [[27, "Prior-and-log-likelihood"]], "Properties": [[15, "Properties"], [15, "id1"], [23, "Properties"], [24, "Properties"], [31, "Properties"]], "Pulsar": [[2, "pulsar"]], "Pulsation search with Phase Dispersion Minimization": [[32, "Pulsation-search-with-Phase-Dispersion-Minimization"]], "Pulsation search with epoch folding.": [[33, "Pulsation-search-with-epoch-folding."]], "Quicklook NuSTAR data with Stingray": [[16, null]], "R.m.s. - intensity diagram": [[22, null], [22, "id1"]], "Re-binning": [[23, "Re-binning"], [42, "Re-binning"]], "Re-binning a cross spectrum in frequency": [[15, "Re-binning-a-cross-spectrum-in-frequency"]], "Re-binning a power spectrum in frequency": [[31, "Re-binning-a-power-spectrum-in-frequency"]], "Reading/Writing": [[40, "Reading/Writing"]], "Reading/Writing Lightcurves to/from files": [[23, "Reading/Writing-Lightcurves-to/from-files"]], "Reading/Writing Stingray Timeseries to/from files": [[42, "Reading/Writing-Stingray-Timeseries-to/from-files"]], "Rebin time": [[19, "Rebin-time"], [20, "Rebin-time"]], "References": [[29, "References"]], "Reporting Bugs and Issues, Getting Help, Providing Feedback": [[4, "reporting-bugs-and-issues-getting-help-providing-feedback"]], "Reproduce Zhang+95 power spectrum? (extra check)": [[17, "Reproduce-Zhang+95-power-spectrum?-(extra-check)"]], "RmsEnergySpectrum": [[2, "rmsenergyspectrum"]], "Roundtrip to Astropy-compatible formats": [[21, "Roundtrip-to-Astropy-compatible-formats"], [21, "id1"]], "Roundtrip to pickle objects": [[21, "Roundtrip-to-pickle-objects"]], "Sample Data": [[23, "Sample-Data"]], "Sample Lightcurve": [[27, "Sample-Lightcurve"]], "Sampling Model 1": [[27, "Sampling-Model-1"]], "Sampling Model 2": [[27, "Sampling-Model-2"]], "Scope": [[4, "scope"]], "Second: overplot a line with a pulse frequency solution, then update the full phaseogram": [[33, "Second:-overplot-a-line-with-a-pulse-frequency-solution,-then-update-the-full-phaseogram"]], "Setting Up Data": [[44, null]], "Setup": [[21, "Setup"], [38, "Setup"], [39, "Setup"], [40, "Setup"], [45, "Setup"]], "Setup: simulate a light curve with a variable rms and rate": [[22, "Setup:-simulate-a-light-curve-with-a-variable-rms-and-rate"]], "Shifting-and-adding": [[19, "Shifting-and-adding"], [20, "Shifting-and-adding"]], "Simple Delta Impulse Response": [[37, "Simple-Delta-Impulse-Response"]], "Simulate Method": [[48, "simulate-method"]], "Simulate a dataset": [[32, "Simulate-a-dataset"], [33, null]], "Simulating Energies": [[21, "Simulating-Energies"]], "Simulating EventList from Lightcurve": [[21, "Simulating-EventList-from-Lightcurve"]], "Simulating Light Curves from Power Law Power Spectra": [[35, null]], "Simulating event times with the inverse CDF method": [[36, null]], "Simulator": [[2, "simulator"]], "Slightly better: PDS from events": [[30, "Slightly-better:-PDS-from-events"]], "Smooth Broken Power Law Model": [[39, "Smooth-Broken-Power-Law-Model"]], "Some background": [[28, "Some-background"]], "Sorting": [[23, "Sorting"], [42, "Sorting"]], "Spectral timing": [[41, "Spectral-timing"]], "Splitting by GTI": [[42, "Splitting-by-GTI"]], "Standard output, warnings, and errors": [[4, "standard-output-warnings-and-errors"]], "Statistical Functions": [[2, "module-stingray.stats"]], "Stingray API": [[2, null]], "Stingray Simulator (stingray.simulator)": [[48, null]], "Stingray fundamentals": [[9, "stingray-fundamentals"]], "Stingray: Next-Generation Spectral Timing": [[9, null]], "StingrayObject": [[2, "stingrayobject"]], "StingrayTimeseries": [[2, "stingraytimeseries"]], "Stingray\u2019s dead time models": [[17, null]], "Studying very slow variability with the Lomb-Scargle periodogram": [[6, "studying-very-slow-variability-with-the-lomb-scargle-periodogram"]], "Summary of Multitaper Spectral Estimation": [[29, "Summary-of-Multitaper-Spectral-Estimation"]], "Test Suite": [[9, "test-suite"]], "Testing Guidelines": [[4, "testing-guidelines"]], "Testing the Multitaper Lomb-Scargle on a Kepler dataset (used in A. Springford et al. (2020) )": [[29, "Testing-the-Multitaper-Lomb-Scargle-on-a-Kepler-dataset-(used-in-A.-Springford-et-al.-(2020)-)"]], "The Cross spectrum": [[26, "The-Cross-spectrum"]], "The Lomb-Scargle periodogram": [[26, "The-Lomb-Scargle-periodogram"]], "The Multitaper Periodogram": [[29, "The-Multitaper-Periodogram"]], "The Simulator Object": [[48, "the-simulator-object"]], "The Stingray Modeling API Explained": [[28, null]], "The Stingray Modelling Interface": [[11, null]], "The results": [[29, "The-results"]], "Thresholding": [[33, "Thresholding"]], "Time lags / phase lags": [[15, "Time-lags-/-phase-lags"]], "Time series with uneven temporal sampling: Multitaper Lomb-Scargle": [[29, "Time-series-with-uneven-temporal-sampling:-Multitaper-Lomb-Scargle"]], "Timing analysis using StingrayTimeseries": [[43, "Timing-analysis-using-StingrayTimeseries"]], "Trace maximun": [[20, "Trace-maximun"]], "Traingular Window": [[46, "Traingular-Window"]], "Transfer Functions": [[48, "transfer-functions"]], "Transforming a Lightcurve into an EventList.": [[21, "Transforming-a-Lightcurve-into-an-EventList."]], "Truncation": [[23, "Truncation"], [42, "Truncation"]], "Tutorials": [[48, "tutorials"]], "Uniform Window": [[46, "Uniform-Window"]], "Updating and Maintaining the Changelog": [[4, "updating-and-maintaining-the-changelog"]], "Using Impulse Response": [[48, "using-impulse-response"]], "Using Power-Law Spectrum": [[48, "using-power-law-spectrum"]], "Using Pre-defined Models": [[48, "using-pre-defined-models"]], "Using Stingray": [[9, "using-stingray"]], "Using User-defined Model": [[48, "using-user-defined-model"]], "Utilities": [[2, "utilities"]], "VarEnergySpectrum": [[2, "varenergyspectrum"]], "Visualizing the lightcurve": [[19, "Visualizing-the-lightcurve"]], "Welch Window": [[46, "Welch-Window"]], "While it seems decent, lets compare with Powerspectrum": [[29, "While-it-seems-decent,-lets-compare-with-Powerspectrum"]], "Why using weights?": [[43, null]], "Window Functions": [[48, "window-functions"]], "Window Functions for Bispectrum": [[13, "Window-Functions-for-Bispectrum"]], "Window functions": [[46, null]], "With same intensity and varying position": [[37, "With-same-intensity-and-varying-position"]], "With same position and varying intensity": [[37, "With-same-position-and-varying-intensity"]], "Working with Event Data": [[5, "working-with-event-data"]], "Working with GTIs and Splitting Light Curves": [[23, "Working-with-GTIs-and-Splitting-Light-Curves"]], "Working with Lightcurves": [[5, "working-with-lightcurves"]], "Working with large data sets": [[10, null]], "Working with more generic time series": [[49, null]], "Yet another Example with longer Lightcurve": [[14, "Yet-another-Example-with-longer-Lightcurve"]], "Z-squared search": [[33, "Z-squared-search"]], "Zomming in..": [[19, "Zomming-in.."]], "Zooming in": [[29, "Zooming-in"]], "v0.1 (2019-05-29)": [[8, "v0-1-2019-05-29"]], "v0.1.1": [[8, "v0-1-1"]], "v0.1.2": [[8, "v0-1-2"]], "v0.1.3 (2019-06-11)": [[8, "v0-1-3-2019-06-11"]], "v0.2 (2020-06-17)": [[8, "v0-2-2020-06-17"]], "v0.3 (2021-05-31)": [[8, "v0-3-2021-05-31"]], "v1.0 (2022-03-29)": [[8, "v1-0-2022-03-29"]], "v1.1 (2022-10-02)": [[8, "v1-1-2022-10-02"]], "v1.1.1 (2022-10-10)": [[8, "v1-1-1-2022-10-10"]], "v1.1.2 (2023-05-25)": [[8, "v1-1-2-2023-05-25"]], "v2.0 (2024-03-13)": [[8, "v2-0-2024-03-13"]], "v2.1 (2024-05-29)": [[8, "v2-1-2024-05-29"]], "v2.2 (2024-10-22)": [[8, "v2-2-2024-10-22"]]}, "docnames": ["_zenodo", "acknowledgements", "api", "citing", "contributing", "core", "dataexplo", "deadtime", "history", "index", "largedata", "modeling", "notebooks/Bexvar/Bexvar tutorial", "notebooks/Bispectrum/bispectrum_tutorial", "notebooks/CrossCorrelation/cross_correlation_notebook", "notebooks/Crossspectrum/Crossspectrum_tutorial", "notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray", "notebooks/Deadtime/Dead time model in Stingray", "notebooks/Deadtime/FAD correction in Stingray", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data]", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data]", "notebooks/EventList/EventList Tutorial", "notebooks/Lightcurve/Analyze light curves chunk by chunk - an example", "notebooks/Lightcurve/Lightcurve tutorial", "notebooks/LombScargle/LombScargleCrossspectrum_tutorial", "notebooks/LombScargle/LombScarglePowerspectrum_tutorial", "notebooks/LombScargle/Very slow variability with Lomb-Scargle methods", "notebooks/Modeling/GP_Modeling/GP_modeling_tutorial", "notebooks/Modeling/ModelingExamples", "notebooks/Multitaper/multitaper_example", "notebooks/Performance/Dealing with large data files", "notebooks/Powerspectrum/Powerspectrum_tutorial", "notebooks/Pulsar/Phase Dispersion Minimization", "notebooks/Pulsar/Pulsar search with epoch folding and Z squared", "notebooks/Simulator/Concepts/Inverse Transform Sampling", "notebooks/Simulator/Concepts/PowerLaw Spectrum", "notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF", "notebooks/Simulator/Concepts/Simulator", "notebooks/Simulator/Lag Analysis", "notebooks/Simulator/Power Spectral Models", "notebooks/Simulator/Simulator Tutorial", "notebooks/Spectral Timing/Spectral Timing Exploration", "notebooks/StingrayTimeseries/StingrayTimeseries Tutorial", "notebooks/StingrayTimeseries/Working with weights and polarization", "notebooks/Transfer Functions/Data Preparation", "notebooks/Transfer Functions/TransferFunction Tutorial", "notebooks/Window Functions/window_functions", "pulsar", "simulator", "timeseries"], "envversion": {"nbsphinx": 4, "sphinx": 64, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["_zenodo.rst", "acknowledgements.rst", "api.rst", "citing.rst", "contributing.rst", "core.rst", "dataexplo.rst", "deadtime.rst", "history.rst", "index.rst", "largedata.rst", "modeling.rst", "notebooks/Bexvar/Bexvar tutorial.ipynb", "notebooks/Bispectrum/bispectrum_tutorial.ipynb", "notebooks/CrossCorrelation/cross_correlation_notebook.ipynb", "notebooks/Crossspectrum/Crossspectrum_tutorial.ipynb", "notebooks/DataQuickLook/Quicklook NuSTAR data with Stingray.ipynb", "notebooks/Deadtime/Dead time model in Stingray.ipynb", "notebooks/Deadtime/FAD correction in Stingray.ipynb", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[fake_data].ipynb", "notebooks/DynamicalPowerspectrum/DynamicalPowerspectrum_tutorial_[real_data].ipynb", "notebooks/EventList/EventList Tutorial.ipynb", "notebooks/Lightcurve/Analyze light curves chunk by chunk - an example.ipynb", "notebooks/Lightcurve/Lightcurve tutorial.ipynb", "notebooks/LombScargle/LombScargleCrossspectrum_tutorial.ipynb", "notebooks/LombScargle/LombScarglePowerspectrum_tutorial.ipynb", "notebooks/LombScargle/Very slow variability with Lomb-Scargle methods.ipynb", "notebooks/Modeling/GP_Modeling/GP_modeling_tutorial.ipynb", "notebooks/Modeling/ModelingExamples.ipynb", "notebooks/Multitaper/multitaper_example.ipynb", "notebooks/Performance/Dealing with large data files.ipynb", "notebooks/Powerspectrum/Powerspectrum_tutorial.ipynb", "notebooks/Pulsar/Phase Dispersion Minimization.ipynb", "notebooks/Pulsar/Pulsar search with epoch folding and Z squared.ipynb", "notebooks/Simulator/Concepts/Inverse Transform Sampling.ipynb", "notebooks/Simulator/Concepts/PowerLaw Spectrum.ipynb", "notebooks/Simulator/Concepts/Simulate Event Lists With Inverse CDF.ipynb", "notebooks/Simulator/Concepts/Simulator.ipynb", "notebooks/Simulator/Lag Analysis.ipynb", "notebooks/Simulator/Power Spectral Models.ipynb", "notebooks/Simulator/Simulator Tutorial.ipynb", "notebooks/Spectral Timing/Spectral Timing Exploration.ipynb", "notebooks/StingrayTimeseries/StingrayTimeseries Tutorial.ipynb", "notebooks/StingrayTimeseries/Working with weights and polarization.ipynb", "notebooks/Transfer Functions/Data Preparation.ipynb", "notebooks/Transfer Functions/TransferFunction Tutorial.ipynb", "notebooks/Window Functions/window_functions.ipynb", "pulsar.rst", "simulator.rst", "timeseries.rst"], "indexentries": {"_check_convergence() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults._check_convergence", false]], "_compute_covariance() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_covariance", false]], "_compute_criteria() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_criteria", false]], "_compute_model() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_model", false]], "_compute_rhat() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults._compute_rhat", false]], "_compute_statistics() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults._compute_statistics", false]], "_infer() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults._infer", false]], "_initialize_empty() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._initialize_empty", false]], "_initialize_from_any_input() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._initialize_from_any_input", false]], "_normalize_crossspectrum() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._normalize_crossspectrum", false]], "_operation_with_other_obj() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._operation_with_other_obj", false]], "_rms_error() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum._rms_error", false]], "a_from_pf() (in module stingray.stats)": [[2, "stingray.stats.a_from_pf", false]], "a_from_ssig() (in module stingray.stats)": [[2, "stingray.stats.a_from_ssig", false]], "add() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.add", false]], "add() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.add", false]], "add() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.add", false]], "add() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.add", false]], "add() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.add", false]], "add() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.add", false]], "amplitude_upper_limit() (in module stingray.stats)": [[2, "stingray.stats.amplitude_upper_limit", false]], "analyze_by_gti() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.analyze_by_gti", false]], "analyze_lc_chunks() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.analyze_lc_chunks", false]], "analyze_segments() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.analyze_segments", false]], "append_gtis() (in module stingray.gti)": [[2, "stingray.gti.append_gtis", false]], "apply_deadtime() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.apply_deadtime", false]], "apply_gtis() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.apply_gtis", false]], "apply_gtis() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.apply_gtis", false]], "apply_mask() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.apply_mask", false]], "apply_mask() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.apply_mask", false]], "apply_mask() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.apply_mask", false]], "apply_mask() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.apply_mask", false]], "apply_mask() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.apply_mask", false]], "apply_mask() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.apply_mask", false]], "array_attrs() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.array_attrs", false]], "array_attrs() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.array_attrs", false]], "array_attrs() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.array_attrs", false]], "array_attrs() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.array_attrs", false]], "array_attrs() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.array_attrs", false]], "array_attrs() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.array_attrs", false]], "autocorrelation (class in stingray)": [[2, "stingray.AutoCorrelation", false]], "averagedcovariancespectrum (class in stingray)": [[2, "stingray.AveragedCovariancespectrum", false]], "averagedcrossspectrum (class in stingray)": [[2, "stingray.AveragedCrossspectrum", false]], "averagedpowerspectrum (class in stingray)": [[2, "stingray.AveragedPowerspectrum", false]], "baseline() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.baseline", false]], "baseline_als() (in module stingray.utils)": [[2, "stingray.utils.baseline_als", false]], "bexvar() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.bexvar", false]], "bin_intervals_from_gtis() (in module stingray.gti)": [[2, "stingray.gti.bin_intervals_from_gtis", false]], "bispectrum (class in stingray.bispectrum)": [[2, "stingray.bispectrum.Bispectrum", false]], "cal_timeshift() (stingray.autocorrelation method)": [[2, "stingray.AutoCorrelation.cal_timeshift", false]], "cal_timeshift() (stingray.crosscorrelation method)": [[2, "stingray.CrossCorrelation.cal_timeshift", false]], "calculate_fad_correction() (in module stingray.deadtime.fad)": [[2, "stingray.deadtime.fad.calculate_FAD_correction", false]], "calibrate_highest_outlier() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.calibrate_highest_outlier", false]], "calibrate_lrt() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.calibrate_lrt", false]], "calibrate_lrt() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.calibrate_lrt", false]], "change_mjdref() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.change_mjdref", false]], "check_a() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.check_A", false]], "check_b() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.check_B", false]], "check_gtis() (in module stingray.gti)": [[2, "stingray.gti.check_gtis", false]], "check_isallfinite() (in module stingray.utils)": [[2, "stingray.utils.check_isallfinite", false]], "check_lightcurve() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.check_lightcurve", false]], "check_separate() (in module stingray.gti)": [[2, "stingray.gti.check_separate", false]], "classical_pvalue() (in module stingray.stats)": [[2, "stingray.stats.classical_pvalue", false]], "classical_significances() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.classical_significances", false]], "classical_significances() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.classical_significances", false]], "classical_significances() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.classical_significances", false]], "classical_significances() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.classical_significances", false]], "classical_significances() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.classical_significances", false]], "coherence() (in module stingray)": [[2, "stingray.coherence", false]], "coherence() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.coherence", false]], "coherence() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.coherence", false]], "coherence() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.coherence", false]], "coherence() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.coherence", false]], "coherence() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.coherence", false]], "common_name() (in module stingray.io)": [[2, "stingray.io.common_name", false]], "compute_lrt() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.compute_lrt", false]], "compute_lrt() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.compute_lrt", false]], "compute_rms() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.compute_rms", false]], "compute_rms() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.compute_rms", false]], "compute_rms() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.compute_rms", false]], "concatenate() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.concatenate", false]], "contiguous_regions() (in module stingray.utils)": [[2, "stingray.utils.contiguous_regions", false]], "convert_pi_to_energy() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.convert_pi_to_energy", false]], "count_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.count_channels", false]], "covariancespectrum (class in stingray)": [[2, "stingray.Covariancespectrum", false]], "create_gti_from_condition() (in module stingray.gti)": [[2, "stingray.gti.create_gti_from_condition", false]], "create_gti_mask() (in module stingray.gti)": [[2, "stingray.gti.create_gti_mask", false]], "create_gti_mask_complete() (in module stingray.gti)": [[2, "stingray.gti.create_gti_mask_complete", false]], "create_gti_mask_jit() (in module stingray.gti)": [[2, "stingray.gti.create_gti_mask_jit", false]], "create_window() (in module stingray.utils)": [[2, "stingray.utils.create_window", false]], "cross_gtis() (in module stingray.gti)": [[2, "stingray.gti.cross_gtis", false]], "cross_two_gtis() (in module stingray.gti)": [[2, "stingray.gti.cross_two_gtis", false]], "crosscorrelation (class in stingray)": [[2, "stingray.CrossCorrelation", false]], "crossspectrum (class in stingray)": [[2, "stingray.Crossspectrum", false]], "data_attributes() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.data_attributes", false]], "data_attributes() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.data_attributes", false]], "data_attributes() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.data_attributes", false]], "data_attributes() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.data_attributes", false]], "data_attributes() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.data_attributes", false]], "data_attributes() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.data_attributes", false]], "deadtime_correct() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.deadtime_correct", false]], "deadtime_correct() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.deadtime_correct", false]], "deadtime_correct() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.deadtime_correct", false]], "deadtime_correct() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.deadtime_correct", false]], "deadtime_correct() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.deadtime_correct", false]], "delete_channel() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.delete_channel", false]], "delete_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.delete_channels", false]], "dict() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.dict", false]], "dict() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.dict", false]], "dict() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.dict", false]], "dict() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.dict", false]], "dict() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.dict", false]], "dict() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.dict", false]], "dynamicalpowerspectrum (class in stingray)": [[2, "stingray.DynamicalPowerspectrum", false]], "ef_profile_stat() (in module stingray.pulse)": [[2, "stingray.pulse.ef_profile_stat", false]], "energy (stingray.varenergyspectrum.excessvariancespectrum property)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.energy", false]], "energy (stingray.varenergyspectrum.varenergyspectrum property)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.energy", false]], "epoch_folding_search() (in module stingray.pulse)": [[2, "stingray.pulse.epoch_folding_search", false]], "equivalent_gaussian_nsigma() (in module stingray.stats)": [[2, "stingray.stats.equivalent_gaussian_Nsigma", false]], "estimate_chunk_length() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.estimate_chunk_length", false]], "estimate_segment_size() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.estimate_segment_size", false]], "estimate_segment_size() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.estimate_segment_size", false]], "evaluate() (stingray.modeling.gaussianloglikelihood method)": [[2, "stingray.modeling.GaussianLogLikelihood.evaluate", false]], "evaluate() (stingray.modeling.laplaceloglikelihood method)": [[2, "stingray.modeling.LaplaceLogLikelihood.evaluate", false]], "evaluate() (stingray.modeling.loglikelihood method)": [[2, "stingray.modeling.LogLikelihood.evaluate", false]], "evaluate() (stingray.modeling.poissonloglikelihood method)": [[2, "stingray.modeling.PoissonLogLikelihood.evaluate", false]], "evaluate() (stingray.modeling.psdloglikelihood method)": [[2, "stingray.modeling.PSDLogLikelihood.evaluate", false]], "eventlist (class in stingray.events)": [[2, "stingray.events.EventList", false]], "excess_variance() (in module stingray.utils)": [[2, "stingray.utils.excess_variance", false]], "excessvariancespectrum (class in stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum", false]], "exposure (stingray.stingraytimeseries property)": [[2, "stingray.StingrayTimeseries.exposure", false]], "fad() (in module stingray.deadtime.fad)": [[2, "stingray.deadtime.fad.FAD", false]], "fftfit() (in module stingray.pulse)": [[2, "stingray.pulse.fftfit", false]], "fill_bad_time_intervals() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.fill_bad_time_intervals", false]], "filter_energy_range() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.filter_energy_range", false]], "find_large_bad_time_intervals() (in module stingray.gti)": [[2, "stingray.gti.find_large_bad_time_intervals", false]], "find_nearest() (in module stingray.utils)": [[2, "stingray.utils.find_nearest", false]], "fit() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.fit", false]], "fit() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.fit", false]], "fit_crossspectrum() (in module stingray.modeling.scripts)": [[2, "stingray.modeling.scripts.fit_crossspectrum", false]], "fit_gaussian() (in module stingray.pulse)": [[2, "stingray.pulse.fit_gaussian", false]], "fit_lorentzians() (in module stingray.modeling.scripts)": [[2, "stingray.modeling.scripts.fit_lorentzians", false]], "fit_powerspectrum() (in module stingray.modeling.scripts)": [[2, "stingray.modeling.scripts.fit_powerspectrum", false]], "fit_sinc() (in module stingray.pulse)": [[2, "stingray.pulse.fit_sinc", false]], "fold_detection_level() (in module stingray.stats)": [[2, "stingray.stats.fold_detection_level", false]], "fold_events() (in module stingray.pulse)": [[2, "stingray.pulse.fold_events", false]], "fold_profile_logprobability() (in module stingray.stats)": [[2, "stingray.stats.fold_profile_logprobability", false]], "fold_profile_probability() (in module stingray.stats)": [[2, "stingray.stats.fold_profile_probability", false]], "from_astropy_table() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.from_astropy_table", false]], "from_astropy_table() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.from_astropy_table", false]], "from_astropy_table() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.from_astropy_table", false]], "from_astropy_table() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.from_astropy_table", false]], "from_astropy_table() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.from_astropy_table", false]], "from_astropy_table() (stingray.stingrayobject class method)": [[2, "stingray.StingrayObject.from_astropy_table", false]], "from_astropy_table() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.from_astropy_table", false]], "from_astropy_table() (stingray.varenergyspectrum.varenergyspectrum method)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.from_astropy_table", false]], "from_astropy_timeseries() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.from_astropy_timeseries", false]], "from_astropy_timeseries() (stingray.stingraytimeseries class method)": [[2, "stingray.StingrayTimeseries.from_astropy_timeseries", false]], "from_events() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_events", false]], "from_events() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_events", false]], "from_events() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_events", false]], "from_events() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_events", false]], "from_events() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_events", false]], "from_lc() (stingray.events.eventlist static method)": [[2, "stingray.events.EventList.from_lc", false]], "from_lc_iterable() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_lc_iterable", false]], "from_lc_iterable() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_lc_iterable", false]], "from_lc_iterable() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_lc_iterable", false]], "from_lc_iterable() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_lc_iterable", false]], "from_lc_iterable() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_lc_iterable", false]], "from_lightcurve() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_lightcurve", false]], "from_lightcurve() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_lightcurve", false]], "from_lightcurve() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_lightcurve", false]], "from_lightcurve() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_lightcurve", false]], "from_lightcurve() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_lightcurve", false]], "from_lightkurve() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.from_lightkurve", false]], "from_pandas() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.from_pandas", false]], "from_pandas() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.from_pandas", false]], "from_pandas() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.from_pandas", false]], "from_pandas() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.from_pandas", false]], "from_pandas() (stingray.stingrayobject class method)": [[2, "stingray.StingrayObject.from_pandas", false]], "from_pandas() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.from_pandas", false]], "from_pandas() (stingray.varenergyspectrum.varenergyspectrum method)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.from_pandas", false]], "from_stingray_timeseries() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_stingray_timeseries", false]], "from_stingray_timeseries() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_stingray_timeseries", false]], "from_stingray_timeseries() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_stingray_timeseries", false]], "from_stingray_timeseries() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_stingray_timeseries", false]], "from_stingray_timeseries() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_stingray_timeseries", false]], "from_time_array() (stingray.averagedcrossspectrum static method)": [[2, "stingray.AveragedCrossspectrum.from_time_array", false]], "from_time_array() (stingray.averagedpowerspectrum static method)": [[2, "stingray.AveragedPowerspectrum.from_time_array", false]], "from_time_array() (stingray.crossspectrum static method)": [[2, "stingray.Crossspectrum.from_time_array", false]], "from_time_array() (stingray.dynamicalpowerspectrum static method)": [[2, "stingray.DynamicalPowerspectrum.from_time_array", false]], "from_time_array() (stingray.powerspectrum static method)": [[2, "stingray.Powerspectrum.from_time_array", false]], "from_xarray() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.from_xarray", false]], "from_xarray() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.from_xarray", false]], "from_xarray() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.from_xarray", false]], "from_xarray() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.from_xarray", false]], "from_xarray() (stingray.stingrayobject class method)": [[2, "stingray.StingrayObject.from_xarray", false]], "from_xarray() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.from_xarray", false]], "from_xarray() (stingray.varenergyspectrum.varenergyspectrum method)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.from_xarray", false]], "gaussianloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.GaussianLogLikelihood", false]], "gaussianposterior (class in stingray.modeling)": [[2, "stingray.modeling.GaussianPosterior", false]], "generate_indices_of_gti_boundaries() (in module stingray.gti)": [[2, "stingray.gti.generate_indices_of_gti_boundaries", false]], "generate_indices_of_segment_boundaries_binned() (in module stingray.gti)": [[2, "stingray.gti.generate_indices_of_segment_boundaries_binned", false]], "generate_indices_of_segment_boundaries_unbinned() (in module stingray.gti)": [[2, "stingray.gti.generate_indices_of_segment_boundaries_unbinned", false]], "get_all_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.get_all_channels", false]], "get_btis() (in module stingray.gti)": [[2, "stingray.gti.get_btis", false]], "get_channel() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.get_channel", false]], "get_channels() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.get_channels", false]], "get_color_evolution() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.get_color_evolution", false]], "get_energy_mask() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.get_energy_mask", false]], "get_file_extension() (in module stingray.io)": [[2, "stingray.io.get_file_extension", false]], "get_gti_extensions_from_pattern() (in module stingray.gti)": [[2, "stingray.gti.get_gti_extensions_from_pattern", false]], "get_gti_from_all_extensions() (in module stingray.gti)": [[2, "stingray.gti.get_gti_from_all_extensions", false]], "get_gti_from_hdu() (in module stingray.gti)": [[2, "stingray.gti.get_gti_from_hdu", false]], "get_gti_lengths() (in module stingray.gti)": [[2, "stingray.gti.get_gti_lengths", false]], "get_intensity_evolution() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.get_intensity_evolution", false]], "get_key_from_mission_info() (in module stingray.io)": [[2, "stingray.io.get_key_from_mission_info", false]], "get_meta_dict() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.get_meta_dict", false]], "get_meta_dict() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.get_meta_dict", false]], "get_meta_dict() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.get_meta_dict", false]], "get_meta_dict() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.get_meta_dict", false]], "get_meta_dict() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.get_meta_dict", false]], "get_meta_dict() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.get_meta_dict", false]], "get_orbital_correction_from_ephemeris_file() (in module stingray.pulse)": [[2, "stingray.pulse.get_orbital_correction_from_ephemeris_file", false]], "get_periodograms_from_fad_results() (in module stingray.deadtime.fad)": [[2, "stingray.deadtime.fad.get_periodograms_from_FAD_results", false]], "get_random_state() (in module stingray.utils)": [[2, "stingray.utils.get_random_state", false]], "get_rough_conversion_function() (in module stingray.mission_support.missions)": [[2, "stingray.mission_support.missions.get_rough_conversion_function", false]], "get_toa() (in module stingray.pulse)": [[2, "stingray.pulse.get_TOA", false]], "get_total_gti_length() (in module stingray.gti)": [[2, "stingray.gti.get_total_gti_length", false]], "gti_border_bins() (in module stingray.gti)": [[2, "stingray.gti.gti_border_bins", false]], "heaviside() (in module stingray.utils)": [[2, "stingray.utils.heaviside", false]], "high_precision_keyword_read() (in module stingray.io)": [[2, "stingray.io.high_precision_keyword_read", false]], "htest() (in module stingray.pulse)": [[2, "stingray.pulse.htest", false]], "initial_checks() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.initial_checks", false]], "initial_checks() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.initial_checks", false]], "initial_checks() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.initial_checks", false]], "initial_checks() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.initial_checks", false]], "initial_checks() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.initial_checks", false]], "internal_array_attrs() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.internal_array_attrs", false]], "internal_array_attrs() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.internal_array_attrs", false]], "internal_array_attrs() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.internal_array_attrs", false]], "internal_array_attrs() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.internal_array_attrs", false]], "internal_array_attrs() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.internal_array_attrs", false]], "internal_array_attrs() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.internal_array_attrs", false]], "is_int() (in module stingray.utils)": [[2, "stingray.utils.is_int", false]], "is_iterable() (in module stingray.utils)": [[2, "stingray.utils.is_iterable", false]], "is_string() (in module stingray.utils)": [[2, "stingray.utils.is_string", false]], "join() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.join", false]], "join() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.join", false]], "join() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.join", false]], "join_gtis() (in module stingray.gti)": [[2, "stingray.gti.join_gtis", false]], "lagenergyspectrum (in module stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.LagEnergySpectrum", false]], "laplaceloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.LaplaceLogLikelihood", false]], "laplaceposterior (class in stingray.modeling)": [[2, "stingray.modeling.LaplacePosterior", false]], "lcurve_from_fits() (in module stingray.io)": [[2, "stingray.io.lcurve_from_fits", false]], "lightcurve (class in stingray)": [[2, "stingray.Lightcurve", false]], "load_events_and_gtis() (in module stingray.io)": [[2, "stingray.io.load_events_and_gtis", false]], "load_gtis() (in module stingray.gti)": [[2, "stingray.gti.load_gtis", false]], "loglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.LogLikelihood", false]], "logposterior() (stingray.modeling.gaussianposterior method)": [[2, "stingray.modeling.GaussianPosterior.logposterior", false]], "logposterior() (stingray.modeling.laplaceposterior method)": [[2, "stingray.modeling.LaplacePosterior.logposterior", false]], "logposterior() (stingray.modeling.poissonposterior method)": [[2, "stingray.modeling.PoissonPosterior.logposterior", false]], "logposterior() (stingray.modeling.posterior method)": [[2, "stingray.modeling.Posterior.logposterior", false]], "logposterior() (stingray.modeling.psdposterior method)": [[2, "stingray.modeling.PSDPosterior.logposterior", false]], "look_for_array_in_array() (in module stingray.utils)": [[2, "stingray.utils.look_for_array_in_array", false]], "main_array_attr (stingray.varenergyspectrum.excessvariancespectrum attribute)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.main_array_attr", false]], "main_array_attr (stingray.varenergyspectrum.varenergyspectrum attribute)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum.main_array_attr", false]], "make_dictionary_lowercase() (in module stingray.utils)": [[2, "stingray.utils.make_dictionary_lowercase", false]], "make_lightcurve() (stingray.lightcurve static method)": [[2, "stingray.Lightcurve.make_lightcurve", false]], "meta_attrs() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.meta_attrs", false]], "meta_attrs() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.meta_attrs", false]], "meta_attrs() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.meta_attrs", false]], "meta_attrs() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.meta_attrs", false]], "meta_attrs() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.meta_attrs", false]], "meta_attrs() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.meta_attrs", false]], "mission_specific_event_interpretation() (in module stingray.mission_support.missions)": [[2, "stingray.mission_support.missions.mission_specific_event_interpretation", false]], "mkdir_p() (in module stingray.io)": [[2, "stingray.io.mkdir_p", false]], "modulation_upper_limit() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.modulation_upper_limit", false]], "modulation_upper_limit() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.modulation_upper_limit", false]], "module": [[2, "module-stingray.deadtime.fad", false], [2, "module-stingray.deadtime.model", false], [2, "module-stingray.gti", false], [2, "module-stingray.io", false], [2, "module-stingray.mission_support.missions", false], [2, "module-stingray.mission_support.rxte", false], [2, "module-stingray.modeling.scripts", false], [2, "module-stingray.pulse", false], [2, "module-stingray.stats", false], [2, "module-stingray.utils", false]], "ncounts (stingray.events.eventlist property)": [[2, "stingray.events.EventList.ncounts", false]], "nearest_power_of_two() (in module stingray.utils)": [[2, "stingray.utils.nearest_power_of_two", false]], "non_paralyzable_dead_time_model() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.non_paralyzable_dead_time_model", false]], "optimal_bin_time() (in module stingray.utils)": [[2, "stingray.utils.optimal_bin_time", false]], "optimizationresults (class in stingray.modeling)": [[2, "stingray.modeling.OptimizationResults", false]], "order_list_of_arrays() (in module stingray.utils)": [[2, "stingray.utils.order_list_of_arrays", false]], "p_multitrial_from_single_trial() (in module stingray.stats)": [[2, "stingray.stats.p_multitrial_from_single_trial", false]], "p_single_trial_from_p_multitrial() (in module stingray.stats)": [[2, "stingray.stats.p_single_trial_from_p_multitrial", false]], "p_to_f() (in module stingray.pulse)": [[2, "stingray.pulse.p_to_f", false]], "parameterestimation (class in stingray.modeling)": [[2, "stingray.modeling.ParameterEstimation", false]], "pca_calibration_func() (in module stingray.mission_support.rxte)": [[2, "stingray.mission_support.rxte.pca_calibration_func", false]], "pdm_profile_stat() (in module stingray.pulse)": [[2, "stingray.pulse.pdm_profile_stat", false]], "pds_detection_level() (in module stingray.stats)": [[2, "stingray.stats.pds_detection_level", false]], "pds_model_zhang() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.pds_model_zhang", false]], "pds_probability() (in module stingray.stats)": [[2, "stingray.stats.pds_probability", false]], "pf_from_a() (in module stingray.stats)": [[2, "stingray.stats.pf_from_a", false]], "pf_from_ssig() (in module stingray.stats)": [[2, "stingray.stats.pf_from_ssig", false]], "pf_upper_limit() (in module stingray.stats)": [[2, "stingray.stats.pf_upper_limit", false]], "phase_dispersion_detection_level() (in module stingray.stats)": [[2, "stingray.stats.phase_dispersion_detection_level", false]], "phase_dispersion_logprobability() (in module stingray.stats)": [[2, "stingray.stats.phase_dispersion_logprobability", false]], "phase_dispersion_probability() (in module stingray.stats)": [[2, "stingray.stats.phase_dispersion_probability", false]], "phase_dispersion_search() (in module stingray.pulse)": [[2, "stingray.pulse.phase_dispersion_search", false]], "phase_exposure() (in module stingray.pulse)": [[2, "stingray.pulse.phase_exposure", false]], "phase_lag() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.phase_lag", false]], "phase_lag() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.phase_lag", false]], "phase_lag() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.phase_lag", false]], "phase_lag() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.phase_lag", false]], "phase_lag() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.phase_lag", false]], "phaseogram() (in module stingray.pulse)": [[2, "stingray.pulse.phaseogram", false]], "pi_to_energy() (in module stingray.io)": [[2, "stingray.io.pi_to_energy", false]], "plot() (stingray.autocorrelation method)": [[2, "stingray.AutoCorrelation.plot", false]], "plot() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.plot", false]], "plot() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.plot", false]], "plot() (stingray.crosscorrelation method)": [[2, "stingray.CrossCorrelation.plot", false]], "plot() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.plot", false]], "plot() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.plot", false]], "plot() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.plot", false]], "plot() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.plot", false]], "plot() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.plot", false]], "plot_cum3() (stingray.bispectrum.bispectrum method)": [[2, "stingray.bispectrum.Bispectrum.plot_cum3", false]], "plot_mag() (stingray.bispectrum.bispectrum method)": [[2, "stingray.bispectrum.Bispectrum.plot_mag", false]], "plot_phase() (stingray.bispectrum.bispectrum method)": [[2, "stingray.bispectrum.Bispectrum.plot_phase", false]], "plot_phaseogram() (in module stingray.pulse)": [[2, "stingray.pulse.plot_phaseogram", false]], "plot_profile() (in module stingray.pulse)": [[2, "stingray.pulse.plot_profile", false]], "plot_results() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults.plot_results", false]], "plotfits() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.plotfits", false]], "poisson_symmetrical_errors() (in module stingray.utils)": [[2, "stingray.utils.poisson_symmetrical_errors", false]], "poissonloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.PoissonLogLikelihood", false]], "poissonposterior (class in stingray.modeling)": [[2, "stingray.modeling.PoissonPosterior", false]], "posterior (class in stingray.modeling)": [[2, "stingray.modeling.Posterior", false]], "power_colors() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.power_colors", false]], "power_confidence_limits() (in module stingray.stats)": [[2, "stingray.stats.power_confidence_limits", false]], "power_upper_limit() (in module stingray.stats)": [[2, "stingray.stats.power_upper_limit", false]], "powerspectrum (class in stingray)": [[2, "stingray.Powerspectrum", false]], "powerspectrum() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.powerspectrum", false]], "pretty_print() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.pretty_print", false]], "pretty_print() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.pretty_print", false]], "pretty_print() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.pretty_print", false]], "pretty_print() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.pretty_print", false]], "pretty_print() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.pretty_print", false]], "pretty_print() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.pretty_print", false]], "print_results() (stingray.modeling.samplingresults method)": [[2, "stingray.modeling.SamplingResults.print_results", false]], "print_summary() (stingray.modeling.optimizationresults method)": [[2, "stingray.modeling.OptimizationResults.print_summary", false]], "psdloglikelihood (class in stingray.modeling)": [[2, "stingray.modeling.PSDLogLikelihood", false]], "psdparest (class in stingray.modeling)": [[2, "stingray.modeling.PSDParEst", false]], "psdposterior (class in stingray.modeling)": [[2, "stingray.modeling.PSDPosterior", false]], "pulse_phase() (in module stingray.pulse)": [[2, "stingray.pulse.pulse_phase", false]], "r_det() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.r_det", false]], "r_in() (in module stingray.deadtime.model)": [[2, "stingray.deadtime.model.r_in", false]], "read() (stingray.averagedcrossspectrum class method)": [[2, "stingray.AveragedCrossspectrum.read", false]], "read() (stingray.averagedpowerspectrum class method)": [[2, "stingray.AveragedPowerspectrum.read", false]], "read() (stingray.dynamicalpowerspectrum class method)": [[2, "stingray.DynamicalPowerspectrum.read", false]], "read() (stingray.events.eventlist class method)": [[2, "stingray.events.EventList.read", false]], "read() (stingray.lightcurve class method)": [[2, "stingray.Lightcurve.read", false]], "read() (stingray.powerspectrum class method)": [[2, "stingray.Powerspectrum.read", false]], "read() (stingray.simulator.simulator.simulator static method)": [[2, "stingray.simulator.simulator.Simulator.read", false]], "read() (stingray.stingrayobject class method)": [[2, "stingray.StingrayObject.read", false]], "read() (stingray.varenergyspectrum.excessvariancespectrum class method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.read", false]], "read_header_key() (in module stingray.io)": [[2, "stingray.io.read_header_key", false]], "read_mission_info() (in module stingray.mission_support.missions)": [[2, "stingray.mission_support.missions.read_mission_info", false]], "read_rmf() (in module stingray.io)": [[2, "stingray.io.read_rmf", false]], "rebin() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.rebin", false]], "rebin() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.rebin", false]], "rebin() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.rebin", false]], "rebin() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin", false]], "rebin() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.rebin", false]], "rebin() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.rebin", false]], "rebin() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.rebin", false]], "rebin_by_n_intervals() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_by_n_intervals", false]], "rebin_data() (in module stingray.utils)": [[2, "stingray.utils.rebin_data", false]], "rebin_data_log() (in module stingray.utils)": [[2, "stingray.utils.rebin_data_log", false]], "rebin_frequency() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_frequency", false]], "rebin_log() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.rebin_log", false]], "rebin_log() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.rebin_log", false]], "rebin_log() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.rebin_log", false]], "rebin_log() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_log", false]], "rebin_log() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.rebin_log", false]], "rebin_time() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.rebin_time", false]], "ref_mjd() (in module stingray.io)": [[2, "stingray.io.ref_mjd", false]], "relativistic_ir() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.relativistic_ir", false]], "rmsenergyspectrum (in module stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.RmsEnergySpectrum", false]], "rough_calibration() (in module stingray.mission_support.missions)": [[2, "stingray.mission_support.missions.rough_calibration", false]], "rxte_calibration_func() (in module stingray.mission_support.rxte)": [[2, "stingray.mission_support.rxte.rxte_calibration_func", false]], "rxte_pca_event_file_interpretation() (in module stingray.mission_support.rxte)": [[2, "stingray.mission_support.rxte.rxte_pca_event_file_interpretation", false]], "sample() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.sample", false]], "sample() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.sample", false]], "samplingresults (class in stingray.modeling)": [[2, "stingray.modeling.SamplingResults", false]], "savefig() (in module stingray.io)": [[2, "stingray.io.savefig", false]], "search_best_peaks() (in module stingray.pulse)": [[2, "stingray.pulse.search_best_peaks", false]], "set_logprior() (in module stingray.modeling)": [[2, "stingray.modeling.set_logprior", false]], "shift() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.shift", false]], "shift_and_add() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.shift_and_add", false]], "simon() (in module stingray.utils)": [[2, "stingray.utils.simon", false]], "simple_ir() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.simple_ir", false]], "simulate() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.simulate", false]], "simulate_channel() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.simulate_channel", false]], "simulate_energies() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.simulate_energies", false]], "simulate_highest_outlier() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.simulate_highest_outlier", false]], "simulate_lrts() (stingray.modeling.parameterestimation method)": [[2, "stingray.modeling.ParameterEstimation.simulate_lrts", false]], "simulate_lrts() (stingray.modeling.psdparest method)": [[2, "stingray.modeling.PSDParEst.simulate_lrts", false]], "simulate_times() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.simulate_times", false]], "simulator (class in stingray.simulator.simulator)": [[2, "stingray.simulator.simulator.Simulator", false]], "sinc_square_deriv() (in module stingray.pulse)": [[2, "stingray.pulse.sinc_square_deriv", false]], "sinc_square_model() (in module stingray.pulse)": [[2, "stingray.pulse.sinc_square_model", false]], "sincsquaremodel (class in stingray.pulse)": [[2, "stingray.pulse.SincSquareModel", false]], "sort() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.sort", false]], "sort() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.sort", false]], "sort() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.sort", false]], "sort_counts() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.sort_counts", false]], "split() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.split", false]], "split_by_gti() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.split_by_gti", false]], "split_gtis_by_exposure() (in module stingray.gti)": [[2, "stingray.gti.split_gtis_by_exposure", false]], "split_numbers() (in module stingray.io)": [[2, "stingray.io.split_numbers", false]], "ssig_from_a() (in module stingray.stats)": [[2, "stingray.stats.ssig_from_a", false]], "ssig_from_pf() (in module stingray.stats)": [[2, "stingray.stats.ssig_from_pf", false]], "standard_error() (in module stingray.utils)": [[2, "stingray.utils.standard_error", false]], "stingray.deadtime.fad": [[2, "module-stingray.deadtime.fad", false]], "stingray.deadtime.model": [[2, "module-stingray.deadtime.model", false]], "stingray.gti": [[2, "module-stingray.gti", false]], "stingray.io": [[2, "module-stingray.io", false]], "stingray.mission_support.missions": [[2, "module-stingray.mission_support.missions", false]], "stingray.mission_support.rxte": [[2, "module-stingray.mission_support.rxte", false]], "stingray.modeling.scripts": [[2, "module-stingray.modeling.scripts", false]], "stingray.pulse": [[2, "module-stingray.pulse", false]], "stingray.stats": [[2, "module-stingray.stats", false]], "stingray.utils": [[2, "module-stingray.utils", false]], "stingrayerror (class in stingray.exceptions)": [[2, "stingray.exceptions.StingrayError", false]], "stingrayobject (class in stingray)": [[2, "stingray.StingrayObject", false]], "stingraytimeseries (class in stingray)": [[2, "stingray.StingrayTimeseries", false]], "sub() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.sub", false]], "sub() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.sub", false]], "sub() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.sub", false]], "sub() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.sub", false]], "sub() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.sub", false]], "sub() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.sub", false]], "test() (in module stingray.pulse)": [[2, "stingray.pulse.test", false]], "time_intervals_from_gtis() (in module stingray.gti)": [[2, "stingray.gti.time_intervals_from_gtis", false]], "time_lag() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.time_lag", false]], "time_lag() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.time_lag", false]], "time_lag() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.time_lag", false]], "time_lag() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.time_lag", false]], "time_lag() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.time_lag", false]], "to_astropy_table() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_astropy_table", false]], "to_astropy_table() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_astropy_table", false]], "to_astropy_table() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_astropy_table", false]], "to_astropy_table() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.to_astropy_table", false]], "to_astropy_table() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_astropy_table", false]], "to_astropy_table() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.to_astropy_table", false]], "to_astropy_table() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.to_astropy_table", false]], "to_astropy_timeseries() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.to_astropy_timeseries", false]], "to_astropy_timeseries() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.to_astropy_timeseries", false]], "to_binned_timeseries() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_binned_timeseries", false]], "to_lc() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_lc", false]], "to_lc_iter() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_lc_iter", false]], "to_lc_list() (stingray.events.eventlist method)": [[2, "stingray.events.EventList.to_lc_list", false]], "to_lightkurve() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.to_lightkurve", false]], "to_norm() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_norm", false]], "to_norm() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_norm", false]], "to_norm() (stingray.crossspectrum method)": [[2, "stingray.Crossspectrum.to_norm", false]], "to_norm() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_norm", false]], "to_norm() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_norm", false]], "to_pandas() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_pandas", false]], "to_pandas() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_pandas", false]], "to_pandas() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_pandas", false]], "to_pandas() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_pandas", false]], "to_pandas() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.to_pandas", false]], "to_pandas() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.to_pandas", false]], "to_xarray() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.to_xarray", false]], "to_xarray() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.to_xarray", false]], "to_xarray() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.to_xarray", false]], "to_xarray() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.to_xarray", false]], "to_xarray() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.to_xarray", false]], "to_xarray() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.to_xarray", false]], "trace_maximum() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.trace_maximum", false]], "truncate() (stingray.lightcurve method)": [[2, "stingray.Lightcurve.truncate", false]], "truncate() (stingray.stingraytimeseries method)": [[2, "stingray.StingrayTimeseries.truncate", false]], "type (stingray.averagedcrossspectrum attribute)": [[2, "stingray.AveragedCrossspectrum.type", false]], "type (stingray.averagedpowerspectrum attribute)": [[2, "stingray.AveragedPowerspectrum.type", false]], "type (stingray.crossspectrum attribute)": [[2, "stingray.Crossspectrum.type", false]], "type (stingray.dynamicalpowerspectrum attribute)": [[2, "stingray.DynamicalPowerspectrum.type", false]], "type (stingray.powerspectrum attribute)": [[2, "stingray.Powerspectrum.type", false]], "varenergyspectrum (class in stingray.varenergyspectrum)": [[2, "stingray.varenergyspectrum.VarEnergySpectrum", false]], "write() (stingray.averagedcrossspectrum method)": [[2, "stingray.AveragedCrossspectrum.write", false]], "write() (stingray.averagedpowerspectrum method)": [[2, "stingray.AveragedPowerspectrum.write", false]], "write() (stingray.dynamicalpowerspectrum method)": [[2, "stingray.DynamicalPowerspectrum.write", false]], "write() (stingray.powerspectrum method)": [[2, "stingray.Powerspectrum.write", false]], "write() (stingray.simulator.simulator.simulator method)": [[2, "stingray.simulator.simulator.Simulator.write", false]], "write() (stingray.stingrayobject method)": [[2, "stingray.StingrayObject.write", false]], "write() (stingray.varenergyspectrum.excessvariancespectrum method)": [[2, "stingray.varenergyspectrum.ExcessVarianceSpectrum.write", false]], "z2_n_detection_level() (in module stingray.stats)": [[2, "stingray.stats.z2_n_detection_level", false]], "z2_n_logprobability() (in module stingray.stats)": [[2, "stingray.stats.z2_n_logprobability", false]], "z2_n_probability() (in module stingray.stats)": [[2, "stingray.stats.z2_n_probability", false]], "z_n() (in module stingray.pulse)": [[2, "stingray.pulse.z_n", false]], "z_n_binned_events() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_binned_events", false]], "z_n_binned_events_all() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_binned_events_all", false]], "z_n_events() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_events", false]], "z_n_events_all() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_events_all", false]], "z_n_gauss() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_gauss", false]], "z_n_gauss_all() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_gauss_all", false]], "z_n_search() (in module stingray.pulse)": [[2, "stingray.pulse.z_n_search", false]]}, "objects": {"stingray": [[2, 0, 1, "", "AutoCorrelation"], [2, 0, 1, "", "AveragedCovariancespectrum"], [2, 0, 1, "", "AveragedCrossspectrum"], [2, 0, 1, "", "AveragedPowerspectrum"], [2, 0, 1, "", "Covariancespectrum"], [2, 0, 1, "", "CrossCorrelation"], [2, 0, 1, "", "Crossspectrum"], [2, 0, 1, "", "DynamicalPowerspectrum"], [2, 0, 1, "", "Lightcurve"], [2, 0, 1, "", "Powerspectrum"], [2, 0, 1, "", "StingrayObject"], [2, 0, 1, "", "StingrayTimeseries"], [2, 4, 1, "", "coherence"], [2, 5, 0, "-", "gti"], [2, 5, 0, "-", "io"], [2, 5, 0, "-", "pulse"], [2, 5, 0, "-", "stats"], [2, 5, 0, "-", "utils"]], "stingray.AutoCorrelation": [[2, 1, 1, "", "cal_timeshift"], [2, 1, 1, "", "plot"]], "stingray.AveragedCrossspectrum": [[2, 1, 1, "", "add"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "data_attributes"], [2, 1, 1, "", "deadtime_correct"], [2, 1, 1, "", "dict"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_stingray_timeseries"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "internal_array_attrs"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "pretty_print"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "sub"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.AveragedPowerspectrum": [[2, 1, 1, "", "add"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "compute_rms"], [2, 1, 1, "", "data_attributes"], [2, 1, 1, "", "deadtime_correct"], [2, 1, 1, "", "dict"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_stingray_timeseries"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "internal_array_attrs"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "modulation_upper_limit"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "pretty_print"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "sub"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.CrossCorrelation": [[2, 1, 1, "", "cal_timeshift"], [2, 1, 1, "", "plot"]], "stingray.Crossspectrum": [[2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "deadtime_correct"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_stingray_timeseries"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_norm"], [2, 2, 1, "", "type"]], "stingray.DynamicalPowerspectrum": [[2, 1, 1, "", "add"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "compute_rms"], [2, 1, 1, "", "data_attributes"], [2, 1, 1, "", "deadtime_correct"], [2, 1, 1, "", "dict"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_stingray_timeseries"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "internal_array_attrs"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "power_colors"], [2, 1, 1, "", "pretty_print"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_by_n_intervals"], [2, 1, 1, "", "rebin_frequency"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "rebin_time"], [2, 1, 1, "", "shift_and_add"], [2, 1, 1, "", "sub"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 1, 1, "", "trace_maximum"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.Lightcurve": [[2, 1, 1, "", "analyze_lc_chunks"], [2, 1, 1, "", "apply_gtis"], [2, 1, 1, "", "baseline"], [2, 1, 1, "", "bexvar"], [2, 1, 1, "", "check_lightcurve"], [2, 1, 1, "", "estimate_chunk_length"], [2, 1, 1, "", "estimate_segment_size"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_astropy_timeseries"], [2, 1, 1, "", "from_lightkurve"], [2, 1, 1, "", "join"], [2, 1, 1, "", "make_lightcurve"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "sort"], [2, 1, 1, "", "sort_counts"], [2, 1, 1, "", "split"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_astropy_timeseries"], [2, 1, 1, "", "to_lightkurve"], [2, 1, 1, "", "truncate"]], "stingray.Powerspectrum": [[2, 1, 1, "", "_initialize_empty"], [2, 1, 1, "", "_initialize_from_any_input"], [2, 1, 1, "", "_normalize_crossspectrum"], [2, 1, 1, "", "_operation_with_other_obj"], [2, 1, 1, "", "_rms_error"], [2, 1, 1, "", "add"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "classical_significances"], [2, 1, 1, "", "coherence"], [2, 1, 1, "", "compute_rms"], [2, 1, 1, "", "data_attributes"], [2, 1, 1, "", "deadtime_correct"], [2, 1, 1, "", "dict"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_events"], [2, 1, 1, "", "from_lc_iterable"], [2, 1, 1, "", "from_lightcurve"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_stingray_timeseries"], [2, 1, 1, "", "from_time_array"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "initial_checks"], [2, 1, 1, "", "internal_array_attrs"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "modulation_upper_limit"], [2, 1, 1, "", "phase_lag"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "pretty_print"], [2, 1, 1, "", "read"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "rebin_log"], [2, 1, 1, "", "sub"], [2, 1, 1, "", "time_lag"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_norm"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 2, 1, "", "type"], [2, 1, 1, "", "write"]], "stingray.StingrayObject": [[2, 1, 1, "", "add"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "data_attributes"], [2, 1, 1, "", "dict"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "internal_array_attrs"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "pretty_print"], [2, 1, 1, "", "read"], [2, 1, 1, "", "sub"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 1, 1, "", "write"]], "stingray.StingrayTimeseries": [[2, 1, 1, "", "analyze_by_gti"], [2, 1, 1, "", "analyze_segments"], [2, 1, 1, "", "apply_gtis"], [2, 1, 1, "", "change_mjdref"], [2, 1, 1, "", "concatenate"], [2, 1, 1, "", "estimate_segment_size"], [2, 3, 1, "", "exposure"], [2, 1, 1, "", "fill_bad_time_intervals"], [2, 1, 1, "", "from_astropy_timeseries"], [2, 1, 1, "", "join"], [2, 1, 1, "", "plot"], [2, 1, 1, "", "rebin"], [2, 1, 1, "", "shift"], [2, 1, 1, "", "sort"], [2, 1, 1, "", "split_by_gti"], [2, 1, 1, "", "to_astropy_timeseries"], [2, 1, 1, "", "truncate"]], "stingray.bispectrum": [[2, 0, 1, "", "Bispectrum"]], "stingray.bispectrum.Bispectrum": [[2, 1, 1, "", "plot_cum3"], [2, 1, 1, "", "plot_mag"], [2, 1, 1, "", "plot_phase"]], "stingray.deadtime": [[2, 5, 0, "-", "fad"], [2, 5, 0, "-", "model"]], "stingray.deadtime.fad": [[2, 4, 1, "", "FAD"], [2, 4, 1, "", "calculate_FAD_correction"], [2, 4, 1, "", "get_periodograms_from_FAD_results"]], "stingray.deadtime.model": [[2, 4, 1, "", "check_A"], [2, 4, 1, "", "check_B"], [2, 4, 1, "", "non_paralyzable_dead_time_model"], [2, 4, 1, "", "pds_model_zhang"], [2, 4, 1, "", "r_det"], [2, 4, 1, "", "r_in"]], "stingray.events": [[2, 0, 1, "", "EventList"]], "stingray.events.EventList": [[2, 1, 1, "", "apply_deadtime"], [2, 1, 1, "", "convert_pi_to_energy"], [2, 1, 1, "", "filter_energy_range"], [2, 1, 1, "", "from_lc"], [2, 1, 1, "", "get_color_evolution"], [2, 1, 1, "", "get_energy_mask"], [2, 1, 1, "", "get_intensity_evolution"], [2, 1, 1, "", "join"], [2, 3, 1, "", "ncounts"], [2, 1, 1, "", "read"], [2, 1, 1, "", "simulate_energies"], [2, 1, 1, "", "simulate_times"], [2, 1, 1, "", "sort"], [2, 1, 1, "", "to_binned_timeseries"], [2, 1, 1, "", "to_lc"], [2, 1, 1, "", "to_lc_iter"], [2, 1, 1, "", "to_lc_list"]], "stingray.exceptions": [[2, 0, 1, "", "StingrayError"]], "stingray.gti": [[2, 4, 1, "", "append_gtis"], [2, 4, 1, "", "bin_intervals_from_gtis"], [2, 4, 1, "", "check_gtis"], [2, 4, 1, "", "check_separate"], [2, 4, 1, "", "create_gti_from_condition"], [2, 4, 1, "", "create_gti_mask"], [2, 4, 1, "", "create_gti_mask_complete"], [2, 4, 1, "", "create_gti_mask_jit"], [2, 4, 1, "", "cross_gtis"], [2, 4, 1, "", "cross_two_gtis"], [2, 4, 1, "", "find_large_bad_time_intervals"], [2, 4, 1, "", "generate_indices_of_gti_boundaries"], [2, 4, 1, "", "generate_indices_of_segment_boundaries_binned"], [2, 4, 1, "", "generate_indices_of_segment_boundaries_unbinned"], [2, 4, 1, "", "get_btis"], [2, 4, 1, "", "get_gti_extensions_from_pattern"], [2, 4, 1, "", "get_gti_from_all_extensions"], [2, 4, 1, "", "get_gti_from_hdu"], [2, 4, 1, "", "get_gti_lengths"], [2, 4, 1, "", "get_total_gti_length"], [2, 4, 1, "", "gti_border_bins"], [2, 4, 1, "", "join_gtis"], [2, 4, 1, "", "load_gtis"], [2, 4, 1, "", "split_gtis_by_exposure"], [2, 4, 1, "", "time_intervals_from_gtis"]], "stingray.io": [[2, 4, 1, "", "common_name"], [2, 4, 1, "", "get_file_extension"], [2, 4, 1, "", "get_key_from_mission_info"], [2, 4, 1, "", "high_precision_keyword_read"], [2, 4, 1, "", "lcurve_from_fits"], [2, 4, 1, "", "load_events_and_gtis"], [2, 4, 1, "", "mkdir_p"], [2, 4, 1, "", "pi_to_energy"], [2, 4, 1, "", "read_header_key"], [2, 4, 1, "", "read_rmf"], [2, 4, 1, "", "ref_mjd"], [2, 4, 1, "", "savefig"], [2, 4, 1, "", "split_numbers"]], "stingray.mission_support": [[2, 5, 0, "-", "missions"], [2, 5, 0, "-", "rxte"]], "stingray.mission_support.missions": [[2, 4, 1, "", "get_rough_conversion_function"], [2, 4, 1, "", "mission_specific_event_interpretation"], [2, 4, 1, "", "read_mission_info"], [2, 4, 1, "", "rough_calibration"]], "stingray.mission_support.rxte": [[2, 4, 1, "", "pca_calibration_func"], [2, 4, 1, "", "rxte_calibration_func"], [2, 4, 1, "", "rxte_pca_event_file_interpretation"]], "stingray.modeling": [[2, 0, 1, "", "GaussianLogLikelihood"], [2, 0, 1, "", "GaussianPosterior"], [2, 0, 1, "", "LaplaceLogLikelihood"], [2, 0, 1, "", "LaplacePosterior"], [2, 0, 1, "", "LogLikelihood"], [2, 0, 1, "", "OptimizationResults"], [2, 0, 1, "", "PSDLogLikelihood"], [2, 0, 1, "", "PSDParEst"], [2, 0, 1, "", "PSDPosterior"], [2, 0, 1, "", "ParameterEstimation"], [2, 0, 1, "", "PoissonLogLikelihood"], [2, 0, 1, "", "PoissonPosterior"], [2, 0, 1, "", "Posterior"], [2, 0, 1, "", "SamplingResults"], [2, 5, 0, "-", "scripts"], [2, 4, 1, "", "set_logprior"]], "stingray.modeling.GaussianLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.GaussianPosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.LaplaceLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.LaplacePosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.LogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.OptimizationResults": [[2, 1, 1, "", "_compute_covariance"], [2, 1, 1, "", "_compute_criteria"], [2, 1, 1, "", "_compute_model"], [2, 1, 1, "", "_compute_statistics"], [2, 1, 1, "", "print_summary"]], "stingray.modeling.PSDLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.PSDParEst": [[2, 1, 1, "", "calibrate_highest_outlier"], [2, 1, 1, "", "calibrate_lrt"], [2, 1, 1, "", "compute_lrt"], [2, 1, 1, "", "fit"], [2, 1, 1, "", "plotfits"], [2, 1, 1, "", "sample"], [2, 1, 1, "", "simulate_highest_outlier"], [2, 1, 1, "", "simulate_lrts"]], "stingray.modeling.PSDPosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.ParameterEstimation": [[2, 1, 1, "", "calibrate_lrt"], [2, 1, 1, "", "compute_lrt"], [2, 1, 1, "", "fit"], [2, 1, 1, "", "sample"], [2, 1, 1, "", "simulate_lrts"]], "stingray.modeling.PoissonLogLikelihood": [[2, 1, 1, "", "evaluate"]], "stingray.modeling.PoissonPosterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.Posterior": [[2, 1, 1, "", "logposterior"]], "stingray.modeling.SamplingResults": [[2, 1, 1, "", "_check_convergence"], [2, 1, 1, "", "_compute_rhat"], [2, 1, 1, "", "_infer"], [2, 1, 1, "", "plot_results"], [2, 1, 1, "", "print_results"]], "stingray.modeling.scripts": [[2, 4, 1, "", "fit_crossspectrum"], [2, 4, 1, "", "fit_lorentzians"], [2, 4, 1, "", "fit_powerspectrum"]], "stingray.pulse": [[2, 0, 1, "", "SincSquareModel"], [2, 4, 1, "", "ef_profile_stat"], [2, 4, 1, "", "epoch_folding_search"], [2, 4, 1, "", "fftfit"], [2, 4, 1, "", "fit_gaussian"], [2, 4, 1, "", "fit_sinc"], [2, 4, 1, "", "fold_events"], [2, 4, 1, "", "get_TOA"], [2, 4, 1, "", "get_orbital_correction_from_ephemeris_file"], [2, 4, 1, "", "htest"], [2, 4, 1, "", "p_to_f"], [2, 4, 1, "", "pdm_profile_stat"], [2, 4, 1, "", "phase_dispersion_search"], [2, 4, 1, "", "phase_exposure"], [2, 4, 1, "", "phaseogram"], [2, 4, 1, "", "plot_phaseogram"], [2, 4, 1, "", "plot_profile"], [2, 4, 1, "", "pulse_phase"], [2, 4, 1, "", "search_best_peaks"], [2, 4, 1, "", "sinc_square_deriv"], [2, 4, 1, "", "sinc_square_model"], [2, 4, 1, "", "test"], [2, 4, 1, "", "z_n"], [2, 4, 1, "", "z_n_binned_events"], [2, 4, 1, "", "z_n_binned_events_all"], [2, 4, 1, "", "z_n_events"], [2, 4, 1, "", "z_n_events_all"], [2, 4, 1, "", "z_n_gauss"], [2, 4, 1, "", "z_n_gauss_all"], [2, 4, 1, "", "z_n_search"]], "stingray.simulator.simulator": [[2, 0, 1, "", "Simulator"]], "stingray.simulator.simulator.Simulator": [[2, 1, 1, "", "count_channels"], [2, 1, 1, "", "delete_channel"], [2, 1, 1, "", "delete_channels"], [2, 1, 1, "", "get_all_channels"], [2, 1, 1, "", "get_channel"], [2, 1, 1, "", "get_channels"], [2, 1, 1, "", "powerspectrum"], [2, 1, 1, "", "read"], [2, 1, 1, "", "relativistic_ir"], [2, 1, 1, "", "simple_ir"], [2, 1, 1, "", "simulate"], [2, 1, 1, "", "simulate_channel"], [2, 1, 1, "", "write"]], "stingray.stats": [[2, 4, 1, "", "a_from_pf"], [2, 4, 1, "", "a_from_ssig"], [2, 4, 1, "", "amplitude_upper_limit"], [2, 4, 1, "", "classical_pvalue"], [2, 4, 1, "", "equivalent_gaussian_Nsigma"], [2, 4, 1, "", "fold_detection_level"], [2, 4, 1, "", "fold_profile_logprobability"], [2, 4, 1, "", "fold_profile_probability"], [2, 4, 1, "", "p_multitrial_from_single_trial"], [2, 4, 1, "", "p_single_trial_from_p_multitrial"], [2, 4, 1, "", "pds_detection_level"], [2, 4, 1, "", "pds_probability"], [2, 4, 1, "", "pf_from_a"], [2, 4, 1, "", "pf_from_ssig"], [2, 4, 1, "", "pf_upper_limit"], [2, 4, 1, "", "phase_dispersion_detection_level"], [2, 4, 1, "", "phase_dispersion_logprobability"], [2, 4, 1, "", "phase_dispersion_probability"], [2, 4, 1, "", "power_confidence_limits"], [2, 4, 1, "", "power_upper_limit"], [2, 4, 1, "", "ssig_from_a"], [2, 4, 1, "", "ssig_from_pf"], [2, 4, 1, "", "z2_n_detection_level"], [2, 4, 1, "", "z2_n_logprobability"], [2, 4, 1, "", "z2_n_probability"]], "stingray.utils": [[2, 4, 1, "", "baseline_als"], [2, 4, 1, "", "check_isallfinite"], [2, 4, 1, "", "contiguous_regions"], [2, 4, 1, "", "create_window"], [2, 4, 1, "", "excess_variance"], [2, 4, 1, "", "find_nearest"], [2, 4, 1, "", "get_random_state"], [2, 4, 1, "", "heaviside"], [2, 4, 1, "", "is_int"], [2, 4, 1, "", "is_iterable"], [2, 4, 1, "", "is_string"], [2, 4, 1, "", "look_for_array_in_array"], [2, 4, 1, "", "make_dictionary_lowercase"], [2, 4, 1, "", "nearest_power_of_two"], [2, 4, 1, "", "optimal_bin_time"], [2, 4, 1, "", "order_list_of_arrays"], [2, 4, 1, "", "poisson_symmetrical_errors"], [2, 4, 1, "", "rebin_data"], [2, 4, 1, "", "rebin_data_log"], [2, 4, 1, "", "simon"], [2, 4, 1, "", "standard_error"]], "stingray.varenergyspectrum": [[2, 0, 1, "", "ExcessVarianceSpectrum"], [2, 2, 1, "", "LagEnergySpectrum"], [2, 2, 1, "", "RmsEnergySpectrum"], [2, 0, 1, "", "VarEnergySpectrum"]], "stingray.varenergyspectrum.ExcessVarianceSpectrum": [[2, 1, 1, "", "add"], [2, 1, 1, "", "apply_mask"], [2, 1, 1, "", "array_attrs"], [2, 1, 1, "", "data_attributes"], [2, 1, 1, "", "dict"], [2, 3, 1, "", "energy"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_xarray"], [2, 1, 1, "", "get_meta_dict"], [2, 1, 1, "", "internal_array_attrs"], [2, 2, 1, "", "main_array_attr"], [2, 1, 1, "", "meta_attrs"], [2, 1, 1, "", "pretty_print"], [2, 1, 1, "", "read"], [2, 1, 1, "", "sub"], [2, 1, 1, "", "to_astropy_table"], [2, 1, 1, "", "to_pandas"], [2, 1, 1, "", "to_xarray"], [2, 1, 1, "", "write"]], "stingray.varenergyspectrum.VarEnergySpectrum": [[2, 3, 1, "", "energy"], [2, 1, 1, "", "from_astropy_table"], [2, 1, 1, "", "from_pandas"], [2, 1, 1, "", "from_xarray"], [2, 2, 1, "", "main_array_attr"]]}, "objnames": {"0": ["py", "class", "Python class"], "1": ["py", "method", "Python method"], "2": ["py", "attribute", "Python attribute"], "3": ["py", "property", "Python property"], "4": ["py", "function", "Python function"], "5": ["py", "module", "Python module"]}, "objtypes": {"0": "py:class", "1": "py:method", "2": "py:attribute", "3": "py:property", "4": "py:function", "5": "py:module"}, "terms": {"": [2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 26, 27, 28, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 48], "0": [0, 2, 3, 4, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "00": [2, 13, 15, 16, 17, 18, 19, 20, 21, 26, 28, 30, 31, 38, 41], "000": 17, "00000": 28, "000000": 28, "00000000001": 21, "00000000e": [2, 13], "00000001": 13, "000001": 2, "0000099997734535e": 14, "00001": 30, "0001": [2, 13, 14, 17, 33], "00010416666666666667117": 23, "0005": 17, "00076601852": 21, "00085414e": 41, "0009765625": 29, "000e": [23, 42], "001": [2, 14, 16, 17, 18, 22, 26, 33, 35, 41], "00115328e": 31, "001270249486": 21, "0013498980316301035": 2, "0015231682473469295763529": 15, "00200459": 28, "00200906": 28, "0021": 13, "0022": 13, "002261936665": 21, "0023": 13, "0024": 13, "0025": 13, "00289904e": 31, "002951964736": 21, "003": [22, 26], "0032": 2, "00356020033": 21, "003906": 29, "00390625": [2, 41], "0041": 29, "00416926": 15, "00479484": 28, "00482337177": 21, "00485198": 14, "00487599": 14, "005": [26, 38, 40, 41], "0050": 38, "00538316e": 31, "0063": 13, "0068359375": 29, "00694116e": 13, "00732082": 28, "00745863e": 20, "0075": 37, "00771085918": 21, "00797853": 13, "008": 17, "00810652e": 41, "00897434e": 13, "00912617147": 21, "00975045562": 21, "00982277e": 13, "00it": [16, 41], "01": [2, 12, 13, 15, 16, 17, 18, 20, 21, 23, 24, 26, 28, 29, 31, 32, 33, 41, 42], "010": 12, "0100": 23, "01058": 12, "010877": 12, "01137686": 21, "01138": 12, "01142163e": 14, "01158": 12, "01177": 12, "01214": 12, "01248772e": 20, "01308": 12, "01378025e": 13, "01474": 12, "015": 17, "01507012546": 21, "01553657651": 21, "01625879e": 13, "01728092e": 20, "018": 12, "018922537565": 21, "01935687661": 21, "02": [13, 15, 16, 17, 20, 21, 23, 26, 28, 30, 31, 41, 42], "020": [12, 33], "02031369e": 28, "0209": 13, "02283409238": 21, "0229": 13, "02309130132": 21, "02359375": 14, "023702159524": 21, "024": 27, "02460347116": 21, "024649724364": 21, "025": 29, "02539377e": 30, "02582614124": 21, "02642113e": 14, "02722400427": 21, "028": 12, "029": 12, "02910804e": 28, "02it": 31, "03": [13, 15, 16, 20, 21, 28, 33], "03008031845": 21, "03036920e": 30, "03071194887": 21, "030776798725": 21, "03093430e": 13, "03125": [2, 14, 15, 29, 31, 41], "03139888": 28, "03143580258": 21, "03180555999": 21, "0324331224": 21, "0327218622": 21, "03360375762": 21, "03427194059": 21, "03514303": 28, "035143030111889": 28, "03677964e": 14, "03699606657": 21, "037233412266": 21, "03790041804": 21, "03814639e": 13, "03821918e": 13, "03853216767": 21, "03886182606": 21, "0393784723225": 27, "03962627053": 21, "039997": 21, "039999": 21, "03it": 41, "04": [2, 13, 17, 21, 27, 28, 30, 33, 41], "04014620185": 21, "04170078": 34, "0426": 13, "042805209756": 21, "04301082e": 13, "04355469": 14, "04574831e": 31, "04722751e": 13, "04742273e": 28, "04827673e": 31, "04863608e": 30, "04922773e": 31, "04941494763": 21, "049590453506": 21, "05": [2, 13, 14, 15, 18, 26, 27, 29, 30, 41], "05003093183": 21, "0503125": 14, "05073848367": 21, "05101": 23, "05108": 23, "05113": 23, "05113039911": 21, "05163902": [24, 25], "0520": 21, "05210672j": 15, "05216662586": 21, "052734196186": 21, "05282054": 28, "052820542793331": 28, "053": 21, "05340576172": 21, "05358508e": 13, "054": 21, "05403388e": 13, "05428845e": 31, "0547": 28, "05471": 28, "05502511561": 21, "05536311": 13, "05537928641": 21, "05541840e": 31, "05610820e": 28, "0567": 13, "0567826161864": 28, "0567e": 2, "05686691": 25, "05724072456": 21, "05741724372": 21, "057834371924": 21, "0585": 23, "0592": 23, "0594": 23, "0598": 23, "059845909476": 21, "0599": 23, "05it": 15, "06": [2, 12, 13, 14, 27, 29, 41], "060": 21, "06054444611": 21, "06137267e": 31, "061449572444": 21, "06256014109": 21, "06328216195": 21, "06344228983": 21, "064453706145": 21, "0652": 13, "06544878e": 13, "06558699906": 21, "065731182694": 21, "06581965089": 21, "06601053476": 21, "066078454256": 21, "06620439887": 21, "06733571e": 13, "0675": 13, "06758132e": 13, "0680": 28, "06803": 28, "06811144948": 21, "06821194": 42, "068227797747": 41, "068401411176": 21, "06848114729": 21, "06887466e": 14, "06898": 28, "0690": 28, "06900238991": 21, "06933048478134216": 28, "06it": 41, "07": [2, 13, 14], "070": 41, "07017797": 28, "07028842": 28, "07137039e": 30, "07141777e": 30, "07161732018": 21, "07206726074": 21, "07206888497": 21, "0722": 44, "072870031": 21, "07354363e": 14, "074": 12, "07492195e": 31, "07517074e": 31, "07527932e": 13, "07545466": 28, "0754546626425574": 28, "07642325e": 13, "077453806996": 21, "07798694074": 21, "0784": 12, "07841642201": 21, "079430028796": 21, "07943003": 21, "0795609951": 21, "07969661057": 21, "079998": 21, "07it": [15, 17], "08": [2, 12, 14, 21], "081": 12, "0811": 28, "08112": 28, "08120179": 34, "082364201546": 21, "08264564e": 13, "08272440e": 13, "082932": 28, "08373501897": 21, "08390712e": 14, "084478631616": 21, "08528217673": 21, "08562751e": 28, "0856675712513585": 28, "0872": 13, "08720461e": 20, "08750811e": 31, "08911083639": 21, "089139238": 21, "08it": 41, "09": [12, 41], "09052907": 13, "090855017304": 21, "0910": 2, "09102366e": 31, "09129279852": 21, "0915": 13, "09193": 28, "09193133": 28, "092": 12, "09224589": 13, "093": 12, "09310323": 21, "09376602": 13, "09489717e": 13, "09518702328": 21, "09520164": 13, "09535492": 13, "09607422": 13, "09654483": 13, "09665960e": 31, "09674684": 13, "097": 27, "09729": 12, "09731673": 13, "09733791": 13, "097374781966": 21, "09752426": 13, "09763424": 13, "09769191": 13, "09783874": 13, "09798569": 13, "09823872149": 21, "098355308175": 21, "09848511": 13, "09881147": 13, "09913028": 13, "09916139": 13, "09922507e": 13, "09959243": 13, "09961388": 13, "09964639": 13, "09968704e": 30, "0999": 13, "0beta": 8, "0rc1": [0, 3], "0x106983978": 22, "0x1140ab588": 22, "0x118bf6eb8": 22, "0x12b34d630": 28, "0x12b58a920": 28, "0x13b99abc0": 42, "0x13bb33c70": 42, "0x17564cf10": 17, "0x17571e290": 17, "0x175d33190": 41, "0x175e813d0": 41, "0x176660ca0": 43, "0x17745fa90": 43, "0x1774ef6d0": 43, "0x17767be80": 43, "0x177fb2290": 26, "0x17fc10fd0": 31, "0x1ac8b7e8e80": 13, "0x1ac8bbfe710": 13, "0x1ac8bdc15f8": 13, "0x21d8f0ccc50": 46, "0x21d8f1a8160": 46, "0x21d8f1b6e10": 46, "0x21d8f24b978": 46, "0x21d8f2f6fd0": 46, "0x21d8f34f470": 46, "0x21d8f360ba8": 46, "0x21d8f4397b8": 46, "0x21d8f4715f8": 46, "0x21d8f534470": 46, "0x21d8f629eb8": 46, "0x21d8f6b92e8": 46, "0x21d8f738080": 46, "0x21d9081e470": 46, "0x21d9083b2e8": 46, "0x21d909314a8": 46, "0x28d068eb0": 28, "0x28f05d030": 28, "0x2a22c0a90": 45, "0x2a288ec20": 45, "0x2a5c43d90": 28, "0x317604a10": 17, "0x323144650": 19, "0x3231a8790": 19, "0x32779f050": 19, "0x327d906d0": 19, "0x7f7aa3d518b0": 15, "0x7f8680267130": 32, "0x7f86b4348910": 39, "0x7f86b44f96a0": 39, "0x7fccb6d9b4f0": 40, "0x7fccb6dfddc0": 40, "0x7fccb763d340": 40, "0x7fccd1d29c10": 40, "0x7fccd359b610": 40, "0x7fccd3f9b9a0": 40, "0x7fccd5485b80": 40, "0x7fccd6506550": 40, "0x7fccd65955e0": 40, "0x7fccd66015e0": 40, "0x7fccd6629640": 40, "0x7fd1916a8e50": 36, "0x7fdec2fedcd0": 38, "0x7fe8c0e7d8b0": 16, "0x7fed1f89f130": 29, "0xcbec4a8": 35, "0xd188198": 35, "1": [0, 2, 3, 4, 5, 12, 13, 16, 17, 18, 19, 20, 21, 22, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 48, 49], "10": [0, 2, 3, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 40, 41, 42, 43, 45], "100": [2, 4, 12, 13, 15, 16, 17, 18, 19, 22, 23, 24, 25, 28, 29, 36, 41, 42, 43, 46], "1000": [2, 13, 14, 15, 17, 20, 21, 22, 23, 24, 25, 28, 29, 31, 36, 42, 43], "10000": [2, 17, 19, 22, 30, 34, 40, 41], "100000": [2, 28, 43], "1000008": 13, "10000it": 17, "10003251": 13, "1001": [2, 21, 42], "1002": [21, 29, 42], "10021328": 13, "10021589": 13, "10027435": 13, "1003": [21, 42], "10031293": 13, "10038381": 13, "1003841": 13, "1004": [21, 42], "1005": 42, "1006": [21, 42], "1007": [29, 42], "10072280e": 30, "1008": [21, 42], "10085873": 13, "10086312": 13, "1009": 42, "10090": 23, "10090391": 13, "100it": 18, "100th": 2, "101": [15, 21, 23, 42], "1010": [23, 42], "1011": [2, 42], "1012": [21, 42], "10120": 23, "10121094": 14, "1013": 42, "1014": 42, "10144925": 13, "1015": [21, 42], "1016": [21, 42], "10164": 2, "1017": [21, 42], "1018": [21, 42], "10180": 23, "101851851851852e": 23, "10188173": 13, "10189853": 13, "1019": [21, 42], "10190": 23, "102": [21, 23, 42], "1020": [2, 21], "1021": [2, 21, 43], "10218425": 13, "1022": 21, "1024": [2, 29, 35, 38, 39, 48], "10248613": 13, "10249754": 13, "1025": 21, "102641366527": 41, "1026435": 13, "10265071": 13, "10270301": 13, "10278492": 13, "1029246": 13, "10296954": 13, "103": [21, 23, 42], "10316149": 13, "10340774e": 30, "1034232": 22, "10349785e": 30, "10352851": 13, "10362033": 13, "10372": 28, "10372299": 28, "10377357": 13, "104": [21, 23, 42], "10406698": 13, "1042": 41, "1045": 42, "1046": 42, "1047": 42, "1048": 42, "105": [23, 42], "1051": 2, "1055": 29, "10555113852": 21, "1055t": 29, "10568276048": 21, "106": [12, 21, 23, 42], "10600": 23, "10604413": [0, 3], "10604734e": 31, "1061706841": 21, "10623774e": 13, "10625052452": 21, "10637611e": 13, "10641888e": 30, "1066": 15, "107": [21, 23, 26, 42], "10744164884": 21, "1077": 15, "1079": 28, "10793355107": 21, "108": [23, 28, 42], "108011": 28, "10813181": [0, 3], "10814335942": 21, "10825598e": 13, "10830": 23, "10837621e": 31, "1084": 13, "10856514": 36, "1086": [2, 29], "1086602211": 21, "1088": 42, "1089": 42, "108956605196": 21, "109": [21, 23, 28, 42], "1090": 42, "1092": 42, "1093": 42, "1096": 29, "1098": 29, "10990858": 13, "11": [2, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 33, 37, 38, 40, 41, 42, 43, 45], "110": [23, 42], "1100705": 2, "110384613276": 21, "1104": 28, "1109": [2, 29], "111": 42, "1110093j": 24, "1111": 2, "111403808": 21, "11148573458": 21, "11165001e": 31, "11192195e": 31, "112": [23, 42], "113": [23, 42], "1134250015": 21, "11383212": [0, 3], "11397": 2, "11398498e": 31, "114": [21, 23, 42], "11452625e": 30, "114930674434": 21, "115": [12, 21, 23, 42], "116": 42, "11617": 12, "117": [23, 42], "1176344136": 2, "1177011136": 2, "1178855896": 21, "118": [21, 24, 34, 42], "119": [23, 34, 42], "119999": 21, "12": [2, 9, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 37, 38, 40, 41, 42, 43, 45], "120": [2, 21, 23, 25, 42], "1200": 2, "1202": 2, "1205": 2, "12066568e": 14, "12079938": 13, "1209432": 17, "121": [21, 42], "1212": 2, "12182110548": 21, "122": [21, 23, 42], "123": [23, 42], "12346": 15, "12395456": 13, "124": [21, 23, 42], "12445869": 15, "12451052666": 21, "124539494514": 21, "12465067e": 13, "12498201e": 14, "12498579e": 14, "12498912e": 14, "12499201e": 14, "12499445e": 14, "12499645e": 14, "12499800e": 14, "12499911e": 14, "12499978e": 14, "125": [15, 31, 38, 39, 40, 42, 45, 48], "12500000e": 14, "12523216009": 21, "12533031404": 21, "12563699484": 21, "125701248646": 21, "126": [23, 29, 42], "12633160e": 14, "12676268816": 21, "127": [2, 15, 21, 25, 31, 42], "1271": [2, 22], "128": [2, 21, 30, 33, 34, 41, 42], "128024578094": 21, "12807": 15, "129": [12, 21, 34, 42], "13": [2, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 26, 27, 28, 29, 30, 31, 33, 37, 38, 40, 41, 42, 43, 45], "130": [2, 19, 34, 42], "13023": 15, "1308": 13, "131": [21, 34, 42], "13103454e": 14, "1317371": 27, "132": [21, 42], "133": [18, 42], "13316428661": 21, "13331639767": 21, "133511930704": 21, "13361": 19, "134": [18, 42], "13488540e": 30, "13491830e": 13, "135": [21, 42], "13514588e": 13, "136": [21, 42], "13627": 20, "1365": 2, "13652163744": 21, "137": [21, 42], "1371": 29, "138": [2, 21, 42], "139": [21, 42], "13904826343": 21, "1393": 3, "13939705491": 21, "13it": [38, 41], "14": [2, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 27, 28, 29, 30, 31, 33, 37, 38, 40, 41, 42, 43, 45, 48], "140": [21, 41, 42], "14022349e": 20, "140301436186": 21, "14039643262": 28, "1404": 22, "140583753586": 21, "1408": 2, "14088855e": 31, "141": 42, "1412": 14, "14159265e": [2, 13], "142": [21, 42], "1426": 13, "14262683e": 31, "143": [21, 42], "1430": 29, "14324": 30, "143758147955": 21, "144": [2, 42], "14413850e": 31, "14426906407": 21, "1444568038": 21, "145": [21, 36, 42], "14500": 27, "14572517e": 31, "146": [21, 42], "14645129e": 31, "14681": 15, "147": [21, 42], "148": [12, 21, 42], "14837": 30, "14855520427": 21, "14886234701": 21, "149": 42, "1490116": 3, "14917349e": 31, "14925374091": 21, "1499": [23, 42], "14995288849": 21, "14it": 41, "15": [2, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 37, 38, 40, 41, 42, 43, 45], "150": [2, 17, 23, 28, 41, 42], "1500": [23, 42], "15008": 2, "151": 42, "15141": 15, "15144339204": 21, "15175317e": 13, "152": [21, 42], "15245625377": 21, "153": [21, 42], "15315": 30, "153368234634": 21, "1538": 29, "154": [18, 21, 42], "15446573496": 21, "15491705": [24, 25], "155": [21, 42], "1553748399": 21, "15565529466": 21, "15575763e": 13, "156": [12, 21, 42], "15633604e": 31, "15657206e": 30, "157": [21, 42], "1574074074074073e": 23, "158": 42, "15807239711": 21, "15818": 20, "15837646": 34, "158643990755": 21, "15865525393145707": 2, "15865902603": 21, "1588781476": 21, "1589": 34, "159": [21, 29, 42], "1590": [12, 27], "15924490988": 21, "159996": 21, "1599998": 21, "16": [2, 12, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 37, 38, 40, 41, 42, 43, 48], "160": [2, 19, 21, 42], "1600": [15, 31], "1600it": 17, "16019311547": 21, "160554": 29, "16055440903": 21, "160l": [15, 31], "161": [21, 42], "161390304565": 21, "16175606847": 21, "16177187e": 13, "16187738j": 15, "162": 42, "163": [21, 42], "16358879j": 15, "1636": 20, "164": 42, "16449086368": 21, "16465064e": 13, "16469688e": 13, "16480255127": 21, "16485761106": 21, "165": [21, 42], "16511843e": 13, "1652": 34, "16520488e": 13, "16597857e": 13, "166": [21, 42], "16601064": 24, "167": [18, 42], "1670099": 28, "167009901378628": 28, "1671": 26, "16715": 30, "16733137e": 31, "16736589372": 21, "16770721e": 31, "16778727e": 14, "168": [21, 42], "16848820448": 21, "1685": 13, "16872346401": 21, "169": [21, 42], "1692": 12, "16962249577": 21, "16th": 8, "17": [4, 9, 13, 14, 15, 17, 19, 20, 21, 23, 24, 27, 28, 29, 30, 31, 33, 37, 38, 40, 41, 42, 43], "170": [41, 42], "17025084e": 13, "171": [21, 42], "17142087221": 21, "172": [21, 42], "17269495e": 13, "172751545906": 21, "173": [21, 42], "17338081e": 13, "17353559e": 13, "174": [12, 21, 42], "1747": 42, "1748": 42, "1749": 42, "17495532334": 21, "175": 42, "1750": 42, "17524069548": 21, "17598539591": 21, "176": [2, 42], "176021426916": 21, "17602143": 21, "17621576786": 21, "17666938901": 21, "17686452e": 13, "177": [16, 42], "17710210383": 21, "17735889554": 21, "17736788094": 21, "17744512856": 21, "178": [21, 42], "17802332342": 21, "17816189e": 14, "17818275094": 21, "179": 42, "1790": 14, "17910753e": 31, "17984089255": 21, "17t14": 21, "18": [2, 13, 14, 15, 17, 19, 20, 21, 23, 24, 27, 28, 29, 30, 31, 33, 37, 40, 41, 42], "180": [21, 42], "1802495867": 21, "18041813": 21, "180418133736": 21, "18091611564": 21, "180d": 2, "181": [21, 42], "18126910925": 21, "182": [15, 21, 42], "1820": 41, "18293096125": 21, "183": [21, 42], "1832": 42, "1833": 42, "1834": 42, "1835": 42, "1837": 42, "18379395e": 14, "1839": 42, "184": 42, "18420062959": 21, "1847140342": 21, "185": 42, "185400635004": 21, "186": [21, 42], "18602730334": 21, "186307400465": 21, "18671748042": 21, "187": 42, "1870122": 13, "18701964": 24, "18724669e": 31, "18738743663": 21, "1876": 30, "18797942996": 21, "188": [21, 42], "18857589364": 21, "18875941e": 13, "189": [21, 42], "19": [2, 13, 14, 15, 17, 19, 20, 21, 23, 27, 28, 29, 31, 33, 37, 40, 41, 42], "190": [21, 42], "191": 42, "192": [21, 42], "1922": 42, "1923": 42, "1924": 42, "1925": 42, "193": [21, 42], "19316992164": 21, "193173110485": 21, "194": 42, "195": [36, 42], "1959": 42, "196": [15, 21, 42], "1960": 42, "1961": 42, "196565657854": 21, "1968": 13, "197": [21, 42], "1971": 2, "197188302875": 21, "197261437774": 21, "1974": 2, "1975": 2, "1976": 29, "1978": [2, 29, 32], "198": [21, 28, 42], "198174357414": 21, "1982": 29, "1982ieeep": 29, "1983": [2, 15, 31, 33], "1984": 2, "1987": [2, 33], "199": [21, 42], "1990": [15, 29, 31, 41], "1992": [15, 31, 41], "199268594384": 21, "1994": 2, "1996": 2, "1997": [2, 15, 32], "1998": [2, 19, 20], "199997": 21, "199999": 21, "19it": 31, "1b": 30, "1d": 21, "1e": [2, 16, 17, 27, 28, 41, 43], "1e10": 22, "1e16": 28, "1e2": 2, "1e4": 41, "1e5": 41, "1e6": 26, "1e9": 2, "1j": 21, "1m": 41, "2": [0, 2, 3, 5, 9, 12, 13, 16, 17, 18, 20, 21, 22, 26, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 48, 49], "20": [2, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 37, 38, 40, 41, 42, 46], "200": [2, 14, 15, 16, 17, 22, 23, 28, 29, 31, 32, 33, 38, 41, 42], "2000": [2, 17, 20, 21, 23, 34, 42, 43], "20000": [17, 30], "200000": [17, 43], "20006233454": 21, "2001a": 21, "2002": 28, "2003": [2, 22], "2006": 2, "2007": [20, 29], "2009": 2, "200it": [15, 31], "201": [14, 21, 42], "2010": [2, 21, 22, 28], "20108996332": 21, "2010lnp": 22, "2011": 2, "2012": [2, 41], "2013": [2, 28], "2014": [2, 15, 38, 41, 44], "2015": [2, 8, 21, 28, 41], "2016": [1, 8, 12, 28], "2017": [1, 2, 8], "2018": [1, 2, 8, 18, 41], "2019": [3, 12, 18, 29, 41], "202": [21, 42], "2020": [1, 5], "20202793181": 21, "2021": [1, 2, 4, 12, 41], "20213320851": 21, "2021b": 2, "2022": [1, 41], "2023": [1, 27], "2024": 1, "203": [21, 42], "20321939e": 31, "20344258845": 21, "203501": [32, 33], "20357654989": 21, "203m": 22, "204": [12, 42], "2040": 21, "20403489": 21, "204034894705": 21, "204483643174": 21, "2048": 46, "205": [29, 42], "2054288j": 24, "206": [21, 42], "2063": 30, "20637777448": 21, "206377997994": 21, "206543818116": 21, "20662690699": 21, "207": 42, "2070": [21, 34], "207446575165": 21, "20770115e": 13, "208": [21, 42], "20856451e": 28, "209": 42, "209455892444": 21, "20972054e": 13, "20it": 18, "21": [2, 13, 14, 15, 17, 18, 19, 20, 21, 23, 27, 28, 29, 35, 37, 40, 41, 42], "210": [21, 42], "21093174815": 21, "211": 42, "212": [21, 42], "21232941747": 21, "2126": 44, "213": [12, 42], "21393967e": 31, "214": 42, "21404652e": 20, "21489995718": 21, "21490839e": 14, "215": 42, "21549396217": 21, "216": [21, 42], "21613633633": 21, "217": [21, 42], "217004179955": 21, "21713": 12, "218": 42, "21801964939": 21, "21821717918": 21, "2183": 28, "2184": 28, "2188": 28, "21885484457": 21, "2189": 28, "219": [21, 42], "21960029522001": 28, "2196003": 28, "219870209694": 21, "21it": 41, "22": [9, 13, 14, 15, 17, 19, 20, 21, 23, 27, 28, 29, 30, 35, 37, 40, 41, 42, 43], "220": [21, 41, 42], "2203": 28, "2204": 28, "22096e": 2, "221": [2, 42], "221253693104": 21, "221416326686607e": 32, "2215629518": 21, "222": 42, "22251145e": 31, "22257082164": 21, "223": [21, 42], "2230": 28, "2231466": 25, "224": [21, 42], "22435864806": 21, "2245": 30, "225": [21, 23, 42], "225027650595": 21, "22528916e": 14, "22595417": 34, "226": [23, 42], "22623935e": 13, "22633959353": 21, "2265856415": 21, "227": [12, 15, 21, 23, 31, 42], "227578774095": 21, "22769507766": 21, "22792515159": 21, "228": [21, 23, 42], "22821688652": 21, "22832208872": 21, "2286": 30, "229": [21, 23, 42], "23": [13, 14, 15, 19, 20, 21, 23, 27, 28, 29, 35, 37, 40, 41, 42], "230": [21, 42], "23014832e": 20, "231": [21, 27, 42], "231474906206": 41, "23196092248": 21, "23198154569": 21, "232": 42, "2328": 13, "233": [21, 42], "234": 42, "23444570601": 21, "23456764221": 21, "2348": 13, "234885290265": 21, "23499922454": 21, "235": [21, 42], "235334053636": 21, "236": [12, 21, 42], "23635569": 21, "23635569215": 21, "237": [21, 42], "2375": 28, "23763982952": 21, "2379": 13, "238": [21, 42], "238480210304": 21, "2385392189": 21, "238895997405": 21, "238it": 16, "239": [21, 42], "23914953e": 13, "239998": 21, "24": [2, 12, 13, 14, 15, 16, 19, 20, 21, 23, 28, 29, 37, 40, 41, 42], "240": [21, 27, 42], "24000263e": 31, "24027874e": 31, "241": [21, 27, 42], "2411": 27, "2412": 28, "24126319e": 14, "24169912934": 21, "242": [21, 42], "24257145e": 20, "243": [21, 42], "24304742e": 13, "24329108": 21, "24332383275": 21, "24358981e": 13, "24377171695": 21, "244": [21, 42], "24498998e": 31, "245": [2, 21, 27, 42], "2452294": 34, "246": [21, 42], "2466": 34, "247": [21, 42], "24794691801": 21, "248": [21, 42], "24828431": 42, "2484": 13, "248482748866": 21, "24864925": 22, "24889309704": 21, "249": [21, 42], "2493594640564": 28, "2495504991004161": 14, "24hz": 19, "25": [2, 13, 14, 15, 19, 21, 23, 27, 28, 29, 31, 33, 37, 38, 40, 41, 42], "250": [2, 17, 27, 42], "25078": 17, "251": [21, 27, 42], "252": [21, 27, 42], "253": [21, 42], "2534": 28, "25347190e": 2, "253573834896": 21, "25371134281": 21, "254": [21, 42], "255": [2, 21, 42, 44], "25516327": 22, "256": [15, 16, 18, 21, 26, 27, 29, 31, 41, 42], "25600": 18, "256171390414": 21, "25650832057": 21, "25695282221": 21, "25699675e": 13, "257": [21, 42], "25735516846": 21, "258": 42, "25819509": [24, 25], "25844488e": 30, "258596763015": 21, "25882679": 36, "258827999234": 21, "258it": 26, "259": [21, 42], "25908665e": 13, "259259259259259e": 23, "259784281254": 21, "26": [13, 14, 15, 21, 23, 27, 28, 29, 37, 40, 41, 42], "260": 42, "260604158044": 21, "26073910296": 21, "261": [21, 42], "2610": 28, "26141363382": 21, "262": [13, 42], "26202900e": 14, "26206161082": 21, "2626": 34, "26276548e": 13, "263": [21, 29, 42], "26300006": 21, "26336794": 2, "26394830644": 21, "264": [15, 21, 42], "26415735483": 21, "26487219334": 21, "265": [21, 42], "266": [15, 31, 42], "26625716": 22, "26645768025078276": 14, "267": [21, 42], "26707856e": 31, "26749277": 21, "267971634865": 21, "268": [21, 42], "26880034804": 21, "268874913454": 21, "269": [21, 42], "26963350177": 21, "26987493038": 21, "27": [14, 21, 23, 27, 28, 29, 37, 40, 41, 42], "270": 42, "2706": 2, "2708": 13, "271": 42, "271308645606": 21, "272": [21, 42], "27241631e": 14, "272911697626": 21, "2729it": 41, "273": 42, "2731481481481482e": 21, "2733836025": 21, "274": 42, "274298503995": 21, "275": [21, 42], "275382354856": 21, "276": [15, 17, 21, 42], "276099190116": 21, "2763479501": 21, "276563555": 21, "277": [21, 42], "27798360586": 21, "27798460424": 21, "278": 42, "2783": 15, "279": [21, 42], "27971172333": 21, "279999": 21, "2799997": 21, "28": [2, 14, 21, 23, 24, 28, 29, 30, 37, 41, 42], "280": [21, 42], "281": [21, 42], "28180256486": 21, "28199738264": 21, "282": [21, 42], "282407407407408e": 21, "282619684935": 21, "2828": 14, "283": [21, 42], "28334981203": 21, "283655911684": 21, "283936053514": 21, "284": 42, "284333616495": 21, "285": [21, 42], "28512185812": 21, "286": 42, "28610905e": 31, "2869": 28, "287": 42, "288": [21, 42], "288003221154": 21, "289": 42, "28946188e": 13, "28it": [17, 41], "29": [13, 14, 17, 21, 23, 27, 28, 37, 42], "290": [21, 42], "290307078827": 28, "29050497e": 20, "291": [15, 42], "292": 42, "29237": 30, "293": [15, 21, 42], "29370170832": 21, "294": [21, 42], "29467050731": 21, "295": 42, "2957": 17, "296": 42, "296378955245": 21, "29652753472": 21, "2966": 2, "29664757848": 21, "297": [21, 42], "29710520804": 21, "29738210142": 21, "297571882606": 21, "2976": 2, "29760812e": 31, "29773187637": 21, "298": 42, "29874082e": 14, "299": [21, 42], "29924210906": 21, "29941723": 13, "29958720505": 21, "2_": [29, 33], "2_1": [32, 33], "2_k": 29, "2_n": [2, 8, 9, 33], "2a": 2, "2d": [2, 13, 44, 45], "2e": 12, "2e2": 41, "2e4": [27, 41], "2f": 30, "2gb": 30, "2hz": 18, "2k": 29, "2m": 2, "2ml": 41, "2nd": 8, "2nw": 29, "2pi": 24, "2x2": 2, "3": [0, 2, 3, 4, 5, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "30": [2, 13, 14, 19, 21, 23, 25, 26, 28, 29, 30, 33, 37, 41, 42], "300": [2, 13, 14, 15, 17, 21, 23, 28, 29, 31, 32, 36, 41, 42], "3000": [2, 17, 21, 33], "30000": 2, "301": 42, "301297202706": 21, "30165990e": 13, "302": [21, 42], "3020": 2, "3026": 14, "30278344e": 31, "303": 42, "303189352155": 21, "30322690308": 21, "30346444249": 21, "3036": 17, "304": [21, 42], "305": 42, "30537183583": 21, "3058": 13, "306": [21, 42], "306009307504": 21, "3066085726": 21, "307": 42, "30754908919": 21, "30780394375": 21, "30799421668": 21, "308": [21, 42], "30817961693": 21, "30828311e": 13, "309": [21, 42], "30914910e": 14, "30932036042": 21, "30946139991": 21, "3096": 13, "309792": 27, "30986727774": 21, "30996608e": 13, "30it": [15, 18], "31": [14, 21, 23, 28, 30, 41, 42], "310": 42, "31032111": 24, "310430": 2, "311": [21, 42], "31160": 12, "312": [21, 42], "312041819096": 21, "31206307e": 31, "31284117699": 21, "313": 42, "313546299934": 21, "314": [21, 42], "3148148148148147e": 23, "315": [21, 42], "3150": 13, "3156": 38, "31582227349": 21, "316": 42, "31681": 13, "317": [21, 42], "318": [21, 42], "319": [21, 42], "31907922e": 31, "31928488612": 21, "31954335e": 14, "31993222": 34, "319996": 21, "3199997": 21, "32": [2, 9, 13, 14, 21, 23, 27, 28, 30, 33, 41, 42, 43], "320": [14, 21, 42], "32007463": 13, "321": [21, 42], "32165810466": 21, "32166413963": 21, "32184153795": 21, "322": [16, 21, 42], "323": [21, 42], "32313683": 28, "323437169194": 21, "3239519": [0, 3], "324": [21, 42], "32409725e": 31, "3242825": [0, 3], "3242829": [0, 3], "3242835": [0, 3], "32460169494": 21, "32466747e": 31, "325": [21, 41, 42], "32514629e": 31, "32567283511": 21, "326": 42, "3264": 15, "327": 42, "3275": 15, "3275937736": 21, "328": 42, "32816666e": 13, "32859119": 15, "329": [21, 42], "32900521159": 21, "329228281975": 21, "32975102961": 21, "329968214035": 21, "33": [14, 18, 21, 23, 27, 28, 41, 42], "330": [29, 42], "33039654791": 21, "331": [12, 42], "331126e8": 41, "331134e8": 41, "332": [21, 42], "333": 42, "33307418227": 21, "33333333333324333": 19, "33343601227": 21, "33366891742": 21, "33367057145": 21, "334": 42, "33445057273": 21, "33480271697": 21, "335": [12, 21, 42], "33590015769": 21, "336": 42, "336458325386": 21, "337": [21, 42], "338": 42, "33870181441": 21, "338882282376": 21, "339": [21, 42], "33it": [19, 41], "34": [2, 12, 13, 14, 18, 21, 23, 27, 28, 29, 30, 41, 42], "340": 42, "34000660e": 13, "340845018625": 21, "34091578424": 21, "341": 42, "34134361148": 21, "341705307364": 21, "342": 42, "342386975884": 21, "343": 42, "344": [21, 42], "34404789": 13, "34404800832": 21, "344923987985": 21, "345": [2, 21, 22, 42], "34533744186058": 27, "34584431e": 31, "345912232995": 21, "346": [21, 42], "34677195549": 21, "347": 42, "348": 42, "34814529e": 31, "349": [21, 42], "35": [2, 13, 14, 15, 21, 23, 27, 28, 41, 42], "350": [2, 12, 21, 42], "351": [21, 42], "3514444083": 21, "35172244e": 31, "352": 42, "353": [21, 42], "35308043e": 13, "354": 42, "35489681363": 21, "355": 42, "35553415e": 31, "35566037": 13, "35595259854821": 27, "356": [21, 42], "356194490192345": 41, "356203347445": 21, "35622831e": 14, "35659323e": 28, "357": 42, "35701826e": 28, "35718101263": 21, "35749643e": 31, "35750260949": 21, "35797260e": 13, "358": 42, "358734831214": 21, "35879443586": 21, "35882619": 34, "359": [21, 42], "359298199415": 21, "35952179134": 21, "359997": 21, "359999": 21, "359h": 21, "36": [12, 13, 14, 21, 23, 28, 30, 41, 42], "360": [21, 41, 42], "3600001": 21, "360001": 21, "3602": 15, "36030867696": 21, "36044855416": 21, "36080561093513097": 28, "36089865863": 21, "361": [15, 42], "3613": 13, "36147313": [24, 25], "3615": 12, "362": 42, "3622": 12, "36281684041": 21, "363": [21, 42], "36341136694": 21, "363516911864": 21, "364": 42, "364117503166": 21, "365": 42, "36573840678": 21, "366": 42, "3665": 2, "36667023e": 14, "367": 42, "368": 42, "368400886655": 21, "3684746474": 21, "36898006499": 21, "369": [21, 42], "36904080e": 13, "36it": 15, "37": [13, 14, 21, 23, 28, 41, 42], "370": [21, 41, 42], "37006236613": 21, "37028862536": 21, "3705245": 15, "371": [21, 42], "37110866606": 21, "37143753469": 21, "371477141976": 21, "37191092968": 21, "37192421e": 31, "372": 42, "37218731642": 21, "372802481055": 21, "373": [21, 42], "37347571552": 21, "3739194572": 21, "374": 42, "37416": 12, "375": [15, 31, 42], "37501113117": 21, "376": [21, 42], "37613813579": 21, "377": 42, "37703952193": 21, "37754881382": 21, "37795352936": 21, "378": [21, 42], "37845928967": 21, "379": [21, 42], "37937": 12, "37940654e": 13, "37962676585": 21, "37971533e": 13, "38": [3, 13, 14, 21, 23, 28, 30, 41, 42], "380": 42, "38063727319": 21, "3809308": 36, "381": [21, 42], "382": 42, "38213649959974": 29, "38221885264": 21, "38229085505": 21, "3823": 13, "382397055626": 21, "383": [12, 42], "383003011346": 21, "38345962763": 21, "383646559789373": 28, "38371881e": 31, "38392549753": 21, "384": [21, 42], "38429802656": 21, "3847": 29, "385": [21, 42], "38563929498": 21, "386": 42, "387": [21, 42], "38718263805": 21, "38765838742": 21, "388": [21, 42], "3881": 29, "3882278502": 21, "38823206723": 21, "3885": 13, "389": [21, 42], "38902553916": 21, "38979135454": 21, "3898435": [0, 3], "39": [3, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 29, 31, 41, 42, 43], "390": [21, 42], "39014860988": 21, "39090189338": 21, "391": [15, 21, 31, 42], "39146079e": 13, "39169834e": 13, "392": [21, 42], "39221": 12, "39239893854": 21, "39276": 31, "393": [21, 42], "394": 42, "3948": 14, "395": [21, 42], "39591316879": 21, "396": [21, 42], "396000": 27, "39660007e": 20, "397": [2, 21, 42], "39758950e": 13, "39765946567": 21, "397889867425": 21, "398": [21, 42], "39824913442": 21, "3983823657": 21, "39881603e": 13, "399": [21, 42], "39963588e": 31, "3999": 13, "399998": 21, "3999996": 21, "3e": [26, 33], "3f": 28, "3rd": [2, 13], "4": [2, 3, 4, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "40": [2, 13, 14, 15, 17, 21, 23, 28, 41, 42], "400": [2, 12, 17, 28, 39, 40, 42], "400001": 21, "40001221001": 21, "4000it": 17, "401": 42, "40127386153": 21, "4019": 14, "402": 42, "4020": [21, 34], "40235653e": 41, "403": 42, "404": [21, 42], "4040": [12, 34], "404179006815": 21, "405": 42, "40503971279": 21, "405183792114": 21, "40576093": 13, "406": 42, "407": [21, 42], "40724231e": 13, "4073446542": 21, "408": 42, "409": 42, "40901064873": 21, "409240707755": 21, "40950546e": 13, "4096": [17, 20], "40996426344": 21, "40it": [15, 41], "41": [12, 14, 21, 23, 27, 28, 41, 42], "410": [21, 42], "41051": 2, "411": 42, "41131565e": 13, "4114151746": 21, "412": [21, 42], "41220693562": 28, "413": [21, 42], "41301441e": 20, "41354955733": 21, "41372717e": 14, "41379696e": 14, "414": [21, 42], "414481043816": 21, "41478018463": 21, "415": [21, 42], "41517931223": 21, "41563603282": 21, "416": 42, "417": [21, 42], "417156770825": 21, "418": [21, 23, 42], "41804847121": 21, "41890460e": 31, "419": [21, 23, 42], "41919325292": 21, "41it": 41, "42": [14, 21, 23, 24, 25, 28, 41, 42], "420": [21, 23, 42], "4200": 13, "42017522e": 13, "42036630213": 21, "42053746": 25, "42077590525": 21, "421": [21, 23, 42], "42145887017": 21, "422": [23, 42], "42273987e": 31, "423": [21, 42], "423598602414": 21, "423752725124": 21, "424": [21, 27, 42], "42455829e": 13, "42481318e": 14, "42490539": 15, "425": 42, "42524618e": 14, "42526854575": 21, "42552369e": 31, "426": 42, "42643971741": 21, "427": [21, 42], "42720920e": 13, "4274": 19, "42757484317": 21, "428": [21, 42], "428599357605": 21, "42859936": 21, "4286561": 29, "429": 42, "42916439e": 31, "42920610309": 21, "42955330014": 21, "4296it": 20, "43": [2, 12, 21, 23, 28, 37, 41, 42], "430": 42, "43040788174": 21, "43060457e": 31, "43082770705": 21, "431": 42, "431891173124": 21, "432": [21, 27, 42], "43240": 2, "433": [21, 42], "433091163635": 21, "434": 42, "43452076614": 21, "4345529": 42, "435": 42, "43506611884": 21, "43536031246": 21, "4357": 29, "436": 42, "43643279374": 21, "43660863e": 13, "4367": 28, "43677": 31, "437": [21, 42], "43715": 31, "43760578334": 21, "438": 42, "43801294267": 21, "43823419511": 21, "438306853175": 21, "439": 42, "439999": 21, "4399996": 21, "43it": [15, 30], "44": [21, 23, 27, 28, 41, 42], "440": 42, "4400": 13, "440001": 21, "44013249874": 21, "441": 42, "441833391786": 21, "44196587801": 21, "442": 42, "4422865361": 21, "44246518612": 21, "44275685": 13, "44281615e": 20, "443": [21, 42], "443054273725": 21, "44356694e": 28, "444": 42, "4446": 2, "445": [21, 42], "44560496509": 21, "445721656084": 21, "446": [21, 42], "447": [29, 42], "44739763439": 21, "448": 42, "44846": 41, "449": [21, 42], "44942123e": 13, "4494404": 2, "45": [2, 13, 21, 23, 28, 41, 42], "450": [21, 42], "45012420416": 21, "4507638216": 21, "451": 42, "452": 42, "452562466264": 21, "453": [21, 42], "4531": 30, "45361994207": 21, "453724": 41, "454": [21, 42], "45401552e": 13, "45405823": 36, "45429375e": 13, "454649567604": 21, "455": [21, 42], "45542292e": 31, "456": [21, 42], "45621095598": 21, "45650801062584": 41, "457": [21, 42], "457227408886": 21, "4572635144": 21, "458": 42, "459": [21, 42], "45959615": 21, "46": [12, 13, 21, 23, 28, 41, 42], "460": [21, 42], "4600": 13, "46000294387": 21, "4605127275": 21, "46092350e": 14, "461": [12, 42], "46127864e": 31, "46171656251": 21, "46193483472": 21, "462": [29, 42], "463": [21, 42], "46383838e": 20, "464": [21, 42], "46450232j": 15, "46475116": [24, 25], "465": [21, 42], "46520": 31, "46542161703": 21, "46565423906": 21, "466": [21, 42], "4667224288": 21, "466738790274": 21, "467": [21, 42], "46777294576": 21, "468": [21, 42], "46833517e": 31, "469": 42, "46905530e": 31, "46916554e": 31, "46944695e": 2, "46965831518": 21, "46966187e": 31, "46966498e": 13, "46986106e": 31, "47": [12, 13, 21, 23, 27, 28, 41, 42], "470": 42, "47032653": 21, "47035036981": 21, "471": [21, 42], "47100837": 21, "472": 42, "472222222222222e": 23, "473": 42, "47344271839": 21, "474": [15, 21, 42], "47431126237": 21, "47479322553": 21, "47479323": 21, "475": [21, 42], "475006356835": 21, "47574129701": 21, "476": [21, 42], "47602318227": 21, "47624077e": 13, "477": 42, "47765550e": 20, "47775222e": 28, "478": [21, 42], "478862181306": 21, "479": 42, "47936328e": 31, "479585409164": 21, "47965101898": 21, "479996": 21, "4799995": 21, "47it": 15, "48": [13, 21, 23, 27, 28, 41, 42], "480": [21, 42], "4800": 13, "4800005": [16, 21], "481": 42, "48123975098": 21, "48143340647": 21, "48148529e": 31, "482": 42, "48255087435": 21, "48269612e": 14, "48290689j": 15, "483": 42, "4835": 28, "484": [21, 42], "48453132808": 21, "48481544852": 21, "485": [21, 42], "48509004712": 21, "486": 42, "48620200157": 21, "487": [21, 42], "48755812": 42, "488": [21, 42], "48806670e": 20, "4881255": [0, 3], "48889204e": 31, "48890078068": 21, "489": [21, 42], "489329367876": 21, "489620789886": 21, "48970986903": 21, "48980332e": 28, "48982979357": 21, "48985545e": 13, "49": [2, 21, 23, 28, 41, 42], "490": 42, "49049233e": 13, "49083269e": 13, "491": 42, "491618439555": 21, "49163559079": 21, "492": [21, 42], "49240044e": 31, "49293643e": 31, "493": 42, "494": [2, 21, 42], "49409": 28, "4941": 28, "49414373934": 21, "49434961e": 20, "495": [21, 42], "49526224": 25, "4955958724": 21, "495729878545": 21, "496": [21, 42], "496204048395": 21, "49627235532": 21, "49642172456": 21, "49645087123": 21, "49698485434": 21, "497": 42, "49707597": 13, "49740232527": 21, "498": 42, "49834338": 34, "49852755e": 31, "49861477e": 28, "4989": 13, "49891250e": 13, "499": [21, 42], "49974561e": 20, "49999965": 42, "4e": [2, 12], "4f": 28, "4u": 20, "5": [2, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "50": [2, 12, 13, 14, 15, 19, 21, 22, 23, 27, 28, 32, 33, 41, 42, 43, 46], "500": [2, 16, 17, 18, 20, 22, 23, 28, 41, 42], "5000": [2, 13, 16], "50000": 21, "500000": [13, 14], "500082850456": 21, "50042861e": 13, "50080451369": 21, "50082": 2, "501": [21, 42], "50101563": 14, "5011": 13, "50135744e": 28, "50140": 12, "50157275796": 21, "50184348e": 20, "50197819e": 20, "502": [21, 42], "502268999815": 21, "50295473635": 21, "503": [21, 42], "50371039j": 15, "504": [21, 42], "5046": 12, "5048404783": 21, "505": [21, 42], "5051": 12, "50515": 31, "50517678261": 21, "50571863353": 21, "506": [21, 42], "506356075406": 21, "507": [21, 42], "50738698e": 13, "50754514e": 30, "50761732e": 13, "508": [21, 42], "50804985e": 14, "5085": 13, "509": [21, 42], "5091352": 34, "509354412556": 21, "50pcu": 41, "51": [21, 23, 27, 28, 42], "510": [21, 23, 42], "5101": 12, "51030369103": 21, "511": [21, 29, 42], "51117782295": 21, "512": [21, 42], "5125": 12, "5129428726077": 28, "51297268e": 41, "513": [21, 42], "51361806691": 21, "51373516e": 13, "514": 42, "515": 42, "51526069641": 21, "515790537": 21, "51598034799": 21, "516": 42, "5162": [13, 14], "5162641108": 21, "5164": 14, "516439035535": 21, "516511276364": 21, "517": [12, 21, 42], "51728320122": 21, "51743271": 13, "51779472828": 21, "518": 42, "518022567034": 21, "51847578585": 21, "519": [21, 42], "51909430325": 21, "5192": 41, "51920": 41, "519997": 21, "5199995": 21, "52": [13, 18, 21, 22, 23, 28, 41, 42], "520": 42, "5200": 16, "521": [21, 42], "52192914j": 24, "522": [21, 42], "52268207": 42, "523": [21, 42], "52309943e": 31, "52326503j": 15, "523783952": 21, "524": [42, 45], "525": 42, "52529974e": 31, "52543953061": 21, "526": [21, 42], "52630840242": 21, "52661012e": 31, "52665117383": 21, "52679951e": 31, "52692268789": 21, "52698163688": 21, "527": 42, "527631640434": 21, "528": [21, 42], "52801220e": 31, "5281": [0, 3], "529": [21, 42], "52947856486": 21, "52954874933": 21, "52997684479": 21, "52it": [19, 31], "53": [2, 15, 21, 23, 28, 42], "530": 42, "53088049e": 13, "531": [21, 42], "532": [21, 42], "5327937603": 21, "533": 42, "533760264516": 21, "534": 42, "53408125": 13, "53409618139": 21, "53439701e": 13, "5347": 30, "535": 42, "536": [20, 21, 42], "53613857e": 13, "537": 42, "5370": 14, "53731942": 42, "53795617819": 21, "538": 42, "53864807e": 31, "539": 42, "5390470773": 21, "53it": 26, "54": [23, 27, 28, 42], "540": [21, 42], "54014775e": 14, "541": [21, 42], "542": [21, 42], "54281243": 21, "543": [21, 42], "54304688": 14, "54358610511": 21, "5438": 41, "544": [21, 42], "54412809014": 21, "54425382614": 21, "54447950e": 13, "544512": 28, "54459910095": 21, "54479649e": 30, "54479831": 36, "545": 42, "54513351": 42, "545409321785": 21, "545517489314": 21, "54558329284": 21, "54599394": 15, "546": 42, "5462962962962965e": 21, "54631538689": 21, "54668594e": 41, "546872377396": 21, "547": [21, 42], "548": [21, 42], "549": [21, 42], "549025550485": 21, "5492": 13, "54it": 15, "55": [2, 23, 28, 42], "550": 42, "55000": [23, 42], "551": [21, 42], "55197": 21, "552": 42, "552283763885": 21, "55239": 28, "55239425": 28, "55246156454": 21, "553": 42, "553125": 14, "553292140365": 21, "5537327677": 21, "554": [21, 42], "55412106216": 21, "554390221834": 21, "55459927e": 20, "555": 42, "55517598e": 14, "55536424e": 31, "556": 42, "5562723279": 21, "557": 42, "557712092996": 21, "55781446397": 21, "558": [21, 42], "5582486265116": 28, "55830208957": 21, "559": [21, 42], "55909974873": 21, "55930": 2, "559998": 21, "56": [21, 23, 27, 28, 29, 30, 42], "560": [21, 42], "56000": 30, "56059738994": 21, "561": [21, 42], "56159": 31, "562": [21, 42], "56298401952": 21, "563": 42, "56362131e": 20, "564": [21, 42], "5645": 30, "56476637721": 21, "565": 42, "56565439e": 31, "56570722163": 21, "565826013684": 21, "566": 42, "56656876e": 20, "56686630845": 21, "567": [21, 42], "56737007201": 21, "56746832e": 13, "56752": 31, "568": [21, 42], "568026304245": 21, "569": [21, 42], "56900080e": 13, "5691486161504021": 28, "57": [23, 27, 28, 29, 42], "570": [21, 42], "5701": 30, "5704": 13, "571": [21, 42], "572": [21, 42], "572394132614": 21, "573": 42, "574": [21, 42], "57445478e": 13, "575": [12, 21, 42], "5750": 14, "57550364733": 21, "57560668886": 21, "5756611715042": 43, "576": [21, 42], "576121881604": 21, "577": [21, 42], "577606111765": 21, "578": 42, "579": 42, "579354": 28, "58": [23, 27, 28, 42], "580": 42, "58000": [18, 21], "58020047e": 31, "58020955324": 21, "581": [21, 42], "582": [21, 42], "58201128e": 31, "58282563e": 13, "583": [21, 42], "583770141006": 21, "584": [21, 42], "58448088169": 21, "585": [21, 42], "585879951715": 21, "586": 42, "58682373e": 31, "587": 42, "58715964854": 21, "58721217513": 21, "587887212634": 21, "588": [21, 42], "589": 42, "589673": 25, "58969677985": 21, "589912459254": 21, "59": [21, 23, 28, 42], "590": [21, 42], "590956673026": 21, "591": [21, 42], "5916": 15, "59163464606": 21, "591946706176": 21, "592": [21, 42], "59268042445": 21, "593": 42, "59336720407": 21, "594": [21, 42], "59416265786": 21, "59418559e": 13, "594902947545": 21, "595": [15, 42], "596": [21, 42], "59601339698": 21, "596397176385": 21, "59646030e": 31, "59682570398": 21, "5969": 14, "596908301115": 21, "597": [21, 42], "59760255e": 14, "59776712954": 21, "598": [21, 42], "599": [23, 42], "599841311574": 21, "59991361201": 21, "5e": [17, 18, 26], "5e4": 41, "5f": 28, "6": [2, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "60": [2, 17, 23, 26, 28, 42], "600": [2, 21, 23, 42], "6000": [28, 34, 41], "600917607546": 21, "601": [27, 29, 42], "6012": 14, "602": [21, 23, 42], "60222132504": 21, "60230186e": 14, "603": [21, 23, 42], "60363976e": 31, "603752076626": 21, "604": [21, 23, 42], "60426925123": 21, "60432396829": 21, "60459939": 21, "60482543707": 21, "60487310588": 21, "605": [21, 42], "6050907j": 24, "60576409": 13, "60598497": 13, "606": [21, 42], "60641156137": 21, "606552898884": 21, "607": [21, 42], "60727831721": 21, "608": 42, "60825816e": 31, "609": [23, 42], "60975474119": 21, "60it": [18, 41], "61": [23, 28, 29, 42], "610": [23, 42], "611": 42, "61112074554": 21, "61153784": 13, "612": [21, 42], "61234244e": 31, "613": 42, "61377693713": 21, "614": [21, 42], "615": 42, "61531569064": 21, "615449771285": 21, "616": [21, 29, 42], "61635344021062": 28, "617": [21, 42], "618": [21, 42], "61806283891": 21, "618157073855": 21, "619": 42, "61943152547": 21, "61it": [17, 18, 19], "62": [2, 23, 27, 28, 42], "620": 42, "620239943266": 21, "62062702e": 31, "621": [8, 42], "62145798e": 13, "622": [21, 42], "6222": 14, "62231977284": 21, "622610628605": 21, "623": 42, "62369687855": 21, "624": [21, 42], "625": [15, 21, 31, 42], "626": 42, "62624913454": 21, "626723498106": 21, "627": [21, 42], "627166330814": 21, "62731541693": 21, "62741142": 21, "628": 42, "62832368": 36, "62837187e": 20, "628895014524": 21, "629": 42, "6290078": [0, 3], "6296296296296294e": 23, "62it": [18, 20], "63": [21, 23, 24, 27, 28, 42], "630": 42, "63000917435": 21, "63048041": 21, "631": [21, 42], "63100332022": 21, "63124883175": 21, "631684705615": 21, "632": [21, 42], "63218219578": 21, "63243843615": 21, "633": 42, "63308496773": 21, "634": 42, "63410934806": 21, "63441582024": 21, "63476088643": 21, "635": [21, 42], "636": 42, "63681046665": 21, "637": 42, "63745248318": 21, "638": 42, "63874625e": 13, "639": [14, 42], "6390401": 15, "6394742": [0, 3], "6396": 17, "6399999": 21, "64": [8, 16, 20, 21, 22, 23, 27, 28, 41, 42, 46], "640": [15, 21, 42], "64050154388": 21, "6409278512": 21, "640x480": 28, "641": [21, 42], "64101035893": 21, "64107250e": 31, "64121258e": 31, "64161340892": 21, "64194495976": 21, "642": [21, 42], "6423749999999999": 28, "642375": 28, "642409190536": 21, "64275": 12, "643": [21, 42], "64352825284": 21, "64355198j": 15, "644": [21, 42], "645": [21, 42], "645673155785": 21, "646": [21, 42], "64683301747": 21, "647": 42, "64739272e": 13, "648": 42, "64803568e": 20, "648124307394": 21, "64840815961": 21, "64851065e": 13, "64868846536": 21, "649": 42, "64919489622": 21, "64942750e": 14, "64it": [17, 31], "65": [2, 17, 21, 23, 27, 28, 42, 46], "650": [21, 42], "6500": [16, 34], "650620505214": 21, "651": [21, 42], "652": 42, "653": 42, "6534255296": 21, "65343943": 42, "6535": 29, "654": [21, 42], "654379203916": 21, "65460441e": 13, "654990166426": 21, "655": [21, 42], "65506201e": 14, "656": [21, 42], "6568851918": 21, "657": [21, 42], "65733555e": 31, "65760450065": 21, "65798045e": 41, "658": [21, 42], "65814471e": 13, "658161982894": 21, "659": 42, "65946229e": 2, "66": [21, 23, 28, 42, 46], "660": [14, 42], "66017211974": 21, "66023361683": 21, "66059269011": 21, "661": 42, "662": 42, "663": [8, 21, 42], "664": [21, 42], "66440632939": 21, "6647": 14, "66476659477": 21, "665": [21, 42], "66578478e": 31, "666": [2, 21, 42], "666031733155": 21, "6661": 15, "66623686": 36, "6664": 14, "667": 42, "66787202656": 21, "668": [21, 42], "669": [21, 42], "67": [18, 21, 23, 28, 42, 46], "670": [21, 42], "67004515231": 21, "671": 42, "67192919552": 21, "672": [21, 42], "67230030894": 21, "67295819521": 21, "673": 42, "67317868769": 21, "6739536386162": 28, "674": 42, "6746004": 13, "675": 42, "67539077e": 20, "676": [2, 42], "67607504e": 31, "67625425e": 20, "67677563429": 21, "677": 42, "6770": 14, "67721999": 42, "67739661e": 20, "678": [27, 42], "67825654149": 21, "679": [21, 42], "679025664926": 21, "67988284e": 13, "679996": 21, "6799998": 21, "67it": 31, "68": [21, 23, 28, 42, 46], "680": 42, "6800001": 21, "68090777099": 21, "681": [21, 42], "68169619": 21, "682": [21, 42], "68284714222": 21, "68285809457": 21, "683": [21, 42], "683266": 28, "684": 42, "685": [21, 42], "68533721566": 21, "685712620616": 21, "686": 42, "686609": 28, "68685694039": 21, "687": 42, "688": 42, "6889410986737": 28, "689": [21, 42], "68940325081": 21, "69": [23, 27, 28, 30, 42, 46], "690": 42, "69020683e": 13, "690936505795": 21, "69095006585": 21, "691": [21, 27, 42], "69195660949": 21, "692": [21, 42], "69214613736": 21, "69266": 28, "69267453e": 13, "69297429919": 21, "693": [21, 42], "69373893": 13, "694": [21, 42], "694500654936": 21, "695": [12, 42], "696": [12, 21, 42], "69655286e": 14, "697": [8, 21, 42], "698": [21, 42], "69804634154": 21, "699": [21, 42], "69929590821": 21, "699784219265": 21, "69it": 30, "7": [2, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46], "70": [2, 21, 23, 27, 28, 29, 30, 42, 46], "700": [20, 21, 42], "701": [12, 21, 42], "702": [27, 42], "70217871666": 21, "7023": 14, "70262505e": 41, "703": [12, 21, 42], "70308248699": 21, "70387540758": 21, "704": [21, 42], "704120812954": 28, "704266637564": 21, "704568862915": 21, "704811513424": 21, "705": 42, "706": 42, "7061804533": 21, "70694020e": 28, "707": [8, 42], "70732731e": 13, "70795631409": 21, "708": [21, 42], "70824530721": 21, "70867585": 21, "709": [21, 42], "70902436e": 13, "70it": 30, "71": [21, 23, 27, 28, 42, 46], "710": 42, "71057784557": 21, "71061439812": 21, "711": 42, "71187242e": 13, "712": [8, 42], "71227576": 13, "71238867e": 14, "71252762e": 14, "71263246238": 21, "713": 42, "713349059224": 21, "7135161": [0, 3], "71353569627": 21, "714": 42, "715": [8, 21, 42], "71510283649": 21, "7152": 44, "71523039043": 21, "71594888e": 31, "716": [8, 21, 42], "71646651e": 31, "717": 42, "71705073118": 21, "71755500138": 21, "71769653261": 21, "718": [8, 42], "718121901155": 21, "718157589436": 21, "718622386456": 21, "71888075": 36, "719": 42, "719997": 21, "7199998": 21, "71it": [30, 31], "72": [15, 21, 22, 23, 28, 42, 46], "720": [21, 42], "72042936e": 31, "721": [8, 12, 42], "72111516": 36, "721879810095": 21, "722": [12, 21, 42], "72279639542": 21, "723": [8, 42], "72337460518": 21, "72348179e": 31, "724": [8, 21, 42], "72407652438": 21, "72418140e": 31, "72473844886": 21, "72485752": 15, "72491231561": 21, "725": [8, 21, 42], "72558781e": 20, "726": [8, 21, 42], "72611118853": 21, "72630968": 13, "7263391763": 21, "727": [8, 42], "72700405121": 21, "728": 42, "729": [8, 21, 42], "72915772": 28, "72916": 28, "72920344e": 31, "72it": [17, 26, 38], "73": [21, 23, 28, 29, 42, 46], "730": [8, 21, 42], "7305": 29, "731": [8, 21, 42], "731096595526": 21, "732": [21, 42], "732587218285": 21, "733": [21, 42], "73323458433": 21, "73336812": 28, "73337": 28, "73376466334": 21, "734": [21, 42], "734096348286": 21, "73415923e": 31, "73419771": 13, "735": [21, 42], "735276550055": 21, "735619053245": 21, "736": [8, 21, 42], "737": [8, 21, 42], "73774009943": 21, "738": [8, 21, 42], "739": [8, 21, 42], "74": [21, 23, 28, 42, 46], "740": [20, 21, 42], "74011370e": 13, "741": 42, "742": [8, 42], "743": 42, "74367792e": 14, "744": [42, 45], "74407067895": 21, "745": [8, 42], "74504661e": 20, "74508482218": 21, "746": [21, 42], "74665103853": 21, "747": [8, 42], "747016862035": 21, "748": [8, 42], "74807231128": 21, "74864292145": 21, "749": [8, 21, 42], "74945259094": 21, "7498": 22, "74it": 18, "75": [2, 23, 27, 28, 30, 31, 42, 46], "750": 42, "7500": 27, "75000": 27, "751": [27, 42], "75100800e": 13, "75140990e": 31, "752": 42, "75274056": 34, "75294222e": 31, "753": [8, 21, 42], "754": [8, 21, 42], "754086226225": 21, "7543": 30, "75462401e": 31, "755": [8, 20, 21, 42], "7550342083": 21, "75551979244": 21, "75552198291": 21, "756": [8, 21, 42], "757": [8, 21, 42], "758": [8, 21, 42], "75870": 28, "759": [21, 42], "759574487805": 21, "7599998": 21, "75it": 41, "76": [12, 16, 21, 23, 27, 28, 42, 46], "760": [8, 42], "76013682783": 21, "7607": 29, "76096495986": 21, "761": [21, 42], "76130715e": 31, "76189556718": 21, "76198838651": 21, "762": [8, 21, 42], "76277536154": 21, "763": [8, 21, 42], "76338464": 15, "763835296035": 21, "764": [8, 21, 42], "7642698288": 21, "7645": 15, "764658123255": 21, "76499980e": 13, "765": [21, 42], "76512372e": 13, "76596863568": 21, "766": [21, 42], "76615965366": 21, "767": 42, "76731089e": 13, "76752875745": 21, "76762147248": 21, "768": [21, 42], "76818268e": 13, "76819873e": 28, "769": [8, 21, 42], "76982654e": 31, "77": [12, 21, 23, 27, 28, 42, 46], "770": [21, 42], "77000087e": 14, "77004908025": 21, "77023650706": 21, "77072089e": 20, "771": [15, 42], "7710172981": 21, "771085351706": 21, "771769434214": 21, "772": [21, 42], "77238176763": 21, "772457659245": 21, "773": [2, 21, 42], "773983463645": 21, "774": [8, 42], "775": 42, "77507701516": 21, "77547458e": 13, "776": [8, 42], "777": 42, "77767854929": 21, "778": [21, 42], "7786257714": 21, "77888666093": 21, "779": [8, 21, 42], "77955941856": 21, "77957522e": 31, "77989049256": 21, "77991810e": 20, "78": [16, 21, 23, 28, 30, 42, 46], "780": [8, 21, 42], "78012427688": 21, "780457377434": 21, "781": [8, 21, 42], "782": [8, 21, 42], "78217072785": 21, "78259626031": 21, "78282105923": 21, "782hz": 20, "783": 42, "78324916959": 21, "78380252": 34, "784": [21, 42], "78458866": 21, "78458866477": 21, "785": [21, 42], "78514607251": 21, "78528097272": 21, "786": [21, 42], "78649295": 13, "787": [8, 21, 42], "787037037037037e": [21, 23], "788": [21, 42], "78843893111": 21, "789": [8, 42], "78900280e": 31, "78927731514": 21, "789436236024": 21, "78943624": 21, "78952820599": 21, "7896770356615": 28, "789920687675": 21, "78it": [20, 30], "79": [16, 21, 23, 28, 42, 46], "790": 42, "79080268e": 14, "791": [21, 42], "79127365351": 21, "79144555e": 31, "791864678264": 21, "792": [8, 42], "792137786746": 21, "79259891808": 21, "793": [21, 42], "793473765254": 21, "794": [21, 22, 42], "79409": 2, "794584959745": 21, "795": [21, 42], "796": 42, "7961999625": 21, "797": 42, "7970570": [0, 3], "79715764": 28, "798": 42, "79813404381": 21, "79838829e": 20, "7984": 31, "798507750034": 21, "79874679446": 21, "799": [8, 42], "7998701334": 21, "7999997": 21, "7cec25b": 20, "7e2c226c1569": 23, "8": [2, 4, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46], "80": [2, 15, 18, 21, 23, 28, 30, 37, 42, 46], "800": [2, 8, 21, 42], "8000": 17, "80000000": 21, "80000001": 21, "80000002": 21, "80000003": 21, "80000004": 21, "80000006": 21, "80000007": 21, "80000008": 21, "80000009": 21, "80000010": 21, "80000011": 21, "80000013": 21, "80000014": 21, "80000015": 21, "80000018": 21, "80000019": 21, "80000020": 21, "80000021": 21, "80000022": 21, "80000023": 21, "80000024": 21, "80000025": 21, "80000026": 21, "80000027": 21, "80000028": 21, "80000031": 21, "80000032": 21, "80000033": 21, "80000034": 21, "80000038": 21, "80000042": 21, "80000043": 21, "80000045": 21, "80000052": 21, "80000054": 21, "80000056": 21, "80000057": 21, "80000058": 21, "80000059": 21, "80000060": 21, "80000063": 21, "80000064": 21, "80000067": 21, "80000068": 21, "80000070": 21, "80000072": 21, "80000073": 21, "80000074": 21, "80000076": 21, "80000078": 21, "80000079": 21, "80000080": 21, "80000083": 21, "80000084": 21, "80000085": 21, "80000086": 21, "80000087": 21, "80000088": 21, "80000089": 21, "80000090": 21, "80000091": 21, "80000092": 21, "80000094": 21, "80000095": 21, "80000096": 21, "80000098": 21, "80000099": 21, "80000100": 21, "80000102": 21, "80000103": 21, "80000104": 21, "80000107": 21, "80000109": 21, "80000111": 21, "80000112": 21, "80000113": 21, "80000115": 21, "80000116": 21, "80000117": 21, "80000118": 21, "80000119": 21, "80000120": 21, "80000121": 21, "80000122": 21, "80000123": 21, "80000125": 21, "80000127": 21, "80000128": 21, "80000129": 21, "80000130": 21, "80000131": 21, "80000132": 21, "80000134": 21, "80000136": 21, "80000137": 21, "80000140": 21, "80000141": 21, "80000142": 21, "80000144": 21, "80000146": 21, "80000147": 21, "80000148": 21, "80000150": 21, "80000158": 21, "80000160": 21, "80000162": 21, "80000163": 21, "80000164": 21, "80000165": 21, "80000166": 21, "80000168": 21, "80000169": 21, "80000170": 21, "80000172": 21, "80000174": 21, "80000176": 21, "80000177": 21, "80000178": 21, "80000180": 21, "80000181": 21, "80000182": 21, "80000183": 21, "80000184": 21, "80000187": 21, "80000188": 21, "80000189": 21, "80000190": 21, "80000191": 21, "80000194": 21, "80000195": 21, "80000197": 21, "80000198": 21, "80000199": 21, "80000200": 21, "80000201": 21, "80000202": 21, "80000203": 21, "80000204": 21, "80000207": 21, "80000208": 21, "80000212": 21, "80000213": 21, "80000214": 21, "80000215": 21, "80000216": 21, "80000217": 21, "80000218": 21, "80000223": 21, "80000224": 21, "80000225": 21, "80000228": 21, "80000229": 21, "80000230": 21, "80000233": 21, "80000235": 21, "80000236": 21, "80000239": 21, "80000240": 21, "80000241": 21, "80000242": 21, "80000243": 21, "80000246": 21, "80000248": 21, "80000249": 21, "80000250": 21, "80000251": 21, "80000252": 21, "80000253": 21, "80000255": 21, "80000256": 21, "80000258": 21, "80000260": 21, "80000261": 21, "80000262": 21, "80000263": 21, "80000264": 21, "80000265": 21, "80000266": 21, "80000268": 21, "80000271": 21, "80000273": 21, "80000275": 21, "80000276": 21, "80000277": 21, "80000278": 21, "80000279": 21, "80000281": 21, "80000283": 21, "80000284": 21, "80000285": 21, "80000287": 21, "80000288": 21, "80000289": 21, "80000290": 21, "80000291": 21, "80000293": 21, "80000296": 21, "80000297": 21, "80000298": 21, "80000299": 21, "80000300": 21, "80000302": 21, "80000305": 21, "80000306": 21, "80000309": 21, "80000310": 21, "80000311": 21, "80000313": 21, "80000316": 21, "80000318": 21, "80000323": 21, "80000324": 21, "80000325": 21, "80000326": 21, "80000328": 21, "80000330": 21, "80000331": 21, "80000332": 21, "80000333": 21, "80000335": 21, "80000336": 21, "80000339": 21, "80000340": 21, "80000341": 21, "80000344": 21, "80000345": 21, "80000346": 21, "80000347": 21, "80000349": 21, "80000351": 21, "80000352": 21, "80000353": 21, "80000354": 21, "80000355": 21, "80000356": 21, "80000357": 21, "80000359": 21, "80000362": 21, "80000363": 21, "80000365": 21, "80000368": 21, "80000369": 21, "80000370": 21, "80000371": 21, "80000373": 21, "80000374": 21, "80000375": 21, "80000378": 21, "80000379": 21, "80000381": 21, "80000382": 21, "80000383": 21, "80000384": 21, "80000387": 21, "80000388": 21, "80000389": 21, "80000392": 21, "80000393": 21, "80000395": 21, "80000396": 21, "80000399": 21, "80000400": 21, "80000403": 21, "80000404": 21, "80000408": 21, "80000410": 21, "80000412": 21, "80000414": 21, "80000415": 21, "80000416": 21, "80000417": 21, "80000418": 21, "80000420": 21, "80000422": 21, "80000424": 21, "80000425": 21, "80000426": 21, "80000427": 21, "80000428": 21, "80000429": 21, "80000432": 21, "80000434": 21, "80000435": 21, "80000436": 21, "80000437": 21, "80000438": 21, "80000442": 21, "80000443": 21, "80000445": 21, "80000446": 21, "80000448": 21, "80000450": 21, "80000451": 21, "80000452": 21, "80000453": 21, "80000454": 21, "80000456": 21, "80000458": 21, "80000459": 21, "80000464": 21, "80000466": 21, "80000467": 21, "80000468": 21, "80000469": 21, "80000472": 21, "80000473": 21, "80000476": 21, "80000480": 21, "80000481": 21, "80000482": 21, "80000483": 21, "80000484": 21, "80000486": 21, "80000487": 21, "80000491": 21, "80000493": 21, "80000494": 21, "80000495": 21, "80000496": 21, "80000497": 21, "80000502": 21, "80000504": 21, "80000505": 21, "80000506": 21, "80000508": 21, "80000509": 21, "80000510": 21, "80000512": 21, "80000516": 21, "80000517": 21, "80000519": 21, "80000520": 21, "80000521": 21, "80000523": 21, "80000525": 21, "80000527": 21, "80000531": 21, "80000532": 21, "80000533": 21, "80000534": 21, "80000535": 21, "80000537": 21, "80000538": 21, "80000540": 21, "80000546": 21, "80000547": 21, "80000549": 21, "80000550": 21, "80000552": 21, "80000553": 21, "80000555": 21, "80000558": 21, "80000559": 21, "80000560": 21, "80000561": 21, "80000562": 21, "80000563": 21, "80000564": 21, "80000565": 21, "80000566": 21, "80000567": 21, "80000569": 21, "80000570": 21, "80000571": 21, "80000572": 21, "80000574": 21, "80000577": 21, "80000578": 21, "80000579": 21, "80000581": 21, "80000582": 21, "80000583": 21, "80000586": 21, "80000589": 21, "80000591": 21, "80000593": 21, "80000594": 21, "80000595": 21, "80000596": 21, "80000598": 21, "80000599": 21, "80000600": 21, "80000602": 21, "80000603": 21, "80000606": 21, "80000608": 21, "80000609": 21, "80000610": 21, "80000611": 21, "80000613": 21, "80000617": 21, "80000618": 21, "80000619": 21, "80000621": 21, "80000623": 21, "80000626": 21, "80000627": 21, "80000628": 21, "80000630": 21, "80000632": 21, "80000634": 21, "80000635": 21, "80000637": 21, "80000642": 21, "80000643": 21, "80000644": 21, "80000645": 21, "80000646": 21, "80000647": 21, "80000648": 21, "80000649": 21, "80000650": 21, "80000655": 21, "80000657": 21, "80000658": 21, "80000660": 21, "80000661": 21, "80000662": 21, "80000663": 21, "80000664": 21, "80000665": 21, "80000666": 21, "80000670": 21, "80000671": 21, "80000673": 21, "80000674": 21, "80000676": 21, "80000678": 21, "80000680": 21, "80000684": 21, "80000685": 21, "80000686": 21, "80000688": 21, "80000691": 21, "80000692": 21, "80000693": 21, "80000694": 21, "80000697": 21, "80000698": 21, "80000699": 21, "80000701": 21, "80000702": 21, "80000705": 21, "80000709": 21, "80000711": 21, "80000712": 21, "80000713": 21, "80000716": 21, "80000717": 21, "80000720": 21, "80000722": 21, "80000723": 21, "80000724": 21, "80000726": 21, "80000727": 21, "80000728": 21, "80000729": 21, "80000730": 21, "80000731": 21, "80000732": 21, "80000733": 21, "80000734": 21, "80000738": 21, "80000739": 21, "80000742": 21, "80000743": 21, "80000745": 21, "80000746": 21, "80000748": 21, "80000749": 21, "80000751": 21, "80000752": 21, "80000753": 21, "80000754": 21, "80000755": 21, "80000756": 21, "80000758": 21, "80000759": 21, "80000761": 21, "80000762": 21, "80000765": 21, "80000767": 21, "80000770": 21, "80000771": 21, "80000773": 21, "80000774": 21, "80000775": 21, "80000777": 21, "80000779": 21, "80000780": 21, "80000781": 21, "80000782": 21, "80000783": 21, "80000785": 21, "80000786": 21, "80000787": 21, "80000790": 21, "80000792": 21, "80000795": 21, "80000797": 21, "80000798": 21, "80000799": 21, "80000803": 21, "80000805": 21, "80000807": 21, "80000808": 21, "80000809": 21, "80000810": 21, "80000811": 21, "80000812": 21, "80000815": 21, "80000816": 21, "80000819": 21, "80000821": 21, "80000822": 21, "80000824": 21, "80000825": 21, "80000827": 21, "80000828": 21, "80000829": 21, "80000830": 21, "80000831": 21, "80000832": 21, "80000833": 21, "80000834": 21, "80000836": 21, "80000837": 21, "80000839": 21, "80000841": 21, "80000843": 21, "80000844": 21, "80000845": 21, "80000850": 21, "80000851": 21, "80000852": 21, "80000854": 21, "80000855": 21, "80000856": 21, "80000858": 21, "80000859": 21, "80000860": 21, "80000861": 21, "80000863": 21, "80000864": 21, "80000865": 21, "80000866": 21, "80000867": 21, "80000868": 21, "80000869": 21, "80000870": 21, "80000871": 21, "80000873": 21, "80000874": 21, "80000879": 21, "80000881": 21, "80000882": 21, "80000884": 21, "80000885": 21, "80000886": 21, "80000888": 21, "80000889": 21, "80000890": 21, "80000893": 21, "80000894": 21, "80000897": 21, "80000899": 21, "80000900": 21, "80000901": 21, "80000902": 21, "80000903": 21, "80000904": 21, "80000905": 21, "80000906": 21, "80000907": 21, "80000908": 21, "80000909": 21, "80000910": 21, "80000911": 21, "80000913": 21, "80000914": 21, "80000916": 21, "80000919": 21, "80000920": 21, "80000922": 21, "80000925": 21, "80000926": 21, "80000928": 21, "80000933": 21, "80000934": 21, "80000935": 21, "80000936": 21, "80000938": 21, "80000939": 21, "80000940": 21, "80000941": 21, "80000942": 21, "80000944": 21, "80000945": 21, "80000948": 21, "80000949": 21, "80000950": 21, "80000951": 21, "80000952": 21, "80000956": 21, "80000957": 21, "80000959": 21, "80000960": 21, "80000962": 21, "80000964": 21, "80000966": 21, "80000967": 21, "80000968": 21, "80000969": 21, "80000971": 21, "80000974": 21, "80000975": 21, "80000980": 21, "80000981": 21, "80000983": 21, "80000985": 21, "80000986": 21, "80000988": 21, "80000990": 21, "80000991": 21, "80000993": 21, "80000994": 21, "80000995": 21, "80000996": 21, "80000997": 21, "80000998": 21, "80000999": 21, "80001000": 21, "80001001": 21, "80001002": 21, "80001003": 21, "80001005": 21, "80001007": 21, "80001009": 21, "80001015": 21, "80001017": 21, "80001018": 21, "80001023": 21, "80001025": 21, "80093438923": 21, "801": [21, 42], "802": [21, 42], "80246704817": 21, "80254943669": 21, "803": [21, 42], "80305439234": 21, "8037075": 28, "80371": 28, "80372226238": 21, "80377283692": 21, "804": [8, 42], "80410887e": 13, "80464844": 14, "805": 42, "805011570454": 21, "80518731475": 21, "805209457874": 21, "80564555526": 21, "80595380068": 21, "806": [21, 42], "80663745105": 21, "807": [8, 21, 42], "80725171": 21, "808": [8, 42], "80815401673": 21, "808356150985": 21, "808876529336": 21, "809": [21, 42], "81": [23, 27, 28, 42, 46], "810": [21, 42], "8105": 14, "81054663658": 21, "8106": 29, "811": [21, 42], "81169986725": 21, "811767444015": 21, "812": [21, 42], "8128515929": 21, "813": [21, 42], "81306296587": 21, "813208565116": 21, "8135": 13, "81391918659": 21, "814": [8, 21, 42], "81428743899": 21, "81437155604": 21, "814891934395": 21, "815": [21, 42], "81521306932": 21, "81558230e": 31, "81564453244": 21, "816": [8, 21, 42], "81600318849": 21, "817": [21, 42], "81782488525": 21, "818": [21, 42], "818491622806": 21, "81872756779": 21, "81888737e": 31, "819": [21, 42], "819232299924": 21, "81942269j": 15, "81958813965": 21, "81981065869": 21, "82": [23, 27, 28, 42, 46], "820": [21, 42], "821": [21, 42], "821838498116": 21, "822": [8, 42], "823": [21, 42], "82318587601": 21, "824": [8, 21, 42], "82404534519": 21, "825": [8, 21, 34, 42], "82542772": 22, "826": [21, 42], "827": 42, "82748324e": 14, "828": [8, 21, 42], "82808498e": 20, "829": 42, "82940942049": 21, "82945792377": 21, "829678565264": 21, "83": [2, 21, 23, 28, 42, 46], "830": 42, "830532982945": 21, "83059003e": 31, "831": 42, "83104461": 22, "8313536003155265": 32, "83162811e": 13, "832": 42, "83292539": 22, "833": 42, "83333333333333348": 14, "834": [8, 42], "83431440592": 21, "8345": 15, "83493223786": 21, "835": [21, 29, 42], "836": 42, "83636845648": 21, "836741268635": 21, "837": [8, 42], "83710679e": 31, "83780286": 13, "83792710e": 14, "838": 42, "838016077876": 21, "83830589056": 21, "839": [21, 42], "83906060457": 21, "83911728859": 21, "839996": 21, "8399997": 21, "84": [2, 21, 23, 24, 27, 28, 42, 46], "840": 42, "8400002": 21, "84009298": 13, "84028501809": 21, "841": [21, 42], "84164641": 21, "842": [8, 21, 34, 42], "843": [21, 42], "844": 42, "845": [21, 42], "84508921206": 21, "84559759498": 21, "84575891495": 21, "845868": 28, "846": [21, 42], "846471622586": 21, "847": [8, 21, 42], "84713715315": 21, "84719564e": 13, "848": [21, 42], "84807029e": 31, "8486": 12, "84887549281": 21, "849": [8, 21, 42], "84909091e": 13, "84945565e": 20, "85": [21, 23, 28, 42, 46], "850": [20, 42], "850857138634": 21, "851": [21, 42], "85146795213": 21, "85154750e": 13, "852": [8, 42], "85203039": 34, "85238243e": 31, "853": [21, 42], "85338470e": 31, "853l": [2, 18], "854": [21, 42], "85402186215": 21, "8546615839": 21, "855": [21, 42], "85575223": 34, "856": [12, 21, 42], "85667587817": 21, "857": [21, 42], "8572294265": 21, "857440814376": 21, "85770910978": 21, "858": [21, 42], "85809743e": 31, "858214601874": 21, "85824956": 21, "8585408777": 21, "859": 42, "86": [12, 21, 23, 27, 28, 42, 46], "860": [21, 42], "861": [21, 42], "86142014e": 20, "861510172486": 21, "86162981e": 13, "861919119954": 21, "862": 42, "86241768e": 14, "86246989e": 13, "86272408068": 21, "863": 42, "8632": 13, "863403081894": 21, "86366818": 21, "864": [13, 21, 42], "86400": [2, 23, 42], "8644437": 21, "86450": 2, "86460": 2, "86480": 2, "86490": 2, "865": [21, 42], "86531767e": 13, "865712904267": 28, "865877e": 2, "866": [21, 42], "86677853763": 21, "867": [21, 42], "867245197296": 21, "86728909612": 21, "86777666211": 21, "868": [21, 42], "8682410419": 21, "86842673e": 31, "869": [21, 42], "86it": 15, "87": [12, 23, 27, 28, 42, 46], "870": 42, "87027671933": 21, "87065626681": 21, "87085522711": 21, "871": [21, 42], "872": [21, 42], "873": 42, "8733625412": 21, "874": [21, 42], "8745007813": 21, "8747486": 24, "875": [31, 42], "875151097775": 21, "87537903e": 13, "87561401725": 21, "876": [21, 42], "87653042376": 21, "877": 42, "87703709304": 21, "877141192555": 21, "87738671e": 13, "87746040523": 21, "87783205": 36, "878": 42, "87888632715": 21, "87889204919": 21, "87894229591": 21, "879": [21, 42], "879113674164": 21, "87985137": 13, "879882499576": 21, "879997": 21, "8799996": 21, "88": [21, 23, 28, 42, 46], "880": [21, 42], "881": [3, 29, 42], "88128243387": 21, "881889894605": 21, "881970733404": 21, "881983697414": 21, "882": [21, 42], "88214847462": 28, "882760211825": 21, "883": 42, "883781552315": 21, "884": 42, "88408643007": 21, "88428578e": 13, "884447038174": 21, "88460493088": 21, "884933292866": 21, "88497623e": 14, "885": [21, 42], "88505118e": 14, "886": [21, 42], "88638843e": 31, "88681785762": 21, "887": [21, 42], "88726851344": 21, "888": [21, 42], "889": [21, 42], "88948699832": 21, "89": [2, 21, 23, 27, 28, 42, 43], "890": [21, 42], "89062793j": 15, "891": [21, 42], "89163457e": 28, "89197375e": 31, "892": [21, 42], "892510056496": 21, "893": [21, 42], "894": 42, "89413803816": 21, "8949": 28, "89492": 28, "895": [21, 42], "895185917616": 21, "896": [21, 42], "89652137e": 14, "897": [21, 42], "89711469412": 21, "898": [21, 42], "89809964597": 21, "8985": 12, "899": [21, 42], "89942243695": 21, "899810910225": 21, "9": [2, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 37, 38, 39, 40, 41, 42, 43, 45], "90": [2, 23, 27, 28, 29, 42], "900": [14, 15, 42], "90076129e": 28, "901": [21, 42], "90104872": 42, "90170559287": 21, "901824980974": 21, "902": 42, "902037888765": 21, "90236452222": 21, "903": [21, 42], "904": 42, "904296547174": 21, "905": [21, 42], "906": [21, 42], "907": [21, 42], "908": [21, 42], "909": 42, "90975859": 13, "91": [23, 28, 30, 42], "910": [21, 42], "911": 42, "912": 42, "91226673126": 21, "91253": 42, "91254": [23, 42], "91274": 23, "91278010607": 21, "913": [21, 42], "914": [21, 42], "915": 42, "91533789039": 21, "91573352": 28, "915733521435971": 28, "91595615": 34, "916": [21, 42], "91673760116": 21, "91684667766": 21, "917": [21, 42], "917373120785": 21, "91779854894": 21, "918": [21, 42], "91821274161": 21, "91892364621": 21, "919": [21, 42], "91909148": 13, "919592529535": 21, "92": [21, 23, 42], "920": [21, 42], "9200001": 21, "92007930577": 21, "920432657": 21, "92065534": 21, "921": [21, 42], "9210729748": 21, "92151616514": 21, "92154058814": 21, "922": [21, 42], "922179594636": 21, "92271217704": 21, "92275629938": 21, "92292739451": 21, "923": [21, 42], "9238": 29, "924": 42, "925": 42, "926": [21, 42], "92633379996": 21, "927": 42, "92710117996": 21, "92722656": 14, "927507817745": 21, "92787087e": 31, "928": [27, 42], "92827099": 13, "92867228e": 41, "92884159088": 21, "929": 42, "93": [21, 23, 42], "930": [21, 42], "93047915399": 21, "93057106435": 21, "93073017895": 21, "931": 42, "93111630e": 13, "93122699857": 21, "93123174": 13, "93143287301": 21, "93147056e": 20, "932": [21, 42], "93217489e": 14, "93236474693": 21, "93263950944": 21, "933": [21, 42], "933462917805": 21, "933602169156": 21, "934": 42, "934347867966": 21, "93438197": 13, "935": [21, 27, 42], "93502403796": 21, "93531550467": 21, "935947969556": 21, "936": [21, 42], "93644725": 21, "937": [21, 42], "9370": 23, "9374392067380983": 28, "93743921": 28, "938": [21, 42], "93857854605": 21, "93866299e": 31, "939": [21, 42], "93940142": 28, "9394014208215005": 28, "93970456e": 31, "93997974e": 31, "93it": [18, 31], "94": [2, 23, 42], "940": 42, "94034115e": 31, "94042633474": 21, "941": [21, 42], "94126729667": 21, "942": [21, 42], "942480519414": 21, "942652228740678": 28, "94265223": 28, "943": [2, 21, 42], "944": 42, "944444444444444e": 23, "945": [21, 42], "945546999574": 21, "946": [21, 42], "94620233774": 21, "947": [21, 42], "947059229016": 21, "9472001791": 21, "94751133025": 21, "94796052e": 41, "948": 42, "949": [21, 42], "95": [2, 7, 21, 23, 27, 28, 30, 42], "950": [21, 42], "95050781": 14, "95051422715": 21, "951": [21, 42], "95122973e": 13, "95132599771": 21, "952": 42, "9523207": 13, "95292067j": 24, "953": 42, "95349282026": 21, "95397103e": 14, "954": [21, 27, 42], "955": [21, 42], "95500403e": 28, "95500843e": 13, "95569059253": 21, "95574080944": 21, "956": 42, "957": 42, "9578525275": 21, "958": [21, 42], "95813263953": 21, "958766937256": 21, "959": 42, "95903091133": 21, "95907471e": 31, "9595": 12, "95996727049": 21, "959968": 28, "9599996": 21, "96": [21, 23, 25, 42], "960": [21, 42], "961": 42, "9610": 23, "96122226119": 21, "962": 42, "962600558996": 21, "96295975e": 13, "963": [21, 27, 42], "964": 42, "96499122e": 31, "965": 42, "96524555981": 21, "966": [21, 42], "96629892e": 13, "96652762592": 21, "96655765": 24, "967": [21, 27, 42], "9670": 30, "967955": 28, "968": [21, 27, 42], "969": [21, 42], "96it": 16, "97": [23, 26, 27, 36, 42], "970": 42, "971": [21, 42, 43], "97152923": 28, "972": [21, 42], "972453475": 21, "973": [21, 42], "974": [21, 42], "97441653e": 31, "974775359035": 21, "975": [21, 29, 33, 42], "975308820605": 21, "976": [21, 42], "977": 42, "97707155347": 21, "97776986e": 13, "978": 42, "97833034396": 21, "9785169363": 21, "97853199e": 13, "979": [21, 42], "97929821e": 14, "97935457528": 21, "97941620648": 21, "97it": 18, "98": [18, 20, 21, 23, 42], "980": [21, 42], "98050430417": 21, "981": 42, "98157013953": 21, "982": [21, 42], "982017084956": 21, "9821": 13, "98258473e": 31, "983": [21, 42], "984": [21, 42], "985": 42, "98535468": 13, "985514968634": 21, "98567260802": 21, "986": [21, 42], "98681684e": 13, "987": 42, "98737477e": 13, "987773641944": 21, "98798702657": 21, "988": 42, "9880": 23, "98807131e": 41, "988359063864": 21, "989": [21, 42], "98935476": 15, "99": [2, 21, 23, 27, 28, 42], "990": 42, "99032564461": 21, "990593642": 21, "99063169": 13, "991": [21, 42], "9910": 23, "991308033466": 21, "991498693824": 21, "992": [21, 42], "99266758561": 21, "99286413193": 21, "99297225475": 21, "993": [21, 42], "993093535304": 21, "993975520134": 21, "994": 42, "99437212e": 28, "99448241e": 28, "995": [21, 42], "995e": [23, 42], "996": 42, "997": [14, 28, 42], "998": [14, 21, 27, 42], "99812464416": 21, "99845524132": 21, "99862577021": 21, "998638793826": 21, "998699590564": 21, "999": [14, 21, 23, 42], "99976851852": 42, "9998": 14, "9999": 14, "99992797": 14, "999996": 21, "9999995": 21, "99999965": 42, "9999999999766942e": 14, "99it": 18, "9th": [4, 8], "A": [2, 4, 5, 8, 12, 13, 15, 17, 20, 21, 23, 26, 27, 28, 31, 32, 33, 40, 42, 43, 45, 46, 48], "And": [2, 5, 9, 28], "As": [2, 4, 18, 21, 23, 26, 27, 28, 31, 32, 33, 37, 41, 42, 43], "At": [2, 8], "Be": 2, "Being": 4, "But": [2, 23, 33, 42, 43], "By": [2, 13, 19, 23, 28, 40, 42, 43, 45], "FOR": 28, "For": [2, 4, 8, 9, 13, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 29, 31, 32, 33, 38, 41, 42, 43, 45, 48], "If": [2, 3, 4, 8, 9, 12, 13, 15, 17, 21, 22, 23, 24, 26, 28, 29, 31, 32, 33, 41, 42], "In": [2, 4, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 28, 29, 30, 31, 32, 33, 35, 38, 40, 41, 42, 43, 48], "It": [2, 4, 5, 9, 12, 17, 20, 21, 23, 24, 25, 26, 27, 28, 29, 40, 41, 42, 45], "Its": [2, 40, 45], "No": [15, 17, 18, 31, 42, 43], "Not": [23, 42], "OR": [2, 29], "Of": [2, 21, 28, 43], "On": [9, 21, 27, 33], "One": [4, 9, 14, 21, 23, 28, 40, 42, 48], "Or": [23, 28, 34], "THESE": 28, "That": [2, 9, 23, 26, 28, 29], "The": [2, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47], "Then": [4, 22, 27, 36, 41], "There": [2, 4, 9, 14, 15, 21, 23, 24, 25, 28, 31, 40, 43], "These": [2, 4, 6, 8, 39, 40, 41, 45, 48], "To": [2, 4, 8, 9, 14, 16, 20, 21, 27, 28, 37, 38, 40, 41, 42, 43, 44], "Will": [17, 30], "With": [2, 17, 41, 48], "_": [2, 4, 28, 29, 32, 33, 41, 43, 44], "_0": 44, "__": [2, 4, 23, 24, 25], "__call__": 28, "__init__": [2, 4, 28, 33], "__main__": 46, "__version__": 19, "_al": 8, "_and_": 9, "_basehdu": 2, "_build": 9, "_check_converg": 2, "_check_isallfinite_numba": 2, "_compute_covari": 2, "_compute_criteria": 2, "_compute_highest_outli": 28, "_compute_model": 2, "_compute_pvalu": 28, "_compute_rhat": 2, "_compute_statist": 2, "_count": [2, 42], "_dimn_m_k": 2, "_dummy_reset_button_ref": 33, "_epsilon_": 2, "_err": [2, 42], "_generate_data": 2, "_generate_model": 28, "_generate_psd": 28, "_infer": 2, "_initialize_empti": 2, "_initialize_from_any_input": 2, "_j": 32, "_join_timeseri": 42, "_k": 29, "_mask": 2, "_normalize_crossspectrum": 2, "_not_": 2, "_operation_with_other_obj": 2, "_rms_error": 2, "_time": 42, "a1": 35, "a2": 35, "a_": 27, "a_amp": 43, "a_from_pf": 2, "a_from_ssig": 2, "a_k": [2, 17], "a_l": 2, "a_mean": 43, "aa": 8, "aaron": 29, "ab": [2, 15, 24, 25, 29, 31, 41, 46], "ab258d": 29, "ab7fa1": 29, "abigail": [2, 8, 29], "abl": [2, 4, 18, 30], "about": [2, 4, 8, 23, 26, 28, 29, 30, 40, 41, 42], "abov": [2, 5, 9, 15, 18, 19, 20, 21, 23, 28, 29, 33, 37, 38, 40, 41, 43, 45], "abscissa": 2, "absenc": 2, "absolut": [2, 4, 8, 9, 15, 24, 25, 29, 31, 41], "abstract": 2, "abus": 4, "ac": [2, 14], "academ": 3, "acceler": 8, "accelsearch": 8, "accentu": 29, "accept": [2, 4, 8, 22, 23, 25, 27, 28, 29], "accepted_gtistr": 2, "access": [2, 4, 8, 9, 29, 30, 42, 45, 48], "accommod": 42, "accompani": 8, "accord": [2, 12, 23, 27, 29, 33, 37, 38, 42], "accordingli": [2, 8, 23, 42], "account": [2, 4, 28, 38, 40, 43, 44, 48], "accret": [2, 26, 37, 41], "accur": [14, 16, 18, 28, 32], "achiev": 2, "acknowledg": 9, "acom": 21, "acor": 2, "acquir": 16, "acronym": 41, "across": [2, 4, 32, 45], "act": [4, 28, 42], "action": 4, "actual": [2, 5, 8, 17, 26, 28, 33, 41, 42, 43], "ad": [2, 3, 4, 5, 8, 39, 40, 42], "adapt": [2, 4, 8, 29], "adass": 8, "add": [2, 4, 8, 9, 14, 15, 19, 20, 21, 23, 27, 28, 29, 31, 32, 37, 38, 40, 41, 42], "add_gridspec": 43, "addit": [2, 4, 5, 17, 26, 40, 45, 48, 49], "addition": [4, 26, 29, 45], "additional_colum": 2, "additional_column": [2, 41], "additional_data": 2, "additional_info": [2, 33], "additional_output": 2, "additional_phas": 2, "address": 4, "adequ": [2, 17, 18], "adher": 4, "adjac": 2, "adjust": 23, "adsab": 29, "advanc": [2, 4, 8, 16, 23, 42], "advantag": [2, 9], "advic": 4, "advis": [2, 43], "affect": [4, 18, 23, 42], "affili": 4, "after": [2, 15, 18, 21, 23, 29, 31, 37, 38, 42], "afterward": 34, "ag": 4, "again": [2, 14, 15, 21, 28, 29, 30, 37], "against": [2, 13], "aggress": 16, "agn": 22, "agre": 8, "ahead": 2, "aic": [2, 28], "aigrain": 27, "aim": [2, 4, 23, 28], "akaik": [2, 28], "al": [2, 3, 5, 8, 12, 15, 19, 20, 22, 27, 28, 31, 33, 37, 38, 41, 44], "algorithm": [2, 8, 12, 17, 24, 25, 28], "alia": 2, "align": [2, 4, 21], "all": [2, 4, 5, 8, 9, 15, 16, 18, 21, 23, 24, 25, 27, 28, 29, 30, 31, 33, 37, 40, 41, 42, 43, 46, 48], "all_ev": 16, "all_obj": 42, "all_time_arrai": 42, "allclos": [2, 21], "alloc": [2, 8], "allow": [2, 4, 8, 11, 15, 17, 21, 24, 25, 28, 31, 40, 43, 45], "almost": [34, 41], "alon": 28, "along": [2, 5, 17, 23, 28, 41, 44], "alpha": [2, 16, 17, 18, 19, 20, 26, 27, 28, 29, 32, 33, 36, 41, 43], "alpha_0": [2, 28], "alpha_1_0": 28, "alpha_2_0": 28, "alreadi": [2, 16, 23, 28, 29, 32, 33], "also": [2, 4, 8, 9, 11, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 40, 41, 42, 43, 45, 48], "alston": 2, "alter": [2, 22, 41], "altern": [2, 8, 40, 41, 42, 48], "although": [15, 31, 37], "alwai": [2, 3, 4, 9, 14, 17, 21, 28, 41, 42], "am": [34, 37], "amaz": 4, "american": 29, "among": 2, "amongst": 29, "amount": [2, 23, 36, 41], "amp": [2, 21, 33], "ampl": 43, "amplitud": [2, 7, 8, 9, 14, 15, 16, 19, 22, 24, 25, 27, 28, 29, 31, 32, 33, 36, 41, 46, 48], "amplitude_": 2, "amplitude_0": [2, 28], "amplitude_1": [2, 28], "amplitude_2": [2, 28], "amplitude_i": 2, "amplitude_upper_limit": 2, "amt": 29, "an": [2, 3, 4, 5, 6, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 37, 38, 40, 41, 43, 44, 45, 49], "anaconda": 9, "anaconda3": [14, 46], "analog": 28, "analys": [9, 23, 38, 41], "analysi": [2, 3, 4, 8, 9, 13, 16, 23, 28, 29, 40, 41, 49], "analyt": [2, 28, 41], "analyz": [2, 5, 9, 16, 30, 41], "analyze_by_chunk": 23, "analyze_by_gti": 2, "analyze_lc_chunk": [2, 22, 23], "analyze_seg": [2, 8], "andrew": 2, "andsimpli": 28, "angl": [21, 37, 41, 43], "ani": [2, 4, 8, 15, 21, 23, 28, 31, 36, 40, 41, 42, 43], "anna": 2, "annot": 2, "anomali": 26, "anoth": [2, 4, 5, 9, 17, 23, 24, 29, 41, 42, 43], "answer": 2, "anticorrel": [2, 8], "anyon": 28, "anyth": [4, 9, 20], "anywai": 34, "ao": 2, "ap": 8, "apart": [2, 39], "aperiod": 2, "apertur": 2, "api": [4, 8, 9, 11, 48], "apj": [2, 15, 18, 31], "appear": [2, 4, 18, 20, 41], "append": [2, 8, 21, 27, 37, 42], "append_gti": [2, 42], "appli": [2, 4, 8, 13, 15, 18, 19, 20, 23, 31, 41, 42], "applic": [2, 24, 25, 28, 38, 46, 47], "apply_deadtim": [2, 18], "apply_gti": [2, 8, 16, 23, 26, 41, 42], "apply_mask": [2, 16], "appoint": 4, "apporach": 29, "appreci": 4, "approach": [28, 29, 30, 38, 40], "appropri": [2, 4, 17, 23, 28, 40, 45], "approx_hess": 2, "approxim": [2, 17, 22, 24, 25, 28, 29, 32, 33, 34, 37, 41], "aqpo": 27, "ar": [2, 3, 4, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 40, 41, 42, 43, 45, 46, 47, 48], "ar4": 29, "arang": [2, 12, 13, 14, 15, 17, 21, 22, 23, 29, 31, 32, 33, 34, 36, 42, 43], "arbitrari": [2, 8], "arbitrarili": [23, 42], "architectur": 2, "archiv": 41, "area": [2, 12, 41, 42], "aren": [23, 29], "arev": 15, "arg": [2, 42], "argmin": 32, "argsort": [42, 43], "arguabl": 21, "argument": [2, 8, 13, 14, 21, 23, 33, 40, 42, 45, 48], "argwher": 34, "arithmet": 2, "arm": 2, "arn": 27, "around": [2, 4, 19, 28, 32, 33, 37, 41, 42, 43], "arr": 45, "arrai": [2, 5, 8, 9, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 39, 44, 45, 48, 49], "array1": 2, "array2": 2, "array3": 2, "array_attr": [2, 42, 43], "array_equ": 2, "arraylik": 2, "arriv": [2, 5, 8, 14, 20, 32, 33, 41, 42], "arrival_tim": 42, "art": 8, "artefact": [15, 31], "articl": 2, "artifact": [2, 41], "artifici": [23, 28, 42, 48], "artist": [28, 40], "arxiv": [2, 13, 22], "asanyarrai": [2, 8], "asarrai": [8, 26, 27, 42, 43], "ascens": 21, "ascii": [2, 8, 21, 41], "asdf": 2, "ask": [3, 4], "aspect": [19, 20, 29], "assert": 2, "assess": 48, "assign": [2, 21, 34, 40, 43], "associ": [2, 15, 23, 24, 25, 31, 41, 42, 43], "assum": [2, 12, 16, 17, 21, 23, 28, 29, 32, 33, 42, 43, 48], "assumpt": [2, 17, 23, 28, 41], "astronom": [2, 8, 9, 27, 28, 29], "astronomi": [1, 2, 8, 14, 21, 28, 49], "astrophys": [3, 8, 21, 27, 29], "astropi": [2, 4, 5, 8, 9, 15, 20, 22, 23, 28, 29, 36, 39, 41, 49], "astrosat": 18, "astyp": [30, 34], "asymmetr": 2, "asymmetri": 2, "asynchron": 42, "atlant": 26, "atol": 2, "attack": 4, "attempt": 2, "attent": [4, 15], "attenu": 29, "attr": [2, 42], "attribut": [2, 5, 8, 13, 14, 15, 20, 21, 23, 28, 31, 40, 41, 42, 43], "attrs_to_appli": 2, "attrs_to_discard": 2, "attrs_to_random": 2, "aup": 2, "aup_corr": 2, "aup_nyq": 2, "auto": [2, 8, 19, 20], "autocorrealt": 14, "autocorrel": 28, "automat": [2, 4, 9, 21, 28], "autoregress": 29, "autoreload": [16, 17, 18, 22, 26, 28, 30, 31, 32, 33, 36, 40, 41, 42, 43], "auxiliari": 20, "avail": [2, 4, 8, 9, 13, 30, 39, 40, 45, 46], "averag": [2, 8, 9, 15, 18, 19, 20, 23, 24, 25, 28, 29, 31, 33, 36, 41, 45, 48], "average_corrected_fourier_diff": 2, "averagecrossspectrum": 2, "averagedcrossspectrum": [5, 8, 16, 18, 22, 26, 38, 41], "averagedpowerspectrum": [5, 8, 16, 17, 18, 19, 20, 22, 26, 30, 41], "averagepowerspectrum": 2, "avg": 41, "avg_c": 15, "avg_cs_ab": 15, "avg_cs_amplitud": 15, "avg_cs_frac": 15, "avg_cs_from_ev": 41, "avg_cs_leahi": 15, "avg_p": 31, "avg_pds_from_ev": 41, "avg_ps_ab": 31, "avg_ps_frac": 31, "avg_ps_gauss_ab": 31, "avg_ps_gauss_frac": 31, "avg_ps_gauss_leahi": 31, "avg_ps_leahi": 31, "aviod": 29, "avoid": [2, 4, 8, 15, 26, 28, 29, 31, 37], "awai": [2, 16, 17, 20, 37], "awar": [2, 23, 42], "ax": [2, 14, 15, 17, 24, 25, 27, 28, 29, 31, 33, 36, 37, 38, 41, 42, 43, 45], "ax0": [33, 41], "ax00": 43, "ax01": 43, "ax1": [15, 31, 33, 41], "ax10": 43, "ax11": 43, "ax2": [15, 31], "ax3": [15, 31], "ax_evar": 22, "ax_fvar": 22, "ax_lc": 22, "ax_mean": 22, "ax_nvar": 22, "axcolor": 33, "axes_row": 29, "axessubplot": [19, 20, 41, 42], "axfdot": 33, "axfreq": 33, "axhlin": [15, 17, 32, 33, 37, 38, 40, 41, 43], "axhspan": 43, "axi": [2, 14, 15, 19, 20, 23, 24, 25, 31, 33, 36, 37, 38, 41, 42, 44], "axin": 41, "axis_limit": [2, 41], "axisbelow": 36, "axpepoch": 33, "axvlin": [15, 17, 26, 29, 32, 33, 37, 38, 43], "axvspan": [16, 26], "b": [2, 12, 13, 16, 17, 28, 29, 35, 41, 42, 44], "b_": 44, "b_i": 12, "b_k": [2, 29], "bachetti": [2, 8, 18, 29, 41], "back": [17, 21, 23, 30, 42], "background": [2, 5, 11, 17, 26, 41], "background_r": [2, 17], "backward": [2, 48], "bad": [2, 8, 16, 26, 41, 42], "bad_interval_midpoint": 2, "bad_time_interv": 16, "badli": [20, 23], "balanc": 32, "balm": [8, 29], "ban": 4, "band": [2, 8, 15, 24, 29, 41, 42, 43], "band_interest": 2, "bandwidth": 29, "bar": [2, 8, 9, 12, 26, 29, 32, 41, 42, 43], "bare": [29, 33], "barret": 41, "bartlett": 41, "barycent": [2, 16, 21, 41], "barycorr": [16, 41], "base": [4, 8, 9, 11, 18, 19, 27, 28, 36, 37, 41, 42, 43, 48], "base_func": 22, "baselin": [2, 5, 22, 32, 33, 43], "baseline_": [2, 22], "basi": [2, 8, 18, 26, 30], "basic": [2, 4, 5, 8, 18, 19, 20, 21, 28, 40, 41, 45], "batch": 2, "bay": 27, "bayesian": [2, 9, 11, 12, 27], "baysian": 5, "bbox_inch": 2, "becaus": [2, 3, 15, 16, 17, 22, 23, 28, 30, 31, 32, 33, 41, 42], "becom": [2, 21, 23, 27, 37, 38, 42], "been": [2, 4, 9, 15, 18, 23, 24, 27, 29, 31, 37, 42, 43, 48], "befor": [2, 4, 9, 13, 15, 17, 21, 23, 28, 29, 31, 37, 40, 41, 42], "begin": [4, 23, 29, 32, 42], "behav": [2, 17, 20, 23, 29], "behavior": [2, 4, 42], "behaviour": [23, 27], "being": [2, 23, 24, 25, 27, 31, 41, 42], "believ": 4, "bell": [29, 33, 34], "belloni": [15, 20, 31, 41], "belong": [2, 28, 40], "below": [2, 4, 8, 9, 11, 14, 17, 18, 28, 29, 34, 37, 38, 41, 44, 46, 47], "bend": 37, "bendat": 2, "bent": 28, "best": [2, 3, 4, 8, 18, 28, 33, 41, 42], "best_stat": 2, "best_x": 2, "beta": [0, 2, 3, 27, 32, 40, 48], "better": [2, 4, 8, 9, 10, 14, 17, 20, 21, 27, 29, 33], "between": [2, 4, 8, 14, 15, 17, 18, 20, 23, 26, 27, 28, 29, 32, 36, 41, 42, 48], "bewar": [21, 38], "bexvar": [2, 5, 8, 9], "bexvar_distribut": 12, "beyond": 43, "bf": 27, "bf00648343": 29, "bfg": [2, 28, 41], "bg_count": [2, 12], "bg_ratio": [2, 12], "bias": [2, 13], "bibcod": 21, "bibtex": [0, 3], "bic": [2, 28], "bicoher": 9, "big": [19, 23, 42], "biject": 27, "bijector": 27, "bilinear": 2, "bin": [2, 5, 8, 12, 17, 18, 19, 21, 24, 25, 28, 30, 32, 33, 34, 40, 41, 43, 48, 49], "bin_c": 2, "bin_hi": 2, "bin_intervals_from_gti": 2, "bin_lo": 2, "bin_tim": [2, 15, 17, 31, 32, 33, 41], "binari": [2, 9, 16, 21, 22], "bincount": [2, 34], "bini": 33, "binom": 2, "binomi": 2, "bins_mean": 17, "binsi": 43, "binsx": 43, "bintabl": 21, "bintim": 17, "binx": 33, "biphas": 2, "bisp3cum": 2, "bispec": 2, "bispec_mag": [2, 13], "bispec_phas": [2, 13], "bispecphas": 13, "bispectr": 2, "bispectra": [9, 13], "bispectrum": 5, "bit": [9, 15, 23, 27, 30, 31], "bitpix": 21, "bla": 2, "blabla": [2, 42], "blabla_err": 42, "black": [2, 4, 8, 9, 15, 16, 22, 26, 28, 29, 31, 37, 40, 41, 45], "blackman": 2, "blackmann": [2, 13, 48], "blah": 42, "blank": 2, "block": [2, 21, 37], "blue": [2, 14, 15, 24, 25, 26, 31, 32, 41, 42], "bo": [2, 42], "boca": 2, "bodi": 4, "bonferroni": 2, "bool": [2, 22, 28, 42], "boolean": [2, 23, 24, 25, 29, 42], "bootstrap": [2, 12], "border": [2, 16], "born": 26, "both": [2, 3, 4, 5, 8, 13, 14, 22, 23, 25, 27, 28, 31, 33, 36, 37, 41, 42, 45], "bottom": [15, 31, 33, 36], "bound": [2, 23, 27, 28, 33, 42], "boundari": [2, 28], "bounds_error": [17, 22], "box": 2, "bpl": 28, "bplc": 28, "bplc_opt": 28, "bplc_start_par": 28, "branch": 4, "break": [4, 28, 39], "brief": [8, 12], "bright": 44, "brilling": 2, "broad": [15, 41], "broadband": 28, "broadli": 2, "broken": 28, "brokenpowerlaw1d": 28, "brows": 9, "brute": 2, "bti": [2, 41], "bti_length": 41, "bti_length_limit": 2, "bu": 2, "bubbl": 21, "buccheri": [2, 33], "buchner": 12, "budget": 12, "buffer": [2, 21, 41], "buffer_s": [2, 41], "bug": 9, "bugfix": [4, 8], "build": [2, 4, 8, 28], "build_doc": 9, "built": [4, 9, 11, 15, 31], "bullet": 29, "bump": 8, "bunch": [15, 28, 46], "burn": [2, 28], "burnin": [2, 28], "burst": 28, "busi": [18, 29], "button": 33, "button_recalc": 33, "c": [2, 8, 9, 14, 15, 16, 18, 21, 23, 26, 27, 28, 30, 32, 33, 38, 41, 46], "c3": 19, "c_": 27, "c_i": 12, "cach": 9, "cal_pi_list": 2, "cal_timeshift": [2, 14], "calcul": [2, 5, 8, 9, 10, 13, 14, 15, 16, 17, 18, 19, 20, 22, 27, 28, 29, 31, 32, 33, 36, 37, 38, 41, 43, 44], "calculate_fad_correct": [2, 18], "calculu": 2, "calibr": [2, 8, 11, 16], "calibrate_highest_outli": [2, 28], "calibrate_lrt": [2, 28], "calibration_func": 2, "call": [2, 4, 8, 12, 13, 14, 21, 23, 26, 28, 40, 42, 43, 46], "callabl": 2, "came": 28, "camelcas": 4, "can": [2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 36, 39, 40, 41, 42, 43, 45, 46, 47, 48], "cancel": [2, 23, 42], "cand_freqs_ef": [32, 33], "cand_freqs_z": [32, 33], "cand_stat_ef": 33, "cand_stat_z": 33, "candid": [8, 28, 32, 33], "cannot": [2, 15, 18, 22, 23, 26, 27, 28, 31, 43], "canva": 33, "capabl": [8, 23, 42], "capsiz": 27, "captur": [27, 29], "care": [2, 9, 21, 26, 28, 33], "carlo": [2, 12, 28], "carri": [3, 18, 21, 48], "case": [2, 4, 8, 14, 15, 16, 17, 21, 23, 26, 27, 28, 29, 30, 31, 32, 33, 38, 40, 41, 42, 43, 48], "cast": [2, 28], "cat": 21, "catch": [4, 8, 16], "caus": [2, 28, 29, 37], "caution": [2, 23, 28, 42], "caveat": 2, "ccd": 2, "cd": [9, 29], "cdf": [2, 21, 43, 48], "cdf_from_lc": 36, "cdf_invers": 36, "cdf_lc": 36, "cdf_time": 36, "cdf_valu": 36, "cdot": 29, "celesti": 21, "cell": [29, 42], "center": [2, 19, 20, 26, 29, 39, 41, 43], "central": [2, 8], "centroid": 2, "certain": [2, 14, 20, 23, 32, 33], "certainli": [26, 41], "certainti": 48, "chain": [2, 28], "chan": 48, "chanc": [2, 4, 23], "chandra": 2, "chang": [2, 4, 19, 20, 23, 28, 31, 40, 41, 42, 43, 45, 48], "change_mjdref": [2, 23, 42], "changelog": 9, "channel": [2, 4, 9, 15, 16, 18, 24, 37, 38], "chapman": 2, "charact": 4, "character": [22, 29], "characterist": [2, 27, 43], "chat": 4, "check": [2, 4, 5, 7, 8, 15, 16, 24, 25, 27, 28, 29, 31, 41, 42], "check_a": [2, 8, 17], "check_b": [2, 8, 17], "check_gti": [2, 23, 30, 42], "check_isallfinit": 2, "check_lightcurv": [2, 23], "check_separ": [2, 42], "check_sort": 2, "checker": 4, "chi": [2, 28, 29, 32, 33], "chi2": 29, "children": 41, "chisquar": [28, 42], "choic": [2, 28, 29, 33, 41, 43], "choos": [2, 19, 32, 33, 41], "chop": [15, 31], "chosen": [2, 14, 28], "chunk": [2, 23, 30, 41], "ci": [2, 4, 8, 28], "ci_max": 2, "ci_min": 2, "ciao": 2, "circl": [2, 42], "circumst": [4, 23, 42], "citat": [0, 3, 8, 9, 15, 31], "cite": 9, "cl": 2, "clarifi": 4, "clariti": [15, 31, 33], "class": [4, 5, 8, 9, 11, 12, 13, 14, 21, 22, 23, 27, 28, 29, 30, 33, 37, 40, 48, 49], "classic": [2, 37], "classical_pvalu": 2, "classical_signific": 2, "classmethod": 2, "clean": [2, 26, 30, 41], "cleanup": 9, "clear": [2, 8, 20, 41], "clearer": 4, "click": 29, "climat": 29, "clipboard": 3, "clock": 21, "clockapp": 21, "clone": [9, 29], "close": [2, 14, 16, 26, 28, 29, 33], "closest": 2, "cm": 13, "cmap": [13, 33, 43], "co": [2, 18, 27, 33, 43], "code": [1, 2, 3, 8, 18, 23, 28, 48], "coder": [4, 8], "codestyl": 8, "codifi": 2, "coeff": 29, "coeffici": [29, 39], "coh": [2, 15, 41], "coh_": 41, "coher": [5, 8, 9, 29], "col": [29, 43], "colab": 5, "collect": [2, 15, 30, 31], "colnam": 2, "color": [2, 8, 9, 14, 15, 16, 17, 19, 20, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 42, 43], "color_err": 41, "color_palett": 29, "colorbar": [13, 19, 20, 33], "colorblind": [17, 28], "column": [2, 20, 21, 42], "com": [2, 9, 29], "comapr": 27, "combin": [2, 4, 9, 17, 23, 29, 49], "come": [21, 23, 27, 28, 30, 41, 48], "comma": [2, 42], "command": [4, 8, 9, 23, 33, 34, 40, 48], "comment": [4, 21, 27, 28, 29, 34], "commiss": 8, "commit": [4, 8], "common": [2, 8, 13, 14, 18, 28, 29, 48], "common_nam": 2, "common_str": 2, "commonli": [2, 9], "commun": [8, 27], "compar": [2, 5, 9, 17, 18, 19, 20, 21, 27, 28, 30, 32, 41], "comparison": [2, 28, 49], "comparison_plot": 27, "compat": [2, 5, 8, 9, 16, 27, 28, 42, 48], "compet": 2, "compil": 2, "complaint": 4, "complementari": 23, "complet": [2, 12, 27, 29, 41, 43], "complex": [2, 8, 15, 23, 24, 28, 29, 35, 36], "complexcovariancespectrum": 8, "compliant": [4, 8, 9], "complic": [2, 17, 21], "compon": [2, 4, 15, 19, 24, 25, 28, 29, 41], "compos": 2, "compound": 28, "comprehens": 8, "compris": 2, "compulsori": [2, 42], "comput": [2, 8, 12, 15, 23, 24, 25, 28, 29, 30, 34, 37, 38], "computation": [4, 33], "compute_lrt": [2, 28], "compute_rm": [2, 8, 41], "concaten": [2, 5, 36, 42, 43], "conceiv": 2, "concentr": [2, 29], "concentration0": 27, "concentration1": 27, "concept": [3, 28, 29, 41, 42, 43], "conceptu": [4, 33, 34], "concur": 42, "condit": [2, 7, 8, 23, 27, 28], "conduct": 4, "confid": [2, 24, 25, 26, 28], "confidenti": 4, "config": [8, 27], "configur": [8, 18, 41], "confus": [8, 41], "confusingli": 28, "conj": 29, "conjug": 35, "conjunct": 29, "connect": 26, "consecut": [2, 17], "consequ": 28, "consid": [2, 4, 8, 12, 15, 33, 41, 42, 43], "consist": [2, 4, 8, 33, 41], "const1d": [2, 28, 41], "constant": [2, 17, 28, 32, 37, 38, 40, 41, 42, 45], "constrain": [28, 33], "constraint": [12, 29], "construct": [2, 4, 5, 9, 24, 25, 40], "constructor": [14, 29], "cont": 13, "contact": 4, "contain": [2, 4, 5, 8, 13, 16, 23, 24, 25, 27, 28, 40, 41, 42, 45], "content": [2, 5, 48], "context": [29, 48], "contextu": 8, "contigu": [2, 8, 18, 23, 42], "contiguous_region": 2, "continu": [2, 3, 8, 22, 32, 33], "continuous_pulsed_count": 43, "continuous_pulsed_lc": 43, "continuum": 26, "contour": 13, "contourf": 13, "contrast": 32, "contribut": [8, 9, 41, 43], "contributor": 4, "control": [2, 4], "conveni": [9, 11], "convent": [2, 44], "converg": [2, 12], "convers": [2, 23], "conversion_funct": 2, "convert": [2, 8, 9, 14, 21, 23, 24, 25, 32, 45, 49], "convert_pi_to_energi": 2, "convet": 23, "convolut": [37, 40, 48], "convolv": 26, "cool": 28, "coord": 21, "coordin": [2, 4, 21, 28], "coordint": [2, 28], "copi": [2, 3, 4, 8, 17, 23, 26, 28, 33, 36, 41, 42], "core": [2, 4, 9, 23, 24, 25, 42], "corner": [2, 9, 27], "corr": [2, 14], "correct": [4, 7, 8, 9, 16, 17, 21, 23, 28, 32, 33, 41, 44], "correction_mjd": 2, "correction_sec": 2, "correctionsdec_nom": 21, "correctli": [8, 28], "correl": [2, 5, 8, 9, 12, 13, 15], "correlation_lag": 2, "correspond": [2, 3, 8, 16, 18, 20, 28, 29, 32, 33, 34, 35, 36, 38, 40, 41, 42], "cospectrum": [2, 16, 18], "could": [2, 4, 8, 15, 17, 29, 31, 41, 42, 43], "count": [2, 4, 5, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 33, 35, 37, 38, 39, 40, 41, 43, 48, 49], "count1": 2, "count2": 2, "count_channel": [2, 40, 48], "counter": 17, "countrat": [2, 23, 42], "countrate_err": [2, 23, 42], "counts_cont": 22, "counts_cont_init": 22, "counts_err": [2, 22, 23, 40, 42], "countsp": 41, "countspectrum": 41, "coupl": 2, "cours": [20, 21, 28, 43], "cov": [2, 28, 41], "covar": 2, "covar_error": 2, "covarainc": 27, "covari": [2, 9, 26, 28], "covariancespectrum": [8, 41], "coven": 4, "cover": [2, 4, 21, 38, 39, 40, 45], "coverag": 8, "covspec_01_1": 41, "covspec_3_30": 41, "cpu": [2, 29], "cqpo": 27, "cr": 14, "cr1": 14, "crash": [8, 29], "crc": 2, "creat": [2, 4, 5, 8, 9, 10, 13, 19, 20, 22, 28, 32, 33, 37, 38, 39, 41, 43, 46, 49], "create_gti_from_condit": [2, 16, 41], "create_gti_mask": 2, "create_gti_mask_complet": 2, "create_gti_mask_jit": 2, "create_window": [2, 13, 46], "creation": [2, 8, 23, 29, 40], "credibl": 2, "credit": 49, "criteria": 2, "criterion": [2, 28], "critic": [4, 28], "crn": 27, "cross": [2, 6, 8, 9, 19, 20, 21, 37, 38], "cross_gti": 2, "cross_spectrum": 37, "cross_two_gti": [2, 26, 41], "crosscorrel": [5, 8], "crosss": 38, "crosssp": 8, "crossspectrum": [8, 16, 22, 37, 38, 40], "crucial": 48, "cs_all": 2, "cs_amplitud": 15, "cs_dt": 18, "cs_f": 18, "cs_reb": [16, 26, 41], "csv": [2, 21, 29, 41, 42], "ct": [14, 15, 17, 24, 25, 29, 31, 41, 42], "ctrate": [18, 41], "cubic": 43, "cum3": [2, 13], "cum_prob": 34, "cumsum": [2, 34, 36, 43], "cumul": [2, 13, 34, 36], "currenc": 3, "current": [2, 4, 12, 13, 19, 20, 23, 29, 30, 37, 39, 42, 48], "curv": [2, 5, 6, 8, 9, 10, 12, 13, 16, 17, 18, 20, 26, 28, 32, 33, 34, 36, 37, 38, 41, 42, 48, 49], "curveand": 48, "custom": [4, 8, 11, 23, 42], "cut": [2, 17, 20, 23, 28, 33, 38, 42], "cutoff": [37, 38], "cyan": 23, "cycl": [2, 46], "cycle_no": 43, "czerni": [2, 32], "d": [2, 9, 15, 17, 23, 26, 27, 28, 29, 31, 32, 33, 37, 38, 40, 42, 43, 44, 45, 48], "d1": 2, "d2": 2, "d20210122": 23, "d3": 2, "d_amplitud": 2, "d_j": 28, "d_mean": 2, "d_width": 2, "da": 20, "dai": [15, 21, 29], "damag": [2, 26], "daniel": 27, "daniela": [8, 29], "dark": 44, "dash": 15, "data": [3, 8, 12, 13, 14, 15, 18, 21, 24, 25, 27, 28, 31, 32, 37, 40, 42, 43, 45, 46, 48], "data1": [2, 24], "data2": [2, 24], "data_attribut": 2, "data_kind": 30, "data_multitap": 29, "databas": 2, "datafram": [2, 42], "dataset": [2, 5, 6, 8, 9, 12, 18, 24, 26, 28, 30, 41, 42, 47], "datatyp": [2, 21], "date": [2, 4, 23, 42], "dave": 8, "david": [2, 29], "db": 46, "de": [2, 29, 41, 45], "de405": 2, "de430": 2, "dead": [8, 9, 16, 18], "dead_tim": [2, 17], "deadtim": [2, 16, 17, 18], "deadtime_correct": [2, 17], "deadtime_fun": 17, "deadtimes_plot": 17, "deal": [2, 8, 9, 29, 40, 48], "dealt": 2, "debug": [2, 4, 40, 41], "dec": 21, "dec_obj": 21, "dec_pnt": 21, "decad": 27, "decai": [2, 37, 40, 45], "decent": 5, "decid": [2, 8, 42], "decim": 2, "decis": 2, "declin": 21, "decreas": [2, 17], "deem": 4, "deepcopi": [17, 26, 41], "deeper": 16, "deepest": 32, "def": [17, 18, 22, 23, 27, 28, 30, 32, 33, 35, 36, 41, 42, 43], "default": [2, 4, 8, 12, 13, 14, 15, 17, 23, 24, 25, 28, 29, 31, 32, 40, 41, 42, 43, 45, 46, 48], "default_color_configur": 41, "default_rng": [24, 25], "defin": [2, 4, 8, 12, 21, 22, 23, 24, 25, 28, 29, 33, 35, 37, 38, 39, 42, 45], "definit": [2, 28, 32, 33, 36], "deg": 21, "degeneraci": 27, "degre": [2, 28, 29, 32, 33, 43], "del": 30, "delai": [2, 33, 37, 38, 40, 48], "delay_fun": 33, "delayed_bin": 33, "delet": [2, 4, 29, 40, 48], "delete_channel": [2, 40, 48], "delta": [2, 12, 23, 29, 33, 38, 48], "delta_cycle_frac": 43, "delta_df": 33, "delta_df_start": 33, "delta_dfdot": 33, "delta_dfdot_start": 33, "delta_rm": 2, "demonstr": [5, 12, 14, 20, 21, 27, 28, 37, 40, 41, 46], "demostr": [13, 14], "denot": [2, 12, 23, 28, 29, 42], "densiti": [2, 9, 16, 17, 18, 26, 32, 33], "deorbit": 2, "depart": 2, "depend": [2, 5, 8, 23, 28, 29, 31, 40, 41, 42, 48], "depict": 17, "deprec": [2, 8, 17], "deprecationwarn": 2, "depth": [28, 29], "der": 26, "deriv": [2, 28, 47, 48], "derogatori": 4, "describ": [2, 3, 4, 12, 18, 21, 23, 28, 33, 39, 40, 41, 42], "descript": [2, 4], "design": [2, 8, 9, 28, 48], "desir": [2, 29, 48], "despit": 16, "dessert": 4, "det": [17, 32, 33], "det_id": 41, "det_numb": 2, "detail": [2, 4, 13, 14, 15, 17, 21, 26, 28, 29, 48], "detect": [2, 8, 17, 19, 20, 26, 32], "detector": [2, 16, 17, 18, 23, 26, 41, 43], "detector_id": 2, "determin": [2, 4, 24, 25], "determinist": 27, "detlev": 2, "dev": 27, "dev267": 23, "dev64": 19, "devel": [17, 30, 42], "develop": [2, 8, 23, 27], "devianc": [2, 28], "deviat": [2, 23, 32, 43, 48], "df": [2, 15, 19, 20, 24, 25, 28, 29, 31, 32, 33, 38], "df_": [32, 33], "df_min": [32, 33], "df_new": [2, 19, 20], "df_order_of_mag": 33, "dfdot": 33, "dfdot_order_of_mag": 33, "dfm": 2, "dfrac": [2, 22, 33], "dfreq": 33, "dft": 29, "dhruv": 29, "di": 48, "diag": 27, "diagnos": 2, "diagnost": [2, 27], "diagon": 2, "diagram": [5, 9], "dict": [2, 42], "dict_lik": 2, "dictionari": [2, 27, 28, 41, 43], "did": [4, 8, 17, 41], "diff": [2, 17, 33, 41], "diff_dt": 17, "differ": [2, 4, 5, 7, 8, 9, 13, 15, 16, 17, 21, 23, 27, 28, 32, 37, 38, 39, 40, 41, 42, 43, 46], "difficult": 27, "digit": 44, "dimens": [2, 21, 42, 45], "dimension": [2, 21, 42], "dip": 32, "direct": [2, 4, 29], "directli": [2, 15, 23, 28, 30, 31, 42], "directori": [2, 4, 9], "dirti": 26, "disabl": [2, 4], "disc": 2, "discard": [2, 15, 29, 31], "disclaim": 41, "discret": [27, 29], "discuss": [4, 41], "disk": [2, 37], "disordered_photon_tim": 43, "dispers": [2, 8, 9, 47], "displac": 2, "displai": [2, 29], "dist": 29, "distanc": [2, 17, 43], "distinct": 2, "distinguish": 41, "distort": [2, 18], "distr": 43, "distribut": [2, 5, 8, 12, 15, 17, 21, 27, 28, 32, 33, 34, 35, 36, 40, 41, 42, 43, 48], "diverg": 26, "divid": [2, 9, 13, 15, 28, 31, 41, 46], "divis": [2, 8, 23, 42], "divisor": 43, "dlogz": 12, "do": [2, 4, 9, 15, 16, 20, 21, 23, 26, 28, 29, 30, 31, 32, 33, 40, 41, 42, 48], "doabl": 43, "doc": [2, 4, 8, 9, 14, 24, 25, 41], "docs_path": 2, "docstr": [2, 4, 17], "doctest": 2, "document": [2, 12, 15, 16, 20, 23, 28, 42], "docutil": 9, "doe": [2, 4, 14, 17, 21, 23, 26, 28, 32, 33, 41, 42], "doesn": [9, 28], "dof": [2, 28], "doi": [0, 2, 9, 29], "domain": 8, "domin": 30, "don": [2, 4, 20, 23, 42], "done": [2, 4, 8, 9, 12, 14, 15, 16, 17, 18, 22, 23, 27, 28, 30, 31, 40, 41, 42, 43, 48], "dot": 41, "doubl": [2, 27], "down": [2, 28], "download": [20, 29, 41], "downstream": 23, "dp": [2, 19], "dph": 43, "dpi": [17, 22, 29, 36], "dps_new_f": 19, "dps_new_t": 19, "dpss": 29, "dpss_taper": 29, "dr": 8, "draft": 4, "draw": [33, 34, 35, 37], "draw_idl": 33, "drawn": [23, 29, 34, 42], "drawstyl": [17, 21, 26, 41], "drifit": 5, "drift": 19, "drive": 2, "drop": [2, 8, 16, 23, 42], "dt": [2, 8, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 43, 45, 48], "dt_new": [2, 19, 20], "dtype": [16, 21, 22, 30, 33, 34], "due": [2, 8, 14, 16, 18, 26, 29, 37, 41], "dummi": 4, "duplic": 8, "durat": [2, 14, 21, 23], "dure": [2, 4, 8, 16, 17, 23, 26, 29, 33, 41], "dx": 2, "dx_new": 2, "dx_old": 2, "dyn_p": [2, 19, 20], "dynam": [9, 40, 45], "dynamicalcrossspectrum": 41, "dynamicalpowerspectrum": [2, 8, 16, 19, 20, 41], "dynamicpowerspectrum": 5, "dynp": 41, "dynps_reb": 41, "dynspec": 20, "dynspec_new": 2, "dz": 17, "e": [2, 4, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 26, 28, 29, 30, 32, 33, 36, 41, 42, 48], "e0": 45, "e00": 2, "e01": 2, "e1": [2, 45], "e10": 2, "e101": 4, "e11": 2, "e111": 4, "e112": 4, "e113": 4, "e2": 2, "e203": 8, "e30": 4, "e502": 4, "e722": 4, "e901": 4, "e902": 4, "e999": 4, "e_max": 2, "e_min": 2, "each": [2, 4, 9, 12, 14, 15, 16, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 35, 36, 38, 40, 41, 42, 43, 44, 48], "eadi": 29, "earlier": [2, 33], "earth": [16, 26], "eas": [8, 28, 37, 38, 40, 48], "easi": [4, 9, 21, 22, 28], "easier": [2, 4, 28], "easiest": [4, 9, 16], "easili": [2, 4, 8, 9, 17, 21, 28, 32], "ebound": 2, "ecol": 2, "economi": 4, "ecosystem": 21, "ecsv": [2, 8, 21, 42], "edg": [2, 41, 43], "edgecolor": 41, "edit": 4, "editor": 2, "edu": 29, "educ": 2, "edwig": 21, "ef": [2, 32, 33], "ef_detlev": 33, "ef_profile_stat": 2, "eff": 12, "effect": [2, 7, 12, 16, 18, 28, 29, 48], "effici": [2, 23, 29], "effort": [2, 4, 8], "efstat": 33, "eg": 4, "egg": 23, "eigenspectra": 29, "eigenspectrum": 29, "eigenvalu": 29, "eigenvector": 29, "eigval": 29, "either": [2, 4, 24, 25, 27, 28, 29], "elaps": [21, 23, 42], "electr": 29, "electromagnet": 2, "electron": [4, 29], "element": [2, 22, 29, 42], "elif": [22, 42], "elimin": [2, 8, 22, 33], "els": [2, 28, 29, 42, 43], "elsewher": 2, "email": 4, "emax": 2, "emce": [2, 9, 11, 28], "emerg": 37, "emin": 2, "emiss": 2, "empathi": 4, "empir": 2, "emploi": [2, 29], "empti": [2, 8, 23, 42, 43], "en": [24, 25], "en1_max": 2, "en1_min": 2, "en2_max": 2, "en2_min": 2, "enabl": [9, 11, 27, 29, 45], "enable_deprecations_as_warn": 8, "encod": [2, 28], "encount": [4, 46], "encourag": [4, 29, 41], "end": [2, 12, 21, 23, 28, 29, 32, 33, 37, 40, 45], "energi": [2, 5, 8, 9, 16, 23, 34, 40, 41, 43, 48], "energies_err": 41, "energy_covar": 2, "energy_interv": [2, 41], "energy_list": 2, "energy_rang": [2, 41], "energy_respons": 45, "energy_spec": [2, 41], "energytim": 21, "engin": 29, "enhanc": [2, 4, 21, 42, 48], "enough": [2, 4, 18, 20, 32], "ensemblesampl": 2, "ensur": [3, 4, 8, 28], "entir": [2, 4, 23, 42], "entri": [2, 4, 29, 37, 41], "enumer": 28, "env": 23, "environ": 4, "ephem": 2, "ephemeri": 2, "epic": [2, 9], "epoch": [2, 9, 21, 32, 41, 47], "epoch0_wang_data": 41, "epoch_0_data": 41, "epoch_folding_search": [2, 33], "epoch_zero_h": 41, "epoch_zero_i": 41, "epsilon": [2, 32, 33], "eq": [2, 17], "equal": [2, 12, 14, 15, 19, 23, 24, 25, 28, 29, 37, 41, 42], "equat": [2, 32], "equinox": 21, "equiv": 29, "equival": [2, 8, 15, 21, 23, 28, 31, 41], "equivalent_gaussian_nsigma": 2, "erent": 48, "err": [2, 15, 22, 23, 28, 29, 31], "err_coh": 15, "err_dist": [2, 8, 23, 29, 31], "err_high": 2, "err_low": 2, "err_thisfun": 2, "errat": 20, "error": [2, 5, 8, 9, 12, 14, 15, 17, 20, 21, 24, 25, 26, 28, 29, 41, 42, 43], "error_attr": 2, "error_flux_attr": [2, 43], "error_oper": 2, "errorbar": [2, 15, 22, 27, 28, 38, 40, 41, 42], "errorbarcontain": [28, 40], "esa": 8, "especi": 2, "ess": [12, 27], "est": 27, "estim": [5, 8, 11, 12, 17, 23, 32, 33, 41], "estimate_chunk_length": [2, 23], "estimate_segment_s": 2, "estimated_chunk_length": 23, "et": [2, 3, 5, 8, 12, 15, 19, 20, 22, 27, 28, 31, 33, 37, 38, 41, 44], "etc": [2, 4, 15, 18, 21, 23, 31, 40, 42], "ethnic": 4, "etil": 9, "euclid": 2, "european": 8, "ev": [2, 18, 21, 42, 43], "ev1": [2, 18, 21, 26], "ev1_dt": 18, "ev2": [2, 18, 21, 26], "ev2_dt": 18, "ev3": 21, "ev4": 21, "ev_fil": 41, "ev_list": 2, "ev_new": 2, "ev_polar": 43, "ev_tim": 33, "ev_tot": 26, "ev_tot_dirti": 26, "eva": 16, "eval": [12, 27], "evalu": [2, 12, 28, 32, 33], "evar": 22, "evar_err": 22, "evb": 16, "even": [2, 7, 26, 30, 33], "even_sampl": 2, "evenli": [2, 23, 26, 29, 42], "event": [2, 4, 8, 9, 10, 16, 17, 18, 20, 21, 22, 23, 24, 25, 31, 32, 33, 34, 41, 43, 48, 49], "event_arrival_tim": 23, "event_tim": 36, "eventlist": [5, 8, 15, 16, 17, 18, 20, 22, 24, 25, 26, 30, 31, 33, 41, 42, 43], "events1": [2, 15], "events2": [2, 15], "events_dt": 17, "events_larg": 30, "events_ref": 41, "events_sub": 41, "everi": [2, 4, 22, 32, 33], "everth": 29, "everydai": 28, "everyon": 4, "everyth": [4, 21, 41], "everywher": 8, "evid": [12, 49], "evolut": 19, "evolv": 33, "evt": [2, 16, 20, 26, 30, 41], "ex": 2, "exact": [2, 8, 17], "exactli": [2, 17, 23, 26, 28, 31], "exampl": [2, 3, 4, 5, 6, 8, 9, 11, 12, 15, 17, 18, 20, 21, 23, 24, 25, 26, 27, 28, 32, 40, 41, 42, 43, 45, 46, 47], "exc_var_fun": 22, "exce": 4, "except": [4, 8, 9, 28, 32, 40, 41], "excess": [2, 22], "excess_vari": [2, 22], "exclud": [2, 12], "exclus": [2, 42], "excvar": 22, "execut": [2, 4, 29, 33], "exemplifi": 29, "exhaust": 29, "exist": [2, 4, 8, 22, 23, 26, 28], "exoplanet": 23, "exp": [17, 27, 28, 37, 43], "expect": [2, 4, 15, 17, 23, 26, 28, 31, 32, 33, 37, 40, 43], "expens": [4, 33], "experi": [4, 18, 48], "experienc": [4, 8], "explain": [2, 7, 9, 11, 39, 45], "explan": [2, 28, 29], "explicit": [2, 4, 28, 31, 34], "explicitli": [4, 23, 28], "explor": [8, 12, 29, 41], "expo": 2, "expocorr": 2, "exponenti": [2, 17, 28, 37], "expos": [2, 12, 42], "exposur": [2, 8, 13, 14, 15, 29, 31, 41], "exposure_per_chunk": 2, "express": [4, 8, 12, 15, 16, 31, 36], "ext_list": 2, "extend": [2, 8, 9, 20, 21, 28], "extens": [2, 9, 21, 28], "extent": [19, 20], "extern": 2, "extnam": 21, "extra": [2, 4, 7, 9], "extract": [2, 12, 41], "extract_varying_random_photon_angl": 43, "extrapol": [17, 22, 43], "extrem": [2, 29], "f": [2, 4, 5, 15, 17, 21, 27, 30, 31, 32, 33, 35, 36, 39, 41, 42], "f0": [2, 33], "f0_list": [2, 19, 20], "f1": 2, "f822": 4, "f823": 4, "f_": [2, 22, 29, 33], "f_conj": 35, "f_i": 12, "f_inv": 35, "f_nyq": 2, "face": 4, "facecolor": 33, "fact": [2, 33, 42], "factor": [2, 24, 25, 27, 37, 41, 43], "fad": [2, 8, 16, 17, 18], "fad_result": 2, "fail": [2, 8, 23, 42], "failur": 2, "fair": 4, "fairli": [28, 33], "faith": 4, "fake": [2, 5, 9, 21, 28], "fall": [2, 23, 42], "fals": [2, 8, 17, 18, 22, 23, 24, 25, 28, 29, 33, 36, 40, 41, 42], "famili": 48, "familiar": 4, "fancier": 15, "far": [2, 33, 37, 41], "farther": 37, "fast": [2, 8, 24, 25, 33], "faster": [8, 9], "fastest": 9, "favicon": 8, "favor": [2, 4], "fddot": [2, 33], "fdgrid": 2, "fdot": [2, 33], "featur": [2, 4, 5, 7, 20, 23, 37, 41, 48], "fed": 2, "feedback": 9, "feel": [28, 29], "fermi": 43, "fetch": 4, "few": [2, 4, 7, 23, 32, 42], "fewer": 2, "fft": [2, 8, 9, 18, 29, 32, 33, 35, 36, 40, 46, 48], "fft_corr": 2, "fft_tapered_data": 29, "fftconvolv": 37, "fftfit": [2, 8], "fftfit_error": 2, "fftfit_kwarg": 2, "fftfreq": 46, "fftlen": [2, 17], "fftpack": 46, "fftshift": 46, "fg": 33, "fgrid": 2, "fiddli": 2, "field": [21, 37], "fienberg": 2, "fig": [2, 14, 15, 24, 25, 27, 28, 29, 31, 33, 41, 43], "figsiz": [14, 15, 16, 17, 18, 22, 24, 25, 27, 28, 29, 31, 32, 33, 36], "figur": [2, 16, 17, 18, 19, 21, 22, 23, 28, 29, 32, 33, 36, 37, 38, 41, 42, 43], "file": [2, 4, 5, 8, 9, 16, 17, 20, 21, 30, 41, 45, 49], "fileexchang": 2, "filenam": [2, 21, 23, 28, 42], "fill": [2, 9, 23, 41, 42], "fill_bad_time_interv": [2, 41], "fill_between": [17, 29], "fill_valu": [17, 22, 43], "filt_ev": 2, "filter": [2, 16, 17, 18, 20, 22, 23, 38, 40, 41, 42, 48], "filter_at_time_interv": 30, "filter_energy_rang": [2, 41], "filter_for_deadtim": [17, 18], "filter_kwarg": 17, "filtered_attr": 2, "filterwarn": [23, 27, 28, 42], "final": [2, 4, 9, 17, 21, 22, 28, 38, 40, 41, 43, 45, 48], "find": [2, 9, 20, 23, 28, 33, 34, 37, 38], "find_invers": 36, "find_large_bad_time_interv": 2, "find_nearest": 2, "fine": [2, 30, 34], "fine_sample_tim": 30, "finish": 29, "finit": [2, 29], "first": [2, 4, 9, 13, 15, 16, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 37, 38, 40, 41, 42, 45], "fisher": 28, "fit": [2, 4, 8, 9, 11, 20, 21, 22, 27, 30, 41, 47], "fit_crossspectrum": 2, "fit_gaussian": [2, 33], "fit_lorentzian": [2, 28], "fit_model": 41, "fit_powerspectrum": [2, 28], "fit_sinc": [2, 33], "fit_whitenois": [2, 28], "fitmethod": [2, 28, 41], "fitmod": 41, "fits_fil": 2, "fits_kwarg": 2, "fits_times_iter": 30, "fitsread": [8, 30], "fitstimeseriesread": [9, 10], "fittablemodel": 2, "fitter_to_model_param": 28, "five": [15, 24, 25], "fix": [2, 4, 28, 33], "fk5": 21, "fl": 2, "flag": 2, "flake8": [4, 8], "flare": [23, 28, 41, 42], "flash": 37, "flat": [2, 12, 13, 16, 23, 28, 33, 48], "flatten": [2, 4, 29, 41], "flexibl": [21, 27, 42, 43], "flicker": [35, 40, 48], "float": [2, 8, 9, 12, 17, 22, 24, 25, 28, 29, 30, 33, 34], "float128": [2, 21], "float32": [16, 21], "float64": [29, 30], "float64float64": 21, "float_typ": 27, "floor": [21, 29, 43], "flux": [2, 19, 22, 23, 26, 29, 32, 34, 36, 43, 48], "flux_arrai": 2, "flux_attr": [2, 43], "flux_err": [2, 23], "flux_err_arrai": 2, "flux_kp": 29, "fly": [8, 30], "fmax": 2, "fmin": 2, "fmt": [2, 8, 15, 16, 20, 22, 26, 27, 28, 30, 38, 41], "fname": [2, 30, 41], "focus": [2, 4], "fold": [2, 9, 28, 30, 32, 47], "fold_detection_level": [2, 33], "fold_ev": [2, 8, 32, 33], "fold_profil": 32, "fold_profile_logprob": 2, "fold_profile_prob": 2, "folder": [4, 9], "follow": [2, 3, 4, 8, 9, 12, 14, 15, 17, 19, 20, 21, 23, 24, 27, 28, 29, 31, 32, 33, 34, 35, 37, 39, 42, 43, 44, 48], "font": [17, 22, 36, 48], "font_manag": [14, 15, 24, 25, 31], "font_prop": [14, 15, 24, 25, 31], "fontproperti": [14, 15, 24, 25, 31], "fontsiz": [29, 36, 48], "forc": [2, 8], "forcedidentifi": 27, "foreman": 27, "forg": 9, "fork": [4, 9], "form": [2, 4, 12, 17, 23, 28, 35, 36, 37, 43, 45], "formal": 28, "format": [2, 4, 5, 8, 17, 19, 20, 23, 24, 29, 30, 33, 42, 45], "format_": [2, 8], "formatt": 4, "former": 28, "formul": [2, 12, 17], "formula": [2, 24, 25, 29, 33, 41, 44], "forth": 42, "fortun": 26, "foster": 4, "found": [2, 22, 28, 32, 33, 43], "foundat": 1, "four": 4, "fourier": [7, 8, 11, 15, 24, 25, 26, 29, 31, 40, 41], "fourth": 2, "fov": 43, "fpm": 9, "fpma": [2, 21], "frac": [2, 15, 17, 21, 24, 25, 29, 31, 32, 33, 41], "frac_exp": [2, 12], "fracexp_limit": 2, "fraction": [2, 8, 12, 15, 17, 22, 23, 24, 25, 28, 31, 36, 41, 42, 48], "fraction_step": 2, "fragment": 4, "frame": [8, 42], "framework": [4, 8, 11, 28, 48], "free": [1, 2, 4, 28, 29, 30, 33], "freedom": [2, 28, 29, 33], "french": 43, "freq": [2, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 28, 29, 31, 32, 33, 36, 37, 38, 40, 41, 43, 46], "freq_01_1": 41, "freq_3_30": 41, "freq_analyt": 29, "freq_edg": [2, 41], "freq_f": 18, "freq_interv": [2, 41], "freq_lag": 15, "freq_lags_err": 15, "freq_plag": 15, "freq_plags_err": 15, "freqs_to_exclud": 2, "frequenc": [2, 5, 9, 13, 14, 16, 17, 18, 20, 24, 25, 26, 27, 28, 30, 32, 35, 36, 38, 39, 41, 46, 47, 48], "frequency_deriv": 2, "frequent": [4, 6, 29], "frequentist": [2, 28], "freqz": 29, "friendlier": 8, "from": [2, 4, 5, 6, 8, 10, 12, 13, 15, 16, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48, 49], "from_astropy_t": [2, 21], "from_astropy_timeseri": [2, 21, 23], "from_column": 2, "from_ev": [2, 8, 15, 16, 17, 18, 26, 30, 31, 41], "from_format": 42, "from_lc": [2, 8, 17, 21], "from_lc_it": [15, 31], "from_lc_iter": [2, 8, 30], "from_lc_list": 8, "from_lightcurv": [2, 8, 15, 17, 30, 31, 40, 43], "from_lightkurv": 2, "from_panda": 2, "from_stingray_timeseri": [2, 43], "from_time_arrai": [2, 8, 17], "from_xarrai": 2, "ftool": 8, "fuction": 19, "fulfil": 2, "full": [2, 8, 9, 14, 28, 30, 40, 41, 48], "fulli": [21, 23, 28], "fullspec": [2, 24, 25], "func": [2, 23, 41], "func_to_appli": 2, "function": [4, 7, 8, 9, 11, 12, 14, 15, 20, 22, 23, 24, 25, 27, 29, 30, 31, 35, 36, 37, 40, 41, 42, 45, 47], "fundament": [2, 29], "further": [2, 4, 8, 12, 28, 29, 41], "futur": [20, 28, 33, 39, 48], "fv": 21, "fvar": [2, 22], "fvar_err": 22, "fvar_fun": 22, "fwhm": [2, 28, 39, 41], "fwhm_0": [2, 28], "fwhm_1": [2, 28], "fwhm_2": [2, 28], "fwhm_i": 2, "g": [2, 4, 8, 9, 15, 16, 17, 18, 20, 21, 22, 23, 26, 28, 32, 33, 34, 36, 37, 38, 41, 42, 43, 44, 48], "g0": [2, 26], "g0_0": 2, "g0_1": 2, "g1": [2, 26], "g1_0": 2, "g1_1": 2, "g_all": 2, "ga4a8b8a0": 19, "gabr": 2, "gain": 41, "gamma": 39, "gani": 2, "gap": [2, 6, 9, 23, 42], "gardner": [2, 8], "gaskel": 2, "gather": [2, 4], "gauss": [2, 18, 23, 29, 31], "gaussian": [2, 8, 9, 15, 22, 23, 28, 31, 32, 43, 47, 49], "gaussian1d": 28, "gaussian_filter1d": 22, "gaussianloglikelihood": 2, "gaussianposterior": 2, "gaussianprocess": 27, "gave": 8, "gb": 30, "gc": 30, "gc5fd28c": 23, "gcount": 21, "gelman": 2, "gen_energi": 34, "gender": 4, "gener": [2, 4, 5, 8, 11, 12, 14, 15, 17, 18, 21, 23, 27, 28, 29, 31, 32, 36, 42, 43, 45, 47, 48], "generalized_lorentzian": [39, 40], "generat": 27, "generate_ev": 18, "generate_indices_of_gti_boundari": 2, "generate_indices_of_segment_boundaries_bin": 2, "generate_indices_of_segment_boundaries_unbin": 2, "geometr": [5, 41], "geomspac": 41, "geq": 2, "get": [2, 9, 12, 15, 16, 17, 20, 23, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 40, 41, 42, 44], "get_all_channel": 2, "get_average_ctr": 41, "get_bti": [2, 41], "get_channel": [2, 38, 40, 48], "get_color_evolut": [2, 41], "get_deadtime_mask": 2, "get_energy_mask": 2, "get_evid": 27, "get_file_extens": 2, "get_gp_param": 27, "get_gti_extensions_from_pattern": 2, "get_gti_from_all_extens": 2, "get_gti_from_hdu": 2, "get_gti_length": [2, 41], "get_intensity_evolut": [2, 41], "get_kernel": 27, "get_key_from_mission_info": 2, "get_likelihood": 27, "get_log_likelihood": 27, "get_mean": 27, "get_meta_dict": 2, "get_orbital_correction_from_ephemeris_fil": 2, "get_periodograms_from_fad_result": 2, "get_prior": 27, "get_prior_dict": 27, "get_random_st": 2, "get_rough_conversion_funct": 2, "get_toa": 2, "get_total_gti_length": [2, 41], "get_valu": [4, 33], "getattr": 42, "getlogg": 2, "getpid": [29, 30], "getpixel": 44, "ghghg": 2, "git": [4, 9, 29], "github": [2, 4, 9, 23, 29], "githubusercont": 29, "give": [2, 8, 12, 14, 15, 22, 23, 27, 30, 31, 32, 33, 40, 41, 42, 43, 48], "given": [2, 8, 9, 12, 14, 15, 17, 20, 21, 23, 27, 28, 29, 32, 36, 37, 42, 43, 44, 48], "glob": [22, 36, 41], "global": [28, 32, 41], "gnd": 21, "go": [4, 9, 17, 28, 41, 43], "goal": 8, "goe": 2, "golai": 20, "good": [2, 4, 5, 9, 15, 20, 21, 26, 28, 29, 31, 33, 41, 49], "goofi": 42, "googl": 1, "gp": 27, "gpmodel": [9, 27], "gpr": 27, "gpresult": 27, "gpresult2": 27, "gpu": 9, "gracefulli": 4, "gradual": 37, "grai": [29, 32, 33], "graph": [2, 42], "graphic": 8, "gravit": 37, "great": [4, 26], "greater": [2, 27], "greatli": 18, "green": [29, 37, 38, 41], "grei": [26, 36, 41], "grid": [2, 33, 36], "gridspec": [17, 22, 33, 41, 43], "groth": 2, "group": [2, 4, 8, 21, 29], "gt": [12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 26, 28, 29, 31, 32, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46], "gti": [5, 8, 15, 16, 17, 18, 21, 22, 26, 30, 31, 32, 33, 41, 43, 49], "gti0": [2, 42], "gti00": [2, 23], "gti005": 2, "gti00501": 2, "gti005xx": 2, "gti01": [2, 23], "gti0_0": 2, "gti0_1": 2, "gti1": [2, 42], "gti10": [2, 23], "gti11": [2, 23], "gti1_0": 2, "gti1_1": 2, "gti2": 2, "gti_border_bin": [2, 41], "gti_fil": 2, "gti_length": 41, "gti_list": [2, 42], "gti_mask": 2, "gtiextn": 2, "gtihdu": 2, "gtistr": 2, "guarante": [23, 28], "guassian": 35, "guess": [2, 28], "gui": 8, "guid": 4, "guidelin": 8, "gwendolyn": 29, "gz": [2, 20, 41], "h": [2, 8, 9, 27, 29, 37, 41], "h1": 38, "h1743": 16, "h2": [38, 43], "h5py": [9, 29], "h_": 29, "h_cut": 38, "h_cutoff": [37, 38], "h_decai": 37, "h_primari": 37, "h_rise": 37, "h_secondari": 37, "h_start": 41, "h_stop": 41, "h_zero": 37, "ha": [2, 8, 14, 15, 16, 17, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 33, 39, 40, 41, 42, 43, 46, 48], "had": [8, 17, 27, 28, 41], "half": [2, 8, 29, 42], "hall": 2, "ham": [2, 13, 48], "hammad": 29, "han": [2, 13, 48], "hand": [2, 15, 28, 29, 31, 33], "handi": [2, 27], "handl": [2, 8, 34], "happen": [2, 8, 26, 28, 30], "harass": 4, "hard": [2, 9, 16, 28], "hard_ev": 16, "hard_lc": 16, "hardness_ratio": 16, "harm": [4, 8], "harmon": [2, 26, 29, 33], "haroon": [14, 46], "hartigan": 2, "harvard": 29, "hasing": [15, 31, 41], "hasn": 43, "hat": [29, 32, 37], "have": [2, 4, 5, 8, 9, 14, 15, 16, 18, 20, 21, 23, 24, 25, 27, 28, 31, 32, 33, 37, 38, 40, 41, 42, 43, 45, 48], "haven": 28, "hdf5": [2, 8, 21, 42], "hdr": 2, "hdu": 2, "hdu1": 2, "hdu2": 2, "hdulist": 2, "hdunam": 2, "hea": [2, 16, 21, 41], "head": 40, "header": [2, 8, 21, 41], "hear": 4, "heasarc": [2, 9, 41], "heasoft": [2, 5, 6, 16], "heavili": 41, "heavisid": 2, "height": [36, 40, 44, 45], "height_ratio": [33, 43], "heil": [8, 41], "hello": 4, "help": [2, 7, 9, 23, 27, 28, 29, 33, 42], "helper": [2, 28, 40, 45], "henc": [2, 23, 28, 29, 37, 38, 40], "hendric": [8, 16, 30, 33], "henfak": 30, "henphaseogram": 33, "her": 2, "here": [2, 4, 5, 9, 12, 13, 15, 16, 17, 19, 20, 21, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 37, 38, 40, 41, 42, 43, 48], "hertz": 19, "hesit": 4, "hessian": [2, 28], "heurist": 2, "hext": 2, "hierarch": 42, "high": [2, 8, 16, 17, 18, 26, 27, 28, 30, 33, 41], "high_precis": 2, "high_precision_keyword_read": 2, "higher": [9, 13, 43], "highest": [2, 28], "highli": [9, 29], "him": [2, 41], "hire": 48, "hist": [12, 17, 41], "hist2d": 43, "hist_dt": 17, "histogram": [2, 8, 17, 30, 33, 34, 42, 43], "histori": [4, 9, 21], "hit": [2, 18], "hline": 15, "ho": 13, "hogg": 2, "hold": 24, "hole": [2, 9, 16, 22, 26, 37, 40, 41, 45], "holocen": 29, "home": 29, "hook": 8, "horizont": [2, 36, 37], "host": [4, 9], "hovercolor": 33, "how": [2, 4, 5, 6, 7, 8, 11, 12, 14, 15, 16, 17, 19, 20, 24, 25, 26, 28, 31, 32, 33, 34, 35, 41, 42, 43, 47], "howev": [2, 4, 15, 17, 18, 23, 28, 31, 37, 40, 41, 42, 43, 45, 48], "hspace": [36, 41, 43], "hss": 41, "hstack": [23, 36], "htest": 2, "html": [2, 9, 14, 24, 25], "http": [2, 4, 9, 13, 14, 23, 24, 25, 29], "huben": 8, "hubner": 27, "hue": 41, "hue_from_power_color": 41, "hue_limit": 41, "hundr": [18, 28], "huppenkothen": [2, 3, 8, 18, 28, 29, 41], "hurrai": 30, "husl": 29, "hypothesi": [2, 28, 32, 42], "hz": [2, 13, 14, 15, 16, 17, 18, 19, 20, 24, 25, 26, 27, 29, 31, 32, 33, 37, 38, 41], "i": [3, 4, 5, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 45, 46, 48], "i0_0": 2, "i0_1": 2, "i1_0": 2, "i1_1": 2, "i_start": 41, "i_stop": 41, "id": [2, 21, 41], "idea": [2, 4, 23], "ideal": [2, 18, 42], "idealcas": 2, "ident": [4, 18, 26], "identifi": [2, 12, 27], "idl": 2, "idx": [2, 23, 29], "idx0": 43, "idx1": 43, "ieee": 29, "ifft": 35, "ignor": [2, 8, 23, 26, 27, 28, 41, 42], "ignore_meta": 42, "ii": [29, 48], "iii": 48, "ij": 32, "il": 27, "illustr": 40, "im": 44, "imag": [2, 17, 20, 21, 24, 25, 42, 44], "imageri": 4, "imagin": 28, "imaginari": [2, 8, 15, 24, 25, 29, 35, 36], "immedi": 41, "imperfect": [17, 26], "implemen": 32, "implement": [2, 4, 7, 8, 9, 11, 12, 19, 20, 23, 28, 29, 32, 33, 36, 37, 41, 42, 47], "impli": [2, 17], "import": [2, 4, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], "importantli": 2, "importerror": [2, 4, 28], "impos": 23, "imposs": 2, "improp": 28, "improv": [2, 4, 16, 19, 20, 24, 25], "impuls": [2, 9, 45], "imshow": [19, 20], "inappropri": 4, "incid": [2, 4, 17], "includ": [2, 4, 8, 9, 13, 17, 21, 24, 25, 28, 40, 41, 42, 46, 48], "inclus": 4, "incom": [38, 40], "incomplet": [15, 31], "inconsist": 2, "inconveni": 29, "incorpor": 9, "incorrect": [2, 28, 29, 33], "incorrectli": 8, "increas": [2, 16, 17, 22, 26, 29], "increasingli": 27, "increment": 30, "incur": 2, "inde": 42, "indent": 4, "independ": [2, 18, 29, 32, 33, 40, 41, 48], "index": [2, 5, 9, 20, 22, 28, 39, 49], "indic": [2, 12, 16, 23, 24, 25, 26, 27, 28, 29, 41, 42, 43], "indicate_inset_zoom": 41, "indirect": 2, "individu": [2, 4, 23, 42], "ineffect": 2, "inexperienc": 4, "inf": [2, 12], "infer": [2, 27, 28, 42], "inferenc": [9, 49], "infin": [28, 39], "infinit": [2, 26, 28], "inflat": 28, "info": [2, 4, 8, 17, 27], "inform": [2, 4, 8, 13, 18, 23, 27, 28, 29, 33, 41, 42, 43], "infrastructur": [4, 8, 42], "infti": 2, "ingli": 28, "inher": 29, "inherit": [2, 4], "init": 4, "initi": [2, 8, 15, 21, 24, 25, 31, 37, 40, 41, 42, 44, 45, 48], "initial_check": 2, "initialis": 27, "inject": 2, "ink": 14, "inlin": [4, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 28, 31, 34, 35, 36, 37, 38, 39, 40, 41, 42, 44, 45, 46], "inner": [2, 17], "inplac": [2, 8, 26], "input": [2, 8, 9, 12, 15, 17, 21, 22, 23, 24, 25, 28, 29, 31, 33, 36, 37, 41, 43, 48], "input_count": [2, 23], "input_data": 2, "insensit": 2, "insert": [12, 15, 31], "inset_ax": 41, "insid": [2, 4, 8, 41], "inst": 2, "instal": [2, 4, 5, 23, 28, 30], "instanc": [2, 4, 12, 28, 42], "instantan": 37, "instanti": [2, 23, 28, 29, 38, 40, 42, 48], "instead": [2, 4, 8, 16, 17, 21, 23, 27, 28], "institut": 29, "instr": [2, 21], "instruct": 41, "instrum": 21, "instrument": [2, 7, 15, 18, 21, 23, 26, 31, 41, 42, 47], "insult": 4, "int": [2, 8, 9, 17, 18, 19, 21, 22, 28, 29, 30, 32, 33, 34, 37, 38], "int64": 34, "integ": [2, 8, 9, 23, 24, 25, 42, 43, 48], "integr": [2, 28, 33], "intend": [2, 12, 13, 14], "intens": [2, 5, 8, 9, 16, 17, 38, 40, 44, 45, 48], "intensity_err": 41, "interact": [2, 47], "interactive_phaseogram": 33, "interactivephaseogram": 33, "interest": [2, 4, 8, 15, 23, 24, 26, 27, 32, 39, 41], "interfac": [2, 8, 9, 28], "intermedi": [2, 41], "intern": [2, 4, 9, 15, 17, 23, 31, 49], "internal_array_attr": 2, "internet": 4, "interoper": 21, "interp": 43, "interp1d": [17, 22, 36, 43], "interpol": [2, 14, 17, 19, 20, 22, 24, 25, 36, 43], "interpret": [2, 8, 9, 21, 41, 48], "intersect": [2, 42], "interv": [2, 5, 8, 9, 12, 15, 16, 21, 26, 28, 29, 31, 33, 34, 40, 41, 45, 49], "interval_tim": 30, "intrins": [2, 12, 22], "introduc": [2, 8, 17, 23, 27, 28, 29, 42, 43, 45], "introduct": [2, 9, 32, 49], "intuit": [17, 41], "intv": 30, "invalid": [2, 8], "invcoupl": 2, "invers": [2, 15, 21, 28, 33, 43, 48], "invert": [2, 23, 42, 44], "investig": [4, 16], "invok": 9, "involv": [2, 9, 14, 29], "io": [2, 20, 23, 30, 42, 48], "ioerror": 4, "iop": 2, "iopscienc": 2, "ip": 33, "ipykernel": 46, "ipynb": [15, 31], "ipython": [9, 23], "ir": 48, "irfft": 36, "irregular": [2, 5], "is_int": 2, "is_it": 2, "is_iter": 2, "is_sort": 8, "is_str": 2, "isclos": 2, "isfinit": [2, 28], "ish": 11, "isi": 8, "isinst": 2, "isn": [3, 23, 28, 37], "isstr": 2, "issu": [8, 16, 18], "issue20": 4, "istru": 2, "item": [2, 8, 28, 41], "iter": [2, 4, 8, 12, 15, 28, 29, 30, 31, 39, 40, 42, 48], "iter_lc": 2, "iter_lc1": 2, "iter_lc2": 2, "its": [2, 4, 12, 20, 23, 24, 25, 26, 27, 28, 32, 33, 36, 40, 41, 42, 48], "itself": [2, 3, 9, 14, 23, 27, 28, 42], "iv": 48, "ixp": [2, 7], "j": [2, 25, 28, 29, 32, 33, 41, 44], "j1820": 41, "jack": 29, "jackknif": 5, "jager": 2, "jake": 26, "jan": 21, "jax": [8, 9, 27], "jax_enable_x64": 27, "jaxn": [9, 27], "jetbrain": 1, "jingyi": 41, "jinja": 8, "jinja2": 9, "jit": 27, "jitter": 27, "jk_limits_stingrai": 29, "jk_p": 29, "jk_var_deg_freedom": 5, "jnp": 27, "join": [2, 4, 5, 8, 9, 16, 18, 23, 26, 42, 43], "join_gti": [2, 42], "joint_distribut": 27, "joss": 3, "journal": [3, 29], "jpg": 36, "jpl": 2, "juli": 29, "julian": [21, 23, 42], "jupyt": [4, 9], "jupyter_black": 41, "just": [2, 4, 8, 9, 19, 20, 22, 26, 27, 28, 29, 30, 33, 41, 43], "k": [2, 17, 19, 20, 23, 24, 26, 27, 28, 29, 32, 33, 36, 41, 42, 43], "k_": 27, "kara": 41, "kb": 4, "keep": [2, 4, 15, 24, 25, 30], "kei": [2, 8, 27], "kepler": [5, 23], "kepler_data": 29, "kept": [24, 25], "kernel": [27, 29], "kernel_param": 27, "kernel_typ": 27, "kev": [2, 21, 37, 38, 41], "keyword": [2, 8, 21, 23, 28, 29, 32, 42, 43], "khan": 29, "khz": [2, 17, 20], "kill": 29, "kind": [2, 15, 31, 43], "kindli": [29, 41], "kl": 12, "kmax": 29, "knife": 29, "know": [2, 4, 15, 23, 28, 29, 41], "knowledg": 28, "known": [2, 15, 26, 31, 32, 33], "ko": 28, "koenig": 36, "koi2133": 29, "krickeberg": 2, "kwarg": [2, 8, 29, 42], "l": [2, 12, 17, 26, 27, 28, 29, 32, 33, 41, 43], "l1": [29, 33], "l2": [29, 33], "l21": [15, 31], "l3": 33, "l33": [15, 31], "l43": 15, "l_j": 41, "la": [2, 8], "lab": 41, "label": [2, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 41, 42], "labels": [14, 15, 17, 24, 25, 31, 36], "lag": [2, 5, 8, 9, 13, 16, 26, 38, 40], "lag_": [38, 41], "lag_delai": 2, "lag_err": 2, "lagenergyspectrum": 15, "lagspec_01_1": 41, "lagspec_3_30": 41, "lagspectrum": [2, 8, 41], "lai": 2, "lam": 2, "lambda": [2, 28, 33], "lambda_k": 29, "languag": 4, "laplac": 2, "laplaceloglikelihood": 2, "laplaceposterior": 2, "larg": [2, 8, 9, 21, 22, 23, 28, 29, 30, 41, 42], "large_data": 2, "largememori": 29, "larger": [2, 14, 15, 17, 23, 28, 30, 31, 33, 41, 42], "largest": [2, 14, 28], "last": [2, 15, 21, 23, 27, 28, 31, 37, 42], "later": [2, 4, 9, 23, 28, 29, 37, 40, 42, 45, 48], "latest": [3, 4, 28], "latter": 2, "law": [2, 28], "layout": 4, "lazi": [8, 9, 10, 15], "lazili": 2, "lc": [2, 9, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 48], "lc1": [2, 14, 15, 24, 37], "lc1_dt": 18, "lc2": [2, 14, 15, 24, 37], "lc2_dt": 18, "lc_1": 23, "lc_10": 26, "lc_2": 23, "lc_actual_var": 22, "lc_ar4": 29, "lc_back": 23, "lc_bexvar": 2, "lc_cut": 23, "lc_dt": 17, "lc_fill": 41, "lc_gen": 2, "lc_input": 37, "lc_iter": 31, "lc_iterable1": 15, "lc_iterable2": 15, "lc_iterablex": 15, "lc_kepler": 29, "lc_list": 2, "lc_long": 23, "lc_mean": 36, "lc_mean_var": 22, "lc_neg": 23, "lc_new": [2, 21, 23, 40, 48], "lc_output": 37, "lc_poi": 40, "lc_poisson": 29, "lc_rand": 23, "lc_raw": 41, "lc_rebin": 23, "lc_result": 23, "lc_shift": 23, "lc_slice": 23, "lc_split": [2, 23], "lc_std": 36, "lc_sum": 23, "lc_tmp": 23, "lchdulist": 2, "lcurve_from_fit": 2, "lead": [3, 8, 23, 28, 43], "leadership": 4, "leahi": [2, 8, 9, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28, 29, 31, 33, 40, 41, 43], "leakag": [2, 29, 48], "learn": [8, 23, 40], "least": [2, 5, 17, 18, 23, 24, 25, 28, 29, 32, 33], "lectur": 2, "left": [2, 15, 23, 29, 31, 33, 36, 41, 42], "legaci": 8, "legacy_pds_procedur": 30, "legend": [15, 17, 18, 19, 20, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 41], "len": [2, 14, 15, 17, 22, 23, 28, 29, 31, 32, 33, 34, 37, 38, 41, 42, 46], "length": [2, 4, 12, 14, 15, 17, 18, 21, 22, 23, 24, 25, 28, 29, 31, 33, 40, 41, 42, 43, 48], "lens": 37, "less": [2, 4, 8, 14, 15, 41], "lesssim": 41, "let": [2, 5, 9, 10, 12, 13, 14, 15, 16, 17, 18, 20, 21, 23, 24, 25, 28, 31, 32, 33, 36, 41, 43], "letter": [2, 4], "lev": [32, 33], "level": [2, 4, 15, 16, 17, 18, 29, 31, 37, 41], "lfilter": 29, "lh": 41, "lib": [14, 23, 46], "librari": [2, 3, 4, 9, 14, 20, 21, 23, 27, 28, 29, 37, 38, 39, 40, 44, 45, 48], "lie": 28, "life": [28, 41], "lighrcurv": 14, "light": [2, 5, 6, 8, 9, 10, 12, 13, 16, 17, 18, 20, 26, 28, 32, 33, 36, 37, 38, 41, 42, 48, 49], "lightblu": 24, "lightcurv": [4, 8, 9, 12, 13, 15, 16, 17, 22, 24, 25, 31, 32, 33, 35, 37, 38, 39, 40, 41, 42, 43, 48, 49], "lightcurve_count": 27, "lightgoldenrodyellow": 33, "lightkurv": [2, 5, 8], "lighturv": 13, "lightvurv": 14, "ligthtcurv": 2, "like": [2, 4, 5, 9, 15, 20, 21, 23, 26, 28, 29, 31, 32, 33, 40, 42, 43, 48], "likelihood": [9, 11, 12, 41], "likelihood_model": 27, "limit": [2, 8, 17, 26, 29], "limit_k": [2, 17], "lin": 2, "lin_rb_c": 15, "lin_rb_p": 31, "line": [2, 4, 8, 14, 16, 17, 19, 26, 28, 29, 32, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45], "line2d": [16, 17, 19, 26, 28, 36, 38, 39, 40, 41, 43, 45], "line_length": 41, "linear": [2, 15], "linearli": [5, 15, 31], "linestyl": [15, 36, 37, 38], "linewidth": [29, 36], "link": [0, 2, 3, 4, 9, 29, 33], "linspac": [2, 19, 24, 25, 27, 28, 29, 35, 36, 37, 43], "linter": 4, "linthresh": [2, 17], "list": [2, 3, 4, 8, 9, 12, 15, 16, 21, 23, 27, 28, 30, 31, 33, 40, 41, 43, 48, 49], "list_of_tss": 2, "literatur": [15, 29], "littl": [17, 20, 26, 30, 41], "live": [12, 28], "livetim": 21, "lk": 2, "ll": [9, 15, 20, 23, 24, 25, 28, 29, 31, 42], "llc": 29, "lmxb": 20, "ln": [27, 29, 41], "load": [2, 5, 6, 8, 9, 10, 15, 16, 20, 29], "load_events_and_gti": 2, "load_ext": [16, 17, 18, 22, 26, 28, 30, 31, 32, 33, 36, 40, 41, 42, 43], "load_gti": 2, "loadtxt": [23, 45], "lobe": [29, 33], "loc": [17, 23, 26, 36, 41], "local": [2, 4, 9, 28, 29], "locat": [2, 4, 8, 9, 29], "log": [4, 8, 12, 15, 24, 25, 28, 29, 31, 41], "log10": [17, 33, 46], "log_a": 27, "log_aqpo": 27, "log_arn": 27, "log_cqpo": 27, "log_crn": 27, "log_freq": 27, "log_likelihood": 27, "log_likelihood_model": 27, "log_likelihood_model2": 27, "log_prob": 27, "log_rb_c": 15, "log_rb_freq": [15, 31], "log_rb_p": 31, "log_sig": 27, "logarithm": [2, 5, 16], "logger": 2, "logic": 4, "loglik": [2, 28, 41], "loglike_bplc": 28, "loglikelihood": [2, 28], "loglog": [16, 22, 26, 28, 40, 41], "logmean": 12, "logmin": 28, "logo": 8, "logp": 2, "logpc1": 41, "logpc2": 41, "logposterior": [2, 28], "logprior": [2, 28], "logsigma": 12, "logspac": 17, "logz": [12, 27], "lomb": [8, 9], "lombscargl": [24, 25, 29], "lombscarglecrossspectrum": [5, 8, 26], "lombscarglepowerspectrum": [5, 8, 24, 26], "london": 29, "long": [2, 4, 7, 14, 15, 16, 17, 23, 26, 29, 31], "long_dt": [15, 31], "long_exposur": [15, 31], "long_lc": 31, "long_lc1": 15, "long_lc2": 15, "long_lc_gauss": 31, "long_noisi": 31, "long_noisy_1": 15, "long_noisy_2": 15, "long_norm": 31, "long_sign": 31, "long_signal_1": 15, "long_signal_2": 15, "long_tim": [15, 31], "longdoubl": 2, "longer": [2, 4, 5, 41], "longest": [2, 41], "look": [2, 4, 5, 9, 15, 16, 20, 23, 24, 25, 26, 27, 28, 31, 32, 40, 41, 42, 43], "look_for_array_in_arrai": 2, "lookup": 2, "loop": [2, 4, 8, 17, 28, 34], "lorentz1d": [2, 28, 41], "lorentzian": [2, 41], "lorentzian_test": 28, "lorenzian": 40, "lose": [2, 21], "loss": [2, 29], "lost": [2, 23, 29, 42], "lot": [8, 28, 30], "love": 4, "low": [2, 8, 12, 15, 17, 18, 26, 27, 29, 41], "low_bia": 29, "low_memori": 2, "lower": [2, 4, 12, 19, 20, 26, 27, 36, 41], "lowercas": 2, "lowest": [2, 29], "lp": 25, "lpost": [2, 28], "lpost1": [2, 28], "lpost2": [2, 28], "lpost_bplc": 28, "lrt": 2, "lrt_ob": 28, "lrt_sim": [2, 28], "ls_freq": 29, "ls_psd": 29, "ls_reb": 26, "lsc": 26, "lscs_reb": 26, "lt": [12, 13, 14, 15, 16, 17, 19, 20, 22, 23, 26, 28, 29, 31, 32, 35, 36, 38, 39, 40, 41, 42, 43, 45, 46], "lubbock": 2, "lw": [14, 15, 19, 20, 24, 25, 28, 31, 32, 33, 36], "lx": 2, "m": [2, 5, 15, 17, 18, 24, 25, 27, 28, 29, 31, 32, 33, 41], "m1": 2, "m_1": 27, "m_2": 27, "m_j": [28, 41], "maccaron": 2, "machin": [2, 8], "machineri": 8, "mackei": 27, "made": [2, 8, 17, 21, 23, 27, 29, 43], "mag_plot": 13, "magazin": 29, "magma": 33, "magnetar": 28, "magnitud": [2, 13, 24, 25, 41, 46], "mahmood": 29, "mai": [2, 4, 9, 23, 28, 29, 38, 40], "mail": 4, "main": [2, 3, 4, 8, 9, 21, 27, 29, 30], "main_array_attr": 2, "maintain": [2, 26, 33, 48], "major": [4, 14, 15, 24, 25, 28, 31, 36, 43], "make": [2, 4, 8, 9, 14, 15, 16, 21, 23, 24, 25, 26, 27, 28, 29, 31, 34, 37, 41, 42, 43], "make_1d_arrays_into_nd": 2, "make_dictionary_lowercas": 2, "make_interp_splin": [24, 25], "make_lightcurv": [2, 17, 23], "make_nd_into_arrai": 2, "makefil": 9, "maltpynt": 8, "manag": [4, 8, 9, 30, 42], "mani": [2, 4, 5, 6, 8, 18, 19, 20, 21, 26, 28, 31, 32, 41, 42, 43, 47], "manipul": [15, 24, 25, 31, 42], "manual": [4, 23, 24, 25, 29], "map": [2, 8, 27], "marco": 41, "margin": 2, "mark": [2, 8, 29, 41], "marker": [2, 23, 41, 42], "markers": 41, "markov": [2, 28], "mask": [2, 22, 42], "match": [2, 26, 28], "math": [2, 22, 33], "mathcal": 41, "mathemat": [2, 29], "mathrm": [2, 32, 41], "mathwork": 2, "matlab": 2, "matlabcentr": 2, "matplotlib": [2, 4, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "matrix": [2, 8, 19, 20, 28], "matteo": [8, 29], "matter": [2, 21, 23, 29], "max": [2, 14, 17, 19, 20, 23, 27, 31, 33, 36, 37, 43, 46], "max_freq": [2, 20, 24, 25, 26, 28], "max_ind": 28, "max_j": 28, "max_k": [2, 17], "max_length": [2, 41], "max_pixel": 43, "max_po": 19, "max_posit": 2, "max_post": [2, 28, 41], "max_pow": 28, "max_sampl": 27, "max_y_al": 2, "maxfreq": 26, "maxi": 41, "maxim": [14, 28, 32], "maxima": 28, "maximum": [2, 4, 9, 11, 13, 19, 20, 24, 25, 26, 29, 30, 32, 33, 41, 42], "maximun": 5, "maxlag": [2, 13], "mayb": 34, "mb": 30, "mchardi": 22, "mcmc": [2, 9, 28], "mdb": 2, "mean": [2, 4, 14, 15, 16, 17, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 36, 38, 39, 40, 41, 43, 48], "mean_amp": 2, "mean_binsi": 43, "mean_binsx": 43, "mean_count": 23, "mean_countr": [23, 32, 33], "mean_ctvar": 22, "mean_cycle_frac": 43, "mean_flux": 23, "mean_func": 2, "mean_lc": 22, "mean_model": 28, "mean_param": 27, "mean_phas": [2, 33], "mean_typ": 27, "mean_valu": 27, "meancount": [2, 22, 23], "meaning": [2, 28, 32], "meanrat": [2, 23, 31, 40, 41], "meanrate_1": 15, "meanrate_2": 15, "meant": 8, "meantim": 20, "measur": [2, 8, 12, 15, 17, 22, 23, 26, 28, 32, 41, 42, 43], "mechan": [2, 4], "media": [4, 29], "median": [2, 23, 33], "medium": 2, "meet": 8, "member": [4, 8], "memit": 30, "memori": [2, 8, 30], "memory_info": 30, "memory_profil": 30, "memory_us": 30, "mention": [23, 42], "meo": [21, 30], "merg": [2, 4, 9, 21, 42], "merge_gti": 42, "merit": [2, 28], "mersenn": 2, "messag": [2, 4, 8, 29], "met": [2, 23, 42], "meta": [2, 8, 21, 42], "meta_attr": 2, "metadata": [2, 21], "meth": 2, "method": [2, 4, 5, 8, 12, 15, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 31, 32, 33, 40, 41, 43, 45, 47, 49], "metric": 28, "mfit": [2, 28], "mh": 20, "mib": 30, "mickei": 42, "microquasar": [4, 8], "mid": [2, 15, 17, 21, 24, 25, 26, 28, 29, 31, 41, 43], "middl": 2, "midpoint": 2, "midst": 41, "might": [2, 4, 9, 15, 16, 17, 21, 23, 26, 28, 39, 41, 42, 43], "migliari": [8, 29], "mimick": [40, 45], "min": [19, 20, 22, 24, 25, 27, 32, 33, 34], "min_count": 2, "min_freq": [2, 20, 24, 25], "min_gap": [2, 23], "min_idx": 32, "min_length": 2, "min_pixel": 43, "min_point": [2, 23], "min_sampl": 2, "min_total_bin": [2, 23], "min_total_count": 23, "mind": 23, "mine": 8, "miniconda": 9, "miniconda3": 23, "minim": [2, 8, 9, 28, 47], "minima": 28, "minimum": [2, 4, 8, 23, 24, 25, 32, 33, 41, 42], "minlen": 2, "minlength": 34, "minor": [14, 15, 24, 25, 31, 36], "miss": [2, 41], "mission": [6, 7, 8, 9, 16, 21, 23, 26, 42, 43], "mission_specific_event_interpret": 2, "mission_support": 2, "mix": [4, 8], "miyamoto": [15, 31, 41], "mjd": [2, 21, 23, 42], "mjdref": [2, 5, 8, 18, 21, 30, 41, 49], "mjdref_new": [23, 42], "mjdreff": [2, 21], "mjdrefi": [2, 21], "mjdstart": 2, "mjdstop": 2, "mkdir": 2, "mkdir_p": 2, "ml": [2, 41], "mlfriend": 12, "mnra": [2, 22], "mock": 8, "mod": [15, 41], "mode": [2, 5, 27, 32], "model": [7, 8, 9, 22, 26, 29, 33, 36, 38, 45], "model_data": 28, "model_pow": 28, "model_source_corr": 17, "model_source_nobkg": 17, "model_spectrum": 28, "model_to_test": [2, 28], "modeling_tutorial_mcmc_corn": 28, "modern": [2, 8, 29], "modif": 4, "modifi": [2, 4, 17, 21, 23, 28, 41, 42], "modlat": 8, "modul": [2, 4, 8, 9, 12, 14, 17, 19, 23, 28, 32, 41, 42, 43, 44, 48], "modular": 28, "modulation_upper_limit": 2, "modulenam": 4, "moment": [2, 26, 28, 29], "monitor": 2, "mont": [2, 12, 28], "monthli": 2, "more": [2, 4, 8, 9, 13, 14, 15, 16, 17, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 34, 39, 40, 41, 42, 43, 45, 48], "moreov": 33, "moritz": 27, "mortem": 2, "most": [2, 4, 8, 9, 13, 14, 15, 18, 23, 28, 29, 32, 33, 39, 41, 42], "mostli": [2, 8, 26, 41], "motion": 2, "motta": 41, "move": [2, 8], "mpl": [4, 17, 22, 32, 33, 36, 41], "mpmath": 2, "msg": 30, "msp": 29, "mt": 29, "mtl": 29, "mtls_kepler": 29, "mtp": 29, "mtp_rebin": 29, "mtp_stingrai": 29, "mtrand": 2, "mu": [30, 41], "much": [2, 4, 8, 14, 15, 17, 28, 30, 31, 32, 33, 41, 48], "multi": [2, 8, 27, 28], "multidimension": 2, "multipl": [2, 4, 8, 15, 17, 18, 23, 29, 31, 34, 40, 42, 48], "multipli": [15, 29, 31, 33, 35, 41], "multitap": 5, "multitaper_norm_pow": 29, "multivari": 28, "multivariate_norm": 28, "must": [2, 4, 23, 27, 28, 33, 42], "mutipl": 27, "mutual": [2, 42], "mvn": 28, "my_array_attr": 42, "my_attr": 42, "my_attr_arrai": 42, "my_fancy_attr": 2, "my_new_method": 4, "myfunc": 23, "mynewclass": 4, "m\u00e9ndez": [2, 19, 20], "n": [2, 12, 13, 14, 15, 19, 22, 23, 24, 25, 27, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 46, 48], "n_": [29, 33], "n_approx": [2, 17], "n_background_count": 43, "n_bins_per_cycl": 43, "n_phot": 43, "n_photon": 43, "n_pulsed_count": 43, "n_rebin": 2, "n_summed_spectra": 2, "naiv": [9, 10], "name": [2, 4, 8, 21, 27, 29, 39, 40, 41, 42, 43, 45, 48], "name_pattern": 2, "namespac": 4, "namestr": [2, 28], "nan": [2, 8, 42], "narrow": 2, "nat": 12, "nation": 4, "nativ": [2, 23], "navi": 41, "navig": 9, "naxi": 21, "naxis1": 21, "naxis2": 21, "nbin": [2, 19, 20, 32, 33], "nbsphinx": 9, "ncount": [2, 18, 21], "ncx2": 2, "nd": [2, 21], "ndarrai": [2, 15, 21, 28, 29], "ndet": 41, "ndim": 2, "ndimag": 22, "nearbi": 33, "nearest": 2, "nearest_power_of_two": 2, "necess": 15, "necessari": [2, 4, 9, 27, 42], "necessarili": 21, "need": [2, 4, 8, 9, 12, 14, 15, 16, 17, 21, 23, 24, 25, 27, 28, 29, 32, 39, 40, 41, 42, 48], "neg": [2, 13, 15, 23, 24, 25, 28, 31, 37, 38, 42], "negat": [2, 5, 49], "neglig": [2, 41], "neighbour": 41, "ness": 2, "nest": [2, 12, 17, 27, 28], "netcdf": 30, "nevent": 17, "never": [2, 4], "new": [2, 4, 7, 18, 19, 20, 23, 26, 28, 29, 30, 33, 40, 41, 42, 48], "new_event_list": 2, "new_gti": [2, 16, 41, 42], "new_interval_if_gti_sep": 2, "new_lc": 23, "new_lc_long": 23, "new_mjdref": 2, "new_phaseogr": 33, "new_phaseogram": 33, "new_rat": 17, "new_spec": [2, 19, 20], "new_t": [2, 42], "new_ts_sort": 42, "newgti": 2, "newli": [2, 9], "newton": [9, 16], "next": [2, 8, 23, 29, 42], "nfft": 46, "nfreq": [2, 28], "nharm": [2, 33], "ni1200120106_0mpu7_cl_bari": 41, "nice": [16, 19, 26, 32], "nicer": [2, 8, 9, 16, 18, 41], "niter": [2, 28], "nitim": 29, "nlor": [2, 28], "nmax": 2, "nnumber": 15, "no_longdoubl": 2, "noclobb": 2, "nois": [2, 8, 13, 14, 15, 16, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 40, 41, 43, 47, 48], "noisi": [13, 14, 15, 20, 29, 31], "noisy_1": [14, 15], "noisy_2": [14, 15], "nomin": [15, 31, 32], "non": [2, 7, 8, 13, 15, 24, 25, 27, 41], "non_paralyzable_dead_time_model": [2, 17], "noncentr": 2, "nondescript": 4, "none": [2, 12, 15, 16, 17, 19, 20, 22, 24, 25, 28, 29, 31, 38, 41, 42, 43], "nonzero": 2, "norm": [2, 15, 16, 17, 18, 19, 20, 24, 25, 26, 28, 29, 31, 40, 41, 43], "norm_distr": 43, "norm_exc_var_fun": 22, "norm_x": [2, 22], "normal": [2, 4, 5, 8, 9, 12, 13, 15, 20, 21, 22, 23, 24, 25, 28, 35, 36, 39, 41, 42, 43, 46], "normali": [2, 29], "normalis": 2, "normaliz": 5, "not_array_attr": 2, "not_array_attribut": 42, "note": [2, 4, 15, 16, 17, 18, 20, 21, 23, 26, 27, 28, 29, 31, 32, 33, 34, 37, 41, 42, 43], "notebook": [2, 4, 6, 9, 13, 15, 16, 20, 21, 28, 29, 32, 33, 34, 35, 37, 38, 39, 40, 45, 48], "noth": [2, 38], "notic": [2, 15, 16, 28, 29, 31, 40], "now": [2, 8, 9, 12, 13, 14, 15, 16, 18, 19, 20, 21, 23, 26, 27, 28, 30, 31, 32, 33, 38, 40, 41, 43, 46], "nowak": [2, 15], "np": [2, 4, 8, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48], "npar": [2, 28], "nph": [2, 33], "nphot": [2, 8, 25, 29], "nphots1": [2, 15, 24, 31], "nphots2": [2, 15, 24], "npower": 29, "npt": 2, "nsampl": [2, 28, 32], "nsigma": [2, 43], "nsim": [2, 28], "nsize": 31, "nspec": 2, "nstep": 2, "nt": [2, 33], "ntail": 28, "ntime": [2, 33], "ntrial": [2, 32, 33], "nu": [2, 29, 33], "nu_": 2, "nu_j": 2, "null": [2, 28, 32], "numba": [2, 8, 9], "number": [2, 8, 9, 14, 15, 17, 18, 19, 21, 23, 24, 25, 28, 29, 31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 46], "number_f": 2, "number_i": 2, "numer": [2, 9, 17], "numpi": [2, 4, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "numpydoc": 4, "nustar": [2, 7, 9, 17, 18, 21], "nustar_a_src": [16, 26], "nustar_b_src": [16, 26], "nvar": 22, "nvar_err": 22, "nvidia": 9, "nw": 29, "nwalker": [2, 28], "nx": [2, 22], "nx2": 2, "nxm": 2, "ny": 2, "nyq": [2, 36], "nyq_ratio": 2, "nyquist": [2, 26, 29, 41], "o": [8, 15, 22, 23, 24, 25, 29, 30, 33, 38, 41, 42], "ob": 33, "obj": [2, 42], "object": [2, 4, 5, 8, 9, 12, 13, 19, 22, 23, 27, 28, 30, 33, 38, 41, 43, 45, 49], "objectfloat64": 21, "objectint64": 23, "oblig": 4, "obs_id": 21, "obs_length": [2, 32, 33], "obs_val": 28, "obs_valu": 28, "observ": [2, 5, 7, 9, 12, 13, 16, 20, 23, 28, 29, 30, 33, 41, 42], "obsolet": [2, 8], "obtain": [2, 12, 21, 23, 28, 29, 33, 35, 36, 37, 41, 42, 48], "obviou": 33, "occasion": 28, "occult": [16, 26], "occupi": 30, "occur": [2, 28], "ochoa": 8, "oder": 28, "off": [2, 23, 26, 38, 41, 42], "offens": 4, "offici": [4, 8, 16, 41], "offlin": 4, "offset": [2, 14, 15, 23, 29, 31], "offset_correct": 2, "often": [2, 8, 18, 20, 23, 26, 27, 28, 29, 42], "ogip": [2, 9, 20, 21, 26, 30], "ok": 17, "old": [2, 23, 42], "omap": 21, "omar": 29, "omp": 17, "omp_set_max_active_level": 17, "omp_set_nest": 17, "on_chang": 33, "on_click": 33, "onboard": [2, 16, 21, 26], "onc": [4, 9, 41], "one": [2, 4, 5, 15, 16, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 39, 41, 42, 43], "ones": [2, 8, 12, 23, 27, 41, 42, 43], "ones_lik": [2, 23, 27, 29, 33], "onli": [2, 4, 5, 8, 12, 14, 15, 21, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 36, 41, 42, 43, 48], "onlin": [4, 28], "open": [1, 2, 3, 4, 8, 9, 20, 29, 44], "oper": [2, 4, 5, 8, 9, 15, 21, 26, 28, 30, 33, 49], "operated_attr": 2, "oppos": 4, "opt": [2, 23, 42], "optim": [2, 24, 25, 28], "optimal_bin_tim": 2, "optimizationresult": [2, 28], "optimizeresult": 2, "optimum": 2, "option": [2, 4, 8, 12, 13, 14, 15, 21, 23, 24, 25, 28, 29, 31, 38, 40, 41, 42, 43, 48], "optionalm": 2, "orang": [24, 27, 32], "orbit": [2, 26], "order": [9, 12, 13, 18, 21, 26, 27, 28, 29, 33, 37, 41, 42, 43, 48], "order_list_of_arrai": 2, "ordereddict": 21, "ordin": 2, "org": [2, 4, 13, 14], "organ": [2, 4], "orient": 4, "origin": [2, 4, 8, 19, 20, 21, 23, 29, 31, 34, 40, 41, 42, 48], "orthogon": 29, "oscil": [2, 9, 16, 27, 28, 33, 41], "oscillatori": 27, "other": [4, 5, 8, 15, 16, 17, 18, 21, 23, 26, 28, 33, 40, 41, 43, 49], "other_kw": 2, "otherwis": [2, 4, 14, 21, 24, 27, 28, 41, 42], "our": [2, 3, 8, 9, 15, 17, 19, 20, 23, 26, 27, 28, 30, 31, 32, 37, 41, 43], "out": [2, 3, 4, 15, 18, 21, 24, 25, 27, 28, 29, 30, 31, 35, 41, 42, 48], "outburst": 41, "outcom": [2, 27], "outdir": 2, "outfil": 2, "outlier": [2, 20, 28], "outlin": 48, "output": [2, 9, 14, 17, 21, 23, 28, 37, 40, 48], "output_fil": 2, "outsid": [2, 4, 23, 42], "over": [2, 20, 23, 27, 28, 29, 32, 33, 41, 42, 45], "overal": [2, 28], "overhead": 28, "overlai": 5, "overlap": [2, 15, 21, 23, 29, 41, 42], "overlin": [2, 22, 33], "overplot": 41, "overrid": 2, "oversampl": [24, 25, 32, 33], "overview": 8, "overwrit": 2, "own": [2, 11, 23, 27, 28], "p": [2, 13, 15, 19, 20, 21, 27, 28, 29, 30, 31, 32, 33, 39], "p025": 29, "p1": [2, 37, 40, 41], "p1e": 41, "p2": [2, 37, 40, 41], "p2e": 41, "p975": 29, "p_alpha": [2, 28], "p_alpha1": 28, "p_alpha2": 28, "p_amplitud": [2, 28], "p_i": 33, "p_j": 41, "p_multitrial_from_single_tri": 2, "p_opt": [2, 28, 41], "p_single_trial_from_p_multitri": 2, "p_to_f": 2, "p_whitenois": 28, "p_x_break": 28, "pa_pnt": 21, "packag": [2, 4, 8, 9, 12, 13, 14, 23, 28, 46], "packagenam": 4, "pad": 29, "page": [4, 8, 9, 21, 37], "pai": [15, 29], "pair": [2, 27], "palett": 29, "panda": [2, 8, 9, 29, 49], "pandoc": 9, "paper": [2, 9, 17, 29, 41], "par": [2, 28], "parallel": 2, "paralyz": [2, 7, 8], "param": [2, 28, 36], "param_nam": [2, 28], "paramat": [40, 45], "paramet": [8, 11, 12, 13, 17, 21, 22, 23, 29, 33, 38, 39, 40, 41, 42, 43, 45, 46, 48, 49], "parameterestim": [2, 28, 41], "parametr": [2, 9, 28], "parametricmodel": 2, "params_list": 27, "params_list2": 27, "paremet": 27, "parest": [2, 28, 41], "parest_sim": 28, "parfil": 2, "part": [2, 8, 14, 15, 21, 23, 24, 25, 26, 27, 29, 35, 37, 42], "parti": 4, "partial": 2, "particip": [1, 4], "particl": [18, 26], "particular": [2, 9, 23, 26, 27, 29, 41, 42, 47], "particularli": [2, 7, 8, 28], "parzen": [2, 13, 48], "pass": [2, 5, 14, 21, 23, 26, 27, 28, 29, 33, 39, 40, 42, 45, 48], "passag": 16, "pastebin": 2, "path": 2, "pathlength": 21, "pattern": [2, 33], "paul": [8, 29, 41], "pc0": 2, "pc0_err": 2, "pc1": [2, 41], "pc1_err": 2, "pc2": 41, "pca": [2, 9], "pca_calibration_func": 2, "pcolor": 33, "pcolormesh": [2, 33], "pcount": 21, "pcu": [2, 41], "pd": [2, 8, 9, 10, 16, 17, 18, 26, 29, 40, 41], "pd_amp": 43, "pd_mean": 43, "pdb": 2, "pddot": 2, "pdf": [2, 13, 28, 48], "pdm": [2, 32], "pdm_det_level": 32, "pdm_profile_stat": 2, "pdmstat": 32, "pdot": 2, "pds1": [2, 18], "pds1_dt": 18, "pds1_f": 18, "pds2": [2, 18], "pds2_dt": 18, "pds2_f": 18, "pds_detection_level": 2, "pds_dirti": 26, "pds_dirty_reb": 26, "pds_from_ev": 30, "pds_model": 36, "pds_model_zhang": [2, 17], "pds_probabl": 2, "pds_reb": [26, 41], "pds_shape": 36, "pds_size": 36, "pds_source_correct": 17, "pds_source_dt": 17, "pdss": [2, 18], "peak": [2, 9, 27, 30, 32, 37, 39, 40, 45, 47], "peopl": [2, 41], "pep": 8, "pep8": [2, 4], "pepoch": [2, 33], "per": [2, 4, 15, 23, 31, 43, 46], "perceiv": 44, "percentag": 2, "percentil": 2, "perfect": [2, 8, 17], "perform": [2, 8, 9, 11, 23, 27, 28, 33, 40, 48], "period": [2, 8, 9, 13, 16, 18, 19, 26, 27, 28, 29, 32, 33, 43, 47], "period_deriv": 2, "periodogam": 41, "periodogram": [2, 7, 8, 9, 16, 18, 20, 23, 28, 32, 33], "perman": 4, "permiss": 4, "person": 4, "peterson": 2, "pf": 2, "pf_from_a": 2, "pf_from_ssig": 2, "pf_upper_limit": 2, "pfup": 2, "ph": [32, 33], "ph0": 2, "pha": [2, 33], "phase": [2, 5, 8, 9, 13, 14, 24, 29, 31, 33, 37, 38, 41, 43, 47], "phase_bin": 2, "phase_delai": 33, "phase_dispersion_detection_level": [2, 8, 32], "phase_dispersion_logprob": [2, 8], "phase_dispersion_prob": [2, 8, 32], "phase_dispersion_search": [2, 8, 32], "phase_exposur": 2, "phase_lag": [2, 15], "phase_plot": 13, "phaseogr": [2, 33], "phaseogram": [2, 9, 47], "phaseogram_ax": 2, "phaseogram_new": 33, "phi": 2, "phi_j": 33, "philosoph": 29, "photon": [2, 5, 8, 14, 15, 16, 17, 18, 24, 25, 29, 31, 33, 37, 41, 42, 43], "photon_arriv": [2, 23], "photon_tim": 43, "physic": [2, 4, 28, 29, 37, 41, 48], "pi": [2, 8, 13, 14, 15, 16, 19, 21, 24, 25, 27, 29, 31, 32, 33, 35, 37, 41, 43], "pi_list": 2, "pi_to_energi": 2, "pick": 28, "pickl": [2, 5, 8, 30, 40, 45], "pid": 30, "piersol": 2, "pil": 44, "pile": 2, "pint": [2, 9, 30], "pip": [2, 4, 23, 29, 30], "pipelin": [9, 16, 41], "pixel": [43, 44], "pixel_spread": 43, "pl": [2, 28], "pla": 26, "place": [2, 28], "plai": 28, "plain": 27, "plane": 41, "plant": 22, "plateau": 17, "platform": 8, "plc": 28, "plc_opt": 28, "pleas": [2, 3, 4, 8, 9, 16, 17, 21, 23, 27, 28, 29, 43], "plephem": 8, "ploi": 13, "plot": [2, 5, 8, 9, 12, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 46, 48, 49], "plot1": 34, "plot2": 34, "plot_angle_distribution_with_pulse_phas": 43, "plot_bti": [2, 42], "plot_cum3": [2, 13], "plot_hu": 41, "plot_kwarg": 2, "plot_mag": [2, 13], "plot_phas": [2, 13], "plot_phaseogram": [2, 33], "plot_power_color": 41, "plot_profil": [2, 32, 33], "plot_result": [2, 28], "plot_span": 41, "plotfit": [2, 28], "plotlin": 41, "plt": [2, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 48], "plu": [2, 19, 28, 43], "plugin": 2, "pmea": 2, "pn": 2, "png": [2, 23, 42, 44, 48], "poid": 43, "poids_err": 43, "point": [2, 3, 4, 12, 14, 15, 18, 21, 23, 24, 25, 28, 31, 32, 37, 38, 40, 41, 42, 46], "poission": 14, "poissoin_noise_level": 2, "poisson": [2, 5, 8, 12, 13, 14, 15, 19, 22, 23, 26, 28, 31, 32, 40, 41, 42, 43], "poisson_conf_interv": 2, "poisson_level": [2, 40, 41], "poisson_noise_level": [2, 41], "poisson_pow": [2, 41], "poisson_symmetrical_error": 2, "poissonian": 2, "poissonloglikelihood": 2, "poissonposterior": 2, "polar": [41, 42, 43], "polaraxessubplot": 41, "polarimetr": [2, 9, 49], "polici": 4, "polit": 4, "pollut": 26, "pool": 2, "pop": 15, "popul": 2, "popular": [27, 29], "portabl": 2, "portion": [29, 38, 40, 48], "posit": [2, 4, 13, 15, 21, 23, 24, 25, 28, 31, 36, 38, 42, 43, 48], "possibl": [2, 3, 4, 8, 21, 23, 26, 28, 33, 41, 42, 47, 48], "possibli": [2, 8], "post": [2, 4], "posterior": [11, 12, 49], "posterior_plot": 27, "posteriori": [2, 28], "potenti": 2, "power": [2, 7, 8, 9, 15, 16, 18, 24, 26, 27, 30, 32, 33, 37, 43], "power_color": [2, 41], "power_confidence_limit": 2, "power_err": [2, 24, 25, 29], "power_list": 2, "power_typ": [2, 24, 25], "power_upper_limit": 2, "powerlaw": [22, 28], "powerlaw1d": [2, 28, 36], "powerspectrum": [8, 13, 16, 17, 20, 22, 23, 26, 28, 40, 42, 43], "powerspectrum_from_xxxx": 2, "powerspecttrum": 19, "pp": 29, "ppf": 29, "pr": [4, 9], "practic": [2, 5, 15, 17, 23, 31, 38, 40, 47], "pre": [2, 4, 8, 28, 30, 39], "preal": 2, "precis": [2, 18, 27, 33], "predict": [17, 27, 28], "prefer": 2, "preliminari": 2, "prepar": [9, 10, 12, 28, 45], "prescript": 12, "presenc": [17, 28, 47], "present": [2, 9, 32], "preserv": 21, "press": [24, 25], "pretti": [2, 16, 28, 29], "prettier": 28, "pretty_print": 2, "prevent": 27, "preview": 4, "previou": [2, 9, 15, 23, 27, 30, 31, 42], "prewhiten": 29, "price": 29, "primari": [2, 4, 37, 40, 45], "primer": 4, "principl": [2, 15, 31, 36, 37, 42], "print": [2, 4, 14, 15, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 41, 42, 43], "print_result": [2, 28], "print_summari": [2, 27, 28], "prior": [2, 12, 28], "prior_dict": 27, "prior_dictionari": 27, "prior_model": 27, "prior_model2": 27, "priori": 2, "privat": 4, "prngkei": 27, "prob": 34, "prob_val": 36, "probabilti": 27, "probabl": [2, 9, 17, 21, 27, 28, 32, 34, 36, 41, 42, 43], "problem": [2, 4, 26, 27, 28, 29, 41], "procedur": [2, 4, 8, 9, 10, 17, 33], "proceed": [8, 29], "process": [2, 8, 9, 12, 17, 18, 24, 25, 28, 29, 30, 46, 49], "produc": [2, 5, 8, 16, 17, 19, 23, 27, 28, 33, 40, 48], "product": [5, 8, 9, 11, 16, 17, 23, 28, 29], "prof": 2, "profession": 4, "profil": [2, 8, 30, 32, 33, 43, 48], "profile_err": [2, 32, 33], "program": 8, "programm": 4, "progress": [2, 9, 48], "project": [3, 4, 9, 37], "projecteuclid": 2, "prolat": 29, "prone": [17, 20], "propag": [2, 23], "proper": [2, 9, 21, 22, 26], "properli": [21, 27], "properti": [2, 4, 5, 8, 13, 18, 22, 28, 29, 40, 41, 42, 48], "proport": 29, "propos": [2, 4], "proprietari": 8, "protassov": 28, "protect": [26, 42], "proudli": 4, "provid": [2, 8, 9, 11, 12, 13, 23, 24, 25, 26, 27, 28, 33, 37, 41, 45, 48], "proxi": 26, "ps_count": 43, "ps_it": 30, "ps_new": 28, "ps_weight": 43, "psd": [8, 9, 28], "psd_analyt": 29, "psd_modeling_test": 28, "psd_shape": 28, "psd_tapered_data": 29, "psdloglikelihood": [2, 8, 28, 41], "psdparest": [2, 28, 41], "psdposterior": [2, 28], "pseudo": 2, "psi": 43, "psi_amp": 43, "psi_mean": 43, "psig": 2, "psutil": 30, "ptot": [2, 18], "ptot_dt": 18, "ptot_f": 18, "public": [3, 4, 9, 28], "publish": 4, "pull": 4, "puls": [2, 8, 32, 43, 47], "pulsar": [8, 9, 30, 32, 33], "pulsat": [2, 9, 43, 47], "pulse_cycl": 43, "pulse_cycle_frac": 43, "pulse_phas": [2, 43], "pulsed_ev": 43, "pulsed_fract": [32, 33], "pup": 2, "pure": [4, 28, 41], "purpos": [2, 4, 23, 28, 40, 41, 42, 43, 45], "push": 4, "put": [2, 23, 27, 28, 33, 43], "pval": [2, 28, 32], "pvalu": 2, "py": [2, 4, 8, 9, 14, 17, 23, 28, 29, 30, 42, 46], "py3": 23, "py310": 41, "pycharm": 1, "pyfftw": [8, 9], "pypi": 4, "pyplot": [2, 4, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48], "pyproject": 8, "pytest": [2, 4, 9, 29], "python": [1, 4, 8, 9, 12, 21, 29, 44], "python3": 23, "python_process": 30, "pyyaml": 9, "q": [2, 43], "qed": 41, "qpo": [2, 8, 9, 11, 19, 20, 26, 27], "qpo_plus_rn": 27, "qualiti": [4, 41, 43], "quantil": 12, "quantiti": [2, 17, 22, 28, 42, 43], "quasi": [2, 9, 16, 27, 28], "question": [2, 4, 28], "qufbqufbq0fscgdauurhrnbuoefbqufbqufbz0fkzvlhvuf4agfal0fbqt0": 21, "quick": [2, 8, 9, 28, 45], "quicklook": [6, 28, 41], "quit": [17, 23, 27, 29, 32], "r": [2, 5, 12, 16, 17, 21, 26, 29, 32, 33, 34, 35, 36, 37, 38, 41, 43, 44], "r0": 17, "r_": [17, 29], "r_0": 2, "r_det": 2, "r_hat": 28, "r_i": [2, 12], "r_in": 2, "r_ir": [40, 45], "ra": [21, 34], "ra_nom": 21, "ra_obj": 21, "ra_pnt": 21, "race": 4, "rad": [15, 41], "radecsi": 21, "radian": [14, 15, 29, 31, 43], "radiat": 37, "radiobutton": 33, "radiu": 41, "rage": 2, "rai": [2, 5, 7, 8, 16, 17, 18, 23, 26, 28, 41, 42, 47], "rais": [2, 4, 8, 23, 28, 42], "ram": 2, "ran": 16, "rand": [2, 21, 23, 24, 25, 42], "randint": 2, "random": [2, 8, 13, 14, 15, 17, 18, 19, 21, 22, 23, 24, 25, 27, 28, 29, 31, 32, 33, 34, 35, 36, 40, 42, 43, 48], "random_angl": 43, "random_cdf_v": 43, "random_st": 2, "randomli": 2, "randomst": 2, "rang": [2, 8, 9, 15, 20, 23, 26, 27, 28, 30, 31, 32, 33, 37, 38, 40, 41, 42, 43, 44, 48], "rao": 2, "rare": 8, "rashid": [14, 46], "raster": 2, "rate": [2, 5, 8, 12, 15, 17, 18, 19, 23, 31, 41, 42], "rate_err": 22, "rate_fun": 22, "rate_is_incid": 2, "ratecolumn": 2, "ratehdu": 2, "rather": [2, 4, 23, 28, 29, 32, 42], "ratio": [2, 11, 12, 16, 17, 20, 21, 27, 41, 48], "raton": 2, "ravel": 33, "raw": [2, 21, 29, 31, 41], "raw_n_pulsed_count": 43, "rcparam": [17, 22, 32, 33, 36, 48], "re": [2, 4, 5, 22, 26, 28, 37, 41, 49], "react": [38, 40], "read": [2, 4, 5, 8, 9, 12, 16, 20, 21, 26, 30, 41, 45, 48, 49], "read_csv": 29, "read_header_kei": 2, "read_mission_info": 2, "read_rmf": 2, "readabl": [4, 34], "readbl": 34, "reader": [2, 21], "readi": [2, 28, 40, 41], "readm": 4, "readthedoc": 8, "real": [2, 5, 8, 15, 16, 24, 25, 29, 35, 36, 37, 41], "realist": [2, 40, 45, 48], "realiz": [2, 24, 25, 28, 29], "realli": 23, "reason": [2, 4, 17, 24, 25, 28, 41], "rebas": 4, "rebin": [2, 5, 8, 15, 16, 23, 24, 29, 31, 37, 38, 41, 42], "rebin_by_n_interv": [2, 41], "rebin_data": 2, "rebin_data_log": 2, "rebin_frequ": [2, 19, 20], "rebin_log": [2, 15, 16, 26, 31, 40, 41], "rebin_tim": [2, 19, 20], "rebinnin": 20, "recalcax": 33, "recalcul": [2, 33], "receiev": 37, "receiv": [21, 42], "recent": [2, 9, 23, 42], "recip": 48, "recod": 2, "recogn": 2, "recogniz": 32, "recommend": [2, 4, 8, 9, 15, 17, 21, 29, 31, 41], "reconstruct": 2, "record": [2, 23], "recov": [21, 29, 35], "rectangular": [2, 13, 46], "recurs": [2, 9, 29], "red": [2, 14, 15, 16, 17, 19, 20, 24, 25, 26, 27, 28, 29, 31, 41, 42, 43, 48], "red_nois": [2, 40], "redirect": 4, "reduc": [2, 8, 16, 28, 29], "reduct": 29, "ref_angl": 41, "ref_band": [2, 41], "ref_band_interest": 2, "ref_mjd": 2, "ref_tim": 2, "refactor": 4, "refelect": 37, "refer": [2, 4, 5, 8, 9, 14, 15, 16, 17, 21, 23, 24, 38, 41, 42], "reflect": 37, "reflow": 4, "regard": [2, 4], "regardless": [2, 4], "regim": 41, "region": [2, 12, 41], "regress": [2, 27], "regular": 32, "regularli": [4, 23, 42], "rehaul": 8, "reiter": 43, "reject": [2, 4, 28], "rel": [2, 4, 9, 14, 15, 17, 29, 31], "relat": [2, 9], "relativist": 2, "relativistic_ir": [2, 40, 45, 48], "releas": [0, 3, 4, 8, 33, 41], "relev": [2, 4, 13, 16, 21, 23, 24, 25, 28, 38, 39, 40, 42, 45], "reli": [18, 32], "reliabl": [23, 42], "religion": 4, "remain": [2, 27, 30, 37], "remaind": [15, 31], "rememb": [9, 15], "remind": 2, "remot": [2, 4, 9], "remote_data": 2, "remov": [2, 4, 8, 37], "renorm": 22, "reorder": 8, "repeat": [2, 17, 33], "repercuss": 4, "replac": [2, 28, 29], "repo": 29, "report": [2, 9], "repositori": [2, 4, 9], "repres": [2, 4, 24, 25, 28, 32, 37, 38, 41], "represent": [2, 4, 9, 28, 32], "reproduc": [2, 4, 7, 21, 28, 41], "request": [2, 4, 8, 9], "requir": [2, 4, 9, 12, 14, 22, 23, 27, 28, 36], "res1": [2, 28], "res2": [2, 28], "rescal": [22, 41], "rescaled_flux": 36, "research": 4, "reserv": 36, "reset": [28, 33], "resetax": 33, "residu": [2, 28, 33], "resolut": [2, 14, 15, 18, 19, 20, 21, 23, 24, 25, 29, 31, 32, 33, 41, 42, 45, 48], "resolv": [3, 8, 9, 48], "resort": 27, "respect": [2, 4, 17, 23, 33, 41], "respond": 4, "respons": [2, 9, 26, 41, 46], "rest": [2, 8, 21, 39], "restart": 29, "restructur": 4, "result": [2, 5, 8, 9, 17, 18, 22, 28, 31, 32, 37, 41, 42, 48], "retain": 29, "retriev": [2, 9, 21, 40, 44, 45, 48], "return": [2, 12, 15, 17, 18, 22, 23, 27, 28, 30, 31, 32, 33, 35, 36, 41, 42, 43], "return_al": 2, "return_baselin": 2, "return_complex": 2, "return_limit": 2, "return_new_gti": 2, "return_object": 2, "return_pint_model": 2, "return_plot": [2, 33], "return_ratio": 29, "retval": 2, "reus": 8, "revers": [2, 23, 42], "review": [2, 4, 22, 26, 37, 41], "revis": 4, "revolut": 8, "rfft": 29, "rfftfreq": [29, 40, 48], "rgb": 44, "rhat": 2, "right": [2, 4, 15, 17, 21, 26, 29, 31, 33, 36, 41, 43], "rightarrow": 2, "rint": [30, 33], "rise": [2, 37, 40, 45], "risk": 2, "rm": [2, 5, 8, 9, 15, 24, 25, 31, 32, 33, 36, 38, 39, 40, 48], "rmf": [2, 8, 16], "rmf_file": 2, "rms_err": 2, "rms_span": 41, "rmse": 41, "rmsenergyspectrum": 8, "rmsspec_01_1": 41, "rmsspec_3_30": 41, "rmsspectrum": [2, 8, 41], "rn": 27, "roberto": 27, "robust": 8, "roll": [21, 33], "root": [2, 4, 9, 23, 29], "rough": [2, 28, 41], "rough_calibr": 2, "rougher": 2, "round": [2, 21], "roundrip": 21, "roundtrip": [5, 8, 42], "rountrip": 23, "routin": [2, 17, 28, 29], "row": [2, 29, 43], "royal": [2, 29], "rst": [2, 4, 9], "rsta": 29, "rubin": 2, "rudimentari": [2, 23], "rule": 33, "run": [2, 4, 9, 12, 17, 23, 27, 28, 29, 41, 42], "runtim": 8, "runtimeerror": 2, "runtimewarn": 46, "rv": 28, "rxte": [2, 8, 9, 17, 20], "rxte_calibration_func": 2, "rxte_pca_event_file_interpret": 2, "rybicki": [24, 25], "s1": 2, "s2": 2, "s_all": [2, 28], "s_i": 12, "s_ir": [38, 40, 45], "s_j": 41, "s_mod": 37, "saa": 16, "safe": [2, 8, 23, 43], "safe_a": 17, "safe_interv": [2, 41], "safer": 8, "sai": [2, 28, 29, 38], "sake": [16, 41, 48], "same": [2, 4, 12, 14, 15, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 33, 36, 38, 40, 41, 42, 43, 48], "sampl": [2, 5, 8, 12, 15, 16, 24, 25, 26, 28, 30, 31, 32, 40, 41, 42, 46, 48, 49], "sample_data": [23, 37, 38, 40, 48], "sample_tim": [2, 20, 30, 41], "sample_var": 2, "sampledata": [23, 37, 38, 40, 48], "sampler": 2, "samplingresult": 2, "san": 48, "saniti": 27, "sara": 41, "satellit": [16, 21, 26], "satisfi": [2, 12, 23], "save": [2, 8, 21, 23, 40, 41, 42, 45], "save_al": 2, "save_plot": [2, 28], "save_to": 2, "savefig": [2, 22, 23, 36], "savetxt": 44, "savgol_filt": 20, "savitzki": 20, "saw": 33, "sb": [32, 33], "scalar": 2, "scale": [2, 12, 13, 23, 26, 27, 37, 41], "scale_bij": 27, "scale_lc": 36, "scan": 2, "scargl": [8, 9], "scatter": [2, 16, 17, 22, 24, 25, 41], "scenario": [4, 38], "schema": 21, "scheme": [2, 24, 29], "school": [2, 8], "schwarzenberg": 32, "schwarzendorf": 2, "scienc": [2, 8, 24, 25, 26, 28, 29, 41], "scientif": [23, 41, 42], "scipi": [2, 4, 9, 11, 14, 17, 20, 22, 24, 25, 28, 29, 36, 37, 43, 46], "scipy_optimize_opt": 2, "screen": [2, 29], "script": [2, 4, 8, 17, 28, 33, 45], "scriptstyl": 12, "scrollbar": 8, "sd": 28, "sdf": 29, "se1_7ceb190": 20, "seaborn": [17, 19, 20, 22, 24, 25, 27, 28, 29, 32, 33], "search": [2, 8, 9, 11, 18, 27, 43, 47], "search_best_peak": [2, 33], "searchs": 47, "searchsort": [2, 23, 43], "sec": [2, 14], "second": [2, 13, 14, 15, 18, 21, 23, 24, 27, 29, 31, 32, 41, 42, 45], "secondari": [2, 33, 37, 40, 45], "section": [12, 15, 19, 20, 23, 39, 41, 42], "see": [2, 4, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 38, 40, 41, 42, 43], "seed": [2, 17, 22, 28, 29], "seem": [5, 16, 28, 41], "seen": [17, 18, 21, 23, 26, 42, 43], "seg_siz": 2, "segment": [2, 5, 8, 15, 19, 20, 24, 29, 30, 31, 41, 42], "segment_s": [2, 5, 8, 16, 17, 18, 19, 20, 23, 26, 30, 38, 41], "select": [2, 4, 17, 21, 27, 29, 41, 42, 43], "self": [2, 13, 23, 28, 33, 42], "sem": 2, "semilogi": [15, 17, 26, 41, 43], "semilogx": [15, 16, 41], "send": [4, 30], "sens": [2, 26, 29, 43], "separ": [2, 4, 8, 14, 16, 23, 42], "sequenc": 2, "seri": [2, 5, 15, 27, 35, 36, 41, 43, 48], "serial": 2, "serif": 48, "serv": 43, "set": [2, 4, 5, 8, 9, 11, 13, 16, 20, 23, 24, 25, 27, 28, 29, 32, 33, 35, 38, 40, 41, 42, 45, 47, 48], "set_arrai": 33, "set_context": 17, "set_linewidth": [15, 31], "set_logprior": [2, 28], "set_markeredgewidth": 41, "set_markerfacecolor": 41, "set_palett": [17, 28, 29], "set_styl": [17, 27], "set_them": 29, "set_titl": [15, 29, 31], "set_valu": 4, "set_xdata": 33, "set_xlabel": [14, 15, 24, 25, 27, 29, 31, 41, 43], "set_xlim": [15, 29, 31, 41], "set_ylabel": [14, 15, 22, 24, 25, 27, 29, 31, 41, 43], "set_ylim": 41, "set_yscal": [15, 29, 31], "setminu": 29, "setup": [2, 5, 29, 48], "setuptool": 8, "sever": [2, 23, 28, 42], "severli": 29, "severo": 8, "sexp": 2, "sexual": 4, "sfdot": 33, "sfreq": 33, "shallow": [2, 33], "shape": [2, 19, 21, 23, 28, 29, 33, 34, 35, 37, 39, 40, 41, 42, 43, 45, 48], "share": 2, "sharei": [24, 25, 29, 43], "sharex": [15, 22, 31, 33, 41, 43], "sherpa": 8, "shift": [2, 5, 8, 14, 24, 27, 49], "shift_and_add": [2, 19, 20], "shift_bij": 27, "shift_phaseogram": 33, "short": [2, 4, 26, 28, 41], "shorter": [2, 14, 26, 41], "should": [2, 4, 8, 9, 12, 14, 15, 16, 18, 21, 22, 23, 24, 25, 28, 32, 33, 41, 43], "show": [2, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15, 16, 20, 24, 25, 26, 27, 28, 29, 31, 33, 34, 35, 37, 38, 41, 43, 47, 48], "show_progress": 41, "showcas": 29, "shown": [2, 32, 33], "shuffl": 17, "side": [2, 13, 33, 36, 37], "sidebarwrapp": 8, "sidelob": 29, "sig": 27, "sig1": 27, "sig2": 27, "sight": 37, "sigma": [2, 29, 32, 33, 43], "sigma_": [2, 12, 22], "sign": [2, 8], "signal": [2, 8, 13, 14, 15, 19, 20, 24, 25, 27, 28, 29, 31, 32, 33, 37, 38, 41, 43, 46, 47], "signal_1": [14, 15], "signal_2": [14, 15], "signatur": [2, 17], "signific": [2, 4, 28, 32, 43], "significantli": 15, "silenc": 2, "silent": [2, 17], "sim": [12, 22, 28, 33, 38, 39, 40, 41, 48], "sim1": 18, "sim10": 18, "sim_lpost1": 28, "sim_lpost2": 28, "sim_p": 28, "sim_poi": 40, "similar": [2, 13, 14, 23, 24, 27, 28, 29, 33, 37, 42, 43, 48], "similarli": [2, 23, 24, 25, 27, 28], "simon": [2, 8, 29], "simpl": [2, 4, 13, 17, 21, 26, 28, 29, 32, 38, 42, 48], "simple_ir": [2, 38, 40, 45], "simpler": [2, 28], "simplest": 23, "simpli": [2, 4, 14, 26, 28, 42], "simplic": 48, "simplifi": 8, "simul": [5, 8, 17, 27, 28, 30, 37, 38, 41, 43, 44, 45, 47], "simulate_channel": [2, 38, 40, 48], "simulate_energi": [2, 21], "simulate_ev": 17, "simulate_highest_outli": 2, "simulate_lrt": 2, "simulate_tim": [2, 21, 33, 43], "simulate_with_inverse_cdf": 36, "simultan": [2, 15], "sin": [2, 13, 14, 15, 19, 24, 25, 29, 31, 32, 33, 43], "sinc": [2, 4, 9, 14, 15, 21, 22, 23, 27, 28, 31, 40, 41, 42, 43, 47, 48], "sinc_square_deriv": 2, "sinc_square_model": 2, "sincfit": 2, "sincsquaremodel": 2, "sine": [14, 15, 24, 25, 29, 31], "singl": [2, 4, 8, 12, 15, 19, 20, 23, 24, 25, 28, 29, 31, 34, 40, 41, 42, 48], "singular": 2, "sinusoid": [2, 19, 32, 33], "site": [14, 23, 46], "situat": [8, 38, 40], "sivia": 2, "size": [2, 4, 8, 12, 14, 15, 17, 19, 20, 21, 22, 23, 24, 25, 28, 29, 31, 35, 36, 37, 41, 42, 43, 44], "skew": 27, "skew_gaussian": 27, "skill": 2, "skip": [2, 4, 8, 23, 24, 25, 29], "skip_check": [2, 21, 23, 24, 25, 27, 29, 31, 42, 43], "skip_doc": 2, "slack": 4, "slateblu": 29, "slepian": 29, "slice": [8, 23, 27, 42], "slide": 4, "slider": 33, "slightli": [2, 8, 9, 10, 16, 23, 28, 33, 41], "slope": [2, 37, 40, 41, 45], "slow": [2, 8, 9, 24, 25], "slower": [2, 16, 26], "small": [2, 4, 8, 9, 14, 17, 18, 23, 27, 28, 33, 41, 42], "smaller": [2, 4, 17, 23, 26, 28, 30, 43], "smooth": [2, 18, 22, 40], "smooth_count": 40, "smoothbknpo": [39, 40], "smoothing_alg": [2, 18], "smoothing_length": [2, 18], "sn": [17, 27, 28, 29], "so": [2, 4, 14, 15, 17, 18, 19, 20, 21, 22, 23, 26, 28, 29, 30, 41, 42, 43], "so16": 2, "sob": 2, "social": 4, "societi": [2, 29], "soft": [16, 41], "soft_ev": 16, "soft_lc": 16, "softwar": [1, 3, 4, 8], "solar": [16, 23, 28, 41, 42], "solarsystem": [2, 21], "sole": 30, "solut": [2, 26], "solv": 28, "some": [2, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 26, 27, 29, 30, 37, 38, 40, 41, 42, 43, 44, 45, 46], "someth": [2, 20, 23, 26, 28, 41, 43], "sometim": [2, 8, 23, 27, 41], "somewhat": 17, "somewher": 26, "soon": [37, 38], "sorri": 29, "sort": [2, 5, 8, 17, 18, 21, 24, 25, 29, 43, 49], "sort_count": [2, 23], "sorted_cycle_frac": 43, "sorted_cycle_frac_good": 43, "sound": 9, "sourc": [2, 3, 4, 8, 12, 17, 20, 21, 22, 24, 25, 28, 37, 41, 43, 48], "source_fract": 17, "source_r": 17, "south": 26, "southampton": 2, "sp": 4, "space": [2, 4, 8, 28, 29, 36, 45], "span": [23, 27, 42], "spec": 18, "spec_dt": 18, "spec_f": 18, "special": [2, 9, 23, 27, 28, 42], "special_prior": 27, "specif": [3, 4, 8, 15, 27, 28, 34, 39, 40], "specifi": [2, 5, 8, 13, 14, 21, 23, 24, 25, 28, 29, 39, 40, 41, 42, 43, 45, 48], "spectra": [2, 8, 9, 13, 18, 28, 48], "spectral": [5, 8, 15, 21, 24, 25, 26, 28, 40], "spectral_r": 13, "spectrogram": 2, "spectroscopi": [8, 9], "spectrotempor": 41, "spectrum": [2, 5, 6, 7, 8, 9, 13, 16, 18, 20, 21, 23, 24, 25, 30, 32, 33, 34, 35, 38, 43], "spectrum_error": [2, 41], "spectrum_start_bin": 2, "spectrum_start_tim": 2, "spectrum_stop_bin": 2, "spectrum_stop_tim": 2, "spectrun": 29, "spectum": 15, "speed": [2, 8, 9, 17, 24, 25], "speedup": [8, 33], "spepoch": 33, "spheroid": 29, "sphinx": [4, 9], "spike": [15, 31], "spin": 2, "spine": [15, 31], "spline": [2, 25], "spline1": 24, "spline2": 24, "split": [2, 5, 32, 34, 41, 49], "split_between_source_and_background": 17, "split_by_gti": [2, 23, 42], "split_gtis_by_exposur": 2, "split_lc": 2, "split_numb": 2, "sporad": 2, "spread": 43, "springer": [2, 29], "springford": 5, "spuriou": [2, 33], "sqrt": [2, 15, 22, 24, 25, 29, 31, 36, 43], "sqsum": 2, "squar": [2, 8, 9, 15, 22, 24, 25, 26, 28, 29, 31, 47], "sqvalu": 2, "sr": 22, "src_count": 12, "ss": 2, "ssd": 2, "ssig": 2, "ssig_from_a": 2, "ssig_from_pf": 2, "stabl": [8, 16, 20, 24, 25, 33], "stack": 27, "stackoverflow": 2, "stage": [2, 4], "stamp": [2, 5, 12, 13, 14, 49], "standalon": 41, "standard": [2, 8, 11, 18, 21, 23, 26, 27, 28, 33, 36, 40, 42, 43, 48], "standard_error": 2, "standard_norm": [24, 25], "star": 23, "start": [2, 4, 5, 8, 9, 12, 18, 21, 22, 23, 28, 29, 30, 31, 33, 35, 36, 37, 38, 40, 41, 42, 45], "start_bin": 2, "start_tim": [2, 23], "startidx": 2, "starting_par": [2, 28], "stat": [2, 8, 28, 29, 32, 33], "state": [2, 4, 8, 23, 29, 41, 42], "state_definit": 41, "statement": [2, 4], "static": [2, 21, 45], "stationari": 29, "statist": [8, 9, 12, 15, 18, 23, 27, 28, 29, 32, 33, 41], "statsmodel": [2, 9], "std": [2, 22, 27, 36, 43], "std_amp": 2, "std_flux": 23, "std_phase": 2, "stddev": [2, 33], "stdgti": 2, "stdgti05": 2, "stdtheor": 2, "steep": 37, "steer": 2, "stellingwerf": [2, 32], "step": [2, 4, 17, 21, 26, 28, 30, 41, 43], "step_siz": 2, "steven": [2, 8, 29], "stick": 21, "stiffer": 2, "still": [2, 3, 4, 8, 17, 26, 27, 29, 48], "stingrai": [0, 1, 6, 7, 12, 13, 14, 15, 19, 20, 21, 22, 24, 25, 26, 30, 31, 33, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49], "stingraydev": 23, "stingrayerror": 2, "stingraysoftwar": [4, 9, 17, 29, 30, 42], "stingraytimeseri": [8, 9, 49], "stochast": [2, 27, 28, 41], "stoke": [2, 43], "stop": [2, 8, 22, 23, 30, 42], "stop_bin": 2, "stop_tim": [2, 23], "stopidx": 2, "storag": 2, "store": [2, 4, 8, 14, 20, 21, 29, 40, 42, 45], "stori": 41, "str": [2, 22, 23, 28, 29, 37, 42], "str1": 2, "str2": 2, "straight": 16, "straightforward": 28, "strategi": [2, 12, 28, 42], "stream": 30, "streamlin": 8, "strict": [2, 8, 18], "strictli": [2, 32, 47], "strike": 32, "string": [2, 4, 8, 13, 24, 25, 42], "strip": 2, "stripe": 26, "strong": [2, 20, 27, 37], "strongli": 2, "structur": [2, 32, 49], "stuck": 28, "studi": [9, 26, 29], "stuff": [2, 4], "style": [2, 19, 20, 23, 24, 25, 42], "stylist": 4, "sub": [2, 4, 24, 25, 28], "sub_band": 41, "subc": 8, "subclass": [2, 28], "subdirectori": 4, "subdivid": 29, "submit": [4, 9], "submodul": [2, 8], "subpackag": [2, 4, 28, 47], "subplot": [14, 15, 22, 24, 25, 27, 29, 31, 33, 36, 41, 43], "subplots_adjust": 33, "subscript": 29, "subsequ": [2, 17, 37, 38, 40, 48], "subset": [2, 4], "substitut": [2, 8], "substrat": 27, "subtract": [2, 5, 9, 24, 25, 26, 31, 41, 49], "success": [2, 4], "successfulli": 2, "suffici": 21, "suggest": [4, 21, 28, 29], "suitabl": 27, "sum": [2, 9, 17, 23, 28, 29, 33, 34, 36, 41, 42, 43], "sum_": [2, 29, 32, 33, 41], "sum_i": 33, "sum_j": 33, "sum_l": 2, "summar": 2, "summari": [2, 5, 12, 27, 28], "summat": 17, "summer": 1, "super": [4, 23], "superclass": 28, "superior": 29, "supersed": 2, "suppli": [2, 40, 45, 48], "support": [2, 3, 6, 8, 9, 13, 14, 15, 21, 23, 28, 29, 42, 48], "suppos": [2, 42], "suppress": 27, "suptitl": 29, "sure": [2, 4, 9, 23, 26, 28, 29, 34], "surfac": [2, 28], "surpris": 28, "surviv": 33, "suzann": 27, "swap": 30, "sware": 21, "switch": [26, 41], "sy": 29, "sym": 29, "symlog": 2, "symmetr": 2, "syntax": [15, 21, 23, 31], "system": [2, 4, 8, 9, 16, 21, 28, 29, 30, 41], "t": [2, 3, 4, 9, 20, 23, 24, 25, 27, 28, 29, 30, 32, 33, 37, 42, 43], "t0": [2, 15, 24, 25, 27, 28, 31, 43], "t01": 24, "t1": [2, 15, 27, 28, 31, 37, 40, 43], "t2": [2, 15, 28, 31, 37, 40], "t3": [2, 15, 31, 37, 40], "t_": 17, "t_0": [27, 32, 33], "t_1": [27, 32, 33], "t_b": 2, "t_i": [12, 23], "t_j": 33, "t_mod": 37, "t_r": [2, 28], "t_start": 2, "t_stop": 2, "ta": 20, "tab": [4, 29], "tabl": [2, 8, 21, 41, 49], "table_ev": 21, "table_t": 21, "tablehdu": 2, "tabul": 2, "tac": 2, "tackl": 4, "tahoma": 48, "tail": [2, 12], "take": [2, 4, 9, 12, 13, 23, 24, 25, 27, 28, 29, 30, 36, 37, 40, 41, 43, 45, 46], "taken": 2, "talk": [2, 4, 9, 17, 19, 20, 23, 24, 25, 26, 42], "taper": 8, "tapered_data": 29, "tar": 2, "targ_id": 21, "target": [21, 26], "target_vers": 41, "targetvers": 41, "task": [2, 4, 9, 11, 28], "tassign": 21, "tau": [2, 17, 27], "tau_d": 17, "tb": [2, 17], "tb02104": 29, "tbb": 9, "tbin": 2, "td": [2, 17], "tdb": [2, 21], "team": [4, 8], "tech": 2, "technic": [21, 29], "techniqu": [2, 8, 9, 19, 20, 26], "telescop": [2, 21], "tell": [17, 23, 41], "templat": 2, "tempo": 2, "tempo2": 2, "tempor": [2, 5], "temporari": 4, "temporarili": 4, "ten": [22, 34], "tensorflow": 9, "tensorflow_prob": 27, "tensorflow_probl": 27, "term": [2, 16, 17, 21, 26, 27, 29, 32, 43], "termin": [23, 27], "terminologi": [28, 41], "tess": 23, "test": [2, 5, 8, 11, 12, 17, 26, 27, 37, 41, 42, 45], "test_c": 15, "test_io": 9, "test_par": 28, "test_path": 2, "tester": 4, "tevtb2": 2, "texa": 2, "text": [4, 13, 16, 17, 19, 20, 21, 22, 24, 25, 29, 35, 41, 43, 45, 46], "tfield": 21, "tform1": 21, "tform2": 21, "tfp": 27, "tfpb": 27, "tfpd": 27, "th": [12, 29], "than": [2, 4, 15, 16, 17, 23, 26, 27, 28, 29, 30, 31, 32, 33, 41, 42, 43], "thank": [1, 2, 41], "thei": [2, 4, 12, 15, 19, 20, 21, 22, 23, 24, 25, 28, 29, 41, 42, 45], "them": [2, 4, 12, 15, 23, 24, 25, 27, 29, 30, 38, 40, 41, 42, 45], "themselv": [2, 41], "theoret": [2, 5, 28, 29, 41], "theori": 23, "therebi": 8, "therefor": [2, 18, 22, 33], "theta": [2, 27, 28, 29, 41], "theta_": [29, 32], "thi": [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 47, 48], "thin": 29, "thing": [4, 8, 15, 31, 32, 41, 42], "think": 9, "third": [2, 4], "thoma": 2, "thomson": 29, "thorough": 17, "those": [2, 4, 9, 21, 23, 28, 29, 43], "though": [2, 28, 34], "thought": 28, "thousand": 34, "thread": [2, 41], "threaten": 4, "three": [2, 9, 14, 15, 21, 22, 23, 28, 30, 31, 37, 42], "threshold": [2, 9, 32, 47], "through": [2, 4, 8, 16, 17, 23, 26, 37, 38, 40, 41, 42, 43, 48], "throughout": [2, 23, 29], "throw": [2, 42], "thrown": [2, 15, 23, 31], "thu": [27, 28, 41, 48], "thumb": 33, "ti": [2, 33], "tick_param": [14, 15, 24, 25, 31], "tight": 2, "tight_layout": [15, 29, 31, 36], "tile": 29, "time": [5, 8, 12, 13, 14, 16, 18, 22, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 37, 38, 40, 48], "time1": 2, "time2": 2, "time_bin": 2, "time_del": 12, "time_delai": [37, 38], "time_intervals_from_gti": [2, 30, 41], "time_lag": [2, 14, 15, 38, 41], "time_new": 2, "time_resolut": 45, "time_respons": 45, "time_shift": [2, 14, 23, 42], "timecolumn": 2, "timecount": 23, "timedelta": [2, 21], "timeenergi": 21, "timelab": 1, "timeref": [2, 21], "times1": [2, 15], "times2": [2, 15], "times_bkg": 17, "times_bkg_dt": 17, "times_delai": 33, "times_dt": 17, "times_kp": 29, "times_shuf": 17, "times_sourc": 17, "times_source_dt": 17, "timescal": [26, 41], "timeseri": [2, 8, 9, 21, 23, 29, 49], "timesi": [2, 21], "timestamp": [2, 14, 15, 19, 21, 29, 31], "timeunit": 21, "timezero": 21, "timmer": 36, "timmerkoenig": 36, "tinygp": [9, 27], "titl": [2, 13, 17, 18, 19, 23, 29, 35, 37, 38, 41, 42, 46, 48], "title_fonts": 36, "tl": 8, "tmax": 17, "tmean": 22, "to_1": 2, "to_astropy_t": [2, 21, 42], "to_astropy_timeseri": [2, 21, 23, 42], "to_binned_timeseri": [2, 42, 43], "to_format": 42, "to_lc": [2, 16, 18, 20, 21, 26, 30, 41], "to_lc_it": 2, "to_lc_list": 2, "to_lightkurv": [2, 23], "to_norm": 2, "to_panda": [2, 42], "to_stingrai": 23, "to_xarrai": [2, 42], "toa": 2, "toastd": 2, "tob": 33, "todo": [2, 23, 43], "togeth": [2, 4, 15, 16, 21, 22, 28, 31, 41], "toggl": 23, "toi": 27, "toler": [2, 8, 18, 23], "toml": 8, "too": [2, 17, 22, 23, 28, 41], "tool": [4, 8, 9, 16, 28, 33, 47, 48], "top": [2, 4, 8, 9, 11, 13, 15, 20, 29, 31, 36, 37, 48], "topic": [9, 29], "total": [2, 12, 15, 21, 23, 24, 25, 28, 29, 31, 41], "total_exposur": 2, "total_tim": 27, "touch": [2, 4, 9], "toussaint": 2, "toward": [4, 8], "towncrier": [4, 8, 9], "tox": [4, 9], "tqdm": [9, 17, 29], "trace": [2, 5], "trace_maximum": [2, 19, 20], "traceback": [2, 23, 42], "track": [2, 20, 41], "tradit": [29, 30], "traingualr": 46, "traingular": 48, "transact": 29, "transfer": [2, 44, 45], "transfer_new": 45, "transferfunct": [2, 44, 48], "transform": [2, 5, 8, 15, 18, 23, 24, 25, 26, 28, 29, 31, 42, 43, 48], "transient": 27, "transpar": [4, 6, 8, 26], "transport": 21, "travel": 37, "treat": [2, 21, 36], "treatment": [2, 26, 42], "trend": 2, "tri": 42, "trial": [2, 32, 33], "trial_correct": 2, "triangl": 2, "triangular": [2, 13, 46], "trick": 26, "trip": [2, 21], "tripl": 2, "trivial": [4, 23, 27, 43], "troll": 4, "trotta": 27, "true": [2, 8, 12, 15, 17, 18, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 40, 41, 42, 43, 45], "truncat": [2, 5, 8, 9, 40, 48, 49], "trust": [2, 26], "try": [2, 4, 9, 13, 15, 20, 21, 23, 26, 28, 29, 30, 31, 32, 33, 35, 41, 42], "ts1": [2, 42], "ts2": [2, 42], "ts_1": 42, "ts_2": 42, "ts_all": 43, "ts_cut": 42, "ts_dt": 43, "ts_long": 42, "ts_neg": 42, "ts_new": [2, 42], "ts_new_1": 42, "ts_new_2": 42, "ts_new_smal": 42, "ts_other": 42, "ts_polar": 43, "ts_rand": 42, "ts_rebin": 42, "ts_shift": 42, "ts_slice": 42, "ts_split": 42, "ts_sum": 42, "ts_tmp": 42, "tseg": [2, 8, 17, 19, 21, 23, 33], "tso": 2, "tstart": [2, 8, 17, 18, 21, 23, 30, 38], "tstop": [2, 21, 30], "tt": 21, "ttime": 2, "ttype1": 21, "ttype2": 21, "tupl": [2, 15, 21, 23, 31, 42], "turn": [2, 4, 14, 15, 23, 28, 29, 31, 42], "tutori": [2, 4, 5, 6, 7, 9, 12, 14, 15, 21, 23, 24, 25, 26, 28, 30, 31, 41, 43, 45], "tutti": 2, "tweak": 41, "twice": [15, 31, 33], "twilight": 43, "twister": 2, "two": [2, 4, 5, 16, 18, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 35, 37, 38, 39, 40, 42, 43, 45, 46], "tx": 2, "txt": [23, 29, 44, 45], "type": [2, 13, 15, 17, 21, 23, 24, 25, 27, 28, 29, 31, 34, 42, 46], "typeerror": [2, 23], "typic": [2, 9, 15, 17, 28, 31, 33, 42], "typing_extens": 9, "u": [2, 4, 12, 13, 16, 17, 18, 21, 24, 25, 27, 28, 29, 30, 31, 32, 33, 36, 41, 43], "udo": 2, "ugli": 4, "ui": 29, "ultim": 8, "ultranest": [9, 12], "unabl": 37, "unaccept": 4, "unbias": [2, 13], "unbin": [2, 23], "uncertainti": [2, 8, 12, 15, 23, 24, 25, 28, 29, 48], "uncom": 41, "under": [1, 2, 4, 7, 8, 27, 28], "underestim": [8, 41], "underli": [2, 8, 27, 28, 41], "underlying_beta": 27, "underscor": 2, "understand": [2, 12, 28, 41, 48], "understood": [2, 16], "undesir": 2, "unequ": 29, "uneven": [5, 23], "unevenli": [2, 8, 23, 29, 42], "unfold": 41, "unidentifi": 8, "uniform": [2, 13, 17, 18, 21, 27, 28, 34, 42, 43, 48], "uniformli": [2, 8, 15, 31, 36, 41, 42], "unimport": 41, "uninform": 12, "union": [2, 42], "unit": [2, 4, 14, 15, 21, 24, 25, 29, 31, 33, 41, 45], "unit_str": 2, "univers": [2, 28], "unknown": [2, 12, 29], "unkown": 27, "unless": 4, "unlik": [28, 32], "unneed": 8, "unnorm": [2, 8, 22, 29], "unnorm_covar": 2, "unnorm_pow": [2, 26, 29], "unnorm_power_err": 2, "unpulsed_ev": 43, "unread": 4, "unrel": 4, "unreleas": 3, "unspecifi": 2, "unsupport": 8, "until": [12, 29, 30, 37, 38], "unwelcom": 4, "up": [2, 4, 8, 9, 15, 16, 17, 23, 28, 30, 33, 41, 42, 45, 48], "updat": [2, 8, 27, 28, 36], "upgrad": 28, "upload": 2, "upper": [2, 4, 8, 17, 26, 41], "upstream": 9, "urg": 2, "us": [1, 2, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 44, 45, 46, 47, 49], "usa": 2, "usabl": 8, "usag": [4, 8, 26, 30, 43], "use_bootstrap": 2, "use_common_mean": [2, 41], "use_hist": 2, "use_pi": 2, "use_splin": 2, "usefulli": 9, "user": [2, 4, 8, 11, 12, 14, 15, 16, 17, 21, 23, 27, 28, 29, 30, 31, 33, 37, 41, 42, 46], "usernam": [4, 9], "userwarn": [29, 30], "usman": 29, "usual": [2, 15, 18, 23, 26, 28, 29, 32, 33, 42], "util": [9, 13, 22, 23, 29, 30, 41, 46], "utlei": 37, "uttlei": [2, 15, 37, 38, 41, 44], "v": [2, 15, 29, 41, 42], "v0": [0, 2, 3], "v0_8": [19, 20, 24, 25], "v1": [0, 2, 3], "v2": [0, 3], "v_cut": 38, "v_cutoff": [37, 38], "val": [2, 33], "valid": [2, 8, 14, 16, 21, 29], "valinit": 33, "valu": [2, 4, 5, 8, 12, 13, 14, 15, 17, 18, 19, 23, 24, 25, 28, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 48], "valueerror": [2, 4, 8, 42], "van": 26, "var": [2, 19, 22, 29, 38], "var_nx": 22, "var_nxs_err": 22, "var_nxs_err_a": 22, "var_nxs_err_b": 22, "var_x": [2, 22], "var_xs_err": [2, 22], "varenergi": 15, "varenergyspectrum": [8, 41], "vari": [2, 8, 33, 38, 48], "variabl": [2, 4, 5, 8, 9, 12, 16, 17, 19, 20, 23, 26, 28, 37, 38, 41, 48], "variable_for_valu": 41, "variable_nam": 4, "variablenam": 2, "varianc": [2, 8, 22, 31, 32, 41], "variant": 2, "variat": [28, 32, 36], "varieti": 2, "variou": [2, 4, 5, 8, 9, 21, 27, 28, 40, 41, 42, 46], "vast": 43, "vastli": 8, "vaughan": [2, 15, 22, 28, 41], "ve": [4, 9, 23, 26, 28], "vector": 2, "verbatim": 4, "verbos": [2, 4, 18, 41], "veri": [2, 4, 8, 9, 14, 16, 17, 18, 21, 22, 23, 27, 28, 30, 32, 33, 34, 41, 42, 43], "verifi": [2, 17, 21, 28, 37, 41], "verlag": 2, "versa": [2, 23], "version": [2, 3, 4, 8, 17, 28, 41, 48], "versu": [2, 17, 41], "vertic": [26, 29, 36, 37, 38, 42], "via": [2, 4, 23, 28, 42], "vice": [2, 23], "view": 37, "viewpoint": 4, "virtual": 4, "visibl": 33, "visit": [13, 14], "visual": [2, 12, 17, 20, 29, 32, 33, 37, 38, 41], "visualis": 27, "visula": 14, "vmax": 20, "vmin": [20, 33, 43], "vol": [2, 29], "volum": [2, 21], "von": 2, "w": [2, 29, 33, 35, 40, 48], "w191": 4, "w291": 4, "w292": 4, "w293": 4, "w391": 4, "w503": 8, "w_j": 33, "wa": [2, 8, 15, 16, 17, 21, 23, 26, 28, 29, 31, 32, 33, 41, 42, 43], "wai": [2, 3, 4, 6, 9, 14, 15, 16, 21, 23, 24, 25, 28, 29, 30, 31, 33, 40, 41, 42, 45, 48], "walk": [35, 40, 48], "walker": [2, 28], "wall": 29, "wang": 41, "wang_data": 41, "want": [2, 4, 9, 14, 18, 23, 24, 25, 28, 30, 33, 34, 41, 42], "warn": [2, 8, 9, 15, 23, 27, 28, 29, 30, 42], "warning_class": 4, "warp": 37, "watch": 2, "watt": 2, "wave": [14, 15, 24, 25, 29, 31], "wavelength": [2, 41], "we": [2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 47, 48], "week": 8, "weigh": 43, "weight": [2, 8, 9, 27, 29, 32, 33, 42, 49], "weighted_posterior_plot": 27, "welch": [2, 13, 29, 48], "welcom": [4, 9, 27], "well": [2, 4, 8, 9, 11, 15, 16, 17, 23, 26, 27, 28, 29, 33, 37, 41], "went": 2, "were": [2, 8, 26, 28, 31, 41, 42], "west": 9, "what": [2, 4, 15, 20, 23, 28, 30, 31, 32, 40, 41, 42], "whatev": 2, "when": [2, 4, 8, 9, 14, 16, 17, 18, 21, 23, 24, 25, 26, 28, 29, 30, 32, 33, 40, 42, 43, 48], "whenev": [2, 4], "where": [2, 4, 12, 15, 17, 18, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 40, 41, 42, 43, 48], "wherea": [32, 43], "wherev": 4, "whether": [2, 4, 23, 24, 25, 27, 29, 42], "which": [2, 3, 4, 8, 9, 13, 14, 15, 16, 17, 21, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 40, 42, 43, 45, 48], "while": [2, 4, 5, 17, 18, 23, 26, 27, 28, 31, 33, 39, 41, 42, 48], "white": [2, 16, 18, 28, 32], "white_nois": 28, "white_noise_level": 8, "white_noise_offset": 8, "whitegrid": [17, 27], "whitenois": [2, 28], "whitespac": 2, "who": [4, 23, 28], "whole": [2, 15, 29, 41], "whom": 40, "whose": [2, 23, 26, 33, 37, 42], "why": [4, 9, 49], "wide": 8, "widehat": 29, "wider": 28, "widget": 33, "width": [2, 14, 15, 24, 25, 31, 33, 36, 38, 40, 44, 45], "width_ratio": 43, "wiggl": [17, 26], "wiki": 4, "wilkinson": 2, "window": [2, 5, 8, 9, 26, 29], "window_nam": 13, "window_typ": [2, 46], "wise": 2, "wish": [15, 24, 25, 31], "witha": 20, "witherror": [2, 42], "within": [2, 4, 8, 9, 21, 23, 29, 32, 42], "without": [2, 4, 8, 12, 14, 18, 23, 28, 29, 30, 41, 42, 43], "word": 4, "work": [2, 3, 4, 8, 9, 17, 18, 21, 24, 25, 27, 28, 29, 34, 38, 41, 43, 48], "workflow": [8, 9], "workshop": [4, 8], "world": [3, 4], "worn": 29, "would": [2, 4, 21, 26, 28, 33, 34, 37, 38, 40, 41, 42], "wrap": [22, 27, 28, 38], "wrapper": 28, "write": [2, 4, 5, 8, 9, 28, 41, 45, 48, 49], "writer": [2, 4, 21], "written": [4, 28, 32], "wrong": 2, "wrt": 2, "wspace": [36, 43], "www": 2, "x": [2, 5, 7, 8, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 37, 39, 42, 43, 44, 47], "x0": 39, "x_": [29, 32], "x_0": [2, 28, 36, 41], "x_0_0": [2, 28], "x_0_1": [2, 28], "x_0_2": [2, 28], "x_0_i": 2, "x_1": 29, "x_2": 29, "x_break_0": 28, "x_i": [27, 29], "x_j": 27, "x_k": 29, "x_n": 29, "x_nearest": 2, "x_t": 29, "xarrai": [2, 8, 9, 49], "xbin": 2, "xbreak": 28, "xdist": 2, "xerr": [22, 41], "xlabel": [2, 12, 16, 17, 19, 20, 21, 22, 23, 26, 29, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 46, 48], "xlim": [15, 17, 20, 26, 32, 33, 36, 41], "xmax": [2, 23], "xmin": [2, 23], "xmm": [2, 9, 16], "xselect": 2, "xspec": 8, "xte": [2, 8], "xtension": 21, "xti": 9, "xtick": [17, 36], "xticklabel": 41, "y": [2, 14, 15, 24, 25, 28, 29, 31, 36, 37, 42, 43, 44], "y0": 25, "y01": 24, "y02": 24, "y2": [24, 29], "y_err": 2, "y_subtract": 2, "yaml": 8, "ybin": 2, "ybin_err": 2, "ybinerr": 2, "ye": [4, 26], "yellow": 41, "yerr": [2, 15, 22, 27, 28, 38, 40, 41], "yet": [5, 15, 28, 29], "yield": [2, 27, 28, 30, 31], "ylabel": [2, 12, 16, 17, 19, 20, 21, 22, 23, 26, 29, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 46, 48], "ylim": [15, 16, 17, 19, 20, 26, 33, 36, 38, 41, 43], "ymax": [2, 23], "ymin": [2, 23], "york": 2, "you": [1, 2, 3, 4, 8, 9, 14, 15, 23, 24, 25, 28, 29, 30, 31, 32, 40, 42], "your": [2, 3, 4, 8, 9, 14, 15, 23, 28, 29, 42], "yourself": [4, 9, 23], "yourusernam": 4, "yscale": 29, "ysub": 2, "ytick": [17, 36], "yticklabel": 41, "z": [2, 8, 9, 12, 27, 32, 47], "z2": 2, "z2_n": 2, "z2_n_detection_level": [2, 33], "z2_n_logprob": 2, "z2_n_probabl": 2, "z_1": 27, "z_2": [2, 27, 33], "z_detlev": 33, "z_n": [2, 33], "z_n_binned_ev": 2, "z_n_binned_events_al": 2, "z_n_event": 2, "z_n_events_al": 2, "z_n_gauss": 2, "z_n_gauss_al": 2, "z_n_search": [2, 33], "zenodo": [0, 3, 41], "zero": [2, 8, 12, 14, 15, 21, 25, 28, 29, 31, 37, 39, 41, 46], "zeros_lik": [2, 22, 31, 33, 43], "zeroth": 2, "zh_f": 17, "zh_p": 17, "zhang": [2, 7], "zip": [2, 16, 18, 26, 28, 29, 30, 35, 36, 37, 38], "zoom": [19, 33], "zorder": [15, 16, 17, 22, 26, 31, 32, 33, 41, 43], "zstat": 33, "\u00e0": 8, "\u0161id\u00e1k": 2, "\u03b4\ud835\udc61": 12, "\ud835\udc35_1": 12, "\ud835\udc35_\ud835\udc41": 12, "\ud835\udc35_\ud835\udc56": 12, "\ud835\udc37": 12, "\ud835\udc41\ud835\udc5c\ud835\udc5f\ud835\udc5a\ud835\udc4e\ud835\udc59": 12, "\ud835\udc43\ud835\udc5c\ud835\udc56\ud835\udc60\ud835\udc60\ud835\udc5c\ud835\udc5b": 12, "\ud835\udc45_": 12, "\ud835\udc45_b": 12, "\ud835\udc45_\ud835\udc35": 12, "\ud835\udc45_\ud835\udc46": 12, "\ud835\udc46_1": 12, "\ud835\udc46_\ud835\udc41": 12, "\ud835\udc46_\ud835\udc56": 12, "\ud835\udc4f\ud835\udc52\ud835\udc65\ud835\udc63\ud835\udc4e\ud835\udc5f": 12, "\ud835\udc53_\ud835\udc56": 12, "\ud835\udc5f": 12, "\ud835\udc61_\ud835\udc56": 12}, "titles": ["<no title>", "Acknowledgements", "Stingray API", "Citing Stingray", "Get Help, Report Bugs or Contribute", "Core Stingray Functionality", "More Data Exploration", "Dealing with dead time", "History", "Stingray: Next-Generation Spectral Timing", "Working with large data sets", "The Stingray Modelling Interface", "Baysian Excess Variance (Bexvar)", "Bispectrum Tutorial", "CrossCorrelation", "Cross Spectra", "Quicklook NuSTAR data with Stingray", "Stingray\u2019s dead time models", "Fourier Amplitude Difference correction in Stingray", "Dynamical Power Spectra (on fake data)", "Dynamical Power Spectra (on real data)", "Contents", "R.m.s. - intensity diagram", "Creating a light curve", "Lomb Scargle Cross Spectra", "Lomb Scargle Power Spectra", "Observations with frequent data gaps", "Gaussian Processes Inferencing in Stingray", "The Stingray Modeling API Explained", "Install Stingray in colab", "Data preparation", "Power spectrum example", "Phase Dispersion Minimization in Stingray", "Simulate a dataset", "Inverse Transform Sampling", "Simulating Light Curves from Power Law Power Spectra", "Simulating event times with the inverse CDF method", "Outline", "Contents", "Contents", "Contents", "Introduction", "Introduction", "Why using weights?", "Setting Up Data", "Contents", "Window functions", "Analysing Pulsar Data", "Stingray Simulator (stingray.simulator)", "Working with more generic time series"], "titleterms": {"": [17, 19, 22, 29, 30, 46], "0": 8, "02": 8, "03": 8, "05": 8, "06": 8, "1": [8, 9, 14, 15, 23, 24, 25, 27, 31, 42, 45], "10": 8, "11": 8, "13": 8, "17": 8, "2": [8, 14, 15, 19, 23, 24, 25, 27, 31, 42, 45], "2019": 8, "2020": [8, 29], "2021": 8, "2022": 8, "2023": 8, "2024": 8, "22": 8, "25": 8, "29": 8, "3": [8, 9, 14], "3000": 29, "31": 8, "95": 17, "A": [6, 9, 19, 29], "And": [15, 31], "As": 29, "But": 29, "It": 19, "The": [11, 26, 28, 29, 48], "With": 37, "abov": 14, "acknowledg": 1, "actual": 19, "ad": [19, 20], "addit": [9, 23, 42], "advanc": 9, "al": 29, "all": 20, "along": 19, "amplitud": 18, "an": [21, 42, 48], "analys": 47, "analysi": [5, 27, 38, 43, 48], "analyz": 23, "anoth": [13, 14], "api": [2, 28], "arrai": [23, 42], "arriv": [21, 23], "artifici": 45, "astronomi": 27, "astropi": [21, 42], "attribut": [4, 24, 25, 29], "autocorrel": [2, 5, 14], "auxiliari": 2, "avail": 48, "averagedcovariancespectrum": 2, "averagedcrossspectrum": [2, 15], "averagedpowerspectrum": [2, 31], "background": [12, 28], "base": 2, "baselin": 23, "bayesian": [5, 28], "baysian": 12, "better": 30, "bexvar": 12, "bia": 29, "bin": [15, 23, 29, 31, 42], "bispectra": 5, "bispectrum": [2, 13], "blackmann": 46, "bleed": 9, "both": [15, 24, 29], "break": 8, "broken": 39, "bug": [4, 8], "build": 9, "calcul": [23, 30], "calibr": 28, "can": [15, 29, 31], "capabl": 9, "cdf": 36, "chang": 8, "changelog": [4, 8], "channel": [40, 48], "check": [17, 23], "cite": 3, "class": [2, 15, 24, 25, 31, 42], "classic": 29, "cleanup": 41, "code": 4, "coher": [2, 15, 41], "colab": 29, "color": 41, "combin": 42, "commun": 4, "compar": 29, "comparison": 27, "compat": [4, 21, 23], "concaten": 23, "concept": 48, "conda": 9, "configur": 4, "contain": 29, "content": [21, 38, 39, 40, 45], "contribut": 4, "contributor": 9, "conveni": [2, 28], "convent": 4, "convert": 42, "core": 5, "correct": [2, 18], "correl": 14, "count": [23, 42], "covari": 41, "covariancespectrum": 2, "creat": [14, 15, 21, 23, 24, 25, 29, 30, 31, 40, 42, 45, 48], "credit": 27, "cross": [5, 14, 15, 24, 26, 41], "crosscorrel": [2, 14], "crossspectrum": [2, 5, 15], "current": 9, "curv": [14, 15, 21, 22, 23, 24, 25, 29, 30, 31, 35, 39, 40, 43], "data": [2, 4, 5, 6, 9, 10, 16, 19, 20, 23, 26, 29, 30, 41, 44, 47], "dataset": [29, 32, 33], "dead": [2, 7, 17], "deal": 7, "decent": 29, "defin": [40, 48], "delta": 37, "demonstr": 13, "depend": [4, 9, 15, 37, 38], "develop": [4, 9], "diagram": [22, 41], "differ": [14, 18, 29], "dispers": 32, "distribut": [23, 29, 31], "document": [4, 8, 9], "doe": 29, "doi": 3, "domain": 29, "drifit": 19, "dynam": [2, 5, 19, 20], "dynamicpowerspectrum": 20, "edg": 9, "energi": [15, 21, 37, 38, 45], "enforc": 4, "environ": 9, "epoch": 33, "error": [4, 23], "estim": [2, 28, 29], "et": 29, "event": [5, 30, 36, 42], "eventlist": [2, 21], "evid": 27, "exampl": [13, 14, 29, 31, 33, 48], "except": 2, "excess": [5, 12], "excessvariancespectrum": 2, "explain": 28, "explor": [6, 9], "extra": 17, "f": 29, "fake": 19, "featur": [8, 9, 19], "feedback": 4, "file": [23, 42], "first": [29, 33], "fit": [28, 33], "fitstimeseriesread": 30, "fix": 8, "flat": 46, "fold": 33, "format": 21, "fourier": [2, 5, 9, 18], "frequenc": [15, 19, 29, 31, 33, 37], "frequent": 26, "from": [9, 14, 21, 23, 30, 35, 42], "full": 33, "function": [2, 5, 13, 17, 19, 28, 33, 39, 46, 48], "fundament": 9, "futur": 9, "gap": 26, "gaussian": [27, 33], "gener": [9, 19, 39, 49], "geometr": [15, 31], "get": [4, 48], "good": [23, 42], "gti": [2, 23, 42], "guidelin": 4, "ham": 46, "han": 46, "handl": 9, "hard": 41, "have": [19, 29], "heasoft": 21, "help": 4, "here": 29, "higher": 2, "histori": 8, "how": 29, "i": [2, 19, 29, 40], "ii": 40, "iii": 40, "import": 48, "improv": [8, 29], "impuls": [37, 38, 40, 48], "index": [23, 42], "indic": 9, "individu": 29, "inferenc": 27, "inform": 9, "initi": 38, "instal": [9, 29], "instruct": 9, "intens": [22, 37, 41], "interact": 33, "interfac": 11, "intern": [8, 42], "interv": [23, 42], "introduct": [41, 42, 48], "invers": [34, 36], "involv": 4, "io": 45, "ir": 45, "irregular": 23, "ish": 28, "issu": [4, 9], "iv": 40, "jackknif": 29, "jk_var_deg_freedom": 29, "join": 21, "kepler": 29, "lag": [14, 15, 37, 41, 48], "lagenergyspectrum": 2, "larg": 10, "law": [35, 39, 40, 48], "lazi": 30, "least": 19, "let": [19, 29, 30], "light": [14, 15, 21, 22, 23, 24, 25, 29, 30, 31, 35, 39, 40, 43], "lightcurv": [2, 5, 14, 19, 20, 21, 23, 27, 29], "lightkurv": 23, "like": 19, "likelihood": [2, 27, 28], "line": 33, "linearli": 29, "list": 42, "load": [21, 30, 41], "log": [2, 27], "logarithm": [15, 31], "lomb": [5, 6, 24, 25, 26, 29], "lombscarglecrossspectrum": 24, "lombscarglepowerspectrum": 25, "longer": 14, "look": [6, 19, 29], "lorentzian": 28, "lorenzian": 39, "m": 22, "maintain": 4, "maximum": 28, "maximun": 20, "merg": 8, "method": [9, 23, 36, 42, 48], "minim": 32, "mission": 2, "mjdref": [23, 42], "mode": 14, "model": [2, 11, 17, 27, 28, 39, 40, 41, 48], "more": [6, 37, 49], "multi": 5, "multitap": 29, "naiv": 30, "negat": [23, 42], "new": [8, 9, 17], "next": 9, "non": 17, "normal": [29, 31], "normaliz": [15, 31], "now": 29, "nustar": [6, 16], "o": 2, "object": [14, 15, 21, 24, 25, 29, 31, 40, 42, 48], "observ": [6, 21, 26], "obtain": 45, "one": 19, "onli": 19, "oper": [23, 42], "order": 2, "other": [2, 3, 9, 24, 25, 29, 42], "our": 4, "outlin": 37, "output": 4, "overlai": 19, "overplot": 33, "panda": 42, "paper": 3, "paralyz": 17, "paramet": [2, 24, 25, 27, 28], "parzen": 46, "pass": [15, 24, 25, 31], "pd": 30, "peak": 33, "periodogram": [5, 6, 17, 26, 29, 41], "phase": [15, 32], "phaseogram": 33, "photon": [21, 23], "pickl": 21, "pip": 9, "plan": 9, "platform": 9, "pledg": 4, "plot": [13, 14, 23, 27, 29, 42, 45], "point": 29, "poisson": 29, "polarimetr": 43, "posit": 37, "posterior": [2, 27, 28], "power": [5, 17, 19, 20, 25, 28, 29, 31, 35, 39, 40, 41, 48], "powerspectra": 5, "powerspectrum": [2, 5, 19, 29, 31], "pre": [40, 48], "prepar": 30, "present": 8, "previou": 8, "prior": 27, "procedur": 30, "process": 27, "product": 2, "project": 8, "properti": [15, 23, 24, 31], "provid": 4, "psd": 29, "puls": 33, "pulsar": [2, 47], "pulsat": [32, 33], "qpo": 28, "quick": 6, "quicklook": 16, "r": 22, "rai": 21, "rate": 22, "ratio": 28, "re": [15, 23, 29, 31, 42], "read": [23, 40, 42], "real": 20, "realist": 37, "rebin": [19, 20], "refer": [3, 29], "relativist": 45, "report": 4, "represent": 29, "reproduc": 17, "resolv": 45, "respons": [4, 37, 38, 40, 45, 48], "result": 29, "rm": [22, 41], "rmsenergyspectrum": 2, "roundtrip": 21, "row": 33, "same": 37, "sampl": [23, 27, 29, 34], "scargl": [5, 6, 24, 25, 26, 29], "scope": 4, "search": [28, 32, 33], "second": 33, "see": 29, "seem": 29, "seen": 29, "segment": 23, "segment_s": [15, 31], "seri": [9, 29, 42, 49], "set": [10, 44], "setup": [21, 22, 38, 39, 40, 45], "shift": [19, 20, 23, 33, 42], "simpl": [37, 45], "simul": [2, 9, 21, 22, 32, 33, 35, 36, 39, 40, 48], "sinc": 33, "slightli": 30, "slow": 6, "smooth": 39, "solut": 33, "some": 28, "sort": [23, 42], "sourc": 9, "specif": [2, 9], "specifi": [15, 31], "spectra": [5, 15, 19, 20, 24, 25, 31, 35], "spectral": [2, 9, 29, 39, 41, 48], "spectrum": [15, 17, 19, 26, 28, 29, 31, 37, 40, 41, 48], "split": [23, 42], "springford": 29, "squar": 33, "stamp": [23, 42], "standard": 4, "start": [20, 48], "statist": 2, "stingrai": [2, 3, 4, 5, 8, 9, 11, 16, 17, 18, 23, 27, 28, 29, 32, 42, 48], "stingrayobject": 2, "stingraytimeseri": [2, 42, 43], "structur": 42, "studi": 6, "style": 4, "subtract": [23, 42], "suit": 9, "summari": 29, "tabl": [9, 42], "taper": [5, 29], "tempor": 29, "test": [4, 9, 28, 29], "theoret": 12, "thi": [19, 29], "threshold": 33, "time": [2, 7, 9, 15, 17, 19, 20, 21, 23, 29, 36, 41, 42, 43, 45, 49], "timeseri": 42, "top": 46, "trace": [19, 20], "traingular": 46, "transfer": 48, "transferfunct": 45, "transform": [21, 34], "truncat": [23, 42], "tutori": [13, 48], "two": [14, 15, 24], "uneven": 29, "uniform": 46, "up": 44, "updat": [4, 33], "us": [3, 9, 29, 40, 42, 43, 48], "user": [40, 48], "util": 2, "v0": 8, "v1": 8, "v2": 8, "valu": 29, "varenergyspectrum": 2, "vari": 37, "variabl": [6, 22], "varianc": [5, 12, 29], "veri": 6, "version": 9, "via": 9, "visual": 19, "warn": 4, "we": [15, 19, 31], "weight": 43, "welch": 46, "while": 29, "why": 43, "window": [13, 46, 48], "work": [5, 10, 23, 49], "workflow": 4, "write": [21, 23, 40, 42], "x": 21, "xarrai": 42, "yet": 14, "z": 33, "zhang": 17, "zom": 19, "zoom": 29}}) \ No newline at end of file diff --git a/simulator.html b/simulator.html new file mode 100644 index 000000000..84c018ae6 --- /dev/null +++ b/simulator.html @@ -0,0 +1,405 @@ + + + + + + + + Stingray Simulator (stingray.simulator) — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + +
+
+
+
+ +
+

Stingray Simulator (stingray.simulator)

+
+

Introduction

+

stingray.simulator provides a framework to simulate light curves with given variability distributions. In time series experiments, understanding the certainty is crucial to interpret the derived results in context of physical models. The simulator module provides tools to assess this uncertainty by simulating time series and spectral data.

+

Stingray simulator supports multiple methods to carry out these simulation. Light curves can be simulated through power-law spectrum, through a user-defined or pre-defined model, or through impulse responses. The module is designed in a way such that all these methods can be accessed using similar set of commands.

+
+

Note

+

stingray.simulator is currently a work-in-progress, and thus it is likely +there will still be API changes in later versions of Stingray. Backwards +compatibility support between versions will still be maintained as much as +possible, but new features and enhancements are coming in future versions.

+
+
+
+

Getting started

+

The examples here assume that the following libraries and modules have been imported:

+
>>> import numpy as np
+>>> from stingray import Lightcurve, sampledata
+>>> from stingray.simulator import simulator, models
+
+
+
+

Creating a Simulator Object

+

Stingray has a simulator class which can be used to instantiate a simulator +object and subsequently, perform simulations. We can pass on arguments to +this class class to set the properties of the desired light curve.

+

The simulator object can be instantiated as:

+
>>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+
+
+

Here, N specifies the bins count of the simulated light curve, mean specifies +the mean value, dt is the time resolution, and rms is the fractional rms amplitude, +defined as the ratio of standard deviation to the mean.. Additional arguments can be +provided e.g. to account for the effect of red noise leakage.

+
+
+

Simulate Method

+

Stingray provides multiple ways to simulate a light curve. However, all these methods follow a common recipe:

+
>>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+>>> lc = sim.simulate(2)
+
+
+
+
+

Using Power-Law Spectrum

+

When only an integer argument (beta) is provided to the simulate method, that integer defines the shape of the power law spectrum. Passing beta as 1 gives a flicker-noise distribution, while a beta of 2 generates a random-walk distribution.

+
from matplotlib import rcParams
+rcParams['font.family'] = 'sans-serif'
+rcParams['font.sans-serif'] = ['Tahoma']
+
+import matplotlib.pyplot as plt
+from stingray.simulator import simulator
+
+# Instantiate simulator object
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+# Specify beta value
+lc = sim.simulate(2)
+
+plt.plot(lc.counts, 'g')
+plt.title('Random-walk Distribution Simulation', fontsize='16')
+plt.xlabel('Counts', fontsize='14', )
+plt.ylabel('Flux', fontsize='14')
+plt.show()
+
+
+

(Source code, png, hires.png, pdf)

+
+_images/simulator-1.png +
+
+
+

Using User-defined Model

+

Light curve can also be simulated using a user-defined spectrum, which can be +passed on as a numpy array.

+
from matplotlib import rcParams
+rcParams['font.family'] = 'sans-serif'
+rcParams['font.sans-serif'] = ['Tahoma']
+
+import matplotlib.pyplot as plt
+from stingray.simulator import simulator
+
+# Instantiate simulator object
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+# Define a spectrum
+w = np.fft.rfftfreq(sim.N, d=sim.dt)[1:]
+spectrum = np.power((1/w),2/2)
+# Simulate
+lc = sim.simulate(spectrum)
+
+plt.plot(lc.counts, 'g')
+plt.title('User-defined Model Simulation', fontsize='16')
+plt.xlabel('Counts', fontsize='14')
+plt.ylabel('Flux', fontsize='14')
+plt.show()
+
+
+

(Source code, png, hires.png, pdf)

+
+_images/simulator-2.png +
+
+
+

Using Pre-defined Models

+

One of the pre-defined spectrum models can be used to simulate a light curve. +In this case, model name and model parameters (as list iterable) need to be +passed on as function arguments.

+
+
+

Using Impulse Response

+

In order to simulate a light curve using impulse response, we need the original light curve and impulse response. Stingray provides TransferFunction class which can be used to obtain time and energy averaged impulse response by passing in a 2-D intensity profile as the input. A detailed tutorial on obtaining impulse response is provided here.

+

Here, for the sake of simplicity, we use a simulated impulse response.

+
from matplotlib import rcParams
+rcParams['font.family'] = 'sans-serif'
+rcParams['font.sans-serif'] = ['Tahoma']
+
+import matplotlib.pyplot as plt
+from stingray import sampledata
+from stingray.simulator import simulator
+
+# Obtain a sample light curve
+lc = sampledata.sample_data().counts
+# Instantiate simulator object
+sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+# Obtain an artificial impulse response
+ir = sim.relativistic_ir()
+# Simulate
+lc_new = sim.simulate(lc, ir)
+
+plt.plot(lc_new.counts, 'g')
+plt.title('Impulse Response based Simulation', fontsize='16')
+plt.xlabel('Counts', fontsize='14')
+plt.ylabel('Flux', fontsize='14')
+plt.show()
+
+
+

(Source code, png, hires.png, pdf)

+
+_images/simulator-3.png +
+

Since, the new light curve is produced by the convolution of original light curveand impulse response, its length is truncated by default for ease of analysis. This can be changed, however, by supplying an additional parameter full. However, at times, we do not need to include lag delay portion in the output light curve. This can be done by changing the final function parameter to filtered. For a more detailed analysis on lag-frequency spectrum, follow the notebook here.

+
+
+
+

Channel Simulation

+

The simulator class provides the functionality to simulate light curves independently for each channel. This is useful, for example, when dealing with energy dependent impulse responses where we can create a di↵erent simulation channel for each energy range. The module provides options to count, retrieve and delete channels.:

+
>>> sim = simulator.Simulator(N=1024, mean=0.5, dt=0.125, rms=1.0)
+>>> sim.simulate_channel('3.5 - 4.5', 2)
+>>> sim.count_channels()
+1
+>>> lc = sim.get_channel('3.5 - 4.5')
+>>> sim.delete_channel('3.5 - 4.5')
+
+
+

Alternatively, assume that we have light curves in the simulated energy channels 3.5 - 4.5, 4.5 - 5.5 and 5.5 - 6.5. These channels can be retrieved or deleted in single commands.

+
>>> sim.count_channels()
+0
+>>> sim.simulate_channel('3.5 - 4.5', 2)
+>>> sim.simulate_channel('4.5 - 5.5', 2)
+>>> sim.simulate_channel('5.5 - 6.5', 2)
+>>> chans = sim.get_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5'])
+>>> sim.delete_channels(['3.5 - 4.5','4.5 - 5.5','5.5 - 6.5'])
+
+
+
+
+

Tutorials

+
+

Important Concepts

+ +
+
+

The Simulator Object

+ +
+
+

Available Spectral Models

+ +
+
+

An Example Lag Analysis

+ +
+
+

Transfer Functions

+ +
+
+

Window Functions

+ +
+
+
+ + +
+
+
+
+ +
+
+
+

+ Page Source   + Back to Top

+

+ © Copyright 2024, [{'name': 'Stingray Developers', 'email': 'spectraltiming-stingray@googlegroups.com'}].
+ Created using Sphinx 8.1.3.   + Last built 22 Oct 2024.
+

+
+ + \ No newline at end of file diff --git a/timeseries.html b/timeseries.html new file mode 100644 index 000000000..c1ea732da --- /dev/null +++ b/timeseries.html @@ -0,0 +1,157 @@ + + + + + + + + Working with more generic time series — stingray v + + + + + + + + + + + + + + + + + + + + + + + + +
+ Stingray:docs + +
+ + + + + + + + \ No newline at end of file